4240-145 Sequence Listing.txt SEQUENCE LISTING

<110>	PAEK, Nam-Chon KOH, Hee-Jong	
<120>	A NOVEL STAY-GENE AND METHOD FOR PREPARING STAY-GREEN TRANSGEN PLANTS	NIC
<130>	4240-145	
<140> <141>	not yet assigned 2006-07-26	
<150> <151>	PCT/KR2005/000104 2005-01-12	
<150> <151>	10-2004-0012026 2004-02-23	
<160>	58	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 825 DNA Oryza sativa	
<400> atggct	1 gctg ctacttcgac catgtccctg cttcctccca tcacccagca gcagcggtgg	60
cacgcc	gccg actccctcgt cgtcctcgcc tcccgctgcc acaactctcg ccgccgccgc	120
cgctgc	cgct acgtcgtgcc gagggcgagg ctgttcgggc cggcgatctt cgaggcgtcg	180
aagctg	aagg tgctgttcct gggggtggac gaggagaagc accagcaccc ggggaagctg	240
ccgcgg	acgt acacgctgac gcacagcgac gtgacggcga ggctgacgct ggcggtgtcg	300
cacacca	atca accgggcgca gctgcagggg tggtacaaca agctgcagcg ggacgaggtg	360
gtggcg	gagt ggaagaaggt gcagggccac atgtcgctgc acgtccactg ccacatctcc	420
ggcggc	cacg tcctcctcga cctcatcgcc ggcctccgct actacatctt ccgcaaggag	480
ctcccc	gtgg ttctgaaggc gttcgtccac ggcgacggca acctgttcag ccggcacccg	540
gagctg	gagg aggccacggt gtgggtctac ttccactcca acctcccacg cttcaaccgc	600
gtcgag	tgct ggggcccgct ccgcgacgcc ggagcgccgc ccgaggaaga cgacgccgtc	660
gccgcc	gcgg cggccgagga ggcggcggcg gagcagatgc ccgcggccgg cgagtggccg	720
cggcgg	tgcc cggggcagtg cgactgctgc ttcccgccat acagcctcat cccctggccg	780
caccag	cacg acgtcgccgc cgccgacggc cagccgcagc agtga	825
<210> <211>	2 846	

<211> 846 <212> DNA <213> Hordeum vulgare

<400> 2			•	_		
	ccgctgccgc	tggcgcctcc	accatgtccc	tgctccccat	ctcgcacctc	60
aagcagctgo	agctgcagcg	gcgcgcgcgc	cccgggcggg	tgctcgtgct	cggccgccgg	120
aggcgacacg	tcgtgccgag	ggcgcggctg	tttggtccgg	ccatcttcga	ggcgtccaag	180
ctcaaggtg	tgttcgtggg	ggtggacgag	gagaagcacc	cggggaagct	gccccggacc	240
tacacgctca	ı cccacagcga	cgtgacggcg	cggctgacgc	tggccgtgtc	gcacaccatc	300
cacgccgcg	agctgcaggg	ctggtacaac	cgcctgcagc	gggacgaggt	ggaggccgag	360
tggaagaagg	tgcagggcgc	catgtcgctg	cacgtccact	gccacatctc	cggcggccac	420
ttcctgctcg	acctcatcgc	gccgctccgc	tactacatct	tccgcaagga	gctcccgtg	480
gttctgaagg	g cgttcgtgca	cggcgacggc	agcctgttca	gccagcaccc	ggagctggag	540
gaggccacgg	j tgtgggtcta	cttccactcg	aacaacccca	acttcaaccg	cgtcgagtgc	600
tggggcccg	tcagcgacgc	cgccgcgcca	tacgatgacg	aagccgccgt	cgactcccca	660
gccgccgacg	cagccatggc	ggccacggcg	gtgaacacgg	ccgcggacga	gcaggcgacg	720
cgcgcgggc	agtggccgcg	gcggagcccc	gggcagagcg	actgctgctt	cccgccggag	780
tgcctcatco	cctggccgca	cgagcacgag	atggccgccg	acgccggcca	ggcgccgccg	840
cagtga						846

<210> 3 <211> 798 <212> DNA

<213> Triticum aestivum

<400> atggccaccg cctccaccat gtccctgctc cccatctcgc acctcaagca gctgcagcag 60 120 cagcggcgca cgcggctcgc cggcgcgggc cccgggaagg tgctcgtgct cggccgccgg aggcgacacg tcgtgccgag ggcgcggctg ttcggcccgg ccatcttcga ggcgtccaag 180 240 ctcaaggtgc tgttcgtggg gatggacgag gagaagcacc cgggcaagct gccccggacc 300 tacacgctca cccacagcga cgtgacggcg cggctgacgc tggcggtgtc gcacaccatc cacgccgcgc agctgcaggg ctggtacaac cgcctgcagc gggacgaggt ggtggccgaa 360 420 tggaagaagg tgcagggcgc catgtcgctg cacgtccact gccacatctc cggcggccac ttcctgctcg acctcatcgc gccgcttcgc tactacatct tccgcaagga gctccccgtg 480 gttctgaagg cgttcgtgca cggcgacggc agcctgttca gccagcaccc ggagctggag 540 gaggccacgg tgtgggtcta tttccactcc aacaccccaa acttcaaccg cgttcagtgc 600 660 tggggcccgc tcgcgaagcc gcgggcccta gacaacaaga cgccgacgcg gccgtgcccg 720 caaggcgacg ccggggacaa aaaggcaatg gatcgggcag cgccgcgggg gtcccggggc 780 atggaatgtt tttcccgccc gaatcctatc cctggcccaa gaattcaaat gcccccaccc Page 2

cgccaggccc cccaataa	798
<210> 4 <211> 795 <212> DNA <213> Triticum aestivum	
<400> 4 atggccaccg cctccaccat gtccctgctc cccatctcgc acctcaagca gatgcagcag	60
cagcggcgca cgcggctcgc cggcgcgctc cccgggaagg tgctcgtgct cggccgccgc	120
aggcgccacg tcgtgccgcg ggcgcggctg tttggtccgg ccatcttcga ggcgtccaag	180
ctcaaggtgc tgttcgtggg ggtggatgag gagaagcacc cgggcaagct gccgcggacc	240
tacacgctca cccacagcga cgtgacggcg cggctgacgc tggcggtgtc gcacaccatc	300
cacgccgcgc agctgcaggg ctggtacaac cgcctgcagc gggacgaggt ggtggccgag	360
tggaagaagg tgcagggcgc catgtcgctg cacgtccact gccacatctc cggcggccac	420
ttcctgctcg acctcatcgc gccgctccgc tactacatct tccgcaagga gctccccgtg	480
gttctgaagg cgttcgtgca cggcgacggc agcctgttca gccagcaccc ggagctggag	540
gaggccacgg tgtgggtcta ctttcactcc aacaacccca acttcaaccg cgtcgagtgc	600
tggggcccgc tcgcgatgcc gcgcgcccta gacgacgaga cgccacgcga ctcccaccgg	660
cgacgcaccg tgccactgca cgacgacagc cgtcgcgcgg gcagtgcccc gggggccccg	720
gcattggatg gtgttccgca aaatgctatc cctggcgcgg acccaattgc cgccaaccgc	780
cagggccccc aataa	795
<210> 5 <211> 846 <212> DNA <213> Zea mays	
<400> 5 atggccgccg ccgcttctac catgtccctg ctcccgatct cccagcccag	60
cagcaaggcg cgggcgccgt ggtcgtgttc cagcggcggc cctgggacgc gcggcggagg	120
cgatacgtcg tcccgacggc gaggctgttc gggccggcga tcttcgaggc gtccaagctg	180
aaggtgctgt tcctgggcgt ggacgagggg agcagcaagc atctgcatgc gcaccacccg	240
gcgccggcgc cgctgctgcc gcggacgtac acgctgacgc acagcgacgt gacggccagc	300
ctgacgctcg ccgtctccca caccatcaac cgcgcgcagc tgcagggctg gtacaaccgc	360
ctgcagcgcg acgaggtggt ggccgagtgg aagaaggtgc gcggccggat gtcgctgcac	420
gtgcactgcc acatctccgg cggacacttg ctcctggacc tcatcgccgg cctccgctac	480
tacatcttcc gcaaggagct ccccgtggtg ctcgaggcgt tcgtgcacgg cgacggcgac	540
	3.0

4240-145 Sequence Listing.txt	
ctgttcagcc gtcacccgga gctggaggaa gccacggtgt gggtctactt ccactccaac	600
ctggcccgct tcaaccgcgt cgagtgctgg ggtccgctcc gcgacgccgc cgccccgcg	660
cccgccgagg acgactccac cgcgccggcc gccgcttcca tcgccatgga gggccagatg	720
cccgtgggcg agtggccgca ccggtgtccc cagcagtgcg actgctgctt cccgccgcac	780
agcctcatac cctggccgaa cgagcaagac atggccgccg ccgccggcca ggtccgacag	840
cagtag	846
<210> 6 <211> 825 <212> DNA <213> Zea mays	
<pre><400> 6 atggccgcag ccaccgccgc cgcttccacc atgtcgctgc tcccgatctc ccagctcagg</pre>	60
cagcagcacg gcgcgggcgc catgaggcgg cggccctggg tcgcgcggcg gaggcgatac	120
gtcgttccga cggcgaggct gttcgggccg gcgatcttcg aggcgtcgaa gctgaaggtg	180
ctgttcctgg gcgtggacga cgaggcgggc agcaagcagc acgggccgct gccgcggacg	240
tacacgctga cgcacagcga cgtgacggcc aggctgacgc tcgccgtctc gcacaccatc	300
aaccgcgcgc agctgcaggg ctggtacaac cgcctgcagc gcgacgaggt ggtggccgag	360
tggaagaagg tgcgcggccg gatgtcgctg cacgtgcact gccacatctc cggcggccac	420
ttcctgctcg acctcatcgc gggcctccgc tacgtcattt tccgcaagga gctccccgtg	480
gtgctcaagg cgttcgtgca cggcgacggc gacctgttca gccggcaccc ggagctggag	540
gaggccacgg tgtgggtcta cttccactcc aacctggctc gcttcaaccg cgtggagtgc	600
tggggtccgc tccgcgacgc cgccgcgccc gccgaggacg actccaccgc gccgcccgac	660
gcctccaact ccaaggaggc cggccagatg atggccatgt gcgagtggcc gcaccggtgt	720
ccccagcagt gcggctgctg cttcccgccg cacagcctca tcccctggcc gaacgagcac	780
gacatggccg ccgcagatgc ctccggctcc gcccaacagc agtag	825
<210> 7 <211> 801 <212> DNA <213> Sorghum bicolor	
<pre><400> 7 atggccgcag ccactgccgc cgccgcttct accatgtccc tgccccgat ctcccagctc</pre>	60
aggcagcagc agcacggcgc gggcgccgtg gtcgtgttcc ggcggcgggc ccgggacgcg	120
cggcggaggc gatacgtcgt gccgacggcg aggctgttcg ggccggcgat cttcgaggcg	180
tccaagctga aggtgctgtt cctgggcgtg gacgaggaga gcaacaacaa gcacgggcac	240
ccgacgacgc cgtcgccgac ttccccgccg ctgccgctac tgccgcggac gtacacgctg Page 4	300

