第5章 习题答案

5.5 根据习题 5.3 确定的电路参数对输出电压 V_{o} 、电流 I_{o} 进行仿真。

解:

Simulink 仿真模型及输出电压 V_{o} 、电流 I_{o} 分别如下图所示。

Simulink 仿真模型

输出电压 V_{o} 、电流 I_{o}

根据仿真结果,可以得到输出电压 $V_{\rm o}$ 平均值为 $11.7V_{\rm o}$

• 2 • 习题答案

5.6 采用 MATLAB/Simulink 对题图 5.6 所示的 Buck 变换器电路进行建模和仿真。变换器的主要参数: 输入电压 V_i =48V,期望输出电压 V_o =12V,电感 L=0.1mH,电容 C=500μF。输出最小电阻 R_{Lmin} =10 Ω ,输出最大电阻 R_{Lmax} =100 Ω ; 开关频率为 100kHz。**解**:

Simulink 仿真模型及输出电压 $V_{\rm o}$ 分别如下图所示,其中: (1)占空比取 25%; (2) $R_{\rm L}$ 取 10Ω ; (3)仿真时间取 0.02s (以使输出电压稳定)。

输出电压 V。

5.7 如图 5.2.5 所示的 Boost 型 DC/DC 变换器电路仿真模型,通过仿真,观察电感 L (如分别取 L_1 =50mH, L_2 =500mH,f=100Hz)、开关频率 f (如 L=50mH,f=1000Hz)对输出电压波形的影响并解释其原因。

解:

Simulink 仿真模型及输出电压分别如下图所示。可以发现,电感值 L 影响每次充放电导致的输出电压变化量,开关频率 f 影响充放电的频率。

Simulink 仿真模型

电感值 L、开关频率 f 影响

・4・ 习题答案

5.8 如题图 5.8 所示的 Buck-Boost 型 DC/DC 变换器电路,初始电路参数如下: V_i =15V,L=160 μ H,C=220 μ F, R_L =40 Ω ,功率开关管可选 IGPT APT50G50BN。通过仿真,给出输出电压与电感电流随时间变化的波形。

解:

Simulink 仿真模型及输出电压、电感电流分别如下图所示,其中:取 $R=10\Omega$ 。

Simulink 仿真模型

电感电流、输出电压波形

5.9 基于图 5.2.12 所示的单端反激式 DC/DC 变换器仿真原理图,通过仿真,观察 L、C、R 对输出电压波形的影响并解释其原因。

解:

参考本书电子版资料提供的单端反激式 DC/DC 变换器仿真模型,在此基础上进行仿真研究。略。