фото

Лемма 3. $\exists \lambda_j$ собств. значения $A, \mathbb{R}\lambda_j > 0$. Тогда существует единственное решение

$$V: \tfrac{\partial V}{\partial x} A x = \lambda V + U(x) \implies M^+ \neq \varnothing$$

 $rac{\partial}{\partial x}V(A-\lambda/2I)x$. Из ниже получается что сосбвтенные значения $\lambda_j-\Lambda/2$.

$$*\frac{\partial x^2}{\partial x}ax - \lambda x^2$$

$$2ax^{2} - \lambda x^{2} = 2x(a - \lambda/2)x = \frac{\partial}{\partial x}x^{2}(a - \lambda/2)x$$

 $L=\lambda_1+\Lambda_a-\lambda/2-\lambda/2\neq 0$. Подберём $\lambda>0$ так, чтобы L была не ноль. Отсюда существование единственного решения V.

От противного. Пусть для любого лямбда область $M^+=\varnothing\implies V(x)$ - определённо отрицательна. Тогда -V(x) - определённо положительна, D(-V(x)) = -U(x) < 0. Отсюда в силу чета ляпунова хз наша система $\dot{x} = Ax$ асимптотически устойчиво, что как бы не правда. Предположение неверно, существует лямбда сколь угодно малый? ⊲

Итак, для линейных систем мы доказали существование функции Ляпунова, отсюда для нелинейных систем, для которых в первом приближении существует линейное чё ну короче там функция Ляпунова для линейной части надо проверить.

$$\dot{x} = Ax + g(t, x), \frac{\|g(t, x)\|}{\|x\|} \Longrightarrow 0$$

Теорема. Если все вещ части собств значений $\mathbb{R}\lambda_i < 0$, то нулевое решение асимптотически устойчиво.

$$ightharpoonup rac{\partial V}{\partial x}Ax = -(x_1^2 + \ldots + x_n^2) \implies \exists !V$$
 - определённо положительна.

$$\triangleright \quad \frac{\partial V}{\partial x}Ax = -(x_1^2 + \ldots + x_n^2) \implies \exists !V \text{ - определённо положительна.}$$

$$DV = \underbrace{\frac{\partial V}{\partial x}(Ax + g(t,x))}_{=-\|x\|^2} + \underbrace{\frac{\partial V}{\partial x}g(t,x)}_{=-\|x\|^2} + o(\|x\|^2). \text{ По теореме}$$

Ляпунова об асимпт устойчивости x=0 - асимптотически устойчиво. \triangleleft

Теорема. Если существует λ_i , $\mathbb{R}\lambda_i > 0 \implies x = 0$ асимпт неустойчиво.

$$\triangleright \frac{\partial V}{\partial x} Ax = \lambda V + x_1^2 + \ldots + x_n^2, \ \exists \lambda \ge 0 \implies \exists! V : M^+ \ne \emptyset$$

$$DV = \lambda V + x_1^2 + \ldots + x_n^2 + \underbrace{\frac{\partial V}{\partial x} g(t, x)}_{o(||x||^2)} \ge 1/2||x||^2$$

Отсюда т.к. $M^+ \neq \emptyset$, то выполняются условия теоремы Ляпунова о неустойчивости в силу непустоты вот етонго и положительности производной. ⊲

Сл. Критический случай $\mathbb{R}\lambda_j \leq 0$. Тогда у нас есть чисто мнимые корни λ_i . У нас нет теоремы для такого. ахаха и что с этим делать? новая тема

Уравнения с частными производными перваго порядка

 $(*)\sum_{k=1}^n a_k(\vec{x}) \frac{\partial U}{\partial x_k} + b(\vec{x},U) = 0$ - полулинейные уравнения в частных производных. $a_k \in C^1(G), \ \sum a_k^2 > 0, \ b(\vec{x},U) \subset C^1(x \in G,|U| < M)$

 $\{\dot{x}_k = a_k(x) \mid k = 1, \dots, n\}$ - система характеристик уравнения (*). Решение такой системы - некие кривые.

Через каждую точку $x \in G$ проходит только одна траектория движения, характеристика.

Теорема единственности. Если $u = u(\vec{x})$ - решение (*) и оно гладкое на G, тогда значения $u(\vec{x}(t))$ вполне определяются $u(\vec{x}^{(0)}), x^{(0)} \in x(t)$

Теорема единственности и существования.

