

SimulaçãoPesquisa Operacional

Gabriel Anselmo Ramos Victor Eduardo Requia Yuji Yamada Correa Professor Carlos Vetorazzi 25/07/2022

O que é Simulação?

Simulação é a técnica de estudar o comportamento e reações de um determinado sistema através de modelos, que imitam na totalidade ou em parte as propriedades e comportamentos deste sistema em uma escala menor, permitindo sua manipulação e estudo detalhado.

Simulação por computador

Diante da grande evolução da tecnologia nos últimos anos, o computador tornou- se um importante aliado da simulação.

A simulação por computador é usada nas mais diversas áreas, citando como exemplos as análises de previsão meteorológica, treinamento de estratégia para militares e pilotagem de veículos ou aviões.

Simulação de processos por computador

- Uma das áreas da simulação por computador é justamente a simulação de processos por computador, categoria na qual se enquadra o ARENA.
- Por "processos", entende-se uma situação onde elementos estáticos, formando um ambiente bem definido com suas regras e propriedades, interagem com elementos dinâmicos, que fluem dentro deste ambiente.

Como simular

- No ARENA, é feito um modelo através de um fluxograma com o auxílio do mouse, não sendo utilizada a programação.
- Dados são distribuições estatísticas geradas a partir de uma coleção de dados sobre o parâmetro a ser inserido.
- Somando-se os dados e o modelo, teremos uma representação do sistema no computador.

Passos de uma Simulação

- 1) É feito um estudo acerca do sistema a ser simulado, coletando os dados necessários.
- 2) O modelo é construído no Arena, anexado com os dados coletados no passo anterior.
- 3) O Arena é executado para a geração de resultados sobre o comportamento do modelo previamente criado.
- 4) Os resultados são analisados, então mudanças são feitas a fim de aperfeiçoar o modelo.
- 5) Então retorna ao passo 3, gerando novos resultados.

Dados de entrada

- Em um modelo de simulação, são inseridos dados para que ele represente com precisão o sistema em estudo.
- Para dados indeterminados, como os de tempo, é importante informar a variação dos valores através de uma distribuição estatística.
- Estas distribuições são determinadas através da coleta de dados do evento de interesse, estes dados são agrupados por classes em um histograma, e então uma distribuição estatística é adequada a esse histograma.
- O ARENA possui a ferramenta Input Analyzer, que em segundos faz tudo automaticamente.

Modelagem através de fluxogramas

O processo de construção do modelo é o ato de "explicar" ao ARENA como funciona o sistema.

Um modelo de simulação no Arena é construído através dos seguintes elementos:

- Variáveis de estado;
- Eventos;
- Entidades;
- Recursos;
- Atividades e período de espera.

Coleta de estatísticas

Ao rodar a simulação, o Arena coleta estatísticas padrão sobre os vários elementos do modelo, como filas, recursos e outros.

O usuário também tem a possibilidade de criar suas próprias coletas de dados.

Os dados coletados constituem um relatório ao término da simulação

Simulação no processo de check-in de Aeroporto

O objetivo desse trabalho é aplicar a simulação computacional no processo de check-in do aeroporto internacional de Guarulhos, para a elaboração de cenários alternativos com o objetivo de obter melhorias nesse sistema logístico, utilizando o simulador ARENA.

Coleta dos dados

A pesquisa de campo foi realizada na área destinada ao check-in de uma empresa aérea. As amostras foram coletadas na área destinada ao check-in da empresa aérea em estudo, sendo que os dados foram coletados pelos próprios autores. Constatou-se uma circulação de cerca de 100 passageiros em um período de 2 horas.

Animação do modelo

Com os objetivos de demonstrar o funcionamento do processo do check-in da companhia aérea pesquisada, foi construído um modelo animado no Arena.

Fluxograma do modelo

O fluxograma descreve o procedimento do processo de check-in dos passageiros.

Resultados

Após a simulação, no período de 2 horas houve uma circulação de 140 pessoas no processo de check-in, com apenas 75 pessoas atendidas, enquanto as outras 65 permaneceram no sistema. O tempo médio de espera na fila para o atendimento foi de aproximadamente 23 minutos, e que em média a fila possuía 28 pessoas.

Ocupação dos recursos

Taxa dos atendentes: 93%, 91%, 93%, 91%, respectivamente. Enquanto a taxa de ocupação do pátio foi 99%.

Novo modelo

Uma solução é incluir dois novos atendentes a fim de auxiliar os quatro balcões nos horários de pico.

