Pattern Avoidance in Sequences

Shihan Kanungo Mentor: Prof. Jesse Geneson (SJSU)

SJSU

PRIMES October Conference 2025

Outline

Introduction

Saturation for Sequences

New Results

Outline

Introduction

2 Saturation for Sequences

New Results

In the field of extremal combinatorics, we ask questions like

Extremal Question

What is the largest possible size of an object which avoids a given forbidden substructure?

In the field of extremal combinatorics, we ask questions like

Extremal Question

What is the largest possible size of an object which avoids a given forbidden substructure?

For example:

• What is the largest possible graph on n vertices that does not contain K_3 as a subgraph? (Turan's Theorem & the forbidden subgraph problem)

In the field of extremal combinatorics, we ask questions like

Extremal Question

What is the largest possible size of an object which avoids a given forbidden substructure?

For example:

- What is the largest possible graph on n vertices that does not contain K_3 as a subgraph? (Turan's Theorem & the forbidden subgraph problem)
- What is the largest possible group of people, such that for any set of k people, they are not all friends or not all strangers? (Ramsey Theory)

In the field of extremal combinatorics, we ask questions like

Extremal Question

What is the largest possible size of an object which avoids a given forbidden substructure?

For example:

- What is the largest possible graph on n vertices that does not contain K_3 as a subgraph? (Turan's Theorem & the forbidden subgraph problem)
- What is the largest possible group of people, such that for any set of k people, they are not all friends or not all strangers? (Ramsey Theory)
- What is the largest possible subset of $\{1, \ldots, n\}$ that does not contain a k-term arithmetic progression? (Szemeredi's Theorem)

Saturation

The saturation question is a bit more complicated.

Saturation

The saturation question is a bit more complicated.

Saturation Question

What is the SMALLEST possible structure that avoids a given forbidden substructure, BUT making it larger in any way induces a copy of the forbidden structure?

Saturation

The saturation question is a bit more complicated.

Saturation Question

What is the SMALLEST possible structure that avoids a given forbidden substructure, BUT making it larger in any way induces a copy of the forbidden structure?

In other words: the minimum size of a maximal structure, rather than the maximum size.

Definition

Let G and H be graphs. We say G is H-saturated if G avoids H as a subgraph, but adding any new edge to G induces a copy of H.

Definition

Let G and H be graphs. We say G is H-saturated if G avoids H as a subgraph, but adding any new edge to G induces a copy of H.

Example

Consider

$$H = lacksquare$$

The graph

is H-saturated.

Definition

Let G and H be graphs. We say G is H-saturated if G avoids H as a subgraph, but adding any new edge to G induces a copy of H.

Example

Consider

H = lacksquare

The graph

is H-saturated.

Definition

Let G and H be graphs. We say G is H-saturated if G avoids H as a subgraph, but adding any new edge to G induces a copy of H.

Example

Consider

H = lacksquare

The graph

is H-saturated.

Definition

The saturation function Sat(n, H) is the minimum number of edges in a H-saturated graph on n vertices.

Definition

The saturation Sat(n, H) is the minimum number of edges in a H-saturated graph on n vertices.

Sat(n, H) exhibits an dichotomy:

Definition

The saturation Sat(n, H) is the minimum number of edges in a H-saturated graph on n vertices.

Sat(n, H) exhibits an dichotomy:

Theorem (Kászonyi-Tuza, 1986)

We have Sat(n, H) = O(1) or $Sat(n, H) = \Theta(n)$.

Definition

The saturation Sat(n, H) is the minimum number of edges in a H-saturated graph on n vertices.

Sat(n, H) exhibits an dichotomy:

Theorem (Kászonyi-Tuza, 1986)

We have Sat(n, H) = O(1) or $Sat(n, H) = \Theta(n)$.

In many other settings, it has been seen that the saturation function exhibits the same dichotomy.

Outline

Introduction

Saturation for Sequences

New Results

We use "letters" to refer to the terms in a sequence.

We use "letters" to refer to the terms in a sequence.

Definition

Let s, u be two sequences. We say that s contains a copy of u if s has a subsequence that can be turned into u by a *one-to-one* renaming of letters.

We use "letters" to refer to the terms in a sequence.

Definition

Let s, u be two sequences. We say that s contains a copy of u if s has a subsequence that can be turned into u by a *one-to-one* renaming of letters.

