

Maximum a Posteriori Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n (data).

Maximum What is the parameter θ

that maximizes the likelihood Likelihood

of our observed data **Estimator**

 $(X_1, X_2, ..., X_n)$? (MLE)

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$
$$= \prod_{i=1}^n f(X_i | \theta)$$

 $\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} f(X_1, X_2, ..., X_n | \theta)$

Observations:

- MLE maximizes probability of observing data given a parameter θ .
- If we are estimating θ , shouldn't we maximize the probability of θ directly?

Today: Bayesian estimation using the Bayesian definition of probability!

Maximum A Posteriori (MAP) Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n (data).

Maximum Likelihood Estimator (MLE)

What is the parameter θ that maximizes the likelihood of our observed data $(X_1, X_2, ..., X_n)$?

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$

$$= \prod_{i=1}^{n} f(X_i | \theta)$$

$$= \arg \max_{i \in A} f(X_i, X_i, X_i, X_i, X_i, \theta)$$

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg max}} f(X_1, X_2, ..., X_n | \theta)$$
likelihood of data

Maximum a Posteriori

(MAP)

Estimator

Given our observed data

 $(X_1, X_2, ..., X_n),$

what is the most likely

parameter θ ?

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg\,max}} \ f(\theta|X_1, X_2, \dots, X_n)$$
posterior distribution
of \$\theta\$

Maximum A Posteriori (MAP) Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n (data).

def The Maximum a Posteriori (MAP) Estimator of θ is the value of θ that maximizes the posterior distribution of θ .

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, \dots, X_n)$$

Intuition with Bayes' Theorem:

After seeing data, posterior belief of θ

posterior $P(\theta|\mathsf{data})$ $L(\theta)$, probability of data given parameter θ

likelihood prior

 $P(\text{data}|\theta)P(\theta)$

Before seeing data, prior belief of θ

Solving for θ_{MAP}

- Observe data: $X_1, X_2, ..., X_n$, all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n) = \arg\max_{\theta} \frac{f(X_1, X_2, ..., X_n|\theta)g(\theta)}{h(X_1, X_2, ..., X_n)}$$
 (Bayes' Theorem)
$$= \arg\max_{\theta} \frac{g(\theta)\prod_{i=1}^n f(X_i|\theta)}{h(X_1, X_2, ..., X_n)}$$
 (independence)

$$= \arg\max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta)$$
 (1/h(X₁, X₂, ..., X_n) is a positive constant w.r.t. θ)

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right)$$

θ_{MAP} : Interpretation 1

- Observe data: $X_1, X_2, ..., X_n$, all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\begin{split} \theta_{MAP} &= \arg\max_{\theta} f(\theta|X_1, X_2, \dots, X_n) = \arg\max_{\theta} \frac{f(X_1, X_2, \dots, X_n|\theta)g(\theta)}{h(X_1, X_2, \dots, X_n)} \quad \text{(Bayes' Theorem)} \\ &= \arg\max_{\theta} \frac{g(\theta)\prod_{i=1}^n f(X_i|\theta)}{h(X_1, X_2, \dots, X_n)} \quad \text{(independence)} \\ &= \arg\max_{\theta} g(\theta)\prod_{i=1}^n f(X_i|\theta) \quad \text{(}1/h(X_1, X_2, \dots, X_n) \text{ is a positive constant w.r.t. }\theta) \\ &= \arg\max_{\theta} \left(\log g(\theta) + \sum_{i=1}^n \log f(X_i|\theta)\right) \quad \theta_{MAP} \text{ maximizes} \\ &\log \text{ prior + log-likelihood} \end{split}$$

θ_{MAP} : Interpretation 2

- Observe data: $X_1, X_2, ..., X_n$, all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n) = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n) = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n)$$
 The mode of the posterior distribution of θ

(Bayes' Theorem)

$$= \arg\max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i | \theta)}{h(X_1, X_2, \dots, X_n)}$$

(independence)

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta)$$

 $(1/h(X_1,X_2,\ldots,X_n)$ is a positive constant w.r.t. $\theta)$

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right) \quad \frac{\theta_{MAP} \text{ maximizes}}{\log \text{ prior + log-likelihood}}$$

