Karl Jan Clinckspoor

Estudo estrutural, termodinâmico e cinético sobre a formação e interações de micelas gigantes em sistemas aquosos binários

Brasil

10 de julho de 2018

Karl Jan Clinckspoor

Estudo estrutural, termodinâmico e cinético sobre a formação e interações de micelas gigantes em sistemas aquosos binários

Tese de doutorado realizado no instituto de Química da Unicamp, na área de Físico-Química, que visa estudar micelas gigantes, sua formação, seu crescimento e as interações intermicelares

Universidade Estadual de Campinas Instituto de Química Programa de Pós-Graduação

Orientador: Prof. Dr. Edvaldo Sabadini

Brasil 10 de julho de 2018

Karl Jan Clinckspoor

Estudo estrutural, termodinâmico e cinético sobre a formação e interações de micelas gigantes em sistemas aquosos binários/ Karl Jan Clinckspoor. - Brasil, 10 de julho de 2018-

115 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Edvaldo Sabadini

Tese (Doutorado) – Universidade Estadual de Campinas Instituto de Química

Programa de Pós-Graduação, 10 de julho de 2018.

1. Palavra-chave1. 2. Palavra-chave2. 2. Palavra-chave3. I. Orientador. II. Universidade xxx. III. Faculdade de xxx. IV. Título

Este trabalho é dedicado às crianças adultas que, quando pequenas, sonharam em se tornar cientistas.

Agradecimentos

Agradeço à minha mãe, a quem amo muito, por ter sempre me apoiado em toda minha vida. Agradeço à Karen, minha maravilhosa namorada, por todos os singelos momentos vividos até agora. Agradeço à Lia, por ter sido uma ótima companhia, desde o início da graduação.

Agradeço ao Prof. Edvaldo, que dirigiu e focou minha, por vezes dispersa, atenção, e me apoiou nas diversas decisões que eu tive que tomar durante minha pós graduação. Agradeço ao Prof. Jan Skov Pedersen, por ter aceitado me receber em seu laboratório por um mês, mesmo eu sendo um completo amador em sua área de especialização.

Agradeço aos colegas do laboratório B145, pelas discussões e companhia durante esses anos.

Agradeço ao CNPq pelo financiamento.

"Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito. (Bíblia Sagrada, Romanos 12, 2)

Resumo

O objetivo deste trabalho é estudar o processo de formação de micelas – tanto sua cinética quanto sua termodinâmica – e, após sua formação, estudar a cinética de relaxação das micelas, quando presentes em solventes diferentes. Para isso, foram utilizadas técnicas como fluorescência, espalhamento de radiação, calorimetria e reologia. Foi possível estimar tempos de crescimento para micelas em dois regimes de concentração diferentes. Além disso, observou-se que é necessário considerar várias contribuições, além das citadas na literatura, para explicar as diferenças de comportamento reológico de micelas em misturas binárias com glicerina, sacarose, ureia, 1,3-butanodiol e dimetilsulfóxido.

Palavras-chave: latex. abntex. editoração de texto.

Abstract

This is the english abstract.

 ${\bf Keywords: \ latex. \ abntex. \ text \ editoration.}$

Lista de Figuras

Lista de Tabelas

Tabela 1 –	Símbolos e parâmetros utilizados no modelo, e seus significados 104
Tabela 2 –	Parâmetros da equação A.2
Tabela 3 –	Termos da equação A.3
Tabela 4 -	Constantes
Tabela 5 -	Constantes utilizadas para o cálculo de Γ
Tabela 6 –	Parâmetros para a equação A.17

Lista de abreviaturas e siglas

NaSal Salicilato de sódio

Sal⁻ Salicilato

CTAB Brometo de cetiltrimetilamônio

TTAB Brometo de tetradeciltrimetilamônio

DTAB Brometo de dodeciltrimetilamônio

DMSO Dimetilsulfóxido

13BD 1,3-butanodiol

SAXS Espalhamento de Raios-X em baixos ângulos

DLS Espalhamento dinâmico de luz

ITC Calorimetria de titulação isotérmica

DSC Calorimetria diferencial de varredura abc(1)

