Programming in R for Data Science

learning by doing

Katrien Antonio

KU Leuven and UvA

2019-06-23

About the teacher

A collection of links:

- my personal website
- my GitHub page
- an e-book with more documentation.

Research team is here.

Practical information

Course material including

- R scripts, data, lecture sheets
- a collection of cheat sheets

are available from

https://github.com/katrienantonio/PE-Programming-R-for-datascience

Today's agenda

Learning outcomes

Today you will work on:

- optimization
- fitting distributions to data with MLE
- functional programming
- linear models
- generalized linear models (see R markdown tutorial)
- generalized additive models (see R markdown tutorial)
- decision trees (see R markdown tutorial)

You will cover examples of code¹ and work on **R challenges**.

[1] For a detailed discussion of each topic, see e-book.

Questions after day 1

How can I

- estimate a parametric distribution (e.g. normal, Poisson) to a given data set
- ullet generate and store losses from the random variable $L_i = \sum_{j=1}^{N_i} Y_{ij}$ the aggregate loss of policyholder i
- create an R project.

Fitting distributions to data

Optimization

Actuaries often write functions (e.g. a likelihood) that have to be optimized.

Therefore, you'll:

- get to know some R functionalities to do optimization
- apply this knowledge to **fit a distribution** to a give data set.

Consider the function $f: x \mapsto x^2 - 3^{-x}$.

[1] 6.103516e-05

What is the root x of this function over the interval [0,1], so that f(x)=0?

```
uniroot(function(x) x^2-3^(-x), lower = 0, upper = 1)
## $root
## [1] 0.6860224
##
## $f.root
## [1] -8.082734e-06
##
## $iter
## [1] 4
##
## $init.it
## [1] NA
##
## $estim.prec
```

First, define the function f(.)

[1] -8.082734e-06

```
f <- function(x) {
    x^2-3^(-x)
}</pre>
```

Then, calculate its root with uniroot:

To conclude, you build a visualization (with base R).

```
range <- seq(-2, 2, by = 0.2)
plot(range, f(range), type = "l")
points(opt$root, f(opt$root), pch = 20)
segments(opt$root, -7, opt$root, 0, lty = 2)
segments(-3, 0, opt$root, 0, lty = 2)</pre>
```

To conclude, you build a visualization (in ggplot style).

```
data <- data.frame(x = range, y = f(range))
ggplot(data, aes(x = x, y = y)) + geom_line() +
    geom_point(x = opt$root, y = f(opt$root)) +
    geom_segment(x = opt$root, y = -7, xend = opt$root, yend = 0, line
    geom_segment(x = -3, y = 0, xend = opt$root, yend = 0, linetype = theme_bw()</pre>
```


Find the maximum of a function

You look for the maximum of the beta density for a given set of parameters.

First, you sketch the beta density.

```
shape_1 <- 3; shape_2 <- 2
x <- seq(from = 0, to = 1, by = 0.01)
curve(dbeta(x, shape_1, shape_2), xlim = range(x))</pre>
```


Find the maximum of a function

Now, find the maximum of this beta density

```
opt_beta <- optimize(dbeta, interval = c(0, 1), maximum = TRUE, shape
```

and visualize

```
curve(dbeta(x, shape_1, shape_2), xlim = range(x))
points(opt_beta$maximum, opt_beta$objective, pch = 20, cex = 1.5)
segments(opt_beta$maximum, 0, opt_beta$maximum, opt_beta$objective,
```


You generate data from a gamma distribution with given parameters.

```
nsim <- 10000
x <- rgamma(nsim, shape = 3, rate = 1.5)
```

First, you'll compare empirical mean and variance with the theoretical quantities

```
mean(x); var(x)

## [1] 1.98104

## [1] 1.233706

versus
```

```
3 * (1/1.5) ; 3 * (1/1.5)^2
## [1] 2
```

```
## [1] 1.333333
```

