MATH 280 HW2

Hanzhang Yin

Question 1

(a)

The degree 5 Taylor series approximation for $\sin x$ around $x = \frac{\pi}{4}$ is:

$$\sin(x) \approx \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) \left(x - \frac{\pi}{4}\right) - \frac{1}{2}\sin\left(\frac{\pi}{4}\right) \left(x - \frac{\pi}{4}\right)^2 - \frac{1}{6}\cos\left(\frac{\pi}{4}\right) \left(x - \frac{\pi}{4}\right)^3 + \frac{1}{24}\sin\left(\frac{\pi}{4}\right) \left(x - \frac{\pi}{4}\right)^4 + \frac{1}{24}\sin\left(\frac{\pi}{4}\right)^4 + \frac{1$$

Substituting the values for $\sin\left(\frac{\pi}{4}\right)$ and $\cos\left(\frac{\pi}{4}\right)$ both as $\frac{\sqrt{2}}{2}$, we get:

$$\sin(x) \approx \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^2 - \frac{\sqrt{2}}{12} \left(x - \frac{\pi}{4} \right)^3 + \frac{\sqrt{2}}{48} \left(x - \frac{\pi}{4} \right)^4$$

The integral form of the remainder for the Taylor series of $\sin x$ around $x = \frac{\pi}{4}$ and truncated after the fifth degree is:

$$R_5(x) = \int_{\frac{\pi}{4}}^x \frac{\sin(t)}{120} (x - t)^5 dt$$

(b)

$$\sin(0) \approx \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(0 - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{4} \left(0 - \frac{\pi}{4}\right)^2 - \frac{\sqrt{2}}{12} \left(0 - \frac{\pi}{4}\right)^3 + \frac{\sqrt{2}}{48} \left(0 - \frac{\pi}{4}\right)^4 = 0.001963321$$

$$\sin(\frac{\pi}{2}) \approx \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(\frac{\pi}{2} - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{4} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)^2 - \frac{\sqrt{2}}{12} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)^3 + \frac{\sqrt{2}}{48} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)^4 = 0.9984927$$

$$\sin(1) \approx \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(1 - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{4} \left(1 - \frac{\pi}{4}\right)^2 - \frac{\sqrt{2}}{12} \left(1 - \frac{\pi}{4}\right)^3 + \frac{\sqrt{2}}{48} \left(1 - \frac{\pi}{4}\right)^4 = 0.84146840$$

(c)
$$R_5(0) = \int_{\frac{\pi}{4}}^0 \frac{\sin(t)}{120} (0 - t)^5 dt = 0.00020235$$

$$R_5(\frac{\pi}{2}) = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin(t)}{120} (\frac{\pi}{2} - t)^5 dt = 0.000243632$$

$$R_5(1) = \int_{\frac{\pi}{4}}^1 \frac{\sin(t)}{120} (1 - t)^5 dt = 9.879 \times 10^{-8}$$

These values indicate extremely small errors, showcasing the high accuracy of the Taylor series approximation when truncated at the fifth degree.

- At x = 0: The error bound of 0.00020235 indicates that the approximation is nearly exact.
- At $x = \frac{\pi}{2}$: An error bound of 0.00024362 suggests that the approximation is extremely close to the actual value 1.
- At x = 1: The error bound of 9.879×10^{-8} indicates the approximation is indistinguishable from the true value $\sin(1)$.

These bounds confirm that the fifth-order Taylor series provides an excellent approximation for $\sin x$ around $x = \frac{\pi}{4}$, particularly near this point and at commonly evaluated points within the function's periodic range.

Question 2

(a)

$$f(X) = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(b)

$$f(X) = \begin{bmatrix} X_1^2 + 3X_1X_2 - 5 \\ X_2 - X_1 \end{bmatrix}$$