ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

Métodos Estadísticos de Predicción

Diapositivas de la Asignatura

Grado en Matemáticas

AUTORES

- Víctor Aceña Gil
- Isaac Martín de Diego

2025-2026

Índice de Diapositivas

- Tema 0: Introducción a los Modelos Estadísticos para la Predicción
- Tema 1: Regresión Lineal Simple
- Tema 2: Regresión Lineal Múltiple
- Tema 3: Ingeniería de Características
- Tema 4: Selección de Variables, Regularización y Validación
- Tema 5: Modelos Lineales Generalizados (GLM)

Introducción a los Modelos Estadísticos para la Predicción

Víctor Aceña - Isaac Martín

DSLAB

2025-09-10

El Modelado de Regresión: Una Herramienta Universal

El modelado de regresión constituye una de las herramientas más potentes y flexibles del arsenal estadístico. Su aplicabilidad abarca un espectro extraordinariamente amplio de disciplinas:

- Ciencias Físicas: Física de partículas, ingeniería aeroespacial para modelar sistemas complejos.
- Ciencias Sociales: Econometría, psicometría para entender comportamientos.
- Ciencias de la Salud: Epidemiología para identificar factores de riesgo.
- Finanzas: Para entender mercados y comportamientos económicos.

El Propósito de Este Curso

Este curso tiene como misión construir el andamiaje conceptual y filosófico sobre el que se asienta el modelado estadístico moderno

Objetivos:

pensamiento indispensable.

Contextualizar la regresión no solo como una técnica, sino como un marco de

- Explorar en profundidad el propósito dual de la regresión (predicción vs. inferencia).
- Desgranar los componentes axiomáticos hasta el último detalle.
- Ofrecer una visión panorámica de la vasta familia de modelos de regresión.

El objetivo es prepararte, con solidez y sin prisas, para las inmersiones técnicas posteriores.

Predecir vs. Explicar

El modelado de regresión ofrece un marco para investigar y cuantificar las relaciones entre variables.

Conceptualmente, el modelado estadístico se orienta hacia uno de dos polos (Shmueli, 2010):

- Predicción: Enfoque orientado a la precisión en la estimación de valores futuros o no observados.
- Explicación/Inferencia: Enfoque orientado a la comprensión de las relaciones entre las variables.

Ambos paradigmas tienen objetivos, métodos y criterios de evaluación distintos.

Predicción: El Paradigma de la Precisión

Objetivo Principal: La **precisión**. Se busca construir un modelo que pueda estimar con el menor error posible el valor de una variable de interés (la *respuesta*).

Características Clave:

- El modelo puede ser tratado como una "caja negra" (black box).
- El funcionamiento interno o la interpretabilidad son secundarios.
- Lo importante es que las predicciones sean consistentemente fiables y robustas en datos no observados previamente.

Inferencia: El Paradigma de la Comprensión

Objetivo Principal: La **comprensión** e **interpretación**. No solo predecir, sino dilucidar la naturaleza de las interdependencias.

Características Clave:

- Se busca cuantificar cómo un cambio en una variable predictora influye en la respuesta.
- La interpretabilidad del modelo es primordial.
- El interés reside en la **magnitud**, **signo** e **incertidumbre** estadística de los parámetros (errores estándar, intervalos de confianza, p-valores).

Predecir vs. Explicar: Ejemplos

Ejemplo de Predicción

Una entidad financiera quiere predecir la probabilidad de que un cliente incurra en impago. Su principal interés es tener un modelo que clasifique correctamente a los futuros solicitantes como de alto o bajo riesgo para minimizar pérdidas.

Ejemplo de Inferencia

Una epidemióloga investiga los factores de riesgo de una enfermedad cardíaca. Su objetivo es entender y cuantificar la relación: ¿En cuántos mmHg aumenta la presión arterial, en promedio, por cada gramo adicional de sal consumido al día?

Una Relación Simbiótica

Aunque conceptualmente distintos, ambos objetivos no son mutuamente excluyentes; a menudo se benefician el uno del otro.

- Un modelo con una base inferencial sólida, que captura relaciones causales o asociativas verdaderas, suele tener un buen rendimiento predictivo.
- A la inversa, un modelo que demuestra una alta precisión predictiva en datos nuevos nos da confianza en que las relaciones que ha aprendido no son meras casualidades, sino que probablemente reflejen patrones reales y generalizables.
- La tensión entre **interpretabilidad** y **precisión** es uno de los debates más fascinantes en la ciencia de datos moderna.

El Primer Paso: Convertirse en un Modelador Eficaz

Comprender la distinción entre predicción e inferencia es fundamental para el desarrollo como estadístico.

- En la Práctica: Ambos objetivos a menudo se entrelazan y se complementan mutuamente.
- Decisión Estratégica: La elección del enfoque determina el tipo de modelo, las métricas de evaluación y la interpretación de resultados.
- Contexto del Problema: El dominio de aplicación y las preguntas de investigación guían esta decisión fundamental.

Anatomía de un Modelo de Regresión

Todo modelo de regresión se construye sobre tres pilares fundamentales (Kutner et al., 2005):

- 1. La variable de respuesta
- 2. Las variables predictoras
- 3. El término de error aleatorio

Estos componentes son los ladrillos con los que edificaremos todo nuestro conocimiento.

La Variable de Respuesta (Dependiente)

Representa el fenómeno cuyo comportamiento se busca modelar, comprender o predecir. Su naturaleza determina el tipo de modelo a elegir.

- **Continua**: Cualquier valor en un rango (temperatura, precio).
- Discreta de Conteo: Número de eventos (nº de accidentes, nº de clientes).
- Binaria o Dicotómica: Dos resultados posibles (éxito/fracaso, enfermo/sano).
- Categórica: Grupos o categorías.
 - Nominal (sin orden): tipo de sangre, partido político.
 - Ordinal (con orden): nivel de satisfacción "bajo/medio/alto".

La Variable de Respuesta: Ejemplos Detallados

La naturaleza de la variable de respuesta es el factor más determinante para elegir el tipo de modelo:

- **Continuas**: Temperatura ambiente, altura de una persona, precio de una acción, concentración de un compuesto químico.
- **Discretas de Conteo**: Número de accidentes en una intersección, número de clientes que entran en una tienda, número de mutaciones en un gen.
- **Binarias**: Éxito/fracaso en un tratamiento, enfermo/sano, compra/no compra, correo spam/no spam.
- Categóricas:
 - Nominales: Tipo de sangre (A, B, AB, O), partido político preferido.
 - Ordinales: Estadio de una enfermedad (I/II/III/IV), nivel educativo.

Las Variables Predictoras

También llamadas independientes, explicativas, regresoras, covariables o features.

Son las magnitudes, atributos o factores que se postula que influyen o están asociados con el comportamiento de la variable de respuesta.

- Pueden ser de diversa naturaleza (continuas, categóricas, etc.).
- Su selección es una fase crítica del modelado que requiere:
 - Conocimiento del dominio.
 - Análisis exploratorio de datos.
 - Técnicas estadísticas formales.

La Selección de Variables: Una Fase Crítica

La selección de variables predictoras es una de las fases más críticas del modelado estadístico:

Requiere una Combinación de:

- Conocimiento del Dominio: Comprensión profunda del fenómeno que se está modelando.
- **Análisis Exploratorio**: Visualización y exploración inicial de los datos para identificar patrones.
- **Técnicas Estadísticas Formales**: Métodos como selección hacia adelante, hacia atrás, o criterios de información.

Consideraciones:

- Las variables pueden ser de diversa naturaleza (continuas, categóricas, etc.).
- No todas las variables disponibles deben incluirse en el modelo.

El Término de Error Aleatorio (ϵ)

Este componente, a menudo subestimado, es conceptualmente crucial. Simboliza la variabilidad de la respuesta **no capturada** por los predictores.

No es un simple "error" en el sentido de equivocación, sino un componente estocástico que amalgama:

- Variables Omitidas: Factores que influyen en Y pero no han sido medidos o incluidos.
- Error de Medición: Imprecisiones en la medición de las variables.
- Aleatoriedad Intrínseca: Variabilidad irreducible inherente a muchos fenómenos.

Los Supuestos sobre el Error Aleatorio

El término de error ϵ es la clave del diagnóstico en regresión. Gran parte de la inferencia se basa en verificar los supuestos sobre su distribución:

Supuestos Fundamentales:

- Media cero: $E[\epsilon] = 0$
- Varianza constante (homocedasticidad): $Var[\epsilon] = \sigma^2$
- Independencia: Los errores no están correlacionados
- Normalidad: $\epsilon \sim N(0,\sigma^2)$ (para inferencia exacta)

Dos individuos con idénticos valores en las variables predictoras pueden tener valores distintos en la respuesta debido a este componente irreducible.

La Ecuación Fundamental de la Regresión

La relación se expresa como la descomposición de la variable de respuesta en una parte sistemática y una parte aleatoria:

$$Y = \underbrace{f(X_1, \dots, X_k)}_{\text{Componente Sistemática}} + \underbrace{\epsilon}_{\text{Componente Aleatoria}}$$

- $f(\cdot)$ es la **componente sistemática**, que representa el valor esperado de Y para unos valores dados de las X. Es lo que intentamos estimar.
- ϵ es la **componente aleatoria**. El diagnóstico en regresión se basa en verificar los supuestos sobre su distribución.

Linealidad en los Parámetros

Una característica clave de los modelos de regresión lineal es que son **lineales en los** parámetros (β_i), no necesariamente en las variables.

Este modelo es lineal, aunque la relación con las variables no lo sea:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 \log(X_2) + \beta_4 (X_1 \cdot X_2) + \epsilon$$

La función f es una combinación lineal de los coeficientes β . Esta flexibilidad es una de las razones de la enorme potencia de los modelos lineales.

Ejemplo: Modelo Lineal con Término Cuadrático

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$$

¿Es "lineal" este modelo?

- SÍ: Lineal en los parámetros eta_0,eta_1,eta_2
- **NO**: No lineal en la variable X

La "linealidad" se refiere a los coeficientes, no a la forma de la curva.

Una parábola que encaja perfectamente en el marco de regresión lineal clásica.

Universo de los Modelos de Regresión

La regresión lineal clásica es el punto de partida para una gama prolífica de metodologías avanzadas:

- Modelos Lineales (LMs)
- Modelos Lineales Generalizados (GLMs)
- Modelos de Efectos Mixtos (Mixed Models)
- Modelos Aditivos Generalizados (GAMs)

Modelos Lineales (LMs)

Constituyen el paradigma fundamental. Es el laboratorio donde se forjan los conceptos esenciales:

- Estimar parámetros e interpretar su significado.
- Cuantificar la incertidumbre (errores estándar, intervalos de confianza).
- Realizar contrastes de hipótesis para evaluar la significancia estadística.
- Diagnosticar la "salud" de un modelo examinando sus supuestos.

Asumen que la variable de respuesta sigue una distribución Normal.

Modelos Lineales: La Base Unificadora

Los Modelos Lineales no son solo una técnica más, sino el fundamento que unifica toda la estadística clásica:

- ANOVA (Análisis de la Varianza): Es un caso particular de los LMs cuando todas las variables predictoras son categóricas.
- ANCOVA (Análisis de la Covarianza): Combina variables categóricas (factores) con variables continuas (covariables).
- **Unificación Histórica**: Técnicas que se estudiaban por separado ahora se entienden como manifestaciones del mismo principio matemático.

Esta perspectiva unificadora revolucionó la enseñanza y comprensión de la estadística.

Modelos Lineales Generalizados (GLMs)

Si los LMs son el alfabeto, los GLMs son la gramática que nos permite construir frases complejas y con significado en contextos mucho más amplios.

Representan un salto conceptual que expande masivamente el universo de problemas que podemos abordar (Nelder & Wedderburn, 1972).

Permiten escapar de la "tiranía" de la distribución Normal para modelar respuestas con otras naturalezas y escalas.

Se logra mediante dos mecanismos:

- 1. La familia exponencial de distribuciones.
- 2. La función de enlace (link function).

GLMs: Una Revolución Conceptual

Los GLMs representan uno de los avances más significativos en la estadística del siglo XX:

- **Unificación**: Por primera vez, se unificaron bajo un mismo marco conceptual diversas clases de modelos que antes se trataban por separado.
- **Flexibilidad**: Permitieron abordar una gama masivamente amplia de problemas que antes requerían técnicas especializadas.
- Impacto: Estimularon enormemente el desarrollo de software estadístico y la aplicación del modelado a nuevos dominios.

Gracias a los GLMs, podemos usar el mismo marco conceptual para modelar desde la cantidad de ciclistas en una ciudad (Poisson) hasta la probabilidad de respuesta a un tratamiento (logística).

GLMs: La Familia Exponencial de Distribuciones

Los GLMs funcionan con distribuciones que pertenecen a la **familia exponencial**, un "club" con propiedades matemáticas convenientes que permiten una teoría unificada.

- Miembros Notables: Normal, Poisson (conteo), Binomial (proporciones/binarios), Gamma (positivos asimétricos), Binomial Negativa.
- Estructura Común: Su forma matemática compartida es la clave que permite unificar la estimación de parámetros para todos estos modelos.

GLMs: La Función de Enlace - El "Traductor"

El verdadero golpe de genialidad: La función de enlace $g(\cdot)$ actúa como un "traductor" o "puente" entre dos mundos:

- El predictor lineal $X\beta$: Puede tomar cualquier valor real $(-\infty \text{ a } +\infty)$
- La media de la respuesta $\mu = E[Y]$: A menudo está restringida

La Relación Fundamental: $g(E[Y]) = g(\mu) = X\beta$

Ejemplos Clave:

- Enlace Logarítmico (Poisson): $g(\mu) = \log(\mu) \rightarrow \mu = \exp(X\beta)$ (siempre positivo)
- Enlace Logit (Binomial): $g(\mu) = \log(\frac{\mu}{1-\mu})$ (proyecta probabilidades al rango completo)

Modelos de Efectos Mixtos

Su desarrollo responde a la **necesidad crítica** de analizar datos que exhiben estructuras de dependencia o correlación.

Violación del Supuesto de Independencia:

- Medidas repetidas: Medir la presión arterial de un paciente cada mes.
- Datos longitudinales: Un tipo especial de medida repetida a lo largo del tiempo.
- Datos agrupados: Estudiantes anidados dentro de clases, clases dentro de colegios.

La Solución: Introducir efectos aleatorios para capturar la variabilidad específica entre grupos/individuos, además de los efectos fijos que representan a la población general.

GAMs: Flexibilidad sin Perder Interpretabilidad

Los **Modelos Aditivos Generalizados** representan una extensión natural y altamente flexible de los GLMs.

Innovación Clave: Relajan el supuesto de linealidad entre el predictor transformado y las covariables.

Metodología:

- Modelan relaciones mediante funciones suaves no paramétricas (splines).
- Mantienen la estructura aditiva: $g(\mu) = \alpha + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$
- Las funciones $f_i(\cdot)$ se estiman a partir de los datos.

Ventaja: Capturan patrones no lineales complejos sin especificar una forma funcional a priori, logrando un equilibrio excepcional entre **flexibilidad** e **interpretabilidad**.

R y el Ecosistema de Paquetes

Este curso fusiona la teoría con la aplicación computacional directa a través de R.

¿Por qué R?

- Estándar de facto en la investigación estadística y ciencia de datos académica.
- Potencia y flexibilidad incomparables.
- Inmenso ecosistema de paquetes contribuidos por la comunidad científica.

Capacidades Fundamentales: Exploración de datos, estimación de parámetros, diagnóstico riguroso, producción de gráficos de alta calidad.

Paquetes Especializados para el Modelado

Funciones Base (paquete stats):

- lm() para regresión lineal
- glm() para modelos lineales generalizados
- Se cargan automáticamente (no requieren instalación)

Paquetes Especializados:

- mgcv: Implementación de referencia para GAMs (Simon Wood)
- lme4 y nlme: Modelos de efectos mixtos
- rms: Estrategias robustas de modelado
- gamair: Conjuntos de datos para practicar con GAMs

Breve Crónica de la Regresión: Orígenes

La gestación de la regresión se traza hasta Sir Francis Galton (S. XIX).

Estudiando la herencia de la estatura, notó que los padres muy altos tendían a tener hijos que, en promedio, no eran tan altos como ellos (y viceversa).

Acuñó el término **"regresión a la mediocridad"** (hoy "regresión a la media") para describir esta tendencia de las características a "regresar" hacia la media de la población.

Los Estudios de Galton: Los Datos Históricos

Los Estudios de Galton: Hallazgos e Importancia

Datos y Hallazgos Principales

- Galton recopiló datos de 928 hijos y sus padres.
- Observó una relación lineal: padres altos tenían hijos altos (y viceversa).
- "Regresión a la mediocridad": Las estaturas extremas de los padres no se perpetuaban completamente.
- Los hijos tendían a "regresar" hacia la media poblacional.

Importancia Histórica

- Regresión Lineal: Introdujo el concepto de la recta de regresión para modelar relaciones.
- Correlación: Precursor del coeficiente de correlación (desarrollado por Karl Pearson).
- Terminología: Acuñó el término "regresión" que usamos hoy.
- Método Estadístico: Fundó las bases del análisis de regresión moderno.

Breve Crónica: La Formalización Matemática

Aunque Galton sentó las bases conceptuales, la formalización matemática se debe a dos gigantes:

Adrien-Marie Legendre

- En 1805 publicó el "Método de los mínimos cuadrados".
- Lo concibió como un procedimiento numérico para ajustar observaciones astronómicas.

Carl Friedrich Gauss

- Desarrolló el método de forma independiente.
- Lo dotó de una profunda base teórica, conectándolo con la teoría de la probabilidad.
- Lo derivó bajo el supuesto de errores normales, convirtiéndolo en la técnica fundamental que es hoy.

Breve Crónica: El Desarrollo Moderno

El siglo XX fue testigo de un desarrollo explosivo, con dos hitos clave:

La Revolución de los GLMs (1972)

- John Nelder y Robert Wedderburn publicaron su trabajo sobre Modelos Lineales Generalizados.
- Unificaron la regresión lineal, logística y de Poisson bajo un mismo marco conceptual y computacional.
- Esto estimuló enormemente la aplicación del modelado a una nueva y vasta gama de problemas.

La Evolución Contemporánea

- El legado continúa evolucionando a un ritmo vertiginoso.
- Inclusión de modelos jerárquicos y bayesianos.
- Integración con métodos de *machine learning* (ej: árboles de regresión).
- Adaptación al análisis de datos masivos (big data).

De la Herencia Biológica al Big Data

La regresión ha evolucionado de manera extraordinaria desde sus orígenes:

- Origen Modesto: Una simple observación sobre la herencia de la estatura por Sir Francis Galton.
- Desarrollo Matemático: La formalización rigurosa por Legendre y Gauss en el siglo XIX.
- Revolución Conceptual: Los GLMs unificaron múltiples técnicas bajo un marco común.
- Era Contemporánea: Adaptación a machine learning, métodos bayesianos y big data.

La regresión se ha convertido en una de las herramientas más versátiles y poderosas del arsenal analítico moderno, presente en prácticamente todas las disciplinas cuantitativas.

Preparándonos para el Viaje Técnico

Lo que hemos construido:

- Marco conceptual sólido: Predicción vs. inferencia
- Fundamentos axiomáticos: Los tres pilares de la regresión
- Perspectiva histórica: De Galton al big data
- Visión panorámica: El universo de modelos disponibles

Lo que sigue:

Con este **andamiaje conceptual y filosófico**, estamos preparados para las inmersiones técnicas que seguirán. Cada concepto avanzado se construirá sobre estos cimientos sólidos.

Referencias

- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). McGraw-Hill/Irwin.
- Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370-384.
- Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289-310.

Regresión Lineal Simple

Víctor Aceña - Isaac Martín

DSLAB

2025-09-10

Fundamento del Modelado Estadístico

La regresión lineal constituye uno de los pilares fundamentales de la modelización estadística.

¿Por qué es tan importante?

- Es el primer modelo predictivo que se aprende por su simplicidad e interpretabilidad
- Los conceptos aquí desarrollados son la base para técnicas avanzadas: regresión múltiple, GLMs, machine learning
- Proporciona el marco conceptual para toda la inferencia estadística en modelos lineales

Nuestro enfoque:

Seguiremos el **ciclo completo** de un proyecto de modelado: exploración \to formalización \to estimación \to inferencia \to diagnóstico

Objetivos de Aprendizaje

- 1. **Comprender y aplicar** el proceso de modelización estadística para problemas con una variable predictora
- 2. Identificar y medir la correlación lineal entre dos variables como paso previo al modelado
- Describir la formulación matemática del modelo de regresión lineal simple e interpretar sus parámetros
- Estimar los coeficientes mediante mínimos cuadrados ordinarios (MCO) y entender sus propiedades
- 5. Realizar inferencias sobre los parámetros del modelo y evaluar su bondad de ajuste
- 6. Diagnosticar la adecuación del modelo verificando si se cumplen los supuestos

Ejemplo Motivador: Los Datos

Pregunta de investigación: ¿Influye el tiempo de estudio semanal en las calificaciones finales?

