Club de Algoritmos de Sinaloa Notebook

Contents

1		plates		3
	1.1 1.2	Template C++		3
	1.3	Template Python		3
2	Data	Structure		4
_	2.1	DSU Rollback		4
	2.2	Dynamic Li Chao Tree		4
	2.3	Fenwick Tree		4
	2.5	Fraction	: :	4
	2.6	Li Chao Tree		5
	2.7 2.8	Line Container		5 5
	2.9	Mo Queries		5
	2.10	Order Statistics Tree		6
	2.11 2.12	Segment Tree		6
	2.12	Segment Tree 2D		6 6
	2.14	Segment Tree Persistent		6
	2.15	Segment Tree Sparse		7
	2.16 2.17	Sparse Table		7 7
3		nberTheory		8
	3.1	CRT		8
	3.2	Euclid		8 8
	3.4	Linear Sieve		8
	3.5	Mobius		8
	3.6 3.7	Mod Inverse		8 8
	3.8	Mod Pow	: :	8
	3.9	Sieve		8
	<u> </u>			
4	4.1	lbinatorial		9
	4.2	Combinations		9
5	Nun	nerical		10
	5.1	Determinant		10
	5.2 5.3	FFT		10 10
	5.4	Simplex		11
	5.5	Simpson		11
e	DP			12
6	6.1	Deque Tecnique		12
	6.2	Digit		12
	6.3	Knapsack		12
	6.4 6.5	LIS		12 12
	6.6	TSP		12
7	Grap			14
	$7.1 \\ 7.2$	2SAT		14 14
	7.3	Maximal Cliques		14
	7.4	Maximum Clique		14
	7.5 7.6	SCC		15 15
	7.7	Hopcroft Karp		15
	7.8	Hungarian		16
	7.9	Kuhn		16
	7.10 7.11	Minimum Vertex Cover		16 16
	7.12	Prim		16
	7.13	Hierholzer		16
	7.14	Topological Sort		17
	7.15 7.16	Dinic		17 17
	7.17	Min Cost Max Flow		17
	7.18	Push Relabel		18
	7.19 7.20	Bellman-Ford		18 18
	7.20	Dijkstra		18
	7.22	Binary Lifting LCA		19
	7.23	Centroid Decomposition		19
	7.24 7.25	Euler Tour		19 19
	1.20			19
8	Strir	ngs		21
		Aho Corasick		21
	8.1			
	8.1 8.2 8.3	Dynamic Aho Corasick Evil Hashing		21 22

	8.4	Hashing	. 22
	8.5	Hashing Dynamic	. 22
	8.6	KMP	. 23
	8.7	KMPAutomaton	. 23
	8.8	Manacher	. 23
	8.9	Palindromic Tree	. 23
	8.10	Suffix Array	. 24
	8.11	Suffix Automaton	. 24
	8.12	Suffix Tree	. 24
	8.13	Trie	. 25
	8.14	ZAlgorithm	. 25
9	Geor	ometry	26
	9.1	Circle	. 26
	9.2	Closest Pair	. 26
	9.3	Convex Hull	. 26
	9.4	Half Plane	. 26
	9.5	Line	. 27
	9.6	Point	. 27
	9.7	Point3D	. 28
	9.8	Polar Sort	. 28
	9.9	Polygon	. 28
	9.10	Segment	. 29
10	Extr	mo.c.	30
10	10.1		
		Bits	
	10.2	Busquedas	
	10.3	Dates	
	10.4	Hash Pair	
	10.5	Random	
	10.6	Trucos	
	10.7	int128	. 31

1 Templates

1.1 Template C++

```
#include <bits/stdc++.h>
using namespace std;
// Pura Gente del Coach Moy
using 11 = long long;
using pi = pair<int, int>;
using vi = vector<int>;
#define pb push_back
#define SZ(x) ((int)(x).size())
#define ALL(x) begin(x), end(x)
#define FOR(i, a, b) for (int i = (int)a; i < (int)b; ++i)</pre>
#define ROF(i, a, b) \
 for (int i = (int)a - 1; i >= (int)b; --i)
#define ENDL '\n'
signed main() {
  cin.tie(0)->sync_with_stdio(0);
  return 0;
```

1.2 Template Max

```
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using pi = pair<int, int>;
using pl = pair<11, 11>;
using pd = pair<double, double>;
using vi = vector<int>;
using vb = vector<bool>;
using v1 = vector<11>;
using vd = vector<double>;
using vs = vector<string>;
using vpi = vector<pi>;
using vpl = vector<pl>;
using vpd = vector<pd>;
// pairs
#define mp make_pair
#define fi first
#define se second
// vectors
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define ins insert
#define ft front()
#define bk back()
#define pb push_back
#define eb emplace_back
#define lb lower bound
#define ub upper_bound
#define tcT template <class T
tcT > int lwb(vector<T> &a, const T &b) {
  return int(lb(all(a), b) = bg(a));
// loops
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define FOR(i, a) FOR(i, 0, a)
#define ROF(i, a, b) for (int i = (a)-1; i \ge (b); --i)
#define ROF(i, a) ROF(i, a, 0)
```

```
#define ENDL '\n'
#define LSOne(S) ((S) & -(S))
#define MSET(arr, val) memset(arr, val, sizeof arr)
const int MOD = 1e9 + 7;
const int MAXN = 1e5 + 5;
const int INF = 1e9;
const 11 LLINF = 1e18;
const int dx[4] = \{1, 0, -1, 0\},\
         dy[4] = {
              0, 1, 0,
              -1}; // abajo, derecha, arriba, izquierda
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
int main() {
  ios_base::sync_with_stdio(0);
  cin.tie(nullptr);
  return 0;
```

1.3 Template Python

```
import sys
import math
import bisect
from sys import stdin, stdout
from math import gcd, floor, sqrt, log
from collections import defaultdict as dd
from bisect import bisect_left as bl, bisect_right as br
sys.setrecursionlimit(100000000)
def inp():
    return int(input())
def strng():
    return input().strip()
def jn(x, 1):
    return x.join(map(str, 1))
def strl():
    return list(input().strip())
def mul():
    return map(int, input().strip().split())
def mulf():
    return map(float, input().strip().split())
def seq():
    return list(map(int, input().strip().split()))
    return int(x) if (x == int(x)) else int(x) + 1
def ceildiv(x, d):
    return x // d if (x % d == 0) else x // d + 1
def flush():
    return stdout.flush()
```

```
def stdstr():
    return stdin.readline()

def stdint():
    return int(stdin.readline())

def stdpr(x):
    return stdout.write(str(x))

mod = 1000000007
```

2 DataStructure

2.1 DSU Rollback

```
* Descripcion: Estructura de conjuntos disjuntos con la
 * capacidad de regresar a estados anteriores.
 * Si no es necesario, ignorar st, time() y rollback().
 * Uso: int t = uf.time(); ...; uf.rollback(t)
 * Tiempo: O(log n)
 * Status: testeadisimo
struct RollbackDSU {
  vector<int> e;
  vector<pi> st;
  void init(int n) { e = vi(n, -1); }
  int size(int x) { return -e[get(x)]; }
  int get(int x) {
    return e[x] < 0 ? x : e[x] = get(e[x]);
  int time() { return st.size(); }
  void rollback(int t) {
   for (int i = time(); i-- > t;)
     e[st[i].first] = st[i].second;
   st.resize(t);
  bool join(int a, int b) {
    a = get(a), b = get(b);
    if (a == b) return false;
   if (e[a] > e[b]) swap(a, b);
   st.push_back({a, e[a]});
    st.push_back({b, e[b]});
    e[a] += e[b];
   e[b] = a;
    return true;
};
```

2.2 Dynamic Li Chao Tree

```
* Descripcion: El Arbol de Li-Chao es una estructura de
 * datos utilizada en algoritmos de programacion dinamica
 * y geometrica para realizar consultas de maximo (o
 * minimo) en un conjunto de puntos en una linea (o un
 * plano). Tiempo : Construccion : O(N log N) Insercion y
 * Consultas : O(log N) Alternativa, construcion dinamica
 * mas eficiente.
 * **Cuidado con la memoria dinamica pude causar errores
 * si no se tiene cuidado.
 * **Recomendacion: No hacer declaraciones globales
struct Line {
 11 m, c;
 11 eval(int x) { return m * x + c; }
struct node {
 Line line:
  node* left = nullptr;
  node* right = nullptr:
  node(Line line) : line(line) {}
  void add_segment(Line nw, ll l, ll r, ll L, ll R) {
   if (1 > r || r < L || 1 > R) return;
   11 m = (1 + 1 == r ? 1 : (1 + r) / 2);
   if (1 >= L \text{ and } r <= R) {
     bool lef = nw.eval(1) < line.eval(1);</pre>
      bool mid = nw.eval(m) < line.eval(m);</pre>
     if (mid) swap(line, nw);
      if (l == r) return;
```

```
if (lef != mid) {
       if (left == nullptr)
         left = new node(nw);
          left->add_segment(nw, 1, m, L, R);
       if (right == nullptr)
         right = new node(nw);
         right->add_segment(nw, m + 1, r, L, R);
      return:
   if (max(1, L) <= min(m, R)) {</pre>
      if (left == nullptr) left = new node({0, inf});
      left->add_segment(nw, 1, m, L, R);
   if (\max(m + 1, L) \le \min(r, R)) {
     if (right == nullptr) right = new node({0, inf});
      right->add segment(nw, m + 1, r, L, R);
 11 query_segment(11 x, 11 1, 11 r, 11 L, 11 R) {
   if (1 > r || r < L || 1 > R) return inf;
   11 m = (1 + 1 == r ? 1 : (1 + r) / 2);
   if (1 >= L \text{ and } r <= R) {
     11 ans = line.eval(x);
      if (1 < r) {
       if (x <= m && left != nullptr)</pre>
         ans = min(ans,
                    left->query_segment(x, l, m, L, R));
       if (x > m && right != nullptr)
         ans = min(ans, right->query_segment(x, m + 1, r,
                                              L, R));
      return ans:
   11 ans = inf;
   if (max(1, L) <= min(m, R)) {</pre>
     if (left == nullptr) left = new node({0, inf});
     ans = min(ans, left->query_segment(x, 1, m, L, R));
   if (max(m + 1, L) \le min(r, R)) {
     if (right == nullptr) right = new node({0, inf});
      ans = min(ans.
                right->query_segment(x, m + 1, r, L, R));
   return ans;
};
struct LiChaoTree { // the input values for lichaotree
                     // are boundaries of x values you can
                     // use to query with
 int L, R;
 node* root:
 LiChaoTree()
     : L(numeric_limits<int>::min() / 2),
       R(numeric_limits<int>::max() / 2),
       root(nullptr) {}
 LiChaoTree(int L, int R) : L(L), R(R) {
   root = new node({0, inf});
 void add_line(Line line) {
   root->add_segment(line, L, R, L, R);
  // y = mx + b: x in [1, r]
 void add segment(Line line, int 1, int r) {
   root->add_segment(line, L, R, l, r);
 11 query(int x) {
   return root->query_segment(x, L, R, L, R);
 11 query_segment(int x, int 1, int r) {
   return root->query_segment(x, 1, r, L, R);
};
```

2.3 Fenwick Tree

```
* Descripcion: arbol binario indexado, util para
 * consultas en donde es posible hacer
 * inclusion-exclusion, suma, multiplicacion, etc.
 * O(log n)
struct FT {
  vector<ll> s:
 FT(int n) : s(n) {}
  void update(int pos, ll dif) { // a[pos] += dif
    for (; pos < SZ(s); pos |= pos + 1) s[pos] += dif;</pre>
  11 query(int pos) { // sum of values in [0, pos)
    for (; pos > 0; pos &= pos - 1) res += s[pos - 1];
    return res;
  int lower_bound(
     11 sum) { // min pos st sum of [0, pos] >= sum
    // Returns n if no sum is >= sum, or -1 if empty sum
    if (sum <= 0) return -1;</pre>
    int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1)
      if (pos + pw <= SZ(s) && s[pos + pw - 1] < sum)</pre>
       pos += pw, sum -= s[pos - 1];
    return pos;
};
```

2.4 Fenwick Tree 2D

```
* Descripcion: arbol binario indexado 2D, util para
 * consultas en un espacio 2D como una matriz
 * Construir el BIT: O(NM log(N) *log(M))
 * Consultas y Actualizaciones: O(log(N)*log(M))
int ft[MAX + 1][MAX + 1];
void upd(int i0, int j0, int v) {
  for (int i = i0 + 1; i <= MAX; i += i & -i)</pre>
    for (int j = j0 + 1; j \le MAX; j += j & -j)
     ft[i][j] += v;
int get(int i0, int j0) {
 int r = 0;
  for (int i = i0; i; i -= i & -i)
   for (int j = j0; j; j -= j & -j) r += ft[i][j];
 return r:
int get_sum(int i0, int j0, int i1, int j1) {
 return get(i1, j1) - get(i1, j0) - get(i0, j1) +
        get(i0, j0);
```

2.5 Fraction

```
/**
 * Descripcion: estructura para manejar fracciones.
 * Se asume que el denominador no es cero.
 * Tiempo por operacion: O(1)
 */
*/
struct Frac {
```

```
int num, den;
  Frac(int num, int den) {
    int g = gcd(num, den);
    this->num = num / q;
   this->den = den / q;
  Frac operator*(Frac& f) const {
    return Frac(num * f.num, den * f.den);
  Frac operator/(Frac& f) const {
   return (*this) * Frac(f.den, f.num);
  Frac operator+(Frac& f) const {
   return Frac(num * f.den + den * f.num, den * f.den);
  Frac operator-(Frac& f) const {
    return Frac(num * f.den - den * f.num, den * f.den);
  bool operator<(Frac& other) const {
    return num * other.den < other.num * den;</pre>
  bool operator==(Frac& other) const {
   return num == other.num && den == other.den;
  bool operator!=(Frac& other) const {
   return ! (*this == other);
};
```

2.6 Li Chao Tree

```
* Descripcion: El Arbol de Li-Chao es una estructura de
 * datos utilizada en algoritmos de programacion dinamica
 * y geometrica para realizar consultas de maximo (o
 * minimo) en un conjunto de puntos en una linea (o un
 * plano). Tiempo : Construccion : O(N log N) Insercion y
 * Consultas : O(log N)
class LiChao {
 vector<11> m. b:
  int n, sz;
#define gx(i) (i < sz ? x[i] : x[sz - 1])
  void update(int t, int l, int r, ll nm, ll nb) {
   11 x1 = nm * gx(1) + nb, xr = nm * gx(r) + nb;
    11 \text{ yl} = m[t] * qx(1) + b[t], \text{ yr} = m[t] * qx(r) + b[t];
   if (yl >= xl && yr >= xr) return;
    if (yl <= xl && yr <= xr) {</pre>
     m[t] = nm, b[t] = nb;
     return:
    int mid = (1 + r) / 2;
    update(t << 1, 1, mid, nm, nb);
    update(1 + (t << 1), mid + 1, r, nm, nb);
 public:
 LiChao(ll *st, ll *en) : x(st) {
    sz = int(en - st);
   for (n = 1; n < sz; n <<= 1)
   m.assign(2 * n, 0);
   b.assign(2 * n, -INF);
  void insert_line(ll nm, ll nb) {
   update(1, 0, n - 1, nm, nb);
 11 query(int i) {
   11 \text{ ans} = -INF;
    for (int t = i + n; t; t >>= 1)
     ans = max(ans, m[t] * x[i] + b[t]);
    return ans:
```

2.7 Line Container

};

```
* Line Container (Convex Hull Trick)
 * Descripcion: Contenedor donde puedes anadir lineas en
 * forma kx+m, y hacer consultas al valor maximo en un
 * punto x. Pro-Tip: Si se busca el valor minimo en un
 * punto x, anadir las lineas con pendiente K negativa (la
 * consulta se dara de forma negativa)
 * Tiempo: O(log n)
struct Line (
  mutable 11 k, m, p;
  bool operator<(const Line& o) const { return k < o.k; }</pre>
  bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (para doubles, usar inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG MAX;
  11 div(ll a, ll b) { // floored division
  return a / b - ((a ^ b) < 0 && a % b);</pre>
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == v->k)
     x->p = x->m > y->m ? inf : -inf;
     x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() && isect(--x, y))
     isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
      isect(x, erase(y));
  11 query(11 x) {
    assert(!empty());
    auto 1 = *lower_bound(x);
    return 1.k * x + 1.m;
};
```

2.8 Matrix

```
* Descripcion: estructura de matriz con algunas
* operaciones basicas se suele utilizar para la
* multiplicacion y/o exponenciacion de matrices
* Aplicaciones:
* Calcular el n-esimo fibonacci en tiempo logaritmico,
* esto es posible ya que para la matriz M = {{1, 1},{1,
* 0}}, se cumple que M^n = \{ \{F[n + 1], F[n]\}, \{F[n], F[n]\} \}
* - 2]}} Dado un grafo, su matriz de adyacencia M, y otra
* matriz P tal que P = M^k, se puede demostrar que
* P[i][i] contiene la cantidad de caminos de longitud k
* que inician en el i-esimo nodo y terminan en el
* Tiempo: O(n^3 * log p) para la exponenciacion
 * y O(n^3) para la multiplicacion
template <typename T>
struct Matrix {
 using VVT = vector<vector<T>>;
```

```
VVT M:
Matrix (VVT aux) : M(aux) {}
Matrix operator* (Matrix& other) const {
  assert(SZ(M[0]) == SZ(other.M));
  int k = SZ(other.M[0]);
  VVT C(n, vector<T>(k, 0));
  FOR(i, 0, SZ(M))
  FOR(j, 0, k) FOR(l, 0, SZ(M[0])) C[i][j] =
     (C[i][j] + M[i][l] * other.M[l][j] % MOD) % MOD;
  return Matrix(C);
Matrix operator^(ll p) const {
  assert(p >= 0);
  Matrix ret(VVT(n, vector<T>(n))), B(*this);
  FOR(i, 0, n) { ret.M[i][i] = 1; }
  while (p) {
   if (p & 1) ret = ret * B;
   >>= 1:
   B = B * B;
  return ret;
void print() {
  cout << "----" << ENDL;
  FOR(i, 0, n) {
   FOR(j, 0, m) { cout << M[i][j] << ' '; }
   cout << ENDL;
  cout << "************ << ENDL;
```

2.9 Mo Queries

```
* Mos Algorithm
 * Descripcion: Es usado para responder consultas en
 * intervalos (L,R) de manera offline con base a un
 * orden especial basado en bloques moviendose de una
 * consulta a la siquiente anadiendo/removiendo puntos
 * en el inicio o el final. Rango de query inclusivo a
 * la izquierda y exclusivo a la derecha.
 * Tiempo: O((N + Q) \text{ sqrt}(N))
void add(int idx, int end) {
} // add a[idx] (end = 0 or 1)
void del(int idx, int end) {} // remove a[idx]
int calc() { . . . }
                               // compute current answer
vi mosAlgo(vector<pi> Q) {
 // IMPORTANT!! blk ~= N/sqrt(0)
  int L = 0, R = 0, b1k = 350;
 vi s(SZ(Q)), res = s;
#define K(x) \
 pi(x.first / blk, x.second ^ -(x.first / blk & 1))
  iota(ALL(s), 0);
  sort (ALL(s),
       [\&] (int s, int t) { return K(Q[s]) < K(Q[t]); });
  for (int gi : s) {
   pi q = Q[qi];
    while (L > q.first) add (--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < q.first) del(L++, 0);
    while (R > q.second) del(--R, 1);
    res[qi] = calc();
  return res;
```

