

· 2000 iteration

ADAM

```
Cost after iteration 0: 1.098627

Cost after iteration 200: 0.906004

Cost after iteration 400: 0.831171

Cost after iteration 600: 0.792285

Cost after iteration 800: 0.769404

Cost after iteration 1000: 0.754191

Cost after iteration 1200: 0.743681

Cost after iteration 1400: 0.735736

Cost after iteration 1600: 0.729602

Cost after iteration 1800: 0.725414
```


train accuracy: 0.86) overtiteing

(1) pick network 3) train longer

· overtitting (=) high variance

More data

- 12 regularization

$$W = \omega - \alpha d\omega$$

$$\overline{J} = \int_{m} \Sigma L(\overline{g}, g)$$

$$\int L_{2} \text{ regularization}$$

$$\omega = \omega - \alpha (d\omega + \int_{m} \omega)$$

$$\overline{J} = \int_{m} \Sigma L(\overline{g}, g) + \int_{2m} ||\omega||_{2}^{2}$$

$$Penalty$$

(Adam

$$\begin{cases} v_{dW^{[l]}} = \beta_1 v_{dW^{[l]}} + (1 - \beta_1) \frac{\partial \mathcal{J}}{\partial W^{[l]}} \\ v_{dW^{[l]}}^{corrected} = \frac{v_{dW^{[l]}}}{1 - (\beta_1)^l} \\ s_{dW^{[l]}} = \beta_2 s_{dW^{[l]}} + (1 - \beta_2) (\frac{\partial \mathcal{J}}{\partial W^{[l]}})^2 \\ s_{dW^{[l]}}^{corrected} = \frac{s_{dW^{[l]}}}{1 - (\beta_2)^l} \\ W^{[l]} = W^{[l]} - \alpha \frac{v_{dW^{[l]}}^{corrected}}{\sqrt{s_{dW^{[l]}}^{corrected}} + \varepsilon} \end{cases}$$

"decoupled weight decay regularization"

① Adam 은 生活性子에 L고 norm를 더라더 기저화 하도 영반화 효과를 运性게 된다

② weight Kun KK weight decay term을

카라어 이웃제를 하면

Algorithm 2 Adam with L₂ regularization and Adam with decoupled weight decay (AdamW)

```
1: given \alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, \lambda \in \mathbb{R}
```

3: repeat

4: $t \leftarrow t+1$

5: $\nabla f_t(\boldsymbol{\theta}_{t-1}) \leftarrow \text{SelectBatch}(\boldsymbol{\theta}_{t-1})$

select batch and return the corresponding gradient

6: $\mathbf{g}_t \leftarrow \nabla f_t(\boldsymbol{\theta}_{t-1}) + \lambda \boldsymbol{\theta}_{t-1}$

7: $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$

▶ here and below all operations are element-wise

8: $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$

9: $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t)$

 $\triangleright \beta_1$ is taken to the power of t

10: $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t/(1-\beta_2^t)$

 $\triangleright \beta_2$ is taken to the power of t

11: $\eta_t \leftarrow \text{SetScheduleMultiplier}(t)$

can be fixed, decay, or also be used for warm restarts

12: $\theta_t \leftarrow \theta_{t-1} - \eta_t \left(\alpha \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon) + \lambda \theta_{t-1} \right)$

13: until stopping criterion is met

14: return optimized parameters θ_t

initialize time step t ← 0, parameter vector θ_{t=0} ∈ ℝⁿ, first moment vector m_{t=0} ← θ, second moment vector v_{t=0} ← θ, schedule multiplier η_{t=0} ∈ ℝ

Cost after iteration 0: 1.098858
Cost after iteration 200: 0.865402
Cost after iteration 400: 0.799049
Cost after iteration 600: 0.774712
Cost after iteration 800: 0.764440
Cost after iteration 1000: 0.759916
Cost after iteration 1200: 0.758445
Cost after iteration 1400: 0.757904
Cost after iteration 1600: 0.757688
Cost after iteration 1800: 0.757495

train accuracy : 0.85833333333333333

test accuracy: 0.32

"Double backpropagation"

 DataGrad (Double Backpropagation): penalize the L2 norm of the gradient of the original loss term with respect to the inputs.

$$L_{DG}(x, y, \Theta) = L(x, y, \Theta) + \lambda \| (\frac{\partial}{\partial x} L(x, y, \Theta)) \|_{2}$$

Cost	after	iteration	0: 1.098838
Cost	after	iteration	200: 0.859740
Cost	after	iteration	400: 0.770849
Cost	after	iteration	600: 0.724785
Cost	after	iteration	800: 0.699078
Cost	after	iteration	1000: 0.681866
Cost	after	iteration	1200: 0.670880
Cost	after	iteration	1400: 0.663346
Cost	after	iteration	1600: 0.658710
Cost	after	iteration	1800: 0.655125

train accuracy: 0.85

test accuracy: 0.36