Naïve Set Theory

 A set is an unordered collection of objects, called members or elements of the set.

```
x \in S represents the proposition "x is a member of S." x \notin S \equiv \neg(x \in S) (x is not a member of S).
```

- A set can be an element of another set.
- The empty set ϕ contains no element.
- No set can contain itself as a member, either directly or indirectly.

Subsets

 $A \subseteq B$ means that every member of A is also a member of B

or
$$\forall x : (x \in A \Rightarrow x \in B)$$

 $A \subset B$ means that every member of A is a member of B, and B has members that are not members of A

or
$$\forall x$$
: $(x \in A \Rightarrow x \in B) \land (\exists x : x \in B \land x \notin A)$

Set Notation

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} : sets of natural numbers, integers, rationals, real numbers

Sets can be represented by:

- Listing elements in the set {1, 2, 3}
- By a predicate that describes properties of elements (Set builder notation)

```
\{x \colon P(x)\}\\{x \in \mathbb{N} : \exists y \in \mathbb{N}, x = 2y\}
```

This is the set of even numbers.

Operations on Sets

Set Union: $A \cup B = \{x: (x \in A) \lor (x \in B)\}$

Intersection: $A \cap B = \{x: (x \in A) \land (x \in B)\}$

Difference: $A - B = \{x: (x \in A) \land (x \notin B)\}$

Complement (with respect to a universe U of elements):

$$\bar{A} = U - A = \{x : (x \in U) \land (x \notin A)\}$$

Cartesian Product: $A \times B = \{(a, b) : (a \in A) \land (b \in B)\}$

Example: $\{1,2\}\times\{a,b,c\} = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$

Note: $(1, a) \neq (a, 1)!$

Power Sets

The power set P(S) of a set S is defined as:

$$P(S) = \{X: X \subseteq S\}$$

"The set of all subsets of S"

$$P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$

$$P(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

If a finite set S has m elements, then P(S) has $2^m > m$ elements.

Proving set identities

Prove that $A \cup (A \cap B) = A$ $A \cup (A \cap B) = \{x: (x \in A) \lor (x \in A \cap B)\}$ $= \{x: (x \in A) \lor (x \in A \land x \in B)\}$ $= \{x: (x \in A)\}, \quad \text{because } (p \lor (p \land q)) \equiv p$ = A

Anything look familiar?

Table 3.5.1: Set identities.

Name	Identities	
Idempotent laws	A U A = A	$A \cap A = A$
Associative laws	(A U B) U C = A U (B U C)	$(A \cap B) \cap C = A \cap (B \cap C)$
Commutative laws	A u B = B u A	A ∩ B = B ∩ A
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws	A ∪ Ø = A	$A \cap U = A$
Domination laws	$A \cap \emptyset = \emptyset$	A U U = U
Double Complement law	$\overline{\overline{A}}=A$	
Complement laws	$A \cap \overline{A} = \emptyset$ $\overline{U} = \emptyset$	$A \cup \overline{A} = U$ $\overline{\emptyset} = U$
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorption laws	A ∪ (A ∩ B) = A	A ∩ (A ∪ B) = A

Table 1.5.1: Laws of propositional logic.

Idempotent laws:	$pee p\equiv p$	$p \wedge p \equiv p$
Associative laws:	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
Commutative laws:	$p \lor q \equiv q \lor p$	$p \wedge q \equiv q \wedge p$
Distributive laws:	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Identity laws:	$p \lor F \equiv p$	$p \wedge T \equiv p$
Domination laws:	$p \wedge F \equiv F$	$p ee T \equiv T$
Double negation law:	$\neg \neg p \equiv p$	
Complement laws:	$p \wedge \neg p \equiv F$ $\neg T \equiv F$	$\begin{array}{c} p \vee \neg p \equiv T \\ \neg F \equiv T \end{array}$
De Morgan's laws:	$ eg(p \lor q) \equiv \neg p \land \neg q$	$\neg(p \land q) \equiv \neg p \lor \neg q$
Absorption laws:	$pee (p\wedge q)\equiv p$	$p \wedge (p ee q) \equiv p$
Conditional identities:	$p \to q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p o q) \wedge (q o p)$

An Example

Prove that
$$((A - B) \cup (A - C) = A) \Rightarrow (A \cap B \cap C = \phi)$$

$$A \cap B \cap C = \underbrace{\left((A - B) \cup (A - C) \right)} \cap (B \cap C) \quad substitute \ for \ A, associative$$

$$= \left((A - B) \cap (B \cap C) \right) \cup \left((A - C) \cap (C \cap B) \right) \quad distributive, commutative$$

$$= \left(\left((A \cap \overline{B}) \cap B \right) \cap C \right) \cup \left((A \cap \overline{C}) \cap C \right) \cap B \quad associative$$

$$= \left((A \cap (\overline{B} \cap B)) \cap C \right) \cup \left((A \cap (\overline{C} \cap C)) \cap B \right) \quad associative$$

$$= (A \cap \phi \cap C) \cup (A \cap \phi \cap B) \quad complement$$

$$= \phi \cup \phi \quad domination$$

$$= \phi \quad identity$$

Another Method

Prove that
$$((A - B) \cup (A - C) = A) \Rightarrow (A \cap B \cap C = \phi)$$

$$\forall x \colon x \in A \quad \Leftrightarrow \quad x \in (A - B) \cup (A - C)$$

$$\Leftrightarrow (x \in A \land x \notin B) \lor (x \in A \land x \notin C)$$

$$\Leftrightarrow x \in A \land (x \notin B \lor x \notin C) \qquad \text{distributive law}$$
So,
$$\forall x \colon x \in A \Rightarrow x \notin B \lor x \notin C \qquad \text{absorption}$$

$$\equiv \forall x \colon x \notin A \lor x \notin B \lor x \notin C \qquad \text{conditional}$$

$$\equiv \forall x \colon \neg (x \in A \land x \in B \land x \in C) \qquad \text{deMorgan's}$$

$$\equiv \neg \exists x \colon x \in A \cap B \cap C$$

 $\Rightarrow A \cap B \cap C = \phi$

Relations

A relation R from a domain A to a range B is a subset of A x B.