2.10 Order Statistics Tree

```
* Descripcion: es una variante del BST, que ademas
 * soporta 2 operaciones extra ademas de insercion,
 * busqueda y eliminacion: Select(i) - find_by_order:
 * encontrar el i-esimo elemento (0-indexado) del conjunto
 * ordenado de los elementos, retorna un iterador. Rank(x)
 * - order_of_key: numero de elementos estrictamente
 * menores a x
 * Uso: oset<int> OST Funciona como un set,
 * por lo que nativamente no soporta elementos repetidos.
 * Si se necesitan repetidos, pero no eliminar valores,
 * cambiar la funcion comparadora por less_equal<T>. Si se
 * necesitan repetidos y tambien la eliminacion, agregar
 * una dimension a T en en donde el ultimo parametro sea
 * el diferenciador (por ejemplo, si estamos con enteros,
 * utilizar un pair donde el second sea unico). Modificar
 * el primer y tercer parametro (tipo y funcion
 * comparadora), si se necesita un mapa, en lugar de
 * null_type, escribir el tipo a mapear.
 * Tiempo: O(log n)
#include <bits/extc++.h>
using namespace __gnu_pbds;
template <class T>
using oset = tree<T, null_type, less<T>, rb_tree_tag,
                 tree_order_statistics_node_update>;
```

2.11 Segment Tree

```
* Descripcion: segment tree para suma en rango y
 * actualizacion en punto. Rangos no inclusivos a la der.
 * [a,b) es el rango de la query y [s, e) el del nodo
 * Uso: STree st;st.init(arr);st.upd(0, 3);st.query(0, n);
 * Tiempo de construccion: O(n)
 * Tiempo de consulta v actualizacion: O(log n)
 * Memoria total: O(n + qlog(n))
 * Status: testeado en CSES Hotel Queries
#define NEUT 0
struct STree {
 int n;
 STree(int n) : st(4 * n + 5, NEUT), n(n) {}
  int comb(int x, int y) { return x + y; }
 void init(int k, int s, int e, vi& a) {
   if (s + 1 == e) {
     st[k] = a[s];
     return:
   int m = (s + e) / 2;
    init(2 * k + 1, s, m, a);
    init(2 * k + 2, m, e, a);
   st[k] = comb(st[2 * k + 1], st[2 * k + 2]);
  int query(int k, int s, int e, int a, int b) {
   if (a <= s && e <= b) return st[k];</pre>
   if (e <= a || s >= b) return NEUT;
    int m = (s + e) / 2;
   return comb (query (2 * k + 1, s, m, a, b)).
               query (2 * k + 2, m, e, a, b));
 void upd(int k, int s, int e, int i, int v) {
   if (e <= i || s > i) return;
   if (s + 1 == e) {
     st[k] = v;
     return:
    int m = (s + e) / 2;
```

```
upd(2 * k + 1, s, m, i, v);
upd(2 * k + 2, m, e, i, v);
st[k] = comb(st[2 * k + 1], st[2 * k + 2]);
}
int query(int a, int b) { return query(0, 0, n, a, b); }
void upd(int i, int v) { upd(0, 0, n, i, v); }
void init(vi& a) { init(0, 0, n, a); };
```

2.12 Segment Tree 2D

```
* Descripcion: segment tree 2D para suma en un
 * rectangulo y actualizacion en punto.
 * Implementacion iterativa para usar x4 menos memoria.
 * Uso: STree st(n,m); st.build(a); st.query(x0,y0,x1,y1);
 * (x0, y0) es la esquina superior izquierda (inclusiva)
 * y (x1, y1) la esquina inferior derecha (exclusiva)
 * Tiempo de construccion: O(nm)
 * Tiempo de consulta y actualizacion: O(log n log m)
 * Memoria total: O(nm)
 * Status: testeado en CSES Forest Oueries II
#define NEUT 0
struct STree (
 int n, m;
  vector<vi> st:
 STree(int n, int m)
     : st(2 * n, vi(2 * m, NEUT)), n(n), m(m) {}
  int comb(int x, int y) { return x + y; }
  void build(vector<vi>& a) {
   FOR(i, 0, n) FOR(j, 0, m) st[i + n][j + m] = a[i][j];
    FOR(i, 0, n)
    for (int j = m - 1; j; ---j) st[i + n][j] =
        comb(st[i + n][j << 1], st[i + n][j << 1 | 1]);
    for (int i = n - 1; i; --i) FOR(i, 0, 2 * m)
    st[i][j] = comb(st[i << 1][j], st[i << 1 | 1][j]);
  void upd(int x, int y, int v) {
    st[x + n][y + m] = v;
    for (int j = y + m; j > 1; j >>= 1)
     st[x + n][j >> 1] =
         comb(st[x + n][j], st[x + n][j ^ 1]);
    for (int i = x + n; i > 1; i >>= 1)
      for (int j = y + m; j; j >>= 1)
        st[i >> 1][j] = comb(st[i][j], st[i ^ 1][j]);
  int query(int x0, int y0, int x1, int y1) {
   int r = 0:
    for (int i0 = x0 + n, i1 = x1 + n; i0 < i1;
        i0 >>= 1, i1 >>= 1) {
      int t[4], q = 0;
     if (i0 & 1) t[q++] = i0++;
      if (i1 & 1) t[q++] = --i1;
     FOR (k, 0, q)
      for (int j0 = y0 + m, j1 = y1 + m; j0 < j1;
          j0 >>= 1, j1 >>= 1) {
       if (j0 & 1) r = comb(r, st[t[k]][j0++]);
       if (j1 \& 1) r = comb(r, st[t[k]][--j1]);
    return r;
};
```

2.13 Segment Tree Lazy

```
/**
 * Descripcion: lazy segment tree para suma y
 * actualizacion en rango. Rangos no inclusivos a la der.
 * [a,b) es el rango de la query y [s, e) el del nodo
```

```
* Si los incrementos pueden ser negativos o cero,
* utilizar arreglo extra has_lazy, o buscar otro neutral
 * Uso: STree st;st.init(arr);st.upd(0, n, 3);st.query(0,
 * n); Tiempo de construccion: O(n) Tiempo de consulta y
 * actualizacion: O(log n) Status: testeado en CSES
* Dynamic Range Sum Queries
#define LAZY NEUT 0
#define VAL NEUT 0
struct STree {
 int n;
 vector<int> st, lazy;
 STree(int n)
     : st(4 * n + 5, VAL_NEUT),
       lazv(4 * n + 5, LAZY NEUT).
       n(n) {}
  int comb(int x, int y) { return x + y; }
 void init(int k, int s, int e, vi& a) {
   if (s + 1 == e) {
     st[k] = a[s];
     return;
   int m = (s + e) / 2;
   init(2 * k + 1, s, m, a);
   init(2 * k + 2, m, e, a);
   st[k] = comb(st[2 * k + 1], st[2 * k + 2]);
  void push(int k, int s, int e) {
   if (lazy[k] == LAZY NEUT) return;
   st[k] += (e - s) * lazy[k];
   if (s + 1 != e)
     lazy[2 * k + 1] += lazy[k],
         lazy[2 * k + 2] += lazy[k];
   lazy[k] = LAZY_NEUT;
  int query(int k, int s, int e, int a, int b) {
   push(k, s, e);
    if (a <= s && e <= b) return st[k];</pre>
   if (e <= a || s >= b) return VAL_NEUT;
   int m = (s + e) / 2;
   return comb (query (2 * k + 1, s, m, a, b)).
               query (2 * k + 2, m, e, a, b);
 void upd(int k, int s, int e, int a, int b, int v) {
   push(k, s, e);
   if (e <= a || s >= b) return;
   if (a <= s && e <= b) {
     lazy[k] += v;
     push(k, s, e);
   int m = (s + e) / 2;
   upd(2 * k + 1, s, m, a, b, v);
   upd(2 * k + 2, m, e, a, b, v);
   st[k] = comb(st[2 * k + 1], st[2 * k + 2]);
  int query(int a, int b) { return query(0, 0, n, a, b); }
 void upd(int a, int b, int v) { upd(0, 0, n, a, b, v); }
 void init(vi& a) { init(0, 0, n, a); }
```

2.14 Segment Tree Persistent

```
/**
  * Descripcion: segment tree persistente para consulta de
  * minimos en un rango. Un segment tree es persistente si
  * mantiene datos viejos disponible tras actualizaciones.
  * init y upd retornan la nueva raiz, rt es la ultima raiz
  * Para mejorar velocidad, usar arreglos.
  *
  * Uso: STree st;st.init(arr);
  * vi roots;roots.pb(st.upd(0,3));st.query(roots[1], 0,
  * n);
  * Tiempo: log(n) Status: testeado en OmegaUp Campo
```

```
#define NEUT 0
struct STree {
 vi st, L, R;
  int n, sz, rt;
  STree(int n)
     : st(1, NEUT),
        L(1, 0),
        R(1, 0),
        n(n),
        rt(0),
        sz(1) {}
  int comb(int x, int y) { return min(x, y); }
  int new_node(int v, int 1 = 0, int r = 0) {
   int ks = SZ(st);
   st.pb(v):
   L.pb(1):
   R.pb(r);
   return ks:
  int init(int s, int e, vi &a) {
    if (s + 1 == e) return new_node(a[s]);
    int m = (s + e) / 2, 1 = init(s, m, a),
       r = init(m, e, a);
    return new_node(comb(st[1], st[r]), 1, r);
  int upd(int k, int s, int e, int p, int v) {
    int ks = new_node(st[k], L[k], R[k]);
    if (s + 1 == e) {
     st[ks] = v;
      return ks:
    int m = (s + e) / 2, ps;
    if (p < m)
     ps = upd(L[ks], s, m, p, v), L[ks] = ps;
     ps = upd(R[ks], m, e, p, v), R[ks] = ps;
    st[ks] = comb(st[L[ks]], st[R[ks]]);
    return ks;
  int query(int k, int s, int e, int a, int b) {
   if (e <= a || b <= s) return NEUT;</pre>
    if (a <= s && e <= b) return st[k];</pre>
    int m = (s + e) / 2;
   return comb(query(L[k], s, m, a, b),
                query(R[k], m, e, a, b));
  int init(vi &a) { return init(0, n, a); }
  int upd(int k, int p, int v) {
   return rt = upd(k, 0, n, p, v);
  int upd(int p, int v) { return rt = upd(rt, p, v); }
  int query(int k, int a, int b) {
   return query(k, 0, n, a, b);
  };
};
```

* Inestable

2.15 Segment Tree Sparse

```
**

* Descripcion: segment tree esparcido. Para suma en

* rango y actualizacion en punto.

* Un segment tree es esparcido cuando sus nodos se van

* creando conforme se vayan utilizando, lo que permite

* manejar grandes rangos de indices. Es util cuando en

* esta situacion necesitas un algoritmo online (no se

* puede realizar compresion de coordenadas).

* Rangos no inclusivos a la der.

* Para mejorar velocidad, usar arreglos.

* [a,b) es el rango de la query y [s, e) el del nodo

*

* Uso: STree st (le18); st.upd(6, 3); st.query(5, 1e12);

* Tiempo de consulta y actualizacion: O(log n)
```

```
* Memoria total: O(qlog(n))
* Status: testeado en CSES Salary Queries
#define NEUT 0
struct STree {
 int n;
 vi st, L, R;
 STree(int n): st(1, NEUT), L(1, -1), R(1, -1), n(n) {}
 int comb(int x, int y) { return x + y; }
 int new_node() {
   st.pb(NEUT);
   L.pb(-1);
   R.pb(-1);
   return SZ(st) - 1;
 int query(int k, int s, int e, int a, int b) {
   if (k == -1 \mid | e \le a \mid | s >= b) return NEUT;
   if (a <= s && e <= b) return st[k];</pre>
   int m = s + (e - s) / 2;
   return comb(query(L[k], s, m, a, b),
               query(R[k], m, e, a, b));
 int upd(int k, int s, int e, int i, int v) {
   if (e \le i \mid \mid s > i) return k;
   if (k == -1) {
     k = new_node();
   if (s + 1 == e) {
     st[k] = v;
     return k;
   int m = s + (e - s) / 2,
       le = L[k] == -1 ? 0 : st[L[k]],
       ri = R[k] == -1 ? 0 : st[R[k]];
   if (i < m)
     L[k] = upd(L[k], s, m, i, v), le = st[L[k]];
     R[k] = upd(R[k], m, e, i, v), ri = st[R[k]];
   st[k] = comb(le, ri);
   return k;
 int query(int a, int b) { return query(0, 0, n, a, b); }
 void upd(int i, int v) { upd(0, 0, n, i, v); }
```

2.16 Sparse Table

```
* Descripcion: util para consultas min/max en rango para
 * arreglos inmutables, ST[k][i] = min/max(A[i]...A[i +
 * Tiempo: O(n log n) en construccion y O(1)
 * por query
template <class T>
struct SparseTable {
 vector<vector<T>> jmp;
  void init(const vector<T>& V) {
    if (SZ(jmp)) jmp.clear();
    jmp.emplace_back(V);
    for (int pw = 1, k = 1; pw * 2 <= SZ(V);
        pw *= 2, ++k) {
      jmp.emplace_back(SZ(V) - pw * 2 + 1);
      FOR(j, 0, SZ(jmp[k]))
      jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
 T query(int 1, int r) { // [a, b)
    int dep = 31 - __builtin_clz(r - 1);
    return min(jmp[dep][1], jmp[dep][r - (1 << dep)]);</pre>
};
```

2.17 Sub Matrix

```
* Descripcion: Calcula la suma de una submatriz
 * rapidamente, dada la esquina superior izquierda e
 * inferior derecha
 * Uso: SubMatrix<int> m (matriz);
 * m.sum(0,0,2,2); // 4 elemento arriba a la izquierda
 * Tiempo: O(N^2)
template <class T>
struct SubMatrix {
 vector<vector<T>> p;
  SubMatrix(vector<vector<T>>& v) {
   int R = sz(v), C = sz(v[0]);
    p.assign(R + 1, vector<T>(C + 1));
    FOR(r, 0, R)
    FOR(c, 0, C)
    p[r + 1][c + 1] =
       v[r][c] + p[r][c + 1] + p[r + 1][c] - p[r][c];
  T sum(int u, int 1, int d, int r) {
    return p[d][r] - p[d][1] - p[u][r] + p[u][1];
};
```

3 NumberTheory

3.1 CRT

```
/*
 * Teorema del Resto Chino (CRT)
 * Descripcion: Encuentra x dentro de un sistema lineal
 * de congruencias tal que:
 * x = a (mod n)
 * x = b (mod m)
 * Se asume que n*m < 2^62
 *
 * Tiempo: O(log n)
 */

ll crt(ll a, ll m, ll b, ll n) {
 if (n > m) swap(a, b), swap(m, n);
 ll x, y, g = euclid(m, n, x, y);
 assert((a - b) % g == 0); // else no solution
 x = (b - a) % n * x % n / g * m + a;
 return x < 0 ? x + m * n / g : x;
}</pre>
```

3.2 Euclid

```
/**
 * Descripcion: Algoritmo extendido de Euclides,
 * retorna gcd(a, b) y encuentra dos enteros
 * (x, y) tal que ax + by = gcd(a, b), si solo
 * necesitas el gcd, utiliza __gcd (c++14 o
 * anteriores) o gcd (c++17 en adelante)
 * Si a y b son coprimos, entonces x es el
 * inverso de a mod b
 *
 * Tiempo: O(log n)
 */

ll euclid(ll a, ll b, ll &x, ll &y) {
   if (!b) {
      x = 1, y = 0;
      return a;
   }
   ll d = euclid(b, a % b, y, x);
   return y -= a / b * x, d;
}
```

3.3 Linear Diophantine

```
/**
 * Problema: Dado a, b y n. Encuentra x,y que
 * satisfagan la ecuacion ax + by = n.
 * Encuentra una de las soluciones, otras validas
 * pueden obtenerse por medio de:
 * x = x0 + k*(b/g), y = y0 - k*(a/g)
 *
 * Tiempo: O(log n)
 */
pi linear_diophantine(int a, int b, int n) {
 int x0, y0, g = euclid(a, b, x0, y0);
 if (n % g) return (-1, -1); // no solution exists
 x0 *= n / g, y0 *= n / g;
 return {x0, y0};
}
```

3.4 Linear Sieve

```
/**
 * Descripcion: algoritmo para precalcular los
 * numeros primos menor o iguales a N.
 * Sirve como guia para calcular funciones
 * multiplicativas
 *
 * Tiempo: O(n)
 */
void sieve(int N) {
 vi lp(N + 1), pr;
 for (int i = 2; i <= N; ++i) {
  if (lp[i] == 0) {
    lp[i] = i;
    pr.push_back(i);
  }
 for (int j = 0; i * pr[j] <= N; ++j) {
    lp[i * pr[j]] = pr[j];
    if (pr[j] == lp[i]) break;
  }
}</pre>
```

3.5 Mobius

```
* Descripcion: Calcula la funcion de Mobius
* para todo entero menor o igual a n
void mobius(int N) {
 vi mu(N), check(N);
 mu[1] = 1;
 int tot = 0;
 FOR(i, 2, N) {
   if (!check[i]) { // i es primo
     prime[tot++] = i;
     mu[i] = -1;
   FOR(j, 0, tot) {
     if (i * prime[j] > N) break;
     check[i * prime[j]] = true;
     if (i % prime[j] == 0) {
       mu[i * prime[j]] = 0;
       break:
       mu[i * prime[j]] = -mu[i];
```

3.6 Mod Inverse

```
/**
 * Descripcion: Precalculo de modulos
 * inversos para toda x <= MAX.
 * Se asume que LIM <= m y que m es primo
 *
 * Tiempo: O(MAX)
 */
11 inv[MAX];
void precalc_inverse(int m) {
 inv[1] = 1;
 FOR(i, 2, MAX) {
  inv[i] = m - (m / i) * inv[m % i] % m;
 }
}/**
 * Descripcion: Precalculo de un solo
 * inverso, usa el primer metodo si m
 * es primo, y el segundo en otro caso.</pre>
```

```
* Tiempo: O(log m)
*/
#include "Euclid.h"
ll inverse(ll b) { return be(b, MOD - 2) % MOD; }
ll inverse(ll a) {
    ll x, y, d = euclid(a, MOD, x, y);
    assert(d == 1);
    return (x + MOD) % MOD;
```

3.7 Mod Multiplication

```
/**

* Descripcion : Calcula a * b mod m para

* cualquier 0 <= a, b <= c <= 7.2 * 10^18

*

* Tiempo: O(1)

*/

using ull = unsigned long long;
ull modmul(ull a, ull b, ull m) {
    ll ret = a * b - m * ull(1.L / m * a * b);
    return ret + m * (ret < 0) - m * (ret >= (ll)m);
```

3.8 Mod Pow

```
/**
 * Descripcion: Calcula a^b mod m
 *
 * Tiempo: O(log b)
 */
ll be(ll a, ll b, ll m) {
    ll res = 1;
    a % = m;
    while (b) {
        if (b & 1) res = res * a % m;
        a = a * a % m;
        b >>= 1;
    }
    return res;
}
```

3.9 Sieve

```
/**
 * Descripcion: algoritmo para precalcular los
 * numeros primos menor o iguales a N.
 *
 * Tiempo: O(n log(log n))
 */
void sieve(int n) {
 vector<bool> is_prime(n + 1, 1);
 is_prime[0] = is_prime[1] = 0;
 for (ll p = 2; p <= n; p++) {
  if (!is_prime[p]) continue;
  for (ll i = p * p; i <= n; i += p) is_prime[i] = 0;
  primes.push_back(p);
 }
}</pre>
```

