Зміст

3		Побудова математичних моделей базових фізичн цесів			
	3.1	матичні моделі розповсюдження тепла та дифузії ре-			
човини		и	1		
		3.1.1	Закон збереження теплової енергії	1	
		3.1.2	Частинні випадки рівняння теплопровідності	5	
		3.1.3	Рівняння дифузії речовини	6	
		3.1.4	Задача Стефана (задача про остигання та затверді-		
			ння розплавленого металу)	9	

3 Побудова математичних моделей базових фізичних процесів

3.1 Математичні моделі розповсюдження тепла та дифузії речовини

Для запису математичної моделі введемо величини:

- $x = (x_1, x_2, x_3) \in G \subset E^3$ об'єм тіла, t час;
- u(x,t) температура в точці x у момент часу t;
- c(x) теплоємність (кількість тепла, яка необхідна, для підняти температуру одиниці маси тіла на один градус);
- k(x) теплопровідність речовини (здатність проводити тепло);
- $\rho(x)$ щільність речовини;
- f(x,t) інтенсивність джерел теплової енергії в точці x в момент часу t.

3.1.1 Закон збереження теплової енергії

Складемо баланс теплової енергії для довільного об'єму тіла G за довільний інтервал часу $t_1 < t < t_2$. Для цього обчислимо кількість тепла, яка міститься в нескінченно малому об'ємі dG:

$$\rho(x) \cdot dG \cdot c(x) \cdot u(x,t) \tag{3.1.1}$$

та в об'ємі G в момент часу t:

$$Q_1(t) = \iiint_G c(x)\rho(x)u(x,t) dG.$$
 (3.1.2)

Припустимо, що з часом температура змінилася від значення $u(x,t_1)$ до значення $u(x,t_2)$. Обчислимо кількість тепла, витрачену на зміну температури:

$$\Delta Q_1(t_1, t_2) = Q_1(t_2) - Q_1(t_1) = \iiint_G c(x)\rho(x)(u(x, t_2) - u(x, t_1)) dG.$$
(3.1.3)

Температура в об'ємі G може змінюватись за рахунок таких факторів:

- 1. нерівномірності нагрівання тіла, викликає потік тепла через поверхню S, яка обмежує уявне тіло об'єму G;
- 2. зміна кількості тепла за рахунок внутрішніх теплових джерел.

Нехай \vec{n} — зовнішня нормаль до поверхні S. Обчислимо кількість тепла, яка поступає всередину об'єму G через елементарну поверхню $\mathrm{d}S$ в одиницю часу:

$$dQ(x,t) = k(x) \cdot \frac{\partial u(x,t)}{\partial \vec{p}} \cdot dS$$
 (3.1.4)

Ця формула є математичним виразом фізичного закону Фур'є.

Кількість тепла, яка проходить через всю поверхню S за час від t_1 до t_2 обчислюється за формулою

$$Q_2(t_1, t_2) = \int_{t_1}^{t_2} \iint_{S} \left(k(x) \cdot \frac{\partial u(x, t)}{\partial \vec{n}} \right) dS dt.$$
 (3.1.5)

Кількість тепла за рахунок теплових джерел в об'ємі G можна обчислити у вигляді:

$$Q_3(t_1, t_2) = \int_{t_1}^{t_2} \iiint_G f(x, t) \, dG \, dt.$$
 (3.1.6)

Таким чином можна записати

Теорема 3.1.1 (закон збереження теплової енергії)

Виконується співвідношення:

$$\Delta Q_1(t_1, t_2) = Q_2(t_1, t_2) + Q_3(t_1, t_2), \tag{3.1.7}$$

або після підстановки усіх величин маємо

Теорема 3.1.2 (інтегральний закон збереження теплової енергії)

Виконується співвідношення:

$$\iiint_{G} c(x)\rho(x)(u(x,t_{2}) - u(x,t_{1})) dG =$$

$$= \int_{t_{1}}^{t_{2}} \iint_{S} \left(k(x) \cdot \frac{\partial u(x,t)}{\partial \vec{n}}\right) dS dt + \int_{t_{1}}^{t_{2}} \iiint_{G} f(x,t) dG dt. \quad (3.1.8)$$

