

RADIO TEST REPORT

Report No.: DL-20210426010-3E

Applicant: Nebra Ltd

Unit 4 Bells Yew Green Business Court, Bells Yew Green, East Sussex, United Kingdom Address:

Manufacturer: Shenzhen Eastech Company Limited.

2nd floor, 3rd building, Baishixia Development Area, Fuyong Street, Bao'an District, Address:

Shenzhen City, Guangdong Province, China.

EUT: Mini usb wifi dongle

Trade Mark: N/A

FX-8188E Model Number:

Date of Receipt: Apr. 19, 2021

Test Date: Apr. 19, 2021 - Apr. 23, 2021

Date of Report: Apr. 23, 2021

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Address:

Street, Longgang District, Shenzhen, Guangdong, China

Applicable

ETSI EN 300 328 V2.2.2 (2019-07) Standards:

Test Result: Pass

DL-20210426010-3E Report Number:

Prepared (Engineer): Randy Xie

Jack Bu Reviewer (Supervisor):

Approved (Manager): Jade Yang

Pproved This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com

TABLE OF CONTENT

Report No.: DL-20210426010-3E

Tes	st Report Declaration	Page
1.	Version	3
2.	Test Summary	3
3.	GENERAL INFORMATION	4
4.	Test Instrument Used	12
5.	RF Output Power	13
6.	Power Spectral Density	15
7.	Adaptivity	16
8.	Occupied Channel Bandwidth	27
9.	Transmitter Unwanted Emissions In The Out-of-Band Domain	28
10.	Transmitter Unwanted Emissions in The Spurious Domain	40
11.	Receiver spurious emissions	44
12.	Receiver Blocking	48
13.	Geo-location capability	50
14.	setup PHOTOGRAPHS	51
15.	FUT PHOTOGRAPHS	52

1. VERSION

	Version No. Date					Descriptio	n	
X	00	Apr. 2	Apr. 23, 2021 Original			X		
Ser.		art.	O. Co.	<i>U</i>		01	Ò. Če	9
	· & C	, X	O G			, X	O _V	CO

2. TEST SUMMARY

No	Test Item	Clause No	Result	
\Diamond_{\wedge}	Transmitter Paramete	OV ot.		
1	RF output power	4.3.2.2	PASS	
2	Power Spectral Density	4.3.2.3	PASS	
3	Duty Cycle, Tx-sequence, Tx-gap	4.3.2.4	N/A	
4	Medium Utilisation (MU) factor	4.3.2.5	N/A	
5	Adaptive non-FHSS using DAA	4.3.2.6 PASS		
6	Occupied Channel Bandwidth	4.3.2.7	PASS	
€ ⁷ 7	Transmitter unwanted emissions in the out-of-band domain	4.3.2.8	PASS	
888	Transmitter unwanted emissions in the spurious domain	4.3.2.9	PASS	
	Receiver Parameter	s or		
9	Receiver spurious emissions	4.3.2.10	PASS	
<u></u> 10	Receiver Blocking	4.3.2.11 PASS		
11	Geo-location capability	4.3.2.12	N/A	

Note: (1)" N/A" denotes test is not applicable in this Test Report

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong

Street, Longgang District, Shenzhen, Guangdong, China

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 3 of 54

⁽²⁾ Test Facility: Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20210426010-3E

3. GENERAL INFORMATION

3.1 Description of Device (EUT)

EUT: Mini usb wifi dongle

Trade Mark: N/A

Model Number: FX-8188E

Test Model: FX-8188E

Model difference: N/A

Power Supply: DC 5V from USB

Operation Frequency: 802.11b/g/n20:2412~2472 MHz

802.11n40:2422~2462 MHz

Modulation Type: CCK/OFDM/DBPSK/DAPSK

Number of Channel: 802.11b/g/n20:13CH

802.11n40:11 CH

802.11b:11/5.5/2/1 Mbps

Data Rate: 802.11g:54/48/36/24/18/12/9/6Mbps

802.11n Up to 150Mbps

Antenna Type: Internal Antenna

Antenna Gain: 1.5dBi

Receiver Category: 1

Hardware Version: ---

Software Version: ---

Firmware: ---

Note1: For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

	Channel List for 802.11b/g/n HT20								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
_ 01	2412	05	2432	09	2452	13	2472		
02	2417	06	2437	10	2457	, C° / ,	100		
03	2422	07	2442	91	2462	1-0	1		
04	2427	08	2447	12 🥂	2467	01	. ot 1		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 4 of 54

Shenzhen DL	Tocting	Tachnology	Co Ltd
SHEHZHEH DL	resung	recrimology	/ CO., Liu.

	Channel List for 802.11 n HT40						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
03	2422	≿ 06	2437	09	2452	12	2467
04	2427	07	2442	. 6 10	2457	13	2472
05 🙏	2432	08	2447	11,8	2462	6°1	1

Report No.: DL-20210426010-3E

ANNEX E.2

a) The type of wideband data transmission equipment:

- □ FHSS
- non-FHSS

b) In case of FHSS:

•In case of non-Adaptive FHSS equipment:

The number of Hopping Frequencies:

•In case of Adaptive FHSS equipment:

The maximum number of Hopping Frequencies:

The minimum number of Hopping Frequencies:

•The (average) dwell time:

c) Adaptive / non-adaptive equipment:

- □ non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode
- $\hfill \square$ adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The Channel Occupancy Time implemented by the equipment: ms

- $\hfill \square$ The equipment has implemented an LBT mechanism
- In case of non-FHSS equipment:
- □ The equipment is Frame Based equipment
- □ The equipment is Load Based equipment
- □ The equipment can switch dynamically between Frame Based and Load Based equipment
 The CCA time implemented by the equipment: µs
- The equipment has implemented a DAA mechanism
- □ The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.): 9.58dBm

The maximum (corresponding) Duty Cycle: %

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 5 of 54

Report No.: DL-20210426010-3E

ne worst case operational mode for each of the following tests:	
RF Output Power	
802.11b	
Power Spectral Density	
- 802.11b	
Duty cycle, Tx-Sequence, Tx-gap	
802.11b	
 Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for F 	HSS equipment)
, todamatate Transmit time, Tradacticy Coorporation a Hopping Coductice (City for F	rico oquipinoni,
Hopping Frequency Separation (only for FHSS equipment)	
Tropping Frequency Separation (only for Friss equipment)	
Medium Utilisation	
• Medium Otilisation	
Adaptivity & Receiver Blocking	
Adaptivity & Receiver blocking	
Nominal Channel Denduidsk	
Nominal Channel Bandwidth 20/40M In	
20/40MHz	
Transmitter unwanted emissions in the OOB domain	
802.11b	
Transmitter unwanted emissions in the spurious domain	
802.11b	
Receiver spurious emissions	
802.11b	
he different transmit operating modes (tick all that apply):	
■ Operating mode 1: Single Antenna Equipment	
■ Equipment with only one antenna	
□ Equipment with two diversity antennas but only one antenna active at any moment in	time 🔍
□ Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode	e where only one
antenna is used (e.g. IEEE 802.11™ legacy mode in smart antenna systems)	
□ Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming	ig 💉
□ Single spatial stream/Standard throughput/(e.g. IEEE 802.11™ legacy mode)	
□ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1	
□ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2	
NOTE1: Add more lines if more channel bandwidths are supported.	
□ Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming	
□ Single spatial stream/Standard throughput (e.g. IEEE 802.11™ legacy mode)	
□ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1	
□ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2	
NOTE2: Add more lines if more channel bandwidths are supported.	

h) In case of Smart Antenna Systems:

- The number of Receive chains:
- The number of Transmit chains:

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 6 of 54

Report No.: DL-20210426010-3E

	□ symmetrical power distribution
	□ asymmetrical power distribution
	In case of beam forming, the maximum (additional) beam forming gain: dB
	NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i) Ope	erating Frequency Range(s) of the equipment:
V -	Operating Frequency Range 1: 2412 MHz to 2472 MHz
	Operating Frequency Range 2: 2422 MHz to 2462 MHz
	NOTE: Add more lines if more Frequency Ranges are supported.
i) Occ	cupied Channel Bandwidth(s):
	• Nominal Channel Bandwidth 1: 8.97MHz
	Nominal Channel Bandwidth 2: 36.69MHz
	NOTE: Add more lines if more channel bandwidths are supported.
k) Ty	pe of Equipment (stand-alone, combined, plug-in radio device, etc.):
χ.	■ Stand-alone
	□ Combined Equipment
	□ Plug-in radio device
	□ Other
I) The	normal and the extreme operating conditions that apply to the equipment:
×	Normal operating conditions (if applicable):
	Operating temperature:25° C
	Other (please specify if applicable):
	Extreme operating conditions:
	Operating temperature range: Minimum: -20 °C Maximum 55°C
	Other (please specify if applicable): Minimum: Maximum
	Details provided are for the: □ stand-alone equipment
	■ combined (or host) equipment
	□ test jig
m) Th	ne intended combination(s) of the radio equipment power settings and one or more antenna
-	semblies and their corresponding e.i.r.p. levels:
	• Antenna Type
	■ Integral Antenna (information to be provided in case of conducted measurements)
	Antenna Gain: 1.5 dBi
	If applicable, additional beamforming gain (excluding basic antenna gain): dB
	□ Temporary RF connector provided
	□ No temporary RF connector provided
	□ Dedicated Antennas (equipment with antenna connector)
	□ Single power level with corresponding antenna(s)
	□ Multiple power settings and corresponding antenna(s)
	Number of different Power Levels:
	Power Level 1:dBm

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 7 of 54

Power Level 2: dBm
Power Level 3: dBm

NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector).

• For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Report No.: DL-20210426010-3E

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1	x. <	Y con	V X QV C
2 0	C _©		
3	Y COL	,00	x. O' cor
⊘ 4		O,	

NOTE 3: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
,1 ·	S. Ce.		S. O. O.
2	0 69		X O' GO
300		C.T.	
4		, C	Or Car

NOTE 4: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 3: dBm

Number of antenna assemblies provided for this power level:

Assembl	y#	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1		× 0,	CO	1,0 1,0 0° 0°
2	Ç	0	OV -ot	Co. Y. OV.
3	0	CO	7	× O Co
6 4	· ·	N -01	Ç	

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

 n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined equipment or test jig in case of plug-in devices:

Details provided are for the:

stand-alone equipment

■ combined equipment

□ test jig

Supply Voltage □ AC mains State AC voltage V

■ DC State DC voltage: 5.0 V

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 8 of 54

Report No.: DL-20210426010-3E

In case of DC, indicate the type of power source	
□ Internal Power Supply	
□ External Power Supply or AC/DC adapte	er SV SV
■ Battery: 5.0V	
□ Other:	
o) Describe the test modes available which can facili	tate testing:
The EUT can be into the Engineer mode for testing.	
p) The equipment type (e.g. Bluetooth®, IEEE 802.11 IEEE 802.11™	™, IEEE 802.15.4™, proprietary, etc.):
q) If applicable, the statistical analysis referred to in	clause 5.4.1 q)
(to be provided as separate attachment)	
r) If applicable, the statistical analysis referred to in c	clause 5.4.1 r)
(to be provided as separate attachment)	
X O GO Y	
s) Geo-location capability supported by the equipme	nt:
□ Yes	
□ The geographical location determined by the equipme	ent as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is
not accessible to the user	
■ No	
ANNEX E.3	
From all combinations of conducted power settings and	intended antenna assembly(ies) specified in clause 5.4.1
m), specify the combination resulting in the highest e.i.r	.p. for the radio equipment.
Unless otherwise specified in ETSI EN 300 328, this po	ower setting is to be used for testing against the
requirements of ETSI EN 300 328. In case there is mor	re than one such conducted power setting resulting in the
same (highest) e.i.r.p. level, the highest power setting is	s to be used for testing. See also ETSI EN 300 328,
clause 5.3.2.3.	
Highest overall e.i.r.p. value: dBm	
Corresponding Antenna assembly gain: dBi	Antenna Assembly #:
Corresponding conducted power setting: dBm	Listed as Power Setting #:
(also the power level to be used for testing)	
X V V	
ANNEX E.4.1	
ITU Class(es) of emission:	
Can the transmitter operate unmodulated? yes no	
ANNEX E.4.2	
The transmitter is intended for: Continuous duty	
□ Intermittent duty	
× × × × × × × × × × × × × × × × × × ×	possible for testing purposes
= 55,55555 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	√

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 9 of 54

ANNEX E.4.3

- □ The equipment submitted are representative production models
- □ If not, the equipment submitted are pre-production models?
- □ If pre-production equipment are submitted, the final production equipment will be identical in all respects with the equipment tested

Report No.: DL-20210426010-3E

□ If not, supply full details

ANNEX E.4.4

- □ Spare batteries (e.g. for portable equipment)
- □ Battery charging device
- □ External Power Supply or AC/DC adapter
- □ Test jig or interface box
- □ RF test fixture (for equipment with integrated antennas)
- □ Combined equipment Manufacturer:

Model #:

Model name:

- □ User Manual
- □ Technical documentation (Handbook and circuit diagrams)
- 3.2 Tested System Details

None.

3.3 Block Diagram of Test Set-up

PC	EUT

3.4 Test Mode Description

Mode	data rate (Mbps)	Channel	Frequency (MHz)		
Or cer	11,	Low: CH1	2412		
802.11b	(11)	Middle: CH7	2442		
	× 11 0°	High: CH13	2472		
at O' Co	54	Low: CH1	2412		
802.11g	54	Middle: CH7	2442		
	54	High: CH13	2472		
000.44.5	MCS1	Low: CH1	2412		
802.11n	MCS1	Middle: CH7	2442		
HT20	MCS1	High: CH13	2472		
802.11n HT40	MCS1	Low: CH1	2412		
	MCS1	Middle: CH7	2442		
	MCS1	High: CH11	2472		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 10 of 54

3.5 Test Conditions

	Normal Conditions	Extreme Conditions		
Tomporatura ranga	25℃	HTHV	DC 5.5V, 55℃	
Temperature range	25℃	HTLV	DC 5.5V, -20°C	
Dower aupply	*DC F 0\/	LTLV	DC 4.5V, -20°C	
Power supply	DC 5.0V	LTHV	DC 4.5V, 55℃	

Report No.: DL-20210426010-3E

Note 1: The test procedure described in clause 5.1of EN300 328 was used for extreme test procedure.

2: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.6 Test Uncertainty

ltem (MU-	Remark
Uncertainty for Conducted Emission Test	2.50dB	or O
Uncertainty for Radiation Emission test in 3m chamber	3.04dB	Polarize: V
(30MHz to 1GHz)	3.02dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	3.56dB	Polarize: H
(Above)	3.84dB	Polarize: V
Uncertainty for radio frequency	1×10 ⁻⁹	
Uncertainty for conducted RF Power	0.65dB	Cer
Uncertainty for temperature	0.6℃	, cet
Uncertainty for humidity	1%	OV cer