4 Combinatorial

4.1 Catalan

4.2 Combinations

```
* Descripcion: Utilizando el metodo de ModOperations.cpp,
 * calculamos de manera eficiente los inversos modulares
 \star de x (arreglo inv) y de x! (arreglo invfact), para toda
 * x < MAX, se utiliza el hecho de que comb(n, k) = (n!) /
 * (k! * (n - k)!)
 * Tiempo: O(MAX) en el precalculo de
 * inversos modulares y O(1) por query.
#include "ModInverse.h";
11 invfact[maxn];
void precalc_invfact() {
  precalc inv();
  invfact[1] = 1;
  for (int i = 2; i < maxn; i++)</pre>
   invfact[i] = invfact[i - 1] * inv[i] % MOD;
11 comb(int n, int k) {
  if (n < k) return 0;
  return fact[n] * invfact[k] % MOD * invfact[n - k] %
        MOD;
 * Descripcion: Se basa en el teorema de lucas, se puede
 * utilizar cuando tenemos una MAX larga y un modulo m
 * relativamente chico.
 * Tiempo: O(m log_m(n))
11 comb(int n, int k) {
  if (n < k || k < 0) return 0;</pre>
  if (n == k) return 1;
  return comb (n % MOD, k % MOD) * comb (n / MOD, k / MOD) %
        MOD:
 * Descripcion: precalculo de combinaciones
 * Tiempo: O(n^2)
11 c[maxn][maxk];
void calc_comb() {
 FOR(i, 0, MAX_N) {
    c[i][0] = c[i][i] = 1;
    FOR(j, 1, i) c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
```

5 Numerical

5.1 Determinant

```
* Descripcion: Calcula la determinante de la matriz.
 * Nota: La matriz se modifica
 * Tiempo: O(n^3)
double det(vector<vector<double>>& a) {
 int n = SZ(a):
  double res = 1;
  FOR(i, 0, n) {
   int b = i;
   FOR(j, i + 1, n)
   if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
   if (i != b) swap(a[i], a[b]), res *= -1;
   res *= a[i][i];
   if (res == 0) return 0;
   FOR(j, i + 1, n)  {
     double v = a[j][i] / a[i][i];
     if (v != 0) FOR(k, i + 1, n) a[j][k] -= v * a[i][k];
 return res:
// Determinante con modulo
// Si se elimina el modulo obtendras la version de solo
11 detMod(vector<vector<ll>>& a, int mod) {
 int n = SZ(a);
  11 \text{ ans} = 1:
  FOR(i, 0, n) {
   FOR(j, i + 1, n) {
     while (a[j][i] != 0) {
       11 t = a[i][i] / a[j][i];
        if (t) FOR(k, i, n)
        a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
   ans = ans * a[i][i] % mod;
   if (!ans) return 0;
  return (ans + mod) % mod;
```

5.2 FFT

```
/*
 * Descripcion: Este algoritmo permite multiplicar dos
 * polinomios de longitud n
 * Tiempo: O(n log n)
 */

typedef double ld;
const ld PI = acos(-1.0L);
const ld one = 1;

typedef complex<ld> C;
typedef vector<ld> vd;

void fft(vector<C> &a) {
   int n = SZ(a), L = 31 - __builtin_clz(n);
   static vector<complex<ld>> R(2, 1);
   static vector<C> rt(2, 1); // * 10% faster if double)
   for (static int k = 2; k < n; k *= 2) {
      R.resize(n);
      rt.resize(n);
      rt.resize(n);</pre>
```

```
auto x = polar(one, PI / k);
   FOR(i, k, 2 * k)
    rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2];
 vi rev(n);
 FOR(i, 0, n)
  rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  FOR(i, 0, n)
 if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) FOR(j, 0, k) {
        // C z = rt[j+k] * a[i+j+k]; // (25% faster if
        // hand-rolled) /// include-line
        auto x = (ld *) &rt[j + k],
            y = (ld *) &a[i + j + k]; /// exclude-line
        C z(x[0] * y[0] - x[1] * y[1],
           x[0] * y[1] + x[1] * y[0]); /// exclude-line
       a[i + j + k] = a[i + j] - z;
       a[i + j] += z;
typedef vector<ll> v1;
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 vl res(SZ(a) + SZ(b) - 1);
 int L = 32 - __builtin_clz(SZ(res)), n = 1 << L;</pre>
 vector<C> in(n), out(n);
 copy(all(a), begin(in));
 FOR(i, 0, SZ(b))
  in[i].imag(b[i]);
 fft(in);
  for (C &x : in) x *= x;
 FOR(i, 0, n)
 out[i] = in[-i & (n - 1)] - conj(in[i]);
  fft(out);
 FOR(i, 0, SZ(res))
  res[i] = floor(imag(out[i]) / (4 * n) + 0.5);
 return res;
vl convMod(const vl &a, const vl &b, const int &M) {
 if (a.empty() || b.empty()) return {};
 vl res(SZ(a) + SZ(b) - 1);
 int B = 32 - __builtin_clz(SZ(res)), n = 1 << B,</pre>
     cut = int(sqrt(M));
  vector<C> L(n), R(n), outs(n), outl(n);
 FOR(i, 0, SZ(a))
 L[i] = C((int)a[i] / cut, (int)a[i] % cut);
 FOR(i, 0, SZ(b))
 R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
 FOR(i, 0, n) {
    int j = -i & (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  FOR(i, 0, SZ(res)) {
   11 av = 11(real(outl[i]) + .5),
      cv = 11(imag(outs[i]) + .5);
       11(imag(out1[i]) + .5) + 11(real(outs[i]) + .5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res;
```

5.3 Gauss

```
/*
 * Descripcion: Dado un sistema de N ecuaciones lineales
 * con M incognitas, determinar si existe solucion,
 * infinitas soluciones o en caso de que halla al menos
 * una, encontrar cualquiera de ellas.
```

```
* Tiempo: O(n^3)
int gauss(vector<vector<double>> &a,
         vector<double> &ans) {
  int n = SZ(a), m = SZ(a[0]) - 1;
 vi where(m, -1);
  for (int col = 0, row = 0; col < m && row < n; ++col) {</pre>
   int sel = row:
   FOR(i, row, n)
   if (abs(a[i][col]) > abs(a[sel][col])) sel = i;
   if (abs(a[sel][col]) < EPS) continue;</pre>
   FOR(i, col, m + 1)
   swap(a[sel][i], a[row][i]);
   where[col] = row;
   FOR(i, 0, n) {
     if (i != row) {
       double c = a[i][col] / a[row][col];
        for (int j = col; j \le m; ++j)
         a[i][j] -= a[row][j] * c;
   ++row:
  ans.assign(m, 0);
 FOR(i, 0, m) {
   if (where[i] != -1)
     ans[i] = a[where[i]][m] / a[where[i]][i];
 FOR(i, 0, n) {
   double sum = 0;
   FOR(j, 0, m)
   sum += ans[j] * a[i][j];
   if (abs(sum - a[i][m]) > EPS) return 0;
  FOR (i, 0, m)
 if (where[i] == -1)
   return 1e9: /// infinitas soluciones
 return 1:
// Gauss con MOD
// Nota: es necesario la funcion modInverse
// Si MOD = 2, se convierte en operacion XOR y se puede
// utilizar un bitset para construir la ecuacion
// (disminuye la complejidad)
11 gaussMod(vector<vi> &a, vi &ans) {
 11 n = SZ(a), m = SZ(a[0]) - 1;
 vi where (m, -1);
  for (ll col = 0, row = 0; col < m && row < n; ++col) {</pre>
   ll sel = row;
   FOR(i, row, n)
   if (abs(a[i][col]) > abs(a[sel][col])) sel = i;
   if (abs(a[sel][col]) <= EPS) continue;</pre>
    FOR(i, col, m + 1)
   swap(a[sel][i], a[row][i]);
    where[col] = row;
   FOR(i, 0, n) {
     if (i != row) {
       11 c = 1LL * a[i][col] * modInverse(a[row][col]) %
               MOD;
        for (ll j = col; j <= m; ++j)</pre>
         a[i][j] = (MOD + a[i][j] -
                     (1LL * a[row][j] * c) % MOD) %
   ++row;
  ans.assign(m, 0);
 FOR (i. 0. m) {
   if (where[i] != -1)
```

```
ans[i] = 1LL * a[where[i]][m] *
    modInverse(a[where[i]][i]) % MOD;
}
FOR(i, 0, n) {
    11 sum = 0;
    FOR(j, 0, m)
    sum = (sum + 1LL * ans[j] * a[i][j]) % MOD;
    if (abs(sum - a[i][m]) > EPS) return 0;
}
FOR(i, 0, m)
if (where[i] == -1)
    return 1e9; /// infinitas soluciones
return 1;
```

5.4 Simplex

```
* Descripcion: Es un algoritmo de programacion lineal
 * para resolver problemas de optimizacion. El objetivo es
 * maximizar una funcion lineal(c) sujeta a un conjunto de
 * restricciones lineales(b). Maximiza cTx sujeto a Ax <
 * Uso: T val = LPSolver(A, b, c).solve(x);
 * Entrada: A -> MxN matriz de r
           b -> un vector de tamano M (restricciones)
           c -> un vector de tamano N (maximizar)
           x -> un vector donde la solucion optima es
 * almacenado Salida: el valor maximo de la solucion
 * optima. (Infinito en un caso ilimtado)
 * Tiempo:
 * O(NM*#pivotes) donde el #pivotes en el peor caso es
 * exponencial
typedef double T;
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1 / .0;
#define MP make_pair
#define ltj(X) \
 if (s == -1 \mid | MP(X[j], N[j]) < MP(X[s], N[s])) s = j
struct LPSolver {
  int m, n;
  vi N, B;
  vvd D;
  LPSolver(const vvd& A, const vd& b, const vd& c)
     : m(SZ(b)).
        n(SZ(c)),
        N(n + 1),
        B(m),
        D(m + 2, vd(n + 2)) {
    FOR(i, 0, m)
    FOR(j, 0, n)
    D[i][j] = A[i][j];
    FOR(i, 0, m) {
     B[i] = n + i;
     D[i][n] = -1;
     D[i][n + 1] = b[i];
    FOR(j, 0, n) {
     N[j] = j;
     D[m][j] = -c[j];
   N[n] = -1;
   D[m + 1][n] = 1;
  void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
   FOR(i, 0, m + 2)
```

```
if (i != r && abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
     FOR(j, 0, n + 2)
     b[j] = a[j] * inv2;
     b[s] = a[s] * inv2;
   FOR(j, 0, n + 2)
   if (j != s) D[r][j] *= inv;
   FOR (i, 0, m + 2)
   if (i != r) D[i][s] *= -inv;
   D[r][s] = inv;
   swap(B[r], N[s]);
 bool simplex(int phase) {
   int x = m + phase - 1;
   for (;;) {
     int s = -1;
     FOR(j, 0, n + 1)
     if (N[j] != -phase) ltj(D[x]);
     if (D[x][s] >= -eps) return true;
     int r = -1;
     FOR(i, 0, m) {
       if (D[i][s] <= eps) continue;</pre>
       if (r == -1 ||
           MP(D[i][n + 1] / D[i][s], B[i]) <
               MP(D[r][n + 1] / D[r][s], B[r]))
          r = i:
     if (r == -1) return false;
     pivot(r, s);
 T solve(vd& x) {
   int r = 0;
   FOR(i, 1, m)
   if (D[i][n + 1] < D[r][n + 1]) r = i;
   if (D[r][n + 1] < -eps) {
     pivot(r, n);
     if (!simplex(2) || D[m + 1][n + 1] < -eps)</pre>
       return -inf;
     FOR(i, 0, m)
     if (B[i] == -1) {
       int s = 0;
       FOR(j, 1, n + 1)
       ltj(D[i]);
       pivot(i, s);
   bool ok = simplex(1);
   x = vd(n);
   FOR(i, 0, m)
   if (B[i] < n) x[B[i]] = D[i][n + 1];</pre>
   return ok ? D[m][n + 1] : inf;
};
```

5.5 Simpson

```
}
s *= h / 3;
return s;
}
```

6 DP

6.1 Deque Tecnique

```
* Descripcion: algoritmo que resuelve el problema de el
 * minimo o maximo valor de cada sub-array de longitud
 * fija. Enunciado: Dado un arreglo de numeros A de
 * longitud n y un numero k \le n. Encuentra el minimo para
 * cada sub-array contiguo de longitud k. La estrategia se
 * basa en el uso de una bicola monotona, en donde en cada
 * iteracion sacamos del final de la bicola hasta que este
 * vacia o nos encontremos con un A[j] > A[i], luego
 * agregamos i, manteniendose de manera decreciente, si el
 * frente se sale del rango, lo sacamos y el nuevo frente
 * seria el mayor en el rango (A[i]...A[i + k - 1]). Este
 * algoritmo gana fuerza cuando se generaliza a mas
 * dimensiones: digamos que queremos el mayor en una
 * sub-matriz dada, se puede precalcular el B para cada
 * fila y luego volvemos a correr el algoritmo sobre
 * dichos valores. Retorna un vector B, en donde B[i] = j,
 * tal que A[j] >= A[i], ..., A[i + k - 1]
 * Tiempo: O(n)
vector<int> solve(vector<int>& A, int k) {
  vector<int> B(A.size() - k + 1);
 deque<int> dq;
  for (int i = 0; i < A.size(); i++) {</pre>
   while (!dq.empty() && A[dq.back()] <= A[i])</pre>
     dg.pop back();
    dq.pb(i):
   if (dq.front() <= i - k) dq.pop_front();</pre>
   if (i + 1 >= k) B[i + 1 - k] = A[dq.front()];
```

6.2 Digit

```
* Descripcion: algoritmo que resuelve un problema de DP
 * de digitos. La DP de digitos se requiere cuando se
 * trabaja sobre cadenas (normalmente numeros) de una gran
 * cantidad de digitos y se requiere saber cuantos numeros
 * en un rango cumplen con cierta propiedad. Enunciado del
 * problema resuelto: Dada una cadena s que contiene
 * numeros y caracteres ? encontrar el minimo entero, tal
 * que se forme asignandole valores a los ? y ademas sea
 * divisible por D; si no existe, imprimir un *
 * Tiempo:
 * O(n^2)
 */
string s;
int D:
stack<int> st:
bool dp[MAXN][MAXN]; // He pasado por aqui?
bool solve(int i, int residuo) {
  if (dp[i][residuo]) return false;
  if (i == s.length()) return residuo == 0;
  if (s[i] == '?') {
    for (int k = (i == 0); k <= 9; k++) {
      if (solve(i + 1, (residuo * 10 + k) % D)) {
        st.push(k);
        return true:
  } else {
   if (solve(i + 1, (residuo * 10 + (s[i] - '0')) % D)) {
```

```
st.push(s[i] - '0');
    return true;
}
dp[i][residuo] = true;
return false;
}
int main() {
    cin >> s >> D;
    if (solve(0, 0)) {
        while (!st.empty()) {
            cout << st.top();
            st.pop();
        }
        cout << ENDL;
} else
        cout << "*\n";
return 0;</pre>
```

6.3 Knapsack

```
* Descripcion: algoritmo para resolver el problema de la
 * mochila: se cuenta con una coleccion de N objetos donde
 * cada uno tiene un peso y un valor asignado, y una
 * mochila con capacidad maxima C. Se necesita maximizar
 \star la suma de valores que se puede lograr sin que se
 * exceda C.
 * Tiempo: O(NC)
int peso[MAXN], valor[MAXN], dp[MAXN][MAXC];
int N. C:
int solve(int i, int c) {
  if (c < 0) return -INF;</pre>
  if (i == N) return 0;
  int &ans = dp[i][c];
  if (ans != -1) return ans;
  return dp[i][c] =
             max(solve(i + 1, c), opcion2,
                 valor[i] + solve(i + 1, c - peso[i]));
```

6.4 LIS

```
int lis_sz = 0, lis_end = 0;
for (int i = 0; i < n; i++) {
    L[i] = L_id[i] = 0;
    p[i] = -1;
}

for (int i = 0; i < n; i++) {
    int pos = lower_bound(L, L + lis_sz, nums[i]) - L;
    L[pos] = nums[i];
    L_id[pos] = i;

    p[i] = pos ? L_id[pos - 1] : -1;

    if (pos == lis_sz) {
        lis_sz = pos + 1;
        lis_end = i;
    }
    return lis_sz;
}</pre>
```

6.5 Monotonic Stack

```
* Descripcion: Usando la tecnica de la pila monotona para
* calcular para cada indice, el elemento menor a la
* izquierda
* Tiempo: O(n)
int main() {
 ios_base::sync_with_stdio(0);
 cin.tie(nullptr);
 int n = 12,
     heights[n] = \{1, 8, 4, 9, 9, 10, 3, 2, 4, 8, 1, 13\},
     leftSmaller[n];
  stack<int> st;
  FOR(i, 0, n) {
   while (!st.empty() && heights[st.top()] > heights[i])
     st.pop();
   if (st.empty())
     leftSmaller[i] = -1;
     leftSmaller[i] = st.top();
    st.push(i);
```

6.6 TSP

```
/**
 * Descripcion: algoritmo para resolver el problema del
 * viajero (TSP): consiste en encontrar un recorrido que
 * visite todos los vertices del grafo, sin repeticiones y
 * con el costo minimo. Este codigo resuelve una variante
 * del TSP donde se puede comenzar en cualquier vertice y
 * no necesita volver al inicial.
 *
 * Tiempo: O(2^n * n)
 */

constexpr int MAX_NODES = 15;
int n, dist[MAX_NODES][MAX_NODES],
    dp[MAX_NODES][1 << (MAX_NODES] + 1)];

int solve(int i, int mask) {
    if (mask == (1 << n) - 1) return 0;
    int &ash = dp[i][mask];
    if (ans != -1) return ans;
    ans = INF;</pre>
```

7 Graphs

7.1 2SAT

```
* Descripcion: estructura para resolver el problema de
* TwoSat: dadas disyunciones del tipo (a or b) donde las
* variables pueden o no estar negadas, se necesita saber
* si es posible asignarle un valor a cada variable de tal
 * modo que cada disyuncion se cumpla. Las variables
 * negadas son representadas por inversiones de bits (~x)
* TwoSat ts(numero de variables booleanas);
 * ts.either(0, ~3);
                          La variable 0 es verdadera
 * o la variable 3 es falsa ts.setValue(2);
 * variable 2 es verdadera ts.atMostOne({0, ~1, 2}); <=
* 1 de vars 0, ~1 y 2 son verdedero ts.solve(); Retorna
 * verdadero si existe solucion ts.values[0..N-1] Tiene
 * los valores asignados a las variables
* Tiempo: O(N + E).
 * donde N es el numero de variables booleanas y E es el
 * numero de clausulas
struct TwoSat {
 int N;
 vector<vi> q;
 vi values; // 0 = false, 1 = true
 TwoSat (int n = 0) : N(n), q(2 * n) {}
 int addVar() {
   g.emplace_back();
   g.emplace_back();
   return N++;
 // Agregar una disyuncion
 void either(
     int y) { // Nota: (a v b), es equivalente a la
               // expresion (~a -> b) n (~b -> a)
   x = max(2 * x, -1 - 2 * x).
   y = max(2 * y, -1 - 2 * y);
   g[x].push_back(y ^ 1), g[y].push_back(x ^ 1);
 void setValue(int x) { either(x, x); }
 void implies(int x, int y) { either(~x, y); }
 void make_diff(int x, int y) {
   either(x, y);
   either(~x, ~y);
 void make_eq(int x, int y) {
   either(~x, y);
   either(x, ~y);
 void atMostOne(const vi& li) {
   if (li.size() <= 1) return;</pre>
   int cur = "li[0];
   for (int i = 2; i < li.size(); i++) {</pre>
     int next = addVar();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
     cur = "next;
   either(cur, ~li[1]);
 vi dfs_num, comp;
 stack<int> st;
 int time = 0;
 int tarjan(int u) {
   int x, low = dfs_num[u] = ++time;
   st.push(u);
```

```
for (int v : g[u])
     if (!comp[v])
       low = min(low, dfs_num[v] ?: tarjan(v));
   if (low == dfs_num[u]) {
       x = st.top();
       st.pop();
       comp[x] = low;
       if (values[x >> 1] == -1) values[x >> 1] = x & 1;
     } while (x != u);
   return dfs_num[u] = low;
 bool solve() {
   values.assign(N, -1);
   dfs_num.assign(2 * N, 0);
   comp.assign(2 * N, 0);
   for (int i = 0; i < 2 * N; i++)
     if (!comp[i]) tarjan(i);
   for (int i = 0; i < N; i++)
     if (comp[2 * i] == comp[2 * i + 1]) return 0;
   return 1:
};
```