Simulación de datos realista:

- 100 estudiantes universitarios
- Tiempo de estudio: entre 5 y 40 horas/semana
- Calificaciones: escala de 0 a 10 puntos

Pregunta: ¿Qué patrón observas en los datos?

Ejemplo Motivador: Primera Observación

- Tendencia clara: A más tiempo de estudio, mejores calificaciones
- Relación lineal: Los puntos siguen aproximadamente una línea recta
- Dirección positiva:
 Pendiente ascendente

Conclusión: La tendencia lineal positiva justifica un modelo de regresión lineal.

Paso 1: Exploración Visual - El Gráfico de Dispersión

El **gráfico de dispersión** (scatterplot) es la herramienta más potente para examinar la relación entre dos variables continuas.

¿Qué nos permite evaluar?

Características de la relación:

- Forma: ¿Es lineal, curva, o sin patrón?
- **Dirección**: ¿Positiva o negativa?
- Fuerza: ¿Qué tan estrecha es la relación?
- Valores atípicos: ¿Hay observaciones extremas?

Criterios para regresión lineal:

- Linealidad: Los puntos siguen una tendencia recta
- Variabilidad constante: La dispersión es similar en todo el rango
- Sin valores atípicos extremos: No hay puntos que distorsionen la relación

Principio: La visualización SIEMPRE precede a la cuantificación

Paso 2: Cuantificación - Covarianza y Correlación

Una vez que la visualización sugiere una tendencia, necesitamos métricas para cuantificarla.

Covarianza muestral:

$$\mathrm{Cov}(x,y) = s_{xy} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

• Problema: Su magnitud depende de las unidades de las variables

Coeficiente de correlación de Pearson:

$$r = r_{xy} = \frac{s_{xy}}{s_x s_y}$$

- Ventajas: Adimensional, siempre entre -1 y 1
- Interpretación: Fuerza de la asociación lineal

Cuantificación en Nuestro Ejemplo

Resultados del análisis:

- Covarianza: 9.82 (difícil de interpretar por las unidades)
- Correlación: 0.898

 (asociación lineal muy fuerte y positiva)

La línea roja muestra la **tendencia lineal** de los datos.

Correlación NO Implica Causalidad

Encontrar una **correlación fuerte** (0.898) entre tiempo de estudio y calificaciones **NO** nos autoriza a concluir que *una causa la otra*.

¿Por qué?

Posibles explicaciones alternativas:

- Variable oculta: El interés del estudiante influye tanto en las horas de estudio como en las calificaciones
- Causalidad inversa: Los estudiantes con mejores calificaciones se motivan a estudiar más
- Terceras variables: Calidad del sueño, técnicas de estudio, etc.

La regresión lineal puede:

Demostrar que las variables se mueven juntas Permitirnos predecir una a partir de la otra Cuantificar la fuerza de la asociación

NO puede:

Explicar el porqué de la relación Establecer causalidad sin diseño experimental

El Modelo Poblacional

Una vez confirmada la relación lineal, formalizamos matemáticamente nuestra observación.

El modelo poblacional postula que la relación verdadera sigue una línea recta con aleatoriedad:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Componentes:

Parte sistemática:

- β_0 : **Intercepto** (parámetro poblacional desconocido)
- β₁: Pendiente (parámetro poblacional desconocido)

Parte aleatoria:

- ullet ε_i : **Error aleatorio** que incluye:
 - Variables omitidas
 - Error de medición
 - Aleatoriedad intrínseca

Nunca observamos la población ightarrow Usamos la muestra para estimar el modelo muestral

Del Modelo Poblacional al Modelo Muestral

Modelo poblacional (desconocido):

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Modelo muestral (estimado):

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Terminología clave:

- Los "gorros" (•) indican estimaciones calculadas de la muestra
- La diferencia $e_i = y_i \hat{y}_i$ es el **residuo** (aproximación empírica del error ε_i)
- \hat{y}_i es el **valor predicho** por el modelo

Objetivo: Usar la muestra para encontrar la "mejor" recta de ajuste

Los Supuestos del Modelo

Para que nuestras estimaciones e inferencias sean válidas, asumimos que los errores ε_i se comportan ordenadamente:

- 1. Linealidad: $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$
- 2. Independencia: $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$
- 3. Homocedasticidad: $Var(\varepsilon_i|X_i)=\sigma^2$ (varianza constante)
- 4. Normalidad (para inferencia): $\varepsilon_i \sim N(0,\sigma^2)$

Importancia: Estos supuestos garantizan las **propiedades óptimas** de los estimadores de mínimos cuadrados y la **validez** de la inferencia estadística.

El Método de Mínimos Cuadrados Ordinarios (MCO)

Criterio: Encontrar la recta que **minimice** la suma de los cuadrados de los errores.

$$\mathrm{SSE}(\beta_0,\beta_1) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

¿Por qué este criterio?

- Los errores positivos y negativos no se cancelan
- Penaliza más los errores grandes
- Tiene solución analítica única
- Proporciona estimadores con propiedades óptimas

Interpretación geométrica:

Minimizamos la suma de las **distancias verticales al cuadrado** entre los puntos observados y la recta de regresión.

Derivación de las Fórmulas de MCO

Para encontrar β_0 y β_1 que minimizan SSE, usamos cálculo:

Derivadas parciales:

$$\frac{\partial \mathrm{SSE}}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial \mathrm{SSE}}{\partial \beta_1} = -2 \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

Resolviendo el sistema (ecuaciones normales):

Al resolver estas ecuaciones simultáneamente, obtenemos las fórmulas de MCO.

Fórmulas Finales de MCO

Fórmula para la pendiente:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$= \frac{s_{xy}}{s_{xx}} = \frac{\text{Covarianza muestral}}{\text{Varianza muestral de } X}$$

Fórmula para el intercepto:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Notación:

- $s_{xy} = \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$ (suma de productos cruzados)
- $s_{xx} = \sum_{i=1}^{n} (x_i \bar{x})^2$ (suma de cuadrados de X)

Interpretación intuitiva:

La pendiente es la razón entre la covariación de X e Y y la variación de X.

Propiedades de las Predicciones

Las estimaciones MCO generan predicciones ($\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$) con **propiedades matemáticas específicas**:

1. La recta pasa por el centro de los datos: (\bar{x}, \bar{y})

$$\hat{\beta}_0 + \hat{\beta}_1 \bar{x} = \bar{y}$$

Demostración: Sumando la ecuación de predicción para todas las observaciones:

$$\frac{1}{n}\sum_{i=1}^{n} \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \frac{1}{n}\sum_{i=1}^{n} x_i = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

2. Promedio de predicciones = Promedio observado:

$$\frac{1}{n}\sum_{i=1}^{n}\hat{y}_{i} = \bar{y}$$

Importancia: La recta de regresión siempre pasa por el punto central de los datos

Propiedades de los Residuos

Los residuos MCO $(e_i = y_i - \hat{y}_i)$ tienen **propiedades fundamentales**:

3. Suma de residuos = 0:

$$\sum_{i=1}^n e_i = 0$$

4. Residuos no correlacionados con X:

$$\sum_{i=1}^{n} x_i e_i = 0$$

5. Residuos no correlacionados con predicciones:

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0$$

Implicación: Estas propiedades garantizan que MCO es insesgado y óptimo

Interpretación de los Coeficientes

Una vez estimados, los coeficientes tienen interpretación concreta y práctica:

Pendiente $(\hat{\beta}_1)$:

- ullet Representa el **cambio promedio esperado** en Y por cada **aumento de una unidad** en X
- En nuestro ejemplo: puntos que aumenta la calificación por cada hora adicional de estudio

Intercepto $(\hat{\beta}_0)$:

- ullet Valor promedio esperado de Y cuando X=0
- ullet Solo tiene sentido práctico si X=0 es plausible y está en el rango de los datos
- A menudo es solo un "ancla matemática" para la recta

Nota importante: La interpretación siempre debe considerar el contexto del problema y la plausibilidad de los valores.

Aplicación: Ajuste del Modelo en Nuestro Ejemplo

Ecuación del modelo:

 ${\sf Calificaciones} = 5.001 + 0.099 \times {\sf Tiempo_Est}$

Interpretación de coeficientes:

- Intercepto ($\hat{\beta}_0 = 5.001$): Calificación esperada con 0 horas de estudio
- Pendiente $(\hat{\beta}_1 = 0.099)$: Por cada hora adicional de estudio, la calificación aumenta en promedio 0.099 puntos

Conclusión: Relación positiva y significativa entre tiempo de estudio y calificaciones.

Propiedades de los Estimadores de MCO

Bajo los supuestos de Gauss-Markov, los estimadores MCO son **MELI** (Mejores Estimadores Lineales Insesgados):

1. Insesgadez:

$$E[\hat{\beta}_0] = \beta_0 \quad \text{y} \quad E[\hat{\beta}_1] = \beta_1$$

Los estimadores MCO son correctos en promedio - no tienen sesgo sistemático.

2. Varianza mínima:

Entre todos los estimadores lineales insesgados, los MCO tienen la menor varianza posible.

3. Varianzas conocidas:

Las varianzas de los estimadores tienen formas matemáticas específicas y conocidas.

Varianzas de los Estimadores de MCO

Para la pendiente:

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{S_{xx}}$$

donde
$$S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$$

Interpretación:

- $Var(\hat{\beta}_1)$ disminuye con mayor dispersión en X (mayor S_{xx})
- Más datos esparcidos \rightarrow mejor estimación de la pendiente

Para el intercepto:

$$Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]$$

Interpretación:

- $Var(\hat{eta}_0)$ aumenta cuando \bar{x} está lejos de cero
- El intercepto se estima mejor cuando \bar{x} está cerca de cero
- Mayor tamaño de muestra (n) reduce la varianza

Estimación de la Varianza del Error

Las fórmulas de varianza dependen de σ^2 (desconocida). La estimamos con:

Media Cuadrática del Error (MSE):

$$\hat{\sigma}^2 = \mathsf{MSE} = \frac{\mathsf{SSE}}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

¿Por qué n-2?

- Son los grados de libertad del error
- \bullet Hemos "gastado" 2 grados de libertad estimando eta_0 y eta_1

Error estándar de los residuos:

$$\hat{\sigma} = \sqrt{\mathsf{MSE}}$$

También llamado **RMSE** en $machine\ learning o Mide\ la\ dispersión\ promedio\ alrededor\ de\ la\ recta$

Análisis de la Varianza (ANOVA) para la Regresión

Pregunta clave: ¿Es el modelo útil o la relación observada es casualidad?

Contraste de hipótesis:

- $H_0: \beta_1 = 0$ (no hay relación lineal)
- $H_1: \beta_1 \neq 0$ (sí hay relación lineal)

Descomposición de la variabilidad total:

$$SST = SSR + SSE$$

Esta ecuación es fundamental: Toda la variabilidad se divide en explicada y no explicada

Suma Total de Cuadrados (SST)

Definición:

$$\mathsf{SST} = \sum_{i=1}^n (y_i - \bar{y})^2$$

¿Qué mide?

- ullet La **variabilidad total** de Y respecto a su media $ar{y}$
- ullet Es la varianza muestral de Y multiplicada por (n-1)
- Representa toda la dispersión que queremos explicar con nuestro modelo

Interpretación:

Si no tuviéramos ningún modelo y solo usáramos \bar{y} para predecir, SST sería el **error total** que cometeríamos.

Suma de Cuadrados de la Regresión (SSR)

Definición:

$$\mathrm{SSR} = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$$

¿Qué mide?

- La variabilidad que **explica** nuestro modelo de regresión
- ullet Es la variabilidad de las predicciones \hat{y}_i respecto a la media $ar{y}$
- Representa la señal que nuestro modelo logra captar

Interpretación:

Mide cuánto **mejor** es nuestro modelo comparado con simplemente usar \bar{y} como predicción.

Suma de Cuadrados del Error (SSE)

Definición:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

¿Qué mide?

- La variabilidad no explicada por nuestro modelo
- Es la suma de los cuadrados de los residuos
- Representa el ruido que nuestro modelo no puede captar

Interpretación:

Es exactamente lo que **minimiza el método MCO** para encontrar la mejor recta.

La Descomposición Fundamental de la Variabilidad

La ecuación clave:

$$SST = SSR + SSE$$

Interpretación intuitiva:

En palabras:

- SST: "¿Cuánta variabilidad hay que explicar?"
- SSR: "¿Cuánta variabilidad explica mi modelo?"
- SSE: "¿Cuánta variabilidad queda sin explicar?"

En porcentajes:

- SST: 100% de la variabilidad
- SSR: % explicado por el modelo
- SSE: % no explicado (error)

Consecuencia: Si SSR es grande comparado con SSE \rightarrow El modelo es útil

El Estadístico F

Estadístico F:

$$F = \frac{\mathrm{MSR}}{\mathrm{MSE}} = \frac{\mathrm{SSR}/1}{\mathrm{SSE}/(n-2)}$$

Interpretación:

- MSR: Variabilidad explicada por grado de libertad
- MSE: Variabilidad no explicada por grado de libertad
- F: Ratio entre variabilidad explicada vs no explicada

La Lógica del Contraste F (I): Si No Hay Relación

Si $H_0: \beta_1 = 0$ fuera cierta (no hay relación lineal):

- ullet El modelo lineal sería **inútil** para explicar Y
- \bullet Todas las predicciones \hat{y}_i serían iguales a \bar{y}
- \bullet Por tanto: ${\rm SSR} = \sum_{i=1}^n (\hat{y}_i \bar{y})^2 \approx 0$ (muy pequeña)

Consecuencia matemática:

$$F = \frac{\mathsf{SSR}/1}{\mathsf{SSE}/(n-2)} pprox \frac{0}{\mathsf{MSE}} pprox 0$$

En palabras: Si no hay relación, F debería ser cercano a **cero**

La Lógica del Contraste F (II): Si Hay Relación

Si $H_1: \beta_1 \neq 0$ fuera cierta (sí hay relación lineal):

- ullet El modelo **captura** la relación entre X e Y
- \bullet Las predicciones \hat{y}_i varían siguiendo el patrón de los datos
- Por tanto: SSR sería grande (el modelo explica mucha variabilidad)

Consecuencia matemática:

$$F = \frac{\mathsf{SSR} \ \mathsf{grande}}{\mathsf{MSE}} >> 1$$

Decisión estadística:

- ullet ${f F}pprox{f 0} o{f N}$ o rechazamos $H_0 o{f E}$ l modelo no es útil
- ullet F » ${f 1}
 ightarrow$ Rechazamos $H_0
 ightarrow$ El modelo sí es útil

Tabla ANOVA: Resumen de la Descomposición

Fuente	df	SS	MS = SS/df	Estadístico F
Regresión				F = MSR/MSE
Error	n-2	SSE	MSE	
Total	n-1	SST		

¿Cómo leer esta tabla?

- Fila "Regresión": Cuantifica lo que el modelo explica
- Fila "Error": Cuantifica lo que el modelo no explica
- Fila "Total": La variabilidad total que queremos explicar

El estadístico F resume todo:

$$F = \frac{\text{Variabilidad explicada por df}}{\text{Variabilidad no explicada por df}} = \frac{MSR}{MSE}$$

En regresión simple, $F=t^2$ donde t es el estadístico para contrastar $\beta_1=0$

Bondad del Ajuste: Coeficiente de Determinación (R^2)

El \mathbb{R}^2 cuantifica **qué proporción** de la variabilidad total es explicada por el modelo:

$$R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}$$

Interpretación:

- $R^2=0$: El modelo no explica nada (tan malo como usar \bar{y})
- $R^2 = 1$: El modelo explica toda la variabilidad (ajuste perfecto)
- $R^2=0.7$: El modelo explica el 70% de la variabilidad

En regresión simple: $\mathbb{R}^2 = \mathbb{R}^2$ (cuadrado de la correlación)

Precaución: Un \mathbb{R}^2 alto no garantiza un buen modelo ni implica causalidad

Inferencia sobre los Coeficientes

Para realizar inferencias necesitamos el supuesto de normalidad de los errores.

Distribución de los estimadores:

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right) \qquad \hat{\beta}_0 \sim N\left(\beta_0, \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]\right)$$

Estadístico t para la pendiente:

$$t = \frac{\hat{\beta}_1 - \beta_1}{\mathsf{SE}(\hat{\beta}_1)} \sim t_{n-2}$$

donde
$$\mathrm{SE}(\hat{\beta}_1) = \sqrt{\frac{\mathrm{MSE}}{S_{xx}}}$$

Contraste de Hipótesis y Intervalos de Confianza

Contraste para la pendiente:

- $\bullet \ H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$
- Estadístico: $t_0 = \frac{\hat{\beta}_1}{\mathrm{SE}(\hat{\beta}_1)}$
- ullet Decisión: Rechazar H_0 si $|t_0|>t_{lpha/2,n-2}$

Intervalo de confianza al $(1-\alpha)100\%$ para β_1 :

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot \mathrm{SE}(\hat{\beta}_1)$$

Interpretación: Si el IC no contiene el cero $ightarrow eta_1$ es significativo

Resultados del Modelo en Nuestro Ejemplo


```
Call:
lm(formula = Calificaciones ~ Tiempo_Estudio, data = datos)
Residuals:
    Min
              1Q Median
                               30
                                      Max
-1.11465 -0.30262 -0.00942 0.29509 1.10533
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.00118
                         0.11977 41.76 <2e-16 ***
Tiempo_Estudio 0.09875 0.00488 20.23 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4842 on 98 degrees of freedom
Multiple R-squared: 0.8069, Adjusted R-squared: 0.8049
F-statistic: 409.5 on 1 and 98 DF, p-value: < 2.2e-16
```

Interpretación de los Resultados

Coeficientes:

- Intercepto: $5.001 \rightarrow \text{Calificación esperada cuando el tiempo de estudio es 0 horas}$
- **Pendiente:** $0.0987 \rightarrow \text{Por cada hora adicional de estudio, la calificación aumenta en promedio <math>0.0987 \text{ puntos}$

Bondad de ajuste: R-cuadrado: $0.8069 \rightarrow \text{El modelo explica el } 80.7\%$ de la variabilidad en las calificaciones

Significancia:

- ullet Coeficientes: Ambos son altamente significativos (p < 2e-16)
- Modelo global: F = 409.5 con p < 2.2e-16 \rightarrow El modelo es estadísticamente útil

Error estándar residual: 0.484 o Dispersión típica alrededor de la recta de regresión

Predicción con el Modelo

Una vez validado, usamos el modelo para hacer predicciones. Hay dos tipos:

1. Intervalo de confianza para la respuesta media:

- Pregunta: ¿Cuál es la calificación promedio esperada para todos los estudiantes que estudian x_0 horas?
- Estima dónde se encuentra la línea de regresión verdadera

2. Intervalo de predicción para una respuesta individual:

- Pregunta: ¿Entre qué valores esperamos la calificación de un estudiante específico que estudia x_0 horas?
- Considera tanto la incertidumbre del modelo como la variabilidad individual

Diferencia clave: El intervalo de predicción siempre es **más ancho** porque incluye la variabilidad σ^2 del error individual.

Fórmulas para Predicción

Intervalo de confianza para la respuesta media:

$$\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot \sqrt{\mathrm{MSE}\left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

Intervalo de predicción para respuesta individual:

$$\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot \sqrt{\text{MSE}\left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

Observaciones importantes:

- Ambos intervalos son más estrechos cerca del **centro** de los datos (\bar{x})
- La diferencia entre ambos es el término "+1" que representa σ^2
- Nunca extrapolar más allá del rango de los datos observados

Visualización de los Intervalos de Predicción

IC 95% para la media (azul) vs IP 95% para nueva observación (rojo)

Interpretación gráfica:

- Banda azul (IC): Incertidumbre sobre la media poblacional
- Banda roja (IP): Incertidumbre para nueva observación
- **Diferencia clave**: IP incluye variabilidad individual (σ^2)
- Patrón: Ambos intervalos se estrechan cerca de \bar{x}
- Aplicación: Usar IC para estimar tendencia, IP para predicciones individuales

El Diagnóstico del Modelo: Fundamento Teórico

¿Por qué es crucial el diagnóstico?

El diagnóstico **NO** es opcional. Las inferencias estadísticas (p-valores, intervalos de confianza, predicciones) solo son válidas si se cumplen los supuestos del modelo.

Consecuencias de ignorar el diagnóstico:

- ullet Estimadores sesgados o Conclusiones erróneas
- Errores estándar incorrectos → Intervalos de confianza y p-valores inválidos
- Predicciones poco fiables → Pérdida de poder predictivo

Filosofía del diagnóstico: Los residuos son la "ventana" hacia los errores verdaderos $arepsilon_i$

Los Cuatro Pilares del Diagnóstico

Recordatorio de supuestos:

- 1. Linealidad: $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$
- **2.** Independencia: $Cov(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$
- 3. Homocedasticidad: $Var(\varepsilon_i|X_i)=\sigma^2$ (varianza constante)
- 4. Normalidad: $\varepsilon_i \sim N(0,\sigma^2)$ (para inferencia)

Herramienta fundamental: Análisis de residuos $(e_i = y_i - \hat{y}_i)$

Principio clave: Si los supuestos se cumplen, los residuos deben comportarse como **ruido aleatorio** sin patrones sistemáticos

Diagnóstico: Linealidad

Supuesto: $E[Y|X] = \beta_0 + \beta_1 X$ (relación promedio es lineal)

Métodos de Diagnóstico:

- Gráfico: Residuos vs Valores Ajustados
- Test estadístico: Test de Ramsey RESET (Regression Equation Specification Error Test)

¿Qué buscamos?

