ASSIGNMENT - CONTEXT FREE GRAMMARS

1. Construct the derivation tree whose yield is aabbaa.

$$S \to aAS \mid a,$$

$$A \rightarrow SbA \mid SS \mid ba$$

2.
$$S \rightarrow 0B \mid 1A$$
,

$$A \rightarrow 0 \mid 0S \mid 1AA$$

$$B \rightarrow 1 \mid 1S \mid 0BB$$

For string 00110101 find

- left most derivation
- right most derivation
- derivation tree
- 3. Find the grammar for the following languages

$$i L = (aaa^* + b)$$

ii
$$L = \{a^n b^n : n \ge 1\}$$

iii
$$L = \{a^n b^{n+1} : n \ge 2\}$$

iv
$$L = ww^r : w \in \{a, b\} *$$

$$V L = \{a^n b^m : n \le m + 3\}$$

vi
$$L = \{a^n b^m : 2n \le m \le 3n\}$$

vii
$$L = \{a^n b^m c^k : k = |n - m|\}$$

4. Show that the following grammar is ambiguous

$$S \to aSbS \mid bSaS \mid \epsilon$$

5. Show that the following grammar is ambiguous

$$S \rightarrow AB \mid aaB$$

$$A \rightarrow a \mid Aa$$

$$\mathrm{B} \to \mathrm{b}$$

6. Can the grammar for regular languages cannot be ambiguous or inherently ambiguous?

- 7. $E \rightarrow E + E$,
 - $E \to E * E$,
 - $E \to id$

For input: 2+3*4 find

- left most derivation
- right most derivation
- derivation tree
- 8. Reduce or Remove useless productions from the following grammar
 - $i S \to AB,$
 - $A \rightarrow a$,
 - $B \rightarrow b$
 - $B \to C$
 - $E \rightarrow c$
 - ii $S \to AB \mid CA$,
 - $B \to BC \mid AB$
 - $A \rightarrow a$
 - $C \rightarrow aB \mid b$
 - iii $S \to aAa$,
 - $A \rightarrow Sb \mid bCC \mid DaA$,
 - $C \rightarrow abb \mid DD$,
 - $E \to aC$,
 - $D \to aDA$
- 9. Eliminate ϵ -productions, Eliminate any unit productions in the resulting grammar, Eliminate any useless symbols in the resulting grammar. Put the resulting grammar into Chomsky Normal Form
 - i S \rightarrow ASB | ϵ ,
 - $A \rightarrow aAS \mid a$
 - $B \rightarrow bb \mid A \mid SbS$

 $^{^{0}}$ Don't consider comma , or full-stop . as the part of any input or terminal symbols

- ii S \rightarrow 0A0 | 1B1 | BB,
 - $A \rightarrow C$,
 - $B \to S \mid A$,
 - $C \to S \mid \epsilon$
- iii $S \to AAA \mid B$,
 - $A \rightarrow aA \mid B$,
 - $B \to \epsilon$
- iv S \rightarrow aAa | bBb | ϵ ,
 - $A \rightarrow C \mid a$
 - $B \to C \mid b$,
 - $C \to CDE \mid \epsilon$,
 - $D \rightarrow B \mid A \mid ab$
- 10. Convert the following grammar into Greibach Normal form
 - i S \rightarrow aSb | bSa | a | b
 - ii S \rightarrow aSb | ab
 - iii S \rightarrow ab | a
S | aa S
 - iv $S \to ABb \mid a$,
 - $A \rightarrow aaA \mid B$
 - $\mathrm{B} \to \mathrm{bAb}$