

Advanced Modelling Techniques in SAS Enterprise Miner

Dr Iain Brown, Senior Analytics Specialist Consultant, SAS UK & Ireland

Agenda

- SAS Presents Thursday 11th June 2015 15:45
- Advanced Modelling Techniques in SAS Enterprise Miner
- The session looks at:
 - Supervised and Unsupervised Modelling
 - Classification and Prediction Techniques
 - Tree Based Learners

The Analytics Lifecycle

Domain Expert
Makes Decisions
Evaluates Processes and ROI

Model Validation Model Deployment Model Monitoring Data Preparation

Data Exploration
Data Visualization
Report Creation

Exploratory Analysis
Descriptive Segmentation
Predictive Modeling

The Analytics Lifecycle

Domain Expert
Makes Decisions
Evaluates Processes and ROI

Model Validation Model Deployment Model Monitoring Data Preparation

Data Exploration
Data Visualization
Report Creation

Exploratory Analysis
Descriptive Segmentation
Predictive Modeling

The Analytics Lifecycle

Domain Expert
Makes Decisions
Evaluates Processes and ROI

Model Validation Model Deployment Model Monitoring Data Preparation

Data Exploration Data Visualization Report Creation

Exploratory Analysis
Descriptive Segmentation
Predictive Modeling

Supervised and Unsupervised Modelling

Taxonomy

Learning Methods

Supervised:

- Discover patterns in the data that relate attributes to labels.
- Patterns are used to predict the values of the label in future data instances.

Unsupervised:

- The data have no label attribute.
- Goal is to explore the data to find some intrinsic structures in them.

Supervised Learning (Classification & Prediction)

Logistic Regression Neural Networks

Regression, least square

Decision Trees, CART

Nonlinear SVMs

Generalized Linear Models

Decision Trees, CHAID

Bayesian Networks

LASSO, LAR

Gradient Boosting

Splines, MARS

Random Forests

kth Nearest Neighbor

Unsupervised Learning

K-means Multidimensional Scaling Assocations, Apriori

Fuzzy K-means Principal Components

Hierarchical Clustering Nonnegative Matrix Factorization

Vector Quantization

Classification and Prediction Techniques

Model Development Process

ample Transform Variables HP Regression Association Decision Tree Input Data DMDB Neural Network Cluster Impute A utoNeural HP Forest File Import **SV**M SOM/Kohonen Dmine Regression Variable Partial Least Sample Graph Explore Replacement HP SVM Selection Squares Interactive HP Tree Binning ⇒ DMNeural Data Partition Mark et Bask et Regression Rules Builder Merge StatExplore Ensemble ₩ HP GLM Rule Induction Variable Gradient Gradient Boosting HP Neural Filter Drop TwoStage Clustering MultiPlot Marincipal Principal LARS Append Model Import Components MBR Path Analysis

Regression

- Linear
- Logistic

Main Effects Yes -Two-Factor Interactions Polynomial Terms -Polynomial Degree User Terms Term Editor Class Targets Regression Type Logistic Regression Link Function Logit Model Options Suppress Intercept -Input Coding Deviation Model Selection Selection Model Stepwise Default Selection Criterion Use Selection Defaults Selection Options Optimization Options Technique Default Default Optimization Max Iterations Max Function Calls -Maximum Time 1 Hour Convergence Criteria

Equation

- Computes a forward stepwise least-squares regression
- Optionally computes all 2-way interactions of classification variables
- Optionally uses AOV16 variables to identify non-linear relationships between interval variables and the target variable.
- Optionally uses group variables to reduce the number of levels of classification variables.

Generalised Linear Models

- Uses the high-performance HPGENSELECT procedure to fit a generalized linear model in a threaded or distributed computing environment.
- Several response probability distributions and link functions are available.
- Provides model selection methods.