Picture the simulated data

```
d <- data.frame(x)
ggplot(d, aes(x = x)) + geom_histogram(aes(y = ..density..), binwidth
  geom_density(alpha = .2, fill = "#FF6666") +
  theme_bw()</pre>
```


With Maximum Likelihood Estimation:

- $oldsymbol{ heta}=(heta_1,\ldots, heta_k)^t$ is the parameter vector
- the likelihood function

$$\mathcal{L}(oldsymbol{ heta};y_1,\ldots,y_n) = \prod_{i=1}^n f(y_i;oldsymbol{ heta})$$

• the log-likelihood function

$$L(oldsymbol{ heta}; y_1, \dots, y_n) = \log \prod_{i=1}^n f(y_i; oldsymbol{ heta}) = \sum_{i=1}^n \log f(y_i; oldsymbol{ heta})$$

• the MLE $\hat{m{ heta}}$ maximizes $L(m{ heta};y_1,\ldots,y_n)$ (or: $\mathcal{L}(m{ heta};y_1,\ldots,y_n)$).

The goal is to fit a gamma density to the generated data.

```
f <- function(p,x){
    -sum(dgamma(x, shape = p[1], rate = p[2], log = TRUE))
}</pre>
```

and optimize with nlm

```
nlm(f, c(1, 1), x = x)

## $minimum
## [1] 14178.54
##
## $estimate
## [1] 3.121014 1.575442
##
## $gradient
## [1] -0.003308669 0.003693534
##
## $code
## [1] 1
##
```

Alternatively, optimize with optim

```
optim(c(1, 1), f, x = x)
## $par
## [1] 3.121460 1.575785
##
## $value
## [1] 14178.54
##
## $counts
## function gradient
##
         67
                   NA
##
## $convergence
## [1] 0
##
## $message
## NULL
```

MLE with fitdistr()

Alternatively, you can use fitdistr from the MASS library.

```
library(MASS)
fitdistr(x, dens = "gamma")

## shape rate
## 3.12104759 1.57545939
## (0.04199349) (0.02299714)
```

R challenge

Now it's your turn:

- 1. generate observations from a normal distribution with given μ and σ^2
- 2. plot a histogram of the data
- 3. fit the normal distribution using MLE to the simulated data
- 4. examine the effect of decreasing/increasing the sample size.

R challenge solved

```
nsim <- 1000
x <- rnorm(nsim, mean = 3, sd = 1.5)

d <- data.frame(x)
ggplot(d, aes(x = x)) + geom_histogram(aes(y = ..density..), binwidth
    geom_density(alpha = .2, fill = "#FF6666") +
    theme_bw()</pre>
```


R challenge solved

```
fitdistr(x, dens = "normal")
##
                       sd
         mean
## 3.04897207 1.49065502
## (0.04713865) (0.03333206)
f \leftarrow function(p, x)
     -sum(dnorm(x, mean = p[1], sd = p[2], log = TRUE))
optim(c(1, 1), f, x = x)
## $par
## [1] 3.048983 1.490632
##
## $value
## [1] 1818.154
##
## $counts
## function gradient
##
         73
                  NA
##
```

Functional programming

What is a functional?

A functional is a function which takes a function as input.

Example: the integral operator

$$\int_0^1:C([0,1]) o \mathbb{R}, f\mapsto \int_0^1 f(x)\,dx,$$

where C([0,1]) is the set of continuous functions on [0,1].

```
f <- function(x){
  x^2
}
integrate(f, lower = 0, upper = 1)</pre>
```

0.3333333 with absolute error < 3.7e-15

Why functional programming?

This approach offers:

- an intuitive alternative for loops
- code that is easy to read and interpret
- easily modifiable and reusable code
- no need to copy/paste the same code many times
- if you use something twice, put it in a function.

The purrr package in R

purrr is the tidyverse package for functional programming.

```
# install.packages(purrr)
require(purrr)
```

map()

Illustration from the purrr cheat sheet

The output of map is stored in a list.

