PHYS 123 Waves Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 9 June 2021

Table of Contents

- PHYS 123 Waves Equations
 - Warning
 - Table of Contents
 - O Periodic Motion
 - Simple harmonic motion (SHM)
 - Applications of SHM
 - Damped oscillation
 - o 1D Waves
 - Wave function and boundary conditions
 - Standing waves
 - o 2D and 3D Waves
 - Ray Optics (Geometric Optics)
 - Lens/mirror equation sign convention
 - Converging lens images
 - Diverging lens images
 - Wave and Particle Optics
 - Single slit interference
 - Double slit interference
 - Multiple slit interference
 - Thin-film interference
 - Circular aperture
 - Wave-particle duality
 - Fluid Mechanics
 - Entropy
 - Monoatomic ideal gas
 - Thermodynamic Processes
 - Isochoric process
 - Isentropic process
 - Isobaric process
 - Isothermal process
 - O Degradation of Energy

Periodic Motion

Quantity	Unit	Definition
Period	s	$T=rac{1}{f}=rac{2\pi}{\omega}$
Frequency	$_{ m Hz}$	$f=rac{1}{T}=rac{\omega}{2\pi}$
Angular frequency	$ m s^{-1}$	$\omega=2\pi f=rac{2\pi}{T}$

Description	Equations
Angular frequency in SHM	$\omega = \sqrt{rac{k}{m}}$
Spring constant	$k=m\omega^2$
Displacement in SHM	$x(t) = A \sin(\omega t + \phi)$
Velocity in SHM	$v(t) = \omega A \cos(\omega t + \phi)$
Acceleration in SHM	$a(t) = -\omega^2 A \sin(\omega t + \phi) = -\omega^2 x(t)$
Restoring force in SHM	$F=-k\Delta x$
Simple harmonic oscillator equation	$rac{d^2x}{dt^2}=-\omega^2x=-rac{k}{m}x$
Conservation of energy in SHM	$E = rac{1}{2} m v^2 + rac{1}{2} k x^2 = rac{1}{2} k A^2$
Amplitude	$A=\sqrt{x_0^2+rac{v_0^2}{\omega^2}}$
Phase angle	$\phi = rctan\left(rac{\omega x_0}{v_0} ight)$

Applications of SHM

Description	Equations
Restoring torque in angular SHM	$ au = -\kappa\Delta heta$
Rotational displacement in angular SHM	$ heta(t) = heta_{ ext{max}} \sin(\omega t + \phi)$
Angular frequency in angular SHM	$\omega = \sqrt{rac{\kappa}{I}}$
Angular frequency in simple pendulum	$\omega = \sqrt{rac{g}{L}}$
Angular frequency in physical pendulum	$\omega = \sqrt{rac{mgL}{I}}$

Damped oscillation

Description	Equations
Drag force	F=-bv
Time constant	$ au=rac{m}{b}$
Angular frequency of damped oscillator	$\omega_d = \sqrt{\omega^2 - \left(rac{b}{2m} ight)^2}$
Displacement of damped oscillator	$x(t) = Ae^{-bt/2m}\sin(\omega_d t + \phi)$

1D Waves

Description	Equations
Wave speed, wavelength, and frequency	$c = \lambda f = rac{\lambda}{T}$
Wave number	$k=rac{2\pi}{\lambda}$
Angular frequency	$\omega=kc=2\pi f$
Linear mass density	$\mu = \frac{m}{l}$
Wave speed of strings	$c=\sqrt{rac{F_T}{\mu}}$

Description	Equations
Particle speed	$v=rac{\partial f}{\partial t}$
Wave and particle speed	c eq v
Energy put into a wave	$E=rac{1}{2}\mu\lambda\omega^2A^2$
Average power supplied to produce waves	$\overline{P} = \mu c v^2 = rac{1}{2} \mu c A^2 \omega^2 = rac{1}{2} \sqrt{\mu F_T} \omega^2 A^2$
Wave kinetic and potential energy	K=U

