1. Известные сведения об алгоритмах SSA и MSSA

В этом разделе приведены описания алгоритмов SSA и MSSA, а также некоторые их свойства и важные определения.

1.1. SSA

Все определения и утверждения из этого раздела можно найти в книге [1]. Пусть дан временной ряд X длины N

$$X = (x_1, x_2, \dots, x_N).$$

Определение 1.1 (Оператор вложения). Оператором вложения \mathcal{H}_L с длиной окна L будем называть отображение, переводящее временной ряд $\mathsf{X}=(x_1,x_2,\ldots,x_N),\,N\geqslant L$, в ганкелеву матрицу $\mathbf{X}\in\mathbb{R}^{L\times K},\,K=N-L+1$, такую, что $\mathbf{X}_{lk}=x_{l+k-1}$. Результирующая матрица имеет вид

$$\mathcal{H}_L(\mathsf{X}) = \mathbf{X} = \begin{pmatrix} x_1 & x_2 & \dots & x_K \\ x_2 & x_3 & \dots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \dots & x_N \end{pmatrix}.$$

Определение 1.2 (Траекторная матрица). Траекторной матрицей ряда X с длиной окна L < N называют матрицу X, полученную применением оператора вложения \mathcal{H}_L , к ряду X.

Пусть временной ряд X представим в виде суммы временных рядов X_k и шума E:

$$X = \sum_{k=1}^{m} X_k + E.$$

В алгоритме 1 описан метод SSA для разделения компонент сигнила, то есть нахождения рядов X_k . В алгоритме 2 описан метод SSA для выделения сигнала, то есть нахождения $\sum_{k=1}^{m} X_k$. Первые два шага в алгоритме 2 совпадают с соответствующими шагами алгоритма 1, поэтому описание алгоритма начинается с шага 3.

Определение 1.3 (SSA-ранг временного ряда). Число d называется SSA-рангом временного ряда X длины N, если $d \leq (N+1)/2$ и для любой допустимой длины окна L, то есть такой, что $d \leq \min(L, N-L+1)$, ранг траекторной матрицы X этого ряда, построенной по длине окна L, равен d.

Алгоритм 1 SSA для разделения компонент сигнала.

Входные данные: X, L: 1 < L < N, где N-длина $X, m, R: m \leqslant R \leqslant \min(L, N-L+1)$,

 $\mathfrak{S}_1,\ldots,\mathfrak{S}_m$:

$$\{1, 2, \ldots, R\} = \bigcup_{k=1}^{m} \mathfrak{S}_{k}, \qquad \mathfrak{S}_{k} \cap \mathfrak{S}_{l} = \emptyset, \ k \neq l.$$

Результат: $\widetilde{\mathsf{X}}_1,\,\widetilde{\mathsf{X}}_2,\,\ldots,\,\widetilde{\mathsf{X}}_m$ — оценки рядов $\mathsf{X}_1,\,\mathsf{X}_2,\,\ldots,\,\mathsf{X}_m$.

- 1: Вложение: построение траекторной матрицы ${\bf X}$ по длине окна L.
- 2: Разложение: проведение SVD траекторной матрицы ${f X}$, получение её представления в виде

$$\mathbf{X} = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}, \quad R \leqslant d \leqslant \min(L, N - L + 1).$$

3: Группировка: построение матриц

$$\mathbf{X}_k = \sum_{i \in \mathfrak{S}_k} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

4: Восстановление: вычисление рядов $\widetilde{\mathsf{X}}_k$ по матрицам \mathbf{X}_k посредством их усреднения вдоль побочных диагоналей $i+j=\mathrm{const}$:

$$\tilde{x}_n^{(k)} = \frac{1}{\#\mathfrak{M}_n} \sum_{(i,j)\in\mathfrak{M}_n} (\mathbf{X}_k)_{ij}, \qquad n \in \overline{1:N},$$

$$\mathfrak{M}_n = \left\{ (i,j) \mid 1 \leqslant i \leqslant L, \ 1 \leqslant j \leqslant N - L + 1, \ i+j-1 = n \right\}.$$

Алгоритм 2 SSA для выделения сигнала.

Входные данные: X, L: 1 < L < N, где N- длина X, $R: 1 \leqslant R \leqslant \min(L, N-L+1)$.

Результат: $\widetilde{\mathsf{X}}$ — оценка сигнала $\sum_{k=1}^m \mathsf{X}_k$.

3: Группировка: построение матрицы

$$\widetilde{\mathbf{X}} = \sum_{i=1}^{R} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

4: Восстановление ряда $\widetilde{\mathbf{X}}$ по матрице $\widetilde{\mathbf{X}}$ посредством её усреднения вдоль побочных диагоналей $i+j=\mathrm{const.}$

3амечание. В качестве параметра R в алгоритмах 1 и 2 рекомендуется выбирать SSA-ранг сигнала.