- Patrón ideal: Nube aleatoria de puntos centrada en cero
- Violación: Patrón curvilíneo (forma de "U" o parábola)

Test de Ramsey RESET:

- H₀: La forma funcional es correcta (lineal)
- H₁: La forma funcional es incorrecta (no lineal)
- Añade términos $\hat{y}^2, \hat{y}^3, \dots$ al modelo y testa su significancia

Violación del supuesto: NO Linealidad

Línea roia curvada = violación de linealidad

Problema detectado:

Ajustar un modelo lineal a datos con relación cuadrática

¿Qué observamos?

- Patrón curvo en los residuos
- Los residuos no están aleatoriamente dispersos
- La línea suavizada (roja) no es horizontal

Diagnóstico:

Patrón sistemático en residuos →

Curso 2025-2026

Verificación de linealidad

¿Qué evaluar?

Si la relación es verdaderamente lineal

Resultados:

- **Gráfico:** Línea roja prácticamente plana \rightarrow Linealidad
- Test RESET: F = 1.051, $p = 0.353 \rightarrow Forma funcional correcta$

Diagnóstico: Homocedasticidad

Supuesto: $Var(\varepsilon_i|X_i) = \sigma^2$ (varianza constante)

Métodos de Diagnóstico:

- Gráficos: Scale-Location, Residuos vs Valores Ajustados
- Tests estadísticos: Test de Breusch-Pagan, Test de Goldfeld-Quandt, Test de White

¿Qué buscamos?

- Patrón ideal: Dispersión constante a lo largo del rango
- Violación: Forma de "embudo" (dispersión creciente o decreciente)

Tests de Heterocedasticidad:

- **Breusch-Pagan:** H₀: Homocedasticidad, H₁: Heterocedasticidad
- White: Versión robusta que no asume forma específica de heterocedasticidad

Violación del Supuesto: NO Homocedasticidad

La línea roja ascendente indica heterocedasticidad

Problema: Varianza de los errores que aumenta con los valores predichos (heterocedasticidad)

¿Qué observamos?

- Línea roja ascendente:
 Claro patrón de aumento de varianza
- Dispersión creciente: Los residuos se dispersan más para valores altos
- Violación: Supuesto de varianza constante NO se cumple

Diagnóstico: Tendencia creciente → **Heterocedasticidad**

Verficación de homocedasticidad

Tests estadísticos:

Breusch-Pagan:

- LM = 0.02
- p = 0.889
- Conclusión: Homocedasticidad

White:

- LM = 0.122
- p = 0.941
- Conclusión: Varianza constante

Interpretación gráfica:

- Línea roja horizontal → Varianza constante
- Sin patrones sistemáticos → Supuesto cumplido

Diagnóstico: Normalidad

Supuesto: $\varepsilon_i \sim N(0, \sigma^2)$ (errores normalmente distribuidos)

Métodos de Diagnóstico:

Gráficos:

- Normal Q-Q Plot
- Histograma de residuos

Tests estadísticos:

- Test de Shapiro-Wilk
- Test de Jarque-Bera
- Test de Anderson-Darling

¿Qué buscamos en Q-Q Plot?

- Ideal: Puntos sobre la línea diagonal
- **Problema:** Desviaciones sistemáticas

Detalles de los Tests:

Shapiro-Wilk:

- H₀: Los residuos siguen distribución normal
- Más potente para muestras pequeñas (n < 50)

Jarque-Bera:

- Basado en asimetría y curtosis
- Asintóticamente válido para muestras grandes

Anderson-Darling:

- Más sensible en las colas de la distribución
- Mejor detección de desviaciones extremas

Violación del Supuesto: NO Normalidad

Puntos se desvían de la línea -> No normalidad

Problema: Errores con distribución asimétrica o con colas pesadas

¿Qué observamos?

- Desviación sistemática: Los puntos no siguen la línea diagonal
- Curvatura: Patrón curvo indica distribución sesgada
- Violación: Supuesto de normalidad NO se cumple

NO normalidad

Violación del Supuesto: Histograma NO Normal

Azul: normal teórica vs Naranja: datos reales sesgados

Problema: Distribución asimétrica de los residuos (histograma sesgado) ; Qué observamos?

- Asimetría: Distribución sesgada hacia la derecha
- Desajuste: Curva normal (azul) no coincide con histograma
- **Test Shapiro-Wilk**: p = 0 < 0.05

Diagnóstico: Distribución sesgada curva normal \rightarrow **NO normalidad**

Verificación de normalidad

Tests estadísticos:

Shapiro-Wilk:

- W = 0.99
- p = 0.671
- Conclusión: Normalidad

Jarque-Bera:

- JB = 0.685
- p = 0.71
- Conclusión: Normalidad

Interpretación gráfica:

- Puntos siguen la línea diagonal
 - $\rightarrow \, \mathsf{Normalidad} \,\, \mathsf{cumplida}$

Diagnóstico: Normalidad (Histograma)

Línea roja: distribución normal teórica

Complemento visual:

Histograma de residuos con curva normal superpuesta

¿Qué buscamos?

- Patrón ideal: Distribución simétrica y campaniforme
- Violación: Asimetría marcada o múltiples modas

Resultado: Distribución simétrica y campaniforme → Normalidad confirmada

Diagnóstico: Independencia

Supuesto: $Cov(\varepsilon_i, \varepsilon_j) = 0$ para $i \neq j$ (errores independientes)

Métodos de Diagnóstico:

- Gráfico: Residuos vs Orden de observación
- Tests estadísticos: Test de Durbin-Watson, Test de Breusch-Godfrey (LM), Ljung-Box

¿Qué buscamos?

- Patrón ideal: Residuos sin patrones temporales o secuenciales
- Violación: Tendencias, ciclos, o correlaciones entre residuos consecutivos

Tests de Autocorrelación:

- **Durbin-Watson:** H_0 : No hay autocorrelación de primer orden $(\rho = 0)$
- Breusch-Godfrey: Generaliza DW para órdenes superiores y regresores retardados
- Ljung-Box: Testa autocorrelación conjunta en múltiples retardos

Violación del Supuesto: NO Independencia

Patrones y tendencias indican falta de independencia

Problema: Residuos con autocorrelación (típico en series temporales)

¿Qué observamos?

- Patrones sistemáticos: Los residuos muestran tendencias claras
- Conexiones: Residuos consecutivos están correlacionados
- Violación: Supuesto de independencia NO se cumple

Diagnóstico: Patrones sistemáticos y tendencias \rightarrow **NO independencia**

Verificación de Independencia

Tests estadísticos:

Durbin-Watson:

- DW = 2.056
- p = 0.61
- Conclusión: Sin autocorrelación orden 1

Breusch-Godfrey:

- LM = 0.14
- p = 0.932
- Conclusión: Sin autocorrelación orden 2

Interpretación gráfica:

 Sin patrones temporales → Independencia cumplida

Diagnóstico 5: Observaciones Influyentes

Objetivo: Identificar puntos que tienen influencia desproporcionada en el modelo

Métricas Principales:

- Leverage (h_{ii}) : Distancia en el espacio X (valores atípicos en X)
- Residuos Estudentizados: Outliers en Y ajustado por su varianza
- Distancia de Cook (D_i) : Influencia global en los coeficientes

Umbrales de Referencia:

- Leverage: $h_{ii} > \frac{2(k+1)}{n}$ (k = número de predictores)
- Cook: $D_i > \frac{4}{n-k-1}$ (regla conservadora)
- Residuos: $|t_i| > 2$ (fuera de 2 desviaciones estándar)

Combinaciones Problemáticas:

- Alto leverage + alto residuo = Muy influyente
- Alto leverage + bajo residuo = **Punto de anclaje** (puede ser bueno)
- Bajo leverage + alto residuo = **Outlier sin influencia**

Diagnóstico: Observaciones Influyentes

Curvas rojas: Cook 0.5 (discontinua) y 1.0 (continua)

Resultados:

- Leverage máximo: 0.041 (umbral: 0.04)
- Cook máximo: 0.095 (umbral: 0.041)
- Outliers (|t| > 2): 6 observaciones
- Conclusión: Revisar observaciones: 24, 74, 6, 20, 47, 85, 87, 89

Interpretación por zonas:

- Derecha: Alto leverage → Potencial influencia
- **Arriba/Abajo:** Outliers \rightarrow Residuos grandes
- **Esquinas:** ¡Vacías!

Análisis de Puntos Influyentes

Identificación:

- Outliers: observaciones 20, 22, 47, 85, 89, 99
- Alto leverage: observaciones 24, 74

Interpretación por regiones:

- Zona derecha: Alto leverage (X atípicos) \rightarrow Potencial influyente
- ullet Zona izquierda: Outliers (Y atípicos) o Residuos grandes
- Esquinas críticas: ¡Vacías! (Situación favorable)
- Distancia de Cook: Influencia moderada (< 1.0)

Conclusión: No hay solapamiento leverage + outlier \rightarrow Situación manejable

Diagnóstico DFFITS

DFFITS: Evalúa cómo cada observación afecta a su propia predicción

Resultados cuantitativos:

- **Umbral:** 0.283
- **Influyentes:** 7 observaciones (6, 20, 22, 47, 85, 87, 89)
- **Top 5** |**DFFITS**|: obs. 20, 85, 89, 47, 6
- Valores: 0.446, -0.38, 0.364, 0.325, 0.312 Interpretación:
- **Obs. 20:** DFFITS = 0.446 (más influyente)
- Conclusión: 7 observaciones cambían significativamente sus propias predicciones

Análisis de Resultados DFFITS

DFFITS: Evalúa cómo cada observación afecta a su propia predicción

Resultados cuantitativos:

- Umbral de influencia: 0.283
- Observaciones influyentes: 7 observaciones (6, 20, 22, 47, 85, 87, 89)
- Top 5 |DFFITS|: observaciones 20, 85, 89, 47, 6
- Valores: 0.446, -0.38, 0.364, 0.325, 0.312

Interpretación:

- **Observación 20:** DFFITS = 0.446 (la más influyente)
- Conclusión: 7 observaciones cambian significativamente sus propias predicciones \rightarrow Investigar casos especiales

Diagnóstico Completo: Supuestos Básicos

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

- 1. LINEALIDAD: [OK] CUMPLIDO
 - Gráfico: Línea loess prácticamente plana en Residuos vs Ajustados
 - Test RESET: F = 1.051, $p = 0.353 \rightarrow Forma$ funcional correcta
- 2. HOMOCEDASTICIDAD: [OK] CUMPLIDO
 - Scale-Location: Línea horizontal, dispersión constante
 - Breusch-Pagan: LM = 0.02, p = $0.889 \rightarrow Varianza$ constante
 - White: LM = 0.122, p = 0.941 \rightarrow Confirmado

Diagnóstico Completo: Supuestos Distribucionales

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

- 3. NORMALIDAD: [OK] CUMPLIDO
 - Q-Q Plot: Puntos siguen línea diagonal perfectamente
 - Shapiro-Wilk: W = 0.99, $p = 0.671 \rightarrow Normalidad confirmada$
 - Jarque-Bera: JB = 0.685, p $= 0.71 \rightarrow$ Distribución normal
- 4. INDEPENDENCIA: [OK] CUMPLIDO
 - Residuos vs Orden: Sin patrones temporales o secuenciales
 - **Durbin-Watson:** DW = 2.056, p = $0.61 \rightarrow \text{Sin autocorrelación}$
 - Breusch-Godfrey: LM = 0.14, p = $0.932 \rightarrow$ Independencia confirmada

Diagnóstico Completo: Observaciones Influyentes

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

DETECCIÓN DE PUNTOS PROBLEMÁTICOS:

- Outliers: 6 observaciones con |t| > 2
- Alto Leverage: 2 observaciones de alta palanca
- **DFFITS** influyentes: 7 observaciones que cambian sus predicciones
- Cook influyentes: 6 observaciones con alta influencia global

EVALUACIÓN DE RIESGO:

- Situación: [OK] Favorable Sin solapamiento crítico leverage + outlier
- Acción: Revisar 9 observaciones específicas

Veredicto Final del Diagnóstico

Ejemplo: Modelo horas_estudio ~ nota_examen (n=100)

Interpretación completa:

- Por cada hora adicional de estudio, la calificación aumenta en promedio 0.099 puntos
- El modelo explica el 80.7% de la variabilidad en las calificaciones
- La relación es altamente significativa (p < 0.001)
- ullet Todos los **supuestos se cumplen** o Las inferencias son válidas
- Existen obsrevaciones influyentes que requieren atención

Conclusiones y Próximos Pasos

Lo que hemos aprendido:

Proceso completo de modelado: exploración o formalización o estimación o inferencia o diagnóstico

Interpretación de coeficientes y medidas de bondad de ajuste

Validación mediante diagnóstico de supuestos

Limitaciones de la correlación vs. causalidad

Próximo tema: Regresión Lineal Múltiple

- Múltiples variables predictoras
- Control de variables confusas
- Interacciones entre predictores
- Selección de variables

 $\textbf{La regresi\'on simple es el fundamento} \rightarrow \mathsf{Todos} \ \mathsf{estos} \ \mathsf{conceptos} \ \mathsf{escalan} \ \mathsf{directamente}$

Referencias

- Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). Wiley.
- Fox, J., & Weisberg, S. (2018). An R companion to applied regression (3rd ed.). Sage.
- Harrell Jr, F. E. (2015). Regression modeling strategies (2nd ed.). Springer.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning (2nd ed.). Springer.
- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). McGraw-Hill/Irwin.

Regresión Lineal Múltiple

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

El Modelo de Regresión Lineal Múltiple

El modelo de regresión lineal múltiple constituye la **extensión natural y más potente** del modelo simple.

Diferencias clave:

Regresión Simple:

- Una variable respuesta
- Un único predictor
- Relación bivariada

Capacidades únicas:

Regresión Múltiple:

- Una variable respuesta
- Múltiples predictores
- Relación multivariada
- Modelar simultáneamente el efecto de múltiples variables predictoras
- Interpretación de coeficientes en presencia de otros predictores
- Diagnóstico específico del modelo múltiple
- Manejo de la multicolinealidad

Objetivos de Aprendizaje

- 1. Formular y estimar modelos de regresión lineal múltiple, comprendiendo las diferencias clave respecto al caso simple
- 2. **Interpretar coeficientes** en el contexto multivariante, entendiendo el concepto de *ceteris* paribus
- Realizar inferencia estadística construyendo intervalos de confianza y contrastes de hipótesis
- **4. Evaluar la calidad del ajuste** usando medidas como R², R² ajustado y descomposición ANOVA
- 5. Diagnosticar el modelo múltiple aplicando técnicas específicas como gráficos CPR
- 6. Identificar y tratar la multicolinealidad usando el VIF como herramienta de diagnóstico
- 7. Realizar predicciones distinguiendo entre intervalos de confianza e intervalos de predicción

Formulación del Modelo Poblacional

Para n observaciones y p variables predictoras, el **modelo poblacional** postula:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i, \quad i = 1, \dots, n$$

Componentes:

- Y_i : *i*-ésima variable respuesta aleatoria
- ullet X_{ij} : i-ésima variable predictora aleatoria del j-ésimo predictor
- ε_i : término de error aleatorio
- $\beta_0,\beta_1,\dots,\beta_p$: coeficientes poblacionales verdaderos pero desconocidos

Características clave:

- Relación lineal en los parámetros
- Los errores son no observables
- Los parámetros son constantes poblacionales

Formulación del Modelo Muestral

En la práctica, trabajamos con datos observados y estimamos el modelo:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_p x_{ip}, \quad i = 1, \dots, n$$

Componentes:

- ullet \hat{y}_i : i-ésima predicción
- x_{ij} : *i*-ésima observación del *j*-ésimo predictor
- $\hat{\beta}_j$: coeficientes estimados

Interpretación clave de $\hat{\beta}_i$:

El cambio estimado en la media de Y ante un cambio de una unidad en X_j , manteniendo constantes todas las demás variables predictoras.

Este principio se conoce como *ceteris paribus* ("lo demás constante")

Notación Matricial: Modelo Poblacional

Modelo poblacional:

$$\mathbf{Y} = \tilde{X}\beta + \varepsilon$$

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad \tilde{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p} \\ 1 & X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Nota: \tilde{X} contiene variables aleatorias (mayúsculas X_{ij})

Notación Matricial: Modelo Muestral

Modelo muestral:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}, \quad \hat{\beta} = \begin{bmatrix} \beta_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_p \end{bmatrix}$$

Observaciones:

- X contiene datos observados (minúsculas x_{ij})
- ullet X y \tilde{X} son matrices de dimensión n imes (p+1)
- \bullet La primera columna de unos corresponde al intercepto β_0

Supuestos del Modelo Lineal Múltiple

Condiciones de Gauss-Markov:

- 1. Linealidad en los parámetros: El modelo $E[\mathbf{Y}|\tilde{X}] = \tilde{X}\beta$ está bien especificado
- 2. Exogeneidad: Los errores tienen media cero: $E[arepsilon|\tilde{X}]=\mathbf{0}$
- 3. Homocedasticidad e independencia: $\mathrm{Var}(\varepsilon|\tilde{X}) = \sigma^2\mathbf{I}_n$
- 4. Ausencia de multicolinealidad perfecta: ${f X}$ tiene rango completo (p+1)
- 5. Normalidad (para inferencia): $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

Implicación: Estos supuestos garantizan que los estimadores MCO sean **insesgados**, **consistentes y eficientes**

Estimación por Mínimos Cuadrados: Función Objetivo

Principio: Minimizar la discrepancia entre valores observados y predichos

Función objetivo:

$$S(\beta) = \sum_{i=1}^{n} e_i^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

¿Por qué cuadrados?

- Los residuos positivos y negativos no se cancelan
- Se penalizan más fuertemente los errores grandes
- Facilita el tratamiento matemático

Resultado: MCO minimiza la Suma de los Cuadrados de los Residuos (SSR)

Derivación de las Ecuaciones Normales

Expandiendo la función objetivo:

$$S(\beta) = \mathbf{y}^T\mathbf{y} - 2\beta^T\mathbf{X}^T\mathbf{y} + \beta^T(\mathbf{X}^T\mathbf{X})\beta$$

Derivando respecto a β :

$$\frac{\partial S(\beta)}{\partial \beta} = -2\mathbf{X}^T\mathbf{y} + 2(\mathbf{X}^T\mathbf{X})\beta$$

Igualando a cero:

$$-2\mathbf{X}^T\mathbf{y} + 2(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{0}$$

Ecuaciones Normales:

$$(\mathbf{X}^T\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^T\mathbf{y}$$

Solución MCO y Condición de Invertibilidad

Solución única:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Condición necesaria: La matriz $(\mathbf{X}^T\mathbf{X})$ debe ser invertible

¿Cuándo es invertible?

