Lemma 1: Let σ be a schedule with $\sigma[q] = k$, $\sigma[q + c] = i$, where $q \in N_n$ and $c \in N_{n-q}$. Let $\underline{\sigma}$ be an imaginary schedule that $\underline{\sigma}[l] = \sigma[l] \ \forall l \in \{N_n \setminus \{q, q + c\}\}$ and two imaginary jobs J'_k and J'_i are in positions q and q + c, respectively. The processing and setup times of J'_k and J'_i on $M_1, M_2, ..., M_{m+1}$ are $p_{i1}, s_{i1}, p_{k2}, s_{k2}, ..., p_{k(m+1)}, s_{k(m+1)}$ and $p_{k1}, s_{k1}, p_{i2}, s_{i2}, ..., p_{i(m+1)}, s_{i(m+1)}$, respectively. The deadlines of J'_k and J'_i are d_k and d_i , respectively. If $p_{i1} + s_{i1} \leq p_{k1} + s_{k1}$, then $TT(\underline{\sigma}) \leq TT(\underline{\sigma})$.

Proof: Since $\forall l \in N_{q-1}$, $\sigma[l] = \underline{\sigma}[l]$, $f_j(\underline{\sigma}_{[l]}) = f_j(\sigma_{[l]}) \ \forall j \in N_{m+1} \text{ and } \forall l \in N_{q-1}. \ \forall l \in N_{q-1}, d_{\sigma[l]} = d_{\underline{\sigma}[l]}$, thus $TT(\underline{\sigma}, l) = TT(\sigma, l)$.

Since $p_{i1} + s_{i1} \le p_{k1} + s_{k1}$, $f_1(\underline{\sigma}_{[q]}) \le f_1(\sigma_{[q]})$. The processing and setup times of J'_k on $M_2, M_3, ..., M_{m+1}$ are the same as those of $J_k, f_d(\underline{\sigma}_{[q]}) = f_d(\sigma_{[q]}) \ \forall d = 2, ..., m$. Thus,

$$f_{m+1}(\underline{\sigma}_{[q]}) = \max\{\max_{j \in N_m}\{f_j(\underline{\sigma}_{[q]})\}, \quad f_{m+1}(\underline{\sigma}_{[q-1]}) + s_{k(m+1)}\} + p_{k(m+1)} \leq$$

 $\max\{\max_{j\in N_m}\{f_j(\sigma_{[q]})\}, f_{m+1}(\sigma_{[q-1]}) + s_{k(m+1)}\} + p_{k(m+1)} = f_{m+1}(\sigma_{[q]}). \text{ Similarly, } f_{m+1}(\underline{\sigma}_{[l]}) \leq c_{m+1}(\sigma_{[q]}).$

 $f_{m+1}(\sigma_{[l]}) \ \forall l = q+1, ..., q+c-1. \ \forall l = q, ..., q+c-1, d_{\sigma[l]} = d_{\underline{\sigma}[l]}, \text{ thus } TT(\underline{\sigma}, l) \leq TT(\sigma, l) \ \forall l = q, ..., q+c-1.$

Since the processing and setup times of J'_i on M_1 , M_2 , ..., M_{m+1} are p_{k1} , s_{k1} , p_{i2} , s_{i2} , ..., $p_{i(m+1)}$, $s_{i(m+1)}$, $f_d(\underline{\sigma}_{[q+c]}) = f_d(\sigma_{[q+c]})$ $\forall d \in N_m$. Thus, $f_{m+1}(\underline{\sigma}_{[q+c]}) = \max\{\max_{j \in N_m}\{f_j(\underline{\sigma}_{[q+c]})\}, f_{m+1}(\underline{\sigma}_{[q+c-1]}) + s_{i(m+1)}\} + p_{i(m+1)} \leq \max\{\max_{j \in N_m}\{f_j(\underline{\sigma}_{[q+c]})\}, f_{m+1}(\underline{\sigma}_{[q+c-1]}) + s_{i(m+1)}\}$

