RSA

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned

The RSA Cryptosystem

- Martin Hellman and Whitfield Diffie published their landmark publickey paper in 1976
- Ronald Rivest, Adi Shamir and Leonard Adleman proposed the asymmetric RSA cryptosystem in 1977
- Until now, RSA is the most widely use asymmetric cryptosystem although elliptic curve cryptography (ECC) becomes increasingly popular
- RSA is mainly used for two applications
 - Transport of (i.e., symmetric) keys
 - Digital signatures

Encryption and Decryption

- RSA operations are done over the integer ring Z_n (i.e., arithmetic modulo n), where n = p * q, with p, q being large primes
- Encryption and decryption are simply exponentiations in the ring

Definition

Given the public key $(n,e) = k_{pub}$ and the private key $d = k_{pr}$ we write

$$y = e_{k_{pub}}(x) \equiv x^e \mod n$$

$$x = d_{k_{Dr}}(y) \equiv y^d \mod n$$

where x, y ϵZ_{n}

We call $e_{k_{pub}}()$ the encryption and $d_{k_{pr}}()$ the decryption operation.

- In practice x, y, n and d are very long integer numbers (≥ 1024 bits)
- The security of the scheme relies on the fact that it is hard to derive the "private exponent" d given the public-key (n, e)

Key Generation

 Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are computed

Algorithm: RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key $k_{pr} = d$

- 1. Choose two large primes *p*, *q*
- 2. Compute n = p * q
- 3. Compute $\Phi(n) = (p-1) * (q-1)$
- 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n)-1\}$ such that $gcd(e, \Phi(n)) = 1$
- 5. Compute the private key d such that $d * e \equiv 1 \mod \Phi(n)$
- **6. RETURN** $k_{pub} = (n, e), k_{pr} = d$

Remarks:

- Choosing two large, distinct primes p, q (in Step 1) is non-trivial
- $gcd(e, \Phi(n)) = 1$ ensures that e has an inverse and, thus, that there is always a private key d

Example: RSA with small numbers

ALICE

Message x = 4

BOB

- 1. Choose p = 3 and q = 11
- 2. Compute n = p * q = 33
- 3. $\Phi(n) = (3-1) * (11-1) = 20$
- 4. Choose e = 3
- $K_{\text{pub}} = (33,3)$ 5. $d \equiv e^{-1} \equiv 7 \mod 20$

 $y = x^e \equiv 4^3 \equiv 31 \mod 33$

$$y^d = 31^7 \equiv 4 = x \mod 33$$

Implementation aspects

- The RSA cryptosystem uses only one arithmetic operation (modular exponentiation) which makes it conceptually a simple asymmetric scheme
- Even though conceptually simple, due to the use of very long numbers, RSA is orders of magnitude slower than symmetric schemes, e.g., DES, AES
- When implementing RSA (esp. on a constrained device such as smartcards or cell phones) close attention has to be paid to the correct choice of arithmetic algorithms
- The square-and-multiply algorithm allows fast exponentiation, even with very long numbers...

Square-and-Multiply

 Basic principle: Scan exponent bits from left to right and square/ multiply operand accordingly

Algorithm: Square-and-Multiply for x^H mod n

Input: Exponent *H*, base element *x*, Modulus *n*

Output: $y = x^H \mod n$

- 1. Determine binary representation $H = (h_t, h_{t-1}, ..., h_0)_2$
- **2. FOR** i = t-1 **TO** 0
- $3. y = y^2 \bmod n$
- 4. IF $h_i = 1$ THEN
- 5. $y = y * x \mod n$
- 6. RETURN y
- Rule: Square in every iteration (Step 3) and multiply current result by x if the exponent bit h_i = 1 (Step 5)
- Modulo reduction after each step keeps the operand y small

Example: Square-and-Multiply

- Computes x^{26} without modulo reduction
- Binary representation of exponent: $26 = (1,1,0,1,0)_2 = (h_4,h_3,h_2,h_1,h_0)_2$

Step		Binary exponent	Ор	Comment
1	$x = x^1$	(1) ₂		Initial setting, h ₄ processed
1a	$(x^1)^2 = x^2$	(10) ₂	SQ	Processing h ₃
1b	$x^2 * x = x^3$	(11) ₂	MUL	h ₃ = 1
2a	$(x^3)^2 = x^6$	(110) ₂	SQ	Processing h ₂
2b	-	(110) ₂	-	$h_0 = 0$
3a	$(x^6)^2 = x^{12}$	(1100) ₂	SQ	Processing h₁
3b	$x^{12} * x = x^{13}$	(1101) ₂	MUL	h ₁ =1
4a	$(x^{13})^2 = x^{26}$	(11010) ₂	SQ	Processing h ₀
4b	-	(11010) ₂	_	$h_0 = 0$

• Observe how the exponent evolves into $x^{26} = x^{11010}$

Complexity of Square-and-Multiply Alg.

