# **Einführung**

- Begriffe
- Datenbanketnwurf mit
  - Entity Relationship Modell
- Relationales Datenmodell
  - Schlüssel, Fremdschlüssel

## **Einführung**

- Datenbanksystem (DBS):
  - System zur Beschreibung, Speicherung und Wiedergewinnung umfangreicher Datenmengen, die von verschiedenen Anwendungsprogrammen benutzt werden.
- Ein DBS besteht aus:
  - Datenbank und
  - Datenbank-Management-System
- Datenbank: "Sammlung aller gespeicherten Daten"
- Datenbank-Management-System
  - Programmsystem, das die DB verwaltet, fortschreibt und Zugriffe darauf regelt

## Abstraktionsebenen eines DB Systems

#### Externe Sicht

- Views
- Ausschnitte aus dem konzeptionellen Schema

### Konzeptionelle Sicht

- einheitliche Darstellung aller Daten
- DBS bietet dazu Datenmodell mit entsprechender DDL

#### Interne Sicht

- Implementierung der konzep. DB
- Dateien, Zugriffspfade, etc.







### Anforderungsanalyse

- □ Analyse und Spezifikation von
  - Daten
  - Datenbeziehungen
  - Transaktionen (Funktionen auf den Daten, die von den Applikationen benötigt werden)
- □ Randbedingungen
  - Leistungsanforderungen (Antwortzeiten etc.)
  - Sicherheit
  - HW/SW-Plattformen
  - Anwendungsrichtlinien
- ☐ Ansätze
  - Knowledge Acquisition Design: Der DB-Experte interviewt die zukünftigen Anwender und versucht deren Anforderungen festzustellen.
  - Participatory Design: Der DB-Experte und der zukünftige Anwender entwickeln das Design als Team.

# <u>Lebenszyklus eines DB Systems</u>

### Konzeptioneller Entwurf

- □ Basierend auf der Anforderungsanalyse werden die essentiellen Konzepte extrahiert und in einem konzeptionellen Datenmodell (DB-Schema) beschrieben.
- □ Entity-Relationship Modell
  - Formale Beschreibung der Datenobjekte und ihrer Beziehungen
  - Integration verschiedener Sichten
- □ Beschreibung der Transaktionen (Eingabe, Änderung, ...)
- □ Festlegung von Integritätsbedingungen für die Daten und für die Transaktionen

## <u>Lebenszyklus eines DB Systems</u>

### Logischer Entwurf

- Ausgehend vom DB-Schema (z.B. ER-Modell) wird ein DBS-spezifisches Datenmodell (z.B. Relationales Datenmodell) entwickelt.
- ☐ Wichtige Schritte bei der Transformation des DB-Schemas in das Datemodell:
  - Normalisierung und Denormalisierung
  - Primärschlüssel festlegen
  - Formulierung von Integritätsbedingungen und Transaktionen in DBS-spezifischem Datenmodell (relationale Anfragen, rel. Algebra etc.)
  - View-Definitionen (externe Sichten)
  - Zugriffsrechte

□ Re-Engineering, Integration

Physikalischer Entwurf (Umsetzung des Datenmodells)

| konkrete Domäne für Attribute, z.B. CHAR(30), VARCHAR(20), NUMBER(4),<br>NUMBER(7,2), DATE, |
|---------------------------------------------------------------------------------------------|
| Erzeugen der Relationen und evtl. Laden mit vorhandenen Daten                               |
| □ Einrichten von Views, Benutzern, Zugriffsrechten                                          |
| <ul><li>Eingabe der Integritätsbedingungen (Anfragen, Prüfprogramme,)</li></ul>             |
| □ Definition geeigneter Indexe                                                              |
|                                                                                             |
| Vartung, Modifikation und Erweiterung                                                       |
| □ Arbeiten mit der Datenbank, Beseitigung von Fehlern                                       |
| □ Erweiterung, Erstellen von Anwendungsprogrammen                                           |

