

データシート: SHT3x-DIS

温湿度センサー

- ・校正、線形化および温度補償を完全に施した 測定値をデジタル信号で出力
- I²C に対応したデジタル通信インターフェイス 最大通信速度は 1MHz

I²C アドレスの選択設定が可能(2 種類)

広範囲な電源電圧: 2.4V~5.5V

標準測定精度:±1.5%RH および±0.2℃

(SHT35 の場合)

極めて短い起動時間および測定時間

・超小型の 8 ピン DFN パッケージ

製品概要

SHT3x-DIS は当社の次世代温湿度センサーです。当社温湿度センサーの新しいプラットフォームの中核を成す新型 CMOSens®センサーチップを採用し、これにより当社従来品よりも動作性能および信頼性がさらに高くなり、測定精度スペックも改善されています。例えば動作性能については、信号処理能力が強化されて最大通信速度は 1 MHz となり、2 種類の I²C アドレスを選択設定することが可能になりました。

また外装形状は超小型 DFN パッケージで、実装面積は 2.5 x 2.5 mm²、高さは 0.9 mm です。さらに電源電圧も 2.4V から 5.5V まで広範囲にわたって対応可能です。従いまして多種多様な用途に幅広くご使用いただくことが可能です。SHT3x-DIS は、湿度センサー業界をリーディングしている当社が 15 年間にわたって蓄積した知見を駆使して製品化したセンサーです。

当社 CMOSens®技術の利点

- 高い信頼性と長期の測定精度安定性
- 15年以上の実績をもつ業界で実証済みの技術
- 量産性が高い部品設計が可能
- 工程能力が高い
- 高 SN 比(信号雑音比)

本書の目次

1	センサー機能の性能	2
2	仕様	6
3	各端子の配置および機能	8
4	動作および通信	9
5	外装パッケージ	15
6	出荷包装	17
7	品質	18
8	発注に関するご案内	18

図 1 SHT3x-DIS の機能ブロック図。 温湿度の測定データは、当社工場で所定メモリーに書き込んだ校正データを基に校正され、さらに線形化および温度・電源電圧に対する補償が施されます。

1 センサー機能の性能

相対湿度センサー機能の仕様

パラメータ	条件	値	単位
SHT30 の測定精度許容差 1	標準値	±3	%RH
311130 00 例 定相及計合左	最大値	図 2 参照	-
SHT31 の測定精度許容差 1	標準値	±2	%RH
3月13日の側足相及計合左	最大値	図3参照	-
SHT35 の測定精度許容差 1	標準値	±1.5	%RH
30133 切測定相及計合左	最大値	図4参照	-
	測定コマンドにおける繰返し精度の設定レベル:低	0.25	%RH
繰返し精度 ²	測定コマンドにおける繰返し精度の設定レベル:中	0.15	%RH
	測定コマンドにおける繰返し精度の設定レベル:高	0.10	%RH
分解能	標準値	0.01	%RH
ヒステリシス	25°C の場合	±0.8	%RH
規定範囲 3	拡大範囲 4	0 ~ 100	%RH
応答時間 5	τ _{63%}	8 6	S
長期ドリフト	標準値 7	<0.25	%RH/ 年

表 1 相対湿度センサー機能の仕様

温度センサー機能の仕様

パラメータ	条件	值	単位
SHT30 の測定精度許容差 1	温度の標準条件範囲内(0~65°C)	±0.3	°C
SHT31 の測定精度許容差 ¹	温度の標準条件範囲内(-40~90°C)	±0.3	°C
SHT35 の測定精度許容差 1	温度の標準条件範囲内(-40~90°C)	±0.2	°C
	測定コマンドにおける繰返し精度設定レベル:低	0.24	°C
繰返し精度 2	測定コマンドにおける繰返し精度設定レベル:中	0.12	°C
	測定コマンドにおける繰返し精度設定レベル:高	0.06	°C
分解能	標準値	0.015	°C
規定範囲	-	-40~125	°C
応答時間 8	τ _{63%}	>2	S
長期ドリフト	最大値	<0.03	°C/ 年

表 2 温度センサー機能の仕様

Version 3 - 2016 年 8 月 www.sensirion.com 2/20

標準および最大許容差の詳細については、当社技術文書の"Sensirion Humidity Sensor Specification Statement"をご参照ください。

湿度および温度の推奨動作範囲の詳細については、本書の1.1項を参照ください。

ステップ変化に対して 63%まで追従するのに要する時間です(25℃、空気流速 1 m/s)。実際の時間は、センサーの設置設計に依存します。

応答時間短縮(ART)機能がある周期的連続測定コマンド(本文書の47項参照)を使うと、応答時間を半分に短縮化させることが可能です。 温度と相対湿度の標準動作範囲での動作時における標準値(本書の 1.1 項参照)。最大値は 0.5%RH/年未満。溶媒蒸気やガス放出性のあるテ

ープ、粘着剤、包装材など、湿度センサーの汚染要因物質がある環境ではより高いドリフト値を示すことがあります。さらに詳しくは当社技術文書の"Handling Instructions"をご参照ください。

温度に関する応答時間は、最終的な使用形態おけるセンサーへの熱の伝わり方(伝導、対流および放射)、センサーの熱的接触面積および センサー周囲の環境設計に大きく依存します。

湿度センサー性能に関するグラフ

図2 SHT30の温度25°Cにおける相対湿度の測定精度許容差

図3 SHT31の温度25°Cにおける相対湿度の測定精度許容差

図4 SHT35の温度25°Cにおける相対湿度の測定精度許容差

図5 SHT30の温度範囲0~80°Cにおける相対湿度の測定精度 許容差

図6 SHT31の温度範囲0~80°Cにおける相対湿度の測定精度 許容差

SHT35

図7 SHT35の温度範囲0~80°Cにおける相対湿度の測定精度 許容差

温度センサー性能に関するグラフ

図8 SHT30の温度の測定精度許容差

図9 SHT31の温度の測定精度許容差

SHT35

図10 SHT35の温度の測定精度許容差

1.1 推奨動作条件

本センサーは、温度および湿度の標準範囲として推奨される 5℃~60℃および 20%RH~80%RH で動作させた場合に最も性能を発揮します。標準範囲外の条件、特に高湿度に長期間曝露した場合、相対湿度測定値の一時的なオフセット(例:80%RH 以上が続いた場合は 60 時間後に+3%RH)が生じることがあります。標準温湿度範囲に戻った後、センサーは徐々にそのまま校正状態を回復します。極端な条件に曝露する時間が長くなると経時劣化が加速することがあります。

湿度センサー機能の安定した動作を確保するためには、揮発性有機化合物への曝露も避ける必要があり、当社技術文書の"Assembly of SMD Packages for SHTxx and STSxx Sensirion Humidity and Temperature Sensors"の"Storage Conditions and Handling Instructions"に記載する条件を守る必要があります。また、これは輸送中および製造中の環境だけでなく、本センサーの市場運用中の環境にも適用されることにもご留意ください。

2 仕様

2.1 電気的仕様

パラメータ	記号	条件	最小値	標準値	最大値	単位	備考
電源電圧	V_{DD}		2.4	3.3	5.5	٧	
パワーオンリセット (POR) 起動と電源オフ の閾値電圧	V _{POR}		2.1	2.3	2.4	V	
電源電圧の 変動スルーレート	VDDslew		-	-	20	V/ms	電源電圧の VDDmin とVDDmin とVDDmax の間での変動は 当該スルーレートよ り遅くなければならない。これより早いと リセットに至る場合 がある。
	I _{DD}	待機状態時 (単発測定モード中)	-	0.2	2.0	μΑ	単発測定モード中に センサーが測定して いない時の平均電流
		待機状態時 (周期的連続測定モード中)	-	45	70	μА	周期的連続測定モー ド中にセンサーが測 定していない時の平 均電流
供給電流		測定動作時	-	800	1,500	μΑ	センサーが測定中の 時の平均消費電流
		平均値	-	2	-	μА	平均消費電流(単発測 定モードで、繰返し精 度レベル設定を最も 低くした測定コマン ドにより毎秒1回測定 のとき)
アラート端子の 駆動電流	Іон		0.8xV _{DD}	1.5xV _{DD}	2.1xV _{DD}	mA	本文書の 3.5 項もご 参照ください。
ヒーター電力	P _{Heater}	ヒーター使用時	4.5	-	33	mW	電源電圧に依存

表 3 電気的仕様(温度条件が 25°C の場合)

2.2 動作に関する時間的仕様

パラメータ	記号	条件	最小値	標準値	最大値	単位	備考
パワーオンリセットの 所要時間	T PU	電源電圧の変化による ハードリセットを掛けた後、 V _{DD} ≥V _{POR} であること	1	0.5	1	ms	電源電圧 V _{DD} が V _{POR} に達してセンサーが 待機状態になるまで の時間
ソフトリセットの 所要時間	t _{SR}	ソフトリセット後	-	0.5	1	ms	センサーがソフトリ セットコマンドへの ACK を返して待機状態 に入るまでの時間
リセットパルスの 時間幅	t _{RESETN}		1	1	1	μs	本文書の 3.6 項参照
	TAMEAGI	測定コマンドでの 繰返し精度設定レベル:低	-	2.5	4	ms	測定コマンドにおけ る繰返し精度の設定
測定時間	_	測定コマンドでの 繰返し精度設定レベル:中	-	4.5	6	ms	レベル (3 水準) に応 じて、測定時間、ノイ
	_	測定コマンドでの 繰返し精度設定レベル:高	-	12.5	15	ms	ズおよび消費電力の 大きさは変わります。

表 4 動作に関する時間的仕様(温度が-40°C~125°C 、電源電圧 V_{DD} が 2.4V~5.5V の場合)

2.3 最大および最小絶対定格

本センサーへのストレスレベルが表 5 に示す値を超える場合、本センサーに恒久的な損傷が生じることがあります。あるいは本センサーの信頼性が影響を受ける可能性があります。これらはあくまで定格値で、これらの条件下におけるデバイスの機能的動作を保証するものではありません。

パラメータ	定格	単位
電源電圧 VdD	-0.3 ~ 6	V
以下の各端子への最大印加電圧 端子 1(SDA); 端子 2(ADDR); 端子 3(ALERT); 端子 4(SCL); 端子 6(nRESET)	-0.3~V _{DD} +0.3	V
端子毎の入力電流(各端子共通)	±100	mA
動作温度範囲	-40 ~ 125	°C
保存温度範囲	-40 ~ 150	°C
ESD 耐量/ HBM (人体モデル) ⁹	4	kV
ESD 耐量/CDM (デバイス帯電モデル) ¹⁰	750	V

表 5 最大および最小定格(各最大および最小値の適用は短時間に限ります)

⁹ ANSI/ESDA/JEDEC JS-001-2014, AEC-Q100-002 準拠。

¹⁰ ANSI/ESD S5.3.1-2009,AEC-Q100-011 準拠。

3 各端子の配置および機能

本センサーには8個の端子があり、超小型 DFN パッケージにおいて表6に示すように配置されています。

端子 番号	名称	端子の機能概要
1	SDA	シリアルデータの入出力端子
2	ADDR	I ² C アドレス選択用入力端子:信号レベルが HIGH または LOW 状態になるように接続(未接 続状態は禁止)
3	ALERT	アラート信号の出力端子:当該信号を利用しない場合は未接続にすることが必要
4	SCL	シリアルクロック信号の入出力端子
5	VDD	電源電圧の印加端子
6	nRESET	リセット信号の入力端子: Low にするとリセット開始 不使用の場合は未接続にすることを推奨
7	R	電気的機能なし:接地が必要
8	VSS	グランド端子