/// ignora 'cands' y muevete hacia nodos en orden de grado /// creciente, donde los los grados bajan al eliminar /// nodos (en su mayoria irrelevante dado MaximumClique) typedef bitset<128> B; template <class F> void cliques(vector& eds, F f, B P = ~B(), B X = {}, $B R = \{\}\}$ **if** (!P.any()) { if (!X.any()) f(R); auto q = (P | X)._Find_first(); auto cands = P & ~eds[q]; rep(i, 0, sz(eds)) if (cands[i]) { R[i] = 1;cliques(eds, f, P & eds[i], X & eds[i], R); R[i] = P[i] = 0;X[i] = 1;

* Tiempo: O(3^{V/3}), mucho mas veloz para grafos

/// Posible optimizacion: en el mayor nivel de recursion

7.2 Bridges And Articulation Points

```
* Descripcion: basado en la clasificación de aristas por
 * medio del arbol de dfs, donde una arista es puente si
 * no existe un back-edge que cruce por encima, los puntos
 * de articulacion se obtienen de forma similar. Retorna
 * los puentes y un vector donde art[i] = 1 si el i-esimo
 * nodo es un punto de articulacion.
 * Tiempo: O(V + E)
pair<vector<pi>, vi> findBridgesAndArticulationPoints(
   vector<vi>& g) {
  int n = SZ(g), t = 0;
 vector<pi> bridges;
 vi tin(n, -1), low(n, -1), art(n);
  auto dfs = [\&] (auto self, int u, int p = -1) -> void {
   tin[u] = low[u] = t++;
   int children = 0;
   for (int v : g[u])
     if (v != p) {
       if (tin[v] != -1) {
         low[u] = min(low[u], tin[v]);
          continue;
       self(self, v, u);
       if (low[v] >= tin[u] && p != -1) art[u] = 1;
       if (low[v] > tin[u]) bridges.pb({u, v});
       low[u] = min(low[u], low[v]);
       children++;
   if (p == -1 && children > 1) art[u] = 1;
 FOR(u, 0, n) if (tin[u] == -1) dfs(dfs, u);
  return {bridges, art};
```

7.3 Maximal Cliques

```
**

**Descripcion: Corre un callback para todos los cliques

**maximales en un grafo (dado como una matriz simetrica

** de bitset; aristas propias no permitidas). El callback

** recibe un bitset representando al clique maximal.

**
```

7.4 Maximum Clique

* dispersos.

```
* Descripcion: Rapidamente encuentra el clique maximo de
 * un grafo (dado como una matriz simetrica de bitset;
 * aristas propias no permitidas). Puede ser usado para
* encontrar un conjunto independiente maximo, encontrando
 * un clique del grafo complemento.
 * Tiempo: aproximadamente 1s para n=155 y el peor caso
 * para grafos aleatorios (p=.90), mas veloz para grafos
 * dispersos.
typedef vector<br/>bitset<200>> vb:
struct Maxclique {
 double limit = 0.025, pk = 0;
 struct Vertex {
   int i, d = 0;
 typedef vector<Vertex> vv;
 vb e:
  vv V;
  vector<vi> C;
 vi qmax, q, S, old;
  void init(vv& r) {
   for (auto \& v : r) v.d = 0;
   for (auto& v : r)
    for (auto j : r) v.d += e[v.i][j.i];
    sort (ALL(r),
        [] (auto a, auto b) { return a.d > b.d; });
   int mxD = r[0].d;
   FOR(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
  void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
   old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
      q.push_back(R.back().i);
      vv T:
      for (auto v : R)
       if (e[R.back().i][v.i]) T.push back({v.i});
      if (sz(T)) {
        if (S[lev]++ / ++pk < limit) init(T);</pre>
        int j = 0, mxk = 1,
            mnk = max(sz(qmax) - sz(q) + 1, 1);
        C[1].clear(), C[2].clear();
        for (auto v : T) {
         int k = 1;
```

```
auto f = [&](int i) { return e[v.i][i]; };
          while (any_of(ALL(C[k]), f)) k++;
          if (k > mxk) mxk = k, C[mxk + 1].clear();
          if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        FOR(k, mnk, mxk + 1)
        for (int i : C[k]) T[j] . i = i,
                           T[j++].d = k;
        expand(T, lev + 1);
        else if (sz(q) > sz(qmax))
        amax = a:
      q.pop_back(), R.pop_back();
  vi maxClique() {
   init(V), expand(V);
    return qmax;
  Maxclique (vb. conn)
     : e(conn), C(sz(e) + 1), S(sz(C)), old(S) {
    FOR(i, 0, sz(e)) V.push_back({i});
};
```

7.5 SCC

```
* Descripcion: algoritmo de Tarjan para la busqueda de
 * componentes fuertemente conexos (SCC)
 * Idea: Los SCC forman subarboles en el arbol de
 * expansion de la DFS. Ademas de calcular tin(u) y low(u)
 * para cada vertice, se agrega el vertice u al final de
 * una pila z y mantenemos la informacion de que vertices
 * estan siendo explorados, mediante vi vis. Solo los
 * vertices visitados (parte del SCC actual) pueden
 * actualizar low(u). Si low(u) = tin(u), u es la raiz de
 * un SCC y sus miembros pueden obtenerse sacando de la
 * pila. Retorna un vector, donde scc[u] es el indice de
 * su SCC.
 * Tiempo: O(V + E)
vi scc(vector<vi>& g) {
 int n = SZ(g), t = 0, ncomps = 0;
  vi tin(n), scc(n, -1), z;
  auto dfs = [&](auto&& self, int u) -> int {
   int low = tin[u] = ++t, x;
   z.push_back(u);
   for (auto v : g[u])
     if (scc[v] < 0)
       low = min(low, tin[v] ?: self(self, v));
   if (low == tin[u]) {
     do {
       x = z.back();
       z.pop_back();
       scc[x] = ncomps;
      } while (x != u);
     ncomps++;
   return tin[u] = low;
 FOR(i, 0, n) if (scc[i] == -1) dfs(dfs, i);
  return scc:
```

7.6 General Matching

```
/**
 * Descripcion: Variante de la implementacion de Gabow
 * para el algoritmo de Edmonds-Blossom. Maximo
 * emparejamiento sin peso para un grafo en general, con
```

```
* Tiempo: O(VE), mas rapido en la practica.
struct MaxMatching {
 int N;
 vector<vi> adj;
 vector<pi> label;
 vi mate, first;
 vector<bool> white;
 MaxMatching(int N)
     : N(_N),
       adj(vector<vi>(N + 1)),
       mate(vi(N + 1)),
       first(vi(N + 1)),
       label(vector<pi>(N + 1)),
       white (vector < bool > (N + 1)) {}
 void addEdge(int u, int v) {
   adj.at(u).pb(v), adj.at(v).pb(u);
 int group(int x) {
   if (white[first[x]]) first[x] = group(first[x]);
   return first[x];
 void match(int p, int b) {
   swap(b. mate[pl):
   if (mate[b] != p) return;
   if (!label[p].second)
     mate[b] = label[p].first,
     match(label[p].first, b); // label del vertice
     match(label[p].first, label[p].second),
          match(label[p].second,
                label[p].first); // label de la arista
 bool augment(int st) {
   assert(st);
   white[st] = 1;
   first[st] = 0;
   label[st] = {0, 0};
   queue<int> q:
   q.push(st);
   while (!q.empty()) {
     int a = q.front();
     q.pop(); // vertice exterior
     for (auto& b : adj[a]) {
       assert(b);
       if (white[b]) {
          int x = group(a), y = group(b), lca = 0;
          while (x \mid | y) {
           if (y) swap(x, y);
            if (label[x] == pi\{a, b\}) {
             lca = x:
             break;
           label[x] = \{a, b\};
           x = group(label[mate[x]].first);
          for (int v : {group(a), group(b)})
           while (v != lca) {
             assert(!white[v]); // haz blanco a todo a
                                  // lo largo del camino
              a.push(v):
             white[v] = true;
first[v] = lca;
             v = group(label[mate[v]].first);
        } else if (!mate[b]) {
         mate[b] = a;
          match(a, b);
          white = vector<bool>(N + 1); // reset
          return true;
       } else if (!white[mate[b]]) {
```

* indexacion. Si despues de terminar la llamada a

* solve(), white[v] = 0, v es parte de cada matching

```
white[mate[b]] = true;
    first[mate[b]] = b;
    label[b] = {0, 0};
    label[mate[b]] = pi{a, 0};
    q.push(mate[b]);
    }
} return false;
}
int solve() {
    int ans = 0;
    FOR(st, 1, N + 1) if (!mate[st]) ans += augment(st);
    FOR(st, 1, N + 1)
    if (!mate[st] && !white[st]) assert(!augment(st));
    return ans;
}
};
```

7.7 Hopcroft Karp

```
* Descripcion: Algoritmo rapido para maximo
 * emparejamiento bipartito. el grafo g debe de ser una
 * lista de los vecinos de la particion izquierda y m el
 * numero de nodos en la particion derecha. Retorna
 * (Numero de emparejamientos, btoa[]) donde btoa[i] sera
 * el emparejamiento para el vertice i del lado derecho o
 * -1 si no lo tiene
 * Tiempo: O(sqrt(V)E)
pair<int, vi> hoperoftKarp(vector<vi>& q, int m) {
 int res = 0:
  vi btoa(m, -1), A(SZ(g)), B(m), cur, next;
  auto dfs = [&](auto self, int a, int L) -> bool {
   if (A[a] != L) return 0;
    A[a] = -1;
    for (int b : g[a])
     if (B[b] == L + 1) {
       B[b] = 0;
        if (btoa[b] == -1 \mid \mid self(self, btoa[b], L + 1))
         return btoa[b] = a, 1;
    return 0;
  while (1) {
   fill(ALL(A), 0);
    fill(ALL(B), 0);
    /// Encuentra los nodos restantes para BFS (i.e. con
    /// layer 0)
    cur.clear():
    for (int a : btoa)
    if (a != -1) A[a] = -1;
    FOR(a, 0, SZ(g)) if (A[a] == 0) cur.pb(a);
    /// Encunetra todas las layers usando BFS
    for (int lay = 1;; lay++) {
     bool islast = 0;
     next.clear();
     for (int a : cur)
        for (int b : q[a]) {
         if (btoa[b] == -1) {
            B[b] = lav;
            islast = 1;
         } else if (btoa[b] != a && !B[b]) {
            B[b] = lay;
            next.pb(btoa[b]);
     if (islast) break;
     if (next.empty()) return {res, btoa};
     for (int a : next) A[a] = lay;
      cur.swap(next);
    /// Usa DFS para escanear caminos aumentantes
    FOR(a, 0, SZ(g)) res += dfs(dfs, a, 0);
```

7.8 Hungarian

```
* Descripcion: Dado un grafo bipartito ponderado,
 * empareja cada nodo en la izquierda con un nodo en la
 * derecha, tal que ningun nodo pertenece a 2
 * emparejamientos y que la suma de los pesos de las
 * aristas usadas es minima. Toma a[N][M], donde a[i][j]
 * es el costo de emparejar L[i] con R[j], retorna (costo
 * minimo, match), donde L[i] es emparejado con
 * R[match[i]], negar costos si se requiere el
 * emparejamiento maximo, se requiere que N <= M.
 * Tiempo:
 * O(N^2 M)
template <typename T>
pair<T, vi> hungarian(const vector<vector<T>> &a) {
#define INF numeric_limits<T>::max()
 if (a.empty()) return {0, {}};
  int n = SZ(a) + 1, m = SZ(a[0]) + 1;
  vi p(m), ans(n-1);
 vector<T> u(n), v(m);
  FOR(i, 1, n) {
   p[0] = i;
    int j0 = 0; // agregar trabajador "dummy" 0
   vector<T> dist(m, INF);
   vi pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
     done[j0] = true;
     int i0 = p[j0], j1;
     T delta = INF;
     FOR (j, 1, m)
     if (!done[j]) {
        auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
        if (cur < dist[j]) dist[j] = cur, pre[j] = j0;</pre>
        if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      FOR(j, 0, m) {
        if (done[j])
         u[p[j]] += delta, v[j] -= delta;
         dist[j] -= delta;
      i0 = i1;
    } while (p[j0]);
    while (j0) { // actualizar camino alternativo
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
 FOR (j, 1, m)
 if (p[j]) ans[p[j] - 1] = j - 1;
  return {-v[0], ans};
```

7.9 Kuhn

```
/**
 * Descripcion: Algoritmo simple para maximo
 * emparejamiento bipartito. el grafo g debe de ser una
 * lista de los vecinos de la particion izquierda y m el
 * numero de nodos en la particion derecha. Retorna
 * (|matching|, btoa) donde btoa[i] sera el emparejamiento
 * para el vertice i del lado derecho o -1 si no lo tiene
 *
 * Tiempo: O(VE)
 */
pair<int, vi> kuhn(vector<vi>& g, int m) {
```

```
vi vis, btoa(m, -1);
auto dfs = [&](auto self, int j) -> bool {
  if (btoa[j] == -1) return 1;
  vis[j] = 1;
  int di = btoa[j];
  for (int e : g[di])
    if (!vis[e] && self(self, e)) {
     btoa[e] = di;
     return 1;
  return 0:
FOR(i, 0, SZ(g)) {
  vis.assign(SZ(btoa), 0);
  for (int j : q[i])
   if (dfs(dfs, j)) {
     btoa[j] = i;
     break:
return {SZ(btoa) - (int)count(ALL(btoa), -1), btoa};
```

7.10 Minimum Vertex Cover

```
* Descripcion: Encuentra los vertices en el minimum
* vertex cover de un grafo bipartito, si solo se quiere
* la cardinalidad leer teoria.
* Tiempo: depende el
* algoritmo de matching que se use
#include "Kuhn.h" // o hopcroft karp
vi cover(vector<vi>& g, int n, int m) {
 auto [res, btoa] = kuhn(q, m);
 vector<bool> lfound(n, true), seen(m);
 for (int it : btoa)
   if (it != -1) lfound[it] = false;
 vi q, cover;
 FOR(i, 0, n) if (lfound[i]) q.push_back(i);
 while (!q.empty()) {
   int u = q.back();
   q.pop_back();
   lfound[u] = 1;
   for (int v : g[u])
     if (!seen[v] && btoa[v] != -1) {
       seen[v] = true;
       g.push_back(btoa[v]);
 FOR(i, 0, n) if (!lfound[i]) cover.push_back(i);
 FOR(i, 0, m) if (seen[i]) cover.push_back(n + i);
 assert(sz(cover) == res);
 return cover;
```

7.11 Kruskal

```
/**

* Descripcion: tiene como principal funcion calcular la

* suma del peso de las aristas del arbol minimo de

* expansion (MST) de un grafo no dirigido, la estrategia

* es ir construyendo gradualmente el MST, donde

* iterativamente se coloca la arista disponible con menor

* peso y ademas no conecte 2 nodos que pertenezcan al

* mismo componente.

* Tiempo: O(E log E) Status: testeado

* en ICPC LATAM 2017 - Imperial Roads

*/
```

```
#include <.../Data Structure/DSU.h>
int kruskal(int n, vector<tuple<int, int, int>>& e) {
    sort(ALL(e));
    DSU dsu;
    dsu.init(n);
    int mst = 0;
    for (auto& [w, u, v] : e)
        if (dsu.get(u) != dsu.get(v)) {
            mst += w;
            dsu.join(u, v);
            if (--n == 1) break;
        }
    return mst;
}
```

7.12 Prim

```
* Descripcion: tiene como principal funcion calcular la
 * suma del peso de las aristas del arbol minimo de
 * expansion (MST) de un grafo, la estrategia es ir
 * construyendo gradualmente el MST, se inicia con un nodo
 * arbitrario y se agregan sus aristas con nodos que no
 * hayan sido agregados con anterioridad y se va tomando
 * la de menor peso hasta completar el MST.
 * Tiempo: O(E
* log E)
int prim(vector<vector<pi>>& a) {
 vector<bool> taken(SZ(g), 0);
  priority_queue<pi> pq;
 auto process = [&](int u) -> void {
   taken[u] = 1;
   for (auto& [v, w] : g[u])
     if (!taken[v]) pq.push((-w, v));
  process(0);
  int totalWeight = 0, takenEdges = 0;
  while (!pq.empty() && takenEdges != SZ(g) - 1) {
   auto [w, u] = pq.top();
   pq.pop();
   if (taken[u]) continue;
   totalWeight -= w;
   process(u);
    ++takenEdges;
  return totalWeight;
```

7.13 Hierholzer

```
/*

* Descripcion: busca un camino euleriano en el grafo

* dado. Un camino euleriano se define como el recorrido

* de un grafo que visita cada arista del grafo

* exactamente una vez Un grafo no dirigido es euleriano

* si, y solo si: es conexo y todos los vertices tienen un

* grado par Un grafo dirigido es euleriano si, y solo si:

* es conexo y todos los vertices tienen el mismo numero

* de aristas entrantes y salientes. Si hay, exactamente,

* un vertice u que tenga una arista saliente adicional y,

* exactamente, un vertice v que tenga una arista entrante

* adicional, el grafo contara con un camino euleriano de

* u a v

* Tiempo: O(E)

*/

int N;

vector<vi>graph; // Grafo dirigido

vi hierholzer(int s) {
```

```
vi ans, idx(N, 0), st;
st.pb(s);
while (!st.empty()) {
  int u = st.back();
  if (idx[u] < (int)graph[u].size()) {
    st.pb(graph[u][idx[u]]);
    ++idx[u];
  } else {
    ans.pb(u);
    st.pop_back();
  }
reverse(all(ans));
return ans;</pre>
```

7.14 Topological Sort

```
* Descripcion: algoritmo para obtener el orden topologico
 * de un grafo dirigido, definido como el ordenamiento de
 * sus vertices tal que para cada arista (u, v), u este
 * antes que v en el ordenamiento. Si existen ciclos,
 * dicho ordenamiento no existe.
 * Tiempo: O(V + E)
int V;
vi graph[MAXN];
vi sorted nodes:
bool visited[MAXN];
void dfs(int u) {
 visited[u] = true;
  for (auto v : graph[u])
   if (!visited[v]) dfs(v);
  sorted nodes.push(u):
void toposort() {
  for (int i = 0; i < V; i++)</pre>
    if (!visited[i]) dfs(i);
  reverse (ALL (sorted_nodes));
  assert(sorted_nodes.size() == V);
void lexicographic_toposort() {
  priority_queue<int> q;
  for (int i = 0; i < V; i++)
   if (in_degree[i] == 0) q.push(-i);
  while (!q.empty()) {
   int u = -q.top();
   g.pop();
    sorted_nodes.push_back(u);
    for (int v : graph[u]) {
     in_degree[v]--;
      if (in_degree[v] == 0) q.push(-v);
  assert(sorted nodes.size() == V);
```

7.15 Dinic

```
/**
 * Descripcion: algoritmo para calcular el flujo maximo en
 * un grafo
 * Tiempo: O(V^2 E)
 */
```

```
template <typename T>
struct Dinic {
#define INF numeric_limits<T>::max()
 struct Edge {
   int to, rev;
    T c, oc;
    T flow() {
     return max(oc - c, T(0));
    } // if you need flows
 }:
 vi lvl, ptr, q;
 vector<vector<Edge>> adj;
 Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
  void addEdge(int a, int b, T c, T rcap = 0) {
    adj[a].push_back({b, SZ(adj[b]), c, c});
    adj[b].push_back({a, SZ(adj[a]) - 1, rcap, rcap});
  T dfs(int v, int t, T f) {
    if (v == t || !f) return f;
    for (int& i = ptr[v]; i < SZ(adj[v]); i++) {</pre>
     Edge& e = adj[v][i];
      if (lvl[e.to] == lvl[v] + 1)
       if (T p = dfs(e.to, t, min(f, e.c))) {
         e.c -= p, adj[e.to][e.rev].c += p;
          return p:
    return 0;
 T calc(int s, int t) {
    T flow = 0;
   q[0] = s;
    FOR(L, 0, 31)
    do { // 'int L=30' maybe faster for random data
     lvl = ptr = vi(SZ(q));
     int qi = 0, qe = lvl[s] = 1;
      while (qi < qe && !lvl[t]) {
       int v = q[qi++];
       for (Edge e : adj[v])
          if (!lvl[e.to] && e.c >> (30 - L))
           q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
     while (T p = dfs(s, t, INF)) flow += p;
    while (lvl[t])
    return flow;
 bool leftOfMinCut(int a) { return lvl[a] != 0; }
```