R challenge

You will now generate one draw from the distribution of the aggregate loss random variable $L = \sum_{i=1}^{N} Y_i$.

Let $N \sim \mathrm{POI}(\lambda = 10)$ and $Y \sim \mathrm{LogN(meanlog} = 9, \mathrm{sdlog} = 1.75)$.

You will:

- set the seed at 1234 to reproduce the simulation; use set.seed()
- generate one draw from L.

R challenge solved

```
# set the seed so we can reproduce the simulation
set.seed(1234)
expected freq <- 10
# generate a single frequency from the poisson distribution
freq <- rpois(n = 1, lambda = expected_freq)</pre>
freq
## [1] 6
# generate `freq` severities
# each severity represents the ultimate value of 1 claim
# we will use the lognormal distribution here
sev \leftarrow rlnorm(n = freq, meanlog = 9, sdlog = 1.75)
sev
## [1] 14046.732 15195.521 2256.730 8625.924 9874.455 98712.420
```

R challenge

You now want to generate 1000 draws from the distribution of L:

- 1. you generate N_1, \ldots, N_{1000}
- 2. given N_i , you generate Y_{i1}, \ldots, Y_{iN_i} .

Use map from the purrr package.

R challenge solved

```
library(purrr)
# number of sims
n sim <- 1000
# generate frequencies from the poisson distribution
freqs <- rpois(n = n_sim, lambda = expected_freq)</pre>
head(fregs)
## [1] 13 8 7 6 12 14
# generate `freq` severities
# each severity represents the ultimate value of 1 claim
obs <- purrr::map(freqs, function(freq) rlnorm(n = freq, meanlog = 9)
head(obs)
## [[1]]
       80356.4009 17897.3331 340100.5359 17255.5123
## [1]
                                                        6110.0380
   [6] 4648.1456 1335.0300 4503.5245 43360.1117 4187.3333
##
## [11] 557.3474 19858.6878 3414.7065
##
## [[2]]
```

R challenge

Now, you'll tidy the data using the following instructions.

```
library(purrr); library(dplyr)
i <- 0
obs <- purrr::map(obs, function(sev) {
   i <<- i + 1
   tibble(
      ob = i,
      sev = sev
   )
})
obs <- dplyr::bind_rows(obs)
head(obs, 10)</pre>
```

```
## # A tibble: 10 x 2
## ob sev
## <dbl> <dbl>
## 1 1 80356.
## 2 1 17897.
## 3 1 340101.
## 4 1 17256.
```

R challenge

Finally,

- ullet using the tidy data structure, calculate the 1000 draws from L
- ullet visualize the empirical distribution of L.

R challenge solved

```
obs_total <- obs %>%
  group_by(ob) %>%
  summarise(sev = sum(sev))

ggplot(obs_total, aes(sev)) + geom_histogram() + theme_bw()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Fitting models to data

What is the model function?

What are the **residuals**?

What are the **predictions**?

Analyzing credit card applicants' data

Your journey as a model builder in R will start from studying **linear models** and the use of the lm function.

Hereto:

- you analyze Ford dealership data as registered in Milwaukee, September/October 1990
- data on 62 credit card applicants are available, including the car purchase price y (= the target, or response) and the applicant's annual income x (= feature, or covariate)
- data are in the .csv file car_price.

R challenge

Using what you've learned during Day 1:

- load the car_price.csv data
- with ggplot visualize price versus income/1000.

Explore the data

Get the data - use the instructions covered during Day 1.

```
path <- dirname(rstudioapi::getActiveDocumentContext()$path)
setwd(path)

car_price <- read.csv("data/car_price.csv", header = TRUE)</pre>
```

Explore the data

You inspect the data with a scatterplot of income versus price:

```
ggplot(car_price, aes(x = income/1000, y = price)) +
  theme_bw() +
  geom_point(shape = 1, alpha = 1/2) +
  geom_smooth()
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

A simple linear regression fit

You will now fit a simple regression model with income as predictor to purchase price.