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 11 of 54

Report No.: DL-20210426010-3E

4. TEST INSTRUMENT USED

		For All	lest		
Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
Comprehensive Tester	ROHDE&SCHWA RZ	CMW500	106504	Dec. 07, 2020	Dec. 06, 2021
Spectrum Analyzer	KEYSIGHT	N9020A	MY55370280	Dec. 07, 2020	Dec. 06, 2021
Signal Source	Agilent	N5182A	MY46240766	Dec. 07, 2020	Dec. 06, 2021
Signal Source	Agilent	83752B	3610A01631	Dec. 07, 2020	Dec. 06, 2021
Probe	KEYSIGHT	U2021XA	MY55210018	Dec. 07, 2020	Dec. 06, 2021
Attenuator	MAIWEI	MANASR0206 S2	DLE-160	Dec. 07, 2020	Dec. 06, 2021
RF Control Box	MAIWEI	MW100-RFCB	DLE-179	Dec. 07, 2020	Dec. 06, 2021
RF Control Box	MAIWEI	MW200-RFCB	DLE-180	Dec. 07, 2020	Dec. 06, 2021
RF Cable	MAIWEI	Z302S	18054391	Dec. 07, 2020	Dec. 06, 2021
RF Cable	MAIWEI	Z302S	19051973	Dec. 07, 2020	Dec. 06, 2021
RF Cable	MAIWEI	Z302S	19051987	Dec. 07, 2020	Dec. 06, 2021
RF Cable	MAIWEI	Z302S	19051988	Dec. 07, 2020	Dec. 06, 202
RF Cable	MAIWEI	Z302S	19063251	Dec. 07, 2020	Dec. 06, 202
RF Cable	MAIWEI	Z302S	19063254	Dec. 07, 2020	Dec. 06, 2021
RF Cable	MAIWEI	Z302S	19063257	Dec. 07, 2020	Dec. 06, 2021
RF Cable	MAIWEI	Z302S	19063259	Dec. 07, 2020	Dec. 06, 2021
DC power	LODESTAR	LP532DE	LP1908158	Dec. 07, 2020	Dec. 06, 2021
966 chamber	ChengYu	966 Room	966	Nov. 25, 2019	Nov. 24, 2022
Spectrum Analyzer	Agilent	E4408B	MY50140780	Dec. 07, 2020	Dec. 06, 2021
EMI Receiver	R&S	ESRP7	101393	Dec. 07, 2020	Dec. 06, 2021
Amplifier	Schwarzbeck	BBV9743B	00153	Dec. 07, 2020	Dec. 06, 2021
Amplifier	EMEC	EM01G8GA	00270	Dec. 07, 2020	Dec. 06, 2021
Active Loop Antenna	Daze	ZN30900A	SEL0097	Dec. 07, 2020	Dec. 06, 2021
Broadband Trilog Antenna	Schwarzbeck	VULB9162	00306	Nov. 28, 2020	Nov. 27, 2021
Horn Antenna	Schwarzbeck	BBHA9120D	02139	Nov. 28, 2020	Nov. 27, 2021
966 Cable 1#	ChengYu	966	004	Dec. 07, 2020	Dec. 06, 202
966 Cable 2#	ChengYu	966	003	Dec. 07, 2020	Dec. 06, 202
Temperature Controller	Terchy	MHQ	120	Dec. 07, 2020	Dec. 06, 2021

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 12 of 54

5. RF OUTPUT POWER

5.1 Block Diagram of Test Setup

Temperature Chamber

Report No.: DL-20210426010-3E

Variable AC or DC power supply

5.2 Limit

The RF output power for non-FHSS equipment shall be equal to or less than 20 dBm.

Notes: For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (seeclause 5.4.1 m)) and associated Duty Cycle (see clause 5.4.1 e)) that will ensure that the equipment meets the requirement for the Medium Utilization (MU) factor further described in clause 4.3.2.5. This is verified by the conformance test referred to in clause 4.3.2.5.4.

For non-adaptive non-FHSS equipment, where the manufacturer has declared an RF output power of less than 20 dBm e.i.r.p., the RF output power shall be equal to or less than that declared value.

5.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.2.2.1.1

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 13 of 54

Report No.: DL-20210426010-3E

5.4 Test Result

			. 5(4) 5.1	.r.p (dBm)	· toodit			
Mode	Test CH			Condition	1		Limit	Result
Wode	1031 011	Normal	HTLV	LTLV	LTHV	HTHV	(dBm)	
<u>.</u>	Low	9.58	9.53	9.45	9.58	9.56	20.00	Pass
802.11b	Middle	9.43	9.45	9.43	9.56	9.45	20.00	Pass
Cer	High	9.44	9.43	9.48	9.52	9.46	20.00	Pass
	Low	8.55	8.53	8.46	8.57	8.55	20.00	Pass
802.11g	Middle	8.48	8.42	8.45	8.56	8.48	20.00	Pass
Cerk	High	8.46	8.43	8.42	8.51	8.43	20.00	Pass
	Low	7.55	7.58	7.44	7.56	7.59	20.00	Pass
802.11n HT20	Middle	7.43	7.41	7.42	7.58	7.45	20.00	Pass
ceit	High	7.46	7.43	7.45	7.58	7.47	20.00	Pass
V Cer	Low	7.54	7.52	7.45	7.56	7.53	20.00	Pass
802.11n HT40	Middle	7.42	7.45	7.43	7.56	7.48	20.00	Pass
	High	7.41	7.45	7.42	7.53	7.46	20.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 14 of 54

6. POWER SPECTRAL DENSITY

6.1 Block Diagram of Test Setup

EUT		Spectrum
9	Co	analyzer
	, C	

6.2 Test Standard and Limit

The maximum Power Spectral Density for non-FHSS equipment is 10 dBm per MHz.

6.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.3

Connect the UUT to the spectrum analyzer and use the following settings:

Start Frequency	2400 MHz
Stop Frequency	2483.5 MHz
RBW	10KHz
VBW	30KHz
Detector	RMS C
Sweep points	>8350
Trace	Max Hold
Trigger	Free Run

Report No.: DL-20210426010-3E

6.4 Test Result

Mode	Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Conclusion
, ×	Low	-2.05	10.00	PASS
802.11b	Middle	-2.39	10.00	PASS
Or Ce	High	-2.86	10.00	PASS
OV	Low	-5.07	10.00	PASS
802.11g	Middle	-5.37	10.00	PASS
,e ^c	High	-5.88	10.00	PASS
COL	Low	-8.05	10.00	PASS
802.11n HT20	Middle	-8.39	10.00	PASS
11120	High	-8.86	10.00	PASS
	Low	-10.07	10.00	PASS
802.11n HT40	Middle	-10.37	10.00	PASS
X.	High-	-10.88	10.00	PASS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 15 of 54

7. ADAPTIVITY

7.1 Block Diagram of Test Setup

Report No.: DL-20210426010-3E

Figure 5: Test set-up for verifying the adaptivity of an equipment

7.2 Test Standard and Limit

Adaptive non-FHSS equipment using DAA shall comply with the following minimum set of requirements:

- 1) During normal operation, the equipment shall evaluate the presence of a signal on its current operating channel(s). If it is determined that a signal is present with a level above the detection threshold defined in step 5 that channel shall be marked as 'unavailable'.
- 2) The channel(s) shall remain unavailable for a minimum time equal to 1 s after which the channel may be considered again as an 'available' channel
- 3) The total time during which an equipment has transmissions on a given channel without re-evaluating the availability of that channel, is defined as the Channel Occupancy Time. The Channel Occupancy Time shall be less than 40 ms. Each such transmission sequence shall be followed by an Idle Period (no transmissions) of minimum 5 % of the Channel Occupancy Time with a minimum of 100 µs. After this, the procedure as in step 1 needs to be repeated.
- 4) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

 $TL = -70 \text{ dBm/MHz} + 10 \times \log_{10} (100 \text{ mW} / P_{out}) (P_{out} \text{ in mW e.i.r.p.})$

5) The equipment shall comply with the requirements defined in step 1 to step 4 of the present clause in the presence of an unwanted CW signal as defined in table 9.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 16 of 54

Table 9: Unwanted Signal parameters

Report No.: DL-20210426010-3E

Wanted signal mean power from companion device (dBm)		Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)	
	-30	2 395 or 2 488,5	-35	
	(see note 2)	(see note 1)	(see note 2)	
NOTE 1:	within the range 2 400 frequency shall be use range 2 442 MHz to 2 4	shall be used for testing MHz to 2 442 MHz, whil d for testing operating c 483,5 MHz. See clause	le the lowest hannels within the 5.4.6.1.	
NOTE 2: The level specified is the 0 dBi antenna assemble this level has to be congain (G). In case of race		ne level at the UUT rece ly gain. In case of condu rected for the (in-band) a liated measurements, the in front of the UUT ante	icted measurements, antenna assembly iis level is equivalent	