7.16 Johnson

void init(int _N) {

```
* Descripcion: maximo flujo de coste minimo. Asume costos
* negativos, pero no soporta ciclos negativos.
* Tiempo:
* FALTA!!!
struct MCMF {
 using F = 11;
 using C = 11; // tipo de flujo y de costo
 struct Edge {
   int to, rev;
   F flo. cap:
   C cost:
 int NO;
 const 11 INF = 1e18;
 vector<C> p, dist;
 vii pre;
 vector<vector<Edge>> adj;
```

```
N0 = N;
   p.resize(N0);
   dist.resize(N0);
   pre.resize(NO);
   adj.resize(N0);
  void ae(int u, int v, F cap, C cost) { // Agregar
   assert(cap >= 0);
   adj[u].push_back(
        {v, (int)adj[v].size(), 0, cap, cost});
    adj[v].push_back(
        {u, (int)adj[u].size() - 1, 0, 0, -cost});
  bool path(int s, int t) {
   dist.assign(NO, INF);
   using T = pair<C, int>;
   priority_queue<T, vector<T>, greater<T>> todo;
    todo.push({dist[s] = 0, s});
    while (todo.size()) {
     T x = todo.top();
     todo.pop();
     if (x.first > dist[x.second]) continue;
      for (auto e : adj[x.second]) {
       if (e.flo < e.cap &&
           (dist[e.to] >
            x.first + e.cost + p[x.second] - p[e.to])) {
          dist[e.to] =
             x.first + e.cost + p[x.second] - p[e.to];
         pre[e.to] = {x.second, e.rev};
          todo.push({dist[e.to], e.to});
   return dist[t] != INF;
  pair<F, C> calc(int s, int t, bool hasNegCost = false) {
   assert(s != t);
   if (hasNegCost) { // Se encarga de costos negativos
     for (int k = 0; k < N0; k++)
       for (int i = 0; i < N0; i++)
          for (auto e : adj[i]) // Bellman-Ford, 0 index
           if (e.cap && (p[e.to] > p[i] + e.cost))
             p[e.to] = p[i] + e.cost;
   F totFlow = 0;
   C totCost = 0;
    while (path(s, t)) {
     for (int i = 0; i < N0; i++) p[i] += dist[i];</pre>
     F df = INF;
     for (int x = t; x != s; x = pre[x].first) {
       Edge& e =
           adj[pre[x].first][adj[x][pre[x].second].rev];
       if (df > e.cap - e.flo) df = e.cap - e.flo;
      totFlow += df;
      totCost += (p[t] - p[s]) * df;
      for (int x = t; x != s; x = pre[x].first) {
       Edge& e = adj[x][pre[x].second];
        e.flo -= df:
       adj[pre[x].first][e.rev].flo += df;
   } // Retorna el maximo flujo, costo minimo
    return {totFlow, totCost};
};
```

7.17 Min Cost Max Flow

/**
 * Descripcion: maximo flujo de coste minimo. Se permite
 * que cap[i][j] != cap[j][i], pero las aristas dobles no
 * lo estan, si los costos pueden ser negativos, llamar a

```
* setpi antes que calc, los ciclos con costos negativos
 * no son soportados.
 * Tiempo: aproximadamente O(E^2)
#include <bits/extc++.h> // importante de incluir
const 11 INF = numeric_limits<11>::max() / 4;
typedef vector<11> VL;
struct MCMF {
 int N;
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen;
  VL dist. pi:
  vector<pair<ll, ll>> par;
  MCMF (int N)
     : N(N),
        ed(N),
        red(N),
        cap(N, VL(N)),
        flow(cap),
        cost (cap),
        seen(N).
        dist(N),
        pi(N),
        par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from);
  void path(int s) {
    fill(ALL(seen), 0);
    fill(ALL(dist), INF);
    dist[s] = 0;
    ll di:
    __gnu_pbds::priority_queue<pair<11, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    g.push({0, s});
    auto relax = [&](int i, ll cap, ll cost, int dir) {
     11 val = di - pi[i] + cost;
      if (cap && val < dist[i]) {</pre>
        dist[i] = val;
        par[i] = {s, dir};
        if (its[i] == q.end())
         its[i] = q.push({-dist[i], i});
        else
         q.modify(its[i], {-dist[i], i});
    };
    while (!q.empty()) {
     s = q.top().second;
      q.pop();
      seen[s] = 1;
      di = dist[s] + pi[s];
      for (int i : ed[s])
        if (!seen[i])
         relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (int i : red[s])
        if (!seen[i])
          relax(i, flow[i][s], -cost[i][s], 0);
   pi[i] = min(pi[i] + dist[i], INF);
  pair<ll, ll> calc(int s, int t) {
    11 totflow = 0, totcost = 0;
    while (path(s), seen[t]) {
     11 fl = INF;
```

```
for (int p, r, x = t; tie(p, r) = par[x], x != s;
          x = p)
        fl = min(fl,
               r ? cap[p][x] - flow[p][x] : flow[x][p]);
      totflow += fl;
      for (int p, r, x = t; tie(p, r) = par[x], x != s;
        if (r)
         flow[p][x] += fl;
         flow[x][p] -= fl;
    FOR(i, 0, N)
    FOR(j, 0, N) totcost += cost[i][j] * flow[i][j];
    return {totflow, totcost};
 void setpi(int s) {
   fill(ALL(pi), INF);
    pi[s] = 0;
    int it = N, ch = 1;
    11 v:
    while (ch-- && it--) FOR(i, 0, N)
    if (pi[i] != INF)
     for (int to : ed[i])
       if (cap[i][to])
         if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
           pi[to] = v, ch = 1;
    assert(it >= 0);
};
```

7.18 Push Relabel

```
* Descripcion: algoritmo push-relabel para calcular el
* flujo maximo en un grafo, bastante rapido en la
* practica
* Tiempo: $0(V^2\sqrt E)$
template <typename T>
struct PushRelabel {
 struct Edge {
   int dest, back;
   T f, c;
 vector<vector<Edge>> g;
 vector<T> ec;
 vector<Edge*> cur;
 vector<vi> hs;
 vi H:
 PushRelabel(int n)
     : g(n), ec(n), cur(n), hs(2 * n), H(n) {}
 void addEdge(int s, int t, T cap, T rcap = 0) {
   if (s == t) return;
   g[s].push_back({t, SZ(g[t]), 0, cap});
   g[t].push_back({s, SZ(g[s]) - 1, 0, rcap});
 void addFlow(Edge& e, T f) {
   Edge& back = g[e.dest][e.back];
   if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
   e.f += f:
   e.c -= f;
   ec[e.dest] += f;
   back.f -= f;
   back.c += f:
   ec[back.dest] -= f;
 T calc(int s, int t) {
   int v = SZ(g);
   H[s] = v;
   ec[t] = 1;
   vi co(2 * v);
   co[0] = v - 1;
   FOR(i, 0, v) cur[i] = g[i].data();
```

```
for (Edge& e : g[s]) addFlow(e, e.c);
  for (int hi = 0;;) {
     while (hs[hi].empty())
       if (!hi--) return -ec[s];
     int u = hs[hi].back();
     hs[hi].pop_back();
     while (ec[u] > 0)
       if (cur[u] ==
            g[u].data() + SZ(g[u])) { // discharge u
          H[u] = 1e9;
          for (Edge& e : g[u])
            \textbf{if} \ (\texttt{e.c} \ \&\& \ \texttt{H[u]} \ > \ \texttt{H[e.dest]} \ + \ 1)
              H[u] = H[e.dest] + 1, cur[u] = &e;
          if (++co[H[u]], !--co[hi] && hi < v)</pre>
            FOR(i, 0, v)
            if (hi < H[i] && H[i] < v) -- co[H[i]],
                 H[i] = v + 1;
          hi = H[u]:
        } else if (cur[u]->c &&
                    H[u] == H[cur[u] -> dest] + 1)
          {\tt addFlow}\,(\star {\tt cur}[\tt u]\,,\,\, {\tt min}\,(\tt ec[\tt u]\,,\,\, \tt cur[\tt u]\, \hbox{->} c)\,)\,;
       else
          ++cur[u]:
bool leftOfMinCut(int a) { return H[a] >= SZ(g); }
```

7.19 Bellman-Ford

```
* Descripcion: calcula el costo minimo para ir de un nodo
* hacia todos los demas alcanzables. Puede detectar
* ciclos negativos, dando una ultima pasada y revisando
 * si alguna distancia se acorta.
* Tiempo: O(VE)
void bellmanFord(vector<array<int, 3>>& e, int n) {
 vi d(n, INF);
  d[x] = 0;
 for (int i = 0; i < n; i++)
   for (auto& [u, v, w] : e) d[v] = min(d[v], d[u] + w);
  for (auto& [u, v, w] : e)
   if (d[u] != INF && d[u] + w < d[v]) {
     // neg cycle: all nodes reachable from u have -INF
     // distance. To reconstruct neg cycle save "prev" of
     // each node, go up from u until repeating a node.
     // this node and all nodes between the two
     // occurences form a neg cycle
```

7.20 Dijkstra

```
/**
 * Descripcion: calcula el costo minimo para
 * ir desde un nodo hacia todos los demas.
 *
 * Tiempo: O(E log V)
 */
vi dijkstra(vector<vector<pi>>> & g, int x) {
   int n = SZ(g);
   vi d(n);
   FOR(i, 0, n) d[i] = INF;
   d[x] = 0;
   priority_queue<pi>> pq;
   pq.emplace(0, x);
   while (!pq.empty()) {
     auto [du, u] = pq.top();
     pq.pop();
     du * = -1;
```

```
if (du > d[u]) continue;
    for (auto & [v, w] : g[u])
     if (du + w < d[v]) {
        d[v] = du + w;
        pq.emplace(-d[v], v);
  return d;
// Para tener a lo mucho V elementos en la PQ
vi dijkstra(vector<vector<pi>>& g, int st) {
 int n = SZ(q);
 vi d(n);
  set<pi> pq;
  FOR(i, 0, n) pq.emplace(d[i], i), d[i] = INF;
 while (!pq.empty()) {
   auto [du, u] = *pq.begin();
    pq.erase(pq.begin());
    for (auto& [v, w] : g[u])
     if (du + w < d[v]) {
        pq.erase(pq.find({d[v], v}));
        d[v] = du + w;
        pq.emplace(d[v], v);
  return d:
```

7.21 Floyd-Warshall

```
* Descripcion: algoritmo de Floyd-Warshall para calcular
 \star la minima distancia entre cada par de nodos, si no se
 * requiere recalcular el camino, ignorar p. Retorna un
 * par (g, p), en donde g es una matriz modificada en la
 * que g[i][j] es el costo minimo para llegar desde el
 \star nodo i al nodo j y p es el nodo anterior en dicho
 * camino, utilizado para recalcular la ruta.
 * Tiempo:
 * O(V^3)
pair<vector<vi>, vi> floydWarshall(vector<vi> g) {
 int n = SZ(q);
 vector<vi> p(n, vi(n));
  FOR(i, 0, n) FOR(j, 0, n) p[i][j] = i;
  FOR(k, 0, n)
     FOR(j, 0, n) if (g[i][k] + g[k][j] < g[i][j]) {
   p[i][j] = p[k][j];
   g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
 return {q, p};
void printPath(vector<vi>& p, int i, int j) {
 if (i != j) printPath(p, i, p[i][j]);
  cout << j << " ";
```

7.22 Binary Lifting LCA

```
/**

* Descripcion: siendo jmp[i][j] el ancestro 2^j del nodo

* i, el binary liftingnos permite obtener el k-esimo

* ancestro de cualquier nodo en tiempo logaritmico, una

* aplicacion de esto es para obtener el ancestro comun

* mas bajo (LCA). Importante inicializar jmp[i][0] para

* todo i.

* Tiempo: O(n log n) en construccion y O(log n)

* por consulta Status: testeado en ICPC LATAM 2017 -

* Imperial Roads

*/
```

```
vi g[maxn];
int jmp[maxn][maxlog], d[maxn];
void dfs(int u, int p = -1) {
 jmp[u][0] = p;
  for (auto &v : g[u])
    if (v != p) d[v] = d[u] + 1, dfs(v, u);
void build() {
 int n = SZ(q);
  for (int i = 1; i < maxlog; i++)</pre>
    for (int u = 0; u < n; u++)
     if (jmp[u][i - 1] != -1)
        jmp[u][i] = jmp[jmp[u][i - 1]][i - 1];
int LCA(int u, int v) {
 if (d[u] < d[v]) swap (u, v);
 int dist = d[u] - d[v];
 for (int i = maxlog - 1; i >= 0; i--)
   if ((dist >> i) & 1) u = jmp[u][i];
 if (u == v) return u;
  for (int i = maxlog - 1; i >= 0; i--)
    if (jmp[u][i] != jmp[v][i])
     u = jmp[u][i], v = jmp[v][i];
 return jmp[u][0];
int dist(int u, int v) {
 return d[u] + d[v] - 2 * d[LCA(u, v)];
```

7.23 Centroid Decomposition

```
* Descripcion: cuando se trabaja con caminos en
 * un arbol, es util descomponer a este recursivamente
 * en sub-arboles formados al eliminar su centroide, el
 * centroide de un arbol es un nodo u tal que si lo
 * eliminas, este se divide en sub-arboles con un numero
 * de nodosno mayor a la mitad del original, todos los
 * arboles tienen un centroide, y a lo mas 2. Esto provoca
 * que el arbol sea dividido en sub-arboles de distintos
 * niveles de descomposicion, por comodidad, un nodo v es
 \star un centroide ancestro de otro nodo u, si v, en algun
 * nivel, fue el centroide que separo al componente de
 * u en sub-arboles. Todo camino del arbol original se
 * expresar como la concatenacion de dos caminos del tipo:
        (u, A(u)), (u, A(A(u))), (u, A(A(A(u))))..., etc.
 * Ya que en cada nivel k el numero de nodos de algun
 * componente es a lo mas |V| / 2^k, un nodo puede estar
 * log |V| componentes, es decir, puede tener como maximo
 * log |V| ancestros en el arbol de centroides.
 * Tiempo: O(|V| log |V|)
 * Status: tested on Codeforces 321C
int n;
bool tk[maxn];
int szt[maxn], fat[maxn];
vi g[maxn];
int calcsz(int u, int f) {
  szt[u] = 1;
  for (auto v : g[u])
   if (v != f && !tk[v]) szt[u] += calcsz(v, u);
  return szt[u]:
void cdfs (int x = 0, int f = -1,
         int sz = -1) { // O(nlogn)
  if (sz < 0) sz = calcsz(x, -1);
  for (auto v : g[x])
    if (!tk[v] && szt[v] * 2 >= sz) {
     szt[x] = 0;
      cdfs(v, f, sz);
```

```
return;
}
tk[x] = true;
fat[x] = f;
for (auto v : g[x])
    if (!tk[v]) cdfs(v, x);
}
void decompose() {
    memset(tk, false, sizeof(tk));
    cdfs();
}
```

7.24 Euler Tour

```
/**
 * Descripcion: utilizando una DFS, es posible aplanar un
 * arbol, esto se logra guardando en que momento entra y
 * sale cada nodo, apoyandonos de una estructura para
 * consultas de rango es muy util para consultas sobre un
 * subarbol: saber la suma de todos los nodos en el, el
 * nodo con menor valor, etc.
 * Tiempo: O(n)
 */
 vi g[maxn];
 int in[maxn], out[maxn], t = 0;
 void dfs(int u, int p) {
  in[u] = ++t;
  for (autoš v : g[u])
    if (v != p) dfs(v, u);
  out[u] = t;
}
```

7.25 HLD

```
* Heavy-Light Decomposition
 * Descripcion: descompone un arbol en caminos pesados v
 * aristas ligeras de tal manera que un camino de
 * cualquier hoja a la raiz contiene a lo mucho log(n)
 * aristas ligeras. Raiz debe ser 0 Si el valor lo
 * contiene las aristas, asignar VALS EDGES true
* Tiempo:
 * O((log N)^2)
// Incluir Lazy Segment Tree
template <bool VALS_EDGES>
struct HLD {
 int N, tim = 0;
 vector<vi> adj;
 vi par, siz, head, pos;
  LazySegmentTree<int> tree;
 HLD (vector<vi> adi )
     : N(sz(adj_)),
       adj(adj_),
       par(N, -1),
       siz(N, 1),
       head(N),
       pos(N) {
   tree.init(N):
   dfsSz(0);
   dfsHld(0);
 void dfsSz(int v) {
   if (par[v] != -1)
     adj[v].erase(find(ALL(adj[v]), par[v]));
   for (int& u : adj[v]) {
     par[u] = v;
     dfsSz(u);
     siz[v] += siz[u];
     if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
```

```
void dfsHld(int v) {
    pos[v] = tim++;
    for (int u : adj[v]) {
      head[u] = (u == adj[v][0] ? head[v] : u);
      dfsHld(u);
  template <class B>
  void process(int u, int v, B op) {
    for (; head[u] != head[v]; v = par[head[v]]) {
   if (pos[head[u]] > pos[head[v]]) swap(u, v);
   op(pos[head[v]], pos[v] + 1);
    if (pos[u] > pos[v]) swap(u, v);
    op(pos[u] + VALS_EDGES, pos[v] + 1);
  void modifyPath(int u, int v, int val) {
    int queryPath(int u, int v) {
    int res = -1e9;
    process(u, v, [&](int 1, int r) {
  res = max(res, tree.query(1, r));
    return res;
  int querySubtree(int v) { // modifySubtree es similar
  return tree.query(pos[v] + VALS_EDGES,
                         pos[v] + siz[v]);
};
```

8 Strings

8.1 Aho Corasick

```
* Descripcion: Construye un automata que te permite
 * buscar rapidamente multiples patrones en un texto.
 * - Se inicializa con AhoCorasick ac(patrones)
 * - find(word): regresa por cada posicion de word el
* indice de la palabra mas larga que termina ahi o -1 si
 * - findAll(pat, word) encuentra todas las palabras que
 * empiezan por cada posicion de word (las mas cortas
 * primero) Notas:
 * - Patrones duplicados son permitidos (afecta en tiempo)
 * - Patrones vacios no permitidos
 * - El nodo de inicio del automata esta en el indice 0
 * - Para encontrar las palabras mas grande en cada
 * posicion, invierte la entrada
 * Tiempo:
 * - Contruccion: O(26N)
 * - find(x): O(N)
 * - findAll: O(NM) o hasta O(N sqrt(N)) si no hay
 \star patrones duplicados
struct AhoCorasick {
  enum { alpha = 26, first = 'a' };
  struct Node {
   int back, next[alpha], start = -1, end = -1,
                          nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
  };
  vector<Node> N:
 vi backp;
  void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0;
    for (char c : s) {
     int& m = N[n].next[c - first];
     if (m == -1) {
       n = m = SZ(N);
       N.emplace_back(-1);
     } else
       n = m;
    if (N[n].end == -1) N[n].start = j;
   backp.push_back(N[n].end);
    N[n].end = j;
    N[n].nmatches++;
  AhoCorasick(vector<string>& pat) : N(1, -1) {
   FOR(i, 0, SZ(pat))
    insert(pat[i], i);
   N[0].back = SZ(N);
   N.emplace_back(0);
    queue<int> q:
    for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     FOR(i, 0, alpha) {
        int &ed = N[n].next[i], y = N[prev].next[i];
        if (ed == -1)
         ed = y;
        else {
         N[ed].back = y;
         (N[ed].end == -1 ? N[ed].end
                           : backp[N[ed].start]) =
             N[y].end;
         N[ed].nmatches += N[y].nmatches;
         q.push(ed);
  vi find(string word) {
```

```
int n = 0;
 vi res; // 11 count = 0;
 for (char c : word) {
   n = N[n].next[c - first];
   res.push_back(N[n].end);
   // count += N[n].nmatches;
 return res;
vector<vi> findAll(vector<string>& pat, string word) {
 vi r = find(word);
 vector<vi> res(SZ(word));
 FOR(i, 0, SZ(word)) {
   int ind = r[i];
    while (ind !=-1) {
     res[i - SZ(pat[ind]) + 1].push_back(ind);
     ind = backp[ind];
 return res;
```

