Data Mining the US Department of Transportation Statistics on Aviation

Stephen Dimig

January 31, 2016

Introduction

The goal of this paper is to analyze the transportation dataset from the US Bureau of Transportation Statistics (BTS) that is hosted as an Amazon EBS volume snapshot and answer a set of interesting questions about the data. The dataset contains data and statistics from the US Department of Transportation on Aviation in CSV format. The dataset we are using does not extend beyond 2008, it contains flight data such as departure and arrival delays, flight times, etc. The set of questions that will be answered fall into three groups as outlined below.

All code and full results can be found at https://github.com/stephendimig/cc-capstone .

Group 1 Questions

- 1. Rank the top 10 most popular airports by numbers of flights to/from the airport.
- 2. Rank the top 10 airlines by on-time arrival performance.
- 3. Rank the days of the week by on-time arrival performance.

Group 2 Questions

- 1. For each airport X, rank the top-10 carriers in decreasing order of on-time departure performance from X. See Task 1 Queries for specific queries.
- 2. For each airport X, rank the top-10 airports in decreasing order of on-time departure performance from X. See Task 1 Queries for specific queries.
- 3. For each source-destination pair X-Y, rank the top-10 carriers in decreasing order of on-time arrival performance at Y from X. See Task 1 Queries for specific queries.

Group 3 Questions

- 1. Does the popularity distribution of airports follow a Zipf distribution? If not, what distribution does it follow?
- 2. Tom wants to travel from airport X to airport Z. However, Tom also wants to stop at airport Y for some sightseeing on the way. More concretely, Tom has the following requirements (see Task 1 Queries for specific queries):

- The second leg of the journey (flight Y-Z) must depart two days after the first leg (flight X-Y). For example, if X-Y departs January 5, 2008, Y-Z must depart January 7, 2008.
- Tom wants his flights scheduled to depart airport X before 12:00 PM local time and to depart airport Y after 12:00 PM local time.
- Tom wants to arrive at each destination with as little delay as possible (Clarification 1/24/16: assume you know the actual delay of each flight).

Methods and Data

System Installation and Setup

All work for this paper was performed on Amazon Web Services using a virtual machine instance running HortonWorks Sandbox 2.1. An EBS volume was created from a pre-existing snapshot containing the BTS transportation data statistics and attached to the virtual machine. In addition to this basic setup, the Apache Cassandra NoSQL database and the R Programming Language were also installed.

Attribute	Value	Description
Inst. Type	C3.xlarge	
AMI ID	ami-36d95d5e	hortonworks 2.1 - sandbox
vCPUs	4	
Memory	7.5 GB	
Inst. Storage	128 GB	Increased the storage size
EBS Vol. ID	snap-23a9cf5e	BTS transportation data
R	3.2	R programming language
Cassandra	2-1.2.10-1	NoSQL Database

MapReduce is fantastic at parallelizing work done on large data sets, but due to it's nature it can be difficult to use for some smaller tasks. Rather than struggling to make MapReduce perform every task required here, several languages were used together to perform the task.

Language Description

Java	Used for map reduce programs to solve problems in Group 1
Pig	A language that generates map reduce from an SQL-like syntax
R	Used for post processing data filtered by MapReduce
Python	Used to filter and process data

cql

R is a programming language and software environment for statistical computing. It is exceptional at dealing with tabular data like what was found in this set of problems, but does not scale and is performs poorly on large datasets. R was used to process data where the majority of the heavy lifting was already done using MapReduce (either with Java or Pig). The following R packages were used in analyzing this data.

Package	Description
devtools	Requuired to install rhdfs
rhdfs	Provides basic connectivity to HDFS
dplyr	Used for cleaning data
zipfR	Used for zipf distributions
fitdistrplus	Used to find a distribution to it data

Cleaning the Data

The data was cleaned by reading it off the attached EBS data volume, processing it with R to filter out only the required fields, generating a temporary file, and then moving the file to HDFS.

