TD1

Exercice 1:

Un ensemble de cinq commandes est à réaliser sur 3 machines disposées en série. Les commandes possèdent un cheminement identique sur les 3 machines : M1 puis M2 puis M3.

Le responsable de l'atelier souhaite trouver un ordonnancement qui minimise la date d'achèvement des commandes.

Les durées opératoires des commandes sont données dans le tableau suivant :

i	1	2	3	4	5
p_{i1}	5	4	3	2	6
p _{i2}	6	7	2	1	3
p _{i3}	8	3	4	3	5

- 1/ Décrivez le problème d'ordonnancement posé selon la notation alpha/ Beta/ Gamma.
- 2/ Proposer un ordonnancement pour ce problème à l'aide de l'heuristique de Campbell Dudek et Smith.

Exercice 2

Un atelier d'usinage est composé de quatre machines parallèles identiques. On dispose de 8 commandes à l'entrée des 4 machines qui sont libres et disponibles au temps t=0. Le tableau suivant contient les durées de réalisation (en heures) des commandes sur n'importe quelle machine.

i	1	2	3	4	5	6	7	8
pi	13	18	22	30	20	35	16	25

Il est possible d'interrompre une commande commencée sur une machine et la poursuivre sur une autre machine. (le fractionnement d'une commande se fera par durée entière)

On cherche à affecter les commandes aux machines de manière à obtenir la plus petite date d'achèvement.

- 1/ Donner une borne inférieure M* de la date d'achèvement optimale du problème d'ordonnancement considéré.
- 2/ Décrire un algorithme permettant de déterminer un ordonnancement ayant une date d'achèvement égale à M^* .
- 3/ Donner le diagramme de Gantt ainsi que la date d'achèvement de l'ordonnancement optimal obtenu.