Graphing Sine & Cosine (5.1)

Sunspots & CME
cycles within cycles
11 year cycle Schwabe
88 year cycle Gleissberg
200 year cycle Suess-DeVries
2400 year cycle Hallstatt
July 2012 CME missed us by 1 week

Solve for $\boldsymbol{\theta}$ in the specified domain. Give solutions as exact values where possible. day 1 Otherwise, give approximate me the nearest thousandth. a) $2\cos^2\theta - 3\cos\theta + 1 = 0, 0 \le \theta < 2\pi$ (b) $\tan^2 \theta - \tan \theta - 2 = 0, 0^\circ \le \theta < 360^\circ$ c) $\sin^2 \theta - \sin \theta = 0, \theta \in [0, 2\pi)$ **b)** √3 t d) $\sec^2 \theta - 2 \sec \theta - 3 = 0$, $\theta \in [-180^{\circ}, 180^{\circ})$ c) √2 s d) 3 sin (tano -2) (tano +1)=0 17. Identify t trigonom solution. each case 3. Determine th ᡚ᠊ᠺᢃ° each trigon statement in a) 2 cos θ 243 b) csc θ is u c) 5 - tan² d) $\sec \theta +$

Graphing Sine & Cosine (5.1)

The amplitude is like the height of a periodic function.

The formula for amplitude is $\frac{\max - \min}{2}$ For $y=\sin(x)$ and $y=\cos(x)$ the amplitude is 1.

The period of a periodic function is the time it takes for the function to repeat itself.

For $y=\sin(x)$ and $y=\cos(x)$ the period is 2π .