The main R code that cleans the data looks like this.

```
# Unzip and read each file from the EBS volume
df <- read.csv(unz(zipfile, csvfile), stringsAsFactors=FALSE)

# Explicitly convert the date.
df$FlightDate <- as.Date(df$FlightDate)

# Select only certain rows required for the capstone.
my_df <- select(df, FlightDate, FlightNum, Origin, Dest, UniqueCarrier, Carrier, ArrTime, ArrDelay, ArrDelayMinutes, DepTime, DepDelay, DepDelayMinutes, DayOfWeek)</pre>
```

```
# Write cleaned file, put it in HDFS, and remove local copy.
write.csv(my_df, file=txtfile, quote=FALSE, col.names=FALSE)
```

Group 1 Problems

The Group 1 Problems were solved using straight MapReduce with Java. For smaller problems this works well. A Java program is written using the Hadoop MapReduce framework and compiler. The jar file is then executed within Hadoop and the output is stored in HDFS.

Group 2 Problems

The Group 2 Problems were the most complex as far as integration goes. I could not get the Cassandra/Pig interface to work so instead, I wrote a python language filter for each problem that took the output from the Pig script and created all of the cql commands that were required to load that data into Cassandra. The cql file was then run through cqlsh.

The pyhon scripts basically apply a regular expression to a line in the output file and then generate a corresponding cql statement.

Group 3 Problems

The Group 3 problems required more analysis with no database interaction. This set of problems was solved with R directly reading the output of the Pig script from HDFS.

Pig provides a higher level SQL-like syntax that is translated into MapReduce code. The Pig scripts perform the more computationally expensive work in this process.

Results

All code and full results can be found at https://github.com/stephendimig/cc-capstone .

Group 1 Questions

Rank the top 10 most popular airports by numbers of flights to/from the airport.

Airport	Description	Flights
ORD	Chicago O'Hare International	12449354
ATL	Hartsfield Jackson Atlanta International	11540422
DFW	Dallas Fort Worth International	10799303
LAX	Los Angeles International	7723596
PHX	Phoenix Sky Harbor International Airport	6585534
DEN	Denver International	6273787
DTW	Detroit Metropolitan Wayne County	5636622
IAH	George Bush Intercontinental Houston	5480734
MSP	Minneapolis-St Paul International	5199213
SFO	San Francisco International	5171023

Rank the top 10 airlines by on-time arrival performance.

Carrier	Description	Avg Delay
HA	Hawaiian Airlines, Inc.	3.9542668
AQ	9 Air Co Ltd	4.9505897
PS	Ukraine International Airlines	5.627902
ML	Air Mediterranee	8.518365
WN	Southwest Airlines Co.	9.025299
F9	Frontier Airlines, Inc.	9.871182
PA	M/S Airblue (PVT) Ltd	10.189628
US	Piedmont Airlines, Inc	10.285916
NW	Northwest Airlines, Inc.	10.332496
EA	Operador Aereo Andalus S.A	10.360811

Rank the days of the week by on-time arrival performance.

Day	Avg Delay
FRI	9.265108
MON	10.237862
SUN	10.864509
SAT	11.019846
TUE	11.180128
WED	12.689463
THU	13.256688

Group 2 Questions

For each airport X, rank the top-10 carriers in decreasing order of on-time departure performance from X. See Task 1 Queries for specific queries.

See Appendix A.1.

For each airport X, rank the top-10 airports in decreasing order of on-time departure performance from X. See Task 1 Queries for specific queries.

See Appendix A.2.

For each source-destination pair X-Y, rank the top-10 carriers in decreasing order of on-time arrival performance at Y from X. See Task 1 Queries for specific queries.

See Appendix A.3.

Group 3 Questions

Does the popularity distribution of airports follow a Zipf distribution? If not, what distribution does it follow?

Zipf distributions are used in linguistics. Zipf's law states that given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table. As applied to airports in our problem, this means that the highest ranked airport should have roughly double the number of flights as the second rated. The second rated should have double the third and so on. Our data when the number of flights looks very much like a zipf distribution. There is enough doubt about that bulge in the middle though (a typical zipf has an almost 90 degree elbow) to warrant some analysis.

