AN EFFICIENT LIQUID CRYSTAL DISPLAY DRIVING SCHEME USING ORTHOGONAL BLOCK-CIRCULANT MATRIX

BACKGROUND

The invention relates to a protocol for driving a liquid crystal display, particularly to a driving scheme of liquid crystal display, and more particularly to a special arrangement of the entries of the driving matrix, which results in an efficient implementation of the scheme

Passive matrix driving scheme is commonly adopted for driving a liquid crystal display. For those high-mux displays with/liquid crystals of fast response, the problem of loss of contrast due to frame response is severe. To cope with this problem, active addressing was proposed in which an orthogonal matrix is used as the common driving signal. However, the method suffers from the problem of high computation and memory burden. Even worse, the difference in sequencies of the rows of matrix results in different row signal frequencies. This may result in severe crosstalk problems. On the other hand. Multi-Line-Addressing (MLA) was proposed, which makes a compromise between frame response, sequency, and computation problems. The block-diagonal driving matrix is made up of lower order orthogonal matrices. To further suppress the frame response, column interchanges of the driving matrix were suggested in such a way that the selections are even y distributed among the frame. The complexity of the scheme is propertional to square of the order of the building matrix. Increase of order of the scheme results in complexity increase in both time and spatial domains. The order

That the series and the test M CÓ 14 ij

Œ

Γij []

increase asks for more logic hardware and voltage levels of the column signal

According to the invention there is provided a protocol for driving a liquid crystal display, characterised in that a row (common) driving matrix consists of orthogonal block-circulant matrices.

BRIEF DESCRIPTION OF THE DRAWINGS

Liquid Crystal Driving Scheme Using Orthogonal Block-Circulant
Matrix

The following shows an order-8 Hadamard matrix.

As mentioned in the foregoing, because of the computation burden and sequency problem of using active driving, MLA was proposed. To implement an 8-way drive by using 4-line MLA, two order-4 Hadamard matrices are used as the diagonal building blocks of the 8x8 driving matrix. The resulting common driving matrix is as follows:

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1
\end{bmatrix}$$

. (

62-061-5000

To minimize the sequency problem, another 4x4 orthogonal building block has been proposed. The resulting row (common) driving matrix is as follows:

A general m-way display will have a $m \times m$ block diagonal orthogonal driving matrix made up of m/4 (assuming that m is an integer multiple of 4) 4×4 building blocks. The actual voltage applied is not necessary ± 1 but a constant multiple of the value (i.e., $\pm k$). To further suppress the frame response, it has been proposed that column interchanges of the row (common) driving matrix such that the selections are evenly distributed among the frame. Using the 8-way drive as example, the following row (common) driving matrix results:

$$\begin{bmatrix} -1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 \end{bmatrix}$$

In the invention, there is proposed a method of generating orthogonal block-circulant building blocks that result in reduced hardware complexity of the driving circuitry. First of all, an orthogonal block-circulant matric is defined as follows:

Definition: An NMxNM block-circulant matrix B consisting of N MxM building blocks $A_1,A_2,...A_N$ is of the form

$$B = \begin{bmatrix} A_1 & A_2 & \Lambda & A_M \\ A_N & A_1 & \Lambda & A_{N-1} \\ M & M & O & M \\ A_2 & A_3 & A_N & A_1 \end{bmatrix}.$$

It is said to be an orthogonal block-circulant if $\mathbb{R}^T\mathbb{R}=\mathbb{R}\mathbb{R}^T=N\mathbb{N}^T\mathbb{N}$

For example, the following 4x4 matrix is orthogonal block-circulant

In this case, N can be 2 or 4. If N=2, then each A_j is 2×2 matrix. If N=4, then each A_j is

$$\begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$$

a scalar (1 or -1). The orthogonal block-circulant matrix can be used as the diagonal building block of a row (common) driving matrix. By proper column and row interchanges, the resulting driving matrix has a property that each row is a shifted version of preceding rows and can be implemented by using shift registers. The following shows the resulting 8-way drive using 4x4 orthogonal block-circulant matrix after suitable row and column interchanges.

