ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

Εργασία 2 KPCA+LDA

Υπολογιστική Νοημοσύνη-Στατιστική Μάθηση

Σουράνης Παναγιώτης ΑΕΜ:17

Το παρακάτω κείμενο είναι μια σύντομη αναφορά της εφαρμογής των αλγορίθμων KPCA plus LDA στο dataset **RNA Gene Sequence** το οποίο πάρθηκε από την σελίδα

https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq

Περιγραφή Dataset:

Στο παρακάτω σύνολο δεδομένων μας δίνονται οι πληροφορίες από αλληλουχίες γονιδίων RNA οι οποίες αφορούν 5 συγκεκριμένα γονίδια τα οποία είναι τα (BRCA, COAD, KIRC, LUAD, PRAD). Στόχος μας είναι λοιπόν να κατατάξουμε τις αλληλουχίες RNA στις παραπάνω κλάσεις

Ας ξεκινήσουμε με την περιγραφή του συνόλου δεδομένων:

	Unnamed: 0	gene_0	gene_1	gene_2	gene_3	gene_4	gene_5	gene_6	gene_7	gene_8	 gene_20521	gene_20522	gene_20523	gene_20524	
0	sample_0	0.0	2.017209	3.265527	5.478487	10.431999	0.0	7.175175	0.591871	0.0	 4.926711	8.210257	9.723516	7.220030	ĺ
1	sample_1	0.0	0.592732	1.588421	7.586157	9.623011	0.0	6.816049	0.000000	0.0	 4.593372	7.323865	9.740931	6.256586	
2	sample_2	0.0	3.511759	4.327199	6.881787	9.870730	0.0	6.972130	0.452595	0.0	 5.125213	8.127123	10.908640	5.401607	
3	sample_3	0.0	3.663618	4.507649	6.659068	10.196184	0.0	7.843375	0.434882	0.0	 6.076566	8.792959	10.141520	8.942805	
4	sample_4	0.0	2.655741	2.821547	6.539454	9.738265	0.0	6.566967	0.360982	0.0	 5.996032	8.891425	10.373790	7.181162	

5 rows × 20532 columns

Παρατηρούμε ότι έχουμε δεδομένα τα οποία δεν ανήκουν σε καμία κατηγορία και δεν μπορούμε να τα συμπεριλάβουμε στην εκπαίδευση του αλγορίθμου και για αυτό πρέπει να απομακρυνθούν.

Ας ρίξουμε μια ματία λοιπόν σε κάποια τυχαία δεδομένα

Σχήμα 1.1 (Γονίδιο BRCA)

Σχήμα 1.2 (Γονίδιο PRAD)

Σχήμα 1.3 (Γονίδιο LUAD)

Έπειτα θα ήταν χρήσιμο να χρησιμοποιήσουμε ένα διάγραμμα πίτας για να μπορέσουμε να καταλάβουμε την κατανομή αυτων των γονιδίων στο συγκεκριμένο dataset έτσι ώστε να καταλάβουμε αν οι κλάσεις του συνόλου μας δεν είναι ισορροπημένες.

Σχήμα 1.4 (Genes Pie Chart)

Φαίνεται λοιπόν να υπερέχει μεταξύ των άλλων η κλάση με το γονίδιο BRCA, μένει να δούμε λοιπόν κατά πόσο αυτό θα επηρεάσει το τελικό αποτέλεσμα.

Θα εφαρμόσουμε λοιπόν στην συνέχεια κανονικοποίηση στα δεδομένα μας (Standard Scaling) διότι είναι ευκολότερο για τον αλγόριθμο μας να επεξεργαστεί τα δεδομένα όταν οι τιμές τους είναι «σχετικά» μικρότερες απ'ότι ήταν στο αρχικό σύνολο.

Η εικόνα που προκύπτει μετά την εφαρμογή scaling είναι η παρακάτω.

Σχήμα 1.5 (Γονίδιο BRCA)

RNA Gene Sequence

Βλέπουμε ότι όλες οι τιμές έχουν συρρικνωθεί στο διάστημα [-3, 3] απ'ότι ήταν στην αρχή στο [0,16].