- Cuando X tiene rango completo (p+1)
- Cuando las columnas de X son linealmente independientes
- Cuando no hay multicolinealidad perfecta

Propiedades de $(\mathbf{X}^T\mathbf{X})$:

- Dimensión: $(p+1) \times (p+1)$
- Simétrica
- Definida positiva (si es invertible)

Propiedades de los Estimadores MCO

Bajo los supuestos de Gauss-Markov:

- 1. Insesgados: $E[\hat{\beta}] = \beta$
- 2. Eficientes: Varianza mínima entre todos los estimadores lineales insesgados
- **3. Consistentes:** $\hat{\beta} \stackrel{p}{\rightarrow} \beta$ cuando $n \rightarrow \infty$

Matriz de varianza-covarianza:

$$\mathsf{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$$

Bajo normalidad adicional:

$$\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\right)$$

Estimación de la Varianza del Error

Estimador insesgado de σ^2 :

$$\hat{\sigma}^2 = \frac{\mathsf{SSE}}{n-p-1} = \frac{\sum_{i=1}^n e_i^2}{n-p-1} = \frac{\mathbf{e}^T \mathbf{e}}{n-p-1}$$

Grados de libertad: n-p-1

- n: número de observaciones
- p + 1: número de parámetros estimados

Distribución:

$$\frac{(n-p-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-p-1}^2$$

Error estándar de los coeficientes:

$$\hat{\sigma}_{\beta_j} = \hat{\sigma} \sqrt{(\mathbf{X}^T \mathbf{X})_{jj}^{-1}}$$

Ejemplo: Modelo de Precios de Viviendas

Datos: Precios de viviendas basados en características

Variables predictoras:

- superficie: Metros cuadrados
- habitaciones: Número de habitaciones
- antiguedad: Años de antigüedad
- distancia_centro: Distancia al centro (km)
- garaje: Presencia de garaje (Sí/No)

Interpretación de los Coeficientes

Coeficiente de regresión parcial:

$$\beta_j = \frac{\partial E[Y|\tilde{X}]}{\partial X_j}$$

Interpretación: β_j representa el cambio esperado en Y por una unidad de cambio en X_j , manteniendo todas las demás variables constantes

Diferencia crucial:

Regresión Simple:

- Efecto total (directo + indirecto)
- Puede estar confundido
- $\hat{\beta}_i$ captura toda la asociación

Regresión Múltiple:

- Efecto puro o parcial
- Controla por otras variables
- Interpretación más causal

Concepto clave: El coeficiente proviene de una regresión entre residuos

Ejemplo: Interpretación Ceteris Paribus


```
Estimate Std. Error (Intercept) 53750.9705 6666.70624 superficie 1171.7780 47.28087 habitaciones 15072.3104 1303.41715 antiguedad -744.5896 75.42075 distancia_centro -2028.2715 164.87756 garajeSí 25829.4317 2349.44285
```

Interpretación ceteris paribus:

- Superficie (+1,172 €/m²): Cada m² adicional incrementa el precio
- Habitaciones $(+15,072 \ \hbox{\Large e})$: Cada habitación adicional aumenta el precio
- Antigüedad (-745 €/año): Cada año de antigüedad reduce el precio
- Distancia centro (-2,028 €/km): Cada km más lejos del centro reduce el precio
- Garaje (+25,829 €): Tener garaje incrementa el precio

Evaluación del Modelo: Descomposición de la Varianza

Descomposición ANOVA:

$$SST = SSR + SSE$$

Donde:

- **SST** (Sum of Squares Total): $\sum_{i=1}^{n} (y_i \bar{y})^2$
- SSR (Sum of Squares Regression): $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$
- SSE (Sum of Squares Error): $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$

Interpretación:

- SST: Variabilidad total en los datos
- SSR: Variabilidad explicada por el modelo
- SSE: Variabilidad no explicada (residual)

Coeficiente de Determinación Múltiple

R-cuadrado:

$$R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}$$

Interpretación:

- ullet Proporción de la variabilidad en Y explicada por el modelo
- Rango: $0 \le R^2 \le 1$
- $R^2 = 0$: El modelo no explica nada
- $R^2=1$: El modelo explica toda la variabilidad

Problema: R^2 siempre aumenta al añadir variables (incluso irrelevantes)

En regresión múltiple: R^2 es el cuadrado de la correlación entre ${f y}$ y $\hat{{f y}}$

El Coeficiente de Determinación Ajustado

R-cuadrado ajustado:

$$R_{\rm adj}^2 = 1 - \frac{{\rm SSE}/(n-p-1)}{{\rm SST}/(n-1)} = 1 - (1-R^2) \frac{n-1}{n-p-1}$$

Ventajas:

- Penaliza la inclusión de variables irrelevantes
- Puede decrecer si una variable no aporta información suficiente
- Mejor para comparar modelos con diferente número de predictores

Criterio de decisión:

- ullet Si R^2_{adj} aumenta al añadir una variable o la variable es útil
- ullet Si $R^2_{
 m adj}$ disminuye ightarrow la variable no aporta información suficiente

Inferencia: Contraste de Hipótesis Individual

Hipótesis sobre un coeficiente:

$$H_0:\beta_j=0\quad\text{vs}\quad H_1:\beta_j\neq 0$$

Estadístico de contraste:

$$t = \frac{\hat{\beta}_j - 0}{\hat{\sigma}_{\beta_j}} = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{(\mathbf{X}^T\mathbf{X})_{jj}^{-1}}} \sim t_{n-p-1}$$

Interpretación:

- Rechazar H_0 : La variable X_i es estadísticamente significativa
- No rechazar H_0 : No hay evidencia de efecto lineal de X_i sobre Y

 ${f Valor}\ {f p}$: Probabilidad de observar un estadístico t tan extremo o más, bajo H_0

Intervalo de Confianza para los Coeficientes

Intervalo de confianza al $(1-\alpha)\%$:

$$\hat{\beta}_j \pm t_{\alpha/2,n-p-1} \cdot \hat{\sigma}_{\beta_j}$$

Interpretación:

- ullet Con (1-lpha)% de confianza, el verdadero valor de eta_i está en este intervalo
- ullet Si el intervalo **no contiene cero** o eta_i es significativo
- Si el intervalo **contiene cero** $o eta_j$ no es significativo

Relación con el test de hipótesis:

- Intervalo de confianza del 95% \equiv Test de hipótesis con $\alpha=0.05$
- ullet Si 0 está en el IC del 95% o No se rechaza H_0 al 5%

Inferencia Global: Test F

Hipótesis global:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0 \quad \text{vs} \quad H_1: \text{Al menos un } \beta_j \neq 0$$

Estadístico F:

$$F = \frac{{\rm SSR}/p}{{\rm SSE}/(n-p-1)} = \frac{R^2/p}{(1-R^2)/(n-p-1)} \sim F_{p,n-p-1}$$

Interpretación:

- ullet Rechazar H_0 : El modelo es globalmente significativo
- ullet No rechazar H_0 : El modelo no explica variabilidad significativa

Relación con \mathbb{R}^2 : El test F evalúa si \mathbb{R}^2 es significativamente diferente de cero

Ejemplo: Inferencia en el Modelo de Viviendas


```
Call:
lm(formula = precio ~ superficie + habitaciones + antiguedad +
   distancia centro + garaje, data = viviendas)
Residuals:
  Min
          10 Median
                      30
                            Max
-38847 -11074
               867
                     9898
                          38486
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
               53750.97
                          6666.71
                                   8.063 7.53e-14 ***
superficie
                1171.78
                            47.28 24.783 < 2e-16 ***
habitaciones
               15072.31
                          1303.42 11.564 < 2e-16 ***
antiguedad
                -744.59
                            75.42 -9.872 < 2e-16 ***
garajeSí
               25829.43
                          2349.44 10.994
                                         < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15950 on 194 degrees of freedom
Multiple R-squared: 0.9094.
                             Adjusted R-squared: 0.9071
F-statistic: 389.4 on 5 and 194 DF. p-value: < 2.2e-16
```

Curso 2025-2026

Predicción con el Modelo Múltiple

Predicción puntual: Para un nuevo vector \mathbf{x}_0 :

$$\hat{y}_0 = \mathbf{x}_0^T \hat{\boldsymbol{\beta}}$$

Dos tipos de intervalos:

Intervalo de Confianza:

- ullet Para la **respuesta media** $E[Y|\mathbf{x}_0]$
- Incertidumbre en la estimación
- Más estrecho

Intervalo de Predicción:

- ullet Para una **observación individual** Y_0
- Incertidumbre + variabilidad natural
- Más amplio

Fórmulas: Ambos dependen de $\hat{\sigma}^2$ y de la matriz $(\mathbf{X}^T\mathbf{X})^{-1}$

Intervalos de Confianza y Predicción

Intervalo de confianza para la respuesta media:

$$\hat{y}_0 \pm t_{\alpha/2,n-p-1} \cdot \hat{\sigma} \sqrt{\mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0}$$

Intervalo de predicción para una observación individual:

$$\hat{y}_0 \pm t_{\alpha/2,n-p-1} \cdot \hat{\sigma} \sqrt{1 + \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0}$$

Diferencia clave: El +1 en el intervalo de predicción refleja la variabilidad adicional de una observación individual

Amplitud: Intervalo de predicción > Intervalo de confianza

Diagnóstico del Modelo Múltiple

Una vez ajustado el modelo, es **fundamental realizar un diagnóstico exhaustivo** para verificar que los supuestos se cumplen.

Base del diagnóstico: Análisis de los residuos - nuestra ventana a los errores teóricos no observables

Supuestos a verificar:

- 1. Normalidad
 - Gráfico Q-Q de residuos
 - Test de Shapiro-Wilk
- 2. Independencia
 - Residuos vs tiempo
 - Test de Durbin-Watson

3. Homocedasticidad

- Gráfico Scale-Location
- Test de Breusch-Pagan
- 4. Linealidad
 - Residuos vs valores ajustados
 - **Gráficos CPR** (específicos de múltiple)

Gráficos de Componente más Residuo

Problema: El gráfico residuos vs ajustados puede ocultar una relación no lineal con **una** variable específica

Solución: Gráficos CPR para cada predictor X_j :

$$\mbox{Residuo Parcial} = e_i + \hat{\beta}_j x_{ij} \quad \mbox{vs.} \quad x_{ij}$$

Interpretación:

- ullet **Línea sólida**: Relación lineal esperada (pendiente $= \hat{eta}_j$)
- Línea punteada: Suavizado no paramétrico
- Coincidencia: Linealidad adecuada
- **Divergencia**: Posible no-linealidad \rightarrow necesita transformación

Ventaja: Permite detectar no-linealidades específicas de cada variable

Ejemplo: Diagnóstico con Gráficos CPR

Interpretación de los Gráficos CPR

¿Qué observamos en las 5 variables?

Superficie y Habitaciones:

- Líneas sólida y punteada coinciden
- Conclusión: Relación lineal adecuada

Garaje:

- Separación clara entre grupos (No/Sí)
- Conclusión: Efecto categórico apropiado

Antigüedad y Distancia:

- Líneas coinciden bien
- Conclusión: Linealidad confirmada

Interpretación general:

- Relaciones lineales apropiadas
- No se necesitan transformaciones

Clave: Si las líneas divergen significativamente \rightarrow considerar transformaciones

Multicolinealidad

¿Qué es? Correlación alta entre variables predictoras

Consecuencias:

- 1. Varianza inflada: Errores estándar muy grandes
- 2. Inestabilidad: Pequeños cambios en datos \rightarrow grandes cambios en coeficientes
- Contradicciones: Modelo globalmente significativo pero ningún predictor individual significativo

Nota importante: La multicolinealidad **NO viola** los supuestos de Gauss-Markov, pero **arruina** la interpretación práctica

Detección:

- Matriz de correlaciones: Correlaciones > 0.8 son señal de alerta
- VIF: Herramienta definitiva de diagnóstico

Factor de Inflación de la Varianza

Proceso de cálculo del VIF para X_j :

- 1. Regresar X_j sobre todas las demás variables predictoras
- 2. Obtener el R_j^2 de este modelo auxiliar
- 3. Calcular:

$$VIF_j = \frac{1}{1 - R_j^2}$$

Interpretación: Factor por el cual se infla la varianza de \hat{eta}_j debido a multicolinealidad

Reglas prácticas:

- **VIF** = 1: Ausencia de colinealidad (ideal)
- VIF > 5: Valores preocupantes que requieren atención
- ullet VIF > 10: Multicolinealidad seria que debe ser tratada

Ejemplo: Diagnóstico de Multicolinealidad

Caso 1: Sin problemas de multicolinealidad

superficie habitaciones antiguedad 1.40 1.40 1.01

distancia_centro garaje
1.01 1.01

Caso 2: Con multicolinealidad problemática

superficie_sim habitaciones_sim metros_cuadrados 86.4 8.5 81.2

Correlación superficie-metros_cuadrados: 0.994

Soluciones a la Multicolinealidad

La estrategia depende del objetivo del análisis:

1. No hacer nada

- Si el objetivo es **predicción**
- Si variables colineales no son de interés

2. Eliminar variables

- Quitar la menos relevante teóricamente
- Mantener la más correlacionada con Y

3. Combinar variables

- Crear índices compuestos
- Análisis de Componentes Principales

4. Métodos alternativos

- Ridge regression: Reduce varianza añadiendo sesgo
- Lasso/Elastic Net: Regresión penalizada

5. Aumentar muestra

- Más datos pueden reducir correlaciones
- No siempre factible

Observaciones Influyentes en Regresión Múltiple

Conceptos básicos (como en regresión simple):

• Outlier: Residuo grande

• Leverage: Valor atípico en predictores

• Influencia: Impacto en el modelo

Herramientas específicas de regresión múltiple:

DFBETAS: Influencia sobre coeficientes individuales

$$\mathsf{DFBETA}_{j,i} = \frac{\hat{\beta}_j - \hat{\beta}_{j(-i)}}{\mathsf{se}(\hat{\beta}_{j(-i)})}$$

Criterio: $|extDFBETA_{j,i}| > \frac{2}{\sqrt{n}}$ es problemático

Ventaja: Permite identificar qué observaciones afectan a qué coeficientes específicos

Gráficos de Regresión Parcial

Objetivo: Visualizar la relación entre Y y X_j después de eliminar el efecto lineal de todos los demás predictores

Construcción:

- 1. Residuos de Y regresado sobre todos los predictores excepto X_j : $e_{Y\mid X_{-j}}$
- 2. Residuos de X_j regresado sobre todos los demás predictores: $e_{X_j\mid X_{-j}}$
- 3. Graficar: $e_{Y\mid X_{-j}}$ vs $e_{X_j\mid X_{-j}}$

Propiedad mágica: La pendiente de la línea ajustada es exactamente \hat{eta}_j

Utilidades:

- Visualizar magnitud y significancia del efecto "ajustado"
- Detectar no-linealidades en relaciones parciales
- Identificar observaciones influyentes para coeficientes específicos

Ejemplo: Gráficos de Regresión Parcial

Interpretación de los Gráficos de Regresión Parcial

¿Qué vemos en cada gráfico?

- ullet Eje X: Residuos de X_j vs. todos los demás predictores
- ullet Eje ullet: Residuos de Y vs. todos los demás predictores (excepto X_j)
- ullet Pendiente: Es exactamente el coeficiente \hat{eta}_j del modelo múltiple

Interpretación por variable:

- Superficie: Relación lineal clara, pendiente positiva
- Habitaciones: Relación positiva, algunos puntos influyentes
- Antigüedad: Relación negativa evidente
- Distancia: Relación negativa clara
- Garaje: Separación clara entre grupos (No/Sí)

Resumen y Conceptos Clave

La regresión múltiple permite:

- 1. Efectos parciales: Aislar el impacto de cada variable predictora
- 2. Control de confusores: Reducir sesgos por variables omitidas
- 3. Mejores predicciones: Incorporar múltiples fuentes de información
- 4. Relaciones complejas: Modelar fenómenos multifactoriales

Aspectos críticos:

- Interpretación condicional: Los coeficientes son efectos parciales (ceteris paribus)
- Notación matricial: Fundamental para la comprensión y computación
- Supuestos: Base para las propiedades de los estimadores
- R^2 ajustado: Mejor que R^2 para comparar modelos
- Inferencia: Tests individuales (t) y global (F)

Próximo paso: Diagnóstico del modelo y tratamiento de problemas específicos

Ingeniería de Características

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

La Ingeniería de Características como Arte y Ciencia

La **ingeniería de características** es el proceso fundamental que transforma y crea variables para maximizar la capacidad predictiva y la interpretabilidad de los modelos.

El problema:

- Los datos raramente están en forma óptima
- Relaciones no lineales ocultas
- Variables categóricas sin procesar
- Efectos de interacción ignorados

La solución:

- Transformaciones matemáticas precisas
- Codificación inteligente de categorías
- Creación de interacciones significativas
- Combinaciones y ratios informativos

Principio clave: "Los datos y la preparación de características determinan el límite superior del rendimiento; los modelos solo se aproximan a ese límite" - $Andrew\ Ng$

Objetivos de Aprendizaje

- 1. Identificar cuándo aplicar transformaciones específicas según el problema detectado
- 2. Aplicar transformaciones clásicas y avanzadas (logarítmica, Box-Cox, Yeo-Johnson) apropiadamente
- 3. Interpretar modelos transformados comprendiendo cómo cambian los coeficientes
- Codificar variables categóricas usando ordinal encoding y one-hot encoding según su naturaleza
- 5. Crear e interpretar interacciones entre variables continuas, categóricas y mixtas
- **6. Aplicar ingeniería avanzada** mediante combinaciones, ratios y transformaciones compuestas

Diagnóstico: ¿Cuándo Transformar?

- **Principio Clave:** Diagnosticar antes de transformar.
- Riesgos de una Mala Práctica:
 - **Sobreajuste:** Se pierde capacidad de generalización.
 - Pérdida de Interpretabilidad: Se aplican transformaciones sin base teórica.
 - Violación de Supuestos: Solucionar un problema creando otro.
 - Sesgo de Selección: Elegir por "mejor resultado" sin justificación.

Regla de oro: No transformes sin un diagnóstico previo. Cada cambio debe estar justificado.

El Enfoque Metodológico

- Clave: Proceso sistemático basado en evidencia, no solo en métricas de ajuste (como el R²).
- Principios de Actuación:
 - 1. Diagnóstico Previo: Análisis visual y estadístico.
 - 2. Justificación Teórica: Base conceptual para cada transformación.
 - **3. Evaluación Integral:** Medir ajuste, interpretabilidad y robustez.
 - 4. Validación Posterior: Verificar la solución sin crear nuevos problemas.
 - **5. Parsimonia:** Preferir siempre la solución más simple.

Escalado y Normalización

¿Por qué escalar?

- Comparabilidad: Coeficientes en misma escala
- **Regularización**: Penalización justa en Ridge/Lasso
- Convergencia: Optimización más eficiente
- Interpretación: Efectos estandarizados

Problema común:

Variables con escalas muy diferentes pueden dominar el modelo y hacer que los coeficientes no sean comparables entre sí.

Estandarización (Z-Score)

$$X_{std} = \frac{X - \bar{X}}{\sigma_X}$$

Es la técnica más común. Transforma los datos para que tengan una \mathbf{media} \mathbf{de} $\mathbf{0}$ y una $\mathbf{desviación}$ $\mathbf{estándar}$ \mathbf{de} $\mathbf{1}$, pero $\mathbf{preserva}$ $\mathbf{1a}$ \mathbf{forma} \mathbf{de} $\mathbf{1a}$ $\mathbf{1a}$

Propiedades Clave

- Preserva la forma: Una distribución normal seguirá siendo normal.
- Comparación fácil: Permite evaluar el peso de variables con distintas unidades.
- Robustez moderada: Es menos sensible a outliers que la normalización Min-Max.

Aplicaciones Comunes

- En regresión, para comparar la importancia de los coeficientes.
- Como paso previo a PCA o análisis discriminante.
- Cuando las variables tienen distribuciones aproximadamente simétricas.

Normalización Min-Max

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Esta técnica escala los datos a un rango fijo, comúnmente [0, 1], donde 0 es el mínimo valor observado y 1 es el máximo.

Cuándo Usarlo:

- Algoritmos que requieren entradas en un rango específico, como las redes neuronales.
- o Cuando la interpretación en términos de mínimo y máximo es útil para el problema.
- En datos con distribuciones uniformes o sin *outliers* extremos.

Limitación Principal:

 Es muy sensible a outliers. Un solo valor extremo puede comprimir el resto de los datos en un rango muy pequeño, perdiendo información sobre su variabilidad.

Escalado Robusto

$$X_{robust} = \frac{X - \mathsf{mediana}(X)}{\mathsf{IQR}(X)}$$

Diseñado específicamente para datos con *outliers*. Utiliza la **mediana** y el **rango intercuartílico** (IQR), que son medidas estadísticas no afectadas por valores extremos.

Principio Clave:

 Al no usar la media ni la desviación estándar, los outliers no distorsionan el resultado del escalado.

Cuándo Usarlo:

- Es la opción preferida cuando se sabe o se sospecha que los datos contienen outliers significativos.
- Cuando se quiere preservar la estructura de la mayor parte de los datos sin la influencia de los valores extremos.

Comparación de Métodos de Escalado

Observación: El escalado robusto mantiene mejor la estructura central ante outliers

Catálogo de Transformaciones según el Propósito

Una vez realizado el diagnóstico, debemos seleccionar la transformación más apropiada. La clave no está en *qué* transformación aplicar, sino en entender *por qué* esa transformación específica resuelve nuestro problema.

Exploraremos tres familias de transformaciones:

- 1. Para linearizar relaciones no lineales.
- Para estabilizar la varianza (heterocedasticidad).
- 3. Para normalizar residuos y controlar *outliers*.

Transformación Logarítmica (Linearizar)

Es la transformación más versátil, ideal para linearizar relaciones de crecimiento exponencial o donde los efectos son multiplicativos.

Cuándo Usarla

- Relaciones exponenciales o multiplicativas.
- Procesos de crecimiento proporcional.
- Variables con rendimientos decrecientes (ingresos, precios).
- Casos Típicos: Economía, biología, finanzas.

Diagnóstico y Aplicación

- Diagnóstico: Curva cóncava que se aplana o varianza que aumenta con Y.
- Aplicación: log(Y) ~ X, Y ~ log(X) o log(Y) ~ log(X).
- Interpretación: Los coeficientes se leen como cambios porcentuales o elasticidades.

Transformación de Potencia (Linealizar)

Fundamental para relaciones curvilíneas que siguen una ley de potencia del tipo Y = a * X^b.

