GEOMETRÍA DIFERENCIAL: GEOMETRÍA GAUSSIANA

6 de diciembre de 2017

Ricardo Stuardo T.

Índice general

1.	Cur	vas
	1.1.	Concepto de Curva
		1.1.1. Parametrización Regular
		1.1.2. Curvas Regulares
		1.1.3. Longitud de Arco
		1.1.4. Parametrización Natural
	1.2.	Curvatura y Torsión
	1.3.	Teoría de las Curvas
2.	Sup	erficies
	2.1.	Concepto de Superficie
		Formas Fundamentales
		2.2.1. Primera Forma Fundamental
		2.2.2. Segunda Forma Fundamental
	2.3.	Teoría de Superfices
	2.4.	Geometria Intrínseca

"Pure mathematics is, in its way, the poetry of logical ideas." Albert Einstein.

Capítulo 1

Curvas

1.1. Concepto de Curva

Una curva es un mapeo diferenciable desde un conjunto abierto I de $\mathbb R$ a una región $\mathcal C$ de $\mathbb R^3$:

$$M:I\subset\mathbb{R}\longrightarrow\mathcal{C}\subset\mathbb{R}^3$$

$$t\longmapsto x^i=x^i(t) \quad ,i=1,2,3$$

Figura 1.1: Idea de Curvas

El punto $t \in \mathbb{R}$ es mapeado en el punto $P \in \mathcal{C}$. La imagen de I de \mathbb{R} es la linea roja mostrada en \mathcal{C} , y la linea azul representa el mapeo de I en \mathcal{C} .

Así tenemos que uno asocia cada pundo de \mathbb{R} , con un punto en \mathcal{C} , el cual es llamado el punto imagen de t, El conjunto de todos los puntos imagenes es la noción ordinaria de curva. Esta definición asocia a cada punto de \mathcal{C} un valor de t, es decir, tenemos una curva parametrizada con un parámetro t:

$$\mathcal{C} = \left\{ \mathbf{x}(t) \in \mathbb{R}^3 : t \in I \right\}$$

Donde se dice que (\mathbf{x}, I) es una representación paramétrica de \mathcal{C} , y a t se le llama parámetro de la curva .

Cuando pedimos que sea un mapeo diferenciable, queremos decir que las coordenadas de los puntos imagenes ($x^i=x^i(t)$) son funciones diferenciables. Así una curva $\mathcal C$ queda descrita por las ecuaciones:

$$x^i = x^i(t)$$

o bien

$$\mathbf{x} = \mathbf{x}(t)$$

1.1.1. Parametrización Regular

Sea una función vectorial:

$$x^i = x^i(t)$$
 , $t \in I$

Se dice que es una representación paramétrica regular de parametro t si se satisfacen las siguientes propiedades:

- $x^i(t)$ es de clase C^1 en I.
- $\frac{dx^i}{dt} = x'^i \neq 0$ para todo t en I (que es equivalente a $|\mathbf{x}'| \neq 0$).

Una representación paramétrica regular, puede poseer puntos multiples, es decir, pueden existir t_1 y t_2 , tal que $t_1 \neq t_2$ para los cuales $x^i(t_1) = x^i(t_2)$. Sin embargo, localmente, esto no ocurre.

1.1.2. Curvas Regulares

Una función numérica $t=t(\theta)$ en un intervalo I_{θ} es un cambio admisible de parámetro si:

- $t = t(\theta)$ es de clase C^1 en I_{theta} .
- $\frac{dt}{d\theta} \neq 0$ para todo θ en I_{θ} .

Teorema: Si $t=t(\theta)$ representa un cambio admisible de parámetro en I_{θ} , entonces :

- $t = t(\theta)$ es una aplicación inyectiva de I_{theta} en un intervalo $I_t = t(I_{\theta})$
- La función inversa $\theta = \theta(t)$ es a su vez un cambio admisible de parámetro en I_t

Notemos que, $x^i = x^i(t)$ determina unicamente una curva \mathcal{C} que consta de todas las representaciones que se relacionan con ella a partir de un cambio admisible de parámetro. Sin embargo, puede ocurrir que la parametrización $x^i = x^i(t)$ tenga una propiedad que no sea neesariamente una propiedad de la curva. Por otro lado, las propiedades de la curva deben ser comúnes a todas las parametrizaciones, es decir, las propiedades de la curva son independientes del parámetro.

Un ejemplo de esto son las llamadas curvas simples, que corresponde a una curva regular sin puntos multiples.

1.1.3. Longitud de Arco

Sea $I = (a, b) \in \mathbb{R}$ un intervalo abierto, y sea $\mathcal{C} : I \longrightarrow \mathbb{R}^3$ una curva parametrizada con parámetro t ($x^i = x^i(t)$). La longitud de arco de la curva desde $\mathbf{x}(t_0)$ a $\mathbf{x}(t)$ es:

$$s(t) = \int_{t_0}^{t} \left| \frac{d\mathbf{x}}{dt'} \right| dt' = \int_{t_0}^{t} \sqrt{\left(\frac{dx^1}{dt'}\right)^2 + \left(\frac{dx^2}{dt'}\right)^2 + \left(\frac{dx^3}{dt'}\right)^2} dt'$$

1.1.4. Parametrización Natural

Del teorema fundamenteal del cálculo, sabemos que:

$$\frac{ds}{dt} = \frac{d}{dt} \int_{t_0}^{t} \left| \frac{d\mathbf{x}}{dt'} \right| dt' = \left| \frac{d\mathbf{x}}{dt} \right|$$

Donde $x^i = x^i(t)$ es una curva parametrizada con parámetro t. Esta curva puede ser parametrizada con parámetro s si y solo si s = s(t) es un cambio admisible de parámetro en I. De acuerdo con el teorema recién planteado, s = s(t) será un cambio admisible de parámetro en I si:

- s = s(t) es de clase C^1 en I.
- $\frac{ds}{dt} \neq 0$ para todo t en I.