acgcacagcg acgtgac	gc cagcctgacg ct	ggccgtgt cccacacca	t caaccgcgcg	360
cagctgcaag ggtggtad	aa ccgcctgcag cg	ggacgagg tggtggcgg	a gtggaagaag	420
gtgcgcgggc ggatgtc	ct gcacgtgctc aa	ggctttcg tgcacggcg	a cggcgacctg	480
ttcagccggc acccggag	ct ggaggatgcc cc	ggtgtggg tctacttcc	a ctccaacctg	540
acccgcttca accgcgt	ga gtgctggggt cc	gctgcgcg acgccgccg	c gccgccggcc	600
gaggacgact ccaccgcg	cc ggccgccgcc tc	caacaagg atgggcaga	t gccgcccgtg	660
ggcgagtggc cgtaccgg	tg tccccagcag tg	cgactgct gcttcccgc	c gcacagcctc	720
atcccctggc cgaacga	cg cgacatggcg gc	cgccgccg ccgatgcct	c ctccgccgcc	780
ggccaggccc aacagcag	ıta g			801
<210> 8 <211> 786 <212> DNA <213> Glycine max <400> 8				
atgtgtactc tcacaact	gt tcctgtgctc cc	ttctaagc ttaacaagc	c ttcgctttct	60
ccgcaccaca attctct	tt tccctactgt gg	aagacggg tcgggaaga	a gaacaaagca	120
atggttcctg ttgcaag	itt gttcgggcca gc	catatttg aagcctcaa	a actgaaggtt	180
ttgttcttag gagtgga	ga aaataagcac cc	aggaaatc tcccaagga	c ttatacgcta	240
acccatagtg atataac	gc taagctcacc tt	ggcaatct ctcaaacca	t aaataattct	300
cagctgcagg ggtggta	aa cagatttcaa ag	ggacgaag tggtggcac	a gtggaaaaag	360
gtgaagggaa ggatgtc	ct gcacgttcac tg	ccacatta gtggaggtc	a ttttctcttg	420
gatatattag caaggtta	ag atacttcatc tt	ctgcaagg agctaccag	t ggtgttgaag	480
gccgtcgttc acggcga	ga aaacctattc aa	cagctacc cagaattgc	a agatgccttg	540
gtttgggtct actttca	tc aaacattcca ga	attcaaca aggtggaat	g ttggggccca	600
ctgaaggaag cgtcagca	cc cacaggtggg gt	ccaggagg aggggttgg	c aattccacag	660
ccatgccaag aagaatg	ca atgttgcttt cc	accgctta cgttgagcc	c tattcagtgg	720
tctaaacaag ttcccag	cg ccattacgaa cc	ttgtgatg ggattggga	c ccaacaaaat	780
ctataa				786
<210> 9 <211> 816 <212> DNA <213> Glycine max				
<400> 9 atgggtactc taacaact	gt tcctgtgctc cc	ttctaagc ttaacaagc	c ttcgctttct	60

		4240-	145 Sequenc	e Listing.t	xt	
ccgcgtcaca at	tctctttt					120
atggttcctg tt	gctaggtt	gttcgggcca	gccatatttg	aagcctcaaa	gcttaaggtt	180
ttattcttag ga	igtggacga	aaataaacac	ccaggaaatc	tcccaaggac	ttatactcta	240
acccatagtg at	ataaccgc	taagctcacc	ttggcaatct	ctcaaaccat	aaataattct	300
cagttacagg gg	jtggtacaa	cagattgcaa	agggacgaag	tggtggcaca	gtggaagaag	360
gtgaagggaa ag	atgtctct	gcacgtacac	tgccacatca	gtggtggtca	ttttctctta	420
gatatattag ca	aggttacg	atacttcatc	ttctgcaagg	agctaccagt	ggtgttgaag	480
gcggtggttc ac	ggcgacga	aaacctattc	aacaactacc	cagaattgca	agatgccttg	540
gtttgggttt ac	tttcactc	aaacattcca	gaattcaaca	aggtggaatg	ttggggccca	600
ctgaaggaag cg	jtcagcacc	aataggtggg	gccaaggaag	agagtgagca	agaaactctt	660
ctaagtaagg ag	ggcttggc	aattccacag	ccatgccaag	aggaatgcga	atgttgcttt	720
ccaccgctga cg	jttaagccc	aattcagtgg	tctcaacaag	ttcccagcca	ccattacgaa	780
ccttgtgatg gg	jattgagac	ccaacaaagt	ctataa			816
	vinifera					
<400> 10 atggctactt to	gactgctgc	tcttgtgctt	ccgtctgagc	tcaaaccttc	tttctctcaa	60
caccaaagtt ct	ctcttcgt	ttgtcgaaga	agaccaaaga	agagtaaccc	tgcttttcct	120
gccgcaaggc to	jtttggtcc	tgcaattttc	gaagcttcaa	agcttaaggt	tctgtttttg	180
ggagtggatg ag	gaagaagca	cccagggaag	cttcctagaa	cttacacgct	tacgcatagt	240
gacataacat ct	aaactcac	tctggctata	tctcaaacta	taaacaactc	tcagttgcag	300
gggtggtcca ac	agattaca	aagagatgag	gtggtggcac	aatggaagaa	agtgaaagac	360
cagatgtctc to	gcatgtgca	ctgccacata	agtggaggcc	atttccttct	agatttgtgc	420
gctaaactta ga	itacttcat	cttctgcaaa	gagcttccag	tggttttgaa	ggcttttgtt	480
catggagatg go	aacctgct	caacaattac	ccagaattac	aggaagcttt	ggtttgggtt	540
tactttcact cg	jaacctccc	agaattcaat	agagtagaat	gctggggggc	gctcaataat	600
gcagcggcgc ct	cctcctcc	tgccgccggt	ggtggcggtg	gtagggtgga	ggcacaccag	660
gacatgaggc ag	gtggaacc	atcaagcaaa	tgggagaggc	cggaagagcc	atgcatggag	720
aactgtacat gt	tgcttccc	accaatgagc	ctcatcccat	ggtcacaaga	tctcgcccat	780
gaaaatattc at	gataccca	aaagggatta	cagcagcaaa	cctga		825

	4240-	145 Sequenc	e Listing.t	xt	
343 DNA .actuca sativa					
l1 ctc tgatccttcc	cacaaaqcaa	aaccctccat	catcttcatt	tctgcatcaa	60
					120
					180
			_		240
			_		300
					360
					420
					480
		_			540
		_			600
					660
					720
ag catgtgcatg	ttgctttcca	ccgatgagtt	caatcccatg	gtcacatgat	780
nga atcaagacga	tgatgatggt	gccacccacc	aagggttgca	acaaaaagct	840
					843
12 273					
DNA					
	tgcaggaaaa	acacagcact	gctactcctt	ctccccatct	60
ga tttcgtctgc	accacagaat	tcacagtctc	agttcaaaag	gaaatcgaag	120
tt cctccaggtt	tctggccagc	gagagcagct	ggaatggcct	ggtcgcgcat	180
igt gcaataacag	acatcgaact	aatagcagct	tccccgatc	caccagtcgt	240
ga gattgtttgg	gcctgcaatc	ttccaggcat	cgaagctcaa	ggttctattt	300
ac atgaagagaa	acatcctgcg	catcttccca	ggacttatac	gctcacacac	360
ca cggccaaatt	aacgctggct	ttttctcaaa	caatcaataa	agatcaggga	420
ica ggttacagag	agacgaagtt	cttgcgcagt	ggaagaaatc	tcagggcaaa	480
gc acgttcactg	tcacatcagc	ggaggtcact	ggctcctgga	cgccattgct	540
at tttacatctt	ccgcaaggaa	ctgccggtgg	tgctggaggc	gttcagacat	600
ggg ctctgcttga	gaagcaccca			ttgggtgtat	660
	And actuca sativa 1 tc tgatccttcc aa acaatccgtt cg ttgcaagatt ag gagttgacga atg atatcacgtc ag gttggtataa ga atatgtctct ag cagtgggacc ca ccattgctga ag catgtgcatg ga atcaagacga 2 73 NA rinus taeda 2 gg caagaatctc ag ttgcatga ca cctccaggtt gt gcaataacag ga gattgttgg ac atgaagagaa ca cggccaaatt ca ggttacagag gc acgttcactg at tttacatct	A3 NA actuca sativa 1 tc tgatccttcc cacaaagcaa aa acaatccgtt ttttactaac cg ttgcaagatt atttgggcct ag gagttgacga gaagaagcat ag gagttgacga gaagaagcat ag atatcacgtc taaattgact gg gttggtataa ccaattatac ga atatgtctct tcatgttcat act acttcactc aaacattcaa ag cagtgggacc cttatccacc aca ccattgctga agctggagaa ag cattgctag agctggagaa tgatggtgg gaatttgcta ag cagtgcatg ttgcttcca ga atcaagacga tgatgatggt 2	AS NA actuca sativa 1. tc tgatccttcc cacaaagcaa aaccctccat aa acaatccgtt ttttactaac aaaagacgaa cg ttgcaagatt atttgggcct tcgatcttg ag gagttgacga gaagaagcat cctggaaaac tg atatcacgtc taaattgact ctggcaatct gg gttggtataa ccaattatac agagatgaag ga atatgctct tcatgtcat tgtcacataa tg ctcgactcag gttctcatc ttcaccaaag catgacgaggaggaggaggaggaggaggaggaggaggaggagg	ASA NA actuca sativa 1. tc tgatccttcc cacaaagcaa aaccctccat cgtcttcgtt aa acaatccgtt ttttactaac aaaagacgaa agctcaagag cg ttgcaagatt atttgggcct tcgatctttg aagcttcaaa ag gagttgacga gaagaagcat cctggaaaac ttccaagaac ttg atatcacgtc taaattgact ctggcaatct ctcaaactat gg gttggtataa ccaattatac agagatgaag tggtagcag aga atatgtctct tcatgttcat tgtcacataa gtcgtggcca ttg ctcgactcag gttcttcatc ttcaccaaag aactccctct tc atggagatgg gaattgcta aacagctacc cggagttgca tt actttcact aaacattcaa gaattcaata gggttgaatg ag cagtgggacc cttatcacc accacttcat catcatcac ca ccattgctga agctggagaa ggatcaaaca attgggagat ag catgtgcatg ttgcttcac ccgatgagtt caatcccatg ga atcaagacga tgatgatggt gccacccacc aagggttgca 2 73 NA rinus taeda 2 2 2 2 73 NA rinus taeda 2 2 2 2 2 3 3 3 A 4 7 3 1 3 4 7 3 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 4 7 4	A actuca sativa 1 tc tgatccttcc cacaaagcaa aaccctccat cgtcttcgtt tctgcatcaa aa acaatccgtt ttttactaac aaaagacgaa agctcaagag gaatcaagcc cg ttgcaagatt atttgggcct tcgatcttg aagcttcaaa gttgaaggtt ag gagtgacga gagaagacat cctggaaaac ttccaagaac atatacactt tg atatcacgtc taaattgact ctggcaatct ctcaaactat caataattct gg gttggtataa ccaattatac agagatgaag tggtagcaga gtggagaaaa aga atatgctct tcatgtcat tgtcacataa gtcgtggcca ttttcttctt tg ctcgactcag gttctcatc ttcacaaaa aaccccctct ggtgttgaag cagagagagag aactccctct ggtgtgaag acattgcta aacagctacc cggagttgaa ggaggcca aggtggagagag cagagggggacc cttatccacc accacttcat catcatcat atactataa agagtggagac cttatccacc accacttcat catcatcat atacactaa ag cagtgggacc cttatccacc accacttcat catcatcat atacactaa ag cagtgggac agctggagaa ggatcaaaca attgggagat cccaaagcca ag catgtgcatg ttgctttcac cgaaggtt caatccatcg gtcacatgat ga atcaagacga tgatgatggt gccacccacc aagggttgca ggaagacgccaaga acaagaacga tgatgatggt gccacccacc aagggttgca acaaaaagct 2

