ALGEBRAIC TOPOLOGY II SUMMARY

YANNIS BÄHNI

Abstract. This is a rough summary of the course *Algebraic Topology II* held at *ETH Zurich* by *Prof. Dr. William J. Merry* in spring 2018. The main focus of this summary is to give a neat preparation for the oral exam.

Contents

Homology of Product Spaces
The Universal Coefficient and the Künneth Theorem
The Eilenberg-Zilber Theorem and the Künneth Formula
Cohomology
The Cohomology Ring
Fibre Bundles
The Duality Theorem
Topological Manifolds
Cech Cohomology
Homotopy Theory

Homology of Product Spaces

The Universal Coefficient and the Künneth Theorem.

Proposition 1.1. Let $A \in \mathsf{Ab}$. Then $(-) \otimes A : \mathsf{Ab} \to \mathsf{Ab}$ and $A \otimes (-) : \mathsf{Ab} \to \mathsf{Ab}$ are both right exact.

Example 1.1. $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n = \mathbb{Z}_{\gcd(m,n)}$.

Definition 1.1 (Tor). Let $A \in Ab$ and

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} F \longrightarrow A \longrightarrow 0$$

a short free resolution of A. Given any $B \in Ab$, set

$$Tor(A, B) := \ker(f \otimes id_B).$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Example 1.2. If either A or B are torsion free, then Tor(A, B) = 0.

Example 1.3. $\operatorname{Tor}(\mathbb{Z}_m, \mathbb{Z}_n) = \mathbb{Z}_{\gcd(m,n)}$.

Theorem 1.1 (Universal Coefficient Theorem). Let $(C_{\bullet}, \partial_{\bullet})$ be a free chain complex and $A \in Ab$. Then for any $n \in \omega$ there is a split exact sequence

$$0 \longrightarrow H_n(C_{\bullet}) \otimes A \longrightarrow H_n(C_{\bullet} \otimes A) \longrightarrow \operatorname{Tor}(H_{n-1}(C_{\bullet}), A) \longrightarrow 0.$$

Theorem 1.2 (Künneth Theorem). Let $(C_{\bullet}, \partial_{\bullet})$ and $(C'_{\bullet}, \partial'_{\bullet})$ be two non-negative free chain complexes. Then there exists a split exact sequence

$$0 \to \bigoplus_{i+j=n} H_i(C_{\bullet}) \otimes H_j(C'_{\bullet}) \to H_n(C_{\bullet} \otimes C'_{\bullet}) \to \bigoplus_{k+l=n-1} \operatorname{Tor} \left(H_k(C_{\bullet}), H_l(C'_{\bullet}) \right) \to 0.$$

The Eilenberg-Zilber Theorem and the Künneth Formula.

Theorem 1.3 (The Augmented Acyclic Models Theorem). A Let \mathcal{C} be a category with family of models \mathcal{M} . Consider

$$S, T : \mathcal{C} \to AugCh(Ab)$$

such that:

- S_n is free with basis contained in \mathcal{M} for any $n \in \omega$.
- Any $M \in \mathcal{M}$ is totally T-acyclic, i.e. $H_n(S(M)) = 0$ for all $n \geq 1$ and $H_0(S(M)) = \mathbb{Z}$.

Then there exists a natural augmentation preserving chain map

$$\theta: S \Rightarrow T$$

Moreover, any two such natural augmenation preserving chain maps are naturally chain homotopic.

If additionally T_n is free with basis contained in M and each model $M \in M$ is totally S-acyclic, then every such natural augmentation preserving chain map is a natural chain equivalence.

Theorem 1.4 (Eilenberg-Zilber). Let $X, Y \in \text{Top.}$ Then there exists a chain equivalence

$$\Omega: C_{\bullet}(X \times Y) \to C_{\bullet}(X) \otimes C_{\bullet}(Y)$$

unique up to chain homotopy. Any such map Ω is called an **Eilenberg-Zilber morphism**.

Proof. We make use of the augmented acyclic models theorem 1.3. In Top \times Top define a family of models \mathcal{M} by

$$\mathcal{M} := \{ (\Delta^i, \Delta^j) : i, j \in \omega \}.$$

Moreover, define $S, T : \mathsf{Top} \times \mathsf{Top} \to \mathsf{AugCh}(\mathsf{Ab})$ by

$$S(X,Y) := C_{\bullet}(X \times Y)$$
 and $T(X,Y) := C_{\bullet}(X) \otimes C_{\bullet}(Y)$.

