CAS 741, CES 741 (Development of Scientific Computing Software)

Fall 2019

21 Artifact Generation

Dr. Spencer Smith

Faculty of Engineering, McMaster University

November 19, 2019

Artifact Generation

- Administrative details
- Questions about MIS?
- Artifact generation (Drasil)

Administrative Details

- For final documentation, make sure you have addressed and closed all open issues
- MIS Marking Scheme
 - On Avenue
 - Not all of the spec has to be formal
 - First steps
 - Syntax of access programs
 - State variables?
 - Environment variables?
- Course evaluation
 - ► Thurs, Nov 21, 10:00 am to Thurs, Dec 5, 11:59 pm
 - https://evals.mcmaster.ca

Administrative Details: Deadlines

MIS	Week 11	Nov 23
Unit VnV or Impl. Present	Week 12, 13	Wed, Nov 28, Dec 5
Unit VnV Plan	Week 13	Dec 3
Final Doc	Week 14	Dec 10

Combine Unit VnV Plan deadline with Final Doc deadline?

Administrative Details: Presentation Schedule

- Unit VnV Plan or Impl. Present
 - ► Wednesday (Nov 28): Brooks, Vajiheh
 - Wednesday (Dec 5): Olu, Karol
- Can present anything related to the implementation or testing
 - Code
 - Tools used
 - Testing
 - Unit VnV Plan
 - ► API documentation via doxygen
 - As always it is fine to show work in progress
 - Good to bring questions to the class

Questions?

Questions about MIS

Abstract

- Goal Improve quality of SCS
- Idea Adapt ideas from SE
- Document Driven Design
 - ► Good improves quality
 - ▶ Bad "manual" approach is too much work
- Solution
 - Capture knowledge
 - Generate all things
 - Avoid duplication
 - Traceability
- Showing great promise
 - Significant work yet to do
 - Looking for examples/partners

Scope: Large/Multiyear

Scope: End User Developers

Motivation: Safety

Motivation: (Re)certification

Motivation: Improve Quality

Current Approach

- Agile like [?]
- Amethododical [?]
- Knowledge acquisition driven [?]
- Each stage reports counterproductive [?]
- Limited tool use [?]
- Limited testing of code [?]
- Lack of understanding of testing [?]
- Missed opportunities for reuse [?]
- Emphasis on:
 - 1. Science [?]
 - 2. Code

Documentation Advantages

- Improves verifiability, reusability, reproducibility, etc.
- From [?]
 - easier reuse of old designs
 - better communication about requirements
 - more useful design reviews
 - easier integration of separately written modules
 - more effective code inspection
 - more effective testing
 - more efficient corrections and improvements
- New doc found 27 errors |?|
- Developers see advantage [?]

Study Of Documentation in SC [?]

- 1. Select 5 small to medium size SCS
- 2. Interview code owners
- 3. Redevelop using Document Driven Design (DDD)
- 4. Interview code owners
- 5. Analyze responses

Summary of Case Studies

	LOC	Lng	ND	Ag	SE	Prg	Tst	VC	Bug
SWHS	1000	F77	1	5	X	\checkmark	Х	Х	Х
Astro	5000	C	2	10	X	\checkmark	X	X	X
Glass	1300	F90	1	<1	X	\checkmark	X	X	X
Soil	800	М	1	5	\checkmark	\checkmark	\checkmark	\checkmark	X
Neuro	1000	М	1	5	\checkmark	\checkmark	X	\checkmark	X
Acoust	200	М	4	2.5	X	\checkmark	X	X	X

Perceived Advantages from Participants

- Documentation of assumptions
- All variables have explicit units
- SRS helpful with new graduate students
- Modules result in more user friendly code
- Traceability between modules and requirements useful
- Better organized code
- Information sharing on design choices
- Detailed record of knowledge capital
- Code is produced to make testing easier

Disadvantages (Perceived and Real)

- SRS is too long
- SRS is not necessary
- DDD will not work in reality, since needs upfront requirements
- Too much SE jargon
- Difficult without a team of people
- Too difficult to maintain
- Not amenable to change
- Too tied to waterfall process
- Reports counterproductive [?]

The Solution?

Knowledge Capture

Drasil

J_{tol} in SRS.pdf

Refname	DD:sdf.tol
	DD.Sul.tol
Label	Stress Distribution Factor (Function) Based on Pbtol
Units	Unitless
Equation	$J_{tol} = \log \left(\log \left(\frac{1}{1 - P_{btol}} \right) \frac{\left(\frac{a}{1000} \frac{b}{1000} \right)^{m-1}}{k \left(\left(E \cdot 1000 \left(\frac{h}{1000} \right)^2 \right) \right)^m \cdot LDF} \right)$
Description	J_{tol} is the stress distribution factor (Function) based on Pbtol P_{btol} is the tolerable probability of breakage a is the plate length (long dimension) (m) b is the plate width (short dimension) (m) m is the surface flaw parameter $(\frac{m^{12}}{N^7})$ k is the surface flaw parameter $(\frac{m^{12}}{N^7})$ E is the modulus of elasticity of glass (Pa) k is the actual thickness (m) k k is the load duration factor

J_{tol} in SRS.tex

```
\noindent \begin{minipage}{\textwidth}
\begin{tabular}{p{0.2}\text{textwidth}} p{0.73}\text{textwidth}}
\toprule \textbf{Refname} & \textbf{DD:sdf.tol}
\phantomsection
\label{DD:sdf.tol}
\\ \midrule \\
Label & $J_{tol}$
\\ \midrule \\
Units &
\\ \midrule \\
Equation & J_{tol} =
            \lceil \lceil \lceil \rceil \rceil \rceil = \lceil \lceil \rceil \rceil \rceil 
                }\  \frac{\left( \frac{a}{1000} \right)}
                frac{b}{1000}\right)^{m-1}}{k\left(
                left(E*1000\right)\left(\frac{h
                }{1000}\right)^{2}\right)^{m}*LDF}\
                right)$
\\ \midrule \\
Description & J_{tol} is the stress distribution
   factor (Eurotion) board on
```

