Respostas dos Exercícios e **PROBLEMAS**

Capítulo 23

1. (a) $8.99 \times 10^9 \text{ N}$. (b) 8.990 N. 3. 1.39 m.

5. (a) 4.9×10^{-7} kg. (b) 7.1×10^{-11} C. **7.** 3/8 F.

9. (a) $q_1 = 9q_2$ (b) $q_1 = -25q_2$ **11.** 1.2×10^{-5} C e 3.8×10^{-5} C. **13.** 14 em da carga positiva, 24 cm da carga negativa.

15. (a) Uma carga de - 4q/9 deve ser localizada sobre o segmento de reta que une as duas cargas positivas, a uma distância L/3 da carga $\pm q$.

17. (a)
$$Q = -2\sqrt{2} q$$
. (b) Não.

19. (b)
$$\pm 2.4 \times 10^{-8}$$
 C. **21.** (a) $\frac{L}{2} \left(1 + \frac{1}{4\pi\epsilon_0} \frac{qQ}{Wh^2} \right)$

(b)
$$\sqrt{\frac{3}{4\pi\epsilon_0}} \frac{qQ}{W}$$
 23. 3.8 N. 25. 0.19 MC.

27. (a) 8.99×10^{-19} N, (b) 625, **29.** 11.9 cm.

31. 1,3 dias. 33. 1,3 \times 10⁷ C, 35. 1,7 \times 10⁸ N.

37. (a) Pósitron. (b) Elétron. 39. (a) 510 N.

(b) 7.7×10^{28} m/s². **41.** (a) $(Gh/2\pi c^3)^{1/2}$.

(b) 1.61×10^{-35} m.

Capítulo 24

1. (a) 6.4×10^{-18} N. (b) 20 N/C.

3. Horizontal para a direita. 7. 0.111 nC. 9. 56 pC.

11. (a) 6.4×10^5 N/C, em direção à carga negativa. (b) 1.0×10^{-15} N. em direção à carga positiva.

13.
$$\frac{1}{4\pi\epsilon_0} \frac{3q}{d^2}$$
 apontando diretamente para a carga – $2q$.

15. (a) 1.7a à direita da carga $\pm 2q$.

17. 50 cm de q_1 e 100 cm de q_2 . 19. 9:30.

21. $E = q/\pi\epsilon_0 a^2$, ao longo da mediatriz para fora do triângulo.

23. 6.88×10^{-28} C·m. **29.** $R/\sqrt{2}$.

31.
$$\frac{1}{4\pi\epsilon_0} \frac{4q}{\pi R^2}$$
 no sentido crescente de y. 37. (a) 0.10 μ C.

(b) 1.3×10^{17} , (c) 5.0×10^{-6} , **39.** 3.51×10^{15} m/s².

41. (a) 4.8×10^{-13} N. (b) 4.8×10^{-13} N.

43. (a) 1.5×10^3 N/C. (b) 2.4×10^{-16} N, para cima.

(e) 1.6×10^{-26} N. (d) 1.5×10^{10} .

45. (a) 2.46×10^{17} m/s². (b) 0.122 ns. (c) 1.83 mm.

47. (a) 7,12 cm. (b) 28,5 ns. (c) 11,2%, **49.** -5e.

51. (a) 0.245 N, 11.3° no sentido horário a partir do eixo $\pm x$.

(b) x = 108 m; y = -21.6 m.

53. (a) = $(2.1 \times 10^{13} \text{ m/s}^2)$ **j**.

(b) $(1.5 \times 10^5 \text{ m/s})\mathbf{i} - (2.8 \times 10^6 \text{ m/s})\mathbf{j}$

55. (a)
$$2\pi \sqrt{\frac{l}{l g - qE/m!}}$$
. (b) $2\pi \sqrt{\frac{l}{g + qE/m}}$.

57. (a) 9.30×10^{-15} C · m. (b) 2.05×10^{-11} J. **59.** $2pE \cos \theta_0$.

Capítulo 25

1. (a) 693 kg/s. (b) 693 kg/s. (c) 347 kg/s.

(d) 347 kg/s. (e) 575 kg/s. 3. (a) Zero.

(b) −3.92 N·m²/C. (c) Zero. (d) Zero para cada campo.