Since $\Delta^i \times \Delta^j$ is convex, we get that each model $M := (\Delta^i, \Delta^j)$ is totally S-acyclic. Moreover, the Künneth theorem 1.2 implies that each model M is totally T-acyclic. That S_n is free with basis contained in $\mathcal M$ can be seen by choosing the diagonal map $d_n : \Delta^n \to \Delta^n \times \Delta^n$ for any $n \in \omega$. Finally, T_n is also free with basis contained in $\mathcal M$, since we can choose the model basis

$$\{(\Delta^i, \Delta^j) : i + j = n\}$$

for fixed $n \in \omega$ and $\iota_i \otimes \iota_j \in (C_{\bullet}(\Delta^i) \otimes C_{\bullet}(\Delta^j))_n$, where $\iota_k : \Delta^k \to \Delta^k$ denotes the identity map.

Corollary 1.1 (Künneth Formula). Let $X, Y \in \mathsf{Top}$. Then there is a split exact sequence

$$0 \longrightarrow \bigoplus_{i+j=n} H_i(X) \otimes H_j(Y) \longrightarrow H_n(X \times Y) \longrightarrow \bigoplus_{k+l=n-1} \operatorname{Tor} \big(H_k(X), H_l(Y) \big) \longrightarrow 0.$$

Example 1.4. Let $n \in \omega$, $n \ge 1$. Define the *n*-torus \mathbb{T}^n by

$$\mathbb{T}^n := \underbrace{\mathbb{S}^1 \times \cdots \times \mathbb{S}^1}_{n}.$$

Using induction and the Künneth theorem 1.1, one can show that

$$H_k(\mathbb{T}^n) = \mathbb{Z}^{\binom{n}{k}}.$$

Cohomology

Proposition 1.2. Let $A \in \mathsf{Ab}$. Then $\mathsf{Hom}(-,A) : \mathsf{Ab} \to \mathsf{Ab}$ and $\mathsf{Hom}(A,-) : \mathsf{Ab} \to \mathsf{Ab}$ are both left exact.

Corollary 1.2. Let $X \in \text{Top be of finite type, i.e. } H_n(X)$ is finitely generated for any $n \in \mathbb{Z}$. Then

$$H^n(X) \cong H_n(X)/T_n(X) \oplus T_{n-1}(X)$$

where $T_n(X)$ denotes the torsion subgroup of $H_n(X)$, i.e. the subgroup consisting of all elements of finite order.

Theorem 1.5 (Universal Coefficient Theorem for Cohomology). Let $X \in \mathsf{Top}$ of finite type and $A \in \mathsf{Ab}$. Then there is a split exact sequence

$$0 \longrightarrow H^n(X) \otimes A \longrightarrow H^n(X;A) \longrightarrow \operatorname{Tor}(H^{n+1}(X),A) \longrightarrow 0.$$

The Cohomology Ring.

Proposition 1.3. Let $X \in \text{Top}$ and $R \in \text{Ring}$. Then there exists a contravariant functor

$$C(-;R): \mathsf{Top} \to \mathsf{GRing}.$$

Proof. We proceed in two (uncomplete) steps.

Step 1: Definition on objects. Let $X \in \text{Top.}$ For $\alpha \in C^n(X; R)$ and $\beta \in C^m(X; R)$ define

$$(\alpha \cup \beta)(\sigma) := \alpha(\sigma \circ A(e_0, \dots, e_n))\beta(\sigma \circ A(e_n, \dots, e_{n+m})),$$

for all singular n + m-simplices σ in X. Hence extending by linearity yields a map

$$\cup: C^n(X; R) \times C^m(X; R) \to C^{n+m}(X; R).$$

Moreover, if

$$C(X;R) := \bigoplus_{n \in \omega} C^n(X;R),$$

we define $\cup : C(X; R) \times C(X; R) \rightarrow C(X; R)$ by

$$\sum_{i} \alpha_{i} \cup \sum_{j} \beta_{j} := \sum_{i,j} \alpha_{i} \cup \beta_{j}.$$

This is called the *cup product on* C(X; R). It is easily verified that $(C(X; R), \cup) \in GRing$. Step 2: Definition on morphisms. Let $n \in \omega$ and $f \in Top(X, Y)$. For $\alpha \in C^n(Y; R)$ define

$$C(f;R)(\alpha) := C^n(f;R)(\alpha) \in C^n(X;R),$$

and extend by linearity.

