

Unidade 2 - Grafos Eulerianos

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecidovfreitas@gmail.com

- Fundamentos da Teoria dos Grafos para Computação M.C. Nicoletti, E.R. Hruschka Jr. 3ª Edição LTC
- Grafos Teoria, Modelos, Algoritmos Paulo Oswaldo **Boaventura** Netto, 5ª edição
- Grafos Conceitos, Algoritmos e Aplicações Marco Goldbarg, Elizabetj Goldbarg, Editora Campus
- A first look at Graph Theory John Clark, Derek Allan Holton 1998, World Cientific
- Introduction to Graph Teory Robin J. **Wilson** 4th Edition Prentice Hall 1996
- Introduction to Graph Theory Douglas West Second Edition 2001 Pearson Edition
- Mathematics A discrete Introduction Third Edition Edward R. Scheinerman 2012
- Discrete Mathematics and its Applications Kenneth H. Rosen 7th edition McGraw Hill 2012
- Data Structures Theory and Practice A. T. Berztiss New York Academic Press 1975 Second Edition
- Discrete Mathematics R. **Johnsonbaugh** Pearson 2018 Eighth Edition
- Graoy Theory R. Diestel Springer 5th Edition 2017
- Graph Theory Theory and Problems of Graph Theory V. Balakrishnan Schaum's Outline McGraw Hill 1997

Lembrando...

- ✓ Um grafo G pode ser informalmente definido como um conjunto de objetos chamados vértices e um conjunto de arestas que unem pares desses objetos;
- ✓ A maneira mais comum de se representar um grafo é por meio de um diagrama;
- ✓ Frequentemente, o próprio diagrama é referenciado como um grafo.
- ✓ Generalizando o conceito, em um **grafo** é possível que mais de uma aresta conecte o mesmo par de vértices (arestas paralelas), bem como uma aresta pode conectar um vértice a si próprio (aresta chamada loop).

Grafo com vértices $\{v_1, v_2, v_3, v_4, v_5\}$ e sete arestas, sendo três delas paralelas e duas são *loops*.

Formalmente...

- ✓ Um grafo G = (V(G), E(G)) ou G = (V,E) consiste de dois conjuntos finitos:
 - V(G), ou V, que é o conjunto de vértices do grafo, o qual é um conjunto não vazio de elementos chamados vértices e;
 - E(G), ou E, que é o conjunto de arestas do grafo, o qual é um conjunto (que pode ser vazio) de elementos chamados arestas.
- À cada aresta e em E é atribuído um par não ordenado de vértices (u,v) chamados vértices extremidades de e.
- ✓ Vértices também são referenciados como **pontos** ou **nós**.

Seja o grafo G = (V,E), tal que

$$V = \{a,b,c,d,e,f,g,h,i,j\} e$$

$$E = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}, e_{12}\}$$

e as extremidades das arestas expressas por:

$$\begin{array}{llll} e_1 \leftrightarrow (a,b) & e_2 \leftrightarrow (b,c) & e_3 \leftrightarrow (c,c) & e_4 \leftrightarrow (c,e) & e_5 \leftrightarrow (d,f) & e_6 \leftrightarrow (d,f) \\ e_7 \leftrightarrow (c,d) & e_8 \leftrightarrow (c,f) & e_9 \leftrightarrow (e,f) & e_{10} \leftrightarrow (g,h) & e_{11} \leftrightarrow (h,h) & e_{12} \leftrightarrow (h,i) \end{array}$$

A Figura mostra a representação em diagrama do grafo G.

Grafo G com dez vértices e 12 arestas.

