NoSQL databases

Agenda

- The NoSQL Database Model
- Types of NoSQL Database Engines
- NoSQL vs RDBMS
- Popular NoSQL Database Engines

The NoSQL Database Model

The NoSQL database model

- NoSQL databases:
 - are a broad class of database management systems that do not use SQL as the query language
 - may not require fixed table schemas
 - usually do not support join operations

The NoSQL database model

NoSQL databases:

- may not give ACID guarantees (performance, scalability and real-time nature are typically more important than consistency!)
- typically scale horizontally
- typically provide eventual consistency (reads may not be up-to-date but we have additional benefits such as easier load distribution and multidata center support)

Categories:

- ✓ Big Table
- √ key-value stores
- ✓ document stores
- ✓ graph databases
- ✓ object databases
- ✓ RDF databases

- Key-value stores:
 - store data in key-value pairs (in either disk or memory)
 - allow for the storage of data in a schema-less way
 - basic form of API access:
 - get(key) extract the value given a key
 - put(key, value) create or update the value given its key
 - delete(key) remove the key and its associated value

Key-value stores:

- advanced form of API access (execute user-defined function on the serverside):
 - execute(key, operation, parameters) invoke an operation on the value of a specified key
 - mapreduce(keyList, mapFunc, reduceFunc) invoke a map/reduce function across a key range

Key-value stores:

•Implementations: BigTable, Keyspace, LevelDB, membase, MongoDB, Apache Cassandra, Dynamo, Hibari, OpenLink Virtuoso, Project Voldemort, memcached, OpenLink Virtuoso, Oracle Coherence and more

- Document stores:
 - subcategory of key-value stores (also called key-document stores)
 - designed for storing document-oriented (semi-structured data)
 information
 - typically assume that documents can be represented in some well-known format (XML, YAML, JSON, BSON, PDF ...)

Document stores:

Implementations: BaseX(XML), Clusterpoint, Apache CouchDB(JSON), eXist(JSON), Jackrabbit, Lotus Notes database, IBM Lotus Domino database, IBM X Pages, MarkLogic Server (XML), MongoDB (JSON), OpenLink Virtuoso C++, SPARQL middleware, OrientDB, SimpleDB, Terrastore and more

Big table:

- variants of Google's BigTable database
- designed to scale on hundreds of machines (and add easily more machines)
- when data grows beyond a predefined limit then it is typically compressed
- Implementations: Apache Accumulo, Apache Cassandra, HBase, Hypertable, KDI, LevelDB and more

Graph databases:

- uses graph structures to represent information
- very suitable for data that requires graph-like queries
- map more directly to the structure of object-oriented applications than relational databases
- useful for storing RDF information
- Implementations: AllegroGraph, DEX, FlockDB, InfiniteGraph, Neo4j,
 OpenLink Virtuoso, OrientDB, Pregel, Sones GraphDB and more

Object databases:

- information is represented in the form of objects (as used in objectoriented programming)
- typically targeted at particular object-oriented languages
- provide easy persistence of objects
- Implementations: db4o, GemStone/S, InterSystems Caché, JADE,
 VelocityDB and more

- RDF databases:
 - typically store data in tuples
 - queries are highly optimized for RDF data
 - Implementations: Meronymy SPARQL Database Server and more

NoSQL vs RDBMS

NoSQL vs RDBMS

 Typical RDBMS implementations are tuned either for small but frequent read/write transactions or for large batch transactions with rare write accesses. NoSQL, on the other hand, can service heavy read/write workloads

 NoSQL architectures often provide weak consistency guarantees, such as eventual consistency, or transactions restricted to single data items (some systems such as AppScale provide a middleware layer to provide consistency)

NoSQL vs RDBMS

 In terms of the CAP theorem (Consistency, Availability and Partition Tolerance):

 Let's see how the following popular NoSQL implementations work in practice:

- MongoDB document-store
- Redis key-value store
- Neo4j graph database
- Hadoop distributed storage and processing of Big Data

- MongoDB:
 - MongoDB stores documents in binary JSON (BSON)
 - The MongoDB shell is a javascript shell
 - Logical organization of documents:

Databases

Collections (can be nested for logical separation)

Documents

Key-Value pairs

MongoDB components:

- mongod core database process
- mongos sharding controller
- mongo database shell (uses interactive javascript)
- import/export tools mongoimport, mongoexport, mongodump, mongorestore, bsondump
- mongofiles the GridFS (specification for storing large files in MongoDB) utility
- mongostat various database statistics (e.g. number of connections)

- Scalability and failover:
 - Mongo scales horizontally via an autosharding (partitioning) architecture that provides for:
 - Automatic balancing for changes in load and data distribution
 - Easy addition of new machines without down time
 - Scaling to one thousand nodes
 - No single points of failure
 - Automatic failover
 - Sharding is performed on a per-collection basis (small collections need no sharding)

Scalability and failover:


```
collection minkey maxkey location
users { name : 'Miller' } { name : 'Nessman' } shard<sub>2</sub>
users { name : 'Nessman' } { name : 'Ogden' } shard<sub>4</sub>
```

...

