

3/14.	Applied Papelly Exm Yuper	
Q 2h	In note the probability of observing to 135 or a value some extreme. extreme. extreme. extreme against the line the case when the probability of observing the case against the line that	Sm
	since the va = 2 taled best, this man - t = 135) or the	
(Oid sorething similar in 2nd lab.	
1	If the tree, then dots in both samples is range from to Some population, i.e. it can be merger	
ř.	tree is a 5% probability of lying outing these values	
	Our observed difference is 45.5-48.7 = -35 -3.5 does not lie out side 2.5H 97.5th perunce Valve range of (-3.94, 4.57)	1
	=> fail to reject the	
Di	2 Sample t-Test not appropriate as it assured all customes have some average spending with design 1; and smilery with	
	design 2 Allo duta are lipated', acrost dolyn) by customs => sentitle to use para t-10%	
11	Ho. Mi: = U21 Uii overinx Spent by (w) over i on designi for i = 1 . 20 Uzi over " y" i i on design	
	71.1: NI, + U2)	

4 5% level Synte Rejert Ho it (t) 7 to 05,14 = 2.093 > do not regelt the

3 is Bustwark - cheer if formally distributed in parts to a stript time. The dark and $g = g$ plot are consistent with pairolly durward approximate $g = g$ plot are consistent with pairolly durward approximate $g = g$ plot are column sun. C. [Ris]: Distribute of $g = g$ to a source g plot g	
3 b is Brokenern - check it formally distributed in partition of Straph line. The date and $g - g$ plut are consistent with namely distributed observation. C. Ph.: Distribute of χ is the column such plane of χ is the column such plane of χ is the column such plane of χ is the column such plane. Ply) Distribute of χ is the column such plane of χ is the column such plane of χ in condition of χ is the column such plane. It conditions distributed by χ is the column such plane of χ is the column such plane. P(χ is a line of χ is the column such plane of χ is the column such plane. P(χ is a line of χ is	
3h is Brokenery - check it formally distributed in partition of Straggic line. The date and $g-g$ plat are consistent with namely distributed observation. C. p(1): Distribute of χ is the column sum? $P(x^2) = 0.1$ $P(x^2) = 0.4$ $P(x^2) = 0.4$ $P(x^2) = 0.1$ $P(y) = 0.1$	THE April Property Sources of the Sources
in parts it on straggly live. That date and $g - g$ plot are consistent with namely distrible approximation. Ci. [k1]: Distribution of χ is the column sum! $p(x+4) = 0.1$ $p(x+4) = 0.4$ $p(x+4) = 0.$	
C: $P(1)$: Distribution of X is the column sum? P(x^{\pm} = 0.7) $P(x^{\pm}$ = 0.7) $P(x^{\pm})$ = 0.4 $P(x^{\pm})$ = 0.5 P(y) Distribution of y is row sum! ($x^{\pm}y^{\pm}y^{\pm}$) $P(y^{\pm})$ = 0.15 $P(y^{\pm})$ = 0.45 $P(y^{\pm})$ = 0.44 in Conditional distribution of Y is row sum! ($x^{\pm}y^{\pm}y^{\pm}$) $P(x, y^{\pm})$ $P(x^{\pm})$	5" 1. Brokwork - chool if bornolly dismay
