Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

КУРСОВАЯ РАБОТА Разработка контроллера светофоров и его верификация

по дисциплине "Верификация распределённых алгоритмов и протоколов"

Выполнил: студент гр.3640102/00201 Преподаватель: к.т.н, доцент ВШПИ ИКНТ

Лансков.Н.В.

Шошмина И.В

Содержание

1	Список иллюстраций				
2	Список таблиц				
3	Постановка задачи				
4	± ' ' '				
5	Верификация алгоритма средствами spin				
6	Анализ результатов работы	5			
1	Список иллюстраций 1 Перекрёсток	2			
2	Список таблиц				
	1 Варианты пересечений	2			

3 Постановка задачи

Дан перекрёсток с четырьмя двухсторонними направлениями движения. В каждом направлении имеются три полосы. Точная схема перекрёстка задаётся пересечениями направлений движения, указанными в таблице 1

Вариант: 12, 13, 15

Вариант	Пересечение	Вариант	Пересечение
1	WN, NS	9	SN, WE
2	WN, NE	10	SN, EW
3	WN, SW	11	SN, ES
4	WN, EW	12	NE, EW
5	NS, SW	13	NE, ES
6	NS, WE	14	SW, WE
7	NS, EW	15	SW, ES
8	SN, NE	16	WE, ES

Таблица 1: Варианты пересечений

Для наглядности также привожу схематическое изображение полос движения и пересечений для своего варианта 1.

Рис. 1: Перекрёсток

(а) Схема всех направлений движения

текущего варианта

Каждое направление движения регулируется своим светофором. Если машин нет - светофор горит красным светом. Если машины есть - светофор загорается зелёным (как только появится такая возможность) и пропускает все машины, после чего снова загорается красным. Требуется разработать модель контроллера светофоров, которая бы удовлетворяла следующим свойствам, заданным в виде ltl формул.

Также в модели требуется отразить поведение внешней среды.

Листинг 1: Формулы линейной темпоральной логики, отражающие требования к системе

```
1 #define crash 1 \setminus
 2
            (traffic lights color [0] == GREEN && \
 3
             traffic lights color[1] == GREEN
 4 \# define   crash_2 \setminus
            (traffic lights color [0] == GREEN && \
 5
 6
             traffic lights color[2] == GREEN
  #define crash 3 \setminus
 7
            (traffic_lights_color[2] == GREEN \&\& \
 8
9
             traffic lights color [3] == GREEN
10
11 #define car sense 0 (len(car sensor [0]) > 0)
12 #define car sense 1 (len(car sensor[1]) > 0)
13 #define car sense 2 (len(car sensor[2]) > 0)
14 #define car sense 3 (len(car sensor[3]) > 0)
15
16 \#define tl_green_0 (traffic_lights_color[0] == GREEN)
17 #define tl green 1 (traffic lights color [1] == GREEN)
18 #define tl green 2 (traffic lights color [2] == GREEN)
  #define tl_green_3 (traffic_lights_color[3] == GREEN)
20
   /* LTL formulae descriptions */
21
22
23
   /* Safety */
24
       (!crash 1)
25
       (!crash 2)
26
      (!crash 3)
27
28
   /* Liveliness */
29
    [] (car sense 0 \rightarrow <> tl green 0)
    [] (car_sense_1 -> <> tl_green 1)
30
31
    [] (car sense 2 \rightarrow <> tl green 2)
32
    [] (car sense 3 \rightarrow <> tl green 3)
33
34 /* Fairness */
35 \quad [] \Leftrightarrow !(tl green 0 \&\& car sense 0)
   [] <> !(tl_green_1 && car_sense_1)
   [] <> !(tl_green_2 && car_sense_2)
```

4 Построение модели

4.1 Внешняя среда

4.2 Светофор

4.3 Взаимодействие процессов

Модель состоит из процессов, моделирующих поведение светофоров, дорожных пересечений, а также из процессов, генерирующих потоки машин. Процесс, генерирующий поток машин для определённого направления, оставляет сообщение в канале $car_sense[i]$ ёмкостью 1. Контроллер светофора, обслуживающий тоже направление, читает сообщение из этого канала, и затем начинает последовательно захватывать ресурсы (пересечения). Это делается посредством отправки сообщений процессам, обслуживающим соответствующие пересечения по каналам блокировки. Процесс, управляющий пересечением, читает сообщение о блокировке, отправляет по рандеву каналу сообщение о подтверждении блокировки, и блокируется, ожидая сообщения об освобождении от блокирующего контроллера светофора. Когда контроллер светофора заблокировал все пересечения, через которые проходит регулируемый маршрут, он читает сообщение из канала о том, что машины ожидают проезда, меняет свой цвет на зелёный, и переключается обратно на красный. После этого отправляются сообщения о разблокировке пересечений в обратном порядке. Каналы, передающие пересечениям сообщения о блокировке, выглядят следующим образом:

Листинг 2: Каналы сообщений, обеспечивающие взаимодействие процессов контроллеров светофоров и процессов дорожных пересечений

```
23 chan lock [N_OF_INTERSECTIONS] = [N_OF_TRAFFIC_LIGHTS] of { mtype, byte } 24 chan accept [N_OF_TRAFFIC_LIGHTS] = [0] of { mtype } 25 chan release [N_OF_INTERSECTIONS] = [0] of { mtype }
```

Таким образом обеспечиватся последовательная обработка светофорами приходящие потоки машин по всем направлениям, а рандеву каналы позволяют осуществлять синхронное взаимодействие между процессами контроллеров светофоров и дорожных пересечений.

5 Верификация алгоритма средствами spin

При верификации, за один "такт" верификатор spin делает только 1 шаг в одном из активных процессов, тем самым переводя систему в следующее состояние. Чтобы spin мог корректно верифицировать построенную модель, будем проводить процедуру верификации при условии "слабой справедливости". Эта опция spin позволяет гарантировать, что каждый доступный к исполнению процесс будет выбран верификатором spin для исполнения. Также при верификации были увеличены такие параметры, как доступный при

верификации объём оперативной памяти, а также число допустимых состояний, которое может быть достигнуто при верификации. Кроме того, были добавлены следующие флаги компиляции:

6 Анализ результатов работы

В результате работы были изучены особенности проектирования систем параллельных вычислений. построена корректно работающая модель контроллера светофоров, а также получены практические навыки работы с пакетом spin,