SIGMA205: processus TVAR

1 Révisions processus AR

Equation AR(p):

$$X_t = \sum_{i=1}^p a_i X_{t-i} + \epsilon_t \tag{AR}$$

où ϵ est un bruit blanc centré de variance unitaire.

1.1 Construction d'une solution stationnaire au second ordre

Théorème 1.1. Soit $P(z) = 1 - \sum_{k=1}^{p} a_k z^k$, supposons que $\forall |z| = 1, P(z) \neq 0$ Alors il existe une solution stationnaire au second ordre de (AR)

Démonstration. Pour prouver cela on a besoin du lemme suivant :

Lemme 1. Pour $\alpha \in \ell^1$ et X un processus tel que $\sup_t \mathbb{E}[|X_t|] < +\infty$ on appelle filtrage de X le processus :

$$F_{\alpha}(X) = \left(\sum_{k \in \mathbb{Z}} \alpha_k X_{t-k}\right)_{t \in \mathbb{Z}}$$

Alors $si\ \alpha, \beta \in \ell^1$ on a $F_{\alpha}(F_{\beta}(X)) = X$ $si\ \alpha \star \beta = \delta$ De plus $\alpha \star \beta = \delta \iff \forall |z| = 1 \left(\sum_{z \in \mathbb{Z}} \alpha_k z^k \right) \left(\sum_{z \in \mathbb{Z}} \beta_k z^k \right) = 1$ Enfin $si\ X$ est stationnaire au second ordre F(X) l'est aussi.

Remarque. $F_{\alpha} = \sum_{k \in \mathbb{Z}} \alpha_i B^k$ où B est l'opérateur de shift $B: (x_t)_{t \in \mathbb{Z}} \mapsto (x_{t-1})_{t \in \mathbb{Z}}$

Le polynôme P peut s'écrire : $P(z) = \prod_{k=1}^{p} (1 - u_k z)$ où les u_k sont les inverses des racines de P. L'équation (AR) s'écrit $P(B)(X) = \epsilon$. Or avec la factorisation obtenue on a :

$$P(B) = (1 - u_1 B) \circ \cdots \circ (1 - u_p B) = F_{\alpha^{(1)}} \circ \cdots \circ F_{\alpha^{(p)}}$$

où
$$\alpha_k^{(l)} = \left\{ \begin{array}{ll} 1 & k=0 \\ -u_l & k=1 \\ 0 & \mathrm{sinon} \end{array} \right.$$

Le but désormais est de chercher pour tout $l \in [\![1,p]\!]$ un $\beta^{(l)}$ tel que $\alpha^{(l)} \star \beta^{(l)} = \delta$ pour pouvoir inverser la relation. On sait d'après la remarque qu'il suffit de trouver $\beta^{(l)}$ tel que $\frac{1}{1-u_lz} = \sum_{k \in \mathbb{Z}} \beta_k z^k$ pour tout |z| = 1 On sait de plus que $\forall l \in [\![1,p]\!]$ $|u_l| \neq 1$ par hypothèse sur les racines de P. Prenons $l \in [\![1,p]\!]$ alors deux cas sont possibles :

- si $|u_l| < 1$ on a $\forall |z| = 1$ $\frac{1}{1 u_l z} = \sum_{k \ge 0} u_l^k z^k$ il suffit donc de prendre $\beta_k^{(l)} = \begin{cases} u_l^k & k \ge 0 \\ 0 & \text{sinon} \end{cases}$
- si $|u_l| > 1$ on a $\forall |z| = 1$ $\frac{1}{1 u_l z} \frac{-u_l^{-1} z^{-1}}{1 u_l^{-1} z^{-1}} = \sum_{k \le -1} -u_l^k z^k$ il suffit donc de prendre $\beta_k^{(l)} = \begin{cases} -u_l^k & k \le -1 \\ 0 & \text{sinon} \end{cases}$

