Estrutura de Dados I

Pesquisa de Elementos

Prof. Rodrigo Minetto

Universidade Tecnológica Federal do Paraná

Sumário

- Introdução
- Busca sequêncial (ou linear)
- 3 Busca binária

Busca

Motivação: a operação de busca por uma palavra-chave ou valor é a base de muitas aplicações da computação, seja em um motor de busca na internet ou em um sistema comercial.

Busca

O problema:

- entrada: uma coleção de elementos, onde cada elemento possui um identificador, e uma chave para busca;
- saída: o índice na coleção que possui a mesma chave procurada ou identificar que tal chave não existe na coleção.

Busca

Nos nossos exemplos usaremos um vetor de inteiros como coleção. No entanto, podemos utilizar qualquer coleção cujos elementos possam ser comparados.

Sumário

- Introdução
- 2 Busca sequêncial (ou linear)
- Busca binária

Busca sequêncial em vetor

A forma mais simples de fazer uma busca em um vetor consiste em percorrer o vetor, elemento a elemento, para verificar se o elemento de interesse é igual a um dos elementos do vetor

Elemento desejado: 66.

0 1 2 3 4 5 6 7

$$\mathsf{A} = \left[22 \middle| 99 \middle| 66 \middle| 33 \middle| 11 \middle| 00 \middle| 77 \middle| 55 \middle| \right]$$

Elemento desejado: 66.

0 1 2 3 4 5 6 7

$$\mathsf{A} = \left[\begin{array}{c|c|c} \mathbf{22} & \mathbf{99} & \mathbf{66} & \mathbf{33} & \mathbf{11} & \mathbf{00} & \mathbf{77} & \mathbf{55} \end{array} \right]$$

Elemento desejado: 66.

0 1 2 3 4 5 6 7

$$\mathsf{A} = \left[22 \left| \frac{99}{99} \right| 66 \left| 33 \right| 11 \left| 00 \right| 77 \left| 55 \right| \right]$$

Elemento desejado: 66.

Elemento desejado: 66.

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 22 & 99 & 66 & 33 & 11 & 00 & 77 & 55 \end{bmatrix}$$

- → Comparação
- \rightarrow Elemento encontrado na posição 2.

Elemento desejado: 44.

Elemento desejado: 44.

 $A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 22 & 99 & 66 & 33 & 11 & 00 & 77 & 55 \end{bmatrix}$

Elemento desejado: 44.

Elemento desejado: 44.

Elemento desejado: 44.

Elemento desejado: 44.

Elemento desejado: 44.

Elemento desejado: 44.

Elemento desejado: 44.

Elemento desejado: 44.

- \rightarrow Comparação
- ightarrow Não encontrou (posição: -1).

Sumário

- Introdução
- Busca sequêncial (ou linear)
- 3 Busca binária

Em diversas aplicações reais, existe a necessidade de algoritmos de busca eficientes. Seria possível melhorar a eficiência do algoritmo de busca sequêncial?

Infelizmente, se os **elementos** estiverem armazenados em uma ordem aleatória no vetor, não temos como melhorar o algoritmo de busca, pois precisamos verificar todos os elementos.

No entanto, se os elementos do vetor estiverem ordenados, podemos aplicar um algoritmo mais eficiente para realizar a busca. Trata-se do algoritmo de busca binária.

Contexto: Busca binária.

Adivinhe o número (number guessing game): pense em um número e diga o intervalo em que ele está. Para cada adivinhação de um oponente é respondido: o número é maior, é menor ou acertou. Ganha quem acertar com menos adivinhações.

Busca binária (ideia):

- Testar o elemento que buscamos com o valor armazenado no meio do vetor;
- Se o elemento que buscamos for menor que o elemento do meio, sabemos que, se o elemento estiver presente no vetor, ele estará na primeira parte do vetor;

Busca binária (ideia):

- Se for maior, estará na segunda parte do vetor.
- Se for **igual**, achamos o elemento.
- Se concluirmos que o elemento está em uma das partes do vetor, repetimos o procedimento descrito considerando apenas a parte restante.

Elemento desejado: 55.

- → Comparação
- → Intervalo considerado

Elemento desejado: 55.

- \rightarrow Comparação
- → Intervalo considerado

$$\rightarrow$$
 (0 + 7)/2 = 3

Elemento desejado: 55.

- → Comparação
- → Intervalo considerado

$$\rightarrow$$
 (4 + 7)/2 = 5

Elemento desejado: 55.

0 1 2 3 4 5 6 7 00 11 22 33 55 66 77 99

- → Comparação
- → Intervalo considerado
- \rightarrow (4 + 4)/2 = 4

Elemento desejado: 55.

- → Comparação
- → Intervalo considerado
- → Elemento encontrado na posição 4.

Elemento desejado: 15.

 $A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathbf{00} & \mathbf{11} & \mathbf{22} & \mathbf{33} & \mathbf{55} & \mathbf{66} & \mathbf{77} & \mathbf{99} \end{bmatrix}$

- → Comparação
- → Intervalo considerado

Elemento desejado: 15.

- \rightarrow Comparação
- → Intervalo considerado
- \rightarrow (0 + 7)/2 = 3

Elemento desejado: 15.

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 00 & 11 & 22 & 33 & 55 & 66 & 77 & 99 \\ \hline \uparrow & & \uparrow \\ \rightarrow \text{Comparação} \end{bmatrix}$$

- → Intervalo considerado
- \rightarrow (0 + 2)/2 = 1

Elemento desejado: 15.

- → Comparação
- → Intervalo considerado
- \rightarrow (2 + 2)/2 = 2.

Elemento desejado: 15.

0 1 2 3 4 5 6 7 00 11 22 33 55 66 77 99 → Comparação

- → Intervalo considerado
- ightarrow Não encontrou (posição: -1).