

BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics

ARTIFICIAL INTELLIGENCE

Intelligent systems

Rule-based systems – uncertainty

Topics

A. Short introduction in Artificial Intelligence (AI)

A. Solving search problems

- A. Definition of search problems
- B. Search strategies
 - A. Uninformed search strategies
 - B. Informed search strategies
 - c. Local search strategies (Hill Climbing, Simulated Annealing, Tabu Search, Evolutionary algorithms, PSO, ACO)
 - D. Adversarial search strategies

c. Intelligent systems

- A. Rule-based systems in certain environments
- **B.** Rule-based systems in uncertain environments (Bayes, Fuzzy)
- c. Learning systems
 - A. Decision Trees
 - **B.** Artificial Neural Networks
 - c. Support Vector Machines
 - D. Evolutionary algorithms
- D. Hybrid systems

Useful information

- Chapter V of S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- Chapter 3 of Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001

Chapters 8 and 9 of C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011

Content

Intelligent systems

- Knowledge-based systems
 - Rule-based systems in uncertain environments

Intelligent systems

Intelligent systems – knowledge-based systems(KBS)

- Computational systems composed of 2 parts:
 - Knowledge base (KB)
 - Specific information of the domain
 - Inference engine (IE)
 - Rules for generating new information
 - Domain-independent algorithms

Intelligent systems - KBS

Knowledge base

- Content
 - Information (in a given representation) about environment
 - Required information for problem solving
 - Set of propositions that describe the environment

Typology

- Perfect information
 - Classical logic
 - IF A is true THEN A is ¬ false
 - IF B is false THEN B is ¬ true
- Imperfect information
 - Non-exact
 - Incomplete
 - Incommensurable

Intelligent systems - KBS

- Sources of uncertainty
 - Imperfection of rules
 - Doubt of rules
 - Using a vague (imprecise) language
- Modalities to express the uncertainty
 - Probabilities
 - Fuzzy logic
 - Bayes theorem
 - Theory of Dempster-Shafer
- Modalities to represent the uncertainty
 - By using a single value → certainty factors, confidence, truth value
 - How sure we are that the given facts are valid
 - By using more values → logic based on ranges
 - Min → lower limit of uncertainty (confidence, necessity)
 - Max → upper limit of uncertainty (plausibility, possibility)

Intelligent systems - KBS

- Reasoning techniques for uncertainty
 - Teory of Bayes probabilistic method
 - Theory of certainty
 - Theory of possibility (fuzzy logic)

Intelligent systems – KBS – certainty factors

- Bayes systems
 - KBS with probabilistic facts and rules
- Systems based on certainty factors
 - KBS facts and rules have associated a certainty factor (confidence factors)
 - A kind of Bayes systems with the probabilities replaced by certainty factors
- IF A and B then C
- IF C and D then F

SBR classic

- If A and B then C [with prob p₁]
- If C and D then F [with prob p₂]

SBR de tip Bayes

- If A and B then C [CF₁]
- If C and D_[FC2] then F [CF₃]

SBR cu FC

Intelligent systems – KBS – certainty factors

Bayes KBSs vs. KBSs based on CFs

Bayes	CF
Theory of probabilities is old and has a mathematical foundation	Theory of CFs is new and without mathematical demonstrations
Require statistical information	Do not require statistical data
Certainty propagation exponentially increases	Information is quickly and efficiently passed
Require to <i>apriori</i> compute some probabilities	Do not require to <i>apriori</i> compute some probabilities
Hypothesis could be independent or not	Hypothesis are independent

- Elements of probability theory
- Content and design
- Typology
- Tools

Advantages and limits

Amintim componența unui SBC

- □ Baza de cunoştinţe (BC) → Modalităţi de reprezentare a cunoştinţelor
 - Logica formală (limbaje formale)
 - Definiţie
 - Ştiinţa principiilor formale de raţionament
 - Componente
 - Sintaxă
 - Semantică
 - Metodă de inferenţă sintactică
 - Tipologie
 - În funcţie de numărul valorilor de adevăr:
 - logică duală
 - logică polivalentă
 - În funcţie de tipul elementelor de bază:
 - clasică → primitivele = propoziţii (predicate)
 - probabilistică → primitivele = variabile aleatoare
 - În funcţie de obiectul de lucru:
 - logica propoziţională → se lucrează doar cu propoziţii declarative, iar obiectele descrise sunt fixe sau unice (Ionică este student)
 - logica predicatelor de ordin I → se lucrează cu propziții declarative, cu predicate și cuantificări , iar obiectele descrise pot fi unice sau variabile asociate unui obiect unic (Toţi studenţii sunt prezenţi)
 - Reguli
 - Reţele semantice
- Modulul de control (MC pentru inferenţă)

- Teorii ale probabilităţilor
- Concepte de bază
 - Teoria clasică şi teoria modernă
 - Eveniment
 - Probabilitate simplă
 - Probabilitate condiţionată
 - Axiome

- Teorii ale probabilităţilor
 - Teoria clasică (a priori)
 - Propusă de Pascal şi Fermat în 1654
 - Lucrează cu sisteme ideale:
 - toate posibilele evenimente sunt cunoscute
 - toate evenimentele se pot produce cu aceeaşi probabilitate (sunt uniform distribuite)
 - evenimente discrete
 - metode combinatoriale
 - spaţiul rezultatelor posibile este continuu
 - Teoria modernă
 - evenimente continue
 - metode combinatoriale
 - spaţiul rezultatelor posibile este cuantificabil

- Concepte de bază
 - Considerăm un experiment care poate produce mai multe ieşiri (rezultate)
 - Ex. Ev1: Aruncarea unui zar poate produce apariţia uneia din cele 6 feţe ale zarului (deci 6 rezultate)
 - Eveniment
 - Definiţie
 - producerea unui anumit rezultat
 - Ex. Ev2: Apariţia feţei cu nr 3
 - Ex. Ev3: Apariţia unei feţe cu un nr par (2,4,6)
 - Tipologie
 - Evenimente independente şi mutual exclusive
 - Nu se pot produce simultan
 - Ex. Ev4: Apariția feței 1 la aruncarea unui zar și Ev5: Apariția feței 3 la aruncarea unui zar
 - Dependente
 - Producerea unor evenimente afectează producerea altor evenimente
 - Ex. Ev6: Apariţia feţei 6 la prima aruncare a unui zar şi Ev7: Apariţia unor feţe a căror numere însumate să dea 8 la 2 aruncări succesive ale unui zar
 - Mulţimea tuturor rezultatelor = sample space al experimentului
 - Ex. pentru Ev1: (1,2,3,4,5,6)
 - Mulţimea tuturor rezultatelor tuturor evenimentelor posibile = power set (mulţimea părţilor)

- Concepte de bază
 - Probabilitate simplă p(A)
 - probabilitatea producerii unui eveniment A independent de alte evenimente (B)
 - şansa ca acel eveniment să se producă
 - proporția cazurilor de producere a evenimnetului în mulțimea tuturor cazurilor posibile
 - nr cazurileor favorabile / nr cazurilor posibile
 - un număr real în [0,1]
 - 0 imposibilitate absolută
 - 1 posibilitate absolută
 - \square Ex. P(Ev1) = 1/6, P(Ev3) = 3/6
 - Probabilitate condiţionată p(A|B)
 - probabilitatea producerii unui eveniment A dependentă de producerea altor evenimente (B)
 - proporţia cazurilor de producere a evenimnetului A şi a evenimentului B în mulţimea tuturor cazurilor producerii evenimentului B
 - probabilitatea comună /proabilitatea lui B