- Diagnóstico: La relación entre las variables se vuelve lineal al graficarla en una escala log-log.
- Aplicación: Se toman logaritmos en ambas variables para linearizar el modelo: log(Y)
 = log(a) + b * log(X).
- Interpretación: El exponente b representa la elasticidad o el exponente de escalamiento.
- **Ejemplos Clásicos:** Ley de Kleiber (relación masa-metabolismo), economía urbana (población-PIB).

Transformación Raíz Cuadrada (Estabilizar Varianza)

Especialmente útil para datos de conteo (típicamente de una distribución de Poisson), donde la varianza es proporcional a la media.

Cuándo Aplicarla

- Conteos de eventos: número de defectos, llamadas, ventas por período.
- Datos de frecuencia: visitas, clics, transacciones.
- Para conteos con muchos ceros puede requerir sqrt(Y + 0.5).

Diagnóstico y Limitaciones

- Diagnóstico: Gráfico de residuos en forma de embudo donde la dispersión crece linealmente con la media.
- Limitaciones: La interpretación es menos directa y solo es apropiada para valores no negativos.

Transformación Logarítmica (Estabilizar Varianza)

Es la solución natural cuando la **varianza es proporcional al cuadrado de la media**, lo que se conoce como heterocedasticidad multiplicativa.

Cuándo Aplicarla:

- Variables monetarias (ingresos, precios, costos), donde el error relativo tiende a ser constante.
- Porcentajes de crecimiento o procesos donde los errores se acumulan multiplicativamente.

La Gran Ventaja (Efectos Múltiples):

 Con frecuencia, esta única transformación resuelve varios problemas a la vez: lineariza la relación, estabiliza la varianza, normaliza la distribución y reduce el impacto de outliers.

Transformación Inversa (Controlar Outliers)

Útil para relaciones **hiperbólicas** (del tipo Y = 1/X) y para distribuciones con colas muy pesadas a la derecha.

Cuándo Usarla

- Relaciones que se aproximan a una asíntota horizontal.
- Tasas de decaimiento o relaciones dosis-respuesta en farmacología.
- Tiempo hasta un evento.

Efecto y Precauciones

- Efecto en Outliers: Comprime fuertemente los valores grandes y expande los pequeños.
- Precaución: Amplifica errores en valores pequeños y requiere tratamiento especial para datos cercanos a cero.
- Solo aplicable a valores no nulos.

Transformación de Box-Cox: La Teoría

Es un método que **optimiza automáticamente** el parámetro de transformación λ (lambda) para maximizar la normalidad y homocedasticidad de los residuos. En lugar de elegir manualmente, Box-Cox encuentra el valor λ que mejor normaliza los datos.

Definición Matemática:

$$Y(\lambda) = \begin{cases} \frac{Y^{\lambda} - 1}{\lambda}, & \lambda \neq 0\\ \log(Y), & \lambda = 0 \end{cases}$$

Casos Especiales de λ :

- $\lambda = 1$: Sin transformación (identidad).
- $\lambda = 0.5$: Transformación de raíz cuadrada.
- $\lambda = 0$: Transformación logarítmica.
- $\lambda = -1$: Transformación inversa.

Box-Cox: Propósito y Limitaciones

Propósito y Ventajas

- Encuentra la transformación óptima sin necesidad de prueba y error.
- Maximiza la verosimilitud del modelo, mejorando simultáneamente la normalidad y la homocedasticidad.
- Proporciona un método objetivo para seleccionar la transformación más apropiada.

Limitaciones Importantes

- Requiere que los datos (Y) sean estrictamente positivos. Esta es su principal restricción.
- La **interpretación** es compleja si λ no es un valor simple (0, 0.5, 1).
- El λ óptimo depende del modelo específico, por lo que puede cambiar si se modifican los predictores.

Ejemplo Práctico: Aplicando Box-Cox

A continuación, se visualiza cómo la transformación Box-Cox corrige la asimetría de una distribución original.

La Extensión: Transformación de Yeo-Johnson

Fue desarrollada para superar la principal limitación de Box-Cox: acepta cualquier valor real (positivo, negativo o cero).

Cuándo Usar Box-Cox

- Cuando los datos son estrictamente positivos.
- Si se busca comparabilidad con literatura existente que la utilice.

Cuándo Usar Yeo-Johnson

- Cuando los datos incluyen valores negativos o cero.
- Si se necesita mayor flexibilidad y no hay restricciones de dominio.

Ejemplo Práctico: Yeo-Johnson con Datos Negativos

Este ejemplo muestra cómo Yeo-Johnson maneja un conjunto de datos que incluye valores negativos, algo que Box-Cox no podría hacer.

Variables Categóricas: Principios de Codificación

La mayoría de los algoritmos estadísticos requieren entradas numéricas. El objetivo de la codificación es transformar las categorías de texto en números, **preservando su información semántica sin introducir supuestos erróneos**.

Criterios para Seleccionar el Método de Codificación:

- Naturaleza de la variable: ¿Existe un orden inherente entre las categorías? Esta es la pregunta más importante.
 - Nominal: Sin orden (ej. color, país).
 - Ordinal: Con orden (ej. nivel educativo, satisfacción).
- **Número de categorías:** Variables con muchas categorías ("alta cardinalidad") pueden requerir técnicas especiales.
- Interpretabilidad del modelo: ¿Qué método facilita una explicación clara de los resultados?

One-Hot Encoding (Variables Nominales)

Transforma una variable con k categorías sin orden (ej. color, región) en k-1 variables binarias (0/1), también conocidas como variables dummy.

La "Dummy Variable Trap":

- **Problema:** Usar k columnas (una para cada categoría) crea colinealidad perfecta en modelos lineales, ya que una columna es una combinación lineal de las otras.
- Solución: Siempre se omite una categoría, que se convierte en la categoría de referencia del modelo.

Ventajas

- No asume un orden entre categorías.
- Cada nueva variable tiene un coeficiente directamente interpretable (la diferencia con la categoría de referencia).

Desventajas

- Aumenta mucho la dimensionalidad si hay muchas categorías.
- Genera matrices de datos con muchos ceros (*dispersas*).

Ejemplo Práctico: One-Hot Encoding

Imaginemos una variable Region con 4 categorías. Al codificarla, elegimos "Norte" como categoría de referencia.

Resultado:

- Se crean 3 variables binarias (k-1)
- Cada observación tiene un 1 en su región correspondiente
- "Norte" no aparece (categoría de referencia)

Interpretación:

El coeficiente de Region_Sur se interpretaría como la diferencia promedio en la variable respuesta al estar en la región "Sur" en comparación con la región "Norte".

Codificación Ordinal (Variables Ordinales)

Asigna números enteros consecutivos a las categorías, **respetando su orden o jerarquía** natural.

Ejemplo Práctico:

- Variable: Nivel_Satisfaccion con categorías ["Bajo", "Medio", "Alto"].
- Codificación: Se asignan los valores [1, 2, 3].

Ventajas

- Preserva la información jerárquica de la variable.
- Es muy eficiente: crea una sola columna, sin importar el número de categorías.

Desventajas

- Supone que la "distancia" entre niveles es uniforme (asume que el cambio de "Bajo" a "Medio" es igual que de "Medio" a "Alto").
- Puede imponer un orden artificial si se aplica por error a una variable nominal.

Comparación: Ordinal vs. One-Hot Encoding

La elección incorrecta del método puede llevar a modelos con menor rendimiento e interpretaciones erróneas.

Usar Codificación Ordinal

- Cuándo: Para variables con un orden natural y significativo (ej. nivel educativo, satisfacción del cliente, grado de severidad).
- Resultado: Una sola columna numérica (1, 2, 3, ...).
- Riesgo Principal: Asumir que los intervalos entre categorías son iguales.

Usar One-Hot Encoding

- Cuándo: Para variables nominales, sin un orden inherente (ej. color, género, país).
- **Resultado:** k-1 columnas binarias (0 o 1).
- Riesgo Principal: Aumento excesivo del número de variables si la cardinalidad es alta.

¿Qué es una Interacción?

Mientras los efectos principales miden el impacto promedio de una variable, las **interacciones** revelan cómo el efecto de una variable **cambia según el nivel de otra**.

Modelo con Interacción:

$$Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_1\times X_2+\varepsilon$$

Interpretación de β_3 :

- Si $\beta_3 > 0$: Los efectos se **potencian** (sinergia).
- Si β_3 < 0: Los efectos se **atenúan** (compensación).

Ejemplo Visual: Interacción Experiencia × Género

Un ejemplo clásico es cómo la relación entre experiencia y salario no es la misma para todos los grupos.

¿Qué observamos?

- Pendientes diferentes: Cada género tiene una relación distinta entre experiencia y salario
- Interacción presente: El efecto de la experiencia depende del género

Interpretación:

La interacción permite que la pendiente de la experiencia sea diferente para cada género, revelando patrones que el análisis por separado no detectaría.

Tipos de Interacciones: Continua × Continua

Este tipo de interacción ocurre cuando el efecto de una variable continua sobre el resultado depende del valor de otra variable continua.

- Concepto: El efecto de una variable se amplifica o atenúa a medida que otra variable cambia.
- Modelo: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 \times X_2$. El coeficiente β_3 captura la interacción.

Sintaxis en R:

```
modelo <- lm(ventas ~ precio * publicidad, data = datos)
# Interpretación: El efecto del precio sobre las ventas varía
# según el nivel de inversión en publicidad.
```

Tipos de Interacciones: Categórica × Categórica

Ocurre cuando el efecto de pertenecer a una categoría depende de la pertenencia a otra categoría.

- Concepto: Existe un efecto específico para una combinación de categorías que no se puede explicar sumando los efectos individuales.
- **Ejemplo:** El efecto del género en el salario puede ser diferente en cada departamento de una empresa.

Sintaxis en R:

```
modelo <- lm(salario ~ genero * departamento, data = datos)
# Interpretación: La brecha salarial de género es diferente
# en cada departamento.
```

Tipos de Interacciones: Continua × Categórica (Mixta)

Este es uno de los tipos más comunes e intuitivos. Permite que la relación entre una variable continua y el resultado sea diferente para distintos grupos.

- Concepto: La pendiente de la variable continua es diferente para cada nivel de la variable categórica.
- **Ejemplo:** La relación entre los años de experiencia y el salario puede tener una pendiente más pronunciada para un grupo que para otro.

Sintaxis en R:

```
modelo <- lm(rendimiento ~ horas_estudio * metodo, data = datos)

# Interpretación: La efectividad de las horas de estudio

# (la pendiente)

# sobre el rendimiento varía según el método de estudio

# utilizado.
```

Caso Práctico: Visualizando una Interacción Categórica

Los *interaction plots* son la mejor herramienta para entender interacciones entre variables categóricas. Las líneas no paralelas son una señal visual clara de una posible interacción.

¿Qué buscamos?

- Líneas paralelas: Sin interacción
- Líneas no paralelas: Interacción presente
- Líneas que se cruzan: Interacción fuerte

Interpretación:

La Droga B es especialmente efectiva en el grupo de "Mayor", un efecto que no se podría ver analizando las variables por separado.

Detección y Estrategia de Modelado

No debemos buscar interacciones al azar. El enfoque correcto combina la teoría con la evidencia de los datos.

¿Cómo Detectarlas?

- Justificación Teórica: El conocimiento del dominio es la guía principal para saber dónde buscar.
- Exploración Visual: Usar gráficos de dispersión por grupos o interaction plots.
- Tests Estadísticos: Utilizar el Test F para comparar formalmente un modelo con y sin la interacción.

El Principio de Jerarquía

- Regla de Oro: Si incluyes una interacción
 A × B, siempre debes incluir los efectos
 principales A y B por separado.
- Justificación: Preserva la interpretabilidad del modelo y evita sesgos en los coeficientes.

Riesgos y Consideraciones Prácticas

Las interacciones son poderosas, pero su uso requiere cuidado para no complicar el modelo innecesariamente.

Riesgo de Complejidad:

- El número de interacciones posibles crece exponencialmente.
- **Recomendación:** Limitar el modelo a las 2 o 3 interacciones más importantes y con justificación teórica.

Riesgo de Multicolinealidad:

- Las interacciones pueden hacer que los coeficientes sean inestables.
- Mitigación: Centrar las variables continuas antes de crear el término de interacción.

Interpretación con Transformaciones:

• Advertencia: Una interacción en una escala log no significa lo mismo que en una escala lineal y requiere una interpretación mucho más cuidadosa.

Ingeniería Avanzada

Consiste en crear nuevas variables mediante **combinaciones**, **ratios y transformaciones compuestas**. El objetivo es capturar relaciones complejas que no son evidentes en las variables originales.

A menudo, las variables individuales contienen información parcial. Al combinarlas de forma inteligente, podemos revelar **patrones predictivos mucho más potentes**.

Técnicas Clave que Exploraremos:

- **Combinaciones:** Creación de nuevas variables a partir de sumas o productos de las existentes.
- Ratios y Proporciones: Normalización de variables para revelar relaciones estructurales.
- Manejo de Colinealidad: Estrategias para condensar información de predictores correlacionados.

Creación de Features por Combinación

Combinaciones Lineales

- Concepto: Sumas ponderadas de variables que miden aspectos de un mismo fenómeno.
- Ejemplo (Índice Compuesto): Un índice de riesgo cardiovascular. Índice_Riesgo = 0.4*Presión + 0.3*Colesterol + 0.3*IMC
- Aplicación: Crear un score único a partir de múltiples indicadores para capturar un constructo multidimensional.

Combinaciones No Lineales

- Concepto: Productos, cocientes o funciones complejas que capturan sinergias o efectos multiplicativos.
- Ejemplo (Producto de Eficiencia):
 Rendimiento = Capacidad ×
 Utilización × Calidad
- Aplicación: Modelar efectos donde el resultado depende de la combinación simultánea de varios factores.

El Poder de los Ratios

Los ratios son muy potentes porque **normalizan automáticamente las diferencias de escala** y revelan relaciones estructurales que las variables absolutas ocultan.

Ventajas Principales:

- Normalización Automática: Permiten comparar entidades de diferentes tamaños (ej. una startup vs. una multinacional).
- Interpretación Intuitiva: Tienen significados claros y directos (ej. Deuda / Patrimonio).
- Robustez: Suelen ser menos sensibles a valores atípicos (outliers).

Ejemplo Práctico: Retorno de Inversión (ROI)

Un ratio clásico en negocio es el ROI, que mide la eficiencia de una inversión normalizando el beneficio obtenido por el coste de la misma.

Manejo de Colinealidad con Features

El Problema: Simplemente eliminar variables correlacionadas es una mala práctica, ya que se pierde información predictiva valiosa.

La Solución: Condensar la información redundante en nuevas variables, preservando la información única de cada predictor original.

Estrategias Principales

- Componentes Principales (PCA): Extrae la máxima varianza común en componentes ortogonales. Su principal desventaja es que pierde interpretabilidad directa.
- Ratios Informativos: Capturan la relación estructural entre dos variables (ej. Deuda / Patrimonio). Preservan la interpretabilidad económica.
- **Índices Ponderados:** Crean un *score* único a partir de varias variables, usando pesos teóricos o empíricos.

El Trade-Off: Complejidad vs. Interpretabilidad

A medida que aumenta la complejidad de la técnica, generalmente se gana poder predictivo pero se pierde facilidad de interpretación.

Técnicas Más Simples

- Estandarización: La pérdida de interpretación es mínima (solo cambia la escala).
- Transformación Logarítmica: La pérdida es baja, ya que se puede interpretar como cambios porcentuales.

Técnicas Más Potentes

- **Box-Cox (con** λ **complejo)**: La escala transformada no es intuitiva, dificultando la interpretación.
- PCA (Componentes Principales): La pérdida es muy alta, ya que los componentes son constructos abstractos.
- Interacciones Múltiples: La interpretación se complica al haber efectos condicionales.
- Si buscas EXPLICAR → Prioriza la Interpretabilidad.
- Si buscas PREDECIR → Prioriza el Rendimiento.

Errores Comunes a Evitar

1. Transformar sin Diagnóstico Previo

Aplicar log() "por si acaso" en lugar de identificar un problema específico que lo justifique.

2. Ignorar el Dominio del Problema

Usar transformaciones que no tienen sentido teórico (ej. log(edad)).

3. Caer en la "Dummy Variable Trap"

Incluir k columnas para k categorías en lugar de k−1 (categoría de referencia).

4. Usar Interacciones sin Efectos Principales

Modelar Y ~ A:B en lugar de la forma correcta y jerárquica Y ~ A + B + A:B.

5. Sobreingeniería (*Over-engineering*)

o Crear cientos de features automáticamente sin una justificación clara y validada para cada uno.

Flujo de Trabajo Recomendado

Un proceso sistemático garantiza resultados robustos y reproducibles.

1. Análisis Exploratorio

Visualizar distribuciones, patrones y outliers.

2. Diagnóstico de Problemas

• Buscar no linealidad, heterocedasticidad, asimetría, etc., en los datos.

3. Selección de Transformaciones

• Elegir la técnica adecuada para el problema diagnosticado.

4. Aplicación y Validación

Transformar las variables y verificar si el problema original se ha resuelto.

5. Comparación de Modelos

• Usar métricas (R², RMSE, AIC) y validación cruzada para evaluar la mejora.

6. Interpretación Final

o Traducir los resultados del modelo final al contexto del negocio o la investigación.

Mejores Prácticas en Feature Engineering

1. Documentación Rigurosa

• Registrar cada transformación y su justificación para mantener la trazabilidad.

2. Validación en Datos Nuevos

 Guardar los parámetros de transformación del set de entrenamiento (ej. media, sd, lambda) y aplicarlos al de test.

3. Evitar Data Leakage

 Calcular todos los parámetros de las transformaciones únicamente con los datos de entrenamiento.

4. Considerar el Contexto

Asegurarse de que las nuevas variables creadas son interpretables.

5. Parsimonia

 Preferir siempre el modelo más simple que funcione adecuadamente. No añadir complejidad por mejoras marginales.

Resumen y Conceptos Clave

¿Por Qué es Fundamental?

- Resuelve problemas específicos de los datos (no linealidad, etc.).
- **Mejora el rendimiento** del modelo significativamente.
- Revela relaciones ocultas mediante interacciones y combinaciones.
- Adapta los datos a los requisitos de los algoritmos.

Principios Clave

- Diagnóstico antes que transformación.
- Justificación teórica o empírica.
- Validación rigurosa.
- Balance entre complejidad e interpretabilidad.
- Documentación exhaustiva.

Próximo tema: Selección de variables, regularización y validación para manejar la complejidad agregada.

