Διακριτά Μαθηματικά

Εαρινό Εξάμηνο 2022-2023

ΑΣΚΗΣΕΙΣ #1

1. Δείξτε ότι οι λ.τ. $(p \wedge (\neg((\neg p) \vee q))) \vee (p \wedge q)$ και p είναι λογικά ισοδύναμοι.

Απάντηση: Θέλουμε να αποδείξουμε ότι: $(p \wedge (\neg((\neg p) \vee q))) \vee (p \wedge q) \Leftrightarrow p$, ή με άλλα λόγια ότι ο λογικός τύπος $(p \wedge (\neg((\neg p) \vee q))) \vee (p \wedge q) \leftrightarrow p$ είναι μια ταυτολογία. Έχουμε:

$$\begin{array}{lll} (p \wedge (\neg ((\neg p) \vee q))) \vee (p \wedge q) \Leftrightarrow (p \wedge (\neg (\neg p) \wedge \neg q)) \vee (p \wedge q) & (νόμος DeMorgan) \\ & \Leftrightarrow (p \wedge (p \wedge \neg q)) \vee (p \wedge q) & (νόμος διπλής άρνησης) \\ & \Leftrightarrow ((p \wedge p) \wedge \neg q) \vee (p \wedge q) & (προσεταιριστικός νόμος) \\ & \Leftrightarrow (p \wedge \neg q) \vee (p \wedge q) & (νόμος ουδετερότητας) \\ & \Leftrightarrow p \wedge (\neg q \vee q) & (επιμεριστικός νόμος) \\ & \Leftrightarrow p \wedge (q \vee \neg q) & (αντιμεταθετικός νόμος) \\ & \Leftrightarrow p \wedge t & (νόμος άρνησης) \\ & \Leftrightarrow p & (νόμος ταυτότητας) \end{array}$$

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους – παρακάτω συμβολίζουμε με P το σύνθετο λογικό τύπο $p \wedge (\neg ((\neg p) \vee q))$.

\overline{p}	q	$p \wedge q$	$\neg p$	$(\neg p) \lor q$	$\neg((\neg p)\lor q)$	P	$P \lor (p \land q)$
0	0	0	1	1	0	0	0
0	1	0	1	1	0	0	0
1	0	0	0	0	1	1	1
1	1	1	0	1	0	0	1

Παρατηρούμε ότι η 1η και τελευταία στήλη του πίνακα ταυτίζονται, γεγονός που αποδεικνύει ότι $p\Leftrightarrow (p\wedge (\neg ((\neg p)\vee q)))\vee (p\wedge q).$

2. Να εξετάσετε αν οι λ.τ. $(p \wedge q) \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q)$ και $\neg p \vee q$ είναι λογικά ισοδύναμοι.

Απάντηση: Έχουμε:

$$\begin{array}{lll} (p \wedge q) \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q) \Leftrightarrow ((p \vee \neg p) \wedge q) \vee (\neg p \wedge \neg q) & (\epsilon \pi \iota \mu \epsilon \rho \iota \sigma \tau \iota \kappa \delta \varsigma \ \nu \delta \mu \circ \varsigma) \\ & \Leftrightarrow (t \wedge q) \vee (\neg p \wedge \neg q) & (\nu \delta \mu \circ \varsigma \ \delta \rho \nu \eta \sigma \eta \varsigma) \\ & \Leftrightarrow q \vee (\neg p \wedge \neg q) & (\nu \delta \mu \circ \varsigma \ \tau a \upsilon \tau \delta \tau \eta \tau a \varsigma) \\ & \Leftrightarrow (q \vee \neg p) \wedge (q \vee \neg q) & (\epsilon \pi \iota \mu \epsilon \rho \iota \sigma \tau \iota \kappa \delta \varsigma \ \nu \delta \mu \circ \varsigma) \\ & \Leftrightarrow (q \vee \neg p) \wedge t & (\nu \delta \mu \circ \varsigma \ \delta \rho \nu \eta \sigma \eta \varsigma) \\ & \Leftrightarrow q \vee \neg p & (\nu \delta \mu \circ \varsigma \ \tau a \upsilon \tau \delta \tau \eta \tau a \varsigma) \\ & \Leftrightarrow \neg p \vee q & (a \nu \tau \iota \mu \epsilon \tau a \vartheta \epsilon \tau \iota \kappa \delta \varsigma \ \nu \delta \mu \circ \varsigma) \end{array}$$