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

- Concepte de bază
 - Axiome
 - □ $0 \le p(E) \le 1$ pentru orice eveniment E
 - \neg p(Adevărat) = 1, p(Fals) = 0

$$\square \sum p(E_i) = 1$$

- Dacă A şi B sunt independente
 - $P(A \cup B) = p(A) + p(B)$
 - $p(A \cap B) = p(A) * p(B)$
- □ Dacă *A* și *B* nu sunt independente
 - Dacă A depinde de B
 - $p(A \cup B)=p(A) + p(B)-p(A \cap B)$
 - $p(A \cap B) = p(A|B) * p(B)$
 - $p(B \cap A) = p(A \cap B)$
 - $p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$ (b)
 - Dacă A depinde de B_1 , B_2 , ..., B_n (evenimente mutual exclusive)

$$p(A) = \sum_{i=1}^{n} p(A | B_i) p(B_i) \quad (a)$$

Elemente de teoria probabilităților

- Concepte de bază
 - Exemplu
 - □ Dacă A depinde de 2 evenimente mutual exclusive (B şi ¬ B), FC ec.

$$p(A) = \sum_{i=1}^{n} p(A | B_i) p(B_i)$$
 avem:

- p(B) = p(B|A)p(A) + p(B|A)p(A)

$$p(A | B) = \frac{p(B | A)p(A)}{p(B | A)p(A) + p(B | \neg A)p(\neg A)}$$
 (c)

Ecuaţia (c) se foloseşte pentru controlul incertitudinii în sistemele expert

Reamintim ca un SBR are următoarea

Arhitectură

- Baza de cunoştinţe (BC)
 - Informaţiile specifice despre un domeniu
- Modulul de control (MC)
 - Regulile prin care se pot obţine informaţii noi
- Interfața cu utilizatorul
 - permite dialogul cu utilizatorii în timpul sesiunilor de consultare, precum şi accesul acestora la faptele şi cunoştinţele din BC pentru adăugare sau actualizare
- Modulul de îmbogățire a cunoașterii
 - ajută utilizatorul expert să introducă în bază noi cunoștințe
 într-o formă acceptată de sistem sau să actualizeze baza de cunoștințe.
- Modulul explicativ
 - are rolul de a explica utilizatorilor atât cunoștințele de care dispune sistemul, cât și raționamentele sale pentru obținerea soluțiilor în cadrul sesiunilor de consultare. Explicațiile într-un astfel de sistem, atunci când sunt proiectate corespunzător, îmbunătățesc la rândul lor modul în care utilizatorul percepe și acceptă sistemul

Reamintim: SBR - arhitectură

- baza de cunoştinţe
 - Conţinut
 - Informaţiile specifice despre un domeniu sub forma unor
 - fapte afirmaţii corecte
 - reguli euristici speciale care generează informaţii (cunoştinţe)
 - Rol
 - stocarea tuturor elementelor cunoașterii (fapte, reguli, metode de rezolvare, euristici) specifice domeniului de aplicație, preluate de la experții umani sau din alte surse
- modulul de control
 - Conţinut
 - regulile prin care se pot obţine informaţii noi
 - algoritmi independenti de domeniu
 - creierul SBR un algoritm de deducere bazat pe BC şi specific metodei de raţionare
 - un program în care s-a implementat cunoașterea de control, procedurală sau operatorie, cu ajutorul căruia se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de soluții, recomandări sau concluzii.
 - depinde de complexitate şi tipul cunoştinţelor cu care are de-a face
 - Rol
 - cu ajutorul lui se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de soluții, recomandări sau concluzii

Conţinut şi arhitectură

- Ideea de bază
 - SBR (Sisteme expert) în care faptele şi regulile sunt probabilistice
- Dacă A şi B atunci C
- Dacă C şi D atunci F

- Dacă A şi B atunci C [cu probabilitatea p₁]
- Dacă C şi D atunci F [cu probabilitatea p₂]

SBR classic

SBR de tip Bayes

Conținut și arhitectură

- Regulile din BC sunt (în general) de forma:
 - Dacă evenimentul (faptul) I este adevărat, atunci evenimentul (faptul) D este adevărat [cu probabilitatea p]
 - Dacă evenimentul I s-a produs, atunci evenimentul D se va produce cu probabilitatea p
 - □ I ipoteza (aserţiune, concluzie)
 - D dovada (premisa) care susţine ipoteza

$$p(I | D) = \frac{p(D | I)p(I)}{p(D | I)p(I) + p(D | \neg I)p(\neg I)}$$
 (d)

- unde:
 - □ p(I) probabilitatea apriori ca ipoteza I să fie adevărată
 - □ p(D|I) probabilitatea ca ipoteza I fiind adevărată să implice dovada D
 - □ p(¬I) probabilitatea apriori ca ipoteza I să fie falsă
- □ Cum şi cine calculează aceste probabilităţi? → modulul de control

Conţinut şi arhitectură

Cum calculează MC aceste probabilităţi într-un SBR?

$$p(I | D) = \frac{p(D | I)p(I)}{p(D | I)p(I) + p(D | \neg I)p(\neg I)}$$
 (d)

- utilizatorul furnizează informaţii privind dovezile observate
- experţii determină probabilităţile necesare rezolvării problemei
 - Probabilități apriori pentru posibile ipoteze (adevărate sau false) p(I) și p(T)
 - Probabilitățile condiționate pentru observarea dovezii D dacă ipoteza I este adevărată p(D|I), respectiv falsă p(D|I)
- SBR calculează probabilitatea posteriori p(I|D) pentru ipoteza I în condiţiile dovezilor D furnizate de utilizator
- Actualizare de tip Bayes
 - O tehnică de actualizare a probabilității p asociate unei reguli care susține o ipoteză pe baza dovezilor (pro sau contra)
 - Inferență (raţionament) de tip Bayes

Conținut și arhitectură

- Actualizare de tip Bayes
 - O tehnică de actualizare a probabilității p asociate unei reguli care susține o ipoteză pe baza dovezilor (pro sau contra)
 - Actualizarea poate ţine cont de:
 - una sau mai multe (m) ipoteze (exclusive şi exhaustive)
 - una sau mai multe (n) dovezi (exclusive şi exhaustive)
 - Cazuri:
 - Mai multe ipoteze şi o singură dovadă

$$p(I_i | D) = \frac{p(D | I_i)p(I_i)}{\sum_{k=1}^{m} p(D | I_k)p(I_k)}$$

Mai multe ipoteze şi mai multe dovezi

$$p(I_i \mid D_1 D_2 ... D_n) = \frac{p(D_1 D_2 ... D_n \mid I_i) p(I_i)}{\sum_{k=1}^{m} p(D_1 D_2 ... D_n \mid I_k) p(I_k)} = \frac{p(D_1 \mid I_i) p(D_2 \mid I_i) ... p(D_n \mid I_i) p(I_i)}{\sum_{k=1}^{m} p(D_1 D_2 ... D_n \mid I_k) p(I_k)}$$

Conținut și arhitectură

- Exemplu numeric
 - Pp. un SBR în care:
 - utilizatorul
 - furnizează 3 dovezi condiţionate independente D₁, D₂ şi D₃
 - expertul
 - crează 3 ipoteze mutual exclusive şi exhaustive I_1 , I_2 şi I_3 şi stabileşte probabilitățile asociate lor $p(I_1)$, $p(I_2)$ şi $p(I_3)$
 - determină probabilitățile condiționate pentru observarea fiecărei dovezi pentru toate ipotezele posibile

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

Conținut și arhitectură

- Exemplu numeric
 - Presupunem că prima dovadă observată este D₃

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

SE calculează probabilitățile posteriori p(I_i|D₃) pentru toate ipotezele:

$$p(I_1 \mid D_3) = \frac{0.60 \cdot 0.40}{0.60 \cdot 0.40 + 0.70 \cdot 0.35 + 0.90 \cdot 0.25} = 0.34$$

$$p(I_2 \mid D_3) = \frac{0.70 \cdot 0.35}{0.60 \cdot 0.40 + 0.70 \cdot 0.35 + 0.90 \cdot 0.25} = 0.34$$

$$p(I_3 \mid D_3) = \frac{0.90 \cdot 0.25}{0.60 \cdot 0.40 + 0.70 \cdot 0.35 + 0.90 \cdot 0.25} = 0.32$$

