Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina

Departamento Acadêmico de Eletrônica

Curso de Graduação em Engenharia Eletrônica

Cálculo de Perdas em diodos, MOSFET e de dissipadores

SANTA CATARINA

Prof. Joabel Moia.

Florianópolis, março de 2025.

Bibliografia para esta aula

http://www.hsdissipadores.com.br/default.asp

http://www.semikron.com/

https://www.onsemi.com/

http://www.irf.com/

Diodo ideal e real

Circuito para estudo da comutação

Primeira etapa de comutação

Segunda etapa de comutação

Bloqueio

No bloqueio do diodo (comutação crítica):

$$\frac{di_F}{dt} = -\frac{E}{L_1}$$

Derivada da corrente depende da indutância

$$t_{rr} \cong \sqrt{\left(\frac{3Q_{rr}}{di_F/dt}\right)}$$
 Tempo de recuperação reversa

$$I_{RM} \simeq \sqrt{\left(\frac{4}{3}Q_{rr}\frac{di_F}{dt}\right)}$$

 $I_{RM} \simeq \sqrt{\left(\frac{4}{3}Q_{rr}\frac{di_F}{dt}\right)}$ Corrente máxima devido a recuperação reversa

Perdas nos diodos

Classificação das perdas:

1. Condução;

$$P = V_{(TO)} \cdot I_{Dmed} + r_T \cdot I_{Def}^{2}$$

- 1. Comutação:
 - Entrada em condução;

$$P_1 = 0.5(V_{FP} - V_F)I_o \cdot t_{rf} \cdot f$$

Bloqueio.

$$P_2 = Q_{rr} \cdot E \cdot f$$

Perdas nos diodos

Entrada em condução;

$$P_1 = 0.5(V_{FP} - V_F)I_o \cdot t_{rf} \cdot f$$

P₁ = Perdas na entrada em condução do diodo. [W]

V_{FP} = Sobretensão direta na entrada em condução. [V]

f = frequência de comutação do diodo.[Hz] t_{rf} = tempo de atraso na transição. [s]

I_o = Corrente em condução do diodo. [A]

Diodos de carbeto de sílicio (silicon carbide):

Diminuem acentuadamente o fenômeno da recuperação reversa.

Fig. 5. Typical reverse recovery waveforms of the Si pn and SiC Schottky diode for three different forward currents (2 A/div.).

http://powerelec.ece.utk.edu/pubs/ pels letters SiC june 2003.pdf

Fig. 4. Low-line diode recovery currents in PFC front-end converter.

Fig. 8. A size comparison of an 80-kHz PFC front-end built with Si rectifiers (left) and a 200-kHz PFC front-end with SiC rectifiers.

Diodos

Rectifiers (227)

Standard and Fast Recovery

Tipos de diodos de potência:

- 1. Standard and fast recovery;
- 2. Ultrafast rectifiers;
- 3. Ultrasoft rectifers;
- 4. Silicon carbide (zero recovery).

http://www.onsemi.com

Diodos

Tipos de diodos de potência:

- 1. Standard and fast recovery;
- 2. Ultrafast rectifiers;
- 3. Ultrasoft rectifers;
- 4. Silicon carbide (zero recovery).
- Diodos standard: transição > 0,5μs (baixa frequência)
- Fast recovery transição < 250 ns</p>
- Soft-recovery transição amortecida sem pico de tensão (principalmente tecnologia Schottky)
- ultrafast-recovery transição < 100 ns</p>
- hyperfast-recovery transição < 50 ns
- Zero recovery (Carbeto de silicio, (SiC) – Silicon Carbide) transição em tempo desprezível.

- Fast:
 - 50V/50ns 5000V/5us;
- Ultra Fast:
 - 200V/25ns 600V/40ns
- Hyper Fast:
 - 200V/30ns 600V/16ns;
- Zero-recovery:
 - 100-200V/1ns

Cgd: Pequena e altamente não linear.

Cgs: Elevada e praticamente constante.

