The Goal

 Many problems in programming languages can be formulated as the solution to a set of mutually recursive equations.

The Goal

- Many problems in programming languages can be formulated as the solution to a set of mutually recursive equations.
- Given a set D and functions $f, g: D \times D \to D$, solve x = f(x, y) y = g(x, y)

The Goal

- Many problems in programming languages can be formulated as the solution to a set of mutually recursive equations.
- Given a set D and functions $f, g: D \times D \to D$, solve x = f(x, y) y = g(x, y)
- Underlying questions
 - What assumptions on D, f, and g are sufficient to ensure that such a system of equations has a solution?
 - If such a system has multiple solutions, which solution do we really want?
 - How do we compute that solution?

Example 1: LL(1) Parsing Table

- The computation of NULLABLE, FIRST, and FOLLOW can be formulated in terms of solving such a system of equations.
 - $FIRST(\varepsilon) = \{\varepsilon\}.$
 - $\forall t \in T, FIRST(t) = \{t\}.$
 - $FIRST(Y_1 \cdots Y_k) =$ $FIRST(Y_1) +_1 \cdots +_1 FIRST(Y_k).$
 - $(A \rightarrow Y_1 \cdots Y_k \in P) \land (f \in FIRST(Y_1 \cdots Y_k)) \Rightarrow f \in FIRST(A)$.
 - $\$ \in FOLLOW(S)$.
 - $(A \rightarrow X_1 \cdots X_k B Y_1 \cdots Y_m \in P) \land$ $(t \in FIRST(Y_1 \cdots Y_m) +_1 FOLLOW(A)) \Longrightarrow$ $t \in FOLLOW(B).$

Example 1: LL(1) Parsing Table

- The computation of NULLABLE, FIRST, and FOLLOW can be formulated in terms of solving such a system of equations.
 - $FIRST(\varepsilon) = \{\varepsilon\}.$
 - $\forall t \in T, FIRST(t) = \{t\}.$
 - $FIRST(Y_1 \cdots Y_k) =$ $FIRST(Y_1) +_1 \cdots +_1 FIRST(Y_k).$
 - $(A \to Y_1 \cdots Y_k \in P) \land (f \in FIRST(Y_1 \cdots Y_k)) \Rightarrow f \in FIRST(A)$.
 - $\$ \in FOLLOW(S)$.
 - $(A \rightarrow X_1 \cdots X_k B Y_1 \cdots Y_m \in P) \land (t \in FIRST(Y_1 \cdots Y_m) +_1 FOLLOW(A)) \Longrightarrow t \in FOLLOW(B).$

```
S \rightarrow A$
A \rightarrow BC \mid x
B \rightarrow t \mid \varepsilon
C \rightarrow v \mid \varepsilon
```

```
NULLABLE = \{A,B,C\}

FIRST(A)=\{x,t,v,\epsilon\}

FIRST(B)=\{t,\epsilon\}

FIRST(C)=\{v,\epsilon\}

FIRST(S)=\{x,t,v,\$\}

FOLLOW(A)=\{\$\}

FOLLOW(B)=\{v,\$\}

FOLLOW(C)=\{\$\}
```

```
FOLLOW(A) = FOLLOW(A) U {$}

FOLLOW(B) = FOLLOW(B) U {v}

FOLLOW(B) = FOLLOW(B) U FOLLOW(A)

FOLLOW(C) = FOLLOW(C) U FOLLOW(A)
```

FOLLOW(A) = FOLLOW(A) U {\$} FOLLOW(B) = FOLLOW(B) U {v} U FOLLOW(A) FOLLOW(C) = FOLLOW(C) U FOLLOW(A)

Example 2: Live Variables

- The computation of the *In* and Out sets for basic blocks can be formulated in terms of solving such a system of equations.
- Given the CFG, assemble the full system of equations.
 - Compute use and def sets for each instruction I and each basic block B.
 - For each instruction *I*:

$$In(I) = (Out(I) \setminus def(I)) \cup use(I).$$

• For each basic block B:

$$Out(B) = \bigcup_{B' \in succ(B)} In(B').$$

Example 2: Live Variables

- The computation of the *In* and *Out* sets for basic blocks can be formulated in terms of solving such a system of equations.
- Given the CFG, assemble the full system of equations.
 - Compute use and def sets for each instruction I and each basic block B.
 - For each instruction *I*:

$$In(I) = (Out(I) \setminus def(I)) \cup use(I).$$

• For each basic block B:

$$Out(B) = \bigcup_{B' \in succ(B)} In(B').$$

Example 3: Type Inference

- The computation of polytypes can be formulated in terms of solving such a system of equations.
- Form a system of equations among unknown type variables, following the language's typing rules "in reverse".
 - For the judgment $\frac{E \vdash f: T \rightarrow U, E \vdash e: T}{E \vdash f(e): U}$, if f, e, **apply** have been assigned symbolic type names t_1, t_2, t_3 , then add the equation $t_1 = t_2 \rightarrow t_3$.
 - For the judgment $\frac{E \vdash e_0 : \mathbf{bool}, E \vdash e_1 : T, E \vdash e_2 : T}{E \vdash \mathbf{if} \ e_0 \ \mathbf{then} \ e_1 \mathbf{else} \ e_2}$, if e_0 , e_1 , e_2 , \mathbf{if} have been assigned symbolic type names t_0 , t_1 , t_2 , t_3 , then add the equations $\{t_0 = \mathbf{bool}, t_1 = t_2, t_3 = t_1\}$.

Example 3: Type Inference

- The computation of *polytypes* can be formulated in terms of solving such a system of equations.
- Form a system of equations among unknown type variables, following the language's typing rules "in reverse".
 - For the judgment $\frac{E \vdash f: T \rightarrow U, E \vdash e: T}{E \vdash f(e): U}$, if f, e, apply have been assigned symbolic type names t_1, t_2, t_3 , then add the equation $t_1 = t_2 \rightarrow t_3$.
 - For the judgment $\frac{E \vdash e_0:\mathbf{bool}, E \vdash e_1:T, E \vdash e_2:T}{E \vdash \mathbf{if}\ e_0\ \mathbf{then}\ e_1\mathbf{else}\ e_2}$, if e_0 , e_1 , e_2 , \mathbf{if} have been assigned symbolic type names t_0 , t_1 , t_2 , t_3 , then add the equations $\{t_0 = \mathbf{bool}, t_1 = t_2, t_3 = t_1\}$.

t0 = ((t3 -> bool) * (t3 -> int) * t3) -> int

Game Plan

- 1. Finite partially-ordered set D with least element \bot Function $f: D \to D$ Monotonic function $f: D \to D$
- 2. Fixpoints of monotonic function $f: D \to D$
 - Least fixpoint
- 3. Solving equation x = f(x)
 - Least solution is least fixpoint of *f*
- 4. Generalization to when D has a greatest element T
 - Least and greatest solutions to equation x = f(x)
 - Generalization to systems of equations
- 5. Semi-lattices and lattices