- După observarea dovezii D₃

 - □ încrederea în ipoteza I₃ crește

Conținut și arhitectură

- Exemplu numeric
 - Presupunem că a doua dovadă observată este D₁

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

28

 SE calculează probabilitățile posteriori p(I_i|D₁D₃) pentru toate ipotezele:

$$p(I_1 \mid D_1 D_3) = \frac{0.30 \cdot 0.60 \cdot 0.40}{0.30 \cdot 0.60 \cdot 0.40 + 0.80 \cdot 0.70 \cdot 0.35 + 0.50 \cdot 0.90 \cdot 0.25} = 0.19$$

$$p(I_2 \mid D_1D_3) = \frac{0.80 \cdot 0.70 \cdot 0.35}{0.30 \cdot 0.60 \cdot 0.40 + 0.80 \cdot 0.70 \cdot 0.35 + 0.50 \cdot 0.90 \cdot 0.25} = 0.52$$

$$p(I_3 \mid D_1D_3) = \frac{0.50 \cdot 0.90 \cdot 0.25}{0.30 \cdot 0.60 \cdot 0.40 + 0.80 \cdot 0.70 \cdot 0.35 + 0.50 \cdot 0.90 \cdot 0.25} = 0.29$$

- După observarea dovezii D₁
 - □ încrederea în ipoteza I₁ scade
 - □ încrederea în ipoteza I₂ creşte (fiind cea mai probabilă de a fi adevărată)
 - □ încrederea în ipoteza I₃ creşte

Conţinut şi arhitectură

- Exemplu numeric
 - Presupunem că ultima dovadă observată este D₂

probabilitatea	Ipotezele		
	i = 1	i = 2	i = 3
$p(I_i)$	0.40	0.35	0.25
$p(D_1 I_i)$	0.30	0.80	0.50
$p(D_2 I_i)$	0.90	0.00	0.70
$p(D_3 I_i)$	0.60	0.70	0.90

Se calculează probabilităţile posteriori p(1, μ₂ν₁ν₃) pentru toate ipotezele:

$$p(I_1 \mid D_2 D_1 D_3) = \frac{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40}{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40 + 0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35 + 0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25} = 0.45$$

$$p(I_2 \mid D_2 D_1 D_3) = \frac{0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35}{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40 + 0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35 + 0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25} = 0.00$$

$$p(I_3 \mid D_2 D_1 D_3) = \frac{0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25}{0.90 \cdot 0.30 \cdot 0.60 \cdot 0.40 + 0.00 \cdot 0.80 \cdot 0.70 \cdot 0.35 + 0.70 \cdot 0.50 \cdot 0.90 \cdot 0.25} = 0.55$$

- După observarea dovezii D₂
 - □ încrederea în ipoteza I₁ creşte
 - □ încrederea în ipoteza I₂ e nulă (ipoteza e falsă)
 - □ Încrederea în ipoteza I₃ creşte

Conţinut şi arhitectură

- Exemplu practic
 - Presupunem cazul unei maşini care nu porneşte când este accelerată, dar scoate fum
 - Dacă scoate fum, atunci acceleraţia este defectă [cu probabilitatea 0.7]
 - $P(I_1|D_1) = 0.7$
 - Pe baza unor observări statistice, experţii au constatat:
 - următoarea regulă:
 - Dacă accelerația este defectă, atunci mașina scoate fum [cu probabilitatea 0.85]
 - probabilitatea ca maşina să pornească din cauză că acceleraţia este defectă = 0.05 (probabilitate apriori)
 - deci avem
 - 2 ipoteze:
 - I₁: acceleraţia este defectă
 - I₂: acceleraţia nu este defectă
 - o dovadă
 - D₁: maşina scoate fum

	$\mathbf{I_i}$	$\mathbf{I_2}$
$p(I_i)$	0.05	1-0.05=0.95
$P(D_1 I_i)$	0.85	1-0.85=0.15

- probabilitatea că accelerația este defectă dacă maşina scoate fum
 - $P(I_1|D_1)=p(D_1|I_1)*p(I_1)/(p(D_1|I_1)*p(I_1)+p(D_1|I_2)*p(I_2))$
 - $P(I_1|D_1)=0.23 < 0.7$

Tipologie

- Sisteme simple de tip Bayes
 - Consecințele unei ipoteze nu sunt corelate
- Reţele de tip Bayes
 - Consecințele unei ipoteze pot fi corelate
- De exemplu, reţinem informaţii despre vârsta (V), educaţia (E), câştigurile (C) şi preferinţa pentru teatru (T) ale unor persoane

Sistem Bayes simplu (naiv)

Rețea Bayes simplu

- □ Tool-uri
 - MSBNx view
 - JavaBayes view
 - BNJ view

- Avantaje ale inferenței de tip Bayes
 - Tehnică bazată pe teoreme statistice
 - Probabilitatea dovezilor (simptomelor) în ipotezele (cauzele) date sunt posibil de furnizat
 - Probabilitatea unei ipoteze se poate modifica datorită uneia sau mai multor dovezi

- Dezavantaje ale inferenței de tip Bayes
 - Trebuie cunoscute (sau ghicite) probabilităţile apriori ale unor ipoteze

Intelligent systems – KBS

- Tehnici de raţionare în medii nesigure
 - Teoria Bayesiana metodă probabilistică
 - Teoria certitudinii
 - Teoria posibilităţii (logica fuzzy)

Intelligent systems – KBS – certainty factors

- Conţinut şi arhitectură
- Tipologie
- □ Tool-uri

Avantaje şi dezavantaje

Intelligent systems – KBS – certainty factors

Conţinut şi arhitectură

- Ideea de bază
 - SBR (sisteme expert) în care faptele şi regulile au asociate câte un factor de certitudine (FC)/coeficienţ de încredere
 - Un fel de sisteme de tip Bayes în care probabilitățile sunt înlocuite cu factori de certitudine
- Dacă A şi B atunci C
- Dacă A şi B atunci C [cu prob p₁]
- Dacă C şi D atunci F
- Dacă C şi D atunci F [cu prob p₂]

- □ FC măsoară încrederea acordată unor fapte sau reguli
- Utilizarea FC → alternativă la actualizarea de tip Bayes
- □ FC pot fi aplicaţi
 - faptelor
 - regulilor (concluziei/concluzilor unei reguli)
 - fapte + reguli
- Într-un SBR (sistem expert) cu factori de certitudine
 - regulile sunt de forma:
 - dacă dovada atunci ipoteza [FC]
 - dacă dovada_[FC] atunci ipoteza
 - dacă dovada_[FC] atunci ipoteza [FC]
 - ipotezele susţinute de probe sunt independente

- □ FC mod de calcul
 - Măsura încrederii (measure of belief MB)

sura încrederii (measure of belief – MB)

măsura creșterii încrederii în ipoteza I pe baza dovezii D

$$MB(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 1 \\ \frac{p(I \mid D) - p(I)}{1 - p(I)} & \text{dacă } p(I) < 1 \end{cases}$$

- Măsura neîncrederii (measure of disbelief MD)
 - măsura creșterii neîncrederii în ipoteza I pe baza dovezii D $MD(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 0 \\ \frac{p(I) p(I \mid D)}{p(I)} & \text{dacă } p(I) > 0 \end{cases}$
- Pentru evitarea valorilor negative ale MB și MD:

$$MB(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 1 \\ \frac{\max\{p(I \mid D), p(I)\} - p(I)}{1 - p(I)} & \text{dacă } p(I) < 1 \end{cases} \qquad MD(I,D) = \begin{cases} 1, & \text{dacă } p(I) = 0 \\ \frac{\min\{p(I \mid D), p(I)\} - p(I)}{0 - p(I)} & \text{dacă } p(I) > 0 \end{cases}$$

- FC încrederea în ipoteza I dată fiind dovada D
 - Număr din [-1,1]
 - FC=-1 dacă se știe că ipoteza I este falsă
 - □ FC=0 dacă nu se știe nimic despre ipoteza I
 - FC=1 dacă se știe că ipoteza I este adevărată

$$FC(I,D) = \frac{MB(I,D) - MD(I,D)}{1 - \min\{MB(I,D), MD(I,D)\}}$$

- FC mod de calcul
 - încrederea în ipoteza I dată fiind dovada D
 - FC=-1 dacă se ştie că ipoteza este falsă
 - FC=0 dacă nu se ştie nimic despre ipoteză
 - FC=1 dacă se ştie că ipoteza este adevărată