Finalement prenons $F = F_{\beta^{(p)}} \circ \cdots \circ F_{\beta^{(1)}}$, on prends alors

$$X = F(\epsilon)$$

2 Prédiction

Proposition 2.1. On se donne X stationnaire au second ordre vérifiant (AR). On suppose de plus que X est causal i.e $P(z) \neq 0$ pour tout $|z| \leq 1$ On note $\mathcal{H}_t^X = \overline{\text{Vect}\{X_s, s \leq t\}}$. Alors

$$\hat{X}_{t+1} = proj(X_{t+1}|\mathcal{H}_t^X) = \sum_{k=1}^p a_k X_{t+1-k}$$

Démonstration. $X_{t+1} = \sum_{k=1}^{p} a_k X_{t+1-k} + \epsilon_{t+1}$ de plus $\forall k \in \llbracket 1, p \rrbracket \ X_{t+1-k} \in \mathcal{H}^X_t$ donc

$$\hat{X}_{t+1} = \sum_{k=1}^{p} a_k X_{t+1-k} + proj(\epsilon_{t+1} | \mathcal{H}_t^X)$$

Or X est causal donc dans la construction de X (cf preuve d'avant) on a $P(z) = \prod_{l=1}^p (1 - u_l z)$ où $\forall l |u_l| < 1$ ainsi les $\beta^{(l)}$ correspondants sont tous à support dans $\mathbb N$ ce qui entraine que $\psi = \beta^{(p)} \star \cdots \star \beta^{(1)}$ est aussi à support dans $\mathbb N$ et donc

$$X_t = \sum_{k=0}^{+\infty} \psi_k \epsilon_{t-k}$$

On en déduit que $\mathcal{H}_t^X = \mathcal{H}_t^{\epsilon}$ et donc comme ϵ est un bruit blanc $proj(\epsilon_{t+1}|\mathcal{H}_t^X) = proj(\epsilon_{t+1}|\mathcal{H}_t^{\epsilon}) = 0$ d'où la solution \Box

3 TVAR

Equation TVAR:

$$X_{t} = \sum_{i=1}^{p} a_{i}(t)X_{t-i} + \sigma(t)\epsilon_{t}$$
 (TVAR)

Condition de stabilité : Le critère qui nous intéresse est d'avoir une solution de (TVAR) vérifiant la condition de stabilité suivante :

$$\sup_{t \in \mathbb{Z}} \mathbb{E}\left[|X_t|^2\right] < +\infty \tag{S}$$

3.1 Cas simple

On considère ici $\sigma(t) = 1 \,\forall t \in \mathbb{R} \text{ et } a_i(t) = \begin{cases} 0 & t < 0 \\ a_i & t \ge 0 \end{cases}$.

Proposition 3.1. Dans ce cas particulier, l'équation (TVAR) admet une unique solution

Démonstration. Tout d'abord pour t < 0 on a $X_t = \epsilon_t$

Pour
$$t \geq 0$$
, notons $\mathbf{X}_k = [X_k, \cdots, X_{k-p+1}]^T$, $\mathbf{e}_1 = [1, 0, \cdots, 0]^T$ et $A = \begin{pmatrix} a_1 & a_2 & \cdots & a_p \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$. Alors l'équation

(TVAR) s'écrit:

$$\mathbf{X}_t = A\mathbf{X}_{t-1} + \epsilon_t \mathbf{e}_1$$

En itérant pour t-1, t-2 etc, on obtient

$$\forall k \ge 0 \, \mathbf{X}_t = A^{k+1} \mathbf{X}_{t-k-1} + \sum_{j=0}^k \epsilon_{t-j} A^j \mathbf{e}_1$$

Considérons $k \geq t$ alors $\mathbf{X}_{t-k-1} = [\epsilon_{t-k-1}, \cdots, \epsilon_{t-k-p}]^T$. Ainsi

$$\forall k \ge t \, \mathbf{X}_t = A^{k+1} \begin{pmatrix} \epsilon_{t-k-1} \\ \vdots \\ \epsilon_{t-k-p} \end{pmatrix} + \sum_{j=0}^k \epsilon_{t-j} A^j \mathbf{e}_1 \tag{1}$$

ce qui fournit une définition $X_t = \mathbf{e}_1^T \mathbf{X}_t$ unique

On cherche alors une condition sur les $(a_i)_{i=1}^p$ pour cette solution vérifie la condition de stabilité (S)

