Duração: 90 minutos

2º Teste de Análise Matemática EE

2 Teste de Analise iviatei	natica EE	
Nome:	Nr.:	Curso:
GRUPO Em cada uma das perguntas seguintes, assinale a resposta correta no quadrado correspondente		
1. Se a taxa de variação instantânea da função $z=f(x,y)$ no é -5 , significa que:		
	(1,-1)=-5;	$\prod f_y'(1,0) = -5.$
2. Considere a função $z=f(x,y)$ tal que $f_x'(2,3)$ existe. Geoda recta tangente à curva obtida pela interseção do gráfico	ometricamente f com f com f	, $f'_x(2,3)$ representa o declive
\square Plano $y = 3$; \square Plano $z = 2$; \square Plano $z = 2$	= f(2,3);	Plano $2x + 3y = f(2,3)$.
3. Considere uma função $z=f(x,y)$ definida em \mathbb{R}^2 . Qual das seguintes afirmações é verdadeira?		
Se f admite derivadas parciais no ponto (x_0, y_0) então $f \in$		$\;\;\text{em}\;(x_0,y_0);$
Se f é diferenciável no ponto (x_0, y_0) então f é contínua e		
Se f admite derivadas direccionais no ponto (x_0, y_0) na drenciável em (x_0, y_0) ;	ireção de qual	quer vector \vec{u} então f é dife-
\square Se $\overrightarrow{\nabla} f(x_0, y_0) = (0, 0)$ então f é diferenciável em (x_0, y_0) .		
4. Considere uma função $z = f(x, y)$ diferenciável em $(0, 0)$, com $f(0, 0) = 0$, $f'_x(0, 0) = 2$ e $f'_y(0, 0) = 3$. Então para os pontos (x, y) pertencentes a uma vizinhança de $(0, 0)$, tem-se:		
$ \lim_{(x,y)\to(0,0)} (f(x,y) - 2x - 3y) = 0; $		
$ \lim_{(x,y)\to(0,0)} \frac{f(x,y)-3x-2y}{\sqrt{x^2+y^2}} = 0; $		
$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-2x-3y}{\sqrt{x^2+y^2}} = 0.$		
5. Considere uma função $z=f(x,y)$ diferenciável em (x_0,y_0) , Então:	$com \overrightarrow{\nabla} f(x_0, y)$	$f'(y_0) = (0,0) e f''_{x^2}(x_0, y_0) = 0.$
$f(x_0, y_0)$ é máximo local de f ;		
$\prod f(x_0, y_0)$ é mínimo local de f ;		
(x_0, y_0) é ponto de sela de f ;		
Nada se pode concluir sobre o ponto (x_0, y_0) .		
6. Seja $f(x,y)$ diferenciável em $(-1,1)$ e considere um vector \vec{u} de f na direção do vector \vec{u} é dada por:	= (2, -3). A t	axa de variação instantânea
$ \times \frac{2}{\sqrt{13}}f'_x(-1,1) - \frac{3}{\sqrt{13}}f'_y(-1,1); \qquad \qquad \boxed{ -\frac{3}{\sqrt{13}}f'_x(-1,1) + } $	$\frac{2}{\sqrt{13}}f_y'(-1,1);$	
	-1, 1).	
7. Seja $f(x,y)$ diferenciável em (x_0,y_0) . O plano tangente ao horizontal se	gráfico de f n	no ponto $(x_0,y_0,f(x_0,y_0))$ é
$ \overrightarrow{\nabla} f(x_0, y_0) $ não existe; $ \overrightarrow{\nabla} f(x_0, y_0) = (0, 0); $		

Em cada uma das perguntas seguintes, responda sem apresentar cálculos.

- 1. Seja f definida em \mathbb{R}^2 que admite derivadas parciais contínuas até à ordem 2 em (0,0), com f(0,0)=1, $f'_x(0,0)=-2$, $f'_y(0,0)=3$, $f''_{x^2}(0,0)=-1$, $f''_{xy}(0,0)=\frac{1}{3}$ e $f''_{y^2}(0,0)=4$.
 - (a) O differencial de f no ponto (0,0) é dado por: $d \not\downarrow = -2 d x + 3 d y$
 - (b) A equação do plano tangente ao gráfico de f no ponto (0,0,f(0,0)) é:

(c) O polinómio de grau 2 que melhor se aproxima à função f para (x, y) pertencente a uma vizinhança de (0, 0) é:

$$f_2(x_1y) = 1 - 2x + 3y - \frac{1}{2}x^2 + \frac{1}{6}xy + 2y^2$$
GRUPO III

Apresente todos os cálculos efetuados.

