

- > PDR was first devised as hardware verification technique in 2010 by Aaron Bradley¹
 - → Surprisingly won 3rd place at CAV 2010 hardware checking competition²

^{1:} Aaron R. Bradley. Sat-based model checking without unrolling. In *VMCAI*, volume 6538 of *Lecture Notes in Computer Science*, pages 70–87. Springer, 2011.

- > PDR was first devised as hardware verification technique in 2010 by Aaron Bradley¹
 - → Surprisingly won 3rd place at CAV 2010 hardware checking competition²

"This new method appears to be the most important contribution to bit-level formal verification in almost a decade" ³

- > PDR was first devised as hardware verification technique in 2010 by Aaron Bradley¹
 - → Surprisingly won 3rd place at CAV 2010 hardware checking competition²

"This new method appears to be the most important contribution to bit-level formal verification in almost a decade" ³

Using PDR on software may have similar performance!

- Our goals:
 - Use PDR on software in the verification framework Ultimate¹
 - → Combining Trace Abstraction and PDR
 - → Comparison to existing techniques

Overview

- ➤ How does our PDR algorithm work?
 - Preliminaries
 - Running Example
 - Related Work

- **▶** How do we use PDR in Ultimate?
 - Combination of Trace Abstraction and our PDR algorithm
 - Implemented Improvements

Overview

- **Evaluation:**
 - Comparison of Trace Abstraction using PDR and Trace Abstraction using Nested Interpolants
- What can be done in the future?
 - Implementing more Improvements

PDR Algorithm: Preliminaries

- \triangleright A control flow graph (CFG) $A=(X,L,E,\ell_0,\ell_E)$ is a graph consisting of
 - A finite set of first-order variables X
 - A finite set of locations L
 - A finite set of transitions $E \subseteq L \times FO \times L$
 - \rightarrow FO is a quantifier free first-order logic formula over variables in X and $X' = \{x \in X \mid x' \in X'\}$
 - An initial location $\ell_0 \in L$
 - An error location $\ell_E \in L$

PDR Algorithm: Datastructures

- \triangleright Frame $F_{i,\ell}$:
 - Represents a first-order formula
 - ℓ is the corresponding location
 - *i* is the corresponding level
 - → Each location has multiple assigned frames
- \triangleright Proof-Obligation (p, ℓ, i) :
 - p is a first-order formula
 - ℓ is the corresponding location
 - *i* is the corresponding level
 - → Need to be blocked

PDR Algorithm: Description

> Starts with checking for a 0-Counter-Example

Repeats three phases until termination:

- 1. Next Level Initialization Phase
- 2. Blocking-Phase
- 3. Propagation-Phase

Example: Running Example

- 1. Step: Check for 0-Counter-Example
- \blacktriangleright Is $\ell_0 = \ell_E$?
 - → No, continue with initialization

location	0
ℓ_0	
ℓ_1	
ℓ_2	
ℓ_3	
ℓ_4	

2. Step: Initialization of level 0

$$F_{0,\ell} = \begin{cases} T, & \ell = \ell_0 \\ F, & otherwise \end{cases}$$

location	0
ℓ_0	t
ℓ_1	f
ℓ_2	f
ℓ_3	f
ℓ_4	f

2. Step: Initialization of level 0

$$F_{0,\ell} = \begin{cases} T, & \ell = \ell_0 \\ F, & otherwise \end{cases}$$

location	0	1
ℓ_0	t	
ℓ_1	f	
ℓ_2	f	
ℓ_3	f	
ℓ_4	f	

- 3. Step: Level 1
- > Initialize level 1 frames as true

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 3. Step: Level 1
- ➤ Initialize level 1 frames as true

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 3. Step: Level 1
- ➤ Get initial proof-obligation

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_2, 1)$

•
$$(p = 0, \ell_2, 1)$$

	location	0	1
	ℓ_0	t	t
\	ℓ_1	f	t
	ℓ_2	f	t
	ℓ_3	f	t
	ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_2, 1$)
- Predecessor ℓ_1 :

•
$$f \wedge n \geq 0 \wedge p' = 0$$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :
 - $f \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable
 - \rightarrow Strengthen frames F_{0,ℓ_2} , F_{1,ℓ_2}

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :
 - $f \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable
 - \rightarrow Strengthen frames F_{0,ℓ_2} , F_{1,ℓ_2}

Proof-Obligations:

	location	0	1
	ℓ_0	t	t
\	ℓ_1	f	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
	ℓ_3	f	t
	ℓ_4	f	t

- 5. Step: Level 1 Propagation-Phase
- > Is there a global fixpoint?

