hw1 20/07/2020, 20:55

Homework 1

Elementary signals

We will distribute this PDF to the Homework section of your personal section of the OneNote Class Notebook then you can use the ink feature (if supported) to hand-write or sketch your answers.

1. Show that the waveform shown below can be represented by the function

\begin{equation}

$$v(t) = (2t + 1)u_0(t)-2(t-1)u_0(t-1)-tu_0(t-2)+(t-3)u_0(t-3)$$
.

\end{equation}

1. Evaluate each of the following functions:

A.
$$\sin t \, \delta(t - \frac{\pi}{6})$$
;

B.
$$\cos 2t \, \delta(t - \frac{\pi}{4})$$

A.
$$\sin t \, \delta(t - \frac{\pi}{6});$$

B. $\cos 2t \, \delta(t - \frac{\pi}{4});$
C. $\cos^2 t \, \delta(t - \frac{\pi}{2});$

D.
$$\tan 2t \, \delta(t - \frac{\overline{x}}{2})$$

D.
$$\tan 2t \, \delta(t - \frac{2}{8});$$

E. $\int_{-\infty}^{+\infty} t^2 \, e^{-t} \, \delta(t - 2) \, dt;$

hw1 20/07/2020, 20:55

F.
$$\sin^2 t \, \delta'(t - \frac{\pi}{2})$$
.

Check your answers with Matlab.

- 2. Consider the waveform shown in {numref} fig2
 - A. Express the voltage waveform v(t) shown below as a sum of unit step funtions for the time interval 0 < t < 7 s.
 - B. Use this result to compute the time derivative of v(t), and sketch its waveform.

In []: