MCV4U Lesson 7.4

The Dot Product of Algebraic Vectors

Focus: Become familiar with the mechanics of an algebraic dot product.

In R³,
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = |\vec{a}| |\vec{b}| \cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$
In R², $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = |\vec{a}| |\vec{b}| \cos \theta = a_1 b_1 + a_2 b_2$ where $\vec{a} = (a_1, a_2)$ and $\vec{b} = (b_1, b_2)$

Ex 1.

Determine
$$\vec{b} \cdot \vec{a}$$
 given $\vec{a} = (4,5,6)$ and $\vec{b} = (7,3,-1)$.
 $\vec{b} \cdot \vec{a} = (7,3,-1) \cdot (4,5,6)$
 $= 1(4) + 3(5) - 1(6)$
 $= 28 + 15 - 6$
 $= 37$

Q: What is the utility of the dot product?

A: The dot product is "handy dandy" when investigating or manipulating the angle between two vectors.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Ex 2.

Determine the angle between
$$\vec{u} = (-3,1,2)$$
 and $\vec{v} = (5,-4,-1)$.

$$\begin{array}{cccc}
\cos \Theta &= \vec{u} \cdot \vec{v} & & & & & & \\
|\vec{u}||\vec{v}| & & & & & & \\
& & = -3(51+1(-4)+2(-1)) & & & & & \\
& & & = \sqrt{14^{3}}\sqrt{42^{3}} & & & & \\
\Theta &= \cos^{-1}\left(\frac{-21}{588}\right) & & & & = \sqrt{42^{3}}
\end{array}$$

For what values of p are the vectors $\vec{a}=(p,-3,14)$ and $\vec{b}=(p,p,-2)$ perpendicular?

$$\vec{a} \cdot \vec{b} = 0$$
 $p(p_1 - 3(p) + 14(-2) = 0$
 $p^2 - 3p - 28 = 0$
 $(p-7)(p+4) = 0$
 $p=7 + p=-4$
 $\vec{a} = (7, -3, 14)$
 $\vec{b} = (7, 7, -2)$

Ex 4.

Determine a unit vector that is parallel to the xy-plane and perpendicular to the vector $4\hat{i} - 3\hat{j} + \hat{k}$

2 coordinate must be Zero

Let our vector be $\vec{r} = (a_1b_10)$ $(a_1b_10) \cdot (4_1-3_1) = 0$ $(a_1b_10) \cdot (4_1-3_1) = 0$ $(a_1b_10) \cdot (a_1b_10) = 0$

$$4a - 3b + 0 = 0$$

$$4a = 3b$$

$$4a = 3b$$

$$4a = 3b$$

$$4a = 3b$$

$$5a = 3b$$

$$5a = 3b$$

$$5a = 4b$$

$$6a = 4b$$

$$6a = 4b$$

$$6a = 4b$$

$$1a = 4$$

Ex 5.

Find 3 vectors perpendicular to $\vec{x} = (1,3,-4)$ and $\vec{y} = (-1,-2,3)$.

The state of the s