

IIC2223 — Teoría de Autómatas y Lenguajes Formales 2020-2

Tarea 4 – Respuesta Pregunta 2

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto tal que $\mathcal{L}(\mathcal{G}) = L$. Definiremos una gramática \mathcal{G}' tal que $\mathcal{L}(\mathcal{G}') = L^{\text{rev}}$. Plantearemos la definición y luego demostraremos que cumple la propiedad.

Sea $\mathcal{G}' = (V, \Sigma, P', S)$, donde

$$P' = \{(v, w^{\text{rev}}) \in V \times (V \cup \Sigma)^* \mid (v, w) \in P\}$$

son las producciones de \mathcal{G}' . P' consiste simplemente en usar el reverso del lado derecho de las producciones de \mathcal{G}

Usaremos la notación de \Rightarrow para denotar la relación de producción sobre P' y $\stackrel{'}{\Rightarrow}$ para la relación sobre P'

A continuación demostraremos que $\mathcal{L}(\mathcal{G}') = L^{\text{rev}}$.

$$(\Rightarrow) L^{rev} \subseteq \mathcal{L}(\mathcal{G}')$$

Sea $w^{\text{rev}} \in L^{\text{rev}}$. Por definición de L^{rev} , esto implica que $w \in L$. Luego, se cumple que $S \stackrel{*}{\Rightarrow} w$. Demostraremos por inducción que para cada relación de deriva $S \stackrel{*}{\Rightarrow} w$ de \mathcal{G} , tenemos una relación $S \stackrel{*'}{\Rightarrow} w^{\text{rev}}$ de \mathcal{G}' .

Hipótesis Inductiva:

Para $S \stackrel{*}{\Rightarrow} \gamma$, asumiremos que se cumple la relación $S \stackrel{*'}{\Longrightarrow} \gamma^{\text{rev}}$

Caso Base:

Para $S \Rightarrow \gamma$, tenemos que por definición de \mathcal{G}' , se cumple $S \stackrel{'}{\Rightarrow} \gamma^{\text{rev}}$

Tesis Inductiva:

Para $S \stackrel{*}{\Rightarrow} \alpha \cdot \gamma \cdot \beta \Rightarrow \alpha \cdot \delta \cdot \beta$, con $\alpha, \gamma, \beta \in V, \delta \in (V \cup \Sigma)^*$ tenemos que:

$$S \stackrel{*'}{\Longrightarrow} \beta^{\text{rev}} \cdot \gamma \cdot \alpha^{\text{rev}}$$

(1) Por HI

$$\beta^{\text{rev}} \cdot \gamma \cdot \alpha^{\text{rev}} \stackrel{\prime}{\Rightarrow} \beta^{\text{rev}} \cdot \delta^{\text{rev}} \cdot \alpha^{\text{rev}}$$

(2) Por Definición de \mathcal{G}'

$$S \stackrel{*'}{\Longrightarrow} \beta^{\text{rev}} \cdot \delta^{\text{rev}} \cdot \alpha^{\text{rev}} = (\alpha \cdot \delta \cdot \beta)^{\text{rev}}$$

(3) Por (1) y (2)

Con esto demostramos que $w \in L$ implica que $w^{\text{rev}} \in \mathcal{L}(\mathcal{G}')$. Luego, $w^{\text{rev}} \in L^{\text{rev}}$ implica que $w^{\text{rev}} \in \mathcal{L}(\mathcal{G}')$

$$(\Leftarrow) \ \mathcal{L}(\mathcal{G}') \subseteq L^{rev}$$

Sea $w^{\text{rev}} \in \mathcal{L}(\mathcal{G}')$. Luego, se cumple la relación $S \stackrel{*'}{\Longrightarrow} w^{\text{rev}}$.

Demostraremos por inducción que para cada relación de deriva $S \stackrel{*'}{\Longrightarrow} w^{\text{rev}}$ de \mathcal{G}' , tenemos una relación $S \stackrel{*}{\Longrightarrow} w$ de \mathcal{G} .

Hipótesis Inductiva:

Para $S \stackrel{*'}{\Longrightarrow} \gamma^{\rm rev}$, asumiremos que se cumple la relación $S \stackrel{*}{\Longrightarrow} \gamma$

Caso Base:

Para $S \stackrel{'}{\Rightarrow} \gamma^{\text{rev}}$, ya que \mathcal{G}' fue construida invirtiendo el lado derecho de las producciones de \mathcal{G} , tenemos que debe existir la producción en \mathcal{G} tal que $S \Rightarrow \gamma$.

Tesis Inductiva:

Para $S \stackrel{*'}{\Longrightarrow} \beta^{\text{rev}} \cdot \gamma \cdot \alpha^{\text{rev}} \stackrel{'}{\Longrightarrow} \beta^{\text{rev}} \cdot \delta^{\text{rev}} \cdot \alpha^{\text{rev}}$, con $\gamma \in V, \beta^{\text{rev}}, \delta^{\text{rev}}, \alpha^{\text{rev}} \in (V \cup \Sigma)^*$ tenemos que:

$$S \stackrel{*}{\Longrightarrow} \alpha \cdot \gamma \cdot \beta$$

$$\alpha \cdot \gamma \cdot \beta \Rightarrow \alpha \cdot \delta \cdot \beta$$

(2) Por Definición de
$$\mathcal{G}$$
 y \mathcal{G}'

$$S \stackrel{*}{\Longrightarrow} \alpha \cdot \delta \cdot \gamma$$

$$(3)$$
 Por (1) y (2)

Con esto demostramos que $w^{\text{rev}} \in \mathcal{L}(\mathcal{G}')$ implica que $w \in L$. Luego, $w^{\text{rev}} \in \mathcal{L}(\mathcal{G}')$ implica que $w^{\text{rev}} \in L^{\text{rev}}$.

Como hemos demostrado que se puede formular una gramática libre de contexto para L^{rev} bajo el supuesto de que que L es libre de contexto, hemos demostrado lo pedido.