- FC mod de calcul
 - încrederea în ipoteza I dată fiind dovada D
 - ipoteza I poate fi:
 - simplă (ex. Dacă D atunci I)
 - compusă (ex. *Dacă D atunci I_1 și I_2 și ... I_n*)
 - dovada D poate fi
 - dpdv al compoziţiei:
 - simplă (ex. Dacă D atunci I)
 - compusă (ex. Dacă D1 şi D2 şi ... Dn atunci I)
 - dpdv al incertitudinii (încrederii în dovadă):
 - sigură (ex. Dacă D atunci I)
 - nesigură (ex. Dacă D[FC] atunci I)

- FC mod de calcul pentru combinarea încrederii
 - o dovadă incertă care susţine sigur o ipoteză
 - mai multe dovezi incerte care susţin sigur o singură ipoteză
 - o dovadă incertă care susţine incert o ipoteză
 - mai multe dovezi incerte care susţin incert o ipoteză

Conținut și arhitectură

- □ FC mod de calcul pentru combinarea încrederii
 - O dovadă incertă care susţine sigur o ipoteză

$$FC(I) = \begin{cases} FC(D), & \text{dacă } FC(D) > 0 \\ 0, & \text{altfel} \end{cases}$$

- Exemplul 1
- \square R₁: Dacă A_[FC=0.9] atunci B
- R₂: Dacă B atunci C
- FC(B)=FC(A)=0.9
- \Box FC(C)=FC(B)=0.9

Exemplul 2

 \square R₁: Dacă E_[FC=-0,2] atunci F

FC(E este adevărat) = -0.2 → dovadă negativă → nu putem spune nimic despre faptul că E este adevărat → nu se poate spune nimic despre F

- FC mod de calcul pentru combinarea încrederii
 - Mai multe dovezi incerte care susţin sigur o singură ipoteză
 - Dovezi (probe) adunate incremental
 - Mai multe reguli care, pe baza unor dovezi diferite, furnizează aceeaşi concluzi
 - Aceeaşi ipoteză (valoare de atribut) I este obţinută pe două căi de deducţie distincte, cu două perechi diferite de valori pentru FC, $FC[I,D_1]$ si $FC[I,D_2]$
 - Cele doua cai de deductie distincte, corespunzatoare dovezilor (probelor) D₁ şi D₂ pot fi:
 - ramuri diferite ale arborelui de cautare generat prin aplicarea regulilor
 - $FC(I,D_1 \wedge D_2) = \begin{cases} \text{Indicate explicit sistemului} \\ CF(D_1) + CF(D_2)(1 CF(D_1), & \text{dacă } CF(D_1), CF(D_2) > 0 \\ CF(D_1) + CF(D_2)(1 + CF(D_1), & \text{dacă } CF(D_1), CF(D_2) < 0 \\ \frac{CF(D_1) + CF(D_2)}{1 \min\{|CF(D_1|, |CF(D_2)|\}}, & \text{dacă } sign(CF(D_1)) \neq sign(CF(D_2)) \end{cases}$
 - Exemplu
 - R₁: Dacă D_{1 [FC=0.6]} atunci I
 - R₂: Dacă D_{2[FC=-0.3]} atunci I
 - FC(I,D₁ \wedge D₂)=(0.6+(-0.3))/(1-0.3)=0.42

Conținut și arhitectură

- □ FC mod de calcul pentru combinarea încrederii
 - O dovadă incertă care susţine incert o ipoteză

$$FC(I) = \begin{cases} FC(D) * FC(regulă), & \text{dacă } FC(D) > 0 \\ 0, & \text{altfel} \end{cases}$$

- Exemplul 1
- \square R₁: Dacă A_[FC=0.9] atunci B [FC=0.4]
- □ R₂: Dacă B atunci C [FC=0.3]
- \Box FC(B)=FC(A)*FC(R₁)=0.9*0.4=0.36
- $^{\Box}$ FC(C)=FC(B)*FC(R₂)=0.36*0.3=0.108
- Exemplul 2
 - \square R₁: Dacă E_[FC=-0.2] atunci F [FC=0.6]

FC(E este adevărat) = -0.2 → dovadă negativă → nu putem spune nimic despre faptul că E este adevărat → nu se poate spune nimic despre F

Conţinut şi arhitectură

- FC mod de calcul pentru combinarea încrederii
 - Mai multe dovezi incerte care susţin incert o ipoteză
 - Dovezile sunt legate prin ŞI logic

$$CF(I) = \begin{cases} \min\{CF(D_1), CF(D_2), ..., CF(D_n), \} * CF(regulă), & dacă CF(D_i) > 0, i = 1, 2, ..., n \\ 0, & \text{altfel} \end{cases}$$

- Una sau mai multe dintre dovezile incerte care susţin incert o ipoteză
 - Dovezile sunt legate prin SAU logic

$$CF(I) = \begin{cases} \max\{CF(D_1), CF(D_2), ..., CF(D_n), \} * CF(regul\check{a}), & dac\check{a} \ CF(D_i) > 0, i = 1, 2, ..., n \\ 0, & altfel \end{cases}$$

- Exemplul 1
 - R_1 : Dacă $D_{1[FC = 0.8]}$ și $D_{2[FC = 0.7]}$ și $D_{3[FC = 0.5]}$ și

$$D_{4[FC = 0.3]}$$
 şi $D_{5[FC = 0.9]}$ atunci $I[FC = 0.65]$

FC(I) = 0.3 * 0.65 = 0.195

- FC mod de calcul pentru combinarea încrederii
 - Mai multe dovezi incerte care susţin incert o ipoteză
 - Dovezile sunt legate prin ŞI logic

$$CF(I) = \begin{cases} \min\{CF(D_1), CF(D_2), ..., CF(D_n), \} * CF(regulă), & dacă CF(D_i) > 0, i = 1, 2, ..., n \\ 0, & \text{altfel} \end{cases}$$

- Una sau mai multe dintre dovezile incerte susţin incert o ipoteză
 - Dovezile sunt legate prin SAU logic

$$CF(I) = \begin{cases} \max\{CF(D_1), CF(D_2), ..., CF(D_n), \} * CF(regul\breve{a}), & dac\breve{a} \ CF(D_i) > 0, i = 1, 2, ..., n \\ 0, & altfel \end{cases}$$

- Exemplul 2
 - R_1 : Dacă $D_{1[FC = 0.8]}$ sau $D_{2[FC = 0.7]}$ sau

$$D_{3[FC=0.5]}$$
 sau $D_{4[FC=0.3]}$ sau $D_{5[FC=0.9]}$ atunci I [FC = 0.65]

$$FC(I) = 0.9 * 0.65 = 0.585$$

Exemplu

- Sistem expert pentru diagnosticarea unei răceli
 - Fapte în baza de date:
 - Febra pacientului 37.4
 - Pacientul tuşeşte de mai puţin de 24 ore
 - Pacientul nu are expectoraţii
 - Pacientul are o durere de cap cu FC = 0.4
 - Pacientul are nasul înfundat cu FC = 0.5

Reguli:

- □ R₁: Dacă *A: febra < 37.5* atunci
- B: simptomele de răceală sunt prezente [FC=0.5]
- R₂: Dacă C: febra > 37.5 atunci
- B: simptomele de răceală sunt prezente [FC=0.9]
- □ R₃: Dacă *D: tuşeşte > 24 ore* atunci
- E: durerea de gât e prezentă [FC=0.5]
- □ R₄: Dacă *F: tuşeşte > 48 ore* atunci
- E: durerea de gât e prezentă [FC=1.0]
- R₅: Dacă B: are simptome de răceală şi
- G: nu expectorează atunci H: a răcit [FC=-0.2]
- R₆: Dacă *E: îl doare gâtul* atunci
- H: a răcit [FC=0.5]
- R₇: Dacă I: îl doare capul şi
- J: are nasul înfundat atunci H: a răcit [FC=0.7]

Concluzia:

Pacientul este sau nu răcit?

