Лекция 2 по курсу «Цифровая обработка сигналов» 10 февраля 2025 г.

- 5. Основы цифрового спектрального анализа.
- 5.2. Примеры оконных функций для спектрального анализа.

Примеры оконных функций и их характеристики: Прямоугольное окно, окна Бартлетта, Ханна, Хэмминга, Блэкмана, Кайзера, Чебышева, окно с плоской вершиной.

Конструирование оконных функций, обобщенное косинусное окно.

Прямоугольное окно

5.2. Примеры оконных функций для спектрального анализа.

Прямоугольное окно

Во временной области прямоугольное окно длительностью N задается формулой

$$w_{\text{пр}}[k] = \begin{cases} 1, \text{ при } 0 \le k \le N-1, \\ 0, \text{ при других } k. \end{cases}$$

Умножение на прямоугольную оконную функцию эквивалентно ограничению сигнала по длительности. Вычислим ДВПФ оконной функции

$$W_{\text{np}}(v) = \sum_{k=-\infty}^{\infty} w[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} \exp(-j2\pi vk) = \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi v)} = \frac{2j}{2j} \frac{e^{-j\pi vN}}{e^{-j\pi v}} \frac{(e^{j\pi vN} - e^{-j\pi vN})}{(e^{j\pi v} - e^{-j\pi v})} = \frac{\sin(N\pi v)}{\sin(\pi v)} \exp(-j(N-1)\pi v).$$

АЧХ оконной функции
$$\left|W_{\mathrm{пp}}(\mathbf{v})\right| = \left|\frac{\sin(N\pi\mathbf{v})}{\sin(\pi\mathbf{v})}\right|$$
.

Основные характеристики прямоугольного окна длиной N:

- ширина главного лепестка на нулевом уровне $\Delta v = 2/N$ (2 бина ДПФ);
- полоса по уровню -3 дБ составляет $\Delta v = 0.89 / N$ (0.89 бина ДПФ);
- уровень максимального бокового лепестка относительно главного составляет -13,3 дБ;
- скорость спада боковых лепестков 6 дБ / октава,
- коэффициент паразитной амплитудной модуляции $K_{_{\rm MOJ}} = -3,92\,{\rm д}{\rm Б}.$

Окно Бартлетта

Окно Бартлетта

Временное окно Бартлетта имеет треугольную форму:

$$w_{\text{Бартлетта}}[k] = \begin{cases} 1 - \frac{2}{N} \left| k - \frac{N}{2} \right|, & \text{при } 0 \le k \le N - 1, \\ 0, & \text{при других } k. \end{cases}$$

Для четного N окно Бартлетта можно представить как свертку двух прямоугольных окон длиной N/2, от нормированную на их длину. Тогда по теореме о свертке для ДВПФ частотная характеристика этого окна

$$W_{\text{Бартлетта}}(\nu) = \frac{2}{N} \left(\frac{\sin \pi \nu \frac{N}{2}}{\sin \pi \nu} \right)^2 \exp(-j\pi \nu N).$$

В итоге ширина главного лепестка окна на нулевом уровне в два раза больше, чем у прямоугольного, и составляет $\Delta v = 4/N$ (4 бина).

Основные характеристики окна Бартлетта длиной N:

- ширина главного лепестка на нулевом уровне $\Delta v = \frac{4}{N}$; полоса по уровню -3 дБ составляет $\Delta v = \frac{1,28}{N}$;
- уровень максимального бокового лепестка относительно главного составляет -26,5 дБ;
- скорость спада боковых лепестков 12 дБ / октава,
- ullet коэффициент паразитной амплитудной модуляции $K_{\mbox{\tiny{MOI}}} = -1,82\,\mbox{дБ}.$

Окно Ханна

Окно Ханна

Окно Ханна для ДПФ во временной области описывается следующей формулой:

$$w_{\text{Ханна}}[k] = \begin{cases} \frac{1}{2} - \frac{1}{2}\cos\frac{2\pi k}{N}, & \text{при } 0 \le k \le N-1, \\ 0, & \text{при других } k. \end{cases}$$

Для того, чтобы определить это окно в спектральной области, заметим, что

$$\cos\frac{2\pi k}{N} = \frac{1}{2}e^{j\frac{2\pi k}{N}} + \frac{1}{2}e^{-j\frac{2\pi k}{N}}$$