Wave function and boundary conditions

Description	Equations
Traveling wave functions	f(x,t)=f(x-ct) to right $f(x,t)=f(x+ct)$ to left
Harmonic (sinusoidal) traveling wave functions	$f(x,t) = A \sin(kx - \omega t + \phi)$ to right $f(x,t) = A \sin(kx + \omega t + \phi)$ to left
1D wave equation	$rac{\partial^2 f}{\partial x^2} = rac{1}{c^2} rac{\partial^2 f}{\partial t^2}$
Principle of superposition	$f(x,t)=f_1(x,t)+f_2(x,t)$
Boundary conditions	Free end: heavy $ ightarrow$ light spring Fixed end: light $ ightarrow$ heavy spring
Shape of reflected wave	Free end: horizontal reflection only Fixed end: horizontal reflection, vertical inversion
Shape of transmitted wave	Similar to incident wave

Standing waves

Description	Equations
Standing wave function	$f(x,t)=2A\sin(kx)\cos(\omega t)$
Standing wave of strings with two fixed ends	nth harmonic, n antinodes, $n+1$ nodes
Wavelength of n th harmonic	$\lambda_n = rac{2L}{n}$
Frequency of n th harmonic	$f_n=n\frac{c}{2L}=nf_1$
Location of m th node of n th harmonic	$egin{aligned} x_m &= rac{m \lambda_n}{2} \ m \in [0,n+1] \end{aligned}$

2D and 3D Waves

Quantity	Unit	Definition
2D intensity	m W/m	$I=rac{P}{L}=rac{P}{2\pi r}$
3D intensity	$ m W/m^2$	$I=rac{P}{A}=rac{P}{4\pi r^2}$
Intensity level	dB	$eta = (10 ext{ dB}) \log \left(rac{I}{I_{ m th}} ight) onumber \ I_{ m th} = 10^{-12} \ { m W/m^2}$

Description	Equations
Path difference of constructive interference (in phase, at antinodal line)	$\delta = n \lambda$
Path difference of destructive interference (out of phase, at nodal line)	$\delta = (n - rac{1}{2})\lambda$
Beat frequency	$f_b = \left f_1 - f_2 ight $
Average frequency	$\overline{f}=rac{1}{2}(f_1+f_2)$
Wave function of beats	$egin{aligned} y(x,t) &= y_1 + y_2 \ &= 2A\cos(2\pirac{1}{2}f_bt)\sin(2\pi\overline{f}t) \end{aligned}$
Doppler effect $(v_s < c)$ s - source; o - observer; rel to medium	$rac{f_{ m o}}{f_{ m s}} = rac{c \pm v_{ m o}}{c \pm v_{ m s}}$
Angle of shock wave $(v_s>c)$	$\sin heta = rac{c}{v_s}$
Mach number	${\rm Mach\ number} = \frac{v_s}{c}$

Ray Optics (Geometric Optics)

Description	Equations
Law of reflection	$ heta_1 = heta_2$
Refraction index	$n_1c_1=n_2c_2$
Wavelength of light in a new medium	$n_1\lambda_1=n_2\lambda_2$
Snel's law	$n_1\sin heta_1=n_2\sin heta_2$
Critical angle $(n_2>n_1)$	$\arcsin\left(rac{n_1}{n_2} ight)$
Lens equation o - object; i - image	$rac{1}{f}=rac{1}{d_{ m o}}+rac{1}{d_{ m i}}$
Magnification	$M=rac{h_{ m i}}{h_{ m o}}=-rac{d_{ m i}}{d_{ m o}}$
Radius of curvature (distance of center) of mirror and focal length	R=2 f
Angular magnification	$M_{ heta} = \left rac{ heta_{ m i}}{ heta_{ m o}} ight $
Small-angle (paraxial) approximation of angular magnification	$M_{ heta} = rac{0.25 ext{ m}}{f}$
Lens strength	$d=rac{1}{f} rac{ ext{m}}{}$

Lens/mirror equation sign convention

Sign	Lens
-	converging lens
f < 0	diverging lens
	object in front of lens
$d_{ m o} < 0$	object behind lens
$d_{ m i}>0$	image behind lens (in front of mirror)
$d_{ m i} < 0$	image in front of lens (behind mirror)

