<u>ACL Definition:</u> An Access Control List (ACL) is a set of rules used on routers (and sometimes switches or firewalls) to control network traffic and enhance security. It acts like a filter - checking each packet that passes through the router, and deciding whether to permit or deny it based on criteria like source address, destination address, or protocol type.

Purpose of ACL:

Purpose	Description	
1. Traffic Filtering	Control which packets are allowed or denied through a router.	
2. Network Security	Restrict access to certain parts of a network. Example: block a department from accessing servers.	
3. Bandwidth Optimization	Prevent unnecessary or harmful traffic (e.g., streaming, P2P) from using network resources.	
4. Policy Implementation	Enforce organization policies (e.g., only specific users can access admin network).	
5. Route Control (Advanced)	Used in redistribution and route filtering (in advanced routing protocols).	

Working Principle:

When a packet reaches a router interface where an ACL is applied:

- 1. The router reads the ACL rules top to bottom.
- 2. Each rule (called an ACE Access Control Entry) is checked in order.
- 3. As soon as a match is found, the router takes the specified action (permit or deny).
- **4.** If no rule matches, the packet is implicitly denied by the "implicit deny all" at the end of every ACL.

ACL Types:

Туре	Description	Filtering Based On
Standard ACL	Basic filtering based only on source IP address.	Source IP only

Extended ACL	Advanced filtering based on source, destination, protocol, and port number.	Source + Destination + Protocol + Port
Named ACL	ACLs with readable names instead of numeric IDs; can be standard or extended.	Depends on type

For standard ACL:

access-list [1-99] {permit | deny} source [wildcard]

For Extended ACL:

access-list [100-199] {permit | deny} protocol source source-wildcard destination destination-wildcard [eq port]

Router0

```
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #no access-list 1
Router (config) #exit
Router#
%SYS-5-CONFIG I: Configured from console by console
Router#show access-lists
Extended IP access list 110
   10 deny icmp host 40.0.0.2 any echo (1 match(es))
   20 permit icmp any host 40.0.0.2 echo-reply
    30 permit ip any any
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #no access-lists 110
% Invalid input detected at '^' marker.
Router(config) #no access-list 110
Router (config) #exit
Router#
%SYS-5-CONFIG I: Configured from console by console
Router#sh access-lists
Router#
```


Physical Config Desktop Programming Attributes

Command Prompt Cisco Packet Tracer PC Command Line 1.0 C:\>ping 192.168.1.2 Pinging 192.168.1.2 with 32 bytes of data: Reply from 192.168.1.2: bytes=32 time=15ms TTL=254 Reply from 192.168.1.2: bytes=32 time=1ms TTL=254 Reply from 192.168.1.2: bytes=32 time=1ms TTL=254 Reply from 192.168.1.2: bytes=32 time=1ms TTL=254 Ping statistics for 192.168.1.2: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 15ms, Average = 4ms C:\>ping 30.0.0.2 Pinging 30.0.0.2 with 32 bytes of data: Reply from 30.0.0.2: bytes=32 time=6ms TTL=126 Reply from 30.0.0.2: bytes=32 time=19ms TTL=126 Reply from 30.0.0.2: bytes=32 time=17ms TTL=126 Reply from 30.0.0.2: bytes=32 time=1ms TTL=126 Ping statistics for 30.0.0.2: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 19ms, Average = 10ms C:\>ping 10.0.0.2 Pinging 10.0.0.2 with 32 bytes of data: Request timed out. Reply from 10.0.0.2: bytes=32 time<1ms TTL=127 Reply from 10.0.0.2: bytes=32 time<1ms TTL=127 Reply from 10.0.0.2: bytes=32 time<lms TTL=127 Ping statistics for 10.0.0.2: Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms

Right now ping is successful. All can ping and receive/send messages to each other.

1. Block All ICMP (PING & Other Messages):

Suppose we want to block SALES to ping any other PCs (MARKETING & FINANCE). But, all other PCs must be allowed to ping SALES:

Router 0:

```
Router(config) #access-list 1 permit host 10.0.0.2
Router(config) #access-list 1 deny host 40.0.0.2
Router(config) #interface se2/0
Router(config-if) #ip access-group 1 out
Router(config-if) #exit
```



```
Physical
                          Programming
         Config
                 Desktop
                                       Attributes
Command Prompt
Pinging 30.0.0.2 with 32 bytes of data:
Reply from 40.0.0.1: Destination host unreachable.
Ping statistics for 30.0.0.2:
     Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 40.0.0.1: Destination host unreachable.
 Ping statistics for 192.168.1.2:
     Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

