$n^{\circ}3 - Trigonométrie 1$ (corrigé)

I Angles (aspect fondamental)

1. (SF46) Trouver une formule générale pour (α en degrés) en fonction de (α en radian).

Solutions

Utiliser $\alpha/360^{\circ} = \alpha/2\pi : (\alpha \text{ en degrés}) = (\alpha \text{ en radian}) \times 180^{\circ}/\pi$

- 2. (SF46) Un angle α mesure $\pi/4$ radians; quelle est sa valeur en degrés?
- 3. (SF212) Dessiner l'angle sur un cercle trigonométrique (rayon 1, angle 0 le long de l'axe positif des x). Indiquer sur le même schéma les valeurs de $\sin(\alpha)$ et de $\cos(\alpha)$. Quelles sont ces valeurs?
- 4. (SF212,SF46) Mêmes questions pour $\alpha = 3\pi/4, 5\pi/4, 7\pi/4$.

Solutions

α	Valeur en degré	$\sin(\alpha)$	$\cos(\alpha)$
$\pi/4$	45°	$1/\sqrt{2}$	$1/\sqrt{2}$
$3\pi/4$	135°	$1/\sqrt{2}$	$-1/\sqrt{2}$
$5\pi/4$	225°	$-1/\sqrt{2}$	$-1/\sqrt{2}$
$7\pi/4$	315°	$-1/\sqrt{2}$	$1/\sqrt{2}$

(remplacer x par α)

II Les fonctions $\sin(x)$ et $\cos(x)_{\text{(aspect fondamental)}}$

1. (SF46,SF47) Dessiner les fonctions $\sin(x)$ et $\cos(x)$ dans l'intervalle $x=[0,2\pi]$. Solutions

2. (SF46) Donner les valeurs de $\sin(\pi/3)$ et de $\cos(\pi/3)$. (Vérifier $\sin^2(\pi/3) + \cos^2(\pi/3) = 1$).

1

Solutions

$$\sin(\pi/3) = \sqrt{3}/2, \, \cos(\pi/3) = 1/2$$

3. (SF46) Quelle valeur Δx faut-il ajouter afin que $\sin(x + \Delta x)$ coincide avec $\cos(x)$?

Solutions

 $\sin(x + \pi/2) = \cos(x)$ (paradoxe : il faut ajouter $+\pi/2$ à l'argument de $\sin(x)$ pour décaler la courbe rouge par $-\pi/2$ à gauche).

4. (SF46) Quelles sont les relations entre $\sin(x)$ et $\sin(x \pm \pi)$, et entre $\cos(x)$ et $\cos(x \pm \pi)$?

Solutions

Solutions

$$\sin(x \pm \pi) = -\sin(x), \cos(x \pm \pi) = -\cos(x).$$

5. (SF47) Dessiner la fonction $\sin^2(x)$ dans l'intervalle $x = [0, 2\pi]$. Comment peut-on vérifier graphiquement la relation $\sin^2(x) + \cos^2(x) = 1$?

L'intervalle entre la courbe et l'horizontale à +1 correspond à $\cos^2(x)$.

6. (SF46) Quelle est la période de la fonction $\sin(kx)$ (k est une constante)?

Solutions

La période de la fonction $\sin(kx)$ est $2\pi/k$: $\sin(k(x+2\pi/k)) = \sin(kx+2\pi) = \sin(kx)$.

III La fonction tan(x) = sin(x)/cos(x)

1. (SF46) Lesquelles des fonctions $\sin(x)$, $\cos(x)$ et $\tan(x) = \sin(x)/\cos(x)$ sont paires/impaires par rapport à $x \to -x$?

Solutions

 $\sin(x)$ et $\tan(x)$ sont impaires, $\cos(x)$ est paire.

2. (SF46) Dessiner la fonction $\tan(x)$ dans l'intervalle $x = [0, 2\pi]$. Identifier l'origine des singularités et les signes à droite et à gauche des singularités. Solutions

Singularités : $\cos(x) \to 0$. Pour les signes voir les schémas de $\sin(x)$ et de $\cos(x)$.

3. (SF46) Donner la valeur de $tan(-\pi/4)$.

Solutions

$$\tan(-\pi/4) = -1.$$

4. (SF46) Exprimer $\tan(\pi/2 - \alpha)$ en fonction de $\tan(\alpha)$.

Solutions

$$\tan(\pi/2 - \alpha) = \sin(\pi/2 - \alpha)/\cos(\pi/2 - \alpha) = -\cos(\alpha)/\sin(-\alpha) = \cos(\alpha)/\sin(\alpha) = 1/\tan(\alpha)$$
 (\equiv \cot(\alpha)).