Mode: A statistic of a random variable

The **mode** of a random variable *X* is defined as:

$$\underset{\mathsf{PMF}}{\mathsf{p}(x)} \operatorname{arg\,max} p(x) \qquad \underset{\mathsf{x}}{\mathsf{arg\,max}} f(x) \qquad \underset{\mathsf{x}}{\mathsf{arg\,max}} f(x) \qquad \underset{\mathsf{x}}{\mathsf{(X \, continuous,}} \\$$

- Intuitively: The value of X that is "most likely."
- Note that some distributions may not have a unique mode (e.g., Uniform distribution, or Bernoulli(0.5))

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, ..., X_n)$$

 θ_{MAP} is the most likely θ given the data $X_1, X_2, ..., X_n$.

Bernoulli MAP: Choosing a prior

How does MAP work? (for Bernoulli)

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

(some $g(\theta)$)

maximize

log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)$$

- Differentiate, set to 0
- Solve

A lot of our effort in MAP depends on the $g(\theta)$ we choose.

MAP for Bernoulli

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \mathcal{N}(0.5, 1^2)$. $g(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(p-0.5)^2/2}$

1. Determine log prior + log likelihood

$$\log g(\theta) + \log f(X_1, X_2, ..., X_n | \theta)$$

$$= \log \left(\frac{1}{\sqrt{2\pi}} e^{-(p-0.5)^2/2} \right) + \log \left(\binom{n+m}{n} p^n (1-p)^m \right)$$

$$= -\log(\sqrt{2\pi}) - (p-0.5)^2/2 + \log \binom{n+m}{n} + n \log p + m \log(1-p)$$

- 2. Differentiate w.r.t. (each) θ , set to 0
- $-(p-0.5) + \frac{n}{p} \frac{m}{1-p} = 0$
- 3. Solve resulting equations

cubic equation, not cute

We should choose a prior belief distribution that plays nice.

A better approach: Use conjugate distributions

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

Bernoulli(p)

(some $g(\theta)$)

maximize log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)$$

Differentiate, set to 0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

(choose conjugate distribution)

Up next: Conjugate priors are great for MAP!

Bernoulli MAP: Conjugate prior

Beta is a conjugate distribution for Bernoulli, meaning:

- Parametric forms of prior and posterior are the same
- Practically, conjugate means easy update: Add numbers of "successes" and "failures" seen to Beta parameters.
- You can set the prior to reflect how fair/biased you think the experiment is apriori.

Prior Beta
$$(a = n_{imag} + 1, b = m_{imag} + 1)$$

Experiment Observe n successes and m failures

Posterior Beta
$$(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$$

Mode of Beta
$$(a,b)$$
: $\frac{a-1}{a+b-2}$

Beta parameters a, b are called hyperparameters. Interpret Beta(a, b): a + b - 2 trials, of which a-1 are successes

How does MAP work? (for Bernoulli)

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

Bernoulli(p)

maximize log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

Differentiate, set to 0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Solve

(choose conjugate distribution)

Mode of posterior distribution of θ

(posterior is also conjugate)

Conjugate strategy: MAP for Bernoulli

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior on θ . What is θ_{MAP} ?
- Choose a prior

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$.

Determine posterior

Because Beta is a conjugate distribution for Bernoulli, the posterior distribution is $\theta | D \sim \text{Beta}(a + n, b + m)$

Compute MAP

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2} \quad \text{(mode of Beta}(a+n,b+m))$$

MAP in practice

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2,2)?

MAP in practice

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2,2)?
- Choose a prior

 $\theta \sim \text{Beta}(2,2)$.

Before flipping the coin, we imagined 2 trials: 1 imaginary head, 1 imaginary tail.

Determine posterior

Posterior distribution of θ given observed data is Beta(9, 3)

Compute MAP

$$\theta_{MAP} = \frac{8}{10}$$

After the coin, we saw 10 trials: 8 heads (imaginary and real), 2 tails (imaginary and real).