Пример 1.1. Ниже приведены примеры некоторых рядов, имеющих конечные SSA-

ранги.

- Ранг полиномиального ряда $x_n = Q_d(n)$, где Q_d многочлен степени d, равен d+1.
- Ранг экспоненциального ряда $x_n=Ce^{\alpha n},$ где $\alpha\in\mathbb{C}$ и $C\neq 0,$ равен 1.
- Ранг суммы экспоненциальных рядов

$$x_n = \sum_{j=1}^M C_j e^{\alpha_j n},$$

где $\alpha_j \in \mathbb{C}$ и $C_j \neq 0$ при всех j, равен количеству уникальных значений α_j .

• Ранг экспоненциально-модулированного гармонического ряда

$$x_n = Ce^{\alpha n}\cos(2\pi n\omega + \psi),$$

где $C \neq 0$, $\alpha \in \mathbb{R}$ и $\omega \in [0, 1/2]$, равен $r(\omega)$, где

$$r(\omega) = \begin{cases} 1, & \omega \in \{0, 1/2\}, \\ 2, & \omega \in (0, 1/2). \end{cases}$$
 (1)

• Ранг суммы экспоненциально-модулированных гармоник

$$x_n = \sum_{j=1}^{M} Ce^{\alpha_j n} \cos(2\pi n\omega_j + \psi_j)$$

равен

$$\sum_{(\omega,\alpha)\in\Omega}r(\omega),$$

где Ω — множество уникальных пар (ω_i, α_i) , представленных в данном временном ряде.

Определение 1.4 (Слабая SSA-разделимость). Временные ряды $\widehat{X} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N)$ и $\widetilde{X} = (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_N)$ называют слабо L-разделимыми в терминах SSA, если выполнены следующие условия:

1.
$$\sum_{k=0}^{L-1} \hat{x}_{i+k} \tilde{x}_{j+k} = 0, \quad \forall i, j \in \overline{1 : (N-L+1)},$$

2.
$$\sum_{k=0}^{N-L} \hat{x}_{i+k} \tilde{x}_{j+k} = 0, \quad \forall i, j \in \overline{1:L}.$$

Утверждение 1.1. Пусть $X = \widehat{X} + \widetilde{X}$, а X, \widehat{X} и \widetilde{X} — траекторные матрицы с длиной окна L рядов X, \widehat{X} и \widetilde{X} соответственно. Тогда сумма SVD матриц \widehat{X} и \widetilde{X} является SVD матрицы X тогда и только тогда, когда ряды \widehat{X} и \widetilde{X} слабо L-разделимы в терминах SSA.

Утверждение 1.1 позволяет выделить множество временных рядов, которые возможно разделить алгоритмом 1, а именно: слабо разделимые с некоторой длиной окна.

1.2. MSSA

Все определения и утверждения из этого раздела можно найти в работах [2, 3, 4]. Пусть дан P-мерный временной ряд X длины N

$$X = (X_1 : X_2 : \dots : X_P),$$
 $X_p = (x_1^{(p)}, x_2^{(p)}, \dots, x_N^{(p)})^{\mathrm{T}}.$

Определение 1.5 (Траекторная матрица многомерного временного ряда). Пусть $\mathbf{X}_1, \ \mathbf{X}_2, \ \dots, \ \mathbf{X}_P$ — траекторные матрицы рядов $\mathsf{X}_1, \ \mathsf{X}_2, \ \dots, \ \mathsf{X}_P$ соответственно, построенные по длине окна L. Траекторной матрицей многомерного временного ряда X называется матрица $\mathbf{X} \in \mathbb{R}^{L \times KP}, \ K = N - L + 1$, построенная соединением матриц \mathbf{X}_p по столбцам, то есть

$$\mathbf{X} = [\mathbf{X}_1 : \mathbf{X}_2 : \ldots : \mathbf{X}_P].$$

Методы MSSA для разделения компонент и выделения сигнала совпадают с алгоритмами 1 и 2 соответственно, с точностью до изменения шагов вложения и восстановления в соответствии с определением траекторной матрицы многомерного ряда (процедура восстановления временного ряда по матрице должна быть обратной к шагу вложения).

Определение 1.6 (MSSA-ранг временного ряда). Число d называется MSSA-рангом P-мерного временного ряда X длины N, если $d \leq P(N+1)/(P+1)$, и для любой допустимой длины окна L, то есть такой, что $d \leq \min(L, P(N-L+1))$, ранг траекторной матрицы X этого ряда, построенной по длине окна L, равен d.