Для перетворення першого інтегралу правої частини останньої рівності застосуємо формулу Остроградського Гауса,

$$\iint_{S} \langle A, \vec{n} \rangle dS = \iiint_{G} (\nabla \cdot \vec{A}) dG, \qquad (3.1.9)$$

де \vec{A} — векторне поле,

$$\nabla \cdot A = \frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_2} + \frac{\partial A_3}{\partial x_3}.$$
 (3.1.10)

В результаті отримаємо:

$$\int_{t_1}^{t_2} \iiint_G \left(c(x) \cdot \rho(x) \cdot \frac{\partial u(x,t)}{\partial t} \right) dG dt =$$

$$= \int_{t_1}^{t_2} \iiint_G \left(\nabla \cdot (k(x) \cdot \nabla u) \right) dG dt + \int_{t_1}^{t_2} \iiint_G f(x,t) dG dt. \quad (3.1.11)$$

Враховуючи, що остання рівність отримана для довільного об'єму G та довільних моментів часу , можна зробити висновок, що вона має місце тоді і лише тоді, коли має місце рівність підінтегральних виразів:

$$c(x) \cdot \rho(x) \cdot \frac{\partial u(x,t)}{\partial t} \cdot dG \cdot dt =$$

$$= \nabla \cdot (k(x) \cdot \nabla u) \cdot dG \cdot dt + f(x,t) \cdot dG \cdot dt, \quad (3.1.12)$$

де $x \in G, t > 0.$

Це рівняння повинно виконуватись для кожної точки x реального фізичного об'єму тіла (збережемо для нього позначення G, а для його поверхні позначення S), та для кожного моменту часу t.

Для виділення єдиного розв'язку цього рівняння окрім самого диференціального рівняння необхідно задавати додаткові умови на границі просторово-часової області. Будемо використовувати фізичні міркування для задавання таких умов.

1. Якщо на границі області відома температура тіла, тоді на границі тіла задають умову Діріхле.

Визначення 3.1.3 (умови Діріхле). Крайовою умовою першого роду, або *умовою Діріхле* називають співвідношення

$$u(x,t)|_{x\in S} = v(x,t).$$
 (3.1.13)

2. Якщо на границі області відомий тепловий потік в одиницю часу, який поступає всередину тіла через одиничну площу, тоді на границі задають граничну умову Неймана.

Визначення 3.1.4 (умови Неймана). Крайовою умовою другого роду, або *умовою Неймана* називають співвідношення

$$k(x) \cdot \frac{\partial u(x,t)}{\partial \vec{n}} \Big|_{x \in S} = q(x,t).$$
 (3.1.14)

3. Якщо на границі тіла відбувається конвективний теплообмін з оточуючим середовищем відомої температури згідно до закону Ньютона, тоді на границі задають крайову умову Ньютона

Визначення 3.1.5 (умови Ньютона). Крайовою умовою третього роду, або *умовою Ньютона* називають співвідношення

$$k(x) \cdot \frac{\partial u(x,t)}{\partial \vec{n}} \Big|_{x \in S} = \alpha(x,t) \cdot (v(x,t) - u(x,t))|_{x \in S}, \qquad (3.1.15)$$

де $\alpha(x,t)>0$ — коефіцієнт теплообміну, v(x,t) — температура оточуючого середовища.

4. В початковий момент часу задають температура усіх внутрішніх точок тіла:

$$u(x,t)|_{t=0} = u_0(x).$$
 (3.1.16)

Визначення 3.1.6 (початкової умови). *Початковою умовою* називається співвідношення

$$u(x,t)|_{t=0} = u_0(x),$$
 (3.1.17)

при цьому $u_0(x)$ називається початковою температурою.

3.1.2 Частинні випадки рівняння теплопровідності

Зауваження 3.1.7 — У випадку, коли коефіцієнт теплопровідності та інтенсивність теплових джерел залежить не лише від точки простору і часу, а і від самої температури, тобто $k=k(u,x,t),\ f=f(u,x,t),$ лінійне диференціальне рівняння вище стає квазілінійним, тобто лінійним відносно старших похідних.

