Question 1

$$F(x) = 1 - e^{-x} \qquad x > 0$$

$$U \sim Uniform(0, 1)$$

$$X = F^{-1}(U)$$

$$= -\ln(1 - U)$$

$$X \sim F$$

This formula can be simplified since

$$1 - U \sim Uniform(0, 1)$$

$$0 \xrightarrow{1} 1$$

Figure 13.3: Symmetry of Uniform

Hence we can simulate X using

$$X = -\ln(U)$$

$$U = runif(1, min = 0, max = 1);$$

 $X = -log(U)$

Question 2

Apply the inverse transform method. In this case

$$F(x) = \begin{cases} \frac{(x-2)^2}{4} & \text{if } 2 \le x \le 3\\ \frac{1}{4} + (x-3)(\frac{3}{4} - \frac{x}{12}) & \text{if } 3 < x < 6 \end{cases}$$

Inverting this c.d.f. gives

$$F^{-1}(U) = \begin{cases} 2 + 2\sqrt{\overline{U}} & \text{if } 0 \le U \le 1/4\\ 6 - 2\sqrt{3 - 3U} & \text{if } U > 1/4 \end{cases}$$

Question 3

$$F(x) = \begin{cases} \frac{e^{2x}}{2} & \text{if } x < 0\\ \frac{2 - e^{-2x}}{2} & \text{if } x > 0 \end{cases}$$

$$X = F^{-1}(U) = \begin{cases} \frac{\ln(2U)}{2} & \text{if } U < 1/2\\ -\frac{\ln(2-2U)}{2} & \text{if } U > 1/2 \end{cases}$$

Question 4

s:	0	1	2	3
f(s)	.216	.432	.288	.064
F(s)	.216	.648	.936	1.00

A binomial value of 2 will be simulated by a uniform (0,1) value that is both greater than or equal to .648 and less than 0.936. Thus, the uniform numbers 0.71 and 0.66 result in simulated binomial values of 2.

Question 5

 $\underline{https://math.stackexchange.com/questions/3693280/generate-a-poisson-random-variable-fro}\\ \underline{m-a-standard-uniform-random-variable}$

Question 6:

Part 1

Define the sets A and B as follows:

$$A = \left\{s \in S: \lim_{n o \infty} X_n(s) = X(s)
ight\}, \ B = \left\{s \in S: \lim_{n o \infty} Y_n(s) = Y(s)
ight\}.$$

By definition of almost sure convergence, we conclude P(A)=P(B)=1. Therefore, $P(A^c)=P(B^c)=0$. We conclude

$$P(A \cap B) = 1 - P(A^c \cup B^c)$$

$$\geq 1 - P(A^c) - P(B^c)$$

$$= 1$$

Thus, $P(A \cap B) = 1$. Now, consider the sequence $\{Z_n, n = 1, 2, \cdots\}$, where $Z_n = X_n + Y_n$, and define the set C as

$$C = \left\{ s \in S : \lim_{n o \infty} Z_n(s) = X(s) + Y(s)
ight\}.$$

We claim $A \cap B \subset C$. Specifically, if $s \in A \cap B$, then we have

$$\lim_{n o \infty} X_n(s) = X(s), \qquad \lim_{n o \infty} Y_n(s) = Y(s).$$

Therefore,

$$\lim_{n o\infty} Z_n(s) = \lim_{n o\infty} \left[X_n(s) + Y_n(s)
ight] = \lim_{n o\infty} X_n(s) + \lim_{n o\infty} Y_n(s)$$

We claim $A\cap B\subset C$. Specifically, if $s\in A\cap B$, then we have

$$\lim_{n o\infty} X_n(s) = X(s), \qquad \lim_{n o\infty} Y_n(s) = Y(s).$$

Therefore,

$$egin{aligned} \lim_{n o\infty} Z_n(s) &= \lim_{n o\infty} \left[X_n(s) + Y_n(s)
ight] \ &= \lim_{n o\infty} X_n(s) + \lim_{n o\infty} Y_n(s) \ &= X(s) + Y(s). \end{aligned}$$

