Tutorial 9

MATH F111- Mathematics I

September 30, 2024

- 1. Describe level curve of $f(x,y) = e^{y-x^2-1}$ that passes through the point (4,17). Hint: Let the level curve be $f(x,y) = e^c$ for a constant c.
- 2. A thin metal plate, located in the xy plane, has temperature T(x,y) at the point (x,y). The level curves of T are called isothermals because at all points on an isothermal the temperature is the same. Sketch some isothermals if the temperature function is given by

$$T(x,y) = 100/(1 + x^2 + 2y^2).$$

3. Let

$$f(x,y) = \begin{cases} x^2 & \text{if } x \ge 0\\ x^3 & \text{if } x < 0 \end{cases}$$

Find the following limits.

- $\bullet \lim_{(x,y)\to(3,-2)} f(x,y)$
- $\lim_{(x,y)\to(-2,1)} f(x,y)$ $\lim_{(x,y)\to(0,0)} f(x,y).$
- 4. The Sandwich Theorem for functions of two variables states that if $g(x,y) \leq f(x,y) \leq h(x,y)$ for all $(x,y) \neq (x_0,y_0)$ in a disk centered at (x_0,y_0) and if g and h have the same finite limit L as $(x,y) \to (x_0,y_0)$, then

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L.$$

1

Use this result to support your answers to the following questions.

• Does knowing that

$$1 - \frac{x^2 y^2}{3} < \frac{\tan^{-1} xy}{xy} < 1$$

tell you anything about

$$\lim_{(x,y)\to(0,0)} \frac{\tan^{-1} xy}{xy}?$$

• Does knowing that $|\sin(\frac{1}{x})| \le 1$ tell you anything about

$$\lim_{(x,y)\to(0,0)} y\sin\frac{1}{x}?$$

- Find $\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2 y}{x^2 + 2y^2}$?
- Find $\lim_{(x,y)\to(0,0)} xy \frac{x^2-y^2}{x^2+y^2}$?
- 5. Define f(0,0) in a way that f extends to be be continuous at the origin.

(i)
$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$

(ii)
$$f(x,y) = \ln\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right)$$

(iii)
$$f(x,y) = \frac{3x^2y}{x^2+y^2}$$

6. Find the limit, if it exists, or show that the limit does not exist.

•
$$\lim_{(x,y)\to(0,0)} \frac{5y^4\cos^2 x}{x^4+y^4}$$

•
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz}{x^2+y^2+z^2}$$

7. Determine the set of points at which the function is continuous.

•
$$F(x,y) = \frac{1+x^2+y^2}{1-x^2-y^2}$$

•
$$F(x,y) = \cos\sqrt{(1-x-y)}$$

•
$$F(x,y) = \frac{1}{|xy|+|z|}$$

•
$$F(x,y,z) = \frac{1}{4-\sqrt{x^2+y^2+z^2-1}}$$

8. Changing variables to Polar Coordinates:

- How do you define $\lim_{(x,y)\to(0,0)} f(x,y)$ in polar co-ordinates?
- Let $f(x,y) = \frac{2x^2y}{x^4+y^2}$. Convert the function into polar co-ordinates. Does the limit exists at (0,0)? What happens to the limit for a fixed θ and $r \to 0$? What happens on the path $y = x^2$, i.e $r \sin \theta = r^2 \cos \theta$?
- 9. Discuss limit at the given point.

(a)
$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}(||x| - |y|| - |x| - |y|)$$
 at $(0,0)$ Hint: Try $y = mx$ with $m = 3, 4, 5$.

(b)
$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$
 at (0,0) Hint: $\epsilon - \delta$

(c)
$$f(x,y) = \frac{x^3 + y^3}{x - y}$$
 at (0,0) Hint: $y = x - mx^3$.

(d)
$$f(x,y) = \frac{y^4 \sqrt{xy}}{x^2 + xy^3}$$
 at $(0,0)$ Hint: $y = my^3$.