### Vizsgatételek - 2016. tavaszi félév

### Lineáris programozás

- 1. Az optimális hozzárendelés problémája, Egerváry algoritmusa.
- 2. A lineáris programozás alapfeladata, kétváltozós feladat grafikus megoldása. Lineáris egyenlőtlenségrendszer megoldása Fourier-Motzkin eliminációval.
- 3. Farkas-lemma (két alakban). A lineáris program célfüggvénye felülről korlátosságának feltételei.
- 4. A lineáris programozás dualitástétele (két alakban). A lineáris programozás alapfeladatának bonyolultsága (biz. nélkül).
- Egészértékű programozás: a feladat bonyolultsága, korlátozás és szétválasztás (Branch and Bound).
  Totálisan unimoduláris mátrix fogalma, példák. Egészértékű programozás totálisan unimoduláris együtthatómátrixszal (biz. nélkül).
- 6. A lineáris és egészértékű programozás alkalmazása páros gráfokra és intervallumrendszerekre: Egerváry tétele, intervallumrendszerek egyenletes színezése.
- 7. A lineáris és egészértékű programozás alkalmazása hálózati folyamproblémákra: a maximális folyam, a minimális költségű folyam és a többtermékes folyam feladatai, ezek hatékony megoldhatósága a tört-, illetve egészértékű esetben.

#### Matroidok

- 8. Matroid definíciója, alapfogalmak (bázis, rang, kör). Példák: lineáris matroid (mátrixmatroid), grafikus matroid, uniform matroid. A rangfüggvény szubmodularitása.
- 9. Mohó algoritmus matroidon. Matroid megadása rangfüggvényével, bázisaival (biz. nélkül). Matroid duálisa, a duális matroid rangfüggvénye.
- 10. Elhagyás és összehúzás. Matroidok direkt összege, összefüggősége. T test felett reprezentálható matroid duálisának T feletti reprezentálhatósága.
- 11. Grafikus, kografikus, reguláris, bináris és lineáris matroid fogalma, ezek kapcsolata (ebből bizonyítás csak a grafikus és reguláris matroidok közötti kapcsolatra), példák. Fano-matroid, példa nemlineáris matroidra. Bináris, reguláris és grafikus matroidok jellemzése tiltott minorokkal: Tutte tételei (biz. nélkül).
- 12. Matroidok összege. k-matroid metszet probléma, ennek bonyolultsága  $k \geq 3$  esetén.
- 13. A k-matroid partíciós probléma, ennek algoritmikus megoldása. A 2-matroid-metszet feladat visszavezetése matroid partíciós problémára.
- 14. k-polimatroid rangfüggvény fogalma. A 2-polimatroid-matching probléma, ennek bonyolultsága, Lovász tétele (biz. nélkül).

#### Közelítő és ütemezési algoritmusok

- 15. Polinomiális időben megoldható feladat fogalma, példák. Az NP, co-NP, NP-nehéz és NP-teljes problémaosztályok definíciója, viszonyaik, példák problémákra valamennyi osztályból. NP-nehéz feladatok polinomiális speciális esetei: algoritmus a maximális független ponthalmaz problémára és az élszínezési problémára páros gráfokon. Additív hibával közelítő algoritmusok speciális pont-, illetve élszínezési problémákra.
- 16. A Hamilton-kör probléma visszavezetése a leghosszabb kör probléma additív közelítésére. k-approximációs algoritmus fogalma, példák: két-két algoritmus a minimális lefogó ponthalmaz keresésére és a maximális páros részgráf keresésére. Minimális levelű, illetve maximális belső csúcsú feszítőfa keresése. Approximációs algoritmus az utóbbi feladatra (biz. nélkül).
- 17. A minimális lefogó ponthalmaz visszavezetése az általános utazóügynök probléma k-approximációs megoldására. Közelítő algoritmusok a metrikus utazóügynök problémára, Christofides algoritmusa.
- 18. A Hamilton-kör probléma visszavezetése az általános utazóügynök probléma k-approximációs megoldására. Közelítő algoritmusok a mtrikus utazóügynök problémára, Christofides algoritmusa.
- 19. Teljesen polinomiális approximációs séma fogalma. A részösszeg probléma, bonyolultsága. Teljesen polinomiális approximációs séma a részösszeg problémára.
- 20. Ütemezési feladatok típusai. Az  $1|prec|C_{max}$  és az  $1||\sum C_j$  feladat. Approximációs algoritmusok a  $P||C_{max}$  feladatra: listás ütemezés tetszőleges sorrendben, éles példa tetszőleges számú gép esetére. Approximációs algoritmus a  $P|prec|C_{max}$  feladatra (biz. nélkül), példák: az LPT sorrend, illetve a leghosszabb út szerinti ütemezés sem jobb, mint  $(2-\frac{1}{m})$ -approximáció. A  $P|prec, p_i = 1|C_{max}$  feladat, Hu algoritmusa (biz. nélkül).

