Discrete-Time Fourier Analysis

- Comparison of 4 Fourier Transforms*
- DTFT & DFT/DFS
- Frequency Response
- DTFT Tables & DFT Tables

*L&V Chap 10 provides a good comparison. Some examples/figures are from this resource.

4 Fourier Transforms: First Glance

Time Periodicity	Continuous-time (previously covered)	Discrete-time	
Periodic	Fourier Series	Discrete Fourier series (DFS) or Discrete Fourier transform (DFT)*	
Aperiodic	(Continuous-Time) Fourier transform (CTFT or FT)	Discrete-time Fourier transform (DTFT)	

^{*} Caveat: Some references consider the DFT and DFS as synonymous. Though they provide identical information, we'll follow most references which, for historical reasons, distinguish them by a scaling factor (slide 10.5).

Recap of CT Transforms

Time Domain	Conversion/Comp	Frequency Domain	
	Laplace Transform: $X_L(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$	$x(t)$ LT $X_L(s)$	$X_L(s)$
x(t)	Inverse Laplace Transform $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_L(s) e^{st} ds$	$X(t)$ ILT $X_L(s)$	$X_L \colon \mathbb{C} \to \mathbb{C}$
$x: \mathbb{R} \to \mathbb{R}$	Fourier Transform: $X_F(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$	$x(t)$ FT $X_F(\omega)$	$X_F(\omega)$
	Inverse Fourier Transform: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_F(\omega) e^{j\omega t} d\omega$	$x(t)$ IFT $X_F(\omega)$	$X_F \colon \mathbb{R} \to \mathbb{C}$
$x(t) = x(t+mT)$ $\forall m \in \mathbb{Z}$	Fourier Series: $X_{FS}[k] = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$	$x(t)$ FS_T $X_{FS}[k]$	$X_{FS}[k]$
$\omega_0 = \frac{2\pi}{T}$	Inverse Fourier Series: $x(t) = \sum_{k=-\infty}^{\infty} X_{FS}[k] e^{jk\omega_0 t}$	(t) IFS _T $X_{FS}[k]$	$X_{FS}: \mathbb{Z} \to \mathbb{C}$

Extension for DT Transforms

Time Domain	Conversion/Computation	Freq Domain
	Z Transform: $X_Z(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$ $\xrightarrow{x[n]}$ ZT ZT	$X_{Z}(z)$
$x[n]$ $x: \mathbb{Z} \to \mathbb{R} \ (or \ \mathbb{C})$	Inverse Z Transform $x[n] = \frac{1}{2\pi j} \oint_C X_z(z) z^{n-1} dz$	$X_Z:\mathbb{C}\to\mathbb{C}$
CCW closed contour within RoC that	Discrete-Time Fourier Xform: $x_{DTFT}(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$	(Ω) $X_{DTFT}(\Omega) = X_{DTFT}(\Omega + 2\pi m)$ $\forall m \in \mathbb{Z}$
encircles origin	Inverse DTFT: $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_{DTFT}(\Omega) e^{j\Omega n} d\Omega$	(Ω) $X_{DTFT}: \mathbb{R} \to \mathbb{C}$
$x[n]=x[n+mN]$ $\forall m \in \mathbb{Z}$	Discrete Fourier Transform: $X_{DFT}[k] = \sum_{n=0}^{N-1} x[n] e^{-jk\Omega_0 n}$ $\xrightarrow{x[n]}$ DFT	
$\Omega_0 = \frac{2\pi}{N}$	Inverse DFT: $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k] e^{jk\Omega_0 n}$ IDFT $X_{DFT}[k]$	$X_{DFT}: \mathbb{Z} \to \mathbb{C}$

Periodic DT Signals: DFS vs DFT

For a DT signal with period N: $x[n]=x[n+mN] \ \forall m \in \mathbb{Z}, \Omega_0 = \frac{2\pi}{N}$.

