ชื่อโครงการ JTM for you health

สมาชิกในกลุ่ม

- 64106107 ธัมมกิตติ์ โชติช่วง
- 64107899 ปณชัช เอี่ยมน้ำ
- 64113889 ศุภณัฐ คุ้มรักษ์

หน้า Website การแสดงผล

บทน้ำ

ทางกลุ่มผู้จัดทำโครงการได้มองเห็นถึงความสำคัญเรื่องสภาพแวดล้อมและความพึงพอใจของผู้คน ซึ่งเป็น ปัจจัยสำคัญที่ส่งผลต่อคุณภาพชีวิตและประสิทธิภาพการทำงาน โดยความเหมาะสมของสภาพแวดล้อมนั้น ประกอบไปด้วย อุณหภูมิ ความขึ้นภายในอากาศ และที่สำคัญคือ ค่าฝุ่น PM2.5 และ PM10 ที่ส่งผลต่อสภาวะ ทางเดินหายใจ ซึ่งทางกลุ่มจึงจัดทำอุปกรณ์ที่ตรวจจับค่า อุณหภูมิ ความชื้น และค่าฝุ่น ที่เหมาะสม เพื่อเป็น แนวทางในการป้องกันหากเกิดเหตุการณ์ที่ค่าดังกล่าวผิดปกติ เพื่อเพิ่มความเป็นอยู่ให้ดีขึ้นกับผู้ใช้งานที่กำลัง ดำเนินกิจกรรมในขณะนั้น

เนื่องด้วยปัจจุบัน สภาพแวดล้อมหรือสภาพอากาศนั้นมีความแปรปรวนเป็นอย่างมากซึ่งส่งผลเสียให้คนที่ เป็นโรคภูมิแพ้หรือคนปกติเกิดสภาวะติดขัดทางเดินหายใจ หรือหายใจไม่สะดวก และรุนแรงถึงขั้นหายใจไม่ได้ และ เพียงแค่ค่าอุณภูมิที่แสดงอยู่บนแอปพลิเคชันในปัจจุบันนั้นก็ไม่เพียงพอที่จะบอกได้ว่าสภาพแวดล้อมที่ผู้ใช้งานอยู่ นั้นเหมาะสมหรือไม่เหมาะสม ซึ่งจากปัญหาเหล่านี้ทางกลุ่มผู้จัดทำจึงมุ่งเน้นในการผลิตอุปกรณ์ IoT ที่สามารถ ตรวจจับค่าอุณหภูมิ ความชื้น และค่าฝุ่น โดยนำค่าอุณหภูมิและความชื้นมาคำควณค่าดัชณีความร้อน เพื่อเป็นตัว ช่วยในการรับมือกับสถานการณ์ที่จะเกิดขึ้นกับอุณหภูมิที่ผู้ใช้รับรู้ได้จริง ณ ขณะนั้น

กลุ่มเราจึงมุ่งเน้นในการทำอุปกรณ์ IoT เพื่อตรวจจับค่าจากสิ่งแวดล้อมได้แก่ ค่าอุณภูมิ ความชื้น ค่าฝุ่น PM2.5 และ PM10 โดยจะแสดงผลขึ้นเว็บไซต์เพื่อบอกคุณภาพสภาพอากาศ ณ ขณะนั้นว่ามีผลเป็น ปกติ แย่ และ แย่มาก ซึ่งจะมีการแจ้งเตือนด้วยเสียงผ่านอุปกรณ์ IoT เพื่อจะให้ผู้ใช้งานรับรู้ถึงสถาพอากาศที่ไม่เหมาะสม ณ ขณะนั้น ซึ่งสามารถช่วยการตัดสินใจในการแก้ปัญหาเรื่องสภาพแวดล้อมด้วยตัวเอง

