AGENDA TENTATIVA

(Transferência de Calor I)

Agosto

30.08 - apresentação, normas do curso, ementa e introdução

31.08 - gradiente de um campo escalar/vetorial, introdução operador divergente.

Setembro

06.09 - divergente de tensor de 1a e 2a. ordem.

13.09 - laplaciano; teoremas importantes, notação indicial e derivada material.

14.09 - intro transferência de calor (distribuição de temperaturas e fluxo de calor).

20.09 - modos de transferência de calor: condução, convecção, radiação e evaporação.

21.09 - exercícios de fluxo de calor 1, 2 e 3.

27.09 - conservação de massa. Exercícios.

28.09 - conservação de energia na forma integral e diferencial.

Outubro

04.10 - adimensionalização da equação de calor (Prandtl, Péclet e Nusselt).

05.10 - introdução à condução em regime permanente.

11.10 - condução em regime permanente. Resistência térmica (série e paralelo).

28.10 - resistência térmica em problemas compostos e com geometria radial.

25.10 - condução bidimensional em regime permanente.

26.10 - exercício de superf. estendidas

Novembro

01.11 - prova 1

- **08.11** método de separação de variáveis. Exercícios.
- **09.11** condução em regime transiente (com e sem geração de calor).
- 16.11 introdução ao método de elementos finitos.
- 22.11 método de elementos finitos.
- 23.11 exercícios de MEF.
- 29.11 introdução à convecção.
- 30.11 convecção livre.

Dezembro

- **06.12** convecção forçada. 1o. problema de Stokes (Problema de Rayleigh).
- **07.12** continuação do Problema de Stokes, analogia com camada limite térmica.
- 13.12 prova 2
- 14.12 prova de reposição
- **20.12** prova final