Preliminaries to Numerical Analysis

- Num.

 Overdetermined linear systems: $A\vec{x} = \vec{b}$ (polynomial interpolation)

 or overdetermined linear systems: $A\vec{x} = \vec{b}$ (polynomial approximation)

 or opening

 or o
- nontaran (nontarear voolfinding . piecewise polynom. interp. . num. calculus (dist., integ., ODE theory)

Contents

Main Sources of errors

- 1 Floating-Point Numbers (how #'s are represented or stored on computer W/ farite memories)
- 2 Conditioning (inherent nature of a problem)

3 Stability (inherent prop. of computer algorithm.)

Absolute and Relative Errors

In numerical analysis, we use an **algorithm** to *approximate* some quantity of interest.

 We estimate of the accuracy of the computed value via an absolute error or a relative error:

eabs =
$$A_{\rm approx} - A_{\rm exact}$$
 (absolute error)
$$e_{\rm rel} = \underbrace{A_{\rm approx} A_{\rm exact}}_{A_{\rm exact}} = \underbrace{A_{\rm approx}}_{A_{\rm exact}} - 1 \,, \qquad \text{(relative error)}$$
exact is the exact, analytical answer and $A_{\rm approx}$ is the

where $A_{\rm exact}$ is the exact, analytical answer and $A_{\rm approx}$ is the approximate, numerical answer.

• If ${
m e_{abs}}$ or ${
m e_{rel}}$ is small, we say that the approximate answer is accurate.

Example: Stirling's Formula

Stirling's formula provides a "good" approximation to n! for large n:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 (*)

Try in MATLAB:

```
n = ...;
err_abs = sqrt(2*pi*n)*(n/exp(1))^n - factorial(n);
err_rel = err_abs/factorial(n);
disp(err_abs)
disp(err_rel)
```

```
Nhen N = 10:

Abs. enr. = -30104...

Rel. enr. = -0.008296 (0.8%)
```

```
When N = 100:
Abs. err. = -7.77... \times 10^{-84}
Rel. err. = -0.00083298 (0.08%)
```

Floating-Point Numbers

Limitations of Digital Representations

A digital computer uses a finite number of bits to represent a real number and so it cannot represent all real numbers.

- The represented numbers cannot be arbitrarily large or small;
- There must be gaps between them.

So for all operations involving real numbers, it uses a subset of \mathbb{R} called the **floating-point numbers** \mathbb{F} .

Scientific notation (base 10)

Ignore signs; consider positive numbers for now. cannot be D

for now. cannot be 0

$$Ex$$
 $3.14 \times 10^{6} = 314000$
 -2
 $3.14 \times 10^{6} = 0.0314$

10000 4 4000

= 314000

· Only binary bits (0 or 1)

· expansion in powers of 2. cannot be 0: always 1.

$$| (1 - 1) \times 2^{-1} |_{(2)} \times 2^{-1} |_{(2)} = | (1 - 1) \times 2^{-1} |_{(2)}$$

$$= 1 \cdot 2^{1} + 0 \cdot 2^{2} + 1 \cdot 2^{-1}$$
$$= 2 + 0 + \frac{1}{2} = 2.5$$

Floating-Point Numbers

base-2 scientific notation w/ given # of digits.

A floating-point number is written in the form $\pm (1+F)2^E$ where

- *E*, the *exponent*, is an integer;
- E, the exponent, is an integer; F, the mantissa, is a number $F=\sum_{i=1}^d b_i 2^{-i}$, with $b_i=0$ or $b_i=1$.

Note that F can be rewritten as

$$F = 2^{-d} \sum_{k=0}^{d-1} b_{d-k} 2^k,$$

where
$$M$$
 is an integer in $\mathbb{N}[0, 2^d - 1]$. = $\{0, 1, 2, \dots, 2^d - 1\}$

Consequently, there are 2^d evenly-spaced numbers between 2^E and 2^{E+1} in the floating-point number system.

