FCC RADIO TEST REPORT FCC ID:2AA8G EBULB01A

Product: RF Wireless Remote Control

Trade Name: N/A

Model Name: EBULB01A(FUT016)

Serial Model: FUT010, FUT008, FUT019

Prepared for

Eagle Eye Sales Inc.

4806 6A Street NE unit C Calgary, Alberta, T2E4B5 Canada

Prepared by

Shenzhen STONE Testing Technology Co.,Ltd.

F/6, Bldg.12, Zhongxing Industrial City, Chuangye Rd., Nanshan District Shenzhen P.R. China

TEST RESULT CERTIFICATION

Applicant's name Eagle Eye Sales Inc.					
	4806 6A Street NE unit C Calgary, Alberta, T2E4B5 Canada				
Manufacture's Name	Futlight Optoelectronics Co., Ltd				
AddressFloor 2, Building D, Fusen Technology Park,Hangcheng Road Bao'an District,Shenzhen City, Guangdong Province					
Product description					
Product name					
Model and/or type reference	EBULB01A(FUT016)				
Serial Model:	FUT010, FUT008, FUT019				
Standards	FCC Part15.249				
Test procedure	ANSI C63.4-2003				
	has been tested by NTEK, and the test results show that the s in compliance with the FCC requirements. And it is applicable only in the report.				
·	duced except in full, without the written approval of NTEK, this revised by NTEK, personal only, and shall be noted in the revision of				
Date (s) of performance of tes	ts 15 Oct. 2013 ~26 Oct. 2013				
Date of Issue	26 Oct. 2013				
Test Result	Pass				
Testing Engi	ineer: Eric Wang (Eric Wang)				
Technical Ma	70000 4000				
Authorized S	Signatory: Jank Yn (Jack yu)				

•

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	4
1.1 TEST FACILITY	5
1.2 MEASUREMENT UNCERTAINTY	5
2 . GENERAL INFORMATION	ϵ
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	8
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 9
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3 . ANTENNA REQUIREMENT	12
3.1 STANDARD REQUIREMENT	12
3.2 EUT ANTENNA	12
3.3 CONDUCTED EMISSION MEASUREMENT	13
3.3.1 POWER LINE CONDUCTED EMISSION LIMITS	13
3.3.2 TEST PROCEDURE 3.3.3 DEVIATION FROM TEST STANDARD	14 14
3.3.4 TEST SETUP	14
3.2.5 TEST RESULT	15
3.4 RADIATED EMISSION MEASUREMENT	16
3.4.1 RADIATED EMISSION LIMITS	16
3.4.2 TEST PROCEDURE	17
3.4.3 DEVIATION FROM TEST STANDARD 3.4.4 TEST SETUP	17 18
3.4.5 TEST SETOF 3.4.5 TEST RESULTS (BELOW 30MHZ)	20
3.4.6 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	21
3.4.7 TEST RESULTS (ABOVE 1000 MHZ)	23
3.4.8 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)	29
4 . BANDWIDTH TEST	33
4.1 TEST PROCEDURE	33
4.2 DEVIATION FROM STANDARD 4.3 TEST SETUP	33 33
4.4 TEST RESULTS	34
5 . EUT TEST PHOTO APPENDIX-PHOTOGRAPHS OF FUT CONSTRUCTIONAL DETAILS	37

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

rest procedures according to the technical standards.						
FCC Part15, Subpart C (15.249)						
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	N/A				
15.203	Antenna Requirement	Pass				
15.249	Radiated Spurious Emission	Pass				
15.205	Band Edge Emission	Pass				
15.249	Occupied Bandwidth	Pass				

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen STONE Testing Technology Co.,Ltd.

Add.: F/1, Bldg.12, Zhongxing Industrial City, Chuangye Rd., Nanshan District

Shenzhen China

FCC Registration No.: 323508; IC Registration No.: 11043A

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	RF Wireless Remote Control			
Trade Name	N/A			
Model Name	EBULB01A(FUT016)			
Serial Model	FUT010,FUT008,FUT0	19		
Model Difference	All the models are the same circuit and RF module, except the model names.			
	Operation Frequency:	2411~2477MHz		
	Modulation Type: Antenna Designation:	GFSK PCB Antenna		
	Antenna Gain(Peak)	0 dBi		
Product Description	EIRP	84.5dBuv/m@3m(PEAK)		
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.			
Channel List	Please refer to the Note 2.			
Adapter	N/A			
Battery	DC 3V			

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

•

2.

