

A Directed Spanning Tree Adaptive Control Framework for Time-Varying Formations

Dongdong Yue^{1,3}, Simone Baldi^{2,3}, Jinde Cao^{1,2}, Qi Li¹, Bart De Schutter³

¹School of Automation; ²School of Mathematics, Southeast University

³Delft Center for Systems and Control, Delft University of Technology

Elspeet, The Netherlands, March 11, 2020

OUTLINE

BACKGROUND

MOTIVATION & PROBLEMS

METHOD & RESULTS

NUMERICAL EXAMPLE

CONCLUSIONS

BACKGROUND MOTIVATION & PROBLEMS METHOD & RESULTS NUMERICAL EXAMPLE CONCLUSIONS

MULTI-AGENT SYSTEM

- ► Agents (Able to send/receive data, take actions, · · ·)
- ► Communications (Among agents, controller&actuator, · · ·)
- ► Group Behaviors (Consensus, formation, · · ·)

(a) Synchronised swim- (b) Formation vehicles (c) Sensor network ming

(The pictures were taken from un-copyrighted websites with thanks)

SYNCHRONIZATION→FORMATION

X. Dong and G. Hu, "Time-varying formation tracking for linear multiagent systems with multiple leaders," *IEEE Trans. Autom. Control*, vol. 62, no. 7, pp. 3658–3664, 2017.

Figure 1: A digraph with a Directed Spanning Tree (DST)

TIME-VARYING FORMATION CONTROL

$$\dot{x}_i = Ax_i + Bu_i \quad i \in \mathcal{V} \triangleq \{1, 2, \cdots, N\} \tag{1}$$

 $x_i(t) \in \mathbb{R}^n$: state; $u_i(t) \in \mathbb{R}^m$: controller; (A, B): compatible and stabilizable pair of matrices.

Assumption 1

The weighted digraph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{A})$ has at least one DST $\bar{\mathcal{G}}(\mathcal{V}, \bar{\mathcal{E}}, \bar{\mathcal{A}})$.

Definition 1

The multi-agent system (1) is said to achieve the time-varying formation (TVF) defined by the time-varying vector $h(t) = (h_1^T(t), h_2^T(t), \cdots, h_N^T(t))^T$ if, for any initial states, there holds

$$\lim_{t \to \infty} ((x_i(t) - h_i(t)) - (x_j(t) - h_j(t))) = 0, \forall i, j \in \mathcal{V}.$$
 (2)

TVF CONTROLLER DESIGN

$$u_{i} = K_{0}x_{i} + K_{1}d_{i} + K_{2}\sum_{i \in \mathcal{N}_{1}(i)} \alpha_{ij}(t)(d_{i} - d_{j})$$
(3)

$$\alpha_{ij}(t) = \begin{cases} a_{ij}, & \text{if} \quad e_{ji} \in \mathcal{E} \setminus \mathcal{E}, \\ \bar{a}_{k+1, i_k}(t), & \text{if} \quad e_{ji} \in \bar{\mathcal{E}} \end{cases}$$
(4)

$$\dot{\bar{a}}_{k+1,i_k} = \rho_{k+1,i_k} \Big((d_{i_k} - d_{k+1}) - \sum_{j \in \mathcal{N}_2(k+1)} (d_{k+1} - d_j) \Big)^T \Gamma(d_{i_k} - d_{k+1})$$
(5)

 $d_i = x_i - h_i$: local formation deviation of agent i; $\mathcal{N}_1(i)$ ($\mathcal{N}_2(i)$): in-neighbor (out-neighbor) of i; i_k : the unique in-neighbor of node k+1 in $\bar{\mathcal{G}}$, $k=1,\cdots,N-1$; K_0 , K_1 , K_2 , Γ , ρ_{k+1,i_k} : feedback gains.

TVF CONTROLLER DESIGN

Algorithm 1

1. Find a K_0 such that the formation feasibility conditions

$$(A + BK_0)(h_{i_k}(t) - h_{k+1}(t)) - (\dot{h}_{i_k}(t) - \dot{h}_{k+1}(t)) = 0$$
 (6)

hold, $\forall k \in \{1, \dots, N-1\}$, for any DST $\bar{\mathcal{G}}$. If such K_0 exists, continue; else, the algorithm terminates without solutions;

2. Choose K_1 such that $(A + BK_0 + BK_1, B)$ is stabilizable. For some η , $\theta \in \mathbb{R}^+$, solve the following LMI:

$$(A + BK_0 + BK_1)P + P(A + BK_0 + BK_1)^T - \eta BB^T + \theta P \le 0$$

to get a P > 0;

3. Set $K_2 = -B^T P^{-1}$, $\Gamma = P^{-1} B B^T P^{-1}$ and choose $\rho_{k+1,i_k} \in \mathbb{R}^+$.

MAIN RESULT FOR TVF

Theorem 1

Under Assumption 1, and feasibility condition (6), the TVF problem in Definition 1 is solved by controller (3) with adaptive coupling weights (4)-(5), along the designs in Algorithm 1.

Remark 1

In state-of-the-art TVF, the number of the feasibility conditions is of the order N^2 .

$$(A + BK_0)(h_i(t) - h_i(t)) - (\dot{h}_i(t) - \dot{h}_i(t)) = 0, \ \forall i \to j.$$

The number of the proposed feasibility conditions in (6) is exactly N-1, which is the minimum for distributed TVF control of N agents.

TVF EXAMPLE

Agents:
$$N = 12$$
, $A = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$;

Communication topology: Figure 1;

Required formation: a pair of nested hexagons.

Figure 2: Trajectories of the agents $x_i(t)$ with snapshots at t = 0, 10, 20.

Figure 3: Coupling weights $\alpha_{ij}(t)$ and global formation error E(t) with proposed adaptive method ($\rho_{k+1,i_k} = 0.1$).

Figure 4: Coupling weights $\alpha_{ij}(t)$ and global formation error E(t) with nonadaptive control ($\rho_{k+1,i_k} = 0$).

► DST-based adaptive TVF algorithm is developed in a fully-distributed fashion, i.e., **WITHOUT** knowing the network Laplacian spectra;

- DST-based adaptive TVF algorithm is developed in a fully-distributed fashion, i.e., WITHOUT knowing the network Laplacian spectra;
- ► MINIMUM number of distributed formation feasibility conditions are derived;

- ▶ DST-based adaptive TVF algorithm is developed in a fully-distributed fashion, i.e., WITHOUT knowing the network Laplacian spectra;
- ► MINIMUM number of distributed formation feasibility conditions are derived:
- ► The proposed method can also be extended to solve formation TRACKING problems with single leader or multiple leaders;

- ► DST-based adaptive TVF algorithm is developed in a fully-distributed fashion, i.e., **WITHOUT** knowing the network Laplacian spectra;
- MINIMUM number of distributed formation feasibility conditions are derived;
- The proposed method can also be extended to solve formation TRACKING problems with single leader or multiple leaders;
- ► Future works?

Thank you for listening! Question?