The zipfR R package allows you to compare your data against what a theoretical zipf distribution would look like if it had the same kind of bounds. When you run our data against the theoretical zipf, you see the problem that the most popular airports are not quie popular enough for a zipf.

Warning in estimate.model.lnre.zm(model, spc = spc, param.names =
missing.param, : estimated parameter values may be incorrect (code
3)

Frequency Spectrum

So what distribution does our data follow? The fitdistrplus R packages allows you to run various diagnostics against your data to determine which distribution it follows. It is a kind of trial and error approach, but the tools are nice enough that you can find a distribution. In our case, the data seem to fit a Weibull distribution almost perfectly.

Tom's Unusual Flight

See Appendix A.3.

Discussion

I like the results in the data but I think I might have not cleaned it properly. For example, I believe that flight cancellations should be removed rater than replacing the delay values with zeroes which skews the data for carriers with a smaller number of flights. I struggled at the beginning of this project due to some technical difficulties with the ami image I was using. I figured that out though and had a lot of fun. I was wanting to do something similar to this in the Data Science specialization from Johns Hopkins since R is so slow with large data sets. This proves to me you

can extract the majority of the data using Hadoop and do the final analysis in R in a powerful way.

Appendix

A.1 For each airport X, rank the top-10 carriers in decreasing order of on-time departure performance from X. See Task 1 Queries for specific queries.

origin	unique_carrier	dep_delay_avg
CMI	DH	9.6494
CMI	EV	9.6927
CMI	MQ	11.754
CMI	OH	5.3643
CMI	PI	4.5229
CMI	TW	4.1582
CMI	US	2.8827
origin	unique_carrier	dep_delay_avg
BWI	AA	7.6571
BWI	CO	7.1413
BWI	DL	8.8151
BWI	EA	9.172
BWI	F9	4.9161
BWI	NW	8.3094
BWI	PA (1)	5.9429
BWI	TW	9.0849
BWI	US	8.5142
BWI	YV	7.676
origin	unique_carrier	
MIA	9E	0.5
MIA	EV	5.6696
MIA	ML (1)	7.632
MIA	NW	6.9902
MIA	PA (1)	4.8435
MIA	PI	9.0639
MIA	TZ	6.823
MIA	UA	8.2735
MIA MIA	US	7.4273
	XE	6.1034

origin	unique_carrier	dep_delay_avg
	+	+
LAX	•	8.4199
LAX	F9	8.3621
LAX	FL	8.0823
LAX	ML (1)	7.1013
LAX	MQ	5.0697
LAX	NW	7.2525
LAX	00	6.0953
LAX	PS	4.9739
LAX	TZ	7.4569
LAX	US	7.8037
origin	unique_carrier	dep_delay_avg
	+	+
IAH	AA	7.2697
IAH	DL	8.2771
IAH	HP	8.0406
IAH	NW	6.1598
IAH	00	7.9431
IAH	PA (1)	5.7343
IAH	PÍ	4.6433
IAH	İ TW	7.4534
IAH	US	7.0557
IAH	. WN	6.2322

A.2 For each airport X, rank the top-10 airports in decreasing order of on-time departure performance from X. See Task 1 Queries for specific queries.

```
origin | dest | dep_delay_avg
   CMI |
         ABI |
                           0
   CMI |
         ATL |
                     9.6927
   CMI |
         CVG |
                     6.3794
   CMI |
         DAY
                     3.6273
   CMI |
         DFW |
                     9.5562
   CMI |
         ORD |
                     11.943
   CMI |
         PIA |
                     4.6324
   CMI |
         PIT |
                     2.1701
   CMI |
         STL |
                      4.0183
origin | dest | dep_delay_avg
  BWI | CHO |
                      4.8261
```

