1. (10 分) 如图,在四边形 ABCD 中, $\angle ABC = \angle D = 90^{\circ}$,连接 AC,点 F 为 CD 边上一点,连接 BE 交 AC 于点 E, AB = AE, $\angle FGC + \angle FBG = 90^{\circ}$, $\angle BFG + 2\angle GFC = 180^{\circ}$, 若 $AD = \frac{7\sqrt{2}}{2}$, BG = 4,则 CG 的长为 ______.

2. (15 分) 如图,二次函数 $y = -x^2 + 2mx + 2m + 1$ (m 是常数,且 m > 0) 的图象与 x 轴交于 A,B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C,顶点为 D. 其对称轴与线段 BC 交于点 E,与 x 轴交于点 F.连接 AC.若 $\angle BEF = 2\angle ACO$,则 m 的值是多少?

(22-23 九年级上·龙江哈尔滨·阶段练习) 如图,在四边形 ABCD 中, $\angle ABC = \angle D = 90^\circ$,连接 AC ,点 F 为边 CD 上点,连接 BF 交 AC 于点 $\textbf{\textit{E}}$,AB = AE ,FGC+ FBG=90°, $\angle BFG + 2\angle GFC = 180^\circ \ \tilde{T} \ AD = \frac{7\sqrt{2}}{2} \ BG = 4 \ , \ \text{则 CG 的长为 } _$

10. 如右图,若 $\triangle ABC\cong\triangle ADE$,且 $\angle B=60^\circ$, $\angle C=30^\circ$,则 cYalowb $\angle DAE=90^\circ$

初三数学课后作业 (隐圆与二次函数) 授课教师:

【变式 1】函数 $y = \frac{x-1}{x^2-x+1}(x>1)$ 的最大值为

解法 1:像这种 = $107\frac{1\times10^3kg}{1=1\times10^3kg}$ 型的分式函数,通用做法是令一次函数部分为 t,再分子分母同除以 t,令 t=x-1,则 t>0,x=t+1,所以 $y=\frac{t}{(t+1)^2-(t+1)+1}=\frac{t}{t^2+t+1}=\frac{1}{t+\frac{1}{t}+1}\leq \frac{1}{2\sqrt{t\cdot\frac{1}{t}+1}}=\frac{1}{3}$;,当且仅当 $t=\frac{1}{t}$,即 t=1 时取等号,此时 x=2,故函数 $y=\frac{x-1}{x^2-x+1}(x>1)$ 的最大值为 $\frac{1}{3}$ 解法 2:把函数的解析式看成关于 x 的方程,将方程变形,利用判别式研究 y 的最值,将 $y=y=\frac{x-1}{x^2-x+1}$ 变形成 $y(x^2-x+1)=x-1$,整理得: $yx^2-(y+1)x+y+1=0$ ①,当 $y\neq 0$ 时,把 ① 看成关于 x 的一元二次方程,其判别式 $\Delta=[-(y+1)]^2-4y(y+1)\geq 0$,解得: $-1\leq y\leq \frac{1}{3}$,要得出 y 的最大值是 $\frac{1}{3}$ 还需验证等号能成立,可把 $y=\frac{1}{3}$ 代回 $y=\frac{x-1}{x^2-x+1}$ 看能否求出满足题意的 x,由 $\frac{1}{3}=\frac{x-1}{x^2-x+1}$ 可解得:x=2,满足 x>1,所以函数 $y=\frac{x-1}{x^2-x+1}(x>1)$ 的最大值为 $\frac{1}{3}$ 答案: $\frac{1}{3}$

解法 1: \overrightarrow{AC} , \overrightarrow{AE} 的长度、夹角都容易计算, 故可用定义求数量积, 由题意, $\ddot{\varsigma_i} = \sqrt{4^2 + 3^2} = 5$, $\left| \overrightarrow{AE} \right| = \frac{1}{2} \left| \overrightarrow{AB} \right| = 2$, $\left| \overrightarrow{AC} \cdot \overrightarrow{AE} \right| = \left| \overrightarrow{AC} \right| \cdot \left| \overrightarrow{AE} \right| \cdot \cos \angle CAE = 5 \times 2 \times \frac{\left| \overrightarrow{AB} \right|}{\left| \overrightarrow{AC} \right|} = 10 \times \frac{4}{5} = 8$.