

Sequence Listing

<110> Reilly, Dorothea
Yansura, Daniel G.

<120> METHODS AND COMPOSITIONS FOR INCREASING ANTIBODY PRODUCTION

<130> 11669.195USU1

<140> US 10/697,995

<141> 2003-10-30

<150> US 60/422,952

<151> 2002-10-31

<160> 37

<210> 1

<211> 3300

<212> DNA

<213> Artificial Sequence

<220>

<223> anti-TF vector

<400> 1

gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50

tcattgctga gttgttattt aagcttgccc aaaaagaaga agagtcgaat 100

gaactgtgtg cgcaggtaga agctttggag attatcgta ctgcaatgct 150

tcgcaatatg gcgc当地atg accaacagcg gttgattgat caggttagagg 200

ggcgctgta cgaggtaaag cccgatgcc a cattcctga cgacgatacg 250

gagctgctgc gcgattacgt aaagaagtta ttgaagcatc ctcgtcagta 300

aaaagttaat ctttcaaca gctgtcataa agttgtcacg gccgagactt 350

atagtcgctt tgttttatt tttaatgta tttgtaacta gtacgcaagt 400

tcacgtaaaa agggtatcta gaattatgaa gaagaatatc gcatttcttc 450

ttgcatctat gttcgaaaa tctattgcta caaacgcgta cgctgatatac 500

cagatgaccc agtccccgag ctccctgtcc gcctctgtgg gcgataggg 550

caccatcacc tgcagagcca gtcgcgacat caagagctat ctgaactgg 600

atcaacagaa accagggaaaa gctccgaaag tactgattta ctatgctact 650

agtctcgctg aaggagtccc ttctcgcttc tctggatccg gttctgggac 700

ggattacact ctgaccatca gcagtctgca gccagaagac ttgcgaactt 750

attactgtct tcagcacgga gagtctccat ggacatttg 800
aagggtggaga tcaaacgaac tgtggctgca ccatctgtct tcatcttccc 850
gccatctgat gagcagttga aatctggAAC tgcttcgtt gtgtgcctgc 900
tgaataactt ctatcccaga gaggccaaAG tacagtggAA ggtggataAC 950
gccctccaat cgggttaactc ccaggagAGT gtcacagAGC aggacAGCA 1000
ggacagcacc tacagcctca gcagcacCCt gacgctgAGC aaAGcAGACT 1050
acgagaaaca caaagtctac gcctgcgaAG tcacccatca gggctgAGC 1100
tcgcccgtca caaagagCTT caacagggGA gagtgttaAT taaatcctct 1150
acgccccgacg catcgTggcg agctcggtac ccggggatct aggccctaACG 1200
ctcggttgcC gccgggcgtt ttTTattgtt gccgacgcgc atctcgaatg 1250
aactgtgtgc gcaggtAGAA gctttggAGA ttatcgTCAC tgcaatgCTT 1300
cgcaatatgg cgcaaaatga ccaacAGCGG ttgattgATC aggtAGAGGG 1350
ggcgctgtac gaggtAAAGC ccgatGCCAG cattcctgAC gacgatacGG 1400
agctgctgCG cgattacgta aagaAGTTAT tgaAGCATCC tcgtcAGTAA 1450
aaagttaATC ttttcaacAG ctgtcataAA gttgtcacGG ccgagactTA 1500
tagtcgcttT gtttttattt tttaatgtat ttgtAACTAG tacgcaAGTT 1550
cacgtaaaaAA gggtatCTAG aattatGAAG aagaatATCG catttcttct 1600
tgcacTCTATG ttCGTTTTT ctattgCTAC aaACGCGTAC gctgaggTTc 1650
agctggTgGA gtctggcgGT ggcctggTgc agccaggGGG ctcactccGT 1700
ttgtcctgtG cagttctgg cttcaatATT aaggAGTACT acatgcACTG 1750
ggtccgtcAG gccccggta agggcctgga atgggttggA ttgattgATC 1800
cagagcaagg caacacgATC tatgacCCGA agttccAGGA ccgtGCCACT 1850
ataagcgctg acaattccAA aaacacAGCA tacctgcAGA tgaacAGCCT 1900
gcgtgctgAG gacactGCCG tctattATTG tgctcgAGAC acggccgCTT 1950
acttcgactA ctggggTCAA ggaACCCTGG tcaccgtCTC ctggcCTCC 2000
accaaggGCC catcggtCTT cccccTggCA ccctcctCCA agagcacCTC 2050
tgggggcaca gccccctgg gctgcctggT caaggACTAC ttccccGAAC 2100
cggtgacggT gtcgtggAAC tcaggcGCCc tgaccAGCGG cgtgcacACC 2150

ttcccggtg tcctacagtc ctcaggactc tactccctca gcagcgtgg 2200
gactgtgccc tctagcagct tgggcaccca gacctacatc tgcaacgtga 2250
atcacaagcc cagcaacacc aaggtggaca agaaaagttga gcccaaatct 2300
tgtgacaaaaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg 2350
gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 2400
tctcccgac ccctgaggta acatgcgtgg tggtggacgt gagccacgaa 2450
gaccctgagg tcaagttcaa ctggtaacgtg gacggcgtgg aggtgcataa 2500
tgccaagaca aagccgcggg aggagcagta caacagcacg taccgtgtgg 2550
tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtag 2600
aagtgcaagg tctccaacaa agccctccca gccccatcg agaaaaccat 2650
ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcccc 2700
catcccgaaa agagatgacc aagaaccagg tcagcctgac ctgcctggtc 2750
aaaggcttct atcccagcga catcgccgtg gagtgggaga gcaatggca 2800
gccggagaac aactacaaga ccacgcctcc cgtgctggac tccgacggct 2850
ccttcttcct ctacagcaag ctcaccgtgg acaagagcag gtggcagcag 2900
gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta 2950
cacgcagaag agcctctccc tgtctccggg taaataagca tgcgacggcc 3000
ctagagtccc taacgctcgg ttgccgcgg gcgaaaaata ttgttaactc 3050
atgtttgaca gcttatcatc gataagctt aatgcggtag tttatcacag 3100
ttaaattgct aacgcagtca ggcaccgtgt atgaaatcta acaatgcgct 3150
catcgcatc ctcggcaccg tcaccctggta tgctgttaggc ataggcttgg 3200
ttatgccggt actgccgggc ctcttgccggg atatcgcca ttccgacagc 3250
atcgccagtc actatggcgt gctgctagcg ctatatgcgt tgatgcaatt 3300

<210> 2
<211> 237
<212> PRT
<213> Artificial Sequence

<220>
<223> anti-TF light chain

<400> 2
Met Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe

1	5	10	15
Ser Ile Ala Thr Asn Ala Tyr Ala Asp Ile Gln Met Thr Gln Ser			
20	25	30	
Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr			
35	40	45	
Cys Arg Ala Ser Arg Asp Ile Lys Ser Tyr Leu Asn Trp Tyr Gln			
50	55	60	
Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile Tyr Tyr Ala Thr			
65	70	75	
Ser Leu Ala Glu Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser			
80	85	90	
Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp			
95	100	105	
Phe Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Trp Thr			
110	115	120	
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala			
125	130	135	
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser			
140	145	150	
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg			
155	160	165	
Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly			
170	175	180	
Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr			
185	190	195	
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu			
200	205	210	
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser			
215	220	225	
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys			
230	235		