Thus, $s \in C$. We conclude $A \cap B \subset C$. Thus,

$$P(C) \ge P(A \cap B) = 1,$$

which implies P(C)=1. This means that $Z_n \stackrel{a.s.}{\longrightarrow} X+Y.$

Part 2

For $n \in \mathbb{N}$, define the following events

$$A_n = igg\{ |X_n - X| < rac{\epsilon}{2} igg\},$$
 $B_n = igg\{ |Y_n - Y| < rac{\epsilon}{2} igg\}.$

Since $X_n \stackrel{p}{ o} X$ and $Y_n \stackrel{p}{ o} Y$, we have for all $\epsilon > 0$

$$\lim_{n o\infty}Pig(A_nig)=1, \ \lim_{n o\infty}Pig(B_nig)=1.$$

We can also write

$$P(A_n \cap B_n) = P(A_n) + P(B_n) - P(A_n \cup B_n)$$

> $P(A_n) + P(B_n) - 1$.

Therefore,

$$\lim_{n o \infty} Pig(A_n \cap B_n) = 1.$$

Now, let us define the events C_n and D_n as follows:

$$C_n = igg\{ |X_n - X| + |Y_n - Y| < \epsilon igg\},$$
 $D_n = igg\{ |X_n + Y_n - X - Y| < \epsilon igg\}.$

Now, let us define the events C_n and D_n as follows:

$$C_n = \Big\{ |X_n - X| + |Y_n - Y| < \epsilon \Big\},$$
 $D_n = \Big\{ |X_n + Y_n - X - Y| < \epsilon \Big\}.$

Now, note that $(A_n \cap B_n) \subset C_n$, thus $P(A_n \cap B_n) \leq P(C_n)$. Also, by the triangle inequality for absolute values, we have

$$|(X_n - X) + (Y_n - Y)| \le |X_n - X| + |Y_n - Y|.$$

Therefore, $C_n \subset D_n$, which implies

$$P(C_n) \leq P(D_n)$$
.

We conclude

$$P(A_n \cap B_n) \leq P(C_n) \leq P(D_n)$$
.

Since $\lim_{n\to\infty}P(A_n\cap B_n)=1$, we conclude $\lim_{n\to\infty}P(D_n)=1$. This by definition means that $X_n+Y_n\stackrel{p}{\to}X+Y$.

Question 7:

a. $Y_n \stackrel{d}{
ightarrow} 0$: Note that

$$F_{X_n}(x) = egin{cases} 0 & & x < 0 \ x & & 0 \leq x \leq 1 \ 1 & & x > 1 \end{cases}$$

Also, note that $R_{Y_n} = [0,1]$. For $0 \leq y \leq 1$, we can write

$$egin{aligned} F_{Y_n}(y) &= P(Y_n \leq y) \ &= 1 - P(Y_n > y) \ &= 1 - P(X_1 > y, X_2 > y, \cdots, X_n > y) \ &= 1 - P(X_1 > y) P(X_2 > y) \cdots P(X_n > y) \quad ext{(since X_i's are independent)} \ &= 1 - (1 - F_{X_1}(y))(1 - F_{X_2}(y)) \cdots (1 - F_{X_n}(y)) \ &= 1 - (1 - y)^n. \end{aligned}$$

Therefore, we conclude

$$\lim_{n o\infty} F_{Y_n}(y) = \left\{egin{array}{ll} 0 & & y\leq 0 \ 1 & & y>0 \end{array}
ight.$$

Therefore, $Y_n \stackrel{d}{\to} 0$.

b. $Y_n \stackrel{p}{ o} 0$: Note that as we found in part (a)

$$F_{Y_n}(y) = egin{cases} 0 & y < 0 \ 1 - (1 - y)^n & 0 \leq y \leq 1 \ 1 & y > 1 \end{cases}$$

