Justin L. Ripley

Department of Physics, University of Illinois, Urbana-Champaign · 1110 West Green Street, Urbana, IL 61801, USA ripley[at]illinois[dot]edu · https://jlripley314.github.io/ · Citizenship: U.S.A.

Academic Employment

Research Associate, Department of Physics, University of Illinois, Urbana-Champaign

August 2022-present

Research Associate, DAMTP, University of Cambridge

October 2020-June 2022

Research and Teaching Assistant, Princeton University

September 2014-July 2020

Education

PhD, Physics, Princeton University

September 2014-July 2020

Advisor: Frans Pretorius

BA, Physics, Columbia University

September 2010-May 2014

September 2013-May 2014

Minor in Mathematics

Departmental honors in Physics, summa cum laude, Phi Beta Kappa

Awards/Grants

Hartle award December 2019

International Society on General Relativity and Gravitation (GR 22/Amaldi 13 conference)

Erwin H. Leiwant Scholarship

Columbia University

John Jay Scholar September 2010-May 2014

Columbia University

Computational Experience

My Github account: JLRipley314, lists some of the individual computational projects I have worked on. I have also done some work for the GRChombo collaboration, which works on an open-source numerical relativity code.

Teaching and Mentorship

Mentorshir	of PhD	students
MEHIOISHII	ענו ביט כ	students

Daniel Caballero (University of Illinois, Urbana-Champaign)	2023-present
*Abhishek Hegade K. R. (University of Illinois, Urbana-Champaign)	2022-present
Hengrui Zhu (Princeton University)	2022-present
*Maxence Corman (Perimenter Institute for Theoretical Physics)	2021-2022
*Alex Pandya (Princeton University)	2021-2022
*Tamara Evstafyeva (University of Cambridge)	2021-2022

^{*}Led to publication.

Mentorship of undergraduate students

Shikhar Kumar (University of Cambridge	Summer 2021
Adam Wills (University of Cambridge)	Summer 2021

Assistant Instructor, Princeton University

Fall 2019	EGR/PHY 191, An integrated introduction to engineering, math, physics
Fall 2018	PHY 103/105, General Physics I Lab
Spring 2018	PHY 304, Advanced Electromagnetism
Spring 2017,2018	AST 203, The Universe
Fall 2017	PHY 523, General Relativity (graduate course)
Spring 2016	AST 204, Topics in Modern Astronomy
Fall 2015, Spring 2016	PHY 301, Thermal Physics

Professional Activities

University of Illinois, Urbana-Champaign

University of Chicago - UIUC joint meetings co-organizer September 2023-present

University of Cambridge, DAMTP

Friday general relativity seminar co-organizer October 2020-June 2022 General relativity journal club co-organizer October 2020-June 2022

Princeton University Department of Physics

Member on the Climate and Inclusion Committee September 2019-May 2020

External PhD thesis reader

External thesis reader and committee member for Thanassis Giannakoupoulos (University of Lisbon) September 2022

Referee

Physical Review D, Physical Review Letters, Classical and Quantum Gravity

Outreach

Princeton citizen scientists

The Princeton Citizen Scientists is a graduate student led group at Princeton University that is dedicated to science policy and outreach at the local, state, and federal level.

President June 2018-July 2019 Co-organizer for science advocacy trip to Washington, D.C. (article) December 2018 February 2018 Co-organizer for science and intersectionality workshop (link to schedule)

Co-organizer for science "teach-in" event at Princeton public library (article)

Open labs

Open labs is a graduate student group at Princeton University that organizes "science cafes" where local high and middle school students hear talks given by graduate students about their research.

Treasurer and presenter

May 2018–February 2019

Department of physics, Princeton University

I participated in several science outreach events organized through the department of physics at Princeton University throughout my time as a graduate student. events where I helped plan/organize some of programming are listed below.

Trenton science summer camp (helped plan and run several lessons over 2 weeks)

July 2018

October 2017

Interviews on "these vibes are too cosmic"

These vibes are too cosmic is a radio program run through Princeton University.

Interview about exotic compact objects

January 2019

Interview about antigravity March 2016

Refereed Publications

Link to all papers, including preprints: InSpire Hep

- 22. Justin L. Ripley, Abhishek Hegade K.R., Niolás Yunes, Probing internal dissipative processes of neutron stars with gravitational waves during the inspiral of neutron star binaries. Phys. Rev. D 108 (2023) 10, 103037 arXiv:2306.15633
- 21. Abhishek Hegade K.R., Justin L. Ripley, Niolás Yunes, Nonrelativistic limit of first-order relativistic viscous fluids. Phys.Rev.D 107 (2023) 12, 124029 arXiv:2305.09725
- 20. Tamara Evstafyeva, Michalis Agathos, Justin L. Ripley, Measuring the ringdown scalar polarization of gravitational waves in Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev. D 107 (2023), 124010 arXiv:2212.11359
- 19. Abhishek Hegade K.R., Justin L. Ripley. Niolás Yunes, Where and why does Einstein-scalar-Gauss-Bonnet theory break down?. Phys.Rev.D 107 (2023) 4, 044044. arXiv:2211.08477
- 18. Maxence Corman, Justin L. Ripley, William E. East, Nonlinear studies of binary black hole mergers in Einsteinscalar-Gauss-Bonnet gravity. Phys.Rev.D 107 (2023) 2, 024014. arXiv:2210.09235