Proof-Obligations:

· Ø

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Level 1 Propagation-Phase
- Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for $\ell \in L \setminus \{\ell_E\}$?

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Level 1 Propagation-Phase
- Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for $\ell \in L \setminus \{\ell_E\}$?
- → No. Continue with next level.

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 6. Step: Level 2
- Initzialize new frames
- Add initial proof-obligation $(p = 0, \ell_2, 2)$

Proof-Obligations:

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 6. Step: Level 2
- ➤ Initzialize new frames
- Add initial proof-obligation $(p = 0, \ell_2, 2)$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_2, 2$)
- Predecessor ℓ_1 :

•
$$t \wedge n \geq 0 \wedge p' = 0$$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- \succ Try to block $(p = 0, \ell_2, 2)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Satisfiable!
 - $\rightarrow wp(n \ge 0, p' = 0) = (p = 0)$
 - \rightarrow New proof-obligation $(p = 0, \ell_1, 1)$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- \succ Try to block $(p = 0, \ell_2, 2)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Satisfiable!
 - $\Rightarrow wp(n \ge 0, p' = 0) = (p = 0)$
 - \rightarrow New proof-obligation $(p = 0, \ell_1, 1)$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_0 :

•
$$t \wedge p \neq 0 \wedge p' = 0$$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_0 :
 - $t \wedge p \neq 0 \wedge p' = 0$
 - → Unsatisfiable!
 - \rightarrow Strengthen frames F_{0,ℓ_1} , F_{1,ℓ_1}

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ₄:

$$f \wedge n' = n - 1 \wedge p' = 0$$

- $(p=0,\ell_2,2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_4 :

•
$$f \wedge n' = n - 1 \wedge p' = 0$$

→ Unsatisfiable!

•
$$(p = 0, \ell_2, 2)$$

•
$$(p = 0, \ell_1, 1)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_4 :

•
$$f \wedge n' = n - 1 \wedge p' = 0$$

→ Unsatisfiable!

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block ($p = 0, \ell_2, 2$) again
- Predecessor ℓ_1 :
 - $t \wedge p \neq 0 \wedge n \geq 0 \wedge p' = 0$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_2, 2)$ again
- Predecessor ℓ_1 :
 - $t \wedge p \neq 0 \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable!
 - \rightarrow Strengthen frames F_{2,ℓ_2}

Proof-Obligations:

• Ø

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t
ℓ_4	f	t	t

- 8. Step: Level 2 Propagation-Phase:
- Is there a global fixpoint?
- → No, continue with level 3

Proof-Obligations:

Ø

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t
ℓ_4	f	t	t

- 9. Step: Level 3
- Initzialize new frames
- Get initial proof-obligations

Proof-Obligations:

• Ø

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t
ℓ_4	f	t	t	t

- 9. Step: Level 3
- Initialize new frames
- Get initial proof-obligations

•
$$(p = 0, \ell_2, 3)$$

/	location	0	1	2	3
	ℓ_0	t	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
/	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t	t
	ℓ_4	f	t	t	t

- 10. Step: Level 3 Blocking-Phase
- Try to block ($p = 0, \ell_2, 3$)
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Like the level before this is satisfiable

•
$$(p = 0, \ell_2, 3)$$

/	location	0	1	2	3
	ℓ_0	t	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t	t
	ℓ_4	f	t	t	t

10. Step: Level 3 Blocking-Phase

- Try to block ($p = 0, \ell_2, 3$)
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Like the level before, get the same new proof-obligation but on level 2
 - \rightarrow $(p = 0, \ell_1, 2)$

•
$$(p = 0, \ell_2, 3)$$

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t
ℓ_4	f	t	t	t

- 10. Step: Level 3 Blocking-Phase
- Try to block ($p = 0, \ell_2, 3$)
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Like the level before, get the same new proof-obligation but on level 2
 - → $(p = 0, \ell_1, 2)$

