

DETEKSI CACAT PRODUK PADA INDUSTRI MANUFAKTUR MENGGUNAKAN PEMBELAJARAN MENDALAM (STUDI KASUS PADA MANUFAKTUR SEKRUP)

PROPOSAL PENELITIAN

Yoga Panji Perdana Nugraha 99223143

PROGRAM DOKTOR TEKNOLOGI INFORMASI UNIVERSITAS GUNADARMA .IUNI 2024

DAFTAR ISI

COVE	Ri
DAFTA	ıR ISIii
DAFTA	AR TABELiv
DAFTA	AR GAMBARv
BAB I I	PENDAHULUAN1
1.1	Latar Belakang1
1.2	Rumusan Masalah7
1.3	Tujuan Penelitian
1.4	Batasan Penelitian
1.5	Kontribusi8
BAB II	TINJAUAN PUSTAKA9
2.1	Tinjauan 19
2.2	Tinjauan 29
2.3	Tinjauan 310
2.4	Tinjauan 4
2.5	Tinjauan 5
2.6	Tinjauan 611
2.7	Tinjauan 711
2.8	Tinjauan 812
2.9	Tinjauan 912
2.10	Tinjauan 10
2.11	Tinjauan 11
2.12	Tinjauan 12

2.13	Tinjauan 13	13
2.14	Tinjauan 14	14
2.15	Perbandingan Tinjauan Pustaka	14
BAB I	II METODOLOGI	38
3.1	Motivasi	38
3.2	Alur Kerja Riset	38
3.3	Pendekatan	42
3.4	Rencana Jadwal Kegiatan	42
DAFT	AR PUSTAKA	44

DAFTAR TABEL

Tabel 2.1 Perbandingan Tinjauan Pustaka	14
Tabel 3.1 Rencana Jadwal Kegiatan	43

DAFTAR GAMBAR

Gambar 3.1 Diagram Alir Penelitian	39
Gambar 3.2 Rancangan Prototipe Alat	40

BABI

PENDAHULUAN

1.1 Latar Belakang

dalam Persaingan dunia industri semakin ketat. Setiap perusahaan berlomba-lomba menciptakan produk berukualitas... yang Kualitas produk merupakan faktor kunci agar perusahaan dapat bertahan dan bersaing dalam dunia bisnis (Psarommatis, Sousa, Mendonça, & Kiritsis, 2022). Kualitas produk akan mempengaruhi kepercayaan pelanggan terhadap perusahaan. Kualitas produk yang tinggi tentunya merupakan keinginan perusahaan. Namun, kecacatan produk merupakan hal yang hampir pasti terjadi. Kecacatan ini disebabkan oleh beberapa faktor yaitu manusia (man), mesin (machine), metode (method), dan lingkungan (environment) (Suhartini, 2020). Salah satu kegiatan yang perlu dilakukan untuk menjaga kualitas produk adalah inspeksi. Kegiatan ini biasanya dilakukan oleh departemen pengendalian kualitas. Kecepatan dan akurasi inspeksi pada industri diperlukan untuk memastikan standar kualitas produk yang tinggi namun harga tetap terjangkau (Villalba-Diez et al., 2019). Hal ini merupakan tantangan bagi para pelaku industri.

Sebagian besar perusahaan tidak hanya memiliki sedikit produk dan model dalam satu kali produksi. Variasi produk dan model ini tentunya akan membuat kegiatan inspeksi menjadi satu hal yang penting untuk memastikan seluruh produk memiliki kualitas yang baik. Kegiatan inspeksi pada industri umumnya dilakukan secara manual dengan tenaga manusia sebagai operator. Dengan mengandalakan tenaga manusia yang memiliki keterbatasan. Peningkatan kinerja dari kegiatan inspeksi dibutuhkan (Asín, Ávila-de la Torre, Berges-Muro, & Sánchez-Valverde, 2017). Sehingga dibutuhkan sebuah model pengganti untuk meningkatkan kinerja dari kegiatan inspeksi (Reyes-Luna, Chang, Tuck, & Ashcroft, 2023). Otomatisasi pada proses inspeksi kualitas adalah salah satu cara untuk meningkatkan kinerja kegiatan inspeksi sehingga kepuasan pelanggan atas produk yang berkualitas baik dapat terjaga (Deshpande, Minai, & Kumar, 2020). Pada revolusi industri 4.0,

teknologi informasi tidak dapat dipisahkan dari kehidupan sehari-hari, teknologi memiliki peran yang penting dari waktu ke waktu (Essah, Anand, & Singh, 2022). Teknologi yang sedang berkembang dengan pesat dan dapat diimplementasikan untuk otomatisasi pada industri adalah Artificial Intelligence (AI) (Shi et al., 2021). Artificial Intelligence (AI) merupakan alternatif digital untuk meningkatkan kinerja kegiatan inspeksi (Jarkas et al., 2023). Teknologi ini megadopsi kemampuan manusia untuk mengenali berbagai macam objek yang terdapat pada citra yang dikenal dengan teknik deteksi objek (Baikova, Maia, Santos, Ferreira, & Oliveira, 2019), segmentasi dan pengenalan objek (Khurana, Sharma, Singh, & Singh, 2016). Deteksi objek merupakan hal yang penting dalam kegiatan inspeksi dalam industri (Yang et al., 2020). Pengaplikasian AI untuk mendeteksi objek dalam kegiatan inspeksi ini bertujuan untuk efisiensi dalam dunia industri terutama dalam kegiatan inspeksi. Hal ini karena teknologi tersebut dapat meminimalisir kemungkinan cacat yang luput dari penglihatan manusia.

Acosta and Oliveira Sant'Anna (2023) mengembangkan relevance mechine vector menggunakan teknik kernel sparse bayesian untuk meningkatkan support machine vector pada masalah regresi dan klasifikasi dengan menggunakan machine learning. Penelitian tersebut menghasilkan perbandingan kinerja relevance machine vector dengan support vector machine, artificial neural network dan beta regression model menghasilkan bahwa pemantauan proses berbasis relevance machine vector adalah alat pemantauan kualitas produk cacat dalam proses manufaktur yang baik dibandingkan dengan algoritma machine learing yang lain.

Altuğ (2023) meneliti untuk meminimalisir pemborosan biaya dan waktu pada perusahaan yang memproduksi baut dan mur dengan mengintegrasikan *deep learning* dan *six sigma*. *Six sigma* digunakan untuk mengurangi biaya dan waktu serta meningkatkan nilai tambah pada produk. Optimalisasi *six sigma* dilakukan dengan bantuan *deep learning*. Peforma model yang dibuat pada *deep learning* cukup mendekati performa sebenarnya. Pemanfaatan *six sigma* dengan bantuan *deep learing* yang dibuat dapat menghemat hingga \$21,780 serta penghematan waktu yang dapat menghindari kerugian mencapai \$30,000 setiap tahun. Efisiensi

pada *coating thickness* meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%.

Fan, Dong, and Guo (2023) mengusulkan metode klasifikasi permukaan cacat strip baja berdasarkan *mixed attention mechanism* untuk mencapai kinerja klasifikasi cacat yang cepat dan akurat. Penelitian ini menggunakan perbandingan skala *min-max*, *Transfer Learning* (*EfficientNet-B0*), *squeeze-excitation spatial mixed module*, dan *multilayer mixed attention mechanism* (MMAM) *module*. Pada lingkungan indsutri yang kompleks metode konvensional untuk mengklasifikasi cacat permukaan pada strip baja canai panas memiliki masalah pada akurasi dan efisiensi yang rendah. Dengan menggunakan metode *squeeze-excitation spatial mixed module* mendapatkan akurasi pengenalan 96,75% dan *multilayer mixed attention mechanism* (MMAM) *module* mendapatkan akurasi pengenalan 97,70%. Kemudian pada *transfer learning* yaitu *EfficientNet-B0* berbasis MMAM memperoleh hasil akurasi pengenalan 100%.

Fauzi, Madenda, Wibowo, and Masruriyah (2020) meneliti penggunaan kotak pembatas (*bounding box*) untuk meningkatkan pengenalan objek pada kamera pengintai (CCTV) pada sektor kesehatan. Hasil dari penelitian ini menunjukkan bahwa kotak pembatas meningkatkan pengenalan objek pada kamera pengintai. Kotak pembatas juga membantu dalam mengidentifikasi kegiatan yang mencurigakan dalam rekaman kamera pengawas. Klasifikasi objek yang segmentasi dalam pencitraan medis juga meningkat dengan bantuan kotak pembatas yang diterapkan.

Handayani et al. (2020) menggunakan algoritma support vector machine (SVM), linear discriminant analysis, dan pohon keputusan untuk mengidentifikasi daging berdasarkan *marbling*. Hasilnya SVMadalah algoritma kualitas akurasi tinggi menunjukkan paling diantara algoritma lainnya dalam mengidentifikasi kualitas daging sapi.