Exemplu

- Sistem expert pentru diagnosticarea unei răceli
 - Fapte în baza de date:
 - Febra pacientului 37.4
 - Pacientul tuşeşte de mai puţin de 24 ore
 - Pacientul nu are expectoraţii
 - Pacientul are o durere de cap cu FC = 0.4
 - Pacientul are nasul înfundat cu FC = 0.5
 - Reguli:
 - □ R₁: Dacă A: febra < 37.5 atunci</p>
 - B: simptomele de răceală sunt prezente [FC=0.5]
 - R₂: Dacă C: febra > 37.5 atunci
 - B: simptomele de răceală sunt prezente [FC=0.9 C=-1
 - R₃: Dacă *D: tuşeşte > 24 ore* atunci
 - E: durerea de gât e prezentă [FC=0.5]
 - R₄: Dacă *F: tuşeşte > 48 ore* atunci
 - E: durerea de gât e prezentă [FC=1.0]
 - □ R₅: Dacă *B: are simptome de răceală* și
 - G: nu expectorează atunci H: a răcit [FC=-0.2]
 - R₆: Dacă *E: îl doare gâtul* atunci
 - H: a răcit [FC=0.5]
 - R₇: Dacă *I: îl doare capul* şi
 - J: are nasul înfundat atunci H: a răcit [FC=0.7]

Artificial Intelligence = RBS

- Concluzia:
 - Pacientul este sau nu răcit?

G FC=1FC = 0.5Α В FC=0.9FC=1*0.5=0.5 FC = -0.2 $FC=0.2*min{0.5,1}$ FC=-0. FC = 0.5FC=-1 FC=1.0 $FC=0.7*min\{0.4, 0.5\}$ FC = -1FC = 0.28FC = 0.7FC=0.4

 $FC=(-0.1+0.28)/(1-min\{|-0.1|,|0.28|\})$

FC = 0.2

Avantaje

Nu este necesar calculul apriori a probabilităţilor

Limite

ipotezele sustinute de probe sunt independente.

exemplu:

- Fie următoarele fapte:
 - A: Aspersorul a funcționat noaptea trecută
 - U: Iarba este udă dimineaţă
 - P: Noaptea trecută a plouat.

și următoarele două reguli care leagă între ele aceste fapte:

- R_1 : dacă aspersorul a funcționat noaptea trecută atunci există o încredere puternică (0.9) că iarba este udă dimineața
- R₂: dacă iarba este udă dimineaţa atunci există o încredere puternică (0.8) că noaptea trecută a plouat

Deci:

- FC[U,A] = 0.9 deci proba aspersor sustine iarba uda cu 0.9
- FC[P,U] = 0.8 deci iarba uda sustine ploaie cu 0.8
- FC[P,A] = 0.8 * 0.9 = 0.72 deci aspersorul sustine ploaia cu 0.72

□ SBR de tip Bayes vs. SBR cu FC

Bayes	FC	
Teorie probabilităților este veche și fundamentată matematic	Teoria FC este nouă și fără demostrții matematice	
Necesită existența unor informații statistice	Nu necesită existența unor date statistice	
Propagarea încrederii crește în timp exponențial	Informația circulă repede și eficient în SBR	

Intelligent systems - KBS

- Reasoning techniques for uncertainty
 - Teory of Bayes probabilistic method
 - Theory of certainty
 - Theory of possibility (fuzzy logic)

- Theory of possibility
- Content and design
- Typology
- Tools

Advantages and limits

Teoria posibilității (logica fuzzy)

- Why fuzzy?
 - Problem: translate in C++ code the following sentences:
 - Georgel is tall.
 - It is cold outside.
- When fuzzy is important?
 - Natural queries
 - Knowledge representation for a KBS
 - Fuzzy control then we dead by imprecise phenomena (noisy phenomena)

Remember the components of a KBS

- □ Knowledge base → knowledge representation
 - Formal logic (formal languages)
 - Definition
 - Science of formal principles for rationing
 - Components
 - Syntax atomic symbols used by language and the constructing rules of the language
 - Semantic associates a meaning to each symbol and a truth value (true or false) to each rule
 - Syntactic inference rules for identifying a subset of logic expressions → theorems (for generating new expressions)
 - Typology
 - True value
 - Dual logic
 - Polyvalent logic
 - Basic elements
 - Classic → primitives = sentences (predicates)
 - Probabilistic → primitives = random variables
 - Working manner
 - Propositional logic → declarative propositions and fix or unique objects (Ionica is student)
 - First-order logic → declarative propositions, predicates and quantified variables, unique objects or variables associated to a unique object
 - Rules
 - Semantic nets
- Inference engine

Theory of possibility – a little bit of history

- Parminedes (400 B.C.)
- Aristotle
 - "Law of the Excluded Middle" every sentence must be True or False
- Plato
 - A third region, between True and False
 - Forms the basis of fuzzy logic
- Lukasiewicz (1900)
 - Has proposed an alternative and sistematic approach related to bi-valent logic of Aristotle – trivalent logic: true, false or possible
- Lotfi A. Zadeh (1965)
 - Mathematical description of fuzzy set theory and fuzzy logic: truth functions takes values in [0,1] (instead of {True, False})
 - He as proposed new operations in fuzzy logic
 - He has considered the fuzzy logic as a generalisation of the classic logic
 - He has written the first paper about fuzzy sets

Theory of possibility

- Fuzzy logic
 - Generalisation of Boolean logic
 - Deals by the concept of partial truth
 - Classical logic all things are expressed by binary elements
 - 0 or 1, white or black, yes or no
 - Fuzzy logic gradual expression of a truth
 - Values between 0 and 1

Logic vs. algebra

- Logical operators are expressed by using mathematical terms (George Boole)
 - □ Conjunction = minimum \rightarrow a \land b = min (a, b)
 - □ Disjunction = maximum \rightarrow a \vee b = max (a, b)
 - □ Negation = difference → ¬a = 1- a

Remember: KBS - design

- Knowledge base
 - Content
 - Specific information
 - Facts correct affirmations
 - Rules special heuristics that generate knowledge
 - Aim
 - Store all the information (facts, rules, solving methods, heuristics) about a given domain (taken from some experts)

Inference engine

- Content
 - Rules for generating new information
 - Domain-independent algorithms
 - Brain of a KBS
- Aim
 - Help to explore the KB by reasoning for obtaining solutions, recommendations or conclusions

Content and design

- Main idea
 - Cf. to certainty theory:
 - Popescu is tall
 - Cf. to uncertainty theory
 - Cf. to probability theory
 - There is 80% chance that Popescu is young
 - Cf. fuzzy logic
 - Cf. teoriei informaţiilor certe
 - Popescu este tânăr
 - Cf. teoriei informaţiilor incerte
 - Cf. teoriei probabilităților:
 - Există 80% şanse ca Popescu să fie tânăr
 - Cf. logicii fuzzy:
 - Popescu's degree of membership to the group of young people is 0.80
- Necessity
 - Real phenomena involve fuzzy sets
 - Example
 - The room's temperature can be:
 - low,
 - Medium or
 - high
 - These sets of possible temperatures can overlap
 - A temperature can belong to more classes (groups) depends on the person that evaluates that temperature

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

59

April 2017 Artificial Intelligence - RBS

- Elements from probability theory (fuzzy logic)
 - Fuzzy facts (fuzzy sets)
 - Definition
 - Representation
 - Operations complements, containment, intersection, reunion, equality, algebraic product, algebraic sum
 - Properties associativity, commutativity, distributivity, transitivity, idempotency, identity, involution
 - Hedges
 - Fuzzy variables
 - Definition
 - Properties
 - Establish the fuzzy variables and the fuzzy sets based on membership functions

