Object Detection용 주요 Dataset 1. PASCAL VOC Dataset

주요 Dataset 소개

많은 Detection과 Segmentation 딥러닝 패키지가 아래 Dataset들을 기반으로 Pretrained 되어 배포

PASCAL VOC

XML Format 20개의 오브젝트 카테고리

MS COCO

json Format 80개 의 오브젝트 카테고리

Google Open Images

Google Al Open Images - Object Detection Track
Detect objects in varied and complex images.

csv Format 600개의 오브젝트 카테고리

Pascal VOC Dataset

PASCAL VOC는 2005년에서 2012년까지 진행되었던 PASCAL VOC Challenge에서 쓰이던 데이터셋이다 그 중 PASCAL 2007과 PASCAL 2012 데이터셋이 벤치마크 데이터셋으로 자주 사용됨.

- classification Dataset: 클래스로 이름으로 된 폴더별로 이미지
- localization Dataset:이미지 한 장에 좌표 값과 클래스

1. Annotation

- XML 포맷 :
 - Image info: width, height, depth, name, pose
 - Bounding box 좌표값 4개 xmin,ymin,xmax,ymax

PACAL VOC 데이터셋 크기

Annotation, ImageSet, JPEGImages

- 이미지 개수:
 - object detection: 총 9,963개의 주석이 달린(annotated) 이미지가 포함. 이 중에서 5,011개가 학습 데이터
 - segmentation: 422개의 학습 데이터
- 이미지당 평균 object 수: 2.4개
- 이미지당 평균 class 수: 1.4개
- class 개수 20개

PASCAL VOC 2012

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Visual Object Classes Challenge 2012 (VOC2012)

[click on an image to see the annotation]

Segmentation

Action Cl assification

Person Layout

Annotation 이란?

이미지의 Detection 정보를 별도의 설명 파일로 제공되는 것을 일반적으로 Annotation 이라고 함. Annotation은 Object의 Bounding Box 위치나 Object 이름등을 특정 포맷으로 제공함.

원본 이미지에 Bounding Box 시각화

원본 이미지

Annotation

```
<filename>2007 000032.jpg</filename>
       <database>The VOC2007 Database</database>
       <annotation>PASCAL VOC2007</annotation>
       
       <width>500</width>
       <height>281</height>
       <depth>3</depth>
<segmented>1</segmented>
       <name>aeroplane</name>
       <truncated>0</truncated>
       <br/>bndbox>
               <min>104</min>
               <ymin>78
               <xmax>375</xmax>
               <ymax>183
       <truncated>0</truncated>
               <xmin>133</xmin>
               <ymin>88
               <xmax>197</xmax>
               <ymax>123
```

PASCAL VOC Dataset 구조

VOC 2012 기준		
VOCdevkit		
_VOC2012	Annotations	Xml 포맷이며, 개별 xml파일은 한 개 image에 대한 Annotation 정보를 가지고 있음. 확장자 xml을 제 외한 파일명은 image 파일명(확장자 jpg를 제외한)과 동일하게 매핑
	ImageSet	어떤 이미지를 train, test, trainval, val에 사용할 것인지에 대한 매핑 정보를 개별 오브젝트별로 파일로 가지고 있음.
	JPEGImages	Detection과 Segmentation에 사용될 원본 이미지
	SegmentationClass	Semantic Segmentation에 사용될 masking 이미지
	SegmentationObject	Instance Segmentation에 사용될 masking 이미지

Annotation 파일 예시

Annotation 파일 2007_000032.xml 파일 일부

2007_000032.jpg 파일에 대한 Annotation 정 보를 가지고 있음.

```
<folder>VOC2012</folder>
  <filename>2007 000032.jpg</filename>
  <source>
            <database>The VOC2007 Database</database>
            <annotation>PASCAL VOC2007</annotation>
            
  </source>
  <size>
            <width>500</width>
            <height>281</height>
            <depth>3</depth>
  </size>
  <segmented>1</segmented>
  <object> ←개별 Object 정보
            <name>aeroplane</name>
            <pose>Frontal</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <br/>bndbox>
                      <xmin>104
 개별 Object의
                     <ymin>78
bounding box 정보
                      <xmax>375</xmax>
                      <ymax>183
  </object> 개별 Object 정보
  <object> <-
            <name>aeroplane</name>
            <pose>Left</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <br/>bndbox>
                      <xmin>133</xmin>
  개별 Object의

<
                      <xmax>197</xmax>
                      <ymax>123</ymax>
            </bndbox>
  </object>
```

2. MS COCO Dataset

COCO Dataset

PASCAL VOC나 ImageNet이 현실세계 사진에서는 object를 잘 포착하지 못한다는 문제점이 있었다. 이런 문제점을 해결하기 위해 2014년 COCO 데이터셋이 등장한다

coco 데이터셋 구조

- JSON format
- Annotation:
 - Class
 - Bounding box (x,y,w,h)
 - Segmentation
- JPEG Images

MS-COCO Dataset 소개

https://cocodataset.org/#home

News

- We are pleased to announce the COCO 2019 Detection, Keypoint, Panoptic, and DensePose Challenges.
- The new rules and awards for this year challenges encourage innovative methods.
- Results to be announced at the Joint COCO and Mapillary Recognition ICCV workshop.

