Nombre: LEO ARRIOLA MCIKLE Grupo: A

Nombre: ERIC SERRANO

Hoja de respuesta al Estudio Previo

Fallos del acceso a v [i]:

Código	Memoria Cache	stepA	stepB	stepC	stepD
for (j=0, 1=0; j<10000; j++) { sum = sum + v(i); i = i + step; }	Cache Directa Tamaño: 4KB Tamaño linea: 8B	1250	5000	10000	10000
<pre>for (j=0, i=0; j<10000; j++) { sum = sum + v(i); i = i + step; }</pre>	Cache 2 asociativa Tamaño: 4KB Tamaño linea: 16B	625	2500	5000	10000

 Dibujad una gráfica donde se represente el número de fallos que se producen (eje y) variando la variable step de 1 a 16 (eje x):

Fallos de cache que provoca el acceso v[i] en los siguientes casos:

G L N	Manuala Code		7	Valores	de lim	ite.	
Codigo	Memoria Cache	10B	32B	40B	48B	64B	128B
for (1-0, j-0; j<32; j++) { sum - sum + v[i]; i = i + 8; if (i >- limite) i - 0;	Cache Directa Tamaño: 4 lineas Tamaño linea: 8B	2	7	10	24	32	32
for (i=0, j=0; j<32; j++) { sum = sum + V[i]; i = i + 8; ii (i >= limite) i = 0;	Cache 2-asociativa Tamaño: 4 líneas Tamaño línea: 8B	2	4	16	24.	3.2	31
for (i=0, j=0, j<32; j++) { sum = sum + v[i]; i = i + 8; if (i >= limite) i = 0;	Cache 4-asociativa Tamaño: 4 líneas Tamaño línea: 5B	2	4	16	24	32	32

 Dibujad una gráfica con los fallos que se producen (eje y) repecto a la variable limite (eje x) suponiendo que la cache es directa.

 Dibujad una gráfica con los fallos que se producen (eje y) repecto a la variable limite (eje x) suponiendo que el grado de asociatividad de la cache es:

¿Cuál es la relación entre el número de fallos, la variable límite y la asociatividad de la cache?
--

si lint > assoc > Mifallor = macus cach	allor : nacus cache	n. fal	>	The same of the sa		
			7	> assoc	- Unit	51
				1		
						_