1. Considere a relação $z=2t+3x+\sin y,$ onde $x=\frac{t}{u}$ e $y=t^2u.$ Sem determinar a função composta, determine

(a)
$$\frac{\partial z}{\partial t}$$

(b)
$$\frac{\partial^2 z}{\partial u \partial t} = \frac{\partial}{\partial u} \left(2 + \frac{3}{2u} + 2tu \cdot \cos y \right) = -\frac{3}{2u^2} + 2t \cdot \cos y + 2tu \cdot (-\sin y) \cdot \frac{\partial y}{\partial t}$$

$$= -\frac{3}{2u^2} + 2t \cdot \cos y - 2tu \cdot \sin y \cdot 2tu$$

$$= -\frac{3}{2u^2} + 2t \cdot \cos y - 4t^2 u^2 \cdot \sin y \cdot 2tu$$

$$= -\frac{3}{2u^2} + 2t \cdot \cos y - 4t^2 u^2 \cdot \sin y \cdot 2tu$$

2. A área de um triângulo é dado por $A=\frac{1}{2}ab\cos C$, onde a,b são os comprimentos de dois lados do triângulo e C é a medida do ângulo entre os lados referidos. Considere $a=20,\ b=16$ e $C=\frac{\pi}{3}$ radianos. Usando diferenciais, determine o valor aproximado da variação da área do triângulo se ambos os comprimentos a e b forem aumentados em 0,01, mantendo o ângulo C constante.

$$dA = \frac{\partial A}{\partial a} \cdot da + \frac{\partial A}{\partial b} \cdot db + \frac{\partial A}{\partial c} \cdot dc$$

$$dA = \frac{1}{2} \cdot 16 \cdot \cos \frac{\pi}{3} \times 0.01 + \frac{1}{2} \times 20 \cdot \cos \frac{\pi}{3} \times 0.01 + 0$$

$$dA = 8 \times \frac{1}{2} \times 0,01 + 102 \times \frac{1}{2} \times 0,01 = 0,04 + 0,05 = 0,09$$

$$dA = 8 \times \frac{1}{2} \times 0,01 + 102 \times \frac{1}{2} \times 0,01 = 0,04 + 0,05 = 0,09$$

dA = 1 b.cos C.da + 1 a.cos C.db + - 1 ab.sen C.dC

- 3. Seja $h(x,y) = 2\exp(xy) + \exp(x^2)$ a função que representa a altura de uma montanha na posição (x,y).
 - (a) Determine a derivada direccional de h no ponto P = (0, 2) na direção do vector \vec{u} que faz com o semi eixo positivo OX um ângulo de $\frac{\pi}{4}$ radianos. $\vec{\mu} = \left(\cos \vec{\mu} + \sin \vec{\mu}\right) = \left(\sqrt{2} + \sqrt{2}\right)$

$$h_{\chi}^{1}(x_{1}y) = 2y^{2}y + 2xe^{\chi^{2}}$$

$$h_{\chi}^{1}(x_{1}y) = 2\chi^{2}xy$$

$$f_{\chi}(x_{1}y) = 2\chi^{2}xy$$

(b) Qual a direção (a partir do ponto P) se deve caminhar, de modo a escalar a montanha mais rapidamente? Qual é a taxa de variação de h nessa direção? Justifique adequadamente a sua resposta.

h (21/4) represente a altere de montente no posiçõe (21/4).

h) (21/4) II a taxa de venicação de altere de memberto

pois pais A taxa de venicação da altere e maior queedo e = $\frac{1}{2}$ h (92) $\frac{1}{12} = \frac{1}{12} \frac{1$

(c) Qual a direção, a partir do ponto P, segundo a qual a altura da montanha não se altera? Justifique adequadamente.

A altere $h(r_{i,y})$ não se altere quendo $h_{i,i}^{2}(r_{i,y})=0$. Neste case , quendo $h_{i,i}^{2}(0,2)=0$. Como

Neste case , quendo $h_{i,i}^{2}(0,2)=0$. Como

in a considera quendo $h_{i,i}^{2}(0,2)=0$. Como

is e o vector gradiente $\overline{U}h$, a texa é reula quendo cos $\alpha=0$, is e quendo $\alpha=\frac{\pi}{2}$. A direção segundo a quel a altere $h(r_{i,y})$ \overline{u} se obtera é a direção perpendicular a altere $h(r_{i,y})$ \overline{u} se obtera é a direção perpendicular ao vector $\overline{U}h=(h_{i,j})$, is $\overline{u}=(0,1)$. 4. Considere a função $f(x,y) = 3xy^2 + x^3 - 3x$.

(a) Determine os pontos críticos de f.

$$\begin{cases}
f_{1x}^{1} = 3y^{2} + 3x^{2} - 3 = 0 \\
f_{1x}^{2} = 6xy = 0
\end{cases}$$

$$\begin{cases}
f_{1x}^{2} = 6xy =$$

(b) Classifique os pontos críticos verificando se são extremantes de f

$$f'''_{12} = 6\pi$$

$$f'''_{12} = 6\pi$$

$$f'''_{12} = 6\pi$$

$$f'''_{11} = 6\pi$$

$$f''''_{11} = 6$$