- The square-and-multiply algorithm has a logarithmic complexity, i.e., its run time is proportional to the bit length (rather than the absolute value) of the exponent
- Given an exponent with t+1 bits

$$H = (h_t, h_{t-1}, ..., h_0)_2$$

with $h_t = 1$, we need the following operations

- # Squarings = t
- Average # multiplications = 0.5 t
- Total complexity: #SQ + #MUL = 1.5 t
- Exponents are often randomly chosen, so 1.5 t is a good estimate for the average number of operations
- Note that each squaring and each multiplication is an operation with very long numbers, e.g., 2048 bit integers.

Speed-Up Techniques

- Modular exponentiation is computationally intensive
- Even with the square-and-multiply algorithm, RSA can be quite slow on constrained devices such as smart cards
- Some important tricks:
 - Short public exponent e
 - Chinese Remainder Theorem (CRT)
 - Exponentiation with pre-computation (not covered here)

Fast encryption with small public exponent

- Choosing a small public exponent e does not weaken the security of RSA
- A small public exponent improves the speed of the RSA encryption significantly

Public Key	e as binary string	#MUL + #SQ
2 ¹ +1 = 3	(11) ₂	1 + 1 = 2
24+1 = 17	(1 0001) ₂	4 + 1 = 5
2 ¹⁶ + 1	(1 0000 0000 0000 0001) ₂	16 + 1 = 17

 This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA the fastest asymmetric scheme with regard to encryption!

Fast decryption with CRT

- Choosing a small private key d results in security weaknesses!
 - In fact, d must have at least 0.3t bits, where t is the bit length of the modulus n
- However, the Chinese Remainder Theorem (CRT) can be used to (somewhat) accelerate exponentiation with the private key d
- Based on the CRT we can replace the computation of

$$x^{d \mod \Phi(n)} \mod n$$

by two computations

 $x^{d \mod (p-1)} \mod p$ and $x^{d \mod (q-1)} \mod q$

where q and p are "small" compared to n

Basic principle of CRT-based exponentiation

- CRT involves three distinct steps
 - (1) Transformation of operand into the CRT domain
 - (2) Modular exponentiation in the CRT domain
 - (3) Inverse transformation into the problem domain
- These steps are equivalent to one modular exponentiation in the problem domain

■ CRT: Step 1 – Transformation

- Transformation into the CRT domain requires the knowledge of p and q
- p and q are only known to the owner of the private key, hence CRT cannot be applied to speed up encryption
- The transformation computes (x_p, x_q) which is the representation of x in the CRT domain. They can be found easily by computing

$$x_p \equiv x \mod p$$
 and $x_q \equiv x \mod q$

■ CRT: Step 2 – Exponentiation

• Given d_p and d_q such that

$$d_p \equiv d \mod (p-1)$$
 and $d_q \equiv d \mod (q-1)$

one exponentiation in the problem domain requires two exponentiations in the CRT domain

$$y_p \equiv x_p^{dp} \mod p$$
 and $y_q \equiv x_q^{dq} \mod q$

In practice, p and q are chosen to have half the bit length of n, i.e., |
 p| ≈ |q| ≈ |n|/2

CRT: Step 3 – Inverse Transformation

 Inverse transformation requires modular inversion twice, which is computationally expensive

$$c_p \equiv q^{-1} \mod p$$
 and $c_q \equiv p^{-1} \mod q$

• Inverse transformation assembles y_p , y_q to the final result $y \mod n$ in the problem domain

$$y \equiv [q * c_p] * y_p + [p * c_q] * y_q \mod n$$

• The primes *p* and *q* typically change infrequently, therefore the cost of inversion can be neglected because the two expressions

$$[q * c_p]$$
 and $[p * c_q]$

can be precomputed and stored

Complexity of CRT

- We ignore the transformation and inverse transformation steps since their costs can be neglected under reasonable assumptions
- Assuming that n has t+1 bits, both p and q are about t/2 bits long
- The complexity is determined by the two exponentiations in the CRT domain. The operands are only t/2 bits long. For the exponentiations we use the square-and-multiply algorithm:
 - # squarings (one exp.): #SQ = 0.5 t
 - # aver. multiplications (one exp.): #MUL = 0.25t
 - Total complexity: 2 * (#MUL + #SQ) = 1.5t
- This looks the same as regular exponentations, but since the operands have half the bit length compared to regular exponent., each operation (i.e., multipl. and squaring) is 4 times faster!
- Hence CRT is 4 times faster than straightforward exponentiation

Finding Large Primes

- Generating keys for RSA requires finding two large primes p and q
 such that n = p * q is sufficiently large
- The size of p and q is typically half the size of the desired size of n
- To find primes, random integers are generated and tested for primality:

 The random number generator (RNG) should be non-predictable otherwise an attacker could guess the factorization of n

Primality Tests

- Factoring p and q to test for primality is typically not feasible
- However, we are not interested in the factorization, we only want to know whether p and q are composite
- Typical primality tests are probabilistic, i.e., they are not 100% accurate but their output is correct with very high probability
- A probabilistic test has two outputs:
 - "p ' is composite" always true
 - "p ' is a prime" only true with a certain probability
- Among the well-known primality tests are the following
 - Fermat Primality-Test
 - Miller-Rabin Primality-Test

Fermat Primality-Test

• Basic idea: Fermat 's Little Theorem holds for all primes, i.e., if a number p 'is found for which $a^{p'-1}/\equiv 1 \mod p$ ', it is not a prime

Algorithm: Fermat Primality-Test

Input: Prime candidate p', security parameter s

Output: "p' is composite" or "p' is likely a prime"

- **1. FOR** i = 1 **TO** s
- 2. choose random $a \in \{2,3,...,p'-2\}$
- **3. IF** a^{p'-1} **≠** 1 mod p' **THEN**
- **4. RETURN** "p' is composite"
- **5. RETURN** "p' is likely a prime"
- For certain numbers ("Carchimchael numbers") this test returns "p '
 is likely a prime" often although these numbers are composite
- Therefore, the Miller-Rabin Test is preferred

Theorem for Miller-Rabin's test

 The more powerful Miller-Rabin Test is based on the following theorem

Theorem

Given the decomposition of an odd prime candidate p'

$$p'-1=2^{u^*}r$$

where *r* is odd. If we can find an integer *a* such that

$$a^r \not\equiv 1 \mod p'$$
 and $a^{r^{2j}} \not\equiv p' - 1 \mod p'$

For all $j = \{0, 1, ..., u-1\}$, then p' is composite.

Otherwise it is probably a prime.

This theorem can be turned into an algorithm

■ Miller-Rabin Primality-Test

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p' with $p'-1 = 2^{u r}$ security parameter s

Output: "p' is composite" or "p' is likely a prime"

- **1. FOR** i = 1 **TO** s
- 2. choose random $a \in \{2,3,...,p'-2\}$
- 3. $z \equiv a^r \mod p^r$
- 4. IF $z \neq 1$ AND $z \neq p'-1$ THEN
- **5**. **FOR** j = 1 **TO** u-1
- 6. $z \equiv z^2 \mod p^2$
- 7. IF z = 1 THEN
- **8. RETURN** "*p* ' is composite"
- 9. IF $z \neq p'-1$ THEN
- **10. RETURN** "p' is composite"
- **11. RETURN** "p' is likely a prime"

Attacks and Countermeasures 1/3

- There are two distinct types of attacks on cryptosystems
 - Analytical attacks try to break the mathematical structure of the underlying problem of RSA
 - Implementation attacks try to attack a real-world implementation by exploiting inherent weaknesses in the way RSA is realized in software or hardware

Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

Mathematical attacks

- The best known attack is factoring of n in order to obtain $\Phi(n)$
- Can be prevented using a sufficiently large modulus n
- The current factoring record is 664 bits. Thus, it is recommended that n should have a bit length between 1024 and 3072 bits

Protocol attacks

- Exploit the malleability of RSA, i.e., the property that a ciphertext can be transformed into another ciphertext which decrypts to a related plaintext – without knowing the private key
- Can be prevented by proper padding

Attacks and Countermeasures 3/3

- Implementation attacks can be one of the following
 - Side-channel analysis
 - Exploit physical leakage of RSA implementation (e.g., power consumption, EM emanation, etc.)
 - Fault-injection attacks
 - Inducing faults in the device while CRT is executed can lead to a complete leakage of the private key

Attacks and Countermeasures 2/2

- RSA is typically exposed to these analytical attack vectors (cont'd)
 - Protocol attacks
 - Exploit the malleability of RSA
 - Can be prevented by proper padding
- Implementation attacks can be one of the following
 - Side-channel analysis
 - Exploit physical leakage of RSA implementation (e.g., power consumption, EM emanation, etc.)
 - Fault-injection attacks
 - Inducing faults in the device while CRT is executed can lead to a complete leakage of the private key

Lessons Learned

- RSA is the most widely used public-key cryptosystem
- RSA is mainly used for key transport and digital signatures
- The public key *e* can be a short integer, the private key *d* needs to have the full length of the modulus *n*
- RSA relies on the fact that it is hard to factorize n
- Currently 1024-bit cannot be factored, but progress in factorization could bring this into reach within 10-15 years. Hence, RSA with a 2048 or 3076 bit modulus should be used for long-term security
- A naïve implementation of RSA allows several attacks, and in practice RSA should be used together with padding