Passeio em um Grafo

- ✓ Muitos problemas em Teoria dos Grafos estão relacionados à possibilidade de se chegar a um vértice do grafo a partir de outro, seguindo-se uma sequência de arestas;
- ✓ Um passeio em um grafo é uma sequência finita

$$w = v_0 e_1 v_1 e_2 v_2 ... v_{k-1} e_k v_k$$

cujos elementos são, alternativamente, **vértices** e **arestas** tal que, para $1 \le i \le k$, a aresta e_i tem vértices-extremidades v_{i-1} e v_i ;

- ✓ Assim, cada aresta e_i é imediatamente precedida e sucedida pelos vértices aos quais é incidente;
- \checkmark Diz-se que o **passeio W** é um **passeio v_o-v_k** ou um **passeio** de v_o até v_k ;
- \checkmark O vértice \mathbf{v}_0 é chamado **origem** do **passeio** \mathbf{W} e o vértice \mathbf{v}_k é chamado **término** de \mathbf{W} ;
- ✓ Os vértices v₀ e v₀ não precisam ser distintos;
- ✓ Os vértices $v_1,...,v_{k-1}$ são chamados vértices internos.

Comprimento de um Passeio em um Grafo

- ✓ Considere o grafo $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ e uma passeio em \mathbf{G} dado pela sequência $\mathbf{W} = \mathbf{v}_0 \mathbf{e}_1 \mathbf{v}_1 \mathbf{e}_2 \mathbf{v}_2 ... \mathbf{v}_{k-1} \mathbf{e}_k \mathbf{v}_k$.
- ✓ O inteiro k, que é o número de arestas do passeio, é chamado Comprimento de W;
- ✓ Em um passeio pode haver <u>repetições</u> de <u>vértices</u> e <u>arestas</u>;
- ✓ No grafo G = (V,E), dados dois vértices $u \in V \in V \in V \in G$, um passeio $u v \in G$ se $u = v \in G$ se $u \neq v$;

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

W1 = $v_1 e_1 v_2 e_5 v_3 e_{10} v_3 e_5 v_2 e_3 v_5$ é um passeio aberto de tamanho 5 de v_1 a v_5 .

✓ Observação: A aresta e₅ está sendo repetida no passeio W₁

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

 $W2 = v_1 e_1 v_2 e_1 v_1 e_1 v_2$ é um passeio aberto de tamanho 3 de v_1 a v_2 .

Observação: A aresta e₁ está sendo repetida no passeio W₂

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

W3 = $v_1v_5v_2v_4v_3v_1$ é um passeio fechado de tamanho 5.

Trilha em um Grafo

✓ Seja G = (V,E) um grafo e considere o passeio:

$$W = V_0 e_1 V_1 e_2 V_2 ... V_{k-1} e_k V_k$$

- \checkmark Se as arestas $\mathbf{e_1}$, $\mathbf{e_2}$..., $\mathbf{e_k}$ de \mathbf{W} forem **distintas**, então \mathbf{W} é chamado **Trilha**;
- ✓ Uma trilha que começa e termina no mesmo vértice v é chamada Trilha Fechada ou CIRCUITO;
- ✓ Caso contrário é uma Trilha aberta;
- ✓ Pode-se dizer, portanto, que uma **Trilha** é um **passeio** no qual **nenhuma aresta é repetida**.

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V =
$$\{v_1, v_2, v_3, v_4, v_5\}$$
 e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$.

 $W_3 = V_1 e_6 V_5 e_3 V_2 e_4 V_4 e_8 V_3 e_9 V_1$

Considere o grafo G = (V,E) mostrado na Figura

Grafo simples G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ e E= $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}\}$.

 $W2 = v_1 e_1 v_2 e_3 v_3 e_5 v_5 e_7 v_4 e_6 v_3 e_4 v_2 e_2 v_1$ é uma trilha fechada de tamanho 7 de v_1 a v_1 .

- √ Todas as arestas de W₂ são distintas!
- \checkmark W₂ inicia em V₁ e termina em V₁;
- ✓ Portanto, W₂ é uma trilha fechada ou um circuito;
- \checkmark **W**₂ tem 7 arestas, portanto o **tamanho** de **W**₂ é **7**.

Considere o grafo G = (V,E) mostrado na Figura

Grafo simples G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ e E= $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}\}$.