5. (a) Envolve 2q = -2q, ou envolve todas as quatro cargas.

(b) Envolve 2q e q. (c) Impossível.

7. 2.0 × 10⁵ N·m³/C. 9. $q/6\epsilon_0$, 11. 3.54 μ C.

13. Através de cada uma das três faces que se encontram em q: zero; através de cada uma das outras três faces: $q/24\epsilon_0$.

15. 2,0 μ C/m². **17.** (a) 4,5 \times 10⁻⁷ C/m².

(b) 5.1×10^4 N/C. 19. (a) $= 3.0 \times 10^{-6}$ C.

(b) + 1.3 × 10⁻⁵ C. **21.** 5.0 μ C/m. **23.** $E = \lambda/2\pi\epsilon_0 r$.

(b) Zero. 25. 3.8×10^{-8} C/m².

27. (a) $E = q/2\pi\epsilon_0 Lr$; radialmente para dentro.

(b) = q tanto na superfície interna como na externa.

(c) $E = q/2\pi\epsilon_0 Lr$, radialmente para fora. **29.** 270 eV.

31. (a) $E = \sigma/\epsilon_0$, à esquerda. (b) E = 0.

(c)
$$E = \omega/\epsilon_0$$
, à direita. 33. $E = \frac{s}{2\epsilon_0 \sqrt{z^2 + R^2}}$.

35. 0,44 mm. **37.** \pm 4,9 \times 10 ¹⁰ C. **39.** (a) $\rho x/\epsilon_0$.

(b) $\rho d/2\epsilon_0$, 41. (a) = 750 N·m²/C. (b) = 6.64 nC.

43. $2,50 \times 10^4$ N/C. (b) $1,35 \times 10^4$ N/C.

47. (a) $E = q/4\pi\epsilon_0 r^2$, radialmente para fora. (b) O mesmo de (a).

(c) Não. (d) Sim, cargas são induzidas nas superfícies.

(e) Sim. (f) Não. (g) Não. **51.** = 1,04 nC. **53.** $q/2\pi a^2$.

Capítulo 26

1. 1,2 GeV. 3. (a) 3.0×10^{10} J. (b) 7,7 km/s,

(c) 9.0×10^4 kg. 5. (a) -2.46 V. (b) -2.46 V.

(c) Zero. 7, 2,90 kV. 9, 8,8 mm.

11. (a) $-qr^2/(8\pi\epsilon_0 R^3)$. (b) $q/(8\pi\epsilon_0 R)$. (c) Centro.

13. (b) Como V = 0, o ponto é escolhido de forma diferente.

(c) $q/(8\pi\epsilon_0 R)$. (d) As diferenças de potencial são independentes da escolha do ponto onde V = 0.

15. (a) = 4.500 V. (b) = 4.500 V. 17. 843 V.

19. $2.8 \times 10^{\circ}$. **23.** (a) 3.3 nC. (b) 12 nC/m^2 .

25. 200 mV. 27. (a) 38 s. (b) 280 dias. 29. Não existe.

31. (a) Não existe.

(b) 41 cm de + q, entre as cargas. 35.
$$\frac{-8}{4\pi\epsilon_0} \frac{e}{d}$$

37.
$$\frac{-1}{4\pi\epsilon_0} \frac{Q}{R}$$
. 39. (a) $\frac{-5}{4\pi\epsilon_0} \frac{Q}{R}$. (b) $\frac{-5}{4\pi\epsilon_0} \frac{Q}{(z^2 + R^2)^{1/2}}$

41.
$$\frac{-Q/L}{4\pi\epsilon_n} \ln\left(\frac{L}{d}+1\right)$$
.

344 ELETROMAGNETISMO

43. Em V/m, ab: -6,0; bc: zero; ce: 3,0; ef: 15; fg: zero; gh:

-3,0. **49.** (a)
$$\frac{\lambda}{4\pi\epsilon_0} \ln\left(\frac{L+x}{x}\right)$$
. (b) $\frac{\lambda}{4\pi\epsilon_0} \frac{L}{x(L+x)}$.

(c) Zero. **51.** (a) $qd/2\pi\epsilon_0 a(a+d)$. **53.** – 1,9 J.