Proving the mode of Beta

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

These are equivalent interpretations of θ_{MAP} . We'll use this equivalence to prove the mode of Beta. n heads, m tails

Bernoulli(p)

(some $g(\theta)$)

maximize

log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

Differentiate, set to 0

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Solve

(choose conjugate) Beta(a, b)

Mode of posterior distribution of θ

(posterior is also conjugate)

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin n+m times. Observe n heads and m tails.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior
$$\theta \sim \text{Beta}(a, b)$$
. $g(\theta = p) = \frac{1}{\beta} p^{a-1} (1-p)^{b-1}$ normalizing constant, β

1. Determine log prior + log likelihood

$$\log g(\theta) + \log f(X_1, X_2, ..., X_n | \theta) = \log \left(\frac{1}{\beta} p^{a-1} (1-p)^{b-1} \right) + \log \left(\binom{n+m}{n} p^n (1-p)^m \right)$$

$$= \log \frac{1}{\beta} + (a-1) \log(p) + (b-1) \log(1-p) + \log \binom{n+m}{n} + n \log p + m \log(1-p)$$

- 2. Differentiate w.r.t. (each) θ , $\frac{a-1}{p} + \frac{n}{p} \frac{b-1}{1-p} \frac{m}{1-p} = 0$ set to 0
- 3. Solve

(next slide)

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin n+m times. Observe n heads and m tails.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$. $g(\theta) = \frac{1}{\beta} p^{a-1} (1-p)^{b-1}$

normalizing constant, β

3. Solve for
$$p$$

$$\frac{a-1}{p} + \frac{n}{p} - \frac{b-1}{1-p} - \frac{m}{1-p} = 0 \quad \text{(from previous slide)}$$
$$\Rightarrow \frac{a+n-1}{p} - \frac{b+m-1}{1-p} = 0$$

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2}$$

The mode of the posterior, Beta(a + n, b + m)!

If we choose a conjugate prior, we avoid calculus with MAP: just report mode of posterior.

Maximum A Posteriori (MAP) Estimator

Review

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n (data).

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Maximum Likelihood Estimator (MLE)

What is the parameter θ that maximizes the likelihood of our observed data $(X_1, X_2, ..., X_n)$?

$$L(\theta) = f(X_1, X_2, \dots, X_n | \theta)$$

$$= \prod_{i=1}^{n} f(X_i | \theta)$$

$$\theta_{MLE} = \arg \max_{\theta} f(X_1, X_2, ..., X_n | \theta)$$
likelihood of data

Maximum

a Posteriori

(MAP)

Estimator

Given our observed data

 $(X_1, X_2, ..., X_n),$

what is the most likely

parameter θ ?

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$
posterior distribution

of θ

Observe data

Choose model with parameter θ

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\arg\max} f(\theta|X_1, X_2, ..., X_n)$$

$$= \underset{\theta}{\arg\max} \left(\log g(\theta) + \sum_{i=1}^n \log f(X_i|\theta) \right)$$

Two valid approaches to computing θ_{MAP}

> Mode of posterior distribution of θ

> > or

maximize

log prior + log-likelihood

If we choose a conjugate prior, we avoid calculus with MAP: just report mode of posterior.

Conjugate distributions

Quick MAP for Bernoulli and Binomial

Review

Beta(a, b) is a conjugate prior for the probability of success in Bernoulli and Binomial distributions.

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

Beta(a,b)Prior

Saw a + b - 2 imaginary trials: a - 1 successes, b - 1 failures

Experiment Observe n + m new trials: n successes, m failures

Beta(a + n, b + m)Posterior

 $p = \frac{a+n-1}{a+b+n+m-2}$ MAP:

Conjugate distributions

MAP estimator:

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$$

The mode of the posterior distribution of heta

Distribution parameter	Conjugate distribution
Bernoulli p	Beta
Binomial p	Beta
Multinomial p_i	Dirichlet
Poisson λ	Gamma
Exponential λ	Gamma
Normal μ	Normal
Normal σ^2	Inverse Gamma

Don't need to know Inverse Gamma... but it will know you ©

CS109: We'll only focus on MAP for Bernoulli/Binomial p_i , Multinomial p_i , and Poisson λ .

