STATS 2107

Statistical Modelling and Inference II

Solutions

Workshop 12:

MLE for SLR

Matt Ryan

Semester 2 2022

Contents

The set up	2
Simple linear regression	2
Likelihood estimation	2
pdf for SLR	2
Calculating the likelihood	2
Calculating the likelihood	2
Your turn	3
What to do	3
The log-likelihood	3
The score	3
The score vector	3
For SLR?	3
The first element	4
Your turn	4
What to do	4
Maximum Likelihood estimates	5
How do we get the MLE?	5
For SLR	5
Solving for $\hat{\beta}_0$	5
Solving for $\hat{\beta}_1$	6
Evaluate at $\hat{\hat{eta}}_0$	6
Your turn	6
What to do	6
Fisher Information	7
The Fisher information matrix	7
For SLR	7
Your turn	7

The set up

Simple linear regression

Consider data $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n)$ and the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where $\varepsilon_i \sim N(0, \sigma^2)$ independently for each i = 1, 2, ..., n.

Likelihood estimation

How does SLR fit into likelihood estimation? For likelihood estimation we need:

- 1. Independent data y_1, y_2, \ldots, y_n .
- 2. A pdf for each y_i , $f_{Y_i}(y_i)$.
- 3. Some parameters $\boldsymbol{\theta}$ to estimate

What is the pdf for the SLR?

pdf for SLR

We may write $Y_i \sim N(\mu_i, \sigma^2)$ where $\mu_i = \beta_0 + \beta_1 x_i$ for each i = 1, 2, ..., n. Hence $\boldsymbol{\theta} = (\beta_0, \beta_1, \sigma^2)$, and

$$f_{Y_i}(y_i; \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu_i)^2}{2\sigma^2}}$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - (\beta_0 + \beta_1 x_i))^2}$$

Calculating the likelihood

By definition,

$$L(\boldsymbol{\theta}; \boldsymbol{y}) = \prod_{i=1}^n f_{Y_i}(y_i; \boldsymbol{\theta}).$$

Calculating the likelihood

$$L(\boldsymbol{\theta}; \boldsymbol{y}) = \prod_{i=1}^{n} f_{Y_i}(y_i; \boldsymbol{\theta})$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} (y_i - (\beta_0 + \beta_1 x_i))^2}$$

$$= \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2}$$

Your turn

What to do

1. Calculate the log-likelihood $\ell(\boldsymbol{\theta}; \boldsymbol{y})$.

Solutions:

The log-likelihood is:

$$\ell(\boldsymbol{\theta}; \boldsymbol{y}) = \log(L(\boldsymbol{\theta}; \boldsymbol{y}))$$

$$= \log\left(\frac{1}{(2\pi\sigma^{2})^{\frac{n}{2}}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}}\right)$$

$$= \log\left(\frac{1}{(2\pi\sigma^{2})^{\frac{n}{2}}}\right) + \log\left(e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}}\right)$$

$$= -\log\left((2\pi\sigma^{2})^{\frac{n}{2}}\right) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}$$

$$= -\frac{n}{2}\log\left(2\pi\sigma^{2}\right) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}$$

$$= -\frac{n}{2}\log\left(2\pi\right) - \frac{n}{2}\log\left(\sigma^{2}\right) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}$$

The log-likelihood

You should get:

$$\ell(\boldsymbol{\theta}; \boldsymbol{y}) = -\frac{n}{2} \log (\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 + C$$

for a constant C.

The score

The score vector

We define the score vector for a parameter vector $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_p)$ by

$$[S(\boldsymbol{\theta}; \boldsymbol{y})]_i = \left[\frac{\partial \ell}{\partial \theta_i}\right]$$

For SLR?

In our case, we have

- $\theta_1 = \beta_0$ $\theta_2 = \beta_1$ $\theta_3 = \sigma^2$

The first element

$$\frac{\partial \ell}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \left[-\frac{n}{2} \log \left(\sigma^2 \right) - \frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 + C \right]$$

$$= -\frac{1}{2\sigma^2} \sum_{i=1}^n \frac{\partial}{\partial \beta_0} \left[\left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 \right]$$

$$= -\frac{1}{2\sigma^2} \sum_{i=1}^n \left(-2 \right) \left(y_i - (\beta_0 + \beta_1 x_i) \right)$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)$$

Your turn

What to do

1. Show that

$$S(\boldsymbol{\theta}; \boldsymbol{y}) = \begin{bmatrix} \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i)) \\ \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i)) x_i \\ -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 \end{bmatrix}$$

Solutions:

This amounts to calculating

$$\frac{\partial \ell}{\partial \beta_1}$$
 and $\frac{\partial \ell}{\partial \sigma^2}$,