Cds: Média e altamente não linear

Os tempos de comutação são determinados pelas taxas de carga e descarga de Cgs e Cdg (Ciss):

Classificação das perdas:

1. Condução;

$$P_{cond} = \frac{t_{on}}{T} \cdot r_{ds(on)} \cdot i_{d(on)}^2 = r_{ds(on)} \cdot i_{d(on)_rms}^2$$

- 1. Comutação:
 - Entrada em condução e bloqueio;

$$P_{com} = \frac{f}{2} (t_r + t_f) \cdot i_{d(on)} \cdot v_{ds(off)}$$

Onde:

$$t_f \cong t_{on}$$
 $t_r \cong t_{off}$

Comutação do MOSFET com carga resistiva

Transistor Mosfet / IGBT – Características dinâmicas Carga indutiva

Perdas em IGBT - Caso Real

$$P_{cond} = \frac{t_{on}}{T} r_{ds(on)} i_{d(on)}^{2}$$

$$P = P_{cond} + P_{com}$$

$$P_{com} = \frac{f}{2} (t_r + t_f) i_{d(on)} V_{ds(off)}$$

V _{DSS}	40V
R _{DS(on)} typ.	$2.0m\Omega$
max.	$2.5m\Omega$
I _D	172A①
D (Package Limited)	120A

International
IOR Rectifier
TANK NOCHING

$P_{cond} = \frac{t_{on}}{T} r_{ds(on)} i_{d(on)}$	2
--	---

$$P_{com} = \frac{f}{2} (t_r + t_f) i_{d(on)} V_{ds(off)}$$

t _{d(on)}	Turn-On Delay Time	 24	_	ns	$V_{DD} = 20V$
tr	Rise Time	 68	-		$I_D = 30A$
t _{d(off)}	Turn-Off Delay Time	 115	_		$R_G = 2.7\Omega$
t _f	Fall Time	 68	-		V _{GS} = 10V ®

HEXFET® Power MOSFET

V _{DSS}	40V
R _{DS(on)} typ.	$2.0m\Omega$
max.	$2.5m\Omega$
I _D	172A①
I _{D (Package Limited)}	120A

$$P_{com} = \frac{f}{2} (t_r + t_f) i_{d(on)} V_{ds(off)}$$

Fig 6. Normalized On-Resistance vs. Temperature

INSTITUTO FEDERAL SANTA CATARINA

- Objetivo de verificar a necessidade de uso de dissipador de calor ou não.
- Modelo térmico:

- T_j = temperatura na junção (°C);
- T_c = temperatura na cápsula (°C);
- T_d = temperatura no dissipador (°C);
- T_a = temperatura ambiente (°C);
- R_{ic} = resistência térmica entre junção e cápsula (°C/W);
- R_{cd} = resistência térmica entre cápsula e dissipador (°C/W);
- R_{da} = resistência térmica entre dissipador e ambiente (°C/W);
- P = potência dissipada no componente (W).

Dissipação de calor

T_a: Temperatura ambiente

Tensões = Temperaturas

Corrente = Perdas (W)

$$R_{ja} = R_{jc} + R_{cd} + R_{da}$$

$$R_{da} = R_{ja} - R_{jc} - R_{cd}$$

Changpuak electronics: http://www.changpuak.ch/electronics/calc_23.php

V _{DSS}	40V
R _{DS(on)} typ.	$2.0 m\Omega$
max.	$2.5m\Omega$
I _D	172A①
I _{D (Package Limited)}	120A

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
Reuc	Junction-to-Case ®		1.05	
R _{ecs}	Case-to-Sink, Flat Greased Surface	0.50	_	°C/W
ReJA	Junction-to-Ambient		62	

Código: HS 3512

Dimensões aproximadas: 35 x 12 mm

Perímetro: 183 mm

Resistência Térmica: 8,35 °C / W / 4"

Fatores que afetam a R_{th}

Para melhorar a capacidade de evacuação de calor é possível utilizar ventilação forçada. Isto permite reduzir a resistência térmica.

Atenção a direção do fluxo de ar

CORRETO

Correção do Comprimento

comprimento	fator de correção	
/ 10 mm	3,05	
20 mm	2,21	
30 mm	1,82	
40 mm	1,59	
50 mm	1,43	
70 mm	1,22	
100 mm	5 1,04	
150 mm	0,86	
200 mm	0,75	
250 mm	0,67	
300 mm	0,62	
400 mm	nm 0,54	
500 mm	0,49	

Montagem do dispositivo sobre o radiador

Nos semicondutores, a parte metálica costuma ser o catodo ou o dreno (coletor) de um transistor MosFet (IGBT).

Se o semicondutor é montado diretamente sobre o radiador, o mesmo se encontra conectado ao mesmo potencial do dispositivo.

Montagem do dispositivo sobre o radiador

Um parafuso metálico é um conexão elétrica e acaba com o isolamento.

Utilizam-se arruelas de plástico para evitar o contato elétrico.

