PEC2. Análisis de datos Ómicos.

Mª de la Vega Rodrigálvarez Chamarro

22 de diciembre, 2024

Contents

1	Res	umen	ejecutivo	2
2	Intr	oducc	ión y Objetivos	3
3	Mét	todos		3
4	Res	ultado	os .	4
5	Disc	cusión		22
6	Not	as		22
7	Ref	erenci	as	22
8	Apé	endices	5	23
	8.1	Apend	lice A. Tablas de genes mas significativos por contraste	23
		8.1.1	Linezolid. Genes diferencialmente expresados Infectado y No Infectado	23
		8.1.2	Sin Tratamiento. Genes diferencialmente expresados Infectado y No Infectado	26
		8.1.3	Vancomicina. Genes diferencialmente expresados Infectado y No Infectado	31
	8.2	Apend	dice B. Tablas de genes anotados	35
		8.2.1	Genes significativos anotados para el estudio con Linezolid	35
		8.2.2	Genes significativos anotados para el estudio sin tratamiento	39
		8.2.3	Genes significativos anotados para el estudio con Vancomizina	43
		8.2.4	Genes significativos anotados comunes a los tres estudios	46
	8.3	Apéno	lice C. Código	48

1 Resumen ejecutivo

A partir de los datos proporcionados por el estudio "Expression data in Staphylococcus aureus-infected mice with linezolid and vancomycin treatment" publicado el el 5 de junio de 2014 en Geo GSE38531 que contiene 35 muestras de ratón, se lleva a cabo un estudio para identificar los genes con expresión significativamente diferencial entre infectados por la enfermedad MRSA y los no infectados. Ambos grupos se han divido en tres donde un grupo no ha sido tratado, otro grupo ha sido tratado con Linezolid y otro grupo ha sido tratado con Vancomicina.

Tras el análisis de la información, se ha observado que en los tres grupos existen genes diferencialmente expresados entre el grupo de los infectados y los no infectados. Además, se ha visto que exite un conjunto de 52 genes que se comunes a los tres grupos de estudio que su expresión génica es diferente entre los infectados y los no infectados.

Con respecto al análisis biológico, se puede identicar que las expresiones génicas hacen referencia a la regulación del sistema inmunitario, pero se necesitaría un análisis más profundo para realizar una correcta interpretación.

2 Introducción y Objetivos

Dadas las 35 muestras de un modelo murino (ratón), el objetivo del estudio es encontrar los cambios en la expresión génica entre los ratones infectados y los no infectados en los siguientes grupos:

- Infectados contra no infectados y que no han recibido ningún tratamiento.
- Infectados contra no infectados y que hayan sido tratados con Linezolid.
- Infectados contra no infectados y que hayan sido tratados con Vancomicima.

Finalmente, con los genes seleccionados se tratará de identificar una significación biológica a los diferentes conjuntos de genes identificados en los tres estudios. Finalmente, se estudiará que genes se encuentran significamente representados en los tres grupos y se les dará un significación biológica.

3 Métodos

Para el presente estudio se utilizan los datos en crudo descargados desde el sitio de GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38531. Estos datos fueron utilizados por la Universidad de Duke, cuyo investigador principal es Sun Hee Ahn, para determinar la expresión génica de los ratones infectados por *Staphylococcus aureu* una vez que han sido tratados con *linezolid* y vancomycin. La plataforma que se ha utilizado para realizar la secuenciación de las muestras ha sido Affymetrix Mouse Genome 430 2.0. En el presente estudio se realiza un filtrado de los datos donde se cuenta con los siguientes grupos:

- 24 ratones no infectados los cuales 4 de ellos no han recibido ningún tratamiento, 4 de ellos han sido inyectados con *linezolid* y cuatro de ellos han sido inoculados con *vancomycin*.
- 24 ratones infectados con el virus *Staphylococcus aurea* y, al igual en el grupo anterior, a las 24 h, 4 de ellos fueron inoculados con *linezolid*, cuatro de ellos con *vancomycin* y 4 de ellos no recibieron ningún tipo de tratamiento.

Para cada individuo se ha tomado un total de 1004004 muestras con el objeto de analizar la expresión génica de los diferentes individuos ante las diferentes condiciones generadas. Antes de proceder con la comparación de la expresión génica de los diferentes grupos, se realiza un análisis exploratorio de los mismos para verificar su calidad. Una vez se han verificado los diferentes datos y se han hecho las transformaciones necesarias, se procede con el análisis de la expresión génica.

Para realizar el análisis exploratorio de los datos y determinar su calidad se han realizado diversos estudios de comparación (boxplot) y de clasificación para ver si hay algún dato anormal en la muestra. Además, se ha realizado un análisis de componentes principales donde se ve una clara separación en las expresiones génicas de aquellas muestras que han sido infectadas de aquellas de las que no. Aunque según el tratamiento administrado, las diferencias son menos claras.

A continuación, se ha realizado un filtrado de genes donde se han eliminado aquellos que tienen menor variabilidad. El criterio seguido para el filtrado ha sido eliminando todos aquellos genes que su variabilidad se encuentra por debajo del 90% del porcentaje de cuartiles. Este filtrado ha reducido bastante la muestra quedando un conjunto de 2048 genes que analizar.

Para poder realizar el estudio de contrastes, ha sido necesario construir una matriz de diseño donde se han generado 6 grupos diferentes y se ha creado la matriz de contraste para poder estudiar la variación de la expresión génica entre infectados y no infectados en función del tratamiento recibido.

Para obtener la lista de genes diferencialmente expresados se ha utilizado el paquete *limma* de *BioConductor*. La selección de los genes se ha realizado en base a los siguientes criterios:

• el p-valor sea menor del 0.05

• El número de pliegues sea menor o igual a 2.

Se han generado 3 listas de genes y se ha mostrado un mapa de calor por cada grupo. En los mapas de calor se ha visto que sí que existe una diferencia en la expresión génica entre los grupos de infectados y los no infectados. En un diagrama de Venn se puede ver las coincidencias en el número de genes que hay en común entre los diferentes grupos.

Una vez que los genes han sido identificados, se procede a su anotación usando la base de datos "mouse4302.db" de Bioconductor que contiene los genes anotados de las sondas proporcionadas por Affymetrix Mouse Genome 430 2.0 (chip mouse4302). Los genes han sido anotados con los códigos de Symbol, Ensembl y EntrezID.

Una vez que los genes han sido anotados, se han buscado los diferentes *pathways* biologicamente significativos dentro de la Gene Ontology (GO) que contiene los genes anotados. Para ello se ha utilizado el paquete *clusterProfiler* de *BioConductor*.

4 Resultados

En esta sección, se trabaja con los datos para encontrar las diferentes expresiones génicas desde que se analiza la calidad de los mismos hasta que se realiza el análisis de significación biológica.

Análisis exploratorio y control de calidad

Antes de realizar el análisis de los datos, se procede a realizar un estudio exploratorio de los datos y un control de calidad de los mismos para ver si existe alguna anormalidad en los datos o si es necesario alguna transformación de los mismos.

En el diagrama de cajas que se muestra en la Figura 1, que muestra la distribución de las intensidades en crudo tomadas en las diferentes muestras, se puede observar que no existe ningún dato que difiera en gran medida de los otros. Se puede ver que, independientemente del grupo al que pertenecen los valores, el rango de valores en el que se mueven es muy similar y el valor medio es muy similar entre ellos. Existe una ligera diferencia en una de las muestras infectadas con el virus que no ha recibido tratamiento, pero esa diferencia se puede considerar despreciable.

Distribución intensidad datos en crudo

Figure 1: Intensidad distribución muestras

En la figura 2, se ha realizado un agrupamiento de los datos donde se pueden observar 3 grupos distribuidos de las siguiente manera:

- Un primer grupo que contiene 2 muestras GSM944840 y GSM944856 las cuales una ha sido infectada por el virus y otra que no lo ha sido. Se puede observar en el diagrama de cajas, el rango de valores de las intensidades es menor y también la mediana.
- Existe un segundo grupo, mucho más extenso, que contiene 11 muestras y que está formado por todas aquellas muestras que no han sido infectadas por el virus.
- Y por último, un tercer grupo que contiene todas aquellas muestras que sí que han sido infectadas con el virus.

Clustering jerarquizado datos en crudo 100000 NOINF.LIN NOINF.LIN **NF.NOTTREAT** NOINF.NOTTREAT NOINF.NOTTREAT NOINF.VAN NOINF.VAN JOINF.NOTTREAT NOINF.NOTTREAT NOINF.LIN NOINF.VAN NOINF.VAN **NF.NOTTREAT NF.NOTTREAT** dist(t(exprs(rawData))) hclust (*, "average")

Figure 2: Clusterización

Como se puede observar, excepto 2 muestras que han sido clasificadas de forma independiente, se han creado dos grupos, uno que contiene todas aquellas muestras que han sido infectadas y otro grupo con aquellas que no lo han sido.

Finalmente, se procede a realizar un análisis de componentes (PCA) con el objeto de reducir la dimensionalidad de la muestra y observar como se agrupan y explican las diferentes muestras.

Una vez realizado el análisis de componentes principales, se puede ver que con las 2 primeras componentes se puede llegar a explicar casi un 55% de la variabilidad. Además, en la figura 3 se puede ver que hay una clara diferencia entre aquellos grupos que fueron infectados y cuales no. Si se tratase una linea diagonal imaginaria se vería que los grupos infectados quedarían en la parte superior izquierda y los no infectados en la parte inferior derecha. Sin embargo, no se puede identificar un claro agrupamiento entre los diferentes tratamientos aplicados, ya que los puntos se entremezclan entre ellos.

Plot of first 2 PCs for expressions in raw data

Figure 3: Análisis PCA

Para un análisis de calidad de los datos se ha ejecutado el paquete de R arrayQualityMetrics, el cuál ha sido ejecutado y cuyos resultados se pueden ver en el Anexo I. Calidad de los datos que se adjunta junto al presente informe y donde se pueden ver unos resultados similares.

Antes de continuar con el análisis y el estudio de los datos se procederá a la normalización de los datos y que todos los valores se encuentren en el mismo rango de valores utilizando el método de RMA.

Como resultado de la normalización, se ha obtenido un *ExpressionSet* formado por 45101 sondas o filas y 24 columnas, una por cada muestra. Se puede encontrar el fichero normalizado en NormData.txt.

Filtrado de los datos

Una vez que los datos han sido normalizados, se procede a realizar una selección de genes para facilitar su estudio. Se va a proceder a eliminar aquellos genes los cuales tienen poca variabilidad ya que, al variar poco entre los grupos es probable que no sean candidatos para encontrar diferencias y así, poder identificar que genes tienen una mayor representación biológica.

En este estudio se procederá a seleccionar el 10% de las sondas que presentan una mayor variabilidad.

Para poder realizar el filtrado de los datos, hay que indicar la anotación del ExpressionSet. Tal y como índica en el estudio del que los datos han sido obtenidos, la plataforma utilizada ha sido "Affymetrix Mouse430_2 Array annotation data (chip mouse4302)" por lo que la librería de anotación a usar de *BioConductor* ha sido "mouse4302.db".

El punto de corte del filtrado se ha fijado en 0.9 con el objeto de tener el 10%, en base a cuartiles, de las sondas con más variabilidad e independientemente de que tengan anotación *Entrez* o no. El resultado de este filtrado hace que haya un total de 2048 genes más representativos con los que llevar a cabo el análisis de expresión génica. Se han eliminado 24561 elementos duplicados, 18428 elementos de baja variabilidad y 64 features excluidas.

Una vez filtrados los datos, se obtendrá una matriz filtrada para proceder con la selección de genes.

Construcción de la matriz de diseño y contrastes

Para construir la matriz de diseño, hace falta información acerca de los factores experimentales o los grupos del estudio.

En este conjunto de muestras, tras la selección de las mismas, existen 12 ratones que han sido infectados con el virus *Staphylococcus aureas* y 12 ratones no infectados, considerados de control. Dentro de cada grupo, 4 ratones no han sido tratados con ningún medicamento, 4 ratones han sido tratados con linezolid y 4 con vancomycin, por lo que existen dos factores. Los seis grupos que existen son:

- Grupo 1. Infectado y tratado con Linezolid (INF.LIN)
- Grupo 2. No infectado y tratado con Linezolid (NOINF.LIN)
- Grupo 3. Infectado y sin ningún tratamiento. (INF.NOTTREAT)
- Grupo 4. No infectado y sin ningún tratamiento. (NOINF.NOTTREAT)
- Grupo 5. Infectado y tratado con Vancomycin. (INF.VAN)
- Grupo 6. No infectado y tratado con vancomycin. (NOINF.VAN)

Una vez definidos los grupos se proceder a construir la matriz de diseño que quedará de la siguiente forma:

Table 1: Matriz de diseño

		NOINF	INF	NOINF	INF	NOINF
I	NF LIN	LIN	NOTTREAT	NOTTREAT	VAN	VAN
INF.LIN	1	0	0	0	0	0
INF.LIN	1	0	0	0	0	0
INF.LIN	1	0	0	0	0	0
INF.LIN	1	0	0	0	0	0
NOINF.LIN	0	1	0	0	0	0
NOINF.LIN	0	1	0	0	0	0
NOINF.LIN	0	1	0	0	0	0
NOINF.LIN	0	1	0	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
INF.NOTTREAT	0	0	1	0	0	0
NOINF.NOTTREAT	0	0	0	1	0	0
NOINF.NOTTREAT	0	0	0	1	0	0
NOINF.NOTTREAT	0	0	0	1	0	0
NOINF.NOTTREAT	0	0	0	1	0	0
INF.VAN	0	0	0	0	1	0
INF.VAN	0	0	0	0	1	0
INF.VAN	0	0	0	0	1	0
INF.VAN	0	0	0	0	1	0
NOINF.VAN	0	0	0	0	0	1
NOINF.VAN	0	0	0	0	0	1
NOINF.VAN	0	0	0	0	0	1
NOINF.VAN	0	0	0	0	0	1

El objetivo del estudio es comparar las diferencias en las expresiones génicas de los ratones infectados y de los no infectados dentro del grupo del tratamiento en el que se encuentran. Para ello, se construirá la matriz de contrastes de la siguiente manera:

• INF.LIN vs NOINF.LIN

- INF.NOTTREAT vs NOINF.NOTTREAT
- INF.VAN vs NOINF.VAN

Las filas de la matriz de contrastes representan las comparaciones que se van a realizar, en este caso se tendrían 6 filas que serían los diferentes grupos existentes y 3 columnas, una por cada una de las comparaciones.

Table 2: Matriz de contraste

LIN_INF_NOINF	NOTTREAT_INF_NOINF	VAN_INF_NOINF
1	0	0
-1	0	0
0	1	0
0	-1	0
0	0	1
0	0	-1
	1	0 1

Obtención de las listas de genes diferencialmente expresados para cada comparación

Una vez definida la matriz de diseño y los contrastes, se procede a estimar el modelo y los contrastes, así como las pruebas de significación que ayudarán a decidir, para cada gen y para cada comparación, si pueden considerarse de expresión diferencial. Para ello se ha usado el paquete *limma*.

Una vez que se ha calculado el modelo, se obtiene para cada uno de los contrastes los genes más significativos. El punto de corte se establece con el p-valor, seleccionando únicamente aquella de lista de genes cuyo p-valor es menor de 0.05 y el mínimo cambio de pliegues es igual a 2.

Para aquellos ratones que han sido tratados con Linezolid se han identificado 188 genes. En la siguiente tabla se muestra una representación de los primeros genes más significativos.

Table 3: Genes diferencialmente expresados LINEZOLID

	$\log FC$	AveExpr	t	P Value	adj P Val	В
1421262_at	6.157126	7.175233	16.81011	0	0	21.47320
1427747_a_at	4.952167	10.693149	14.02125	0	0	18.09290
1419681_a_a	4.798082	7.386037	13.26956	0	0	17.07058
1440865 _at	3.362591	11.173847	12.92250	0	0	16.58065
1422953 _at	2.840405	11.192299	12.31129	0	0	15.68883
1448562_at	4.413814	7.599334	12.03517	0	0	15.27333

Además, como se puede ver en el mapa de calor, se puede ver que hay una clara diferencia entre el grupo de infectados (rojo, azul, verde) y los no infectados (rosa, azul claro, verde claro).

Figure 4: Mapa de calor. Linezolid Infectados vs No Infectados

Para aquellos ratones que no han sido tratados, se ha identificado un total de 236 genes diferencialmente expresados.

	$\log FC$	AveExpr	t	P Value	adj P Val	В
1421262_at	7.202325	7.175233	19.66370	0	0	24.64100
1427747 _a_at	6.237323	10.693149	17.65996	0	0	22.57310
1422953 _at	3.851164	11.192299	16.69227	0	0	21.48698
1440865 _at	4.077956	11.173847	15.67166	0	0	20.27224
1418722 _at	6.033845	10.981607	15.32034	0	0	19.83648
1429387 at	-2.125765	6.421327	-14.74724	0	0	19.10509

Table 4: Genes diferencialmente expresados No Tratados

En el mapa de calor, también se puede ver una clara diferencia entre aquellos que están infectados y no están infectados.

Figure 5: Mapa de calor. No trat@dos. Infectados vs No Infectados

Para aquellos ratones que han sido tratados con Vancomycin, se ha identificado un total de 139 genes diferencialmente expresados.

Inhla h	Lionog	dit	orongia	Imonto	Ovnrocod	00 1	/ancoms	cina
Table 5:	CICHES	UIII	CLCHUIA	ппспьс	CADICOGU	Un. I	valiconii v	CHIA.
	0.00.0							

	$\log FC$	AveExpr	t	P Value	adj P Val	В
1421262 at	6.636277	7.175233	18.11828	0	0	22.94343
1427747_a_at	5.162365	10.693149	14.61639	0	0	18.89884
1419681_a_at	5.211970	7.386037	14.41420	0	0	18.63698
1440865_at	3.638019	11.173847	13.98098	0	0	18.06410
1418722_at	5.213168	10.981607	13.23659	0	0	17.04063
1436419_a_at	-2.327081	8.574273	-12.36159	0	0	15.77012

En el mapa de calor, también se puede ver una clara diferencia entre aquellos que están infectados y no están infectados.

Figure 6: Mapa de calor. No tratados. Infectados vs No Infectados

Las tablas completas de genes expresados diferencialmente se pueden ver de forma completa en el $\bf Apendice$ $\bf A$.

A continuación, se puede ver una tabla con el número de genes que tienen una alta significancia, aquellos que no tienen significancia y los que tienen una baa significancia por estudio realizado.

Table 6: Número de Genes diferencialmente expresados

	Linezolid	Sin Tratamiento	Vancomicina
Alta Significancia (UP)	150	146	61
Sin Significancia	1860	1812	1909
Baja Significancia (DOWN)	38	90	78

Finalmente, se procede a comparar la lista de genes expresados diferencialmente más significativos de los tres contrastes realizados a través de un diagrama de VENN donde se puede observar que de todos los genes diferencialmente expresados 52, son relevantes en los 3 grupos.

Table 7: Genes comunes en los diferentes estudios

Linezolid	Sin Tratamiento	Vancomizina	N Comunes
0	0	0	1840
0	0	1	0
0	1	0	49
0	1	1	9
1	0	0	62
1	0	1	0
1	1	0	36
1	1	1	52

Figure 7: Diagrama de Venn. Genes comunes

Según el diagrama de Venn se puede ver que existen 52 genes que son comunes a los 3 grupos, hay 88 (36 \pm 52) genes que son comunes a aquellos que han sido tratados con Linezolid y no tienen ningún tratamiento. Hay 52 genes que coinciden en los tratados con linezolid y vancomizina (coincidiendo con la intersección de los 3 grupos) y que hay 61 genes (52 \pm 9) que intersectan con aquellos que han recibido como tratamiento vancomizina y no han recibido tratamiento.

También se puede observar que para aquellos que han recibido tratamiento con vancomizina no tiene genes expresados diferencialmente únicamente para ese grupo, ya que son compartidos con el resto de grupos, por lo que se podría decir, que el tratamiento con vancomizina no tiene un efecto diferente al de resto de grupos. También se podría llegar a la conclusión que el tratamiento más efectivo o que más diferencias muestra es el linezolid.

Anotación de los genes

Se han obtenido las listas de los genes más significativos en los diferentes estudios de contrastes. En todas las tablas, los genes se encuentran anotados con el identificador del proveedor del análisis, que en este ocasión se ha realizado con el chip de Affymetrix mouse 4302. Se anotan los genes con bases de datos públicas tales como "Symbol", "EntrezID" o "EnsemblID" para poder realizar los estudios de relevancia biológica.

A continuación, se muestra un listado de los 10 primeros genes más relevantes expresados significativamente para cada uno de los estudios. En el **Apéndice B** se puede ver la lista completa de genes.

Table 8: Principales genes diferencialmente expresados. Linezolid

PROBEID	SYMBOI	GENENAME	ENSEMBL	ENTREZID
1415897_a_a	atMgst1	microsomal glutathione S-transferase 1	ENSMUSG000000	086405
1415994_at	Cyp2e1	cytochrome P450, family 2, subfamily e, polypeptide	ENSMUSG000000	253796
		1		
1416025_at	Fgg	fibrinogen gamma chain	ENSMUSG000000	3 996 01
1416332_at	Cirbp	cold inducible RNA binding protein	ENSMUSG000000	4 5209 6
1416625_at	Serping1	serine (or cysteine) peptidase inhibitor, clade G,	ENSMUSG000000	2 3224 8
		member 1		
1416649_at	Ambp	alpha 1 microglobulin/bikunin precursor	ENSMUSG000000	2 8369 9
1416676_at	Kng1	kininogen 1	ENSMUSG000000	2 2664 4
1416677_at	Apoh	apolipoprotein H	ENSMUSG000000	0000898
1416729_at	Plg	plasminogen	ENSMUSG000000	598815
1417063_at	C1qb	complement component 1, q subcomponent, beta	ENSMUSG000000	3 6226 0
		polypeptide		

Table 9: Principales genes diferencialmente expresados. Sin tratamiento

PROBEID	SYMBOL	GENENAME	ENSEMBL	ENTREZID
1415897_a_at	Mgst1	microsomal glutathione S-transferase 1	ENSMUSG00000008	5 45 06615
1415964_at	$\operatorname{Scd}1$	stearoyl-Coenzyme A desaturase 1	ENSMUSG000000370	07210249
1416021_a_at	Fabp5	fatty acid binding protein 5, epidermal	ENSMUSG000000275	53B6592
1416107_at	Nsg2	neuron specific gene family member 2	ENSMUSG000000202	29178197
1416111_at	Cd83	CD83 antigen	ENSMUSG000000153	39162522
1416125_at	Fkbp5	FK506 binding protein 5	ENSMUSG000000242	2224229
1416381_a_at	Prdx5	peroxiredoxin 5	ENSMUSG000000249	9534683
1416514_a_a	Fscn1	fascin actin-bundling protein 1	ENSMUSG000000295	58114086
1416871_{at}	Adam8	a disintegrin and metallopeptidase domain 8	ENSMUSG000000254	47B1501
1416957_at	Pou2af1	POU domain, class 2, associating factor 1	ENSMUSG000000320	05188985

Table 10: Principales genes diferencialmente expresados. Vancomizina

PROBEID	SYMBOL	GENENAME	ENSEMBL	ENTREZID
1415964_at	Scd1	stearoyl-Coenzyme A desaturase 1	ENSMUSG0000003	7002 49
1416111_at	Cd83	CD83 antigen	ENSMUSG0000001	5 326 22
1416630_at	Id3	inhibitor of DNA binding 3	ENSMUSG0000000	7852 03
1416809_at	Cyp3a11	cytochrome P450, family 3, subfamily a,	ENSMUSG0000005	6 035 12
		polypeptide 11		

PROBEID	SYMBOL	GENENAME	ENSEMBL	ENTREZID
1416957_at		POU domain, class 2, associating factor 1	ENSMUSG0000003	
1417025_at 1417074_at		histocompatibility 2, class II antigen E beta CEA cell adhesion molecule 10	ENSMUSG0000005	
1417268_at		CD14 antigen	ENSMUSG0000005	
1417290_at 1417640_at	0	leucine-rich alpha-2-glycoprotein 1 CD79B antigen	ENSMUSG0000003 ENSMUSG0000004	

En la siguiente lista se ven los genes representados significativamente que son comunes a los tres estudios.

Table 11: Principales genes diferencialmente expresados. Comunes

PROBEID	SYMBOI	GENENAME	ENSEMBL	ENTREZID
1436530_at	Wfdc17	WAP four-disulfide core domain 17	ENSMUSG00000069792	2 100034251
1418204_s_at	Aif1	allograft inflammatory factor 1	ENSMUSG00000024397	7 11629
1460330 _at	Anxa3	annexin A3	ENSMUSG00000029484	1 11745
1417268_at	Cd14	CD14 antigen	ENSMUSG00000051439	12475
1451537 _at	Chi3l1	chitinase 3 like 1	ENSMUSG00000064246	312654
1419764_at	Chil3	chitinase-like 3	ENSMUSG00000040809	12655
1427256_at	Vcan	versican	ENSMUSG00000021614	1 13003
1417876 _at	Fcgr1	Fc receptor, IgG, high affinity I	ENSMUSG00000015947	7 14129
1422953_{at}	Fpr2	formyl peptide receptor 2	ENSMUSG00000052270	14289
1450808_at	Fpr1	formyl peptide receptor 1	ENSMUSG00000045551	14293

Análisis de la significación biológica

Una vez que los genes han sido anotados, se realiza el estudio de significación biológica. Para ello se consulta en la base de datos *Gene Ontology* (GO) con el objeto de realizar diferentes análisis estadísticos para identificar que anotaciones tienen una frecuencia sorprendentemente más alta.

Por cada estudio de contraste realizado se va a mostrar un gráfico de barras donde se mostrará los *pathways* más enriquecidos en cada estudio de contraste y una red de genes relacionando como los *pathways* están relacionados unos con otros.