55. (a) 0,484 MeV. (b) Zero. 57. -1.2×10^{6} J.

59. (a) $+6.0 \times 10^4$ V. (b) -7.8×10^5 V. (c) 2.5 J.

(d) Aumenta. (e) O mesmo. (f) O mesmo.

61.
$$W = \frac{qQ}{8\pi\epsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$
 63. 1.8×10^{-10} J.

65. (a) 0,225 J. (b) 22,5 m/s2.

(c) A: 7,75 m/s; B: 3,87 m/s. 67. (a) 25 fm.

(b) O dobro. 69. $\sqrt{2}eV/m$.

71. 23 km/s. 73. 400 V. 75. 2.5×10^{-8} C.

79. (a) -180 V. (b) 3.000 V; -9.000 V.

81.
$$r < R_1$$
: $E = 0$; $V = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{R_1} + \frac{q_2}{R_2} \right)$. $R_1 < r < R_2$:
$$E = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r^2}; V = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{r} + \frac{q_2}{R_2} \right). r > R_2$$
:
$$E = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1 + q_2}{r^2} \right); V = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1 + q_2}{r^2} \right).$$
 83. 9,52 kW.

Capítulo 27

1. 7,5 pC. 3. 3,0 mC. 5. (a) 140 pF. (b) 17 nC.

7. 0.55 pF. 9. 4×10^{-7} C. 11. $5.05 \pi \epsilon_0 R$. 15. 9.090.

17. 7,33 μ F. 19. (a) 2,40 μ F. (b) 0,480 mC em ambos.

(c) $V_2 = 120 \text{ V}$; $V_1 = 80 \text{ V}$. 21. (a) d/3. (b) 3d.

25. (a) Cinco em série. (b) Três setas como em (a) em paralelo. Há outras possibilidades. 27. 43 pF.

29.
$$q_1 = \frac{C_1 C_2 + C_1 C_3}{C_1 C_2 + C_1 C_1 + C_2 C_3} C_1 V_0;$$
$$q_2 = q_3 = \frac{C_2 C_3}{C_1 C_2 + C_1 C_3 + C_2 C_3} C_1 V_0.$$

31. Primeiro caso: 50,0 V; segundo caso: zero.

33. (a) 3,05 MJ. (b) 0,847 kW·h. **35.** (a) 0,204 μ J.

(b) Não. 37. 0,27 J. 39. 4,9%. 41. 10,4 ¢.

43. (a) 2,0 J. **45.** (a) $q_1 = q_2 = 0.33$ mC, $q_3 = 0.40$ mC.

(b) $V_1 = 33 \text{ V}$; $V_2 = 67 \text{ V}$; $V_3 = 100 \text{ V}$. (c) $U_1 = 5.4 \text{ mJ}$;

 $U_2 = 11 \text{ mJ}$; $U_3 = 20 \text{ mJ}$. 53. Pirex. 55. (a) 6,2 cm.

(b) 280 pF. 57, 0,63 m², 59, (a) 2,85 m³.

(b) 1.01×10^4 . (a) $\epsilon_0 A/(d-b)$. (b) d/(d-b).

(c)
$$-q^2b/2\epsilon_0 A$$
; é puxada. 65. $\frac{\epsilon_0 A}{4d} \left(\kappa_1 + \frac{2\kappa_2 \kappa_3}{\kappa_2 + \kappa_3}\right)$

67. (a) 13,4 pF. (b) 1,15 nC. (c) 1,13 \times 10⁴N/C.

(d) $4,33 \times 10^3$ N/C. **69.** (a) 89 pF. (b) 120 pF.

(c) 11 nC; 11 nC. (d) 10 kV/m. (e) 2,1 kV/m.

(f) 88 V. (g) 0,17 μJ.

Capítulo 28

1. (a) 1.200 C. (b) 7.5×10^{21} . 3. 5.6 ms.

5. (a) 6,4 A/m², norte. 7. 0,38 mm.

9. 0,67 A, na direção do terminal negativo.

11. (a) $0.654 \mu A/m^2$. (b) 83,4 MA. 13. 13 min.

