1. Milyen elégséges feltételt ismer differenciálható függvény szigorú monoton növekedésével kapcsolatban?

```
Tétel. (Elégséges feltétel a monotonitásra.)

Legyen a, b \in \mathbb{R}, a < b és f : [a, b] \to \mathbb{R}. Tegyük fel, hogy f \in C[a, b] és f \in D(a, b). Ekkor,

1^o (a) ha f' \ge 0 (a, b) - n \implies f monoton növekedő [a, b] - n;

(b) ha f' \le 0 (a, b) - n \implies f monoton csökkenő [a, b] - n;

2^o (a) ha f' > 0 (a, b) - n \implies f szigorúan monoton növekedő [a, b] - n;

(b) ha f' < 0 (a, b) - n \implies f szigorúan monoton csökkenő [a, b] - n.
```

2. Milyen szükséges és elégséges feltételt ismer differenciálható függvény monoton növekedésével kapcsolatban?

```
Tétel. (Szükséges és elégséges feltétel a szigorú monotonitásra.)

Legyen a,b \in \mathbb{R}, a < b és f : [a,b] \to \mathbb{R}. Tegyük fel, hogy f \in C[a,b] és f \in D(a,b). Ekkor

1^o f szigorúan monoton növekedő [a,b]-n \iff

f' \ge 0 (a,b)-n, és [a,b]-nek nincs olyan részintervalluma, amelyen f' azonosan nulla;

2^o f szigorúan monoton csökkenő [a,b]-n \iff

f' \le 0 (a,b)-n, és [a,b]-nek nincs olyan részintervalluma, amelyen f' azonosan nulla.
```

3. Mit ért azon, hogy az $f \in R \to R$ függvénynek valamely helyen lokális minimuma van?

Definíció.
$$Az \ f \in \mathbb{R} \to \mathbb{R}$$
 függvénynek az $a \in \operatorname{int} \mathcal{D}_f$ pontban lokális maximuma van, ha
$$\exists \ K(a) \subset \mathcal{D}_f: \ \forall \ x \in K(a) \subset \mathcal{D}_f \ esetén \ f(x) \leq f(a).$$
 Ekkor az $a \in \operatorname{int} \mathcal{D}_f$ pontot f lokális maximumhelyének nevezzük, az $f(a)$ érték pedig a függvény lokális maximuma.

4. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel?

Tétel. (A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel.) $Tegyük \ fel, \ hogy \ f \in \mathbb{R} \to \mathbb{R} \quad \'es$ $\bullet \ f \in D\{a\} \ valamilyen \ a \in \operatorname{int} \mathcal{D}_f\text{-ben}$ $\bullet \ f\text{-nek } a\text{-ban lokális szélsőértéke van.}$

5. Hogyan szól a lokális maximumra vonatkozó elsőrendű elégséges feltétel?

Tétel. (A lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel.)

Legyen $a, b \in \mathbb{R}$, a < b és $f : (a, b) \to \mathbb{R}$. Tegyük fel, hogy

- $f \in D(a,b)$,
- $egy \ c \in (a,b) \ pontban \ f'(c) = 0 \ és$
- az f' deriváltfüggvény előjelet vált c-ben.

Ekkor,

 1^o ha az f' függvény negatívból pozitívba megy át, akkor a $c \in (a,b)$ pont az f függvénynek lokális minimumhelye;

 2^o ha az f' függvény pozitívból negatívba megy át, akkor a $c \in (a,b)$ pont az f függvénynek lokális maximumhelye.

6. Írja le a lokális minimumra vonatkozó másodrendű elégséges feltételt.

Tétel. (A lokális szélsőértékre vonatkozó másodrendű elégséges feltétel.)

Legyen $a, b \in \mathbb{R}$, a < b és $f : (a, b) \to \mathbb{R}$. Tegyük fel, hogy

- f kétszer deriválható egy $c \in (a,b)$ pontban, azaz $f \in D^2\{c\}$,
- f'(c) = 0,
- $f''(c) \neq 0$.

Ekkor c lokális szélsőértékhelye az f függvénynek;

 1° ha f''(c) > 0, akkor f-nek c-ben lokális minimuma van,

 2° ha f''(c) < 0, akkor f-nek c-ben lokális maximuma van.

7. Hogyan szól a Weierstrass-tétel?

Weierstrass-tétel.