 $f_{m+1}(\sigma_{[q+c-1]}) + s_{i(m+1)}\} + p_{i(m+1)} = f_{m+1}(\sigma_{[\tau+c]}).$ Similarly, $f_{m+1}(\underline{\sigma}_{[l]}) \le f_{m+1}(\sigma_{[l]}) \ \forall l = q+c$ $+1, \ldots, /\sigma/. \ \forall l = q+c, \ldots, /\sigma/, d_{\sigma[l]} = d_{\underline{\sigma}[l]}, \text{ thus } TT(\underline{\sigma}, l) \le TT(\sigma, l).$

Since $TT(\underline{\sigma}, l) \leq TT(\sigma, l)$ holds $\forall l \in N_{|\sigma|}, TT(\underline{\sigma}) = \sum_{j \in N_{|\underline{\sigma}|}} TT(\underline{\sigma}, j) \leq TT(\sigma) = \sum_{j \in N_{|\underline{\sigma}|}} TT(\sigma, j).$

Lemma 3: Let σ be a schedule, $q \in N_{|\sigma|}$, and $p_{min} = \min\{p_{\sigma[i](m+1)} \mid i \in \{q+1, ..., |\sigma|\}\}$. Let $\underline{\sigma}$ be an imaginary schedule that $\underline{\sigma}[l] = \sigma[l]$, $\forall l \in N_q$, and $\forall k \in \{q+1, ..., |\sigma|\}$, $J'_{\sigma[k]}$ is an imaginary job. The deadline of $J'_{\sigma[k]}$ is $d_{\sigma[k]}$. The processing and setup times of J'_k on $M_1, M_2, ..., M_{m+1}$ are $p_{\sigma[k]1}, s_{\sigma[k]1}, p_{\sigma[k]2}, s_{\sigma[k]2}, ..., p_{min}, s_{\sigma[k](m+1)}$, respectively. Then, $TT(\underline{\sigma}) \leq TT(\underline{\sigma})$.

Proof: Since $\forall l \in N_q$, $\sigma[l] = \underline{\sigma}[l]$, $f_j(\underline{\sigma}_{[l]}) = f_j(\sigma_{[l]}) \ \forall j \in N_{m+1} \text{ and } \forall l \in N_q. \ \forall l \in N_q, \ d_{\sigma[l]} = d_{\underline{\sigma}[l]}$, thus $TT(\underline{\sigma}, l) = TT(\sigma, l)$.

Since the processing and setup times of $J'_{\sigma[q+1]}$ on $M_1, M_2, ..., M_m$ are the same with those of $J_{\sigma[q+1]}, f_j(\underline{\sigma}_{[q+1]}) = f_j(\sigma_{[q+1]}) \ \forall j \in N_m$. Since $p_{min} \leq p_{\sigma[q+1](m+1)}, f_{m+1}(\underline{\sigma}_{[q+1]}) = f_j(\sigma_{[q+1]})$

$$\max\{\max_{j\in N_m}\{f_j(\underline{\sigma}_{[q+1]})\},\quad f_{m+1}(\underline{\sigma}_{[q]})\quad +\quad s_{\sigma[q+1](m+1)}\}\quad +\quad p_{min}\quad \leq\quad f_{m+1}(\sigma_{[q+1]})\quad =\quad s_{\sigma[q+1](m+1)},\quad f_{min}(\underline{\sigma}_{[q+1]})\quad =\quad s_{\sigma[q+1](m+1)},\quad f_{min}(\underline{\sigma}_{[q+1](m+1)})\quad =\quad s_{\sigma[q+1](m+1)},\quad f_{min}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)})\quad =\quad s_{\sigma[q+1](m+1)},\quad f_{min}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)})\quad =\quad s_{\sigma[q+1](m+1)},\quad f_{min}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)})\quad =\quad s_{\sigma[q+1](m+1)},\quad f_{min}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)})\quad =\quad s_{\sigma[q+1](m+1)},\quad f_{min}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+1](m+1)}(\underline{\sigma}_{[q+$$