Замечание. Как и в SSA, в алгоритме MSSA рекомендуется в качестве параметра количества компонент, относимых к сигналу, выбирать ранг сигнала. **Пример 1.2.** Рассмотрим P-мерный временной ряд X длины N с элементами вида

$$x_n^{(p)} = \sum_{i=1}^{R(p)} a_i^{(p)} e^{-\alpha_i^{(p)} n} \cos\left(2\pi\omega_i^{(p)} n + \varphi_i^{(p)}\right). \tag{2}$$

MSSA-ранг такого ряда равен

$$\sum_{(\omega,\alpha)\in\Omega} r(\omega),\tag{3}$$

где функция $r(\omega)$ определена в уравнении (1), а $\Omega-$ множество уникальных пар $\left(\omega_i^{(p)},\alpha_i^{(p)}\right)$, представленных в данном временном ряде.

Замечание. В дальнейшем в работе будут проведены сравнения методов SSA и MSSA с их тензорными модификациями HO-SSA и HOSVD-MSSA на многомерных сигналах вида (2). Это обосновано тем, что такая модель, а точнее её частный случай, в котором параметры R(p), $\omega_i^{(p)}$ и $\alpha_i^{(p)}$ не зависят от номера ряда p, применяется в спектроскопии ядерного магнитного резонанса [5]. Кроме того, в работе [6] также рассматривается этот частный случай модели.

Определение 1.7 (Слабая MSSA-разделимость). P-мерные временные ряды $\widehat{\mathsf{X}}$ и $\widetilde{\mathsf{X}}$ длины N называются слабо L-разделимыми, если выполнены следующие условия:

1.
$$\sum_{k=0}^{L-1} \hat{x}_{i+k}^{(p)} \tilde{x}_{j+k}^{(p')} = 0, \quad \forall i, j \in \overline{1:(N-L+1)}, p, p' \in \overline{1:P},$$

2.
$$\sum_{p=1}^{P} \sum_{i=0}^{K-1} \hat{x}_{k+i}^{(p)} \tilde{x}_{m+i}^{(p)} = 0, \quad \forall k, m \in \overline{1:L}.$$

Утверждение 1.2. Пусть $X = \widehat{X} + \widetilde{X}$, а X, \widehat{X} и \widetilde{X} — траекторные матрицы с длиной окна L рядов X, \widehat{X} и \widetilde{X} соответственно. Тогда сумма SVD матриц \widehat{X} и \widetilde{X} является SVD матрицы X тогда и только тогда, когда ряды \widehat{X} и \widetilde{X} слабо L-разделимы в терминах MSSA.

Как и в одномерном случае, это утверждение позволяет определять множество рядов, которые возможно разделить с помощью метода MSSA.

1.3. ESPRIT

Оригинальное описание алгоритма и его обоснование можно найти в статьях [7, 6]. Пусть элементы многомерного временного ряда X имеют вид

$$x_n^{(p)} = \sum_{j=1}^R a_j^{(p)} e^{\alpha_j n} e^{i(2\pi\omega_j n + \varphi_j^{(p)})}, \tag{4}$$

где і обозначает мнимую единицу, а параметрами модели являются амплитуды $a_j^{(p)} \in \mathbb{R} \setminus \{0\}$, фазы $\varphi_j^{(p)} \in [0, 2\pi)$, частоты $\omega_j \in [0, 1/2]$ и степени затухания $\alpha_j \in \mathbb{R}$.

Замечание. В статье [7] приводится алгоритм ESPRIT для модели временного ряда вида

$$x_n^{(p)} = \sum_{j=1}^R s_j(n) e^{i\omega_0 \Delta \sin \theta_j/c} a^{(p)}(\theta_j),$$

где оцениваемые параметры обозначены θ_j , но в работе будет рассматриваться модель вида (4) по причине, указанной в замечании к примеру 1.2.

Замечание. В силу того, что

$$\cos(2\pi\omega n + \varphi_n) = \frac{e^{2\pi i\omega n + \varphi_n} + e^{-2\pi i\omega n - \varphi_n}}{2},$$

вещественнозначный временной ряд из примера 1.2 при R(p) = R, $\omega_j^{(p)} = \omega_j$ и $\alpha_j^{(p)} = \alpha_j$ является частным случаем ряда (4).

Алгоритм ESPRIT (Estimation of signal parameters via rotational invariance technique), как и SSA, относится к классу методов, основанных на подпространстве сигнала. В отличие от SSA, ESPRIT применяется для решения задачи оценки параметров степеней затухания α_j и частот ω_j многомерного комплекснозначного сигнала в модели (4).

В алгоритме 3 описан метод ESPRIT для оценки параметров сигнала (4). Первые два шага в алгоритме 3 совпадают с соответствующими шагами алгоритма 1, поэтому описание алгоритма начинается с шага 3.

Замечание. Как и в методах SSA и MSSA, в качестве параметра алгоритма R рекомендуется выбирать ранг ряда (4).

3амечание. Алгоритм 3 применим и для одномерных временных рядов (P=1).

