Processus empirique de fonctionnelles de champs gaussiens à longue mémoire

Empirical process of long memory Gaussian subordinated random fields

Frédéric Lavancier

LS-CREST, ENSAE, 3 avenue Pierre Larousse, 92 245 Malakoff, France et Laboratoire Paul Painlevé, UMR CNRS 8424, 59655 Villeneuve d'Ascq, France

Abstract

We study the asymptotic behaviour of the doubly indexed empirical process of stationary Gaussian subordinated random fields with long-range dependence. Contrary to the situation chosen in the pre-existing papers, the long memory is not necessarily isotropic. In all the investigated cases, the limiting process is degenerated insofar as it has the form f(x)Z(t) where f is the marginal density and Z a random field. To cite this article: F. Lavancier, C. R. Acad. Sci. Paris, Ser. ?? (2005).

Résumé

Nous étudions le comportement asymptotique du processus empirique d'une fonctionnelle d'un champ gaussien sur \mathbb{Z}^d , stationnaire et à longue mémoire. La forte dépendance du champ considéré pourra être soit isotrope, comme dans les travaux pré-existants, soit non-isotrope. Dans tous les cas nous trouvons que la limite du processus empirique doublement indexé est dégénérée dans la mesure où elle est, comme lorsque d=1, de la forme f(x)Z(t) où f est une fonction déterministe et Z un champ aléatoire sur \mathbb{Z}^d . Pour citer cet article : F. Lavancier, C. R. Acad. Sci. Paris, Ser. ?? (2005).

1. Introduction

Nous considérons le processus empirique doublement indexé par $x \in \mathbb{R}$ et $t \in [0,1]^d$. Il est défini, à une normalisation près dépendante de n, par

Email address: lavancier@math.univ-lille1.fr (Frédéric Lavancier).

Preprint submitted to Elsevier Science

19 décembre 2005

$$\sum_{k_1=1}^{[nt_1]} \dots \sum_{k_d=1}^{[nt_d]} \left[\mathbb{1}_{\{G(X_{k_1,\dots,k_d}) \le x\}} - F(x) \right], \tag{1}$$

où G est une fonction mesurable et où F est la fonction de répartition du champ aléatoire $(G(X_n))_{n\in\mathbb{Z}^d}$. En dimension d=1, cette étude a été effectuée dans [3] sous l'hypothèse où X est gaussien et où sa fonction de covariance vérifie $r(h)=h^{\alpha}L(h)$ où $-1<\alpha<0$ et où L est une fonction à variation lente à l'infini. Dans ce contexte, les auteurs montrent la dégénérescence asymptotique du processus limite, celui-ci ayant la forme f(x)Z(t), où f est une fonction déterministe et Z un processus stochastique.

Ce comportement, en dimension d = 1, semble être une caractéristique exclusive des processus à longue mémoire et l'on peut se demander si cette dégénérescence persiste dans le cadre plus large des champs.

En dimension d quelconque, la convergence de (1) est étudiée en t=1 dans [5] lorsque G est la fonction identité et lorsque le champ stationnaire X est linéaire et à longue mémoire isotrope. Ce travail montre la même dégénérescence asymptotique du processus empirique que celle qui se produit en dimension d=1.

Dans le corollaire 3.1, nous reprenons l'étude de [5] et montrons, pour un champ gaussien à longue mémoire isotrope, et pour une fonction G quelconque, la convergence du champ (1) proprement normalisé dans l'espace $\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)$. Ce travail étend donc aux dimensions $d \geq 2$ celui de [3]. Nous supposons ensuite, dans les corollaires 3.2 et 3.3, que le champ X est linéaire, gaussien et qu'il est à forte dépendance non-isotrope. Nous établissons alors la convergence dans $\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)$ du processus empirique proprement normalisé lorsque le rang de Hermite de $\mathbbm{1}_{\{G(X_1) \leq x\}} - F(x)$ vaut 1.

L'ensemble de ces résultats repose sur le principe de réduction uniforme introduit dans [3], que nous généralisons dans le théorème 1. Il lie le comportement asymptotique du processus empirique d'un champ aléatoire à longue mémoire à celui de ses sommes partielles. Nous nous appuierons donc sur le comportement asymptotique des sommes partielles obtenu en longue mémoire isotrope dans [4] et en longue mémoire non-isotrope dans [9].

2. Principe de réduction uniforme

Soit $(X_j)_{j\in\mathbb{Z}^d}$ un champ gaussien stationnaire de fonction de covariance r tel que r(0)=1. Soit G une fonction mesurable. On considère le développement suivant sur la base des polynômes de Hermite :

$$\mathbb{1}_{\{G(X_j) \le x\}} - F(x) = \sum_{q=m}^{\infty} \frac{J_q(x)}{q!} H_q(X_j), \tag{2}$$

où $F(x) = P(G(X_1) \le x)$ est la fonction de répartition de $G(X_1)$. Les H_q sont les polynômes de Hermite de degré q et

$$J_q(x) = E\left[\mathbb{1}_{\{G(X_1) < x\}} H_q(X_1)\right]. \tag{3}$$

m est appelé le rang de Hermite de la fonction $\mathbb{1}_{\{G(X_1) \leq x\}} - F(x)$. En posant $A_n = \{1, \dots, n\}^d$, soit

$$R_n(x) = \sum_{j \in A_n} \left[\mathbb{1}_{\{G(X_j) \le x\}} - F(x) - \frac{J_m(x)}{m!} H_m(X_j) \right]. \tag{4}$$

