TABLE OF CONTENTS

REVIEW

Let
$$S_N = \sum_{n=1}^N a_n$$
.

Simplify: $S_N - S_{N-1}$.

(This will come in handy soon.)

REVIEW

Let
$$S_N = \sum_{n=1}^N a_n$$
.

Simplify: $S_N - S_{N-1}$.

(This will come in handy soon.)

$$S_N = a_1 + a_2 + a_3 + \dots + a_{N-1} + a_N$$

 $S_{N-1} = a_1 + a_2 + a_3 + \dots + a_{N-1}$

ALTERNATING SERIES

Alternating Series

The series

$$A_1 - A_2 + A_3 - A_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} A_n$$

is alternating if every $A_n \ge 0$.

Alternating series:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

Not alternating:

$$\blacktriangleright \cos(1) + \cos(2) + \cos(3) + \cdots$$

$$\blacktriangleright 1 - \left(-\frac{1}{2}\right) + \frac{1}{3} - \left(-\frac{1}{4}\right) + \cdots$$

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_3 = 5.0000$$

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_3 = 5.0000$$

$$S_4 = 2.0000$$

 $S_1 = 6.0000$

 $S_2 = 1.0000$

 $S_3 = 5.0000$

 $S_4=2.0000$

 $S_5 = 4.0000$

$$S_1 = 6.0000$$

$$S_2 = 1.0000$$

$$S_3 = 5.0000$$

$$S_4=2.0000$$

$$S_5=4.0000$$

$$S_6 = 3.0000$$

$$S_5 = 4.0000$$

$$S_6 = 3.0000$$

$$S_1=6.0000$$

$$S_2=1.0000$$

$$S_3 = 5.0000$$

$$S_4 = 2.0000$$

$$S_5 = 4.0000$$

$$S_6 = 3.0000$$

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$. Odd-indexed partial sums are decreasing.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$. Odd-indexed partial sums are decreasing.

Since $a_2 > a_3$, we have $a_1 - (a_2 - a_3) < a_1$, so $S_3 < S_1$. Odd-indexed partial sums are decreasing.

Since $a_3 > a_4$, we have $a_1 - a_2 + (a_3 - a_4) > a_1 - a_2$, so $S_4 > S_2$. Even-indexed partial sums are increasing.

▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ► For all $n \ge 3$, S_n lies between S_2 and S_3 .

31/1

- ▶ For all n > 2, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .

- ▶ For all n > 2, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

The difference between consecutive sums S_n and S_{n-1} is:

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

The difference between consecutive sums S_n and S_{n-1} is: $|a_n|$, which approaches 0.

- ▶ For all $n \ge 2$, S_n lies between S_1 and S_2 .
- ▶ For all $n \ge 3$, S_n lies between S_2 and S_3 .
- ▶ For all $n \ge 4$, S_n lies between S_3 and S_4 .
- ▶ For all $n \ge 5$, S_n lies between S_4 and S_5 .

The difference between consecutive sums S_n and S_{n-1} is: $|a_n|$, which approaches 0.

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and $\lim_{n\to\infty} a_n = 0$.

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S - S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Alternating Series Test (abridged)

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and $\lim_{n\to\infty} a_n = 0$.

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n$$

converges.

- ► True or false: the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.
- ► True or false: the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.

Let $a_n = \frac{1}{n}$.

Let $a_n = \frac{1}{n}$.

- (i) $a_n \geq 0$
- (ii) $a_{n+1} \le a_n$
- (iii) $\lim_{n\to\infty} a_n = 0$

Warning 3.3.3

43/1 Warning 3.3.3

44/1 Warning 3.3.3

45/1 Warning 3.3.3

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys $a_n \geq 0$ for all $n \geq 1$; $a_{n+1} \leq a_n$ for all $n \geq 1$; and $\lim_{n \to \infty} a_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$ converges and $S - S_N$ is between 0 and $(-1)^N a_{N+1}$.

Using a computer, you find $\sum_{n=1}^{99} \frac{(-1)^{n-1}}{n} \approx 0.698.$

How close is that to the value $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$?

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys $a_n \geq 0$ for all $n \geq 1$; $a_{n+1} \leq a_n$ for all $n \geq 1$; and $\lim_{n \to \infty} a_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$ converges and $S - S_N$ is between 0 and $(-1)^N a_{N+1}$.

Using a computer, you find $\sum_{n=1}^{19} (-1)^{n-1} \frac{n^2}{n^2 + 1} \approx 0.6347$.

How close is that to the value $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2 + 1}$?