The Discrete Fourier Series (DFS) is the representation:

NB: A big difference compared to the CT FS is a finite
$$x[n] = \sum_{k=0}^{N-1} X_{DFS}[k] e^{jk\Omega_0 n} \quad \text{where} \quad X_{DFS}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\Omega_0 n}$$

Confusion can arise because these are all normally labeled simply as X[k] or X_k (e.g. ,see Chaparro eqns 11.29, 11.30, 11.48 & 11.49). Subscripts on this slide are to show the explicit differences.

The Discrete Fourier Transform (DFT) is the representation:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_{DFT}[k] e^{jk\Omega_0 n} \text{ where } X_{DFT}[k] = \sum_{n=0}^{N-1} x[n] e^{-jk\Omega_0 n}$$

Both the DFS and DFT are commonly used in the literature. Efficient computing methods called FFTs (Fast-Fourier Transforms) are used for computing the DFT and IDFT.

summation

Eg: Calculations for Square Pulse

Square Pulse: x(t)=u(t)-u(t-1)

$$\forall \omega \in \mathbb{R}, X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{0}^{1} e^{-j\omega t}dt$$

$$= \frac{1}{-j\omega} (e^{-j\omega} - 1) = \frac{j(e^{-j\omega} - 1)}{\omega}$$

$$\Rightarrow |X(\omega)| = \frac{|e^{-j\omega} - 1|}{\omega} = \frac{\sqrt{(\cos(\omega) - 1)^2 + \sin^2(\omega)}}{\omega} = \frac{\sqrt{2(1 - \cos(\omega))}}{\omega}$$

Discrete Square Pulse: x[n]=u[n]-u[n-4]

$$\forall \Omega \in \mathbb{R} \underbrace{X(\Omega)} = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n} = \sum_{n=0}^{3} e^{-j\Omega n} = \frac{1 - e^{-j4\Omega}}{1 - e^{-j\Omega}}$$

DTFT

$$\Rightarrow |X(\Omega)| = \frac{\left|1 - e^{-j4\Omega}\right|}{\left|1 - e^{-j\Omega}\right|} = \sqrt{\frac{1 - \cos(4\Omega)}{1 - \cos(\Omega)}}$$

Eg: Calculations for Square Wave

Square Wave:
$$x(t) = \begin{cases} u(t) - u(t-1), 0 \le t < 2 \\ x(t-2m) \forall m \in \mathbb{Z} otherwise \end{cases}$$

$$\begin{split} \forall \mathbf{k} \in \mathbb{Z} \underbrace{X[k]} &= \frac{1}{2} \int_0^2 x(t) e^{-jk\pi t} dt = \frac{1}{2} \int_0^1 e^{-jk\pi t} dt \\ &= \frac{1}{-2jk\pi} \Big(e^{-jk\pi} - e^0 \Big) = \begin{cases} 1/2 & \text{, if } k = 0 \\ -j/(k\pi) & \text{, if } k \text{ odd} \\ 0 & \text{, otherwise} \end{cases} \end{split}$$

Discrete Square Wave:
$$x[n] = \begin{cases} u[n] - u[n-4], 0 \le n < 8 \\ x[n-8m] \forall m \in \mathbb{Z} \text{ otherwise} \end{cases}$$

$$Vk \in \mathbb{Z}, X[k] = \sum_{n=0}^{7} x[n] e^{-jk\Omega_0 n} = \sum_{n=0}^{3} e^{-\frac{jkn\pi}{4}} = \frac{1-e^{-jk\pi}}{1-e^{-\frac{jk\pi}{4}}}$$

$$\Rightarrow |X(\Omega)| = \frac{|1-e^{-jk\pi}|}{|1-e^{-\frac{jk\pi}{4}}|} = \sqrt{\frac{1-\cos(k\pi)}{1-\cos(\frac{k\pi}{4})}}$$