 $\max\{\max_{j\in N_m}\{f_j(\sigma_{[q+1]})\}, f_{m+1}(\sigma_{[q]}) + s_{\sigma(q+1)(m+1)}\} + p_{\sigma(q+1)(m+1)}.$ Since $d_{\sigma(q+1)} = d_{\underline{\sigma}(q+1)}$,

 $TT(\underline{\sigma}, q+1) \le TT(\sigma, q+1)$. Similarly, $TT(\underline{\sigma}, l) \le TT(\sigma, l) \ \forall l = q+2, ..., |\sigma|$.

Since $\forall l \in N_q$, $TT(\underline{\sigma}, l) = TT(\sigma, l)$ and $\forall l \in \{q+1, ..., |\sigma|\}$, $TT(\underline{\sigma}, l) \leq TT(\sigma, l)$ Thus, $TT(\sigma) \leq TT(\sigma)$.

Lemma 4: Let σ be a schedule, $q \in N_{|\sigma|}$, and $s_{min} = \min\{s_{\sigma[i](m+1)} \mid i \in \{q+1, ..., |\sigma|\}\}$. Let $\underline{\sigma}$ be an imaginary schedule that $\underline{\sigma}[l] = \sigma[l]$, $\forall l \in N_q$, and $\forall k \in \{q+1, ..., |\sigma|\}$

 $|\sigma|$, $J'_{\sigma[k]}$ is an imaginary job. The deadline of $J'_{\sigma[k]}$ is $d_{\sigma[k]}$. The processing and setup times of J'_k on $M_1, M_2, \ldots, M_{m+1}$ are $p_{\sigma[k]1}, s_{\sigma[k]1}, p_{\sigma[k]2}, s_{\sigma[k]2}, \ldots, p_{\sigma[k](m+1)}, s_{min}$, respectively. Then, $TT(\underline{\sigma}) \leq TT(\sigma)$.

Proof: Since $\forall l \in N_q$, $\sigma[l] = \underline{\sigma}[l]$, $f_j(\underline{\sigma}_{[l]}) = f_j(\sigma_{[l]}) \ \forall j \in N_{m+1} \text{ and } \forall l \in N_q. \ \forall l \in N_q, \ d_{\sigma[l]} = d_{\sigma[l]}$, thus $TT(\underline{\sigma}, l) = TT(\sigma, l)$.

Since the processing and setup times of $J'_{\sigma[q+1]}$ on $M_1, M_2, ..., M_m$ are the same with those of $J_{\sigma[q+1]}, f_j(\underline{\sigma}_{[q+1]}) = f_j(\sigma_{[q+1]}) \ \forall j \in N_m$. Since $s_{min} \leq s_{\sigma[q+1](m+1)}, f_{m+1}(\underline{\sigma}_{[q+1]}) = \max\{\max_{j\in N_m}\{f_j(\underline{\sigma}_{[q+1]})\}, f_{m+1}(\underline{\sigma}_{[q]}) + s_{min}\} + p_{\sigma[q+1](m+1)} \leq f_{m+1}(\sigma_{[q+1]}) = \max\{\max_{j\in N_m}\{f_j(\underline{\sigma}_{[q+1]})\}, f_{m+1}(\underline{\sigma}_{[q]}) + s_{min}\} + p_{\sigma[q+1](m+1)} \leq f_{m+1}(\sigma_{[q+1]}) = \max\{\max_{j\in N_m}\{f_j(\underline{\sigma}_{[q+1]})\}, f_{m+1}(\underline{\sigma}_{[q]}) + s_{min}\} + p_{\sigma[q+1](m+1)} \leq f_{m+1}(\sigma_{[q+1]}) = \max\{\max_{j\in N_m}\{f_j(\underline{\sigma}_{[q+1]})\}, f_{m+1}(\underline{\sigma}_{[q+1]}) + s_{min}\} + p_{\sigma[q+1](m+1)} \leq f_{m+1}(\sigma_{[q+1]}) = \max\{\max_{j\in N_m}\{f_j(\underline{\sigma}_{[q+1]})\}, f_{m+1}(\underline{\sigma}_{[q+1]}) + s_{min}\} + p_{\sigma[q+1](m+1)} \leq f_{m+1}(\underline{\sigma}_{[q+1]}) + s_{min}(\underline{\sigma}_{[q+1]}) + s_{min}(\underline{\sigma}_{[q$

