BÚSQUEDA EN ANCHURA (BFS) [CORMEN]

```
BFS(G, s).....O(V+E)
1. for each vertex u \in V[G] - \{s\}
2.
      do color[u] \leftarrow WHITE
3.
          d[u] \leftarrow \infty
4.
          \pi[u] \leftarrow NIL
5. color[s] \leftarrow GRAY
6. d[s] \leftarrow 0
7. \pi[s] \leftarrow NIL
8. Q \leftarrow \emptyset
9. ENQUEUE(Q, s)
10. while Q \neq \emptyset
11.
      do u \leftarrow \text{DEQUEUE}(Q)
12.
          for each v \in Adj[u]
13.
             do if color[v] = WHITE
14.
                then color[v] \leftarrow GRAY
15.
                       d[v] \leftarrow d[u] + 1
16.
                       \pi[v] \leftarrow u
17.
                       ENQUEUE(Q, v)
18.
          color[u] \leftarrow BLACK
```


PRINT-PATH(G, s, v)

- 1. **if** v = s
- 2. **then** print s
- 3. else if $\pi[v] = NIL$
- 4. **then** print "no path from" s "to" v "exists"
- 5. else PRINT-PATH($G, s, \pi[v]$)
- 6. print v

BÚSQUEDA EN PROFUNDIDAD (DFS) [CORMEN]

TOPOLOGICAL SORT [CORMEN]

Topological-Sort(G) $\Theta(V+E)$

- 1. call DFS(G) to compute finishing times *f* [*v*] for each vertex *v*
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. **return** the linked list of vertices

ESTRUCTURA DE DATOS: UNION-FIND

Make-set(x)

- 1. $p[x] \leftarrow x$
- 2. $rank[x] \leftarrow 0$

UNION(x, y)

1. Link(Find-Set(x), Find-Set(y))

LINK(x, y)

- 1. **if** rank[x] > rank[y]
- 2. then $p[y] \leftarrow x$
- 3. **else** $p[x] \leftarrow y$
- 4. **if** rank[x] = rank[y]
- 5. **then** $rank[y] \leftarrow rank[y] + 1$

FIND-SET(x)

- 1. **if** $x \neq p[x]$
- 2. **then** $p[x] \leftarrow \text{FIND-SET}(p[x])$
- 3. **return** p[x]

CONNECTED COMPONENTS(G)

A continuación se muestra un grafo con cuatro componentes conexas: {a, b, c, d}, {e, f, g}, {h, i} y {j}.

initial sets	Collection of disjoint sets									
	(a)	(b)	(c)	(d)	(e)	S	(g)	(h)	{i}	(j)
(b,d)	(a)	(b,d)	(c)		(e)	S	(g)	{h}	(1)	U
(e,g)	(a)	(b,d)	(c)		(e,g)	S		{h}	(1)	U
(a,c)	{a,c}	(b,d)			(e,g)	S		{h}	11)	U
(h,i)	{a,c}	{b,d}			(e,g)	S		$\{h,i\}$		(i)
(a,b)	$\{a,b,c,d\}$				(e,g)	M		$\{h,i\}$		(i)
(e, f)	$\{a,b,c,d\}$				(e,f,g)			$\{h,i\}$		U
(b,c)	$\{a,b,c,d\}$				(e,f,g)			$\{h,i\}$		U

CONNECTED-COMPONENTS (G)

- 1. **for** each vertex $v \in V[G]$
- 2. **do** Make-Set(v)
- 3. **for** each edge $(u, v) \in E[G]$
- 4. **do if** FIND-SET $(u) \neq$ FIND-SET (v)
- 5. **then** UNION(u, v)

SAME-COMPONENT(u, v)

- 1. **if** FIND-SET (u) = FIND-SET (v)
- 2. **then return** TRUE
- 3. **else return** FALSE

MINIMUM SPANNING TREE (MST)

MST-KRUSKAL(G, w)

- 1. $A \leftarrow \emptyset$
- 2. **for** each vertex $v \in V [G]$
- 3. **do** Make-Set (v)
- 4. sort the edges of E into nondecreasing order by weight *w*
- 5. **for** each edge $(u, v) \in E$, taken in nondecreasing order by weight
- 6. **do if** FIND-SET $(u) \neq$ FIND-SET (v)
- 7. **then** $A \leftarrow A \cup \{ (u, v) \}$
- 8. UNION (u, v)
- 9. return A

DIJKSTRA

INITIALIZE-SINGLE-SOURCE(G, s)

- 1. **for** each vertex $v \in V[G]$
- 2. **do** $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

RELAX(u, v, w)

- 1. **if** d[v] > d[u] + w(u, v)
- 2. **then** $d[v] \leftarrow d[u] + w(u, v)$
- 3. $\pi[v] \leftarrow u$

Dijkstra(G, w, s)

- 1. Initialize-Single-Source(G, s)
- 2. $S \leftarrow \emptyset$
- 3. $Q \leftarrow V[G]$
- 4. while $Q \neq \emptyset$
- 5. **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. **for** each vertex $v \in Adj[u]$
- 8. **do** RELAX(u, v, w)

FLOYD-WARSHALL

FLOYD-WARSHALL(W)

- 1. $n \leftarrow \text{rows}(W)$
- 2. **for** $i \leftarrow 1$ **to** n
- 3. **do for** $j \leftarrow 1$ **to** n
- 4. **do if** i = j **or** W[i][j] = 0

5.
$$D[i][j] \leftarrow \infty$$

6. $\pi[i][j] \leftarrow \text{NIL}$
7. **else if** $W[i][j] > 0$
8. $D[i][j] \leftarrow W[i][j]$
9. $\pi[i][j] \leftarrow i$
10. **for** $k \leftarrow 1$ **to** n
11. **do for** $i \leftarrow 1$ **to** n
12. **do for** $j \leftarrow 1$ **to** n
13. $D[i][j] \leftarrow D[i][k] + D[k][j]$
14. $D[i][j] \leftarrow D[i][k] + D[k][j]$

 $\pi[i][j] \leftarrow k$

15.

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$