Montagem do radiador

A R_{TH} fornecida pelo fabricante é válida para radiador montado na posição vertical. Na posição horizontal a evacuação do calor fica comprometida. Na posição vertical ocorre o "efeito chaminé" no qual o próprio calor gerado pelo aquecimento do radiador cria uma corrente de ar ascendente que melhora a refrigeração.

Dimensionamento estático de radiadores

- 1. Podem ser colocados vários dispositivos no mesmo dissipador
- 2. Centralizar o dispositivo semicondutor no dissipador.

Exemplo Cálculo Térmico

Conversor Boost CC-CC modo de condução Contínua (MCC):

Especificação:

- Tensão de Entrada: 25 V;
- Tensão de Saída: 50 V;
- •Potência de Saída: 100 W;
- •Frequência de Comutação: 20 kHz;
- •Indutância de Entrada (L_i): 800 uH;

Exemplo Cálculo Térmico

Conversor Boost CC-CC modo de condução Contínua (MCC):

Exemplo Cálculo Térmico

Conversor Boost CC-CC modo de condução Contínua (MCC):

Análise das grandezas envolvidas

Tensão média na saída

$$V_{ab} = \frac{1}{T_s} \int_{DT_s}^{T_s} V_o \cdot dt = V_o \frac{(T_s - D \cdot T_s)}{T_s}$$

$$C_o = R_o \leq V_o$$

$$V_{ab} = V_o (1 - D)$$

$$V_{ab} = V_o (1 - D)$$

$$V_{ab} = V_i$$

$$V_o = \frac{V_i}{1 - D}$$

$$D = 1 - \frac{V_i}{V_o}$$

Análise das grandezas envolvidas

Corrente no Indutor

$$\Delta i_L = \frac{V_{in}}{L} T_1 \qquad \Delta i_L = \frac{V_{in} \cdot D}{L \cdot f}$$

Valor Médio da Corrente no Indutor

$$I_{Li} = \frac{V_i}{R_o} \cdot \frac{1}{(1 - D)^2}$$

Análise das grandezas envolvidas

Corrente de pico no Indutor

$$I_{P} = i_{in} + \frac{\Delta i_{L}}{2}$$

$$I_{P} = \frac{V_{i}}{R} \cdot \frac{1}{(1 - D)^{2}} + \frac{V_{in} \cdot D}{2 \cdot L \cdot f}$$

Corrente de pico no transistor e no diodo

$$I_{TP} = I_{DP} = I_{P}$$

Análise das grandezas envolvidas

Correntes no transistor

Corrente média

$$I_{Tmd} = \frac{1}{T} \int_{0}^{T} i_{L} dt$$

$$I_{Tmd} = D \cdot I_{L}$$

Corrente eficaz

$$I_{Tef} = \sqrt{\frac{1}{T} \int_{0}^{DT} i_{L}^{2} dt}$$

$$I_{Tef} = \sqrt{D} \cdot I_{L}$$

$$I_{Tef} = \sqrt{D} \cdot I_{L}$$

Análise das grandezas envolvidas

Correntes no diodo

Corrente média

$$I_{Dmd} = \frac{1}{T} \int_{DT}^{T} i_{L} dt$$

$$I_{Dmd} = (1 - D) \cdot I_L$$

Corrente eficaz

$$I_{Def} = \sqrt{\frac{1}{T} \int_{DT}^{T} i_{L}^{2} dt}$$

$$I_{Def} = \sqrt{1 - D} \cdot I_{L}$$

Análise das grandezas envolvidas

Corrente no Indutor

$$\Delta i_L = \frac{V_{in}}{L} T_1 \qquad \Delta i_L = \frac{V_{in} \cdot D}{L \cdot f}$$

$$\Delta i_L = \frac{V_{in} \cdot D}{L \cdot f}$$

$$I_{Li} = \frac{V_i}{R_o} \cdot \frac{1}{(1 - D)^2}$$

$$\frac{\Delta i_L}{I_{Li}} = \frac{R_o \cdot D \cdot (1 - D)^2}{L \cdot f}$$

Principais formas de onda (circuito simulado):

Principais formas de onda (transitório de partida):

Principais formas de onda (regime permanente):

