Module 11: Additional Topics *Graph Theory and Applications*

Topics:

- Introduction to Graph Theory
- Representing (undirected) graphs
- Basic graph algorithms

Consider the following:

 Traveling Salesman Problem (TSP): Given N cities and the distances between them, find the shortest path to visit all cities and return to the start.

What does the TSP have in common with the following problems?

- Placement of new fire stations in a city to provide best coverage to all residents
- Ranking of "importance" of web pages by Google's PageRank algorithm
- Scheduling of final exams so they do not conflict
- Arranging components on a computer chip
- Analyzing strands of DNA
- Binary Search Trees

They all fall within the field of GRAPH THEORY

Non-conflicting exams

C1020 M1062 M1044 B1081 R2001 M1061 M1045 M1046 M1021 M1026 C1040 P1051

PageRank Algorithm

Undirected Simple Graphs

An undirected simple *graph* G is a set V, of *vertices*, and a set E, of unordered distinct pairs from V, called *edges*. We write G=(V,E).

Graph Terminology

- If (v_k, v_p) is an edge, we say that v_k and v_p are **neighbours**, and are **adjacent**. Note that k and p must be different.
- The number of neighbours of a vertex is also called its *degree*
- A sequence of nodes v_1, v_2, \dots, v_k is a **path** of length k-1 if $(v_1, v_2), (v_2, v_3), \dots, (v_{k-1}, v_k)$ are all edges
 - If $v_1 = v_k$, this is called a **cycle**
- A graph G is connected if there exists a path through all vertices in G

Interesting Results on Graphs

Let n = number of vertices, and m = number of edges:

- 1. $m \leq n(n-1)/2$
- 2. The number of graphs on n vertices is $2^{n(n-1)/2}$
- 3. The sum of the degrees over all vertices is 2m.

How can we store information about graphs in Python?

- We need to store labels for the vertices
 - These could be strings or integers
- We need to store both endpoints using the labels on the vertices.

 We will consider three different implementations for undirected, unweighted graphs

Implementation 1: Vertex and Edge Lists

• $V = [v_1, v_2, v_3, ..., v_m],$

• $E = [e_1, e_2, e_3, ..., e_m]$, where edge $e_j = [a, b]$ when vertices a and b are connected by an edge

Implementation 2: Adjacency list

- For each vertex:
 - -Store the labels on its neighbours in a list
- We will use a dictionary
 - Keys: labels of vertices
 - Recall: integers or strings can be keys
 - Associated values: List of neighbours (adjacent vertices)

Example:

```
{1:[2,5],}
2:[1,3,5],
3:[2,4],
4:[3,5,6],
5:[1,2,4],
6:[4]}
```


Implementation 3: Adjacency Matrix

- For simplicity, assume vertices are labelled 0, ..., n-1
- Create an nxn matrix for G
- If there is an edge connecting i and j:
 - -Set G[i][j] = 1,
 - -Set G[j][i] = 1
- Otherwise, set these values to 0

Example:

G:

vertex	0	1	2	3	4	5
0	[[0,	1,	0,	0,	1,	0],
1	[1,	0,	1,	0,	1,	0],
2	[0,	1,	0,	1,	0,	0],
3	[0,	0,	1,	0,	1,	1],
4	[1,	1,	0,	1,	0,	0],
5	[0,	0,	0,	1,	0,	0]]

Comparing the implementations on simple tasks

- Determine if two vertices are neighbours.
- Find all the neighbours of a vertex.

Which implementation to use?

 We'll use the adjacency list (a good case could also be made for the adjacency matrix).

Graph Traversals

- Determine all vertices of G that can be reached from a starting vertex
- There can be different types of traversals
- If you find all vertices starting from v, the graph is connected
- If not all vertices can be reached, a connected component containing v has been found
- Must determine a way to ensure we do not cycle indefinitely

Applications of traversals

- Finding path between two vertices
- Finding connected components
- Tracing garbage collection in programs (managing memory)
- Shortest path between two points
- Planarity testing
- Solving puzzles like mazes
- Graph colouring

One approach: Breadth-first search Traversal (bfs)

- Choose a starting point v
- Visit all the neighbours of v
- Then, visit all of the neighbours of the neighbours of v, etc.
- Repeat until all reachable vertices are visited
- Need some way to avoid visiting edges more than once
- Note: there may be more than one bfs ordering of a graph, starting from v.

Implementation of bfs traversal

```
def bfs(graph, v):
  all = []
  O = []
  Q.append(v)
  while Q != []:
    v = Q.pop(0)
    all.append(v)
    for n in graph[v]:
      if n not in Q and\
         n not in all:
         Q.append(n)
  return all
```

Starting bfs from 0 (1)

- Start from v=0
- all = []
- Q = [0]
 - -v=0
 - all = [0]
 - Neighbours of 0: 1,4
 - Q = [1,4]

Continuing bfs (2)

- Q = [1, 4]
- v = 1
- all = [0,1]
- Neighbours of 1: 0,2,3

$$-Q = [4,2,3]$$

Continuing bfs (3)

- Q: [4, 2, 3]
- \bullet v = 4
- all = [0,1,4]
- Neighbours of 4: 0,3
 - No vertices added to Q
- Q= [2,3]
- v = 2
- all = [0,1,4,2]
- Neighours of 2: 1,6 \rightarrow Q = [3,6]

