

Page 17

ROURKELA
2401/2000
Experiment-9
Title: Development of Minimum Risk Bayer Classification.
There produced will all
Alme to Implement a minimum Risk Bayes Clauifion That
Independ as all a political solition have all on 197 Asset
wing Bayesian decision Theory to minimize the Overall
Mike: have stugicion
1900 - C 1900 1900 1900 1900 1900 1900 1900 19
Theory: Bayesian decision theory provides a probabilistic framework for making optimal decision under Uncertainity.
Asomework for making optimal decision under Uncertainity.
The minimum Kisk Boys Classified is a decision
xule in statistical partern quat minimize the
expected loss (nisk) when classifying observation
At generalize the Bayes (fassifier, which
minimize clauification errors by acosposating 9
loss function that accounts for different
mi's clauification. Cost
misclassification costs are often unequal .90
account for their of lock function of (I) is introduced
evence diffil represents the cost of classifying a
sample as if when the frue class is if
R(P/x)== EH(P(j) P(G/X)
where RCF(x) is the expected risk of Classifying
x as class Ci.

In training pr flowchart? start Define prior probability P(wi) Chart With Define likelihood PCx(wi) compute total probability PCM = E PCK[W] PCW] compute posterior probabilities P(w/12) using Bayen. Theorem Define loss matrix office De zilorgiona Compute Expect risk -Ridiffuson & Plwil xid(1,1); 200 al forball Select decision d' that minimizes expected risk: dr=angnin R(di) classify the sample accordingly tisy sprobb 81

ix an flack

Page 18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Assign V to class of or oraclatain PC 8/4/1
Assign K to class it of Aminimize RCP/K/
Algonotume
3 Start ane Gasification process.
Define priors probabilities $\rho(w)$ based on statistical
data
> Define the Conditional probabilites P(Y/Wil), which
describe the probability of obtaining a certain test
result was out the autient belong to class wil
result regiven that the patient oflong to class will
=> (le the law of the total probability to compate the probability of each test result
compate the probability of each test result
$\frac{\rho(m)}{2} = \frac{\epsilon}{\epsilon} \frac{\rho(M(w)) \rho(w)}{\rho(w)}$
=) Compute due postenion (Bours Theorem)
\Rightarrow compute the posterior (Bays Theorem) $P(wry) = P(y wi) P(wi)$
P(w x) = P(y w) r(w)
PON
=) Define que loss matrix d(1,1) where d(1,1)
roomed are cost of constraine a sample
=) Calcute the expected Misk
wij when I t cottains to the
=) Calcute que expected MAC
R(di/n) = E P(wi/n) d(ii)
> 0 1 - 1 due decicion di abort minimino que expector
=> Peleet que decision of anot minimize que expector
n'sk al = arg min R(di/x)
V
Jassign the sample to the class to the class with
minimum nisk

the completo the class to the class with Minister Mariana

Page 19.

Problem 1	PC	(oncer) =0.2	PCM	von-comer) = 08	
The contract of the same					
Action		Concer patient (20%.)		Non comeen (80%)	
Chemo therapy					
(W ₁)		O		10	
Medication					
(d2)		೩ ೦		0	
R(Chemof Concer) = 0x0,2 + 10x0,8					
			E 0		
RC med	elicati	'on) = 20x1	0.2 + (3x80 = 4	
Problem - 2				(R(Chemodhenapy)	
-				13	
PC	once	m) = 0.2	P(non car	mar) = 0.8	
- 12			^ -		
gest.	Concer		non-convey		
gest Negative	010		0.90		
Positive	0.90		0,10		
	1	A	N t		
Action		Convers	Non coner.		
Chemo Therapy	O		10		
Medication	20			0	
		·			
R(di/x) =	511	(i,j) P(wi/z)	1 - <u>1</u> - <u>1</u>		
j	9	3, 1 (1)			
P(wi/n) =	P	(Mw) P(w)	(i)		
		P(n)			
P(n) s	5	P/71P(w;)			
·	1	(h)			

Page 20.

Discussion:
Little loss matrix reflects the consequences of mis-
classification. like wrong treating a commer patient
with medication is riskien than giving chemotherupy to
a non cancer partient.
24 Rear = 8 & Rear = 14, The optimal decision is to
choosen Medication (and This suggest that medication
is preffered based on one given probabilities and loss
Values.
3). patient with cancer may recleve medication instead of
chemotherapy which could lead to incorrettreatment
93 The model considers the lower overall nisk in the given
population, Significantly
5. Adjusting these loss values could shipt the décision
bourdang.
for the second problem:
•
In the experiment the Risk of Chemotherapy is higher
dran the medication for the negative test so It
charge the medication for the negative text result
I for one positive test result, the risk of the
de son le lord alon due viet of the Medication
Bo choose the chemo theropy for the positive.
test results.

Page 🤌,.

Themo risk: low risk for actual convey partient
but high n'sk for non concer patients.
-) medication rigic; High Hole for Concer patient
due to lack of treatment but low yor for
non concer pattents
Conclusion:
Use minimum Risk Bayes danifier when
some error are more costly from other. On the
other hand bayes classiften where all error
consider equal costly-80 it choose Minimize
classification error by choosing the class with the
highest posterior probability.
Jis que minimum risk classifier minimize expected
n's le by consider bot mis classification probabilities
and loss values.
·
25
02.