tttcattcca atgtcaaaga attcaaacgt gtggaatgtt gggggtcttt ggctgaagca	720
tgcaagggtg cacctagcaa tttgaacaag gaattggacg agctcgatgg tggaaaattg	780
gagatgccta gtcattgcgc agaaccatgt agttgttgct ttcctccctt tagtgttctt	840
ctacgaccag aagatgttga acaatttagc taa	873
<210> 13 <211> 816 <212> DNA <213> Citrus sinensis	
<400> 13	60
atggctagtt tggttgctgc tcttgggctt ccctcaaagc tcaaagcttc cccctatgag	60
cagcaaaacg cactctttgt ttctagaaga agatccaaga aaaagaacca atcttttgct	120
cctgtggcaa gattattcgg accagccatt tttgaagctt caaagctgaa ggtattgttt	180
ttgggggtgg atgaagagaa gcatccaggg aagctgccaa ggacttatac acttacccat	240
agtgatataa cctctaagct tactttagct atttctcaaa ccataaataa ttctcagctg	300
cagggatggt acaacaggtt gcaaagggat gaggttgtgg cagagtggaa gaaggtaaag	360
ggaaagatgt ctcttcatgt tcactgtcac ataagtggag gccatttctt attagacatt	420
tgtgctagac ttagattctt catcttctcc aaggaactcc ccgtggttct gaaggcattt	480
gttcatggag atggcaattt gttaaacaat cacccggaat tacaggaggc tttggtttgg	540
gtctattttc attccaatat tcctgaattc aataaagtcg aatgctgggg tccactcaaa	600
gaggcagttg ccggatcgag tgaagctggc gggacccgcc acgagattag gcaagaaact	660
tcaataagca actgggaatt accagaaccc tgccaggaaa cgtgcaactg ttgcttcct	720
ccaatgagct tgatcccgtg gtcagagaag cttccccttc aaaccgaaaa tcgtgggacc	780
cagggccaag aaagcttaca gcaacaaacc cgatga	816
<210> 14 <211> 792 <212> DNA <213> Medicago truncatula	
<pre><400> 14 atgggtactc taaccaccgc tcctcctcct atgctcactt ctaagttcaa accttctttt</pre>	60
tcacctcaac ataaacctct ttttccaaat agaagacggt tatggaagaa gaaccaatca	120
attgttcctg ttgctaggtt atttggaccg gctatatttg aagcatcaaa attgaaggtt	180
ttgttcttag gaattgatga agacaaacat ccaggaaatc ttccaaggac ttatacgtta	240
acacatagtg atgtaacctc aaaactcact ttggcaattt ctcaaaccat taataactct	300
cagttgcagg gatggtataa tagattgcaa agggatgaag ttgtggcgca gtggaagaag	360

4240 145 Command Linking Aut	
4240-145 Sequence Listing.txt gtgaagggaa agatgtctct ccatgttcat tgtcatatta gtggtggcca ttttttgtta	420
gatatatttg ctagactaag atatttcatc ttctgcaaag agttacccgt ggtattgaag	480
gcttttgtac acggtgacgg caatttattc aacaactatc cggaattaca ggaagcattg	540
gtttgggtat attttcattc aaagattcca gaattcaaca aggtagaatg ttggggtcca	600
ctaaaggagg cttcacaacc tactagtggg acccaaaaggg accaccaaaa tttgacccta	660
cctgagccat gtcaagaaac ttgcgagtgc tgctttccac cgttgaagtt gagcccaatg	720
ccgtgctcta atgaggttca caatgatact tatgaaccta ttgatggaat tgaaactcaa	780
caatcactgt aa	792
<210> 15 <211> 819 <212> DNA <213> Solanum tuberosum	
<400> 15 atgggaactt tgactgcttc tctagtggtt ccatctaagc tcaacaatga aaaacagagc	60
tctatttttg tacacaaaac tagaagaaaa tccaagaaga atcaatccat agtacctgtg	120
gcaaggttat ttgggccagc tatatttgaa gcttcaaagt tgaaggtact ttttttggga	180
gttgatgagg aaaagcatcc aggaaagttg ccaagaacat atacactgac tcatagtgat	240
attacttcta aacttacttt ggctatctct caaaccatca ataactctca gttgcaaggt	300
tggtataata gacttcaaag agatgaagtt gttgcagaat ggaagaaagt taaagggaag	360
atgtcacttc atgtccattg ccacataagt ggaggccatt ttatgttaga cttatttgct	420
agactcagaa actatatctt ctgcaaagaa ctccctgtgg ttctgaaggc ttttgttcat	480
ggagatgaga atttattaaa gaataatcca gagttacaag aagctttagt ttgggtatat	540
tttcattcaa acattcaaga attcaacaaa gtagaatgtt ggggtccact caaagatgca	600
acctcccct catcttcttc tagtggggta ggtggggtga agagtacaag ttttacaagc	660
aatagtaaca acaagtggga gttaccaaaa ccttgtgaag aggcttgtgc atgttgcttt	720
cccccaatga gtgttatgcc ttggccttct tcaaatcttg atgggatagg tgaggaaaat	780
gggaccatcc aacaaggctt gcaagagcag caaagttga	819
<210> 16 <211> 810 <212> DNA <213> Populus tremula x Populus tremuloides <400> 16	
atgggctctc tggcaattgc tccctttctt ccttcaaagc taagaccctc tatacttgat	60
caaaatagct ctctctttcc ttcaaagaaa aaactcaaga ggaagaacca atctatcagt	120
cctgtggcaa ggttatttgg gccatctatt tttgaggcat caaaactgaa ggtgttgttt Page 9	180

ttaggggttg atgagaagaa acatccaggg	aatctgccaa	ggacttatac	actaacacat	240
agtgatatta cagctaaact tactttagcc	atctcacaaa	ccatcaacaa	ttctcagttg	300
cagggatggt ccaacaaatt gtacagagat	gaagtggtgg	cagagtggaa	gaaagtaaag	360
ggaaagatgt ctctccatgt tcactgccat	ataagtggag	gccattttct	cctagattta	420
tgttgtagac ttagatattt catcttccgc	aaagaacttc	ctgtggtatt	gaaggccttc	480
tttcatggag atgggaattt gtttagcagc	tatcctgaat	tgcaggaggc	tttagtttgg	540
gtttactttc attccaacat tccagaattc	aacaaggtag	agtgctgggg	tccactcaag	600
catgccgcag caccttatac tgctgcatct	ggcggggccc	ctgagaacaa	ggagcaagca	660
accgactgga acttgcctga gccatgccaa	gagaactgtc	agtgttgctt	tccaccaatg	720
agcttgatcc catggtccga aatggttccc	caagagaaca	agaataatcc	aagcacccag	780
cagacctttc aacaagctca acaaccctaa				810
<210> 17 <211> 813 <212> DNA <213> Populus tremula x Populus	tremuloide	s		
<400> 17				
atgggttctt tggcagttgc tccctttctt	ccctcaaagc	caagaccctc	tctctttgat	60
				60 120
atgggttctt tggcagttgc tccctttctt	aagctcaaga	ggaagaacca	atctatcagc	
atgggttctt tggcagttgc tccctttctt caacacagct ccctcttttc tccaagtaca	aagctcaaga tttgaggcat	ggaagaacca caaagctgaa	atctatcagc ggtgctgttc	120
atgggttctt tggcagttgc tccctttctt caacacagct ccctcttttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt	aagctcaaga tttgaggcat aatctgccaa	ggaagaacca caaagctgaa ggacttatac	atctatcagc ggtgctgttc tctaacacac	120 180
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg	aagctcaaga tttgaggcat aatctgccaa atctcacaga	ggaagaacca caaagctgaa ggacttatac ccataaacaa	atctatcagc ggtgctgttc tctaacacac ttctcagttg	120 180 240
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag	120 180 240 300
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc cagggatggt ccaacaaatt gtaccgagat	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg ataagtggag	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa gccatttct	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag tttagattgg	120 180 240 300 360
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc cagggatggt ccaacaaatt gtaccgagat ggaaagatgt ctcttcatgt tcattgccat	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg ataagtggag agagaactcc	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa gccatttct ctgtggtatt	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag tttagattgg gaaggccttt	120 180 240 300 360 420
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc cagggatggt ccaacaaatt gtaccgagat ggaaagatgt ctcttcatgt tcattgccat tgctgcagac tcagatattt catctccgc	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg ataagtggag agagaactcc tatcctgaat	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa gccatttct ctgtggtatt tacaggaggg	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag tttagattgg gaaggccttt tttagtttgg	120 180 240 300 360 420 480
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc cagggatggt ccaacaaatt gtaccgagat ggaaagatgt ctcttcatgt tcattgccat tgctgcagac tcagatatt catcttccgc tttcatggcg atgggagctt gttgagcaac	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg ataagtggag agagaactcc tatcctgaat agcaaggtcg	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa gccatttct ctgtggtatt tacaggaggg agtgctgggg	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag tttagattgg gaaggccttt tttagtttgg tccactcaag	120 180 240 300 360 420 480 540
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc cagggatggt ccaacaaatt gtaccgagat ggaaagatgt ctcttcatgt tcattgccat tgctgcagac tcagatatt catcttccgc tttcatggcg atgggagctt gttgagcaac gtttacttc attcaaacat tccggaattc	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg ataagtggag agagaactcc tatcctgaat agcaaggtcg ggtgggtcca	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa gccatttct ctgtggtatt tacaggaggg agtgctgggg atgagaccga	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag tttagattgg gaaggccttt tttagtttgg tccactcaag ggagctagca	120 180 240 300 360 420 480 540
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc cagggatggt ccaacaaatt gtaccgagat ggaaagatgt ctcttcatgt tcattgccat tgctgcagac tcagatatt catcttccgc tttcatggcg atgggagctt gttgagcaac gtttacttc attcaaacat tccggaattc gatgctgctg cgccttctac ttctgaaact	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg ataagtggag agagaactcc tatcctgaat agcaaggtcg ggtgggtcca ccatgccaag	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa gccatttct ctgtggtatt tacaggaggg agtgctgggg atgagaccga aggagaattg	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag tttagattgg gaaggccttt tttagtttgg tccactcaag ggagctagca tagctgttgc	120 180 240 300 360 420 480 540 600 660
atgggttctt tggcagttgc tccctttctt caacacagct ccctctttc tccaagtaca cctgtggcaa ggttatttgg gccatctatt ttaggggttg atgagaagga gcatccaggg agtgatatga cagctaagct tactttagcc cagggatggt ccaacaaatt gtaccgagat ggaaagatgt ctcttcatgt tcattgccat tgctgcagac tcagatatt catctccgc tttcatggcg atgggagctt gttgagcaac gtttacttc attcaaacat tccggaattc gatgctgctg cgccttctac ttctgaaact aaccaatcaa gcaactggga cttgcccgag	aagctcaaga tttgaggcat aatctgccaa atctcacaga gaagtggtgg ataagtggag agagaactcc tatcctgaat agcaaggtcg ggtgggtcca ccatgccaag aaaatggttc	ggaagaacca caaagctgaa ggacttatac ccataaacaa cagagtggaa gccatttct ctgtggtatt tacaggaggg agtgctgggg atgagaccga aggagaattg	atctatcagc ggtgctgttc tctaacacac ttctcagttg gaaagtaaag tttagattgg gaaggccttt tttagtttgg tccactcaag ggagctagca tagctgttgc	120 180 240 300 360 420 480 540 600 660 720