Lemma 1.1. Let $R \in GRing$ and I be a two-sided homogeneous ideal in R. Then also $R/I \in GRing$ with

$$R/I = \bigoplus_{n \in \omega} R^n/(R^n \cap I).$$

Theorem 1.6. Let $R \in \text{Ring}$. Then there is a contravariant functor

$$H(-;R): hTop \rightarrow GRing.$$

Proof. Set

$$Z := \bigoplus_{n \in \omega} Z^n(X; R)$$
 and $B := \bigoplus_{n \in \omega} B^n(X; R)$.

Then Z is a homogeneous subring of C(X; R) by using the fact that

$$d(\alpha \cup \beta) = d\alpha \cup \beta + (-1)^n \alpha \cup d\beta$$

for any $\alpha \in C^n(X; R)$ and $\beta \in C^m(X; R)$ holds. Moreover, B is a homogeneous two-sided ideal in Z. Therefore by lemma 1.1, we have

$$H(X;R) = \bigoplus_{n \in \omega} Z^n(X;R) / B^n(X;R) = \bigoplus_{n \in \omega} H^n(X;R).$$

Example 1.5. Let $n \in \omega$, $n \ge 1$. Then using the fact that $\widetilde{H}_k(\mathbb{S}^n) = \mathbb{Z}$ if k = n and zero otherwise, corollary 1.2 implies that

$$H^0(\mathbb{S}^n) = \mathbb{Z}$$
 and $H^n(\mathbb{S}^n) = \mathbb{Z}$

and zero otherwise. Thus

$$H(\mathbb{S}^n; \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}.$$

Denote the generator of the first summand by 1 and the second by X, we get that $X \cup X \in H^{2n}(\mathbb{S}^n) = 0$ and thus

$$H(\mathbb{S}^n; \mathbb{Z}) \cong \mathbb{Z}[X]/(X^2).$$

Actually, if $R \in CRing$, then H(-; R) attains values in CGRing.

Definition 1.2 (Diagonal Approximation). A diagonal approximation is defined to be a natural chain map

$$C_{\bullet}(-) \to C_{\bullet}(-) \otimes C_{\bullet}(-)$$

such that $D_0(x) = x \otimes x$ holds for any $x \in X$, $X \in \text{Top}$.

Theorem 1.7 (Alexander-Whitney Formula). An Eilenberg Zilber morphism

$$\Omega: C_{\bullet}(X \times Y) \to C_{\bullet}(X) \otimes C_{\bullet}(Y)$$

is given by the Alexander-Whitney formula

$$\Omega(\sigma) := \sum_{i=0}^{n} (\pi_1 \circ \sigma \circ A(e_0, \dots, e_i)) \otimes (\pi_2 \circ \sigma \circ A(e_i, \dots, e_n))$$
 (1)

for any $\sigma: \Delta^n \to X \times Y$.

Proposition 1.4. For the Alexander-Whitney choice of an Eilenberg-Zilber morphism Ω , the composition

$$C^{\bullet}\delta \circ \operatorname{Hom}(\Omega, R) \circ \mu$$

where $\mu: C^{\bullet}(X; R) \otimes C^{\bullet}(X; R) \to \operatorname{Hom}(C_{\bullet}(X) \otimes C_{\bullet}(X), R)$ is defined by

$$\mu(\alpha \otimes \beta) \left(\sum_{k=0}^{n+m} \sigma_k \otimes \sigma'_{n+m-k} \right) := \alpha(\sigma_n) \beta(\sigma'_m)$$

coincides with the cup product.

Proof. Let $\alpha \in C^n(X; R)$, $\beta \in C^m(X; R)$ and $\sigma \in C^{n+m}(X)$. We compute

$$(C^{\bullet}\delta \circ \operatorname{Hom}(\Omega, R) \circ \mu)(\alpha \otimes \beta)(\sigma) = \operatorname{Hom}(\Omega \circ \delta, R)(\mu(\alpha \otimes \beta))(\sigma)$$

$$= \mu(\alpha \otimes \beta) \circ \Omega \circ C_{\bullet}\delta(\sigma)$$

$$= \mu(\alpha \otimes \beta)(\Omega(\delta \circ \sigma))$$

$$= (\alpha \cup \beta)(\sigma).$$

Theorem 1.8. Let $R \in \mathsf{CRing}$ and $X \in \mathsf{Top}$. Then

$$\langle \alpha \rangle \cup \langle \beta \rangle = (-1)^{nm} \langle \beta \rangle \cup \langle \alpha \rangle$$

for any $\langle \alpha \rangle \in H^n(X; R)$ and $\langle \beta \rangle \in H^m(X; R)$.

