

Lecture 05: The Z Transform

Outline

1. The Z Transform

2. Inverse Z Transform

1. The Z Transform

- Powerful tool for analyzing & designing DT systems
- Generalization of the DTFT:

$$G(z) = \mathcal{Z}\{g[n]\} = \sum_{n=-\infty}^{\infty} g[n]z^{-n}$$
 Z Transform

- z is complex...
 - $z = e^{j\omega} \rightarrow \mathsf{DTFT}$

$$z = r \cdot e^{j\omega} \rightarrow \sum_{n} g[n] r^{-n} e^{-j\omega n} \quad \frac{DTFT \text{ of }}{r^{-n} \cdot g[n]}$$

Region of Convergence (ROC)

- Critical question:
 - Does summation $G(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$ converge (to a finite value)?
- In general, depends on the value of z
 - \rightarrow Region of Convergence: Portion of complex z-plane for which a particular G(z)will converge

 $\text{Im}\{z\}$

z-plane

ROC Example

- e.g. $x[n] = \lambda^n \mu[n]$ $\Rightarrow X(z) = \sum_{n=0}^{\infty} \lambda^n z^{-n} = \frac{1}{1 \lambda z^{-1}}$
- Σ converges for $|\lambda z^{-1}| < 1$ i.e. ROC is $|z| > |\lambda|$ (see previous slide)
- IλI < 1 (e.g. 0.8) finite energy sequence</p>
- |λ| > 1 (e.g. 1.2) divergent sequence, infinite energy, DTFT does not exist but still has ZT when |z| > 1.2 (in ROC)

About ROCs

- ROCs always defined in terms of |z|
 → circular regions on z-plane (inside circles/outside circles/rings)
- If ROC includes unit circle (|z| = 1),
 → g[n] has a DTFT (finite energy sequence)

Another ROC example

Anticausal (left-sided) sequence: 1

Anticausai (left-sided) sequence.
$$x[n] = -\lambda^n \mu[-n-1] \qquad \begin{array}{c} \frac{-5 - 4 - 3 - 2 - 1}{1 - \lambda^{-1} z} & ROC: \\ = -\sum_{n=-\infty}^{-1} \lambda^n z^{-n} = -\sum_{m=1}^{\infty} \lambda^{-m} z^{\frac{m}{m}} \\ = -\lambda^{-1} z \frac{1}{1 - \lambda^{-1} z} = \frac{1}{1 - \lambda z^{-1}} \end{array}$$

■ Same ZT as $\lambda^n \mu[n]$, different sequence?

ROC is necessary!

To completely define a ZT, you must specify the ROC:

A single G(z) can describe several DTFTs?
 sequences with different ROCs

Rational Z-transforms

• G(z) can be any function; rational polynomials are important class:

$$G(z) = \frac{P(z)}{D(z)} = \frac{p_0 + p_1 z^{-1} + \dots + p_{M-1} z^{-(M-1)} + p_M z^{-M}}{d_0 + d_1 z^{-1} + \dots + d_{N-1} z^{-(N-1)} + d_N z^{-N}}$$

- By convention, expressed in terms of z⁻¹
 - matches ZT definition
- (Reminiscent of LCCDE expression...)

Factored rational ZTs

Numerator, denominator can be factored:

$$G(z) = \frac{p_0 \prod_{\ell=1}^{M} \left(1 - \zeta_{\ell} z^{-1}\right)}{d_0 \prod_{\ell=1}^{N} \left(1 - \lambda_{\ell} z^{-1}\right)} = \frac{z^M p_0 \prod_{\ell=1}^{M} (z - \zeta_{\ell})}{z^N d_0 \prod_{\ell=1}^{N} (z - \lambda_{\ell})}$$

- $\{\zeta_{\ell}\}$ are roots of *numerator* $\rightarrow G(z) = 0 \rightarrow \{\zeta_{\ell}\}$ are the zeros of G(z)
- $\{\lambda_{\ell}\}$ are roots of *denominator* $\rightarrow G(z) = \infty \rightarrow \{\lambda_{\ell}\}$ are the poles of G(z)

Pole-zero diagram

Can plot poles and zeros on complex z-plane:

Z-plane surface

- G(z): cpx function of a cpx variable
 - Can calculate value over entire z-plane

■ Slice between surface and unit cylinder $(|z| = 1 \Rightarrow z = e^{j\omega})$ is $G(e^{j\omega})$, the DTFT

Z-plane and DTFT

Unwrapping the cylindrical slice gives the DTFT:

ZT is Linear

$$G(z) = \mathcal{Z}\{g[n]\} = \sum_{\forall n} g[n]z^{-n}$$
 Z Transform

$$y[n] = \alpha g[n] + \beta h[n]$$

$$\Rightarrow Y(z) = \sum (\alpha g[n] + \beta h[n]) z^{-n}$$

$$= \sum \alpha g[n] z^{-n} + \sum \beta h[n] z^{-n} = \alpha G(z) + \beta H(z)$$

■ Thus, if $y[n] = \alpha_1 \lambda_1^n \mu[n] + \alpha_2 \lambda_2^n \mu[n]$ then $Y(z) = \frac{\alpha_1}{1 - \lambda_1 z^{-1}} + \frac{\alpha_2}{1 - \lambda_2 z^{-1}} |_{|z| > |\lambda_1|, |\lambda_2|}^{ROC:}$

ZT of LCCDEs

LCCDEs have solutions of form:

$$y_c[n] = \alpha_i \lambda_i^n \mu[n] + \dots \qquad \text{(same)}$$
 Hence ZT
$$Y_c(z) = \frac{\alpha_i}{1 - \lambda_i z^{-1}} + \cdots$$

- Each term λ_i^n in g[n] corresponds to a pole λ_i of G(z) ... and vice versa
- LCCDE sol'ns are right-sided \Rightarrow ROCs are $|z| > |\lambda_i|$ outside circles

ROCs and sidedness

- Each ZT pole → region in ROC outside or inside |λ| for R/L sided term in g[n]
 - Overall ROC is intersection of each term's

ROC intersections

• Consider
$$G(z) = \frac{1}{1 - \lambda_1 z^{-1}} + \frac{1}{1 - \lambda_2 z^{-1}}$$

with
$$|\lambda_1| < 1$$
, $|\lambda_2| > 1$... no ROC specified

■ Two possible sequences for λ_1 term...

$$-\lambda_1^n \mu[-n-1]$$
 or $\lambda_1^n \mu[n]$

Similarly, for λ₂ ...

$$-\lambda_2^n \mu[-n-1]$$
 or $\lambda_2^n \mu[n]$

 \rightarrow 4 possible g[n] seq's and ROCs ...

$$G(z) = \frac{1}{1 - \lambda_1 z^{-1}} + \frac{1}{1 - \lambda_2 z^{-1}} \qquad g[n] = \lambda_1^n \mu[n] + \lambda_2^n \mu[n]$$

$$g[n] = \lambda_1^n \mu[n] + \lambda_2^n \mu[n]$$

both right-sided:

ROC: $|z| > |\lambda_1|$ and $|z| > |\lambda_2|$

$$G(z) = \frac{1}{1 - \lambda_1 z^{-1}} + \frac{1}{1 - \lambda_2 z^{-1}}$$

$$G(z) = \frac{1}{1 - \lambda_1 z^{-1}} + \frac{1}{1 - \lambda_2 z^{-1}} \qquad g[n] = -\lambda_1^n \mu[-n-1] - \lambda_2^n \mu[-n-1]$$

ROC: $|z| < |\lambda_1|$ and $|z| < |\lambda_2|$

$$G(z) = \frac{1}{1 - \lambda_1 z^{-1}} + \frac{1}{1 - \lambda_2 z^{-1}} \qquad g[n] = \frac{\lambda_1^n \mu[n] - \frac{\lambda_2^n \mu[-n-1]}{\uparrow}}{1 - \frac{\lambda_2^n \mu[-n-1]}{\uparrow}}$$

$$g[n] = \lambda_1^n \mu[n] - \lambda_2^n \mu[-n-1]$$

two-sided:

ROC: $|z| > |\lambda_1|$ and $|z| < |\lambda_2|$

$$G(z) = \frac{1}{1 - \lambda_1 z^{-1}} + \frac{1}{1 - \lambda_2 z^{-1}}$$

$$g[n] = -\lambda_1^n \mu[-n-1] + \lambda_2^n \mu[n]$$

two-sided:

ROC: $|z| < |\lambda_1|$ and $|z| > |\lambda_2|$?

ROC intersections

Note: Two-sided exponential

$$g[n] = \alpha^{n} \qquad -\infty < n < \infty$$

$$= \alpha^{n} \mu[n] + \alpha^{n} \mu[-n-1]$$

$$ROC \qquad ROC$$

$$|z| > |\alpha| \qquad |z| < |\alpha|$$

 No overlap in ROCs
 → ZT does not exist (does not converge for any z.)