15. (a) $\bar{J}_0 A/3$, (b) $2J_0 A/3$. **17.** 2,0 × 10⁻⁸ Ω ·m.

19. 2,4 Ω . **21.** 2,0 \times 10⁶ (Ω ·m)⁻¹. **23.** 57°C.

25. (a) 0,38 mV. (b) Negativo. (c) 3 min 58 s.

27. 54 Ω. 29. 2,9 mm. 31. (a) 2,39, o do ferro sendo maior.

(b) Não, 33, (a) Prata. (b) 51,6 nΩ. 35, 2.000 K. . .

37. (a) 38,3 mA. (b) 109 A/m². (c) 1,28 cm/s.

(d) 227 V/m. 39. (a) 1,73 cm/s. (b) 3,24 pA/m².

41. (a) 0,43%; 0,0017%; 0,0034%. **45.** 560 W.

47. 0,20 hp. 49, 0,135 W. 51. (a) 4,9 MA/m².

(b) 83 mV/m. (c) 25 V. (d) 640 W.

53. Novo comprimento = 1,369L; nova área = 0,730 A.

55. (a) 5,85 m. (b) 10,4 m.

57. (a) \$4,46 para um mês com 31 dias. (b) 144 Ω .

(c) 0,833 A. **59.** (a) 9.4×10^{13} s⁻¹. (b) 240 W.

61. 710 cal/g. 63. (a) 8,6%. (b) Menor.

Capítulo 29

1, (a) 1.9×10^{-18} J (= 12 eV), (b) 6.5 W.

3. (a) \$320. (b) 9.6¢. 5. (a) Anti-horário.

(b) Bateria 1. (c) B.

7. (c) O terceiro gráfico dá a taxa de dissipação de energia por R.

9. (a) 14 V. (b) 100 W. (c) 600 W. (d) 10 V; 100 W.

11. (a) 50 V. (b) 48 V. (c) B é o terminal negativo.

13. 2,5 V. **15.** (a) 990 Ω . (b) 9,4 \times 10⁻⁴ W.

17. 8.0 Ω. 19. O cabo. 21. (a) 1.000 W.

(b) 300 mV. (c) 2.3×10^{-3}

23. (a) 1.32×10^7 A/m² em cada um.

(b) $V_A = 8.90 \text{ V}$; $V_B = 51.1 \text{ V}$. (c) A: cobre; B: ferro.

25. Silício: 85,0 Ω ; ferro: 915 Ω . **27.** 4,00 Ω , em paralelo.

29. $i_1 = 50 \text{ mA}$; $i_2 = 60 \text{ mA}$; $V_{ab} = 9.0 \text{ V}$.

31. (a) 6.67 Ω . (b) 6.67 Ω . (c) Zero. **33.** (a) R_2

(b) R₁ 35, 3d, 37, 7,5 V. 39, Nove.

41. (a) $2\mathcal{E}/(2r+R)$, série; $2\mathcal{E}/(r+2R)$, paralelo.

(b) Série. (c) Paralelo.

43. (a) Ramo esquerdo, 0,67 A, para baixo; ramo central, 0,33 A, para

cima; ramo direito, 0,33 A, para cima. (b) 3,3 V, 45. (a) 120 Ω .

(b) $i_1 = 50 \text{ mA}$; $i_2 = i_3 = 20 \text{ mA}$; $i_4 = 10 \text{ mA}$.

47. (a) 19.5 Ω . (b) 0. (c) \propto . (d) 82.3 W, 57.6 W. **49.** (a) 2,50 Ω . (b) 3,13 Ω .

51. $100R(\mathcal{E}x/R_0)^2/(100R/R_0 + 10x - x^2)^2$, x em cm.

53. (a) 13,5 k Ω . (b) 1.500 Ω . (c) 167 Ω . (d) 1.480 Ω .

55. 0.45 A. **57.** (a) 12,5 V. (b) 50 A. **59.** 0.9%. **65.** (a) 2.52 s. (b) 21,6 μ C. (c) 3,40 s. **67.** (a) 0,41 τ .

(b) 1,1 τ . **69.** (a) 2,17 s. (b) 39,6 mV. **71.** (a) 10^{-3} C.