<210> 18 <211> 861 <212> DNA <213> Mesembryanthemum crystallinum

				_		
<400> 18 atgggcactt	tgactgcctc	tatgttgctc	ccatcaaagc	tcaaaccttc	agtctttgaa	60
gatcaatcct	ctgtttattt	taaaagatca	tgcagaggac	ttcccaagct	caacaaggcc	120
aaatctttt	cacctgtgat	gagattgttt	gggccagcaa	tatttgaagc	atcaaagttg	180
aaggtgttgt	tcttgggagt	ggataaagag	aagcacccag	ggaagttgcc	tagaacttat	240
actcttactc	atagtgatat	cacttccaag	ctcactttgg	ccatctctca	aactattaac	300
aattcccagt	tacaagggtg	gtacaaccaa	ctacagagag	atgaagtggt	ggcagaatgg	360
aagaaagtga	aagggaagat	gtcactccat	gttcattgtc	acataagtgg	tggccatatc	420
ctcttagact	tatttgctaa	gcttagattc	tacatctttt	gcaaggaact	ccctgtggta	480
ttgaaggcat	ttgtgcatgg	ggatgagaat	ttgttcaaca	actacccaga	actacaagag	540
gcaatggtgt	gggtatactt	ccattcaaac	cttgaagaat	tcaacaaaat	cgagtgctgg	600
ggcccgctca	aggatgccgt	ggcacgcaac	tcgaagaaaa	acaagaacaa	gaacaagata	660
gatttcaagt	taagtttcaa	agaagaggat	gattcaccag	ataacgagtt	ggagatacca	720
gagacttgca	aggaaccctg	tacctgttgc	tttcctccca	ctagtgtcat	cccttggtct	780
cattcagcat	tgtcacaggg	tgatgatctt	catctctctg	gtgggaccca	ccaaggcttg	840
gagcagcagc	agcaaacttg	a				861
<210> 19 <211> 807 <212> DNA <213> Arab	oidopsis tha	aliana				
<400> 19 atgtgtagtt	tgtcggcgat	tatgttgtta	ccaacgaagc	tgaaaccagc	ttattcagac	60
			ctcttcttca			120
			ttgtttggac			180
aaattgaaag	tactcttctt	aggggttgat	gagaagaagc	atccttcaac	gctccctagg	240
acttacacac	tcactcacag	tgacattaca	gctaaactaa	ccttagctat	ttctcaatcc	300
ataaacaact	ctcagttgca	aggatgggca	aataggctat	accgggatga	agttgtggca	360
gaatggaaga	aagtgaaagg	gaaaatgtcg	cttcacgttc	attgtcacat	aagcggtggc	420
catttccttt	tagatctctt	tgcaaagttt	cgatatttca	tcttttgcaa	agaactacct	480
gtggtgttga	aggcttttgt	gcatggagat	gggaacttgt	tgaacaacta	tcctgagcta	540
caagaagctc	ttgtttgggt	ctatttccat	tctaatgtca	atgagttcaa	caaagtcgag	600
tgttggggtc	cgctttggga	agctgtttcg	cctgatggtc	acaagactga	gactcttccc	660
	atacaascas	atataattat	tattttccaa	contrancto	nattocatno	720
gaggctcggt	grgcggacga	gegeageege	cgccccaa	cegetagete	gacccacgg	, 20

4240-145 Sequence Listing.txt tctcatagtc ttagtaatga aggtgtaaat ggttactctg ggactcagac tgagggaatt	780
gctactccaa atccggagaa actctag	807
<210> 20 <211> 816 <212> DNA <213> Arabidopsis thaliana	
<400> 20 atgtgtagtt tggctacaaa tctgttacta ccatcgaaga tgaaaccagt ttttccagag	60
aaactgagca ctagctcact ctgtgtcacc actagaagat ctaagatgaa gaaccgatct	120
attgttcctg ttgcaagatt gtttggaccg gcgatttttg aagcctccaa attgaaagtg	180
ttattcttag gagttgatga gaagaagcat ccagcaaaac ttccaagaac ttacactctt	240
actcacagtg acataaccgc taaattaact ttagctatat ctcaatccat taataactct	300
cagttgcaag gatgggcaaa taaattgttc cgggacgaag tagtgggcga gtggaagaaa	360
gtgaaaggta aaatgtcgct tcatgttcat tgccacatta gcggaggcca cttcttcttg	420
aatctcatcg cgaagcttcg gtactacatc ttttgcaaag aattacctgt ggtactggaa	480
gcttttgccc atggagatga gtatttgtta aataatcacc ccgagctaca agaatctcct	540
gtttgggttt atttccattc caacatcccg gagtacaaca aggtcgaatg ttggggaccg	600
ctttgggagg ccatgtcgca gcaccagcac gacggaagga cccacaagaa gagtgaaact	660
ctaccggagc taccttgtcc tgatgagtgc aagtgttgct ttccgacggt tagcacgatt	720
ccgtggtctc atcgtcatta tcaacatacc gcagcggatg agaatgttgc ggatggcctg	780
ttggaaatac ctaaccctgg gaaatcaaag ggatag	816
<210> 21 <211> 662 <212> DNA <213> Lycopersicon esculentum	
<400> 21 atgggaactt tgactacttc tctagtggtt ccatctaagc tcaacaatga acaacagagc	60
tctattttta tacacaaaac tagaaggaaa tgcaagaaga atcaatccat agtacctgtg	120
gcaaggttat ttggaccagc tatatttgaa gcttcaaaat tgaaggtact ttttttggga	180
gttgatgaag aaaagcatcc aggaaagttg ccaagaacat atacactgac tcatagtgat	240
attacttcta aacttacttt ggctatctcc caaaccatca ataattctca gttgcaaggt	300
tggtataaca gacttcaaag agatgaagtt gttgcagagt ggaagaaagt aaaagggaag	360
atgtcacttc atgtccattg ccacattagt ggaggccatt ttatgttaga cttatttgct	420
agactcagaa actacatctt ctgcaaagaa ctccctgtgg ttctcaaggc ttttgttcat	480
ggagatgaga atttactaag gaattatcca gagttacaag aagctttagt ttgggtatat Page 12	540

tttcattcaa acattcaaga attcaacaaa gtagaatgtt ggggtccact cagagatgca 60	00
acttcccct catcttcttc tggtggggta ggtggggtga agagtacaag ttttacaagc 66	50
ca 66	52
<210> 22 <211> 334	
<212> DNA <213> Beta vulgaris	
<400> 22	
	50
caaagtagag tgctggggcc cattgaccga cgccgtggat ccgccgtcga aaaataagaa 12	
gaggatgatg atgataaatg atgagcagga taaagaagaa gaagaagaag caagtagctc 18	
aaaatgggag atgttagttc cttgcacgaa accatgtaga tgttgctttc cacctacaag 24	
tttgattcct tggactcctt cactatcaca agaacagcaa caagagcaac aacttcctgg 30	
agacgtttcg atcccgccac ctgggactcg ctag 33	}4
<210> 23	
<211> 564 <212> DNA	
<213> Zosterops japonica	
<pre><400> 23 acgtacacgc ttactcacag cgacgtcacg gccaagctca cgctggcggt ctcccacacc 6</pre>	50
atccacgccg cgcagctgca ggggtggtac aaccgcctgc agcgggacga ggtggtggcc 12	20
gagtggagga aggtgcgcgg gaacatgtcg ctgcacgtcc actgccacat ctccggcgga 18	30
cacttcctcc gcgacctcat cgcgccgctc cgctactaca tcttccgcaa ggagctcccc 24	10
gtggttctca aggcgttcgt gcacggcgac ggcagcctgt tcagcagcca cccggagttg 30	0
gaggaggcca cggtgtgggt ctacttccac tccaacctgc cccgcttcaa ccgcgtcgag 36	50
tgctggggtc ctctctgcga cgccgccgcg cccgtcgagg aggaggggca gcagaatgac 42	20
gatcggttgc ccgcgggcga gtggccgcgg cggtgccccc agcagtgcga gtgctgcttc 48	30
ccgccgcaca gtctcatccc ctggcccaac gagcacgaca tggctcccac cgacgccccc 54	10
gccgctggcc agacgcagca gtga 56	54
210 24	
<210> 24 <211> 284	
<212> DNA <213> Lotus corniculatus	
<400> 24	
	50
tcaacaaggt acagtgttgg ggaccactga aggaggcggc tgcaccgtca ggtgggtccc 12 Page 13	:0

•	
cggagaaaga aggtgaaggg gtgaagatgc cggatcc	gtg tccagaagaa tgtgagtgtt 180
gctttcctcc tccaccggca ttggatccaa tcccatg	gtc tgaagaagtt ccctctcccc 240
attatgaagc ttttgatggg gttgggaccc gaccaaa	ctt gtag 284
<210> 25 <211> 326 <212> DNA <213> Lotus corniculatus	
<400> 25 tagatctatg tgctaagcta agatacttca tcttctg	caa agagcttcca gtggtattga 60
aggccttcat tcacggcgat gaaaatttgt tcaacaa	cta cccggagttg gaggaatcat 120
tggtttgggt ttactttcac tcaaacatct cagaatt	caa caaggtggag tgttggggtc 180
cacttaagga tgcttgtgca acatcaattg ggtccta	ctc ctatgacaag ggtatgcctc 240
aaactcagcc atgccaacaa aactgcgagt gttgctt	tac accgatgagc tcaagtgatt 300
ggattggaac ccaacaaaaa ttgtga	326
<210> 26 <211> 415 <212> DNA <213> Saccharum officinarum	
<pre><400> 26 cacgaggctc gacctcatcg ccggcctccg ctactaca</pre>	atc ttccgcaagg agctccccgt 60
ggtgctcaag gcgttcgtgc acggcgacgg cgacctg	ttc agccggcacc cggagctgga 120
ggatgccacg gtgtgggtct acttccactc caacctg	acc cgcttcaacc gcgtcgagtg 180
ctggggtccg ctccgcgacg ccgccgcgcc gccggccg	gag gaagactcca ccgcgccggc 240
cgcctccaac tccaaggagg ggcagatgcc gcccgtg	ggc gagtggccgt accggtgtcc 300
ccagcagtgc gactgctgct tcccgcccca cagcctca	atc ccctggccga acgagcacga 360
catggctgcc gccgccgccg atgccaccgc cgctggcc	cag gcccaacagc agtag 415
<210> 27 <211> 481 <212> DNA <213> Picea abies	
<400> 27	rta cagagagacg aagtgattgc 60
aatcaataaa gatcagttgc agggatggta taacagg ccagtggaag aaatctcagg gcaaaatgtc tctgcac	
tcattggctt ctggacgcca tcgcgagact tagattt	
ggtggtgctg gaggcgttca ggcatggaga tcgggct	3 33 3
agagaccgct ctggtttggg tgtatttcca ctccaat	
	gtc agagagttca aacgcgtgga 300

