NATIONAL CHENG KUNG UNIVERSITY

College of Electrical Engineering and Computer Science

DEPARTMENT OF ELECTRICAL ENGINEERING

Advanced VLSI System Design (Graduate Level) Fall 2024

Summary of Final Project Please don't just write yes/no if there need more details, and use single-sided printing

G.	Please don't just wri	ite yes/no ii ti	ere need i	nore details	•	ingie-siae	ea printing		
Simulate at SoC(yes/no) yes									
			Bas						
	Pipeline	Sta	ge		orking Fre	_	Data Width		
	-	5 (5 stage) 1GHz		z (>800 M	Hz)	32bits (> 32 bits)			
	Number of Instructions	53+22+49 (basic+FPU+VPU)				(>65)			
	Realized Cache Specification	Cache size: 1KB Block size (cache line size): 16Byte (4 words) Entry: 32 2 way set associative Cache replacement policies: LRU (Least Recently Used Cache) Read Policy: Read miss - read allocate Write Policy: Write hit - write through Write miss - write no allocate							
				(e.g. L1 size,	associativ	e, read/writ	e policy)	
		Hit Rate (%)		I-cache	Ť	D-cache (read)		D-cache (write)	
		Prog0		97.49	87.	66	3.6		
	Cache Hit Rate of each program	Prog1		99.8	99.	61	64.09		
		Prog2		99.99	99.	99.24		54.02	
		Prog3		99.93		99.96		89.78	
M		Prog4		97.63		94.85		7.6	
C		Prog5		97.65		92.35		3.07	
U		Prog6		99.8		92.25		21.02	
		Prog7		99.8		92.25		21.02	
		Prog8		99.43		79.5			
		Prog9		99.98	87.	87.97		96.29	
		Prog10		97.64		94.53		9.7	
		Prog11		99.79	95.	95.38		20.99	
		Prog12		99.26	88.81		3.47		
		Prog13		97.22	99.	99	98.44	1	
		Prog14		98.23	95.	.01	12.44	1	
		Two types of Data Hazard : ID <-> WB and EXE <-> MEM, WB ** USE FP = { RS1 (2), RS2 (1), RD (0) } **							
	List of Realized Forwarding in Types and Stages	check 1. Is using RS: (RS1 & ~USE_FP) & USE_FP -> also check x0 check 2. Is using RD: (RD & ~USE_FP) & USE_FP -> may not need to							
		check 2. Is using RD: (RD & ~USE_FP -> may not need to check							
		check 2. Is using same type of RS/RD (FP or INT)							
		check 3. Is RS equals to RD							
		(e.g. which kind)							
	Realized	IPC Pro	g0 Prog	1 Prog2	Prog3	Prog4	Prog5	Prog6	
	Performance		12 0.6		0.69	0.43	0.4	0.33	
	Counters (IPC) of	Prog7 Pro	g8 Prog	9 Prog10	Prog11	Prog12	Prog13	Prog14	
	each program		18 0.45		0.39	0.53	0.71	0.48	

