SOC 690S: Machine Learning in Causal Inference

Week 4: Neyman Orthogonality and Causal Inference Basics

Wenhao Jiang
Department of Sociology, Fall 2025

Neyman Orthogonality

Why do we need Neyman Orthogonality

- We want to estimate a causal effect of a treatment D_i on an outcome Y_i
- One problem that is central to our course is that there is a high-dimensional set of controls X_i that confound D_i and Y_i
- Ordinary regression becomes problematic when X_i is large in dimension or is highly nonlinear

Why do we need Neyman Orthogonality

- We want to estimate a causal effect of a treatment D_i on an outcome Y_i
- One problem that is central to our course is that there is a high-dimensional set of controls X_i that confound D_i and Y_i
- Ordinary regression becomes problematic when X_i is large in dimension or is highly nonlinear
- We borrowed the insight from the *Frisch-Waugh-Lovell* (FWL) theorem and produce estimate of Y_i and D_i based on X_i using Machine Learning
- The justification of why such *Double Machine Learning* technique works is the *Neyman Orthogonality*
- There are other methods, such as *Augmented Inverse Propensity Weighting*, that do not rely on the particular form of *double partialling out* but satisfy *Neyman Orthogonality*

The Structural Model

• Assume the following structural equation in the *population*, where the causal effect of D_i on Y_i is well defined:

$$Y_i = \theta_0 D_i + g_0(X_i) + \epsilon_i, \quad E[\epsilon_i | D_i, X_i] = 0$$

- θ_0 : parameter of interest (causal effect of D_i)
- $g_0(X_i)$: nuisance function capturing the effect of X_i on Y_i net of D_i
- ϵ_i : error term, mean zero conditional on D_i , X_i
- Note that $g_0(X_i) \neq E[Y_i|X_i]$

$$E[Y_i|X_i] = \theta_0 m_0(X_i) + g_0(X_i), \quad m_0(X_i) = E[D_i|X_i]$$

Normal Equation from the Structural Model

• Define residualized treatment:

$$\tilde{D}_i = D_i - m_0(X_i), \quad m_0(X_i) = E[D_i|X_i]$$

Define residualized outcome (structural)

$$\tilde{Y}_i = Y_i - g_0(X_i)$$

• *Population* normal equation

$$E\left[(\tilde{Y}_i - \theta_0 \tilde{D}_i)\tilde{D}_i\right] = 0$$

• This identifies θ_0 under exogeneity

Equivalence with FWL Residualization

• By the *Frisch-Waugh-Lovell* (FWL) theorem, we can also residualize using conditional expectation:

$$\tilde{Y}_i = Y_i - E[Y_i|X_i], \quad \tilde{D}_i = D_i - E[D_i|X_i]$$

• The *population* normal equation is

$$E[(Y_i - E[Y_i|X_i] - \theta_0(D_i - m_0(X_i))) \cdot (D_i - m_0(X_i))] = 0$$

$$E[(Y_i - g_0(X_i) - \theta_0 m_0(X_i) - \theta_0(D_i - m_0(X_i))) \cdot (D_i - m_0(X_i))] = 0$$

$$E[(\tilde{Y}_i - \theta_0 \tilde{D}_i)\tilde{D}_i] = 0$$

• FWL residualization and the structural model lead to the *same normal equation*

The Score Function

• Generalize to generic *nuisance functions* $g(\cdot)$, $m(\cdot)$

$$\tilde{Y}_i = Y_i - g(X_i), \quad \tilde{D}_i = D_i - m(X_i)$$

• Define the *score function* that is analogous to the *normal equation* based on the FWL theorem

$$\psi(W_i; \theta, g, m) = (Y_i - g(X_i) - \theta(D_i - m(X_i)))(D_i - m(X_i))$$

• θ_0 can be identified with moment condition satisfying

$$E[\psi(W_i; \theta_0, g, m)] = 0$$
 where $g = E[Y|X], m = E[D|X]$

• We write $\psi(W_i; \theta, g, m)$ as $\psi(W_i; \theta, \eta)$ where $\eta = (g, m)$