			_		
gtgttggggt tctttggctg a	aggcatgcaa	gggtgcccct	agcaatttgg	agaaggaatt	360
ggacgaggag tttaatggtg a	aaaaattgga	gatgcctagt	cattgctcag	aaccatgcaa	420
ttgttgcttt cctccattta g	gcgtccttct	acgaccagaa	gatgctgaac	aatttattta	480
a					481
<210> 28 <211> 632 <212> DNA <213> Brassica napus					
<400> 28					
atgtgtagtt tggcaacaaa t	tctcttactc	ccatcgacga	tgaaaccagc	ttttacagag	60
aaacagaaca ctaactcact o	ctttcttaca	aataaaagat	ccttgatgca	gaacagatct	120
actgttcctg ttcctgttgc a	aagattgtta	gaaccggcga	tttttgaagc	ctccaaattg	180
aaagtatcgt tcttaggagt t	tgatgagaag	aagcatccat	caaagctccc	aagaacttac	240
actcttactc acagtgacat a	aacagctaag	ttaactttag	ctatctccca	atctatcaat	300
aattctcagt tgcagggatg g	ggctaataga	ttatttcggg	acgaagtagt	ggccgagtgg	360
aagaaagtga agggtaaaat g	gtcccttcac	gttcattgcc	acattagcgg	aggccacttc	420
cttttggatc tcatagcgaa g	gcttcggtac	tacatatttt	gcaaggaatt	accggtggta	480
ttgaaagctt ttgttcatgg g	ggatgggaac	ttgttgaata	gttaccctga	gctacaagaa	540
tctcctgttt gggtttattc d	cattcaaaca	tccccgagta	caataaggtt	gaatgttggg	600
ggccgctttg ggaggccacg d	cagcacaaac	ac			632
<210> 29 <211> 291 <212> DNA <213> Brassica napus					
<400> 29 atgtgtagtt tgtcagcgaa o	catgttgtta	ccgacaaagc	tgaaaccagc	ttattcagac	60
aaacggggta atagtacgaa d	ctcacttctt	gtctccaata	caagatccaa	gaggaagaac	120
caatccgttg ttcctatggc a	aagattgttt	ggaccggcga	ttttcgaatc	atccaagttg	180
aaagtattgt ttctaggtgt t	tgatgacaag	aagcatccac	caacgcttcc	aaggacttac	240
actctcactc acagtgacat t	tacagctaag	ctaactttag	ctatttctca	c	291
<210> 30 <211> 274 <212> PRT <213> Oryza sativa					

Page 15

<400> 30

4240-145 Sequence Listing.txt
Met Ala Ala Ala Thr Ser Thr Met Ser Leu Leu Pro Pro Ile Thr Gln
1 10 17 Gln Gln Arg Trp His Ala Ala Asp Ser Leu Val Val Leu Ala Ser Arg 20 25 30 Cys His Asn Ser Arg Arg Arg Arg Cys Arg Tyr Val Val Pro Arg 35 40 45 Ala Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val 50 55 60 Leu Phe Leu Gly Val Asp Glu Glu Lys His Gln His Pro Gly Lys Leu 65 70 75 80 Pro Arg Thr Tyr Thr Leu Thr His Ser Asp Val Thr Ala Arg Leu Thr 85 90 95 Leu Ala Val Ser His Thr Ile Asn Arg Ala Gln Leu Gln Gly Trp Tyr 100 105 110 Asn Lys Leu Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Gln
115 120 125 Gly His Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Val 130 135 140 Leu Leu Asp Leu Ile Ala Gly Leu Arg Tyr Tyr Ile Phe Arg Lys Glu 145 150 155 160 Leu Pro Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Phe 165 170 175 Ser Arg His Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His 180 185 190 Ser Asn Leu Pro Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Arg 195 200 205 Asp Ala Gly Ala Pro Pro Glu Glu Asp Asp Ala Val Ala Ala Ala 210 215 220 Ala Glu Glu Ala Ala Ala Glu Gln Met Pro Ala Ala Gly Glu Trp Pro 225 230 235 240 Arg Arg Cys Pro Gly Gln Cys Asp Cys Cys Phe Pro Pro Tyr Ser Leu 245 250 255

Ile Pro Trp Pro His Gln His Asp Val Ala Ala Ala Asp Gly Gln Pro 260 265 270

Gln Gln

<210> 31

<211> 281 <212> PRT

<213> Hordeum vulgare

<400> 31

Met Ala Ile Ala Ala Ala Ala Gly Ala Ser Thr Met Ser Leu Leu Pro 1 5 10 15

Ile Ser His Leu Lys Gln Leu Gln Leu Gln Arg Arg Ala Arg Pro Gly
20 25 30

Arg Val Leu Val Leu Gly Arg Arg Arg His Val Val Pro Arg Ala 35 40 45

Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu 50 60

Phe Val Gly Val Asp Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr 65 70 75 80

Tyr Thr Leu Thr His Ser Asp Val Thr Ala Arg Leu Thr Leu Ala Val 85 90 95

Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg Leu 100 105 110

Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Gln Gly Ala Met 115 120 125

Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp 130 135 140

Leu Ile Ala Pro Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Ser Val 145 150 155 160

Val Leu Lys Ala Phe Val His Gly Asp Gly Ser Leu Phe Ser Gln His 165 170 175

Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn Asn 180 185 190

Pro Asn Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Ser Asp Ala Ala 195 200 205

Ala Pro Tyr Asp Asp Glu Ala Ala Val Asp Ser Pro Ala Ala Asp Ala 210 215 220

Ala Met Ala Ala Thr Ala Val Asn Thr Ala Ala Asp Glu Gln Ala Thr 225 230 235 240

Arg Ala Gly Gln Trp Pro Arg Arg Cys Pro Gly Gln Cys Asp Cys Cys 245 250 255

Phe Pro Pro Glu Cys Leu Ile Pro Trp Pro His Glu His Glu Met Ala 260 265 270

Ala Asp Ala Gly Gln Ala Pro Pro Gln 275 280

<210> 32

<211> 266

<212> PRT

<213> Triticum aestivum

<400> 32

Met Ala Thr Ala Ser Thr Met Ser Leu Leu Pro Ile Ser His Leu Lys
1 10 15

Gln Met Gln Gln Gln Arg Arg Thr Arg Leu Ala Gly Ala Leu Pro Gly 20 25 30

Lys Val Leu Val Leu Gly Arg Arg Arg His Val Val Pro Arg Ala 35 40 45

Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu 50 60

Phe Val Gly Val Asp Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr 65 70 75 80

Tyr Thr Leu Thr His Ser Asp Val Thr Ala Arg Leu Thr Leu Ala Val 85 90 95

Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg Leu 100 105 110

Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Gln Gly Ala Met 115 120 125

Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp 130 135 140

Leu Ile Ala Pro Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Pro Val 145 150 155 160

Val Leu Lys Ala Phe Val His Gly Asp Gly Ser Leu Phe Ser Gln His 165 170 175

Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn Asn 180 185 190

Pro Asn Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Arg Glu Ala Ala 195 200 205

Ala Pro Tyr Asp Asn Lys Thr Pro Thr Arg Pro Cys Pro Gln Gly Asp 210 215 220

Ala Gly Asp Lys Lys Ala Met Asp Arg Ala Ala Pro Arg Gly Ser Arg 225 230 235 240

Gly Met Glu Cys Phe Ser Arg Pro Asn Pro Ile Pro Gly Pro Arg Ile 245 250 255

Gln Met Pro Pro Pro Arg Gln Ala Pro Gln 260 265

<210> 33

<211> 264

<212> PRT

<213> Triticum aestivum

<400> 33

Gln Met Gln Gln Arg Arg Thr Arg Leu Ala Gly Ala Leu Pro Gly 20 25 30

Lys Val Leu Val Leu Gly Arg Arg Arg His Val Val Pro Arg Ala 35 40 45

Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu 50 60

Phe Val Gly Val Asp Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr 65 70 75 80

Tyr Thr Leu Thr His Ser Asp Val Thr Ala Arg Leu Thr Leu Ala Val 85 90 95

Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg Leu 100 105 110

Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Gln Gly Ala Met 115 120 125

Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp 130 135 140

Leu Ile Ala Pro Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Pro Val 145 150 155 160

Val Leu Lys Ala Phe Val His Gly Asp Gly Ser Leu Phe Ser Gln His 165 170 175

Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn Asn 180 185 190

Pro Asn Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Ala Met Pro Arg 195 200 205

Ala Leu Asp Asp Glu Thr Pro Arg Asp Ser His Arg Arg Arg Thr Val 210 220

Pro Leu His Asp Asp Ser Arg Arg Ala Gly Ser Ala Pro Gly Ala Pro 225 230 235 240

Ala Leu Asp Gly Val Pro Gln Asn Ala Ile Pro Gly Ala Asp Pro Ile 245 250 255

Ala Ala Asn Arg Gln Gly Pro Gln 260

<400> 34

Met Ala Ala Ala Ser Thr Met Ser Leu Leu Pro Ile Ser Gln Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Arg Lys Gln Gln Gln Gln Gly Ala Gly Ala Val Val Phe Gln Arg 20 25 30

<210> 34

<211> 281

<212> PRT

<213> Zea mays

Arg Pro Trp Asp Ala Arg Arg Arg Tyr Val Val Pro Thr Ala Arg 35 40 45

Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe 50 55 60

Leu Gly Val Asp Glu Gly Ser Ser Lys His Leu His Ala His His Pro 65 70 75 80

Ala Pro Ala Pro Leu Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 85 90 95

Val Thr Ala Ser Leu Thr Leu Ala Val Ser His Thr Ile Asn Arg Ala 100 105 110

Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 115 120 125

Glu Trp Lys Lys Val Arg Gly Arg Met Ser Leu His Val His Cys His 130 135 140

Ile Ser Gly Gly His Leu Leu Leu Asp Leu Ile Ala Gly Leu Arg Tyr 145 150 155 160

Tyr Ile Phe Arg Lys Glu Leu Pro Val Val Leu Glu Ala Phe Val His 165 170 175

Gly Asp Gly Asp Leu Phe Ser Arg His Pro Glu Leu Glu Glu Ala Thr 180 185 190

Val Trp Val Tyr Phe His Ser Asn Leu Ala Arg Phe Asn Arg Val Glu 195 200 205

Cys Trp Gly Pro Leu Arg Asp Ala Ala Ala Pro Ala Pro Ala Glu Asp 210 215 220

Asp Ser Thr Ala Pro Ala Ala Ala Ser Ile Ala Met Glu Gly Gln Met 225 230 235 240

Pro Val Gly Glu Trp Pro His Arg Cys Pro Gln Gln Cys Asp Cys Cys 245 250 255

Phe Pro Pro His Ser Leu Ile Pro Trp Pro Asn Glu Gln Asp Met Ala 260 265 270

Ala Ala Ala Gly Gln Val Arg Gln Gln 275 280 <210> 35 <211> 274 <212> PRT <213> Zea mays <400> 35 Met Ala Ala Ala 1

Met Ala Ala Ala Thr Ala Ala Ala Ser Thr Met Ser Leu Leu Pro Ile 1 10 15

Ser Gln Leu Arg Gln Gln His Gly Ala Gly Ala Met Arg Arg Pro $20 \hspace{1cm} 25 \hspace{1cm} 30$

Trp Val Ala Arg Arg Arg Tyr Val Val Pro Thr Ala Arg Leu Phe 35 40 45

Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 60

Val Asp Asp Glu Ala Gly Ser Lys Gln His Gly Pro Leu Pro Arg Thr 65 70 75 80

Tyr Thr Leu Thr His Ser Asp Val Thr Ala Arg Leu Thr Leu Ala Val 85 90 95

Ser His Thr Ile Asn Arg Ala Gln Leu Gln Gly Trp Tyr Asn Arg Leu 100 105 110

Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Arg Gly Arg Met 115 120 125

Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp 130 135 140

Leu Ile Ala Gly Leu Arg Tyr Val Ile Phe Arg Lys Glu Leu Pro Val 145 150 155 160

Val Leu Lys Ala Phe Val His Gly Asp Gly Asp Leu Phe Ser Arg His 165 170 175

Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn Leu 180 185 190

Ala Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Arg Asp Ala Ala 195 200 205

Ala Pro Ala Glu Asp Asp Ser Thr Ala Pro Pro Asp Ala Ser Asn Ser 210 215 220 Page 22