- 17. Alex Pandya, **Justin L. Ripley**. Dynamics of a nonminimally coupled scalar field in asymptotically AdS₄ spacetime. Class.Quant.Grav. 39 (2022) 21, 215018. arXiv:2206.08854
- 16. Justin L. Ripley. Numerical relativity for Horndeski gravity. IJMPD 31(13):2230017, 2022. arXiv:2207.13074
- 15. Maxence Corman, William E. East, **Justin L. Ripley**. Evolution of black holes through a nonsingular cosmological bounce. JCAP 09 (2022) 063 arXiv:2206.08466
- 14. **Justin L. Ripley**. Computing the quasinormal modes and eigenfunctions for the Teukolsky equation using horizon penetrating, hyperboloidally compactified coordinates. Class. Quantum Grav. 39 (14) 145009 (2022). arXiv:2202.03837
- 13. William E. East, **Justin L. Ripley**. Dynamics of Spontaneous Black Hole Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet Gravity. Phys. Rev. Lett. 127, 101102 (2021). arXiv:2105.08571
- 12. **Justin L. Ripley**. A symmetric hyperbolic formulation of the vacuum Einstein equations in affine-null coordinates. Journal of Mathematical Physics 62, 062501 (2021). arXiv:2104.09972
- 11. **Justin L. Ripley**, Nicholas Loutrel, Elena Giorgi, and Frans Pretorius. *Numerical computation of second-order vacuum perturbations of Kerr black holes*. Phys. Rev. D 103 (10), 104018 (2021). arXiv:2010.00162
- 10. Nicholas Loutrel, **Justin L. Ripley**, Elena Giorgi, and Frans Pretorius. Second Order Perturbations of Kerr Black Holes: Reconstruction of the Metric. Phys. Rev. D 103, 104017 (2021). arXiv:2008.11770
- 9. William E. East, **Justin L. Ripley**. Evolution of Einstein-scalar-Gauss-Bonnet gravity using a modified harmonic formulation. Phys.Rev.D 103 4, 044040 (2021). arXiv:2011.03547
- 8. **Justin L. Ripley**, Frans Pretorius. *Dynamics of a* \mathbb{Z}_2 *symmetric EdGB gravity in spherical symmetry*. Class. Quantum Grav. 37 (15), 155003 (2020). arXiv:2005.05417
- 7. **Justin L. Ripley**, Frans Pretorius. Scalarized black hole dynamics in Einstein-dilaton-Gauss-Bonnet gravity. Phys. Rev. D 101 (4), 044015 (2019). arXiv:1911.11027
- Justin L. Ripley. Excision and avoiding the use of boundary conditions in numerical relativity. Class. Quantum Grav. 36 (23) 237001 (2019). arXiv:1908.04234
- 5. **Justin L. Ripley**, Frans Pretorius. *Gravitational collapse in Einstein dilaton Gauss-Bonnet gravity* Class. Quantum Grav. 36 (13) 134001 (2019). arXiv:1903.07543
- Justin L. Ripley, Frans Pretorius. Hyperbolicity in Spherical Collapse of a Horndeski Theory. Phys. Rev. D 99 (8), 084014 (2019). arXiv:1902.01468
- 3. **Justin L. Ripley**, Kent Yagi. *Black hole perturbation under a 2+2 decomposition in the action*. Phys. Rev. D 97 (2), 024009 (2017). arXiv:1705.03068
- 2. Anna Ijjas, **Justin L. Ripley**, Paul J. Steinhardt. *NEC violation in mimetic cosmology revisited*. Phys.Lett. B760 132-138 (2016). arXiv:1604.08586
- 1. **Justin L. Ripley**, Brian D. Metzger, Almudena Arcones, and Gabriel Martinez-Pinedo. *X-ray Decay Lines from Heavy Nuclei in Supernova Remnants as a Probe of the r-Process Origin and the Birth Periods of Magnetars*. Mon. Not. Roy. Astron. Soc. 438 (4), 3243-3254 (2013). arXiv:1310.2950

GRChombo collaboration papers: For contributions to the GRChombo collaboration numerical relativity code.