Moment Function and Neyman Orthogonality

Formally, moment condition is defined as

$$M(\theta, \eta) = E[\psi(W; \theta, \eta)]$$

• At the true nuisances $\eta = \eta_0$ (g_0 and m_0 correctly specified), the moment condition has a unique root at θ_0 ; that is

$$M(\theta, \eta_0) = 0$$
 if and only if $\theta = \theta_0$

- Remember in the *structural equation*, $g_0(X_i)$ is defined as the effect of X_i on Y_i net of D_i
- In practice, replace $g_0(X_i)$ by $g(X_i) = E[Y_i|X_i]$ produces the same *normal equation* and identify the same θ_0

Moment Function and Neyman Orthogonality

• In reality, we do not know the true *nuisance functions*

$$g_0(X_i) = E[Y_i|X_i], \quad m_0(X_i) = E[D_i|X_i]$$

- We can only approximate them using finite samples and predictive methods
- The key idea is that we want estimation errors in $\hat{\eta}$ to have minimal impact on $\hat{\theta}$
- *Neyman Orthogonality:* the score ψ is *Neyman orthogonal* if

$$\left. \partial_{\eta} M(\theta_0, \eta) \right|_{\eta = \eta_0} = 0$$

- It means that the slope of *M* in the *nuisance* direction is flat at the truth
- If we plug in $\hat{\eta}$ that is close to η_0 , the bias in the estimation of M and the associated *normal equation* is only *second order*, not first order

Neyman Orthogonality via Gateaux Derivative

Gateaux derivative is the functional derivative

$$\begin{split} \partial_{g} M(\theta_{0},g,m_{0})[\Delta] \bigg|_{g=g_{0}} &= \lim_{t \to 0} \frac{M(\theta_{0},g_{0}+t\Delta,m_{0})-M(\theta_{0},g_{0},m_{0})}{t} \\ M(\theta_{0},g_{0}+t\Delta,m_{0}) &= E\bigg[(Y_{i}-g_{0}(X_{i})-t\Delta(X_{i})-\theta_{0}(D_{i}-m_{0}(X_{i})))(D_{i}-m_{0}(X_{i})) \bigg] \\ &= M(\theta_{0},g_{0},m_{0})-tE[\Delta(X_{i})(D_{i}-m_{0}(X_{i}))] \\ \partial_{g} M(\theta_{0},g,m_{0})[\Delta] \bigg|_{g=g_{0}} &= -E[\Delta(X_{i})(D_{i}-m_{0}(X_{i}))] \end{split}$$

- Since $E[D_i m_0(X_i)|X_i] = 0$, this expectation is zero for all directions Δ (*CEF Decomposition Property*)
- By symmetry, the derivative w.r.t. m also vanishes at (g_0, m_0)
- The gradient of $M(\theta_0, \eta)$ with respect to $\eta = (g, m)$ is θ at the truth

Taylor Expansion of the Moment Function

• Expand around the true nuisances $\eta_0 = (g_0, m_0)$ using Taylor Expansion

$$M(\theta_0, \hat{\eta}) \approx M(\theta_0, \eta) \Big|_{\eta = \eta_0} + \underbrace{\left[\partial_{\eta} M(\theta_0, \eta) \Big|_{\eta = \eta_0} \right] (\hat{\eta} - \eta_0)}_{\text{first order vanishes}}$$

$$+1/2(\hat{\eta}-\eta_0)'\left[\partial_{\eta}^2 M(\theta_0,\eta)\Big|_{\eta=\eta_0}\right](\hat{\eta}-\eta_0) + higher order$$

- Without orthogonality, the first-order term drives bias
- With orthogonality, the first-order term vanishes, and the remaining error is mainly second-order in $(\hat{\eta} - \eta_0)$
- With Neyman orthogonality, it suffices for the nuisance estimates to converge at rate faster than $n^{1/4}$, rather than the much stronger $n^{1/2}$ rate that is generally impossible in high dimensions

Heuristic Geometric Representation

Think of the moment function

$$M(\theta_0, g, m) = E[\psi(W; \theta_0, g, m)]$$

as a *surface* over the nuisance directions (g, m)

