If
$$l^2 + m^2 + n^2 = 125$$
, $a^2 + b^2 + c^2 = 5$ and $al + bm + cn = 25$, where $a,b,c,l,m,n \in R$, then value of $\frac{lmn}{abc}$ is μ , where sum of digits of μ is $\overrightarrow{V_1} \cdot \overrightarrow{V_2} = 25$

$$\overrightarrow{V_1} = l \cdot l + m \cdot l + n \cdot k$$

$$\overrightarrow{V_2} = l \cdot l + m \cdot l + n \cdot k$$

$$\overrightarrow{V_2} = a \cdot l + b \cdot l + c \cdot k$$

$$|\overrightarrow{V_2}| = \sqrt{a^2 + b^2 + c^2} = \sqrt{5}$$

$$5 = \sqrt{125} \sqrt{5} \cos \vartheta \Rightarrow \cos \vartheta = \sqrt{1} \sqrt{1} \sqrt{2}$$

$$\therefore \sqrt{1} \text{ is Collinear with } \sqrt{2} \text{ i.e. } \sqrt{1} || \sqrt{2}$$

$$\frac{1}{2} = \frac{M}{2} = \frac{N}{2} = \lambda (say) ; \lambda > 0.$$

$$\frac{L}{a} = \frac{m}{b} = \frac{n}{c} = \lambda (aay) ; \lambda > 0.$$

$$l = a\lambda$$
; $m = b\lambda$; $n = c\lambda$.
 $l^2 + m^2 + n^2 = (a^2 + b^2 + c^2)\lambda^2$

$$tm^{2}+n^{2} = (a^{2}+b^{2}+c^{2})\lambda^{2}$$

$$125 = 5\lambda^{2} \Rightarrow \lambda = 5$$

$$\frac{1}{a} = \lambda = 5$$

$$= \lambda \cdot \lambda \cdot \lambda = \lambda^{3}$$

$$\mathcal{L} = \{125\}$$

Q Given in a parallelogram ABCD, AB= 2, AD = 3 and M, m denotes the maximum and minimum integral value of product |AC||BB| then (M-m) 12 <u>Sol</u>" $\supseteq (\vec{b})$ $C\left(\vec{a} + \vec{b}\right)$ $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$ $\overrightarrow{BD} = \overrightarrow{b} - \overrightarrow{a}$ |AC| |BD| = | a+1 | b-a|

$$\overrightarrow{BD} = \overrightarrow{b} - \overrightarrow{a}$$

$$|\overrightarrow{AC}| |\overrightarrow{BD}| = |\overrightarrow{a} + \overrightarrow{B}| |\overrightarrow{b} - \overrightarrow{a}|$$

$$= |\overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{a}, \overrightarrow{b}|$$

$$= |\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{a}|$$

$$= |\overrightarrow{a} + \overrightarrow{b} -$$

 $E = \sqrt{169 - 144 \cos^2 \theta}$; $0 \le \cos \theta < 1$ Range of E = (5, 13)M = 13

: M-m= 13-6= 7 Ans

Let P be a point not on the line L that passes through the points Q and R where $\overrightarrow{QR} = \overrightarrow{a} \& \overrightarrow{QP} = \overrightarrow{b}$. The distance d from the point P to the line L is equal to-(c) $\left| \vec{b} - \left(\frac{\vec{a} \cdot \vec{b}}{\vec{a}^2} \right) \vec{a} \right|$ (p) $\sqrt{\left| \vec{b} \right|^2 - \left(\frac{\vec{b} \cdot \vec{a}}{\left| \vec{a} \right|} \right)^2}$

(A)
$$\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}$$
 (B) $\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}$ (C) $|\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a}^2}\right)\mathbf{a}|$ (D) $\sqrt{|\mathbf{b}|^2 - \left(\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}\right)}$