Εφόσον λοιπόν πραγματοποιήσαμε και το scaling ήρθε η ώρα να προχωρήσουμε στην εφαρμογή του Kernel PCA με τους 3 γραμμικούς πυρήνες (Linear, Polynomial, Radial Basis Function)

Linear Kernel PCA

Στον κώδικα ζητήθηκε να κρατήσει τουλάχιστον το 93% της συνολικής πληροφορίας οπότε το αποτέλεσμα που μας δώθηκε ήταν ότι θα έπρεπε να κρατήσουμε τουλάχιστον 350 χαρακτηριστικά τουλάχιστον, η αρχική διάσταση ξεπερνούσε τις 20000

Η διακύμανση της πληροφορίας φαίνεται στο παρακάτω σχήμα

Σχήμα 1.6α και 1.6β

Η δεύτερη εικόνα αφορά το cumulative percentage δηλαδή το συνολικό ποσοστό της πληροφορίας που διατηρείται όσο αυξάνουμε το πλήθος των χαρακτηριστικών.

Η προβολή στις 2 διαστάσεις των δεδομένων μας φαίνεται στο παρακάτω σχήμα

Σχήμα 1.7

First Principal Component

Προβολή στις 3 διαστάσεις

Σχήμα 1.8

Στην συνέχεια εφαρμόστηκαν 2 αλγόριθμοι για την κατηγοριοποίηση (K-Nearest Neighbors και LogisticRegression) των οποίων τα αποτελέσματα εμφανίζονται παρακάτω.

Precision (Nearest Neighbors)

Recall (KNN)

F1 Score (KNN)

Classification Report

		Test		
	precision	recall	fl-score	support
0	1.00	0.99	0.99	91
1	1.00	1.00	1.00	24
2	0.98	1.00	0.99	43
3	0.98	1.00	0.99	41
4	1.00	0.98	0.99	42
avg / total	0.99	0.99	0.99	241

		Train		
	precision	recall	fl-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

Confussion Matrix

Classification Report (Logistic Regression)

	support	fl-score	recall	precision	
7					
1	90	0.99	1.00	0.99	0
	24	1.00	1.00	1.00	1
	44	1.00	1.00	1.00	2
	42	0.99	0.98	1.00	3
	41	1.00	1.00	1.00	4
	241	1.00	1.00	1.00	avg / total
	support	fl-score	recall	precision	
				_	
,					
7	210	1.00	1.00	1.00	0
7	210 54	1.00	1.00	1.00	0
7					
1	54	1.00	1.00	1.00	1
1	54 102	1.00 1.00	1.00 1.00	1.00 1.00	1 2
4	54 102 99	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1 2 3
1	54 102 99	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1 2 3

> Radial Basis Function KernelPCA

Για την περίπτωση του RBF PCA έγινε έλεγχος στο gamma για τις παρακάτω τιμές

\triangleright RBF gamma = 0.5

Στην περίπτωση του RBF PCA χρειάστηκαν όπως είναι λογικό περισσότερα components για να διατηρήσει το 93% της πληροφορίας της τάξης των 530.

Στην συγκεκριμένη περίπτωση σε κάθε component αντιστοιχούσε 0.00178891 της συνολικής πληροφορίας.

Παρακάτω το αθροιστικό διάγραμμα για το μέγεθος της πληροφορίας

Ας δούμε στη συνέχεια την προβολή των στοιχείων μας στις 2 και ακολούθως στις 3 διαστάσεις.

2D Projection of points

Όπως βλέπουμε στη συγκεκριμένη περίπτωση τα δείγματα έχουν πέσει το ένα πάνω στο άλλο κατι που δεν είναι επιθυμητό καθώς στόχος μας είναι να τα διαχωρίσουμε όσο καλύτερα μπορούμε.

3D Projection of points

Note!

Τα αποτελέσματα του overfitting είναι περισσότερο ευδιάκριτα στις 3 διαστάσεις και η εφαρμογή του μετασχηματισμού στο test σύνολο δεδομένων μας επέστρεψε πίνακα του οποίου όλες οι τιμές ήταν μηδενικές και για αυτό δεν προχωρήσαμε στην εφαρμογή του classifier.

Τα ίδια αποτελέσματα προέκυψαν και για τις υπόλοιπες τιμές του gamma για αυτό προχωρήσαμε σε επανακαθορισμό των αρχικών τιμών,οι νέες τιμες είναι

Gamma values: 0.00005, 0.000005

ightharpoonup RBF (gamma = 0.00005)

Πληροφορία που διατηρεί το κάθε

,

χαρακτηριστικό

Αθροιστικό διάγραμμα της πληροφορίας

2D Projection of points

RBF PCA n_components=460 gamma=0.00005

First Principal Component

3D Projection of points

Ας προχωρήσουμε λοιπόν στην εφαρμογή του classifier και στα αποτελέσματα του.

