Отношения частичного порядка

Отношения частичного порядка

- Отношения частичного порядка бывают строгими и нестрогими.
- ► Строгое отношение частичного порядка это антирефлексивное антисимметричное, транзитивное отношение.
- ▶ В качестве примеров строгого отношения частичного порядка можно рассмотреть отношения меньше(<), больше (>) на числах или строгое включение (⊊) множеств.
- ▶ Нестрогое отношение частичного порядка это рефлексивное антисимметричное, транзитивное отношение.
- В качестве примеров нестрогого отношения частичного порядка можно рассмотреть отношения нестрогого меньше(\leq), нестрогого больше (\geq) на числах или включение множеств (\subseteq).

Замечание

▶ В дальнейшем мы будем рассматривать только нестрогое отношение частичного порядка, потому будем называть его просто отношением частичного порядка и обозначать будем так≼.

Частично-упорядоченное множество

- ▶ Пусть задано некоторое множество A с частичным порядком на нем \leq , тогда пару $(A; \leq)$ мы будем называть частично упорядоченным множеством (ч.у. множеством).
- ▶ Например, A множество чисел, а отношение \le это нестрогое меньше, тогда $(A; \le)$ частично упорядоченное множество.

Линейный порядок

- Пусть задано некоторое множество А с частичным порядком на нем ≤. Если для элементов а и с из множества А верно либо а ≤ с, либо с ≤ а, то частичный порядок ≤ называется линейным, а ч.у. множество (А; ≤) линейно упорядоченным.
 - **В** Если A множество чисел, а отношение ≤ это нестрогое меньше, то ч.у. множество (A; ≤) будет *линейно упорядоченным*.
 - Но не все ч.у. множества линейно упорядочены, например, если A множество множеств, а частичный порядок включение (\subseteq), то в нем могут встретиться несравнимые по включению множества. Например. $A=\{\{1\},\{2\},\{1,2\}\},$ множества $\{1\},\{2\}$ несравнимы по включению.

Изоморфизм

- ▶ Два частично упорядоченных множества называются изоморфными, если между ними существует взаимно однозначное соответствие, сохраняющее порядок.
- Можно сказать так: взаимно однозначное соответствие $f: A \to B$ называется изоморфизмом частично упорядоченных множеств $(A; \preccurlyeq)$ и $(B; \preccurlyeq)$, если
- ▶ для любых элементов a_1 , a_2 множества A (слева знак \leq обозначает частичный порядок в множестве A, справа в множестве B).

Некоторые свойства изоморфизма

Очевидно, что отношение изоморфности

- рефлексивно (каждое множество изоморфно самому себе),
- симметрично (если А изоморфно В, то верно и наоборот) и
- транзитивно (если A изоморфно B, B изоморфно C, то, очевидно, A изоморфно C).

Диаграммы Хассе

- ightharpoonup Для изображения структуры ч.у. множеств или их фрагментов используют *диаграммы Хассе*. На диаграммах Хассе точками изображены элементы множества, а отношения между ними отрезками, соединяющие эти точки, причем, если аightharpoonup с, то элемент a изображается на диаграмме ниже, чем элемент c.
- Несколько ранее был рассмотрен пример 1. Его можно изобразить на диаграмме Хассе следующим образом.

В первом варианте диаграммы указываются непосредственные имена элементов, во втором варианте отражена только структура ч.у. множества.

Замечание

- Поскольку в любом множестве элементы не повторяются, то в диаграмме Хассе нет горизонтальных отрезков.
- ▶ Кроме того, если элемента a, a, c таковы, что $a \le a$, $a \le c$, то соединяются только a и a, a и

Пример 2.

Пример 3

► Множество $A=\{1,2,3,6,12,18\}, a \le e$, если a является делителем e.

Пример 4.

Пример 5.

Пример 6.

Особые элементы

- Элемент a ч.у. множества A называется *наибольшим*, если для любого a из a, верно $a \le a$.
- Элемент a ч.у. множества A называется наименьшим, если для любого $e \in A$, верно $a \le e$.
- \triangleright Элемент a ч.у. множества A называется максимальным,
- ▶ если для любого $\varepsilon \in A$, верно $\varepsilon \leqslant a$ или ε несравнимо с a ($\varepsilon \mid a$).
- \triangleright Элемент a ч.у. множества A называется mинимальным,
- если для любого $\varepsilon \in A$, верно $a \leq \varepsilon$ или $\varepsilon \mid a$.

Очевидно, что наибольший (наименьший) элемент является максимальным (минимальным).

Пример 7.

Значком ф помечен наибольший элемент

Квадратиками <> помечены минимальные элементы

Пример 8

Значком ☆ помечен наименьший элемент Значками ○ помечены максимальные элементы

Конечное линейно упорядоченное множество всегда имеет наименьший и наибольший элементы.

Доказательство. Докажем сначала, что конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмем любой элемент; если он не наименьший, возьмем меньший, если и он не наименьший, еще меньший - и так далее; получим убывающую последовательность a1>a2>a3>..., которая рано или поздно должна оборваться, поскольку множество конечно. Очевидно, последний элемент последовательности будет наименьшим элементом. Аналогичным образом доказывается существования наибольшего элемента.

Конечные линейно упорядоченные множества, содержащие одинаковое число элементов, изоморфны.