Lys Glu Ala Gly Gln Met Met Ala Met Cys Glu Trp Pro His Arg Cys 235 240

Pro Gln Gln Cys Gly Cys Cys Phe Pro Pro His Ser Leu Ile Pro Trp 245 250 255

Pro Asn Glu His Asp Met Ala Ala Ala Asp Ala Ser Gly Ser Ala Gln 260 265 270

Gln Gln

<210> 36

<211> 266

<212> PRT

<213> Sorghum bicolor

<400> 36

Met Ala Ala Ala Thr Ala Ala Ala Ser Thr Met Ser Leu Pro Pro 1 5 10 15

Ile Ser Gln Leu Arg Gln Gln Gln His Gly Ala Gly Ala Val Val 20 25 30

Phe Arg Arg Arg Ala Arg Asp Ala Arg Arg Arg Tyr Val Val Pro
35 40 45

Thr Ala Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys 50 60

Val Leu Phe Leu Gly Val Asp Glu Glu Ser Asn Asn Lys His Gly His 65 70 75 80

Pro Thr Thr Pro Ser Pro Thr Ser Pro Pro Leu Pro Leu Leu Pro Arg 85 90 95

Thr Tyr Thr Leu Thr His Ser Asp Val Thr Ala Ser Leu Thr Leu Ala 100 105 110

Val Ser His Thr Ile Asn Arg Ala Gln Leu Gln Gly Trp Tyr Asn Arg 115 120 125

Leu Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Arg Gly Arg 130 135 140

Met Ser Leu His Val Leu Lys Ala Phe Val His Gly Asp Gly Asp Leu 145 150 155 160 Page 23

Phe Ser Arg His Pro Glu Leu Glu Asp Ala Pro Val Trp Val Tyr Phe 165 170 175

His Ser Asn Leu Thr Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu 180 185 190

Arg Asp Ala Ala Ala Pro Pro Ala Glu Asp Asp Ser Thr Ala Pro Ala 195 200 205

Ala Ala Ser Asn Lys Asp Gly Gln Met Pro Pro Val Gly Glu Trp Pro 210 220

Tyr Arg Cys Pro Gln Gln Cys Asp Cys Cys Phe Pro Pro His Ser Leu 225 230 235 240

Ile Pro Trp Pro Asn Glu Arg Asp Met Ala Ala Ala Ala Ala Asp Ala 245 250 255

Ser Ser Ala Ala Gly Gln Ala Gln Gln Gln 260 265

<210> 37

<211> 261

<212> PRT

<213> Glycine max

<400> 37

Met Cys Thr Leu Thr Thr Val Pro Val Leu Pro Ser Lys Leu Asn Lys
1 10 15

Pro Ser Leu Ser Pro His His Asn Ser Leu Phe Pro Tyr Cys Gly Arg 20 25 30

Arg Val Gly Lys Lys Asn Lys Ala Met Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 60

Val Asp Glu Asn Lys His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu 65 70 75 80

Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr 85 90 95

Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Phe Gln Arg Asp 100 105 110 Page 24

Glu Val Val Ala Gln Trp Lys Lys Val Lys Gly Arg Met Ser Leu His 115 120 125

Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Ile Leu Ala 130 135 140

Arg Leu Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys 145 150 155 160

Ala Val Val His Gly Asp Glu Asn Leu Phe Asn Ser Tyr Pro Glu Leu 165 170 175

Gln Asp Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe 180 185 190

Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Ser Ala Pro Thr 195 200 205

Gly Gly Val Gln Glu Glu Gly Leu Ala Ile Pro Gln Pro Cys Gln Glu 210 215 220

Glu Cys Gln Cys Cys Phe Pro Pro Leu Thr Leu Ser Pro Ile Gln Trp 225 230 235 240

Ser Lys Gln Val Pro Ser Arg His Tyr Glu Pro Cys Asp Gly Ile Gly 245 250 255

Thr Gln Gln Asn Leu 260

<210> <211> 38 271

<212> PRT

<213> Glycine max

<400> 38

Met Gly Thr Leu Thr Thr Val Pro Val Leu Pro Ser Lys Leu Asn Lys
1 10 15

Pro Ser Leu Ser Pro Arg His Asn Ser Leu Phe Pro Tyr Tyr Gly Arg 20 25 30

Arg Val Gly Lys Lys Asn Lys Ala Met Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 60 Page 25

Val Asp Glu Asn Lys His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu 65 70 75 80

Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr 85 90 95

Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp 100 105 110

Glu Val Val Ala Gln Trp Lys Lys Val Lys Gly Lys Met Ser Leu His 115 120 125

Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Ile Leu Ala 130 135 140

Arg Leu Arg Tyr Phe Ile Phe Cys Arg Glu Leu Pro Val Val Leu Lys 145 150 155 160

Ala Val Val His Gly Asp Glu Asn Leu Phe Asn Asn Tyr Pro Glu Leu 165 170 175

Gln Asp Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe

Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Ser Ala Pro Ile 195 200 205

Gly Gly Ala Lys Glu Glu Ser Glu Gln Glu Thr Leu Leu Ser Lys Glu 210 215 220

Gly Leu Ala Ile Pro Gln Pro Cys Gln Glu Glu Cys Glu Cys Cys Phe 225 230 235 240

Pro Pro Leu Thr Leu Ser Pro Ile Gln Trp Ser Gln Gln Val Pro Ser 245 250 255

His His Tyr Glu Pro Cys Asp Gly Ile Glu Thr Gln Gln Ser Leu 260 265 270

Met Ala Thr Leu Thr Ala Ala Leu Val Leu Pro Ser Glu Leu Lys Pro 1 5 10 15 Page 26

<210>

³⁹ 274 <211>

<212> Vitis vinifera

<400> 39

Ser Phe Ser Gln His Gln Ser Ser Leu Phe Val Cys Arg Arg Pro 20 25 30 Lys Lys Ser Asn Pro Ala Phe Pro Ala Ala Arg Leu Phe Gly Pro Ala 35 40 45Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu 50 55 60 Lys Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His Ser 65 70 75 80 Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn Asn 85 90 95 Ser Gln Leu Gln Gly Trp Ser Asn Arg Leu Gln Arg Asp Glu Val Val 100 105 110 Ala Gln Trp Lys Lys Val Lys Asp Gln Met Ser Leu His Val His Cys 115 120 125 His Ile Ser Gly Gly His Phe Leu Leu Asp Leu Cys Ala Lys Leu Arg 130 135 140 Tyr Phe Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val 145 150 155 160 His Gly Asp Gly Asn Leu Leu Asn Asn Tyr Pro Glu Leu Gln Glu Ala 165 170 175 Leu Val Trp Val Tyr Phe His Ser Asn Leu Pro Glu Phe Asn Arg Val 180 185 190 Glu Cys Trp Gly Ala Leu Asn Asn Ala Ala Ala Pro Pro Pro Ala 195 200 205 Ala Gly Gly Gly Gly Arg Val Glu Ala His Gln Asp Met Arg Gln 210 215 220 Val Glu Pro Ser Ser Lys Trp Glu Arg Pro Glu Glu Pro Cys Met Glu 225 230 235 240 Asn Cys Thr Cys Cys Phe Pro Pro Met Ser Leu Ile Pro Trp Ser Gln 245 250 255 Asp Leu Ala His Glu Asn Ile His Asp Thr Gln Lys Gly Leu Gln Gln Page 27

Gln Thr

<210> 40

<211> 280

<212> PRT

<213> Lactuca sativa

<400> 40

Met Ala Ser Leu Ile Leu Pro Thr Lys Gln Asn Pro Pro Ser Ser Ser 1 5 10 15

Phe Leu His Gln Asn His Gln Asn Asn Pro Phe Phe Thr Asn Lys Arg 20 25 30

Arg Lys Leu Lys Arg Asn Gln Ala Leu Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ser Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 60

Val Asp Glu Lys Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu 70 75 80

Thr His Ser Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr 85 90 95

Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Gln Leu Tyr Arg Asp 100 105 110

Glu Val Val Ala Glu Trp Arg Lys Val Lys Gly Asn Met Ser Leu His 115 120 125

Val His Cys His Ile Ser Arg Gly His Phe Leu Leu Asp Leu Cys Ala 130 135 140

Arg Leu Arg Phe Phe Ile Phe Thr Lys Glu Leu Pro Leu Val Leu Lys 145 150 155 160

Ala Phe Ala His Gly Asp Gly Asn Leu Leu Asn Ser Tyr Pro Glu Leu 165 170 175

Gln Glu Ala Ser Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe
180 185 190

Asn Arg Val Glu Cys Trp Gly Pro Leu Arg Glu Ala Val Gly Pro Leu Page 28 Ser Thr Thr Ser Ser Ser Ser Ser Ser Leu Ser Glu Ser Thr 210 215 220

Ile Ala Glu Ala Gly Glu Gly Ser Asn Asn Trp Glu Ile Pro Lys Pro 225 230 235 240

Cys Leu Glu Ala Cys Ala Cys Cys Phe Pro Pro Met Ser Ser Ile Pro 245 250 255

Trp Ser His Asp Leu Val Lys Asn Gln Asp Asp Asp Gly Ala Thr 260 265 270

His Gln Gly Leu Gln Gln Lys Ala 275 280

<210> 41

<211> 290

<212> PRT

<213> Pinus taeda

<400> 41

Met Ala Val Ala Arg Ile Ser Ala Gly Lys Thr Gln His Cys Tyr Ser 1 10 15

Phe Ser Pro Ser Asp Val Arg Ile Ser Ser Ala Pro Gln Asn Ser Gln 20 25 30

Ser Gln Phe Lys Arg Lys Ser Lys Ile Lys Leu Ser Ser Arg Phe Leu 35 40 45

Ala Ser Glu Ser Ser Trp Asn Gly Leu Val Ala His Gln Leu Gln Cys 50 60

Asn Asn Arg His Arg Thr Asn Ser Ser Phe Pro Arg Ser Thr Ser Arg 65 70 75 80

Val Val Ala Arg Leu Phe Gly Pro Ala Ile Phe Gln Ala Ser Lys Leu 85 90 95

Lys Val Leu Phe Leu Gly Thr His Glu Glu Lys His Pro Ala His Leu 100 105 110

Pro Arg Thr Tyr Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr 115 120 125

Leu Ala Phe Ser Gln Thr Ile Asn Lys Asp Gln Gly Trp Tyr Asn Arg Page 29 Leu Gln Arg Asp Glu Val Leu Ala Gln Trp Lys Lys Ser Gln Gly Lys 145 150 155 160

Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Trp Leu Leu 165 170 175

Asp Ala Ile Ala Arg Leu Arg Phe Tyr Ile Phe Arg Lys Glu Leu Pro 180 185 190

Val Val Leu Glu Ala Phe Arg His Gly Asp Arg Ala Leu Leu Glu Lys 195 200 205

His Pro Glu Leu Glu Thr Ala Leu Val Trp Val Tyr Phe His Ser Asn 210 215 220

Val Lys Glu Phe Lys Arg Val Glu Cys Trp Gly Ser Leu Ala Glu Ala 225 230 235 240

Cys Lys Gly Ala Pro Ser Asn Leu Asn Lys Glu Leu Asp Glu Leu Asp 245 250 255

Gly Gly Lys Leu Glu Met Pro Ser His Cys Ala Glu Pro Cys Ser Cys 260 265 270

Cys Phe Pro Pro Phe Ser Val Leu Leu Arg Pro Glu Asp Val Glu Gln 275 280 285

Phe Ser 290

<210> 42

<211> 271 <212> PRT

<213> Citrus sinensis

<400> 42

Met Ala Ser Leu Val Ala Ala Leu Gly Leu Pro Ser Lys Leu Lys Ala 1 5 10 15

Ser Pro Tyr Glu Gln Gln Asn Ala Leu Phe Val Ser Arg Arg Ser 20 25 30

Lys Lys Asn Gln Ser Phe Ala Pro Val Ala Arg Leu Phe Gly Pro 35 40 45

Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Page 30 Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His 65 70 75 80

