Cahier de contrôle biophysique

Première année médecine -constantine-

Classés selon les cours de 2013-2022

L'electricité:

(2022 EMD1)

 $D: R = \rho L / S$

 $E: R = \delta S / L$

()
1/le champ electrique crée en un point M par une charge positive(+q):
A : est inversement proportionnel à cette charge
B :est dirigé vers cette charge
C : dépend de cette charge
E : est proportionnel au carré de cette charge
2/le potentiel éléctrique crée en un point M par une charge négative (-q) :
A : est posetif
B : est inverssement proportionnel à PM ²
C :est inversement proportionnel à PM
D :ne dépend pas de cette charge
E :aucune des réponses n'est vraie
3 /la conductivité d'un matériel est :
A :la résistivité
B :la conductance
C :l'inverse de la résistivité
D :la résistane
E : aucune des réponse n'est vraie
4 /la résistance d'un fil conducteur de longueur L et de section S constante est égale à :
A :R = δ L/ S
B : R = ρ S / L
C: R = δρS/L

 $(\delta : la conductivité, \rho : la résistivité)$

5 /dans la forme local de la loi d'ohm , le vecteur densité de courant i est proportionnel au champ électrique E et le facteur de proportionnalité est :

A: la résistivité, B: la conductivité,

C : la résistanse

,D: la conductanse

E :aucune des réponses n'est vraie

6 / en considère le circuit suivant :

L'intensité du courant i est égale à :

$$(E_1 = 6V, E_2 = 3V, R_1 = 2'\Omega, R_2 = 1'\Omega)$$

7 / dans l'equilibre de donnan :

A :les lois de l'électroneutralité ne sont pas réspéctées

B : la membrane qui sépare les deux compartiments est pérméables aux macromolécules

C : la différence de potentiel (DDP) membranaire est nulle

E : aucune des réponses n'est vraies

8/ on considère le schéma suivant :

Une protéine chargée dans l'un des compartiments et une membrane dialysante séparant les deux compartiments, les ions Na⁺ et Cl⁻ ne sont pas à l'equilibre, donc le flux de diffusion est de :

A: de compartiment 1 vers 2

B: de compartiment 2 vers 1

C : concentrations égales de part et d'autre de la membrane

D : pas d'effet donnan

E : aucune des réponses n'est vraies

9 / (suite de la question 7) soit X la quantité migrante nécéssaire pour atteindre l'équilibre , elle est égale à :

A: 1,6 mmol /L

B: 1,4 mmol/L

C: 1,2 mmol/L

D:1 mmol/L

E: 0,8 mmol/L

10/soit une solution d'acide chlorhydrique de 5 mmol/L les mobilités des ions H⁺ et Cl⁻ sont réspectivement égales à 17,5 μ m/s et 3,86 μ m/s pour un champ de 1 V/cm ,à une température de 25° (F=96500 coulomb/mol) .

La conductivité de cette solution est égale à :

A: $0.5 \, \Omega^{-1} \cdot m^{-1}$ B: $0.4 \, \Omega^{-1} \cdot m^{-1}$ C: $0.3 \, \Omega^{-1} \cdot m^{-1}$ D: $0.2 \, \Omega^{-1} \cdot m^{-1}$ E: $0.1 \, \Omega^{-1} \cdot m^{-1}$

11/' (suite à la question 9) la résistivité de cette solution est égale à :

A: $2'\Omega.m$ B: $2,5'\Omega.m$ C: $3'\Omega.m$

: 3 Ω.m D: 5 Ω.m E: 10 Ω.m

12/lors de l'équilibre éléctrique ,le potentiel de membrane est égale à 120 mvolt ; la force appliquée sur un ion K⁺ à l'intérieur de la membrane est de 3,2.10⁻¹² N. le champ électrique est égal à :

A: 5.10^7 volt/m B: 4.10^7 volt/m C: 3.10^7 volt/m D: 2.10^7 volt/m E: 10^7 volt/m

13/(suite de la question 11)l'épaisseur de la membrane est égal à :

A: 50 Angstroms B: 30 Angstroms C: 40 Angstroms D: 60 Angstroms E: 20 Angstroms

14/ le potentiel de repos :

A : est le DDP entre l'intérieure et l'éxtérieure de la cellule lorsqu'aucun message nerveux ne circule

B : est une variation rapide de DDP

C : entraine une inversion de polarisation

D : traduit une brutale augmentation de la pérmeabilité transmembranaire

E : aucune des réponses n'est vraies

15/ a fin d'enregistrer l'activité électrique du cœur de manière globale ; un certain nombre d'électrodes sont nécessaires

On distingue ainsi les électrodes unipolaires et les bipolaires . par des mesures bipolaires :

A : on enregistre les variations de potentiel entre deux électrodes placées à la surface du corps

B : on étudie l'activité électrique du cœur selon un plan quasi horizontal

C : on enregistre l'activité électrique cardiaque de l'électrode par rapport à un point central

D : on enregistre en meme temps les déviations des membres et lesprécordiales

E : aucune des réponses n'est vraies

Correction:

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
REP	С	С	С	D	В	Α	E	Α	D	Е	E	D	D	Α	Α

(2021 EMD2)

1/la pérmitivité relative du milieu (E_r) est exprimée en :

 $A : N^2/(C.m^2)$

B: $m^2/(C.N^2)$

 $C: N^2m^2/C$

 $D : C^2/(N.m^2)$

E : aucune des réponses n'est vraies

1/la force électrique exercée par une charge q' sur une charge q placée au point M:

A : dépend des deux charges q et q'

B : ne dépend pas de la charge q

C : ne dépend pas de la charge q'

D : proportionnelle au carré de la distance qui sépare les deux charges

E : aucune des réponses n'est vraies

2/ les coordonnées polaires du champ électrique \vec{E} en fonction du potentiel $V(r,\theta)$ sont :

 $A : \mathbb{E}(\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta}) \qquad B : \mathbb{E}(-\frac{\partial V}{\partial r}, -\frac{I}{r}\frac{\partial V}{\partial \theta}) \qquad C : \mathbb{E}(-\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta}) \qquad D : \mathbb{E}(\frac{\triangleright \partial V}{r}, \frac{\partial V}{\partial \theta}) \qquad E : \mathbb{E}(\frac{\partial V}{\partial r}, -\frac{I}{r}\frac{\partial V}{\partial \theta})$

3/ quatre charges positives identiques sont disposées aux sommets d'un carré de coté à :

A : le potentiel électrique au centre du carré est nul

B : le champ électrique au centre du carré est non nul

C : le champ électrique en A est la somme vectorielle des quatres champs crées par les quatres charges

D : la force électrique en A est de type répulsif

E: aucune des reponses n'est vraies

4/deux charges ponctuelles -2q et q(q>0) sont placées en deux points A(-2a,0) et B(2a,0) distants de 4a (a>0)

Le module du champ électrique en O(0,0) milieu de AB vaut :

 $A: Kq/8a^2$

 $B: Kq/4a^2$

 $C: 3Kq/4a^2$

 $D: 5Kq/4a^2$

E : aucune des réponses n'est vraies

5/ (suite de Q 5) le potentiel V en A est :

 $A: Kq/4a^2$

B : Kq/4a

 $C: Kq/16a^2$

D: Kq/2a

E : aucune des réponses n'est vraies

6 /le moment dipolaire est un vecteur :

A : dirigé de la charge + vers la charge -

B : dirigé dans le meme sens que le champ électrique

C :dépendant du potentiel électrique

D :dont l'unité est le coulomb mètre

E : aucune des réponses n'est vraies

7/ l'unité de la conductance est :

 $A : Ω^{-1}.m^{-1}$

B : Ώ.m

C: siemens

D: ohm

E : aucune des réponses n'est vraies

8/on veut fabriquer une résistance R de 10Ω en utilisant un fil de cuivre cylindrique de section S= 0 ,5mm² et de résistivité ρ =1 ,6x10⁻⁸ Ω .m . la langueur du fil qu'on utiliser est égale à :

A:3,125m

B: 31,25m

C: 312,5m

D: 3125m

E : aucune des réponses n'est vraies

9/ (suite de Q9) la résistance R est reliée aux bornes d'une source de courant continu (pile) de fem : E=5V . en supposant la résistance interne de la pile négligeable , l'intensité I du courant qui traversera la résistance R vaut :

A:2A

B:1,5A

C:1A

D:0,5A

E : aucune des réponses n'est vraies

10/(suite de Q9)la puissance dissipée par effet joule dans la résistance vaut :

A: 2,5 W

B: 1,5 W

C:0,5 W

D:3,5 W

E : aucune des réponses n'est vraies

11/on considère le circuit suivant :

$$E_1 = 6V$$
, $E_2 = 4V$, $E_3 = 2V$
 $R_1 = R_2 = 1\Omega$ $R_3 = 2\Omega$

L'intensité du courant I est égale à :

A:4A

B:3A

C:2A

D:1A

E : aucune des réponses n'est vraies

12/la mobilité mécanique molaire est exprimé en :

A: mol/sec

B:sec/kg

C: m²/sec

D :kg/sec

E : aucune des réponses n'est vraies

13/on considère 2 compartiments de volume constant séparés par une membrane pérméable aux ions K⁺ et Cl ⁻ mais impérmeable aux ions R⁻

Les concentrations ioniques sont les suivants :

Compartiment 1 : $[K^{+}]1 = [R^{-}] = 0,1 \text{ mmol/L}$

Compartiment 2 : $[K^+]2=[Cl^-]=0,1 \text{ mmol/L}$

Comme la membrane est pérmeable à certaines particules chargéeset pas à d'autres donc c'est une membrane de donnan . au départ l'ion Cl-n'est pas à l'equilibre 2tant en excès dans le compartiment 2.