<210> 3
<211> 470
<212> PRT
<213> Artificial Sequence

<220>
<223> anti-TF heavy chain

<400> 3

Met	Lys	Lys	Asn	Ile	Ala	Phe	Leu	Leu	Ala	Ser	Met	Phe	Val	Phe
1				5					10				15	
Ser	Ile	Ala	Thr	Asn	Ala	Tyr	Ala	Glu	Val	Gln	Leu	Val	Glu	Ser
				20					25				30	
Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys
					35				40				45	
Ala	Ala	Ser	Gly	Phe	Asn	Ile	Lys	Glu	Tyr	Tyr	Met	His	Trp	Val
					50				55				60	
Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	Gly	Leu	Ile	Asp
					65				70				75	
Pro	Glu	Gln	Gly	Asn	Thr	Ile	Tyr	Asp	Pro	Lys	Phe	Gln	Asp	Arg
					80				85				90	
Ala	Thr	Ile	Ser	Ala	Asp	Asn	Ser	Lys	Asn	Thr	Ala	Tyr	Leu	Gln
					95				100				105	
Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala
					110				115				120	
Arg	Asp	Thr	Ala	Ala	Tyr	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu
					125				130				135	
Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro
					140				145				150	
Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu
					155				160				165	
Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser
					170				175				180	
Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala
					185				190				195	
Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr
					200				205				210	
Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val
					215				220				225	
Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro
					230				235				240	
Lys	Ser	Cys	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro
					245				250				255	
Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro
					260				265				270	
Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val
					275				280				285	

Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp
			290						295					300
Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg
			305						310					315
Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr
			320						325					330
Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys
			335						340					345
Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser
			350						355					360
Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro
			365						370					375
Pro	Ser	Arg	Glu	Glu	Met	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys
			380						385					390
Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu
			395						400					405
Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val
			410						415					420
Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val
			425						430					435
Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val
			440						445					450
Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser
			455						460					465
Leu	Ser	Pro	Gly	Lys										
			470											

<210> 4

<211> 3242

<212> DNA

<213> Artificial sequence

<220>

<223> Anti-TF vector

<400> 4

gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50

tcattgctga gttgttattt aagcttgccc aaaaagaaga agagtcgaat 100

gaactgtgtc cgccggatcg agctttggag attatcgta ctgcaatgtc 150

tcgcaatatg gcgcaaaatg accaacagcg gttgattgtc caggttagagg 200

ggcgctgta cgaggtaaag cccgatgcc a gcattcctga cgacgatacg 250
gagctgctgc gcgattacgt aaagaagtta ttgaagcatc ctcgtcagta 300
aaaagttaat ctttcaaca gctgtcataa agttgtcacg gccgagactt 350
atagtcgctt tgaaaaattt tttaatgta tttgtaacta gtacgcaagt 400
tcacgtaaaa agggtatcta gaattatgaa gaaaaacatc gctttcttc 450
ttgcatttat gttcgaaaa tctattgcta caaacgcgta cgctgatatac 500
cagatgaccc agtccccgag ctccctgtcc gcctctgtgg gcgataggg 550
caccatcacc tgcagagcca gtcgcacat caagagctat ctgaactgg 600
atcaacagaa accagggaaaa gctccgaaag tactgattta ctatgctact 650
agtctcgctg aaggagtccc ttctcgcttc tctggatccg gttctggac 700
ggattacact ctgaccatca gcagtctgca gccagaagac ttgcacttt 750
attactgtct tcagcacgga gagtctccat ggacatttg acagggtacc 800
aagggtggaga tcaaacgaac tgtggctgca ccattctgtct tcattttccc 850
gccatctgat gagcagttga aatctggAAC tgcttctgtt gtgtgcctgc 900
tgaataactt ctatcccaga gaggccaaag tacagtggaa ggtggataac 950
gccctccaaat cgggttaactc ccaggagagt gtcacagagc aggacagcaa 1000
ggacagcacc tacagcctca gcagcacccct gacgctgagc aaagcagact 1050
acgagaaaca caaagtctac gcctgcgaag tcacccatca gggcctgagc 1100
tcgccccgtca caaagagctt caacagggga gagtgttaat taaatcctct 1150
acgcccggacg catcggtggcg agctcggtac ccggggatct aggccctaacg 1200
ctcggttgcc gccggggcggtt ttttattgtt gccgacgcgc atctcgaatg 1250
aactgtgtgc gcaggttagaa gctttggaga ttatcgtaac tgcaatgctt 1300
cgcaatatgg cgcaaaatga ccaacagcgg ttgattgatc aggttagaggg 1350
ggcgctgtac gaggtaaagc ccgatgccag cattcctgac gacgatacgg 1400
agctgctgacg cgattacgta aagaagttat tgaagcatcc tcgtcagtaa 1450
aaagttaatc ttttcaacag ctgtcataaa gttgtcacgg ccgagactta 1500
tagtcgcttt gtttttattt tttaatgtat ttgttaactag tacgcaagtt 1550
cacgtaaaaa gggtatctag aattatgaag aaaaacatcg cttttcttct 1600

tgcatctatg ttcgtttttt ctattgctac aaacgcgtac gctgagggttc 1650
agctggtgga gtctggcggt ggcctggtgc agccaggggg ctcactccgt 1700
ttgtcctgtg cagttctgg cttcaatatt aaggagtaact acatgcactg 1750
ggtccgtcag gccccggta agggcctgga atgggttgga ttgattgatc 1800
cagagcaagg caacacgatc tatgaccga agttccagga ccgtgccact 1850
ataagcgctg acaattccaa aaacacagca tacctgcaga tgaacagcct 1900
gcgtgctgag gacactgccg tctattattg tgctcgagac acggccgctt 1950
acttcgacta ctggggtcaa ggaaccctgg tcaccgtctc ctcggcctcc 2000
accaagggcc catcggtctt cccccctggca ccctcctcca agagcacctc 2050
tggggcaca gcggccctgg gctgcctggt caaggactac ttccccgaac 2100
cggtgacggt gtcgtgaaac tcaggcgccc tgaccagcgg cgtgcacacc 2150
ttccccggctg tcctacagtc ctcaggactc tactccctca gcagcgtggt 2200
gactgtgccc tctagcagct tgggcaccca gacctacatc tgcaacgtga 2250
atcacaagcc cagcaacacc aaggtggaca agaaagttaa gccaaatct 2300
tgtgacaaaaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg 2350
gggaccgtca gtcttcctct tccccccaaa acccaaggac accctcatga 2400
tctcccgac ccctgaggac acatgcgtgg tggtgacgt gagccacgaa 2450
gaccctgagg tcaagttcaa ctggtaacgtg gacggcgtgg aggtgcataa 2500
tgccaagaca aagccgcggg aggagcagta caacagcactg taccgtgtgg 2550
tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagta 2600
aagtgcagg tctccaacaa agccctccca gccccatcg agaaaaccat 2650
ctccaaagcc aaagggcagc cccgagaacc acaggtgtac accctgcccc 2700
catccccggga agagatgacc aagaaccagg tcagcctgac ctgcctggtc 2750
aaaggcttct atcccagcga catcgccgtg gagtgggaga gcaatggca 2800
gccggagaac aactacaaga ccacgcctcc cgtgcgtggac tccgacggct 2850
ccttcttcct ctacagcaag ctcaccgtgg acaagagcag gtggcagcag 2900
ggAACGTCT tctcatgctc cgtgatgcat gaggtctgc acaaccacta 2950
cacgcagaag agcctctccc tgtctccggg taaataagca tgcgacggcc 3000

ctagagtccc taacgctcggttgccgcgg gcgttttta ttgttaactc 3050
atgtttgaca gcttatcatc gataagctt aatgcggtag tttatcacag 3100
ttaaatttgtt aacgcagtca ggcaccgtgt atgaaatcta acaatgcgct 3150
catcgtcatc ctcggcaccg tcaccctgga tgctgttaggc ataggcttgg 3200
ttatgccggt actgccgggc ctcttgcggg atatcgcca tt 3242