表 6 端子の配置(上面からの透視図)。点線部は底面 から見える端子とダイパッド。ダイパッドは内部で VSS 端子に接続されています。

3.1 VDD 端子および VSS 端子(電源用端子)

本センサーの電気的仕様は表3に示されているとおりです。VDD 端子と VSS 端子の間は100nFのコンデンサでデカップリングする必要があります。また当該コンデンサは、可能な限り本センサーの近くに設置する必要があります。標準的なアプリケーション回路は図11に示すとおりです。

3.2 SCL 端子および SDA 端子(通信用端子)

SCL 端子で送受信するシリアルクロック信号は、マイクロコントローラと本センサーとの通信の同期用に使われます。クロック周波数は 0Hz~1,000kHzの間で任意に選べます。本センサーは I²C 仕様書 ¹¹ に基づくクロックストレッチコマンドにも対応しています。

SDA 端子は本センサーのデータ送受信に使われます。データ通信を確実に行うためには、I²C 規格に規定されたタイミング仕様に合致させる必要があります。

11 当該仕様書の参照先: http://www.nxp.com/documents/user_manual/UM10204.pdf SCL および SDA 端子部の内部回路は両方ともオー プンドレインで、内部においてダイオード経由で VDD 端子および VSS 端子に接続されています。各 端子には、プルアップ用の外部抵抗を電源ライン に接続する必要があります(図 11 参照)。 |2C バス 上のデバイスが信号レベルを強制的に変えるこ とができるのは、グランドレベル方向のみです。 プルアップ用外部抵抗(例えば 10kΩ)は信号レベ ルを HIGH に引き上げるために必要です。抵抗値 を決めるためには、バスの静電容量と通信周波数 を考慮する必要があります(より詳細は、例えば NXP 社の I²C バス仕様書 ¹¹ の 7.1 項を参照してくだ さい 11)。なお、プルアップ抵抗はマイクロコント ローラの 1/0 回路に備わっている場合があるので ご注意ください。本センサー推奨アプリケーショ ン回路は、図11に示すとおりです。

図 11 標準アプリケーション回路(端子の位置は現物 どおりではないことにご注意ください。実際の位置は 表 6 をご参照ください。)

3.3 ダイパッド(センターパッド)

本センサーのダイパッドは、外装パッケージの裏側中央においてセンターパッドとして露出しています。電気的に VSS 端子と接続されているので、外部への配線接続は必須ではありません。しかし、機械的な理由によりプリント基板にはんだ付けすることを推奨いたします。本センサーの設置設計の詳細については、当社技術文書の"SHTxx Design Guide"をご参照ください。

3.4 ADDR 端子(I²C アドレス選択用端子)

ADDR 端子を適切に配線することにより I²C アドレスの選択設定が可能です(選べるアドレス値え 7 参照)。当該端子は、電源ラインまたはグンドに接続する使い方、あるいは印加電圧レベンを切り替える使い方が可能です。後者の使い方を切り、本センサーの I²C アドレスは動作中でしまり、本センサーの I²C アドレスは動作中でがより、本センサーの I²C アドレスは動作中でがよります。I²C の START コンディションを起こレバトを一連の通信が完了するまでは印かにであります。また、同可能に本センサーを3個以上接続するラインをセンサー毎に個別に設ける必要があります。

なお、I²C 読取り/書込みヘッダの上位 7bit 部分には I²C アドレスが当てられ、最下位ビットはヘッダが読取り用か書込み用で変わります。デフォルトアドレス用の配線は表7および図 11 に示すとおりです。本端子は未配線にすべきではありません。

I ² C アドレス名	I ² C アドレス値 (16 進数表記)	選択設定条件
I ² C アドレス A	0x44 (デフォルト)	ADDR 端子(端子 2) を 接地
I ² C アドレス B	0x45	ADDR 端子(端子 2) を 電源ラインに接続

表 7 120 デバイスアドレスの選択設定条件

3.5 ALERT 端子(アラート発信用端子)

ALERT 端子は、マイクロコントローラの割込み端子に接続して使うことができます。その出力信号は、別途プログラムで設定するアラート発信限界値と相対湿度あるいは温度の測定値との関合は、未接続状態にしておく必要があります。当該端子を使わない場合端と、出力レベルは、アラート発信条件に当ており替わります。その場合の最大駆動負荷は表3を参照ください。なお、HIGH に切り替わります。その場合の最大駆動自満量によっては本センサーが自己の発力を計画を表する可能性があることにご注意ください。この発動は、当該端子の用途をマイクロコントランジを対しまれば防止可能です。当該端子の機能の詳細は当社技術文書の"Alert Mode of SHT3x-DIS"をご参照ください。

3.6 nRESET 端子(リセット用端子)

nRESET 端子は、本センサーにリセットを掛けることができる端子です。リセットを確実に行うためには、1µs 以上の長さのパルス信号を入力する必要があります。当該端子を使わない場合は、未接続状態にしておくことを推奨します。この機能の詳細は、本文書の4章をご参照ください。

4 動作および通信

本センサーが対応している I²C バス動作速度のカテゴリは Fast-mode ですが、速度についてはさらに 1,000kHz まで対応しています。またコマンドを適切に使い分けることにより、クロックストレッチの有効化について選択設定できます。I²C 通信プロトコルの詳細については、NXP 社の I²C バス仕様書 I²をご参照ください。

本センサーのコマンドおよび通信データは 16bit 長で構成されます。さらにこれらは CRC チェックサムで保護され、通信の信頼性向上が図られています。具体的には、本センサーへの 16bit 長のコマンドには 3bit の CRC チェックサムが既に含まれています。本センサーが送受信するデータには、