Окрім загального вигляду рівняння теплопровідності, у практичних випадках часто використовуються частинні випадки рівняння.

Зокрема, можна розглядати розповсюдження тепла в одновимірних та двовимірних тілах:

• У пластині:

$$\nabla \cdot (k(x) \cdot \nabla u(x,t)) = \frac{\partial}{\partial x_1} \left(k(x) \cdot \frac{\partial u(x,t)}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(k(x) \cdot \frac{\partial u(x,t)}{\partial x_2} \right). \tag{3.1.18}$$

• У стрижні:

$$\nabla \cdot (k(x) \cdot \nabla u(x,t)) = \frac{\partial}{\partial x} \left(k(x) \cdot \frac{\partial u(x,t)}{\partial x} \right). \tag{3.1.19}$$

Для однорідних тіл усі коефіцієнти рівняння можна вважати константами, зокрема $c=c_0,\ \rho=\rho_0,\ k=k_0.$ В результаті вищезгадане диференціальне рівняння буде мати вигляд

$$\frac{\partial u(x,t)}{\partial t} = a^2 \Delta u + \frac{1}{c_0 \rho_0} \cdot f(x,t), \qquad (3.1.20)$$

де

$$a^2 = \frac{k_0}{c_0 \rho_0} > 0, (3.1.21)$$

і було введено

Визначення 3.1.8 (оператора Лапласа). *Оператором Лапласа* називається функціонал Δ що діє на функцію u(x,t) наступним чином:

$$\Delta u(x,t) = \nabla \cdot (\nabla u(x,t)) = \sum_{i=1}^{n} \frac{\partial^2 u(x,t)}{\partial x_i^2}.$$
 (3.1.22)

Зауваження 3.1.9 — Зокрема одновимірне рівняння теплопровідності має вигляд:

$$\frac{\partial u(x,t)}{\partial t} = a^2 \cdot \frac{\partial^2 u(x,t)}{\partial x^2} + \frac{1}{c_0 \rho_0} \cdot f(x,t). \tag{3.1.23}$$

3.1.3 Рівняння дифузії речовини

Процес дифузії речовини це процес вирівнювання концентрації речовини у розчинах, розплавах або в сумішах. Фізика вирівнювання температури в тілах та концентрації у розчинах чи розплавах має багато схожих рис і з цього приводу навіть процес розповсюдження тепла називають дифузією тепла.

Для отримання моделі дифузії речовини використаємо наступну таблицю аналогії.

Дифузія	Теплопровідність	Пояснення
u(x,t)	u(x,t)	Концентрація речовини в розчині, або у розплаві
c(x)	$c(x)\rho(x)$	Коефіцієнт пористості, відображає відношення об'єму пор до загального об'єму тіла і вказує на кількість речовини необхідну для зміни концентрації на одну одиницю в одиниці об'єму.

Дифузія	Теплопровідність	Пояснення
$D \cdot \frac{\partial u}{\partial \vec{n}} \cdot \mathrm{d}S$	$k \cdot \frac{\partial u}{\partial \vec{n}} \cdot \mathrm{d}S$	Закон Нерста, описує кількість речовини, яка поступає всередину тіла через його поверхню в одиницю часу за рахунок нерівномірності концентрації.
f(x,t)	f(x,t)	Інтенсивність джерела речовини в середині об'єму.
$D \cdot \frac{\partial u}{\partial \vec{n}} = \alpha \ (v - u) _{S}$	$k \cdot \frac{\partial u}{\partial \vec{n}} = \alpha (v - u) _{S}$	Кількість речовини, яка поступає через поверхню S тіла за законом, аналогічним закону Ньютона, v — відома концентрація речовини в тому чи іншому середовищі; α — коефіцієнт проникності поверхні.

Побудови математичної моделі процесу дифузії відбувається за аналогією згідно до попередньої таблиці.