Lista de símbolos

- Γ Letra grega Gama
- Λ Lambda
- \in Pertence

Sumário

1	INTRODUÇÃO	27
1	SURFACTANTES	29
1.1	Polaridade	33
1.2	Parâmetro de empacotamento	33
1.3	Mesofases	33
1.4	Aditivos	33
2	MICELAS GIGANTES	35
2.1	Crescimento de micelas	35
2.2	Termodinâmica de micelas	35
2.3	Modelos de comportamento reológico	35
2.4	Perfis de viscosidade	35
3	INSPIRAÇÕES PARA O PROJETO	37
4	ESTUDOS DE HOFFMANN SOBRE MICELAS E LAMELAS	39
5	ESTUDOS DE PEDERSEN SOBRE CINÉTICA	41
6	OBJETIVOS	43
II	TEORIA	45
7	REOLOGIA	47
7.1	Fundamentos	47
7.1.1	Fluídos Newtonianos	47
7.1.2	Sólidos Hookeanos	47
7.1.3	Fluidos viscoelásticos	47
7.2	Reologia oscilatória	47
7.2.1	Aquisição de dados	47
7.2.2	Modelo de Maxwell	47
7.2.3	Modelos mais complexos	47
7.3	Curvas de Fluxo	47
7.3.1	Modelos de curvas de fluxo	47
8	CALORIMETRIA DE TITULAÇÃO ISOTÉRMICA	49
8.1	Fundamentos	49

8.1.1	Aquisição de dados	49
8.2	Calorimetria de micelas esféricas	49
8.3	Calorimetria de micelas gigantes	49
8.4	Termodinâmica de micelização	49
9	SAXS	51
9.1	Fundamentos	51
9.2	Modelagem	51
9.2.1	Esferas	51
9.2.2	Micelas esféricas	51
9.2.3	Micelas gigantes	51
9.2.4	Visualização dos parâmetros	51
9.2.5	Indexação de picos	51
10	FLUORESCÊNCIA	53
10.1	Fundamentos	53
10.1.1	Diagramas	53
10.1.2	Rendimento quântico	53
10.1.2.1	Lei de X (não importa onde incide para fluorescência) $\ \ldots \ \ldots \ \ldots$	53
11	ANÁLISE MULTIVARIADA	55
11.1	Técnicas de classificação	55
11.1.1	Normalização dos dados	55
11.1.2	PCA	55
11.1.3	HCA	55
11.2	Técnicas de regressão	55
11.2.1	Regressão Multivariada	55
11.2.2	PCR	55
11.2.3	PLS	55
III	MATERIAIS E MÉTODOS	57
12	REAGENTES	59
13	REOLOGIA	61
13.1	Preparo das amostras	61
13.2	Tratamento de dados de reologia oscilatória	61
13.3	Tratamento de dados de curvas de fluxo	61
14	CALORIMETRIA DE TITULAÇÃO ISOTÉRMICA	63
14.1	Preparo das amostras	63

14.2	Tratamento de dados	63
15	SAXS	65
15.1	Aquisição de dados	65
15.1.1	LNLS	65
15.1.2	Grenoble	65
15.1.3	Stopped-flow	65
15.2	Tratamento de dados	65
15.2.1	Subtração do "branco"	65
15.2.2	Média das curvas de cinética	65
15.2.3	Ajuste das curvas pelo software superSAXS	65
16	FLUORESCÊNCIA	67
16.1	Aquisição de dados	67
16.1.1	Determinação da absorção e emissão	67
16.1.2	Fluorescência estática	67
16.1.3	Fluorescência resolvida no tempo	67
16.1.3.1	Programa LabView	67
16.2	Tratamento de dados	67
16.2.1	Filtro Savitzky-Golay	67
17	TÉCNICAS ADICIONAIS	69
17.1	Calorimetria diferencial de varredura	69
17.2	Espalhamento dinâmico de luz	69
17.3	Tensiometria	69
IV	EFEITO DOS ADITIVOS HIDROFÍLICOS	7 1
18	RESULTADOS	73
18.1	Efeitos dos aditivos na reologia	7 3
18.1.1	Glicerina	73
18.1.2	Sacarose	73
18.1.3	DMSO	73
18.1.4	1,3BD	73
18.1.5	Ureia	73
18.2	Efeito dos aditivos na calorimetria de micelas gigantes	7 3
18.3	Efeito dos aditivos na calorimetria de micelização	7 3
19	PARÂMETROS A SER ESTUDADOS	7 5
19.0.1	Índice de refração	75

