Examples of systems modeled by 2nd-order ODE with constant Many physics and engineering problems may be modeled by 2nd-order ODEs with constant cefficients.

The following systems are completely different processes in different fields:

All yields the same Ind-order ODE with constant coefficients.

Inst by learning one ODE, we can interpret the results
in terms of

Depending on the operation conditions, responses can be categorized as:

Let's tal	ke the spring	-mass syste	m for example:
Case I	: unforced,	undamped	. •
DE	my"+Ky	=0	
roots/sol	ntion		

behavior/ physical meaning

Case I: unforced, damped

[DE] my"+by+ky = 0

[Toots/solution]

behavior/ physical meaning

CaseII: forced, damped

Of particular interest is the response of the system when diven by a

DE

nots/selution

behavior/ physical meaning

- Initially, the response is
- As tincreases,
 Sowe call "Yh" is the
- The system eventually

Case IV: forced, undamped

DE

hoots/solution

behavior/ physical meaning

Example 1: Consider a harmonic oscillator modeled by y"+2y'+2y = sint. Discuss The system behavior.

Example 2: Consider a harmonic oscillator modeled by y"+2y = cos ut. Discuss the system behavior.