Significación biológica - Infectados y no Infectados para LINEZOLID

Figure 8: Gráficas significancia biológica LINEZOLID

Figure 9: Gráficas significancia biológica LINEZOLID

Figure 10: Red de genes expresados diferencialmente LINEZOLID

- Regulación negativa de la actividad hidrolasa
- Respuesta inmunitaria humoral
- Regulación negativa de la proteólisis
- Regulación negativa de la actividad peptidasa

Figure 11: Gráficas significancia biológica SIN TRATAMIENTO

- Vía de señalización de receptores de superficie celular reguladores de la respuesta inmunitaria
- Diferenciación linfocitaria
- Activación de células B
- vía de señalización del receptor de superficie celular activador de la respuesta inmunitaria

Figure 12: Gráficas significancia biológica SIN TRATAMIENTO

Figure 13: Red de genes expresados diferencialmente SIN TRATAMIENTO

Figure 14: Gráficas significancia biológica VANCOMIZINA

- vía de señalización de receptores de superficie celular reguladores de la respuesta inmunitaria
- Regulación positiva de la activación leucocitaria
- Regulación positiva de la activación celular
- Diferenciación linfocitaria

Figure 15: Gráficas significancia biológica VANCOMIZINA

Figure 16: Red de genes expresados diferencialmente VANCOMIZINA

Figure 17: Gráficas significancia biológica GENES COMUNES

- Vía de señalización del receptor de superficie celular regulador de la respuesta inmunitaria
- Respuesta de defensa frente a la bacteria
- Quimiotaxis
- Regulación de la respuesta inflamatoria

Figure 18: Gráficas significancia biológica GENES COMUNES

Figure 19: Red de genes expresados diferencialmente GENES COMUNES

5 Discusión

Tal y como se ha observado en la selección de genes expresados significativamentes, se ha podido observar que aquellos ratones que han sido tratados con Vancomizina, por si solos no tienen una expresión génica diferencial propia. Todos los genes que están expresados diferencialmente están compartido con el resto de grupos.

Por otra parte, aquellos que han sido tratados con linezolid tiene 62 genes expresados diferencialmente por si solos, por lo que se puede decir que este sería el tratamiento que más diferencias muestra.

De todas maneras, habría que realizar más estudios para determinar si el linezolid es el tratamiento más efectivo o no.

Al estudiar el análisis biólogico, se puede indentificar que, en todos los grupos, los *pathways* más representativos hacen referencia a algún tipo de respuesta inmunitaria pero, paara realizar un correcto análisis de significación biológico, lo óptimo sería contar con una persona que sepa analizar con más exactitud el significado biológico de los análisis e interpretar lo gráficos aquí mostrados.

6 Notas

Todo el código y los datos utilizados en la presente práctica se encuentran en el siguiente repositorio de Github: https://github.com/VegaUOC/Rodrigalvarez-Chamarro-MariadelaVega-PEC2

7 Referencias

El material usado para realizar la presente práctica es el proporcionado en la asignatura.

8 Apéndices

8.1 Apendice A. Tablas de genes mas significativos por contraste

8.1.1 Linezolid. Genes diferencialmente expresados Infectado y No Infectado

Table 12: Genes diferencialmente expresados LINEZOLID

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1421262_at	6.157126	7.175233	16.810108	0.0000000	0.0000000	21.4731987	1421262_at
1427747_a_at	4.952167	10.693149	14.021250	0.0000000	0.0000000	18.0928961	1427747_a_a
1419681_a_at	4.798082	7.386037	13.269558	0.0000000	0.0000000	17.0705750	1419681_a_a
1440865 _at	3.362591	11.173847	12.922501	0.0000000	0.0000000	16.5806509	1440865 _at
1422953_at	2.840405	11.192299	12.311293	0.0000000	0.0000000	15.6888281	1422953 _at
1448562_at	4.413814	7.599334	12.035169	0.0000000	0.0000000	15.2733289	1448562_at
1436419_a_at	-2.207412	8.574273	-11.725902	0.0000000	0.0000000	14.7982997	1436419_a_a
1427102_at	3.709836	10.546141	11.459946	0.0000000	0.0000000	14.3814229	1427102_at
1417290_at	3.954315	10.034197	11.298972	0.0000000	0.0000000	14.1252584	$1417290_{-}at$
1457728_at	-2.317387	6.607683	-11.067667	0.0000000	0.0000001	13.7520011	1457728_at
1449366_at	3.486627	10.081210	11.015297	0.0000000	0.0000001	13.6666335	1449366_at
1436530_at	4.383425	9.985045	10.672959	0.0000000	0.0000001	13.1006512	$1436530_{-}at$
1418722_at	4.142292	10.981607	10.517562	0.0000000	0.0000001	12.8391192	1418722 _at
1453568_at	-2.232933	7.823380	-10.402443	0.0000000	0.0000001	12.6434851	1453568_at
1448213_at	2.479806	12.008671	10.382870	0.0000000	0.0000001	12.6100622	1448213_{at}
1433966_x_at	2.628378	6.040605	10.369701	0.0000000	0.0000001	12.5875475	1433966_x_a
1424254_at	3.819659	11.198672	10.347366	0.0000000	0.0000001	12.5493136	1424254_at
1434484_at	3.883814	9.333854	10.106201	0.0000000	0.0000001	12.1325432	1434484 _at
1426170_a_at	-2.350623	8.374877	-9.616070	0.0000000	0.0000003	11.2629070	1426170_a_a
1447806_s_at	-2.331375	7.824789	-9.437494	0.0000000	0.0000003	10.9383620	1447806_s_a
1420330_at	2.888303	8.000858	9.436457	0.0000000	0.0000003	10.9364653	$1420330_{-}at$
1450826_a_at	6.307702	9.343178	9.314701	0.0000000	0.0000003	10.7127721	1450826_a_a
1424509_at	3.612381	8.943432	9.282374	0.0000000	0.0000004	10.6530505	1424509_at
1421366_at	2.251795	6.277268	9.238549	0.0000000	0.0000004	10.5718669	1421366_at
1437060_at	3.879705	7.500708	9.222434	0.0000000	0.0000004	10.5419498	1437060_at
1453181_x_at	2.495037	6.889508	9.195191	0.0000000	0.0000004	10.4912971	1453181_x_a
1456147_at	-2.064406	7.454899	-9.096261	0.0000000	0.0000004	10.3065232	1456147_at
1451537_at	2.782989	7.910675	9.032555	0.0000000	0.0000004	10.1868435	1451537 _at
1425289_a_at	-2.097305	7.287404	-8.924858	0.0000000	0.0000005	9.9832824	1425289_a_a
1420591_at	2.523120	6.159378	8.875661	0.0000000	0.0000005	9.8897721	$1420591_{-}at$
1448318_at	2.113868	9.414469	8.747795	0.0000000	0.0000006	9.6452014	1448318_at
1437277_x_at	2.990290	8.237915	8.734620	0.0000000	0.0000006	9.6198762	1437277_x_a
1450808_at	2.866059	8.865072	8.723852	0.0000000	0.0000006	9.5991597	1450808_at
1460330_at	2.576010	7.364740	8.722522	0.0000000	0.0000006	9.5965998	$1460330_{-}at$
1418762_at	-2.165259	7.039844	-8.607598	0.0000000	0.0000007	9.3744895	1418762 _at
1427381_at	4.369867	7.134866	8.600227	0.0000000	0.0000007	9.3601811	$1427381_{-}at$
1434046_at	3.540158	6.815033	8.599599	0.0000000	0.0000007	9.3589628	1434046_at
1434848_at	2.968253	5.824646	8.519662	0.0000000	0.0000008	9.2033180	1434848_at
1434758_at	3.038791	7.534880	8.485081	0.0000000	0.0000008	9.1357135	1434758_at
1418162_at	2.204791	6.345921	8.359111	0.0000000	0.0000009	8.8880600	1418162_at
	0.104900	8.873183	-8.287294	0.0000000	0.0000010	8.7458919	1424032 _at
1424032_at	-2.124322	0.010100	0.201201	0.000000	0.00000=0		
1424032_at 1426112_a_at	-2.124322 -2.055713	7.924286	-8.218896	0.0000000	0.0000011	8.6098283	1426112_a_a

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1419907_s_at	-2.130303	7.089150	-8.187564	0.0000001	0.0000011	8.5472848	1419907_s_at
1451006 _at	2.170610	8.700386	8.142361	0.0000001	0.0000012	8.4568144	1451006_at
1423150_{at}	-2.451760	6.578868	-8.114288	0.0000001	0.0000012	8.4004859	1423150_at
1425951 a at	2.120005	5.903867	7.724701	0.0000001	0.0000022	7.6075151	1425951_a_at
1455656 at	-2.015043	9.600563	-7.717835	0.0000001	0.0000022	7.5933518	1455656 at
1427442 a at	2.059765	9.883178	7.655958	0.0000002	0.0000024	7.4654161	1427442 a at
1419043_a_at	3.135755	8.019308	7.619247	0.0000002	0.0000024	7.3892636	1419043_a_at
1419178_at	-2.104665	8.396370	-7.613035	0.0000002	0.0000024	7.3763600	1419178_at
1436317 at	-2.027436	5.830050	-7.533297	0.0000002	0.0000027	7.2102461	1436317_at
1457666 s at	2.914557	8.574042	7.511436	0.0000002	0.0000028	7.1645519	1457666 s at
1423466 at	-2.219533	8.982411	-7.501406	0.0000002	0.0000028	7.1435633	1423466 at
1439831 at	2.246697	5.612036	7.491862	0.0000002	0.0000028	7.1235811	1439831 at
1419647 a at	2.120466	7.239192	7.434923	0.0000002	0.0000031	7.0041047	aat
1417268 at	2.931909	8.704318	7.423364	0.0000002	0.0000031	6.9797957	1417268 at
1425225_at	2.518453	9.422246	7.383601	0.0000003	0.0000033	6.8960333	1425225_at
1448871 at	2.088816	7.329450	7.370113	0.0000003	0.0000033	6.8675721	1448871_at
1448919 at	2.398736	7.822123	7.334685	0.0000003	0.0000035	6.7926946	1448919 at
1433769 at	-2.121151	6.988782	-7.250203	0.0000004	0.0000039	6.6134524	1433769 at
1428719 at	-2.070749	10.972461	-7.244838	0.0000004	0.0000039	6.6020359	1428719 at
1425065_at	2.135773	7.955901	7.223649	0.0000004	0.0000000	6.5569137	1425065 at
1424727_at	2.239457	7.272813	7.185118	0.0000004	0.0000043	6.4747047	1424727 at
1426640_s_at	-2.290909	8.891141	-7.173039	0.0000001	0.0000044	6.4488919	1426640_s_at
1426774 at	3.243168	7.488535	7.079320	0.0000001	0.0000011	6.2479462	1426774 at
1423571 at	-2.136060	8.183482	-7.077146	0.0000005	0.0000049	6.2432698	1423571_at
1419709_at	3.019782	7.006511	7.076688	0.0000005	0.0000049	6.2422846	1419709_at
1426725_s_at	-2.030282	10.430512	-7.065332	0.0000005	0.0000050	6.2178530	1426725_s_at
1450783 at	2.461744	9.228473	7.000660	0.0000006	0.0000056	6.0783810	1450783_at
1448881 at	2.617502	11.024323	6.886039	0.0000008	0.0000066	5.8298271	1448881_at
1422122 at	-2.716503	8.726842	-6.810355	0.0000000	0.0000074	5.6647635	1422122 at
1419599_s_at	2.593394	9.136198	6.807322	0.0000009	0.0000074	5.6581317	1419599_s_at
1456388_at	2.342050	6.745010	6.793888	0.0000003	0.0000074	5.6287496	1456388 at
1460407_at	-2.294426	8.595874	-6.757763	0.0000010	0.0000010	5.5496207	1460407_at
1419532_at	2.624855	8.717034	6.719442	0.0000010	0.0000083	5.4654989	1419532_at
1448575_at	-2.399779	10.233853	-6.691321	0.0000011	0.0000086	5.4036492	1448575_at
1440837 at	-2.482279	9.703369	-6.682394	0.0000012	0.0000087	5.3839924	1440837 at
		9.436586	-6.655644	0.0000012	0.0000001	5.3250330	1426168_a_at
1448291 at	2.130381	9.743778	6.584976	0.0000015	0.0000000	5.1688372	1448291_at
1426276 at	2.024025	7.837287	6.568680	0.0000016	0.0000101	5.1327299	1426276_at
1417640 at	-2.407805	9.967844	-6.541789	0.0000017	0.0000103 0.0000107	5.0730738	1417640 at
1454713 s at	2.745075	8.462184	6.524874	0.0000017	0.0000107	5.0355016	1454713 s at
1417314_at	3.495006	7.303732	6.511246	0.0000017	0.0000110	5.0052061	1417314_at
1417514_at 1452732 at	2.409310	8.218860	6.469225	0.0000018	0.0000111	4.9116449	1452732_at
1429947 a at	2.351035	8.338745	6.403248	0.0000020 0.0000022	0.0000117 0.0000125	4.8090266	1429947 a at
1429947_a_at 1448485 at	2.331033 2.225128	6.744666	6.423248 6.414726	0.0000022	0.0000123 0.0000127	4.7899790	1448485 at
1433471 at	-2.241677	9.501703	-6.393938	0.0000022 0.0000023	0.0000127 0.0000132	4.7434760	1433471_at
1455471_at 1417244 a at	2.202229	9.501705	-0.393938 6.364387	0.0000025	0.0000132 0.0000138	4.7454760 4.6772790	1435471_at 1417244_a_at
1417244_a_a_at 1418191 at	3.040075	8.046457	6.361323	0.0000025	0.0000138	4.6704087	1417244_a_a_at 1418191 at
1418191_at 1450570_a_at	-2.053750	8.926450	-6.328506	0.0000025 0.0000027	0.0000138 0.0000145	4.5967614	1418191_at 1450570_a_at
1430370_a_at 1418830 at	-2.033730	8.831048	-6.280304	0.0000027	0.0000145 0.0000156	4.4883561	1418830 at
14188357 at	-2.244213 -2.097579	6.745833	-0.280304 -6.126611	0.0000030 0.0000042	0.0000130 0.0000203	4.4883301	1428357_at
1420337_at 1442023 at	-2.097579		-6.012602	0.0000042 0.0000055		3.8814167	142023 at
		6.781595			0.0000243		· · · · · · · · · · · · · · · · · · ·
1427256_at	2.289390	7.018484	6.004027	0.0000056	0.0000246	3.8618449	1427256_at

	logFC	AveExpr	t	P Value	adj P Val	В	PROBEID
1450424_a_at	2.894223	7.183584	5.999553	0.0000056	0.0000248	3.8516277	1450424_a_at
1450484_a_at	2.561515	7.734381	5.909822	0.0000069	0.0000285	3.6462907	1450484_a_at
1449184 at	2.208918	9.390679	5.831125	0.0000083	0.0000324	3.4655107	1449184 at
1449305 at	2.114562	7.972371	5.820163	0.0000085	0.0000329	3.4402788	1449305 at
1455530 at	-2.425994	9.891386	-5.794401	0.0000090	0.0000344	3.3809348	1455530 at
1420549 at	3.671090	8.906196	5.761013	0.0000098	0.0000364	3.3039265	1420549 at
1417876 at	2.153258	7.106351	5.751082	0.0000100	0.0000368	3.2809996	1417876_at
1453939_x_at	2.186950	7.187889	5.737809	0.0000103	0.0000376	3.2503425	
1418930 at	3.216464	6.158199	5.729116	0.0000105	0.0000380	3.2302562	1418930 at
1427164_at	2.039320	6.321680	5.704308	0.0000111	0.0000396	3.1728888	1427164 at
1423954_at	3.541562	8.477378	5.700822	0.0000112	0.0000398	3.1648237	1423954 at
1425958 at	2.098302	8.154949	5.660916	0.0000123	0.0000431	3.0724101	1425958 at
1443698 at	2.125149	8.784935	5.640705	0.0000129	0.0000446	3.0255498	1443698 at
1434380 at	2.247634	9.220107	5.615578	0.0000137	0.0000463	2.9672393	1434380 at
1415897_a_at	2.087755	10.399677	5.614390	0.0000137	0.0000463	2.9644820	1415897_a_at
1435906 x at	3.629073	9.641297	5.552062	0.0000158	0.0000522	2.8195914	1435906_x_at
1429889 at	-2.305647	10.160756	-5.534369	0.0000165	0.0000538	2.7784001	1429889 at
1419769 at	-2.001769	7.258350	-5.457860	0.0000197	0.0000609	2.5999734	1419769_at
1449025 at	2.501537	7.408635	5.454997	0.0000199	0.0000611	2.5932878	1449025 at
1451798 at	2.028525	8.175836	5.413918	0.0000219	0.0000654	2.4972800	1451798 at
1417074 at	2.301829	6.862341	5.344175	0.0000217 0.0000257	0.0000740	2.3339840	1417074 at
1453196 a at	3.236590	8.268527	5.152683	0.0000404	0.000117	1.8838578	1453196_a_at
1418580_at	2.588232	9.369491	5.140658	0.0000416	0.0001017	1.8555113	1418580_at
1419764 at	2.322707	9.974123	5.048081	0.0000518	0.0001015	1.6370205	1419764_at
1418204_s_at	2.604591	7.115411	4.971924	0.0000621	0.0001431	1.4569523	1418204_s_at
1460197_a_at	2.848961	6.630594	4.913577	0.0000713	0.0001191	1.3188186	1460197_a_at
1423555_a_at	2.851298	7.468390	4.886815	0.0000710	0.0001670	1.2554145	1423555_a_at
1422760 at	2.214962	7.482519	4.876035	0.0000780	0.0001706	1.2298655	1422760 at
1456777_at	2.443120	5.332645	4.774463	0.0000100	0.0001100	0.9889662	1456777_at
1418652 at	2.182826	5.101407	4.719715	0.0001133	0.0002002	0.8590024	1418652_at
1452279 at	2.080250	8.100745	4.643745	0.0001155	0.0002235	0.6785684	1452279_at
1450009_at	2.684307	8.963616	4.617350	0.0001333 0.0001447	0.0002773	0.6158592	1450009_at
1417300_at	2.237849	8.109912	4.594513	0.0001111	0.0002880	0.5615969	1417300_at
1418797_at	2.048229	7.568652	4.548301	0.0001708	0.0003154	0.4517872	1418797_at
1416332 at	-2.470103	7.574108	-4.446006	0.0001183	0.0003131	0.2087233	1416332 at
1438037_at	2.608102	7.022837	4.420471	0.0002322	0.0004124	0.1480636	1438037_at
1422557_s_at	4.421303	8.044721	4.202483	0.0002922	0.0004124	-0.3691604	1422557_s_at
1449254 at	4.251129	6.741625	4.135376	0.0004607	0.0007447	-0.5280261	1449254_at
1424923 at	2.155737	8.560016	4.104331	0.0004964	0.0007912	-0.6014405	1424923 at
1450912_at	-2.105868	8.532145	-3.902662	0.0008056	0.0011930	-1.0767311	1450912_at
1421596_s_at	2.561384	7.273576	3.730791	0.0012155	0.0017360	-1.4788683	1421596_s_at
1451054 at	5.145902	6.876501	3.642007	0.0015022	0.0020915	-1.6852280	1451054_at
1451310 a at	2.220766	8.388071	3.613674	0.0016070	0.0022318	-1.7508538	1451310_a_at
1417063_at	2.217716	6.396191	3.538545	0.0010070	0.0022208 0.0026142	-1.9242891	1417063 at
1455393_at	3.848174	5.869949	3.315083	0.0019211 0.0032552	0.0020142 0.0042382	-2.4343866	1455393_at
1450624 at	2.679225	5.848280	3.298365	0.0032352 0.0033854	0.0042382 0.0043881	-2.4721556	1450624 at
1424713 at	2.079225 2.083345	6.033634	3.285362	0.0033694 0.0034901	0.0045096	-2.5014891	1424713_at
1418897 at	2.063343 2.042924	6.092010	3.132417	0.0034901 0.0049845	0.0043090 0.0062898	-2.8436151	1418897_at
1419549 at	3.702927	6.092010 6.175600	3.087318	0.0049843 0.0055328	0.0002898 0.0069135	-2.9433978	1419549_at
1416649 at	3.102921 3.003222	6.598110	3.037313 3.045721	0.0053528 0.0060898	0.0009133 0.0075680	-3.0349488	1416649_at
1417909 at	3.003222 3.063179	5.866157	2.999561	0.0060898 0.0067713	0.0075080 0.0083539	-3.1359790	1417909_at
1428942 at	2.394958	8.254171	2.999301 2.998235	0.0067713 0.0067919	0.0083743	-3.1388724	1417909_at 1428942 at
1420942_at	4.594958	0.2041/1	∠.⊎⊌٥∠∂∂	0.0007919	0.0065745	-3.1300124	1420942_at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1423944 at	5.620806	7.621359	2.986947	0.0069699	0.0085749	-3.1634829	1423944_at
1416625 at	2.879663	5.805326	2.981422	0.0070586	0.0086771	-3.1755127	1416625 at
1418239 at	2.785833	4.737553	2.941164	0.0077389	0.0094660	-3.2629061	1418239 at
1418724 at	2.046992	6.637165	2.938529	0.0077855	0.0095136	-3.2686085	1418724 at
1450788 at	6.014539	5.814933	2.935997	0.0078306	0.0095583	-3.2740871	1450788 at
1419059 at	3.602545	6.324564	2.933290	0.0078791	0.0096107	-3.2799412	1419059 at
1448680 at	5.594216	6.990617	2.829360	0.0099736	0.0119800	-3.5029613	1448680 at
1431808 a at	3.279766	6.883429	2.828051	0.0100030	0.0120083	-3.5057467	1431808_a_
1426225 at	2.794278	5.902705	2.813609	0.0103341	0.0123839	-3.5364514	1426225 at
$\frac{-}{1449984}$ at	2.217507	5.382566	2.806262	0.0105064	0.0125758	-3.5520440	1449984 at
1417950 a at	2.807475	7.525052	2.754253	0.0118073	0.0140019	-3.6618876	1417950 a
1426547_at	3.900228	6.221421	2.751214	0.0118878	0.0140811	-3.6682749	1426547 at
1424279 at	5.731273	6.032610	2.748793	0.0119524	0.0141494	-3.6733621	1424279 at
1449326 x at	3.545929	6.828842	2.741481	0.0121494	0.0143743	-3.6887157	1449326 x
1455093 a at	2.051812	6.367591	2.738142	0.0122403	0.0144736	-3.6957196	1455093 a
1416677 at	2.325361	7.392066	2.732676	0.0123906	0.0146428	-3.7071756	1416677 at
1416729 at	2.410025	6.047747	2.682560	0.0138528	0.0162025	-3.8117084	1416729 at
1417246 at	4.082466	6.068173	2.636113	0.0153524	0.0178039	-3.9077416	1417246 at
1448764 a at	2.881667	4.173025	2.631274	0.0155172	0.0179746	-3.9176985	1448764_a_
1420484 a at	2.952258	6.682963	2.619231	0.0159344	0.0184371	-3.9424396	1420484 a
1425260 at	4.642587	8.764225	2.614664	0.0160954	0.0186129	-3.9518050	1425260 at
1418771 a at	3.093587	4.743254	2.596179	0.0167628	0.0193083	-3.9896338	1418771 a
1416025 at	3.859548	6.962845	2.593842	0.0168490	0.0193967	-3.9944054	1416025 at
1418021 at	2.120947	8.109064	2.584389	0.0172019	0.0197808	-4.0136893	1418021_at
1418282 x at	4.743895	6.064216	2.573552	0.0176151	0.0202331	-4.0357496	1418282 x
1424599 at	2.213667	5.828415	2.563611	0.0180022	0.0206547	-4.0559434	1424599 at
$\frac{-}{1415994}$ at	2.412656	6.767248	2.561177	0.0180982	0.0207416	-4.0608813	1415994 at
1423866 at	5.090571	6.575844	2.558246	0.0182145	0.0208631	-4.0668244	1423866 at
1449123 at	3.311604	5.047686	2.534678	0.0191750	0.0218899	-4.1144848	1449123 at
1455913 x at	4.580775	5.399907	2.528433	0.0194374	0.0221770	-4.1270758	1455913 x
1448470 at	2.264033	5.991722	2.515598	0.0199871	0.0227662	-4.1528979	1448470 at
1419232 a at	3.176654	6.025441	2.509074	0.0202721	0.0230652	-4.1659966	1419232 a
1416676 at	2.390451	5.486499	2.476225	0.0217656	0.0246412	-4.2316684	1416676 at
1418278_at	2.712446	5.154527	2.467226	0.0221923	0.0251104	-4.2495785	1418278 at
1428079 at	3.840492	6.186298	2.457470	0.0226637	0.0256296	-4.2689522	1428079 at
1449434 at	2.005947	5.561232	2.438267	0.0236188	0.0266509	-4.3069625	1449434 at
1419093 at	3.058884	4.782866	2.399460	0.0256643	0.0287845	-4.3832682	1419093 at
1423147 at	2.323782	5.064445	2.398635	0.0257095	0.0288194	-4.3848826	1423147 at
1417561 at	2.128913	6.604153	2.362130	0.0277856	0.0309602	-4.4560080	1417561 at
1419100 at	2.057085	6.249279	2.337127	0.0292958	0.0325544	-4.5043589	1419100 at
1421921 at	2.544668	5.488920	2.333648	0.0295118	0.0327589	-4.5110613	1421921 at

Table 13: Genes diferencialmente expresados No Tratados

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1421262_at	7.202325	7.175233	19.663695	0.0000000	0.0000000	24.6409970	1421262_at
1427747_a_at	6.237323	10.693149	17.659957	0.0000000	0.0000000	22.5731026	1427747_a_a
1422953 _at	3.851164	11.192299	16.692270	0.0000000	0.0000000	21.4869762	1422953 _at