- $(p = 0, \ell_2, 3)$
- $(p = 0, \ell_1, 2)$

/	location	0	1	2	3
	ℓ_0	t	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t	t
	ℓ_4	f	t	t	t

- 10. Step: Level 3 Blocking-Phase
- There are a lot of repetitions

- $(p = 0, \ell_2, 3)$
- $(p = 0, \ell_1, 2)$

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

11. Step: Level 3 Done

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

11. Step: Level 4

/	location	0	1	2	3	4
	ℓ_0	t	t	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t	t	t
	ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t	t

11. Step: Level 4 Initialization

location	0	1	2	3	4
ℓ_0	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	t	t

TODO The new interesting proof-obligation!

location	0	1	2	3	4
ℓ_0	t	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$			
ℓ_3	/f ^ f	$t \wedge f$	t	t	t
ℓ_4	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t	t

TODO The Last step:

Spoiler: Error is unreachable

locatio	n 0	1	2	3	4	5
ℓ_0						
ℓ_1						
ℓ_2						
ℓ_3						
ℓ_4						

Text

Related Work: Other Approaches

➤ Our Algorithm is based on the approach by Lange et al.¹

- Other possible ways of using PDR on software:
 - Bit-Blasting²:
 - ullet Encode the variables as bitvectors with new variable pc representing the control-flow
 - Use the original bit-level PDR algorithm
 - \rightarrow Not very competitive because tedious handling of pc variable

Related Work: Other Approaches

➤ Our Algorithm is based on the approach by Lange et al.¹

- ➤ Other possible ways of using PDR on software:
 - Abstract Reachability Tree (ART) Unrolling³:
 - Transform CFG into an ART
 - \Rightarrow Attach program-counter variable pc and first-order formula ϕ to locations
 - Block proof-obligations like in our approach

Implementation in Ultimate: Description Trace Abstraction with PDR

- 1. Calculate sequence of statements from initial location to error location
 - → Possible error trace

2. Construct a new CFG of error trace

- 3. Use PDR to show if error is reachable or not
 - → If reachable:
 - Error trace is feasible, program is unsafe

Implementation in Ultimate: Description Trace Abstraction with PDR

- 1. Calculate sequence of statements from initial location to error location
 - → Possible error trace

2. Construct a new CFG of error trace

- 3. Use PDR to show if error is reachable or not
 - → If unreachable:
 - Use formulas at the fixpoint as interpolant sequence to refute other error traces

1. Step: Get possible error trace

1. Step: Get possible error trace

2. Step: Construct new CFG

2. Step: Construct new CFG

3. Step: Use PDR

location	0	1	2	3
ℓ_0				
ℓ_1				
ℓ_2				

3. Step: Use PDR

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$

3. Step: Use PDR

location	n 0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$

4. Step: Use fixpoint invariants as interpolant sequence

location	0	1	2	3
ℓ_0	t	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$

4. Step: Use fixpoint invariants as interpolant sequence

Implementation in Ultimate: Implemented Improvements

This chain of obligations is always the same

Caching proof-obligations:

- Save the proof-obligation queue
- Start every new level with the latest blocked proof-obligation
- → Only proof-obligation that differs from level before

on each new level Initial Obligation: Initial Obligation Blocked 1. Obligation: 1. Obligation: generated by Initial Blocked 2. Obligation: Obligation: generated by 1 Blocked Newest Obligation:

Generated by 2.

Implementation in Ultimate: Implemented Improvements

- Skipping already blocked proof-obligations:
 - Save unsatisfiable queues to SMT-solver
 - → If a saved queue is seen again, do not call SMT-solver again, strengthen frames right away

Evaluation: Data Comparison

We benchmarked PDR

Evaluation: Discussion 18.09.2018

Future Work: Implementing Further Improvements

- Using Interpolation:
 - Our algorithm is inefficient when dealing with loops
 - Idea:
 - Instead of strengthening frames with negated proof-obligation, calculate Interpolant for transition and proof-obligation and add that

Future Work: Implementing Further Improvements

- Dealing with procedures:
 - C programs often contain procedures with which PDR cannot deal
 - Idea:
 - Use a non-linear approach of PDR
 - Calculate a procedure summary and add that to the CFG, removing the procedure altogether

Conclusion 18.09.2018