(b) 10^{-3} A. (c) $V_C = 10^3 e^{-i}$, $V_R = -10^3 e^{-i}$, volts.

73. 0.72 M Ω . 77. Decresce 13 μ C.

Capítulo 30

1. M/QT **3.** (a) 9,56 × 10 ¹⁴N; zero. (b) 0,267°.

5. (a) $(6.2 \times 10^{-14} \,\mathrm{N}) \mathrm{k}$. (b) $-(6.2 \times 10^{-14} \,\mathrm{N}) \mathrm{k}$.

7. (a) Leste. (b) 6.28×10^{14} m/s². (c) 2.98 mm. 9. 2.

11. (a) 3,75 km/s. 13. 680 kV/m.

17. (b) 2.84×10^{-3} . 19. 21 μ T. 21. 1.6×10^{-8} T.

23. (a) 1.11×10^7 m/s. (b) 0.316 mm.

25. (a) $2,60 \times 10^6$ m/s. (b) $0,109 \mu$ s. (c) 0,140 MeV.

(d) 70 kV. **29.** (a) $K_0 = K_0 = \frac{1}{2}K_0$.

(b) $R_d = R_{\alpha} = 14$ cm. 33. (a) 495 mT. (b) 22.7 mA.

(c) 8,17 MJ. 35, (a) 0,36 ns. (b) 0,17 mm.

(c) 1,5 mm. 37. (a) 2.9998×10^8 m/s. 39. (a) 22 cm.

(b) 21 MHz. 41. O nêutron se move tangenciando a trajetória original;

o próton se move numa órbita circular de raio 25 cm.

43. Caso (b). 45. 20,1 N.

47. $-(2.5 \times 10^{-3} \text{ N})\mathbf{j} + (0.75 \times 10^{-3} \text{ N})\mathbf{k}$.

51. (a) 3.3×10^{8} A. (b) 1.0×10^{17} W. (c) Totalmente irreal.

53. (a) 0; 1,38 mN; 1,38 mN.

55. (a) 20 min. (b) $5.9 \times 10^{-2} \,\mathrm{N} \cdot \mathrm{m}$.

59. $2\pi aiB$ sen θ , normal ao plano da bobina (para cima).

61. 2,45 A. 63. 2,08 GA. 65. (a) 0,30 J/T.

(b) 0,024 N·m.

67. (a) $(8.0 \times 10^{-4} \text{ N} \cdot \text{m}) (-1.2 \text{i} - 0.90 \text{j} + 1.0 \text{k})$.

(b) $-6.0 \times 10^{-4} \text{ J}.$

Capítulo 31

1. 7,7 mT. 3. (a) 3.3×10^{-6} T. (b) Sim.

5. (a) (0.24 nT)i. (b) Zero. (c) -(43 pT)k.

(d) (0,14 nT)k. 7. (a) 16 A. (b) De oeste para leste.

9. (a) 3.2×10^{-16} N, paralela à corrente.

(b) 3.2×10^{-16} N, radialmente para for se v for paralelo à corrente.

(c) Zero. 11. (a) Zero.

(b) $\mu_0 i/4R$, para dentro da página. (c) Igual ao do item (b).

13.
$$\frac{\mu_0 i}{4} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
 para dentro da página. 15. 2 rad.

25. 200 μ T, para dentro da página. **27.** (a) No ponto médio entre eles o único valor possível é B=0.

(b) 30 A. 29. Em todos os pontos entre os fios, sobre uma linha paraiela a eles, a uma distância d/4 do fio que transporta a corrente i.

35, 0,338 $\mu_0 i^2/a$, apontando para o centro do quadrado.

37. (b) Para a direita. 39. (b) 2,3 km/s. 41. + $5\mu_0 i_0$.

43. 4,5 × 10⁻⁶ T·m. 47. (a) $\mu_0 ir/2\pi c^2$. (b) $\mu_0 i/2\pi r$.

(c)
$$\frac{\mu_0 i}{2\pi (a^2 - b^2)} \left(\frac{a^2 - r^2}{r}\right)$$
 (d) Zero.

49. 3i/8, para dentro da página. 53. 5.71 mT. 55. 108 m.

61. 0,272 A. **63.** 0,47 A·m². **65.** $8\mu_0Ni/5\sqrt{5}R$.

