Funkcje

Błażej Kucman

$28 \ {\rm stycznia} \ 2016$

Spis treści

1	Fun	kcje	2
	1.1	Funkcja Dirchleta	2
		1.1.1 Właściwości	2
	1.2		2
2	Cie	kawostki	3
	2.1	Rodzaje funkcji liczbowych	3
	2.2	Wartości funkcji trygonometrycznych	3
	2.3	Znak funkcji trygonometrycznych w układzie	3
	2.4	Wykres fukncji sin	4
	2.5		4
$\mathbf{S}_{]}$	pis	rysunków	
	1	Wykres funkcji sin	1
	2	Wykres funkcji $y = \ln(x)$	
$\mathbf{S}_{]}$	pis	tablic	
	1	Wartości funkcji tryg	3
	2	Znak funkcji trygonometrycznych w układzie	3

1 Funkcje

Funkcja (ac. functio, -onis, ódbywanie, wykonywanie, czynność") dla danych dwóch zbiorów \mathbf{X} i \mathbf{Y} przyporządkowanie każdemu elementowi zbioru \mathbf{X} dokładnie jednego elementu zbioru \mathbf{Y} . Oznacza się je na ogół f, g, h itd

1.1 Funkcja Dirchleta

Funkcja Dirichleta – funkcja charakterystyczna zbioru liczb wymiernych \mathbb{Q} , tzn. funkcja zmiennej rzeczywistej, która przyjmuje wartość 1, gdy argument jest liczbą wymierną i wartość 0, gdy argument jest liczbą niewymierną

Formalnie funkcję Dirichleta można zapisać wzorem : (1)

$$1_{\mathbb{Q}}(x) = \begin{cases} 0 & \text{dla } x \in \mathbb{Q} \\ 1 & \text{dla } x \notin \mathbb{Q} \end{cases}$$
 (1)

Ponadto (2)

$$1_{\mathbb{Q}}(\mathbf{x}) = \lim_{m \to \infty} \lim_{n \to \infty} \cos^{2n}(m\pi x) \tag{2}$$

1.1.1 Właściwości

- jest wszędzie nieciągła (tzn. nie jest ciągła w żadnym punkcie swojej dziedziny); stąd wynika, że jest wszędzie nieróżniczkowalna,
- jest okresowa, przy czym ma ona nieskończenie wiele okresów (każda liczba wymierna jest jej okresem) i nie ma okresu podstawowego,
- zbiór jej ekstremów jest mocy continuum,
- nie jest całkowalna w sensie Riemanna w zależności od doboru podziału przedziału całkowania, aproksymacja prostokątami może dać dowolną sumę od zera do długości przedziału, zatem granica definiująca całkę Riemanna nie istnieje,
- jest całkowalna w sensie Lebesgue'a, przy czym jej całka Lebesgue'a na dowolnym przedziale jest równa zeru, ponieważ zbiór liczb wymiernych jest miary Lebesgue'a zero.

1.2 Funkcja Riemanna

Funkcja Riemanna (3) – funkcja rzeczywista zdefiniowana wzorem:

$$f(x) = \begin{cases} 0 & \text{gdy x jest nie wymierne} \\ \frac{1}{n} & \text{gdy } x = \frac{m}{n} \text{ jest przedstawione w postaci ułamka nieskracalnego} \end{cases}$$
 (3)

W szczególności, f(x) = 1 dla wszystkich argumentów ${\bf x}$ całkowitych, ponieważ dla każdej liczby całkowitej x nieskracalną postacią ułamka $\frac{m}{n}={\bf x}$ jest $\frac{x}{1}$

2 Ciekawostki

Rodzaje funkcji , wartości funkcji trygonometrycznych (2.2) i (2.3) , wykresy funkcji sin (2.4) i (2.5) itd...

2.1 Rodzaje funkcji liczbowych

- 1. funkcja rosnąca;
- 2. funkcja malejąca;
- 3. funkcja nierosnąca;
- 4. funkcja niemalejąca;
- 5. funkcja monotoniczna
- 6. funkcje ograniczone
- 7. funkcja parzysta
- 8. funkcja nieparzysta
- 9. funkcja okresowa;
- 10. funkcja ciągła;

2.2 Wartości funkcji trygonometrycznych

α	00	30^o	45^{o}	60^{o}	900
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{3}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	0
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-
$\cot \alpha$	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

Tablica 1: Wartości funkcji tryg...

2.3 Znak funkcji trygonometrycznych w układzie

Ćwiartka układu współrzędnych		cos	tan	ctg	$\sec = \frac{1}{\cos}$	$cossec = \frac{1}{\sin}$
I	+	+	+	+	+	+
II	+	-	-	-	-	+
III	-	-	+	+	-	-
IV	-	+	-	-	+	-

Tablica 2: Znak funkcji trygonometrycznych w układzie

2.4 Wykres fukncji sin

Rysunek 1: Wykres funkcji sin

2.5 Funkcja logarytmiczna

Rysunek 2: Wykres funkcji $y = \ln(x)$

Literatura

- [1] REGEL WIESŁAWA, 81 zadań o funkcjach zespolonych z pełnymi rozwią-zaniami krok po kroku. Data wydania: 2014-05-23
- [2] https://pl.wikipedia.org/wiki/Funkcja
- $[3] \ https://pl.wikipedia.org/wiki/Funkcja_Dirichleta$
- $[4]\ \ https://pl.wikipedia.org/wiki/Funkcja_Riemanna$