# **Entity-Relationship Modell (ERM)**

### Das ER-Modell beschreibt einen Ausschnitt der realen Welt durch:

|         | Entity                         | Relationship                                    | Attribut                     |
|---------|--------------------------------|-------------------------------------------------|------------------------------|
|         |                                |                                                 |                              |
| Set     | Menge gleichartiger<br>Objekte | Beziehungs-<br>möglichkeit                      | Merkmal,<br>Eigenschaft      |
| Instanz | bestimmtes Objekt              | konkrete Beziehung<br>zwischen zwei<br>Objekten | Eigenschaft eines<br>Objekts |

### **Modellierung (Entity-Relationship-Diagramm)**

- Die graphische Darstellung erfolgt durch Entity-Relationship-Diagramme (ER-Diagramm).
- Entity-Typen werden durch Rechtecke, Beziehungen durch Rauten und Attribute durch Ovale dargestellt.



# **ERM: Vorgehensweise**



## **Beispiel: Uni-Verwaltungssystem**

- Es soll ein univ. Verwaltungssystem gebaut werden. Dazu interviewt man mehere Personen:
- Professoren:
   Die Studierenden sollen bestimmte Lehrveranstaltungen hören (inskribieren) und über diese dann Prüfungen ablegen können.
- Verwaltungspersonal:
   Wir verwalten Professoren und deren Assistenten, wobei bei
   Professoren folg. Daten wichtig sind: Persnr, name, raum, rang.
   Professoren haben je ein eigenes Büro/Raum. Bei Assistenten wird
   zusätzlich der Fachbereich gespeichert. Nur Professoren halten
   Vorlesungen ab. Über Vorlesungen werden folg. Daten gespeichert:
   Vorlnr, titel, sws. Manche Vorlesungen setzen den Besuch anderer
   Vorlesungen voraus und können ihrerseits wieder Voraussetzung für
   andere Vorlesungen sein.

Es werden auch Studentendaten gespeichert: matrnr, name, semester. Zu den Prüfungen muss gespeichert werden, welcher Student, bei welcher Vorlesung und bei welchem Professor welche Note wann gemacht hat.

## **Beispiel: Uni-Verwaltungssystem**

- Ein Vorlesungsverzeichnis soll erstellt werden können.
- Eine Mitarbeiterliste soll erstellt werden können, gereiht nach Professor und seinen Assistenen.
- Ein Inskriptionsverzeichnis: Welcher Student, welche Vorlesung(en) besucht)
- Ein Prüfungsverzeichnis: Welcher Student bei welchem Professor zu welcher Vorlesung wann, welche Note gemacht hat
- Eine Webanbindung (Vorlesungsverzeichnis) soll realisiert werden.
- Eine MS-Access / Openoffice base Anwendung zur Verwaltung der Daten und zur Berichterzeugung soll erstellt werden.

## Beispiel: ERD: Universitätsinformationssystem



# Kardinalität der Beziehung (1:n, n:m)



# **Uni-Beispiel mit Kardinalitäten**



# **ERD-Beispiel: Projektdatenbank**



### ERM Erweiterung: Vererbung: IS-A Beziehung

Beispiel:



Semantik dieser ISA-Beziehung:

Der Manager erbt alle Attribute und Beziehungen vom Angestellten. Der Manager erbt also auch den Schlüssel.

## ERM Erweiterung: Vererbung: IS-A Beziehung



- 1. Attribut oder Entity?
- 2. Attribut zu welchem Entity?
- 3. Schlüsselattribute?
- 4. Entity oder Relationship?
- 5. Relationships nur zwischen zwei Entities?
- 6. Attribut oder Relationship?
- 7. Einsatz von ISA-Beziehungen?

### 1. Attribut oder Entity?



#### Kriterien:

- Ist das Attribut ein atomarer Wert oder aus mehreren Werten zusammengesetzt?
- Kann der Wert des Attributs fehlen?
- Kann das Attribut mehrere Werte gleichzeitig annehmen?
- Ist die Domäne des Attributs wichtig (bzgl. der Korrektheit des Wertes)?