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους – παρακάτω συμβολίζουμε με P το σύνθετο λογικό τύπο $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$:

\overline{p}	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg p \land q$	$\neg p \land \neg q$	P	$\neg p \lor q$
0	0	1	1	0	0	1	1	1
0	1	1	0	0	1	0	1	1
1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1

Παρατηρούμε ότι οι δύο τελευταίες στήλες του πίνακα ταυτίζονται, γεγονός που αποδεικνύει ότι οι λ.τ. $(p \wedge q) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge \neg q)$ και $\neg p \vee q$ είναι λογικά ισοδύναμοι.

3. Να εξετάσετε αν οι λ.τ. $p \to (q \to r)$ και $(p \land q) \to r$ είναι λογικά ισοδύναμοι.

Απάντηση: Έχουμε:

$$\begin{split} p \to (q \to r) &\Leftrightarrow \neg p \lor (q \to r) \quad (\epsilon \xi' \text{ ορισμού}) \\ &\Leftrightarrow \neg p \lor (\neg q \lor r) \quad (\epsilon \xi' \text{ ορισμού}) \\ &\Leftrightarrow (\neg p \lor \neg q) \lor r \quad (\pi \text{ροσεταιριστικός νόμος}) \\ &\Leftrightarrow \neg (p \land q) \lor r \quad (\text{νόμος DeMorgan}) \\ &\Leftrightarrow (p \land q) \to r \quad (\epsilon \xi' \text{ ορισμού}) \end{split}$$

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους.

\overline{p}	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \wedge q$	$(p \land q) \to r$
0	0	0	1	1	0	1
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	1	1	0	1
1	0	0	1	1	0	1
1	0	1	1	1	0	1
1	1	0	0	0	1	0
1	1	1	1	1	1	1

Εφόσον στον παραπάνω πίνακα οι στήλες που αντιστοιχούν στους δύο λογικούς τύπους ταυτίζονται συνεπάγεται ότι αυτοί είναι λογικά ισοδύναμοι.

4. Βρείτε τον πίνακα αληθείας του λ.τ. $(p \wedge q) \vee (q \wedge \neg r)$.

Απάντηση: Παρακάτω φαίνεται ο πίνακας αληθείας.

\overline{p}	q	r	$\neg r$	$p \wedge q$	$q \wedge \neg r$	$(p \land q) \lor (q \land \neg r)$
0	0	0	1	0	0	0
o	O	1	0	0	0	0
o	1	0	1	0	1	1
o	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	1	O	1	1	1	1
1	1	1	0	1	0	1

5. Δείξτε ότι $P \to (Q \land R) \equiv (P \to Q) \land (P \to R)$.

Απάντηση: Έχουμε:

$$\begin{split} P \rightarrow (Q \land R) &\Leftrightarrow \neg P \lor (Q \land R) & (\epsilon \xi' \text{ ορισμού}) \\ &\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R) & (\epsilon \pi \iota \mu \epsilon \rho \iota \sigma \tau \iota \kappa \acute{o} \varsigma \text{ νόμος}) \\ &\Leftrightarrow (P \rightarrow Q) \land (P \rightarrow R) & (\epsilon \xi' \text{ ορισμού}) \end{split}$$

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους.

\overline{P}	Q	R	$Q \wedge R$	$P \to (Q \land R)$	$P \rightarrow Q$	$P \rightarrow R$	$(P \to Q) \land (P \to R)$
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	1	0	0	0	1	0
1	1	0	0	0	1	0	0
1	1	1	1	1	1	1	1

Εφόσον στον παραπάνω πίνακα οι στήλες που αντιστοιχούν στους δύο λογικούς τύπους ταυτίζονται συνεπάγεται ότι αυτοί είναι λογικά ισοδύναμοι.

- 6. Σχεδιάστε το κύκλωμα που αντιστοιχεί στην Μπουλιανή έκφραση:
 - (α) $(\neg P \lor Q) \land (P \lor R)$.

Απάντηση: Το κύκλωμα είναι το παρακάτω.

(β) $(P \land \neg Q \land R) \lor (Q \land \neg R)$.

Απάντηση: Το κύκλωμα είναι το παρακάτω.

7. Σχεδιάστε το απλούστερο δυνατό χύχλωμα που αντιστοιχεί στον παραχάτω πίναχα εισόδου/εξόδου:

	είσοδος		έξοδος
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Απάντηση: Αρχικά γράφουμε μια Μπουλιανή έκφραση που έχει ως πίνακα αληθείας τον πίνακα αυτό. Για να το κάνουμε αυτό ξεχωρίζουμε τις γραμμές στις οποίες η έξοδος είναι 1, δηλαδή στην περίπτωσή μας τις γραμμές 5, 6 και 8. Για κάθε μια απ΄ αυτές τις γραμμές, κατασκευάζουμε μια 'ΚΑΙ' έκφραση που παράγει 1 για τον συνδυασμό των τιμών εισόδου αυτής ακριβώς της γραμμής και 0 για όλους τους άλλους συνδυασμούς των τιμών εισόδου. Για παράδειγμα, για την 8η γραμμή η έκφραση είναι $p \wedge q \wedge r$ γιατί η $p \wedge q \wedge r$ παράγει 1 αν p = 1, q = 1 και r = 1, και 0 για όλες τις άλλες τιμές των p, q και r. Εύκολα βρίσκουμε ότι οι εκφράσεις για την 6η και 5η γραμμή είναι $p \wedge q \wedge r$ και $p \wedge q \wedge r$, αντίστοιχα. Τώρα οποιαδήποτε Μπουλιανή έκφραση με το δοσμένο πίνακα ως πίνακα αλήθειάς της, έχει την τιμή 1 στην περίπτωση που $p \wedge q \wedge r = 1$, ή στην περίπτωση που $p \wedge q \wedge r = 1$ και σε καμιά άλλη περίπτωση. Επομένως η Μπουλιανή έκφραση με το δοσμένο πίνακα αληθείας είναι η:

$$(p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$$

Το κύκλωμα που αντιστοιχεί σ' αυτή την έκφραση είναι το ακόλουθο:

Το κύκλωμα αυτό δεν είναι το απλούστερο δυνατό. Κατά συνέπεια πρέπει να βρούμε έναν απλοποιημένο

ισοδύναμο λογικό τύπο:

$$\begin{array}{lll} (p\wedge q\wedge r)\vee (p\wedge \neg q\wedge r)\vee (p\wedge \neg q\wedge \neg r)\Leftrightarrow p\wedge ((q\wedge r)\vee (\neg q\wedge r))\vee (p\wedge \neg q\wedge \neg r) & (\epsilon\pi\iota\mu\epsilon\rho\iota\sigma\tau\iota\kappa\delta\varsigma\ \nu\delta\mu\circ\varsigma)\\ &\Leftrightarrow p\wedge ((q\vee \neg q)\wedge r)\vee (p\wedge \neg q\wedge \neg r) & (\epsilon\pi\iota\mu\epsilon\rho\iota\sigma\tau\iota\kappa\delta\varsigma\ \nu\delta\mu\circ\varsigma)\\ &\Leftrightarrow p\wedge (t\wedge r)\vee (p\wedge \neg q\wedge \neg r) & (\nu\delta\mu\circ\varsigma\ a\rho\nu\eta\sigma\eta\varsigma)\\ &\Leftrightarrow (p\wedge r)\vee (p\wedge \neg q\wedge \neg r) & (\nu\delta\mu\circ\varsigma\ a\nu\tau\delta\tau\eta\tau\alpha\varsigma)\\ &\Leftrightarrow p\wedge (r\vee (\neg q\wedge \neg r)) & (\epsilon\pi\iota\mu\epsilon\rho\iota\sigma\tau\iota\kappa\delta\varsigma\ \nu\delta\mu\circ\varsigma)\\ &\Leftrightarrow p\wedge ((r\vee \neg q)\wedge (r\vee \neg r)) & (\epsilon\pi\iota\mu\epsilon\rho\iota\sigma\tau\iota\kappa\delta\varsigma\ \nu\delta\mu\circ\varsigma)\\ &\Leftrightarrow p\wedge ((r\vee \neg q)\wedge t) & (\nu\delta\mu\circ\varsigma\ a\rho\nu\eta\sigma\eta\varsigma)\\ &\Leftrightarrow p\wedge (\neg q\vee r) & (\nu\delta\mu\circ\varsigma\ a\rho\nu\eta\sigma\eta\varsigma)\\ &\Leftrightarrow p\wedge (\neg q\vee r) & (\nu\delta\mu\circ\varsigma\ a\nu\tau\delta\tau\eta\tau\alpha\varsigma)\\ &\Leftrightarrow p\wedge (\neg q\vee r) & (\nu\delta\mu\circ\varsigma) & (\nu\delta\mu\circ\varsigma) & (\nu\delta\mu\circ\varsigma)\\ &\Leftrightarrow p\wedge (\neg q\vee r) & (\nu\delta\mu\circ\varsigma) & (\nu\delta\mu\circ\varsigma) & (\nu\delta\mu\circ\varsigma)\\ &\Leftrightarrow p\wedge (\neg q\vee r) & (\nu\delta\mu\circ\varsigma) & (\nu\delta\mu$$

Το τελικό κύκλωμα είναι το εξής:

- 8. Να προσδιορίσετε την τιμή αληθείας για κάθεμια από τις παρακάτω προτάσεις αν το πεδίο ορισμού όλων των μεταβλητών είναι το \mathbb{R} .
 - (a) $\forall x \exists y (2x y = 0)$.

Απάντηση: Αληθής. Για κάθε τιμή της μεταβλητής x η τιμή y = 2x ικανοποιεί την εξίσωση.

 $(\beta) \ \exists y \forall x (2x - y = 0).$

Απάντηση: Ψευδής. Η μοναδική περίπτωση για να ισχύει η εξίσωση είναι y=2x. Συνεπώς, δεν υπάρχει τιμή του y για την οποία να ισχύει η εξίσωση για κάθε τιμή του x.

 $(\gamma) \ \forall x \exists y (x - 2y = 0).$

Απάντηση: Αληθής. Για κάθε τιμή της μεταβλητής x η τιμή $y = \frac{x}{2}$ ικανοποιεί την εξίσωση.

(δ) $\exists y \exists z (y+z=100)$.

Απάντηση: Αληθής. Οι τιμές y = 1 και z = 99 ικανοποιούν την εξίσωση.

(ε) $\forall x \exists y (y > x \land \exists z (y + z = 100)).$

Απάντηση: Αληθής. Για κάθε αριθμό x, η τιμή y=x+1 ικανοποιεί το κατηγόρημα y>x. Θέτοντας z=100-y ικανοποιείται το κατηγόρημα y+z=100. Εφόσον υπάρχουν τιμές των y και z που ικανοποιούν τα δύο κατηγορήματα, η παραπάνω πρόταση είναι αληθής.

($\sigma\tau$) $\exists x \exists y (x + y \neq y + x)$.

Απάντηση: Ψευδής. Για την πράξη της πρόσθεσης ισχύει η αντιμεταθετική ιδιότητα.