<210> 5
<211> 237
<212> PRT
<213> Artificial sequence

<220>
<223> Anti-TF light chain

<400> 5
Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe
1 5 10 15

Ser Ile Ala Thr Asn Ala Tyr Ala Asp Ile Gln Met Thr Gln Ser
20 25 30

Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr
35 40 45

Cys Arg Ala Ser Arg Asp Ile Lys Ser Tyr Leu Asn Trp Tyr Gln
50 55 60

Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile Tyr Tyr Ala Thr
65 70 75

Ser Leu Ala Glu Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser
80 85 90

Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp
95 100 105

Phe Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Trp Thr
110 115 120

Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
125 130 135

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
140 145 150

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
155 160 165

Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
170 175 180

Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr			
185	190	195	
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu			
200	205	210	
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser			
215	220	225	
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys			
230	235		
<210> 6			
<211> 470			
<212> PRT			
<213> Artificial sequence			
<220>			
<223> Anti-TF heavy chain			
<400> 6			
Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe			
1	5	10	15
Ser Ile Ala Thr Asn Ala Tyr Ala Glu Val Gln Leu Val Glu Ser			
20	25	30	
Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys			
35	40	45	
Ala Ala Ser Gly Phe Asn Ile Lys Glu Tyr Tyr Met His Trp Val			
50	55	60	
Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Leu Ile Asp			
65	70	75	
Pro Glu Gln Gly Asn Thr Ile Tyr Asp Pro Lys Phe Gln Asp Arg			
80	85	90	
Ala Thr Ile Ser Ala Asp Asn Ser Lys Asn Thr Ala Tyr Leu Gln			
95	100	105	
Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala			
110	115	120	
Arg Asp Thr Ala Ala Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu			
125	130	135	
Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro			
140	145	150	
Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu			
155	160	165	
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser			
170	175	180	
	10		

Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 185 190 195

 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr
 200 205 210

 Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val
 215 220 225

 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro
 230 235 240

 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
 245 250 255

 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
 260 265 270

 Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
 275 280 285

 Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
 290 295 300

 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
 305 310 315

 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
 320 325 330

 Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
 335 340 345

 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 350 355 360

 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
 365 370 375

 Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
 380 385 390

 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
 395 400 405

 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
 410 415 420

 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
 425 430 435

 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
 440 445 450

 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser

455

460

465

Leu Ser Pro Gly Lys
470

<210> 7
<211> 3300
<212> DNA
<213> Artificial Sequence

<220>
<223> anti-VEGF vector

<400> 7
gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50
tcattgctga gttgttattt aagcttgcgg aaaaagaaga agagtcgaat 100
gaactgtgtg cgccaggtaga agcttggag attatcgta ctgcaatgct 150
tcgcaatatg gcgcggaaatg accaacagcg gttgattgat caggttagagg 200
ggcgctgta cgaggtaaag cccgatgccg gcattcctgta cgacgatacg 250
gagctgctgc gcgattacgt aaagaagtta ttgaagcatc ctcgtcagta 300
aaaagttaat ctttcaaca gctgtcataa agttgtcacg gccgagactt 350
atagtcgctt tgttttattt ttttaatgta tttgttaacta gtacgcaagt 400
tcacgtaaaa agggtatcta gaattatgaa gaagaatatc gcatttc 450
ttgcatctat gttcgaaaa tctattgcta caaacgcgta cgctgatatc 500
cagttgaccc agtccccgag ctccctgtcc gcctctgtgg gcgatagggt 550
caccatcacc tgcagcgcaa gtcaggatat tagcaactat ttaaactgg 600
atcaacagaa accaggaaaa gtcggaaag tactgattt cttcacctcc 650
tctctccact ctggagtccc ttctcgcttc tctggatccg gttctggac 700
ggatttcact ctgaccatca gcagtctgca gccagaagac ttgcacatt 750
attactgtca acagtatagc accgtgccgt ggacgtttg acagggtacc 800
aagggtggaga tcaaaccgaa ac tggctgca ccattctgtct tcattttccc 850
gcattctgtat gagcaggatgaa aatctggaa ac tgctctgtt gtgtgcctgc 900
tgaataactt ctatccccaga gaggccaaag tacagtggaa ggtggataac 950
gcctccaat cgggttaactc ccaggagagt gtcacagagc aggacagcaa 1000
ggacacgacc tacagcctca gcagcaccct gacgctgagc aaagcagact 1050

acgagaaaaca caaagtctac gcctgcgaag tcacccatca gggcctgagc 1100
tcgcccgtca caaagagctt caacagggga gagtgttaat taaatcctct 1150
acgccccacg catcggtcg agctcggtac ccggggatct aggccctaacg 1200
ctcggttgcc gccgggcgtt ttttattgtt gccgacgcgc atctcgaatg 1250
aactgtgtgc gcaggttagaa gctttggaga ttatcgac tgcaatgctt 1300
cgcaatatgg cgcaaaatga ccaacagcgg ttgattgatc aggtagaggg 1350
ggcgctgtac gaggtaaagc ccgatgccag cattcctgac gacgatacgg 1400
agctgctgac cgattacgta aagaagttat tgaagcatcc tcgtcagtaa 1450
aaagttaatc ttttcaacag ctgtcataaa gttgtcacgg cccgagactta 1500
tagtcgcttt gtttttattt ttaatgtat ttgttaactag tacgcaagtt 1550
cacgtaaaaaa gggtatctag aattatgaag aagaatatcg catttcttct 1600
tgcatctatg ttcgtttttt ctattgctac aaacgcgtac gctgagggttc 1650
agctgggtgga gtctggcggt ggcctggtgc agccaggggg ctcactccgt 1700
ttgtcctgtg cagttctgg ctacgacttc acgcactacg gtatgaactg 1750
ggtccgtcag gccccggta agggcctgga atgggttgga tggattaaca 1800
cctataccgg tgaaccgacc tatgctgcgg atttcaaacg tcgtttcact 1850
ttttctttag acacctccaa aagcacagca tacctgcaga tgaacagcct 1900
gcfgcgtgag gacactgcgg tctattactg tgcaaagtac ccgtactatt 1950
acggcacgag ccactggtat ttgcacgtct ggggtcaagg aaccctggtc 2000
accgtctcct cggcctccac caagggccca tcggtcttcc ccctggcacc 2050
ctcctccaag agcacctctg ggggcacagc ggccctggc tgcctggta 2100
aggactactt cccccgaaccg gtgacgggtgt cgtggaactc aggccgcctg 2150
accagcggcg tgcacacctt cccggctgtc ctacagtccct caggactcta 2200
ctccctcagc agcgtggta ctgtgccctc tagcagcttgc ggcacccaga 2250
cctacatctg caacgtaat cacaagccca gcaacaccaa ggtggacaag 2300
aaagttgagc ccaaatacttgc tgacaaaact cacacatgcc caccgtgccc 2350
agcacctgaa ctccctgggg gaccgtcagt cttcccttcc cccccaac 2400
ccaaggacac cctcatgatc tcccgaccc ctgaggtcac atgcgtggta 2450

