14. Пусть b_1, b_2, \ldots, b_n — положительные числа, a_1, a_2, \ldots, a_n — произвольные действительные числа, M и m—соответственно наибольшая и наименьшая из дробей $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \cdots, \frac{a_n}{b_n}$. Доказать, что

$$m \leqslant \frac{a_1 + a_2 + \cdots + a_n}{b_1 + b_2 + \cdots + b_n} \leqslant M.$$

- **15.** Доказать, что для любого натурального $n\geqslant 2$ выполняется неравенство $\frac{1}{\sqrt{n}} < 2(\sqrt{n} - \sqrt{n-1}).$
- **16.** Доказать, что для любого натурального $n\geqslant 2$ справедливы неравенства $\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}$.
- 17. Доказать, что при любом $n \in \mathbf{N}$ выполняется неравенство $\lg(n+1) < \frac{\lg 1 + \lg 2 + \cdots + \lg n}{n}.$
- **18.** Доказать, что если a + b = 1, то $a^3 + b^3 \geqslant \frac{1}{4}$, $a^6 + b^6 \geqslant \frac{1}{32}$.
- 19. Доказать, что для любого $lpha \in \mathbf{R}$ справедливы неравенства:
 - a) $\frac{1}{2} \leqslant \sin^4 \alpha + \cos^4 \alpha \leqslant 1$; 6) $\frac{1}{4} \leqslant \sin^6 \alpha + \cos^6 \alpha \leqslant 1$;
 - B) $\frac{1}{9} \leqslant \sin^8 \alpha + \cos^8 \alpha \leqslant 1$.
- **20.** Сравнить числа a и b, если:

- д) $a = 3^{\sqrt{3}}$, $b = (\sqrt{3})^3$; e) $a = 2^{\pi}$, $b = \pi^2$; ж) $a = 2^{300}$, $b = 3^{200}$; 3) $a = \sqrt{13} \sqrt{12}$, $b = \sqrt{12} \sqrt{11}$.
- **21.** Доказать, что $\log_{12} 13 > \log_{14} 15$.
- **22.** Сравнить числа a и b, если:
 - a) $a = 7 \log_5 2$, b = 3;
- 6) $a = \frac{1}{2} \log_4 65$, $b = \log_5 11$;
- B) $a = \log_7 18$, $b = \log_2 3$; r) $a = \log_{1/2} \frac{1}{3}$, $b = \log_{1/3} \frac{1}{2}$;
- д) $a = \log_9 36$, $b = \log_{36} 288$; e) $a = \log_{17} 68$, $b = \log_{68} 544$.
- 23. Упростив выражение

$$a = (4 - 3\sqrt{2})^2 + 8\sqrt{34 - 24\sqrt{2}} - \sqrt{5},$$

сравнить полученное число с нулем.

- **24.** Сравнить числа a и b, если:
 - a) $a = \sin 1, 5, b = \sin 1, 7;$
- B) $a = \arcsin\sqrt{\frac{3}{5}}$, $b = \arccos\sqrt{\frac{3}{5}}$; r) $a = \frac{2}{\sqrt{5} \sqrt{3}} + \frac{5}{\sqrt{3} + 2\sqrt{2}}$, $b = \frac{2}{\sqrt{8} \sqrt{5}}$;
- д) $a = \sqrt{2} + \sqrt{3}$, $b = \sqrt{10}$;
- e) $5 \sqrt{15}$, $b = \sqrt{17} 3$.