COMP 7180 Quantitative Methods for Data Analytics and Artificial Intelligence Assignment 1

Note:

- 1. Instruction of assignment submission:
 - (a) Write all your answers clearly using Microsoft Word/Latex;
 - (b) For students who use Microsoft Word, please use "Insert \rightarrow Equation" to write all the formulations;
 - (c) Name your document using the following format:

COMP7180_Assignment_1_StudentID_StudentName.doc or

COMP7180_Assignment_1_StudentID_StudentName.pdf;

- (d) Submit the document on Moodle;
- (e) Taking pictures/photos of handwritten manuscript wont be accepted and will be given Zero Mark!
- 2. The submission deadline is 2024 November 4 17:00
- 3. This is an individual work. Plagiarism is strictly forbidden. Students who plagiarized and who were plagiarized will be given Zero Mark.
- 1. (10 Marks)
 - (a) (4 Marks) Given vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 9 \\ 0 \\ 3 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -28 \\ 35 \\ 22 \end{bmatrix}$. Please calculate a, b, c
 - (b) (6 Marks) Construct 2 vectors \mathbf{u} and \mathbf{v} with the last four numbers of your student ID. $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}$,

where a, b are the fifth and sixth numbers of your ID. $\mathbf{v} = \begin{bmatrix} c \\ d \end{bmatrix}$, where c, d are the seventh and eighth numbers of your ID. (For student ID: 23456789, we have $\mathbf{u} = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 8 \\ 9 \end{bmatrix}$). Calculate

 $cos\theta$, where θ is the angle between u and v, and write down the calculation details.

2. (14 Marks) Given matrices A, B, C. Proof the following multiplication laws of matrix:

- (a) (6 Marks) $AB \neq BA$.
- (b) (8 Marks) (A + B)C = AC + BC.

- 3. (16 Marks) Construct 2 vectors \mathbf{u} and \mathbf{v} with your student ID. $\mathbf{u} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$, where a, b, c, d are the first
 - four numbers of your ID. $\mathbf{v} = \begin{bmatrix} e \\ f \\ g \\ h \end{bmatrix}$, where e, f, g, h are the last four numbers of your ID. (For student ID: 23456789, we have $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \end{bmatrix}$). We have vector $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

 - (a) (6 Marks) Write down one vector a, which is in the space that is spanned by vectors u, v, w. And prove that vector a is in the space that is spanned by vectors u, v, w.
 - (b) (10 Marks) Write down one vector b, which is **not** in the space that is spanned by vectors u, v, w. Find the projection point p of vector b onto the space that is spanned by vectors u, v, w, and write down the calculation details.

4. (14 Marks) Supposing 3 measurements b_1, b_2, b_3 are marked:

$$b = 0$$
 at $t = 3$, $b = 2$ at $t = 9$, $b = 5$ at $t = 38$ (1)

- (a) (6 Marks) Find the closest straight line b = Dt, and write down the calculation details.
- (b) (8 Marks) Find the closest parabola $b = C + Dt + Et^2$, and write down the calculation details.

5. (9 Marks) Calculate the eigenvalue of following matrix.

- (a) (3 Marks) $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$. (b) (3 Marks) $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$. (c) (3 Marks) $\mathbf{C} = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$.

- 6. (14 Marks) Consider a 3×3 matrix A with eigenvalues 0, 3, 8. Calculate the following questions, and write down the calculation details.
 - (a) (6 Marks) The rank of matrix A.
 - (b) (8 Marks) The eigenvalue of $(\mathbf{A}^3 + \mathbf{I})^{-1}$.

7. (10 Marks) (10 Marks) Performe SVD to matrix A, and we have $A = U\Sigma V^{\top}$. There are r singular values of matrix A, which are $\sigma_1, \sigma_2, \cdots, \sigma_r$. Prove that: The eigenvalue of matrix $A^{\top}A$ is the square of singular value $\sigma_1^2, \sigma_2^2, \cdots, \sigma_r^2$.

8. (13 Marks) Construct 4 vectors
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, $\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$, where the number $a_1, a_2, b_1, b_2, c_1, c_2, d_1, d_2$ are picked from your student ID. (For student ID: 23456789, we have $\mathbf{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$, $\mathbf{d} = \begin{bmatrix} 8 \\ 9 \end{bmatrix}$ or $\mathbf{a} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$, $\mathbf{d} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$.) And we have $\mathbf{e} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{f} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- (a) (6 Marks) Perform PCA with the data a, b, c, d, e, f, write down the calculation details, and write down the largest principal component.
- (b) (2 Marks) Visualize these 6 vectors as data points. And divide these 6 vectors into 2 classes, each class contains 3 vectors. The vectors in each class are picked by yourself. (For example, we could have class 1 (a, b, c), class 2 (d, e, f), or class 1 (a, c, e), class 2 (b, d, f)). Ensure that these two classes are linearly separable.
- (c) (5 Marks) Perform LDA with the data you obtain in question 8(b), write down the projection vector w, project your data in the subspace, and write down the calculation details.