สิ่งที่เรามุ่งเน้นคือการนำเทคโนโลยี IoT ที่มีอยู่มาใช้ในการตรวจจับค่าอุณหภูมิ ความชื้น มาคำนวณค่า ดัชนีความร้อน และค่าฝุ่นที่มีอยู่ในสภาพแวดล้อมนั้นมาประมวลผล และแสดงผลค่าความเหมาะสมของสภาพ ภูมิอากาศว่าอยู่ในเกณฑ์อะไร เพื่อให้ผู้ใช้งานสามารถรับมือกับสถานการณ์ที่สภาพแวดล้อมนั้นเริ่มเปลี่ยนแปลง และส่งผลเสียต่อตัวผู้ใช้งานเอง ดังนั้นโครงงานของเราจึงเป็นตัวช่วยในการตัดสินใจในการรับมือกับสภานการณ์ที่ สภาพแวดล้อมนั้นมีแนวโน้มที่ส่งผลเสียให้กับผู้ใช้งาน

การออกแบบระบบ

สถาปัตยกรรมระบบ

จากสถาปัตยกรรมระบบนี้ เป็นสถาปัตยกรรมของระบบ JTM ที่แบ่งเป็น 3 โมดูลดังนี้

โมดูลที่ 1 คือ Microcontroller & Sensors เป็นโมดูลที่เกี่ยวกับอุปกรณ์ด้าน Hardware ต่าง ๆ โดยส่วน ของ ATmega32P นั้นจะทำหน้าที่ในการเก็บค่าข้อมูลที่ได้จาก Sensor DH11, Sensor SDS011 และทำการเช็ค ค่า Status หากมีค่าดัชนีความร้อนหรือ PM2.5 ที่อยู่ในเกณ์เฝ้าระวังหรืออันตราย จากนั้นจะส่งค่าไปยัง ESP8266 ที่จะแสดงสถานะส่งข้อมูลผ่าน LED ว่าสามารถอ่านข้อมูลจาก ATmega32P และส่งข้อมูลเข้า json server ได้ หรือไม่

โมดูลที่ 2 คือ Backend เป็นโมดูลที่เกี่ยวกับการประสานงานการรับส่งข้อความระหว่างไคลเอนต์ต่างๆ โดยประกอบด้วยส่วนของ Json server ทำหน้าที่ในการรับและกรองข้อความจาก Microcontroller เพื่อใช้ใน การติดต่อระหว่างโมดูลและจัดเก็บข้อมูล จากนั้น Flask server จะทำหน้าที่ในการเรียกใช้ API จาก Json Server เพื่อทำหน้าที่เป็นตัวติดต่อระหว่าง Json server และ Frontend

โมดูลที่ 3 คือ Frontend เป็นโมดูลที่เกี่ยวกับการแสดงผลข้อมูล สถานะต่าง ๆ ของค่าที่ได้รับมาจาก Sensor จะทำหนน้าที่เป็นส่วนของการแสดงผลซึ่งในส่วนนี้จะเป็นการแสดงผลข้อมูลที่ได้รับมาในส่วนของ Json Server ประกอบไปด้วย ค่าอุณภูมิ ค่าความชื้น ค่าดัชนีความร้อน ค่าฝุ่น PM2.5 PM10 Timestamp และ คุณภาพอากาศแบบ Realtime ทุกๆ 5 วินาที นอกจากนี้จะมีการส่งค่าคุณภาพอากาศกลับไปยังบอร์ด เพื่อแจ้ง เตือนคุณภาพอากาศ Warning และ Uncomfortable

สถาปัตยกรรมซอฟต์แวร์

Module สำหรับการใช้งานผ่าน Web Frontend โดยผู้ใช้จะต้องทำงานเข้าใช้งาน Website ก่อนจากนั้น ระบบจะทำการดึงค่าจาก Web API Server มาแสดงผลผลบนหน้า Website โดยจะมีการอับเดตค่าสภานะและ สภาพแวดล้อมทุกๆ 5 วินาที

ระบบจะส่งค่า Status จาก Website ไปประตูผ่าน MQTT Broker ไปยัง Microcontroller ซึ่งจะสั่งให้ Buzzer Sensor ทำงานเพื่อส่งเสียงบ่งบอกถึงระดับความอันตรายในสภาพแวดล้อมนั้น โดย Module นี้ ประกอบด้วย 5 องค์ประกอบหลัก ได้แก่

