

Appendix A
(deletions are bracketed and insertions are underlined)

IN THE CLAIMS:

1 3. (Amended) A probe card as claimed in claim 1 [**or claim 2**], wherein said contactor is
2 extended to a predetermined direction from a surface of said substrate.

1 4. (Amended) A probe card as claimed in [**any one of**] claim[s] 1 [**to 3**], wherein said
2 contactor has a vertical elasticity against a surface of said substrate.

1 5. (Amended) A probe card as claimed in [**any one of**] claim[s] 1 [**to 4**], wherein at least
2 a portion of said signal transmission path near said end of it is made of the same amorphous
3 material used for said contactor.

1 6. (Amended) A probe card as claimed in [**any one of**] claim[s] 1 [**to 5**] further
2 comprising a grounding line, which is grounded, formed to be apart from and in parallel to
3 said signal transmission path.

1 7. (Amended) A probe card as claimed in [**any one of**] claim[s] 1 [**to 6**] further
2 comprising a low-resistance unit having lower resistance than that of said signal transmission
3 path, said low-resistance unit being formed near said signal transmission path.

1 8. (Amended) A probe card as claimed in [**any one of**] claim[s] 1 [**to 7**], wherein said
2 contactor comprises a contacting point made of a contact-point material on an end of it.

1 9. (Amended) A probe as claimed in [**any one of**] claim[s] 1 [**to 8**], wherein said
2 contactor is coated with a metal material.

1 10. (Amended) A probe card as claimed in [any one of] claim[s] 1 [to 9] further
2 comprising a voltage providing unit for providing a predetermined voltage, said voltage
3 providing unit being provided on a backside of said one side of said substrate.

1 13 (Amended) A probe card as claimed in [any one of] claim[s] 1 [to 12] further
2 comprising a plurality of contactors made of an amorphous material having a supercooled
3 liquid phase region, wherein said plurality of contactors are electrically coupled to said
4 contactors formed on said one side of said substrate through said signal transmission paths
5 and formed on [said] a backside of said substrate.

1 16. (Amended) A method for forming a contactor as claimed in claim 14 [or 15], wherein
2 said amorphous material layer is formed by sputtering said amorphous material.

1 17. (Amended) A method for forming a contactor as claimed in [any one of] claim[s] 14
2 [to 16], wherein said step for forming said contactor comprises a step for causing a plastic
3 deformation of said free unit toward a predetermined direction from said substrate.

1 18. (Amended) A method for forming a contactor as claimed in [any one of] claim[s] 14
2 [to 17], wherein said step for forming said contactor comprises a step for heating said free
3 unit.

1 19. (Amended) A method for forming a contactor as claimed in [any one of] claim[s] 14
2 [to 18], wherein said step for forming said contactor comprises a step for providing a bending
3 adjustor at a predetermined position toward a direction of gravity from [said] a surface of said
4 substrate.

U.S. PATENT APPLICATION NO.
ATTORNEY DOCKET NO.: 02008.073001

1 21. (Amended) A method for forming a contactor as claimed in [any one of] claim[s] 14
2 [to 18], wherein said step for forming said contactor comprises a step for providing a bending
3 adjusting member comprising an engaging unit for suppressing movement of said substrate in
4 a direction of gravity and a bending adjustor for determining said predetermined position
5 toward a direction of gravity from [said] a surface of said substrate.