Ser Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn 85 90 95

Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val 100 105 110

Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His 115 120 125

Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Ile Cys Ala Arg Leu 130 135 140

Arg Phe Phe Ile Phe Ser Lys Glu Leu Pro Val Val Leu Lys Ala Phe 145 150 155 160

Val His Gly Asp Gly Asn Leu Leu Asn Asn His Pro Glu Leu Gln Glu 165 170 175

Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe Asn Lys 180 185 190

Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Val Ala Gly Ser Ser Glu 195 200 205

Ala Gly Gly Thr Arg His Glu Ile Arg Gln Glu Thr Ser Ile Ser Asn 210 220

Trp Glu Leu Pro Glu Pro Cys Gln Glu Thr Cys Asn Cys Cys Phe Pro 225 230 235 240

Pro Met Ser Leu Ile Pro Trp Ser Glu Lys Leu Pro Leu Gln Thr Glu 245 250 255

Asn Arg Gly Thr Gln Gly Gln Glu Ser Leu Gln Gln Gln Thr Arg 260 265 270

Met Gly Thr Leu Thr Thr Ala Pro Pro Pro Met Leu Thr Ser Lys Phe Page 31

<210> 43

<211> 263

<212> PRT

<213> Medicago truncatula

<400> 43

5

Lys Pro Ser Phe Ser Pro Gln His Lys Pro Leu Phe Pro Asn Arg Arg 20 25 30

Arg Leu Trp Lys Lys Asn Gln Ser Ile Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 60

Ile Asp Glu Asp Lys His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu 65 70 75 80

Thr His Ser Asp Val Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr 85 90 95

Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp 100 105 110

Glu Val Val Ala Gln Trp Lys Lys Val Lys Gly Lys Met Ser Leu His 115 120 125

Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Ile Phe Ala 130 140

Arg Leu Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys 145 150 155 160

Ala Phe Val His Gly Asp Gly Asn Leu Phe Asn Asn Tyr Pro Glu Leu 165 170 175

Gln Glu Ala Leu Val Trp Val Tyr Phe His Ser Lys Ile Pro Glu Phe 180 185 190

Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Ser Gln Pro Thr 195 200 205

Ser Gly Thr Gln Arg Asp His Gln Asn Leu Thr Leu Pro Glu Pro Cys 210 220

Gln Glu Thr Cys Glu Cys Cys Phe Pro Pro Leu Lys Leu Ser Pro Met 225 230 235 240

Pro Cys Ser Asn Glu Val His Asn Asp Thr Tyr Glu Pro Ile Asp Gly 245 250 255

Ile Glu Thr Gln Gln Ser Leu 260

<210> 44

<211> 272

<212> PRT

<213> Solanum tuberosum

<400> 44

Met Gly Thr Leu Thr Ala Ser Leu Val Val Pro Ser Lys Leu Asn Asn $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Glu Lys Gln Ser Ser Ile Phe Val His Lys Thr Arg Arg Lys Ser Lys 20 25 30

Lys Asn Gln Ser Ile Val Pro Val Ala Arg Leu Phe Gly Pro Ala Ile 35 40 45

Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu Glu 50 55 60

Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 65 70 75 80

Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn Asn Ser 85 90 95

Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 100 105 110

Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His Cys His 115 120 125

Ile Ser Gly Gly His Phe Met Leu Asp Leu Phe Ala Arg Leu Arg Asn 130 140

Tyr Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His 145 150 155 160

Gly Asp Glu Asn Leu Leu Lys Asn Asn Pro Glu Leu Gln Glu Ala Leu 165 170 175

Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe Asn Lys Val Glu 180 185 190

Cys Trp Gly Pro Leu Lys Asp Ala Thr Ser Pro Ser Ser Ser Ser Ser 195 200 205

```
4240-145 Sequence Listing.txt
Gly Val Gly Val Lys Ser Thr Ser Phe Thr Ser Asn Ser Asn Asn
210 215 220
Lys Trp Glu Leu Pro Lys Pro Cys Glu Glu Ala Cys Ala Cys Cys Phe 225 230 235 240
Pro Pro Met Ser Val Met Pro Trp Pro Ser Ser Asn Leu Asp Gly Ile
245 250 255
Gly Glu Glu Asn Gly Thr Ile Gln Gln Gly Leu Gln Glu Gln Gln Ser
260 265 270
<210>
<211>
        269
<212>
        PRT
        Populus tremula x Populus tremuloides
<400>
Met Gly Ser Leu Ala Ile Ala Pro Phe Leu Pro Ser Lys Leu Arg Pro 1 5 10 15
Ser Ile Leu Asp Gln Asn Ser Ser Leu Phe Pro Ser Lys Lys Leu 20 25 30
Lys Arg Lys Asn Gln Ser Ile Ser Pro Val Ala Arg Leu Phe Gly Pro 35 40 45
Ser Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp 50 55 60
Glu Lys Lys His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu Thr His 65 70 75 80
Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn 85 90 95
Asn Ser Gln Leu Gln Gly Trp Ser Asn Lys Leu Tyr Arg Asp Glu Val
100 105 110
Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His 115 120 125
Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Leu Cys Cys Arg Leu 130 135 140
Arg Tyr Phe Ile Phe Arg Lys Glu Leu Pro Val Val Leu Lys Ala Phe 145 150 155 160
```

4240-145 Sequence Listing.txt Phe His Gly Asp Gly Asn Leu Phe Ser Ser Tyr Pro Glu Leu Gln Glu 165 170 175 Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe Asn Lys 180 185 190 Val Glu Cys Trp Gly Pro Leu Lys His Ala Ala Ala Pro Tyr Thr Ala 195 200 205 Ala Ser Gly Gly Ala Pro Glu Asn Lys Glu Gln Ala Thr Asp Trp Asn 210 220 Leu Pro Glu Pro Cys Gln Glu Asn Cys Gln Cys Cys Phe Pro Pro Met 225 230 235 240 Ser Leu Ile Pro Trp Ser Glu Met Val Pro Gln Glu Asn Lys Asn Asn 245 250 255 Pro Ser Thr Gln Gln Thr Phe Gln Gln Ala Gln Gln Pro <210> 46 <211> 270 <212> Populus tremula x Populus tremuloides <400> Met Gly Ser Leu Ala Val Ala Pro Phe Leu Pro Ser Lys Pro Arg Pro 1 5 10 15 Ser Leu Phe Asp Gln His Ser Ser Leu Phe Ser Pro Ser Thr Lys Leu 20 25 30 Lys Arg Lys Asn Gln Ser Ile Ser Pro Val Ala Arg Leu Phe Gly Pro 35 40 45 Ser Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp 50 60 Glu Lys Glu His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu Thr His 65 70 75 80 Ser Asp Met Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn 85 90 95 Asn Ser Gln Leu Gln Gly Trp Ser Asn Lys Leu Tyr Arg Asp Glu Val 100 105 110

4240-145 Sequence Listing.txt Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Trp Cys Cys Arg Leu 130 135 140 Arg Tyr Phe Ile Phe Arg Arg Glu Leu Pro Val Val Leu Lys Ala Phe 145 150 155 160 Phe His Gly Asp Gly Ser Leu Leu Ser Asn Tyr Pro Glu Leu Gln Glu 165 170 175 Gly Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe Ser Lys Val Glu Cys Trp Gly Pro Leu Lys Asp Ala Ala Ala Pro Ser Thr Ser 195 200 205 Glu Thr Gly Gly Ser Asn Glu Thr Glu Glu Leu Ala Asn Gln Ser Ser Asn Trp Asp Leu Pro Glu Pro Cys Gln Glu Glu Asn Cys Ser Cys Cys Phe Pro Pro Met Ser Leu Ile Pro Trp Ser Lys Met Val Pro Leu Glu Asp Lys Asn Asn Pro Ser Thr Pro Gln Asn Leu Gln Gln Pro 265 <210> 47 <211> 286 <212> <213> Mesembryanthemum crystallinum <400> 47 Met Gly Thr Leu Thr Ala Ser Met Leu Leu Pro Ser Lys Leu Lys Pro 1 10 15 Ser Val Phe Glu Asp Gln Ser Ser Val Tyr Phe Lys Arg Ser Cys Arg 20 25 30 Gly Leu Pro Lys Leu Asn Lys Ala Lys Ser Phe Ser Pro Val Met Arg
35 40 45 Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe 50 55 60 4240-145 Sequence Listing.txt Leu Gly Val Asp Lys Glu Lys His Pro Gly Lys Leu Pro Arg Thr Tyr 65 70 75 80 Thr Leu Thr His Ser Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser 85 90 95 Gln Thr Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Gln Leu Gln 100 105 110 Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser 115 120 125 Leu His Val His Cys His Ile Ser Gly Gly His Ile Leu Leu Asp Leu 130 135 140 Phe Ala Lys Leu Arg Phe Tyr Ile Phe Cys Lys Glu Leu Pro Val Val 145 150 155 160 Leu Lys Ala Phe Val His Gly Asp Glu Asn Leu Phe Asn Asn Tyr Pro 165 170 175 Glu Leu Gln Glu Ala Met Val Trp Val Tyr Phe His Ser Asn Leu Glu Glu Phe Asn Lys Ile Glu Cys Trp Gly Pro Leu Lys Asp Ala Val Ala 195 200 205 Asn Ser Lys Lys Asn Lys Asn Lys Asn Lys Ile Asp Phe Lys Leu 210 220 Ser Phe Lys Glu Glu Asp Asp Ser Pro Asp Asn Glu Leu Glu Ile Pro 225 230 235 240 Glu Thr Cys Lys Glu Pro Cys Thr Cys Cys Phe Pro Pro Thr Ser Val 245 250 255 Ile Pro Trp Ser His Ser Ala Leu Ser Gln Gly Asp Asp Leu His Leu 260 265 270 Ser Gly Gly Thr His Gln Gly Leu Glu Gln Gln Gln Gln Thr 275 280 285 <210> 48 <211> 268 <212> PRT Arabidopsis thaliana <400> 48

4240-145 Sequence Listing.txt
Met Cys Ser Leu Ser Ala Ile Met Leu Leu Pro Thr Lys Leu Lys Pro
1 5 10 15 Ala Tyr Ser Asp Lys Arg Ser Asn Ser Ser Ser Ser Ser Ser Leu Phe $20 \hspace{1cm} 25 \hspace{1cm} 30$ Phe Asn Asn Arg Arg Ser Lys Lys Lys Asn Gln Ser Ile Val Pro Val 35 40 45 Ala Arg Leu Phe Gly Pro Ala Ile Phe Glu Ser Ser Lys Leu Lys Val 50 60 Leu Phe Leu Gly Val Asp Glu Lys Lys His Pro Ser Thr Leu Pro Arg 75 80 Thr Tyr Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala 85 90 95 Ile Ser Gln Ser Ile Asn Asn Ser Gln Leu Gln Gly Trp Ala Asn Arg $100 \hspace{1cm} 105 \hspace{1cm} 110$ Leu Tyr Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Lys Gly Lys 115 120 125 Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu 130 135 140 Asp Leu Phe Ala Lys Phe Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro 145 150 155 160 Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Leu Asn Asn 165 170 175 Tyr Pro Glu Leu Gln Glu Ala Leu Val Trp Val Tyr Phe His Ser Asn 180 185 190 Val Asn Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Trp Glu Ala 195 200 205 Val Ser Pro Asp Gly His Lys Thr Glu Thr Leu Pro Glu Ala Arg Cys 210 220 Ala Asp Glu Cys Ser Cys Cys Phe Pro Thr Val Ser Ser Ile Pro Trp 225 230 235 240 Ser His Ser Leu Ser Asn Glu Gly Val Asn Gly Tyr Ser Gly Thr Gln 245 250 255