gtggacgtga gccacgaaga ccctgaggc aagttcaact ggtacgtgga 2500
cggcgtggag gtgcataatg ccaagacaaa gccgcgggag gagcagtaca 2550
acagcacgta ccgtgtggtc agcgtcctca ccgtcctgca ccaggactgg 2600
ctgaatggca aggagtacaa gtgcaaggc tccaaacaaag ccctcccagc 2650
ccccatcgag aaaaccatct ccaaagccaa agggcagccc cgagaaccac 2700
aggtgtacac cctgccccca tcccgggaag agatgaccaa gaaccaggc 2750
agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgccgtgga 2800
gtggagagc aatgggcagc cggagaacaa ctacaagacc acgcctcccg 2850
tgctggactc cgacggctcc ttcttcctct acagcaagct caccgtggac 2900
aagagcagg ggcagcaggg gaacgtcttc tcatgctccg tgatgcatga 2950
ggctctgcac aaccactaca cgcagaagag cctctccctg tctccggta 3000
aataagcatg cgacggccct agagtcccta acgctcggtt gccgcccggc 3050
gttttttatt gttaactcat gtttgacagc ttatcatcga taagcttaa 3100
tgcggtagtt tatcacagtt aaattgctaa cgcagtcagg caccgtgtat 3150
gaaatctaac aatgcgctca tcgtcatcct cggcaccgtc accctggatg 3200
ctgttaggcat aggcttggtt atgccggtac tgccgggcct cttgcgggat 3250
atcgccatt ccgacagcat cgccagtcac tatggcgtgc tgctagcgct 3300

<210> 8
<211> 237
<212> PRT
<213> Artificial Sequence

<220>
<223> anti-VEGF light chain

<400> 8
Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe
1 5 10 15
Ser Ile Ala Thr Asn Ala Tyr Ala Asp Ile Gln Leu Thr Gln Ser
20 25 30
Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr
35 40 45
Cys Ser Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gln
50 55 60
Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile Tyr Phe Thr Ser

65	70	75
Ser Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly		
80	85	90
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp		
95	100	105
Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Thr Val Pro Trp Thr		
110	115	120
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala		
125	130	135
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser		
140	145	150
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg		
155	160	165
Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly		
170	175	180
Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr		
185	190	195
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu		
200	205	210
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser		
215	220	225
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys		
230	235	
<210> 9		
<211> 476		
<212> PRT		
<213> Artificial Sequence		
<220>		
<223> anti-VEGF heavy chain		
<400> 9		
Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe		
1	5	10
15		
Ser Ile Ala Thr Asn Ala Tyr Ala Glu Val Gln Leu Val Glu Ser		
20	25	30
Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys		
35	40	45
Ala Ala Ser Gly Tyr Asp Phe Thr His Tyr Gly Met Asn Trp Val		
50	55	60

Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	Gly	Trp	Ile	Asn
			65					70					75	
Thr	Tyr	Thr	Gly	Glu	Pro	Thr	Tyr	Ala	Ala	Asp	Phe	Lys	Arg	Arg
			80					85					90	
Phe	Thr	Phe	Ser	Leu	Asp	Thr	Ser	Lys	Ser	Thr	Ala	Tyr	Leu	Gln
			95					100					105	
Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala
			110					115					120	
Lys	Tyr	Pro	Tyr	Tyr	Gly	Thr	Ser	His	Trp	Tyr	Phe	Asp	Val	
			125					130					135	
Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys
			140					145					150	
Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser
			155					160					165	
Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro
			170					175					180	
Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly
			185					190					195	
Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser
			200					205					210	
Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln
			215					220					225	
Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val
			230					235					240	
Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Asp	Lys	Thr	His	Thr	Cys
			245					250					255	
Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe
			260					265					270	
Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr
			275					280					285	
Pro	Glu	Val	Thr	Cys	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	
			290					295					300	
Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn
			305					310					315	
Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg
			320					325					330	
Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly
			335					340					345	

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro
350 355 360

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro
365 370 375

Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
380 385 390

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
395 400 405

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
410 415 420

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
425 430 435

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
440 445 450

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
455 460 465

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
470 475

<210> 10

<211> 3255

<212> DNA

<213> Artificial sequence

<220>

<223> Anti-VEGF vector

<400> 10

gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50

tcattgctga gttgttattt aagcttgccc aaaaagaaga agagtcgaat 100

gaactgtgtg cgcaggtaga agcttggag attatcgta ctgcaatgct 150

tcgcaatatg gcgc当地atg accaacagcg gttgattgat caggttagagg 200

ggcgctgta cgaggtaaag cccgatgcc a cattcctga cgacgatacg 250

gagctgctgc gcgattacgt aaagaagtta ttgaagcatc ctcgtcagta 300

aaaagttaat ctttcaaca gctgtataa agttgtcacg gccgagactt 350

atagtcgctt tgttttattt tttaatgta tttgtacta gtacgcaagt 400

tcacgtaaaa agggtatcta gaattatgaa gaagaatatc gcatttcttc 450

ttgcatctat gttcgaaaa tctattgcta caaacgcgta cgctgatatc 500

cagttgaccc agtccccgag ctccctgtcc gcctctgtgg gcgatagggt 550
caccatcacc tgcagcgcaa gtcaggatat tagcaactat ttaaactggt 600
atcaacagaa accaggaaaa gctccgaaaag tactgattt cttcacctcc 650
tctctccact ctggagtcgg ttctcgcttc tctggatccg gttctgggac 700
ggatttcaact ctgaccatca gcagtctgca gccagaagac ttgcacaactt 750
attactgtca acagtatagc accgtgccgt ggacgtttgg acagggtacc 800
aagggtggaga tcaaacgaac tgtggctgca ccattctgtct tcattttccc 850
gccatctgat gagcagttga aatctggAAC tgcttctgtt gtgtgcctgc 900
tgaataactt ctatcccaga gaggccaaag tacagtggaa ggtggataac 950
gccctccaat cgggtaactc ccaggagagt gtcacagagc aggacagcaa 1000
ggacagcacc tacagcctca gcagcacccct gacgctgagc aaagcagact 1050
acgagaaaca caaagtctac gcctgcgaag tcacccatca gggcctgagc 1100
tcgcccgtca caaagagctt caacagggga gagtgttaat taaatcctct 1150
acgcccggacg catcggtggcg agctcggtac ccggggatct aggcctaacg 1200
ctcggttgcc gccgggcgtt ttttattgtt gccgacgcgc atctcgaatg 1250
aactgtgtgc gcaggttagaa gctttggaga ttatcgtaac tgcaatgctt 1300
cgcaatatgg cgcaaatatga ccaacagcgg ttgattgatc aggtagaggg 1350
ggcgctgtac gaggtaaagc ccgatgccag cattcctgac gacgatacgg 1400
agctgctgacg cgattacgta aagaagttat tgaagcatcc tcgtcagtaa 1450
aaagttaatc ttttcaacag ctgtcataaa gttgtcacgg ccgagactta 1500
tagtcgcttt gtttttattt ttaatgtat ttgttaacttag tacgcaagtt 1550
cacgtaaaaaa gggtatctag aattatgaag aagaatatcg catttcttct 1600
tgcacatctatg ttcggtttttt ctattgctac aaacgcgtac gctgagggttc 1650
agctgggtggaa gtctggcggt ggcctgggtgc agccagggggg ctcactccgt 1700
ttgtcctgtg cagcttctgg ctataccttc accaactatg gtataaactg 1750
ggtccgtcag gccccgggtta agggcctggaa atgggttggaa tggattaaca 1800
cctataccgg tgaaccgacc tatgctgcgg atttcaaacg tcgtttcaact 1850
ttttctttag acaccccaa aagcacagca tacctgcaga tgaacagcct 1900

