# Datové typy a aritmetické operace

Lesson 3

Java Developer

Lektor Radek Hübner



# LESSON PLAN

- Teorie datových typů
- Celočíselné datové typy
- Číselné typy s plovoucí desetinnou čárkou
- Char a String Datové typy pro ukládání textu.
- Aritmeticné operace



# Co je to ten bit a byte

- bit "binary digit"
  - Nejmenší jednotka v počítači.
  - Nabývá pouze hodnot 1 a 0.
  - Analogie k žárovce, svítí (1), nesvítí (0)
  - Používá se například k vyjádření rychlosti internetu 10 Mbit/s
  - Jednotka se zapisuje malým písmenem "b"
- Byte Seskupení 8 bitů
  - Možnost vyjádřit až 256 různých hodnot / stavů
  - Nejčastěji jako čísla v rozsahů:
    - **0**-255
    - -128 to 127
  - Používá se například k vyjádření velikosti souboru 10MB
  - Jednotka se zapisuje velkým písmenem "B"

# Datový typ

- Definuje s jak velkými čísly pracujeme
  - Určuje, zda-li budeme počítat i se zapornými čísly.
- Pomáhá počítači rychle a přesně počítat
- Nedovolí nám zaměnit například číslo za text
  - Pomeranče se nevejdou do obalu na vejce.
- Java je silně typovaný objektově orientovaný jazyk.

# Rozdělení datových typů

- primitivní
  - boolean, byte, short, int, long, double, float,
- Neprimitivní, Objektové, ...
  - o String, ...

# Celočíselné datové typy

|         | Velikost v bitech | Rozsah hodnot                                                                           |  |
|---------|-------------------|-----------------------------------------------------------------------------------------|--|
| boolean | 1                 | 0 1, true false                                                                         |  |
| byte    | 8                 | -128 127                                                                                |  |
| short   | 16                | -2 <sup>15</sup> 2 <sup>15</sup> -1 (-32,76832,767)                                     |  |
| int     | 32                | -2 <sup>31</sup> 2 <sup>31</sup> -1 (-2,147,483,6482,147,483,647)                       |  |
| long    | 64                | 2 <sup>63</sup> 2 <sup>63</sup> -1 -9,223,372,036,854,775,808 9,223,372,036,854,775,807 |  |

# Dvojkový doplněk

- Zpusob uložení záporných čísel v paměti počítače
- Složitější pro čtení člověkem, jednodušší pro procesor počítače
- Eliminuje kladnou a zápornou nulu.

# Datové typy s pohyblivou řádovou čárkou

- Někdy též nazývány s "plovoucí řádovou čárkou"
- Neukládají číslo přesně
  - 0 1 + 100,000,000 != 100,000,001
- Malá čísla uložena s větší přesností
- Uložena jako mantisa + exponent.
  - $\circ$  152853,5047 => 1,528535047×10<sup>5</sup>
- Existuje kladná a záporna nula
- NaN Not a Number Specialní hodnota.
- Pozor na operace s penězi !!! Hrozí nepřesnosti.



# Datové typy s pohyblivou řádovou čárkou

|        | Počet bitů | Počet bitů mantisy | Počet bitů exponentu |
|--------|------------|--------------------|----------------------|
| float  | 32         | 23                 | 8                    |
| double | 64         | 52                 | 11                   |

### **IEEE 754**

- Normal pro reprezentaci čísel pohyblivou řádovou čárkou
- Definute
  - Datová typy
  - Aritmetické operace
  - Zaokrouhlování !!!
  - Přesnost
  - Reprezentaci čísel v paměti
- Definuje speciální hodnoty
  - NaN Not a Number
  - Kladná a zaporná nula.
  - INF Nekonečno

# IEEE 754 -Nepřesnosti

- 0.1 + 0.2 => 0.30000000000000004
- 1.0000001 1.0 => 1.000000005838672E-7

- Nevhodné pro výpočty kde potřebujeme absolutní přesnost
  - Operace s měnou
  - Vědecké výpočty s vysokou přesností
  - Kryptografie
  - o Porovnaní: 0.1+0.2 == 0.3
  - Algoritmy vyžadující deterministické chování

# Datové typy pro práci se znaky a texty

- Char
  - 16 bitů, neznamenkový
  - Reprezentuje jeden znak.
  - Nedoporučuje se používat pro cokoliv jiného než pro reprezentaci znaků
- String
  - Datový typ pro řetězce/texty.

# /LIVE CODING:



# Aritmetické operace

- + sčítání
- odečítání
- \* násobení
- / celočíselné dělení
- / reálné dělení
- % Dělení modulo zbytek po celočíselném dělení

### Celočíselné vs reálné dělení

- Záleží na datovém typu
- Stačí aby jeden z datových typů byl reálný, výsledek bude také reálný
- Občas je potřeba explicitní přetypování.

### Unární mínus

- Zapisuje se stejně jako v matematice pro reprezentaci záporných čísel.
- Občas je potřeba přidat zavorky.

```
int i = -1;
double d = 10 * (-15);
```

# % Modulo - Zbytek po celočíselném dělení

- Používá se na celých číslech
- Nejčastější použití uvnitř smyček či podmínek
  - o i % 2 == 0 test zdali je číslo sudé

# Speciální unární operátory

- Decrement
  - o j--
  - o Dekrementuje proměnnou o 1
  - Náhrada za i = i 1;
- Increment
  - o j++
  - o Incrementuje hodnotu o 1
  - Náhrada za i = i + 1;

# Přiřazovací operátory

• Zjednodušení zápisu

$$\circ \quad i = i + 10 \rightarrow i + = 10$$

$$\circ$$
 i = i - 10  $\rightarrow$  i -= 10

$$\circ \quad i = i * 10 \rightarrow i * = 10$$

o ...

# Pořadí operací

- Java má definované pořadí vyhodnocování operací
- Jako v matematice, násobení se vypočte před sčítáním.
- Nejsem si jistý, zavorkuji.
  - Zavorky program nezpomalí, v době překladu se odstraní.

# /LIVE CODING:



# 

