F	Proof of uniqueness:
	Suppose that there is a non-zero minimizer χ^* , therefore $f_0(\chi^*) = f_0(0)$
= 6	= fo(x*) - fo(0)
	$= \pm 11 A x^{2} - 911_{2}^{2} + \lambda 11 x^{2} _{1} - \pm 11 y _{2}^{2}$
	= + (ATAX=ATb
	= \$ \frac{1}{2} \times x^T A^T A \times - y^T A \times + \frac{1}{2} y^T y + \frac{1}{2} 1 - \frac{1}{2} y^T y
	> \frac{1}{2} x^T A T A x - y^T A x + A^T y _{\infty} x _{1}
	= \frac{1}{2} AXI ^2 - (ATY)^TX + ATY \in X ,
	= \frac{1}{2} A x 2 - \frac{1}{2} (A T y) x + \frac{1}{2} A T y \infty 0 x
	ZENAXII*
	ラ 支 A × 2
ŀ	$2if Ax _2^2 = 0 \text{then}$ $2 Ax _2^2 \leq 0$
	x*±0
	$f_0(x^*) = \frac{1}{2} \ y\ _2^2 + \lambda \ x^*\ _1 > \frac{1}{2} \ y\ _2^2 = f_0(0)$
+	this contradicts with the fo(x*)=fo(0)
	D is the unique minimizer when \$\lambda \rangle \rangle \max= AT