Selección de Variables, Regularización y Validación

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

El Problema de la Selección de Variables

En modelos de regresión con gran número de variables predictoras enfrentamos el desafío crítico de identificar qué variables son realmente relevantes

Los problemas principales:

- Inclusión de demasiadas variables → sobreajuste, pérdida de interpretabilidad, complejidad innecesaria
- Exclusión de variables importantes \rightarrow modelos subóptimos
- Con p variables explicativas: 2^p modelos diferentes posibles
- \bullet Exploración exhaustiva computacionalmente inviable cuando p es grande

El objetivo del tema: Seleccionar el subconjunto óptimo de variables predictoras y validar la calidad del modelo resultante

Enfoques Principales del Tema

Seis enfoques sistemáticos:

- 1. Filtrado basado en información básica
 - Eliminación preliminar de variables irrelevantes
 - Criterios: variabilidad, correlación, VIF
- 2. Criterios de bondad de ajuste
 - o Métricas para comparar modelos: AIC, BIC, Cp de Mallows
- 3. Métodos de selección exhaustiva
 - Evaluación sistemática: Best Subset Selection
- 4. Métodos automáticos paso a paso
 - Selección iterativa: forward, backward, stepwise
- 5. Métodos basados en regularización
 - Penalización de complejidad: Ridge, Lasso, Elastic Net
- 6. Validación del modelo
 - División train/test y validación cruzada

Proceso Completo de Construcción del Modelo

Etapas del proceso sistemático:

- 1. Definición del problema y variables de interés
- 2. Recogida de datos (fiabilidad, validez, ética, control de sesgos)
- 3. Análisis Exploratorio de Datos (EDA)
- 4. Ajuste del modelo inicial
- 5. Evaluación del modelo (R², ANOVA, significancia)
- 6. Diagnóstico del modelo (residuos, observaciones atípicas)
- 7. Reducción de variables ← Enfoque principal del tema
- 8. Validación del modelo ← Enfoque principal del tema

Este tema se centra en las etapas 7 y 8

Tipos de Experimentos para Recogida de Datos

Clasificación según el diseño:

- Experimentos controlados: Manipulación deliberada de variables independientes
- Estudios observacionales exploratorios: Sin intervención, registro natural
 - Transversales (un momento temporal)
 - Longitudinales (seguimiento temporal)
- Estudios observacionales confirmatorios: Testear hipótesis específicas
- Encuestas y cuestionarios: Datos estructurados sobre actitudes/comportamientos
- Experimentos naturales: Fenómenos naturales como intervención
- Estudios de simulación: Modelos matemáticos/computacionales
- Datos secundarios: Bases de datos existentes

Filtrado Basado en Información Básica

Objetivo: Filtrado preliminar antes de métodos sofisticados

Criterios de eliminación básicos:

1. Variabilidad de las variables predictoras

$$\operatorname{Var}(X_j) = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2 < \epsilon$$

(típicamente $\epsilon=0.01$)

2. Correlación con la variable respuesta

$$r_{X_j,Y} = \frac{\sum_{i=1}^n (x_{ij} - \bar{x}_j)(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2 \sum_{i=1}^n (y_i - \bar{y})^2}}$$

Umbral mínimo: $|r_{X,Y}| > \delta$ (ej: $\delta = 0.1$)

Filtrado por Multicolinealidad

Detectar y eliminar variables redundantes:

- 3. Multicolinealidad extrema Si $|r_{X_i,X_k}|>0.95 o$ eliminar una variable
- 4. Factor de Inflación de la Varianza (VIF)

$$VIF_j = \frac{1}{1 - R_j^2}$$

Valores $VIF_j > 10$ indican multicolinealidad problemática

Estrategia: Eliminar variables con mayor VIF iterativamente hasta que todos los VIF sean aceptables

Visualización: Matriz de Correlación

Visualización: Diagnóstico de Multicolinealidad

Criterios de Bondad de Ajuste

Problema: Equilibrar capacidad explicativa vs complejidad del modelo

Subajuste vs Sobreajuste: - Muy pocas variables \rightarrow subajuste (underfitting) - Demasiadas variables \rightarrow sobreajuste (overfitting)

Tres criterios principales:

- 1. Criterio de Información de Akaike (AIC)
- 2. Criterio de Información Bayesiano (BIC)
- 3. Estadístico Cp de Mallows

Estrategia: Seleccionar el modelo que minimice el criterio elegido

Criterio de Información de Akaike (AIC)

Fundamento: Teoría de la información de Hirotugu Akaike

Objetivo: Estimar la pérdida de información del modelo

Fórmula:

$$AIC = n \ln \left(\frac{SSE}{n} \right) + 2(p+1)$$

Componentes:

- $n \ln(SSE/n)$: Bondad de ajuste (relacionado con log-verosimilitud)
- ullet 2(p+1): Penalización por complejidad (aumenta 2 unidades por parámetro)

Interpretación:

- Menor AIC = mejor modelo
- Asintóticamente eficiente
- Orientado a predicción

Criterio de Información Bayesiano (BIC)

Fundamento: Estadística bayesiana (Gideon Schwarz)

Objetivo: Encontrar el modelo más probable de ser el "verdadero"

Fórmula:

$$BIC = n \ln \left(\frac{SSE}{n} \right) + (p+1) \ln(n)$$

Diferencia clave con AIC:

- Penalización: $(p+1)\ln(n)$ en lugar de 2(p+1)
- Más restrictivo cuando n>7 (ya que $\ln(n)>2$)

Características:

- Consistencia: Si el modelo verdadero está entre candidatos, P(selección) o 1
- Orientado a explicación
- Favorece modelos más simples (parsimonia)

Estadístico Cp de Mallows

Fundamento: Error cuadrático medio de predicción

Objetivo: Modelo con bajo sesgo y baja varianza

Fórmula:

$$C_p = \frac{SSE_p}{MSE_{full}} - n + 2(p+1)$$

donde MSE_{full} es el error cuadrático medio del modelo completo

Interpretación:

- Modelo bien especificado: $C_p \approx p+1$
- ullet $C_p>p+1$: modelo sesgado (variable importante omitida)
- $C_p \leq p+1$: buen ajuste

Estrategia: Buscar modelos donde $C_p \approx p+1$, elegir el menor entre ellos

¿Cuándo Usar Cada Criterio?

Si el objetivo principal es la predicción:

- AIC es la opción preferida
- Diseñado para minimizar error de predicción
- Penalización más moderada
- Ideal en contextos de pronóstico

Si el objetivo es la explicación/inferencia:

- BIC es la elección más sólida
- Identifica el modelo más parsimonioso
- Penalización más fuerte contra sobreajuste
- Propiedad de consistencia en muestras grandes

Para análisis exploratorio:

- Cp de Mallows es especialmente valioso
- Compromiso explícito entre sesgo y varianza
- Visualización clara del "codo" de complejidad óptima

Resumen práctico:

- Predicción → AIC (menos restrictivo)
- ullet Explicación o BIC (más parsimonioso)
- Exploración → Cp de Mallows (balance visual)
- Muestras grandes → BIC preferible
- Muestras pequeñas → AIC o Cp

Visualización: Criterios de Información (AIC vs BIC)

Visualización: Selección con Cp de Mallows

Buscamos modelos donde Cp es pequeño y cercano al número de parámetros (p+1)

Métodos de Selección Exhaustiva

Best Subset Selection: Evalúa todos los subconjuntos posibles

Proceso:

- Para k = 1, 2, ..., p variables
- Construir todos los modelos posibles con k variables
- Seleccionar el mejor modelo de cada tamaño según criterio elegido

Ventajas:

- Garantiza encontrar el modelo óptimo según el criterio
- Evaluación completa de todas las combinaciones
- Estándar para comparar otros métodos

Limitaciones:

- Complejidad computacional: 2^p modelos posibles
- Impracticable para p > 15 20
- Puede seleccionar modelos sobreajustados sin validación cruzada

Métodos Automáticos Paso a Paso

Principio: Construir modelo iterativamente, añadiendo o quitando predictores uno a uno

Forward Selection:

- 1. Comenzar con modelo nulo (solo intercepto)
- 2. Añadir variable que más mejora el criterio
- 3. Repetir hasta que ninguna variable mejore significativamente
- 4. Problema: No puede eliminar variables una vez incluidas

Backward Elimination:

- 1. Comenzar con modelo completo (todas las variables)
- 2. Eliminar variable menos significativa
- 3. Repetir hasta que todas las variables sean significativas
- **4. Problema:** Requiere n > p

Métodos Automáticos Paso a Paso

Stepwise Regression:

- 1. Combina forward + backward
- 2. Puede añadir y eliminar variables
- 3. Problema: Solo encuentra óptimo local

Limitaciones importantes de métodos automáticos:

- Inestabilidad: Pequeños cambios en datos pueden alterar el modelo
- Invalidez de p-valores: Múltiples comparaciones sesgan la inferencia
- Óptimo local: No garantizan la mejor combinación
- Inflación del error tipo I: Sin corrección para comparaciones múltiples

Uso recomendado: Como herramientas exploratorias, no para inferencia final

Métodos Basados en Regularización

Principio: Introducir penalización en la función de ajuste del modelo

Objetivos:

- Controlar el sobreajuste reduciendo complejidad
- Forzar selección de subconjunto más parsimonioso
- Mejorar estabilidad y precisión del modelo

Tres métodos principales:

- Ridge Regression: Penalización $L_2 = \lambda \sum \beta_j^2$
- Lasso: Penalización $L_1 = \lambda \sum |\beta_j|$
- ullet Elastic Net: Combina L_1+L_2

Ventaja clave: Control automático del balance sesgo-varianza

Ridge Regression

Fundamento: Penalización L_2 en la estimación de coeficientes

Formulación:

$$SSE_{ridge} = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^p \beta_j^2$$

Estimación:

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = (\mathbf{X}^T\mathbf{X} + \lambda\,\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

Interpretación del parámetro λ :

- $\lambda = 0$: equivalente a regresión lineal tradicional (OLS)
- λ aumenta: coeficientes se reducen en magnitud
- λ muy grande: coeficientes se acercan a cero

Propiedades:

- Manejo de multicolinealidad
- Menor varianza en predicciones
- No realiza selección de variables (no anula coeficientes)

Regresión Lasso

Fundamento: Penalización L_1 que permite eliminación de variables

Formulación:

$$SSE_{\mathsf{lasso}} = \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^p |\beta_j|$$

Diferencia clave con Ridge:

- Ridge reduce magnitud de coeficientes
- Lasso puede eliminar variables por completo (coeficientes = 0)

Interpretación del parámetro λ :

- $\lambda = 0$: regresión lineal tradicional
- ullet λ aumenta: más coeficientes o 0
- λ muy grande: elimina demasiadas variables

Propiedades:

- Selección automática de variables
- Manejo de multicolinealidad
- Simplicidad e interpretabilidad
- Reduce sobreajuste

Elastic Net: Combinando lo Mejor de Ridge y Lasso

Fundamento: Combinación de penalizaciones Ridge (L_2) y Lasso (L_1)

Formulación:

$$SSE_{\mathsf{Elastic Net}} = \|\mathbf{y} - \mathbf{X}\,\beta\|^2 + \lambda \left[\alpha \sum_{j=1}^p |\beta_j| + (1-\alpha) \sum_{j=1}^p \beta_j^2\right]$$

Parámetro α controla la mezcla:

- $\alpha = 1 \rightarrow$ Comportamiento como Lasso
- $\alpha = 0 \rightarrow \text{Comportamiento como Ridge}$
- $0 < \alpha < 1 \rightarrow$ Combinación de ambos métodos

Ventajas principales:

- Manejo superior de multicolinealidad
- Selección de variables más estable
- Evita selección arbitraria cuando hay grupos correlacionados

Cuándo Usar Cada Método de Regularización

Ridge Regression:

- Todas las variables aportan información
- Fuerte multicolinealidad presente
- Objetivo: reducir varianza sin eliminar variables

Lasso:

- Muchas variables irrelevantes esperadas
- Selección sparse deseable
- Interpretabilidad prioritaria

Elastic Net:

- Variables correlacionadas en grupos
- Balance entre selección y estabilidad
- Rendimiento predictivo como objetivo principal

Estrategia práctica: Optimizar α mediante validación cruzada junto con λ

Selección del Parámetro de Regularización

El problema: ¿Cómo elegir el valor óptimo de lambda?

La solución: Validación cruzada

Proceso:

- 1. Definir secuencia de valores lambda candidatos
- 2. Para cada lambda, calcular error de validación cruzada
- 3. Seleccionar lambda que minimiza el error

Dos criterios principales:

- lambda_min: Valor que minimiza el error de CV
- lambda_1SE: Valor más grande cuyo error está dentro de 1 error estándar del mínimo

Regla 1-SE: Preferir modelo más simple (mayor lambda) si su error es comparable al mínimo

Estrategias de Validación: Visión General

Partición inicial (paso obligatorio):

Antes de cualquier análisis, dividir datos originales en:

- 1. Datos de modelado (80%): Para todo el proceso de construcción
- 2. Conjunto de prueba final (20%): Guardado para evaluación final

Dentro de los datos de modelado, tres estrategias principales:

- 1. División Train/Test simple
- 2. Validación cruzada k-fold
- 3. Leave-One-Out Cross-Validation (LOOCV)

Cada estrategia tiene sus ventajas e inconvenientes según el contexto del problema

División Train/Test Simple

Concepto: División única de los datos de modelado

Proceso:

- Conjunto de entrenamiento (70-80%): Ajustar el modelo
- Conjunto de test (20-30%): Evaluar rendimiento

Ventajas:

- Computacionalmente muy eficiente
- Fácil de implementar y entender
- Apropiado para datasets grandes

Desventajas:

- Alta variabilidad: Resultados dependen de la división específica
- Puede ser optimista o pesimista según qué observaciones caigan en test
- Menos datos disponibles para entrenamiento

Cuándo usar: Datasets grandes (n > 1000), recursos limitados, evaluación rápida

Validación Cruzada k-fold

Concepto: Múltiples evaluaciones para obtener estimación más estable

Proceso de k-fold CV:

- 1. Dividir datos en k particiones de tamaño similar
- **2.** Para cada partición i = 1, 2, ..., k:
 - \circ Usar partición i como conjunto de test
 - \circ Usar las k-1 particiones restantes como entrenamiento
 - Calcular métrica de error
- 3. Error de CV: $CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Error}_{i}$

Valores típicos: k = 5 o k = 10

Ventajas:

- Estimación más estable y menos sesgada
- Todos los datos se usan para entrenamiento y test
- Reduce variabilidad de la estimación

Esquema del Proceso de Validación Cruzada (k=5)

Proceso de Validación Cruzada con k=5 Folds

En cada iteración, un 'fold' se usa para test y el resto para entrenamiento

Leave-One-Out Cross-Validation (LOOCV)

Concepto: Caso extremo donde k = n (número de observaciones)

Proceso:

- Para cada observación i:
 - \circ Entrenar modelo con n-1 observaciones
 - Predecir la observación i excluida
 - Calcular error de predicción
- Error LOOCV: $CV_{(n)} = \frac{1}{n} \sum_{i=1}^n (\frac{y_i \hat{y}_i}{1 h_{ii}})^2$

Ventajas:

- Estimación prácticamente insesgada
- Determinística (no depende de divisiones aleatorias)
- Máximo uso de datos para entrenamiento

Desventajas:

- Computacionalmente costoso
- Alta varianza en la estimación

Cuándo Usar Cada Estrategia de Validación

Train/Test Split:

- Dataset grande (n > 1000)
- Recursos computacionales limitados
- Necesidad de evaluación rápida
- Primera aproximación al problema

Validación Cruzada k-fold:

- Dataset de tamaño moderado (100 < n < 1000)
- Balance entre eficiencia y precisión
- Estimación robusta del rendimiento
- Más recomendado en general

LOOCV:

- Dataset pequeño (n < 100)
- Necesidad de estimación menos sesgada
- Recursos computacionales abundantes
- Regresión lineal (fórmula rápida disponible)

Guía de decisión rápida:

- ullet $\mathbf{n} > \mathbf{1000}
 ightarrow \mathsf{Train}/\mathsf{Test} \; \mathsf{Split}$
- ullet 100 < n < 1000 o k-fold CV
- ullet n < 100 o LOOCV
- $\bullet \ \ \textbf{Tiempo limitado} \rightarrow \mathsf{Train}/\mathsf{Test} \ \mathsf{Split}$
- Máxima precisión → k-fold CV

Métricas de Rendimiento en Validación

Una vez obtenidas las predicciones, necesitamos "calificar" el modelo Raíz del Error Cuadrático Medio (RMSE):

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Características del RMSE:

- Penaliza desproporcionadamente errores grandes
- Sensible a valores atípicos
- Mismas unidades que la variable respuesta
- Interpretación: "desviación típica de los residuos"

Métricas de Rendimiento en Validación

Error Absoluto Medio:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Características del MAE:

- Trata todos los errores proporcionalmente
- Más robusto frente a valores atípicos
- Interpretación directa: "error promedio en valor absoluto"

¿Cuándo usar cada métrica?

- RMSE: Cuando errores grandes son especialmente problemáticos
- MAE: Cuando se prefiere robustez frente a valores atípicos
- Ambas: Para análisis completo del rendimiento predictivo

Interpretación de Errores: Diagnóstico del Ajuste

La comparación clave: Error en entrenamiento vs Error en validación

Sobreajuste (Overfitting):

- **Síntoma:** Error entrenamiento bajo + Error validación mucho más alto
- Causa: Modelo memoriza ruido específico de los datos de entrenamiento
- Solución: Simplificar modelo, usar regularización, más datos

Subajuste (Underfitting):

- Síntoma: Error entrenamiento alto + Error validación alto y similar
- Causa: Modelo demasiado simple, no captura estructura subyacente
- Solución: Aumentar complejidad, añadir variables, términos de interacción

Modelo bien calibrado:

- Síntoma: Error entrenamiento y validación similares y bajos
- Interpretación: Buen equilibrio entre sesgo y varianza

Resultado esperado: El modelo correcto tendrá mejor rendimiento en validación cruzada, demostrando la importancia de la selección de variables.

Error de Entrenamiento vs Validación

El Conjunto de Prueba Final: La Evaluación Definitiva

Después de todo el proceso de modelado:

- 1. Filtrado de variables
- 2. Selección del mejor método
- 3. Optimización de hiperparámetros
- 4. Validación cruzada para elegir modelo final

El paso final: Evaluar el modelo seleccionado en el conjunto de prueba final

¿Por qué es necesario?

- La validación cruzada se usó para tomar decisiones sobre el modelo
- Existe riesgo de sobreajuste al proceso de validación mismo
- Necesitamos una evaluación completamente independiente

Interpretación:

- ullet Error similar a validación cruzada o modelo robusto
- ullet Error mucho mayor o posible sobreajuste al proceso de modelado

Advertencias Importantes

Los métodos stepwise (forward, backward, stepwise) requieren precaución especial

Problemas fundamentales:

- 1. Invalidez de p-valores: Los p-valores y errores estándar están sesgados
- 2. Inestabilidad: Pequeños cambios en datos pueden cambiar radicalmente el modelo
- 3. Óptimo local: No garantizan encontrar la mejor combinación de variables
- 4. Inflación del error tipo I: Múltiples comparaciones sin corrección

Uso recomendado:

- Como herramientas exploratorias únicamente
- Generar modelos candidatos para evaluación posterior
- Siempre validar con técnicas robustas
- No reportar p-valores del modelo final como definitivos

Proceso Completo de Selección y Validación

Flujo de trabajo recomendado:

- 1. Partición inicial: Separar conjunto de prueba final (20%)
- 2. En datos de modelado (80%):
 - Filtrado básico de variables
 - Aplicar métodos de selección (exhaustivos, stepwise, regularización)
 - Comparar modelos con validación cruzada
 - Seleccionar modelo final
- 3. Evaluación final: Probar modelo seleccionado en conjunto de prueba
- 4. Reportar: Error de validación cruzada Y error en conjunto de prueba

Criterios de decisión:

- ullet Número de variables vs tamaño de muestra ightarrow método de selección
- ullet Objetivo (predicción vs explicación) o criterio de información
- ullet Multicolinealidad o regularización vs selección clásica

Curso 2025-2026

Consideraciones Prácticas

Antes del modelado:

- EDA completo para entender los datos
- Conocimiento del dominio para variables importantes
- Objetivo claro: ¿predicción o explicación?
- Relación entre tamaño muestral y número de variables

Durante la selección:

- Usar validación cruzada para todos los hiperparámetros
- Comparar múltiples métodos de selección
- No guiarse solo por métricas: considerar interpretabilidad
- Documentar todas las decisiones tomadas

Después de la selección:

- Diagnóstico completo de residuos del modelo final
- Análisis de sensibilidad a observaciones influyentes
- Intervalos de confianza para coeficientes importantes
- Validación en el conjunto de prueba final

Checklist de buenas prácticas:

- Datos → EDA + conocimiento del dominio
- Método → Múltiples enfoques + validación cruzada
- Selección → Criterios objetivos + interpretabilidad
- **Validación** \rightarrow Diagnóstico + evaluación

Conclusiones

Lo aprendido en este tema:

- 1. Filtrado inicial: Elimina problemas básicos de forma eficiente
- 2. Criterios de información: Guían comparación objetiva de modelos
- 3. Métodos exhaustivos: Garantizan óptimo pero son computacionalmente costosos
- 4. Regularización: Controla sobreajuste y realiza selección automáticamente
- 5. Validación: Indispensable para evaluar capacidad de generalización

Recomendaciones principales:

- Combinar métodos: Ningún método es perfecto en todas las situaciones
- Validar siempre: Con datos que el modelo no ha visto
- Preferir simplicidad: Cuando el rendimiento es comparable
- Incorporar conocimiento del dominio: Los datos no lo dicen todo

El mejor modelo es aquel que resuelve el problema con la mayor simplicidad.

Modelos Lineales Generalizados (GLM)

Víctor Aceña - Isaac Martín

DSLAB

2025-09-11

Modelos de Regresión Generalizada

Punto de Partida: La Regresión Lineal

- Es una herramienta potente para modelar una variable dependiente continua.
- Sin embargo, sus supuestos (normalidad, homocedasticidad) no siempre se cumplen.

El Desafío: Datos No Normales

- ¿Cómo modelamos una variable de respuesta **binaria** (ej. enfermo/sano)?
- ¿O datos de **conteo** (ej. n^{o} de accidentes en una intersección)?

La Solución: Modelos Lineales Generalizados (GLM)

 Son una extensión de la regresión lineal que permite modelar respuestas con distribuciones como la Binomial o la de Poisson, utilizando funciones de enlace para mayor flexibilidad.

Definición de GLM

Los Modelos Lineales Generalizados (GLM) son una extensión de los modelos de regresión lineal que permiten manejar una mayor variedad de tipos de datos y relaciones entre variables.

Mientras que la regresión lineal clásica asume que la variable dependiente (Y) es continua y sigue una distribución Normal, los GLM permiten que Y sea:

- Binaria: Éxito/Fracaso, Sí/No (ej. Regresión Logística).
- **De Conteo:** Nº de eventos (ej. Regresión de Poisson).
- Continua y Positiva con sesgo (ej. tiempos, costos).

El marco teórico unificador de los GLM es que la distribución de la variable dependiente siempre pertenece a la **familia exponencial**.

Los 3 Componentes de un GLM

Todo Modelo Lineal Generalizado se define por la interacción de tres componentes clave:

1. Componente Aleatorio:

- Qué es: La distribución de probabilidad que se asume para la variable dependiente (Y).
- Proviene de la familia exponencial.

2. Componente Sistemático:

• Qué es: La combinación lineal de las variables predictoras (X), que forma el predictor lineal (η) .

