Package 'meconetcomp'

January 7, 2025

January 7, 2025		
Type Package		
le Compare Microbial Networks of 'trans_network' Class of 'microeco' Package		
Version 0.6.0		
Author Chi Liu [aut, cre], Minjie Yao [ctb], Xiangzhen Li [ctb]		
Maintainer Chi Liu liuchi0426@126.com>		
Description Compare microbial co- occurrence networks created from 'trans_network' class of 'microeco' package https://github.com/ChiLiubio/microeco . This package is the extension of 'trans_network' class of 'microeco' package and especially useful when different networks are constructed and analyzed simultaneously.		
<pre>URL https://github.com/ChiLiubio/meconetcomp</pre>		
Depends R (>= 3.5.0)		
Imports R6, microeco (>= 1.3.0), magrittr, dplyr, igraph, reshape2, ggpubr, ggplot2		
Suggests rgexf, ape, file2meco, agricolae		
License GPL-3		
LazyData true		
Encoding UTF-8		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2025-01-07 12:30:06 UTC		
RoxygenNote 7.3.2		
Contents		
cal_module		

2 cal_module

	cohesionclass	4
	edge_comp	6
	edge_node_distance	7
	edge_tax_comp	9
	get_edge_table	10
	get_node_table	11
	meconetcomp	11
	node_comp	12
	robustness	13
	soil_amp	16
	soil_amp_network	16
	soil_measure_diversity	16
	stool_met	17
	subnet_property	17
	subset_network	
	vulnerability	19
Index		20

cal_module

Assign modules to each network

Description

Calculating modularity of networks and assign the modules to nodes for each network.

Usage

```
cal_module(
  network_list,
  undirected_method = "cluster_fast_greedy",
  directed_method = "cluster_optimal",
  ...
)
```

Arguments

```
network_list a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

undirected_method default "cluster_fast_greedy"; the modularity algorithm for undirected network; see cal_module function of trans_network class for more algorithms.

directed_method default 'cluster_optimal'; the modularity algorithm for directed network.
```

other parameters (except for method) passed to cal_module function of trans_network class.

cal_network_attr 3

Value

list, with module attribute in nodes of each network

Examples

```
data(soil_amp_network)
soil_amp_network <- cal_module(soil_amp_network)</pre>
```

cal_network_attr

Calculate network topological property for each network

Description

Calculate the topological properties of all the networks and merge the results into one table.

Usage

```
cal_network_attr(network_list)
```

Arguments

network_list a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

Value

```
data.frame
```

```
data(soil_amp_network)
test <- cal_network_attr(soil_amp_network)</pre>
```

4 cohesionclass

cohesionclass

Calculate the cohesion of samples for each network

Description

The cohesion is a method for quantifying the connectivity of microbial communities <doi:10.1038/ismej.2017.91>. It is defined:

$$C_j^{pos} = \sum_{i=1}^n a_i \cdot \bar{r_i}_{|r>0}$$

$$C_j^{neg} = \sum_{i=1}^n a_i \cdot \bar{r_i}_{|r<0}$$

where C_j^{pos} is the positive cohesion, and C_j^{neg} is the negative cohesion. a_i is the relative abundance of species i in sample j. $\bar{r}_{i|r>0}$ denotes the mean weight (correlation coefficient, interaction strength) of all the edges (related with species i) with positive association.

Methods

Public methods:

- cohesionclass\$new()
- cohesionclass\$cal_diff()
- cohesionclass\$plot()
- cohesionclass\$clone()

Method new():

Usage:

cohesionclass\$new(network_list)

Arguments:

network_list a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

Returns: res_list, stored in the object. It includes two tables: res_feature and res_sample. In res_feature, the r_pos and r_neg columns mean the $\bar{r_i}_{|r>0}$ and $\bar{r_i}_{|r<0}$. In res_sample, the c_pos and c_neg columns denote C_i^{pos} and C_i^{neg} .

