Formulari de física

El document consta de 4 pàgines.

- Fórmules 1a part (mecànica): pàgina 2.
- Fórmules 2a part (electromagnetisme): pàgina 3.
- Fórmules 1a part resumida + 2a part sencera: pàgina 4.

Els qui recupereu el parcial imprimiu les pàgines 2 i 3, els que no, podeu portar només la 3 (la pàgina 4 és pels qui no recupereu el parcial, però voleu algunes fórmules del parcial igualment).

Assegura't que tens l'última versió el dia de l'examen!

Última modificació: 21:54, 22 de juny de 2018

ApuntsFME

Cinemàtica

1.1 Descripció del moviment

Arc d'una corba: $s(t) = \int_{t_0}^{t} ||\vec{r}'(\tau)|| d\tau$.

 $\bullet \frac{\mathrm{d}s}{\mathrm{d}t} = \|\vec{v}(t)\|.$

Vec. unitari tq.: $\frac{d\vec{r}}{ds} = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} = \frac{\vec{v}(t)}{\|\vec{v}(t)\|} = \vec{t}.$

Vec. unitari normal: $\vec{n} = \frac{d\vec{t}/ds}{\|d\vec{t}/ds\|}$.

Binormal: $\vec{b} = \vec{t} \times \vec{n}$. Curvatura: $\kappa = \|\frac{\mathrm{d}t}{\mathrm{d}s}\|$

Radi de curvatura: $\rho = \frac{1}{\kappa}$. Centre de curvatura: $P = \vec{r} + \rho \vec{n}$.

Velocitat: $\vec{v} = v\vec{t}$.

Acceleració: $\vec{a} = \frac{dv}{dt}\vec{t} + \frac{v^2}{a}\vec{n}$.

1.2 Moviment circular

Posició: $\vec{r}(t) = R(\cos \theta, \sin \theta, 0)$.

Celeritat: $v = R\dot{\theta} = R\omega$.

Acceleració: $\vec{a} = (R\alpha)\vec{t} + (R\omega^2)\vec{n}$.

1.3 Sòlid rígid

Moviment fixant origen P del sòlid:

 $\vec{v} = \vec{\omega} \times \vec{r}$. $\vec{a} = \vec{\alpha} \times \vec{r} - \omega^2 \vec{r}$.

Centre instantani de rotació: $\vec{r}_{\text{CIR}} = \vec{r}_p + \frac{\omega \times \vec{v}_p}{\omega^2}$.

Dinàmica

$\mathbf{2.1}$ \mathbb{R}

F. gravitatòria: $\vec{F}_{ab} = -G \frac{m_a m_b}{\|\vec{r}_{ca}\|^3} \vec{r}_{ab}$.

F. elàstica: $\vec{F}_{e}(x) = -kx$.

Mov. osc. harm.: $x(t) = A\sin(\omega t + \varphi_0), \ \omega = \sqrt{k/m},$

 $T=2\pi\sqrt{m/k}$.

F. fregament estàtica: $|\vec{F}_{\mu}| \leq \mu |\vec{N}|$

F. fregament dinàmica: $|\vec{F}_{\mu}| = \mu' |\vec{N}|$

F. frequent viscós: $\vec{F}_f = b\vec{v}$.

E. cinètica: $E_c = \frac{1}{2}mv^2$.

E. potencial: U(x) t.q. $\frac{dU}{dx} = -F(x)$,

 $E_{\rm p} = -\int_{x_0}^x F(z) \,\mathrm{d}z.$

E. mecànica: $E_{\text{mec}} = E_{\text{c}} + E_{\text{p}}$.

E. pot. elàstica: $\frac{1}{2}kx^2$.

$\mathbf{2.2}$ \mathbb{R}^3

Treball (J): $W_{1\rightarrow 2} = \int_{x_1}^{x_2} \vec{F} \cdot d\vec{l}$.

 $\bullet \, \mathrm{d}W = \vec{F} \cdot \mathrm{d}\vec{l}.$

Potència (W): $P = \frac{dW}{dt} = \frac{\vec{F} \cdot d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$.

• $E_{\rm c} = \frac{1}{2}m\vec{v}^2$, $\frac{\mathrm{d}E_{\rm c}}{\mathrm{d}t} = m\vec{v} \cdot \vec{a} = \vec{F} \cdot \vec{v}$.

Si F conservativa: $\vec{F}(\vec{r}) = -\vec{\nabla}U(\vec{r})$. $\bullet E_{c}(\vec{r}_{2}) - E_{c}(\vec{r}_{1}) = \dot{W}_{1\rightarrow 2}.$

 $\bullet \Delta E_{\rm mec} = W_{\rm n.c.}$

D. de sistemes puntuals

3.1 Moment lineal

Moment lineal: $\vec{P} = m\vec{v}$.

Impuls mec.:

 $\vec{I} = \int_{t_1}^{t_2} F \, dt = \vec{P}(t_2) - \vec{P}(t_1) = \Delta \vec{P}.$ Moment d'una força respecte O: $\vec{M}_O = \vec{r} \times \vec{F}, \ \vec{M}_A = \vec{AO} \times \vec{F} + \vec{M}_O.$

3.2 Moment angular

Moment angular:

 $\vec{L}_O = \vec{r} \times m\vec{v} = \vec{r} \times \vec{P}$, $\vec{L}_A = \vec{L}_O + \vec{AO} \times \vec{P}.$

 $\bullet \ \vec{M}_O = \frac{d\vec{L}_O}{dt}.$

Si A en moviment:

 $\frac{\mathrm{d}\vec{L}_A}{\mathrm{d}t} = \vec{M}_A - \vec{v}_A \times \vec{P}.$

Impuls angular: $\vec{J} = \int_{t_1}^{t_2} \vec{M}_O dt$.

