

86.01 Técnica Digital

Decodificadores y Multiplexores

Ing. Jorge H. Fuchs

Introducción

Objetivos de la clase:

Analizar el concepto de Módulo Universal o bloques lógicos combinacionales básicos.

Estudiar los conceptos de codificación y decodificación como también los circuitos que los llevan a cabo (Encoder y Decoder).

Ver la necesidad de la conversión entre distintos tipos de códigos.

Analizar el concepto de multiplexación y demultiplexación analógica y digital como también las características de los circuitos Mux y Demux digitales.

Utilizar los bloques universales (CIs) anteriores para la implementación alternativa de funciones lógicas.

Codificación y decodificación

Es un proceso en el cual se "compacta" la información para luego de transmitirla y / o almacenarla, volverla a su estado original.

En el área digital tendremos circuitos **combinacionales** que realizarán esas tareas: Codificadores o Encoders y Decodificadores o Decoders.

En general los Codificadores tienen más entradas que salidas mientras que los Decodificadores tienen más salidas que entradas.

Es un circuito **combinacional** que asigna un **código** binario de salida único a cada señal de entrada aplicada al dispositivo. Si un codificador tiene \mathbf{n} entradas, el número de salidas \mathbf{s} es tal que se debe cumplir la siguiente condición: $\mathbf{2}^{\mathbf{s}} \geq \mathbf{n}$. Para los comerciales, salvo para el BCD, se cumple $\mathbf{2}^{\mathbf{s}} = \mathbf{n}$ (ej: 4/2, 8/3, 16/4, etc.)

Encoder **BCD** a binario 8421:

	Código BCD						
Dígito decimal	A_3	A_2	A_1	A_0			
0	0	0	0	0			
1	0	0	O	1			
2	0	O	1	0			
3	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			

E0	E1	E2	E 3	E4	E5	E6	E7	E8	E9	Z 3	Z 2	Z 1	Z 0
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

$$\mathbf{Z_0} = \mathbf{E_1} + \mathbf{E_3} + \mathbf{E_5} + \mathbf{E_7} + \mathbf{E_9}$$

$$\mathbf{Z_1} = \mathbf{E_2} + \mathbf{E_3} + \mathbf{E_6} + \mathbf{E_7}$$

$$\mathbf{Z_2} = \mathbf{E_4} + \mathbf{E_5} + \mathbf{E_6} + \mathbf{E_7}$$

$$Z_3 = E_8 + E_9$$

Veamos ahora el caso de un Encoder de "8 a 3" con entradas negadas:

Z0

Z2

$$\mathbf{Z_0} = \mathbf{E_1} + \mathbf{E_3} + \mathbf{E_5} + \mathbf{E_7}$$

$$\mathbf{Z}_1 = \mathbf{E}_2 + \mathbf{E}_3 + \mathbf{E}_6 + \mathbf{E}_7$$

$$\mathbf{Z_2} = \mathbf{E_4} + \mathbf{E_5} + \mathbf{E_6} + \mathbf{E_7}$$

E0	E1	E2	E3	E4	E5	E6	E7	Z 2	Z 1	Z 0
0	1	1	1	1	1	1	1	0	0	0
1	0	1	1	1	1	1	1	0	0	1
1	1	0	1	1	1	1	1	0	1	0
1	1	1	0	1	1	1	1	0	1	1
1	1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	0	1	1	1	0	1
1	1	1	1	1	1	0	1	1	1	0
1	1	1	1	1	1	1	0	1	1	1

En previsión de que haya **más de una entrada activa a la vez**, se puede definir una **prioridad** de entradas, actuando siempre de acuerdo con la entrada activa de prioridad más alta.

Ejemplo de codificador 4 a 2 con prioridad. La entrada E es de habilitación. La salida A en 1 indica que hay alguna entrada activa.