Example

The sequence s = 1, 2, 3, 2, 3, 1, 2 contains a copy of u = abab:

We use "letters" to refer to the terms in a sequence.

Definition

Let s, u be two sequences. We say that s contains a copy of u if s has a subsequence that can be turned into u by a *one-to-one* renaming of letters.

Example

The sequence s = 1, 2, 3, 2, 3, 1, 2 contains a copy of u = abab:

However, s = 1, 2, 3, 2, 1 does not.

We use "letters" to refer to the terms in a sequence.

Definition

Let s, u be two sequences. We say that s contains a copy of u if s has a subsequence that can be turned into u by a *one-to-one* renaming of letters.

Example

The sequence s = 1, 2, 3, 2, 3, 1, 2 contains a copy of u = abab:

However, s = 1, 2, 3, 2, 1 does not.

Definition

A sequence s is r-sparse if every consecutive r letters are pairwise distinct.

We use "letters" to refer to the terms in a sequence.

Definition

Let s, u be two sequences. We say that s contains a copy of u if s has a subsequence that can be turned into u by a *one-to-one* renaming of letters.

Example

The sequence s = 1, 2, 3, 2, 3, 1, 2 contains a copy of u = abab:

However, s = 1, 2, 3, 2, 1 does not.

Definition

A sequence s is r-sparse if every consecutive r letters are pairwise distinct.

Example

The sequence s = 1, 2, 3, 2, 3, 1, 2 is 2-sparse, but not 3-sparse.

Saturation for Sequences

Definition

Let u be a sequence with r distinct letters. A sequence s is u-saturated if s avoids u, s is r-sparse, and inserting any new letter into s either induces a copy of u or violates r-sparsity.

Saturation for Sequences

Definition

Let u be a sequence with r distinct letters. A sequence s is u-saturated if s avoids u, s is r-sparse, and inserting any new letter into s either induces a copy of u or violates r-sparsity.

If we dropped the r-sparsity condition, we would have arbitrarily long sequences like $1, 1, \cdots$ which avoid u.

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

11 / 22

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

s **is 3-sparse**: Evident.

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

s is 3-sparse: Evident.

Saturation: Suppose we insert a 1 into s. The possibilities are:

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

s is 3-sparse: Evident.

Saturation: Suppose we insert a 1 into s. The possibilities are:

1 1 2 3 (violates 3-sparsity)

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

s is 3-sparse: Evident.

Saturation: Suppose we insert a 1 into s. The possibilities are:

1 1 2 3 (violates 3-sparsity)

1 1 2 3 (violates 3-sparsity)

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

s is 3-sparse: Evident.

Saturation: Suppose we insert a 1 into s. The possibilities are:

1 1 2 3 (violates 3-sparsity)

1 1 2 3 (violates 3-sparsity)

1 2 1 3 (violates 3-sparsity)

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

s is 3-sparse: Evident.

Saturation: Suppose we insert a 1 into s. The possibilities are:

- 1 1 2 3 (violates 3-sparsity)
- 1 1 2 3 (violates 3-sparsity)
- 1 2 1 3 (violates 3-sparsity)

Example

Example

If u = abca then the sequence s = 1, 2, 3 is u-saturated.

First, r = 3 since u has 3 distinct letters. Now we check:

s avoids u: Evident.

s is 3-sparse: Evident.

Saturation: Suppose we insert a 1 into s. The possibilities are:

1 1 2 3 (violates 3-sparsity)

1 1 2 3 (violates 3-sparsity)

1 2 1 3 (violates 3-sparsity)

Similar checks for the other letters.

Definition

The saturation function Sat(n, u) is the length of the shortest u-saturated sequence with n distinct letters.

Definition

The saturation function Sat(n, u) is the length of the shortest u-saturated sequence with n distinct letters.

In 2021, Anand, Geneson, Kaustav, and Tsai conjectured

Conjecture

We have Sat(n, u) = O(n).

Definition

The saturation function Sat(n, u) is the length of the shortest u-saturated sequence with n distinct letters.

In 2021, Anand, Geneson, Kaustav, and Tsai conjectured

Conjecture

We have Sat(n, u) = O(n).

This implies the dichotomy Sat(n, u) = O(1) or $\Theta(n)$.

Definition

The saturation function Sat(n, u) is the length of the shortest u-saturated sequence with n distinct letters.

In 2021, Anand, Geneson, Kaustav, and Tsai conjectured

Conjecture

We have Sat(n, u) = O(n).

This implies the dichotomy Sat(n, u) = O(1) or $\Theta(n)$. They proved

Theorem (Anand-Geneson-Kaustav-Tsai, 2021)

We have Sat(n, u) = O(n) for all sequences u with two distinct letters.

However, the cases for u having ≥ 3 distinct letters remained completely open.

Outline

Introduction

2 Saturation for Sequences

New Results

Consider the following algorithm:

```
1: Input: Alphabet A = \{1, ..., n\}, forbidden sequence u
   Output: u-saturated sequence
   Initialize the sequence: s \leftarrow 1, 2, \dots, r-1
                                                                      \triangleright Initial sequence avoids u
   while it is possible to extend the sequence do
 5:
        for each letter x \in A do
            if x can be properly inserted into s then
 6:
                Insert x appropriately into s to form s'
                                                                 \triangleright Smallest x, leftmost position
 7:
                Update s \leftarrow s'
 8:
                                                                                  ▶ New sequence
                break
                                                       ▷ Exit loop after the first valid insertion
 9:
            end if
10.
        end for
11:
   end while
```

13 Return s

The output of the algorithm:

Figure: Algorithm on u = abcacbc.

Here, we represent $s = s_1 \cdots s_\ell$ by plotting the points (i, s_i) .

The output of the algorithm:

Figure: Algorithm on u = abcacbc.

Here, we represent $s = s_1 \cdots s_\ell$ by plotting the points (i, s_i) . Using this pattern, we get Sat(n, abcacbc) = O(n)!

Some more pictures:

Figure: Algorithm on u = abbacac (left) and abcacba (right).

And even more:

Figure: Algorithm on u = abcacbacb (left) and abcbacbac (right).

And even more:

Figure: Algorithm on u = abcacbacb (left) and abcbacbac (right).

This lets us resolve the conjecture for many specific sequences u.

Say u is irreducible if u cannot be decomposed into sequences $u=u_1u_2$ such that u_1 and u_2 have no letters in common.

Say u is irreducible if u cannot be decomposed into sequences $u=u_1u_2$ such that u_1 and u_2 have no letters in common.

Theorem (Kanungo, 2025+)

If u is irreducible and of the form $aa \cdots bb$, then Sat(n, u) = O(n).

Suppose u is a sequence on 3 letters, and $u = abc \cdots xyz$ where a, b, c are distinct.

Suppose u is a sequence on 3 letters, and $u = abc \cdots xyz$ where a, b, c are distinct. Define

$$f_0(u) = \#\{$$
 consecutive pairs of the form $ab, bc, ca \},$
 $f_1(u) = \#\{$ consecutive pairs of the form $ac, ba, cb \}.$

Suppose u is a sequence on 3 letters, and $u = abc \cdots xyz$ where a, b, c are distinct. Define

 $f_0(u) = \#\{ \text{ consecutive pairs of the form } ab, bc, ca \},$

 $f_1(u) = \#\{ \text{ consecutive pairs of the form } ac, ba, cb \}.$

Theorem (Kanungo, 2025+)

Let $u = abc \dots xyz$ be a three-letter sequence with a, b, c distinct. Suppose

$$xyz \in \{abc, bca, cab\}, \qquad f_0(u) \ge f_1(u) + 5.$$

Then Sat(n, u) = O(n).

Suppose u is a sequence on 3 letters, and $u = abc \cdots xyz$ where a, b, c are distinct. Define

 $f_0(u) = \#\{ \text{ consecutive pairs of the form } ab, bc, ca \},$

 $f_1(u) = \#\{ \text{ consecutive pairs of the form } ac, ba, cb \}.$

Theorem (Kanungo, 2025+)

Let $u = abc \dots xyz$ be a three-letter sequence with a, b, c distinct. Suppose

$$xyz \in \{abc, bca, cab\}, \qquad f_0(u) \ge f_1(u) + 5.$$

Then Sat(n, u) = O(n).

Corollary

For any sequence u on 3 letters, $Sat(n,(abc)u(abc)^t) = O(n)$ for large enough t.

Acknowledgments

• My mentor, Prof. Jesse Geneson.

Acknowledgments

- My mentor, Prof. Jesse Geneson.
- The PRIMES organizers.

Acknowledgments

- My mentor, Prof. Jesse Geneson.
- The PRIMES organizers.
- My parents.

Questions?

Questions?

Thank You!

Thank You!