(d=2)

Example d=2 consider (+) #'s only. "resolution" location" $\chi = (1 + F) 2^{E}$ $Gap = \frac{1}{4} Z^{E} = 2^{-2} 2^{E} = 2^{-2} 2^{E}$

$$\chi^d = \chi^2 = 4$$
 FP #'s on $[\chi^E, \chi^{E+1}]$

Floating-Point Numbers – IEEE 754 Standard

E=-1023 for 0 : F=1024 for Inf

-1022 SF S 1023

MATLAB, by default, uses double precision floating-point numbers, stored

in memory in 64 bits (or 8 bytes):
$$\pm \underbrace{1.xxxxxxxxx \cdots xxxxxxxx}_{\text{mantissa} \text{ (base 2): 52+1 bits}} \times 2^{\underbrace{xxxx \cdots xxxx}_{(2)}}_{\text{exponent: 11 bits}} \times 2^{\underbrace{xxxx \cdots xxxx}_{(2)}}_{\text{exponent: 11 bits}}.$$

Predefined variables:

• eps = the distance from 1.0 to the next light double-precision number:

 $\text{eps} = 2^{-52} \approx 2.2204 \times 10^{-16}.$

 $=\frac{2^{11}-1}{200}=2048-1$

= 2047

Take E=0 realmin = the smallest positive floating-point number that is stroed to full accuracy; the actual smallest is realmin/2^52.

 realmax = the largest positive floating-point number Malmax

→ anything larger → Inf

8/26

Machine Epsilon and Relative Errors

The IEEE standard guarantees that the *relative representation error* and the *relative computational error* have sizes smaller than eps, the *machine epsilon*:

- Representation: The floating-point representation, $\hat{x} \in \mathbb{F}$, of $x \in \mathbb{R}$ satisfies $\hat{x} = x(1+\epsilon_1), \qquad \text{for some } |\epsilon_1| \leqslant \frac{1}{2} |\text{eps}|.$
- Arithmetic: The floating-point representation, $\hat{x} \oplus \hat{y}$, of the result of $\hat{x} + \hat{y}$ with $\hat{x}, \hat{y} \in \mathbb{F}$ satisfies

$$\hat{x} \oplus \hat{y} = (\hat{x} + \hat{y})(1 + \epsilon_2), \quad \text{for some } |\epsilon_2| \leqslant \frac{1}{2} \text{ eps.}$$

Similarly with \ominus , \otimes , \oplus corresponding to -, \times , \div , respectively.

Round-Off Errors

Computers CANNOT usually

- represent a number correctly;
- add, subtract, multiply, or divide correctly!!

Run the following and examine the answers:

```
format long
1.2345678901234567890
12345678901234567890
(1 + eps) - 1 : eps
(1 + .5*eps) - 1 : o
(1 + .51*eps) - 1 : eps
n = input(' n = '); (n^(1/3))^3 - n
```

$$+ 0.5$$
 eps $\rightarrow 1$
 $-1 \rightarrow 0$
 $+ 0.5$ eps $\rightarrow 1$ teps
 $-1 \rightarrow \text{eps}$

Catastrophic Cancellation

In finite precision storage, two numbers that are close to each other are indistinguishable. So subtraction of two nearly equal numbers on a computer can result in loss of many significant digits.

Catastrophic Cancellation

Consider two real numbers stored with 10 digits of precision:

$$e = 2.7182818284,$$

 $b = 2.7182818272.$

- Suppose the actual numbers e and b have additional digits that are not stored.
- The stored numbers are good approximations of the true values.
- However, if we compute e-b based on the stored numbers, we obtain $0.0000000012=1.2\times 10^{-9}$, a number with only two significant digits.

Example 1: Cancellation for Large Values of \boldsymbol{x}

Question

```
Compute f(x) = e^{x}(\cosh x - \sinh x) at x = 1, 10, 100, and 1000.
```

Numerically:

$$f(x) = e^{x} \cdot e^{-x} = 1$$

```
format long
x = input(' x = ');
y = exp(x) * ( cosh(x) - sinh(x) );
disp([x, y])
```

$$\int \cosh x = \frac{e^{x} + e^{-x}}{2}$$
 for large x , e^{-x} is negligible. Sinh $x = \frac{e^{x} - e^{-x}}{2}$ So $\cosh x \approx \sinh x$

NaN (not a number)

Example 2: Cancellation for Small Values of x

Question

Compute
$$f(x) = \frac{\sqrt{1+x}-1}{x}$$
 at $x = 10^{-12}$.

