

Machine Learning

Large scale machine learning

Learning with large datasets

Machine learning and data

Classify between confusable words. E.g., {to, two, too}, {then, than}.

For breakfast I ate <u>two</u> eggs.

"It's not who has the best algorithm that wins.

It's who has the most data."

[Figure from Banko and Brill, 2001] Andrew Ng

Learning with large datasets

We would like to get some computational efficient ways to speed up your learning algorithm!

 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$

leed a lot computation power!

Andrew Ng

Machine Learning

Large scale machine learning

Stochastic gradient descent

regular gradient descent is computation expensive

Linear regression with gradient descent

$$h_{\theta}(x) = \sum_{j=0}^{n} \theta_{j} x_{j}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$Repeat \{$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$(for every $j = 0, \dots, n)$

$$T$$$$

Linear regression with gradient descent

Batch gradient descent

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (\underline{h_{\theta}(x^{(i)}) - y^{(i)}}) x_j^{(i)}$$

(for every
$$j = 0, \dots, n$$

Stochastic gradient descent

$$cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})$$

$$J_{train}(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$$

$$\frac{3}{\sqrt{\frac{3}{2}}} (\sqrt{2})^{-1} (\sqrt{2})^{-1}$$

Stochastic gradient descent

1. Randomly shuffle (reorder) training examples

```
repeat this loop from 1 to 10 times
→ 2. Repeat {
              for i := 1, ..., m {
                   \theta_i := \theta_i - \alpha(h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)}
                                             j = 0, \ldots, n
                             (for
                                     m = 300,000,000
```


Machine Learning

Large scale machine learning

Mini-batch gradient descent

Another idea sometimes can even work faster than stochastic gradient descent algorithm

Mini-batch gradient descent

- \rightarrow Batch gradient descent: Use <u>all</u> examples in each iteration
- Stochastic gradient descent: Use example in each iteration

Mini-batch gradient descent: Use0examples in each iteration

Mini-batch gradient descent

Say
$$b = 10$$
, $m = 1000$. Repeat {

for
$$i=1,11,21,31,\ldots,991$$
 {

$$\theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=i}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)}) x_j^{(k)}$$

(for every $j = 0, \dots, n$)

-> b examples -> 1 example Vectorization

Use 10 examples at a time!

mini > stochastic when you have a good vectorization implementation.

we can make progresses by looking at the just 10 examples!

Machine Learning

Large scale machine learning

Stochastic gradient descent convergence

Checking for convergence

- Batch gradient descent:
 - \rightarrow Plot $J_{train}(\theta)$ as a function of the number of iterations of gradient descent.

 $\gg (\chi^{(i)}, q^{(i)}) \cdot (\chi^{(i+1)}, q^{(i+1)})$

- Stochastic gradient descent:

 - $\Rightarrow cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2}(h_{\theta}(x^{(i)}) y^{(i)})^2$ \Rightarrow During learning, compute $cost(\theta, (x^{(i)}, y^{(i)}))$ before updating θ using $(x^{(i)}, y^{(i)})$.
 - \rightarrow Every 1000 iterations (say), plot $cost(\theta, (x^{(i)}, y^{(i)}))$ averaged over the last 1000 examples processed by algorithm.

Checking for convergence

Plot $cost(\theta, (x^{(i)}, y^{(i)}))$, averaged over the last 1000 (say) examples

Stochastic gradient descent

$$cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$$

- Randomly shuffle dataset.

Learning rate α is typically held constant. Can slowly decrease α over time if we want θ to converge. (E.g. $\alpha = \frac{\text{constl.}}{\text{iterationNumber + constl.}}$

Andrew Ng

Stochastic gradient descent

$$cost(\theta, (x^{(i)}, y^{(i)})) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} cost(\theta, (x^{(i)}, y^{(i)}))$$

- Randomly shuffle dataset.

```
Repeat {
   for i := 1, ..., m {
\theta_j := \theta_j - \alpha(h_{\theta}(x^{(i)}) - y^{(i)})x_j^{(i)}
                     (for j = 0, ..., n)
```


Learning rate α is typically held constant. Can slowly decrease α over time if we want θ to converge. (E.g. $\alpha = \frac{\text{const1}}{\text{iterationNumber} + \text{const2}}$

Machine Learning

Large scale machine learning

Online learning

when we have a continuous stream of data come in!

Online learning

Shipping service website where user comes, specifies origin and destination, you offer to ship their package for some asking price, and users sometimes choose to use your shipping service (y = 1), sometimes not (y = 0).

Features (x) capture properties of user, of origin/destination and asking price. We want to learn $p(y=1|x;\theta)$ to optimize price.

Other online learning example:

Product search (learning to search)

User searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for "Android phone 1080p camera" <-- State of the searches for the search

- $\Rightarrow x = \text{features of phone}$, how many words in user query match name of phone, how many words in query match description of phone, etc.
- $\Rightarrow y = 1$ if user clicks on link. y = 0 otherwise.
- ightharpoonup Learn $p(y=1|x;\theta)$. ightharpoonup Predicted ightharpoonup Click through rate
- → Use to show user the 10 phones they're most likely to click on.

Other examples: Choosing special offers to show user; customized selection of news articles; product recommendation; ...

Machine Learning

Large scale machine learning

Map-reduce and data parallelism

Sometimes, some ML problems are just cannot run on machine

Map-reduce

Batch gradient descent:

$$\text{m: 400} \leftarrow \text{m: 400,000,000} \xrightarrow{\text{real world samples}}$$

$$\text{nt: } \theta_j := \theta_j - \alpha \frac{1}{400} \sum_{i=1}^{400} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \leftarrow$$

Map-reduce 400 Computer 1 Training set Computer 2 Combine results Computer 3 Computer 4

Map-reduce and summation over the training set

Many learning algorithms can be expressed as computing sums of functions over the training set.

E.g. for advanced optimization, with logistic regression, need:

$$J_{train}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

$$\Rightarrow \frac{\partial}{\partial \theta_{j}} J_{train}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}$$

temp (i)

we can do this summation in a centralized server

