- (b) If $E = E_{i,j;\beta}$, multiply the *i*th column of P' by the matrix $\beta(A)$ obtained by substituting the matrix A for X, and then subtract the resulting vector from column j.
- (c) If $E = E_{i,\lambda}$ where $\lambda \in K$, then multiply the *i*th column of P' by λ^{-1} .
- 2. When step (1) terminates, the first n-m columns of P' are zero and the last m are linearly independent. For $i=1,\ldots,m$, multiply the (n-m+i)th column w_i of P' successively by I, A^1, A^2, A^{n_i-1} , where n_i is the degree of the polynomial q_i (appearing in D), and form the $n \times n$ matrix P consisting of the vectors

$$w_1, Aw_1, \dots, A^{n_1-1}w_1, w_2, Aw_2, \dots, A^{n_2-1}w_2, \dots, w_m, Aw_m, \dots, A^{n_m-1}w_m$$

Then, $P^{-1}AP$ is the canonical rational form of A.

Here is an example taken from Dummit and Foote [54] (Chapter 12, Section 12.2). Let A be the matrix

$$A = \begin{pmatrix} 1 & 2 & -4 & 4 \\ 2 & -1 & 4 & -8 \\ 1 & 0 & 1 & -2 \\ 0 & 1 & -2 & 3 \end{pmatrix}.$$

One should check that the following sequence of row and column operations produces the Smith normal form D of XI - A:

$$D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (X-1)^2 & 0 \\ 0 & 0 & 0 & (X-1)^2 \end{pmatrix}.$$

Then, applying Step 1 of the above algorithm, we get the sequence of column operations:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{P(1,3)} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{E_{1,-1}} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{E_{3,1,A-I}} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{P(2,4)} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \xrightarrow{E_{3,2,-2}} \begin{pmatrix} 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \xrightarrow{E_{4,2;A+I}} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = P'.$$