Sign	Lens
	image upright
$h_{ m i} < 0$	image inverted
M >1	image larger than object
M < 1	image smaller than object

Converging lens images

Object distance $d_{ m o}$	Image distance $ d_{ m i} $	lmage location	Upright Inverted	Magnification	Real/Virtual
(0,f)	$ d_{ m i} {>f}$	Same	Upright	Magnified	Virtual
f	∞	-	-	-	Parallel light
(f,2f)	$(2f,\infty)$	Opposite	Inverted	Magnified	Real
2f	2f	Opposite	Inverted	Same	Real
$(2f,\infty)$	(f,2f)	Opposite	Inverted	Demagnified	Real
∞	f	Opposite	-	-	Point

Diverging lens images

Object distance $d_{ m o}$	Image distance $ d_{ m i} $	lmage Location	Upright/ Inverted	Magnification	Real/Virtual
$(0,\infty)$	$ d_{ m i} < d_{ m o}$	Same	Upright	Demagnified	Virtual

Wave and Particle Optics

Single slit interference

Description	Equations
Variables	n=1,2,3, $a=$ width of the slit
Destructive interference	$a\sin heta=\pm n\lambda$
Location of destructive interference (only for small angles)	$y_n = \pm n rac{\lambda L}{a}$

Double slit interference

Description	Equations
Fringe order	$m=0,1,2, \ n=1,2,3,$
Constructive interference	$d\sin heta=\pm m\lambda$
Destructive interference	$d\sin heta=\pm(n-rac{1}{2})\lambda$
Distance between adjacent maxima	$D = rac{L\lambda}{d}$

Description	Equations
Variables	$m=0,1,2, \ N=$ number of slits $k=$ integer not multiple of N
Constructive interference (principal maxima)	$d\sin heta=\pm m\lambda$
Destructive interference (minima)	$d\sin heta=\pmrac{k}{N}\lambda$
Minima adjacent to principle maxima	$d\sin heta=\pmrac{mN+1}{N}\lambda$
Phasors	$\delta arphi = 2\pi rac{\delta s}{\lambda}$

Thin-film interference

Note: constructive and destructive interference refers to reflected light, not transmitted light.

Equations
$\phi = rac{4\pi n_b t \cos heta_b}{\lambda_a} + \phi_{r2} - \phi_{r1} \ \phi = egin{cases} 2m\pi & ext{constructive} \ (2m+1)\pi & ext{destructive} \ \phi_r = egin{cases} 0 & n_i > n_f \ \pi & n_i < n_f \end{cases}$
$2t=m\lambda_b=mrac{n_a}{n_b}\lambda_a$
$2t=(m+rac{1}{2})\lambda_b=(m+rac{1}{2})rac{n_a}{n_b}\lambda_a$

Circular aperture

Description	Equations
Variables	d - diameter of the circular aperture f - focal distance of the lens
First minimum with circular aperture	$\sin heta = 1.22 rac{\lambda}{d}$
Angular resolution Rayleigh's criterion of resolution angle	$ heta pprox \sin heta = 1.22 rac{\lambda}{d}$
Linear resolution Radius of the first minimum by a lens	$y=1.22rac{\lambda f}{d}$

Wave-particle duality

Description	Equations
Bragg's condition with Bragg angle X-ray diffraction	$2d\sinlpha=m\lambda \ (2d\cos heta=m\lambda,lpha=90^\circ- heta)$
Energy of a photon	E=h u
Momentum of a photon	$p = rac{h u}{c}$
Wavelength of a particle	$\lambda = \frac{h}{p} = \frac{h}{mv}$
Photoelectric effect	$E_k = h u - \Phi = e V_{ m stop}$

Description	Equations
Stopping potential	$V_{ m stop} = rac{h u}{e} - rac{\Phi}{e}$
Intensity of light	$I \propto$ rate of electron emitted from the metal

Fluid Mechanics

Quantity	Unit	Definition
Density	${ m kg/m^3}$	$ ho = rac{m}{V}$
Pressure	${ m Pa} \ { m N/m^2}$	$P=rac{dF}{dA}$
Volumetric flow rate	m^3/s	$Q=\dot{V}=rac{dV}{dt}$