Continuing bfs (4)

- Q: [3, 6]
- v = 3
- all = [0,1,4,2,3]
- Neighbours of 3: 1,4,5Q = [6,5]
- Q = [6, 5]
- v = 6
- all = [0,1,4,2,3,6]
- Neighbours of 6: 2,7,8- Q = [5,7,8]

Continuing bfs (5)

- Q: [5, 7, 8]
- v = 5
- all = [0,1,4,2,3,6,5]
- Neighbours of 5: 3,8 (Q unchanged)
- Q = [7,8]
- v = 7
- all = [0,1,4,2,3,6,5,7]
- Neighbours of 7: 6 (Q unchanged)
- Q = [8]
- \bullet v = 8
- all = [0,1,4,2,3,6,5,7,8]
- Neighbours of 8: 5,6 (Q unchanged)
- Q is empty

Another approach: depth-first traversal (dfs)

- Choose a starting point v
- Proceed along a path from v as far as possible
- Then, backup to previous (most recently visited) vertex, and visit its unvisited neighbour (this is called backtracking)
 - Repeat while unvisited, reachable vertices remain
- Note: there may be more than one dfs ordering of a graph, starting from v.

A depth first search traversal solution

```
def dfs(graph, v):
    visited = []
    S = [v]
    while S != []:
        v = S.pop()
        if v not in visited:
            visited.append(v)
            for w in graph[v]:
                 if w not in visited:
                     S.append(w)
    return visited
```

Breadth first vs depth first Searches

- Both need an additional list to store needed information:
 - BFS uses Q:
 - Add to the end and remove from the front
 - Called a Queue
 - DFS uses S:
 - Add to the end and remove from the end
 - Called a Stack
 - Stacks and Queues are both very useful in CS

Weighted edges

- Each edge has an associated weight. It might represent:
 - Distance between cities
 - Cost to move between locations
 - Capacity of a route

Probability of moving from

one web page to

another

Adjust adjacency list to include weights

Adjust our adjacency list to store weights with each edge

```
• {1:[[2,2],[4,5]],
2:[[1,2],[3,14],
[4,5],[5,4]],
3:[[2,14],[5,34]],
4:[[1,5],[2,5],[5,58]],
5:[[2,4],[3,34],[4,58]]}
```

Shortest Paths Problem

Problem: Given a weighted graph, G, and vertex s (called the source), find the path of least weight from s to each of the other vertices in the graph.

The total weight of a path is the sum of the weights of all its edges.

Assumptions:

- Weights are all positive
- There exists at least one path from s to each vertex

Dijkstra's Algorithmfor the Shortest Paths Problem

- Famous algorithm in CS
- Example of a Greedy Algorithm
 - At each step, the locally optimum choice is made in hopes of finding the global optimum.

Example of Dijkstra's Algorithm (1)

- Find shortest paths from: a
- Keep track of the vertices that you know the shortest path for, S = [a] to start
- For all vertices, determine

the weight of the path from *a* using only vertices in *S*. Note that some vertices are not reachable yet.

Continuing Dijkstra's Algorithm (2)

$$S = [a]$$

D: Distances through S

a	b	C	d	e	f
0	2	∞	∞	3	∞

Greedy: Choose the vertex with the minimum positive distance from **a** through *S*: **b**

Add b to S

Continuing Dijkstra's Algorithm (3)

$$S = [a,b]$$

D: Distances through S

a	b	c	d	e	f
0	2	9	∞	3	3

Greedy: Choose the vertex with the minimum positive distance from a through *S*: *e* and *f* Add *e* to *S* (random choice)

Continuing Dijkstra's Algorithm (4)

$$S = [a,b,e]$$

D: Distances through S

a	b	C	d	e	f
0	2	9	11	3	3

Greedy: Choose the vertex with the minimum positive distance from a through S: f

Add **f** to S

Continuing Dijkstra's Algorithm (5)

$$S = [a,b,e,f]$$

D: Distances through S

a	b	c	d	e	f
0	2	7	7	3	3

Greedy: Choose the vertex with the minimum positive distance from a through *S*: *c* and *d* Add *d* to *S* (random choice)

Continuing Dijkstra's Algorithm (6)

$$S = [a,b,e,f,d]$$

D: Distances through S

a	b	C	d	e	f
0	2	7	7	3	3

Greedy: Choose the vertex with the minimum positive distance from a through *S:* **c**

Add c to S

Continuing Dijkstra's Algorithm (7)

Length of shortest path from **a** to each of the vertices:

a	b	C	d	e	f
0	2	7	7	3	3

Note: Can modify basic Dijkstra's algorithm to keep track of edges used in shortest paths.

More on Greedy algorithms

- Often used to solve very difficult problems (like the Travelling Salesman problem).
- Depending on the problem, may not always provide an optimal solution.
 - Often acceptable if all known algorithms for an optimal solution have exponential runtime

Other types of graphs

- Edges can be directed from one vertex to another
- Directed edges can have weights as well

Trees are special forms of graphs

Goals of Module 11

- Understand basic graph terminology
- Understand representation of graphs in Python
- Understand breadth-first and depth-first search traversals
- Understand Dijkstra's algorithm