LING530F: Deep Learning for Natural Language Processing (DL-NLP)

Muhammad Abdul-Mageed

muhammad.mageed@ubc.ca Natural Language Processing Lab

The University of British Columbia

Table of Contents

Problems With Gradients

2 Gated Recurrent Units (GRU)

3 Long-Short Term Memory Networks (LSTMs)

Vanishing and Exploding Gradients

Figure: A very long sequence, modelled with an RNN. Gradients can vanish and we will not know which gender a pronoun should be (male or female), or to which entity the pronoun refers (boy or girl)

Gradient Problems

- Gradients can **explode**, in which case we can clip them.
- Gadients can also vanish, which is a more serious problem.

Solving Long-Term Dependencies

Solutions For Gradient Problems

- Long-Short Term Memory (LSTM) networks introduced to solve the problem of long-term dependencies
- Gated Recurrent Units (GRU) (Cho et al., 2014; Chung et al., 2014):
 Simplification of LSTMs.
- We will introduce GRUs first, as they are simpler
- Notation modified from Andrew Ng, rather than original papers, for pedagogical simplicity (and elegance!)

Introducing a Memory Cell

Figure: We will augment the network with a memory cell

Gradient Problems

- The memory cell will help us retain information over long sequences
- For example, we can still know we need pronoun she, maintaining the female gender (and retaining the correct reference to "the girl")

Simple GRU

1: Simple GRU

$$C_t = a_t$$
 $ilde{C}_t = tanh(W_c.[C_{t-1}, x_t])$
 $\Gamma_u = \sigma(W_u.[C_{t-1}, x_t])$
 $C_t = \Gamma_u * \tilde{C}_t + (1 - \Gamma_u) * C_{t-1}$

- Note: Bias terms are dropped from equations
- C_t : Memory cell. \tilde{C}_t : New candidate memory cell for replacing C_t .
- Γ_n: Update gate.

Simple GRU Update Rule

2: Simple GRU Update

$$C_t = \Gamma_u * \tilde{C}_t + (1 - \Gamma_u) * C_{t-1}$$

- Γ_u : Result of a a sigmoid (between 0 and 1)
- When Γ_u is close to zero, we update very little o we almost keep value of old memory cell C_{t-1}

Full GRU

3: GRU With Relevance Gate

$$\tilde{C}_t = tanh(W_c.[\Gamma_r * C_{t-1}, x_t])$$

$$\Gamma_u = \sigma(W_u.[C_{t-1}, x_t])$$

$$\Gamma_r = \sigma(W_r.[C_{t-1}, x_t])$$

$$C_t = \Gamma_u * \tilde{C}_t + (1 - \Gamma_u) * C_{t-1}$$

$$a_t = C_t$$

- C_t : Memory cell. \tilde{C}_t : New candidate memory cell for replacing C_t .
- Γ_u : Update gate. Γ_r : Relevance gate (aka reset gate)

Full GRU With Bias Added

4: GRU With Bias

$$\begin{split} \tilde{C}_t &= tanh(W_c.[\Gamma_r * C_{t-1}, x_t] + b_c) \\ \Gamma_u &= \sigma(W_u.[C_{t-1}, x_t] + b_u) \\ \Gamma_r &= \sigma(W_r.[C_{t-1}, x_t] + b_r) \\ C_t &= \Gamma_u * \tilde{C}_t + (1 - \Gamma_u) * C_{t-1} \end{split}$$

- C_t : Memory cell. \tilde{C}_t : New candidate memory cell for replacing C_t .
- Γ_u : Update gate. Γ_r : Relevance gate (aka reset gate)

Alternative Notation For GRU

5: GRU With Bias

$$z_{t} = \sigma(W_{z}.[h_{t-1}, x_{t}])$$

$$r_{t} = \sigma(W_{r}.[h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = tanh(W.[r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

GRU Cells Notation Translation Table

- z: Update state $\rightarrow \Gamma_u$
- r: Relevance state (reset gate) $\rightarrow \Gamma_r$
- $m{ ilde{ ilde{h}}}$: New candidate memory cell state ightarrow $ilde{ ilde{C}}_t$
- h_t : GRU output $\to C_t$

Alternative Notation For GRU, With Bias

6: GRU With Bias

$$\begin{aligned} z_t &= \sigma(W_z.[h_{t-1},x_t] + \frac{b_z}{b_z}) \\ r_t &= \sigma(W_r.[h_{t-1},x_t] + \frac{b_r}{b_r}) \\ \tilde{h}_t &= \tanh(W.[r_t*h_{t-1},x_t] + \frac{b_h}{b_t}) \\ h_t &= (1-z_t)*h_{t-1} + z_t*\tilde{h}_t \end{aligned}$$

