## Homework 4

#### Xiaofan Jiao

# Question 1. Comparing multi-class classifiers for handwritten digits classification.

1)

|   | Classifier          | Precision | Recall | F1 Score |
|---|---------------------|-----------|--------|----------|
| 0 | KNN                 | 0.970688  | 0.9705 | 0.970452 |
| 1 | Logistic Regression | 0.925423  | 0.9256 | 0.925445 |
| 2 | Linear SVM          | 0.918006  | 0.9183 | 0.918014 |
| 3 | Kernel SVM          | 0.979201  | 0.9792 | 0.979186 |
| 4 | Neural Network      | 0.951872  | 0.9518 | 0.951767 |

2) KNN works well by looking at nearby data points, but it can be slow and less effective with noisy or poorly separated data. Logistic regression does a good job with linearly separable data but struggles with more complex patterns. Linear SVM also works for linearly separable classes but performs worse on the MNIST dataset because it needs more complex decision boundaries. Kernel SVM, using an RBF kernel, handles non-linear relationships well, making it very effective for MNIST. The neural network, with its simple setup, performs well but could do better with a more complex design. Overall, Kernel SVM and KNN perform best due to their ability to handle non-linear patterns, while logistic regression and linear SVM are limited by their linear nature. Neural networks are promising but might improve with more depth.

#### Question 2. SVM.

1) Setting the margin c= simplifies the equations for Support Vector Machines (SVMs). The margin is the distance between the decision boundary (the line or plane that separates the classes) and the closest data points (support vectors). When c=1, we make the math easier without losing generality. This means we can still separate the classes effectively. By scaling the weights and the bias term accordingly, we can adjust any margin to 1.

| Using the Lagrangian dual formulation                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| the primal problem is: Ilim w,b = 11WH2                                                                                                          |
| subject to: y.(W·Xi+b) >1                                                                                                                        |
| We introduce Lagrange multipliers $\alpha$ : 1/0 for each constraint $[(w,b,\alpha)=\frac{1}{2}  w  ^2-\sum_{i=1}^n (x_i  y_i  w\cdot x_i+b)-1]$ |
| We take partial derivative of I with respect to wand b                                                                                           |
| set them to zero:                                                                                                                                |
| W = W = Zi=1 AiyiXi = D                                                                                                                          |
| $W = \sum_{i=1}^{n} \alpha_i y_i X_i$                                                                                                            |
|                                                                                                                                                  |
| his implies that wis a linear combination of the training data                                                                                   |
| nts Xi, weighted by the Lagrange multipliers a; and the class                                                                                    |
| sels yi, Only the data Points with non-zero di(support vectors)                                                                                  |
| antibute to W                                                                                                                                    |
|                                                                                                                                                  |
| Do In to the 1887 and to Combo data Point in                                                                                                     |
| According to the (KKT) conditions, for each data fromt in                                                                                        |
| $\frac{1}{1}\left(y_{1}(w_{1}x_{1}+b)-1\right)=0$                                                                                                |
| If di 70 then y: (w.xi+b)=1 where the points lies on the margin                                                                                  |
| f di=0, the point lies either correctly classified or outside                                                                                    |
| the margin, not effecting in                                                                                                                     |
| therefore, only the support vectors (with di 20) determine the decisian                                                                          |
| boundary.                                                                                                                                        |
|                                                                                                                                                  |

| 4) a) |                                                                                                                                                                                                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4)    | (a) Problem: we need to find a live (dicision boundry) that seperates the jositive & negative samples.                                                                                                                                                                                                                                                    |
|       | seperates the positive & regiment shaples  For h≤1: the negative sample (h,1) is closer to the positive sample (D.  We can draw a line seperating the Positive Points  (U,0) and (2,2) from the negative Points (h,1) × (û,3)  For h>1: the negative sample (h,1) moves further right on the x-ax  There is still a possibility to draw a line seperating |
|       | the positive & negative points because the negative point (0.3) is higher up.  i. The training Points are linearly seperable for 0 < h < 2                                                                                                                                                                                                                |
| b)    | (b) For 0 <h<2:< td=""></h<2:<>                                                                                                                                                                                                                                                                                                                           |
|       | · As hincrease, the negative point (h,1) moves rightward · The decision boundary will adjust to maintain the                                                                                                                                                                                                                                              |
|       | maximum margin between the positive at negative samples when his small, the boundary will be closed to vortical.  As h approaches 2, the boundary titls more towards                                                                                                                                                                                      |
|       | the horizontal to accommodate the separation.  The orientation of the decision boundary changes as h                                                                                                                                                                                                                                                      |
| 100   | thoughs within the separable range latially more vertical.                                                                                                                                                                                                                                                                                                |

