

第7章 视频显示器及接口

本章学习目标

- 了解显示器的种类及发展。
- 了解液晶的物理特性、电光效应的显示原理。
- 熟悉液晶显示器(LCD)的基本结构、工作原理及优缺点。
- 熟悉有机发光显示器(OLED)的工作原理。
- 了解OLED的技术特点及面临的挑战。
- 了解立体视觉的感知机理。
- 了解3D显示技术的发展及种类。
- 掌握DVI、HDMI接口的性能特点。

第7章 视频显示器及接口

- 7.1 显示技术概述
- 7.2 液晶显示器
- 7.3 有机发光显示器
- 7.4 三维立体显示
- 7.5 数字视频接口

7.1.1 显示器的分类

- 投影显示器
 - 背投影显示
 - 前投影显示
- 空间成像型显示器
 - 头盔显示 (HMD)
 - 全息显示
- 直视型显示器
 - 主动发光型显示器:CRT、PDP、ELD、OLED、FED、SED
 - 被动发光型显示器:LCD、 ECD、EPID

■激光投影显示

BIBO

Q-Switch Coupler

LD Nd:GdVO4

■激光显示

■激光显示

Oculus Rift 是一个头盔显示器,他有两个目镜,每个目镜的分辨率640x800,最大分辨率是1280x800。Oculus Rift 可以带我们进入一个逼真的游戏世界。

■ 全息显示

■ 全息显示

■ 全息显示

7.1.2 直视型显示器的发展

- 第一代显示器
 - 阴极射线管 (CRT)
- 第二代显示器
 - 液晶显示器 (LCD)
 - 等离子显示器 (PDP)
- 第三代显示器
 - 有机发光二极管 (OLED)

第7章 视频显示器及接口

- 7.1 显示技术概述
- 7.2 液晶显示器
- 7.3 有机发光显示器
- 7.4 三维立体显示
- 7.5 数字视频接口

7.2.1 液晶的物理特性

- 晶态: 原子在空间呈有规则地周期性重复排列
- 非晶态: 原子无规则排列
- 液晶态: 一种介于晶态和液态之间的过渡状态。具有液体的流动性,微观上分子位置无序,但结构上排列长程有序。

液晶态是一种不同于固体(晶体),又不同于液体和气体的特殊物质态,亦被称为物质的"第四态"。

- 一般固态晶体具有方向性
 - 欲改变固态晶体方向 =>须旋转整个晶体
- 液态晶体 (Liquid Crystal)
 - 具有方向性又具有可流动性
 - 欲改变液态晶体方向 =>可经由电场或磁场来控制
- 液晶分为两大类:
 - 溶致液晶:要溶解在水或有机溶剂中才显示出液晶态
 - 热致液晶:要在一定的温度范围内才呈现出液晶态
- 作为显示技术应用的液晶都是热致液晶

- 液晶分子大多由棒状或碟状分子形成,所以 与分子长轴平行或垂直方向的物理特性会有 所差异,这就是液晶分子结构的各向异性。
- 由于液晶分子结构的各向异性,所以液晶分子在介电系数和光电系数等物理特性上都具有各向异性。

介电系数 ε:

介电系数可以分为与指向矢平行的分量 $\epsilon_{//}$ 和与指向矢垂直的分量 ϵ_{\perp} 。

当 $\varepsilon_{//} > \varepsilon_{\perp}$ 时称为介电系数各向异性为正型的液晶(P型液晶)。 当 $\varepsilon_{//} < \varepsilon_{\perp}$ 时称为介电系数各向异性为负型的液晶(N型液晶)。

7.2.1 液晶的物理特性

❖在外电场作用下,分子的排列极易发生变化, P型液晶分子长轴方向平行于外电场方向,

N型液晶分子长轴方向垂直于外电场方向。

❖目前液晶显示器主要应用P型液晶。

P型液晶

電場方

N型液晶

7.2.1 液晶的物理特性

由于液晶具有单轴晶体的光学各向异性,所以具有以下光学特性:

- 能使入射光沿液晶分子偶极矩的方向偏转;
- 使入射的偏光状态及偏光轴方向发生变化;
- •使入射的左旋及右旋偏振光产生对应的透过或反射。

液晶器件基本就是根据这三种光学特设计制造的。

- 液晶材料在施加电场(电流)时,其光学性质会发生变化,这种效应称为液晶的电光效应。
- 液晶的电光效应在液晶显示器的设计中被广泛采用。 目前发现的电光效应种类很多,产生电光效应的机 理也较为复杂,但就其本质来讲都是液晶分子在电 场作用下改变其分子排列或造成分子变形的结果。