In particular, note that Y_n is a continuous random variable. To show $Y_n \stackrel{p}{ o} 0$, we need to show that

$$\lim_{n \to \infty} P \big(|Y_n| \ge \epsilon \big) = 0, \qquad ext{ for all } \epsilon > 0.$$

Since $Y_n \geq 0$, it suffices to show that

$$\lim_{n o\infty} Pig(Y_n \geq \epsilonig) = 0, \qquad ext{ for all } \epsilon > 0.$$

For $\epsilon \in (0,1)$, we have

$$egin{aligned} Pig(Y_n \geq \epsilonig) &= 1 - P(Y_n < \epsilon) \ &= 1 - P(Y_n \leq \epsilon) \ &= 1 - F_{Y_n}(\epsilon) \ &= (1 - \epsilon)^n. \end{aligned}$$
 (since Y_n is a continuous random variable)

Therefore,

$$egin{aligned} \lim_{n o \infty} Pig(|Y_n| \geq \epsilonig) &= \lim_{n o \infty} (1 - \epsilon)^n \ &= 0, \qquad ext{for all } \epsilon \in (0, 1]. \end{aligned}$$

c. $Y_n \stackrel{L^r}{\longrightarrow} 0$, for all $r \geq 1$: By differentiating $F_{Y_n}(y)$, we obtain

$$f_{Y_n}(y) = \left\{egin{array}{ll} n(1-y)^{n-1} & & 0 \leq y \leq 1 \ 0 & & ext{otherwise} \end{array}
ight.$$

Thus, for $r \geq 1$, we can write

$$egin{aligned} E|Y_n|^r &= \int_0^1 ny^r (1-y)^{n-1} dy \\ &\leq \int_0^1 ny (1-y)^{n-1} dy \qquad (\text{since } r \geq 1) \\ &= \left[-y (1-y)^n
ight]_0^1 + \int_0^1 (1-y)^n dy \qquad (\text{integration by parts}) \\ &= \frac{1}{n+1}. \end{aligned}$$

Therefore

$$\lim_{n\to\infty} E\left(\left|Y_n\right|^r\right) = 0.$$

d. $Y_n \stackrel{a.s}{\longrightarrow} 0$: We will prove

d. $Y_n \stackrel{a.s}{\longrightarrow} 0$: We will prove

$$\sum_{n=1}^{\infty} P(|Y_n| > \epsilon) < \infty,$$

which implies $Y_n \stackrel{a.s}{\longrightarrow} 0.$ By our discussion in part (b),

$$\begin{split} \sum_{n=1}^{\infty} P\big(|Y_n| > \epsilon\big) &= \sum_{n=1}^{\infty} (1 - \epsilon)^n \\ &= \frac{1 - \epsilon}{\epsilon} < \infty \qquad \text{(geometric series)}. \end{split}$$

Question 8:

a. To show $X_n \stackrel{p}{ o} 0$, we can write, for any $\epsilon > 0$

$$\lim_{n \to \infty} P(|X_n| \ge \epsilon) = \lim_{n \to \infty} P(X_n = n^2)$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$= 0.$$

We conclude that $X_n \stackrel{p}{ o} 0.$

b. For any $r\geq 1$, we can write

$$egin{aligned} \lim_{n o \infty} E\left(\left|X_n
ight|^r
ight) &= \lim_{n o \infty} \left(n^{2r} \cdot rac{1}{n} + 0 \cdot \left(1 - rac{1}{n}
ight)
ight) \ &= \lim_{n o \infty} n^{2r-1} \ &= \infty \qquad ext{(since } r \geq 1 ext{)}. \end{aligned}$$

Therefore, X_n does not converge in the rth mean for any $r\geq 1$. In particular, it is interesting to note that, although $X_n\stackrel{p}{\to} 0$, the expected value of X_n does not converge to 0.