Le flux de Cl⁻va allez du compartiment 2 vers 1. Ce flux de charges négatives va crée une différence de potentiel négative ((V1 V2<0)) ce qui va provoquer un flux de K+:

A : du compartiment 1 vers le 2

B: du compartiment 2 vers le 1

C: suivi par un flux de R- de 1 vers 2

D : pas de déplacement de K⁺

E :aucune des réponses n'est vraies

14/ (suite de Q13) on considère un deplacement de n mmol/L nécessaire pour atteindre l'équilibre .il est égale à :

A:0,33

B: 0,033

C:0,133

D:0,1

E:0,2

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
REP	Ε	Α	В	D	С	В	D	С	С	D	Α	D	В	В	В

(2020 EMD3)

1 / la pérmitivité du milieu ε est exprimé en :

 $A : N^2/(C.m^2)$

 $B:m^2/(C.N^2)$ $C:N^2m^2/C$ $D:C^2/(N.m^2)$

E :aucune des réponses n'est vraies

2/le champ électrique crée en un point M par une charge négative :

A :est inversement proportionnel à cette charge

B: est dirigé vers cette charge

C :ne depend pas de cette charge

D :proportinnel au carré de cette charge

E :aucune des réponses n'est vraies

3/le potentiel électrique créé en un point M par une charge négative –q placée au point P :

A : est positif

B :est inversement proportionnel à PM

C :est inversement proportionnel à PM²

D :ne dépend pas de cette charge

E : aucune des réponses n'est vraies

4/soit V(x,y,z) le potentiel électrique en un point M tel que : $V(x,y;z) = -y^2 + 2xyz$

Alors les composantes cartesiennes du champs électrique sont :

A: (-2yz, 2y-2xz, -2xy)

B:(-2yz, 2y+2xz, +2xy)

C: (-2yz, -2y-2xz, -2xy)

D: (2yz, 2y-2xz, 2xy)

E : aucune des réponses n'est vraies

5/ trois charges électriques ponctuelles -q, +q, +2q (q>0) placées en

 M_1 (-a, 0) , O(0,0) et M_2 (a,0) (a>0)

La force électrique exercée sur la charge se trouvant en O(0,0) est égale à :

 $A: -K q^2 i/a^2 \quad B: -2K q^2 i/a^2 \quad C: -3K q^2 i/a^2 \quad D: -4K q^2 i/a^2 \quad E: 0$

6 /(suite de Q4) le champ électriqueen O(0,0) vaut :

 $A: -4K \stackrel{\blacktriangleright}{q} i/a^2 \quad B: -3K \stackrel{\blacktriangleright}{q} i/a^2 \quad C: -2K \stackrel{\blacktriangleright}{q} i/a^2 \quad D: -K \stackrel{\blacktriangleright}{q} i/a^2 \quad E: \stackrel{\blacktriangleright}{0}$

7/(suite de Q4) le potentiel électrique en O est égale :

A: Kq/a

 $B : Kq/a^2$

C:Kq/a³

D : Kq/a⁴

E : aucune des réponses n'est juste

8/dans la forme locale de la loi de joule la puissance dissipée par effet joule est proportionnelle à E² et le facteur de propotionnalité est :

A : la conductivité

B : la résistivité

C : la conductance D : la densité volumique de

charges

9/La résistivité d'un matériau est :

A: la conductivité

B: la conductance

C: l'inverse de la conductivité

D : la résistance

E: aucune des réponses n'est vraie

10/La conductance s'exprime en ;

A: Ohm/mètre

B: Siemens

C: Siemens / mètre D: Ohm E: aucune des réponses Ω

11/La résistance d'un fil conducteur de longueur / et de section S constante est égale à : δπσ

A: R=pl/S (p: résistivité)

B: R=YS/ (y: conductivité)

C: R=yl/S

D: R=pS/I

E: ypS/I

12/ On considère le circuit suivant :

L'intensité du courant I est égale à :

A: 1A

B: 1,5A

C:2A

D:3

E: aucune des réponses n'est vraie

 $E_1=6 \text{ V}, E_2=3 \text{ V}, R_1=2'\Omega, R_2=1'\Omega$

13/La mobilité représente la vitesse par unité de champ, elle est exprimée en :

A: m²/(volt.sec)

B: m²sec/volt

C: m²volt/sec

D: volt.sec/m²

E: aucune des réponses n'est vraie

14/On considère le schéma suivant :

Une protéine chargée dans l'un des compartiments et une membrane dialysante séparant les deux compartiments. Les ions Na* et Cl ne sont pas à l'équilibre, donc le flux de diffusion est de :

A: du compartiment 1 vers le compartiment 2

B: du compartiment 2 vers le compartiment 1 L

C: Concentrations sont égales de part et d'autre de la membrane

D: Pas d'effet Donnan

E: aucune des réponses n'est vraie

15/ (suite de la question29) Soit x la quantité migrante nécessaire pour atteindre l'équilibre, elle est égale:

A: 1,8 mmol/L B: 1,2 mmol/L C: 0,8 mmol/L D: 0,6 mmol/L E: 0,4 mmol/L

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
REI	D	В	В	Α	C	В	Α	Α	С	В	A	D	Α	В	Α

(2019 EMD4)

1/La permitiis ite relative du milieu :

A: est égale a 8.854 10¹ C²/ N. m

B: c'est le produit de la permittivité du vide et de la permittivité du milieu

C: c'est le quotient de la permittivité du vide et de la permittivité du milieu

D: c'est la constante dielectrique

E: aucune des réponses n'est vraie

2/Le champ électrique :

A: est égal au quotient du potentiel par la charge qui le créé

B: est dirigé des potentiels faibles vers les potentiels les plus élevés

C: dérive du potentiel

D: ne dérive pas du potentiel

3/Le champ electrique créé en un point M par une charge négative:

A: est inversement proportionnel à cette charge

B: ne dépend pas de cette charge

D: est dirigé vers cette charge

C: proportionnel au carré de cette charge

E: aucune des réponses n'est vraie

4/Le potentiel electrique créé en un point M par une charge négative -q(4>0)placée au point P:

A: est inversement proportionnel à PM²

B :est inversement proportionnel à PM³

C: ne dépend pas de cette charge

D :est positif

E :aucune des réponses n'est vraies

5/ Le moment dipolaire est un vecteur :

A: dependant du potentiel électrique

B: dont l'unité est le coulomb/mètre

C: dirigé de la charge (+) vers la charge (-)

D: dirigé de la charge (-) vers la charge (+)

E: aucune des réponses n'est vraie

6/Les coordonnées polaires du champ électrique E en fonction du potentiel V(r, 0) sont :

A:
$$E(\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta})$$
 B: $E(-\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta})$ C: $E(\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta})$ D: $E(-\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta})$ E: $E(\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta})$

6/Le flux di du vecteur densité de courant jà travers une surface élémentaire ds est égal à :

E :aucune des réponses n'est vraies

7/Dans la forme locale de la loi d'Ohm. J est proportionnelle à E. et le facteur de proportionnalité est :

A: la résistivité

B: la conductivité avec y = Ne^2/λ

C:la conductivité avec y = N^2e/λ

D: la conductance

E: aucune des réponses n'est vraie

8/Dans la forme locale de la loi de joule, la puissance dissipée par effet joule est proportionnelle à j ² . Et le facteur de proportionnalité est:
A :la conductivité avec $y = N^2e/\lambda$
B :la résistivité avec $\rho=\lambda/Ne^2$
C: la conductance
D : la conductivité avec $y=Ne^2/\lambda$
E: aucune des réponses n'est vraie
9/ unité de la résistivité est :
A:Ω ⁻ 1.m B:Ω.m ⁻¹ C: Siemens.m D: Siemens.m ⁻¹
E: aucune des réponses n'est vraie
10/ La résistance d'un fil conducteur de longueur l et de section S constante est égale à:
A : ρS/I B: R=yI/S C: R=ρI/S D: R=YS/I E:yρs/I
(ρ :résistivité: y: conductivité)
11/ La ddp aux bornes d'un récepteur de feem: e et de résistance interne r traversé par un courant i est :
A :e +ri B:e-ribb C:ri D:ei+r²i E: aucune des réponses n'est vraie
12/le débit molaire électrique est exprimé en:
A: mol/sec B: sec/kg C: m²/sec D: Kg/sec
E: aucune des réponses n'est vraie
13/Dans l'equilibre de Donnan:
A:les concentrations sont égales
B: les lois de l'électroneutralité ne sont pas respectées
C: la différence de potentiel (DDP) membranaire est nulle
D:la membrane qui sépare les deux compartiments n'est pas dialysante
E : aucune des réponses n'est vraic
14/les potentiels évoqués du cortex cérébral:

A: sont provoqués par des stimulations sensitives ou sensorielles

B: c'est l'électroencéphalogramme

C: offrent un exemple d'activité lente spontanée du tissu nerveux

D: offrent un exemple d'activité rapide spontanée du tissu nerveux

E: aucune des réponses n'est vraie

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
REP	D	С	D	Е	D	D	С	В	В	Ε	С	Α	Α	Е	Α

(2018 EMD6)

Q1/ La force électrique exercée par une charge q'sur une charge q placée au point M:

C: dépend des deux charges q et q'

$$|\vec{r}| = \frac{1}{4\pi\epsilon} \frac{|q'q|}{r^2}$$

02/ La permittivité du vide (ε0) est exprimée en:

B:
$$C^2(N.m^2)$$

 ϵ = $\epsilon_0 \epsilon_r$ avec

ε= Permittivité du milieu

 ϵ_0 = permittivité du vide=8,854 10^{-12} C² /(N.m²)

