Contents

1	Problem Setup	1
2	Breaking Down the Initial Conditions 2.1 Initial velocity components:	1 1 2
3	Forces Acting on the Ball 3.1 Gravity (F_g) :	2 2 2
4	Equations of Motion with Air Resistance 4.1 Horizontal direction (x):	3 3
5	Numerical Integration (Euler's Method) 5.1 Initial Conditions	3 4 4 4
6	Complete Algorithm	5

1 Problem Setup

A ball is thrown with an initial velocity and angle, considering the following forces:

- \bullet Gravity: Acts downward with constant acceleration $g\approx 9.81\,\mathrm{m/s}^2.$
- Air resistance (drag): Acts opposite to the direction of motion, affecting both the horizontal and vertical components of the ball's velocity.

2 Breaking Down the Initial Conditions

The initial conditions consist of:

2.1 Initial velocity components:

• Horizontal component:

$$v_{0x} = v_0 \cos(\theta)$$

• Vertical component:

$$v_{0y} = v_0 \sin(\theta)$$

2.2 Initial position:

• Horizontal position:

 x_0

• Vertical position:

 y_0

3 Forces Acting on the Ball

The forces acting on the ball include:

3.1 Gravity (F_g) :

• Acts downward with a constant acceleration g, contributing to vertical motion only.

3.2 Drag force (F_{drag}) :

• Acts opposite to the direction of motion and is proportional to the square of the velocity. This force is decomposed into horizontal and vertical components:

$$F_{\rm drag} = \frac{1}{2} C_d \rho A v^2$$

Where:

- 1. C_d : Drag coefficient,
- 2. ρ : Air density,
- 3. A: Cross-sectional area of the ball $(A = \pi r^2)$, with r as the radius of the ball),
- 4. v: Total velocity of the ball,

$$v = \sqrt{v_x^2 + v_y^2}$$

The drag force components are:

• Horizontal drag:

$$F_{\mathrm{drag},x} = \frac{1}{2} C_d \rho A v v_x$$

• Vertical drag:

$$F_{\text{drag},y} = \frac{1}{2} C_d \rho A v v_y$$

4 Equations of Motion with Air Resistance

The motion of the ball is governed by the following equations of motion:

4.1 Horizontal direction (x):

$$m\frac{dv_x}{dt} = -\frac{1}{2}C_d\rho Avv_x$$

$$\frac{dv_x}{dt} = -\frac{C_d \rho A}{2m} v v_x$$

4.2 Vertical direction (y):

$$m\frac{dv_y}{dt} = -mg - \frac{1}{2}C_d\rho Avv_y$$

$$\frac{dv_y}{dt} = -g - \frac{C_d \rho A}{2m} v v_y$$

Where:

- m is the mass of the ball,
- g is the acceleration due to gravity,
- v_x and v_y are the horizontal and vertical velocity components at any time t,
- v is the total velocity,

$$v = \sqrt{v_x^2 + v_y^2}$$

5 Numerical Integration (Euler's Method)

The differential equations are solved numerically using **Euler's method** for time-stepping, where the velocities and positions are updated iteratively over small time steps Δt .

5.1 Initial Conditions

At t = 0:

•

$$v_x(0) = v_0 \cos(\theta)$$

•

$$v_y(0) = v_0 \sin(\theta)$$

•

$$x(0) = x_0$$

•

$$y(0) = y_0$$

5.2 Update Rules for Velocity and Position

1. **Velocity update**: For each time step Δt , update the velocity components v_x and v_y as follows:

$$v_x(t + \Delta t) = v_x(t) + \frac{dv_x}{dt} \cdot \Delta t$$

$$v_y(t + \Delta t) = v_y(t) + \frac{dv_y}{dt} \cdot \Delta t$$

Where the derivatives of the velocities are given by:

$$\frac{dv_x}{dt} = -\frac{C_d \rho A}{2m} v v_x$$

$$\frac{dv_y}{dt} = -g - \frac{C_d \rho A}{2m} v v_y$$

1. **Position update**: After updating the velocities, update the positions x and y based on the new velocities:

$$x(t + \Delta t) = x(t) + v_x(t) \cdot \Delta t$$

$$y(t + \Delta t) = y(t) + v_y(t) \cdot \Delta t$$

5.3 Repeat for each time step

The process is repeated for subsequent time steps until balls collide. At each step, the velocity and position are updated using the above formulas.

6 Complete Algorithm

- 1. Initialize parameters:
 - Set initial values for v_0 , θ , m, r, C_d , ρ , A, and g.
 - Set initial positions: x_0, y_0 .
 - Compute initial velocity components:

$$v_{0x} = v_0 \cos(\theta)$$

,

$$v_{0y} = v_0 \sin(\theta)$$

- 2. Define time step Δt (e.g., 0.01 seconds).
- 3. Set initial time t = 0.
- 4. At each time step:
 - Compute total velocity $v = \sqrt{v_x^2 + v_y^2}$.
 - Update velocity components using:

$$v_x(t + \Delta t) = v_x(t) + \frac{dv_x}{dt} \cdot \Delta t$$

$$v_y(t + \Delta t) = v_y(t) + \frac{dv_y}{dt} \cdot \Delta t$$

• Update position using:

$$x(t + \Delta t) = x(t) + v_x(t) \cdot \Delta t$$

$$y(t + \Delta t) = y(t) + v_y(t) \cdot \Delta t$$

- Increment time t by Δt .
- 5. Continue until the balls collide.