PAT-NO:

JP402203180A

DOCUMENT-IDENTIFIER: JP 02203180 A

TITLE:

COOLING APPARATUS

PUBN-DATE:

August 13, 1990

INVENTOR-INFORMATION:

NAME

COUNTRY

ARAI, HIDEO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SAWAFUJI ELECTRIC CO LTD N/A

JP01024399 APPL-NO:

APPL-DATE: February 2, 1989

INT-CL (IPC): F25D001/00

US-CL-CURRENT: 62/264

ABSTRACT:

PURPOSE: To obtain a cooling apparatus having a high heat-radiation efficiency even through the shape of a heat sink is simplified, by applying far-infrared ray radiating paint on an least one of surfaces of the heat sink on which a heat generating parts are attached, and of the inside of a metallic case where the radiation of the heat generating parts reaches.

CONSTITUTION: As far-infrared ray radiating paint 2 is capable of radiating and absorbing far-infrared rays having a wave length of 7 - 8µm, and also made of a kind of ceramic material, it has a high insulation resistance. The heat radiated from transistors, etc. normally stands between 3 - 100°C, and in this temperature range, far-infrared rays having the same wave length as described above are emitted. Therefore, when the far-infrared ray radiating paint 2 and 8 is applied on the surfaces of a heat sink 1 on which transistors 3 as heat generating parts are attached, and of the inside of a metallic case 7 where the radiation 9 radiated from the transistor 3 reaches, the heat generat ed from the transistors 3 is discharged outside the metallic case 7 through the far-infrared ray radiating paint 2 and 8.

COPYRIGHT: (C) 1990, JPO&Japio

⑩ 日本国特許庁(JP)

10 特許出願公開

② 公開特許公報(A) 平2-203180

5 Int. Cl. 5

識別配号 庁内整理番号

❸公開 平成2年(1990)8月13日

F 25 D 1/00

B 8113-3L

審査請求 未請求 請求項の数 1 (全3頁)

会発明の名称 冷却装置

②特 願 平1-24399

②出 願 平1(1989)2月2日

@発明者 新井

英 夫 群馬県新田郡新田町大字早川字早川3番地 澤藤電機株式

会社新田工場内

⑪出 願 人 澤藤電機株式会社

東京都練馬区豊玉北5丁目29番1号

⑫代 理 人 弁理士 森田 寛 外2名

明 知 書

1 発明の名称 冷却装置

2 特許請求の範囲

金属ケース内に収納された発熱部品を冷却する ための冷却装置において、

ヒートシンクと当該ヒートシンクに取り付けられた発熱部品との間、および当該発熱部品の輻射熱が到達する金属ケースの内部、の少なくとも何れか一方に違赤外線放射強料を塗布することを特徴とする冷却装置。

3 発明の詳細な説明

〔産業上の利用分野〕

本発明は、金属ケース内に収納された発熱部品の熱を効果的に冷却する冷却装置に関する。

〔従来の技術〕

第3図および第4図を参照しつつ従来例について説明する。第3図は従来例における冷却装置の概観図、第4図は従来例における冷却装置の断面図である。

ヒートシンク111は、熱伝導の良いたとえば、 アルミニウム等からなり、多数のフィン111 を 有する。ヒートシンク11には、複数のトランジスタ13がマイカ12を介して絶縁されて取り付けられている。トランジスタ13のリード14は、 印刷配線板15に半田等で取り付けられる。また、 印刷配線板15には、前記ヒートシンク111なれていない他の電子部品が取り付けられていない他の電子部品が取り付けられている。そして、このように各部品が実装された 印刷配線板15は、スペーサ16を介しては、 のものである。

以上のような構成の装置において、発熱体から の放熱は、ヒートシンクおよび金属ケースから行っていた。

[発明が解決しようとする課題]

- - AD

しかし、発熱の多いパワー回路の放熱をヒート シンクで行う場合には、放熱フィンの数を増加し てヒートシンクの表面積を大きくしていた。

したがって、ヒートシンクの構造は複雑となり、 高価になるという問題があった。

また、静電遮蔽のための金属ケースは、メッキ または塗装されていることもあり、このため、内 部で発生した発熱体からの輻射熱を多く吸収でき ない。

以上のような問題を解決するために、本発明は、 発熱体から出る熱を効率良く放熱できる冷却装置 を提供することを目的とする。

また、本発明は、ヒートシンクの形状を単純化 しても放熱の効率が良い冷却装置を提供すること を目的とする。

[課題を解決するための手段]

