Network Attestation for Secure Routing Recaps and Updates

IETF 121

Dublin, Nov 4, 2024

Chunchi (Peter) Liu

liuchunchi@huawei.com

Updates

- Fixing the diagrams
- Adding of new concept:
 - Forwarding Baseline: A deterministic reference value that can be used in the path validation process.
- Generic method to describe POT mechanisms
 - POT mechanism is hard to converge
 - People has different designs
 - Different administrative domains want to use different methods
 - But still we want them to work together
 - Develop generic message types, roles and protocols that help them work together

POT Mechanism

- Verification Points
 - Intermediate nodes (of a path), destination node (of a path), controller
 - Normal routers, domain egress gateway
- POT-updating Points
 - Intermediate nodes (of a path)
- POT Baseline -- reference value to verify an actual POT.
 - Controller-issue or self-dial-test-compute
- POT actual proof-of-transit carried in the packet or sent out-of-band, computed by POT-updating Points
- ? Where to encapsulate the POT: IOAM/AH/OOB
- ? Need a new draft to describe generic POT

Recapping and lesson learned

- Domain within limited domain, connecting 2 limited domains
 - Roman: limited domain, yes; cross domains/internet, emm

• Problem:

Verifying and auditing/proving forwarding compliance against a given baseline

Assumptions:

- Devices are attestation ready -- devices can be descried as claim sets or AR4SI
- Devices operate in a SDN-controlled, SRv6 ready network (backbone, metro)

• Use Cases:

- Traffic not go out of country (or a certain domain)
- Traffic transmit on top of devices only with certain attributes (security SLA assurance)
 - Deb and crowd: focus on critical use cases

+		+				
	Relying Par	ty				
I	+^	l				
Path		+				
Reques	st	Report				
	1					
+	V+	+			+	+
		P	ath Attest	ation		
	Orchestrato	r	Result (PA	R)	Verifie	r
		<			+	
+	+	+			+^-	+
	Path					Path
	Evidence					Evidence
	(PE)					(PE)
+	V	+ +		+	++-	+
	Attester	+>	Attester	+	> Atteste	r
+					+	+
		•	th	•		
		AR/RE/Po	T	AR/RE/P	οΤ	

Update
Attester Orchestrator Vendor A Vendor A <+
Vendor A <+
++
Path
Path
Evidence
Attester
Vendor B <+
+++ AR
Path
Path
Evidence
++
+v+Evidence++
Attester +> Relving
++ Party ++
Client Y

Paths in trusted domains

• If we operate in limited/trusted domains, do we still need to distinguish paths?

• Yes:

Without RATS							
Security Assumption of	Limitations						
Not trusted/no trustwo							
			Correctly propagated routing information does NOT guarantee				
		Internet	correct forwarding				
Completely trusted							
			Is your device <i>really</i> unconditionally trustworthy? • Security by obscurity is bad				

SAVNET vs NASR

- Verify the origin VS Verify the first-half path
 - SAVNET: Each device maintain a table | origin | ingress interface |
 - NASR: Each device maintain a verifiable baseline, using which can verify all hops before
 - Value-add: fix re-route attack

- Verify the route origin VS Verify the attributes of the first-half path
 - SAVNET: No considerations of device attributes verification
 - NASR: Verify intermediate device attributes/properties on the fly
 - Value-add: Verify path (trust) attributes/properties
- Interdomain SAVNET VS Interdomain NASR

Other issues

- Verifier interop
 - If the verification point is at the intermediary nodes, how and why should the node j believe the verification result of node i?
- Generic POT draft
- Cross operator API what to send?
 - POT baseline, "path id", aggregated ARs, keys...
- Service Model?
- Side Meeting reports to SEC ADs before BOFREQ