

Deep Neural Network

Deep Neural Network

출처: http://www.parallelr.com/r-deep-neural-network-from-scratch/

Deep Neural Network - Feed Forward & Back Propagation

Feed Forward input 값과 weight를 이용한 예측값 계산

Gradient Descent를 이용한 weight 업데이트 Back Propagation

Deep Neural Network - Overview

Deep Neural Network - Cost Function

☑ 평균 제곱 오차(Mean Squared Error, MSE)

$$E = \frac{1}{2} \sum_{k} \left(y_k - t_k \right)^2$$

(y: predict, t: target, k: dimension)

hypothesis = x_train * W + b cost = tf.reduce_mean(tf.square(hypothesis - y_train))

Deep Neural Network - Cost Function

☑ 교차 엔트로피(Cross Entropy)

$$E = -\sum_{k} t_k \log y_k$$

(y: predict, t: target, k: dimension, log: natural log)

hypothesis = tf.matmul(X, W) + b

cost = -tf.reduce_sum(Y * tf.log(hypothesis))

Deep Neural Network - Softmax

Cross entropy & Softmax

Deep Neural Network - Softmax

소프트맥스(Softmax)

소프트맥스 함수의 출력은 0에서 1사이의 실수이며, 출력의 총합은 1 (소프트맥스 함수의 출력을 확률로 해석 가능)

Deep Neural Network - Softmax

Cross entropy & Softmax

Computes softmax cross entropy between logits and labels. (deprecated)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=hypothesis, labels=Y))

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=hypothesis, labels=Y))

실습 : DNN_softmax.py

Activation Function

네트워크에 비선형성(nonlinearity)을 추가하기 위해 사용

□ 시그모이드(sigmoid)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

출력값이 0~1 사이의 값

Gradient vanishing 문제 발생

Gradient vashing

Backpropagation을 수행하기 위해 여러 단계의 layer를 거치게 되면, 소수점 이하의 작은 gradient를 여러 번 곱하게 됨 gradient가 점점 작아져 0에 가깝게 수렴하게 되면서 더 이상 학습이 진행 되지 않는 상태가 됨

☑ 시그모이드(sigmoid) 사용 예

Long Short Term Memory – forget gate

cell state 정보 중 어떤 정보를 유지하고 삭제(forget)할 지 결정 1에 가까울 수록 많은 정보 반영, 0에 가까울 수록 적은 정보의 반영

ReLU, Rectified Linear Unit

$$f(x) = max(0, x)$$

Gradient vanishing 문제 해소 가능

음수가 입력되면 0을 출력하기 때문에 한번 음수가 입력되면 해당 노드는 더 이상 학습이 진행되지 않음

실습: DNN_deep_hidden_layer3.py

실습: DNN_deep_hidden_layer5.py

Leaky ReLU & Exponential LU & tanh

Leaky ReLU: y=0.01x

Leaky ReLU: y=0.01x

Parametric ReLU: y=ax

tf.nn.leaky_relu()

tf.nn.elu exp() 계산 비용 소요 tf.nn.tanh()

GAN-Generator

☐ GAN-Discriminator

tensorboard --logdir=d:/temp/tensorboardlogs

실습: DNN_deep_hidden_layer5_tensorboard.py

Deep Neural Network - Gradient Descent

□ 학습: 손실 함수 E(w)가 최소가 되는 weight W를 찾는 과정

현재 지점의 w에서 기울기가 가장 가파르게 하강하는 곳을 따라 learing rate만큼 이동

Deep Neural Network - Gradient Descent

- □ Gradient: 손실 함수 E(w)의 weight 대한 모든 편미분 값의 벡터 가중치 매개변수의 값을 변화시켰을 때 손실 함수의 변화량
- □ Gradient가 음수이면 weight를 양의 방향으로
- □ Gradient가 양수이면 weight를 음의 방향으로
- □ Gradient 0이면 weight 갱신 종료(학습 종료)

□ 최적화(Optimization): 최적의 weight를 찾기 위한 해법

Deep Neural Network - Learning Rate

learning rate 가 너무 큰 경우

learning rate 가 너무 작은 경우

Overshooting 발생

학습속도 저하, local minima

learing rate는 일반적으로 0.01 ~ 0.001 사이의 값을 가장 많이 사용

Deep Neural Network - Gradient Descent

출처: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Deep Neural Network - Optimizer