Е	x 3	x 2	x 1	\mathbf{x}_0	A	y_1	y ₀
0	X	X	X	X	0	0	0
1	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0
1	0	0	1	X	1	0	1
1	0	1	\mathbf{X}	X	1	1	0
1	1	X	X	X	1	1	1

Decodificador (Decoder)

Es un circuito combinacional que para una combinación de valores en sus entradas activa solo una de sus salidas. Si tiene s entradas, el número de salidas **n** es tal que se debe cumplir la siguiente condición: $2^s \ge n$. Generalmente tienen una entrada de **habilitación E**. Para los comerciales, salvo para el BCD, se cumple $2^{s} = n$ (ej: 2/4, 3/8, 4/16, etc.)

Diseño de un Decoder de **1 entrada** y **2 salidas**:

Ε	A_0	C ₁	C_0
1	0	0	1
1	. 1	1	0
0	X	0	Ö

$$C_0 = E \cdot \overline{A}_0$$

 $C_1 = E \cdot A_0$

$$C_1 = E \cdot A_0$$

Decodificador (Decoder)

Diseño de un Decoder de **2 entradas** y **4 salidas**:

E	A ₁	A_0	C ₃	C ₂	C ₁	C ₀
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0
0	X	X	0	0	0	0

$$C_0 = E \cdot \overline{A}_1 \cdot \overline{A}_0$$

$$C_1 = E \cdot \overline{A}_1 \cdot A_0$$

$$C_2 = E \cdot A_1 \cdot \overline{A}_0$$

$$C_3 = E \cdot A_1 \cdot A_0$$

Es un circuito **combinacional** que convierte información de un código a otro. Por ejemplo del código **BCD 8421** al código **XS-3 8421**.

La tabla de verdad será:

	Inp	uts		Outputs
	(BC	CD))	(Excess-3)
A	В	C	D	WXYZ
0	0	0	0	0 0 1 1
0	0	0	1	0 1 0 0
0	0	1	0	0 1 0 1
0	0	1	1	0 1 1 0
0	1	0	0	0 1 1 1
0	1	0	1	1 0 0 0
0	1	1	0	1 0 0 1
0	1	1	1	1 0 1 0
1	0	0	0	1 0 1 1
1	0	0	1	1 1 0 0
1	0	1	0	d d d d
1	0	1	1	d d d d
1	1	0	0	d d d d
1	1	0	1	d d d d
1	1	1	0	d d d d
1	1	1	1	d d d d

Resolviendo obtenemos el circuito interno del conversor:

Conversor del código BCD 8421 a 7 segmentos:

La TV quedaría:

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	Χ	Х	Х	Х	Х	Х	Х
1	0	1	1	Χ	Х	Χ	Х	Х	Х	Х
1	1	0	0	Χ	Х	Χ	Х	Х	Х	Х
1	1	0	1	Χ	Χ	Χ	Х	Х	Χ	Х
1	1	1	0	Χ	Х	Χ	Х	Х	Х	Х
1	1	1	1	Χ	Х	Χ	Х	Х	Χ	Х

La solución la obtenemos resolviendo los 7 K de 4 variables c/u teniendo en cuenta las x según sea más conveniente para la simplificación.

Si queremos que al aparecer una combinación no esperada indique **E** (error):

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	0	0	1	1	1	1
1	0	1	1	1	0	0	1	1	1	1
1	1	0	0	1	0	0	1	1	1	1
1	1	0	1	1	0	0	1	1	1	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	1	1	1	1

Nuevamente la solución la obtenemos resolviendo los 7 K de 4 variables c/u.

Conversor del código **Hexadecimal** a **7 segmentos**:

Ahora debemos también representar los 6 casos del 10 al 15 (A a F):

Entonces tenemos las 16 combinaciones posibles (sin x):

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

Nuevamente la solución la obtenemos resolviendo los 7 K de 4 variables c/u.

Multiplexación y Demultiplexación

Un **multiplexor (MUX) analógico** es un circuito que permite seleccionar cual de sus canales de entrada enviará la información que presenta hacia su única salida.

Un **demultiplexor (DEMUX) analógico** es un circuito que permite seleccionar cual de sus salidas recibirá la información que se presenta en su única entrada. Ambos pueden ser bidireccionales.

