Longest run & "Runs" conjecture

Riccardo Lo Iacono 26 settembre 2024

Il problema

Considerata s una stringa qualsiasi di lunghezza n, qual è il numero massimo di ripetizioni $\rho(n)$ in essa?

Congettura: $\rho(n) < n$?

Applicazioni

- · Compressione di testi
- · Indicizzazione di testi
- · Ricerca di pattern genomici¹

¹Si è dimostrato che alcuni pattern genomici sono indicatori di alcune malattie

Background storico

Kolpakov e Kucherov in [?], dimostrano come $\rho(n)$ sia limitato superiormente da una funzione $\mathcal{O}(n)$.

Segue la "Runs" conjecture.

Punti chiave della discussione

- · Dimostrazione della runs conjecture.
- Soluzione algoritmica per il calcolo delle ripetizioni massimali in $\mathcal{O}(n)$.

Notazione

- Σ è un alfabeto² finito di simboli
- · s $\in \Sigma^*$ è una stringa, la cui lunghezza è |s|
- s[i] è l'iesimo carattere di s, s[i,j] è la sotto-stringa compresa tra gli indici i,j inclusivamente, $i,j \in (1,|s|)$
- $p \in \mathbb{N}$ periodo di s \iff $s[i] == s[i+p], 1 \le i \le |s|-p$
- I insieme di intevalli, Beg(I) posizioni iniziali degli intervalli in I
- · \prec ordine totale su Σ e ordine lessicografico indotto su esso

²Si assume Σ non unario.

Concetto di ripetizione ed esempio

Definizione: una terna r = (i, j, p) è una ripetizione (o run) di una qualche stringa ω , se il più piccolo periodo p di $\omega[i, j]$ è tale che $|\omega[i, j]| \ge 2p$.

Sia $Runs(\omega)$ l'insieme delle runs in ω .

Esempio: sia $\omega = babbabbab$. Si osserva facilmente che le ripetizioni in essa sono quelle in *Figura 1*.

Figura 1: Esempio di ripetizioni.

Segue che

$$Runs(babbabbab) = \{(1, 9, 3), (2, 7, 3), (3, 4, 1), (6, 7, 1)\}$$

Lyndon words & L-roots

Definizione (Lyndon word): una stringa non vuota $\omega \in \Sigma$ è detta essere una *Lyndon word*, rispetto \prec , se $\omega \prec u$, per ogni u suffisso proprio di ω .

Definizione (L-root): data r=(i,j,p) una run per una qualche stringa $\omega \in \Sigma^*$, un intervallo $\lambda=[i_\lambda,j_\lambda]$ è detto essere *L-root* di r rispetto \prec se $i \leq i_\lambda \leq j_\lambda \leq j$ e $\omega[i_\lambda,j_\lambda]$ è una Lyndon word.

9

"Runs" Theorem

Lemma: per ogni stringa ω e posizione i, sia $\ell \in \{0,1\}$, tale che $\hat{\omega}[k] \prec_{\ell} \hat{\omega}[i]$, per $k = \min\{k' \mid \hat{\omega}[k'] \neq \hat{\omega}[i], k' > i\}$. Allora $l_{\ell}(i) = [i, i]$ e $l_{\overline{\ell}}(i) = [i, j]$, per qualche j > i.

Lemma: sia r=(i,j,p) una ripetizione in una stringa ω , sia inoltre $\ell_r \in \{0,1\}$ tale che $\hat{\omega}[j+1] \prec_{\ell_r} \hat{\omega}[j+1-p]$. Allora, ogni L-root $\lambda=[i_\lambda,j_\lambda]$ di r rispetto \prec_{ℓ_r} è uguale alla longest Lyndon word.