Hassan, Hamdan, Shahin, Abdelmaksoud, and Bitar (2023) mengimplementasikan *deep learing* dan *machine learning* untuk memberikan kontribusi yang signifikan dalam meningkatkan proses manufaktur yaitu memaksimalkan *production rates* untuk produk yang baik dan meminimalisir

scrap rates atau reworks. Penerapan smart process akan berkontribusi yang meningkatkan memaksimalkan signifikan dalam proses manufaktur yaitu production rates untuk produk yang baik dan meminimalisir scrap rates atau Kecerdasan reworks. buatan (machine learning) yang diimplementasikan bermanfaat untuk meningkatkan akurasi prediksi model regresi serta menyempurnakan kecerdasan yang dimiliki dengan mempelajari parameter proses mana yang dapat membuat produk cacat sehingga nantinya dapat menyesuaikan parameter proses dengan mengabaikan pengaturan manual.

Li, Liu, Yang, and Huang (2020) mendesain pendeteksi cacat pada kain secara otomatis berdasarkan *cascaded low-rank decomposition* dan menjaga pengendalian kualitas yang tinggi pada perusahaan tekstil. Metode yang diusulkan dievaluasi pada *database* gambar kain. Penelitian ini menggunakan algoritma deteksi cacat berdasarkan *cascaded low-rank decomposition*. Dengan membandingkan di lapangan, diperoleh tingkat deteksi rata-rata sebesar 98,26%.

Liu, Liu, Li, and Li (2022) Mengusulkan metode baru untuk memcahkan masalah dalam mendeteksi cacat pada cacat kain. Masalah tersebut yaitu model yang sulit dilatih karena keterbatasan dataset dan akurasi deteksi yang belum memadai pada bidang industri. Peneltian ini berbasis *deep learning* dan menghasilkan metode baru untuk mendeteksi cacat kain dimana hasil eksperimen mendapatkan tingkait akurasi dan presisi sebesar 93,9% dan 98,8% ketika diterapkan pada dataset publik (TILDA) dan dataset *real-shot* (ZYFD).

Liu, Wang, Li, Ding, and Li (2022) mendesain model *dual-branch balance* saliency berbasis *fully convolutional network* (FCN) untuk deteksi cacat pada kain secara otomatis, serta meningkatkan pengendalian kualitas pada bidang manufaktur tekstil.

Naam, Harlan, Madenda, and Wibowo (2016) meneliti dengan tujuan untuk membangun sebuah algoritma dari metode *multiple morphological gradient* (mMG) untuk mengidentifikasi karies gigi berbasis gigi panoramik digital gambar x-ray. Jenis algoritma yang digunakan adalah normal mMG, Enhancement mMG, dan Smooth mMG. Ketiga algoritma tersebut diperiksa oleh dua orang dokter

gigi. Hasil pemrosesan gambar ini sangat membantu untuk mengidentifikasi objek dalam gambar panorama terutama dalam mendeteksi gigi berlubang.

Purushothaman and Ahmad (2022) membangun sistem inspeksi otomatis menggunakan mekanisme berbasis image analysis yang disebut i-AIS. Menggunakan metode desain Six Sigma (DSS). Langkah-langkah Define, measure, analyze, design, dan verify (DMADV) diterapkan dan diintegrasikan dengan teknik analisis yang spesifik dari quality function deployment (QFD), design failure mode effect analysis (DFMEA) dan theory of inventive problem solving (TRIZ). Verifikasi prototipe i-AIS menunjukkan pengoperasian pada mode optimal yang memenuhi persyaratan internal. Hasil verifikasi juga menunjukkan bahwa tingkat sigma meningkat dari 3,87 menjadi 4,33. Sementara itu, tingkat pengurangan kerusakan meningkat menjadi 74,4% dan tingkat downtime juga mencatat peningkatan yang signifikan yaitu pengurangan sebesar 80,7%.

Wu, Guo, Liu, and Huang (2020) mengembangkan metode deep learning yang lebih fleksibel untuk deteksi cacat pada industri dengan menggunakan Endto-end learning framework. Penelitian ini dilakukan untuk mengatasi kesulitan deteksi cacat blade. Sehingga dikembangkan arsitektur baru yang mengintegrasikan residue learning untuk melakukan deteksi cacat yang efisien. Percobaan dilakukan pada kumpulan data yang dikumpulkan, dan hasil percobaan menunjukkan bahwa sistem yang diusulkan dapat mencapai kinerja memuaskan dibandingkan metode lain. Selain itu, operasi pemerataan membantu hasil deteksi cacat yang lebih baik.

Yuhandri, Madenda, Wibowo, and Karmilasari (2017) meneliti untuk mngetahui ciri-ciri motif yang terdapat pada gambar songket agar objek tersebut dapat terdeteksi dan dibaca. Metode yang digunakan adalah segmentasi warna dan morfologi matematis dalam mendeteksi objek dan kemudian citra mengekstraksi motf dengan cara penerapan algoritma pelacakan kontur moore dan pengembangan algoritma kode Hasilnya menunjukkan rantai. bahwa pengembangan algoritma kode rantai dapat menghasilkan jumlah objek, panjang kode rantai, dan nilai kemungkinan laju kemunculan setiap kode rantai dalam suatu motif, meskipun terdapat beberapa objek dalam suatu motif.

H. Zhang et al. (2023) mengusulkan kerangka kerja deteksi cacat berdasarkan pembelajaran adversial tanpa pengawasan untuk rekonstruksi gambar guna memecahkan masalah deteksi berlebihan atau kesalahan deteksi karena tidak dapat beradaptasi dengan pola kompleks kain berpola warna. Kerangka kerja yang diusulkan dibandingkan dengan metode canggih pada kumpulan data publik YDFID-1 (Kumpulan Data Gambar Kain Berwarna Benang-versi1). Kerangka kerja yang diusulkan juga divalidasi pada beberapa kelas dalam dataset MvTec AD. Hasil eksperimen berbagai pola/kelas pada YDFID-1 dan MvTecAD menunjukkan efektivitas dan keunggulan metode ini dalam deteksi cacat kain.

R. Zhang et al. (2022) Mengusulkan metode diagnosis ultrasonik baru untuk cacat las baja tahan karat berbasis *multi-domain feature fusion* untuk memecahkan dua masalah dalam diagnosis ultrasonik cacat las baja tahan karat austenitik. Hasil eksperimen menunjukkan bahwa akurasi diagnostik model diagnosis ringan yang dibangun dapat mencapai 96,55% untuk lima jenis cacat las baja tahan karat, antara lain retak, porositas, inklusi, kurang fusi, dan penetrasi tidak lengkap. Ini dapat memenuhi kebutuhan aplikasi teknik praktis. Metode ini memberikan landasan teori dan referensi teknis untuk mengembangkan dan menerapkan teknologi diagnosis cacat ultrasonik yang cerdas, efisien dan akurat.

Revolusi industri 4.0 mendorong otomatisasi inspeksi produk untuk manufaktur yang tanpa cacat (*zero defect*) dan berkualitas tinggi dimana kemampuan fleksibilitas manusia berkolaborasi dengan kemampuan akurasi komputer dan mesin (Brito et al., 2020). Perkembangan *computer vision* dapat sangat membantu dalam dunia industri manufaktur untuk mencapai kualitas yang unggul (Schmidt, Gevers, Schwiep, Ordieres-Meré, & Villalba-Diez, 2020). Akurasi kemampuan penglihatan komputer (*computer vision*) dalam mendeteksi objek sangat bergantung pada data pelatihan. Sehingga perlu didukung oleh data pelatihan yang masif. Hal ini tentunya menyebabkan kebutuhan akan perangkat lunak maupun perangkat keras dengan kemampuan dan spesifikasi cukup besar. Citra produk industri pada basis data sendiri dapat terdiri dari berbagai macam model dengan kecacatan yang bervariasi juga. Sehingga dikembangkan aplikasi pendeteksi objek untuk meningkatkan kinerja inspeksi produk. Pengembangan

aplikasi dengan mengaplikasikan kemampuan penglihatan komputer menggunakan artificial intelligence yaitu deep learning. Harapan dari penelitian ini nantinya dapat membantu perusahaan terutama departemen pengendalian kualitas untuk melakukan inspeksi produk pada lantai produksi secara mendekati real-time. Sehingga efisiensi dan efektivitas kegiatan inspeksi produk dapat dicapai.

1.2 Rumusan Masalah

Rumusan masalah merupakan masalah yang muncul pada penelitian ini yang kemudian dirumuskan menjadi sebuah pertanyaan. Berikut ini merupakan rumusan masahal.

