Examen 1 - Errores, Condición y Estabilidad Cálculo de raíces - Solución

M. en C. Gustavo Contreras Mayén

9 de septiembre de 2014

Contenido

Problema 1

Contenido

Problema 1

Calcula el error absoluto y el error relativo en las aproximaciones de p y p^* :

$$p = \pi, p^* = 22/7$$

$$p = \pi, p^* = 3.1416$$

$$p = e, p^* = 2.718$$

$$e = \sqrt{2}, p^* = 1.414$$

$$p = e^{10}, p^* = 22000$$

$$p = 10^{\pi}, p^* = 1400$$

$$p = 8!, p^* = 39900$$

$$p = 9!, p^* = \sqrt{18\pi} (9/e)^9$$

Solución

Inciso	Error absoluto	Error relativo
a)	1.234489e - 03	4.02499e - 04
b)	7.346410e - 06	2.338435e - 06
c)	2.818285e - 04	1.036789e - 04
d)	2.135624e - 04	1.510114e - 04
e)	1.454427e + 01	1.049782e - 02
f)	420	1.052632e - 02
g)	3.343127e + 03	9.2212762e - 03

Calcula $\frac{122}{135} - \frac{11}{32} + \frac{20}{19}$ mediante aritmética exacta, utiliza truncamiento a tres cifras y redondeo hasta tres cifras. Determina los errores absolutos y relativos.

Calcula $\frac{122}{135} - \frac{11}{32} + \frac{20}{19}$ mediante aritmética exacta, utiliza truncamiento a tres cifras y redondeo hasta tres cifras. Determina los errores absolutos y relativos.

Solución:

Haciendo primeramente el quebrado, tenemos que:

$$\frac{122}{135} - \frac{11}{32} + \frac{20}{19} = \frac{132361}{82080} = 1.6125852826$$

Operación	Error absoluto	Error relativo
Red. (1.613)	4.147173e - 04	2.571755e - 04
Trunc. (1.612)	5.852827e - 04	3.629468e - 04

Las expresiones 215-0.345-214 y 215-214-0.345 son idénticas. Calcula mediante aritmética exacta el resultado, luego usa truncamiento y redondeo hasta tres cifras. Determina los errores absoluto y relativo.

Las expresiones 215-0.345-214 y 215-214-0.345 son idénticas. Calcula mediante aritmética exacta el resultado, luego usa truncamiento y redondeo hasta tres cifras. Determina los errores absoluto y relativo. El valor exacto es: 0.655, por lo que

Operación	Error absoluto	Error relativo
Red. (0.656)	1.110223e - 15	1.694997e - 15
Trunc. (0.655)	0	0

Se sabe que

$$\pi = 4 - 8\sum_{k=1}^{\infty} (16k^2 - 1)^{-1}$$

¿Cuántas iteraciones se necesitan para producir el resultado con diez cifras decimales de exactitud?

Compara gráficamente el valor entre la función y las primeras cinco sumas parciales de la serie

$$\arctan(x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{2k-1}}{2k-1}$$

Gráfica con la función y términos de la serie

Usando la serie de Maclaurin truncada, una función f(x) con n derivadas continuas se puede aproximar con un polinomio de n-ésimo grado

$$f(x) \simeq p_n(x) = \sum_{i=0}^n c_i x^i$$

donde $c_i = \frac{f^{(i)}(0)}{i!}$ Genera y compara las gráficas para $f(x) = e^x$ y los polinomios $p_2(x)$, $p_3(x)$, $p_4(x)$, $p_5(x)$. Discute tus resultados.

Gráfica con la función y términos de la serie