H8F222 at		$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
149981 a.	1440865_at	4.077956	11.173847	15.671662	0.0000000	0.0000000	20.2722418	1440865_at
419681a_a_tl	1418722_at	6.033845	10.981607	15.320344	0.0000000	0.0000000	19.8364815	1418722 _at
436419 a at 2.688060 8.574273 -14.279135 0.0000000 0.0000000 18.2487723 1436419 at 448213 at 3.362917 12.008671 14.080428 0.0000000 0.0000000 18.2204418 1448213 at 439393 at -2.001300 8.351123 -13.979971 0.0000000 0.000000 18.0838972 1439366 at 447806 s. at -3.443607 7.824789 -13.385424 0.000000 0.000000 18.0291189 1447806 s. 422438 at -2.173576 7.524873 -13.554234 0.000000 0.000000 17.255758 1422438 at 425518 at -3.58049 7.408379 13.26355 0.000000 0.000000 17.255758 14526181 at 4.58067 10.034197 13.08693 0.000000 0.000000 17.25575890 14251818 at 4.58067 10.034197 13.08693 0.000000 0.000000 17.256950 14251818 at 4.58067 10.034197 13.086933 0.000000 0.000000 16.5691941 1421366 at 142566 at 143646 at 5.36606	1429387_at	-2.125765	6.421327	-14.747242	0.0000000	0.0000000	19.1050911	1429387_a t
436419_a_at -2.688060 8.574273_s -14.279135_s 0.0000000 0.0000000 18.2487973_s 1436419_a 449366_at 4.425505_s 10.081210_s 13.981494_s 0.0000000_s 0.0000000_s 18.2204418_s 1448213_a 439393_at -2.001300_s 8.351123_s -13.979971_s 0.0000000_s 0.0000000_s 18.088972_s 143936_at 422438_at -2.173576_s 7.524873_s -13.584234_s 0.0000000_s 0.0000000_s 17.258799_s 142538_at 425518_at -2.598049_s 7.408379_s 13.368639_s 0.0000000_s 0.0000000_s 17.2587990_s 142518_at 426775_s_at 2.598049_s 7.408379_s 13.26935_s 0.0000000_s 0.0000000_s 17.0595593_s 142759_at 421366_at 5.305088_s 6.815033_s 12.875958_s 0.0000000_s 0.0000000_s 16.369129_s 143506_a 445702_at 4.670536_s 7.590788_s 12.70812_s 0.0000000_s 0.0000000_s 16.37618_a 143506_a 4458672_at 4.590567_s 7.	1419681 a at	5.264941	7.386037	14.560700	0.0000000	0.0000000	18.8613431	1419681_a_
448213 at	1436419 a at	-2.688060	8.574273	-14.279135	0.0000000	0.0000000	18.4879723	1436419 a
449366 at 4.425505 10.081210 13.981494 0.0000000 0.0000000 18.0859737 1449366 at 4.33393 at -2.001300 8.351123 -13.979971 0.0000000 0.0000000 18.0838972 1433939_at 447806 s at 3.443607 7.824789 -13.939851 0.0000000 0.0000000 17.4953548 1422438 at 2.173576 7.524873 -13.554234 0.0000000 0.0000000 17.2587990 1425518_at 453181_x at 3.626613 6.889508 13.365492 0.000000 0.0000000 17.059590 1425518_at 453067 1.034197 13.086933 0.000000 0.000000 17.059590 1425518_at 455067 10.034197 13.086933 0.000000 0.000000 17.059503 1426778 1435406 143646 at 4.580057 10.034197 13.086933 0.000000 0.000000 16.6691941 1421366_at 4447290_at 4.580657 10.034197 13.086933 0.000000 0.000000 16.2571680 1437661 1447290_at 4.450656 1447290_at 4.450656 1447691	1448213 at		12.008671		0.0000000	0.0000000		1448213 at
43393 g.t -2.001300 8.351123 -13.979971 0.0000000 0.0000000 18.0291189 14433932 g.t 447806 s. at -3.443607 7.824789 -13.939851 0.0000000 0.0000000 17.2587990 1425818 at -2.772911 6.687270 -13.363639 0.0000000 0.0000000 17.2587990 1425518 at -2.772911 6.687270 -13.368399 0.0000000 0.0000000 17.2587990 1425518 at -2.598049 7.408379 13.240355 0.0000000 0.0000000 17.2595303 1426775 s. 445718 at -2.688057 10.034197 13.086953 0.0000000 0.0000000 16.6891941 1417290 at 4.580057 10.034197 13.086953 0.0000000 0.0000000 16.6891941 1417366 at 4147290 at 4.580658 6.815033 12.875578 0.0000000 0.0000000 16.6891941 141366 at 445762 at 4.670536 7.599341 12.751737 0.0000000 16.3164767 144366 at 445762 at 44670536 7.523919 12.758173 0.000000 0.000000 16.3164767	1449366 at				0.0000000	0.0000000		1449366_at
$\begin{array}{c} 447806 \ \ \mathbf{s} = 4 \ \ 4343607 \ \ 7,824789 \ \ -13.939851 \ \ 0.0000000 \ \ 0.0000000 \ \ 17.4953548 \ \ 1422438 \ \mathbf{a} \ \ 422438 \ \ \mathbf{a} \ \ 4225518 \ \ \mathbf{a} \ \ 2-777911 \ \ 6.687270 \ \ -13.586359 \ \ 0.0000000 \ \ 0.0000000 \ \ 17.2587990 \ \ 142518 \ \ \mathbf{a} \ \ 453181 \ \ \mathbf{x} \ \ \mathbf{a} \ \ 3.626613 \ \ 6.889508 \ \ 13.365492 \ \ 0.0000000 \ \ 0.0000000 \ \ 17.2587990 \ \ 142518 \ \ \mathbf{a} \ \ 453181 \ \ \mathbf{x} \ \ \mathbf{a} \ \ 3.626613 \ \ 6.889508 \ \ 13.365492 \ \ 0.0000000 \ \ 0.0000000 \ \ 17.2587990 \ \ 142518 \ \ \mathbf{a} \ \ 457181 \ \ \mathbf{a} \ \ 4.580677 \ \ 10.034197 \ \ 13.086953 \ \ 0.0000000 \ \ 0.0000000 \ \ 16.5000000 \ \ 1417290 \ \ 1417390 \ \ 1417290 \ \ 1417290 \ \ 1417290 \ \ 1417290 \ \ $	1433939 at			-13.979971	0.0000000	0.0000000		1433939 at
422438_at		-3.443607	7.824789		0.0000000	0.0000000		
425518_at -2,772911 6.687270 -13,386359 0.0000000 0.0000000 17,2587990 1425518_at 453181_x_at 3.626613 6.889508 13,355492 0.0000000 0.0000000 17,2592132 1453181_x 467675_s_at 2.598049 7.408379 13,240355 0.0000000 0.0000000 17,2595930 142790_at 421366_at 3.162701 6.277268 12,975765 0.0000000 0.0000000 16,6691941 1421366_at 457728_at -2.689488 6.607683 -12,84798 0.0000000 0.0000000 16,5234580 1434046_at 457728_at -2.689488 6.607683 -12,841798 0.000000 0.0000000 16,366141 1448562_at 4457060_at 4.670536 7,590708 12,708102 0.0000000 0.0000000 16,2761813 1437606_at 449647_a_at 3.359225 7,239192 12,619850 0.000000 0.000000 16,076114 144944_at 4437832_at 4,902970 8,717034 12,585252 0.0000000 0.000	1422438 at	-2.173576			0.0000000	0.0000000		1422438 at
$\begin{array}{c} 453181 \\ \times \text{at} \\ 26775 \\ \text{s} \\ \text{at} \\ 2.598049 \\ \text{c} \\ 7.408379 \\ \text{c} \\ 10.034197 \\ \text{c} \\ 13.240355 \\ 0.000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.000000 \\ 16.639140 \\ 1421366 \\ \text{at} \\ 4.580057 \\ 10.034197 \\ 13.086953 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.000000 \\ 16.639140 \\ 1421366 \\ \text{at} \\ 434046 \\ \text{at} \\ 3.005058 \\ \text{c} \\ 8.050588 \\ 6.607683 \\ -12.844798 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.6691941 \\ 1421366 \\ \text{at} \\ 434046 \\ \text{at} \\ 437660 \\ \text{at} \\ 3.596248 \\ \text{c} \\ 8.076633 \\ -12.844798 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.3162472 \\ 1448562 \\ \text{at} \\ 448562 \\ \text{at} \\ 4.670536 \\ \text{c} \\ 7.599334 \\ 12.735173 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.3162472 \\ 1448562 \\ \text{at} \\ 437660 \\ \text{at} \\ 3.599225 \\ 7.239192 \\ 12.619580 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.000000 \\ 16.2761813 \\ 1437606 \\ \text{at} \\ 434484 \\ \text{at} \\ 4.837274 \\ 9.333854 \\ 12.587232 \\ 0.000000 \\ 0.000000 \\ 0.0000000 \\ 0.0000000 \\ 16.000000 \\ 16.0462622 \\ 1419532 \\ \text{at} \\ 425289 \\ \text{at} \\ 2.248760 \\ \text{c} \\$					0.0000000	0.0000000		
426775_s_at 2.598049 7.408379 13.240355 0.0000000 0.0000000 17.0509503 1426775_s 417290_at 4.8580057 10.034197 13.086953 0.0000000 0.0000000 16.8304260 1417290_at 434046_at 5.300588 6.815033 12.875958 0.0000000 0.0000000 16.5234580 1434046_at 457728_at -2.689488 6.607683 12.844798 0.0000000 0.0000000 16.4777613 1457728_at 437060_at 4.670536 7.599334 12.735173 0.0000000 0.0000000 16.2761813 1437060_at 419647_at 3.534060 7.500708 12.708102 0.0000000 0.0000000 16.0964116 1434484_at 4.837274 9.333854 12.587232 0.000000 0.0000000 16.0964116 1434484_at 4.832744 9.333854 12.585252 0.0000000 0.0000000 16.0964116 1434484_at 4.902970 8.717034 12.58852 0.000000 0.0000000 16.0964116 1434484_at 4.92588_at 12.258723 0.000000<								
$\begin{array}{c} 417290 \ \ at \\ 421366 \ \ at \\ 3.662701 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								
$\begin{array}{c} 421366_{\rm at} & 3.162701 & 6.277268 & 12.975765 & 0.0000000 & 0.0000000 & 16.6691941 & 1421366_{\rm at} \\ 434046_{\rm at} & 5.300588 & 6.6815033 & 12.875958 & 0.0000000 & 0.0000000 & 16.5234580 & 1434046_{\rm at} \\ 457728_{\rm at} & -2.689488 & 6.607683 & -12.844798 & 0.0000000 & 0.0000000 & 16.4777613 & 145728_{\rm at} \\ 448562_{\rm at} & 4.670536 & 7.599334 & 12.735173 & 0.0000000 & 0.0000000 & 16.2761813 & 1437600_{\rm at} \\ 437060_{\rm at} & 5.346060 & 7.500708 & 12.708102 & 0.0000000 & 0.0000000 & 16.2761813 & 1437660_{\rm at} \\ 449647_{\rm a}_{\rm at} & 3.599225 & 7.239192 & 12.619850 & 0.0000000 & 0.0000000 & 16.1450671 & 1419647_{\rm a}_{\rm at} \\ 449543_{\rm at} & 4.837274 & 9.333854 & 12.587232 & 0.0000000 & 0.0000000 & 16.0426222 & 1419532_{\rm at} \\ 425289_{\rm a}_{\rm at} & -2.944158 & 7.287404 & -12.528552 & 0.0000000 & 0.0000000 & 16.0426222 & 1419532_{\rm at} \\ 425289_{\rm a}_{\rm at} & -2.94158 & 7.287404 & -12.528552 & 0.0000000 & 0.0000000 & 16.0086147 & 1425289_{\rm a}_{\rm at} \\ 420900_{\rm at} & -2.418760 & 6.401088 & -12.490856 & 0.0000000 & 0.0000000 & 15.9520326 & 1440900_{\rm at} \\ 434848_{\rm at} & 4.328388 & 5.824646 & 12.423607 & 0.0000000 & 0.0000000 & 15.8507375 & 1434848_{\rm at} \\ 420928_{\rm at} & -2.426497 & 9.460342 & -12.228630 & 0.0000000 & 0.0000000 & 15.554032 & 142509826 \\ 4455340_{\rm at} & -2.575176 & 5.958534 & -11.976888 & 0.0000000 & 0.000000 & 15.092547 & 1451537_{\rm at} \\ 434778_{\rm at} & 3.675150 & 7.910675 & 11.928181 & 0.0000000 & 0.000000 & 15.092547 & 1451537_{\rm at} \\ 4277102_{\rm at} & 3.833378 & 10.546141 & 11.841573 & 0.0000000 & 0.000000 & 14.9393609 & 1427102_{\rm at} \\ 424703_{\rm at} & 4.556649 & 8.943432 & 11.73660 & 0.0000000 & 0.000000 & 14.9393609 & 1427256_{\rm at} \\ 424509_{\rm at} & 4.566649 & 8.943432 & 11.739600 & 0.0000000 & 0.000000 & 14.6491511 & 1448818_{\rm at} \\ 42975_{\rm at} & 4.903345 & 7.006511 & 11.490710 & 0.0000000 & 0.000000 & 14.1285096 & 1438097_{\rm at} \\ 424852_{\rm at} & -2.431347 & 7.848753 & -11.383977 & 0.0000000 & 0.000000 & 14.128595 & 1424032_{\rm at} \\ 428754_{\rm at} & -2.866699 & 6.58698$								
$\begin{array}{c} 434046_{\rm at} & 5.300588 & 6.815033 & 12.875958 & 0.0000000 & 0.0000000 & 16.5234580 & 1434046_{\rm at} \\ 457728_{\rm at} & -2.689488 & 6.607683 & -12.844798 & 0.0000000 & 0.0000000 & 16.4776713 & 1457728_{\rm at} \\ 437060_{\rm at} & 5.346060 & 7.590708 & 12.708102 & 0.0000000 & 0.0000000 & 16.3162472 & 1448662_{\rm at} \\ 437060_{\rm at} & 5.346060 & 7.500708 & 12.708102 & 0.0000000 & 0.0000000 & 16.2761813 & 1437060_{\rm at} \\ 4397460_{\rm at} & 5.346060 & 7.500708 & 12.708102 & 0.0000000 & 0.0000000 & 16.1450671 & 1419647_{\rm at} \\ 434484_{\rm at} & 4.837274 & 9.333854 & 12.587232 & 0.0000000 & 0.0000000 & 16.0964116 & 1434484_{\rm at} \\ 449532_{\rm at} & 4.902970 & 8.717034 & 12.551254 & 0.0000000 & 0.0000000 & 16.0064116 & 1434484_{\rm at} \\ 425289_{\rm a}_{\rm at} & -2.944158 & 7.287404 & -12.528552 & 0.0000000 & 0.0000000 & 16.0086147 & 1425289_{\rm at} \\ 440900_{\rm at} & -2.418760 & 6.401088 & -12.490856 & 0.0000000 & 0.0000000 & 15.9520326 & 1440900_{\rm at} \\ 4434848_{\rm at} & 4.328388 & 5.824646 & 12.423607 & 0.0000000 & 0.0000000 & 15.9520326 & 1440900_{\rm at} \\ 4535360_{\rm at} & -2.593626 & 7.823380 & -12.082780 & 0.0000000 & 0.000000 & 15.3302911 & 1453568_{\rm at} \\ 455340_{\rm at} & -2.775176 & 5.958534 & -11.976888 & 0.0000000 & 0.000000 & 15.3032911 & 1453568_{\rm at} \\ 427102_{\rm at} & 3.8675150 & 7.910675 & 11.928181 & 0.0000000 & 0.000000 & 15.0321617 & 1434758_{\rm at} \\ 427102_{\rm at} & 3.833378 & 10.546141 & 11.841573 & 0.0000000 & 0.000000 & 14.9346849 & 1427102_{\rm at} \\ 424509_{\rm at} & 4.50268 & 7.018484 & 11.828378 & 0.0000000 & 0.000000 & 14.7553745 & 1424092_{\rm at} \\ 424509_{\rm at} & 4.50268 & 8.943432 & 11.739600 & 0.000000 & 0.000000 & 14.7940395 & 1424509_{\rm at} \\ 424792_{\rm at} & 4.50268 & 6.564610 & -11.398755 & 0.0000000 & 0.000000 & 14.285020 & 14248032_{\rm at} \\ 4248318_{\rm at} & 2.2464818 & 8.33130 & 11.39738 & 0.0000000 & 0.000000 & 14.2250040 & 1424852_{\rm at} \\ 426112_a_{\rm at} & 2.828027 & 7.924286 & -11.30662 & 0.0000000 & 0.000000 & 14.1223595 & 1427844_{\rm at} \\ 426112_a_{\rm at} & 2.828027 & 7.924286 & -11.20884 & $								
$\begin{array}{c} 457728_at \\ 448562_at \\ 448652_at \\ 4.670536 \\ 7.599334 \\ 12.735173 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.3162472 \\ 1448562_at \\ 4.47060_at \\ 3.599225 \\ 7.239192 \\ 12.619850 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0761813 \\ 1437600_at \\ 149647_a_at \\ 3.599225 \\ 7.239192 \\ 12.619850 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_at \\ 4.837274 \\ 9.333854 \\ 12.587232 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_at \\ 4.925289_a_at \\ -2.944158 \\ 7.287404 \\ -12.528552 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_at \\ 4.328388 \\ 7.287404 \\ -12.528552 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.9520326 \\ 1440900_at \\ 4.248548_at \\ -2.436497 \\ 9.4603422 \\ -12.28630 \\ 0.0000000 \\ 0.0000000 \\ 0.000000 \\ 0.000000 \\ 15.554638 \\ 145368_at \\ -2.593626 \\ 7.823380 \\ -12.082780 \\ 0.0000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 15.302911 \\ 1453568_at \\ 4.258567 \\ 7.534880 \\ 11.928181 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 1.000000 \\ 1.000000 \\ 15.092547 \\ 1451537_at \\ 3.675150 \\ 7.910675 \\ 11.928181 \\ 0.0000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 1.000000 \\ 14.933960 \\ 1427102_at \\ 427256_at \\ 4.510268 \\ 7.018481 \\ 11.828378 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 14.7940395 \\ 1424032_at \\ 4.506649 \\ 8.93432 \\ 11.739600 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 14.7940395 \\ 1424032_at \\ 4.903245 \\ 7.92513 \\ 4.99345 \\ 7.006511 \\ 11.490710 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 14.289252 \\ 1421479_at \\ 4.2165688 \\ 6.564610 \\ -11.398755 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 14.1285040 \\ 14188182 \\ 1428032_at \\ 2.501998 \\ 6.545252 \\ 11.334623 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 14.128595 \\ 1424792_at \\ 4.28669 \\ 1428032_at \\ 2.501998 \\ 6.545252 \\ 11.334633 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 14.128595 \\ 1424792_at \\ 4284523_at \\ 2.243347 \\ 7.848753 \\ -11.20884 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 0.000000 \\ 14.128595 \\ 1424612_a \\ 1426112_a \\ 1426123_at \\ 2.86669 \\ 6.568098 \\ -11.$								
$\begin{array}{c} 448562_{\rm at} \\ 487060_{\rm at} \\ 5.346060 \\ 7.500708 \\ 12.708102 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.2761813 \\ 1437060_{\rm at} \\ 437464_{\rm a_at} \\ 3.599225 \\ 7.239192 \\ 12.619850 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_{\rm at} \\ 4.837274 \\ 9.333854 \\ 12.587232 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_{\rm at} \\ 419532_{\rm at} \\ 4.902970 \\ 8.717034 \\ 12.551254 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_{\rm at} \\ 425289_{\rm a_at} \\ -2.944158 \\ 0.640188 \\ -12.490856 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.9520326 \\ 1440900_{\rm at} \\ 42448900_{\rm at} \\ -2.418760 \\ 6.401088 \\ -12.490856 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.9520326 \\ 1440900_{\rm at} \\ 4245289_{\rm a} \\ 42424647 \\ 9.460342 \\ -12.228630 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.5544638 \\ 1429928_{\rm at} \\ 425568_{\rm at} \\ -2.593626 \\ 7.823380 \\ -12.082780 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.1661495 \\ 1455340_{\rm at} \\ 451537_{\rm at} \\ 3.675150 \\ 7.910675 \\ 11.928181 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.0000000 \\ 15.0902547 \\ 1451537_{\rm at} \\ 427102_{\rm at} \\ 3.83378 \\ 10.546141 \\ 11.841573 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.934899 \\ 1427102_{\rm at} \\ 4.568649 \\ 8.943432 \\ 11.739600 \\ 0.0000000 \\ 0.0000000 \\ 14.9546849 \\ 1427102_{\rm at} \\ 4.568649 \\ 8.943432 \\ 11.739600 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.9546849 \\ 1427102_{\rm at} \\ 4.26852_{\rm at} \\ -3.003004 \\ 8.873183 \\ -11.715161 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.994589 \\ 1424509_{\rm at} \\ 4.903345 \\ 7.006511 \\ 11.490710 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.194399 \\ 14.24850_{\rm at} \\ -2.41347 \\ 7.848753 \\ -11.38755 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.194399 \\ 1448318_{\rm at} \\ 2.814746 \\ 9.414469 \\ 11.648230 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.194399 \\ 14184399_{\rm at} \\ 2.792513 \\ 4.919290 \\ 11.367478 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.194399 \\ 1418392_{\rm at} \\ 2.2666$								
437060_at 5.346060 7.500708 12.708102 0.0000000 0.0000000 16.2761813 1437060_at 419647_a_at 3.599225 7.239192 12.619850 0.00000000 0.00000000 16.1450671 1419647_a_t 434484_at 4.837274 9.333854 12.587232 0.0000000 0.0000000 16.0964116 1434484_at 419532_at 4.902970 8.717034 12.551254 0.0000000 0.0000000 16.0966147 1425289_a_t 425289_a_at -2.944158 7.287404 -12.528552 0.0000000 0.0000000 16.0086147 1425289_a_t 440900_at -2.418760 6.401088 -12.490856 0.0000000 0.0000000 15.9520326 1440900_at 434848_at 4.328388 5.824646 12.423607 0.0000000 0.0000000 15.5550325 1440900_at 4240928_at -2.426497 9.460342 -12.228630 0.0000000 0.0000000 15.5554638 1420928_at -2.593626 7.823380 -12.082780 0.0000000 0.0000000 15.5302911 1453568_at 453540_at 42.775176 5.958534 -11.976888 0.0000000 0.0000000 15.0302911 1453568_at 4545340_at 42.775176 5.958534 -11.976888 0.0000000 0.0000000 15.0302911 1453568_at 424702_at 3.833378 10.546141 11.841573 0.0000000 0.0000000 15.0321617 1434758_at 427102_at 3.833378 10.546141 11.841573 0.0000000 0.0000000 15.0321617 1434758_at 42702_at 4.568649 8.943432 11.739600 0.0000000 0.0000000 14.9546849 1427102_at 42702_at 4.568649 8.943432 11.739600 0.0000000 0.0000000 14.9539609 1427256_at 424032_at 4.508649 8.943432 11.739600 0.0000000 0.0000000 14.7553745 1424032_at 424032_at 4.508649 8.943432 11.739600 0.0000000 0.0000000 14.7593394 1419709_at 4.903345 7.006511 11.490710 0.0000000 0.0000000 14.3972394 1419709_at 4.903345 7.006511 11.490710 0.0000000 0.0000000 14.28250040 1424852_at 2.431347 7.848753 -11.383897 0.0000000 0.0000000 14.2250040 1424852_at 42448_a_at 2.614481 8.231130 11.320738 0.0000000 0.0000000 14.1982669 1438097_at 424482_at 2.614481 8.231130 11.320738 0.0000000 0.0000000 14.1982669 1438097_at 427975_at 4.2645469 6.765252 11.334663 0.0000000 0.0000000 14.1982669 1438097_at 427975_at 2.230321 8.662078 -11.208941 0.0000000 0.0000000 13.9380874 1442933_at 427844_a_at 2.264481 8.831130 11.320738 0.0000000 0.0000000 13.9380874 14424323_at 422775_at -2.230321 8.662078 -11.208941 0.0000000 0.000								
$\begin{array}{c} 419647_a_at \\ 439484_at \\ 4.837274 \\ 9.333554 \\ 12.587232 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_at \\ 4.837274 \\ 9.333554 \\ 12.587232 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0964116 \\ 1434484_at \\ 149532_at \\ 4.902970 \\ 8.717034 \\ 12.551254 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 16.0966147 \\ 1425289_a \\ 440900_at \\ -2.418760 \\ 6.401088 \\ -12.490856 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.9520326 \\ 1440900_at \\ 434848_at \\ 4.328388 \\ 5.824646 \\ 12.423607 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.8507375 \\ 1434848_at \\ 4.328388 \\ 5.824646 \\ 12.423607 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.5544638 \\ 1420928_at \\ -2.593626 \\ 7.823380 \\ -12.082780 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.546438 \\ 1420928_at \\ 4.2755176 \\ 5.958534 \\ -11.976888 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.0000000 \\ 15.0321617 \\ 1434758_at \\ 42758_at \\ 4.258567 \\ 7.534880 \\ 11.891006 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.9546849 \\ 1427102_at \\ 3.833378 \\ 10.546141 \\ 11.841573 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.9546849 \\ 1427102_at \\ 42756_at \\ 4.510268 \\ 7.018484 \\ 11.828378 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.9546849 \\ 1427102_at \\ 424032_at \\ 3.003004 \\ 8.873183 \\ -11.715161 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.7553745 \\ 1424590_at \\ 424032_at \\ 3.003004 \\ 8.873183 \\ -11.739600 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.7940395 \\ 142256_at \\ 424179_at \\ -2.166568 \\ 6.564610 \\ -11.398755 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.248952 \\ 1424779_at \\ 2.266568 \\ 6.564610 \\ -11.398755 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.248952 \\ 1424779_at \\ 2.266568 \\ 6.564610 \\ -11.398755 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.248952 \\ 1424779_at \\ 2.283758 \\ 6.345921 \\ 11.312438 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.248952 \\ 14247900 \\ 1424852_at \\ 2.283758 \\ 6.345921 \\ 11.320838 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 13.9965055 \\ 1417460_at \\ 2.5527248 \\ 11.092336 \\ 11.20838 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 13.6345850 \\ 1442032_at \\ 2.866699 \\ 6.568$								
434484_at								
419532_at								
$\begin{array}{c} 425289 \\ \text{a} \\ \text{at} \\ \text{c} \\ 22589 \\ \text{a} \\ \text{at} \\ \text{c} \\ 2.418760 \\ \text{c} \\ \text{d} \\ \text{c} \\ \text{d} \\ $								_
$\begin{array}{c} 440900_{\rm at} & -2.418760 & 6.401088 & -12.490856 & 0.0000000 & 0.0000000 & 15.8502326 & 1440900_{\rm at} \\ 434848_{\rm at} & 4.328388 & 5.824646 & 12.423607 & 0.0000000 & 0.0000000 & 15.8507375 & 1434848_{\rm at} \\ 420928_{\rm at} & -2.426497 & 9.460342 & -12.228630 & 0.0000000 & 0.0000000 & 15.554638 & 1420928_{\rm at} \\ 453568_{\rm at} & -2.593626 & 7.823380 & -12.082780 & 0.0000000 & 0.0000000 & 15.5302911 & 1453568_{\rm at} \\ 455340_{\rm at} & -2.775176 & 5.958534 & -11.976888 & 0.0000000 & 0.0000000 & 15.0661495 & 1455340_{\rm at} \\ 451537_{\rm at} & 3.675150 & 7.910675 & 11.928181 & 0.0000000 & 0.0000000 & 15.0902547 & 1451537_{\rm at} \\ 434758_{\rm at} & 4.258567 & 7.534880 & 11.891006 & 0.0000000 & 0.0000000 & 15.0321617 & 1434758_{\rm at} \\ 427102_{\rm at} & 3.833378 & 10.546141 & 11.841573 & 0.0000000 & 0.0000000 & 14.9546849 & 1427102_{\rm at} \\ 427256_{\rm at} & 4.510268 & 7.018484 & 11.828378 & 0.0000000 & 0.0000000 & 14.9339609 & 1427256_{\rm at} \\ 424509_{\rm at} & 4.568649 & 8.943432 & 11.739600 & 0.0000000 & 0.0000000 & 14.7940395 & 1424509_{\rm at} \\ 449032_{\rm at} & -3.003004 & 8.873183 & -11.715161 & 0.0000000 & 0.000000 & 14.394392 & 1424509_{\rm at} \\ 421479_{\rm at} & -2.166568 & 6.564610 & -11.398755 & 0.0000000 & 0.000000 & 14.2489252 & 1421479_{\rm at} \\ 4224852_{\rm at} & -2.431347 & 7.848753 & -11.383977 & 0.0000000 & 0.000000 & 14.2489252 & 1421479_{\rm at} \\ 428852_{\rm at} & -2.431347 & 7.848753 & -11.383977 & 0.0000000 & 0.000000 & 14.1982669 & 1438097_{\rm at} \\ 418932_{\rm at} & 2.501998 & 6.542522 & 11.334623 & 0.0000000 & 0.000000 & 14.1982669 & 1438097_{\rm at} \\ 42812_{\rm at} & -2.828077 & 7.924286 & -11.306662 & 0.0000000 & 0.000000 & 14.089555 & 1427844_{\rm at} \\ 426112_{\rm at} & -2.828077 & 7.924286 & -11.204887 & 0.0000000 & 0.000000 & 13.938074 & 141802_{\rm at} \\ 42203_{\rm at} & -3.856994 & 6.781595 & -11.20888 & 0.0000000 & 0.000000 & 13.9398074 & 1442033_{\rm at} \\ 422775_{\rm at} & -2.303321 & 8.662078 & -11.204887 & 0.0000000 & 0.0000000 & 13.9398074 & 1442033_{\rm at} \\ 422610_{\rm at} & -2.566643 & 7.652456 & -11.1204887 & $								
$\begin{array}{c} 434848_{\rm at} \\ 4.328388 \\ 5.824646 \\ 12.423607 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.5544638 \\ 1420928_{\rm at} \\ 2.246497 \\ 2.460342 \\ -12.228630 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.5544638 \\ 1420928_{\rm at} \\ 453568_{\rm at} \\ -2.593626 \\ 7.823380 \\ -12.082780 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.3302911 \\ 1453568_{\rm at} \\ 455340_{\rm at} \\ -2.775176 \\ 5.958534 \\ -11.976888 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 15.0002547 \\ 1451537_{\rm at} \\ 434758_{\rm at} \\ 4.258567 \\ 7.534880 \\ 11.891006 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 1.0000000 \\ 15.0321617 \\ 1434758_{\rm at} \\ 427102_{\rm at} \\ 3.833378 \\ 10.546141 \\ 11.841573 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.0000000 \\ 14.9346849 \\ 1427102_{\rm at} \\ 427256_{\rm at} \\ 4.510268 \\ 7.018484 \\ 11.828378 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.0000000 \\ 14.7940395 \\ 1424509_{\rm at} \\ 424509_{\rm at} \\ 4.568649 \\ 8.943432 \\ 11.739600 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.0000000 \\ 14.7553745 \\ 1424032_{\rm at} \\ 4.903345 \\ 7.006511 \\ 11.490710 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.0000000 \\ 14.2489252 \\ 1421479_{\rm at} \\ 424852_{\rm at} \\ 2.431347 \\ 7.848753 \\ -11.3883977 \\ 0.0000000 \\ 0.0000000 \\ 14.0000000 \\ 14.2489252 \\ 1421479_{\rm at} \\ 424852_{\rm at} \\ 2.431347 \\ 7.848753 \\ -11.383977 \\ 0.0000000 \\ 0.0000000 \\ 14.0000000 \\ 14.1982669 \\ 142852_{\rm at} \\ 427844_{\rm at} \\ 2.501998 \\ 6.542522 \\ 11.334623 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.1982669 \\ 1488097_{\rm at} \\ 427844_{\rm at} \\ 2.614481 \\ 8.231130 \\ 11.32438 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 14.0000000 \\ 14.1982669 \\ 1488097_{\rm at} \\ 426112_{\rm at} \\ 2.828027 \\ 7.924286 \\ -11.306662 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 13.938074 \\ 141802_{\rm at} \\ 422073_{\rm at} \\ -2.828027 \\ 7.924286 \\ -11.306662 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 13.938074 \\ 1412033_{\rm at} \\ 4226112_{\rm at} \\ -2.828027 \\ 7.924286 \\ -11.306662 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \\ 13.9398074 \\ 1412033_{\rm at} \\ 4226112_{\rm at} \\ -2.828027 \\ 7.924286 \\ -11.208487 \\ 0.0000000 \\ 0.000000 \\ 0.0000000 \\ 0.0000000 \\ 13$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
427256_at 4.510268 7.018484 11.828378 0.0000000 0.0000000 14.9339609 1427256_at 424509_at 4.568649 8.943432 11.739600 0.0000000 0.0000000 14.7940395 1424509_at 424032_at -3.003004 8.873183 -11.715161 0.0000000 0.0000000 14.6491511 1448318_at 419709_at 4.903345 7.006511 11.490710 0.0000000 0.0000000 14.3972394 1419709_at 421479_at -2.166568 6.564610 -11.398755 0.0000000 0.0000000 14.2489252 1421479_at 42852_at -2.431347 7.848753 -11.383977 0.0000000 0.0000000 14.289252 1421479_at 438097_at 2.792513 4.919290 11.367478 0.0000000 0.0000000 14.182669 1438097_at 418162_at 2.501998 6.542522 11.334623 0.0000000 0.0000000 14.1449339 1418932_at 426112_a_at 2.983758 6.345921 11.312438 0.0000000 0.000								
424509_at 4.568649 8.943432 11.739600 0.0000000 0.0000000 14.7940395 1424509_at 424032_at -3.003004 8.873183 -11.715161 0.0000000 0.0000000 14.7553745 1424032_at 448318_at 2.814746 9.414469 11.648230 0.0000000 0.0000000 14.6491511 1448318_at 419709_at 4.903345 7.006511 11.490710 0.0000000 0.0000000 14.3972394 1419709_at 421479_at -2.166568 6.564610 -11.398755 0.0000000 0.0000000 14.2489252 1421479_at 424852_at -2.431347 7.848753 -11.383977 0.0000000 0.0000000 14.1982669 1438097_at 438097_at 2.792513 4.919290 11.367478 0.0000000 0.0000000 14.149339 1418932_at 427844_a_at 2.614481 8.231130 11.320738 0.0000000 0.0000000 14.1223595 1427844_a 426112_a_at -2.828027 7.924286 -11.306662 0.0000000 0.0000000 14.0994522 1426112_a 422775_at -2.303321<								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
419709_at 4.903345 7.006511 11.490710 0.0000000 0.0000000 14.3972394 1419709_ar 421479_at -2.166568 6.564610 -11.398755 0.0000000 0.0000000 14.2489252 1421479_ar 424852_at -2.431347 7.848753 -11.383977 0.0000000 0.0000000 14.2250040 1424852_ar 438097_at 2.792513 4.919290 11.367478 0.0000000 0.0000000 14.1982669 1438097_ar 418932_at 2.501998 6.542522 11.334623 0.0000000 0.0000000 14.1449339 1418932_ar 427844_a_at 2.614481 8.231130 11.320738 0.0000000 0.0000000 14.1088540 1418162_ar 426112_a_at 2.983758 6.345921 11.312438 0.0000000 0.0000000 14.0994522 1426112_a 442023_at -3.856994 6.781595 -11.208941 0.0000000 0.0000000 13.9398074 1442023_ar 417460_at 2.527248 11.092336 11.208284 0.0000000 0.0000000 13.9265055 1417460_ar 448293_at -2.866699								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
438097_at 2.792513 4.919290 11.367478 0.0000000 0.0000000 14.1982669 1438097_at 418932_at 2.501998 6.542522 11.334623 0.0000000 0.0000000 14.1449339 1418932_at 427844_a_at 2.614481 8.231130 11.320738 0.0000000 0.0000000 14.1223595 1427844_a 418162_at 2.983758 6.345921 11.312438 0.0000000 0.0000000 14.1088540 1418162_at 426112_a_at -2.828027 7.924286 -11.306662 0.0000000 0.0000000 14.0994522 1426112_a 442023_at -3.856994 6.781595 -11.208941 0.0000000 0.0000000 13.9398074 1442023_at 422775_at -2.303321 8.662078 -11.204887 0.0000000 0.0000000 13.9331612 1422775_at 417460_at 2.527248 11.092336 11.200828 0.0000000 0.0000000 13.9265055 1417460_at 448293_at -2.560643 7.652456 -11.124261 0.0000000 0.0000000 13.6424432 1437356_at 452389_at -2.27025								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1418353_at							
$426170 \underline{\hspace{0.1cm}} a\underline{\hspace{0.1cm}} a \underline{\hspace{0.1cm}} -2.687824 \underline{\hspace{0.1cm}} 8.374877 \underline{\hspace{0.1cm}} -10.995514 \underline{\hspace{0.1cm}} 0.00000000 \underline{\hspace{0.1cm}} 0.00000000 \underline{\hspace{0.1cm}} 13.5873903 \underline{\hspace{0.1cm}} 1426170 \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} a\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} a\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} a\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} a\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} a\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \hspace{0.1c$								
424254at 4.051952 11.198672 10.976642 0.0000000 0.0000000 13.5559777 1424254 at	1426170_a_at							$1426170_a_$
	1424254 _at	4.051952	11.198672	10.976642	0.0000000	0.0000000	13.5559777	1424254 _at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1417268_at	4.317592	8.704318	10.931807	0.0000000	0.0000000	13.4811869	1417268_at
1425951_a_a	2.984234	5.903867	10.873705	0.0000000	0.0000000	13.3839205	1425951_a_a
1460330_{at}	3.206136	7.364740	10.856166	0.0000000	0.0000000	13.3544818	$1460330_{-}at$
1436530 at	4.449165	9.985045	10.833025	0.0000000	0.0000000	13.3155879	1436530 at
1440837 at	-4.016521	9.703369	-10.812635	0.0000000	0.0000000	13.2812635	1440837_at
1447284 at	2.421115	7.993758	10.790074	0.0000000	0.0000000	13.2432294	1447284 at
1434260 at	-2.835632	8.055180	-10.775877	0.0000000	0.0000000	13.2192655	1434260_at
1420697 at	2.218987	7.783796	10.746237	0.0000000	0.0000000	13.1691580	1420697_at
1419907_s_at	-2.790480	7.089150	-10.724878	0.0000000	0.0000000	13.1329867	1419907_s_a
1416381 a at	2.015266	10.724823	10.670483	0.0000000	0.0000000	13.0406260	1416381_a_a
1420361 at	2.127767	8.403552	10.665970	0.0000000	0.0000000	13.0329475	1420361 at
1420330 at	3.263714	8.000858	10.662974	0.0000000	0.0000000	13.0278484	1420330 at
1450357 a at		7.286378	-10.659249	0.0000000	0.0000000	13.0215087	1450357_a_a
1419764 at	4.903326	9.974123	10.656697	0.0000000	0.0000000	13.0171625	1419764 at
1449027_at	2.888700	6.409139	10.596022	0.0000000	0.0000000	12.9136293	1449027 at
1427994_at	2.663202	8.413779	10.574180	0.0000000	0.0000000	12.8762518	1427994 at
1450808 at	3.467791	8.865072	10.555433	0.0000000	0.0000000	12.8441248	1450808_at
1437270_a_at	-2.493420	6.950214	-10.529866	0.0000000	0.0000000	12.8002449	1437270_a_a
1427442_a_at	2.828679	9.883178	10.513939	0.0000000	0.0000000	12.7728709	1427442_a_a
1424831 at	2.615739	6.737744	10.459144	0.0000000	0.0000000	12.6784582	1424831 at
1418762 at	-2.615823	7.039844	-10.398732	0.0000000	0.0000000	12.5739525	1418762 at
1455940 x at	-2.194202	7.338847	-10.386048	0.0000000	0.0000000	12.5519547	1455940_x_a
1422122_at	-4.114244	8.726842	-10.314537	0.0000000	0.0000000	12.4275699	1422122_at
1436941 at	-2.007379	8.027615	-10.267774	0.0000000	0.0000000	12.3458969	1436941_at
1423543 at	-2.432875	7.414502	-10.154586	0.0000000	0.0000000	12.1471054	1423543_at
1420591_at	2.881077	6.159378	10.134859	0.0000000	0.0000000	12.1122988	1420591_at
1442339 at	3.162859	9.640235	10.022465	0.0000000	0.0000000	11.9130745	1442339_at
1437277_x_at	3.426254	8.237915	10.008069	0.0000000	0.0000000	11.8874428	1437277_x_a
1416111 at	-2.471484	7.345574	-9.980524	0.0000000	0.0000000	11.8383307	1416111_at
1456147 at	-2.261930	7.454899	-9.966598	0.0000000	0.0000000	11.8134644	1456147_at
1455899_x_at	2.493991	9.565020	9.936650	0.0000000	0.0000000	11.7599087	1455899_x_a
1455530_at	-4.155346	9.891386	-9.924896	0.0000000	0.0000000	11.7388582	1455530_at
1428719_at	-2.829188	10.972461	-9.898353	0.0000000	0.0000000	11.6912583	1428719 at
1451780_at	-2.381892	8.271421	-9.848563	0.0000000	0.0000000	11.6017322	1451780 at
1450350 a at	2.044612	7.104754	9.834492	0.0000000	0.0000000	11.5763758	1450350 a a
	-2.193157	8.578100	-9.833208	0.0000000	0.0000000	11.5740614	1456061_at
1428141_at	-2.514744	8.331805	-9.830346	0.0000000	0.0000000	11.5688996	1428141_at
1438164 x at	2.532019	8.530278	9.815728	0.0000000	0.0000000	11.5425229	1438164_x_a
1421844 at	2.316376	7.485981	9.811310	0.0000000	0.0000000	11.5345457	1421844_at
1419744_at	-3.121678	8.915592	-9.767663	0.0000000	0.0000000	11.4556042	1419744_at
1439902 at	2.535326	7.585485	9.759146	0.0000000	0.0000000	11.4401718	1439902_at
1448919 at	3.188763	7.822123	9.750371	0.0000000	0.0000000	11.4242637	1448919_at
1451006 at	2.578483	8.700386	9.672368	0.0000000	0.0000000	11.2824149	1451006_at
1425062 at	-2.041411	8.249424	-9.651336	0.0000000	0.0000000	11.2440360	1425062 at
1448871 at	2.731471	7.329450	9.637637	0.0000000	0.0000001	11.2440300 11.2190077	1425002_at 1448871_at
1421375 a at	2.731471 2.492555	11.090219	9.542704	0.0000000	0.0000001	11.0449077	1440071_at 1421375_a_a
1424727 at	2.492555 2.972178	7.272813	9.542704 9.535995	0.0000000	0.0000001	11.0449077 11.0325602	1421375_a_a 1424727_at
1424727_at 1419307 at	-2.420701	7.359685	-9.532806	0.0000000	0.0000001	11.0325002 11.0266904	1424727_at 1419307_at
1455660 at	2.619957	10.417394	9.496524	0.0000000	0.0000001	11.0200904 10.9598006	1419507_at 1455660_at
1429889 at	-3.956155	10.417394	-9.496172	0.0000000	0.0000001	10.9598000	1455000_at 1429889 at
							_
1419406_a_at	-2.592274	6.853303	-9.486255	0.0000000	0.0000001	10.9408385	1419406_a_a
1417894_at	2.083298	6.735836	9.459258	0.0000000	0.0000001	10.8909206	1417894 _at

