

Prof. Flávio Pandur – FIPP / Unoeste

ENTRADAS COM SINAL EM ABERTO

Quando o pino é configurado como entrada, ele assume uma resistência elétrica muito alta para não interferir no sinal que está sendo aplicado

ENTRADAS COM SINAL EM ABERTO

Devido a essa característica, quando não se tem nenhum sinal aplicado ao pino de entrada, o nível de tensão presente nesse pino fica variando

ENTRADAS COM SINAL EM ABERTO

Para evitar isso, há uma técnica que utiliza resistores para garantir um nível lógico estável na porta de entrada

ENTRADAS COM SINAL EM ABERTO

Prof. Flávio Pandur - FIPP / Unoeste

PWM

Algumas saídas podem ser configuradas para operar como PWM (*Pulse Width Modulation -* Modulação de Largura de Pulso)

PWM

Nessa técnica, um sinal digital é modulado para codificar um nível de sinal analógico para que atenda os requisitos de uma aplicação

PWM

PWM

Considerando que este sinais digitais sejam de 5 V, teríamos os seguintes valores efetivos aplicados a um dispositivo que estaria sendo controlado pela porta de saída:

PWM

Prof. Flávio Pandur – FIPP / Unoeste

PWM

Variando a largura do pulso pode-se então controlar a tensão média aplicada a um dispositivo

PWM

Considere o seguinte exemplo: liga-se um LED na saída PWM de um microcontrolador e ajusta-se o sinal para ficar 50% do tempo em nível baixo e 50% do tempo em nível alto.

PWM

Considerando que a frequência desse sinal seja de 1 Hz, qual o efeito prático que será observado no LED ?

PWM

Para evitar situações como do exemplo anterior deve-se especificar um PWM de forma correta para uma dada aplicação, considerando os seguintes parâmetros:

PWM

Período do sinal: diretamente associado com a frequência do sinal. É expresso em segundos, sendo obtido de 1 / frequência (Hz)

PWM

Exemplo: sinal com frequência de 400 Hz. Qual o período desse sinal ?

$$\frac{1}{400}$$
 = 0,0025 Seg = 2,5 mS

PWM

Duty Cycle (ciclo de trabalho): indica a proporção entre o período total do sinal e o período que o sinal fica na região "ativado", normalmente em nível alto. É expresso em %

PWM

$$DutyCycle = rac{ extstyle Tempo sinal ativo}{ extstyle Período sinal} imes 100$$

PWM

Exemplo: em um sinal digital, a duração do pulso ativo é de 1 μ S, com período do sinal sendo 4 μ S. Qual o *Duty Cycle* deste sinal ?

$$DutyCycle = \frac{\text{Tempo sinal ativo}}{\text{Periodo sinal}} \times 100 \Rightarrow \frac{1 \mu S}{4 \mu S} \times 100 = 0,25 \times 100 = 25 \%$$

PWM

Exemplo: em um sinal digital de 50 KHz, a duração do pulso ativo é de 15 μ S. Qual o *Duty Cycle* deste sinal ?

$$DutyCycle = \frac{\text{Tempo sinal ativo}}{\text{Periodo sinal}} = \text{Tempo sinal ativo}. \frac{1}{\text{Periodo sinal}} = \text{Tempo sinal ativo}.$$

PWM

$$DutyCycle = \frac{{
m Tempo\ sinal\ ativo}}{{
m Periodo\ sinal}} \ \ {
m x\ 100}$$

Ou

DutyCycle = Tempo sinal ativo . Frequência x 100

PWM

Exemplo: em um sinal digital de 50 KHz, a duração do pulso ativo é de 15 μ S. Qual o *Duty Cycle* deste sinal ?

DutyCycle = Tempo sinal ativo . Frequência x 100

 $0,000015 \times 50.000 \times 100 = 75\%$

PWM

A frequência do PWM deve ser alta o suficiente para não afetar o funcionamento do equipamento a ser controlado

PWM

Valores típicos em algumas aplicações:

- Controle velocidade motores: dezenas de KHz
- Controle de luminosidade: centenas de Hz
- Amplificadores de áudio: centenas de Hz

PWM

Vantagem do PWM em relação a um circuito de controle tradicional analógico:

- Maior eficiência energética
- Menor temperatura de trabalho
- Circuitos mais simples