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2+1}$$
 DIVERGES

 $S_1 = 0.5000$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2+1}$$
 DIVERGES

 $S_1 = 0.5000$

 $S_2 = -0.3000$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n^2+1} \text{ DIVERGES}$$

$$S_1=0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

-0.3526

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_1=0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_8 = -0.3572$$

$$S_1=0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_8 = -0.3572$$

$$S_9 = 0.6305$$

$$S_1 = 0.5000$$

$$S_2 = -0.3000$$

$$S_3 = 0.5999$$

$$S_4 = -0.3411$$

$$S_5 = 0.6203$$

$$S_6 = -0.3526$$

$$S_7 = 0.6273$$

$$S_8 = -0.3572$$

$$S_9 = 0.6305$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1}{4}}{\frac{1}{12}}}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{16}$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{\frac{1}{16}}{\frac{1}{8}} =$$

$$\frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \cdots}{\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{\frac{1}{16}}{\frac{1}{8}} = \frac{\frac{1}{32}}{\frac{1}{16}} = \frac{1}{2}}$$

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$a_{n} + a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

$$\underbrace{a_{n+1}}_{a_{n}} \approx$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$a_{n} + a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

$$a_{n+1} \approx a_{n+2} \approx a_{n+1} \approx a_{n+2}$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$a_{n} + a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

$$a_{n+1} \approx a_{n+2} \approx a_{n+3} \approx a_{n+3} \approx a_{n+2}$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$a_{n} + a_{n+1} + a_{n+2} + a_{n+3} + a_{n+4} + \cdots$$

$$a_{n+1} \approx a_{n+2} \approx a_{n+3} \approx a_{n+4} \approx a_$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$\underbrace{\frac{a_{n+1}}{a_n}}_{} \approx \underbrace{\frac{a_{n+2}}{a_{n+1}}}_{} \approx \underbrace{\frac{a_{n+3}}{a_{n+2}}}_{} \approx \underbrace{\frac{a_{n+3}}{a_{n+2}}}_{} \approx \underbrace{\frac{a_{n+4}}{a_{n+3}}}_{} \approx \underbrace{\frac{a_{n+5}}{a_{n+4}}}_{} \approx$$

Like in a geometric series:

Suppose for a sequence a_n , $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$ for some constant L.

$$\underbrace{\frac{a_{n+1}}{a_n}}_{+} \approx \underbrace{\frac{a_{n+2}}{a_{n+1}}}_{+} \approx \underbrace{\frac{a_{n+3}}{a_{n+2}}}_{+} \approx \underbrace{\frac{a_{n+3}}{a_{n+3}}}_{+} \approx \underbrace{\frac{a_{n+4}}{a_{n+3}}}_{+} \approx \underbrace{\frac{a_{n+5}}{a_{n+4}}}_{+} \approx \underbrace{L}$$

Like in a geometric series:

Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Ratio Test

Let *N* be any positive integer and assume that $a_n \neq 0$ for all $n \geq N$.

- (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Use the ratio test to determine whether the series

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

converges or diverges.

Use the ratio test to determine whether the series

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

converges or diverges.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

We could have used other tests, but ratio was probably the easiest.

► Integral test:

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

We could have used other tests, but ratio was probably the easiest.

► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:
 - $ightharpoonup \sum \frac{1}{3^n}$ is not a valid comparison series, nor is $\sum n$.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:
 - $ightharpoonup \sum \frac{1}{3^n}$ is not a valid comparison series, nor is $\sum n$.
 - ▶ Because $n < 2^n$ for all $n \ge 1$, the series $\sum \left(\frac{2}{3}\right)^n$ will work.

The series we just considered, $\sum_{n=1}^{\infty} \frac{n}{3^n}$, looks similar to a geometric series, but it is not exactly a geometric series. That's a good indicator that the ratio test will be helpful!

- ► Integral test: $\int \frac{x}{3^x} dx$ can be evaluated using integration by parts.
- ► Comparison test:
 - $ightharpoonup \sum \frac{1}{3^n}$ is not a valid comparison series, nor is $\sum n$.
 - ▶ Because $n < 2^n$ for all $n \ge 1$, the series $\sum_{n \ge 1} \left(\frac{2}{3}\right)^n$ will work.
- ► The divergence test is inconclusive, and the alternating series test does not apply. Our series is not geometric, and not obviously telescoping.

$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$
 CONVERGES

 $S_1 = 0.3333$

 $S_1=0.3333$

 $S_2 = 0.5555$

 $S_1 = 0.3333$

 $S_2=0.5555$

 $S_3 = 0.6666$

$$S_1=0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_1=0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = \frac{7}{5} \frac{8}{37} \frac{8}{38}$$

$$S_1 = 0.3333$$

$$S_2=0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_5 = 0.7366$$

$$S_6 = 0.7448$$

$$S_1=0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_5 = 0.7366$$

$$S_6 = 0.7448$$

$$S_7=0.7480$$

$$S_1=0.3333$$

$$S_2 = 0.5555$$

$$S_3 = 0.6666$$

$$S_4 = 0.7160$$

$$S_5 = 0.7366$$

$$S_6 = 0.7448$$

$$S_7 = 0.7480$$

$$S_8 = 0.7492$$

Ratio Test

Let *N* be any positive integer and assume that $a_n \neq 0$ for all $n \geq N$.