Description	Equations
Pressure of stationary fluid	$P=P_{ m surf}+ ho g h$
Pressure of stationary fluid	$P_1+\rho gy_1=P_2+\rho gy_2$
Buoyant force	$F_b = F_{ m bottom} - F_{ m top}$
Archimedes' principle	$F_b = ho_f g V_{ m disp}$
Volume of displaced fluid of floating object	$V_{ m disp} = rac{ ho_o}{ ho_f} V_o$
Condition of object buoyancy o - object; f - fluid	$egin{cases} ho_o < ho_f & ext{float} \ ho_o = ho_f & ext{hang} \ ho_o > ho_f & ext{sink} \end{cases}$
Absolute pressure and gauge pressure	$P_{ m abs} = P_{ m atm} + P_g$
Hydraulic system	$P=\frac{F_1}{A_1}=\frac{F_2}{A_2}$
Continuity equation Laminar flow of nonviscous fluid	$egin{aligned} \dot{m}_1 &= \dot{m}_2 \ ho_1 Q_1 &= ho_2 Q_2 \ ho_1 A_1 v_1 &= ho_2 A_2 v_2 \end{aligned}$
Bernoulli's equation Laminar flow of incompressible nonviscous fluid	$P_1 + ho g y_1 + rac{1}{2} ho v_1^2 = P_2 + ho g y_2 + rac{1}{2} ho v_2^2$

Entropy

Description	Equations
Partition	$M=rac{V}{\delta V}$
Microstate (basic state)	$\Omega=M^N$
Entropy	$S=\ln\Omega=\ln M^N$
Linearity of entropy	$S = S_A + S_B \ \Omega = \Omega_A \Omega_B$
Constant temperature change in entropy	$\Delta S = N \ln \left(rac{V_f}{V_i} ight)$
Second law of thermodynamics in closed system	$\Delta S egin{cases} > 0 & ext{toward equilibrium} \ = 0 & ext{at equilibrium} \end{cases}$

Description	Equations
Equipartition of space	$rac{N_A}{V_A} = rac{N_B}{V_B}$
Root-mean-square (rms) speed	$v_{ m rms} = \sqrt{\overline{v^2}}$
Absolute temperature	$rac{1}{k_BT}=rac{dS}{dE_{ m th}}$
Equipartition of energy	$rac{E_{ ext{th},A}}{N_A} = rac{E_{ ext{th},B}}{N_B}$

Monoatomic ideal gas

Description	Equations
Thermal energy	$E_{ m th} = N \overline{K} = rac{1}{2} N m v_{ m rms}^2$
Pressure	$P=rac{2}{3}rac{E_{ m th}}{V}$
Thermal energy	$E_{ m th}=rac{3}{2}Nk_BT$
Average kinetic energy	$\overline{K}=rac{3}{2}k_BT$
rms speed	$v_{ m rms} = \sqrt{rac{3k_BT}{m}}$
Ideal gas law	$egin{aligned} PV &= nRT \ PV &= Nk_BT \end{aligned}$
Constant volume change in entropy	$\Delta S = rac{3}{2} N \ln \left(rac{T_f}{T_i} ight)$
Total change in entropy	$\Delta S = rac{3}{2} N \ln \left(rac{T_f}{T_i} ight) + N \ln \left(rac{V_f}{V_i} ight)$

Thermodynamic Processes

Equations
$\Delta E = W + Q$
$\Delta E_{ m th} = W + Q$
$\Delta E_{ m th} = rac{d}{2} N k_B \Delta T$
$W = \int_{V_i}^{V_f} P \ dV$
$\Delta S = N \ln \left(rac{V_f}{V_i} ight) + rac{d}{2} N \ln \left(rac{T_f}{T_i} ight)$
$C_V = rac{Q}{N\Delta T} = rac{d}{2}k_B$
$C_P = rac{Q}{N\Delta T} = \left(rac{d}{2} + 1 ight)k_B$
$C_P=C_V+k_B$
$\gamma = rac{C_P}{C_V} = 1 + rac{2}{d}$