Content and design → fuzzification of input data

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → definition
 - Set definition 2 possibilities:
 - By enumeration of elements
 - Ex. Set of students = {Ana, Maria, Ioana}
 - By specifying a property of elements
 - Ex. Set of even numbers = $\{x \mid x = 2n, where n = 2k\}$
 - Characteristic function μ for a set
 - Let X a universal set and x an element of this set (xeX)
 - Classical logic
 - Let R a sub-set of X: R⊂X, R regular set
 - Every element x belong to set R
 - $\mu_R: X \to \{0, 1\}, \text{ where } \mu_R(x) = \begin{cases} 1, & x \in R \\ 0, & x \notin R \end{cases}$
 - Fuzzy logic
 - Let F a sub-set of X (a univers) : F⊂X, F fuzzy set
 - Every elemt x belongs to F by a given degree of membership $\mu_{E}(x)$
 - $\mu_F: X \rightarrow [0, 1], \mu_F(x) = g, \text{ where } g \in [0, 1] \text{membership degree of } x \text{ to } F$
 - $g = 0 \rightarrow \text{not-belong}$
 - g = 1 \rightarrow belong

$$\mu_F(x) = \begin{cases} 1, & \text{if } x \text{ is totaly in } F \\ 0, & \text{if } x \text{ is not in } F \\ \in (0,1) & \text{if } x \text{ is part of } F(x \text{ is a fuzzy number}) \end{cases}$$

A fuzzy set = a pair (F, μ_F), where

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → **definition**
 - Example 1
 - X -set of natural numbers < 11</p>
 - R set of natural numbers < 7</p>
 - F set of natural numbers that are neighbours of 6

x	μ _R (x)	μ _F (x)
0	1	0
1	1	0.1
2	1	0.25
3	1	0.5
4	1	0.6
5	1	0.8
6	1	1
7	0	0.8
8	0	0.6
9	0	0.5
10	0	0.25

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → **definition**
 - Example 2
 - A temperature t can have 3 truth values:
 - Red (0): is not hot
 - Orange (0.3): warm
 - Blue (0.7): cold

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → representation
 - Regular sets
 - □ Exact limits → Venn diagrams
 - Fuzzy sets
 - □ Gradual limits → representations based on membership functions
 - Singular
 - $\mu(x) = s$, where s is a scalar
 - Triangular $\mu(x) = \max \left\{ 0, \min \left\{ \frac{x-a}{b-a}, 1, \frac{c-x}{c-b} \right\} \right\}$
 - Trapezoidal $\mu(x) = S(x) = \max \left\{ 0, \min \left\{ \frac{x-a}{b-a}, 1, \frac{d-x}{d-c} \right\} \right\}$
 - Z function
 - $\mu(x) = 1 S(x)$
 - In function $\mu(x) = \Pi(x) = \begin{cases} S(x), & \text{if } x \le c \\ Z(x), & \text{if } x > c \end{cases}$

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → representation
 - Example
 - Age of a person

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations
 - complement
 - Containment
 - Intersection
 - Union
 - Equality
 - Algebraic product
 - Algebraic sum

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations
 - Complement
 - X a universe
 - A a fuzzy set (with universe X)
 - B a fuzzy set (with universe X)
 - B is complement of A (B= 7 A) if:
 - $\mu_B(x) = \mu_{A}(x) = 1 \mu_A(x)$ for all $x \in X$

- Old persons (based on their age)
 - A={(30,0), (40, 0.2), (50, 0.4), (60, 0.6), (70, 0.8), (80, 1)}
- Young persons (that are not old) (based on their age)
 - A={(30,1), (40, 0.8), (50, 0.6), (60, 0.4), (70, 0.2), (80, 0)} 0.2

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations
 - Containment
 - X a universe
 - A a fuzzy set (with universe X)
 - B a fuzzy set (with universe X)
 - B is a subset of A (B⊂A) if:
 - $\mu_B(x) \le \mu_A(x)$ for all $x \in X$

- Old persons (based on their age)
 - A={(60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- Very old persons (based on their age)
 - B={(60, 0.6), (65, 0.67) (70, 0.8), (75, 0.8), (80, 0.95)}

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations

intersection

- X a universe
- A a fuzzy set (with universe X)
- B a fuzzy set (with universe X)
- C a fuzzy set (with universe X)
- C is an intersection of A and B if:
 - $\mu_{C}(x) = \mu_{A\cap B}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\} = \mu_{A}(x) \cap \mu_{B}(x) \text{ for all } x \in X$

Example

- Old persons (based on their age)
 - A={(30,0) (40, 0.1) (50, 0.2) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- Middle-age persons
 - $B=\{(30,0.1) (40,0.2) (50,0.6) (60,0.5), (65,0.2) (70,0.1), (75,0), (80,0)\}$
- Old and middle age persons
 - C={(30,0) (40, 0.1) (50, 0.2) (60, 0.5), (65, 0.2) (70, 0.1), (75, 0), (80, 0)}

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations

union

- X a universe
- □ A a fuzzy set (with universe X)
- B a fuzzy set (with universe X)
- C a fuzzy set (with universe X)
- C is the union of A nad B if:
 - $\mu_{C}(x) = \mu_{A \cup B}(x) = \max\{\mu_{A}(x), \mu_{B}(x)\} = \mu_{A}(x) \cup \mu_{B}(x) \text{ for all } x \in X$

Example

- Old persons (based on their age)
 - A={(30,0) (40, 0.1) (50, 0.2) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- Middle-age persons
 - $B=\{(30,0.1) (40,0.2) (50,0.6) (60,0.5), (65,0.2) (70,0.1), (75,0), (80,0)\}$
- Old or middle-age persons
 - C={(30,0.1) (40, 0.2) (50, 0.6) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}

Union of A and B

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts

(fuzzy sets) → **operations**

Equality, product and algebraic sum

- A a fuzzy set (with universe X)
- B a fuzzy set (with universe X)
- C a fuzzy set (with universe X)

•
$$\mu_B(x) = \mu_A(x)$$
 for all $x \in X$

- C is the product of A and B (C=A*B) if:
 - μ C(x)= μ A*B(x)= μ A(x)* μ B(x) for all x∈X
- C is the sum of A and B (C=A+B) if:
 - μ C(x)= μ A+B(x)= μ A(x)+ μ B(x) for all x∈X

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → properties
 - Asociativity
 - Commutativity
 - Distributivity
 - Transitivity
 - Idem potency
 - Identity
 - Involution

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → hedges

Main idea

- Modifiers, adjectives or adverbs that change the truth values of sentences
 - Ex. Very, less, much, more, close, etc.
- Change the shape of fuzzy sets
- Can act on
 - Fuzzy numbers
 - Truth values
 - Membership functions
- Heuristics

Utility

- □ Closer to the natural language → subjectivism
- Evaluation of linguistic variables

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → **hedges**

- Typology
 - Hedges that reduce the truth value (produce a concentration)
 - Very $\mu_{A_{-very}}(x) = (\mu_{A}(x))^{2}$
 - Extremly μ_A extremly $(x) = (\mu_A(x))^3$
 - Very very μ_A very very $(x) = (\mu_A$ foarte $(x))^2 = (\mu_A(x))^4$
 - Hedges that increase the truth value (produce a dilatation)
 - Somewhat $\mu_{A_somewhat}(x) = (\mu A(x))^{1/2}$
 - slightly $\mu_{A_slightly}(x) = (\mu A(x))^{1/3}$
 - Hedges cthat intensify the truth value
 - indeed $\mu_{A_indeed}(x) = \begin{cases} 2(\mu_A(x))^2, & \text{if } 0 \le \mu_A(x) \le 0.5 \\ 1 2(1 \mu_A(x))^2, & \text{if } 0.5 \le \mu_A(x) \le 1 \end{cases}$

Content and design → fuzzification of input data

- Elements from probability theory (fuzzy logic)
 - Fuzzy facts (fuzzy sets)
 - Definition
 - Representation
 - Operations complements, containment, intersection, reunion, equality, algebraic product, algebraic sum
 - Properties associativity, commutativity, distributivity, transitivity, idempotency, identity, involution
 - Hedges

Fuzzy variables

- Definition
- Properties
- Establish the fuzzy variables and the fuzzy sets based on membership functions

Content and design → fuzzification of input data

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → definition
 - A fuzzy variable is defined by $V = \{x, l, u, m\}$, where:
 - x name of symbolic variable
 - L set of possible labels for variable x
 - U universe of the variable
 - M semantic regions that define the meaning of labels from L (membership functions)

