Game Theory

摘要

- 介紹此理論處理的問題、情況
- 賽局狀態 Game State
- 理論基石 Nim Game
- Sprague-Grundy Theorem
- Grundy Numbers
- 其他變體

處理的問題 - 不偏賽局 Impartial Game

我們將會解決符合以下條件的賽局

- 1. 由二個玩家輪流採取行動
- 2. 賽局中的狀況可以對應到一個可描述的狀態
- 3. 每位玩家能採取的行動 只跟狀態有關, 跟現在輪到的玩家無關
- 4. 賽局在某位玩家無法採取任何行動時就會結束
- 5. 賽局會在**有限步數內**結束
- 6. 賽局的所有資訊對每個玩家都是公開透明的, 且沒有任何隨機因素

Game States 賽局狀態

我們來想想一個簡單的賽局...

Game States 賽局狀態

想想輸的人會遇到什麼狀況...

必勝態 Winning State

遭遇 0 顆的狀況必輸 反過來說, 遭遇 1, 2, 3 顆的狀況必勝

我們把繼續玩下去一定會贏的狀態叫做必勝態!

那麼 4 顆呢?

所剩石頭個數	0	1	2	3	4	5	6	7	8	9	10
狀態	×	0	0	0	?	?	?	?	3	?	?

必輸態 Losing State

那麼4顆呢?

4 顆再怎麼拿都只會到必勝態

只要玩家<u>任何</u>一個操作都送對方到必勝態, 就是必輸態 只要玩家<u>存在</u>一個操作能讓對方到必輸態, 就是必勝態

所剩石頭個數	0	1	2	3	4	5	6	7	8	9	10
狀態	X	0	0	0	X	0	0	0	X	0	0

狀態圖 State Graph

將賽局中出現的狀況做為點 可以從 a 狀態變成 b 狀態就連一條邊

紅點表示 losing state

綠點表示 winning state

Nim Game

不偏賽局的基石

Nim Game 介紹

每次操作必須挑其中一條橫列 拿至少1顆、至多整排的石頭 拿到最後一顆石頭的人就贏了

Nim Game 介紹

各排的賽局互不影響、各自獨立 稱各排賽局為子賽局 Subgame

Subgame in Nim

分析單一排的子賽局非常簡單

只有0顆時是必輸態

其他 >0 顆皆是必勝態

Subgame in Nim

單純把子賽局二分成必勝態跟必輸態 對於整個賽局並沒有意義

e.g. **石子的數量**應該要扮演重要角色

重新區分子賽局的狀態 將不同必勝態區分出來 進而重新定義整個賽局的狀態

需求:

在必輸態 **無論做任何操作** 都必須得變成 **必勝態** 在必勝態裡 **存在一個操作** 變成 **必輸態**

Nim Sum - 分析用的工具

令第 1 排石頭的個數是 x_1 、第 2 排石頭的個數是 x_2 ...

考慮 $f(x_1, x_2, ..., x_n) = z$ 把子賽局的石頭個數射到非負整數

定義「滿足以下需求

- 1. f(必輸態) = 0; f(必勝態) ≠ 0
- 2. f(0, 0, ..., 0) = 0
- 3. 若 f(X_{old}) = 0, <u>任何操作</u>導致的 X_{new} 都滿足 f(X_{new}) ≠ 0
- 4. 若 f(X_{old}) ≠ 0, <u>存在一個操作</u>導致的 X_{new} 都滿足 f(X_{new}) = 0

有什麼 f 滿足這些需求呢?

Exclusive OR!!!

Exclusive OR

Exclusive OR, 又可簡稱 XOR, 中文名稱異或。

以邏輯閘來說 $0 \oplus 0 = 1 \oplus 1 = 0, 0 \oplus 1 = 1 \oplus 0 = 1$ 有著相同數字 XOR 會是 0 的性質

若將此定義推廣到非負整數上...?

