

MCMC diagnostics in 1D

Metrics

10 ١.

4 _

Converging

Not converging

$$\widehat{R} \stackrel{\text{def}}{=} \sqrt{\frac{\frac{n-1}{n}\sigma_{within}^2 + \frac{1}{n}\sigma_{between}^2}{\sigma_{within}^2}}$$

On peut avoir R ~ 1 alors que les

Inconvénient:

chaînes sont très différentes. Comment construire un tel exemple ?

 $R \approx 1 \Leftrightarrow \sigma_{between}^2 \approx 0$

Il suffit d'avoir des chaînes différentes mais de mêmes moyennes !

4500 '_OO'

Metrics

$$\widehat{R} \stackrel{\text{def}}{=} \sqrt{\frac{\frac{n-1}{n}\sigma_{within}^2 + \frac{1}{n}\sigma_{between}^2}{\sigma_{within}^2}}$$

Inconvénient:

On peut avoir R ~ 1 alors que les chaînes sont très différentes. Comment construire un tel exemple ?

$$R \approx 1 \Leftrightarrow \sigma_{between}^2 \approx 0$$

Il suffit d'avoir des chaînes différentes mais de mêmes moyennes!

Not converging

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

