Implementação e Avaliação do Processador "FEMTOMIPS"

PCS 2405 Adriano Dennani Ian Elmôr Lang João Henrique Kersul Faria Mateus Fonseca

Julho de 2016

Sumário

1	Inti	Introdução									
	1.1	Arquit	tetura conjunto de instruções								
	1.2	Visão	geral do Projeto								
		1.2.1	Estrutura básica								
		1.2.2	A unidade de Forwarding								
			Tratamento de Hazards de Dado								
		1.2.4	Tratamento de Hazards de Dado								
		1.2.5	Lógica de interrupção								
			Lógica para simulação e coleta de dados								

1 Introdução

1.1 Arquitetura conjunto de instruções

1.2 Visão geral do Projeto

Elabora-se a seguir uma visão de alto nível dos diferentes blocos que comporão o projeto e suas conexões, construída incrementalmente à medida que são levadas em consideração as funcionalidades exigidas do FEMTOMIPS (organização em pipeline, tratamento de hazards, interrupções...).

Tabela 1: My caption

$31{\sim}26$	$25{\sim}21$	$20{\sim}16$	$15 \sim 11$	$10{\sim}06$	$05{\sim}00$
Op	Rs	Rt	Rd	Shamt	Func

Tabela 2: Instruções Lógico Aritméticas

	op	funct	operação
add	0x00	0x20	$[GPR[rd]] \le signed(GRP[rs]) + signed(GPR[rt])$
slt	0x00	0x1A	Se $(GPR[rs] < GPR[rt])$ então $GPR[rd] = 1$ se não $GPR[rd] = 0$
jr	0x00	0x08	$PC \le GPR[rs]$
addu	0x00	0x21	$[GPR[rd] \le unsigned(GRP[rs]) + unsigned(GPR[rt])$
sll	0×00	0x00	$GPR[rd] \le GPR[rt]$ «shamt

Tabela 3: My caption

$31{\sim}26$	$25{\sim}21$	$20{\sim}16$	$15{\sim}00$
Op	Rs	Rt	Endereço/Deslocamento

Tabela 4: Instruções com campo imediato

	op	operação
lw	0x23	$\mathrm{GPR}[\mathrm{rt}] = \mathrm{Mem}[\mathrm{GPR}[\mathrm{rs}] + \mathrm{Desl}]$
\mathbf{sw}	0x2B	Mem[GPR[rt]+Desl] = GPR[rs]
addi	0x08	$\mathrm{GPR}[\mathrm{rt}] = \mathrm{GPR}[\mathrm{rs}] + \mathrm{Imed}$
beq	0x04	Se GPR[rs] = GPR[rt] então PC = PC + 4*Desl
bne	0x05	Se $GPR[rs] != GPR[rt]$ então $PC = PC + 4*Desl$
slti	0x0A	$\operatorname{Se}\left(\operatorname{GPR}[\operatorname{rs}] < \operatorname{Imed}\right) \operatorname{ent ilde{ao}} \operatorname{GPR}[\operatorname{rt}] = 1 \operatorname{se}$
2101	UXUA	não $\mathrm{GPR}[\mathrm{rt}] = 0$

Tabela 5: Instruções de desvio Incondicional

	op	operação
j	0x02	PC = PC(31:28) & (4*Desl)
jal	0x03	GPR[7] = PC; PC = PC(31:28) & (4*Desl)

1.2.1 Estrutura básica

Figura 1: Os blocos básicos de uma implementação em pipeline da arquitetura do FEMTOMIPS

Uma versão idealizada dos blocos componentes da organização em pipeline do FEMTOMIPS é apresentada na **Figura 1**.

No diagrama:

- BI/DI, DI/EI, EI/AM, AM/ER são registradores: PC armazena o endereço de leitura de comandos, enquanto que os demais armazenam o resultado de cada estágio do pipeline e o oferecem ao estágio seguinte.
- Busca Instrução, Decodifica Instrução, Executa Instrução, Acessa Memória, Escreve em Registrador são blocos combinatórios que implement
- Os caches
- 1.2.2 A unidade de Forwarding
- 1.2.3 Tratamento de Hazards de Dado
- 1.2.4 Tratamento de Hazards de Dado
- 1.2.5 Lógica de interrupção
- 1.2.6 Lógica para simulação e coleta de dados

Figura 2: A unidade de Forwarding no contexto do FEMTOMIPS

Figura 3: A unidade de Tratamento de Hazards no contexto do FEMTO-MIPS

Figura 4: Ligações adicionais para tratamento dos hazards de controle FEMTOMIPS

Figura 5: O Tratamento de Interrupção no contexto do FEMTOMIPS

Figura 6: Estruturas adicionais para simulação e coleta de dados do FEMTOMIPS