8bit 長の CRC チェックサムが必ず後続して付随します。

本センサーに対して書込む方向の場合、チェック サムの送信は必須です。本センサーは正しいチェ ックサムを伴ったデータしか受取りません。本セ ンサーから読込む方向の場合、チェックサム照合 の要否はマイクロコントローラに委任されます。

4.1 電源投入および通信開始

本センサーは、電源電圧が表3に規定する閾値電圧 Vporに達した後に起動動作(パワーオンリセット)を開始します。当該閾値電圧に到達後、本センサーには待機状態に入るまでの所定時間 tpu を与える必要があります。待機状態になると、マイクロコントローラからのコマンドを受けることが可能になります。

本センサーとの通信は、処理単位毎に START コンディション(S)で始まり、STOP コンディション(P)で終わります(PC バス仕様書の規定どおり)。STOPコンディションの実行は任意です。本センサーは、起動完了後に測定動作あるいは通信を行っていないときは、省エネルギーのために待機状態へ自動的に入ります。なお、この待機状態を外部操作で制御することはできません。

4.2 測定開始

ひとつの測定通信シーケンスを構成する情報は、START コンディション、I²C 書込み用へッダ(7bit 長のI²C アドレスに書込みビットとして 0 を加えたもの)および 16bit 長の測定コマンドです。本センサーは、当該情報に対して 1byte 毎に正常受信の合図を出します。具体的には、8 番目のクロック(SCL)信号の立下りタイミングの後に、ACK ビットとして SDA 端子の電圧を LOW レベルに引き下げます。表 8 に完全な形の当該シーケンスを示します。

本センサーは測定コマンドを認識すると温度と 相対湿度の測定を始めます。

4.3 単発測定コマンド

本センサーは、単発測定コマンドを受けると、温度と相対湿度の測定をそれぞれ1回行います。各測定データは、送信時にはそれぞれ16bit長のデータとして温度、相対湿度の順に出力されます。また、各測定データの後にはCRCチェックサムが付随します。詳細は44項をご参照ください。

単発測定コマンドは 16bit 長で、表 8 に示すように 複数のタイプが用意されています。各コマンドで は繰返し精度レベル(高、中および低)とクロック ストレッチの設定(有効または無効)が異なります。 当該測定コマンドで設定する繰返し精度レベル は、測定時間ひいては総電力消費量に影響します。 当該影響について本文書の第 2 章に記載していま す。

http://www.nxp.com/documents/user_manual/UM10204.pdf

¹² 当該仕様書の参照先:

		コマン	ジ コード			
	設定条件	(16 進数表記)				
繰返し精度	クロックストレッチ	MSB 部	LSB 部			
レベル	設定	(上位 8bit)	(下位 8bit)			
高			06			
中	有効	0x2C	0D			
低			10			
高			00			
中	無効	0x24	0B			
低			16			
" - '	デコード 0x2C06:					
繰返し料	請度レベルは高、クロッ					
1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 S I2Cアドレス W コマンド(MSB部) コマンド(LSB部) P I2C書込み用へッダ 16-bit 長 瀬定コマンド S CLL 下渉せず S I2Cアドレス R 測定動作 別定動作 12(験出し用ヘッダ 実施中						
クロックストレッ無効	クロック No. Company					
クロック X SCLに干渉 ストレッチ X LOWへ引下げ 有効 測定動作中						
## 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 66 69 70 温度測定値(MSB部)						
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 88 87 88 89 90 91 92 93 94 95 96 97 温度測定値(MSB部)						

表8 単発則定コマンド (灰色部分: 本センサーの出力信号。無色部分: マイクロコントローラの制御信号)

4.4 単発測定モードでの測定値の読出し

本センサーが測定を完了させた後、マイクロコントローラは START コンディションと I²C 読出し用へッダを本センサーへ送ることにより測定結果 (温度と相対湿度の一組分の測定値)を読み出しまができます。すなわち、本センサーは読出し用へッダを受信したことを通知し、2byte 長データ (温度測定値)、その 1byte 長 CRC チェックサム、2byte 長データ (相対湿度測定値)およびその 1byte 長 CRC チェックサムを順次送信します。これら一連のデータ送信を進めるためには、マイクロコントローラは 1byte 毎に ACK ビットで応答するが要があります。当該応答がないと、データ送信が中断されます。

本センサーはまず温度測定値を送信し、その後に相対湿度測定値を送信します。マイクロコントローラは相対湿度測定値の CRC チェックサムを受信した後、NACK ビットで応答し、STOP コンディションを送る必要があります(表 8 参照)。

IPC バスのマイクロコントローラは、どのバイトデータの後でも NACK ビットを送ることでデータ受信処理を途中で止めることができます。この方

法を利用すれば、一連のデータ中に不要なもの(例えばCRCチェックサムあるいは2番目に送信される相対湿度測定値など)がある場合、データ受信時間を節約できます。

温度測定値と相対湿度測定値が両方とも必要でも CRC チェックサム照合処理は省きたい場合、1番目に送信される 2byte 長の温度測定データを CRC チェックサムも含めてまず受信し、当該チェックサムを照合せずに 2番目に送信される 2byte 長の相対湿度測定データを受信した後に NACK ビットを送ってデータ 受信処理を終わらせることを推奨します。

クロックストレッチを行わない場合

クロックストレッチングを行わない測定コマンドが発信された場合、本センサーは I2C 読出し用へッダに対しては、送信すべき測定データがなければ NACK ビットを返します。

クロックストレッチを行う場合

クロックストレッチングを行う測定コマンドが発信された場合、本センサーは I2C 読出し用へッダに対して ACK ビットを返し、その後に SCL 信号ラインを LOW に引き下げます。当該ラインは、温湿度測定が完了するまで引下げられます。測定が完了すると本センサー速やかに当該ラインの引下げ状態を解放し、測定データを送信します。

