BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Course No: CSE306

Course Name: Computer Architecture Sessional

Name of the Experiment: 4-bit ALU Simulation

Level/Term: 3-1

Section: B2

Group No: 02

Student ID: 1705092

1705111

1705116

1705118

1705121

Date of Submission: 28-03-2021

Introduction

An Arithmetic Logic unit or commonly known as ALU is a combinational digital circuit that performs arithmetic and logic operations on binary numbers. It is a simple binary calculator. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers. In this experiment, we have to design a 4-bit ALU according to design specification.

Problem Specification:

		C_{in}	
CS_2	CS_1	CS_o	Function
0	0	0	Decrement A (A-1)
0	0	1	Transfer A (A)
0	1	0	Subtract with borrow (A-B-1 = A+B')
0	1	1	Subtract $(A-B = A+B'+1)$
1	0	X	AND (A^B)
1	1	X	Complement A (A')

Arithmetic Part

When $CS_2 = 0$ Arithmetic part will be activated.

i. Decrement A (A-1):

ii. Transfer A (A):

iii. Subtract with borrow (A-B-1 = A+B'):

Subtraction with borrow

iv. Subtract (A-B = A+B'+1):

Logic Part

When $CS_2 = 1$ Logic part will be activated. And if we look at our previous available arithmetic circuits, forcing $C_{in} = 0$ from the full adder output we get, $sum = x \oplus y$

For logic operation A^AB , Let us assume $(A_i \vee K_i)$ in X_i and B'_i in Y_i .

Function =
$$(A + K) \oplus B'$$

= $(A + K) \cdot B + (A + K)' \cdot B'$
= $AB + KB + A'K'B'$

Now,
$$AB = AB + KB + A'K'B'$$

 $\Rightarrow KB + A'K'B' = 0$
 $\Rightarrow KB = 0$
 $\therefore K = B'$
and, $A'K'B' = 0$
 $\Rightarrow K'B' = 0$
 $\therefore K = B'$

Now if we construct our Function Table,

Function Table:

		C_{in}			
CS_2	CS_1	CS_o	X_i	Y_i	Function
0	0	0	A_i	1	A-1
0	0	1	A_i	1	\boldsymbol{A}
0	1	0	A_i	B_i	A+B'
0	1	1	A_i	B_i	A+B'+1
1	0	X	$A_i \vee B_i'$	B_i	$A \wedge B$
1	1	X	A_i	1	A'

 X_i :

K-Map:

$A_i B_i$				
$CS_2 CS_1$	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	0	1	1
10	1	0	1	1

$$X_i = A + CS_2.CS_1'.B'$$

 $\boldsymbol{Y_i}$:

Truth table:

CS_2	CS_1	Y_i
0	0	1
0	1	B_i'
1	0	B_i'
1	1	1

K-Map:

$$Y_i = B_i' + CS_2' \cdot CS_1' + CS_2 \cdot CS_1$$

$$\therefore Y_i = B_i' + (CS_2 \oplus CS_1)'$$

C_{in} :

When $CS_2 = 1$, CS_0 is don't care (x). We force 0 in C_{in} for logic operation. So,

K-Map:

$$C_{in_1} = CS_2'.CS_0$$

; for the first full adder.

$$C_{in_i} = CS_2'.C_{out_{i-1}}$$

; for the rest three full adders.

Flags

As we use forced C_{in} for our logic / bitwise operation, the C_{out} for flag output calculation is also considered as, C_{out} . CS_2' . The Flags are designed accordingly to that.

$$CF = C_{out_4}$$

 $SF = F_4$
 $ZF = (F_1 + F_2 + F_3 + F_4)'$
 $VF = C_{out_4} \oplus C_{out_3}$

Block Diagram

Figure : Block diagram of a 4-bit ALU

Complete Circuit Diagram

Figure : Circuit diagram of the 4-bit ALU

ICs used with count

	Count of		
Components	Gates	IC Number	Count of ICs
NOT	6	IC74LS04	1
AND	13	IC74LS08	4
OR	10	IC74LS32	3
NOR	1	IC74LS02	1
XOR	1	IC74LS86	1
XNOR	4	IC4077	1
Adder	-	IC7483	4

Simulator used

The simulation software used in this 4-bit ALU simulation experiment is *logisim-win-2.7.1.exe*

Discussion

In this experiment, we used the simulation software *logisim* to simulate a 4-bit Arithmetic Logic Unit.

As per specification when the mode selection bit CS_2 is 1 the ALU operates as logic unit and the selection bit CS_0 (C_{in}) is don't care. In our circuit design we forced C_{in} to be 0 to work in the logic operations.

And for the Flags to show accordingly, the carry out of each adder is considered to be the AND of CS_2' and C_{out} .

We calculated the input signals of the adders to simplify the equations and minimize the IC count.