	Interrupt mechanism	WDT_interrupt, DMA_interrupt				
M		IM 64KB		DM 128KB		
e m	On-chip memory					
0			SDRAM	ROM		
r y	Off-chip memory		2MB	8KB		
		Operating Frequency		Bit-width		
	Specification		1GHz (>400 MHz)	32bits (>32 bits)		
		Slave	Start address	End address		
		ROM	0x0000_0000	0x0000_1FFF		
		IM	0x0001_0000	0x0001_FFFF		
В	Specify Memory and	DM	0x0002_0000	0x0003_FFFF		
U	I/O mapping	DRAM	0x2000_0000	0x201F_FFFF		
S		DMA	0x1002_0000	0x1002_0400		
		WDT	0x1001_0000	0x1001_03FF		
	Implemented Features of AXI Bus, Level of Realization, Outstanding number Specify Cooperation	The AXI in our design is a cross-bar bridge. The outstanding number is 1, but the read/write channel can work separately. We use a round-robin arbiter in our AXI. As the instruction reach execute stage in CPU, if it's a vector instruction, it'll				
S y s t e m	between CPU, Bus, Memory, EPU and others	be assigned to VPU through the frontend in EX stage. VPU will access L1-Cache for load/store operation. (e.g. How your system works)				
	Specify Hardware interrupt & Interrupt service routines	The interrupt flow first checks the mie CSR register. If the local interrupt enable bit is set to 0, the interrupt is ignored. If it is set to 1, the next step is to check the global interrupt enable bit in the mstatus CSR register. If the global interrupt enable bit is also set to 1, the interrupt is considered valid, and the CPU will jump to the trap handler to process the interrupt. It will finally go back to normal execution once mret inst. is executed. When the CPU executes the WFI instruction, it transitions to the WFI state, which stalls the entire CPU pipeline. If an interrupt is not taken (i.e., an interrupt is received but the local interrupt is disabled), the CPU remains in the WFI state. Only when the interrupt is considered valid (after checking both local and global interrupt enables) does the CPU jump to the trap handler and then return to normal execution.				
	Specify Mechanism for Booting from an external ROM	CPU will fetch from ROM for booting instruction through Cache, as executing the booting instruction, CPU will set source address, destination address, data length into DMA, which is made for moving data from the external DRAM to on chip IM/DM. CPU will in the wfi state, waiting for DMA sent its interrupt signal to CPU addressing that it has complete data transfer.				

Specify Realized DMA(Direct Memory Access) and Usage	wfi instruction will occur after the enable of DMA is written to 1 by CPU, then the DMA will start the process of moving data from source address to destination address which are both written into DMA by CPU. Each round, DMA will read 4 sets of data from source and write 4 sets of data to destination, until moving DMALEN sets of data.			
Code analysis (Superlint)	1 - (137/13993) = 99.02% (should >99% error free)			
System w/ EPU (yes/no)	yes			
	Synthesis	APR		
clock period	1ns	1.25ns		
Power	52.3867mW	8.43e+07 nW		
Area	384536.033485	3180397.85164800		
Chip cost	4,068,000 (NTD)			

			EPU		
	Max working Freq.		1GHz		
E	Processing speed (throughput or)		VPU can handle 8 operation per cycle since it has 8 lanes. Which results in 8*1GHz = 8GHz-op (8G op per sec)		
P U	Realized Specification of Functionalities in details		Out EPU is a vector processing unit which supports SIMD.		
	Comparison with other works if any		Not that we know of		
	M C U	prog0 pass ratio	100%		
	E P U	# and types of Direct test or constrained random test	There's a program for VPU instruction functionality test, which check all the instructions supported.		
V e r i f i c a t		Specify types, length, operation conditions of benchmarks	Prog5: vector instruction direct test Prog6: vector addition Prog7: vector multiplication Prog8: AXPY Prog9: matrix multiplication Prog10: convolution Prog11: ReLU Prog12: 64-bit addition Prog13: Bicubic Prog14: Deutsch-Jozsa algorithm (at least 7 benchmark)		
o n	S Y S T E M	prog0 PR simulation time			
		prog1 PR simulation time			
		Specify types, length, operation conditions of benchmarks	Prog0: provided by TA Prog1: quick sort Prog2: image gray scaling Prog3: WDT prog4: FPU direct test		

Advanced					
10 more instructions	FPU: 22 more instructions VPU: 49 more instructions				
64-bit add/sub, store/load	With vadd64/vsub64, vle64/vse64 operation See prog12				
Synthesize AXI bus with burst and fully work with IPs	Not yet				
More cache (L2 or L3)	No				
stack or other mechanisms to facilitate function calls	Return address stack With stack depth = 8				
dynamic branch prediction	A two-level saturating branch prediction BHT, BTB size are both 32				
Verify with FPGAs, specify FPGA board, what module has been put on the board and how you confirm results	No				
CRT for more than two IPs	No				
I/O PADs	Not yet				
floating-point co-processor	FPU with 22 new instructions See prog4				
Bootable by an operating system	No				
Other Properties, please specify	Formal verification (ISA formal), AXI (starvation freedom, mutual exclusion, req->taken)				
References					