Тогда по теореме смещения для ДВПФ, окно Ханна в спектральной области может быть записано через частотную характеристику прямоугольного окна:

$$W_{
m Xahha}(
u) = rac{1}{2}W_{
m пp}(
u) - rac{1}{4}W_{
m пp}igg(
u + rac{1}{N}igg) - rac{1}{4}W_{
m пp}igg(
u - rac{1}{N}igg),$$
 где $W_{
m пp}(
u) = rac{\sin(N\pi
u)}{\sin(\pi
u)} \exp(-j(N-1)\pi
u).$

Как нетрудно видеть, у окна Ханна всего три ненулевых отсчета ДПФ на одном периоде:

$$ilde{W}_{ ext{Xанна}}[n] = rac{1}{N} W_{ ext{Xанна}}[n] = egin{cases} 0,5, & \text{при } n = mN, & m \in Z, \\ -0,25, & \text{при } n = \pm 1 + mN, & m \in Z, \\ 0, & \text{при других } n. \end{cases}$$

Основные характеристики окна Ханна длиной N :

- ширина главного лепестка на нулевом уровне $\Delta v = 4 / N$;
- полоса по уровню -3 дБ составляет $\Delta v = 1,44 / N$;
- уровень максимального бокового лепестка относительно главного составляет -31,5 дБ;

скорость спада боковых лепестков 18 дБ / октава.

Окно Хэмминга

Окно Хэмминга

Американский математик Ричард Уэсли Хэмминг, известный своими работами по теории информации, предложил использовать окно следующего вида:

$$w_{\text{Хэмминга}}[k] = \begin{cases} 0,54 - 0,46\cos\frac{2\pi k}{N}, & \text{при } 0 \le k \le N - 1, \\ 0, & \text{при других } k. \end{cases}$$

Множители 0,54 и 0,46 позволяют практически полностью устранить максимальный боковой лепесток.

Используя теорему смещения для ДВПФ, получаем частотную характеристику окна Хэмминга

$$W_{
m X_{\rm ЭММИНГа}}(
u) = 0,54 W_{
m пp}(
u) - 0,23 W_{
m пp} \left(
u + rac{1}{N}
ight) - 0,23 W_{
m пp} \left(
u - rac{1}{N}
ight),$$
 где $W_{
m пp}(
u) = rac{\sin(N\pi
u)}{\sin(\pi
u)} \exp(-j(N-1)\pi
u).$

Основные характеристики окна Хэмминга длиной N:

- ширина главного лепестка на нулевом уровне $\Delta v = 4 \, / \, N$;
- полоса по уровню -3 дБ составляет $\Delta v = 1,33 / N$;
- уровень максимального бокового лепестка относительно главного составляет —42 дБ;
- скорость спада боковых лепестков 6 дБ / октава,
- коэффициент паразитной амплитудной модуляции $K_{\mbox{\tiny{MOJ}}} = -1,78\mbox{\,д}\mbox{\,Б}.$

Окно Хэмминга

Определение параметров АЧХ окна Хэмминга по графику.

- ширина главного лепестка на нулевом уровне $\Delta v = 4 \, / \, N$;
- полоса по уровню -3 дБ составляет $\Delta v = 1,36 / N$;
- уровень максимального бокового лепестка относительно главного составляет —42 дБ;

Окно Блэкмана

Окно Блэкмана

Окно Блэкмана имеет следующий вид:

$$w_{\text{Блэкмана}}[k] = \begin{cases} 0,42-0.5\cos\frac{2\pi k}{N} + 0.08\cos\frac{4\pi k}{N}, & \text{при } 0 \le k \le N-1, \\ 0, & \text{при других } k. \end{cases}$$

ДВПФ может быть выражено через спектр прямоугольного окна:

$$W_{\text{Блэкмана}}(\nu) = 0,42 W_{\text{пр}}(\nu) - 0,25 W_{\text{пр}}\left(\nu + \frac{1}{N}\right) - 0,25 W_{\text{пр}}\left(\nu - \frac{1}{N}\right) + 0,04 W_{\text{пр}}\left(\nu + \frac{2}{N}\right) + 0,04 W_{\text{пр}}\left(\nu - \frac{2}{N}\right).$$

Окно Блэкмана обладает низким максимальным уровнем боковых лепестков относительно главного (-58 дБ), но при этом ширина главного лепестка на нулевом уровне составляет $\Delta v = 6/N$ (6 бин).

Окно Чебышёва (равноволновое окно)

Окно Чебышёва (равноволновое окно)

Частотная характеристика окна Чебышева длины N задается формулой

$$W_{\text{Чебышева}}(v) = \frac{\cos((N-1)\arccos(\alpha\cos\pi v))}{\cosh((N-1)\operatorname{arch}\alpha)}, \quad \alpha = \operatorname{ch}\frac{\operatorname{arch} 10^{\beta/20}}{N-1},$$

где β — разность уровней главного и боковых лепестков в дБ. Во временной области окно Чебышева можно получить, взяв обратное ДПФ для выборок $W_{\mathrm{Чеб.}}(\nu_n)$, таких, что $\nu_n=n/N$, $n=0,1,\ldots,N-1$.

