Exercise 2.4

Question #1

Write the converse, inverse and contrapositive of the following conditions:

(i)
$$\sim p \rightarrow q$$

(ii)
$$q \rightarrow p$$

(iii) ~
$$p \rightarrow \sim q$$

Solution

$$\sim p \rightarrow q$$

$$q \rightarrow \sim p$$

$$p \rightarrow \sim q$$

$$\sim q \rightarrow p$$

Conditional:

$$q \rightarrow p$$

Converse:

$$p \rightarrow q$$

Inverse:

$$\sim q \rightarrow \sim p$$

Contrapositive:

$$\sim p \rightarrow \sim q$$

(iii)

Conditional:

$$\sim p \rightarrow \sim q$$

Converse:

$$\sim q \rightarrow \sim p$$

Inverse:

$$p \rightarrow q$$

Contrapositive:

$$q \rightarrow p$$

(iv)

Do yourself as above

Ouestion #2

Construct truth tables for the following statements:

(i)
$$(p \rightarrow \sim p) \lor (p \rightarrow q)$$

(ii)
$$(p \land \sim p) \rightarrow q$$

(i)
$$(p \rightarrow \sim p) \lor (p \rightarrow q)$$
 (ii) $(p \land \sim p) \rightarrow q$ (iii) $\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$

Solution

Statement:
$$(p \rightarrow \sim p) \lor (p \rightarrow q)$$

p	Q	~ p	$p \rightarrow \sim p$	$p \rightarrow q$	$(p \to \sim p) \lor (p \to q)$
T	T	F	F	T	T
T	F	F	F	F	F
F	T	T	T	T	T
F	F	T	Т	Т	Т

(ii)

Statement: $(p \land \sim p) \rightarrow q$

p	Q	~ p	<i>p</i> ∧~ <i>p</i>	$(p \land \sim p) \rightarrow q$
T	T	F	F	T
Т	F	F	F	T
F	T	T	F	T
F	F	T	F	T

p	Q	~ q	$p \rightarrow q$	$\sim (p \rightarrow q)$	<i>p</i> ∧~ <i>q</i>	$(p \land \neg q) \leftrightarrow \neg (p \to q)$
T	T	F	T	F	F	Т
T	F	T	F	T	T	Т
F	T	F	T	F	F	Т
F	F	T	T	F	F	T

Tautology:

The statement, which is true for all possible values of the variables in it, is called *tautology*.

Contingency:

The statement, which is true or false depending upon the truth values of the variables involved in it, is called a *contingency*.

Absurdity or Contradiction:

The statement, which is false for all the possible values of the variables involved in it, is called an *absurdity* or *contradiction*.

Ouestion #3

Show that each of the following statements is a tautology:

(i)
$$(p \land q) \rightarrow p$$

(ii)
$$p \rightarrow (p \lor q)$$

(iii)
$$\sim (p \rightarrow q) \rightarrow p$$

(iv)
$$\sim q \land (p \rightarrow q) \rightarrow \sim p$$

Solution

(i)

Statement: $(p \land q) \rightarrow p$

P	q	$p \wedge q$	$p \land q \rightarrow p$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Statement: $p \rightarrow (p \lor q)$

p	q	$p \lor q$	$p \to (p \lor q)$
T	T	T	T
T	F	T	Т
F	T	T	Т
F	F	F	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology

p	Q	$p \rightarrow q$	$\sim (p \rightarrow q)$	$\sim (p \rightarrow q) \rightarrow p$
T	T	T	F	T
T	F	F	T	Т
F	T	T	F	Т
F	F	T	F	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

(iv) Statement: $\sim q \land (p \rightarrow q) \rightarrow \sim p$

p	Q	~ p	~ q	$p \rightarrow q$	$\sim q \wedge (p \rightarrow q)$	$\sim q \wedge (p \rightarrow q) \rightarrow \sim p$
T	T	F	F	T	F	T
T	F	F	T	F	F	T
F	T	T	F	T	F	T
F	F	T	T	T	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question # $\overline{4}$

Determined whether each of the following is a tautology, a contingency or an absurdity:

(i)
$$p \land \sim p$$

(ii)
$$p \rightarrow (q \rightarrow p)$$

(iii)
$$q \lor (\sim q \lor p)$$

Solution

(i) Statement: $p \land \sim p$

p	~ p	<i>p</i> ∧~ <i>p</i>
T	F	F
F	T	F

The last column of the above table shows that the statement is false for all values of p and q thus given statement is absurdity.

(ii) Statement:
$$p \rightarrow (q \rightarrow p)$$

p	q	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$
T	T	T	T
T	F	T	T
F	T	F	T
F	F	T	Т

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

(iii) Statement: $q \lor (\sim q \lor p)$

P	q	~ q	~ <i>q</i> ∨ <i>p</i>	$q \lor (\sim q \lor p)$
T	T	F	T	T
T	F	T	T	Т
F	T	F	F	Т
F	F	T	T	T

The last column of the above table shows that the statement is true for all values of p and q thus given statement is tautology.

Question # 5

Prove that

$$p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$$

Solution

Consider the truth table

P	Q	~p	~q	$p \wedge q$	~ <i>p</i> ^ ~ <i>q</i>	$p \lor (\sim p \land \sim q) \lor (p \land q)$	$p \lor (\sim p \land \sim q)$
T	T	F	F	T	F	T	T
T	F	F	T	F	F	T	T
F	T	T	F	F	F	F	F
F	F	T	T	F	T	T	T

The last two column of the above table are identical this shows that the statement $p \lor (\sim p \land \sim q) \lor (p \land q)$ and $p \lor (\sim p \land \sim q)$ are equal

i.e.
$$p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$$