Multinomial is Multiple times the fun

Dirichlet $(a_1, a_2, ..., a_m)$ is a conjugate for Multinomial.

Generalizes Beta in the same way Multinomial generalizes Bernoulli/Binomial:

$$f(x_1, x_2, ..., x_m) = \frac{1}{B(a_1, a_2, ..., a_m)} \prod_{i=1}^m x_i^{a_i - 1}$$

Dirichlet $(a_1, a_2, ..., a_m)$ **Prior**

Saw $(\sum_{i=1}^{m} a_i) - m$ imaginary trials, with $a_i - 1$ of outcome i

Experiment Observe $n_1 + n_2 + \cdots + n_m$ new trials, with n_i of outcome i

Dirichlet $(a_1 + n_1, a_2 + n_2, ..., a_m + n_m)$ **Posterior**

MAP:
$$p_i = \frac{a_i + n_i - 1}{\left(\sum_{i=1}^{m} a_i\right) + \left(\sum_{i=1}^{m} n_i\right) - m}$$

Good times with Gamma

Gamma(α, β) is a conjugate for Poisson.

- Also conjugate for Exponential, but we won't delve into that
- Mode of gamma: $(\alpha 1)/\beta$

Prior

$$\theta \sim \text{Gamma}(\alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$$

Saw $\alpha-1$ total imaginary events during β prior time periods

Experiment Observe n events during next k time periods

Posterior $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(\alpha + n, \beta + k)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

MAP:
$$\theta_{MAP} = \frac{a+n-1}{\beta+k}$$

MAP for Poisson

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(11,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

- 2. Given your prior, what is the posterior distribution?
- 3. What is θ_{MAP} ?

MAP for Poisson

 $Gamma(\alpha, \beta)$ is conjugate for Poisson

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of θ ~Gamma(11,5)?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

 $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(22,7)$

What is θ_{MAP} ?

 $\theta_{MAP} = 3$, the updated Poisson rate

Where'd you get them priors?

- Let heta be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails $\frac{2}{9}$
 - Prior 2: Beta(7,4): 6 imaginary heads, $\frac{6}{9}$ 3 imaginary tails

Now flip 100 coins and get 58 heads and 42 tails.

- 1. What are the two posterior distributions?
- 2. What are the modes of the two posterior distributions?

Where'd you get them priors?

- Let heta be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, $\frac{2}{9}$ mode: $\frac{2}{9}$
 - Prior 2: Beta(7,4): 6 imaginary heads, $\frac{6}{9}$ 3 imaginary tails

Now flip 100 coins and get 58 heads and 42 tails.

Posterior 1: Beta(61,50) mode: $\frac{60}{109}$

Posterior 2: Beta(65,46) mode: $\frac{64}{109}$

Provided we collect enough data, posteriors will converge to the true value.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 202

Laplace smoothing

MAP with Laplace smoothing: a prior which represents k imagined observations of each outcome.

- Categorical data (i.e., Multinomial, Bernoulli/Binomial)
- Also known as additive smoothing

Imagine k = 1 of each outcome Laplace estimate

(follows from Laplace's "law of succession")

Example: Laplace estimate for coin probabilities from aforementioned

experiment (100 coins: 58 heads, 42 tails)

heads
$$\frac{59}{102}$$
 tails $\frac{43}{102}$

Laplace smoothing:

Easy to implement/remember

Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall
$$\theta_{MLE}$$
: $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12,$

$$p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$$

What are your Laplace estimates for each roll outcome?

Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall
$$\theta_{MLE}$$
: $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12, p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$

What are your Laplace estimates for each roll outcome?

$$p_i = \frac{X_i + 1}{n + m}$$

$$p_1 = 4/18, p_2 = 3/18, p_3 = 1/18,$$
 \checkmark $p_4 = 4/18, p_5 = 2/18, p_6 = 4/18$

Laplace smoothing:

- Easy to implement/remember
- Avoids estimating a parameter of 0