У окна Чебышева все боковые лепестки имеют одинаковый уровень, спада боковых лепестков по мере удаления от главного у него нет.

Однако из всех N — точечных дискретных окон с уровнем боковых лепестков относительно главного, не превосходящем β дБ, оно имеет самый узкий главный лепесток.

Окно Кайзера

Окно Кайзера

Джеймс Кайзер (Лаборатории Белла, MIT) предложил использовать окна следующего вида

$$w_{ ext{Кайзера}}[k] = egin{cases} I_0 \left(eta \sqrt{1 - \left(rac{2k}{N} - 1
ight)^2}
ight) \\ \hline I_0(eta) & \text{при } 0 \leq k \leq N - 1, \\ 0, & \text{при других } k. \end{cases}$$

где N — длина окна, β — параметр окна Кайзера, $I_0(x)$ — модифицированная функция Бесселя первого рода нулевого порядка, которая может быть вычислена с помощью быстро сходящегося степенного ряда (обычно достаточно L < 25)

$$I_0(x) = 1 + \sum_{m=1}^{L} \left(\frac{(x/2)^m}{m!} \right)^2.$$

Варьируя β и N, можно найти компромисс между относительным уровнем боковых лепестков окна и шириной главного. Характерно то, что относительный уровень боковых лепестков не зависит от длины окна, и

определяется лишь параметром β . Кайзер и Шафер получили следующие эмпирические зависимости:

$$\beta = \begin{cases} 0,12438(a+6,3), & 60 < a \le 120, \\ 0,76609(a-13,26)^{0.4} + 0,09834(a-13,26), & 13,26 < a \le 60, \\ 0, & a \le 13,26, \end{cases}$$

$$N \approx \frac{24\pi(a+12)}{155\Delta v} + 1,$$

где a — уровень боковых лепестков относительно уровня главного в дБ, Δv — ширина главного лепестка окна на нулевом уровне.

Окно с плоской вершиной

Окно с плоской вершиной

Как было показано ранее, форма главного лепестка оконной функции приводит к искажению амплитуд гармоник, частоты которых не соответствуют бинам ДПФ. Если требуется уменьшить этот эффект, то следует использовать окно с плоской вершиной:

$$w_{flattop}[k] = \begin{cases} \sum_{r=0}^{4} (-1)^r a_r \cos\left(\frac{2\pi}{N}rk\right), & \text{при } 0 \le k \le N-1, \\ 0, & \text{при других } k, \end{cases}$$

где $a_0=0,21557895$, $a_1=0,41663158$, $a_2=0,277263158$, $a_3=0,083578947$, $a_4=0,006947368$. Заметим, что временная функция $w_{flattop}[k]$ может принимать отрицательные значения. Как было ранее отмечено, для окна с плоской вершиной $K_{\text{мод}}=-0,02$ дБ. Это означает, что использование этого окна позволяет минимизировать эффект паразитной амплитудной модуляции.

Исключение эффекта искажения амплитуд из-за паразитной амплитудной модуляции спектра.

Конструирование оконных функций, обобщенное косинусное окно.

Конструирование оконных функций, обобщенное косинусное окно.

Выбор оконной функции важен для получения оценок параметров исследуемого сигнала при наличии флуктуационных помех. При обнаружении сигналов с большим динамическим диапазоном ДВПФ оконной функции должно иметь узкий главный лепесток и низкий уровень боковых лепестков. Поскольку универсальных окон, удовлетворяющих различным задачам спектрального анализа, не существует, актуальным является конструирование окон, оптимальных для решаемой задачи.

Конструирование оконной функции может выполняться различными способами:

- использованием элементарных функций для аппроксимации отдельных участков окна;
- суммированием, перемножением или свёрткой нескольких функций;
- оптимизацией параметров оконной функции.

Вопросы о методах синтеза оконных функций подробно рассмотрены в работе [3].

Многие классические оконные функции могут быть представлены с помощью обобщённого косинусного окна:

$$w_{cos}[k] = \begin{cases} \sum_{r=0}^{R} (-1)^r a_r \cos\left(\frac{2\pi}{N}rk\right), & \text{при } 0 \le k \le N-1, \\ 0, & \text{при других } k. \end{cases}$$
 (1)

Здесь $R \le N/2$ — число слагаемых в формуле. Можно заметить, что формула (1) может описывать всевозможные окна длиной N, при этом для большинства классических окон $R \in \{0,1,3,4\}$. Приведем примеры классических оконных функций и параметры формулы (1).

