**A A. Christlieb ** Xiao Feng **Yan Jiang **O i Tang ** Van Jiang **O i Tang		doc_1		doc_2		decision	id
title A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes publication date 2017-11-20 00:00:00 source SupportedSources.SEMANTIC_SCHOLAR journal None volume doi 10.1137/17M115757X urls https://www.scmanticscholar.org/paper/3a4cc5db2dcef60da20c0446267db80086b4f1c5 id d-8949787631042820057 A high-order finite difference wENO scheme for ideal magnetohydrodynamics on curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Remann solvers in the current framework.	a	nuthors	Xiaosi FengYan Jiang	authors	 Xiao Feng Yan Jiang		
publication date 2017-11-20 00:00:00 source SupportedSources.SEMANTIC_SCHOLAR journal None doi 10.1137/17M115757X urls https://www.semanticscholar.org/paper/3a4ce5db2deef60da20c0446267db80086b4f1e5 id id-8949787631042820057 id id-8949787631042820057 https://www.semanticscholar.org/paper/asa4ce5db2deeff0da20c0446267db80086b4f1e5 id id-8949787631042820057 https://www.semanticscholar.org/paper/asa4ce5db2deeff0da20c0446267db80086b4f1e5 id id-8949787631042820057 http://arxiv.org/pdf/1711.07415v2 http			• Qili Talig				
source SupportedSources.SEMANTIC_SCHOLAR journal volume doi 10.1137/17M115757X		title	A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes	publication_date		<u> </u>	
volume doi 10.1137/17M115757X urls https://www.semanticscholar.org/paper/3a4ce5db2decf60da20c0446267db80086b4f1e5 id id-8949787631042820057 A high-order finite difference numerical scheme is developed for the ideal magneto hydro dynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the current framework. volume volume volume doi id http://arxiv.org/pdf/1711.07415v2 • http://arxiv.org/p	publi	blication_date 2017-11-20 00:00:00				4	
cases The problem Company Com		source	SupportedSources.SEMANTIC_SCHOLAR		None		
doi 10.1137/17M115757X urls • https://www.semanticscholar.org/paper/3a4ce5db2decf60da20c0446267db80086b4f1e5 id id-8949787631042820057 A high-order finite difference numerical scheme is developed for the ideal magneto hydro dynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the current framework. **Norther does not the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the solven and the solven and the higher-order terms constructed from physical fluxes by limited central differences. The	<u>j</u>	ournal					
urls • https://www.semanticscholar.org/paper/3a4ce5db2decf60da20c0446267db80086b4f1e5 id id-8949787631042820057 A high-order finite difference numerical scheme is developed for the ideal magneto hydro dynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes in undersidated the current framework. abstract • http://arxiv.org/abs/1711.07415v2 • ht	<u> </u>	volume		doi			
A high-order finite difference numerical scheme is developed for the ideal magneto hydro dynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary solver in the abow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the current framework. id id-5523034848141366321 A high-order finite difference numerical scheme is developed for the ideal magnetohydrodynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical scheme is developed for the ideal magnetohydrodynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the perfect electrical conductor (PEC) boundary is derived for general geometry and	cases			urls	• http://arxiv.org/abs/1711.07415v2	DUPLICATES	1041
A high-order finite difference numerical scheme is developed for the ideal magneto hydro dynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the current framework. A high-order finite difference numerical scheme is developed for the ideal magnetohydrodynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann		id	id-8949787631042820057	l id	id 5522024848141266221		
			on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann solvers in the		A high-order finite difference numerical scheme is developed for the ideal magnetohydrodynamic equations based on an alternative flux formulation of the weighted essentially non-oscillatory (WENO) scheme. It computes a high-order numerical flux by a Taylor expansion in space, with the lowest-order term solved from a Riemann solver and the higher-order terms constructed from physical fluxes by limited central differences. The scheme coupled with several Riemann solvers, including a Lax-Friedrichs solver and HLL-type solvers, is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems. In particular, a HLLD solver on Cartesian meshes is extended to curvilinear meshes with proper modifications. A numerical boundary condition for the perfect electrical conductor (PEC) boundary is derived for general geometry and verified through a bow shock flow. Numerical results also confirm the advantages of using low dissipative Riemann		