Reply to Office Action of July 10, 2009 Page 2 of 13

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A charge transporting varnish comprising:

a charge transporting substance made of a charge transporting oligoaniline having a number average molecular weight of 250 to 5000 or a charge transporting organic material made of the charge transporting substance and a charge transporting dopant substance, and at least one polymer selected from polyimides and polyimide precursors, the charge transporting substance or charge transporting organic material, and the polymer being dissolved or dispersed in at least one solvent,

wherein the charge transporting substance is made of an oligoaniline derivative represented by the general formula (1) or a quinonedimine derivative that is an oxidized product of the general formula (1)

$$R^1$$
 A NH B N R^3 (1)

wherein R¹ and R² independently represent hydrogen, a monovalent hydrocarbon group or an organoxy group, R³ represents an unsubstituted or substituted aryl group, A and B independently represent a divalent group represented by the general formula (2) or (3)

$$R^4$$
 R^5 R^8 R^{10} (3)

wherein R⁴ to R¹¹ independently represent hydrogen, a hydroxyl group, a monovalent hydrocarbon group, an organoxy group, an acyl group or a sulfone group, and m and n are independently an integer of 1 or over, and is such that $m+n \le 20$ is satisfied.

2. (Currently Amended) The charge transporting varnish according to claim 1,

Application No.: 10/593,772 Docket No.: 0171-1311PUS1 Page 3 of 13

Reply to Office Action of July 10, 2009

wherein the charge transporting substance is made of an oligoaniline derivative represented by the general formula (1) or a quinonediimine derivative that is an oxidized product of the general formula (1).

[Chemical Formula 1]

$$\begin{array}{c|c}
R^1 & A - NH & B - N - R^3 & (1)
\end{array}$$

[wherein R¹, R² and R³ independently represent hydrogen, a monovalent hydrocarbon group or an organoxy group, A and B independently represent a divalent group represented by the general formula (2) or (3)

[Chemical Formula 2]

$$R^4$$
 R^5 R^9 R^{10} R^8 R^{11}

(wherein R⁴ to R¹¹ independently represent hydrogen, a hydroxyl group, a monovalent hydrocarbon group, an organoxy group, an acyl group or a sulfone group, and m and n are independently an integer of 1 or over, and is such that $m+n \le 20$ is satisfied)

wherein R³ is a phenyl group.

3. (Currently amended) The charge transporting varnish according to claim 2, wherein the charge transporting substance is made of an oligoaniline derivative represented by the Application No.: 10/593,772 Docket No.: 0171-1311PUS1

Reply to Office Action of July 10, 2009

general formula (4) or a quinonediimine derivative that is an oxidized product of the general formula (4)

[Chemical Formula 3]

(wherein R¹ to R⁷, m and n, respectively, have the same meanings as defined above) wherein R¹ to R⁷, m and n, respectively, have the same meanings as defined above.

- 4. (Original) The charge transporting varnish according to claim 3, wherein m and n is such that $m+n \le 6$ is satisfied.
- 5. (Original) The charge transporting varnish according to any one of claims 1 to 4, wherein the polymer is contained in 0.1 to 50 wt% based on the total weight of solids in the charge transporting varnish.
- 6. (Previously Presented) The charge transporting varnish according to claim 1, wherein the polymer is made of a polyimide or polyimide precursor having a number average molecular weight of 1000 to 50000.

Page 4 of 13

Application No.: 10/593,772 Docket No.: 0171-1311PUS1

Reply to Office Action of July 10, 2009

Page 5 of 13

7. (Currently amended) The charge transporting varnish according to claim 1, wherein the polymer is made of a polyimide precursor represented by the general formula (5), or a polyimide obtained by dehydration ring closure of the polyimide precursor

[Chemical Formula 4]

$$\begin{array}{c|cccc}
 & H & O & O & H \\
 & Q - N & & N & & \\
 & HO & O & O & k
\end{array}$$
(5)