4.5 周期的連続測定コマンド

本センサーは、周期的連続測定コマンドを受けると、温度と相対湿度の測定を周期的に繰返します。各測定値は、それぞれ 16bit 長のデータとして温度、相対湿度の順に出力されるようにデータ変換されます。

周期的連続測定コマンドは 16bit 長で、表 9 に示すように複数のタイプが用意されています。各タイプでは繰返し精度レベル(高、中および低)と測定頻度(1 秒当たりの測定回数: 0.5、1、2、4 および10)が異なります。クロックストレッチの有効化は、当該モードでは設定できません。

繰返し精度レベルおよび測定頻度は、測定時間と 電流消費量に影響します。当該影響について本文 書の第2章に記載しています。

周期的連続測定コマンドが発信された場合、本センサーが測定でビジー状態になっている時は(測定の所要時間は表 4 参照)、まず測定中止コマンドを発信すること(本文書の 4.8 項参照)を推奨します。本センサーは、当該コマンドを受信すると実行中の測定を終了させ、単発測定モードに入ります。

	コマン (16 進数	ドコード 枚表記)			
繰返し精度 レベル	測定頻度[mps*] *測定回数/秒の意味	MSB 部 (上位 8bit)	LSB 部 (下位 8bit)		
高			32		
中	0.5	0x20	24		
低			2F		
高			30		
中	1	0x21	26		
低			2D		
高			36		
中	2	0x22	20		
低			2B		
高			34		
中	4	0x23	22		
低			29		
高			37		
中	10	0x27	21		
低			2A		
例) コマンドコード 0x2130:					
繰返し精度レベルは高、測定頻度は 1mps 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 S 12Cアドレス W コマンド(MSB部) コマンド(LSB部) コマンド(LSB部) 12C書込み用ヘッダー 16bit長 測定コマンド					

表9 周期的連続測定コマンド(灰色部分:本センサーの出力信号。無色部分:マイクロコントローラの制御信号)。注意:測定頻度を最多に設定すると、本センサーは自己発熱を起こす場合があります。

4.6 **周期的連続測定モードでの測定値の読出し**

表 10 に示すコマンドにより、測定データの送信が始まります。本センサーは、測定データがないと 1²C 読出し用へッダに対して NACK ビットで応答し(表 10 の読出し用へッダ後の 9 ビット目)、通信終了となります。なお、当該コマンドで測定データが読み出された後、測定データ用メモリーはクリアされ、測定データが存在しない状態になります。

	コマン			
コマンド	(16 進数表記)			
- 121	MSB 部 (上位 8bit)	LSB 部 (下位 8bit)		
測定データ取込み	0xE0	00		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 S I2Cアドレス WO コマンド(MSB部)		25 26 27 (B) YY		
S 12Cアドレス R 2 12C読出し用へッダ				
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2 温度測定値(MSB 帶)	ORC 27 28 29 30 31 32 CRC	33 34 35 36 X Y Y		
37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 湿度測定値(LSB部)	53 54 55 56 57 58 59 CRC	≥ .		

表 10 測定データ取込みコマンド (灰色部分は本センサーの出力信号。無色部分はマイクロコントローラの制御信号)

4.7 **応答時間短縮可能な周期的連続測定コマンド** (ART コマンド)

表 11 に示す周期的連続測定コマンドを利用すると、応答時間の短縮化を可能にする ART (Accelerated Response Time)機能を利用できます。当該コマンドを受けると、本センサーは 4mps の周期での測定を行います。

このARTコマンドでの測定実行と測定値読出しの各手順は、4.5 項および 4.6 項の場合と同一です。 周期的な測定の中止は 4.8 項に規定する手順により行えます。

当該機能は当社評価キットの EK-H5 で評価することができます。

コマンド	コマンドコード (16 進数表記)		
コイント	MSB 部 (上位 8bit)	LSB 部 (下位 8bit)	
ART 機能付き周期的連続則定コマンド	0x2B	32	
1 2 3 4 5 6 7 8 9 1 2 3 4 5	8 9 10 11 12 13 B) O コマン 長 測定コマンド —	3 14 15 16 17 18 ド(LSB部)	

表11 ART(応答時間短縮化)機能付きの周期的連続測定コマンド (灰色部分: 本センサーの出力信号。無色部分: マイクロコントローラの制御信号)

4.8 測定中止コマンド(周期的連続測定中止用)

表 12 に示す測定中止コマンドで、実行中の周期的連続測定を中止させることができます。周期的連続測定を実行中の本センサーにコマンド(測定データ取込みコマンドを除く)を送る場合は、その前に当該コマンドで実行中の測定を中止させることを推奨します。本センサーは当該コマンドを受信すると実行中の測定を完了させて単発測定モードに入ります。測定完了に要する時間は設定された繰返し精度レベルに依存し、最長で 15ms です。

コマンド	コマンドコード (16 進数表記)			
コマント	MSB 部 (上位 8bit)	LSB 部 (下位 8bit)		
測定中止コマンド	0x30	93		
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 S I2Cアドレス WO コマンド(MSB音		3 14 15 16 17 18 ド(LSB部)		

表 12 測定中止コマンド (灰色部分: 本センサーの出力信号。無色部分: マイクロコントローラの制御信号)

4.9 リセット

本センサーは、ソフトリセットコマンドまたは nRESET 端子へのパルス信号を入力することでシ ステムリセットを行わせることができます。また、 本センサーは、電源投入後の起動動作中に自らシ ステムリセットを行います。リセット動作中、本 センサーはいかなるコマンドにも応じません。

電源電圧をオフにすること以外の方法で本センサーを完全にリセットさせるためには、nRESET端子を使うことを推奨します。

通信バスのリセット

本センサーとの通信が途切れた場合、次の信号操作を行えば通信バスがリセットされます。

SDA が HIGH になっている間に SCL のトグルを 9 回以上行う。

この操作の後には、次のコマンドを送るための通信開始シーケンスを行う必要があります。当該リセットでは、リセットされるのは通信バスだけで、本センサーのステータスレジスタの内容は保持されます。

