

SigmaStar Camera PROC 调试信息说明

Version 0.5

© 2019 SigmaStar Technology Corp. All rights reserved.

SigmaStar Technology makes no representations or warranties including, for example but not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement of any intellectual property right or the accuracy or completeness of this document, and reserves the right to make changes without further notice to any products herein to improve reliability, function or design. No responsibility is assumed by SigmaStar Technology arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

SigmaStar is a trademark of SigmaStar Technology Corp. Other trademarks or names herein are only for identification purposes only and owned by their respective owners.

{Product Description} {Document Name + Version}

REVISION HISTORY

Revision No.	Description	Date
Version 0.1	Initial release	12/20/2017
Version 0.2	Correct spelling	3/18/2019
Version 0.3	add panel debug instruction	6/6/2019
Version 0.4	modify disp debug instruction	6/6/2019
Version 0.5	Update audio debug instruction	7/25/2019

TABLE OF CONTENTS

/ISIO	ON HISTORY	
BLE O	PF CONTENTS	
概述		
1.1.	简介	
	文件清单	
	21117	
	common	
2.1.	2.1.1 dump_mmap	
	2.1.2 dump_config	
2.2.		
2.2.	2.2.1 cat	
	2.2.2 echo	
23	mi_global_info	
2.5.	2.3.1 cat	
24	debug_level	
۷.٦.	2.4.1 cat/echo	
2.5.	miu protect	
2.5.	2.5.1 cat	
2.6.		
2.0.	2.6.1 cat	
	2.6.2 echo	
27	vb pool global	
2./.	2.7.1 cat	
	2.7.1 Cat	
2 8	vb_pool	
2.0.	2.8.1 cat	
	2.8.2 echo	
2.9.		
2.5.	2.9.1 cat	
	2.9.2 echo	
2 10	. mi modulenamedevid	
2.10.	2.10.1 cat	
	2.10.2 echo	
2 11	. mi_dump_buffer_delay_worker	
2.11.	2.11.1 cat	
	2.11.2 echo	
2 12	module version	
£.1£.	2.12.1 cat	
ΔΤ	2.12.1 Cdt	
	cat	
	cat	
	echo	
T. Z.	CCIO	•••••

5.	SNR	
	5.1. cat	34
	5.2. echo	35
6.	VIF	36
	6.1. cat	36
7.	VPE	38
	7.1. cat	38
	7.2. echo	41
8.	VENC	44
	8.1. cat	44
	8.2. Echo	46
9.	DIVP	49
	9.1. cat	49
	9.2. Echo	52
10.). VDISP	54
	10.1. cat	54
11.	. DISP	56
	11.1. cat	56
	11.2. echo	58
12.	P. HDMI	60
	12.1. cat	60
13.	8. FB	62
	13.1. cat	62
	13.2. echo	66
14.	ł. GFX	69
	14.1. cat	69
15.	i. REGION	70
	15.1. cat	70
	15.2. echo	74
16.	5. VDEC	77
	16.1. cat	77
	16.2. echo	79
17.	⁷ . WARP	83
	17.1. cat	83
	17.2. echo	85
18.	8. VDF	87
	18.1. cat	
	18.2. echo	91
19.). PANEL	
	19.1. cat	
	19.2. echo	

{Product Description} {Document Name + Version}

1. 概述

1.1. 简介

【说明】

使用 Linux 下的 proc 文件系统,可以打印出各个模块当前的运行状态,便于调试及分析问题。每个模块都自己特定的路径,部分模块有额外的 echo 命令。

【路径】

路径为 /proc/mi_modules

1.2. 文件清单

Table 1: 表 1-1

模块名称	说明
SYS	SYS 模块的信息
AI	音频输入的信息
AO	音频输出的信息
VIF	视频输入的信息
VPE	视频处理引擎的信息
VENC	编码视频的信息
DIVP	去隔行/图像引擎的信息
VDISP	虚拟显示模块的信息
DISP	显示模块的信息
HDMI	HDMI 的信息
FB	Graphic 图形层的信息
GFX	图像引擎的信息
REGION	OSD 的信息
VDEC	解码视频的信息

2. SYS

2.1. common

2.1.1 dump_mmap

【调试信息】

./config/dump_mmap

Figure 2: 图 2-1

【调试信息分析】

Common 下的内容存放的是配置 API, 之所以会有配置 API, 有两个目的:

- 1. 把 iniparser 放在用户态做, iniparser 的任何开销不带入内核。
- 2. 方便调试时确认配置文件的实际内容,因为在 parser 时打印的内容可能会与实际设置的内容有偏差为了达到上面两个目的,导出了一些文件。

如下是导入 config 的配置文件:

```
MI_COMMON_AddDebugRawFile("config_info", /*(sizeof MI_COMMON_AddDebugRawFile("pq_info", /*_pqBaseSize MI_COMMON_AddDebugRawFile("noise_table", /*4096, * MI_COMMON_AddDebugRawFile("motion_table", /*4096, MI_COMMON_AddDebugRawFile("motion_hdmi_dtv_table", MI_COMMON_AddDebugRawFile("motion_comp_pc_table", MI_COMMON_AddDebugRawFile("misc_table", /*4096, */MI_COMMON_AddDebugRawFile("misc_luma_table", /*409 MI_COMMON_AddDebugRawFile("misc_param_table", /*40
```

Figure 2: 图 2-2

Systeminfo.c 里面 parse 好的 struct 写入 config_info 里面。

Pqloader.c 里面 parse 好的 struct 写入 pq_info 和*_table 里面,这里的 table 跟 MISDK 里面的那一份不一样的一点是这里的 table 是连续的内存摆放,MISDK 是一个间接数组指向一列一维数组。

{Product Description} {Document Name + Version}

如下是导入 mmap 的配置文件:

```
MI_COMMON_AddDebugRawFile("mmap_info", MI_COMMON_AddDebugFile("memory_info",
```

Figure 3: 图 2-3

Mmapinfo.c 里面 parse 好的 struct 写入 mmap_info 和 memory_info,因为这里比较简单,所以从 mmap_info 和 memory_info 读出来是格式化好的可读信息。

2.1.2 dump_config 【调试信息】

```
# ./config/dump_config
panel size:24
DBC Value=
   55,30,10
   254,66,0
   72,80,72
start dump [motion_table](6, 8)
{0xe8,0xcd,0xab,0x89,0x67,0x45,0x23,0x00,}
{0xd8,0xbc,0x9a,0x78,0x56,0x34,0x12,0x00,}
{0xc8,0xab,0x89,0x67,0x45,0x23,0x01,0x00,}
{0xb8,0x9a,0x78,0x56,0x34,0x12,0x00,0x00,}
{0xa8,0x89,0x67,0x45,0x23,0x01,0x00,0x00,}
{0x98,0x78,0x56,0x34,0x12,0x00,0x00,0x00,}
end dump
start dump [motion_hdmi_dtv_table](4, 8)
{0x68,0x45,0x23,0x01,0x00,0x00,0x00,0x00,}
{0xa8,0x89,0x67,0x45,0x23,0x01,0x00,0x00,}
{0xc8,0xab,0x89,0x67,0x45,0x23,0x01,0x00,}
{0xe8,0xcd,0xab,0x89,0x67,0x45,0x23,0x00,}
end dump
start dump [motion_comp_pc_table](4, 8)
{0x68,0x45,0x23,0x01,0x00,0x00,0x00,0x00,}
{0x98,0x78,0x56,0x34,0x12,0x01,0x00,0x00,}
{0xa8,0x89,0x67,0x45,0x23,0x12,0x01,0x00,}
{0xb8,0x9a,0x78,0x56,0x34,0x12,0x01,0x00,}
```

start dump [misc_param_table](4, 4)

{0x02,0xff,0x00,0x00,} {0x02,0xff,0x01,0x66,} {0x03,0x88,0x01,0x66,} {0x03,0xaa,0x01,0x66,}

end dump

end dump

{Product Description} {Document Name + Version}

9f,0x00,0x01,0x66,}
of,0x00,0x01,0x66,}
00,0x00,0x01,0x88,}
00,0x00,0x01,0xaa,}
00,0x14,0x01,0xbb,}
(00,0x00,0x00,0x00,)

【调试信息分析】

./config/dump_config 得到的是/proc/mi_modules/common/里各文件的信息,含 panel size、DBC Value、motion_table、motion_hdmi_dtv_table、motion_comp_pc_table、misc_param_table、misc_luma_table、noise_table、misc_table等。

2.2. mi_log_info

2.2.1 cat

【调试信息】 # cat /proc/mi_modules/mi_log_info ------ Log Path -----log path: ----- Store Path ------store path: /mnt

----- Module Log Level -----

{Product Description}
{Document Name + Version}

Log module	Level
mi ive	2(WRN)
mi_vdf	2(WRN)
mi_venc	2(WRN)
mi_rgn	2(WRN)
mi_ai	2(WRN)
mi_ao	2(WRN)
mi_vif	2(WRN)
mi_vpe	2(WRN)
mi_vdec	2(WRN)
mi_sys	2(WRN)
mi_fb	2(WRN)
mi_hdmi	2(WRN)
mi_divp	2(WRN)
mi_gfx	2(WRN)
mi_vdisp	2(WRN)
mi_disp	2(WRN)
mi_os	2(WRN)
mi_iae	2(WRN)
mi_md	2(WRN)
mi_od	2(WRN)
mi_shadow	2(WRN)

【调试信息分析】

示意了默认的 log path 或 store path,同时示意了各 module 的 debug_level 的值。

【参数分析】

Table 2: 表 2-1

参数		描述
	log path	暂时无效果
	store path	暂时无效果
mi_log_info	Log module	各个模块的名称
	Level	打印等级

2.2.2 echo

Table 3: 表 2-2

功能	修改模块 debug_level			
命令	echo [ModID]=[Le	evel] > /proc/mi_mod	lules/mi_log_info	
	[ModID] 模块的名	字		
	mi_ive	mi_vdf	mi_venc	mi_rgn

	mi_ai mi_vdec mi_divp mi_os	mi_ao mi_sys mi_gfx mi_iae	mi_vif mi_fb mi_vdisp mi_md	mi_vpe mi_hdmi mi_disp mi_od
	mi_shadow	III_idC	m_ma	IIII_Ou
参数说明	[Level] 0 1 2 3 4	无 Debug 信息 只显示 error 的信息 只显示 waring 的信息 只显示 info 的信息 显示所有信息	(MI_DBG_ERR) (MI_DBG_WRN) (MI_DBG_INFO)	
举例	_ ,	s=2 > /proc/mi_modules, 的 debug_level 修改为 2	/mi_log_info	

Table 4: 表 2-3

功能	修改 log 的路径
命令	echo log=[Path] > /proc/mi_modules/mi_log_info
参数说明	[Path] 路径
举例	echo log=/mnt > /proc/mi_modules/mi_log_info

Table 5: 表 2-4

功能	修改存储 log 的路径
命令	echo storepath=[Path] > /proc/mi_modules/mi_log_info
参数说明	[Path] 路径
举例	echo storepath=/mnt > /proc/mi_modules/mi_log_info

2.3. mi_global_info

2.3.1 cat

【调试信息】

cat /proc/mi_modules/mi_global_info

miu_and_lx_info:

ARM_MIU0_BUS_BASE 0x20000000
ARM_MIU1_BUS_BASE 0x60000000
ARM_MIU2_BUS_BASE 0xffffffff
lx_mem_addr 0x20c00000

lx_mem2_addr 0xffffffff lx_mem3_addr 0xffffffff ARM_MIU0_BASE_ADDR 0x0

ARM_MIU1_BASE_ADDR 0x80000000 ARM_MIU2_BASE_ADDR 0xffffffff

{Product Description} {Document Name + Version}

KernelProtect IP white list:

clientId	name
43	MIU_CLIENT_MIPS_RW
50	MIU_CLIENT_NAND_RW
82	MIU_CLIENT_USB_UHC0_RW
83	MIU_CLIENT_USB_UHC1_RW
84	MIU_CLIENT_USB_UHC2_RW
18	MIU_CLIENT_G3D_RW
140	MIU_CLIENT_USB3_RW
129	MIU_CLIENT_SDIO_RW
165	MIU_CLIENT_SATA_RW
133	MIU_CLIENT_USB_UHC3_RW
225	MIU_CLIENT_USB30_1_RW
226	MIU_CLIENT_USB30_2_RW
5	MIU_CLIENT_BDMA_RW
14	MIU_CLIENT_EMAC_RW

PAGE_OFFSET - the virtual address of the start of the kernel image

PAGE_OFFSET=0xc0000000

TASK_SIZE - the maximum size of a user space task

TASK_SIZE=0xbf000000

MStar SDK version: commit.build_time 0be783c.2017121315

CHIP_VERSION U02

【调试信息分析】

该调试信息提供了全局 global 的一些信息。

【参数分析】

Table 5: 表 2-4

参数		描述
miu_and_lx_info(以只有一个	ARM_MIU0_BUS_BASE	Miu0 bus base
MIU 为例)	ARM_MIU0_BASE_ADDR	Miu0 base addr
	lx_mem_addr	Linux 镜像占的 memory 的起始 地址(属于 cpu bus address)
	lx_mem_size	Linux 镜像占的 memory 的 size
kernelProtect IP white list	clientId	Miu protect 的 IP 白名单里的 IP 的 id(从未分 group 的角度看的全局的 id)
	name	与 clientId 对应的该 IP 的实际的名字
MStar SDK version:	commit	sdk 对应的 commit
commit.build_time	build_time	sdk 的 build 时间

{Product Description}
{Document Name + Version}

CHIP_VERSION	CHIP_VERSION	当前 chip 的版本,版本号是
		U01,U02,U03

2.4. debug_level

2.4.1 cat/echo

【调试信息】

cat /proc/mi_modules/mi_sys/debug_level

2

【调试信息分析】

每个 module(包括 sys 这个 module)都有各自的 debug level,是为了控制打印级别,各自的打印级别分别在 /proc/mi_modules/mi_modulename/debug_level 控制,其中 modulename 形如 disp,divp,rgn 等等。上面只是以/proc/mi_modules/mi_sys/debug_level 为例。

Table 5: 表 2-4

功能	打印警告级别
命令	cat /proc/mi_modules/[ModuleName]/debug_level
参数说明	[ModuleName] 模块的名字
	mi_disp mi_gfx mi_rgn mi_vdec mi_vpe mi_ai mi_divp mi_shadow mi_vdisp mi_ao mi_hdmi mi_sys mi_venc mi_bar mi_vif
举例	cat /proc/mi_modules/mi_sys/debug_level 2 mi_sys 的警告级别为 2(只显示 waring 的信息)

Table 6: 表 2-5

功能	修改警告	修改警告级别					
命令	echo [Le	evel]	> /pro	c/mi_modules	/[ModuleNam	e]/debug_level	
参数说明	[Level]	0	无 Deb	ug 信息			
		1	只显示	error 的信息	(MI_DBG	_ERR)	
		2	只显示	waring 的信息	(MI_DBG_	WRN)	
		3	只显示	info 的信息	(MI_DBG	_INFO)	
		4	显示所	有信息			
	[Module	Nam	e] 模块i	的名字			
	mi_disp	mi_	_gfx	mi_rgn	mi_vdec	mi_vpe	
	mi_ai	mi_	_divp	mi_shadow	mi_vdisp	mi_ao	

{Product Description} {Document Name + Version}

	mi_hdmi	mi_sys	mi_venc	mi_bar	mi_vif	
举例	echo 1 >	/proc/mi_	modules/mi_v	vdec/debug_l	evel	
	将 mi_vde	ec 模块的警	告级别修改为	刀具显示 error	的信息	

2.5. miu_protect

2.5.1 cat

【调试信息】

cat /proc/mi_modules/mi_sys_mma/miu_protect

======== start miu_protect_info

kernel protect enabled

LX:

cpu_start_addr:0x20c00000 size:0xe300000

miu_index miuBlockIndex start_cpu_bus_pa length

0x0 0x00 0x20c00000 0x460000

KernelProtect IP white list:

clientId	name
43	MIU_CLIENT_MIPS_RW
50	MIU_CLIENT_NAND_RW
82	MIU_CLIENT_USB_UHC0_RW
83	MIU_CLIENT_USB_UHC1_RW
84	MIU_CLIENT_USB_UHC2_RW
18	MIU_CLIENT_G3D_RW
140	MIU_CLIENT_USB3_RW
129	MIU_CLIENT_SDIO_RW
165	MIU_CLIENT_SATA_RW
133	MIU_CLIENT_USB_UHC3_RW
225	MIU_CLIENT_USB30_1_RW
226	MIU_CLIENT_USB30_2_RW
5	MIU_CLIENT_BDMA_RW
14	MIU_CLIENT_EMAC_RW

【调试信息分析】

该命令显示了 miu protect 相关的信息。

【参数分析】

Table 7: 表 2-6

参数		描述
kernel protect		值是 enabled 或者 disabled,表

		示是否有 enable kernel protect,默认是需要 enable kernel protect 的。
LX(以只有一个LX 为例,LX 表示	cpu_start_addr	该 LX 对应的起始 CPU addr。
linux 镜像对应的 memory)	size	该 LX 对应的 size。
某个 kernel protect 的 range 的	miu_index	编号。
相关信息	miuBlockIndex	总共4个 miu 范围的编号信息。
	start_cpu_bus_pa	该 range 的起始 cpu bus addr。
	length	该 range 的 length。
KernelProtect IP white list	clientId	Miu protect 的 IP 白名单里的 IP 的 id(从未分 group 的角度看的 全局 id)。
	name	与 clientId 对应的该 IP 的实际的名字。

2.6. mma_help_name

2.6.1 cat

【调试信息】

# cat /proc/mi_modules/	mi_sys_mma/mma_hea	p_name0	
mma heap name heap	_base_cpu_bus_addr	length	chunk_mgr_avail
mma_heap_name0	25200000	9d00000	79c6000
chunk_mgr info:			
pst_chunk_mgr	offset	length	avail
c3545618	0	9d00000	79c6000
each chunk info:			
offset	length	used_flag	task_name
0	1000	1	insmod
1000	100000	1	insmod
101000	200000	1	proc_rtsp
301000	3f5000	1	vdisp-dev0
6f6000	3f5000	1	vdisp-dev0
aeb000	3f5000	1	vdisp-dev0
ee0000	1f5000	0	NA
10d5000	1000	1	proc_rtsp
10d6000	64000	1	proc_rtsp
113a000	200000	1	proc_rtsp
133a000	700000	1	proc_rtsp
1a3a000	3f5000	0	NA
1e2f000	3f5000	1	vdisp-dev0

{Product Description} {Document Name + Version}

2224000 700000 1 proc_rtsp 2924000 73dc000 NA

【调试信息分析】

该 cat 信息对应的是该 mma heap 的基本信息和当前的一些状态。

【参数分析】

Table 8: 表 2-7

参数		描述
heap basic info	mma heap name	mma heap 的 name。
	heap_base_cpu_bus_addr	heap 的起始 cpu bus addr。
	length	heap 的 length。
	chunk_mgr_avail	heap 里的剩余的未用的 memory 的总量。
chunk_mgr info	pst_chunk_mgr	chunk mgr 的指针的值。
	offset	chunk mgr 的 offset,由于整个 mma heap 做为一个 chunk mgr,因此该值永远为 0。
	length	chunk mgr 的 length,由于整个 mma heap 做为一个 chunk mgr,因此该值永远为 mma heap length。
	avail	chunk mgr(即 heap)里的剩余的未用的 memory 的总量。
each chunk info (chunk mgr 里各 chunk 的信息	offset	该 chunk 在 chunk mgr 里的 offset。
和使用情况)	length	该 chunk 的 length。
	used_flag	该 chunk 是否被 alloc 出去使用了。是的话该值为 1;否则 free 状态的话该值为 0。
	task_name	如果 used flag 为 1,则 task_name 里存的是哪个 task 使用的它,否则该值为无效值 NA。

2.6.2 echo

Table 9: 表 2-8

功能	即 dump 指定 offset 和 length 的 data 到指定的路径
	echo [Path] [Offset] [Length] > /proc/mi_modules/mi_sys_mma/mma_heap_name[Num]

参数说明	[Path] 文件要保存的路径,只需提供路径,不要提供具体的文件名,系统会根据参数自动生成对应的文件名。				
	Offset] 从该 mma heap 的哪个 offset 开始 dump data,必须 4KB 对齐				
	Length] 在该 mma heap 里 dump 的总的数据量的大小,必须 4KB 对齐				
	[Num] mma head 对应的数字,目前 mma_heap_name0 可通过 cat /proc/cmdline 查看				
举例	echo /mnt/ 0 4096 > /proc/mi_modules/mi_sys_mma/mma_heap_name0				
	在 /mnt 下产生 mmamma_heap_name004096.bin 文件				

2.7. vb_pool_qlobal

2.7.1 cat

【调试信息】

cat /proc/mi_modules/mi_sys_mma/vb_pool_global

```
-----start of vbpool dump attr-------
global vb pool info:
collection_size 0x5
-----start of vbpool_allocator info------
vbpool_allocator info:
each_allocation_size
1000
                                      total_allocation_count
                                                                           total_not_used_allocation_count
bpool_allocation info:
   offset_in_vb_pool real_used_flag
                                                      u64Pts u64SidebandMsg
NA NA
                                                                                        bEndOfStream
                                                                                        bEndOfStream
NA
                                                                                                                                 eBufType
   offset_in_vb_pool real_used_flag
                                                      u64Pts u64SidebandMsg
                                                                                                             bUsrBuf
NA
                                                      u64Pts u64SidebandMsg
NA NA
   offset_in_vb_pool real_used_flag
2000 0
----end of vbpool_allocator info
                                                                                        bEndOfStream
                                                                                                             bUsrBuf
     ---start of vbpool_allocator info----
```

Figure 4: 图 2-4

【调试信息分析】

如果有通过 MI_SYS_IMPL_ConfGloPubPools API 或者 MI_SYS_ConfGloPubPools API 配置了 global public pools 的话,会有/proc/mi_modules/mi_sys_mma/vb_pool_global 文件; 如果没有配置的话,那么没有该文件。

【调试信息分析】

Table 10: 表 2-9

10010 201 1/02 2		
参数		描述
	collection_size	该 pools 的 allocator 个数
其中某个 vbpool_allocator 的	each_allocation_size	该 allocator 里的 allocation 的

{Product Description} {Document Name + Version}

info		size(同一个 vbpool allocator 的不同 allocation 的 size 是相同 的,同一个 pools 里的不同的 allocator 的不同的 allocations 的 size 可能不同)。
	total_allocation_count	该 allocator 里的 allocations 的 数目。
	total_not_used_allocation_count	该 allocator 里的 allocations 中未被使用的数目。
	kern_map_ptr	该 allocator 的 offset0 位置的 kernel space va: 如果没有的话,该值为 NULL。
指定的 vbpool_allocator 的某个 vbpool_allocation 的 info	offset_in_vb_pool	该 allocation 在对应的 allocator 里的逻辑 offset。
	real_used_flag	是否被使用中,否的话则后续参数为无效值 NA 。
	u64Pts	如果有效,该值为 pts 。
	u64SidebandMsg	如果有效,该值为 SidebandMsg。
	bEndOfStream	如果有效,该值为是否是 end stream 的 flag。
	bUsrBuf	如果有效,该值为表示是否是 UsrBuf。
	eBufType	如果有效,该值表示 buf 的 type。

2.7.2 echo

Table 11: 表 2-10

功能	即 dump 指定 offset 和 length 的 data 到指定的路径
命令	echo [Path] [Offset] [Length] > /proc/mi_modules/mi_sys_mma/ vb_pool_global
参数说明	[Path] 文件要保存的路径,只需提供路径,不要提供具体的文件名,系统会根据 参数自动生成对应的文件名。
	[Offset] 从该 pools 的哪个 offset 开始 dump data,是 pools 的逻辑 offset。
	[Length] 在该 pools 里 dump 的总的数据量的大小。
举例	/ # echo /mnt/ 0 1024 > /proc/mi_modules/mi_sys_mma/vb_pool_global
	在 /mnt 下产生 vb_poolglobal01024.bin

2.8. vb_pool

2.8.1 cat

【调试信息】

cat /proc/mi_modules/mi_sys_mma/vb_pool_mi_divp0

```
-----start of vbpool dump attr------
eModuleId Oxc u32DevId OxO] vb pool info:
ollection_size Ox5
-----start of vbpool_allocator info------
vbpool_allocator info:
each_allocation_size
1000
                                   total_allocation_count
                                                                     total_not_used_allocation_count
vbpool_allocation info:
   offset_in_vb_pool real_used_flag
                                                 u64Pts u64SidebandMsg
                                                                                bEndOfStream
                                                                                                    bUsrBuf
                                                 u64Pts u64SidebandMsg
                                                                                bEndOfStream
                                                                                                    bUsrBuf
   offset_in_vb_pool real_used_flag
                                                 u64Pts u64SidebandMsg
   offset_in_vb_pool real_used_flag
                                                                                bEndOfStream
                                                                                                    bUsrBuf
     ---end of vbpool_allocator info-
  -----start of vbpool_allocator info-----
```

Figure 4: 图 2-4

【调试信息分析】

如果有 config 某个 device 的 vb pool, 那么会有/proc/mi_modules/mi_sys_mma/vb_pool_modnamedevid 文件,其中 modname 形如 divp,vpe 等, devid 形如 0,1 等。其和 vb_pool_global 的差别在于其对应的是该 device, 而 vb pool global 则是全局共享的 vb pool。

上面是以 vb_pool_mi_divp0 为例,其也有 cat 命令显示各种信息,也是有且只有"echo path offset length >" 这个 echo 命令来 dump 数据,这 2 个都和 vb_pool_global 的类似。

2.8.2 echo

Table 12: 表 2-11

功能	即 dump 指定 offset 和 length 的 data 到指定的路径			
命令	echo [Path] [Offset] [Length] > /proc/mi_modules/mi_sys_mma/[ModID]			
参数说明	[Path] 文件要保存的路径,只需提供路径,不要提供具体的文件名,系统会根据参数自动生成对应的文件名。			
	[Offset] 从该 pools 的哪个 offset 开始 dump data,是 pools 的逻辑 offset。			
	[Length] 在该 pools 里 dump 的总的数据量的大小。			
	[ModID] vb_pool 的文件名, 如 vb_pool_mi_divp0			
举例	echo /mnt/ 0 4096 > /proc/mi_modules/mi_sys_mma/vb_pool_mi_divp0			
	在/mnt/下 产生 vb_poolmi_divp004096.bin			

2.9. meta

2.9.1 cat

【调试信息】

cat /proc/mi_modules/mi_sys_mma/meta

========= start meta_info ===================================

basic info:

total page count:16 each meta data size:256 total_count_with_metadatasize 256

total_free_count_with_metadatasize:254

meta info:

ref_cnt=3

each allocation info:

offset_in_poo	ol length	phy_addr	va_in_kern	real_used_flag
0x0	0x100	0x2336000	c1736000	0
0x100	0x100	0x2336100	c1736100	0
0x200	0x100	0x2336200	c1736200	0
0x300	0x100	0x2336300	c1736300	0
0x400	0x100	0x2336400	c1736400	0
0x500	0x100	0x2336500	c1736500	0
0x600	0x100	0x2336600	c1736600	0
0x700	0x100	0x2336700	c1736700	0
0x800	0x100	0x2336800	c1736800	0
0x900	0x100	0x2336900	c1736900	0
0xa00	0x100	0x2336a00	c1736a00	0

.

【调试信息分析】

只要一旦有人用过了 meta allocator(有且只有一个 meta allocator),那么就会生成 /proc/mi_modules/mi_sys_mma/meta 文件,且其对应的 memory 就会完全 alloc 了出来,等待被使用。

2.9.2 echo

Table 13: 表 2-12

功能	即 dump 指定 offset 和 length 的 data 到指定的路径
命令	echo [Path] [Offset] [Length] > /proc/mi_modules/mi_sys_mma/ vb_pool_global
参数说明	[Path] 文件要保存的路径,只需提供路径,不要提供具体的文件名,系统会根据 参数自动生成对应的文件名。
	[Offset] 从该 allocator 的哪个 offset 开始 dump data,是 allocator 的逻辑 offset。

{Product Description} {Document Name + Version}

	在该 allocator 里 dump 的总的数据量的大小。
举例	echo /mt 0 1024 > /proc/mi_modules/mi_sys_mma/meta 在 /mnt 下产生 meta01024.bin

2.10. mi_modulenamedevid

2.10.1 cat

【调试信息】

cat /proc/mi_modules/mi_disp/mi_disp0

Figure 5: 图 2-5

【调试信息分析】

cat 操作的结果是分为 2 部分的,第一部分是 MI_SYS 提供的针对该 device 的通用的调试信息,从 device、channel、input port、output port 四个角度提供;第二部分是该 device 私有的信息。私有的信息各 module的内容别处会阐述,这里 SYS 角度只阐述通用的信息。

以 cat /proc/mi_modules/mi_vdisp/mi_vdisp0 为例,得到上面的结果。

【参数说明】

Table 14: 表 2-13

参数		旧版本	新版本	描述
Common info for device	ChnNum	У	у	该 device 的总的 channel 的数目。
	EnChnNum	У	у	该 device 的 enabled 了的 channel 的数目。
	InPortNum	у	у	该 device 的 input port 的数目。
	OutPortNum	у	у	该 device 的 output port 的数目。
	CollectSize	У	у	该 dev 对应的 AllocatorCollection 含有的 allocator 的数目总和。
Common info for	ChnId	у	у	Channel 的 id 值.
channel(only dump enabled channel)	EnInPNum	У	у	该 channel 的 enabled input port 数量。
	EnOutPNum	У	У	该channel 的 enabled output port 数量。

{Product Description} {Document Name + Version}

	MMAHeapName	у	у	如果有 SetChnMMAConf 的话,该值为对应的 mma heap name;如果没有设置的话,该值为 NULL。
Input port common	ChnId	у	у	该 input port 所在的 channel id。
info(only dump enabled	PortId	у	у	该 input port 的 id。
Input port)	SrcFrmrate	у	у	Src 帧率。
	DstFrmrate	у	у	Dst 帧率。
	user_buf_quota	У	У	该 InputPort 的 buff 数目的 Quota。
	UsrInjectQ_cnt	У	У	该 InputPort 里的 UsrInjectBufQueue 里的 buff 数 目。
	UsrInjectQ_size	У	n	该 InputPort 里的 UsrInjectBufQueue 里的 buff 的 总的 size。
	BindInQ_cnt	У	У	该 InputPort 里的 BindInputBufQueue 里的 buff 数 目。
	BindInQ_size	У	n	该 InputPort 里的 BindInputBufQueue 里的 buff 的 总的 size。
	WorkingQ_cnt	У	n	该 InputPort 里的 WorkingQueue 里的 buff 数目。
	WorkingQ_size	У	n	该 InputPort 里的 WorkingQueue 里的 buff 的总的 size。
	TotalPendingBuf_size	n	У	该 InputPort 里的 cur_working_input_queue 里的 buff 的总的 size。
	usrLockedInjectCnt	у	у	用户当前拿到了多少个 buf。
	newPulseQ_cnt	n	У	该 InputPort 里的 new_pulse_fifo_inputqueue 里的 buff 数目。
	nextTodoPulseQ_cnt	n	У	该 InputPort 里的 next_todo_pulse_inputqueue 里 的 buff 数目。
	curWorkingQ_cnt	n	У	该 InputPort 里的 cur_working_input_queue 里的 buff 数目。
	workingTask_cnt	n	у	该 InputPort 里的

{Product Description} {Document Name + Version}

				input_working_tasklist 里的 buff 数目。
	lazzyRewindTask_cnt	n	У	该 InputPort 里的 lazzy_rewind_inputtask_list 里的 buff 数目。
Input port bind info(only	ChnId	у	у	该 input port 所在的 channel id。
dump enabled Input	PortId	у	у	该 input port 的 id。
port)	bind_module_id	У	У	与该 input port 进行了 binded 的 output port 所在的 module 的 id。
	bind_module_name	У	У	与该 input port 进行了 binded 的 output port 所在的 module 的 name。
	bind_ChnId	У	У	与该 input port 进行了 binded 的 output port 所在的 channel 的 id。
	bind_PortId	У	У	与该 input port 进行了 binded 的 output port 的 id。
Output port common info (only dump enabled	ChnId	У	У	该 output port 所在的 channel 的 id。
Output port)	PortId	у	у	该 output port 的 id。
	BufCntQuota	У	У	该 OutputPort 的 buff 数目的 Quota。
	usrLockedCnt	У	У	从 UsrGetFifoBufQueue 里用户实际拿走了多少个 buffer。
	totalOutPortInUsed	у	у	totalOutputPortInUsedBuf 数目。
	DrvBkRefFifoQ_cnt	У	У	该 OutputPort 的 DrvBkRefFifoQueue 里的 buffer 数目。
	DrvBkRefFifoQ_size	у	У	该 OutputPort 的 DrvBkRefFifoQueue 里的 buffer 的总 size。
	UsrGetFifoQ_cnt	У	У	该 OutputPort 的 UsrGetFifoBufQueue 里的 buffer 数目。
	UsrGetFifoQ_size	У	У	该 OutputPort 的 UsrGetFifoBufQueue 里的 buffer 的总 size。
	WorkingQ_cnt	У	n	该 OutputPort 的 WorkingQueue 里的 buffer 数目。
	WorkingQ_size	у	n	该 OutputPort 的 WorkingQueue

{Product Description} {Document Name + Version}

				里的 buffer 的总 size。
	UsrGetFifoQ_seqnum	n	У	该 OutputPort 的 UsrGetFifoBufQueue 里的 buffer 的累计获取数目。
	UsrGetFifoQ_discardnum	n	У	该 OutputPort 的 UsrGetFifoBufQueue 里的 buffer 的累计丢弃数目。
Output port BindPeerInputPortList info(only dump enabled Output port)	ChnId	У	у	该 output port 所在的 channel 的 id。
	PortId	у	у	该 output port 的 id。
	bind_module_id	У	у	与该 output port 进行了 binded 的 input port list 中的其中一个 input port (以下简称该 binded input port) 所在的 module 的 id。
	bind_module_name	у	У	该 binded input port 所在的 module 的 name。
	bind_ChnId	у	У	该 binded input port 所在的 channel id。
	bind_PortId	у	у	该 binded input port 的 id。

2.10.2 echo

Table 15: 表 2-14

T-L- AL	本得掛地的 halo 信息				
功能	获得模块的 help 信息				
命令	echo help > /proc/mi_modules/[ModName]/[ModID]				
参数说明	[ModName] 模块的名字				
	mi_disp mi_gfx mi_rgn mi_vdec mi_vpe				
	mi_ai mi_divp mi_shadow mi_vdisp mi_ao				
	mi_hdmi mi_sys mi_venc mi_bar mi_vif				
	[ModID] 模块中对应的文件 一般为 一般为模块的名字+数字 如 mi_disp0 mi_gfx0 mi_rgn0				
举例	echo help > /proc/mi_modules/mi_disp/mi_disp0				
	得到 mi_disp0 节点文件的帮助信息				

Table 16: 表 2-15

功能	Dump Port 的信息
命令	echo dump_buffer [ChnID] [PortType] [PortID] [QueueName][Path] [EndMethod] > /proc/mi_modules/[ModName]/[ModID]
	[ChnID] 通道的 ID

{Product Description} {Document Name + Version}

	[D IT]: -		
	[PortType] iport 或 oport 分别代表 input port output port		
	[PortID] 该 port 的 id		
	[QueueName] 如果是 input port 的话,值只能是"UsrInject" 或者"BindInput" 如果是 output port 的话,值只能是"UsrGetFifo"		
	[Path] 数据要保存的文件所在的路径。注意是绝对路径,不要提供数据要保存的文件的名字,系统会根据参数自动生成文件名,不同的 buffer 保存在不同的文件		
参数说明	[EndMethod] dump buffer 的结束方法,目前仅支持三类:		
	(a). "bufnum=xxx":dump 指定数目的 buffer		
	(b) "time=xxx"(here unit is ms):dump 过程持续 time 对应的时间		
	(c). "start/end" pair:用 start 来开始 dump,用 end 来结束对应的 dump,要求这 2 个		
	命令时其他的5个参数完全一样		
	[ModName] 模块的名字		
	mi_disp mi_gfx mi_rgn mi_vdec mi_vpe		
	mi_ai mi_divp mi_shadow mi_vdisp mi_ao		
	mi_hdmi mi_sys mi_venc mi_bar mi_vif		
	[ModID] 模块中对应的文件 一般为 一般为模块的名字+数字		
举例	echo dump_buffer 0 iport 0 BindInput /mnt bufnum=1 >		
	/proc/mi_modules/mi_disp/mi_disp0		
	dump disp 模块 inport 的数据		

2.11. mi_dump_buffer_delay_worker

2.11.1 cat

【调试信息】

cat /proc/mi_modules/mi_dump_buffer_delay_worker

delay_worker_id module_name force_stop dev_id chn_id port_type port_id mi_disp 0 0 0 inport 0 Queue_name stored_dir dump_method dump_method_value BindInput /mnt bunfnum 2

【调试信息分析】

/proc/mi_modules/mi_dump_buffer_delay_worker 文件是和 mi_modulenamedevid 相连的一个概念,dump device 里的 Queue 里的 buffer 采用的是 delay worker 的方式实现的,可以通过对 mi_dump_buffer_delay_worker 的 cat 操作查看还有哪些 delay worker 正在进行中,echo force_stop_dump delay_worker_id 强制结束指定的一个 delay worker 过程。

【参数说明】

Table 17: 表 2-16

·	
参数	描述

delay_worker_id	该 delay worker 的 id。如果 delay worker 完成的话,该 id 会回收,给后续其他的 delay worker作为 id 使用。
module_name	该 delay worker 所对应的 module 的 id。
force_stop	该 delay worker 当前是否处于强制结束阶段,1 表示已经被设置了强制结束,0 表示未被设置。
dev_id	该 delay worker 所对应的 device id。
chn_id	该 delay worker 所对应的 channel id。
port_type	该 delay worker 所对应的 port 的 type,是 input port,还是 output port
port_id	该 delay worker 所对应的 port 的 id
Queue_name	该 delay worker 所对应的 Queue 的 name
stored_dir	该 delay worker 所对应的要 dump 的 data 所要存放的绝对路径(不含最终存放的文件名)
dump_method	该 delay worker 所对应的 dump 方法:bufnum,还是 time,还是 start
dump_method_value	Dump 方法所对应的值.

2.11.2 echo

Table 18: 表 2-17

功能	强制结束 delay worker	
命令	echo force_stop_dump	
	[WorkID] >/proc/mi_modules/mi_dump_buffer_delay_worker	
参数说明	[WorkID] delay_work 的 ID	
举例	echo force_stop_dump 0 > /proc/mi_modules/mi_dump_buffer_delay_worker	
	强制停止 delay_work 0	

2.12. module version

2.12.1 cat

【调试信息】

cat /proc/mi_modules/mi_ai/module_version_file

MStar Module version: project_commit.sdk_commit.build_time c1799df.fd2d52b.20171225180033

cat /proc/mi_modules/mi_global_info

....

{Product Description} {Document Name + Version}

MStar Module version: project_commit.sdk_commit.build_time cb68bfd.44aca45.20171226100257

【调试信息分析】

xxxx_version_file 提供了份 version 信息, /proc/mi_modules/mi_global_info 里我们也提供了份 version 信息,不过其本质上指的是 mi_sys 模块的 version 信息,上面只是以 mi_vi 和 mi_global_info 为例子,每个模块都有自己对应的 version file。

【参数说明】

Table 19: 表 2-18

参数		描述
Version	project_commit	模块编译 ko 时整包的 project commit 信息,如果单独替换 ko 时,模块基于的 commit 有变化,那么该 ko 的 version 里得到的 commit 也会跟着变更
Info	sdk_commit	模块编译 ko 时整包的 sdk commit 信息,如果单独替换 ko 时,模块基于的 commit 有变化,那么该 ko 的 version 里得到的 commit 也会跟着变更
	build_time	时间指的是实际的 build 时间,精确到秒,即使 make clean;make image 整体来 build 的话,各个 ko 的时间也会有差别。

3. AI

3.1. cat

【调试信息】

cat proc/mi_modules/mi_ai/mi_ain, n 为 AI 设备 ID

```
-----Start AI Dev0 Attr------
AiDev
       SampR BitWidth SondMod PtNumPerFrm TotalReadFrmCnt
  Amic 8000
                16bit stereo
                                    500
I2sMode I2sMclk
                  I2sFmt bI2sSync
i2s-mas disable I2S-MSB
-----Start AI CHN0 STATUS------
       AiChn bReSmp InSampR OutSampR Volume ReadFrmCnt
  Amic
          Θ
               0
                       8000
                                  0 ( 0, 0)
----AI CHNO VQE STATUS--
AiDev
       AiChn bVqe
  Amic
          0
               0
-----AI CHN0 ANR STATUS------
                               Speed Intensity SmoothLevel
       AiChn bAnr AlgorithmMode
AiDev
  Amic
         0 0
                                speed-low
                                                            0
-----AI CHNO Eq STATUS------
       AiChn bEq AlgorithmMode
AiDev
  Amic
           Θ
EqGainDb:
         0
               0
                     0
                           0
                                 0
   0
                                                          0
   0
                                 0
                                       0
         0
               0
                     0
                           0
                                                   0
                                                          0
   0
         0
                           0
                                 0
                                       0
                                             0
                                                   0
                                                          0
               0
                     0
                                       0
                                             0
   0
         0
                           0
                                 0
                                                   0
               0
                     0
                                                          0
   0
                                 0
                                       0
                                             0
         Θ
                           0
                                                   0
               0
                     0
                                                          0
   0
                                 0
                                       0
                                             0
         0
                     0
                           0
                                                   0
               Θ
                                                          0
   Θ
                                 Θ
                                       0
                                             0
         Θ
                     0
                           Θ
                                                   0
               Θ
                                                          0
   Θ
                                 Θ
                                       0
                                             0
         Θ
                     0
                           Θ
                                                   0
                                                          0
               Θ
   0
                                 0
                                       0
                                             0
         Θ
               Θ
                     0
                           0
                                                   0
                                                          0
   0
                                 0
                                       0
                                             0
         Θ
               0
                     0
                           0
                                                   0
                                                          0
   0
                                 0
                                       0
                                              0
         0
               0
                     0
                           0
                                                   0
                                                          0
   0
                                 0
                                       0
                                              0
         0
               0
                     0
                           0
                                                   0
                                                          0
                           0
                                 0
                                       0
                                              0
               0
                     0
                                                   0
```


试信息分析】

记录当前 AI 的使用状况以及 device 属性、channel 属性,可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 20: 表 3-1

Table 20. A 3 I		
参数		描述
	AiDev	AI 设备
	WorkMode	AI I2S 工作模式
		i2s-mas: I2S master
		i2s-sla: I2S slave
		tdm-mas: TDM master
		(仅当 AI 设备为 I2S_RX 时需要关注)
AT Doving Attr	SamR	Sample Rate(采样率):
AI Device Attr (AI 设备属性)		8000, 16000, 32000, 48000
(AI 及田两江)	BitWidth 采样精度:	采样精度:
		16bit, 24bit(暂不支持)
	SondMod	声音模式
		mono: 单声道
		stereo: 立体声
		Queue: 一个通道包含所有通道的数据(数据按通道顺序排列
		在一起)
	PtNumPerFrm	每帧的采样点个数:

		128 倍数(若使用 sigmaster 的音频算法,请遵循此限制)
	TotalReadFrmCnt	当前设备获取到的总帧数
	I2sMclk	I2S 设定的 Mclk 时钟
		(仅当 AI 设备为 I2S_RX 时需要关注)
	I2sFmt	I2S 的数据格式
		(仅当 AI 设备为 I2S_RX 时需要关注)
	bI2sSync	I2S Rx Bclk 和 Tx Bclk 使用同样的时钟源
		(仅当 AI 设备为 I2S_RX 时需要关注)

Table 21: 表 3-2

Table 21: 表 3-2			
	描述		
AiDev	AI 设备		
AiChn	AI 通道号:		
	取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)		
bReSmp	该信道是否启用了重采样功能		
	1: Enable		
	0: Disable		
InSampR	该通道重采样时,输入给重采样的数据帧的采样率		
OutSampR	该通道重采样时,重采样后的音频帧采样率		
Volume	此参数(x,y), x 为参数等级(非实际增益), y 为实际增益 dB		
	值。		
	AI 通道的增益值为 x 等级对应的增益+y 对应的增益。		
	(仅当设备为 Amic 和 Linein 时, y 有效)		
ReadFrmCnt	该通道读取的帧数		
AiDev	AI 设备		
AiChn	AI 通道号:		
	取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)		
bVqe	该通道是否启用 VQE		
	1: Enable		
	0: Disable		
AiDev	AI 设备		
AiChn	AI 通道号:		
	取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)		
bAnr	该通道是否启用 ANR		
	1: Enable		
	0: Disable		
AlgorithmMode	Anr 算法运行的模式		
Speed	噪声收敛速度,低速,中速,高速		
	AiDev AiChn bReSmp InSampR OutSampR Volume ReadFrmCnt AiDev AiChn bVqe AiDev AiChn bAnr AlgorithmMode		

{Document Name + Version}

	NicTobaco 22	以唱力序和 罗·
	NrIntensity	降噪力度配置: 取值为[0,30]
		平滑化程度
	SmoothLevel	取值为[0,10]
	AiDev	AI 设备
	AiChn	AI 通道号:
		取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
	bAgc	该通道是否启用 AGC
		1: Enable
		0: Disable
	AlgorithmMode	Agc 算法运行的模式
	AttackTime	增益下降时间区间长度,以 16 毫秒为 1 单位 范围[1,20]
AT CUIN ACC	ReleaseTime	增益上升时间区间长度,以 16 毫秒为 1 单位 范围[1,20]
AI CHN AGC of VQE	Input Compression ratio	输入压缩比,必须配合 Output Compression ratio 使用, 透过多个转折点实现多斜率的曲线
STATUS		范围[-80,0]; 步长1
(AI 通道 AGC 信息)	Output Compression ratio	输出压缩比,必须配合 Input Compression ratio 使用,透过多个转折点实现多斜率的曲线
	Tauo	范围[-80,0]; 步长1
	DropGainMax	增益下降的最大值,防止输出饱和
		范围[0,60]
	GainInit	增益最小值 范围[-20, 30]
	GainMin	增益中间值 范围[-20, 30]
	GainMax	增益最大值
	Gaiririax	范围[0,30]
	NoiseGateAttenuationDb	当噪声底值起效果时,输入源的衰减百分比 范围[0,100]
	NoiseGateDb	噪声底值 范围[-80,0]
	TargetLevelDb	目标电平,经过处理后的最大电平门限 范围[-80,0]dB
	AiDev	AI 设备
AI CHN EQ of VQE STATUS	AiChn	AI 通道号:
		取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
	bEq	该通道是否启用 EQ
		1: Enable
(AI 通道 EQ 信息)		0: Disable
百心 <i> </i>	AlgorithmMode	EQ 算法的运行模式
	EqGainDb	频段增益取值数组

		范围[-50, 20]
	AiDev	AI 设备
	AiChn	AI 通道号:
		取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
AT CUMO UDE	bHpf	该通道是否启用 HPF
AI CHN0 HPF of VQE		1: Enable
STATUS		0: Disable
377103	AlgorithmMode	Hpf 算法的运行模式
	HpfFreq	截止频率(Hz):
		80, 120, 150
	AiDev	AI 设备
	AiChn	AI 通道号:
		取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
AI CHN AEC of	bAec	该通道是否启用 AEC
VQE STATUS		1: Enable
(AI 通道 AEC		0: Disable
信息)	bNoise	是否添加噪声
	DelaySample	采样样本延迟个数
	AecSupfreq	回声消除保护频率范围
		范围[1,127]
	AecSupIntensity	回音消除保护力度
		范围[0, 15]
	AiDev	AI 设备
AI CHN AENC	AiChn	AI 通道号:
STATUS		取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
(AI 通道	bAenc	该通道是否启用 AENC
、 AENC 信息)		1: Enable
		0: Disable
	AencType	编码类型
	AiDev	AI 设备
	A:Claus	
	AiChn	取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
	bAed	该通过是否启用 AED
	DACU	I: Enable
AI CHN0 Aed		0: Disable
STATUS	EnableNr	是否使能 AED 算法自带的降噪
(AI 通道 AED 信息)		1: Enable
		0: Disable

{Product Description} {Document Name + Version}

	Sensitivity	AED 算法的灵敏度,低灵敏度,中灵敏度,高灵敏度
	OperatingPoint	AED 算法的操作点 范围[-10, 10]
	VadThresholdDb	Vad 的门限 dB 范围[-80, 0] dB
	LsdThresholdDb	Lsd 的门限 dB 范围[-80, 0] dB
	AiDev	AI 设备
	AiChn	AI 通道号: 取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
AI CHNO Ssl STATUS	bSsl	该通过是否启用 SSL 1: Enable 0: Disable
(AI 通道 SSL	MicDistance	Mic 的间距(单位 cm)
信息)	bBfMode	是否为 beamforming mode
	Temperature	环境温度 (摄氏度)
	NoiseGate	噪声门限 dB
	DireFrmNum	多少帧数据进行一次 ssl 检测(此处的帧为 128 个采样点),必须为 50 的倍数。
	AiDev	AI 设备
	AiChn	AI 通道号: 取值范围: [0~ChnCnt](ChnCnt 为设置的 Dev 最大通道数)
	bBf	该通过是否启用 BF 1: Enable 0: Disable
AI CHN0 Bf	ChnCnt	通道数,必须为2
STATUS	MicDistance	Mic 的间距(单位 cm)
(AI 通道的BF 信息)	Temperature	环境温度 (摄氏度)
	NoiseGate	噪声门限 dB
	SupressMode	噪声的抑制模式 范围[0,15]
	NoiseEstimate	噪声预估模式
	outputGain	输出增益 范围[0.0,1.0]dB

4. AO

4.1. cat

【调试信息】

cat proc/mi_modules/mi_ao/mi_aon, n 为对应的 Ao 设备 ID

				Darison	+- A00 T-				
Start	AO Davo				te AOO In	TO ==			
						Mum D			
AoDev LineOu					ndMod Ptl				
I2sMclk	12SHMT I	012SSync	DMUTE 1	vo tumeD	o ostarti	CMUL	π		
disable 1	LZS-MSB		U	-0	00		1		
End Al	Devo At	τ							
Start	AO CUNO	CTATUC							
AoDev LineOu	AOCHI	bresiip	Tuzambk	Uulba	IIIPK				
							DunTimo		
AoDev	AOCHI	IOLAL	4001	101	a (512e		Runitme		
LineOu	AO CUNO I	ler Oueus	4091	4	991000		298		
AoDev	Ao Chr	MayCiro	Pompine	cizo	Totale	i 70		unTimo	
Aubev	+ AUCHN	25600	reliains	0	101415	200	K	un i ime 298	
LineOu AO CHN	IL U	23000 ATUC		U	4891	000		298	
AoDev	Vo Vqe SI	hVan W	o rkPato	DoiNu					
Addev	AOCHI	bvqe w	orkRate	POINUM					
LineOu	IL U	ATUC	U	U	,				
An Dov	Anr Si	hAnr A	laarithm	Mada	Coood	To	tonoitu	SmoothLevel	
Aubev	AUCHII	DAIII A	tgoritmiir	noue	speed law	TILL	Lensity	SilloothLevet	
AO CU	IC Ea TAT	UC U		U	speed-tow		U		
AoDev	AnChn	hEa Al	aorithmM	ndo.					
Aubev Line∩u	t AUCHIII	DEQ AL	goritimin	a					
LineOu EqGainDb:		0		U					
		Θ	Θ	Θ	Θ	Θ	Θ	Θ	
Θ	0 0	Θ	0	0	0	Θ	Θ	Θ	
		Θ	0	0	0	Θ	0	Θ	
		9		0	0	Θ	Θ	Θ	
Θ		9	0		0	Θ	Θ	Θ	
Θ		Θ	0	Θ	0	Θ	Θ	Θ	
Θ	0 0		0	0 0	0	Θ	Θ	Θ	
Θ		Θ	0	0	0	Θ	Θ	Θ	
Θ		Θ		0	0	Θ	Θ	Θ	
	0 0		Θ	Θ	0	Θ	Θ	Θ	
_	0 0		0	0	0	0	0	Ö	
	0 0					Θ	0	Θ	
	0 0			0	0	Θ	0		
A0 CHN									
AoDev	AoChn	bHpf A	laorithm	Mode H	lpfFrea				
Line0u	ıt 0	0	,	Θ	. 0				

A0 CHN6	9 Agc S	TATUS-								 _
									DropGainMax	
LineOut	t	0	9	Θ		Θ		Θ	0	
Input Compre	ession	ratio:								
Θ (9	Θ	0 6)						
Output Comp	ression	ratio	:							
Θ (
GainInit Ga	ainMin	GainM	ax Noise	GateAtte	enuation[b N	oiseGate	eDb T	TargetLevelDb	
Θ	Θ		0			Θ		Θ	Θ	
A0 CHN6	9 Adec	STATUS								
AoDev	AoCh	n bAd	ec Ty	pe So	ondMod	Sam	pR			
LineOut	t	0	0 g71	la	mono		Θ			
End A0	Chn0 S	TATUS-								 -

【调试信息分析】

记录当前 AO 的使用状况以及 device 属性、channel 属性,可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 23: 表 4-1

参数		描述					
	AoDev	AO 设备					
	WorkMode	AO I2S 工作模式					
		i2s-mas: I2S master					
		i2s-sla: I2S slave					
		tdm-mas: TDM master					
		(仅当设备为 I2S_TX 时需要关注)					
	SamR	Sample Rate(采样率):					
		8000, 16000, 32000, 48000,					
		(11052, 12000, 22050, 24000, 44100 部分 branch 不支持)					
AO Device Attr	BitWidth	采样精度:					
(AO 设备属性)		16bit, 24bit(暂不支持)					
,	SondMod	声音模式					
		mono: 单声道					
		stereo: 立体声					
	PtNumPerFrm	每帧的采样点个数:					
		128 倍数(若不是用 sigmastar 的音频算法可以忽略限制)					
	I2sMclk	I2S Mclk 时钟频率					
		(仅当设备为 I2S_TX 时需要关注)					
	I2sFmt	I2S 数据格式					
		(仅当设备为 I2S_TX 时需要关注)					
	bI2sSync	I2S Rx Bclk 和 Tx Bclk 使用同样的时钟源					
	,	(仅当设备为 I2S_TX 时需要关注)					
	bMute	AO 设备静音功能是否开启					
		1: Enable					

{Product Description} {Document Name + Version}

	0: Disable				
VolumedB	AO 设备的输出音量大小(单位 dB)				
bStartPcmOut	AO 设备是否开始播放				

Table 24: 表 4-2

参数		描述				
	AoDev	AO 设备				
AO CHN Status (AO 通道信息)	AoChn	AO 通道号:				
		取值范围: [0,1]				
	bReSmp	该信道是否启用了重采样功能				
		1: Enable				
		0: Disable				
	InSampR	该通道重采样时,输入给重采样的数据帧的采样率				
	OutSampR	该通道重采样时,重采样后的音频帧采样率				
	TotalFrmCnt	AO 目前输出的帧数				
	TotalSize	AO 目前输出的数据量				
	RunTime	AO 目前运行的时间(ns)				
	AoDev	AO 设备				
	AoChn	AO 通道号:				
AO CHN USER		取值范围: [0,1]				
QUEUE STATUS (AO 通道	MaxSize	Queue 的最大 size				
Queue 信息)	RemainSize	Queue 的剩余 size				
,	TotalSize Queue 输出的数据量(同上述 TotalSize)					
	RunTime	Queue 目前运行的时间(ns)(同上述 RunTime)				
	AoDev	AO 设备				
	AoChn	AO 通道号:				
AO CUNU/OF		取值范围: [0,1]				
AO CHN VQE STATUS (AO 通道 VQE	bVqe	该通道是否启用 VQE				
		1: Enable				
信息)		0: Disable				
	WorkRate	Vqe 算法运行的采样率				
	PoiNum	Vqe 算法的处理一次的采样点数(固定为 128)				
AO CHN ANR of VQE STATUS (AO 通道 ANR	AoDev	AO 设备				
	AoChn	AO 通道号:				
		取值范围: [0,1]				
	bAnr	该通道是否启用 ANR				
		1: Enable				

信息)		0: Disable
	AlgorithmMode	Anr 算法运行的模式
	Speed	噪声收敛速度, 低速, 中速, 高速
	NrIntensity	降噪力度配置:
	-	取值为[0,30]
	SmoothLevel	平滑化程度 取值为[0,10]
	AoDev	AO 设备
	AoChn	AO 通道号:
		取值范围: [0,1]
	bAgc	该通道是否启用 AGC
		1: Enable
		0: Disable
	AlgorithmMode	Agc 算法运行的模式
	AttackTime	增益下降时间区间长度,以 16 毫秒为 1 单位 范围[1,20]
AO CHN AGC of	ReleaseTime	增益上升时间区间长度,以 16 毫秒为 1 单位 范围[1,20]
VQE STATUS (AO 通道 AGC	Input Compression ratio	输入压缩比,必须配合 Output Compression ratio 使用,透过多个转折点实现多斜率的曲线
信息)		范围[-80,0]; 步长1
TH ACT.	Output Compression	输出压缩比,必须配合 Output Compression ratio 使用, 透过多个转折点实现多斜率的曲线
	ratio	范围[-80,0];步长1
	DropGainMax	增益下降的最大值,防止输出饱和
		范围[0,60]
	GainInit	增益最小值 范围[-20,30]
	GainMin	增益中间值
		范围[-20,30]
	GainMax	增益最大值 范围[0,30]
	NoiseGateAttenuationDb	当噪声底值起效果时,输入源的衰减百分比 范围[0,100]
	NoiseGateDb	噪声底值 范围[-80,0]
	TargetLevelDb	目标电平,经过处理后的最大电平门限 范围[-80,0]dB
	AoDev	AO 设备
	AoChn	AO 通道号:
AO CHN EQ of		取值范围: [0,1]
VQE STATUS	bEq	该通道是否启用 EQ

{Product Description} {Document Name + Version}

(AO 通道 EQ 信息)		1: Enable 0: Disable
	AlgorithmMode	EQ 算法的运行模式
	EqGainDb	频段增益取值数组 范围[-50, 20]
	AoDev	AO 设备
	AoChn	AO 通道号:
		取值范围: [0,1]
AO CUN LIDE -f	bHpf	该通道是否启用 HPF
AO CHN HPF of VQE STATUS		1: Enable
		0: Disable
	AlgorithmMode	Hpf 算法的运行模式
	HpfFreq	截止频率(Hz):
		80, 120, 150

4.2. echo

Table 25: 表 4-3

功能	动态启用/关闭 AO 设备静音模式	
命令	echo setaomute [Status] > proc/mi_modules/mi_ao/mi_ao[ID]	
参数说明	[Status] ON 开启静音模式 OFF 关闭静音模式	
	[ID] 设备号	
举例	无	
功能	动态修改 AO volume 大小	
命令	echo setaovolume [Steps] > proc/mi_modules/mi_ao/mi_ao[ID]	
参数说明	[Steps] 调整步长 [n]dB	
	[ID] 设备号	
举例	无	

5. SNR

5.1. cat

【调试信息】

cat proc/mi_modules/mi_sensor/mi_sensor0

```
start dump
PadId PlaneMode bEnable
                                                ResCnt
                                                        intfmode
                          bmirror
                                    bflip fps
                                                                  hdrmode
                                                                            planecnt
                                        025000
                                                            MIPI
    MipiAttr
              Yuv0rder
                        HdrHwMode
                                    DataFmt HdrVchNum
                                                                    LaneNum LPackType0 LPackType1
                                                                                                   samDelay
                                                        HsyncMode
                                   CropY
                                                 CropH
                                                                            MinFps
    Res
                strResDesc
                                          CropW
                                                        OutW
                                                              OutH
                                                                    MaxFps
           1920x1080@30fps
                                           1920
                                                        1948
                                                                         30
                                0
                                       Θ
                                                  1080
                                                              1097
    Cur
           1920x1080@30fps
                                0
                                       0
                                           1920
                                                  1080
                                                        1948
                                                              1097
                                                                         30
               ----- End dump Pad info --
                         start dump plane info -----
     Planeid
                                    BayerId ePixPrec eHdrSrc CropX CropY
Padid
                           SnrName
                                                                                1920
                       IMX307_MIPI
                                         RG
                                                12BPP
                                                             0
                                                                                       1080
   0
                                                                    0
                                                                            0
   0
            0
                       IMX307_MIPI
                                         RG
                                                12BPP
                                                             0
                                                                    0
                                                                            0
                                                                                       1080
```

【调试信息分析】

记录当前 VIF 的使用状况以及 device 属性、OutPort 属性、可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 25: 表 5-1

参数		描述
	PadId	Pad Id 号
	PlaneMode	Plane mode(0:非 HDR, 1:HDR)
	bEnable	Pad 使能开关
	bmirror	垂直镜像翻转使能
	bflip	水平镜像翻转使能
	fps	Sensor 帧率
	ResCnt	支持 resolution 数量
	intfmode	Pad 接口
PAD info	hdrmode	使用 HDR 的模式
	planecnt	支持 plane 通道数量
	Res	支持的 resolution 映射表
	strResDesc	Resolution 字符串

{Product Description} {Document Name + Version}

CropX CropY CropW CropH	从 sensor 原始数据上 crop 的范围
OutW OutH	Sensor 原始范围
MaxFps MinFps	当前 resolution 可以设置的最大和最小帧率
Cur	当前 sensor 输出的 resolution

Table 26: 表 5-2

参数		描述
	SnrName	当前 plane 使用的 sensor interface
	BayerId	RGB 对齐方式
Plane info	ePixPrec	使用的 bit mode
Plane Inio	eHdrSrc	当前 Plane 使用 HDR source 通道
	CropX CropY CropW CropH	Crop 位置

5.2. echo

Table 27: 表 5-3

功能	打印 debug 相关信息
命令	echo help > /proc/mi_modules/mi_sensor/mi_sensor0
参数说明	无
举例	无

Table 28: 表 5-4

功能	设置 sensor mirror/flip
命令	echo setmirrorflip [PadId] [bmirror] [bflip] > /proc/mi_modules/mi_sensor/mi_sensor0
参数说明	无
举例	echo setmirrorflip 0 0 1 > /proc/mi_modules/mi_sensor/mi_sensor0 Pad0 做 flip

Table 29: 表 5-5

功能	设置 sensor 帧率
命令	echo setfps [PadId] [fps] > /proc/mi_modules/mi_sensor/mi_sensor0
参数说明	无
举例	echo setfps 0 20 > /proc/mi_modules/mi_sensor/mi_sensor0 设置 Pad0 输出帧率为 20fps

{Product Description} {Document Name + Version}

6. VIF

6.1. cat

【调试信息】

#cat /proc/mi_modules/mi_vif/mi_vif0

【调试信息分析】

记录当前 VIF 的使用状况以及 device 属性、OutPort 属性、可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 30: 表 6-1

参数		描述
	dev	Dev 号
	intf	输入数据的协议
Davisafa	work	工作模式
Dev info	clk	时钟边沿触发模式
	hdr	Hdr 模式

Table 31: 表 6-2

参数		描述
	сар	Crop 参数
	dest	输出宽高
	sel	隔行扫描时的顶场/底场
OutPort Info	scan	扫描模式
	fmt	Pixelformat 格式
	rate	帧率
	linecnt	Lowlatency mode linecnt 设置

Sigm**Star**

{Product Description} {Document Name + Version}

mi_frame_status	(bufferhold, incnt, outcnt, fps)
-----------------	----------------------------------

7. VPE

7.1. cat

【调试信息】

cat proc/mi_modules/mi_vpe/mi_vpe0

```
DevID 3DNR_Status R0I_Status
                                                    IRQ_num IRQ_Enable DropStatus0
                                                                                            DropFence0 DropStatus1 DropFence1
RealTime
                              End dump dev 0 info --
                 ------ start dump CHN info
InWH MaxWH InPix
1920x1080 1920x1080 RG_12BF
                                                                                                      HwCrop
0,1920,1080)
                                                                                                                              eRot RunMode
0 RealTime
                                                                                      MotionTh StillTh
                                                                                                                                  Constrast
                              start dump OUTPUT PORT info
       PortId Enable
                                                                                                                                    FailCnt
                                                                                                                           52398
51711
                                                                                                                                       883
1563
                                                                                                       1280
                                                                                                                           51580
                                                                                                                                                   51578
                                                                                                                                       1694
```

Figure 6: 图 7-1

【调试信息分析】

记录当前 VPE 的使用状况以及 device 属性、channel 属性、output port 属性,可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 27: 表 7-1

参数		描述
	DevID	0, 只有一个 Device, ID 为 0
	3DNR_Status	chnid 为当前 3DNR 正在处理的 channelID
	ROI_Status	当前 ROI 状态
	SupportIRQ	0: 当前不支持 IRQ
		1: 当前支持 IRQ.
		(在 procfs 中可以控制该值开关中断)
	IRQ_num	中断号
	IRQ_Enable	0: IRQ 失能
		1: IRQ 使能

Device Info	DropStatus0 DropFence0 DropStatus1 DropFence1	Drop buffer 的 status 和对应的 fenceid *SSC323、SSC325、SSC325DE、SSC327、SSC327Q 暂不 支持
	EnIrqMode	Irq 使能模式
	UseCmdq	是否使用 cmdq
	vsyncCnt	Vsync isr 计数
	WorkCnt	Work thread 运行计数 *SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持
	IsrthrCnt	Isr thread 运行计数 *SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持
	BotthrCnt	Bottom thread 运行计数 *SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持
	Point	Point 运行到的 line number

Table 28: 表 7-2

参数		描述
	ChnId	Channel ID 0~63
	status	Channel 运行状态
	InWH	输入的宽高
	MaxWH	设置 MAX width/height
	InPix	输入 pixel
Channel Info	Crop	Crop 的位置 *SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持
	IspIn	Isp input 配置 size
	HwCrop	Hardware crop 配置 size *SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持
	bRot	rotation 使能
	eRot	E_MI_SYS_ROTATE_NONE, //Rotate 0 degrees E_MI_SYS_ROTATE_90, //Rotate 90 degrees E_MI_SYS_ROTATE_180, //Rotate 180 degrees E_MI_SYS_ROTATE_270, //Rotate 270 degrees E_MI_SYS_ROTATE_NUM,
	RunMode	Channel 对应的 running mode
	InCnt	接收到 input 的计数
	InTodoCnt	将 input 送到底层的计数
	DropInCnt	主动丢掉 input 的计数
	InStride	Input buffer 的 stride

{Product Description} {Document Name + Version}

Sigm**Star**

Atom	底层拿住的 buffer 数量
sclInMode	Scale input 配置
sclOutMode	Scale output 配置
HDR	HDR 使能模式
3DnrLevel	3DNR 开启级别
SensorId	ISP 绑定 sensorid
scl2UsedBy	Scale2 被使用的模块名
	*SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持
GetTPo	Get buffer 到送给底层的时间
РоТоКо	送给底层到硬件开始处理的时间
KoToRe	硬件处理到硬件处理结束的时间
SwaitDonePre	Waitdone 函数运行的时间点
EwaitdonePre	
SwaitDoneCur	
EwaitdoneCur	

Table 29: 表 7-3

参数		描述
	ChnId	Channel ID 0~63
	PortId	0~3
	Enable	0:port disable 1:port enable
	Pixel	Pixel format
Outputport	bMirr/flip	垂直/水平翻转使能
Info	PortCrop	Port crop 位置
	OutputW , OutputH	输出宽高
	Stride	Output buffer stride
	Compress	E_MI_SYS_COMPRESS_MODE_NONE,//no compress E_MI_SYS_COMPRESS_MODE_SEG,//compress unit is 256 bytes as a segment E_MI_SYS_COMPRESS_MODE_LINE,//compress unit is the whole line E_MI_SYS_COMPRESS_MODE_FRAME,//compress unit is the whole frame E_MI_SYS_COMPRESS_MODE_BUTT, //number
	GetCnt	获取 outputbuffer 的数量
	FailCnt	获取 output buffer 失败的次数
	FinishCnt	处理完 outputbuffer 的数量

{Product Description} {Document Name + Version}

		± E → :
	fnc	帧率
	IUS	
	- -	

7.2. echo

Table 30: 表 7-4

	12010 001 001	
功能	控制使用 cmdq 方式,设置下次启动 VPE 的时候生效。	
命令	echo disable_cmdq [Status] > /proc/mi_modules/mi_vpe0	
参数说明	[Status] ON 下寄存器指令来一个下一个 OFF 使用造剧本的方式下寄存器指令	
举例	无	

^{*}SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持

Table 31: 表 7-5

功能	控制是否使用 IRQ,设置下次启动 VPE 的时候生效
命令	echo disable_irq [Status] > /proc/mi_modules/mi_vpe0
参数说明	[Status] ON 不使用 IRQ 中断 OFF 使用 IRQ 中断
举例	无

^{*}SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持

Table 32: 表 7-6

功能	打印接收到每一帧的 PTS,Debug Frame 顺序问题,正常情况下 PTS 是递增的
命令	echo checkframepts [ChnID] [Status] > /proc/mi_modules/mi_vpe/mi_vpe0
参数说明	[ChnID] 通道号 [0~63]
	[Status] ON 开始打印 OFF 停止打印
举例	echo checkframepts 1 ON > /proc/mi_modules/mi_vpe/mi_vpe0
	[MI VPE PROCFS]:ChnID 1, receive buffer ID = 111, PTS = 31461 [MI VPE PROCFS]:ChnID 1, receive buffer ID = 112, PTS = 31467 [MI VPE PROCFS]:ChnID 1, receive buffer ID = 113, PTS = 31471 [MI VPE PROCFS]:ChnID 1, receive buffer ID = 114, PTS = 31475 [MI VPE PROCFS]:ChnID 1, receive buffer ID = 115, PTS = 31479 [MI VPE PROCFS]:ChnID 1, receive buffer ID = 116, PTS = 31485 [MI VPE PROCFS]:ChnID 1, receive buffer ID = 117, PTS = 31493 recieve buffer ID: 每个 channel 接收到 buffer 的 ID。PTS: FrameBuffer 的 PTS。

Table 31: 表 7-7

功能	Dump channel 的输出 frame	
命令	echo dumptaskfile [chnid] [cnt] [path] > /proc/mi_modules/mi_vpe/mi_vpe0	
参数说明	无	
举例	echo dumptaskfile 0 3 /mnt > /proc/mi_modules/mi_vpe/mi_vpe0	

{Product Description}
{Document Name + Version}

Table 31: 表 7-8

功能	设置旋转角度
命令	echo setroation [chnid] [eRot] > /proc/mi_modules/mi_vpe/mi_vpe0
参数说明	eRot:0->0°、1->90°、2->180°、3->270°
举例	echo setroation 1 1 > /proc/mi_modules/mi_vpe/mi_vpe0

^{*}SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持

Table 31: 表 7-9

功能	查询 cmdq 是否一直都 busy
命令	echo checkcmdq ON/OFF > /proc/mi_modules/mi_vpe/mi_vpe0
参数说明	无
举例	echo checkcmdq ON > /proc/mi_modules/mi_vpe/mi_vpe0 1ms 查询一次, 如果是 idle 将马上打印, 如果连续查询 500 次都是 busy,打印 busy echo checkcmdq OFF > /proc/mi_modules/mi_vpe/mi_vpe0 停止查询

^{*}SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持

Table 31: 表 7-10

功能	设置某个 channel 停止工作	
命令	echo stopchnl [chnid] ON/OFF > /proc/mi_modules/mi_vpe/mi_vpe0	
参数说明	无	
举例	echo stopchnl 0 ON > /proc/mi_modules/mi_vpe/mi_vpe0 停止 channel 0 echo stopchnl 0 OFF > /proc/mi_modules/mi_vpe/mi_vpe0 启动 channel 0	

Table 31: 表 7-11

功能	设置某一个 output port crop size	
命令	echo setprecrop [chnid] [portid] [X] [Y] [Width] [Height]> /proc/mi_modules/mi_vpe/mi_vpe0	
参数说明	无	
举例	echo setprecrop [chnid] [portid] [X] [Y] [Width] [Height]> /proc/mi_modules/mi_vpe/mi_vpe0	

Table 31: 表 7-12

	**		
功能	读取 cmdq 的 fence Id		
命令	echo readfence [chnid] > /proc/mi_modules/mi_vpe/mi_vpe0		
参数说明	无		
举例	echo readfence 0 > /proc/mi_modules/mi_vpe/mi_vpe0		

{Product Description} {Document Name + Version}

打印 workthread/bottom thread 中待输出的 reserve 值和 cmdq 当前 fence 值

*SSC323、SSC325、SSC325DE、SSC327、SSC32 暂不支持

Table 31: 表 7-13

功能	调试锁的位置	
命令	echo debugmutex > /proc/mi_modules/mi_vpe/mi_vpe0	
参数说明	无	
举例	echo debugmutex > /proc/mi_modules/mi_vpe/mi_vpe0 channel 的锁, 和 workinglist 的锁的位置和时间。	

^{*}SSC323、SSC325、SSC325DE、SSC327、SSC32 不支持

Table 31: 表 7-14

功能	调试 Atom 的值	
命令	echo setatom [AtomValue] > /proc/mi_modules/mi_vpe/mi_vpe0	
参数说明	[AtomValue] 默认为 1. AtomValue+1 代表 mhal 拿住 buffer 的数量	
举例	echo setatom 2 > /proc/mi_modules/mi_vpe/mi_vpe0	

Table 31: 表 7-15

功能	设置 vpe port mirror/flip	
命令	echo setmirrorflip [chnid] [portid][bmirror][bflip] > /proc/mi_modules/mi_vpe/mi_vpe0	
参数说明	无	
举例	echo setmirrorflip 0 0 1 1 > /proc/mi_modules/mi_vpe/mi_vpe0	

8. VENC

8.1. cat

【调试信息】

#cat /proc/mi_modules/mi_venc/mi_venc0

DevId CmdqId CmdqSize CmdqCnt IrqNum IsrProc IsrCnt 0 -1 16384 0 25/24 0 0 DevId UtilHw UtilMi PeakHw PeakMi FPS MbRate % 0 0 0 0 0.00 204000 37 VENC 0 CHN info
0 -1 16384 0 25/24 0 0 DevId UtilHw UtilMi PeakHw PeakMi FPS MbRate % 0 0 0 0 0 0 0.00 204000 37
DevId UtilHw UtilMi PeakHw PeakMi FPS MbRate % 0 0 0 0 0.00 204000 37 VENC 0 CHN info ChnId RefMemPA RefMemVA RefMemBufSize AlMemPA AlMemBufSize 0 5F5A000 (null) 9822720 5F02000 d0888000 358080 ChnId DevId DevId DevId Start eBufState FrameCnt Fps_1s kbps Fps10s kbps 0 0 0 0.00 0 0.00 0
0 0 0 0 0 0.00 204000 37
VENC 0 CHN info
ChnId RefMemPA RefMemVA RefMemBufSize AlMemPA AlMemVA AlMemBufSize 0 5F5A000 (null) 9822720 5F02000 d0888000 358080 ChnId DevId bStart eBufState FrameCnt Fps_1s kbps Fps10s kbps 0 0 1 0 0.00 0 0.00 0
ChnId RefMemPA RefMemVA RefMemBufSize AlMemPA AlMemVA AlMemBufSize 0 5F5A000 (null) 9822720 5F02000 d0888000 358080 ChnId DevId bStart eBufState FrameCnt Fps_1s kbps Fps10s kbps 0 0 1 0 0.00 0 0.00 0
0 5F5A000 (null) 9822720 5F02000 d0888000 358080 ChnId DevId bStart eBufState FrameCnt Fps_1s kbps Fps10s kbps 0 0 0.00 0 0.00 0 0 0 0 0.00 0 0.00 0
ChnId DevId bStart eBufState FrameCnt Fps_ls kbps Fps10s kbps 0 0 0 0 0 0 0 0
0 0 1 0 0 0.00 0 0.00 0 InputPort of dev: 0
0 0 1 0 0 0.00 0 0.00 0 0 0.00
ChnId Width Height SrcFrmRate MaxW MaxH FrameCnt DropCnt BlockCnt
0 1920 1080 25/1 1920 1080 0 0 0
OutputPort of dev: 0
ChnId CODEC Profile BufSize RefNum bByFrame FrameCnt DropCnt ReEncCnt
0 H264 0 0 0 1 0 0 0
ChnId RateCtl GOP MaxBitrate StatTime FluctuateLevel
0 CBR 50 2000000 0 0

【调试信息分析】

记录当前某 VENC device 的使用状况,以及 device 属性、layer 属性、inputport 属性,可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 34: 表 8-1

参数		描述
	DevId	设备号,作为 Dev ID 使用 (对映内核 MI_VENC_Dev_e)
	CmdqId	Command Queue 号
	CmdqSize	Command Queue 单帧大小 (bytes)
Dev info	CmdqCnt	Command Queue 数量 (number of frames)
	IrqNum	中断号
	IsrProc	是否有未处理 ISR 信号: 0: 无 1: 有
	IsrCnt	Isr 信号接收次数
	UtilHw	encoder hw driver 使用率
	UtilMi	encoder mi sw 使用率

	PeakHw	encoder hw driver 使用率峰值
	PeakMi	encoder mi sw 使用率峰值
	FPS	Device 包含的所有 Channel 的 FPS 之和
	MbRate	Device 宏块编码速率(MB/s)
	%	Device 当前宏块编码速率占极限值的百分比

Table 35: 表 8-2

参数		描述
	ChnId	Channel ID 通道号
	RefMemPA	底层 driver 要求的硬件物理位址
	RefMemVA	底层 driver 要求的硬件虚拟位址
	RefMemBufSize	底层 driver 要求的硬件内存大小
	AlMemPA	底层 driver 要求的 CPU 物理位址
CHN info	AlMemVA	底层 driver 要求的 CPU 虚拟位址
	AlMemBufSize	底层 driver 要求的 CPU 内存大小
	bStart	是否已开始接收数据
	eBufState	Channel 当前的状态
	FrameCnt	Channel 当前编码帧的数量
	Fps_1s	Channel 最近 1s 内统计的帧率
	Kbps	Channel 最近 1s 内统计的码率
	Fps_10s	Channel 最近 10s 内统计的帧率
	Kbps	Channel 最近 10s 内统计的码率

Table 36: 表 8-3

参数		描述
Inputport info	ChnId	Channel ID 通道号
	Width	画面宽度 (pixels)
	Height	画面高度 (pixels)
	SrcFrmRate	用户设定的 VencAttr 帧率,通常以此作为 rate control 的参数
	MaxW	最大画面宽度 (pixels)
	MaxH	最大画面高度 (pixels)
	FrameCnt	已拿到的 input 帧数
	DropCnt	已丢弃的 input 帧数
	BlockCnt	因为 output buffer 申请不到导致丢弃的帧数,同时 DropCnt+1

Table 37: 表 8-4

参数		描述
	ChnId	Channel ID 通道号
	CODEC	使用何种 CODEC: H264,H265,MJPG
	Profile	Profile 值
	BufSize	由 user 设定的每帧最大缓存 (bytes)
Outputport	RefNum	最大参考帧数
Outputport info	bByFrame	后级是否一次取走一帧? 0: 否,通常代表按包取数据 1: 是
	FrameCnt	已 release 的 output 帧数
	DropCnt	编码完成后,已丢弃的 output 帧数,会影响当前 GOP 值
	ReEncCnt	重编码的帧数
	(RingFrameCnt)	Ring Buffer 内已经处理完的帧数
	RateCtl	Rate Control 模式: CBR, VBR, FixQp 等
	GOP	Group of Picture 大小
Outputport Rate Control Info	MaxBitrate	CBR, VBR 时,最大的目标码率。(bits per second)
	QP.I	FixQp 时,I 帧的 QP
	QP.P	FixQp 时,P 帧的 QP
	StatTime	CBR, VBR 时,算法操作的时间参数
	FluctuateLevel	CBR时,允许的摆荡程度
	MaxQp	VBR 时,允许的最大 QP
	MinQp	VBR 时,允许的最小 QP
	Qfactor	Jpeg 时,设定的 Qfactor 值

8.2. Echo

可以通过 echo help > /proc/mi_modules/mi_venc/mi_venc[DevID] 查看支持的所有 echo 指令。 Table 38: 表 8-5

功能	开启或者关闭 command queue 开机初始设定或者 Demo 退出后,下次生效		
命令	echo en_cmdq [Status] > /proc/mi_modules/mi_venc/mi_venc[DevID]		
参数说明	[Status] 1 开启 0 关闭		
	[DevID] 设备 ID [0~1]		
举例	echo en_cmdq 0 > /proc/mi_modules/mi_venc/mi_venc0		
	关闭 devcie 0 的 cmdq		

Table 39: 表 8-6

】功能 开启或者关闭中断 开机初始设定或者 Demo 退出后,下次生效	mo 退出后,下次生效	功能 开启或
--	-------------	--------

命令	echo en_irq [Status] > /proc/mi_modules/mi_venc/mi_venc[DevID]	
参数说明	[Status] 1 开启 0 关闭	
	[DevID] 设备 ID [0~1]	
举例	echo en_irq 0 > /proc/mi_modules/mi_venc/mi_venc0	
	关闭 devide 0 的中断	

Table 40: 表 8-7

功能	设定模块工程 Log 等级 直接修改输出 Log 等级,立即生效
命令	echo dbg_level [Level] > /proc/mi_modules/mi_venc/mi_venc[DevID]
参数说明	[Level] [0~3] 0: None 1: Error 2: option 1+ warning 3: option 2+ information [DevID] 设备号 [0~1]
举例	无

Table 40: 表 8-8

功能	保存 venc 输入的 yuv 数据	
命令	echo dump_in [ChnID] [0~999] path > /proc/mi_modules/mi_venc/mi_venc[DevID]	
参数说明	[ChnID]: 指定的通道号 [0~999]: 需要保存的帧数 Path: 保存的路径 [DevID] 设备号 [0~1]	
举例	无	

Table 40: 表 8-9

功能	检测当前编码后的 stream size 骤升,保存 venc 当前输入的 yuv 数据	
命令	echo dump_in_big [ChnID] [0~999] path > /proc/mi_modules/mi_venc/mi_venc[DevID]	
参数说明	[ChnID]: 指定的通道号 [0~999]: 需要保存的帧数 Path: 保存的路径	
	[DevID] 设备号 [0~1]	

{Product Description}
{Document Name + Version}

举例	因为H264/H265参考前一帧的原因,如果 yuv 变化剧烈会导致编码后的 stream siz		
	突然增加,此时保存 yuv 数据,判断是否 yuv 存在花屏等异常		

Table 40: 表 8-10

功能	保存 venc 输出的 bit stream 数据	
命令	echo dump_out [ChnID] [0~9999] [i n] path > /proc/mi_modules/mi_venc/mi_venc[DevID]	
参数说明	[ChnID]: 指定的通道号 [0~9999]: 需要保存的帧数 [i n] i: 从下一个 I 帧开始保存 n: normal 模式,马上开始保存 Path: 保存的路径 [DevID] 设备号 [0~1]	
举例	无	

Table 40: 表 8-11

功能	设定 venc 处理 output 模式	
命令	echo drop_stream [ChnID] [d r] > /proc/mi_modules/mi_venc/mi_venc[DevID]	
参数说明	[ChnID] [0~63] all [0~63]: 指定通道号 all: 指定所有的通道 [d r] d: droped. Venc 编码完的帧直接丢弃,不会 release r: released. Venc 编码完的帧全部 release [DevID] 设备号 [0~1]	
举例	无	

9. DIVP

9.1. cat

【调试信息】

cat /proc/mi_modules/mi_divp/mi_divp0

Figure 7: 图 8-1

【调试信息分析】

记录当前某 DIVP device 的使用状况,以及 device 属性、layer 属性、inputport 属性,可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 41: 表 8-1

参数		描述
	ChnId	0~31
		32 Capture Channel 不对上层开放
	Status	0 INITED
		1 CREATED
		2 STARTED
		3 STOPED
		4 DISTROYED
	AttrChg	0: not change
		1: changed
1	bSendFrameTwice	0: not sendFrameTwice
		1:SendFrameTwice
		*if the channel's TNR is opend, when I/P mode change or the
		first frame is comming in, the frame need to be send twice to

Table 42: 表 8-2

参数		描述
	ChnId	Channel ID 0~31
	InputChg	input port 属性是否发生变化
	bIPChg	0 隔行和逐行之间没有发生变化
		1 隔行切换到逐行,or 逐行到隔行
	Width	input port width
	Height	input port height

	Pixel	E_MI_SYS_PIXEL_FRAME_YUV422_YUYV = 0, E_MI_SYS_PIXEL_FRAME_ARGB8888, E_MI_SYS_PIXEL_FRAME_ABGR8888,
inputport info		E_MI_SYS_PIXEL_FRAME_RGB565, E_MI_SYS_PIXEL_FRAME_ARGB1555, E_MI_SYS_PIXEL_FRAME_I2, E_MI_SYS_PIXEL_FRAME_I4, E_MI_SYS_PIXEL_FRAME_I8,
		E_MI_SYS_PIXEL_FRAME_YUV_SEMIPLANAR_422, E_MI_SYS_PIXEL_FRAME_YUV_SEMIPLANAR_420, E_MI_SYS_PIXEL_FRAME_YUV_MST_420,
		//vdec mstar private video format E_MI_SYS_PIXEL_FRAME_YC420_MSTTILE1_H264, E_MI_SYS_PIXEL_FRAME_YC420_MSTTILE2_H265, E_MI_SYS_PIXEL_FRAME_YC420_MSTTILE3_H265, E_MI_SYS_PIXEL_FRAME_FORMAT_MAX
	GetBuffCnt	获取 buffer 的数量
	2Pmode	是否有开 2P mode 0:disable 1:enable

Table 43: 表 8-3

参数		描述				
	ChnId	Channel ID 0~31				
	OutputChg	Output 属性是否发生变化				
		0: not change				
		1: changed				
	CompMode	0 //no compress				
Outputport		1 //compress unit is 256 bytes as a segment				
Outputport Info		2 //compress unit is the whole line				
11110		3 //compress unit is the whole frame				
		4 //number				
	PreWidth PreHeight	上一次设置的 output port 宽高和像素格式				
	PrePixel					
	Stride	从 sys 拿到的 outputbuffer stride				
	phyhaddr	Divp output 内存物理地址				
	FinishTaskCnt	Divp output frame 计数				

{Product Description} {Document Name + Version}

9.2. Echo

Table 44: 表 8-4

功能	打印接收到每一帧的 PTS,如果前端是 VDEC,会打印 VDEC 送过来的 FrameID,Debug 丢帧问题,正常情况下 FrameID 和 PTS 的值都是递增的。						
命令	echo checkframeid [ChnID] [Status] > /proc/mi_modules/mi_divp/mi_divp0						
参数说明	[ChnID] 通道号 [0~32]						
	[Status] ON 开始打印 OFF 停止打印						
举例	echo checkframeid 0 ON/OFF > /proc/mi_modules/mi_divp/mi_divp0						
	[MI DIVP PROCFS]:ChnID 0, PTS = 43956000 [MI DIVP PROCFS]:ChnID 0, PTS = 43989000 [MI DIVP PROCFS]:ChnID 0, PTS = 44022000 [MI DIVP PROCFS]:ChnID 0, PTS = 44055000 [MI DIVP PROCFS]:ChnID 0, PTS = 44088000 [MI DIVP PROCFS]:ChnID 0, PTS = 44121000 [MI DIVP PROCFS]:ChnID 0, PTS = 44154000 [MI DIVP PROCFS]:ChnID 0, PTS = 44187000 receive buffer ID: 每个 channel 接收到 buffer 的 ID。 PTS:FrameBuffer 的 PTS。						

Table 45: 表 8-5

功能	DIVP 不再处理某一个 channel,以节省频宽,验证频宽相关问题
命令	echo stoponechannel [ChnID] [Status] > /proc/mi_modules/mi_divp/mi_divp0
参数说明	[ChnID] 通道号 [0~32]
	[Status] ON 停止处理设置的 channel OFF 继续处理设置的 channel
举例	echo stoponechannel 0 ON > /proc/mi_modules/mi_divp/mi_divp0
	通道 0 的画面将会停住

Table 46: 表 8-6

功能	DIVP 不处理所有的 channel,DIVP 硬件的属性为设置的 Channel 的属性。可以通过 Debug Register 来调试指定的 channel。
命令	echo processonechannel [ChnID] [Status] > /proc/mi_modules/mi_divp/mi_divp0
参数说明	[ChnID] 通道号 [0~32]
	[Status] ON 停止所有的通道,硬件属性为所设置的通道的属性(即此通道会再处理一次)
	OFF 所有通道正常运行
举例	echo processonechannel 0 ON > /proc/mi_modules/mi_divp/mi_divp0

{Product Description} {Document Name + Version}

所有通道全部停止即画面卡住,但通道0会多处理一帧

echo processonechannel 0 OFF > /proc/mi_modules/mi_divp/mi_divp0 所有通道回复正常工作

10. VDISP

10.1. cat

【调试信息】

cat proc/mi_modules/mi_vdisp/mi_vdisp0

========Private Vdisp0 Info

DevStatus

Start

					Input P	ort Info -			
PortID	PortStatus	ChnX C	ChnY	ChnW	ChnH	IsFreeR	un TryOk	RecvOk	
0	Enabled	0	0	960	54	10 1	245356299	313332	
1	Enabled	960	0	960	5	40 1	355670297	313332	
2	Enabled	0	540	960	5	40 1	578760014	313331	
3	Enabled	960	540	960	5	40 1	757579130	313330	
				(Output F	Port Info			
					•		Hoight	SandOk	

Inited	FrmInterval	BgColor	PixelFmt	FrmRate	Width	Height	Sen	idOk
1	33333	8388	3736 (30)	1920	1080	471418

【调试信息分析】

记录当前 VDISP 的使用状况以及 device 属性、Input port 属性、Output port 属性,可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 48: 表 9-1

参数		描述		
	DevStatus	Vdisp 设备的工作状态		
		Uninit: 未初始化		
device info		Init: 初始化		
		Start: 运行状态		
		Stop: 停止状态		

Table 49: 表 9-2

参数		描述
		Inport ID 取值范围: [0~16],16 为 overlay 通道,即 PIP 通道。
PortStatus		Port 口状态

{Product Description} {Document Name + Version}

		Uninit: inport 未初始化 Init: inport 已初始化 Enabled: inport 已经使能 Disabled: inport 已经禁用					
layer info	ChnX	输入 inport 的起始坐标 X 地址 取值范围: [0~4094],需要根据 chip 的 align 对齐					
	ChnY	输入 inport 的起始坐标 Y 地址 取值范围: [0~2159]					
	ChnW	输入 inport 的图像宽度,需要根据 chip 的 align 对齐 取值范围: [0~4096]					
	ChnH	输入 inport 的图像高度 取值范围: [0~4096]					
	IsFreeRun	是否不做帧率控制 0: 按 pts 控制播放 1: 自由播放					
	TryOk	尝试取前级绑定端口的数据次数					
	RecvOk	从前级绑定端口成功拿到数据的次数					

Table 50: 表 9-3

参数		描述
	Inited	是否有初始化 Output Port 0 : 未初始化 1 : 已初始化
	FrmInterval	出帧时间间隔,单位 US
	BgColor	背景色,此处打印的是 10 进制
Output port info	PixelFmt	色彩空间 取值范围[0~E_MI_SYS_PIXEL_FRAME_FORMAT_MAX-1] 0-YUYV422,9-YUVSP420
por c iiiio	FrmRate	输出帧率
	Width	图像输出宽度 取值范围: [0~4096], 需要根据 chip 的 align 对齐
	Height	图像输出高度 取值范围: [0~2160], 需要根据 chip 的 align 对齐
	SendOk	成功推往后级的帧数统计

11. DISP

11.1. cat

【调试信息】

cat /proc/mi modules/mi disp/mi disp0

		D						
			SPO Info =====					
DevStatus	IrqNum	IrqCnt	BgColor					
1	27	1538	8388736					
Interface	DevTiming	CscMatrix	Luma	Contrast	Hue	Saturation	Gain	Sharpness
HDMI	1080P60	0	0	0	0	0	0	(
		Layer I	nfo					
LayerId	BindedDevID	LayerWidth	LayerHeight					
0	0	0	0					
LayerId	LayDispWidth	LayDispHeight	Toleration	rotatemode				
0	0	0	0	NONE				
		Layer0	InputPort Info					
PortId	enable	Status	src_width	src_height	offset_x	offset_y	dst_width	dst_height
0	1	0	1280	736	0	0	1920	1080
PortId	crop_x	crop_y	crop_width	crop_height	RecvBufCnt	RecvBufWidth	RecvBufHeight	RecvBufStride
0	0	0	0	0	306	1280	736	1280
PortId	OnScreenTask	PendingTak	DropTaskCnt	WaitClearTaskD	one Pi	kFormat		
0	c0d68038	(null)	0		0 semiplan	nar_420		

【调试信息分析】

记录当前 DISP 的使用状况以及 device 属性、layer 属性、inputport 属性,可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 51: 表 11-1

参数		描述
	DevStatus	使能或者禁用 0: 禁用 1: 使能
	IrqNum	中断号
	IrqCnt	中断次数
	BgColor	背景色(RGB format)
	Interface	接口类型 取值范围: (CVBS、YPBPR、VGA、BT656、BT1120、HDMI、 LCD、BT656_H、BT656_L)
	DevTiming	输出时序 取值范围: [0~ E_MI_DISP_OUTPUT_USER]
device info	CscMatrix	CSC 矩阵选择 取值范围: [0~ E_MI_DISP_CSC_MATRIX_RGB_TO_BT709_PC]

	Luma	亮度 取值范围: [0 ~ 100] 默认 50
	Contrast	对比度 取值范围: [0 ~ 100] 默认 50
	Hue	色调 取值范围: [0 ~ 100] 默认 50
	Saturation	饱和度 取值范围: [0 ~ 100] 默认 40
	Sharpness	锐度 取值范围: [0 ~ 100] 默认 50

Table 52: 表 11-2

参数		描述
	LayerId	layer ID 取值范围: [0~1]
	BindedDevID	绑定的 device ID 取值范围: [0~1]
	LayerWidth	Layer 的宽
	LayerHeight	Layer 的高
	LayDispWidth	Layer 显示的宽
layer info	LayDispHeight	Layer 显示的高
	Toleration	PTS 误差允许阈值,单位毫秒
	Rotate_mode	Rotation 角度

Table 53: 表 11-3

参数		描述
	enable	Input port 是否 enable[0:disable 1:enable]
	status	当前 port 状态[PAUSE/RESUME/STEP/REFRESH/SHOW/HIDE]
	src_width	Input port 输入图像宽
	src_height	Inpurt port 输入图像高
	offset_x	该 port 在 layer 上的起始横坐标
	offset_y	该 port 在 layer 上的起始纵坐标
	dst_width	该 port 输出或显示宽
port info	dst_height	该 port 输出或显示高
	crop_x	局部放大区域起始横坐标
	crop_y	局部放大区域起始纵坐标
	crop_width	局部放大区域宽度

crop	_height	局部放大区域高度
Rec	vBufCnt	DISP 拿到前端 buff 总个数
Rec	vBufWidth	DISP 拿到 buff 的 width
Rec	vBufHeight	DISP 拿到 buff 的 height
Rec	vBufStride	DISP 拿到 buff 的 stride
PixF	ormat	输入图像像素格式

11.2. echo

Table 54: 表 11-4

功能	动态设置画面效果
命令	echo csc [devid] [CscMatrix] [Contrast] [Hue] [Luma] [Saturation] [Sharpness] [Gain] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[devid] 设备 id [CscMatrix] 颜色矩阵 [Contrast] 对比度 [Hue] 色调 [Luma] 亮度 [Saturation] 饱和度
举例	echo setcsc 0 0 50 50 50 50 > /proc/mi_modules/mi_disp/mi_disp0

Table 55: 表 11-5

功能	设置背景色
命令	echo bgcolor [devid] [value] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[devid] 设备 id
	[value] 颜色值
举例	echo setbgcolor 0 255 > /proc/mi_modules/mi_disp/mi_disp0

Table 56: 表 11-6

功能	dump 每帧 pts
命令	echo checkframepts [layeid] [portid] [ON/OFF] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[layerid] 视频层 id
	[portid] port id [ON/OFF] ON 打开 OFF 关闭
举例	echo checkframepts 0 0 OFF > /proc/mi_modules/mi_disp/mi_disp0

Table 57: 表 11-7

功能	dump fame data
命令	echo dumpframe [layerid] [portid] [path] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[layerid] 视频层 id
	[portid] port id
举例	echo dumpframe 0 0 /mnt > /proc/mi_modules/mi_disp/mi_disp0

{Product Description} {Document Name + Version}

Table 58: 表 11-8

功能	stop disp 单个 port get buff
命令	echo stopgetbuff [layerid] [ON/OFF] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[layerid] 视频层 id
	[portid] port id
	[ON/OFF] ON:stop OFF:resume
举例	echo stopgetbuff 0 0 ON > /proc/mi_modules/mi_disp/mi_disp0

Table 59: 表 11-9

功能	mute 单个 port
命令	echo hide [layerid] [portid] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[layerid] 视频层 id
	[portid] port id
举例	echo hide 0 0 > /proc/mi_modules/mi_disp/mi_disp0

Table 60: 表 11-10

功能	unmute 单个 port
命令	echo show [layerid] [portid] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[layerid] 视频层 id
	[portid] port id
举例	echo show 0 0 > /proc/mi_modules/mi_disp/mi_disp0

Table 61: 表 11-11

功能	色温调试
命令	echo colortemp [devid] [BlueOffset] [GreenOffset] [RedOffset] [BlueColor] [GreenColor] [RedColor] > /proc/mi_modules/mi_disp/mi_disp0
参数说明	[devid]当前使用的 dev id [offset]没有用到 [RedColor] R 分量(0-255) [GreenColor] G 分量(0-255) [BlueColor]B 分量(0-255)
举例	echo setcolortemp 0 50 50 50 50 50 50 > /proc/mi_modules/mi_disp/mi_disp0

12. HDMI

12.1. cat

【调试信息】

cat /proc/mi_modules/mi_hdmi/mi_hdmi0

		HDMI0 Dev	/ Info		
InitFlag AvN	lute PowerO		. 10		
1 Y	N Y				
EnableVideo	TimingType	OutputMode	ColorType	DeepColorMode	
1	9	0	2	4	
EnableAudio	IsMultiChann	nel BitDepth	CodeType	SampleRate	
1	0	16	0	3	

【调试信息分析】

记录当前 HDMI 的使用状况以及 device 属性可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 54: 表 11-1

参数		描述
	InitFlag	HDMI 模块是否初始化 Y: 已初始化 N: 未初始化
	AvMute	音视频是否处于 MUTE 状态 Y: 被 MUTE N: 未被 MUTE
	PowerOn	HDMI 是否使能电源管理 Y: 是 N: 否
	EnableVideo	是否使能视频 0: 未使能 1: 使能
	TimingType	当前 HDMI 的输出分辨率 取值范围[0~ E_MI_HDMI_TIMING_MAX]
device info	OutputMode	HDMI 输出模式 0: HDMI 模式 2: DVI 模式

{Product Description}
{Document Name + Version}

	1/3 为 HDCP 模式, 当前暂不支持
ColorType	颜色空间
, , , ,	0: RGB44
	1: YUV422
	2: YUV444
	3: YUV420
DeepColorMode	色彩位深
	0: 8Bit
	1: 10Bit
	2: 12Bit
	3: 16Bit
EnableAudio	是否使能音频
	0: 未使能
	1: 使能
IsMultiChannel	是否多通道
	0: 否
	1: 是
BitDepth	音频采样位深
	8: 8Bit
	16: 16Bit
	32: 32Bit
CodeType	音频输出的压缩格式
	0: PCM
	1: 非PCM
SampleRate	音频输出采样率
	0: 未知
	1: 32K
	2: 44K
	3: 48K 4: 88K
	5: 96K
	6: 176K
	7: 192K

{Product Description} {Document Name + Version}

13. FB

```
13.1.
      cat
    【调试信息】
   # cat /proc/mi_modules/mi_fb0
   ########
  Framebuffer id = MStar FB0
  xres=1280, yres=720
  xres_virtual=1280, yres_virtual=1440
  xoffset=0,yoffset=0
  fix.line length=0xa00 Bytes
  fix.smem start=0xf800000
  Memory Size=0x400000 Bytes
  Gop ID=0
  Gwin ID=0
  Open Count=1
  Visible State=0
  MIU Sel=0
  ColorSpace=YUV
  ColorFomrmat=ARGB1555
  StretchWindow Pos[0,0]
  StretchWindow Src[1280,720], StretchWindow Dst[1920,1080]
  Gwin Pos[0,0]
  Gwin Size[1280,720]
  Gwin PhyAddr=0x0
  ColorKey Enable=0
  ColorKey Val=[0,0,0]
  Enable Alpha Blend=1
  Enalbe Multi Alpha=0
  Global Alpha Val=0x0
  Alpha0=0x0, Alpha1=0x0, (Only for ARGB1555)
  GOP Hstart=192
  Current TimingWidth=1920,TimingWidth=1080,hstar=192
  #############
  ########
  Cursor Gop ID=4
  Cursor Gwin ID=6
  Cursor MIU Sel=0
  Cursor PhyAddr=0x166000
  Cursor ColorFmt=ARGB8888
  Cursor Icon Width=44, Height=56
```

Sigm**Star**

{Product Description}
{Document Name + Version}

Cursor HotSpot[18,9]

Cursor request pos[712,207]

Cursor Visible=1

Cursor Gwin Pos[694,198]

Cursor Gwin Size[44,56]

Cursor Gwin Pitch=0x200 Bytes

Curosr StretchWindow pos[0,0]

Cursor StretchWin Src[1280,720],Dst[1920,1080]

Cursor ColorKey Enable=0

Cursor ColorKey Value=[0xff,0xff,0xff]

【调试信息分析】

记录当前 Fbdev && Hwcursor 的使用状况以及 OSD 图层属性、OSD device 属性、Hwcursor 属性,可以动态 地获取到这些信息,方便调试和测试。

【参数说明】

Table 55: 表 12-1

参数		描述
	Framebuffer id	Framebuffer 设备 ID
	xres	可见分辨率宽度
	yres	可见分辨率宽高度
	xres_virtual	虚拟分辨率的宽度
OSD info	yres_virtual	虚拟分辨率的高度
	xoffset	可见分辨率到虚拟分辨率的x偏移量
	yoffset	可见分辨率到虚拟分辨率的 y 偏移量
	fix.line_length	虚拟分辨率每行的字节数
	fix.smem_start	帧缓冲内起始地址
	Memory Size	帧缓冲内存长度,单位字节数

Table 56: 表 12-2

参数		描述
OSD device	Gop ID	图层硬件 ID
	Gwin ID	图层硬件显示窗口 ID
	Open Count	该图形层打开次数。在用户调用 open()时增 1;调用 close()时减 1
info	Visible State	该图层显示状态。 取值:{1表示可见,0表示不可见} 用户显示调用 FBIOSET_SHOW 去设置图层可见状态。
	MIU Sel	保存帧缓冲数据的物理内存编号。 对于 MSR620 设备该值为 0

{Product Description} {Document Name + Version}

ColorSpace	该图形层输出的颜色空间。 取值:{YUV 表示输出 YUV color space;RGB 表示输出 RGB color space }。默认为 YUV
ColorFomrmat	图形层格式 取值:{ARGB1555,ARGB4444,ARGB8888,RGB565}。 用户设置可变屏幕信息中的格式项后更新
StretchWindow Pos	图形层在显示设备上的起始位置。 单位:像素 默认为 0,用户可调用 FBIOSET_SCREEN_LOCATION 去设置
StretchWindow Src	图形层原始分辨率的宽度和高度。 单位:像素 通过硬件放大功能放大到当前 timing。用户设置可变屏幕信息中的可见分辨率后更新
StretchWindow Dst	图形层在显示设备上的宽度和高度。 默认设置为输出 timing 大小。可以通过 FBIOSET_SCREEN_LOCATION 去设置
Gwin Pos	图形层显示窗口的起始位置 单位:像素 对于 OSD 图层来说,该值总是为(0,0)
Gwin Size	图形层显示窗口的宽度、高度。 单位:像素 对于 OSD 图层来说,该值总是被设置为可见分辨率的宽度、 高度。用户设置可变屏幕信息中的可见分辨率后更新。
Gwin PhyAddr	图形层当前显示数据的物理地址
ColorKey Enable	图形层 ColorKey 是否使能 取值:{0 表示 Disable ColorKey; 1 表示 Enable ColorKey}用 户设置可通过 FBIOSET_COLORKEY 去设置
ColorKey Val	图形层 ColorKey 的 RED,GREEN,BLUE 通道数值取值:每个通道的取值范围从 0-255。ColorKey val 的数值用RGB888格式表示用户可通过 FBIOSET_COLORKEY 去设置后更新
Enable Alpha Blend	图形层 alpha 是否使能。 取值:{0表示否,1表示是},默认为1。 用户可通过 FBIOSET_GLOBAL_ALPHA 去设置后更新。 该项关闭,则像素 alpha 配置不生效。该项开启且 Enable Multi Alpha 关闭,仅像素 alpha 生效(对于 ARGB1555 格 式,Alpha bit 为 1 的像素使用 Global Alpha 作为像素 alpha,Alpha bit 为 0 的像素使用 0xff 作为像素 alpha)。当该 项目开启且 Enable Multi Alpha 生效时,则像素 alpha 和 Global Alpha 都生效

1	
Enable Multi Alpha	全局 alpha 是否生效开关 取值{0 时,1 否}默认值为 0 Enable Multi Alpha 使能,Global Alpha 便生效
Global Alpha Val	全局 Alpha
Alpha0	ARGB1555 格式时, 当最高位为 0 时, 选择 Alpha0 作为 Alpha 混合的的 Alpha 数值 取值: 0~255 默认为 0
Alpha1	ARGB1555 格式时, 当最高位为 1 时, 选择 Alpha1 作为 Alpha 混合的 Alpha 数值 取值: 0~255 默认为 0
GOP Hstart	图层硬件向对于显示窗口的偏移。 取值:该值和当前输出 timing 相关,当输出 timing 发生变化时,通过 FBIOSET_DISPLAYLAYER_ATTRIBUTES 并将输入参数 MI_FB_DisplayLayerAttr_s 的 u32SetAttrMask 数值包含 E_MI_FB_DISPLAYLAYER_ATTR_MASK_SCREEN_SIZE mask 位来通知图层驱动输出 timing 发生变化。图层驱动会根据当前 timing 设置相应的 hstart 数值
Current TimingWidth, Current TimingHeight,	当前输出 timing 的宽度、高度以及当前 timing 下应该给图形层硬件设置的像对于显示窗口的偏移。该项与 GOP Hstart 配合使用,用于检查设置给硬件图层的hstart 数值是否和当前 timing 一致。
hstar	

Table 57: 表 12-3

参数		描述
	Cursor Gop ID	鼠标图层硬件 ID
	Cursor Gwin ID	鼠标图层硬件显示窗口 ID
	Cursor MIU Sel	用于保存鼠标图标数据的物理内存编号。 对于 MSR620 设备该值为 0
	Cursor PhyAddr	鼠标层当前显示数据的物理地址
Hwcursor info	Cursor ColorFmt	鼠标图层格式 值:{ARGB1555,ARGB4444,ARGB8888,RGB565}。 用户可通过 FBIOSET_CURSOR_ATTRIBUTE 设置
	Cursor Icon Width	鼠标图标的宽度、高度。 单位: 像素 用户可通过 FBIOSET_CURSOR_ATTRIBUTE 设置
	Cursor HotSpot	鼠标图标的热点信息 单位:像素

	热点信息通常和鼠标图标相关,用户可通过 FBIOSET_CURSOR_ATTRIBUTE 设置
Cursor request pos	鼠标图标的位置信息 单位:像素 用户通过 FBIOSET_CURSOR_ATTRIBUTE 设置
Cursor Visible	鼠标图层是否可见 取值:{0,表示不可见,1表示可见} 用户通过 FBIOSET_CURSOR_ATTRIBUTE 设置
Cursor Gwin Pos	鼠标图层显示窗口的起始位置 单位:像素
Cursor Gwin Pitch	鼠标图层每行的字节数。 对于鼠标图层来说,该值固定为 0x200
Curosr StretchWindow pos	鼠标图层在显示设备上的起始位置。 单位:像素
Cursor StretchWin Src	鼠标图层原始大小 单位:像素。该值通常和 OSD 的显示分辨率一致。
Cursor StretchWin Dst	鼠标图层在显示设备上的宽度、高度 该值和输出 timing 一致。
Cursor ColorKey Enable	鼠标图层 ColorKey 是否使能 取值:{0 表示 Disable ColorKey; 1 表示 Enable ColorKey}。 用户通过 FBIOSET_CURSOR_ATTRIBUTE 设置
Cursor ColorKey Value	鼠标图层 ColorKey 的 RED,GREEN,BLUE 通道数值 取值:每个通道的取值范围从 0-255。ColorKey val 的数值用 RGB888 格式表示 用户可通过 FBIOSET_CURSOR_ATTRIBUTE 去设 置后更新

13.2. echo

Table 58: 表 12-4

功能	打开或关闭指定的图层
命令	echo GUI_SHOW [LayerID] [Status] > /proc/mi_modules/mi_fb0
参数说明	[LayerID] 图层号
	[Status] on 打开 off 关闭
举例	echo GUI_SHOW 0 on > /proc/mi_modules/mi_fb0
	显示图层 fb0
	echo GUI_SHOW 0 off > /proc/mi_modules/mi_fb0

{Product Description}
{Document Name + Version}

显示图层	fb	0
------	----	---

Table 59: 表 12-5

功能	打开或关闭硬件鼠标
命令	echo CURSOR_SHOW [Status] > /proc/mi_modules/mi_fb0
参数说明	[Status] on 打开 off 关闭
举例	echo CURSOR_SHOW on > /proc/mi_modules/mi_fb0 显示鼠标图标
	echo CURSOR_SHOW off > /proc/mi_modules/mi_fb0
	关闭鼠标图标

Table 60: 表 12-6

功能	为指定的图层设置 Colorkey
命令	echo GUI_SET_CLRKEY [LayerID] [Red] [Green] [Blue] > /proc/mi_modules/mi_fb0
参数说明	[LayerID] 图层号
	[Red] 红色分量 以 16 进制,ARGB888 格式表示
	[Green] 绿色分量 以 16 进制,ARGB888 格式表示
	[Blue] 蓝色分量 以 16 进制,ARGB888 格式表示
举例	echo GUI_SET_CLRKEY 0 ff 00 00 > /proc/mi_modules/mi_fb0
	设置 fb0 的 Colorkey 为红色

Table 61: 表 12-7

功能	Dump 当前正在显示的鼠标图标
命令	echo CURSOR_DUMP [Path] >/proc/mi_modules/mi_fb0
参数说明	[Path] dump 的路径
举例	echo CURSOR_DUMP /mnt > /proc/mi_modules/mi_fb0
	dump cursor Icon 到/mnt 路径,文件名为 CursorData.raw,用 7yuv 打开,宽高设置为 128,128,格式按照 cursor icon 的格式设置即可显示 Rawdata

Table 62: 表 12-8

功能	分别为 ARGB1555 格式的 alpha bit0,alpha bi1 设置 pixel alpha 数值。因为目前 msr620 不支持这个 feature,暂时未实现
命令	echo GUI_SETALPHA_ARGB1555 [LayerID] [Alpha0] [Alpha1]> /proc/mi_modules/mi_fb0

{Product Description} {Document Name + Version}

参数说明	[LayerID] 图层号
	[Alpha0] alpha0 的数值
	[Alpha1] alpha1 的数值
举例	无

14. GFX

14.1. cat

【调试信息】

cat /proc/mi_modules/mi_gfx/mi_gfx0

Figure 8: 图 13-1

【调试信息分析】

记录当前 GFX 的使用状况以及 device 属性可以动态地获取到这些信息,方便调试和测试。

【参数说明】

Table 63: 表 13-1

参数		描述
	InitCnt	设备被 Open 的次数,由于 GFX 会有多个模块进行调用,并且不能确定是哪一个 module 会先调用 GFX 的初始化,所以设备允许多次 Open,会记录 Open 次数来在 Close 的时候做对应的计数判断是否需要真的 Close Device。
device info	Thresholdvalue	ARGB1555 时,GFX 内部的 alpha 判定阈值,如大于 N 则 alpha 为 1,反之 alpha 为 0. 在 ARGB8888 模式下无效。默认值为 1.
	QuickFillColorFormt	最后一次做 QuickFill 的颜色格式 取值参考: GFX_Buffer_Format
	BitblitSrcColorFormt	最后一次做 BitBlit 的 Src Surface 的颜色格式
	BitblitDstColorFormt	最后一次做 BitBlit 的 Dst Surface 的颜色格式

15. REGION

15.1. cat

【调试信息】

```
# cat /proc/mi_modules/mi_rgn0
/ # cat /proc/mi_modules/mi_rgn/mi_rgn0
 ----- Start dump region capability info -----
Module name : REGION
Limitation :
Osd supported format : fmt
                             0 Support
Osd supported format : fmt 1 Support
Osd supported format : fmt 2 Support
Osd supported format : fmt 3 Support
Osd supported format : fmt 4 Support
Osd supported format : fmt 5 Support
Osd supported format : fmt 6 Support
Region handle : 1024 (0 ~ 1023)
                 64 (0 ~
                            63)
Vpe channel :
Vpe port
                 4 (0 ~
                            3)
Divp channel :
               64 (0 ~
                            63)
Divp port : 1 (0 ~ 0)
Osd attach : 8 (each channel port)
Cover attach : 4 (each channel port)
Osd support :
 Width : 1 ~ 3840
  Height : 1 ~ 2160
 HW mode : 2 frontbuffs
 Color key value : 0x2323
  X pos overlap : Support
  Overlap : Support
Cover support :
Size :
  Width
        : 1 ~ 8192
  Height : 1 ~ 8192
  Overlap : Support
  -----End dump region capability info ------
```

Figure 9: 图 14-1

{Product Description} {Document Name + Version}

			Sta	rt dump regior	attr		
Handle	Type	Width	Height	Stride	Format	VirAddr	PhyAddr
Θ	OSD	128	96	256	Θ	Θ	3db0000
1	OSD	200	301	400	0	Θ	3dc0000
2	OSD	300	360	608	0	Θ	7355000
3	OSD	400	266	800	Θ	Θ	738b000
4	OSD	200	356	400	0	Θ	73b f 000
5	OSD	200	131	400	0	Θ	3de0000
6	OSD	300	224	608	0	Θ	73e2000
7	0SD	200	133	400	Θ	Θ	3df0000
8	COVER						
9	COVER						
10	COVER						
11	COVER						
			En	d dump region	attr		

Figure 10: 图 14-2

Figure 1	.U: 🖄	14-2															
					- Start												
	vasWidt 192	.0		1080	Scree	nWidth 1920	Sc	reenHeight 1080									
Index				OffsetY	Width	Heig	ght S	tride Fo	rmat	VirAd	dr Phy	Addr Alph	aMode Alp	haVal BgA	lpha	FgA	lpha
Θ		1	0	Θ	952		366	1904	Θ		0 563		Pixel		Θ		255
1		Θ	0	0	Θ		0	0	Θ		0						Θ
Handle														AlphaMode			
0	OSD	1			128	96	256			0	0		la18000			0	255
1	OSD	1	33		200	301	400			0	0					0	255
2	OSD	1	22		300	360	608			200	0		398c000			0	255
3	OSD	1			400	266	800			400	Θ					0	255
4	OSD	1			200	356	400			510	0					0	255
5	OSD	1	333		200	131	400			0	0					0	255
6	OSD	1			300	224	608			0	0					0	255
7	OSD	1			200	133	400	650		400	0	Θ	1a50000	Pixel		Θ	255
8	COVER	1			1000		1000		120		1200						
9	COVER	1		15952b	1000		1000		180		1800						
10	COVER	1		ff4c54	1000		1000		240		2400						
11	COVER	1	3	7d038f	1000		L000		300	0	3000						

Figure 11: 图 14-3

					- Star	t dump	color	invert i	nfo						
Handle	0sdLayer	bShow	AreaId	BColorInv	PosX	PosY	Width	Height	InvMode	Threshold	Th1	Th2	Th3	DivW	DivH
Θ	323	1	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
1	33	1	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
2	22	1	2	Θ	Θ	0	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
3	300	1	3	Θ	Θ	Θ	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
4	222	1	4	Θ	Θ	Θ	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
5	333	1	5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
6	420	1	6	Θ	Θ	0	0	Θ	Θ	Θ	128	128	Θ	Θ	Θ
7	678	1	7	Θ	Θ	Θ	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
Θ	323	1	8	Θ	Θ	0	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
1	33	1	9	Θ	Θ	Θ	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
2	22	1	10	Θ	Θ	0	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
3	300	1	11	Θ	Θ	Θ	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
4	222	1	12	Θ	Θ	0	Θ	Θ	Θ	Θ	128	128	Θ	Θ	Θ
5	333	1	13	Θ	Θ	0	0	0	Θ	Θ	128	128	Θ	Θ	Θ
6	420	1	14	Θ	0	0	0	0	Θ	Θ	128	128	Θ	0	Θ
7	678	1	15	Θ	0	Θ	0	Θ	0	Θ	128	128	0	0	Θ
					- End	dump c	olor in	vert inf	0						

Figure 12: 图 14-4

Memory used:

kmalloc : 5040 bytes mma malloc : 2609712 bytes

Figure 12: 图 14-5

【调试信息分析】

RGN 的调试信息按照上图所示,分四个部分:

图 14-1 显示的是 Region 的 device 信息,展现的是 Region 模块硬件的能力值以及一些参数的边界。

{Product Description}
{Document Name + Version}

图 14-2 显示的是当前创建的 region 信息。

图 14-3 显示的是当前 region attach 到通道上相关的信息,从这些信息中看出 Region attach 的内存分布为 background buffer 部分和 front buffer 两部分,front buffer 是硬件真正使用的内存。

图 14-4 显示的是 APP 的反色设定。

图 14-5 显示的是 region 内部统计 MMA 的 buffer 使用的大小,以及 Kmalloc 使用的大小。

【参数说明】

Table 64: 表 14-1

Table 64:	<u>Κ 11-1</u>	T				
参数	1	描述				
	Osd support fmt	支持的 osd 格式: 0: ARGB1555 1: ARGB4444 2: I2 3: I4 4: I8 5: RGB565 6: ARGB8888				
Region	Region handle	创建 region 的最大数量为 1024 个, 句柄取值为[0~1023]				
capability	Vpe channel	VpeR 最大通道数量为 64 个,通道取值为[0~63]				
	Vpe port	Vpe 最大输出端口数量为 4 个,端口取值为[0~3]				
	Divp channel	Divp 最大通道数量为 64 个,通道取值为[0~63]				
	Divp port	Divp 最大输出端口数量为 1 个,端口取值为 0				
	Osd attach	每个输出端口每个通道能绑定的 Osd 数量上限				
	Cover attach	每个输出端口每个通道能绑定的 Cover 数量上限				
	Osd support	Width: Osd 宽取值范围。 Height: Osd 高取值范围。 HW mode: OSD 支持硬件的 layer 个数。 Color key value: OSD 所用的 Color key 数值,内部固定写死,不支持 APP 自行设定。 X pos overlap: OSD 是否支持 x 方向重叠。 X overlap: OSD 是否支持重叠。 注: 硬件不支持重叠的情况,region 内部会自动通过软件的方式实现重叠。				
	Cover support	Width: Cover 宽取值为[1~8192] Height: Cover 高取值为[1~8192] Overlap: 是否支持范围重叠				

Table 65: 表 14-2

10010 001 170							
参数		描述					
	Handle	句柄					

	Туре	类型,Osd 或是 Cover
	Width	宽
Region attr	Height	高
Region atti	Stride	宽补齐
	Format	OSD 颜色格式: 0: ARGB1555 1: ARGB4444 2: I2 3: I4 4: I8 5: RGB565 6: ARGB8888
	VirAddr	Canvas 的虚拟地址
	PhyAddr	Canvas 的物理地址