- (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Let *a* and *x* be nonzero constants. Use the ratio test to determine whether

$$\sum_{n=1}^{\infty} anx^{n-1}$$

converges or diverges. (This may depend on the values of a and x.)

$$\sum_{n=1}^{\infty} anx^{n-1}$$

Let x be a constant. Use the ratio test to determine whether

$$\sum_{n=1}^{\infty} \frac{(-3)^n \sqrt{n+1}}{2n+3} x^n$$

converges or diverges. (This may depend on the value of x.)

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ then the series $\sum_{n=c}^{\infty} a_n$ diverges.

Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 , or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ fails to converge to zero as $n \to \infty$, then the series $\sum_{n=c}^{\infty} a_n$ diverges.

Ratio Test

- (a) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ then $\sum_{n=1}^{\infty} a_n$ converges.
- (b) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ fails to converge to zero as $n \to \infty$, then the series $\sum_{n=c}^{\infty} a_n$ diverges.

Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 , or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Divergence Test

If the sequence $\{a_n\}_{n=c}^{\infty}$ fails to converge to zero as $n \to \infty$, then the series $\sum_{n=c}^{\infty} a_n$ diverges.

Ratio Test

(a) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
, or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Integral Test

Let N_0 be any natural number. If f(x) is a function which is defined and continuous for all $x \ge N_0$ and which obeys

- (i) and
- (ii) and
- (iii) $f(n) = a_n$ for all $n \ge N_0$.

Then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \int_{N_0}^{\infty} f(x) \, dx \text{ converges}$$

Furthermore, when the series converges, the truncation error satisfies

$$0 \le \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n \le \int_{N}^{\infty} f(x) \, dx \quad \text{for all } N \ge N_0$$

Integral Test

Let N_0 be any natural number. If f(x) is a function which is defined and continuous for all $x \ge N_0$ and which obeys

- (i) $f(x) \ge 0$ for all $x \ge N_0$ and
- (ii) and
- (iii) $f(n) = a_n$ for all $n \ge N_0$.

Then

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \int_{N_0}^{\infty} f(x) \, dx \text{ converges}$$

Furthermore, when the series converges, the truncation error satisfies

$$0 \le \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n \le \int_{N}^{\infty} f(x) \, dx \qquad \text{for all } N \ge N_0$$

Integral Test

Let N_0 be any natural number. If f(x) is a function which is defined and continuous for all $x \ge N_0$ and which obeys

- (i) $f(x) \ge 0$ for all $x \ge N_0$ and
- (ii) f(x) decreases as x increases and
- (iii) $f(n) = a_n$ for all $n \ge N_0$.

Then

and
$$\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ 1 \\ 2 \\ 3 \end{array}$$
 $y = f(x)$

$$\sum_{n=1}^{\infty} a_n \text{ converges } \iff \int_{N_0}^{\infty} f(x) \, dx \text{ converges}$$

Furthermore, when the series converges, the truncation error satisfies

$$0 \le \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n \le \int_{N}^{\infty} f(x) \, dx \qquad \text{for all } N \ge N_0$$

The Comparison Test

Let N_0 be a natural number and let K > 0.

- (a) If $|a_n| \prod Kc_n$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} c_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
- (b) If $a_n \bigsqcup Kd_n \ge 0$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} d_n$ diverges, then $\sum_{n=0}^{\infty} a_n$ diverges.

The Comparison Test

Let N_0 be a natural number and let K > 0.

- (a) If $|a_n| \le Kc_n$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} c_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
- (b) If $a_n \bigsqcup Kd_n \ge 0$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} d_n$ diverges, then $\sum_{n=0}^{\infty} a_n$ diverges.

The Comparison Test

Let N_0 be a natural number and let K > 0.

- (a) If $|a_n| \le Kc_n$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} c_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
- (b) If $a_n \ge Kd_n \ge 0$ for all $n \ge N_0$ and $\sum_{n=0}^{\infty} d_n$ diverges, then $\sum_{n=0}^{\infty} a_n$ diverges.

Limit Comparison Theorem

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series with $b_n > 0$ for all n. Assume that

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L$$

exists.

- (a) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges too.
- (b) If $L \neq 0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges too.

In particular, if ______, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Limit Comparison Theorem

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series with $b_n > 0$ for all n. Assume that

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L$$

exists.

- (a) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges too.
- (b) If $L \neq 0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges too.