3.1.1 Cas où p=1

Proposition 3.2. Si p = 1 on note $a(t) = \begin{cases} 0 & t < 0 \\ a & t \ge 0 \end{cases}$ et (TVAR) devient $X_t = a(t)X_{t-1} + \sigma(t)\epsilon_t$. La solution de l'équation vérifie la condition de stabilité (S) si et seulement si |a| < 1

Démonstration. Si t < 0 $X_t = \epsilon_t$ donc $\sup_{t < 0} \mathbb{E}\left[|X_t|^2\right] = 1$. Si $t \ge 0$, la formule de X_t donnée par (1) se traduit pour p = 1 par $\forall k \ge t$ $X_t = a^{k+1}\epsilon_{t-k-1} + \sum_{j=0}^k a^j\epsilon_{t-j}$ i.e $\forall k \ge t$ $X_t = \sum_{j=0}^{k+1} a^j\epsilon_{t-j}$. Ainsi

$$\forall t \in \mathbb{N}, \ \forall k \ge t \, \mathbb{E}\left[|X_t|^2\right] = \sum_{i=0}^{k+1} \sum_{j=0}^{k+1} a^i \overline{a}^j \mathbb{E}\left[\epsilon_{t-i} \epsilon_{t-j}\right] = \sum_{i=0}^{k+1} |a|^{2i}$$

Ainsi en faisant tendre k vers $+\infty$ on obtient

$$\forall t \in \mathbb{N}, \ \mathbb{E}\left[|X_t|^2\right] = \sum_{i=0}^{+\infty} |a|^{2i} = \left\{ \begin{array}{ll} +\infty & |a| \ge 1\\ \frac{1}{1-|a|^2} & |a| < 1 \end{array} \right.$$

Ce qui donne $\sup_{t\in\mathbb{N}}\mathbb{E}\left[|X_t|^2\right]<+\infty\iff |a|<1$ et comme sur $\sup_{t<0}\mathbb{E}\left[|X_t|^2\right]=1$ la condition est valable pour le sup sur $t\in\mathbb{Z}$

3.1.2 Cas p quelconque

Pour prouver ce cas, quelques lemmes d'algèbre linéaire sont nécessaires

Lemme 2. La matrice A définie dans la preuve de la propriété 3.1 a pour polynôme caractéristique :

$$\chi_A(X) = \det(A - XI_p) = (-1)^p \left(X^p - \sum_{i=1}^p a_i X^{p-i}\right)$$

Conséquence: Les valeurs propres de A sont les inverses des racines de $P = 1 - \sum_{i=1}^{p} a_i X^i$ car $\chi_A = (-1)^p X^p P\left(\frac{1}{X}\right)$

Lemme 3. Soit $A \in \mathbb{C}^{p \times p}$ alors, on rappelle la définition de la norme subordonnée associée à une norme $\|.\|$ sur \mathbb{C}^p :

$$||A|| = \sup_{||x||=1} ||Ax||$$

On rappelle aussi la définition du rayon spectral $\rho(A) = \max_{\lambda \in spec(A)} |\lambda|$. On a la propriété suivante : Pour tout $A \in \mathbb{C}^{p \times p}$, pour tout $\epsilon > 0$ il existe une norme sur \mathbb{C}^p dépendant de ϵ et de A telle que la norme subordonnée correspondante $\|\|.\|_{\epsilon,A}$ vérifie

$$|||A|||_{\epsilon,A} \le \rho(A) + \epsilon$$

Proposition 3.3 (Condition suffisante). Dans ce cas particulier, en notant $P(z) = 1 - \sum_{i=1}^{p} a_i z^i$, si $\forall |z| \le 1$ $P(z) \ne 0$ (i.e les racines de P sont hors du disque unité fermé) alors la solution de l'équation (TVAR) vérifie la condition de stabilité (S)

Démonstration. On part de la définition de X_t pour $t \in \mathbb{N}$ donnée par (1)

De plus $X_t = \mathbf{e}_1^T \mathbf{X}_t$ donc $\mathbb{E}\left[|X_t|^2\right] = \mathbb{E}\left[X_t \overline{X}_t^T\right] = \mathbf{e}_1^T \mathbb{E}\left[\mathbf{X}_t \mathbf{X}_t^T\right] \mathbf{e}_1$ avec $\forall k \geq t$, comme ϵ est un bruit blanc

$$\mathbb{E}\left[\mathbf{X}_{t}\mathbf{X}_{t}^{T}\right] = \sum_{j=0}^{k} \sum_{l=0}^{k} A^{j} \mathbf{e}_{1} \mathbb{E}\left[\epsilon_{t-j}\epsilon_{t-l}\right] \mathbf{e}_{1}^{T} (A^{l})^{T} + A^{k+1} \mathbb{E}\left[\begin{pmatrix}\epsilon_{t-k-1}\\ \vdots\\ \epsilon_{t-k-p}\end{pmatrix} \left[\epsilon_{t-k-1}, \cdots, \epsilon_{t-k-p}\right]\right] (A^{k+1})^{T}$$

$$= \sum_{j=0}^{k} A^{j} \mathbf{e}_{1} \mathbf{e}_{1}^{T} (A^{j})^{T} + A^{k+1} (A^{k+1})^{T}$$

Or on a supposé que les racines de P sont de module strictement supérieur à 1 donc les valeurs propres de A sont de module strictement inférieur à 1. Ainsi $\rho(A) < 1$, il existe donc $\epsilon > 0$ tel que $\rho(A) + \epsilon < 1$. En appliquant le lemme 3 à ϵ et A on obtient (en notant juste |||A||| au lieu de $|||A|||_{A,\epsilon}$ pour alléger les notations) |||A||| < 1.

à ϵ et A on obtient (en notant juste ||A||| au lieu de $||A|||_{A,\epsilon}$ pour alléger les notations) ||A||| < 1. Ceci implique dans un premier temps $|||A^k||| \le |||A|||^k \xrightarrow[k \to +\infty]{} 0$ donc $A^k \xrightarrow[k \to +\infty]{} 0$ et ainsi $A^{k+1}(A^{k+1})^T \xrightarrow[k \to +\infty]{} 0$

De plus $\forall j \in \mathbb{N} \ \left\| \left\| A^j \mathbf{e}_1 \mathbf{e}_1^T (A^j)^T \right\| \right\| \leq \left\| A \right\|^{2j} \left\| \left\| \mathbf{e}_1 \mathbf{e}_1^T \right\| \right\|$ qui est terme général d'une série convergence dans \mathbb{R} car $\left\| A \right\| < 1$

donc la série des $A^j \mathbf{e}_1 \mathbf{e}_1^T (A^j)^T$ est absolument convergente donc convergente dans $\mathbb{R}^{p \times p}$. En faisant donc tendre k vers $+\infty$ dans l'expression de $\mathbb{E}\left[\mathbf{X}_t \mathbf{X_t}^T\right]$ on obtient :

$$\mathbb{E}\left[\mathbf{X}_{t}\mathbf{X_{t}}^{T}\right] = \sum_{j=0}^{+\infty} A^{j} \mathbf{e}_{1} \mathbf{e}_{1}^{T} (A^{j})^{T} \in \mathbb{R}^{p \times p}$$

Ainsi $\mathbb{E}\left[|X_t|^2\right]$ étant le premier coefficient de cette matrice, $\mathbb{E}\left[|X_t|^2\right]<+\infty$

3.2 Cas général avec p=1

L'équation (TVAR) devient $X_t = a(t)X_{t-1} + \sigma(t)\epsilon_t$

Proposition 3.4. Si $\sup_t |a(t)| < 1$ et $\sup_t |\sigma(t)| < +\infty$ alors il existe un unique processus $(X_t)_{t \in \mathbb{Z}}$ vérifiant à la fois (TVAR) et la condition de stabilité (S)

 $D\acute{e}monstration$. En itérant k fois l'équation on obtient

$$\forall k \ge 0 \, X_t = \left(\prod_{j=0}^k a(t-j)\right) X_{t-k-1} + \sum_{j=0}^k \left(\prod_{i=0}^{j-1} a(t-i)\right) \sigma(t-j) \epsilon_{t-j} \tag{2}$$

