### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2004039150 A

(43) Date of publication of application: 05.02.04

(51) Int. CI

G11C 11/15 H01L 27/10 H01L 27/105

H01L 43/08

(21) Application number: 2002196575

(22) Date of filing: 04.07.02

(71) Applicant:

**NEC CORP** 

(72) Inventor:

**SAKIMURA NOBORU** 

HONDA YUJI

SUGIBAYASHI NAOHIKO

### (54) MAGNETIC RANDOM ACCESS MEMORY

### (57) Abstract:

PROBLEM TO BE SOLVED: To provide a technology by which reliability of discriminating data stored in a memory cell of a MRAM can be improved by eliminating the influence of the sneak pass current.

SOLUTION: This MRAM is provided with a cross point cell array 1, a plurality of word lines 3 arranged extending in the first direction (x direction), a plurality of bit lines 4 arranged extending in the second direction (y direction) being different from the first direction (x direction), a dummy bit line 9 arranged extending in the second direction (y direction), a X selector 11 selecting a selection word line out of the plurality of word lines 3, a first Y selector 12 and a second Y selector 13 selecting a selection bit line out of the plurality of bit lines 4, and a reading circuit 16. The cross point cell array 1 is provided with a plurality of memory cells 2 and a plurality of dummy cells 8.

COPYRIGHT: (C)2004,JPO



(19) 日本国特許庁(JP)

# (12) 公 閉 特 許 公 報(A)

(11)特許出願公開番号

特開2004-39150 (P2004-39150A)

(43) 公開日 平成16年2月5日 (2004.2.5)

| (51) Int. Cl. 7 | F I                          |          |                | テーマコード     | (麥考)     |
|-----------------|------------------------------|----------|----------------|------------|----------|
| G11C 11/15      | G11C                         | 11/15 1  | 50             | 5F083      |          |
| HO1L 27/10      | G11C                         | 11/15 1  | 90             |            |          |
| HO1L 27/105     | HO1 L                        | 27/10 4  | 81             |            |          |
| HO1L 43/08      | HO1 L                        | 43/08    | Z              |            |          |
|                 | HO1L                         | 27/10 4  | 147            |            |          |
|                 |                              | 音音       | <b>清水 有 請求</b> | 項の数 31 O L | (全 42 頁) |
| (21) 出顧番号       | 特願2002-196575 (P2002-196575) | (71) 出顧人 | 000004237      |            |          |
| (22) 出題日        | 平成14年7月4日 (2002.7.4)         |          | 日本電気株式         | 大会社        |          |
|                 |                              | 1        | 東京都港区為         | 医五丁目7番1号   |          |
|                 |                              | (74) 代理人 | 100102864      |            |          |
|                 |                              |          | 弁理士 工即         | 第二笑        |          |
|                 |                              | (72) 発明者 | 崎村 昇           |            |          |
|                 |                              |          | 東京都港区為         | 医五丁目7番1号   | 日本電気株    |
|                 |                              |          | 式会社内           |            |          |
|                 |                              | (72) 発明者 | 本田 雄士          |            |          |
|                 |                              | į        | 東京都港区為         | 医五丁目7番1号   | 日本電気株    |
|                 |                              | 1        | 式会社内           |            |          |

(72) 発明者

杉林 直彦

式会社内

### (54) 【発明の名称】磁気ランダムアクセスメモリ

### (57)【要約】 (修正有)

【課題】スニークパス電流の影響を排除して、MRAMのメモリセルに記憶されているデータ判別の信頼性を向上する技術を提供する。

【解決手段】MRAMは、クロスポイントセルアレイ1と、第1方向(x方向)に延設されている複数のワード線3と、第1方向(x方向)と異なる第2方向(y方向)に延設されている複数のビット線4と、第2方向(y方向)に延設されているダミービット線9と、複数のワード線3のうちから選択ワード線を選択するXセレクタ11と、複数のビット線4のうちから選択ビット線を選択する第1Yセレクタ12および第2Yセレクタ13と、読み出し回路16とを備えている。クロスポイントセルアレイ1は、複数のメモリセル2と、複数のダミーセル8とを備えている。



東京都港区芝五丁目7番1号 日本電気株

F ターム (参考) 5F083 F210 GA11 LA04 LA05 LA10 ZA10 ZA28

### 【特許請求の範囲】

#### 【篩求項1】

クロスポイントセルアレイと.

第1方向に延設されている複数のワード線と、

前記第1方向と異なる第2方向に延設されている複数の ビット線と、

1

前配第2方向に延設されているダミービット線と、

前記複数のワード線のうちから選択ワード線を選択する 第1セレクタと、

前記複数のピット線のうちから選択ピット線を選択する 第2セレクタと,

### 読み出し回路

#### とを備え、

前記クロスポイントセルアレイは, 反転可能な自発磁化を有し, 且つ前記自発磁化の方向に応じて抵抗が異なる磁気抵抗索子を含んで構成されている複数のセルを含み,

前記複数のセルは.

前記自発磁化の方向に応じてデータを記憶する複数のメ モリセルと、

複数のダミーセル

### とを備え、

前記複数のメモリセルのそれぞれは,前記複数のワード 線のうちの一のワード線と,前記複数のビット線のうち の一のビット線との間に介設され,

前記ダミーセルのそれぞれは、前記複数のワード線のうちの一のワード線と、前記ダミービット線との間に介設され、

前記読み出し回路は、

前記選択ワード線と前記選択ビット線との間に電圧が印 30 加されることによって前記選択ビット線に流れる検知電流と、前記選択ワード線と前記ダミービット線との間に電圧が印加されることによって前記ダミービット線に流れるオフセット成分電流との差に対応する電流差信号を生成するオフセット除去回路と、

前記電流差信号に基づいて, 前記選択ワード線と前記選択ビット線との間に介設された選択セルに記憶されている記憶データを判別するデータ判別回路

#### とを含む

磁気ランダムアクセスメモリ。

### 【請求項2】

請求項1に記載の磁気ランダムアクセスメモリにおい て、

前記データ判別回路は、

前記電流差信号の電流に対応した出力電圧を出力する電流電圧変換回路と、

前記出力電位に基づいて前記メモリセル記憶データを判別する判別回路

とを備えた

磁気ランダムアクセスメモリ。

#### 【請求項3】

請求項1に記載の磁気ランダムアクセスメモリにおい て、

2

前記選択セルに記憶されている前記記憶データの読み出しのとき、前記第1セレクタは、前記選択ワード線に第1電位を印加し、前記複数のワード線のうち前記選択ワード線以外の非選択ワード線を開放し、

前記記憶データの読み出しのとき、前記第2セレクタは、前記選択ビット線と前記ダミービット線とを前記説 み出し回路に接続し、

前記記憶データの読み出しのとき、前記読み出し回路は、前記選択ビット線と前記グミービット線とに前記第 1電位と異なる第2電位を印加する

磁気ランダムアクセスメモリ。

#### 【請求項4】

請求項3に記載の磁気ランダムアクセスメモリにおい て、

更に.

前記複数のビット線のうち前記選択ビット線以外の非選 20 択ビット線を、前記第2電位と実質的に同一の電位を有 する電位線に接続する第3セレクタを備える 磁気ランダムアクセスメモリ。

#### 【請求項5】

請求項3に記載の磁気ランダムアクセスメモリにおい て,

前記第2セレクタは、前記複数のビット線のうち前記選択ビット線以外の非選択ビット線を開放する 磁気ランダムアクセスメモリ。

#### 【請求項6】

6 請求項1に記載の磁気ランダムアクセスメモリにおいて。

更に、

一の冗長ビット線に接続された複数の冗長メモリセルで 構成されている冗長セルカラムを含む冗長メモリセルア レイと、

置換情報保持器を含む冗長設計処理回路

とを備え,

前記クロスポイントセルアレイは、前記複数のビット線 にそれぞれ対応する複数のメモリセルカラムを含み、

40 前記メモリセルカラムのそれぞれは、前記複数のメモリセルのうち、それぞれが対応するビット線に接続されているメモリセルで構成され、

前記置換情報保持器は,前記メモリセルカラムのうち,前記冗長メモリセルカラムに置換される置換対象メモリセルカラムを示す置換情報を保持し,

前記冗長設計処理回路は,前記置換情報に応答して,前 記置換対象メモリセルカラムを前記冗長メモリセルカラ ムに置換する

磁気ランダムアクセスメモリ。

50 【請求項7】

請求項1に記載の磁気ランダムアクセスメモリにおい て、

更に.

<mark>置換情報保持器を含む冗長設計処理回路</mark> とを備え、

前記複数のダミーセルは、ダミーセルカラムを構成し、 前記クロスポイントセルアレイは、更に、

冗長ダミーピット線と.

前記冗長ダミービット線と、前記複数のワード線のうちの一のワード線との間に介設された複数の冗長ダミーセルから構成されている冗長ダミーセルカラムとを含み、

前記置換情報保持器は、前記ダミーセルカラムが前記冗 長ダミーセルカラムに置換されるか否かを示す置換情報 を保持し、

前記冗長設計処理回路は,前記置換情報に応答して,前記グミーセルカラムを前記冗長グミーセルカラムに置換する

磁気ランダムアクセスメモリ。

#### 【請求項8】

請求項1に記載の磁気ランダムアクセスメモリにおい て,

更に、

前記第1方向に延設された参照ワード線を備え, 前記複数のセルは, 更に,

前記自発磁化の方向として所定のデータを記憶する複数 の参照セルと、

データの記憶に使用されない他のダミーセル とを含み,

前記複数の参照セルのそれぞれは、前記複数のピット線 30 のうちの一のビット線と、前記参照ワード線との間に介 設され、

前記他のダミーセルは, 前記ダミービット線と前記参照 ワード線との間に介設され,

前記オフセット除去回路は、前記選択ビット線と前記参照ワード線との間に電圧を印加することによって流れる参照検知電流と、前記ダミービット線と前記参照ワード線との間に電圧を印加することによって流れる他のオフセット成分電流との差に対応する他の電流差信号を生成1

前記データ判別回路は、前記電流差信号と前記他の電流 差信号に基づいて前記記憶データを判別する

磁気ランダムアクセスメモリ。

### 【請求項9】

請求項8に記載の磁気ランダムアクセスメモリにおい て、

前記データ判別回路は、

前記他の電流差信号の電流に対応する第1出力電位を出力し,前記電流差信号の電流に対応する第2出力電位を 出力する電流電圧変換回路と, 前記第1出力電位と前記第2出力電位とに基づいて前記 記憶データを判別する判別回路

とを備えた

磁気ランダムアクセスメモリ。

【請求項10】

請求項9に記載の磁気ランダムアクセスメモリにおい て、

前記データ判別回路は、更に、電位保持回路を有し、第1 読み出し動作期間において、前記オフセット除去回路は、前記選択ビット線を流れる前記参照検知電流と、前記ダミービット線を流れる前記他のオフセット成分電流とから前記他の電流差信号を生成し、前記電流電圧変換回路は、前記他の電流差信号を受けて前記第1出力電位を出力し、前記電位保持回路は、前記第1出力電位を保持し、

前記第1読み出し動作期間に時間的に遅れる第2読み出し動作期間において、前記オフセット除去回路は、前記選択ビット線を流れる前記検知電流と、前記ダミービット線を流れる前記オフセット成分電流から前記電流差信 号を生成し、前記電流電圧変換回路は、前記電流差信号を受けて前記第2出力電位を出力し、且つ、前記判別回路は、前記電位保持回路によって保持されている前記第1出力電位と前記第2出力電位とを比較して前記記憶データを判別する

磁気ランダムアクセスメモリ。

#### 【請求項11】

請求項10に記載の磁気ランダムアクセスメモリにおい て、

前記第1セレクタは、前記第1読み出し動作期間の間、前記参照ワード線に第1電位を印加し、前記複数のワード線の全てを開放し、前記第2読み出し動作期間の間、前記選択ワード線に前記第1電位を印加し、前記参照ワード線と前記複数のワード線のうちの前記選択ワード線以外の非選択ワード線とを開放し、

前記第2セレクタは、前記選択ビット線と前記ダミービット線とを前記読み出し回路に接続し,

前記読み出し回路は、前記第1読み出し動作期間と前記 第2読み出し動作期間との間、前記選択ビット線と前記 ダミービット線とを前記第1電位と異なる第2電位に維 持する

, ハッつ 磁気ランダムアクセスメモリ。

【請求項12】

請求項 9 に記載の磁気ランダムアクセスメモリにおい て、

前記データ判別回路は、更に、電位保持回路を有し、 第1読み出し動作期間において、前記オフセット除去回 路は、前記選択ビット線を流れる前記検知電流と、前記 ダミービット線を流れる前記オフセット成分電流とから 前記電流差信号を生成し、前記電流電圧変換回路は、前 50 記電流差信号を受けて前記第2出力電位を出力し、且

つ、前配電位保持回路は、前配第2出力電位を保持し、前記第1 読み出し動作期間に時間的に遅れる第2 読み出し動作期間において、前記オフセット除去回路は、前記選択ビット線を流れる前記参照検知電流と、前記ダミービット線を流れる前記他のオフセット成分電流とから前記他の電流差信号を生成し、前記電流電圧変換回路は、前記他の電流差信号を受けて前記第1出力電位を出力し、前記判別回路は、前記第1出力電位と前記電位保持回路に保持されている前記第2出力電位とを比較して前記記憶データを判別する

磁気ランダムアクセスメモリ。

### 【請求項13】

簡求項12に記載の磁気ランダムアクセスメモリにおい て.

前記第1セレクタは、前記第1 読み出し動作期間の間、前記選択ワード線に第1 館位を印加し、前記参照ワード線と前記複数のワード線のうちの前記選択ワード線以外の非選択ワード線とを開放し、前記第2 読み出し動作期間の間、前記参照ワード線に前記第1 電位を印加し、前記複数のワード線の全てを開放し、

前記第2セレクタは、前記選択ビット線と前記ダミービット線とを前記読み出し回路に接続し、

前記読み出し回路は、前記第1読み出し動作期間と前記第2読み出し動作期間との間、前記選択ビット線と前記 ダミービット線とを前記第1電位と異なる第2電位に維持する

磁気ランダムアクセスメモリ。

#### 【請求項14】

請求項11又は請求項13に記載の磁気ランダムアクセ スメモリにおいて、

前記第2セレクタは、前記複数のビット線のうち前記選択ビット線以外の非選択ビット線を、前記第2電位と実質的に同一電位を有する電位線に接続する

磁気ランダムアクセスメモリ。

## 【請求項15】

請求項11又は請求項13のいずれか一に記載の磁気ランダムアクセスメモリにおいて、

前記第2セレクタは、前記複数のビット線のうち前記選択ビット線以外の非選択ビット線を開放する

磁気ランダムアクセスメモリ。

### 【請求項16】

クロスポイントセルアレイと,

第1方向に延設されている複数のワード線と、

前記第1方向と異なる第2方向に延設されている複数の ビット線と、

前記第1方向に延設されている参照ワード線と、

前記複数のワード線のうちから選択ワード線を選択する 第1セレクタと、

前記複数のビット線のうちから選択ビット線を選択する 第2セレクタと、 読み出し回路

とを備え、

前記クロスポイントセルアレイは、反転可能な自発磁化 を有し、且つ前記自発磁化の方向に応じて抵抗が異なる 磁気抵抗素子で形成された複数のセルを含み、

前記複数のセルは.