C: $R(1)$: Distribution of χ is the column sum! P(x^{\pm} = 0.7) $P(1x^{\pm})$ = 0.4 $P(1x^{\pm})$ = 0.4 $P(1x^{\pm})$ = 0.5 P(y) Distribution of y is row sum! ($x^{\pm}y^{\pm}y^{\pm}$) $P(y^{\pm})$:	The date and the observer consistent with namely dumber
$P(x=4) = 0.1$ $p(x=4) = 0.4$ $p(x=5) = 0.5$ $P(y) \cdot D_1 \text{that in of } y \cdot \text{U row Sum} \mid (\text{ranged})$ $p(y=-1) = 0.15 \text{ply} = 0! = 0.45 \text{ply} = 4$ $ii (\text{conditional dist} X \mid Y = 0 = p(x, y=0) p(y=0)$ $P(x, y=0) P(x=2 \mid y=0) = p(x=2 \mid y=0) 0.1 2/9$ $P(x=4 \mid y=0) = \frac{p(x=2,y=0)}{0.45} 0.27 5/9$ $P(x=4 \mid y=0) = p(x$	openion,
$P(x=4) = 0.1$ $p(x=4) = 0.4$ $p(x=5) = 0.5$ $P(y) \cdot D_1 \text{that in of } y \cdot \text{U row Sum} (\text{ranged})$ $p(y=-1) = 0.15 p(y=0) = 0.45 p(y=4) = 0.44$ $ii (\text{conditional dist} \times 14:0 = p(x, y=0) p(y=0)$ $P(x, y=0) P(x=2, y=0) = p(x=2, y=0) 0.1 2/9$ $P(x=4, y=0) = \frac{p(x=2, y=0)}{0.45} 0.27 5/9$ $P(x=4, y=0) = \frac{p(x=2, y=0)}{0.45} 0.45 1.45$	Ci. Ph): Distributor of x is the column sun'
$P(y) = 0.5$ $P(y) = 0.5 \text{ Inhutton of } y = 0.5 \text{ Sum} = (num)^{2}$ $p(y=-1) = 0.15 p(y=0) = 0.45 p(y=4) = 0.44$ $P(x, y=0) = P(x, y=0) = P(x, y=0) = P(x, y=0)$ $P(x, y=0) = P(x=2, y=0) = P(x=2, y=0) = 0.1 = 2/4$ $P(x=4, y=0) = P(x=2, y=0) = 0.25 = 5/4$ $P(x=4, y=0) = P(x=2, y=0) = 0.25 = 5/4$ $P(x=4, y=0) = P(x=2, y=0) = 0.25 = 5/4$ $P(x=4, y=0) = P(x=2, y=0) = 0.25 = 0.45$ $P(x=4, y=0) = P(x=2, y=0) = 0.45$ $P(x=4, y=0) = $	P(x4. = 0.)
is Conditional dist $x/y=0$ = $p(x, y=0)$ $p(y=0)$ $p(x, y=0)$ $p(x=2 y=0) = p(x=2 y=0)$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{2/4}{G^{(4)}}$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{627}{G^{(4)}} = \frac{574}{G^{(4)}}$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{674}{G^{(4)}}$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{674}{G^{(4)}} = \frac{674}{G^{(4$	P(X:5) = 0.5
is Conditional dist $x/y=0$ = $p(x, y=0)$ $p(y=0)$ $p(x, y=0)$ $p(x=2 y=0) = p(x=2 y=0)$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{2/4}{G^{(4)}}$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{627}{G^{(4)}} = \frac{574}{G^{(4)}}$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{674}{G^{(4)}}$ $p(x=4 y=0) = \frac{p(x=2 y=0)}{G^{(4)}} = \frac{674}{G^{(4)}} = \frac{674}{G^{(4$	P(4) - Polyhobutur of U 11 raw Sums (narrows)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p(y=-1)= 0.15 p(y=0)= 0.45 p(y=4)=0.4
