CURS #5

CONTINUTUL CURSULUI #5:

II.4. Metode iterative de rezolvare a sistemelor de ecuatii liniare.

- II.4.1. Metode iterative de aproximare.
- II.4.2. Metoda Jacobi.
- II.4.3. Metoda Jacobi pentru matrice diagonal dominante pe linii.
- II 4 4 Metoda Jacobi relaxată
- II.4.5. Metoda Gauss Seidel relaxată.

II.4.1. Metode iterative de aproximare.

Fie $A, B \in \mathcal{M}_n(\mathbb{R})$, $a, b \in \mathbb{R}^n$. Considerăm sistemul compatibil determinat

II. Metode numerice de rezolvare a sistemelor liniare. II.4. Metode iterative de rezolvare a sistemelor de ecuatii liniare.

$$Ax = a$$
 (1)

și un sistem echivalent

$$x = Bx + b \tag{2}$$

Definiția (II.12.)

O metodă iterativă de aproximare a soluției sistemului de ecuații liniare (1) presupune constructia unui sir recurent $(x^{(k)})_{k\in\mathbb{N}}$ conform formulei:

$$x^{(k+1)} = Bx^k + b, \quad x^{(0)} \in \mathbb{R}^n \quad arbitrar \tag{3}$$

Metoda iterativă (3) este convergentă dacă și numai dacă $\lim_{k\to\infty} x^{(k)} = x$, unde x este soluția sistemului (1).

Definitia (II.13.)

Fie $A \in \mathcal{M}_n(\mathbb{R})$. Se definește raza spectrală $\rho(A)$ a matricei A astfel:

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i| \tag{4}$$

unde
$$\lambda_i \in \sigma(A)$$
, $i = \overline{1, n}$. Dacă $\lambda = a + bi \in C$ atunci $|\lambda| = \sqrt{a^2 + b^2}$.

Definitia (II.14.)

sau

Matricea $A \in \mathcal{M}_n(\mathbb{R})$ se numește convergentă dacă șirul de matrice format din puterile Ak ale matricei A este convergent la matricea nulă (sau componentele puterii matricei A tind la zero). Vom scrie:

$$\lim_{k \to \infty} A^k = O_n \tag{5}$$

$$\lim_{k\to\infty} (A^k)_{ij} = 0, \quad i,j = \overline{1,n}$$

Propozitia (II.5.)

Fie $A \in \mathcal{M}_n(\mathbb{R})$. Următoarele afirmații sunt echivalente:

- a) A este o matrice convergentă; b) $\lim_{k\to\infty} ||A^k|| = 0$;
- c) $\lim_{k\to\infty} A^k x = 0_n, \forall x \in \mathbb{R}^n$;
- d) ρ(A) < 1.</p>

(6)

Propozitia (II.6.)

Fie $A \in \mathcal{M}_n(\mathbb{R})$. Atunci

$$\rho(A) \leq \parallel A \parallel \tag{7}$$

pentru orice normă matriceală | | | | subordonată unei norme vectoriale.

Demonstrație: Fie $\lambda \in \sigma(A)$ și fie x vectorul propriu asociat valorii proprii λ cu proprietatea ||x||=1. Atunci $Ax=\lambda x$ de unde rezultă

$$||Ax|| = |\lambda| ||x|| = |\lambda|$$

B = I - A, b = a, obtinem sistemul x = Bx + b în baza căruia se construiește metoda iterativă Jacobi. Conform Th. II.10. metoda Jacobi este convergentă dacă și numai dacă $\rho(B) < 1$. Mai mult, dacă $||B|| = q \in (0,1)$, atunci conform Th. II.11. rezultă că metoda Jacobi este convergentă și are loc estimarea:

Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice inversabilă, $a \in \mathbb{R}^n$, atunci sistemul Ax = a este

echivalent cu x - Ax = x - a sau x = (I - A)x + a. Considerând

$$\|x^{(k)} - x\| \le \frac{q^k}{1 - q} \|x^{(1)} - x^{(0)}\|, \quad k \in \mathbb{N}^*$$
 (15)

II.4.3. Metoda Jacobi pentru matrice diagonal dominante

pe linii Metoda Jacobi poate fi aplicată doar pentru o clasă restrânsă de matrice. În cele ce urmează vom prezenta metoda Jacobi pentru o clasă de matrice,

 $|a_{jj}| > \sum_{i=\overline{1,n}} |a_{ij}|, \quad j = \overline{1,n}$

Definitia (II.15.)

Fie
$$A=(a_{ij})_{i,j=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R})$$

a) Spunem că A este diagonal dominantă pe linii dacă

 $|a_{ii}| > \sum_{i=\overline{1,n}} |a_{ij}|, \quad i = \overline{1,n}$

b) Spunem că A este diagonal dominantă pe coloane dacă

Teorema (II.12.)

Fie $D = diag(A) = diag(a_{11}, a_{22}, ..., a_{nn})$. Se observă că $|a_{ii}| > 0$, $i = \overline{1, n}$,

STEP 4: do

ALGORITM (Metoda Jacobi)

 $x_{aprox} \in \mathbb{R}^n$; N. STEP 1: Se determină q = ||I - A||;

STEP 2: Se inițializează $x^{(0)} = 0; k = 0;$

STEP 3: Determină: B = I - A: b = a:

k = k + 1: $x^{(k)} = Bx^{(k-1)} + b$:

if q > 1 then

STOP

endif

Date de intrare: Date de ieșire:

> while $\frac{q^k}{1-a} \| x^{(1)} - x^{(0)} \| \ge \varepsilon;$ STEP 5: $x_{aprox} = x^{(k)}, N = k$.

deci D este inversabilă. Atunci sistemul Ax = a este echivalent cu

 $A = (a_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R})$ - inv.; $a \in \mathbb{R}^n$; ε .

OUTPUT('Metoda Jacobi nu asigură conv.')

 $D^{-1}Ax = D^{-1}a$ sau $x = (I - D^{-1}A)x + D^{-1}a$. Considerând $B = I - D^{-1}A$, $b = D^{-1}a$ se obtine sistemul x = Bx + b.

(16)

Fie sistemul Ax = a cu A matrice nesingulară și diagonal dominantă pe

linii, şi sistemul echivalent x = Bx + b, unde $B = I - D^{-1}A$, $b = D^{-1}a$.

Fie $q = \|B\|_{\infty}$ si $(x^{(k)})_{k \in \mathbb{N}}$ definit prin formula

 $y^{(k)} = By^{(k-1)} + b$

Atunci q < 1 si $||x^{(k)} - x||_{\infty} \le \frac{q^k}{1-q} ||x^{(1)} - x^{(0)}||_{\infty}, k \in \mathbb{N}^*.$

Demonstratie: Componentele matricei $B = I - D^{-1}A$ se pot reprezenta după cum urmează:

 $b_{ij} = \delta_{ij} - d_{ik}^{-1} a_{kj} = \delta_{ij} - \frac{a_{ij}}{a_{ii}} = \begin{cases} 0, & i = j \\ -\frac{a_{ij}}{a_{ii}}, & i \neq j \end{cases}$

Pe de altă parte, evaluând norma infinit a matricei B, se obtine: $q = \parallel B \parallel_{\infty} = \max_{i=1,n} \sum_{i=1,n} |b_{ij}| = \max_{i=1,n} \sum_{i=1,n} \frac{|a_{ij}|}{|a_{ii}|} \Rightarrow$

$$q = \max_{i = 1...} \frac{\sum_{j=1, n, j \neq i} |a_{ij}|}{|a_{ii}|} < 1$$

Conform Th. II.11, rezultă că metoda iterativă este convergentă și are loc estimarea din enunt.

ALGORITM (Metoda Jacobi pentru matrice diagonal dominante pe linii) Date de intrare: $A=(a_{ij})_{i,j=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R})$ - inv.; $a\in\mathbb{R}^n$; ε .

Date de iesire: $x_{anrox} \in \mathbb{R}^n$; N. STEP 1: for i=1:n do if $|a_{ii}| \leq \sum_{i=\overline{1},\overline{n},i\neq i} |a_{ij}|$ then

II.4.4. Metoda Jacobi relaxată

OUTPUT('Matr. nu este diag. dom. pe linii')

Metoda Jacobi relaxată este o variantă îmbunătătită a metodei Jacobi si constă în introducerea unui parametru $\sigma > 0$, numit parametru de relaxare. Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice simetrică și pozitiv definită, $a \in \mathbb{R}^n$. Sistemul Ax = b este echivalent cu $\sigma Ax = \sigma a$ sau $(I - \sigma A)x = x - \sigma a$, deci

$$v = R \times L h \qquad \sigma > 0 \tag{17}$$

 $x = B_{\sigma}x + b_{\sigma}$. $\sigma > 0$

cu $B_{\sigma} = I - \sigma A$, $b_{\sigma} = \sigma a$. Pentru $\sigma = 1$ avem metoda Jacobi.

următoarea estimare a erorii

 $|| x^{(k)} - x ||_A \le \frac{q^k}{1 - q} || x^{(1)} - x^{(0)} ||_A$

(18)

(19)

 $\textit{unde} \parallel x \parallel_{A} = < Ax, x > = \sum_{i=1}^{n} a_{ij}x_{j}x_{i}.$

Demonstratie: Deoarece A este simetrică și pozitiv definită rezultă că A

STEP 4: do

k = k + 1 $x^{(k)} = Bx^{(k-1)} + b$; (B, b au fost calculati la STEP 3)

 $a = \parallel B \parallel_{\infty}$:

STOP. endif endfor

STEP 2: Se initializează: $x^{(0)} = 0$: k = 0:

while $\frac{q^k}{1-q} \parallel x^{(1)} - x^{(0)} \parallel_{\infty} \ge \varepsilon$

STEP 3: Determină: $b_{ij} = \delta_{ij} - \frac{a_{ij}}{a_{ii}}, i, j = \overline{1, n}; b_i = \frac{a_i}{a_{ii}}, i = \overline{1, n};$

STEP 5: $x_{annox} = x^{(k)}$; N = k;

Teorema (II.13.)

Fie $\lambda_n \ge \lambda_{n-1} \ge ... \ge \lambda_1 \ge 0$ valorile proprii ale matricei $A \in \mathcal{M}_n(\mathbb{R})$

simetrice si pozitiv definite. Atunci metoda Jacobi relaxată este

convergentă dacă și numai dacă

 $\sigma \in \left(0, \frac{2}{\sigma(A)}\right)$

Mai mult, dacă $q = \rho(B_{\sigma}) = \max_{i=1, \sigma} |1 - \sigma \lambda_i|$, atunci q < 1 și avem

este inversabilă, deci sistemul Ax = a admite soluția unică x.

Curs #5

trebuie să o satisfacă σ astfel încât $\rho(B_{\sigma}) < 1$. Valorile proprii ale matricei $I - \sigma A$ sunt $1 - \sigma \lambda_1, ..., 1 - \sigma \lambda_n$. Într-adevar, fie λ este o valoare proprie a matricei A. Atunci $det((I_n - \sigma A) - (1 - \sigma \lambda)I_n) = 0 \Leftrightarrow det(A - \lambda I) = 0$

Decarece $\lambda_n > \lambda_{n-1} > ... > \lambda_1 > 0 \Rightarrow$

$$-\lambda I)=0$$

Avem următoarele echivalențe

$$\rho(I_n - \sigma A) < 1 \Leftrightarrow \max_{i = \overline{1,n}} |1 - \sigma \lambda_i| < 1 \Leftrightarrow -1 < 1 - \sigma \lambda_i < 1, i = \overline{1,n}$$

Metoda iterativă construită în baza formulei (17) este convergentă dacă și

numai dacă $\rho(B_{\sigma}) < 1$. În cele ce urmează vom deduce condiția pe care

$$1 > 1 - \sigma \lambda_1 \ge ... \ge 1 - \sigma \lambda_n > -1 \Rightarrow$$

$$\begin{cases}
1 > 1 - \sigma \lambda_1 \\
1 - \sigma \lambda_n > -1
\end{cases} \Rightarrow \sigma \in \left(0, \frac{2}{\lambda_n}\right)$$

Astfel se demonstrează prima parte a teoremei.

$$\parallel \mathbf{v} \parallel_{A}^{2} = < A\mathbf{v}, \mathbf{v} > = < \sum_{i=1}^{n} \alpha_{i} A\mathbf{v}_{i}, \sum_{j=1}^{n} \alpha_{j} \mathbf{v}_{j} >$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} < A\mathbf{v}_{i}, \mathbf{v}_{j} > = \sum_{i=1}^{n} \alpha_{i}^{2}$$

În mod analog se poate demonstra că
$$\parallel B_\sigma v \parallel_A^2 = \sum_{i=1}^n \alpha_i^2 (1-\sigma \lambda_i)^2 \leq q^2 \sum_{i=1}^n \alpha_i^2 = q^2 \parallel v \parallel_A^2 \Rightarrow$$

 $||B_{\sigma}||_A < q$

$$\frac{\parallel B_{\sigma}v \parallel_{A}}{\parallel v \parallel_{A}} \leq q \Rightarrow \sup_{v \in \mathbb{R}^{\sigma}\setminus\{0\}} \frac{\parallel B_{\sigma}v \parallel_{A}}{\parallel v \parallel_{A}} \leq q \Rightarrow$$

Fie
$$k$$
 astfel încât $|1 - \sigma \lambda_k| = a$.

Atunci

$$|||B_{\sigma}v_{k}||_{A}^{2} = \langle AB_{\sigma}v_{k}, B_{\sigma}v_{k} \rangle = \langle AB_{\sigma}\frac{u_{k}}{\sqrt{\lambda_{k}}}, B_{\sigma}\frac{u_{k}}{\sqrt{\lambda_{k}}} \rangle$$

$$= \frac{1}{\lambda_{k}} \langle A(1 - \sigma\lambda_{k})u_{k}, (1 - \sigma\lambda_{k})u_{k} \rangle = (1 - \sigma\lambda_{k})^{2} \Rightarrow$$

$$|||B_{\sigma}v_{k}||_{A} = q \geq q \Rightarrow ||B_{\sigma}||_{A} \geq q$$

Numim parametru optim de relaxare pentru metoda Jacobi relaxată (îl

Se observă că $q = \rho(B_{\sigma}) = \rho(I_n - \sigma A) < 1$. Pentru a demonstra formula

(19) este necesar să demonstrăm, conform Th. II.11. că $||B_{\sigma}||_{A} = a$.

 $\exists \mathcal{B} = \{u_1, ..., u_n\} \subset \mathbb{R}^n$ o bază ortonormată formată din vectori proprii

 $\langle Av_i, v_j \rangle = \left\langle A \frac{u_i}{\sqrt{\lambda_i}}, \frac{u_j}{\sqrt{\lambda_i}} \right\rangle = \left\langle \lambda_i \frac{u_i}{\sqrt{\lambda_i}}, \frac{u_j}{\sqrt{\lambda_i}} \right\rangle$

 $=\frac{\lambda_i \delta_{ij}}{\sqrt{\lambda_i} \sqrt{\lambda_i}} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$

Fie $v \in \mathbb{R}^n \setminus \{0\}$. Atunci $\exists \alpha_i, i = \overline{1,n}$ astfel încât $v = \sum_{i=1}^n \alpha_i v_i$. Evaluăm

Deoarece matricea A este simetrică și pozitiv definită, atunci

În baza vectorilor proprii ortonormați, putem construi o bază

A-ortonormată dacă alegem $v_i = \frac{u_i}{\sqrt{\lambda_i}}, i = \overline{1, n}$. Într-adevăr,

asociati valorilor proprii $\lambda_i > 0$, $i = \overline{1, n}$.

în continuare $||v||_{\Delta}$, $||B_{\alpha}v||_{\Delta}$:

Din inegalitățile (20) și (21) rezultă $||B_{\sigma}||_{A} = q$.

Definitia (II.16.)

notăm σ_O) acea valoare a lui σ pentru care $q = \|B_{\sigma}\|_A$ (îl notăm q_O) are valoare minimă.

Propozitia (II.8.)

Parametrul optim de relaxare σ_O , respectiv q_O se calculează conform relatiilor:

 $\sigma_O = \frac{2}{\lambda + \lambda_1}, \quad q_O = \frac{\lambda_n - \lambda_1}{\lambda + \lambda_2}$

ALGORITM (Metoda Jacobi relaxată) Date de intrare: $A \in \mathcal{M}_n(\mathbb{R})$ - sim. și poz. def.;

Obs.: Decarece $\rho(A) \le ||A||$ rezultă $\frac{2}{||A||} \le \frac{2}{\rho(A)}$. În practică vom

 $a \in \mathbb{R}^n : \varepsilon : \sigma$.

considera $\sigma \in \left(0, \frac{2}{\|\Delta\|}\right)$.

Date de ieşire: $x_{annoy} \in \mathbb{R}^n$; N. STEP 1: Determină: $b_{ii} = \delta_{ii} - \sigma a_{ii}, i, j = \overline{1, n}; b_i = \sigma a_i, i = \overline{1, n}$

STEP 2: Se initializează: $x^{(0)} = 0$: k = 0: STEP 3: do k = k + 1

 $x^{(k)} = B_{\sigma} x^{(k-1)} + b_{\sigma}$ $(B_{\sigma}, b_{\sigma} \text{ au fost calculati la STEP 1})$ while $\frac{\parallel x^{(k)} - x^{(k-1)} \parallel_A}{\parallel x^{(k-1)} \parallel_A} \ge \varepsilon$

STEP 4: $x_{approx} = x^{(k)}$: N = k.

ALGORITM (Determinarea numerică a parametrului optim și a soluției aproximative corespunzătoare)

Date de intrare: $A \in \mathcal{M}(\mathbb{R})$ - sim. poz. def.; $a \in \mathbb{R}^n$; ε . Date de iesire: $x_{anrox}^O \in \mathbb{R}^n$; N_O ; σ_O . STEP 1: for s=1:p-1 do

 $\sigma_s = \frac{2s}{\|A\|}$; $[x_{angov}, N] = MetJacobiR(A, a, \varepsilon, \sigma_{\varepsilon});$

 $V_c = N$:

endfor STEP 2: Determină s a.î. $V_s = min\{V_1, ..., V_{n-1}\}$

 $\sigma_O = \frac{2s}{\|A\|\|_{\infty}}$; STEP 3: $[x_{aprox}^O, N_O] = MetJacobiR(A, a, \varepsilon, \sigma_O).$

Curs #5

calculată prin metoda Jacobi relaxată cu eroarea ε) și N (numărul de iteratii necesar pentru obtinerea aproximării cu eroarea ε). În continuare vom prezenta o schemă numerică de calcul al parametrului optim σ_{Ω} fără a fi necesar să se calculeze valorile proprii ale matricei A. Parametrul optim va fi ales astfel încât numărul de iteratii să fie minim pentru obtinerea solutiei aproximative cu eroarea relativă ε . Pentru simplificare vom alege norma infinit si vom discretiza intervalul

Fie procedura MetJacobiR cu sintaxa $[x_{annoy}, N] = MetJacobiR(A, a, \varepsilon, \sigma).$

 $\sigma_{\mathcal{O}} \in \left(0, \frac{2}{\parallel A \parallel_{\infty}}\right)$. Fie $(\sigma_s)_{s=\overline{0,p}}$ o discretizare echidistantă a intervalului $\left[0, \frac{2}{\|A\|_{\infty}}\right]$. Pasul discretizării este $h = \frac{2}{\|A\|_{\infty}}$, iar nodurile discretizării sunt $\sigma_s = \frac{2s}{\|A\|}$, $s = \overline{0,p}$. În algoritm nu vom include capetele intervalului $\left(0, \frac{2}{\|A\|}\right)$, deci $s = \overline{1, p-1}$.

Parametrii de ieşire sunt: x_{aprox} (soluția aproximativă a sistemului Ax = a,

4.5 Metoda Gauss - Seidel relaxată

Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice simetrică și pozitiv definită, $a \in \mathbb{R}^n$ și $\sigma > 0$

parametru de relaxare. Descompunem matricea A = L + D + R. Matricea L este partea inferioară a matricei A, i.e. $I_{ii} = a_{ii}, i > j, I_{ii} = 0$ în rest. Matricea R este partea superioară matricei A, i.e. $r_{ii} = a_{ii}$, i < j, $r_{ii} = 0$ în rest. Matricea D = diag(A), i.e. $d_{ii} = a_{ii}, d_{ii} = 0, i \neq j$. Avem următoarele sisteme echivalente

 $(\sigma I + D + (\sigma - 1)D + \sigma R)x = \sigma a \Leftrightarrow$ $(\sigma I + D)x = ((1 - \sigma)D - \sigma R)x + \sigma a \Rightarrow$ $x = (\sigma L + D)^{-1}((1 - \sigma)D - \sigma R)x + (\sigma L + D)^{-1}\sigma a \Leftrightarrow x = B_{\sigma}x + b_{\sigma}x$

unde $B_{\sigma} = (\sigma L + D)^{-1}((1 - \sigma)D - \sigma R)$. $b_{\sigma} = (\sigma L + D)^{-1}\sigma A$

 $Ax = a \Leftrightarrow \sigma Ax = \sigma a \Leftrightarrow \sigma (I + D + R)x = \sigma a \Leftrightarrow$

$$\sigma \in (0,2) \tag{22}$$

Dacă $q = ||B_{\sigma}||_A$, atunci q < 1 și are loc următoare estimare

$$\| x^{(k)} - x \|_{A} \le \frac{q^k}{1 - q} \| x^{(1)} - x^{(0)} \|_{A}, \forall k \in \mathbb{N}$$
 (23)

 $\Leftrightarrow (\sigma I + D)x^{(k)} = ((1 - \sigma)D - \sigma R)x^{(k-1)} + \sigma a \Rightarrow$ $Dx^{(k)} = -\sigma Lx^{(k)} + ((1 - \sigma)D - \sigma R)x^{(k-1)} + \sigma a$ $= (1 - \sigma)Dx^{(k-1)} - \sigma Rx^{(k-1)} - \sigma Ix^{(k)} + \sigma a \Rightarrow$ $x^{(k)} = (1 - \sigma)x^{(k-1)} + \sigma D^{-1}(a - Rx^{(k-1)} - Lx^{(k)})$

Componentele $x_i^{(k)}$ se pot calcula evitând calculul inversei matricei $\sigma L + D$. Avem

$$\sigma L + D$$
. Avem
$$x^{(k)} = B_{\sigma} x^{(k-1)} + b_{\sigma}$$

Relatia de mai sus scrisă pe componente este:

$$x_i^{(k)} = (1 - \sigma)x_i^{(k-1)} + \frac{\sigma}{a_{ii}} \left(a_i - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} \right)$$
(24)

ALGORITM (Metoda Gauss-Seidel relaxată) (Temă)