• Supposons que X vérifie la condition de stabilité et appelons $M = \sup_t \mathbb{E}\left[\left|X_t\right|^2\right]$, $a_{\max} = \sup_t |a(t)|$ et $\sigma_{\max} = \sup_t |\sigma(t)|$ alors on a $\forall k \geq 0$:

$$\left\| \left(\prod_{j=0}^{k} a(t-j) \right) X_{t-k-1} \right\|_{2}^{2} = \left(\prod_{j=0}^{k} |a(t-j)|^{2} \right) \mathbb{E}\left[|X_{t-k-1}|^{2} \right] \le a_{\max}^{2(k+1)} M$$

Ainsi $\lim_{k\to+\infty} \left\| \left(\prod_{j=0}^k a(t-j) \right) X_{t-k-1} \right\|^2 = 0$ car on a pris $a_{\max} < 1$. De plus $\forall j > 0$

$$\left\| \left(\prod_{i=0}^{j-1} a(t-i) \right) \sigma(t-j) \epsilon_{t-j} \right\|_{2}^{2} = \left(\prod_{i=0}^{j-1} |a(t-i)|^{2} \right) |\sigma(t-j)|^{2} \mathbb{E} \left[|\epsilon_{t-j}|^{2} \right] = \left(\prod_{i=0}^{j-1} |a(t-i)|^{2} \right) |\sigma(t-j)|^{2} \le a_{\max}^{2j} \sigma_{\max}^{2}$$
(3)

Ce qui donne

$$\left\| \left(\prod_{i=0}^{j-1} a(t-i) \right) \sigma(t-j) \epsilon_{t-j} \right\|_{2} \le a_{\max}^{j} \sigma_{\max}$$

Encore une fois, parce qu'on a pris $a_{\max} < 1$, on a à droite de l'inégalité le terme général d'une série convergente. Ainsi en notant $c_j = \left(\prod_{i=0}^{j-1} a(t-i)\right) \sigma(t-j)$ la série de terme général $c_j \epsilon_{t-j}$ est absolument convergente donc convergente.

On peut alors faire tendre k vers $+\infty$ dans (2), on obtient

$$X_t = \sum_{j=0}^{+\infty} c_j \epsilon_{t-j} \text{ avec } c_j = \left(\prod_{i=0}^{j-1} a(t-i)\right) \sigma(t-j)$$

$$\tag{4}$$

 Définissons maintenant X comme dans l'équation (4) et montrons qu'elle vérifie l'équation TVAR et la condition de stabilité.

Tout d'abord pour tout $t \in \mathbb{Z}$ on a

$$a(t)X_{t-1} + \sigma(t)\epsilon_t = a(t) \sum_{j=0}^{+\infty} \left(\prod_{i=0}^{j-1} a(t-1-i) \right) \sigma(t-1-j)\epsilon_{t-1-j} + \sigma(t)\epsilon_t$$

$$= \sum_{j=-1}^{+\infty} \left(\prod_{i=-1}^{j-1} a(t-1-i) \right) \sigma(t-1-j)\epsilon_{t-1-j}$$

$$= \sum_{(j\leftarrow j+1)}^{+\infty} \left(\prod_{i=-1}^{j-2} a(t-1-i) \right) \sigma(t-j)\epsilon_{t-j}$$

$$= \sum_{(i\leftarrow i+1)}^{+\infty} \sum_{j=0}^{j-1} \left(\prod_{i=0}^{j-1} a(t-i) \right) \sigma(t-j)\epsilon_{t-j}$$

$$= X_t$$

• Remarquons tout d'abord que (3) prouve que $(c_i)_{i\in\mathbb{N}}\in\ell^2(\mathbb{N})$. On a alors $\forall t\in\mathbb{Z}$

$$\mathbb{E}\left[\left|X_{t}\right|^{2}\right] = \mathbb{E}\left[\left|\lim_{k \to +\infty} \sum_{j=0}^{k} c_{j} \epsilon_{t-j}\right|^{2}\right]$$