 $(\zeta) \ \forall x(x \neq 0 \rightarrow \exists y(xy = 1)).$

Απάντηση: Αληθής. Η τιμή $y = \frac{1}{x}$, $x \neq 0$ ικανοποιεί την εξίσωση.

 $(\eta) \exists x \forall y (y \neq 0 \rightarrow xy = 1).$

Απάντηση: Ψευδής. Δεν υπάρχει ένας αριθμός x που για κάθε τιμή $y \neq 0$ να ικανοποιεί την xy = 1.

 $(\vartheta) \ \forall x \exists y (x + y = 2 \land 2x - y = 1).$

Απάντηση: Ψευδής. Υπάρχει η τιμή x = 0 για την οποία το σύστημα δεν έχει λύση.

- 9. Να προσδιορίσετε την τιμή αληθείας για κάθεμια από τις παρακάτω προτάσεις αν το πεδίο ορισμού όλων των μεταβλητών είναι το \mathbb{N} .
 - (a) $\forall x (x < 7 \rightarrow \exists a \exists b \exists c (a^2 + b^2 + c^2 = x)).$

Απάντηση: Αληθής. Αρκεί να δείξουμε ότι για κάθε ακέραιο μικρότερο του επτά, μπορούμε να βρούμε a, b και c τέτοια ώστε το άθροισμα των τετραγώνων τους να ισούται με το x. Ο παρακάτω πίνακας δείχνει τις τιμές των a, b και c για κάθε δυνατή τιμή του x < 7, $x \in \mathbb{N}$.

\boldsymbol{x}	a	b	c
6	2	1	1
5	2	1	0
4	2	0	0
3	1	1	1
2	1	1	0
1	1	0	0
0	0	0	0

(β) $\exists x \exists y ((x-4)^2 = 25 \land (y-4)^2 = 25).$

Απάντηση: Αληθής. Αρκεί να δείξουμε ότι υπάρχει τουλάχιστον μια τιμή για τα x και y που να ικανοποιεί και τις δύο εξισώσεις. Αυτό ισχύει για τις τιμές x=9 και y=9.

- 10. Τρεις άνθρωποι είναι ύποπτοι για ληστεία κοσμηματοπωλείου: ο Αντώνης, ο Βασίλης και ο Γιώργος. Η προκαταρκτική έρευνα οδήγησε στα ακόλουθα συμπεράσματα:
 - (α) Αν ο Γιώργος εμπλέχεται στο έγκλημα, τότε εμπλέχεται και ο Βασίλης.
 - (β) Αν ο Αντώνης είναι ένοχος, τότε ο Βασίλης είναι επίσης ένοχος.

Το πρώτο συμπέρασμα της προκαταρκτικής έρευνας αποδείχθηκε αληθές και το δεύτερο αποδείχθηκε ψευδές. Ποιος διέπραξε τη ληστεία;

Απάντηση: Έστω A - 'ο Αντώνης είναι ένοχος', B - 'ο Βασίλης είναι ένοχος', G - 'ο Γιώργος είναι ένοχος'. Έστω επίσης, $S = (G \to B) \land \neg(A \to B) = P \land Q$, όπου $P = (G \to B)$ και $Q = \neg(A \to B)$. Ο πίνακας αληθείας της S είναι:

\overline{A}	B	G	P	$A \rightarrow B$	Q	\overline{S}
\overline{F}	F	\overline{F}	T	T	\overline{F}	\overline{F}
F	F	T	F	T	F	F
F	T	F	T	T	F	F
F	T	T	T	T	F	F
T	F	F	T	F	T	T
T	F	T	F	F	T	F
T	T	F	T	T	F	F
T	T	T	T	T	F	F

Από τα συμπεράσματα (α) και (β) της προκαταρκτικής έρευνας συνεπάγεται ότι η τιμή αληθείας της S είναι T, αφού η τιμή αληθείας της P και της Q είναι T. Από τον πίνακα αληθείας έχουμε ότι η σύνθετη πρόταση S παίρνει την τιμή αληθείας T μόνο σε μία περίπτωση, συγκεκριμένα όταν οι προτάσεις B και G είναι ψευδείς και η πρόταση A είναι αληθής. Το συμπέρασμα επομένως είναι ότι ο Aντώνης είναι ο ένοχος της ληστείας.