Proof. Since $\Omega \circ C_{\bullet}\delta$ and twist $\circ \Omega \circ C_{\bullet}\delta$ are both diagonal approximations, hence naturally chain homotopic. Now just evaluate both compositions.

Corollary 1.3. Let $X, Y \in \text{Top } of finite type and suppose that <math>H_n(Y)$ is free abelian for any $n \in \mathbb{Z}$. Then the cross product

$$H(X) \otimes H(Y) \stackrel{\times}{\to} H(X \times Y)$$

is an isomorphism of graded rings.

Example 1.6. Suppose \mathbb{T}^n is the *n*-torus from example 1.4. We claim that

$$H(\mathbb{T}^n;\mathbb{Z}) \cong \mathbb{Z}[X_1,\ldots,X_n]/(X_k^2).$$

Indeed, example 1.5, implies the base case for an induction over n. Suppose the claim holds for some $n \in \omega$, $n \ge 1$. Then using corollary 1.3 implies that

$$H(\mathbb{T}^{n+1}) = H(\mathbb{T}^n \times \mathbb{S}^1)$$

$$= H(\mathbb{T}^n) \otimes H(\mathbb{S}^1)$$

$$= \mathbb{Z}[X_1, \dots, X_n]/(X_k^2) \otimes \mathbb{Z}[X_{n+1}]/(X_{n+1}^2)$$

$$= \mathbb{Z}[X_1, \dots, X_{n+1}]/(X_k^2).$$

Fibre Bundles

Definition 1.3 (Fibre Bundle). Let $p \in \text{Top}(E, X)$ surjective and $F \in \text{Top non-empty}$. We say that p is a fibre bundle over X with fibre F iff for any $x \in X$ there exists a neighbourhood U of x in X and a homeomorphism $h : p^{-1}(U) \to U \times F$ such that

$$p^{-1}(U) \xrightarrow{h} U \times F$$

$$\downarrow^{\pi}$$

$$U$$

commutes.

Theorem 1.9 (Leray-Hirsch). Let $F \to E \xrightarrow{p} X$ be a fibre bundle and $R \in \mathsf{CRing}$ such that $H^n(F;R)$ is a finitely generated free R-module for any $n \in \mathbb{Z}$ and that a cohomology extension ξ of the fibre F exists. Then the mapping

$$L: H(X; R) \otimes_R H(F; R) \rightarrow H(E; R)$$

defined by

$$L(\langle \alpha \rangle \otimes \langle \beta \rangle) := H(p)\langle \alpha \rangle \cup \xi \langle \beta \rangle$$

is an isomorphism.

Proof. Step 1: X paracompact and pointed contractible. Then the fibre bundle is trivial, i.e. $E \cong X \times F$ and there exists $x_0 \in X$, such that $\iota_{x_0} : E_{x_0} \hookrightarrow E$ is a homotopy equivalence. Thus $H^{\bullet}(\iota_{x_0})$ is an isomorphism and hence is ξ . Using $H(X;R) \cong R$, we get

$$H(X; R) \otimes_R H(F; R) \cong H(F; R) \cong H(E; R)$$
.

Step 2: X finite dimensional cell complex. We perform an induction over dim X. The base case follows immediately from step 1. Suppose dim X = n. Define U to be the union of n-cells, where we remove from each n-cell a single point. Moreover, let V be the union of all n-cells. Then $X^n = U \cup V$ and the dual version of Mayer-Vietoris yields

$$H(X^{n};R) \otimes_{R} M \xrightarrow{L_{X^{n}}} H(E_{X^{n}};R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(H(U;R) \otimes_{R} M) \oplus (H(V;R) \otimes_{R} M) \xrightarrow{(L_{U},L_{V})} H(E_{U};R) \oplus H(E_{V};R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H(U \cap V;R) \otimes_{R} M \xrightarrow{L_{U \cap V}} H(E_{U \cap V};R)$$

where M := H(F; R). Since M is free, the left hand side is exact.

Step 3: L_U , L_V and $L_{U\cap V}$ are isomorphisms. First of all X^{n-1} is a strong deformation retract of U and thus L_U is an isomorphism by induction hypothesis (since $L_{X^{n-1}}$ is an isomorphism).

