WEEK 4

THE RELATIONAL ALGEBRA BINARY OPERATION OF UNION AND DIFFERENCE

CS3319

1

STUDENT OBJECTIVES

- Upon completion of this video, you should be able to:
 - Decide if 2 tables are Union Compatible
 - Write a relational algebra expression that uses UNION given two tables and a query.
 - Given 2 tables and a UNION relational algebra expression, show the new table that would be returned once the expression is performed.
 - Write a relational algebra expression that uses DIFFERENCE given two tables and a query.
 - Given 2 tables and a DIFFERENCE relational algebra expression, show the new table that would be returned once the expression is performed.

BINARY OPERATIONS

- In arithmetic 8 ÷ 3 would be a binary operation because it has 2 operands: 8 and 3 and one operator (÷)
- Most of the remaining relational algebra expression we are going to look at use binary operators (i.e. they require TWO tables)
 - For example: Table 1 U Table 2 would return a new table, our result.
 - Could also write: RESULTTABLE ← Table 1 **U** Table 2

UNION COMPATIBLE

- Two tables are union compatible, if and only if:
 - They have the same number of columns
 - Each respective column from each table is from the same domain
- Examples → Are these Union Compatible?

TableA and TableB

NO

TableA and TableC

NO

Not some domain

TableB and TableD

YES

TableA

ID	Name	Age
22	Bob	46
34	Sam	33

TableB

ID	Age
22	46
34	33

TableC

ID	Age	Name
22	46	Bob
34	33	Sam

TableD

X	Υ
55	71
32	64
61	34

NOINU

- Creates a new table from the given 2 tables that include every row from both tables with NO repeating identical rows.
- The 2 Tables MUST be union compatible
- Symbol \rightarrow \mathbf{U}
- Example Expression:

Table1 U Table2

First Table Name

CS3319

Symbol for Union

Second Table Name

duplicare

<u> labie i</u>			
ID	FirstName	LastName	Age
12	Homer	Smith	24

Simpson

13

45 Walter Reid 45

Table2

24

Gene

IGNICE			
ID	FirstName	LastName	Age
33	Marg	Jones	28
24	Gene	Simpson	13

ANSWER

ID	FirstName	LastName	Age
12	Homer	Smith	24
24	Gene	Simpson	13
45	Walter	Reid	45
33	Marg	Jones	28

Temp1 $_{\text{(SuperSSN)}} \leftarrow \pi_{\text{ManagerSSN}}$ (Department) Result \leftarrow Temp1 U π_{SuperSSN} (Employee)

Temp1

SuperSSN

4

3

6

Result

SuperSSN

4

3

6

2

10/2/2023 0 ml 25 orle

QUESTION: What would the following relational expression result in?

Temp1(Field1) $\leftarrow \pi$ MiddleInitial (Employee)

Temp2(Field1) $\leftarrow \pi$ Sex (Employee)

Result ← Temp1 U Temp2

QUESTION: What would the following relational expression result in?

Temp1(Loc) $\leftarrow \pi$ ProjectLocation (Project)

Temp2(Loc) $\leftarrow \pi$ Address (σ LastName = "Simpson" (Employee))

Result ← Temp1 U Temp2

Temp1	Temp2	Result
Loc	Loc	Loc
Toronto	London	Toronto
Springfield	Toronto	Springfield
London		London

QUESTION: What, in English, does the above expression represent?

Show me all the project locations cities together) said with the cities that the Simpson employee's live in.

_											
	■ Project : Table										
	Proj	ectNan	ne	ProjectNun	nber	Pro	jectLoca	tion	DeptNu	ımbı≛	
Þ	Acco	unting (Jpd .	A1		Toron	to	S	7G		
	Acc3			A3		Spring	gfield	G	8H		
	Acct8	ì		A6		Toron	to	S	7G		
	Invent	ory		l1		Toront	to	G	8H		
	Invent	ory2		12		Londo	n	S	7G		
	Payro	oll		P1		Spring	gfield	G	8H		
	Payro	ll2		P2		Londo	n	G	8H		
	Payro	ili3		P3		Londo	n	G	8H		
SIZ									1		
		ment: 1									=
	_	lumbe		DeptName	<u> </u>	Mai	nagerSS	N Ma	nager	StartDate_	_
	G8H			ad Office				4		2/2/9	
	S7G		Saf	ety Departme	ent			3		1/1/9	
	Y5J		Res	search Depart	ment			6		3/3/9	-
	Employ	ee : Ta	ble								
	SSN	LastNa	ıme	Middlelnitia	First	Name	BDate	Addres	s Sex	Salary	7
	1	Simpso	on	Р	Bart		2/2/95	London	М	\$1,000.	ŌΟ
	2	Smithe	rs	J	Wayl	an	1/1/60	Springfi	е М	\$2,000.	OC
	3	Beuvie	au	Р	Patty	,	3/3/59	Toronto	F	\$4,000.	OC
	4	Burns		Р	Mont	gomer	7/7/20	Toronto	M	\$5,000.	OC
	6	Simpso	on	J	Lisa		6/6/90	London	F	\$1,000.	OC
	12	Simpso		J	Hom	er	8/8/61	Toronto	М	\$2,000.	00
Re		4 4		1 1 1	[▶ *] c	of 6		411			
,											200000