$$\begin{bmatrix}
-1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & -1
\end{bmatrix}$$

For higher order B, the choice of the order of sub-block A_i is limited. Some M might result in nonemistance of orthogonal block-circulant B. Let MN=6, then M, the order of sub-block, can be 1, 2, or 3. It can be shown that orthogonal block-circulant B can be achieved by M=2, 3, but not M=1. In general, given that MN is even, it can be shown that orthogonal block-circulant B always exists provided that $M\neq 1$. In the following, two means of generating orthogonal block-circulant matrices are proposed.

The first method is based on theory of parametery matrix but it by no means generates all onthogonal block-circulant matrices. The second method is a means to identify orthogonal block-circulant matrices by nonlinear programming. Theoretically, it can be used to generate all orthogonal block-circulant matrices.

Generation of Orthogonal Block-Circulant Matrix Using Paraunitary Matrix

Consider order Matrix of B as follows:

$$E = \begin{bmatrix} A_1 & A_2 & \mathbb{K} & A_N \end{bmatrix}$$

Define man shift matrix Snm as follows

$$S_{n,m} = \begin{bmatrix} 0 & I_{m \times m} \\ 0_{(n-m) \times (n-m)} & 0 \end{bmatrix}$$

A paraunitary matrix E of order MxNM satisfies

(i) E is orthogonal ie.,

$$EE^{T} = I$$

(ii) E is orthogonal to its column shift by multiples of M, i.e.,

$$ES_{MM,M}E^{r}=0$$

for i = 1, 2, ..., N-1.

In general, paraunitary matrices can be represented in a cascade lattice form with rotational angles as parameters.

The following two are two example 2x4 paraunitary matrices.

$$E_{1} = \begin{bmatrix} 1 & 1 & -1 & 1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$

$$E_{2} = \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$$

We have the following property of paraunitary matrices:

Property: B generated by block-circulating paraunitary E is orthogonal.

Proof: Define $n \times n$ recurrent shift matrix $R_{n,m}$ as follows

An orthogonal block-circulant matrix B of order NMxNM with MxNM sub-matrix E

E is orthogonal. i.e.,

$$EE^{T} =$$

E is orthogonal to its recurrent shift by multiples of M, i.e., (ii)

$$ER_{MM,M}E^T=0$$

for i = 1, 2, ..., N-1.

Provided that E is paraunitary, as

$$R_{n,m} = S_{n,m} + S_{n-m,n-m}^T$$

we have

$$ER_{(N+1)M,iM}E^{T} = E(S_{n,m} + S_{n-m,n-m}^{T})E^{T} = ES_{n,m}E^{T} + ES_{n-m,n-m}^{T}E^{T} = 0$$

and that completes the proof. Notice that E is paraunitary is a sufficient but not necessary condition for B to be orthogonal block-circulant. Using E_1 and E_2 as building blocks, we cotain the following orthogonal block-circulant matrices.

$$B_2 = \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$$

Notice that B_2 is orthogonal circulant as well as orthogonal block-circulant. As illustrated before, by using it as the building block of row (common) driving matrix with suitable row and column interchanges, each row is a delay-1 shifted version of preceding row. However, B_1 is orthogonal block-circulant but it is not circulant. By suitable row and column interchanges of the resulting driving matrix, two sets of row (common) driving waveforms are obtained. Within a set, each row is a shifted version of the others.

The complexity of implementation is proportional to the order of the sub-blocks A_1 (i.e., M). For NM=4, we observe that M can be 1 or 2. For higher order, M=1 does not result in any circulant B that is orthogonal. Provided M=2, orthogonal block-circulant B always exists and can be generated by 2x2N paraunitary matrices. The driving matrix resulted from B_2 with suitable column interchanges is shown below:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 0 & -1 & 0 & -1 \end{bmatrix}$$

Rows 1, 3, 5, 7 and 2, 4, 6, 8 form the two sets within which each row is a shifted version of the others.

