1.

Ram: acceso aleatorio y volátil.

Rom: solo lectura y no volátil.

2.

Memoria Estática:

Ventajas: mayor velocidad de acceso.

Desventajas: menor densidad de almacenamiento y mayor costo.

Memoria Dinámica:

Ventajas: mayor densidad de almacenamiento y menor costo.

Desventajas: menor velocidad de acceso y requiere refresco constante para mantener los datos.

3.

Para almacenar y gestionar los datos gráficos que se muestran en la pantalla, la función principal es permitir un acceso rápido y simultáneo de la GPU a la memoria, mejorando el rendimiento y la calidad de renderizado en aplicaciones gráficas y videojuegos.

5.

L1: Es la más pequeña y rápida, ubicada dentro del núcleo del procesador, con menor latencia.

L2: Más grande pero más lenta que L1, se encuentra también cerca del núcleo del procesador.

L3: La más grande y lenta de las tres, compartida entre varios núcleos, y más alejada del procesador.

6.

Paso 1:

Paso 2:

```
C:\Users\USUARIO>cd desktop

C:\Users\USUARIO\Desktop>cd arquitecturaComputadoras

C:\Users\USUARIO\Desktop\arquitecturaComputadoras>cd practica3

C:\Users\USUARIO\Desktop\arquitecturaComputadoras\practica3>
```

Paso 3:

```
C:\Users\USUARIO\Desktop\arquitecturaComputadoras\practica3>volatility imageinfo -f memdump.bin

Volatility Foundation Volatility Framework 2.6

INFO : volatility.debug : Determining profile based on KDBG search...

Suggested Profile(s) : Win2003SP0x86, Win2003SP1x86, Win2003SP2x86 (Instantiated with Win2003SP0x86)

AS Layer1 : IA32PagedMemory (Kennel AS)

AS Layer2 : FileAddressSpace (C:\Users\USUARIO\Desktop\arquitecturaComputadoras\practica3\memdump.b

in)

PAE type : No PAE

DTB : 0x39000L

KDBG : 0x805583d0L

Number of Processors : 1

Image Type (Service Pack) : 0

KPCR for CPU 0 : 0xffdff000L

KUSER_SHARED_DATA : 0xxffdf0000L

Image date and time : 2012-11-27 02:01:57 UTC+0000

Image local date and time : 2012-11-26 20:01:57 -0600

C:\Users\USUARIO\Desktop\arquitecturaComputadoras\practica3>
```

Paso 4:

Paso 5:

e	Pid	PPid	Thds	Hnds	Time
x822b07a8:System		0	52	842	1970-01-01 00:00:00 UTC+0000
0x820c6020:smss.exe	372			17	2012-11-03 20:18:29 UTC+0000
0x82031020:csrss.exe	420	372	11	505	2012-11-03 20:18:30 UTC+0000
0x820496c8:winlogon.exe	444	372	19	613	2012-11-03 20:18:30 UTC+0000
. 0x82022920:lsass.exe	500	444	58	959	2012-11-03 20:18:31 UTC+0000
. 0x8203fad0:services.exe	488	444	21	422	2012-11-03 20:18:31 UTC+0000
0x81fda1f8:svchost.exe	904	488		78	2012-11-03 20:18:44 UTC+0000
0x81b0bb08:srvcsurg.exe	1496	488		87	2012-11-24 17:47:40 UTC+0000
0x81c82d88:ismserv.exe	1436	488	11	276	2012-11-03 20:19:12 UTC+0000
0x81fdf2e0:svchost.exe	884	488	9	133	2012-11-03 20:18:44 UTC+0000
0x81ca3d68:dfssvc.exe	1312	488	10	106	2012-11-03 20:19:12 UTC+0000
0x81c80320:ntfrs.exe	1452	488	19	282	2012-11-03 20:19:12 UTC+0000
0x81b4b9d0:appmgr.exe	2992	488		102	2012-11-24 17:47:40 UTC+0000
0x81b8f348:inetinfo.exe	308	488	25	515	2012-11-24 17:47:51 UTC+0000
0x81caf2d8:spoolsv.exe	1216	488		135	2012-11-03 20:19:12 UTC+0000
0x81c462e8:svchost.exe	1736	488	16	127	2012-11-03 20:19:27 UTC+0000
0x81c4ad88:dns.exe	340	488	12	163	2012-11-03 21:41:26 UTC+0000
0x81cbad88:msdtc.exe	1240	488	15	160	2012-11-03 20:19:12 UTC+0000
0x81fd6968:svchost.exe	932	488	47	1092	2012-11-03 20:18:44 UTC+0000
0x81be0108:wuauclt.exe	1092	932		74	2012-11-04 18:57:32 UTC+0000
0x81b61b18:dllhost.exe	3292	488	18	254	2012-11-24 17:47:12 UTC+0000
0x822bc770:svchost.exe	740	488	12	230	2012-11-03 20:18:33 UTC+0000
0x81b71788:wmiprvse.exe	2116	740		208	2012-11-24 17:48:48 UTC+0000
0x81c71020:svchost.exe	1512	488		34	2012-11-03 20:19:13 UTC+0000
0x81bf9020:wins.exe	756	488	19	214	2012-11-04 17:02:01 UTC+0000
0x81b6a4d8:POP3Svc.exe	2260	488		142	2012-11-24 17:55:08 UTC+0000
0x81c99020:svchost.exe	1404	488		60	2012-11-03 20:19:12 UTC+0000
x81c4bd88:explorer.exe	188	1996	11	337	2012-11-03 21:32:38 UTC+0000
0x81ae2020:cmd.exe	2076	188		22	2012-11-27 01:37:57 UTC+0000
0x81c25b68:mdd.exe	3468	2076		25	2012-11-27 02:01:56 UTC+0000

Paso 6:

Preguntas de verificación del laboratorio

¿Qué hora inicia el proceso explorer.exe?

¿Qué hora inicia el proceso svchost.exe?

```
vchost.exe pid: 1512
ommand line : C:\WINDOWS\system32\svchost.exe -k regsvc
                                                                                                 Size LoadCount Path
 Base
0x81000000 0x6000 0xffff C:\WINDOWS\system32\svchost.exe
0x77440000 0xba000 0xffff C:\WINDOWS\system32\ntdl1.dl1
0x77440000 0xf4000 0xffff C:\WINDOWS\system32\kernel32.dl1
0x77400000 0x90000 0xffff C:\WINDOWS\system32\kPCRT4.dl1
0x77650000 0xa4000 0xffff C:\WINDOWS\system32\RPCRT4.dl1
0x7420000 0x12000 0x1 C:\WINDOWS\system32\RPCRT4.dl1
0x77b50000 0x54000 0x1 C:\WINDOWS\system32\RPCRT4.dl1
0x76f50000 0x13000 0x13000 0x1 C:\WINDOWS\system32\secur32.dl1
svchost.exe pid: 1736
Command line : C:\WINDOWS\System32\svchost.exe -k termsvcs
                                                                                                       Size LoadCount Path
                                                                                                                                                             0xffff c:\wINDOWS\System32\svchost.exe
0xffff c:\wINDOWS\system32\ntdl1.dll
0xffff c:\wINDOWS\system32\StA0132.dll
0xffff c:\wINDOWS\system32\StA0132.dll
0x1 c:\wIndows\system32\sta0132.dll
0x2 c:\wIndows\system32\sta0132.dll
0x3 c:\wIndows\system32\sta0132.dll
0x4 c:\w
  0x01000000
                                                                                         0x6000
                                                                                      0xf4000
  0x77e40000
0x77da0000
0x77c50000
                                                                                     0x90000
0xa4000
                                                                                      0x20000
0x54000
  9x76c60000
0x77d00000
0x77c00000
                                                                                      0x8f000
0x44000
  ax76f10000
                                                                                      0x2f000
  9x77160000
                                                                                0x124000
 0x75130000
0x74d90000
                                                                                       0x40000
0x6000
                                                                                                                                                                                    0X1 c:\Windows\system32\Secur32.dla

0X3 c:\Windows\system32\Secur32.dl1

0X1 c:\Windows\system32\WS2HELP.dl1

0X1 c:\WiNDOWS\system32\WS2HELP.dl1

0X3 C:\WiNDOWS\system32\AUTHZ.dl1
  ax76f50000
  0x71bf0000
                                                                                          0x8000
```

