# W1211 Introduction to Statistics Lecture 6

Wei Wang

Sep 24th, 2012

# The Law of Total Probability

The Law of Total Probability states, Let A<sub>1</sub>, ..., A<sub>k</sub> be mutually exclusive and exhaustive events. Then for any other event B.

$$P(B) = P(B|A_1)P(A_1) + ... + P(B|A_k)P(A_k)$$
$$= \sum P(B|A_i)P(A_i)$$

- $A_1, ..., A_k$  are exhaustive, if one  $A_i$  must occur, so that  $A_1 \cup ... \cup A_k = S$ .
- Proof: when k=2,

$$P(B) = P((B \cap A) \cup (B \cap A^{c}))$$

$$= P(B \cap A) + P(B \cap A^{c})$$

$$= P(B|A)P(A) + P(B|A^{c})P(A^{c})$$

# **Bayes Theorem**

With the help of the Law of Total Probability, we can state the Bayes Rule, which says, let A<sub>1</sub>, ..., A<sub>k</sub> be a collection of k mutually exclusive and exhaustive events with *prior* probabilities P(A<sub>i</sub>) (i=1,...,k). Then for any other event B for which P(B) >0, the *posterior* probability of A<sub>i</sub> given that B has occurred is,

$$P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^k P(B|A_i)P(A_i)}$$

• When k=2, we have,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

 Bayes Rule can be used to "reverse" the probability from the conditional probability that was originally given, or to find the cause given the result.

# Bayes Theorem Example

One percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 90% detection rate for carriers and a 5% detection rate for noncarriers. If a person is tested positive, what's the probability that this person is a carrier?

# Bayes Theorem Example

One percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 90% detection rate for carriers and a 5% detection rate for non-carriers. If a person is tested positive, what's the probability that this person is a carrier?

```
P(\text{is a carrier}|\text{tested positive})
= \frac{P(\text{carrier} \cap \text{tested positive})}{P(\text{tested positive})}
= \frac{P(\text{positive}|\text{carrier})P(\text{carrier})}{P(\text{positive}|\text{carrier})P(\text{carrier})P(\text{non-carrier})}
```

# Independence

- ▶ Definition: Two events A and B are independent if P(A|B) = P(A) (or alternatively P(B|A) = P(B)).
- A and B are independent if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

► Independent Events ≠ Disjoint Events.

# When will we have independence

► Well, in the context of exam or homework problems, it is often given as the conditions.

# When will we have independence

- ► Well, in the context of exam or homework problems, it is often given as the conditions.
- ► Finite Population v.s. Infinite Population

# **Multiple Events**

• Events  $A_1, ..., A_n$  are mutually independent if for every k (k = 2, 3, ..., n) and every subset of indices  $i_1, i_2, ..., i_k$ ,

$$P(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}) = P(A_{i_1}) P(A_{i_2}) ... P(A_{i_k}).$$

Independence is very very important!

# **Example**

Ex. You recently bought a new set of tires from a manufacturer who just announced a recall because 2% of that particular brand were defective. What is the probability that at least one of your tires is defective? You may assume that the tires are defective independently of one another.

```
P(at least one defective tire) = 1 – P(no defective tire)

Let A_i = tire i is not defective

P(A_i) = 1-0.02 = 0.98

P(no defective tire) = P(A_1 \cap A_2 \cap A_3 \cap A_4)

= P(A_1) P(A_2) P(A_3) P(A_4) = (0.98)^4

P(at least one defective tire) = 1-(0.98)^4 = 0.0776
```

### Random Variables

- A random variable is a variable whose value is a numerical outcome of a random phenomenon.
- ► For a given sample space S of some experiment, a random variable is any rule that associates a number with each outcome in S.
- To put it more mathematically, a random variable is a function whose domain is the sample space and whose range is the set of real numbers.

# Random Variables v.s. Experiments

- An experiment is a physical setup in real world that provides us intuition about randomness.
- ► A random variable is a mathematical abstraction that describes randomness.
- When the outcome of the experiment can be seen as numerical, e.g., roll a die, we can effectively treat the experiment as a random variable.
- But for most RVs, especially continuous one, it is difficult to find some experiment that provides physical setup and intuition.

#### Discrete vs. Continuous

- X is a discrete random variable if its possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on ("countably" infinite).
- X is a continuous random variable if it takes all possible values in an interval of numbers or all numbers in a disjoint union of such intervals. No possible value of the variable has positive probability, that is, P(X=c) = 0 for any possible value c.
- X can also be a random variable with a mixture distribution of both discrete and continuous components.