前記自発磁化の方向に応じてデータを記憶する複数のメモリセルと、

所定のデータが、前記自発磁化の方向に応じて記憶され 10 ている複数の参照セルとを含み、

前記複数のメモリセルのそれぞれは、前記複数のワード 線のうちの一のワード線と、前記複数のビット線のうち の一のビット線との間に介設され、

前記複数の参照セルのそれぞれは、前記複数のビット線 のうちの一のビット線と、前記参照ワード線との間に介 設され、

前記読み出し回路は、前記選択ワード線と前記選択ビット線との間に電圧が印加されたときに前記選択ビット線を流れる検知電流と、前記参照ワード線と前記選択ビット線との間に電圧が印加されたときに前記選択ビット線に流れる参照検知電流とに基づいて、前記選択セルに記憶されている記憶データを判別する

磁気ランダムアクセスメモリ。

### 【請求項17】

請求項16に配載の磁気ランダムアクセスメモリにおい て、

前記読み出し回路は,

電流電圧変換回路と、

電位保持回路と、

### 30 判別回路

とを含み、

第1読み出し動作期間において、前記電流電圧変換回路 は、前記選択ビット線から前記参照検知電流に応答して 第1出力電位を生成し、前記電位保持回路は、前記第1 出力電位を保持し、

前記第1読み出し動作期間に時間的に遅れる第2読み出し動作期間において、前記電流電圧変換回路は、前記選択ビット線を流れる前記検知電流に応答して第2出力電位を生成し、前記判別回路は、前記電位保持回路によって保持されている前記第1出力電位と前記第2出力電位

とを比較して前配記億データを判別する 磁気ランダムアクセスメモリ。

# 【請求項18】

請求項16に記載の磁気ランダムアクセスメモリにおい て,

前記読み出し回路は、

電流電圧変換回路と,

電位保持回路と、

判別回路

50 とを含み,

第1 読み出し動作期間において,前記電流電圧変換回路は,前記選択ビット線を流れる前記検知電流に応答して第2出力電位を生成し,前記電位保持回路は,前記第2 出力電位を保持電位として保持し,

前記第1読み出し動作期間に時間的に遅れる第2読み出し動作期間において、前記電流電圧変換回路は、前記選択ビット線を流れる前記参照検知電流に応答して第1出力電位を生成し、前記判別回路は、前記保持電位と前記第1出力電位とを比較して前記記憶データを判別する磁気ランダムアクセスメモリ。

### 【請求項19】

請求項16に記載の磁気ランダムアクセスメモリにおい て、

更に、

置換情報保持器を含む冗長設計処理回路

を備え、

前記複数の参照セルは、参照セルカラムを構成し、

前記クロスポイントセルアレイは,一の冗長参照ワード 線に接続された複数の冗長参照セルで構成されている冗 長参照セルカラムを含み,

前記置換情報保持器は,前記参照セルカラムが前記冗長 参照セルカラムに置換されるか否かを示す置換情報を保 持し,

前記冗長設計処理回路は,前記置換情報に応答して,前 記参照セルカラムを前記冗長参照セルカラムに置換する 磁気ランダムアクセスメモリ。

### 【請求項20】

反転可能な自発磁化を有し、且つ前記自発磁化の方向に 応じて抵抗が異なる磁気抵抗素子で形成された複数のセ ルと、

読み出し回路

とを備え、

前記複数のセルは、

前記自発磁化の方向として, "1"又は"0"であるメモリセル記憶データを記憶するメモリセルと、

所定のデータが記憶された参照セル

とを含み,

前記読み出し回路は、前記メモリセルからメモリセル電流をとりだし、前記参照セルか参照セル電流を取り出して、前記メモリセル電流と前記参照セル電流とに基づい 40 て前記メモリセル記憶データを判別する読み出し動作を複数回行い、前記複数の読み出し動作によって得られた前記複数のメモリセル記憶データの判別結果から、最終的に前記メモリセル記憶データを判別する

磁気ランダムアクセスメモリ。

### 【請求項21】

請求項20に記載の磁気ランダムアクセスメモリにおい て,

前記読み出し動作が行われる回数は、奇数回である 磁気ランダムアクセスメモリ。 【請求項22】

請求項20に記載の磁気ランダムアクセスメモリにおい て、

8

前記読み出し回路は、前記読み出し動作において、前記メモリセル記憶データが"1"であると判別された回数が、前記メモリセル記憶データが"0"であると判別された回数を所定回数よりも上回るとき、前記メモリセル記憶データが"1"であると最終的に判別し、前記読み出し動作において前記メモリセル記憶データが"0"であると判別された回数が、前記メモリセル記憶データ

が"1"であると判別された回数を所定回数よりも上回るとき、前記メモリセル記憶データを最終的に"0"であると判別する

磁気ランダムアクセスメモリ。

【請求項23】

請求項22に記載の磁気ランダムアクセスメモリにおい て、

前記読み出し回路は、更に、 n ビットのカウンタを含み。

20 前記読み出し動作が行われる回数は, 2<sup>n</sup>-1回であり.

前記カウンタが記憶する値は、前記読み出し動作において、前記メモリセル記憶データが"1"であると判別される毎に1だけ増加され、且つ、

前記カウンタは、前記読み出し動作が2n-1回行われた後、その最上位ビットを最終的に判別された前記メモリセル記憶データとして出力する

磁気ランダムアクセスメモリ。

【請求項24】

30 請求項20に記載の磁気ランダムアクセスメモリにおい

前記参照セルは,前記所定のデータを前記自発磁化の向きに対応させて保持する参照セルフリー層を備え,

前記メモリセルは、前記メモリセル記憶データを前記自 発磁化の向きに対応させて保持するメモリセルフリー層 を備え、

前記参照セルフリー層と前記メモリセルフリー層とは, 面積が異なる

磁気ランダムアクセスメモリ。

【請求項25】

請求項24に記載の磁気ランダムアクセスメモリにおい で

前記参照セルフリー層は, 前記メモリセルフリー層より も面積が小さい

磁気ランダムアクセスメモリ。

【請求項26】

請求項25に記載の磁気ランダムアクセスメモリにおい で、

前記メモリセルフリー層の前記自発磁化の方向に一致す 50 る長さ方向の長さbccllと、前記メモリセルフリー (6)

特開2004-39150

0

層の前記自発磁化に垂直な幅方向の幅ac。11と、前 記参照セルフリー層の前記長さ方向の長さbrefと、 前記参照セルフリー層の前記幅方向の幅aょ。」とは、

aroi/broi<acoli/bcol1,

を満足する

磁気ランダムアクセスメモリ。

【請求項27】

請求項25に記載の磁気ランダムアクセスメモリにおい

前記参照セルの抵抗値は、前記メモリセルの抵抗値のう ちの大きい方の高抵抗値と、小さい方の低抵抗値との間 に選ばれた

磁気ランダムアクセスメモリ。

#### 【請求項28】

反転可能な自発磁化を有し、且つ前記自発磁化の方向に 応じて抵抗が異なる磁気抵抗索子で形成された複数のセ ルと,

読み出し回路

とを備え,

前記複数のセルは、

前記自発磁化の方向に対応させて、"1"又は"0"で あるメモリセル記憶データを記憶するメモリセルフリー 層を備えたメモリセルと,

前記自発磁化の方向に対応させて、所定のデータを記憶 する参照セルフリー層を備えた参照セル とを含み.

前記参照セルフリー層と前記メモリセルフリー層とは、 面積が異なっており、前記読み出し回路は、前記メモリ 参照セル電流を取り出して、前記メモリセル電流と前記 参照セル電流とに基づいて前記メモリセル記憶データを

磁気ランダムアクセスメモリ。

【請求項29】

判別する

請求項28に記載の磁気ランダムアクセスメモリにおい τ.

前記参照セルフリー層は、前記メモリセルフリー層より も面積が小さい

磁気ランダムアクセスメモリ。

【請求項30】

請求項29に記載の磁気ランダムアクセスメモリにおい

前記メモリセルフリー層の前記自発磁化の方向に一致す る長さ方向の長さbcollと、前記メモリセルフリー 層の前記自発磁化に垂直な幅方向の幅 2 こ 3 1 1 と , 前 記参照セルフリー層の前記長さ方向の長さり、。1と、 前記参照セルフリー層の前記幅方向の幅 a r o r とは, 下記式:

arei/broi<aceii/bcell,

を満足する

磁気ランダムアクセスメモリ。

【請求項31】

請求項29に記載の磁気ランダムアクセスメモリにおい τ,

10

前記参照セルフリー層の面積は、前記参照セルの抵抗値 が、前記メモリセルの抵抗値のうちの大きい方の高抵抗 値と、小さい方の低抵抗値との間になるように定められ た

10 磁気ランダムアクセスメモリ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、磁気ランダムアクセスメモリ (MRAM) に 関し、特に、MRAMのメモリセルに記憶されているデ ータをより確実に判別するための技術に関する。

[0002]

【従来の技術】

磁気ランダムアクセスメモリ (Magnetic Ra 20 ndom Access Memory:以下、「MR AM」という。)は、高速費き込みが可能であり、且 つ、大きな掛き換え回数を有する不揮発性メモリとして 注目を集めている。

[0003]

典型的なMRAMは、複数のメモリセルが行列に配列さ れたメモリセルアレイを含む。各メモリセルは、固定さ れた自発磁化を有するピン層と、反転可能な自発磁化を 有するフリー層と、ピン層とフリー層との間に介設され たスペーサ層とにより構成される磁気抵抗素子を含む。 セルからメモリセル電流をとりだし、前記参照セルから 30 フリー層は、その自発磁化の向きが、ピン層の自発磁化 の向きと平行、又は反平行に向くことが許されるよう に、反転可能に形成される。

[0004]

メモリセルは、1ビットのデータを、フリー層及びピン 層の自発磁化の方向として記憶する。メモリセルは、フ リー層の自発磁化とピン層の自発磁化とが平行である" 平行"状態と、フリー層の自発磁化とピン層の自発磁化 とが反平行である"反平行"状態の2つの状態を取り得 る。メモリセルは、"平行"状態と、"反平行"状態と 40 のうちの一方を"0"に、他方を"1"に対応付けるこ とにより、1ビットのデータを記憶する。

[0005]

フリー層及びピン層の自発磁化の方向は、メモリセルの 抵抗に影響を及ぼす。ピン層とフリー層との自発磁化の 向きが平行である場合には、メモリセルの抵抗は、第1 値Rとなり、反平行である場合には、メモリセルの抵抗 は、第2値R+ARになる。フリー層及びピン層の自発 磁化の方向、即ち、メモリセルに記憶されているデータ は、メモリセルの抵抗を検知することにより判別するこ 50 とができる。メモリセルの抵抗は、所定の電圧を磁気抵

抗索子に印加することによって該磁気抵抗案子に流れる 電流、及び所定の電流を磁気抵抗索子に流すことによっ て該磁気抵抗索子に発生する電圧のいずれかに基づいて 検知される。

### [0006]

MRAMのメモリセルの構成として、磁気抵抗素子がア クセストランジスタを介してピット線に接続される構成 と,磁気抵抗素子が直接にワード線及びビット線に接続 される構成とが知られている。後者は、メモリセルの選 択性において前者に劣るものの、高集積化に適している 点で有力な構成である。後者のメモリセルで構成される アレイは、クロスポイントセルアレイとして知られてい

### [0007]

クロスポイントセルアレイを採用したMR AMのメモリ セルのデータの判別の信頼性を損ねる要因として、寄生 館流(又はスニークパス電流)が挙げられる。クロスポ イントセルアレイに含まれるメモリセルは、多数の並列 な経路によって結ばれている。スニークパス電流とは、 この並列な経路を介して、読み出し対象のメモリセルを 20 通過せずに流れる電流のことである。スニークパス電流 は、メモリセルに記憶されたデータを判別するときに、 メモリセルの抵抗を正確に検知することを妨げる。

スニークパス電流による影響を抑制してクロスポイント セルアレイのメモリセルの抵抗を高い信頼性で検知する MRAMが, 特開2002-8369に開示されてい る。図18は、従来のそのMRAMを示す概略図であ る。当該MRAMは、複数のメモリセル112を備えた 抵抗性クロスポイントアレイ110を備えている。抵抗 30 性クロスポイントアレイ110は、行方向に延設された 複数のワード線114と、列方向に延設された複数のビ ット線116とを備えている。メモリセル112のそれ ぞれは、ワード線114とビット線116との交点に位 置する。ワード線114は,ワード線114を選択する 行デコード回路118に接続されている。ビット線11 6は、検知回路120に接続されている。検知回路12 0は、ビット線116を選択する操行回路122と、セ ンスアンプ124と、データレジスタ130と、入出力 パッド132とを備えている。

#### [0009]

該MR AMのデータ読み出し動作は、以下のようにして 行われる。行デコード回路118によりワード線114 が選択され、操行回路122によりビット線116が選 択される。選択されたワード線114と選択されたビッ ト線116との交点に位置するメモリセル112が選択 される。

### [0010]

図19は、データ読み出し時の抵抗性クロスポイントア レイ110の等価回路を示している。選択されたメモリ 50 せるのは、現実的には、実質的に困難である場合が少な

12

セルは、第1抵抗器112aによって表され、選択され ていないメモリセルは、第2、第3、及び第4抵抗器1 12b, 112c, 及び112dによって安されてい る。第2抵抗器112bは、選択されたビット線に沿っ た選択されていないメモリセルを表し、第3抵抗器11 2 c は、選択されたワード線に沿った選択されていない メモリセルを表し,第4抵抗器112dは,残りの選択 されていないメモリセルを表している。

### [0011]

選択されたビット線には、動作電位Vsが印加され、選 択されたワード線は、接地電位が印加される。これによ り、第1抵抗器112aには、検知電流Lsが流れる。 スニークパス電流の影響の抑制のために、選択されてい ないピット線に、動作電位Vsと同一の動作電位Vbが 印加される。動作電位Vbの印加により, 第2抵抗器1 12b及び第4抵抗器112dを流れるスニーク電流5 1, S3は遮断される。更に, 第3抵抗器112cを流 れるスニークパス電流 S 2 は、接地電位に導かれ、従っ て、検知電流Isと干渉しない。ゆえに、検知電流Is を高い信頼性で検知できる。

#### [0012]

代替的には、図20に示されているように、選択されて いないワード線に、動作電位Vsと同一の動作電位Vb が印加される。スニークパス電流 S1は、第2抵抗器1 12bを流れないように遮断される。第3抵抗器112 cを流れるスニークパス電流S2と,第4抵抗器112 dを流れるスニークパス電流S3は,接地電位に導か れ, 従って, 検知電流 I s と干渉しない。 ゆえに, 検知 電流 Isを高い信頼性で検知できる。

### [0013]

このように、選択されていないビット線に動作電位Vs と同一の動作電位Vbを印加することにより、又は、選 択されていないワード線に動作電位Vsと同一の動作電 位Vbを印加することにより、検知電流Isを高精度で 検知することが可能であり、従って、選択されたメモリ セルに記憶されているデータを高い信頼性で検知するこ とが可能である。

### [0014]

上述のMRAMでは、選択されていないワード線(又は 40 ビット線) に印加される動作電圧Vbと、選択されてい るピット線に印加される動作電圧Vsとが高精度で一致 することが重要である。動作電圧Vbと動作電圧Vsと の少しの違いは、スニークパス電流 S1-S3が検知電 流Isに及ぼす影響を顕著に増大させる。特に、製造工 程の問題によってメモリセルの一部がショート不良を有 する場合には、動作電圧Vbと動作電圧Vsとの少しの 違いは、大きなスニークパス電流を発生させる。

### [0015]

しかし、動作電圧Vbと動作電圧Vsとを完全に一致さ

くない。 動作電圧Vbと動作電圧Vsとを完全に一致させることの困難性は、スニークパス電流の影響の抑制の効果を減少させる。

#### [0016]

スニークパス電流の影響を排除して、MRAMのメモリセルに記憶されているデータを高い信頼性で決定するための他の技術の提供が望まれている。

#### [0017]

### 【発明が解決しようとする課題】

本発明の目的は、MRAMのメモリセルに記憶されてい 10 るデータを高い信頼性で決定するための技術を提供する ことにある。

#### [0018]

本発明の他の目的は、スニークパス電流の影響を抑制することにより、MRAMのメモリセルに記憶されている データを高い信頼性で決定するための技術を提供する。

#### [0019]

### 【課題を解決するための手段】

以下に、 [発明の実施の形態] で使用される番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、 [特許請求の範囲] の記載と [発明の実施の形態] の記載との対応関係を明らかにするために付加されている。但し、付加された番号・符号は、