□ Optimizer : 최적의 weight를 찾아 업데이트하기 위한 알고리즘

출처: https://www.slideshare.net/yongho/ss-79607172

Deep Neural Network - Optimizer

□ Optimizer 학습 속도 비교

출처: https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

Deep Neural Network - Overfitting

□ Overfitting과 Underfitting

출처: https://brunch.co.kr/@gimmesilver/44

Deep Neural Network - Overfitting

□ Overfitting과 Underfitting

출처: https://rfriend.tistory.com/tag/bias-variance%20tradeoff

Deep Neural Network - initial weight

Xavier 초기값

각 층의 활성화 값들을 광범위하게 분포시킬 목적으로 가중치의 적절한 분포를 가지기 위한 초기값에 대한 연구 논문인 사비에르 글로로트(Xavier Glorot)와 오슈아 벤지오(Yoshua Bengio)의 논문

Weight의 초기값으로 선행 계층의뉴런이 n개라면 초기 값의 표준편차가 sqrt(1/n) 인 정규분포를 사용

tf.contrib.layers.xavier_initializer()

□ He 초기값

ReLU함수에서 사용하는 초기값으로 카이밍 히(Kaiming He)가 발견 초기값의 표준편차가 sqrt(2/n)인 정규분포를 사용

tf.contrib.layers.variance_scaling_initializer()

tf.variance_scaling_initializer()

실습 : DNN_initializer.py

Deep Neural Network - weight decay

- ☑ Weight Decay : 학습과정에서 가중치가 클 경우 패널티를 부과하여 overfitting 억제
- L2 정규화(regularization)

모든 가중치 각각의 손실 함수에 1/2λW² 를 더하면 가중치는 1/2λW² 만큼 감소 효과

람다(λ)는 정규화의 강도를 조절하는 hyper parameter 람다(λ)를 크게 설정할수록 큰 가중치에 대한 패널티가 커짐

$$C = C_0 + \frac{\lambda}{2n} \sum_{w} w^2$$

□ L1 정규화(regularization)

W2 대신 W의 절대값 사용

실습 : DNN_regularization.py

Deep Neural Network - Batch Normalizaion

정규화(Normalization)

분포가 평균 0, 분산 1

출처: http://aikorea.org/cs231n/neural-networks-2-kr/

Deep Neural Network - Batch Normalizaion

배치 정규화(Batch Normalization)

각 Layer의 출력값의 분포가 <mark>평균 0, 분산 1</mark>이 되도록 mini batch단위로 정규화를 통해 학습 속도 개선, overfitting 억제

출처: https://excelsior-cjh.tistory.com/178

실습: DNN_batch_normalization.py

Deep Neural Network - dropout

dropout

신경망 모델이 복잡해지면 weight decay만으로 overfitting 해결이 어려움 학습과정에서 은닉층의 뉴런을 random하게 제거하거나 연결 가중치가 높은 링크를 확률적으로 제거

(a) Standard Neural Net

(b) After applying dropout.

출처 : https://medium.com/@amarbudhiraja

Deep Neural Network - hyperparameter

- □ 은닉층(hidden layer)과 은익 노드(hidden node)의 개수
- □ 활성화 함수(Activation Function)
- Regularization 기법
- □ 최적화 기법(Optimizer)
- □ 가중치 초기화 방식
- □ learning rate와 mini-batchsize

Deep Neural Network - hyperparameter

Manual Search

설계자의 직관이나 경험에 기반, 임의 값을 대입하여 결과를 확인한 후 탐색 알고리즘을 적용하여 그 결과가 움직이는 방향으로 추정해 보고, 이런 과정을 반복하여 최적의 결과를 도출, 탐색 알고리즘에 따라 결과 차이

Grid Search

선험적인 지식을 활용하여 문제를 분석, hyperparameter의 범위를 선정, 범위 안에서 일정한 간격으로 값을 설정, 그 값들을 차례로 실험하여 최적의 값을 찾은 후 best로 추정이 되는 점을 기준으로 세분화하여 최적값을 찾는 방법, 결과를 판정하기 위한 validation set이 필요

Deep Neural Network - hyperparameter

Random search

Grid search와 마찬가지로 선험적인 지식을 이용하여 hyperparameter의 범위를 정함, 범위내에서 무작위로 최적값을 찾는 작업을 진행, 정해진 시간 안에 결과를 내야 하는 경우, Random search를 할 때 더 좋은 결과 도출 가능

Bayesian optimization

실험 결과를 바탕으로 통계적인 모델을 만들고, 그것을 바탕으로 다음 탐색을 해야 할 방향을 효과적으로 정함, Bayesian optimization 방법을 사용하면 Random search나 Grid search를 사용하는 것에 비해 좀 더 짧은 시간에 최적 값을 찾아내는 경향을 보임