## Big Bang Neutrinos

$$\overline{\nu}_e + p \rightarrow n + e^+$$

Number density of BB nus:  $n_v \sim 10^2$  cm<sup>-3</sup>

Weak interaction cross section:  $\sigma \sim 10^{-44} \text{ cm}^2$ 

Interaction length on CR p<sup>+</sup> :  $\lambda_{\rm v} \sim (\sigma n_{\rm p})^{-1} \sim (n_{\rm p})^{-1} \ 10^{44} \ {\rm cm}$ 

Radius of visible universe:  $R \sim cT \sim 10^{28}$  cm

Probability of interaction:  $P \sim R/\lambda_v \sim 10^{-16} n_p$ 

Number density of interaction positrons:  $n_e \sim n_v P \sim 10^{-14} n_p$ 

Flux of positrons:  $\Phi_{\rm e} \sim n_{\rm e}c \sim 10^{-4} n_{\rm p} \, {\rm cm}^{-2} \, {\rm s}^{-1}$ 

## **CR Flux**



 $\Phi_{\rm p} \sim 10^{-3}~{\rm m}^{-2}~{\rm s}^{-1}~{\rm GeV}^{-1}~(10^3~{\rm GeV})(10^{-6}~{\rm m}^2/{\rm cm}^2)(4\pi) \sim 10^{-5}~{\rm cm}^{-2}~{\rm s}^{-1}~(E_{\rm p} > 1~{\rm TeV})$   $n_{\rm p} \sim \Phi_{\rm p}/c \sim 10^{-16}~{\rm cm}^{-3}~(E_{\rm p} > 1~{\rm TeV})$ 

## Pamela Positron Excess



 $\Phi_{\rm e} \sim 10^{-3}~{\rm GeV^2~cm^{-2}~s^{-1}~Sr^{-1}}$  (50 GeV)(4 $\pi$ )(60 GeV)<sup>-3</sup>  $\sim \pi~x~10^{-6}~{\rm cm^{-2}~s^{-1}}$ 

COMPARABLE to BB Flux!!!