[特許請求の範囲] に記載されている発明の技術的範囲 の解釈に用いてはならない。

### [0020]

上記の目的を達成するために、本発明によるMRAM は、クロスポイントセルアレイ(1、1',41)と、 第1方向 (x 方向) に延設されている複数のワード線 (3) と、前配第1方向(x方向)と異なる第2方向 (y方向) に延設されている複数のビット線(4)と, 前記第2方向 (y方向) に延設されているダミービット 線(9)と、前記複数のワード線(3)のうちから選択 ワード線を選択する第1セレクタ(11,48)と、前 記複数のピット線(4)のうちから選択ピット線を選択 する第2セレクタ (13, 49) と、読み出し回路 (1 6, 42) とを備えている(図1参照)。前記クロスポ イントセルアレイ(1、1'、41)は、反転可能な自 発磁化を有し、且つ前記自発磁化の方向に応じて抵抗が 異なる磁気抵抗案子 (MTJ) を含んで構成されている 複数のセル (2, 8, 31, 32, 43, 44) を含 む。前記複数のセル(2, 8, 31, 32, 43, 4 4) は、前記自発磁化の方向に応じてデータを記憶する 複数のメモリセル (2, 43) と、複数のダミーセル (8,44)とを備えている。前記複数のメモリセル (2, 43) のそれぞれは、前記複数のワード線(3) のうちの一のワード線と、前記複数のビット線のうちの 一のビット線(4)との間に介設されている。前記ダミ ーセル (8) のそれぞれは、前記複数のワード線 (3)

14

の間に介設されている。前記読み出し回路(16,42)は、オフセット除去回路(17)と、データ判別回路(18~20)とを含む。オフセット除去回路(17)は、前記選択ワード線と前記選択ビット線との間に電圧が印加されることによって前記選択ビット線に流れる検知電流(Is)と、前記選択ワード線と前記グミービット線との間に電圧が印加されることによって前記グミービット線(9)に流れるオフセット成分電流(Ic)との差(Is-Ic)に対応する電流差信号を生成する。データ判別回路(18~20)は、前配電流差信号に基づいて、前記選択ワード線と前記選択ビット線との間に介設されている選択セル(2a)に記憶されている記憶データを判別する。

### [0021]

オフセット成分電流 (I c) は、検知電流 (I s) に含まれているオフセット成分に近い大きさの電流である。 検知電流 (I s) とオフセット成分電流 (I c) との差 (I s - I c) は、SN比が高く、差 (I s - I c) に 対応する電流差信号に応じて選択セル (2 a) に記憶されている記憶データを判別することにより、高い信頼性 で前記記憶データを判別することが可能である。

#### [0022]

更に、差(Is-Ic)に対応する電流差信号に応じて選択セル(2a)に記憶されている記憶データを判別することは、メモリセル(2)にショートセルが含まれているときに、読み出し不能なメモリセル(2)の数を減少することに有効である。差(Is-Ic)に応じて選択セル(2a)に記憶されている記憶データを判別することにより、ショートセルによって増加するオフセット成分がキャンセルされる。ショートセルによって増加するオフセット成分がキャンセルされることにより、ショートセルと同一のワード線に接続されている正常なメモリセル(2)の読み出しは阻害されない。

### [0023]

データ判別回路(18~20)は、典型的には、前記電流差信号の電流に対応した出力電圧を出力する電流電圧変換回路(18)と、前記出力電位に基づいて前記メモリセル記憶データを判別する判別回路(19,20)とを備えて構成されている。

#### 10 [0024]

複数のセル(2、8、31、32、43、44)を含 む。前記複数のセル(2、8、31、32、43、4 4)は、前記自発磁化の方向に応じてデータを記憶する 複数のメモリセル(2、43)と、複数のダミーセル (8、44)とを備えている。前記複数のメモリセル (2、43)のそれぞれは、前記複数のワード線(3)のうちの一のワード線と、前記複数のワード線(3)のうちの一のワード線と、前記複数のビット線のうちの一のピット線(4)との間に介設されている。前記ダミーセル(8)のそれぞれは、前記複数のワード線(3) のうちの一のワード線と、前記複数のワード線(3) のうちの一のワード線と、前記複数のワード線(3) のうちの一のワード線と、前記複数のワード線(3) のうちの一のワード線と、前記複数のワード線(3) のうちの一のワード線と、前記複数のワード線(3) のうちの一のワード線と、前記複数のワード線(3) のうちの一のワード線と、前記がミービット線(9)と 50 位( $V_1$ )と異なる第2電位( $V_2$ ')を印加する場合

に特に有効である。前記第1セレクタ(11)が、非選択ワード線を開放する構成は、前記第1セレクタ(11)の回路構成の縮小に有効であるが、検知電流(Is)に含まれるオフセット成分を増加させる。当該MRAMの構成は、該オフセット成分の影響を効果的に抑制するため、前記第1セレクタ(11)が、非選択ワード線を開放する場合に特に好適である。

### [0025]

当該磁気ランダムアクセスメモリは、前記複数のビット線 (4) のうち前記選択ビット線以外の非選択ビット線 を, 前記読み出し回路から絶縁され、且つ、前記第2電位 (V2') と実質的に同一な電位 (V2) を有する電位線 (15) に接続する第3セレクタ (12) を更に備えることが可能である。更に、前記第2セレクタ (13) は、前記複数のビット線 (4) のうち前記選択ビット線以外の非選択ビット線を開放することが可能である。前者は、スニークバス電流の低減に有効であり、後者は、ビット線 (4) を選択するセレクタの回路構成の縮小に有効である。

### [0026]

当該MR AMは、更に、一の冗長ピット線に接続された 複数の冗長メモリセル (53) で構成されている冗長セ ルカラム (53a) を含む冗長メモリセルアレイ (5 1) と、置換情報保持器(61)を含む冗長設計処理回 路 (58, 59, 60) とを備え (図11参照) ,前記 クロスポイントセルアレイ(41)は、前記複数のビッ ト線にそれぞれ対応する複数のメモリセルカラムを含 み、前記メモリセルカラムのそれぞれは、前記複数のメ モリセルのうち、それぞれが対応するビット線に接続さ れているメモリセルで構成される場合がある。この場 合,置換情報状態保持器(61)は,前記メモリセルカ ラムのうち、前記冗長メモリセルカラムに置換される置 換対象メモリセルカラム (43 a) を示す置換情報を保 持し、前記冗長設計処理回路(58,59,60)は、 前記置換情報に応答して、前記置換対象メモリセルカラ ム (43a) を前記冗長メモリセルカラム (53a) に 置換することが好ましい。

### [0027]

既述のように、検知電流(Is)とオフセット成分電流(Ic)との差(IsーIc)に基づいて選択セル(2a)に記憶されている記憶データの判別を行うMRAMは、メモリセル(2)にショートセルが含まれていても、ショートセルと同一のワード線に接続されている正常なメモリセル(2)の読み出しは阻害されない。このような特性を生かして前記置換対象メモリセルカラム(43a)を前記冗長メモリセルカラム(53a)に置換することは、冗長設計を簡素化する。

#### 100281

当該MRAMが, 更に, 置換情報保持器 (61) を含む 照検知電流 (Is<sup>1</sup>•') と前記他のオフセット成分電 冗長設計処理回路 (58, 59, 60) を備え, 前記複 50 流 (Ic<sup>1</sup>°') との差に対応した電流を有するように

16

数のダミーセル (44) は、ダミーセルカラム (46) を構成し、前記クロスポイントセルアレイ (41)は、 更に,冗長ダミーピット線と,前記冗長ダミーピット線 と、前記複数のワード線のうちの一のワード線との間に 介設された複数の冗長ダミーセル(45)から構成され ている冗長ダミーセルカラム(47)とを含む場合があ る。この場合, 前記置換情報保持器 (61) は, 前記ダ ミーセルカラム(46)が前記冗長ダミーセルカラム (47) に置換されるか否かを示す置換情報を保持し、 前記冗長設計処理回路(58,59,60)は、前記置 換情報に応答して、前記ダミーセルカラム (46) を前 記冗長ダミーセルカラム (47) に置換することが好ま しい。このような構成は、ショートセルと同一のワード 線に接続されている正常なメモリセル(2)の読み出し は阻害されないという特性を生かし、前記ダミーセルカ ラム (46) の冗長設計を可能にする。

### [0029]

当該MRAMが、更に、前記第1方向(x方向)に延設 された参照ワード線(33)を備え(図7参照),前配 複数のセル (2, 8, 31, 32, 43, 44) は, 更 20 に、前記自発磁化の方向として所定のデータを記憶する 複数の参照セル (31) と、データの記憶に使用されな い他のダミーセル(32)とを含み、且つ、前記複数の 参照セル (31) のそれぞれは、前記複数のピット線 (4) のうちの一のビット線と、前記参照ワード線(3 3) との間に介設され、前記他のダミーセル (32) は、前記ダミービット線(9)と前記参照ワード線(3 3) との間に介設されている場合がある。この場合、前 記オフセット除去回路(18)は、前記選択ビット線と 前記参照ワード線(33)との間に電圧(V2'-30 V1)を印加することによって流れる参照検知電流(I s \* • () と、前記ダミービット線(9)と前記参照ワ ード線 (33) との間に電圧 (V2'-V1) を印加す ることによって流れる他のオフセット成分電流 (Ic r • 「) との差に対応する他の電流差信号を生成し、前 記データ判別回路(18~20)は、前記電流差信号と 前記他の電流差信号に基づいて前記記憶データを判別す ることが好ましい。このような構成は、選択セル(2 a) と同一の選択ビット線に接続されているメモリセル (2) に記憶されているデータが検知電流 (Is) に及 ぼす影響をキャンセルし、選択セル (2 a) に記憶され ている記憶データの判別の信頼性を効果的に向上する。 [0030]

この場合,前記読み出し回路(16)は,典型的には,以下の回路構成を有する。前記読み出し回路(16)の前記オフセット除去回路(17)は,前記検知電流(Is)と前記オフセット成分電流(Ic)との差に対応した電流を有するように前記電流差信号を生成し,前記参照検知電流(Is<sup>1</sup>•¹)と前記他のオフセット成分電流(Is<sup>1</sup>•¹)と前記他のオフセット成分電流(Is<sup>1</sup>•¹)と前記他のオフセット成分電流(Is<sup>1</sup>•¹)と前記他のオフセット成分電流(Is<sup>1</sup>•¹)と前記他のオフセット成分電流(Is<sup>1</sup>•¹)との美に対応した資流を存するように

前記他の電流差信号を生成する。前記データ判別回路 (18~20)は、前記他の電流差信号の電流に対応する第1出力電位(Vp1)を出力し、前記電流差信号の 電流に対応する第2出力電位(Vp2)を出力する電流 電圧変換回路(18)と、前記第1出力電位(Vp1)と前記第2出力電位(Vp2)とに基づいて前記記億データを判別する判別回路(20)とを備えている。 【0031】

前記データ判別回路(18~20)が、更に、電位保持 回路(19)を有する場合、オフセット除去回路(1 7), 電流電圧変換回路(18), 電位保持回路(1 9) 、及び判別回路(20)は、以下の動作をすること が好適である。第1読み出し動作期間において、前記オ フセット除去回路(17)は、前記選択ビット線を流れ る前記参照検知電流 (Is r・1) と、前記ダミービッ ト線 (9) を流れる前記他のオフセット成分電流 (I c re()とから前記他の電流差信号を生成し、前記電流 電圧変換回路 (18) は、前記他の電流差信号を受けて 前記第1出力電位(V。1)を出力し、前記電位保持回 路 (19) は、前記第1出力電位 (Vp1) を保持す る。前記第1読み出し動作期間に時間的に遅れる第2読 み出し動作期間において、前記オフセット除去回路(1 7) は、前記選択ビット線を流れる前記検知電流(1 s) と、前記ダミービット線(9)を流れる前記オフセ ット成分電流 (Ic) から前記電流差信号を生成し、前 記電流電圧変換回路(18)は、前記電流差個号を受け て前記第2出力電位(V)2)を出力し、且つ、前記判 別回路(20)は、前記電位保持回路によって保持され ている第1出力電位(Vp1)と前記第2出力電位(V p2)とを比較して、選択セル(2a)に記憶されてい る前記記憶データを判別する。

### [0032]

前記データ判別回路(18~20)が、更に、電位保持 回路(19)を有する場合、オフセット除去回路(1 7) ,電流電圧変換回路(18) ,電位保持回路(1 9) 、及び判別回路 (20) は、以下の他の動作をする ことも好適である。第1読み出し動作期間において、前 記オフセット除去回路(17)は,前記選択ビット線を 流れる前記検知電流(Is)と、前記ダミービット線 (9) を流れる前記オフセット成分電流(Ic)とから 前記電流差信号を生成し、前記電流電圧変換回路(1 8) は、前記電流差信号を受けて前記第2出力電位(V p2) を出力し、前記電位保持回路 (19) は、前記第 2出力電位 (V<sub>p2</sub>) を保持する。前記第1読み出し動 作期間に時間的に遅れる第2読み出し動作期間におい て、前記オフセット除去回路(17)は、前記選択ビッ ト線を流れる前記参照検知電流(Isref)と、前記 ダミービット線 (9) を流れる前記他のオフセット成分 電流 (I c r o f ) とから前記他の電流差信号を生成 し、前記電流電圧変換回路(18)は、前配他の電流差 18

信号を受けて前記第1出力電位(V<sub>p</sub>1)を出力し、且つ、前記判別回路(20)は、前記第1出力電位(V<sub>p</sub>1)と前記電位保持回路によって保持される第2出力電位(V<sub>p</sub>2)とを比較して前記記憶データを判別する。

### [0033]

上記の目的を達成するために、本発明によるMR AM は、クロスポイントセルアレイ(1')と、第1方向 (x方向) に延設されている複数のワード線(3)と、 前配第1方向(x方向)と異なる第2方向(y方向)に 延設されている複数のビット線(4)と、前記第1方向 (x方向) に延設されている参照ワード線(33)と, 前記複数のワード線(3)のうちから選択ワード線を選 択する第1セレクタ(11)と、前配複数のビット線 (4) のうちから選択ビット線を選択する第2セレクタ (12, 13) と、読み出し回路(16) とを備えてい る(図7参照)。前記クロスポイントセルアレイ(1 6) は、反転可能な自発磁化を有し、且つ前記自発磁化 の方向に応じて抵抗が異なる磁気抵抗索子で形成された 複数のセル (2, 31) を含む。前記複数のセル (2, 31) は、前記自発磁化の方向としてデータを記憶する 複数のメモリセル (2) と、所定のデータが、前配自発 磁化の方向として記憶されている複数の参照セル (3 1)とを含む。前記複数のメモリセル(2)のそれぞれ は、前記複数のワード線(3)のうちの一のワード線 と、前記複数のビット線(4)のうちの一のビット線と の間に介設されている。前記複数の参照セル(31)の それぞれは,前記複数のビット線(4)のうちの一のビ ット線と、前記参照ワード線(33)との間に介設され ている。前記読み出し回路(16)は、前記選択ワード 線と前記選択ビット線との間に電圧が印加されたときに 前記選択ピット線を流れる検知電流(Is)と、前記参 照ワード線 (33) と前記選択ビット線との間に電圧が 印加されたときに前記選択ビット線に流れる参照検知電 流(Іѕг・і)とに基づいて、前記選択セルに記憶さ れている記憶データを判別する。このような構成は、選 択セル (2 a) と同一の選択ビット線に接続されている メモリセル (2) に記憶されているデータが検知電流 (Is) に及ぼす影響をキャンセルし、選択セル (2 a) に記憶されている記憶データの判別の信頼性を効果 的に向上する。

### [0034]

前記読み出し回路 (16) が電流電圧変換回路 (18) と、電位保持回路 (19) と、判別回路 (20) とを含む場合、以下の動作が好適である。第1読み出し動作期間において、前記電流電圧変換回路 (18) は、前記選択ビット線を流れる前記参照検知電流 (Isref) に応答して第1出力電位 (Vp1) を生成し前記電位保持回路 (19) は、前記第1出力電位 (Vp1) を保持する。第2読み出し動作期間において、前記電流電圧変換

回路 (18) は、前記選択ビット線を流れる前記検知電流 (Is) に応答して第2出力電位 (Vp2) を生成し、前記判別回路 (20) は、前記電位保持回路 (19) によって保持されている前記第1出力電位

 $(V_{p1})$  と前記第2出力電位  $(V_{p2})$  とを比較して 選択セル (2a) に記憶されている前記記憶データを判 別する。

### [0035]

前記読み出し回路(16)が電流電圧変換回路(18)と、電位保持回路(19)と、判別回路(20)とを含む場合、以下の他の動作も好適である。第1読み出し動作期間において、前記電流電圧変換回路(18)は、前記選択ビット線を流れる前記検知電流(Is)に応答して第2出力電位(Vp2)を生成し、前記電位保持回路(19)は、前記選択ビット線を流れる前記電圧変換回路(19)は、前記選択ビット線を流れる前記を照検知電(18)は、前記選択ビット線を流れる前記を照検知電流(Is<sup>10</sup>)に応答して第1出力電位(Vp1)を生成し、前記判別回路(20)は、前記第1出力電位(Vp1)を生成し、前記判別回路(20)は、前記第1出力電位(Vp1)と前記電位保持回路(19)によって保持されている第2出力電位(Vp2)とを比較して選択セル(28)に記憶されている前記記憶データを判別する。【0036】