19.0.2	Constante dieletrica	75
19.0.3	Parâmetro de Gordon	75
19.0.4	Interação dos aditivos com a superfície micelar	75
19.0.5	Decomposição em propriedades fundamentais	75
20	CORRELAÇÕES ENTRE OS PARÂMETROS E AS PRO-	
	PRIEDADES	77
20.0.1	Reologia	77
20.0.2	Calorimetria	77
2 1	EFEITO DA UREIA	79
21.1	Motivação	7 9
21.2	Calorimetria diferencial de varredura (DSC)	7 9
21.3	SAXS	7 9
21.4	DLS	7 9
21.5	Reologia do sólido	7 9
21.6	Entalpia de interação de ureia com surfactante	7 9
\mathbf{V}	CINÉTICA DE CRESCIMENTO	81
22	SAXS RESOLVIDO NO TEMPO	83
23	FLUORESCÊNCIA RESOLVIDA NO TEMPO	85
VI	PROJETOS MENORES	87
24	ESTUDO SOBRE REGIÕES MAXWELLIANAS NOS PER- FIS DE VISCOSIDADE	89
25	COMPARAÇÃO DE ITC DE MG EM DOIS SENTIDOS OPOS- TOS	
	105	91
VII	CONTRIBUIÇÕES PARA OUTROS PROJETOS	93
2 6	MUCO	95
26.1	Breve descrição do projeto	95
26.2	Contribuição	95
26.2.1	Determinação de uma metodologia	95
26.2.2	Tratamento de dados	95
26.3	Resultado da colaboração	95

27	PREVISÃO DE TEMPERATURAS DE FUSÃO DE TRIA-			
0 7 1	CILGLICERÍDEOS			
27.1	Breve descrição			
27.2	Contribuição			
	REFERÊNCIAS BIBLIOGRÁFICAS			
	APÊNDICES 101			
	APÊNDICE A – DESCRIÇÃO MATEMÁTICA DO MODELO			
	DE MICELAS GIGANTES 103			
A.1	Introdução e motivação			
A.2	Resumo do modelo			
A.3	Descrição detalhada do modelo			
A.3.1	Fator forma das cadeias wormlike, F_{wc}			
A.3.1.1	Fator de correção χ			
A.3.1.2	Fator forma de cadeias com volume excluído, $F_{chain_{ExV}}$ 105			
A.3.1.3	Fator de correção Γ			
A.3.1.4	Fator forma de um cilindro F_{rod}			
A.3.2	Fator forma da seção transversal de um cilindro F_{cs}			
	APÊNDICE B – DESCRIÇÃO DO MODELO DE MICELAS GIGANTES EM PYTHON 109			
	APÊNDICE C – DESCRIÇÃO E USO DO SOFTWARE DE TRATAMENTO DE CURVAS DE FLUXO 111			
	APÊNDICE D – SOFTWARES MISCELÂNEOS PARA TRA- TAMENTO DE DADOS			
	Índice Remissivo			

Parte I

Introdução

1 Surfactantes

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam

pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus

scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis eges-

tas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at,

1.1. Polaridade 33

imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

1.1 Polaridade

DEF

- 1.2 Parâmetro de empacotamento
- 1.3 Mesofases
- 1.4 Aditivos

2 Micelas gigantes

- 2.1 Crescimento de micelas
- 2.2 Termodinâmica de micelas
- 2.3 Modelos de comportamento reológico
- 2.4 Perfis de viscosidade