- Bagaimana aplikasi deteksi objek yang dapat mengidentifikasi kecacatan produk sebagai pengganti manusia untuk kegiatan inspeksi produk pada perusahaan?
- 2. Apa pembaharuan yang ditemukan pada pengembangan aplikasi untuk mendeteksi objek yang dapat mengidentifikasi kecacatan produk sebagai pengganti manusia untuk kegiatan inspeksi produk pada perusahaan?

1.3 Tujuan Penelitian

Tujuan penelitian merupakan jawaban dari rumusan masalah yang menjadi hasil akhir dari penelitian. Berikut ini adalah tujuan penelitian.

- Menghasilkan aplikasi deteksi objek yang dapat mengidentifikasi kecacatan produk sebagai pengganti manusia untuk kegiatan inspeksi produk pada perusahaan.
- Mengetahui pembaharuan yang ada pada pengembangan aplikasi untuk mendeteksi objek yang dapat mengidentifikasi kecacatan produk sebagai pengganti manusia untuk kegiatan inspeksi produk pada perusahaan.

1.4 Batasan Penelitian

Batasan penelitian dimaksudkan agar penelitian tidak melebar ke topik lain selain pembahasan yang diinginkan. Berikut ini merupakan batasan penelitian.

- 1. Aplikasi dibuat dengan menggunakan deep learning.
- 2. Jenis cacat yang diidentifikasi adalah cacat pada bagian kepala sekrup, leher sekrup, ulir sekrup, dan pangkal sekrup.
- 3. Proses anotasi, *preprocessing*, augmentasi, dan *generate* dataset dilakukan dengan bantuan *roboflow*.
- 4. Model yang dikembangkan digunakan untuk mendeteksi cacat produk sekrup atau sejenisnya.

1.5 Kontribusi

Kontribusi pada bidang keilmuan pada penelitian ini adalah dengan menghasilkan model pendeteksi objek cacat pada manufaktur yang menggunakan teknologi artificial intelligence dengan metode deep learning. Hasil penelitian ini juga diharapkan bisa menjadi bahan baca serta referensi bagi pembaca untuk pembelajaran maupun penelitian selanjutnya.

Penelitian ini diharapkan dapat berkontribusi pada bidang teknologi informasi dengan menghasilkan prototipe aplikasi dan alat untuk mendeteksi cacat pada produk manufaktur.

Peneliti juga berharap penelitian ini dapat berkontribusi pada bidang industri dengan menghasilkan prototipe aplikasi dan alat untuk deteksi cacat pada produk manufaktur. Sehingga industri manufaktur dapat meningkatkan kinerja inspeksi produk untuk menjaga kualitas produk serta kegiatan tersebut dapat dilakukan dengan efisien.

BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan 1

Penelitian dilakukan oleh Acosta and Oliveira Sant'Anna (2023) dengan judul "Machine learning-based control charts for monitoring fraction nonconforming product in smart manufacturing". Peneliti mengembangkan relevance mechine vector menggunakan teknik kernel sparse bayesian untuk meningkatkan support machine vector pada masalah regresi dan klasifikasi dengan menggunakan machine learning. Penelitian tersebut menghasilkan perbandingan kinerja relevance machine vector dengan support vector machine, artificial neural network dan beta regression model menghasilkan bahwa pemantauan proses berbasis relevance machine vector adalah alat pemantauan kualitas produk cacat dalam proses manufaktur yang baik dibandingkan dengan algoritma machine learing yang lain.

2.2 Tinjauan 2

Penelitian yang dilakukan oleh Altuğ (2023) dengan judul "Application of six sigma through deep learning in the production of fasteners". Penelitian ini bertujuan untuk meminimalisir pemborosan biaya dan waktu pada perusahaan yang memproduksi baut dan mur dengan mengintegrasikan deep learning dan six sigma. Six sigma digunakan untuk mengurangi biaya dan waktu serta meningkatkan nilai tambah pada produk. Optimalisasi six sigma dilakukan dengan bantuan deep learning. Peforma model yang dibuat pada deep learning cukup mendekati performa sebenarnya. Pemanfaatan six sigma dengan bantuan deep learning yang dibuat dapat menghemat hingga \$21,780 serta penghematan waktu yang dapat menghindari kerugian mencapai \$30,000 setiap tahun. Efisiensi pada coating thickness meningkat dari 85% menjadi 95% yang mana mendekati target yaitu 95%-97%.

2.3 Tinjauan 3

Penelitian dilakukan oleh Fan et al. (2023) dengan judul "Surface defect classification of hot-rolled steel strip based on mixed attention mechanism". Peneliti mengusulkan metode klasifikasi permukaan cacat strip baja berdasarkan mixed attention mechanism untuk mencapai kinerja klasifikasi cacat yang cepat dan akurat. Penelitian ini menggunakan perbandingan skala min-max, Transfer Learning (EfficientNet-B0), squeeze-excitation spatial mixed module, dan multilayer mixed attention mechanism (MMAM) module. Pada lingkungan indsutri yang kompleks metode konvensional untuk mengklasifikasi cacat permukaan pada strip baja canai panas memiliki masalah pada akurasi dan efisiensi yang rendah. Dengan menggunakan metode squeeze-excitation spatial mixed module mendapatkan akurasi pengenalan 96,75% dan multilayer mixed attention mechanism (MMAM) module mendapatkan akurasi pengenalan 97,70%. Kemudian pada transfer learning yaitu EfficientNet-B0 berbasis MMAM memperoleh hasil akurasi pengenalan 100%.

2.4 Tinjauan 4

Penelitian dilakukan oleh Fauzi et al. (2020) dengan judul "The importance of bounding box in motion detection". Peneliti ingin mengetahui penggunaan kotak pembatas (bounding box) dalam peningkatan pengenalan objek pada kamera pengintai. Penelitian ini menunjukkan bahwa kotak pembatas meningkatkan pengenalan objek pada kamera pengintai. Kotak pembatas juga membantu dalam mengidentifikasi kegiatan yang mencurigakan dalam rekaman kamera pengawas. Klasifikasi objek yang segmentasi dalam pencitraan medis juga meningkat dengan bantuan kotak pembatas yang diterapkan

2.5 Tinjauan 5

Penelitian dilakukan oleh Handayani et al. (2020) dengan judul "The Best Classification Algorithm for Identification Beef Quality Based on Marbling". Peneliti bertujuan untuk Mengidentifikasi kualitas daging berdasarkan Marbling dengan menggunakan metode Support vector machine (SVM), linear discriminant analysis,

dan pohon keputusan. Hasil dari penelitian ini menunjukkan bahwa SVM adalah algoritma dengan akurasi paling tinggi diantara algoritma lainnya dalam mengidentifikasi kualitas daging sapi.

2.6 Tinjauan 6

Penelitian dilakukan Hassan et al. (2023) dengan judul "An artificial intelligent manufacturing process for high-quality low-cost production". Peneliti mengimplementasikan deep learing dan machine learning untuk memberikan kontribusi yang signifikan dalam meningkatkan proses manufaktur memaksimalkan production rates untuk produk yang baik dan meminimalisir scrap rates atau reworks. Penerapan smart process akan berkontribusi yang signifikan dalam meningkatkan proses manufaktur yaitu memaksimalkan production rates untuk produk yang baik dan meminimalisir scrap rates atau reworks. Kecerdasan buatan (machine *learning*) yang diimplementasikan bermanfaat untuk meningkatakn akurasi prediksi model regresi serta menyempurnakan kecerdasan yang dimiliki dengan mempelajari parameter proses mana yang dapat membuat produk cacat sehingga nantinya dapat menyesuaikan parameter proses dengan mengabaikan pengaturan manual.

2.7 Tinjauan 7

Penelitian dilakukan oleh Li et al. (2020) dengan judul "Fabric defect detection method based on cascaded low-rank decomposition". Peneliti mendesain pendeteksi cacat pada kain secara otomatis berdasarkan cascaded low-rank decomposition dan menjaga pengendalian kualitas yang tinggi pada perusahaan tekstil. Metode yang diusulkan dievaluasi pada database gambar kain. Penelitian ini menggunakan Algoritma deteksi cacat berdasarkan cascaded low-rank decomposition. Dengan membandingkan di lapangan, diperoleh tingkat deteksi rata-rata sebesar 98,26%.

2.8 Tinjauan 8

Penelitian dilakukan oleh Liu, Wang, et al. (2022) dengan judul "A dual-branch balance saliency model based on discriminative feature for fabric defect detection". Peneliti mendesain model dual-branch balance saliency berbasis fully convolutional network (FCN) untuk deteksi cacat pada kain secara otomatis, serta meningkatkan pengendalian kualitas pada bidang manufaktur tekstil.

