

CEVAP KAĞIDI

ÖĞRENCİ NUMARASI		1	2	2	1	-		/apmayıı			
Rick College College		521 13	-	3	4	3	0	/	8	9	10
000000000	AD :	000	00	00	00	00	0.0			010	
	SOYAD :	000	00	00	00	00	00	00	00	000	0
	DEDCAR	000	(1)(1)	(1)(1)	(1)(1)	111	111	(1)(1)	11	111	1
222222222		22	22	22	22	22	22	22	22	22	2
3333333333	ŞUBE :	33	33	33	33	33	33	33	33	3 3	(3)
444444444)	4 4	(4)(4)	(4) (4)	(4)(4)	(4)(4)	(4) (4)	(4)(4)	(4)(4)	4 4	(4)
(5)(5)(5)(5)(5)(5)(5)		(5) (5)	(5)(5)	<u>S</u> <u>S</u>	(5)(5)	(5)(5)	(5)(5)	(5) (5)	(5)(5)	55	(5)
666666666	imza	66	000	66	66	66	66	00	6 6	000	6
0000000000	IMEA	22				20			00	20	1
8888888		-00					000	00	000		100
A		8 8	88			- 1 -	88				-
<u>(99999999</u>	MATEMATÍK I FÍNAL SO	99	99	99	99	99	99	(9)(9)	(9)(9)	99	9

- 1) a) $\lim_{x\to 1} (1-x) \tan \frac{\pi x}{2} = ?$ (15 Puan) , b) $\lim_{x\to 0} (\cos x)^{\frac{2}{x^2}} = ?$ (15 Puan)
- 2) a) $f(x) = \frac{1}{2x-1}$ fonksiyonun n. mertebeden türevini ve $f^{(4)}(0)$ türev değerini bulunuz. (15 Puan)
 - b) $\sqrt[3]{123}$ ifadesinin yaklaşık değerini diferansiyel yardımıyla bulunuz (10 Puan)
- 3) İki köşesi x ekseni ve diğer iki köşesi de $f(x) = 9 x^2$ eğrisi üzerinde olan dikdörtgenlerden, alanı maksimum olanının alanını bulunuz. (20 Puan)
- 4) $f(x) = \frac{x^2 + x + 1}{x + 1}$ fonksiyonunun grafiğini gerekli tüm adımları yaparak çiziniz? (25 Puan)

Sınav süresi 75 dakikadır. Başarılar dileriz. Nereden geldiği belli olmayan cevaplar dikkate alınmayacaktır.

1) a)
$$\lim_{n \to 1} (1-n) \tan \frac{\pi x}{2} = \lim_{n \to 1} (1-x) \cdot \frac{\sin \frac{\pi x}{2}}{\cos \frac{\pi x}{2}} = \lim_{n \to 1} \sin \frac{\pi x}{2} \cdot \lim_{n \to 1} \frac{1-x}{\cos \frac{\pi x}{2}} = \lim_{n \to 1} \frac{1-x}{2} =$$

(2) a)
$$f(x) = \frac{1}{2x-1} = (2x-1)^{\frac{1}{2}}$$
 $f'(x) = -1 \cdot (2x-1)^{\frac{1}{2}} \cdot 2 = (-1)^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot (2x-1)^{\frac{1}{2}}$
 $f''(x) = (-1) \cdot (-1) \cdot (2x-1) \cdot 2^{\frac{1}{2}} = (-1)^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot (2x-1)^{\frac{1}{2}}$
 $f''(x) = (-1) \cdot (-1) \cdot (2x-1) \cdot 2^{\frac{1}{2}} = (-1)^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot$

Bu genel formilde
In yerine 4 ve
$$n=0$$

yerlerine konulurso
 $f(0) = \frac{(-1)^4 \cdot 2^4 \cdot 4!}{(2 \cdot 0 - 1)^5} den$
 $f(0) = \frac{2^4 \cdot 4!}{(-1)^5} = -2^4 \cdot 4!$
 $f(0) = -16 \cdot 24 = -384$
bulunut.

(2) b)
$$f(x) = \sqrt[3]{x}$$
 obsum $f'(x) = (x^{1/3})' = \frac{1}{3} x^{-3/3} = \frac{1}{3\sqrt[3]{x^{2}}} dx$.
 $\Delta y \approx dy \iff f(x+\delta x) - f(x) \approx f'(x) \cdot dx \text{ very a } f(x+\delta x) \approx f'(x) + f'(x) \Delta x$
olup burds $x = 125$ ve $\delta x = -2$ sectionse
$$f(225-2) \approx f(125) + f'(125) \cdot (-2) \implies \sqrt[3]{123} \approx \sqrt[3]{125} + \frac{1}{3\sqrt[3]{125}} \cdot (-2) \text{ den}$$

$$\sqrt[3]{123} \approx 5 - \frac{2}{3.5^{2}} = 5 - \frac{2}{75} = \frac{373}{75} / \text{ bulunur.}$$

4
$$f(x) = \frac{x^2 + x + 1}{x + 1}$$
 for numer applied

1° $T.A = (-\infty) - 1)U(1, +\infty)$

2° $x + 1 = 0 \Rightarrow x = -1$ D. A $(x = 1) \text{ ten pay } \neq 0$

lum $\frac{x^2 + x + 1}{x + 1} = x0$ Y. A. yell. Epth $\frac{x^2 + x + 1}{x + 1} = \frac{x + 1}{x}$

2° $f(x) = \frac{(20x + 1)(0x + 1) - 1.(x^2 + x + 1)}{(x + 1)^2} = \frac{x^2 + 2x}{(x + 1)^2} = \frac{x(2x + 1)}{(x + 1)^2}$
 $\frac{x}{(x + 1)^2} = \frac{x(2x + 1)}{(x + 1)^2} = \frac{x^2 + 2x}{(x + 1)^2} = \frac{x(2x + 1)}{(x + 1)^2}$

4° $f'(x) = \frac{(20x + 1)(0x + 1) - 1.(x^2 + x + 1)}{(x + 1)^2} = \frac{(2x + 1)(x + 1) - 2(x^2 + 2x)}{(x + 1)^3}$

4° $f'(x) = \frac{(20x + 1)(0x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3} = \frac{(2x + 1)(x + 1) - 2(x^2 + 2x)}{(x + 1)^3}$

4° $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3} = \frac{2}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3} = \frac{2}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1).(x^2 + x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)^2 - 2(x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)}{(x + 1)^3}$

For $f'(x) = \frac{(2x + 1)(x + 1)}{(x + 1)^3}$

For $f'(x) =$

NOT: Çözümlerde işlem hatası varsa lütfen bildiriniz. 07.01.2019