GRU Cells Notation Translation Table

- z: Update state $\rightarrow \Gamma_u$
- **r**: Relevance state (reset gate) $\rightarrow \Gamma_r$
- $m{ ilde{ ilde{h}}}$: New candidate memory cell state ightarrow $ilde{ ilde{C}}_t$
- h_t : GRU output $\to C_t$

7: Recall: Full GRU

$$\tilde{C}_t = tanh(W_c.[\Gamma_r * C_{t-1}, x_t])$$

$$\Gamma_u = \sigma(W_u.[C_{t-1}, x_t])$$

$$\Gamma_r = \sigma(W_r.[C_{t-1}, x_t])$$

$$C_t = \Gamma_u * \tilde{C}_t + (1 - \Gamma_u) * C_{t-1}$$

$$a_t = C_t$$

Toward an LSTM

Changes

- Parts in red will change!
- $a_t = C_t$ and so we will use a_t
- We will also need to add new parts, namely a forget gate and output gate . . .

8: Recall: Full GRU

$$\tilde{C}_t = tanh(W_c.[\Gamma_r * C_{t-1}, x_t])$$

$$\Gamma_u = \sigma(W_u.[C_{t-1}, x_t])$$

$$\Gamma_r = \sigma(W_r.[C_{t-1}, x_t])$$

$$C_t = \Gamma_u * \tilde{C}_t + (1 - \Gamma_u) * C_{t-1}$$

$$a_t = C_t$$

LSTM: New Candidate Cell $ilde{C}_t$

Updating \tilde{C}_t

• To acquire \tilde{C}_t , instead of C_{t-1} , we use the new a_{t-1} (since a_{t-1} is acquired differently than C_{t-1} , as we explain later)

9: New Candidate \tilde{C}_t

$$\tilde{C}_t = tanh(W_c.[a_{t-1}, x_t])$$

LSTM: Update and Forget Gates

Changes

- We will not use an relevance gate (Γ_r)
- Instead of using one update gate Γ_u , we will use **two gates** to control cell content: Γ_u (update gate) and Γ_f (forget gate)
- Forget gate will give the new memory cell the option to keep or forget the old cell (C_{t-1}) , but just add to it via update gate (Γ_u) \rightarrow See C_t below

10: LSTM

$$\Gamma_{u} = \sigma(W_{u}.[a_{t-1}, x_{t}])$$

$$\Gamma_{f} = \sigma(W_{f}.[a_{t-1}, x_{t}])$$

$$C_{t} = \Gamma_{u} * \tilde{C}_{t} + \Gamma_{f} * C_{t-1}$$

LSTM: Output Gate

Output Gate

- As mentioned, we will use an **output gate** (Γ_o)
- Output gate will enable us to update our a_t via element-wise multiplication by Γ_o

11: Output Gate

$$\Gamma_o = \sigma(W_o.[a_{t-1}, x_t])$$
 $a_t = \Gamma_o * tanh(C_t)$

LSTM: Putting it All Together

12: LSTM

$$\tilde{C}_t = tanh(W_c.[a_{t-1}, x_t])$$

$$\Gamma_u = \sigma(W_u.[a_{t-1}, x_t])$$

$$\Gamma_f = \sigma(W_f.[a_{t-1}, x_t])$$

$$\Gamma_o = \sigma(W_o.[a_{t-1}, x_t])$$

$$C_t = \Gamma_u * \tilde{C}_t + \Gamma_f * C_{t-1}$$

$$a_t = \Gamma_o * tanh(C_t)$$

LSTM: Putting it All Together, With Bias

13: LSTM

$$ilde{C}_t = tanh(W_c.[a_{t-1}, x_t] + b_c)$$
 $\Gamma_u = \sigma(W_u.[a_{t-1}, x_t] + b_u)$
 $\Gamma_f = \sigma(W_f.[a_{t-1}, x_t] + b_f)$
 $\Gamma_o = \sigma(W_o.[a_{t-1}, x_t] + b_o)$
 $C_t = \Gamma_u * \tilde{C}_t + \Gamma_f * C_{t-1}$
 $a_t = \Gamma_o * tanh(C_t)$

LSTM Schematic Illustrated

Figure: LSTM cell. [Inspired by Chris Olah and Andrew Ng]

Stacking LSTM Cells

Figure: LSTM cell.s stacked. Note: Each cell will need new-indexing (not shown in the Figure)