当該磁気ランダムアクセスメモリは、更に、置換情報保持器(61)を含む冗長設計処理回路(60)を備え、前記複数の参照セル(63)は、参照セルカラムを構成し、前記クロスポイントセルアレイは、一の冗長参照ワード線に接続された複数の冗長参照セル(64)で構成されている冗長参照セルカラムを含む場合がある。この場合、前記置換情報保持器(61)は、前記参照セルカラムが前記冗長参照セルカラムに置換されるか否かを示す置換情報を保持し、前記冗長設計処理回路(60)は、前記置換情報に応答して、前記参照セルカラムを前記冗長参照セルカラムに置換することが好ましい。

#### [0037]

上述の目的を達成するために、本発明によるMRAMは、反転可能な自発磁化を有し、且つ前記自発磁化の方向に応じて抵抗が異なる磁気抵抗素子で形成された複数のセル(72,75)と、読み出し回路(83)とを備えている(図14参照)。前記複数のセル(72,75)は、前記自発磁化の方向として、"1"又は"0"であるメモリセル記憶データを記憶するメモリセル(72)と、所定のデータが記憶された参照セル(75)とを含む。前記読み出し回路(83)は、前記メモリセル(72)からメモリセル電流(Ir)を取り出して、前記メモリセル電流(Ir)を取り出して、前記メモリセル電流(Ir)を取り出して、前記メモリセル電流(Ir)を取り出して、前記メモリセル電流(Ir)を取り出して、前記メモリセル電流(Ir)を取り出して、前記メモリセル電流(Ir)を取り出して、前記メモリセル電流(Ir)とに基づいて前記メモリセル記憶データを判別する読み出し動作を複数回行い、前記複数の読み出し動作によって得られた前記複数のメモリセル記憶データの判別結果か

20

ら、最終的に前記メモリセル記憶データを判別する。前 記メモリセル電流(Is)と前記参照セル電流(Ir) とに基づいて前記メモリセル記憶データを判別する読み 出し動作が複数回行われることにより、ノイズ電流の影 響が抑制され、前記メモリセル(72)に記憶されてい る前記メモリセル記憶データを判別の信頼性が効果的に 向上する。

#### [0038]

前記読み出し動作が行われる回数が奇数回であることは, 多数決によって前記メモリセル記憶データを判別することを可能にする点で好適である。

#### [0039]

即ち、前記読み出し回路(83)は、前記読み出し動作において、前記メモリセル記憶データが"1"であると判別された回数が、前記メモリセル記憶データが"0"であると判別された回数を所定回数よりも上回るとき、前記メモリセル記憶データが"1"であると最終的に判別し、前記読み出し動作において前記メモリセル記憶データが"0"であると判別された回数が、前記メモリセル記憶データが"1"であると判別された回数を所定回数よりも上回るとき、前記メモリセル記憶データを最終的に"0"であると判別することが好ましい。該所定回数は、1以上の整数である。

### [0040]

前記読み出し回路(83)が、更に、nビットのカウンタ(87)を含み、前記読み出し動作が行われる回数が、2n-1回であり、前記カウンタ(87)が記憶する値は、前記読み出し動作において、前記メモリセル記憶データが"1"であると判別される毎に1だけ増加され、且つ、前記カウンタ(87)は、前記読み出し動作が2n-1回行われた後、その最上位ビットを最終的に判別された前記メモリセル記憶データとして出力することが好適である。このような構成は、前記読み出し回路(83)の回路構成を簡略化する。

### [0041]

本発明によるMRAMは、反転可能な自発磁化を有し、 且つ前記自発磁化の方向に応じて抵抗が異なる磁気抵抗 **秦子で形成された複数のセル(72,75)と、読み出** し回路(83)とを備えている。(図14参照)。前記 複数のセル(72, 75)は、前記自発磁化の方向に対 応付けて、"1"又は"0"であるメモリセル記憶デー タを記憶するメモリセルフリー層を備えたメモリセル (72) と、前記自発磁化の方向に対応付けて、所定の データを記憶する参照セルフリー層を備えた参照セル (75)とを含む。前記参照セルフリー層と前記メモリ セルフリー層とは、面積が異なる。前記読み出し回路 (83) は、前記メモリセル(72)からメモリセル電 流(Is)をとりだし、前記参照セル(75)から参照 セル電流(Ir)を取り出して、前記メモリセル電流 (ls)と前記参照セル電流(Ir)とに基づいて前記 50

メモリセル記憶データを判別する。前記参照セルフリー 層と前記メモリセルフリー層とが面積が異なることにより、読み出し回路(83)を前記メモリセル電流(Is)と前記参照セル電流(Ir)とに対して対称化することが可能である。読み出し回路(83)の対称化は、前記メモリセル(72)に記憶されているメモリセル記憶データの判別の信頼性の向上を可能にする。

### [0042]

前記参照セルフリー層は、前記メモリセルフリー層よりも面積が小さいことが好ましい。前記参照セルフリー層 .10 の面積の縮小化は、前記参照セルフリー層が有する自発分極の反転を阻害し、前記参照セル (75) の抵抗を安定化する。これは、前記メモリセル (72) に記憶されているメモリセル記憶データの判別の信頼性の向上を可能にする。

### [0043]

前記メモリセルフリー層の前記自発磁化の方向に一致する長さ方向の長さ b c o 1 1 と , 前記メモリセルフリー層の前記自発磁化に垂直な幅方向の幅 a c o 1 1 と , 前記参照セルフリー層の前記長さ方向の長さ b r o f と o , 前記参照セルフリー層の前記幅方向の幅 a r o f と は , 下記式:

### aref/bref<acel1/bcel1,

を満足することが好ましい。このような構造は、前記参照セルフリー層が有する自発分極の方向を長さ方向に安定化し、前記参照セル (75) の抵抗を安定化する。これは、前記メモリセル (72) に記憶されているメモリセル記憶データの判別の信頼性の向上を可能にする。

### 100441

前記参照セルフリー層の面積は、前記参照セル(72) の抵抗値が、前記メモリセルの抵抗値のうちの大きい方 の髙抵抗値と、小さい方の低抵抗値との間になるように 選ばれる。

### [0045]

### 【発明の実施の形態】

以下、添付図面を参照しながら、本発明によるMRAMの実施の一形態を説明する。

### [0046]

### (実施の第1形態)

本発明の実施の第1形態のMRAMは、図1に示されているように、クロスポイントセルアレイ1を備えている。クロスポイントセルアレイ1は、複数のメモリセル2と、x方向(ワード線方向)に延設された複数のワード線3と、y方向(ビット線方向)に延設された複数のビット線4とを含む。メモリセル2は、ワード線3とビット線4との交点に配置され、メモリセル2のそれぞれは、該メモリセル2において交差する一のワード線3と一のビット線4との間に介設されている。

### [0047]

図2に示されているように、メモリセル2のそれぞれ

22

は、ピン唇5と、フリー層6と、ピン唇5とフリー層6との間に介設されたトンネル障壁層7とから形成されるMTJ (Magnetic Tunnel Junction)を含む。ピン層5は、ワード線3のうちの一に接続され、フリー層6は、ピット線4のうちの一に接続される。ピン層5とフリー層6とは、いずれも、自発磁化を有する強磁性層を含む。ピン層5が有する自発磁化は又転可能であり、ピン層5の自発磁化の向きと平行、又は反平行に向くことが許されている。トンネル障壁層7は、ピン層5とフリー層6との間にトンネル電流を流れるような薄い膜厚の絶縁体層で形成される。

#### [0048]

メモリセル2のそれぞれは、1ビットのデータを、ピン 層5とフリー層6との自発磁化の相対的な向きとして記憶する。メモリセル2は、ピン層5の自発磁化とフリー層6の自発磁化とが平行である"平行"状態と、ピン層5の自発磁化とフリー層6の自発磁化とが反平行である"反平行"状態との一方を"0"に、他方を"1"に20 対応付けることにより、1ビットのデータを記憶する。

#### [0049]

メモリセル2の抵抗(即ち,メモリセル2が有するMT Jの抵抗)は、トンネル磁気抵抗効果(TMR効果)により、ピン層5とフリー層6とが有する自発磁化の相対的な向きに応じて異なる。図2(a)に示されているように、ピン層5とフリー層6とが有する自発磁化の向きが平行である場合、メモリセル2の抵抗は、第1値Rとなる。図2(b)に示されているように、ピン層5とフリー層6とが有する自発磁化の向きが反平行である場合、メモリセル2の抵抗は、第2値R+ARとなる。MR比AR/Rは、典型的なMTJでは、10%-30%である。メモリセル2に記憶されているデータは、メモリセル2の抵抗に基づいて判別される。

### [0050]

図1に示されているように、クロスポイントセルアレイ 1は、更に、y方向に並んで配置されたダミーセル8 と、y方向に延設されたダミービット線9とを含む。ダミーセル8は、ワード線3とダミービット線9との交点に配置され、ダミーセル8のそれぞれは、該ダミーセル8において交差する一のワード線3とダミービット線9との間に介設されている。ダミーセル8の構造は、フリー層6がダミービット線9に接続されている点以外、図2に示されたメモリセル2の構造と同一であり、ダミーセル8は、固定されたピン層と、フリー層と、これらの間に介設されるトンネル障壁層とから形成されるMT」を含む。

### [0051]

ダミーセル8は,"1"又は"0"のうちのいずれかの データが啓き込まれる。ダミーセル8は,その状態が一 50 定であることが重要であり,データが告き込まれている

必要は、必ずしもない。ダミーセル8は、メモリセル2 に流れる電流のオフセット成分を除去するのに寄与し、 読み出し時のSN比を高める効果がある。ダミーセル8 の役割の詳細は、後述される。

### [0052]

クロスポイントセルアレイ1は、更に、Xセレクタ1
1、第1Yセレクタ12、及び第2Yセレクタ13を含む。Xセレクタ11は、ワード線3に接続され、ワード線3のうちから選択ワード線を選択する。第1Yセレクタ12、及び第2Yセレクタ13は、ビット線4に接続され、ビット線4のうちから選択ビット線を選択する。メモリセル2のうちの選択ワード線と選択ビット線とに接続されているメモリセルが、選択セル2aとして選択される。更に、ダミーセル8のうちの選択ワード線に接続されているダミーセルが、選択ダミーセル8aとして選択される。後述されるように、選択ダミーセル8aは、選択セル2aに流れる電流のオフセット成分を除去するのに使用される。

### [0053]

より詳細には、Xセレクタ11は、ワード線3のうちの 20 選択ワード線を、電位V1を有する第1電源線14に接続し、選択されない非選択ワード線を、第1電源線14 から切り離す。選択ワード線には、電位V1が供給される。非選択ワード線は、Xセレクタ11により、フローティング状態(ハイインピーダンス(Hi-Z)状態)にされる。第1Yセレクタ12は、選択されない非選択ビット線を、電位V2を有する第2電源線15に接続し、選択された選択ビット線とダミービット線9とを第2電源線15から切り離す。非選択ビット線には、電位V2が供給される。第2Yセレクタ13は、選択ビット 30線とダミービット線9とを読み出し回路16に接続し、非選択ビット線を読み出し回路16から切り離す。

### [0054]

選択セル2aに記憶されている記憶データの判別は、読 み出し回路16によって行われる。読み出し回路16 は、選択セル2aに配憶されている記憶データを判別す るとき、選択ビット線とダミービット線9とに、第2電 源線15の電位V2に実質的に同一である電位V2'を 供給する。選択ビット線への電位V2'の印加により、 選択ビット線と選択ワード線との間には、電圧V2'-V<sub>1</sub>が印加され、選択ビット線には電流 Isが流れる。 更に、ダミービット線9への電位V2'の印加により、 ダミービット線9と選択ワード線との間には、電圧  $V_2$ '- $V_1$ が印加され、ダミービット線9には電流 Icが流れる。非選択ビット線に印加される電位V2と、 選択ビット線及びダミービット線9に印加される電位V 2'とが実質的に一致されることにより、クロスポイン トセルアレイ1を流れるスニークパス電流が減少されて いる。 読み出し回路16は、 選択ビット線を流れる電流 Isとダミービット線9を流れる電流Icとの差Isー 24

Icに基づいて選択セル2aに記憶されている記憶データを判別する。

#### [0055]

選択セル2aに記憶されている記憶データの判別に使用される電流Isと、電流Icとは、以下に述べられるような成分を有する電流である。選択セル2aの抵抗は、選択セル2aが記憶しているデータに応じて変化するから、選択ピット線を流れる電流Isは、選択セル2aに記憶されているデータに対応して変化するデータ対応成分を含む電流Isは、以後、検知電流Isと記載される。

### [0056]

検知電流 I s は、データ対応成分に加え、選択セル2 a に記憶されているデータに対応した電流成分でないオフセット成分を含む。オフセット成分は、主として、スニークパス電流に起因する電流成分と、選択セル2 a が有し得る 2 つの抵抗値 R 及び R + Δ R のうち、選択セル2 a に記憶されているデータに依存しない抵抗成分 R に起して流れる電流成分とから構成される。

### [0057]

クロスポイントセルアレイ1は、スニークパス電流が通る経路を多数有しているため、このオフセット成分は、実際には、データ対応成分よりも極めて大きい。 典型的には、オフセット成分は約30 $\mu$ Aであり、選択セル2aに記憶されているデータに対応した電流成分は、約1 $\mu$ Aである。したがって、検知電流  $\Gamma$  s 自体のSN比は、それほど大きな値ではない。

### [0058]

一方、ダミービット線9を流れる電流Icは、検知電流 Isに含まれるオフセット成分に近い大きさを有する。 あるピット線4 (又はダミーピット線9) を流れる電流 のうち、スニークパス電流に起因する電流成分の大きさ は、主としてクロスポイントセルアレイ1の構造に依存 し、ビット線4(又はダミービット線9)の位置に対す る依存性は少ない。したがって、電流 I c に含まれる電 流のうちのスニークパス電流に起因する電流成分と、検 知電流Isに含まれる電流のうちのスニークパス電流に 起因する電流成分とは、概ね一致する。更に、選択ダミ ーセル8aは、選択セル2aと同一の構造を有するか ら、電流Icは、検知電流Isと同様に、自発磁化の方 向に依存しない抵抗成分Rに起因して流れる電流成分を 含む。電流 I cは,更に,選択ダミーセル8 a の自発磁 化の方向に対応した状態に対応したダミーセルデータ対 応成分を含むが、このダミーセルデータ対応成分は、固 定である上に、オフセット成分に比較すると極めて小さ いため無視できる。従って、電流 I c は、検知電流 I s に含まれるオフセット成分に近い大きさを有する。この ような電流Icは,以後,オフセット成分電流Icと呼 ばれる。

0 [0059]

検知電流 I s とオフセット成分電流 I c との差 I s - I cは、検知電流 Isからオフセット成分を除いた値に近 く, 即ち, 選択セル2 a に記憶されているデータに対応 したデータ対応成分に概ね一致する。従って, 差 I s -Icは、SN比が大きい。SN比が大きい差Is-Ic に基づいて選択セルに記憶されているデータを判別する ことは、該データの判別の信頼性を向上することを可能 にする。更に、スニークパス電流に起因する成分は、既 述のオフセット成分として除去されるから、スニークパ ス電流による成分は、電流 Is-Icから除去されてい 10 る。このような電流 Is-Icに基づいて選択セル2a に記憶されているデータを判別することにより、スニー クパス電流による影響を抑制して該データを判別するこ とが可能である。

#### [0060]

このような読み出し回路16は、典型的には、減算回路 17と、I-V変換回路18と、電圧保持回路19と、 比較器20とにより実現される。減算回路17は、第2 Yセレクタ14を介して、選択ビット線及びダミービッ ト線9に接続される。減算回路17は、選択ビット線を 20 流れる検知電流 Isから、ダミービット線9を流れるオ フセット成分電流Icを減じた電流Is-Icを生成す る。