Isochoric process

Description	Equations
Isochoric process	$\Delta V=0$
Work	W=0
Thermal energy and heat	$\Delta E_{ m th} = Q = rac{d}{2} N k_B T = N C_V \Delta T$
Entropy	$\Delta S = rac{d}{2} N \ln \left(rac{T_f}{T_i} ight) = rac{N C_V}{k_B} \ln \left(rac{T_f}{T_i} ight)$

Isentropic process

Description	Equations
Isobaric process (quasistatic adiabatic)	$\Delta S=0$
Heat	Q = 0
Thermal energy and work	$\Delta E_{ m th} = W = N C_V \Delta T$
PVT relationship	$egin{aligned} P_1V_1^{\gamma} &= P_2V_2^{\gamma} \ T_1V_1^{\gamma+1} &= T_2V_2^{\gamma+1} \ P_1^{(1/\gamma)-1}T_1 &= P_2^{(1/\gamma)-1}T_2 \end{aligned}$

Isobaric process

Description	Equations
Isobaric process	$\Delta P=0$
Work	$W=-P\Delta V=-Nk_{B}\Delta T$
Heat	$Q=NC_P\Delta T$
Thermal energy	$\Delta E_{ m th} = N C_V \Delta T$
Entropy	$\Delta S = rac{NC_P}{k_B} \ln \left(rac{T_f}{T_i} ight)$

Isothermal process

Description	Equations
Isothermal process	$\Delta T=0$
Thermal energy	$\Delta E_{ m th}=0$
Work and Heat	Q = -W
Work	$W = -Nk_BT\ln\left(rac{V_f}{V_i} ight)$
Heat	$Q=Nk_BT\ln\left(rac{V_f}{V_i} ight)$
Entropy	$\Delta S = N \ln \left(rac{V_f}{V_i} ight) = rac{Q}{k_B T}$

Degradation of Energy

Description	Equations
Complete cycle of steady device	$\Delta E=0$
	$W=Q_{ m out}-Q_{ m in}$
	$\Delta S_{ m sys} = 0$

Description	Equations
	$\Delta S_{ m surr} \geq 0$
Steady device thermally transferring energy to lower temperature	$\Delta S_{ m surr} = rac{Q_{ m out}}{k_B} \left(rac{1}{T_{ m out}} - rac{1}{T_{ m in}} ight)$
Steady device thermally transferring energy to higher temperature	$\Delta S_{ m surr} = -rac{Q_{ m out}}{k_B} \left(rac{1}{T_{ m out}} - rac{1}{T_{ m in}} ight)$
Steady device converting mechanical energy to thermal energy	$\Delta S_{ m surr} = rac{Q_{ m out}}{k_B T_{ m out}}$
Reversible heat engine	$rac{Q_{ m out}}{Q_{ m in}} = rac{T_{ m out}}{T_{ m in}} = rac{T_{ m low}}{T_{ m high}}$
Energy balance	$Q_{ m in} + W_{ m in} = Q_{ m out} + W_{ m out}$
Efficiency of heat engine	$\eta = -rac{W_{ m out}}{Q_{ m in}} = 1 - rac{Q_{ m out}}{Q_{ m in}}$
Maximum efficiency of reversible heat engine	$\eta_{ m max} = 1 - rac{T_{ m low}}{T_{ m high}}$
Coefficient of performance of heating	$ ext{COP}_{ ext{heating}} = rac{Q_{ ext{out}}}{W} = rac{1}{1 - Q_{ ext{in}}/Q_{ ext{out}}}$
Maximum coefficient of performance of heating (reversible heat pump)	$ ext{COP}_{ ext{heating,max}} = rac{1}{1-T_{ ext{in}}/T_{ ext{out}}}$
Coefficient of performance of cooling	$ ext{COP}_{ ext{cooling}} = rac{Q_{ ext{in}}}{W} = ext{COP}_{ ext{heating}} - 1$
Maximum coefficient of performance of cooling (reversible heat pump)	$ ext{COP}_{ ext{cooling,max}} = rac{T_{ ext{in}}}{T_{ ext{out}} - T_{ ext{in}}}$