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1436317_at	-2.505348	5.830050	-9.309065	0.0000000	0.0000001	10.6114998	1436317 at
1416107 at	-2.012517	8.288487	-9.270321	0.0000000	0.0000001	10.5389446	1416107 at
1455019 x at	2.289515	8.641795	9.206558	0.0000000	0.0000001	10.4191113	1455019 x at
1419178 at	-2.541475	8.396370	-9.193071	0.0000000	0.0000001	10.3936964	1419178 at
1417933 at	2.663436	6.267192	9.180931	0.0000000	0.0000001	10.3707993	1417933 at
1452463 x at		11.660468	-9.179588	0.0000000	0.0000001	10.3682653	1452463 x a
1450009 at	5.316236	8.963616	9.144604	0.0000000	0.0000001	10.3021695	1450009 at
1449360 at	2.643776	7.740287	9.094906	0.0000000	0.0000001	10.2079961	1449360 at
1460407 at	-3.074280	8.595874	-9.054663	0.0000000	0.0000001	10.1315013	1460407 at
1424302 at	2.074077	8.783015	9.026377	0.0000000	0.0000001	10.0776069	1424302 at
1424936_a_at		7.738755	-8.969432	0.0000000	0.0000001	9.9687878	1424936_a_at
1425895 a at	2.487371	6.819704	8.912671	0.0000000	0.0000001	9.8598931	1425895 a at
1420407 at	2.081353	7.543982	8.905737	0.0000000	0.0000001	9.8465610	1420407 at
1429413 at	-2.209586	6.331966	-8.896194	0.0000000	0.0000001	9.8282014	1429413 at
1455656 at	-2.314029	9.600563	-8.862982	0.0000000	0.0000001	9.7642139	1455656 at
1451190 a at		8.898318	-8.791686	0.0000000	0.0000002	9.6263573	1451190_a_at
1417688 at	2.318607	7.400343	8.777534	0.0000000	0.0000002	9.5989117	1417688 at
1454795 at	-2.122071	5.399669	-8.769492	0.0000000	0.0000002	9.5833032	1454795 at
1421211_a_at		7.046801	-8.727375	0.0000000	0.0000002	9.5014236	1421211_a_at
1416957 at	-2.490277	9.324635	-8.725323	0.0000000	0.0000002	9.4974274	1416957 at
1419769 at	-3.192433	7.258350	-8.704224	0.0000000	0.0000002	9.4563144	1419769 at
1418830 at	-3.101207	8.831048	-8.678553	0.0000000	0.0000002	9.4062103	1418830 at
1450570_a_at		8.926450	-8.674120	0.0000000	0.0000002	9.3975490	1450570_a_a
1425225 at	2.955350	9.422246	8.664493	0.0000000	0.0000002	9.3787310	1425225 at
1419599 s at	3.296816	9.136198	8.653713	0.0000000	0.0000002	9.3576440	1419599_s_at
1454897 at	-2.225094	6.406356	-8.609993	0.0000000	0.0000002	9.2719634	1454897_at
1419297_at	-2.486573	8.324875	-8.605191	0.0000000	0.0000002	9.2625379	1419297_at
1417640 at	-3.142088	9.967844	-8.536770	0.0000000	0.0000002	9.1278899	1417640 at
1452966 at	-2.112768	7.813384	-8.474629	0.0000000	0.0000002	9.0050521	1452966_at
1422046_at	2.360834	8.451628	8.457850	0.0000000	0.0000003	8.9717954	1422046_at
1452521_a_at	2.166004	8.533052	8.447640	0.0000000	0.0000003	8.9515414	1452521 a a
1427381 at	4.285011	7.134866	8.433225	0.0000000	0.0000003	8.9229198	1427381 at
1419186_a_at		9.679742	-8.372741	0.0000000	0.0000003	8.8025192	1419186_a_a
1415964_at	-2.208781	9.628260	-8.274886	0.0000000	0.0000003	8.6066795	1415964_at
1448881 at	3.126227	11.024323	8.224376	0.0000000	0.0000004	8.5050852	1448881 at
1423135_at	-2.173900	8.625682	-8.206815	0.0000000	0.0000004	8.4696817	1423135_at
1416871_at	2.263705	8.411615	8.156693	0.0000001	0.0000004	8.3684065	1416871_at
1450826 a at	5.505143	9.343178	8.129549	0.0000001	0.0000004	8.3134168	1450826_a_a
1449591 at	2.127632	8.359474	8.127077	0.0000001	0.0000005	8.3084037	1449591 at
1439351_at	-2.212372	6.303474 6.101854	-8.118217	0.0000001	0.0000005	8.2904304	1439352_at
1433966 x at	2.037602	6.040605	8.038921	0.0000001	0.0000005	8.1290949	1433966_x_a
1425738 at	-2.501467	8.421056	-8.038202	0.0000001	0.0000005	8.1276282	1425738_at
1426725 s at	-2.294778	10.430512	-7.985772	0.0000001	0.0000006	8.0204777	1426725_s_at
1425065 at	2.349648	7.955901	7.947024	0.0000001	0.0000006	7.9410498	1425065 at
1423003_at 1422003 at	-2.520579	7.993901 7.398532	-7.916071	0.0000001	0.0000000	7.8774547	1422003_at
1430143 at	-2.263265	6.233731	-7.900657	0.0000001	0.0000006	7.8457365	1430143 at
1450145_at 1451965 at	-2.529037	8.266260	-7.891563	0.0000001	0.0000000	7.8270063	1451965 at
1431905_at 1442219_at	-2.434604	6.256627	-7.852293	0.0000001	0.0000000	7.7460041	1442219_at
1427860 at	-3.273203	7.264402	-7.820964	0.0000001	0.0000007	7.6812309	1427860_at
1427800_at 1448291 at	2.527293	9.743778	7.811825	0.0000001	0.0000007	7.6623106	1448291_at
1456388 at	2.682261	6.745010	7.780781	0.0000001	0.0000007	7.5979585	1456388 at
1450508_at 1451798 at	2.082201		7.772928	0.0000001	0.0000008	7.5816579	1451798 at
1491190 <u>a</u> t	2.912415	8.175836	1.112928	0.0000001	0.0000008	1.9010919	1491196_at

	\log FC	AveExpr	t	P Value	adj P Val	В	PROBEID
1423466 at	-2.276890	8.982411	-7.695256	0.0000001	0.0000009	7.4199893	1423466 at
1417025_at	-2.287854	10.926377	-7.669885	0.0000001	0.0000009	7.3670034	1417025 at
1425396 a at		9.807830	-7.659757	0.0000002	0.0000009	7.3458281	1425396 a at
1430612 at	2.118528	9.143737	7.592671	0.0000002	0.0000010	7.2052109	1430612 at
1420994 at	-2.404627	8.113607	-7.556866	0.0000002	0.0000011	7.1299127	1420994 at
1456887 at	2.310176	6.331927	7.551351	0.0000002	0.0000011	7.1183001	1456887 at
1417741 at	2.273285	10.034698	7.541954	0.0000002	0.0000011	7.0985012	1417741_at
1449184 at	2.843226	9.390679	7.505579	0.0000002	0.0000012	7.0217533	1449184_at
1448700 at	2.337702	6.710594	7.501405	0.0000002	0.0000012	7.0129357	1448700 at
1457666 s at	2.902151	8.574042	7.479462	0.0000002	0.0000012	6.9665392	1457666_s_at
1416125 at	2.321273	8.499016	7.405935	0.0000003	0.0000014	6.8106026	1416125 at
1454713 s at	3.098864	8.462184	7.365808	0.0000003	0.0000011	6.7251927	1454713 s at
1456328 at	-3.015900	9.437156	-7.283590	0.0000003	0.0000017	6.5495238	1456328 at
1438802 at	-2.184253	6.445316	-7.196330	0.0000004	0.0000020	6.3620935	1438802_at
1450912_at	-3.871033	8.532145	-7.173920	0.0000004	0.0000021	6.3137946	1450912_at
1425519_a_at		11.736950	-7.157735	0.0000004	0.0000021	6.2788703	1425519_a_a
1421408 at	2.046117	8.459979	7.134863	0.0000005	0.0000022	6.2294605	1421408 at
1451021_a_at	2.047851	6.902159	7.120897	0.0000005	0.0000023	6.1992543	1451021 a a
1417876 at	2.665685	7.106351	7.119712	0.0000005	0.0000023	6.1966894	1417876 at
1448485 at	2.461295	6.744666	7.095563	0.0000005	0.0000023	6.1443962	1448485 at
1422892_s_at	-2.000835	8.189835	-7.094071	0.0000005	0.0000024	6.1411643	1422892 s at
1429947 a at	2.594120	8.338745	7.087380	0.0000005	0.0000024	6.1266594	1429947 a at
1423150 at	-2.139218	6.578868	-7.079908	0.0000005	0.0000024	6.1104567	1423150_at
1449305 at	2.571656	7.972371	7.078277	0.0000005	0.0000024	6.1069176	1449305_at
1417074 at	3.043035	6.862341	7.065040	0.0000005	0.0000024	6.0781917	1417074 at
1426640_s_at	-2.249543	8.891141	-7.043519	0.0000006	0.0000025	6.0314374	1426640_s_at
1433769_at	-2.041212	6.988782	-6.976970	0.0000006	0.0000028	5.8864792	1433769_at
1428781 at	2.202373	5.420139	6.958792	0.0000007	0.0000029	5.8467853	1428781_at
1428663 at	2.055634	7.087229	6.909136	0.0000007	0.0000023	5.7381318	1428663_at
1428700 at	2.153943	7.150740	6.897175	0.0000007	0.0000032	5.7119101	1428700_at
1452431_s_at	-2.126072	11.319104	-6.785157	0.0000000	0.0000032	5.4654643	1452431_s_at
1424524_at	2.222827	7.635975	6.682212	0.0000010	0.0000033 0.0000047	5.2375739	1424524_at
1416021_a_at	2.208213	7.295394	6.679583	0.0000012	0.0000047	5.2317370	1416021_a_at
1451451_at	2.720187	4.546258	6.649221	0.0000012	0.0000050	5.1642619	1451451_at
1423571 at	-2.006336	8.183482	-6.647347	0.0000013	0.0000050	5.1600915	1423571 at
1428357_at	-2.275213	6.745833	-6.645444	0.0000013	0.0000050	5.1558593	1428357_at
1427164_at	2.373416	6.321680	6.638827	0.0000013	0.0000050	5.1411348	1427164_at
1426276 at	2.025784	7.837287	6.574389	0.0000013	0.0000056	4.9974646	1426276 at
1419691 at	3.533884	8.663065	6.573737	0.0000016	0.0000056	4.9960083	1419691 at
1419091_at 1428749_at	2.103318	7.046117	6.522333	0.0000010 0.0000017	0.0000030 0.0000062	4.8810305	1428749_at
1428579_at	2.494898	6.233739	6.432309	0.0000017	0.0000002	4.6788942	1428579_at
1437226 x at	2.537170	9.125270	6.426969	0.0000021 0.0000022	0.0000073	4.6668733	1437226_x_a
1425958 at	2.375421	8.154949	6.420503 6.408543	0.0000022	0.0000074	4.6253669	1437220_{x_a} 1425958 at
1425958_at 1426774 at	2.975421 2.935315	7.488535	6.407325	0.0000022	0.0000076	4.623603 4.6226233	1426774_at
1452732_at	2.365700	8.218860	6.352127	0.0000022 0.0000025	0.0000070	4.0220233	1452732_at
1432732_at 1418797_at	2.811781	7.568652	6.243846	0.0000023 0.0000032	0.0000033	4.4980407 4.2526175	1418797 at
1416797_at 1446715 at	2.919699	5.046308	6.245640 6.014636	0.0000052 0.0000055	0.0000102 0.0000154	$\frac{4.2520175}{3.7287477}$	1416797_at 1446715_at
1446715_at 1416514_a_at	2.919099 2.235426	5.040508 5.246550	5.807536	0.0000033	0.0000134 0.0000229	3.2506147	1446715_at 1416514_a_a
1410514_a_at 1450424_a_at	2.235420 2.719067	7.183584	5.636466	0.0000038	0.0000229 0.0000320	2.8525097	1410314_a_a 1450424_a_a
1450424_a_at 1417190 at		7.183384	5.627840	0.0000130 0.0000133	0.0000320 0.0000326		1450424_a_a 1417190_at
1417190_at 1423954 at	2.075603 3.456579		5.564025	0.0000133 0.0000154	0.0000326	$\begin{array}{c} 2.8323665 \\ 2.6831334 \end{array}$	1417190_at 1423954 at
 -		8.477378 10.300677					
1415897_a_at	2.045893	10.399677	5.501815	0.0000178	0.0000421	2.5373227	1415897_a_at

	logFC	AveExpr	t	P Value	adj P Val	В	PROBEID
1417314_at	2.936548	7.303732	5.470830	0.0000191	0.0000445	2.4645828	1417314_at
1418580_{at}	2.740025	9.369491	5.442144	0.0000205	0.0000469	2.3971705	1418580_at
1419043_a_at	2.228827	8.019308	5.415597	0.0000218	0.0000492	2.3347287	1419043_a_a
1449984 _at	4.160767	5.382566	5.265462	0.0000310	0.0000666	1.9806247	1449984_at
1418930_{at}	2.921167	6.158199	5.203137	0.0000359	0.0000753	1.8331823	1418930_at
1417300_at	2.531080	8.109912	5.196544	0.0000364	0.0000762	1.8175705	1417300_at
1418204_s_at	2.681387	7.115411	5.118521	0.0000438	0.0000889	1.6326287	1418204_s_a
1420549at	3.229554	8.906196	5.068114	0.0000494	0.0000990	1.5129685	1420549_at
1435906_x_a	3.288605	9.641297	5.031185	0.0000539	0.0001066	1.4252242	1435906_x_a
1437870_at	2.008097	5.328541	4.911945	0.0000716	0.0001354	1.1414852	1437870_{at}
1453196_a_at	3.041796	8.268527	4.842568	0.0000845	0.0001565	0.9761511	1453196_a_a
1452279_at	2.012943	8.100745	4.493497	0.0001948	0.0003231	0.1427907	1452279 _at
1451310_a_at	2.674945	8.388071	4.352723	0.0002732	0.0004330	-0.1932729	1451310_a_a
1422557_s_at	4.567954	8.044721	4.341876	0.0002804	0.0004438	-0.2191508	1422557_{s} a
1438148at	3.507366	5.034957	4.240569	0.0003578	0.0005551	-0.4606563	1438148_at
1453239_a_at	2.019992	5.193121	4.203749	0.0003909	0.0006033	-0.5483331	1453239_a_a
1448416 _at	2.396912	5.148286	4.146990	0.0004480	0.0006842	-0.6833594	1448416_at
1424923_at	2.174975	8.560016	4.140958	0.0004546	0.0006932	-0.6976998	1424923_{at}
1449254 _at	4.182301	6.741625	4.068422	0.0005412	0.0008096	-0.8699681	1449254 _at
1456777_at	2.075424	5.332645	4.055893	0.0005577	0.0008313	-0.8996903	1456777 _at
1426851_a_at	2.055961	3.827763	3.842250	0.0009311	0.0013261	-1.4045411	1426851_a_a
1425295_at	3.425483	5.042037	3.771090	0.0011039	0.0015454	-1.5717083	1425295_at
1451054_at	5.073647	6.876501	3.590869	0.0016966	0.0023026	-1.9922260	1451054 _at
1460197_a_at	2.081715	6.630594	3.590316	0.0016988	0.0023041	-1.9935092	1460197_a_a
1428942_at	2.815713	8.254171	3.524977	0.0019839	0.0026625	-2.1447873	1428942 _at

