Métodos Numéricos TP3

Seijo, De Bortoli, Penas, Grings

Noviembre 2017

Sobre los datos

- Filtrar datos por categorías: Scripting bash
- Carga y organización de datos: Python Pandas
- Predicciones con cuadrados mínimos: Python sklearn.linear_model

Sobre la experimentación

- Uso de datos desde 2003.
- División de los datos en semanas.
- Aplicación de Cross Validation.

Cancelaciones por clima

- ¿Cómo varían las cancelaciones por clima a través del tiempo?
- ¿Cómo influye el aeropuerto de origen?
- ¿Se sigue un patrón regular?

Cancelaciones por clima - General

5 / 18

Familia de funciones

Familia de funciones

$$f(t) = \alpha_1 + \alpha_2 * \cos(\frac{2\pi}{48}t)^8 + \alpha_3 * \sin(\frac{2\pi}{24}t) + \alpha_4 * \sin(\frac{2\pi}{12}t)$$

Resultados - General

Resultados - Miami outliers

Quiza no valga la pena mostrar lo de los outliers

Resultados - Miami y Los Ángeles

Aerolíneas

- ¿Cómo se comporta nuestro modelo con la cantidad de retrasos por aerolíneas?
- ¿Es posible predecir alguna mejor que otra?
- ¿Será necesario adaptar la familia de funciones cada vez?

Aerolíneas - Intro

- Aeropuertos fijos.
- Elección de aeropuertos y aerolíneas.
- Clasificación de retrasos.

United Airlines - Funciones

$$f(t) = \alpha_1 + \alpha_2 * t + \alpha_3 * \cos(\frac{2\pi}{48}t) + \alpha_4 * \cos(\frac{2\pi}{24}t) + \alpha_5 * \cos(\frac{2\pi}{12}t)$$

United Airlines - Los Ángeles

United Airlines - Atlanta

United Airlines - Analisis

- Funciones periódicas consiguieron el mínimo.
- Misma familia minimizó varios aeropuertos.
- Queremos ver si este comportamiento se repite en otra aerolínea.

American Airlines - Los Ángeles

American Airlines - Atlanta

Conclusiones

- Periodicidad.
- Patrones generales.
- Uso de la misma familia de funciones.

Preguntas