VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS

Requirements modeling

Reikalavimų modeliavimas

Programų sistemų inžinerijos modeliai ir metodai laboratorinis darbas 2

Team: 1 course students

Matas Savickis

Vytautas Krivickas

Šarūnas Kazimieras Buteikis

Supervisor: Audronė Lupeikienė, M. Darbuot., Dr

CONTENTS

1.	NFR TYPE CATALOGUE	2
2.	MODELLING OF THE NON-FUNCTIONAL REQUIREMENTS 2.1. Self-isolation 2.2. Infected patients 2.3. Dangerouse countries	3 5
3.	IDENTIFYING AND MODELLING OF POSSIBLE OPERATIONALIZATIONS FOR NFR 3.1. Self-isolation	9 10
4.	DETECTING AND MODELLING OF IMPLICIT INTERDEPENDENCIES AMONG NFR	12
5.	MAKING DECISIONS 5.1. Chosen Operationalizations 5.2. Chosen Softgoals 5.3. Decision Explanation 5.4. Conclusions	13 14 15
6.	CONCLUSIONS ABOUT AN ACTOR DEPENDENCY	16
CC	ONCLUSIONS	17

1. NFR type catalogue

pic 1. NFR diagram

- **Time** System is monitoring the epidemic therefore it's processes or workflows have to be efficient time-wise.
- **Space** since the system will contain lots of different data (e.g. person's geographical coordinates), data must be stored efficiently.
- **Reliability** Tracking the state of the epidemic must be ensured 24/7 to not miss any crucial data or trends.
- **Confidentiality** epidemiological system must treat sensitive person information (e.g. received medical records) with respect to ensure systems credibility.
- **Legality** due to the fact the epidemiological system will deal with sensitive information, data handling must be in compliance with LT and EU data laws as well as GDPR.
- **Replication** non sensitive data must have duplicate records stored to increase the system's fault-tolerance.

2. Modelling of the non-functional requirements

2.1. Self-isolation

pic 2. Self Isolation - Initial Software Dependency Graph

pic 3. Self Isolation - Decomposing NFRs

2.2. Infected patients

pic 4. Infected Patients - Initial Software Dependency Graph

pic 5. Infected Patients - Decomposing NFRs

2.3. Dangerouse countries

pic 6. Dangerous Countries - Initial Software Dependency Graph

pic 7. Dangerous Countries - Decomposing NFRs

3. Identifying and modelling of possible operationalizations for NFR

3.1. Self-isolation

pic 8. Self Isolation - Possible Operationalizations

3.2. Infected patients

pic 9. Infected patients - Possible Operationalizations

3.3. Dangerouse countries

pic 10. Dangerous Countries - Possible Operationalizations

4. Detecting and Modelling of Implicit Interdependencies Among NFR

pic 11. Implicit interdependencies among NFRs

5. Making decisions

5.1. Chosen Operationalizations

pic 12. Chosen Operationalizations among NFRs

5.2. Chosen Softgoals

pic 13. Satisfied and Denied Softgoals

- **5.3.** Decision Explanation
- **5.4.** Conclusions

6. Strategic Dependency Model

7. Strategic Rationale Model

8. Conclusions about an dependency

Conclusions