Problem 22.

Prove the statement by the methods of exhaustion For each integer n with $1 \le n \le 10$, $n^2 - n + 11$ is a prime number

Proof. Let $n \in \mathbb{Z}$ with $1 \le n \le 10$

$$1^{2} - 1 + 11 = 11$$
 $6^{2} - 6 + 11 = 41$
 $2^{2} - 2 + 11 = 13$ $7^{2} - 7 + 11 = 53$
 $3^{2} - 3 + 11 = 17$ $8^{2} - 8 + 11 = 67$
 $4^{2} - 4 + 11 = 23$ $9^{2} - 9 + 11 = 83$
 $5^{2} - 5 + 11 = 31$ $10^{2} - 10 + 11 = 101$

Therefore, for every integer n, if n is between 1 and 10, inclusive, then $n^2 - n + 11$ is a prime number.

Problem 31b.

Fill in the blanks in the proof of the theorem

Theorem: Whenever n is an odd integer, $5n^2 + 7$ is even.

Proof: Suppose n is any [particular but arbitrarily chosen] odd integer.

[We must show that $5n^2 + 7$ is even]

By definition of odd, n = 2k + 1 for some integer k.

Then

$$5n^2 + 7 = \frac{5(2k+1)^2 + 7}{5(4k^2 + 4k + 1) + 7}$$
 by substitution

$$= \frac{5(4k^2 + 4k + 1) + 7}{2(4k^2 + 20k + 12)}$$

$$= 2(10k^2 + 10k + 6)$$
 by algebra

Let $t = \underline{10k^2 + 10k + 6}$. Then t is an integer because products and sums of integers are integers.

Hence $5n^2 + 7 = 2t$, where t is an integer, and thus $5n^2 + 7$ is even by definition of even [as was to be shown].