Ahora, suponga que dim H=2 y sea $\mathbf{v}_1=(a_1,b_1,c_1)$ y $\mathbf{v}_2=(a_2,b_2,c_2)$ una base para H. Si $x=(x,y,z)\in H$, entonces existen números reales s y t tales que $\mathbf{x}=s\mathbf{v}_1+t\mathbf{v}_2$ o $(x,y,z)=s(a_1,b_1,c_1)+t(a_2,b_2,c_2)$. Entonces

$$x = sa_1 + ta_2$$

 $y = sb_1 + tb_2$
 $z = sc_1 + tc_2$ (5.5.7)

Sea $\mathbf{v}_3 = (\alpha, \beta, \gamma) = \mathbf{v}_1 \times \mathbf{v}_2$. Entonces del teorema 4.4.2, parte iv), se tiene $\mathbf{v}_3 \cdot \mathbf{v}_1 = 0$ y $\mathbf{v}_3 \cdot \mathbf{v}_2 = 0$. Ahora calculamos

$$ax + \beta y + \gamma z = \alpha (sa_1 + ta_2) + \beta (sb_1 + tb_2) + \gamma (sc_1 + tc_2)$$

= $(\alpha a_1 + \beta b_1 + \gamma c_1)s + (\alpha a_2 + \beta b_2 + \gamma c_2)t$
= $(\mathbf{v}_3 \cdot \mathbf{v}_1)s + (\mathbf{v}_3 \cdot \mathbf{v}_2)t = 0$

Así, si $(x, y, z) \in H$, entonces $\alpha x + \beta y + \gamma z = 0$, lo que muestra que H es un plano que pasa por el origen con vector normal $\mathbf{v}_3 = \mathbf{v}_1 \times \mathbf{v}_2$. Por lo tanto, se ha demostrado que

Los únicos subespacios propios de \mathbb{R}^3 son los conjuntos de vectores que se encuentran en una recta o un plano que pasa por el origen.

EJEMPLO 5.5.10 Espacio de solución y espacio nulo

Sea A una matriz de $m \times n$ y sea $S = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$. Sean $\mathbf{x}_1 \in S$ y $\mathbf{x}_2 \in S$; entonces $A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{0} + \mathbf{0} = \mathbf{0}$ y $A(\alpha \mathbf{x}_1) = \alpha(A\mathbf{x}_1) = \alpha\mathbf{0} = \mathbf{0}$, de manera que S es un subespacio de \mathbb{R}^n y dim $S \le n$. S se denomina **espacio de solución** del sistema homogéneo $A\mathbf{x} = \mathbf{0}$. También se denomina **espacio nulo** de la matriz A.

Espacio de solución

Espacio nulo

EJEMPLO 5.5.11 Una base para el espacio de solución de un sistema homogéneo

Encuentre una base (y la dimensión) para el espacio de solución S del sistema homogéneo

$$x + 2y - z = 0$$
$$2x - y + 3z = 0$$

SOLUCIÓN ightharpoonup Aquí $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \end{pmatrix}$. Como A es una matriz de 2×3 , S es un subespacio de \mathbb{R}^3 . Reduciendo por renglones, se encuentra, sucesivamente,

$$\begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 2 & -1 & 3 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -5 & 5 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 2 & 1 & -1 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{pmatrix}$$

Entonces y = z y x = -z, de manera que todas las soluciones son de la forma $\begin{pmatrix} -z \\ z \\ z \end{pmatrix}$. Así, $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ es

una base para S y dim S = 1. Observe que S es el conjunto de vectores que se encuentran en la recta x = -t, y = t, z = t.