```
import joblib #for saving models
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from google.colab import files
uploaded = files.upload()

df = pd.read_csv("Electric_Vehicle_Population_By_Country.csv")
df.head()
```

₹

Choose Files Electric_Ve...Country.csv

• Electric_Vehicle_Population_By_Country.csv(text/csv) - 1216895 bytes, last modified: 7/19/2025 - 100% done Saving Electric_Vehicle_Population_By_Country.csv to Electric_Vehicle_Population_By_Country (2).csv

	Date	County	State	Vehicle Primary Use	Battery Electric Vehicles (BEVs)	Plug-In Hybrid Electric Vehicles (PHEVs)	Electric Vehicle (EV) Total	Non- Electric Vehicle Total	Total Vehicles	Percent Electric Vehicles	
0	September 30 2022	Riverside	CA	Passenger	7	0	7	460	467	1.50	
1	December 31 2022	Prince William	VA	Passenger	1	2	3	188	191	1.57	
2	January 31 2020	Dakota	MN	Passenger	0	1	1	32	33	3.03	
3	June 30 2022	Ferry	WA	Truck	0	0	0	3,575	3,575	0.00	
4	July 31 2021	Douglas	СО	Passenger	0	1	1	83	84	1.19	

Next steps: Generate code with df View recommended plots New interactive sheet

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 20819 entries, 0 to 20818
 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype				
0	Date	20819 non-null	object				
1	County	20733 non-null	object				
2	State	20733 non-null	object				
3	Vehicle Primary Use	20819 non-null	object				
4	Battery Electric Vehicles (BEVs)	20819 non-null	object				
5	Plug-In Hybrid Electric Vehicles (PHEVs)	20819 non-null	object				
6	Electric Vehicle (EV) Total	20819 non-null	object				
7	Non-Electric Vehicle Total	20819 non-null	object				
8	Total Vehicles	20819 non-null	object				
9	Percent Electric Vehicles	20819 non-null	float64				
<pre>dtypes: float64(1), object(9)</pre>							
memory usage: 1.6+ MB							

df.shape

→ (20819, 10)

df.isnull().sum()

♦ What can I help you build? ⊕ ⊳

III II.

```
₹
```

```
0
                  Date
                                            0
                 County
                                           86
                  State
                                           86
          Vehicle Primary Use
                                            0
    Battery Electric Vehicles (BEVs)
                                            0
Plug-In Hybrid Electric Vehicles (PHEVs)
                                            0
       Electric Vehicle (EV) Total
                                            0
       Non-Electric Vehicle Total
                                            0
             Total Vehicles
                                            n
        Percent Electric Vehicles
                                            0
```

dtype: int64

State

dtype: int64

0

```
Q1 = df['Percent Electric Vehicles'].quantile(0.25)
Q3 = df['Percent Electric Vehicles'].quantile(0.75)
IQR = Q3 - Q1
lower\_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
print('lower_bound:', lower_bound)
print('upper_bound:', upper_bound)
outliers = df[(df['Percent Electric Vehicles'] < lower_bound) | (df['Percent Electric Vehicles'] > upper_bound)]
print("Number of outliers in 'Percent Electric Vehicles':", outliers.shape[0])
> lower_bound: -3.517499999999996
     upper_bound: 6.9025
     Number of outliers in 'Percent Electric Vehicles': 2476
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
df = df[df['Date'].notnull()]
df = df[df['Electric Vehicle (EV) Total'].notnull()]
df['County'] = df['County'].fillna('Unknown')
df['State'] = df['State'].fillna('Unknown')
print("Missing after fill:")
print(df[['County', 'State']].isnull().sum())
df.head()
→ Missing after fill:
     County
               0
```

	Date	County	State	Vehicle Primary Use	Battery Electric Vehicles (BEVs)	Plug-In Hybrid Electric Vehicles (PHEVs)	Electric Vehicle (EV) Total	Non- Electric Vehicle Total	Total Vehicles	Percent Electric Vehicles	11.
(2022- 09-30	Riverside	CA	Passenger	7	0	7	460	467	1.50	
1	2022- 12-31	Prince William	VA	Passenger	1	2	3	188	191	1.57	
2	2020- 01-31	Dakota	MN	Passenger	0	1	1	32	33	3.03	
3	2022- 06-30	Ferry	WA	Truck	0	0	0	3,575	3,575	0.00	
4	2021- 07-31	Douglas	СО	Passenger	0	1	1	83	84	1.19	

Next steps: Generate code with df View recommended plots New interactive sheet

 outliers = df[(df['Percent Electric Vehicles'] < lower_bound) | (df['Percent Electric Vehicles'] > upper_bound)]
print("Number of outliers in 'Percent Electric Vehicles':", outliers.shape[0])

Number of outliers in 'Percent Electric Vehicles': 0