3. Función de Enlace (Link Function):

• **Qué es:** El **puente matemático** que conecta el predictor lineal (η) con la media de la variable respuesta (μ) .

Componentes en Detalle: Aleatorio y Sistemático

1. Componente Aleatorio (La Distribución)

Define el tipo de datos que estamos modelando. A diferencia de la regresión lineal (solo Normal), en los GLM podemos usar otras distribuciones:

- **Distribución Binomial:** Para variables categóricas binarias (0/1, éxito/fracaso).
- Distribución de Poisson: Para datos de conteo (número de eventos).
- Distribución Gamma: Para datos continuos y positivos (como costos o tiempos).

2. Componente Sistemático (El Predictor Lineal)

Describe cómo las variables independientes se combinan linealmente. Su forma es idéntica a la de la regresión lineal:

$$\eta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Donde η es el predictor lineal y β son los coeficientes del modelo.

Componentes en Detalle: La Función de Enlace

La función de enlace (g) conecta el predictor lineal (η) con la media de la variable dependiente (μ) . Es la clave de la flexibilidad del modelo.

Relación Fundamental:

$$g(\mu) = \eta$$

Esta función transforma la media de Y para que la relación con los predictores se vuelva lineal.

Logística (Logit): Para Regresión Logística.

$$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right)$$

Logarítmica: Para Regresión de Poisson.

$$g(\mu) = \log(\mu)$$

Identidad: Para Regresión Lineal estándar (el GLM más simple).

$$g(\mu) = \mu$$

Diferencias Clave: Regresión Lineal vs. GLM

Regresión Lineal Clásica

- Distribución: Normal.
- Tipo de Respuesta: Continua.
- Relación: Lineal y directa.
- Función de Enlace: Identidad.

Modelos Lineales Generalizados

- **Distribución:** Familia Exponencial.
- **Tipo de Respuesta:** Flexible (binaria, conteo...).
- Relación: Transformada por una función de enlace.
- Función de Enlace: Flexible (Logit, Log...).

Ventajas Principales de los GLM:

- Flexibilidad: Permiten modelar muchos más tipos de variables dependientes.
- Interpretación Coherente: Los coeficientes siguen siendo interpretables de forma rigurosa.
- Evaluación Robusta: Se pueden usar las mismas herramientas de evaluación (AIC, BIC, tests de hipótesis).

Estimación de Parámetros en GLM

La estimación en GLM representa un cambio fundamental respecto a la regresión lineal clásica.

- Regresión Lineal: Utiliza Mínimos Cuadrados Ordinarios (MCO), un método que funciona bajo supuestos de normalidad y homocedasticidad.
- **GLM:** Necesita métodos más sofisticados debido a las distribuciones no normales y las funciones de enlace no lineales.

El enfoque para los GLM se basa en un principio unificador:

- El Principio: La Máxima Verosimilitud (MLE), que proporciona un marco teórico coherente para toda la familia exponencial.
- El Algoritmo: IRLS (*Iteratively Reweighted Least Squares*), el método computacional para encontrar la solución de máxima verosimilitud.

El Método de Máxima Verosimilitud (MLE)

A diferencia de Mínimos Cuadrados, el método de **Máxima Verosimilitud** se emplea para estimar los parámetros en un GLM.

¿Por qué es necesario?

- Las distribuciones de la familia exponencial no siempre tienen una relación lineal directa con los predictores.
- La varianza de la respuesta a menudo depende de su media $(Var(Y) = V(\mu))$, violando el supuesto de homocedasticidad que requiere MCO.

Principio Fundamental de MLE

Consiste en encontrar los valores de los parámetros β que hacen **más probable** observar los datos que tenemos.

La Función de Verosimilitud ($L(\beta)$)

Para aplicar el principio de Máxima Verosimilitud, primero definimos la **función de verosimilitud**.

- **Definición:** Es la probabilidad conjunta de observar la totalidad de nuestra (y_1, \ldots, y_n) dado un conjunto de parámetros β .
- Fórmula:

$$L(\beta) = \prod_{i=1}^n f(y_i; \theta_i, \phi)$$

donde $f(y_i; \theta_i, \phi)$ es la función de densidad o masa de probabilidad de cada observación.

• El Problema Práctico: Maximizar una función que es un producto de muchos términos es computacionalmente complejo y puede ser numéricamente inestable.

La Función de Log-Verosimilitud ($\ell(\beta)$)

Para solucionar el problema de los productos, en la práctica se trabaja con el **logaritmo** de la verosimilitud.

- **Definición:** La función de log-verosimilitud es simplemente el logaritmo de la función de verosimilitud.
- Fórmula:

$$\ell(\beta) = \log(L(\beta)) = \sum_{i=1}^{n} \log f(y_i; \theta_i, \phi)$$

 Ventaja Clave: El logaritmo convierte los productos en sumas, lo que simplifica enormemente los cálculos matemáticos y numéricos necesarios para encontrar el máximo de la función.

La Teoría Unificadora: La Familia Exponencial

La clave de los GLM es que todas sus distribuciones (Binomial, Poisson, Gamma...) pertenecen a la familia exponencial.

Esto significa que todas se pueden escribir con una forma matemática unificada:

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right\}$$

donde θ es el parámetro natural y ϕ es el parámetro de dispersión.

Propiedades Derivadas de esta Forma: Esta estructura unificada permite derivar propiedades generales para todos los GLM de forma elegante:

- Esperanza (Media): $E(Y) = \mu = b'(\theta)$.
- Varianza: $Var(Y) = a(\phi)b''(\theta) = a(\phi)V(\mu)$, donde $V(\mu)$ es la función de varianza que caracteriza la relación media-varianza de cada distribución.

Distribuciones Comunes

Estas son las distribuciones más frecuentes en la práctica.

Normal

- Uso Típico: Datos continuos simétricos (es el GLM equivalente a la regresión lineal).
- Función de Varianza: $V(\mu) = 1$ (varianza constante).
- **Enlace Canónico:** Identidad $(g(\mu) = \mu)$.

Binomial

- Uso Típico: Proporciones, datos binarios (éxito/fracaso).
- Función de Varianza: $V(\mu) = \mu(1-\mu)$.
- Enlace Canónico: Logit $(g(\mu) = \log(\frac{\mu}{1-\mu}))$.

Poisson

- Uso Típico: Conteos de eventos.
- Función de Varianza: $V(\mu) = \mu$.
- Enlace Canónico: Log $(g(\mu) = \log(\mu))$.

Distribuciones para Datos Asimétricos

Para datos continuos que son estrictamente positivos y tienen sesgo a la derecha.

Gamma

- Uso Típico: Tiempos, costos, o cualquier dato continuo positivo y asimétrico.
- Función de Varianza: $V(\mu) = \mu^2$.
- Enlace Canónico: Inverso $(g(\mu) = 1/\mu)$.

Inversa Gaussiana

- Uso Típico: Tiempos hasta un evento, o datos con una asimetría aún más pronunciada que la Gamma.
- Función de Varianza: $V(\mu) = \mu^3$.
- Enlace Canónico: Inverso al cuadrado $(g(\mu) = 1/\mu^2)$.

Conceptos Clave de la Familia Exponencial

Para entender y comparar los diferentes GLM, dos conceptos derivados de la familia exponencial son fundamentales:

- 1. La Función de Varianza: $V(\mu)$
- **Definición:** Es la "firma" de cada distribución, ya que define la relación teórica entre la media (μ) y la varianza.
- Implicación Práctica: Determina la heterocedasticidad inherente de los datos (ej. $V(\mu)=\mu$ en Poisson) y, por tanto, influye directamente en los **pesos** que el algoritmo IRLS asigna a cada observación durante la estimación.
- **2.** El Enlace Canónico: $g(\mu)$
- **Definición:** Es la función de enlace que surge de forma "natural" de la estructura matemática de cada distribución.
- Implicación Práctica: Aunque en la práctica se pueden probar otros enlaces, el canónico suele garantizar las mejores propiedades estadísticas y una estimación computacionalmente más eficiente.

La Función de Varianza

La relación entre media y varianza es fundamental en los GLM. La función de varianza $V(\mu)$ determina la **heterocedasticidad inherente** de cada distribución e influye en la estimación del modelo.

- Distribución Binomial: $V(\mu)=\mu(1-\mu)$. La varianza es máxima cuando la probabilidad $\mu=0.5$.
- Distribución de Poisson: $V(\mu)=\mu$. La varianza aumenta linealmente con la media.
- Distribución Gamma: $V(\mu)=\mu^2$. La varianza aumenta cuadráticamente con la media.

Implicación Práctica: Esta función influye directamente en los pesos del algoritmo IRLS. En regresión logística, por ejemplo, las observaciones con probabilidades cercanas a 0.5 tienen mayor varianza y, por tanto, reciben **menor peso** en la estimación.

El Algoritmo de Estimación: IRLS

Las ecuaciones de máxima verosimilitud de los GLM no tienen una solución matemática directa como en la regresión lineal. Por ello, se necesita un **algoritmo iterativo** para encontrar los coeficientes.

El método estándar es **IRLS** (*Iteratively Reweighted Least Squares*), que es una aplicación del método de Newton-Raphson.

¿Cómo funciona conceptualmente? El algoritmo aproxima el problema no lineal del GLM a una serie de regresiones lineales ponderadas que se resuelven de forma sucesiva.

- 1. Se empieza con una estimación inicial de los coeficientes β .
- 2. En cada paso, se calculan unos **pesos** (w_i) para cada observación. Estos pesos reflejan la "fiabilidad" de cada punto según el modelo actual.
- 3. Se resuelve una regresión por mínimos cuadrados ponderada para obtener una nueva y mejor estimación de β .
- **4.** Se repite el proceso hasta que las estimaciones de β se estabilizan (convergen).

Propiedades de los Estimadores

Los estimadores MLE poseen propiedades **asintóticas** (se cumplen cuando $n \to \infty$) muy deseables, que los validan como el método de estimación preferido.

1. Consistencia: A medida que aumenta el tamaño de la muestra, los estimadores convergen al valor verdadero del parámetro.

$$\hat{\beta} \xrightarrow{p} \beta$$
 cuando $n \to \infty$.

2. Normalidad Asintótica: Para muestras grandes, la distribución de los estimadores se aproxima a una Normal multivariada.

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(\mathbf{0}, \mathbf{I}^{-1}(\beta))$$

Permite construir intervalos de confianza y realizar tests de hipótesis.

3. Eficiencia: Los estimadores MLE alcanzan la cota de Cramér-Rao, lo que significa que tienen la **menor varianza asintótica posible** entre todos los estimadores insesgados.

La Matriz de Información: ¿Cuánta Certeza Tenemos?

La **matriz de información** $(I(\beta))$ es un concepto clave que cuantifica la certeza de las estimaciones de nuestros coeficientes.

Interpretación Intuitiva:

- Mide la "curvatura" de la función de verosimilitud en su punto máximo.
- Una función muy "puntiaguda" (alta curvatura) significa **mucha información** y, por tanto, estimaciones más precisas y fiables.
- Una función más plana (baja curvatura) significa **poca información** y mayor incertidumbre.

Cálculo en la Práctica (GLM): Aunque existen definiciones teóricas basadas en las segundas derivadas de la log-verosimilitud, el algoritmo IRLS nos proporciona una aproximación computacionalmente eficiente y directa:

$$\mathbf{I}(\hat{\boldsymbol{\beta}}) \approx \mathbf{X}^T \mathbf{W} \mathbf{X}$$

donde W es la matriz diagonal de pesos calculada en la última iteración del algoritmo.

Cálculo de los Errores Estándar

Los **errores estándar** de los coeficientes individuales se obtienen a partir de la matriz de información.

Proceso de Cálculo:

- 1. Matriz de Covarianza: Se calcula como la inversa de la matriz de información.
- Errores Estándar: Se obtienen como las raíces cuadradas de los elementos diagonales de esa matriz de covarianza.

Fórmula:

$$\mathsf{SE}(\hat{\beta}_j) = \sqrt{[\mathbf{I}^{-1}(\hat{\beta})]_{jj}}$$

Uso de los Errores Estándar en Inferencia

Estos errores estándar son fundamentales para la inferencia estadística.

Aplicaciones Principales:

Intervalos de Confianza:

$$\hat{\beta}_j \pm z_{\alpha/2} \cdot \mathrm{SE}(\hat{\beta}_j)$$

• Estadísticos de Prueba (de Wald):

$$z_j = \frac{\hat{\beta}_j}{\mathsf{SE}(\hat{\beta}_j)}$$

• Evaluación de la Precisión de nuestras estimaciones.

Advertencia Importante:

- Estos errores estándar son válidos bajo los supuestos del modelo GLM.
- Violaciones serias de estos supuestos (como **sobredispersión** en modelos de Poisson) pueden hacer que sean inadecuados.

La Deviance: Definición y Cálculo

La **deviance** es la medida principal de ajuste en GLM; es una generalización de la suma de cuadrados residuales.

Idea Fundamental: Mide la discrepancia entre la verosimilitud de nuestro **modelo propuesto** y la de un **modelo saturado** (un modelo teóricamente perfecto que ajusta cada dato).

$$D = 2\sum_{i=1}^n \left[\ell(\mathsf{modelo\ saturado}) - \ell(\mathsf{modelo\ propuesto})\right]$$

Interpretación práctica:

- Deviance = 0: Modelo perfecto que ajusta exactamente todos los datos observados
- Deviance baja: Buen ajuste del modelo a los datos
- Deviance alta: Mal ajuste del modelo, sugiere que el modelo no captura adecuadamente los patrones en los datos

Interpretando la Deviance: Una Comparación Clave

La clave para interpretar la deviance es comparar la de tu modelo con la de un modelo base.

- 1. El Punto de Partida: La Deviance Nula
- ¿Qué es? La deviance de un modelo simple, solo con intercepto (que ignora todos tus predictores).
- Analogía: Es el "error máximo" que sirve como punto de comparación.
- 2. El Resultado: La Deviance Residual
- ¿Qué es? La deviance de tu modelo final, con todos los predictores incluidos.
- Analogía: Es el "error restante" después de que tus predictores han hecho su trabajo.

La reducción de la deviance (Deviance Nula - Deviance Residual) representa la mejora en el ajuste que se debe a tus predictores.

El Test de la Razón de Verosimilitudes (LRT)

Es la herramienta principal para **comparar modelos anidados**, basándose en el principio de parsimonia.

Estadístico de Prueba: La diferencia en las deviances sigue una distribución chi-cuadrado:

$$LRT = D_{\rm reducido} - D_{\rm completo} \sim \chi_{df}^2$$

(donde df es la diferencia en el número de parámetros).

Regla de Decisión:

- H_0 : El modelo reducido es suficiente.
- Si el **p-valor** $< \alpha$, se rechaza H_0 . La mejora del modelo completo es **estadísticamente** significativa.

LRT en la Práctica: Ejemplo con R

Objetivo: Determinar si añadir la variable disp (cilindrada) a un modelo que ya contiene wt (peso) mejora significativamente la predicción.

Salida del Test en R

Model 1: am ~ wt

```
Analysis of Deviance Table
```

LRT en la Práctica: Ejemplo con R

Interpretación del Resultado

El test compara la **Deviance** de ambos modelos. La hipótesis nula (H_0) es que el modelo reducido es suficiente.

- La diferencia en deviance es de 1.391 con 1 grado de libertad.
- El p-valor asociado es 0.238.

Dado que el p-valor es mayor que 0.05, no rechazamos la hipótesis nula.

Conclusión: Añadir disp no aporta una mejora significativa. Nos quedamos con el **modelo** reducido por parsimonia.

Diagnosis de GLMs

La diagnosis de GLMs es el proceso de evaluar los supuestos del modelo y detectar problemas que puedan afectar la validez de las inferencias.

¿Por qué es diferente de la Regresión Lineal?

- A diferencia de la regresión lineal, los residuos ordinarios no son suficientes.
- Los GLM requieren herramientas especializadas debido a la heterocedasticidad inherente y a las diferentes distribuciones subyacentes (Poisson, Binomial, etc.).

Nuestro Enfoque: Abordaremos el diagnóstico respondiendo a tres preguntas clave, utilizando diferentes tipos de **residuos** para obtener las respuestas.

Tipos de Residuos en GLMs

Los residuos "crudos" $(y_i-\hat{\mu}_i)$ no son homocedásticos, por lo que se utilizan versiones estandarizadas. Los más importantes son:

Residuos Pearson:

 Son un análogo directo a los residuos estandarizados en regresión lineal. Estandarizan el residuo crudo dividiendo por la desviación estándar predicha por el modelo.

$$r_i = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

Residuos Deviance:

- Son los más recomendados para la inspección visual en gráficos diagnósticos.
- Su distribución se aproxima mejor a la normalidad y su varianza es más estable que la de otros residuos.

$$d_i = \mathrm{sign}(y_i - \hat{\mu}_i) \sqrt{2[l_i(y_i) - l_i(\hat{\mu}_i)]}$$

¿La Forma del Modelo es Correcta?

Se evalúa si la estructura básica del modelo, $g(\mu) = X\beta$, es adecuada para los datos.

Herramientas de Diagnóstico:

- Gráfico de Residuos vs. Valores Ajustados:
 - Es la herramienta fundamental. Se grafican los residuos (idealmente, deviance) contra el predictor lineal $(\hat{\eta}_i)$.
 - **Un patrón curvilíneo** es una señal clara de que la forma funcional o la función de enlace son incorrectas.
- Gráficos de Residuos Parciales: Evalúan si la relación es apropiada para cada predictor individualmente.
- Test de Especificación de Enlace (Linktest): Es una prueba formal. Si el predictor lineal al cuadrado $(\hat{\eta}^2)$ resulta significativo al añadirlo al modelo, es evidencia de que la función de enlace está mal especificada.

¿La Distribución es Correcta?

Se evalúa si la elección de la familia de distribución (Poisson, Binomial, etc.) fue acertada, empezando por la relación entre la media y la varianza.

Sobredispersión: Ocurre cuando la varianza real de los datos es **mayor** que la media, violando el supuesto de modelos como el de Poisson $(Var(Y) = \mu)$.

- Consecuencia: Invalida las inferencias (errores estándar demasiado pequeños, p-valores incorrectos).
- Detección: Se calcula el Estadístico de dispersión ($\hat{\phi}$). Si $\hat{\phi}$ es significativamente mayor que 1, hay sobredispersión.

$$\hat{\phi} = \frac{\sum r_i^2}{n-p}$$

• Solución: Cambiar a un modelo más flexible. El caso clásico es pasar de Poisson a Binomial Negativo, ya que este último incluye un parámetro (α) para modelar la variabilidad extra: $Var(Y) = \mu + \alpha \mu^2$.

¿La Distribución es Correcta?

Un segundo aspecto para verificar la distribución es la forma general de los errores.

Herramienta: El Gráfico Q-Q de residuos deviance.

 Concepto: Aunque los errores de un GLM no son estrictamente normales, los residuos deviance sí deberían tener una distribución aproximadamente normal si el modelo está bien especificado.

Interpretación:

- Se grafican los cuantiles de los residuos deviance contra los cuantiles teóricos de una distribución normal.
- Los puntos deberían seguir de cerca la línea diagonal.
- Desviaciones sistemáticas de la línea pueden indicar que la familia de distribución asumida (Poisson, Binomial, etc.) es incorrecta.

¿Hay Observaciones que Distorsionan el Modelo?

Finalmente, buscamos identificar puntos individuales que tienen una influencia desproporcionada en los coeficientes del modelo.

Herramientas Matemáticas Clave:

- Leverage Generalizado (h_i): Mide el potencial de una observación para ser influyente debido a su posición en el espacio de los predictores.
- Distancia de Cook para GLMs (D_i): Mide la influencia global de una observación en todos los coeficientes.

$$D_i = \frac{r_i^2 h_i}{p(1 - h_i)^2}$$

• DFBETAS: Mide la influencia de una observación en cada coeficiente individual.

Estrategia:

- La herramienta visual principal es el gráfico de residuos vs. leverage.
- La estrategia ante estas observaciones no es eliminarlas automáticamente, sino **investigarlas** para entender su naturaleza.

Regresión Logística: Modelando Eventos Binarios

La **regresión logística** es la herramienta fundamental de los GLM para modelar la probabilidad de ocurrencia de un **evento binario**.

Objetivo:

Modelar una variable dependiente que solo toma dos valores:

- Éxito / Fracaso
- Sí / No
- Enfermo / Sano

Pilares del Tema:

- 1. Fundamentos: La función sigmoide y el enlace Logit.
- 2. Estimación: Máxima Verosimilitud (MLE) y el algoritmo IRLS.
- 3. Interpretación: El concepto clave de los Odds Ratios.
- **4. Evaluación:** Bondad de ajuste (Deviance, Pseudo R²) y validación (Matriz de Confusión, Curva ROC).

Fundamentos: El Problema y la Función Sigmoide

El Problema: La regresión lineal puede predecir valores fuera del rango [0,1], lo cual no tiene sentido para modelar una probabilidad.