2. Описание метода HO-SSA

Пусть дан временной ряд X длины N

$$X = (x_1, x_2, \dots, x_N).$$

Определение 2.1 (Траекторный тензор ряда). Траекторным тензором ряда X с параметрами I,L:1< I,L< N,I+L< N+1 будем называть тензор $\mathcal X$ размера $I\times L\times J,\,J=N-I-L+2,$ элементы которого удовлетворяют равенству

$$\mathcal{X}_{ilj} = x_{i+l+j-2} \qquad i \in \overline{1:I}, \ l \in \overline{1:L}, \ j \in \overline{1:J}.$$

Алгоритм 3 ESPRIT для оценки параметров комплекснозначного сигнала.

Входные данные: X, L: 1 < L < N, где N—длина $X, R: 1 \leqslant R \leqslant \min(L, N-L+1)$.

Результат: $(\widehat{\alpha}_1, \widehat{\omega}_1), (\widehat{\alpha}_2, \widehat{\omega}_2), \dots, (\widehat{\alpha}_R, \widehat{\omega}_R)$ — оценки параметров сигнала (4).

3: Решение уравнения

$$\mathbf{U}^{\uparrow} = \mathbf{U}_{\perp}\mathbf{Z}$$

относительно матрицы ${\bf Z}$, где ${\bf U}=[U_1:U_2:\ldots:U_d]$, запись ${\bf U}^{\uparrow}$ обозначает матрицу ${\bf U}$ без первой строки, а запись ${\bf U}_{\downarrow}$ — без последней.

4: Нахождение первых R в порядке неубывания собственных чисел λ_j матрицы \mathbf{Z} . Полученные собственные числа $\lambda_{j'}$ считаются оценками экспонент $e^{\alpha_j + 2\pi \mathrm{i}\omega_j}$, возможно с точностью до некоторой перестановки j = S(j'), через которые можно выразить оценки искомых параметров:

$$\widehat{\alpha}_j = \log(|\lambda_{j'}|), \qquad \widehat{\omega}_j = \frac{\operatorname{Arg}(\lambda_{j'})}{2\pi}.$$

Замечание. Траекторный тензор ${\cal X}$ является ганкелевым [8].

Введём обозначения для сечений произвольного трёхмерного тензора \mathcal{A} :

$$\mathcal{A}_{k\cdot\cdot} = \mathcal{A}_{i_1=k}, \quad \mathcal{A}_{\cdot k\cdot} = \mathcal{A}_{i_2=k}, \quad \mathcal{A}_{\cdot \cdot k} = \mathcal{A}_{i_3=k}.$$

Тогда в терминах оператора вложения 1.1 сечения траекторного тензора ряда X с параметрами I,L имеют следующий вид

$$\mathcal{X}_{\cdot \cdot j} = \mathcal{H}_I\Big((x_j, x_{j+1}, \dots, x_{j+I+L-2})\Big),$$

$$\mathcal{X}_{\cdot l \cdot} = \mathcal{H}_I\Big((x_l, x_{l+1}, \dots, x_{l+L+J-2})\Big),$$

$$\mathcal{X}_{i \cdot \cdot} = \mathcal{H}_L\Big((x_i, x_{i+1}, \dots, x_{i+L+J-2})\Big).$$

На вход алгоритму подаётся временной ряд X и параметры I,L:1 < I,L < N,I+L < N+1. Так как при замене одного из этих параметров на J=N-I-L+2 или при замене их между собой получаются те же самые траекторные тензоры с точностью до перестановки их направлений, то имеет смысл при рассмотрении нескольких наборов параметров рассматривать только те, которые дают уникальные тройки (I,L,J) без учёта порядка. В зависимости от целей определяются разные формулировки алгоритма.

2.1. HO-SSA для разделения компонент сигнала

Пусть временной ряд X представим в виде суммы временных рядов X_k и шума E:

$$\mathsf{X} = \sum_{k=1}^m \mathsf{X}_k + \mathsf{E}.$$

Алгоритм HO-SSA для разделения компонент сигнала сводится к представлению HOSVD траекторного тензора ряда X в виде суммы HOSVD траекторных тензоров рядов X_k . Метод HOSVD-SSA для разделения компонент сигнала представлен в алгоритме 4.

Алгоритм 4 HOSVD-SSA для разделения компонент сигнала.