The Leray-Hirsch theorem 1.9 is useless unless a cohomology extension of the fibre exists. This is the content of the so-called *Thom-isomorphism theorem*.

Theorem 1.10 (Thom Isomorphism Theorem).

The Duality Theorem

Topological Manifolds.

Definition 1.4 (Op(X)). Let $X \in \text{Top. Define Op}(X)$ to be the category with objects all the open sets of X and Hom(U, V) to be the singleton $\iota_U^V : U \hookrightarrow V$ if $U \subseteq V$ and empty otherwise.

Definition 1.5 (Cap Product). Let $R \in CRing$ and $X \in Top$. The pairing

$$\cap: C^n(X;R) \otimes C_{n+m}(X;R) \to C_m(X;R)$$

defined by

$$\alpha \cap (\sigma \otimes r) := r\alpha(\sigma \circ A(e_0, \dots, e_n)) \otimes (\sigma \circ A(e_n, \dots, e_{n+m}))$$

is called cap product.

Cech Cohomology.

Definition 1.6. Let $K \subseteq \mathsf{Top}^2$ be the full subcategory with objects all pairs (L, K) with $K \subseteq L \subseteq X$ compact for some Euclidean neighbourhood retract X.

Definition 1.7 (Cech Cohomology). Let $K \subseteq L \subseteq X$ be compact subspaces of an Euclidean neighbourhood retract and let $A \in Ab$. We define the Cech cohomology of (L, K) with coefficients in A to be the abelian group

$$\check{H}^k(L, K; A) := \operatorname{colim} H^k(V, U; A).$$

Let M be an n-dimensional manifold. Then for any $R \in CRing$ we can define

$$\mathcal{O}(M;R) := \coprod_{x \in M} H_n(M, M \setminus \{x\}; R).$$

Observe that $H_n(M, M \setminus \{x\}; R) \cong \mathbb{R}$ as R-modules by excision. Hence it makes sense to define an *orientation of* M to be a section $\sigma : M \to \mathcal{O}(M; A)$ of the projection

$$\pi: \mathcal{O}(M; A) \to M$$

in Top, i.e. $\pi \circ \sigma = \mathrm{id}_M$ such that $\sigma(x)$ is a generator for $H_n(M, M \setminus \{x\})$; R for any $x \in M$.

Theorem 1.11 (Duality Theorem). Let M be an n-dimensional oriented topological manifold. Then for any pair $K \subseteq L \subseteq M$ compact, the duality morphism

$$D_{KL}: \check{H}^k(L,K) \to H_{n-k}(M \setminus K, M \setminus L)$$

is an isomorphism.

Corollary 1.4 (Poincaré Duality). Let M be an n-dimensional oriented closed topological manifold with fundamental class $\langle o_M \rangle \in H_n(M)$ (i.e. $\langle o_M \rangle$ is a generator of $H_n(M)$). Then

$$H^k(M) \to H_{n-k}(M) \qquad \langle c \rangle \mapsto \langle c \rangle \cap \langle o_M \rangle$$

is an isomorphism.

Homotopy Theory

Theorem 1.12 (Homotopy Sequence). Let (X, X') be a pointed pair. Then there is a long exact sequence

$$\dots \longrightarrow \pi_n(X') \longrightarrow \pi_n(X) \longrightarrow \pi_n(X,X') \stackrel{\delta}{\longrightarrow} \pi_{n-1}(X') \longrightarrow \dots$$

Lemma 1.2. Any trivial fibre bundle is a weak fibration.

Theorem 1.13 (Homotopy Sequence of a Fibration). Let $p: E \to X$ be a fibration with fibre F. Then there exists a long exact sequence

$$\dots \longrightarrow \pi_n(F) \longrightarrow \pi_n(E) \longrightarrow \pi_n(X) \longrightarrow \pi_{n-1}(F) \longrightarrow \dots$$

Corollary 1.5. Let $F \to E \stackrel{p}{\to} X$ be a fibre bundle. Then p is a weak fibration.

Corollary 1.6 (Homotopy Sequence of a Weak Fibration). Let $p: E \to X$ be a weak fibration. Choose basepoints $y_0 \in E$ and $x_0 := p(y_0) \in X$. Let $F := p^{-1}(x_0)$. Then there is a long exact sequence

$$\dots \longrightarrow \pi_n(F) \longrightarrow \pi_n(E) \longrightarrow \pi_n(X) \longrightarrow \pi_{n-1}(F) \longrightarrow \dots$$