gcgcgctgag gacactgccg tctattactg tgcaaagtac ccgcactatt 1950
atgtgaacga gcggaagagc cactggtatt tcgacgtctg gggtaagga 2000
accctggtca ccgtctccctc ggcctccacc aaggcccatt cggtcttccc 2050
cctggcaccc tcctccaaga gcacctctgg gggcacagcg gccctgggct 2100
gcctggtcaa ggactacttc cccgaaccgg tgacggtgac gtggaactca 2150
ggcgccctga ccagcggcgt gcacacccctc ccggctgtcc tacagtctc 2200
aggactctac tccctcagca gcgtggtgac tgtgcctct agcagcttgg 2250
gcacccagac ctacatctgc aacgtgaatc acaagcccag caacaccaag 2300
gtggacaaga aagttgagcc caaatcttgt gacaaaactc acacatgccc 2350
accgtccccca gcacctgaac tcctgggggg accgtcagtc ttccctttcc 2400
ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 2450
tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg 2500
gtacgtggac ggctggagg tgcataatgc caagacaaag ccgcgggagg 2550
agcagtacaa cagcacgtac cgtgtggtca gcgtcctcac cgtcctgcac 2600
caggactggc tgaatggcaa ggagtacaag tgcaaggtct ccaacaaagc 2650
cctcccagcc cccatcgaga aaaccatctc caaagccaaa gggcagccccc 2700
gagaaccaca ggtgtacacc ctgccccat cccggagaag gatgaccaag 2750
aaccaggtaa gcctgacctg cctggtaaa ggcttctatc ccagcgacat 2800
cgccgtggag tggagagca atgggcagcc ggagaacaac tacaagacca 2850
cgccctccgt gctggactcc gacggctcct tcttcctcta cagcaagctc 2900
accgtggaca agagcaggtg gcagcagggg aacgtcttct catgctccgt 2950
gatgcatgag gctctgcaca accactacac gcagaagagc ctctccctgt 3000
ctccggtaa ataagcatgc gacggcccta gagtcctaa cgctcggttg 3050
ccgcccggcgt ttttttattt ttaactcatg tttgacagct tatcatcgat 3100
aagcttaat gcggtagttt atcacagttt aattgctaac gcagtcaggc 3150
accgtgtatg aaatctaaca atgcgctcat cgtcatcctc ggcaccgtca 3200
ccctggatgc ttaggcata ggcttggta tgccggtaact gcccggcctc 3250
ttgcg 3255

<210> 11
 <211> 237
 <212> PRT
 <213> Artificial sequence

 <220>
 <223> Anti-VEGF light chain

 <400> 11
 Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe
 1 5 10 15

 Ser Ile Ala Thr Asn Ala Tyr Ala Asp Ile Gln Leu Thr Gln Ser
 20 25 30

 Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr
 35 40 45

 Cys Ser Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gln
 50 55 60

 Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile Tyr Phe Thr Ser
 65 70 75

 Ser Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser
 80 85 90

 Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp
 95 100 105

 Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Thr Val Pro Trp Thr
 110 115 120

 Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
 125 130 135

 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
 140 145 150

 Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
 155 160 165

 Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
 170 175 180

 Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
 185 190 195

 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
 200 205 210

 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
 215 220 225

 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys

230

235

<210> 12
<211> 479
<212> PRT
<213> Artificial sequence

<220>
<223> Anti-VEGF heavy chain

<400> 12

Met	Lys	Asn	Ile	Ala	Phe	Leu	Leu	Ala	Ser	Met	Phe	Val	Phe
1				5				10				15	

Ser	Ile	Ala	Thr	Asn	Ala	Tyr	Ala	Glu	Val	Gln	Leu	Val	Glu	Ser
				20				25				30		

Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys
					35			40				45		

Ala	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Asn	Tyr	Gly	Ile	Asn	Trp	Val
					50			55				60		

Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	Gly	Trp	Ile	Asn
					65			70				75		

Thr	Tyr	Thr	Gly	Glu	Pro	Thr	Tyr	Ala	Ala	Asp	Phe	Lys	Arg	Arg
					80				85			90		

Phe	Thr	Phe	Ser	Leu	Asp	Thr	Ser	Lys	Ser	Thr	Ala	Tyr	Leu	Gln
					95			100				105		

Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala
					110			115				120		

Lys	Tyr	Pro	His	Tyr	Tyr	Val	Asn	Glu	Arg	Lys	Ser	His	Trp	Tyr
					125			130				135		

Phe	Asp	Val	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala
					140			145				150		

Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys
					155			160				165		

Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp
					170			175				180		

Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu
					185			190				195		

Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly
					200			205				210		

Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu
					215			220				225		

Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn
 230 235 240
 Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr
 245 250 255
 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
 260 265 270
 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
 275 280 285
 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
 290 295 300
 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
 305 310 315
 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser
 320 325 330
 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
 335 340 345
 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
 350 355 360
 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
 365 370 375
 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
 380 385 390
 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
 395 400 405
 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
 410 415 420
 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
 425 430 435
 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
 440 445 450
 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 455 460 465
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 470 475

<210> 13
 <211> 1139
 <212> DNA
 <213> Artificial sequence

<220>
<223> Synthetic

<400> 13
atcgatgaat tcatgctgtg gtgtcatggc cggtgatcgc cagggtgccg 50
acgcgcacatct cgactgcacg gtgcaccaat gcttctggcg tcaggcagcc 100
atcggaaagct gtggtatggc tgtgcaggc gtaaatcact gcataattcg 150
tgtcgctcaa ggccgcactcc cgttctggat aatgtttttt gcccgcacat 200
cataaacggtt ctggcaaata ttctgaaatg agctgttgac aattaatcat 250
cgaacttagtt taatgtgtgg aattgtgagc ggataacaat taagcttagg 300
attctagagg gaagatttat gaaatcactg tttaaagtaa cgctgctggc 350
gaccacaatg gccgttgc ctc tgcatgcacc aatcactttt gctgctgaag 400
ctgcaaaacc tgctacagct gctgacagca aagcagcggtt caaaaatgac 450
gatcagaaat cagcttatgc actgggtgcc tcgctggc gttacatgga 500
aaactctcta aaagaacaag aaaaactggg catcaaactg gataaagatc 550
agctgatcgc tgggtttcag gatgcatttg ctgataagag caaactctcc 600
gaccaagaga tcgaacagac tctacaagca ttcgaagctc gcgtgaagtc 650
ttctgctcag gcgaagatgg aaaaagacgc ggctgataac gaagcaaaag 700
gtaaagagta ccgcgagaaa tttgccaaag agaaagggtgt gaaaacctct 750
tcaactggc tgggttatca ggttagtagaa gccggtaaag gcgaagcacc 800
gaaagacagc gatactgttg tagtgaacta caaaggtacg ctgatcgacg 850
gtaaagagtt cgacaactct tacacccgtg gtgaaccgct ttcttccgt 900
ctggacggc ttatccccggg ttggacagaa ggtctgaaga acatcaagaa 950
aggcggtaag atcaaactgg ttattccacc agaactggct tacggcaaag 1000
cgggtgttcc ggggatccca ccgaattcta ccctgggttt tgacgttagag 1050
ctgctggatg tgaaaccagc gccgaaggct gatgcaaagc cggaagctga 1100
tgcgaaagcc gcagattctg ctaaaaaata aaagcttagc 1139

