# Week 5

## 软73 沈冠霖 2017013569

March 26, 2019

## 1 T1

根据书上8.4,想要用桶排序把一组均匀分布的数以 $\theta(n)$ 的复杂度排序,则需要将其分成n部分,其中每个数出现在每一部分的概率都是 $\frac{1}{n}$ 。 因此可以把圆分成n组,第i组中的点满足 $\frac{\sqrt{i-1}}{\sqrt{n}} \leq \sqrt{x^2+y^2} \leq \frac{\sqrt{i}}{\sqrt{n}}$ ,这样每个部分的面积都是 $\frac{1}{n}$ ,任意一个点出现在每部分概率也是 $\frac{1}{n}$ 

# 2 T2

假设长度为i的钢条价值为v[i],切割一次成本为c,长度为n,设长度为i钢条最大利润为r[i],则仍然考虑长为i的钢条,最右一次切割所在的位置。 状态转移方程为:r[i] = max(v[i], r[i-1] + v[1] - c, r[i-2] + v[2] - c....r[1] + v[i-1] - c)

### 3 T3

测试环境 CPU:Inter Core i5-6300HQ,2.3GHZ

内存·12G

环境: VS2017, release模式 比较不同数据规模下五种排序算法的时间的结果, 具体数据见Table 1 与下方折线图。

**结果分析** 运行结果全部正确。 运行时间分析如下: 首先,在数据范围较小 $\leq$  1000的时候,五种算法都几乎一样快,因为在n很小的时候, $O(n^2), O(nlgn), O(n)$ 差别不大。

其次,在数据规模满足 $1000 \leq n$ 的时候, $O(n^2)$ 的插入排序和希尔排序时间增加很快,乃至在超过100万的时候排序时间过长。而因为我选择希尔排序第一趟间隔为7,希尔排序时间始终是插入排序的 $\frac{1}{8} = -\frac{1}{7}$ 之间,也符合预期。而此时,归并,基数排序时间大致相当,且都是接近线性增长。而O(nlgn)的快速排序则略慢,而且在数据范围过大的时候排序明显慢。因为基数排序是 $\theta(n)$ 的算法,比较快很正常。而我猜测,归并排序快是因为其每步操作较为简单,常数较小。而且其每次归并可能有达 $\frac{1}{3}$ 的元素不用归并,它们大小不足

### 一个归并段。

最后,虽然基数排序和归并排序较快,其至少需要大小为n的额外空间,20亿规模的数据已经达到内存空间的极限了。

Table 1: 不同数据规模下排序的时间

| 测量序号        | 1  | 2   | 3    | 4     | 5        | 6        | 7        | 8        | 9          |
|-------------|----|-----|------|-------|----------|----------|----------|----------|------------|
| 数据范围        | 10 | 100 | 1000 | 10000 | $10^{5}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ | $2*10^{8}$ |
| 插入排序时间 (ms) | 0  | 0   | 0.6  | 43    | 4113.4   | 太大       | 太大       | 太大       | 太大         |
| 希尔排序时间 (ms) | 0  | 0   | 0    | 5.4   | 524.6    | 太大       | 太大       | 太大       | 太大         |
| 归并排序时间 (ms) | 0  | 0   | 0    | 1.2   | 15.4     | 175.8    | 1813.6   | 18366    | 39362      |
| 快速排序时间 (ms) | 0  | 0   | 0.2  | 1     | 11.4     | 147.8    | 2553.6   | 134330   | 太大         |
| 基数排序时间 (ms) | 0  | 0   | 0.2  | 2.4   | 18.2     | 113.6    | 2304.6   | 25861.2  | 53505      |

注:除了108数量级只测试了2组外,每组数据都是运行5次后取的平均值



注:横轴代表 $log_{10}n$ ,对于超过100s的排序,其时间显示为100s



注:横轴代表 $log_{10}n$ ,对于超过100s的排序,其时间显示为100s