```
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>ping 40.0.0.1
Pinging 40.0.0.1 with 32 bytes of data:
Reply from 40.0.0.1: bytes=32 time<1ms TTL=255
```

Verification of ACL working:

```
Router#show access-lists
Standard IP access list 1
    10 permit host 10.0.0.2
    20 deny host 40.0.0.2

Router#show access-lists
Standard IP access list 1
    10 permit host 10.0.0.2
    20 deny host 40.0.0.2 (4 match(es))

Router#show access-lists
Standard IP access list 1
    10 permit host 10.0.0.2 (4 match(es))
20 deny host 40.0.0.2 (4 match(es))
```


Physical Config Desktop Programming Attributes

Command Prompt

```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 40.0.0.2
Pinging 40.0.0.2 with 32 bytes of data:
Reply from 40.0.0.2: bytes=32 time<1ms TTL=127
Reply from 40.0.0.2: bytes=32 time<1ms TTL=127
Reply from 40.0.0.2: bytes=32 time=1ms TTL=127
Reply from 40.0.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 40.0.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

2. Block a Whole Network: Suppose we want to block the entire network of MARKETING (30.0.0.0/8) to be accessed from FINANCE:

Router1> enable

Router1# configure terminal

Router1(config)# access-list 120 deny ip 10.0.0.0 0.255.255.255 30.0.0.0 0.255.255.255

Router1(config)# access-list 120 permit ip any any

Router1(config)# interface fa0/0

Router1(config-if)# ip access-group 120 out

Router1(config-if)# exit

Router1(config)# end

Router1# show access-lists


```
Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#access-list 120 deny ip 10.0.0.0 0.255.255.255 30.0.0.0 0.255.255.255
Router(config)#access-list 120 permit ip any any
Router(config)#int fa0/0
Router(config-if)#ip access-group 120 out
Router(config-if)#exit
Router(config)#exit
Router#
%SYS-5-CONFIG_I: Configured from console by console

Router#show access-lists
Extended IP access list 120
10 deny ip 10.0.0.0 0.255.255.255 30.0.0.0 0.255.255.255
20 permit ip any any
```



```
C:\>ping 10.0.0.0

Pinging 10.0.0.0 with 32 bytes of data:

Reply from 192.168.1.1: bytes=32 time=16ms TTL=254
Reply from 192.168.1.1: bytes=32 time=1ms TTL=254
Reply from 192.168.1.1: bytes=32 time=17ms TTL=254
Reply from 192.168.1.1: bytes=32 time=7ms TTL=254
Ping statistics for 10.0.0.0:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 17ms, Average = 10ms

C:\>
```

Ping from MARKETING TO FINANCE is successful.


```
Pinging 30.0.0.3 with 32 bytes of data:
Reply from 192.168.1.2: Destination host unreachable.
Ping statistics for 30.0.0.3:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 30.0.0.2
Pinging 30.0.0.2 with 32 bytes of data:
Reply from 192.168.1.2: Destination host unreachable.
Ping statistics for 30.0.0.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>
```

Ping from FINANCE TO MARKETING is not successful (FAILED).

ACL Type	Apply Close To		Example
		Direction	
Standard ACL	Destination	Usually outbound	Simpler (based on source only)
Extended ACL	Source	Usually inbound	Checks both source and destination

<u>Ex:</u>


```
Router#show ip route
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        {\tt N1} - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
 Gateway of last resort is not set
      1.0.0.0/8 is directly connected, Serial2/0
      192.168.1.0/24 [1/0] via 1.1.1.1
С
      192.168.2.0/24 is directly connected, FastEthernet0/0
S
 Router3
                                                                                    Physical Config CLI Attributes
       GLOBAL
                                                    Static Routes
       Settings
                      Network
   Algorithm Settings
      ROUTING
                      Mask
        Static
                      Next Hop
         RIP
                                                                                  Add
     INTERFACE
    FastEthernet0/0
    FastEthernet1/0
                      Network Address
      Serial2/0
                      192.168.1.0/24 via 1.1.1.1
      Serial3/0
    FastEthernet4/0
   FastEthernet5/0
Router 2:
  Router(config) #ip route 192.168.2.0 255.255.255.0 1.1.1.2
  Router (config) #end
 Router#
  %SYS-5-CONFIG I: Configured from console by console
  Router#show ip route
  Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
         D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
         N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
         E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
         i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
          * - candidate default, U - per-user static route, o - ODR
         P - periodic downloaded static route
  Gateway of last resort is not set
       1.0.0.0/8 is directly connected, Serial2/0
  С
  С
       192.168.1.0/24 is directly connected, FastEthernet0/0
 S
       192.168.2.0/24 [1/0] via 1.1.1.2
```