Some common Z transforms

g[n]	G(z)	ROC
$\delta[n]$	1	$\forall z$
$\mu[n]$	$\frac{1}{1-z^{-1}}$	z > 1
$\alpha^n \mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$r^n\cos(\omega_0 n)\mu[n]$	$\frac{1-r\cos(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	$ z > r$ $sum of$ $ z > r re^{j\omega_0 n} + re^{-j\omega_0 n}$
$r^n \sin(\omega_0 n) \mu[n]$	$r\sin(\omega_0)z^{-1}$ $1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}$ poles at $z=re^{\pm j\omega_0}$	z > r "conjugate pole pair"

Z Transform properties

	$g[n] \leftrightarrow$	G(z)	$W/ROC \mathcal{R}g$
Conjugation	$g^*[n]$	$G^*(z^*)$	Rg
Time reversal	<i>g</i> [- <i>n</i>]	G(1/z)	1/Rg
Time shift	$g[n-n_0]$	$z^{-n} {}_0G(z)$	$Rg (0/\infty?)$
Exp. scaling	$\alpha^n g[n]$	$G(z/\alpha)$	$ \alpha \mathcal{R}g$
Diff. wrt z	ng[n]	$-z\frac{dG(z)}{dz}$	$Rg (0/\infty?)$

Z Transform properties

 $g[n] \qquad G(z) \qquad ROC$ Convolution $g[n] \circledast h[n] \qquad G(z)H(z) \qquad \text{at least} \\ \mathcal{R}g \cap \mathcal{R}h$ Modulation $g[n]h[n] \qquad \frac{1}{2\pi j} \oint_C G(v)H\binom{z}{v}v^{-1}dv$ at least

Parseval:
$$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi i} \oint_C G(v)H^*(\frac{1}{v})v^{-1}dv$$

RgRh

ZT Example

• $x[n] = r^n \cos(\omega_0 n) \mu[n]$; can express as

$$\frac{1}{2}\mu[n]\left(\left(re^{j\omega_{0}}\right)^{n} + \left(re^{-j\omega_{0}}\right)^{n}\right) = v[n] + v^{*}[n]$$

$$v[n] = \frac{1}{2}\mu[n]\alpha^{n}; \quad \alpha = re^{j\omega_{0}}$$

$$\rightarrow V(z) = \frac{1}{(2(1 - re^{j\omega_{0}}z^{-1}))}$$

$$\text{ROC: } |z| > r$$

$$= \frac{1}{2}\left(\frac{1}{1 - re^{j\omega_{0}}z^{-1}} + \frac{1}{1 - re^{-j\omega_{0}}z^{-1}}\right)$$

$$= \frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$$

Another ZT example

$$y[n] = (n+1)\alpha^{n}\mu[n]$$

$$= x[n] + nx[n] \quad \text{where } x[n] = \alpha^{n}\mu[n]$$

$$X(z) = \frac{1}{1 - \alpha z^{-1}} \quad \leftrightarrow -z \frac{dX(z)}{dz}$$

$$= -z \frac{d}{dz} \left(\frac{1}{1 - \alpha z^{-1}}\right) = \frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^{2}}$$

$$1 \quad \alpha z^{-1} \quad 1 \quad \text{repeated}$$

$$\Rightarrow Y(z) = \frac{1}{1 - \alpha z^{-1}} + \frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2} = \frac{1}{(1 - \alpha z^{-1})^2} \frac{repeated}{root - IZT}$$

2. Inverse Z Transform (IZT)

Forward z transform was defined as:

$$G(z) = \mathcal{Z}\{g[n]\} = \sum_{n=-\infty}^{\infty} g[n]z^{-n}$$

- 3 approaches to inverting G(z) to g[n]:
 - Generalization of inverse DTFT
 - Power series in z (long division)
 - Manipulate into recognizable pieces (partial fractions)

IZT #1: Generalize IDTFT

• If $z = re^{j\omega}$ then

$$G(z) = G(re^{j\omega}) = \sum g[n]r^{-n}e^{-j\omega n} = \text{DTFT}\{g[n]r^{-n}\}$$

• so $g[n]r^{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(re^{j\omega})e^{j\omega n}d\omega$ idtr

$$z = re^{j\omega} \Rightarrow d\omega = dz/jz$$

$$= \frac{1}{2\pi j} \oint_C G(z) z^{n-1} dz$$

- Any closed contour around origin will do
- Cauchy: $g[n] = \Sigma[\text{residues of } G(z)z^{n-1}]$

IZT #2: Long division

- Since $G(z) = \sum_{n=-\infty}^{\infty} g[n]z^{-n}$ if we could express G(z) as a simple power series $G(z) = a + bz^{-1} + cz^{-2} \dots$ then can just read off $g[n] = \{a, b, c, \dots\}$
- Typically G(z) is right-sided (causal) and a rational polynomial $G(z) = \frac{P(z)}{D(z)}$
- Can expand as power series through long division of polynomials