### [0061]

図3は、典型的な減算回路17を示している。減算回路 17は、NMOSトランジスタ21、22、PMOSト ランジスタ23,24を含む。NMOSトランジスタ2 1のソースは、選択ビット線に接続され、NMOSトラ ンジスタ22のソースは、ダミービット線9に接続され る。NMOSトランジスタ21,22のゲートには、電 30 位Vъіа、が供給される。電位Vъіа、を適切に制 御することにより、NMOSトランジスタ21、22の ソースの電位は、電位V2'に維持され、従って、選択 ビット線とダミービット線9とが、電位V2'に維持さ れる。NMOSトランジスタ21のドレインは、PMO Sトランジスタ23のドレインに接続され、NMOSト **ランジスタ22のドレインは,PMOSトランジスタ2** 4のドレインに接続されている。PMOSトランジスタ 23、24のソースは、それぞれ、電源電位 Vccを有 する電源端子25、26に接続されている。PMOSト ランジスタ23のドレインは、PMOSトランジスタ2 3,24のゲートに接続されている。PMOSトランジ スタ24のドレインとNMOSトランジスタ22のドレ インとを結ぶ信号線には、出力ノード27が設けられ、 出力ノード27は、I-V変換回路18に接続される。

### [0062]

減算回路17の電源端子25からNMOSトランジスタ 21とPMOSトランジスタ23とを介して、選択ビッ ト線に検知電流 Isが流れると、PMOSトランジスタ 23には、電源端子26から検知電流 Isと同一の大き 50 形態のMRAMの読み出し動作を示すフローチャートで

26

さの電流が流れ、出力ノード27には、検知電流 Isと 同一の大きさの電流が流れ込む。一方、出力ノード27 から、NMOSトランジスタ21を介して、ダミーピッ ト線9に流れるオフセット成分電流 I c が引き出され、 I-V変換回路18には、出力ノード27を介して、検 知電流Isとオフセット成分電流Icとの差に対応する 電流 Is-Icが供給される。

### [0063]

【-V変換回路18は、減算回路17が出力する電流I s-Icを電圧に変換して出力する電流-電圧増幅器で ある。I-V変換回路18が出力する電圧は、選択セル 2 a の抵抗, 即ち, 選択セル2 a に記憶されている記憶 データに応じて変化する。

### [0064]

既述の通り、電流IsーIcは、検知電流Isからオフ セット成分を除いた電流に対応するが、検知電流Isか らのオフセット成分の除去は、I-V変換回路18のゲ インの増大を可能にする。 I-V変換回路18が出力す る最大電圧には制限があるから、オフセット電流成分を 除かずに検知電流Isを電圧に変換しようとする場合、 I-V変換回路18のゲインは、比較的小さい値に制限 される。これは、I-V変換回路18が出力する電圧が 選択セル2aに記憶されているデータに対応して変化す る変化幅を大きくすることが出来ないことを意味する。 検知館流Isからオフセット成分を除去することによ り、 I-V変換回路18のゲインの増大が可能であり、 従って、I-V変換回路18が出力する電圧が選択セル 2 a に記憶されているデータに対応して変化する変化幅 を大きくすることが可能である。

### [0065]

I-V変換回路18の出力は、電圧保持回路19と比較 器20との入力に接続される。電圧保持回路19は、Ⅰ -V変換回路18が出力する電圧を取り込んで保持し, 保持している電圧を出力する機能を有する。電圧保持回 路19は、十分に大きな大きさの容量素子(図示されな い)を含み、該容量案子に、1-V変換回路18が出力 する電圧を取り込んで保持する。比較器20は、I-V 変換回路18の出力と、電圧保持回路19の出力とに接 続される。比較器20は、1-V変換回路18が出力す る電圧と、電圧保持回路19が出力する電圧とを比較し て、選択セル2a に記憶されている記憶データを判別す る。I-V変換回路18が出力する電圧が選択セル2a に記憶されているデータに応答して大きく変化すること は、該記憶データを判別する信頼性を向上する。比較器 20は、選択セル2aに記憶されているデータに対応し たデータ信号SAOUTを生成する。

### [0066]

実施の第1形態のMRAMの読み出し動作には、自己リ ファレンス方式が採用されている。図4は、実施の第1

ある。

[0067]

(ステップS01)

選択セル2aに対する読み出し動作が行われる。該読み 出し動作は、以下の過程により行われる。Xセレクタ1 1により選択ワード線が選択され、第1Yセレクタ12 及び第2Yセレクタ13により選択ビット線が選択され る。続いて、選択ワード線に電位Vェが供給され、選択 ビット線とダミービット線9とに電位V2'が供給され る。これにより、選択セル2a及び選択ダミーセル8a に電圧 V2′-V1が印加され、選択ビット線に検知電 流 I sが、ダミービット線 9にオフセット成分電流 I c が流される。減算回路17により、検知電流 [sからオ フセット成分電流Icを減じた電流Is-Icが生成さ れ、I-V変換回路18により電流Is-Icが電圧に 変換され、電流 Is-Icに対応した第1読み出し電圧 Vp」が生成される。第1読み出し電圧Vp1は、選択 セル2aに記憶されている記憶データに対応した大きさ を有する。第1読み出し電圧V,1は、電圧保持回路1 9に入力され、電圧保持回路19は、第1読み出し電圧 20 Vp1を取り込んで保持する。電圧第1読み出し電圧V p1を取り込んだ後,電圧保持回路19は, I-V変換 回路18から切り離される。

[0068]

(ステップSО2)

選択セル2 a に" O" が書き込まれる。選択ワード線及 び選択ビット線とのそれぞれに書き込み電流が供給さ れ,該書き込み電流が発生する磁界により,選択セル2 a が有する自発磁化が" O"に対応する状態に向けられ る。

[0069]

(ステップS03)

選択セル2 a に対する読み出し動作が再度行われる。ステップS O 1 と同様にして、選択ビット線に検知館流 I sが、ダミービット線9にオフセット成分電流 I cが流される。I - V変換回路 1 8により電流 I s - I cが電圧に変換され、電流 I s - I cに対応した第 2 読み出し電圧 V p 2 は、選択セル 2 a に記憶されているデータ" O"に対応した大きさを有する。第 2 読み出し電圧 V p 2 は、後述されるように、リファレンス電圧として使用される。

[0070]

(ステップS04)

 28

EV<sub>p2</sub>とが、比較器20に入力され、比較器20が活性化される。比較器20が活性化されると、比較器20は、第1読み出し電圧V<sub>p1</sub>と第2読み出し電圧V<sub>p2</sub>とを比較して、選択セル2aに告き込まれていたデータを判別する。第1読み出し電圧V<sub>p1</sub>と第2読み出し電圧V<sub>p2</sub>とが概ね一致する場合、比較器20は、選択セル2aに記憶されていた記憶データを"0"であると判別し、データ信号SAOUTを"0"にして出力する。第1読み出し電圧V<sub>p1</sub>と第2読み出し電圧V<sub>p2</sub>とが 大きく離れている場合、比較器20は、選択セル2aに記憶されていた記憶データを"1"であると判別し、データ信号SAOUTを"1"であると判別し、データ信号SAOUTを"1"にして出力する。

[0071]

(ステップS05)

ステップS04において、選択セル2aに記憶されていた記憶データが"1"であると判断された場合、選択セル2aに対して"1"を書き込む再書き込みが行われる。既述のとおり、記憶データの判別の過程で、選択セル2aには"0"が書き込まれるから、再書き込みにより選択セル2aは、正しいデータを保持する状態に戻される。再書き込みにより、実施の第1形態のMRAMの 読み出し動作が完了する。

[0072]

以上に説明されているように、実施の第1形態のMRA Mでは、ダミーセル8を用いてオフセット成分電流Icが生成される。更に、選択ビット線を流れる検知電流Isと、オフセット成分電流Icとの差に対応する電流IsーIcが生成され、電流IsーIcに基づいて、選択セル2aに記憶されている記憶データの判別が行われる。電流IsーIcは、検知電流IshIcのSN比は大きい。SN比が大きい電流IsーIcに基づいてデータの判別が行われることにより、データの判別の信頼性が高められている。

[0073]

除去されるオフセット成分には、スニークパス電流に起因する成分が含まれるから、スニークパス電流に起因する成分は、電流 Is-Icから除去されている。従って、電流 Is-Icに基づいて、選択セル2 a に記憶されている記憶データの判別を行うことにより、記憶データの判別に対するスニークパス電流の影響を効果的に抑制することができる。

[0074]

更に、検知電流 Isからオフセット成分を除去することは、I-V変換回路 18のゲインを増加することを可能にする。I-V変換回路 18のゲインの増加は、I-V変換回路 18が生成する第1 読み出し電圧 Vp1の、選択セル2aに記憶されているデータに対応して変化する変化幅を大きくし、データの判別の信頼性を一層効果的に増加させる。

### [0075]

館流 Is-Icに基づいて選択セル2aに記憶されてい る記憶データを判別することは、クロスポイントセルア レイ1の製造パラツキに対する許容性を高くする点でも 好ましい。本実施の形態のMRAMを多数製造した場 合, クロスポイントセルアレイ1の製造バラツキに起因 して、検知電流 I sに含まれるオフセット成分は、製造 されたMRAM毎に異なる。しかし、一のMRAMで は、オフセット成分の変動は、検知電流 I s とオフセッ ト成分電流 I c とで共通である。従って、クロスポイン 10 トセルアレイ1の製造パラツキは、電流1s-1cには 反映されにくく、電流 I s — I c は安定化される。安定 化された電流 І s – І с に基づいて選択セル2 a に記憶 されている記憶データを判別することは、記憶データの 判別の信頼性を向上する。このように、本実施の形態の MRAMは、クロスポイントセルアレイ1の製造パラツ キに対する許容性が高い。

### [0076]

更に、上述のMRAMは、ショート不良を有するメモリセル(以下、「ショートセル」という。)が存在する場 20 合に、該ショートセルの存在によって読み出し不能になるメモリセルの数を減少することができる。図5(a)に示されているように、従来のMRAMでは、メモリセルセルアレイにショートセル28'が存在する場合、ショートセル28'と同一のワード線に接続されているメモリセルと、ショートセル28'と同一のビット線に接続されているメモリセルとは、いずれも、読み出し不能である。ショートセル28'が存在すると、ショートセル28'を流れるスニークパス電流は著しく大きくなる。このスニークパス電流により、データを判別する回 30 路にその入力レンジを超える電流が流れ、このためにデータを判別する回路の機能が失われる。

### [0077]

本実施の形態のMRAMでは、図5 (b)に示されているように、ショートセル28がクロスポイントセルアレイ1に存在しても、ショートセル28と同一のワード線に接続されているメモリセル2の読み出しは可能である(但し、ショートセル28と同一のビット線に接続されているメモリセル2は、読み出し不能である)。これは、検知電流Isとオフセット成分電流Icとは、ショートセル28の存在によって増加するオフセット成分を共通に含み、該オフセット成分は、減算回路17によって除去されるからである。本実施の形態のMRAMでは、ショートセル28の存在によって読み出し不能になるメモリセルは、ショートセル28と同一のビット線に接続されているメモリセルのみであり、読み出し不能になるメモリセルの数が減少されている。

### [0078]

このように、ショートセル28と同一のワード線に接続 されているメモリセルの銃み出しが可能であることは、 30

不良メモリセルを救済するための冗長設計を容易にする。本実施の形態のMRAMでは、ショートセル28が存在する場合、ショートセル28を含む不良カラムを冗長カラムに置換することにより、不良カラムの救済が可能である。

### [0079]

実施の第1形態において、図6に示されているように、図1に示されているMRAMから、第1Yセレクタ12と第2電源線15とが除去されることが可能である。この場合、非選択ビット線は、電位V2に固定されるのではなく、フローティング状態にされる。第1Yセレクタ12と第2電源線15とが除去されることは、MRAMが形成されるチップの面積を減少できる点で好適である。

#### [0080]

その一方で、第1Yセレクタ12と第2電源線15とを除去することは、クロスポイントセル1を流れるスニークパス電流を増加させるが、スニークパス電流の増加は、許容される。既述のように、第1Yセレクタ12と第2電源線15とを除去すると、非選択ビット線がフローティング状態になるため、スニークパス電流が増加する。しかし、実施の第1形態のMRAMは、検知電流Isとオフセット成分電流Icとの差に基づいて選択セル2aのデータを検知するため、読み出し動作に対するスニークパス電流の影響は小さい。従って、スニークパス電流の増加は読み出し動作を阻害しない。

#### [0081]

#### (実施の第2形態)

図7は、実施の第2形態のMRAMを示す。実施の第2形態では、図1のクロスポイントセルアレイ1に、x方向(ワード線方向)に並んで配置された参照セル31と、参照用ダミーセル32と、x方向(ワード線方向)に延設された参照ワード線33とが追加される。参照セル31と参照用ダミーセル32と参照ワード線33とが追加されたクロスポイントセルアレイ1は、以下、クロスポイントセルアレイ1'と記載される。

#### [0082]

参照セル31と参照用ダミーセル32とは、いずれも、メモリセル2と同一の構造を有する。参照セル31と参照用ダミーセル32とは、ピン層と、フリー層と、該ピン層と該フリー層との間に介設されたトンネル障壁層とから形成されるMTJを含んで構成されている。

### [0083]

参照セル31には、所定のデータ、典型的には"0"が記憶され、読み出し動作時のデータの判別に使用される。但し、参照セル31の役割は、ダミーセル8の役割と異なる。上述されているように、ダミーセル8は、検知電流Isからオフセット成分を除去するために使用されるオフセット成分段流Icの生成に使用される。一50 方、参照セル31は、リファレンス電圧の生成に使用さ

(17)

31

れる。参照セル31を用いて生成されるリファレンス電 圧と、メモリセル2に記憶されている記憶データに応じ て生成される読み出し電圧との対比により、該記憶デー タが判別される。本明細杏では、その役割の違いか ら、"参照セル"と"ダミーセル"とが使い分けられて いることに注意されたい。

### [0084]

参照セル31は、ビット線4と同じ数だけ用意される。 参照セル31は、ビット線4と参照ワード線33とが交 のピット線4と参照ワード線33との間に介設される。

### [0085]

一方.参照用ダミーセル32は,参照ワード線33とダ ミーピット線9とが交差する位置に配置され、参照ワー ド線33とダミービット線9との間に介設される。参照 ワード線33は、Xセレクタ11に接続される。

### [0086]

図8は、実施の第2形態のMRAMの読み出し動作を示 すフローチャートである。

#### [0087]

#### (ステップS11)

参照セル31のうちから、選択セル2aと同一のビット 線(選択ビット線)上にある選択参照セル31 a が選択 され、選択参照セル31aからデータが読み出される。 選択参照セル31aからのデータの読み出しは、以下の 過程で行われる。

### [0088]

選択ピット線とダミーピット線9とが。第2Yセレクタ 13によって読み出し回路16に接続され、非選択ビッ ト線が、第1Yセレクタ12によって、第2電源線15 に接続される。これにより、非選択ビット線には、電位 V2が供給され、選択ビット線とダミービット線9とに は、電位 V2 と実質的に同一な電位 V2'が供給され る。選択ビット線とダミービット線9とは、非選択ビッ ト線から電気的に切り離される。

#### [0089]

更に、参照ワード線33がXセレクタ11によって第1 電源線14に接続され、図9(a)に示されているよう に、参照ワード線33に電位V1が供給される。ワード 線4は、いずれも第1電源線14から切り離され、フロ 40 ーティング状態(Hi-2状態)にされる。

### [0090]

電位V2′と電位V1との供給により、選択参照セル3 1 a 及び参照用ダミーセル33には、電圧V2'-V1 が印加される。電圧V2'-V1の印加により、図7に 示されているように、選択ビット線には電流 I s r e f が流れ、ダミーピット線9には電流 I 。 「・「が流れ る。実施の第1形態でなされた電流 Is と電流 Ic とに ついての議論は、電流Is'。「と電流Ic'。」とに ついても成立する。電流 Is 「・「は、選択参照セル3

32

1 a の自発分極の状態, 即ち, 選択参照セル31 a に記 憶されているデータに依存するデータ依存成分を含む電 流であり、以下では、電流Isrofは、参照検知電流 Ⅰsr• 「と記載される。電流Ⅰ。」。「は,参照検知 電流 Is・・・のうち、選択参照セル31a に記憶され ているデータに依存しないオフセット成分に相当する大 きさを有しており、以下では、オフセット成分電流 I c 「・「と記載される。