Solution
$$\Delta PQR = \frac{1}{2} |\mathbf{a} \times \mathbf{b}| = \frac{1}{2} |\mathbf{Q}R| \cdot \mathbf{d}$$

$$\mathbf{d} = |\mathbf{a} \times \mathbf{b}| \rightarrow \mathbf{B}$$

$$\Delta PQR = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2} |\vec{a} \times \vec{b}|$$

$$d = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}|} \rightarrow \vec{B}$$

$$|\vec{a}|$$

$$|\vec{a}| = |\vec{a}| \Rightarrow \vec{B}$$

$$|\vec{a}| = |\vec{A}| \Rightarrow \vec{B}$$

$$|\vec{a}| = |\vec{A}| \Rightarrow \vec{B}$$

$$|\overrightarrow{QS}| = |\overrightarrow{b} \cdot \widehat{A}|$$

$$|\overrightarrow{QS}| = |\overrightarrow{b} \cdot \widehat{A}| |\widehat{A}|$$

$$|\overrightarrow{SP}| = |\overrightarrow{b} - |\overrightarrow{b} \cdot \widehat{A}| |\widehat{A}|$$

$$|\overrightarrow{SP}| = |\overrightarrow{b} - |\overrightarrow{b} \cdot \widehat{A}| |\overrightarrow{A}|$$

The angle θ between two non-zero vectors $\vec{a} \& \vec{b}$ satisfies the relation $\cos \theta = (\vec{a} \times \hat{i}).(\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j}).(\vec{b} \times \hat{i}) + (\vec{a} \times \hat{k}).(\vec{b} \times \hat{k}),$ then the least value of $|\vec{a}| + |\vec{b}|$ is equal to (where $\theta \neq 90$ °)

(A)
$$\frac{1}{2}$$
 (B) 2 (C) $\sqrt{2}$ (D) 4

$$\begin{array}{ccc}
Sol^{N} & COA \Theta = (\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{1})(\vec{b} \cdot \hat{1}) + \\
(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{1})(\vec{b} \cdot \hat{1}) + \\
\end{array}$$

$$\begin{array}{ccc}
(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \vec{j}) (\vec{b} \cdot \hat{j}) + \\
(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{k}) (\vec{b} \cdot \hat{k})
\end{array}$$

$$(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{j})^{(\vec{b} \cdot \hat{j})} + (\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{k})^{(\vec{b} \cdot \hat{k})}$$

$$(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k})$$

$$(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k})$$

$$(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k})$$

$$(\vec{a} \cdot \vec{b}) - (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k})$$

$$\begin{array}{cccc}
\text{Con} \Theta &=& 3(\vec{a} \cdot \vec{b}) - \vec{A} \cdot \vec{b} \Rightarrow & \text{Con} \Theta &=& 2\vec{a} \cdot \vec{b} &=& 2|\vec{a}||\vec{b}|| \text{Con} \Theta \\
& & & & & & & & & & & & & & & & \\
\hline
|\vec{a}||\vec{b}| &=& \frac{1}{2}
\end{array}$$

Q If $x^2+y^2+z^2=1$ where $x,y,z \in \mathbb{R}$ and

$$|\vec{v}| = |\vec{v}_1 \times \vec{v}_2| = \sqrt{(3y - 2z)^2 + (2x - y)^2 + (3x - z)^2}.$$

$$|\vec{v}|_{max} = |\vec{v}_1 \times \vec{v}_2|_{max} = |\vec{v}_1| |\vec{v}_2| |\vec{s} \sin \theta$$

$$|\vec{v}|_{max} = |\vec{v}_1 \times \vec{v}_2|_{max} = |\vec{v}_1| |\vec{v}_2| |\vec{s} \sin \theta$$

$$|\vec{v}|_{max} = |\vec{v}_1 \times \vec{v}_2|_{max} = |\vec{v}_1| |\vec{v}_2| |\vec{s} \sin \theta$$

|V| = 14 Ans

If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors having magnitude 1, 2, 3 respectively then $[\vec{a}+\vec{b}+\vec{c}]$ $\vec{b}-\vec{a}$ \vec{c}] = ?

Soly $R_1 \rightarrow R_1 + R_2 - R_3$

 $\begin{bmatrix} 2\vec{b} & \vec{b} - \vec{a} & \vec{c} \end{bmatrix}$ $\begin{bmatrix} 2\vec{b} & \vec{b} & \vec{c} \end{bmatrix} - \begin{bmatrix} 2\vec{b} & \vec{a} & \vec{c} \end{bmatrix}$

 $2[\vec{a} \vec{b} \vec{c}] = 2[\vec{a}||\vec{b}||\vec{c}|$ = 2(1)(2)(3) = 12 + AN

equal to
$$\frac{\pi}{3}$$
. If \vec{a} is perpendicular to $\vec{b} \times \vec{c}$ then find the value of $|\vec{a} \times (\vec{b} \times \vec{c})|$.