- If the functional gradient *w.r.t.* (g, m) is nonzero, the surface is *tilted*; small errors in (\hat{g}, \hat{m}) shift the zero point and bias the estimation of θ_0
- If the gradient is zero (*orthogonality*), the surface is *flat* in nuisance directions at the truth; θ_0 is robust to small nuisance estimation error

Orthogonal vs. Non-Orthogonal Surfaces

Double Machine Learning

Double Machine Learning

Double Machine Learning

Invalid Single LASSO Estimation (Naive Method)

- We mentioned in Week 2 that an intuitive but incorrect LASSO estimator only does LASSO once (*Neyman Orthogonality* not satisfied)
- One applies LASSO regression of Y_i on D_i and X_i to select relevant covariates X_Y , in addition to the covariate of interest, then refits the model using OLS of Y_i on D_i and X_Y

Why Single LASSO Fails

• The implicit *score function*

$$\psi^{naive}(W_i;\theta,g) = (Y_i - g(X_i) - \theta D_i)D_i$$

where $g(X_i)$ captures the effect of selected controls X_Y

• Population moment is defined as

$$M^{naive}(\theta, g) = E[\psi^{naive}(W_i; \theta, g)]$$

• With Gateaux derivative *w.r.t.* g in direction Δ :

$$\partial_{g} M(\theta_{0}, g)[\Delta] \Big|_{g=g_{0}} = -E[\Delta(X_{i})D_{i}]$$

$$= -E[E[\Delta(X_{i})D_{i}|X_{i}]]$$

$$= -E[\Delta(X_{i})E[D_{i}|X_{i}]] \neq 0$$

• Neyman orthogonality fails; bias in \hat{g} contaminates $\hat{\theta}$ at first order

Double LASSO

- Remember Double LASSO satisfies Neyman Orthogonality
- With Gateaux derivative *w.r.t.* g in direction Δ :

$$\partial_{g}M(\theta_{0},g,m_{0})[\Delta]\Big|_{g=g_{0}}=-E[\Delta(X_{i})(D_{i}-m_{0}(X_{i}))]$$

• Under *approximate sparsity*, LASSO can consistently approximate $m_0(X_i)$ at rate $\geq n^{1/4}$ in high dimension

$$-E[\Delta(X_i)(D_i - m_0(X_i)] = -E[E[\Delta(X_i)(D_i - m_0(X_i)|X_i]] = 0$$

• In actual estimation, we use *plug-in* method to fine-tune *penalty level* λ to find a good approximation to the *nuisance functions* $m_0(X_i)$ (and $g_0(X_i)$)

Double Machine Learning

Double Machine Learning

• Similar to Double LASSO, when we use other Machine Learning methods, we need to *fine-tune hyperparameters* (penalty level, tree depth, or neural network size) to strike the *bias-variance tradeoff* and obtain consistent estimations of the *nuisance functions*

$$m_0(X) = E[D|X], \quad g_0(X) = E[Y|X]$$

But Double Machine Learning adds an another essential step of cross-fitting

Double Machine Learning

Double Machine Learning: Cross-Fitting

- Instead of predicting the *nuisance functions* based on the full *sample*
- We only train nuisance models on K-1 folds, and predict the *residualized* Y_i and D_i on the held-out fold k
- We stack predicted *residualized* Y_i and D_i across K folds and for our FWL estimator
- to form the *score function* precisely to *prevent overfitting*—we do not want to use the training data to predict its own nuisance function
- It ensures nuisance errors are *out-of-sample*, so Neyman orthogonality cancels first-order bias

Cross-Fitting and Moment Estimation

- The above intuitive steps can be formally expressed in moment condition
- We take a K-fold random partition $(I_k)_{k=1}^K$ of observation indices $\{1, ..., n\}$ such that the size of each fold is about the same
- For each $k \in \{1, ..., K\}$, construct a fine-tuned nuisance estimator $\hat{\eta}_{[k]}$ that depends on the subset of data that excludes the k-th fold
- Now let $k(i) = \{k : i \in I_k\}$, the *sample* estimate of the moment equation is then defined as

$$\hat{M}(\theta, \hat{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \psi\left(W_i; \theta, \hat{\eta}_{[k(i)]}\right)$$