¿Cuál es el nombre del proceso PID: 420?

csrss.exe pid: 420

¿Cuál es el nombre del proceso PID: 932?

svchost.exe pid: 932

PARTE PRACTICA:

1) Determina cuántos bits en total puede almacenar una memoria RAM de 128K x 4 (5 pts)

128K representa 128 * 1024 = 131072

2) ¿Cuántos bits puede almacenar una memoria de 10G x 16?

$$10G$$
 representa $10 * 2^{30} =$

$$10 * 2^{30} * 16 =$$
171798691840 bits

3) Cuantas localidades de memoria se puede direccionar con 32 líneas de dirección. (5 pts)

$$2^n$$
, $n = 32 \Rightarrow 2^{32} = 4294967296$ localidades

4) ¿Cuántas localidades de memoria se pueden direccionar con 1024 líneas de dirección? (5 pts)

$$2^n$$
, $n = 1024 \Rightarrow 2^{1024} = 1.7976931349 * 10^{308} localidades$

5) ¿Cuántas localidades de memoria se pueden direccionar con 64 líneas de dirección? (5 pts)

$$2^n$$
, $n = 64 \Rightarrow 2^{64} = 18446744073709551616$ localidades

6) Cuantas líneas de dirección se necesitan para una memoria ROM de 512M x 8. (5 pts)

512M representa 512 * 2²⁰

$$2^n = 512 * 2^{20} = n = \frac{\ln(512 * 2^{20})}{\ln 2} = 29$$

7) ¿Cuántas líneas de dirección se necesitan para una memoria ROM de 128M x 128? (5 pts)

$$2^n = 128 * 2^{20} = n = \frac{\ln(128 * 2^{20})}{\ln 2} = 27$$

Binary								
Value		IEC	JEDEC					
1	В	byte	В	byte				
1024	KiB	kibibyte	ΚB	kilobyte				
1024 ²	MiB	mebibyte	MB	megabyte				
1024 ³	GiB	gibibyte	GB	gigabyte				
1024 ⁴	TiB	tebibyte		_				
1024 ⁵	PiB	pebibyte		_				
1024 ⁶	EiB	exbibyte		-				
1024 ⁷	ZiB	zebibyte		_				
1024 ⁸	YiB	yobibyte		-				

8) ¿Cuántos bits en total puede almacenar una memoria RAM 128M

x 4, de el resultado gigabytes? (5 pts)

$$128 * 2^{20} * 4 = 536870912 / 1024^3 = 0.5 gigabytes $\times$$$

9) ¿Cuántos bits en total puede almacenar una memoria RAM 64M

x 64, de él resultado en teras? (5 pts)

0,00048828125

$$64 * 2^{20} * 64 = 4294967296 / 1024^4 = 0.00390625 terabytes$$

10)¿Cuántos bits en total puede almacenar una memoria RAM 64M

$$64 * 2^{20} * 64 = 4294967296 / 1024^4 = 0.00390625 \text{ terabytes}$$

x 64, de él resultado en terabytes? (5 pts)

SE DIVIDE
PRIMERO
ENTRE 8
Y RECIEN DESPUES
SE DIVIDE EN
LO QUE PIDE EL
ENUNCIADO

PRACTICA DE ARQUITECTURA DE COMPUTADORAS

Name: Caleb Rodrigo Coronado Maqueda

C.I. 13262938

Github:

NameOfGithub: caleb-668 xd? al principio va esta hojaa..!

Enlace: https://github.com/caleb-668/Practica_03