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
 250,000 people with keypoints

Collaborators

Tsung-Yi Lin Google Brain

Genevieve Patterson MSR, Trash TV

Matteo R. Ronchi Caltech

Yin Cui Google

Michael Maire TTI-Chicago

Serge Belongie Cornell Tech

Lubomir Bourdev WaveOne, Inc.

Ross Girshick FAIR

James Hays Georgia Tech

Pietro Perona Caltech

Deva Ramanan CMU

Larry Zitnick FAIR

Piotr Dollár FAIR

- 80개 Object Category
- 총330K의 Image들과 1.5 Million 개의 object들
- (하나의 image에 평균 5개의 Object들로 구성)
- Tensorflow Object Detection API 및 많은 오픈 소스 계열의 주요 패키지들은 COCO Dataset으로 Pretrained 된 모델을 제공함

coco 데이터셋의 장점

- 다양한 크기의 물체가 존재
- 높은 비율로 작은 물체들이 존재
- Object들이 혼잡하게 존재하고, occlusion(폐색)이 많이 존재
- 덜 iconic 합니다. 여기서 iconic의 의미는 이미지가 특정 카테고리에 명확하게 속해 있는 경우를 말합니다. 예를 들어 아래 이미지의 (a)의 이미지들은 누가 봐도 명확하게 개, 소 등의 명확하게 특정 카테고리에 속한 걸 누구나 알 수 있습니다. (b)의 이미지들은 (a) 보다는 모호하지만, 특정 카테고리에 속하다고 말할 수 있습니다. 그런데 (c)의 경우 어떤 카테고리에 속하는지 분류하기가 모호합니다. 현실세계 사진에서는 (a)나 (b)보단 (c)에 속하는 경우가 훨씬 많이 존재합니다.

COCO Dataset 크기

- 이미지 개수:
 - 학습(training) 데이터셋: 118,000장의 이미지
 - 검증(validation) 데이터셋: 5,000장의 이미지
 - 테스트(test) 데이터셋: 41,000장의 이미지
- 이미지당 평균 object 수: 8개
- 이미지당 평균 class 수: 3.5개
- class 개수 91개(실제 사용은 80개)
- 수행하는 task
 - classification
 - object detection
 - semantic segmentation
 - instance segmentation
 - pose estimation etc

MS-COCO Dataset 오브젝트 카테고리

ID	COCO Paper	COCO 2017	Group		ID	COCO Paper	COCO 2017	Group
1	person	person	person		77	cell phone	cell phone	electronic
2	bicycle	bicycle	vehicle		1 1	con priorio	con priorio	Olooti of ilo
3	car	car	vehicle		78	microwave	microwave	appliance
4	motorcycle	motorcycle	vehicle		79	oven	oven	appliance
5	airplane	airplane	vehicle		80	toaster	toaster	appliance
6	bus	bus	vehicle		81	sink	sink	appliance
7	train	train	vehicle		82	refrigerator	refrigerator	appliance
8	truck	truck	vehicle				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
9	boat	boat	vehicle	80개의 오브젝		blender	(-)	appliance
10	traffic light	traffic light	outdoor	카테고리	84	book	book	indoor
10	tranic light	traffic fight	outdoor		85	clock	clock	indoor
11	fire hydrant	fire hydrant	outdoor		86	vase	vase	indoor
11	monyarant		outdoor		87	scissors	scissors	indoor
12	street sign	(-)	outdoor		88	teddy bear	teddy bear	indoor
13	stop sign	stop sign	outdoor		89	hair drier	hair drier	indoor
14	parking meter	parking meter	outdoor		90	toothbrush	toothbrush	indoor
15	bench	bench	outdoor		91	hair brush	(-)	indoor

MS-COCO Dataset 다운로드

http://cocodataset.org/#download

2017년 버전이 최신 : 위에 선택된 4개 파일을 받아 사용한다

MS-COCO Explorer 기능

http://cocodataset.org/#explorer

MS-COCO Explorer 기능

MS-COCO Dataset 구성

COCO 2017 데이터 세트 기준

MS-COCO JSON 파일 예시

JSON 파일의 images 대분류 예시

JSON 파일의 annotations 대분류 예시

MS-COCO Dataset 특징

COCO Dataset은 이미지 한 개에 여러 오브젝트들을 가지고 있으며 타 데이터 세트에 비해 난이도가 높은 데이터를 제공