3 Inspirações para o projeto

4 Estudos de Hoffmann sobre micelas e lamelas

5 Estudos de Pedersen sobre cinética

6 Objetivos

Parte II

Teoria

7 Reologia

-	7 -	1											
	/		-		n		1	m	Ω	n	+.	\sim	C
- 1		L		u		u	а	11	ı		L	u	

- 7.1.1 Fluídos Newtonianos
- 7.1.2 Sólidos Hookeanos
- 7.1.3 Fluidos viscoelásticos
- 7.2 Reologia oscilatória
- 7.2.1 Aquisição de dados
- 7.2.2 Modelo de Maxwell
- 7.2.3 Modelos mais complexos
- 7.3 Curvas de Fluxo
- 7.3.1 Modelos de curvas de fluxo

8 Calorimetria de titulação isotérmica

- 8.1 Fundamentos
- 8.1.1 Aquisição de dados
- 8.2 Calorimetria de micelas esféricas
- 8.3 Calorimetria de micelas gigantes
- 8.4 Termodinâmica de micelização

9 SAXS

- 9.1 Fundamentos
- 9.2 Modelagem
- 9.2.1 Esferas
- 9.2.2 Micelas esféricas
- 9.2.3 Micelas gigantes
- 9.2.4 Visualização dos parâmetros
- 9.2.5 Indexação de picos

10 Fluorescência

- 10.1 Fundamentos
- 10.1.1 Diagramas
- 10.1.2 Rendimento quântico
- 10.1.2.1 Lei de X (não importa onde incide para fluorescência)

11 Análise Multivariada

- 11.1 Técnicas de classificação
- 11.1.1 Normalização dos dados
- 11.1.2 PCA
- 11.1.3 HCA
- 11.2 Técnicas de regressão
- 11.2.1 Regressão Multivariada
- 11.2.2 PCR
- 11.2.3 PLS

Parte III Materiais e Métodos

12 Reagentes

13 Reologia

- 13.1 Preparo das amostras
- 13.2 Tratamento de dados de reologia oscilatória
- 13.3 Tratamento de dados de curvas de fluxo

14 Calorimetria de titulação isotérmica

- 14.1 Preparo das amostras
- 14.2 Tratamento de dados

15 SAXS

- 15.1 Aquisição de dados
- 15.1.1 LNLS
- 15.1.2 Grenoble
- 15.1.3 Stopped-flow
- 15.2 Tratamento de dados
- 15.2.1 Subtração do "branco"
- 15.2.2 Média das curvas de cinética
- 15.2.3 Ajuste das curvas pelo software superSAXS

16 Fluorescência

- 16.1 Aquisição de dados
- 16.1.1 Determinação da absorção e emissão
- 16.1.2 Fluorescência estática
- 16.1.3 Fluorescência resolvida no tempo
- 16.1.3.1 Programa LabView
- 16.2 Tratamento de dados
- 16.2.1 Filtro Savitzky-Golay

17 Técnicas adicionais

- 17.1 Calorimetria diferencial de varredura
- 17.2 Espalhamento dinâmico de luz
- 17.3 Tensiometria

Parte IV

Efeito dos aditivos hidrofílicos

18 Resultados

- 18.1 Efeitos dos aditivos na reologia
- 18.1.1 Glicerina
- 18.1.2 Sacarose
- 18.1.3 DMSO
- 18.1.4 1,3BD
- 18.1.5 Ureia
- 18.2 Efeito dos aditivos na calorimetria de micelas gigantes
- 18.3 Efeito dos aditivos na calorimetria de micelização

19 Parâmetros a ser estudados

19.0.1	Índice de refração
19.0.2	Constante dielétrica
19.0.3	Parâmetro de Gordon
19.0.4	Interação dos aditivos com a superfície micelar
19.0.5	Decomposição em propriedades fundamentais