 $\max\{\max_{j\in N_m}\{f_j(\sigma_{[q+1]})\}, f_{m+1}(\sigma_{[q]}) + s_{\sigma(q+1)(m+1)}\} + p_{\sigma(q+1)(m+1)}. \text{ Since } d_{\sigma(q+1)} = d_{\underline{\sigma}(q+1)},$

 $TT(\underline{\sigma}, q+1) \le TT(\sigma, q+1)$. Similarly, $TT(\underline{\sigma}, l) \le TT(\sigma, l) \ \forall l = q+2, ..., |\sigma|$.

Since $\forall l \in N_q$, $TT(\underline{\sigma}, l) = TT(\sigma, l)$ and $\forall l \in \{q+1, ..., |\sigma|\}$, $TT(\underline{\sigma}, l) \leq TT(\sigma, l)$ Thus, $TT(\underline{\sigma}) \leq TT(\sigma)$.

Lemma 5: Let σ be a schedule. Then, the finish time of the next job in σ_u to be arranged after σ is no earlier than $f(\sigma, 1) = mst(\sigma, m+1) + \min_{j \in \sigma'} \{p_{j(m+1)}\}$.

Proof: The start time of the next job in σ_u to be arranged after σ is no less than $st(\sigma, j, m+1)$ and the processing time of the next job in σ_u is no less than $\min_{j \in \sigma} \{p_{j(m+1)}\}$, thus the finish time of the next job in σ_u to be arranged is no less than $f(\sigma, 1)$.

Corollary 2: Let σ be a schedule, σ_p be a permutation of σ_u whose jobs are sorted by the processing times on M_{m+1} in ascending order, and $\sigma_p[k, m+1]$ denote the processing time of the kth job in σ_s on M_{m+1} . Then, the finish time of the second job after σ is no earlier than $f(\sigma, 2) = f(\sigma, 1) + \sigma_p[2, m+1]$; and the finish time of the kth job after σ is no earlier than $f(\sigma, k) = f(\sigma, k-1) + \sigma_p[k, m+1]$.

Proof: The start time of the next job in σ_u to be arranged after σ is no less than $mst(\sigma, m+1)$ and the sum of processing time of the next two jobs in σ_u is no less than $\sigma_p[1, m+1] + \sigma_p[2, m+1]$, thus the finish time of the second job after σ is no earlier than $mst(\sigma, m+1) + \sigma_p[1, m+1] + \sigma_p[2, m+1] = f(\sigma, 1) + \sigma_p[2, m+1]$. Similarly, the finish time of the kth job after σ is no earlier than $mst(\sigma, m+1) + \sigma_p[1, m+1] + ... + \sigma_p[k-1, m+1] + \sigma_p[k, m+1] = f(\sigma, k-1) + \sigma_p[k, m+1]$.

Theorem 2: Let σ be a schedule, $TT(\sigma\sigma^*) \ge LB_2(\sigma_1)$.

Proof: Let $f(\sigma, \sigma^*, k)$ ($d(\sigma^*, k)$) denote the finish time (deadline) of the kth job in σ^* arranged after σ . $TT(\sigma\sigma^*) = TT(\sigma) + \sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, \sigma^*, k) - d(\sigma^*, k), 0\}$. Since $f(\sigma, \sigma^*, k) \ge f(\sigma, k)$ holds $\forall j \in N_{|\sigma_u|}, \sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, \sigma^*, k) - d(\sigma^*, k), 0\} \ge \sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, k) - d(\sigma^*, k), 0\}$. By Corollary 3, we know that $\sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, k) - d(\sigma^*, k), 0\} \ge \sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, k) - d(\sigma^*, k), 0\} \ge \sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, k) - \sigma_d[k], 0\}$. Hence, $TT(\sigma\sigma^*) \ge LB_2(\sigma_1)$.

