PMATH 450/650: Introduction to Lebesgue Measure and Fourier Analysis

Rui Gong

April 20, 2021

Acknowledgements

These notes are based on the PMATH450/650 lectures given by Professor *Blake Madill* in Winter 2021 at the University of Waterloo.

Contents

1	Mea	sure 5
	1.1	Borel Set
	1.2	Outer Measure
	1.3	Outer Measure 2
	1.4	Basic Properties of Outer Measure
	1.5	Measurable Sets
	1.6	Countably Additivity
	1.7	Measurable Sets Continued
	1.8	Basic Properties of Lebesgue Measure
	1.9	Non-Measurable Sets
	1.10	Cantor-Lebesgue Function
		A Non-Borel Set
		Measurable Function
		Properties of Measurable Function
		More Properties for Measurable Functions
		Simple Approximation
		Littlewood's Principle
2	Integ	gration 41
	2.1	Integration
	2.2	Bounded Convergence Theorem
	2.3	Fatou's Lemma and MCT
	2.4	The General Integral
	2.5	Riemann Integration
		2.5.1 Riemann Integral VS Lebesgue Integral
_	T n G	
3		paces 61
	3.1	L^P Spaces
	3.2	L^p Norm
	3.3	Completeness
		3.3.1 Separability:
4	Four	rier Analysis 72
+	4.1	Hilbert Space
	4.2	Orthogonality
	4.3	Big Theorems
	4.4	Fourier Series
	4.5	Fourier Coefficients
	4.6	
	4.0	$\boldsymbol{\mathcal{C}}$
		· · · · · · · · · · · · · · · · · · ·
	4.8	
	4.9	Fejér Kernel
	4.10	Fejér's Theorem

fall 2024	Rui Gong	Contents
4.11 Homogeneous Banach Space		95

1 Measure

1.1 Borel Set

Definition 1.1

X is a set. We call $a \subseteq \mathcal{P}(x)$ a σ -algebra of subsets of X if:

- 1. $\emptyset \in a$
- $2. \ A \in a \implies X \setminus A \in a$
- 3. $A_1, A_2, A_3, \ldots, \in a \implies \bigcup_{i=1}^{\infty} A_i \in a$

Remark. $a \subseteq \mathcal{P}(X)$ is a σ -algebra

- 1. $X \in a, X \setminus \emptyset = X \in a$
- $2. \ A,B \in a \implies A \bigcup B \in a \text{ by } A \bigcup = A \bigcup B \bigcup \underbrace{\emptyset \ldots \bigcup \emptyset \ldots}_{\text{countably many}} \in a$
- 3. $A_1, A_2, \ldots \in a \implies \bigcap_{i=1}^{\infty} A_i \in a$, by $\bigcap_{i=1}^{\infty} A_i = X \setminus \left(\bigcup_{i=1}^{\infty} (X \setminus A_i)\right) \in a$
- 4. $A, B \in a \implies A \cap B \in a$

Example 1.2: σ -algebra

- $\{\emptyset, X\}$
- $a = \mathcal{P}(x)$
- $a=\{A\subseteq\mathbb{R}:A \text{ is open}\}$ is not a σ -algebra. $A=(0,1)\in a$, but $\mathbb{R}\setminus A=(-\infty,0]\cup[1,\infty)\notin a$ because it's not open
- $a = \{A \subseteq \mathbb{R} : A \text{ is open or closed}\}$ is not a σ -algebra, because $\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\} \notin a$ (Q is countable)

Proposition 1.3

X is a set, $C \subseteq \mathcal{P}(x)$, then

$$a := \bigcap \{ \mathbb{B} : \mathbb{B} \ \sigma\text{-algebra}, \ C \subseteq \mathbb{B} \} \text{ is a } \sigma\text{-algebra}$$

It's the smallest σ -algebra containing C.

Definition 1.4

 $C = \{A \subseteq \mathbb{R} : A \text{ open}\}, \text{ then }$

$$a = \bigcap \{ \mathbb{B} : C \subseteq \mathbb{B}, \mathbb{B} \ \sigma - algebra \}$$

is a Borel σ -algebra. The elements of a are called the <u>Borel Sets</u>.

Remark. 1. open \Longrightarrow Borel

- 2. closed \Longrightarrow Borel
- 3. $\{X_1, X_2, \ldots\} = \bigcup_{i=1}^{\infty} \{X_i\}$, so countable \Longrightarrow Borel. (Note $\mathbb Q$ is not open or closed but Borel)
- 4. $[a,b)=[a,b]\setminus\{b\}=[a,b]\cap(\mathbb{R}\setminus\{b\})$, so a half open interval is also Borel

1.2 Outer Measure

Goal: Define a function

$$m: \mathcal{P}(\mathbb{R}) \mapsto [0, \infty) \cup \{\infty\}$$
 (called a measure)

1.
$$m((a,b)) = m([a,b]) = m((a,b]) = b - a$$

2.
$$m(A \cup B) \leq m(A) + m(B)$$

3.
$$A \cap B = \emptyset$$
, $m(A \cup B) = m(A) + m(B)$

Definition 1.5

We define a (Lebesgue) outer measure by

$$m^*: \mathcal{P}(\mathbb{R}) \mapsto [0, \infty) \cup \{\infty\}$$

$$m^*(A) = \inf \left\{ \sum_{i=1}^{\infty} l(I_i) : A \subseteq \bigcup_{i=1}^{\infty} I_i, \ I_i \ open, \ bounded \ interval \right\}$$

Example 1.6

$$\emptyset \implies m^*(\emptyset) = 0$$
. Since $\forall \varepsilon > 0$, $\emptyset \subseteq (0, \varepsilon) \implies m^*(\emptyset) \leqslant l((0, \varepsilon))$. Since $m^*(\emptyset) \geqslant 0$, we know $m^*(\emptyset) = 0$

Example 1.7

 $A = \{x_1, x_2, \ldots\}$ is countable, then

$$A \subseteq \bigcup_{i=1}^{\infty} \left(x_i - \frac{\varepsilon}{2^{i+1}}, x_i + \frac{\varepsilon}{2^{i+1}} \right), \ \varepsilon > 0$$

then

$$m^*(A) \leqslant \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i}$$

$$= \frac{\varepsilon}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i-1}}$$

$$= \frac{\varepsilon}{2} \left(\frac{1}{1 - 1/2} \right) = \varepsilon$$

Since ε is arbitrary,

$$m^*(A) = 0$$

It's also clear that finite set also have measure 0. That is, both countable and finite sets have measure 0

1.3 Outer Measure 2

Proposition 1.8

If $A \subseteq B$, then $m^*(A) \leqslant m^*(B)$

Proof.

$$X := \left\{ \sum l(I_i) : A \subseteq \bigcup_{i=1}^{\infty} I_i \right\}$$

$$Y := \left\{ \sum l(I_i) : B \subseteq \bigcup_{i=1}^{\infty} I_i \right\}$$

$$Y \subseteq X$$

$$\inf X \leqslant \inf Y$$

Lemma 1.9

If $a, b \in \mathbb{R}$ with $a \leq b$, then $m^*([a, b]) = b - a$

Proof. Let $\varepsilon > 0$ be given. Since $[a,b] \subseteq (a-\frac{\varepsilon}{2},b+\frac{\varepsilon}{2})$. We see that $m^*([a,b]) \leqslant b-a+\varepsilon$. Let I_i be bounded, open intervals such that $[a,b] \subseteq \bigcup_{i=1}^{\infty} I_i$. Since [a,b] is compact, then there exists $n \in \mathbb{N}$, such that

$$[a,b] \subseteq \bigcup_{i=1}^{n} I_i$$

so

$$b - a \leqslant \sum_{i=1}^{n} l(I_i) \leqslant \sum_{i=1}^{\infty} l(I_i)$$

and so $m^*([a,b])\geqslant b-a\implies m^*([a,b])=b-a.$ Note $m^*([a,b])>0$ because of the definition of inf.

Proposition 1.10

If I is an interval, then $m^*(I) = l(I)$

Proof.

1. If I is bounded with endpoints $a \leq b$, then

$$\varepsilon > 0, I \subseteq [a, b] \implies m^*(I) \leqslant m^*([a, b]) = b - a$$

$$\left[a + \frac{\varepsilon}{2}, b - \frac{\varepsilon}{2}\right] \subseteq I \implies b - a + \varepsilon \leqslant m^*(I)$$

$$\implies b - a \leqslant m^*(I)$$

then $m^*(I) = b - a$

Fall 2024 Rui Gong Measure

2. If I is unbounded

$$\forall n \in \mathbb{N}, \exists I_n, l(I_n) = n$$

$$\Longrightarrow m^*(I) \geqslant m^*(I_n) = n$$

$$\Longrightarrow m^*(I) = \infty = l(I)$$

1.4 Basic Properties of Outer Measure

Outer measure is

- 1. Translation Invariant
- 2. Countably Subadditive

Notation: $x \in \mathbb{R}, A \subseteq \mathbb{R}, x + A := \{x + a : a \in A\}$

Proposition 1.11: Translation Invariant

$$m^*(x+A) = m^*(A)$$

Proof.

$$\begin{split} m^*(x+A) &= \inf \left\{ \sum_{i=1}^\infty l(I_i) : x+A \subseteq \bigcup_{i=1}^\infty I_i, \text{ bounded, open} \right\} \\ &= \inf \left\{ \sum_{i=1}^\infty l(I_i) : A \subseteq \bigcup_{i=1}^\infty I_i - x, \text{ bounded, open} \right\} \\ &= \inf \left\{ \sum_{i=1}^\infty l(\underbrace{I_i - x}) : A \subseteq \bigcup_{i=1}^\infty \underbrace{I_i - x}, \text{ bounded, open} \right\} \\ &= \inf \left\{ \sum_{i=1}^\infty l(J_i) : A \subseteq \bigcup_{i=1}^\infty J_i \right\} \\ &= m^*(A) \end{split}$$

Proposition 1.12: Countably Subadditivity

If $A_i \subseteq \mathbb{R} (i \in \mathbb{N})$, then

$$m^* \left(\bigcup_{i=1}^{\infty} A_i \right) \leqslant \bigcup_{i=1}^{\infty} m^* (A_i)$$

Proof. We may assume each $m^*(A_i) < \infty$ (otherwise it's trivial). Let $\varepsilon > 0$ be given and let's fix $i \in \mathbb{N}$. There exists open and bounded interval $I_{i,j}$ such that $A_i \subseteq \bigcup_{i=1}^{\infty} I_{i,j}$ and

$$\sum_{i=1}^{\infty} l(I_{i,j}) \leqslant m^*(A_i) + \frac{\varepsilon}{2^i}$$

We see that

$$\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i,j} I_{i,j}$$

and so

$$m^* \left(\bigcup_{i=1}^{\infty} \right) \leqslant \sum_{i,j} l(I_{i,j})$$

$$\leqslant \sum_{i=1}^{\infty} \left(m^*(A_i) + \frac{\varepsilon}{2^i} \right)$$

$$= \sum_{i=1}^{\infty} m^*(A_i) + \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i}$$

$$= \sum_{i=1}^{\infty} m^*(A_i) + \varepsilon$$

Corollary 1.13: finite subadditivity

If
$$A_1, \dots, A_n \in \mathcal{P}(\mathbb{R})$$
, then
$$m^*(A_1 \cup A_2 \dots \cup A_n) \leqslant m^*(A_1) + m^*(A_2) + \dots + m^*(A_n)$$

Later we will see that there exists $A, B \subseteq \mathbb{R}, A \cap B = \emptyset$ but $m^*(A \cup B) \leqslant m^*(A) + m^*(B)$, we will solve this by restricting the domain of m^* to only include the sets which measure "nicely".

1.5 Measurable Sets

Definition 1.14

We say $A \subseteq \mathbb{R}$ is <u>measurable</u> if $\forall X \subseteq \mathbb{R}$,

$$m^*(X) = m^*(X \cap A) + m^*(X \setminus A)$$

Remark. Always have

$$m^*(X) \leqslant m^*(X \cap A) + m^*(X \setminus A)$$

by
$$X = (X \setminus A) \cup (X \cap A)$$

Remark. If $A \subseteq \mathbb{R}$ is measurable and $B \subseteq \mathbb{R}$ with $A \cap B = \emptyset$, then

$$m^*(\underbrace{A \cup B}_{X}) = m^*(X \cap A) + m^*(X \setminus A) = m^*(A) + m^*(B)$$

Proposition 1.15

If $m^*(A) = 0$, then A is measurable

Proof. Let $X \subseteq \mathbb{R}$, since $X \cap A \subseteq A$, we have

$$0 \leqslant m^*(X \cap A) \leqslant m^*(A) = 0$$

so $m^*(X \cap A) = 0$, then

$$m^*(X \cap A) + m^*(X \setminus A)$$

= $m^*(X \setminus A)$
 $\leq m^*(X)$

the other direction is always true, so

$$m^*(X) = m^*(X \cap A) + m^*(X \setminus A)$$

Proposition 1.16

 A_1, \ldots, A_n measurable, then $\bigcup_{i=1}^n A_i$ is measurable.

Proof. It suffices to prove the result when n = 2.

Let $A, B \subseteq \mathbb{R}$ be measurable. Let $X \subseteq \mathbb{R}$, then

$$m^*(X) = m^*(X \cap A) + m^*(\underbrace{X \setminus A}_{Y})$$

$$= m^*(X \cap A) + m^*(Y \cap B) + m^*(Y \setminus B)$$

$$= m^*(X \cap A) + m^*((X \setminus A) \cap B) + m^*(X \setminus (A \cup B))$$

$$\geqslant m^*((X \cap A) \cup ((X \setminus A) \cap B)) + m^*(X \setminus (A \cup B))$$

$$= m^*(X \cap (A \cup B)) + m^*(X \setminus (A \cup B))$$

Proposition 1.17

 A_1, A_2, \ldots, A_n measurable, $A_i \cap A_j = \emptyset, i \neq j$. Let $A = A_1 \cup \ldots \cup A_n$. If $X \subseteq \mathbb{R}$, then

$$m^*(X \cap A) = \sum_{i=1}^n m^*(X \cap A_i)$$

Proof. For n=2, let $A,B\subseteq\mathbb{R}$ measurable, $A\cap B=\emptyset$. Let $X\subseteq\mathbb{R}$, then

$$m^*(X \cap (A \cup B))$$

$$= m^*((X \cap (A \cup B)) \cap A) + m^*((X \cap (A \cup B)) \setminus A)$$

$$= m^*(X \cap A) + m^*(X \cap B)$$

Note: we only need n-1 sets to be measurable, it's ok if one set is not.

Corollary 1.18: Finite Additive

 A_1, \ldots, A_n measurable, $A_i \cap A_j = \emptyset$, then $m^*(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n m^*(A_i)$

Proof. Take $X = \mathbb{R}$, use the proposition above.

1.6 Countably Additivity

Lemma 1.19

 $A_i \subseteq \mathbb{R}$ measurable $(i \in \mathbb{N})$. If $A_i \cap A_j = \emptyset$ for $i \neq j$, then $A := \bigcup_{i=1}^{\infty} A_i$ is measurable.

Proof. Let $B_n = A_1 \cup \ldots A_n$ and $X \subseteq \mathbb{R}$ arbitrary.

$$m^*(X) = m^*(X \cap B_n) + m^*(X \setminus B_n)$$

$$\geqslant m^*(X \cap B_n) + m^*(X \setminus A)$$

$$= \sum_{i=1}^m m^*(X \cap A_i) + m^*(X \setminus A)$$

Taking $n \to \infty$,

$$m^*(X) \geqslant \sum_{i=1}^{\infty} m^*(X \cap A_i) + m^*(X \setminus A)$$
$$= m^* \left(\bigcup_{i=1}^{\infty} (X \cap A_i) \right) + m^*(X \setminus A)$$
$$= m^*(X \cap A) + m^*(X \setminus A)$$

Proposition 1.20

 $A \subseteq \mathbb{R}$ measurbale, then $\mathbb{R} \setminus A$ is measurable.

Proof. $X \subseteq \mathbb{R}$,

$$m^*(X \cap (\mathbb{R} \setminus A)) + m^*(X \setminus (\mathbb{R} \setminus A))$$

= $m^*(X \setminus A) + m^*(X \cap A)$
= $m^*(X)$ by A measurable

Proposition 1.21

 $A_i \subseteq \mathbb{R}$ measurable $(i \in \mathbb{N})$, then $A = \bigcup_{i=1}^{\infty} A_i$ is measurable.

Proof. $B_n = A_n \setminus (A_1 \cup \ldots \cup A_{n-1}) = A_n \cap (\mathbb{R} \setminus (A_1 \cup \ldots \cup A_{n-1})), \ (B_1 = A_1), \ n \geqslant 2$, we can see that B_n is an intersection of measurable sets, hence measurable. And, for $i \neq j, B_i \cap B_j = \emptyset$. Also,

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$$

so A is measurable by lemma above.

Corollary 1.22

The collection \mathcal{L} of (Lebesgue) measurable sets is a σ -algebra of sets in \mathbb{R}

Proposition 1.23: Countably Additivity

 $A_i \subseteq \mathbb{R}$ measurable ($i \in \mathbb{N}$), if $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$m^* \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} m^* (A_i)$$

Proof.

$$m^* \left(\bigcup_{i=1}^{\infty} A_i \right) \geqslant m^* \left(\bigcup_{i=1}^{n} A_i \right) = \sum_{i=1}^{\infty} m^* (A_i)$$

Take $n \to \infty$, then

$$m^* \left(\bigcup_{i=1}^{\infty} A_i \right) \geqslant \sum_{i=1}^{\infty} m^*(A_i)$$

The other direction follows by the subadditivity.