Precision

Recall

F1 Score

Classification Report

Test Train

	precision	recall	fl-score	support
0	0.98	0.89	0.93	99
1	0.96	1.00	0.98	23
2	0.95	1.00	0.98	42
3	0.67	1.00	0.80	28
4	1.00	0.84	0.91	49
avg / total	0.94	0.92	0.92	241

	precision	recall	fl-score	support
0	1.00	1.00	1.00	210
1 2	1.00 1.00	1.00	1.00 1.00	54 102
3 4	1.00 1.00	1.00	1.00 1.00	99 95
avg / total	1.00	1.00	1.00	560

Όπως είναι φανερό έχει γίνει overfitting και για αυτό η απόδοση του αλγορίθμου στα test δεδομένα είναι αρκετά μικρότερη από την αποδόση στα train η οποία βρέθηκε να είναι άριστη.

Confussion Matrix

ightharpoonup RBF (gamma = 0.000005)

2D Projection of points

3D Projection of points

Precision

Recall

F1 Score

Classification Report

	precision	recall	fl-score	support
0	1.00	0.99	0.99	91
1	1.00	1.00	1.00	24
_	1.00	1.00	1.00	29
2	0.98	1.00	0.99	43
3	0.98	1.00	0.99	41
4	1.00	0.98	0.99	42
avg / total	0.99	0.99	0.99	241

Train

	precision	recall	fl-score	support
o	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

Confussion Matrix

> Polynomial Kernel PCA

Στην συνέχεια θα εφαρμόσουμε τον πολυωνυμικό πυρήνα για βαθμούς πολυωνύμου 3 και 4

> Polynomial Kernel PCA degree = 3

Διατηρήσαμε 350 components στη συγκεκριμένη περίπτωση

Πληροφορία που διατηρεί το κάθε

χαρακτηριστικό 0.06 0.04 0.02 0.00 0

Αθροιστικό

2D projection of points

First Principal Component

3D projection of points

Όπως παρατηρούμε και σε αυτήν την περίπτωση έχει γίνει overfitting στα δεδομένα μας.

Precision

F1 Score

Classification Report

Test Train

	precision	recall	fl-score	support
0	1.00	0.71	0.83	127
1	0.96	1.00	0.98	23
2	0.84	1.00	0.91	37
3	0.33	1.00	0.50	14
4	0.98	1.00	0.99	40
avg / total	0.93	0.85	0.86	241

	precision	recall	fl-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

Confussion Matrix

Note!

Οπως σε προηγούμενες περιπτώσεις έτσι και σε αυτή είχαμε overfitting στην εφαρμογή του αλγορίθμου που προκύπτει ξεκάθαρα από το classification report βλέποντας πόσο χαμηλό είναι το precision για την κλάση 3,για αυτό τον λόγο θα παραλλείψουμε να εφαρμόσουμε τον Polynomial KernelPCA για βαθμο πολυωνύμου

μεγαλύτερο του 3.Θα περάσουμε στην συνέχεια στην εφαρμογή του KernelPCA plus LDA διαδοχικά.

➤ Linear KernelPCA (n_components=350) plus LDA (n=3)

2D projection of points

Linear kernelPCA n=350 plus LDA n=3

First Principal Component

3D projection of points

Classification Report

Test Train

	precision	recall	fl-score	support
	1 00	1 00	1 00	0.0
0	1.00	1.00	1.00	90
1	1.00	1.00	1.00	24
2	1.00	1.00	1.00	44
3	1.00	1.00	1.00	42
4	1.00	1.00	1.00	41
avg / total	1.00	1.00	1.00	241

	precision	recall	fl-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

Confussion Matrix

> Linear KernelPCA (n_components=350) plus LDA (n=4)

Η προβολή στις 2 και στις 3 διαστάσεις καθώς και τα αποτελέσματα των score προέκυψαν ακριβώς τα ίδια με την περίπτωση όπου n=3 και για αυτό παραλλείπονται οι εικόνες.