BWI	DAB	3.8378
BWI	GSP	5.4311
BWI	IAD	3.0871
BWI	MDT	4.9014
BWI	MLB	2.3842
BWI	OAJ	5.32
BWI	SAV	0
BWI	SRQ	4.2689
BWI	UCA	4.9399
DMT	I OCA	4.9399
origin	ldest	dep_delay_avg
	ucsc 	
MIA	BUF	1
MIA	GNV	6.008
MIA	HOU	3.6411
MIA	ISP	4.4566
MIA	MCI	5.3605
MIA	PSE	
		4.9469
MIA	SAN	2.5137
MIA	SHV	0
MIA	SLC	4.0702
MIA	TLH	5.4429
origin	dest	dep_delay_avg
	+	
LAX	•	1
LAX	•	0
LAX	IDA	0
LAX	LAX	0
LAX	MAF	0
LAX	PIH	0
LAX	•	
LAX		0
LAX	•	0
LAX	•	2.4805
LAA	1 413	2.4003
Origin	dec+	dep_delay_avg
OLIBIL	uest 	
IAH		2.8315
	AGS	
IAH	EFD LIQU	3.9199
IAH	HOU	2.3019
IAH	MDW	5.9158
	i –	Δ.
IAH	MLI	0
IAH IAH	MSN	0
IAH IAH IAH	MSN TJ	0 5.635
IAH IAH	MSN	0

IAH IAH	RNO	5.5072 5.3176
origin	dest	dep_delay_avg
SF0	BNA	3.0649
SF0	FAR	0
SF0	LGA	1.2121
SF0	MEM	5.4396
SF0	MSO	0.58333
SF0	OAK	2.5486
SF0	PIE	2.7283
SF0	PIH	0
SF0	SCK	4
SF0	SDF	0

A.3 For each source-destination pair X-Y, rank the top-10 carriers in decreasing order of on-time arrival performance at Y from X. See Task 1 Queries for specific queries.

origin	dest	unique_carrier	arrival_delay_avg
CMI	ORD		
origin	dest	unique_carrier	arrival_delay_avg
IND	CMH	AA	8.25
IND	CMH	CO	4.3942
IND	CMH	DL	12.63
IND	CMH	EA	13.065
IND	CMH	HP	7.9906
IND	CMH	NW	7.6015
IND	CMH	US	7.8386
onigin	l doc+ l	unique cannien l	arrival_delay_avg
	uest 		
DFW	IAH	AA	12.148
DFW	IAH	CO	10.001
DFW	IAH	DL	10.204
DFW	IAH	EV	10.692
DFW	IAH	MQ	12.976
DFW	IAH	00	9.7365
DFW	IAH	PA (1)	9.3333
DFW	IAH	UA	8.8994
DFW	IAH	XE	12.893

```
origin | dest | unique carrier | arrival delay avg
-----
                         AA I
         SF0
   LAX |
                                       12.465
         SFO |
                         co l
   LAX I
                                       14.002
   LAX | SFO |
                        DL |
                                       13.484
   LAX | SFO |
                         EV |
                                       13.399
   LAX | SFO |
                        F9 |
                                      6.9653
   LAX | SFO |
                        MQ
                                      10.933
   LAX | SFO |
                        NW
                                       12.79
   LAX | SFO |
                         PS |
                                      5.8304
   LAX | SFO |
                        TZ |
                                      6.2381
   LAX | SFO |
                        US |
                                       10.822
origin | dest | unique_carrier | arrival_delay_avg
   LAX I
                        AA l
   JFK I
                                       15.045
   JFK |
        LAX
                        DL |
                                      16.631
                   HP |
PA (1) |
   JFK | LAX |
                                      14.865
   JFK | LAX |
                                      17.094
   JFK | LAX |
                     TW
                                      18.288
   JFK | LAX |
                        UA |
                                       11.469
origin | dest | unique_carrier | arrival_delay_avg
   ATL |
         PHX
                        DL |
                                       13.867
                         EA l
   ATL I
         PHX |
                                       14.009
   ATL |
         PHX |
                         FL I
                                      12.61
   ATL |
         PHX |
                         HP |
                                       13.367
                        US |
   ATL | PHX |
                                       12.687
```