3.3 Sòlid rígid

Moment d'inèrcia: $I = \sum m_i d_i^2$.

• $\vec{L_e} = I_e \vec{\omega}, \ \frac{dL_e}{dt} = I_e \alpha = M_e.$

• $I_{\rm CM} = \int r^2 \, \mathrm{d}m$.

Teo. Steiner: $I_O = I_{CM} + Md^2$. Eix fix: $E_c = \frac{1}{2}I_e\omega^2$

Eix mòbil: $E_{\rm c} = \frac{1}{2}I_{\rm CM}\omega^2 + \frac{1}{2}M\vec{v}_{\rm CM}^2$.

E. potencial: $U = U_{CM}$.

Gravetat: $\vec{M}_{\text{grav}} = \vec{r}_{\text{CM}} \times (m\vec{q})$.

Moments d'inèrcia

Respecte al CM:

Barra: $\frac{1}{12}mL^2$.

Pla (eix perpendicular):

 $\frac{1}{12}m(h^2+w^2)$.

Pla (eix paral·lel): $\frac{1}{12}mL^2$.

Corona circular/Tub: $\frac{1}{2}m(R^2+r^2)$.

	~	
	Sòlid	Buit
Disc/Cil.	$^{1/_{2}} mr^{2}$	mr^2
Esfera	$\frac{2}{5} mr^2$	$^{2}/_{3} mr^{2}$
Cub	$1/6 \ ms^2$,
Con	$\frac{3}{10} mr^2$	$^{1}/_{2} mr^{2}$

3.4 Sistema de partícules

Centre de massa: $\vec{r}_{\text{CM}} = \frac{\sum m_i \vec{r}_i}{\sum m_i}$.

Moment lineal: $\vec{P} = \sum \vec{P_i} = M \vec{v}_{CM}$. 1a llei conservació:

 $\frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = \vec{F}^{\mathrm{ext}} = M\vec{a}_{\mathrm{CM}}.$ Moment angular:

 $\vec{L}_O = \sum \vec{L}_{O_i} = \sum \vec{r}_i \times m_i \vec{v}_i$.

 $\bullet \frac{d\vec{L}_O}{dt} = \sum \vec{r}_i \times \vec{F} = \vec{M}_O^{\text{ext}}.$

A punt $m\ddot{o}bil$:

 $\vec{L}_A = \vec{L}_O + M(\vec{r}_A - \vec{r}_{CM}) \times \vec{v}_A - \vec{r}_A \times \vec{P}.$

 $\bullet \frac{d\vec{L}_A}{dt} = \vec{M}_A^{\text{ext}} + M(\vec{r}_A - \vec{r}_{\text{CM}}) \times \vec{a}_A.$ $A \stackrel{\text{di}}{=} CM \ o \ punt \ fix:$

 $\vec{L}_{\mathrm{A}} = \vec{L}_{\mathrm{O}} - \vec{r}_{\mathrm{A}} \times \vec{P}, \ \vec{L}_{\mathrm{O}} = \vec{L}_{\mathrm{A}} + \vec{r}_{\mathrm{A}} \times \vec{P}.$

 $\bullet \ \frac{\mathrm{d}\vec{L}_{\mathrm{A}}}{\mathrm{d}t} = \vec{M}_{\mathrm{A}}^{\mathrm{ext}}.$

Energia cinètica:

 $E_{\rm c} = \frac{1}{2} \sum m_i (\vec{v}_i - \vec{v}_{\rm CM})^2 + \frac{1}{2} M \vec{v}_{\rm CM}^2$.

$W_{F_{int}} = 0$: $\frac{dE}{dt} = \sum_{i} \vec{F}_{nc}^{\text{ext}} \cdot \vec{v}_i$. 4 Percussions i xocs

Canvi m. lineal percussió: $\Delta \vec{P} = \vec{I}$. Canvi m. angular percussió: Si A és un punt fix o el CM, $J_A = \Delta L_A$. Per un sòlid rígid:

 $I_A \Delta \omega = J_A = \vec{r} \times \vec{I}$.

Coeficient de percussió (xoc):

 $e = -\frac{v_{1f} - v_{2f}}{v_{1i} - v_{2i}} = -\frac{v_{rel,f}}{v_{rel,i}}$

Energia xoc partícules:

 $\Delta E_{\rm c} = -\frac{1}{2}\mu \left(1 - e^2\right) v_{\rm rel,i}^2, \ \mu = \frac{m_1 m_2}{m_1 + m_2}$

Canvis de s. de ref.

 $\bullet \left(\frac{\mathrm{d}\vec{u}}{\mathrm{d}t}\right)_{S} = \left(\frac{\mathrm{d}\vec{u}}{\mathrm{d}t}\right)_{S'} + \vec{\omega} \times \vec{u}.$ $\bullet \ \vec{r}_P = \vec{r}_{O'} + \vec{r}_P'.$

- $\bullet \ \vec{v}_P = \vec{v}_{O'} + \vec{v}_P' + \vec{\omega} \times \vec{r}_P'.$
- $\bullet \ \vec{a}_P = \vec{a}_{O'} + \vec{a}_P' +$

 $2\vec{\omega}\times\vec{v}_P'+\vec{\omega}\times\left(\vec{\omega}\times\vec{r}_P'\right)+\vec{\alpha}\times\vec{r}_P'.$

acc. Coriolis acc. centrípeta

 $\bullet \ m\vec{a}_P' =$

 $m\vec{a}_P - [m\vec{a}_{O'} + m2\vec{\omega} \times \vec{v}_P' +$

f. real f. translació f. Coriolis $+ m\vec{\omega} \times (\vec{\omega} \times \vec{r}_P') + m\vec{\alpha} \times \vec{r}_P'$]. f. Euler f. centrífuga

6 Gravitació

Camp: $\vec{g} = -G \frac{M}{\|\vec{r}\|^3} \vec{r}$.

Força: $\vec{F}_{ab} = -G \frac{m_a m_b}{\|\vec{r}_{ab}\|^3} \vec{r}_{ab} = m\vec{g}$.

Potencial: $V = -G \frac{M}{||\vec{r}||}$,

 $V_a - V_b = \int_a^b \vec{q} \cdot d\vec{r}$.

Energia potencial: $U = -G\frac{Mm}{||\vec{x}||} =$

mV. $U_a - U_b = \int_a^b \vec{F} \cdot \vec{dr}$.

Potential efective: $U_{\rm ef}(r) = \frac{L^2}{2mr^2} - \frac{k}{r}$. Energia mecànica:

 $E_{\rm mec} = \frac{1}{2}mr'^2 + U_{\rm ef}(r).$

 $Tma. \ d\bar{e} \ Gauss:$

6.1 Lleis de Kepler

2a: El radi vector escombra àrees iguals en temps iguals.

 $\Im a$: $T^2 = \frac{4\pi^2}{GM}R^3$ (R radi mitjà).

6.2 Problema de Kepler

Excentricitat: $e = \sqrt{1 + \frac{2EL^2}{mk^2}}$. Posició: $\frac{1}{r} = \frac{mk}{L^2} (1 + e \cos \theta).$

6.3 Problema dels dos cossos Substitucions a Kepler: $m = \mu =$ $\frac{m_1 m_2}{m_1 + m_2}$, $k = G m_1 m_2$, $L = L_{\text{CM}}$.

 $x(t) \sim \theta(t), v \sim \omega, a \sim \alpha, m \sim I, F = ma \sim M = I\alpha,$ $W = \int F dx \sim W = \int M d\theta, E_c = \frac{1}{2}mv^2 \sim E_c = \frac{1}{2}I\omega^2,$ $U(x) = -\int_{x_0}^x F(x) dx \sim U(\theta) = -\int_{\theta_0}^{\theta} M d\theta,$ $\vec{P} = mv \sim \vec{L} = I\omega.$

Electrostàtica

Constants: $k = \frac{1}{4\pi\epsilon_0}$, $\epsilon_0 = 8,854 \cdot 10^{-12}$.

Camp e.: $\vec{E} = k \frac{q_{A}}{\|\vec{r}_{AB}\|^{3}} \vec{r}_{AB}$,

$$\vec{E}(\vec{r}) = \int_{\nu} \frac{k\rho(\vec{r'})}{\|\vec{r} - \vec{r'}\|^3} (\vec{r} - \vec{r'}) \, dV'.$$

Força (Coulomb): $\vec{F}_{AB} = k \frac{q_A q_B}{\|\vec{r}_{AB}\|^3} \vec{r}_{AB} = q_B \vec{E}_A$.

E. potencial: $U = k \frac{q_1 q_2}{\|\vec{r}\|}, \ U = \frac{1}{2} \int_{\mathcal{U}} \rho(\vec{r}) V(\vec{r}) \, dV$.

Potencial: $V = k \frac{q}{r}$, $V(\vec{r}) = \int_{\nu} \frac{k \rho(\vec{r'})}{\|\vec{r} - \vec{r'}\|} dV'$;

 $V = -\int_{-\infty}^{r} \vec{E} \, d\vec{r}, V_{\infty} = 0, V_{A} - V_{B} = \int_{A}^{B} \vec{E} \, d\vec{r}.$

 $\bullet \vec{E} = -\nabla V.$

 $\bullet \Delta V = \frac{\Delta U}{g_0}$.

Camp conservatiu: $\oint_{\mathcal{C}} \vec{E} \cdot \vec{dl} = 0$.

L. Gauss: $\oint_S \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \int_{\nu} \rho dV = \frac{Q_{\text{int}}}{\varepsilon_0}$.

Discont. superf.: $\mathbf{n} \cdot (\vec{E}_{+} - \vec{E}_{-}) = \frac{\sigma}{c_{0}}$.

7.1 Dipols

Moment dipolar: $\vec{p} = 2aq\vec{u}$.

Potencial: $V(\vec{r}) = k \frac{\cos \theta}{r^2} \cdot \vec{p} \approx \frac{k\vec{p}\cdot\vec{r}}{\vec{c}^3} (a \ll r).$

Camp e.: $\vec{E} = \frac{3k \cdot (\vec{p} \cdot \vec{r})\vec{r}}{r^5} - \frac{k\vec{p}}{r^3}$.