Cálculos Preliminares

Razão Cíclica:

$$D = 1 - \frac{V_{in}}{V_{o}} = 1 - \frac{25}{50} = 0,5$$

Valor Médio da Corrente no Indutor:

$$I_{L_MED} = I_{in} = \frac{P}{V_{in}} = \frac{100}{25} = 4 A$$

Valor Médio e Eficaz da Corrente do Transistor:

$$I_{S_{med}} = D \cdot I_L = 0,5 \cdot 4 = 2 A$$

$$I_{S \text{ ef}} = \sqrt{D} \cdot I_L = \sqrt{0.5}.4 = 2.82 \text{ A}$$

Cálculos Preliminares

Tensão no Transistor bloqueado:

$$V_{DS(OFF)} = V_o = 50 V$$

Ondulação da Corrente do Indutor:

$$\Delta_{iL} = \frac{V_{in} \cdot D}{L \cdot f} = \frac{25 \cdot 0.5}{800 \cdot 10^{-6} \cdot 20 \cdot 10^{3}} = 0.78 \,\text{A}$$

Corrente de Pico no Transistor em Condução:

$$I_{DS(ON)} = I_{L_MAX} = I_{L_MED} + \frac{\Delta_{iL}}{2} = 4 + \frac{0.78}{2} = 4,39 \text{ A}$$

Escolha do Transistor

International

Rectifier

PD-97140

IRFP4668PbF

HEXFET® Power MOSFET

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- · Hard Switched and High Frequency Circuits

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dl/dt Capability
- Lead-Free

V _{DSS}	200V
R _{DS(on)} typ.	0.0 m Ω
max	$9.7m\Omega$
I _D	130A

Escolha do Transistor

IRFP4668PbF

HEXFET® Power MOSFET

V _{DSS}	200V
R _{DS(on)} typ.	0.0 Ω
max	$9.7m\Omega$
I _D	130A

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	150	_	-	S	$V_{DS} = 50V, I_{D} = 81A$
Q_g	Total Gate Charge		161	241	nC	I _D = 81A
Q_{gs}	Gate-to-Source Charge		54	_		$V_{DS} = 100V$
Q_{gd}	Gate-to-Drain ("Miller") Charge	-	52			V _{GS} = 10V ⊕
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		109	_		$I_D = 81A$, $V_{DS} = 0V$, $V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		41	_	ns	$V_{DD} = 130V$
t _r	Rise Time	-	105	y 		I _D = 81A
t _{d(off)}	Turn-Off Delay Time		64	-		$R_G = 2.7\Omega$
t _f	Fall Time		74	_		V _{GS} = 10V ⊕
C _{iss}	Input Capacitance	_	10720	_	l i	$V_{GS} = 0V$
Coss	Output Capacitance		810			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		160	-	pF	f = 1.0 MHz
Coss eff. (ER)	Effective Output Capacitance (Energy Related)@	<u> </u>	630			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $
Coss eff. (TR)	Effective Output Capacitance (Time Related)®		790			V _{GS} = 0V, V _{DS} = 0V to 160V ⑤

Cálculos de Perdas

Parâmetros Elétricos do Transistor Escolhido:

$$R_{DS(ON)} = 9.7 \text{ m}\Omega \text{ (max)}$$
 $t_r = 105 \text{ ns}$
 $t_f = 74 \text{ ns}$
 $V_{DS(OFF)} = 50 \text{ V}$

Perdas por Condução:

$$P_{\text{cond}} = R_{\text{DS(ON)}} \cdot I_{\text{S ef}}^2 = 0,0097 \cdot 2,82^2 = 0,077 \text{W}$$

Cálculos de Perdas

Perdas por Comutação:

$$P_{com} = \frac{f}{2} (t_r + t_f) \cdot I_{DS(ON)} \cdot V_{DS(OFF)} =$$

$$= \frac{20 \cdot 10^{3}}{2} (105 \cdot 10^{-9} + 74 \cdot 10^{-9}).4,39 \cdot 50 = 0,39 \text{ W}$$

Perdas Totais do Transistor:

$$P = P_{cond} + P_{com} = 0,077 + 0,39 = 0,467 W$$

Cálculo Térmico:

$$P = 0,467 W$$

$$T_a = 50 \, {}^{\circ}C$$

$$T_{i}(\text{max}) = 125 \, {}^{o}C$$

$$R_{jc} = 0.29 \, {}^{\circ}C_{W}$$

$$R_{cd} = R_{cs} = 0.24 \, {}^{o}C_{W}$$

$$R_{ja} = 40^{\circ} C/W$$
 (sem dissipador)

$$R_{da} = ?$$
 (dissipador)

