SYDNEY TECHNICAL HIGH SCHOOL

YEAR 11 TERM 3 2013

Mathematics

General Instructions

- Working time 75 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in Questions 6 to 13
- Start each question on a new page

Total marks - 70 marks

Section 1 - 5 marks

Attempt questions 1 -5
Allow about 7 minutes for this section

Section 2 - 65 marks

Attempt questions 6 to 13
Allow about 63 minutes for this section

Name:		
Teacher:		

Section I (5 marks)

Attempt questions 1 to 5.

Allow approximately 7 minutes for this section.

Use the multiple choice answer sheet provided in your answer books.

Select the alternative A, B, C or D that best answers the question.

Fill in the response oval completely.

Question 1

Find the value of $\sin \theta$ if the area of this triangle is 10 cm^2 .

(A) $\frac{1}{3}$

(B) $\frac{2}{3}$

(C) $\frac{3}{2}$

(D) 3

Question 2

ABC is an equilateral triangle.

CDEF is a square.

BCG, ACF, and GFH are straight lines.

$$\angle CGF = 45^{\circ}$$
.

The size of $\angle EFH$ is

- (A) 15°
- (B) $22\frac{1}{2}^{\circ}$
- (C) 30°
- (D) 45°

Question 3

R is the point with coordinates (6, 0).

The area of the shaded rectangle in square units is

- (A) 20
- (B) 24
- (C) 28
- (D) 60

Question 4

ABCD is a rhombus.

$$DC = EC$$
.

 $\angle ADC = 68^{\circ}$ and $\angle ACE = 90^{\circ}$.

The value of x is

- (A) 22
- (B) 68
- (C) 73
- (D) 79

Question 5

O and P are centres of equal circles which intersect at (3,4) and (3,-4). The circles cut the x axis as shown at R and S.

$$RS = ?$$

A. 1

B. 2

C. 4

D. 5

Section II - Attempt questions 6-13. All answers and working to be done in your answer book.

Question 6 (8marks)

a) Simplify giving the answer to 2 significant figures

$$\frac{4.7 + \sqrt{3.2}}{1 + 4.15^2}$$

b) Solve
$$-3 \le 1 - 2x < 5$$

c) If
$$(2 + \sqrt{3})^2 = a + \sqrt{b}$$
 Find the value of a and b

d) Solve
$$x^2 \ge (x+1)(x+5)$$

2

2

Question 7 (8 marks) (Start a new page)

a) Factorise fully

i.
$$8 \text{ mn}^2 + 6 \text{m}^2 \text{n} + 10 \text{mn}$$

ii.
$$5x^2 - 33x + 18$$

iii.
$$125 - 27x^3$$

b) If
$$\sin\theta = \frac{4}{7}$$
 and $\tan\theta < 0$ find the exact value of $\cos\theta$

c)

3

Consider the graph of y = f(x)

- i. State its domain
- ii. State its range
- iii. Write down the equation (s) of any asymptotes

Question 8 (9 marks) (Start a new page)

a)

In the diagram above AB|| $CD \parallel EF$, $\angle BDC = 146^{\circ}$ and $\angle EFB = 112^{\circ}$. Show, giving reasons, that BD bisects $\angle ABF$.

b) Write
$$\frac{1}{x+1} - \frac{1}{x-1}$$
 as a single fraction

c) Solve for x

i.
$$\frac{5}{8}(x+4) = 4x - \frac{1}{2}$$

ii.
$$x + \frac{2}{x} = 3$$

In the diagram above A, B and C are the points (10,5), (12,16) and (2,11) respectively

Copy the diagram into your answer sheets

c) Show the OB
$$\perp$$
 AC

Question 10 (8 marks) (Start a new page)

a)

In the diagram above AB || DE and DE = EC. Let \angle ECD = x°

- i. Copy the diagram above onto your answer sheets
- ii. Prove AB = BC (reasons required)

3

b) i. Sketch y = |x - 1| and y = |x| on the same axes (Label each graph carefully)

2

ii. Hence solve |x-1| = |x|

1

c) Solve |x+3| = 2x - 1

2

Question 11 (8 marks) (Start a new page)

a) Find the acute angle
$$\theta$$
, correct to the nearest minute, given that $\tan \theta = 1 \, \frac{1}{3}$

b) Simplify
$$\frac{\cos (90 - \theta)}{\cos (180 - \theta)}$$
 2

2

3

c) Solve
$$2\sin\theta - 1 = 0$$
 for $0 \le \theta \le 360^\circ$

d) Simplify
$$sec^2\theta - tan^2\theta$$

Question 12 (8 marks) (Start a new page)

$$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2\sec^2\theta$$

b) Solve the following trigonometric equations in the domain
$$0^{\circ} \leq \theta \leq 360^{\circ}$$

i.
$$3\cos^2\theta + 5\cos = 0$$
 3

ii.
$$\sqrt{3}\sin\theta - \cos\theta = 0$$

Question 13 (8marks) (Start a new page)

a) Find the exact area of the triangle below.

1

b) In the diagram below, a helicopter H is hovering above a straight, horizontal road AB of length 600 metres. The angles of elevation of H from A and B are 7° and 13° respectively. The point C lies on the road directly below H.

i. Use the sine rule to show that HB= $\frac{600 \sin 7^{\circ}}{\sin 160^{\circ}}$

1

ii. Hence, find the height CH of the helicopter above the road, correct to the nearest metre.

c) A ship sails 24 km west of port P and then 17 km on a bearing of S 42°17 W to port Q.

- i. Copy the diagram above onto your answer sheets and show the information on it.
- ii. Calculate the distance of Q from P to one decimal place.

2

iii. Calculate the TRUE bearing of the ship from P (to the nearest degree)

3

. }	(2 sig.fig) 1-2x < 5 x 1-2x < 5 x 1-2x < 5 x 1-2x < 5 x -4 < 2x -4 < 2x -2 < x +3 = a + 16 x 3 = x + 5 x 3 + 6x + 5 x 3 - 56 x 4 - 56 x 3 -	Question 2 A b) Question 5 C a) Question 5 C a) Question 6 0
	2 (2	3 (WEEK (5-30C)(2) (5-30C)(2) (6-30C)(2) (7-30C)(2) (8-30C)(2) (8-30C)(2) (9-30C)(2) (10-30C)(2) (10
	a) $hC = \sqrt{(0-2)^2 + (5-1)^2}$ $= \sqrt{64 + 36}$ $+ L = \sqrt{100}$ $+ L = 10 \text{ unit}$ $- 100 \text{ unit}$	
	b) $x = \frac{1}{2}$ ii) $x = \frac{1}{2}$ 2) $ x+3 = 2x-1$ $x+3 = 2x-1$ $x+3 = -2x+1$ $x+3 = -2x$	QUESTION 10 B A EDC = EC.D (opposite equal sides in isoseeles ADEC) BAD = EDC. ax (coresponding BAD = EDC. ax (angles ABIIDE) in isoseeles ABEC)