Força: $\vec{F} = \vec{\nabla}(\vec{p} \cdot \vec{E})$.

Moment: $\vec{M} = \vec{p} \times \vec{E}$.

7.2 Condensadors

Capacitat: $C = \frac{Q}{|V_1 - V_2|}$.

Intensitat: $I = C \frac{dV}{dt} = \frac{dQ}{dt}$

Energia: $U = \frac{1}{2}C(V_1 - V_2)^2$.

Càrrega RC: $V(t) = \varepsilon (1 - e^{-\frac{t}{RC}}), I = \frac{\varepsilon}{R} e^{\frac{-t}{RC}}$.

Electrocinètica

Conserv. càrrega: $\frac{d}{dt} \int_{\mathcal{U}} \rho \, dV + \oint_{\partial V} \vec{j} \cdot d\vec{S} = 0$, $\frac{\partial \rho}{\partial t} + \nabla \vec{j} = 0.$

Intensitat $I = \int_{S} \vec{j} \cdot d\vec{S}$

L. Ohm: V = IR, $\vec{i} = \gamma \vec{E}$

Conductors: $R = \int_a^b \frac{dl}{S_{\gamma}} = \frac{l}{S_{\gamma}} = \frac{rl}{S_{\gamma}}$

Conductivitat-Resistivitat: $\gamma = \frac{1}{r}$.

Potència: $P = \frac{E}{t} = VI$, $P = \int_{V} \vec{j} \cdot \vec{E} \, dV$. Treball: $W = \int_{r_1}^{r_2} F(\vec{r}) \cdot d\vec{r}$.

Magnetostàtica

Camp m.: $\vec{B} = \frac{\mu_0}{4\pi} \frac{q \cdot \vec{v} \times (\vec{r} - \vec{r'})}{\|\vec{r} - \vec{r'}\|^3}, \ \mu_0 = 4\pi \cdot 10^{-7}.$

Camp m. vol.: $\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{j}(\vec{r}') \times (\vec{r} - \vec{r'})}{\|\vec{r} - \vec{r'}\|^3} dV$.

Camp m. fil.: $\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \int_C \frac{\vec{d} \vec{l} \times (\vec{r} - \vec{r'})}{\|\vec{r} - \vec{r'}\|^3}$.

F. Lorentz: $\vec{F} = q \cdot \vec{v} \times \vec{B} = \vec{I} \vec{l} \times \vec{B}$.

F. sobre corrent: $\vec{F} = \int_{V} \vec{i} \times \vec{B} \, dV$.

Moment sobre corrent: $\vec{N_0} = \int_V \vec{r} \times (\vec{j} \times \vec{B}) \, dV$.

Camp Solenoidal: $\oint_{S} \vec{B} \cdot d\vec{S} = 0, \ \nabla \cdot \vec{B} = 0.$

L. Ampère: $\oint_C \vec{B} \cdot \vec{dl} = I_{\text{int}} \mu_0, \ \nabla \times \vec{B} = \mu_0 \vec{j}$.

10 Inductància

Flux: $\Phi = \int_{S} \vec{B} \cdot d\vec{S}$.

L. Faraday: $\varepsilon = -\frac{\mathrm{d}\Phi_{\mathrm{m}}}{\mathrm{d}t} = \oint_{\partial S} \vec{E} \cdot \vec{\mathrm{d}}\vec{l} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{S} \vec{B} \cdot \vec{\mathrm{d}}\vec{S}$.

10.1 Bobines

Camp m.: $B = \mu_0 nI$, n = N/l.

Autoinductància: $L = \frac{\phi}{I} = \mu_0 n^2 V$.

Potencial: $\varepsilon = L \frac{dI}{dt}$.

Càrrega RL: $I(t) = \frac{\varepsilon}{R} \left(1 - e^{-\frac{Rt}{L}} \right)$.

Energia RL: $U = \frac{1}{2}LI^2$.

Maxwell 11

Gauss: $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$, $\oint_{\partial V} \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int_{\nu} \rho \, dV$.

Faraday: $\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = \vec{0}$, $\oint_{\partial S} \vec{E} \cdot d\vec{l} + \frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S} = 0.$ Gauss m.: $\nabla \cdot \vec{B} = 0$, $\oint_{\partial V} \vec{B} \cdot d\vec{S} = 0$. Ampère-Maxwell: $\nabla \times \vec{B} = \mu_0 \vec{j} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$ $\phi_{as} \vec{B} \cdot \vec{dl} = \mu_0 \int_S \vec{j} \cdot \vec{dS} + \varepsilon_0 \mu_0 \frac{d}{dt} \int_S \vec{E} \cdot \vec{dS}.$

12.1 Integrals

- $\bullet \int \frac{1}{\sqrt{a+x^2}} dx = \log(\sqrt{a+x^2} + x).$
- $\bullet \int \frac{x}{\sqrt{a+x^2}} \, \mathrm{d}x = \sqrt{a+x^2}.$
- $\bullet \int \frac{1}{\sqrt{a+x^2}} \, \mathrm{d}x = \frac{x}{a\sqrt{a+x^2}}.$
- $\bullet \int \frac{x}{\sqrt{a+x^2}} dx = -\frac{1}{\sqrt{a+x^2}}.$
- $\int \sec dx = \ln (|\tan + \sec |)$.

