Goodreads Books

Adam Gonzalez, Erin Lee, Jon Le, Debbie Lu, and Corinne Smith

Motivation

Book reviews generally provide the following information:

- reader opinions or editorial reviews about a book
- simple ratings
- similar reads or recommendations

Motivation

But there is a gap....

- Book reviews are heavily qualitative as opposed to quantitative.
- What predicts the ratings?
- What are the strongest predictors of a higher or lower rating?

Research question: What are the factors that affect the average book rating?

Overview of Data Set

Data collection:

- The two datasets we used were both scraped from the GoodReads API.
- "Goodreads-books" from Kaggle
 - https://www.kaggle.com/jealousleopard/g oodreadsbooks
- "GoodReads Authors" from Kaggle
 - https://www.kaggle.com/choobani/goodre ad-authors

Data Cleaning

About the data:

- The first dataset contains information primarily on the books themselves.
- The second contains information primarily on the authors (hence the names).
- We combined both datasets into one <u>to</u>
 <u>analyze how average book ratings are</u>

 <u>affected by a number of different</u>
 <u>factors.</u>

Manipulation:

- Lots of character data types
- Added new feature:
 - Sentiment score

Cleaning Code

```
# 4) DATA CLEANING
```{r}
mutate to correct column data types
books_1 <- books_sa %>% mutate(num_pages = as.numeric(num_pages),
 avg_book_rating = as.numeric(avg_book_rating),
 text_reviews_count = as.numeric(text_reviews_count),
 publication_date = as.Date(publication_date,
format="%m/%d/%Y").
 born = as.Date(born, format="%m/%d/%Y"),
 died = as.Date(died, format="%m/%d/%Y"),
 gender = as.factor(gender)
eliminate NAS, using " filter(!is.na()) " from Problem Set 5 cleaning code
books_total <- books_1 %>%
 filter(
 (!is.na(avg_book_rating)), (!is.na(book_ratings_count)), (!is.na(text_reviews_count)),
(!is.na(publication_date)),
 (!duplicated(title)),
 (avg_book_rating != 0),
 (author != "NOT A BOOK"))
```

### More Cleaning Code

```
#Eliminate useless columns: sd(standard deviation of words in title), author ID, image_URL,
about, influence, website, twitter, original hometown, country, latitude, longitude
books_corti <- books_total %>% select(-isbn13,
 -sd.
 -authorid.
 -image_url,
 -about,
 -influence.
 -website.
 -twitter.
 -original_hometown,
 -country.
 -latitude.
 -longitude) %>% rename(
 title_sentiment_avg = ave_sentiment,
 title_word_count = word_count
```



### **Data Exploration**

#### Chosen variables:

- Outcome variable: average book rating
  - ("average\_rating")
- Predictors: 9 total
  - "num\_pages", "book\_ratings\_count","text\_reviews\_count",
    - "title\_sentiment\_avg",
    - "authorworkcount", "author\_fans",
    - "author\_ratings\_count,
    - "author\_review\_count", "gender"



### Exploring Data: Visualization 1



# Exploring the Data: Visualization 2 Gender of Author unknown male female Average Book Rating

### **Model 1: Linear Regression**

#### Why a linear regression?

#### **Training Metrics:** Testing Metrics:

• RMSE: 0.282

• MAE: 0.214

RSQ: 0.0606

RMSE: 0.254MAE: 0.180

• RSQ: 0.089

#### Pictured right:

Linear Regression
 Output in a table

	avg_book_rating			
Predictors	Estimates	CI	p	
(Intercept)	3.82	3.80 - 3.84	<0.001	
num_pages	0.00	0.00 - 0.00	< 0.001	
book_ratings_count	-0.00	-0.00 - 0.00	0.582	
text_reviews_count	0.00	-0.00 - 0.00	0.221	
title_sentiment_avg	0.05	0.02 - 0.08	0.001	
authorworkcount	0.00	-0.00 - 0.00	0.051	
author_fans	0.00	-0.00 - 0.00	0.124	
author_ratings_count	0.00	0.00 - 0.00	<0.001	
author_review_count	-0.00	-0.000.00	<0.001	
gender [male]	0.03	0.01 - 0.05	<0.001	
gender [unknown]	0.00	-0.02 - 0.03	0.773	
Observations	4767			
$R^2/R^2$ adjusted	0.061 / 0.059			



### Model 1: Analysis

#### **Assumption:**

• Linear relationship between variables

#### Significant Predictors (based on p-value):

- Number of pages
- Average sentiment score of title
- Number of times author was rated
- Number of times author was reviewed
- Author identified as male





Why an elastic net model?

Best Model Parameters (based on Elastic Net Model):

Alpha: 1

Lambda.min: 0.00861

• Lambda.1se: 0.0419



## Model 2: Analysis



alpha	lambdaMin	lambdaSE	error
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	0.008608862	0.04186147	0.08124101



#### Why use lasso?

#### **Training Metrics:** Testing Metrics:

• RMSE: 0.285

MAE: 0.216

• RSQ: 0.047

• RMSE: 0.257

• MAE: 0.198

• RSQ: 0.079

#### Pictured left:

Lasso plot with lambda.min and lambda.1se value





### **Model 4: Random Forest**

#### Why a random forest model?

#### Metrics:

• RMSE: 0.249

MAE: 0.180

• RSQ: 0.252

#### Pictured left:

 Random Forest Explainer package



## **Model 4: Analysis**



### Model 4: Analysis





### **Training Comparisons**



## **Testing Comparisons**





Metrics	Random Forest	Lasso	Linear	Best Value
rmse	0.2478224	0.25836801	0.2536445	0.2478224
rsq	0.2515691	0.07359474	0.0889949	0.2515691
mae	0.1797522	0.19916348	0.1950015	0.1797522





#### What?

- We find, at the end of our analysis, very low scores on just about all metrics
- The data is not compatible with our model types
- Essentially, minimal, if any, relationships are visible between our predictors

#### Why?

- We suspect this is due to the outcome variable being an average
- Because of this, all average data points become similar
- Thus, minimal relationships are visible, if any



- Models are not ready for production.
- Data set is limited in its scope.
- Predictive inferences are missing sales statistics.
- Variables do not account for when consumers leave a rating.





#### This data set is limited:

 Includes only information on authors & publishers

### Potential improvements:

- A different data set
  - (more information about consumers)
- Adding more variables to our existing data set



# Questions?