<210> 14
<211> 1139
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic

<400> 14

tagctactta agtacgacac cacagtagcca gccactagcg gtcccacggc 50
tgcgcgtaga gctgacgtgc cacgtggta cgaagaccgc agtccgtcgg 100
tagccttcga caccataccg acacgtccag catttagtga cgtattaagc 150
acagcgagtt ccgcgtgagg gcaagaccta ttacaaaaaa cgccgctgta 200
gtattgccaa gaccgttat aagactttac tcgacaactg ttaattagta 250
gcttgatcaa attacacacc ttaacactcg cctattgtta attcgaatcc 300
taagatctcc ctctaaata cttagtgac aaatttcatt gcgacgaccg 350
ctggtgttac cgcaacggg acgtacgtgg ttagtgaaaa cgacgacttc 400
gacgtttgg acgatgtcga cgactgtcgt ttcgtcgcaa gttttactg 450
ctagtctta gtcgaatacg tgaccacgg agcgaccag caatgtacct 500
tttgagagat ttcttgttc ttttgaccc gtagttgac ctatttctag 550
tcgactagcg accacaagtc ctacgtaaac gactattctc gtttgagagg 600
ctggttctct agttgtctg agatgtcgt aagcttcgag cgcaacttcag 650
aagacgagtc cgcttctacc ttttctgca cgactattg ctgcgtttc 700
catttctcat ggctctttt aaacggttca tctttccaca ctgggaga 750
agttgaccag accaaatagt ccatcatctt cggccatttc cgcttcgtgg 800
ctttctgtcg ctatgacaac atcacttgat gtttccatgc gactagctgc 850
catttctcaa gctgttgaga atgtggcac cacttggcga aagaaaggca 900
gacctgccac aataggcccc aacctgtctt ccagacttct tttttttt 950
tccgccattc tagttgacc aataaggtgg tcttgaccga atgcgtttc 100
ccccacaagg ccccttaggt ggcttaagat gggaccacaa actgcacatc 105
gacgacccatc actttggtcg cggctccga ctacgttctg gccttcgact 110
acgcttcgg cgtctaaagac gatTTTTTtttgcgtatcg 1139

<210> 15

<211> 270

<212> PRT

<213> E. coli

<400> 15

Met Lys Ser Leu Phe Lys Val Thr Leu Leu Ala Thr Thr Met Ala

1	5	10	15
Val Ala Leu His Ala Pro Ile Thr Phe Ala Ala Glu Ala Ala Lys			
20	25		30
Pro Ala Thr Ala Ala Asp Ser Lys Ala Ala Phe Lys Asn Asp Asp			
35	40		45
Gln Lys Ser Ala Tyr Ala Leu Gly Ala Ser Leu Gly Arg Tyr Met			
50	55		60
Glu Asn Ser Leu Lys Glu Gln Glu Lys Leu Gly Ile Lys Leu Asp			
65	70		75
Lys Asp Gln Leu Ile Ala Gly Val Gln Asp Ala Phe Ala Asp Lys			
80	85		90
Ser Lys Leu Ser Asp Gln Glu Ile Glu Gln Thr Leu Gln Ala Phe			
95	100		105
Glu Ala Arg Val Lys Ser Ser Ala Gln Ala Lys Met Glu Lys Asp			
110	115		120
Ala Ala Asp Asn Glu Ala Lys Gly Lys Glu Tyr Arg Glu Lys Phe			
125	130		135
Ala Lys Glu Lys Gly Val Lys Thr Ser Ser Thr Gly Val Leu Tyr			
140	145		150
Gln Val Val Glu Ala Gly Lys Gly Glu Ala Pro Lys Asp Ser Asp			
155	160		165
Thr Val Val Val Asn Tyr Lys Gly Thr Leu Ile Asp Gly Lys Glu			
170	175		180
Phe Asp Asn Ser Tyr Thr Arg Gly Glu Pro Leu Ser Phe Arg Leu			
185	190		195
Asp Gly Val Ile Pro Gly Trp Thr Glu Gly Leu Lys Asn Ile Lys			
200	205		210
Lys Gly Gly Lys Ile Lys Leu Val Ile Pro Pro Glu Leu Ala Tyr			
215	220		225
Gly Lys Ala Gly Val Pro Gly Ile Pro Pro Asn Ser Thr Leu Val			
230	235		240
Phe Asp Val Glu Leu Leu Asp Val Lys Pro Ala Pro Lys Ala Asp			
245	250		255
Ala Lys Pro Glu Ala Asp Ala Lys Ala Ala Asp Ser Ala Lys Lys			
260	265		270

<210> 16
<211> 3000
<212> DNA

<213> Artificial sequence

<220>

<223> Anti-TF vector

<400> 16

gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50
tcattgctga gttgttattt aagcttgcgg aaaaagaaga agagtcgaat 100
gaactgtgtg cgccaggtaga agctttggag attatcgta ctgcaatgct 150
tcgcaatatg gcgc当地atg accaacagcg gttgattgt caggttaggg 200
ggcgctgta cgaggtaaag cccgatgcca gcattcctga cgacgatacg 250
gagctgctgc gcgattacgt aaagaagtta ttgaagcata ctcgtcagta 300
aaaagttaat ctttcaaca gctgtcataa agttgtcactg gccgagactt 350
atagtcgctt tggttttattt ttttaatgtt tttgtacta gtacgcaagt 400
tcacgtaaaa agggttatcta gaattatgaa aaagaatatc gcatttcttc 450
ttgcatttat gttcgaaaa tctattgcta caaacgcgtt cgctgatatac 500
cagatgaccc agtccccgag ctcccgtcc gcctctgtgg gcgatagggt 550
caccatcacc tgcagagcca gtcgcgacat caagagctat ctgaaactgg 600
atcaacagaa accaggaaaa gctccgaaag tactgattt ctatgctact 650
agtctcgctg aaggagtccc ttctcgcttc tctggatccg gttctggac 700
ggattacact ctgaccatca gcagtctgca gccagaagac ttgcactt 750
attactgtct tcagcacgga gagtctccat ggacatttgg acagggtacc 800
aaggtggaga tcaaacgaac tgtggctgca ccattgtct tcattttccc 850
gccatctgat gagcagttga aatctggAAC tgcttctgtt gtgtgcctgc 900
tgaataactt ctatcccaga gaggccaaag tacagtggaa ggtggataac 950
gccctccaat cgggttaactc ccaggagagt gtcacagagc aggacagcaa 1000
ggacagcacc tacagcctca gcagcaccc gacgctgagc aaagcagact 1050
acgagaaaca caaagtctac gcctgcgaag tcacccatca gggcctgagc 1100
tcgccccgtca caaagagctt caacagggga gagtgttaat taaatcctct 1150
acgcccggacg catcggtggcg agctcggtac ccggggatct aggcctaacg 1200
ctcggttgcc gcccggcggtt ttttattgtt gcccgcgcg atctcgactg 1250