- 1) R = 0, $a_0 = 1$ прямоугольное окно.
- 2) R = 1, $a_0 = 0.5$, $a_1 = 0.5$ окно Ханна.
- 3) R = 1, $a_0 = 0.54$, $a_1 = 0.46$ окно Хэмминга.
- 4) R=2, $a_0=0.42$, $a_1=0.5$, $a_2=0.08$ окно Блэкмана.
- 5) R=4, $a_0=0.21557895$, $a_1=0.41663158$, $a_2=0.277263158$, $a_3=0.083578947$, $a_4=0.006947368$.— окно с плоской вершиной.

Конструирование оконных функций, обобщенное косинусное окно.

Рассмотрим также процесс формирования спектрального окна на примере симметричных относительно нуля времени (с нулевой фазой) окон Ханна и Хэмминга, которые могут быть заданы формулой

$$w[k] = \begin{cases} \alpha + (1 - \alpha)\cos\left(\frac{2\pi}{N}k\right), & \text{при } |k| \le \frac{N}{2}, \\ 0, & \text{при других } k, \end{cases}$$
 (2)

где $\alpha=0,5$ для окна Ханна и $\alpha=0,54$ для окна Хэмминга. В спектральной области окно (2) может быть выражено через функцию $Q_N(v)$ – ДВПФ прямоугольного окна, симметричного относительно нуля:

$$W(v) = \alpha Q_N(v) + \frac{\alpha - 1}{2}Q_N\left(v - \frac{1}{N}\right) + \frac{\alpha - 1}{2}Q_N\left(v + \frac{1}{N}\right), \quad (3)$$

$$Q_N(v) = \frac{\sin(\pi v N)}{\sin(\pi v)}.$$
 (4)

Окно Ханна ($\alpha=0,5$) формируется ядром $0,5Q_N\left(\nu\right)$ со смещенными компонентами $0,25Q_N\left(\nu\pm 1/N\right)$.

В области боковых лепестков центральное ядро и смешенные компоненты находятся в противофазе, что приводит к более низким уровням боковых лепестков, чем у

прямоугольного окна. Максимальный уровень бокового лепестка относительно главного —32дБ.

Конструирование оконных функций, обобщенное косинусное окно.

$$W(v) = \alpha Q_N(v) + \frac{\alpha - 1}{2}Q_N\left(v - \frac{1}{N}\right) + \frac{\alpha - 1}{2}Q_N\left(v + \frac{1}{N}\right).$$

Небольшое изменение параметра α приводит к окну Хэмминга ($\alpha = 0,54$).

В результате сложения смещенных ядер и центрального подавляется первый боковой лепесток.

В результате для окна Хэмминга максимальный уровень бокового лепестка относительно главного уже –42дБ.

Ширина главного лепестка на нулевом уровне для окон Ханна и Хэмминга составляет 4 бина ДПФ, что в два раза больше, чем у прямоугольного окна.

Формы оконных функций.

Примечание. Формы оконных функций.

Для одних и тех же оконных функций имеют место различные формы. Поясним это на примере окна Хэмминга.

а) Окно, симметричное на отрезке $-\frac{N}{2} \le k \le \frac{N}{2}$:

$$w_1[k] = \begin{cases} 0,54+0,46\cos\left(\frac{2\pi}{N}k\right), & \text{при } |k| \leq \frac{N}{2}, \\ 0, & \text{при других } k. \end{cases}$$

Такое окно обладает симметрией отсчетов и нулевой ФЧХ.

б) Окно для спектрального анализа методом ДПФ (несимметричное)

$$w_2[k] = \begin{cases} 0,54-0,46\cos\left(\frac{2\pi}{N}k\right), & \text{при } 0 \le k \le N-1, \\ 0, & \text{при других } k. \end{cases}$$

Окна именно такого вида предназначены для осуществления $Д\Pi\Phi$ -анализа, т.к. при их периодическом повторении их период будет N.

в) Окно, симметричное на отрезке $0 \le k \le N-1$:

$$w_3[k] = \begin{cases} 0,54 - 0,46\cos\left(\frac{2\pi}{N - 1}k\right), & \text{при } 0 \le k \le N - 1, \\ 0, & \text{при других } k. \end{cases}$$

Такие окна широко используются для синтеза КИХ-фильтров с кусочно-линейной ФЧХ оконным методом, поскольку в нем требуется симметричность оконной функции на отрезке [0; N-1].

