

Parts and assemblies engineering

Lab-3

The task

Design the hinge-bolt connection for two variants:

Table – Variants of Task

	Fixed joint				Sliding joint/Small-sliding joints			
Variants	1	2	3	4	1	2	3	4
P, [N]	160000	185000	175000	155000	145000	150000	165000	170000

Table 1 – Material Properties

Materials	Ultimate tensile strength σ _{ult} , [MPa]	Proof strength σ ₀₂ , [MPa]	Shear strength* $\tau_{\rm ult}$, $\tau_{\rm 02}$ (% of tensile strength)	Modulus of elasticity E, [Gpa]	Shear modulus G, [Gpa]	Density, ρ, [g/cm ³]
30ХГСА	1100	850	63	210	78	7,85
OT4	700	600	50	110	80	4,5
BT20	1000	910	50	110	44	4,5
BHC-2	1250	1100	60	190	76	7,8

Fixed joint

1. Choose the materials of eye, double eye, bolt complex (bolt, nut, washer) from Table 1.

2. There are two options for determining the bolt diameter according to the strength criteria for the cut:

- 2.1 From shear stress
- 2.2 From max cutting load of bolt

2.1 From shear stress:

$$\tau_{cut} = \frac{P_{cut}}{A_{cut}}$$

Determine the diameter of bolt:

$$\tau_{cut} \ge \tau_{ult}$$

Strength criteria for shear stress

$$d_{bolt} \ge \sqrt{\frac{2 \cdot P}{\pi \cdot \tau_{ult}}}$$

Recalculate the current shear stress:

$$\tau_{cut} = \frac{2 \cdot P}{\pi \cdot d^2}$$

Calculate the coefficient of shear stress safety η :

$$\eta = \frac{\tau_{ult}}{\tau_{cut}}, ideally \quad \eta = [1...1.5]$$

2.2 From max cutting force of bolt:

$$P_{\text{cut}} \leq [P_{\text{cut}}], \qquad P_{\text{cut}} = \frac{P}{2}$$

$$P_{cut} = \frac{P}{2}$$

Double cutting (P divided by 2)

where:

 $P_{\rm cut}$ - is current force of bolt

 $[P_{cut}]$ max cutting force is determine from table in OCT 1 31100-80.

Value of $[P_{cut}]$ must be larger then P_{cut}

The max load of cutting bolt in depending of diameter and material of bolt

	Марка материала								
Номинальный диаметр глад-	30XFCA, 16XCH, 40XH2MA			30ХГСН2А	14X17H2		07X16H6		
кой части		Температура, ^о С							
стержия	25	100 - 300	400	25	25	400	25	400	
болта, мм		Расчетная разрушающая нагрузка на срез, Н (кгс)							
4	8340 (850)	7950 (810)	-	-	6370(650)	4800(490)	-		
5	13400 (1370)	13400 (1370)	_	-	10000(1020)	7450(760)	13330(1360)	12160(1240)	
6	19300 (1970)	19300 (1970)	16500 (1680)	28000 (2850)	14410(1470)	10780(1100)	19310(1970)	17550(1790)	
7	26400 (2690)	26400 (2690)	22400 (2280)	-	19700(2010)	14700(1500)	26270(2680)	23820(2430)	
8	34300 (3500)	34300 (3500)	29200 (2980)	49700 (5070)	25680(2620)	19310(1970)	34410(3510)	31180(3180)	
9	43700 (4450)	43700 (4450)	37100 (3780)	~	32650(3330)	24410(2490)	43530(4440)	39510(4030)	
10	53900 (5490)	53900 (5490)	45600 (4650)	77500 (7900)	40290(4110)	30200(3080)	53820(5490)	48820(4980)	
12	77500 (7900)	77500 (7900)	-	111800 (11400)		_	-		
14	105000 (10700)	105000 (10700)	-	152100 (15500)	-		-		
15	120700 (12300)	120700 (12300)	-	-		-			
16	137300 (14000)	137300 (14000)	-	198200 (20200)	-	-			
17	155000 (15800)	155000 (15800)	_	_	-				
18	174600 (17800)	174600 (17800)		251100(25600)		-	-		
20	214800 (21900)	214800 (21900)		311000 (31700)			-	-	
22	260000 (26500)	260000 (26500)		375700 (38300)			-	-	
. 24	310000 (31600)	310000 (31600)		447300 (45600)					

From the OCT 1 31100-80 determent the main parameters of bolt:

Calculate the coefficient of cutting force safety η :

$$\eta = \frac{[P_{cut}]}{P_{cut}}, ideally \eta = [1...1.5]$$

3.1 Calculate the current crumpling stress of eye:

$$\sigma_{\rm crump} = \frac{P_{crump}}{d \cdot a};$$

For eye:
$$P_{crump} = P$$

For double eye:
$$P_{crump} = \frac{P}{2}$$

3.2 For fixed joint K=1:

$$\left[\sigma_{crump}\right] = K \cdot \sigma_{ult};$$

$$\sigma_{\rm crump} = \frac{P_{crump}}{d \cdot a};$$

From strength criteria

$$\sigma_{crump} \leq [\sigma_{crump}]$$

Calculate the thickness for eye AND double eye!!!!

$$a = \frac{P_{\text{crum}p}}{d \cdot \sigma_{\text{ult}}};$$

3.3 Recalculate the current crumpling stress of eye and double eye $\sigma_{{
m cru}mp}$ and calculate the stress safety factor:

$$\eta = \frac{\left[\sigma_{crump}\right]}{\sigma_{crump}}, ideally \quad \eta = [1...1.5]$$

4. Determine the length of bolt:

$$L = a_{eye} + 2 \cdot a_{double-eye} + \delta_{washer} + \delta_{nut}$$

Determine the value of thickness of washer and nut from OCT 1 33048-80.

5. Check the strength design of eye and double eye on break load

5.1 Calculate the break load for eye and double-eye:

$$\sigma_{\rm break} = \frac{P_{\rm break}}{A_{\rm break}}$$

$$P_{break} = P$$

For double eye:
$$P_{break} = \frac{P}{2}$$

$$A_{\text{break}} = (b - a) \cdot a = 2 \cdot a \cdot x$$

$$\sigma_{\text{break}} = \frac{P_{\text{break}}}{A_{\text{break}}} = \frac{P_{\text{break}}}{(b-d) \cdot a} = \frac{P_{\text{break}}}{2 \cdot a \cdot x}$$

5.2 Calculate the K breaking coefficient for eye and double-eye:

$$\sigma_{\text{break}} \leq [\sigma_{\text{break}}]$$

$$[\sigma_{\text{break}}] = K_{\text{break}} \cdot \sigma_{\text{ult}};$$

$$K_{\text{break}} = 0.565 + 0.48 \cdot \frac{y}{x} - 0.1 \cdot \frac{b}{a}$$

For fixed joint
$$\frac{y}{x} = 1,4$$
 and $\frac{b}{a} = 2$

$$K_{\mathrm{br}eak} pprox 1$$
, so $[\sigma_{break}] = \sigma_{\mathrm{B}}$

$$[\sigma_{break}] = \sigma_{\rm B}$$

5.3 Calculate the geometric parameters of eye and double-eye:

$$[\sigma_{break}] = \sigma_{\rm B}$$

$$x = \frac{P_{\text{break}}}{2 \cdot a \cdot \sigma_{\text{ult}}}$$

$$\frac{y}{x} = 1.4$$

and
$$b = 2 \cdot x + d$$

5.4 Recalculate the $\sigma_{\rm break}$ and determine the stress safety factor for eye and double-eye:

$$\eta = \frac{\left[\sigma_{
m break}\right]}{\sigma_{
m break}}$$
, ideally $\eta = [1...1.5]$

6. Check the strength design of eye and double eye on cutting:

$$au_{
m cut} = rac{P_{
m cut}}{F_{
m cut}} = rac{P_{
m cp}}{2 \cdot a \cdot y^*}$$
 For eye: $P_{cut} = P$

For double eye: $P_{cut} = rac{P}{2}$

 y^* - determine from draw

6.1 Recalculate the shear cut stress $\tau_{\rm cut}$ for eye and double eye and calculate the stress safety factor:

$$\eta = \frac{\left[\tau_{\text{cut}}\right]}{\tau_{\text{cut}}},$$

$$\eta = \frac{\left[\tau_{\mathrm{cut}}\right]}{\tau_{\mathrm{cut}}}$$
, $ideally$ $\eta = [1...1.5]$ Where $\left[\tau_{\mathrm{cut}}\right] = \tau_{ult}$

Sliding joint/Small-sliding joints

1. For this case, step of "determine bolt diameter" the same that describe on slide 7.

2*. After obtain the bolt diameter, determine the thickness of eye and double eye with two options:

- 2.1 Crumpling along the inner diameter d of the bush;
- 2.2 Crumpling along the outer diameter D of the bush;

* - additional task

Calculate all steps described on last slides

Calculate the geometric parameters of eye and double-eye:

$$K_{break} = 0,565 + 0,48 \cdot \frac{y}{x} - 0,1 \cdot \frac{b}{d}$$

For sliding joint:
$$\frac{y}{x} = 1$$
, $\frac{b}{d} = 2$.

And recalculate remaining steps.

Create a report of the laboratory work

Make assemblies drawings

Build a table with the main structures parameters.

Link for section data, variants and PPT