8.1.3 Vancomicina. Genes diferencialmente expresados Infectado y No Infectado

Table 14: Genes diferencialmente expresados. Vancomycina.

	logFC	AveExpr	t	P Value	adj P Val	В	PROBEID
1421262_at	6.636277	7.175233	18.118278	0.0000000	0.0000000	22.9434303	1421262_at
1427747_a_at	5.162365	10.693149	14.616391	0.0000000	0.0000000	18.8988440	1427747_a_a
1419681_a_a	5.211970	7.386037	14.414205	0.0000000	0.0000000	18.6369814	1419681_a_a
1440865 _at	3.638019	11.173847	13.980975	0.0000000	0.0000000	18.0641039	1440865_at
1418722_at	5.213168	10.981607	13.236589	0.0000000	0.0000000	17.0406271	1418722_at
1436419_a_at	-2.327081	8.574273	-12.361589	0.0000000	0.0000000	15.7701242	1436419_a_a
1419709_at	5.233992	7.006511	12.265561	0.0000000	0.0000000	15.6260121	1419709_at
1422953 _at	2.798300	11.192299	12.128797	0.0000000	0.0000000	15.4191158	1422953_at
1447806_s_at	-2.954199	7.824789	-11.958706	0.0000000	0.0000000	15.1590602	1447806_s_a
1449366 _at	3.747495	10.081210	11.839458	0.0000000	0.0000000	14.9749026	1449366_at
1425518_at	-2.428115	6.687270	-11.721841	0.0000000	0.0000000	14.7917630	1425518_at
1437060_at	4.818901	7.500708	11.454993	0.0000000	0.0000000	14.3706465	1437060_at
1448213_{at}	2.728242	12.008671	11.423061	0.0000000	0.0000000	14.3197252	1448213_{at}
1437356 _at	-2.304486	7.957112	-11.270315	0.0000000	0.0000000	14.0745652	1437356 _at
1434046 _at	4.636745	6.815033	11.263380	0.0000000	0.0000000	14.0633718	1434046 _at
1420928 _at	-2.215863	9.460342	-11.167113	0.0000000	0.0000000	13.9074293	1420928_at
1436317_at	-2.950700	5.830050	-10.963849	0.0000000	0.0000000	13.5746687	1436317_a t
1424509 _at	4.206020	8.943432	10.807787	0.0000000	0.0000000	13.3159255	1424509 _at
1425289_a_at	-2.531694	7.287404	-10.773358	0.0000000	0.0000000	13.2584571	1425289_a_a

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1455340_at	-2.484658	5.958534	-10.723095	0.0000000	0.0000000	13.1743090	1455340_at
1460330_at	3.165709	7.364740	10.719277	0.0000000	0.0000000	13.1679051	$1460330_{-}at$
1440900 at	-2.073249	6.401088	-10.706583	0.0000000	0.0000000	13.1465998	1440900 at
1419907_s_at	-2.753226	7.089150	-10.581696	0.0000000	0.0000000	12.9359725	1419907_s_a
1448293 at	-2.687156	6.568098	-10.499043	0.0000000	0.0000001	12.7955445	1448293 at
1434848 at	3.644862	5.824646	10.461707	0.0000000	0.0000001	12.7318393	1434848 at
1427102_at	3.379195	10.546141	10.438570	0.0000000	0.0000001	12.6922773	1427102_at
1448562 at	3.771635	7.599334	10.284135	0.0000000	0.0000001	12.4265346	1448562 at
1416630 at	-2.228066	7.077548	-10.172121	0.0000000	0.0000001	12.2319546	1416630 at
1419532 at	3.957625	8.717034	10.131239	0.0000000	0.0000001	12.1605507	1419532_at
1450357_a_at	-2.004817	7.286378	-10.059938	0.0000000	0.0000001	12.0355210	1450357_a_
1416111 at	-2.485629	7.345574	-10.037644	0.0000000	0.0000001	11.9962972	1416111 at
1424032 at	-2.558197	8.873183	-9.979905	0.0000000	0.0000001	11.8944216	1424032 at
1455940 x at		7.338847	-9.969623	0.0000000	0.0000001	11.8762359	1455940 x
1434484 at	3.793765	9.333854	9.871881	0.0000000	0.0000001	11.7026935	1434484 at
1438442_at	-2.086161	6.467229	-9.789604	0.0000000	0.0000001	11.5556715	1438442_at
1424852_at	-2.079566	7.848753	-9.736880	0.0000000	0.0000001	11.4610040	1424852 at
1421366 at	2.370128	6.277268	9.724039	0.0000000	0.0000001	11.4378941	1421366 at
1451780 at	-2.339556	8.271421	-9.673514	0.0000000	0.0000001	11.3467581	1451780_at
1433966 x at	2.439849	6.040605	9.625901	0.0000000	0.0000001	11.2605747	1433966_x_
1417290 at	3.366002	10.034197	9.617940	0.0000000	0.0000001	11.2461357	1417290 at
1457728_at	-2.012430	6.607683	-9.611215	0.0000000	0.0000001	11.2339328	1457728_at
1418762_at	-2.416650	7.039844	-9.606957	0.0000000	0.0000001	11.2262030	1418762_at
1453568 at	-2.058763	7.823380	-9.591043	0.0000000	0.0000001	11.1972924	1453568_at
1453181_x_at	2.595534	6.889508	9.565562	0.0000000	0.0000001	11.1509354	1453181_x_
1418770_at	-2.051861	9.053082	-9.532755	0.0000000	0.0000001	11.0911258	1418770_at
1428719_at	-2.718705	10.972461	-9.511812	0.0000000	0.0000001	11.0528727	1428719_at
1428141_at	-2.384930	8.331805	-9.322892	0.0000000	0.0000001	10.7052135	1428141_at
1434758_at	3.328694	7.534880	9.294563	0.0000000	0.0000002	10.6526788	1434758_at
1424254 at	3.423580	11.198672	9.274396	0.0000000	0.0000002	10.6152150	1424254_at
1456147_at	-2.067838	7.454899	-9.111384	0.0000000	0.0000002	10.3104198	1456147_at
1454795_at	-2.192125	5.399669	-9.058991	0.0000000	0.0000002	10.2117097	1454795 at
1442023_at	-3.114701	6.781595	-9.051738	0.0000000	0.0000002	10.1980160	1442023_at
1434260_at	-2.378914	8.055180	-9.040272	0.0000000	0.0000002	10.1763527	1434260_at
1419406 a at		6.853303	-8.952493	0.0000000	0.0000002	10.0099321	1419406 a
1419307_at		7.359685	-8.944453	0.0000000	0.0000003	9.9946371	1419307_at
1418353 at	-2.056743	7.652456	-8.935157	0.0000000	0.0000003	9.9769419	1418353_at
1442339 at	2.806857	9.640235	8.894367	0.0000000	0.0000003	9.8991623	1442339_at
1426112 a at	-2.213957	7.924286	-8.851565	0.0000000	0.0000003	9.8173048	1426112_a_
1429319_at	-2.215397 -2.085490	8.059202	-8.781035	0.0000000	0.0000003	9.6818794	1429319_at
1455656 at	-2.285492	9.600563	-8.753683	0.0000000	0.0000003	9.6291789	1455656_at
1452463_x_at		11.660468	-8.711819	0.0000000	0.0000003	9.5483238	1452463_x_
1417640 at	-3.178697	9.967844	-8.636231	0.0000000	0.0000003	9.4017332	1417640 at
1426170 a at	-2.087796	8.374877	-8.540883	0.0000000	0.0000004	9.2157120	1426170_a_
1420170_a_at 1418830_at	-3.048152	8.831048	-8.530082	0.0000000	0.0000004	9.2137120	1420170_a_ 1418830_at
1417933 at	-3.048132 2.474143	6.267192	8.528433	0.0000000	0.0000004 0.0000004	9.1943019	1417933 at
1417935_at 1437270 a at	-2.014470	6.267192 6.950214	-8.507232	0.0000000	0.0000004 0.0000005	9.1913308	1417935_at 1437270 a
1437270_a_at 1422122_at	-3.389169	8.726842	-8.496750	0.0000000	0.0000005	9.1497049 9.1291916	1437270_a_ 1422122_at
1422122_at 1440837 at	-3.140946	9.703369	-8.455553	0.0000000	0.0000005	9.1291910	1422122_at 1440837_at
1440857_at 1419744 at	-3.140946			0.0000000	0.0000005	9.0481801 8.9540029	1440837_at 1419744 at
		8.915592	-8.407801				
1420591_at	2.372844	6.159378	8.347030	0.0000000	0.0000005	8.8336896	1420591_at
1451190_a_at	-2.41/109	8.898318	-8.315710	0.0000000	0.0000006	8.7714843	1451190_a_

	logFC	AveExpr	t	P Value	adj P Val	В	PROBEID
1417025 at	-2.477963	10.926377	-8.307213	0.0000000	0.0000006	8.7545850	1417025_at
	-2.477903	8.324875	-8.233390	0.0000000	0.0000000	8.6073483	
1419297_at 1442219 at	-2.551760	6.256627	-8.230154	0.0000000	0.0000000	8.6008783	1419297_at 1442219 at
		6.737744			0.0000000		_
1424831_at	2.039248		8.154017	0.0000001		8.4482083	1424831_at
1460407_at	-2.755441	8.595874	-8.115586	0.0000001	0.0000007	8.3708425	1460407_at
1450808_at	2.642655	8.865072	8.043843	0.0000001	0.0000007	8.2258766	1450808_at
1449027_at	2.178390	6.409139	7.990540	0.0000001	0.0000008	8.1177116	1449027_at
1425519_a_at		11.736950	-7.929228	0.0000001	0.0000009	7.9928111	1425519_a_a
1420994_at	-2.513921	8.113607	-7.900336	0.0000001	0.0000009	7.9337746	1420994_at
1450570_a_at		8.926450	-7.894407	0.0000001	0.0000009	7.9216459	1450570_a_a
1448871_at	2.231166	7.329450	7.872376	0.0000001	0.0000009	7.8765327	1448871_at
1451537_at	2.414537	7.910675	7.836695	0.0000001	0.0000010	7.8033291	1451537_at
1450009_at	4.534943	8.963616	7.800680	0.0000001	0.0000010	7.7292636	1450009_at
1419647_a_at	2.218588	7.239192	7.778965	0.0000001	0.0000011	7.6845191	1419647_a_a
1420330_at	2.370164	8.000858	7.743629	0.0000001	0.0000011	7.6115707	1420330_at
1415964_at	-2.061860	9.628260	-7.724466	0.0000001	0.0000011	7.5719366	1415964_at
1448485_at	2.670927	6.744666	7.699902	0.0000001	0.0000012	7.5210605	1448485_at
1455530_at	-3.206975	9.891386	-7.659746	0.0000002	0.0000012	7.4377125	1455530_at
1417688_at	2.022483	7.400343	7.656498	0.0000002	0.0000012	7.4309599	1417688_at
1425951_a_at	2.092050	5.903867	7.622840	0.0000002	0.0000013	7.3609139	1425951_a_a
1427329_a_at	-2.279496	10.713352	-7.622576	0.0000002	0.0000013	7.3603637	1427329_a_a
1450826_a_at	5.149836	9.343178	7.604859	0.0000002	0.0000013	7.3234295	1450826_a_a
1416957_at	-2.151971	9.324635	-7.539981	0.0000002	0.0000015	7.1878124	1416957_at
1430143_at	-2.158583	6.233731	-7.535232	0.0000002	0.0000015	7.1778624	1430143_{at}
1452431_s_at		11.319104	-7.512012	0.0000002	0.0000015	7.1291718	1452431_s_a
1419178_at	-2.072136	8.396370	-7.495368	0.0000002	0.0000016	7.0942245	1419178_at
1429889 _at	-3.107103	10.160756	-7.458149	0.0000002	0.0000016	7.0159361	1429889 _at
1422892_s_at	-2.075839	8.189835	-7.360002	0.0000003	0.0000019	6.8085910	1422892_s_a
1448291_at	2.362931	9.743778	7.303782	0.0000003	0.0000020	6.6892328	1448291_{at}
1436530_{-at}	2.988063	9.985045	7.275470	0.0000003	0.0000021	6.6289620	1436530 _at
1426640_s_at	-2.321964	8.891141	-7.270277	0.0000003	0.0000021	6.6178964	1426640_s_a
1422003_{at}	-2.301088	7.398532	-7.226744	0.0000004	0.0000023	6.5249813	1422003 _at
1417074 _at	3.083629	6.862341	7.159287	0.0000004	0.0000025	6.3805036	1417074 _at
1452732 _at	2.653971	8.218860	7.126162	0.0000005	0.0000026	6.3093338	1452732 _at
1426725_s_at	-2.037110	10.430512	-7.089094	0.0000005	0.0000027	6.2295179	1426725_s_a
1425738_at	-2.204225	8.421056	-7.083045	0.0000005	0.0000028	6.2164759	1425738_at
1417268_at	2.783217	8.704318	7.046889	0.0000006	0.0000029	6.1384199	1417268_at
1423571_{at}	-2.081538	8.183482	-6.896506	0.0000008	0.0000037	5.8119098	1423571_{at}
1427256 _at	2.629055	7.018484	6.894813	0.0000008	0.0000037	5.8082176	1427256 _at
1423466_at	-2.012809	8.982411	-6.802736	0.0000009	0.0000044	5.6068207	1423466_at
1451721_a_at	-2.163640	9.635463	-6.697242	0.0000012	0.0000051	5.3747358	1451721_a_a
1428357_at	-2.283564	6.745833	-6.669835	0.0000013	0.0000053	5.3142095	1428357_at
1451965 at	-2.135769	8.266260	-6.664416	0.0000013	0.0000053	5.3022303	1451965 _at
1419769 at	-2.427616	7.258350	-6.618937	0.0000014	0.0000057	5.2015507	1419769_at
1456328_at	-2.716776	9.437156	-6.561189	0.0000016	0.0000063	5.0733364	1456328_at
1448700_at	2.015343	6.710594	6.466993	0.0000020	0.0000074	4.8633147	1448700_at
1450912_at	-3.362475	8.532145	-6.231444	0.0000033	0.0000109	4.3334412	1450912_at
1456388_at	2.136135	6.745010	6.196562	0.0000036	0.0000116	4.2544189	1456388_at
1449184_at	2.317500	9.390679	6.117760	0.0000043	0.0000134	4.0753949	1449184_at
1419764 at	2.783230	9.974123	6.048963	0.0000050	0.0000149	3.9185317	1419764_at
1427860 at	-2.517584	7.264402	-6.015492	0.0000054	0.0000158	3.8420278	1427860_at
1419599 s at	2.273227	9.136198	5.966927	0.0000061	0.0000172	3.7308094	1419599 s a
>			•				

	$\log FC$	AveExpr	t	P Value	adj P Val	В	PROBEID
1417876_at	2.224978	7.106351	5.942637	0.0000064	0.0000178	3.6750909	1417876_at
1419691_{at}	3.153071	8.663065	5.865349	0.0000077	0.0000201	3.4973883	1419691_at
1430523_s_at	-2.681387	8.461592	-5.571565	0.0000151	0.0000346	2.8165723	1430523_s_a
1451451_at	2.230858	4.546258	5.453106	0.0000199	0.0000433	2.5398639	1451451_at
1451798_at	2.014283	8.175836	5.375910	0.0000239	0.0000505	2.3589347	1451798_at
1427381_at	2.724338	7.134866	5.361703	0.0000247	0.0000520	2.3255870	1427381_at
1420699_at	-2.047066	9.533006	-5.317760	0.0000274	0.0000568	2.2223491	1420699_at
1446715_at	2.526318	5.046308	5.204263	0.0000358	0.0000706	1.9550873	1446715_at
1436759_x_at	-2.183333	6.293795	-5.146371	0.0000410	0.0000792	1.8184452	1436759_x_a
1426774_at	2.023646	7.488535	4.417297	0.0002339	0.0003688	0.0867007	1426774_at
1418204_s_at	2.263350	7.115411	4.320526	0.0002952	0.0004542	-0.1434704	1418204_s_a
1449984_at	2.742337	5.382566	3.470434	0.0022574	0.0030316	-2.1380991	1449984_at
1453196_a_at	2.065262	8.268527	3.287918	0.0034692	0.0045574	-2.5536766	1453196_a_a
1449254_at	3.004684	6.741625	2.922870	0.0080684	0.0101003	-3.3614851	1449254_at
1449434_at	-2.139875	5.561232	-2.601059	0.0165841	0.0200683	-4.0395369	1449434_at
1416809_at	-3.269283	6.008609	-2.395429	0.0258859	0.0306618	-4.4515200	1416809_at

8.2 Apendice B. Tablas de genes anotados

8.2.1 Genes significativos anotados para el estudio con Linezolid

PROBEID SYMBOL	GENENAME	ENSEMBL	ENTREZID
1415897_a_Mrgst1	microsomal glutathione S-transferase 1	ENSMUSG00	000 566854 0
1415994_at Cyp2e1	cytochrome P450, family 2, subfamily e, polypeptide 1	ENSMUSG00	000 02596 79
1416025_at Fgg	fibrinogen gamma chain	ENSMUSG00	000 99338 60
1416332_at Cirbp	cold inducible RNA binding protein	ENSMUSG00	000 02690 3
1416625_at Serping1	serine (or cysteine) peptidase inhibitor, clade G,	ENSMUSG00	000 0223322 4
	member 1		
1416649 _at Ambp	alpha 1 microglobulin/bikunin precursor	ENSMUSG00	000 0128935 6
1416676at Kng1	kininogen 1	ENSMUSG00	
1416677at Apoh	apolipoprotein H	ENSMUSG00	
1416729 _at Plg	plasminogen	ENSMUSG00	00010\$\$914\$81
1417063 _at C1qb	complement component 1, q subcomponent, beta	ENSMUSG00	000 102225900 5
	polypeptide		
1417074_at Ceacam10	CEA cell adhesion molecule 10	ENSMUSG00	000 20531616 69
1417244_a_ a_k tf7	interferon regulatory factor 7	ENSMUSG00	000 025213 8
1417246 _at Pzp	PZP, alpha-2-macroglobulin like	ENSMUSG00	
1417268 _at Cd14	CD14 antigen	ENSMUSG00	000 02473 9
$1417290_{\rm at~Lrg1}$	leucine-rich alpha-2-glycoprotein 1	ENSMUSG00	000 70597099 5
1417300 _at Smpdl3b	sphingomyelin phosphodiesterase, acid-like 3B	ENSMUSG00	000 028885
1417314_at Cfb	complement factor B	ENSMUSG00	000 0499023 1
1417561_at Apoc1	apolipoprotein C-I	ENSMUSG00	00010148015264
1417640 _at Cd79b	CD79B antigen	ENSMUSG00	00005498592
1417876 _at Fcgr1	Fc receptor, IgG, high affinity I	ENSMUSG00	000 0415294 7
1417909at Serpinc1	serine (or cysteine) peptidase inhibitor, clade C	ENSMUSG00	000 01290751 5
	(antithrombin), member 1		
1417950 <u>a</u> _ A tpoa2	apolipoprotein A-II	ENSMUSG00	00000\$6681
1418021 _at C4b	complement C4B (Chido blood group)	ENSMUSG00	00010272361818
1418162 _at Tlr4	toll-like receptor 4	ENSMUSG00	0002018\$\$90605
1418191 _at Usp18	ubiquitin specific peptidase 18	ENSMUSG00	00020481011007
1418204_s_ A tif1	allograft inflammatory factor 1	ENSMUSG00	000 01261239 7
1418239 _at Apof	apolipoprotein F	ENSMUSG00	000 0437631 1
1418278at Apoc 3	apolipoprotein C-III	ENSMUSG00	000 0B208 1
1418282_x_ Se rpina1b	serine (or cysteine) preptidase inhibitor, clade A,	ENSMUSG00	00020770178
	member 1B		
1418580 _at Rtp4	receptor transporter protein 4	ENSMUSG00	000 03335 5
1418652 _at Cxcl9	C-X-C motif chemokine ligand 9	ENSMUSG00	000 02329 7
1418722 _at Ngp	neutrophilic granule protein	ENSMUSG00	000 0302348 4
1418724_at Cfi	complement component factor i	ENSMUSG00	000 026395 2
1418762 _at Cd55	CD55 molecule, decay accelerating factor for	ENSMUSG00	000 D2639 9
	complement		
1418771 <u>a</u> @pb2	carboxypeptidase B2	ENSMUSG00	000 023793 9
1418797 _at Ms $4a8a$	membrane-spanning 4-domains, subfamily A, member	ENSMUSG00	000 6)2387 B0
	8A		
1418830 at Cd79a	CD79A antigen (immunoglobulin-associated alpha)	ENSMUSG00	000 0253357 9
1418897_at F2	coagulation factor II	ENSMUSG00	
at Cxcl10	C-X-C motif chemokine ligand 10	ENSMUSG00	
	interferon inducible GTPase 1	ENSMUSG00	
1419059 at Apcs	amyloid P component, serum	ENSMUSG00	
1419093_at Tdo2	tryptophan 2,3-dioxygenase	ENSMUSG00	
<u> </u>	VI I , VO .		-