1.7 Measurable Sets Continued

Proposition 1.24: I

 $a \in \mathbb{R}$, then (a, ∞) is measurable

Proof. Let $X \subseteq \mathbb{R}$. We want to show that

$$m^*(X \cap (a, \infty)) + m^*(X \setminus (a, \infty)) \leq m^*(X)$$

1. $a \notin X$,

We show

$$m^*(\underbrace{X \cap (a, \infty)}_{X_1}) + m^*(\underbrace{X \cap (-\infty, a)}_{X_2}) \leqslant m^*(X)$$

Let (I_i) be a sequence of bounded, open intervals such that $X \subseteq \bigcup I_i$. Define

$$I_i' = I_i \cap (a, \infty)$$
 and $I_i'' = I_i \cap (-\infty, a)$

Note that

$$X_1 \subseteq \bigcup I_i', X_2 \subseteq \bigcup I_i''$$

and so

$$m^*(X_1) \leqslant \sum l(I_i')$$

 $m^*(X_2) \leqslant \sum l(I_i'')$

We then see that

$$m^*(X_1) + m^*(X_2)$$

$$\leq \sum l(I_i') + \sum l(I_i'')$$

$$= \sum (l(I_i') + l(I_i''))$$

$$= \sum l(I_i)$$

By the definition of inf, we have

$$m^*(X_1) + m^*(X_2) \le m^*(X)$$

2. $a \in X$, let $X' = X \setminus \{a\}$, then

$$\begin{split} m^*(X \cap (a, \infty)) + m^*(X \setminus (a, \infty)) &= m^*((X' \cup \{a\}) \cap (a, \infty)) + m^*((X' \cup \{a\}) \setminus (a, \infty)) \\ &= m^*(X' \cap (a, \infty)) + m^*((X' \setminus (a, \infty)) \cup \{a\}) \\ &\leqslant m^*(X' \cap (a, \infty)) + m^*(X' \setminus (a, \infty)) + m^*(\{a\}) \\ &= m^*(X') + 0 \leqslant m^*(X) \end{split}$$

The other direction is trivial by subadditivity.

Fall 2024 Rui Gong Measure

Theorem 1.25

Borel set is measurable

Proof. (a,∞) is measurable, so $\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n},\infty\right)=[a,\infty)$ is measurable. So $\mathbb{R}\setminus[a,\infty)=(-\infty,a)$ is measurable, then $(a,b)=(a,\infty)\cap(-\infty,b)$ is measurable. Hence, every open set in \mathbb{R} is measurable (open sets can be expressed as countable union of open intervals), so

$$\mathbb{B}\subset\mathcal{L}$$

because \mathbb{B} is the smallest σ -algebra containing all open sets and \mathcal{L} is a σ -algebra containing all open sets.

Definition 1.26

We call $m: \mathcal{L} \mapsto [0, \infty) \cup \{\infty\}$ given by $m(A) = m^*(A)$, the Lebesgue Measure

Remark. $A \subseteq \mathbb{R}$ measurable, then x + A is measurable $\forall x \in \mathbb{R}$

Proof. $\forall K \subseteq \mathbb{R}, \ K - x \subseteq \mathbb{R},$

$$m^{*}(K - x) = m^{*}(A \cap (K - x)) + m^{*}(A \setminus (K - x))$$

= $m^{*}((A + x) \cap K) + m^{*}((A + x) \setminus K)$
= $m^{*}(K)$

1.8 Basic Properties of Lebesgue Measure

Proposition 1.27: Excision Properties

 $A \subseteq B$, A measurable, $m(A) < \infty$, then $m^*(B \setminus A) = m^*(B) - m(A)$

Proof.

$$m^*(B) = m^*(B \cap A) + m^*(B \setminus A)$$
$$= m^*(A) + m^*(B \setminus A)$$
$$= \underbrace{m(A)}_{<\infty} + m^*(B \setminus A)$$

Theorem 1.28: Continuity of Measure

1. $A_1 \subseteq A_2 \subseteq A_3 \dots$, measurable, then

$$m\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} m(A_n)$$

2. $B_1 \supseteq B_2 \supseteq B_3 \dots$, measurable, and $m(B_1) < \infty$, then

$$m\left(\bigcap_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} m(B_n)$$

Proof.

1. Since $m(A_k) \leq m(\cup A_i), \ \forall k \in \mathbb{N}$, we have

$$\lim_{n \to \infty} m(A_n) \leqslant m(\cup A_i)$$

if $\exists k \in \mathbb{N}$ such that $m(A_k) = \infty$, then $\lim_{n \to \infty} m(A_n) = \infty$ and we are done, so assume $m(A_k) < \infty$, $\forall k \in \mathbb{N}$.

For each $k \in \mathbb{N}$, let $D_k = A_k \setminus A_{k-1}$, $A_0 \neq \emptyset$. Note

- D_k 's are measurable
- D_k 's are parwise disjoint
- $\cup D_i = \cup A_i$

so

$$m^*(\cup A_i) = m^*(\cup D_i)$$

$$= \sum_{i=1}^{\infty} m(D_i)$$

$$= \sum_{i=1}^{\infty} m(A_i) - m(A_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{\infty} m(A_i) - m(A_{i-1})$$

$$= \lim_{n \to \infty} m(A_n) - m(A_0)$$

$$= \lim_{n \to \infty} m(A_n)$$

2. For $k \in \mathbb{N}$, define

$$D_k = B_1 \setminus B_k$$

Note:

- D_k 's measurable
- $D_1 \subseteq D_2 \subseteq D_3 \subseteq \dots$

By 1), we know $m(\cup D_i) = \lim_{n \to \infty} m(D_n)$, we see that

$$\cup D_i = \bigcup_{i=1}^{\infty} (B_1 \setminus B_i) = B_1 \setminus \left(\bigcap_{i=1}^{\infty} B_i\right)$$

and so,

$$\lim_{n\to\infty} m(D_n) = m(\cup D_i) = m(B_1 \setminus (\cap B_i)) = m(B_1) - m(\cap B_i)$$

because $\cap B_i$ is measurable and has finite measure.

However,

$$\lim_{n \to \infty} m(D_n) = \lim_{n \to \infty} m(B_1 \setminus B_n)$$

$$= \lim_{n \to \infty} m(B_1) - m(B_n)$$

$$= m(B_1) - \lim_{n \to \infty} m(B_n)$$

$$= m(B_1) - m(\cap B_i)$$

Hence,

$$\lim_{n\to\infty} m(B_n) = m(\cap B_i)$$

Example 1.29

 $B_i = (i, \infty)$, and $m(\cap B_i) = m(\emptyset) = 0$, but $\lim_{n \to \infty} m(B_n) = \infty$

1.9 Non-Measurable Sets

Lemma 1.30

 $A\subseteq\mathbb{R}$ bounded, measurable $\Lambda\subseteq\mathbb{R}$ bounded, countably infinite. If $\lambda+A,\ \lambda\in\Lambda$ are pairwise disjoint, then m(A)=0

Proof. $\bigcup_{\lambda \in \Lambda} (\lambda + A)$ is a bounded set, which is measurable, then

$$m\left(\bigcup_{\lambda}(\lambda+A)\right) < \infty$$

$$m\left(\bigcup_{\lambda}(\lambda+A)\right) = \sum_{\lambda}m(\lambda+A) = \sum_{\lambda}m(A) < \infty$$

and $m(A) \ge 0$, so m(A) = 0 (Λ is countably infinite)

Construction: Start with $\emptyset \neq A \subseteq \mathbb{R}$, consider $a \sim b \iff a - b \in \mathbb{R}$. Then \sim is an equivalence relation.

Let C_A denotes a single choice of equivalence class representatives for A relative to \sim .

Remark. The sets $\lambda + C_A$, $\lambda \in \mathbb{Q}$ are pairwise disjoint

Proof. say $x \in (\lambda_1 + C_A) \cap (\lambda_2 \cap C_A)$

$$x = \lambda_1 + a = \lambda_2 + b$$

$$\implies a, b \in C_A$$

$$\implies a - b = \lambda_1 - \lambda_2 \in \mathbb{Q}$$

 $\implies a \sim b \implies a = b$ by each equiv. class has one repre.

$$\Longrightarrow \lambda_1 = \lambda_2$$

Theorem 1.31: Vitali

Every set $A \subseteq \mathbb{R}$ with $m^*(A) > 0$ contains a non-measurable subset.

Proof. By Quiz1, we may assume A is bounded, say $A \subseteq [-N, N]$, for some $N \in \mathbb{N}$.

Claim: C_A is non-measurable.

Assume C_A is measurable. Let $\Lambda \subseteq \mathbb{Q}$ be bounded, infinite. By the lemma and remark,

$$m(C_A)=0$$

Let $a \in A$, then $a \sim b$ for some $b \in C_A$. In particular, $a - b = \lambda \in \mathbb{Q}$. Moreover,

$$\lambda \in [-2N, 2N]$$

Taking $\Lambda_0 = \mathbb{Q} \cap [-2N, 2N]$, have

$$A \subseteq \bigcup_{\lambda \in \Lambda_0} (\lambda + C_A)$$

so $m^*(A) = 0$, contradiction

Corollary 1.32

 $\exists A, B \subseteq \mathbb{R}$, such that

1.
$$A \cap B = \emptyset$$
, and

2.
$$m^*(A \cup B) < m^*(A) + m^*(B)$$

Proof. Let C be a non-measurable set, $\exists X \subseteq \mathbb{R}$ such that

$$m^*(X) < m^*(\underbrace{X \cap C}_A) + m^*(\underbrace{X \setminus C}_B)$$

1.10 Cantor-Lebesgue Function

Recall: Cantor Set

$$I = [0, 1]$$

$$C_1 = [0, 1/3] \cup [2/3, 1]$$

$$C_2 = [0, 1/9] \cup [2/9, 3/9] \cup [6/9, 7/9] \cup [8/9, 1]$$

$$\vdots$$

$$C = \bigcap_{k=1}^{\infty} C_k$$

Note C is countable and closed.

Proposition 1.33

The Cantor Set is Borel and has measure zero.

Proof. Closed \Longrightarrow Borel. And $C = \bigcap_{k=1}^{\infty} C_k$, where C_k 's measurable and

$$C_1 \supseteq C_2 \supseteq C_3 \supseteq \dots$$

By continuity of measure,

$$m(C) = \lim_{k \to \infty} m(C_k)$$
$$= \lim_{k \to \infty} \frac{2^k}{3^k} = 0$$

Construction: Cantor-Lebesgue Function (C-L fcn)

- 1. For $k \in \mathbb{N}$, U_k = Union of open intervals deleted in the process of constructing C_1, C_2, \ldots, C_k i.e. $U_k = [0,1] \setminus C_k$.
- 2. $U = \bigcup_{k=1}^{\infty} U_k$, i.e. $U = [0,1] \setminus C$
- 3. Say $U_k = I_{k,1} \cup I_{k,2} \cup \ldots \cup I_{k,2^k-1}$ (In order: from left to right). Define

$$arphi:U_k o [0,1]$$
 by $arphi|_{I_{k,i}}=rac{i}{2^k}$

e.g. $U_1 = (1/3, 2/3) \rightarrow \frac{1}{2^1} = \frac{1}{2}$ and

$$U_2 = (1/9, 2/9)$$
 $\cup (1/3, 2/3)$ $\cup (7/9, 8/9)$ $\rightarrow \frac{1}{4}$ $\rightarrow \frac{3}{4}$

$$\begin{array}{c}
(1/3, 2/3) \\
\rightarrow \frac{2}{4}
\end{array}$$

$$\begin{array}{c}
(7/9, 8/4) \\
 \rightarrow \frac{3}{4}
\end{array}$$

4. Define

$$\varphi:[0,1]\to[0,1]$$

by for $0 \neq x \in C$, $\varphi(x) = \sup{\{\varphi(t) : t \in U \cap [0, x]\}}$ and $\varphi(0) = 0$

Things to know about φ

- 1. φ is increasing. Take two points in U, for large enough k, both points in U_k . If they are in the Cantor Set, then it's increasing by definition
- 2. φ is continuous
 - φ is continuous on U. (It's constant on a small interval)
 - $x \in C, x \neq 0, 1$. For large $k, \exists a_k \in I_{k,i}, \exists b_k \in I_{k,i+1}$ such that

$$a_k < x < b_k$$

but,
$$\varphi(b_k) - \varphi(a_k) = \frac{i+1}{2^k} - \frac{i}{2^k} = \frac{1}{2^k} \to 0$$

- $x \in \{0, 1\}$
- 3. $\,\varphi:u\to[0,1]$ is differentiable and $\varphi'=0$
- 4. φ is onto,

$$\varphi(0) = 0, \ \varphi(1) = 1$$

by Intermediate Value Theorem.

1.11 A Non-Borel Set

Let φ be the Cantor-Lebesgue Function. Consider $\psi:[0,1]\to[0,2]$ defined by $\psi(x)=x+\varphi(x)$.

- 1. ψ is strictly increasing
- 2. ψ is continuous
- 3. ψ is onto

By 1),3), we know ψ is bijective, hence invertible.

Properties:

- 1. $\psi(C)$ is measurable and has positive measure.
- 2. ψ maps a particular (measurable) subset of C to a non-measurable set.

Proof.

1. By A1, ψ^{-1} is continuous, so $\psi(C)=(\psi^{-1})^{-1}(C)$ is closed, so $\psi(C)$ is Borel implies that it's measurable.

Note that

$$\begin{array}{l} [0,1] = C \dot{\cup} U \\ \Longrightarrow [0,2] = \psi(C \dot{\cup} U) = \psi(C) \dot{\cup} \psi(U) \text{ by bijectivity} \\ \Longrightarrow 2 = m(\psi(C)) + m(\psi(U)) \end{array}$$

It suffices to show that

$$m(\psi(U)) = 1$$

Say $U = \bigcup_{i=1}^{\infty} I_i$, where I_i are disjoint open intervals. Then

$$\psi(U) = \bigcup_{i=1}^{\infty} \psi(I_i) \implies m(\psi(U)) = \sum m(\psi(I_i))$$

Note that $\forall i \in \mathbb{N}, \ \exists r \in \mathbb{R}$, such that $\varphi(x) = r, \forall x \in I_i$ In particular, $\psi(x) = x + r, \forall x \in I_i$ and so

$$\psi(I_i) = r + I_i$$

so

$$m(\psi(U)) = \sum m(\psi(I_i)) = \sum m(I_i) = m(\dot{\cup}I_i) = m(U)$$

Since $[0,1]=U\dot{\cup}C$, we have that 1=m(U)+m(C)=m(U), so $m(\psi(U))=m(U)=1>0 \implies m(\psi(C))=1$

2. By Vitali, $\psi(C)$ contains a subset $A \subseteq \psi(C)$ which is non-measurable. Let $B = \psi^{-1}(A) \subseteq C$, B is measurable because $0 = m(C) \ge m(B) = 0$. Then $\psi(B) = \psi(\psi^{-1}(A)) = A$

Theorem 1.34

Cantor Set contains an element $\mathcal{L} \setminus \mathbb{B}$

Proof. $B \subseteq C \implies B$ measurable. $\psi(B)$ is non-measurable. By A1, if B is Borel, then $\psi(B)$ is Borel, so B cannot be Borel. \Box

1.12 Measurable Function

Definition 1.35

 $A \subseteq \mathbb{R}$ measurable, we say $f: A \to \mathbb{R}$ is <u>measurable</u> iff for all open $U \subseteq \mathbb{R}$, $f^{-1}(U)$ measurable.

Proposition 1.36

If $A \subseteq \mathbb{R}$ is measurable and $f: A \to \mathbb{R}$ is continuous then f is measurable.

Proof. f is continuous $\implies f^{-1}(U)$ open if U open $\implies f^{-1}(U)$ Borel, measurable

Proposition 1.37

 $A \subseteq \mathbb{R}$ measurable, $\chi_A : \mathbb{R} \to \mathbb{R}$, $\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$, then χ_A is measurable.

Proof.

$$\begin{split} U \subseteq \mathbb{R}, \text{ open} \\ \chi_A^{-1}(U) &= \mathbb{R}, \text{ if } 0, 1 \in U \\ \chi_A^{-1}(U) &= A, \text{ if } 1 \in U, 0 \notin U \\ \chi_A^{-1}(U) &= A^C, \text{ if } 0 \in U, 1 \notin U \\ \chi_A^{-1}(U) &= \emptyset, \text{ if } 0, 1 \notin U \end{split}$$

In any case, $\chi_A^{-1}(U)$ is measurable.

Proposition 1.38

 $A \subseteq \mathbb{R}$ measurable, $f: A \to \mathbb{R}$, the following are equivalent,

- 1. f is measurable
- 2. $\forall a \in \mathbb{R}, \ f^{-1}(a, \infty) \ \textit{is measurable}$
- 3. $\forall a < b, \ f^{-1}(a,b) \ \textit{measurable}$

Proof.

- 1) \implies 2), trivial
- 2) \Longrightarrow 3), let $b \in \mathbb{R}$ such that $f^{-1}(b,\infty)$ is measurable, then $\mathbb{R} \setminus f^{-1}(b,\infty) = f^{-1}(\mathbb{R} \setminus (b,\infty)) = f^{-1}((-\infty,b])$ is measurable as well. We see that $(-\infty,b) = \bigcup_{n=1}^{\infty} (-\infty,b-\frac{1}{n}]$ and so

$$f^{-1}(-\infty, b) = \bigcup_{n=1}^{\infty} f^{-1}((-\infty, b - \frac{1}{n}])$$

so it's measurable.

Finally, for a < b,

$$(a,b) = (a,\infty) \cap (-\infty,b)$$

so

$$f^{-1}((a,b)) = f^{-1}((a,\infty) \cap (-\infty,b)) = f^{-1}((a,\infty)) \cap f^{-1}((-\infty,b))$$

so it's measurable.

• 3) \implies 1) Trivial. Any open set is a countable union of intervals.

1.13 Properties of Measurable Function

Proposition 1.39

 $A \subseteq \mathbb{R}$ measurable, $f, g : A \to \mathbb{R}$ measurable.

- 1. $\forall a, b \in \mathbb{R}, \ af + bg \ is \ measurable$
- 2. The function fg is measurable.

Proof.

1. Let $a \in \mathbb{R}$. For $\alpha \in \mathbb{R}$, $(af)^{-1}(\alpha, \infty) = \{x \in A : af(x) > \alpha\}$

(a) if a > 0,

$$(af)^{-1}(\alpha,\infty) = \{x \in A : f(x) > \alpha/a\} = f^{-1}(\alpha/a,\infty) \implies \text{measurable}$$

(b) a < 0,

$$(af)^{-1}(\alpha,\infty) = f^{-1}(-\infty,\alpha/a) \implies$$
 measurable

(c) a = 0,

$$af$$
 constant \implies continuous \implies measurable

We now show that f + g measurable. For $\alpha \in \mathbb{R}$,

$$\begin{split} (f+g)^{-1}(\alpha,\infty) &= \{x \in A: f(x) + g(x) > \alpha\} \\ &= \{x \in A: f(x) > \alpha - g(x)\} \\ &= \{x \in A: \exists q \in \mathbb{Q}, f(x) > q > \alpha - g(x)\} \\ &= \bigcup_{q \in \mathbb{Q}} (\{x \in A: f(X) > q\} \cap \{x \in A: g(x) > \alpha - q\}) \\ &= \bigcup_{q \in \mathbb{Q}} f^{-1}(q,\infty) \cap g^{-1}(\alpha - q,\infty) \implies \text{measurable} \end{split}$$

so f + g is measurable.

2. By the quiz, |f| is measurable. For $\alpha \in \mathbb{R}$,

$$(f^{2})^{-1}(\alpha, \infty)$$

$$= \{x \in A : f(x)^{2} > \alpha\}$$

$$= \begin{cases} A, & \alpha < 0 \\ \{x \in A : |f(x)| > \sqrt{\alpha}\}, & \alpha \geqslant 0 \end{cases}$$

$$= \begin{cases} A, & \alpha < 0 \\ |f|^{-1}(\sqrt{\alpha}, \infty), & \alpha \geqslant 0 \end{cases}$$

is measurable, so f^2 is measurable. Since $(f+g)^2$ is also measurable, and

$$2fg = (f+g)^2 - f^2 - g^2$$

so 2fg is measurable. By 1),

Example 1.40

 $\psi:[0,1]\to\mathbb{R},\ \psi(x)=x+\varphi(x).$ There exists $A\subseteq[0,1]$ such that A is measurable but $\psi(A)$ is not measurable. Extend $\psi:\mathbb{R}\to\mathbb{R}$ continuously to a strictly increasing surjective function such that ψ^{-1} is continuous. Consider $\chi_A\circ\psi^{-1}$ where both χ_A and ψ^{-1} are measurable. Then,

$$(\chi_A \circ \psi^{-1})^{-1} \left(\frac{1}{2}, \frac{3}{2}\right)$$

$$= \psi(\chi_A^{-1}(1/2, 3/2))$$

$$= \psi(A) NOT measurable$$

Proposition 1.41

 $A \subseteq \mathbb{R}$ measurable. If $g: A \to \mathbb{R}$ is measurable and $f: \mathbb{R} \to \mathbb{R}$ is continuous then $f \circ g$ is measurable.

Proof. Let $U \subseteq \mathbb{R}$ open, then

$$(f \circ g)^{-1}(U) = g^{-1}(\underbrace{f^{-1}(U)}_{\text{open}})$$

which is always measurable by q being measurable.

1.14 More Properties for Measurable Functions

Definition 1.42

 $A \subseteq \mathbb{R}$, we say a property P(x) ($x \in A$) is true almost everywhere if

$$m(\{x \in A : P(x) \text{ false}\}) = 0$$

Proposition 1.43

 $f:A\to\mathbb{R}$ measurable. If $g:A\to\mathbb{R}$ is a function and f=g a.e., then g is measurable.

Proof. $B := \{x \in A : f(x) \neq g(x)\}$, and m(B) = 0. Let $\alpha \in \mathbb{R}$, then

$$\begin{split} g^{-1}(\alpha,\infty) &= \{x \in A : g(x) > \alpha\} \\ &= \{x \in A \setminus B : g(x) > \alpha\} \cup \{x \in B : g(x) > \alpha\} \\ &= \{x \in A \setminus B : f(x) > \alpha\} \cup \{x \in B : g(x) > \alpha\} \\ &= \underbrace{(f^{-1}(\alpha,\infty) \cap \underbrace{A \setminus B}_{A,B\text{measurable}}) \cup \underbrace{\{x \in B : g(x) > \alpha\}}_{\subseteq B,\text{so measure zero, measurable}} \end{split}$$

Hence, $g^{-1}(a, \infty)$ is measurable, so g is measurable.

Proposition 1.44

A is measurable, and $B \subseteq A$ is measurable. A function $f: A \to \mathbb{R}$ is measurable if and only if $f|_B$ and $f|_{A \setminus B}$ are measurable.

Proof.

• \Longrightarrow Suppose $f: A \to \mathbb{R}$ is measurable. Let $\alpha \in \mathbb{R}$, then,

$$(f|_B)^{-1}(\alpha,\infty) = \{x \in B : f(x) > \alpha\} = f^{-1}(\alpha,\infty) \cap B \implies \text{measurable}$$

so $f|_B$ is measurable, the proof for $f|_{A\setminus B}$ is identical.

• \Leftarrow Suppose $f|_B$ and $f|_{A\setminus B}$ are measurable. For $\alpha\in\mathbb{R}$,

$$f^{-1}(\alpha, \infty) = \{x \in A : f(x) > \alpha\}$$

= $\{x \in B : f(x) > \alpha\} \cup \{x \in A \setminus B : f(x) > \alpha\}$
= $(f|_B)^{-1}(\alpha, \infty) \cup (f|_{A \setminus B})^{-1}(\alpha, \infty)$

is measurable, so f is measurable.

Proposition 1.45

 (f_n) measurable, $A \to \mathbb{R}$. If $f_n \to f$ pointwise a.e. then f is measurable.

Proof. Let $B = \{x \in A : f_n(x) \not\to f(x)\}$ so that m(B) = 0. For $\alpha \in \mathbb{R}$,

$$(f|_B)^{-1}(\alpha,\infty)=\underbrace{f^{-1}(\alpha,\infty)\cap B}_{\text{measure zero}}$$
 is measurable

It suffices to show that $f|_{A\setminus B}$ is measurable. By replacing f by $f|_{A\setminus B}$, we may assume $f_n\to f$ pointwise. Let $\alpha\in\mathbb{R}$, since $f_n\to f$ pointwise, we set that for $x\in A$,

$$f(x) > \alpha \iff \exists n, N \in \mathbb{N}, \forall i \in \mathbb{N}, f_i(x) > \alpha + \frac{1}{n} (\text{ to avoid } f_n \to \alpha)$$

We then see that

$$f^{-1}(\alpha, \infty)$$

$$= \bigcup_{n \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} f_i^{-1}(\alpha + \frac{1}{n}, \infty)$$
measurable

is measurable, which implies that f is measurable.

1.15 Simple Approximation

Definition 1.46

A function $\varphi:A\to\mathbb{R}$ is called simple if

- 1. φ is measurable
- 2. $\varphi(A)$ is finite

Remark. [Conical Representation]

 $\varphi:A\to\mathbb{R}$ is simple

and

$$\varphi(A) = \{\underbrace{c_1, c_2, \dots, c_k}_{\text{distinct}}\}$$

then

$$A_i = arphi^{-1}(\{c_i\})$$
 measurable
$$A = \bigcup_{i=1}^k A_i$$

$$arphi = \sum_{i=1}^k c_i \chi_{A_i}$$

Lemma 1.47

 $f:A\to\mathbb{R}$ measurable and bounded. $\forall \varepsilon>0$, there exists simple function, $\varphi_{\varepsilon},\psi_{\varepsilon}:A\to\mathbb{R}$ such that $\forall x\in A$,

- 1. $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$ and
- 2. $0 \leqslant \psi_{\varepsilon} \varphi_{\varepsilon} < \varepsilon$

Proof.

$$f(A) \subseteq [a, b]$$

Given $\varepsilon > 0$,

$$a = y_0 < y_1 < y_2 \dots < y_n = b$$

$$y_{i+1} - y_i < \varepsilon$$

$$\underbrace{I_k}_{\text{Borel}} = [y_{k-1}, y_k), \ A_k = f^{-1}(I_k) \implies \text{measurable}$$

$$\varphi_\varepsilon : A \to \mathbb{R}, \psi_\varepsilon : A \to \mathbb{R}$$

$$\varphi_\varepsilon = \sum_{k=1}^n y_{k-1} \chi_{A_k}$$

$$\psi_\varepsilon = \sum_{k=1}^n y_k \chi_{A_k}$$

Let $x \in A$. Since $f(x) \in [a, b]$, $\exists k \in \{1, ..., n\}$ such that $f(x) \in I_k$ i.e. $y_{k-1} \leqslant f(x) \leqslant y_k$, $x \in A_k$. Moreover,

$$\varphi_{\varepsilon}(x) = y_{k-1} \leqslant f(x) \leqslant y_k = \psi_{\varepsilon}(x)$$

and so

$$\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$$

For the same x,

$$0 \leqslant \psi_{\varepsilon}(x) - \varphi_{\varepsilon}(x) = y_k - y_{k-1} < \varepsilon$$

Theorem 1.48: Simple Approximation

 $A \subseteq \mathbb{R}$ is measurable. A function $f: A \to \mathbb{R}$ is measurable if and only if there is a sequence (φ_n) of simple functions on A such that

1. $\varphi_n \to f$ pointwise

2. $\forall n, |\varphi_n| \leq |f|$

Proof.

- \Longrightarrow Suppose $f: A \to \mathbb{R}$ is measurable,
 - 1. $f \ge 0$

For $n \in \mathbb{N}$, define

$$A_n = \{ x \in A : f(x) \leqslant n \}$$

such that A_n is measurable and $f|_{A_n}$ is measurable and bounded.

By the lemma, there exists simple functions φ_n and ψ_n such that

$$0 \leqslant \varphi_n \leqslant f \leqslant \psi_n \text{ on } A_n \text{ and } 0 \leqslant \psi_n - \varphi_n < \frac{1}{n}$$

Fix $n \in \mathbb{N}$, extend $\varphi_n : A \to \mathbb{R}$ by setting $\varphi_n(x) = n$ if $x \notin A_n$, so $0 \leqslant \varphi_n \leqslant f$

For each $n \in \mathbb{N}$, $\varphi_n : A \to \mathbb{R}$ is simple (it's just a simple function with one more value on a disjoint set).

Claim: $\varphi_n \to f$ pointwise

Let $x \in A$ and let $N \in \mathbb{N}$ such that $f(x) \leq N$ (i.e. $x \in A_N$). For $n \geqslant N$, $x \in A_n$ and so

$$0 \leqslant f(x) - \varphi_n(x) \leqslant \psi_n(x) - \varphi_n(x) < \frac{1}{n}$$

2. $f:A\to\mathbb{R}$ is measurable. And $B=\{x\in A:f(x)\geqslant 0\}$ and $C=\{x\in A:f(x)<0\}$ are both measurable.

Define $g, h: A \to \mathbb{R}$,

$$g = \chi_B f, \ h = -\chi_B f$$

so that g, h measurable and non-negative.

By Case 1, there exists a sequence (φ_n) , (ψ_n) of simple functions such that $\varphi_n \to g$ pointwise, $\psi_n \to h$ pointwise, $0 \leqslant \varphi_n \leqslant g$, $0 \leqslant \psi_n \leqslant h$. Then

$$\underbrace{\varphi_n - \psi_n}_{\text{simple}} \to g - h = f \text{ pointwise}$$

and

$$|\varphi_n - \psi_n| \le |\psi_n| + |\varphi_n| = \varphi_n + \psi_n \le g + h = |f|$$

1.16 Littlewood's Principle

Up to certain finiteness conditions

- 1. Measurable sets are "almost" finite, disjoint unions of bounded open intervals.
- 2. Measurable functions are "almost" continuous.
- 3. Pointwise limits of measurable functions are "almost" uniform limits

Theorem 1.49: [Littlewood 1]

A be measurable set, $m(A) < \infty$. $\forall \varepsilon > 0$, there exists finitely many open, bounded, disjoint intervals I_1, I_2, \ldots, I_n such that $m(A \triangle U) < \varepsilon$, where $U = I_1 \cup I_2 \cup \ldots \cup I_n$. Note: $m(A \triangle U) = m(A \setminus U) + m(U \setminus A)$.

Proof. Let $\varepsilon > 0$ be given. We may find an open set U and $A \subseteq U$ and

$$m(U \setminus A) < \frac{\varepsilon}{2}$$

By PMATH351, there exists open, bounded, disjoint intervals $I_i (i \in \mathbb{N})$ such that

$$U = \bigcup_{i=1}^{\infty} I_i$$

Note that,

$$\sum_{i=1}^{\infty} l(I_i) = m(U) = m(U \setminus A) + m(A) < \infty$$

In particular, there exists $N \in \mathbb{N}$ such that

$$\sum_{i=N+1}^{\infty} l(I_i) = \frac{\varepsilon}{2}$$

Take $V = I_1 \cup \ldots \cup I_N$, we see that

$$m(A \setminus V) \leqslant m(U \setminus V)$$

$$= m \left(\bigcup_{N+1}^{\infty} I_i \right)$$

$$= \sum_{N+1}^{\infty} l(I_i) < \frac{\varepsilon}{2}$$

and

$$m(V \setminus A) \leqslant m(U \setminus A) < \frac{\varepsilon}{2}$$

Lemma 1.50

Let A be measurable and $m(A) < \infty$, (f_n) be measurable, $A \to \mathbb{R}$. Assume $f : A \to \mathbb{R}$ such that $f_n \to f$ pointwise. $\forall \alpha, \beta > 0$, there exists a measurable subset $B \subseteq A$ and $N \in \mathbb{N}$ such that

1.
$$|f_n(x) - f(x)| < \alpha, \forall x \in B, n \ge N$$

2.
$$m(A \setminus B) < \beta$$

Proof. Let $\alpha, \beta > 0$ be given. For $n \in \mathbb{N}$, define

$$A_n = \{x \in A : |f_k(x) - f(x)| < \alpha, \forall k \geqslant n\}$$

$$= \bigcap_{k=n}^{\infty} \underbrace{|f_k - f|^{-1}(-\infty, \alpha)}_{\text{measurable}}$$

So every A_n is measurable. Since $f_n \to f$ pointwise,

$$A = \bigcup_{n=1}^{\infty} A_n$$

Since (A_n) is ascending, by continuity of measure,

$$m(A) = \lim_{n \to \infty} m(A_n) < \infty$$

we may find $N \in \mathbb{N}$ such that $\forall n \geqslant N$,

$$m(A) - m(A_n) < \beta$$

Pick $B = A_N$ we get what's required.

Theorem 1.51: Littlewood 3, Egoroff's Theorem

A is measurable, $m(A) < \infty$, (f_n) is measurable, $A \to \mathbb{R}$, $f_n \to f$ pointwise. $\forall \varepsilon > 0$, there exists a closed set $C \subseteq A$ such that

- 1. $f_n \to f$ uniformly on C
- 2. $m(A \setminus C) < \varepsilon$

Proof. Let $\varepsilon > 0$ be given. By the lemma, for every $n \in \mathbb{N}$, there exists a measurable set $A_n \subseteq A$ and $N(n) \in \mathbb{N}$ such that

1. $\forall x \in A_n \text{ and } k \geqslant N(n),$

$$|f_k(x) - f(x)| < \frac{1}{n}$$

2. $m(A \setminus A_n) < \frac{\varepsilon}{2^{n+1}}$

Take $B = \bigcap_{n=1}^{\infty} A_n$ (measurable). For $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon, \ k \geqslant N(n)$, and $x \in B$,

$$|f_k(x) - f(x)| < \frac{1}{n} < \varepsilon$$

so $f_n \to f$ uniformly on B. Moreover,

$$m(A \setminus B) = m(A \setminus \cap A_n) = m(\cup (A \setminus A_n)) \leqslant \sum m(A \setminus A_n) < \sum \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}$$

By A1, there exists a closed set C such that $C \subseteq B$ and $m(B \setminus C) < \frac{\varepsilon}{2}$, so

1. Since $C \subseteq B$, $f_k \to f$ uniformly on C

2.
$$m(A \setminus C) = m(A \setminus B) + m(B \setminus C) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Warning:

 $\overline{f_n:\mathbb{R}}\to\mathbb{R},\ f_n(x)=\frac{x}{n}\ \text{and}\ f_n\to 0\ \text{pointwise}.$ But $f_n\not\to 0\ \text{uniformly on any measurable set}\ B\subseteq\mathbb{R}\ \text{such that}\ m(\mathbb{R}\setminus B)<1$

Proof. Suppose such B exists. Since B measurable, $B \subseteq \mathbb{R}$, we know

$$m(\mathbb{R} \setminus B) = m(\mathbb{R}) - m(B) < 1 \implies m(B) = \infty$$

That is, B has to be unbounded.