Membership functions

- Subjective assessment
 - The shape of functions is defined by experts
- Ad-hoc assessment
 - Simple functions that can solve the problem
- Assessment based on distributions and probabilities of information extracted from measurements
- Adapted assessment
 - By testing
- Automated assessment
 - Algorithms utilised for defining functions based on some training data

Example

- X = Temperature
- L = {low, medium, high}
- $U = \{x \in X \mid -70^{\circ} \le x \le +70^{\circ}\}$
- □ M =

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → properties
 - Completeness
 - □ A fuzzy variable V is complete if for all $x \in X$ there is a fuzzy set A such as $\mu_{A}(x) > 0$

Content and design → fuzzification of input data

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → properties
 - Unit partition
 - A fuzzy variable V forms a unit partition if for all input values x we have $\sum_{i=1}^{p} \mu_{A_i}(x) = 1$
 - where p is the number of sets that x belongs to
 - There are no rules for defining 2 neighbour sets
 - Usually, the overlap is between 25% şi 50%

Artificial Intelligence - RBS

Unit partition

Non-unit partition

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → properties
 - Unit partition
 - A complete fuzzy variable can be transformed into a unit partition:

$$\mu_{\hat{A}_{i}}(x) = \frac{\mu_{A_{i}}(x)}{\sum_{j=1}^{p} \mu_{A_{j}}(x)} \text{ for } i = 1, \dots, p$$

- Elements from probability theory (fuzzy logic)
 - Fuzzy facts (fuzzy sets)
 - Definition
 - Representation
 - Operations complements, containment, intersection, reunion, equality, algebraic product, algebraic sum
 - Properties associativity, commutativity, distributivity, transitivity, idempotency, identity, involution
 - Hedges
 - Fuzzy variables
 - Definition
 - Properties
 - Establish the fuzzy variables and the fuzzy sets based on membership functions

- Mechanism
 - Establish the raw (input and out[put) data of the system
 - Define membership functions for each input data
 - Each membership function has associated a quality label linguistic variable
 - A raw variable can have associated one or more linguistic variables
 - Example
 - Raw variable: temperature T
 - Linguistic variable: law →A1, medium → A2, high → A3
 - Transform each raw input data into a linguistic data → fuzzification
 - Establish the fuzzy set of that raw input data
 - □ How?
 - For a given raw input determine the membership degree for each possible set
 - Example

•
$$T (=x_n) = 5^\circ$$

•
$$A_1 \rightarrow \mu_{A1}(T) = 0.6$$

•
$$A_2 \rightarrow \mu_{A2}(T) = 0.4$$

Content and design → fuzzification of input data

Mechanism

- Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, medium, high)
 - Input data:
 - Temperature x = 37
 - $\mu_{A1}(x)=0$, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$
 - Humidity y = 0.8

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

83

April 2017 Artificial Intelligence - RBS

- Rules
 - Definition
 - Linguistic constructions
 - Affirmative sentences: A
 - Conditional sentences: if A then B
 - Where A and B are (collections of) sentences that contain linguistic variables
 - A premise of the rule
 - B consequence of the rule
 - Typology
 - Non-conditional
 - x is (in) A_i
 - Eg. Save the energy
 - Conditional
 - If x is (in) A_i then z is (in) C_k
 - If x is (in) A_i and y is (in) B_i, then z is (in) C_k
 - If x is (in) A_i or y is (in) B_i, then z is (in) C_k

- Rules
- Example

	Rules of classical logic	Rules of fuzzy logic
R_1	If temperature is -5, then is cold	If temperature is law, then is cold
R_2	If temperature is 15, then is warm	If temperature is medium, then is warm
R_3	If temperature is 35, then is hot	If temperature is high, then is hot

- Rules
- Database of fuzzy rules

```
\square R<sub>11</sub>: if x is A<sub>1</sub> and y is B<sub>1</sub> then z is C<sub>u</sub>
```

- \square R₁₂: if x is A₁ and y is B₂ then z is C_v
- ...
- R_{1n} : : if x is A_1 and y is B_n then z is C_x
- R_{21} : if x is R_2 and y is R_1 then z is R_2
- \square R₂₂: if x is A₂ and y is B₂ then z is C_z
- ...
- \square R_{2n}: if x is A₂ and y is B_n then z is C_v
- \square R_{m1}: if x is A_m and y is B₁ then z is C_y
- R_{m2} : if x is R_m and y is R_2 then z is R_m
- ...
- \blacksquare R_{mn}: if x is A_m and y is B_n then z is C_u

- Rules
- Properties
 - Completeness
 - A database of fuzzy rules is complete
 - If all input values have associated a value between 0 and 1
 - If all fuzzy variable are complete
 - If used fuzzy sets have a non-compact support
 - Consistency
 - A set of fuzzy rules is inconsistent if two rules have the same premises and different consequences
 - If x in A and y in B then z in C
 - If x in A and y in B then z in D
- Problems of the database
 - Rule's explosion
 - #of rules increases exponential whit the # of input variables
 - # of input set combinations is
 - Where the i^{th} variable is composed by p_i sets

$$P = \prod_{i=1}^{n} p_i$$

- Decision matrix of the knowledge database
- Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, constant, high)
 - Rules:
 - If temperature is normal and humidity is small then the power is constant

		Input data y	
		Small	Large
	Cold	Law	Constant
Input data x	Normal	Constant	High
data X	Hot	High	High

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

89

April 2017 Artificial Intelligence - RBS

Content and design → rule evaluation (fuzzy inference)

- Which rules are firstly evaluated?
 - Fuzzy inference
 - Rules are evaluated in parallel, each rules contributing to the shape of the final result
 - Resulted fuzzy sets are de-fuzzified after all the rules have been evaluated

Remember

- Forward inference
 - For a given state of problem, collect the required information and apply the possible rules
- Backward inference
 - Identify the rules that determine the final state and apply only that rules (if it is possible)
- How the rules are evaluated?
 - Evaluation of causes
 - Evaluation of consequences

Content and design → rule evaluation (fuzzy inference)

- Evaluation of causes
 - For each premise of a rule (if s is (in) A) establish the membership degree of raw input data to all fuzzy sets
 - A rule can have more premises linked by logic operators AND, OR or NOT → use fuzzy operators
 - □ Operator AND → intersection (minimum) of 2 sets

$$\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$$

□ Operator OR → union (maximum) of 2 sets

•
$$\mu_{A\cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$$

□ Operator *NOT* → negation (complement) of a set

$$\mu_{-a}(x) = 1 - \mu_a(x)$$

- The result of premise's evaluation
 - Degree of satisfaction
 - Other names:
 - Rule's firing strength
 - Degree of fulfillment

Content and design → rule evaluation (fuzzy inference)

- Evaluation of consequences
 - Determine the results
 - Establish the membership degree of variables (involved in the consequences) to different fuzzy sets
 - Each output region must be de-fuzzified in order to obtain crisp value
 - Based on the consequence's type
 - Mamdani model consequence of rule: "output variable belongs to a fuzzy set"
 - Sugeno model consequence of rule: "output variable is a crisp function that depends on inputs"
 - Tsukamoo model consequence of rule: "output variable belongs to a fuzzy set following a monotone membership function"

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Mamdani model
 - Main idea:
 - consequence of rule: "output variable belongs to a fuzzy set"
 - Result of evaluation is applied for the membership function of the consequence
 - Example
 - if x is in A and y is in B, then z is in C
 - Typology (based on how the results is applied on the membership function of the consequence)
 - Clipped fuzzy sets
 - Scaled fuzzy sets

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Mamdani model
 - Typology (based on how the results is applied on the membership function of the consequence)
 - Clipped fuzzy sets
 - Membership function of the consequence is cut at the level of the result's truth value
 - Advantage → easy to compute
 - Disadvantage → some information are lost

- Scaled fuzzy sets
 - Membership function of the consequence is adjusted by scaling (multiplication) at the level of the result's truth value
 - Advantage → few information is lost 0.6
 - Disadvantage → complicate computing

- □ Content and design → rule evaluation (fuzzy inference) → Evaluation of consequences → Mamdani model
 - Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, constant, high)
 - Input data:
 - Temperature x = 37