PROBEID SYMBOL	GENENAME	ENSEMBL ENTREZID
1419100_at Serpina3n	serine (or cysteine) peptidase inhibitor, clade A, member 3N	ENSMUSG00000 2027109 1
1419178_at Cd3g	CD3 antigen, gamma polypeptide	ENSMUSG000000000033
1419232 a A tpoa1	apolipoprotein A-I	ENSMUSG00000DB20083
1419532 at Il1r2	interleukin 1 receptor, type II	ENSMUSG0000002673
1419549_at Arg1	arginase, liver	ENSMUSG0000001189987
1419599_s_ M s4a6d	membrane-spanning 4-domains, subfamily A, member 6D	ENSMUSG00000027679
1419647_a_letr3	immediate early response 3	ENSMUSG0000000033741
1419681a_ Rt ok2	prokineticin 2	ENSMUSG00000000000000000000000000000000000
1419709_at Stfa3	stefin A3	ENSMUSG000000000005
1419764 at Chil3	chitinase-like 3	ENSMUSG000000 2/67850 9
1419769_at Cd22	CD22 antigen	ENSMUSG000000 23057 7
1419907 s E tcrla	Fc receptor-like A	ENSMUSG000000087854221
1420330_at Clec4e	C-type lectin domain family 4, member e	ENSMUSG00000000001942
1420484 a V tn	vitronectin	ENSMUSG0000022373044
1420549_at Gbp2b	guanylate binding protein 2b	ENSMUSG00000 D44026 4
1420591_at Gpr84	G protein-coupled receptor 84	ENSMUSG000000003234
1421262_at Lipg	lipase, endothelial	ENSMUSG000000559846
1421366_at Clec5a	C-type lectin domain family 5, member a	ENSMUSG00000000000000000000000000000000000
1421596_s_14441	interferon-induced protein 44 like	ENSMUSG0000000001146
1421921_at Serpina3m	serine (or cysteine) peptidase inhibitor, clade A, member 3M	ENSMUSG00000000000000000000000000000000000
1422122_at Fcer2a	Fc receptor, IgE, low affinity II, alpha polypeptide	ENSMUSG00000 00528 40
1422557_s_ M t1	metallothionein 1	ENSMUSG000000034465
1422760_at Padi4	peptidyl arginine deiminase, type IV	ENSMUSG0000000250220
1422953_at Fpr2	formyl peptide receptor 2	ENSMUSG000001422270
1423147_at Mat1a	methionine adenosyltransferase 1A	ENSMUSG00000000000000000000000000000000000
1423150_at Scg5	secretogranin V	ENSMUSG00000000000000000000000000000000000
1423466_at Ccr7	C-C motif chemokine receptor 7	ENSMUSG0000002779544
1423555 a lff44	interferon-induced protein 44	ENSMUSG000000289937
1423571_at S1pr1	sphingosine-1-phosphate receptor 1	ENSMUSG0000000255092
1423866_at Serpina3k	serine (or cysteine) peptidase inhibitor, clade A, member 3K	ENSMUSG00000000000000000000000000000000000
1423944_at Hpx	hemopexin	ENSMUSG000000 3039 5
1423954_at C3	complement component 3	ENSMUSG0000000226664
1424032_at Hvcn1	hydrogen voltage-gated channel 1	ENSMUSG00000769267
1424254 at Ifitm1	interferon induced transmembrane protein 1	ENSMUSG00000025431
1424279_at Fga	fibrinogen alpha chain	ENSMUSG00000025601
1424509_at Cd177	CD177 antigen	ENSMUSG000000522112
1424599_at Fgl1	fibrinogen-like protein 1	ENSMUSG0000003415994
1424713_at Calml4	calmodulin-like 4	ENSMUSG000002331234 ENSMUSG000007332246
1424713_at Canni4 1424727_at Ccr5	C-C motif chemokine receptor 5	ENSMUSG00000000000000000000000000000000000
1424923_at Serpina3g	serine (or cysteine) peptidase inhibitor, clade A,	ENSMUSG0000002474381
	member 3G	
1425065_at Oas2	2'-5' oligoadenylate synthetase 2	ENSMUSG00000 20427326
1425225_at Fcgr4	Fc receptor, IgG, low affinity IV	ENSMUSG00000 20452559
1425260_at Alb	albumin	ENSMUSG000000 D2957 68
1425289_a_ @t r2	complement receptor 2	ENSMUSG000000 020062 6
1425951_a_ @t ec4n	C-type lectin domain family 4, member n	ENSMUSG00000000000000000000000000000000000
1425958_at Il36g	interleukin 36G	ENSMUSG0000000115025073
1426112_a_@td72	CD72 antigen	ENSMUSG0000000284759

PROBEID SYMBOL	GENENAME	ENSEMBL	ENTREZID
1426168_a_ Tr ac	T cell receptor alpha constant	NA	100101484
1426170_a_ & d8b1	CD8 subunit beta 1	ENSMUSG00	
1426225 _at Rbp4	retinol binding protein 4, plasma	ENSMUSG00	000 102616929 0
1426276 _at Ifih1	interferon induced with helicase C domain 1	ENSMUSG00	000 02589 6
1426547 _at Gc	vitamin D binding protein	ENSMUSG00	00010484575340
1426640_s_a Trib2	tribbles pseudokinase 2	ENSMUSG00	00 002706101
$1426725_s_$ Etts 1	E26 avian leukemia oncogene 1, 5' domain	ENSMUSG00	000 23327 0B5
1426774at Parp 12	poly (ADP-ribose) polymerase family, member 12	ENSMUSG00	000 20483875101 7
1427102 _at Slfn4	schlafen 4	ENSMUSG00	000200752804
1427164 _at Il 13 ra 1	interleukin 13 receptor, alpha 1	ENSMUSG00	000 01764 7
1427256 _at Vcan	versican	ENSMUSG00	00002006314
1427381 _at Acod1	aconitate decarboxylase 1	ENSMUSG00	000 02365 26
1427442 <u>a</u> A tpp	amyloid beta precursor protein	ENSMUSG00	000 0122239 2
1427747_a_ ht n2	lipocalin 2	ENSMUSG00	000 0261892 2
1428079_at Fgb	fibrinogen beta chain	ENSMUSG00	000 DB38351
1428357 at Tdrp	testis development related protein	ENSMUSG00	00070251040552
1428719_at Iglc2	immunoglobulin lambda constant 2	ENSMUSG00	000 01767936 7
1428942_at Mt2	metallothionein 2	ENSMUSG00	000 037576 2
1429889 at Fcmr	Fc fragment of IgM receptor	ENSMUSG00	
	Z-DNA binding protein 1	ENSMUSG00	
1431808 a Htth4	inter alpha-trypsin inhibitor, heavy chain 4	ENSMUSG00	
1433471_at Tcf7	transcription factor 7, T cell specific	ENSMUSG00	
1433769_at Als2cl	ALS2 C-terminal like	ENSMUSG00	
1433966_x_Atsns	asparagine synthetase	ENSMUSG00	
1434046_at AA467197	expressed sequence AA467197	ENSMUSG00	
1434380_at Gbp7	guanylate binding protein 7	ENSMUSG00	
1434484_at Wfdc21	WAP four-disulfide core domain 21	ENSMUSG00	
1434758_at Crispld2	cysteine-rich secretory protein LCCL domain	ENSMUSG00	
1494040	containing 2	ENGMICOO	10010 179 1217
1434848_at Gpr27	G protein-coupled receptor 27	ENSMUSG00	
1435906_x_@tbp2	guanylate binding protein 2	ENSMUSG00	
1436317_at Pgap1	post-GPI attachment to proteins 1	ENSMUSG00	
	PRIKEN cDNA 1700097N02 gene	ENSMUSG00	
1436530_at Wfdc17	WAP four-disulfide core domain 17	ENSMUSG00	
1437060_at Olfm4	olfactomedin 4	ENSMUSG00	
1437277_x_ T gm2	transglutaminase 2, C polypeptide	ENSMUSG00	
1438037_at Herc6	hect domain and RLD 6	ENSMUSG00	
1439831_at ligp1c	interferon inducible GTPase 1C	ENSMUSG00	
1440837_at H2-Ob	histocompatibility 2, O region beta locus	ENSMUSG00	
1440865_at Ifitm6	interferon induced transmembrane protein 6	ENSMUSG00	
	1RIKEN cDNA A530030E21 gene	NA	320731
1443698_at Xaf1	XIAP associated factor 1	ENSMUSG00	
1447806_s_ St pk3	serine/arginine-rich protein specific kinase 3	ENSMUSG00	
1448213_at Anxa1	annexin A1	ENSMUSG00	
1448291_at Mmp9	matrix metallopeptidase 9	ENSMUSG00	
1448293_at Ebf1	early B cell factor 1	ENSMUSG00	
1448318_at Plin2	perilipin 2	ENSMUSG00	
1448470_at Fbp1	fructose bisphosphatase 1	ENSMUSG00	
1448485_at Ggt1	gamma-glutamyltransferase 1	ENSMUSG00	
1448562_at Upp1	uridine phosphorylase 1	ENSMUSG00	
1448575_at Il7r	interleukin 7 receptor	ENSMUSG00	JUU LKISS 2

PROBEID SYMBOL	GENENAME	ENSEMBL ENTREZII
1448680_at Serpina1c	serine (or cysteine) peptidase inhibitor, clade A, member 1C	ENSMUSG00000007300215
1448764_a_ Fa bp1	fatty acid binding protein 1, liver	ENSMUSG0000001494222
1448871_at Mapk13	mitogen-activated protein kinase 13	ENSMUSG00000 264186 4
1448881_at Hp	haptoglobin	ENSMUSG000000 34372 2
1448919_at Cd302	CD302 antigen	ENSMUSG00000 66207 03
1449025_at Ifit3	interferon-induced protein with tetratricopeptide	ENSMUSG0000005948996
_	repeats 3	
449123_at Itih3	inter-alpha trypsin inhibitor, heavy chain 3	ENSMUSG000000 00422 2
.449184_at Pglyrp1	peptidoglycan recognition protein 1	ENSMUSG00000000000000000000000000000000000
.449254_at Spp1	secreted phosphoprotein 1	ENSMUSG000000 279530 4
1449305_at F10	coagulation factor X	ENSMUSG000000 12058 14
1449326_x_ Sa a2	serum amyloid A 2	ENSMUSG00000 2052746 5
1449366_at Mmp8	matrix metallopeptidase 8	ENSMUSG00000000000000000000000000000000000
1449434_at Car3	carbonic anhydrase 3	ENSMUSG000000 235 559
1449984_at Cxcl2	C-X-C motif chemokine ligand 2	ENSMUSG00000 2058/42 7
1450009_at Ltf	lactotransferrin	ENSMUSG0000007320296
	interleukin 18 binding protein	ENSMUSG000000000027
1450484_a_@mpk2	cytidine/uridine monophosphate kinase 2	ENSMUSG00000 22069 8
1450570 a Odd19	CD19 antigen	ENSMUSG000000 230772 4
1450624_at Bhmt	betaine-homocysteine methyltransferase	ENSMUSG000000741768
450783_at Ifit1	interferon-induced protein with tetratricopeptide repeats 1	ENSMUSG000000 5957 59
1450788_at Saa1	serum amyloid A 1	ENSMUSG000000001201815
	formyl peptide receptor 1	ENSMUSG000000 12353 1
1450826_a_ St a3	serum amyloid A 3	ENSMUSG00000 2042102 6
1450912_at Ms4a1	membrane-spanning 4-domains, subfamily A, member	ENSMUSG000000 024897 3
1451006_at Xdh	1 xanthine dehydrogenase	ENSMUSG00000 22406 6
1451054at Orm1	orosomucoid 1	ENSMUSG00000 034015 96
l451310_a_ @t sl	cathepsin L	ENSMUSG000000 20397 7
l451537_at Chi3l1	chitinase 3 like 1	ENSMUSG00000000000000000000000000000000000
1451798 _at Il1rn	interleukin 1 receptor antagonist	ENSMUSG0000000269981
1452279_at Cfp	complement factor properdin	ENSMUSG00000 001362 8
452732_at Asprv1	aspartic peptidase, retroviral-like 1	ENSMUSG0000000335508
.453181_x_ Rt scr1	phospholipid scramblase 1	ENSMUSG00000 2232336 9
1453196_a_ @ tasl2	2'-5' oligoadenylate synthetase-like 2	ENSMUSG00000000000000000000000000000000000
.453568_at Dapl1	death associated protein-like 1	ENSMUSG00000000000000000000000000000000000
1453939_x_ G tm9706	predicted gene 9706	NA 677168
1454713_s_ H dc	histidine decarboxylase	ENSMUSG000000 2736 0
1455093 _a_Athsg	alpha-2-HS-glycoprotein	ENSMUSG000000 02236 8
1455393_at Cp	ceruloplasmin	ENSMUSG00000000000000000000000000000000000
1455530 _at Ighd	immunoglobulin heavy constant delta	ENSMUSG00000380472973
1455656_at Btla	B and T lymphocyte associated	ENSMUSG00000 2052054
1455913_x _Tt r	transthyretin	ENSMUSG00000 2251339 08
1456147_at St8sia6	ST8 alpha-N-acetyl-neuraminide	ENSMUSG00000000000000000000000000000000000
	alpha-2,8-sialyltransferase 6	
1456388_at Atp11a	ATPase, class VI, type 11A	ENSMUSG0000000377041
1456777 _at Mgam	maltase-glucoamylase	ENSMUSG0000000055587
1457666_s _4f i202b	interferon activated gene 202B	ENSMUSG00000 202553 5
1457728_at Niban3	niban apoptosis regulator 3	ENSMUSG00000000000000000000000000000000000
1460197_a_ St eap4	STEAP family member 4	ENSMUSG000000117214678

PROBEID SYMBOL	GENENAME	ENSEMBL	ENTREZID
1460330_at Anxa3	annexin A3	ENSMUSG000	
1460407_at Spib	Spi-B transcription factor (Spi-1/PU.1 related)	ENSMUSG000	

8.2.2 Genes significativos anotados para el estudio sin tratamiento

PROBEIDSYMBOL	GENENAME	ENSEMBL	ENTREZID
1415897_aMast1	microsomal glutathione S-transferase 1	ENSMUSG00	000000000000000000000000000000000000000
1415964_a \$ cd1	stearoyl-Coenzyme A desaturase 1	ENSMUSG00	00200204897071
1416021_a <u>F</u> adtp5	fatty acid binding protein 5, epidermal	ENSMUSG00	000000227533
1416107 _a $Nsg2$	neuron specific gene family member 2	ENSMUSG00	00000270297
$1416111_\mathrm{a}\mathbb{C}\mathrm{d}83$	CD83 antigen	ENSMUSG00	000000000000000000000000000000000000000
1416125 _aFkbp5	FK506 binding protein 5	ENSMUSG00	00042294222
1416381_a <u>P</u> ratx5	peroxiredoxin 5	ENSMUSG00	000000231953
$1416514_a\underline{F}$ sctn 1	fascin actin-bundling protein 1	ENSMUSG00	000000000000000000000000000000000000000
1416871_aAdam8	a disintegrin and metallopeptidase domain 8	ENSMUSG00	000000215473
1416957 _aPou $2af1$	POU domain, class 2, associating factor 1	ENSMUSG00	000000000000000000000000000000000000000
1417025 _aH2-Eb1	histocompatibility 2, class II antigen E beta	ENSMUSG00	000490690586
$1417074_a \hbox{\it C} eacam 10$	CEA cell adhesion molecule 10	ENSMUSG00	00 200865 64169
1417190 _aNampt	nicotinamide phosphoribosyltransferase	ENSMUSG00	001111111111111111111111111111111111111
$1417268_a\mathbb{C}d14$	CD14 antigen	ENSMUSG00	000000551439
1417290_aLrg1	leucine-rich alpha-2-glycoprotein 1	ENSMUSG00	000000000000000000000000000000000000000
$1417300_a\$\mathrm{mpdl3b}$	sphingomyelin phosphodiesterase, acid-like 3B	ENSMUSG00	00000243885
$1417314_a\mathbb{C}\mathrm{fb}$	complement factor B	ENSMUSG00	0004906920231
1417460 _alfitm2	interferon induced transmembrane protein 2	ENSMUSG00	0000007660591
$1417640_\mathrm{a}\mathbb{C}\mathrm{d}79\mathrm{b}$	CD79B antigen	ENSMUSG00	000000840592
$1417688_aFam20c$	FAM20C, golgi associated secretory pathway kinase	ENSMUSG00	000000000000000000000000000000000000000
1417741_aPygl	liver glycogen phosphorylase	ENSMUSG00	0000002915069
1417876_aFcgr1	Fc receptor, IgG, high affinity I	ENSMUSG00	00000295947
$1417894_aAdgrg3$	adhesion G protein-coupled receptor G3	ENSMUSG00	000000000000000000000000000000000000000
1417933 _algfbp6	insulin-like growth factor binding protein 6	ENSMUSG00	0000001228046
1418162_a Tlr 4	toll-like receptor 4	ENSMUSG00	0020089389005
$1418204_\mathrm{s}\underline{\mathrm{A}}$ id $\mathrm{t}1$	allograft inflammatory factor 1	ENSMUSG00	000002294397
$1418353_a\mathbb{C}d5$	CD5 antigen	ENSMUSG00	00 023027 4669
1418580_aRtp4	receptor transporter protein 4	ENSMUSG00	000000333355
1418722 _aNgp	neutrophilic granule protein	ENSMUSG00	0000052484
$1418762_a\mathbb{C}d55$	CD55 molecule, decay accelerating factor for complement	ENSMUSG00	00 03033 6399
1418797_aMs4a8a	membrane-spanning 4-domains, subfamily A, member 8A	ENSMUSG00	00 0008821 4730
1418830 _aCd $79a$	CD79A antigen (immunoglobulin-associated alpha)	ENSMUSG00	00000003379
$1418930_a \mathbb{C}xcl10$	C-X-C motif chemokine ligand 10	ENSMUSG00	000000454855
1418932 _aNfil3	nuclear factor, interleukin 3, regulated	ENSMUSG00	00000036749
1419043_a <u>Ii</u> gapt1	interferon inducible GTPase 1	ENSMUSG00	000000404072
$1419178_a\mathbb{C}d3g$	CD3 antigen, gamma polypeptide	ENSMUSG00	000230022033
1419186_a <u>St</u> &sia4	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4	ENSMUSG00	0020045420710
1419297_aH2-Oa	histocompatibility 2, O region alpha locus	ENSMUSG00	00000024334
$1419307_a {\rm Tnfrs} f 13c$	tumor necrosis factor receptor superfamily, member 13c	ENSMUSG00	00702004698105
1419406_a B alt $1a$	BCL11 transcription factor A	ENSMUSG00	000000000000000000000000000000000000000
$1419532_a El1r2$	interleukin 1 receptor, type II	ENSMUSG00	001000107286073
1419599_s Mast4a6d	membrane-spanning 4-domains, subfamily A, member 6D	ENSMUSG00	00000707241679
$1419647_a\underline{\text{Ie}}$ a3	immediate early response 3	ENSMUSG00	
1419681_a <u>P</u> ratk2	prokineticin 2	ENSMUSG00	OMMAN 20069

PROBEIDSYMBOL	GENENAME	ENSEMBL ENTREZID
1419691_aCamp	cathelicidin antimicrobial peptide	ENSMUSG000 0000 357
1419709_a S tfa3	stefin A3	ENSMUSG0000000534905
1419744 aH2-	histocompatibility 2, class II, locus Mb2	ENSMUSG00000007548
- DMb2	• • • • • • • • • • • • • • • • • • • •	
1419764 aChil3	chitinase-like 3	ENSMUSG0000005550809
a€d22	CD22 antigen	ENSMUSG00000000550577
1419907_s Fart la	Fc receptor-like A	ENSMUSG000000008421
$1420330_a \complement lec 4e$	C-type lectin domain family 4, member e	ENSMUSG00000000000142
1420361_a \$\text{lc11a1}	solute carrier family 11 (proton-coupled divalent metal ion	ENSMUSG000 0000026 177
	transporters), member 1	
$1420407_aLtb4r1$	leukotriene B4 receptor 1	ENSMUSG000 000995 6908
1420549 _aGbp2b	guanylate binding protein 2b	ENSMUSG0000000000000264
$1420591_\mathrm{a}\mathbf{G}\mathrm{pr}84$	G protein-coupled receptor 84	ENSMUSG000000003234
$1420697_a\$lc15a3$	solute carrier family 15, member 3	ENSMUSG000000024737
$1420928_a\$t6gal1$	beta galactoside alpha 2,6 sialyltransferase 1	ENSMUSG000000002885
$1420994_aB3gnt5$	UDP-GlcNAc:betaGal	ENSMUSG0000000022686
	beta-1,3-N-acetylglucosaminyltransferase 5	
1421211_a <u>C</u> äta	class II transactivator	ENSMUSG000000022504
1421262_a Lipg	lipase, endothelial	ENSMUSG00000005B846
$1421366_a\mathbb{C}lec5a$	C-type lectin domain family 5, member a	ENSMUSG000000099915
1421375_a <u>S</u> 1400a6	S100 calcium binding protein A6 (calcyclin)	ENSMUSG00000000000000000000000000000000000
1421408_aIgsf6	immunoglobulin superfamily, member 6	ENSMUSG00000000000000000000000000000000000
1421479 _a Z fp 318	zinc finger protein 318	ENSMUSG000000005597
1421844_aH1rap	interleukin 1 receptor accessory protein	ENSMUSG000000022514
1422003_aCxcr5	C-X-C motif chemokine receptor 5	ENSMUSG000000000457880
1422046_altgam	integrin alpha M	ENSMUSG0000000000786
1422122_aFcer2a	Fc receptor, IgE, low affinity II, alpha polypeptide	ENSMUSG000000055540
1422438_aEphx1	epoxide hydrolase 1, microsomal	ENSMUSG00000000000000000000000000000000000
1422557_sMettl	metallothionein 1	ENSMUSG0000000481765
1422775_aBlk	B lymphoid kinase	ENSMUSG0000000134453
1422892_s <u>H</u> 2tEa	histocompatibility 2, class II antigen E alpha	ENSMUSG0000005068424
1422953_aFpr2	formyl peptide receptor 2	ENSMUSG000000002270
1423135_aThy1	thymus cell antigen 1, theta	ENSMUSG00000000000000000000000000000000000
1423150_a\(\text{Scg5} \)	secretogranin V	ENSMUSG000000023236
1423466_aCcr7	C-C motif chemokine receptor 7	ENSMUSG000000007944
1423543_a\swap70	SWA-70 protein	ENSMUSG00000000000000000000000000000000000
1423571_a \$ 1pr1	sphingosine-1-phosphate receptor 1	ENSMUSG00000000000000000000000000000000000
1423954_aC3	complement component 3	ENSMUSG00000000164164 ENSMUSG000000061267
1424032_aHvcn1 1424254_aHitm1	hydrogen voltage-gated channel 1 interferon induced transmembrane protein 1	ENSMUSG00000000000000000000000000000000000
1424204_allithi 1424302_aPirb	paired Ig-like receptor B	ENSMUSG000000058818
1424502_arnb 1424509 aCd177	CD177 antigen	ENSMUSG000688952212
1424524 aDram1	DNA-damage regulated autophagy modulator 1	ENSMUSG0000000020057
1424727_aCcr5	C-C motif chemokine receptor 5	ENSMUSG00000002007 ENSMUSG000000070749227
1424831_aCpne2	copine II	ENSMUSG00000000000000000000000000000000000
1424852_aMef2c	myocyte enhancer factor 2C	ENSMUSG000000005583
1424923_aSerpina3g	serine (or cysteine) peptidase inhibitor, clade A, member 3G	ENSMUSG000000001451481
1424936_aDath8	dynein, axonemal, heavy chain 8	ENSMUSG000000013826
1424930_a <u>F</u> allo	Fc receptor-like 1	ENSMUSG00000000000000000000000000000000000
1425065_aOas2	2'-5' oligoadenylate synthetase 2	ENSMUSG0002467328690
1425225_aFcgr4	Fc receptor, IgG, low affinity IV	ENSMUSG000000000089089
1425289_aCrat	complement receptor 2	ENSMUSG000020026616
1720209_a <u>U</u> la	complement receptor 2	LI OIVI O D CI O O O LEDUZA DO I O

PROBEIDSYMBOL	GENENAME	ENSEMBL ENTREZID
1425295_aRnase2a	ribonuclease, RNase A family, 2A (liver, eosinophil-derived	ENSMUSG00000000247222
1425396_aLakt	neurotoxin) lymphocyte protein tyrosine kinase	ENSMUSG00000000000000000000000000000000000
1425518 aRapgef4	Rap guanine nucleotide exchange factor (GEF) 4	ENSMUSG00000000000000000000000000000000000
1425519 aCd74	CD74 antigen (invariant polypeptide of major	ENSMUSG000000294610
1420019_a <u>~</u> a14	histocompatibility complex, class II antigen-associated)	ENSWICS GOODDAY 294010
1425738_ałgkv3-	immunoglobulin kappa variable 3-12	ENSMUSG00000000000000000000000000000000000
125150_algkv5	minunogiobumi kappa variabie o 12	EIVSWO S GOOD WAREN
1425895 _aIdat	inhibitor of DNA binding 1, HLH protein	ENSMUSG000000002745
1425951_aCleec4n	C-type lectin domain family 4, member n	ENSMUSG000000023349
1425958_aH36g	interleukin 36G	ENSMUSG0000000254103
1426112 aC d7 2	CD72 antigen	ENSMUSG0000000028459
1426170 aC d8 b1	CD8 subunit beta 1	ENSMUSG00000000000000000000000000000000000
1426276 alfih1	interferon induced with helicase C domain 1	ENSMUSG00070105826896
1426640 _sTaitb2	tribbles pseudokinase 2	ENSMUSG0000000200601
1426725_s Etest 1	E26 avian leukemia oncogene 1, 5' domain	ENSMUSG00028867312035
1426774_aParp12	poly (ADP-ribose) polymerase family, member 12	ENSMUSG00000000000000000000000000000000000
1426775_s Sætmp 1	secretory carrier membrane protein 1	ENSMUSG00000000000000000000000000000000000
1426851_aC ent 3	cellular communication network factor 3	ENSMUSG0000000337362
$1427102_a\$lfn4$	schlafen 4	ENSMUSG00000000000000000000000000000000000
$1427164_a El 13ra 1$	interleukin 13 receptor, alpha 1	ENSMUSG0000000147057
1427256 _a V can	versican	ENSMUSG0000000001614
1427381_aAcod1	aconitate decarboxylase 1	ENSMUSG0000000022126
1427442_a Ap p	amyloid beta precursor protein	ENSMUSG000 00082202 892
1427747_a <u>L</u> at2	lipocalin 2	ENSMUSG0000000026822
1427844_a <u>C</u> abpb	CCAAT/enhancer binding protein beta	ENSMUSG000000056501
1427860_a ! gkv6- 15	immunoglobulin kappa variable 6-15	ENSMUSG00000000000000000000000000000000000
1427994_a€d300lf	CD300 molecule like family member F	ENSMUSG0000000747798
1428141_a G ga2	golgi associated, gamma adaptin ear containing, ARF binding	ENSMUSG0000000080872
	protein 2	
1428357_aTdrp	testis development related protein	ENSMUSG000700050052
1428579_aFmnl2	formin-like 2	ENSMUSG00000000000000000000000000000000000
1428663_a\$gms2	sphingomyelin synthase 2	ENSMUSG00000000000000000000000000000000000
1428700_aP2ry13	purinergic receptor P2Y, G-protein coupled 13	ENSMUSG00070400816362
1428719 _alglc2	immunoglobulin lambda constant 2	ENSMUSG000000786937
1428749_aDmxl2	Dmx-like 2	ENSMUSG0002836286268
1428781 _aDmkn	dermokine	ENSMUSG00078370620962
1428942 _aMt2	metallothionein 2	ENSMUSG00000000000000000000000000000000000
1429387_aGrap	GRB2-related adaptor protein	ENSMUSG00070050204837
$1429413_a\mathbb{C}\mathrm{pm}$	carboxypeptidase M	ENSMUSG000700107210183
$1429889_a Fcmr$	Fc fragment of IgM receptor	ENSMUSG000000002474
1429947 <u>aZ</u> l эф 1	Z-DNA binding protein 1	ENSMUSG00000000000000000000000000000000000
	9 3R1K EN cDNA 4930426D05 gene	ENSMUSG0007040044B168
$1430612_aMcemp1$	mast cell expressed membrane protein 1	ENSMUSG000000099974
1433769 _a A ls2cl	ALS2 C-terminal like	ENSMUSG00000000037
1433939 _a \mathbb{A} ff 3	AF4/FMR2 family, member 3	ENSMUSG0000000347138
1433966_x Asants	asparagine synthetase	ENSMUSG00000000000000000000000000000000000
	expressed sequence AA467197	ENSMUSG00000000000000000000000000000000000
1434260_aFchsd2	FCH and double SH3 domains 2	ENSMUSG00000000000000000000000000000000000
1434484_aWfdc21	WAP four-disulfide core domain 21	ENSMUSG000000071748
1434758 _aCrispld2	cysteine-rich secretory protein LCCL domain containing 2	ENSMUSG0007889921825