11. Μια ροή εργασίας παρέχει το αχόλουθο σχήμα λειτουργίας τεσσάρων μηχανών S₁ - S₄. Αν η πρώτη μηχανή λειτουργεί, τότε η δεύτερη και η τρίτη λειτουργούν επίσης. Η τρίτη μηχανή λειτουργεί, αν και μόνο αν η τέταρτη λειτουργεί. Επιπλέον, αν η δεύτερη μηχανή λειτουργεί, πρέπει να σταματήσει η τέταρτη. Βρείτε ποιες μηχανές λειτουργούν αυτή τη στιγμή, αν είναι γνωστό ότι τώρα λειτουργεί η πρώτη ή η δεύτερη μηχανή (αλλά όχι και οι δυο ταυτόχρονα).

Απάντηση: Έστω $S_i = T$, αν η i-μηχανή λειτουργεί, όπου i = 1, 2, 3, 4, και $S_i = F$ διαφορετικά. Από τα δεδομένα της άσκησης συμπεραίνουμε ότι οι ακόλουθες σύνθετες προτάσεις έχουν τιμή αληθείας T:

$$P_1 = S_1 \rightarrow (S_2 \land S_3)$$

$$P_2 = S_3 \leftrightarrow S_4$$

$$P_3 = S_2 \rightarrow \neg S_4$$

$$P_4 = (S_1 \oplus S_2)$$

Ας συντάξουμε τον πίνακα αληθείας για τις λογικές εκφράσεις που αντιστοιχούν στις συνθήκες λειτουργίας των μηχανών.

$\overline{S_1}$	S_2	S_3	S_4	P_1	P_2	P_3	P_4
\overline{T}	T	T	T	T	T	F	\overline{F}
$T \ T \ T$	T	T	F	T	F	T	F
T	T	F	T	F	F	F	F
T	T	F	F	F	T	T	F
T	F	T	T	F	T	T	T
T	F	T	F	F	F	T	T
T	F	F	T	F	F	T	T
$T \ T$	F	F	F	F	T	T	T
F	T	T	T	T	T	F	T
F	T	T	F	T	F	T	T
F	T	F	T	T	F	F	T
F	T	F	F	T	T	T	T
F	F	T	T	T	T	T	F
F	F	T	F	T	F	T	F
F	F	F	T	T	F	T	F F
F	F	F	F	T	T	T	F

Από τον πίνακα αληθείας έπεται ότι κρίσιμη γραμμή είναι η γραμμή 12, όπου όλες οι λογικές εκφράσεις που αντιστοιχούν στις συνθήκες λειτουργίας των μηχανών είναι T, δηλ. $P_1=P_2=P_3=P_4=T$. Στη γραμμή αυτή $S_1=S_3=S_4=F$, $S_2=T$.

Συνεπώς, μόνο η δεύτερη μηχανή λειτουργεί τώρα.

12. Έστω λογική συνάρτηση F τεσσάρων μεταβλητών $A,\,B,\,X$ και $Y,\,\eta$ οποία παίρνει τιμή 1 αν ο διψήφιος δυαδικός αριθμός AB είναι μικρότερος από τον διψήφιο δυαδικό αριθμό XY και 0 διαφορετικά. Να κατασκευάσετε τον πίνακα αληθείας της συνάρτησης F. Υπόδειξη: αν $A=1,\,B=0,\,X=1$ και $Y=1,\,$ τότε ο AB είναι ο δυαδικός αριθμός $(10)_2$ και είναι μικρότερος του XY που είναι ο δυαδικός αριθμός $(11)_2,\,$ οπότε η τιμή της F θα είναι 1.

Απάντηση: Ο πίνακας αληθείας της συνάρτησης Γ είναι:.

A	B	X	Y	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	1	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0