2.9 Tinjauan 9

Penelitian dilakukan oleh Naam et al. (2016) dengan judul "The algorithm of image edge detection on panoramic dental x-ray using multiple morphological gradient (mmg) method". Peneliti menggunakan metode multiple morphological gradient (mMG) dengan algoritma normal mMG, Enhancement mMG, dan Smooth mMG. Hasil dari penelitian ini adalah Ketiga algoritma tersebut diperiksa oleh dua orang dokter gigi. Hasil pemrosesan gambar ini sangat membantu untuk mengidentifikasi objek dalam gambar panorama terutama dalam mendeteksi gigi berlubang.

2.10 Tinjauan 10

Penelitian dilakukan oleh Purushothaman and Ahmad (2022) dengan judul "Integration of Six Sigma methodology of DMADV steps with QFD, DFMEA and TRIZ applications for image-based automated inspection system development: a case study". Peneliti membangun sistem inspeksi otomatis menggunakan mekanisme berbasis image analysis yang disebut i-AIS. Menggunakan metode desain Six Sigma (DSS). Langkah-langkah Define, measure, analyze, design, dan verify (DMADV) diterapkan dan diintegrasikan dengan teknik analisis yang spesifik dari quality function deployment (QFD), design failure mode effect analysis (DFMEA) dan theory of inventive problem solving (TRIZ). Verifikasi prototipe i-AIS menunjukkan pengoperasian pada mode optimal yang memenuhi persyaratan internal. Hasil verifikasi juga menunjukkan bahwa tingkat sigma meningkat dari 3,87 menjadi 4,33. Sementara itu, tingkat pengurangan kerusakan

meningkat menjadi 74,4% dan tingkat *downtime* juga mencatat peningkatan yang signifikan yaitu pengurangan sebesar 80,7%.

2.11 Tinjauan 11

Penelitian dilakukan oleh Wu et al. (2020) dengan judul "An end-to-end learning method for industrial defect detection". Peneliti mengembangkan metode deep learning yang lebih fleksibel untuk deteksi cacat pada industri dengan menggunakan End-to-end learning framework. Penelitian ini dilakukan untuk mengatasi kesulitan deteksi cacat blade. Sehingga dikembangkan arsitektur baru yang mengintegrasikan residue learning untuk melakukan deteksi cacat yang efisien. Percobaan dilakukan pada kumpulan data yang dikumpulkan, dan hasil percobaan menunjukkan bahwa sistem yang diusulkan dapat mencapai kinerja yang memuaskan dibandingkan metode lain. Selain itu, operasi pemerataan data membantu hasil deteksi cacat yang lebih baik.

2.12 Tinjauan 12

Penelitian dilakukan oleh Yuhandri et al. (2017) dengan judul "Object Feature Extraction of Songket Image Using Chain Code Algorithm". Peneliti bertujuan untuk mengetahui ciri-ciri motif yang terdapat pada gambar songket agar objek tersebut dapat terdeteksi dan dibaca. Metode yang digunakan adalah segmentasi warna citra dan morfologi matematis dalam mendeteksi objek dan kemudian mengekstraksi motf dengan cara penerapan algoritma pelacakan kontur moore dan pengembangan algoritma kode rantai. Hasilnya menunjukkan bahwa pengembangan algoritma kode rantai dapat menghasilkan jumlah objek, panjang kode rantai, dan nilai kemungkinan laju kemunculan setiap kode rantai dalam suatu motif, meskipun terdapat beberapa objek dalam suatu motif.

2.13 Tinjauan 13

Penelitian dilakukan oleh H. Zhang et al. (2023) dengan judul "Defect detection of color-patterned fabric based on Denoising GAN". Peneliti mengusulkan kerangka kerja deteksi cacat berdasarkan pembelajaran adversial

tanpa pengawasan untuk rekonstruksi gambar guna memecahkan masalah deteksi berlebihan atau kesalahan deteksi karena tidak dapat beradaptasi dengan pola kompleks kain berpola warna. Kerangka kerja yang diusulkan dibandingkan dengan metode canggih pada kumpulan data publik YDFID-1 (Kumpulan Data Gambar Kain Berwarna Benang-versi1). Kerangka kerja yang diusulkan juga divalidasi pada beberapa kelas dalam dataset MvTec AD. Hasil eksperimen berbagai pola/kelas pada YDFID-1 dan MvTecAD menunjukkan efektivitas dan keunggulan metode ini dalam deteksi cacat kain.

2.14 Tinjauan 14

Penenlitian dilakukan oleh R. Zhang et al. (2022) dengan judul "Ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion". Peneliti mengusulkan metode diagnosis ultrasonik baru untuk cacat las baja tahan karat berbasis multi-domain feature fusion untuk memecahkan dua masalah dalam diagnosis ultrasonik cacat las baja tahan karat austenitik. Hasil eksperimen menunjukkan bahwa akurasi diagnostik model diagnosis ringan yang dibangun dapat mencapai 96,55% untuk lima jenis cacat las baja tahan karat, antara lain retak, porositas, inklusi, kurang fusi, dan penetrasi tidak lengkap. Ini dapat memenuhi kebutuhan aplikasi teknik praktis. Metode ini memberikan landasan teori dan referensi teknis untuk mengembangkan dan menerapkan teknologi diagnosis cacat ultrasonik yang cerdas, efisien dan akurat.

2.15 Perbandingan Tinjauan Pustaka

Perbandingan tinjauan pustaka berisi tentang penulis, judul, tujuan, jurnal dan DOI, metode yang digunakan, serta hasil akhir. Berikut ini merupakan perbandingan tinjauan pustaka yang dijabarkan pada tabel di bawah ini.

Tabel 2.1 Perbandingan Tinjauan Pustaka

		Tuber 211 I et buit	angan mijaaan rasa		
Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	THE	Goar(s)		Wiethou	Result (s)
(Acosta &	Machine	Mengembang	International	Machine	Perbanding
Oliveira	learning-	kan relevance	Journal of Quality	Learning	an kinerja

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
Sant'Anna	based	mechine	& Reliability		relevance
, 2023)	control	vector	Management, vol.		machine
, 2023)	charts for	menggunakan	40 no. 3		vector
	monitorin	teknik kernel	https://doi.org/10.1		dengan
	g fraction	sparse	108/IJQRM-07-		support
	nonconfo	bayesian	2021-0210		vector
	rming	untuk			machine,
	product	meningkatkan			artificial
	in smart	support			neural
	manufact	machine			network
	uring	vector pada			and <i>beta</i>
		masalah			regression
		regresi dan			model
		klasifikasi.			menghasilk
					an bahwa
					pemantaua
					n proses
					berbasis
					relevance
					machine
					vector
					adalah alat
					pemantaua
					n kualitas
					produk
					cacat dalam
					proses
					manufaktur
					yang baik
					dibandingk
					an dengan

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					algoritma
					machine
					learing
					yang lain.
(Altuğ,	Applicati	Meminimalisi	International	Deep	Six sigma
2023)	on of six	r pemborosan	Journal of Lean Six	learning	digunakan
	sigma	biaya dan	Sigma, vol. 4 no. 7	dan six	untuk
	through	waktu pada	https://doi.org/10.1	sigma	mengurangi
	deep	perusahaan	108/IJLSS-08-		biaya dan
	learning	yang	2022-0191		waktu serta
	in the	memproduksi			meningkatk
	productio	baut dan mur			an nilai
	n of				tambah
	fasteners				pada
					produk.
					Optimalisas
					i six sigma
					dilakukan
					dengan
					bantuan
					deep
					learning.
					Peforma
					model yang
					dibuat pada
					deep
					learning
					cukup
					mendekati
					performa
					sebenarnya.