ソフトリセット/再初期化

本センサーは、VDD 端子への印加電圧をオフにしなくても、内部システムを強制的に所定状態にさせるソフトリセットの仕組みを備えています。ソフトリセットの実行コマンドは、本センサーが待機状態のときに送ることができます。本センサーは当該コマンドを受けると内部システムをリセットし、内部の所定メモリーから校正用データを再度読み出します。当該コマンドは表 13 に示すとおりです。

なお参考情報として、本センサーは測定動作を行うときも、校正用データを事前に毎回読み込むようにデフォルト設定されています。

	コマンドコード (16 進数表記)		
コマンド	MSB 部	LSB 部	
	(上位 8bit)	(下位 8bit)	
ソフトリセット実行	0x30	A2	
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 S I2Cアドレス WO コマンド(MSB音		F(LSB#)	

表13 ソフトリセットコマンド(灰色部分: 本センサーの出力信号。 無色部分: マイクロコントローラの制御信号

120 のゼネラルコールによるリセット

本センサーのリセットは、I²C バス仕様書 ¹² に規定されたゼネラルコールでも実行可能です。この場合のリセットは、nRESET 端子によるリセットと機能的に同一です。重要なこととして、ゼネフルコールに対応しているデバイスは、同一 I²C バス上にあるとすべてこのリセットを行います。本センサー特有のリセット方法ではありません。をエンサー特有のリセット方法ではありません。また当該リセットは本センサーが I²C コマンドを処理できる状態になっている場合のみ有効です。このリセットの実行コマンドは表 14 に示すとおりで、2byte で構成されます。

nRESET 端子によるリセット

nRESET 端子を LOW レベルに引き下げると(表 6 参照)、ハードリセットと同様なリセットが実行され

ます。nRESET 端子は内部でプルアップ抵抗を介して電源ラインに接続されているので、LOW レベルで有効化されます。当該リセットをかけるためには1µs以上LOW レベルに引き下げる必要があります。

コマンド	コマンドコード (16 進数表記)
1 バイト目 (ゼネラルコールアドレス)	0x00
2 バイト目	0x06
コマンド全体	0x0006
	3 4 5 6 7 8 9 マットコマンド部 マラルコール 2パイト目

表 14 ゼネラルコールによるリセットコマンド (灰色部分: 本センサーの出力信号。 無色部分: マイクロコントローラの制御信号)

ハードリセット

VDD 端子への印加電圧をオフにして再度オンにすることでハードウエアリセットが行われます。なお当該印加電圧をオフにしているときは、本センサー内部の ESD 保護ダイオードを経由して電流が流れ込まないように、端子 1(SDA)、端子 4(SCL) および端子 2(ADDR)には電圧が印加されないようにする必要があります。

4.10 ヒーター

本センサーは、表 14 に示すコマンドで内蔵ヒーターの稼働化と停止を選択できます。ヒーターの動作状態情報はステータスレジスタに記録されます。リセットを行った後、デフォルト条件としてヒーターは停止状態に設定されます。

コマンド	コマンドコード (16 進数表記)			
7476	MSB 部 (上位 8bit)	LSB 部 (下位 8bit)		
ヒーター稼働	0x30	6D		
ヒーター停止	0x30	66		
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 S I2Cアドレス WO コマンド(MSB音	8 9 10 11 12 13 B) O コマン 長 測定コマンド —	7 14 10 10 11 10		

表15 ヒーター用コマンド(灰色部分: 本センサーの出力信号。無色部分: マイクロコントローラの制御信号)

4.11 ステータスレジスタ

本センサー内部のステータスレジスタにある情報は、ヒーターの動作状態、アラートに関する状態、直前に受信したコマンドの実行状態および直前に受信した書込みデータのチェックサム照合結果に関するものです。当該レジスタ情報について、読出し実行コマンドは表 16 に示すとおりで、具体的内容は表 17 に示すとおりです。

表 16 ステータスレジスタ読出し用コマンド (灰色部分: 本センサーの出力信号。無色部分: マイクロコントローラの制御信号)

	ir i to a summ	
ビット	各ビットの説明	デフォルト
		値
15	発信中のアラートの有無	
	'0':発信中アラートなし	'1'
	′1′:ひとつ以上の発信中アラートあり	
14	予備	'0'
13	ヒーターの動作状態	
	'0':ヒーター停止中	'0'
	′1′:ヒーター稼働中	
12	予備	'0'
11	相対湿度のアラート発信状態	
	′0′:アラート発信なし	'0'
	′1′:アラート発信中	
10	温度のアラート発信状態	
	′0′:アラート発信なし	'0'
	′1′:アラート発信中	
9 - 5	予備	'00000'
4	リセット履歴	
	′0′:リセット履歴なし(ステータスレジ	
	スタのデータ消去コマンドをそ	
	の時点で最後に受信した以降)	'1'
	′1′:リセット履歴あり(ハードリセッ	
	ト、ソフトリセットコマンドまた	
	は電源電圧低下によるリセット)	
3 - 2		'00'
1	その時点で最後に受取ったコマンド	
	の実行状態	
	′0′:当該コマンドを正常に実行	'0'
	′1′:当該コマンドは未実行(コマン	U
	ド自体が無効またはコマンドの	
	チェックサムが異常なため)	
0	その時点で最後に受取った書込み	
	データのチェックサム照合結果	'0'
	'0': 当該データのチェックサムは正常	U
	'1': 当該データのチェックサムは異常	