• We find $\hat{\theta}$ by solving $\hat{M}(\hat{\theta}, \hat{\eta}) = 0$

Sandwich Variance Estimator

• Sandwich variance estimator is defined in the same fashion as before

$$\hat{V} = \hat{J}^{-1} \hat{\Omega} \hat{J}^{-1}$$

$$\hat{J} = \frac{1}{n} \sum_{i=1}^{n} \partial_{\theta} \psi(W_i; \hat{\theta}, \hat{\eta})$$

$$\hat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} \psi(W_i; \hat{\theta}, \hat{\eta}) \psi(W_i; \hat{\theta}, \hat{\eta})'$$

This looks scary, but note that for the score function

$$\psi(W_i; \theta, \eta) = (\tilde{Y}_i - \theta \tilde{D}_i) \tilde{D}_i$$

$$\hat{J} = -\frac{1}{n} \sum_{i=1}^n \tilde{D}_i^2, \quad \hat{\Omega} = \frac{1}{n} \sum_{i=1}^n (\tilde{Y}_i - \hat{\theta} \tilde{D}_i)^2 \tilde{D}_i^2$$

The Use of Cross-Fitting

• Remember the *score function* is defined as

$$\psi(W;\theta,\eta)=(Y_i-g(X_i)-\theta(D_i-m(X_i)))(D_i-m(X_i))$$

• Suppose we have a small estimation error in projecting g_0 and m_0

$$\hat{g}(X_i) = g_0(X_i) + \delta_g(X_i), \quad \hat{m}(X_i) = m_0(X_i) + \delta_m(X_i)$$

$$\partial_g M(\theta_0, g, m)[\Delta] \Big|_{g=g_0} = -E[\delta_g(X_i)(D_i - \hat{m}_0(X_i))] \neq 0$$

- First-order bias terms does not vanish to 0 without *cross-fitting*
- Using the whole sample to train nuisances breaks orthogonality

Double Machine Learning

Double LASSO Does not Need Cross-Fit

- In general Double Machine Learning, *nuisance functions* are estimated by flexible ML, and in-sample predictions can *overfit*
- The nuisance errors $\delta_g(X_i)$, $\delta_m(X_i)$ become correlated with residuals $D_i m_0(X_i)$

Double LASSO Does not Need Cross-Fit

- In general Double Machine Learning, *nuisance functions* are estimated by flexible ML, and in-sample predictions can *overfit*
- The nuisance errors $\delta_g(X_i)$, $\delta_m(X_i)$ become correlated with residuals $D_i m_0(X_i)$
- Nuisances estimated by LASSO regression in a linear, approximately sparse setup
- Shrinkage bias is analytically controlled by approximate sparsity
- Correlation with residuals does not spoil inference

Potential Outcome Framework

Potential Outcomes Framework

• For each unit *i*, we fine two *latent* variables

- $Y_i(1)$ (outcome if treated)
- $Y_i(0)$ (outcome if not treated)
- $Y_i(d) \quad d \in \{0, 1\}$

Individual treatment effect (ITE) is defined as

$$\tau_i = Y_i(1) - Y_i(0)$$

- The fundamental problem of causal inference is that we cannot observe both $Y_i(1)$ and $Y_i(0)$ for the same unit
- We define Average Treatment Effect (ATE) in the *population* as

$$\delta = E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)]$$

Average Predictive Effect and Selection Bias

- Let $D_i \in \{0, 1\}$ denote actual treatment assignment
- The observed outcome is defined as

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

Population data directly provide the conditional average

$$E[Y_i|D_i = 1] = E[Y_i(1)|D_i = 1]$$

$$E[Y_i|D_i = 0] = E[Y_i(0)|D_i = 0]$$

$$E[Y_i|D_i = d] = E[Y_i(d)|D_i = d] \quad d \in \{0, 1\}$$

Average Predictive Effect and Selection Bias

• The average predictive effect (APE) is defined as the naive difference between Y_i in the treated and control group

$$\pi = E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$$

- If there is a selection bias, APE π will not agree with the ATE δ
- Using potential outcomes, we want to decompose π

$$\pi = E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]$$

$$= E[Y_i(1) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]$$

$$= \underbrace{\left(E[Y_i(1) \mid D_i = 1] - E[Y_i(0) \mid D_i = 1]\right)}_{\text{ATET}} + \underbrace{\left(E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]\right)}_{\text{EMALY}}$$