7.3 Test Procedure Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.6

7.4 Test Result

Test mode	Stop time aft	er interfering signal(ms)
Channel	Low	High
802.11b mode	173.15	178.75
802.11g mode	208.28	167.24
802.11n HT20 mode	208.58	167.16
802.11n HT40 mode	186.49	217.33

Remark: 1: Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum duty cycle of 10 % within an observation period of 50 ms.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 17 of 54

				0.	9	6.
		Short Control	Signalling 7	Transmissions		
Test mode	Channel	Channel occupancy time (ms)	Idle time (ms)	Pulse width (ms)	Maximum duty cycle(%)	Conclusion
802.11b	Low	1.55	0.04	1.42	2.84	Pass
mode	High	1.47	0.11	1.41	2.81	Pass
802.11g	Low	1.26	0.049	1.224	2.449	Pass
mode	High	1.34	0.051	1.226	2.451	Pass
802.11n	Low	1.56	0.049	1.224	2.449	Pass
HT20 mode	High	1.62	0.051	1.226	2.451	Pass
802.11n	Low	1.68	0.049	1.648	3.297	Pass
HT40 mode	High	1.69	0.051	1.650	3.299	Pass

Note:

- 1. Channel occupancy time must between on 1.65ms to 13.25ms
- 2. Idle time must longer than 20us.
- 3. Duty cycle=Pusle time/50ms.
- 4. Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum duty cycle of 10 % within an observation period of 50ms.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 18 of 54

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 19 of 54

802.11b High channel

Report No.: DL-20210426010-3E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 20 of 54

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 21 of 54

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 22 of 54

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 23 of 54

802.11n HT20 High channel

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 24 of 54

802.11n HT40 Low channel

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 25 of 54

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 26 of 54

8. OCCUPIED CHANNEL BANDWIDTH

8.1 Block Diagram of Test Setup

8.2 Test Standard and Limit

The Occupied Channel Bandwidth shall be within the band given in 2.4GHz to 2.4835GHz.. In addition, for non-adaptive non-FHSS equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth shall be equal to or less than 20MHz.

Report No.: DL-20210426010-3E

8.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 Clause 5.4.7

Connect the UUT to the spectrum analyzer and use the following settings:

Centre Frequency:	The centre frequency of the channel under test				
RBW	~ 1 % of the span without going below 1 %				
VBW	3 × RBW				
Frequency Span:	2 × Nominal Channel Bandwidth				
Detector Mode:	RMS				
Trace Mode:	Max Hold				
Sweep time:	is at				

8.4 Test Result

Test Mode Test Channel		Occupied	Measured Frequency		Limit	Result
i est ivioue	Test Chamilei	Bandwidth	F _L (MHz)	F _H (MHz)	LIIIII	Result
902 116	Low	8.69	2401.376	01	O ^V	Pass
802.11b	High	8.94	1	2480.718		Pass
000 44 = 1	Low	15.58	2401.368	ď.	0.400041.1-	Pass
802.11g	High	15.61	0 100	2480.739	>2400MHz	Pass
802.11n	Low	16.58	2401.476	,	And <2483.5MHz	Pass
HT20	High	16.66	1	2480.649	<2463.3IVIFIZ	Pass
802.11n	Low	36.48	2401.557	Ç 1	OV -0	Pass
HT40	High	36.58	×1 <	2480.864	, , , , , , , , , , , , , , , , , , ,	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 27 of 54

9. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

9.1 Block Diagram of Test Setup

Variable AC or DC power supply

Report No.: DL-20210426010-3E

9.2 Test Standard and Limit

The transmitter unwanted emissions in the out-of-band domain shall not exceed the values provided by the mask in figure 3.

Figure 3: Transmit mask

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 28 of 54

9.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.8.

Connect the UUT to the spectrum analyzer and use the following settings:

RBW/VBW	1MHz/3MHz
Span	0Hz
Filter mode	Channel filter
Sweep mode	Continuous
Sweep Points	5000
Detector	RMS
Trace mode	Clear/Write
Trigger Mode	Video trigger

Report No.: DL-20210426010-3E

9.4 Test Result

1 oot 1 toodit					
	Test	Lower Band Edge		Higher Band Edge	
Test Mode	Condition	Segment A (dBm/MHz)	Segment B (dBm/MHz)	Segment A (dBm/MHz)	Segment B (dBm/MHz)
802.11b	Normal	-30.79	-54.82	-31.09	-30.79
802.11g	Normal	-36.25	-51.06	-34.07	-36.25
802.11n HT20	Normal	-35.94	-50.86	-31.48	-47.75
802.11n HT40	Normal	-41.25	-53.73	-42.54	-51.83
, b	imit of	-10	-20	<i></i> √-10	-20
Cond	clusion		P/	ASS	O. Co.

Remark: All modulations of EUT have been tested, but only show the test data of the worst case in this report.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 29 of 54

802.11 b CH Low (Normal Temp, Normal Voltage)

Channel	Antenna	Frequency	Level	Limit
CH Low-2412	Antenna 1	2399.5	-30.76	-10
CH Low-2412	Antenna 1	2398.5	-30.89	-10
CH Low-2412	Antenna 1	2397.5	-30.96	-10
CH Low-2412	Antenna 1	2396.5	-34.51	-10
CH Low-2412	Antenna 1	2395.5	-42.85	-10
CH Low-2412	Antenna 1	2394.5	-47.67	-10
CH Low-2412	Antenna 1	2393.5	-51.80	C ² -10
CH Low-2412	Antenna 1	2392.5	-52.37	-10
CH Low-2412	Antenna 1	2391.5	-54.12	-10
CH Low-2412	Antenna 1	2390.5	-54.00	-10
CH Low-2412	Antenna 1	2389.5	-56.00	-10
CH Low-2412	Antenna 1	2388.5	-56.74	-10
CH Low-2412	Antenna 1	2387.5	-55.94	-10
CH Low-2412	Antenna 1	2386.462	-55.11	-20
CH Low-2412	Antenna 1	2385.462	-54.89	-20
CH Low-2412	Antenna 1	2384.462	-56.74	-20
CH Low-2412	Antenna 1	2383.462	-56.95	-20
CH Low-2412	Antenna 1	2382.462	-58.30	-20
CH Low-2412	Antenna 1	2381.462	-57.40	-20
CH Low-2412	Antenna 1	2380.462	-57.90	Ç -20 ×
CH Low-2412	Antenna 1	2379.462	-57.69	-20
CH Low-2412	Antenna 1	2378.462	-57.34	-20
CH Low-2412	Antenna 1	2377.462	-57.46	-20
CH Low-2412	Antenna 1	2376.462	-58.76	-20
CH Low-2412	Antenna 1	2375.462	-59.00	-20
CH Low-2412	Antenna 1	2374.462	-30.76	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 30 of 54

Shenzhen DL Testing Technology Co., Ltd.