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)					Damanfaata
					Pemanfaata
					n six sigma
					dengan
					bantuan
					deep
					learing
					yang dibuat
					dapat
					menghemat
					hingga
					\$21,780
					serta
					penghemat
					an waktu
					yang dapat
					menghindar
					i kerugian
					mencapai
					\$30,000
					setiap
					tahun.
					Efisiensi
					pada
					coating
					thickness
					meningkat
					dari 85%
					menjadi
					95% yang
					mana
					mendekati
					mendekan

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
(111)					target yaitu
					95%-97%.
(Fan et	Surface	Mengusulkan	Robotic	Perbandin	Pada
al., 2023)	defect	metode	Intelligence and	gan skala	lingkungan
	classifica	klasifikasi	Automation, vol. 43	min-max,	indsutri
	tion of	permukaan	no. 4	Transfer	yang
	hot-rolled	cacat strip	https://doi.org/10.1	Learning	kompleks
	steel strip	baja	108/RIA-01-2023-	(Efficient	metode
	based on	berdasarkan	<u>0001</u>	Net-B0),	konvension
	mixed	mixed		squeeze-	al untuk
	attention	attention		excitation	mengklasifi
	mechanis	mechanism		spatial	kasi cacat
	m	untuk		mixed	permukaan
		mencapai		module,	pada strip
		kinerja		dan	baja canai
		klasifikasi		multilayer	panas
		cacat yang		mixed	memiliki
		cepat dan		attention	masalah
		akurat.		mechanis	pada
				m	akurasi dan
				(MMAM)	efisiensi
				module.	yang
					rendah.
					Dengan
					menggunak
					an metode
					squeeze-
					excitation
					spatial
					mixed
					module

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	Title	Gual(s)	Journal & DOI	Method	Result(s)
					mendapatk
					an akurasi
					pengenalan
					96,75% dan
					multilayer
					mixed
					attention
					mechanism
					(MMAM)
					module
					mendapatk
					an akurasi
					pengenalan
					97,70%.
					Kemudian
					pada
					transfer
					learning
					yaitu
					EfficientNet
					-B0
					berbasis
					MMAM
					memperole
					h hasil
					akurasi
					pengenalan
					100%.
Fauzi et	The	Mengetahui	2020 Fifth	Bounding	Hasil dari
al. (2020)	importan	penggunaan	International	box	penelitian
	ce of	kotak	Conference on		ini

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)		3041(8)		11201100	res die(s)
	bounding	pembatas	Informatics and		menunjuk
	box in	(bounding	Computing (ICIC)		kan bahwa
	motion	box) untuk	published by IEEE		kotak
	detection	meningkatka			pembatas
		n pengenalan			meningkat
		objek pada			kan
		kamera			pengenala
		pengintai			n objek
		(CCTV)			pada
		pada sektor			kamera
		kesehatan.			pengintai.
					Kotak
					pembatas
					juga
					membantu
					dalam
					mengident
					ifikasi
					kegiatan
					yang
					mencuriga
					kan dalam
					rekaman
					kamera
					pengawas.
					Klasifikasi
					objek
					yang
					segmentas

Handayan The Best Mengidentifik 2020 Fifth Support	i dalam pencitraan medis juga meningkat dengan bantuan kotak pembatas yang diterapkan
i et al. Classifica asi kualitas (2020) tion daging Conference on Algorith berdasarkan m for Identifica tion Beef Quality Based on Marbling Marbling Marbling Identifica tion Beef Quality Based on Marbling Marbl	Hasilnya SVM adalah algoritma menunjuk kan akurasi paling tinggi diantara algoritma lainnya dalam mengident ifikasi kualitas daging

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	Title	Guai(s)	Journal & DOI	Method	Kesuit(s)
Hassan et	An	Mengimplem	International	Deep	Penerapan
al. (2023)	artificial	entasikan	Journal of Quality	Learing	smart
	intelligen	deep learing	& Reliability	dan	process
	t	dan machine	Management, vol.	Machine	akan
	manufact	learning	40 no. 7	Learing	berkontribu
	uring	untuk	https://doi.org/10.1	untuk	si yang
	process	memberikan	108/IJQRM-07-	membang	signifikan
	for high-	kontribusi	<u>2022-0204</u>	un dan	dalam
	quality	yang		improve	meningkatk
	low-cost	signifikan		model	an proses
	productio	dalam		regresi	manufaktur
	n	meningkatkan			yaitu
		proses			memaksim
		manufaktur			alkan
		yaitu			production
		memaksimalk			rates untuk
		an production			produk
		rates untuk			yang baik
		produk yang			dan
		baik dan			meminimal
		meminimalisi			isir scrap
		r scrap rates			rates atau
		atau reworks.			reworks.
					Kecerdasan
					buatan
					(machine
					learning)
					yang
					diimplemen
					tasikan
					bermanfaat

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					untuk
					meningkata
					kn akurasi
					prediksi
					model
					regresi
					serta
					menyempur
					nakan
					kecerdasan
					yang
					dimiliki
					dengan
					mempelajar
					i parameter
					proses
					mana yang
					dapat
					membuat
					produk
					cacat
					sehingga
					nantinya
					dapat
					menyesuaik
					an
					parameter
					proses
					dengan
					mengabaik
					an

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)		3041(8)		1/1001100	res div(s)
					pengaturan
					manual.
(Li et al.,	Fabric	Mendesain	International	Algoritma	Metode
2020)	defect	pendeteksi	Journal of Clothing	deteksi	yang
	detection	cacat pada	Science and	cacat	diusulkan
	method	kain secara	Technology, vol. 32	berdasarka	dievaluasi
	based on	otomatis	no.4	n cascaded	pada
	cascaded	berdasarkan	https://doi.org/10.1	low-rank	database
	low-rank	cascaded low-	108/IJCST-03-	decomposi	gambar
	decompo	rank	<u>2019-0037</u>	tion	kain.
	sition	decompositio			Dengan
		n dan			membandin
		menjaga			gkan di
		pengendalian			lapangan,
		kualitas yang			diperoleh
		tinggi pada			tingkat
		perusahaan			deteksi
		tekstil.			rata-rata
					sebesar
					98,26% dan
					lebih
					unggul dari
					yang
					canggih.
(Liu, Liu,	Fabric	Mengusulkan	International	Berbasis	Terdapat
et al.,	defect	metode baru	Journal of Clothing	Deep	metode
2022)	detection	untuk	Science and	learning.	baru untuk
	based on	memcahkan	Technology, vol. 34	Metode	mendeteksi
	multi-	masalah	no.2	deteksi	cacat kain
	source	dalam	https://doi.org/10.1	cacat kain	dimana
	feature	mendeteksi	<u>108/IJCST-07-</u>	baru	hasil

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)		3041 (8)		1/1001104	11050110(8)
	fusion	cacat pada	2020-0108	berdasarka	eksperimen
		cacat kain.		n <i>multi-</i>	mendapatk
		Masalah		source	an tingkait
		tersebut yaitu:		feature	akurasi dan
		1) Model		fusion.	presisi
		yang sulit		Dalam	sebesar
		dilatih karena		proses	93,9% dan
		keterbatasan		pelatihan,	98,8%
		dataset, dan		fitur	ketika
		2) Akurasi		lapisan	diterapkan
		deteksi yang		dan	pada
		belum		informasi	dataset
		memadai		model	publik
		pada bidang		sumber	(TILDA)
		industri		digabungk	dan dataset
				an untuk	real-shot
				meningkat	(ZYFD).
				kan	Kinerjanya
				ketahanan	juga lebih
				dan	baik 5,9%
				akurasi.	dibandingk
				Selain itu,	an SSD
				model	yang
				pelatihan	disempurna
				baru yang	kan.
				disebut	
				multi-	
				source	
				feature	
				fusion	
				(MSFF)	

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
				diusulkan	
				untuk	
				mengatasi	
				sampel	
				dan	
				permintaa	
				n yang	
				terbatas	
				guna	
				mendapat	
				kan	
				armada	
				dan	
				kuantifika	
				si yang	
				tepat	
				secara	
				otomatis	
(Liu,	A dual-	Mendesain	International	Fuly	Hasil
Wang, et	branch	model dual-	Journal of Clothing	Convoluti	eksperimen
al., 2022)	balance	branch	Science and	onal	menunjukk
	saliency	balance	Technology, vol. 34	Network	an bahwa
	model	saliency	no. 3	(FCN)	metode
	based on	berbasis fully	https://doi.org/10.1		yang
	discrimin	convolutional	108/IJCST-02-		diusulkan
	ative	network	<u>2021-0017</u>		mengunggu
	feature	(FCN) untuk			li
	for fabric	deteksi cacat			pendekatan
	defect	pada kain			canggih
	detection	secara			pada tujuh
		otomatis,			metriks

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Teal)	(mmg)	panoramik		Smooth	mengident
	method	digital		mMG	ifikasi
		gambar x-		IIIIVIO	objek
					_
		ray.			dalam
					gambar
					panorama
					terutama
					dalam
					mendeteks
					i gigi
					berlubang
(Purushot	Integratio	Membangun	International	Mengguna	Verifikasi
haman &	n of Six	sistem	Journal of Lean Six	kan	prototipe i-
Ahmad,	Sigma	inspeksi	Sigma, vol. 13 no.	metode	AIS
2022)	methodol	otomatis	6	desain Six	mengungka
	ogy of	menggunakan	https://doi.org/10.1	Sigma	pkan
	DMADV	mekanisme	<u>108/IJLSS-05-</u>	(DSS).	pengoperas
	steps	berbasis	2021-0088	Langkah-	iannya pada
	with	image		langkah	mode
	QFD,	analysis yang		Define,	optimal
	DFMEA	disebut <i>i-AIS</i> .		measure,	yang
	and TRIZ			analyze,	memenuhi
	applicatio			design,	persyaratan
	ns for			dan <i>verify</i>	pelanggan
	image-			(DMADV	internal.
	based)	Hasil
	automate			diterapkan	verifikasi
	d			dan	juga
	inspectio			diintegrasi	menunjukk
	n system			kan	an bahwa

