

Dottorato di Ricerca in Informatica - Ciclo XXV Dipartimento di Informatica, Sistemistica e Comunicazione Facoltà di Scienze Matematiche, Fisiche e Naturali Università degli Studi di Milano - Bicocca

Algorithms for detecting variations from Next-Generation Sequencing Data

Presentazione Dottorato

11 Ottobre 2011

Candidato: Stefano Beretta

Supervisor: Prof.ssa Paola Bonizzoni
Tutor: Prof.ssa Lucia Pomello

Outline

- Motivations
- 2 State of the Art & Ongoing Works
- Conclusions

Motivations

- Revolution in genome sequencing and analysis: from traditional methods to NGS (Next-Generation Sequencing)^{1 2 3}
- Need to develop novel computational frameworks to analyze NGS data
- Goal: design algorithms to analyze NGS data for detecting sequence variations

¹Venter, J.Craig: Multiple personal genomes await. Nature, (2010)

²Mardis, E.R.: The impact of next-generation sequencing technology on genetics. Trends in genetics, (2008)

Metzker, M.L.: Sequencing technologies - the next generation. Nature reviews. Genetics, (2010) ➤ 〈 🚡 ➤ 📑

Genome Sequencing

Determination of the primary structure of a molecule ${\sf DNA/RNA} \to {\sf sequence}$ of nucleotides

- Traditional Methods (Sanger, 1977)
- Next-Generation Sequencing Methods (2005)

Sanger Vs. Next-Generation Sequencing

• Sanger (1977)

• NGS (2005)

Challenges

- Algorithmic Challenges:
 - More than 10^9 short sequences \Rightarrow Linear time algorithms
 - Need for data compression / succint data structures
 - New computational model and data structure for pattern matching and indexing of NGS reads
 (es. hashing, Burrows-Wheeler transf., suffix array)^{4 5 6}

⁶Li H., Homer N.:A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics (2010)

Langmead B., et al.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.

Genome Biology (2009)

⁵Dalca, V.A., Brudno, M.: Genome variation discovery with high-throughput sequencing data. Briefings in Bioinformatics (2010)

Computational Problem

- Characterization of variations (i.e alternative splicing events) among different transcript sequences (sequenced by NGS) of the same gene.
 - Human genes undergo AS (alternative splicing)

- Limits of Existing Methods:
 - No techniques based on short reads comparison
 - No characterization of differences of transcripts
 - Developed algorithms map the NGS data into the given reference genome to infer splice junctions 9 10

Stefano Beretta

 $^{^9\}mathrm{Bryant}$, et. al., Bioinformatics (2010) Supersplatspliced RNA-seq alignment

 $^{^{10}}$ Trapnell, et. al., Bioinformatics (2009) *TopHat: discovering splice junctions with RNA*-Seq «

- Problem 1: inference of alternative splicing (AS) events
 - Input: a set of short reads from transcripts of a gene
 - Goal: graph representation of AS events (genome scale)
- Previous approaches:
 - Detect splice junctions
 - Validate transcripts
- Our Approach:
 - Detect differences (which are a few) and discard similarities (too many)
 - No alignment to the reference genome

- Problem 2: detecting gene structure and AS events
 - Input: a set of short reads from transcripts of a gene and Refseq data
 - Goal: complete gene structure
- Novel approach:
 - Compare different NGS experiments
 - Quite powerful in detecting gene structure
 - Efficient annotation of short reads

- Algorithmic Solution
 - We index short reads with a hash table in order to:
 - 1 De Novo Assembly of short reads to compose Exons
 - Identify junction points of Exons

Input: Short Reads

>ARHGAP4@U52112.4-002 311AFAAXX.HWI-EAS229.90:8:1:1405:899/1
GGAGCAGTCCCCGAGGGCCTCCTGGCATCGGAGCTGGTCCACCGGCCAGAGCCATG
>ARHGAP4@U52112.4-022 311AFAAXX.HWI-EAS229.90:8:1:1699:670/1
AACTGATGGACCAGGCCTCTCGAGCCATGATAGAGAACTTCAATGCCAAATATGT
>ARHGAP4@U52112.4-012 311AFAAXX.HWI-EAS229.90:8:3:1740:1221/1
CCAGACCAGCCCTCCACCGAGTCCCTCAAGTCCACCAGCTCAGACCCAGACCCAGCAGC
>ARHGAP4@U52112.4-001 311AFAAXX.HWI-EAS229.90:8:4:1458:1519/1
GCCCCGAAGCCCAAAGGCCCCGCCCAGCAGCCGCTTGGGCAGGAACAAAAGGCTTC
>ARHGAP4@U52112.4-005 311AFAAXX.HWI-EAS229.90:8:4:1149:370/1
CCGGAGGCGCGGCCAGCAGCAGCCGAAACCTTCTACCTCACGAAGCTCCAG

- Results Summary
 - Composed chains (graph nodes): 7
 - Linked chains (graph arcs): 9
 - Sensitivity (nodes): 1
 - Positive Predictive Value (nodes): 1
 - Sensitivity (arcs): 1
 - Positive Predictive Value (arcs): 1

Output: AS Graph

Example (with correct prediction)

Results Summary

• Pr. nodes: 12

Or. nodes: 12

Pr. arcs: 14

Or. arcs: 14

• S_n nodes: 1

PPV nodes: 1

• S_n arcs: 1

PPV arcs: 1

Original Graph

Predicted Graph

Example (with no correct prediction)

Results Summary

Pr. nodes: 22Or. nodes: 25

Pr. arcs: 27Or. arcs: 31

S_n nodes: 0.84
 PPV nodes: 0.95

• S_n arcs: 0.71

PPV arcs: 0.81

Original Graph

Predicted Graph

- Results on Problem 1*†
 - Efficient algorithm (linear in the number of reads)
 - Accuracy prediction on simulated data
 - Robustness to typical error scenario
 - Extremely scalable approach
- Results on Problem 2
 - Fast annotation of short reads from different NGS experiments
 - Fast detection of the gene structure with hashing and clustering techniques

^{*}Alternative Splicing from RNA-seq Data without the Genome., 8th Special Interest Group meeting on Alternative Splicing (AS-SIG), 2011, Vienna

[†] Identification of Alternative Splicing variants from RNA-seq Data., Next Generation Sequencing Workshop, 2011,

- Thesis Structure and Ongoing Works
 - Manage short reads data from different technologies (length increasing): main algorithmic issues
 - General problem: gene structure prediction via reads with or without Refseq and algorithmic inference of AS events from the produced graphs
 - Experimental work: testing our approach at genome-wide scale on real data (human, mouse,...) *

^{*} Body Map 2.0 (Illumina HiSeq) http:www.broadinstitute.org.igvdataBodyMaphg19IlluminaHiSeq2000_BodySites

Conclusions

- Linear time algorithm for NGS data analysis
- Efficient data structure for short reads
- Characterization of variations in AS events
- Experimental validation on simulated data