Generation of Orthogonal block-circulant Matrix by Nonlinear Programming

An orthogonal block-circulant matrix can be generated by nonlinear programming. The method of steepest descent illustrates this. The method of steepest descent is widely used in the identification of complex and nonlinear systems. The update law :identifying sub-matrix E can be stated as follows:

$$E_{mi} = E_s + \delta \stackrel{\text{ge}}{=}$$

where the step size P is the cost or penalty function. We set P as follows:

$$P(E) = \sum_{i,j} \left(e_{ij}^{2} - 1 \right)^{2} + \left| EE^{T} - I \right|_{F}^{2} + \sum_{i} \left| ER_{Mi,Si} E^{T} \right|_{F}^{2}$$

 e_{ij} are the empires of E. If f is the Probenius norm of a matrix. The first summation in the function forces all the entries of E to be ± 1 . The second one forces E to be orthogonal, while the third summation ensures orthogonal block-circulant property of

List of Order-4 and Order-8 Orthogonal Block-Circulant Matrices The following is an exhaustion of all 224 and 225 sub-matrices E with extrict ±1 that result in orthogonal block-circulant building block

Order-4

(O

ĻΠ

ű

fy O ũ

$$\begin{bmatrix} 1 & \mathbf{I} & -1 & \mathbf{I} \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

 $\begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$ (Ξ)

$$\begin{bmatrix} -1 & 1 & -1 & -1 \\ \hline 1 & 1 & -\overline{1} & \overline{1} \end{bmatrix};$$

$$\begin{bmatrix} -1 & -1 & -1 & -1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$$

- (i) sign inversion (i.e., 毛); (ii) row interchange, i.e.,

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} E;$$

(iii) circulant shift of E, i.e.,

and any combinations of (i)-(iii).

Order-8

Chamber of the series of the series

Constitution were spring spring spring company

(2)

$$\begin{bmatrix} 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -\frac{1}{2} & -\frac{1}{2} & = \frac{1}{2} & 1_1 & -\frac{1}{2} & -\frac{1}{2} \\ 1 & 1 & 1 & -1 & 1 & 1 & -1 \end{bmatrix}^{2},$$

- (3) (4) (5) (6)

(7)

(3)

(10)

(12)

(14)

(15)

(16)

(1.7)

$$\begin{bmatrix} 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 \\ \hline 2 & 1 & 1 & 1 & 1 & 1 & -1 & -1 \end{bmatrix}$$

(19)

(20)

(21)

(22)

(23)

(24)

$$\begin{bmatrix} -1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & 1 & 1 & -1 & 1 & -1 & -1 \end{bmatrix}$$

(25)

(26)

(27)

$$\begin{bmatrix} \frac{1}{2} & = \frac{1}{2} & \Gamma^{1} - \Gamma^{1} & 1^{-1} & 1^{1} & = \frac{1}{2} & = \frac{1}{2} \\ = \frac{1}{2} & \frac{1}{2} & 1^{1} - 1^{1} - \Gamma^{1} - \frac{1}{2} & = \frac{1}{2} & = \frac{1}{2} \end{bmatrix}$$

(28) all alternatives of (1)-(27) generated by

- (i) sign inversion (i.e., -E);
- (ii) row interchange, i.e.,

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} E;$$

(iii) circulant shift of E, i.e.

i=1, 2, or 3, and any combinations of (i)-(iii)

Thus using the invention a special arrangement of the entries of driving matrix is proposed. By imposing orthogonal block-circulant property to the building blocks of the row (common) driving waveform, the row signals can be made to differ by time shifts only. Each row can now be implemented as a shifted version of preceding rows by using shift registers. The complexity of the matrix driving scheme is greatly reduced and is linearly proportional to the order of the orthogonal block-circulant building block.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.