Azzolini Riccardo 2018-10-16

# Funzione inversa e composizione di funzioni

# 1 Funzione inversa

Se  $f: A \to B$  è una funzione biettiva, la sua funzione **inversa** è la funzione  $f^{-1}: B \to A$  tale che per ogni  $b \in B$ ,  $f^{-1}(b)$  è l'unico elemento di A che ha b come immagine, cioè  $f(f^{-1}(b)) = b$ .

## 1.1 Esempi su insiemi finiti

$$A = \{1, 2, 3\} \qquad B = \{a, b, c\}$$

$$f:A\to B$$
  $f(1)=a$   $f(2)=c$   $f(3)=b$   $f^{-1}:B\to A$   $f^{-1}(a)=1$   $f^{-1}(b)=3$   $f^{-1}(c)=2$ 



$$g:A \to B$$
  $g(1)=a$   $g(2)=a$   $g(3)=b$ 



g non è biettiva:

- non è iniettiva perché g(1) = g(2) = a
- non è suriettiva perché c non è immagine di alcun elemento di A

Non è quindi possibile definire la funzione inversa di g perché la relazione inversa  $\{(a,1),(a,2),(b,3)\}$  non è una funzione.

# 1.2 Esempio su insieme infinito

$$f: n \in \mathbb{Z} \mapsto n+1 \in \mathbb{Z}$$

• f è iniettiva:

$$\forall n, m \in \mathbb{Z}, \quad n \neq m \implies f(n) \neq f(m)$$

$$f(n) = n+1 \quad f(m) = m+1$$

$$\forall n, m \in \mathbb{Z}, \quad n \neq m \implies n+1 \neq m+1$$

• f è suriettiva:

$$\forall m \in \mathbb{Z}, \quad \exists n \in \mathbb{Z}, \quad m = f(n)$$

$$m = f(n) = n + 1$$

$$n = m - 1$$

$$m = (m - 1) + 1 = f(m - 1)$$

$$\forall m \in \mathbb{Z}, \quad m = f(m - 1)$$

• Quindi f è biettiva.

È possibile calcolare  $f^{-1}: \mathbb{Z} \to \mathbb{Z}$ . Per ogni  $n \in \mathbb{Z}$ ,  $f^{-1}(n)$  è quel numero tale che  $f(f^{-1}(n)) = n$ , cioè  $f^{-1}(n) + 1 = n$ . Quindi:

$$f^{-1}(n) = n - 1$$

# 2 Composizione

Date due funzioni  $f: A \to B$  e  $g: B \to C$ , se  $a \in A$  allora  $f(a) \in B$  e  $g(f(a)) \in C$ : si dice allora **composizione** di f e g la funzione

$$g \circ f : a \in A \mapsto g(f(a)) \in C$$

### 2.1 Esempio

$$A = \{a, b, c\} \qquad B = \{1, 2\} \qquad C = \{d, e, f\}$$

$$f(a) = 1$$
  $f(b) = 2$   $f(c) = 1$   
 $g(1) = e$   $g(2) = f$ 



$$g \circ f : A \to C$$
 
$$(g \circ f)(a) = e \quad (g \circ f)(b) = f \quad (g \circ f)(c) = e$$

#### 2.2 Composizione con l'inversa

Data una funzione biettiva  $f:A\to B$  e la sua inversa  $f^{-1}:B\to A$ :

- se  $a \in A$ ,  $f^{-1}(f(a)) = a$ , quindi  $f^{-1} \circ f = id_A$
- se  $b \in B$ ,  $f(f^1(b)) = b$ , quindi  $f \circ f^{-1} = id_B$

## 2.2.1 Esempio

$$A = \{a, b\}$$
  $B = \{1, 2\}$ 

$$f(a) = 1$$
  $f(b) = 2$   
 $f^{-1}(1) = a$   $f^{-1}(2) = b$ 



$$f^{-1} \circ f : A \to A$$
$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(1) = a$$
$$(f^{-1} \circ f)(b) = f^{-1}(f(b)) = f^{-1}(2) = b$$