Problem Sheet: Sets and Logic

Cezar Ionescu

WS 2023-24

In the following A, B, C are subsets of a given set S.

- 1. Show that
 - (a) $A \subseteq A$
 - (b) If $A\subseteq B$ and $B\subseteq C$, then $A\subseteq C$
 - (c) $A \cap B \subseteq A \subseteq A \cup B$
- 2. Which of the following statements are true for every A, B, C? Prove those that are true and provide counter-examples for the false ones.
 - (a) If $A \in B$ and $B \in C$, then $A \in C$
 - (b) If $A \subseteq B$ and $B \in C$, then $A \in C$
 - (c) If $A \cap B \subseteq C^c$ and $A \cup C \subseteq B$, then $A \cap C = \emptyset$
 - (d) If $A \neq B$ and $B \neq C$, then $A \neq C$
 - (e) If $A \subseteq (B \cup C)^c$ and $B \subseteq (A \cup C)^c$, then $B = \emptyset$
- 3. Prove that for all $a, b, c, d \in S$

$$\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\} \iff a = c \land b = d$$

- 4. Express the operations \cup , \cap , \setminus in terms of
 - (a) Δ and \cap
 - (b) Δ and \cup
 - (c) \setminus and Δ
- 5. Show that
 - (a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$
 - (b) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$
 - (c) $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$ (when does equality hold?)
 - (d) If $A, B \neq \emptyset$, and $(A \times B) \cup (B \times A) = (C \times D)$, then A = B = C = D.

6. Prove the De Morgan laws using truth tables:

$$\neg (P \land Q) \Leftrightarrow (\neg P) \lor (\neg Q)$$
$$\neg (P \lor Q) \Leftrightarrow (\neg P) \land (\neg Q)$$

- 7. In the following, S is non-empty set and P and R are statements indexed over elements of S and $S \times S$, respectively. Prove the following statements:
 - (a) $\neg (\exists y \in S \forall x \in S \ R(x,y) \Leftrightarrow \neg R(x,x))$ (Russell's paradox)
 - (b) $\exists x \in S \ (P(x) \Rightarrow \forall y \in S \ P(y))$ (The drinker's paradox)
- 8. The following questions relate to the two representations of natural numbers:
 - (a) What does $m \cap n$ represent in the two representations?
 - (b) Calculate \mathbb{P} 3 for each of the representations.
 - (c) How many elements does \mathbb{P} n have in each of the representations?

Define another representation, that is different from each of the two given in the notes, and answer the three questions for it as well.

- 9. Find dom(R), ran(R), R° , $R \circ R$, $R \circ R^{\circ}$, $R^{\circ} \circ R$ for the following relations
 - (a) $R = \{(x, y) \mid x, y \in \mathbb{N}, x \text{ divides } y\}$
 - (b) $R = \{(x, y) \mid x, y \in \mathbb{R}, x + y \le 0\}$
 - (c) $R = \{(x, y) \mid x, y \in \mathbb{R}, \ 2x 3y \ge 0\}$

Which of these relations is an equivalence? Which are partial orders?

- 10. Which of the following statements are true? Prove those that are true and provide counter-examples for the false ones.
 - If R is an equivalence, then R is a partial order.
 - If R is a partial order, then it is an equivalence.
 - If R is an equivalence, then R is a total order.
 - If R is an equivalence, then R is a strict partial order.
 - If R is a strict partial order, then $R \cup id_A$ is a partial order.
 - If R_1 and R_2 are partial orders, then $R_1 \cup R_2$ is a partial order.

References

 Problems in Set Theory, Mathematical Logic, and the Theory of Algorithms, Lavrov and Maksimova, Springer 2003

2