802.11 b CH High (Normal Temp, Normal Voltage)

Channel	Antenna	Frequency	Level	Limit
CH High-2472	Antenna 1	2496.223	-51.31	گو _ت 10-
CH High-2472	Antenna 1	2495.223	-52.28	-10
CH High-2472	Antenna 1	2494.223	-54.10	-10
CH High-2472	Antenna 1	2493.223	-48.45	-10
CH High-2472	Antenna 1	2492.223	-50.11	- 10
CH High-2472	Antenna 1	2491.223	-48.71	-10
CH High-2472	Antenna 1	2490.223	-48.71	-10
CH High-2472	Antenna 1	2489.223	-51.56	-10
CH High-2472	Antenna 1	2488.223	-41.32	-10
CH High-2472	Antenna 1	2487.223	-34.23	10
CH High-2472	Antenna 1	2486.223	-32.00	⊘ -10
CH High-2472	Antenna 1	2485.223	-31.15	-10
CH High-2472	Antenna 1	2484.223	-31.47	-10
CH High-2472	Antenna 1	2509.446	-57.92	-20
CH High-2472	Antenna 1	2508.446	-58.21	-20
CH High-2472	Antenna 1	2507.446	-57.34	-20
CH High-2472	Antenna 1	2506.446	-57.04	-20
CH High-2472	Antenna 1	2505.446	-57.91	-20
CH High-2472	Antenna 1	2504.446	-58.78	-20
CH High-2472	Antenna 1	2503.446	-58.37	-20
CH High-2472	Antenna 1	2502.446	-57.72	-20
CH High-2472	Antenna 1	2501.446	-57.39	-20
CH High-2472	Antenna 1	2500.446	-58.42	-20
CH High-2472	Antenna 1	2499.446	-57.00	-20
CH High-2472	Antenna 1	2498.446	-51.96	-20
CH High-2472	Antenna 1	2497.446	-49.59	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 31 of 54

802.11 g CH Low (Normal Temp, Normal Voltage)

Channel	Antenna	Frequency	Level	Limit
CH Low-2412	Antenna 1	2399.5	-36.28	-10
CH Low-2412	Antenna 1	2398.5	-36.84	-10
CH Low-2412	Antenna 1	2397.5	-37.74	-10
CH Low-2412	Antenna 1	2396.5	-38.65	-10
CH Low-2412	Antenna 1	2395.5	-39.53	-10
CH Low-2412	Antenna 1	2394.5	-40.57	-10
CH Low-2412	Antenna 1	2393.5	-41.81	-10
CH Low-2412	Antenna 1	2392.5	-43.00	-10
CH Low-2412	Antenna 1	2391.5	-44.36	-10
CH Low-2412	Antenna 1	2390.5	-45.72	-10
CH Low-2412	Antenna 1	2389.5	-47.03	<u></u> -10
CH Low-2412	Antenna 1	2388.5	-48.23	-10
CH Low-2412	Antenna 1	2387.5	-48.95	-10
CH Low-2412	Antenna 1	2386.5	-49.41	-10
CH Low-2412	Antenna 1	2385.5	-49.99	-10
CH Low-2412	Antenna 1	2384.5	-50.49	-10
CH Low-2412	Antenna 1	2383.152	-51.18	-20
CH Low-2412	Antenna 1	2382.152	-51.57	-20
CH Low-2412	Antenna 1	2381.152	-51.97	-20
CH Low-2412	Antenna 1	2380.152	-52.49	-20
CH Low-2412	Antenna 1	2379.152	-52.96	-20
CH Low-2412	Antenna 1	2377.152	-53.49	-20
CH Low-2412	Antenna 1	2376.152	-53.83	-20
CH Low-2412	Antenna 1	2374.152	-54.33	-20
CH Low-2412	Antenna 1	2373.152	-54.60	-20
CH Low-2412	Antenna 1	2371.152	-55.05	-20
CH Low-2412	Antenna 1	2369.152	-55.41	-20
CH Low-2412	Antenna 1	2368.152	-55.54	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 32 of 54

802.11 g CH High (Normal Temp, Normal Voltage)

Channel	Antenna	Frequency	Level	Limit
CH High-2472	Antenna 1	2499.356	-47.87	-10
CH High-2472	Antenna 1	2498.356	-47.24	o√-10 ó
CH High-2472	Antenna 1	2497.356	-46.22	-10
CH High-2472	Antenna 1	2496.356	-45.75	-10
CH High-2472	Antenna 1	2495.356	-44.73	-10
CH High-2472	Antenna 1	2494.356	-43.56	-10
CH High-2472	Antenna 1	2493.356	-42.55	-10
CH High-2472	Antenna 1	2492.356	-41.43	-10
CH High-2472	Antenna 1	2491.356	-40.37	Q-10
CH High-2472	Antenna 1	2488.356	-37.46	-10
CH High-2472	Antenna 1	2487.356	-36.42	-10
CH High-2472	Antenna 1	2485.356	-34.73	-10 -10
CH High-2472	Antenna 1	2484.356	-34.20	-10
CH High-2472	Antenna 1	2515.712	-55.89	-20
CH High-2472	Antenna 1	2514.712	-55.62	-20
CH High-2472	Antenna 1	2513.712	-55.40	-20
CH High-2472	Antenna 1	2512.712	-55.00	-20
CH High-2472	Antenna 1	2511.712	-54.72	-20
CH High-2472	Antenna 1	2510.712	-54.33	-20
CH High-2472	Antenna 1	2509.712	-54.01	-20
CH High-2472	Antenna 1	2508.712	-53.55	-20
CH High-2472	Antenna 1	2505.712	-52.05	-20
CH High-2472	Antenna 1	2504.712	-51.46	-20
CH High-2472	Antenna 1	2503.712	-50.89	-20
CH High-2472	Antenna 1	2502.712	-50.15	-20
CH High-2472	Antenna 1	2501.712	-49.57	-20
CH High-2472	Antenna 1	2500.712	-48.85	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 33 of 54

Shenzhen DL Testing Technology Co., Ltd.

802.11 n20 CH Low (Normal Temp, Normal Voltage)

Channel	Antenna	Frequency	Level	Limit
CH Low-2412	Antenna 1	2399.5	-35.91	-10
CH Low-2412	Antenna 1	2398.5	-36.41	o√-10 ó
CH Low-2412	Antenna 1	2397.5	-37.15	-10
CH Low-2412	Antenna 1	2396.5	-37.88	-10
CH Low-2412	Antenna 1	2395.5	-38.72	-10
CH Low-2412	Antenna 1	2394.5	-39.74	-10
CH Low-2412	Antenna 1	2391.5	-42.91	-10
CH Low-2412	Antenna 1	2390.5	-44.10	-10
CH Low-2412	Antenna 1	2389.5	-45.35	-10
CH Low-2412	Antenna 1	2388.5	-46.54	-10
CH Low-2412	Antenna 1	2387.5	-47.66	-10
CH Low-2412	Antenna 1	2386.5	-48.62	-10
CH Low-2412	Antenna 1	2385.5	-49.34	-10
CH Low-2412	Antenna 1	2384.5	-49.67	-10
CH Low-2412	Antenna 1	2383.5	-50.18	-10
CH Low-2412	Antenna 1	2381.948	-50.92	-20
CH Low-2412	Antenna 1	2380.948	-51.43	-20
CH Low-2412	Antenna 1	2379.948	-51.84	-20
CH Low-2412	Antenna 1	2378.948	-52.33	-20
CH Low-2412	Antenna 1	2377.948	-52.75	-20
CH Low-2412	Antenna 1	2376.948	-53.06	-20
CH Low-2412	Antenna 1	2375.948	-53.46	-20
CH Low-2412	Antenna 1	2374.948	-53.86	-20
CH Low-2412	Antenna 1	2371.948	-54.68	-20
CH Low-2412	Antenna 1	2370.948	-54.87	-20
CH Low-2412	Antenna 1	2367.948	-55.54	-20
CH Low-2412	Antenna 1	2366.948	-55.64	-20
CH Low-2412	Antenna 1	2365.948	-55.86	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 34 of 54

802.11 n20 CH High (Normal Temp, Normal Voltage)

	002.11 1120 01	ringii (itorinai reiii	p, itorinar voitage)	<u> </u>
Channel	Antenna	Frequency	Level	Limit
CH High-2472	Antenna 1	2500.548	-47.53	-10
CH High-2472	Antenna 1	2499.548	-46.83	-10
CH High-2472	Antenna 1	2498.548	-46.20	-10
CH High-2472	Antenna 1	2497.548	-45.33	-10
CH High-2472	Antenna 1	2496.548	-44.49	-10
CH High-2472	Antenna 1	2495.548	-43.50	-10
CH High-2472	Antenna 1	2494.548	-42.32	-10
CH High-2472	Antenna 1	2493.548	-41.38	-10
CH High-2472	Antenna 1	2492.548	-40.43	-10
CH High-2472	Antenna 1	2491.548	-39.51	-10
CH High-2472	Antenna 1	2490.548	-38.50	-10
CH High-2472	Antenna 1	2489.548	-37.63	-10
CH High-2472	Antenna 1	2488.548	-36.91	-10
CH High-2472	Antenna 1	2486.548	-35.30	-10
CH High-2472	Antenna 1	2485.548	-34.39	-10
CH High-2472	Antenna 1	2484.548	-33.98	-10
CH High-2472	Antenna 1	2483.548	-31.54	-10
CH High-2472	Antenna 1	2518.096	-56.14	-20
CH High-2472	Antenna 1	2516.096	-55.61	-20
CH High-2472	Antenna 1	2515.096	-55.28	-20
CH High-2472	Antenna 1	2510.096	-53.44	-20
CH High-2472	Antenna 1	2509.096	-52.80	-20
CH High-2472	Antenna 1	2508.096	-52.49	-20
CH High-2472	Antenna 1	2506.096	-51.40	-20
CH High-2472	Antenna 1	2503.096	-49.57	-20
CH High-2472	Antenna 1	2502.096	-48.68	-20
CH High-2472	Antenna 1	2501.096	-48.01	-20
0.5		/ NY (2)		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 35 of 54