ε_r= permittivité relative du milieu (ou constante diélectrique)

Q3/ Le champ electrique créé en un point M par une charge positive +q:

E: aucune des réponses n'est vraie

$$P$$
 $E_M = K(+q) PM / PM^3$

04/Soit V(x, y, z) le potentiel électrique au point M, tel que:

V(x, y, z)=2x-y-3z alors les composantes cartésiennes du champ électrique sont: B: (-2; +1; +3)

$$\vec{E} = -grad V = -\frac{\partial V}{\partial x}\vec{1} - \frac{\partial V}{\partial y}\vec{j} - \frac{\partial V}{\partial z}\vec{k} = -2\vec{1} - (-1)\vec{j} - (-3)\vec{k} \text{ donc}: \vec{E}(-2; +1; +3)$$

Q5/ Le moment dipolaire est un vecteur:

D: dirigé de la charge (-) vers la charge (+)

06/ Pour un conducteur chargé, en équilibre:

C: les électrons qu'il contient sont au repos en moyenne

07/ Dans la forme locale de la loi de joule, la puissance dissipée par effet joule est proportionnelle à j² (j: densité de courant), et le facteur de proportionnalité est :

B: la résistivité P=pj² (p: résistivité)

08/ L'unité de la conductivité est:

E: aucune des réponses n'est vraie La conductivité s'exprime en Siemens x mètre⁻¹

09/La conductance est:

A: l'inverse de la résistance

10/ Le principal intérêt de l'oscillographe cathodique est :

C: de ne pas introduire de déformation du signal

011/ Soient deux charges électriques $Q_1 = Q_2 = q = 2nC$ placées en $M_1(-a, 0)$ et $M_2(a, 0)$ (a> 0). Le module du champ électrique en O(0, 0) vaut :

D: zéro

$$\vec{E} = K \frac{q}{\|\vec{M}_1O\|^3} \vec{M}_1O + K \frac{q}{\|\vec{M}_2O\|^3} \vec{M}_2O$$

$$\vec{E} = K \frac{q}{a^3} (\vec{M}_1O + \vec{M}_2O) = \vec{0}$$

$$\vec{M}_1O = \vec{a} \vec{1}$$

$$\vec{M}_2O = -\vec{a} \vec{1}$$

$$\vec{M}_3O = \vec{M}_2O = \vec{a}$$

$$\vec{M}_1O = \vec{M}_2O = \vec{a}$$

012/(suite de 011) Le potentiel électrique en O(0, 0) vaut:

B: 2Kq/a

013/ Soit le montage suivant :

La capacité équivalente est égale à : A : 2C

C' en série avec 4C =>
$$\frac{1}{Ceq} = \frac{1}{C'} + \frac{1}{4C} = \frac{1}{4C} + \frac{1}{4C} = \frac{2}{4C} = Ceq = 2C$$

Q14/ Soit le montage suivant:

La résistance équivaleate est égale à:

D: 5R

$$\frac{2R7/2R}{R} \Rightarrow \frac{1}{R!} = \frac{1}{2R} + \frac{1}{2R} = \frac{2}{2R} \Rightarrow R' = R$$

$$4R \text{ en série uvec } R' \Rightarrow Req = 4R + R = 5R$$

15/ Deux condensateurs C_1 et C_2 montés en parallèle et chargés sous 100 V ont pour énergies :

10⁻⁵j 10⁻²j alors la capacité C₁ du condenseur est égale:

$$C_1 = \frac{1}{2}C_1V^2 \implies C_1 = \frac{2\xi_1}{V^2} = \frac{2.10^{-5}}{(100)^2} = 2.10^{-9}F = 2 \text{ nF}$$

Q16/ (suite de Q15) La capacité C, du condensateur est égale:

$$\xi_2 = \frac{1}{2}C_2V^2 \Rightarrow C_2 = \frac{2\xi_2}{V^2} = \frac{2.10^{-2}}{(100)^2} = 2.10^{-6}F = 2\,\mu\text{F}$$

Q17/ Un fil de cuivre cylindrique de 2 mm² de section est parcouru par un courant continu de 2 A. Nous supposons que la densité de courant est uniforme, sa valeur est donc :

D: 10⁶ A.m⁻²

Le conducteur est un fil (voir cours conducteur filiforme) l.8/ (suite de Q17) La résistivité du cuivre utilisé vaut:
$$\rho=1,5\times10^{-8}\Omega$$
. m. En utilisant la forme

18/ (suite de Q17) La résistivité du cuivre utilisé vaut: $\rho=1,5\times10^{-8}\Omega$. m. En utilisant la forme locale de la loi d'ohm, l'intensité du champ électrique est égale à:

D: 0,015 V.m⁻¹

$$j=yE \Rightarrow E = \frac{1}{y}j=\rho j=1,5x10^{-8} x10^{6} =0,015V.m^{-1}$$

19/On veut fabriquer une résistance R de 20Ω en utilisant un fil de cuivre cylindrique de section S=5.10⁻⁷ m² et de résistivité p=1,6.10⁻⁸ Ω . M La longueur du fil qu'on doit utiliser est:

A: 625m

$$R = \frac{\rho I}{S} \Rightarrow I = \frac{SR}{\rho} = \frac{5X10^{-7}X20}{1,6.10^{-8}} = 625m$$

20/(suite de Q19) On relie cette résistance aux bornes d'une source de courant continu (pile) de f.e.m.

E=constante et de résistance interne $r=5\Omega$. L'intensité du courant qui traverse R est de 0,4A alors la f.e.m du générateur est égale à: D: 10V

(2017 EMD6)

1/la permitivité relative du milieu est :

A: est égale à 8,854 10⁻¹² C²/N. m² B

B : c'est la constante diélectrique

C: c'est le produit de la permittivité du vide et de la permittivité du milieu

D: c'est le quotient de la permittivité du vide et de la permittivité du milieu

E: aucune des réponses n'est vraie

2/ Le champ électrique :

A : est dirigé des potentiels faibles vers les potentiels les plus élevés

B: est égal au quotient du potentiel par la charge qui le créé

C: ne dérive pas du potentiel

D: dérive du potentiel

E: aucune des réponses n'est vraie

3/Quatre charges positives identiques sont disposées aux sommets A, B, C, et D d'un carré de côté a:

A: la force électrique en A est de type attractive

B: le potentiel électrique au centre du carré, est nul

C: le champ électrique au centre du carré, est non nul

D: le champ électrique en A est la somme vectorielle des quatre champs créés par les quatre charges

E: aucune des réponses n'est vraie

4/ Deux charges +2q et -q (q>0) sont placées en deux points A et B distants de a (a>0):

A: le potentiel électrique en B est négatif

B: le potentiel électrique en A est positif

C: la force électrique exercée sur +2q est inversement proportionnelle au champ électrique en A

D: la force électrique exercée sur +2q est de sens contraire que le champ électrique en A

E: aucune des réponses n'est vrai

5/ Les coordonnées polaires du champ électrique E en fonction du potentiel V(r, 0) sont :

A:
$$\mathbb{E}\left(\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta}\right)$$

A:
$$\mathbb{E}\left(\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta}\right)$$
 B: $\mathbb{E}\left(-\frac{\partial V}{\partial r}, -\frac{I}{r}\frac{\partial V}{\partial \theta}\right)$ C: $\mathbb{E}\left(-\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta}\right)$ D: $\mathbb{E}\left(\frac{I}{r}\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta}\right)$ E: $\mathbb{E}\left(\frac{\partial V}{\partial r}, -\frac{I}{r}\frac{\partial V}{\partial \theta}\right)$

$$C : E \left(-\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta} \right)$$

$$D : E \left(\frac{I \partial V}{r \partial r}, \frac{\partial V}{\partial \theta} \right)$$

$$\mathsf{E} : \mathsf{E} \left(\frac{\partial V}{\partial r}, -\frac{I \partial V}{r \partial \theta} \right)$$

6/ Le moment résultant d'un dipôle de moment dipolaire P placé dans un champ électrique extérieur uniforme É est égal :

A : P.Ē

B: ₽.F

C:PAE

D :qPAE

E: aucune des réponses n'est vraie

7/ Dans un conducteur chargé, en équilibre :

A: le pouvoir des pointes est évité en lui donnant des formes convexes

B: le potentiel électrique est variable à la surface le module du champ électrique à son voisinage est proportionnel à la densité surfacique de charge

C: le module du champ électrique à son voisinage est proportionnel à la densité surfacique de charge

D: le module du champ électrique à son voisinage est inversement proportionnel à la densité surfacique de charge

E: aucune des réponses n'est vraie

8/ Dans le cas de n condensateurs initialement non chargés placés en série:

A: chaque condensateur porte la même énergie que celle du groupement

B :chaque condensateur est soumis à la même ddp

C: La charge du groupement est la somme des charges prises par chaque condensateur D : la charge portée par chaque condensateur est égale à la charge du groupement E: aucune des réponses n'est vraie 9/ Dans la forme locale de la loi d'Ohm, i est proportionnelle à E, et le facteur de proportionnalité est : A: la conductivité avec $y = N^2e/\lambda$. B: la conductivité avec y = Ne^2/λ . C: la résistivité D: la conductance E: aucune des réponses n'est vraie 10/ Dans la forme locale de la loi de joule, la puissance dissipée par effet joule est proportionnelle à j², et le facteur de proportionnalité est : C : la résistivité A: la conductivité B: la résistance D: la conductance E: aucune des réponses n'est vraie 11/ L'unité de la résistivité est : B: Siemens.m-1 D: Ω.m⁻¹ A: Siemens.m C: Ω⁻1m E :aucune des réponses n'est vraies 12/ Un radiateur électrique de 1200 W fonctionne sous une tension continue de 240 V, l'intensité du courant est égale à : A: 0,2 A B:2A C: 0,5 A D: 5 A E: aucune des réponses n'est vraie 13/ (suite de Q12) La résistance du fil est égale à : Α: 30 Ω B: 300 Ω C:48Ω D:4,8Ω E: aucune des réponses n'est vraie 14/ (suite de Q13) Ce fil est constitué d'un alliage de résistivité $\rho = \pi \ 10^{-7} \Omega$.m. Sachant que sa section est de $2,25\pi$ 10^{-2} mm², sa longueur est égale à : D: 67,5 m A: 1,08 m B:10,8 m C:6.75 m E: aucune des réponses n'est vraie 15/ Un fil de cuivre cylindrique de 1 mm² de section est parcouru par un courant continu de 5 A. Nous supposons que la densité de courant est uniforme, sa valeur est donc : A: 5.10^6 A.m⁻² B: 5.10^6 m²/ A C: 5.10^6 A.m² D: 5.10^6 A

E: aucune des réponses n'est vraie

16/ (suite de Q15) La résistivité, du cuivre utilisé vaut : $p=1,5\times10^{-8}\Omega$.m.