Ya que $x^i = x^i(t)$ es una parametrización regular, tenemos que $\left|\frac{d\mathbf{x}}{dt}\right| \neq 0$ y de esto vemos que $\frac{ds}{dt} \neq 0$. Luego, si s(t) es de clase C^m en I, tenemos que s = s(t) es un cambio admisible de parámetro, por lo que, **la longitud de arco** s **puede ser usada como parámetro a lo largo de la curva**. A s se le llama parámetro natural, y a $x^i = x^i(s)$ se le llama parametrización natural.

Ejemplo: Encontremos el parámetro natural, y reparametrizemos la siguiente curva:

$$\mathbf{x} = (e^t \cos(t))\hat{i} + (e^t \sin(t))\hat{j} + e^t \hat{k} \qquad , \cos - \infty < t < \infty$$

De donde:

$$x^{1} = e^{t} \cos(t)$$
$$x^{2} = e^{t} \sin(t)$$
$$x^{3} = e^{t}$$

Veamos que:

$$\frac{dx^1}{dt} = \frac{d}{dt} \left(e^t \cos(t) \right) = e^t \cos(t) - e^t \sin(t)$$

$$\frac{dx^2}{dt} = \frac{d}{dt} \left(e^t \sin(t) \right) = e^t \sin(t) + e^t \cos(t)$$

$$\frac{dx^3}{dt} = \frac{d}{dt} \left(e^t \right) = e^t$$

Por lo que:

$$\begin{split} \left| \frac{d\mathbf{x}}{dt} \right| &= \sqrt{\left(\frac{dx^1}{dt} \right)^2 + \left(\frac{dx^2}{dt} \right)^2 + \left(\frac{dx^3}{dt} \right)^2} \\ &= \sqrt{\left(e^t \cos(t) - e^t \sin(t) \right)^2 + \left(e^t \sin(t) + e^t \cos(t) \right)^2 + \left(e^t \right)^2} \\ &= \sqrt{e^{2t} \cos^2(t) - 2e^{2t} \cos(t) \sin(t) + e^{2t} \sin^2(t) + e^{2t} \sin^2(t) + 2e^{2t} \cos(t) \sin(t) + e^{2t} \cos^2(t) + e^{2t}} \\ &= \sqrt{3}e^{2t} \\ &= \sqrt{3}e^t \end{split}$$

Luego, para encontrar s integramos $\left|\frac{d\mathbf{x}}{dt}\right|$ entre t_0 y t:

$$s = \int_{t_0}^t \left| \frac{d\mathbf{x}}{dt'} \right| dt'$$
$$= \int_{t_0}^t \sqrt{3}e^{t'}dt'$$
$$= \sqrt{3}e^t \Big|_{t_0}^t$$
$$= \sqrt{3} \left(e^t - e^{t_0} \right)$$

Despejando t, obtenemos:

$$t = \ln\left(\frac{s}{\sqrt{3}} + e^{t_0}\right)$$
 , con $-\sqrt{3}e^{t_0} < s < \infty$

Introduciendo s como parámetro obtenemos:

$$x^{1} = e^{\left(\frac{s}{\sqrt{3}} + e^{t_{0}}\right)} \cos\left(\ln\left(\frac{s}{\sqrt{3}} + e^{t_{0}}\right)\right)$$
$$x^{2} = \left(e^{\left(\frac{s}{\sqrt{3}} + e^{t_{0}}\right)} \sin\left(\ln\left(\frac{s}{\sqrt{3}} + e^{t_{0}}\right)\right)$$
$$x^{3} = e^{\left(\frac{s}{\sqrt{3}} + e^{t_{0}}\right)}$$

Del ejemplo, vemos que, pareciera que el parámetro depende del punto del cual integremos el la longitud de la curva (t_0) , lo que nos hace pensar, ¿Habrá más de un parámetro natural para una misma curva?. La respuesta esta en el siguiente teorema:

Teorema: Si $x^i = x^i(s)$ es una representación natural de \mathcal{C} , entonces:

■ Si $x^i = x^{*i}(s^*)$ es cualquier otro tipo de representación natural de \mathcal{C} , entonces: $s = \pm s^* + \text{constante}$.

Volviendo al ejemplo anterior, teniamos que el paroámetro (o la parametrización) dependian de $e^{t_0} = c$ con c una constante positiva, de acuerdo al teorema anterior, esto es completamente normal, ya que depende en forma aditiva de esta constante, luego, podemos definir un $s^* = s - c'$ para eliminar la constante aditiva.

Desde ahora en adelante, usaremos la siguente notación:

$$\dot{\mathbf{x}} = \frac{d\mathbf{x}}{ds} \quad , \quad \ddot{\mathbf{x}} = \frac{d^2\mathbf{x}}{ds^2} \quad , \quad \mathbf{x}' = \frac{d\mathbf{x}}{dt} \quad , \quad \mathbf{x}'' = \frac{d^2\mathbf{x}}{dt^2}$$

- 1.2. Curvatura y Torsión
- 1.2.1. Vector Unitario Tangente
- 1.3. Teoría de las Curvas

Capítulo 2

Superficies

- 2.1. Concepto de Superficie
- 2.2. Formas Fundamentales
- 2.2.1. Primera Forma Fundamental
- 2.2.2. Segunda Forma Fundamental
- 2.3. Teoría de Superfices
- 2.4. Geometria Intrínseca