eleks®

HDInsight: Spark

Advanced in-memory BigData Analytics with Microsoft Azure

Vitalii Bondarenko

Data Platform Competency Manager at Eleks Vitaliy.bondarenko@eleks.com

Agenda

- Spark Platform
- Spark Core
- Spark Extensions
- Using HDInsight Spark

About me

Vitalii Bondarenko

Data Platform Competency Manager

Eleks

www.eleks.com

20 years in software development 9+ years of developing for MS SQL Server 3+ years of architecting Big Data Solutions

- DW/BI Architect and Technical Lead
- OLTP DB Performance Tuning
- Big Data Data Platform Architect

Spark Platform

Spark Stack

- Clustered computing platform
- Designed to be fast and general purpose
- Integrated with distributed systems
- API for Python, Scala, Java, clear and understandable code
- Integrated with Big Data and BI Tools
- Integrated with different Data Bases, systems and libraries like Cassanda, Kafka, H2O
- First Apache release 2013, this moth v.2.0 has been released

Map-reduce computations

In-memory map-reduce

Execution Model

Spark Execution

- Shells and Standalone application
- Local and Cluster (Standalone, Yarn, Mesos, Cloud)

Spark Cluster Arhitecture

- Master / Cluster manager
- Cluster allocates resources on nodes
- Master sends app code and tasks tor nodes
- Executers run tasks and cache data

Connect to Cluster

- Local
- SparkContext and Master field
- spark://host:7077
- Spark-submit

DEMO: Execution Environments

- Local Spark installation
- Shells and Notebook
- Spark Examples
- HDInsight Spark Cluster
- SSH connection to Spark in Azure
- Jupyter Notebook connected to HDInsight Spark

Spark Core

RDD: resilient distributed dataset

- Parallelized collections with fault-tolerant (Hadoop datasets)
- Transformations set new RDDs (filter, map, distinct, union, subtract, etc)
- Actions call to calculations (count, collect, first)
- Transformations are lazy
- Actions trigger transformations computation
- Broadcast Variables send data to executors
- Accumulators collect data on driver

```
inputRDD = sc.textFile("log.txt")
errorsRDD = inputRDD.filter(lambda x: "error" in x)
warningsRDD = inputRDD.filter(lambda x: "warning" in x)
badLinesRDD = errorsRDD.union(warningsRDD)
print "Input had " + badLinesRDD.count() + " concerning lines"
```


Spark program scenario

- Create RDD (loading external datasets, parallelizing a collection on driver)
- Transform
- Persist intermediate RDDs as results
- Launch actions

Persistence (Caching)

- Avoid recalculations
- 10x faster in-memory
- Fault-tolerant
- Persistence levels
- Persist before first action

```
input = sc.parallelize(xrange(1000))
result = input.map(lambda x: x ** x)
result.persist(StorageLevel.MEMORY_ONLY)
result.count()
result.collect()
```

Level	Space used	CPU time	In memory	On disk	Comments
MEMORY_ONLY	High	Low	Y	N	
MEMORY_ONLY_SER	Low	High	Y	N	
MEMORY_AND_DISK	High	Medium	Some	Some	Spills to disk if there is too much data to fit in memory.
MEMORY_AND_DISK_SER	Low	High	Some	Some	Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory.
DISK_ONLY	Low	High	N	Y	

Transformations (1)

Function name	Purpose	Example	Result
map()	Apply a function to each element in the RDD and return an RDD of the result.	rdd.map(x => x + 1)	{2, 3, 4, 4}
flatMap()	Apply a function to each element in the RDD and return an RDD of the contents of the iterators returned. Often used to extract words.	rdd.flatMap(x => x.to(3))	{1, 2, 3, 2, 3, 3, 3}
filter()	Return an RDD consisting of only elements that pass the condition passed to filter().	rdd.filter(x => x != 1)	{2, 3, 3}
distinct()	Remove duplicates.	rdd.distinct()	{1, 2, 3}

Transformations (2)

Function name	Purpose	Example	Result
union()	Produce an RDD containing elements from both RDDs.	rdd.union(other)	{1, 2, 3, 3, 4, 5}
intersection()	RDD containing only elements found in both RDDs.	rdd.intersection(other)	{3}
subtract()	Remove the contents of one RDD (e.g., remove training data).	rdd.subtract(other)	{1, 2}
cartesian()	Cartesian product with the other RDD.	rdd.cartesian(other)	{(1, 3), (1, 4), (3,5)}

Actions (1)

Function name	Purpose	Example	Result
collect()	Return all elements from the RDD.	rdd.collect()	{1, 2, 3, 3}
count()	Number of elements in the RDD.	rdd.count()	4
countByValue()	Number of times each element occurs in the RDD.	rdd.countByValue()	{(1, 1), (2, 1), (3, 2)}
take(num)	Return numelements from the RDD.	rdd.take(2)	{1, 2}
top(num)	Return the top numelements the RDD.	rdd.top(2)	{3, 3}

Actions (2)

takeOrdered(num) (ordering)	Return numelements based on provided ordering.	rdd.takeOrdered(2) (myOrdering)	{3, 3}
reduce(func)	Combine the elements of the RDD together in parallel (e.g.,sum).	rdd.reduce((x, y) => x + y)	9
fold(zero)(func)	Same as reduce() but with the provided zero value.	rdd.fold(0)((x, y) => x + y)	9
(seqOp, combOp) Similar to reduce() but used to return a different type.		rdd.aggregate((0, 0)) ((x, y) =>(x1 + y, x2 + 1), (x, y) => (x1 + y1, x2 + y2))	(9, 4)

Data Partitioning

- userData.join(events)
- userData.partitionBy(100).persist()
- 3-4 partitions on CPU Core
- userData.join(events).mapValues(...).reduceByKey(...)

DEMO: Spark Core Operations

- Transformations
- Actions

Spark Extensions

Spark Streaming Architecture

- Micro-batch architecture
- SparkStreaming Concext
- Batch interval from 500ms
- Transformation on Spark Engine
- Outup operations instead of Actions
- Different sources and outputs

Spark Streaming Example

- Process RDDs in batches
- Start after ssc.start()
- Output to console on Driver
- Awaiting termination

Streaming on a Cluster

- Receivers with replication
- SparkContext on Driver
- Output from Exectors in batches saveAsHadoopFiles()
- spark-submit for creating and scheduling periodical streaming jobs
- Chekpointing for saving results and restore from the point ssc.checkpoint("hdfs://...")

Streaming Transformations

- DStreams
- Stateless transformantions
- Stagefull transformantions
- Windowed transformantions
- UpdateStateByKey
- ReduceByWindow, reduceByKeyAndWindow
- Recomended batch size from 10 sec

DEMO: Spark Streaming

Simple streaming with PySpark

Spark SQL

- SparkSQL interface for working with structured data by SQL
- Works with Hive tables and HiveQL
- Works with files (Json, Parquet etc) with defined schema
- JDBC/ODBC connectors for BI tools
- Integrated with Hive and Hive types, uses HiveUDF
- DataFrame abstraction

Spark DataFrames

```
# Import Spark SQLfrom pyspark.sql
import HiveContext, Row

# Or if you can't include the hive requirementsfrom pyspark.sql
import SQLContext, Row

sc = new SparkContext(...)
hiveCtx = HiveContext(sc)
sqlContext = SQLContext(sc)
input = hiveCtx.jsonFile(inputFile)

# Register the input schema RDD
input.registerTempTable("tweets")

# Select tweets based on the retweet
CounttopTweets = hiveCtx.sql("""SELECT text, retweetCount_FROM_tweets ORDER BY retweetCount_LIMIT_10""")
```

- hiveCtx.cacheTable("tableName"), in-memory, column-store, while driver is alive
- df.show()
- df.select("name", df("age")+1)
- df.filtr(df("age") > 19)
- df.groupBy(df("name")).min()

Catalyst: Query Optimizer

```
SELECT name
FROM (
SELECT id, name
FROM People) p
WHERE p.id = 1
```


- Analysis: map tables, columns, function, create a logical plan
- Logical Optimization: applies rules and optimize the plan
- Physical Planing: physical operator for the logical plan execution
- Cost estimation

DEMO: Using SparkSQL

- Simple SparkSQL querying
- Data Frames
- Data exploration with SparkSQL
- Connect from BI

Spark ML

Spark ML

- Classification
- Regression
- Clustering
- Recommendation
- Feature transformation, selection
- **Statistics**
- Linear algebra
- Data mining tools

Pipeline Cmponents

- **DataFrame**
- Transformer
- **Estimator**
- Pipeline
- Parameter

Pipeline.fit()

PipelineModel

(Transformer)

PipelineModel .transform()

HashingTF

Logistic Regression Model

Logistic

Regression

Raw

text

Tokenizer

Feature vectors

HashingTF Tokenizer Regression

Logistic

Model

Raw text Words

Feature vectors

Predictions

Logistic Regression

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Repeat {

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update all θ_j)

DEMO: Spark ML

- Training a model
- Data visualization

New in Spark 2.0

- Unifying DataFrames and Datasets in Scala/Java (compile time syntax and analysis errors). Same performance and convertible.
- SparkSession: a new entry point that supersedes SQLContext and HiveContext.
- Machine learning pipeline persistence
- Distributed algorithms in R
- Faster Optimizer
- Structured Streaming

Data stream as an unbounded table

New in Spark 2.0

```
spark = SparkSession\
    .builder()\
    .appName("StructuredNetworkWordCount")\
    .getOrCreate()
# Create DataFrame representing the stream of input lines from connection to localhost:9999
lines = spark\
   .readStream\
   .format('socket')\
   .option('host', 'localhost')\
   .option('port', 9999)\
   .load()
                                   windowedCounts = words.groupBv(
# Split the lines into words
                                       window(words.timestamp, '10 minutes', '5 minutes'),
words = lines.select(
                                       words.word
   explode(
       split(lines.value, ' ')
                                   ).count()
   ).alias('word')
# Generate running word count
wordCounts = words.groupBy('word').count()
# Start running the query that prints the running counts to the console
query = wordCounts\
    .writeStream\
    .outputMode('complete')\
    .format('console')\
    .start()
query.awaitTermination()
```

HDInsight: Spark

Spark in Azure

HDInsight benefits

- Ease of creating clusters (Azure portal, PowerShell, .Net SDK)
- Ease of use (noteboks, azure control panels)
- REST APIs (Livy: job server)
- Support for Azure Data Lake Store (adl://)
- Integration with Azure services (EventHub, Kafka)
- Support for R Server (HDInsight R over Spark)
- Integration with IntelliJ IDEA (Plugin, create and submit apps)
- Concurrent Queries (many users and connections)
- Caching on SSDs (SSD as persist method)
- Integration with BI Tools (connectors for PowerBI and Tableau)
- Pre-loaded Anaconda libraries (200 libraries for ML)
- Scalability (change number of nodes and start/stop cluster)
- 24/7 Support (99% up-time)

HDInsight Spark Scenarious

- 1. Streaming data, IoT and real-time analytics
- 2. Visual data exploration and interactive analysis (HDFS)
- 3. Spark with NoSQL (HBase and Azure DocumentDB)
- 4. Spark with Data Lake
- 5. Spark with SQL Data Warehouse
- 6. Machine Learning using R Server, Mllib
- 7. Putting it all together in a notebook experience
- 8. Using Excel with Spark

Q&A