Report No.: DL-20210426010-3E

Channel	Antenna	Frequency	Level	Limit
CH Low-2422	Antenna 1	2399.5	-41.38	-10
CH Low-2422	Antenna 1	2398.5	-41.46	ov-10
CH Low-2422	Antenna 1	2397.5	-41.71	-10
CH Low-2422	Antenna 1	2396.5	-41.66	-10
CH Low-2422	Antenna 1	2395.5	-41.69	-10
CH Low-2422	Antenna 1	2394.5	-41.69	-10
CH Low-2422	Antenna 1	2393.5	-41.96	-10
CH Low-2422	Antenna 1	2392.5	-42.19	-10
CH Low-2422	Antenna 1	2391.5	-42.44	-10
CH Low-2422	Antenna 1	2390.5	-42.56	-10
CH Low-2422	Antenna 1	2389.5	-42.67	-10
CH Low-2422	Antenna 1	2388.5	-42.99	-10
CH Low-2422	Antenna 1	2387.5	-43.43	-10
CH Low-2422	Antenna 1	2386.5	-43.75	-10
CH Low-2422	Antenna 1	2385.5	-44.09	-10
CH Low-2422	Antenna 1	2384.5	-44.25	-10
CH Low-2422	Antenna 1	2383.5	-45.18	-10
CH Low-2422	Antenna 1	2382.5	-45.71	-10
CH Low-2422	Antenna 1	2381.5	-46.09	-10
CH Low-2422	Antenna 1	2380.5	-46.63	-10
CH Low-2422	Antenna 1	2379.5	-46.95	-10
CH Low-2422	Antenna 1	2378.5	-47.58	-10
CH Low-2422	Antenna 1	2377.5	-48.10	-10
CH Low-2422	Antenna 1	2376.5	-48.63	-10
CH Low-2422	Antenna 1	2375.5	-49.02	-10
CH Low-2422	Antenna 1	2374.5	-49.42	-10
CH Low-2422	Antenna 1	2373.5	-50.04	-10
CH Low-2422	Antenna 1	2372.5	-50.48	-10
CH Low-2422	Antenna 1	2371.5	-51.01	-10
CH Low-2422	Antenna 1	2370.5	-50.83	-10
CH Low-2422	Antenna 1	2369.5	-51.13	Ç-10 ,
CH Low-2422	Antenna 1	2368.5	-51.60	-10
CH Low-2422	Antenna 1	2367.5	-52.08	-10
CH Low-2422	Antenna 1	2366.5	-52.38	-10
CH Low-2422	Antenna 1	2365.5	-52.61	-10
CH Low-2422	Antenna 1	2363.602	-53.52	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 36 of 54

Shenzhen DL Testing Technology Co., Ltd.

CH Low-2422	Antenna 1	2362.602	-54.04	-20
CH Low-2422	Antenna 1	2361.602	-54.36	-20
CH Low-2422	Antenna 1	2360.602	-54.63	-20
CH Low-2422	Antenna 1	2359.602	-54.89	-20
CH Low-2422	Antenna 1	2358.602	-55.29	-20
CH Low-2422	Antenna 1	2357.602	-55.57	-20
CH Low-2422	Antenna 1	2356.602	-55.86	-20
CH Low-2422	Antenna 1	2355.602	-56.22	-20
CH Low-2422	Antenna 1	2354.602	-56.51	-20
CH Low-2422	Antenna 1	2353.602	-56.93	-20
CH Low-2422	Antenna 1	2352.602	-57.28	-20
CH Low-2422	Antenna 1	2351.602	-57.81	-20
CH Low-2422	Antenna 1	2350.602	-58.06	-20
CH Low-2422	Antenna 1	2349.602	-58.23	-20
CH Low-2422	Antenna 1	2348.602	-58.68	-20
CH Low-2422	Antenna 1	2345.602	-59.62	-20
CH Low-2422	Antenna 1	2344.602	-59.86	-20
CH Low-2422	Antenna 1	2338.602	-61.72	-20
CH Low-2422	Antenna 1	2337.602	-61.97	-20
CH Low-2422	Antenna 1	2335.602	-62.59	-20
CH Low-2422	Antenna 1	2334.602	-62.80	-20
CH Low-2422	Antenna 1	2333.602	-63.12	-20
CH Low-2422	Antenna 1	2332.602	-63.37	Q-20
CH Low-2422	Antenna 1	2331.602	-63.61	-20
CH Low-2422	Antenna 1	2330.602	-63.88	-20
CH Low-2422	Antenna 1	2329.602	-64.14	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 37 of 54

802.11 n40 CH High (Normal Temp, Normal Voltage)

Channel	Antenna	Frequency	Level	Limit
CH High-2462	Antenna 1	2518.952	-51.93	-10
CH High-2462	Antenna 1	2517.952	-51.78	o√-10 of
CH High-2462	Antenna 1	2516.952	-51.30	-10
CH High-2462	Antenna 1	2515.952	-51.08	-10
CH High-2462	Antenna 1	2514.952	-50.91	-10
CH High-2462	Antenna 1	2513.952	-50.58	-10
CH High-2462	Antenna 1	2512.952	-50.40	-10
CH High-2462	Antenna 1	2511.952	-50.18	-10
CH High-2462	Antenna 1	2510.952	-49.71	2-10
CH High-2462	Antenna 1	2509.952	-49.39	-10
CH High-2462	Antenna 1	2508.952	-49.19	-10
CH High-2462	Antenna 1	2507.952	-49.03	-10
CH High-2462	Antenna 1	2506.952	-48.79	-10
CH High-2462	Antenna 1	2505.952	-48.65	-10
CH High-2462	Antenna 1	2504.952	-48.35	-10
CH High-2462	Antenna 1	2503.952	-48.13	-10
CH High-2462	Antenna 1	2502.952	-47.81	-10
CH High-2462	Antenna 1	2501.952	-47.53	-10
CH High-2462	Antenna 1	2496.952	-45.75	9-10
CH High-2462	Antenna 1	2495.952	-45.36	-10
CH High-2462	Antenna 1	2494.952	-45.03	-10
CH High-2462	Antenna 1	2493.952	-44.89	-10
CH High-2462	Antenna 1	2492.952	-44.54	-10
CH High-2462	Antenna 1	2491.952	-44.75	<i>⊘</i> -10
CH High-2462	Antenna 1	2490.952	-44.51	-10
CH High-2462	Antenna 1	2489.952	-44.25	-10
CH High-2462	Antenna 1	2488.952	-44.27	-10
CH High-2462	Antenna 1	2487.952	-44.04	-10
CH High-2462	Antenna 1	2486.952	-43.88	-10
CH High-2462	Antenna 1	2485.952	-42.98	-10
CH High-2462	Antenna 1	2484.952	-43.07	©-10 ,
CH High-2462	Antenna 1	2483.952	-46.42	-10
CH High-2462	Antenna 1	2554.904	-61.96	-20
CH High-2462	Antenna 1	2553.904	-61.74	-20
CH High-2462	Antenna 1	2552.904	-61.58	-20
CH High-2462	Antenna 1	2551.904	-61.23	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 38 of 54