表 17 ステータスレジスタの内容

ステータスレジスタのデータ消去

表 18 に示すコマンドにより、ステータスレジスタ内のビット 15、11、10 および 4 のデータは消去され、"0"が入力されます。

コマンド	コマンドコード (16 進数表記)			
コイント	MSB 部 (上位 8bit)	LSB 部 (下位 8bit)		
ステータスレジスタのデータ消去	0x30	41		
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 S I2Cアドレス W コマンド(MSB音		14 15 16 17 18 F(LSB 部)		

表 18 ステータスレジスタリセット用コマンド (灰色部分: 本センサーの出力信号。無色部分: マイクロコントローラの制御信号)

4.12 チェックサムの計算方法

本センサーは、ひとまとまりのデータを出力するたびに、8bit 長の CRC チェックサムを CRC アルゴリズムに基づいて送信します。当該アルゴリズムの特性は表 18 に示すとおりで、ひとつ前に出力された 2byte 分のデータの内容を使って CRC を計算します。

特性	値
名称	CRC-8
幅	8bit
適用対象	読出しデータおよび書込みデータ
多項式	$0x31 (x^8 + x^5 + x^4 + 1)$
初期化	0xFF
反射入力	偽
反射出力	偽
最終 XOR	0x00
例	CRC (0xBEEF) = 0x92

表 19 CRC アルゴリズムの特性

4.13 測定データの物理量値への換算方法

本センサーは、測定データを符号なし整数型の 16bit 値で出力します。当該出力データは線形化、 温度補償および電源電圧補償が実施済みです。こ の生データを物理量値に換算するためには、以下 の計算式を用います。

相対湿度の換算式(単位:%RH)

$$RH = 100 \cdot \frac{S_{RH}}{2^{16} - 1}$$

S_{RH}: 本センサーが出力する相対湿度の測定データ (生データ)を 10 進数値にしたもの

温度の換算式(単位:°C)

$$T = -45 + 175 \cdot \frac{S_T}{2^{16} - 1}$$

S_T: 本センサーが出力する温度の測定データ(生データ)を 10 進数値にしたもの

4.14 通信のタイミング

パラメータ	記号	条件	最小値	標準値	最大値	単位	備考
SCL クロック周波数	fscl		0	-	1000	kHz	
(リピート)START コンディションの ホールド時間	t _{HD;STA}	当該時間が経過後、 最初のクロックパ ルスが生成される。	0.24	1	-	μs	
SCL クロックの LOW 期間	tLOW		0.65	-	-	μs	
SCL クロックの HIGH 期間	t _{HIGH}		0.26	-	1	μs	
SDA ホールド時間	t		0	-	250	ns	データ送信時
SDA ルールト時間	t _{HD;DAT}		0	-	-	ns	データ受信時
SDA セットアップ時間	tsu;dat		100	-	-	ns	
SCL/SDA 立ち上がり時間	t_R		-	-	300	ns	
SCL/SDA 立ち下がり時間	t _F		-	-	300	ns	
SDA 有効時間	t _{VD;DAT}		-	-	0.9	μs	
リピート START コンディションの セットアップ時間	t _{SU;STA}		0.6	-	-	μs	
STOP コンディションの セットアップ時間	tsu;sto		0.6	-	-	μs	
バスライン上の容量性負荷	Св		-	-	400	pF	
LOW レベルの入力電圧	V_{IL}		-0.5	-	$0.3xV_{DD}$	V	
HIGH レベルの入力電圧	V _{IH}		$0.7xV_{DD}$	-	1xV _{DD}	V	
LOW レベルの出力電圧	V _{OL}	シンク電流:3mA	-	-	0.66	V	

表 20 通信タイミングの仕様 (PC バス仕様の Fast -mode 対応、25°C で電源電圧 VDD が標準値の場合)。数値は PC バス仕様書(UM10204, Rev. 6, 2014 年 4 月 4 日)に準じたものです。

図 12 デジタル入力/出力端子のタイミング図。SDA の方向は本センサーから見たものです。太字の SDA ラインはセンサーにより制御され、通常の SDA ラインはマイクロコントローラにより制御されます。SDA ラインの有効 読取時間のトリガは、そのすぐ前のトグルの立ち下がりエッジです。

5 外装パッケージ

本センサーの外装パッケージは開口空洞がある DFN タイプです。DFN は Dual Flatpack No-leaded の 略称です。外装パッケージの上面中心部に湿度測 定用の開口部が設けられています。

内部のセンサーチップはシリコン製でリードフレームにマウントされています。リードフレームは銅製で Ni/Pd/Au ニッケル/パラジウム/金めっきが施されてています。チップとリードフレームは、エポキシ系の成形コンパウンドでオーバモールドされていますが、センターパッドと各端子は機械的および電気的接続のために表面に露出しています。なお、本センサー側面の壁部分はダイシングカットされたままの状態であるため、当該側面に露出しているリードフレーム端子部の切断面はめっきで覆われていないことにご留意ください。

なお、当該外装パッケージは以下の標準規格に準 拠しています(ただし湿度測定用の開口部を除く)。

JEDEC Publication 95, Design Regulation 4.20, "Small scale plastic quad and dual inline, Square and rectangular, No-lead packages (with optional thermal enhancement)", Small Scale (QFN/SON), Issue: D.01, Date: September 2009

また、本センサーの IPC/JEDEC J-STD-020 に基づく 感湿レベル(MSL: Moisture Sensitivity Level)は1です。 しかし、本センサーは納入日から1年以内に工程 投入されることを推奨します。

5.1 トレーサビリティ

本センサーは、製品識別とトレーサビリティを容易にするため、3種類の情報を外装パッケージ上面にレーザーマーキングで全数表示しています。

図 9 に示すように、ひとつは端子 1 の位置表示マークで、該当位置のパッケージ上面角部に表示されます。二つ目として、その隣に型名が表示されます(小文字の x は測定精度のランクに応じて変わる部分です)。三つ目は、図 9 下部の 6 文字で構成されるトレーサビリティ用の情報です。最初の 2 桁の XY は、センサーの出力信号タイプを表し、 1²C バス用デジタル出力の場合は DI になります。