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	Title	Guai(s)	Journal & DOI	Method	Kesuit(s)
	developm			dengan	tingkat
	ent: a			teknik	sigma
	case			analisis	meningkat
	study			yang	dari 3,87
				spesifik	menjadi
				dari	4,33.
				quality	Sementara
				function	itu, tingkat
				deploymen	penguranga
				t (QFD),	n kerusakan
				design	meningkat
				failure	menjadi
				mode	74,4% dan
				effect	tingkat
				analysis	downtime
				(DFMEA)	juga
				dan theory	mencatat
				of	peningkata
				inventive	n yang
				problem	signifikan
				solving	yaitu
				(TRIZ)	penguranga
					n sebesar
					80,7%.
(Wu et	An end-	Mengembang	Assembly	End-to-	Untuk
al., 2020)	to-end	kan metode	Automation, vol. 40	end	mengatasi
	learning	deep learning	no. 1	learing	kesulitan
	method	yang lebih	https://doi.org/10.1	framewor	deteksi
	for	fleksibel	108/AA-08-2018-	k	cacat blade
	industrial	untuk deteksi	<u>114</u>		maka
	defect	cacat pada			dikembang

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
	detection	industri			kan
					arsitektur
					baru yang
					mengintegr
					asikan
					residue
					learning
					untuk
					melakukan
					deteksi
					cacat yang
					efisien.
					Platform
					pengumpul
					an data
					ganda juga
					dibangun
					dan validasi
					eksperimen
					tal ekstensif
					juga
					dilakukan.
					Banyak
					percobaan
					dilakukan
					pada
					kumpulan
					data yang
					dikumpulka
					n, dan hasil
					percobaan

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
Author (Year)	Title	Goal(s)	Journal & DOI	Method	menunjukk an bahwa sistem yang diusulkan dapat mencapai kinerja yang memuaskan dibandingk an metode lain. Selain itu, operasi pemerataan data membantu
					hasil deteksi cacat yang lebih baik.
Yuhandri et al. (2017)	Object Feature Extractio n of Songket Image Using Chain Code Algorith	mengetahui ciri-ciri motif yang terdapat pada gambar songket agar objek tersebut dapat	Int. J. Adv. Sci. Eng. Inf. Technol, vol. 7 no. 1	Metode yang digunaka n adalah segmenta si warna citra dan morfologi matemati	Hasilnya menunjuk kan bahwa pengemba ngan algoritma kode rantai dapat
	m	terdeteksi		s dalam	menghasil

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)					
		dan dibaca.		mendetek	kan
				si objek	jumlah
				dan	objek,
				kemudian	panjang
				mengekst	kode
				raksi	rantai, dan
				motf	nilai
				dengan	kemungki
				cara	nan laju
				penerapa	kemuncula
				n	n setiap
				algoritma	kode
				pelacakan	rantai
				kontur	dalam
				moore	suatu
				dan	motif,
				pengemb	meskipun
				angan	terdapat
				algoritma	beberapa
				kode	objek
				rantai.	dalam
					suatu
					motif.
(H. Zhang	Defect	Mengusulkan	International	Kerangka	Kerangka
et al.,	detection	kerangka	Journal of Clothing	kerja yang	kerja yang
2023)	of color-	kerja deteksi	Science and	diusulkan	diusulkan
	patterned	cacat	Technology, vol. 35	terdiri dari	dibandingk
	fabric	berdasarkan	no. 6	tiga	an dengan
	based on	pembelajaran	https://doi.org/10.1	bagian:	metode

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)	D		10071667		
	Denoisin	adversial	108/IJCST-03-	generator,	canggih
	gGAN	tanpa	2022-0032	diskrimina	pada
		pengawasan		tor, dan	kumpulan
		untuk		modul	data publik
		rekonstruksi		pascapemr	YDFID-1
		gambar guna		osesan	(Kumpulan
		memecahkan		gambar.	Data
		masalah		Generator	Gambar
		deteksi		mampu	Kain
		berlebihan		mengekstr	Berwarna
		atau		ak fitur-	Benang-
		kesalahan		fitur	versi1).
		deteksi karena		gambar	Kerangka
		tidak dapat		dan	kerja yang
		beradaptasi		kemudian	diusulkan
		dengan pola		merekonst	juga
		kompleks		ruksi	divalidasi
		kain berpola		gambar	pada
		warna.		tersebut.	beberapa
				Diskrimin	kelas dalam
				ator dapat	dataset
				mengawas	MvTec
				i generator	AD. Hasil
				untuk	eksperimen
				memperba	berbagai
				iki cacat	pola/kelas
				pada	pada
				sampel	YDFID-1
				guna	dan
				meningkat	MvTecAD
				kan	menunjukk
				MII	menunjukk

Author	Title	Goal(s)	Journal & DOI	Method	Result(s)
(Year)					
				kualitas	an
				rekonstruk	efektivitas
				si gambar.	dan
				Modul	keunggulan
				postproces	metode ini
				sing	dalam
				gambar	deteksi
				multidiffer	cacat kain.
				ence	
				digunakan	
				untuk	
				mendapat	
				kan hasil	
				akhir	
				deteksi	
				cacat kain	
				bermotif	
				warna.	
(R. Zhang	Ultrasoni	Mengusulkan	Sensor Review, vol.	multi-	Hasil
et al.,	c	metode	42 no. 2	domain	eksperimen
2022)	diagnosis	diagnosis	https://doi.org/10.1	feature	menunjukk
	method	ultrasonik	108/SR-08-2021-	fusion	an bahwa
	for	baru untuk	0272		akurasi
	stainless	cacat las baja			diagnostik
	steel	tahan karat			model
	weld	berbasis			diagnosis
	defects	multi-domain			ringan yang
	based on	feature fusion			dibangun
	multi-	untuk			dapat
	domain	memecahkan			mencapai
	feature	dua masalah			96,55%

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
	fusion	dalam			untuk lima
		diagnosis			jenis cacat
		ultrasonik			las baja
		cacat las baja			tahan karat,
		tahan karat			antara lain
		austenitik.			retak,
					porositas,
					inklusi,
					kurang fusi,
					dan
					penetrasi
					tidak
					lengkap. Ini
					dapat
					memenuhi
					kebutuhan
					aplikasi
					teknik
					praktis.
					Metode ini
					memberika
					n landasan
					teori dan
					referensi
					teknis
					untuk
					mengemba
					ngkan dan
					menerapka
					n teknologi
					diagnosis

Author (Year)	Title	Goal(s)	Journal & DOI	Method	Result(s)
					cacat
					ultrasonik
					yang
					cerdas,
					efisien dan
					akurat.

Kegiatan inspeksi pada industri umumnya dilakukan secara manual dengan tenaga manusia sebagai operator. Dengan mengandalakan tenaga manusia yang memiliki keterbatasan tentunya kegiatan ini memiliki kendala.

Revolusi industri 4.0 mendorong otomatisasi inspeksi produk untuk manufaktur yang tanpa cacat (*zero defect*) dan berkualitas tinggi dimana kemampuan fleksibilitas manusia berkolaborasi dengan kemampuan akurasi komputer dan mesin (Brito et al., 2020). Perkembangan *computer vision* dapat sangat membantu dalam dunia industri manufaktur untuk mencapai kualitas yang unggul (Schmidt et al., 2020).

Pengendalian kualitas adalah proses yang penting dalam kegiatan manufaktur untuk memastikan bahwa produk tidak memiliki kecacatan untuk memenuhi kebutuhan pelanggan. Terdapat kemungkinan manusia tidak mampu mengidentifikasi cacat pada produk karena keterbatasan dari indera penglihatan manusia. Otomatisasi dibutuhkan untuk meminimalisir produk cacat lolos sampai ke tangan pelanggan yang akan berpengaruh terhadap kepuasan pelanggan. Otomatisasi pada kegiatan inspeksi produk sangat peting untuk menjaga kualitas secara berkelanjutan (Deshpande et al., 2020).

Berdasarkan perbandingan tinnjauan pustaka di atas yang kemudian disesuaikan dengan tujuan dari penelitian ini. Maka dapat disimpulkan.

 Kegiatan inspeksi yang dilakukan dengan manual memiliki berbagai macam kendala dan keterbatasan.