PROBEIDSYMBOL	GENENAME	ENSEMBL ENTREZID
	G protein-coupled receptor 27	ENSMUSG0000000002875
1435906_xGbp2	guanylate binding protein 2	ENSMUSG0000000028270
1436317_aPgap1	post-GPI attachment to proteins 1	ENSMUSG00000000000000000000000000000000000
	OHIKEN cDNA 1700097N02 gene	ENSMUSG00000000000000000000000000000000000
1436530 aWfdc17	WAP four-disulfide core domain 17	ENSMUSG00000000372921
1436941 aNxpe3	neurexophilin and PC-esterase domain family, member 3	ENSMUSG00000000000000000000000000000000000
1437060_aOlfm4	olfactomedin 4	ENSMUSG00088009224026
1437226_xMatcksl1	MARCKS-like 1	ENSMUSG0000005477945
1437270_a <u>C</u> lact1	cardiotrophin-like cytokine factor 1	ENSMUSG0000000006063
1437277_xTgntn2	transglutaminase 2, C polypeptide	ENSMUSG00000087820
1437356_aGpr183	G protein-coupled receptor 183	ENSMUSG00000000119212
1437870 a\$lco4c1	solute carrier organic anion transporter family, member 4C1	ENSMUSG00000000693
1438097_aRab20	RAB20, member RAS oncogene family	ENSMUSG0000003321504
1438148_aCxcl3	C-X-C motif chemokine ligand 3	ENSMUSG0008800229379
1438164_xFlot2	flotillin 2	ENSMUSG000000001981
1438802 aFoxp1	forkhead box P1	ENSMUSG00000860067
1439352 aTrim7	tripartite motif-containing 7	ENSMUSG00000000350
1439902_aC5ar1	complement component 5a receptor 1	ENSMUSG000000749130
1440837 aH2-Ob	histocompatibility 2, O region beta locus	ENSMUSG0001000012538
1440865 alfitm6	interferon induced transmembrane protein 6	ENSMUSG00000000000000000000000000000000000
1440900 aGpr174	G protein-coupled receptor 174	ENSMUSG00000007330008
	22RRKEN cDNA A530030E21 gene	NA 320731
1442219_aGm8369	predicted gene 8369	ENSMUSG000000928470
1442339 a\$tfa2l1	stefin A2 like 1	ENSMUSG00000055657
1446715_aAbca13	ATP-binding cassette, sub-family A member 13	ENSMUSG000008874668
1447284 aTrem1	triggering receptor expressed on myeloid cells 1	ENSMUSG0000000022265
1447806_sSeptk3	serine/arginine-rich protein specific kinase 3	ENSMUSG0000002007
1448213 aAnxa1	annexin A1	ENSMUSG0000000224659
1448291_aMmp9	matrix metallopeptidase 9	ENSMUSG00000095737
1448293 aEbf1	early B cell factor 1	ENSMUSG00000000000000000000000000000000000
1448318 aPlin2	perilipin 2	ENSMUSG00000028494
1448416_aMgp	matrix Gla protein	ENSMUSG00000000000000000000000000000000000
1448485_a G gt1	gamma-glutamyltransferase 1	ENSMUSG000000006345
1448562_aUpp1	uridine phosphorylase 1	ENSMUSG00000000000000000000000000000000000
1448700_a G 0s2	G0/G1 switch gene 2	ENSMUSG00000000000000000000000000000000000
1448871_aMapk13	mitogen-activated protein kinase 13	ENSMUSG0000000054864
1448881_аНр	haptoglobin	ENSMUSG000000001722
1448919_aCd302	CD302 antigen	ENSMUSG00000000703
1449027_aRhou	ras homolog family member U	ENSMUSG000000099960
1449184_aPglyrp1	peptidoglycan recognition protein 1	ENSMUSG00000000040413
1449254_a\$pp1	secreted phosphoprotein 1	ENSMUSG000000009304
1449305 aF10	coagulation factor X	ENSMUSG000000581444
1449360 aCsf2rb2	colony stimulating factor 2 receptor, beta 2, low-affinity	ENSMUSG000 009974 714
1110000_@@012102	(granulocyte-macrophage)	21.21.10.20004244.111
1449366_aMmp8	matrix metallopeptidase 8	ENSMUSG000000000005800
1449591_aCasp4	caspase 4, apoptosis-related cysteine peptidase	ENSMUSG0000000335338
1449984 aCxcl2	C-X-C motif chemokine ligand 2	ENSMUSG000000018427
1450009_aLtf	lactotransferrin	ENSMUSG0000000022496
1450350_aJdat2	Jun dimerization protein 2	ENSMUSG0000000034271
1450357_a <u>C</u> eut6	C-C motif chemokine receptor 6	ENSMUSG0000000580899
1450424_a <u>Il</u> lasbp	interleukin 18 binding protein	ENSMUSG000000580427
1450570 aC d1 9	CD19 antigen	ENSMUSG00000000000000000000000000000000000
	0	

PROBEIDSYMBOL	GENENAME	ENSEMBL	ENTREZID
1450808_aFpr1	formyl peptide receptor 1	ENSMUSG00	00104029435551
1450826_a <u>S</u> aat3	serum amyloid A 3	ENSMUSG00	0 2002 0400026
1450912_aMs4a1	membrane-spanning 4-domains, subfamily A, member 1	ENSMUSG00	001020408224673
1451006_aXdh	xanthine dehydrogenase	ENSMUSG00	0 02020433 4066
1451021_a <u>K</u> lf5	Kruppel-like transcription factor 5	ENSMUSG00	00000005148
$1451054_\mathrm{a}\Theta\mathrm{rm}1$	orosomucoid 1	ENSMUSG00	000000000000000000000000000000000000000
$1451190_a\underline{S}$ bakt 1	SH3-binding kinase 1	ENSMUSG00	
1451310_a <u>C</u> tastl	cathepsin L	ENSMUSG00	
1451451 _aGca	grancalcin	ENSMUSG00	
$1451537_a\text{Chi}3l1$	chitinase 3 like 1	ENSMUSG00	
1451780_aBlnk	B cell linker	ENSMUSG00	
$1451798_a El1rn$	interleukin 1 receptor antagonist	ENSMUSG00	
	50V(kappa) gene product	NA	672450
1452279_aCfp	complement factor properdin	ENSMUSG00	
1452389 _aCd27	CD27 antigen	ENSMUSG00	
1452431_s <u>H</u> 2tAa	histocompatibility 2, class II antigen A, alpha	ENSMUSG00	
1452463 _xIgkt	immunoglobulin kappa chain complex	NA	243469
1452521_a <u>P</u> latur	plasminogen activator, urokinase receptor	ENSMUSG00	
1452732 _a $Asprv1$	aspartic peptidase, retroviral-like 1	ENSMUSG00	
$1452966_aBcl11b$	B cell leukemia/lymphoma 11B	ENSMUSG00	
1453181_x <u>P</u> l st r1	phospholipid scramblase 1	ENSMUSG00	
1453196 _a $Oasl2$	2'-5' oligoadenylate synthetase-like 2	ENSMUSG00	
1453239_a <u>A</u> nkrd22	ankyrin repeat domain 22	ENSMUSG00	
1453568aDapl1	death associated protein-like 1	ENSMUSG00	
1454713_s <u>H</u> alt	histidine decarboxylase	ENSMUSG00	
1454795_aCobll1	Cobl-like 1	ENSMUSG00	
1454897_a\$lc9a7	solute carrier family 9 (sodium/hydrogen exchanger), member 7	ENSMUSG00	00286073277341
1455019 _xClaatp4	cytoskeleton-associated protein 4	ENSMUSG00	0000014967841
1455340 _aDennd5b	DENN domain containing 5B	ENSMUSG00	ORROGEOR 13
1455530 _a $tghd$	immunoglobulin heavy constant delta	ENSMUSG00	0000007947213
1455656 _aBtla	B and T lymphocyte associated	ENSMUSG00	002000015524013
1455660 _aCsf2rb	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	ENSMUSG00	00102008731713
1455899_xSocts3	suppressor of cytokine signaling 3	ENSMUSG00	000000000000000000000000000000000000000
1455940 _x W altr 6	WD repeat domain 6	ENSMUSG00	
1456061_aGimap8	GTPase, IMAP family member 8	ENSMUSG00	
1456147_a S t8sia6	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 6	ENSMUSG00	
1456328 aBank1	B cell scaffold protein with ankyrin repeats 1	ENSMUSG00	
1456388_a A tp11a	ATPase, class VI, type 11A	ENSMUSG00	
1456777_aMgam	maltase-glucoamylase	ENSMUSG00	0 2B2768 587
1456887_a€mklr1	chemerin chemokine-like receptor 1	ENSMUSG00	001040704472190
1457666_s <u>If</u> 202b	interferon activated gene 202B	ENSMUSG00	
1457728_aNiban3	niban apoptosis regulator 3	ENSMUSG00	
1460197_a <u>S</u> tætap4	STEAP family member 4	ENSMUSG00	
1460330_aAnxa3	annexin A3	ENSMUSG00	
1460407_a \$ pib	Spi-B transcription factor (Spi-1/PU.1 related)	ENSMUSG00	002702882193

$8.2.3\,\,$ Genes significativos anotados para el estudio con Vancomizina

PROBEIDSYMBOL	GENENAME	ENSEMBL ENTREZID
1415964_a \$ cd1	stearoyl-Coenzyme A desaturase 1	ENSMUSG00000000000000000000000000000000000
1416111_aCd83	CD83 antigen	ENSMUSG0000000023396
1416111_acdes 1416630 aId3	inhibitor of DNA binding 3	ENSMUSG00000007872
1416809_aCyp3a11	cytochrome P450, family 3, subfamily a, polypeptide 11	ENSMUSG00000000000000000000000000000000000
1416957_aPou2af1	POU domain, class 2, associating factor 1	ENSMUSG00000000000000000000000000000000000
1417025 aH2-Eb1	histocompatibility 2, class II antigen E beta	ENSMUSG00010490690586
	CEA cell adhesion molecule 10	ENSMUSG00000001169
1417268_aCd14	CD14 antigen	ENSMUSG000000051439
1417290_aLrg1	leucine-rich alpha-2-glycoprotein 1	ENSMUSG00000000000000000000000000000000000
1417640 a€d79b	CD79B antigen	ENSMUSG0000000000000592
-1417688 _aFam20c	FAM20C, golgi associated secretory pathway kinase	ENSMUSG0000000525854
1417876aFcgr1	Fc receptor, IgG, high affinity I	ENSMUSG000000095947
1417933_algfbp6	insulin-like growth factor binding protein 6	ENSMUSG00000023046
1418204_sAift1	allograft inflammatory factor 1	ENSMUSG000000294397
1418353 _aCd5	CD5 antigen	ENSMUSG000 025027 4669
1418722 _aNgp	neutrophilic granule protein	ENSMUSG000000052484
$1418762_\mathrm{aCd}55$	CD55 molecule, decay accelerating factor for complement	ENSMUSG0000000036399
$1418770_\mathrm{a}\mathbb{C}\mathrm{d}2$	CD2 antigen	ENSMUSG000 000217 863
$1418830_a\mathbb{C}\mathrm{d}79\mathrm{a}$	CD79A antigen (immunoglobulin-associated alpha)	ENSMUSG000000003379
$1419178_a\mathbb{C}d3g$	CD3 antigen, gamma polypeptide	ENSMUSG00000000000000000000000000000000000
1419297 _aH2-Oa	histocompatibility 2, O region alpha locus	ENSMUSG000000024334
1419307_a Tnfrsf $13c$	tumor necrosis factor receptor superfamily, member 13c	ENSMUSG000702004638105
1419406_a Balt 11a	BCL11 transcription factor A	ENSMUSG00000000000000000000000000000000000
$1419532_a \pounds l1r2$	interleukin 1 receptor, type II	ENSMUSG000000026073
1419599_s <u>M</u> sst4a6d	membrane-spanning 4-domains, subfamily A, member 6D	ENSMUSG000 00000024 679
1419647a <u>Ie</u> a3	immediate early response 3	ENSMUSG00000003541
1419681_a <u>P</u> ratk2	prokineticin 2	ENSMUSG00000000000000000000000000000000000
$1419691_a\mathbb{C}\mathrm{amp}$	cathelicidin antimicrobial peptide	ENSMUSG00000008357
1419709_a \$ tfa3	stefin A3	ENSMUSG000000534905
1419744_aH2-	histocompatibility 2, class II, locus Mb2	ENSMUSG00000007548
DMb2	1	
1419764_aChil3	chitinase-like 3	ENSMUSG00000000000000000000000000000000000
1419769_aCd22	CD22 antigen	ENSMUSG00000000050577
1419907_sFcarta	Fc receptor-like A	ENSMUSG00000000000000000000000000000000000
1420330_aClec4e	C-type lectin domain family 4, member e	ENSMUSG000000000142
1420591_aGpr84	G protein-coupled receptor 84	ENSMUSG000000003234
1420699_aClec7a	C-type lectin domain family 7, member a	ENSMUSG000000449293
1420928_a\\$t6gal1	beta galactoside alpha 2,6 sialyltransferase 1	ENSMUSG00000002885
1420994_aB3gnt5	UDP-GlcNAc:betaGal	ENSMUSG0000000022686
1491969 alima	beta-1,3-N-acetylglucosaminyltransferase 5	ENICHTIC COORDINATED 046
1421262_aLipg 1421366 aClec5a	lipase, endothelial	ENSMUSG00000000000000000000000000000000000
1421300_aCxcr5	C-type lectin domain family 5, member a C-X-C motif chemokine receptor 5	ENSMUSG000000047880
1422005_aCxcr5 1422122_aFcer2a	Fc receptor, IgE, low affinity II, alpha polypeptide	ENSMUSG00000005540
1422122_arce12a 1422892 sH2tEa		ENSMUSG000000000868224
1422953 а F pr2	histocompatibility 2, class II antigen E alpha formyl peptide receptor 2	ENSMUSG00000000000000000000000000000000000
1422955_arpr2 1423466 aCcr7	C-C motif chemokine receptor 7	ENSMUSG00000000000000000000000000000000000
1423571_a \$ 1pr1	sphingosine-1-phosphate receptor 1	ENSMUSG00000000000095092
1424032_aHvcn1	hydrogen voltage-gated channel 1	ENSMUSG0007040964267
1424254_alfitm1	interferon induced transmembrane protein 1	ENSMUSG00000000000000000000000000000000000
1424509_aCd177	CD177 antigen	ENSMUSG0000000023491
1424831_aCpne2	copine II	ENSMUSG000000000254361
1121001_acpite2	copine 11	TI INTITO DO COOLUMNIUM IN I

1425289_aCrat complement receptor 2 E 1425518_aRapgef4 Rap guanine nucleotide exchange factor (GEF) 4 E 1425519_aCrat CD74 antigen (invariant polypeptide of major E histocompatibility complex, class II antigen-associated)	NSMUSG000 00000 583
1425518_aRapgef4 Rap guanine nucleotide exchange factor (GEF) 4 E 1425519_aCd74 CD74 antigen (invariant polypeptide of major E histocompatibility complex, class II antigen-associated)	
1425519_aCd74 CD74 antigen (invariant polypeptide of major E histocompatibility complex, class II antigen-associated)	
histocompatibility complex, class II antigen-associated)	NSMUSG000000009044
	CNSMUSG00000000294610
1495799 abdres immunaglabulin kanna sasiahla 2.19	
1425738 _aIgkv3- immunoglobulin kappa variable 3-12 E 12	NSMUSG000 667944 17
1425951_aCkec4n C-type lectin domain family 4, member n	NSMUSG000000023349
1426112_a <u>C</u> d72 CD72 antigen E	CNSMUSG00010201028459
1426170_a <u>C</u> d8b1	NSMUSG00000000000000000000000000000000000
1426640_s <u>T</u> rib2 tribbles pseudokinase 2	CNSMUSG000 200704200 601
1426725_s <u>E</u> tat1 E26 avian leukemia oncogene 1, 5' domain E	NSMUSG000 2030312 035
1426774_aParp12 poly (ADP-ribose) polymerase family, member 12	NSMUSG000 000338 507
1427102_a Slfn4 schlafen 4	NSMUSG00000000000000000000000000000000000
1427256_aVcan versican E	CNSMUSG000103000231614
1427329_aIghtn immunoglobulin heavy constant mu E	CNSMUSG00000000796617
1427381_aAcod1 aconitate decarboxylase 1 E	CNSMUSG000 0030622 126
1427747_a <u>L</u> at2 lipocalin 2	ENSMUSG00000000206822
1427860_ałgkv6- immunoglobulin kappa variable 6-15 E	NSMUSG00000000922797
15	
1428141_aGga2 golgi associated, gamma adaptin ear containing, ARF binding E protein 2	CNSMUSG00000000000000000000000000000000000
1428357_aTdrp testis development related protein E	CNSMUSG0007020104580052
1428719_ałglc2 immunoglobulin lambda constant 2 E	ENSMUSG0001010077866937
1429319_aRhoh ras homolog family member H E	CNSMUSG0007040703249204
1429889_aFcmr Fc fragment of IgM receptor E	CNSMUSG00000000042474
1430143_a 4 930426D0 5R1K EN cDNA 4930426D05 gene	CNSMUSG0007040644B168
1430523_sIght1 immunoglobulin lambda variable 1 E	CNSMUSG0001000104726934
1433966_xAsats asparagine synthetase E	ENSMUSG000 2070052397 52
1434046 _aAA 467197 expressed sequence AA 467197	CNSMUSG00000000000000000000000000000000000
1434260_aFchsd2 FCH and double SH3 domains 2	CNSMUSG00000000000000000000000000000000000
$1434484_aWfdc21$ WAP four-disulfide core domain 21	NSMUSG000000010571748
1434758_aCrispld2 cysteine-rich secretory protein LCCL domain containing 2	CNSMUSG000 70889921 825
1434848_a Gpr 27 G protein-coupled receptor 27	NSMUSG000 000070 872875
_ 01 1	NSMUSG000 204007626 78
1436419_a <u>1</u> 700097N0 2R1 KEN cDNA 1700097N02 gene	NSMUSG00000000000000000000000000000000000
1436530_aWfdc17 WAP four-disulfide core domain 17 E	NSMUSG000 0000039472952 1
1436759_xCatt3 calponin 3, acidic E	NSMUSG000701009548931
	NSMUSG000 333009222 026
1437270_aCkt1 cardiotrophin-like cytokine factor 1	NSMUSG0000000000663
1437356_aGpr183 G protein-coupled receptor 183	ENSMUSG0000000000119212
	NSMUSG0000000217854
	NSMUSG000 0000021 538
•	NSMUSG000 20133031921 08
1440900_aGpr174 G protein-coupled receptor 174	CNSMUSG000 000847330 008
	VA 320731
_ •	CNSMUSG00000000000000000000000000000000000
	CNSMUSG0002060885657
	ENSMUSG000 200020749 668
	CNSMUSG00000000002007
1448213_aAnxa1 annexin A1	CNSMUSG000 00000524 659
	ENSMUSG000 000895 7737

PROBEIDSYMBOL	GENENAME	ENSEMBL	ENTREZID
1448293_aEbf1	early B cell factor 1	ENSMUSG00	000000000000000000000000000000000000000
1448485 a G gt1	gamma-glutamyltransferase 1	ENSMUSG00	
1448562_aUpp1	uridine phosphorylase 1	ENSMUSG00	
1448700 aG0s2	G0/G1 switch gene 2	ENSMUSG00	
	mitogen-activated protein kinase 13	ENSMUSG00	
1449027 aRhou	ras homolog family member U	ENSMUSG00	00 0000819 960
1449184aPglyrp1	peptidoglycan recognition protein 1	ENSMUSG00	
1449254_a S pp1	secreted phosphoprotein 1	ENSMUSG00	000000000000000000000000000000000000000
1449366_aMmp8	matrix metallopeptidase 8	ENSMUSG00	001070339945800
1449434 aCar3	carbonic anhydrase 3	ENSMUSG00	00 028827 559
1449984 _a \mathbb{C} xcl2	C-X-C motif chemokine ligand 2	ENSMUSG00	00 000018 427
1450009 _aLtf	lactotransferrin	ENSMUSG00	00107000322496
1450357_a <u>C</u> art6	C-C motif chemokine receptor 6	ENSMUSG00	00000000000899
1450570_a <u>C</u> d 1 9	CD19 antigen	ENSMUSG00	000000000000000000000000000000000000000
$1450808_a Fpr1$	formyl peptide receptor 1	ENSMUSG00	001040209435551
1450826_a <u>S</u> aat3	serum amyloid A 3	ENSMUSG00	000000000000000000000000000000000000000
1450912 _aMs $4a1$	membrane-spanning 4-domains, subfamily A, member 1	ENSMUSG00	001020408224673
1451190_a <u>Sb</u> lt1	SH3-binding kinase 1	ENSMUSG00	0010004014725978
1451451 _a \mathbf{G} ca	grancalcin	ENSMUSG00	002270266893
$1451537_a\mathbb{C}hi3l1$	chitinase 3 like 1	ENSMUSG00	00000644246
1451721_a <u>H</u> 2tAb1	histocompatibility 2, class II antigen A, beta 1	ENSMUSG00	00104996713421
1451780_aBlnk	B cell linker	ENSMUSG00	00107000601132
$1451798_a El1rn$	interleukin 1 receptor antagonist	ENSMUSG00	000000216981
1451965_aLOC6724	$50V(\mathrm{kappa})$ gene product	NA	672450
1452431_s <u>H</u> 2tAa	histocompatibility 2, class II antigen A, alpha	ENSMUSG00	000490636594
1452463 _xIgkt	immunoglobulin kappa chain complex	NA	243469
1452732 _a \mathbb{A} sprv 1	aspartic peptidase, retroviral-like 1	ENSMUSG00	000000000000000000000000000000000000000
1453181_x <u>P</u> l st r1	phospholipid scramblase 1	ENSMUSG00	00 2200332 369
1453196 _a $Oasl2$	2'-5' oligoadenylate synthetase-like 2	ENSMUSG00	O 02B396229 561
$1453568_a Dapl1$	death associated protein-like 1	ENSMUSG00	00706704276989
$1454795_a \hbox{Cobll} 1$	Cobl-like 1	ENSMUSG00	00000874903
1455340 _aDennd5b	DENN domain containing 5B	ENSMUSG0	OCCEDENTATION 13
1455530 _a ! ghd	immunoglobulin heavy constant delta	ENSMUSG0	000000794213
1455656 _aBtla	B and T lymphocyte associated	ENSMUSG0	002008015524013
1455940_x <u>W</u> attr6	WD repeat domain 6	ENSMUSG0	000000000000000000000000000000000000000
1456147_a\$t8sia6	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 6	ENSMUSG0	
1456328 _aBank1	B cell scaffold protein with ankyrin repeats 1	ENSMUSG0	
1456388 _a A tp $11a$	ATPase, class VI, type 11A	ENSMUSG0	0000000001441
1457728aNiban3	niban apoptosis regulator 3	ENSMUSG0	
1460330_a A nxa3	annexin A3	ENSMUSG00	
1460407_a S pib	Spi-B transcription factor (Spi-1/PU.1 related)	ENSMUSG00	002070228882193

8.2.4 Genes significatives anotados comunes a los tres estudios

PROBEID S	YMBOL	GENENAME	ENSEMBL	ENTREZID
1436530_at V	Vfdc17	WAP four-disulfide core domain 17	ENSMUSG000000	6 97092 34251
1418204_s_atA	if1	allograft inflammatory factor 1	ENSMUSG000000	2 43%2 9
1460330_at A	nxa3	annexin A3	ENSMUSG000000	2 9484 5
1417268_at C	d14	CD14 antigen	ENSMUSG000000	5 11423197 5
1451537 at C	hi3l1	chitinase 3 like 1	ENSMUSG000000	6 4265 4

PROBEID	SYMBOL	GENENAME	ENSEMBL	ENTREZID
1419764_at	Chil3	chitinase-like 3	ENSMUSG000000	4 0209 5
1427256_at	Vcan	versican	ENSMUSG000000	2 1600 3
1417876_at	Fcgr1	Fc receptor, IgG, high affinity I	ENSMUSG000000	1 5942 9
1422953_at	Fpr2	formyl peptide receptor 2	ENSMUSG000000	5 2278 9
1450808_at	Fpr1	formyl peptide receptor 1	ENSMUSG000000	4 542 93
1448485_at	$\operatorname{Ggt}1$	gamma-glutamyltransferase 1	ENSMUSG000000	0 63459 8
1434848_at	Gpr27	G protein-coupled receptor 27	ENSMUSG000000	7 2875 1
1419647_a_a	atIer3	immediate early response 3	ENSMUSG000000	0 359 B7
1419532_at	Il1r2	interleukin 1 receptor, type II	ENSMUSG000000	
1451798 _at	Il1rn	interleukin 1 receptor antagonist	ENSMUSG000000	2 6981 81
1427381_{at}	Acod1	aconitate decarboxylase 1	ENSMUSG000000	2 2626 5
1427747_a_a	atLcn2	lipocalin 2	ENSMUSG000000	2 6822 9
1421262_at	Lipg	lipase, endothelial	ENSMUSG000000	5 3&&9 1
1448213_{at}	Anxa1	annexin A1	ENSMUSG000000	
1450009 _at	Ltf	lactotransferrin	ENSMUSG000000	3247962
1449366 _at	Mmp8	matrix metallopeptidase 8	ENSMUSG000000	
1448291_{at}	Mmp9	matrix metallopeptidase 9	ENSMUSG000000	1 7737 95
1418722 _at	Ngp	neutrophilic granule protein	ENSMUSG000000	
1450826_a_a	atSaa3	serum amyloid A 3	ENSMUSG000000	4 202 60
1449984 _at	Cxcl2	C-X-C motif chemokine ligand 2	ENSMUSG000000	5 2427 0
1427102 _at	Slfn4	schlafen 4	ENSMUSG000000	
1449254 _at	Spp1	secreted phosphoprotein 1	ENSMUSG000000	
1419709_{at}	Stfa3	stefin A3	ENSMUSG000000	
1440865 _at	Ifitm6	interferon induced transmembrane protein 6	ENSMUSG000000	
1449184 _at	Pglyrp1	peptidoglycan recognition protein 1	ENSMUSG000000	
1453181_x_a		phospholipid scramblase 1	ENSMUSG000000	
1448562 _at	Upp1	uridine phosphorylase 1	ENSMUSG000000	
1421366 _at	Clec5a	C-type lectin domain family 5, member a	ENSMUSG000000	
1453196_a_a		2'-5' oligoadenylate synthetase-like 2	ENSMUSG000000	
1426774 _at	Parp12	poly (ADP-ribose) polymerase family, member 12	ENSMUSG000000	
1417074 _at		CEA cell adhesion molecule 10	ENSMUSG000000	
1448871_at	Mapk13	mitogen-activated protein kinase 13	ENSMUSG000000	
1433966_x_a		asparagine synthetase	ENSMUSG000000	
1437060_{at}	Olfm4	olfactomedin 4	ENSMUSG000000	
1434046_at		expressed sequence AA467197	ENSMUSG000000	
1419681_a_a		prokineticin 2	ENSMUSG000000	
1456388 _at	Atp11a	ATPase, class VI, type 11A	ENSMUSG000000	
1420330_at	Clec4e	C-type lectin domain family 4, member e	ENSMUSG000000	
1425951_a_a		C-type lectin domain family 4, member n	ENSMUSG000000	
1434484_at	Wfdc21	WAP four-disulfide core domain 21	ENSMUSG000000	
1452732_at	Asprv1	aspartic peptidase, retroviral-like 1	ENSMUSG000000	
1424254_at	Ifitm1	interferon induced transmembrane protein 1	ENSMUSG000000	
1419599_s_a	atMs4a6d	membrane-spanning 4-domains, subfamily A, member 6D	ENSMUSG000000	2 46879 74
1424509_at	Cd177	CD177 antigen	ENSMUSG000000	5 2282 1
1417290_at	Lrg1	leucine-rich alpha-2-glycoprotein 1	ENSMUSG000000	
1434758_at	Crispld2	cysteine-rich secretory protein LCCL domain	ENSMUSG000000	
1420591_at	Gpr84	containing 2 G protein-coupled receptor 84	ENSMUSG000000	6 3234 0