Доказательство. Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Присвоим наименьшему элементу номер 1. Из оставшихся элементов снова выберем наименьший элемент и присвоим ему номер 2 и так далее. Легко понять, что порядок между элементами соответствует порядку между номерами, то есть что наше множество изоморфно множеству ({1, 2,..., n}; ≤) , где п- число элементов исходного множества, ≤ порядок между числами.

Верхняя и нижняя грани

- Пусть множество В является подмножеством ч.у. множества А.
- Элемент $a \in A$ называется верхней гранью множества B в ч.у. множестве A, если для любого элемента $B \in B$ верно $B \leq a$.
- ightharpoonup Аналогичным образом определяется нижняя грань множества B в ч.у. множестве A.
- Элемент $a \in A$ называется нижней гранью множества B в ч.у. множестве A, если для любого элемента $B \in B$ верно $A \leq B$.

Пример 9

Наименьшая верхняя и наибольшая нижняя грани

- lacktriangle Очевидно нижних и верхних граней у подмножества B в ч.у. множестве A может быть много.
- Наименьший элемент множества всех верхних граней множества B в ч.у. множестве A называется наименьшей верхней гранью. Аналогичным образом определяется набольшая нижняя грань.
- В рассмотренном выше примере существует и наименьшая верхняя, и набольшая нижняя грани. На этом примере мы можем заметить, что грани могут принадлежать, а могут не принадлежать множеству В.

Пример 10

Пример 11.

Пример 12.

Конечные множества

- Если множество содержит конечное число элементов, то оно называется конечным. Число элементов в конечном множестве A называют также его мощностью и обозначают |A|.
- Если между двумя множествами можно установить взаимно однозначное соответствие, то в них одинаковое число элементов. Поскольку взаимная однозначность требует, чтобы каждому элементу первого множества соответствовал ровно один элемент второго и наоборот.
- ▶ Поэтому, если множества $A = \{a_1, a_2, ..., a_n\}$, $B = \{b_1, b_2, ..., b_n\}$ имеют одинаковое число элементов (в нашем случае n), то соответствие $f(a_i) = b_i$, где $(0 \le i \le n)$ будет взаимно однозначным.

Свойства конечных множеств

- ightharpoonup Даны конечные множества A и B:
- 1. если $A \subseteq B$, то $|A| \le |B|$;
- 2. если $A \subsetneq B$, то |A| < |B|;
- 3. $|A \cup B| = |A| + |B| |A \cap B|$;
- 4. $|A \times B| = |A| \times |B|$.

Доказательство.

- Первые два утверждения очевидны.
- Третье утверждение тоже легко проверяется. Если A и B не пересекаются, то их объединение содержит элементы и того и другого множества, подсчитываем сначала элементы A, потом B и получаем $|A \cup B| = |A| + |B|$.
- Если пересечение A и B не пусто, то тогда элементы пересечения подсчитываются дважды и тогда, когда считаются элементы множества A и тогда, когда считаются элементы множества B.
- \blacktriangleright Для того что бы избавится от двойного подсчета общих элементов нужно вычесть их количество, т.е. $|A \cap B|$.
- Четвертое утверждение также легко проверяется.

Задача. В классе 32 учащихся. Из них 18 посещают литературный кружок, 12 - математический, 8 учеников не посещают ни одного из этих кружков. Сколько учеников посещают и литературный, и математический кружок? Сколько учащихся посещают только математический кружок?

- ▶ Решение. Путь множество А это ученики посещающие литературный кружок, множество В ученики посещающие математический кружок.
- Указанные кружки посещают 32-8=24 ученика, т.е. $24=|A\cup B|=|A|+|B|-|A\cap B|$. Заменяем |A| и |B| получим $24=18+12-|A\cap B|$, следовательно, $|A\cap B|=6$. Итак, учеников посещающих два кружка 6, значит посещающих только математический кружок тоже 6 (12-6=6).

Число подмножеств конечного множества, состоящего из n элементов, равно 2^n

Доказательство проведем методом математической индукции.

- База. Если n=0, т. е. множество пусто, то у него только одно подмножество оно само, и интересующее нас число равно $2^0=1$.
- ▶ Индукционный шаг. Пусть утверждение справедливо для некоторого n и пусть M множество содержащее n+1 элемент, т.е |M|=n+1. Множество всех подмножеств множества M будем обозначать P(M). Докажем, что |P(M)|= 2^{n+1} .
- ▶ Зафиксировав некоторый элемент $a_0 \in M$, разделим подмножества множества M на два типа:
 - M_1 , содержащее a_0 ,
 - M_2 , не содержащее a_0 , то есть являющиеся подмножествами множества $M \setminus \{a_0\}$.

Доказательство, продолжение.

- ightharpoonup Подмножеств типа (2) по предположению индукции 2^n .
- Но подмножеств типа (1) ровно столько же, так как подмножество типа (1) получается из некоторого и притом единственного подмножества типа (2) добавлением элемента a_0 и, следовательно, из каждого подмножества типа (2) получается этим способом одно и только одно подмножество типа (1).
- Таким образом, мы получили, что $|P(M)| = 2^n + 2^n = 2^*2^n = 2^{n+1}$ и тем самым доказали теорему.