That is:

$$y_i = eta_0 + eta_1 \cdot x_i + \epsilon_i,$$

where y_i is the car price for observation i, x_i the corresponding income and ϵ_i an error term.

 β_0 is the intercept and β_1 the slope.

A formula for the model equation

Formula only needs to include the response and predictors

$$y = \beta_0 + \beta_1 \cdot x + \epsilon$$

becomes

Fitting a linear model then becomes

```
lm(price ~ income, data = car_price)
```

Im()

You assign the output of the lm function to the object lm_car

```
lm_car <- lm(price ~ income, data = car_price)</pre>
```

Now you inspect the results:

```
class(lm_car)

## [1] "lm"

names(lm_car)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
```

Im()

You inspect a summary of the fitted model

```
summary(lm_car)
##
## Call:
## lm(formula = price ~ income, data = car_price)
##
## Residuals:
## Min 10 Median 30
                                     Max
## -5364.6 -1184.7 -251.4 1334.0 6284.4
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.866e+03 7.498e+02 7.824 9.8e-11 ***
## income
         2.113e-01 1.508e-02 14.009 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2459 on 60 degrees of freedom
## Multiple R-squared: 0.7659, Adjusted R-squared: 0.762
## F-statistic: 196.3 on 1 and 60 DF, p-value: < 2.2e-16
```

Im()

Some useful arguments: 'coefficients', 'residuals', 'fitted.values', 'model'

```
lm_car$coef
                     income
##
   (Intercept)
## 5866.3339035 0.2113239
head(lm_car$residuals)
##
   -719.2898 1146.8218 4329.8359 3258.0624 -3649.4314 -483.5697
head(lm_car$fitted.values)
##
## 14319.290 9353.178 9670.164 14741.938 11149.431 22983.570
```

Utility functions

Linear models in R come with a bunch of utility functions:

- coef() for retrieving coefficients
- fitted() for fitted values
- residuals() for residuals
- summary(), plot(), predict() and so on.

Once you master the utility functions, you'll be able to use them in the same way for model objects returned by glm(), gam(), and many others.

Visualize the lm() fit

To visualize this linear model fit you can use the built-in plot function, applied to object lm_car

```
plot(lm_car)
```

Visualize the lm() fit

Or you can create your own plot

```
ggplot(car_price, aes(x = income, y = price)) +
   theme_bw() +
   geom_point(shape = 1, alpha = 1/2) +
   geom_smooth() +
   geom_abline(intercept = lm_car$coef[1], slope = lm_car$coef[2], cold
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```


predict()

Making predictions for new applicants:

```
new <- data.frame(income = 60000) # set up a new data frame
new_pred <- predict(lm_car, newdata = new) # call predict
new_pred

## 1
## 1
## 18545.77</pre>
```

R challenge

You'll now step from simple to multiple regression:

- 1. load the pollution.csv data set
- 2. read the data description here
- 3. create data frames of related covariates and visualize.

R challenge solved

First, you load the data

```
pollution <- read.csv("data/pollution.csv", header = TRUE)</pre>
```

Then, you combine related features

```
# weather effects
mort_poll_1 <- pollution %>% select(c(mort, prec, jant, jult, humid))
# socio-economic vars
mort_poll_2 <- pollution %>% select(c(mort, ovr65, popn, educ, hous,
# pollution effects
mort_poll_3 <- pollution %>% select(c(mort, hc, nox, so2))
```

R challenge solved

```
library(GGally)

g_1 <- ggpairs(mort_poll_1) + theme_bw()</pre>
```


R challenge

Now, you'll:

- build a linear regression model to explain mort as a function of so2 and educ
- inspect the model and fit.

R challenge solved

The linear regression of mort versus so2 and educ:

```
lm_mort <- lm(mort ~ educ + so2, data = pollution)</pre>
summary(lm mort)
##
## Call:
## lm(formula = mort ~ educ + so2, data = pollution)
##
## Residuals:
       Min 10 Median 30
##
                                        Max
## -136.558 -30.371 -7.731 34.481 148.803
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1274.6024 89.7611 14.200 < 2e-16 ***
## educ -32.0172 8.0195 -3.992 0.000189 ***
## so2
       0.3179 0.1069 2.973 0.004321 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.62 on 57 degrees of freedom
```

R challenge solved

The linear regression model including all available covariates:

```
lm_mort_all <- lm(mort ~ ., data = pollution)</pre>
summary(lm mort all)
##
## Call:
## lm(formula = mort ~ ., data = pollution)
##
## Residuals:
      Min 10 Median 30
##
                                   Max
## -68.066 -18.017 0.912 19.224 86.961
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.764e+03 4.373e+02 4.034 0.000215 ***
       1.905e+00 9.237e-01 2.063 0.045071 *
## prec
## jant -1.938e+00 1.108e+00 -1.748 0.087413 .
## jult -3.100e+00 1.902e+00 -1.630 0.110159
## ovr65 -9.065e+00 8.486e+00 -1.068 0.291230
## popn -1.068e+02 6.978e+01 -1.531 0.132952
## educ
       -1.716e+01 1.186e+01 -1.447 0.155085
```

Tidy your model output

More from the tinyverse

Tidy your model output

The ouput of a model is not tidy, not even a data frame.

Use the broom package for tidy output.

The broom package

Broom includes three functions which work for most types of models (and can be extended to more):

- 1. tidy() returns model coefficients, stats
- 2. glance() returns model diagnostics
- 3. augment() returns predictions, residuals, and other raw values.

tidy()

Returns useful model output as a data frame:

Store the tibble and inspect

```
lm_fit <- lm_car %>% tidy()
```

glance()

Returns common model diagnostics as a data frame

augment()

Returns data frame of model output related to original data points

```
lm_car %>% augment()
## # A tibble: 62 x 9
##
     price income .fitted .se.fit .resid .hat .sigma .cooksd .std.resid
##
      <int>
            <int>
                    <dbl>
                             <dbl> <dbl> <dbl>
                                                  <dbl>
                                                           <dbl>
                                                                      <dbl>
##
   1 13600
            40000
                   14319.
                             322. -719. 0.0171
                                                 2478. 0.000759
                                                                     -0.295
##
   2 10500
            16500
                   9353.
                             534.
                                  1147. 0.0471
                                                 2475. 0.00564
                                                                      0.478
##
   3 14000
            18000
                   9670.
                             516. 4330. 0.0439 2412. 0.0745
                                                                      1.80
##
   4 18000
            42000
                    14742.
                             316.
                                  3258. 0.0165
                                                 2443. 0.0150
                                                                      1.34
##
   5
      7500
            25000
                   11149.
                             436. -3649. 0.0315
                                                 2432. 0.0369
                                                                     -1.51
##
   6 22500
            81000
                   22984.
                             624.
                                   -484. 0.0644
                                                  2479. 0.00142
                                                                     -0.203
##
   7 21000
            52000
                   16855.
                             329.
                                   4145. 0.0179
                                                  2419. 0.0263
                                                                      1.70
##
   8 11000
            30000
                    12206.
                             387. -1206. 0.0248
                                                  2475. 0.00314
                                                                     -0.497
   9 14500
##
            44000
                   15165.
                             313. -665. 0.0162
                                                  2478. 0.000611
                                                                     -0.272
## 10 14800
            40000
                             322. 481. 0.0171
                                                  2479. 0.000339
                    14319.
                                                                      0.197
## # ... with 52 more rows
```

augment()

Combined with the original car_price data frame

lm_car %>% augment(car_price)