### 2. Attribut zu welchem Entity?



#### Kriterien:

- Natürlichkeit,
- Änderungsfreundlichkeit

### 3. Schlüssel-Attribute

- Dürfen auch mehrere sein (zusammengesetzter Schlüssel)
- Künstliche IDs (Surrogate) nur dann einsetzen, wenn es keinen konstanten Schlüssel innerhalb des Entity-Typs gibt oder der Schlüssel aus sehr vielen Attributen zusammengesetzt wäre

### 4. Entity oder Relationship?



### Kriterien:

- Beziehung benötigt Schlüsselattribute -> modelliere Entity
- Beziehung hat viele Attribute -> modelliere Entity

### 5. Relationships nur zwischen zwei Entities?



### 6. Attribut oder Relationship?



### 7. Einsatz von ISA-Beziehungen?



### Kriterien:

- Hat die Oberklasse gemeinsame Beziehungen / Attribute
- Haben die Untersklassen unterschiedliche Beziehungen / Attribute
- Ist modellierte Information nützlich für die Applikation

# **Aufgaben: ERM**

- Bibliothek
- Projektverwaltung
- Schulunterrichtsverwaltung
- Adventuregameverwaltung
- HTL-DA-Verwaltung
- Inventarverwaltung

•

## **Aufgaben: ERM**

- Erstellen Sie ein ERD: (Projekt)
  - Mitarbeiter arbeiten an Projekten mit und sind gleichzeitig Abteilungen zugeordnet.
  - Es gibt Angestellte, die einen echten Dienstvertrag besitzen und andere, die einen freien Dienstnehmervertrag besitzen.
  - Die Angestellten haben bestimmte Qualifikationen, die bei der Projektarbeit notwendige Voraussetzung sind.

- Erstellen Sie ein ERD: (Autorenschaft)
  - Bücher werden von Autoren erstellt. Dabei ist die Reihenfolge der Autorenauflistung für die Entlohnung wichtig.

## <u>Aufgaben: ERM – Bibliothek</u>

- Eine Bibliothek besteht aus Büchern und Zeitschriften.
  - Jedes Buch kann ggf. mehrere Autoren haben und ist eindeutig durch seine ISBN gekennzeichnet.
  - Die Bibliothek besitzt teilweise mehrere Exemplare eines Buches.
  - Zeitschriften dagegen sind jeweils nur einmal vorhanden. Sie erscheinen in einzelnen Heften und werden jahrgangsweise gebunden.
  - Die in Zeitschriften publizierten Artikel sind ebenso wie Bücher einem oder mehreren Fachgebieten (z.B. Betriebssysteme, Datenbanksysteme, Programmiersprachen) zugeordnet.
  - Ausgeliehen werden können nur Bücher (keine Zeitschriften).

# Lösung: ERM Bibliothek



# **Aufgabe: ERM - Projektmanagement**

- Stellen Sie folgende Zusammenhänge in einem Projektmanagementsystem als ER-Diagramm dar, und geben Sie an, ob es sich bei den Beziehungen jeweils um eine 1: n- oder n: m-Beziehung handelt (ursprüngliche Entitytypen sind im Text bei ihrer ersten Nennung kursiv angegeben, in Klammern die Primärschlüssel).
  - Ein *Projekt* (P-NR) besteht aus n *Arbeitspaketen* (A-NR), die jeweils einem Projekt eindeutig zugeordnet sind. Die Arbeitspakete sind untereinander zu einem hierarchischen Projektstrukturplan verbunden, wobei ein Arbeitspaket in mehrere weitere Arbeitspakete untergliedert werden kann, während jedes Arbeitspaket genau einem, hierarchisch übergeordneten Arbeitspaket untergeordnet ist.
  - Jedem Arbeitspaket werden ein oder mehrere Mitarbeiter (SV-NR) zugewiesen, wobei Mitarbeiter auch in mehreren Arbeitspaketen beschäftigt sein können. Mitarbeiter weisen bestimmte Qualifikationen (Q-ID) auf und werden Abteilungen (A-ID) zugewiesen.
  - Ein Arbeitspaket kann eine oder mehrere Qualifikationen erfordern.
  - Jedes Projekt hat einen Mitarbeiter als Verantwortlichen, wobei allerdings ein Mitarbeiter auch für mehrere Projekte Verantwortung tragen kann.
  - Führen Sie obiges ER-Modell in eine relationale Tabellendefinition über, wobei Sie zu jeder Tabelle den Primärschlüssel angeben.
  - Kann ein Informationssystem, das auf diesem ER-Modell basiert, die Information liefern, welche Qualifikationen in Summe für die Abarbeitung eines Projektes

