Summary of Chapter 2: Machine Learning

Yuhang Zhang

Beijing Institute of Technology(BIT)

October 20, 2019

Outline

Outline

- 1 Overview
- 2 Supervised Learning
 - Rote Learning
 - Decision Trees
 - Learning in Bayesian Inference
- 3 Unsupervised Learning
 - Partition clustering
 - Hierarchical clustering
 - Density based clustering
 - Grid based clustering
- Review

- 1 Overview
- - Rote Learning

 - Learning in Bayesian Inference
- - Partition clustering
 - Hierarchical clustering
 - Density based clustering
 - Grid based clustering

■ What to learn?

- What to learn?
 - Learning denotes changes

- What to learn?
 - Learning denotes changes
- How to learn? Key points

- What to learn?
 - Learning denotes changes
- How to learn? Key points
 - Objectiveness

- What to learn?
 - Learning denotes changes
- How to learn? Key points
 - Objectiveness
 - Optimization

- 2 Supervised Learning
 - Rote Learning
 - Decision Trees
 - Learning in Bayesian Inference
- - Partition clustering
 - Hierarchical clustering

 - Grid based clustering

Learn a function to fit the data

key points

- key points
 - Function Structure

- key points
 - Function Structure
 - Ockham's razor

- key points
 - Function Structure
 - Ockham's razor
 - Optimize the parameters

- key points
 - Function Structure
 - Ockham's razor
 - Optimize the parameters
- learning methods

- key points
 - Function Structure
 - Ockham's razor
 - Optimize the parameters
- learning methods
 - data points : rote learning

- key points
 - Function Structure
 - Ockham's razor
 - Optimize the parameters
- learning methods
 - data points : rote learning
 - implicit : decision trees, Bayesian Inference

Rote learning

trade-off between saving states and computing

Rote learning

- trade-off between saving states and computing
- tune the search depth and evaluation function

Elements

Any discrete function

non-leaf nodes : input variables

Elements

Any discrete function

Summary of Chapter 2: Machine Learning

- non-leaf nodes : input variables
- leaf nodes : output result

Elements

Any discrete function

- non-leaf nodes : input variables
- leaf nodes : output result
- edges : values of variables

Supervised Learning

000

Decision Tree

Bases of choosing attributes

■ Informatino Gain (IG)

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n}log_2\frac{p}{p+n} - \frac{n}{p+n}log_2\frac{n}{p+n}$$

$$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$$

Bases of choosing attributes

Informatino Gain (IG)

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n}log_2\frac{p}{p+n} - \frac{n}{p+n}log_2\frac{n}{p+n}$$

$$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$$

Minimum Description Length (MDL) criterion : complexity(f(x)) + accuracy(f(x))

Problem and solution

overfitting

Problem and solution

- overfitting
- solution

Problem and solution

- overfitting
- solution
 - regularization term

Decision Tree

Problem and solution

- overfitting
- solution
 - regularization term
 - post-prune

Learning in Bayesian Inference

Bases

■ Foundation :

$$P(h|D) = \frac{P(D,h)}{P(D)} = \frac{P(D|h)P(h)}{P(D)}$$

Supervised Learning

000

000

Bases

Foundation:

$$P(h|D) = \frac{P(D,h)}{P(D)} = \frac{P(D|h)P(h)}{P(D)}$$

P(h): Prior probability

000

Bases

Foundation:

$$P(h|D) = \frac{P(D,h)}{P(D)} = \frac{P(D|h)P(h)}{P(D)}$$

P(h): Prior probability

P(h|D): Posterior probability

Bases

Foundation:

$$P(h|D) = \frac{P(D,h)}{P(D)} = \frac{P(D|h)P(h)}{P(D)}$$

Supervised Learning

000

P(h): Prior probability

P(h|D): Posterior probability

P(D|h): Class-conditional probability

•00

Bases

Foundation:

$$P(h|D) = \frac{P(D,h)}{P(D)} = \frac{P(D|h)P(h)}{P(D)}$$

P(h): Prior probability

P(h|D): Posterior probability

P(D|h): Class-conditional probability

Criterion :

$$h_{MAP} = argmax_h P(D|h)P(h)$$

Simplified form of class-conditional probability

000

Naive Bayesian Classifiers (NBC)

$$P(D|h) = P(d_1, \ldots, d_n|h) = \prod_i P(d_i|h)$$

Simplified form of class-conditional probability

Supervised Learning

Naive Bayesian Classifiers (NBC)

$$P(D|h) = P(d_1, \ldots, d_n|h) = \prod_i P(d_i|h)$$

Bayesian Belief Networks (BBN)

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|P(Parents(x_i)))$$

How to learn?

fully observable variables : Conditional probability table (CPT)

000

Learning in Bayesian Inference

How to learn?

- fully observable variables : Conditional probability table (CPT)
- only some observable : Multi-layer perceptron

Outline

- - Rote Learning
- 3 Unsupervised Learning
 - Partition clustering
 - Hierarchical clustering
 - Density based clustering
 - Grid based clustering

Overview

Fundamental task:

Clustering (Similarity Measurement)

Key points:

Overview

Fundamental task:

- Clustering (Similarity Measurement)
- Association Rule Mining

Key points:

Fundamental task:

- Clustering (Similarity Measurement)
- Association Rule Mining

Key points:

Similarity measurement

Overview

Fundamental task:

- Clustering (Similarity Measurement)
- Association Rule Mining

Key points:

- Similarity measurement
- Data set division

Overview

Fundamental task:

- Clustering (Similarity Measurement)
- Association Rule Mining

Key points:

- Similarity measurement
- Data set division
- Scalability

•00

Partition clustering

■ Blind search

•00

- Blind search
- Heuristic search

upervised Learning

Unsupervised Learning

○○ ●○○ ○○○ ○○○ ○○ Review 000

Partition clusterin

- Blind search
- Heuristic search
 - k-means algorithm

•00

- Blind search
- Heuristic search
 - k-means algorithm
 - k-medoids algorithm (PAM)

•00

- Blind search
- Heuristic search
 - k-means algorithm
 - k-medoids algorithm (PAM)
 - CLARA

- Blind search
- Heuristic search
 - k-means algorithm
 - k-medoids algorithm (PAM)
 - CLARA
 - CLARANS

Partition clustering

k-means algorithm

$$J(X, v) = \sum_{i=1}^{n} \sum_{j=1}^{k} (u_{ik})^{m} \rho(d(x_{i}, v_{j}))$$

O(tkn), local optimality, noises sensitive

Substitution cost :

$$C_{ih} = \sum_{i} C_{jih}$$

 $O(tk(N-k)^2)$, Strong robustness

Substitution cost :

$$C_{ih} = \sum_{i} C_{jih}$$

$$O(tk(N-k)^2)$$
, Strong robustness

Improved algorithms for large data set:

Substitution cost :

$$C_{ih} = \sum_{i} C_{jih}$$

 $O(tk(N-k)^2)$, Strong robustness

- Improved algorithms for large data set:
 - CLARA : sampling

Substitution cost :

$$C_{ih} = \sum_{i} C_{jih}$$

 $O(tk(N-k)^2)$, Strong robustness

- Improved algorithms for large data set:
 - CLARA : sampling
 - CLARANS: repetitive sampling

Hierarchical clustering

Overall methods:

■ Bottom-up : AGNES

Hierarchical clusterin

Hierarchical clustering

Overall methods:

■ Bottom-up: AGNES

■ Top-down: DIANA

Hierarchical clustering

Hierarchical clustering

Overall methods:

■ Bottom-up: AGNES

■ Top-down: DIANA

Problems and Solutions:

■ False step sensitive

Hierarchical clustering

Hierarchical clustering

Overall methods:

■ Bottom-up: AGNES

■ Top-down : DIANA

- False step sensitive
- Improved algorithms

Unsupervised Learning

0000

Hierarchical clustering

Overall methods:

■ Bottom-up : AGNES

■ Top-down : DIANA

- False step sensitive
- Improved algorithms
 - **BIRCH**

Hierarchical clustering

Overall methods:

■ Bottom-up : AGNES

■ Top-down: DIANA

- False step sensitive
- Improved algorithms
 - BIRCH
 - CURE

Hierarchical clusterin

Hierarchical clustering

Overall methods:

■ Bottom-up: AGNES

■ Top-down : DIANA

- False step sensitive
- Improved algorithms
 - BIRCH
 - CURE
 - CHAMELEON

BIRCH

Clustering feature (CF) :

$$CF = (N, LS, SS)$$

Additive

BIRCH

Clustering feature (CF) :

$$CF = (N, LS, SS)$$

Additive

CF Tree :

B,L,T

BIRCH

Clustering feature (CF) :

$$CF = (N, LS, SS)$$

Additive

CF Tree :

Scales linearly; order sensitive

Unsupervised Learning

OOOOO

Hierarchical clustering

CURE

Features:

AGNES

Hierarchical clustering

CURE

Features :

- AGNES
- Representative data

CURE

Features:

- AGNES
- Representative data
- Shrunk toward the mean value

Hierarchical clustering

CURE

Features:

- AGNES
- Representative data
- Shrunk toward the mean value
- Random sampling for large scale

0000

CHAMELEON

Dynamic modeling; Graph based method i Construct a sparse graph (KNN)

CHAMELEON

Dynamic modeling; Graph based method

- Construct a sparse graph (KNN)
- ii Partition the graph

Hierarchical clustering

CHAMELEON

Dynamic modeling; Graph based method

- i Construct a sparse graph (KNN)
- ii Partition the graph
- iii Merge partitions

•00

Density based clustering

Arbitrary shapes; Noise handled; Scan once

DBSCAN

Density based clusterin

Density based clustering

Arbitrary shapes; Noise handled; Scan once

- DBSCAN
- DENCLUE

Density based clustering

DBSCAN

$$N_{Eps}(p) = \{q \in D | dist(p,q) <= Eps\}$$

Parameters : Eps ; MinPts

Directly density-reachable

DBSCAN

$$N_{Eps}(p) = \{q \in D | dist(p,q) \le Eps\}$$

Parameters : Eps ; MinPts

- Directly density-reachable
- Density-reachable

DBSCAN

$$N_{Eps}(p) = \{q \in D | dist(p,q) \le Eps\}$$

Parameters : Eps ; MinPts

- Directly density-reachable
- Density-reachable
- Density-connected

Density based clusterin

DENCLUE

Influence function

000

Density based clustering

- Influence function
 - Square wave

Density based clustering

- Influence function
 - Square wave
 - Gaussian

- Influence function
 - Square wave
 - Gaussian
- Density function

- Influence function
 - Square wave
 - Gaussian
- Density function
- Density attractor X^*

Grid based clustering

Grid-based clustering

Dense Grid Cell

STING

Scale independent; Non-diagonal boundary

Grid-based clustering

Dense Grid Cell

- STING Scale independent; Non-diagonal boundary
- CLIQUE Dimension reduction

Outline

- - Rote Learning

 - Learning in Bayesian Inference
- - Partition clustering
 - Hierarchical clustering
 - Density based clustering
 - Grid based clustering
- Review

Review

Thank you

Thank you for listening!