12.2 Canvis de variables

Polars a \mathbb{R}^2 :

 $\int_{U} f(x, y) dx dy = \int_{V} f(r \cos \varphi, r \sin \varphi) r dr d\varphi.$ *Cilindriques a* \mathbb{R}^3 : $\int_{\mathcal{U}} f(x,y,z) dx dy dz =$ $\int_{V} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho \, d\rho \, d\varphi \, dz.$ Esfèriques a \mathbb{R}^3 : $\int_U f(x,y,z) dx dy dz =$ $\int_{V} f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)$ $r^2 \sin \theta \, dr \, d\varphi \, d\theta$.

12.3 EDOs

Formules: $\stackrel{\text{dt}}{a\dot{v}} + bv + c = 0$; $\frac{a}{b}\dot{v} + v + \frac{c}{b} = 0$; $(w = v + \frac{c}{b}), \frac{a}{b}\dot{w} + w = 0; \frac{a}{b}x + 1 = 0; x = \frac{-b}{a};$ $w = ke^{\frac{-b}{a}t} = v + \frac{c}{1}; v = ke^{\frac{-b}{a}t} - \frac{c}{1}.$

12.4 Altres

Esfera: $S = 4\pi r^2$, $V = \frac{4}{2}\pi r^3$.

Nom:

1 Cinemàtica

1.1 Descripció del moviment

Arc d'una corba: $s(t) = \int_{t_0}^t \|\vec{r}'(\tau)\| d\tau$.

 $\bullet \ \frac{\mathrm{d}s}{\mathrm{d}t} = \|\vec{v}(t)\|.$

Vec. unitari tg.:

 $\frac{d\vec{r}}{ds} = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} = \frac{\vec{v}(t)}{\|\vec{v}(t)\|} = \vec{t}.$

Vec. unitari normal: $\vec{n} = \frac{d\vec{t}/ds}{\|d\vec{t}/ds\|}$.

Binormal: $\vec{b} = \vec{t} \times \vec{n}$. Curvatura: $\kappa = \left\| \frac{\mathrm{d}t}{\mathrm{d}s} \right\|$

Radi de curvatura: $\rho = \frac{1}{\kappa}$.

Centre de curvatura: $P = \vec{r} + \rho \vec{n}$.

Velocitat: $\vec{v} = v\vec{t}$.

Acceleració: $\vec{a} = \frac{dv}{dt}\vec{t} + \frac{v^2}{a}\vec{n}$.

1.2 Moviment circular

Posició: $\vec{r}(t) = R(\cos\theta, \sin\theta, 0)$. Celeritat: $v = R\theta = R\omega$. Acceleració: $\vec{a} = (R\alpha)\vec{t} + (R\omega^2)\vec{n}$.

1.3 Sòlid rígid

Moviment fixant origen P del sòlid: $\vec{v} = \vec{\omega} \times \vec{r}$, $\vec{a} = \vec{\alpha} \times \vec{r} - \omega^2 \vec{r}$.

Centre instantani de rotació: $\vec{r}_{\text{CIR}} = \vec{r}_p + \frac{\vec{\omega} \times \vec{v}_p}{\omega^2}$.

2 Dinàmica

2.1 \mathbb{R}

F. gravitatòria: $\vec{F}_{ab} = -G \frac{m_a m_b}{\|\vec{r}_{ca}\|^3} \vec{r}_{ab}$. F. elàstica: $\vec{F}_{e}(x) = -kx$.

Mov. osc. harm.:

 $x(t) = A\sin(\omega t + \varphi_0), \ \omega = \sqrt{k/m},$ $T=2\pi\sqrt{m/k}$.

F. fregament estàtica: $|\vec{F}_{\mu}| \leq \mu |\vec{N}|$ F. fregament dinàmica: $|\vec{F}_{\mu}| = \mu' |\vec{N}|$

F. fregament viscós: $\vec{F}_f = b\vec{v}$.

E. cinètica: $E_c = \frac{1}{2}mv^2$.

E. potencial: U(x) t. q. $\frac{dU}{dx} = -F(x)$,

 $E_{\rm p} = -\int_{x_0}^x F(z) \,\mathrm{d}z.$ E. mecànica: $E_{\text{mec}} = E_{\text{c}} + E_{\text{p}}$.

E. pot. elàstica: $\frac{1}{2}kx^2$.

2.2 \mathbb{R}^3

Treball (J): $W_{1\rightarrow 2} = \int_{r_1}^{x_2} \vec{F} \cdot d\vec{l}$.

 $\bullet dW = \vec{F} \cdot d\vec{l}$.

Potència (W):

 $P = \frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\vec{F} \cdot \mathrm{d}\vec{r}}{\mathrm{d}t} = \vec{F} \cdot \vec{v}.$

• $E_{\rm c} = \frac{1}{2}m\vec{v}^2$, $\frac{\mathrm{d}E_{\rm c}}{\mathrm{d}t} = m\vec{v} \cdot \vec{a} = \vec{F} \cdot \vec{v}$. Si F conservativa: $\vec{F}(\vec{r}) = -\vec{\nabla}U(\vec{r})$.

• $E_{\rm c}(\vec{r}_2) - E_{\rm c}(\vec{r}_1) = W_{1\to 2}$.

