Universidade de Évora Análise Matemática II - 2022/2023

Lista de exercícios 6

1. Calcular os integrais triplos:

a)
$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x+y+z) dxdydz$$
, $a, b, c > 0$;

b)
$$\int_{0}^{a} \int_{0}^{x} \int_{0}^{y} (xyz) \ dzdydx, a > 0;$$

- c) $\iiint_S (xy^2z^3) \ dxdydz$, onde S é o sólido no 1^0 octante (x>0,y>0,z>0), limitado pela superfície z=xy e os planos $y=x,\,x=1$ e z=0;
- d) $\iiint_S (1+x+y+z)^{-3} \ dxdydz, \text{ com } S \text{ o solido limitado pelos três}$ planos coordenados e pelo plano x+y+z=1.
- 2. Esboce e descreva usando coordenadas cilíndricas as seguintes regiões do espaço:

a)
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 4 \land 0 < z < 4\};$$

b)
$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 4 \land y > 0 \land -2 < z < 2\};$$

c)
$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 > 5 \land xy > 0 \land -1 < z < 1\};$$

d)
$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 9 \land xy < 0 \land z > 1\};$$

- e) O cilindro com base no plano z = -1, altura 4 e raio da base igual a 5;
- f) O cone com vértice no ponto (0,0) e base de raio 3 assente no plano z=3.
- 3. Esboce e descreva usando coordenadas esféricas as seguintes regiões do espaço:

a)
$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4\};$$

b)
$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \land y > 0\};$$

c)
$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 25 \land xy > 0\};$$

- d) $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 9 \land x^2 + y^2 + z^2 > 1\};$
- e) A coroa esférica situada entre as esferas centradas na origem e raios 2 e 3;
- f) O volume delimitado pelo con
e $x^2+y^2=z^2$ e pela esfera centrada na origem e raio 4.
- 4. Calcular o volume dos sólidos limitados pelas superfícies dadas, utilizando integrais triplos:
 - a) pelos cilindros $z = 4 y^2$, $z = y^2 + 2$ e pelos planos x = -1 e x = 2;
 - b) pelos parabolóides $z=x^2+y^2$, $z=x^2+2y^2$ e pelos planos y=x, y=2x e x=1;
 - c) pelos parabolóides $z=x^2+y^2,\,z=2x^2+2y^2,$ pelo cilindro $y=x^2$ e o plano y=x.
- 5. Calcular o volume dos sólidos limitados pelas superfícies indicadas, utilizando integrais triplos e uma mudança de variáveis conveniente:
 - a) pela esfera $x^2 + y^2 + z^2 = 4$ e pelo parabolóide $x^2 + y^2 = 3z$;
 - **b)** pela superfície de equação $(x^2 + y^2 + z^2)^2 = a^3x$, a > 0;
 - c) pela esfera $x^2+y^2+z^2=r^2$ e pelo paraboló
ide $x^2+y^2=r^2-2zr,$ $z\geq 0;$
 - d) pelas esferas $x^2 + y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 16$ e por $x^2 + y^2 = z^2$, x = 0, y = 0, z = 0, com $x \ge 0$, $y \ge 0$ e $z \ge 0$.