FEUILLE DE T.D. 3

Les notations sont celles du cours.

Exercice 1.

Soit *E* un ensemble non vide.

- 1.1 Soit A un sous-ensemble de E distinct de $\{\}$ et de E. Déterminer la σ -algèbre \mathcal{A}^* engendrée par A.
- 1.2 Soit $\mathcal{P} = \{A, B, C\}$ une partition de l'ensemble E en 3 sous-ensembles. Déterminer la σ -algèbre \mathcal{P}^* engendrée par \mathcal{P} .

On pose $E = \mathbb{R}$.

1.3 Déterminer la σ -algèbre \mathcal{F}^* engendrée par la famille d'intervalles réels :

$$\mathcal{F} = \{[0,1[,[1,2],]2,3],[0,3]^c\}$$

Exercice 2.

Soit E un espace mesurable et soit A une partie de E.

On note $\mathbb{1}_A$ la fonction indicatrice de A.

Montrer que : $\mathbb{1}_A$ est mesurable $\Leftrightarrow A$ est mesurable.

Exercice 3. Mesure de Dirac.

Soit S_E une σ -algèbre définie sur un ensemble E, et soit x un point fixé de E. On définit une application δ_x sur S_E par la formule suivante :

$$\forall A \in \mathcal{S}_E : \ \delta_x(A) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}$$

Montrer que δ_x définit une mesure sur \mathcal{S}_E .

Exercice 4. Mesure de comptage.

Soit E un ensemble dénombrable. On note μ l'application définie sur $\mathcal{P}(E)$ telle que, pour tout $A \in \mathcal{P}(E)$:

$$\mu(A) = \begin{cases} card(A) & si \ A \ est \ fini \\ +\infty & si \ A \ est \ infini \end{cases}$$

Montrer que μ définit une mesure sur $\mathcal{P}(E)$.