Определение

Пусть даны точка O и некоторая длина R. Инверсией с центром O и радиусом R называется преобразование, которое каждую точку $A \neq O$ переводит в A', лежащую на луче OA и удовлетворяющую $OA' \cdot OA = R^2$. Также данное преобразованиеназывают инверсией относительно окружности Γ с центром O и радиусом R. В данном контексте объектами будем называть прямые и окружности. Углом между пересекающимися объектами будем называть:

- Угол между прямыми, если оба объекта прямые.
- Угол между прямой и касательной к окружности в точке пересечения её прямой, если объекты прямая и окружность.
- Угол между касательными в точке пересечения окружностей, если объекты две окружности.

Основные свойства

- Точки A, A', B, B' лежат на одной окружности.
- $\angle OAB = \angle OB'A'$
- Прямая, проходящая через центр инверсии, переходит в прямую, проходящую через центр инверсии.
- Окружность, проходящая через центр инверсии, переходит в прямую, не проходящую через центр инверсии.
- Прямая, не проходящая через центр инверсии, переходит в окружность, проходящую через центр инверсии.
- Окружность, не проходящая через центр инверсии, переходит в окружность, не проходящую через центр инверсии.
- Центр инверсии, переводящей окружность Ω в ω , является также центром положительной гомотетии, переводящей Ω в ω .
- Инверсия сохраняет угол между объектами.
- Касающиеся объекты или параллельные прямые при инверсии переходят в касающиеся объекты или параллельные прямые.

$$\bullet \ A'B' = \frac{R^2 \cdot AB}{OA \cdot OB}$$

Часто встречающиеся инверсии

- Композиция инверсии с центром A, радиусом $\sqrt{AB \cdot AC}$ и отражения относительно биссектрисы BAC.
- Инверсия с центром I и радиусом r, где I центр вписанной окружности треугольника ABC, r её радиус.
- Композиция инверсии с центром H и радиусом $\sqrt{AH \cdot HA_1}$ и отражения относительно точки H, где H ортоцентр ABC, а A_1 основание высоты, опущенной из вершины A.

Упражнения

- 1. Shooting Lemma. Пусть A, B, S точки, причём S середина дуги AB описанной окружности ASB Γ . Пусть X точка на прямой AB, а Y пересечение SX с Γ . Докажите, что $SX \cdot SY = SA^2$.
- 2. **Неравенство Птолемея.** Для выпуклого четырёхугольника ABCD верно неравенство $AB \cdot CD + AD \cdot BC \geqslant AC \cdot BD$, причём оно обращается в равенство, если и только если ABCD вписанный.
- 3. Пусть AB диаметр окружности Γ , P точка на окружности Γ . ω окружность с центром в точке P, касающаяся прямой AB в точке H. Докажите, что прямая, проходящая через точки пересечения окружностей Γ и ω делит PH пополам.
- 4. В треугольнике ABC с описанной окружностью ω биссектриса $\angle A$ пересекает BC в D, а ω в E. Окружность с диаметром DE пересекает ω в точке F. Докажите, что AF симедиана треугольника ABC.
- 5. Пусть ADBE четырёхугольник, вписанный в окружность с диаметром AB, диагонали которого пересекаются в C. Пусть ω описанная окружность треугольника BOD, где O середина AB. Пусть F точка на ω , диаметрально противоположная O, и пусть луч FC пересекает ω второй раз в G. Докажите, что A, O, G, E лежат на одной окружности.
- 6. Пусть KL и KN касательные из точки K к окружности k. M точка на продолжении KN за точку N, а P вторая точка пересечения окружности k с описанной окружностью треугольника KLM. Q основание перпендикуляра, опущенного из вершины N на прямую ML. Докажите, что $\angle MPQ = 2\angle KML$.
- 7. Пусть I центр вписанной окружности треугольника ABC. Окружность с центром в точке A, проходящая через I пересекает описанную окружность треугольника ABC в точках M и N. Докажите, что прямая MN касается вписанной окружности треугольника ABC.

Задачи

- 8. Пусть γ описанная окружность треугольника ABC. Окружность ω касается сторон AC, AB, а также γ внутренним образом в точке P. Прямая, параллельная BC, пересекает стороны треугольника ABC, а также касается ω в точке Q. Докажите, что $\angle CAP = \angle QAB$.
- 9. Пусть ABC остроугольный треугольник, Γ его описанная окружность, H ортоцентр, а F основание высоты, опущенной из вершины A. M середина стороны BC. Q и K точки на Γ такие, что $\angle HQA = \angle HKQ = 90^\circ$. Докажите, что описанные окружности треугольников KQH и FKM касаются друг друга.
- 10. Треугольник ABC вписан в окружность ω . Произвольная прямая l, параллельная BC, пересекает отрезки AB, AC в точках D и E соответственно. Окружность γ_B касается прямых AB и DE, а также дуги AB окружности ω , не содержащей точки C. Аналогично определяется γ_C . Найдите геометрическое место точек пересечения общих внутренних касательных γ_B и γ_C в зависимости от DE.
- 11. Зафиксируем окружность Γ , прямую l, касающуюся Γ , а также другую окружность Ω , непересекающуюся с l такую, что Γ и Ω с разных сторон от l. Касательные к Γ , проведённые из переменной точки X на Ω пересекают l в точках Y и Z. Докажите, что при движении X по Ω окружность XYZ касается двух фиксированных окружностей.