Кількість речовини, яка витрачена для зміни концентрації від $u(x,t_1) \to u(x,t_2), t_1 < t_2$ має вигляд:

$$\Delta Q_1(t_1, t_2) = Q_1(t_2) - Q_1(t_1) = \iiint_C c(x)(u(x, t_2) - u(x, t_1)) \, dG. \quad (3.1.24)$$

Кількість речовини, яка проходить через всю поверхню S за час від $t_1 \to t_2$:

$$Q_2(t_1, t_2) = \int_{t_1}^{t_2} \iint_{S} \left(D(x, t) \cdot \frac{\partial u}{\partial \vec{n}} \right) dS dt.$$
 (3.1.25)

Кількість речовини, яка поступає за рахунок джерел речовини в об'ємі G за час від t_1 до t_2 :

$$Q_3(t_1, t_2) = \int_{t_1}^{t_2} \iiint_G f(x, t) \, dG \, dt.$$
 (3.1.26)

Отже, отримали

Теорема 3.1.10 (закон збереження маси)

Вионується співвідношення:

$$\Delta Q_1(t_1, t_2) = Q_2(t_1, t_2) + Q_3(t_1, t_2). \tag{3.1.27}$$

а також

Теорема 3.1.11 (інтегралньий закон збереження маси)

Вионується співвідношення:

$$\iiint_{G} c(x)(u(x,t_{2}) - u(x,t_{1})) dG =$$

$$= \int_{t_{1}}^{t_{2}} \iint_{S} \left(D(x,t) \cdot \frac{\partial u(x,t)}{\partial \vec{n}} \right) dS dt + \int_{t_{1}}^{t_{2}} \iiint_{G} f(x,t) dG dt. \quad (3.1.28)$$

Після застосування формули Остроградського-Гауса та прирівнювання підінтегральних виразів отримаємо рівняння дифузії речовини у вигляді:

$$c(x) \cdot \frac{\partial u}{\partial t} = \nabla \cdot (D(x, t) \cdot \nabla u) + f(x, t), \tag{3.1.29}$$

де $x \in G, t > 0$.

Додаткові умови на границі області задають аналогічно умовам для рівняння теплопровідності:

1. Якщо відома концентрація речовини на поверхні:

$$u(x,t)|_{x\in S} = v(x,t);$$
 (3.1.30)

2. Якщо на границі відомий потік речовини:

$$D \cdot \frac{\partial u(x,t)}{\partial \vec{n}} \bigg|_{x \in S} = g(x,t); \tag{3.1.31}$$

3. Якщо на границі відбувається обмін речовиною з оточуючим середовищем через напівпроникливу мембрану за законом аналогічним закону Ньютона:

$$D \cdot \frac{\partial u(x,t)}{\partial \vec{n}} \Big|_{x \in S} = \alpha \cdot (v(x,t) - u(x,t))|_{x \in S};$$
 (3.1.32)

4. Якщо в початковий момент часу відома концентрація речовини:

$$u(x,0) = u_0(x). (3.1.33)$$

Зауваження 3.1.12 — У випадку, коли коефіцієнти рівняння та граничних умов не залежать від часу t, розв'язок рівняння не залежить від часу в результаті отримаємо стаціонарне рівняння теплопровідності та дифузії:

$$\nabla \cdot (k(x) \cdot \nabla u(x,t)) = -f(x), \tag{3.1.34}$$

$$\nabla \cdot (D(x) \cdot \nabla u(x,t)) = -f(x). \tag{3.1.35}$$

3.1.4 Задача Стефана (задача про остигання та затвердіння розплавленого металу)

Вертикальний циліндричний посуд заповнений розплавленим металом, який знаходиться при заданій температурі $U_0 > U_{melt}$. Починаючи з моменту часу t_0 вільна поверхня розплавленого металу підтримується при постійній температурі $U_1 < U_{melt}$. Поставимо задачу про остудження та затвердіння металу, якщо дно і бокова поверхня посуду теплоізольовані. Термічними деформаціями об'єму будемо нехтувати тобто процес розповсюдження тепла відбувається лише вздовж вісі циліндру. Введемо позначення:

- ρ_s , ρ_l щільність твердої (eng. solid) та рідкої (eng. liquid) фази металу;
- c_s, c_l теплоємність твердої та рідкої фази металу;
- k_s, k_l теплопровідність твердої та рідкої фази металу;
- $\xi(t)$ положення границі розділу твердої та рідкої фаз;
- L висота циліндру, S площа основи циліндру;
- λ питома теплота плавлення;
- u(x,t) температура в момент часу t в точці x.