 $W3 = v_4 e_7 v_5 e_8 v_6 e_9 v_5 e_{10} v_6 e_{11} v_7 e_{13} v_8 \text{ \'e uma trilha aberta de tamanho 6 de } v_4 \text{ a } v_8.$

- √ Todas as arestas de W₃ são distintas!
- \checkmark W_3 inicia em V_4 e termina em V_8 ;
- ✓ Portanto, W₂ é uma trilha aberta;
- \checkmark W₃ tem 6 arestas, portanto o tamanho de W₃ é 6.

Passeio e Trilha

Vértice inicial u Vértice final v	u ≠ v	u = v
PASSEIO Nenhuma restrição quanto ao número de vezes que um vértice ou aresta pode aparecer	PASSEIO ABERTO	PASSEIO FECHADO
Trilha Nenhuma aresta pode aparecer mais de uma vez	TRILHA ABERTA	TRILHA FECHADA ou CIRCUITO

QualitSys

Caminho

✓ Seja **G** = (**V**,**E**) um grafo e considere a **trilha**:

$$w = v_0 e_1 v_1 e_2 v_2 ... v_{k-1} e_k v_k$$

- \checkmark Se as vértices $\mathbf{V_0}, \mathbf{V_1}..., \mathbf{V_k}$ de \mathbf{W} forem **distintas**, então \mathbf{W} é chamado **Caminho**;
- ✓ Em um caminho, entretanto, é permitido que seus primeiro e últimos vértices possam ser os mesmos;
- ✓ Um caminho que começa e termina no mesmo vértice v é chamada Caminho Fechado ou CICLO;
- ✓ Todo caminho é uma trilha, mas nem sempre uma trilha é um caminho.

Considere o grafo G = (V,E) mostrado na Figura

Grafo G = (V,E), em que V = $\{v_1, v_2, v_3, v_4, v_6\}$ e E = $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$. W4 = $v_2v_4v_3v_5v_1$ é um caminho de comprimento 4.

- ✓ Em W₄ não há repetição de vértices;
- ✓ Vértice inicial é diferente do vértice final;
- Portanto, **W**₄ é um **caminho** de tamanho 4.

Passeio e Trilha

Vértice inicial u Vértice final v	u ≠ v	u = v
PASSEIO Nenhuma restrição quanto ao número de vezes que um vértice ou aresta pode aparecer	PASSEIO ABERTO	PASSEIO FECHADO
Trilha Nenhuma aresta pode aparecer mais de uma vez	TRILHA ABERTA	TRILHA FECHADA ou CIRCUITO
CAMINHO Nenhum vértice pode aparecer mais de uma vez, com a possível exceção de que u e v podem ser o mesmo vértice	CAMINHO ABERTO	CAMINHO FECHADO OU CICLO

Trilha Euleriana

✓ Uma trilha em um grafo G é chamada Trilha Euleriana se incluir toda aresta de G.

 \checkmark Exemplo: A trilha $V_1V_2V_3V_4V_5V_6V_7V_8$ do grafo **G1** é uma **trilha** de **Euler**.

Trilha Euleriana

✓ Uma trilha em um grafo **G** é chamada **Trilha Euleriana** se incluir toda aresta de **G** exatamente uma vez.

✓ Exemplo: O grafo **G2** acima **não** tem uma trilha de Euler.

✓ Um grafo **G** é chamado **Grafo de Euler** ou **Grafo Euleriano** se tiver uma **trilha** fechada (**circuito**) que inclui **todas** as arestas de **G**;

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo G2 é Euleriano?

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

- Precisa-se descobrir se há uma trilha de **Euler** fechada no grafo **G2**;
- \checkmark A trilha $V_1e_1V_2e_2V_3e_3V_4e_4V_1e_5V_4e_6V_1$ é uma **trilha Euleriana fechada**;
- ✓ Logo, G2 é um Grafo Euleriano.

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo G1 é Euleriano?

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

- ✓ O grafo G1 é Euleriano?
- ✓ Resposta: Não, pois não se consegue construir em G1 uma trilha Euleriana Fechada.