IZT #2: Long division

Procedure:

- Express numerator, denominator in descending powers of z (for a causal fn)
- Find constant to cancel highest term
 - → first term in result
- Subtract & repeat → lower terms in result
- Just like long division for base-10 numbers

IZT #2: Long division

■ e.g.
$$H(z) = \frac{1+2z^{-1}}{1+0.4z^{-1}-0.12z^{-2}}$$

Result
$$1+0.4z^{-1}-0.12z^{-2}$$

$$1+2z^{-1}$$

$$1+0.4z^{-1}-0.12z^{-2}$$

$$1+2z^{-1}$$

$$1+0.4z^{-1}-0.12z^{-2}$$

$$1-0.4z^{-1}-0.12z^{-2}$$

$$1-0.52z^{-2}+0.192z^{-3}$$

$$-0.52z^{-2}+0.192z^{-3}$$

IZT#3: Partial Fractions

- Basic idea: Rearrange G(z) as sum of terms recognized as simple ZTs
 - especially $\frac{1}{1-\alpha z^{-1}} \leftrightarrow \alpha^n \mu[n]$ or sin/cos forms
- i.e. given products

$$\frac{P(z)}{\left(1-\alpha z^{-1}\right)\left(1-\beta z^{-1}\right)\cdots}$$

rearrange to sums
$$\frac{A}{1-\alpha z^{-1}} + \frac{B}{1-\beta z^{-1}} + \cdots$$

Partial Fractions

Note that:

order 2 polynomial
$$\frac{A}{1-\alpha z^{-1}} + \frac{B}{1-\beta z^{-1}} + \frac{C}{1-\gamma z^{-1}} = u + vz^{-1} + wz^{-2}$$

$$\underline{A(1-\beta z^{-1})(1-\gamma z^{-1}) + B(1-\alpha z^{-1})(1-\gamma z^{-1}) + C(1-\alpha z^{-1})(1-\beta z^{-1})}$$
order 3 polynomial $\rightarrow (1-\alpha z^{-1})(1-\beta z^{-1})(1-\gamma z^{-1})$

Can do the reverse i.e.

go from
$$\frac{P(z)}{\prod_{\ell=1}^{N}(1-\lambda_{\ell}z^{-1})}$$
 to $\sum_{\ell=1}^{N}\frac{\rho_{\ell}}{1-\lambda_{\ell}z^{-1}}$

• if order of P(z) is less than D(z) else cancel w/ long div.

Partial Fractions

Procedure:

$$F(z) = \frac{P(z)}{\prod_{\ell=1}^{N} (1 - \lambda_{\ell} z^{-1})} = \sum_{\ell=1}^{N} \frac{\rho_{\ell}}{1 - \lambda_{\ell} z^{-1}}$$
no repeated
$$\rightarrow f[n] = \sum_{\ell=1}^{N} \rho_{\ell} (\lambda_{\ell})^{n} \mu[n]$$
poles!

order N-1

• where $\rho_{\ell} = (1 - \lambda_{\ell} z^{-1}) F(z) \big|_{z=\lambda_{\ell}}$ i.e. evaluate F(z) at the pole (cancels term in but multiplied by the pole term denominator) \rightarrow dominates = residue of pole

Partial Fractions Example

• Given
$$H(z) = \frac{1+2z^{-1}}{1+0.4z^{-1}-0.12z^{-2}}$$
 (again)

where:

$$\rho_{1} = \left(1 + 0.6z^{-1}\right)H(z)\Big|_{z=-0.6} = \frac{1 + 2z^{-1}}{1 - 0.2z^{-1}}\Big|_{z=-0.6} = -1.75$$

$$\rho_{2} = \frac{1 + 2z^{-1}}{1 + 0.6z^{-1}}\Big|_{z=0.2} = 2.75$$

Partial Fractions Example

■ Hence
$$H(z) = \frac{-1.75}{1 + 0.6z^{-1}} + \frac{2.75}{1 - 0.2z^{-1}}$$

• If we know ROC $|z| > |\alpha|$ i.e. h[n] causal:

$$\Rightarrow h[n] = (-1.75)(-0.6)^{n} \mu[n] + (2.75)(0.2)^{n} \mu[n]$$

$$= -1.75\{ 1 -0.6 0.36 -0.216 ... \}$$

$$+2.75\{ 1 0.2 0.04 0.008 ... \}$$

$$= \{1 1.6 -0.52 0.4 ... \}$$
same as long division!