Report No.: DL-20210426010-3E

CH High-2462	Antenna 1	2550.904	-61.13	-20
CH High-2462	Antenna 1	2549.904	-61.00	-20
CH High-2462	Antenna 1	2548.904	-60.73	-20
CH High-2462	Antenna 1	2545.904	-60.16	-20
CH High-2462	Antenna 1	2544.904	-59.86	-20
CH High-2462	Antenna 1	2543.904	-59.65	-20
CH High-2462	Antenna 1	2542.904	-59.46	-20
CH High-2462	Antenna 1	2541.904	-59.21	-20
CH High-2462	Antenna 1	2540.904	-58.90	-20
CH High-2462	Antenna 1	2537.904	-58.15	-20
CH High-2462	Antenna 1	2536.904	-57.79	-20
CH High-2462	Antenna 1	2535.904	-57.33	-20
CH High-2462	Antenna 1	2534.904	-57.07	-20
CH High-2462	Antenna 1	2533.904	-56.75	-20
CH High-2462	Antenna 1	2531.904	-56.17	-20
CH High-2462	Antenna 1	2530.904	-55.84	-20
CH High-2462	Antenna 1	2529.904	-55.54	-20
CH High-2462	Antenna 1	2528.904	-55.12	-20
CH High-2462	Antenna 1	2525.904	-53.96	-20
CH High-2462	Antenna 1	2524.904	-53.62	-20
CH High-2462	Antenna 1	2523.904	-53.22	-20
CH High-2462	Antenna 1	2522.904	-52.93	-20
CH High-2462	Antenna 1	2521.904	-52.47	Q-20 g
CH High-2462	Antenna 1	2520.904	-52.26	-20
CH High-2462	Antenna 1	2519.904	-51.85	-20

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 39 of 54

10. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

10.1 Block Diagram of Test Setup

Below 1GHz

Above 1GHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 40 of 54

10.2 Limit

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 12.

Table 12: Transmitter limits for spurious emissions

Report No.: DL-20210426010-3E

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

10.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.9.

10.4 Test Result

Below 1GHz

	0		T	0	
	Spurio	us Emission	l est Data		_
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Marging (dB)	Result
34.96	Vertical	-65.36	-36	-29.36	Pass
65.28	Vertical	-64.12	-54	-10.12	Pass
180.38	Vertical	- 63.36	-54	-9.36	Pass
233.63	Vertical	-63.57	-36	-27.57	Pass
512.27	Vertical	-61.68	-54	-7.68	Pass
686.35	Vertical	-63.43	-54	-9.43	Pass
45.36	Horizontal	-63.28	- Ø -36	-27.28	_ Pass
104.33	Horizontal	-62.46	-54	-8.46	Pass
215.68	Horizontal	-63.27	-54	-9.27	Pass
487.23	Horizontal	-64.21	-54	-10.21	Pass
582.16	Horizontal	-60.92	-54	-6.92	Pass
686.58	Horizontal	-62.57	-54	-8.57	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 41 of 54

Above 1GHz

	Frequency		lission Test Data Level		
Mode	(MHz)	Polarization	(dBm)	Limit (dBm)	Result
- ex	4824	Vertical	-44.36	-30.00	Pass
802.11b	7236	Vertical	-46.92	-30.00	Pass
	9648	Vertical	-50.01	-30.00	Pass
Low Channel	4824	Horizontal	-44.51	-30.00	Pass
Charmer	7236	Horizontal	-48.27	-30.00	Pass
	9648	Horizontal	-50.66	-30.00	Pass
-01	4884	Vertical	-44.20	-30.00	Pass
000 441	7326	Vertical	-46.35	-30.00	Pass
802.11b	9768	Vertical	-51.71	-30.00	Pass
Middle Channel	4884	Horizontal	-43.30	-30.00	Pass
Channel	7326	Horizontal	-47.65	-30.00	Pass
	9768	Horizontal	-50.79	-30.00	Pass
CK.	4944	Vertical	-43.72	-30.00	Pass
, , , , , ,	7416	Vertical	-45.77	-30.00	Pass
802.11b	9888	Vertical	-49.34	-30.00	Pass
High	4944	Horizontal	-43.74	-30.00	Pass
Channel	7416	Horizontal	-47.03	-30.00	Pass
	9888	Horizontal	-50.89	-30.00	Pass
	4824	Vertical	-43.82	-30.00	Pass
000/44	7236	Vertical	-46.94	-30.00	Pass
802.11g	9648	Vertical	-49.95	-30.00	Pass
Low	4824	Horizontal	-44.49	-30.00	Pass
Channel	7236	Horizontal	-48.29	-30.00	Pass
	9648	Horizontal	-50.69	-30.00	Pass
\bigcirc	4884	Vertical	-44.85	-30.00	Pass
000 44	7326	Vertical	-48.77	-30.00	Pass
802.11g	9768	Vertical	-51.92	-30.00	Pass
Middle	4884	Horizontal	-44.92	-30.00	Pass
Channel	7326	Horizontal	-47.87	-30.00	Pass
O. Co.	9768	Horizontal	-52.68	-30.00	Pass
\Diamond	4944	Vertical	-45.74	-30.00	Pass
000 44	7416	Vertical	-47.98	-30.00	Pass
802.11g	9888	Vertical	-52.73	-30.00	Pass
High	4944	Horizontal	-44.50	-30.00	Pass
Channel	7416	Horizontal	-48.77	-30.00	Pass
	9888	Horizontal	-53.59	-30.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 42 of 54

	Frequency	Spurious Emis	Level		
Mode	(MHz)	Polarization	(dBm)	Limit (dBm)	Result
Cox	4824	Vertical	-44.04	-30.00	Pass
802.11n	7236	Vertical	-46.63	-30.00	Pass
HT20	9648	Vertical	-49.70	-30.00	Pass
Low	4824	Horizontal	-44.22	-30.00	Pass
Channel	7236	Horizontal	-48.03	-30.00	Pass
	9648	Horizontal	-50.38	-30.00	Pass
	4884	Vertical	-43.90	-30.00	Pass
802.11n	7326	Vertical	-46.17	-30.00	Pass
HT20	9768	Vertical	-51.41	-30.00	Pass
Middle	4884	Horizontal	-43.10	-30.00	Pass
Channel	7326	Horizontal	-47.35	-30.00	Pass
	9768	Horizontal	-50.47	-30.00	Pass
,	4944	Vertical	-43.53	-30.00	Pass
802.11n	7416	Vertical	-45.47	-30.00	Pass
HT20	9888	Vertical	-49.09	-30.00	Pass
High	4944	Horizontal	-43.40	-30.00	Pass
Channel	7416	Horizontal	-46.72	-30.00	× Pass
	9888	Horizontal	-50.58	-30.00	Pass
	4844	Vertical	-44.12	-30.00	Pass
802.11n	7266	Vertical	-46.88	-30.00	Pass
HT40	9688	Vertical	-49.78	-30.00	Pass
Low	4844	Horizontal	-44.41	-30.00	Pass
Channel	7266	Horizontal	-48.13	-30.00	Pass
	9688	Horizontal	-50.48	-30.00	Pass
V , O	4884	Vertical	-44.74	-30.00	Pass
802.11n	7326	Vertical	-48.54	-30.00	Pass
HT40	9768	Vertical	-51.65	-30.00	Pass
Middle	4884	Horizontal	-44.83	-30.00	Pass
Channel	7326	Horizontal	-47.65	-30.00	Pass
	9768	Horizontal	-52.60	-30.00	Pass
V. Co.	4904	Vertical	-45.55	-30.00	Pass
802.11n	7356	Vertical	-47.84	-30.00	Pass
HT40	9808	Vertical	-52.51	-30.00	Pass
High	4904	Horizontal	-44.43	-30.00	Pass
Channel	7356	Horizontal	-48.53	-30.00	Pass
	9808	Horizontal	-53.43	-30.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 43 of 54

11. RECEIVER SPURIOUS EMISSIONS

11.1 Block Diagram of Test Setup

Below 1GHz

Above 1GHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 44 of 54

11.2 Limit

The spurious emissions of the receiver shall not exceed the values given in table 13.