Théorème 2.1 Avec les notations précédentes, soit

$$d_N^2 = Var\left(\sum_{j \in A_N} H_m(X_j)\right) = m! \sum_{j,k \in A_N^2} r^m(k-j).$$
 (5)

Si $d_N \longrightarrow \infty$, on a, pour tout $\delta > 0$ et tout $n \leq N$,

$$P\left(\sup_{x} d_{N}^{-1} |R_{n}(x)| > \epsilon\right) \le C(\epsilon) N^{\delta} d_{N}^{-2} \sum_{j,k \in A_{N}^{2}} |r(k-j)|^{m+1} + \frac{d_{n}^{2}}{N^{2d}},\tag{6}$$

où $C(\epsilon)$ est une constante positive qui dépend de ϵ .

Démonstration : La preuve s'appuie sur un argument de chaînage selon le même schéma que dans la démonstration du principe de réduction uniforme se trouvant dans [3]. Les détails se trouvent dans [10].

Si l'on connaît la distribution limite de $d_N^{-1} \sum_{j \in A_N} H_m(X_j)$, l'inégalité (6) nous fournit le comportement asymptotique du processus empirique (1) dès que le majorant dans (6) tend vers 0 lorsque N tend vers l'infini.

3. Application à diverses situations de forte dépendance

Nous présentons des corollaires dans lesquels les conditions du Théorème 2.1 sont remplies, nous fournissant la loi limite de (1). Le premier concerne des champs à longue mémoire isotrope étudiés dans [4]. Les autres concernent des situations de longue mémoire non isotrope : nous considérons d'une part des champs à longue mémoire de type produit et d'autre part des champs dont la densité spectrale est singulière sur des sous espaces linéaires de $[-\pi, \pi]^d$.

Corollaire 3.1 (longue mémoire isotrope) En conservant les notations précédentes, supposons que (X_n) admet comme fonction de covariance

$$r(k) = |k|^{-\alpha} L(|k|) b\left(\frac{k}{|k|}\right),\,$$

avec r(0) = 1, où $0 < m\alpha < d$, où $|k| = \sum_{i=1}^{d} |k_i|$ et où L est une fonction à variation lente à l'infini et b une fonction continue sur la sphère unité de \mathbb{R}^d .

Alors

$$\frac{1}{n^{d-m\alpha/2}(L(n))^{m/2}} \sum_{j_1=1}^{[nt_1]} \dots \sum_{j_d=1}^{[nt_d]} \left[\mathbb{1}_{\{G(X_j) \le x\}} - F(x) \right] \overset{\mathcal{D}(\bar{\mathbb{R}} \times [0,1]^d)}{\Longrightarrow} \frac{J_m(x)}{m!} Z_m(t),$$

où la convergence a lieu dans $\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)$ muni de la topologie uniforme et de la tribu engendrée par les boules ouvertes et où Z_m représente le processus de Hermite de degré m.

 $D\acute{e}monstration$: Sous les conditions du corollaire 3.1, le majorant dans (6) tend vers 0 lorsque N tend vers l'infini. Le comportement asymptotique de (1) est donc dicté par celui des sommes partielles de $H_m(X_i)$. D'après [4], ces sommes partielles convergent vers Z_m .

Pour les résultats concernant la longue mémoire non-isotrope, nous supposons que le rang de Hermite de la fonction $\mathbbm{1}_{\{G(X_n) \leq x\}} - F(x)$ vaut 1 (c'est par exemple le cas lorsque G est la fonction identité). Notre démarche s'appuie en effet sur l'inégalité (6) qui nécessite la limite des sommes partielles de $H_m(X_j)$; lorsque X est à longue mémoire non isotrope, le comportement de ces sommes partielles est obtenu dans [9] dans le cas où m=1.

Corollaire 3.2 (longue mémoire non-isotrope de type produit) $Soit(\epsilon_n)_{n\in\mathbb{Z}^d}$ un bruit blanc gaussien. On considère le champ linéaire

$$X_n = \sum_{k \in \mathbb{Z}^d} a_k \epsilon_{n-k},$$

où les (a_k) sont, à une constante normalisatrice près garantissant $Var(X_1) = 1$, les coefficients de Fourier du filtre

$$a(\lambda) = \prod_{j=1}^{d} s(\lambda_j) |\lambda_j|^{\alpha_j},$$

où, pour tout j, $-1/2 < \alpha_j < 0$ et où s_j est bornée, continue en 0 tel que $s_j(0) \neq 0$. On suppose que le rang de Hermite de la fonction $\mathbb{1}_{\{G(X_n) \leq x\}} - F(x)$ vaut 1.