•			
Channel		Frequency (MHz)	
	01	2411	
	02	2440	
	03	2477	

Page 7 of 37

3

Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	PCB Antenna	N/A	0	Antenna

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Report No.: STT-2013DG1022574F

Pretest Mode	Description
Mode 1	TX CH 01
Mode 2	TX CH 02
Mode 3	TX CH 03

For Conducted Emission				
Final Test Mode Description				
1	1			

For Radiated Emission				
Final Test Mode Description				
Mode 1	TX CH 01			
Mode 2	TX CH 02			
Mode 3	TX CH 03			

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT use new battery.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

E-1 EUT

•

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	RF Wireless Remote Control	N/A	EBULB01A(FUT016)	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

	Visal of		Tuna Na	Carial NI-	1 4	Calibrate d	0 - 10 40
Item	_ Kind of	Manufacturer	Type No.	Serial No.	Last	Calibrated	Calibration
	Equipment				calibration	until	period
1	Spectrum	Agilent	E4407B	MY4510804	2013.07.06	2014.07.05	1 year
	Analyzer	7 igiloni	L++07D	0	2010.07.00	2011.07.00	1 your
2	Test Receiver	R&S	ESPI	101318	2013.06.07	2014.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2013.07.06	2014.07.05	1 year
4	50Ω Coaxial	Δ :1	MDEOD	620026441			4
4	Switch	Anritsu	MP59B	6	2013.06.07	2014.06.06	1 year
5	Spectrum	ADVANTEST	R3132	150900201			1 year
3	Analyzer	ADVANTEST	K3132	130900201	2013.06.07	2014.06.06	1 year
6	Horn Antenna	EM	EM-AH-101	2011071402	2013.07.06	2014.07.05	1 year
	TIOTI AIRCINIA	LIVI	80	2011071402	2010.07.00	2014.07.00	ı ycai
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2013.07.06	2014.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2012 12 22	2012 12 21	1 year
<u> </u>	7 tillpillioi		LIVI 00 100	000000	2012.12.22	2013.12.21	ı year
9	Loop Antenna	ARA	PLA-1030/B	1029	2013.06.08	2014.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2013.07.06	2014.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619. 05	2013.07.06	2014.07.05	1 year

Page 11 of 37

Conduction Test equipment

	Solidaction rest equipment						
Item	Kind of	Manufactu	Type No.	Serial No.	Last	Calibrated	Calibratio
	Equipment	rer			calibration	until	n period
1	Test Receiver	R&S	ESCI	101160	2013.06.06	2014.06.05	1 year
2	LISN	R&S	ENV216	101313	2013.06.06	2014.06.05	1 year
3	LISN	EMCO	3816/2	00042990	2013.06.06	2014.06.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	620026441 7	2013.06.07	2014.06.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2013.06.07	2014.06.06	1 year
6	Absorbing clamp	R&S	MOS-21	100423	2013.06.08	2014.06.07	1 year

3. ANTENNA REQUIREMENT

3.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.2 EUT ANTENNA

The EUT antenna is integral Antenna. It comply with the standard requirement.

3.3 CONDUCTED EMISSION MEASUREMENT

3.3.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)		Standard
FREQUENCY (MITZ)	Quasi-peak	Average	Quasi-peak	Average	Stariuaru
0.15 -0.5			66 - 56 *	56 - 46 *	CISPR
0.50 -5.0			56.00	46.00	CISPR
5.0 -30.0			60.00	50.00	CISPR

0.15 -0.5		66 - 56 *	56 - 46 *	LP002.
0.50 -5.0		56.00	46.00	LP002.
5.0 -30.0		60.00	50.00	LP002.

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.2.5 TEST RESULT

EUT:	RF Wireless Remote Control	Model Name. :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	N/A
Test Mode :	N/A		

Page 15 of 37

3.4 RADIATED EMISSION MEASUREMENT

3.4.1 Radiated Emission Limits (FCC 15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.249)

Frequency of Emission (MHz)	Field Strength of fundamental ((millivolts /meter)	Field Strength of Harmonics (microvolts/meter)
2400 - 2483.5	50	500

Notes:

(1) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.4.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.4.5 TEST RESULTS (BELOW 30MHz)

EUT:	RF Wireless Remote Control	Model Name. :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidtity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

.

