PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC Minas Virtual Pós-graduação *Lato Sensu* em Engenharia de *Software*

Projeto Integrado

Relatório Técnico

Memory Kards

Anderson Josué Pantoja Freire

Memory Kards

Projeto Integrado

Sumário

Projeto	o Integrado	3
1.	Cronograma de Trabalho	4
2.	Introdução	5
3.	Definição Conceitual da Solução	6
3.1	Diagrama de Casos de Uso	6
3.2	Requisitos Funcionais	7
3.3	Requisitos Não-funcionais	8
4.	Protótipo Navegável do Sistema	8
5.	Diagrama de Classes de Domínio	9
12.	Apropriação de Horas no Projeto	10
13.	Referências	10

1. Cronograma de Trabalho

Datas		Atividade / Tarefa	Produto / Resultado
De	Até		
09 / 08 / 22	15 / 08 / 22	Desenvolvimento da Introdução	Introdução
09 / 08 / 22	15 / 08 / 22	2. Definição de Objetivos	Objetivos
10 / 08 / 22	15 / 08 / 22	3. Elicitação de Requisitos	Requisitos
10 / 08 / 22	15 / 08 / 22	4. Confecção do Protótipo	Protótipo do sistema
11 / 08 / 22	15 / 08 / 22	5. Elaboração do diagrama de casos de uso	Casos de uso
12 / 08 / 22	15 / 08 / 22	Elaboração do diagrama de classes de domínio	Classes de domínio
16 / 08 / 22	13 / 09 / 22	7. Confecção da arquitetura de solução	Arquitetura de solução
16 / 08 / 22	23 / 08 / 22	8. Escolha do padrão arquitetural	Padrão arquitetural
24 / 08 / 22	01 / 09 / 22	Escolha da estrutura do front-end e dos frameworks	Frameworks a serem utilizados
14 / 09 / 22	16 / 10 / 22	Desenvolvimento de uma funcionalidade	Uma funcionalidade
10 / 10 / 22	16 / 10 / 22	11. Confecção do vídeo	Vídeo
17 / 10 / 22	17 / 11 / 22	12. Criação do modelo relacional e SGBD	Modelo relacional e SGBD
17 / 10 / 22	01 / 11 / 22	13. Criação de função de autenticação	Autenticação de usuários
17 / 11 / 22	01 / 12 / 22	14. Elaboração do CRUD e de funcionalidades adicionais	CRUD e funcionalidades adicionais
17 / 10 / 22	10 / 12 / 22	15. Testes	Planos e relatório de testes
11 / 12 / 22	14 / 12 / 22	16. Avaliação retrospectiva	Avaliação retrospectiva
11 / 12 / 22	15 / 12 / 22	17. Elaboração do vídeo final	Apresentação final

Observação: acrescente ou retire linhas, caso seja necessário.

2. Introdução

Mediante ao grande desenvolvimento tecnológico que vem se apresentado nasociedade contemporânea, faz-se necessário discutir sobre os benefícios do uso das ferramentas tecnológicas na construção do conhecimento. As tecnologias passaram a permitir ao homem imperar sobre a informação, já que esta é parte integrante de qualquer atividade humana, seja ela individual ou coletiva. Hoje, é impossível pensar em desenvolvimento sem tecnologia. Para Silveira e Bazzo (2009), a tecnologia tem se apresentado como o principal fator de progresso e de desenvolvimento. No paradigma econômico vigente, ela é assumida como um bem social e, juntamente com a ciência, é o meio para a agregação de valores aos mais diversos produtos, tornandose a chave para a competitividade estratégica e para o desenvolvimento social e econômico de uma região.

Pensar no processo de ensino e aprendizagem em pleno século XXI sem o uso constante dos diversos instrumentos tecnológicos é deixar de acompanhar a evolução que está na essência da humanidade. Muitas escolas e professores, por exemplo, ainda se baseiam em metodologias arcaicas de ensinagem, mesmo existindo ao lado de sua sala de aula um laboratório de informática com computadores de última geração. Eles não se permitem a entender esse processo e muito menos ter contanto com ele. Os educadores preferem entender o ato de educar apenas com quadro-negro e giz e assim perpetuam um modelo já desgastado, com resultados mínimos.

Nesse cenário, cabe refletir sobre a importância das novas tecnologias para a aprendizagem, e da maneira de como essas ferramentas podem auxiliar e agilizar a aprendizagem de seus usuários. Uma dessas ferramentas, que será apresentada neste trabalho, é o flashcard, ou cartão rápido. Esta ferramenta explora o conceito chamado de "repetição espaçada", que é uma técnica de memorização que auxilia no arquivamento de informações em nossa memória de longo prazo.

O objetivo deste trabalho é apresentar a descrição do projeto de uma aplicação para auxiliar nos estudos por meio de técnicas de memorização que se utilizam do conceito de repetição espaçada, por meio de ferramentas chamadas flashcards, que consistem em cartões de leitura rápida com pergunta e resposta.

Memory Kards

Os objetivos específicos são:

- Descrever os requisitos da aplicação;
- Desenolver um protótipo inicial para o sistema;
- Criar uma boa ferramenta de aprendizado utilizando poucos recursos.

3. Definição Conceitual da Solução

Para iniciar o desenvolvimento da aplicação, foram utilizados conceitos de Projetos de software com o intuito de facilitar a confecção do projeto. Dentre esses conceitos, estão o diagrama de casos de uso, elicitação de requisitos funcionais e não funcionais, e a prototipação do sistema.

3.1 Diagrama de Casos de Uso

Na imagem abaixo, tem-se o diagrama de casos de uso seguindo a UML, onde é mostrado a relação entre usuário e aplicativo.