Деякі з введених позначень краще видно на наступній ілюстрації:

Отримаємо рівняння теплового балансу для нескінченно малого об'єму розплавленого металу, який знаходиться між перерізами x та $x + \Delta x$ за проміжок часу від t до $t + \Delta t$.

Обчислимо кількість тепла, яка необхідна для зміни температури у виділеному елементарному об'ємі від значення u(x,t) до значення $u(x,t+\Delta t)$. Кількість тепла, що міститься в виділеному об'ємі в момент часу t можна обчислити за формулою

$$dQ(t) = c_l \cdot \rho_l \cdot S \cdot \Delta x \cdot u(x, t). \tag{3.1.36}$$

Аналогічно для моменту часу $t + \Delta t$ кількість тепла дорівнює

$$dQ(t + \Delta t) = c_l \cdot \rho_l \cdot S \cdot \Delta x \cdot u(x, t + \Delta t). \tag{3.1.37}$$

При цьому нехтуємо, зміною температури по просторовій змінній у середині елементарного об'єму. Тоді кількість тепла, необхідна для зміни температури всередині об'єму дорівнює:

$$\Delta Q(t, t + \Delta t) = c_l \cdot \rho_l \cdot S \cdot \Delta x \cdot (u(x, t + \Delta t) - u(x, t)). \tag{3.1.38}$$

Ця зміна може відбуватися за рахунок теплових потоків, через перерізи x та $x+\Delta x$. Підрахуємо кількість тепла, яка поступає всередину тіла через переріз $x+\Delta x$ за час Δt :

$$dQ(x + \Delta x) = k_l \cdot \frac{\partial u(x + \Delta x, t)}{\partial \vec{n}} \cdot S \cdot \Delta t k_l \cdot \frac{\partial u(x + \Delta x, t)}{\partial x} \cdot S \cdot \Delta t \quad (3.1.39)$$

Напрям нормалі \vec{n} в цьому перерізі співпадає з напрямом вісі Ox.

Кількість тепла, яка поступає всередину тіла через переріз x за час Δt можна записати у вигляді:

$$dQ(x) = k_l \cdot \frac{\partial u(x,t)}{\partial \vec{n}} \cdot S \cdot \Delta t = -k_l \cdot \frac{\partial u(x+\Delta x,t)}{\partial x} \cdot S \cdot \Delta t \qquad (3.1.40)$$

Таким чином можна скласти рівняння теплового балансу:

$$dQ(t, t + \Delta t) = dQ(x + \Delta x) + dQ(x). \tag{3.1.41}$$

Або після підстановки відповідних значень поділених на $\Delta x \cdot \Delta t \cdot S$ отримаємо:

$$\frac{c_l \cdot \rho_l \cdot (u(x, t + \Delta t) - u(x, t))}{\Delta t} = k_l \cdot \left(\frac{\partial u(x + \Delta x, t)}{\partial x} - \frac{\partial u(x, t)}{\partial x}\right) \cdot \frac{1}{\Delta x}.$$
(3.1.42)

Після граничного переходу коли Δx та Δt прямують до нуля, отримаємо диференціальне рівняння:

$$c_l \cdot \rho_l \cdot \frac{\partial u(x,t)}{\partial t} = k_l \cdot \frac{\partial^2 u(x,t)}{\partial x^2},$$
 (3.1.43)

де $\xi(t) < x < L, t > t_0$.

Аналогічні міркування дозволяють отримати рівняння для твердої фази:

$$c_s \cdot \rho_s \cdot \frac{\partial u(x,t)}{\partial t} = k_s \cdot \frac{\partial^2 u(x,t)}{\partial x^2},$$
 (3.1.44)

де $0 < x < \xi(t), t > t_0$.

Визначення 3.1.13 (співвідношення на границі розділу фаз). Температура при переході через границю розділу фаз повинна змінюватись неперервно і співпадати з температурою плавлення металу, тобто повинно виконуватись настуну співвідношення:

$$u(\xi(t) - 0, t) = t(\xi(t) + 0, t) = U_{melt}, \tag{3.1.45}$$

яке називається співвідношенням на границі розділу фаз.