20 Correlações entre os parâmetros e as propriedades

20.0.1 Reologia

20.0.2 Calorimetria

21 Efeito da ureia

21.1 Motivação

A ureia demonstrou um comportamento que divergiu bastante dos outros aditivos. Por esse motivo, ela será estudada um pouco mais profundamente. Porém, a ação do salicilato de sódio não receberá muito enfoque, para simplificar o sistema. Portanto, foi estudado principalmente o efeito da ureia em soluções de CTAB, TTAB e DTAB, com concentrações diferentes de ureia e de surfactante.

Ocorre a formação de um precipitado esbranquiçado em soluções de surfactante em concentrações maiores que 35% de ureia. Isso ocorre a temperatura ambiente. Quando a solução é aquecida acima de cerca de 35°C, a solução se torna transparente. Esse comportamento foi estudado, variando-se o surfactante, sua concentração, e a concentração de ureia. Desses sistemas, foram estudadas as características térmicas, a estrutura da mesofase, e a reologia da fase esbranquiçada formada.

21.2 Calorimetria diferencial de varredura (DSC)

Foram preparadas soluções de concentrações crescentes de surfactante e ureia. A Figura X mostra como os perfis de calorimetria são afetadas pelas variações do comprimento da cadeia do surfactante, em três concentrações de surfactante, em 40% de ureia. A Figura Y mostra essas mesmas variações, mas com 45% de ureia.

- 21.3 SAXS
- 21.4 DLS
- 21.5 Reologia do sólido
- 21.6 Entalpia de interação de ureia com surfactante

Parte V Cinética de crescimento

22 SAXS resolvido no tempo

23 Fluorescência resolvida no tempo

Parte VI

Projetos menores

24 Estudo sobre regiões Maxwellianas nos perfis de viscosidade

25 Comparação de ITC de MG em dois sentidos opostos

Parte VII

Contribuições para outros projetos

26 Muco

- 26.1 Breve descrição do projeto
- 26.2 Contribuição
- 26.2.1 Determinação de uma metodologia
- 26.2.2 Tratamento de dados
- 26.3 Resultado da colaboração

- 27 Previsão de temperaturas de fusão de triacilglicerídeos
- 27.1 Breve descrição
- 27.2 Contribuição

Referências Bibliográficas

1 MILACIC, V.; FREGONA, D.; DOU, Q. P. Gold Complexes as Prospective Metal Based Anticancer Drugs. *Histol Histopathol*, v. 23, p. 101–108, 2008. ISSN 1699-5848.

APÊNDICE A – Descrição matemática do modelo de micelas gigantes

A.1 Introdução e motivação

Esta seção mostrará as equações utilizadas para descrever o modelo de espalhamento de micelas gigantes. As equação foram baseadas numa série de artigos de X, Y, Z. Aqui, esses artigos serão agrupados, de modo a facilitar o entendimento do modelo.

Porém, essa descrição matemática é de menor aplicabilidade, pois é necessário transcrever as equações em código que consiga realizar ajustes. Essa tarefa não é trivial, especialmente para não especialistas. Logo, será disponibilizado, na seção X, uma transcrição dessas equações, na linguagem Python.

A.2 Resumo do modelo

O modelo descreve cadeias alongadas caroço-casca (core-shell) de Kratky-Porod, considerando volume excluído, com interações intercadeias modeladas pelo modelo PRISM (Polymer Reference Interaction Site Model). No total, a equação de intensidade de espalhamento I em função do vetor de espalhamento q(I(q), Eq. A.1) possui 13 parâmetros, descritos na tabela 1.

$$I = f(q, scale, d_{head}, r_{core}, \rho_{rel}, \sigma, back, L, k_L, \varepsilon, D_{CQ}, \nu_{RPA}, SC_{pow}, exp_{pow})$$
(A.1)