1. Authorized User: ผู้ใช้งานระบบ

2. Web Frontend : หน้าเว็บไซต์สำหรับแสดงค่าสถานะและสภาพแวดล้อม

3. Web API Server : บริการ API สำหรับ Web Frontend ในการรับ-ส่งข้อมูล

- 4. Database : ฐานข้อมูลสำหรับเก็บข้อมูลสภาพแวดล้อม
- 5. MQTT Broker : ตัวกลางสำหรับรับส่งข้อมูลสถานะระหว่าง Web API Server และ Microcontroller

โครงสร้างข้อมูล

ข้อมูลที่รับจากเซนเซอร์ต่าง ๆ จะถูกจัดเก็บในรูปแบบโครงสร้างของ Json ที่จะประกอบไปด้วยข้อมูล ของ Temperature, Humidity, HeatIndex, PM2.5, PM10, Status, timestamp และ id ตามลำดับ ที่ถูก จัดเก็บใน Module ชื่อ ESP8266

Data Dictionary

Attribute Name	Description	Data Type	Example
id	id ของข้อมูลที่นำเข้า	int	1
Timestamp	เวลาที่นำเข้าข้อมูล	timestamp	12-12-2023 20:32:11

Temp	ค่าของอุณหภูมิ	float	24.02
Humid	ค่าของความชื้น	float	62.00
HeatIndex	ค่าของอุณหภูมิจากมนุษย์	float	24.06
PM2.5	ค่าของฝุ่นขนาดไม่เกิน 2.5 ไมครอน	float	12.80000019
PM10	ค่าของฝุ่นขนาดไม่เกิน 10 ไมครอน	float	14.39999962
Status	ค่าที่บ่งบอกถึงคุณภาพอากาศ ณ ปัจจุบัน	String	Comfortable

การพัฒนาระบบ

Board

- 1. ATmega328P ทำหน้าที่ในการวัดค่าจากเซนเซอร์ต่าง ๆ
- 2. ESP8266 ทำหน้าที่ในการรับค่าจาก ATmega328P และส่งขึ้นไปยัง Json Server

Sensors

- 1. DHT11 ทำหน้าที่ในการรับค่า Temperature, Humidity และคำนวณค่าดัชนีความร้อน จากสิ่งแวดล้อม
- 2. SDS011 ทำหน้าที่ในการรับค่า PM2.5, PM10 จากสิ่งแวดล้อม
- 3. Buzzer ทำหน้าที่ในการส่งเสียงแจ้งเตือนหากค่าสภาพแวดล้อมอยู่ในเกณฑ์อันตราย
- 4. Led ทำหน้าที่ในการแสดงสถานะไฟสีเชียวหากสามารถส่งค่าขึ้นไปยัง Json และสถานะไฟสีแดงหากไม่ สามารถรับค่าจาก ATmega328P

เครื่องมือ

- 1. ภาษา C ใชในการเขียนคำสั่งลงไปยัง Board เพื่อที่จะสามารถรับค่าและส่งค่าข้อมูล
- 2. JSON ใช้ในการเป็น server ในการรับค่าจาก Board
- 3. JavaScrip ใช้ทำให้ website สามารถติดต่อกับผู้ใช้ได้
- 4. HTML ใช้ในการพัฒนาโครงสร้าง website เพื่อใช้ในการแสดงผล
- 5. CSS ใช้ในการตกแต่ง website

6. Python: Flask, requests, paho-mqtt, เป็น framework ในการเชื่อมต่อ IoT ขึ้นเว็บไซต์ สำหรับดึง ข้อมูลจาก Json Server ร่วมกับส่งค่าสถานะไปยังตัว Board เพื่อแจ้งเตือนด้วยเสียงผ่านเซนเซอร์ Buzzer