Let $|\vec{a}| = \sqrt{3}, |\vec{b}| = 5$, $\vec{b}.\vec{c} = 10$ angle between \vec{b} & \vec{c}

$$\vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \theta = |0|$$

$$5 |\vec{c}| \cdot \frac{1}{2} = |0| \Rightarrow |\vec{c}| = 4$$

$$|\vec{a} \times (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| = 4$$

$$|\vec{a} \times (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| \sin 90^{\circ}$$

$$= 5 |\vec{b}| |\vec{b}|$$

$$\left| \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) \right| = |\overrightarrow{a}| |\overrightarrow{b} \times \overrightarrow{c}| \sin 90^{\circ}$$

$$= \overline{3} |(5)(4). \sin 60^{\circ}$$

$$= \overline{3} (\frac{20}{2}). \underline{\overline{3}} = \frac{30}{40} \text{And}$$

Paragraph

Consider a plane Π whose equation is x - y = 0 and two points A(3,2,4) and B(7,0,-10)

- Coordinates of point P, which lies on plane Π such that |PA + PB| is minimum, are-
- (A) (21.21.9)

- (B) $\left(\frac{21}{4}, \frac{21}{4}, \frac{9}{4}\right)$ (D) $\left(\frac{21}{16}, \frac{21}{16}, \frac{9}{16}\right)$
- Angle between \overrightarrow{AB} and vector perpendicular to plane Π is-

$$\cos^{-1}\left(\frac{1}{2\sqrt{3}}\right)$$

(B) $\frac{\pi}{4}$

(C) $\cos^{-1}\left(\frac{1}{6}\right)$ (D) $\cos^{-1}\left(\frac{1}{12}\right)$

A&B are on the same side of plane x-y=0 A(3,2,4)

 $\frac{=}{\frac{\chi-2}{5}} = \frac{y-3}{-3} = \frac{Z-Y}{-1Y} = \lambda$ general pt

put in: $x = 5\lambda + 2$; $z = 4 - 14\lambda$ eqn of given

plane:

 $8\lambda - 1 = 0 \Rightarrow \lambda = \frac{1}{4}$

 $) \rightarrow \lceil c \rceil$:. P (

In a tetrahedron OABC, the measures of the $\angle BOC$, $\angle COA \& \angle AOB$ are $\alpha, \beta \& \gamma$ respectively, then $(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 2\cos \alpha \cos \beta \cos \gamma)$ can attain-

$$(A) \frac{1}{\sqrt{2}} \qquad (B) \frac{\pi}{4} \qquad (C) 1 \qquad (D) 2$$

$$(A) \frac{1}{\sqrt{2}} \qquad (B) \frac{\pi}{4} \qquad (C) 1 \qquad (D) 2$$

$$(A) \frac{1}{\sqrt{2}} \qquad (C) \frac{\pi}{4} \qquad ($$

$$\begin{bmatrix} \vec{\alpha} \vec{b} \vec{c} \end{bmatrix}^2 = \vec{\alpha}^2 \vec{b}^2 \vec{c}^2 \left(1 - \sum (\vec{\omega}^2 \vec{\alpha} + \sqrt{2} \cos \vec{\alpha} \cos \vec{\beta} \cos \vec{\gamma}) \right)$$

$$= \sum (\vec{\omega}^2 \vec{\alpha} - 2 \cos \vec{\alpha} \cos \vec{\beta} \cos \vec{\gamma})$$

$$= A, B$$

Q Let $\vec{a} = 3\hat{i} - 5\hat{k}$, $\vec{b} = 2\hat{i} + 7\hat{j}$ and $\vec{c} = \hat{i} + \hat{j} + \hat{k}$. Consider \vec{r} such that $\vec{r} \cdot \vec{a} = -1$, $\vec{r} \cdot \vec{b} = 6$ and $\vec{r} \cdot \vec{c} = 5$.