cacgggtgcac caatgcttct ggcgtcagggc agccatcgga agctgtggta 1300
tggctgtgca ggtcgtaaat cactgcataa ttcgtgtcgc tcaaggcgca 1350
ctcccgttct ggataatgtt ttttgcgcgg acatcataac gggtctggca 1400
aatattctga aatgagctgt tgacaattaa tcatacgaact agtttaatgt 1450
gttggaaattgt gagcggataa caattaagct taggatctag aattatgaag 1500
aagaatattg cgttcctact tgcctctatg tttgtctttt ctatacgctac 1550
aaacgcgtac gctgagggttc agctggtgga gtctggcggt ggcctggtgc 1600
agccaggggg ctcactccgt ttgtcctgtg cagcttctgg cttcaatatt 1650
aaggagtact acatgcactg ggtccgtcag gccccggta agggcctgga 1700
atgggttgga ttgattgatc cagagcaagg caacacgatc tatgaccgg 1750
agttccagga ccgtgccact ataagcgctg acaattccaa aaacacagca 1800
tacctgcaga tgaacagcct gcgtgctgag gacactgccc tctattattg 1850
tgctcgagac acggccgctt acttcgacta ctggggtcaa ggaaccctgg 1900
tcaccgtctc ctcggcctcc accaagggcc catcggtctt cccctggca 1950
ccctcctcca agagcacctc tgggggcaca gcggccctgg gctgcctggt 2000
caaggactac ttccccgaac cggtgacggt gtcgtggaac tcaggcgccc 2050
tgaccagcgg cgtgcacacc ttcccggctg tcctacagtc ctcaggactc 2100
tactccctca gcagcgtggt gactgtgccc tctagcagct tgggcaccca 2150
gacctacatc tgcaacgtga atcacaagcc cagcaacacc aaggtggaca 2200
agaaaagttga gcccaaattct tgtgacaaaa ctcacacatg cccaccgtgc 2250
ccagcacctg aactcctggg gggaccgtca gtcttcctct tccccccaaa 2300
acccaaggac accctcatga tctccggac ccctgaggtc acatgcgtgg 2350
tggtgacgt gagccacgaa gaccctgagg tcaagttcaa ctggtaacgt 2400
gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta 2450
caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact 2500
ggctgaatgg caaggagtac aagtgcagg tctccaacaa agccctccca 2550
gcccccatcg agaaaaccat ctccaaagcc aaagggcagc cccgagaacc 2600
acaggtgtac accctgcccc catcccggga agagatgacc aagaaccagg 2650

tcagcctgac ctgcctggtc aaaggcttct atcccagcga catgccgtg 2700
gagtggaga gcaatggca gccggagaac aactacaaga ccacgcctcc 2750
cgtgctggac tccgacggct cttcttcct ctacagcaag ctcaccgtgg 2800
acaagagcag gtggcagcag gggAACGTCT tctcatgctc cgtgatgcat 2850
gaggctctgc acaaccacta cacgcagaag agcctctccc tgtctccggg 2900
taaataagca tgcgacggcc ctagagtccc taacgctcgg ttgccgcccgg 2950
gcgttttta ttgttaactc atgttgaca gcttatcatc gataagctt 3000

<210> 17
<211> 237
<212> PRT
<213> Artificial sequence

<220>
<223> Anti-TF light chain

<400> 17
Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe
1 5 10 15

Ser Ile Ala Thr Asn Ala Tyr Ala Asp Ile Gln Met Thr Gln Ser
20 25 30

Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr
35 40 45

Cys Arg Ala Ser Arg Asp Ile Lys Ser Tyr Leu Asn Trp Tyr Gln
50 55 60

Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile Tyr Tyr Ala Thr
65 70 75

Ser Leu Ala Glu Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser
80 85 90

Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp
95 100 105

Phe Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Trp Thr
110 115 120

Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala
125 130 135

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
140 145 150

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
155 160 165

Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly
170 175 180

Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
185 190 195

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
200 205 210

Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
215 220 225

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
230 235

<210> 18

<211> 470

<212> PRT

<213> Artificial sequence

<220>

<223> Anti-TF heavy chain

<400> 18

Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe
1 5 10 15

Ser Ile Ala Thr Asn Ala Tyr Ala Glu Val Gln Leu Val Glu Ser
20 25 30

Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys
35 40 45

Ala Ala Ser Gly Phe Asn Ile Lys Glu Tyr Tyr Met His Trp Val
50 55 60

Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Leu Ile Asp
65 70 75

Pro Glu Gln Gly Asn Thr Ile Tyr Asp Pro Lys Phe Gln Asp Arg
80 85 90

Ala Thr Ile Ser Ala Asp Asn Ser Lys Asn Thr Ala Tyr Leu Gln
95 100 105

Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
110 115 120

Arg Asp Thr Ala Ala Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu
125 130 135

Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
140 145 150

Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
155 160 165

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 170 175 180

 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 185 190 195

 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr
 200 205 210

 Val Pro Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val
 215 220 225

 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro
 230 235 240

 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
 245 250 255

 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
 260 265 270

 Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
 275 280 285

 Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
 290 295 300

 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
 305 310 315

 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
 320 325 330

 Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
 335 340 345

 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 350 355 360

 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
 365 370 375

 Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
 380 385 390

 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
 395 400 405

 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
 410 415 420

 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
 425 430 435

 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val

440	445	450
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser		
455	460	465
Leu Ser Pro Gly Lys		
470		

<210> 19
<211> 3000
<212> DNA
<213> Artificial sequence

<220>
<223> Anti-TF vector

<400> 19
gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50
tcattgctga gttgttattt aagcttgccc aaaaagaaga agagtcaat 100
gaactgtgtg cgcaggtaga agcttggag attatcgta ctgcaatgct 150
tcgcaatatg gcgcaaaatg accaacagcg gttgattgat caggttagagg 200
ggcgctgta cgaggtaaag cccgatgcc a gcattcctga cgacgatacg 250
gagctgctgc gcgattacgt aaagaagttt ttgaagcatc ctcgtcagta 300
aaaagttaat ctttcaaca gctgtcataa agttgtcacg gccgagactt 350
atagtcgctt tgttttattt tttaatgta tttgtacta gtacgcaagt 400
tcacgtaaaa agggtatcta gaattatgaa aaagaatatc gcatttcttc 450
ttgcatctat gttcgaaaa tctattgcta caaacgcgta cgctgatatc 500
cagatgaccc agtccccgag ctccctgtcc gcctctgtgg gcgatagggt 550
caccatcacc tgcagagcca gtcgcgacat caagagctat ctgaactgg 600
atcaacagaa accagggaaaa gctccgaaag tactgattt ctatgctact 650
agtctcgctg aaggagtccc ttctcgcttc tctggatccg gttctggac 700
ggattacact ctgaccatca gcagtctgca gccagaagac ttgcacattt 750
attactgtct tcagcacgga gagtctccat ggacatttgg acagggtacc 800
aagggtggaga tcaaacgaac tgtggctgca ccatctgtct tcattttccc 850
gccatctgat gagcagttga aatctggaac tgcttctgtt gtgtgcctgc 900
tgaataactt ctatcccaga gaggccaaag tacagtggaa ggtggataac 950
gccctccaat cgggtaactc ccaggagagt gtcacagagc aggacagcaa 1000