Selection Bias

Randomized Controlled Trials (RCT)

• In a Randomized Controlled Trial (RCT), treatment is randomly assigned:

$$D_i \perp \!\!\!\perp (Y_i(0), Y_i(1))$$
 or $D_i \perp \!\!\!\perp Y_i(d)$
 $0 \le P(D_i = 1) \le 1$

The randomization of treatment assignment ensures that

$$E[Y_i \mid D_i = d] = E[Y_i(d) \mid D_i = d] = E[Y_i(d)]$$

• The selection bias term

$$E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0] = E[Y_i(0)] - E[Y_i(0)] = 0$$

• APE agrees with ATE

$$\pi = E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0] = \delta$$

Statistical Inference with Two Sample Means

- The APE is asymptotically normal in distribution
- From an RCT, we collect $\{(Y_i, D_i)\}_{i=1}^n$; we calculate the group means as

$$\hat{\theta}_d = \frac{\sum_{i=1}^n Y_i \cdot \mathbb{1}(D_i = d)}{\sum_{i=1}^n \mathbb{1}(D_i = d)}, \quad d \in \{0, 1\}$$

APE agrees with ATE

$$\hat{\delta} = \hat{\theta}_1 - \hat{\theta}_0$$

APE and ATE is asymptotically normal under random assignment

$$\sqrt{n}(\hat{\delta} - \delta) \xrightarrow{d} N(0, \sigma^2)$$

• If the treated and controlled observations are independent, variance is

$$\sigma^{2} = \frac{\text{Var}(Y_{i} \mid D_{i} = 1)}{P(D_{i} = 1)} + \frac{\text{Var}(Y_{i} \mid D_{i} = 0)}{P(D_{i} = 0)}$$

Assumptions and Limitations of RCTs

- Ethical issues: cannot randomize harmful treatments
- *Practical challenges:* cost of RCTs can be high
- External validity: if experiment is localized, results may not generalize

Assumptions and Limitations of RCTs

- Ethical issues: cannot randomize harmful treatments
- *Practical challenges:* cost of RCTs can be high
- External validity: if experiment is localized, results may not generalize
- The Stable Unit Treatment Value Assumption (SUTVA): Treatment of one unit does not change outcomes of others; no spillover effect and no interference across units

Causal Inference via Conditional Ignorability

Causal Inference via Conditional Ignorability

Causal Inference via Conditional Ignorability

Potential Outcome and Ignorability

 In reality, the complete random assignment assumption may be too strong

$$D_i \perp \!\!\!\perp Y_i(d)$$

- The treated and controlled units may differ in some characteristics X_i
- But with the same strata of X_i , treatments are as if randomly assigned

$$D_i \perp \!\!\!\perp Y_i(d) \mid X_i$$

- That is, suppose treatment status D_i is independent of potential outcomes $Y_i(d)$ conditional on a set of covariates X_i —ignorability assumption
- We also assume that there is *overlap* or *full support* in the distribution of probability of receiving treatment by X_i

$$p(X_i) := P(D_i = 1 | X_i)$$

 $P(0 \le p(X_i) \le 1) = 1$

Potential Outcome and Ignorability

• Conditioning on X_i removes selection bias

$$E[Y_i \mid D_i = d, X_i] = E[Y_i(d) \mid D_i = d, X_i] = E[Y_i(d) \mid X_i]$$

• The *selection bias* term

$$E[Y_i(0) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 0, X_i] = E[Y_i(0) \mid X_i] - E[Y_i(0) \mid X_i] = 0$$