有趣的性質:

$$a \oplus a = 0$$

 $a \oplus b = c \Rightarrow a \oplus c = b$
 $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

十進位	二進位
1	001
3	011
<u>5</u>	101
7	111
XOR	000

十進位	二進位
1	001
3	011
<u>2</u>	010
7	111
XOR	111

定義 f: XOR

- 1. f(必輸態) = 0; f(必勝態) ≠ 0
- 2. f(0, 0, ..., 0) = 0
- 3. 若 f(X_{old}) = 0, <u>任何操作</u>導致的 X_{new} 都滿足 f(X_{new}) ≠ 0
- 4. 若 f(X_{old}) ≠ 0, <u>存在一個操作</u>導致的 X_{new} 都滿足 f(X_{new}) = 0

需求1只是定義

需求 2 顯然滿足

需求 3 可以證明 若當前 XOR 出的數字是 0 只要單排石子數發生任意變化 XOR 的結果就一定不是 0

十進位	二進位
0	000
0	000
0	000
XOR	000

十進位	二進位	
1	01	
2	10	
3	11	
XOR	00	

十進位	二進位
1	01
2	10
2	10
XOR	01

假設有4排石頭

$$\mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \mathbf{x}_3 \oplus \mathbf{x}_4 = \mathbf{y}$$

$$\mathbf{X}_1 \oplus \mathbf{X}_2 \oplus \mathbf{X}_3 \oplus (\mathbf{X}_4 \oplus \mathbf{y}) = \mathbf{y} \oplus \mathbf{y} = 0$$

若能把 x₄ 變成 x₄ ⊕ y 就是把局勢推往必輸態

前提是 $X_4 \oplus y \le X_4$

e.g.

5(101) 拿走 4 顆石頭, XOR 變成 0

十進位	二進位
1	001
3	011
3	011
5	<u>1</u> 01
XOR	<u>1</u> 00

十進位	二進位
1	001
3	011
3	011
1	<u>001</u>
XOR	000

觀察到 y 的最高位 根據 XOR 的性質 一定存在某一排石頭 x_i

注意到此時 x_i⊕ y ≤ x_i

也有一樣的最高位位置

十進位	二進位
3	011
7	<u>1</u> 11
1	001
2	010
XOR	<u>1</u> 11

十進位	二進位
3	011
<u>0</u>	<u>000</u>
1	001
2	010
XOR	000

Nim Game 結論

- 具有各自獨立的子賽局
- 將不同子賽局的石頭個數 XOR, 可用零或非零來區分必勝態/必輸態
- 勝者的目標是把敗者送到必輸態
- 敗者只能在必輸態中無力掙扎,最後送出一個必勝態給勝者
- 整個過程, 勝者都在將 XOR 的結果調整回 0
- 打從遊戲一開始, 就能決定先手必勝或是後手必勝

小觀察 - State Graph of Subgame of Nim

Sprague-Grundy Theorem

The General Method to solve the games

嘿!

不要看到一堆英文就被嚇跑啦

定理介紹

所有不偏賽局皆可透過 定義賽局中每個狀態的 Grundy Number 使其能透過 Nim Game 的方式分析

一樣地,我們這次從一個稍微複雜一點的賽局看起...

先把一些明顯的必輸態標上...

觀察

在 Nim Game 的時候

若只看單個 Subgame 的石頭數量的話

参與者可以採取行動將 x 變成 0~x-1 內的任一數字

在更廣義的 Game 中, 不妨用類似的方式定義這樣的數字

需求:

$$g(x_{old}) = y$$

存在 x_{new} 使得 $g(x_{new}) = i$ 成立 for all $i = 0 \sim y-1$

Mex Function

X 是一個裝著非負整數的集合 若 X 內含有 $0 \sim i - 1$ 的每個數字 則使滿足此條件的最大 i 為 mex(X) 若 X 內沒有 0, 定義 mex(X) = 0 e.g.

$$mex{0, 1, 2, 5, 6, 8} = 3$$

 $mex{1, 2, 7, 8} = 0$

若 x 可以到的狀態有 $x_1, x_2, ..., x_n$ 則定義 $g(x) = mex\{g(x_1), g(x_2), ..., g(x_n)\}$

這使得行為者可以採取行動將 g(x) 變成 $0\sim g(x)-1$ 內的數字

0	1		0	1	,	0	1		0	1	0	1		0	1	9	0	1		0	1
	0	1	V				0	1	2			0	1	2				0	1	2	
0	2					0	2				0	2		V			0	2		1	
	V						3					3						3			
0						0					0	V					0	4			

0	1		0	1	e .	0	1		0	1	0	1		0	1	0	1		0	1
	0	1	2				0	1	2			0	1	2			0	1	2	
0	2		1	V		0	2		1	0	0	2		1	0	 0	2		1	0
	3	V					3	0				3	0	V			3	0	4	
0	4					0	4				0	4	V			0	4	1		

這個賽局的 Grundy Number 就是 2

多個 Subgame...