Question 9:

Let $X \sim Exponential(1)$. For $x \leq 0$, we have

$$F_{X_n}(x) = F_X(x) = 0, \qquad ext{ for } n = 2, 3, 4, \cdots.$$

For $x \geq 0$, we have

$$egin{aligned} \lim_{n o\infty}F_{X_n}(x)&=\lim_{n o\infty}\left(1-\left(1-rac{1}{n}
ight)^{nx}
ight)\ &=1-\lim_{n o\infty}\left(1-rac{1}{n}
ight)^{nx}\ &=1-e^{-x}\ &=F_X(x), \qquad ext{for all } x. \end{aligned}$$

Thus, we conclude that $X_n \stackrel{d}{ o} X$.

Question 10:

where |ny| is the largest integer less than or equal to ny. We then write

$$egin{aligned} &\lim_{n o\infty}F_{Y_n}(y)=\lim_{n o\infty}1-\left(1-rac{\lambda}{n}
ight)^{\lfloor ny
floor}\ &=1-\lim_{n o\infty}\left(1-rac{\lambda}{n}
ight)^{\lfloor ny
floor}\ &=1-e^{-\lambda y}. \end{aligned}$$

The last equality holds because $ny-1 \leq \lfloor ny \rfloor \leq ny$, and

$$\lim_{n\to\infty} \left(1-\frac{\lambda}{n}\right)^{ny} = e^{-\lambda y}.$$

Note that if $W \sim Geometric(p)$, then for any positive integer l, we have

$$P(W \le l) = \sum_{k=1}^{l} (1-p)^{k-1} p$$

$$= p \sum_{k=1}^{l} (1-p)^{k-1}$$

$$= p \cdot \frac{1 - (1-p)^{l}}{1 - (1-p)}$$

$$= 1 - (1-p)^{l}.$$

Now, since $Y_n = \frac{1}{n} X_n$, for any positive real number, we can write

$$egin{aligned} P(Y_n \leq y) &= P(X_n \leq ny) \ &= 1 - \left(1 - rac{\lambda}{n}
ight)^{\lfloor ny
floor}, \end{aligned}$$

where $\lfloor ny \rfloor$ is the largest integer less than or equal to ny. We then write

$$egin{aligned} &\lim_{n o\infty}F_{Y_n}(y)=\lim_{n o\infty}1-\left(1-rac{\lambda}{n}
ight)^{\lfloor ny\rfloor}\ &=1-\lim_{n o\infty}\left(1-rac{\lambda}{n}
ight)^{\lfloor ny\rfloor}\ &=1-e^{-\lambda y}. \end{aligned}$$

The last equality holds because $ny-1 \leq \lfloor ny \rfloor \leq ny$, and

/ $\sim ny$

Question 11:

- 2. The following two observations are clear:
- (a) N(t) < n if and only if $T_n > t$,
- (b) $T_{N(t)} \le t < T_{N(t)+1}$.

If $\mathbb{E}(X_1) < \infty$, then $\mathbb{E}(T_n) < \infty$, so that $\mathbb{P}(T_n > t) \to 0$ as $t \to \infty$. Therefore, by (a),

$$\mathbb{P}(N(t) < n) = \mathbb{P}(T_n > t) \to 0 \text{ as } t \to \infty,$$

implying that $N(t) \xrightarrow{\text{a.s.}} \infty$ as $t \to \infty$.

Secondly, by (b),

$$\frac{T_{N(t)}}{N(t)} \leq \frac{t}{N(t)} < \frac{T_{N(t)+1}}{N(t)+1} \cdot (1+N(t)^{-1}).$$

Take the limit as $t \to \infty$, using the fact that $T_n/n \xrightarrow{\text{a.s.}} \mathbb{E}(X_1)$ by the strong law, to deduce that $t/N(t) \xrightarrow{\text{a.s.}} \mathbb{E}(X_1)$.