Examples:

```
t1 <- cohesionclass$new(soil_amp_network)</pre>
```

Method cal_diff(): Differential test.

```
Usage:
```

```
cohesionclass$cal_diff(
  measure = "c_pos",
  method = c("anova", "KW", "KW_dunn", "wilcox", "t.test")[1],
  ...
)
```

cohesion class 5

```
Arguments:
       measure default "c_pos"; "c_pos" or "c_neg" in the res_list$sample; "r_pos" or "r_neg" in
          the res_list$feature.
       method default "anova"; see the following available options:
          'anova' Duncan's multiple range test for anova
          'KW' KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
          'KW_dunn' Dunn's Kruskal-Wallis Multiple Comparisons, see dunnTest function in FSA
             package
          'wilcox' Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
           't.test' Student's t-Test for all paired groups
       ... parameters passed to cal_diff function of trans_alpha class of microeco package.
       Returns: res_diff in object. See the Return of cal_diff function in trans_alpha class of
       microeco package.
       Examples:
       \donttest{
       t1$cal_diff(method = "wilcox")
     Method plot(): Plot the result.
       Usage:
       cohesionclass$plot(measure = "c_pos", ...)
       measure default "c_pos"; "c_pos" or "c_neg" in the res_list$sample; "r_pos" or "r_neg" in
          the res_list$feature.
       ... parameters pass to plot_alpha function of trans_alpha class of microeco package.
       Returns: ggplot.
       Examples:
       \donttest{
       t1$plot(boxplot_add = "none", add_sig = TRUE)
     Method clone(): The objects of this class are cloneable with this method.
       cohesionclass$clone(deep = FALSE)
       Arguments:
       deep Whether to make a deep clone.
Examples
    ## Method `cohesionclass$new`
    ## -----
    t1 <- cohesionclass$new(soil_amp_network)</pre>
```

6 edge_comp

```
## -----
## Method `cohesionclass$cal_diff`
## -----

t1$cal_diff(method = "wilcox")

## ------
## Method `cohesionclass$plot`
## ------
t1$plot(boxplot_add = "none", add_sig = TRUE)
```

edge_comp

Generate a microtable object with paired nodes distributions of edges across networks

Description

Generate a microtable object with paired nodes distributions of edges across networks. Useful for the edge comparisons across different networks. The return otu_table in microtable object has the binary numbers in which 1 represents the presence of the edge in the corresponding network.

Usage

```
edge_comp(network_list)
```

Arguments

network_list

a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

Value

microtable object

```
data(soil_amp_network)
test <- edge_comp(soil_amp_network)
# test is a microtable object</pre>
```

edge_node_distance 7

edge_node_distance

Perform the distance distribution of paired nodes in edges across networks.

Description

This class is a wrapper for a series of analysis on the distance values of paired nodes in edges across networks, including distance matrix conversion, the differential test and the visualization.

Methods

Public methods:

```
edge_node_distance$new()
edge_node_distance$cal_diff()
edge_node_distance$plot()
edge_node_distance$clone()

Method new():
Usage:
edge_node_distance$new(
    network_list,
    dis_matrix = NULL,
    label = "+",
    with_module = FALSE,
    module_thres = 2
)
```

Arguments:

network_list a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

dis_matrix default NULL; the distance matrix of nodes, used for the value extraction; must be a symmetrical matrix (or data.frame object) with both colnames and rownames (i.e. feature names).

label default "+"; "+" or "-" or c("+", "-"); the edge label used for the selection of edges. with_module default FALSE; whether show the module classification of nodes in the result. module_thres default 2; the threshold of the nodes number of modules remained when with_module = TRUE.

Returns: data_table, stored in the object

```
Examples:
\donttest{
data(soil_amp_network)
data(soil_amp)
# filter useless features to speed up the calculation
node_names <- unique(unlist(lapply(soil_amp_network, function(x){colnames(x$data_abund)})))
filter_soil_amp <- microeco::clone(soil_amp)</pre>
```

8 edge_node_distance

```
filter_soil_amp$otu_table <- filter_soil_amp$otu_table[node_names, ]</pre>
 filter_soil_amp$tidy_dataset()
 # obtain phylogenetic distance matrix
 phylogenetic_distance <- as.matrix(cophenetic(filter_soil_amp$phylo_tree))</pre>
 # choose the positive labels
 t1 <- edge_node_distance$new(network_list = soil_amp_network,</pre>
  dis_matrix = phylogenetic_distance, label = "+")
Method cal_diff(): Differential test across networks.
 Usage:
 edge_node_distance$cal_diff(
   method = c("anova", "KW", "KW_dunn", "wilcox", "t.test")[1],
 )
 Arguments:
 method default "anova"; see the following available options:
     'anova' Duncan's multiple range test for anova
     'KW' KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
     'KW_dunn' Dunn's Kruskal-Wallis Multiple Comparisons, see dunnTest function in FSA
       package
     'wilcox' Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
     't.test' Student's t-Test for all paired groups
 ... parameters passed to cal_diff function of trans_alpha class of microeco package.
 Returns: res_diff in object. See the Return of cal_diff function in trans_alpha class of
 microeco package.
 Examples:
 \donttest{
 t1$cal_diff(method = "wilcox")
 }
Method plot(): Plot the distance.
 edge_node_distance$plot(...)
 Arguments:
 ... parameters pass to plot_alpha function of trans_alpha class of microeco package.
 Returns: ggplot.
 Examples:
 \donttest{
 t1$plot(boxplot_add = "none", add_sig = TRUE)
Method clone(): The objects of this class are cloneable with this method.
 Usage:
 edge_node_distance$clone(deep = FALSE)
 Arguments:
 deep Whether to make a deep clone.
```