8

WRITE A RELATIONAL ALGEBRA EXPRESSION THAT WOULD NEED TO USE UNION

Write the Relation Algebra expression to answer this query:

Return the first name of all students and faculty at Western whose name starts with D

Faculty

ID	FirstName	LastName	Office Number
12	Dave	Smith	MC316
24	Walter	Simpson	MC416
45	Donald	Reid	SSC22

Student

StudentID	FName	LName	HomeCity	Major
2501	Daisy	Jones	Windso	Math
2509	Walter	Simpson	Arva	CS
2508	Donald	Cook	Milton	Math
2588	Wally	Webster	Milton	CS

Temp1_(FName) $\leftarrow \pi_{\text{FirstName}}$ ($\sigma_{\text{FirstName like "D*"}}$ (Faculty))

Temp2 $\leftarrow \pi_{\text{FName}}(\sigma_{\text{FName like "D*"}}(\text{Student}))$

ANSWER ← Temp1 U Temp2

DIFFERENCE

- Create a new table from the given 2 tables that include every row from the table on the left side that is NOT in the table on the right side.
- The 2 Tables MUST be union compatible
- Symbol → —
- Example Expression:

Table1 – Table2

First Table Name

Symbol for Difference

Second Table Name

Table1

ID	FirstName	LastName	Age
12	Homer	Smith	24
24	Gene	Simpson	13
45	Walter	Reid	45

Table2

ID	FirstName	LastName	Age
33	Marg	Jones	28
24	Gene	Simpson	13

ANSWER

ID	FirstName	LastName	Age	
12	Homer	Smith	24	
45	Walter	Reid	45	

MORE ON DIFFERENCE

• NOTE that Table 1 - Table 2 does NOT equal Table 2 - Table 1

e.g Answer ← Table2 – Table1

		_
A	Ь	-
ш	l e i	гет

ID	FirstName	LastName	Age
12	Homer	Smith	24
24	Gene	Simpson	13
45	Walter	Reid	45

Table2

I GIOLO			
ID	FirstName	LastName	Age
33	Marg	Jones	28
24	Gene	Simpson	13

ANSWER

ID	FirstName	LastName	Age
33	Marg	Jones	28

RESULT $\leftarrow \pi_{LastName}$ (Employee) $-\pi_{LastName}$ ($\sigma_{Sex="M"}$ (Employee))

RESULT

LastName

Beuvieau

QUESTION: What would the following relational expressions result in?

Temp1 (SSN) $\leftarrow \pi$ ManagerSSN (Department)

Temp2 (SSN) $\leftarrow \pi$ SuperSSN ($\sigma_{\text{SuperSSN}} \Leftrightarrow_{\text{Null}} (\text{Employee})$)

Result1 ← Temp1 – Temp2

Result2 ← Temp2 – Temp1

4

 \bigcirc managers but not also supervisors.

Temp1	Temp2	Result1	Result2
SSN	SSN	SSN	SSN
4	2	3	2
•	4		

QUESTION: What do they mean in English?

SSN LastName MiddleInitia FirstName BDate Address Sex Salary 1 Simpson P 2/2/95 London M \$1,000.00 Bart \$2,000.00 2 Smithers 1.1 Waylan 1/1/60 Springfie M \$4,000.00 3 Beuvieau | P 3/3/59 Toronto | F Patty Montgomer 7/7/20 Toronto M \$5,000.00 \$1,000.00 6 Simpson J 6/6/90 London | F 12 Simpson | J Homer 8/8/61 Toronto M \$2,000.00 1 ▶ ▶1 ▶* of 6 Record: I4 ◀ Result1 means: Show me all the employee ids for people who are departmental 10/2/2023

ProjectName ProjectNumber

DeptName

Research Department

Safety Department

Head Office

Accounting Upd A1

Acc3

Acct6

Pavroll

Payroll2

Payroll3

▶ G8H

S7G

Y5J

DeptNumbe

Inventory

Inventory2

Result2 means: Show me all the ids for people who are employee supervisors but not also departmental managers.

CS319

 $13 \odot$

囲 Works On: Table

Record: I◀ ◀

SuperSSN DeptNumb

2 G8H

4 S7G

6 Y5J

2 S7G

2 G8H

S7G

SSN ProjectNu

_ | _ | ×

2/2/9

1/1/9

3/3/9 -1

ManagerStartDate -

DeptNumb(*

S7G

G8H

S7G

G8H

S7G

G8H

G8H

G8H

ProjectLocation

ManagerSSN

Toronto

Toronto

Toronto

London

London

London

Sprinafield

Springfield

WRITE A RELATIONAL ALGEBRA EXPRESSION THAT WOULD NEED TO USE DIFFERENCE

Write the Relation Algebra expression to answer this query:
Return the first name of all faculty members who don't have the same first name as any of our students.

Faculty

ID	FirstName	LastName	Office Number
12	Dave	Smith	MC316
24	Walter	Simpson	MC416
45	Donald	Reid	SSC22

Student

StudentID	FName	LName	HomeCity	Major
2501	Daisy	Jones	Windso	Math
2509	Walter	Simpson	Arva	CS
2508	Donald	Cook	Milton	Math
2588	Wally	Webster	Milton	CS

$$Temp1_{(FName)} \leftarrow {}_{\pi \text{ FirstName}} (Faculty)$$

Temp2
$$\leftarrow _{\pi \text{ FName}}$$
(Student)