En utilisant la forme locale de la loi d'ohm, l'intensité du champ électrique est égale à

A:0.33 V.m⁻¹

B:3,3 V.m⁻¹ C: 0,75 V.m⁻¹ D: 0,075 V.m⁻¹

E: aucune des réponses n'est vraie

17/ Une batterie de 24V et de résistance interne 1Ω , fournit un courant de 3A. La différence de potentiel aux bornes de la batterie est égale à :

A:21V

B:3V

C: 24V

D: 8V

E: aucune des réponses n'est vraie

18/ (Suite de Q17) La puissance fournie par la batterie vaut :

A:3W

B:27 W

C: 72 W

D: 24 W

E :aucune des réponses n'est vraie

19/ Organes d'enregistrement à haute impédance d'entrée

A: déforment le signal

B: consomment une quantité importante de courant

C: consomment très peu de courant

D: sont des enregistreurs mécaniques

E: aucune des réponses n'est vraie

20/ Une surface élémentaire ds du feuillet électrique possède un moment dipolaire égal à :

A: $e^2 \sigma ds$

B : $e\sigma^2 ds$

C:eds/o

D: σds/e

E: aucune des réponses n'est vraie

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
REP	В	D	Ε	E	В	С	U	۵	В	С	Е	D	C	В	Α	D	Α	С	С	Е
/				\																

(2016 EMD7)

1/ La permittivité du milieu (e) est exprimée en :

 $A: N^2/C.m^2$

B: N²m²/C

 $C: m^2/C.N^2$

 $D: C^2/N.m^2$

E: aucune des réponses n'est vraie

2/ Le champ électrique créé en un point M par une charge négative -q:

A: est proportionnel au carré de cette charge A

B: est inversement proportionnel à cette charge

C: est dirigé vers cette charge

D: ne dépend pas de cette charge

E: aucune des réponses n'est vraie

3/ Le potentiel électrique créé au point M par une charge ponctuelle q placée en un point P :

A: est égal au produit du champ par la charge qui le créé

B: est égal au quotient du champ par la charge qui le créé

C: dérive du champ

D: est inversement proportionnel à PM³

E: aucune des réponses n'est vraie

4/Le champ électrique E créé en un point M:

A: est dirigé des potentiels faibles vers les potentiels élevés

B: est égal à l'intégrale du potentiel créé au point M

C: dépend de la charge placée au point M

D: dérive du potentiel

E: aucune des réponses n'est vraie

5/ Le moment dipolaire est un vecteur :

A: dépendant du potentiel électrique

B: dirigé de la charge (+) vers la charge (-)

C :dont l'unité est le coulomb.mètre

D: dirigé dans le même sens que le champ électrique

E: aucune des réponses n'est vraie

6/ Pour un conducteur en équilibre :

A: sa surface n'est pas une équipotentielle

B: la distribution de charges est volumique

C: le champ électrique est plus grand dans les parties concaves que dans les parties convexes

D: le champ électrique E est tangent à la surface du conducteur

E: aucune des réponses n'est vraie

7/ Dans la forme locale de la loi de joule, la puissance dissipée par effet joule est proportionnelle à j² (j: densité de courant), et le facteur de proportionnalité est :

A: la conductivité B: la conductance C: la résistivité

D: la densité volumique de charges

E: aucune des réponses n'est vraie

8/ Les enregistreurs mécaniques à plume: VA:

A :sont des organes d'enregistrement à basse impédance d'entrée

B : sont des organes d'enregistrement à haute impédance d'entrée

C: sont des enregistreurs sans inertic

D: ne consomment pas de courant

E: aucune des réponses n'est vraie

9/ Le principal intérêt de l'oscillographe cathodique est:

A: dans l'inertie des dispositifs mobiles

B: de ne pas comporter de tracé visible

C: de ne pas introduire de déformation du signal

D: de fournir un tracé sur papier

E: aucune des réponses n'est vraie

10/ Quatre charges q_a , q_b qc et q_d ($q_a = q_B = q_C = q_D = q$) (q>0) sont disposées aux sommets d'un carré ABCD dont les coordonnées cartésiennes sont : A(a,0); B(0,a); C(-a,0) et D(0,-a) (a>0) (voir figure)

Le potentiel électrique créé par cette distribution de charges en O (0,0) est égal :

A: Kq/a B:-Kq/a C: 2Kq/a D: -2Kq/a E: aucune des réponses n'est vraie

11/ (Suite de Q10) Le champ électrique créé par cette distribution de charges en O (0,0) est égal:

A: 2Kqj/a² B:-2Kqj/a² C: 2Kqi/a² D: -2Kqi/a² E: aucune des réponses n'est vraie

012/ (Suite de Q10) Une charge 6q (q>0) est placée en O (0,0) La force électrique s'exerçant sur la charge se trouvant en O (0,0) est égale:

A: $12Kq^2i/a^2$ B: $-12Kq^2i/a$ C : $12Kq^2j/a^2$ D: $-12Kq^2j/a^2$ E: aucune des réponses n'est vraie

Q13/ Un moteur électrique fournit une puissance mécanique de 1000 w. Il est alimenté sous une ddp de 220V, il transforme 75% de l'énergie électrique en énergie mécanique, la puissance électrique apportée par le courant est :

A: e-rl B:e+rl C: el - rl² D: el + rl² E: aucune des réponses n'est vraie

14/(suite de Q13) La fcem du moteur est égale à :

A:25V B: 220V C: 1000V D:165V E:aucune des réponses n'est vraies

15/ (suite de Q13) L'intensité du courant traversant le moteur est égale à :

A: 4,54A B: 1,14A C:6,06A D: 18,18A E:aucune des réponses n'est vraies

16/ On considère le circuit suivant :

L'intensité du courant I, est égale à :

A:5A B: 2,5A C: 3A D: 7,5A E: aucune des réponses n'est vraie

17/(suite Q16) L'intensité du courant I, est égale à :

A:5A B: 7,5A C:3A D: 2,5A E: aucune des réponses n'est vraie -

18/ (suite Q16) L'intensité du courant I, est égale à :

A: 10A B: 7,5A C: 8A D: 12,5A E: aucune des réponses n'est vraie

19/ Trois condensateurs C_1 =400 pF, C_2 =0,2 nF et C_1 = 0,1 nF sont montés en parallèle et chargés sous 220V. La capacité équivalente C du montage vaut:

A: 7 10⁻¹³ F B: 7 10⁻¹² F C: 7 10⁻¹¹ F D: 7 10⁻¹⁰ F E: aucune des réponses n'est vraies

20/ (suite de Q19) L'énergie emmagasinée dans le condensateur équivalent est égale:

A: 16,94 10⁻⁶ J

B: 16,94 10⁻⁸ J

C: 16,94 10⁻¹⁰ J

D: 16,94 10⁻¹² J

E: aucune des réponses n'est vraie

(2015 EMD8)

1/ La permittivité relative du milieu : *

A : c'est le quotient de la permittivité du vide et de la permittivité du milieu

B: c'est le produit de la permittivité du vide et de la permittivité du milieu

C: est égale à 8,854 10⁻¹² C²/N. m²

D: c'est la constante diélectrique

E: aucune des réponses n'est vraie

2/ Le champ électrique :

A : est égal au quotient du potentiel par la charge qui le créé

B: est dirigé des potentiels faibles vers les potentiels les plus élevés

C: dérive du potentiel D: ne dérive pas du potentiel

E: aucune des réponses n'est vraie

3/ Deux charges -q et 2q (q<0) sont placées en deux points A et B distants de a (a>0):

A: la force électrique exercée sur 2q est inversement proportionnelle au champ électrique en B

B: le potentiel électrique en B est négatif

C: le potentiel électrique en A est positif

D: la force électrique exercée sur 2q est de même sens que le champ électrique en B

E®: aucune des réponses n'est vraie

4/Quatre charges positives identiques sont disposées aux sommets d'un carré de côté a:

A: le potentiel électrique au centre du carré, est nul

B: la force électrique en A est de type répulsive

C: le champ électrique au centre du carré, est non nul

D: le champ électrique en A est la somme vectorielle des quatre champs créés par les quatre charges

E: aucune des réponses n'est vraie

5/ Soit $V(r, \theta)$ le potentiel électrique au point M, tel que : $V(r, \theta) = 2r - 3\sin\theta$, alors les composantes polaires du champ électrique sont :

A: (-2,
$$\frac{3}{r}$$
cosθ)

B: (2,
$$\frac{3}{\pi}$$
cosθ)

A:
$$(-2, \frac{3}{r}\cos\theta)$$
 B: $(2, \frac{3}{r}\cos\theta)$ C: $(-2, -\frac{3}{r}\cos\theta)$ D: $(2, -\frac{3}{r}\cos\theta)$

D:
$$(2, -\frac{3}{r}\cos\theta)$$

E: aucune des réponses n'est vra r r

6/ Le moment résultant d'un dipôle de moment dipolaire P placé dans un champ électrique extérieur uniforme É est égal:

Δ.Þ.È

E: aucune des réponses n'est vraie

7/ Dans un conducteur chargé, en équilibre :

A: le module du champ électrique à son voisinage est proportionnel à la densité surfacique de charge

B: le module du champ électrique à son voisinage est inversement proportionnel à la densité surfacique de charge A

C: le pouvoir des pointes est évité en lui donnant des formes convexes

D: le potentiel électrique est variable à la surface

E: aucune des réponses n'est vraie

8/L'unité de la résistivité est :

A: Ω⁻¹.m B: Ω.m⁻¹ C: Siemens.m D: Siemens.m⁻¹ E: aucune des réponses n'est vraie

9/ Pour un amplificateur de tension:

A: on utilise un galvanomètre à plume

B: l'organe d'enregistrement consomme un courant important

C! l'organe d'enregistrement est à basse impédance d'entrée

D : l'organe d'enregistrement est à haute impédance d'entrée

E: aucune des réponses n'est vraie

10/ Deux charges ponctuelles 2q et-3q (q>0) sont placées en deux points A(-2a, 0) et B(2a, 0) distants de 4a (a>0). Le module du champ électrique en O(0, 0) milieu de AB vaut :

A: $11\text{Kg}/4a^2$ B: $9\text{Kg}/4a^2$ C: $7\text{Kg}/4a^2$

D: 5Kq/4a² E: aucune des réponses n'est vraie

11/ (suite de Q10) Le potentiel V en A est égal à

A: -3Kq/4a² B:-3Kq/4a² C: Kq/2a² D: Kq/2a E: aucune des réponses n'est vraie

12/ (suite de Q10) Le potentiel V en B est égal à :

A: -3Kq/4a² B:-3Kq/4a C: Kq/2a² D: Kq/2a E: aucune des réponses n'est vraie

13/ On veut fabriquer une résistance R de 10Ω en utilisant un fil de cuivre cylindrique de rayon r = 0,4mm et de résistivité p=1,6x10⁻⁸ Ω .m. La longueur du fil qu'on doit utiliser est égale à :

A: 0,314m B: 3,14m C: 31,4m D: 314m E: aucune des réponses n'est vraie

14/ (suite de Q13), la résistance R est reliée aux bornes d'une source de courant continu (pile) de fem: E=5V. En supposant la résistance interne de la pile négligeable, l'intensité I du courant qui traversera la résistance R vaut:

A: 0,5A B: 1A C: 1,5A D: 2A E: aucune des réponses n'est vraie

15/ (suite de Q14), la puissance dissipée par effet joule dans la résistance vaut :

A: 0,5W B: 1,5w C:2,5w D: 3,5w E: aucune des réponses n'est vraie

16/ Un radiateur électrique de 1800 W fonctionne sous une tension continue de 200V la résistance du fil est égale à:

A: $6,66\Omega$ B: $66,6\Omega$ C: $2,22\Omega$ D: $22,2\Omega$ E: aucune des réponses n'est vraie

17/ On considère le circuit suivant :

$$E_1 = 6V$$
, $E_2 = 4V$, $E_3 = 2V$
 $R_1 = R_2 = 1\Omega$ $R_3 = 2\Omega$

L'intensité du courant i est égal à :

A:4A B:3A C:2A D:1A E: aucune des réponses n'est vraie

18/ Un condensateur de $2\mu F$ et un condensateur de $3\mu F$ sont montés en parallèle et chargés sous 500V. La capacité équivalente vaut:

A: 1,2μF B: 0,2μ C: 5μF D: 6μF E: aucune des réponses n'est vraie

19/ (suite de Q18), la ddp gux bornes du condensateur de capacité 2μF vaut :

A: 300V B: 200V C:500V D: 100V E: aucune des réponses n'est vraie

20/ (suite de Q19) L'énergie emmagasinée dans le condensateur équivalent vaut :

A: 0.25J B: 0,675J

C: 0,325J

D: 0,15J

E: aucune des réponses n'est vraie

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
REP	D	С	Ε	В	Α	В	Α	Ε	D	D	В	D	D	Α	С	D	С	С	С	Ε

(2014 EMD9)

1/ Deux charges +q et-2q (q>0) sont placées en deux points A et B distants de a (a>0):

A: la force électrique exercée sur -2q est inversement proportionnelle au champ électrique en B

B: le potentiel électrique en B est négatif

C: le potentiel électrique en A est positif

D: la force électrique exercée sur -2q est de même sens que le champ électrique en B

E :aucune des réponses n'est vraie

2/La permittivité relative du milieu :

A: est égale à 8,854 10⁻¹² C²/N. m²

B: c'est le produit de la permittivité du vide et de la permittivité du milieu

C: c'est le quotient de la permittivité du vide et de la permittivité du milieu

D : c'est la constante diélectrique

E: aucune des réponses n'est vraie.

3/ Les coordonnées polaires du champ électrique E en fonction du potentiel V(r, 0) sont:

A:
$$E(\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta})$$

$$B : E \left(-\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta} \right)$$

$$C : E \left(\frac{I \partial V}{r \partial r}, \frac{\partial V}{\partial \theta} \right)$$

$$\mathsf{A} : \stackrel{\blacktriangleright}{\mathsf{E}} \left(\frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta} \right) \qquad \mathsf{B} : \stackrel{\blacktriangleright}{\mathsf{E}} \left(-\frac{\partial V}{\partial r}, -\frac{\partial V}{\partial \theta} \right) \qquad \mathsf{C} : \stackrel{\blacktriangleright}{\mathsf{E}} \left(\frac{I}{r} \frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta} \right) \qquad \mathsf{D} : \stackrel{\blacktriangleright}{\mathsf{E}} \left(-\frac{\partial V}{\partial r}, -\frac{I}{r} \frac{\partial V}{\partial \theta} \right) \qquad \mathsf{E} : \stackrel{\blacktriangleright}{\mathsf{E}} \left(\frac{\partial V}{\partial r}, -\frac{I\partial V}{r} \frac{\partial V}{\partial \theta} \right)$$

$$\mathsf{E} : \mathsf{E} \left(\frac{\partial V}{\partial r}, -\frac{I \partial V}{r \partial \theta} \right)$$

4/ Le moment résultant d'un dipôle de moment dipolaire P placé dans un champ électrique extérieur uniforme E est égal:

A:P.E

B:PAE

C: -P.E

D: a PAE

E: aucune des réponses n'est vraie

5/ Le champ électrique créé dans le vide au voisinage immédiat d'un conducteur en équilibre :

A: est tangent à la surface du conducteur

B: est nul

C: est perpendiculaire à la surface du conducteur D: a un module égal à $\sigma/2\varepsilon_0$ E: aucune des réponses n'est vraie 6/ La résistivité d'un matériau est : A: la conductivité B: l'inverse de la conductivité C: la conductance D: consomment une quantité importante de courant E: aucune des réponses n'est vrai 7/ Organes d'enregistrement à haute impédance d'entrée : A: déforment le signal B: sont des enregistreurs mécaniques C :consomment très peu de courant D: consomment une quantité importante de courant E :aucune des réponses n'est vraie 8/ Un fil de cuivre cylindrique de 1 mm² de section est parcouru par un courant continu de 1 A. Nous supposons que la densité de courant est uniforme, sa valeur est donc : B: 10⁵ A.m⁻¹ A: 10⁶ A.m⁻² C: 10⁴ A.m⁻² D: 103 A.m-2 E: aucune des réponses n'est vraie 9/ (suite de Q8) La résistivité du cuivre utilisé vaut: ρ = 1,5x10⁻⁸ Ω m En utilisant la forme locale de la loi d'ohm, l'intensité du champ électrique est égale à: B: 0,115 V.m¹ C: 0,215 V.m⁻¹ A: 0,015 V.m⁻¹ D: 0,315 V.m⁻¹ E: aucune des réponses n'est vraie 10/ Dans la forme locale de la loi de Joule, P est proportionnelle à E², et le facteur de proportionnalité est : A: la conductance C: la résistance D: la résistivité B: la conductivité E: aucune des réponses n'est vraie 11/ Soit le montage suivant:

La capacité équivalente est égale à :

Α:1 μF

B :2 μF

C :3 µF

D:4 μF

E : aucune des réponses n'est vraies

12/ Soit le montage suivant :

La résistance équivalente est égale à :

Α:1Ω

B: 2Ω

C:30

D:5Ω

E : aucune des réponses n'est vraie

13/ Trois charges électriques $Q_1=Q_2=Q_3=e=-1.6\ 10^{1\circ}$ C placées en $M_1(-a,0)$, M(a,0) et O(0,0)(a>0). Le module de la force électrique exercée sur la charge se trouvant en M₁ est égal à:

 $A : 5 \text{ Ke}^2/4a^2$

B: $3Ke^2/4a^2$ C: $Ke^2/4a^2$

 $D : 9 \text{ Ke}^2/4a^2$

E :aucune des réponses n'est vraies

14 /Deux charges ponctuelles-q et +3q (q>0) sont placées en deux points A et B distants de 2a (a>0). Le module du champ électrique en O(0, 0) vaut :

A: $4Kq/a^2$

B: $3Kq/a^2$ C: $2Kq/a^2$

 $D : Kq/a^2$

E: aucune des réponses n'est vraie

15 //(suite de Q14) Le potentiel V au point O milieu de AB est égal à :

A: 4Kq/a

B: 3Kq/a

C:2Kq/a

D:Kq/a

E: aucune des réponses n'est vraie

16/deux condensateurs C₁=300pF et C₂=900pF sont montés en parallèle et chargés sous 240V. La charge sur le condensateur de capacité C₁ est égale à :

A: 7,2 10⁻² C

B: 7,2 10⁻⁴ C

C: 7,2 10⁻⁶ C D: 7,2 10⁻⁸ C

E: aucune des réponses n'est vraie

17/(suite de la question 16) La charge sur le condensateur de capacité C₂ est égale à :

A:21,6. 10⁻⁸ C B: 21,6.10⁻⁶ C

C:21,6 10⁻⁴ C

D: 21,6 10⁻² C

E :aucune des réponses n'est vraies

18 / La force électromotrice d'une batterie est égale à 32V et sa résistance interne à 302. Elle est connectée à une résistance de 502. Le courant dans le circuit vaut :

A: 5A

B: 4A

C: 3A

D: 2A

E: aucune des réponses n'est vraie

19/(suite de la question 18) La différence de potentiel aux bornes de la batterie est égale à :

A:5V

B: 10V

C: 15V

D:20V

E :aucune des réponses n'est vraies

20/ On considère le circuit suivant :

 $E_1 = 5V$, $E_2 = 8V$, $E_3 = 3V$

L'intensité du courant i est égale à :

A:2A

B:1A

C:1,5A

D:0,5A

E :aucune des réponses n'est vraies

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
REP	Ε	D	D	В	С	В	C	Α	В	В	D	Α	Α	Α	C	D	Α	В	D	В

(2013 EMD10)

1/1'interaction électrique entre deux particules chargées est

A: proportionnelle au carré de la distance qui sépare les deux charges

B: proportionnelle aux charges

C: inversement proportionnelle aux charges

D: proportionnelle à la distance qui sépare les deux charges

E: aucune des réponses n'est vraic

2/ La permittivité du vide (E) est exprimée en:

A: $N/(C.m^2)$

B: $m/(C.N^2)$ D: $(/(N m^2)$

 $C:N^2.m^2/C$

E: aucune des réponses n'est vraie

3/ Le champ électrique créé en un point M par une charge négative:

A: est dirigé vers cette charge

B: est inversement proportionnel à cette charge

C: ne dépend pas de cette charge

D: proportionnel au carré de cette charge

E: aucune des réponses n'est vraie

4/ Soit V(x,z) le potentiel électrique au point M. tel que : $V(x, y, z) = y^2 + xyz$, alors les composantes cartésiennes du champ électrique sont:

A: (yz ; 2y + xz; xy)

B: (-yz; 2y + xz; xy)

C: (yz, -2y-xz; xy)

D:(-yz: -2y-xz; -xy)

E: aucune des réponses n'est vraie

5/ Le moment dipolaire est un vecteur :

A: dont l'unité est le coulomb/mètre

B: dépendant du potentiel électrique

C: dirigé de la charge (-) vers la charge (+)

D: dirigé de la charge (+) vers la charge (-)

E: aucune des réponses n'est vraie

6/ Pour un conducteur chargé, en équilibre :

A: le potentiel électrique n'est pas constant à la surface

B: La distribution de charges est volumique

C: les électrons qu'il contient sont au repos en moyenne

D: le pouvoir des pointes est évité en lui donnant des formes convexes de fortes courbures E: aucune des réponses n'est vraie

7/ Dans la forme locale de la loi de joule, la puissance dissipée par effet joule est proportionnelle à E^2 , et le facteur de proportionnalité est:

A: la conductivité

B: la résistivité

C: la conductance

D: la densité volumique de charges

E: aucune des réponses n'est vraie

8/ La conductance s'exprime en:

A: Ohm/mètre

B: Siemens/mètre

C: Siemens

D: Ohm

E: aucune des réponses n'est vraie

9/ Les enregistreurs mécaniques à plume:

A: sont des organes d'enregistrement à basse impédance d'entrée

B: sont des organes d'enregistrement à haute impédance d'entrée

C: sont des enregistreurs sans inertic

D: ne consomment pas de courant

E: aucune des réponses n'est vraie

10/ Soit un noyau d'uranium fixe de charge positive Ze (Z=92, e=1,6. 10⁻¹⁹ C) (K=9. 10⁹ S.J) Le module du champ électrique créé par ce noyau à une distance r =10 m vaut :

B: 13.25 NC⁻¹ C:1,32 NC⁻¹ D: 0,13 NC⁻¹ A: 132,48 NC⁻¹

E: aucune des réponses n'est vraie

11/ (Suite de Q10) Le potentiel électrique créé par ce noyau à une distance r=10⁻³vaut :

A: 132,48 10⁻³ Volt B: 132,48 10⁻⁶ Volt C: 132,48 Volt D: 13,25 Volt

E: aucune des réponses n'est vraie

12/ (Suite de Q10) On amène une particule (noyau d'Hélium de charge positive 2e) depuis l'infini jusqu'à la distance r= 10⁻³ m du noyau Le module de la force electrique agissant sur a vaut

A: 423,94. 10-¹⁹ N

B: 42,39 10⁻¹⁹ N C:4,24 10⁻¹⁹ N

D: 0,42 10⁻¹⁹ N

E aucune des réponses n'est vraie

13/ Soit le montage suivant

La capacité équivalente est égale à

A: B: 2C C: 3C D:4C

E : aucune des réponses n'est vraie

14/ Soit le montage suivant :

La résistance équivalente est égale à :

A: R

B: 2R

C: 3R

D:5R

E : aucune des réponses n'est vraie

15/ Deux condensateurs C₁ et C₂ montés en parallèle et chargés sous 100 V ont pour énergies 10⁻⁸ Jet 10⁻⁵ J alors la capacité C₁, du condensateur est égal à :

A: 2 μF

B: 2 nF

C: 2 pF

D: 5 pF

E: aucune des réponses n'est vraie

16/ (suite de Q15) La capacité C₂; du condensateur est égale:

A: 2 μF

B: 2 nF

C: 2 pF

D: 5 pF

E: aucune des réponses n'est vraie

17/ Un radiateur électrique de 1800 W fonctionne sous une tension continue de 240 V, l'intensité du courant est égale à :

A: 0,75 A

B: 7,5 A

C:0,3A D:3 A

E: aucune des réponses n'est vraie

18/ (suite de Q17) La résistance du fil est égale à :

A: 0,32Ω

B: 3,2Ω

C: 32Ω

D: 22,2Ω

E: aucune des réponses n'est vraie

19/(suite de Q17) ce fil est constitué d'un alliage de résistivité $\rho=\pi$ 10⁻⁷ Ω m. sachant que sa section est de 2,25 π 10⁻² mm² sa longueur est égal à :

A:0,72m B:7,2 m C:72m D:720m E:aucune des réponses n'est vraies

20/ On considère le circuit suivant :

L'intensité du courant est égal à :

A:2A B:1,5A C:1A D:0,5A E:aucune des réponses n'est vraies

N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ReP	В	D	Α	D	С	С	Α	С	Α	В	В	D	Α	В	С	В	В	C	В	Α

Les solutions :

(2022 EMD1)

1. Quelle et la définition juste

- A. Les concentrations pondérales ne sont pas additives et sont exprimées en mole/l.
- B. Pour toute solution diluée, les concentrations molaire et molale sont égales.
- C. La concentration équivalente est le produit de la molarité par le nombre d'ions.
- D. L'osmoralité, contrairement a la molarité prend en compte la possible dissociation du soluté.
- E. Aucune des propositions citées n'est juste.

2. Une solution idéale est :

A/ une solution fortement électrolytique

B/ solution de concentration équivalente nulle

C/ par exemple une solution binaire formée par le benzène et le toluène sachant que la molécule du benzène a une structure similaire a celle du toluène.

D/ une solution micromoléculaire,

E/ une solution qui obéit uniquement a la 3eme loi de Raoult.

3. Dans un litre d'une solution biologique contenant 200mg d'ions de calcium(Mc=40g/mol) on peut dire que :

- A/L'osmolarité est de 5mmol/l
- B/L'osmolalité est de 10mosm/kg
- c/La concentration équivalente est de 10mEq/l
- D/ La molaritéé est 2.5mol/l
- E/ Aucune des propositions citées n'est juste.

4.Dans les mélanges peut-on dire que :

A/ la décantation et la filtration permette de séparer des matières solides des matières liquides dans un mélange homogène.

B/ une solution fortement électrolytique contient les ions du soluté, les molécules du soluté et celle du solvant.

C/ les molécules de l'urée sont visible au microscope optique.

D/ deux liquides miscibles constituent forcément un mélange hétérogène.

E) une solution faiblement électrolytique contient les ions du soluté, les molécules du soluté et celles du solvant.

5. En électrostatique, une interaction intermoléculaire ion-dipôle est :

- A) décrite par une énergie potentielle proportionnelle au carré de la distance
- B) très intense
- C) à moyenne portée
- D) d'aucune utilité
- E) Aucune des propositions citées n'est juste
- 6. Soient deux solutions de saccharose de concentrations différentes C1 et C2 séparées par une membrane dialysante. Si on double la section S de cette membrane et on réduit de moitié son épaisseur, le flux du saccharose qui diffuse a travers cette membrane te alors :

A/ Divise par 4 B/ multiplié par 2 Aucune des propositions citées n'est juste. C/nul D/multiplié par 4 E/

7. L'expérience montre que la technique de séparation des molécules de masse molaire différentes macromoléculaire utilise l'équation suivante :

 $A/D.M^3 = cste$ B/D.M = cste

C/D.r^3=cste D/D.M^1/3=cste E/ Aucune des réponses citées n'est juste.

8. Les radiations réfléchies par certaines solutions claires sont:

A/ Une longueur d'onde nulle

B/ Une longueur d'onde égale a une longueur d'onde incidente.

C/ Une longueur d'onde infinie.

D/ Une fréquence nulle.

E/ Aucune des réponses proposées n'est juste.

9. Dans le cas des solutions macromoléculaires, le coefficient de diffusion est :

A/ Important membrane.

B/ Faible

C/ fonction de la surface de la

D/ fonction de la taille de la molécule juste.

10. A l'équilibre, le flux de filtration compense le flux de diffusion, cet état définit :

A/ La pression osmotique

B/ la loi de Fick c/ hémofiltration

D/ endosmose E/ exosmose.

11. Quelle est la proposition juste?

- A) dans (1) le déplacement est régi uniquement par la loi de Fick
- B)(2) élimine les molécules de très très faible poids moléculaire
- C) (1) utilise le gradient de vitesse
- D) (2) est basé sur le phénomène de convection
- E) (1) élimine les molécules de fort poids moléculaire.
- 12. L'abaissement cryoscopique en C° d'une solution de chlorure de calcium CaCl2 (111) contenant 22,2 g de ce principe dans 0,5 l d'eau vaut en valeur absolue (on donne Kc= -1.86°C.kg.osm-1):
- A) 0,23. B) 2,23. C) 4,64. D/ 0,03
- E)Aucune des propositions cité n'est juste
- 13. La pression osmotique en Pascal d'une solution aqueuse contenant 3,28 g de PO4Na3(164g/mol) parler trop à vendre 27 °C. On donne R=8,31 J. °K.mol-1:
- A) 19.94. B)199.440. C)199440. D)93.63. E)Aucune des propositions cité n'es juste.
- 14. L'électrophorèse est une technique permettant de déplacer des ions (molécule ayant perdu leur neutralité électrique) sous l'effet d'un champ électrique unité. Dans ce cas;
- A) les anions se dirige vers l'anode
- B) les cations se dirige vers l'anode
- C) la force de Coulomb compense la force de frottement
- D) la mobilité électrophorétique est constante
- E) aucune des propositions cité n'est juste

15. L'équilibre de donnan est définie;

- A) en absence de macromolécules
- B) en présence de macromolécules non dissociées
- C) en respectant les lois de l'électro neutralité
- D) un considérons un champ transmembranaire nul
- E) aucune des propositions cité n'est juste.

CT:

			-	1
1	D	8	В	
2	С	9	В	NYV
3	С	10	Α	NYO 1FC
4	E	11	D	S YVVY I
		12	В	YY
5	С	13	С	
6	D	14	Е	
7	E	15	С	

(2021 EMD 1)

1.En électrostatique, une interaction intermoléculaire est décrite par une énergie potentielle proportionnelle à l'inverse du carré de la distance dans le cas de l'interaction :

- A) ion-ion
- B) ion-dipôle
- C)dipôle-dipôleD) système-ion
- E) Aucune des propositions citées n'est juste
- 2. Soient deux solutions de saccharose de concentrations différentes Ci etC2 séparées par une membrane hémiperméable. Si on réduit de moitié la section S de cette

membrane et on double son épaisseur, le flux du saccharose qui diffuse à travers cette membrane est alors:

- A) divisé par 4
- B) nul
- C) constant

D) divisé par 2

- E) Aucune des propositions citées n'est juste
- 3. Les lois de Raoult qui s'appliquent à toutes les solutions font parties des propriétés:
- A) colligatives
- B) optiques
- C)électriquesD) magnétiques
- E) aucune des propositions citées n'est juste.
- 4. L'expérience montre que la diffusion peut constituer une technique de séparation des molécules de massemolaire différentes selon la relation:
- A) $D.M^3 = cste$
- B) D.M = cste
- C) D.r3 = cste D) D.M $^{1/3}$ = cste

E) D. r = cste

5. On peut utiliser une membrane :

- A) semi-perméable biologique dite aussi dialysante dans le cas de la diffusion
- B) semi-perméable biologique dite aussi hémiperméable dans le cas de l'osmose ;
- C)semi-perméable parfaite dite aussi dialysante dans le cas de la diffusion
- D)perméable pour toutes les applications
- E) aucune des réponses proposées n'est juste.

6. Les radiations absorbées par certaines solutions claires ont :

- A) une longueur d'onde nulle,
- B) une longueur d'onde égale à la longueur d'onde incidente,
- C) une fréquence infinie
- **D**) une fréquence nulle
- E) aucune des réponses proposées n'est juste.
- 7. Lors d'un déplacement de l'ion dans du solvant, si la somme des forces existantes est nulle, alors:
- A) mobilité = constante
- B) champ électrique = unité
- C) vitesse =constante
- D) viscosite = 0
- E) aucune des réponses proposées n'est juste.

8. Pour une solution aqueuse contenant de l'urée, citez la proposition juste :

- A) Cm=Co
- B) Ceq = Co
- C)Ceq=C
- D) Ceq = Cm.
- E) CI = Co.

9. Quelle est la proposition fausse?

- A) L'osmolarité est le rapport de nombre d'osmoles par litre de solution
- **B**) L'osmolarité et la concentration molaire d'une solution ne contenant que des molécules non dissociées ont la même valeur.
- C) L'osmolalité s'exprime en osmole par litre de solution.
- D) L'ionarité d'une solution électrolytique s'exprime en mole d'ions par litre de la solution
- E) Pour une solution aqueuse et diluée la molalité et la molarité ont la même valeur .

10. Les forces d'interaction dipôle-dipôle sont :

- A) De nature électromagnétique
- B) Faibles dans le cas d'un solide
- C) Importantes dans le cas d'un gaz
- D) Proportionnelles à la sixième puissance de la distance
- E) Aucune des réponses proposées n'est juste

11. Le coefficient de diffusion dépend de:

- A) La pression hydrostatique
- B) La tension superficielle
- C) La surface de la membrane
- D)La taille de la molécule
- E) La différence de potentiel

12. La pression osmotique est la différence de pression nécessaire et suffisante pour que le flux net soit :

- A) nul
- B)égal au flux de filtration
- C) supérieur au flux de filtration
- D) variableE) constant

13. Quelle est la proposition juste? (Hémodialyse (1), Hemofiltration (2))

- A) Dans (1) l'intensité du transport dépend de la viscosité
- B) (2) élimine toutes les molécules dont le poids moléculaire est très élevé
- C)(1) utilise le gradient de concentration entre le plasma et le dialyse
- D)(2) est basée sur le phénomène de diffusion
- E) (1) élimine les molécules de fort poids moléculaire.

dans un litre	, 0,	-		4Na3 (M=164g/mol) faut-il mettre congélation de 9°C. On donne K _c
A) 125.5 n'est juste	B) 198.4	C) 78.3	D) 250	E) aucune des propositions citées

- 15. Considérons une solution de Na2SO4 obtenue après dissolution d'une masse m = 14.2g de cristaux Na2SO4 (M=I42g/mol) dans 1 litre d'eau.
- **A)** $C_p = 28.4g/l$
- **B**) $C_m=0.1$ mol/kg,
- C) Ci=0.6ion-g/l,
- **D**) Co=300 mmol/kg,
- **E**) $Ce_q = 400 \text{ mEq}/1$.
- 29. On considère 2 compartiments | et II, de volume constant, séparés par une membrane perméable aux ions K⁺ et Cl⁻, mais imperméable aux ions R⁻. Les concentrations ioniques sont les suivantes:

compartiment 1 : $[K^+]I = [R^-]I = 0.1$ mmol/I

compartiment II [K⁺]II = [Cl⁻]II= 0,1mmol/I

Comme la membrane est perméable à certaines particules chargées et pas à d'autres, donc c'est une« membrane de Donnan ». Au départ, l'ion Cl⁻ n'est pas à l'équilibre, étant en excès dans le compartiment II. Le flux de Cl⁻ va aller du compartiment II vers le compartiment I. Ce flux de charges négatives va créer une différence de potentiel négative

 $((V_I-V_{II})<0)$, ce qui va provoquer un flux de K⁺:

- A) du compartiment I vers le compartiment II
- B) du compartiment II vers le compartiment I
- C) suivi par un flux de R- de l vers II

D)pas de déplacement de K⁺

E) aucune des réponses n'est vraie

[K⁺]= 0,1mmol/l [K⁺] =0,1mmol/l

 $[R^{-}]=0,1$ mmol/l $[Cl^{-}]=0,1$ mmol/l

Compartiment I Compartiment II

<u>30</u>.(suite de Q29) On considère un déplacement de n mmol/l nécessaire pour atteindre l'équilibre, il est égal à :

A) 0,33

B) 0,033

C) 0,133

D)0,1

E) 0,2

Q_1	В	Q8	A
$\overline{\mathbf{Q}_2}$	В	Q ₉	C
Q_3	E	- Q ₁₀	E
$\overline{Q_4}$	D	Q11	D
		Q ₁₂	A
Q ₅	A	Q ₁₃	C
Q_6	D	Q ₁₄	В
Q 7	C	Q ₁₅	E

Q ₂₉	В
Q ₃₀	В

- 1. Soient 2 solution de saccharose de concentration différentes C1 et C2 séparées par une membrane poreuse perméable à cette molécule. Si on réduit de moitié la section S du membrane sélective et on double son épaisseur, le flux du saccharose qui diffuse à travers cette membrane est alors;
- A) divisé par 4B) multiplié par 4
- C) constantD) divisé par 2
- E) nul

2.Les lois de Raoult font partie des propriétés colligatives :

- A) elle s'appliquent à toutes les solutions
- B) la présence d'un soluté non volatil dans un solvant augmente la pression de vapeur.
- C) toute solution idéale vérifie ses lois
- D) la température de congélation d'un solvant pur et plus basse que celle d'une solution
- E) aucune des réponses proposées n'est juste.

3.Le coefficient de diffusion:

- A) ne dépend pas de la température
- B) est proportionnelle à la viscosité du milieu
- C) ne dépend pas de la dimension de la membrane
- D) est proportionnelle au rayon des pores
- E) s'exprime en s/cm2

4.On peut citer les différents types de membranes

- A) Une membrane semi-perméable biologique est aussi hémiperméable
- B) une membrane semi-perméable biologique ne laisse pas passer que tes solutions micromoléculaires ;
- C) une membrane hémiperméable est un cas particulier de la membrane sélective
- D) une membrane sélective présente une perméabilité identique pour le solvant et les molécules du soluté
- E) aucune des réponses proposées n'est juste

5.Les radiations réfléchis parcertaines solution colorée ont :

- A) longueur d'onde inférieur à la longueur d'onde incidente
- B) une longueur d'onde égale à la longueur d'onde incidente
- C) une fréquence supérieure à la fréquence absorbée

- D) une fréquence inférieure à la fréquence incidente
- E) aucune des réponses proposées n'est juste

6. La mesure de l'absorbance ou densité optique permet de:

- A) séparer les molécules
- B) transmettre l'onde
- C) atténuer l'onde électromagnétique
- D) doser les solutions
- E) aucune des réponses proposées n'est juste

7. La mobilité d'un lion se trouvant dans un champ électrique dépend de :

- A) la charge de l'ion
- B) la valeur du champ électrique
- C) rayon de la molécule
- D) de la viscosité du milieu
- E) aucune des réponses proposées n'est juste

8. Pour une solution contenant un soluté, citez les proposition fausse :

- A) non électrolytique cm =Co
- B) Ions monovalents Ceq = cm
- C) Ions bivalents Ceq = 2 Cm
- D) molécule non ionisée Ces=Cm
- E) Fraction molaire fsoluté vaut 1 fsolvant.

9. Dans un litre d'une solution biologie contenant 400 mg d'ion de calcium (MCa=40g/mol) on peut dire que :

- A) la concentration équivalente est 10Eq/l
- B)l'osmolalité est de 10osmol/kg
- C) la concentration équivalente est nulle
- D) l'ionarité est nulle
- E) l'osmolarité et de 10mosmol/l

10. Quelle est la proposition juste?

- A) l'osmolarité est le rapport de nombre d'osmoles par kg de solvant.
- B) L'osmolarité est la concentration molaire d'une solution ne contenant que des molécules non dossiers ont la même valeur.
- C)L'osmolalité s'exprime en osmol par litre de solution.
- D) l'osmolalité et l'ionarité d'une solution électrolytique s'expriment de la même manière(même unité).
- E) pour une solution aqueuse l'osmolalité, L'osmolarité, l'ionarité, la molarité et la molalité ont la même valeur.

11. La cohésion de la matière est assurée par les forces d'interactions intermoléculaires ses forces sont :

- A) de nature électrostatique
- B) faible dans le cas de l'interaction ion-ion
- C) à longue portée dans le cas de l'interaction ion dipôle
- D) proportionnelles à la distance entre les molécules
- E) aucune des réponses proposées n'est juste

12. Une solution idéale:

- A) ne vérifie pas la loi de la cryoscopie
- B) solution de concentration très faible

- C) solution binaire formée par le benzène et le toluène sachant que la molécule du benzène à une structure différente à celle du toluène.
- D) est une solution macromoléculaire
- E) la présence du soluté modifie les forces intermoléculaires existant dans le solvant pur.

13. La pression osmotique est la différence de pression nécessaire et suffisante pour que le flux net soit:

- A) nul
- B) égal au flux de filtration
- C) supérieur au flux de filtration
- D) variable
- E) constant

14. Sous l'effet d'un champ magnétique l'électrophorèse permet:

- A) de déplacer les ions vers l'électrode respective
- B) de regrouper les molécules neutres.
- C) d'uniformiser la vitesse de migration des molécules chargées
- D) de régulariser la pression osmotique
- E) aucune des réponses proposées n'est vraie.

15. Dans le phénomène de Donnan la différence de potentiel électrochimique donnée par la loi de Nernst, est:

- A) proportionnelle à la température
- B) possède toujours une valeur non nulle
- C) proportionnelle à la concentration
- D) égale a la constante de Faraday
- E) aucune des réponses proposées une vraie

CT:

Q_1	A	Oo E
Q_2	C	Q10 B
Q_3	C	Q ₁₁ A
Q_4	C	Q ₁₂ B
Q_5	D	Commence of the latest and the lates
Q_6	D	Q ₁₃ A
Q7	E	Q14 E
Q_8	D	Q15 A
ACCUPATION AND ADDRESS OF THE PARTY OF THE P		The State of the S

(2019 EMD 1)

16. L'interaction ion-dipôle est :

A) proportionnelle à la distance entre l'ion et le dipôle

- B) responsable de la cohésion des cristaux ioniques
- CI inversement proportionnelle au carré de la distance entre l'ion et le dipôle
- D) négligeable
- E)a longue portée

17. La force de Van der Waals est one force d'interaction :

- A) inversement proportionnelle à la distance entre dipôle-dipôle
- B) importante dans le cas d'un solide
- C) négligeable dans le cas d'un liquide
- D) importante dans le cas d'un gaz
- E) aucune des réponses proposées n'est vraie.

18. Le premier principe de la thermodynamique est un principe de conservation de l'énergie :

- A) C'est une transformation purement thermique si Q=0
- B) C'est Une transformation adiabatique si W=0
- C) C'est une transformation cyclique donc ΔU>0
- D) dans le cas d'un liquide ou solide, si la variation de volume est très petite, ΔU= ΔΗ
- E) Aucune des réponses proposées n'est vraie.

19. Quelle est la proposition juste?

- A) le second principe de la thermodynamique nous renseigne sur l'évolution de la transformation
- B) Au cours d'une transformation l'entropie peut être négative
- C) le potentiel chimique et indépendant du nombre de mole
- D) Le potentiel chimique est inversement proportionnel a la différence d'enthalpie libre
- E) Aucune des réponses proposées n'est juste.

20. Dans un mélange homogène on peut :

- A) dire qu'il y'a une seule phase
- B) distinguer plusieurs phases
- C) séparer les différentes phases par filtration
- D) séparer les différentes phases par décantation
- E) Aucune des réponses proposées n'est juste.

21. Une solution est dite :
A) électrolyte fort si elle contient des ions du soluté, des molécules du soluté et celles du solvant
B) idéale si elle est diluée
C) saturée si le solvant peut dissoudre le soluté
D) concentrée si elle est idéale
E) diluée si le volume du soluté est très important
22. Quelle est la formule juste ?
A) C _m = nombre de moles du soluté/ unité de volume du solvant
B) C _I = nombre de moles du soluté/ unité de masse du solvant
C) $Co=(i-\alpha(1-i))C_m$
D) $C_E = i.C_m$
E) Ci=z.Cm
E) aucune des réponses proposées n'est juste
23. Les lois de Raoult s'appliquent uniquement aux Solutions :
A) saturées B) neutres C) idéales D)concentrées E) colloïdales
24. La pression osmotique est la différence de pression nécessaire et suffisante pour que le flux de diffusion soit :
A) nulB) égal au flux de filtration
C) supérieur au flux de filtration D)inférieur au flux net
E) aucune des réponses proposées n'est vraie
25. La mobilité d'un ion se trouvant dans un champ électrique s'écrit :
23/24 mosmic d'un fon se d'ouvant dans un mamp éléctrique s'écrit.
A) qE/6πηr; B)q/6πηr; C) q/6πηr D)6πηr/q ;E/ aucune des réponses proposées n'est vraie
26. Lorsque la température augmente, le flux de soluté diffusant à travers la membrane :
26. Lorsque la température augmente, le flux de soluté diffusant à travers la membrane : A/ diminue, B/ augmente, C) reste constant D)s'annule E) devient négligeable

deuxcompartiments et on réduit de moitié la section S de la membrane ainsi que son épaisseur. Le

B) multiplié par 2, C) ne change pas. D) divise par 2.

flux du saccharose à travers la membrane est alors :

A) divisé par 4,

E) aucune des réponsesproposées n'est vraie

28. Les radiations absorbées par certaines solutions claires ont une longueur d'onde :

- A/ inférieure à la longueur d'onde incidente
- B) infinie C) nulleD/ égale à la longueur d'onde incidente E) inferieure a la longueur d'onde incidente
- 29. Dans le phénomène de la diffusion d'un soluté ionique dans une solution aqueuse, parmi les paramètres qui agissent sur le coefficient de diffusion nous citons :

A) La surface de la membrane ; B) la tension superficielle C) La pression hydrostatique dans

le compartiment ; D)La différence de potentiel ; E) la viscosité du milieu

30. L'osmose est un transfert à travers une membrane semi-perméable, du :

A) soluté vers le solvant, B) solvant vers la solution. C) la solution vers le solvant,

D)soluté vers la solution. E) aucune des réponses proposées n'est vraie

CT:

16	17	18	19	20	21	22	23	24	25	26
С	В	D	Α	Α	В	В	С	В	Ε	В

27	28	29	30
В	В	E	E

Good luck