PH. D. QUALIFYING EXAM-ALGEBRA (FALL 2005)

- 1. (a) Let (G, \circ) be a semigroup with two identities e, e'. Show that e = e'.
 - (b) Let $(R, +, \cdot)$ be a ring. Show that $0 \cdot a = 0$ for all $a \in R$.
 - (c) Let $(R, +, \cdot)$ be an integral domain with identity 1. Suppose that there is a natural number n such that n = 0. Show that there is a prime number p such that p = 0 for all $a \in R$.
- 2. Let (G, \cdot) be a group. Do one of the following problems.
 - (a) Let H be a subgroup of Z(G), the center of G. Show that if G/H is cyclic, then G is abelian.
 - (b) Let G be a group with order 78. Suppose that G has an abelian normal subgroup H with order 6. Show that Sylow 13-subgroup is normal and G is abelian.
- 3. Do one of the following problems:
 - (a) Show that every Euclidean domain is principal ideal domain.
 - (b) Let R be a commutative ring and I a proper ideal of R. Show that I is a prime ideal if and only if R/I is an integral domain.
- 4. Do one of the following problems:
 - (a) Let \mathbb{F} be a field with characteristic $p < \infty$. Show that all roots of $x^{p^4} x \in \mathbb{F}[x]$ are distinct.
 - (b) Let \mathbb{F} be the splitting field of $x^3 2$ over \mathbb{Q} . Find $G(\mathbb{F}/\mathbb{Q})$? What is the order of $G(\mathbb{F}/\mathbb{Q})$?
- 5. Do one of the following problems:
 - (a) Let A be a 3×3 complex matrix such that $A^2(A I) = 0$. Find all possible nonequivalent Jordan forms for A.
 - (b) Let M be a module over a commutative ring R and I be an ideal of R. Show that $\{x \in M : rx = 0 \text{ for all } r \in I\}$ is a submodule of M.