8.2 Dynamic Aho Corasick

```
* Descripcion: Si tenemos N cadenas en el diccionario,
* mantenga log(N) Aho Corasick automatas. El i-esimo
* automata contiene las primeras 2^k cadenas no incluidas
* en el automatas anteriores. Por ejemplo, si tenemos N =
* 19, necesitamos 3 automatas: {s[1]...s[16]},
* \{s[17]...s[18]\}\ y\ \{s[19]\}. Para responder a la
* consulta, podemos atravesar los automatas logN.
* utilizando la cadena de consulta dada.
* Para manejar la insercion, primero construya un
* automata usando una sola cadena y luego Si bien hay dos
* automatas con el mismo numero de cadenas, los
* fusionamos mediante un nuevo automata usando fuerza
* bruta. Para manejar la eliminacion, simplemente
* insertamos un valor -1 para almacenar en los puntos
* finales de cada cadena agregada.
* Tiempo:
* O(m*log(numero_de_inserciones))
class AhoCorasick {
public:
 struct Node
   map<char, int> ch;
   vector<int> accept;
   int link = -1;
   int cnt = 0;
   Node() = default;
 };
 vector<Node> states:
 map<int, int> accept_state;
 explicit AhoCorasick() : states(1) {}
 void insert(const string& s, int id = -1) {
   int i = 0;
   for (char c : s) {
     if (!states[i].ch.count(c)) {
       states[i].ch[c] = states.size();
       states.emplace_back();
     i = states[i].ch[c];
   ++states[i].cnt;
   states[i].accept.push_back(id);
   accept_state[id] = i;
```

```
void clear() {
   states.clear();
    states.emplace_back();
  int get_next(int i, char c) const {
   while (i != -1 && !states[i].ch.count(c))
     i = states[i].link;
   return i != -1 ? states[i].ch.at(c) : 0;
  void build() {
   queue<int> que;
    que.push(0);
    while (!que.empty()) {
     int i = que.front();
     que.pop();
     for (auto [c, j] : states[i].ch) {
       states[j].link = get next(states[i].link, c);
        states[j].cnt += states[states[j].link].cnt;
        auto& a = states[j].accept;
        auto& b = states[states[j].link].accept;
        vector<int> accept;
        set_union(a.begin(), a.end(), b.begin(), b.end(),
                 back_inserter(accept));
        a = accept;
        que.push(j);
  long long count(const string& str) const {
   long long ret = 0;
   int i = 0;
   for (auto c : str) {
     i = get_next(i, c);
     ret += states[i].cnt;
   return ret:
  // list of (id, index)
  vector<pair<int, int>> match(const string& str) const {
   vector<pair<int, int>> ret;
   int i = 0;
   for (int k = 0; k < (int)str.size(); ++k) {</pre>
     char c = str[k];
     i = get_next(i, c);
     for (auto id : states[i].accept) {
       ret.emplace_back(id, k);
   return ret;
class DynamicAhoCorasick {
 vector<vector<string>> dict;
  vector<AhoCorasick> ac;
public:
  void insert(const string& s) {
   int k = 0:
    while (k < (int)dict.size() && !dict[k].empty()) ++k;</pre>
   if (k == (int)dict.size()) {
     dict.emplace_back();
     ac.emplace back();
   dict[k].push_back(s);
   ac[k].insert(s);
   for (int i = 0; i < k; ++i) {</pre>
     for (auto& t : dict[i]) {
       ac[k].insert(t);
```

8.3 Evil Hashing

```
* Evil Hashing
 * Descripcion: utiliza aritmetica modulo 2^64 - 1, el
 * doble de lento que mod 2^64 y con mas codigo, pero
 * funciona bien con casos malvados (como Thue-Morse,
 * donde ABBA... y BAAB... de longitud 2^10 tienen el
 * mismo hash mod 2^64) Utilizar "using H = ull;" si se
 * cree que los casos son aleatorios, o trabaja mod 10^9+7
 * si la paradoja del cumpleanos no es un problema.
 * Utiliza cosas de c++20.
 * Uso:
 * Normal.
      string s:
       HashInterval hi(s);
      hi.hashInterval(0, 5);
 * Rabin-Karp.
      string s;
      getHashes(s, SZ(s));
 * Tiempo: O(|s|)
using ull = uint64 t;
struct H {
 H(ull x = 0) : x(x) {}
 H operator+(H o) { return x + o.x + (x + o.x < x); }
  H operator-(H o) { return *this + ~o.x; }
  H operator*(H o) {
   auto m = (\underline{uint128}_t)x * o.x;
   return H((ull)m) + (ull)(m >> 64);
 ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C =
   (11)1e11 + 3; // (order ~ 3e9; random also ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str) + 1), pw(ha) {
   pw[0] = 1;
    FOR(i, 0, sz(str))
   ha[i + 1] = ha[i] * C + str[i], pw[i + 1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash [a, b)
   return ha[b] - ha[a] * pw[b - a];
vector<H> getHashes(string& str, int length) {
 if (sz(str) < length) {</pre>
    return ():
```

8.4 Hashing

```
* Hashing
 * Descripcion: El objetivo es convertir una cadena en un
 * numero entero para poder comparar cadenas en O(1)
 * Tiempo: O(|s|)
const int MX = 3e5 + 2; // Tamano maximo del string S
inline int add(int a, int b, const int &mod) {
 return a + b >= mod ? a + b - mod : a + b;
inline int sbt(int a, int b, const int &mod) {
 return a - b < 0 ? a - b + mod : a - b;
inline int mul(int a, int b, const int &mod) {
 return 111 * a * b % mod;
const int X[] = \{257, 359\};
const int MOD[] = \{(int)1e9 + 7, (int)1e9 + 9\};
vector<int> xpow[2];
struct hashing {
 vector<int> h[2]:
 hashing(string &s) {
   int n = s.size();
   for (int j = 0; j < 2; ++ j) {
     h[j].resize(n + 1);
     for (int i = 1; i <= n; ++i) {</pre>
       h[j][i] = add(mul(h[j][i-1], X[j], MOD[j]),
                     s[i - 1], MOD[j]);
 11 value(int 1, int r) { // hash [i, j)
   int a =
       sbt(h[0][r], mul(h[0][1], xpow[0][r - 1], MOD[0]),
           MOD[01);
   int b =
       sbt(h[1][r], mul(h[1][l], xpow[1][r - 1], MOD[1]),
           MOD[1]);
   return (11(a) << 32) + b;
};
// Llamar la funcion antes del hashing
void calc_xpow(int mxlen = MX) {
```

```
for (int j = 0; j < 2; ++j) {
    xpow[j].resize(mxlen + 1, 1);
    for (int i = 1; i <= mxlen; ++i) {
        xpow[j][i] = mul(xpow[j][i - 1], X[j], MOD[j]);
    }
}
}</pre>
```

8.5 Hashing Dynamic

```
* Hashing Dinamico
 * Descripcion: Convierte strings en hashes para
 * compararlos eficientemente
 * - Util para comparar strings o un substring de este
 * - Tambien puede cambiar un caracter del string
 * eficientemente
 * Uso:
 * - hash.get(inicio, fin); [inicio, fin)
 * comparar dos string hash.get(l, f) == hash.get(l, f)
 * - set(posicion, caracter) indexado en 0
 * Cambia el caracter de una posicion en el string
 * Aplicaciones:
 * - Checar si substrings de un string son palindromos
 * Complejidad:
 * - Construccion O(n log(n))
 * - Query y update O(log(n))
#include <bits/stdc++.h>
// Pura gente del coach moy
using namespace std;
typedef long long 11;
typedef pair<ll, ll> ii;
const 11 MOD = 998244353:
const ii BASE = \{1e9 + 7, 1e9 + 9\};
ii operator+(const ii a, const ii b) {
 return { (a.first + b.first) % MOD,
          (a.second + b.second) % MOD);
ii operator+(const ii a, const ll b) {
  return {(a.first + b) % MOD, (a.second + b) % MOD};
ii operator-(const ii a, const ii b) {
  return { (MOD + a.first - b.first) % MOD,
          (MOD + a.second - b.second) % MOD};
ii operator*(const ii a, const ii b) {
  return {(a.first * b.first) % MOD,
          (a.second * b.second) % MOD);
ii operator*(const ii a, const ll b) {
  return {(a.first * b) % MOD, (a.second * b) % MOD};
inline 11 modpow(11 x, 11 p) {
  if (!p) return 1;
  return (modpow(x * x % MOD, p >> 1) * (p % 2 ? x : 1)) %
        MOD:
inline 11 modinv(11 x) { return modpow(x, MOD - 2); }
struct Hash_Bit {
 int N;
 string S;
  vector<ii>> fen, pp, ipp;
```

```
Hash_Bit(string S_) {
   S = S_{i}
   N = S.size();
    fen.resize(N + 1);
   pp.resize(N);
    ipp.resize(N);
    pp[0] = ipp[0] = \{1, 1\};
    const ii ibase = {modinv(BASE.first),
                      modinv(BASE.second) };
    for (int i = 1; i < N; i++) {
     pp[i] = pp[i - 1] * BASE;
     ipp[i] = ipp[i - 1] * ibase;
    for (int i = 0; i < N; i++) {
     update(i, S[i]);
  void update(int i, ll x) {
   ii p = pp[i] * x;
    for (++i; i \le N; i += i \& -i) {
     fen[i] = fen[i] + p;
  ii query(int i) {
   ii ret = {0, 0};
    for (; i; i -= i & -i) {
     ret = (ret + fen[i]);
   return ret;
 void set(int idx, char c) {
   int d = (MOD + c - S[idx]) % MOD;
   S[idx] = c;
   update(idx, d);
  ii get(int start, int end) {
   return (query(end) - query(start)) * ipp[start];
int main() {
 string s;
 cin >> s:
  int sz = s.size();
 Hash_Bit hash(s);
  return 0;
```

8.6 KMP

```
/*
 * Descripcion: Calcula la funcion phi para un string S
 * donde phi[i] es la longitud del prefijo propio de S mas
 * largo de la subcadena S[0..i] el cual tambien es sufijo
 * de esta subcadena
 * Tiempo: O(|s| + |pat|)
 */

vi PI(const string& s) {
 vi p(SZ(s));
 FOR(i, 1, SZ(s)) {
  int g = p[i - 1];
  while (g && s[i] != s[g]) g = p[g - 1];
  p[i] = g + (s[i] == s[g]);
 }
 return p;
}
```

```
// Concatena s + \setminus 0 + pat para encontrar las ocurrencias
vi KMP(const string& s, const string& pat) {
 vi phi = PI(pat + ' \setminus 0' + s), res;
 FOR(i, SZ(phi) - SZ(s), SZ(phi))
 if (phi[i] == SZ(pat)) res.push_back(i - 2 * SZ(pat));
 return res;
// A partir del phi de patron busca las ocurrencias en s
int KMP(const string& s, const string& pat) {
 vi phi = PI(pat);
 int matches = 0;
 for (int i = 0, j = 0; i < SZ(s); ++i) {
   while (j > 0 \&\& s[i] != pat[j]) j = phi[j - 1];
   if (s[i] == pat[j]) ++j;
   if (j == SZ(pat)) {
     matches++:
      j = phi[j - 1];
 return matches;
```

8.7 KMPAutomaton

```
/*
 * Descripcion: Construye un automata del KMP donde el
 * estado es el valor actual de la funcion phi
 * Uso:
 * aut[state][nextCharacter]
 * Tiempo: O(|s|*C)
 */
vector<vector<int>> aut;
void compute_automaton(string s) {
 s += '#';
 int n = s.size();
 vector<int>> phi = PI(s);
 aut.assign(n, vector<int>(26));
 FOR(c, 0, 26) {
  if (i > 0 && 'a' + c != s[i])
    aut[i][c] = aut[phi[i - 1]][c];
  else
  aut[i][c] = i + ('a' + c == s[i]);
 }
}
```

8.8 Manacher

```
* Descripcion: para cada posicion de un string, calcula:
* p[0][i] = la mitad de la longitud del palindromo par
* mas grande alrededor de la posicion i
* p[1][i] = la longitud del palindromo impar mas grande
* alrededor de la posicion i (la mitad redondeado hacia
* abajo)
* Tiempo: O(N)
array<vi, 2> manacher(const string& s) {
 int n = SZ(s):
 array < vi, 2 > p = {vi(n + 1), vi(n)};
 FOR(z, 0, 2)
 for (int i = 0, l = 0, r = 0; i < n; i++) {
   int t = r - i + !z;
   if (i < r) p[z][i] = min(t, p[z][l + t]);</pre>
   int L = i - p[z][i], R = i + p[z][i] - !z;
   while (L >= 1 \&\& R + 1 < n \&\& s[L - 1] == s[R + 1])
    p[z][i]++, L--, R++;
   if (R > r) 1 = L, r = R;
```

}
return p;

8.9 Palindromic Tree

```
* Descripcion: Calcula un EerTree el cual es un arbol que
 * permite un rapido acceso a todos los palindromos
 * contenidos en un string como encontrar el palindromo
 * mas largo en un substring
 * Uso: Considerar a s como el
 * string original y p el palindromo asociado al nodo u
 * - et[u].1: la longitud de p
 * - et[u].cnt: es el numero de veces que aparece p como
 * el sufijo palindromo mas largo de un prefijo s[0:i].
 * Despues de llamar computeFrecuency() es el numero de
 * veces en el que p aparece en s
 * - et[u].link: es el nodo que correspondiente al
 * palindromo propio mas largo de p
 * Tiempo: O(N)
 +/
constexpr short alpha = 26;
constexpr char offset = 'a';
struct state {
 int 1, link, cnt;
  array<int, alpha> go;
  state() {
   1 = cnt = 0;
   go.fill(0);
};
struct PalindromicTree {
 int n = 2;
  int last = 1:
  vector<state> et;
  string s;
 PalindromicTree() {
    et.resize(2);
    et[0].link = et[1].link = 1;
    et[1].1 = -1;
  int palSuff(int x) {
    while (s[SZ(s) - 2 - et[x].1] != s.back())
     x = et[x].link;
    return x:
  int add(char ch) {
    s.pb(ch);
    last = palSuff(last);
    bool new_pal = !et[last].go[ch - offset];
    if (new_pal) {
     et.pb(state());
     et[last].go[ch - offset] = n++;
      et.back().link =
          et[palSuff(et[last].link)].go[ch - offset];
      et.back().l = et[last].l + 2;
     if (et.back().1 == 1) et.back().link = 0;
    last = et[last].go[ch - offset];
    // Do something with last, maybe if new_pal
    et[last].cnt++;
    if (et[last].l == SZ(s)) last = et[last].link;
    return new_pal;
  void computeFrequency() {
    for (int i = n - 1; i > 1; i--)
      et[et[i].link].cnt += et[i].cnt;
};
```

8.10 Suffix Array

```
* Descripcion: construye un arreglo ordenado de todos los
* sufijos de un string
* - SA[i]: es el indice de inicio del sufijo el cual es
* el i-nesimo elemento del suffix array (el arreglo es de
* tamano n+1 y SA[0] = n)
* - LCP: es un arreglo que contiene el prefijo comun mas
 * largo entre los strings vecinos del suffix array LCP[i]
* = LCP(sa[i], sa[i-1]), LCP[0] = 0
 * Tiempo: O(n log n)
struct SuffixArray {
 vi SA, LCP;
 string S;
 int n:
 SuffixArray(string &s, int lim = 256)
    : S(s), n(SZ(s) + 1) {
   int k = 0, a, b;
   vi \times (ALL(s) + 1), v(n), ws(max(n, lim)), rank(n);
   SA = LCP = y, iota(ALL(SA), 0);
    // Calcular SA
    for (int j = 0, p = 0; p < n;</pre>
        j = max(1, j * 2), lim = p) {
     p = j, iota(ALL(y), n - j);
     FOR(i, 0, n) {
       if (SA[i] >= j) y[p++] = SA[i] - j;
     fill(ALL(ws), 0);
     FOR(i, 0, n) { ws[x[i]]++; }
     FOR(i, 1, lim) \{ ws[i] += ws[i - 1]; \}
     for (int i = n; i--;) SA[--ws[x[y[i]]]] = y[i];
     swap(x, y), p = 1, x[SA[0]] = 0;
     FOR(i, 1, n) {
       a = SA[i - 1];
       b = SA[i],
       x[b] = (y[a] == y[b] && y[a + j] == y[b + j])
                  ? p - 1
                  : p++;
   }
   // Calcular LCP (longest common prefix)
   FOR(i, 1, n) \{ rank[SA[i]] = i; \}
   for (int i = 0, j; i < n - 1; LCP[rank[i++]] = k)</pre>
     for (k &&k--, j = SA[rank[i] - 1];
          s[i + k] == s[j + k]; k++)
  * Retorna el lower_bound de la subcadena sub en el
  * Suffix Array
 * Tiempo: O(|sub| log n)
 int lower(string &sub) {
   int 1 = 0, r = n - 1;
   while (1 < r) {
     int mid = (1 + r) / 2;
     int res = S.compare(SA[mid], SZ(sub), sub);
      (res >= 0) ? r = mid : 1 = mid + 1;
   return 1;
  * Retorna el upper_bound de la subcadena sub en el
  * Suffix Array
 * Tiempo: O(|sub| log n)
 int upper(string &sub) {
   int 1 = 0, r = n - 1;
   while (1 < r) {
```

int mid = (1 + r) / 2;

```
int res = S.compare(SA[mid], SZ(sub), sub);
      (res > 0) ? r = mid : 1 = mid + 1:
    if (S.compare(SA[r], SZ(sub), sub) != 0) --r;
    return r:
  * Busca si se encuentra la subcadena sub en el Suffix
   * Array
 * Tiempo: O(|sub| log n)
 bool subStringSearch(string &sub) {
    int L = lower(sub);
    if (S.compare(SA[L], SZ(sub), sub) != 0) return 0;
    return 1:
  * Cuenta la cantidad de ocurrencias de la subcadena sub
   * en el Suffix Array
 * Tiempo: O(|sub| log n)
  int countSubString(string &sub) {
   return upper(sub) - lower(sub) + 1;
  * Cuenta la cantidad de subcadenas distintas en el
  * Suffix Array
 * Tiempo: O(n)
 11 countDistinctSubstring() {
   11 \text{ result} = 0;
    FOR(i, 1, n) \{ result += ll(n - SA[i] - 1 - LCP[i]); \}
    return result;
  * Busca la subcadena mas grande que se encuentra en el
  * string T y S
 * Uso: Crear el SuffixArray con una cadena
  * de la concatenacion de T y S separado por un caracter
   * especial (T + '#' + S)
 * Tiempo: O(n)
 string longestCommonSubstring(int lenS, int lenT) {
    int maximo = -1, indice = -1;
    FOR(i, 2, n) {
     if ((SA[i] > lenS && SA[i - 1] < lenS) ||</pre>
         (SA[i] < lenS && SA[i-1] > lenS)) {
       if (LCP[i] > maximo) {
         maximo = LCP[i];
          indice = SA[i];
     }
    return S.substr(indice, maximo);
  * A partir del Suffix Array se crea un Suffix Array
   * inverso donde la posicion i del string S devuelve la
  * posicion del sufijo S[i..n) en el Suffix Array
 * Tiempo: O(n)
  vi constructRSA() {
   vi RSA(n);
    FOR(i, 0, n) { RSA[SA[i]] = i; }
    return RSA;
};
```

8.11 Suffix Automaton

```
* Descripcion: Construye un automata finito que reconoce
 * todos los sufijos de una cadena. len corresponde a la
 * longitud maxima de un sufijo con el estado actual, link
 * corresponde al estado del siguiente sufijo mas largo
 * del estado actual
 * Tiempo: O(n log sum)
struct SuffixAutomaton {
 struct state {
   int len, link;
   map<char, int> next;
  vector<state> st;
  int sz. last:
  SuffixAutomaton(int MAX = 1e5) {
   st.resize(MAX);
   last = st[0].len = 0;
   sz = 1;
   st[0].link = -1;
  void extend(char c) {
   int k = sz++, p;
   st[k].len = st[last].len + 1;
   for (p = last; p != -1 && !st[p].next.count(c);
       p = st[p].link)
     st[p].next[c] = k;
   if (p == -1)
     st[k].link = 0;
    else {
     int q = st[p].next[c];
     if (st[p].len + 1 == st[q].len)
       st[k].link = q;
      else (
       int w = sz++;
       st[w].len = st[p].len + 1;
        st[w].next = st[q].next;
        st[w].link = st[q].link;
        for (; p != -1 && st[p].next[c] == q;
           p = st[p].link)
         st[p].next[c] = w:
       st[q].link = st[k].link = w;
    last = k;
};
```

8.12 Suffix Tree

```
* Descripcion: Algoritmo de Ukkonen la construccion de
* online arbol de sufijo. Cada nodo contiene indices
* [1,r) en la cadena y una lista de nodos hijos. Los
* sufijos estan dados por recorridos de este arbol
 * uniendo subcadenas [1,r). La raiz es 0 (tiene 1 = -1, r
* = 0) los hijos inexistentes son -1 Para obtener un
 * arbol completo, agregue un simbolo ficticio al final
* Tiempo: 0(26N)
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; // v = cur node, q = cur position
 int t[N][ALPHA], l[N], r[N], p[N], s[N], v = 0, q = 0,
 void ukkadd(int i, int c) {
 suff:
   if (r[v] <= q) {
     if (t[v][c] == -1) {
       t[v][c] = m;
       l[m] = i;
```

```
p[m++] = v;
        v = s[v];
        q = r[v];
        goto suff;
      v = t[v][c];
      q = 1[v];
    if (q == -1 || c == toi(a[q]))
     q++;
    else {
     1[m + 1] = i;
     p[m + 1] = m;
     1[m] = 1[v];
     r[m] = q;
     p[m] = p[v];
     t[m][c] = m + 1;
     t[m][toi(a[q])] = v;
     l[v] = q;
     p[v] = m;
     t[p[m]][toi(a[l[m]])] = m;
      v = s[p[m]];
      q = 1[m];
      while (q < r[m]) {
       v = t[v][toi(a[q])];
        q += r[v] - l[v];
      if (q == r[m])
       s[m] = v;
      else
       s[m] = m + 2;
      q = r[v] - (q - r[m]);
     m += 2;
      goto suff;
  SuffixTree(string a) : a(a) {
    fill(r, r + N, SZ(a));
   memset(s, 0, sizeof s);
    memset(t, -1, sizeof t);
    fill(t[1], t[1] + ALPHA, 0);
   s[0] = 1;
   1[0] = 1[1] = -1;
    r[0] = r[1] = p[0] = p[1] = 0;
    FOR(i, 0, SZ(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA =
  // 281
  pii best;
  int lcs(int node, int i1, int i2, int olen) {
   if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
   if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
   int mask = 0,
        len = node ? olen + (r[node] - 1[node]) : 0;
    FOR(c, 0, ALPHA)
    if (t[node][c] != -1) mask |=
        lcs(t[node][c], i1, i2, len);
    if (mask == 3) best = max(best, {len, r[node] - len});
   return mask;
  static pii LCS(string s, string t) {
   SuffixTree st(s + (char)('z' + 1) + t +
                  (char) ('z' + 2));
    st.lcs(0, SZ(s), SZ(s) + 1 + SZ(t), 0);
    return st.best;
};
```

```
* puede realizar de manera eficiente usando trie
* Tiempo:
* O(n)
struct TrieNode {
 unordered_map<char, TrieNode *> children;
 bool isEndOfWord;
 int numPrefix:
 TrieNode() : isEndOfWord(false), numPrefix(0) {}
class Trie {
private:
 TrieNode *root:
public:
 Trie() { root = new TrieNode(); }
 void insert(string word) {
   TrieNode *curr = root;
   for (char c : word) {
     if (curr->children.find(c) ==
         curr->children.end()) {
       curr->children[c] = new TrieNode();
     curr = curr->children[c];
     curr->numPrefix++;
   curr->isEndOfWord = true;
 bool search(string word) {
   TrieNode *curr = root:
   for (char c : word) {
     if (curr->children.find(c) ==
         curr->children.end()) {
        return false:
     curr = curr->children[c];
   return curr->isEndOfWord;
 bool startsWith(string prefix) {
   TrieNode *curr = root;
   for (char c : prefix) {
     if (curr->children.find(c) ==
         curr->children.end()) {
       return false;
     curr = curr->children[c];
   return true;
 int countPrefix(string prefix) {
   TrieNode *curr = root:
   for (char c : prefix) {
     if (curr->children.find(c) ==
         curr->children.end()) {
       return 0:
     curr = curr->children[c];
   return curr->numPrefix;
};
```

8.13 Trie

```
/*

* Descripcion: Un trie es una estructura de datos de

* arbol multidireccional que se utiliza para almacenar

* cadenas en un alfabeto. La coincidencia de patrones se
```

8.14 ZAlgorithm

```
/*
* Descripcion: La Z-function es un arreglo donde el
* elemento i es igual al numero mas grande de caracteres
```

```
* que empiezan desde la posicion i que coincide con el
* prefijo de S, excepto Z[0] = 0. (abacaba -> 0010301)
*
* Tiempo: O(|S|)
*/
vi Z(const string& S) {
  vi z(SZ(S));
  int l = -l, r = -l;
  FOR(i, 1, SZ(S)) {
    z[i] = i >= r ? 0 : min(r - i, z[i - l]);
    while (i + z[i] < SZ(S) && S[i + z[i]] == S[z[i]])
    z[i]+;
  if (i + z[i] > r) l = i, r = i + z[i];
} return z;
}
```

9 Geometry

9.1 Circle

```
// Retorna el punto central del circulo que pasa por A,B,C
// Si se busca el radio solo sacar la distancia entre el
// centro y cualquier punto A,B,C
Point circumCenter(Point a, Point b, Point c) {
  b = b - a, c = c - a;
  assert(b.cross(c) !=
        0); // no existe circunferencia colinear
  return a +
         (b * sq(c) - c * sq(b)).perp() / b.cross(c) / 2;
// Retorna el punto que se encuentra en el circulo dado el
// angulo
Point circlePoint (Point c, double r, double ang) {
  return Point{c.x + cos(ang) * r, c.y + sin(ang) * r};
// Retorna el numero de intersecciones de la linea l con
// el circulo (o,r) y los pone en out. Si solo hay una
// interseccion el par de out es igual
int circleLine(Point o, double r, Line l,
              pair<Point, Point> &out) {
  double h2 = r * r - 1.sqDist(o);
  if (h2 >= 0) {
   Point p = l.proj(o);
   Point h = 1.v * sqrt(h2) / 1.v.norm();
   out = \{p - h, p + h\};
  return 1 + sqn(h2);
// Retorna las intersecciones entre dos circulos. Funciona
// igual que la interseccion con una linea
int circleCircle (Point o1, double r1, Point o2, double r2,
                pair<Point, Point> &out) {
  Point d = o2 - o1;
  double d2 = d.sq();
  if (d2 == 0) {
   assert(r1 != r2); // los circulos son iguales
   return 0:
  double pd = (d2 + r1 * r1 - r2 * r2) / 2;
  double h2 = r1 * r1 - pd * pd / d2;
  if (h2 >= 0) {
   Point p = o1 + d * pd / d2,
         h = d.perp() * sqrt(h2 / d2);
   out = \{p - h, p + h\};
  return 1 + sgn(h2);
// Retorna un booleano indicando si los dos circulos
// intersectan o no
bool circleCircle(Point o1, double r1, Point o2,
                 double r2) {
  double dx = o1.x - o2.x, dy = o1.y - o2.y, rs = r1 + r2;
  return dx * dx + dy * dy <= rs * rs;
// Retorna el area de la interseccion de un circulo con
// un poligono ccw
// Tiempo O(n)
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(Point c, double r, vector<Point> ps) {
      [&] (Point p,
         Point q) { // area de interseccion con cpq
        auto r2 = r * r / 2;
        Point d = q - p;
        auto a = d.dot(p) / d.sq(),
           b = (p.sq() - r * r) / d.sq();
        auto det = a * a - b;
```

```
if (det <= 0) return arg(p, q) * r2;</pre>
       auto s = max(0., -a - sqrt(det)),
            t = min(1., -a + sqrt(det));
       if (t < 0 || 1 <= s) return arg(p, g) * r2;</pre>
       Point u = p + d * s, v = p + d * t;
       return arg(p, u) * r2 + u.cross(v) / 2 +
              arg(v, q) * r2;
     };
 auto sum = 0.0:
 FOR(i, 0, SZ(ps))
 sum += tri(ps[i] - c, ps[(i + 1) % SZ(ps)] - c);
 return sum:
// Retorna el numero de tangentes de tipo especifico
// (inner, outer)
// * Si hay 2 tangentes. Out se llena con 2 pares de
// puntos:
// los pares de puntos de tangencia de cada circulo
// (P1, P2)
// * Si solo hay 1 tangente, los circulo son tangentes en
// algun
// punto P, out contiene P 4 veces y la linea tangente
// puede ser encontrada como line(o1,p).perp(p)
// * Si hay 0 tangentes, no hace nada
// * Si los circulos son identicos, aborta
int tangents (Point o1, double r1, Point o2, double r2,
            bool inner.
            vector<pair<Point, Point>> &out) {
 if (inner) r2 = -r2;
 Point d = o2 - o1;
 double dr = r1 - r2, d2 = d.sq(), h2 = d2 - dr * dr;
 if (d2 == 0 || h2 < 0) {
   assert (h2 != 0);
   return 0:
 for (double sign : \{-1, 1\}) {
   Point v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
   out.push_back(\{o1 + v * r1, o2 + v * r2\});
 return 1 + (h2 > 0);
```

9.2 Closest Pair

```
* Descripcion: Dado un arreglo de N puntos en el plano,
 * encontrar el par de puntos con la menor distancia entre
 * ellos Utilizar con long long de preferencia
 * Tiempo: O(n
 * log n)
typedef Point P:
pair<Point, Point> closest(vector<Point> &v) {
  set<Point> S:
  sort (ALL(v).
      [] (Point a, Point b) { return a.y < b.y; });
 pair<ll, pair<Point, Point>> ret{LLONG_MAX,
                                   {P{0, 0}, P{0, 0}};
  int i = 0:
  for (Point p : v) {
    Point d{1 + (ll)sqrt(ret.first), 0};
    while (v[j].y \le p.y - d.x) S.erase(v[j++]);
    auto lo = S.lower bound(p - d),
        hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
     ret = min(ret, {(*lo - p).sq(), {*lo, p}});
    S.insert(p);
 return ret.second:
```

9.3 Convex Hull

```
/**
 * Descripcion: encuentra la envolvente convexa de un
 * conjunto de puntos dados. Una envolvente convexa es la
 * minima region convexa que contiene a todos los puntos
 * del conjunto.
 * Tiempo: O(n log n)
vector<Point> convexHull(vector<Point> pts) {
 if (SZ(pts) <= 1) return pts;</pre>
  sort (ALL (pts));
  vector<Point> h(SZ(pts) + 1);
  int s = 0, t = 0;
  for (int it = 2; it--; s = --t, reverse(ALL(pts)))
    for (Point p : pts) {
      while (t >= s + 2 \&\&
            h[t - 2].cross(h[t - 1], p) \le 0)
        t--; // quitar = si se incluye colineares
     h[t++] = p;
  return {h.begin(),
          h.begin() + t - (t == 2 && h[0] == h[1]);
```

9.4 Half Plane

```
* Descripcion: Dado un conjunto de semiplanos calcula la
 * interseccion de estos representandolos en un poligono
 * convexo. Donde cada punto dentro del poligono esta
 * dentro de todos los seminlanos
 * - Cada semiplano apunta en su region izquierda
 * - Se asume que no hay semiplanos paralelos
 * Tiempo: O(N Log N)
const long double EPS = 1e-9, INF = 1e9;
struct Point {
 long double x, y;
  explicit Point (long double x = 0, long double y = 0)
     : x(x), y(y) {}
  friend Point operator+(const Point& p, const Point& q) {
    return Point(p.x + q.x, p.y + q.y);
  friend Point operator-(const Point& p, const Point& q) {
    return Point(p.x - q.x, p.y - q.y);
  friend Point operator* (const Point& p,
                        const long double& k) {
    return Point(p.x * k, p.y * k);
  friend long double dot(const Point& p, const Point& q) {
    return p.x * q.x + p.y * q.y;
  friend long double cross(const Point& p,
                          const Point& q) {
    return p.x * q.y - p.y * q.x;
};
struct Halfplane {
 // 'p' Es un punto que pasa por la linea del semiplano
  // 'pq' es el vector de direccion de la linea
  Point p, pq;
 long double angle;
  Halfplane() {}
  Halfplane (const Point& a, const Point& b)
     : p(a), pq(b - a) {
    angle = atan21(pq.y, pq.x);
```

```
// Checa si el punto 'r' esta fuera del semiplano
  // Cada semiplano permite la region de la Izquierda de
  // la linea.
  bool out(const Point& r) {
   return cross(pq, r - p) < -EPS;</pre>
  // Ordenados por angulo polar
 bool operator<(const Halfplane& e) const {</pre>
   return angle < e.angle;</pre>
 // Punto de interseccion de las lineas de dos
  // semiplanos. Se asume que nunca son paralelas las
  // lineas.
  friend Point inter(const Halfplane& s.
                    const Halfplane& t) {
    long double alpha =
        cross((t.p - s.p), t.pq) / cross(s.pq, t.pq);
    return s.p + (s.pq * alpha);
};
vector<Point> hp_intersect(vector<Halfplane>& H) {
 Point box[4] = {// Caja limitadora en orden CCW
                  Point (INF, INF), Point (-INF, INF),
                 Point(-INF, -INF), Point(INF, -INF)};
  for (int i = 0; i < 4;
      i++) { // Anade la caja limitadora a los
               // semiplanos.
   Halfplane aux(box[i], box[(i + 1) % 4]);
   H.push_back(aux);
  sort(H.begin(), H.end());
 deque<Halfplane> dq;
  int len = 0:
  for (int i = 0; i < int(H.size()); i++) {</pre>
   // Remover del final de la deque mientras el ultimo
    // semiplano es redundante
    while (len > 1 &&
          H[i].out(inter(dq[len - 1], dq[len - 2]))) {
      dq.pop_back();
     --len;
    // Remover del inicio de la deque mientras el primer
    // semiplano es redundante
    while (len > 1 && H[i].out(inter(dq[0], dq[1]))) {
     dq.pop_front();
     --len;
    // Caso especial: Semiplanos Paralelos
    if (len > 0 &&
       fabsl(cross(H[i].pq, dq[len - 1].pq)) < EPS) {
      // Semiplanos opuestos paralelos que terminaron
      // siendo comparados entre si.
      if (dot(H[i].pq, dq[len - 1].pq) < 0.0)</pre>
        return vector<Point>();
      // Misma direccion de semiplano: Mantener solo el
      // semiplano mas a la izquierda.
      if (H[i].out(dq[len - 1].p)) {
       dq.pop_back();
        --len;
      else
        continue;
    // Anadir nuevo semiplano
    dq.push_back(H[i]);
    ++len;
  // Limpieza final: Verifica los semiplanos del inicio
  // contra los de la parte final y viceversa.
  while (len > 2 &&
```

```
dq[0].out(inter(dq[len - 1], dq[len - 2]))) {
  dg.pop back():
  --len;
while (len > 2 &&
       dq[len - 1].out(inter(dq[0], dq[1]))) {
  dq.pop_front();
  --len:
// Aqui se puede retornar un vector vacio si no hay
// interseccion.
if (len < 3) return vector<Point>();
// Reconstruir el poligono convexo de los semiplanos
// restantes.
vector<Point> ret(len):
for (int i = 0; i + 1 < len; i++) {</pre>
  ret[i] = inter(dq[i], dq[i + 1]);
ret.back() = inter(dq[len - 1], dq[0]);
return ret;
```

9.5 Line

```
typedef ll T;
struct Line {
 Point v:
 T c:
  // De vector direccional v y offset c
 Line(Point v, T c) : v(v), c(c) {}
  // De la equacion ax+bv=c
  Line (T a, T b, T c) : v(\{b, -a\}), c(c) \{\}
  // De punto P a punto O
  Line (Point p, Point q) : v(q - p), c(v.cross(p)) {}
  // 0 si se encuentra en la linea, > 0 arriba, < 0 abajo
  T side(Point p) { return v.cross(p) - c; }
  double dist(Point p) { return abs(side(p)) / v.norm(); }
  double sqDist(Point p) {
    return side(p) * side(p) / (double)v.sq();
  } // si se trabaja con enteros
  Line perp(Point p) { return {p, p + v.perp()}; }
  Line translate(Point t) { return {v, c + v.cross(t)}; }
  Line shiftLeft(double dist) {
    return {v, c + dist * v.norm()};
  Point proj(Point p) {
    return p - v.perp() * side(p) / v.sq();
  } // Punto en linea mas cercano a P
  Point refl(Point p) {
    return p - v.perp() * 2 * side(p) / v.sq();
  // Sirve para comparar si un punto {\tt A} esta antes de {\tt B} en
  // una linea
 bool cmpProj(Point p, Point q) {
    return v.dot(p) < v.dot(q);</pre>
bool areParallel(Line 11, Line 12) {
 return (11.v.cross(12.v) == 0);
bool areIntersect(Line 11, Line 12, Point& p) {
 T d = 11.v.cross(12.v);
  if (d == 0)
    return false; // cambiar a epsilon si es double
  p = (12.v * 11.c - 11.v * 12.c) / d; // requiere double
```