Отримаємо рівняння теплового балансу для елементарного об'єму обмеженого перерізами $\xi(t) - \Delta x$ та $\xi(t) + \Delta x$.

За час Δt затвердіє об'єм металу рівний

$$(\xi(t+\Delta t) - \xi(t)) \cdot S. \tag{3.1.46}$$

При цьому буде виділено кількість тепла рівна

$$dQ_{melt} = (\xi(t + \Delta t) - \xi(t)) \cdot S \cdot \lambda \cdot \rho_s. \tag{3.1.47}$$

Кількість тепла, яка надійде всередину об'єму за рахунок теплових потоків через відповідні перерізи за час Δt може бути записана у вигляді:

$$\Delta t \cdot S \cdot \left(k_l \cdot \frac{\partial u(\xi(t) + \Delta x, t)}{\partial x} - k_s \cdot \frac{\partial u(\xi(t) - \Delta x, t)}{\partial x} \right). \tag{3.1.48}$$

Оскільки фазовий перехід відбувається при постійній температурі, то в околі границі розділу фаз $\xi(t)$ зміною температури по змінній t можна нехтувати, в зв'язку з чим можна не враховувати кількість тепла, яка витрачається на зміну температури у виділеному елементарному об'ємі.

Рівняння теплового балансу для елементарного об'єму обмеженого перерізами $\xi(t) - \Delta x$ та $\xi(t) + \Delta x$ можна записати у вигляді:

$$(\xi(t + \Delta t) - \xi(t)) \cdot S \cdot \lambda \cdot \rho_s =$$

$$= \Delta t \cdot S \cdot \left(k_l \cdot \frac{\partial u(\xi(t) + \Delta x, t)}{\partial x} - k_s \cdot \frac{\partial u(\xi(t) - \Delta x, t)}{\partial x} \right) \quad (3.1.49)$$

Поділивши обидві частини на Δt , скоротивши на S і спрямувавши Δx , Δt до нуля отримаємо співвідношення:

$$\lambda \cdot \rho_s \cdot \frac{\partial \xi(t)}{\partial t} = k_l \cdot \frac{\partial u(\xi(t) + \Delta x, t)}{\partial x} - k_s \cdot \frac{\partial u(\xi(t) - \Delta x, t)}{\partial x}.$$
 (3.1.50)

Визначення 3.1.14 (внутрішніх граничних умов (умов спряження)). Останню умову

$$\lambda \cdot \rho_s \cdot \frac{\partial \xi(t)}{\partial t} = k_l \cdot \frac{\partial u(\xi(t) + \Delta x, t)}{\partial x} - k_s \cdot \frac{\partial u(\xi(t) - \Delta x, t)}{\partial x}.$$
 (3.1.51)

разом із співвідношенням на границі розділу фаз називають внутрішніми граничними умовами, або умовами спряження.

Запишемо початкові умови та умови на верхній та нижній основі циліндру:

• В початковий момент часу задана температура розплавленого металу:

$$u(x, t_0) = U_0, \quad 0 < x < L.$$
 (3.1.52)

• На верхній основі задана температура:

$$u(0,t) = U_1, \quad t > t_0.$$
 (3.1.53)

• Нижня основа теплоізольована, тобто тепловий потік, який поступає всередину тіла дорівнює нулю:

$$\frac{\partial u(L,t)}{\partial x} = 0, \quad t > t_0. \tag{3.1.54}$$

• В початковий момент часу положення границі фазового переходу співпадає з верхньою основою циліндру:

$$\xi(0) = 0. \tag{3.1.55}$$

Таким чином до моменту часу, коли весь метал затвердіє постановка задачі Стефана включає в себе диференційні рівняння, умови спряження, початкові умови та граничні умови.

Зауваження 3.1.15 — Після повного затвердіння металу, тобто коли $\xi(t_1)=L$, процес буде описуватись звичайним рівнянням теплообміну для $t>t_1$ з граничними умовами

$$u(0,t) = U_1, (3.1.56)$$

$$\frac{\partial u(L,t)}{\partial x} = 0, (3.1.57)$$

та початковою температурою $u(x, t_1)$.