Входные данные: X, I,L:1 < I,L < N, I+L < N+1, где N-длина X, $m,R:m\leqslant R\leqslant \min(I,L,N-I-L+2),\ \mathfrak{S}_1^{(p)},\dots,\mathfrak{S}_m^{(p)}$:

$$\{1, 2, \ldots, R\} = \bigcup_{k=1}^{m} \mathfrak{S}_{k}^{(p)} \qquad \mathfrak{S}_{k}^{(p)} \cap \mathfrak{S}_{l}^{(p)} = \emptyset, \ k \neq l, \ p \in \{1, 2, 3\}.$$

Результат: $\widetilde{\mathsf{X}}_1,\,\widetilde{\mathsf{X}}_2,\,\ldots,\,\widetilde{\mathsf{X}}_m$ — оценки рядов $\mathsf{X}_1,\,\mathsf{X}_2,\,\ldots,\,\mathsf{X}_m$.

- 1: Вложение: построение траекторного тензора $\mathcal X$ по параметрам I,L.
- 2: Разложение: проведение HOSVD траекторного тензора \mathcal{X} , получение его представления в виде

$$\mathcal{X} = \sum_{i=1}^{I} \sum_{l=1}^{L} \sum_{j=1}^{J} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)}.$$
 (5)

3: Группировка: построение тензоров

$$\mathcal{X}^{(k)} = \sum_{i \in \mathfrak{S}_k^{(1)}} \sum_{l \in \mathfrak{S}_k^{(2)}} \sum_{j \in \mathfrak{S}_k^{(3)}} \mathcal{Z}_{ilj} U_i^{(1)} \circ U_l^{(2)} \circ U_j^{(3)}.$$

4: Восстановление: получение рядов $\widetilde{\mathsf{X}}_k$ по тензорам $\mathcal{X}^{(k)}$ посредством их усреднения вдоль плоскостей $i+l+j=\mathrm{const}$:

$$\tilde{x}_n^{(k)} = \frac{1}{\#\mathfrak{M}_n} \sum_{(i,l,j) \in \mathfrak{M}_n} \mathcal{X}_{ilj}^{(k)}, \qquad n \in \overline{1:N},$$

$$\mathfrak{M}_n = \left\{ (i, l, j) \mid 1 \leqslant i \leqslant I, \ 1 \leqslant l \leqslant L, \ 1 \leqslant j \leqslant J, \ i+l+j-2 = n \right\}.$$

2.2. HO-SSA для выделения сигнала из ряда

Алгоритм HO-SSA для выделения в ряде сигнала из шума сводится к получению как можно более точного приближения траекторного тензора тензором меньших n-рангов, заданных пользователем, и может быть проведён двумя различными способами.

Первый способ заключается в приближении траекторного тензора путём усечения его HOSVD (HOSVD-SSA). Благодаря свойству ?? такое приближение можно считать достаточно точным, хоть оно и не оптимально. Первые два шага этого алгоритма совпадают с алгоритмом 4, поэтому опишем его, начиная с третьего шага. Описание приведено в алгоритме 5.

Второй способ использует алгоритм HOOI для приближения траекторного тензора ряда некоторым тензором меньших *п*-рангов, причём результатом выполнения HOOI будет HOSVD этого приближения (HOOI-SSA). Первый шаг этого алгоритма совпадает с первым шагом алгоритма 4, поэтому опишем его начиная со второго шага. Описание приведено в алгоритме 6.

Алгоритм 5 HOSVD-SSA для выделения сигнала.

Входные данные: X, I,L:1 < I,L < N, I+L < N+1, где N-длина X, $R_1 \in \overline{1:I},$ $R_2 \in \overline{1:L},$ $R_3 \in \overline{1:J}.$

Результат: \widehat{X} .

- 3: По параметрам R_1, R_2, R_3 и разложению траекторного тензора \mathcal{X} в виде (5), в тензоре \mathcal{Z} проводится замена сечений $\mathcal{Z}_{i_m=k}$ при $k>R_m$ на нулевые, и по полученному тензору $\widehat{\mathcal{Z}}$ строится приближение траекторного тензора $\widehat{\mathcal{X}}$.
- 4: Усреднение тензора $\widehat{\mathcal{X}}$ вдоль плоскостей $i+l+j=\mathrm{const},$ в результате чего получается оценка сигнала $\widehat{\mathsf{X}}.$

3. Описание метода HOSVD-MSSA

В данном разделе приведены описания алгоритмов HOSVD-MSSA для выделения сигнала из ряда и для разделения компонент сигнала.

Алгоритм 6 HOOI-SSA

Входные данные: X, I, L: 1 < I, L < N, I+L < N+1, где N-длина X, $R_1 \in \overline{1:I}$, $R_2 \in \overline{1:L}$, $R_3 \in \overline{1:J}$.

Результат: \widehat{X} .

- 2: Применение к построенному на первом шаге траекторному тензору \mathcal{X} метода HOOI с набором n-рангов (R_1, R_2, R_3) . Результат применения HOOI: тензор $\widehat{\mathcal{X}}$, имеющий заданные n-ранги.
- 3: Восстановление сигнала, совпадает с шагом 4 алгоритма 5.