#### Megbízható hálózatok tervezése

- 21. Globális és lokális élösszefüggőség és élösszefüggőségi szám fogalma, Menger irányítatlan gráfokra és élösszefüggőségre vonatkozó két tétele (biz. nélkül).  $\lambda(G)$  meghatározása folyamatok segítségével négyzetes és lineáris számú folyamkereséssel.
- 22.  $\lambda(G)$  meghatározása összehúzások segítségével, Mader-tétele, Nagamochi és Ibaraki algoritmusa.
- Minimális méretű 2-élösszefüggő részgráfok keresése. A probléma NP-nehézsége, Khuller-Vishkin algoritmus (biz. nélkül).

#### Hálózatelméleti alkalmazások

- 24. Kirchoff tételei a klasszikus villamos hálózatok analízisére.
- 25. Kirchoff eredményeinek általánosítása transzformátorokat vagy girátorokat is tartalmazó hálózatokra (biz. nélkül). Algoritmusok a feltételek ellenőrzésére.
- 26. Kirchoff eredményeinek általánosítása: szükséges feltétel tetszőleges lineáris sok-kapukat is tartalmazó hálózatok egyértelmű megoldhatóságára. Villamos hálózatok duálisa.

#### Statikai alkalmazások

- 27. Rúdszerkezetek, merevségi mátrix, merevség, egyszerű rácsos tartók, Cremona-Maxwell diagramok.
- 28. Minimális merev rúdszerkezetek általános helyzetben, Laman tétele (biz. nélkül), Lovász és Yemini tétele.
- 29. Síkbeli négyzetrácsok és egyszintes épületek átlós merevítése.

Felhasználható a következő oldaltól kezdődő IATFX-Diplomaterv sablon dokumentum tartalma.

A diplomaterv szabványos méretű A4-es lapokra kerüljön. Az oldalak tükörmargóval készüljenek (mindenhol 2.5cm, baloldalon 1cm-es kötéssel). Az alapértelmezett betűkészlet a 12 pontos Times New Roman, másfeles sorközzel.

Minden oldalon - az első négy szerkezeti elem kivételével - szerepelnie kell az oldalszámnak.

A fejezeteket decimális beosztással kell ellátni. Az ábrákat a megfelelő helyre be kell illeszteni, fejezetenként decimális számmal és kifejező címmel kell ellátni. A fejezeteket decimális aláosztással számozzuk, maximálisan 3 aláosztás mélységben (pl. 2.3.4.1.). Az ábrákat, táblázatokat és képleteket célszerű fejezetenként külön számozni (pl. 2.4. ábra, 4.2 táblázat vagy képletnél (3.2)). A fejezetcímeket igazítsuk balra, a normál szövegnél viszont használjunk sorkiegyenlítést. Az ábrákat, táblázatokat és a hozzájuk tartozó címet igazítsuk középre. A cím a jelölt rész alatt helyezkedjen el.

A képeket lehetőleg rajzoló programmal készítsék el, az egyenleteket egyenlet-szerkesztő segítségével írják le (A IATEX ehhez kézenfekvő megoldásokat nyújt).

Az irodalomjegyzék szövegközi hivatkozása történhet a Harvard-rendszerben (a szerző és az évszám megadásával) vagy sorszámozva. A teljes lista névsor szerinti sorrendben a szöveg végén szerepeljen (sorszámozott irodalmi hivatkozások esetén hivatkozási sorrendben). A szakirodalmi források címeit azonban mindig az eredeti nyelven kell megadni, esetleg zárójelben a fordítással. A listában szereplő valamennyi publikációra hivatkozni kell a szövegben (a LATEX-sablon a BibTEX segítségével mindezt automatikusan kezeli). Minden publikáció a szerzők után a következő adatok szerepelnek: folyóirat cikkeknél a pontos cím, a folyóirat címe, évfolyam, szám, oldalszám tól-ig. A folyóirat címeket csak akkor rövidítsük, ha azok nagyon közismertek vagy nagyon hosszúak. Internet hivatkozások megadásakor fontos, hogy az elérési út előtt megadjuk az oldal tulajdonosát és tartalmát (mivel a link egy idő után akár elérhetetlenné is válhat), valamint az elérés időpontját.

### Fontos:

- A szakdolgozat készítő / diplomatervező nyilatkozata (a jelen sablonban szereplő szövegtartalommal) kötelező előírás Karunkon ennek hiányában a szakdolgozat/diplomaterv nem bírálható és nem védhető!
- Mind a dolgozat, mind a melléklet maximálisan 15 MB méretű lehet!

Jó munkát, sikeres szakdolgozat készítést ill. diplomatervezést kívánunk!

# 6. Tétel

**Témakörök:** A lineáris és egészértékű programozás alkalmazása páros gráfokra és intervallumrendszerekre: Egerváry tétele, intervallumrendszerek egyenletes színezése.