```
## # A tibble: 62 x 14
                     age married children college price .fitted .se.fit .resi
##
        sex income
##
      <int> <int> <int>
                           <int>
                                    <int>
                                            <int> <int>
                                                           <dbl>
                                                                   <dbl>
                                                                          <dbl
##
   1
          1
            40000
                      48
                               1
                                                0 13600
                                                          14319.
                                                                    322.
                                                                          -719
##
            16500
                                                 1 10500
                                                         9353.
                                                                    534.
                                                                          1147
   2
                      24
##
             18000
                      25
                                                 1 14000
                                                         9670.
                                                                    516.
                                                                          4330
   3
                               0
##
            42000
                      37
                                                 1 18000
                                                          14742.
                                                                    316.
                                                                          3258
   4
                               1
##
                      34
                                                0 7500
   5
          0
            25000
                                                          11149.
                                                                    436. -3649
##
   6
            81000
                      50
                                                1 22500
                                                          22984.
                                                                    624.
                                                                          -484
          1
##
            52000
                      29
                                                 1 21000
                                                                    329.
   7
                                                          16855.
                                                                          4145
##
             30000
                      34
                                                0 11000
                                                          12206.
                                                                    387. -1206
   8
          0
                                        0
                               0
##
                      36
                                                                    313.
   9
          0
            44000
                               0
                                                 1 14500
                                                          15165.
                                                                          -665
## 10
             40000
                      33
                                                 1 14800
                                                          14319.
                                                                    322.
                                                                           481
          1
## # ... with 52 more rows, and 4 more variables: .hat <dbl>, .sigma <dbl>,
## #
       .cooksd <dbl>, .std.resid <dbl>
```

R challenge

Use a pipe to model price against income for the car_price data set.

Then use broom and dplyr functions to extract:

- 1. the coefficient estimates and their related statistics
- 2. the adj.r.squared and p.value for the overall model.

R challenge solved

Here you go

```
res_lm <- car_price %>% lm(price ~ income, data = .) %>% tidy()
```

Now extract the coefficient estimates and their related stats

To get the adj.r.squared and p.value for the overall model

R challenge

Let's explore the functionalities of broom for multiple linear regression:

- 1. load the wages data set using the instructions printed below
- 2. model log(income) against education and height and sex
- 3. can you interpret the coefficients?

```
library(modelr)
wages <- heights %>% filter(income > 0)
```

Get the data, fit the linear model

```
library(modelr)
wages <- heights %>% filter(income > 0)
lm_fit <- lm(log(income) ~ education + height + sex, data = wages)</pre>
```

and investigate the fit

Multiple regression investigated

For factors, R treats the first level as the baseline level, e.g. the mean log(income) for a male is:

```
log(income) = 8.25 + 0.15 * education + 0 * height
```

Each additional level gets a coefficient that acts as an adjustment between the baseline level and the additional level, e.g. the mean income for a female is:

```
log(income) = 8.25 + 0.15 * education + 0 * height - 0.46
```

Visualize coefficients

```
td <- tidy(lm_fit, conf.int = TRUE)
ggplot(td, aes(estimate, term, color = term)) + geom_point() + geom_e</pre>
```


Popular model functions in R

function	package	fits
lm()	stats	linear models
glm()	stats	generalized linear models
gam()	mgcv	generalized additive models
glmnet()	glmnet	penalized linear models
rlm()	MASS	robust linear models
rpart()	rpart	trees
randomForest()	randomForest	random forests
xgboost()	xgboost	gradient boosting machines

Model objects working with broom

See the vignette to find out for which models broom is currently available

```
vignette("available-methods")
```

R challenge

You are now ready to work on a bigger R challenge:

• load the Boston Housing dataset from the course documentation, or via the mlbench package in R. Store the data as the object housing

```
library(mlbench)
data("BostonHousing")
```

- inspect the different types of variables present
- explore and visualize the distribution of our target variable medv
- explore and visualize the relation between medv and the variable crim.

First, load the data

```
library(mlbench)
data("BostonHousing")
housing <- BostonHousing</pre>
```

Inspect the data and figure out the data types