# Question 3. Neural networks and backpropagation.

a)

| d(wab) = - \(\hat{\gamma} \) 2(yi - \(\delta(\delta))\(\delta(\delta))\(\delta(\delta))\(\delta(\delta))\(\delta(\delta))\(\delta)\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| where (ill'=WTZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O Cost Function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LIW, Q, B) = \( \int_{\bar{z}} \)^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| @ Differentiate the cost function:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| alima, B) = E an (yi - o(wizi))2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| aw is awy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= 2(y^{i} - \lambda(u^{i})) \frac{\alpha}{\alpha w} (y^{i} - \lambda(u^{i})) - \frac{\alpha}{\alpha w} (u^{i}) = \frac{\alpha}{\alpha w} ($ |
| X X(u') = X'(u') du'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| where $\delta'(u') = \delta(u')(1 - \delta(u'))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha w = \frac{\alpha}{\alpha w} (w^{\dagger} z^{\dagger}) = z^{\dagger}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 214 - x(ui) > X(ui) (1- x(ui)) zi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| This Propos the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| = - \frac{\substree}{z} z(yi - \delta(ui))(1 - \delta(ui))\frac{2}{z} gren gradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [=1] [=1] [=1] [=1] [=1] [=1] [=1] [=1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

b)

| b) Gradient w.r.t a:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.33       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $Z_i^{\prime} = \otimes (\alpha^{\intercal} x^i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7           |
| $\frac{Z_1^i = x(\alpha^T x^i)}{\alpha(\omega, \alpha, \beta)} = \sum_{j=1}^{m} \frac{\alpha}{\alpha} (y^i - x(\omega^T z^i))^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| QQ = 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 1. 184   |
| using the chain Rule:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C           |
| <u>  de(w, a, B)</u> = ∑ 2(yi - 8(ui)) aa (yi - 8(u))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ن)         |
| مر المرابع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| x s(ui) - b'(ui) xui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Size $u^{T} = w^{T}z^{T}$ and $z^{T}_{i} = x(x^{T}x^{T}_{i})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (6.30)      |
| $\alpha u' = \omega_1 \cdot \delta'(\alpha^T x^i) \cdot x^{i+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 下"净"        |
| $\alpha \lambda(w,\alpha,\beta) = -\sum_{i=1}^{m} 2(y_i - \lambda(y_i))(1 - \lambda(y_i))(\alpha)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X'(XTXI)XI  |
| $\frac{\alpha l(w,\alpha,\beta)}{\alpha \alpha} = -\sum_{i=1}^{m} 2(y^{i} - \delta(u^{i}))(1 - \delta(u^{i})) \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.10.77.77 |
| Gradient w.c.t. B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 200       |
| - 1 - v P7v:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ta 4. 49    |
| al -m a mi x m. Trinz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| OB = Z OB (y - O(WZ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -) T        |
| $\frac{\alpha \ell}{\alpha \beta} = \sum_{i=1}^{m} \frac{\alpha}{\alpha \beta} (y^{i} - \delta(w^{T}z^{i}))^{2}$ Using the chan Rule:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -15         |
| Using the chan Hule:<br>al(mail) = \( \sum_{\chi} \sup (y' - \su(u')) \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -15         |
| Using the chan Hule:<br>al(waib) = \( \sum_{i=1} \) z(yi - \( \su(ui) \) \( \alpha \) \( \su(ui) \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -15         |
| Using the chan Hule:  al(waiB) = \( \sum_{i=1} \) \( \sum | -15         |
| Using the chan Rule:<br>$\frac{\alpha \ell(u\alpha,\beta)}{\alpha \beta} = \sum_{i=1}^{\infty} 2(y^i - \alpha(u^i)) \frac{\alpha}{\alpha \beta} (y^i - \alpha(u^i))$ $\frac{\alpha}{\alpha \beta} = \sum_{i=1}^{\infty} 2(u^i) \frac{\alpha u^i}{\alpha \beta}$ Since $ u^i  =  u^T ^2$ and $ \tau_i  = \delta(\beta^T x^i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -15         |
| Using the chan Hule:<br>$\alpha l(w\alpha,\beta) = \sum_{i=1}^{\infty} 2(y^i - \alpha(u^i)) \frac{\alpha}{\alpha\beta} (y^i - \alpha(u^i))$ $\frac{\alpha}{\alpha\beta} = \frac{\alpha}{i} \frac{\alpha u^i}{\alpha\beta}$ Since $w^i = w^T z^i$ and $z^i = \delta(\beta^T x^i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Using the chan Hule:  al(waiB) = \( \sum_{i=1} \) \( \sum |             |