Novos resultados

- Tivemos um aumento de 35 pessoas atendidas.
- Já o tempo de na fila de atendimento foi reduzido de 23 minutos para 10 minutos.
- Além disso, anteriormente a fila possuía em média 28 pessoas em espera, agora apenas 11 pessoas.

Simulação Restaurante

- Título: modelagem, simulação e otimização da dinâmica operacional de um pequeno restaurante: um estudo de caso
- Autores: José Airton Azevedo dos Santos e Roberta Alves

Objetivos

Analisar um restaurante universitário self-service obtendo:

- Criação de uma modelagem do sistema Simulação computacional
- Otimização do processo
- Entendimento da dinâmica operacional

Funcionamento do sistema

Gargalo

- Pelo histórico da empresa, o gargalo estava na capacidade de atendimento da mesa de buffet
- Sistema é restringido

Características da pesquisa

- O modelo é do tipo dinâmico, discreto e estocástico
- Implementado no software Arena
- Estes dados foram analisados com a ferramenta Input analyzer
- Como parâmetro de comparação foi selecionada a variável tempo na fila da balança
- Utilizados dois métodos: Estudo de caso e modelagem/simulação

Análise de dados

- Análise exploratória

Parâmetro analisado	TEC	TFB	TFBL
Média	11,90 s	124,69 s	9,16 s
Mediana	7,09 s	115.7 s	8,00 s
1 Quartil (Q1)	2,09 s	91,00 s	6,06 s
3 Quartil (Q3)	17,04 s	152,1 s	12,00 s
Desvio Padrão	11,66 s	50,21 s	3,88 s
Coeficiente de Variação	98,17%	40,27%	42,41%

^{*} tempos que os clientes mesa buffet (TFB)

^{*} tempos entre chegadas dos clientes (TEC)

^{*}tempos de atendimento na balança (TFBL)

Análise de dados

- Gráfico de dispersão

Real X Computacional

 Comparação entre a média obtida do sistema real com a média gerada pelo modelo para a variável Tempo na Fila da Balança (TQB)

Tempo na Fila da Balança - TQB				
Sistema Real	Modelo Computacional	Erro Médio Estimado		
11,42	11,54±0,6	1,4%		

Análise de dados

- Resultado da otimização

Simulações	Clientes - Fila Buffet (Med)	Estado	Capacidade Buffet
Simulação 10	1,0265	Possível	12
Simulação 6	1,9261	Possível	11
Simulação 12	5,1725	Possível	10
Simulação 8	11,3580	Possível	9
Simulação 1	18,5724	Possível	8
Simulação 2	26,8916	Possível	7
Simulação 7	34,3596	Possível	6
Simulação 11	42,1208	Possível	5
Simulação 5	52,2998	Possível	4
Simulação 9	66,1042	Possível	3
Simulação 3	83,3500	Possível	1
Simulação 13	84,2453	Possível	2
Simulação 14	0,4160	Inviável	13
Simulação 4	0,2076	Inviável	14

Resultados da pesquisa

- Não foram detectadas diferenças estatísticas entre os valores obtidos do sistema real e os gerados pelo modelo (variância a 1% de significância).
- Os resultados obtidos demonstraram que, para melhorar o fluxo de clientes no restaurante, deve-se utilizar uma mesa de buffet com 12 lugares.

Conclusão

O trabalho elabora traz dois exemplos reais da aplicação de simulação, um na área de check-in de uma companhia aérea e o outro em um restaurante self-service mostrando a eficiência do uso da simulação em diferentes áreas e trazendo os melhores resultados e os pontos de gargalo no sistema, para serem analisados e revisados, podendo assim fazer uma nova simulação com resultados melhores do que o anterior. As mudanças feitas no ponto exato de gargalo traz melhorias e otimização para o sistema no todo

Referências

- Formigoni, A., Maiellaro, J. R., Borrero, C. L., de Jesus Garcia, M., and dos Santos, M. N. (2017). Aplicação da simulação computacional no processo de check-in do aeroporto internacional de Guarulhos. South American Development Society Journal, 1(2):20-32.
- Pereira, C. D., CUNHA, G. d., and SILVA, M. d.
 (2015). A simulação na pesquisa operacional: uma revisão literária. IX EEPA-Encontro de Engenharia de Produção Agroindustrial, Campo Mourão.
- SANTOS, J. and Alves, R. (2014). Modelagem, simulação e otimização da dinâmica ^ operacional de um pequeno restaurante: Um estudo de caso.
 - HOLOS, 4:375-386.