ไลบารี

- 1. Bootstrap เฟรมเวิร์ค ที่ช่วยให้สามารถสร้างเว็บไซต์ใช้เพื่อสร้างองค์ประกอบการออกแบบต่างๆ
- 2. DHT.h: ใช้ในการอ่านข้อมูลเซ็นเซอร์วัดอุณหภูมิและความชื้นชนิด DHT และคำควณค่าดัชนีความร้อน
- 3. SoftwareSerial.h: เปิดใช้งานการสื่อสารแบบอนุกรมบนขาอื่นๆ
- 4. SdsDustSensor.h: ใช้ในการอ่านข้อมูลเซ็นเซอร์วัดฝุ่นชนิด SDS
- 5. ESP8266WiFi.h: ใช้ในการเชื่อมต่อกับเครือข่าย Wi-Fi บนบอร์ด ESP8266
- 6. time.h: ใช้ในการทำงานเกี่ยวกับเวลาและวันที่
- 7. WiFiUdp.h: ใช้ในการสื่อสารแบบ UDP
- 8. NTPClient.h: ใช้ในการปรับเทียบเวลากับเซิร์ฟเวอร์ NTP
- 9. ESP8266HTTPClient.h: ใช้ในการส่งคำขอ HTTP ผ่านบอร์ด ESP8266
- 10. ArduinoJson.h: ใช้ในการแยกวิเคราะห์และสร้างข้อมูลแบบ JSON

การทดสอบ

โดยภาพนี้จะเป็นห้องที่ใช้ในการทดลอง

Test Case #1

ทดสอบนำ JTM ไปไว้ในห้องที่ปิดหน้าต่างและมีการเปิดแอร์อยู่ที่ 25 องศา

มีการเปิดแอร์และตั้งค่าแอร์อยู่ที่ 25 องศาและมีการปิดหน้าต่าง

____ ภาพผลลัพธ์การแสดงผล Status Comfortable

โดยในกรณีนี้จะมีการส่งแจ้งเตือนเป็นเสียงจาก sensor buzzer ที่จะมีเสียงเพื่อสื่อถึงการแจ้งเตือนควร เฝ้าระวังสภาพอากาศภายในห้อง

Test Case #2 ทดสอบนำ JTM ไปไว้ในห้องที่มีการปิดแอร์และเปิดหน้าต่างเพื่อให้มีอากาศถ่ายเท

มีการปิดแอร์และมีการเปิดหน้าต่าง

ภาพผลลัพธ์การแสดงผล Status Warning

โดยในกรณีนี้จะมีการส่งแจ้งเตือนเป็นเสียงจาก sensor buzzer ที่จะมีเสียงเพื่อสื่อถึงการแจ้งเตือนควร เฝ้าระวังสภาพอากาศภายในห้อง

• Test Case #3 ทดสอบนำ JTM ไปไว้ในห้องที่มีการปิดแอร์และปิดหน้าต่างเพื่อไม่ให้มีอากาศถ่ายเท

มีการปิดแอร์และมีการเปิดหน้าต่าง

ภาพผลลัพธ์การแสดงผล Status Uncomfortable

โดยในกรณีนี้จะมีการส่งแจ้งเตือนเป็นเสียงจาก sensor buzzer ที่จะมีเสียงเพื่อสื่อถึงการแจ้งเตือนสภาพอากาศที่ เป็นอันตรายภายในห้อง

• Test Case #4 ทดสอบนำ JTM ไปไว้ในห้องที่มีค่าของฝุ่น PM2.5 และ PM 10 ที่สูง

ภาพผลลัพธ์การแสดงผล Status Uncomfortable

โดยในกรณีนี้จะมีการส่งแจ้งเตือนเป็นเสียงจาก sensor buzzer ที่จะมีเสียงเพื่อสื่อถึงการแจ้งเตือนสภาพอากาศที่ เป็นอันตรายภายในห้อง

สรุปผลการทดสอบ

จากผลหารทดลองทั้ง 4 กรณีที่เราได้มีการทดสอบไป พบว่าการทดสอบเป็นไปตามวัตถุประสงค์ที่เราได้ตั้ง ไว้บอด ATmega32P สามารถรับค่าได้จาก Sensor และมีการส่งค่าไปยังบอด ESP8266 เพื่อที่จะส่งค่าต่อไปยัง Json Server จากนั้น Flask Server ทำการดึง API ของ Json Server ต่อเพื่อนำไปแสดงผลบนเว็บไซต์แล้ว จากนั้นเว็บไซต์ก็สามารถแสดงค่าสถานะ Temp, Humid, HeatIndex, PM2.5, PM10, และสถานะ Status ได้ ตามเกณฑ์ที่เราได้มีการกำหนดไว้จากแหล่งอ้างอิงในแต่ละกรณีตามที่เราได้ตั้งสมมุดติฐานไว้