- 2. Kegiatan inspeksi yang dilakukan dengan manual membutuhkan tenaga (operator) ahli dengan jumlah yang banyak sehingga tidak efisien mengingat perbedaan persepsi antara operator serta *human error* sangat mungkin terjadi.
- 3. Otomatisasi kegiatan inspeksi produk menggunakan *artificial intelogence* namun terkendala pemilihan algoritma karena membutuhkan eskperimen secara intensif dan komprehensif.
- 4. Informasi yang disampaikan harus dapat menjelaskan kondisi produk dengan baik dan jelas sehingga tersampaikan dengan baik ke pihak terkait.

BAB III

METODOLOGI

3.1 Motivasi

Industri manufaktur memiliki berbagai macam produk yang ada di dalamnya. Dalam upaya pemenuhan kualitas yang tinggi serta menjaga kepuasan pelanggan dan reputasi perusahaan maka mendeteksi produk yang cacat sedini mungkin merupakan aspek yang penting. Sehingga motivasi dari disertasi ini adalah sebagai berikut.

- Pengembangan aplikasi pendeteksi cacat pada produk ini didasari keinginan peneliti untuk meningkatkan kinerja pengendalian kualitas pada industri manufaktur sehingga dapat membantu menjaga kualitas produk serta efisiensi dalam kegiatan pengendalian kualitas.
- Untuk meminimalisir pemborosan waktu, bahan baku, biaya dan sumber daya lainnya karena deteksi cacat pada produk dilakukan sedini dan secepat mungkin.
- 3. Meningkatkan efisiensi pada kegiatan inspeksi produk dengan menerapkan otomatisasi melalui aplikasi yang dikembangkan.
- 4. Mengintegrasikan teknologi yang sedang berkembang seperti *artificial intelligence* dengan industri manufaktur sehingga tercipta manufaktur cerdas yang akan berakibat pendapatan profit perusahaan yang optimal.
- Memberikan kontribusi pemahaman dan pengembangan teknologi baru dalam deteksi objek sehingga bisa menjadi referensi untuk pembaca serta penelitian selanjutnya.

3.2 Alur Kerja Riset

Alur kerja riset digambarkan melalui diagram alir. Tujuannya agar penelitian dapat terstruktur sehingga tidak ada tahapan penelitian yang terlewat. Secara umum berikut ini merupakan diagram alir penelitian ini.

Gambar 3.1 Diagram Alir Penelitian

Diagram alir penelitian di atas menggambarkan alur penelitian yang akan dilakukan. Berikut ini adalah penjelasan dari diagram alir penelitian di atas.

1. Tahap Awal

Kegiatan yang dilakukan pada tahap awal ini adalah merancang dan membuat prototype alat deteksi cacat dan pengumpulan data cacat objek. Prototype alat ini menggunakan ban berjalan dengan motor listrik sebagai penggeraknya dengan alat pencahayaan yang cukup. Alat ini nantinya digunakan untuk mengumpulkan data yang akan digunakan untuk melakukan perancangan dan pelatihan model deteksi cacat objek. Pengumpulan data dilakukan untuk memperoleh data yang dibutuhkan pada penelitian ini. Data bisa berupa data primer dan data sekunder ataupun keduanya bergantung pada kebutuhan

penelitian yang akan dilakukan. Data primer dikumpulan dengan memotret objek pada ban berjalan menjadi citra baik citra bergerak maupun citra tak bergerak yang akan menjadi satu kesatuan yaitu *dataset*. Data primer dikumpulkan menggunakan alat yang dirancang seperti di bawah ini.

Gambar 3.2 Rancangan Prototipe Alat

Gambar 3.2 di atas menggambarkan rancangan alat yang akan dikembangkan. Alat tersebut pertama digunakan sebagai media untuk pengambilan data primer yaitu data citra dari objek yang akan dideteksi. Objek berupa sekrup akan berjalan melalui ban berjalan (conveyor) yang nantinya akan ditangkap gambarnya oleh webcam atau kamera yang terhubung dengan komputer untuk menyimpan gambar tersebut untuk kebutuhan pelatihan model. Sedangkan data sekunder dikumpulkan melalui website kaggle maupun website atau jurnal lain yang sejenis. Hasil dari akuisisi citra ini akan digunakan untuk pelatihan dan pengujian data. Sampel yang diambil adalah objek berupa sekrup yang terdapat kecacatan. Data tersebut kemudian dikumpulkan menjadi sebuah dataset yang akan digunakan untuk melatih model. Data-data yang diambil kemudian dikelompokkan menjadi beberapa kelas sesuai dengan jenis cacat yang ada pada sekrup tersebut. Luaran pada tahap ini adalah pengajuan HKI untuk prototype alat pendeteksi cacat objek yang dirancang.

2. Tahap Pengembangan

Tahap ini terdapat beberapa kegiatan yang dilakukan. Pertama adalah melakukan uji coba prototype alat deteksi cacat objek yang digambarkan pada gambar 3.2 di atas. Uji coba dilakukan dengan menyesuaikan tinggi kamera, tingkat pencahayaan, kecepatan ban berjalan serta pengaturan tempat ban berjalan untuk menjaga efektivitas dan efisiensi dalam mendeteksi objek. Kedua adalah merancang model untuk mendeteksi cacat objek dengan

menggunakan deep learning. Sebelum melatih data dilakukan preprocessing Kegiatan dilakukan dengan menggunakan terlebih dahulu. ini website roboflow. **Preprocessing** dilakukan mengoptimalkan pelatihan dengan menganotasi citra untuk menandai bagian penting dari citra (region of interest), menyamakan orientasi citra, mengubah ukuran citra agar sama, memperbanyak variasi data dengan augmentasi, dan generalisir data sehingga menjadi satu kesatuan dataset yang lebih siap untuk dilatih.

Setelah preprocessing dilakukan maka diharapkan pelatihan data yang dilakukan lebih optimal. Pelatihan data dilakukan untuk melatih model mengenali citra yang akan dideteksi sehingga pada penerapannya mendapatkan hasil deteksi yang akurat dan optimal. Pelatihan data dilakukan dengan menggunakan salah satu algoritma dari teknologi kecerdasan artifisial yaitu deep learning dengan bahasa pemrograman yang digunakan adalah python. Pada pelatihan data ini juga akan mendapatkan nilai pengukuran evaluasi (measurment evaluation) berupa accuracy, recall and precision, dan mean average precision (MAP). Pada umumnya pelatihan harus memiliki jumlah data (dalam hal ini adalah citra) yang lebih banyak dibandingkan pengujian.

3. Tahap Optimasi

Tahap pengembangan telah dilakukan kemudian masuk ke tahap optimasi. Tahap ini terdapat kegiatan yaitu evaluasi dan penyempurnaan model deteksi cacat objek. Evaluasi dan penyempurnaan dilakukan agar fitur yang ada pada aplikasi yang akan dikembangkan dapat ditampilkan dengan maksimal. Fitur yang akan ditambahkan pada model pendeteksi objek berupa kemampuan komputer untuk secara otomatis menyimpan hasil deteksi menjadi sebuah basis data. Sehingga nantinya data tersebut dapat menjadi acuan bagi departemen terkait untuk inovasi ke depannya. Setelah pelatihan data dilakukan, maka selanjutnya adalah pengujian data. Pengujian data dilakukan untuk menguji model sejauh mana dapat mendeteksi cacat dari suatu produk. Pada pengujian data dilakukan dengan mengunggah data secara acak selain data yang digunakan pada pelatihan. Pada akhirnya akan menampilkan output

model dalam mendeteksi cacat pada produk. Setelah itu maka dibangun aplikasi yang mampu mendeteksi cacat produk pada industri secara real time. Aplikasi ini nantinya akan menampilkan hasil deteksi dari produk yang bergerak. Informasi yang disampaikan antara lain kondisi dari produk cacat atau tidak serta bagian mana yang cacat akan ditandai oleh *bounding box*. Hal ini akan dengan cepat membantu operator mengetahui cacat jenis apa yang terjadi. Sehingga dapat ditindaklanjuti sesegera mungkin yang secara tidak langsung juga membantu dalam pengambilan keputusan. Target penelitian ini adalah pengajuan HKI serta publikasi artikel/jurnal ilmiah internasional bereputasi (Q1; IEEE Access).

3.3 Pendekatan

Pendekatan yang dilakukan adalah dengan menggunakan teknologi artificial intelligence dalam mengadopsi kemampuan manusia dalam mendeteksi objek. Pendekatan ini menggabungkan antara pengolahan citra dan deep learning dengan memanfaatkan salah satu arsitektur yang dimilikinya. Selain itu diterapkan juga pengukuran evaluasi seperti precision, recall, dan mean average precision (MAP) untuk memastikan model yang dikembangkan dapat digunakan dengan akan dikembangkan sebuah aplikasi yang kemungkinan optimal. Nantinya berbasis web untuk mempermudah pengguna untuk mengambil gambar (bergerak maupun tak bergerak) yang kemudian mengirimnya ke sistem pendeteksi cacat dan menerima hasil deteksi secara real time. Hasil deteksi secara real time dikehendaki agar produk dapat diperiksa selama proses produksi berlangsung sehingga cacat dapat dideteksi secepat dan seakurat mungkin. Hal ini akan membantu operator untuk melakukan kegiatan inspeksi produk dengan efisien.

