

Course Title: Communication systems
Date: 26-5-2013

Course Code: EEC2247
Allowed time: 3 hrs

Second Year
No. of Pages: (2)

Answer all the following questions:

Question (1) (10 degrees)

- (1) Find the trigonometric Fourier series for the periodic waveform $g(t) = |\sin(t)|$ shown in Figure (1). ($A=1$)

Figure (1)

- (2) Find the complex Fourier series and the PSD for the periodic delta waveform shown in Figure (2).

Figure (2)

Question (2) (20 degrees)

- (1) The Fourier transform of a signal $g(t)$ is denoted by $G(f)$. Prove the following property of the Fourier transform:

$$\int_{-\infty}^{\infty} g(t) dt \Leftrightarrow \frac{1}{j2\pi f} G(f) + \frac{G(0)}{2} \delta(f)$$

- (2) If $w(t) = \text{rect}(\frac{t}{T})$, Find its Fourier transform, then find $X(f)$ that satisfies the following relationships:

- (a) $x(t) = w(2t + 2)$
- (b) $x(t) = e^{-j2\pi t} w(t - 1)$
- (c) $x(t) = \frac{d}{dt} w(t)$

Question (3) (25 degrees)

- (1) An AM signal is generated by modulating the carrier wave $f_c = 800$ kHz by the signal $m(t) = 5 \cos(4000\pi t)$, the AM signal is given as $s(t) = 100[1 + m(t)]\cos(2\pi f_c t)$, is fed to a 50Ω load:

- a. Determine and sketch the spectrum of the AM signal.
- b. Determine the average power in the carrier and in the sidebands.

- c. What is modulation index?
 - d. What is the peak power delivered to the load?
 - e. Explain one method that can be used to demodulate the AM signal.
- (2) A signal $m(t)=4\cos(1000\pi t)$, is transmitted by DSB-SC modulator by using a carrier $c(t)=10\cos(20000\pi t)$, determine the following:
- The spectrum of the DSB-SC signal.
 - Identify the frequencies in the baseband, and the corresponding frequencies in the USB and LSB spectra.
 - Show, how you can recover the baseband signal from the DSB-SC wave by using the squaring loop receiver.
 - If the noise power spectral density $N_0 = 10^{-3}$ adds during transmission, find the SNR at the output of the receiver.

Question (4) (20 degrees)

- (1) A SSB-AM transmitter is modulated with the baseband signal $m(t) = 2 \cos(400\pi t)$, the carrier signal has $A_c = 2$, and $f_c = 2 \text{ kHz}$.
- Evaluate $\hat{m}(t)$.
 - Find the expression for the upper SSB signal.
 - Sketch the amplitude spectrum of $|S(f)|$.
 - Find the normalized average power of the SSB signal.
- (2) Explain the difference between the single-sideband amplitude modulation and the Vestigial sideband amplitude modulation.

Question (5) (25 degrees)

- (1) An FM transmitter has a block diagram as shown in Figure (3). The audio signals containing frequencies in the range of 20 Hz to 15 kHz band. The FM output signal is to have a carrier frequency of 103.7 MHz and maximum frequency deviation $\Delta f = 75 \text{ kHz}$
- Find the bandwidth and the center frequency required for the bandpass filter.
 - Calculate the frequency f_0 of the oscillator.
 - What is the required peak deviation of the FM exciter?

Figure (3)

- (2) A single-tone FM signal is given by $s(t) = 10\sin[16\pi \times 10^6 t + 20\sin(2\pi \times 10^3 t)] \text{ volts}$. Determine the modulation index, frequency deviation, the carrier power, and calculate the bandwidth of the FM signal using Carson's rule.
- (3) Explain one method used to demodulate the FM wave.

Good Luck

Dr. Entessar Said