ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

Лабораторная работа №3

Исследование свойств модели резисторного касакада с общим колектором в частотной и временной областях на ПК

Выполнила бригада:

Группа ИКТЗ-83

Громов А.А., Миколаени М.С., Мазеин Д.С.

(Ф.И.О., № группы)

(подпись)

Санкт-Петербург

Цель работы: Изучить свойства усилительного каскада с общим коллектором (ОК) в режиме малого сигнала. Выполнить анализ в частотной и временной областях. Исследовать свойства каскада при изменении сопротивлений источника сигнала, нагрузки и элементов схемы. Определить входное и выходное сопротивления каскада.

Пункт 1:

Окно измерения входного сопротивления

Измерение	Величина входного сопротивления, КОм	
с учётом сопротивления Кб	31.6	
без учёта сопротивления Кб	2.91	

Пункт 2:

сопротивление 17.29 сопротивление 16.95

Пункт 3:

Кскв, Дб	(Кскв -3), Дб	fн, Гц	fв, МГц	Δf=fв-fн, МГц
-2.7	-5.7	41	18.6	18.56

Выводы по пункту 3:

Схема не инвертирует входной сигнал.

У схемы с ОК рабочая полоса частот больше чем у схему с ОУ

Время импульса 20000 Измеренный спад вершины импульса Δ , % 0.62		О	tu=25 мкс 400 сциллограмма импульса	tи=1.25 мкс Частота f, Гц
		увел	31.4 сциллограмма иченной области стания импульса	27.9 Рассчитанный спад вершины импульса Δ, %
Измеренное время нарастания импульса tH =t2 -t1,нс			19.12	
Рассчитанное время нарастания импульса th, нс			18.8	18.8
Geometry Points Spheres	Algebi Addition Multiplica	on		