I Olimpiada Mexicana de Matemáticas 1987 - Problema 6

Demuestre que para cualquier entero positivo n, el número $(n^3 - n)(5^{8n+4} + 3^{4n+2})$ es múltiplo de 3804.

Solución.

Se sabe que $3804 = (2^2)(3)(317)$, por lo que hay que demostrar que $2^2 = 4$, $3 ext{ y } 317$ son divisores de $(n^3 - n)(5^{8n+4} + 3^{4n+2})$.

Se tiene que $n^3 - n = (n-1)(n)(n+1)$ en donde se sabe que en tres números consecutivos hay un múltiplo de 3 y al menos un múltiplo de 2, entonces $(2)(3)|(n^3-n)$. Además conociendo que la suma de dos números impares es un número par y al elevar un número impar a cualquier potencia da un número impar, se sigue que $2|(5^{8n+4}+3^{4n+2})$, por lo que $(2^2)(3)|(n^3-n)(5^{8n+4}+3^{4n+2})$, es decir, el $2^2=4$ y el 3 son divisores de $(n^3-n)(5^{8n+4}+3^{4n+2})$. Por otra parte

$$5^{4} \equiv 625 \equiv 2(317) - 9 \equiv 0 - 9 \equiv -9 \equiv -(3^{2}) \mod 317$$

$$(5^{4})^{2n} \equiv -[(3^{2})^{2n}] \mod 317$$

$$5^{8n} \equiv -(3^{4n}) \mod 317$$

$$5^{8n} + 5^{4} \equiv -(3^{4n}) - 9 \equiv -(3^{4n} + 3^{2}) \mod 317$$

$$5^{8n+4} \equiv -(3^{4n+2}) \mod 317$$

$$5^{8n+4} + 3^{4n+2} \equiv 0 \mod 317$$

$$317|(5^{8n+4} + 3^{4n+2}) \Rightarrow 317|(n^{3} - n)(5^{8n+4} + 3^{4n+2})$$

Esto quiere decir que 317 es divisor de $(n^3-n)(5^{8n+4}+3^{4n+2})$, por lo que $(2^2)(3)(317)=3804|(n^3-n)(5^{8n+4}+3^{4n+2})$

 \therefore Queda demostrado que para cualquier entero positivo n, el número $(n^3 - n)(5^{8n+4} + 3^{4n+2})$ es múltiplo de 3804.
