Temat projektu:

Analiza gestów twarzy z wykorzystaniem Grammatical Facial Expressions

Autorzy:

Zuzanna Jaroszczyk (s27766)

Vladyslav Rudko (s28611)

Data: 20.01.2025

Contents

Cel badania	3
Opis zbioru danych	3
Rozkład klas decyzyjnych:	4
Wnioski z rozkładu klas	5
Metodologia i rozwiązanie	5
Wstępne przetwarzanie danych	5
Budowa i optymalizacja modeli	6
Ocena jakości modeli	6
Wyniki eksperymentalne	10
Podsumowanie i wnioski	13
Komentarze i analiza wyników	13
Wnioski	13

Cel badania

Celem badania jest opracowanie modelu klasyfikacyjnego zdolnego do rozpoznawania **Gramatycznych Wyrażeń Twarzy** (Grammatical Facial Expressions - GFE) w kontekście języka migowego używanego w Brazylii (Libras). Wyrażenia te odgrywają kluczową rolę w przekazywaniu informacji gramatycznych i semantycznych w języku migowym, zastępując intonację występującą w językach mówionych.

Automatyczne rozpoznawanie tych wyrażeń umożliwi tworzenie systemów wspomagających komunikację, takich jak tłumacze języka migowego lub systemy analizy emocji i gestów.

Znaczenie badania

Rozpoznawanie wyrażeń twarzy jest istotnym zagadnieniem w różnych dziedzinach, takich jak biometria, analiza emocji i języki wizualne. Dzięki zastosowaniu technologii takich jak Microsoft Kinect i metod uczenia maszynowego, badanie umożliwia bardziej precyzyjne przetwarzanie i interpretację gestów w Libras.

Opis zbioru danych

Źródło danych

Zbiór danych **Grammatical Facial Expressions** został opracowany przez zespół badawczy z **Uniwersytetu São Paulo** oraz firmę **Incluir Tecnologia LTDA ME** w Brazylii. Zawiera nagrania wideo użytkowników wykonujących różne gramatyczne wyrażenia twarzy związane z Libras.

- Łączna liczba próbek: 27,936 klatek.
- Liczba cech: 301 (współrzędne x, y, z dla różnych punktów twarzy).

Struktura danych

Dane są zorganizowane w 36 plikach:

- 18 plików z punktami twarzy (*_datapoints.txt).
- 18 plików z etykietami klas (*_targets.txt).

Przykładowe punkty twarzy:

• Oczy, brwi, nos, usta, kontur twarzy, źrenice.

Rozkład klas

Zbiór danych obejmuje 18 różnych wyrażeń twarzy, w tym:

- affirmative, conditional, doubt, emphasis, negative, relative, topics, wh_question, yn_question.
- Dodatkowo klasa "unknown expression" (oznaczająca brak gramatycznego wyrażenia).

Liczba rekordów w zbiorze treningowym: 22348 Liczba cech w zbiorze treningowym: 301 Liczba rekordów w zbiorze testowym: 5588 Liczba cech w zbiorze testowym: 301

Rozkład klas decyzyjnych:

Zbiór danych składa się z **10 różnych klas decyzyjnych**, reprezentujących różne gesty twarzy:

- Klasy: ['affirmative', 'conditional', 'doubt', 'emphasis', 'negative', 'relative', 'topics', 'wh question', 'yn question', 'unknown expression'].
- Dane są niezbalansowane: klasa **0** (unknown expression) stanowi dominującą większość, z udziałem ponad 64% w obu zbiorach.
- Pozostałe klasy mają udział na poziomie około 2-5% każda.

Wnioski z rozkładu klas:

- Klasa 'unknown expression' dominuje, co wskazuje na niezbalansowany charakter zbioru danych.
- Klasa **0 (unknown expression)** dominuje w obu zbiorach, co sugeruje większy wpływ tej klasy na uczenie modeli.
- Rzadziej występujące klasy, takie jak 'wh_question' czy 'relative', mogą stanowić wyzwanie dla modeli klasyfikacyjnych.

Metodologia i rozwiązanie

Wstępne przetwarzanie danych

Przed przystąpieniem do budowy modeli, dane zostały odpowiednio przygotowane i przetworzone. Proces przetwarzania obejmował następujące kroki:

1. Scalanie danych:

- Zebrano dane z 36 plików (18 plików z punktami datapoints oraz 18 plików z etykietami - targets) i połączono je w jedną całość.
- Współrzędne przestrzenne (x, y, z) oraz etykiety klas zostały odpowiednio dopasowane.

2. Normalizacja danych:

 Wszystkie cechy zostały znormalizowane, aby każda z nich miała wartość w zakresie [0, 1]. To kluczowe dla efektywności sieci neuronowych.

3. Podział danych:

- o Zbiór danych został podzielony na:
 - **Zbiór treningowy:** 80% danych.
 - **Zbiór testowy:** 20% danych.
- Łączna liczba rekordów:
 - **Zbiór treningowy:** 22,348 rekordów.
 - **Zbiór testowy:** 5,588 rekordów.

4. Obsługa niezbalansowanego zbioru:

W danych klasa "unknown expression" stanowiła dominującą większość (około 64% próbek). Aby poprawić jakość modeli, zastosowano wagę klas (class_weight='balanced') w modelach RandomForest oraz dopracowano architekturę sieci neuronowych.

Budowa i optymalizacja modeli

1. RandomForest:

- Przeprowadzono eksperymenty z różnymi hiperparametrami:
 - o n estimators: 50, 100, 150, 200.
 - o max depth: 10, 20, 30, 40.
- Najlepsze hiperparametry:
 - o n estimators=150, max depth=30.
 - o Accuracy: 0.9352.
- Analizowano wyniki za pomocą:
 - o Heatmapy zależności między n_estimators a max depth.
 - o Wykresów przedstawiających wpływ hiperparametrów na dokładność.

2. Sieci neuronowe:

- Model Variation 1:
 - o Architektura z 2 warstwami ukrytymi:
 - Liczba neuronów: 3x liczba cech oraz 2x liczba cech.
 - o Aktywacja: ReLU.
 - o Wyjście: Softmax (klasyfikacja wieloklasowa).
- Model Variation 2:
 - o Architektura z 6 warstwami ukrytymi:
 - Liczba neuronów: 512, 256, 128, 64, 32, 16.
 - o Aktywacja: ReLU.
 - o Wyjście: Softmax.
- Trening:
 - o Liczba epok zmieniana w zakresie: 10, 50, 100, 150, 200, 250.
 - o Optymalizator: Adam.
 - o Metryka: Accuracy.

Ocena jakości modeli

- 1. Metryka oceny:
 - o Dokładność (Accuracy) jako główna miara skuteczności.
 - o F1-score jako dodatkowa metryka (w przypadku RandomForest).

2. Macierz konfuzji:

- Obliczana dla modeli RandomForest i sieci neuronowych.
- Wskazuje poprawne oraz błędne przypisania klas, co pozwala na szczegółową analizę jakości predykcji.

Narzędzia wizualizacji wyników:

1. Heatmapa dla RandomForest:

 Pokazuje zależność dokładności od liczby drzew (n_estimators) i głębokości drzewa (max depth).

2. Wykresy Accuracy vs Epochs:

 Porównanie dwóch modeli sieci neuronowych (Variation 1 i 2) dla różnych liczby epok.

3. Macierz konfuzji:

Wykresy prezentujące liczbę poprawnych i błędnych klasyfikacji.

Dla RandomForest:

Dla sieci neuronowej:

Wyniki eksperymentalne

1. Wyniki modelu RandomForest

Najlepsze wyniki:

- Najlepsze hiperparametry:
 - o n_estimators: 150.
 - o max_depth: 30.
- Osiągnięta dokładność (Accuracy): 93.52%.

Analiza wyników:

- Wpływ hiperparametrów:
 - Głębsze drzewa (do max_depth=30) poprawiały wyniki, jednak dalsze zwiększanie głębokości nie przynosiło znaczącej poprawy.
 - Liczba drzew (n_estimators) powyżej 150 również nie wpływała znacząco na wyniki.

Wizualizacje wyników:

1. Wykresy dokładności w zależności od liczby drzew i głębokości:

o Pokazuje stabilność dokładności przy optymalnych parametrach.

2. Wyniki sieci neuronowych

Model Variation 1:

- Architektura z 2 warstwami ukrytymi.
- Maksymalna dokładność: 90.1% (przy 200 epokach).

Model Variation 2:

- Architektura z 6 warstwami ukrytymi.
- Maksymalna dokładność: 90.7% (przy 250 epokach).

Porównanie modeli:

- **Model Variation 2** osiągnął nieco lepsze wyniki dzięki bardziej złożonej architekturze, ale różnica była marginalna.
- **Stabilność:** Przy większej liczbie epok oba modele były stabilne, z tendencją do delikatnego spadku dokładności po 250 epokach.

3. Wnioski z wyników

• RandomForest:

- Model ten osiągnął najwyższą dokładność w porównaniu do sieci neuronowych (93.52%).
- o Jest bardziej odporny na niezbalansowany zbiór dzięki zastosowaniu wag klas.

• Sieci neuronowe:

- Osiągnęły dobrą dokładność (~90%), ale wymagały więcej zasobów obliczeniowych.
- Przy większej liczbie epok dokładność wzrastała, ale po 200 epokach modele stawały się bardziej niestabilne

Podsumowanie i wnioski

Komentarze i analiza wyników

• RandomForest:

- Model RandomForest osiągnął najlepsze wyniki spośród wszystkich testowanych modeli, uzyskując dokładność 93.52%.
- Najlepsze wyniki uzyskano przy liczbie drzew n_estimators=150 i maksymalnej głębokości max_depth=30.
- Model był stabilny i odporny na niezbalansowany charakter zbioru danych dzięki zastosowaniu wag klas (class weight='balanced').

• Sieci neuronowe:

- Oba warianty sieci neuronowych (Variation 1 i Variation 2) osiągnęły dobre wyniki (~90%), ale nie przewyższyły RandomForest.
- Wzrost liczby epok poprawiał wyniki do pewnego momentu, po czym modele zaczęły tracić stabilność (przejawy przeuczenia).
- Model Variation 2 (z bardziej złożoną architekturą) osiągnął nieco wyższą dokładność, ale różnica w stosunku do prostszego modelu Variation 1 była minimalna.

Macierz konfuzji:

- Klasa "unknown expression" była klasyfikowana z najwyższą skutecznością w obu modelach.
- Rzadziej występujące klasy, takie jak "relative" i "yn_question", były trudniejsze do poprawnej klasyfikacji, co jest typowe dla niezbalansowanych zbiorów danych.

Wnioski

1. Najlepszy model:

 RandomForest jest najlepszym modelem dla tego zadania dzięki swojej skuteczności, stabilności oraz odporności na niezbalansowany charakter zbioru danych.

2. Wyzwania i ograniczenia:

- Niezbalansowany zbiór danych: Klasa "unknown expression" dominowała w danych, co wpłynęło na jakość predykcji innych klas.
- Trudność w klasyfikacji rzadkich klas: Klasy o małej liczbie próbek wymagały dodatkowych technik przetwarzania danych, takich jak oversampling, aby poprawić skuteczność klasyfikacji.

3. Praktyczne zastosowanie:

