МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИЕТ ИМЕНИ П. О. СУХОГО

Кафедра «Электроснабжение»

ОТЧЁТ

по лабораторной работе №4

по дисциплине: «Электроника и информационно-измерительная техника» «Измерение электрических сопротивлений»

Выполнил: студент гр. ЭН-21

Лопухов И. Р. Принял: доцент Зализный Д. И.

Цель работы: освоить принципы измерения сопротивления изоляции и сопротивления обмоток электродвигателей и с помощью мегаомметра ПСИ-2530.

Функциональные схемы измерений

1. Современные приборы для измерения малых сопротивлений выполняют на основе микроконтроллеров. Такие приборы называются микроомметрами или миллиомметрами. Основной метод измерения четырехпроводный метод, являющийся реализацией метода амперметра вольтметра в одном приборе.

Рисунок 1 - Функциональная схема измерения малых сопротивлений четырёхпроводным методом

2. Измерение больших сопротивлений. Измерение больших сопротивлений — это задача контроля значений сопротивления изоляции различных энергетических устройств. Основными современными приборами для реализации этой задачи являются микропроцессорные мегаомметра. Функциональная схема микропроцессорного мегаомметра.

Рисунок 2 - Функциональная схема электронного мегаомметра

Произведённые измерения

1. Измерение сопротивлений обмоток электродвигателя с разборной схемой.

Обмотки	Сопротивления	Отличия от С1 – С4
C1 - C4	7.38	0%
C2 – C5	7.49	1.49%
C3 – C6	7.44	0.8%

Вывод: процентный разброс не превышает 20%, межвитковых коротких замыкания в обмотках не наблюдается.

2. Измерение сопротивлений обмоток электродвигателя с фиксированной схемой.

Обмотки	Сопротивление	Отличие от С1 – С2
C1 – C2	32.6	0%
C2 – C3	32.3	0.92%
C3 – C1	33.1	1.51%

$$r_1 = \frac{r_{12} + r_{31} - r_{23}}{2} = \frac{33,4}{2} = 16,7 \text{ Om}$$

$$r_2 = \frac{r_{23} + r_{12} - r_{31}}{2} = \frac{31,8}{2} = 15,9 \text{ Om} \; ; \; \Delta r_2 = 4,79 \; \%$$

$$r_3 = \frac{r_{31} + r_{23} - r_{12}}{2} = \frac{32.8}{2} = 16,4 \text{ Om} \; ; \; \Delta r_3 = 1,8 \; \%$$

Сопротивления фаз в звезде r_1, r_2, r_3 прилегающие к выводам $\mathsf{C}_1, \mathsf{C}_2, \mathsf{C}_3$, r_{12}, r_{23}, r_{31} сопротивления, измеренные, соответственно, между выводами.

Вывод: процентный разброс не превышает 20%, межвитковых коротких замыкания в обмотках не наблюдается.

3. Измерение сопротивления изоляции обмотка-корпус электродвигателя с разборной схемой.

t, c	10	20	30	40	50	60
R, ГОм	6.35	7.32	7.79	8.06	8.24	8.4

$$R_{min} = \frac{U}{1000 + 0.01 \cdot P} = \frac{380/220}{1000 + 0.01 \cdot 1.1} = 0.38/0.21 \text{ MOM}$$

Так как значение сопротивления не превышает 0,5 МОм, то в качестве минимально допустимого принимается 0,5 МОм.

$$R_{min.\theta} = R_{min} \cdot 2^{\frac{\theta_{pa6} - \theta}{20}} = 0.5 \cdot 2^{\frac{50 - 20}{20}} = 1.41 \text{ Mom}$$

Измерения сопротивления изоляции обмотка-корпус и коэффициенты абсорбции

Обмотки	<i>R</i> ₁₅ , ГОм	R_{60} , ГОм	K_{ABC}
C1 - C4	6.8	8.37	1.23
C2 - C5	7.47	9.2	1.23
C3 - C6	7.9	9.61	1.22

Вывод: коэффициенты абсорбции оборудования должно быть не ниже 1,3 при температуре 10–30°С, что мы и наблюдаем в ходе работы, а значения сопротивления, измеряемые в гигаомах свидетельствует об отсутствии коротких замыкания обмоток на корпус электродвигателя.

4. Измерение сопротивления изоляции обмотка-обмотка электродвигателя с разборной схемой.

t, c	10	20	30	40	50	60
R, ГОм	9.22	10.3	11.1	11.7	11.9	12.1

Измерения сопротивления изоляции обмотка-обмотка и коэффициенты абсорбции.

Обмотки	R ₁₅ , ГОм	R_{60} , ГОм	K_{ABC}
C1-2	9.68	12.1	1.25
C2-3	9.52	11.96	1.25
C3-1	9.67	12.06	1.24

5. Измерение сопротивления изоляции обмотка-корпус электродвигателя с фиксированной схемой.

Обмотка	R ₁₅ , ГОм	R_{60} , ГОм	K_{ABC}
C1	6.42	18.5	2.88

Вывод: коэффициенты абсорбции, а также сопротивления между обмотками и корпусом в ходе лабораторной работы находились в приемлемых значениях, поэтому можно делать вывод о том, что состояние обмоток двигателя в норме.