La Solución: La función logística (o sigmoide) transforma cualquier valor real del predictor lineal (η) en una probabilidad entre 0 y 1.

Fórmula de la Probabilidad:

$$P(Y=1|X) = \frac{1}{1+e^{-\eta}} = \frac{1}{1+e^{-(\beta_0+\beta_1X_1+\dots)}}$$

La curva en forma de "S" asegura que las predicciones se aplanen hacia 0 y 1 en los extremos.

Fundamentos: La Función de Enlace Logit

Para poder usar un modelo lineal $(X\beta)$, necesitamos transformar la probabilidad (que está en la escala [0,1]) a una escala que vaya de $-\infty$ a $+\infty$.

La Herramienta: Esto se logra con la función de enlace logit.

Definición del Logit: El logit de una probabilidad p es el logaritmo de los odds (razón de probabilidades):

$$\mathsf{logit}(p) = \log\left(\frac{p}{1-p}\right)$$

El Modelo Logístico Linealizado: Esta transformación nos permite expresar el modelo de forma lineal:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Estimación por Máxima Verosimilitud (MLE)

Función de Verosimilitud ($L(\beta)$): Para un resultado binario $y_i \in \{0,1\}$, la verosimilitud se define como:

$$L(\beta) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

Función de Log-Verosimilitud ($\ell(\beta)$): Maximizamos el logaritmo de la función anterior:

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^T \beta - \log(1 + e^{\mathbf{x}_i^T \beta}) \right]$$

Ecuaciones de Puntuación (*Score Equations*): Para encontrar el máximo, se deriva la log-verosimilitud respecto a cada β_j y se iguala a cero:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n x_{ij} (y_i - p_i) = 0$$

Esto significa que la solución se encuentra cuando la suma de los residuos (y_i-p_i) ponderados por cada predictor es cero.

Implementación del Algoritmo IRLS

Como las ecuaciones de verosimilitud no tienen solución analítica cerrada, se utiliza el algoritmo IRLS. Para la regresión logística, los componentes específicos son:

Pesos (w_i): El peso de cada observación es la varianza de una distribución Bernoulli, que es máxima cuando la probabilidad es 0.5.

$$w_i = p_i(1-p_i)$$

Variable Dependiente Ajustada (z_i): Es la versión linealizada de la respuesta en cada iteración.

$$z_i = \eta_i^{(t)} + \frac{y_i - p_i^{(t)}}{w_i^{(t)}}$$

Estos componentes se utilizan en cada paso de la actualización de los coeficientes: $\beta^{(t+1)} = (\mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}.$

Ejemplo: Verificación de la Estimación MLE en R

Podemos verificar que los coeficientes encontrados por glm() son, en efecto, los que maximizan la función de log-verosimilitud. A continuación se muestra la salida del código R:

Salida del Análisis:

Conclusión: La salida confirma que el algoritmo convergió en 4 iteraciones para encontrar los coeficientes que maximizan la verosimilitud del modelo.

Interpretación: Probabilidad vs. Odds

Los coeficientes β están en la escala del logit, por lo que no son directamente interpretables en términos de probabilidad. Para interpretarlos, primero necesitamos entender el concepto de **odds**.

Definición de Odds:

• El **odds** es la razón entre la probabilidad de que un evento ocurra y la de que no ocurra.

$$\mathsf{odds} = \frac{p}{1-p}$$

• El modelo logístico es, en esencia, un modelo lineal para el **logaritmo de los odds**: $\log(\mathsf{odds}) = X\beta$.

Ejemplo:

- Si la probabilidad de éxito p = 0.8.
- El odds es $\frac{0.8}{0.2} = 4$.
- Interpretación: El evento es 4 veces más probable que ocurra a que no ocurra.

Interpretación: El Odds Ratio (OR)

El **Odds Ratio (OR)** es la herramienta principal para interpretar los coeficientes de una regresión logística.

- Concepto: Mide el cambio multiplicativo en los odds por cada incremento de una unidad en un predictor X_j , manteniendo el resto de variables constantes.
- Cálculo: Se obtiene exponenciando el coeficiente:

$$\mathsf{OR} = e^{\beta_j}$$

- Interpretación:
 - \circ OR > 1: El odds aumenta (el evento se vuelve más probable).
 - \circ OR < 1: El odds disminuye (el evento se vuelve menos probable).
 - **OR** = **1**: No hay efecto.

Ejemplo: Si $\beta_{BMI}=0.08$, entonces $OR=e^{0.08}\approx 1.083$. Por cada unidad que aumenta el BMI, el odds de tener diabetes se multiplica por 1.083 (es decir, aumenta un **8.3%**).

Bondad de Ajuste: Deviance y Pseudo R²

El \mathbb{R}^2 tradicional no es aplicable en este contexto. La bondad de ajuste en regresión logística se evalúa con métricas basadas en la verosimilitud.

1. Deviance

• Compara la log-verosimilitud de nuestro modelo con la de un modelo saturado. La fórmula específica para la distribución binomial es:

$$D = 2\sum_{i=1}^{n} \left[y_i \log \left(\frac{y_i}{\hat{p}_i} \right) + (1 - y_i) \log \left(\frac{1 - y_i}{1 - \hat{p}_i} \right) \right]$$

2. Pseudo R²

- Son análogos al R^2 que miden la mejora en la verosimilitud del modelo en comparación con un modelo nulo (solo con intercepto).
- No representan la "proporción de varianza explicada", sino la mejora en el ajuste del modelo.

Bondad de Ajuste: Tipos de Pseudo R²

Existen varias formulaciones para el Pseudo R². Las más comunes son:

• McFadden's R2: Es el más utilizado.

$$R_{\rm McFadden}^2 = 1 - \frac{\ell_{\rm modelo}}{\ell_{\rm nulo}}$$

- Valores entre 0.2 y 0.4 se consideran indicativos de un buen ajuste.
- Cox-Snell R²:

$$R_{\text{Cox-Snell}}^2 = 1 - \left(\frac{L_{\text{nulo}}}{L_{\text{modelo}}}\right)^{2/n}$$

• Nagelkerke R^2 : Es una corrección del Cox-Snell para que su valor máximo sea 1, haciéndolo más comparable al R^2 tradicional.

$$R_{\mathsf{Nagelkerke}}^2 = rac{R_{\mathsf{Cox-Snell}}^2}{1 - (L_{\mathsf{nulo}})^{2/n}}$$

Validación: La Matriz de Confusión

La validación de un modelo logístico se centra en su capacidad de clasificación.

La Matriz de Confusión

- Es la herramienta fundamental. Compara las clases predichas por el modelo con las clases reales.
- **Proceso:** Se convierten las probabilidades predichas (\hat{p}_i) en clases ("Sí" / "No") usando un **umbral de decisión** (típicamente 0.5).

Esto genera cuatro posibles resultados:

- Verdaderos Positivos (VP): Predijo "Sí" y era "Sí".
- Falsos Positivos (FP): Predijo "Sí" pero era "No" (Error Tipo I).
- Verdaderos Negativos (VN): Predijo "No" y era "No".
- Falsos Negativos (FN): Predijo "No" pero era "Sí" (Error Tipo II).

Validación: Métricas de Clasificación

A partir de la matriz de confusión, se calculan las métricas de rendimiento clave:

• Precisión (Accuracy):

- $\frac{VP+VN}{\text{Total}}$
- Proporción total de predicciones correctas. Cuidado: puede ser engañosa en datasets desbalanceados.

Sensibilidad (Recall o Tasa de VP):

- $\circ \quad \frac{VP}{VP + FN}$
- De todos los positivos reales, ¿qué proporción clasificamos correctamente? Mide la capacidad para identificar los casos positivos.

Especificidad:

- $\frac{VN}{VN+FF}$
- De todos los negativos reales, ¿qué proporción clasificamos correctamente? Mide la capacidad para identificar los casos negativos.

Validación: Curva ROC y AUC

La Curva ROC (Receiver Operating Characteristic)

- Es una evaluación global del rendimiento del modelo, independiente del umbral de decisión.
- Grafica la **Sensibilidad** (Tasa de VP) en el eje Y frente a **1 Especificidad** (Tasa de FP) en el eje X para todos los umbrales posibles.

AUC (Área Bajo la Curva ROC)

- Cuantifica la capacidad discriminativa del modelo en un solo número (de 0.5 a 1.0).
 - **AUC** = **1.0**: Clasificador perfecto.
 - **AUC** = 0.5: Clasificador inútil (equivalente al azar).
 - \circ **Típicamente, AUC** > **0.8** se considera una buena discriminación.

Sí, es una idea excelente. Integrar los ejemplos prácticos es fundamental para conectar la teoría con la aplicación en R.

Caso Práctico: Resultados del Modelo Logístico

Ajustamos un modelo para predecir la diabetes en el dataset Pima.tr. Los resultados clave de la validación del modelo son los siguientes:

Resultados Numéricos

Matriz de Confusión:

Predicted No Yes

No 114 29

Yes 18 39

Métricas Clave:

• **Exactitud:** 0.785

• AUC: 0.831

Evaluación Visual: Curva ROC

Regresión de Poisson: Modelando Datos de Conteo

Es la técnica de GLM utilizada para modelar **datos de conteo**: una variable que representa el número de veces que ocurre un evento en un intervalo.

- **Tipo de Variable:** La respuesta toma valores enteros no negativos (0, 1, 2, ...) y se asume que sigue una **distribución de Poisson**.
- Función de Probabilidad de Poisson:

$$P(Y = y) = \frac{e^{-\lambda} \lambda^y}{y!}$$

donde λ es la **tasa media de ocurrencia** del evento.

El Modelo de Regresión de Poisson

El objetivo del modelo es explicar la relación entre la tasa de ocurrencia de los eventos (λ) y un conjunto de variables predictoras X.

• Forma Funcional: Se utiliza una función de enlace logarítmica para asegurar que la tasa λ sea siempre positiva.

$$\log(\lambda) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

 Tasa Esperada: El modelo puede expresarse en términos de la tasa esperada de eventos como:

$$\lambda = e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}$$

Supuestos y Limitaciones Clave

Para que el modelo sea adecuado, se deben cumplir ciertos supuestos:

- Independencia de los eventos.
- Equidispersión: El supuesto fundamental de la distribución de Poisson es que la media es igual a la varianza:

$$E(Y) = Var(Y) = \lambda$$

Limitaciones Comunes (Violación de Supuestos):

- Sobredispersión: Ocurre cuando la varianza es mayor que la media (Var(Y) > E(Y)). La solución es usar una Regresión Binomial Negativa.
- Exceso de Ceros: Si hay más ceros en los datos de los que predice el modelo. La solución es usar modelos ZIP (Zero-Inflated Poisson).

Interpretación de Coeficientes

Los coeficientes β están en la escala logarítmica de la tasa, por lo que para una interpretación práctica, los exponenciamos.

• Incidence Rate Ratio (IRR):

$$\mathsf{IRR} = e^{\beta_j}$$

- Interpretación: El IRR es un factor multiplicativo que nos dice cuánto cambia la tasa de eventos esperada por cada incremento de una unidad en el predictor X_i .
 - IRR > 1: La tasa de eventos aumenta. Un IRR de 1.25 es un aumento del 25%.
 - \circ IRR < 1: La tasa de eventos disminuye. Un IRR de 0.80 es una disminución del 20%.
 - **IRR** = 1: No hay efecto.

Estimación por Máxima Verosimilitud

La estimación se adapta a la distribución de Poisson con enlace logarítmico.

• Función de Verosimilitud ($L(\beta)$):

$$L(\beta) = \prod_{i=1}^{n} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}$$

donde $\lambda_i = e^{\mathbf{x}_i^T \beta}$.

• Función de Log-Verosimilitud ($\ell(\beta)$):

$$\ell(\beta) = \sum_{i=1}^n \left[y_i \mathbf{x}_i^T \beta - e^{\mathbf{x}_i^T \beta} - \log(y_i!) \right]$$

• Ecuaciones de Puntuación: La solución de máxima verosimilitud se encuentra cuando:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n x_{ij} (y_i - \lambda_i) = 0$$

Ejemplo Práctico: Salida del Modelo Poisson

Objetivo: Ajustamos un modelo para predecir el número de accidentes en función del tráfico y la visibilidad.

Salida de Coeficientes (summary)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 9.607e-04 2.316e-03 0.415 0.678 trafico 9.999e-03 1.360e-06 < 2e-16 *** visibilidad -2.000e-01 1.012e-04 < 2e-16 ***
```

Métricas Globales del Modelo

- Null deviance: 1.68e+08 (con 99 g.l.)
 Residual deviance: 89.3 (con 97 g.l.)
- AIC: 1220.4

Ejemplo Práctico: Interpretación de Resultados

Significancia de los Predictores

Basado en los p-valores (Pr(>|z|)) de la diapositiva anterior:

 Tanto trafico como visibilidad son predictores altamente significativos (sus p-valores son prácticamente cero).

Interpretación de los Coeficientes (vía IRR)

Para interpretar el efecto práctico, exponenciamos los coeficientes (IRR $=e^{eta}$):

- IRR (tráfico): $e^{0.01} \approx 1.01$.
 - Un aumento de 1 unidad en trafico incrementa la tasa de accidentes esperada en un 1%.
- IRR (visibilidad): $e^{-0.20} \approx 0.82$.
 - Un aumento de 1 km en visibilidad reduce la tasa de accidentes esperada en un 18%.

Implementación del Algoritmo IRLS para Poisson

Como no hay solución analítica cerrada, se utiliza el algoritmo IRLS con componentes específicos para Poisson.

• **Pesos** (w_i) : El peso de cada observación es simplemente la tasa esperada.

$$w_i = \lambda_i$$

• Variable Dependiente Ajustada (z_i) :

$$z_i = \log(\lambda_i^{(t)}) + \frac{y_i - \lambda_i^{(t)}}{\lambda_i^{(t)}}$$

Actualización de parámetros:

$$\boldsymbol{\beta}^{(t+1)} = (\mathbf{X}^T \mathbf{W}^{(t)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}^{(t)} \mathbf{z}^{(t)}$$

Propiedades Específicas de la Estimación Poisson

La estimación MLE en el modelo de Poisson tiene características particulares:

 $(E(Y_i) = \mathsf{Var}(Y_i) = \lambda_i).$

1. Equidispersión: El modelo asume que la varianza aumenta linealmente con la media

- 2. Convergencia Rápida: Generalmente requiere menos iteraciones que la regresión logística.
- 3. Estabilidad Numérica: El enlace logarítmico garantiza automáticamente que las tasas estimadas λ_i sean siempre positivas.
- Interpretación Multiplicativa: Los coeficientes se interpretan naturalmente como efectos multiplicativos sobre la tasa.

Bondad de Ajuste en Regresión de Poisson

La métrica teórica fundamental sigue siendo la **deviance**, pero en la práctica, la prueba de bondad de ajuste más importante es la **evaluación de la sobredispersión**.

• Herramienta de Diagnóstico: El estadístico de dispersión $(\hat{\phi})$ se convierte en la medida de facto del ajuste.

$$\hat{\phi} = \frac{X_{\text{Pearson}}^2}{n-p}$$

- Interpretación:
 - \circ Si $\hat{\phi}\approx 1$: El supuesto de equidispersión se cumple y el ajuste es adecuado.
 - Si $\hat{\phi}\gg 1$: Hay **sobredispersión**. El modelo no se ajusta bien a la variabilidad de los datos, y se debe considerar una **Regresión Binomial Negativa**.

Validación del Modelo de Poisson

La validación se enfoca en la **capacidad de predicción**: ¿qué tan cerca están los conteos predichos de los conteos reales?

- **Proceso:** Se ajusta el modelo en un conjunto de **entrenamiento** y se evalúa su rendimiento en un conjunto de **prueba**.
- Métricas de Validación Principales:
 - Raíz del Error Cuadrático Medio (RMSE): Mide la desviación estándar de los residuos.
 Penaliza más los errores grandes.

$$\mathrm{RMSE} = \sqrt{\frac{1}{n} \sum (y_i - \hat{\mu}_i)^2}$$

 Error Absoluto Medio (MAE): Mide la magnitud promedio de los errores. Es menos sensible a outliers.

$$\mathsf{MAE} = \frac{1}{n} \sum |y_i - \hat{\mu}_i|$$

• Herramienta Visual: Gráfico de valores predichos vs. valores reales. En un buen modelo, los puntos deben agruparse cerca de la línea diagonal y=x.

Ejemplo Práctico: Diagnóstico del Modelo Poisson

Este segundo ejemplo se centra en verificar dos aspectos clave de la estimación: la convergencia del algoritmo y el supuesto de equidispersión.

Comprobamos si se cumple el supuesto clave de Poisson ($media \approx varianza$).

Verificación de Equidispersión:

Media observada: 0.15 Varianza observada: 0.149 Razón varianza/media: 0.993

• Conclusión: La razón es muy cercana a 1, por lo que se cumple el supuesto. No hay evidencia de sobredispersión y el modelo de Poisson es adecuado.

Otros GLMs: Adaptándose a la Realidad de los Datos

Más allá de la regresión logística y de Poisson, existen otros GLM para manejar situaciones más complejas.

Estos modelos son especialmente útiles cuando los datos presentan características como:

- Sobredispersión: La varianza es mayor de lo esperado.
- Sesgo: La distribución de los datos es asimétrica.
- Restricciones en el dominio: La variable respuesta solo puede tomar valores positivos.

Exploraremos los tres modelos más importantes para estos casos:

- Regresión Binomial Negativa
- Regresión Gamma
- Regresión Inversa Gaussiana

Regresión Binomial Negativa

El Problema: Sobredispersión

- Ocurre en datos de conteo cuando la **varianza es mayor que la media**, violando el supuesto clave de la regresión de Poisson $(Var(Y) = \mu)$.
- Causas comunes: Heterogeneidad no modelada, dependencia entre eventos o exceso de ceros.
- Consecuencia: La regresión de Poisson subestima los errores estándar, llevando a conclusiones incorrectas sobre la significancia de los predictores.

La Solución: El Modelo Binomial Negativo

• Es una extensión del modelo de Poisson que introduce un **parámetro de dispersión** (α) para permitir que la varianza sea mayor que la media:

$$Var(Y) = \mu + \alpha \mu^2$$

• Si $\alpha = 0$, el modelo se reduce a la regresión de Poisson.

Interpretación y Comparación

La forma funcional del modelo es la misma que la de Poisson (con enlace logarítmico), pero debemos interpretar el nuevo parámetro de dispersión y comparar ambos modelos.

Interpretación del Parámetro de Dispersión (θ)

- El software (como la función glm.nb en R) estima un parámetro θ , donde $\alpha = 1/\theta$.
- Valores altos de θ (ej. > 100): Poca sobredispersión. El modelo es similar a Poisson.
- Valores bajos de θ (ej. < 10): Mucha sobredispersión. El modelo Binomial Negativo es claramente más apropiado.

Comparación de Modelos (Poisson vs. Binomial Negativa)

- Se utiliza el Criterio de Información de Akaike (AIC).
- Si el AIC de la Binomial Negativa es menor que el AIC de Poisson, debemos preferir el modelo Binomial Negativo.

Modelos para Variables Continuas No Normales

Cuando la variable dependiente (Y) es **continua**, pero **no sigue una distribución normal**, la regresión lineal clásica no es adecuada.

Este escenario es común en variables que son:

- Estrictamente positivas (ej. costos, tiempos).
- Tienen una distribución sesgada a la derecha.

Los GLM nos ofrecen alternativas como la **Regresión Gamma** y la **Regresión Inversa Gaussiana**.

Comparación: Regresión Gamma vs. Inversa Gaussiana

Regresión Gamma

- Uso Típico: Para variables continuas positivas y con sesgo a la derecha (tiempos, costos, reclamos de seguros).
- Varianza: Aumenta proporcionalmente al cuadrado de la media $(V(\mu) = \mu^2)$.
- Enlace Común: Logarítmico $(\log(\mu) = X\beta)$.

Regresión Inversa Gaussiana

- Uso Típico: Para tiempos de respuesta o variables con un sesgo aún más pronunciado que la Gamma.
- Varianza: Aumenta proporcionalmente al cubo de la media ($V(\mu) = \mu^3$).
- Enlace Común: Inverso al cuadrado $(1/\mu^2 = X\beta)$.

Guía de Decisión: ¿Qué GLM Debo Usar?

La elección del modelo depende casi exclusivamente de la naturaleza de tu variable respuesta (Y).

- ¿Es Y binaria (0/1, Éxito/Fracaso)? Usa Regresión Logística.
- ¿Es Y un conteo de eventos (nº de accidentes, nº de clientes)?

Empieza con una Regresión de Poisson.

- Importante: Después, comprueba si hay sobredispersión. Si la hay $(\hat{\phi}>1.5)$, cambia a una Regresión Binomial Negativa.
- ¿Es Y continua, positiva y con sesgo a la derecha (tiempos, costos)? Usa Regresión Gamma. Es una excelente alternativa a transformar la variable con logaritmos y usar un modelo lineal.
- ¿Es Y un tiempo hasta un evento con una asimetría muy pronunciada? Considera una Regresión Inversa Gaussiana.