Since $f_n \to 0$ uniformly on $B, \forall \varepsilon > 0, \exists N \in \mathbb{N}, s/t \ \forall k \geqslant N, \forall x \in B,$

$$|0 - f_k(x)| < \varepsilon \implies \left|\frac{x}{k}\right| < \varepsilon$$

However, since B is unbounede, we can always find $x \in B$ such that $|x| = (\varepsilon + 1)|k|$, so $|x/k| = \varepsilon + 1 > \varepsilon$.

That is, no matter how big the N is, I can always find points where the uniformly convergence condition fails. Contradiction! So no such B exists.

Lemma 1.52

 $f:A\to\mathbb{R}$ simple. $\forall \varepsilon>0$, there exists a continuous function $g:\mathbb{R}\to\mathbb{R}$ and a closed $C\subseteq A$ such that

- 1. f = g on C
- 2. $m(A \setminus C) < \varepsilon$

Proof. $f = \sum_{i=1}^{n} a_i \chi_{A_i}$, conical representation. $A_i = \{x \in A : f(x) = a_i\}$ is measurable. By A1, $C_i \subseteq A_i$ closed,

$$m(A_i \setminus C_i) < \frac{\varepsilon}{n}$$

AND

$$A = \bigcup_{i=1}^{n} A_i, \ C := \bigcup_{i=1}^{n} C_i \text{ closed}$$

1. $\forall x \in C_i, f(x) = a_i$. By A1, f is continuous on $C \implies$ we then extend $f|_C$ to a continuous function $g : \mathbb{R} \to \mathbb{R}$

2. $m(A \setminus C) = m(\bigcup_{i=1}^n A_i \setminus C_i) = \sum_{i=1}^n m(A_i \setminus C_i) < \varepsilon$

Theorem 1.53: Littlewood 2, Lusin Theorem

 $f:A\to\mathbb{R}$ is measurable. $\forall \varepsilon>0$, there exists a continuous $g:\mathbb{R}\to\mathbb{R}$ and a closed set $C\subseteq A$ such that

- 1. f = g on C and
- 2. $m(A \setminus C) < \varepsilon$

Proof. Let $\varepsilon > 0$ given.

1. $m(A) < \infty$

Let $f:A\to\mathbb{R}$ be measurable. By the Simple Approximation Theorem, there exists (f_n) simple such that $f_n\to f$ pointwise. By the lemma, there exists continuous $g_n:\mathbb{R}\to\mathbb{R}$ and closed $C_n\subseteq A$ such that

- (a) $f_n = g_n$ on C_n
- (b) $m(A \setminus C_n) < \frac{\varepsilon}{2n+1}$

By Egoroff, there exists a closed set $C_0 \subseteq A$ such that $f_n \to f$ uniformly on C_0 and $m(A \setminus C_0) < \frac{\varepsilon}{2}$.

Let $C = \bigcap_{i=0}^{\infty} C_i$

- (a) $g_n = f_n \to f$ uniformly on $C \subseteq C_0$, so f is continuous on C. By A1, extend $f|_C$ to a continuouse function $g: \mathbb{R} \to \mathbb{R}$.
- (b) $m(A \setminus C) = m(A \setminus \bigcap_{i=0}^{\infty} C_i) = m(\bigcup_{i=0}^{\infty} (A \setminus C_i))$ $\leq \sum_{i=0}^{\infty} m(A \setminus C_i) = m(A \setminus C_0) + \sum_{i=1}^{\infty} m(A \setminus C_i)$ $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
- 2. $m(A) = \infty$ For $n \in \mathbb{N}$,

$$A_n = \{ a \in A : |a| \in [n-1, n) \}$$

such that

$$A = \dot{\bigcup}_{n=1}^{\infty} A_n$$

By case 1, there exists continuous functions $g_n : \mathbb{R} \to \mathbb{R}$ and closed $C_n \subseteq A_n$ such that

- (a) $f = g_n$ on C_n
- (b) $m(A_n \setminus C_n) < \frac{\varepsilon}{2^n}$

Consider $C = \dot{\bigcup}_{n=1}^{\infty} C_n$, and C is closed.

- (a) $m(A \setminus C) = m(\dot{\cup}(A_n \setminus C_n)) = \sum m(A_n \setminus C_n) < \varepsilon$
- (b) $g:C\to\mathbb{R}$. Let $x\in C$ such that $x\in C_n$ for one $n\in\mathbb{N}$. Define $g(x)=g_n(x)=f(x)$. By A1, extend g on \mathbb{R} .

2 Integration

2.1 Integration

1. Simple functions

$$\varphi: A \to \mathbb{R}, \ m(A) < \infty$$

2. $f: A \to \mathbb{R}$, bounded measure, $m(A) < \infty$,

$$\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$$

3. $f: A \to \mathbb{R}$ measurable, $f \geqslant 0$,

$$\sup \left\{ \int_A h : h \in (2), 0 \leqslant h \leqslant f \right\}$$

4. $f: A \to \mathbb{R}$ measurable,

$$f^+ = \max\{f, 0\}$$

 $f^- = \max\{-f, 0\}$

Step 1: $\varphi: A \to \mathbb{R}$ simple, $m(A) < \infty$

Definition 2.1

 $m(A)<\infty,\ \varphi:A\to\mathbb{R}$ simple. Conical Rep.: $\varphi=\sum_{i=1}^n a_i\chi_{A_i}$. The (Lebesgue) Integral of φ over A is

$$\int_{A} \varphi = \sum_{i=1}^{n} a_{i} m(A_{i})$$

Lemma 2.2

 $m(A) < \infty$ (A measurable). If $B_1, B_2, \dots, B_n \subseteq A$ are measurable and disjoint and $\varphi : A \to \mathbb{R}$ defined by

$$\varphi = \sum_{i=1}^{n} b_i \chi_{B_i}$$

then

$$\int_{A} \varphi = \sum_{i=1}^{n} b_{i} m(B_{i})$$

Proof. For n=2,

If $b_1 \neq b_2$, then $\varphi = b_1 \chi_{B_1} + b_2 \chi_{B_2}$ is the conical representation.

If $b_1 = b_2$, then

$$b_1 \chi_{B_1} + b_1 \chi_{B_2} = b_1 (\chi_{B_1} + \chi_{B_2}) = \underbrace{b_1 \chi_{B_1 \cup B_2}}_{\text{conical rep.}}$$

Fall 2024 Rui Gong Integration

so

$$\int_{A} \varphi = b_1 m(B_1 \dot{\cup} B_2)$$

$$= b_1 (m(B_1) + m(B_2))$$

$$= b_1 m(B_1) + b_2 m(B_2)$$

Then simple dicuss other cases.

Proposition 2.3

 $\varphi, \psi: A \to \mathbb{R}$ simple, $m(A) < \infty$. For all $\alpha, \beta \in \mathbb{R}$,

$$\int_{A} (\alpha \varphi + \beta \psi) = \alpha \int_{A} \varphi + \beta \int_{A} \psi$$

Proof.

$$\varphi(A) = \{a_1, a_2, \dots, a_n\}$$

 $\psi(A) = \{b_1, b_2, \dots, b_m\}$

where the elements are distinct for each set.

Define

$$C_{ij} = \{x \in A : \varphi(x) = a_i, \psi(x) = b_j\} = \varphi^{-1}(\{a_i\}) \cap \psi^{-1}(\{b_j\})$$

which is measurable.

$$\alpha \varphi + \beta \psi = \sum_{i,j} (\alpha a_i + \beta b_j) \chi_{C_{ij}}$$

By the lemma,

$$\int_{A} \alpha \varphi + \beta \psi = \sum_{i,j} (\alpha a_{i} + \beta b_{j}) m(C_{ij})$$

$$= \sum_{i,j} \alpha a_{i} m(C_{ij}) + \sum_{i,j} \beta b_{j} m(C_{ij})$$

$$= \sum_{i} \alpha a_{i} \sum_{j} m(C_{ij}) + \sum_{j} \beta b_{j} \sum_{i} m(C_{ij})$$

$$= \sum_{i} \alpha a_{i} m(\{x \in A : \varphi(x) = a_{i}\}) + \sum_{j} \beta b_{j} m(\{x \in A : \varphi(x) = a_{i}\})$$

$$= \alpha \int_{A} \varphi + \beta \int_{A} \psi$$

Fall 2024 Rui Gong Integration

Proposition 2.4

 $\varphi, \psi: A \to \mathbb{R}$ simple, $m(A) < \infty$. If $\varphi \leqslant \psi$, then

$$\int_A \varphi \leqslant \int_A \psi$$

Proof.

$$\int_{A} \psi - \int_{A} \varphi = \int_{A} \underbrace{(\psi - \varphi)}_{\geqslant 0} \geqslant 0$$

Step2: $f: A \to \mathbb{R}$ bounded, measurable $m(A) < \infty$

Definition 2.5

 $f: A \to \mathbb{R}$ be bounded, measurable and $m(A) < \infty$. Then

• Lower Lebesgue Integral:

$$\int_{A} f = \sup \left\{ \int_{A} \varphi : \varphi \leqslant f \text{ simple} \right\}$$

• Lower Lebesgue Integral:

$$\overline{\int_A} f = \inf \left\{ \int_A \psi : f \leqslant \psi \text{ simple} \right\}$$

Proposition 2.6

 $m(A) < \infty$, $f: A \to \mathbb{R}$ bounded, measurable. Then

$$\int_{A} f = \overline{\int_{A}} f$$

Proof. $\forall n \in \mathbb{N}$, there exists simple functions, $\varphi_n, \psi_n : A \to \mathbb{R}$ such that

1. $\varphi_n \leqslant f \leqslant \psi_n$

2.
$$\psi_n - \varphi_n \leqslant \frac{1}{n}$$

We see that

$$0 \leqslant \overline{\int_{A}} f - \underline{\int_{A}} f$$

$$\leqslant \int_{A} \psi_{n} - \int_{A} \varphi_{n}$$

$$= \int_{A} (\psi_{n} - \varphi_{n})$$

$$\leqslant \int_{A} \frac{1}{n}$$

$$= \frac{1}{n} m(A) < \infty$$

$$\to 0$$

Definition 2.7

 $m(A)<\infty,\ f:A\to\mathbb{R}$ bounded, measurable, we define the (Lebesgue) integral of f over A by

$$\int_A f := \int_A f = \overline{\int_A} f$$

Proposition 2.8

 $f,g:A\to\mathbb{R}$ bounded, measurable, $m(A)<\infty$. For $\alpha,\beta\in\mathbb{R}$,

$$\int_{A} (\alpha f + \beta g) = \alpha \int_{A} f + \beta \int_{A} g$$

Proof. Scalar multiplication is easy.

Now, have $\varphi_1, \varphi_2, \psi_1, \psi_2$ all simple,

$$\varphi_1 \leqslant f \leqslant \psi_1, \ \varphi_2 \leqslant g \leqslant \psi_2$$

1.

$$\int_{A} f + g = \overline{\int_{A}} f + g$$

$$\leqslant \int_{A} \psi_{1} + \psi_{2}$$

$$= \int_{A} \psi_{1} + \int_{A} \psi_{2}$$

so

$$\begin{split} \int_A f + g &\leqslant \inf \left\{ \int_A \psi_1 + \int_A \psi_2 : f \leqslant \psi_1, g \leqslant \psi_2, \psi_1, \psi_2 \text{ simple} \right\} \\ &= \inf \left\{ \int_A \psi_1 : f \leqslant \psi_1 \text{ simple} \right\} + \inf \left\{ \int_A \psi_2 : g \leqslant \psi_2 \text{ simple} \right\} \\ &= \int_A f + \int_A g \end{split}$$

2.

$$\int_A f + g = \int_A f + g \geqslant \int_A \varphi_1 + \int_A \varphi_2$$

so

$$\begin{split} \int_A f + g \geqslant \sup \left\{ \int_A \varphi_1 + \int_A \varphi_2 : f \geqslant \varphi_1, g \geqslant \varphi_2, \varphi_1, \varphi_2 \text{ simple} \right\} \\ &= \sup \left\{ \int_A \varphi_1 : f \geqslant \varphi_1, \varphi_1 \text{ simple} \right\} + \sup \left\{ \int_A \varphi_2 : f \geqslant \varphi_2, \varphi_2 \text{ simple} \right\} \\ &= \int_A f + \int_A g \end{split}$$

Fall 2024 Rui Gong Integration

so

$$\int_A f + g = \int_A f + \int_A g$$

Proposition 2.9

 $f,g:A o\mathbb{R}$ bounded, measurable and $m(A)\leqslant\infty.$ If $f\leqslant g$, then $\int_A f\leqslant \int_A g.$

Proof. Since $g - f \geqslant 0$, where 0 is also a simple function, we have

$$\int_A (g - f) = \underbrace{\int_A}_{A} (g - f) \geqslant \int_A 0 = 0 \implies \int_A g \geqslant \int_A f$$

2.2 Bounded Convergence Theorem

Proposition 2.10

 $f:A\to\mathbb{R}$ bounded, measurable, $B\subseteq A$ measurable, $m(A)<\infty$, then

$$\int_{B} f = \int_{A} f \chi_{B}$$

Proof.

1. $f = \chi_C$, $C \subseteq A$ measurable.

$$\int_{A} \chi_{C} \chi_{B} = \int_{A} \chi_{B \cap C}$$

$$= 1 * m(B \cap C)$$

$$= \int_{B} \chi_{C|_{B}}$$

2. f is simple, $f = \sum_{i=1}^{n} a_i \chi_{A_i}$,

$$\int_A f \chi_B = \sum a_i \int_A \chi_{A_i} \chi_B = \sum a_i \int_B \chi_{A_i} = \int_B (\sum a_i \chi_{A_i|B}) = \int_B f$$

3. $f: A \to \mathbb{R}$ be bounded and measurable.

First we take $f \leqslant \psi$, simple, then

$$\int_{A} f \chi_{B} \leqslant \int_{A} \psi \chi_{B} = \int_{B} \psi$$

By taking the inf over all such ψ , we have that

$$\int_{A} f \chi_{B} \leqslant \overline{\int_{A}} f = \int_{B} f$$

Similarly, taking $\varphi \leqslant f$, φ simple, we obtain,

$$\underline{\int_B} f = \int_B f \leqslant \int_A f \chi_B$$

so we have

$$\int_A f \chi_B = \int_B f$$

Proposition 2.11

 $f:A\to\mathbb{R}$ be bounded, measurable, $m(A)<\infty.$ If $B,C\subseteq A$ are measurable and disjoint, then

$$\int_{B \cup C} f = \int_B f + \int_C f$$

Proof.

$$\int_{B \cup C} f = \int_{A} f \chi_{B \cup C}$$

$$= \int_{A} f(\chi_{B} + \chi_{C})$$

$$= \int_{A} f \chi_{B} + \int_{A} f \chi_{C}$$

$$= \int_{B} f + \int_{C} f$$

Proposition 2.12

 $f:A\to\mathbb{R}$ be bounded, measurable, $m(A)<\infty$, then $\left|\int_A f\right|\leqslant \int_A |f|$.

Proof.

$$\begin{aligned} -|f| &\leqslant f \leqslant |f| \\ -\int_A |f| &\leqslant \int_A |f| \leqslant \int_A |f| \end{aligned}$$

Proposition 2.13

 (f_n) is bounded, measurable, $A:\to\mathbb{R}$, $m(A)<\infty$. If $f_n\to f$ uniformly, then

$$\lim_{n \to \infty} \int_A f_n = \int_A f$$

Proof. Let $\varepsilon > 0$ be given, let $N \in \mathbb{N}$ such that

$$|f_n - f| \leqslant \frac{\varepsilon}{m(A) + 1}$$

then, for $n \geqslant N$

$$\left| \int_{A} f_{n} - \int_{A} f \right|$$

$$= \left| \int_{A} (f_{n} - f) \right|$$

$$\leq \int_{A} |f_{n} - f|$$

$$\leq m(A) * \frac{\varepsilon}{m(A) + 1}$$

$$< \varepsilon$$

Fall 2024 Rui Gong Integration

Example 2.14

 $f_n:[0,1]\to\mathbb{R}$,

$$f_n(x) = \begin{cases} 0, & 0 \le x < \frac{1}{n} \\ n, & \frac{1}{n} \le x < \frac{2}{n} \\ 0, & \frac{2}{n} \le x \end{cases}$$

then $f_n \to 0$ pointwisely, but

$$\int_{[0,1]} f_n = 1, \ \int_{[0,1]} 0 = 0$$

Theorem 2.15: [BCT]

 $(f_n): A \to \mathbb{R}$ measurable, $m(A) < \infty$. If there exists M > 0 such that $|f_n| \leqslant M$ for all n and $f_n \to f$ pointwise then

$$\lim_{n \to \infty} \int_A f_n = \int_A f$$

Proof. Let $\varepsilon > 0$ be given. By Egoroff's theorem, there exists measurable $B \subseteq A$ and $N \in \mathbb{N}$ such that for $n \geqslant N$,

1.
$$|f_n - f| < \frac{\varepsilon}{2(m(B)+1)}$$
 on B

2.
$$m(A \setminus B) < \frac{\varepsilon}{4M}$$

 $\forall n \geqslant N$,

$$\left| \int_{A} f_{n} - \int_{A} f \right| \leqslant \int_{A} |f_{n} - f|$$

$$= \int_{B} |f_{n} - f| + \int_{A \setminus B} |f_{n} - f|$$

$$\leqslant \int_{B} |f_{n} - f| + \int_{A \setminus B} (|f_{n}| + |f|)$$

$$\leqslant \int_{B} |f_{n} - f| + 2M * m(A \setminus B)$$

$$= \leqslant m(B) \frac{\varepsilon}{2(M(B) + 1)} + 2M \frac{\varepsilon}{4M}$$

$$\leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Definition 2.16

 $f: A \to \mathbb{R}$ measurable

1. We say f has finite support if

$$A_0 := \{ x \in A : f(x) \neq 0 \}$$

has finite measure.