```
str(housing)
```

Now, visualize the distribution of the (numeric) target variable

```
housing %>%
  ggplot(aes(x = medv)) +
  stat_density(alpha = 0.2, fill = "#FF6666", color = "red") +
  labs(x = "Median Value ($1000s)", y = "Density", title = "Density F
  theme_bw()
```


Now, we plot the target medv versus covariate crim

```
housing %>%
  ggplot(aes(x = crim, y = medv)) +
  geom_point(alpha = 0.7) +
  geom_smooth(color = "blue") + theme_bw()
```


R challenge

Let's repeat the last graph produced for more features, i.e. crim, rm, age, rad, tax and lstat.

Transform the data from wide to long format ...

```
library(tidyr)
res <- housing %>% select(c(crim, rm, age, rad, tax, lstat, medv)) %
gather(., variable, value, crim:lstat, factor_key = TRUE)
```

In the gather function, the arguments are:

- data: the data object
- key: the name of new key column
- value: the name of new value column
- ...: the names of source columns that contain values
- factor_key: treat the new key column as a factor.

Reshaping data - from wide to long


```
res %>%
  ggplot(aes(x = value, y = medv, colour = variable)) +
  geom_point(alpha = 0.7) +
  stat_smooth(color = "black") +
  facet_wrap( ~ variable, scales = "free", ncol = 2) +
  labs(x = "Variable
      Value", y = "Median House Price ($1000s)") +
  theme_minimal()
```

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

R challenge

Now, you'll focus on the model building:

 set a seed of 123 and split your data into a train and test set using a 75/25 split

```
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
      lift
##
set.seed(123)
to_train <- createDataPartition(y = housing$medv, p = 0.75, list = F/
train <- housing %>% slice(., to_train)
test <- housing %>% slice(., -to_train)
```

R challenge

We can see a few problems with our model immediately with a poor QQ plot in the tails and a relatively poor R-squared value.

Let us try another model:

- transform medv due to the positive skewness it exhibited
- examine the diagnostics for the model. What do you conclude? Is this an improvement on the first model?
- one assumption of a linear model is that the mean of the residuals is zero. You could try and test this.
- create a data frame of your predicted values and the original values. Plot this to visualize the performance of your model.

[1] -3.412178e-18

```
second_lm <- lm(log(medv) ~ crim + rm + tax + lstat, data = train)
second_lm %>% glance()

## # A tibble: 1 x 11

## r.squared adj.r.squared sigma statistic p.value df logLik AIC

## (dbl> (dbl> (dbl> (dbl> (dbl> (int> (dbl> (db) (dbl> (dbl> (dbl> (dbl) (dbl> (dbl) (dbl> (dbl) (dbl) (dbl) (db) (dbl) (dbl)
```

```
predicted <- predict(second_lm, newdata = test)
results <- data.frame(predicted = exp(predicted), original = test$med</pre>
```

```
results %>%
  ggplot(aes(x = predicted, y = original)) +
  geom_point() +
  stat_smooth() +
  labs(x = "Predicted Values", y = "Original Values", title = "Predicted theme_minimal()
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Rproject

Rproject

RStudio projects allow to organize your programming code.

An RProject file manages:

- working directory
- R history (.Rhistory)
- Startup code (.Rprofile)
- Startup data (.RData)

Rprojects improve collaboration and reproducibility, as these elements will be identical for all users.

Create a new Rproject by clicking: **File > New project...**

.Rprofile

At startup, R sources .Rprofile in the working directory of a project.

Load packages required in the project.

```
require(ggplot2)
```

Specify a company wide plotting styles.

• Source custom functions required for the project.

```
source(functions.R)
```

More resources

R for Data Science focuses on using the tidyverse for consistent R programming.

Mastering Software Development in R explains many common R functions through intuitive examples.

Advanced R helps you to master the R languague.

Thanks!

Slides created via the R package xaringan.