 $\{\text{wherein P wherein P is at least one tetravalent organic group selected from those of the general formulas (6) to (12)$

[Chemical Formula 5]

$$R^{12}R^{13}$$
 $R^{14}R^{15}$
 R^{1

[in the formula in the formula (6), R¹² to R¹⁵ independently represent hydrogen, fluorine, an alkyl group that has 1 to 5 carbon atoms and may have a branched structure, or an alkoxy group that has 1 to 5 carbon atoms and may have a branched structure], structure, Q is at least one divalent organic group selected from those of the general formulas (13) to (19)

Application No.: 10/593,772 Docket No.: 0171-1311PUS1
Reply to Office Action of July 10, 2009 Page 6 of 13

[Chemical Formula 6]

[wherein R¹⁶ to R³² independently wherein R¹⁶ to R³² independently represent hydrogen, fluorine, an alkyl group that has 1 to 5 carbon atoms and may have a branched structure, or an alkoxy group that has 1 to 5 carbon atoms and may have a branched structure, X independently represents -O-, -S-, -C(O)NH-, -NHC(O)-, an alkylene group that has 1 to 5 carbon atoms and may have a branched structure, or an alkylenedioxo group that has 1 to 5 carbon atoms and may have a branched structure, Y represents a group of the general formula (20)

[Chemical Formula 7]

Application No.: 10/593,772 Docket No.: 0171-1311PUS1
Reply to Office Action of July 10, 2009 Page 7 of 13

$$\begin{array}{c|c}
 & X \\
 & X \\$$

(wherein X has the same meaning as defined above, and j is 0 or 1), wherein X has the same meaning as defined above, and j is 0 or 1,

Ar¹, Ar³ and Ar⁴ independently represent a divalent benzene ring that may be substituted with W, a divalent naphthalene ring that may be substituted with W, a divalent biphenyl group that may be substituted with W or a divalent fluorene group that may be substituted with W, Ar² represents a phenyl group that may be substituted with W, a naphthyl group that may be substituted with W, a biphenyl group that may be substituted with W or a fluorene group that may be substituted with W or a fluorene group that may be substituted with W, a terphenyl group that may be substituted with W or a fluorene group that may be substituted with W, W represents fluorine, an alkyl group that has 1 to 8 carbon atoms and may have a branched structure or an alkoxy group that has 1 to 8 carbon atoms and may have a branched structure, and i is an integer of 1 to 4 and

k is a positive integer.} integer.

8. (Currently amended) The charge transporting varnish according to claim 6, wherein the polymer is made of a polyimide precursor represented by the general formula (21) or a polyimide obtained by hydration ring closure of the polyimide precursor

[Chemical Formula 8]

Application No.: 10/593,772 Docket No.: 0171-1311PUS1

Reply to Office Action of July 10, 2009

Page 8 of 13

(wherein P and Q, wherein P and Q, respectively, have the same meanings as defined above, Z is at least one divalent organic group selected from the general formula (18) or (19), u^1 and u^2 are independently an integer of 1 or over, and is such that $u^1/(u^1+u^2) \ge 0.2$ is satisfied) satisfied.

9. (Currently amended) The charge transporting varnish according to claim 8, wherein the Z is at least one divalent organic group selected from those of the general formulas (22) to (27)

[Chemical Formula 9]

Application No.: 10/593,772 Docket No.: 0171-1311PUS1

Reply to Office Action of July 10, 2009 Page 9 of 13

(wherein W' represents wherein W' represents a hydrogen atom, fluorine, an alkyl group that has 1 to 8 carbon atoms and may have a branched structure or an alkoxy group that has 1 to 8 carbon atoms and may have a branched structure) branched structure.

10. (Previously Presented) The charge transporting thin film formed by use of the charge transporting varnish defined in claim 1.

Application No.: 10/593,772 Docket No.: 0171-1311PUS1

Reply to Office Action of July 10, 2009 Page 10 of 13

11. (Original) The organic electroluminescent device comprising at least one layer made of the charge transporting thin film of claim 10.