HCV Note

1 Basic Knowledge

Useful Complex Number Properties: $|Re(z)|, |Im(z)| \le |z|$ $Re(z) = \frac{z+\overline{z}}{2}, Im(z) = \frac{z-\overline{z}}{2^i}, |z|^2 = z\overline{z}$ Triangle (Reverse) Inequality: $|z_1 + z_2| \le |z_1| + |z_2|$ $|z_1| - |z_2| \le |z_1 - z_2|$ $(Re(zw) = 0 \Leftrightarrow \overline{zw} = -zw; Im(zw) = 0$

2 Holomorphic Functions

Open/Closed/Punctured ε -disc: $D_{\varepsilon}(z_0) := \{z \in \mathbb{C} : |z-z_0| < \varepsilon\}$ $\overline{D}_{\varepsilon}(z_0) := \{z \in \mathbb{C} : |z-z_0| \le \varepsilon\}$ $D'_{\varepsilon}(z_0) := \{z \in \mathbb{C} : 0 < |z-z_0| < \varepsilon\}$ Open/Closed Set in \mathbb{C} : $U \subset \mathbb{C}$ is open if $\forall z_0 \in U$, $\exists \varepsilon > 0$, $D_{\varepsilon}(z_0) \subseteq U$ U is closed if $\mathbb{C} \setminus U$ is open Lemma: D_{ε} , D'_{ε} open, $\overline{D}_{\varepsilon}$ closed. Limit Point of S: $z_0 \in \mathbb{C}$ is a limit point of S if: $\forall \varepsilon > 0$, $D'_{\varepsilon}(z_0) \cap S \neq \emptyset$ ***

Bounded: S is bounded if $\exists M > 0$ s.t. $|z| \le M$, $\forall z \in S$ Closed of Set S: $\overline{S} := \text{fift} S$ 的 limit point $\exists S \in \mathbb{C}$ S is closed $\Leftrightarrow S = \overline{S}$.

Limit of sequence: Sequence $(z_n)_{n\in\mathbb{N}}$ has limit z if $\forall \varepsilon>0$, $\exists N\in\mathbb{N}$ s.t. $\forall n\geq N\Rightarrow |z_n-z|<\varepsilon$. limit rules 依旧成立

- 1. **Lemma|Important**: $\lim z_n = z \iff \lim Re(z_n) = Re(z)$ and $\lim Im(z_n) = Im(z)$
- 2. **Cauchy**: Sequence $(z_n)_{n\in\mathbb{N}}$ is cauchy if: $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall m, n \geq N \Rightarrow |z_m z_n| < \varepsilon$ **Lemma**: Cauchy \Leftrightarrow convergent.
- 3. **Lemma|Closed of Set**: $S \subseteq \mathbb{C}$, $z \in \mathbb{C}$. $\Rightarrow [z \in \overline{S} \Leftrightarrow \exists \text{ sequence } (z_n)_{n \in \mathbb{N}} \in S \text{ s.t. } \lim z_n = z]$
- 4. **Bolzano-Weierstrass**: Every bounded sequence in $\mathbb C$ has a convergent subsequence.

Complex Functions: $\forall f: \mathbb{C} \to \mathbb{C}$ we can write it as: f(z) = f(x+iy) = u(x,y) + iv(x,y) where $u,v:\mathbb{R}^2 \to \mathbb{R}$ Limit of Function: $a_0 \in \mathbb{C}$ is the limit of f at z_0 if: $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $0 < |z-z_0| < \delta \Rightarrow |f(z)-a_0| < \varepsilon$ limit rules 依旧成立 · Lemma|Important: $\lim_{z \to z_0} f(z) \Leftrightarrow \lim_{(x,y) \to (x_0,y_0)} u(x,y) = Re(a_0)$ and $\lim_{(x,y) \to (x_0,y_0)} v(x,y) = Im(a_0)$ continuous of Function: f is continuous at z_0 if: $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $|z-z_0| < \delta \Rightarrow |f(z)-f(z_0)| < \varepsilon$ continuous rules 依旧成立

- 1. **Lemma|Important**: f is continuous at $z_0 \Leftrightarrow u, v$ are continuous at (x_0, y_0)
- 2. **'Extreme Value Theorem'**: f is continuous on a closed and bounded set $S \subseteq \mathbb{C}$, then f(S) is closed and bounded.
- 3. **Lemma|continuous** \Leftrightarrow **open**: f is continuous \Leftrightarrow \forall open set U, preimage $f^{-1}(U) := \{z \in \mathbb{C} | f(z) \in U\}$ is open.