Calcul elipsa H^\prime

\mathcal{I}_1 - moment de inertie maxim

Pentru cazul in care axa-1 este axa de cuantificare, am luat parametrii obtinuti din fitul $^{135}{
m Pr}$. Astfel avem:

\mathcal{I}_1	${\cal I}_2$	${\cal I}_3$	j	θ
89	12	48	11/2	-71

 θ este unghiul ce intra in calculul componentelor momentului cinetic ${f j}$ al particulei de valenta.

$\mathcal{I}_1 > \mathcal{I}_3 > \mathcal{I}_2$ (axa 1 - axa de cuantificare)

- Cu setul de valori A_1, A_2, A_3 si parametrii I, j, θ , putem calcula valorile functiilor u si v_0 ce intra in expresia lui H'.
 - $\bullet \ \ u = f(A_1,A_2,A_3,I,j,\theta)$
 - $v_0 = g(A_1, A_2, I, j, \theta)$
- Cu valorile (u,v_0) putem acum merge mai departe spre determinarea ecuatiei elipsei asociata energiei clasice H^\prime .

$$H'=x_{2}^{2}+ux_{3}^{2}+2v_{0}x_{1}\ (1)$$

- fixez $H' \equiv E$, cu E o valoare oarecare.
- folosesc aproximarea de ordin doi in serie de puteri pentru a il putea scrie pe x_1 in functie de x_2 si x_3 .

•
$$x_1=I\left(1-rac{x_2^2+x_3^2}{2I^2}
ight)$$

astfel ecuatia (1) devine:

$$x_2^2 \left(1 - rac{v_0}{I}
ight) + x_3^2 \left(u - rac{v_0}{I}
ight) = E - 2 v_0 I \hspace{1cm} (2)$$

Forma generala a elipsei (2)

• notez
$$a_E=\left(rac{1-v}{E-2vI^2}
ight)^{-rac{1}{2}}$$
• notez $b_E=\left(rac{u-v}{E-2vI^2}
ight)^{-rac{1}{2}}$

• notez
$$b_E = \left(rac{u-v}{E-2vI^2}
ight)^{-rac{1}{2}}$$

unde $v=rac{v_0}{I}$.

Cu aceste notatii, ecuatia (2) devine:

$$rac{x_2^2}{a_E^2} + rac{x_3^2}{b_E^2} = 1 \hspace{0.5cm} (3)$$

Aceasta este ecuatia elipsei pe care o reprezint grafic, impreuna cu cercul de raza I.

Observatie - toate aceste calcule sunt generalizate pentru orice valori de spin I, si energie E. Momentul cinetic total nu este fixat inca.

Analiza parametrilor elipsei a_E si b_E

Am studiat evolutia acestor parametri, pentru un spin fixat I si un interval de energie arbitrar $E \in [0,10]$, intrucat a,b sunt practic functii ce depind de E. Rezultatele pentru cei doi parametri se pot vedea in figurile de mai jos:

Parametrul a_E pentru valori arbitrare I, folosind u si v_0 calculati cu ajutorul factorilor de inertie din tabel.

Parametrul b_E pentru valori arbitrare I, folosind u si v_0 calculati cu ajutorul factorilor de inertie din tabel.

Este interesanta curba pentru primul spin $I=\frac{1}{2}$, care urca mai sus de celelalte valori, odata cu cresterea lui E.

Avand valorile parametrilor a_E si b_E , putem reprezenta grafic elipsa H^\prime .

Rerezentare grafica H^\prime

Pasii de obtinere:

- fixez I=19/2
- Aleg un set de valori E, astfel incat putem vedea evolutia elipsei, comparativ cu cerul de raza I
- pentru (E,I) fixate, determin (a_E,b_E) si apoi reprezint peH' ca functie de (x_2,x_3)

Albastru:ecuatia (3) pentru spin si energie data. Rosu: cercul de raza I. Intersectia celor doua curbe inchise este data de cele 4 puncte marcate cu negru.

Moment de inertie maxim - \mathcal{I}_2

Aici avem alti parametrii:

\mathcal{I}_1	${\mathcal I}_2$	\mathcal{I}_3	θ
38	68	51	110

 θ este unghiul ce intra in calculul componentelor momentului cinetic ${f j}$ al particulei de valenta.

Parametrii elipsei (a_E,b_E)

Parametrul a_E pentru valori arbitrare I, folosind u si v_0 calculati cu ajutorul factorilor de inertie din tabel.

Parametrul b_E pentru valori arbitrare I, folosind u si v_0 calculati cu ajutorul factorilor de inertie din tabel.

Elipsa (2) pentru diferite valori ${\cal E}$

 ${\cal I}_2 > {\cal I}_3 > {\cal I}_1$

Moment de inertie maxim - \mathcal{I}_3

Aici avem alti parametrii:

\mathcal{I}_1	${\mathcal I}_2$	${\cal I}_3$	θ
32	19	81	113

 θ este unghiul ce intra in calculul componentelor momentului cinetic ${\bf j}$ al particulei de valenta.

Parametrii elipsei (a_E,b_E)

Parametrul a_E pentru valori arbitrare I, folosind u si v_0 calculati cu ajutorul factorilor de inertie din tabel.

Parametrul b_E pentru valori arbitrare I, folosind u si v_0 calculati cu ajutorul factorilor de inertie din tabel.

Elipsa (2) pentru diferite valori ${\cal E}$

 ${\mathcal I}_3 > {\mathcal I}_1 > {\mathcal I}_2$