CpE 646 Pattern Recognition and Classification

Prof. Hong Man

Department of Electrical and Computer Engineering Stevens Institute of Technology

Course Text

Pattern Classification

Many materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher

Introduction to Pattern Recognition

Chapter 1 (Section 1.1 - 1.6) outline:

- Machine Perception
- An Example
- Pattern Recognition Systems
- The Design Cycle
- Learning and Adaptation
- Conclusion

Visual Information Environment Laboratory

Machine Perception

- Build a machine that can recognize patterns:
 - Speech recognition
 - Fingerprint identification
 - OCR (Optical Character Recognition)
 - DNA sequence identification

—

An Example

"Sorting incoming Fish on a conveyor according to species using optical sensing"

Visual Information Environment Laboratory

- Problem Analysis
 - Set up a camera and take some sample images to extract features
 - Length
 - Lightness
 - Width
 - Number and shape of fins
 - Position of the mouth, etc...
 - This is the set of all suggested features to explore for use in our classifier!

- Preprocessing
 - Use a segmentation operation to isolate fishes from one another and from the background
- Information from a single fish is sent to a feature extractor whose purpose is to reduce the data by measuring certain features
- The features are passed to a classifier

- Classification
 - Select the length of the fish as a possible feature for discrimination

Visual Information Environment Laboratory

- The length is a poor feature alone!
- Select the lightness as a possible feature.

- Threshold decision boundary and cost relationship
 - Move our decision boundary toward smaller values of lightness in order to minimize the cost (reduce the number of sea bass that are classified salmon!)
 - This is a task of decision theory

Adopt the lightness and add the width of the fish

Fish:
$$x^{T} = [x_1, x_2],$$

 x_1 : lightness, x_2 : width

Visual Information Environment Laboratory

• We might add other features that are not correlated with the ones we already have. A precaution should be taken not to reduce the performance by adding such "noisy features"

• Ideally, the best decision boundary should be the one which provides an optimal performance:

• However, our satisfaction is premature because the central aim of designing a classifier is to correctly classify novel input ⇒ issue of generalization!

Visual Information Environment Laboratory

Pattern Recognition Systems

- Sensing
 - Use of a transducer (camera or microphone)
 - PR system depends of the bandwidth, the resolution sensitivity distortion of the transducer
- Segmentation and grouping
 - Patterns should be well separated and should not overlap

Pattern Recognition Systems (cont'd)

Visual Information Environment Laboratory

Pattern Recognition Systems (cont'd)

Feature extraction

- Discriminative features
- Invariant features with respect to translation, rotation and scale.

Classification

 Use a feature vector provided by a feature extractor to assign the object to a category

Post Processing

 Exploit context input dependent information other than from the target pattern itself to improve performance

The Design Cycle

- Data collection
- Feature Choice
- Model Choice
- Training
- Evaluation
- Computational Complexity

The Design Cycle (cont'd)

The Design Cycle (cont'd)

Data Collection

– How do we know when we have collected an adequately large and representative set of examples for training and testing the system?

Feature Choice

Depends on the characteristics of the problem domain.
Simple to extract, invariant to irrelevant transformation insensitive to noise.

Model Choice

 Unsatisfied with the performance of our fish classifier and want to jump to another class of model

The Design Cycle (cont'd)

Training

 Use data to determine the classifier. Many different procedures for training classifiers and choosing models

Evaluation

 Measure the error rate (or performance and switch from one set of features to another one

Computational Complexity

- What is the trade-off between computational ease and performance?
- (How an algorithm scales as a function of the number of features, patterns or categories?)

Learning and Adaptation

- Supervised learning
 - A teacher provides a category label or cost for each pattern in the training set
- Unsupervised learning
 - The system forms clusters or "natural groupings" of the input patterns

Conclusion

- Reader seems to be overwhelmed by the number, complexity and magnitude of the sub-problems of Pattern Recognition
- Many of these sub-problems can indeed be solved
- Many fascinating unsolved problems still remain