Table 13: Spurious emission limits for receivers

Report No.: DL-20210426010-3E

Frequency range	Maximum power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

11.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.9.

11.4 Test Result

Below 1GHz

Ci					
	Receiver sp	ourious emiss	ions Test Data	a	
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Marging (dB)	Result
36.95	Vertical	-69.38	-57.00	-12.38	Pass
96.29	Vertical	-69.12	-57.00	-12.12	Pass
119.39	Vertical	-69.78	-57.00	-12.78	Pass
261.36	Vertical	-69.34	-57.00	-12.34	Pass
395.96	Vertical	-69.84	-57.00	-12.84	Pass
36.95	Vertical	-68.92	-57.00	-11.92	Pass
52.16	Horizontal	-69.64	-57.00	-12.64	Pass
118.59	Horizontal	-68.27	-57.00	-11.27	Pass
362.31	Horizontal	-69.45	-57.00	-12.45	Pass
496.29	Horizontal	-70.37	-57.00	-13.37	Pass
586.59	Horizontal	-70.62	-57.00	-13.62	Pass
812.24	Horizontal	-72.11	-57.00	-15.11	Pass
812.24	Horizontal	-72.11	-57.00	-15.11	F

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 45 of 54

Above 1GHz

T		receiver spurious	emissions Test I		
Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
Co	4824	Vertical	-53.61	-47.00	Pass
COX.	7236	Vertical	-53.49	-47.00	Pass
802.11b Low	9648	Vertical	-60.37	-47.00	Pass
Channel	4824	Horizontal	-52.87	-47.00	Pass
\Diamond	7236	Horizontal	-59.84	-47.00	Pass
× 0 [×]	9648	Horizontal	-59.26	-47.00	Pass
3	4884	Vertical	-57.66	-47.00	Pass
	7326	Vertical	-57.77	-47.00	Pass
802.11b	9768	Vertical	-53.27	-47.00	Pass
Middle	4884	Horizontal	-53.24	-47.00	Pass
Channel	7326	Horizontal	-58.93	-47.00	Pass
	9768	Horizontal	-60.35	-47.00	Pass
	4944	Vertical	-58.37	-47.00	Pass
ek. O	7416	Vertical	-59.57	-47.00	Pass
302.11b High	9888	Vertical	-56.00	-47.00	Pass
Channel	4944	Horizontal	-55.52	-47.00	Pass
OV COR	7416	Horizontal	-55.33	-47.00	Pass
	9888	Horizontal	-57.42	-47.00	Pass
	4824	Vertical	-53.37	-47.00	Pass
,r O`	7236	Vertical	-52.87	-47.00	Pass
802.11g Low	9648	Vertical	-58.94	-47.00	Pass
Channel	4824	Horizontal	-56.00	-47.00	Pass
SL' - OF	7236	Horizontal	-55.30	-47.00	Pass
	9648	Horizontal	-55.23	-47.00	Pass
, ǰ	4884	Vertical	-59.86	-47.00	Pass
0	7326	Vertical	-58.03	-47.00	Pass
802.11g	9768	Vertical	-53.20	-47.00	Pass
Middle	4884	Horizontal	-57.27	-47.00	Pass
Channel	7326	Horizontal	-53.49	-47.00	Pass
2	9768	Horizontal	-55.64	-47.00	Pass
O. Co.	4944	Vertical	-59.16	-47.00	Pass
O>	7416	Vertical	-55.12	-47.00	Pass
802.11g High	9888	Vertical	-55.25	-47.00	Pass
Channel	4944	Horizontal	-57.92	-47.00	Pass
	7416	Horizontal	-55.06	-47.00	Pass
,C°	9888	Horizontal	-54.68	-47.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 46 of 54

Report No.: DL-20210426010-3E

Mode	Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
x. 🗘	4824	Vertical	-60.57	-47.00	Pass
802.11n	7236	Vertical	-53.88	-47.00	Pass
HT20	9648	Vertical	-54.93	-47.00	Pass
Low	4824	Horizontal	-55.81	-47.00	Pass
Channel	7236	Horizontal	-52.70	-47.00	Pass
0,	9648	Horizontal	-53.93	-47.00	Pass
. 0	4884	Vertical	-58.71	-47.00	Pass
802.11n	7326	Vertical	-55.90	-47.00	Pass
HT20	9768	Vertical	-58.35	-47.00	Pass
Middle	4884	Horizontal	-58.54	-47.00	Pass
Channel	7326	Horizontal	-59.06	-47.00	Pass
Q) C.	9768	Horizontal	-59.69	-47.00	Pass
	4944	Vertical	-55.20	-47.00	Pass
802.11n	7416	Vertical	-56.50	-47.00	Pass
HT20	9888	Vertical	-55.52	-47.00	Pass
High	4944	Horizontal	-56.36	-47.00	Pass
Channel	7416	Horizontal	-57.05	-47.00	Pass
Or con	9888	Horizontal	-55.00	-47.00	Pass
	4844	Vertical	-57.61	-47.00	Pass
802.11n	7266	Vertical	-57.55	-47.00	Pass
HT40	9688	Vertical	-53.21	-47.00	Pass
Low	4844	Horizontal	-53.54	-47.00	Pass
Channel	7266	Horizontal	-57.62	-47.00	Pass
of cert	9688	Horizontal	-55.15	-47.00	Pass
	4884	Vertical	-54.50	-47.00	Pass
	7326	Vertical	-53.48	-47.00	Pass
802.11n	9768	Vertical	-55.33	-47.00	Pass
HT40 Middle	4884	Horizontal	-59.54	-47.00	Pass
Channel	7326	Horizontal	-56.94	-47.00	Pass
COK	9768	Horizontal	-60.49	-47.00	Pass
N - N	4904	Vertical	-56.19	-47.00	Pass
802.11n	7356	Vertical	-60.54	-47.00	Pass
HT40	9808	Vertical	-57.94	-47.00	Pass
High V	4904	Horizontal	-57.87	-47.00	Pass
Channel	7356	Horizontal	-57.02	-47.00	Pass
	9808	Horizontal	-56.54	-47.00	Pass

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 47 of 54

12. RECEIVER BLOCKING

12.1 Block Diagram of Test Setup

Report No.: DL-20210426010-3E

12.2 Limit

Table 14 contains the Receiver Blocking parameters for Receiver Category 1 equipment.

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 48 of 54

Table 15 contains the Receiver Blocking parameters for Receiver Category 2 equipment.

Table 15: Receiver Blocking parameters receiver Category 2 equipment

Report No.: DL-20210426010-3E

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	cw

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16 contains the Receiver Blocking parameters for Receiver Category 3 equipment.

Table 16: Receiver Blocking parameters receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
$ \begin{array}{l} (\text{-}139 \text{ dBm} + 10 \times \log_{10}(\text{OCBW}) + 20 \text{ dB}) \\ \text{or (-}74 \text{ dBm} + 20 \text{ dB}) \text{ whichever is less} \\ \text{(see note 2)} \end{array} $	2 380 2 504 2 300 2 584	-34	cw

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

12.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.0 Clause 5.4.11

12.4 Test Results

PASS

Observation Result: Refer to 5 that blocking signal is injected while interference signal is present. With the presence of the blocking signal, channel of the observation does not resume the link.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 49 of 5-

13. GEO-LOCATION CAPABILITY

13.1 Definition and Requirements

Geo-location capability is a feature of the equipment to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates.

Report No.: DL-20210426010-3E

The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

13.2 Test Results

This product doesn't support Geo-location.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 50 of 54

14. SETUP PHOTOGRAPHS

Report No.: DL-20210426010-3E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 51 of 54

15. EUT PHOTOGRAPHS

Report No.: DL-20210426010-3E

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 52 of 54

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 53 of 54

**** END OF REPORT ****

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 54 of 54