Example:

R:
$$\{1,2,3,4\} \rightarrow \{a,b,c,d,e\}$$

$$R = \{(1,b), (1,c), (2,a), (3,b), (3,d)\}$$

Relations

A relation R with domain A and range B is a subset of $A \times B$

A relation R over a set A is a subset of $A \times A$.

```
A = \{\text{EWR, BOS, DCA, LAX, SFO, ORD, DEN, MIA}\}

FLIGHTS = \{(\text{EWR, ORD}), (\text{BOS, DCA}), (\text{LAX, SFO}),

(\text{DEN, LAX}), (\text{DCA, MIA}), (\text{SFO, EWR}),

(\text{ORD, DEN}), (\text{LAX, BOS}), (\text{MIA, SFO})\}
```


One week of Enron emails

The evolution of FCC lobbying coalitions

Properties of Relations

A relation R over a set A is:

• *Reflexive* if $\forall x \in A: (x, x) \in R$

$$DIVIDES = \{(a, b) : a, b \in \mathbb{N}^+ \land a|b\}$$

• *Anti-Reflexive* if $\forall x \in A: (x, x) \notin R$

$$GREATER = \{(a, b): a, b \in \mathbb{N} \land a > b\}$$

Properties of Relations

A relation R over a set A is:

• *Symmetric* if $\forall x, y \in A$: $(x, y) \in R \iff (y, x) \in R$

$$CLOSEBY = \{(a,b): a,b \in \mathbb{N} \land |a-b| \le 2\}$$

• Anti-Symmetric if $\forall x, y \in A$: $((x,y) \in R \land (y,x) \in R) \Rightarrow (x = y)$ $DIVIDES = \{(a,b) : a,b \in \mathbb{N}^+ \land a|b\}$

Properties of Relations

A relation R over a set A is:

• Transitive if
$$\forall x, y, z \in A$$
: $((x, y) \in R \land (y, z) \in R) \Rightarrow (x, z) \in R$

$$DIVIDES = \{(a, b) : a, b \in \mathbb{N} \land a | b\}$$

$$IMPLIES = \{(P, Q) : P \Rightarrow Q\}$$

Equivalence Relations

A relation R over a set A that is reflexive, symmetric and transitive is called an **equivalence** relation.

Examples:

```
\{(P,Q): P \Leftrightarrow Q\}\{(a,b): rem(a,3) = rem(b,3)\}
```

Reflexive Closure

The *reflexive closure* of relation R is the smallest reflexive relation r(R): $r(R) \supseteq R$.

Example:

$$R = \{(a, a), (a, b), (b, c)\}$$

 $r(R) = R \cup \{(b,b),(c,c)\} = R \cup I$, where I is the identity

Symmetric Closure

The **symmetric closure** of relation R is the smallest symmetric relation $s(R): s(R) \supseteq R$.

Example:

$$R = \{(a, a), (a, b), (b, c)\}\$$

 $s(R) = R \cup \{(b, a), (c, b)\}\ = R \cup R^- \text{ where } R^- \text{ is the inverse of } R$

Transitive Closure

The *transitive closure* of relation R is the smallest transitive relation $R^+ \supseteq R$.

Example:

$$R = \{(a, a), (a, b), (b, c)\}$$

$$R^{+} = R \cup \{(a, c)\}$$

Composing Relations

Given two relations $R: A \rightarrow B$, $S: B \rightarrow C$

we define the composition

$$S \circ R: A \to C$$
 as $\{(a,c): a \in A \land c \in C \land \exists b \in B: (a,b) \in R \land (b,c) \in S\}$

If R is a relation over a set A then $R \circ R = \{(a,b): \exists x \in A \ (a,x) \in R \ \land (x,b) \in R\}$

R: direct flights

 $R \circ R$: one-stop flights

Composing Relations

If R is a relation over a set A then $R \circ R = \{(a,b): \exists x \in A \ (a,x) \in R \ \land (x,b) \in R\}$

$$R \circ (R \circ R) = \{(a,b): \exists x,y \in A \ (a,x) \in R \ \land (x,y) \in R \land (y,b) \in R\}$$

R: direct flights

 $R \circ R = R^2$: one-stop flights

 $R \circ R \circ R = R^3$: two-stop flights

In general: $(a,b) \in \mathbb{R}^k$ iff there is a sequence of k flights from a to b.

Our little airline

 $A = \{\text{EWR, BOS, DCA, LAX, SFO, ORD, DEN, MIA}\}$ $FLIGHTS = \{(\text{EWR, ORD}), (\text{BOS, DCA}), (\text{LAX, SFO}), (\text{DEN, LAX}), (\text{DCA, MIA}), (\text{SFO, EWR}),$ $(\text{ORD, DEN}), (\text{LAX, BOS}), (\text{MIA, SFO})\}$

Composing Relations

Suppose A consists of n cities and that one can fly (directly or indirectly) from a to b Then there is a sequence of k flights where $1 \le k \le n$. (Why not n-1?) In other words, $(a,b) \in R \cup R^2 \cup R^3 \cup \cdots \cup R^n$

Theorem: For any relation R over a set A, |A| = n,

$$R^+ = R \cup R^2 \cup R^3 \cup \cdots \cup R^n$$

Corollary: If R is reflexive then $R^+ = R^n$

since
$$R \subseteq R^2 \subseteq R^3 \cdots \subseteq R^n$$