A.4 Tom's Unusual Flight

```
Moved: 'hdfs://sandbox.hortonworks.com:8020/user/root/output' to trash
at: hdfs://sandbox.hortonworks.com:8020/user/root/.Trash/Current
[1] "CMI -> ORD Flights"
[1] "======="
    flightno origin dest carrier
                                  date dep time delay
3206
               CMI ORD
                           MQ 2008-04-03
                                             706
        4278
                                                    0
3236
        4373
               CMI ORD
                           MQ 2008-04-03
                                             908
                                                    0
                         MQ 2008-04-03
       4374
               CMI ORD
3265
                                             557
                                                    0
3290
        4401
               CMI ORD
                          MQ 2008-04-03
                                             808
                                                    0
[1] ""
[1] "ORD -> LAX Flights"
[1] "======="
flightno origin dest carrier date dep_time delay
```

```
3031
          121
                 ORD
                      LAX
                               UA 2008-04-05
                                                  1219
                                                           0
                 ORD
                      LAX
                                                           0
3375
          607
                               AA 2008-04-05
                                                 1948
                 ORD
                      LAX
3403
          889
                               AA 2008-04-05
                                                 1815
                                                           0
3435
         1345
                 ORD
                      LAX
                               AA 2008-04-05
                                                 1404
                                                           0
3463
         1407
                 ORD
                      LAX
                               AA 2008-04-05
                                                  1213
                                                           0
3369
          557
                 ORD
                               AA 2008-04-05
                                                  1641
                      LAX
                                                           6
3094
          129
                 ORD
                      LAX
                               UA 2008-04-05
                                                  2102
                                                          12
3153
          943
                 ORD
                      LAX
                               UA 2008-04-05
                                                  1506
                                                          12
3123
          941
                 ORD
                                                          19
                     LAX
                               UA 2008-04-05
                                                  1712
3064
          127
                 ORD
                      LAX
                               UA 2008-04-05
                                                  1847
                                                          20
3023
          111
                 ORD LAX
                               UA 2008-04-05
                                                  1208
                                                          38
[1] ""
Moved: 'hdfs://sandbox.hortonworks.com:8020/user/root/output' to trash
at: hdfs://sandbox.hortonworks.com:8020/user/root/.Trash/Current
[1] "JAX -> DFW Flights"
[1] "========"
     flightno origin dest carrier
                                        date dep_time delay
1545
                               AA 2008-09-09
          845
                 JAX DFW
                                                  722
                                                           1
[1] ""
[1] "DFW -> CRP Flights"
[1] "======="
     flightno origin dest carrier
                                        date dep_time delay
1493
                               MQ 2008-09-11
         3627
                 DFW CRP
                                                 1648
                                                           0
1521
         3701
                 DFW
                      CRP
                               MQ 2008-09-11
                                                  1310
                                                           8
                                                           9
1438
         3419
                 DFW CRP
                               MQ 2008-09-11
                                                  1504
[1] ""
Moved: 'hdfs://sandbox.hortonworks.com:8020/user/root/output' to trash
at: hdfs://sandbox.hortonworks.com:8020/user/root/.Trash/Current
[1] "No flights found matching criteria X=SLC; Y=BFL; Z=LAX; DATE=2008-
01-04"
Moved: 'hdfs://sandbox.hortonworks.com:8020/user/root/output' to trash
at: hdfs://sandbox.hortonworks.com:8020/user/root/.Trash/Current
[1] "No flights found matching criteria X=LAX; Y=SFO; Z=PHX; DATE=2008-
12-07"
Moved: 'hdfs://sandbox.hortonworks.com:8020/user/root/output' to trash
at: hdfs://sandbox.hortonworks.com:8020/user/root/.Trash/Current
[1] "DFW -> ORD Flights"
[1] "======="
     flightno origin dest carrier
                                        date dep time delay
5155
         6441
                 DFW ORD
                               00 2008-10-06
                                                  920
                                                           0
5232
         1104
                 DFW
                      ORD
                               UA 2008-10-06
                                                   655
                                                           0
5289
         2268
                 DFW
                      ORD
                               AA 2008-10-06
                                                  920
                                                           0
5320
         2320
                 DFW
                      ORD
                               AA 2008-10-06
                                                   556
                                                           0
5418
         2328
                 DFW ORD
                               AA 2008-10-06
                                                  812
                                                           0
5542
                 DFW
         2336
                      ORD
                               AA 2008-10-06
                                                 1003
                                                           0
5604
         2340
                 DFW ORD
                               AA 2008-10-06
                                                  1047
                                                           0
5665
         2344
                 DFW
                      ORD
                               AA 2008-10-06
                                                  1148
                                                           0
5356
         2324
                 DFW
                      ORD
                               AA 2008-10-06