$ \frac{p(x, y, 0)}{0.45} \frac{p(x-2)y_0}{0.45} = \frac{p(x-2, y-0)}{0.45} \frac{0.1}{0.45} = \frac{2/q}{0.45} $ $ \frac{p(x-4)y_0}{0.45} = \frac{p(x-2, y-0)}{0.45} = \frac{0.25}{0.45} = \frac{5/q}{0.45} $ $ \frac{p(x-4)y_0}{0.45} = \frac{p(x-2, y-0)}{0.45} = \frac{2/q}{0.45} $ $ \frac{p(x-4)y_0}{0.45} = \frac{p(x-2, y-0)}{0.45} = \frac{2/q}{0.45} $ $ \frac{p(y-0)}{0.45} = \frac{2/q}{0.45} $ $ \frac{p(x-2)}{0.45} = \frac{2/q}{0.45} $ $\frac{p(x-2)}{0.45} = \frac{2/q}{0.45} $ $p(x-$	in Conditual dilt X 14=0. = P(X, y=0)
$ \rho(x=4 y=0) = \frac{\rho(x=4, y=0)}{\sigma^{4}} \frac{\sigma^{25}}{\sigma^{45}} = \frac{5/4}{\sigma^{45}} $ $ \rho(x=4 y=0) = \frac{\rho(x=4, y=0)}{\sigma^{45}} = \frac{5/4}{\sigma^{45}} $ $ \rho(x=4 y=0) = \frac{\rho(x=4, y=0)}{\sigma^{45}} = \frac{5/4}{\sigma^{45}} $ $ = \frac{\rho(x=4, y=0)}{\rho^{45}} = \frac{2/4}{\rho^{45}} $ $ \frac{\rho(x=4, y=0)}{\rho^{45}} = \frac{2/4}{\rho^{45}} $ $\frac{\rho(x=4, y=0)}{\rho^{45}} = \frac{2/4}{\rho^{45}} $ $\rho($	P(x 4:0) P(x=2 4:0) = P(x=2 u=u) 0:1 24
$P(x=5 y=3) = \frac{covanut(x,y)}{\sqrt{var(x)} \sqrt{var(x)} \sqrt{var(x)}}$ $E(x) = \frac{covanut(x,y)}{\sqrt{var(x)} \sqrt{var(x)} \sqrt{var(x)}}$ $E(y) = \frac{E(y)}{covanut(x,y)} = \frac{145}{covanut(x,y)}$ $E(xy) = \frac{2}{covanut(x,y)} = \frac{145}{covanut(x,y)}$ $E(xy) = \frac{2}{covanut(x,y)} = \frac{145}{covanut(x,y)}$ $E(xy) = \frac{2}{covanut(x,y)} = \frac{1}{covanut(x,y)}$ $E(xy) = \frac{2}{covanut(x,y)} = \frac{1}{covanut(x,y)} = \frac{1}{covanut(x,y)}$	0.45 Cus. 045
$E(x) = \frac{covening(x,y)}{\sqrt{var(x) + var(y)}}$ $E(x) = \frac{covening(x,y)}{\sqrt{var(x) + var(y)}}$ $E(y) = \frac{E(y)}{e^{(x,y)}} = \frac{E(x,y)}{e^{(x,y)}} = \frac{E(x,y)}{e^{(x$	
$E(x) = (2x01) + 141 (4x0.4) + (0.5) = 4.5$ $E(y) = \sum_{0 \le x} xy ((x,y) - 2/0) + 9(1)(005) + 5(-1)(01) = 6.9$ $E(x^2) = (4x0.4) + (4x0.4) + (6x0.4) + (1)(005) + 5(-1)(01) = 6.9$	
$E(xy) = \sum_{\text{only any }} xy ((x,y) - 2/0) + 4(-1)(0/05) + 5(-1)(0/1) = 6.9$ $E(x^2) = (x,y) + (6/2)(1) + (6/2)(1) = 6.9$	in Complain of x ord 9 = Verx tarly)
$E(xy) = \sum_{\text{only any }} xy ((x,y) - 2/0) + 4(-1)(0/05) + 5(-1)(0/1) = 6.9$ $E(x^2) = (x,y) + (6/2)(1) + (6/2)(1) = 6.9$	E(x) = (2x01) + 4/ (4x0.4) +5 (0.5) = 4.5
	F/My)= ZE xy P/My) -2/01.
$p(\lambda_1 y) = \frac{E(xy) - E(x)E(y)}{(e(y^2) - e(y)^2)} = 6.55.$ $\frac{6.9 - (4.5 \times 1.41)}{(19.3 - 43)^2} = 0.35$ beyon + 1	
$\sqrt{(19.3-43)^2 (6.55-1.45)^2} = 0.35$ bene +1	$p(x,y) = \frac{E(xy) - E(x)E(y)}{\ p(x) - E(x)\ \ p(y)\ _{L^{\infty}(x)}} = 6.55.$
V (19.3-43), (6.22-1.92) = 0.32	69-(43x141)
	V (193-43) (6.55-1.45) = 0.35

Z Appled Popular 33 City Show x and y not inclipant -covariant is not zero $6.9-143\times445$): 0.655.

If independ then Cov(x,y)=0 $Cov \neq 0 \Rightarrow not independent$ Oncety Show that p(1,4) & p(x) p(y) only have to repeat the until you find not independent whe elter way is on