1	
Property	Value
General	
Node ID	HPGLM
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Set Reference Level	Default
Reference Level	<u></u>
∃ Equation	
-Main Effects	Yes
-Two-Factor Interactions	No
-Polynomial Terms	No
-Polynomial Degree	2
-Suppress Intercept	No
Use Missing as Level	No
∃ Modeling	
-Interval Target Probabilit	:Poisson
-Interval Target Link Fund	:Log
-Binary Target Link Functi	Logit
-Optimization Options	
Convergence Options	
-ZI Model Options	
Tweedie Model Options	
■Model Selection	
-Selection Method	Forward
-Stop Criterion	DEFAULT (SL)
Selection Options	

Neural Networks

- Non-linear relationship between inputs and output
- Prediction more important than ease of explaining model
- Requires a lot of training data

Support Vector Machines

- Enables the creation of linear and non-linear support vector machine models.
- Constructs separating hyperplanes that maximize the margin between two classes.
- Enables the use a variety of kernels: linear, polynomial, radial basis function, and sigmoid function. The node also provides Interior point and active set optimization methods.

Ensemble

- Creates new models by combining the posterior probabilities (for class targets) or the predicted values (for interval targets) from multiple predecessor models.
- 3 Methods
 - Average
 - Maximum
 - Voting

Model Import

- Importing already scored records/cases
- Importing registered SAS Model Package
- Importing SAS Score Code

- Reads all model details from Metadata Repository
- Applies models to new data and generates all fit statistics
- Compatible with model selection tools
- Useful for sharing models with other users
- Useful testing old models with updated data

Tree Based Learners

SAS EM Tree Algorithms

3 key tree based learning algorithms:

1. Decision Trees

2. Gradient Boosting

3. Random Forests

Decision Trees

Decision Trees

- Classify observations based on the values of nominal, binary, or ordinal targets
- Predict outcomes for interval targets
- Easy to interpret
- Interactive Trees available
- CART, CHAID, C4.5 approximate

Train		12
Variables		3
Interactive		4
Use Frozen Tree	No ,	4
Use Multiple Targets	No	n.
Precision	4	3
☐Splitting Rule		Z.
-Interval Criterion	ProbF	
-Nominal Criterion	ProbChisq	
-Ordinal Criterion	Entropy	1
-Significance Level	0.2	a
-Missing Values	Use in search	3
-Use Input Once	No	
-Maximum Branch	2	-
-Maximum Depth	6 :	
-Minimum Categorical Size	5	г
Split Precision	4	3
■Node	1	
-Leaf Size	5	7
-Number of Rules	5	-
-Number of Surrogate Rules	0	
Split Size		1
☐Split Search		~
-Use Decisions	No	
-Use Priors	No a	,
-Exhaustive	5000	ъ.
-Node Sample	20000	1
Subtree		d
-Method	Assessment	3
-Number of Leaves	1	3
-Assessment Measure	Decision	
-Assessment Fraction	0.25	1
☐Cross Validation		-
berform Cr Validation	No. Abraha	
P V V	100	

Gradient Boosting

Modelling Algorithms

- Sequential ensemble of many trees
- Extremely good predictions
- Very effective at variable selection

Gradient Boosting

- Approach that resamples the analysis data set several times to generate results that form a weighted average of the re-sampled data set.
- Tree boosting creates a series of decision trees which together form a single predictive model.
- A tree in the series is fit to the residual of the prediction from the earlier trees in the series.
- The residual is defined in terms of the derivative of a loss function.
- The successive samples are adjusted to accommodate previously computed inaccuracies.

Gradient Boosting

A gradient boosting tree with an interval target (Median Home Value, MEDV):

- Number of iterations, M=2; Maximum tree depth = 1
- Resulting model is combination of two decision trees (T1 and T2) each with 2 leaves.
- The value of 22.275 is the mean MEDV, while P_MEDV is the predicted value
- An observation with LSTAT = 6 and RM = 5 would have a P_MEDV value of 22.275 +
 .95 .17 = 23.055

Random Forests

Random Forest Node

What is a Random Forest?

HPForest

- HP node provides increased processing speed
- Random Forest ensemble methodology
 - Samples without replacement
 - Random selection of variables for each tree
 - Uses measures of association to select variable
 - Creates a prediction that is aggregated across the value in the leaf of each tree

Tree Demonstration

Summary

Summary

- EM supports a variety of both supervised and unsupervised modelling algorithms
- Linear / Non-Linear modelling
- Benefits from Tree based learning algorithms include:
 - Interoperability
 - Model performance
 - Outliers/ Missing Values

Questions and Answers

lain.Brown@sas.com

www.SAS.com