Frequency Response

Eigenfunctions are C-exponentials

The symmetry property, like other properties, also applies to systems. If h[n] is the impulse response of an LTI discrete-time system, and it is real-valued, its DTFT is

$$\frac{H(\Omega) = H_{z}(e^{j\Omega}) = \mathcal{Z}(h[n]) \mid_{z=e^{j\Omega}} = \frac{H_{z}(z)|_{z=e^{j\Omega}}}{H_{z}(z)|_{z=e^{j\Omega}}}$$

if the region of convergence of $H_{\underline{z}}(z)$ includes the unit circle. As with the DTFT of a signal, the frequency response of the system, $H(\Omega)$, has a magnitude that is an even function of Ω , and a phase that is an odd function of ω . Thus, the **magnitude response** of the system is such that

and the **phase response** is such that
$$\angle H(\Omega) = H(-\Omega)$$

$$\angle H(\Omega) = H^*(-\Omega)$$

$$\angle H(\Omega) = -\angle H(-\Omega)$$

$$(11.25)$$

According to these symmetries and that the frequency response is periodic, it is only necessary to give these responses in $[0, \pi]$ rather than in $(-\pi, \pi]$.

Example: 2-Sample Moving Average

Consider the system modeled by $y[n] = \frac{1}{2}(x[n] + x[n-1])$.

Determine the frequency response and sketch both the magnitude and phase responses.

METHOD A ASSUME
$$x[n] = e^{\int x^n} \Rightarrow y[n] = H(x) = \frac{1}{2} \left(e^{\int x^n} + e^{\int x^n}\right)$$

$$\Rightarrow H(x) = \frac{1}{2} \left(1 + e^{\int x^n}\right)$$

4 ETHOS C: 4 [4] = 2 [5[4] + 5[4-1]] DT/1
$$H(\Omega) = \frac{1}{2}[1 + e^{-j\Omega}] = \frac{1+(3\Omega-ji)R}{2}$$

$$|H(\Lambda)| = \sqrt{(1+(3R)^2+s^2)^2} = \sqrt{\frac{1+(3s)^2}{2}}$$

$$2H(a) = +6n^{-1}\left(\frac{-\sin \Omega}{1+\cos \Omega}\right) = -\frac{\Omega}{2}$$

DTFT & DFT Tables

Table 11.1 DTFT of Common Signals and DTFT Properties

Discrete-time Fourier Transforms (DTFT)

	•	
	Discrete-time signal	DTFT $X(e^{j\omega})$, periodic of period 2π
(1)	$\delta[n]$	$1, -\pi \leq \omega < \pi$
(2)	A	$2\pi A\delta(\omega), -\pi \leq \omega < \pi$
(3)	$e^{j\omega_0 n}$	$2\pi\delta(\mathbf{W}-\omega_0), -\pi\leq \omega < \pi$
(4)	$\alpha^n U[n], \alpha < 1$	$\frac{1}{1-\alpha}e^{-j\omega}$, $-\pi \leq \omega < \pi$
(5)	$n \alpha^n u[n], \alpha < 1$	$\frac{\alpha e^{-j\omega}}{(1-\alpha e^{-j\omega})^2}, -\pi \le \omega < \pi$
(6)	$\cos(\omega_0 n) u[n]$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right], -\pi \le \omega < \pi$
(7)	$\sin(\omega_0 n) u[n]$	$-j\pi \left[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)\right], -\pi \leq \omega < \pi$
(8)	$\alpha^{ n }, \alpha < 1$	$\frac{1-\alpha^2}{1-2\alpha\cos(\omega)+\alpha^2}, -\pi \le \omega < \pi$
(9)	p[n] = u[n + N/2] - u[n - N/2]	$\frac{\sin(\omega(N+1)/2)}{\sin(\omega/2)}, -\pi \le \omega < \pi$
(10)	$\alpha^n \cos(\omega_0 n) u[n]$	$\frac{1 - \alpha \cos(\omega_0) \theta^{-j\omega}}{1 - 2\alpha \cos(\omega_0) \theta^{-j\omega} + \alpha^2 \theta^{-2j\omega}}, -\pi \leq \omega < \pi$

