H T
 W I
 G N
 Hochschule Konstanz Technik, Wirtschaft und Gestaltung (HTWG)
 Fakultät Informatik
 Rechner- und Kommunikationsnetze
 Prof. Dr. Dirk Staehle

Theorieübungen zur Vorlesung Rechnernetze -Lösung -

Ende-zu-Ende-Verzögerung

Prof. Dr. Dirk Staehle

Betrachten Sie eine Übertragungsstrecke mit 3 Links, die durch folgende Übertragungsraten, Entfernungen und Ausbreitungsgeschwindigkeiten gekennzeichnet sind:

	Übertragungsrate	Physikalische Länge	Physikalische Ausbreitungsgeschwindigkeit
Link 1	60 Mbps	15 m	300 000 km/s
Link 2	25 Mbps	250 m	200 000 km/s
Link 3	20 Gbps	10 km	250 000 km/s

An allen Routern, die die Links verbinden, steht ausreichend Speicherkapazität zur Verfügung, so dass es nicht zu Paketverlusten kommt.

1 Bestimmen Sie die Ausbreitungsverzögerung und die Übertragungsverzögerung der 3 Links für Pakete der Größe 1500 Bytes.

Lösung:

Variablen:

a. physikalische Länge: d

b. Ausbreitungsgeschwindigkeit: \emph{v}

c. Paketgröße: *L*d. Linkkapazität: *C*

Ausbreitungsverzögerung: $t_{prop} = \frac{d}{v}$

Übertragungsverzögerung: $t_{tx} = \frac{L}{c}$

	C [Gbps]	l [km]	v [km/s]	t _{prop} [μs]	t _x [μs]
Link 1	0,06	0,015	300000,00	0,0500	200,00
Link 2	0,025	0,25	200000,00	1,2500	480,00
Link 3	20,00	10,00	250000,00	40,0000	0,60

2 Bestimmen sie die logische Buslänge der drei Links. Die logische Buslänge ist die Anzahl von Paketen bzw. der Anteil eines Pakets, der auf den Bus passt.

Lösung:

Ein Paket besteht aus L Bits, die nacheinander mit der Rate C auf die Leitung geschrieben werden. Die Zeit zwischen dem ersten und dem letzten Bit entspricht der Übertragungsverzögerung t_{tx} . Da sich das erste Bit mit der Ausbreitungsgeschwindigkeit v auf der Leitung ausbreitet

(fortbewegt), legt es während der Distanz eine Strecke von $v \cdot t_{tx}$ zurück. Die physikalische Länge eines Pakets auf dem Bus ist also $v \cdot t_{tx}$. Die logische Buslänge ist nun die physikalische Länge des Buses d dividiert durch die physikalische Länge eines Pakets auf dem Bus $v \cdot t_{tx}$.

Logische Buslänge:
$$N_p = \frac{t_{prop}}{t_{tx}} = \frac{d \cdot c}{v \cdot L}$$

	C [Gbps]	l [km]	v [km/s]	t _{prop} [µs]	t _x [μs]	N _P [Pakete]
Link 1	0,06	0,015	300000,00	0,0500	200,00	0,0003
Link 2	0,025	0,25	200000,00	1,2500	480,00	0,0026
Link 3	20,00	10,00	250000,00	40,0000	0,60	66,67

3 Bestimmen Sie die Ende-zu-Ende-Verzögerung für die Übertragung eines Pakets über die 3 Links in der Reihenfolge Link 1-Link 2-Link 3. Hängt die ende-zu-Ende-Verzögerung von der Reihenfolge der Links ab?

Lösung:

Ende-zu-Ende-Verzögerung:
$$t_{E2E} = \sum_{k=1}^{K} t_{prop,k} + t_{tx,k}$$

Die Ende-zu-Ende-Verzögerung hängt nicht von der Reihenfolge der durchlaufenen Links ab.

	t _{prop} [µs]	t _x [μs]	t _{E2E} [μs]
Link 1	0,05	200,00	200,05
Link 2	1,25	480,00	481,25
Link 3	40,00	0,60	40,60
E2E	41,30	680,60	721,90

20 20

4 Betrachten Sie nun einen Packet-Burst aus 17 Paketen, d.h. 17 Pakete die direkt hintereinander übertragen werden. Was ist die Gesamtübertragungsdauer für diesen Packet-Burst, wenn die Links in der Reihenfolge Link 1-Link 2-Link 3 übertragen werden? Hängt in diesem Fall die Gesamtübertragungsdauer von der Reihenfolge der Links ab?

Lösung:

Gesamtübertragungsdauer:
$$t_{E2E}(n) = t_{E2E}(1) + (n-1) \cdot \max_k t_{tx,k}$$
Gesamtübertragungsdauer für 20 Pakete:
$$t_{E2E}(20) = t_{E2E}(1) + \underbrace{17 \cdot t_{tx,2}}_{k} = 9,8419 \text{ ms}$$

Auch für einen Packet-Burst hängt die Gesamtübertragungsdauer nicht von der Reihenfolge der Links ab.