3.1. HOSVD-MSSA для выделения сигнала

Пусть дан P-мерный временной ряд X длины N

$$X = (X_1 : X_2 : \dots : X_P),$$

 $X_p = (x_1^{(p)}, x_2^{(p)}, \dots, x_N^{(p)})^{\mathrm{T}}.$

Определение 3.1 (Траекторный тензор многомерного ряда). Траекторным тензором ряда X с длиной окна L: 1 < L < N будем называть тензор $\mathcal X$ размерности $L \times K \times P$, K = N - L + 1, элементы которого удовлетворяют равенству

$$\mathcal{X}_{lkp} = x_{l+k-1}^{(p)}$$
 $l \in \overline{1:L}, k \in \overline{1:K}, p \in \overline{1:P}.$

Из определения следует, что сечение $\mathcal{X}_{\cdot\cdot\cdot p}$ траекторного тензора с длиной окна L является траекторной матрицей ряда $\mathsf{X}^{(p)}$, построенной по длине окна L. Пользуясь определением 1.1 оператора вложения, можно записать следующее представление

$$\mathcal{X}_{\cdot \cdot p} = \mathcal{H}_L\left(\mathsf{X}^{(p)}\right)$$
 .

Метод HOSVD-MSSA для выделения в ряде сигнала из шума, по аналогии с алгоритмом HOSVD-SSA, сводится к получению как можно более точного приближения траекторного тензора тензором меньших, заданных пользователем, *n*-рангов. Для получения такого приближения используется усечение HOSVD траекторного тензора. Описание метода приведено в алгоритме 7.

3.2. HOSVD-MSSA для разделения компонент сигнала

Пусть есть два P-мерных временных ряда $\widehat{\mathsf{X}}$ и $\widetilde{\mathsf{X}}$ длины N и $\mathsf{X} = \widehat{\mathsf{X}} + \widetilde{\mathsf{X}}$. Их траекторные тензоры с длиной окна L обозначим $\widehat{\mathcal{X}}$, $\widetilde{\mathcal{X}}$, \mathcal{X} соответственно.

Алгоритм 7 HOSVD-MSSA для выделения сигнала

Входные данные: $X = (X^{(1)}, \dots, X^{(P)})^T$, L: 1 < L < N, где N-длина $X, R_1 \in \overline{1:L}$, $R_2 \in \overline{1:K}, R_3 \in \overline{1:P}$, где K=N-L+1.

Результат: X.

- 1: Построение по ряду X траекторного тензора \mathcal{X} с длиной окна L.
- 2: Вычисление HOSVD \mathcal{X} , получение его представления в виде

$$\mathcal{X} = \sum_{l=1}^{L} \sum_{k=1}^{K} \sum_{p=1}^{P} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}.$$
 (6)

3: Построение по параметрам R_1, R_2, R_3 усечения HOSVD

$$\widetilde{\mathcal{X}} = \sum_{l=1}^{R_1} \sum_{k=1}^{R_2} \sum_{p=1}^{R_3} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}.$$

4: Восстановление многомерного ряда $\widetilde{\mathsf{X}} = \left(\widetilde{\mathsf{X}}^{(1)}, \dots, \widetilde{\mathsf{X}}^{(P)}\right)$ по тензору $\widetilde{\mathcal{X}}$, которое происходит следующим образом: ряды $\widetilde{\mathsf{X}}^{(p)}$ получаются усреднением сечений $\widetilde{\mathcal{X}}_{\cdot p}$ вдоль побочных диагоналей $l+k=\mathrm{const.}$

Метод HOSVD-MSSA для разделения компонент сигнала сводится к получению представления HOSVD траекторного тензора наблюдаемого сигнала X в виде суммы HOSVD траекторных тензоров компонент \widehat{X} и \widetilde{X} . Первые два шага этого алгоритма совпадают с первыми двумя шагами алгоритма 7, поэтому описание алгоритма приводится, начиная с 3 шага. Описание метода приведено в алгоритме 8.

4. Описание метода HO-ESPRIT

Пусть $\mathsf{X}-$ одномерный (P=1) или многомерный (P>1) комплекснозначный временной ряд вида (4). Обозначим

$$\overline{L} = \begin{cases} (I, L), & P = 1, \\ L, & P > 1, \end{cases}$$

Алгоритм 8 HOSVD-MSSA для разделения компонент сигнала.

Входные данные: $X, L: 1 < L < N, K = N - L + 1, \widehat{\mathfrak{S}}, \widetilde{\mathfrak{S}} \subseteq \overline{1: \min(L, K)} : \widehat{\mathfrak{S}} \cap \widetilde{\mathfrak{S}} = \emptyset,$ $\widehat{\mathfrak{P}}, \widetilde{\mathfrak{P}} \subseteq \overline{1:P}$

Результат: $\tilde{\hat{X}}$, $\tilde{\tilde{X}}$ — оценки \hat{X} и \tilde{X} соответственно.