#### [0091]

差する位置に配置され、参照セル31のそれぞれは、― 10 減算回路17により、検知電流ls c c f からオフセッ ト成分電流 I c r e f を減じた電流 I s r e f ー I c r・「が生成され、I-V変換回路18により電流Is rof-Icrofが電圧に変換され、電流 Isrof - I c ፣ • 「に対応した第1 読み出し電圧Vp 」が生成 される。後述されるように、第1読み出し電圧V p1は、選択セル2aのデータを判別するためのリファ レンス電圧として使用される。このため、以下では、第 1 読み出し電圧V。1 は、リファレンス電圧V。1 と記 載される。

#### [0092] 20

### (ステップS12)

リファレンス電圧 Vp1が、電圧保持回路19に入力さ れる。電圧保持回路19は、リファレンス電圧V。1を 取り込んで保持する。リファレンス電圧 V, 1 を取り込 んだ後、電圧保持回路19は、I-V変換回路18から 切り離される。

### [0093]

### (ステップS13)

選択セル2aに対する読み出し動作が行われる。該読み 出し動作は、以下の過程で行われる。Xセレクタ11に より選択ワード線が選択され、第1Yセレクタ12及び 第2Yセレクタ13により選択ビット線が選択される。 図9 (b) に示されているように、選択ワード線には電 位V1が供給され、選択ビット線とダミービット線9と に電位V2'が供給される。これにより、選択セル2a 及び選択ダミーセル8aに電圧V2′ーV」が印加さ れ、図7に示されているように、選択ビット線に検知電 流 I s が、ダミーピット線9にオフセット成分電流 I c が流される。減算回路17により、検知電流 Isからオ フセット成分電流 I cを減じた電流 I s - I c が生成さ れ、I-V変換回路18により電流Is-Icが電圧に 変換され、電流IsーIcに対応した第2読み出し電圧 V<sub>2</sub>が生成される。

### [0094]

I-V変換回路18は、第2読み出し電圧V₂2を生成 するときと、リファレンス電圧V。」(第1読み出し館 圧 V 。 1 )を生成するときとで、そのゲインを変更す る。ゲインの変更は、下記式:

 $V_{p2}(0) < V_{p1} < V_{p2}(1)$ , ... (1) 50 が成立するように行われる。ここで、Vp2 (0) は、

選択セル2 a に" 0"が記憶されているときにI-V変換回路 18が出力する第2 読み出し電圧 $V_{p2}$ であり、 $V_{p2}$  (1) は、選択セル2 a に" 1"が記憶されているときにI-V変換回路 18が出力する第2 読み出し電圧 $V_{p2}$ である。

### [0095]

### (ステップS14)

比較器20により、選択セル2aに記憶されている記憶 データが判別され、記憶データを示すデータ信号SAO UTが生成される。記憶データの判別は,以下のように して行われる。電圧保持回路19によって保持されてい るリファレンス電圧Vp1と、I-V変換回路18によ って生成された第2読み出し電圧V。2とが、比較器2 0に入力され、比較器20が活性化される。比較器20 が活性化されると、比較器20は、リファレンス電圧V p 1 と第2 読み出し電圧V p 2 とを比較して,選択セル 2 a に書き込まれていたデータを判別する。リファレン ス電圧V,」が第2読み出し電圧V,2より大きいと き、比較器20は、選択セル2aに記憶されていた記憶 データを"0"であると判別し、データ信号SAOUT を"0"にして出力する。リファレンス電圧 Vp1 が第 2読み出し電圧Vp2より小さいとき、比較器20は、 選択セル2aに記憶されていた記憶データを"1"であ ると判別し、データ信号SAOUTを"1"にして出力 する。データ信号SAOUTの生成により、実施の第2 形態のMRAMの読み出し動作が完了する。

### [0096]

以上に説明された実施の第2形態のMRAMは、実施の第1形態のMRAMと同様の利点を有している。電流IsーIcに基づいて選択セル2aに記憶されている記憶 30データを判別することにより、SN比が増大され、記憶データの判別に対するスニークパス電流の影響が抑制されている。更に、電流IsーIcに基づいて選択セル2aに記憶されている記憶データを判別することにより、当該クロスポイントセルアレイ1の製造バラツキに対する許容性が高められている。更に、実施の第2形態のMRAMは、ショート不良を有する不良メモリセルが存在する場合でも、不良メモリセルと同一のワード線に接続されているメモリセルの読み出しが可能であり、該不良メモリセルの存在によって読み出し不能になるメモリセルの数が減少されている。

### [0097]

更に、実施の第2形態のMRAMは、以下に述べられているような他の利点を有している。第1に、参照セル31が選択セル2aに記憶されている記憶データの判別に使用されることにより、自己リファレンス方式を使用しない読み出し動作の採用が可能である。これは、メモリセル2に記憶されているデータの非破壊読み出しを可能にする点で好ましい。

### [0098]

34

第2に、選択セル2aと同一のビット線に接続されている選択参照セル31aが選択セル2aに記憶されている記憶データの判別に使用されることにより、記憶データの判別の信頼性が一層に向上されている。上述されているように、実施の第2形態では、非選択ワード線は、フローティング状態(Hi-Z状態)にされる。非選択ワード線をフローティング状態に設定することは、選択ビット線に接続されている非選択メモリセルを介して流れるスニークパス電流を増大させる。このスニークパス電流の大きさは、選択ビット線に接続されている非選択メモリセルのそれぞれに記憶されているデータに応じて変化する。より詳細には、選択ビット線に接続されている非選択メモリセルのうちの"0"を記憶するセルの数と、"1"を記憶するセルの数との比に応じて、このスニークパス電流の大きさは変化する。

### [0099]

選択セル2aと同一のビット線に接続されている選択参照セル31aを、選択セル2aに配憶されている記憶データの判別に使用することにより、選択ビット線に接続されている非選択メモリセルを介して流れるスニークパス電流の大きさの変化による影響はキャンセルされている。選択参照セル31aに対して読み出し動作が行われたときに選択ビット線を流れる参照検知電流Isrofが、該スニークパス電流から受ける影響は、選択セル2aに対して読み出し動作が行われたときに選択ビット線を流れる参照検知電流Isが、該スニークパス電流から受ける影響と、実質的に同一である。従って、該スニークパス電流の変化の影響はキャンセルされ、選択セル2aに記憶されている記憶データの判別の信頼性の劣化は生じない。

### [0100]

上述の実施の第2形態では、選択参照セル31aに対して読み出し動作が行われた後、選択セル2aに対して読み出し動作が行われるが、選択セル2aに対して読み出し動作が行われた後、選択参照セル31aに対して読み出し動作が行われることが可能である。この場合、電流 Is-Ic から生成される第2読み出し $V_p2$  が電圧保持回路19に保持される。更に、電流  $Is^{ref}-Ic$  ref からリファレンス電圧 $V_p1$  が生成され、電圧保持回路19に保持される第2読み出し $V_p2$ と、リファレンス電圧 $V_p1$ とが比較されて、データ信号SAOU Tが生成される。

#### [0101]

また、実施の第2形態において、図10に示されているように、図7に示されているMRAMから、第1Yセレクタ12と第2電源線15とが除去されることが可能である。この場合、非選択ビット線は、電位V2に固定されるのではなく、フローティング状態にされる。第1Yセレクタ12と第2電源線15とが除去されることは、

50 MRAMが形成されるチップの面積を減少できる点で好

適である。実施の第1形態において説明されているように、非選択ビット線がフローティング状態にされることによるスニークパス電流の増加の影響は、検知電流 Isからオフセット成分が除かれることにより効果的にキャンセルされる。

### [0102]

### (実施の第3形態)

上述されているように、図1、図6、図7、及び図10に示されているMRAMは、ショートセルがクロスポイントセルアレイ1(又は1')に存在することによってショートセルと同一のビット線に接続されているメモリセル2の読み出しは不能になるが、ショートセルの存在は、ショートセルと同一のワード線に接続されているメモリセル2の読み出しに影響を与えない。このような特性は、ショートセルを含む一列のメモリセルで構成される不良セルカラムを「一列の冗長メモリセルで構成される冗長セルカラムで置換する冗長設計を可能にする。実施の第3形態のMRAMには、冗長設計が採用される。

### [0103]

図11は、実施の第3形態のMRAMを示す。実施の第3形態のMRAMは、行列をなして配列されている複数のクロスポイントセルアレイ41と読み出し回路42とを備えている。1列のクロスポイントセルアレイ41に対して、一の読み出し回路42が設けられている。読み出し回路42は、それぞれ、実施の第1形態の読み出し回路16と同一の構成を有しており、選択セルのデータを判別するために使用される。

### [0104]

クロスポイントセルアレイ41のそれぞれは、行列をなして配置されたメモリセル43、複数のワード線、及び 30 複数のビット線を備えている。但し、図を見やすくするために、ワード線、ビット線とは図示されず、メモリセル43は、概念的に正方形で示されている。メモリセル43は、ワード線とビット線とが交差する位置に設けられている。メモリセル43は、図2に示されているメモリセル2と同一の構成を有し、ピン層と、フリー層と、該ピン層と該フリー層との間に介設されたトンネル障壁層とから形成されるMTJを含む。y方向に並ぶ一列のメモリセル43は、同一のビット線に接続されており、一のビット線に接続されているメモリセル43により、40一のメモリセルカラムが構成されている。

### [0105]

クロスポイントセルアレイ41は、更に、y方向(ビット線)方向に一列に並んで配置されているダミーセル44から構成されるダミーセルカラム46と、y方向(ビット線)方向に一列に並んで配置されている冗長ダミーセル45から構成される冗長ダミーセルカラム47とを備えている。全てのダミーセル44は、y方向に延設されたダミービット線(図示されない)に接続され、全ての冗長ダミーセル45は、y方向に延設された冗長ダミ

36

ービット線 (図示されない) に接続されている。ダミーセルカラム46と冗長ダミーセルカラム47とは、いずれも、クロスポイントセルアレイ41の端ではなく、中間に配置されている。即ち、ダミーセルカラム46と冗長ダミーセルカラム47とは、いずれも、メモリセルカラムの間に挿入されている。

### [0106]

実施の第1形態及び第2形態と同様に、ダミーセルカラム46に含まれるダミーセル44は、選択ビット線を流れる検知電流Isからオフセット成分を除去するために使用されるオフセット成分電流Icを生成するために使用される。実施の第1形態及び第2形態と同様に、検知電流Isからオフセット成分電流Icを減じた電流に相当する電流IsーIcが生成され、電流IsーIcに基づいて、選択セルに記憶されているデータの判別が行われる。

### [0107]

冗長ダミーセルカラム47は、ダミーセルカラム46が不良セル(典型的には、ショートセル)を含む不良ダミーセルカラムであるときに、ダミーセルカラム46を置換するために用意されている。ダミーセルカラム46が不良セルを含む場合、ダミーセルカラム46は、その機能を発揮しない。このような場合に、ダミーセルカラム46の代わりに冗長ダミーセルカラム47が使用され、冗長ダミーセルカラム47に含まれる冗長ダミーセル45を用いて、オフセット成分電流1cが生成される。

### [0108]

クロスポイントセルアレイ41のそれぞれに冗長ダミーセルカラム47が用意されているのは、ダミーセルカラム46が不良セルを含む場合でも、クロスポイントセルアレイ41に含まれるメモリセル43の読み出しを可能にするためである。冗長ダミーセルカラム47がない場合に、ある一のクロスポイントセルアレイ41のダミーセルカラム46が不良セルを含むと、該一のクロスポイントセルアレイ41に含まれる全てのメモリセル43は読み出し不能になる。なぜなら、該一のクロスポイントセルアレイ41に含まれる全てのメモリセル43の読み出しに、ダミーセルカラム46が使用されるからである。クロスポイントセルアレイ41のそれぞれに冗長ダミーセルカラム47を用意することにより、ダミーセルカラム47を用意することにより、ダミーセルカラム46が不良セルを含むことによって全てのメモリセル43は読み出し不能になるという事態が避けられ

#### [0109]

クロスポイントセルアレイ41は、更に、選択ワード線を選択するXセレクタ48と、選択ビット線を選択する Yセレクタ49とを備えている。Yセレクタ49は、選 択ビット線とダミービット線とを読み出し回路42に接 続する。但し、ダミーセルカラム46が冗長ダミーセル 50 カラム47に置換される場合には、Yセレクタ49は、

ダミーセル44が接続されるダミービット線の代わりに 冗長ダミーセル45が接続される冗長ダミービット線を 読み出し回路42に接続する。

#### [0110]

実施の第3形態のMRAMは、クロスポイントセルアレ イ41に含まれるメモリセル43の冗長牧済を行うため に、複数のリダンダンシセルアレイ51と、冗長読み出 し回路52とを備えている。リダンダンシセルアレイ5 1は、行列をなして配置された冗長メモリセル53と、 x 方向に延設されている複数の冗長ワード線と、y方向 10 に延設されている複数の冗長ビット線とを備えている。 但し、図を見やすくするために、冗長ワード線と冗長ビ ット線とは図示されていない。 冗長メモリセル53は, 冗長ワード線と冗長ビット線とが交差する位置に設けら れている。冗長メモリセル53は、図2に示されている メモリセル2と同一の構成を有し、ピン層と、フリー層 と、該ピン層と該フリー層との間に介設されたトンネル 障壁層とから形成されるMTJを含む。y方向に並ぶ一 列の冗長メモリセル53は、同一の冗長ビット線に接続 されており、一の冗長ビット線に接続されている冗長メ モリセル53により、一の冗長メモリセルカラムが構成 されている。複数の冗長メモリセルカラムが、一のリダ ンダンシセルアレイ51に含まれる。

### [0111]

リダンダンシセルアレイ51に含まれる冗長メモリセルカラムは、不良セルを含むメモリセルカラムがクロスポイントセルアレイ41に存在する場合に、該メモリセルカラムを置換するために使用される。あるメモリセルカラムが不良セルを含む不良セルカラムである場合、該不良セルカラムに含まれる全てのメモリセルは、読み出し 30不能である。このような場合に、該不良セルカラムの代わりに、一の冗長メモリセルカラムが使用される。

### [0112]

リダンダンシセルアレイ51は、更に、 y方向に並んで 配置されているリダンダンシセルアレイダミーセル54 と、y方向に延設されている冗長ダミービット線(図示 されない) とを備えている。リダンダンシセルアレイダ ミーセル54により、リダンダンシセルアレイダミーセ ルカラム55が構成されている。リダンダンシセルアレ イダミーセル54は、図2に示されているメモリセル2 と同一の構成を有し、ピン層と、フリー層と、該ピン層 と該フリー層との間に介設されたトンネル障壁層とから 形成されるMT」を含む。リダンダンシセルアレイダミ ーセル54は、冗長ワード線と冗長ダミービット線とが 交差する位置に設けられ、全てのリダンダンシセルアレ イダミーセル54は、冗長ダミービット線に接続されて いる。リダンダンシセルアレイダミーセル54は、冗長 メモリセル53のうちの一が選択セルとして選択された とき、該選択セルに接続する選択ビット線を流れる検知 電流 Lsからオフセット成分を除去するために使用され 50 38

る。リダンダンシセルアレイダミーセルカラム55は、 冗長ダミーセルカラム47とは異なり、ダミーセルカラ ム46を置換するために設けられているのではない。リ ダンダンシセルアレイダミーセルカラム55は、リダン ダンシセルアレイ51の端ではなく、中間に配置されて いる。即ち、リダンダンシセルアレイダミーセルカラム 55は、いずれも、冗長メモリセルカラムの間に挿入さ れている。

#### [0113]

リダンダンシセルアレイ51は、更に、冗長ワード線の うちから選択ワード線を選択するXセレクタ56と、冗 長ビット線のうちから選択ビット線を選択するYセレク タ57とを備えている。Yセレクタ57は、選択ビット 線と、リダンダンシセルアレイダミーセル54が接続さ れている冗長ダミービット線とを冗長読み出し回路52 に接続する。

### [0114]

不良セルカラムを冗長メモリセルカラムに置換しながら、読み出しが行われる選択セルと、オフセット成分電流の生成に使用される選択ダミーセルとを決定するために、実施の第3形態のMRAMには、デコーダ58、冗長デコーダ59、及びリダンダンシ回路60が設けられている。