Símbolo	Descrição
\overline{I}	Intensidade de RX espalhado
q	Vetor de espalhamento
scale	Fator de escala
d_{head}	Espessura do shell
r_{core}	Raio do core
$ ho_{rel}$	Diferença de densidade eletrônica entre $core$ e $shell$
σ	Fator de smearing, o quão definido é o limite entre regiões
back	Constante referente ao background
L	Comprimento de contorno das cadeias

k_L	Comprimento de $Kuhn$ das cadeias, igual ao dobro do comprimento
	de correlação
ε	Excentricidade radial das micelas
D_{CQ}	Distância de correlação das micelas
ν_{RPA}	Fator de concentração
SC_{pow}	Fator de escala (preexponencial) da exponencial em baixo q
exp_{pow}	Fator exponencial, relativo à inclinação na escala log

Tabela 1 – Símbolos e parâmetros utilizados no modelo, e seus significados

A equação geral do modelo, e a descrição de seus fatores, estão descritos na Eq.A.2 e na Tab. 2.

$$I = \frac{scale\left(F_{KPchain_{ExV}}F_{rod_{CS}}\right)}{1 + \nu_{RPA}F_{sphere}\left(D_{CQ}\right)F_{KPchain_{ExV}}} + back + scale_{pow}^{-exp_{pow}}$$
(A.2)

Termo	Descrição
$F_{KPchain_{ExV}}$	Fator forma de cadeias de Kratky-Porod com volume excluído
$F_{rod_{CS}}$	Fator forma da seção transversão de um bastão
$F_{sphere}(D_{CQ})$	Fator forma de uma esfera, cujo raio é a distância de correlação

Tabela 2 – Parâmetros da equação A.2

Já o modelo do PRISM é descrito pela Eq. A.3. Note a similaridade com a Eq A.2.

$$I_{PRISM} = \frac{\varphi V_{mic} F_{wc}(q) F_{cs}(q)}{1 + \nu F_{rod}(q L_{c(q)}) F_{wc}(q)}$$
(A.3)

Termo	Descrição
φ	Fração volumétrica
V_{mic}	Volume da micela
F_{wc}	Fator forma de uma wormlike chain
F_{cs}	Fator forma de uma seção transversal de cilindro
F_{rod}	Fator forma de um bastão infinitamente longo
$L_{c(q)}$	$=6\xi$, comprimento característico
ξ	Comprimento de correlação da função $c(q) \approx F_{rod}$

Tabela 3 – Termos da equação A.3

A partir disso, podemos começar a adentrar nos termos.

A.3 Descrição detalhada do modelo

O modelo será dividido em duas partes, uma referente à cadeia micelar, F_{wc} e outra referente à seção transversal da cadeia, F_{cs} .

A.3.1 Fator forma das cadeias wormlike, F_{wc}

$$F_{wc} = \left[(1 - \chi) F_{chain_{ExV}} + \chi F_{rod} \right] \Gamma \tag{A.4}$$

A equação A.4 pode ser simplificada dependendo da faixa de q. A região de qintermediária precisa ser descrita pelo termo χ (Eq. A.6) e corrigida por Γ . Esses parâmetros são obtidos por simulações de Monte Carlo.

$$F_{wc} \begin{cases} q \ baixo : F_{wc} \approx F_{chain_{ExV}} \\ q \ alto : F_{wc} \approx F_{rod} \end{cases}$$
 (A.5)

A.3.1.1 Fator de correção χ

O termo χ é descrito pela equação A.6, que por sua vez é dependente da equação A.7.

$$\chi = \exp \xi^{-5} \tag{A.6}$$

$$\xi = qk_L \left(\frac{\pi b}{1,103L}\right)^{3/2} \left(\frac{\langle R_g^2 \rangle}{k_L^2}\right)^{1,282}$$
(A.7)

onde $\langle R_g^2 \rangle$ é a média do ensemble do quadrado do raio de giro das cadeias, no modelo.