Notice how our parameter is σ^2 , not $\sigma!$

We find

$$\frac{\partial \ell}{\partial \beta_1} = \frac{\partial}{\partial \beta_1} \left[-\frac{n}{2} \log \left(\sigma^2 \right) - \frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 + C \right]$$

$$= -\frac{1}{2\sigma^2} \sum_{i=1}^n \frac{\partial}{\partial \beta_1} \left[\left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 \right]$$

$$= -\frac{1}{2\sigma^2} \sum_{i=1}^n \left(-2x_i \right) \left(y_i - (\beta_0 + \beta_1 x_i) \right)$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right) x_i,$$

and

$$\frac{\partial \ell}{\partial \sigma^2} = \frac{\partial}{\partial \sigma^2} \left[-\frac{n}{2} \log \left(\sigma^2 \right) - \frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 + C \right]$$

$$= \frac{\partial}{\partial \sigma^2} \left[-\frac{n}{2} \log \left(\sigma^2 \right) \right] + \frac{\partial}{\partial \sigma^2} \left[-\frac{1}{2\sigma^2} \right] \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2$$

$$= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2.$$

Maximum Likelihood estimates

How do we get the MLE?

To find the MLE, we solve the equation

$$S(\boldsymbol{\theta}; \boldsymbol{y}) = \boldsymbol{0}$$
.

For SLR

This gives the following three equations:

$$\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i)) = 0,$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i)) x_i = 0,$$

$$-\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2 = 0.$$

Solving for $\hat{\beta}_0$

The first equation gives:

$$0 = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))$$

$$= \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \beta_0 - \sum_{i=1}^{n} \beta_1 x_i$$

$$= n\bar{y} - n\beta_0 - n\beta_1 \bar{x},$$

hence

$$\hat{\beta_0} = \bar{y} - \beta_1 \bar{x}$$

Solving for $\hat{\beta}_1$

$$0 = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i)) x_i$$
$$= \sum_{i=1}^{n} y_i x_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2$$
$$= \sum_{i=1}^{n} y_i x_i - \beta_0 n \bar{x} - \beta_1 \sum_{i=1}^{n} x_i^2$$

Evaluate at $\hat{\beta}_0$

$$0 = \sum_{i=1}^{n} y_i x_i - \hat{\beta}_0 n \bar{x} - \beta_1 \sum_{i=1}^{n} x_i^2$$

$$= \sum_{i=1}^{n} y_i x_i - (\bar{y} - \beta_1 \bar{x}) n \bar{x} - \beta_1 \sum_{i=1}^{n} x_i^2$$

$$= \sum_{i=1}^{n} y_i x_i - n \bar{y} \bar{x} - \beta_1 \left(\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 \right)$$

$$= S_{XY} - \beta_1 S_{XX},$$

hence

$$\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} \,.$$

Your turn

What to do

1. Calculate $\widehat{\sigma^2}$, the MLE for σ^2 .

Solutions:

We have

$$0 = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2 ,$$

$$\frac{n}{2\sigma^2} = \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2 ,$$

$$n\sigma^2 = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2 ,$$

hence

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

2. Compare the MLEs to the least squares estimates for simple linear regression.

Solutions:

You clearly see that the MLE and LSE for β_1 and β_0 are identical. However, the MLE for σ^2 is

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

where as the LSE for σ^2 is

$$s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

We have previously shown that s_e^2 is unbiased for σ^2 , hence this shows that the MLE is a biased estimate for σ^2 .

Fisher Information

The Fisher information matrix

Under some regularity conditions, the Fisher information matrix is given by

$$[I_{\theta}]_{ij} = \left[\mathbb{E} \left[-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \right] \right]$$

For SLR

This will be a 3×3 matrix, so first we need to calculate the following partials:

$$\begin{array}{ccc} \frac{\partial^2 \ell}{\partial \beta_0^2} & & \frac{\partial^2 \ell}{\partial \beta_1^2} & \frac{\partial^2 \ell}{\partial (\sigma^2)^2} \\ \\ \frac{\partial^2 \ell}{\partial \beta_0 \partial \beta_1} & & \frac{\partial^2 \ell}{\partial \beta_0 \partial \sigma^2} & \frac{\partial^2 \ell}{\partial \beta_1 \partial \sigma^2} \end{array}$$

Your turn

What to do

1. Show that

$$I_{\theta} = \begin{bmatrix} \frac{n}{\sigma^2} & \frac{n\bar{x}}{\sigma^2} & 0\\ \frac{n\bar{x}}{\sigma^2} & \frac{1}{\sigma^2} \sum_{i=1}^{n} x_i^2 & 0\\ 0 & 0 & \frac{n-4}{2(\sigma^2)^2} \end{bmatrix}$$

Solutions:

First up, the partials:

$$\begin{split} \frac{\partial^2 \ell}{\partial \beta_0^2} &= \frac{\partial}{\partial \beta_0} \left[\frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right) \right] \\ &= \frac{1}{\sigma^2} \sum_{i=1}^n (-1) \\ &= -\frac{n}{\sigma^2} \,. \\ \frac{\partial^2 \ell}{\partial \beta_1^2} &= \frac{\partial}{\partial \beta_1} \left[\frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right) x_i \right] \\ &= \frac{1}{\sigma^2} \sum_{i=1}^n \left(-x_i^2 \right) \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^n x_i^2 \,. \\ \frac{\partial^2 \ell}{\partial (\sigma^2)^2} &= \frac{\partial}{\partial \sigma^2} \left[-\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right)^2 \right] \\ &= \frac{n}{2(\sigma^2)^2} - \frac{1}{(\sigma^2)^3} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right)^2 \,. \\ \frac{\partial^2 \ell}{\partial \beta_0 \partial \beta_1} &= \frac{\partial}{\partial \beta_1} \left[\frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right) \right] \\ &= \frac{1}{\sigma^2} \sum_{i=1}^n (-x_i) \\ &= -\frac{n\overline{x}}{\sigma^2} \,. \\ \frac{\partial^2 \ell}{\partial \beta_0 \partial \sigma^2} &= \frac{\partial}{\partial \sigma^2} \left[\frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right) \right] \\ &= -\frac{1}{(\sigma^2)^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right) x_i \\ &= -\frac{1}{(\sigma^2)^2} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right) x_i \,. \end{split}$$

Now, expected values of the negative:

$$\begin{split} & \operatorname{E}\left[-\frac{\partial^2\ell}{\partial\beta_0^2}\right] = \operatorname{E}\left[-\left(-\frac{n}{\sigma^2}\right)\right] \\ & = \frac{n}{\sigma^2} \,. \\ & \operatorname{E}\left[-\frac{\partial^2\ell}{\partial\beta_1^2}\right] = \operatorname{E}\left[-\left(-\frac{1}{\sigma^2}\sum_{i=1}^n x_i^2\right)\right] \\ & = \frac{1}{\sigma^2}\sum_{i=1}^n x_i^2 \,. \\ & \operatorname{E}\left[-\frac{\partial^2\ell}{\partial(\sigma^2)^2}\right] = \operatorname{E}\left[-\left(\frac{n}{2(\sigma^2)^2} - \frac{1}{(\sigma^2)^3}\sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i)\right)^2\right)\right] \\ & = -\frac{n}{2(\sigma^2)^2} + \frac{1}{(\sigma^2)^3}\operatorname{E}\left[(n-2)S_e^2\right] \\ & = -\frac{n}{2(\sigma^2)^2} + \frac{1}{(\sigma^2)^3}(n-2)\sigma^2 \\ & = \frac{n-4}{2(\sigma^2)^2} \\ & = \frac{n-4}{2(\sigma^2)^2} \,. \\ & \operatorname{E}\left[-\frac{\partial^2\ell}{\partial\beta_0\partial\beta_1}\right] = \operatorname{E}\left[-\left(-\frac{n\bar{x}}{\sigma^2}\right)\right] \\ & = \frac{n\bar{x}}{\sigma^2} \,. \\ & \operatorname{E}\left[-\frac{\partial^2\ell}{\partial\beta_0\sigma^2}\right] = \operatorname{E}\left[-\left(-\frac{1}{(\sigma^2)^2}\sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i)\right)\right)\right] \\ & = \frac{1}{(\sigma^2)^2}\sum_{i=1}^n \left(\beta_0 + \beta_1 x_i - (\beta_0 + \beta_1 x_i)\right) \\ & = 0 \,. \\ & \operatorname{E}\left[-\frac{\partial^2\ell}{\partial\beta_1\partial\sigma^2}\right] = \operatorname{E}\left[-\left(-\frac{1}{(\sigma^2)^2}\sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i)\right)x_i\right)\right] \\ & = \frac{1}{(\sigma^2)^2}\sum_{i=1}^n \left(\operatorname{E}[y_i] - (\beta_0 + \beta_1 x_i)\right)x_i \\ & = \frac{1}{(\sigma^2)^2}\sum_{i=1}^n \left(\operatorname{E}[y_i] - (\beta_0 + \beta_1 x_i)\right)x_i \\ & = \frac{1}{(\sigma^2)^2}\sum_{i=1}^n \left(\operatorname{E}[y_i] - (\beta_0 + \beta_1 x_i)\right)x_i \\ & = \frac{1}{(\sigma^2)^2}\sum_{i=1}^n \left(\beta_0 + \beta_1 x_i - (\beta_0 + \beta_1 x_i)\right)x_i \\ & = 0 \,. \end{split}$$

Hence, we have:

$$I_{\theta} = \begin{bmatrix} \frac{n}{\sigma^2} & \frac{n\bar{x}}{\sigma^2} & 0\\ \frac{n\bar{x}}{\sigma^2} & \frac{1}{\sigma^2} \sum_{i=1}^{n} x_i^2 & 0\\ 0 & 0 & \frac{n-4}{2(\sigma^2)^2} \end{bmatrix}$$