Resistência Térmica:

$$R_{ja} = R_{jc} + R_{cd} + R_{da}$$

Resistência Máxima Junção-Ambiente:

$$R_{ja} = \frac{T_j - T_a}{P} = \frac{125 - 50}{0.467} = 160 \, {}^{o}C_{W}$$

$$R_{ja} = 40^{\circ} C_W \text{ (sem dissipador)}$$

Aumento da frequência de Comutação para 200 kHz:

Perdas por Comutação:

$$P_{com} = \frac{f}{2} (t_r + t_f) \cdot I_{DS(ON)} \cdot V_{DS(OFF)} =$$

$$= \frac{200 \cdot 10^{3}}{2} (105 \cdot 10^{-9} + 74 \cdot 10^{-9}).4,39 \cdot 50 = 3,92 \text{ W}$$

Perdas Totais do Transistor:

$$P = P_{cond} + P_{com} = 0,077 + 3,92 = 4,0 W$$

Resistência Térmica:

$$R_{ja} = R_{jc} + R_{cd} + R_{da}$$

Resistência Térmica Máxima Junção Ambiente:

$$R_{ja} = \frac{T_j - T_a}{P} = \frac{125 - 50}{4.0} = 18 {^{\circ}C/W}$$

Cálculo da Resistência Térmica do Dissipador:

$$R_{da} = R_{ja} - R_{jc} - R_{cd}$$

$$R_{da} = 18 - 0.29 - 0.24 = 17.47 {^{\circ}C/W}$$

TRANSISTOR	THERMAL PAD	HEATSINK
T _j 125 °C		T _a 50 °C
R _{th,j-a} 0.53 °C/W	R _{th} 0.0 °C/W	R _{th} 18.22 °C/W
P _{diss} 4 W		

T_j	Temperature of the junction. Damage level for silicon is 175 °C
R _{th,j-a}	Thermal resistance of transistor. (Between junction and ambient)
P _{diss}	Dissipated Power.
R _{th}	Thermal resistance of pad/heatsink.
Ta	Ambient temperature. If greater than 60 °C, you should prevent user from

touching it.

Código: HS 3512

Dimensões aproximadas: 35 x 12 mm

Perímetro: 183 mm

Resistência Térmica: 8,35 °C / W / 4"

Código: HS 1509

Dimensões aproximadas: 15 x 09 mm

Perímetro: 78 mm

Resistência Térmica: 19,8 °C / W / 4"

página 19

- · retornar ao índice com desenhos
- · visualizar perfis similares

Código: HS 1920

Dimensões aproximadas: 19 x 20 mm

Perímetro: 134 mm

Resistência Térmica: 8,31 °C / W / 4"

página 25

- · visualizar perfis similares
- · retornar ao índice com desenhos

comprimento	fator de correção
1/ 10 mm	3,05
20 mm	2,21
30 mm	1,82
40 mm	1,59
50 mm	1,43
70 mm	1,22
100 mm	1,04
150 mm	0,86
200 mm	0,75
250 mm	0,67
300 mm	0,62
400 mm	0,54
500 mm	0,49

30 mm de comprimento

Dissipadores

Dissipadores

Dissipadores

Novos Modelos: Pin Fin Heat Sinks Baixa resistência térmica: 2,5 graus/W

Simulação de Perdas no PSIM

Cálculo térmico – considerações finais

Regras práticas:

- Impedir que a temperatura da junção ultrapasse o valor de 80% o valor máximo permissível (aumenta o MTDF do dispositivo)
- T_a → deve ser considerado o valor de 40º para instalação em ambiente ventilado ou um valor maior para conversor instalado em ambiente enclausurado
- Caso seja preciso isolar o dispositivo do dissipador, usar isolante (mica, teflon, mylar). Considerar sua resistência térmica
- Recomenda-se usar pasta térmica para evitar bolhas de ar entre o dispositivo e o dissipador

Tarefa 1 para entregar

Especificação:

Tensão de Entrada: 36 V

Tensão de Saída: 12 V

Freq. de comutação: 100 kHz;

Indutância L: 100 uH

Capacitância C: 100 uF;

Potência: 100 W;

Transistor: IRLZ44N (TO-220AB)

Diodo: MUR860 e MBR20100 (TO-220)

Apresentar:

- Principais Formas de Ondas Teóricas;
- •Resultados de Simulação;
- •Esforços de Corrente no Transistor
- (T) e no Diodo (D);
- •Obter o dissipador para que o transistor e o diodo funcionem de maneira adequada no conversor Buck.

Obs: HS Dissipadores e um outro

fabricante de dissipadores.