- 2. We say f is a BF function. If f is bounded and has finite support.
- 3. If $f: A \to \mathbb{R}$ is BF, then

$$\int_A f := \int_{A_0} f$$

Definition 2.17

 $f:A \to \mathbb{R}$ measurable, $f \geqslant 0$,

$$\int_{A} f = \sup \left\{ \int_{A} h : 0 \leqslant h \leqslant f, BF \right\}$$

Proposition 2.18

 $f,g:A o\mathbb{R}$ measurable, $f,g\geqslant 0$

 $1. \ \forall \alpha,\beta \in \mathbb{R},$

$$\int_{A} (\alpha f + \beta g) = \alpha \int_{A} f + \beta \int_{A} g$$

- 2. If $f \leqslant g$, then $\int_A f \leqslant \int_A g$
- 3. If $B, C \subseteq A$ are measurable and $B \cap C = \emptyset$ then

$$\int_{B \cup C} f = \int_B f + \int_C f$$

Theorem 2.19: [Chebychev's Inequality]

 $f: A \to \mathbb{R}$ measurable, non-negative; $\forall \varepsilon > 0$,

$$m\left(\left\{x\in A:f(x)\geqslant\varepsilon\right\}\right)\leqslant\frac{1}{\varepsilon}\int_{A}f$$

Proof. Let $\varepsilon > 0$ given and let

$$A_{\varepsilon} = \{x \in A : f(x) \geqslant \varepsilon\}$$

1. $m(A_{\varepsilon}) < \infty$

$$\underbrace{\varphi}_{\mathsf{BF}} = \varepsilon \chi_{A_{\varepsilon}} \leqslant f$$

SO

$$\varepsilon m(A_{\varepsilon}) = \int_{A} \varphi \leqslant \int_{A} f$$

2. $m(A_{\varepsilon}) = \infty$ For $n \in \mathbb{N}$, $A_{\varepsilon,n} := A_{\varepsilon} \cap [-n,n]$. By the continuity of measure,

$$\infty = m(A_{\varepsilon}) = \lim_{n \to \infty} m(A_{\varepsilon,n})$$

For $n \in \mathbb{N}$, $\varphi_n := \varepsilon \chi_{\varepsilon,n}(BF)$, we see that $\varphi_n \leqslant f$. Therefore,

$$\infty = m(A_{\varepsilon})$$

$$= \lim_{n \to \infty} m(A_{\varepsilon,n})$$

$$= \lim_{n \to \infty} \frac{1}{\varepsilon} \int_{A} \varphi_{n}$$

$$\leqslant \frac{1}{\varepsilon} \int_{A} f$$

Proposition 2.20

 $f:A \to \mathbb{R}$ measurable, $f \geqslant 0$

$$\int_A f = 0 \iff f = 0 \text{ a.e.}$$

Proof.

• (\Longrightarrow) Suppose $\int_A(f) = 0$,

$$m\left(\left\{x\in A:f(x)\neq 0\right\}\right)$$

$$\leqslant \sum m\left(\left\{x\in A:f(x)\geqslant \frac{1}{n}\right\}\right)$$

$$\underbrace{\leqslant}_{\text{Chebychev}}\sum n\int_A f=0$$

• \Leftarrow Suppose $B = \{x \in A : f(x) \neq 0\}$ has measure 0.

$$\int_{A} f = \int_{B} f + \int_{A \setminus B} \underbrace{f}_{=0}$$

$$= \int_{B} f + 0$$

$$= 0$$

 $\int_B f = 0$ because for any h BF and $0 \leqslant h \leqslant f$, there is a $M_h \geqslant 0$ such that $h \leqslant M_h$, then

$$\int_{B} 0 \leqslant \int_{B} h \leqslant \int_{B} M_{h} = \int_{B} M_{h} \chi_{B} = M_{h} m(B) = M_{h} * 0 = 0$$

so $\int_B h$ is always zero, hence

$$\int_{B} f = \sup \left\{ \int_{B} h : 0 \leqslant h \leqslant f, \ h \text{ BF} \right\} = 0$$

2.3 Fatou's Lemma and MCT

Theorem 2.21: Fatou's Lemma

 (f_n) measurable, non-negative, $A \to \mathbb{R}$. If $f_n \to f$ pointwise then

$$\int_{A} f \leqslant \liminf \int_{A} f_{n}$$

Proof. Let $0 \le h \le f$ be a BF function. Say $A_0 = \{x \in A : h(x) \ne 0\}$. It suffices to show

$$\int_A h \leqslant \liminf \int_A f_n$$

Since h is BF, $m(A_0) < \infty$. For each $n \in \mathbb{N}$, let

$$h_n = \min\{h, f_n\}$$
 (meas.)

Note:

- 1. $0 \leqslant h_n \leqslant h \leqslant M$, for some M > 0, $\forall n \in \mathbb{N}$
- 2. For $x \in A_0$ and $n \in \mathbb{N}$,
 - (a) $h_n(x) = h(x)$ or
 - (b) $h_n(x) = f_n(x) \leqslant h(x)$ and

$$0 \le h(x) - h_n(x) = h(x) - f_n(x) \le f(x) - f_n(x) \to 0$$

so
$$h_n(x) \to h$$
 on A_0

By BCT,

$$\lim_{n \to \infty} \int_{A_0} h_n = \int_{A_0} h \implies \lim_{n \to \infty} \int_A h_n = \int_A h$$

Since $h_n \leqslant f_n$ on A,

$$\int_{A} = \lim_{n \to \infty} \int_{A} h_n = \liminf_{n \to \infty} \int_{A} h_n \leqslant \liminf_{n \to \infty} \int_{A} f_n$$

Example 2.22

$$A = (0, 1]$$

$$f_n = n\chi(0, 1/n)$$

$$f_n \to 0 \text{ pointwise}$$

$$\int_A 0 = 0$$

$$\int_A f_n = n \cdot m(0, 1/n) = 1$$

$$\lim \inf \int_A f_n = 1$$

Theorem 2.23: [MCT]

 (f_n) non-negative, measurable, $A \to \mathbb{R}$. If (f_n) is increasing and $f_n \to f$ pointwise, then

$$\lim_{n \to \infty} \int_A f_n = \int_A f$$

Proof.

$$\int_A f \leqslant \liminf \int_A f_n \text{ by Fatou's Lemma}$$

$$\leqslant \limsup \int_A f_n$$

$$\leqslant \int_A f \text{ by } f_n \nearrow \text{ and converge to } f$$

so $\lim_{n\to\infty}\int_A f_n = \liminf \int_A f_n = \limsup \int_A f_n$

Remark.

1. If $\varphi: A \to \mathbb{R}$ is simple and $m(A) < \infty$, then

$$\int_A \varphi < \infty$$

2. If $f:A\to\mathbb{R}$ is bounded, measurable and $m(A)<\infty$, then

$$\int_{A} f < \infty$$

Definition 2.24

If $f: A \to \mathbb{R}$ is measurable and $f \geqslant 0$, then we say f is integrable if and only if

$$\int_A f < \infty$$

2.4 The General Integral

Definition 2.25

 $f: A \to \mathbb{R}$ measurable,

$$f^{+}(x) = \max\{f(x), 0\}$$
$$f^{-}(x) = \max\{-f(x), 0\}$$

Notes:

1.
$$f^+ + f^- = |f|$$

2.
$$f^+ - f^- = f$$

3. f^+, f^- measurable

Proposition 2.26

 $f: A \to \mathbb{R}$ measurable. Then f^+, f^- are integrable if and only if |f| is integrable.

Proof.

•
$$|f| = f^+ + f^-$$

$$\int_{A} |f| = \underbrace{\int_{A} f^{+}}_{<\infty} + \underbrace{\int_{A} f^{-}}_{<\infty} < \infty$$

•

$$\int_A f^+ \leqslant \int_A |f| < \infty; \ \int_A f^- \leqslant \int_A |f| < \infty$$

Definition 2.27

 $f:A\to\mathbb{R}$ measurable. We say f is <u>integrable</u> if and only if |f| is integrable if and only if f^+ , f^- are integrable, and define

$$\int_A f = \int_A f^+ - \int_A f^-$$

Proposition 2.28: [Comparison Test]

 $f:A\to\mathbb{R}$ measurable, $g:A\to\mathbb{R}$ non-negative integrable. If $|f|\leqslant g$ then f is integrable and $|\int_A f|\leqslant \int_A |f|$

Proof.

1.
$$\underbrace{\int_{A} |f|}_{<\infty} \leqslant \int_{A} g < \infty$$

2.
$$|\int_A f| = |\int_A f^+ - \int_A f^-| \le |\int_A f^+| + |\int_A f^-| = \int_A f^+ + \int_A f^- = \int_A (f^+ + f^-) = \int_A (f)$$

Proposition 2.29

 $f,g:A\to\mathbb{R}$ integrable.

1. $\forall \alpha, \beta \in \mathbb{R}$, $\alpha f + \beta g$ is integrable, and

$$\int_A \alpha f + \beta g = \alpha \int_A f + \beta \int_A g$$

- 2. If $f \leq g$, then $\int_A f \leq \int_A g$
- 3. If $B, C \subseteq A$ are measurable with $B \cap C = \emptyset$, then

$$\int_{B \cup C} f = \int_{B} f + \int_{C} f$$

Proof.

- Comparison Test
- Results hold for f^+, f^-, g^+, g^-

Theorem 2.30: [Lebesgue Dominated Convergence Theorem]

 $f_n:A\to\mathbb{R}$ measurable. $f_n\to f$ pointwise. If there exists a $g:A\to\mathbb{R}$ integrable such that $|f_n|\leqslant g,\ \forall n\in\mathbb{N}$, then f is integrable and $\lim_{n\to\infty}\int_A f_n=\int_A f$

Proof. Since $|f_n| \to |f|$, and so $|f| \leqslant g$.

By comparison test, f is integrable. Next, observe $g-f\geqslant 0$. By Fatou,

1.

$$\int_{A} g - \int_{A} f = \int_{A} g - f$$

$$\leqslant \liminf \int_{A} g - f_{n}$$

$$= \int_{A} g - \limsup \int_{A} f_{n}$$

$$\implies \limsup \int_{A} f_{n} \leqslant \int_{A} f$$

2.

$$\int_A g + \int_A f = \int_A g + f \leqslant \liminf \int_A g + f_n = \int_A g + \liminf \int_A f_n$$

$$\implies \int_A f = \liminf \int_A f_n = \limsup \int_A f_n = \lim \int_A f_n$$

2.5 Riemann Integration

Definition 2.31

 $f:[a,b]\to\mathbb{R}$ bounded

1. A <u>partition</u> of [a, b] is a finite set such that

$$P = \{x_0, x_1, \dots, x_n\} \subseteq \mathbb{R} \text{ and } a = x_0 < x_1 < x_2 < \dots < x_n = b$$

2. Relative to P, we define the lower Darboux sum:

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$
$$m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$$

3. Similarly, we define the upper Darboux sum:

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$
$$M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$$

Definition 2.32

 $f:[a,b]\to\mathbb{R}$, bounded,

1. Lower Riemann Integral

$$R \int_{a}^{b} f = \sup \{ L(f, P) : P \text{ partition} \}$$

2. Upper Riemann Integral

$$R \overline{\int_a^b} f = \inf \{ U(f, P) : P \text{ partition} \}$$

3. We say f is Riemann Integrable if and only if

$$\underbrace{R\int_{a}^{b} f = R\overline{\int_{a}^{b}} f}_{R\int_{a}^{b} f}$$

Definition 2.33

Let I_1, \ldots, I_n be pairwise disjoint intervals such that

$$[a,b] = \dot{\cup}_{i=1}^n I_i$$

A step function is a functions of the form

$$f = \sum_{i=1}^{n} a_i \chi_{I_i}$$

for some $a_i \in \mathbb{R}$

Remark. $f:[a,b] \to \mathbb{R}$ bounded. $a = x_0 < x_1 < \ldots < x_n = b$. $I_i = [x_{i-1}, x_i], \ i = 1, \ldots, n$. Then

$$L(f, P) = \sum_{i=1}^{n} m_i \cdot l(I_i) = R \int_a^b \varphi$$

where $\varphi(x) = mi$ on I_i ($\varphi \leqslant f$).

$$U(f, P) = \sum_{i=1}^{n} M_i \cdot l(I_i) = R \int_a^b \psi$$

where $\psi(x) = Mi$ on I_i $(f \leqslant \psi)$.

Remark. $f:[a,b]\to\mathbb{R}$ bounded,

$$R \underbrace{\int_{a}^{b} f} = \sup\{L(f, P) : P\} = \sup\left\{R \int_{a}^{b} \varphi : \varphi \leqslant f \text{ step}\right\}$$

$$R \underbrace{\int_{a}^{b} f} = \inf\{U(f, P) : P\} = \inf\left\{R \int_{a}^{b} \psi : f \leqslant \psi \text{ step}\right\}$$

2.5.1 Riemann Integral VS Lebesgue Integral

Definition 2.34

Let $f:[a,b]\to\mathbb{R}$ bounded. Let $x\in[a,b]$ and $\delta>0$

- 1. $m_{\delta}(x) = \inf\{f(x) : x \in (x \delta, x + \delta) \cap [a, b]\}$
- 2. $M_{\delta}(x) = \sup\{f(x) : x \in (x \delta, x + \delta) \cap [a, b]\}$
- 3. Lower Boundary of f,

$$m(x) = \lim_{\delta \to 0} m_{\delta}(x)$$

4. Upper Boundary of f,

$$M(x) = \lim_{\delta \to 0} M_{\delta}(x)$$

5. Oscillation of f,

$$\omega(x) = M(x) - m(x)$$

Remark. $f:[a,b] \to \mathbb{R}$ bounded, TFAE

- 1. f is continuous at $x \in [a, b]$
- 2. M(x) = m(x)
- 3. $\omega(x) = 0$

Lemma 2.35

 $f:[a,b]\to\mathbb{R}$ bounded,

- 1. m is measure
- 2. If $\varphi : [a,b] \to \mathbb{R}$ is a step function with $\varphi \leqslant f$, then $\varphi(x) \leqslant m(x)$ at all points of continuity of φ
- 3. $R \int_a^b f = \int_{[a,b]} m$

Lemma 2.36

 $f:[a,b]\to\mathbb{R}$ bounded,

- 1. M is measure
- 2. If $\psi:[a,b]\to\mathbb{R}$ is a step function with $\psi\geqslant f$, then $\psi(x)\geqslant M(x)$ at all points of continuity of ψ
- 3. $R\overline{\int_a^b}f = \int_{[a,b]}M$

Theorem 2.37: [Lebesgue]

Let $f:[a,b]\to\mathbb{R}$ be bounded. Then f Riemann integrable if and only if f is continuous a.e., in that case,

$$R\int_{a}^{b} f = \int_{[a,b]} f$$

Proof.

$$R \underline{\int_a^b} f = \int_{[a,b]} m \leqslant \int_{[a,b]} M = R \overline{\int_a^b} f$$

f Riemann Integrable

$$\iff \int_{[a,b]} m = \int_{[a,b]} M$$

$$\iff \int_{[a,b]} (\underbrace{M-m}) = 0$$

$$\iff M = m \text{ a.e.}$$

$$\iff \omega = 0 \text{ a.e.}$$

$$\iff f \text{ is continuous a.e.}$$

If f is continuous a.e. $\implies f$ is measurable and

$$R \underline{\int_a^b} f = \int_{[a,b]} m \leqslant \int_{[a,b]} f \leqslant \int_{[a,b]} M = R \overline{\int_a^b} f \implies R \int_a^b f = \int_{[a,b]} f$$

because M = m a.e.

Fall 2024 Rui Gong Integration

Example 2.38

 $f:[0,1]\to\mathbb{R}$

$$f(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$$

f is discontinuous on $[0,1] \implies f$ is NOT Riemann Integrable. But f=0 a.e. ans so

$$\int_{[0,1]} f = \int_{[0,1]} 0 = 0$$

Example 2.39

 $\mathbb{Q} \cap [0,1] = \{q_1,q_2,\ldots\}$, $f_n = \chi_{\{q_1,\ldots,q_n\}}$. $f_n \to f$ pointwise (f in the previous example). f_n is increasing, continuous a.e. on [0,1], and it's bounded by 1, so it's Riemann Integrable.

$$0 = R \int_{[0,1]} f_n \not\to R \int_{[0,1]} f$$

3 L^p Spaces

3.1 L^P Spaces

Recall

- 1. For $1 \leq p < \infty$, $(C([a,b]), \|\cdot\|_p)$ is a normed-vector space, where $\|f\|_p^p = \int_a^b |f|^p$
- 2. For $p = \infty$, $(C([a, b]), \|\cdot\|_{\infty})$, $\|f\|_{\infty} = \sup\{|f(x)|: x \in [a, b]\}$ is a Banach Space.