 $\frac{\alpha\sin(\omega_0)e^{-j\omega}}{1-2\alpha\cos(\omega_0)e^{-j\omega}+\alpha^2e^{-2j\omega}}, -\pi \leq \omega < \pi$

Properties of the DTFT

 $\alpha^n \sin(\omega_0 n) u[n]$

	••••	
Z-transform:	$x[n], X(z), z = 1 \in ROC$	$X(e^{j\omega}) = X(z) _{z=e^{j\omega}}$
Periodicity:	<i>x</i> [<i>n</i>]	$X(e^{j\omega}) = X(e^{j(\omega+2\pi k)}), k integer$
Linearity:	$\alpha X[n] + \beta Y[n]$	$\alpha X(e^{j\omega}) + \beta Y(e^{j\omega})$
Time-shifting:	x[n-N]	$e^{-j\omega N}X(e^{j\omega})$
Frequency-shift:	$X[n]e^{j\omega_0n}$	$X(e^{j(\omega-\omega_0)})$
Convolution:	(X * Y)[n]	$X(e^{j\omega})Y(e^{j\omega})$
Multiplication:	x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Symmetry:	x[n] real-valued	$ X(e^{j\omega}) $ even function of ω
		$\angle X(e^{j\omega})$ odd function of ω
Parseval's relation:	$\sum_{n=\infty}^{\infty} X[n] ^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^{2} d\omega$	

Table 11.2 Properties of Discrete Fourier Series and Discrete Fourier Transform (DFT).

F	ourier	Series	of	Discret	te-time	Period	ic signals	

	x[n] periodic signal of period N	X[k] periodic FS coefficients of period N
Z-transform	$x_1[n] = x[n](u[n] - u[n - N])$	$X[k] = \frac{1}{N} \left. \mathcal{Z}(X_1[n]) \right _{z=e^{j2\pi k/N}}$
DTFT	$X[n] = \sum_{k} X[k] e^{j2\pi nk/N}$	$X(e^{j\omega}) = \sum_{k} 2\pi X[k] \delta(\omega - 2\pi k/N)$
LTI response	input $x[n] = \sum_k X[k]e^{j2\pi nk/N}$	output: $y[n] = \sum_{k} X[k] H(e^{jk\omega_0}) e^{j2\pi nk/N}$
		$H(e^{j\omega})$ (frequency response of system)
Time-shift (circular shift)	x[n-M]	$X[k]e^{-j2\pi kM/N}$
Modulation	$x[n]e^{j2\pi Mn/N}$	X[k-M]
Multiplication	<i>x</i> [<i>n</i>] <i>y</i> [<i>n</i>]	$\sum_{m=0}^{N-1} X[m] Y[k-m] \text{ periodic}$ convolution
Periodic convolution	$\sum_{m=0}^{N-1} x[m]y[n-m]$	NX[k]Y[n]

Discrete Fourier Transform (DFT)

Picorcia Fedrici Indianomi (PFF)					
	x[n] finite-length N aperiodic signal	$\tilde{x}[n]$ periodic extension of period $L \geq N$			
IDFT/DFT	$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{L-1} \tilde{X}[k] e^{j2\pi nk/L} X[n] = \tilde{X}[n] W[n], W[n] = u[n] - u[n-N]$	$\tilde{X}[k] = \sum_{n=0}^{L-1} \tilde{X}[n] e^{-j2\pi nk/L}$ $X[k] = \tilde{X}[k]W[n], W[k]$ $= u[k] - u[k - N]$			
Circular convolution	$(x \otimes_L y)[n]$	X[k]Y[k]			
Circular and	$(X \otimes_L y)[n] = (X * y)[n], L \ge M + K - 1$				
linear convolution	M = length of x[n], K = length of y[n]				