- > RBF Kernel PCA (0.00005, 0.000005) plus LDA (n=3)
- **Gamma value 0.00005**

2D projection of points

RBF KernelPCA n=460 gamma=0.00005 plus LDA n=3

3D projection of points

Precision

Recall

F1 Score

Classification report

Test Train

	precision	recall	fl-score	support
0	0.86	1.00	0.92	77
1	1.00	1.00	1.00	24
2	0.93	1.00	0.96	41
3	0.86	1.00	0.92	36
4	1.00	0.65	0.79	63
avg / total	0.92	0.91	0.90	241

	precision	recall	fl-score	support
_				
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

Confussion Matrix

> RBF Kernel PCA (0.00005) plus LDA (n=4)

Classification Report

Test Train

	precision	recall	fl-score	support
0	1.00	0.97	0.98	93
1	1.00	1.00	1.00	24
2	0.95	1.00	0.98	42
3	0.98	1.00	0.99	41
4	1.00	1.00	1.00	41
avg / total	0.99	0.99	0.99	241

	precision	recall	fl-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

> RBF Kernel PCA (0.000005) n=350 plus LDA (n=3)

Test Train

	precision	recall	fl-score	support
0	1.00	1.00	1.00	90
1	1.00	1.00	1.00	24
2	0.98	1.00	0.99	43
3 4	1.00 1.00	0.98 1.00	0.99 1.00	43 41
1	1.00	1.00	1.00	11
avg / total	1.00	1.00	1.00	241

	precision	recall	fl-score	support
o	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

> RBF Kernel PCA (0.000005) n=350 plus LDA (n=4)

	precision	recall	fl-score	support
0	1.00	1.00	1.00	90
1	1.00	1.00	1.00	24
2	1.00	1.00	1.00	44
3	1.00	1.00	1.00	42
4	1.00	1.00	1.00	41
avg / total	1.00	1.00	1.00	241

	precision	recall	fl-score	support
0 1	1.00	1.00	1.00	210 54
2	1.00	1.00	1.00	102
3 4	1.00 1.00	1.00 1.00	1.00 1.00	99 95
avg / total	1.00	1.00	1.00	560

➤ Polynomial KernelPCA (degree = 3) plus LDA (n=3)

2D projection of points

Poly KernelPCA n=350 degree=3 plus LDA n=3

3D projection of points

Precision

Classification Report

Test

 rain
 ı am

	precision	recall	fl-score	support
0	1.00	0.93	0.96	97
1	0.96	1.00	0.98	23
2	0.93	1.00	0.96	41
3	0.95	1.00	0.98	40
4	0.98	1.00	0.99	40
avg / total	0.97	0.97	0.97	241

	precision	recall	fl-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	54
2	1.00	1.00	1.00	102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

Confussion Matrix

Στην συνέχεια θα προχωρήσουμε στην εφαρμογή του SVM αλγορίθμου προκειμένου να συγκρίνουμε τα αποτελέσματα με τον αλγόριθμο KNearestNeighbors

Έγινε εφαρμογή μετα από Linear KPCA και στην συνέχεια Grid Search για εύρεση καλύτερων παραμέτρων.

Train

Test

	precision	recall	fl-score	support
0	1.00	1.00	1.00	210
1 2	1.00 1.00	1.00	1.00	54 102
3	1.00	1.00	1.00	99
4	1.00	1.00	1.00	95
avg / total	1.00	1.00	1.00	560

	precision	recall	fl-score	support
0	0.99	1.00	0.99	90
1	1.00	1.00	1.00	24
2	1.00	1.00	1.00	44
3	1.00	0.98	0.99	42
4	1.00	1.00	1.00	41
avg / total	1.00	1.00	1.00	241

Τα καλύτερα λοιπόν αποτελέσματα που προέκυψαν συγκεντρωτικά ήταν τα παρακάτω

• Linear KPCA (n_components=350) plus LDA (n=3)

Precision = 100%

Recall = 100%

F1-Score = 100%

• RBF Kernel PCA (gamma =0.000005) n=350 plus LDA (n=3)

Precision = 100%

Recall = 100%

F1-Score = 100%

• Polynomial KPCA (degree=3 n=350) plus LDA(n=3)

Precision = 100%

Recall = 100%

F1-Score = 100%

Linear KPCA (n_components=350) plus SVM (Polynomial , degree = 3
,C=1)

Precision = 100%

Recall = 100%

F1-Score = 100%