$$\frac{1}{n^{d/2 - \sum_{j=1}^{d} \alpha_j}} \sum_{j_1=1}^{[nt_1]} \dots \sum_{j_d=1}^{[nt_d]} \left(\mathbb{1}_{\{G(X_j) \le x\}} - F(x) \right) \overset{\mathcal{D}(\mathbb{R} \times [0,1]^d)}{\Longrightarrow} J_1(x) \int_{\mathbb{R}^d} \prod_{j=1}^{d} s_j(0) |\lambda_j|^{\alpha_j} \frac{e^{it_j \lambda_j} - 1}{i\lambda_j} dW(\lambda),$$

où J_1 est défini par (3), où W est le champ spectral associé au bruit blanc gaussien et où la convergence a lieu dans $D(\overline{\mathbb{R}} \times [0,1]^d)$ muni de la topologie uniforme et de la tribu engendrée par les boules ouvertes. Démonstration: Comme dans le corollaire 3.1, la convergence donnée dans le corollaire 3.2 est issue du comportement asymptotique des sommes partielles de (X_i) . On le trouve dans [9].

Nous donnons enfin un résultat de convergence dans le cas de champs gaussiens dont la densité spectrale est singulière sur un sous espace linéaire de $[-\pi,\pi]^d$.

Corollaire 3.3 Soit $(\epsilon_n)_{n\in\mathbb{Z}^d}$ un bruit blanc gaussien. On considère le champ linéaire

$$X_n = \sum_{k \in \mathbb{Z}^d} a_k \epsilon_{n-k},$$

où les (a_k) sont, à une constante normalisatrice près garantissant $Var(X_1) = 1$, les coefficients de Fourier du filtre

$$a(\lambda) = \left| \sum_{i=1}^{d} c_i \lambda_i \right|^{\alpha}, \quad -1/2 < \alpha < 0,$$

où $\lambda = (\lambda_1, \dots, \lambda_d)$ et $(c_1, \dots, c_d) \in \mathbb{R}^d$.

On suppose que le rang de Hermite de la fonction $\mathbb{1}_{\{G(X_n) \leq x\}} - F(x)$ vaut 1. Alors, quelque soit $-1 < 2\alpha < 0$ lorsque $d \leq 3$ et sous la restriction $-\frac{1}{d-2} < 2\alpha < 0$ lorsque $d \geq 4$,

$$\frac{1}{n^{d/2-\alpha}} \sum_{j_1=1}^{[nt_1]} \dots \sum_{j_d=1}^{[nt_d]} \left(\mathbbm{1}_{\{G(X_j) \leq x\}} - F(x)\right) \overset{\mathcal{D}(\bar{\mathbb{R}} \times [0,1]^d)}{\Longrightarrow} J_1(x) \int_{\mathbb{R}^d} a(\lambda) \prod_{j=1}^d \frac{e^{it_j \lambda_j} - 1}{i\lambda_j} dW(\lambda),$$

où J_1 est défini par (3), où W est le champ spectral associé au bruit blanc gaussien et où la convergence a lieu dans $D(\overline{\mathbb{R}} \times [0,1]^d)$ muni de la topologie uniforme et de la tribu engendrée par les boules ouvertes. Démonstration: Sous les hypothèses du corollaire 3.3, le majorant dans (6) est asymptotiquement nul. Le résultat de convergence de ce corollaire se déduit donc de la convergence des sommes partielles de (X_i) montrée dans [9].

Références

- [1] J. Beran. Statistics for Long memory processes. Chapman and Hall, New York. 1994.
- [2] H. Dehling, T. Mikosch et M. Sorensen. Empirical Process Techniques for Dependent Data. Birkhäuser, Boston. 2002.
- [3] H. Dehling et M. S. Taqqu. The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Stat., 4:1767-1783, 1989.
- R. L. Dobrushin et P. Major. Non central limit theorems for non-linear functionals of Gaussian fields. Z. Warsch. verw. Geb., 50:27-52, 1979.
- P. Doukhan, G. Lang et D. Surgailis. Asymptotics of weighted empirical processes of linear fields with long-range dependence. Ann. Inst. Henri Poincaré, 6:879–896, 2002.
- P. Doukhan, G. Lang, D. Surgailis et M.-C. Viano. Functional limit theorem for the empirical process of a class of Bernouilli shifts with long memory. J. Theoret. Probab., 18:161-186, 2005.

- [7] P. Doukan, G. Oppenheim et M. S. Taqqu. Long-range Dependence : Theory and Applications. *Birkhäuser, Boston.* 2003.
- [8] H.-C. Ho et T. Hsing. On the asymptotic expansion of the empirical process of long memory moving averages. Ann. Stat., 24:992-1024, 1996
- [9] F. Lavancier. Invariance principles for non-isotropic long memory random fields. preprint, 2005. $disponible\ à\ http://math.univ-lille1.fr/\ lavancier.$
- [10] F. Lavancier. Processus empirique de fonctionnelles de champs gaussiens à longue memoire. preprint 63, IX, IRMA, Lille, 2005. disponible à http://math.univ-lille1.fr/ lavancier.