In particular, if $L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i)
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S-S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S - S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Alternating Series Test

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers that obeys

- (i) $a_n \ge 0$ for all $n \ge 1$;
- (ii) $a_{n+1} \le a_n$ for all $n \ge 1$ (i.e. the sequence is monotone decreasing);
- (iii) and $\lim_{n\to\infty} a_n = 0$.

Then

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = S$$

converges and, for each natural number N, $S - S_N$ is between 0 and (the first dropped term) $(-1)^N a_{N+1}$. Here S_N is, as previously, the N^{th}

partial sum
$$\sum_{n=1}^{N} (-1)^{n-1} a_n$$
.

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

- successive terms in the series alternate in sign
- ▶ don't forget to check that successive terms decrease in magnitude and tend to zero as *n* tends to infinity

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

- successive terms in the series alternate in sign
- ▶ don't forget to check that successive terms decrease in magnitude and tend to zero as *n* tends to infinity

Integral Test

Divergence Test

When the n^{th} term in the series *fails* to converge to zero as n tends to infinity.

This is a good first thing to check: if it works, it's quick, but it doesn't always work.

Alternating Series Test

- successive terms in the series alternate in sign
- ▶ don't forget to check that successive terms decrease in magnitude and tend to zero as *n* tends to infinity

Integral Test

- works well when, if you substitute x for n in the nth term you get a function, f(x), that you can easily integrate
- ▶ don't forget to check that $f(x) \ge 0$ and that f(x) decreases as x increases

Ratio Test

Ratio Test

- works well when $\frac{a_{n+1}}{a_n}$ simplifies enough that you can easily compute $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L$
- ▶ this often happens when a_n contains powers, like 7^n , or factorials, like n!
- ▶ don't forget that L = 1 tells you nothing about the convergence/divergence of the series

Ratio Test

- ▶ works well when $\frac{a_{n+1}}{a_n}$ simplifies enough that you can easily compute $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$
- ▶ this often happens when a_n contains powers, like 7^n , or factorials, like n!
- ▶ don't forget that *L* = 1 tells you nothing about the convergence/divergence of the series

Comparison Test and Limit Comparison Test

Ratio Test

- ▶ works well when $\frac{a_{n+1}}{a_n}$ simplifies enough that you can easily compute $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$
- ▶ this often happens when a_n contains powers, like 7^n , or factorials, like n!
- ▶ don't forget that L = 1 tells you nothing about the convergence/divergence of the series

Comparison Test and Limit Comparison Test

- ▶ Comparison test lets you ignore pieces of a function that feel extraneous (like replacing $n^2 + 1$ with n^2) but there is a test to make sure the comparison is still valid. Either the limit of a ratio is the right thing, or an inequality goes the right way.
- Limit comparison works well when, for very large n, the nth term a_n is approximately the same as a simpler, nonnegative term b_n

► The integral test gave us the *p*-test. When you're looking for comparison series, *p*-series $\sum \frac{1}{n^p}$ are often good choices, because their convergence or divergence is so easy to ascertain.

► The integral test gave us the *p*-test. When you're looking for comparison series, *p*-series $\sum \frac{1}{n^p}$ are often good choices, because their convergence or divergence is so easy to ascertain.

▶ Geometric series have the form $\sum a \cdot r^n$ for some nonzero constants a and r. The magnitude of r is all you need to know to deicide whether they converge or diverge, so these are also common comparison series.

► The integral test gave us the *p*-test. When you're looking for comparison series, *p*-series $\sum \frac{1}{n^p}$ are often good choices, because their convergence or divergence is so easy to ascertain.

▶ Geometric series have the form $\sum a \cdot r^n$ for some nonzero constants a and r. The magnitude of r is all you need to know to deicide whether they converge or diverge, so these are also common comparison series.

► Telescoping series have partial sums that are easy to find because successive terms cancel out. These are less obvious, and are less common choices for comparison series.

Test List

- ▶ divergence
- ► integral
- alternating series

- ► ratio
- comparison
- ► limit comparison

Determine whether the series $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ converges or diverges.

Test List

- ▶ divergence
- ► integral
- alternating series

- ► ratio
- comparison
- ► limit comparison

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n \cdot n^2}{(n+5)^5}$ converges or diverges.

Test List

- ▶ divergence
- ► integral
- alternating series

- ► ratio
- comparison
- ▶ limit comparison

Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{n}\right)$ converges or diverges.

Hint: If $\theta \geq 0$ then $\sin \theta \leq \theta$.

Included Work

- \P 'Balloon' by Simon Farkas is licensed under CC-BY (accessed November 2022, edited), 5–22, 48–58
- Waage/Libra' by B. Lachner is in the public domain (accessed April 2021, edited), 5–22, 48–58, 83–91
- Weight' by Kris Brauer is licensed under CC-BY(accessed May 2021), 5–22, 48–58, 83–91
- 'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021, modified), 46. 47
- Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 38, 74, 92