Thr Glu Gly Ile Ala Thr Pro Asn Pro Glu Lys Leu 260 265

<210> 49

<211> 271

<212> PRT

<213> Arabidopsis thaliana

<400> 49

Met Cys Ser Leu Ala Thr Asn Leu Leu Pro Ser Lys Met Lys Pro 1 10 15

Val Phe Pro Glu Lys Leu Ser Thr Ser Ser Leu Cys Val Thr Thr Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$

Arg Ser Lys Met Lys Asn Arg Ser Ile Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 60

Val Asp Glu Lys Lys His Pro Ala Lys Leu Pro Arg Thr Tyr Thr Leu 65 70 75 80

Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Ser 85 90 95

Ile Asn Asn Ser Gln Leu Gln Gly Trp Ala Asn Lys Leu Phe Arg Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Glu Val Val Gly Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His 115 120 125

Val His Cys His Ile Ser Gly Gly His Phe Phe Leu Asn Leu Ile Ala 130 135 140

Lys Leu Arg Tyr Tyr Ile Phe Cys Lys Glu Leu Pro Val Val Leu Glu 145 150 155 160

Ala Phe Ala His Gly Asp Glu Tyr Leu Leu Asn Asn His Pro Glu Leu 165 170 175

Gln Glu Ser Pro Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Tyr 180 185 190

Asn Lys Val Glu Cys Trp Gly Pro Leu Trp Glu Ala Met Ser Gln His 195 200 205

Gln His Asp Gly Arg Thr His Lys Lys Ser Glu Thr Leu Pro Glu Leu 210 215 220

Pro Cys Pro Asp Glu Cys Lys Cys Cys Phe Pro Thr Val Ser Thr Ile 225 230 235 240

Pro Trp Ser His Arg His Tyr Gln His Thr Ala Ala Asp Glu Asn Val 245 250 255

Ala Asp Gly Leu Leu Glu Ile Pro Asn Pro Gly Lys Ser Lys Gly 265 270

<210> 50

<211> 221

<212> PRT

<213> Lycopersicon esculentum

<400> 50

Met Gly Thr Leu Thr Thr Ser Leu Val Val Pro Ser Lys Leu Asn Asn 1 5 10 15

Glu Gln Gln Ser Ser Ile Phe Ile His Lys Thr Arg Arg Lys Cys Lys 20 25 30

Lys Asn Gln Ser Ile Val Pro Val Ala Arg Leu Phe Gly Pro Ala Ile 35 40 45

Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu Glu 50 55 60

Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 65 70 75 80

Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn Asn Ser 85 90 95

Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 100 105 110

Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His Cys His 125

Ile Ser Gly Gly His Phe Met Leu Asp Leu Phe Ala Arg Leu Arg Asn 130 135 140

Tyr Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His 145 150 155 160

Gly Asp Glu Asn Leu Leu Arg Asn Tyr Pro Glu Leu Gln Glu Ala Leu

Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe Asn Lys Val Glu 180 185 190

Cys Trp Gly Pro Leu Arg Asp Ala Thr Ser Pro Ser Ser Ser Gly 200 205

Gly Val Gly Gly Val Lys Ser Thr Ser Phe Thr Ser His 210 220

<210> 51

<211> 110 <212> PRT

Beta vulgaris

<400> 51

Pro Glu Leu Gln Glu Ala Ser Val Trp Val Tyr Phe His Ser Ser Ile 1 5 10 15

Pro Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Thr Asp Ala Val 20 25 30

Asp Pro Pro Ser Lys Asn Lys Lys Arg Met Met Met Ile Asn Asp Glu 35 40 45

Gln Asp Lys Glu Glu Glu Glu Glu Ala Ser Ser Lys Trp Glu Met 50 55 60

Leu Val Pro Cys Thr Lys Pro Cys Arg Cys Cys Phe Pro Pro Thr Ser 65 70 75 80

Leu Ile Pro Trp Thr Pro Ser Leu Ser Gln Glu Gln Gln Gln Gln Gln 95

Gln Leu Pro Gly Asp Val Ser Ile Pro Pro Pro Gly Thr Arg 100 105 110

<210> 52

<211> 187

<212> **PRT**

Zosterops japonica

<400> 52

Thr Tyr Thr Leu Thr His Ser Asp Val Thr Ala Lys Leu Thr Leu Ala 1 5 10 15

4240-145 Sequence Listing.txt Val Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg 20 25 30 Leu Gln Arg Asp Glu Val Val Ala Glu Trp Arg Lys Val Arg Gly Asn 35 40 45 Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Arg 50 60 Asp Leu Ile Ala Pro Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Pro 65 70 75 80 Val Val Leu Lys Ala Phe Val His Gly Asp Gly Ser Leu Phe Ser Ser 85 90 95 His Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn Leu Pro Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Cys Asp Ala Ala Ala Pro Val Glu Glu Glu Gly Gln Gln Asn Asp Asp Arg Leu Pro 130 135 140 Ala Gly Glu Trp Pro Arg Arg Cys Pro Gln Gln Cys Glu Cys Cys Phe 145 150 155 160 Pro Pro His Ser Leu Ile Pro Trp Pro Asn Glu His Asp Met Ala Pro Thr Asp Ala Pro Ala Ala Gly Gln Thr Gln Gln 180 <210> 53 <211> 93 <212> PRT <213> Lotus corniculatus <400> 53 Tyr Pro Glu Leu Gln Asp Ala Leu Val Trp Val Tyr Phe His Ser Lys
10 15 Ile Pro Glu Phe Asn Lys Val Gln Cys Trp Gly Pro Leu Lys Glu Ala 20 25 30 Ala Ala Pro Ser Gly Gly Ser Pro Glu Lys Glu Gly Glu Gly Val Lys
35 40 45

4240-145 Sequence Listing.txt
Met Pro Asp Pro Cys Pro Glu Glu Cys Glu Cys Cys Phe Pro Pro 50 55 60

Pro Ala Leu Asp Pro Ile Pro Trp Ser Glu Glu Val Pro Ser Pro His 70 75 80

Tyr Glu Ala Phe Asp Gly Val Gly Thr Arg Pro Asn Leu 85 90

<210> 54

<211> 107

<212> PRT <213> Lotus corniculatus

<400> 54

Asp Leu Cys Ala Lys Leu Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro 1 10 15

Val Val Leu Lys Ala Phe Ile His Gly Asp Glu Asn Leu Phe Asn Asn 20 25 30

Tyr Pro Glu Leu Glu Glu Ser Leu Val Trp Val Tyr Phe His Ser Asn 35 40 45

Ile Ser Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Asp Ala 50 60

Cys Ala Thr Ser Ile Gly Ser Tyr Ser Tyr Asp Lys Gly Met Pro Gln 65 70 75 80

Thr Gln Pro Cys Gln Gln Asn Cys Glu Cys Cys Phe Thr Pro Met Ser

Ser Ser Asp Trp Ile Gly Thr Gln Gln Lys Leu 100 105

<210> 55

<211> 137

<212> PRT

<213> Saccharum officinarum

<400> 55

Thr Arg Leu Asp Leu Ile Ala Gly Leu Arg Tyr Tyr Ile Phe Arg Lys
1 10 15

Glu Leu Pro Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asp Leu 20 25 30

Phe Ser Arg His Pro Glu Leu Glu Asp Ala Thr Val Trp Val Tyr Phe Page 43 His Ser Asn Leu Thr Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu 50 60

Arg Asp Ala Ala Pro Pro Ala Glu Glu Asp Ser Thr Ala Pro Ala 65 70 75 80

Ala Ser Asn Ser Lys Glu Gly Gln Met Pro Pro Val Gly Glu Trp Pro 85 90 95

Tyr Arg Cys Pro Gln Gln Cys Asp Cys Cys Phe Pro Pro His Ser Leu 100 105 110

Ile Pro Trp Pro Asn Glu His Asp Met Ala Ala Ala Ala Ala Asp Ala 115 120 125

Thr Ala Ala Gly Gln Ala Gln Gln Gln 130 135

<210> 56

<211> <212> 159

PRT

<213> Picea abies

<400> 56

Ile Asn Lys Asp Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp
10 15

Glu Val Ile Ala Gln Trp Lys Lys Ser Gln Gly Lys Met Ser Leu His
20 25 30

Val His Cys His Ile Ser Gly Gly His Trp Leu Leu Asp Ala Ile Ala 35 40 45

Arg Leu Arg Phe Tyr Ile Phe Arg Lys Glu Leu Pro Val Val Leu Glu 50 60

Ala Phe Arg His Gly Asp Arg Ala Leu Leu Asp Lys His Pro Glu Leu 65 70 75 80

Glu Thr Ala Leu Val Trp Val Tyr Phe His Ser Asn Val Arg Glu Phe 85 90 95

Lys Arg Val Glu Cys Trp Gly Ser Leu Ala Glu Ala Cys Lys Gly Ala 100 105 110

Pro Ser Asn Leu Glu Lys Glu Leu Asp Glu Glu Phe Asn Gly Glu Lys Page 44

Leu Glu Met Pro Ser His Cys Ser Glu Pro Cys Asn Cys Cys Phe Pro 130 135 140

Pro Phe Ser Val Leu Leu Arg Pro Glu Asp Ala Glu Gln Phe Ile 145 150 155

<210> 57

<211> 210 <212> PRT

<213> Brassica napus

<400> 57

Met Cys Ser Leu Ala Thr Asn Leu Leu Leu Pro Ser Thr Met Lys Pro 1 10 15

Ala Phe Thr Glu Lys Gln Asn Thr Asn Ser Leu Phe Leu Thr Asn Lys 20 25 30

Arg Ser Leu Met Gln Asn Arg Ser Thr Val Pro Val Pro Val Ala Arg 35 40 45

Leu Leu Glu Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Ser Phe 50 60

Leu Gly Val Asp Glu Lys Lys His Pro Ser Lys Leu Pro Arg Thr Tyr 65 70 75 80

Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser 85 90 95

Gln Ser Ile Asn Asn Ser Gln Leu Gln Gly Trp Ala Asn Arg Leu Phe 100 105 110

Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser 115 120 125

Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Leu 130 135 140

Ile Ala Lys Leu Arg Tyr Tyr Ile Phe Cys Lys Glu Leu Pro Val Val 145 150 155 160

Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Leu Asn Ser Tyr Pro 165 170 175

Glu Leu Gln Glu Ser Pro Val Trp Val Tyr Ser Ile Gln Thr Ser Pro Page 45

180

Ser Thr Ile Arg Leu Asn Val Gly Gly Arg Phe Gly Arg Pro Arg Ser 195 200 205

Thr Asn 210

<210> 58

<211> 97

<212> PRT <213> Brassica napus

<400> 58

Met Cys Ser Leu Ser Ala Asn Met Leu Leu Pro Thr Lys Leu Lys Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Tyr Ser Asp Lys Arg Gly Asn Ser Thr Asn Ser Leu Leu Val Ser 20 25 30

Asn Thr Arg Ser Lys Arg Lys Asn Gln Ser Val Val Pro Met Ala Arg 35 40 45

Leu Phe Gly Pro Ala Ile Phe Glu Ser Ser Lys Leu Lys Val Leu Phe 50 55 60

Leu Gly Val Asp Asp Lys Lys His Pro Pro Thr Leu Pro Arg Thr Tyr 65 70 75 80

Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser 85 90 95

His