<u>Problem:</u> $A \subseteq \mathbb{R}$ measurable, $1 \leqslant p < \infty$, $||f||_p = \left(\int_A |f|^p\right)^{\frac{1}{p}}$ is NOT a norm on the vector space of integrable functions $f: A \to \mathbb{R}$. WHY? $\int_A |f|^p = 0 \iff f = 0$ a.e.

Definition 3.1

 $A \subseteq \mathbb{R}$ measurable,

1. $M(A) = \{f : A \to \mathbb{R} \text{ measurable}\} \to \text{vector space},$

$$f \sim g \iff f = g \text{ a.e.}$$

let [f] represent the equivalence class.

2. $M(A)/\sim=\{[f]: f\in M(A)\}$. $\alpha[f]+\beta[g]=[\alpha f+\beta g]$ shows that it's a vector space.

Remark. If $f \sim g$ and f is integrable, then g is integrable and $\int_A f = \int_A g$

Definition 3.2

 $A \subseteq \mathbb{R}$ measurable, $1 \leqslant p < \infty$,

$$L^p(A) = \left\{ [f] \in M(A) / \sim : \int_A |f|^p < \infty \right\}$$

Remark. Suppose $[f], [g] \in L^p(A)$. Then $\int_A |f|^p, \int_A |g|^p < \infty$

- 1. $|f + g|^p \le (|f| + |g|)^p \le (2 \max\{|f|, |g|\})^p \le 2^p (|f|^p + |g|^p) \implies |f + g|^p$ integrable by comparison.
- 2. so $L^p(A)$ is a subspace of $M(A)/\sim$

Definition 3.3

 $A \subseteq \mathbb{R}$ measurable,

$$L^{\infty}(A)=\{[f]\in M(A)/{\sim}: f \ \textit{bounded a.e.}\}$$

Remark.

1. $[f], [g] \in L^{\infty}(A)$

$$|f| \le M \text{ off } B \subseteq A, \ m(B) = 0$$

 $|g| \le N \text{ off } C \subseteq A, \ m(C) = 0$

off $B \subseteq A$ means on $A \setminus B$.

For $x \notin B \cup C$,

$$|f(x) + g(x)| \leqslant |f(x)| + |g(x)| \leqslant M + N$$

2. $L^{\infty}(A)$ is a subspace of $M(A)/\sim$

Proposition 3.4

 $A \subseteq \mathbb{R}$ measurable, then

$$||[f]||_{\infty} = \inf\{M \geqslant 0 : |f| \leqslant M \text{ a.e.}\}$$

is a norm on $L^{\infty}(A)$

Remark.

- 1. $|f| \leq ||f||_{\infty} + \frac{1}{n}$ off $m(A_N) = 0$, and $B = \bigcup_{n=1}^{\infty} A_n$ has measure 0
- 2. $|f| \le ||f||_{\infty}$ off *B*.

Proof.

1.
$$||[f]||_{\infty} = 0 \implies |f| \leqslant ||[f]||_{\infty}$$
 a.e. $\implies |f| = 0$ a.e. $\implies f = 0$ a.e., then $[f] = [0]$

in $L^{\infty}(A)$.

2. $|f| \leqslant ||[f]||_{\infty}$ off B, $|g| \leqslant ||[g]||_{\infty}$ off C. Off $B \cup C \implies$ measure 0:

$$|f + g| \le |f| + |g| \le ||[f]||_{\infty} + ||[g]||_{\infty}$$

By the definition of inf, we have

$$\|[f+g]\|_{\infty} = \|[f] + [g]\|_{\infty} \leqslant \|[f]\|_{\infty} + \|[g]\|_{\infty}$$

3.2 L^p Norm

Example 3.5

p = 1, $A \subseteq \mathbb{R}$ measurable, $[f], [g] \in L^1(A)$,

$$\begin{split} |f+g| &\leqslant |f| + |g| \\ \Longrightarrow \int_A |f+g| &\leqslant \int_A |f| + \int_A |g| \\ \Longrightarrow \|f+g\|_1 &\leqslant \|[f]\|_1 + \|[g]\|_1 \end{split}$$

Abusive Notation:

$$f \equiv [f] \in L^p(A)$$

Remember!

f = g in $L^p(A)$ means f = g a.e.

Definition 3.6

For $p \in (1, \infty)$ we define $q = \frac{p}{p-1}$ to be the Holder Conjugate of p.

Note:

1.
$$q = \frac{p}{p-1} \iff p = \frac{q}{q-1}$$

2.
$$\frac{1}{p} + \frac{1}{q} = 1$$

Definition 3.7

We define 1 and ∞ to be a pair of Holder conjugate.

Proposition 3.8: [Young's Inequality

 $p,q \in (1,\infty)$ Holder conjugate. $\forall a,b>0$,

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

Proof.

$$f(x) = \frac{1}{p}x^p + \frac{1}{q} - x \text{ on } (0, \infty)$$

$$f'(x) = x^{p-1} - 1$$

$$f(1) = \frac{1}{p} + \frac{1}{q} - 1 = 0$$

$$\implies f \geqslant 0 \text{ on } (0, \infty)$$

$$\implies x \leqslant \frac{1}{p}x^p + \frac{1}{q}, \ \forall x > 0$$

Taking:

$$x = \frac{q}{b^{q-1}}$$

$$\implies \frac{a}{b^{q-1}} \leqslant \frac{1}{p} \frac{a^p}{b^{(q-1)}p}$$

$$\implies \frac{a}{b^{q-1}} \leqslant \frac{1}{p} \frac{a^p}{b^p} + \frac{1}{q}$$

$$\implies ab \leqslant \frac{1}{p} a^p + \frac{1}{q} b^q$$

Proposition 3.9: [Holder's Inequality]

 $A\subseteq\mathbb{R}$ measurable, $1\leqslant p<\infty$, q is the Holder Conjugate. If $f\in L^p(A)$ and $g\in L^q(A)$ then $fg\in L^1(A)$ and $\int_A |fg|\leqslant \|f\|_p \|g\|_q$

Proof.

1.
$$p = 1, q = \infty$$

$$|fg|=|f||g|\leqslant |f|\|g\|_{\infty}$$
 a.e.

then $fg \in L^1(A)$ and

$$\int_{A} |fg| \le \int_{A} |f| ||g||_{\infty} = ||g||_{\infty} ||f||_{1}$$

2. 1 HC,

$$|fg| = |f||g| \leqslant \frac{|f|^p}{p} + \frac{|g|^q}{q} \implies fg \in L^1(A)$$

Also,

$$\int_{A} |fg| \leqslant \frac{1}{p} \int_{A} |f|^{p} + \frac{1}{q} \int_{A} |g|^{q} = \frac{1}{p} ||f||_{p}^{p} + \frac{1}{q} ||g||_{q}^{q}$$

(a)
$$||f||_p = ||g||_q = 1$$
,

$$\int_A \lvert fg \lvert \leqslant \frac{1}{p} + \frac{1}{q} = 1 = \lVert f \rVert_p \lVert g \rVert_q$$

(b) $\frac{f}{\|f\|_p}$, $\frac{g}{\|g\|_q}$. By case a),

$$\frac{1}{\|f\|_p \|g\|_q} \int_A |fg| \leqslant 1 \implies \int_A |fg| \leqslant \|f\|_p \|g\|_q$$

Lemma 3.10

p, q HC, $f \in L^p(A)$. If $f \neq 0$,

$$f^* = ||f||_p^{1-p} \operatorname{sgn}(f) |f|^{p-1}$$

is in $L^q(A)$ and

$$\int_{A} ff^* = ||f||_p$$
, and $||f^*||_q = 1$

Proof.

1. $p = 1, q = \infty$

$$f^* = \operatorname{sgn}(f) \in L^{\infty}(A)$$

$$\int_A f f^* = \int_A |f| = ||f||_1, ||f^*||_{\infty} = 1$$

2. 1 , <math>q HC

$$\begin{split} \int_A f f^* &= \|f\|_p^{1-p} \int_A |f|^p = \|f\|_p^{1-p} \|f\|_p^p = \|f\|_p \\ \|f^*\|_q^q &= \|f\|_p^{(1-p)q} \int_A |f|^{(p-1)q} \\ &= \|f\|_p^{-p} \int_A |f|^p \\ &= \|f\|_p^{-p} \|f\|_p^p = 1 \end{split}$$

Theorem 3.11: [Minkowski's Inequality]

 $A\subseteq\mathbb{R}$ measurable and $1\leqslant p<\infty.$ If $f,g\in L^p(A)$ then

$$||f + g||_p \le ||f||_p + ||g||_p$$

Proof. 1. p = 1 Done

2. 1

$$||f + g||_p = \int_A (f + g)(f + g)^*$$

$$= \int_a f(f + g)^* + \int_A g(f + g)^*$$

$$\leq \int_{Holder} ||f||_p ||(f + g)^*||_q + ||g||_p ||(f + g)^*||_q$$

$$= ||f||_p + ||g||_p$$

3.3 Completeness

Theorem 3.12: [Riesz-Fisher]

For all measurable $A \subseteq \mathbb{R}$ and $1 \leqslant p \leqslant \infty$, $L^{P}(A)$ is a Banach space.

Proof.

- 1. $p = \infty$, piazza
- 2. $1 \leqslant p < \infty$, Let $(f_n) \subseteq L^P(A)$ be strongly Cauchy Sequence. Therefore, there exists $(\varepsilon_n) \subseteq \mathbb{R}$ suCh that
 - (a) $||f_{n+1} f_n||_p \leqslant \varepsilon_n^2$
 - (b) $\sum \varepsilon_n < \infty$

Idea: Since \mathbb{R} is complete, if $(f_n(x))$ is strongly-Cauchy then it converges. For each $n \in \mathbb{N}$,

$$A_n = \{x \in A : |f_{n+1}(x) - f_n(x)| \ge \varepsilon_n\}$$
$$= \{x \in A : |f_{n+1}(x) - f_n(x)|^p \ge \varepsilon_n^p\}$$

By Chebyshev's Inequality:

$$m(A_n) \leqslant \frac{1}{\varepsilon_n^p} \int_A |f_{n+1} - f_n|^p \leqslant \frac{1}{\varepsilon_n^p} \varepsilon_n^{2P} = \varepsilon_n^p$$
$$\sum m(A_n) \leqslant \sum \varepsilon_n^p \leqslant \left(\sum \varepsilon_n\right)^p < \infty$$

which implies that $m(\limsup A_n) = 0$

Fix $x \notin \limsup(A_n)$. Let $N = \max\{n : x \in A_n\}$. For n > N,

$$|f_{n+1}(x) - f_n(x)| < \varepsilon_n^2, \ \sum \varepsilon_n < \infty$$

 $\Longrightarrow (f_n(x))$ Cauchy
 $\Longrightarrow f_n(x) \to f(x) \in \mathbb{R}$

so $f_n \to f$ pointwise a.e.

For $k \in \mathbb{N}$,

$$||f_{n+k} - f_n||_p \le ||f_{n+k} - f_{n+k-1}||_p + \dots + ||f_{n+1} - f_n||_p \le \varepsilon_{n+k-1}^2 + \dots + \varepsilon_n^2 \le \sum_{i=n}^{\infty} \varepsilon_i^2$$

so $|f_{n+k} - f_n|^p \to |f_n - f|^p$ pointwise a.e. as $k \to \infty$.

By Fatou's Lemma,

$$\int_{A} |f_{n} - f|^{p}$$

$$\leq \liminf_{k \to \infty} \int_{A} |f_{n+k} - f_{n}|^{p}$$

$$= \liminf_{k \to \infty} ||f_{n+k} - f_{n}||_{p}^{p}$$

$$\leq \left[\sum_{i=n}^{\infty} \varepsilon_{i}^{2}\right]^{p} \to 0$$

so f_n converges w.r.t p-norm.

3.3.1 Separability:

Recall: A metric space X is separable if it has a countable, dense subset.

Example 3.13

$$p = \infty$$
?

Suppose $\{f_n : n \in \mathbb{N}\}\$ is dense in $L^{\infty}[0,1]$. For every $x \in [0,1]$, we may find

$$\|\chi_{[0,x]} - f_{\theta(x)}\|_{\infty} < \frac{1}{2}$$

For $x \neq y$ in [0, 1],

$$||x_{[0,x]} - \chi_{[0,y]}||_{\infty} = 1$$

so $\theta(x) \neq \theta(y)$ and $\theta[0,1] \to \mathbb{N}$ is injective, contradiction ([0,1] not countable).

Notation:

- Simp(A) =Simple functions on measure A
- Step[a, b] =Step functions on[a, b]
- $Step_{\mathbb{Q}}[a,b]$ =Step functions on [a,b] with rational partition (not including a,b) and functions values.

Proposition 3.14

 $A \subseteq \mathbb{R}$ measurable, $1 \leqslant p < \infty$, Simp(A) is dense in $L^{P}(A)$

Proof.

$$fr \in L^P(A) \to f$$
 measurable

then there exists φ_n simple

- 1. $\varphi_n \to f$ pointwise
- 2. $|\varphi_n| \leqslant |f| \Longrightarrow |\varphi_n|^p \leqslant |f|^p$

By comparison, $(\varphi_n) \subseteq L^P(A)$. Note,

$$\|\varphi_n - f\|_p^p = \int_A |\varphi_n - f|^p$$
$$|\varphi_n - f|^p \leqslant 2^p (|\varphi_n|^p + |f|^p)$$
$$\leqslant 2^{p+1} |f|^p$$

so by the Lebesgue Dominate Convergence Theorem

$$\lim_{n \to \infty} \|\varphi_n - f\|_p^p = \lim_{n \to \infty} \int_{\mathcal{A}} |\varphi_n - f|^p = \int 0 = 0$$

Fact: the above proposition is true for $p = \infty$ (but it's not separable).

Proposition 3.15

 $1 \leqslant p < \infty$. Step[a, b] is dense in $L^P[a, b]$

Proof. $A \subseteq [a, b]$ measurable, $\chi_A[a, b] \to \mathbb{R}$.

Littlewood 1: $\exists \dot{\cup}_{i=1}^n I_i = U$, where I_i s are bounded open intervals. And $m(U \triangle A < \varepsilon \text{ and } \chi_U : [a,b] \to \mathbb{R}$ is a step function.

$$\|\chi_{U} - \chi_{A}\|_{p}^{p}$$

$$= \int_{A} \|\chi_{U} - \chi_{A}\|_{p}^{p}$$

$$= \int_{U \triangle A} 1^{p}$$

$$= m(U \triangle A)$$

$$\implies \|\chi_{U} - \chi_{A}\|_{p} < \varepsilon$$

so for all characteristic function, we can approach as close as we want by a step function. Simple function is just made of **finitely** many characteristic functions. \Box

Corollary 3.16

 $1 \le p < \infty$. $Step_{\mathbb{Q}}[a,b]$ is dense in $L^p[a,b]$ (step functions are dense, so for each step function, you can modify the function a little bit by rationals). Therefore, $L^p[a,b]$ is separable.

Proposition 3.17

 $1 \leqslant p < \infty$, $L^p(\mathbb{R})$ is separable.

Proof. $1 \leq p < \infty$, $L^p(\mathbb{R})$ is separable.

$$F_n = \left\{ f \in L^p(\mathbb{R}) | f|_{[-n,n]} \in Step_{\mathbb{Q}}[-n,n], f|_{\mathbb{R}\setminus[-n,n]} = 0 \right\}$$

 $F=\cup_{n=1}^{\infty}F_n$ countable. Take $f\in L^p(\mathbb{R}).$ Fix $n\in\mathbb{N},$ we have $f|_{[-n,n]}\in L^p([-n,n])$ We show

$$f\chi_{[-n,n]} \to f \text{ in } L^p(\mathbb{R})$$

Note:

1.

$$||f\chi_{[-n,n]} - f||_p^p$$

$$= \int_{\mathbb{R}} |f\chi_{[-n,n]} - f|^p$$

$$= \int_{\mathbb{R}\setminus[-n,n]} |f|^p$$

$$= \int_{\mathbb{R}} |f|^p \chi_{\mathbb{R}\setminus[-n,n]}$$

- 2. $||f|^p\chi_{\mathbb{R}\backslash[-n,n]}|\leqslant |f|^p$ which is integrable
- 3. By the Lebesgue Dominated Convergence Theorem

$$\lim_{n \to \infty} ||f\chi_{[-n,n]} - f||_p^p$$

$$= \lim_{n \to \infty} \int_{\mathbb{R}} |f\chi_{[-n,n]} - f|^p = \int_{\mathbb{R}} 0 = 0$$

so
$$\|f\chi_{[-n,n]}-f\|_p\to 0$$

For each $n\in\mathbb{N},\,\exists \varphi_n\in F$ such that $\|f\chi_{[-n,n]}-\varphi_n\|_p<\frac{1}{n},$ so

$$\|\varphi_n - f\|_p \to 0$$

Theorem 3.18

 $1\leqslant p<\infty$, $A\subseteq\mathbb{R}$ measurable, $L^p(A)$ is separable.

Proof. F as before, $\{f|_A: f \in F\}$ is a countable dense subset of $L^p(A)$

4 Fourier Analysis

4.1 Hilbert Space

 $\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}$

Definition 4.1

V is a vector space over \mathbb{F} . An inner product on V is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that

1.
$$\forall v \in V, \langle v, \rangle \in \mathbb{F}, \langle v, v \rangle \geqslant 0$$
 with $\langle v, v \rangle = 0$ if and only $v = 0$

2. $\forall v, w \in V$,

$$\langle v, w, \rangle = \overline{\langle w, v \rangle}$$

3. $\forall \alpha \in \mathbb{F}, u, v, w \in V$,

$$\langle \alpha u + v, w \rangle = \alpha \langle u, w \rangle + \langle v, w \rangle$$

We call $(V, \langle \cdot, \cdot \rangle)$ an inner product space.

Proposition 4.2

Let V be an inner product space. Then

$$||v|| = \sqrt{\langle v, v \rangle}$$

is a norm on V. We call $\|\cdot\|$ the norm induced by $\langle\cdot,\cdot\rangle$

Example 4.3

 $A\subseteq\mathbb{R}$ measurable. $V=L^2(A),$ $\langle f,g
angle =\int_A fg$ is an inner product space.

Note:
$$\sqrt{\langle f, f \rangle} = \left(\int_A |f|^2 \right)^{\frac{1}{2}} = \|f\|_2$$

Example 4.4

 $A\subseteq\mathbb{R}$ measurable. $V=L^2(A,\mathbb{C})$, $\langle f,g
angle=\int_A f\overline{g}$ and $\sqrt{\langle f,f
angle}=\|f||_2$

Proposition 4.5: [Parallelogram Law]

Let V be an inner product space. $\forall u, v \in V$,

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

Proof.

$$||u+v||^2 + ||u-v||^2$$

$$= \langle u+v, u+v \rangle + \langle u-v, u-v \rangle$$

$$= \langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle + \langle u, u \rangle - 2 \langle u, v \rangle + \langle v, v \rangle$$

$$= 2||u||^2 + 2||v||^2$$

$$= 2 (||u||^2 + ||v||^2)$$

Example 4.6

 $1 \leqslant p < \infty$, $V = L^p[0,2]$ and $f = \chi_{[0,1]}, g = \chi_{[1,2]}$

$$||f||_p^2 = \left(\int_{[0,2]} |f|^p\right)^{\frac{2}{p}}$$

$$= 1^{\frac{2}{p}} = 1$$

$$||g||_p^2 = 1^{\frac{2}{p}} = 1$$

$$||f + g||_p^2 = 2^{\frac{2}{p}}$$

$$||f - g||_p^2 = 2^{\frac{2}{p}}$$

so by Parallelogram Law

$$2^{\frac{2}{p}} + 2^{\frac{2}{p}} = 2(1+1) \iff 2^{\frac{2}{2}} = 2 \iff p = 2$$

so $\|\cdot\|_p$ is induced by an inner product if and only if p=2. You can also show that $\|\cdot\|_{\infty}$ is not induced by an inner product.

Definition 4.7

A <u>Hilbert Space</u> is a complete inner product space (i.e. A <u>Banach Space</u> whose norm is induced by an inner product).

Example 4.8

 $L^2(A), L^2(A, \mathbb{C})$ are Hilbert Spaces.

4.2 Orthogonality

Definition 4.9

Let V be an inner product space. We say $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.

Example 4.10

$$f,g\in L^{2}\left([-\pi,\pi],\mathbb{C}
ight),\;m
eq n,\;f(x)=e^{inx},\;g(x)=e^{imx}$$
, then

$$\langle f, g \rangle = \int_{[-\pi, \pi]} f\overline{g}$$

$$= \int_{[-\pi, \pi]} e^{inx} e^{-imx} dx$$

$$= \int_{[-\pi, \pi]} e^{ix(n-m)} dx$$

$$= \int_{[-\pi, \pi]} \cos((n-m)x) + i \int_{[-\pi, \pi]} \sin((n-m)x)$$

$$= R \int_{-\pi}^{\pi} \cos((n-m)x) + iR \int_{-\pi}^{\pi} \sin((n-m)x) dx$$

$$= 0$$

Theorem 4.11: [Pythagorean Theorem]

Let V be an inner product space. If $v_1, \ldots, v_n \in V$ are pairwise orthogonal, then,

$$\left\|\sum V_i\right\|^2 = \sum \|V_i\|^2$$

Definition 4.12

Let V be an inner product space. We say $A \subseteq V$ is <u>orthonormal</u> if the elements of A are pairwise orthogonal and $||v|| = 1, \forall v \in A$.

Corollary 4.13

Let V be an inner product space, $\{v_1, \ldots, v_n\}$ orthonormal,

$$\left\| \sum \alpha_i v_i \right\|^2 = \sum |\alpha_i|^2$$

Example 4.14

 $L^2([-\pi,\pi],\mathbb{C}), A = \left\{\frac{1}{\sqrt{2\pi}}e^{inx} : n \in \mathbb{Z}\right\} \implies \textit{pairwise orthogonal}.$

$$\frac{1}{2\pi} \|e^{inx}\|_{2}^{2}$$

$$= \frac{1}{2\pi} \int_{[-\pi,\pi]} e^{inx} e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_{[-\pi,\pi]} 1 = 1$$

so A is orthonormal

Definition 4.15

Let V be an inner product space. An <u>orthonormal basis</u> is a maximal (w.r.t \subseteq) orthonormal subset of V. (Note it might not ba basis).

Fact: An inner product space always has an orthonormal basis.

<u>Fact:</u> Let H be a Hilbert space. If $W \subseteq H$ is closed subspace then there exists a subspace $W^{\perp} \subseteq H$ such that

$$H=W\oplus W^\perp$$

and $\langle w, z \rangle = 0$ for all $w \in W$ and $z \in W^{\perp}$.

Theorem 4.16

Let H be a Hilbert space, then H has a <u>countable</u> ONB (orthonormal basis) if and only if H is separable.

Proof.

• \implies Let be B be a countable orthonormal basis for H.

Claim: $w = \operatorname{Span}(B), \overline{w} = H$

Suppose $\overline{w} \neq H$. Since $H = \overline{w} \oplus \overline{w}^{\perp}$. We may find $0 \neq x \in \overline{w}^{\perp}$. We may assume ||x|| = 1. so $B \cup \{x\}$ is orthonormal. Contradiction! So $\overline{w} = H$.

We can also show that $\overline{\mathrm{Span}_{\mathbb{Q}}(B)} = H$ where $\mathrm{Span}_{\mathbb{Q}}(B)$ is the span of B only using rational numbers as the coefficients. Hence, H is separable.

• \Leftarrow Suppose H doesn't have an orthonormal basis which is countable. Let B be ONB for H, so B is uncountable.

For $u \neq v$ in B,

$$||u - v||^2 = ||u||^2 + ||v||^2 = 2 \implies ||u - v|| = \sqrt{2}$$

Suppose $X \subseteq H$ such that $\overline{X} = H$. $\forall u \in B$, there exists $x_n \in X$ such that

$$||x_n - u|| < \frac{\sqrt{2}}{2}$$

but for $u \neq v$ in B, we have that

$$x_u \neq x_v$$

so

$$\varphi: B \mapsto X, \ \varphi(u) = x_u$$

is an injection. So X is uncountable because B is uncountable, so H is not separable, contradiction.

Example 4.17

 $\left\{\frac{1}{\sqrt{2\pi}}e^{inx}:n\in\mathbb{Z}\right\}$ is a countable orthonormal set in $L^2([-\pi,\pi],\mathbb{C})$. We can clearly see that it is countable, orthonormal, but what about maximal?

4.3 Big Theorems

Remark. Let H be an inner product space, $\{v_1, \ldots, v_n\}$ orthonormal. If $v = \sum \lambda_i v_i$ then $\lambda_i = \langle v, v_i \rangle$. We call $\langle v, v_i \rangle$ the Fourier Coefficients of v w.r.t. $\{v_1, \ldots, v_n\}$

Definition 4.18

Let H be a Hilbert space, $\{v_1, v_2, \ldots\}$ orthonormal. For $v \in H$, we call

$$\sum_{i=1}^{\infty} \langle v, v_i \rangle v_i$$

the <u>Fourier Series</u> of v relative to $\{v_1, v_2, \ldots\}$ and write

$$v \sim \sum_{i=1}^{\infty} \langle v, v_i \rangle v_i$$

- Does this series converge?
- Does it converge to v?

Theorem 4.19: [Best Approximation]

Let H be a Hilbert Space, $\{v_1, \ldots, v_n\}$ orthonormal. For $v \in H$, $\|v - \sum \lambda_i v_i\|$ is minimized when $\lambda_i = \langle v, v_i \rangle$

Moreover,

$$\left\|v - \sum \left\langle v, v_i \right\rangle v_i \right\|^2 = \|v\|^2 - \sum |\left\langle v, v_i \right\rangle|^2$$

Proof.

1.
$$W = \operatorname{Span}\{v_1, \dots, v_n\}$$
 closed, $v = W \oplus W^{\perp}$

2.
$$x \in W, v = w + z, w \in W, z \in W^{\perp}$$
,

$$||v - x||^2 = ||w + z - x||^2 = ||w - x + z||^2 = ||w - x||^2 + ||z||^2 \ge ||z||^2 = ||v - x||^2$$

so $||v-x|| \ge ||v-w||$, the closet point in W to v is w, the orthonormal projection.

3.
$$v = \sum \lambda_i v_i + z, \ z \in W^{\perp}$$
,

$$\langle v, v_i \rangle = \lambda_i + \underbrace{\langle z, v_i \rangle}_{0} = \lambda_i$$

4.
$$v = \sum \langle v, v_i \rangle v_i + z, z \in W^{\perp}$$
, then

$$||v||^{2} = \left\| \sum_{i} \langle v, v_{i} \rangle v_{i} \right\|^{2} + ||z||^{2}$$
$$= \sum_{i} |\langle v, v_{i} \rangle|^{2} + ||z||^{2}$$

so,

$$\|v - \sum \langle v, v_i \rangle v_i\|^2 = \|z\|^2 = \|v\|^2 - \sum |\langle v, v_i \rangle|^2$$

Theorem 4.20: [Bessel's Inequality]

Let H be a Hilber Space, $\{v_1, \ldots, v_n\}$ be orthonormal. If $v \in H$,

$$\sum_{i=1}^{n} |\langle v, v_i \rangle|^2 \leqslant ||v||^2$$

Proof.

$$||v||^2 - \sum |\langle v, v_i \rangle|^2 = ||v - \sum \langle v, v_i \rangle v_i||^2 \geqslant 0$$

Theorem 4.21: [Parseral's Identity]

Let H be a Hilbert space, $\{v_1, v_2, \ldots\}$ orthonormal. For $v \in H$,

$$\sum_{i=1}^{\infty} |\langle v, v_i \rangle|^2 = ||v||^2 \iff \lim_{n \to \infty} \left\| v - \sum_{i=1}^n \langle v, v_i \rangle v_i \right\|^2 = 0$$

Theorem 4.22: [Orthonormal Basis Test]

Let H be a separable Hilbert Space $\{v_1, v_2, \ldots\}$ orthonormal. TFAE:

- 1. $\{v_1, v_2, \ldots\}$ is an orthonormal basis.
- $2. \overline{\operatorname{Span}\{v_1, v_2, \ldots\}} = H$
- 3. $\lim_{n\to\infty} \|v \sum_{i=1}^{n} \langle v, v_i \rangle v_i\| = 0, \ \forall v \in H$

Proof.

- $(1) \implies (2)$ Done
- (2) \Longrightarrow (3) If $\{v_1, v_2, \ldots\}$ is not maximal then we may find $u \in H$, ||u|| = 1 such that $\langle u, v_i \rangle = 0$, $\forall i \in \mathbb{N}$. Since $C = \{x \in H : \langle x, u \rangle = 0\}$ is closed, $u \notin \overline{\mathrm{Span}\{v_1, v_2, \ldots\}}$ ($u \notin C, \langle u, u \rangle = 1$, $\overline{\mathrm{Span}\{v_1, v_2, \ldots\}} \subseteq C$).
- (2) \Longrightarrow (3) Let $v \in H$ and let $\varepsilon > 0$ be given. Let $\sum_{i=1}^{N} \alpha_i v_i \in \operatorname{Span}\{v_1, \ldots\}$ such that

$$\left\| v - \sum_{i=1}^{N} \alpha_i v_i \right\| < \varepsilon$$

so
$$\left\|v - \sum_{i=1}^{N} \left\langle v, v_i \right\rangle v_i \right\| < \varepsilon$$
.
For $n \geqslant \mathbb{N}$,

$$\begin{split} & \left\| v - \sum_{i=1}^{n} \left\langle v, v_{i} \right\rangle v_{i} \right\| \\ \leqslant & \left\| v - \sum_{i=1}^{N} \left\langle v, v_{i} \right\rangle v_{i} \right\| + \left\| \sum_{i=N+1}^{n} \left\langle v, v_{i} \right\rangle v_{i} \right\| \\ < \varepsilon + \sqrt{\sum_{N+1}^{\infty} \left| \left\langle v, v_{i} \right\rangle \right|^{2}} \longrightarrow 0 \text{ as } N \to \infty \end{split}$$

because by Bessel's Inequality, $\sum_{i=1}^N |\langle v, v_o \rangle|^2$ is a bounded increasing sequence, so $\sum_{N+1}^\infty |\langle v, v_i \rangle|^2$ will go to 0.

• $(3) \implies (2)$, similar.

4.4 Fourier Series

- 1. Is $\left\{\frac{1}{\sqrt{2\pi}}e^{inx}:n\in\mathbb{Z}\right\}$ an ONB for $L^2([-\pi,\pi],\mathbb{C})$?
- 2. Is Span $\{e^{inx}: n \in \mathbb{Z}\}$ dense in $L^2([-\pi, \pi], \mathbb{C})$?
- 3. Is Span $\left\{e^{inx}:n\in\mathbb{Z}\right\}$ dense in $L^1([-\pi,\pi],\mathbb{C})$

Definition 4.23

Let $T = [-\pi, \pi)$. We call T the <u>Torus</u> or the <u>circle</u>. We define.

$$L^p(T) = L^p([-\pi, \pi], \mathbb{C})$$

for $1 \leqslant p < \infty$.

Using the norm,

$$||f||_p = \left(\frac{1}{2\pi} \int_T |f|^p\right)^{\frac{1}{p}}$$

 $L^p(T)$ is a separale Banach Space.

Remark.

1. As a group under addition module 2π ,

$$T \cong \mathbb{R}/\mathbb{Z} \cong \{z \in \mathbb{C} : |z| = 1\}$$

- 2. In this way, T is a locally compact abelian group.
- 3. There is a one-to-one correspondence between

$$f:T\mapsto\mathbb{C}$$

and 2π -periodic function

$$f: \mathbb{R} \mapsto \mathbb{C}$$

Definition 4.24

 $f \in L^1(T)$

1. We define the n^{th} $(n \in \mathbb{Z})$ Fourier Coefficients of f by

$$\langle f, e^{inx} \rangle := \frac{1}{2\pi} \int_T f(x) e^{-inx} dx$$

2. We define the Fourier Series of f by

$$f \sim \sum_{n \in \mathbb{Z}} a_n e^{inx}$$

where $a_n = \langle f, e^{inx} \rangle$.

3. We let

$$S_N(f,x) = \sum_{-N}^{N} a_n e^{inx}$$

denote the N^{th} partial sum of the above Fourier series.

Proposition 4.25

Consider the trignometric polynomial $f \in L^1(T)$ given by

$$f(x) = \sum_{n=-N}^{N} a_n e^{inx}$$

for some $a_i \in \mathbb{C}$. For each $-N \leq n \leq N$,

$$\langle f, e^{inx} \rangle = a_n$$

Why?

$$\frac{1}{2\pi} \int_T e^{imx} e^{-inx} dx = \delta_{m,n} = \begin{cases} 1, m = n \\ 0, m \neq n \end{cases}$$

Remark. Suppose $f \in L^1(T)$ is real-valued, $f \sim \sum_{n \in \mathbb{Z}} a_n e^{inx}$.

For $N \in \mathbb{N}$,

$$S_N(f,x) = \sum_{n=-N}^{N} a_n e^{inx}$$

$$= a_0 + \sum_{n=1}^{N} (a_n e^{inx} + a_{-n} e^{-inx})$$

$$= a_0 + \sum_{n=1}^{N} (a_n + a_{-n}) \cos(nx) + i(a_n - a_{-n}) \sin(nx)$$

$$= a_0 + \sum_{n=1}^{N} b_n \cos(nx) + c_n \sin(nx)$$

Now,

$$a_0 = \frac{1}{2\pi} \int_T f(x)e^{-i0x} dx = \frac{1}{2\pi} \int_T f(x) dx$$

$$b_n = a_n + a_{-n}$$

$$= \frac{1}{2\pi} \int_T f(x) (e^{-inx} + e^{inx}) dx$$

$$= \frac{1}{\pi} \int_T f(x) \cos(nx) dx$$

$$c_n = i(a_n - a_{-n})$$

$$= \frac{i}{2\pi} \int_T f(x)(e^{-inx} - e^{inx}) dx$$

$$= \frac{1}{\pi} \int_T f(x) \sin(nx) dx$$

are all real-valued.

4.5 Fourier Coefficients

Proposition 4.26

$$f,g \in L^1(T)$$

1.
$$\langle f + g, e^{inx} \rangle = \langle f, e^{inx} \rangle + \langle g, e^{inx} \rangle$$

2. For
$$\alpha \in \mathbb{C}$$
, $\langle \alpha f, e^{inx} \rangle = \alpha \langle f, e^{inx} \rangle$

3. If
$$\overline{f}: T \mapsto \mathbb{C}$$
 is defined by $\overline{f}(x) = \overline{f(x)}$, then $\overline{f} \in L^1(T)$ and $\langle \overline{f}, e^{inx} \rangle = \overline{\langle f, e^{inx} \rangle}$

Proof.

- 1. Trivial
- 2. Trivial

3.
$$|f| = |\overline{f}| \Longrightarrow \overline{f} \in L^1(T)$$
,

$$\begin{split} &\left\langle \overline{f},e^{inx}\right\rangle \\ &= \frac{1}{2\pi} \int_{T} \overline{f}(x)e^{-inx}dx \\ &= \frac{1}{2\pi} \int_{T} \overline{f(x)e^{inx}}dx \\ &= \frac{1}{2\pi} \int_{T} Re(\overline{f(x)e^{inx}})dx + \frac{i}{2\pi} \int_{T} Im(\overline{f(x)e^{inx}})dx \\ &= \frac{1}{2\pi} \int_{T} Re(f(x)e^{inx})dx - \frac{i}{2\pi} \int_{T} Im(f(x)e^{inx})dx \\ &= \overline{\frac{1}{2\pi} \int_{T} f(x)e^{inx}dx} \\ &= \overline{\frac{1}{2\pi} \int_{T} f(x)e^{inx}dx} \\ &= \overline{\frac{1}{2\pi} \int_{T} f(x)e^{inx}dx} \end{split}$$

Proposition 4.27

 $f \in L^1(T)$, $\alpha \in \mathbb{R}$. By a previous remark, we may view $f : \mathbb{R} \mapsto \mathbb{C}$ as a 2π -periodic function which is integrable over T. For $\alpha \in \mathbb{R}$, $f_\alpha : \mathbb{R} \mapsto \mathbb{C}$ given by $f_\alpha(x) = f(x - \alpha)$ is integrable over T and $\langle f_\alpha, e^{inx} \rangle = \langle f, e^{inx} \rangle e^{-in\alpha}$

Proposition 4.28

$$f \in L^1(T)$$
. $\forall n \in \mathbb{Z}$, $|\langle f, e^{inx} \rangle| \leqslant ||f||_1$

Proof.

$$\left| \left\langle f, e^{inx} \right\rangle \right| = \left| \frac{1}{2\pi} \int_{T} f(x) e^{-inx} dx \right|$$

$$\leq \frac{1}{2\pi} \int_{T} \left| f(x) e^{-inx} \right| dx$$

$$= \frac{1}{2\pi} \int_{T} \left| f(x) \right| dx$$

Corollary 4.29

$$f_k \mapsto f \text{ in } L^1(t),$$

$$\forall n \in \mathbb{Z}, \ \left\langle f_k, e^{inx} \right\rangle \mapsto \left\langle f, e^{inx} \right\rangle$$

Proof.

$$\begin{aligned} & \left| \left\langle f_k, e^{inx} \right\rangle - \left\langle f, e^{inx} \right\rangle \right| \\ &= \left| \left\langle f_k - f, e^{inx} \right\rangle \right| \\ &\leqslant \|f_k - f\|_1 \longrightarrow 0 \end{aligned}$$

Remark. Let Trig(T) denote the set of Trigonometric polynomials on T. By A3, $\overline{Trig(T)} = L^1(T)$

Theorem 4.30: [Riemann-Lebesgue Lemma]

If $f \in L^1(T)$, then

$$\lim_{|n|\to\infty}\left\langle f,e^{inx}\right\rangle =0$$

Proof. Let $\varepsilon > 0$ be given and let $P \in \operatorname{Trig}(T)$ such that $||f - P||_1 \leqslant \varepsilon$. Say $P(x) = \sum_{k=-N}^N a_k e^{ikx}$. For |n| > N, we have that $\langle P, e^{inx} \rangle = 0$, so

$$\left|\left\langle f, e^{inx}\right\rangle\right| = \left|\left\langle f - P, e^{inx}\right\rangle\right| \leqslant \|f - P\|_1 < \varepsilon$$

4.6 Vector-Valued Integration

Definition 4.31

Let B be a Banch space and let $f : [a, b] \to B$ be a function. Consider a partition $P : a = t_0 < t_1 < \ldots < t_n = b$ of [a, b]. We define a Riemann sum of f over P by

$$S(f, P) = \sum_{i=1}^{n} f(t_i^*)(t_i - t_{i-1}) \in B$$

where each $t_i^* \in [t_{i-1}, t_i]$.

Definition 4.32

Let B and f Be as above. We say f is Riemann Integrable if there exists $z \in B$ such that $\forall \varepsilon > 0$, there is a partition P_{ε} of [a, b] such that whenever P is a refinement of P_{ε} and S(f, p) is a Riemann sum then

$$||S(f,P)-z||<\varepsilon$$

We call z the integral of f over [a,b] and write $z = R \int_a^b f(x) dx$.

A natural question to ask would be: Why are we doing this only for Banach Space?

Theorem 4.33: [Cauchy Criterion]

Let B be a Banach space and let $f:[a,b] \to B$ be a function. Then f is Riemann Integrable if and only if $\forall \varepsilon > 0$, there exists a partition P_{ε} of [a,b] such that whenever P and Q are refinements of P_{ε} we have,

$$||S(f,p) - S(f,Q)|| < \varepsilon$$

for any Riemann sums S(f, P) and S(f, Q).

Proof. Suppose f is Riemann integrable with $z = R \int_a^b f(x) dx$. Let $\varepsilon > 0$ be given. We may find a partition $P_{\varepsilon/2}$ such that whenever P is a refinement partition of $P_{\varepsilon/2}$ then

$$||S(f,P) - S(f,Q)|| \leqslant ||S(f,P) - z|| + ||z - S(f,Q)|| < \varepsilon$$

Conversely, assume the Cauchy Criterion holds. In particular, for each $n \in \mathbb{N}$, we may find a partition P_n of [a,b] which corresponds to $\varepsilon = \frac{1}{n}$, as per Cauchy Criterion. Without loss of generality, we may assume that each P_{n+1} is a refinement of P_n . For each $n \in \mathbb{N}$, let $S(f,P_n)$ be a Riemann sum. Let $\varepsilon > 0$ be given. Choosing $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$, we see that for $m, n \geqslant \mathbb{N}$,

$$||S(f, P_m) - S(f, P_n)|| < \frac{1}{N} < \varepsilon$$

Since B is a Banach Space, $S(f, P_n) \rightarrow z \in B$

We claim that f is Riemann Integrable with $R \int_a^b dx = z$. Let N and P_N be as above. Moreover,

we know $\exists M>N$ such that $\|S(f,P_M)-z\|<\frac{\varepsilon}{2}\|$. Now if P is any refinement partition of P_N , then

$$||S(f, P) - z|| \le ||S(f, P) - S(f, P_M)|| + ||S(f, P_M) - z|| < \varepsilon$$

Theorem 4.34

If B is a Banach Space and $f:[a,b] \to B$ is continuous, then f is Riemann integrable.

4.7 Summability Kernels

Definition 4.35

 $f,g \in L^1(T)$. The <u>convolution</u> of f and g is the functions

$$f * g : T \mapsto \mathbb{C}$$

given by

$$(f * g)(x) = \frac{1}{2\pi} \int_{T} f(t)g(x-t)dt = \frac{1}{2\pi} \int_{T} f(t)g_{t}(x)dt$$

Facts:

- 1. Given $f, g \in L^1(T)$, $f * g \in L^1(T)$ as well.
- 2. $||f * g||_1 \le ||f||_1 ||g||_1$
- 3. This means $L^1(T)$ a Banach Algebra (Banach Space with continuous multiplication, we can think convolution as a "multiplication").

Let C(T) denote the set of continuous functions $T \to \mathbb{C}$

Definition 4.36

A <u>summability kernel</u> is a sequence $(K_n) \subseteq C(T)$ such that

- 1. $\frac{1}{2\pi} \int_T K_n = 1$
- 2. $\exists M$, $\forall n$, $||K_n||_1 \leqslant M$
- 3. $\forall 0 < \delta < \pi$,

$$\lim_{n \to \infty} \left(\int_{-\pi}^{-\delta} |K_n| + \int_{\delta}^{\pi} |K_n| \right) = 0$$

This means summability kernels are concentrated at 0.

Proposition 4.37

Let $(B, \|\cdot\|_B)$ be a Banach Space (with scaler \mathbb{C} . Let $\varphi : T \mapsto B$ be continuous. Let $(K_n) \subseteq C(t)$ be a summability kernel. Then

$$\lim_{n \to \infty} \frac{1}{2\pi} \quad \underbrace{\int_T K_n(t)\varphi(t)dt}_{T} = \varphi(0)$$

in the B-norm.

Remark. $\varphi:T\to L^1(T)$, given by

$$\varphi(t) = f_t = f(x - t)$$

is continuous.

Theorem 4.38

 $f \in L^1(T)$, K_n is a summability kernel. In $L^1(T)$,

$$f = \lim_{n \to \infty} K_n * f$$

Proof. Let
$$\varphi(t) = f(x - t)$$

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_T K_n(t)\varphi(t)dt = \varphi(0)$$

$$\implies \lim_{n \to \infty} \frac{1}{2\pi} \int_T K_n(t)f(x-t)dt = \varphi(0) = f(x-0) = f(x)$$

$$\implies \lim_{n \to \infty} (K_n * f)(x) = f(x)$$

4.8 Dirichlet Kernel

We want to find (K_n) such that $K_n * f = S_n(f)$, which is the n^{th} partial sum of Fourier Series of f.

Remark. Let $f \in L^1(T)$. For $n \in \mathbb{Z}$ consider

$$\varphi_n(x) = e^{inx} \in L^1(T)$$

Then

$$(\varphi_n * f)(x)$$

$$= \frac{1}{2\pi} \int_T \varphi_n(t) f_t(x) dt$$

$$= \frac{1}{2\pi} \int_T e^{int} f(x - t) dt$$

$$= \frac{1}{2\pi} e^{inx} \int_T e^{-in(x - t)} f(x - t) dt$$

$$= \frac{1}{2\pi} e^{inx} \int_T e^{-in(-t)} f(-t) dt$$

$$= \frac{1}{2\pi} e^{inx} \int_T e^{-int} f(t) dt$$

$$= e^{inx} \langle f, e^{inx} \rangle$$

Remark. $f \in L^1(T)$, if $P(x) = \sum_{k=-n}^n a_k e^{ikx}$, then

$$(P * f)(x)$$

$$= \frac{1}{2\pi} \int_{T} P(t)f(x - t)dt$$

$$= \sum_{k=-n}^{n} \frac{a_n}{2\pi} \int_{T} e^{ikt} f(x - t)dt$$

$$= \sum_{k=-n}^{n} a_n (\varphi_n * f)(x)$$

$$= \sum_{k=-n}^{n} a_n e^{ikx} \langle f, e^{ikx} \rangle$$

Definition 4.39

 $D_n(x) = \sum_{k=-n}^n e^{ikx}$ is the <u>Dirichlet Kernel</u> of order n. And

$$(D_n * f)(x)$$

$$= \sum_{k=-n}^{n} e^{ikx} \langle f, e^{ikx} \rangle$$

$$= S_n(f, x)$$

which is the n^{th} partial sum we want. However, it's NOT a summability kernel.

4.9 Fejér Kernel

<u>Idea</u>: $(x_n) \subseteq \mathbb{C}$, consider

$$y_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Exer: If $x_n \to x$, then $y_n \to y$.

Definition 4.40

The Fejér Kernel of order n is

$$F_n(x) = \frac{D_0(x) + D_1(x) + \ldots + D_n(x)}{n+1}$$

Remark.

$$F_0(x) = D_0(x) = 1$$

$$F_1(x) = \frac{e^{-x} + 2e^{i0x} + e^{ix}}{2}$$

$$F_2(x) = \frac{e^{-2x} + 2e^{-x} + 3e^{i0x} + 2e^{ix} + e^{i2x}}{3}$$

$$\vdots$$

$$F_n(x) = \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1}\right) e^{ikx}$$

Remark. (F_n) is a summability kernel.

Definition 4.41

$$F_n * f = \frac{1}{n+1} \sum_{k=0}^{n} D_k * f$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} S_k(f)$$

$$= \frac{S_0(f) + S_1(f) + \dots + S_n(f)}{n+1}$$

$$=: \sigma_n(f)$$

which is the n^{th} Cesaro mean.

Theorem 4.42

$$f \in L^1(T)$$
, (F_n) Fejér.

$$\lim_{n \to \infty} F_n * f$$

$$= \lim_{n \to \infty} \sigma_n(f)$$

$$= f$$

in $L^1(T)$.

Remark. If $(S_n(f))$ converges in $L^1(T)$ then $S_n(f) \to f$ in $L^1(T)$.

4.10 Fejér's Theorem

 $\underline{\text{Idea:}}\ L^1$ convergence is great theoretically, but pointwise convergence is practical.

Theorem 4.43: [Fejér's Theorem]

For $f \in L^1(T)$ and $t \in T$ consider

$$\omega_f(t) = \frac{1}{2} \lim_{x \to 0^+} (f(t+x) + f(t-x))$$

provided the limit exists, then

$$\sigma_n(f,t) \to \omega_f(t)$$

In particular, if f is continuous at t then

$$\sigma_n(f,t) \to f(t)$$

In practice:

- 1. Fix $x \in T$
- 2. Prove $(S_n(f,x))$ converged
- 3. Then

$$S_n(f,x) \to \omega_f(x)$$

4. If f is continuous at x then $S_n(f,x) \to f(x)$, i.e. S(f,x) = f(x).

Example 4.44

 $f \in L^1(T), \ f(x) = |x|,$

$$S_n(f, x) = a_0 + \sum_{k=1}^{n} (b_k \cos(kx) + c_k \sin(kx))$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| dx = \frac{\pi}{2}$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(kx) dx$$

$$= \frac{2(-1)^k - 2}{k^2 \pi}$$

$$c_k = \frac{1}{\pi} \int_{\pi}^{\pi} |x| \sin(kx) dx = 0$$

so

$$S_n(f,x)$$

$$= \frac{\pi}{2} + \frac{2}{\pi} \sum_{k=1}^n \left(\frac{(-1)^k - 1}{k^2} \cos(kx) \right)$$

$$= \frac{\pi}{2} + \frac{2}{\pi} \sum_{k=1}^{(n+1)/2} \left(\frac{-2}{(2k-1)^2} \cos((2k-1)x) \right)$$

Note: $(S_n(f,x))$ converges by comparison with $\sum \frac{1}{(2x-1)^2}$. Since f is continuous,

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos((2k-1)x)}{(2k-1)^2}$$

1. Taking x = 0:

$$0 = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \implies \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}$$

2.

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2} + \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$$
$$= \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} + \frac{\pi^2}{8}$$
$$\implies \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

4.11 Homogeneous Banach Space

Definition 4.45

A homogeneous Banach Space is a Banach Space $(B, \|\cdot\|_b)$ such that

- 1. B is a subspace of $L^1(T)$
- 2. $\|\cdot\|_1 \leq \|\cdot\|_b$
- 3. $\forall f \in B, \forall \alpha \in T, \|f_{\alpha}\|_{B} = \|f\|_{B}$ (assuming $f_{\alpha} \in B$).
- 4. $\forall f \in B, \forall t_0 \in T$,

$$\lim_{t \to t_0} ||f_t - f_{t_0}||_B = 0$$

Example 4.46

$$(L^p(T), \|\cdot\|_p)$$
 $(p < \infty).$

Theorem 4.47

Let B be a homogeneous Banach Space (K_n) summability kernel. $\forall f \in B$,

$$\lim_{n \to \infty} ||K_n * f - f||_B = 0$$

Proof.

1.
$$\underbrace{\frac{1}{2\pi} \int_{T} K_n(t) f_t dt}_{\text{B-valued}} = \underbrace{K_n * f}_{L^1 - valued}$$

- 2. $\lim_{n\to\infty}\frac{1}{2\pi}\int_T K_n(t)\varphi(t)dt=\varphi(0)$, for all continuous $\varphi:T\to B$
- 3. $\varphi: T \to B, \varphi(t) = f_t$ is continuous $\forall f \in B$
- 4. $||K_n * f f||_B \to 0$

Remark. 1. B norm Banach Space. Taking $K_n = F_n$ we have

$$\|\sigma_n(f) - f\|_B \to 0$$

for all $f \in B$.

- 2. Taking $B = L^p(T)$
 - (a) $\|\sigma_n(f) f\|_p \to 0$
 - (b) $\overline{Trig(T)} = L^p(T)$

Remark. In $L^2(T)$

1.
$$\overline{Trig(T)} = L^2(T)$$

2.
$$\overline{\operatorname{Span}\{e^{\operatorname{inx}}: n \in \mathbb{Z}\}} = L^2(T)$$

3.
$$\{e^{inx}: n \in \mathbb{Z}\}$$
 ONB

4. Let the above ONB be written as $\{v_1, v_2, \ldots\}$, for all $f \in L^2(T)$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \langle f, v_i \rangle v_i = f$$

5. If
$$v = e^{ikx}$$
,

$$\langle f, v \rangle v = \left(\frac{1}{2\pi} \int_T f(x) e^{-ikx} dx\right) e^{ikx} = \langle f, e^{ikx} \rangle e^{ikx}$$

6.
$$\forall f \in L^2(T)$$
,

$$||S_n(f) - f||_2 \to 0$$