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo G3 é Euleriano?

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

- ✓ O grafo G3 é Euleriano?
- ✓ Resposta: Não, pois não se consegue construir em G3 uma trilha Euleriana Fechada.

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo G4 é Euleriano?

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo G4 é Euleriano?

✓ Resposta: Não, pois não se consegue construir em G4 uma trilha Euleriana Fechada.

✓ Um grafo G é chamado Grafo de Euler ou Grafo Euleriano se tiver um trilha de Euler fechada.

✓ O grafo G5 é Euleriano?

✓ Um grafo **G** é chamado **Grafo de Euler** ou **Grafo Euleriano** se tiver um **trilha** de **Euler** fechada.

- ✓ O grafo G5 é Euleriano?
- ✓ Resposta: Não, pois não se consegue construir em G5 uma trilha Euleriana Fechada.

Como determinar se um grafo é Euleriano?

O problema das pontes de Königsberg é o primeiro e mais famoso problema em teoria dos grafos resolvido por Euler em 1736. Na cidade de Königsberg existiam sete pontes que cruzavam o rio Pregel estabelecendo ligações entre duas ilhas e entre as ilhas e as margens opostas do rio.

O problema consiste em determinar se é possível ou não fazer um passeio pela cidade começando e terminando no mesmo lugar, cruzando cada ponte exatamente uma única vez. Se isto for possível o grafo é chamado grafo Euleriano.

$$\begin{aligned} & \text{Grafo } G = (\textit{V}, A) \\ \textit{V} = & \text{cjto de v\'ertices} = \{A, B, C, D\} \\ \textit{A} = & \text{cjto de arestas} = \{a, b, c, d, e, f, g\} \end{aligned}$$

$$\begin{aligned} & \mathsf{Grafo}\ G = ({\color{red}V},A) \\ & {\color{red}V} = \mathbf{cjto}\ \mathsf{de}\ \mathsf{v\'ertices} = \{A,B,C,D\} \\ & A = \mathsf{cjto}\ \mathsf{de}\ \mathsf{arestas} = \{a,b,c,d,e,f,g\} \end{aligned}$$

✓ Euler provou que o problema não tem solução!

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G1 abaixo é Euleriano?

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G1 abaixo é Euleriano?

- ✓ O grafo **G1** acima tem vértices V_2 e V_3 com grau ímpar;
- ✓ Portanto, o Grafo G1 não é Euleriano!

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G2 abaixo é Euleriano?

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G2 abaixo é Euleriano?

- ✓ Todos os vértices do grafo **G2** acima possuem graus pares;
- ✓ Portanto, o Grafo G2 é Euleriano!
- $\checkmark \quad \text{Circuito de Euler:} \quad \textbf{V}_{1} \textbf{V}_{9} \textbf{V}_{2} \textbf{V}_{4} \textbf{V}_{3} \textbf{V}_{7} \textbf{V}_{9} \textbf{V}_{8} \textbf{V}_{7} \textbf{V}_{6} \textbf{V}_{5} \textbf{V}_{4} \textbf{V}_{7} \textbf{V}_{2} \textbf{V}_{1}$

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G3 abaixo é Euleriano?

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G3 abaixo é Euleriano?

- ✓ Todos os vértices do grafo **G3** acima possuem graus **pares**;
- ✓ Portanto, o Grafo **G3 é** Euleriano!
- \checkmark Circuito de Euler: $V_1 V_2 V_3 V_1 V_4 V_2 V_5 V_3 V_4 V_5 V_1$

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo **G4** abaixo é **Euleriano**?

- ✓ Um grafo conexo **G** é um **Grafo Euleriano** se e somente se o grau de todo o vértice de **G** for par.
- ✓ Exemplo: O grafo G4 abaixo é Euleriano?

- ✓ O grafo **G4** acima tem todos os vértices com grau ímpar;
- ✓ Portanto, o Grafo G4 não é Euleriano!

