

Available online at www.sciencedirect.com

SciVerse ScienceDirect

AASRI Procedia

AASRI Procedia 1 (2012) 299 - 304

www.elsevier.com/locate/procedia

2012 AASRI Conference on Computational Intelligence and Bioinformatics

The Average Errors for Bernstein-Kantorovich Operators on the r-fold Integrated Wiener Space

Liu Ting, Jiang Yanjie*

Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, People's Republic of China

Abstract

In this paper, we discuss the average errors of function weighted approximation by the Bernstein-Kantorovich operators. The strongly asymptotic orders for the average errors of the Bernstein-Kantorovich operators sequence are determined on the r-fold integrated Wiener Space.

© 2012 Published by Elsevier B.V. Open access under CC BY-NC-ND license.

Selection and/or peer review under responsibility of American Applied Science Research Institute

Keywords: Bernstein-Kantorovich operators; weighted L_p -norm; r-fold integrated Wiener space; average error.

1. Introduction

Let F be a real separable Banach space equipped with a probability measure μ on the Borel sets of F. Let X be another normed space such that F is continuously embedded in X. By $\|.\|$ we denote the norm in X. Any $T: F \to X$ such that $f \mapsto \|f - T(f)\|$ is a measurable mapping is called an approximation operator. The paverage error of T is defined as

$$e_p(T, \|\cdot\|, F, \mu) = \left(\int_F \|f - T(f)\|^p \mu(df)\right)^{\frac{1}{p}}.$$

E-mail address: jiangyj@126.com.

^{*} Corresponding author. Tel.: +86-0312-7523326.

Let $F_0 = \{f \in C[0,1]: f(0) = 0\}$. For every $f \in F_0$ set $||f||_C = \max_{0 \le t \le 1} |f(t)|$. Then $(F_0, ||\cdot||_C)$ becomes a separable Banach space. Denote by $B(F_0)$ the Borel class of $(F_0, ||\cdot||_C)$ and by ω_0 the Wiener measure on $B(F_0)$ (see[1]).

Let $r \ge 0$ be an integer . For all $g \in F_0$, define $(T_0 g)(t) = g(t)$, and

$$(T_r g)(t) = \int_0^t g(u) \cdot \frac{(t-u)^{r-1}}{(r-1)!} du, r \ge 1.$$

Thus we have

$$(T_r g)(x) \in F_r = \{ f \in C^{(r)}[0,1] : f^{(k)}(0) = 0, k = 0,1,\dots,r \}.$$

It is well known that T_r is a bijective mapping from F_0 to F_r . The r-fold integrated Wiener measure ω_r on

 F_r is defined by induced measure $\omega_r = T_r \omega_0$, i.e., for $A \subset F_r$,

$$\omega_r(A) = \omega_0(\{g, T_r g \in A\}).$$

From [1] we know

$$\int_{F_r} f(s) f(t) \omega_r(df) = \int_0^1 \frac{(s-u)_+^r (t-u)_+^r du}{(r!)^2},$$
(1)

where $z_{+} = z$ if z > 0 and $z_{+} = 0$ otherwise.

For $\rho \in L_1[0,1], \rho \ge 0$, the weighted L_p -norm of $f \in C[0,1]$ is defined by

$$||f|| = ||f||_{p,\rho} = \left(\int_0^1 |f(t)|^p \cdot \rho(t) dt\right)^{\frac{1}{p}}.$$

Let

$$p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k} = C_n^k x^k (1-x)^{n-k}, k = 0, 1, \dots, n.$$

For $f \in C[0,1]$ the well-know Bernstein-Kantorovich polynomials of f is given (see[2]) by

$$K_n(f,x) = \sum_{k=0}^{n} p_{n,k}(x)(n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) dt.$$
 (2)

2. Main result

Many mathematicians have investigated the approximation behavior of Bernstein-Kantorovich operators on $L_p[0,1], 1 \le p < \infty$. Recently Xu Guiqiao [3] studied the simultaneous approximation average errors for Bernstein operators on the r-fold integrated Wiener space. Motivated by [3], we consider the average errors of function weighted approximation by the Bernstein-Kantorovich operators on the r-fold integrated Wiener space. We obtain the following:

Theorem 1 Let $1 \le p < \infty$, r > 1, $K_n(f,x)$ be given by (2). If $\rho \in L_1[0,1]$, $\rho(x) > 0$ and $\rho(x)$ is continuous on (-1,1), then we have

$$e_p(K_n, ||\cdot||, F_r, \omega_r) = C_{p,\rho,r}(n+1)^{-1} + o(n^{-1}),$$

where

$$C_{p,\rho,r} = \left(v_p \int_0^1 \left(\frac{x^{2r-1} (1-2x)^2}{4(2r-1) ((r-1)!)^2} + \frac{x^{2r-1} (1-x)^2}{4(2r-3) ((r-2)!)^2} + \frac{x^{2r-1} (1-2x) (1-x)}{4((r-1)!)^2} \right)^{\frac{p}{2}} \rho(x) dx \right)^{\frac{1}{p}}$$

and

$$v_p = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |x|^p e^{-\frac{x^2}{2}} dx.$$

Here and in the following the notation $a_n = o(b_n)$ for sequences $\{a_n\}$ and $\{b_n\}$ means that $\lim_{n\to\infty} a_n/b_n = 0$.

3. Proof of Theorem 1

Proof of Theorem 1. From [1] we get

$$e_{p}^{p}\left(K_{n}, \|\cdot\|, F_{r}, \omega_{r}\right) = \nu_{p} \int_{0}^{1} \left(\int_{F_{r}} \left|f\left(x\right) - K_{n}(f, x)\right|^{2} \omega_{r}(df)\right)^{\frac{p}{2}} \rho(x) dx. \tag{3}$$

By (1) and (2), a direct computation shows

$$K_{n}(f,x)-f(x) = \sum_{k=0}^{n} p_{n,k}(x)(n+1) \int_{\frac{k+1}{n+1}}^{\frac{k+1}{n+1}} f(t)dt - \sum_{k=0}^{n} p_{n,k}(x)(n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(x)dt$$
$$= (n+1) \sum_{k=0}^{n} p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (f(t)-f(x))dt.$$

For r > 1, by Taylor formula we have

$$f(t) - f(x) = (t - x)f'(x) + (t - x)^{2} \frac{f''(x)}{2} + (t - x)^{2} \left(\frac{f''(\xi_{k}) - f''(x)}{2}\right), \tag{4}$$

where ξ_k is between in t and x. Hence

$$|f''(\xi_{k}) - f''(x)| \le \omega \left(f'', \max \left\{ \left| x - \frac{k}{n+1} \right|, \left| x - \frac{k+1}{n+1} \right| \right\} \right)$$

$$= \omega \left(f'', \frac{\left| x - \frac{k}{n+1} \right| + \left| x - \frac{k+1}{n+1} \right| + \left| x - \frac{k}{n+1} \right| - \left| x - \frac{k+1}{n+1} \right|}{2} \right)$$

$$\le \frac{3}{2} \omega \left(f'', \left| x - \frac{k}{n+1} \right| \right) + \frac{3}{2} \omega \left(f'', \left| x - \frac{k+1}{n+1} \right| \right) + \frac{3}{2} \omega \left(f'', \frac{1}{n+1} \right),$$

where $\omega(f,t)$ is the modulus of continuity of f in the uniform norm. Hence, by (4) and a simple computation we obtain

$$K_{n}(f,x) - f(x) = (n+1) \sum_{k=0}^{n} p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (t-x) f'(x) dt + (n+1) \sum_{k=0}^{n} p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (t-x)^{2} \frac{f''(x)}{2} dt + (n+1) \sum_{k=0}^{n} p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (t-x)^{2} \left(\frac{f''(\xi_{k}) - f''(x)}{2} \right) dt$$

$$= I_{1}(x) + I_{2}(x) + I_{3}(x).$$

$$(5)$$

Note that

$$\sum_{k=0}^{n} p_{n,k}(x) = 1, \quad \sum_{k=0}^{n} k p_{n,k}(x) = nx, \quad \sum_{k=0}^{n} k^{2} p_{n,k}(x) = n^{2} x^{2} + nx(1-x),$$

a simple computation we obtain

$$I_{1}(x) = (n+1)\sum_{k=0}^{n} p_{n,k}(x) \int_{\frac{n+1}{n+1}}^{\frac{k+1}{n+1}} (t-x) f'(x) dt$$

$$= \frac{f'(x)}{2(n+1)} \sum_{k=0}^{n} (2k+1) p_{n,k}(x) - x f'(x) = \frac{1-2x}{2(n+1)} f'(x),$$
(6)

$$I_{2}(x) = (n+1)\sum_{k=0}^{n} p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (t-x)^{2} \frac{f''(x)}{2} dt$$