J_{tol} in SRS.html

```
<a id="">
<div class="equation">
<em>J<sub>tol</sub></em> = log(log(<div class="</pre>
   fraction">
<span class="fup">
</span>
<span class="fdn">
1 − <em>P<sub>btol</sub></em>
</span>
</div>)<div class="fraction">
<span class="fup">
(<div class="fraction">
<span class="fup">
<em>a</em>
</span>
<span class="fdn">
1000
</span>
```

J_{tol} in Python

J_{tol} in Java

J_{tol} in Drasil (Haskell)

```
stressDistFac = makeVC "stressDistFac" (nounPhraseSP
  $ "stress distribution" ++ " factor (Function)")
     сJ
sdf_tol = makeVC "sdf_tol" (nounPhraseSP $
  "stress distribution" ++
  " factor (Function) based on Pbtol")
  (sub (eqSymb stressDistFac) (Atomic "tol"))
tolStrDisFac_eq :: Expr
tolStrDisFac_eq = log (log ((1)/((1) - (C pb_tol)))
  * ((Grouping (((C plate_len) / (1000)) * ((C
      plate_width) / (1000))) :^
  ((C sflawParamM) - (1)) / ((C sflawParamK) *
  (Grouping (Grouping ((C mod_elas * 1000) *
  (square (Grouping ((C act_thick) / (1000))))) : ^
  (C sflawParamM) * (C lDurFac))))))
tolStrDisFac :: QDefinition
tolStrDisFac = mkDataDef ' sdf_tol tolStrDisFac_eq
  (aGrtrThanB +:+ hRef +:+ ldfRef +:+ pbTolUsr)
```

J_{tol} without Unit Conversion

```
tolStrDisFac_eq :: Expr
tolStrDisFac_eq = log (log ((1)/((1) - (C pb_tol)))
 * ((Grouping ((C plate_len) * (C plate_width)) :^
  ((C sflawParamM) - (1)) / ((C sflawParamK) *
  (Grouping (Grouping ((C mod_elas * 1000) *
  (square (Grouping (C act_thick))))) :^
  (C sflawParamM) * (C lDurFac))))))
```

Traceability Graph

Maintainability

- A1: The only form of energy that is relevant for this problem is thermal energy. All other forms of energy, such as mechanical energy, are assumed to be negligible [T1].
- A2: All heat transfer coefficients are constant over time [GD1].
- A3: The water in the tank is fully mixed, so the temperature is the same throughout the entire tank [GD2, DD2].
- A4: The PCM has the same temperature throughout [GD2, DD2, LC1].
- A5: etc.

Verifiability

Var	Constraints	Typical Value	Uncertainty
L	<i>L</i> > 0	1.5 m	10%
ρ_P	$\rho_P > 0$	$1007 \mathrm{kg/m^3}$	10%

$$E_{W} = \int_{0}^{\tau} h_{C} A_{C} (T_{C} - T_{W}(t)) dt - \int_{0}^{\tau} h_{P} A_{P} (T_{W}(t) - T_{P}(t)) dt$$

- If wrong, wrong everywhere
- Sanity checks captured and reused
- Generate guards against invalid input
- Generate test cases
- Generate view suitable for inspection
- Traceability for verification of change

Reusability

Num. T1

Label Conservation of energy

Eq
$$-\nabla \cdot \mathbf{q} + q''' = \rho C \frac{\partial T}{\partial t}$$

Descrip The above equation gives the conservation of energy for time varying heat transfer in a material of specific heat capacity C and density ρ , where \mathbf{q} is the thermal flux vector, \mathbf{q}''' is the volumetric heat generation, T is the temperature, ∇ is the del operator and t is the time.

Reusability

- De-embed knowledge
- Reuse throughout document
 - Units
 - Symbols
 - Descriptions
 - Traceability information
- Reuse between documents
 - SRS
 - MIS
 - Code
 - Test cases
- Reuse between projects
 - Knowledge reuse
 - A family of related models, or reuse of pieces
 - Conservation of thermal energy
 - Interpolation, Etc.

Reproducibility

- Usual emphasis is on reproducing code execution
- However, [?] show reproducibility challenges due to undocumented:
 - Assumptions
 - Modifications
 - Hacks
- Shouldn't it be easier to independently replicate the work of others?
- Require theory, assumptions, equations, etc.
- Drasil can potentially check for completeness and consistency

Smith and Koothoor (2016) [?]

$$R_1^{\text{code}} = \frac{f}{8\pi k_{\text{AV}}} + \frac{1}{2\pi r_f h_g} \tag{1}$$

$$R_1^{\text{manual}} = \frac{f}{8\pi k_{\text{AV}}} + \frac{1}{2\pi r_f h_g} + \frac{\tau_c}{4\pi r_f k_c}$$
 (2)

- Uncovered 27 issues with the previous documentation
 - ► Incompleteness (Rgap)
 - lnconsistency (r, r_0, h_g)
 - \triangleright Verifiability problems (R_1)
 - Lack of traceability (circuit analogy)
- Advantages of proposed approach
 - Abstract to concrete
 - Separation of concerns
 - Every equation, assumption, definition, model, derivation, source and traceability between them

NO

Future Work

Drasil Framework for LSS

- SCS has the opportunity to lead other software fields
- Document driven design is feasible
- Requires an investment of time
- Documentation does not have to be painful
- Develop/refactor via practical case studies
- Ontology may naturally emerge
- Open source Drasil here

References I