67. (b) ia^2 . **71.** (a) 79 μ T. (b) 1,1 \times 10⁻⁶ N·m.

73. (a) $(\mu_0 i/2R) (1 + 1/\pi)$, para fora da página.

(b) $(\mu_0 i/2\pi R) \sqrt{1+\pi^2}$, 18° para fora da página.

Capítulo 32

1. 57 μWb. 3. 1.5 mV. 5. (a) 31 mV.

(b) Da direita para a esquerda. 7. A²B²/RΔt. 9. (b) 58 mA.

11. 1,2 mV. 13. 1,15 μWb.

15. 51 mV; sentido horário quando vista ao longo da direção de B.

17. (b) Não. 19. (a) 21,7 V. (b) Anti-horário.

21. (a) 13 µWb/m. (b) 17%. (c) Fluxo zero.

23. (a) 48,1 mV. (b) 2,67 mA.

25. BiLt/m, se afastando do gerador. 27. (a) 85,2 T·m².

(b) 56,8 V. (c) Linearmente.

29. (b) Projete-a de modo que $Nab = (5/2\pi) \text{ m}^2$.

31. 268 W. 33. 15,5 μ C. 35. (a) 0,598 μ V.

(b) No sentido contrário ao dos ponteiros do relógio.

37. (a)
$$\frac{\mu_0 ia}{2\pi} \ln \left(\frac{2r+b}{2r-b} \right)$$

(b) $2\mu_0 iabv/\pi R(4r^2 - b^2)$.

39. (a) $3.4(2 + \theta)$ m Ω , θ em rads. (b) 4.3θ mWb, θ em rads.

(c) 2,0 rad. (d) 2,2 A.

41. 1: -1,07 mV; 2: -2,40 mV; 3: 1,33 mV.

43. Em a: 4,4 × 10⁷ m/s², para a direita. Em b: zero. Em c:

 $4.4 \times 10^7 \,\text{m/s}^2$, para a esquerda. **45.** (a) 1.°, 2.°, 5.°, 6.°. (b) 1.°, 4.°, 5.°, 8.°. (c) 1.°, 5.°.

Capítulo 33

1. $0,1 \mu \text{Wb}$. 3. (a) 800. (b) $2.5 \times 10^{-4} \text{H}$.

5. (b) De modo que o campo magnético variável de um não induza cor-

rente no outro. (c)
$$L_{eq} = \sum_{j=1}^{N} L_{j}$$
.

7. (a) $\mu_0 i/W$. (b) $\pi \mu_0 R^2/W$. 9. (a) Decrescendo.

(b) 0,68 mH, 11. (a) 0,10 H. (b) 1,3 V.

13. (a) 16 kV. (b) 3,1 kV. (c) 23 kV. **15.** 6,91 τ_t .

17. 1,54 s. 19. (a) 8,45 ns. (b) 7,37 mA.

21. (42 + 20 t) V. 23. 12,0 A/s.

25. (a) $i_1 = i_2 = 3,33$ A. (b) $i_1 = 4,55$ A; $i_2 = 2,73$ A.

(c) $i_1 = 0$; $i_2 = 1.82$ A. (d) $i_1 = i_2 = 0$. 27. (a) 1.5 s.

29. (a) 13,9 H. (b) 120 mA. **31.** (a) 10 A. (b) 100 J.

33, 25,6 ms. 35, (a) 18,7 J. (b) 5,10 J. (c) 13,6 J.

39, 5,58 A. 41, 3×10^{36} J. 43, (a) 1,3 mT.

(b) 0,63 J/m³. 45, (a) 1,0 J/m³.

(b) 4.8×10^{-15} J/m³. **47.** (a) 1.67 mH. (b) 6,00 mWb.

49. (b) As espiras de um solenóide devem estar enroladas no sentido oposto às do outro solenóide.

51. O campo magnético só existe dentro da seção transversal do sole-

53. (a)
$$\frac{\mu_0 Nl}{2\pi} \ln \left(1 + \frac{b}{a} \right)$$
. (b) 13 μ H.

Capítulo 34

5. (b) Na direção do vetor do momento angular.