Then the vector component of $2\hat{i} + 3\hat{j} + 4\hat{k}$ along \vec{r} is $n\left(\frac{\ell\hat{i} + m\hat{k}}{\ell^2 + m^2}\right)$, where ℓ & m are coprimes, then

Then the vector component of
$$2i+3j+4k$$
 along r is $n\left(\frac{1}{\ell^2+m^2}\right)$, where $\ell \approx m$ are coprimes, then $r = 209$ And $r =$

The rule vector component of
$$2i+3j+4k$$
 along i is $i(\ell^2+m^2)$, where i is equal to i is equal to i is equal to i is i if i is equal to i is i if i if i is i if i

If
$$\hat{i} + \hat{j}$$
 bisects the angle between $\vec{c} & \hat{j} + \hat{k}$, then $\vec{c}.\hat{j}$ is equal to

(B)
$$\frac{1}{\sqrt{2}}$$

(A)0

(C)
$$-\frac{1}{\sqrt{2}}$$
 (D) 1

$$(\hat{1}+\hat{j})\cdot(\hat{j}+\hat{k}) = \sqrt{2}\sqrt{2}\sqrt{2}$$

$$1 = 2\sqrt{6} \cdot 0 \Rightarrow \theta = 60^{\circ}$$

$$\vec{c}$$

$$\overrightarrow{c} = \lambda \left(\frac{\widehat{1} + \widehat{1}}{\sqrt{2}} - \frac{(\widehat{1} + \widehat{k})}{\sqrt{2}} \right) \Rightarrow \overrightarrow{c} = \frac{\lambda}{\sqrt{2}} \left(\widehat{1} - \widehat{k} \right)$$

$$\overrightarrow{c} \cdot \hat{j} = 0$$
. [A]

Q The direction cosines of the projection of the line $\frac{1}{2}(x-1) = -y = z+2$ on the plane 2x + y - 3z = 4 are- $\overrightarrow{\eta} = 2(+)^{-3k}$ (A) $\left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$ (B) $\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$

(C)
$$\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$$
 (D) None of these

$$L: \frac{2(-1)}{2} = \frac{4}{-1} = \frac{2-(-2)}{1}$$
(D) None of these

L:
$$\frac{2l-1}{2} = \frac{4}{-1} = \frac{2-(-2)}{1}$$

$$\vec{a} = dir^n \text{ Vector} : 2\hat{1} - \hat{j} + \hat{k}$$

$$\vec{d} = dir^n \text{ Vector} : 2\hat{1} - \hat{j} + \hat{k}$$

$$\vec{a} = \text{dir}^{n} \text{ vector} : 2\hat{1} - \hat{j} + \hat{k}$$

$$\vec{a} \cdot \vec{n} = 4 - 1 - 3 = 0$$

$$\Rightarrow \text{ line is } || + o \text{ plane}$$

The direction ratios of a normal to the plane passing through (1,0,0), (0,1,0) and making an angle
$$\frac{\pi}{4}$$
 with plane $x + y = 3$ can be-

(A) 0,1,0
(B) 1,1, $\sqrt{2}$
(C) 1,0,0
(D) $\sqrt{2}$,1,1

Let eqn of plane be

$$\rho: \quad \alpha(x-1) + b(y-0) + C(\overline{z}-0) = 0 \quad -1)$$

$$\alpha(-1) + b + 0 = 0 \Rightarrow \qquad b = \alpha \quad -2)$$

$$\overline{n} = \alpha \hat{1} + b \hat{1} + c \hat{k}$$

$$\overline{n} = \hat{1} + \hat{1}$$

$$\overline{n} \cdot \overline{n} = |\overline{n}| |\overline{n}| |\alpha_0 | |S|$$

$$\alpha + b = \sqrt{\alpha^2 + b^2 + c^2} \quad \sqrt{2} \cdot \frac{1}{32}$$

$$\alpha + b + c = \sqrt{\alpha^2 + b^2 + c^2} \quad \sqrt{2} \cdot \frac{1}{32}$$

$$\alpha + b + c = \sqrt{\alpha^2 + b^2 + c^2} \quad \sqrt{2} \cdot \frac{1}{32}$$

$$\alpha \cdot b \cdot c = |\alpha| \cdot |\beta| = 2$$

$$\alpha \cdot b \cdot c = |\alpha| \cdot |\beta| = 2$$

$$\alpha \cdot b \cdot c = |\alpha| \cdot |\beta| = 2$$

$$\alpha \cdot b \cdot c = |\alpha| \cdot |\beta| = 2$$

$$\alpha \cdot b \cdot c = |\alpha| \cdot |\beta| = 2$$

$$\alpha \cdot b \cdot c = |\alpha| \cdot |\beta| = 2$$

3-D Sheet

J-M

Q12 to 20.

Q1 to 7.

5-1 Complete