$$= \left(\frac{x-x^{2}}{2(n+1)} + \frac{2x^{2}-2x+\frac{1}{3}}{2(n+1)^{2}} \right) f''(x), \tag{7}$$

and

$$\begin{aligned}
|I_{3}(x)| &\leq (n+1) \sum_{k=0}^{n} p_{n,k}(x) \int_{\frac{k+1}{n+1}}^{\frac{k+1}{n+1}} (t-x)^{2} \left| \frac{f''(\xi_{k}) - f''(x)}{2} \right| dt \\
&\leq \frac{3(n+1)}{4} \sum_{k=0}^{n} \omega \left(f'', \left| x - \frac{k}{n+1} \right| \right) p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (t-x)^{2} dt \\
&+ \frac{3(n+1)}{4} \sum_{k=0}^{n} \omega \left(f'', \left| x - \frac{k+1}{n+1} \right| \right) p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (t-x)^{2} dt \\
&+ \frac{3(n+1)}{4} \sum_{k=0}^{n} \omega \left(f'', \frac{1}{n+1} \right) p_{n,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (t-x)^{2} dt \\
&\leq \frac{C\omega \left(f'', \frac{1}{12\sqrt{n^{5}}} \right)}{n}.
\end{aligned} \tag{8}$$

From (5)-(8), we have

$$\begin{aligned} \left| K_n(f,x) - f(x) \right|^2 &= \left(\frac{\left(x - x^2 \right)^2}{4(n+1)^2} + \frac{\left(2x^2 - 2x + \frac{1}{3} \right)^2}{4(n+1)^4} + \frac{\left(x - x^2 \right) \left(2x^2 - 2x + \frac{1}{3} \right)}{2(n+1)^3} \right) f^{"2}(x) \\ &+ \frac{\left(1 - 2x \right)^2}{4(n+1)^2} f^{"2}(x) + \left(\frac{\left(1 - 2x \right) \left(x - x^2 \right)}{2(n+1)^2} + \frac{\left(1 - 2x \right) \left(2x^2 - 2x + \frac{1}{3} \right)}{2(n+1)^3} \right) f^{"}(x) f^{"}(x) \end{aligned}$$

$$+I_{3}^{2}(x)+\frac{1-2x}{n+1}f'(x)I_{3}(x)+\left(\frac{x-x^{2}}{n+1}+\frac{2x^{2}-2x+\frac{1}{3}}{(n+1)^{2}}\right)f''(x)I_{3}(x). \tag{9}$$

Let $f = T_r g$, a direct computation shows

$$\int_{F_{r}} \left(\frac{\left(x-x^{2}\right)^{2}}{4\left(n+1\right)^{2}} + \frac{\left(2x^{2}-2x+\frac{1}{3}\right)^{2}}{4\left(n+1\right)^{4}} + \frac{\left(x-x^{2}\right)\left(2x^{2}-2x+\frac{1}{3}\right)}{2\left(n+1\right)^{3}} \right) f^{*2}(x)\omega_{r}(df)$$

$$= \left(\frac{\left(x-x^{2}\right)^{2}}{4\left(n+1\right)^{2}} + \frac{\left(2x^{2}-2x+\frac{1}{3}\right)^{2}}{4\left(n+1\right)^{4}} + \frac{\left(x-x^{2}\right)\left(2x^{2}-2x+\frac{1}{3}\right)}{2\left(n+1\right)^{3}} \right) \int_{F_{r-2}} f^{2}(x)\omega_{r-2}(df)$$

$$= \frac{x^{2r-1}\left(1-x\right)^{2}}{4\left(2r-3\right)\left(\left(r-2\right)!\right)^{2}\left(n+1\right)^{2}} + o\left(\frac{1}{n^{2}}\right),$$
(10)

$$\int_{F_{r}} \frac{(1-2x)^{2}}{4(n+1)^{2}} f^{2}(x) \omega_{r}(df) = \frac{(1-2x)^{2}}{4(n+1)^{2}} \int_{F_{0}} ((T_{r-1}g)(x))^{2} \omega_{0}(dg) \\
= \frac{x^{2r-1} (1-2x)^{2}}{4(2r-1)((r-1)!)^{2} (n+1)^{2}}, \tag{11}$$

and

$$\int_{F_{r}} \left(\frac{(1-2x)(x-x^{2})}{2(n+1)^{2}} + \frac{(1-2x)(2x^{2}-2x+\frac{1}{3})}{2(n+1)^{3}} \right) f'(x) f''(x) \omega_{r}(df)$$

$$= \frac{x^{2r-1}(1-2x)(1-x)}{4((r-1)!)^{2}(n+1)^{2}} + o\left(\frac{1}{n^{2}}\right).$$
(12)

