[Total No. of Printed Pages—3

Seat	
No.	

[4757]-1050

S.E. (Elex/E & TC) (First Semester) EXAMINATION, 2015

DIGITAL ELECTRONICS

(2012 Pattern)

Time: Two Hours Maximum Marks: 50

- N.B. :— (i) Figures to the right indicate full marks.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Assume suitable data, if necessary.
- 1. (a) Draw and explain the working of two input TTL NAND gates (with totem pole). [6]
 - (b) Implement the following function using single 8 : 1 MUX. [6] $F(A, B, C, D) = \Sigma m (1, 4, 6, 8, 10, 11, 13, 14)$

Or

- 2. (a) Design and implement full adder using suitable decoder. [6]
 - (b) Draw and explain the working of 2 i/p CMOS NOR gate. [6]

P.T.O.

3.	(a)	Design mod 6 ripple up counter using T flip-flops.	[6]
	(<i>b</i>)	Convert D to T and vice versa.	[6]
		Or	
4.	(a)	Explain moore circuit with example. Also compare moore ar	ıd
		mealy circuit.	[6]
	(<i>b</i>)	Design a sequence detector to detect sequence 1101 using D I	F
		and mealy machine.	[6]
5.	(a)	Compare between PROM and PAL.	[5]
	(b)	A combinational circuit is defined by a function $F_1 = \Sigma m(1, 3, 3)$	5)
		$F_2 = \Sigma m (5, ,6, 7).$	
		Implement the circuit with PLA having 3 inputs, 3 product term	ns
		and two outputs.	[8]
		Or	
6.	(a)	Explain in detail the architecture of CPLD.	[6]
	(<i>b</i>)	What is meant by EPROM? State its advantages and disadva	n-
		tages.	[7]
7.	(a)	Explain the following statements with examples:	[6]
		(i) Process	
		(ii) Case	
		(iii) If else	

(b) Write a VHDL code for 8 : 1 multiplexer using behavioural modeling. [7]

Or

- 8. (a) Explain in detail signal and variable with example in VHDL. [6]
 - (b) Write a VHDL code for 4-bit ALU using case statement. [7]