A.3.1.2 Fator forma de cadeias com volume excluído, $F_{chain_{ExV}}$

O termo $F_{chain_{{\cal E}xV}}$ possui a seguinte forma (Eq. A.8)

$$F_{chain_{ExV}} = w(qR_g)F_{Debye}(q, L, k_L) + \left[1 - w(qR_g)\right] \left[C_1(qR_g)^{\frac{1}{\nu}} + C_2(qR_g)^{-\frac{2}{\nu}} + C_3(qR_g)^{-\frac{3}{\nu}}\right]$$
(A.8)

O termo F_{Debye} , por sua vez, é dado pela Eq. A.9.

$$F_{Debye} = 2\left(\frac{e^{-u} + u - 1}{u^2}\right) \tag{A.9}$$

onde $u = R_g^2 q^2$. R_g é a raiz quadrada do raio de giro médio ao quadrado, $R_g = \langle R_g^2 \rangle^{1/2}$, considerando o volume excluído. Por sua vez, esse valor é dado pela Eq. A.10

$$\langle R_g^2 \rangle = \alpha \left(\frac{L}{k_L}\right)^2 \langle R_g^2 \rangle_0$$
 (A.10)

O termo w é uma equação empírica, da forma: (Eq A.11)

$$w(x) = \frac{\left[1 + \frac{\tanh(x - C_4)}{C_5}\right]}{2} \tag{A.11}$$

As constantes C_1 , C_2 , C_3 , C_4 e C_5 foram obtidas a partir de um ajuste, e estão na tabela 4.

Constante	Valor
C_1	1,220
C_2	$0,\!4288$
C_3	-1,651
C_4	1,523
C_5	0,1477

Tabela 4 – Constantes

A.3.1.3 Fator de correção Γ

O fator de correção Γ (Eq. A.12) é dependente de dois conjuntos de constantes, A (Eq. A.13) e B (Eq. A.14) determinadas empiricamente (Tab 5).

$$\Gamma(q, L, k_L) = 1 + (1 - \chi) \sum_{i=2}^{5} A_i \xi^i + \chi \sum_{i=0}^{2} B_i \xi^{-i}$$
(A.12)

$$A_{i} = \sum_{j=0}^{2} a_{1}(i, j) \left(\frac{L}{k_{L}}\right)^{-j} \exp\left(-\frac{10k_{L}}{L}\right) + \sum_{j=1}^{2} a_{2}(i, j) \left(\frac{L}{k_{L}}\right)^{j} \exp\left(-\frac{2L}{k_{L}}\right)$$
(A.13)

$$B_{i} = \sum_{j=0}^{2} b_{1}(i, j) \left(\frac{L}{k_{L}}\right)^{-j} + \sum_{j=1}^{2} b_{2}(i, j) \left(\frac{L}{k_{L}}\right)^{j} \exp\left(-\frac{2L}{k_{L}}\right)$$
(A.14)

$a_1(5,0) 0.0584$	$a_2(5,1)$	0.3435	$b_1(0,1)$	0.1342	$b_2(0,2)$	0.6950
$a_1(2,1)$ 1.761	$a_2(2,2)$	0.0170	$b_1(1,1)$	0.0138	$b_2(1,2)$	-0.3238
$a_1(3,1)$ 2.252	$a_2(3,2)$	-0.4731	$b_1(2,1)$	0.1898	$b_2(2,2)$	-0.5403
$a_1(4,1)$ -1.291	$a_2(4,2)$	0.1869	$b_1(0,2)$	-0.2020		
$a_1(5,1) 0.6994$	$a_2(5,2)$	0.3350	$b_1(1,2)$	-0.0114		
$a_1(2,2)$ -26.04			$b_1(2,2)$	0.0123		
$a_1(3,2)$ 20.00						
$a_1(4,2)$ 4.382						
$a_1(5,2)$ 1.594						

Tabela 5 – Constantes utilizadas para o cálculo de Γ

A.3.1.4 Fator forma de um cilindro F_{rod}

O fator forma de um cilindro segue a equação A.15.

