Lecture 28

EC103

- A very popular high resolution (12- to 14-bit)
 (but slow) ADC scheme is being shown.
- Below we describe its working principle:
- 1. Assume that the input signal v_A is negative.
- 2. Prior to start of the conversion cycle, the switch S_2 is closed, thus discharging the capacitor, and setting v_1 is zero.
- 3. The conversion cycle begins with opening S_2 , and connecting the integrator input through the switch S_1 to the analog input.
- 4. Since v_A is negative, a current will flow through R in the direction away from the Integrator.

Below we describe its working principle:

- 1. Assume that the input signal v_A is negative.
- 2. Prior to start of the conversion cycle, the switch S_2 is closed, thus discharging the capacitor, and setting v_1 is zero.
- 3. The conversion cycle begins with opening S_2 , and connecting the integrator input through the switch S_1 to the analog input.
- 4. Since v_A is negative, a current $I = \frac{v_A}{R}$ will flow through R in the direction away from the Integrator.
- 5. Thus v_1 rises linearly with a slope $=\frac{I}{C}=\frac{v_A}{RC}$ as shown in the adjacent figure.

- 6. Simultaneously, the counter is enabled, and it counts the pulses from a fixed-frequency clock.
- 7. This phase of conversion process continues for a fixed duration T_1 . It ends when the counter has accumulated a fixed count denoted N_{ref} . Usually, for a N-bit converter $N_{ref}=2^N$.

- 6. Simultaneously, the counter is enabled, and it counts the pulses from a fixed-frequency clock.
- 7. This phase of conversion process continues for a fixed duration T_1 . It ends when the counter has accumulated a fixed count denoted N_{ref} . Usually, for a N-bit converter $N_{ref}=2^N$.
- 8. Denoting the peak voltage at the output of the integrator as V_{peak} , we can write by the reference to the adjacent figure:

$$\frac{V_{peak}}{T_1} = \frac{\upsilon_A}{RC} \qquad \dots \text{ (i)}.$$

9. At the end of this phase, the counter is reset to zero.

10. Phase II of the conversion begins at $t=T_1$ by connecting the integrator input through the switch S_1 to the positive reference voltage V_{ref} .

11. The current into the integrator reverses direction and is equal to $\frac{V_{ref}}{R}$.

- 10. Phase II of the conversion begins at $t=T_1$ by connecting the integrator input through the switch S_1 to the positive reference voltage V_{ref} .

 11. The current into the integrator reverses direction and is equal to $\frac{V_{ref}}{D}$.
- 12. Thus v_1 decreases linearly with a slope of V_{ref}/RC .
- 13. Simultaneously, the counter is enabled, and it counts the pulses from the fixed-frequency clock.

- 14. When υ_1 reaches zero volts, the comparator signals the control logic to stop the counter.
- 15. Denoting the duration of the phase II by T_2 , we can write by the reference to the adjacent figure:

$$\frac{V_{peak}}{T_2} = \frac{V_{ref}}{RC} \qquad \dots \text{(ii)}.$$

16. Combining equations (i) and (ii), we get

$$T_2 = T_1 \left(\frac{v_A}{v_{ref}} \right) \dots \text{ (iii)}.$$

17. We can also conclude from the equation (iii):

$$n = n_{ref} \left(\frac{v_A}{v_{ref}} \right) \dots \text{(iv),}$$

where
$$\frac{n}{n_{ref}} = \frac{T_2}{T_1}$$

as n_{ref} is the counter reading after T_1 interval, And n is the counter reading after T_2 interval.

18. Thus the counter reading n gives digital equivalent to v_A .

Lecture 29

EC103

Example on Dual Slope ADC

• Consider a 8-bit dual-slope ADC with a 2 MHz clock and has $V_{ref} = -4 V$. The fixed interval T_1 is the time taken for the counter to accumulate a count of 2^N . What is the time required to convert an input voltage equal to 2 V.?

Ans. 0.192 ms.

Single Slope ADC

- It uses a linear ramp generator to produce a constant-slope reference voltage.
- At the beginning of a conversion cycle, the counter is in the reset state, and the ramp generator output is 0 V.
- The analog input is greater than the reference voltage at this point. Hence, produces a high-level output from the comparator.

• This high level enables the clock to the counter, and starts the ramp generator.

Single Slope ADC

- When the increasing ramp generator output attains a level equal to the analog input, the comparator produces a low-level output.
- At this point, the ramp is reset, and the binary count is stored in the latches by the control logic.
- This binary count is a digital
 Equivalent to the analog input.

Example on Single Slope ADC

- $R = 10 \ k\Omega$, $C = 0.1 \ \mu F$, $V_{ref} = 1 \ V$, analog input = $2 \ V$, clock frequency = $100 \ kHz$.
- What is the binary count after the conversion?

• Ans. 200