O único ator desse diagrama é o usuário do sistema, pois como tal não possui conexão com internet ou com algum sistema em algum servidor, a única interação realizada é a feita pelo usuário do aplicativo em seu desktop.

Os casos de uso principais são: criar cartão, criar coleção de cartões, abrir cartão e fazer simulados; representando as funcionalidades básicas feitas quando se utiliza esse método de estudos. Além disso, algumas outras funcionalidades estão presentes para melhorar a experiência do usuário.

No caso de fazer simulado por exemplo, o usuário poderá definir um temporizador para responder um certo número de cartões, além de também poder avaliar a dificuldade de cada um deles, de modo a deixar mais claro como está seu desempenho em determinado assunto.

3.2 Requisitos Funcionais

Foram listados 17 requisitos que envolvem funcionalidades, todos descritos abaixo.

ID	Descrição Resumida	Dificuldade	Prioridade
		(B/M/A)*	(B/M/A)*
RF01	O usuário deve auto cadastrar-se no sistema.	В	A
RF02	O usuário deve ser capaz de criar um cartão	В	A
RF03	O sistema deve verificar se o cartão já existe	M	A
RF04	O usuário deve poder abrir o cartão	В	A
RF05	O usuário deve poder editar o cartão	M	A
RF06	O usuário deve poder excluir o cartão	В	A
RF07	O usuário deve poder categorizar o cartão	M	M
RF08	O usuário deve poder criar uma coleção de cartões	A	M

RF09	O usuário deve poder adicionar um cartão a uma coleção	В	M
RF10	O usuário deve poder remover um cartão de uma coleção	В	M
RF11	O usuário deve poder realizar simulados com cartões	A	A
RF12	O usuário deve definir um temporizador para responder cartões	M	A
RF13	O usuário deve poder selecionar os cartões que ele queira usar	M	A
RF14	O usuário deve poder definir a ordem de disposição dos cartões	В	A
RF15	O usuário deve poder responder os cartões	В	A
RF16	O usuário deve avaliar a dificuldade de responder o cartão	В	M
RF17	O usuário deve poder alterar o tamanho da fonte dos textos	В	A

^{*} B = Baixa, M = Média, A = Alta.

Observação: acrescente quantas linhas forem necessárias.

3.3 Requisitos Não-funcionais

Foram listados 6 requisitos não-funcionais, todos listados abaixo.

ID	Descrição	Prioridade
		B/M/A
RNF01	O sistema deve apresentar tempo de resposta abaixo de 300 ms no	A
	processamento de 95% das operações de consulta.	
RNF02	A transição entre pergunta e resposta deve ser feita com uma animação	В
	que represente um "flip" de um cartão	
RNF03	O conteúdo do texto deve ocupar sempre o centro do cartão	В
RNF04	A cor do texto de resposta deve ser diferente da cor do resto do texto	A
RNF05	O aplicativo deve ser capaz de rodar em segundo plano	M
RNF06	Interações do usuário com a interface devem ter alertas sonoros	В

Observação: acrescente quantas linhas forem necessárias.

4. Protótipo Navegável do Sistema

Foi feito um protótipo inicial navegável do sistema, utilizando a plataforma Figma. O protótipo demonstra três casos de uso principais: criar cartão, criar coleção de cartões e editar cartão. Foi criado um pequeno vídeo que mostra como se navegar por esse protótipo. Esse vídeo se encontra no repositório https://github.com/AndersonJPF/Projeto integrado junto com outros documentos que fazem parte do projeto.

5. Diagrama de Classes de Domínio

Para finalizar a etapa um, foi criado um diagrama de classses de domínio para representar as partes presentes no projeto do aplicativo.

Foram concebidas cinco classes principais: cartão, coleção de cartões, usuário, simulado e temporizador. Cada classe foi retratada com suas respectivas relações entre as outras.

Como se pode ver na imagem abaixo, o usuário só poderá fazer um simulado por vez, com o temporizador sendo uma ferramenta opcional. Além disso, o simulado precisa dispor de ao menos um cartão ou uma coleção de cartões. O cartão por sua vez, pode estar incluso em uma coleção, mas pode também ser independente.

Assim como os atributos, os métodos também estão descritos no diagrama, a maioria deles auto-explicativos.

12. Apropriação de Horas no Projeto

Histórico de apropriação de horas			
Data do registro	Atividade	Quantidade de horas	
09/Ago	Elaboração da introdução	2	
09/Ago	Definição dos objetivos	1	
09/Ago	Levantamento de bibliografia	1	
10/Ago	Conclusão da introdução	1	
10/Ago	Elicitação de requisitos	3	
11/Ago	Diagrama de casos de uso	2	
15/Ago	Elicitação de requisitos	2	
15/Ago	Diagrama de classes de domínio	2	
15/Ago	Confecção do protótipo navegável	2	
15/Ago	Elaboração do vídeo	1	
15/Ago	Apropriação de horas	1	
15/Ago	Revisão	1	

13. Referências

PRESSMAN, Roger S.; MAXIM, Bruce R.. Engenharia de software: uma abordagem profissional. 8 ed. Porto Alegre: AMGH, 2016.

Lucid Software Português. Tutorial de Caso de Uso UML. YouTube, 25 de abril de 2019. Disponível em: < https://www.youtube.com/watch?v=ab6eDdwS3rA>. Acesso em: 11 de agosto de 2022.

Lucid Software Português. Tutorial de Diagramas de Classes UML. YouTube, 21 de dezembro de 2018. Disponível em: < https://www.youtube.com/watch?v=rDidOn6KN9k>. Acesso em: 11 de agosto de 2022.