A1.
$$A(t) = Pe^{rt} \to 4000 = 1000e^{0.04t} \to 4 = e^{0.04t} \to 0.04t = \ln 4$$

 $\to \to \frac{4}{100}t = \ln 4 \to t = 25 \ln 4 \blacksquare \to (D)$

A2.
$$I(x) = 80x - 4x^2 = -4x^2 + 80x = -4(x^2 - 20x) = -4(x^2 - 20x + 100 - 100)$$

= $-4(x - 10)^2 + 400 \rightarrow x_m = 10; I_{\text{max}} = 400 \text{ Bs.} \rightarrow I_{\text{max}} = 40x_m \blacksquare \rightarrow (A)$

A3.
$$50,49,48,...$$
 es una sucesión aritmética con $d=-1$ y $a=50$.

$$a_{40} = 50 + 39(-1) = 11 \text{ y } S_{40} = \frac{40(50 + 11)}{2} = 1220 \blacksquare \rightarrow (A)$$

A4. Del gráfico los ceros del polinomio son:
$$x = -1, x = 1, x = 2$$

 $\rightarrow \rightarrow$ Polinomio: $(x + 1)(x - 1)(x - 2) = x^3 - 2x^2 - x + 2 \implies (D)$

G5. Por ángulo externo en
$$\triangle I$$
: $\beta = \alpha + x$ y por suma de ángulos de un cuadrilátero:

$$\beta + x + (\alpha + 180 - 2\alpha) + 80 = 360^{\circ} \rightarrow \beta + x - \alpha = 100^{\circ} \rightarrow \alpha + x + x - \alpha = 100^{\circ}$$
$$\rightarrow 2x = 100^{\circ} \rightarrow x = 50^{\circ} \blacksquare \rightarrow (D)$$

G6.
$$A = 90^{\circ} - B \rightarrow$$

$$Z = \frac{\tan(A + 2B) \cdot \cos(2A + 3B)}{\cot(2A + B) \cdot \sin(4A + 3B)} = \frac{\tan(90^{\circ} - B + 2B) \cdot \cos(2(90^{\circ} - B) + 3B)}{\cot(2(90^{\circ} - B) + B) \cdot \sin(4(90^{\circ} - B) + 3B)}$$
$$= \frac{\tan(90^{\circ} + B) \cdot \cos(180^{\circ} + B)}{\cot(180^{\circ} - B) \cdot \sin(360^{\circ} - B)} = \frac{(-\cot B) \cdot (-\cos B)}{(-\cot B) \cdot (-\sin B)} = \cot B \blacksquare \to (B)$$

G7. El ángulo interno de un polígono regular se calcula:
$$\hat{i} = \frac{180(n-2)}{n}$$

$$\rightarrow \rightarrow \hat{i}_{pentágono} = 108^{\circ}; \hat{i}_{hexagono} = 120^{\circ} \rightarrow \rightarrow \alpha = 360 - 108 - 120 = 132$$

y
$$\beta = x$$
 -por triángulo isósceles $\rightarrow \rightarrow 2x + 132 = 180 \rightarrow \rightarrow x = 24^{\circ} \blacksquare \rightarrow (D)$

G8.
$$A = (AD)(DC) \rightarrow \sin\theta = \frac{CD}{1}$$
 y $\cos\theta = \frac{OD}{1}$ y $2(OD) = AD$

$$\rightarrow \rightarrow A = 2(OD)(DC) = 2\sin\theta\cos\theta = \sin 2\theta \blacksquare \rightarrow (B)$$

Física Fila 2

¿ V des prés de 45?

Como
$$a = \text{ctte} =)$$

$$d = \sqrt{st} + \frac{1}{2} at^{2}$$

$$a = \frac{2d}{t^{2}} = \frac{2 \times 2}{1^{2}}$$

$$a = 4 \frac{m}{s^{2}}$$

$$v = \sqrt{st} + at$$

$$v = 4 \times 4$$

Fisia File 2

El pero es: 1 y[m] W = 2 × 10 = 20 N + F11 La fuerze mete es Nt=0 | --- + m = 2 Rg Freta = FR+W Vo = 13 m 1 Fret = 20 + 6 = 26 N. FR = 6 N + Por le 2 de Jey de Newton $g = 10 \frac{\text{m}}{\text{s}^2} + \text{Fr} + \frac{1}{\text{m}}$ Freta = ma => FR se opone al sentido del movimiento a = \frac{\frac{1}{m}}{m} = \frac{26}{2.} W=mg eu iste probleme y $a = 13 \frac{m}{5^2}$ en el +12

Considerands hericabajo negativo

Vo² = V_0^2 = 2cH => $H = \frac{V_0^2}{2c}$ H = $\frac{13^2}{2 \times 13^2}$ = 6.5 m (C)

F12 m = 3 Mg $V_0 = 0$ Freta = 30 - 5 = 25 N $V_0 = 0$ Freta = 30 - 5 = 25 NComo el desplazamiento

ea 10 m

Whato? h = 10 m G = 10 mWhato = 25×10 Whato = 25×10

Q₁s = A) 44, 45 gO₂
$$\frac{4 \text{ moloz}}{32 \text{ gOz}} \cdot \frac{2(6.023 \cdot 10^{23} \cdot 10^{23} \cdot 10)}{1 \text{ moloz}} = 1,67 \cdot 10 \text{ at } 0$$

B) 30,61 l cO₂ $\frac{2(6.023 \cdot 10^{23}) \text{ at } 0}{22,44 \text{ coz}} = 1,646 \cdot 10 \text{ at } 0$ => B)

c) 1,55 mol O₃ $\frac{3(6.023 \cdot 10^{23}) \text{ at } 0}{1 \text{ mol O2}} = 2,8 \cdot 10 \text{ at } 0$

D) 16,88 g H₂SO₄ $\frac{4(6.023 \cdot 10^{23}) \text{ at } 0}{989 \text{ Hz}SO_4} = 4,15 \cdot 10 \text{ at } 0$

Q16:
$$n_{Hz} = n_{He} = \frac{20g}{4g/mol} = 5 \text{ moles} \Rightarrow [m_{Hz} = 5 \text{ mol} \cdot 2g/mol} = 10g/Hz$$