3: Группировка: построение тензоров

$$\widehat{\mathcal{X}} = \sum_{l \in \widehat{\mathfrak{S}}} \sum_{k \in \widehat{\mathfrak{S}}} \sum_{p \in \widehat{\mathfrak{P}}} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)},$$

$$\widetilde{\mathcal{X}} = \sum_{l \in \widetilde{\mathfrak{S}}} \sum_{k \in \widetilde{\mathfrak{S}}} \sum_{p \in \widetilde{\mathfrak{P}}} \mathcal{Z}_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}.$$

4: Восстановление рядов \hat{X} и \hat{X} по тензорам $\hat{\mathcal{X}}$ и $\hat{\mathcal{X}}$ соответственно путём применения к каждому из этих тензоров шага 4 алгоритма 7.

а \mathcal{X} — траекторный тензор ряда X, построенный с длиной (длинами) окна из \overline{L} . Также определим область допустимых параметров \overline{L} :

$$\mathcal{D} = \begin{cases} \left\{ (I, L) : \ 1 < I, L < N, \ I + L < N + 1 \right\}, & P = 1, \\ \left\{ L : \ 1 < L < N \right\}, & P > 1. \end{cases}$$

Описание метода HO-ESPRIT приведено в алгоритме 9.

5. Численные сравнения в задаче оценки параметров

В этом разделе приведены сравнения методов ESPRIT и HO-ESPRIT по точности оценки параметров сигнала вида (4) в случае одномерных и многомерных рядов. В качестве показателя точности оценки была выбрана метрика относительного среднеквадратичного отклонения (RRMSE)

RRMSE =
$$\frac{100}{|\gamma|} \sqrt{\frac{1}{m} \sum_{j=1}^{m} |\gamma - \widehat{\gamma}_j|^2 (\%)},$$
 (7)

где m— количество реализаций шума, γ — оцениваемый параметр, $\widehat{\gamma}_j$ — оценка параметра γ по ряду с j-й реализацией шума. Такой выбор был сделан для того, чтобы в дальнейшем сравнить результаты с результатами работы [6], в которой использовалась именно такая метрика для определения точности оценивания параметров.

Алгоритм 9 HO-ESPRIT для оценки параметров комплекснозначного сигнала.

Входные данные: X, $\overline{L} \in \mathcal{D}$, $R: 1 \leqslant R \leqslant \min(L, N-L+1)$, $d \in \{1,2,3\}$ — номер направления сингулярных векторов, используемых для оценки параметров.

Результат: $(\widehat{\alpha}_1, \widehat{\omega}_1), (\widehat{\alpha}_2, \widehat{\omega}_2), \dots, (\widehat{\alpha}_R, \widehat{\omega}_R)$ — оценки параметров сигнала (4).

- 1: Построение траекторного тензора $\mathcal{X} \in \mathbb{C}^{I_1 \times I_2 \times I_3}$ по ряду X с параметрами из \overline{L} . Если P=1, то $I_1=I$, $I_2=L$, $I_3=N-I-L+2$, а если P>1, то $I_1=L$, $I_2=N-L+1$, $I_3=P$.
- 2: Вычисление HOSVD \mathcal{X} , получение его представления в виде

$$\mathcal{X} = \sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \sum_{i_3=1}^{I_3} \mathcal{Z}_{i_1 i_2 i_3} U_{i_1}^{(1)} \circ U_{i_2}^{(2)} \circ U_{i_3}^{(3)},$$

построение матрицы $\mathbf{U} = \left[U_1^{(d)} : U_2^{(d)} : \dots : U_{I_D}^{(d)} \right].$

3: Решение уравнения

$$\mathbf{U}^{\uparrow} = \mathbf{U}_{\perp} \mathbf{Z}$$

относительно матрицы ${\bf Z}$, где запись ${\bf U}^\uparrow$ обозначает матрицу ${\bf U}$ без первой строки, а запись ${\bf U}_\downarrow-$ без последней.

4: Нахождение первых R в порядке неубывания собственных чисел λ_j матрицы \mathbf{Z} . Полученные собственные числа $\lambda_{j'}$ считаются оценками экспонент $e^{\alpha_j + 2\pi \mathrm{i}\omega_j}$, возможно с точностью до некоторой перестановки j = S(j'), через которые можно выразить оценки искомых параметров:

$$\widehat{\alpha}_{j} = \log(|\lambda_{j'}|), \qquad \widehat{\omega}_{j} = \frac{\operatorname{Arg}(\lambda_{j'})}{2\pi}.$$

5.1. Одномерный случай

Пусть P=1 и R=2, то есть одномерный временной ряд $\mathsf{X}=(x_0,x_1,\ldots,x_{24})$ состоит из элементов вида

$$x_n = a_1 e^{\alpha_1 n} e^{i(2\pi\omega_1 n + \varphi_1)} + a_2 e^{\alpha_2 n} e^{i(2\pi\omega_2 n + \varphi_2)} + \varepsilon_n,$$

где $n \in \overline{0:24}$, а ε_n — последовательность независимых случайных величин из распределения $N(0, \sigma^2)$, $\sigma = 0.04$. Также пусть $\omega_1 = 0.2$, $\omega_2 = 0.22$. Ниже приведены рассматриваемые варианты степеней затухания.