8.3 Apéndice C. Código

```
knitr::opts_chunk$set(echo = FALSE)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
# Install packages
# Load packages
library(knitr)
# Librería Bioconductor
if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
# Lectura de CELFiles
if (!require(oligo)){
    BiocManager::install(oligo)
}
library(oligo)
# Paquete de calidad
if (!require(arrayQualityMetrics)){
  BiocManager::install(arrayQualityMetrics)
library(arrayQualityMetrics)
# Paquete de anotación
if (!require(mouse4302.db)){
  BiocManager::install("mouse4302.db")
}
library("mouse4302.db")
# Filtrado y anotación de genes
if (!require(genefilter)){
    BiocManager::install(genefilter)
library(genefilter)
if (!require("limma")){
  BiocManager::install("limma")
library("limma")
if (!require(annotate)){
  BiocManager::install(annotate)
}
library(annotate)
if (!require(biomaRt)){
  BiocManager::install(biomaRt)
library(biomaRt)
BiocManager::install(c("clusterProfiler", "org.Mm.eg.db"))
```

```
library("clusterProfiler")
library(org.Mm.eg.db)
# Preparación de los datos. Filtrado de los datos
# Función para realizar el filtrado de los datos
filter_microarray <- function(allTargets, seed = 123) {</pre>
  # Configurar la semilla aleatoria
  print(seed)
  set.seed(seed)
  # Filtrar las filas donde 'time' no sea 'hour 2'
  filtered <- subset(allTargets, time != "hour 2")</pre>
  # Dividir el dataset por grupos únicos de 'infection' + 'agent'
  filtered$group <- interaction(filtered$infection, filtered$agent)
  # Seleccionar 4 muestras al azar de cada grupo
  selected <- do.call(rbind, lapply(split(filtered, filtered$group),</pre>
                                     function(group_data) {
    if (nrow(group_data) > 4) {
      group_data[sample(1:nrow(group_data), 4), ]
    } else {
      group_data
  }))
  # Obtener los índices originales como nombres de las filas seleccionadas
  original_indices <- match(selected$sample, allTargets$sample)</pre>
  # Modificar los rownames usando 'sample' y los índices originales
  rownames(selected) <- paste0(selected$sample, ".", original_indices)</pre>
  # Eliminar la columna 'group' y devolver el resultado
  selected$group <- NULL</pre>
  return(selected)
# Simular el dataset basado en la descripción proporcionada
sample = c("GSM944831", "GSM944838", "GSM944845", "GSM944852", "GSM944859",
           "GSM944833", "GSM944840", "GSM944847", "GSM944854", "GSM944861",
           "GSM944834", "GSM944841", "GSM944848", "GSM944855", "GSM944862".
           "GSM944832", "GSM944839", "GSM944846", "GSM944853", "GSM944860",
           "GSM944835", "GSM944842", "GSM944849", "GSM944856", "GSM944863",
           "GSM944836", "GSM944843", "GSM944850", "GSM944857", "GSM944864",
           "GSM944837", "GSM944844", "GSM944851", "GSM944858", "GSM944865")
allTargets <- data.frame(</pre>
  sample = sample,
  infection = c(rep("uninfected", 15), rep("S. aureus USA300", 20)),
  time = c(rep("hour 0", 15), rep("hour 2", 5), rep("hour 24", 15)),
  agent = c(rep("untreated", 5), rep("linezolid", 5), rep("vancomycin", 5),
            rep("untreated", 5), rep("untreated", 5), rep("linezolid", 5),
```

```
rep("vancomycin", 5)),
  filename = paste0(sample, ".CEL"),
  color = c(rep("lightblue", 5), rep("pink", 5), rep("lightgreen", 5),
            rep("grey", 5), rep("blue", 5), rep("red", 5), rep("green", 5))
)
# Aplicar la función (cambiar 123 por vuestro ID de la UOC u otro número que
# podáis escribir en el documento)
result <- filter_microarray(allTargets, seed=25178976)</pre>
result$grupo <- c(rep("INF.LIN",4),rep("NOINF.LIN",4),rep("INF.NOTTREAT",4),
                  rep("NOINF.NOTTREAT",4),rep("INF.VAN",4),rep("NOINF.VAN",4))
# Se crea el objeto AnnotatedDataFrame
targets <- AnnotatedDataFrame(result)</pre>
# Cargar todos los ficheros uno a uno con extensión CEL
celFiles <- result$filename</pre>
rawData <- read.celfiles(file.path(params$data_folder,celFiles),phenoData=targets)</pre>
#Diagrama de cajas
sampleNames <- as.character(result$grupo)</pre>
sampleColor <- as.character(result$color)</pre>
boxplot(rawData, which="all",las=2, main="Distribución intensidad datos en crudo",
        cex.axis=0.6, col=sampleColor, names=sampleNames)
legend("topright", legend = c("US3000 - linezolid", "No infectado - linezolid",
                               "US3000 - sin tratamiento", "No infectado - Sin Tratamiento",
                               "US3000 - vancomycin", "No infectado - vancomycin"),
       fill = c("red", "pink", "blue", "lightblue", "green", "lightgreen"), title = "Grupos")
# Agrupación por clusters
clust.euclid.average <- hclust(dist(t(exprs(rawData))),method="average")</pre>
plot(clust.euclid.average, labels<-sampleNames,</pre>
     main="Clustering jerarquizado datos en crudo",cex=0.7,hang=-1 )
# Función para realizar una representacion de PCA
plotPCA <- function ( X, labels=NULL, colors=NULL, dataDesc="", scale=FALSE,</pre>
                      formapunts=NULL, myCex=0.8,...)
{
  pcX < -prcomp(t(X), scale=scale) # o prcomp(t(X))
  loads<- round(pcX$sdev^2/sum(pcX$sdev^2)*100,1)</pre>
  xlab<-c(paste("PC1",loads[1],"%"))</pre>
  ylab<-c(paste("PC2",loads[2],"%"))</pre>
  if (is.null(colors)) colors=1
  plot(pcX$x[,1:2],xlab=xlab,ylab=ylab, col=colors, pch=formapunts,
       x = c(\min(pcX_x[,1]) - 100000, \max(pcX_x[,1]) + 100000), y = c(\min(pcX_x[,2]) - 100000,
                                                                      \max(pcX\$x[,2])+100000))
  text(pcX$x[,1],pcX$x[,2], labels, pos=3, cex=myCex)
  title(paste("Plot of first 2 PCs for expressions in", dataDesc, sep=" "), cex=0.8)
  legend("bottomright", legend = c("US3000 - linezolid", "No infectado - linezolid",
```

```
"US3000 - sin tratamiento",
                                 "No infectado - Sin Tratamiento",
                                 "US3000 - vancomycin", "No infectado - vancomycin"),
         col = c("red", "pink", "blue", "lightblue", "green", "lightgreen"),
         pch = c(15,22,16,21,17,24), title = "Grupos")
}
# Representación gráfica del Análisis de componentes principales (PCA)
plotPCA(exprs(rawData), labels=sampleNames, dataDesc="raw data", colors=sampleColor,
        formapunts=c(rep(15,4),rep(22,4),rep(16,4),rep(21,4),rep(17,4),rep(24,4)),
        myCex=0.5)
## Control de calidad con el paquete `arrayQualityMetrics`
# Avoid re-running it each time the script is executed.
rerun <- FALSE
if(rerun){
  arrayQualityMetrics(rawData, reporttitle="Anexo I. Calidad de los datos", force=TRUE)
# Construcción del Expression set
eset<-rma(rawData)
write.exprs(eset, file.path(params$results_folder, "NormData.txt"))
# Filtrado de los datos. Variabilidad de más del 90%
annotation(eset)<-"mouse4302.db"</pre>
eset_filtered <- nsFilter(eset, var.func=IQR,</pre>
                          var.cutoff=0.9, var.filter=TRUE, require.entrez=FALSE,
                           filterByQuantile=TRUE)
#Número de genes borrados
print(eset_filtered)
#Número de genes incluidos en el estudio
print(eset_filtered$eset)
dim(eset_filtered$eset)
# Matriz de datos filtrados
filteredEset <- eset_filtered$eset</pre>
filteredData <- exprs(filteredEset)</pre>
colnames(filteredData) <- rownames(pData(eset_filtered$eset))</pre>
# Creación de la matriz de diseño
lev <- factor(result$grupo, levels = unique(result$grupo))</pre>
design <-model.matrix(~0+lev,pData(filteredEset))</pre>
colnames(design) <- levels(lev)</pre>
rownames(design) <- sampleNames</pre>
# Visualización de la matriz de diseño
knitr::kable(design,
             col.names = gsub("[.]", " ", colnames(design)),
             booktabs = TRUE,
```

```
caption = 'Matriz de diseño')
# Creación de la matriz de contraste
mCont <- makeContrasts(LIN_INF_NOINF = INF.LIN - NOINF.LIN,</pre>
                        NOTTREAT_INF_NOINF = INF.NOTTREAT - NOINF.NOTTREAT,
                        VAN_INF_NOINF = INF.VAN - NOINF.VAN,
                        levels = design)
# Visualización de la matriz de contraste
knitr::kable(mCont,
             col.names = gsub("[.]", " ", colnames(mCont)),
             booktabs = TRUE,
             caption = 'Matriz de contraste')
 # Construcción del modelo lineal
fit <- lmFit(filteredEset,design)</pre>
fit.main <- contrasts.fit(fit,mCont)</pre>
fit.main <- eBayes(fit.main)</pre>
# Función para generar los mapas de calor
plotHeatmap <- function ( X, title="")</pre>
  selectedData <- filteredData[X,]</pre>
  #HEATMAP PLOT
  my_palette <- colorRampPalette(c("yellow", "red"))(n = 299)</pre>
  library(gplots)
  heatmap.2(selectedData,
            Rowv=TRUE,
            Colv=TRUE,
            main=title,
            scale="row",
            col=my_palette,
            sepcolor="white",
            sepwidth=c(0.05,0.05),
            cexRow=0.5,
            cexCol=0.9.
            key=TRUE,
            keysize=1.5,
            density.info="histogram",
            ColSideColors=sampleColor,
            tracecol=NULL,
            srtCol=30)
}
# Tratamiento Linezolid - diferencia entre Infectados y no infectados
topTabLIN <- topTable (fit.main, number=nrow(fit.main), coef="LIN_INF_NOINF",</pre>
                       adjust="fdr", lfc=2, p.value=0.05)
# Sin tratamiento - diferencia entre Infectados y no infectados
topTabNOTTREAT <- topTable (fit.main, number=nrow(fit.main), coef="NOTTREAT_INF_NOINF",
```

```
adjust="fdr", lfc=2, p.value=0.05)
# Vancomycin - diferencia entre Infectados y no infectados
topTabVAN <- topTable (fit.main, number=nrow(fit.main), coef="VAN_INF_NOINF",
                              adjust="fdr", lfc=2, p.value=0.05)
# Linezolid. Visualización de la tabla Infectados vs No Infectados
knitr::kable(head(topTabLIN),
             col.names = gsub("[.]", " ", colnames(topTabLIN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados LINEZOLID')
# Tabla de los genes diferencialmente expresados
#Linezolid. Infectados vs No Infectados
selectedRows <- rownames(filteredData) %in% rownames(topTabLIN)</pre>
title <- paste("HeatMap LINEZOLID", "Infectados vs No Infectados FC>=2", sep="\n")
plotHeatmap(selectedRows,title)
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(head(topTabNOTTREAT),
             col.names = gsub("[.]", " ", colnames(topTabNOTTREAT)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados No Tratados')
# Tabla de los genes diferencialmente expresados
#No tratados. Infectados vs No Infectados
selectedRows <- rownames(filteredData) %in% rownames(topTabNOTTREAT)</pre>
title <- paste("HeatMap Sin Tratamiento", "Infectados vs No Infectados FC>=2", sep="\n")
plotHeatmap(selectedRows,title)
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(head(topTabVAN),
             col.names = gsub("[.]", " ", colnames(topTabVAN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados. Vancomycina.')
# Tabla de los genes diferencialmente expresados
#Vancomycin. Infectados vs No Infectados
selectedRows <- rownames(filteredData) %in% rownames(topTabVAN)</pre>
title <- paste("HeatMap VANCOMYCIN", "Infectados vs No Infectados FC>=2", sep="\n")
plotHeatmap(selectedRows,title)
# Detección de genes expresados diferencialmente
rtdo_contrates <- decideTests(fit.main, method = "separate", adjust.method = "fdr",
                       p.value = 0.05, lfc = 2)
# LINZENOLID
genes_up_LIN <- rownames(filteredEset)[rtdo_contrates[, "LIN_INF_NOINF"] == 1]</pre>
genes_notSig_LIN <- rownames(filteredEset)[rtdo_contrates[, "LIN_INF_NOINF"] == 0]</pre>
genes_down_LIN <- rownames(filteredEset)[rtdo_contrates[, "LIN_INF_NOINF"] == -1]</pre>
up_LIN <- length(genes_up_LIN)</pre>
notSign_LIN <- length(genes_notSig_LIN)</pre>
down_LIN <- length(genes_down_LIN)</pre>
```

```
# SIN TRATAMIENTO
genes_up_NT <- rownames(filteredEset)[rtdo_contrates[, "NOTTREAT_INF_NOINF"] == 1]</pre>
genes notSig NT <- rownames(filteredEset)[rtdo contrates[, "NOTTREAT INF NOINF"] == 0]</pre>
genes down NT <- rownames(filteredEset)[rtdo contrates[, "NOTTREAT INF NOINF"] == -1]</pre>
up_NT <- length(genes_up_NT)</pre>
notSign_NT <- length(genes_notSig_NT)</pre>
down_NT <- length(genes_down_NT)</pre>
# VANCOMICINA
genes_up_VAN <- rownames(filteredEset)[rtdo_contrates[, "VAN_INF_NOINF"] == 1]</pre>
genes_notSig_VAN <- rownames(filteredEset)[rtdo_contrates[, "VAN_INF_NOINF"] == 0]</pre>
genes_down_VAN <- rownames(filteredEset)[rtdo_contrates[, "VAN_INF_NOINF"] == -1]</pre>
up_VAN <- length(genes_up_VAN)</pre>
notSign_VAN <- length(genes_notSig_VAN)</pre>
down_VAN <- length(genes_down_VAN)</pre>
common_UP_LIN_NT <- intersect(genes_up_LIN, genes_up_NT)</pre>
common_UP_LIN_VAN <- intersect(genes_up_LIN, genes_up_VAN)</pre>
common_UP_NT_VAN <- intersect(genes_up_NT, genes_up_VAN)</pre>
common_UP_LIN_NT_VAN <- intersect(common_UP_LIN_NT,common_UP_LIN_VAN )</pre>
# Genes comunes expresados diferencialmente a los tres estudios
vennTable <- vennCounts(rtdo contrates,include="up")</pre>
knitr::kable(vennTable[1:dim(vennTable)[1],1:dim(vennTable)[2]],
             col.names = gsub("[.]", " ", c("Linezolid", "Sin Tratamiento",
                                               "Vancomizina", "N Comunes")),
             booktabs = TRUE,
             caption = 'Genes comunes en los diferentes estudios')
# Diagrama de Venn Genes altamente diferenciados entre grupos
vennDiagram(rtdo_contrates, include = "up")
# Estudio de contraste Linezolid
topTabLIN$PROBEID <- rownames(topTabLIN)</pre>
myProbes_LIN <- topTabLIN$PROBEID</pre>
# Se realiza la anotación de los genes
geneAnots LIN <- AnnotationDbi::select(mouse4302.db, keys=myProbes LIN,
                     columns = c("SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID"))
# Se mezclan ambas tablas por PROBEID, para ordenarlas se mantiene el valor de B
annotatedTopTab_LIN <- merge(x=geneAnots_LIN, y=topTabLIN, by.x="PROBEID", by.y="PROBEID")
# Se ordenan las claves en orden descendente pro la columna B
sortAnnotatedTopTabLIn <- annotatedTopTab_LIN[order(-topTabLIN$B),</pre>
                                   c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID",
sortAnnotatedTopTabLIn <- sortAnnotatedTopTabLIn[!is.na(sortAnnotatedTopTabLIn$SYMBOL),]
dim(sortAnnotatedTopTabLIn)
# Estudio de contraste Sin tratamiento
topTabNOTTREAT$PROBEID <- rownames(topTabNOTTREAT)</pre>
myProbes_NOTTREAT <- topTabNOTTREAT$PROBEID</pre>
# Se realiza la anotación de los genes
```

```
geneAnots_NOTTREAT <- AnnotationDbi::select(mouse4302.db, keys=myProbes_NOTTREAT,</pre>
                         columns = c("SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID"))
# Se mezclan ambas tablas por PROBEID, para ordenarlas se mantiene el valor de B
annotatedTopTab_NOTTREAT <- merge(x=geneAnots_NOTTREAT, y=topTabNOTTREAT,</pre>
                                   by.x="PROBEID", by.y="PROBEID")
\# Se ordenan las claves en orden descendente pro la columna B
sortAnnotatedTopTabNOTTREAT <- annotatedTopTab NOTTREAT[order(-topTabNOTTREAT$B),
                                                          c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                                            "ENTREZID".
                                                 "B")]
sortAnnotatedTopTabNOTTREAT <- sortAnnotatedTopTabNOTTREAT[!is.na(sortAnnotatedTopTabNOTTREAT$SYMBOL),]
dim(sortAnnotatedTopTabNOTTREAT)
# Estudio de contraste Vancomicina
topTabVAN$PROBEID <- rownames(topTabVAN)</pre>
myProbes_VAN <- topTabVAN$PROBEID</pre>
# Se realiza la anotación de los genes
geneAnots_VAN <- AnnotationDbi::select(mouse4302.db, keys=myProbes_VAN,</pre>
                              columns = c("SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID"))
# Se mezclan ambas tablas por PROBEID, para ordenarlas se mantiene el valor de B
annotatedTopTab_VAN <- merge(x=geneAnots_VAN, y=topTabVAN, by.x="PROBEID", by.y="PROBEID")
\# Se ordenan las claves en orden descendente pro la columna B
sortAnnotatedTopTabVAN <- annotatedTopTab VAN[order(-topTabVAN$B),</pre>
                                               c("PROBEID", "SYMBOL", "GENENAME",
                                                 "ENSEMBL", "ENTREZID", "B")]
sortAnnotatedTopTabVAN <- sortAnnotatedTopTabVAN[!is.na(sortAnnotatedTopTabVAN$SYMBOL),]
dim(sortAnnotatedTopTabVAN)
# Se realiza la anotación de los genes comunes a los tres estudios
geneAnots_common <- AnnotationDbi::select(mouse4302.db, keys=common_UP_LIN_NT_VAN,</pre>
                                        columns = c("SYMBOL", "GENENAME", "ENSEMBL", "ENTREZID"))
# Genes diferencialmente expresados y anotados para el contraste de Linezolid
knitr::kable(head(sortAnnotatedTopTabLIn[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             caption = 'Principales genes diferencialmente expresados. Linezolid')
# Genes diferencialmente expresados y anotados para el contraste Sin Tratamiento
knitr::kable(head(sortAnnotatedTopTabNOTTREAT[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                                   "ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             caption = 'Principales genes diferencialmente expresados. Sin tratamiento')
# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(head(sortAnnotatedTopTabVAN[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
```

```
"ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                             "ENTREZID")),
             booktabs = TRUE,
             caption = 'Principales genes diferencialmente expresados. Vancomizina')
# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(head(geneAnots common[,c("PROBEID","SYMBOL","GENENAME","ENSEMBL",
                                            "ENTREZID")],10),
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                             "ENTREZID")),
             booktabs = TRUE,
             caption = 'Principales genes diferencialmente expresados. Comunes')
genes_ENTREZ_LIN <- sortAnnotatedTopTabLIn$ENTREZID</pre>
ego_LIN <- enrichGO(
  gene = genes_ENTREZ_LIN,
  OrgDb = org.Mm.eg.db,
  keyType = "ENTREZID",
  ont = "BP",
                            # Ontología: BP (Biological Process),
  pAdjustMethod = "fdr",
                            # Método de ajuste para múltiples pruebas
 pvalueCutoff = 0.05,
                            # Umbral de significancia
                            # Umbral de Q-valor
  qvalueCutoff = 0.2
# Ver los resultados
head(ego_LIN)
ego_LIN_df <- as.data.frame(ego_LIN)</pre>
head(ego_LIN_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_LIN, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego_LIN, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego_LIN, categorySize = "geneNum", schowCategory = 15, vertex.label.cex = 0.75)
par(mfrow=c(1,1))
genes_ENTREZ_NT <- sortAnnotatedTopTabNOTTREAT$ENTREZID</pre>
ego_NT <- enrichGO(
  gene = genes_ENTREZ_NT,
  OrgDb = org.Mm.eg.db,
  keyType = "ENTREZID",
  ont = "BP",
                             # Ontología: BP (Biological Process), MF (Molecular Function), CC (Cellula
  pAdjustMethod = "fdr",
                             # Método de ajuste para múltiples pruebas
  pvalueCutoff = 0.05,
                            # Umbral de significancia
  qvalueCutoff = 0.2
                            # Umbral de Q-valor
```

```
# Ver los resultados
head(ego_NT)
ego_NT_df <- as.data.frame(ego_NT)</pre>
head(ego_NT_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_NT, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego_NT, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego_NT, categorySize = "geneNum", schowCategory = 15, vertex.label.cex = 0.75)
par(mfrow=c(1,1))
# Lista de genes significativos (símbolos)
genes_ENTREZ_VAN <- sortAnnotatedTopTabVAN$ENTREZID</pre>
ego_VAN <- enrichGO(
 gene = genes_ENTREZ_VAN,
  OrgDb = org.Mm.eg.db,
 keyType = "ENTREZID",
  ont = "BP",
                            # Ontología: BP (Biological Process)
  pAdjustMethod = "fdr",
                             # Método de ajuste para múltiples pruebas
 pralueCutoff = 0.05, # Umbral de significancia
 qvalueCutoff = 0.2
                            # Umbral de Q-valor
# Ver los resultados
head(ego_VAN)
ego_VAN_df <- as.data.frame(ego_VAN)</pre>
head(ego_VAN_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_VAN, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego_VAN, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego_VAN, categorySize = "geneNum", schowCategory = 15,
         vertex.label.cex = 0.75)
par(mfrow=c(1,1))
# Lista de genes significativos (símbolos)
genes_ENTREZ_COMMON <- geneAnots_common$ENTREZID</pre>
```

```
ego_COMMON <- enrichGO(</pre>
  gene = genes_ENTREZ_COMMON,
  OrgDb = org.Mm.eg.db,
  keyType = "ENTREZID",
                            # Ontología: BP (Biological Process)
  ont = "BP",
  pAdjustMethod = "fdr",
                            # Método de ajuste para múltiples pruebas
 pvalueCutoff = 0.05,
                           # Umbral de significancia
  qvalueCutoff = 0.2
                           # Umbral de Q-valor
# Ver los resultados
head(ego_COMMON)
ego_COMMON_df <- as.data.frame(ego_COMMON)</pre>
head(ego_COMMON_df)
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,2))
barplot(ego_COMMON, showCategory = 10, title = "Top 10 GO Terms")
dotplot(ego_COMMON, showCategory = 10, title = "GO Enrichment Dot Plot")
par(mfrow=c(1,1))
# Representación gráfica de la matriz de correlación
par(mfrow=c(1,1))
cnetplot(ego COMMON, categorySize = "geneNum", schowCategory = 15,
         vertex.label.cex = 0.75)
par(mfrow=c(1,1))
# Linezolid. Visualización de la tabla Infectados vs No Infectados
knitr::kable(topTabLIN,
             col.names = gsub("[.]", " ", colnames(topTabLIN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados LINEZOLID')
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(topTabNOTTREAT,
             col.names = gsub("[.]", " ", colnames(topTabNOTTREAT)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados No Tratados')
# NoTratados. Visualización de la tabla Infectados vs No Infectados
knitr::kable(topTabVAN,
             col.names = gsub("[.]", " ", colnames(topTabVAN)),
             booktabs = TRUE,
             caption = 'Genes diferencialmente expresados. Vancomycina.')
# Genes diferencialmente expresados y anotados para el contraste de Linezolid
knitr::kable(sortAnnotatedTopTabLIn[,c("PROBEID","SYMBOL","GENENAME","ENSEMBL",
                                             "ENTREZID")],
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                             "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Linezolid')
```

```
\# Genes diferencialmente expresados y anotados para el contraste Sin Tratamiento
knitr::kable(sortAnnotatedTopTabNOTTREAT[,c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                                  "ENTREZID")],
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Sin tratamiento')
\# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(sortAnnotatedTopTabVAN[,c("PROBEID","SYMBOL","GENENAME","ENSEMBL",
                                             "ENTREZID")],
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Vancomizina')
# Genes diferencialmente expresados y anotados para el contraste de Vancomicina
knitr::kable(geneAnots_common[,c("PROBEID","SYMBOL","GENENAME","ENSEMBL",
                                             "ENTREZID")],
             col.names = gsub("[.]", " ", c("PROBEID", "SYMBOL", "GENENAME", "ENSEMBL",
                                              "ENTREZID")),
             booktabs = TRUE,
             aption = 'Principales genes diferencialmente expresados. Comunes')
```