7.2.1 液晶的物理特性

■ 液晶的电光效应分类

7.2.2 液晶显示器的发展

- 动态散射液晶显示器件(DS-LCD), 1968~1971年
- 扭曲向列相液晶显示器件(TN-LCD), 1971~1984年
- 超扭曲向列相液晶显示器件(STN-LCD), 1985~1990年
- 薄膜晶体管液晶显示器件(TFT-LCD), 1990年—

■ 扭曲向列相液晶显示器件(TN-LCD)

■ 超扭曲向列相液晶显示器件(STN-LCD)

- 80年代初,人们经过理论分析和实验发现,只要将分子的扭曲角增加到180°~270°时,就可大大提高电光特性的响应速度。
- 随着扭曲角的增大,曲线的斜率增加,当扭角达到 **270**°时,斜率达到无究大。
- 曲线斜率的提高可以允许多路驱动,且可获得敏锐的锐度和宽的视角。
- 第三代液晶显示器件。顾名思义,"超扭曲"即扭曲角大于90°。

TN-LCD与STN-LCD的电压与穿透率的关系曲线

■ STN与TN显示原理差别

- 产品结构上基本相同, 只不过盒中液晶分子排列不是沿面90度扭曲排列, 而是180度--360度扭曲排列。
- STN的另一个不同是上下偏振片的偏振方向不同。
- 单纯的TN液晶显示器本身只有明暗两种情形(或称黑白),并没有办法做到色彩的变化。而STN液晶显示器牵涉液晶材料的关系,以及光线的干涉现象,因此显示的色调都以淡绿色与橘色为主。但如果在传统单色STN液晶显示器加上一彩色滤光片(color filter),并将单色显示矩阵之任一像素(pixel)分成三个子像素(subpixel),分别通过彩色滤光片显示红、绿、蓝三原色,再经由三原色比例之调和,也可以显示出全彩模式的色彩。

7.2.3 TN-LCD的基本结构

7.2.5 LCD的驱动技术

矩阵驱动方式

无源矩阵方式

有源矩阵方式

7.2.5 LCD的驱动技术

7.2.5 LCD的驱动技术

7.2.5 LCD的驱动技术

三端有源

图像质量好但工艺制作复杂,投资额度大

二端有源

工艺相对简单、 开口率较大, 投资额度小, 但图像质量略差

7.2.5 LCD的驱动技术

TFT-LCD

7.2.6 LCD的优缺点

- TFT-LCD优点
 - 低压、微功耗
 - 平板结构
 - 被动显示型
 - 显示信息量大
 - 易于彩色化
 - 长寿命
 - 无辐射、无污染

7.2.6 LCD的优缺点

- TFT-LCD缺点
 - 非主动发光,暗场图像层次感较差
 - 可视角较小,亮度、色度有方向性
 - 响应时间较长,重显快速运动图像时有拖尾现象
 - 屏幕边沿容易产生漏光现象,会造成全屏亮度不均匀,影响图像质量

第7章 视频显示器及接口

- 7.1 显示技术概述
- 7.2 液晶显示器
- 7.3 有机发光显示器
- 7.4 三维立体显示
- 7.5 数字视频接口

7.3.1 OLED概述

- OLED: Organic Light Emitting Display, 有机发光显示器
- OLED: Organic Light Emitting Diode ,有机发光 二极管
- OLED是利用有机发光二极管的电致发光实现显示的一种主动发光显示器。
- 它的发光原理是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。通过搭配不同的有机材料,发出不同颜色的光,来达成全彩显示器的需求。

7.3.1 OLED概述

- OLED: Organic Light Emitting Display, 有机发光显示器
- OLED: Organic Light Emitting Diode ,有机发光 二极管
- OLED是利用有机发光二极管的电致发光实现显示的一种主动发光显示器。
- 它的发光原理是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。通过搭配不同的有机材料,发出不同颜色的光,来达成全彩显示器的需求。

7.3.3 OLED显示原理

7.3.3 OLED显示原理

> OLED原件结构图

7.3.4 OLED的技术特点及面临的挑战

7.3.5 柔性OLED

7.3.5 柔性OLED

7.3.5 柔性OLED

第7章 视频显示器及接口

- 7.1 显示技术概述
- 7.2 液晶显示器
- 7.3 有机发光显示器
- 7.4 三维立体显示
- 7.5 数字视频接口

3D显示技术就是利用一系列的光学方法使人左右眼产生视差,从而接受到不同的画面,在大脑形成3D(3 Dimensions)立体效果的技术。

7.4.1 立体视觉的感知机理

左眼看左边画面

右眼看右边画面

3D 画面在脑中结合

不同的画面传递到 不同的眼睛

7.4.2 三维立体显示技术的种类

色差式3D先由旋转的滤光 轮分出光谱信息,使用不 同颜色的滤光片进行画面 滤光,使得一个图片能 生出两幅图像,人的左 生出两幅图不同的图像。 右眼都看见不同的图像。 这样的方法容易使画面边 缘产生偏色。