edge_tax_comp 9

Examples

```
## -----
## Method `edge_node_distance$new`
data(soil_amp_network)
data(soil_amp)
# filter useless features to speed up the calculation
node_names <- unique(unlist(lapply(soil_amp_network, function(x){colnames(x$data_abund)})))</pre>
filter_soil_amp <- microeco::clone(soil_amp)</pre>
filter_soil_amp$otu_table <- filter_soil_amp$otu_table[node_names, ]</pre>
filter_soil_amp$tidy_dataset()
# obtain phylogenetic distance matrix
phylogenetic_distance <- as.matrix(cophenetic(filter_soil_amp$phylo_tree))</pre>
# choose the positive labels
t1 <- edge_node_distance$new(network_list = soil_amp_network,</pre>
dis_matrix = phylogenetic_distance, label = "+")
## Method `edge_node_distance$cal_diff`
t1$cal_diff(method = "wilcox")
## -----
## Method `edge_node_distance$plot`
t1$plot(boxplot_add = "none", add_sig = TRUE)
```

edge_tax_comp

Taxonomic sum of linked nodes in edges across networks

Description

Taxonomic sum of linked nodes in edges across networks.

Usage

```
edge_tax_comp(
  network_list,
  taxrank = "Phylum",
  label = "+",
```

10 get_edge_table

```
rel = TRUE,
sep = " -- "
```

Arguments

network_list a list with multiple networks; all the networks should be trans_network object

created from trans_network class of microeco package.

taxrank default "Phylum"; Which taxonomic level is used for the sum of nodes in edges.

label default "+"; "+" or "-" or c("+", "-"); the edge label used for the selection of

edges.

rel default TRUE; TRUE represents using ratio, the denominator is the number of

selected edges; FALSE represents the absolute number of the sum of edges.

sep default " – "; The separator for two taxonomic names shown in the result.

Value

data.frame

Examples

```
data(soil_amp_network)
test <- edge_tax_comp(soil_amp_network)
# test is a microtable object</pre>
```

get_edge_table

Get edge property table for each network

Description

Get edge property table for each network in the list with multiple networks.

Usage

```
get_edge_table(network_list)
```

Arguments

 $network_list$

a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

Value

list, with res_edge_table in each network

get_node_table 11

Examples

```
data(soil_amp_network)
soil_amp_network <- get_edge_table(soil_amp_network)</pre>
```

get_node_table

Get node property table for each network

Description

Get node property table for each network in the list with multiple networks.

Usage

```
get_node_table(network_list, ...)
```

Arguments

```
network_list a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

... parameter passed to get_node_table function of trans_network class.
```

Value

list, with res_node_table in each network

Examples

```
data(soil_amp_network)
soil_amp_network <- get_node_table(soil_amp_network, node_roles = FALSE)</pre>
```

 12 node_comp

Description

For the detailed tutorial on meconetcomp package, please follow the links:

Online tutorial website: https://chiliubio.github.io/microeco_tutorial/meconetcomp-package.html Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases

Please open the help document by using help function or by clicking the following links collected:

```
cal_module
cal_network_attr
get_node_table
get_edge_table
node_comp
edge_comp
edge_node_distance
edge_tax_comp
subset_network
subnet_property
robustness
vulnerability
cohesionclass
```

To report bugs or discuss questions, please use Github Issues (https://github.com/ChiLiubio/meconetcomp/issues). Before creating a new issue, please read the guideline (https://chiliubio.github.io/microeco_tutorial/notes.html#githubissues).

To cite meconetcomp package in publications, please run the following command to get the reference: citation("meconetcomp")

Reference:

Chi Liu, Chaonan Li, Yanqiong Jiang, Raymond Jianxiong Zeng, Minjie Yao, and Xiangzhen Li. 2023. A guide for comparing microbial co-occurrence networks. iMeta. 2(1): e71.

node_comp

Generate a microtable object with node distributions across networks

Description

Generate a microtable object with node distributions across networks. Useful for the node information comparisons across different networks.