• Now the *Conditional APE* (CAPE)

$$\pi(X_i) = E[Y_i \mid D_i = 1, X_i] - E[Y_i \mid D_i = 0, X_i]$$

• Agrees with the *Conditional ATE* (CATE)

$$\delta(X_i) = E[Y_i(1) \mid X_i] - E[Y_i(0) \mid X_i]$$

• Due to Law of Iterative Expectation

$$\delta = E[\delta(X_i)] = E[\pi(X_i)] = \pi$$

Regression Adjustment

- We can estimate $E[Y_i \mid D_i, X_i]$ by linear regression if *ignorability* and *linearity* assumptions hold
- We may specify an additive linear model and identify δ by α

$$E[Y_i \mid D_i, X_i] = \alpha D_i + X_i' \beta$$

- Here we also assume the treatment effects are homogeneous; $\delta(x) = \delta$ for all x in the support of X_i
- We can relax the homogeneity assumption by specifying an interactive model

$$E[Y_i \mid D_i, X_i] = \alpha_1 D_i + (D_i X_i)' \alpha_2 + X_i' \beta$$

Regression adjustment gives unbiased ATE if ignorability holds

Causal Inference via Conditional Ignorability

Conditioning on Propensity Scores

- Conditioning on only the propensity score also suffices to remove the *selection bias* under *ignorability* assumption
- Balancing property (Rosenbaum–Rubin)

$$D_i \perp \!\!\!\perp X_i \mid p(X_i)$$

- An important consequence is that in scenarios with a known propensity score (*e.g.*, stratified RCT), we can use $p(X_i)$ as a control in place of the high-dimensional set of characteristics X_i
- Bypass a potentially complicated high-dimensional estimation problem
- $p(X_i)$ and controls of X_i and their *transformations* can be combined to (hopefully) improve estimation precision

Horvitz–Thompson Theorem

• Under *conditional ignorability* and *overlap*, the conditional expectation of an appropriately reweighted observed outcome Y_i , given X_i , identifies the conditional average of potential outcome $Y_i(d)$ given X_i

$$E\left[\frac{Y_{i} \mathbb{1}(D_{i} = d)}{P(D_{i} = d \mid X_{i})} \mid X_{i}\right] = E\left[\frac{Y_{i}(d) \mathbb{1}(D_{i} = d)}{P(D_{i} = d \mid X_{i})} \mid X_{i}\right]$$

$$= \frac{E[Y_{i}(d) \mathbb{1}(D_{i} = d) \mid X_{i}]}{P(D_{i} = d \mid X_{i})}$$

$$= \frac{E[Y_{i}(d) \mid X_{i}] \cdot P(D_{i} = d \mid X_{i})}{P(D_{i} = d \mid X_{i})}$$

$$= E[Y_{i}(d) \mid X_{i}]$$

• Then averaging over X_i identifies average potential outcome

$$E[E[Y_i(d) \mid X_i]] = E[Y_i(d)]$$

Horvitz–Thompson Theorem

• We can therefore define a Horvitz–Thompson transformation

$$H_i = \frac{\mathbb{1}(D_i = 1)}{P(D_i = 1 \mid X_i)} - \frac{\mathbb{1}(D_i = 0)}{1 - P(D_i = 1 \mid X_i)}$$

And identify CATE by

$$E[Y_iH_i \mid X_i] = E[Y_i(1) - Y_i(0) \mid X_i] = \delta(X_i)$$

Causal Inference via Conditional Ignorability

Covariate Balance Check

- Given a propensity score $p(X_i)$, we can check if the RCT is valid by performing a *covariate balance check*
- Conditional ignorability implies

$$E[H_i|X_i] = 0$$

To show this is the case

$$E[H_i \mid X_i] = E\left[\frac{\mathbb{1}(D_i = 1)}{p(X_i)} \mid X_i\right] - E\left[\frac{\mathbb{1}(D_i = 0)}{1 - p(X_i)} \mid X_i\right]$$
$$= \frac{P(D_i = 1 \mid X_i)}{p(X_i)} - \frac{P(D_i = 0 \mid X_i)}{1 - p(X_i)}$$

• If we have a reasonable approximation of $p(X_i)$, the two terms above should both be close to 1 and cancel out