                                                  703
                                                           6
[1] ""
[1] "ORD -> DFW Flights"
```

```
[1] "======="
                                          date dep time delay
     flightno origin dest carrier
5175
                 ORD
                                UA 2008-10-08
          357
                       DFW
                                                   1658
                                                             0
5204
          725
                 ORD
                       DFW
                                UA 2008-10-08
                                                   2016
                                                             0
5260
           47
                 ORD
                       DFW
                                AA 2008-10-08
                                                   1919
                                                             0
5389
         2325
                 ORD
                       DFW
                                AA 2008-10-08
                                                   1240
                                                             0
5451
         2329
                 ORD
                       DFW
                                AA 2008-10-08
                                                   1332
                                                             0
5636
         2341
                 ORD
                       DFW
                                AA 2008-10-08
                                                   1650
                                                             0
5692
                 ORD
                       DFW
                                                   1754
                                                             0
         2345
                                AA 2008-10-08
5748
         2357
                 ORD
                       DFW
                                AA 2008-10-08
                                                   1945
                                                             0
5776
         2361
                 ORD
                       DFW
                                AA 2008-10-08
                                                   2100
                                                             0
5482
         2331
                 ORD
                       \mathsf{DFW}
                                AA 2008-10-08
                                                   1429
                                                             2
5138
         5949
                 ORD
                       DFW
                                00 2008-10-08
                                                   1529
                                                            11
5513
         2333
                 ORD
                       DFW
                                AA 2008-10-08
                                                   1520
                                                            17
5721
         2349
                 ORD
                       DFW
                                AA 2008-10-08
                                                   2024
                                                            94
5575
         2337
                 ORD
                       DFW
                                AA 2008-10-08
                                                   1909
                                                           184
[1] ""
Moved: 'hdfs://sandbox.hortonworks.com:8020/user/root/output' to trash
at: hdfs://sandbox.hortonworks.com:8020/user/root/.Trash/Current
[1] "LAX -> ORD Flights"
[1] "======="
     flightno origin dest carrier
                                          date dep_time delay
1898
          944
                  LAX
                       ORD
                                UA 2008-01-01
                                                    700
                                                             1
1831
          110
                  LAX
                       ORD
                                UA 2008-01-01
                                                   1005
                                                             9
                       ORD
1957
           88
                  LAX
                                AA 2008-01-01
                                                    853
                                                            11
1985
          764
                  LAX ORD
                                AA 2008-01-01
                                                    558
                                                            11
                  LAX
                       ORD
                                UA 2008-01-01
                                                    856
                                                            12
1802
          106
                                                            12
2070
         2276
                 LAX
                       ORD
                                AA 2008-01-01
                                                    631
2032
         1372
                  LAX
                       ORD
                                AA 2008-01-01
                                                   1106
                                                            70
                  LAX
2055
         1740
                       ORD
                                AA 2008-01-01
                                                    217
                                                           161
[1] ""
[1] "ORD -> JFK Flights"
[1] "======="
     flightno origin dest carrier
                                          date dep_time delay
2135
          918
                 ORD
                       JFK
                                B6 2008-01-03
                                                   1853
                                                             0
1743
                       JFK
                                                             2
         5366
                 ORD
                                OH 2008-01-03
                                                   1736
2133
                 ORD
                       JFK
                                B6 2008-01-03
                                                             5
          908
                                                   1208
2134
          916
                 ORD
                       JFK
                                B6 2008-01-03
                                                   1603
                                                            10
2103
         2352
                 ORD
                       JFK
                                AA 2008-01-03
                                                   1708
                                                            18
1927
         4138
                 ORD
                       JFK
                                MQ 2008-01-03
                                                   1425
                                                            28
1744
         5466
                 ORD
                       JFK
                                OH 2008-01-03
                                                   1335
                                                           145
[1] ""
```