- 2. Radia et al., Lessons for adaptive mesh refinement in numerical relativity. Class. Quant. Grav. 39 (13) 135006 (2022). arXiv:2112.10567
- 1. Andrade et al., *GRChombo: An adaptable numerical relativity code for fundamental physics.* J. Open Source Softw. 6 (2021) 3703. arXiv:2201.03458

Colloquia, Seminars, and Conferences

Colloquia

1. Oregon State University, Corvallis, OR
Neutron stars: a window into dense nuclear matter

November 2023

21. University of Illinois, Urbana-Champaign, Urbana, IL Probing the internal dynamics of neutron stars with gravitational waves	February 2024			
20. Infinity seminar (online) Measuring quasinormal modes in hyperboloidal slicings of Kerr	December 2023			
19. University of Oregon, Eugene, OR Probing the internal dynamics of neutron stars with gravitational waves	November 2023			
18. University of Mississippi, Oxford, MS (online) Probing internal dissipative processes of neutron stars with gravitational waves	October 2023			
17. California Institute of Technology, Pasadena, CA Probing internal dissipative processes of neutron stars with gravitational waves	August 2023			
16. University of Illinois, Urbana-Champaign, Urbana, IL Modeling black hole binaries in modified theories of gravity	September 2022			
15. Black Hole Initiative, Harvard University, Cambridge, MA (online) Numerical Relativity and testing General Relativity with gravitational waves: Parts I&II	March 2022			
14. University of Tübingen, Tübingen, DE (online) Evolution of binary black hole systems in scalar Gauss-Bonnet gravity	February 2022			
13. Albert Einstein Institute, Potsdam, DE (online) Evolution of binary black hole systems in scalar Gauss-Bonnet gravity	November 2021			
12. Sapienza University of Rome, Rome, IT (online) Computing the second order gravitational perturbation of Kerr black holes	May 2021			
11. University of Oxford, Oxford, UK (online) The classical evolution of binary black hole systems in scalar-tensor theories	February 2021			
10. University of Virginia, Charlottesville, VA (online) The classical evolution of binary black hole systems in scalar-tensor theories	February 2021			
9. Kyoto University, Kyoto, JP (online) The classical evolution of binary black hole systems in scalar-tensor theories	February 2021			
8. University of Southampton, Southampton, UK (online) The classical evolution of binary black hole systems in scalar-tensor theories	January 2021			
7. University of Cambridge, Cambridge, UK (online) Computing the second order gravitational perturbation of Kerr black holes	November 2020			
6. Johns Hopkins University, Baltimore, MD (online) Numerical computation of second order vacuum perturbations of Kerr black holes	November 2020			
5. Princeton University, Princeton, NJ (online) Classical modifications to Einstein's General Relativity around black holes	October 2020			
4. Perimeter Institute, Waterloo, ON (online) Exploring the nonlinear dynamics of Einstein dilaton Gauss-Bonnet gravity	April 2020			
3. University of Illinois, Urbana, IL Testing General Relativity and the nonlinear dynamics of modified gravity theories	January 2020			
2. Massachusetts Institute of Technology, Cambridge, MA Second order vacuum perturbation of a Kerr black hole	December 2019			
1. Black Hole Initiative, Harvard University, Cambridge, MA Nonlinear dynamics of Horndeski theories in spherical collapse	December 2019			
Contributed conference talks/seminars				

Probing internal dissipative processes of neutron stars with gravitational waves during the inspiral

Nov 2023

12. Midwest Relativity Meeting, Chicago, IL

11.	Amaldi 15 (Online) Probing internal dissipative processes of neutron stars with gravitational waves	July 2023
10.	APS April Meeting, Minneapolis, MN Impact of viscosity on the orbital dynamics of neutron star binaries	April 2023
9.	GR23 (online) Evolution of binary scalar-hairy black holes	July 2022
8.	EPS-HEP2021 Conference (online) Modeling black hole binaries in scalar-tensor theories of gravity	July 2021
7.	APS April Meeting, Sacramento, CA (online) Application of the modified generalized harmonic formulation to scalar-tensor gravity theories	April 2021
6.	BritGrav21, UCD, Dublin, Ireland (online) Computing the second order vacuum perturbation of Kerr black holes	April 2021
5.	XIII Black Holes Workshop, IST, Lisbon, PT (online) Computing the second order vacuum perturbation of a Kerr black hole	December 2020
4.	APS April Meeting, Washington, DC (online) Second order perturbation of a Kerr black hole	April 2020
3.	GR 22/Amaldi 13, Valencia, Spain Nonlinear dynamics of Horndeski theories in spherical collapse	July 2019
2.	APS April Meeting, Denver, CO Hyperbolicity in gravitational collapse in a modified gravity theory	April 2019
1.	Numerical Relativity beyond General Relativity, Benasque, Spain Gravitational collapse in a modified gravity theory	June 2018