L2 Cultural sharing - practical

File 1: Plant knowledge

- File 1: plant_knowledge.xlsx
- This is an incidence matrix:
 - X individuals by Y plants
- Entry (i, j) indicates whether individual i knows plant j

• Exercise:

Think of other examples of incidence matrices

File 2: Plant participants

File 2: plant_participants.xlsx

- File with info on individuals
 - ID
 - Camp of residence
 - Sex
 - Age (cohort)
 - Place of birth (born, born_cluster)

• Exercise: based on the two files, which questions about cultural knowledge or transmission could you ask?

Individual and group knowledge

- Plants:
 - Are plants equally known?
 - Distribution of plant knowledge
- Subjects:
 - Is there significant variation in plant knowledge across individuals?
- Relation between individuals and plant knowledge
 - Is there an effect of sex, age, birth place on plant knowledge?
 - Group comparisons
 - Total score: linear regression
 - One plant at a time (subject knows/doesn't know a plant: logistic regression
 - All plants: mixed effects logistic regression controlling for subject ID

Shared knowledge

- In addition to analysing individual knowledge and group differences, we can investigate shared knowledge as a proxy for knowledge transmission
- Analysing shared knowledge at the simplest level requires creation of dyads (individual pairs)
 - advantages?
 - limitations?
- Dyads become datapoints
 - Dyadic characteristics must be defined based on the two individuals

Exercise:

Based on file *plant_participants*, how can you define

- i) dyadic sex?
- ii) dyadic age?
- iii) dyadic birth place?

Defining dyadic characteristics

- We must create variables with dyadic
 - ID
 - sex
 - etc

Exercise:

- Think of a case where dyadic characteristics may differ between/among
 - female-female vs. female-male vs. male-male
 - same sex (male-male or female-female) vs. different sex (female-male)

Plant knowledge

 We can encode shared knowledge by dyads based on individual knowledge

on marviauai knowiedge		C 1	C2	C3	C4
 We start with an <i>incidence</i> matrix rows: subjects S columns: characteristics C 	S 1	1	0	0	0
	S2	1	1	0	0
	S 3	1	1	1	0
	S 4	0	1	1	0
	S5	0	0	1	1
	<u>S6</u>	0	0	0	1

- Let's create a fake plant knowledge matrix where
 - Rows are individuals
 - Columns are medicinal plant species
 - Values: 1 (subject i knows plant j) or 0 (doesn't know it)

Shared (dyadic) knowledge

- We want to create all possible dyads
 - avoiding repetition
 - Links are not directional
 - (a,b) = (b,a)

See code

Exercise: run very simple and preliminary analyses on the *m.dyads* file

- Using proportion tests, is there a difference in shared knowledge as a function of
 - dyadsex
 - samesex
- Run a logistic regression to predict shared knowledge as a function of
 - dyadsex
 - samesex
- Which other ways could you analyse this dataset?

Task for this week:

Start working on a dataset of shared plant knowledge using real data from files

- plant_knowledge
- plant_participants
- (This is the dataset you will require for Report 1!)