#### **PMF**

 The probability model for a discrete random variable X, lists its possible values and their probabilities.

| Value of X  | <b>X</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | <br>X <sub>k</sub> |
|-------------|-----------------------|-----------------------|--------------------|
| Probability | p <sub>1</sub>        | p <sub>2</sub>        | <br>p <sub>k</sub> |

- Every probability, p<sub>i</sub>, is a number between 0 and 1.
- $p_1 + p_2 + ... + p_k = 1$
- The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number x by  $p(x) = P(X=x) = P(all \ s \in S: X(s)=x)$ .
- How to check if some function p(x) is a proper PMF?

## Bernoulli RV

- The arguably simplest probability model is Bernoulli. Any random variable whose possible values are only 0 and 1 is called a Bernoulli random variable.
- ▶ Ex. Flip a coin.  $S = \{H, T\}$ . We can define a Bernoulli random variable, X(H) = 1, X(T) = 0. Then the distribution of X is

$$P(X = 1) = .5, P(X = 0) = .5$$

▶ Ex. Roll a die.  $S = \{1, 2, 3, 4, 5, 6\}$ . We can define a bernoulli random variable, X(1) = X(2) = 1, X(3) = X(4) = X(5) = X(6) = 0. Then the distribution is

$$P(X = 1) = 1/3, P(X = 0) = 2/3$$

## **Example**

Ex. Flip three fair coins. (*Binomial*)

S = {HHH, HHT, HTH, HTT, THH, TTH, TTH, TTT}. Let's define random variable X to be the number of heads in the experiment, i.e., X(HHH)=3, X(THT)=1, etc.

```
X
0 TTT
1 TTH THT HTT
2 THH HTH HHT
3 HHH
```

| Value of X  | 0     | 1     | 2     | 3     |
|-------------|-------|-------|-------|-------|
| Probability | 0.125 | 0.375 | 0.375 | 0.125 |

One can calculate the probability of an event by adding the probabilities  $p_i$  of the particular values of  $x_i$  that make up the event. For example, if we want to know the probability of getting less than 2 heads, we can use

$$P(X<2) = P(X=0) + P(X=1) = 0.125 + 0.375 = 0.5$$
  
Note:  $P(X\le2) = P(X=0) + P(X=1) + P(X=2) = 0.875$ 

#### **CDF**

 The cumulative distribution function (cdf) F(x) of a discrete rv variable X with pmf p(x) is defined for every number x by

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y).$$

For any number x, F(x) is the probability that the observed value of X will be at most x.

 For X a discrete rv, the graph of F(x) will have a jump at every possible value of X and will be flat between possible values. Such a graph is called a step function.

#### The three coin flips example



# **Parameter and Family**

• Suppose p(x) depends on a quantity that can be assigned any one of a number of possible values, with each different value determining a different probability distribution. Such a quantity is called a parameter of the distribution. The collection of all probability distributions for different values of the parameter is called a family of probability distributions.

Ex. For Bernoulli rv's, the parameter is the probability of being 1 (or 0), that is, p = P(X=1)

## **Expectation and Variance**

- Random variables have distributions, so they have centers and spreads.
- The expected value (mean value or expectation) of a random variable describes its theoretical long-run average value.
- We typically use  $\mu$  or E(X) to denote the mean, Var(X) to denote the variance and  $\sigma$  or SD(X) to denote the standard deviation of a rv X.

# **Motivating examples**

Ex. How many heads would you expect if you flipped a fair coin twice?

```
S = \{HH, HT, TH, TT\}.
```

X = number of heads.

```
0 TT
```

1 HT TH

2 HH

$$p(X=0) = 0.25$$
;  $p(X=1) = 0.5$ ;  $p(X=2) = 0.25$ .

Each outcome is weighted by its probability.

$$\mu = 0 \times 0.25 + 1 \times 0.5 + 2 \times 0.25 = 1$$



# **Example**

Ex. How many heads would you expect if you flipped a coin three times?

$$\mu = 0 \times 0.125 + 1 \times 0.375 + 2 \times 0.375 + 3 \times 0.125 = 1.5$$

This can never occur in a single trial of 3 flips. However, on average we would expect to get 1.5 heads if we repeated the experiment many times.

#### **Definition**

• Suppose X is a discrete random variable whose probability model is given by

| Value of X  | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <br>X <sub>k</sub> |
|-------------|-----------------------|-----------------------|--------------------|
| Probability | p <sub>1</sub>        | p <sub>2</sub>        | <br>p <sub>k</sub> |

The expected value of X is given by

$$E(X) = \mu_X = \sum_{x \in D} x \cdot p(x) = x_1 p_1 + x_2 p_2 + \dots + x_k p_k$$

# **Example**

Ex. Expectation of a Bernoulli rv.

$$p(x) = \begin{cases} 1 - p & x = 0 \\ p & x = 1 \\ 0 & x \neq 0, 1 \end{cases}$$
$$\mu = 0 \times (1-p) + 1 \times p = p.$$