Usage

```
node_comp(network_list, property = "name")
```

Arguments

network_list a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

13 robustness

property

default "name"; a colname of res_node_table in each network; the default "name" represents using node presence/absence information in the otu_table of final output, in which 1 represents presence of the node in the corresponding network; For other options (such as degree), the results in the output otu_table are the actual values of res_node_table.

Value

microtable object

Examples

```
data(soil_amp_network)
test <- node_comp(soil_amp_network)</pre>
# test is a microtable object
```

robustness

Calculate robustness across networks.

Description

This class is a wrapper for robustness calculation and visualization.

Methods

Public methods:

- robustness\$new()
- robustness\$plot()
- robustness\$clone()

Method new():

```
Usage:
robustness$new(
  network_list,
 remove_strategy = c("edge_rand", "edge_strong", "edge_weak", "node_rand", "node_hub",
    "node_degree_high", "node_degree_low")[1],
  remove_ratio = seq(0, 1, 0.1),
  measure = c("Eff", "Eigen", "Pcr")[1],
  run = 10
)
Arguments:
network_list a list with multiple networks; all the networks should be trans_network object
   created from trans_network class of microeco package.
remove_strategy default "edge_rand";
   "edge_rand" edges are randomly removed.
```

14 robustness

"edge_strong" edges are removed in decreasing order of weight.

"edge_weak" edges are removed in increasing order of weight.

"node_rand" nodes are removed randomly.

"node_hub" node hubs are randomly removed. The hubs include network hubs and module hubs.

"node_degree_high" nodes are removed in decreasing order of degree.

"node_degree_low" nodes are removed in increasing order of degree.

remove_ratio default seq(0, 1, 0.1).

measure default "Eff"; network robustness measures.

"Eff" network efficiency. The average efficiency of the network is defined:

$$Eff = \frac{1}{N(N-1)} \sum_{i \neq j \in G} \frac{1}{d(i,j)}$$

where N is the total number of nodes and d(i,j) is the shortest path between node i and node j. When the weight is found in the edge attributes, d(i,j) denotes the weighted shortest path between node i and node j. For more details, please read the references <doi: 10.1007/s11704-016-6108-z> and <doi: 10.1038/s41598-020-60298-7>.

"Eigen" natural connectivity <doi: 10.1007/s11704-016-6108-z>. The natural connectivity can be regarded as an average eigenvalue that changes strictly monotonically with the addition or deletion of edges. It is defined:

$$\bar{\lambda} = \ln(\frac{1}{N} \sum_{i=1}^{N} e^{\lambda i})$$

where λi is the *i*th eigenvalue of the graph adjacency matrix. The larger the value of $\bar{\lambda}$ is, the more robust the network is.

"Pcr" critical removal fraction of vertices (edges) for the disintegration of networks <doi: 10.1007/s11704-016-6108-z > <doi: 10.1103/PhysRevE.72.056130 >. This is a robustness measure based on random graph theory. The critical fraction against random attacks is labeled as P_c^r . It is defined:

$$P_c^r = 1 - \frac{1}{\frac{\langle k^2 \rangle}{\langle k \rangle} - 1}$$

where $\langle k \rangle$ is the average nodal degree of the original network, and $\langle k^2 \rangle$ is the average of square of nodal degree.

run default 10. Replication number of simulation for the sampling method; Only available when remove_strategy = "edge_rand", "node_rand" or "node_hub".

Returns: res_table and res_summary, stored in the object. The res_table is the original simulation result. The Mean and SD in res_summary come from the res_table.

Examples:

tmp <- robustness\$new(soil_amp_network, remove_strategy = c("edge_rand"),
 measure = c("Eff"), run = 3, remove_ratio = c(0.1, 0.5, 0.9))</pre>

Method plot(): Plot the simulation results.

