Figuring out Back-propagation

June 30, 2016

1 Conventions

- Weight from node j to node i in the l layer : $W_{ij}^{(l)}$
- Bias to node i in the l layer : $b_i^{(l)}$
- j-th input of layer l : $x_j^{(l)}$ r,c
- \bullet Activation of node i in the layer l : $a_i^{(l)}$ r,c
- \bullet Total weighted sum including the bias : $z_i^{(l)}$ r,c
- \bullet Hypothesis or output i of the network : $h_i^{r,c}(x_i^{r,c}) = a_i^{(out)\ r,c}$
- Target i of the network : y_i
- \bullet "Error term" of node i in layer l : $\delta_i^{(l)}$ r,c
- \bullet Derivative of the activation function : $f'(z_i^{(l)} \ ^{r,c}) = \mathrm{sech}(z_i^{(l)} \ ^{r,c})^2$
- Activation function of the output layer $f^{(out)}$: $h_i^{r,c}(x_i^{r,c}) = f^{(out)}(z_i^{(out)}) = z_i^{(l)}$:
- Derivative of the activation function : $f'(z_i^{(out) r,c}) = 1$
- Cost function, here we use the Sum Square Bias : $J(W,b) = \frac{1}{2} \sum_i \sum_c \left(\frac{\sum_r h_i^{r,c}}{\#r} y_i \right)^2$
- \bullet r denotes the realization and c the case

2 Adapting back-propagation to our case

The goal is to change our weights so that we lower the value of the cost function. This can be done by gradient descent:

$$\Delta W_{ij}^{(l)} = -\eta \frac{\partial J(W, b)}{\partial W_{ij}^{(l)}} , \qquad (1)$$

where $\Delta W_{ij}^{(l)}$ is the amount by which we want to change the weight $W_{ij}^{(l)}$, and where η is an arbitrarily chosen parameter (ideally this won't be the case) and is generally $\sim 10^{-3}$. Back-propagation is a way of calculating $\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}}$.

Using the chain rule we have :

$$\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} = \sum_{r,c} \frac{\partial J(W,b)}{\partial z_i^{(l)}} \frac{\partial z_i^{(l)}}{\partial W_{ij}^{(l)}} = \sum_{r,c} \frac{\partial J(W,b)}{\partial z_i^{(l)}} x_j^{(l)} x_j^{(l)} . \tag{2}$$

Let's define the "error terms" by : $\delta_i^{(l)}$ $^{r,c} = \frac{\partial J(W,b)}{\partial z_i^{(l)}}$ r,c

Thus we can rewrite eq.2 as follows:

$$\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} = \sum_{r,c} \delta_i^{(l)} x_j^{(l)} x_j^{(l)}. \tag{3}$$

Let's now find an easy way to calculate the "error terms", starting by the output layer :

$$\delta_{i}^{(out)} {r,c} = \frac{\partial J(W,b)}{\partial z_{i}^{(out)} {r,c}} = \frac{\partial J(W,b)}{\partial a_{i}^{(out)} {r,c}} \frac{\partial a_{i}^{(out)} {r,c}}{\partial z_{i}^{(out)} {r,c}} = \frac{\partial J(W,b)}{\partial a_{i}^{(out)} {r,c}} f'^{(out)}(z_{i}^{(out)} {r,c}) = \frac{\partial J(W,b)}{\partial h_{i}^{r,c}},$$

$$(4)$$

because the activation function for the output layer is the identity function (derivative of 1) and $a_i^{(out)}$ $r,c = h_i^{r,c}$ by definition.

Using the definition of the cost function we obtain:

$$\frac{\partial J(W,b)}{\partial h_i^{r,c}} = \frac{1}{\#r} \left(\frac{\sum_r h_i^{r,c}}{\#r} - y_i \right) . \tag{5}$$

Thus we can rewrite eq.4 as follows:

$$\delta_i^{(out) r,c} = \frac{1}{\#r} \left(\frac{\sum_r h_i^{r,c}}{\#r} - y_i \right) .$$
 (6)

And now for the deltas of the other layers we have:

$$\delta_{i}^{(l) r,c} = \frac{\partial J(W,b)}{\partial z_{i}^{(l) r,c}} = \sum_{k} \frac{\partial J(W,b)}{\partial z_{k}^{(l+1) r,c}} \frac{\partial z_{k}^{(l+1) r,c}}{\partial z_{i}^{(l) r,c}} = \frac{\partial J(W,b)}{\partial z_{k}^{(l+1) r,c}} \frac{\partial z_{k}^{(l+1) r,c}}{\partial a_{i}^{(l) r,c}} \frac{\partial a_{i}^{(l) r,c}}{\partial z_{i}^{(l) r,c}}$$
(7)

$$= f'(z_i^{(l)\ r,c}) \sum_k \delta_k^{(l+1)\ r,c} W_{ki}^{(l+1)}\ ,$$

where k denote the indices of the nodes in layer (l+1).