

Détection et suivis d'objets dans des images couleurs

Appliqué aux poissons

Objectifs et solutions

Détecter et suivre des poissons dans des vidéos en couleurs.

- Méthode sans deep learning : soustraction
- Méthode avec deep learning : YOLO

Etat de l'art

Modélisation de parties d'objets

Objets = collection de parties interconnectées

Template matching

Mise en correspondance d'un modèle de l'objet qui n'est rien d'autre qu'une image de l'objet lui même

Sans amélioration : principe

Etape 1 : calcul du fond

Moyenne des images de la vidéo

Etape 2: soustraction fond/image

Etape 3: calcul du masque

Comparaison à un seuil

Sans amélioration : résultats et analyse

F1 score = capacité d'un modèle à prédire efficacement les individus positifs

Avec amélioration : principe

Etape 1 : calcul du fond

Etape 2 : détection végétation

Etape 3: suppression : Etape 4: nuances végétation

de gris

Etape 5 : calcul du masque

Avec amélioration : résultats et analyse

Méthode avec deep learning: YOLO

Etat de l'art

Classifieurs en cascade

Cascade structure for Haar classifiers All subwindows Load Stage 1 Stage 2 Stage n Next subwindow Rejected subwindows Frame image

Deep learning

Méthode avec deep learning: YOLO

Méthode avec deep learning: YOLO

Résultats et analyse

147 epochs

Loss = erreur entre prédictions et valeurs réelles

Démonstration

Conclusion et perspectives

	Améliorations possibles
Méthode traditionnelle	-Elimination des roches.
	-Utilisation de deep learning pour détecter et éliminer la végétation et les roches dans les images sous-marines.
Méthode par deep learning	-Modifier les autres paramètres tels que la taille du batch, l'optimizer
	-Ajouter de la data augmentation pour améliorer les détections.

Accuracy and Precision

Low accuracy / Low precision

High accuracy / low precision

Low accuracy / High precision

High accuracy / high precision

Qu'est ce qu'une ancre?

annotations manuelles

Regroupement des boîtes englobantes qui ont un même degré de similarité

Algorithme K-moyennes

Boîtes englobantes dans un même cluster = ancre