Algoritmo de Early

♦ Early

- desenvolvido em 1968
- considerado o mais rápido algoritmo de reconhecimento conhecido para GLC
- tempo de processamento
 - * proporcional a | w | 3
 - * para gramáticas não-ambíguas, pode ser proporcional a | w | 2
 - * para muitas gramáticas de interesse prático, o tempo é proporcional a | w |

♦ Algoritmo

- tipo *top-down*
- a partir de uma GLC qualquer executa sempre a derivação mais à esquerda
- cada ciclo gera um terminal
 - * comparado com o símbolo da entrada
- comparação com sucesso

* construção de um conjunto de produções que pode gerar o próximo símbolo

♦ Algoritmo de Early

- G = (V, T, P, S) uma GLC qualquer
- $w = a_1 a_2 ... a_n$ palavra a ser reconhecida
- símbolo "."
 - * é usado como um marcador
 - * em cada produção antecede a posição que será analisada na tentativa de gerar o próximo terminal
- sufixo "/u"
 - * adicionado a cada produção
 - * indica o U-ésimo ciclo em que esta produção passou a ser considerada

a) Construção do primeiro conjunto de produções

- produções que partem de S
- produções que podem ser aplicadas em sucessivas derivações mais à esquerda a partir de S

```
\begin{array}{l} D_0 = \varnothing \\ \\ \text{para toda produção } S \to \alpha \in P \ (1) \\ \\ \text{faça } D_0 = D_0 \cup \{S \to .\alpha/0\} \\ \\ \text{repita (2)} \\ \\ \text{para toda produção } A \to .B\beta/0 \in D_0 \\ \\ \text{faça} \\ \\ \text{para toda produção } B \to \phi \in P \\ \\ \text{faça } D_0 = D_0 \cup \{B \to .\phi/0\} \\ \\ \text{até não ocorrerem mais inclusões} \end{array}
```

- (1) produções que partem de S
- (2) as produções que podem ser aplicadas em derivação mais à esquerda a partir de S

b) Construção dos demais conjuntos de produção

- n = |w| conjuntos de produção a partir de D_0
- ao gerar o símbolo ar de w constrói D_r: produções que podem gerar o símbolo a_{r+1}

```
r variando de 1 até n //cada ciclo gera um conjunto de produções Dr
para
faca D_r = \emptyset;
         para toda A \rightarrow \alpha_a \beta/s \in D_{r-1} //gera símbulo a<sub>r</sub>
         faça D_r = D_r \cup \{A \rightarrow \alpha a_r \cdot \beta/s\};
         repita
                  para toda A \rightarrow \alpha .B\beta /s \in D_r (3)
                   faça
                            para toda B \rightarrow \phi \in P
                            faça D_r = D_r \cup \{B \rightarrow .\phi/r\}
                  para toda A \rightarrow \alpha /s de D_r (4)
                  faça para toda B \rightarrow \beta.A\phi/k \in D_s
                           faça D_r = D_r \cup \{B \rightarrow \beta A.\phi/k\}
                  não ocorrerem mais inclusões
         até
```

- (3) produções que podem derivar o próximo símbolo
- (4) uma subpalavra de w foi reduzida à variável A: inclui em Dr produções de que referenciaram .A

c) Condição de aceitação da entrada

- se uma produção $S \to \alpha$./0 pertence a D_n , então a palavra w de entrada foi aceita
- $S \rightarrow \alpha$./0 é uma produção que
 - * parte do símbolo inicial S
 - * foi incluída em D₀ ("/0")
 - * todo o lado direito da produção foi analisado com sucesso ("." está no final de α)

♦ Otimização das etapas a) e b)

- ciclos repita-até
 - * restritos exclusivamente às produções recentemente incluídas em D_r ou em D_0 ainda não-analisadas

♦ Exemplo. Gramática análoga à definição de "expressão simples" do PASCAL

G = ({E, T, F}, {+, *, [,], x}, P, E), onde
P = {E
$$\rightarrow$$
 T | E+T, T \rightarrow F | T*F, F \rightarrow (E) | x}
reconhecimento da palavra x*x

D_0 :

E o .T/0	produções que partem	
$E \rightarrow .E+T/0$	do símbolo inicial	
$T \to .F/0$	produções que podem ser aplicadas	
$T \rightarrow .T*F/0$	em derivação mais à esquerda	
$F \to .(E)/0$	a partir do símbolo inicial	
$F \to . x/0$		

D₁: reconhecimento de "x" em <u>x</u>*x

$F \rightarrow x./0$	x foi reduzido à F
$T \rightarrow F./0$	inclui as produções de D_0 ($F \rightarrow x./0$)
$T \rightarrow T.*F/0$	que referenciaram .F direta ou
$E \rightarrow T./0$	indiretamente, movendo "."
$E \rightarrow E.+T/0$	um símbolo para a direita

D₂: reconhecimento de "*" em x<u>*</u>x

$$T \to T*.F/0$$
 gerou *; o próximo será gerado por F
F $\to .(E)/2$ inclui as produções de P que podem
F $\to .x/2$ gerar o próximo terminal a partir de F

D₃: reconhecimento de "x" em x*<u>x</u>

$$E \rightarrow T./0 \qquad \qquad \text{incluído de } D_0 \ (T \rightarrow T*F./0);$$
 a entrada foi reduzida à E;
$$T \rightarrow T.*F/0 \qquad \qquad \text{incluído de } D_0 \ (T \rightarrow T*F./0);$$

$$E \rightarrow E.+T/0 \qquad \qquad \text{incluído de } D_0 \ (E \rightarrow T./0).$$

W = X*X foi reduzida ao símbolo inicial E

- $E \rightarrow T./0$ pertence a D_3
- a entrada foi aceita