Lemma 7: Let σ be a schedule. Then, the finish time of the next job in σ_u to be arranged after σ is no earlier than $F(\sigma, 1) = I(\sigma, m+1) + \min_{j \in \sigma'} \{p_{j(m+1)} + s_{j(m+1)}\}.$

Proof: The idle time of M_{m+1} from $f_{m+1}(\sigma)$ to the start time of the next job in σ_u to

be arranged after σ on M_{m+1} is no less than $I(\sigma, m+1)$ and the sum of processing time and setup time of the next job in σ_u is no less than $\min_{j \in \sigma'} \{p_{j(m+1)} + s_{j(m+1)}\}$, thus the finish time of the next job in σ_u to be arranged is no less than $F(\sigma, 1)$.

Corollary 4: Let σ be a schedule, σ_s be a permutation of σ_u whose jobs are sorted by the sums of processing time and setup time on M_{m+1} in ascending order, and $\sigma_s[k, m+1]$ denote the sum of processing time and setup time of the kth job in σ_s on M_{m+1} . Then, the finish time of the second job after σ is no earlier than $F(\sigma, 2) = F(\sigma, 1) + \sigma_s[2, m+1]$; and the finish time of the kth job after σ is no earlier than $F(\sigma, k) = F(\sigma, k-1) + \sigma_s[k, m+1]$.

Proof: The idle time of M_{m+1} from $f_{m+1}(\sigma)$ to the start time of the next job in σ_u to be arranged after σ on M_{m+1} is no less than $I(\sigma, m+1)$ and the sum of processing times and setup times of the next two jobs in σ_u is no less than $\sigma_s[1, m+1] + \sigma_s[2, m+1]$, thus the finish time of the second job after σ is no earlier than $I(\sigma, m+1) + \sigma_s[1, m+1] + \sigma_s[2, m+1] = F(\sigma, 1) + \sigma_s[2, m+1]$. Similarly, the finish time of the kth job after σ is no earlier than $I(\sigma, m+1) + \sigma_s[1, m+1] + ... + \sigma_s[k-1, m+1] + \sigma_s[k, m+1] = F(\sigma, k-1) + \sigma_s[k, m+1]$.

Theorem 3: Let σ be a schedule, $TT(\sigma \sigma^*) \ge LB_3(\sigma_1)$.

Proof: Let $f(\sigma, \sigma^*, k)$ ($d(\sigma^*, k)$) denote the finish time (deadline) of the kth job in σ^* arranged after σ . $TT(\sigma\sigma^*) = TT(\sigma) + \sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, \sigma^*, k) - d(\sigma^*, k), 0\}$. Since $f(\sigma, \sigma^*, k) \geq F(\sigma, k)$ holds $\forall j \in N_{|\sigma_u|}$, $\sum_{k \in N_{|\sigma_u|}} \max\{f(\sigma, \sigma^*, k) - d(\sigma^*, k), 0\} \geq \sum_{k \in N_{|\sigma_u|}} \max\{F(\sigma, k) - d(\sigma^*, k), 0\}$. By Corollary 5, we know that $\sum_{k \in N_{|\sigma_u|}} \max\{F(\sigma, k) - d(\sigma^*, k), 0\} \geq \sum_{k \in N_{|\sigma_u|}} \max\{F(\sigma, k) - d(\sigma^*, k), 0\} \geq \sum_{k \in N_{|\sigma_u|}} \max\{F(\sigma, k) - \sigma_d[k], 0\}$. Hence, $TT(\sigma\sigma^*) \geq LB_3(\sigma_1)$.