7. + 3 Wb. **9.** $(\mu_0 i L/\pi) \ln 3$. **11.** 13 MWb, para fora.

15. 1.660 km. **17.** 61,1 μ*T*; 84,2°. **19.** 20,8 mJ/T.

21. Sim. 23. (a) 3,7 K. (b) 1,3 K.

27. $\Delta \mu = e^2 r^2 B/4m$. **29.** (a) 3.0 μ T.

(b) 5.6×10^{-10} eV. 31. (a) 8.9 A·m^2 . (b) 13 N·m.

Capítulo 35

1. 9,14 nF. 3. 45,2 mA, 5. (a) 6,00 μ s. (b) 167 kHz.

(c) 3.00 μ s. 7. (a) 89 rad/s. (b) 70 ms. (c) 25 μ F.

9. 38 μ H. **11.** 7.0 \times 10⁻⁴ s. **15.** (a) 3.0 nC.

(b) 1,7 mA, (c) 4,5 nJ. 17. (a) 3,60 mH.

(b) 1,33 kHz. (c) 0,188 ms.

19. 600, 710, 1.100, 1.300 Hz. **21.** (a) $Q/\sqrt{3}$. (b) 0,152.

25. (a) 1,98 μ J. (b) 5,56 μ C. (c) 12,6 mA.

(d) -46.9° . (c) $+46.9^{\circ}$. 27. (a) 356 μ s.

(b) 2,50 mH. (c) 3,20 mJ. 29. (a) Zero. (b) 2i(t).

31. 8,66 m Ω . **33.** (*L/R*)ln 2. **35.** (b) 2,10 × 10⁻³.

37. 1.84 kHz.

39. 1,13 kHz; 1,45 kHz; 1,78 kHz; 2,30 kHz.

Capítulo 36

1. 377 rad/s. 3. (a) 955 mA. (b) 119 mA.

5. (a) 4,60 kHz. (b) 26,6 nF.

(c) $X_L = 2,60 \text{ k}\Omega$; $X_C = 0,650 \text{ k}\Omega$. 7. (a) 0,65 kHz.

(b) 24 Ω. 9. (a) 39,1 mA. (b) Zero. (c) 33,8 mA.

(d) Fornecendo energia. 11. (a) 6,73 ms. (b) 2,24 ms.

(c) Capacitor. (d) 59,0 μF.

13. (a) $X_C = 0$; $X_L = 86.7 \Omega$; $Z = 182 \Omega$; I = 198 mA; $\phi = 28.5^{\circ}$.

15. (a) $X_C = 37.9 \ \Omega$; $X_L = 86.7 \ \Omega$; $Z = 167 \ \Omega$;

 $I = 216 \text{ mA}; \ \phi = 17.1^{\circ}. \ 19.89 \ \Omega.$

21. (a) 224 rad/s, (b) 6,00 A. (c) 228 rad/s; 219 rad/s.

(d) 0,039, **23.** (a) 45,0°, (b) 70,7 Ω , **29.** 141 V.

31. Zero; 9,00 W; 3,14 W; 1,82 W. 33, 177 Ω.

35. 7,61 A. 41. (a) 117 μ F. (b) Zero.

(c) 90,0 W; zero. (d) 0°; 90°. (e) 1; 0. 43. (a) 2,59 A.

(b) 38,8 V; 159 V, 224 V, 64,2 V; 75,0 V.

(c) 110 W para R; zero para L e C. 45. (a) 2,4 V.

(b) 3,2 mA; 0,16 A, 47. (a) 1,9 V; 5,8 W. (b) 19 V; 0,58 kW. (c) 0,19 kV; 58 kW.

Capítulo 37 3. Para r = 27.5 mm e r = 110 mm.

7. Variando a diferença de potencial entre as placas na taxa de 1,0 MV/s.

11. (a) 0,63 μ T. (b) 2,3 × 10¹² V/m·s. 13. (a) 2,0 A.

(b) $2.3 \times 10^{11} \text{ V/m} \cdot \text{s.}$ (c) 0.50 A. (d) $0.63 \mu \text{T} \cdot \text{m.}$

15. (a) 7,60 μ A. (b) 859 kV·m/s. (c) 3,39 mm.

(d) 5,16 pT.