# Question 4. Feature selection and change-point detection.

a)

| Question 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F 化厂用                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1) The mutual information 1 (X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y) for two discrete random variables X               |
| and Y is : Texas II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Promoting (P(x,y)                                    |
| and Y is = 7(X;Y) = \( \sum_{\times \cdot \times \cdot \times \cdot \cdot \times \cdot \cdot \times \cdot \c | P(x,y) (y) P(x) P(y)                                 |
| where P(X, Y) is the 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at Probability of X and Y, and arginal Probabilities |
| P(x) and P(4) are the mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | orginal Probabilities                                |

| Prize'                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         |
|--------------------------------|-----------------------------------------------|
| O Calculate totals:            |                                               |
| 150 + 10 + 1000 + 15000 =      | 16160                                         |
| @ Marginal Probability:        |                                               |
| Pisani=1) - 160                | P(spam=0) 1600                                |
| P(spam=1) = 160<br>16160       | 16160                                         |
| P(Prize =1) = 1150             | P(prite = 0) - 15010                          |
| 16160                          | P(prite = 0) = 15010<br>16160                 |
| 3 John Probabilities           | The first of the second                       |
| PISDOMEI, Prize = 1) = 15      | 00 P(Spam=1, Prize=0) = 10<br>160 160         |
| P(spam=0, Prite=1) = 1         | 000 P(spam=0, prize=0) = 15000<br>160         |
| Put it all together            |                                               |
| 7 (spam; prize) = Ep(spam      | Prize) 109 Pigam, prize                       |
| I Coping from 2/192            | Pispam) Piprice)                              |
| (hello)                        | 18                                            |
| O Calculate Total:             |                                               |
| 145 + 15 + 11000 + 5000 = 16/6 | 60                                            |
| @Marginal Probabilities:       | the the state of                              |
| P(spam=1) = 160                | (Spam = 0) = 16000                            |
| 16160                          | 16160                                         |
| P(hello = 1) = 11145 P(        | hello=0) = 5015                               |
| P(hello = 1) = 11145 P(        | 19160                                         |
| 3 Joint                        | 3 5765 75                                     |
| P(spam=1, hello=1) = 145       | P(spam=1, hello=0) = 15/60                    |
| P(sparu =0, hello=1) = 11000   | P(spam=0, hello=0) = 5000                     |
| Put it all together            |                                               |
|                                | n, hello) log P(spam, hello) P(spam) P(hello) |
| - (Just) rettor 2 / 13/00      | J 0.0 10(1-11)                                |



b) In the second part of the analysis, we applied the CUSUM (Cumulative Sum) detection statistic to identify a change point in a sequence of samples. The samples were generated from two different normal distributions: f0 = N(0,1) for the first 100 samples and f1 = N(0.5,1.5) for the subsequent 50 samples. The CUSUM algorithm involves calculating the log-likelihood ratio (LLR) for each sample and using these values to compute the CUSUM statistic recursively. The plot of the CUSUM statistic clearly shows a significant increase starting at the 100th sample, indicating the change point where the distribution shifts from f0 to f1. The plot confirms the effectiveness of the CUSUM method in identifying changes in distribution, which is crucial for applications requiring quick detection of shifts in process behavior.



## **Question 5. Medical imaging reconstruction**

Both methods have their strengths and weaknesses. LASSO regression is advantageous for sparse signal recovery and can be particularly useful when the true image is expected to be sparse. On the other hand, Ridge regression provides a smoother and less noisy reconstruction, which may be more suitable for images where smoothness is a key feature. In this case, while both methods provided reasonable reconstructions, the Ridge regression approach produced a clearer and more coherent image.