- Scalability and failover:
 - shards each shard consists of one or more servers and stores data using mongod processes. In MongoDB sharding is the tool for scaling a system
 - replica sets the set of servers/mongod process within the shard comprise a replica set. In MongoDB replication is the tool for data safety, high availability, and disaster recovery

Scalability and failover:

- config servers the config database stores all the metadata indicating the location (particular shard) of data by range. Config servers use their own replication model (not a replica set)
- mongos servers the mongos process can be thought of as a routing and coordination process that makes the various components of the cluster look like a single system

- MongoDB common usage scenarios:
 - log data storage
 - real-time event statistics, analytics and reports
 - real-time aggregation of hierarchical data
 - storing product catalogs
 - storing comments
 - storing activity streams

Redis:

- An open-source, networked, in-memory, key-value store
- Data model of the database is a dictionary that maps keys to values
- Supports high-level, atomic server-side operations like intersection, union, and difference between sets
- Data is stored in-memory but additional facilities for data persistence are provided

- Redis common usage scenarios:
 - show latest items
 - ordering of items
 - Implement expiration of items
 - Implementing real-time subscriptions
 - counting items
 - aggregating items
 - caching

Neo4j:

- An embedded, disk-based, fully-transactional Java persistence engine that stores data in graphs rather than in tables
- Licensed under GPL
- Provides features for:
 - true ACID transactions
 - high availability
 - scaling to billions of nodes and relationships
 - high speed query through traversals

- Neo4j use cases:
 - Network and IT Operations
 - Social Networking
 - Product-line management

Hadoop:

- An open-source software framework for storage and large-scale processing of data-sets on clusters and commodity hardware
- Provides a Hadoop file system (HDFS) for storing data in the cluster
- Provides a Hadoop YARN resource management system for resources in the Hadoop cluster
- Provides Hadoop MapReduce a programming model for large-scale data processing

- Hadoop use cases:
 - Batch aggregations
 - Data Warehousing
 - Extract-Transform-Load (ETL)

Questions?

Some books

Wikipedia's entry on NoSQL http://en.wikipedia.org/wiki/NoSQL

Document-oriented databases http://en.wikipedia.org/wiki/Document-oriented database

XML database http://en.wikipedia.org/wiki/XML database

MongoDB official documentation http://www.mongodb.org/display/DOCS/Home

MongoDB backups (official documentation)
http://www.mongodb.org/display/DOCS/Backups

MongoDB backup and recovery http://jonathanhui.com/mongodb-backup-and-recovery

MongoDB backup tools

http://www.mongodb.org/display/DOCS/Import+Export+Tools

MongoExplorer

http://www.mongodb.org/display/DOCS/Admin+UIs

Email Integration - Inbound Emails

http://ecp-alpha.cisco.com/html/index.html#url=/web/view-post/post/-

/posts?postId=25327222

MongoDB architecture

http://johanlouwers.blogspot.com/2011/06/mongodb-architecture.html

SQL to Mongo Mapping Chart

http://www.mongodb.org/display/DOCS/SQL+to+Mongo+Mapping+Chart

SQL vs NoSQL presentation

http://www.slideshare.net/skillsmatter/4alaric-snell-pym

NoSQL and MongoDB

http://www.slideshare.net/csixty4/nosql-mongodb

CouchDB - the Definitive Guide

http://guide.couchdb.org/

Introduction to MongoDB

http://www.slideshare.net/drumwurzel/intro-to-mongodb

How graph databases can make you a superstar http://www.slideshare.net/andres taylor/graph-database-super-star-8079303

Graph databases, NoSQL and Neo4j http://www.infoq.com/articles/graph-nosql-neo4j

NoSQL Patterns

http://horicky.blogspot.com/2009/11/nosql-patterns.html

Wikipedia's entry on UnQL (Unstructured Query Language) http://en.wikipedia.org/wiki/UnQL

'Ugly' MongoDB defies NoSQL death rumour http://www.theregister.co.uk/2012/03/27/picking a no sql winner/

MongoDB - production deployments (contains a detailed list of concrete applications) http://www.mongodb.org/display/DOCS/Production+Deployments

MongoDB manual http://www.mongodb.org/display/DOCS/Manual

Overview – MongoDB interactive shell http://www.mongodb.org/display/DOCS/Overview+-
+The+MongoDB+Interactive+Shell

MongoDB – Java tutorial

http://www.mongodb.org/display/DOCS/Java+Tutorial

MongoDB query language

http://www.mongodb.org/display/DOCS/Mongo+Query+Language

Bigtable: A Distributed Storage System for Structured Data

http://research.google.com/archive/bigtable.html