Пусть S - (n-1)-мерное гиперповерхность в G:

- 1.1. S имеет непрерываное поле нормалей $\implies \exists$ непрерывное семейство касательных плоскостей.
- 1.2. S не касается ни одной из характеристик (кривых). ($\dot{x} \notin$ касат плоск) Пусть на S задана функция $F(\vec{x})$:
 - 2.1. F ограничена на S.
- 2.2. $\forall x \in S \; \exists U(x) : F \in F(x_1, \dots, x_{n-1})$ локально, когда $\vec{x} \in U(x), f \in C^1(U(\vec{x}))$ Пусть
 - $3.1 \exists R_0 \supset S, R_0$ окрестность $S, R_0 \subset G$.
- $3.2 \ \vec{x}(t) \cap S$ проходят далее через R_0 так, что x(t) больше не пересекается с S ($\forall x \in R_0$ проходит ровна одна х-ня)

$$3.3 \ \forall x^{(0)} \in S \begin{cases} \frac{d}{dt}U(x(t)) = \psi(t,u,x_0) \\ u(x(0)) = F(x^{(0)}) \end{cases}$$
 решение можно продлить вдоль дуги ха-

рактеристики в R_0 (при этом |U| < M)

Тогда существует и единственное решение U(x) в R_0 :

1.
$$U \in C^1(R_0)$$

2.
$$\begin{cases} \sum a_k \frac{\partial u}{\partial x_k} + b(\vec{x}, u) = 0 \\ U|_S = F \end{cases}$$
 U - решение этой "задачи Коши"

ightharpoonup случай n=2. Неизвестная функция z=z(x,y).

$$a(x,y)\frac{\partial z}{\partial x} + b(x,y)\frac{\partial z}{\partial y} + c(x,y,z) = 0$$

X-ри:
$$\begin{cases} \frac{dx}{dt} = a(x,y) \\ \frac{dy}{dt} = b(x,y) \end{cases}$$
 Подставляем, получаем
$$\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} + c(x,y,z) \implies \frac{dz}{dt} + c(x,y,z) = 0$$

$$\frac{\partial}{\partial x}\frac{\partial}{\partial t} + \frac{\partial}{\partial y}\frac{\partial}{\partial t} + c(x, y, z) \implies \frac{\partial}{\partial t} + c(x, y, z)$$

$$\exists x = \varphi(t, x^{(0)}, y^{(0)}), \ y = \psi(t, x^{(0)}, y^{(0)})$$

Подставим, получаем
$$\begin{cases} \frac{dz}{dt} = -c(\varphi(t,x^{(0)},y^{(0)}),\ \psi(t,x^{(0)},y^{(0)})) = X(t,z,x^{(0)},y^{(0)}) \\ z(t_0) = F(x^{(0)},y^{(0)}) \end{cases}$$

 $S^{(1)} = \{x, y\}$ - кривая. Нарисуем картинку (фото).

Строим значения z вдоль каждой из характеристик, пересекающих S в R_0 . Как построить \bar{S} ? $\bar{S}=\underbrace{(x,y)}_{S},F(x,y),\;\bar{H}(x(t),y(t),z(t)),\;$ где $z=z(x,y)|_{H}$

$$\begin{cases} \frac{dz}{dt} = \chi(t, z, x^{(0)}, y^{(0)}) \\ z_0(t_0) = z_0 = F(x^{(0)}, y^{(0)}) \end{cases}$$

После такого построения поверхности осталось доказать существование $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ таких, что $\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}=\frac{dz}{dt}$

Локальная замена переменных. Введём в точке $A_0(x_0, y_0)$ (и некоторой её окрестности) криволинейные координаты. Пусть касательная к S в точке A_0 не параллельна оси Oy. Тогда для S локально можно считать, что есть зависимость y от x $(y^{(0)} = F(x^{(0)}))$, где F гладкая в силу гладкости поверхности. Поскольку правые части системы характеристик гладкие, то решения $\varphi(\dots) = \widetilde{\varphi}, \psi(\dots) = \widetilde{\psi}$ тоже гладкие (по гладкости начальных данных). Переходим от переменных x, y к x, t.

$$x^{(0)},t$$
 - новые переменные. $x=\widetilde{\varphi}(t,x^0),\ y=\psi(t,x^0)$ Якобиан не ноль? $\dot{\widetilde{\varphi}}=a(\widetilde{\varphi},\widetilde{\psi}),\ \dot{\widetilde{\psi}}=b(\widetilde{\varphi},\widetilde{\psi}) \implies \frac{d}{dt}\widetilde{\varphi}(t,x_0)=a(\widetilde{\varphi}(t,x_0),\widetilde{\psi}(t,x_0))$ $\frac{d}{dt}\widetilde{\psi}=b(\widetilde{\varphi}(t,x_0),\widetilde{\psi}(t,x_0))$

Правые части гладкие по t, x_0 , поменяем местами

$$\frac{\partial}{\partial t} \left(\frac{d\widetilde{\varphi}}{dt} \right) = \frac{\partial a}{\partial x} \frac{\partial \widetilde{\varphi}}{dt} + \frac{\partial a}{\partial y} \frac{\partial \widetilde{\varphi}}{\delta t}$$

 $\frac{\partial}{\partial t}$ фото короче дальше я устал.