## Микрофонная решетка с адаптивным диаграммообразованием

Обучающийся: Усиков Д.А.

Руководитель: д. ф.-м. н, доц. Аверина Л.И.

#### Цель:

Изучение цифровой обработки акустических сигналов с помощью микрофонной решетки и адаптивных формирователей луча

#### Задачи:

- 1) смоделировать приём полезного сигнала и помехи для микрофонной решетки
- 2) провести выделение речи целевого диктора из принятой акустической смеси
- 3) рассмотреть различные виды адаптивных формирователей луча
- 4) провести сравнительный анализ между адаптивными алгоритмами
- 5) провести моделирование изменения положения источника шума во времени

## Применение



Система «Бумеранг»





Система «SENTRI»



Микрофонная решетка для объёмной записи звука

### Формирователи луча

Частотный формирователь луча

Временной формирователь луча



## Пространственная фильтрация



### Подходы пространственной фильтрации

#### Data-independent



#### Stastically-optimum



## Линейно ограниченные ФЛ

Минимизация MSE-функции с линейными ограничениями

$$\begin{cases}
\min_{\mathbf{w}} (\mathbf{w}_{M \cdot J}^{\mathsf{H}} \mathbf{R}_{M \cdot J} \mathbf{w}_{M \cdot J}) \\
\mathbf{C}_{M \cdot J, J}^{\mathsf{H}} \mathbf{w}_{M \cdot J} = \mathbf{f}_{J}
\end{cases}$$

LC NLMS

Минимизация LS-функции с линейными ограничениями

$$\begin{cases} \min_{\mathbf{w}} \sum_{i=0}^{k} \mathbf{w}_{M \cdot J}^{H} \mathbf{x}_{M \cdot J}(i) \mathbf{x}_{M \cdot J}^{H}(i) \mathbf{w}_{M \cdot J} \\ \mathbf{C}_{M \cdot J, J}^{H} \mathbf{w}_{M \cdot J} = \mathbf{f}_{J} \end{cases}$$

LC RLS

LC NLMS – Linear Constrained Normalized Least Mean Squares LC RLS – Linear Constrained Recursive Least Squares

### Моделирование. Постановка задачи.



 $d_n$  — расстояние между элементами MP

$$d_x = d_y = 4$$
 cm

## Perceptual Evaluation of Speech Quality (PESQ)



## Анализ алгоритмов LC NLMS и LC RLS

#### Оценка PESQ от числа микрофонов



#### Выигрыш в ОСШ от числа микрофонов



#### Оценка PESQ от порядка фильтра



#### Выигрыш в ОСШ от порядка фильра



### Анализ алгоритмов LC NLMS и LC RLS

Зависимость выигрыш ОСШ от угла азимута при фиксированном угле подъёма



Зависимость оценки PESQ от угла азимута при фиксированном угле подъёма



Зависимость выигрыш ОСШ от угла подъёма при фиксированном угле азимута



Зависимость оценки PESQ от угла подъёма при фиксированном угле азимута



# Эффективность работы микрофонной решетки при отклонении её элементов



# Эффективность работы микрофонной решетки при отклонении её элементов









## Аппаратная реализация микрофонной решетки

Микроконтроллер STM32H745ZI на отладочной плате NUCLEO-H745ZI-Q.



Микрофонная решетка



### Микрофонные элементы

Схема подключения пары микрофонов к Временная диаграмма сигналов с двух



## Структурная схема МР



## Основные результаты работы

- Рассмотрены принципы пространственной фильтрации и методы формирования луча
- Освоены линейно ограниченные адаптивные алгоритмы пространственной фильтрации
- Построены зависимости выигрыша в ОСШ и оценка PESQ от числа микрофонов и порядка фильтра
- Установлено, что при увеличении значения порядка фильтра выше определённого в LC RLS алгоритме, не происходит значительное увеличение выигрыша ОСШ и оценки PESQ
- Установлено, что работа адаптивных формирователей луча в быстро изменяющейся помеховой обстановки не приводит к заметному ухудшению качества фильтрации
- При отклонении элемента МР от исходной позиции, не наблюдается изменения в работе адаптивного формирователя луча.