### [0115]

リダンダンシ回路60は、クロスポイントセルアレイ41に含まれている不良セルカラムを冗長メモリセルカラムに置換するための処理を行う。リダンダンシ回路60は、ヒューズ回路61と不良アドレス検出回路62とを含む。

### 0 [0116]

ヒューズ回路61は、ヒューズ群(図示されない)を含む。該ヒューズ群には、不良アレイアドレス、不良Yアドレス,及び不良ダミーセルカラムアドレスを示す情報が記録される。不良アレイアドレスとは、不良セルカラムを含むクロスポイントセルアレイ41を示すアドレスである。不良Yアドレスととは、不良セルカラムのYアドレスである。不良ダミーセルカラムアドレスと不良Yアドレスと不良Yアドレスとは、どのメモリセルカラムをどの冗長セルカラムに置換するかを示す置換情報を構成し、不良アレイアドレスラム46が冗長ダミーセルカラム47に置換されるかを示す置換情報を構成する。

#### [0117]

不良アドレス検出回路62は、ヒューズ回路61に含まれるヒューズ群の状態から、不良アレイアドレス、不良 ソアドレス、及び不良ダミーセルカラムアドレスを認識する。更に不良アドレス検出回路62は、不良アレイアドレスと不良ダミーセルカラムアドレスとをデコーダ5

8に出力する。更に不良アドレス検出回路62は、アレ イアドレスとYアドレスとから、デコーダ58と冗長デ コーダ59とのいずれを活性化するかの判断を行う。不 良アドレス検出回路62は、該判断に基づいて、デコー ダ58を活性化するデコーダ活性化信号をデコーダ58 に出力し、冗長デコーダ59を活性化する冗長デコーダ 活性化信号を冗長デコーダ59に出力する。

### [0118]

デコーダ58は、クロスポイントセルアレイ41に含ま れるXセレクタ48及びYセレクタ49を制御して、選 10 択セルへの読み出し動作を可能にする。 デコーダ58 は、アレイアドレスと、Xアドレスと、Yアドレスと、 不良アレイアドレスと、不良ダミーセルカラムアドレス と、デコーダ活性化信号とを受け取る。デコーダ58 は、デコーダ活性化信号によって活性化されると、該ア レイアドレスに基づいて、複数のクロスポイントセルア レイ41のうちから選択セルアレイを選択し、選択セル アレイに含まれるXセレクタ48、及びYセレクタ49 を活性化する。 更にデコーダ58は、活性化されたXセ レクタ48をXアドレスに基づいて制御して、Xセレク タ48に選択ワード線を選択させる。更に、デコーダ5 8は、活性化されたYセレクタ49をYアドレスに基づ いて制御して、Yセレクタ49に選択ワード線を選択さ せる。更にデコーダ58は、不良ダミーセルカラムアド レスに基づいて、活性化されたYセレクタ49に、ダミ ーセル44が接続されているダミービット線と、冗長ダ ミーセル45が接続されている冗長ダミービット線との いずれを読み出し回路42に接続するかを指示する。

#### [0119]

冗長デコーダ59は、リダンダンシセルアレイ51に含 30 まれるXセレクタ56とYセレクタ57とを制御して、 選択セルへの読み出し動作を可能にする。冗長デコーダ 59は、不良アレイアドレスと、不良Yアドレスと、X アドレスと、冗長デコーダ活性化信号とを受け取る。冗 長デコーダ58は、冗長デコーダ活性化信号によって活 性化されると、不良アレイアドレスと不良Yアドレスと に基づいて、複数のリダンダンシセルアレイ51のうち から選択冗長セルアレイを選択し、該選択冗長セルアレ イに含まれるXセレクタ56,及びYセレクタ59を活 性化する。更に冗長デコーダ59は、活性化されたXセ 40 レクタ56をXアドレスに基づいて制御して、Xセレク タ56に選択ワード線を選択させる。更に、冗長デコー ダ59は、活性化されたYセレクタ57を不良アレイア ドレスと不良 Yアドレスとに基づいて制御して、 Yセレ クタ57に選択ワード線を選択させる。

### [0120]

実施の第3形態のMR AMの読み出し動作は、以下の過 程によって行われる。不良アドレス検出回路62によ り、不良ダミーセルカラムアドレス、不良アレイアドレ ス,及び不良Yアドレスが、ヒューズ回路61に含まれ 50 4n

るヒューズ群の状態に応答して生成される。更に、デコ ーダ58と冗長デコーダ59とのうちのいずれを活性化 するかの判断が不良アドレス検出回路62によって行わ れ、デコーダ活性化信号と冗長デコーダ活性化信号とが 生成される。

#### [0121]

アレイアドレスとソアドレスとが、不良セルを含まない メモリセルカラムに含まれるメモリセル43を選択セル として指定する場合、デコーダ58がデコーダ活性化信 **身によって活性化される。更に、アレイアドレスに基づ** いて、クロスポイントセルアレイ41のうちのいずれか が選択セルアレイとして選択される。更に、Xアドレス に基づいて、該選択セルアレイに含まれるワード線のう ちから選択ワード線が選択され、Yアドレスに基づい て、該選択セルアレイに含まれるビット線のうちから選 択ピット線が選択される。選択ワード線と選択ビット線 とに接続されているメモリセル43が選択セルとして選 択される。更に、該選択セルと同一のクロスポイントセ ルアレイ41に含まれるダミーセルカラム46と冗長ダ ミーセルカラム47とのうちの一方が選択される。ヒュ ーズ回路61にダミーセルカラム46が不良セルを含む 旨の情報が書き込まれている場合、ダミーセルカラム4 6は冗長ダミーセルカラム47に置換され、冗長ダミー セルカラム47が選択される。選択されたカラムに含ま れるダミーセル44(又は、冗長ダミーセル45)のう ち、選択ワード線に接続されているセルが、選択ダミー セルとして選択される。

### [0122]

20

選択セルが接続されている選択ピット線と、選択ダミー セルが接続されているダミービット線(又は冗長ダミー ビット線)とが、Yセレクタ49を介して読み出し回路 49に接続される。読み出し回路49により、選択ビッ ト線とダミービット線(又は冗長ダミービット線)とに 電位V2'が供給される。更に、Xセレクタ48によ り、選択ワード線に電位V1が供給される。このとき、 非選択ピット線に,読み出し回路49から電気的に切り 離された電源線(図示されない)から電位 V2'と同一 の電位 Vz が供給されることは、スニークパス電流を減 少する点で好ましい。

#### [0123]

電位 $V_2$ 'と電位 $V_1$ との印加により、選択ビット線に は検知電流 I s が、ダミービット線(又は冗長ダミービ ット線)には、オフセット成分電流 I c が流れる。読み 出し回路49は、検知電流 Isとオフセット成分電流 I cとの差に対応する電流Is-Icに基づいて、選択セ ルに記憶されている記憶データを判別する。該記憶デー タの判別は、実施の第1形態と同一の過程によって行わ れる。既述の通り、電流 Is-Icに基づいて記憶デー 夕を判別することにより、ショートセルによるオフセッ ト成分はキャンセルされ、ショートセルと同一のワード

線に接続されるメモリセル43からの<mark>競み出しが可能で</mark> ある。

### [0124]

一方,アレイアドレスとYアドレスとが,不良セルカラ ム43aに含まれるメモリセル43を選択セルとして指 定する場合,不良セルカラム43aを置換する冗長セル カラム53aに含まれる冗長メモリセル53から、選択 セルが選択される。この場合、冗長デコーダ59が、冗 長デコーダ活性化信号によって活性化される。更に、不 良アドレス検出回路62によって生成された不良アレイ アドレスと不良Yアドレスとに基づいて、冗長セルカラ ム53aを含むリダンダンシセルアレイ51が選択セル アレイとして選択される。更に、Xアドレスに基づい て、該選択セルアレイに含まれる冗長ワード線のうちか ら選択ワード線が選択される。更に、該不良アレイアド レスと該不良Yアドレスとに基づいて、 
眩冗長セルカラ A53aに対応した冗長ビット線が選択ビット線として 選択される。該冗長セルカラム53aに含まれる冗長メ モリセル53のうち、選択ワード線と選択ビット線とに 接続される冗長メモリセル53が選択セルとして選択さ れる。更に、該選択セルアレイに含まれるリダンダンシ セルアレイダミーセル54のうち,選択ワード線に接続 されている冗長ダミーセルが、選択ダミーセルとして選 択される。

### [0125]

選択セルと選択ダミーセルとの選択以後の動作は、上述と同様である。選択セルが接続されている選択ビット線と、選択ダミーセルが接続されている冗長ダミービット線とが、Yセレクタ57を介して冗長読み出し回路52に接続される。競み出し回路52により、選択ビット線と冗長ダミービット線とに電位 $V_2$ 、が供給される。更に、Xセレクタ56により、選択ワード線に電位 $V_1$ が供給される。このとき、非選択ビット線に、競み出し回路52から電気的に切り離された電源線(図示されない)から電位 $V_2$ 、と同一の電位 $V_2$ が供給されることは、スニークパス電流を減少する点で好ましい。

#### [0126]

電位V2'と電位V1との印加により、選択ビット線には検知電流Isが、冗長ダミービット線には、オフセット成分電流Icが流れる。読み出し回路52は、検知電 40流Isとオフセット成分電流Icとの差に対応する電流IsーIcに基づいて、選択セルに記憶されている配億データを判別する。該記憶データの判別は、実施の第1形態と同一の過程によって行われる。

### [0127]

以上に説明された実施の第3形態のMRAMでは、電流 IsーIcに基づいて記憶データの判別することにより、ショートセルと同一のワード線に接続されている正常なメモリセルからの読み出しが可能であるとことを利用して、不良セルカラムを冗長セルカラムで置換する冗 42

長設計が行われている。更に、クロスポイントセルアレイ41に、グミーセルカラム46に加えて冗長グミーセルカラム47が用意されていることにより、グミーセルカラム46がショートセルを含む場合でも、クロスポイントセルアレイ41に含まれる全てのメモリセル43の 読み出しが不能になるという事態が避けられている。

### [0128]

実施の第3形態のMRAMにおいて、ダミーセルカラム 46と冗長ダミーセルカラム47との配置は、変更され 得る。例えば、図12に示されているように、ダミーセルカラム46と冗長ダミーセルカラム47とは、それらが隣接するように、且つ、ダミーセルカラム46と冗長ダミーセルカラム47との一の側にあるメモリセルカラムの数と、他の側にあるメモリセルカラムの数とが同一であるように配置され得る。このような配置は、選択ビット線とダミービット線(又は冗長ダミービット線)との間の距離を最小化し、検知電流 Isに含まれるオフセット成分の真値と、オフセット成分電流 Icとの差を小さくできる点で好ましい。

#### 20 [0129]

更に実施の第3形態のMRAMにおいて、ヒューズ回路 61の代わりに、不揮発性メモリが使用されることが可能である。この場合、該不揮発性メモリに、不良アレイ アドレス、不良Yアドレス、及び不良ダミーセルカラム アドレスを示す情報が記録される。

### [0130]

更に、実施の第3形態のMRAMにおいて、実施の第2 形態と同様に、各クロスポイントセルアレイ41とリダ ンダンシセルアレイ51に、参照セルと参照用ダミーセ 30 ルとが追加される構成が可能である。参照セルと参照用 ダミーセルとは、x方向(ワード線方向)に一列に並ん で配置され、更に、参照ワード線に接続される。

### [0131]

この場合、追加された参照セルのうちから選択された選択参照セルを用いて、参照検知電流 Isroiが生成され、参照用ダミーセルを用いてオフセット成分電流 Icroiが生成される。更に、電流 Is-Icに加え、参照検知電流 Isroiとオフセット成分電流 Icroiとの差に対応する電流 IsroiーIcroiを使用して、実施の第2形態と同一の過程により、選択セルに記憶されている記憶データの判別が行われる。

### [0132]

参照セルと参照用ダミーセルとが追加される場合、図13に示されているように、参照セル63を置換するために、x方向(ワード線方向)に一列に並んで配置された冗長参照セル64が追加されることが可能である。冗長参照セル64は、冗長参照ワード線に接続される。この場合、既述のヒューズ回路61には、参照セル63から構成される参照セルカラムが、冗長参照セル64から構
50 成される冗長参照セルカラムに置換されるか否かを示す

置換情報が記憶され、リダンダンシー回路60は、該置 換情報に応答して、参照セルカラムが冗長セルカラムに 置換するように、デコーダ58と冗長デコーダ59とを 制御する。一の参照セル63が不良セルである場合、該 一の参照セル63と同一のピット線に接続されている冗 長参照セル64が、該一の参照セル63の代わりに使用 されて参照検知電流IsI・「が生成される。この場 合、参照セル63の列と冗長参照セル64の列とは、ク ロスポイントセルアレイ41(又はリダンダンシセルア レイ51)の中央に位置することが好ましい。

### [0133]

#### (実施の第4形態)

図14は、実施の第4形態のMRAMを示す。実施の第 4形態のMRAMは、実施の第1~第3形態に開示され ている技術と異なる技術により、メモリセルに配憶され ているデータの判別の信頼性を向上する。

### [0134]

実施の第4形態のMR AMは、クロスポイントセルアレ イ71を備えている。クロスポイントセルアレイ71 は、複数のメモリセル72と、x方向(ワード線方向) に延設された複数のワード線73と, y方向(ビット線 方向) に延設された複数のビット線74とを含む。

### [0135]

メモリセル72の構造は、図2に示されているメモリセ ル2と同一であり、ピン層と、フリー層と、該ピン層と フリー層との間に介設されたトンネル障壁層とから形成 されるMT Jを含む。メモリセル72のピン層が有する 自発磁化は、x方向(ワード線方向)に固定されてい る。メモリセル72のフリー層が有する自発磁化は、反 転可能であり、ピン層の自発磁化と平行な方向と反平行 30 な方向とに向くことが許されている。メモリセル72 は、ワード線73とビット線74との交点に配置され、 メモリセル72のそれぞれは、 酸メモリセル72におい て交差する一のワード線73と一のビット線74との間 に介設されている。

#### [0136]

クロスポイントセルアレイ71は、更に、y方向(ビッ ト線方向) に並んで配置された参照セル75と、 y方向 に延設された参照ピット線76とを含む。参照セル75 には、実施の第2形態で説明された参照セル31と同様 40 に,"1"又は"0"のうちのいずれかが固定的に書き 込まれ、参照セル75は、リファレンス電圧の生成に使 用される。但し、参照セル75の配置は、参照セル31 とは異なり、 y 方向 (ビット線) に並んで配置されてい ることに注意されるべきである。参照セル75は、ワー ド線3と参照ビット線76とが交差する位置に配置さ れ、参照セル75のそれぞれは、一のワード線73と参 照ピット線76との間に介設されている。

### [0137]

参照セル75は,図15に示されているように,そのフ 50 第2Xセレクタ78は,ワード線73に接続され,複数

リー層の面積がメモリセル72のフリー層の面積とは異 なり、参照セル75のフリー層の面積がメモリセル72 のフリー層の面積よりも小さくなるように形成されてい る。これにより、参照セル75の抵抗Rrorは、メモ リセル72が取り得る2つの抵抗値R及びR+ARの間 になるように調節されている。

#### [0138]

参照セル75のフリー層の面積が小さいことは、参照セ ル75に記憶されているデータが偶発的に反転されるこ 10 とを防止する上でも好ましい。参照セル75に含まれる フリー層は、バルク的な性質を示す中央領域と、バルク 的な性質が失われている周辺領域とを含む。フリー層の 自発磁化は、主として、中央領域に由来する。参照セル 75のフリー層の面積が小さいと、周辺領域が中央領域 に及ぼす影響が大きくなり、フリー層の自発磁化が反転 しにくくなる。リファンレンス電圧の生成に使用される 参照セル75の自発磁化が反転しにくいことは、安定し たリファンレンス電圧の生成を可能にする点で好まし V10

#### [0139] 20

メモリセル72のフリー層と参照セル75のフリー層と は、いずれも、 x 方向(ワード線方向)に自発磁化が向 きやすいようにx方向に細長い形状を有しているが、参 照セル75のフリー層は、メモリセル72のフリー層よ りも一層にx方向に細長い形状を有している。即ち、参 照セル75のフリー層のx方向の長さをbiei,参照 セル?5のフリー層のy方向の幅をarer,メモリセ ル72のフリー層のx方向の長さをbcoll,メモリ セル72のフリー層のy方向の幅をaculiとして、 下記式:

### aref/brof < acoll/bcell, ... (2)

が成立している。より詳細には、メモリセル72のフリ ー層と参照セル75のフリー層とは、メモリセル72の フリー層のx方向の長さbcollと参照セル75のフ リー層のx方向の長さbroikとが、実質的に同一であ り、且つ、参照セル75のフリー層のy方向の幅a rerがメモリセル72のフリー層のy方向の幅 a cellよりも小さくなるように形成されている。この ように、参照セル75のフリー層がメモリセル72のフ リー層よりも一層にx方向に細長い形状を有しているこ とは、参照セル75が有する自発磁化の向きを一層に強 くx方向に拘束し、これにより、参照セル75の状態を 安定化する。参照セル75の状態の安定化は、安定した リファンレンス電圧の生成を可能にする点で好ましい。 [0140]

クロスポイントセルアレイ71は、更に、第1Xセレク タ17、第2Xセレクタ18、第1Yセレクタ19、及 び第2Yセレクタ80を含む。第1Xセレクタ17及び

のワード線73のうちから選択ワード線を選択する。第1Yセレクタ79,及び第2Yセレクタ80は、ビット線74に接続され、複数のビット線74のうちから選択ビット線を選択する。メモリセル72のうちの選択ワード線と選択ビット線とに接続されているメモリセルが、選択セル72aとして選択される。更に、参照セル75のうちの選択ワード線に接続されているセルが、選択参照セル75aとして選択される。後述されるように、選択参照セル75aは、選択セル72aに記憶されている記憶データの判別のために使用される。

### [0141]

より詳細には、第1Xセレクタ77は、ワード線73のうちの選択ワード線を、電位 $V_1$ を有する第1電源線81に接続し、選択されない非選択ワード線を、第1電源線81から切り離す。第2Xセレクタ78は、非選択ワード線を、電位 $V_2$ を有する第2電源線82に接続し、選択ワード線を、第2電源線82から切り離す。これにより、選択ワード線には電位 $V_1$ が、非選択ワード線には電位 $V_2$ が供給される。

### [0142]

第1 Yセレクタ79は、ビット線のうちの、選択されない非選択ビット線を上述の第2電源線82に接続し、選択ビット線を、第2電源線82から切り離す。これにより、非選択ビット線には、非選択ワード線と同一の電位 V2が供給される。非選択ビット線と非選択ワード線とに同一の電位 V2を供給することは、スニークパス電流を効果的に抑制する。非選択ビット線と非選択ワード線とに電位 V2を供給する電圧源として、第2電源線82が共通に使用されることは、非選択ビット線と非選択ワード線とに供給される電位の同一性を高める点で好ましい。第2 Yセレクタ80は、選択ビット線と参照ビット線76とを読み出し回路83に接続し、非選択ビット線を読み出し回路83から切り離す。

### [0143]

選択セル72aに記憶されている記憶データの判別は、 読み出し回路83によって行われる。読み出し回路83 は、選択セル72aに記憶されている記憶データの判別 するとき、選択ビット線と参照ビット線76とを、第2 電源線82の電位V2に実質的に同一である電位V2' に維持する。選択ビット線への電位 V2′の印加によ り、選択ビット線と選択ワード線との間には、電圧 V2'-V1が印加され、選択ビット線には検知電流I sが流れる。更に、参照ピット線76への電位V2'の 印加により、参照ビット線76と選択ワード線との間に は、電圧 V2'-V1が印加され、参照 ビット線 76に は参照電流 Irが流れる。非選択ビット線に印加される 電位V2と、選択ビット線及び参照ビット線76に印加 される電位V2'とが実質的に一致されることにより、 クロスポイントセルアレイ71を流れるスニークパス電 流は、効果的に減少されている。

[0144]

読み出し回路83は、選択ビット線を流れる検知電流 I s と、参照ビット線76を流れる参照電流 I r とを比較して、選択セル72a に記憶されている記憶データを判別する。選択セル72a の抵抗値は、選択セル72a に記憶されている記憶データに応じて変化するから、検知電流 I s は、該記憶データに応じて変化する。読み出し回路83は、検知電流 I s と参照電流 I r との比較の結果から選択セル72a に記憶されている記憶データを判りし、該記憶データの内容を示すデータ信号SAOUTを出力する。

46

### [0145]

読み出し回路83は、典型的には、I-V変換回路84,85と、比較器86と、カウンタ87とを含む。I-V変換回路84は、第2Yセレクタ80を介して選択ビット線に接続され、I-V変換回路85は、第2Yセレクタ80を介して参照ビット線76に接続される。I-V変換回路84は、検知電流Isを、検知電位Vpに変換し、I-V変換回路85は、参照電流Irをリファンス単位Vp(ref)に変換する。

### [0146]

図3は、典型的なI-V変換回路84、85を示してい る。I-V変換回路84は、NMOSトランジスタ88 と抵抗器92とを含む。NMOSトランジスタ88のソ ースは、第2Yセレクタ80を介して選択ビット線に接 続される。NMOSトランジスタ88のゲートには、電 位Vbia。が供給される。電位Vbia。を適切に制 御することにより、選択ビット線が電位V2'に維持さ れる。NMOSトランジスタ88のドレインは、出力ノ 30 ード90に接続されている。出力ノード90は,抵抗器 92を介して、電源電位V。。を有する電源端子93に 接続されている。検知電流 Isは、電圧端子93から抵 抗器92及びNMOSトランジスタ88を介して選択ビ ット線に流れる。抵抗器92において発生する電圧降下 は、検知電流Isに応答して変化するため、出力ノード 90の電位は、検知電流 Isに応答して変化する。出力 ノード90の電位が,検知電圧V』として比較器86に 出力される。

#### [0147]

I - V変換回路85は、I - V変換回路84と同様の構成を有しており、NMOSトランジスタ89と抵抗器94とを含む。NMOSトランジスタ89のソースは、第2Yセレクタ80を介して参照ビット線76に接続される。NMOSトランジスタ89のゲートには、電位Vbiasが供給され、電位Vbiasを適切に制御することにより、参照ビット線76が電位V2'に維持される。NMOSトランジスタ89のドレインは、出力ノード91に接続されている。出力ノード91は、抵抗器94を介して、電源電位Vccを有する電源端子95に接続されている。参照電流Irは、電圧端子95から抵抗

器94及びNMOSトランジスタ89を介して参照ビット線76に流れる。抵抗器94の電圧降下は、参照電流 I r に応答して変化するため、出力ノード91の電位は、参照電流 I r に応答して変化する。出力ノード91の電位が、リファレンス電圧Vp(rof)として比較器86に出力される。

### [0148]

比較器86は、検知電圧Vpとリファレンス電圧Vp(rof)とを比較する。比較器86は、検知電圧Vpとリファレンス電圧Vp(rof)とを比較して、選択セル72aに配憶されているデータを判別する。比較器86は、検知電圧Vpがリファレンス電圧Vp(rof)よりも高い場合に"1"を、検知電圧Vpがリファレンス電圧Vp(rof)よりも低い場合に"0"を出力する。但し、後述されるように、比較器86が判別したデータは、読み出し回路83が選択セル72aに配憶されていると判別したデータとは、必ずしも一致しないことに留意されるべきである。

### [0149]

カウンタ87は、nビット (nは、2以上の整数)の値 20 を保持するカウンタである。カウンタ87は、比較器86から"1"を受け取るごとに、それが保持する値を1だけ増加する。カウンタ87が保持する値の最上位ビット (MSB)が、データ信号SAOUTとして出力される。

### [0150]

続いて、実施の第4形態のMRAMの読み出し動作が説 明される。図17に示されているように,実施の第4形 **態では、スニークパス電流によるデータの誤読み出しを** 防ぐために、選択セル72aに対する読み出しが2nー 1回行われる。図17には、n=4であり、15回の読 み出しが行われる例が示されている。各読み出し動作に おいて、選択セル72aから検知電流 І sが取り出さ れ、選択参照セル75aから参照電流Irが取り出され る。 更に、 検知電流 I s から検知電圧 V p が生成され、 参照電流 [ r からリファレンス電圧 V p ( r e f ) が生 成される。比較器86は、検知電圧V。がリファレンス 電圧Vp (roi) よりも高い場合に選択セル72aに 記憶されている記憶データが"1"であると判断し、 1"をカウンタ87に出力する。一方, 比較器86は, 検知電圧V。がリファレンス電圧V。(1.61) よりも 低い場合、選択セル72aに記憶されている記憶データ が"0"であると判断し、"0"をカウンタ87に出力 する。"0"を出力する。

### [0151]

選択セル72 a に対する2n-1回の読み出しにおいて、比較器86が"0"を出力する回数が多ければ、n ビットのカウンク87が保持する値の最上位ビット(MSB)は"0"となり、データ信号SAOUTは、"0"に発生されて出力される。読み出し回路83は「選

48

択セル72aに記憶されている記憶データが"0"であると判別したことになる。一方,比較器86が"1"を出力する回数が多ければ,カウンタ87が保持する値の最上位ビット(MSB)は"1"となり,データ信号SAOUTは, "1"に設定されて出力される。読み出し回路83は、選択セル72aに記憶されている記憶データが"1"であると判別したことになる。

#### [0152]

以上に説明されているように、本実施の形態では、選択 10 セル72 a に対する読み出しが複数回行われることによ り、選択セル72 a に記憶されている記憶データの判別 の確実性が向上されている。よって、MTJのMR比が 数%程度と充分大きくないメモリセルに対しても読み出 しが可能である。選択セル72 a に対する読み出しの回 数が、奇数回であることは、多数決による選択セル72 a に記憶されている記憶データの判別を可能にする点で 好ましい。

#### [0153]

本実施の形態において、ECC(Error Checking and Correcting)技術を併用して読み出し結果を補償することが可能である。ECC技術による読み出し結果の補償は、記憶データの判別の確実性をより向上できる点で好適である。

### [0154]

更に、選択セル72aに対して行われる読み出しの回数は、2<sup>n</sup>-1回以外であることも可能である。この場合、カウンタ87は、比較器86が"0"を出力する回数が、"1"を出力する回数よりも多ければ、データ信号SAOUTを"0"として出力し、カウンタ87は、比較器86が"1"を出力する回数が、"0"を出力する回数よりも多ければ、データ信号SAOUTを"1"として出力する。

### [0155]

しかし、カウンタ87が n ビットのカウンタであり、選択セル72aに対して行われる読み出しの回数が2n-1回である場合には、カウンタ87が保持する値の最上位ビットMSBをデータ信号SAOUTとして出力する動作が、比較器86が"1"を出力する回数と"0"を出力する回数とを比較する動作と等価になる。これは、読み出し回路83の回路構成を簡略化する点で好適である

### [0156]

実施の第4形態において、参照セル75が、メモリセル72と同一の構造を有することも可能である。この場合、I-V変換回路84に含まれる抵抗器92の抵抗値Rsと、I-V変換回路85に含まれる抵抗器94の抵抗値Rrとは、下記式:

 $V_{p}(0) < V_{p(ref)} < V_{p}(1), \dots$ (3)

0"に設定されて出力される。読み出し回路 8 3 は,選 50 を満足するように調整される。抵抗値 R r を抵抗 R s s

りも小さくすることにより、式(3)を満足することが 可能である。

### [0157]

但し、本実施の形態のように、参照セル75とメモリセ ル72との面積が異なり、参照セル75の面積が、メモ リセル72の面積よりも小さいことが好適である。参照 セル75とメモリセル72との面積が異なることによ り、I-V変換回路84、85を同一の構成にし、対称 性を高めることが可能である。 I-V変換回路84,8 5の対称性が保たれていることは、検知電流 Isと参照 10 電流 Ir との比較の感度を向上し、従って、選択セル7 2 a に記憶されているデータの判別の信頼性を向上す る。

### [0158]

### 【発明の効果】

本発明により、MRAMのメモリセルに記憶されている データを高い信頼性で決定するための技術が提供され る。

### [0159]

また、本発明により、スニークパス館流の影響を抑制 し、これによりMRAMのメモリセルに配憶されている データを高い信頼性で決定するための技術が提供され る。

### 【図面の簡単な説明】

【図1】図1は、本発明によるMRAMの実施の第1形 態を示す。

【図2】図2は、メモリセル2の構成を示す。

【図3】図3は、減算回路17の構成を示す。

【図4】図4は、実施の第1形態のMRAMの読み出し 動作を示す。

【図5】図5 (a) は、従来のMRAMにおいてショー トセルの存在によって読み出し不能になるメモリセルを 示し、図5 (b) は、実施の第1形態のMR AMにおい てショートセルの存在によって読み出し不能になるメモ リセルを示す。

【図6】図6は、本発明によるMRAMの実施の第1形 態の変形例を示す。

【図7】図7は、本発明によるMRAMの実施の第2形 態を示す。

【図8】図8は、実施の第2形態のMRAMの読み出し 40 20:比較器 動作を示す。

【図9】図9 (a) は,選択参照セル31aが読み出さ れる1回目の読み出しにおいて、各ワード線(参照ワー ド線) に印加される電圧と、各ビット線 (ダミービット 線) に印加される電圧とを示す。図9(b)は、選択セ ル2aが読み出される2回目の読み出しにおいて、各ワ ード線(参照ワード線)に印加される電圧と、各ビット 線 (ダミービット線) に印加される電圧とを示す。

【図10】図10は、本発明によるMRAMの実施の第 2 形態の変形例を示す。

50

【図11】図11は、本発明による実施の第3形態のM RAMを示す。

【図12】図12は、本発明による実施の第3形態のM RAMの変形例を示す。

【図13】図13は、本発明による実施の第3形態のM RAMの他の変形例を示す。

【図14】図14は、本発明による実施の第4形態のM RAMを示す。

【図15】図15は、メモリセル72と参照セル75の 構造を示す。

【図16】図16は、I-V変換回路84、85を示 す。

【図17】図17は, 本発明による実施の第4形態のM RAMの動作を示す。

【図18】図18は、公知のMRAMを示す。

【図19】図19は、公知のMRAMの動作を示す。

【図20】図20は、公知のMRAMの他の動作を示

### 【符号の説明】

20 1:クロスポイントセルアレイ

2:メモリセル

2 a: 選択セル

3:ワード線

4:ビット線

5:ピン層

6:フリー層

7:トンネル障壁層

8:ダミーセル

8 a:選択ダミーセル

30 9: ダミービット線

11:Xセレクタ

12:第1 Yセレクタ

13:第2Yセレクタ

14:第1電源線

15:第2電源線

16:読み出し回路

17:減算回路

18: I-V変換回路

19:電圧保持回路

21, 22: NMOSトランジスタ

23、24:PMOSトランジスタ

25, 26:電源端子

27:出力ノード

31:参照セル

31a:選択参照セル

32:参照用ダミーセル

33:参照ワード線

41:クロスポイントセルアレイ

50 42: 読み出し回路

43:メモリセル

43a:不良セルカラム

44:ダミーセル

45:ダミーセルカラム

46: 冗長ダミーセル

47:冗長ダミーセルカラム

48:Xセレクタ

49: Yセレクタ

51:リダンダンシセルアレイ

52: 冗長読み出し回路

53: 冗長メモリセル

53a: 冗長セルカラム

54:リダンダンシセルアレイダミーセル

55:リダンダンシセルアレイダミーセルカラム

56: Xセレクタ

57:Yセレクタ

58:デコーダ

59: 冗長デコーダ

60:リダンダンシ回路

61:ヒューズ回路

62:不良アドレス検出回路

63:参照セル

64:冗長参照セル

71: クロスポイントセルアレイ

52

72:メモリセル

73:ワード線

74:ビット線

75: 参照セル

76:参照ビット線

77:第1Xセレクタ

78:第2Xセレクタ

10 79:第1 Yセレクタ

80:第2Yセレクタ

81:第1電源線

82:第2超源線

83: 読み出し回路

84,85:I-V変換回路

86:比較器

87:カウンタ

88, 89: NMOSトランジスタ

90,91:出力ノード

20 92, 94:抵抗器

93,95:電源端子

### [図1]



### 【図2】





【図3】



【図5】



【図4】



【図6】



[図8]



【図7】



[図9]



【図10】



【図12】



【図11】



【図14】



[図13]



【図15】



[図16]



【図17】



【図18】



112b
112d
112d
112d
112d
112c
(vs)
(vb)
(S2

[図20]