robustness 15

```
Usage:
 robustness$plot(
    color_values = RColorBrewer::brewer.pal(8, "Dark2"),
   show_point = TRUE,
   point_size = 1,
   point_alpha = 0.6,
    show_errorbar = TRUE,
    errorbar_position = position_dodge(0),
    errorbar_size = 1,
    errorbar_width = 0.1,
    add_fitting = FALSE,
 Arguments:
 color_values colors used for presentation.
 show_point default TRUE; whether show the point.
 point_size default .3; point size value.
 point_alpha default .6; point alpha value.
 show_errorbar default TRUE; whether show the errorbar by using the SD result.
 errorbar_position_default position_dodge(0); Position adjustment, either as a string (such as
     "identity"), or the result of a call to a position adjustment function.
 errorbar_size default 1; errorbar size.
 errorbar_width default 0.1; errorbar width.
 add_fitting default FALSE; whether add fitted smooth line. FALSE denotes add line segment
     among points.
 ... parameters pass to ggplot2::geom_line (when add_fitting = FALSE) or ggplot2::geom_smooth
     (when add_fitting = TRUE).
 Returns: ggplot.
 Examples:
 \donttest{
 tmp$plot(linewidth = 1)
Method clone(): The objects of this class are cloneable with this method.
 Usage:
 robustness$clone(deep = FALSE)
 Arguments:
 deep Whether to make a deep clone.
```

```
## -----
## Method `robustness$new`
## -----
```

Description

The soil_amp data is the 16S rRNA gene amplicon sequencing dataset of Chinese wetland soils. Reference: An et al. 2019 <doi:10.1016/j.geoderma.2018.09.035>; Liu et al. 2022 <10.1016/j.geoderma.2022.115866>

Usage

Description

The soil_amp_network data is a list storing three trans_network objects created based on soil_amp data. Three networks are created for IW, CW and TW groups, respectively.

Usage

```
data(soil_amp_network)

soil_measure_diversity

The soil_measure_diversity data
```

Description

The soil_measure_diversity data is a table storing all the abiotic factors and functional diversity based on the metagenomic sequencing and MetaCyc pathway analysis.

Usage

```
data(soil_measure_diversity)
```

stool_met 17

stool_met

The stool_met data

Description

The stool_met data is the metagenomic species abundance dataset of stool samples selected from R ExperimentHub package. It has 198 samples, collected from the people with alcohol drinking habit, and 92 species.

Usage

```
data(stool_met)
```

subnet_property

Calculate properties of sub-networks selected according to features in samples

Description

Extracting sub-network according to the presence of features in each sample across networks and calculate the sub-network properties.

Usage

```
subnet_property(network_list)
```

Arguments

network_list

a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

Value

```
data.frame
```

```
data(soil_amp_network)
test <- subnet_property(soil_amp_network)</pre>
```

18 subset_network

subset_network	Extract subset of network according to the edge intersection of networks
----------------	--

Description

Extracting a network according to the edge intersection of networks.

Usage

```
subset_network(network_list, venn = NULL, name = NULL)
```

Arguments

network_list a list with multiple networks; all the networks should be trans_network object

created from trans_network class of microeco package.

venn default NULL; a microtable object which must be converted by trans_comm

function of trans_venn class.

name default NULL; integer or character; must be a number or one of colnames of the

otu_table in the input venn parameter.

Value

trans_network object, with only the extracted edges in the network

```
data(soil_amp_network)
# first obtain edge distribution
tmp <- edge_comp(soil_amp_network)
# obtain edge intersection using trans_venn class
tmp1 <- microeco::trans_venn$new(tmp)
# convert intersection result to microtable object
tmp2 <- tmp1$trans_comm()
# extract the intersection of all the three networks ("IW", "TW" and "CW")
test <- subset_network(soil_amp_network, venn = tmp2, name = "IW&TW&CW")
# test is a trans_network object</pre>
```

vulnerability 19

vulnerability

Calculate the vulnerability of each node for each network

Description

The vulnerability of each node represents the influence of the node on the global efficiency of the network, i.e. the efficiency of network after removing the targeted node. For the detailed defination of global efficiency, please see the "Eff" option of measure parameter in robustness class.

Usage

```
vulnerability(network_list)
```

Arguments

network_list

a list with multiple networks; all the networks should be trans_network object created from trans_network class of microeco package.

Value

data.frame

```
data(soil_amp_network)
vulnerability_table <- vulnerability(soil_amp_network)</pre>
```

Index

```
* \ Description
    meconetcomp, 11
\ast data.frame
    soil_measure_diversity, 16
* list
    \verb|soil_amp_network|, \\ 16
* microtable
    soil_amp, 16
    stool_met, 17
cal_module, 2, 12
cal_network_attr, 3, 12
cohesionclass, 4, 12
edge_comp, 6, 12
edge_node_distance, 7, 12
edge_tax_comp, 9, 12
get_edge_table, 10, 12
get_node_table, 11, 12
meconetcomp, 11
node_comp, 12, 12
robustness, 12, 13, 19
soil_amp, 16
soil\_amp\_network, 16
soil_measure_diversity, 16
stool_met, 17
subnet_property, 12, 17
subset_network, 12, 18
vulnerability, 12, 19
```