Prof. Dr. Vinícius Wasques

Universidade Paulista - Unip, Campus Swift Campinas

14 de abril de 2020

Definição

Uma função é chamada de função do 2° grau se existirem números reais a, b e c tais que $f(x) = ax^2 + bx + c$, ou também, $y = ax^2 + bx + c$ com $a \neq 0$.

Definição

Uma função é chamada de função do 2° grau se existirem números reais a, b e c tais que $f(x) = ax^2 + bx + c$, ou também, $y = ax^2 + bx + c$ com $a \neq 0$.

Exemplo: Seja $f(x) = x^2 + 3x + 1$. Nesse caso, a = 1, b = 3 e c = 1.

Definição

Uma função é chamada de função do 2° grau se existirem números reais a, b e c tais que $f(x) = ax^2 + bx + c$, ou também, $y = ax^2 + bx + c$ com $a \neq 0$.

Exemplo: Seja $f(x) = x^2 + 3x + 1$. Nesse caso, a = 1, b = 3 e c = 1.

Х	у
-2	$(-2)^2 + 3(-2) + 1 = -1$
-1	$(-1)^2 + 3(-1) + 1 = -1$
0	$(0)^2 + 3(0) + 1 = 1$
1	$(1)^2 + 3(1) + 1 = 5$
2	$(2)^2 + 3(2) + 1 = 11_{\square}$

Exemplo: Seja $f(x) = x^2 + 3x + 1$.

Exemplo: Seja
$$f(x) = -3x^2 + 2x + 5$$
. Nesse caso, $a = -3$, $b = 2$ e $c = 5$.

Exemplo: Seja $f(x) = -3x^2 + 2x + 5$. Nesse caso, a = -3, b = 2 e c = 5.

Exemplo: Seja $f(x) = -3x^2 + 2x + 5$. Nesse caso, a = -3, b = 2 e c = 5.

Observação: O gráfico de uma função desse tipo sempre é uma

naráholal

I Se a > 0, então a concavidade da função f(x) é para cima;

2 Se a < 0, então a concavidade da função f(x) é para baixo;

- **1** Se a função do segundo grau $f(x) = ax^2 + bx + c$ é igualada a 0, isto é, $ax^2 + bx + c = 0$ então o problema recai sobre determinar as raízes da equação do segundo grau;
- Para determinar essas raízes:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a},$$

em que $\Delta = b^2 - 4ac$

- **1** Se $\Delta = 0$, então existe uma única raiz $x = \frac{-b}{2a}$;
- 2 Se $\Delta > 0$, então existem duas raízes $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ e $x_2 = \frac{-b \sqrt{\Delta}}{2a}$;
- 3 Se Δ < 0, então não existem raízes **reais**.

- I Se $\Delta=0$, então a parábola só "toca" o eixo-x em um único ponto $\left(x=\frac{-b}{2a}\right)$;
- 2 Se $\Delta>0$, então a parábola corta o eixo-x em dois pontos $\left\{\frac{-b+\sqrt{\Delta}}{2a},\frac{-b-\sqrt{\Delta}}{2a}\right\}$;
- 3 Se Δ < 0, então a parábola **não** corta o eixo-x.

Se $\Delta > 0$ e a > 0, então

$$f(x) = x^2 + 3x + 2$$

Se $\Delta > 0$ e a < 0, então

$$f(x) = -x^2 + 3x + 2$$

Se
$$\Delta = 0$$
 e $a > 0$, então

$$f(x) = x^2$$

Se
$$\Delta = 0$$
 e $a < 0$, então

$$f(x) = -x^2$$

Se $\Delta < 0$ e a > 0, então

$$f(x) = x^2 + 1$$

Se $\Delta < 0$ e a < 0, então

$$f(x) = -x^2 - 1$$

- **1** O vértice da parábola possui coordenadas $x = \frac{-b}{2a}$ e $y = \frac{-\Delta}{4a}$;
- 2 Se a concavidade for para cima, então o vértice representa o ponto de mínimo da função;
- 3 Se a concavidade for para baixo, então o vértice representa o ponto de máximo da função.

Seja
$$f(x) = x^2 - 7x + 10$$
.

Seja
$$f(x) = x^2 - 7x + 10$$
. Então, $a = 1$, $b = -7$ e $c = 10$. Assim,

Seja
$$f(x)=x^2-7x+10$$
. Então, $a=1,\ b=-7$ e $c=10$. Assim,
$$\Delta=(-7)^2-4(1)(10)=49-40=9>0$$

Seja
$$f(x)=x^2-7x+10$$
. Então, $a=1$, $b=-7$ e $c=10$. Assim,
$$\Delta=(-7)^2-4(1)(10)=49-40=9>0$$

$$x=\frac{-(-7)\pm\sqrt{9}}{2.1}$$

Seja
$$f(x)=x^2-7x+10$$
. Então, $a=1$, $b=-7$ e $c=10$. Assim,
$$\Delta=(-7)^2-4(1)(10)=49-40=9>0$$

$$x=\frac{-(-7)\pm\sqrt{9}}{2.1}$$

$$x_1=\frac{7+3}{2}=\frac{10}{2}=5 \quad x_2=\frac{7-3}{2}=\frac{4}{2}=2$$

Seja
$$f(x) = x^2 - 7x + 10$$
. Então $\Delta = 9$, $x_1 = 5$ e $x_2 = 2$.

Seja
$$f(x) = x^2 - 7x + 10$$
. Então $\Delta = 9$, $x_1 = 5$ e $x_2 = 2$.

Vértice:

$$x = \frac{-(-7)}{2.1} = \frac{7}{2} = 3,5$$

$$y = \frac{-9}{41} = \frac{-9}{4} = -2,25$$

Seja
$$f(x) = x^2 - 7x + 10$$
. Então $\Delta = 9$, $x_1 = 5$ e $x_2 = 2$.

Vértice:

$$x = \frac{-(-7)}{2.1} = \frac{7}{2} = 3,5$$

$$y = \frac{-9}{41} = \frac{-9}{4} = -2,25$$

Como a = 1 > 0, então o vértice é ponto de mínimo.

Seja $f(x) = x^2 - 7x + 10$. Então $\Delta = 9$, $x_1 = 5$, $x_2 = 2$ e vértice (3, 5, -2, 25).

Exercícios propostos

Exercício 1, página 94 apostila da Unip

Exercícios I)-IV), página 97/98 apostila da Unip

- Os exercícios em preto são para praticar.
- Os exercícios em vermelho são para entregar.

Obrigado pela atenção!

Prof. Dr. Vinícius Wasques

email: vinicius.wasques@docente.unip.br

Departamento de Engenharia, Ciência da Computação e Sistemas de Informação

site: https://viniciuswasques.github.io/home/