3.4.6 TEST RESULTS (BETWEEN 30 – 1000 MHZ)

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
31.0704	5.33	18.33	23.66	40	-16.34	QP
110.1816	7.58	11.42	19	43.5	-24.5	QP
153.7384	11.27	11.43	22.7	43.5	-20.8	QP
299.3158	6.87	14.54	21.41	46	-24.59	QP
543.274	6.34	23.46	29.8	46	-16.2	QP
958.7943	6.69	27.65	34.34	46	-11.66	QP

Remark:

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
30.4237	5.19	18.13	23.32	40	-16.68	QP
47.3253	13.05	9.45	22.5	40	-17.5	QP
118.6012	6.45	11.75	18.2	43.5	-25.3	QP
337.2155	8.05	15.05	23.1	46	-22.9	QP
550.9479	6.27	23.27	29.54	46	-16.46	QP
965.5421	6.19	27.76	33.95	54	-20.05	QP

Remark:

3.4.7 TEST RESULTS (ABOVE 1000 MHZ)

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2411MHz	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2411.023	97.49	-12.99	84.50	114	-29.50	peak
4823.647	68.84	-3.54	65.30	74	-8.70	peak
4823.647	41.73	-3.54	38.19	54	-15.81	AVG

Remark:

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2411MHz	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2411.023	90.69	-12.99	77.7	114	-36.3	peak
4826.134	61.16	-4.46	56.7	74	-17.3	peak
4826.134	38.29	-4.46	33.83	54	-20.17	AVG

Remark:

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2440MHz	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2440.617	92.84	-12.94	79.90	114.	-34.10	peak
4885.309	62.67	-3.77	58.90	74	-15.10	peak
4885.309	37.26	-3.77	33.49	54	-20.510	AVG

Remark:

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2440MHz	Polarization :	Vertical

Page 26 of 37

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2440.713	94.84	-12.94	81.9	114.0 0	-32.1	peak
4883.172	65.07	-3.67	61.4	74	-12.6	peak
4883.172	40.28	-3.67	36.61	54	-17.39	AVG

Remark:

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2477MHz	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2477.957	90.49	-12.79	77.7	114.0 0	-36.3	peak
4947.285	59.59	-3.59	56	74	-18	peak
4947.285	38.19	-3.59	34.6	54	-19.4	AVG

Remark:

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2477MHz	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2477.264	87.19	-12.79	74.4	114.0 0	-39.6	peak
4944.981	61.09	-3.59	57.5	74	-16.5	peak
4944.981	37.14	-3.59	33.55	54	-20.45	AVG

Remark:

3.4.8 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2411MHz	Polarization :	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390	50.25	-13.06	37.19	74	-38.81	peak
60	and the standard have been been been been been been been be	at be set to be a consequent of the of the	Makes see so see see the principal see so see see see		Lin AV	G: —
0.0 2310.000			(1411-1			2420.000
			(MHz)			Z4ZU.UUU

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2411MHz	Polarization :	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2390	52.89	-13.06	39.83	74	-34.17	peak
	de hit parin, de secondo por la Missanda en la de la colonia de la colon	ulprosent and programme of the second	and a grant of the contract of	The sale of the sa	Lin AV	
2310.000			(MHz)			2420.000
Remark:	tenna Factor + 0	Cable Loss – F				

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2477MHz	Polarization :	Horizontal

Frequency (MHz)	Meter Reading (dBµV)	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin (dB)	Detector Type
2483.5	47.83	-12.78	35.08	74	-38.92	peak
60		MMM Myrroman	The contract the contract of t	Magazine and Albania population of surger	Lin	/G:
2465.000			(MHz)			2500.000
Remark:	enna Factor + C	Cable Loss –				2300.000

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3 V
Test Mode :	TX /2477MHz	Polarization :	Vertical

Page 32 of 37

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	20100101 1900
2483.5	47.59	-12.78	34.81	74	-39.19	peak
60		Managemen	manuscripture in general and form of the control of	to Allen was the said to the said for the sa	Lin	G:
2465.000			(MHz)			2500.000
Remark:	tenna Factor + C	ahle I oss –				2500.000

4. BANDWIDTH TEST

4.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW≥RBW, Sweep time = Auto.

4.2 DEVIATION FROM STANDARD

No deviation.

4.3 TEST SETUP

4.4 TEST RESULTS

EUT:	RF Wireless Remote Control	Model Name :	EBULB01A(FUT016)
Temperature :	26 ℃	Relative Humidity:	53%
Pressure :	1020 hPa	Test Power :	DC 3 V
Test Mode :	TX CH 01/02/03		

Test Channel	Frequency	20 dB Bandwidth
rest Orialinei	(MHz)	(kHz)
CH01	2411	764.202
CH02	2440	614.201
CH03	2477	645.789

•

The Lowest Channel:2411MHz

Page 35 of 37

The Middle Channel: 2440MHz

The High Channel:2477MHz

5. EUT TEST PHOTO