9.6 Point

```
constexpr double EPS =
    1e-9; // 1e-9 es suficiente para problemas de
           // precision doble
constexpr double PI = acos(-1.0);
inline double DEG_to_RAD(double d) {
 return (d * PI / 180.0);
inline double RAD_to_DEG(double r) {
  return (r * 180.0 / PI);
typedef double T;
int sgn(T x) \{ return (T(0) < x) - (x < T(0)); \}
struct Point {
 T x, y;
  // Operaciones Punto - Punto
  Point operator+(Point p) const {
    return \{x + p.x, y + p.y\};
  Point operator-(Point p) const {
    return \{x - p.x, y - p.y\};
  Point operator* (Point b) const {
    return {x * b.x = y * b.y, x * b.y + y * b.x};
  // Operaciones Punto - Numero
  Point operator*(T d) const { return {x * d, y * d}; }
  Point operator/(T d) const {
    return {x / d, y / d};
  } // Solo para punto flotante
  // Operaciones de comparacion para punto flotante
  bool operator<(Point p) const {</pre>
    return x < p.x - EPS ||
           (abs(x - p.x) \le EPS \&\& y < p.y - EPS);
  bool operator==(Point p) const {
    return abs(x - p.x) <= EPS && abs(y - p.y) <= EPS;
 bool operator!=(Point p) const { return ! (*this == p); }
  // Operaciones de comparacion para enteros
  bool operator<(Point p) const {</pre>
    return tie(x, y) < tie(p.x, p.y);</pre>
  bool operator == (Point p) const {
    return tie(x, y) == tie(p.x, p.y);
  T sq() { return x * x + y * y; }
  double norm() { return sqrt(sq()); }
  Point unit() { return *this / norm(); }
  // Operaciones generales:
  Point translate(Point v) { return *this + v; }
  Point scale (Point c, double factor) {
```

```
return c + (*this - c) * factor;
  Point rotate(double ang) {
    return {x * cos(ang) - y * sin(ang),
            x * sin(ang) + y * cos(ang);
  Point rot_around(double ang, Point c) {
   return c + (*this - c).rotate(ang);
  Point perp() { return {-y, x}; }
  T dot(Point p) { return x * p.x + y * p.y; }
  T cross(Point p) const { return x * p.y - y * p.x; }
  T cross (Point a, Point b) const {
    return (a - *this).cross(b - *this);
  double angle() const { return atan2(y, x); }
  friend ostream& operator<<(ostream& os, Point p) {</pre>
   return os << "(" << p.x << "," << p.y << ")";
};
// Vector: p2-p1
double dist(Point p1, Point p2) {
  return hypot(p1.x - p2.x, p1.y - p2.y);
bool isPerp(Point v, Point w) { return v.dot(w) == 0; }
//-1 -> left / 0 -> collinear / +1 -> right
T orient (Point a, Point b, Point c) {
  return a.cross(b, c);
bool cw(Point a, Point b, Point c) {
  return orient(a, b, c) < EPS;</pre>
bool ccw (Point a, Point b, Point c) {
  return orient(a, b, c) > -EPS;
// ANGULOS
// Para c++17
double angle(Point v, Point w) {
  return acos (
     clamp(v.dot(w) / v.norm() / w.norm(), -1.0, 1.0));
// C++14 o menor
double angle(Point v, Point w) {
  double cosTheta = v.dot(w) / v.norm() / w.norm();
  return acos(max(-1.0, min(1.0, cosTheta)));
// angulo aob
double angle(Point o, Point a, Point b) {
  return angle(a - o, b - o);
double orientedAngle (Point o, Point a, Point b) {
  if (ccw(o, a, b))
   return angle(a - o, b - o);
   return 2 * PI - angle(a - o, b - o);
bool inAngle (Point o, Point a, Point b, Point p) {
  assert (orient (o, a, b) != 0);
  if (cw(o, a, b)) swap(b, c);
  return ccw(o, a, p) && cw(o, c, p);
```

9.7 Point3D

```
struct Point {
  double x, y, z;
  Point() {}
  Point (double xx, double yy, double zz) {
    x = xx, y = yy, z = zz;
  }
  /// scalar operators
  Point operator* (double f) {
```

```
return Point(x * f, y * f, z * f);
  Point operator/(double f) {
    return Point(x / f, y / f, z / f);
  /// p3 operators
  Point operator-(Point p) {
    return Point(x - p.x, y - p.y, z - p.z);
  Point operator+(Point p) {
    return Point(x + p.x, y + p.y, z + p.z);
  Point operator% (Point p) {
    return Point (y * p.z - z * p.y, z * p.x - x * p.z,
                 x * p.y - y * p.x);
    /// (|p||q|sin(ang))* normal
  double operator | (Point p) {
    return x * p.x + y * p.y + z * p.z;
  /// Comparators
  bool operator==(Point p) {
    return tie(x, y, z) == tie(p.x, p.y, p.z);
  bool operator!=(Point p) { return !operator==(p); }
  bool operator<(Point p) {</pre>
    return tie(x, y, z) < tie(p.x, p.y, p.z);
Point zero = Point(0, 0, 0);
/// BASICS
double sq(Point p) { return p | p; }
double abs(Point p) { return sqrt(sq(p)); }
Point unit(Point p) { return p / abs(p); }
/// ANGLES
double angle(Point p, Point q) { ///[0, pi]
  double co = (p | q) / abs(p) / abs(q);
  return acos(max(-1.0, min(1.0, co)));
double small_angle(Point p, Point q) { ///[0, pi/2]
 return acos(min(abs(p | q) / abs(p) / abs(q), 1.0))
/// 3D - ORIENT
double orient (Point p, Point q, Point r, Point s) {
  return (q - p) % (r - p) | (s - p);
bool coplanar (Point p, Point q, Point r, Point s) {
  return abs(orient(p, q, r, s)) < eps;</pre>
bool skew(
    Point p, Point q, Point r,
    Point s) { /// skew := neither intersecting/parallel
  return abs(orient(p, q, r, s)) > eps; /// lines: PQ, RS
double orient_norm(
    Point p, Point q, Point r,
    Point n) { /// n := normal to a given plane PI
  retrurn(q - p) % (r - p) |
     n; /// equivalent to 2D cross on PI (of ortogonal
          /// proj)
```

9.8 Polar Sort

```
/*

* Descripcion: ordena los puntos segun el angulo.

* Comienza a partir de la izquierda en contra de las

* manecillas

*/

int half(Point p) {

return p.y > 0 || (p.y == 0 && p.x < 0);
```

```
// Pro-tip: si los puntos se encuentran en la misma
// direccion son considerados iguales, entonces se
// ordenaran arbitrariamente. Si se busca un desempate, se
// puede usar la magnitud sq(v)
void polarSort(vector<Point> &v) {
 sort(ALL(v), [](Point v, Point w) {
    return make_tuple(half(v), 0) <</pre>
          make_tuple(half(w), v.cross(w));
 });
void polarSortAround(Point o, vector<Point> &v) {
  sort(ALL(v), [](Point v, Point w) {
    return make_tuple(half(v - o), 0) <</pre>
          make_tuple(half(w - o), (v - o).cross(w - o));
 });
// Si se quiere modificar que el primer angulo del polar
// sort sea el vector v utilizar esta implementacion
Point v = {/* el que sea menos {0,0} */};
bool half(Point p) {
  return v.cross(p) < 0 ||
        (v.cross(p) == 0 && v.dot(p) < 0);
```

9.9 Polygon

```
// Retorna el area de un triangulo
double areaTriangle(Point a, Point b, Point c) {
 return abs((b - a).cross(c - a)) / 2.0;
// Retorna si el punto esta dentro del triangulo
bool pointInTriangle(Point a, Point b, Point c, Point p) {
 T s1 = abs(a.cross(b, c));
  T s2 = abs(p.cross(a, b)) + abs(p.cross(b, c)) +
        abs(p.cross(c, a));
  return s1 == s2;
// Retorna el area del poligono
double areaPolygon(vector<Point> p) {
  double area = 0.0;
  int n = SZ(p);
  FOR(i, 0, n) \{ area += p[i].cross(p[(i + 1) % n]); \}
  return abs(area) / 2.0;
// Retorna si el poligono es convexo
bool isConvex(vector<Point> p) {
 bool hasPos = false, hasNeg = false;
  for (int i = 0, n = SZ(p); i < n; i++) {
    int o = orient(p[i], p[(i + 1) % n], p[(i + 2) % n]);
    if (o > 0) hasPos = true;
    if (o < 0) hasNeg = true;</pre>
  return ! (hasPos && hasNeg);
// Retorna 1/0/-1 si el punto p esta dentro/sobre/fuera de
// cualquier poligono P concavo/convexo
 * Tiempo: O(n)
int inPolygon(vector<Point> poly, Point p) {
 int n = SZ(poly), ans = 0;
 FOR(i, 0, n) {
    Point p1 = poly[i], p2 = poly[(i + 1) % n];
    if (p1.y > p2.y) swap(p1, p2);
    if (onSegment(p1, p2, p)) return 0;
    ans \hat{p} = (p1.y \le p.y \&\& p.y \le p2.y \&\&
            p.cross(p1, p2) > 0);
```

```
return ans ? -1 : 1;
// Retorna el centroide del poligono
Point polygonCenter(vector<Point>& v) {
 Point res{0, 0};
  double A = 0;
  for (int i = 0, j = SZ(v) - 1; i < SZ(v); j = i++) {
   res = res + (v[i] + v[j]) * v[j].cross(v[i]);
   A += v[j].cross(v[i]);
  return res / A / 3;
// Determina si un punto P se encuentra dentro de un
// poligono convexo ordenado en ccw y sin puntos
// colineares (Convex hull) Tiempo O(log n)
bool inPolygonCH(vector<Point>& 1, Point p,
                 bool strict = true) {
  int a = 1, b = SZ(1) - 1, r = !strict;
  if (SZ(1) < 3) return r && onSegment(1[0], 1.back(), p);
  if (orient(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (orient(1[0], 1[a], p) >= r ||
      orient(l[0], l[b], p) <= -r)
    return false;
  while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (orient(1[0], 1[c], p) > 0 ? b : a) = c;
  return sgn(l[a].cross(l[b], p)) < r;</pre>
// Retorna los dos puntos con mayor distancia en un
// poligono convexo ordenado en ccw y sin puntos
// colineares (Convex hull) Tiempo O(n)
array<Point, 2> hullDiameter(vector<Point> S) {
  int n = SZ(S), j = n < 2 ? 0 : 1;
  pair<11, array<Point, 2>> res({0, {S[0], S[0]}});
  FOR(i, 0, j) {
    for (;; j = (j + 1) % n) {
     res = max(res, {(S[i] - S[j]).sq(), {S[i], S[j]}});
      if ((S[(j + 1) % n] - S[j])
              .cross(S[i + 1] - S[i]) >= 0)
        break;
    }
  return res.second;
// Retorna el poligono que se encuentra a la izquierda de
// la linea que va de s a e despues del corte
vector<Point> polygonCut(vector<Point>& poly, Point s,
                         Point e) {
  vector<Point> res;
  FOR(i, 0, SZ(poly)) {
   Point cur = poly[i],
          prev = i ? poly[i - 1] : poly.back();
    bool side = s.cross(e, cur) < 0;</pre>
   if (side != (s.cross(e, prev) < 0)) {</pre>
     Point p;
     areIntersect(Line(s, e), Line(cur, prev), p);
      res.push_back(p);
    if (side) res.push_back(cur);
  return res:
```

9.10 Segment

```
// Retorna si el Punto P se encuentra dentro del circulo
// entre A y B
bool inDisk(Point a, Point b, Point p) {
  return (a - p).dot(b - p) <= 0;
}</pre>
```

```
// Retorna si el punto P se encuentra en el segmento de
// puntos S a E
bool onSegment (Point a, Point b, Point p) {
 return a.cross(b, p) == 0 && inDisk(a, b, p);
// SEGMENTO - SEGMENTO INTERSECCION
bool properInter (Point a, Point b, Point c, Point d,
                Point& p) {
  double oa = orient(c, d, a), ob = orient(c, d, b),
        oc = orient(a, b, c), od = orient(a, b, d);
  if (oa * ob < 0 && oc * od < 0) {</pre>
    p = (a * ob - b * oa) / (ob - oa);
    return true;
  return false;
// Si existe un punto de interseccion unico entre los
// segmentos de linea que van de A a B v de C a D, se
// devuelve. Si no existe ningun punto de interseccion, se
// devuelve un vector vacio. Si existen infinitos, se
// devuelve un vector con 2 elementos, que contiene los
// puntos finales del segmento de linea comun.
vector<Point> segInter(Point a, Point b, Point c,
                      Point d) {
 Point p;
 if (properInter(a, b, c, d, p)) return {p};
 set<Point> s;
 if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
 if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
 return {ALL(s)};
// SEGMENTO - PUNTO DISTANCIA
double segPoint(Point a, Point b, Point p) {
 if (a != b) {
   Line 1(a, b);
    if (l.cmpProj(a, p) && l.cmpProj(p, b))
     return l.dist(p);
 return min((p - a).norm(), (p - b).norm());
// SEGMENTO - SEGMENTO DISTANCIA
double segSeg(Point a, Point b, Point c, Point d) {
 Point dummy;
 if (properInter(a, b, c, d, dummy)) return 0;
 return min({segPoint(a, b, c), segPoint(a, b, d),
              segPoint(c, d, a), segPoint(c, d, b)});
```

10 Extras

10.1 Bits

```
* Descripcion: Algunas operaciones utiles con
 * desplazamiento de bits, si no trabajamos con numeros
 * enteros, usar 1LL o 1ULL, siendo la primer parte
 * operaciones nativas y la segunda del compilador GNU
 * (GCC), si no se trabaja con enteros, agregar 11 al
 * final del nombre del metodo Tiempo por operacion: O(1)
#define isOn(S, j) ((S >> j) & 1)
#define setBit(S, j) (S \mid= (1 << j))
#define clearBit(S, j) (S &= ^{\sim}(1 << j))
#define toggleBit(S, j) (S ^= (1 << j))</pre>
#define lowBit(S) (S & (-S))
#define setAll(S, n) (S = (1 << n) - 1)
#define modulo(S, N) \
  ((S) & (N - 1)) // Siendo N potencia de 2
#define isOdd(S) (s & 1)
#define isPowerOfTwo(S) (!(S & (S - 1)))
#define nearestPowerOfTwo(S) (1 << lround(log2(S)))</pre>
#define turnOffLastBit(S) ((S) & (S - 1))
#define turnOnLastZero(S) ((S) | (S + 1))
#define turnOffInRange(S, i, j) \
 s \&= (((^{\circ}0) << (j + 1)) | ((1 << i) - 1));
#define turnOffLastConsecutiveBits(S) ((S) & (S + 1))
#define turnOnLastConsecutiveZeroes(S) ((S) | (S - 1))
#define countBitsOn(n) __builtin_popcount(x);
#define firstBitOn(n) __builtin_ffs(x);
#define countLeadingZeroes(n) __builtin_clz(n)
#define log2Floor(n) 31 - __builtin_clz(n)
#define countTrailingZeroes(n) __builtin_ctz(n)
 * Descripcion: Si n <= 20 y manejamos subconjuntos,
 * podemos revisar cada uno de ellos representandolos como
 * una mascara de bits, en donde el i-esimo elemento es
 * tomado si el i-esimo bit esta encendido
 * Tiempo: O(2^n)
int MX_MSK = 1 << n;</pre>
for (int i = 0; i < MX_MSK; i++) {</pre>
```

10.2 Busquedas

```
/**
* Descripcion: encuentra un valor entre un rango de
 * numeros Busqueda Binaria: divide el intervalo en 2
 * hasta encontrar el valor minimo correcto Busqueda
 * ternaria: divide el intervalo en 3 para buscar el
 * minimo/maximo de una funcion
 * Tiempo: O(log n)
int binary_search(int 1, int r) {
  while (r - 1 > 1) {
    int m = (1 + r) / 2;
   if (f(m)) {
     r = m:
   } else {
     1 = m:
   }
 return 1;
double ternary_search(double 1, double r) {
```

```
while (r - 1 > EPS) {
   double m1 = 1 + (r - 1) / 3;
   double m2 = r - (r - 1) / 3;
   double f1 = f(m1);
   double f2 = f(m2);
   if (f1 < f2) // Maximo de f(x)
        1 = m1;
   else
        r = m2;
   }
   return f(1);</pre>
```

10.3 Dates

```
* Descripcion: rutinas para realizar calculos sobre
* fechas, en estas rutinas, los meses son expresados como
* enteros desde el 1 al 12, los dias como enteros desde
* el 1 al 31, y los anios como enteros de 4 digitos.
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu",
                     "Fri", "Sat", "Sun");
// Convierte fecha Gregoriana a entero (fecha Juliana)
int dateToInt(int m, int d, int y) {
 return 1461 * (y + 4800 + (m - 14) / 12) / 4 +
        367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
        3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 + d -
        32075:
// Convierte entero (fecha Juliana) a Gregoriana: M/D/Y
void intToDate(int jd, int &m, int &d, int &y) {
 int x, n, i, j;
 x = id + 68569;
 n = 4 * x / 146097;
 x = (146097 * n + 3) / 4;
 i = (4000 * (x + 1)) / 1461001;
 x -= 1461 * i / 4 - 31;
 j = 80 * x / 2447;
 d = x - 2447 * j / 80;
 x = j / 11;
 m = j + 2 - 12 * x;
 y = 100 * (n - 49) + i + x;
// Convierte entero (fecha Juliana) a dia de la semana
string intToDay(int jd) { return dayOfWeek[jd % 7]; }
int main() {
 int jd = dateToInt(3, 24, 2004);
 int m, d, y;
 intToDate(jd, m, d, y);
 string day = intToDay(jd);
 // Salida esperada:
 // 2453089
 // 3/24/2004
 // Wed
 cout << jd << endl
      << m << "/" << d << "/" << y << endl
      << day << endl;
```

10.4 Hash Pair

```
/**
  * Descripcion: funciones hash utiles, ya que
  * std::unordered_map no las provee nativamente, es
  * recomendable usar la segunda cuando se trate de un
```

```
* pair<int, int>
*/
struct hash_pair {
  template <class T1, class T2>
    size_t operator() (const pair<T1, T2>& p) const {
    auto hash1 = hash<T1>{} (p.first);
    auto hash2 = hash<T2>{} (p.second);

    if (hash1 != hash2) {
        return hash1 ^ hash2;
    }
    return hash1,
    };
    unordered_map<pair<int, int>, bool, hash_pair> um;
    struct HASH {
        size_t operator() (const pair<int, int>& x) const {
            return (size_t)x.first * 370 + (size_t)x.second;
        }
    ;
    ;
    unordered_map<pair<int, int>, int, HASH> xy;
```

10.5 Random

10.6 Trucos

```
// Descripcion: algunas funciones/atajos utiles para c++
// Imprimir una cantidad especifica de digitos
// despues del punto decimal en este caso 5
cout.setf(ios::fixed);
cout << setprecision(5);</pre>
cout << 100.0 / 7.0 << '\n';
cout.unsetf(ios::fixed);
// Imprimir el numero con su decimal y el cero a su
// derecha Salida -> 100.50, si fuese 100.0, la salida
// seria -> 100.00
cout.setf(ios::showpoint);
cout << 100.5 << '\n';</pre>
cout.unsetf(ios::showpoint);
// Imprime un '+' antes de un valor positivo
cout.setf(ios::showpos);
cout << 100 << ' ' << -100 << '\n';
cout.unsetf(ios::showpos);
// Imprime valores decimales en hexadecimales
cout << hex << 100 << " " << 1000 << " " << 10000 << dec
     << endl;
// Redondea el valor dado al entero mas cercano
```

```
round(5.5);
// techo(a / b)
cout << (a + b - 1) / b;
// Llena la estructura con el valor (unicamente puede ser
// -1 0 0)
memset(estructura, valor, sizeof estrutura);
// Llena el arreglo/vector x, con value en cada posicion.
fill(begin(x), end(x), value);
// True si encuentra el valor, false si no
binary_search(begin(x), end(x), value);
// Retorna un iterador que apunta a un elemento mayor o
// igual a value
lower_bound(begin(x), end(x), value);
// Retorna un iterador que apunta a un elemento MAYOR a
upper_bound(begin(x), end(x), value);
// Retorna un pair de iteradores, donde first es el
// lower_bound y second el upper_bound
equal_range(begin(x), end(x), value);
// True si esta ordenado x, false si no.
is_sorted(begin(x), end(x));
// Ordena de forma que si hay 2 cincos, el primer cinco
// estara acomodado antes del segundo, tras ser ordenado
stable_sort(begin(x), end(x));
// Retorna un iterador apuntando al menor elemento en el
// rango dado (cambiar a max si se desea el mayor), es
// posible pasarle un comparador.
min_element(begin(x), end(x));
```

10.7 int128

```
__int128 read() {
  _{\text{int}128 x} = 0, f = 1;
  char ch = getchar();
  while (ch < '0' || ch > '9') {
   if (ch == '-') f = -1;
   ch = getchar();
  while (ch >= '0' && ch <= '9') {
   x = x * 10 + ch - '0';
   ch = getchar();
 return x * f;
void print(__int128 x) {
 if (x < 0) {
   putchar('-');
    x = -x;
  if (x > 9) print (x / 10);
 putchar(x % 10 + '0');
```