依據 Nim game 的策略 目標是將 XOR of Grundy Number 變為 0

0	1		0	1
	0	1	2	
0	2		1	0
	3	0	4	1
0	4	1	3	2

0	1	2	3	
1	0		0	1
2		0	1	2
3		1	2	0
4	0	2	5	3

0	1	2	3	4
1				0
2				1
3				2
4	0	1	2	3

Grundy Number 結論

- 繼 XOR 後, 使用了 mex 定義了類似 Nim Game 中的石頭數
- 不同於 Nim Game 只會走到比較少的石頭數量
- 廣義的 Game 可能可以從 Grundy Number 少去走到多
- 但沒有意義
- 只需好好列出各個狀態的 Grundy Number
- 便能用 Nim Game 的策略分析此賽局

練習題

<u>Luogu P4018</u>

<u>Luogu P4860</u>

Luogu P1247

CodeForces 102984G

其他變體

還有!??

Misere Game

在 Nim Game 中 拿到最後一顆石頭的參與者從贏家變成輸家 跟正常玩法一樣 但當你的下一步操作 會使全部的石頭數量是1顆或是0顆 此時就需要改變策略

Misere Game

採取正常策略 一定會在某個時間點 採取完操作後全部的石頭數量不是1就是0

e.g.

0 1 1 1 2

003

只需將局面留下奇數個1

Grundy's Game

有些時候

一個賽局會因為參與者的行為而分割成不同的子賽局

Grundy's Game 就是這樣的遊戲 每次可以將個數為n的棒棒分成數量不相等的二堆 無法操作者將輸掉這場遊戲

e.g.

$$4 \rightarrow 3 + 1 \rightarrow 2 + 1 + 1$$

Grundy's Game

顯然 n = 1, 2 是必輸態

如何生成其他狀態的 Grundy Number?

e.g.

$$\Leftrightarrow$$
 f(8) = mex{f(1) \oplus f(7), f(2) \oplus f(6), f(3) \oplus f(5)}

Grundy's Game (More Example)

```
f(1) = 0
f(2) = 0
f(3) = mex\{f(1) \oplus f(2)\} = mex\{0\} = 1
f(4) = mex\{f(1) \oplus f(3)\} = mex\{1\} = 0
f(5) = mex\{f(1) \oplus f(4), f(2) \oplus f(3)\} = mex\{0, 1\} = 2
f(6) = mex\{f(1) \oplus f(5), f(2) \oplus f(4)\} = mex\{2, 0\} = 1
f(7) = mex\{...\} = mex\{1, 2, 1\} = 0
f(8) = mex\{...\} = mex\{0, 1, 3\} = 2
```

參考資料

- https://zh.wikipedia.org/wiki/%E6%97%A0%E5%81%8F%E5%8D%9A%E5%BC%88
- https://zh.wikipedia.org/wiki/%E5%B0%BC%E5%A7%86%E6%B8%B8%E6%88%8F
- https://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem
- https://csacademy.com/app/graph_editor/
- http://www.mathland.idv.tw/game/mathgame.htm
- https://memes.tw/maker

後記

紀政良在跟他的好友 Zolark 玩 Nim Game, 輪到 Zolark 時, 我恰好出現。我瞄了一眼地上的石頭, 腦袋飛快的運算後不禁脫口而出「阿, 必勝克」, 在一旁的 Roy 正好吃著披薩當晚餐; Zolark 想了一下便對 紀政良 說「那你不就必輸紀?」這時大廳裡正好響起畢書盡的 < Come back to me>, 一切都像是在預告著這場遊戲的結局。