**Definíció** (Illeszkedési mátrix). Legyen n pontú gráfnak e éle és definiáljuk az  $n \times e$  méretű  $B(G) = b_{ij}$  mátrix elemeit, hogy:

**Tétel.** Minden irányított gráf illeszkedési mátrixa TU.

Bizonyítás (Teljes indukció). Válasszunk M  $k \times k$ -as részmátrixot.

- ha k=1, akkor nyilvánvaló az állítás, hisz minden elem 0 vagy  $\pm 1$
- $ha \ k \geq 2 \ \acute{e}s$ :
  - M-nek van olyan oszlopa, melyben legfeljebb egy nemnulla elem van, akkor fejtsük ki detM-et eszerint az oszlop szerint, ekkor az indukciós feltétel szerint készen vagyunk.
  - egyébként minden oszlopban egy +1 és egy -1 elem van, ekkor M sorainak összege nullvektor, a determináns 0.

**Tétel.** Páros gráf illeszkedési mátrixa TU.

**Bizonyítás.** Irányítsuk G(A, B, E) páros gráf éleit úgy, hogy minden él A-ból B-be mutasson. Ekkor az előző tétel szerint B(G) TU. A B-hez tartozó sorokat szorozzuk -1-gyel, de ez nem változtat TU tulajdonságon.

# 0.1. A dolgozat kimérete

A minimális 50, az optimális kiméret 60-70 oldal (függelékkel együtt). A bírálók és a záróvizsga bizottság sem szereti kifejezetten a túl hosszú dolgozatokat, így a bruttó 90 oldalt már nem érdemes túlszárnyalni. Egyébként függetlenül a dolgozat kiméretétől, ha a dolgozat nem érdekfeszítő, akkor az olvasó már az elején a végét fogja várni. Érdemes zárt, önmagában is érthető művet alkotni.

## 0.2. A dolgozat nyelve

Mivel Magyarországon a hivatalos nyelv a magyar, ezért alapértelmezésben magyarul kell megírni a dolgozatot. Aki külföldi posztgraduális képzésben akar részt venni, nemzetközi szintű tudományos kutatást szeretne végezni, vagy multinacionális cégnél akar elhelyezkedni, annak célszerű angolul megírnia diplomadolgozatát. Mielőtt a hallgató az angol nyelvű verzió mellett dönt, erősen ajánlott mérlegelni, hogy ez mennyi többletmunkát fog a hallgatónak jelenteni fogalmazás és nyelvhelyesség terén, valamint - nem utolsó sorban - hogy ez mennyi többletmunkát fog jelenteni a konzulens illetve bíráló számára. Egy nehezen olvasható, netalán érthetetlen szöveg teher minden játékos számára.

### 0.3. A dokumentum nyomdatechnikai kivitele

A dolgozatot A4-es fehér lapra nyomtatva, 2,5 centiméteres margóval (+1 cm kötésbeni), 11-12 pontos betűmérettel, talpas betűtípussal és másfeles sorközzel célszerű elkészíteni.

# 12. Tétel

**Témakörök:** Matroidok összege. k-matroid metszet probléma, ennek bonyolultsága  $k \geq 3$  esetén.

### Matroidok összege

 $M_1=(E,F_1)$  és  $M_2=(E,F_2)$  matroidok összege  $M_1\vee M_2=(E,F')$ , ahol  $X\in F'\Leftrightarrow \exists X_1,X_2,$  hogy  $X=X_1\cup X_2$  és  $X_1\in F_1$ , valamint  $X_2\in F_2$ . (Azaz előáll egy  $F_1$ -beli és egy  $F_2$ -beli elem uniójaként.)

**Tétel.** A függetlenségi aximómák segítségével bizonyítható, hogy matroidok összege is matroid. (F(3)-mat kell belátni.)

### Matroidok metszete

 $M_1=(E,F_1)$  és  $M_2=(E,F_2)$  matroidok metszete:  $M_1\cap M_2=(E,F_1\cap F_2)$  halmazrend-szer

**Tétel.** Két matroid metszete nem feltétlen matroid.

# (Súlyozott) matroid metszet probléma (k-MMP vagy $MMP_k)$

Két matroid metszetének egy minimális méretű vagy súlyú elemét keressük.

Adott: k db matroid közös alaphalmazon:  $M_i = (E, F_i), i = 1, 2, \dots, k$ 

Kérdés: létezik-e valamely konstans p-re p méretű halmaz  $\cap F_i$ -ben?

Azaz: 
$$\exists$$
-e  $X \subseteq E: |X| \ge p: X \in \bigcap_{i=1}^k F_i$ 

# Bonyolultság

- -k = 1,2 esetén: polinomiális (Mohó algoritmus)
- $-k \ge 3$  esetén: NP-teljes (Hamilton-út keresése)