1.
$$\alpha_1 = \alpha_2 = 0$$
.

- 2. $\alpha_1 = \alpha_2 = -0.01$.
- 3. $\alpha_1 = \alpha_2 = -0.02$.
- 4. $\alpha_1 = -0.01$, $\alpha_2 = -0.02$.

Во всех случаях ранг сигнала с такими параметрами будет равен 2, поэтому для оценки параметров использовались только первые два собственных числа матрицы **Z** из алгоритмов 3 и 9. В этом разделе RRMSE считалось по 500 реализациям шума.

Ниже представлены графики зависимости RRMSE оценок частот методом HO-ESPRIT от размеров траекторного тензора (ось x) и выбора направления оценивания (цвет и тип линий). Чёрной пунктирной линией на рисунках изображены наименьшие по выбору длины окна значения RRMSE соответствующего параметра, полученные методом ESPRIT.

Рисунки 1 соответствуют случаю 1. Графики с RRMSE оценок степеней затухания не приводятся в этом случае, так как для них RRMSE не определено. Рисунки 2, 3 и 4 соответствуют случаям 2, 3 и 4 соответственно.

Рис. 1. Зависимость RRMSE оценок параметров от длины окна и направления восстановления, случай 1.

Выводы из численных сравнений В случае одномерных сигналов оценки методом HO-ESPRIT при оптимальном подборе параметров оказались не менее точными, чем оптимальные оценки стандартным методом ESPRIT. Кроме того, в некоторых ситуациях оптимальные оценки методом HO-ESPRIT оказываются точнее оптимальных оценок методом ESPRIT. Однако множество длин окна в алгоритме HO-ESPRIT, при которых

Рис. 2. Зависимость RRMSE оценок параметров от длины окна и направления восстановления, случай 2.

точность оценок параметров сигнала близка к оптимальной, очень мало, и нам пока неизвестны способы их выбора кроме перебора. С другой стороны, для стандартного алгоритма ESPRIT требуется меньший набор параметров, а множество длин окна, при которых точность оценки близка к оптимальной, довольно велико. С учётом этих замечаний, и того, что разница в точности оптимальных параметров между методами не велика, использование метода HO-ESPRIT в текущем виде не обосновано.

Стоит заметить, что во всех случаях выбор номера направления d из алгоритма 9, соответствующего направлению наименьшего размера траекторного тензора, давал наиболее точные результаты.

Рис. 3. Зависимость RRMSE оценок параметров от длины окна и направления восстановления, случай 3.

Рис. 4. Зависимость RRMSE оценок параметров от длины окна и направления восстановления, случай 4.

Список литературы

- Golyandina N., Nekrutkin V., Zhigljavsky A. Analysis of Time Series Structure. Chapman and Hall/CRC, 2001.
- 2. Степанов Д.В., Голяндина Н.Э. Варианты метода «Гусеница»—SSA для прогноза многомерных временных рядов // Труды IV Международной конференции «Идентификация систем и задачи управления». 2005. С. 1831—1848.
- 3. Multivariate and 2D Extensions of Singular Spectrum Analysis with theRssaPackage / Golyandina N., Korobeynikov A., Shlemov A., and Usevich K. // Journal of Statistical Software. 2015. Vol. 67, no. 2.
- 4. Golyandina N., Zhigljavsky A. Singular Spectrum Analysis for Time Series. 2 ed. Springer Berlin Heidelberg, 2020.
- 5. Algorithm for Time-Domain NMR Data Fitting Based on Total Least Squares / Van Huffel S., Chen H., Decanniere C., and Van Hecke P. // Journal of Magnetic Resonance, Series A. 1994. Vol. 110, no. 2. P. 228–237.
- Papy J.M., De Lathauwer L., Van Huffel S. Exponential data fitting using multilinear algebra: the single-channel and multi-channel case // Numerical Linear Algebra with Applications. — 2005. — Vol. 12, no. 8. — P. 809–826.
- 7. Roy R., Paulraj A., Kailath T. Estimation of Signal Parameters via Rotational Invariance Techniques ESPRIT // MILCOM 1986 IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.—IEEE.—1986.—P. 41.6.1–41.6.5.
- 8. Nie J., Ye K. Hankel tensor decompositions and ranks. 2017.