Trabalho final IAA - Treasure Hunt

Miguel Correia 57609

Carlos Rodrigues 60630

9 de janeiro de 2025

Conteúdo

1	Introdução					
2	Sumário do Tema					
3	Design e Arquitetura					
	3.1 Probabilidade do Estado Inicial da Localização do Tesouro					
	3.2 Bayesian Network					
	3.2.1 Detection Mode					
	3.2.2 Dig Mode					
	3.3 Conditional Probability Tables					
	3.3.1 Detect Mode					
	3.4 Dig Mode					
4	Desafios e Reflexões					

1 Introdução

Este projeto foi realizado no âmbito da cadeira de Inteligência Artificial Aplicada do Mestrado em Engenharia Informática, sob a tutela do professor António Anjos. Tem como objetivo de aplicar todo o conhecimento adquirido durante as aulas.

2 Sumário do Tema

O objetivo do projeto é implementar um jogo interativo, em Python, que usa os mecanismos de deteção probabilística numa grelha de $m \times n$. Os jogadores têm que localizar o tesouro escondido usando o modo detetor de forma estratégica, já que, por cada uso, o jogador recebe uma penalização. É claro que, se os jogadores forem confiantes, podem usar o modo de escavação para encontrar o tesouro, mas esse modo é uma jogada garantida para finalizar o jogo. Se for com sucesso, o jogador ganha e recebe todos os pontos que lhes foi atribuído, se não for, o jogador perde.

3 Design e Arquitetura

Durante a implementação do nosso jogo, damos a opção aos jogadores de escolher o tamanho da grelha de jogo, mas para o relatório o tamanho será m = n = 3.

3.1 Probabilidade do Estado Inicial da Localização do Tesouro

Podemos assumir que a distribuição da probabilidade irá ser uniforme, cada célula da grelha de tamanho $m \times n$ terão todos a mesma probabilidade de obter o tesouro no início do jogo e é demonstrado da seguinte forma:

$$P(T = \text{c\'elula}) = \frac{1}{m \times n}$$

3.2 Bayesian Network

3.2.1 Detection Mode

- Nós:
 - Localização do tesouro (T): Representa a localização atual do tesouro na grelha.
 - Sinais de deteção $(D_1, D_2, D_3, ..., D_d)$: Representa os sinais que o jogador recebe por cada vez que insere coordenadas e é definido pela distância **d**.
- Arestas: A localização do tesouro afeta cada sinal de deteção $(T \to D_d)$

3.2.2 Dig Mode

• Nós:

- Localização do tesouro (T): Representa a localização atual do tesouro na grelha.
- Sinais de deteção $(D_1, D_2, D_3, ..., D_d)$: Representa os sinais que o jogador recebe por cada vez que insere coordenadas e é definido pela distância **d**.
- Local de escavação (G): Representa as coordenadas inseridas pelo jogador para escavar o tesouro.

• Arestas:

- $T \rightarrow D_d$: A localização do tesouro afeta cada sinal de deteção.
- $D_d \rightarrow G\!\!:$ A escolha das coordenadas de escavação é afetada pelos sinais de deteção.

A localização do tesouro afeta cada sinal de deteção $(T \to D_d)$

3.3 Conditional Probability Tables

Primeiro, o jogo irá começar com todas as células com a probabilidades iguais, representado nesta CPT:

Célula	P(T=célula)	
(0, 0)	0,111	
(0, 1)	0,111	
(0, 2)	0,111	
(1, 0)	0,111	
(1, 1)	0,111	
(1, 2)	0,111	
(2, 0)	0,111	
(2, 1)	0,111	
(2, 2)	0,111	

3.3.1 Detect Mode

• $P(T|D_d)$

d (distância)	S (sinal)	$P(T D_d)$
0	++++	0.8
0	+++	0.1
0	++	0.07
0	+	0.03
1	++++	0.08
1	+++	0.8
1	++	0.08
1	+	0.04
2	++++	0.04
2	+++	0.08
2	++	0.8
2	+	0.08
≥3	++++	0.03
≥3	+++	0.07
≥3	++	0.1
≥3	+	0.8

• Estado seguinte

Após o jogador usar o modo de deteção na célula (1, 0), é aplicado a seguinte expressão:

- Distância de Manhattan: $d = |i i_d| + |j j_d|$, em que (i_d, j_d) é a célula detetada.
- Atualização das probabilidades: Para cada célula (i, j) na grelha $G(i, j) = L(i, j) \times Prior(i, j)$, em que L representa a probabilidade do sinal mais provável na célula (i, j) e Prior representa a probabilidade do estado anterior, L é calculado assim:

 $L = signal_table[min(d, 3)][S]$

em que S representa o sinal obtido após deteção.

- Probabilidade total: prob_total = $\sum_{i=1}^{\mathrm{i}} \sum_{j=1}^{\mathrm{j}} G(i,j)$
- Normalização das probabilidades: $G(i,j) = \frac{G(i,j)}{prob_total}$

E assim ficamos com a CPT da seguinte forma:

P(T=célula)	
0,066	
0,033	
0,025	
0,656	
0,066	
0,033	
0,066	
0,033	
0,025	

3.4 Dig Mode

Com base no que foi executado no Detect Mode, a escolha da célula é feita com base nos dados obtidos. Assim, podemos apresentar da seguinte forma:

Célula a cavar	S (sinal)	P(T=célula)	Com tesouro
(0, 0)	+++	0,066	Alta
(0, 1)	++	0,033	Média
(0, 2)	+	0,025	Baixa
(1, 0)	++++	0,656	Muito Alta
(1, 1)	+++	0,066	Alta
(1, 2)	++	0,033	Média
(2, 0)	+++	0,066	Alta
(2, 1)	++	0,033	Média
(2, 2)	+	0,025	Baixa

4 Desafios e Reflexões

Durante o desenvolvimento do projeto, achamos mais desafiante a construção da Bayessian Network e a Conditional Probabilities Table (CPT), daí termos que nos basear bastante no que implementamos no código. Não nos sentimos limitados pois o Python fornece uma grande variedade de bibliotecas para que possamos usufruir e mesmo que não fosse o caso, teriamos outras formas de chegar aos resultados pretendidos. Cada membro contribuiu no código, sendo que o Update das probabilidades, inicialização da grelha, distância de manhattan, cálculo da probabilidades posteriores usando as anteriores foi implementado por Miguel Correia e a parte visual do jogo, o dig mode, a Bayessian Network e a CPT's para Detect e Dig Mode foram implementados por Carlos Rodrigues. Em geral, cada membro contribuiu de forma igual para o projeto.