 $\bullet \Delta E_{\rm mec} = W_{\rm n.c.}$

3 D. de sistemes puntuals

3.1 Moment lineal

Moment lineal: $\vec{P} = m\vec{v}$. Impuls mec.: $\vec{I} = \int_{t_1}^{t_2} F \, dt = \vec{P}(t_2) - \vec{P}(t_1) = \Delta \vec{P}.$ Moment d'una força respecte O: $\vec{M}_O = \vec{r} \times \vec{F}, \ \vec{M}_A = \vec{AO} \times \vec{F} + \vec{M}_O.$

3.2 Moment angular

Moment angular: $\vec{L}_O = \vec{r} \times m\vec{v} = \vec{r} \times \vec{P},$ $\vec{L}_A = \vec{L}_O + \vec{AO} \times \vec{P}.$ • $\vec{M}_O = \frac{d\vec{L}_O}{dt}$. Si A en moviment: $\frac{\mathrm{d}\vec{L}_A}{\mathrm{d}t} = \vec{M}_A - \vec{v}_A \times \vec{P}.$ Impuls angular: $\vec{J} = \int_{t}^{t_2} \vec{M}_O dt$.

3.3 Sòlid rígid

Moment d'inèrcia: $I = \sum m_i d_i^2$.

• $\vec{L_e} = I_e \vec{\omega}$, $\frac{dL_e}{dt} = I_e \alpha = M_e$.

• $I_{\rm CM} = \int r^2 \, \mathrm{d} m$.

Teo. Steiner: $I_O = I_{CM} + Md^2$.

Eix fix: $E_c = \frac{1}{2}I_e\omega^2$

Eix mòbil: $E_c = \frac{1}{2}I_{\rm CM}\omega^2 + \frac{1}{2}M\vec{v}_{\rm CM}^2$. E. potencial: $U = U_{CM}$.

Gravetat: $\vec{M}_{\text{grav}} = \vec{r}_{\text{CM}} \times (m\vec{q})$.

Moments d'inèrcia

Respecte al CM:

Barra: $\frac{1}{12}mL^2$.

Pla (eix perpendicular):

 $\frac{1}{12}m(h^2+w^2)$.

 $\tilde{P}la$ (eix paral·lel): $\frac{1}{12}mL^2$.

Corona circular/Tub: $\frac{1}{2}m(R^2+r^2)$.

	Sòlid	Buit
Disc/Cil.	$^{1/_{2}} mr^{2}$	mr^2
Esfera	$^{2/_{5}} mr^{2}$	$^{2}/_{3} mr^{2}$
Cub	$1/6 \ ms^2$	
Con	$^{3/_{10}} mr^{2}$	$^{1/_{2}}\ mr^{2}$

3.4 Sistema de partícules

Centre de massa: $\vec{r}_{\text{CM}} = \frac{\sum m_i \vec{r}_i}{\sum m_i}$. Moment lineal: $\vec{P} = \sum \vec{P_i} = M \vec{v}_{CM}$. 1a llei conservació: $\frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = \vec{F}^{\mathrm{ext}} = M\vec{a}_{\mathrm{CM}}.$ Moment angular:

 $\vec{L}_O = \sum \vec{L}_{O_i} = \sum \vec{r}_i \times m_i \vec{v}_i$. $\bullet \frac{d\vec{L}_O}{dt} = \sum \vec{r}_i \times \vec{F} = \vec{M}_O^{\text{ext}}.$ A punt mòbil:

 $\vec{L}_A = \vec{L}_O + M(\vec{r}_A - \vec{r}_{CM}) \times \vec{v}_A - \vec{r}_A \times \vec{P}.$

• $\frac{d\vec{L}_A}{dt} = \vec{M}_A^{\text{ext}} + M(\vec{r}_A - \vec{r}_{\text{CM}}) \times \vec{a}_A.$

 $\vec{L}_{A} = \vec{L}_{O} - \vec{r}_{A} \times \vec{P},$ $\vec{L}_O = \vec{L}_A + \vec{r}_A \times \vec{P}.$ • $\frac{d\vec{L}_A}{dt} = \vec{M}_A^{\text{ext}}$. Energia cinètica: $E_{\rm c} = \frac{1}{2} \sum m_i (\vec{v}_i - \vec{v}_{\rm CM})^2 + \frac{1}{2} M \vec{v}_{\rm CM}^2$. $W_{F_{int}} = 0$: $\frac{dE}{dt} = \sum \vec{F}_{nc}^{\text{ext}} \cdot \vec{v}_i$.

4 Percussions i xocs

 $A = CM \ o \ punt \ fix$:

Canvi m. lineal percussió: $\Delta \vec{P} = \vec{I}$. Canvi m. angular percussió: Si A és un punt fix o el CM, $\vec{J}_A = \Delta \vec{L}_A$. Per un sòlid ríqid: $I_A \Delta \omega = J_A = \vec{r} \times \vec{I}$. Coeficient de percussió (xoc): $e = -\frac{v_{1f} - v_{2f}}{v_{1i} - v_{2i}} = -\frac{v_{rel,f}}{v_{rel,i}}$ Energia xoc partícules: $\Delta E_{\rm c} = -\frac{1}{2}\mu \left(1 - e^2\right) v_{\rm rel i}^2$

Canvis de s. de ref.

