

CSARCH Lecture Series: Single-precision floating-point format for decimal (decimal-32) Sensei RL Uy
College of Computer Studies
De La Salle University
Manila, Philippines

Copyright Notice

This lecture contains copyrighted materials and is use solely for instructional purposes only, and not for redistribution.

Do not edit, alter, transform, republish or distribute the contents without obtaining express written permission from the author.

Overview

- This sub-module introduces the IEEE-754 decimal-32 floating-point format
- The objective is as follows:
 - ✓ Describe the process of representing decimal-32 floating-point data using IEEE-754 standard

Floating Point

 Scientists and engineers use scientific notation where a number is expressed as

$$+/- S \times 10^{\pm E}$$

• Where S is the significand (also known as mantissa), E is the exponent and 10 is the base.

Floating Point

- Floating point standard for floating-point numbers in computer is the IEEE-754 (Institute of Electrical and Electronics Engineers Standard 754). Originally 1985, revised 2008, current version 2019
- Decimal floating point is introduced in 2008.
- The representation is to be used in applications that need to emulate decimal rounding exactly (i.e., financial and tax computations)

IEEE-754 decimal floating-point

- Decimal32 precision
- Decimal64 precision
- Decimal128 precision

Length of field

Format	Decimal32	Decimal64	Decimal128
Format length	32	64	128
Sign bit	1	1	1
Combination bit	5	5	5
Exponent continuation bit	6	8	12
coefficient continuation bit	20	50	110
Total coefficient in digits	7	16	34
E _{max} (denormalized/normalized)	96/90	384/369	6144/6111
E _{min} (denornamlized/normalized)	-95/-101	-383/-398	-6143/-6176
Bias	101	398	6176
E _{limit}	191	767	12287

IEEE-754 decimal-32 floating-point format

Sign	Combination field	Exponent continuation	Coefficient continuation
1	5	6	20

normalized to this format before representation:

ddddddd x 10^e

- IEEE-754 decimal32 floating-point format is 32-bit in width
- The 32-bit is partition as 1 bit for sign bit; 5 bits for combination field, 6 bits for exponent continuation and 20 bits for coefficient continuation
 - Significand in decimal
 - Base 10
 - sign bit: $0 \rightarrow$ positive; $1 \rightarrow$ negative
 - e' = e+101
 - significand normalized to 7 whole decimal digits

Combination field

Combination Field	Туре	Exp MSbs	coefficient MSD
a b c d e	Finite	a b	0 c d e
11cde	Finite	c d	100e
11110	Infinity		
11111	NaN		

- 5-bit combination field is composed of:
 - two most significant bits of the exponent representation (valid bits: 00, 01 and 10 only)
 - 1 or 3 bits of the most significant digit of the significand

Exponent continuation field

- Exponent representation is e+101
 - two most significant bits of the exponent representation (valid bits: 00, 01 and 10 only) in the combination field
 - The rest of the 6 bits in the exponent continuation field
 - Largest exponent (normalized) value that can be represented is 90
 - smallest exponent (normalized) value that can be represented is -101

Coefficient continuation field

- 7 whole decimal digits
- most significant digit is stored in the combination field
- remaining 6 digits are represented as densely-packed BCD and stored in the coefficient continuation field

Redundant encoding

- 7.5
 - 75 x 10⁻¹
 - 750 x 10⁻²
 - 7500 x 10⁻³
 - 75000 x 10⁻⁴
 - 750000 x 10⁻⁵
 - 7500000 x 10⁻⁶

All are the representation of 7.5 (they are all called "cohorts")

Example

• 7123456×10^{20}

Significand in decimal?	yes
Base-10?	yes
Normalized?	Yes, 7 whole digits
	MSD = 7 (0111)
Sign bit	0 (+)
e' = e+101	20+101 = 121 (<mark>01</mark> 111001)

Combination Field	Туре	Exp MSbs	coefficient MSD
a b c d e	Finite	a b	0 c d e
11cde	Finite	c d	100e
11110	Infinity		
11111	NaN		

Sign	Combination field	Exponent continuation	Coefficient continuation
0	01 111	111001	0010100011 1001010110

Example

• -8765432 x 10⁻²⁰

Significand in decimal?	yes
Base-10?	yes
Normalized?	Yes, 7 whole digits
	MSD = 8 (1000)
Sign bit	1 (-)
e' = e+101	-20+101 = 81 (<mark>01</mark> 010001)

Combination Field	Туре	Exp MSbs	coefficient MSD
a b c d e	Finite	a b	0 c d e
11cde	Finite	c d	100e
11110	Infinity		
11111	NaN		

Sign	Combination field	Exponent continuation	Coefficient continuation
1	11 010	010001	1111100101 1000110010

• -1.234567×10^{15}

Combination Field	Туре	Exp MSbs	coefficient MSD
a b c d e	Finite	a b	0 c d e
11cde	Finite	c d	100e
11110	Infinity		
11111	NaN		

Significand in decimal?
Base-10?
Normalized?
Sign bit
e' = e+101

Sign	Combination field	Exponent continuation	Coefficient continuation

• -1.234567×10^{15}

Significand in decimal?	yes
Base-10?	yes
Normalized?	No, -1234567 x 10 ⁹
	MSD = 1 (0001)
Sign bit	1 (-)
e' = e+101	9+101 = 110 (<mark>01</mark> 101110)

Combination Field	Туре	Exp MSbs	coefficient MSD
a b c d e	Finite	a b	0 c d e
11cde	Finite	c d	100e
11110	Infinity		
11111	NaN		

Sign	Combination field	Exponent continuation	Coefficient continuation
1	01 001	101110	0100110100 1011100111

To recall ...

- What have we learned:
 - ✓ Describe the process of representing decimal-32 floating-point data using IEEE-754 standard