•
$$\mu_{A1}(x)=0$$
, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$

- Humidity y = 0.8
 - $\mu_{B1}(x)=0.9, \ \mu_{B2}(x)=0$

		Input data y		
		Small	Large	
	Cold	Law	Constant	
Input data x	Normal	Constant	High	
data X	Hot	High	High	

Content and design → rule evaluation → Evaluation of consequences → Mamdani model

R2: if x is in A_2 or y is in B_1 then z is in C_2

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Sugeno model
 - Main idea
 - consequence of rule: "output variable is a crisp function that depends on inputs"
 - Example

If x is in A and y is in B then z is f(x,y)

- Typology (based on charactersitics of f(x,y))
 - Sugeno model of degree 0 → if (f(x,y) = k constant (membership function of the consequences are singleton a fuzzy set whose membership functions have value 1 for a single (unique) point of the universe and 0 for all other points)
 - Sugeno model of degree $1 \rightarrow$ if f(x,y) = ax + by+c

Content and design \rightarrow rule evaluation \rightarrow Evaluation of consequences \rightarrow Sugeno model

R1: if x is in A_1 and y is in B_1 then z is in C_1

R2: if x is in A_2 or y is in B_1 then z is in C_2

R3: if x is in A_3 or y is in B_2 then z is in C_3

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Tsukamoto model
 - Main idea
 - consequence of rule: "output variable belongs to a fuzzy set following a monotone membership function"
 - A crisp value is obtained as output → rule's firing strength

Content and design \rightarrow rule evaluation \rightarrow Evaluation of consequences \rightarrow Tsukamoto model

R1: if x is in A_1 and y is in B_1 then z is in C_1 $\mu_{A1}(x) = 0$ $\mu_{B1}(y)=0.9$ $\mu_{C1}(z)=0$ B_2 R2: if x is in A_2 or y is in B_1 then z is in C_2 $\mu_{A2}(x) = 0.6$ $\mu_{B1}(y)=0.9$ $\mu_{C2}(z)=0,9$ 0.6 35x=37 10 15 25 55 R3: if x is in A_3 or y is in B_2 then z is in C_3 $\mu_{C3}(z)=0.3$ $\mu_{\Delta 3}(x) = 0.3$ $\mu_{B2}(y)=0$ 0.3 10 15 y=0.8 0.5 1.0

April 2017

Artificial Intelligence - RBS

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

April 2017 Artificial Intelligence - RBS 101

Content and design → Aggregate the results

- Union of outputs for all the applied rules
- Consider the membership functions for all the consequences and combine them into a single fuzzy set (a single result)
- Aggregation process have as
- Inputs → membership functions (clipped or scaled) of the consequences
- Outputs → a fuzzy set of the output variable
- Example
- Mamdani

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

April 2017 Artificial Intelligence - RBS 103

Content and design → defuzzification

- Main idea
 - Transform the fuzzy result into a crisp (raw) value
 - Inference → obtain some fuzzy regions for each output variable
 - Defuzzification → transform each fuzzy region into a crisp value

Methods

- Based on the gravity center
 - COA Centroid Area
 - BOA Bisector of area
- Based on maximum of membership function
 - MOM Mean of maximum
 - SOM Smallest of maximum
 - LOM Largest of maximum

Content and design → defuzzification → methods

- COA Centroid Area
 - Identify the z point from the middle of aggregated set

$$COG = \frac{\sum_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\sum_{i=0}^{n} \mu_{A}(x_{i})} \quad \text{sau } COG = \frac{\int_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\int_{i=0}^{n} \mu_{A}(x_{i})}$$

- Example
 - Mamdani model \rightarrow estimation of COA by using a sample of n points (x_i , i =1,2,..., n) of the resulted fuzzy set

Sugeno or Tsukamoto model → COA becomes a weighted average of m crisp values obtained by applying all m rules

$$COA = \frac{9*0.9 + 11*0.3}{0.9 + 0.3}$$
$$COA \cong 9.5$$

Content and design → defuzzification → methods

- BOA Bisector of area
 - Identify the point z that determine the splitting of aggregated set in 2 parts of equal area

$$BOA = \int_{\alpha}^{z} \mu_{A}(x)dx = \int_{z}^{\beta} \mu_{A}(x)dx,$$
where $\alpha = \min\{x \mid x \in A\}$ and $\beta = \min\{x \mid x \in A\}$

Content and design → defuzzification → methods

- MOM Mean of maximum
 - Identify the point z that represents the mean of that points (from the aggregated set) that have a maximum membership function

$$MOM = \frac{\sum_{x_i \in \max \mu} x_i}{|\max \mu|}, \text{ where } \max \mu = \mu^* = \{x \mid x \in A, \mu(x) = \max m\}$$

- □ SOM Smallest of maximum
 - Identify the smallest point z (from the aggregated set) that have a maximum membership function
- LOM Largest of maximum
 - Identify the largest point z (from the aggregated set) that have a maximum membership function

Content and design → defuzzification

- Main idea
 - Transform the fuzzy result into a crisp (raw) value
 - Inference → obtain some fuzzy regions for each output variable
 - Defuzzification → transform each fuzzy region into a crisp value

Methods

- Based on the gravity center
 - COA Centroid Area
 - □ BOA Bisector of area
- Based on maximum of membership function

Artificial Intelligence - RBS

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

April 2017 Artificial Intelligence - RBS 109

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Construct a base of rules by an expert
 - Evaluate the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

Advantages

- Imprecision and real-world approximations can be expressed through some rules
- Easy to understand, to test and to maintain
- Robustness → can operate when rules are not so clear
- Require few rules then other KBSs
- Rules are evaluated in parallel

Disadvantages

- Require many simulations and tests
- Do not automatically learn
- It is difficult to identify the most correct rules
- There is not mathematical model

Applications

- Space control
 - Altitude of satellites
 - Setting the planes
- Auto-control
 - Automatic transmission, traffic control, anti-breaking systems
- Business
 - Decision systems, personal evaluation, fond management, market predictions, etc.
- Industry
 - Energy exchange control, water purification control
 - pH control, chemical distillation, polymer production, metal composition
- Electronic devices
 - Camera exposure, humidity control. Air conditioner, shower setting
 - Freezer setting
 - Washing machine setting

Applications

- Nourishment
 - Cheese production
- Military
 - Underwater recognition, infrared image recognition, vessel traffic decision
- Navy
 - Automatic drivers, route selection
- Medical
 - Diagnostic systems, pressure control during anesthesia, modeling the neuropathology results of Alzheimer patients
- Robotics
 - Kinematics (arms)

Review

KBSs

- Computation systems where knowledge database and inference engine overlap
- KBSs can work
 - In certainty environment
 - LBS
 - RBS
 - In uncertainty environments
 - Bayes systems
 - Rules have associated some probabilities
 - Systems based on certainty factors
 - Fact and rules have associated certainty factors
 - Fuzzy systems
 - Fact have associated degree of membership to some sets

Next lecture

- A. Short introduction in Artificial Intelligence (AI)
- A. Solving search problems
 - A. Definition of search problems
 - в. Search strategies
 - A. Uninformed search strategies
 - B. Informed search strategies
 - c. Local search strategies (Hill Climbing, Simulated Annealing, Tabu Search, Evolutionary algorithms, PSO, ACO)
 - D. Adversarial search strategies

c. Intelligent systems

- A. Rule-based systems in certain environments
- в. Rule-based systems in uncertain environments (Bayes, Fuzzy)
- c. Learning systems
 - **A.** Decision Trees
 - **B. Artificial Neural Networks**
 - c. Support Vector Machines
 - D. Evolutionary algorithms
- D. Hybrid systems

Next lecture – useful information

- Chapter VI (18 and 19) of S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- Chapter 8 of Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- Chapters 10, 11, 12 and 13 of C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Chapter V of D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- Chapters 3 and 4 of T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

- Presented information have been inspired from different bibliographic sources, but also from past AI lectures taught by:
 - PhD. Assoc. Prof. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - PhD. Assoc. Prof. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - PhD. Prof. Horia F. Pop www.cs.ubbcluj.ro/~hfpop