Till here, No ACL is applied. All can ping and send/receive messages with each other.


```
Physical
         Config
                 Desktop
                          Programming
                                       Attributes
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=15ms TTL=126
Reply from 192.168.1.2: bytes=32 time=2ms TTL=126
Reply from 192.168.1.2: bytes=32 time=2ms TTL=126
Reply from 192.168.1.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 15ms, Average = 5ms
C:\>
```

Pinging successful.

```
Router2
```

```
Router > en
Router # conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router (config) # access - list 5 deny host 192.168.1.2
Router (config) # access - list 5 permit any
Router (config) #
Router (config) # the serial 2 / 0
Router (config - if) # ip access - group 5 out
Router (config - if) # exit
Router (config) #
```

After applying and implementing ACL:

Physical Config Desktop Programming Attributes

Command Prompt

```
Approximate round trip times in milli-seconds:
    Minimum = lms, Maximum = lms, Average = lms
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time=1ms TTL=255
Reply from 192.168.1.1: bytes=32 time=1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 1.1.1.1
Pinging 1.1.1.1 with 32 bytes of data:
Reply from 1.1.1.1: bytes=32 time<1ms TTL=255
Reply from 1.1.1.1: bytes=32 time<1ms TTL=255
Reply from 1.1.1.1: bytes=32 time<1ms TTL=255
Reply from 1.1.1.1: bytes=32 time=1ms TTL=255
Ping statistics for 1.1.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 1.1.1.2
Pinging 1.1.1.2 with 32 bytes of data:
Reply from 192.168.1.1: Destination host unreachable.
Ping statistics for 1.1.1.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Verifying ACL working:

```
Router2
```

```
Router(config) #access-list 5 deny host 192.168.1.2
Router(config) #access-list 5 permit any
Router(config) #
Router(config) #int Serial2/0
Router(config-if) #ip access-group 5 out
Router(config-if) #exit
Router(config) #exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
Router#show access-lists
Standard IP access list 5
10 deny host 192.168.1.2 (6 match(es))
20 permit any
```

Removing access-list 5 from the Router 2

```
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#no access-list 5 deny host 192.168.1.2
Router(config)#show access-lists

* Invalid input detected at '^' marker.

Router(config)#end
Router#
*SYS-5-CONFIG_I: Configured from console by console

Router#show access-lists
Router#
```

Show access-lists now shows no access list

All can receive send messages from PC2 since now ACL has been removed

Lets apply the same concept now using name based ACL.

Router2

Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip access-list standard Kinz7
Router(config-std-nacl)#deny host 192.168.1.2
Router(config-std-nacl)#permit any
Router(config-std-nacl)#exit
Router(config)#

Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip access-list standard Kinz7
Router(config-std-nacl)#deny host 192.168.1.2
Router(config-std-nacl)#permit any
Router(config-std-nacl)#exit
Router(config)#int Serial2/0
Router(config-if)#ip access-group Kinz7 out
Router(config-if)#exit
Router(config)#

PDU List Window Fire Last Status Source Destination Color Time(sec) Periodic Edit Delete Type Num Successful PC2 Router2 **ICMP** 0.000 Ν 0 (edit) Failed PC2 Router3 0.000 **ICMP** Ν 1 (edit) PC6 Failed PC2 **ICMP** 0.000 (edit) Failed PC2 PC5 **ICMP** 0.000 3 (edit) Ν Failed PC5 PC2 4 **ICMP** 0.000 Ν (edit) Failed PC2 Server0 0.000 **ICMP** Ν 5 (edit)

Router2

```
Router(config) #exit
Router#
%SYS-5-CONFIG_I: Configured from console by console

Router#show access-lists
Standard IP access list Kinz7

10 deny host 192.168.1.2 (5 match(es))
20 permit any

Router#
```

Remove name based ACL:

```
Router2
```

```
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#no ip access-list standard Kinz7
Router(config)#exit
Router#
%SYS-5-CONFIG_I: Configured from console by console

Router#show access-lists
Router#
```



```
Config
Physical
                Desktop Programming
                                       Attributes
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=11ms TTL=126
Reply from 192.168.1.2: bytes=32 time=11ms TTL=126
Reply from 192.168.1.2: bytes=32 time=1ms TTL=126
Reply from 192.168.1.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 11ms, Average = 6ms
```

```
C:\>ping 192.168.2.2

Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.1.1: Destination host unreachable.

Ping statistics for 192.168.2.2:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>
```

PC2 is not allowed to ping PC5 now.

