Corte Mínimo Global

André Vignatti

DINF-UFPR

Definição: Corte

Dado um grafo G = (V, E), um corte é uma partição de V em dois subconjuntos A e B.

Definição: Tamanho do Corte

Dado um corte (A, B) de V, o tamanho do corte é o número de arestas com uma das pontas em A e outra em B.

Na figura anterior, o tamanho do corte é 6.

Problema: Corte Mínimo Global

Dado um grafo G = (V, E) conexo, ache um corte de cardinalidade mínima.

Medida de Robustez

O corte mínimo global pode ser visto como uma medida de "robustez" do grafo: é o menor número de aresta que desconecta o grafo.

Algumas aplicações:

- Particionar itens em um BD.
- Identificar clusters de documentos relacionados.
- Confiabilidade de uma rede.
- Projeto de Redes.

Algoritmo de Contração [Karger 1995]

- Pegue e = (u, v) aleatoriamente de maneira uniforme.
- Contraia a aresta e.
 - Troque u e v pelo super-nodo w.
 - preserve as arestas, atualizando suas pontas de u e v para w.
 - mantenha arestas paralelas, mas remova loops.
- Repita até o grafo ficar com dois nodos v_1 e v_2 .
- Retorne o corte (todos nodos contraídos para formar v_1).

Exemplo de Execução

O algoritmo às vezes funciona, às vezes não funciona:

Corretude

O algoritmo está correto?

Teorema (Corretude)

O Algoritmo de Contração devolve o corte mínimo se nenhuma aresta do corte mínimo foi contraída.

Demonstração.

(Exercício) - usar método de prova por invariantes de laço

Só funciona com muita sorte!! Qual a probabilidade de funcionar?

Lema

O algoritmo de contração retorna um corte mínimo com probabilidade $\geq 1/\binom{n}{2}$.

Prova

Seja (A^*, B^*) um corte mínimo global de G. Seja F^* as arestas com uma ponta em A^* e outra em B^* . Seja $k = |F^*|$ o tamanho deste corte.

- O algoritmo só encontra o corte mínimo se não contrai arestas de F*.
- No 1° passo, o algoritmo contrai uma aresta em F^* com prob k/|E|.
- Todo vértice tem grau $\geq k$, c.c. (A^*, B^*) não seria o corte mínimo. $\Rightarrow |E| \geq \frac{1}{2}kn$. (lembre-se: $|E| = \frac{1}{2} \sum_{v \in V} d_v$)
- Assim, o algoritmo contrai uma aresta em F^* com prob $\leq 2/n$.

Prova (cont.)

- Seja G' o grafo após j iterações. Exitem n' = n j supernodos.
- Suponha que nenhuma aresta em F* foi contraída. O corte mínimo em G' ainda é k.
- Como o corte mínimo é k, então $|E'| \ge \frac{1}{2}kn'$.
- Assim (após j iterações), o algoritmo contrai uma aresta em F^* com probabilidade $\leq 2/n' = 2/(n-j)$.

Prova (cont.)

Seja E_j = evento que uma aresta em F^* não seja contraída na iteração j.

$$\begin{aligned} & Pr[E_1 \cap E_2 \cap \ldots \cap E_{n-2}] \\ & = Pr[E_1] \times Pr[E_2|E_1] \times \ldots \times Pr[E_{n-2}|E_1 \cap E_2 \ldots \cap E_{n-3}] \\ & \geq \left(1 - \frac{2}{n}\right) \cdot \left(1 - \frac{2}{n-1}\right) \ldots \left(1 - \frac{2}{4}\right) \cdot \left(1 - \frac{2}{3}\right) \\ & = \left(\frac{n-2}{n}\right) \cdot \left(\frac{n-3}{n-1}\right) \ldots \left(\frac{2}{4}\right) \cdot \left(\frac{1}{3}\right) \\ & = \frac{2}{n(n-1)} = \binom{n}{2}^{-1}. \end{aligned}$$

Amplificação: Para aumentar a probabilidade de sucesso, basta rodar o algoritmo várias vezes (retornando o menor corte encontrado).

Teorema

Se repetirmos o algoritmo de contração $\binom{n}{2} \ln n$ vezes, com escolhas aleatórias independentes, a probabilidade de não encontrar um corte mínimo global é $\leq 1/n$.

Demonstração.

Pela independência, a prob de não encontrar um corte mínimo é no máximo

$$\left(1-1/\binom{n}{2}\right)^{\binom{n}{2}\ln n} = \left[\left(1-1/\binom{n}{2}\right)^{\binom{n}{2}}\right]^{\ln n} \leq \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n}.$$

Observação: Tempo de execução

- Cada execução do algoritmo leva tempo Θ(m). (PORQUÊ?)
- Executamos $\Theta(n^2 \log n)$ vezes o algoritmo.
- Então o algoritmo executa em tempo $\Theta(mn^2 \log n)$.

Melhorias

- Um ano depois, em 1996, Karger e Steing conseguiram melhorar o tempo para O(n² log³ n).
- Em 2000, Karger melhorou para $O(m \log^3 n)$.