3.4 Rencana Jadwal Kegiatan

Rencana jadwal kegiatan dibuat bertujuan untuk menentukan rencana waktu suatu kegiatan yang menunjang penelitian ini dilakukan. Berikut ini merupakan tabel rencana jadwal kegiatan pada penelitian ini.

Tabel 3.1 Rencana Jadwal Kegiatan

	Taber 5.1 Rencana Jadwai Kegiatan												
No	Nama Kegiatan		Bulan										
110		1	2	3	4	5	6	7	8	9	10	11	12
1	Perancangan dan pembuatan prototype alat deteksi cacat												
2	Pengumpulan data cacat objek												
3	Uji coba prototype alat deteksi cacat objek												
4	Perancangan model deteksi cacat objek menggunakan deep learning												
5	Implementasi dan pelatihan model deteksi cacat objek												
6	Evaluasi dan penyempurnaan model deteksi cacat objek												
7	Pengujian model deteksi objek menggunakan deep learing												
8	Pembuatan aplikasi pendeteksi objek cacat												
10	Publikasi artikel jurnal ilmiah internasional bereputasi Q3												
11	Pengajuan HKI												

DAFTAR PUSTAKA

- Acosta, S. M., & Oliveira Sant'Anna, A. M. (2023). Machine learning-based control charts for monitoring fraction nonconforming product in smart manufacturing. *International Journal of Quality & Reliability Management*, 40(3), 727-751. doi:10.1108/IJQRM-07-2021-0210
- Altuğ, M. (2023). Application of six sigma through deep learning in the production of fasteners. *International Journal of Lean Six Sigma*, 14(7), 1376-1402. doi:10.1108/IJLSS-08-2022-0191
- Asín, J., Ávila-de la Torre, M., Berges-Muro, L., & Sánchez-Valverde, B. (2017). Improvement of the Quality Control Plan in the reception of waste glass. Application in Verallia. *Procedia Manufacturing*, 13, 1135-1142.
- Baikova, D., Maia, R., Santos, P., Ferreira, J., & Oliveira, J. (2019). *Real time object detection and tracking*. Paper presented at the Ambient Intelligence–Software and Applications–, 9th International Symposium on Ambient Intelligence.
- Brito, T., Queiroz, J., Piardi, L., Fernandes, L. A., Lima, J., & Leitão, P. (2020). A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. *Procedia Manufacturing*, *51*, 11-18.
- Deshpande, A. M., Minai, A. A., & Kumar, M. (2020). One-shot recognition of manufacturing defects in steel surfaces. *Procedia Manufacturing*, 48, 1064-1071.
- Essah, R., Anand, D., & Singh, S. (2022). An intelligent cocoa quality testing framework based on deep learning techniques. *Measurement: Sensors*, 24, 100466.
- Fan, H., Dong, Q., & Guo, N. (2023). Surface defect classification of hot-rolled steel strip based on mixed attention mechanism. *Robotic Intelligence and Automation*, 43(4), 455-467. doi:10.1108/RIA-01-2023-0001
- Fauzi, A., Madenda, S., Wibowo, E. P., & Masruriyah, A. F. N. (2020). *The importance of bounding box in motion detection*. Paper presented at the

- 2020 Fifth International Conference on Informatics and Computing (ICIC).
- Handayani, H. H., Madenda, S., Wibowo, E. P., Kusuma, T. M., Widiyanto, S., & Masruriyah, A. F. N. (2020). *The Best Classification Algorithm for Identification Beef Quality Based on Marbling*. Paper presented at the 2020 Fifth International Conference on Informatics and Computing (ICIC).
- Hassan, N. M., Hamdan, A., Shahin, F., Abdelmaksoud, R., & Bitar, T. (2023). An artificial intelligent manufacturing process for high-quality low-cost production. *International Journal of Quality & Reliability Management*, 40(7), 1777-1794. doi:10.1108/IJQRM-07-2022-0204
- Jarkas, O., Hall, J., Smith, S., Mahmud, R., Khojasteh, P., Scarsbrook, J., & Ko, R. K. (2023). ResNet and Yolov5-enabled non-invasive meat identification for high-accuracy box label verification. *Engineering Applications of Artificial Intelligence*, 125, 106679.
- Khurana, P., Sharma, A., Singh, S. N., & Singh, P. K. (2016). A survey on object recognition and segmentation techniques. Paper presented at the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).
- Li, C., Liu, C., Liu, Z., Yang, R., & Huang, Y. (2020). Fabric defect detection method based on cascaded low-rank decomposition. *International Journal* of Clothing Science and Technology, 32(4), 483-498. doi:10.1108/IJCST-03-2019-0037
- Liu, Z., Liu, S., Li, C., & Li, B. (2022). Fabric defect detection based on multi-source feature fusion. *International Journal of Clothing Science and Technology*, 34(2), 156-177. doi:10.1108/IJCST-07-2020-0108
- Liu, Z., Wang, M., Li, C., Ding, S., & Li, B. (2022). A dual-branch balance saliency model based on discriminative feature for fabric defect detection. *International Journal of Clothing Science and Technology*, 34(3), 451-466. doi:10.1108/JJCST-02-2021-0017

- Naam, J., Harlan, J., Madenda, S., & Wibowo, E. P. (2016). The algorithm of image edge detection on panoramic dental x-ray using multiple morphological gradient (mmg) method. *International Journal on Advanced Science, Engineering Information Technology*, 6(6), 1012-1018.
- Psarommatis, F., Sousa, J., Mendonça, J. P., & Kiritsis, D. J. I. J. o. P. R. (2022). Zero-defect manufacturing the approach for higher manufacturing sustainability in the era of industry 4.0: a position paper. 60(1), 73-91.
- Purushothaman, K., & Ahmad, R. (2022). Integration of Six Sigma methodology of DMADV steps with QFD, DFMEA and TRIZ applications for image-based automated inspection system development: a case study. *International Journal of Lean Six Sigma*, 13(6), 1239-1276. doi:10.1108/JJLSS-05-2021-0088
- Reyes-Luna, J. F., Chang, S., Tuck, C., & Ashcroft, I. (2023). A surrogate modelling strategy to improve the surface morphology quality of inkjet printing applications. *Journal of Manufacturing Processes*, 89, 458-471.
- Schmidt, D., Gevers, R., Schwiep, J., Ordieres-Meré, J., & Villalba-Diez, J. (2020). Deep learning enabling quality improvement in rotogravure manufacturing. *Procedia Manufacturing*, *51*, 330-336.
- Shi, Y., Wang, X., Borhan, M. S., Young, J., Newman, D., Berg, E., & Sun, X. (2021). A review on meat quality evaluation methods based on non-destructive computer vision and artificial intelligence technologies. *Food science of animal resources*, 41(4), 563.
- Suhartini, N. (2020). Penerapan Metode Statistical Proses Control (SPC) Dalam Mengidentifikasi Faktor Penyebab Utama Kecacatan Pada Proses Produksi Produk Abc. *Jurnal Ilmiah Teknologi Dan Rekayasa*, 25(1), 10-23.
- Villalba-Diez, J., Schmidt, D., Gevers, R., Ordieres-Meré, J., Buchwitz, M., & Wellbrock, W. (2019). Deep learning for industrial computer vision quality control in the printing industry 4.0. Sensors, 19(18), 3987.
- Wu, Y., Guo, D., Liu, H., & Huang, Y. (2020). An end-to-end learning method for industrial defect detection. Assembly Automation, 40(1), 31-39. doi:10.1108/AA-08-2018-114

- Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges. *Materials*, 13(24), 5755.
- Yuhandri, Madenda, S., Wibowo, E. P., & Karmilasari. (2017). Object Feature Extraction of Songket Image Using Chain Code Algorithm. *Int. J. Adv. Sci. Eng. Inf. Technol*, 7(1), 235-241.
- Zhang, H., Wang, S., Mi, H., Lu, S., Yao, L., & Ge, Z. (2023). Defect detection of color-patterned fabric based on DenoisingGAN. *International Journal of Clothing Science and Technology*, 35(6), 865-888. doi:10.1108/IJCST-03-2022-0032
- Zhang, R., Zhao, N., Fu, L., Pan, L., Bai, X., & Song, R. (2022). Ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion. Sensor Review, 42(2), 214-229. doi:10.1108/SR-08-2021-0272