МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №5 по курсу «Моделирование»

«Работа с системой моделирования GPSS»

Выполнил: студент ИУ9-111 Выборнов А. И.

Руководитель:

Домрачева А. Б.

1. Постановка задачи

Кластерная система, состоящая из 25 узлов, осуществляет выполнения задач. Задачи поступают по нормальному закону распределения с матожиданием 5 секунд и дисперсией 2. Время обработки каждой задачи 5-10 минут. Кластер имеет буфер для хранения 10 задач, если все узлы заняты, то задача помещается в буфер, если буфер заполнен, то задача считается утерянной и в буфер не помещается. Провести моделирование обработки 100 задач, определить загрузку кластера и количество утерянных задач.

2. Реализация

2.1. Код программы на языке GPSS

```
cluster
            STORAGE
                        ^{25}
                                                          ; cluster of 25 nodes
                      (\,\mathrm{N\,ormal}\,(\,1\;,5\;,\mathrm{SQR}\,(\,2\,)\,\,)\,) buffer queue
            GENERATE
                                                        ; generate tasks Mx=5, Dx=2
            QUEUE
                        buffer queue
                                                         ; task entered to buffer
                        Q\theta unprocessed; if \theta task in buffer goto unprocessed
            TEST L
                       cluster
buffer _ queue
            ENTER.
                                                         ; task sended to cluster
            DEPART
                                                         : task leaved buffer
            ADVANCE 120,30
                                                         ; processed task 2-3\mathrm{m}
            LEAVE
                        cluster
                                                         ; task left cluster
            TERMINATE 1
                                                         ; task successed
unprocessed DEPART
                        buffer queue
                                                         ; task left buffer
            TERMINATE
                       1
                                                         ; task not precessed
            START
                                                          ; loop for 100 task
```

2.2. OTYËT GPSS

Ниже представлен отчёт GPSS, полученный после выполнения программы, представленной в главе 2.1.

```
GPSS World Simulation Report - Untitled Model 1.1.1
               ???????, ???????? 19, 2015 22:23:05
        START TIME
                         END TIME BLOCKS FACILITIES STORAGES
            0.000
                          635.466 10
          NAME
                                 VALUE
       BUFFER_QUEUE
                               10001.000
                               10000.000
       UNPROCESSED
                                   9.000
                LOC BLOCK TYPE
                                ENTRY COUNT CURRENT COUNT RETRY
LABEL
                    GENERATE
                                 130 0 0
                    QUEUE
                                    130
                                                  0
                                                         0
                2
                    TEST
                                    130
                                                         0
                3
                                                 5
                    ENTER
                                    125
```

	5	DEP.	ART		124			1)	0	
	6	ADV	ANCE			124		2	4	0	
	7	LEA	VE			100		1)	0	
	8	TER	MINAT	E	100			1)	0	
UNPROCESSED	9	DEP.	DEPART		0			1)	0	
	10	TER	TERMINATE		0)	0	
QUEUE	MAX	CONT.	ENTR	Y ENTI	RY(0)	AVE	CONT	AVE. TIN	IE A	VE.(-0)	RETRY
BUFFER_QUEUE	7	6	130	D	73	1	407	6.87	7 9	15.689	0
STORAGE	CAP	REM.	MIN.	MAX.	ENT	RIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY
CLUSTER	25	Ω	Ω	2.5		2.5	1	21 678	0.867	Ω	5

3. Тестирование

Рисунок 1-3ависимость загрузки кластера от числа узлов

Рисунок 2 — Зависимость количества утерянных задач от числа узлов

4. Выводы

Как видно из представленного в главе 2.2 отчёта кластер был загружен на 86.7%, при этом не было утеряно ни одной задачи.

Из тестирования, описанного в главе 3, видно что чем больше узлов в кластере, то тем меньше его загрузка и меньше количество утерянных задач.