 $\bullet \left(\frac{\mathrm{d}\vec{u}}{\mathrm{d}t}\right)_{S} = \left(\frac{\mathrm{d}\vec{u}}{\mathrm{d}t}\right)_{S'} + \vec{\omega} \times \vec{u}.$

 $\bullet \ \vec{r}_P = \vec{r}_{O'} + \vec{r}_P'.$

 $\bullet \ \vec{v}_P = \vec{v}_{O'} + \vec{v}_P' + \vec{\omega} \times \vec{r}_P'.$

 $\bullet \ \vec{a}_P = \vec{a}_{O'} + \vec{a}_P' +$ $2\vec{\omega} \times \vec{v}_P' + \vec{\omega} \times (\vec{\omega} \times \vec{r}_P') + \vec{\alpha} \times \vec{r}_P'$. acc. Coriolis acc. centrípeta

 $\bullet \ m\vec{a}_{P}' =$

 $m\vec{a}_P - [m\vec{a}_{O'} + m2\vec{\omega} \times \vec{v}_P' +$ f. real f. translació f. Coriolis $+ m\vec{\omega} \times (\vec{\omega} \times \vec{r}_P') + m\vec{\alpha} \times \vec{r}_P'$]. f. centrífuga

6 Electrostàtica

Constants: $k = \frac{1}{4\pi\varepsilon_0}$, $\varepsilon_0 = 8,854 \cdot 10^{-12}$ Camp e.: $\vec{E} = k \frac{q_{A}}{\|\vec{r}_{AB}\|^{3}} \vec{r}_{AB}$, $\vec{E}(\vec{r}) = \int_{\nu} \frac{k\rho(\vec{r'})}{\|\vec{r} - \vec{r'}\|^3} (\vec{r} - \vec{r'}) \, dV'.$ Força (Coulomb): $\vec{F}_{\mathrm{AB}} = k \frac{q_{\mathrm{A}} q_{\mathrm{B}}}{\|\vec{r}_{\mathrm{AB}}\|^3} \vec{r}_{\mathrm{AB}} = q_{\mathrm{B}} \vec{E_{\mathrm{A}}}.$ E. potencial: $U = k \frac{q_1 q_2}{||\vec{r}||}$,

 $U = \frac{1}{2} \int_{\mathcal{U}} \rho(\vec{r}) V(\vec{r}) \, d\vec{V}$. Potencial: $V = k^{\frac{q}{2}}$,

 $V(\vec{r}) = \int_{\nu} \frac{k\rho(\vec{r'})}{\|\vec{r} - \vec{r'}\|} dV'; V = -\int_{\infty}^{r} \vec{E} d\vec{r},$ $V_{\infty} = 0, V_A - V_B = \int_{A}^{B} \vec{E} \, d\vec{r}.$

 $\bullet \vec{E} = -\nabla V.$

 $\bullet \Delta V = \frac{\Delta U}{a_0}$

Camp conservatiu: $\oint_C \vec{E} \cdot \vec{dl} = 0$.

L. Gauss: $\oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int_{\mathcal{V}} \rho \, dV = \frac{Q_{\text{int}}}{\epsilon_0}.$ Discont. superf.: $\mathbf{n} \cdot (\vec{E}_{+} - \vec{E}_{-}) = \frac{\sigma}{\sigma}$

6.1 Dipols

Moment dipolar: $\vec{p} = 2aq\vec{u}$. Potencial: $V(\vec{r}) = k \frac{\cos \theta}{r^2} \cdot \vec{p} \approx \frac{k \vec{p} \cdot \vec{r}}{\vec{r}^3} (a \ll r).$ Camp e.: $\vec{E} = \frac{3k \cdot (\vec{p} \cdot \vec{r})\vec{r}}{5} - \frac{k\vec{p}}{3}$.

Forca: $\vec{F} = \vec{\nabla}(\vec{p} \cdot \vec{E})$. Moment: $\vec{M} = \vec{p} \times \vec{E}$.

6.2 Condensadors

Capacitat: $C = \frac{Q}{|V_1 - V_2|}$ Intensitat: $I = C \frac{dV}{dt} = \frac{dQ}{dt}$ Energia: $U = \frac{1}{2}C(V_1 - V_2)^2$. Càrrega RC: $V(t) = \varepsilon (1 - e^{-\frac{t}{RC}}),$ $I = \frac{\varepsilon}{R} e^{\frac{-t}{RC}}$.

7 Electrocinètica

Conserv. càrrega: $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\nu} \rho \, \mathrm{d}V + \oint_{\partial V} \vec{j} \cdot \vec{\mathrm{d}S} = 0,$ $\frac{\partial \rho}{\partial t} + \nabla \vec{j} = 0.$ Intensitat $I = \int_{S} \vec{j} \cdot d\vec{S}$ L. Ohm: V = IR, $\vec{i} = \gamma \vec{E}$ Conductors: $R = \int_a^b \frac{\mathrm{d}l}{S\gamma} = \frac{l}{S\gamma} = \frac{rl}{S}$. Conductivitat-Resistivitat: $\gamma = \frac{1}{\pi}$. Potència: $P = \frac{E}{I} = VI$, $P = \int_{V} \vec{j} \cdot \vec{E} \, dV.$ Treball: $W = \int_{r_1}^{r_2} F(\vec{r}) \cdot d\vec{r}$.