From [4] we know

$$\int_{F_0} \omega \left(g, \frac{1}{n} \right) \omega_0 \left(dg \right) \le C \left(\frac{\ln n}{n} \right)^{\frac{1}{2}}.$$

By a simple computation we get

$$\int_{F_{r}} I_{3}^{2}(x) \omega_{r}(df) \leq \frac{C}{n^{2}} \int_{F_{r}} \omega \left(f^{*}, \frac{1}{\sqrt{2} n^{5}} \right)^{2} \omega_{r}(df)
\leq \frac{C}{n^{2}} \int_{F_{0}} \left(2^{r-2} \omega \left(\left(T_{r} g \right)^{(r)}, \frac{1}{\sqrt{2} n^{5}} \right) \right)^{2} \omega_{0}(dg)
= \frac{C \cdot 2^{2r-4}}{n^{2}} \int_{F_{0}} \omega \left(g, \frac{1}{\sqrt{2} n^{5}} \right)^{2} \omega_{0}(dg)$$

$$\leq \frac{C \cdot 2^{2r-4}}{n^2} \cdot \frac{\ln n^{\frac{5}{12}}}{n^{\frac{5}{12}}} = o\left(\frac{1}{n^2}\right),\tag{13}$$

$$\int_{F_{r}} \frac{1-2x}{n+1} f'(x) I_{3}(x) \omega_{r}(df) \leq \left| \frac{1-2x}{n+1} \right| \int_{F_{r}} |f'(x) I_{3}(x)| \omega_{r}(df)
\leq \left| \frac{1-2x}{n+1} \right| \left(\int_{F_{r}} f^{2}(x) \omega_{r}(df) \right)^{\frac{1}{2}} \left(\int_{F_{r}} I_{3}^{2}(x) \omega_{r}(df) \right)^{\frac{1}{2}}
\leq \left| \frac{1-2x}{n+1} \right| \cdot \left(\frac{x^{2r-1}}{(2r-1)((r-1)!)^{2}} \right)^{\frac{1}{2}} \cdot o\left(\frac{1}{n} \right)
= o\left(\frac{1}{n^{2}} \right),$$
(14)

and

$$\int_{F_{r}} \left(\frac{x - x^{2}}{n+1} + \frac{2x^{2} - 2x + \frac{1}{3}}{(n+1)^{2}} \right) f''(x) I_{3}(x) \omega_{r}(df)$$

$$\leq \left| \frac{x - x^{2}}{n+1} + \frac{2x^{2} - 2x + \frac{1}{3}}{(n+1)^{2}} \right| \int_{F_{r}} |f''(x) I_{3}(x)| \omega_{r}(df)$$

$$\leq \left| \frac{x - x^{2}}{n+1} + \frac{2x^{2} - 2x + \frac{1}{3}}{(n+1)^{2}} \right| \left(\int_{F_{r}} f''^{2}(x) \omega_{r}(df) \right)^{\frac{1}{2}} \left(\int_{F_{r}} I_{3}^{2}(x) \omega_{r}(df) \right)^{\frac{1}{2}}$$

$$\leq \left| \frac{x - x^{2}}{n+1} + \frac{2x^{2} - 2x + \frac{1}{3}}{(n+1)^{2}} \right| \cdot \left(\frac{x^{2r-3}}{(2r-3)((r-2)!)^{2}} \right)^{\frac{1}{2}} \cdot o\left(\frac{1}{n}\right) = o\left(\frac{1}{n^{2}}\right).$$

From (3) and (9)-(15), we obtain the desired estimate of Theorem 1.

Acknowledgements

This work was supported by a grant from Hebei province higher school science and technology research (Z2010160).

References

- [1] Klaus Ritter, Average-case analysis of numerical problems. New York: Springer-Verlag Berlin Heidelberg; 2000.
- [2] Devore R A, Lorentz G G. Constructive Approximation. Berlin: Springer-Verlag;1993.
- [3] XU Guiqiao. The Simultaneous Approximation Average Errors for Bernstein Operators on the r-fold Integrated Wiener Space. 2012; to appear.
- [4] Sun Yongsheng, Wang Chengyong. Average error bounds of best approximation of continuous functions on the Wiener space. J. Complexity 1995;11: 74-104.