ATIS Chatbot

Laconia Team Project

Muqtadir A, Nikhil Madduru, Karthik Mikkelineni May 2025

Table of Contents

- Project Overview
- Key Features
- Technology Stack
- Dataset Preparation
- Model Development and LangChain Implementation

- · Evaluation Metrics
- Training Plots
- Challenges Faced
- Next Steps
- Application Images
- Conclusion

Project Overview

Project Overview

- **Objective**: Develop an intelligent chatbot for airline travel queries using the ATIS dataset.
- Achievements: LangChain-based conversational flow implemented, Flask API and UI added.
- · Repo Link 🔗

Key Features

Key Features

- Intent classification (8 intents: abbreviation, aircraft, airfare, airline, flight, flight_time, ground_service, quantity).
- Entity extraction (cities, dates, airlines).
- · Context-aware responses using LangChain.
- Modern Flask-based UI and server hosting, with aligned chat bubbles and "Clear Chat" functionality.

Technology Stack

Technology Stack

- Python 3.12.
- DistilBERT (intent classification).
- · Flan-T5-Base and Flan-T5-XL with LoRA.
- LangChain with langchain-huggingface (conversational flow, LLM integration).
- Flask (server hosting and UI).
- Supporting Libraries: transformers, peft, spacy, nltk, sklearn, pandas, flask-session, sentencepiece.

Dataset Preparation

Dataset Preparation

- Source: ATIS dataset (atis_train.csv, atis_test.csv).
- Intents: 8 intents (e.g., flight, airfare, ground_service).
- Entities: Cities, dates, airlines.
- Processing: Handled missing data, subsampled for efficiency.

LangChain Implementation

Model Development and

Model Development and LangChain Implementation

- · DistilBERT Intent Classifier: Achieved 99.25% accuracy.
- Flan-T5 Models: Fine-tuned with LoRA for response generation (Flan-T5-Base and Flan-T5-XL).
- LangChain Framework: Conversational flow and LLM integration using HuggingFacePipeline.
- Context Retention: Maintains conversation context across multiple turns.

Evaluation Metrics

Evaluation Metrics: Base Classifier (Logistic Regression)

The base classifier (Logistic Regression) serves as a baseline.

Metric	Value
Accuracy	96.49%
Precision (weighted)	96.14%
Recall (weighted)	96.49%
F1-score (weighted)	96.16%

Evaluation Metrics: Tuned DistilBERT Classifier

The tuned DistilBERT model was fine-tuned for intent classification.

Metric	Value
Accuracy	99.25%
Precision (weighted)	99.55%
Recall (weighted)	99.25%
F1-score (weighted)	99.35%

Comparison: Base vs. Fine-Tuned DistilBERT Classifier

Comparison of core metrics for intent classification:

Metric	Logistic Regression	DistilBERT	Difference
Accuracy	96.49%	99.25%	+2.76%
F1-score (weighted)	96.16%	99.35%	+3.19%

Training Plots

DistilBERT Loss Plots

Loss plots provide insight into the DistilBERT intent classifier training process.

· Training Loss Plot:

Figure 1: Training Loss plot

· Eval Loss Plot:

Figure 2: Eval Loss plot

Lora Training Plots

LoRA (Low-Rank Adaptation) was used to fine-tune Flan-T5 models for response generation.

· Flan-T5-Base:

Figure 3: CPU Loss plot

· Flan-T5-XL:

Figure 4: GPU Loss plot

Challenges Faced

Challenges Faced: Functional Issues

- City Order Swapping: Misinterpreted departure and destination cities in queries.
- **Context Retention Issues**: Difficulty retaining specific entities after invalid inputs.
- Intent Misclassification: Occasional confusion between similar intents.

Challenges Faced: Rasa Incompatibility

- Initial Approach: Project initially used Rasa 3.6.21 for conversational flows.
- · Incompatibility Issues:
 - · Dependency conflicts with torch, numpy, and other libraries.
 - Challenges integrating Rasa with python and libraries and with intent classifier
- **Solution**: Switched to LangChain for better compatibility and flexibility with LLMs.

Next Steps

Next Steps

- · Test intent and entity accuracy.
- Enhance Flask UI (e.g., user feedback).
- Develop a robust summarizer (e.g., for flight details).
- Improve NER mappings (e.g., for better entity extraction).

Application Images

Application Screenshots

Figure 5: Chatbot Interface

Working Test Samples for Multi-Turn Conversation

· Sample 1: Flight Booking

- User: I want to fly from Boston to Denver tomorrow.
- · User: Morning flight, before 9 AM.
- · User: Business class available?
- · User: Any nonstop flights?

· Sample 2: Fare Inquiry with Ground Service

- User: Cheapest airfare from Boston to Denver next week.
- · User: Any deals for economy class?
- · User: Ground transportation options in Denver airport.

Application Screenshots (Cont.)

Figure 6: Multi-Turn Interaction

Conclusion

Conclusion

- **Summary**: Built a robust chatbot with LangChain, achieving 99.25% intent classification accuracy.
- Future: Continue testing, source more dialogues for fine tuning, enhance UI features.