前記目的を達成するために、本発明の冷却装置

純化できる。

〔寒 施 例〕

第1図および第2図を参照しつつ本発明の一実施例について説明する。第1図は本発明における 冷却装置の概観図、第2図は本発明における冷却 装置の拡大断面図である。

図において、ヒートシンク1は、熱伝導の良い たとえば、アルミニウム等からなり、その構造は、 フィンを無くして新面コ字型とする。

そして、ヒートシンク1には、遠赤外線放射塗料2、たとえば、字郎異産株式会社(チョノコート 商標名)、オキツモ株式会社(遠赤外線放射塗料)、横浜輸送株式会社(遠赤塗料)などの遺赤外線放射塗料を介して複数のトランジスタ3が取り付けられている。当該遠赤外線放射塗料2は、健来たとえば、暖房機器の前面などに塗布されて、遠赤外線を放出せしめるために用いられている。

しかし、当該遠赤外線放射塗料 2 は、遠赤外線 の放出体であると同時に遠赤外線の良好な吸収体 は、ヒートシンクと当該ヒートシンクに取り付けられた発熱部品との間、および当該発熱部品の輻射熱が到達する金属ケースの内部、の少なくとも何れか一方に遠赤外線放射塗料を塗布するよう構成する。

(作用)

本発明によれば、遠赤外線放射強料が遠赤外線を吸収する性質と高い絶縁性を有することに着着した冷却装置である。すなわち、発熱体から出出を開射熱が輻射される部分の金属ケースに遠赤外線放射強料を強布しておくので、この組射熱は、一旦遠赤外線放射強料に吸収された後、金属ケース熱側に放出される。また、ヒートシンクと発吸の外側に対した遠赤外線放射強料は、熱吸収れての他に高い絶縁性を有するため、従来使用されて絶縁材の代わりにもなる。

さらに、遠赤外線放射塗料は、遠赤外線を吸収 してヒートシンクに効率良く伝えるので、ヒート シンクのフィンを多くする必要がなく、形状が単

でもあることに着目し、この吸収体としての性質 を利用しようとしている。

遠赤外線放射塗料 2 は、波長 7 ないし 8 μ m の 遠赤外線を放出および吸収できるとともに、セラミック系の材料であるため、絶縁抵抗が高い。そ して、トランジスタ等から発生する熱は、通常 3 0 度 C ないし 1 0 0 度 C 程度であり、この温度帯 では前記波長と同様の遠赤外線が放出される。

したがって、遠赤外線放射塗料 2 、 8 を 、 ヒートシンク 1 と発熱部品であるトランジスタ 3 から発生する観射熱 9 が到達する付近の金属ケース 7 に塗布しておくと、トランジスタ 3 から発生した熱は、遠赤外線放射塗料 2 、 8 を ヒートシンク 1 あるいは金属ケース 7 の外側に放出される。また、遠赤外線放射塗料 2 、 8 を ヒートシンク 1 あるいは金属ケース 7 の一部に塗布するのではなく、メッキあるいは普通の塗料の代わりに全面的に塗布することもできる。

トランジスタ3のリード4は、印刷配線板5に 半田等で取り付けられる。また、印刷配線板5に は、前記ヒートシンク1および図示されていない 他の電子部品が取り付けられている。そして、こ のように各部品が実装された印刷配装板5は、ス ペーサ6を介して金属ケース7内に収容される。

また、金属ケース ? は、静電遮蔽の機能をもつ ものである。

[発明の効果]

本発明によれば、発熱部品による発生熱は、ヒートシンクだけで放熱させるのではなく、遠赤外線放射塗料に熱を吸収させた後に、金属ケース外に放熱する。したがって、金属ケースからの冷却効率が高いため、ヒートシンクの形状を従来と比較して小型化あるいは単純化することができる。

本発明によれば、遠赤外線放射強料は、絶縁抵抗が高いため、従来例のごとく、ヒートシンクと トランジスタとの間にマイカ等の絶縁材料を挟む 必要がなく、熱をヒートシンクに効率良く伝達する。

4 図面の簡単な説明

第1図は本発明における冷却装置の概観図、第 2図は本発明における冷却装置の拡大断面図、第 3図は従来例における冷却装置の概観図、第4図は従来例における冷却装置の断面図である。

1 ・・・ヒートシンク

2・・・遠赤外線放射塗料

3・・・トランジスタ

4 . . . 9 - 1

5・・・印刷配線板

6 ・・・スペーサ

7・・・金属ケース

8・・・遠赤外線放射塗料

9・・・輻射熱

特許出職人 擇隱電機株式会社

代理人弁理士 森 田 寬. (外2名)

本発明における冷却装置の板観路

第 1 図

本発明における冷却被匿の拡大断面図

第 2 図

従来例における冷却装置の概観図

第 3 図

従来例における冷却装置の断面図

第 4 図