## Lösung: ERM Projektmanagement



### **Relationales Datenmodell**

- □ Einziger Grundbaustein: Relation (Tabelle)
  - wird beschrieben durch Relationenschema: R(A<sub>1</sub>: D<sub>1</sub>, ..., A<sub>k</sub>: D<sub>k</sub>)
  - Attribut A<sub>i</sub>: Spalte, Name eindeutig
  - Domäne D<sub>i</sub>: Wertebereich, Datentyp des Attributs
  - Tupel: Zeile, Element einer Relation
- □ Relationales Datenbankschema: Menge aller Relationenschemata
- □ Relationale Datenbank: Menge aller Relationen = Relationales DB-Schema + Werte
- Relationen sind Mengen
  - keine Duplikate
  - Reihenfolge der Tupel belanglos

### **RM - Grundbegriffe**

| FAK           |            |          |
|---------------|------------|----------|
| <u>InstNr</u> | InstName   | Vorstand |
| 123           | Informatik | 1000     |
| 456           | Mathematik | 2000     |

| PROF          |           |        |               |
|---------------|-----------|--------|---------------|
| <b>PersNr</b> | PersName  | InstNr | Gebiet        |
| 1234          | Clausen   | 123    | Vert. Systeme |
| 4545          | Hagenauer | 123    | Simulation    |
| 3535          | Bauer     | 456    | Lin.Algebra   |
| 2125          | Zinterhof | 456    | Numerik       |

### Begriffe:

- Tabelle(Relation): zB.: FAK, PROF,
- Spalten(Attribute): zB.: InstNr, InstName, Gebiet,
- Attributwerte(Domain): zB.: Clausen, Informatik,
- Datensatz(Tupel): zB.: 123,Informatik,1000,
- Primärschlüssel(PrimaryKey): zB.: FAK.<u>InstNr</u>: 123
- Fremdschlüssel(ForeignKey): zB.: PROF. InstNR: 123

## RM - Grundregeln

- Jede Zeile (Tupel) ist eindeutig und beschreibt ein Objekt (Entity) der Miniwelt
- Die Ordnung der Zeilen ist ohne Bedeutung
- Die Ordnung der Spalten ist ohne Bedeutung
- Jeder Datenwert in einer Spalte ist ein <u>atomares</u> Datenelement
- Alle <u>Informationen sind ausschließlich durch Datenwerte</u> ausgedrückt.

## **RM - Grundbegriffe**

Darstellung "tabellenübergreifender" Information durch <u>Fremdschlüssel</u>

Foreign Key=

Attribut(menge), die in **Bezug auf den Primärschlüssel** einer anderen (oder derselben) Tabelle definiert ist.

(gleicher Definitionsbereich) (PROF.InstNr == INST.InstNr)

Beziehungen werden durch

Fremdschlüssel und zugehörigen Primärschlüssel

dargestellt!

## **Datendefinition in SQL**

Der Befehl create table (teilweise) in Oracle SQL



## **Datendefinition in SQL**

```
table constraint ::=
   ^{igspace} CONSTRAINT constraint ^{igspace}
     UNIQUE -
    PRIMARY KEY _
   - FOREIGN KEY ( ^{lacktrel{\dagger}} column ^{lacktrel{\perp}} ) REFERENCES table-
     CHECK (condition)
```

# **Oracle Datentypen**

#### ... auszugsweise ...

| Datatype       | Description                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------|
| CHAR(size)     | Fixed length character date of length size. Maximum size is 255.                                |
| VARCHAR2(size) | Variable length character string having maximum length <i>size</i> bytes. Maximum size is 4000. |
| NUMBER(p, s)   | Number having precision $p$ and scale $s$ .                                                     |
| LONG           | Character data of variable length up to 2 gigabytes                                             |
| DATE           | Valid dates range from January 1, 4712 BC to December 31, 4712 AD                               |
| RAW(size)      | Raw binary data of length <i>size</i> bytes. Maximum <i>size</i> is 2000.                       |
| LONG RAW       | Raw binary data of variable length up to 2 gigabytes.                                           |
| BLOB           | A binary large object. Maximum size is 4 gigabytes.                                             |

Transformation von Entities



```
CREATE TABLE land
(
name varchar2(25) NOT NULL,
flaeche number(10,2),
kfz_kennz char(4) NOT NULL,

CONSTRAINT pk_name
PRIMARY KEY (name),
UNIQUE (kfz_kennz)
);
```

□ Transformation von Relationships (n:m)



```
Entity A und B haben wir schon überführt:
CREATE TABLE A ( ... PRIMARY KEY a id ...)
CREATE TABLE B ( ... PRIMARY KEY b id ...)
Hinzu kommt:
CREATE TABLE rel
   a id ... NOT NULL,
   b id
               ... NOT NULL,
   rel attr
   PRIMARY KEY (a id, b id),
   FOREIGN KEY (a id) REFERENCES A,
   FOREIGN KEY (b id) REFERENCES B
```

□ Transformation von Relationships (1:n, 1:1)



```
Keine separate Relation für die Beziehung,
sondern:
1:n -> Aufnahme des Primärschlüssels von B in
       die Entity-Relation A
1:1 -> Aufnahme des Primärschlüssels von B in
       die Entity-Relation A oder umgekehrt
CREATE TABLE A
    a id
                ... NOT NULL,
   a rest
   b id
                ... NOT NULL,
   PRIMARY KEY (a id),
   FOREIGN KEY (b id) REFERENCES B
```

□ Transformation von ISA-Beziehungen



```
CREATE TABLE person
   p id char(8) NOT NULL,
   alter
              ...,
   PRIMARY KEY (p id),
CREATE TABLE student
   p id char(8) NOT NULL,
   fach
   PRIMARY KEY (p id),
   FOREIGN KEY (p id) REFERENCES person
CREATE TABLE professor
   p id char(8) NOT NULL,
   PRIMARY KEY (p id),
   FOREIGN KEY (p id) REFERENCES person
```

#### Alternative:

```
CREATE TABLE person x
   p id char(8) NOT NULL,
   name
   alter
   PRIMARY KEY (p id)
CREATE TABLE student
   p id char(8) NOT NULL,
   name
   alter
   fach
   PRIMARY KEY (p id)
CREATE TABLE professor
(\ldots)
```

```
CREATE VIEW person (p_id, name, alter) AS
(
     (SELECT p_id, name, alter FROM peron_x)
     UNION
     (SELECT p_id, name, alter FROM student)
     UNION
     (SELECT p_id, name, alter FROM professor)
)
```

## **Zusammenfassung: ERD --> RM**



#### Relationales Schema



## Beispiel: Uni-Beispiel mit Kardinalitäten



## **Uni-Beispiel: Tabellen**

## **Uni-Beispiel: Beziehungen**

```
Beziehung: hören: (Studenten N:M Vorlesungen)
    Tabelle: [MatrNr : integer; VorlNr : integer] }
Beziehung: lesen (Professoren 1:N Vorlesungen.)

    KEINE Tabelle: sondern Primar-Fremdschlüssel Constraint (s.u)

Beziehung: arbeitenFür: (Professoren 1:N Assistenten)

    KEINE Tabelle: sondern Primar-Fremdschlüssel Constraint (s.u)

Beziehung: voraussetzen: (Vorlesungen N:M Vorlesungen)
 Tabelle: {[Vorgänger : integer; Nachfolger : integer] }
Beziehung: prüfen: (Studenten, Vorlesungen, Professoren)
 Tabelle: { [MatrNr : integer; VorlNr : integer; PersNr : integer; Note :
    decimal] }
```

# Uni-Beispiel: hören (N:M Beziehungen)

| ${f Studenten}$ |  |  |
|-----------------|--|--|
| MatrNr          |  |  |
| 26120           |  |  |
| 27550           |  |  |
|                 |  |  |

| hören  |        |  |
|--------|--------|--|
| MatrNr | VorlNr |  |
| 26120  | 5001   |  |
| 27550  | 5001   |  |
| 27550  | 4052   |  |
| 28106  | 5041   |  |
| 28106  | 5052   |  |
| 28106  | 5216   |  |
| 28106  | 5259   |  |
| 29120  | 5001   |  |
| 29120  | 5041   |  |
| 29120  | 5049   |  |
| 29555  | 5022   |  |
| 25403  | 5022   |  |
| 29555  | 5001   |  |

| Vorlesungen |  |  |
|-------------|--|--|
| VorlNr      |  |  |
| 5001        |  |  |
| 4052        |  |  |
|             |  |  |

# **Uni-Beispiel: Professoren 1:N Vorlesungen**

Vorlesungen: { [VorlNr; Titel; SWS; gelesenVon] } Professoren: { [PersNr; Name; Rang; Raum] }

| Professoren |            |      |      |  |
|-------------|------------|------|------|--|
| PersNr      | Name       | Rang | Raum |  |
| 2125        | Sokrates   | C4   | 226  |  |
| 2126        | Russel     | C4   | 232  |  |
| 2127        | Kopernikus | C3   | 310  |  |
| 2133        | Popper     | C3   | 52   |  |
| 2134        | Augustinus | C3   | 309  |  |
| 2136        | Curie      | C4   | 36   |  |
| 2137        | Kant       | C4   | 7    |  |

| Vorlesungen |                         |     |                   |  |
|-------------|-------------------------|-----|-------------------|--|
| VorlNr      | Titel                   | sws | ${ m gelesenVon}$ |  |
| 5001        | Grundzüge               | 4   | 2137              |  |
| 5041        | $_{ m Ethik}$           | 4   | 2125              |  |
| 5043        | ${f Erkenntnistheorie}$ | 3   | 2126              |  |
| 5049        | Mäeutik                 | 2   | 2125              |  |
| 4052        | $_{ m Logik}$           | 4   | 2125              |  |
| 5052        | Wissenschaftstheorie    | 3   | 2126              |  |
| 5216        | Bioethik                | 2   | 2126              |  |
| 5259        | Der Wiener Kreis        | 2   | 2133              |  |
| 5022        | Glaube und Wissen       | 2   | 2134              |  |
| 4630        | Die 3 Kritiken          | 4   | 2137              |  |

# **Uni-Beispiel: Relationale Darstellung**

| Professoren |            |      |      | Studenten |              |          |
|-------------|------------|------|------|-----------|--------------|----------|
| PersNr      | Name       | Rang | Raum | MatrNr    | Name         | Semester |
| 2125        | Sokrates   | C4   | 226  | 24002     | Xenokrates   | 18       |
| 2126        | Russel     | C4   | 232  | 25403     | Jonas        | 12       |
| 2127        | Kopernikus | СЗ   | 310  | 26120     | Fichte       | 10       |
| 2133        | Popper     | C3   | 52   | 26830     | Aristoxenos  | 8        |
| 2134        | Augustinus | C3   | 309  | 27550     | Schopenhauer | 6        |
| 2136        | Curie      | C4   | 36   | 28106     | Сагнар       | 3        |
| 2137        | Kant       | C4   | 7    | 29120     | Theophrastos | 2        |
|             |            |      |      |           | Feuerbach    | 2        |

| Vorlesungen |                      |     |            | voraus    | setzen     |
|-------------|----------------------|-----|------------|-----------|------------|
| VorlNr      | Titel                | sws | gelesenVon | Vorgänger | Nachfolger |
| 5001        | Grundzüge            | 4   | 2137       | 5001      | 5041       |
| 5041        | Ethik                | 4   | 2125       | 5001      | 5043       |
| 5043        | Erkenntnistheorie    | 3   | 2126       | 5001      | 5049       |
| 5049        | Mäeutik              | 2   | 2125       | 5041      | 5216       |
| 4052        | Logik                | 4   | 2125       | 5043      | 5052       |
| 5052        | Wissenschaftstheorie | 3   | 2126       | 5041      | 5052       |
| 5216        | Bioethik             | 2   | 2126       | 5052      | 5259       |
| 5259        | Der Wiener Kreis     | 2   | 2133       |           |            |
| 5022        | Glaube und Wissen    | 2   | 2134       |           |            |
| 4630        | Die 3 Kritiken       | 4   | 2137       |           |            |

| hören  |        |  |
|--------|--------|--|
| MatrNr | VorlNr |  |
| 26120  | 5001   |  |
| 27550  | 5001   |  |
| 27550  | 4052   |  |
| 28106  | 5041   |  |
| 28106  | 5052   |  |
| 28106  | 5216   |  |
| 28106  | 5259   |  |
| 29120  | 5001   |  |
| 29120  | 5041   |  |
| 29120  | 5049   |  |
| 29555  | 5022   |  |
| 25403  | 5022   |  |
| 29555  | 5001   |  |

|   | Assistenten |                         |                    |      |  |  |
|---|-------------|-------------------------|--------------------|------|--|--|
|   | PersNr      | $_{ m Name}$            | Fachgebiet         | Boss |  |  |
| ٢ | 3002        | Platon                  | Ideenlehre         | 2125 |  |  |
|   | 3003        | Aristoteles             | Syllogistik        | 2125 |  |  |
|   | 3004        | $\mathbf{Wittgenstein}$ | Sprachtheorie      | 2126 |  |  |
|   | 3005        | Rhetikus                | Planetenbewegung   | 2127 |  |  |
|   | 3006        | Newton                  | Keplersche Gesetze | 2127 |  |  |
| L | 3007        | Spinoza                 | Gott und Natur     | 2134 |  |  |

| prüfen                    |         |      |   |
|---------------------------|---------|------|---|
| MatrNr VorlNr PersNr Note |         |      |   |
| 28106                     | 5001    | 2126 | 1 |
| 25403                     | 5041    | 2125 | 2 |
| 27550                     | 49 4630 | 2137 | 2 |

## Aufgaben: ERM -> RM

- Reverse Engineering:
- Lade in die Datenbank http://dev.mysql.com/doc/world-setup/en/world-setup.html
- Verwende ein ERM- Programm und starte Reverse Engineering

## **Data Dictionary**

Neben den Daten in den Relationen benötigt ein Datenbanksystem Informationen **über** die Relationen (und über andere Objekte), sog. "Meta-Daten".

Die Meta-Daten werden im "Data Dictionary" oder "System Katalog" gespeichert.

#### Relationenverwaltung

- ☐ Relationennamen
- ☐ Attributsnamen für jede Relation
- Domäne der Attribute
- Viewnamen und Viewdefinitionen
- □ Integritätsbedingungen

#### Benutzerverwaltung (Datenschutz)

- □ Namen berechtigter (autorisierter) Benutzer
- Speicherbereich und Speicherobergrenze für jeden Benutzer
- □ Zugriffs- und andere Rechte einzelner Benutzer

## **Data Dictionary**

## Namensgebung für Oracle Systemrelationen

|                 | USER_                                                                 | ALL_                                                                                   | DBA_                                                        |
|-----------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| TABLES          | alle Tabellen, die der<br>Benutzer angelegt hat                       | alle Tabellen, auf die der<br>Benutzer Zugriff hat                                     | alle Tabellen des gesamten<br>Systems                       |
| TAB_<br>COLUMNS | alle Spalten derjenigen<br>Tabellen, die der Benutzer<br>angelegt hat | alle Spalten derjenigen<br>Tabellen, auf die der<br>Benutzer Zugriff hat               | alle Spalten aller Tabellen<br>des gesamten Systems         |
| INDEXES         | alle Indexe, die der<br>Benutzer angelegt hat                         | alle Indexe, die über Tabellen<br>erstellt wurden, auf die der<br>Benutzer Zugriff hat | alle Indexe des gesamten<br>Systems                         |
| VIEWS           | alle Views, die der<br>Benutzer angelegt hat                          | alle Views, auf die der<br>Benutzer Zugriff hat                                        | alle Views des gesamten<br>Systems                          |
| TAB_<br>PRIVS   | Zugriffsrechte auf alle<br>Tabellen, die der Benutzer<br>angelegt hat | Zugriffsrechte auf alle<br>Tabellen, auf die der<br>Benutzer Zugriff hat               | Zugriffsrechte auf alle<br>Tabellen des gesamten<br>Systems |