ggacagcacc tacagcctca gcagcacccct gacgctgagc aaagcagact 1050
acgagaaaaca caaagtctac gcctgcgaag tcacccatca gggcctgagc 1100
tcgcccgtca caaagagctt caacaggga gagtgtaat taaatcctct 1150
acgccggacg catcggtgcg agctcggtac ccggggatct aggcctaacg 1200
ctcggttgc gccggcggtt ttttattgtt gccgacgcgc atctcgactg 1250
cacggtgac caatgcttct gggtcaggc agccatcgga agctgtggta 1300
tggctgtgca ggtcgtaaat cactgcataa ttctgtgcgc tcaaggcgca 1350
ctccccgttct ggataatgtt ttttgcggcc acatcataac ggttctggca 1400
aatattctga aatgagctgt tgacaattaa tcatcgaact agtttaatgt 1450
gtggaattgt gagcggataa caattaagct taggatctag aattatgaag 1500
aagaatattg cgttcctact tgcctctatg tttgtcttt ctatagctac 1550
aacacgcgtac gctgagggttc agctggtgga gtctggcggt ggcctggtgc 1600
agccaggggg ctcactccgt ttgtcctgtg cagcttctgg cttcaatatt 1650
aaggagttact acatgcactg ggtccgtcag gccccggta agggccttgga 1700
atgggttggaa ttgattgatc cagagcaagg caacacgatc tatgaccgaa 1750
agttccagga ccgtgccact ataagcgctg acaattccaa aaacacagca 1800
tacctgcaga tgaacagcct gcgtgctgag gacactgccc tctattattg 1850
tgctcgagac acggccgctt acttcgacta ctggggtcaa ggaaccctgg 1900
tcaccgtctc ctcggcctcc accaagggcc catcggtctt cccctggca 1950
ccctcctcca agagcacctc tgggggcaca gcggccctgg gctgcctgg 2000
caaggactac ttccccgaac cggtgacggt gtcgtgaaac tcaggcgccc 2050
tgaccagcgg cgtgcacacc ttccccggctg tcctacagtc ctcaggactc 2100
tactccctca gcagcgtggt gactgtgccc tctacgact tgggcaccca 2150
gacctacatc tgcaacgtga atcacaagcc cagcaacacc aaggtggaca 2200
agaaagttga gccc当地atct tgtgacaaaa ctcacactag tccaccgtct 2250
ccagcacctg aactcctggg gggaccgtca gtcttcctct tccccccaaa 2300
acccaaggac accctcatga tctcccgac ccctgaggac acatgcgtgg 2350
tggtgacgt gagccacgaa gaccctgagg tcaagttcaa ctggtaacgtg 2400

gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta 2450
caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact 2500
ggctgaatgg caaggagtac aagtgcagg tctccaacaa agccctccca 2550
gcccccatcg agaaaaccat ctccaaagcc aaagggcagc cccgagaacc 2600
acaggtgtac accctgcccc catcccggga agagatgacc aagaaccagg 2650
tcagcctgac ctgcctggtc aaaggcttct atcccagcga catgccgtg 2700
gagtgggaga gcaatggca gccggagaac aactacaaga ccacgcctcc 2750
cgtgctggac tccgacggct cttcttcct ctacagcaag ctcaccgtgg 2800
acaagagcag gtggcagcag gggAACGTCT tctcatgctc cgtgatgcat 2850
gaggctctgc acaaccacta cacgcagaag agcctctccc tgtctccgg 2900
taaataagca tgcgacggcc ctagagtccc taacgctcgg ttgccgcccgg 2950
gcgtttttta ttgttaactc atgttgaca gcttatcatc gataagcttt 3000

<210> 20

<211> 237

<212> PRT

<213> Artificial sequence

<220>

<223> Anti-TF light chain

<400> 20

Met Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe
1 5 10 15

Ser Ile Ala Thr Asn Ala Tyr Ala Asp Ile Gln Met Thr Gln Ser
20 25 30

Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr
35 40 45

Cys Arg Ala Ser Arg Asp Ile Lys Ser Tyr Leu Asn Trp Tyr Gln
50 55 60

Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile Tyr Tyr Ala Thr
65 70 75

Ser Leu Ala Glu Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser
80 85 90

Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp
95 100 105

Phe Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Trp Thr

110	115	120
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala		
125	130	135
Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser		
140	145	150
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg		
155	160	165
Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly		
170	175	180
Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr		
185	190	195
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu		
200	205	210
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser		
215	220	225
Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys		
230	235	
<210> 21		
<211> 470		
<212> PRT		
<213> Artificial sequence		
<220>		
<223> Anti-TF heavy chain		
<400> 21		
Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe		
1	5	10
15		
Ser Ile Ala Thr Asn Ala Tyr Ala Glu Val Gln Leu Val Glu Ser		
20	25	30
Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys		
35	40	45
Ala Ala Ser Gly Phe Asn Ile Lys Glu Tyr Tyr Met His Trp Val		
50	55	60
Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly Leu Ile Asp		
65	70	75
Pro Glu Gln Gly Asn Thr Ile Tyr Asp Pro Lys Phe Gln Asp Arg		
80	85	90
Ala Thr Ile Ser Ala Asp Asn Ser Lys Asn Thr Ala Tyr Leu Gln		
95	100	105

Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
110 115 120

Arg Asp Thr Ala Ala Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu
125 130 135

Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
140 145 150

Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
155 160 165

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
170 175 180

Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
185 190 195

Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr
200 205 210

Val Pro Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val
215 220 225

Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro
230 235 240

Lys Ser Cys Asp Lys Thr His Thr Ser Pro Pro Ser Pro Ala Pro
245 250 255

Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
260 265 270

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
275 280 285

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
290 295 300

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
305 310 315

Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
320 325 330

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
335 340 345

Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
350 355 360

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
365 370 375

Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
380 385 390

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
 395 400 405

 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
 410 415 420

 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
 425 430 435

 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
 440 445 450

 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
 455 460 465

 Leu Ser Pro Gly Lys
 470

<210> 22
 <211> 44
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Synthetic

<400> 22
 caaatcttgt gacaaaactc acactagtcc accgtctcca gcac 44

<210> 23
 <211> 45
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Synthetic

<400> 23
 tcgggttag aacactgttt tgagtgtat caggtggcag aggtc 45

<210> 24
 <211> 63
 <212> DNA
 <213> Artificial sequence

<220>
 <223> Synthetic

<400> 24
 cccaccgtcg ccggcacctg aactcctggg gggaccgtca gtcttcctct 50

 tccccccaaa acc 63

<210> 25
 <211> 71

```
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 25
gtacgggtgg cagcggccgt ggacttgagg accccccctgg cagtcagaag 50

gagaaggggg gttttgggtt c 71

<210> 26
<211> 63
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 26
cccaccgtcg ccggcacctg aactcctggg gggaccgtca gtcttcctct 50

tccccccaaa acc 63

<210> 27
<211> 71
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 27
gtacgggtgg cagcggccgt ggacttgagg accccccctgg cagtcagaag 50

gagaaggggg gttttgggtt c 71

<210> 28
<211> 67
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 28
ctagtccacc gtgccagca cctgaactcc tggggggacc gtcagtctc 50

ctcttccccc caaaacc 67

<210> 29
<211> 67
<212> DNA
<213> Artificial sequence

<220>
```

```
<223> Synthetic

<400> 29
agggtggcacg ggtcgtagac ttgaggaccc ccctggcagt cagaaggaga 50
aggggggttt tgggttc 67

<210> 30
<211> 67
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 30
ctagtccacc gtgccagca cctgaactcc tggggggacc gtcagtcttc 50
ctcttccccca caaaacc 67

<210> 31
<211> 67
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 31
agggtggcacg ggtcgtagac ttgaggaccc ccctggcagt cagaaggaga 50
aggggggttt tgggttc 67

<210> 32
<211> 44
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 32
tagctacaaa cgcgatgcc tcgaagttaa aagtgcctga actg 44

<210> 33
<211> 38
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 33
gctgaaatgg gccccacatg cacggaggtg ttgaaaga 38

<210> 34
```

```
<211> 62
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 34
catttcaaca atcaacccct ctcctccatc caaggagtct cacaaatctc 50
cagctcctaa cc 62

<210> 35
<211> 70
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 35
ccgggtaaag ttgttagttg gggagaggag gtaggttcct cagagtgtt 50
agaggtcgag gattggagct 70

<210> 36
<211> 35
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 36
catactggta ccagcatct a gagggaaagat ttatg 35

<210> 37
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic

<400> 37
ctggtgatca ctcaaccaag tcattctg 28
```