Examples of supermodular functions. For $\{X, X'\} \subset \mathbb{R}^d$, label $\{\hat{X}, \tilde{X}\}$ their monotone rearrangement with $\hat{X}_i \leq \tilde{X}_i$. Let $\delta_{\text{call}}(t) = (t - K)^+$ and $\delta_{\text{put}}(t) = (K - t)^+$.

1. $c(X) = \delta_{\text{call}}(\min_i X_i)$. Take arbitrary $\{X, X'\} \subset \mathbb{R}^d$ and suppose wlog $\min_i X_i \leq \min_i X_i'$. By the monotone rearrangement,

$$\begin{split} \min_{i} \hat{X}_{i} &= \min_{i} \left\{ \min \left\{ X_{i}, X_{i}' \right\} \right\} \\ &= \min \left\{ \min_{i} X_{i}, \min_{i} X_{i}' \right\} \\ &= \min_{i} X_{i} \end{split}$$

and

$$\min \tilde{X}_i = \min_i \left\{ \max \left\{ X_i, X_i' \right\} \right\}$$
$$\geq \min_i X_i'$$

Then $c\left(\hat{X}\right) = c\left(X\right)$, and since δ_{call} is non-decreasing, $c\left(\tilde{X}\right) \geq c\left(X'\right)$. We have the supermodular inequality $c\left(\hat{X}\right) + c\left(\tilde{X}\right) \geq c\left(X\right) + c\left(X'\right)$.

2. $c\left(X\right) = \delta_{\mathrm{put}}\left(\max X_{i}\right)$. Take arbitrary $\left\{X, X'\right\} \subset \mathbb{R}^{d}$ and suppose wlog $\max_{i} X_{i} \leq \max_{i} X'_{i}$. By an analogous reasoning as above, we have $\max \tilde{X}_{i} = \max X'_{i}$, $\max \hat{X}_{i} \leq \max X_{i}$, $c\left(\tilde{X}\right) = c\left(X'\right)$ and $c\left(\hat{X}\right) \geq c\left(X\right)$ since δ_{put} is non-increasing. Again we have $c\left(\hat{X}\right) + c\left(\tilde{X}\right) \geq c\left(X\right) + c\left(X'\right)$.