色差式(互补色)3D显示原理示意图

7.4.2 三维立体显示技术的种类

红-青色差式3D眼镜

色差式(互补色)3D显示原理示意图

7.4.2 三维立体显示技术的种类

图像,先通过把图像分为垂直向偏振光和水平向偏振光 两组画面,然后3D眼镜左右分别采用不同偏振方向的偏 光镜片,这样人的左右眼就 能接收两组画面,再经过大 脑合成立体影像。

偏振式3D是利用光线有"振

动方向"的原理来分解原始

偏振式3D显示原理示意图

采用交错偏光片的 3D 液晶电视

偏光片眼镜

第7章 视频显示器及接口

- 7.1 显示技术概述
- 7.2 液晶显示器
- 7.3 有机发光显示器
- 7.4 三维立体显示
- 7.5 数字视频接口

7.5 数字视频接口

10.5.1 数字视频接口

□3大类: DVI-Analog (DVI-A)接口, DVI-Digital (DVI-D)接口, DVI-Integrated (DVI-I)接口□5种规格: DVI-A (12+5)、单连接DVI-D (18+1)、双连接DVI-D (24+1)、单连接DVI-I (18+5)、双连接DVI-I (24+5)

DVI-Analog (DVI-A)接口(12+5)只传输模拟信号,实质就是 VGA模拟传输接口规格。当要将模拟信号VGA接头连接在显卡的DVI-I插座时,必须使用转换接头。转换接头连接显卡的插头,就是DVI-A接口。早期的大屏幕专业CRT中也能看见这种插头。

DVI-Digital (DVI-D) 接口 (18+1和24 + 1) 是纯数字的接口,只能传输数字信号,不兼容模拟信号。所以, DVI-D的插座有18个或24个数字插针的插孔+1个扁形插孔。

DVI-D (Digital)

DVI-I (24+5) 连接器示意图

➤ DVI支持最大分辨率

接口种类	最大分辨率
VGA	2048x1536,60Hz
DVI-I单通道	1920x1200,60Hz
DVI-I双通道	2560x1600,60Hz/1920x1200,120Hz
DVI-D单通道	1920x1200,60Hz
DVI-D双通道	2560x1600,60Hz/1920x1080,120Hz

➤ DVI与VGA转换

类型	信号类型	针数	备注
DVI-I单通道	数字/模拟	18+5	可转换VGA
DVI-I双通道	数字/模拟	24+5	可转换VGA
DVI-D单通道	数字	18+1	不可转换VGA
DVI-D双通道	数字	24+1	不可转换VGA
DVI-A	模拟	12+5	己废弃

DVI接口的主要优点

- ■可以传输大容量的高清晰度数字电视信号,适用于各种新型平板显示器
- ■具有防复制功能
- ■具有分辨力自动识别和缩放功能
- ■可以兼容模拟电视信号的传输

DVI接口的主要缺点

- ■体积大,不适用于便携式设备
- ■不能传输数字音频信号
- ■只支持8 bit的R、G、B基色信号传输,不支持更高量化级的数字视频信号传输
- ■只能传输R、G、B三基色信号,不支持分量信号YPbPr/YCbCr传输

7.5 数字视频接口

10.5.2 高清晰度多媒体接口

HDMI (High Definition Multimedia Interface, 高清晰度多媒体接口) 是首个支持在单线缆上传输未经压缩的全数字高清晰度电视、多声道音频和智能格式与控制命令数据的数字接口。

7.5 数字视频接口

10.5.2 高清晰度多媒体接口

A型、C型、D型HDMI连接器

HDMI接头类型

- Type A:目前通用HDMI的接口
- Type B: Dual Channel 的接口
- Type C: Mini HDMI接口
- Type D:Micro HDMI 接口(相对于Type C更加紧凑)
- Type E:汽车电子专用HDMI接口

4

HDMI接头类型

- HDMI Type B
- 总共有29pin,可传输HDMI Type A两倍 的TMDS数据量,相当于DVI Dual-Link 传输,用于传输高分辨率(WQXGA 2560×1600以上)。 (因为HDMI Type A只 有Single-Link的TMDS传输,如果要传 输成HDMI Type B的信号,则必须要两 倍的传输效率,会造成TMDS的Tx、Rx 的工作频率必须提高至270MHz以上。 而在HDMI 1.3c出现之前,市面上大部 分的TMDS Tx、Rx只能稳定在165MHz 以下工作。

HDMI接头类型

- HDMI Type C
- 总共有19pin,可以说是缩小版的HDMI Type A,但针脚 定义有所改变。 主要是用在便携式设备上,例如DV、数 码相机、便携式多媒体播放机等。