Multiplexación y Demultiplexación

El **multiplexor** y el **demultiplexor digitales** son circuitos lógicos combinacionales que permiten realizar las mismas funciones que los analógicos pero con información binaria.

Tienen definidas sus entradas y salidas, por lo tanto son unidireccionales.

Un **multiplexor** es un circuito combinacional que permite transmitir la información digital presente en sus entradas (de datos) hacia una única salida. Para poder transmitir la información es necesario entradas de selección o control, mediante las cuales se selecciona qué entrada se conecta a la salida. Un multiplexor de **2**ⁿ entradas de datos tendrá **n** entradas de control.

Diseño de un MUX de 2 entradas de datos y 1 entrada de control:

S	Y
0	$D_0 \\ D_1$

S	D1	D0	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Resolviendo:

S	D1	D0	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$Y = \overline{S} \cdot D_0 + S \cdot D_1$$

Diseño de un MUX de 4 entradas de datos y 2 entradas de control:

S_1	S_0	Y
0	0	D_0
0	1	D_0
1	0	D_2
1	1	D_3

S 1	S0	D3	D2	D1	D0	Y
0	0	X	X	X	0	0
0	0	X	Х	X	1	1
0	1	X	X	0	X	0
0	1	X	X	1	X	1
1	0	X	0	X	X	0
1	0	X	1	X	X	1
1	1	0	X	X	X	0
1	1	1	X	X	X	1

Resolviendo:

S1	S 0	D3	D2	D1	D0	Υ
0	0	X	X	X	0	0
0	0	X	X	X	1	1
0	1	X	X	0	Х	0
0	1	X	X	1	X	1
1	0	X	0	X	X	0
1	0	X	1	X	Х	1
1	1	0	X	X	Х	0
1	1	1	X	Χ	X	1

$$Y = \overline{S_0} \overline{S_1} D_0 + S_0 \overline{S_1} D_1 + \overline{S_0} S_1 D_2 + S_0 S_1 D_3$$

Demultiplexor (DEMUX)

Un **demultiplexor** realiza la operación inversa a la que realiza un multiplexor. Distribuye los datos provenientes de una entrada entre varias salidas. Un multiplexor de **2**ⁿ salidas tendrá **n** entradas de control.

Diseño de un DEMUX de 2 salidas y 1 entrada de control:

S	Y1	Y0
0	0	D
1	D	0

			ı	D		
				ent	trad	a
control s	_		DEN	/IUX		
		Y1	sa	lidas	Y0	

S	D	Y1	Y0
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

$$Y_0 = \overline{S} D$$

$$Y_1 = S D$$

Demultiplexor (DEMUX)

Diseño de un DEMUX de 4 salidas y 2 entradas de control:

S 1	S0	Y 3	Y2	Y 1	Y0
0	0	0	0	0	D
0	1	0	0	D	0
1	0	0	D	0	0
1	1	D	0	0	0

S1	S0	D	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	0	0
1	1	1	1	0	0	0

Demultiplexor (DEMUX)

Resolviendo:

S 1	S0	D	Y 3	Y2	Y1	Y0
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	0	0
1	1	1	1	0	0	0

$$Y_0 = \overline{S}_1 \, \overline{S}_0 \, D$$

$$Y_1 = \overline{S}_1 S_0 D$$

$$Y_2 = S_1 \, \overline{S}_0 \, D$$

$$Y_3 = S_1 S_0 D$$

Decoder / Demultiplexer

Analizando vemos que si bien son conceptos distintos, las TV son similares y las

funciones y circuitos son iguales:

$$C_0 = E \cdot \overline{A}_1 \cdot \overline{A}_0$$

$$C_1 = E \cdot \overline{A}_1 \cdot A_0$$

$$C_2 = E \cdot A_1 \cdot \overline{A}_0$$

$$C_3 = E \cdot A_1 \cdot A_0$$

$$Y_0 = \overline{S}_1 \, \overline{S}_0 \, D$$

$$Y_1 = \overline{S}_1 S_0 D$$

$$Y_2 = S_1 \overline{S}_0 D$$

$$Y_3 = S_1 S_0 D$$

Decoder / Demultiplexer

Ejemplo comercial:

74HC/HCT138 3-to-8 line decoder/demultiplexer; inverting

	INPUTS							OUTI	PUTS				
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	\overline{Y}_0	<u>Y</u> 1	₹ ₂	\overline{Y}_3	<u>Y</u> ₄	Y ₅	₹ ₆	∀ ₇
Н	X	X	X	X	X	Н	Н	Н	Н	Н	H	Н	Н
X	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	H
X	X	L	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	H
L	L	H	L	H	L	Н	Н	L	Н	Н	H	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	H
L	L	H	Н	L	Н	Н	Н	H	Н	H	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Implementación con Decoder / Demux

Podemos **implementar funciones** a partir de su TV con **Decoder / Demux** ya que estos generan los minitérminos de una función de **n** variables. Luego los sumamos mediante una compuerta **OR**.

Ejemplo: Implementar con un Decoder / Demux la función dada.

$$F(A,B,C) = \sum (0,3,5,7)$$

	Α	В	С	F
0)	0	0	0	1
1)	0	0	1	0
2)	0	1	0	0
1) 2) 3) 4)	0	1	1	1
4)	1	0	0	0
5)	1	0	1	1
5)	1	1	0	0
7)	1	1	1	1

Implementación con Decoder / Demux

Si el **Decoder / Demux** tiene salidas negadas, aplicando De Morgan tenemos:

	Α	В	С	F
0)	0	0	0	1
100	0	0	1	0
2)	0	1	0	0
1) 2) 3) 4)	0	1	1	1
4)	1	0	0	0
5)	1	0	1	1
5)	1	1	0	0
7)	1	1	1	1

También podemos implementar funciones de **n** variables con **MUX** de **n-1** entradas de control, colocando **n-1** variables de la función en las entradas de control, quedando las entradas de datos como funciones de la variable no usada. **Ejemplo**: Implementar la función de 3 variables con **un solo MUX**.

La función es de 3 variables, entonces el MUX debe tener 2 entradas de control.

$$F(A,B,C) = \sum (1,2,4,5)$$

$$F(A,B,C) = \prod (0,3,6,7)$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

AB C	0	1	
00	0	1	D0
01	1	0	D1
11	0	0	D3
10	1	1	D2

Analizando el mapa K nos queda:

$$F(A,B,C) = \sum (1,2,4,5)$$

$$F(A,B,C) = \prod (0,3,6,7)$$

Ejemplo: Implementar la función de 4 variables con un solo MUX.

$$F(A,B,C,D) = \sum (1,2,4,5,9,10,11)$$

 $F(A,B,C,D) = \prod (0,3,6,7,8,12,13,14,15)$

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

DO	D 1
D2	D3
D6	D7
D4	D5

d		NI-4 D
\	D	Not D
	1	0
	0	0
	D	1

Otra forma de visualizar el mapa K y el circuito final:

Implementación c/ MUX de 1 var. (árbol)

Ejemplo: Implementar la misma función pero solo con MUX de **1 variable de control**. (Simplificar de ser posible)

Implementación c/ MUX de 1 var. (árbol)

El circuito simplificado quedará:

Conclusiones

Análisis y síntesis de:

- Encoder y Decoder
- Conversor de código
- Mux y Demux

Síntesis de circuitos combinacionales utilizando:

- Decoder / Demux (+ compuerta)
- Mux
 - Único Mux
 - En árbol

Conclusiones

Estamos en condiciones de sintetizar funciones:

- Como SP (Mapa K por 1s)
- Como PS (Mapa K por 0s)
- Solamente con NAND
- Solamente con NOR
- Con Decoder / Demux (+ compuerta)
- Con Mux (único / en árbol)

Más adelante:

• Con PLDs (Dispositivos Lógicos Programables)