8 Magnetostàtica

Camp m.: $\vec{B} = \frac{\mu_0}{4\pi} \frac{q \cdot \vec{v} \times (\vec{r} - \vec{r'})}{\|\vec{r} - \vec{r'}\|^3}$,

 $\mu_0 = 4\pi \cdot 10^{-7}$. Camp m. vol.: $\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\vec{j}(\vec{r}') \times (\vec{r} - \vec{r'})}{\|\vec{r} - \vec{r'}\|^3} \, dV.$ Camp m. fil.: $\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \int_C \frac{\vec{dl} \times (\vec{r} - \vec{r'})}{\|\vec{r} - \vec{r'}\|^3}$ F. Lorentz: $\vec{F} = q \cdot \vec{v} \times \vec{B} = \vec{I}\vec{l} \times \vec{B}$. F. sobre corrent: $\vec{F} = \int_{V} \vec{j} \times \vec{B} \, dV$. Moment sobre corrent: $\vec{N}_0 = \int_V \vec{r} \times (\vec{j} \times \vec{B}) \, dV.$ Camp Solenoidal: $\oint_{S} \vec{B} \cdot d\vec{S} = 0$, $\nabla \cdot \vec{B} = 0.$ L. Ampère: $\oint_C \vec{B} \cdot \vec{dl} = I_{\text{int}} \mu_0$, $\nabla \times \vec{B} = \mu_0 \vec{j}$.

9 Inductància

Flux: $\Phi = \int_{S} \vec{B} \cdot d\vec{S}$.

L. Faraday: $\varepsilon = -\frac{\mathrm{d}\Phi_{\mathrm{m}}}{\mathrm{d}t} = \oint_{\partial S} \vec{E} \cdot \vec{\mathrm{d}} \vec{l} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{S} \vec{B} \cdot \vec{\mathrm{d}} \vec{S}.$

9.1 Bobines

Camp m.: $B = \mu_0 nI$, n = N/l. Autoinductància: $L = \frac{\phi}{I} = \mu_0 n^2 V$. Potencial: $\varepsilon = L \frac{dI}{dt}$. Càrrega RL: $I(t) = \frac{\varepsilon}{R} \left(1 - e^{-\frac{Rt}{L}} \right)$. Energia RL: $U = \frac{1}{2}LI^2$.

10 Maxwell

Gauss: $\nabla \cdot \vec{E} = \frac{\rho}{2}$ $\oint_{\partial V} \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int_{V} \rho \, dV.$ Faraday: $\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = \vec{0}$, $\oint_{\partial S} \vec{E} \cdot d\vec{l} + \frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S} = 0.$ Gauss m.: $\nabla \cdot \vec{B} = 0$, $\oint_{\partial V} \vec{B} \cdot d\vec{S} = 0$. Ampère-Maxwell: $\nabla \times \vec{B} = \mu_0 \vec{j} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}, \oint_{\partial S} \vec{B} \cdot \vec{dl} =$ $\mu_0 \int_{S} \vec{j} \cdot d\vec{S} + \varepsilon_0 \mu_0 \frac{d}{dt} \int_{S} \vec{E} \cdot d\vec{S}.$

11.1 Integrals

 $\bullet \int \frac{1}{\sqrt{a+x^2}} \, \mathrm{d}x = \log(\sqrt{a+x^2} + x).$

 $\bullet \int \frac{x}{\sqrt{a+x^2}} \, \mathrm{d}x = \sqrt{a+x^2}.$

 $\bullet \int \frac{1}{\sqrt{a+x^2}} \, \mathrm{d}x = \frac{x}{a\sqrt{a+x^2}}.$ $\bullet \int \frac{x}{\sqrt{a+x^2}} \, \mathrm{d}x = -\frac{1}{\sqrt{a+x^2}}$

• $\int \sec dx = \ln (|\tan + \sec |)$.

11.2 Canvis de variables

Polars $a \mathbb{R}^2$: $\int_U f(x,y) dx dy =$ $\int_{V} f(r\cos\varphi, r\sin\varphi) r \, \mathrm{d}r \, \mathrm{d}\varphi.$ Cilíndriques a \mathbb{R}^3 : $\int_{U} f(x, y, z) dx dy dz =$ $\int_{V} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho \, \mathrm{d}\rho \, \mathrm{d}\varphi \, \mathrm{d}z.$ Esfèriques a \mathbb{R}^3 : $\int_{\mathcal{U}} f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z =$ $\int_{V} f(r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta)$ $r^2 \sin \theta \, dr \, d\varphi \, d\theta$.

11.3 EDOs

 $\bullet \ \frac{1}{v} \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}(\ln v)}{\mathrm{d}t}$ Fórmules: $a\dot{v} + bv + c = 0$; $\frac{a}{h}\dot{v} + v + \frac{c}{h} = 0$; $(w = v + \frac{c}{h})$, $\frac{a}{b}\dot{w} + w = 0; \ \frac{a}{b}x + 1 = 0; \ x = \frac{-b}{a};$ $w = ke^{\frac{-b}{a}t} = v + \frac{c}{h}; v = ke^{\frac{-b}{a}t} - \frac{c}{h}.$

11.4 Altres

Esfera: $S = 4\pi r^2$, $V = \frac{4}{3}\pi r^3$.

Nom: