Tutorial Sheet-ODD Semester 2022

15B11CI212 Theoretical Foundation of Computer Science

Tutorial 8 Solution

Q.1 Find the sum-of-products expansions of these Boolean functions.

- a. F(x, y, z) = x + y + z
- b. F(x, y, z) = (x + z)y
- c. F(x, y, z) = x
- d. F(x, y, z) = x y

Solution:

- a) We want the function to have the value 1 whenever at least one of the variables has the value 1. There are seven minterms that achieve this, so the sum has seven summands: $x y z + x \overline{y} \overline{z} + x \overline{y} z + \overline{x} y \overline{z} + \overline{x} y \overline{z} + \overline{x} \overline{y} z$.
- b) Here is another way to think about this problem (rather than just making a table and reading off the minterms that make the value equal to 1). If we expand the expression by the distributive law (and use the commutative law), we get xy+yz. Now invoking the identity laws, the law that $s+\overline{s}=1$, and the distributive and commutative laws again, we write this as $xy1+1yz=xy(z+\overline{z})+(x+\overline{x})yz=xyz+xy\overline{z}+xyz+\overline{x}yz$. Finally, we use the idempotent law to collapse the first and third term, to obtain our answer: $xyz+xy\overline{z}+\overline{x}yz$.
- c) We can use either the straightforward approach or the idea used in part (b). The answer is $x y z + x y \overline{z} + x \overline{y} z + x \overline{y} \overline{z}$.
- d) The method discussed in part (b) works well here, to obtain the answer $x \overline{y} z + x \overline{y} \overline{z}$.
- Q.2 Minimizing a Function with Don't Cares.
 - i. $f(A,B,C,D) = \sum_{m} (1,3,4,7,11) + d(5,12,13,14,15)$
 - ii. $f(A,B,C,D) = \prod_{M} (0,2,6,8,9,10) \cdot D(5,12,13,14,15)$

(i) First simplify
$$(X + Y) (X + ^{\sim} Y)$$

$$(X + Y) (X + \sim Y) = XX + X \sim Y + YX + Y \sim Y$$

= $X + X \sim Y + YX + O$, as $XX = X$ as $Y \sim Y = 0$
= $X + X(\sim Y + Y)$, as $\sim Y + Y = 1$

Q..4 Minimize the following expression by use of Boolean rules.

(a)
$$X = A B C + ^{\sim} A B + A B ^{\sim} C$$

= X (Z + Y) = X (Y + Z), by commutative law

Solution:

= X [(Z + Y). 1]

(b)
$$X = {}^{\sim} A B {}^{\sim} C + A {}^{\sim} B {}^{\sim} C + {}^{\sim} A {}^{\sim} B {}^{\sim} C + {}^{\sim} A {}^{\sim} B {}^{\sim} C$$

= ${}^{\sim} A B {}^{\sim} C + A {}^{\sim} B {}^{\sim} C + {}^{\sim} A {}^{\sim} B {}^{\sim} C$ as ${}^{\sim} A + {}^{\sim} A = {}^{\sim} A$
= ${}^{\sim} A B {}^{\sim} C + (A + {}^{\sim} A) {}^{\sim} B {}^{\sim} C$

= (
$$^{\sim}$$
 A B + $^{\sim}$ B) $^{\sim}$ C = [($^{\sim}$ A + $^{\sim}$ B) . ($^{\sim}$ B + $^{\sim}$ B)] $^{\sim}$ C by the dual of distribution rules

= (
$$^{\sim}$$
 A + $^{\sim}$ B) . 1] $^{\sim}$ C