

BUILDING FOR THE ROAD AHEAD

DETROIT 2022

Storage Wars

Seán C McCord

Who am I?

- Seán C McCord
 - former Principal Architect at Sidero Labs, maker of Talos Linux (and now Omni!)
 - original author of containerization of Ceph used by RedHat and Rook
 - seeker of distributed storage solutions for over 25 years
 - contributor to many open source projects over many years, across many fields
 - gainfully unemployed

This talk is...

- NOT a comparison of any cloud provider systems
- NOT a comparison of vendor CSIs
- NOT benchmark fest
- an Overview of the main open source storage solutions available for Kubernetes
- a guide to the Key Criteria to decide which is right for you

This talk is...

Plan:

- 1. Types of Storage
- 2. Location
- 3. Characteristics of Storage
- 4. Storage Interfaces
- 5. Contenders
- 6. Summary

Types of Storage

- Object stores
- Block stores
- Shared filesystems

Object Stores

- Key-Value database for data
- Based on web tech
 - Massively, widely readable
 - Network-native
 - Easily integrated and layered
- REST interfaces
- Writes, like web, more difficult
- Cannot use directly

Block Stores

- Present storage as block-oriented devices: disks
- Full control of filesystem and its tuning
- Direct map into Kubernetes PV
- Single pod attachment
- No one standard, but some protocols exist:
 - iSCSI
 - NVMEoF
- Can be made to offer the other types
 - MinIO for object storage
 - NFS for shared filesystem

Shared filesystems

- Presents files and directories across a number of nodes as a filesystem
- NFS
- Always locking problems
 - bottlenecks
 - contention locks
 - slow
- Least common denominator
- Easy to setup... and forget about

Location

- Clouds
 - single cloud vendor? Use their system
- In-Cluster vs Out-of-Cluster
 - Common manifests, Kubernetes for all
 - Greater portability, modularity
 - Danger
 - Storage is stateful
 - Data has value
 - Not easily or quickly replicated
 - Resource contention

Storage Characteristics

- Scalability
- Performance
- Cost

Characteristic: Scalability

- Traditional RAID
 - single controller
 - highly centralised
 - limited replication factors
- Standard SAS expanders
 - redundant controllers
 - highly centralised
 - limited tiering
- Storage clusters
 - eliminate single points of failure
 - horizontally scalable
 - faster as they grow
 - dynamic, fine-grained replication, topology

Characteristic: Performance

- Benchmarks misleading
 - drives themselves
 - controllers and interfaces
 - workload needs
 - unexpected scaling effects
 - test as precisely as possible
- Some systems slow down as they scale
- Others speed up with scale
- Still, there are architectural choices which influence real-world performance

Characteristic: Cost

- Disks, controllers... hardware
- Complexity of the system
- Maintenance drives _will_ fail... often
- Growth / Scalability

Storage Interfaces

- iSCSI
 - old standard
 - used by many
 - open-iscsi
 - pre-container age
 - bad practises
- NVMEoF
 - new standard
 - cleaner, simpler, faster
 - clean containers
- Ceph
 - RBD
 - CephFS
- NFS

Storage Wars

The Contenders

Contenders: Vendor adapters

- Majority of CSI providers
- Specific vendor hardware or service
- Just an adapter
- If you have that vendor, just use it

Contenders: Proprietary

- Black boxes
- No way to evaluate
- Examples (no particular order)
 - Hedvig: iSCSI, all three types
 - Kumoscale: NVMEoF, NVME only
 - StorageOS: size-limited freemium
 - StorPool: iSCSI pooling abstractor
 - onDat: generic storage adapter
 - PortWorx: size-limited freemium, claims performance

Contenders: Local Storage

- Pod Node binding
- native Persistent Local Volumes
- TopoLVM: use LVM volumes

Contenders: Shared Filesystems

- NFS
- Gluster via Kadalu
 - in-cluster operator
 - aggregating shared fileystem
- CephFS

Contenders: Pooling/Aggregating

- Group and repackage for Kubernetes
- VDA (Virtual Disk Array)
 - NVMEoF
 - simple pooling aggregator
 - not much tooling
- MinIO
 - feature-rich object store
 - aggregates wide variety of storage backends
- LinStor
 - somewhat aggregative, somewhat replicative
 - pluggable providers for many things

- OpenEBS family
 - most limited of storage clusters here
 - just block storage
 - limited replication and topology control
 - cStor
 - original engine
 - ZFS-based
 - iSCSI interface
 - rugged, tested, slow
 - Jiva
 - stepchild; upgraded iSCSI interface
 - Longhorn

- OpenEBS family (continued)
 - Longhorn
 - Rancher-sponsored, Rancher-focused
 - variously rewritten, but still iSCSI
 - Mayastor
 - shiny: rust, NVMEoF, even Nix
 - very new
 - 1.0 this year, breaking changes
 - simple replication only
 - history of docs problems
 - requires external etcd database

SeaweedFS

- RADOS-based (like Ceph)
- Simpler, more focused re-envisionment of Ceph
- Optimised for container workloads and small files
- o in- or out-of-cluster opteration

Ceph

- complex to start
- scales well, faster with size
- resource-intensive
- immensely tunable
- high topology awareness
- o rugged, tested, and highly fault-tolerant

- Rook/Ceph
 - Operator for Ceph (and others)
 - Ceph administration = easy
 - Trades some control for automation

Summary: Comparison Table

Name	Supported Types	Administrative Complexity	Scalability	Reliability	Performance
Ceph	OBF	Hard	3	3 """	2
Kadalu/Gluster	F	Medium	2 00	2	2
Linstor	В	Easy	2	2	3 5
Longhorn	В	Medium	2 合	2	2
MinIO	О	Easy	2 合	2	2
NFS	F	Easy	1 📭	1 🕎	1 🔐
OpenEBS/cStor	В	Medium	2	3	2
OpenEBS/Mayastor	В	Medium	2	1 🕎	3 58
Rook/Ceph	OBF	Easy	3	3	2
SeaweedFS	OBF	Medium	2 🖧	2	2
TopoLVM	В	Easy	1 प्रा	2	3 5
VDA	В	Hard	2 00	2	2

Executive Summary

- Pay someone to handle it: PortWorx
- Nothing fancy, just store it: Linstor
- Need control or scaling, but Ceph is scary:
 - Performance over Ruggedness: OpenEBS/Mayastor
 - Ruggedness over Performance: OpenEBS/cStor
- Best features, scaling, and fault tolerance
 - Stability over all: Ceph
 - Otherwise: Rook/Ceph

Storage Wars

BUILDING FOR THE ROAD AHEAD

DETROIT 2022

BUILDING FOR THE ROAD AHEAD

DETROIT 2022

October 24-28, 2021

Seán C McCord CTO, CyCore Systems

Please scan the QR Code above to leave feedback on this session

BUILDING FOR THE ROAD AHEAD

DETROIT 2022