FINETUNING CLIMATEGPT

KAHLIA HOGG

- **01** Carbon Footprint
- 02 ClimateGPT
- 03 Dataset
- **04** Pipeline
- **05** Results

01 CARBON FOOTPRINT

- Cloud computing is the largest GHG emitter (~2.5-3.7% of global)
- "Green AI": quantify & minimize carbon footprint of AI/ML models
- Build climate resilient Al of use in an energy constrained future

"Estimating the Carbon Footprint of BLOOM" (2022)

 \rightarrow Training = 50 tons of CO2 = 60 flights from London to NYC

"Quantifying the Carbon Emissions of Machine Learning" (2019)

→ Machine Learning Emissions Calculator + Guidelines

"Towards Climate Awareness in NLP Research" (2022)

→ Climate Performance Model Card

01 CARBON FOOTPRINT

Factors of carbon footprint:

- Server: carbon intensity + time of day
- Runtime: model size + execution frequency
- Hardware: efficiency + resource allocation

Be informed & intentional

- Transparent tracking and reporting of emissions
- Consciously choose compute infrastructure and location
- Minimize unnecessary training (OTS models, tuning)
- Random and selective hyperparameter search >> gridsearch

CLIMATE GPT

- The Endowment for Climate Intelligence, "ClimateGPT: Towards
 Al Synthesizing Interdisciplinary Research on Climate Change"
- Llama 2 backbone + continued pretraining on 4.2B curated climate tokens + instruction finetuning
- Climate specific model intended for downstream climate tasks

DATASET

ClimateBERT Climate Sentiment

- 1000 train/320 test [text, label] pairs
- Sentiment labels: {0: "risk", 1: "neutral", 2: "opportunity"}

Preprocessing: 800 train/200 val/320 test ChatML prompts

PIPELINE

Compute Infrastructure: AWS & Electricity Maps

- Instance: AWS g5.16xlarge, Ubuntu 20.04, 64 vCPUs, 256 GiB memory
- Single GPU: NVIDIA A10G Ampere Tensor Core (24 GiB)
- Location: Virginia ("us-east-1") = 100% renewable energy (solar)

Finetuning Pipeline: Huggingface

- PEFT: BitsandBytes + QLoRA
- TRL: Supervised Finetuning with ChatML prompts

PIPELINE

Emissions Tracking: CodeCarbon

Model Tuning & Logging: Weights&Biases

- · Random/selective hyperparameter sweep over alpha, rank, max seq
- "Practical Tips for Finetuning LLMs Using LoRA (Low-Rank Adaptation)"
- HF docs: "Methods and tools for efficient training on a single GPU"

RESULTS

eci-io/climategpt

Test recall: 0.62

Test precision: 0.65

Test f1: 0.63

Test accuracy: 0.68

kahliahogg/climate-peft

Test recall: 0.73

Test precision: 0.76

Test f1: 0.74

Test accuracy: 0.77

RESULTS

Climate Performance Model Card	eci-io/climategpt	kahliahogg/climate-peft
1. Is the resulting model publicly available?	Yes	Yes
2. Time to train final model	64,500 GPU hours	0.28 GPU hours
3. Time for all experiments	3685	2.27 (16.5) GPU hours
4. Energy consumption GPU + CPU + RAM	0.78 kW	0.102 kW
5. Geolocation for computation	Washington, USA	Virginia, USA
6. Energy mix at the geolocation	24 gCO2eq/kWh	335 gCO₂eq/kWh
7. CO_2 eq emissions to train the final model	1,199.70 kg	0.04 kg
8. CO ₂ eq emissions for all experiments	333 kg	0.30 kg
9. Average CO_2 eq emission per inference sample	6.6e-05 kg	6.0e-06 kg