Numerically:

of
$$1+1 \approx 1+\frac{1}{2}\pi$$
 (binomial series; for small π . Taylor series)

$$x = 1e-12;$$

 $fx = (sqrt(1+x) - 1)/x;$
 $disp(fx)$

For small 1,

$$f(x) = \frac{\sqrt{|+\chi|-1}}{\chi} \cdot \frac{\sqrt{1+\chi}+1}{\sqrt{1+\chi}+1} = \frac{(1+\chi)-1}{\chi(\sqrt{1+\chi}+1)} = \frac{\chi}{\chi(\sqrt{1+\chi}+1)} = \frac{1}{\sqrt{1+\chi}+1}$$

To Avoid Such Cancellations ...

- Unfortunately, there is no universal way to avoid loss of precision.
- One way to avoid catastrophic cancellation is to remove the source of cancellation by simplifying the given expression before computing numerically.
- For Example 1, rewrite the given expression recalling that

$$\cosh x = (e^x + e^{-x})/2 \qquad \sinh x = (e^x - e^{-x})/2.$$

• For Example 2, try again after rewriting f(x) as

$$f(x) = \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+x}+1}$$
.

Do you now have an improved accuracy?

nature of problem

Conditioning

Errors A exact, Aapprox.

$$Abs. em. = Aexact - Aapprox.$$
 $Rel. em. = Aexact - Aapprox (percentage error; dimensionless)$
 $Aexact$

Floating-Point numbers (F)

- base-2 scientific notation

•
$$|eps| = 2^{-52} \approx 2.22 \times 10^{-16}$$

· Significance?

$$\left| \frac{1}{2} - \frac{1}{2} \right| \leq \frac{1}{2} eps$$

- Round off error.

$$>> (1 + 0.5 * eps) - 1$$

ans = 0

<u>Convention</u>: Midpoint -> round down

- Distribution of F-P numbers

- there are $2^d = 2^{52}$ f-p #'s
 they are uniformly spaced

 - · the gap btw two adjacent f-p #'s here

TS
$$2^{E} |_{eps} = 2^{E} 2^{-d} = 2^{E-52}$$

 $Ex E=0$, $[1,2)$: $Gap = 2^{o} |_{eps} = |_{eps}$

$$E=1$$
, $[2,4)$: $Gap = 2 | eps | = 2 | eps |$...

Problems and Conditioning

inputs / data outputs / solin.

- A mathematical *problem* can be viewed as a function $f: X \to Y$ from a data/input space X to a solution/output space Y.
- We are interested in changes in f(x) caused by small perturbations of x.
- A well-conditioned problem is one with the property that all small perturbations of x lead to only small changes in f(x)

Condition Number perturbed input

(e.g. f-p rep'n) true input

Let $f: \mathbb{R} \to \mathbb{R}$ and $\hat{x} = x(1+\widehat{\epsilon})$ be the representation of $x \in \mathbb{R}$.

• The ratio of the relative error in f due to the change in x to the relative error in x simplifies to

rel. err. input =
$$\frac{|f(x) - f(x)|}{|f(x)|} = \frac{|f(x) - f(x(1+\epsilon))|}{|\epsilon f(x)|}.$$

• In the limit of small error (ideal computer), we obtain

$$\kappa_f(x) := \lim_{\epsilon \to 0} \frac{\left| f(x) - f(x(1+\epsilon)) \right|}{\left| \epsilon f(x) \right|}$$

$$= \left| \lim_{\epsilon \to 0} \frac{f(x+\epsilon x) - f(x)}{\epsilon x} \cdot \frac{x}{f(x)} \right| = \left| \frac{xf'(x)}{f(x)} \right|, \quad (\star)$$

which is called the (relative) condition number.

Example: Conditioning of Subtraction

Consider f(x) = x - c where c is some constant. Using the formula (*), we find that the associated condition number is

$$\kappa(x) = \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{x}{x-c} \right|.$$

• It is large when $x \approx c$. (Catastrophic Cancellation)

Example: Conditioning of Multiplication

The condition number of f(x) = cx is

$$\kappa(x) = \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{x \cdot c}{cx} \right| = 1.$$

No magnification of error.