$$= \lim_{k \to +\infty} \mathbb{E}\left[\left|\sum_{j=0}^{k} c_{j} \epsilon_{t-j}\right|^{2}\right] \text{ (par continuit\'e de l'esp\'erance)}$$

$$= \lim_{k \to +\infty} \sum_{j=0}^{k} |c_{j}|^{2} \mathbb{E}\left[\left|\epsilon_{t-j}\right|^{2}\right] \text{ (car ϵ est un bruit blanc)}$$

$$= \lim_{k \to +\infty} \sum_{j=0}^{k} |c_{j}|^{2}$$

$$= \sum_{k=0}^{+\infty} |c_{j}|^{2}$$

Ce résultat étant indépendant de t on a bien

$$\sup_{t} \mathbb{E}\left[|X_{t}|^{2}\right] = \sum_{k=0}^{+\infty} |c_{j}|^{2} < +\infty$$

3.3 Contre-exemple avec p=2

On va montrer que la condition obtenue pour le cas p=1 n'est plus suffisante pour p=2. Pour ce contre-exemple, on va considérer le TVAR(2) définit comme ceci :

$$X_{2t} = aX_{2t-1} + \epsilon_{2t}$$
$$X_{2t+1} = b_1X_{2t} + b_2X_{2t-1} + \epsilon_{2t+1}$$

pour t > 0 sinon $X_t = \epsilon_t$.

On a alors:

$$\forall t > 0, X_{2t+1} = (ab_1 + b_2)X_{2t-1} + b_1\epsilon_{2t} + \epsilon_{2t+1} \tag{5}$$

On a alors que le processus $Y_t = X_{2t+1}$ suit l'équation d'un AR(1) dont la condition de stabilité implique :

$$|ab_1 + b_2| < 1(*) \tag{6}$$

D'autre part, le polynôme caractéristique associé est $P(z) = 1 - b_1 z - b_2 z^2$. Posons $P(z) = (1 - bz)^2$. On a alors $b_1 = 2b$ et $b_2 = -b^2$. La condition (*) donne :

$$|2ba - b^2| < 1(*) \tag{7}$$

Avec a = -b, celle-ci devient :

$$3b^2 < 1 \tag{8}$$

Or ceci peut être faux. Il suffit de prendre $b = \frac{1}{\sqrt(2)}$ par exemple.

On a donc trouvé une sous-suite Y_t du processus X_t qui diverge. Donc la condition initiale, à savoir $\sup_t |a_i(t)| < 1$, n'est plus suffisante pour assurer la stabilité d'un TVAR(2).

3.4 Cas général

On introduit une nouvelle définition du modèle TVAR :

Définition 3.1. Soient $p \ge 1$, a_1, \dots, a_p et σ des fonctions définies sur $]-\infty, 1]$ et $(\epsilon_t)_{t \in \mathbb{Z}}$ une suite i.i.d de variables aléatoires avec moyenne nulle et variance unitaire. Pour tout $T \ge 1$ on dit que $(X_{t,T})_{t \le T}$ est un processus TVAR s'il vérifie les deux conditions suivantes

(i)
$$\forall -\infty < t \leq T$$

$$X_{t,T} = \sum_{i=1}^{p} a_i \left(\frac{t}{T}\right) X_{t-i,T} + \sigma \left(\frac{t}{T}\right) \epsilon_t$$
 (TVAR')

(ii)
$$\sup_{-\infty < t \le T} \mathbb{E}\left[\left|X_{t,T}\right|^{2}\right] < +\infty \tag{S'}$$

Proposition 3.5. Supposons que les coefficients a_i de l'équation (TVAR) sont uniformément continus sur $]-\infty,1]$ et que σ est bornée sur $]-\infty,1]$. Supposons de plus qu'il existe $\delta\in]0,1[$ tel que $A(z;u)\neq 0 \ \forall |z|<\delta^{-1},u\in [0,1]$ où

$$A(z; u) = 1 - \sum_{i=1}^{p} a_i(u)z^i$$

Alors il existe $T_0 \ge 1$ tel que $\forall T \ge T_0$ il existe un unique processus $(X_{t,T})_{t \le T}$ vérifiant $(\ref{eq:total_tota$