Table 66: 表 14-3

参数			描述
		Index	Frontbuffer 索引
		bShow	是否显示
		OffsetX	X偏移
	Frontbuffer	OffsetY	Y偏移
	info	Width	宽
		Height	高
		Stride	宽补齐
Region		Format	颜色格式
attr		VirAddr	虚拟地址
		PhyAddr	物理地址
		AlphaMode	Apha 显示模式
		BgAlpha	Argb1555 背景 Alpha
		FgAlpha	Argb1555 前景 Alpha
		Handle	绑定 Region 句柄
		Туре	绑定 Region 类型
		bShow	是否显示
		Layer	绑定 Cover 的层级
		Color	绑定 Cover 的颜色值
	Attach info	Width	宽
		Height	高

{Product Description} {Document Name + Version}

S	Stride	宽补齐
Р	PositionX	X偏移
Р	PositionY	Y偏移
F	ormat	绑定 Osd 的颜色格式
V	/irAddr	虚拟地址
Р	PhyAddr	物理地址
A	AlphaMode	Apha 显示模式
В	BgAlpha	Argb1555 背景 Alpha
F	gAlpha	Argb1555 前景 Alpha

Table 67: 表 14-4

参数		描述				
	kmalloc	Region 模块内部申请内存字节数。				
Buffer info	mma alloc	Region 模块通过 Sys 模块申请内存字节数。				

15.2. echo

Table 68: 表 14-5

功能	Dump 指定 Region 的 buffer							
命令	echo dumpRgnBuf [Handle] [Path] > /proc/mi_modules/mi_rgn/mi_rgn0							
参数说明	[Handle] region 句柄							
	[Path] 保存 dump 数据的路径。保存内容为 region 的 canvas 内容							
举例	echo dumpRgnBuf 0 /mnt > /proc/mi_modules/mi_rgn/mi_rgn0							
	在/mnt 下产生文件 Rgn0_canvasInfo_fmt0_128X96_stride256 表示 dump 句柄为 0,颜色格式为 ARGB1555,宽为 128,高为 96,宽对齐为 256 字节的 region 的 canvas 数据 文件格式为: Rgn[Handle]_canvasInfo_fmt[Format]_[Height]X[Height]_stride[Stride] [Handle]: region 句柄。 [Format]: 颜色格式,ARGB1555 为 0,ARGB4444 为 1,I2 为 2,I4 为 3。 [Width]: 宽 [Height]: 高 [Stride]: 宽补齐							

Table 69: 表 14-6

	W = 1 T						
功能	Dump 指定 channel 和 port 的 frontbuffer						
命令	echo dumpFrontBuf [ModId] [ChnID] [PortID] [Path] > /proc/mi_modules/mi_rgn/mi_rgn0						
参数说明	[ModId] 端口类型,Vpe 为 0,Divp 为 1。						

{Product Description} {Document Name + Version}

	[ChnID] 通道号 [0 ~ 63]								
	[PortID] 端口号 [0~3]								
	[Path] 保存 dump 数据的路径。会根据当前实际使用的 frontbuffer 数量生成 0 ~ 2 个文件								
举例	echo dumpFrontBuf 0 0 0 /mnt > /proc/mi_modules/mi_rgn/mi_rgn0 在/mnt 下产生 Vpe_Chn0_Port0_frontBuf0_fmt0_952X866_stride1904, 表示 dump 通道号为 0, 输出端口为 Vpe0 号端口,索引为 0 的 frontbuffer 的数据,颜色格式为 ARGB1555,宽为 952,高为 866,宽对齐为 1904 字节。文件格式 [Mod]_Chn[Channel]_Port[Port]_frontbuf[Index]_fmt[Format]_[Width]X[Height]_stride[Stride] [Mod] 输出端口类型,Vpe 时为 Vpe,Divp 时为 Divp。 [Channel 通道号。 [Port] 输出端口。 [Index] frontbuffer 索引号。 [Format] 颜色格式,ARGB1555 为 0,ARGB4444 为 1,I2 为 2,I4 为 3。 [Width] 宽 [Height] 高 [Stride] 宽补齐								

Table 70: 表 14-7

功能	获取 region 能力级信息						
命令	cho getcap > /proc/mi_modules/mi_rgn/mi_rgn0						
参数说明	无						
举例	无						

Table 71: 表 14-8

功能	获取已创建 region 信息						
命令	cho dumprgn > /proc/mi_modules/mi_rgn/mi_rgn0						
参数说明	无						
举例	无						

Table 72: 表 14-9

功能	获取 channel 和 port 的信息							
命令	echo dumpchport > /proc/mi_modules/mi_rgn/mi_rgn0							
参数说明	无							
举例	无							

Table 73: 表 14-10

功能	获取内存使用信息
命令	echo bufcnt > /proc/mi_modules/mi_rgn/mi_rgn0

7/25/2019

{Product Description} {Document Name + Version}

参数说明	无
举例	无

Table 74: 表 14-11

功能	获取调色板设定							
命令	o dumpPalette> /proc/mi_modules/mi_rgn/mi_rgn0							
参数说明	无							
举例	无							

Table 75: 表 14-12

功能	获取反色设定
命令	echo dumpColorInvert> /proc/mi_modules/mi_rgn/mi_rgn0
参数说明	无
举例	无

Table 76: 表 14-13

功能	设定 OSD 显示开关							
命令	echo setDispOnOff [ModId] [ChnID] [PortID] [Index] [OnOff]> /proc/mi_modules/mi_rgn/mi_rgn0							
参数说明	[ModId] 端口类型,Vpe 为 0,Divp 为 1。							
	[ChnID] 通道号 [0 ~ 63]							
	[PortID] 端口号 [0~3]							
	[Index] Frontbuffer 索引							
	[OnOff] 开关 1: 表示开, 0: 表示关。							
举例	echo setDispOnOff 0 0 0 1 > /proc/mi_modules/mi_rgn/mi_rgn0 表示 VPE 的 channel 0 port 0 上的 index 0 所对应 frontbuffer 的内容不显示。							

Table 76: 表 14-13

功能	设定一个 16 位数值,对当前的 Color key 值进行"或"操作							
命令	echo setcolorkeymask [MASK]> /proc/mi_modules/mi_rgn/mi_rgn0							
参数说明	MASK] 支持十六进位表示,也支持十进位表示。							
举例	echo setcolorkeymask 0xFFFF > /proc/mi_modules/mi_rgn/mi_rgn0 Color key mask 可以使 Colorkey 失效,可以很直观地看出 osd 的显示区域的内存分配范围。							

16. VDEC

16.1. cat

【调试信息】

cat /proc/mi_modules/mi_vdec/mi_vdec0

CHN ATTR Info								
ChnID						VideoMode	JpegFormat	RefFrmNum
0	Θ		576			1	4	4
1	0		576	1048576		1	4	4
2	Θ		576	1048576		1	4	4
3	Θ	720	576	1048576	Θ	1	4	4
					ARAM Info			
		OutputOrd	der Vid	eoFormat	DisplayMod			
Θ	Θ		Θ	Θ		9		
1	Θ		Θ	Θ		9		
2	Θ		Θ	Θ		9		
3	Θ		0	Θ		9		
				CHN S				
			LeftSt					m DecStrmFrm
Θ	1	Θ		Θ	Θ	396		
1	1	0		116265	1	396		
2	1	0		Θ	Θ	396		
3	1	0		Θ	Θ	397	7 39	98 398
ol To				61 : 6 :				
ChnID	ErrCn			SkipCnt				
0		0	Θ	Θ				
1		0	0	0				
2		0	0	0				
3		1	Θ	Θ				

Figure 11: 图 15-1

【调试信息分析】

打印分为两部分,使用 Private Vdec0 Info 分隔开。上半部分为 common 信息,下半部分为 vdec 模块信息。主要记录了解码通道的使用情况及配置属性,可用于检查属性配置和当前通道的工作状态,便于 debug。

【参数说明】

Table 74: 表 15-1

参数		描述
CHN ATTR Info	ChnID	通道号。
	CodecType	解码协议类型 0: H264; 1: H265; 2: JPEG。
	Width	解码图像最大宽度。

	Height	解码图像最大高度。
	BufSize	VDEC 码流 buffer 大小,单位: byte。
	Priority	解码通道优先级。
	VideoMode	发送码流方式。 0: 按流发送; 1: 按帧发送。
	JpegFormat	Jpeg 图片的存储格式 0: YCbCr400; 1: YCbCr420; 2: YCbCr422; 3: YCbCr444。
	RefFrmNum	最大参考帧个数,JPEG 通道无效。
CHN PARAM Info	ChnID	通道号。
	DecMode	解码模式。 0:解码 IPB 数据帧模式; 1:只解 I 帧模式; 2:只解 IP 帧,跳过 B 帧。
	OutputOrder	解码图像输出顺序。 0:按显示顺序输出数据帧; 1:按解帧顺序输出数据帧。
	VideoFormat	解码图像数据格式。 0: TILE 数据格式; 1: 数据帧压缩模式,减少数据帧内存使用量。
	DisplayMode	显示模式。 0: 预览模式,不参考 PTS 输出。 1: 回放模式,参考 PTS 数值输出。
CHN STATE	ChnID	通道号。
	bStart	解码器是否启动接收码流。
	CodecType	解码协议类型 0: H264; 1: H265; 2: JPEG
	LeftStrmBytes	码流 buffer 中待解码的 byte 数。
	LeftStrmFrm	码流 buffer 中待解码的帧数。-1 表示无效。 仅按帧发送时有效。
	LeftPics	图像 buffer 中剩余的 pic 数目。
	RecvStrmFrm	码流 buffer 中已接收码流帧数。-1 表示无效。 仅按帧发送时有效。
	DecStrmFrm	码流 buffer 中已解码帧数。

{Product Description} {Document Name + Version}

16.2. echo

Table 75: 表 15-2

功能	设置解码模式
命令	echo setDecMode [ChnID] [ModID] > /proc/mi_modules/mi_vdec/mi_vdec0
参数说明	[ChnID] 通道号 [0~32]
	[ModID] 解码模式 0->H264
	1->H265
	2->JPEG
举例	echo setDecMode 0 0 > /proc/mi_modules/mi_vdec/mi_vdec0
	通道 0,解码模式为 H264

Table 76: 表 15-3

功能	设置解码图像输出顺序
命令	echo setOutputOrder [ChnID] [ModID] > /proc/mi_modules/mi_vdec/mi_vdec0
参数说明	ChnID 通道号 [0~32]
	ModID 0 按显示顺序输出数据帧 1 按解码顺序输出数据帧
举例	echo setOutputOrder 0 0 > /proc/mi_modules/mi_vdec/mi_vdec0
	通道 0,按显示顺序输出

Table 77: 表 15-4

功能	设置解码图像数据格式,暂不支持设置
命令	echo setVideoFormat [ChnID] [ModID] > /proc/mi_modules/mi_vdec/mi_vdec0
参数说明	[ChnID] 通道号 [0~32]
	[ModID] 解码数据格式 0 TILE 格式
	1 数据帧压缩模式,减少数据帧内存使用量
举例	echo setVideoFormat 0 0 > /proc/mi_modules/mi_vdec/mi_vdec0
	通道 0, TILE 格式输出

Table 78: 表 15-5

功能	设置显示模式	
命令	echo setDisplayMode [ChnID] [ModID] > /proc/mi_modules/mi_vdec/mi_vdec0	
参数说明	[ChnID] 通道号 [0~32]	
	[ModID] 0: 预览模式,不参考 PTS 输出。	

{Product Description}

{Document Name + Version}

Sigm**Star**

	1: 回放模式,参考 PTS 数值输出。
举例	echo setDisplayMode 0 0 > /proc/mi_modules/mi_vdec/mi_vdec0
	通道 0 预览模式

Table 79: 表 15-6

Tuble 75: 12:0		
功能	打开/关闭统计打印码流输入时间间隔,每隔一秒打印一次	
命令	echo statInputTimeIntvl [ChnID] [Status] >/proc/mi_modules/mi_vdec/mi_vdec0	
参数说明	[ChnID] 通道号 [0~32]	
	[Status] on 打开 off 关闭	
举例	echo statInputTimeIntvl 0 on >/proc/mi_modules/mi_vdec/mi_vdec0	
	[MI VDEC PROCFS]:Input ChnID: 0, CurTime: 5959100469, TotalFrmCnt: 19, AvgTimeIntvl: 49856, MaxTimeIntvl: 50047, MinTimeIntvl: 47252	
	[Input ChnID] 通道号	
	[CurTime] 当前时间	
	[TotalFrmCnt] 输入帧次数	
	[AvgTimeIntvl 每秒内所有帧输入平均时间间隔	
	[MaxTimeIntvl] 每秒内两帧输入最大时间间隔	
	[MinTimeIntvl] 每秒内两帧输入最小时间间隔。	

Table 80: 表 15-7

Tubic 60. 15.7		
功能	打开/关闭统计打印图像输出时间间隔	
命令	echo statOutputTimeIntvl[ChnID][Status]>/proc/mi_modules/mi_vdec/mi_vdec0	
参数说明	[ChnID] 通道号 [0~32]	
	[Status] on 打开 off 关闭	
举例	echo statOutputTimeIntvl 0 on> /proc/mi_modules/mi_vdec/mi_vdec0	
	MI VDEC PROCFS]:Output ChnID: 0, CurTime: 6413830139, TotalFrmCnt: 19,	
	AvgTimeIntvl: 49999, MaxTimeIntvl: 50021, MinTimeIntvl: 49985	
	[Output ChnID] 通道号	
	[CurTime] 当前时间	
	[TotalFrmCnt] 输入帧次数	
	[AvgTimeIntvl 每秒内所有帧输入平均时间间隔	
	[MaxTimeIntvl] 每秒内两帧输入最大时间间隔	
	[MinTimeIntvl] 每秒内两帧输入最小时间间隔。	

{Product Description}
{Document Name + Version}

Table 81: 表 15-8

功能	打开/关闭统计打印输入码流时间戳	
命令	echo ChkInputFrmPts [ChnID] [Status] > /proc/mi_modules/mi_vdec/mi_vdec0	
参数说明	[ChnID] 通道号 [0~32]	
	[Status] on 打开 off 关闭	
举例	echo ChkInputFrmPts 0 on > /proc/mi_modules/mi_vdec/mi_vdec0	
	[MI VDEC PROCFS]:Input ChnID: 0, TotalFrmCnt: 400, PTS: 3964389 [Input ChnID] 通道号; [TotalFrmCnt] 输入帧次数;	
	[PTS] 码流时间戳。	

Table 82: 表 15-9

功能	打开/关闭统计打印输出码流时间戳	
命令	echo ChkOutputFrmPts [ChnID] [Status] > /proc/mi_modules/mi_vdec/mi_vdec0	
参数说明	[ChnID] 通道号 [0~32]	
	[Status] on 打开 off 关闭	
举例	echo ChkOutputFrmPts 0 on > /proc/mi_modules/mi_vdec/mi_vdec0	
	[MI VDEC PROCFS]:Output ChnID: 0, TotalFrmCnt: 154, PTS: 4039893000 [Output ChnID] 通道号; [TotalFrmCnt] 输入帧次数; [PTS] 码流时间戳。	

Table 83: 表 15-10

功能	将写入码流 buffer 的码流同时存文件
命令	echo DumpBS [Path] [MoreChnID] > /proc/mi_modules/mi_vdec/mi_vdec0
参数说明	[Path] 存储路径
	[MoreChnID] 通道号 [0~32] 可以设置多路,如 0 1 2 3
举例	echo DumpBS /mnt 0 > /proc/mi_modules/mi_vdec/mi_vdec0
	[MI WRN]: _MI_VDEC_IMPL_InjectBuffer[737]: Chn(0) Dump Es Buffer, Size:5765, (0x00 0x00 0x00 0x01 0x61)
	在/mnt 下产生 chn_0_h264_dump_vdec.es 文件,为 es 流文件

Table 84: 表 15-11

功能	将解码出的图像同时存文件,存3帧
命令	echo DumpFB [Path] [MoreChnID] > /proc/mi_modules/mi_vdec/mi_vdec0

{SigmaStar Part Name} {Product Description}
 {Document Name + Version}

Sigm	Star
------	------

参数说明	[Path] 存储路径
	[MoreChnID] 通道号 [0~32] 可以设置多路,如 0123
举例	echo DumpFB 0 /mnt > /proc/mi_modules/mi_vdec/mi_vdec0
	[MI WRN]: _MI_VDEC_IMPL_DebugWriteFile[3494]: dump file(/mnt/chn_0_h264_dump_vdec[720_576_736]_0.yuv) v1 ok[len:635904]
	在 /mnt 下产生 chn_0_h264_dump_vdec[720_576_736]_0.yuv(已 detile), chn_0_dump_vdec[720_576_736]_0_luma.yuv, chn_0_dump_vdec[720_576_736]_0_chrome.yuv 各 3 帧,共 9 帧

Table 85: 表 15-12

功能	将当前码流 buffer 中的所有数据存储到文件中					
命令	echo DumpCurBS [Path] [ChnID] > /proc/mi_modules/mi_vdec/mi_vdec0					
参数说明	[Path] 存储路径					
	[ChnID] 通道号 [0~32]					
举例	echo DumpCurBS /mnt 0 > /proc/mi_modules/mi_vdec/mi_vdec0					
	Dump Chn(0) ES Data Now					
	在/mnt 下 产生 chn_0_h264_dump_now_vdec.es					

17. WARP

17.1. cat

【调试信息】

cat /proc/mi_modules/mi_warp/mi_warp0

```
# cat /proc/mi_modules/mi_warp/mi_wrap0
                               ---Common info for mi_wrap0----
              InPortNum OutPortNum CollectSize
                      -Common info for mi_wrap0 only dump enabled chn-----
     EnInPNum EnOutPNum MMAHeapName
ChnId
                          (null)
WorkingQ_size usrLockedInjectCnt
          12441600
ChnId
     PortId
            bind_module_id bind_module_name bind_ChnId bind_PortId
                                  mi_vpe
ChnId PortId LowLatencyDelayMs
                              scheduledDelayTaskCnt
                                                    LastStaticDelayAveMS
               --Output port common info for mi_wrap0 only for enabled port-----
     PortId usrDepth BufCntQuota usrLockedCnt totalOutPortInUsed
                                                           DrvBkRefFifoQ cnt DrvBkRefFifoQ size
ChnId
            UsrGetFifoQ_cnt UsrGetFifoQ_size UsrGetFifoQ_seqnum
2 24883200 777
                                                                                        WorkingQ_size
12441600
     PortId
ChnId
                                                        UsrGetFifoQ discardnum
                                                                            WorkingQ_cnt
     ChnId
                                 mi_venc
                            Dump Warp Dev0 InputPort Info ---
         Format Width Height
ChnId
                             GetInput
                                                                         StatDepth
       YUV420_SP
                3840
                     2160
                                                                               20
                 ----- End Dump Warp Dev0 InputPort Info -----
                            Dump Warp Dev0 OutputPort Info --
         Format Width Height
                            GetOutput FinishOutput
                                                   RewindInput
      YUV420_SP
                3840 2160
                  ----- End Dump Warp Dev0 OutputPort Info ----
                      ---- Dump Warp Dev0 Hal Info -
ChnId AvgTime(us) MaxTime(us) MinTime(us)
                                    TotalTrigger FinishTrigger
          12674
                   86100
    ------ End Dump Warp Dev0 Hal Info
```

Figure 12: 图 16-1

【调试信息分析】

打印分为两部分, common 信息和 warp 模块信息。

主要记录了 warp 设备各通道的使用情况及端口状态,可用于检查属性配置和当前通道的工作状态,便于 debug。

{Product Description} {Document Name + Version}

【参数说明】

Table 86: 表 16-1

参数		描述			
Dev InputPort Info	ChnId	通道号。			
	Format	Pixel format: YUV422_YUYV; YUV420_SP; Unknown。			
	Width	帧宽度。			
	Height	帧高度。			
	GetInput	InputPort 接收到的 buffer 数量。			
	FinishInput	InputPort 结束的 buffer 数量,包括正常处理完成和丢弃的帧数。			
	RewindInput	InputPort 放回的 buffer 数量。			
	Fps	InputPort 端的帧率。根据两帧时间间隔进行采样,先计算平均两帧时间间隔,再计算帧率。			
	StatDepth	采样样本大小。取值范围为(1~100)。			
Dev OutputPort Info	ChnId	通道号。			
	Format	Pixel format: YUV422_YUYV; YUV420_SP; Unknown。			
	Width	帧宽度。			
	Height	帧高度。			
	GetOutput	OutputPort 接收到的 buffer 数量。			
	FinishOutput	OutputPort 正常处理完成的 buffer 数量。			
	RewindOutput	OutputPort 放回的 buffer 数量。			
	Fps	OutputPort 端的帧率。根据两帧时间间隔进行采样,先计算平均两帧时间间隔,再计算帧率。			
	StatDepth	采样样本大小。取值范围为(1~100),默认值为 20。			
Dev Hal Info	ChnId	通道号。			
	AvgTime	Hal 执行单次 trigger 平均耗时。单位 us。			
	MaxTime	Hal 执行单次 trigger 最大耗时。单位 us。			
	MinTime	Hal 执行单次 trigger 最小耗时。单位 us。			
	TotalTrigger	Hal 层总共 trigger 数量。			
	FinishTrigger	Hal 层执行成功的 trigger 数量。			

{Product Description} {Document Name + Version}

17.2. echo

Table 87: 表 16-2

功能	Dump 模块配置文件。			
命令	echo dump_table2file [ChnID] [BinType] [BinPath] > /proc/mi_modules/mi_warp/mi_warp0			
参数说明	[ChnID] 通道号 0			
	[BinType] Bin 文件类型 0 -> Bounding Box Table dump 文件名称为 Warp_BbTable.bin 1 -> Displayment Table dump 文件名称为 Disp_absolute.bin 或 Disp_relative.bin (根据 warpConfig 中 disp_table 类型不同,生成不同文件)。			
举 例	[BinPath] Bin 文件路径			
学例	echo 0 0 /mnt/warp > /proc/mi_modules/mi_vdec/mi_vdec0 通道 0,Bin 文件类型为 Bounding Box,路径为/mnt/warp。最后在/mnt/warp 目录生成文件 Warp_BbTable.bin。			

Table 88: 表 16-3

功能	Dump 输入/输出端口帧率。
命令	echo dump_fps > /proc/mi_modules/mi_warp/mi_warp0
参数说明	无。
举例	无。

Table 89: 表 16-4

功能	统计输入/输出端口数据帧状态。			
命令	echo dump_frameCnt > /proc/mi_modules/mi_warp/mi_warp0			
参数说明	无。			
举例	无。			

Table 90: 表 16-5

功能	统计 hal 时间消耗。
命令	echo dump_halTimeConsume > /proc/mi_modules/mi_warp/mi_warp0
参数说明	无。
举例	无。

Table 91: 表 16-6

功能	设置统计样本大小。
命令	echo dump_SetStatDepth [Depth] > /proc/mi_modules/mi_warp/mi_warp0
参数说明	[Depth] 样本大小。
举例	echo dump_SetStatDepth 30 /mnt/warp > /proc/mi_modules/mi_vdec/mi_vdec0

{Product Description} {Document Name + Version}

设置统计样本大小为 30。会统计两帧间的 pts 差值,放入样本集合中,最多可放置 30 个,不足 30 时,根据实际样本数量计算 fps; 达到 30 时,按照 30 个 pts 差值计算 fps。

18. VDF

18.1. cat

【调试信息】

cat /proc/mi_modules/mi_shadow/mi_vdf0

Figure 13: 图 18-2

VDF Verison	: [Dec 21 2	** Dump a 018 12:13:36]	all private info	for VDF **					
bInited 1		openable.	VGEnable Programme 1	YuvTaskExit 0	MDTaskExit	ODTaskExit 0	VGTaskExit 0	DbgLevel 2	
ChnId 0 ChnId 1	eStatus 2 eStatus 2 eStatus 2	common info for phandle 0xb24e3008 phandle 0xb2417008	VDF only dump FrameCnt 0 FrameCnt 0	created chn FrameInv O FrameInv O	YImgSize 110592 YImgSize 110592	ImageQCnt 0 ImageQCnt 0			
	Tonu	t Bort info for	VDE only dump	created chn InDoneCnt 83 InDoneCnt 76					
	Outn	ut Bort info fo	on VDE only dumn	created cha		RstGetFailCnt 956 RstGetFailCnt 927	RStDropCnt 0 RStDropCnt 0	RstPutCnt 83 RstPutCnt 76	OutFps 5.33 OutFps 5.00
[====chn:0====	=] 	MdBufcot	VDETetyl	RstBufSize	Subpotabil on	Cubect Cadi on	SubRstStsLen	ccl_InitArea	ccl_Step
[s_param]:	width 384 roi_md_num 4	height 288 (pnt[0].x	stride 384 pnt[0].y)	color 1 (pnt[1].x	mb_size 1 pnt[1].y)	subkstsadzen 1728 sad_out_ctrl 1 (pnt[2].x 383	roi_md_num 4 pnt[2].y) 287	md_alg_mode 1 (pnt[3].x	pnt[3].y)
				obj_num_max 0 [Ver: 2018071]			201		257
[====chn:1====	=]	o do de com	· · · · · · · · · · · · · · · · · · ·	- -					
[s_param]:	inImgW 384 roi_od_num 4	inImgH 288 (pnt[0].x 0	inImgStride 384 pnt[0].y) 0	nClrType 1 (pnt[1].x 383	alpha 2 pnt[1].y) 0	div 2 (pnt[2].x 383	roi_od_num 4 pnt[2].y) 287	(pnt[3].x	MotionSensit 0 pnt[3].y) 287
[3	1	15	[Ver:					

Figure 14: 图 18-1

【调试信息分析】

打印分为两部分, common 信息和 vdf 模块信息。

{Product Description} {Document Name + Version}

主要记录了 vdf 设备各通道的使用情况及端口状态,可用于检查属性配置和当前通道的工作状态,参数设置,便于 debug。Common 信息的说明请参考 sys 模块说明一章,vdf 模块信息说明请参考下表。

【参数说明】

Table 92 表 18-1

参数		描述					
DEV info for VDF	VDF Verison	版本信息					
	bInited	Vdf 模块是否初始化。(0 -否, 1 -是)					
	MDEnable	MD 是否使能状态。(0 -否, 1 -是)					
	ODEnable	OD 是否使能状态。(0 -否, 1- 是)					
	VGEnable	VG 是否使能状态。(0- 否, 1- 是)					
	YuvTaskExit	获取 yuv 数据的线程是否退出状态。(0- 否, 1- 是)					
	MDTaskExit	MD 运算线程是否退出状态。(0-否,1-是)					
	ODTaskExit	OD 运算线程是否退出状态。(0-否,1-是)					
	VGTaskExit	VG 运算线程是否退出状态。(0-否,1-是)					
CHN common info for VDF (only dump created chn)	ChnId eStatus	Vdf 模块的 debug 等级。 参数说明: 0- disable 1- error 2- warn 3- info 4- debug 5- trace 通道号。 通道运行状态。 参数说明: 0- 销毁 1- 创建 2- 运行 3- 停止					
	phandle	当前通断对应的 handle					
	FrameCnt	暂不使用。					
	FrameInv	暂不使用。					
	YImgSize	该通道处理的一张 yImage 数据大小(height*stride)					
	ImageQCnt	当前队列里有几张未处理的 yImage 数据					
Input Port info for	ChnId	通道号。					
VDF	InGetCnt	获取 yImage 数据成功次数。					
(only dump created chn)	InGetFailCnt	获取 yImage 数据失败次数。					
	InDropCnt	丢弃不处理的 yImage 数据次数。					

{Product Description} {Document Name + Version}

	InDoneCnt	存入待处理队列的	的 yImage 数据次数。	
	InFps	获取 yImage 数排	· · ·	
Output Port info for	ChnId	通道号。		
VDF	OutGetCnt	申请内存(用于存放运算结果)成功次数。		
(only dump	OutGetFailCnt	获取内存(用于存放运算结果)失败次数。		
created chn)	OutDropCnt	丢弃不处理的内存(用于存放运算结果的)次数。		
	OutDoneCnt	写入运算结果到内存(用于存放运算结果的)成功次数。		
	RstGetCnt	用户获取运算结果成功次数。		
	RstGetFailCnt	用户获取运算结果失败次数。		
	RstDropCnt	丢弃(被新数据覆盖)的运算结果次数。		
	RstPutCnt	用户使用完成,以	归还运算结果使用内存的次数。	
	OutFps	获取运算结果的情	帧率统计	
MD Attr info for VDF	ChnId	通道号。		
(only dump	[c_param]	Enable	当前通道是否使能。	
created chn)	常规参数	MdBufCnt	设置的 Md 存放结果的缓冲队列深度。	
		VDFIntvl	暂不使用。	
		RstBufSize	一次返回结果的大小。	
		SubRstObjLen	CCL 输出结果的大小。	
		SubRstSadLen	SAD 输出结果的大小。	
		SubRstStsLen	检查结果状态的大小。	
	[s_param] 静态参数	ccl_InitArea	CCL 区面积的门槛值	
		ccl_Step	CCL 每提高一次门槛值的提升值	
		width	MD 输入 Image 宽	
		height	MD 输入 Image 高	
		stride	MD 输入 Image stride	
		color	MD 输入 Image 的类型	
		mb_size	MD 宏块大小	
			0- MB_4x4	
			1- MB_8x8 2- MB_16x16	
		sad_out_ctrl	MD 的 SAD 输出格式	
		Jud_Jut_cui	0- 16BIT_SAD	
			1- 8BIT_SAD	
		md_alg_mode	CCL 联通区域的运算模式 0- FG 模式	

{Product Description} {Document Name + Version}

			4 CAD LH-L
			1- SAD 模式
		roi_md_num	<u>侦测区域边界点数量</u>
		Pnt[i].x	侦测区域每个边界点的 x 坐标
		Pnt[i].y	侦测区域每个边界点的 y 坐标
	[d_param] 动态参数	sensitivity	算法灵敏度,范围[10,20,30,100], 值越大越灵敏,输入的灵敏
		learn_rate	单位毫秒,范围[1000,30000],用于控制前端物体停止运动多久时,才作为背景画面
		md_thr	判断移动的门坎值,随不同模式而有不同设定标准
		obj_num_max	CCL 的连通区域数量限制值
OD Attr info for VDF	ChnId	通道号。	
(only dump	[c_param]	Enable	当前通道是否使能。
created chn)	常规参数	OdBufCnt	设置的 Od 存放结果的缓冲队列深度。
		VDFIntvl	暂不使用。
		RstBufSize	一次返回结果的大小。
	[s_param]	inImgW	OD 输入 Image 宽
	静态参数	inImgH	OD 输入 Image 高
		inImgStride	OD 输入 Image stride
		nClrType	OD 輸入影像的類型 2- y 数据
		alpha	控制产生参考图像的学习速率
		div	OD 检测窗口的类型 0- 1个窗口 1- 4个窗口 2- 9个窗口
		М	多少张影像更新一次参考图像
		MotionSensit	移动敏感度设置
		roi_od_num	侦测区域边界点数量
		pnt[i].x	侦测区域每个边界点的 x 坐标
		pnt[i].y	侦测区域每个边界点的 y 坐标
	[d_param] 动态参数	thd_tamper	图像差异比例门坎值
		tamper_blk_thd	图像被遮挡区域数量门坎值
		min_duration	图像差异持续时间门坎值
VG Attr info for VDF	ChnId	通道号。	
(only dump	[c_param]	Enable	当前通道是否使能。

{Product Description} {Document Name + Version}

created chn)	常规参数	VgBufCnt	设置的 Vg 存放结果的缓冲队列深度。
		VDFIntvl	暂不使用。
		RstBufSize	一次返回结果的大小。
	[s_param]	width	VG 输入 Image 宽
	静态参数	height	VG 输入 Image 高
		stride	VG 输入 Image stride
		obj_size_thd	滤除物体占感兴趣区域的百分比大小
		indoor	相机架设区域 0 - 室外 1 - 室内
		func_state	侦测模式 2- VG_VIRTUAL_GATE,表示模式为虚拟线段。 3- VG_REGION_INVASION,表示模式区域入侵。
		line_number	虚拟线段的数目,支持 1 到 4 条虚拟线段 (侦测模式为 VG_VIRTUAL_GATE 起效)
		p[i].x	线段 n 的 x 坐标 (侦测模式为 <mark>VG_VIRTUAL_GATE</mark> 起效)
		p[i].y	线段 n 的 y 坐标 (侦测模式为 VG_VIRTUAL_GATE 起效)
		pd[i].x	线段 n 的第一个方向点 (侦测模式为 VG_VIRTUAL_GATE 起效)
		pd[i].y	线段 n 的第二个方向点 (侦测模式为 VG_VIRTUAL_GATE 起效)
		region_dir	设定区域入侵的方向,目前有进入、离开及穿越三种方向可以选择。 0- REGION_ENTER,进入警报区域触发警报。 1- REGION_LEAVING,离开警报区域触发警报。 2- REGION_CROSS,表示穿越警报区域触发警报。 (侦测模式为 VG_REGION_INVASION 起效)
		Pnt[i].x	区域的第 i 个点的 x 坐标 (侦测模式为 VG_REGION_INVASION 起效)
		Pnt[i].x	区域的第 i 个点的 y 坐标 (侦测模式为 VG_REGION_INVASION 起效)

18.2. echo

Table 93 表 18-2

功能	显示 vdf 支持的 echo 命令。
----	---------------------

{Product Description}
{Document Name + Version}

命令	echo help > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	无。
举例	echo help > /proc/mi_modules/mi_shadow/mi_vdf0

Table 94: 表 18-3

功能	设置 vdf 日志等级
命令	echo log_level [level] > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	[level]: 0-CLOSE 1ERROR 2WARN 3INFO 4-DEBUG 5-TRACE
举例	echo log_level 4 > /proc/mi_modules/mi_shadow/mi_vdf0

Table 95: 表 18-4

功能	线程状态检查
命令	echo sem_check [bool] > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	[bool]: 0-disable 1-enable
举例	echo sem_check 1 > /proc/mi_modules/mi_shadow/mi_vdf0

Table 96: 表 18-5

功能	使能工作模式
命令	echo en_workmode [mode] [bool] > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	[mode]: md/od/vg
	[bool]: 0-disable 1-enable
举例	echo en_workmode md 1 > /proc/mi_modules/mi_shadow/mi_vdf0

Table 97: 表 18-6

功能	使能通道口
命令	echo en_chn [chnId] [bool] > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	[chnId]: 0-63
	[bool]: 0-disable 1-enable
举例	echo en_chn 0 1 > /proc/mi_modules/mi_shadow/mi_vdf0

Table 98: 表 18-7

功能	打开自动检查功能
命令	echo auto_check [bool] > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	[bool]: 0-disable 1-enable
举例	echo auto_check 1 > /proc/mi_modules/mi_shadow/mi_vdf0

Table 99: 表 17-8

{Product Description} {Document Name + Version}

功能	打开所有 debug 信息
命令	echo dump_all [bool] > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	[bool]: 0-disable 1-enable
举例	echo dump_all 1 > /proc/mi_modules/mi_shadow/mi_vdf0

Table 100: 表 18-9

功能	Dump yImage 数据
命令	echo dump_image [chnId] [dumpNum] [dumpPath] > /proc/mi_modules/mi_shadow/mi_vdf0
参数说明	[chnId]: 0-63 [dumpNum]: 0-xxxx [dumpPath]: "yourPath"
举例	echo dump_image 0 10 /mnt > /proc/mi_modules/mi_shadow/mi_vdf0

19. PANEL

19.1. cat

【调试信息】

cat /proc/mi_modules/mi_panel/mi_panel0

/ # cat /pr	oc/mi_modules/m	i_panel/mi_pane	:10		
		F	ANEL Dev0 Info		
LVDS_POL	LVDS_CH	LINK_TYPE	TI_MODE		
_ 1	_ 1	MIPI_DSI	1		
SW_ODD	SW_EVEN	SW_ODD_RB	SW_EVEN_RB		
0	0	0	0		
H_Total	V_Total	Width	Height	H_Start	V_Start
854	1314	480	272	66	0
DClk	FrameRate	INV_DCLK	INV_DE	DwpanelMAX	DwpanelMIN
68	60	0	0	1868942	1633113
SSC_Enable	SSC_Span	SSC_Step	TI_BIT	Format	
disable	192	25	8BIT	10BIT	
		MIPI CONF	'IG		
HsTrail	HsPrpr	HsZero	ClkHsPrpr	ClkHsExit	ClkTrail
5	3	5	10	14	3
ClkZero	ClkHsPost	DaHsExit	ContDet	Lpx	TaGet
11	10	5	0	16	26
TaSure	TaGo	Hactive	Hpw	Hbp	-
22	50	800	18	488	55
Vactive	Vpw	₹	۷fp	Bllp	Fps
1280	6	4	29	0	60

Figure 15: 图 19-1

【调试信息分析】

主要记录用户配置的 timing 相关信息和 mipi dsi 设置的相关信息。可用于检查用户设置是否正确,便于 debug。

Table 101: 表 19-1

参数		描述	
	LVDS_POL	正负极性转换	
	LVDS_CH	通道切换	
	LINK_TYPE	信号类型	
PANEL	TI_MODE	说明当前的屏是不是 TI MODE	
Dev0 Info	SW_ODD	ウツ豆的市瓜(MCD/LCD) 经专用帐册交换	
	SW_EVEN	一 定义屏的高低(MSB/LSB)位奇偶特性交换	
	SW_ODD_RB	空义屋的 D/D 交换	
	SW_EVEN_RB	一 定义屏的 R/B 交换	
	H_Total	单位时间行扫描的次数	

{Product Description}
{Document Name + Version}

	V_Total	单位时间列扫描的次数	
	Width		
	Height	屏的尺寸	
	H_Start		
	V_Start	影像行方向和场方向的起始位置	
	FrameRate	帧率	
	INV_DCLK	Dclk 极性反转	
	INV_DE	DE 信号极性反转	
	DwpanelMAX	定义 PANEL_MAX_SET	
	DwpanelMIN	定义 PANEL_MIN_SET	
	SSC_Enable	展频使能	
	SSC_Span	调变频率范围	
	SSC_Step	调变幅度	
	TI_BIT	bit mode	
	HsTrail		
	HsPrpr		
	HsZero		
	ClkHsPrpr		
	ClkHsExit	Hight speed mode 信号状态	
	ClkTrail		
	ClkZero		
	ClkHsPost		
	DaHsExit		
	Lpx	Low power mode 信号	
MIPI CONFIG	TaGet	_	
	TaSure	TA MODE 信号	
	TaGo		
	Hactive	屏的尺寸(宽)	
	Hpw	hsync width	
	Hbp	hsync back porch	
	Hfp	hsync front porch	
	Vactive	屏的尺寸(高)	
	Vpw	vsync width	
	Vbp	vsync back porch	
	Vfp	vsync front porch	

{Product Description} {Document Name + Version}

Fps	帧率
-----	----

19.2. echo

Table 102: 表 19-2

功能	动态设置 Timing 相关属性
命令	echo settimingcfg [param] [value] > /proc/mi_modules/mi_panel/mi_panel0
参数说明	[param]:需要动态设置的 timing 属性 可以动态设置 hstart/width/hbp/hpw/htotal/vstart/height/vbp/vpw/vtotal [value]:对应的值
举例	echo settimingcfg width 800ss > /proc/mi_modules/mi_panel/mi_panel0

Table 103: 表 19-3

功能	动态设置 mipi 相关属性
命令	echo setmipidsicfg [param] [value] > /proc/mi_modules/mi_panel/mi_panel0
参数说明	[param]:需要动态设置的 mipi 的属性 可以动态设置 width/hpw/hbp/hfp/sssheight/vpw/vbp/vfp/lanenum/format/ctlmode [value]:对应的值
举例	echo setmipidsicfg width 800 > /proc/mi_modules/mi_panel/mi_panel0

Table 104: 表 19-4

功能	设置 test pattern	
命令	echo setoutputpattern [R] [G] [B] > /proc/mi_modules/mi_panel/mi_panel0	
参数说明	[R]:test pattern 的 R 分量值	
	[G]:test pattern 的 G 分量值	
	[B]:test pattern 的 B 分量值	
举例	echo setoutputpattern 10 10 10 > /proc/mi_modules/mi_panel/mi_panel0	

Table 105: 表 19-5

功能	动态设置展频
命令	echo setssccfg [status] [span] [step] > /proc/mi_modules/mi_panel/mi_panel0
参数说明	[status]:是否使能展频 enable:使能 disable:失能 [span]: 调变频率范围 [step]:调变幅度
举例	echo setssccfg enable 100 100 > /proc/mi_modules/mi_panel/mi_panel0