 \(\text{Well- conditioned} \)

Example: Conditioning of Function Evaluation

The condition number of $f(x) = \cos(x)$ is

$$\kappa(x) = \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{-x\sin x}{\cos x} \right| = |x\tan x|.$$

• The condition number is large when $x = (n + 1/2)\pi$, where $n \in \mathbb{Z}$.

Example: Conditioning of Root-Finding

Let r = f(a; b, c) be a root of $ax^2 + bx + c = 0$. Instead of direct differentiation, use implicit differentiation

$$ar^2+br+c=0$$

$$f'(\alpha) = \frac{dr}{d\alpha} \qquad r^2 + 2ar\frac{dr}{da} + b\frac{dr}{da} = 0.$$

Solve for the derivative.

$$f'(a) = \frac{dr}{da} = -\frac{r^2}{2ar+b} = -\frac{r^2}{+\sqrt{b^2 - 4ac}},$$

Full problem
$$\vec{f}:\mathbb{R}^3\to\mathbb{C}^2$$

$$\vec{f}\left(\left[\begin{smallmatrix} c \\ b \end{smallmatrix}\right]\right) = \left[\begin{smallmatrix} c \\ c \end{smallmatrix}\right]$$

then compute the condition number using the formula (*) to get

$$\kappa(a) = \left| \frac{af'(a)}{f(a)} \right| = \left| \frac{ar^2}{\pm r\sqrt{b^2 - 4ac}} \right| = \left| \frac{ar}{\sqrt{b^2 - 4ac}} \right|.$$

Conditioning is poor for small discriminant, i.e., near repeated roots.

Implicit diff. Hit with
$$\frac{d}{da}$$
, keeping in mind that ris a fac. of a.

$$\frac{d}{da}\left(\alpha r^{2}\right) = 1 \cdot r^{2} + \alpha \cdot 2r \cdot \frac{dr}{da}$$

$$= r^2 + 2ar \frac{dr}{da}$$

Main sources of errors

- · numbers (f-p)
- problems z cond.)
 algorithm (stab.) Stability

Algorithms

- Recall that we defined a problem as a function $f: X \to Y$.
- An algorithm can be viewed as another map $\tilde{f}: X \to Y$ between the same two spaces, which involves errors arising in
 - representing the actual input x as \hat{x} ;
 - ullet implementing the function f numerically on a computer.

Example: Horner's Method

Consider evaluating a polynomial

$$p(x) = c_n x^{n-1} + c_{n-1} x^{n-2} + \dots + c_2 x + c_1.$$

Can rewrite it as

$$p(x) = (\cdots ((c_n x + c_{n-1})x + c_{n-2})x + \cdots + c_2)x + c_1,$$

```
function p = horner(c, x)
% HORNER evaluates polynomial using Horner's method.
    n = length(c);
    p = c(n);
    for k = n-1:-1:1
        p = p*x + c(k);
    end
end
```

Analysis: General Framework

The relative error of our interest is

$$\left|\frac{\tilde{f}(\hat{x}) - f(x)}{f(x)}\right| \leq \left|\frac{\tilde{f}(\hat{x}) - f(\hat{x})}{f(x)}\right| + \left|\frac{f(\hat{x}) - f(x)}{f(x)}\right|$$

$$\lesssim \left|\frac{\tilde{f}(\hat{x}) - f(\hat{x})}{f(\hat{x})}\right| + \left|\frac{f(\hat{x}) - f(x)}{f(x)}\right| \leq (\hat{\kappa}_{\text{num}} + \kappa_f) \text{ eps.}$$
numerical error perturbation error

where $\kappa=\kappa_f$ be the (relative) condition number of the exact problem f and

$$\hat{\kappa}_{\text{num}} = \max \left| \frac{\tilde{f}(\hat{x}) - f(\hat{x})}{f(\hat{x})} \right| / \left| \frac{\hat{x} - x}{x} \right|.$$

Example: Root-Finding Revisited

Consider again solving the quadratic problem $ar^2 + br + c = 0$.

- Taking a=c=1 and $b=-(10^6+10^{-6})$, the roots can be computed exactly by hand: $r_1=10^6$ and $r_2=10^{-6}$.
- If numerically computed in MATLAB using the quadratic equation formula, r_1 is correct but r_2 has only 5 correct digits.
- Fix it using $r_2 = (c/a)/r_1$.