Course Title	Course Structure			Pre-Requisite
Algorithm	L	T	P	Fundamentals
Design and	3	1	0	of
Analysis				Programming

Course Objective:

To introduce the concept of algorithmic efficiency by analyzing various algorithms such as Searching, Sorting, Divide-and-Conquer algorithms and to know details about the Greedy Paradigm, Principle of Dynamic Programming, Back Tracking, Branch and Bound, and Computational Complexity.

Course Outcome (CO):

- 1. To learn the Algorithm and Design Concepts of linear and non-linear structures and complexity.
- 2. To understand the concept of searching and sorting
- 3. To learn concepts of searching and sorting.
- 4. To learn concepts of the Greedy method.
- 5. To understand concepts of Dynamic programming.
- 6. To understand the concepts of Branch and Bound.
- 7. To understand computational complexity.

S.No.	Content	Contact Hours
Unit 1	Introduction: Concept of algorithmic efficiency,	6
	run time analysis of algorithms, Asymptotic	
	Notations. Growth of Functions, Master's	
	Theorem.	
Unit 2	Searching and Sorting: Structure of divide-and-	7
	conquer algorithms; examples: binary search,	
	quick sort, Stassen Multiplication; merge sort,	
	heap sort, and Analysis of divide and conquer run	
	time recurrence relations.	
Unit 3	Greedy Method: Overview of the greedy paradigm examples of exact optimization solution: minimum cost spanning tree, approximate solutions: Knapsack problem, Kruskal's algorithm and Prim's algorithm for finding Minimum cost Spanning Trees, Dijkstra's and Bellman Ford Algorithm for finding Single source shortest paths, Huffman coding, Activity Selection Problem.	8
Unit 4	Dynamic programming : Principles of dynamic programming. Applications: Rod cutting problem, Floyd-Warshall algorithm for all pair shortest paths. Matrix multiplication, Travelling salesman	7
	Problem, Longest Common sequence,	

	Back tracking: Overview, 8-queen problem, and Knapsack problem, Traveling Salesman problem	
Unit 5	Branch and bound: LC searching Bounding, FIFO branch and bound, LC branch and bound application: 0/1 Knapsack problem. Computational Complexity: Complexity measures, Polynomial Vs non-polynomial time complexity; NP-hard and NP-complete classes, examples: Circuit Satisfiability, Vertex cover, Subset Sum problem, Randomized Algorithms, String Matching, NP-Hard and NP-Completeness, Approximation Algorithms, Sorting Network, Matrix Operations, Polynomials and FFT, Number	14
	Theoretic Algorithms.	40
	Total	42

Books:-

S.No.	Name of Books/Authors/Publisher
1	T.H. Cormen, C.E. Leiserson, R.L. Rivest "Introduction to Algorithms", 3 rd Ed., PHI.
2	E. Horowitz, S. Sahni, and S. Rajsekaran, "Fundamentals of Computer Algorithms," Galgotia Publication, 2008.
3	Sara Basse, A. V. Gelder, "Computer Algorithms," Addison Wesley, 1999.
4	Aho, Hopcroft, Ullman: The Design and Analysis of Algorithms, Addison Wesley, 1974.