HDMI传输原理

- HDMI采用由Silicon Image 公司发明的最小化传输差分信号 (Transition Minimized Differential Signal, TMDS) 传输技术。TMDS是一种微分信号机制,采用的是差分传动方式。
- TMDS差分传动技术是一种得用2个引脚夫间电压差来传送信号的技术。传输数据的数值 ("0"或者"1") 由两脚间电压正负极性和大小决定。

HDMI的不同版本

- 2002.04.16---成立HDMI组织
- 2002.12.09---正式发布HDMI V1.0版本
- 2004.05.20---发布HDMI V1.1版本
- 2005.08.22---发布HDMI V1.2版本
- 2005.12.14---发布HDMI V1.2a版本
- 2006.06.22---发布HDMI V1.3版本
- 2006.11.10---发布HDMI V1.3a版本
- 2007.03.26---发布HDMI V1.3b版本
- 2010.03.04---发布HDMI V1.4a版本
- 2011.10----- 发布HDMI V1.4b版本

HDMI的不同版本

发布时间	接口规范	信号频率	数据带宽	备注
2002.12	HDMI 1.0	165MHZ	4.95Gbps	原始标准,最近已基本淘汰
2004.5	HDMI 1.1	165MHZ	4.95Gbps	增加DVD-Audio支持等
2005. 8	HDMI 1.2	165MHZ	4.95Gbps	增加SACD音频支持等
2005. 12	HDMI 1.2a	165MHZ	4.95Gbps	增加兼容性认证等要求
2006.6	HDMI 1.3	340MHZ	10.2Gbps	提高通讯带宽,增加 TrueHD和DTSHD 音频支持等
2009.6	HDMI 1.4	340MHZ	10.2Gbps	

HMDI不同版本比较

HDMI 版本	1.0~1.2a	1.3	1.4		
最大时钟频率(MHz)	165	340	340		
最大总吐量(Gbit/s)	4.95	10.2	10.2		
最大视频带宽 (Gbit/s)	3.96	8.16	8.16		
最大音频带宽 (Mbit/s)	36.86	36.86	36.86		
最大色彩深度 (bit/px)	24	48	48		
24-bit/px HDMI单通道最 大分辨率	1920×1200p 60Hz	2560×1600p 75Hz	4096×2160p 24Hz		
30-bit/px HDMI单通道最 大分辨率	不适用	2560×1600p 60Hz	3840×2160p 30Hz		
36-bit/px HDMI单通道最 大分辨率	不适用	1920×1200p 75Hz	3840×2160p 25Hz		
48-bit/px HDMI单通道最 大分辨率	不适用	1920×1200p 60Hz	3840×2160p 24Hz		

HDMI 版本	1.0	1.1	1.2 1.2a	1.3	1.3a 1.3b 1.3c	1.4
<u>sRGB</u>	是	是	是	是	是	是
<u>YCbCr</u>	是	是	是	是	是	是
8 声道 <u>LPCM</u> ,192 <u>kHz</u> ,24 bit 音频传输	是	是	是	是	是	是
Blu-ray Disc 视频音频全分辨率支持	是	是	是	是	是	是
消费电子控制(CEC)	是	是	是	是	是	是
DVD Audio 支持	否	是	是	是	是	是
Super Audio CD (DSD) 支持	否	否	是	是	是	是
Deep Color色深技术	否	否	否	是	是	是
<u>xvYCC</u>	否	否	否	是	是	是
自动声画同步	否	否	否	是	是	是
Dolby TrueHD 音频	否	否	否	是	是	是
DTS-HD Master Audio 音频	否	否	否	是	是	是
CEC命令行表更新	否	否	否	否	是	是
以太网络通道	否	否	否	否	否	是
音频回传通道	否	否	否	否	否	是
HDMI 3D功能	否	否	否	否	否	是
4K×2K分辨率支持	否	否	否	否	否	是

HDMI 1.4版的新功能

- HEAC: Ethernet and Audio Return Channel
- ・高速以太网通讯
- -提供双向的点对点通讯
- 建立高性能的家庭网络
- - 比目前的CEC提供1000被以上的传输速率
- -使用被广泛应用的以太网技术
- ・数字音频流的传输
- - 提供SPDIF (Sony/Philip Digital Interface) 格式的数字通道
- - 由AV 控制中心提供多功能的音频处理
- - 实现32k/44.1k/48k 高采样率的音频质量
- - 音频反向传输(Sink to Source)
- ・对目前HDMI 1.3的兼容性
- - 全兼容目前的HDMI 1.3的设备
- - 自动检测是否设备有eHDMI 增强功能
- -利用Hot Plug Detect & Reserve pins

HDMI应用示例

Question?