$$F_{rod}(q, L) = \frac{2Si(qL)}{qL} - \frac{4\sin^2\frac{qL}{2}}{q^2L^2}$$
 (A.15)

onde Si é a função-integral de seno (Eq. A.16)

$$Si(x) = \int_0^x \frac{\sin t}{t} dt \tag{A.16}$$

A.3.2 Fator forma da seção transversal de um cilindro F_{cs}

O fator forma da seção transversal de um cilindro é descrito pela equação A.17. Seus parâmetros se encontram na tabela 6

$$F_{\rm cs} = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \left[(\rho_S - \rho_w) \frac{2J_1 \left(qR_s \left(\varepsilon, \theta \right) \right)}{qR_s \left(\varepsilon, \theta \right)} + \frac{\pi \varepsilon R_c^2}{\pi \varepsilon R_s^2} \left(\rho_c - \rho_s \right) \frac{2J_1 \left(qR_c \left(\varepsilon, \theta \right) \right)}{qR_c \left(\varepsilon, \theta \right)} \right]^2 d\theta \quad (A.17)$$

Parâmetro	Significado
$ ho_S$	Densidade eletrônica do <i>shell</i>
$ ho_C$	Densidade eletrônica do <i>core</i>
$ ho_w$	Densidade eletrônica da água
R_S	Raio do shell
R_C	Raio do <i>core</i>
J_1	Função de Bessel do primeiro tipo e de primeira ordem
C_4	1,523

 C_5 0,1477

Tabela 6 – Parâmetros para a equação A.17

Os termos R_S e R_C podem ser calculados pelas expressões A.19 e A.18

$$R_C(\varepsilon\theta) = \sqrt{R_C^2 \sin^2 \theta + \varepsilon^2 R_c^2 \cos^2 \theta}$$
 (A.18)

$$R_C = \sqrt{\frac{V_{\text{surf, apolar}}}{V_{\text{surf, total}}}} R_S \tag{A.19}$$

onde V é o volume molecular das regiões do surfactante.

APÊNDICE B – Descrição do modelo de micelas gigantes em Python

Neste apêndice serão descritos alguns dos métodos computacionais criados durante a execução deste doutorado. Todos os scripts foram escritos na linguagem Python. O aluno fortemente recomenda essa linguagem para outros que desejam tratar, visualizar e entender seus dados. Python possui uma sintaxe simples, mas poderosa, grande número de pacotes matemáticos e científicos de qualidade, e é totalmente gratuito. Em especial, a conjunção de *Jupyter Notebooks* (extensão ipynb) com um *kernel* de Python é uma ferramenta muito poderosa e conveniente.

Um curso de Python com foco em tratamento de dados foi elaborado pelo aluno, e se encontra disponível em um repositório no Github¹. Em brevo, o curso possui a seguinte estrutura:

- 1. "Hello world", strings, obtendo ajuda
- 2. Operações matemáticas, variáveis
- 3. Estruturas de dados
- 4. Condicionais e loops
- 5. Instalando e carregando módulos
- 6. Definindo funções
- 7. Matemática computacional com numpy
- 8. Carregando e manipulando dados com pandas
- 9. Criando gráficos com pyplot
- 10. Tarefas avançadas

https://github.com/KarlClinckspoor/CursoPython

APÊNDICE C – Descrição e uso do software de tratamento de curvas de fluxo

Para o tratamento de curvas de fluxo de fluidos pseudoplástico, foi desenvolvido um software que realiza o ajuste das curvas por um modelo simplificado e três modelos mais complexos, de forma a contornar erros experimentais. Esse software acelera em várias vezes a velocidade de tratamento. Nesta seção, será descrito o algoritmo que o programa faz para os ajustes, e será dada uma breve introdução para o uso do software tanto num ambiente Python, como um script *standalone*.

APÊNDICE D – Softwares miscelâneos para tratamento de dados

Índice Remissivo

Micelas gigantes, 44