

MACHINE LEARNING IN R:

supervised classification

"I think we should be very careful about artificial intelligence. If I had to guess at what our biggest existential threat is, it's probably that. So we need to be very careful,"

Machine Learning

Statistics

network, graphs

focus on prediction

weights

learning

generalization

supervised learning

unsupervised learning

large grant = \$1,000,000

nice place to have a meeting: Snowbird, Utah, French Alps model

focus on inference

parameters

fitting

test set performance

regression/classification

density estimation, clustering

large grant = \$50,000

nice place to have a meeting: Las Vegas in August

http://statweb.stanford.edu/~tibs/stat315a/

Statistics

T-Test

Logistic Regression

Elastic Net

Gradient Boosting

Deep Learning

Arrhythmia Data

http://archive.ics.uci.edu/ml/datasets/Arrhythmia

Data pre-processing

```
arrhythmia = read.csv('arrhythmia.csv')
set.seed(120)
# Make folds vector to specify holdout set
folds = sample (1:10, nrow(arrhythmia), replace = TRUE)
response = arrhythmia$abnormal
# Formula for use in model matrix function
fmla <- abnormal ~ sex + di width ragged r wave +
di width diphasic derivation of r wave + ...
# Make sparse model matrix
mm = Matrix::sparse.model.matrix( fmla, data =
arrhythmia)
```

Logistic regression

10 events per variable? Choose 20 'best variables'

```
#fit a logistic regression
glm1 = glm(fmla2,
      data = arrhythmia[folds < 9, , drop = TRUE],</pre>
      family = binomial())
#make predictions
p logistic = predict(glm1,
      arrhythmia[folds >= 9, ],
      type = "response")
#get predictive accuracy
auc(p logistic, response[folds >= 9] )
accuracy(p logistic > 0.5, response[folds >= 9] )
```

AUC = 70%

Elastic Net

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (\|y - X\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\|_1)$$

Elastic Net in R

```
library (glmnet)
#fit model on training set
e net default = qlmnet(x = mm[folds < 9,],
                  y = response[folds < 9],
                  family = "binomial")
#make predictions on test set
p e net default = predict (e net default,
                  newx = mm[folds >= 9,],
                  type = "response")
str(p e net default )
# num [1:98, 1:100] 0.467 0.467 0.467 0.467 0.467 ...
# - attr(*, "dimnames") = List of 2
# ..$ : chr [1:98] "11" "12" "15" "17" ...
# ..$ : chr [1:100] "s0" "s1" "s2" "s3" ...
```

Elastic Net in R

```
#get auc for each prediction
e net default auc = aaply (p e net default, 2,
      function(.x){
            auc(y = response[ folds \geq 9], prob = .x)
      })
#plot these results
par(mfrow = c(1,2))
plot(e net default, xvar = "lambda")
plot (y = e net default auc ,
      x = log(e net default $ lambda ),
      xlab = 'Log Lambda',
      ylab = 'AUC', type = 'l', lwd = 2)
```

Elastic net plots

Trees

Boosting

FINAL CLASSIFIER

Gradient Boosting in R

```
library (xqboost)
#fits model
boost default = xgboost(data = mm[folds < 9,],
                   label = response[folds < 9],</pre>
                   nrounds = 50,
                   objective = "binary:logistic")
#makes predictions
p boost default = predict(boost default,
                   mm[folds >= 9,1)
auc (p boost default, response[folds >= 9] )
accuracy (p boost default > 0.5, response[folds >= 9] )
```

AUC = 83%

Neural Networks

$$y_i = f(net_i)$$

'Deep' Neural Networks

hidden layer 1 hidden layer 2

Deep Learning in R

```
library(h2o)
# initialise h2o
localH20 <-h2o.init(ip = "localhost",</pre>
                   port = 54321, startH20 = TRUE)
#get data in h2o format
dat h2o <- as.h2o(arrhythmia)
#get vector of predictor locations
predictors = which(!names(arrhythmia) %in%
                         c("arrhythmia", "abnormal" ))
```

Deep Learning

```
#fit model
dl fit <- h2o.deeplearning(x = predictors,</pre>
         y = 'abnormal',
         training frame = dat h2o[which(folds < 9),],
         epochs = 50)
#make predictions
pred dl <- h2o.predict(dl fit,</pre>
             dat h2o[which(folds >= 9), ])
pred dl <- as.data.frame(pred dl)</pre>
auc ( pred dl$`TRUE.`, response[folds >= 9])
accuracy ( pred dl$`TRUE.`, response[folds >= 9])
```

AUC = 84%

Results

Model	AUC
Logistic Regression	70
Elastic Net	80
Gradient Boosting	83
Deep Learning	84
Combined model	85

THE SINGULARITY IS NEAR?

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

Other topics

- Cross validation
- Tuning parameters
- Bias/Variance trade-off
- Distributed learning/big data
- Unsupervised Learning
- Unstructured data

· ... many more...

Scripts and data available here:

https://github.com/tomliptrot/Machine_Learning_ManchesterR/