Задачи с лекции

Задачи для самостоятельного решения

№1. Вычислить ДВПФ прямоугольного окна длины N = 10:

$$w_{\text{пр}}[k] = \begin{cases} 1, & \text{при } 0 \le k \le N - 1, \\ 0, & \text{при других } k. \end{cases}$$

Изобразить по модулю на одном графике:

- а) ДВПФ и 10-точечное ДПФ для последовательности отсчетов данного окна;
- б) ДВПФ и 20-точечное ДПФ для той же последовательности (дополненной нулями справа до 20 отсчетов).

Цифровая обработка сигналов, МФТИ, 2024-2025 учебный год

№2. а) Определить для N = 16 ДП Φ_{16} $W_B[n]$ и ДВП $\Phi_{MB}(\nu)$ окна Блэкмана $W_B[k]$. Построить график для $W_B[n]$.

$$w_B[k] = \begin{cases} 0,42-0,5\cos\left(2\pi\frac{1}{N}k\right) + 0,08\cos\left(2\pi\frac{2}{N}k\right),\\ \text{при } k = 0,1,2,\dots,N-1,\\ 0,\text{ при других } k. \end{cases}$$

б) Найти ДП Φ_{16} Y[n] 16 - точечной последовательности $y[k] = w_B[k] \cos(2\pi k5/16)$, где $w_B[k]$ — окно Блэкмана длиной в 16 отсчетов. Построить график для Y[n].

Задача №3 на следующем слайде.

Задачи с лекции

№3. Предположим, что требуется провести ДПФ-анализ сигнала x[k] с использованием окна Ханна w[k]. Размерность ДПФ, длина окна и длина сигнала равны N. Доказать, что для вычисления ДПФ Y[n] сигнала x[k]w[k] достаточно провести 2N сдвигов на один двоичный разряд и 2N сложений для коэффициентов ДПФ X[n] последовательности x[k], т.е. показать, что

$$Y[n] = \frac{1}{2} \left(X[n] - \frac{1}{2} \left(X[n-1]_N + X[n+1]_N \right) \right).$$

Список литературы

- **1.** Марпл.-мл. С.Л. Цифровой спектральный анализ и его приложения / Пер. с англ. М.: Мир, 1990.
- **2.** Солонина А.И. Цифровая обработка сигналов в зеркале Matlab. СПб.: БХВ-Петербург, 2021. 560 с.
- **3.** Дворкович В. П., Дворкович А. В. Оконные функции для гармонического анализа сигналов. М.:Техносфера, 2016. 208с.
- **4.** Харрис Ф. Дж. Использование окон при гармоническом анализе методом дискретного преобразования Фурье. ТИИЭР, 1978, т. 6, № 1, с. 60 96.

- **5.** Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе. Учебное пособие. М.: МФТИ, 2007. 120 с.
- **6.** J. O. Smith, Spectral Audio Signal Processing [Online]. Publisher: Stanford University, CCRMA. URL: http://ccrma.stanford.edu/~jos/sasp/

Приложение. Сводная таблица основных характеристик оконных функций.

Приложение. Сводная таблица основных характеристик различных оконных функций.

название окна	ание окна ширина главного уровень максимального		скорость спада	коэффициент паразитной
	лепестка на нулевом	бокового лепестка	боковых	амплитудной модуляции
	уровне (в бинах ДПФ)	относительно главного (дБ)	лепестков	<i>К</i> _{мод} (дБ)
			(дБ / октава)	Мод
прямоугольное	2	-13,3	6	-3,92
Бартлетта	4	-26,5	12	-1,82
Ханна	4	-32	18	-1,42
Хэмминга	4	-42	6	-1,78
Блэкмана	6	-58,1	18	-1,10
Flattop	10	зависит от длины окна		-0,02

название окна	полоса по уровню —3 дБ (в бинах ДПФ)	полоса по уровню —6 дБ (в бинах ДПФ)	ЭШП (в бинах ДПФ)	$\delta = \frac{\Delta v_{\text{III}} - \Delta v_{-3дБ}}{\Delta v_{-3дБ}}$	Когерентное усиление в единицах $W(0)/N$
прямоугольное	0,89	1,20	1,00	0,124	1
Бартлетта	1,28	1,78	1,33	0,039	0,5
Ханна	1,44	2,00	1,50	0,042	0,5
Хэмминга	1,33	1,82	1,36	0,023	0,54
Блэкмана	1,64	2,30	1,73	0,055	0,42
Flattop	3,74	4,60	3,77	0,008	0,21557895