# DIY electrophysiography

(The safest thing you can do involving connecting your cranium to an electronic device you built in your garage.)

## **Flavours**

- Electrocardiography (ECG) heart.
- Electroencephalography (EEG) brain.
- Electromyography (EMG) muscle.
- Electrocorticography (ECoG) cortical surface (don't try this one at home).

# Practical applications and other applications

#### Practical

- Sleep tracking.
- Brain-computer interfaces.
- Biofeedback.
- Cardiac abnormality identification.
- Seizure detection.

# Practical applications and other applications

#### Practical

- Sleep tracking.
- Brain-computer interfaces.
- Biofeedback.
- Cardiac abnormality identification.
- Seizure detection.

### Questionably-practical

- Binaural beats.
- Game design.

# Practical applications and other applications

#### Practical

- Sleep tracking.
- Brain-computer interfaces.
- Biofeedback.
- Cardiac abnormality identification.
- Seizure detection.

### Questionably-practical

- Binaural beats.
- Game design.

### Awesome

- Object recognition with evoked-response potentials.
- Controlling your powered exoskeleton.

## Design

- Electrodes (wet/dry, active/passive).
- Instrumentation amplifier.
- Bandpass filter (for EEG, high-pass at  $\sim$ 1Hz, low-pass at  $\sim$ 40Hz).
- Notch filters at 50Hz (for Australian AC).
- Driven right-leg circuit.
- ADC.

# Proprietary consumer hardware

- NeuroSky.
- Emotiv (EPOC, Insight).
- BCInet (formerly Neural Impulse Actuator).
- Star Wars Force Trainer.

# Open hardware designs



# Open hardware designs

## Olimex ECG Arduino shield



## Analysis: know your squiggly lines



Figure 3:OpenBCI Processing GUI (image by Conor Russomanno)

## Analysis: Fourier transform

- Breaks a signal into its components (sinusoids).
- Allows identification of EEG bands ("brainwaves").

### EEG bands

| Rand         | Significance                        |
|--------------|-------------------------------------|
| Danu         | Jigiiiicanec                        |
| delta        | slow-wave sleep (stage-3 NREM)      |
| alpha        | thalamic pacemaker, associated      |
|              | with relaxed states                 |
| 12.5-30 beta | reduced in sleep and coma,          |
|              | signifies normal wakefulness        |
| gamma        | hippies talking about consciousness |
|              | alpha                               |

## Analysis: wavelet decomposition

- Breaks a signal into individual 'spikes' over time.
- Allows identification of common features, and provides a basis for isolating uncommon features.

# Analysis: wavelet decomposition

- Breaks a signal into individual 'spikes' over time.
- Allows identification of common features, and provides a basis for isolating uncommon features.



Figure 4 Partial temporal-lobe seizure (image: Teddy Poh)

## Analysis - software

### **Toolkits**

- EEGLAB http://sccn.ucsd.edu/eeglab/.
- OpenVIBE http://openvibe.inria.fr.
- SciPy http://www.scipy.org/.

### Training datasets

PhysioBank - http://physionet.org/physiobank/.

## Fin.

- OpenBCI: https://github.com/openbci
- OpenVIBE: http://openvibe.inria.fr
- Arduino ECG: https://github.com/fractalcat/arduecg

#### Slides

https://tesser.org/doc/slides/

#### Contact

Sharif Olorin (sio@tesser.org) - contrary to rumor, neither citizen nor scientist.