3 析目の A は製造西暦年の下 1 桁を表します(2014年の場合は 4、2015年の場合は 5)。後続 3 桁の BCDはアルファベットでのトラッキングコードです。当該コードから、製造、校正および試験工程についてバッチ単位の追跡が可能ですが、これらの解読情報のご提供は、正当なご要求に対してのみとさせていただきます。

なお、外装パッケージの下側から見ると、センターパッドの四隅のうち、ひとつが隅切りされていて、その場所からも端子1の位置が分かります。隅切り部の寸法は、図 14 において T1 および T2 として示されています。

図 13 レーザーマーキングされている本センサーの外 装パッケージ上面

5.2 外装パッケージの外形

図 14 外装パッケージの寸法図(寸法値は表 20 参照)

パラメータ	記号	最小値	標準値	最大値	単位	備考
パッケージ高さ	Α	0.8	0.9	1	mm	
端子高さ	A3	-	0.2	-	mm	
端子横幅	b	0.2	0.25	0.3	mm	
パッケージ横幅	D	2.4	2.5	2.6	mm	
センサーパッド横幅	D2	1	1.1	1.2	mm	
パッケージ縦幅	Е	2.4	2.5	2.6	mm	
センサーパッド縦幅	E2	1.7	1.8	1.9	mm	
端子間隔幅	е	-	0.5	-	mm	
端子奥行幅	L	0.3	0.35	0.4	mm	
センサー窓の直径	S	-	-	1.5	mm	すべての公差を含んだ参考値。 通常は当該値より小。
センターパッド隅切り部	T1xT2	-	0.3x45°	-	mm	端子1の位置の目印として利用可。

表 21 外装パッケージの寸法 (寸法記号は図 10 参照)

5.3 ランドパターン

図 15 に本センサーの実装用ランドパターンを示します。プリント基板上において本センサーの端子およびセンターパッドをはんだ付けするためのメタルマスク開口領域の形状を示しています。

当該ランドパターンに対して、ソルダーレジスト(プリント基板の最表面で銅配線を覆う絶縁層)については NSMD(Non- Solder Mask Defined)タイプで設計されることを推奨します。当該タイプにする場合、ソルダーレジスト開口部とランドパターンの隙間は、いかなる部分でも 60 μm 以上 75 μm 以下となるようにする必要があります。また、本センサーの端子ピッチはわずか 0.5mm なので、端子用ランドパターンには、ソルダーレジスト開口部をサーつずつ設けるのではなく、外装パッケージ片側にある 4 つの端子全体にひとつの開口部を設けることを推奨します。

はんだペースト印刷用ステンシルとしては、レーザー切断後に電解研磨して肉厚 0.1mm または 0.125mm の台形断面に仕上げたステンレス製ステンシルの使用をお奨めします。 端子用ランドパターンに対するステンシル開口部について、寸法は当該パターンと同じにし、位置はパッケージ中心から離れる方向へ 0.1mm のオフセットを取る必要があります。センターパッド用ランドパターンに対するステンシル開口部は、当該パターン部の約 70~90%の大きさにする必要があります(例えば、約 0.9mm×1.6mm の大きさ)。

はんだ付け方法に関する情報および組立工程での保管・取扱い時にさらに考慮すべき推奨事項については、当社技術文書の"Assembly of SMD Packages for SHTxx and STSxx Sensirion Humidity and Temperature Sensors"をご参照ください。

図 15 推奨ランドパターン(左側)およびステンシル開口部(右側)の形状および寸法。点線は外装パッケージの輪郭線。 斜線部はランドパターン(左側)およびステンシル開口部(右側)。

6. 出荷包装

図 16 テープ内のセンサーの方向を示したキャリアテープの寸法図(単位:mm)。本図でヘッダーテープは右側、トレーラーテープは左側にあります

7 品質

本センサーには、AEC Q 100 で規定された認証試験方法を基準とした試験が実施されます。

7.1 使用材料

本センサーは鉛(Pb)、カドミウム(Cd)および水銀(Hg)を含まず、RoHS および WEEE の要件に完全に 準拠しています。

8 発注に関するご案内

本センサーは、テープ包装してリール単位で出荷しています。発注単位は表 8 に示すとおり複数あります。リールは非帯電性の ESD バッグに密封収納されています。出荷梱包仕様の詳細は当社文書の"Information on Shipping Package, Tape and reel and Labels for the SHT3x Sensor series"に記載しています。

当該文書が必要な場合は、当社までお問い合わせ ください。

名称	個数/リール	発注番号
SHT30-DIS-B2.5KS	2,500	1-101400-01
SHT30-DIS-B10kS	10,000	1-101173-01
SHT31-DIS-B2.5kS	2,500	1-101386-01
SHT31-DIS-B10kS	10,000	1-101147-01
SHT35-DIS-B2.5KS	2,500	1-101388-01
SHT35-DIS-B10KS	10,000	1-101479-01

表 22 本センサーの発注単位と発注番号

9 関連する当社技術文書

本センサーとそのアプリケーションに関するさらに詳しい情報については、次の当社技術資料をご参照ください。

文書名	内容	出典
Information on Shipping Package, Tape and reel and Labels for the SHT3x Sensor series	SHT3x 温湿度センサーのテープ、 リールおよび包装袋に関する情報 (図面)。	ご要求によりご提供。
Assembly of SMD Packages	当社温湿度センサーの実装方法お よび保管・取扱方法	当社ウエブの温湿度センサー ダウンロード センターからダウンロード可能: www.sensirion.com/humidity-download
SHTxx Design Guide	当社温湿度センサーの性能を実用 時に引き出すための設計ガイドラ イン	当社ウェブの温湿度センサー ダウンロード センターからダウンロード可能: www.sensirion.com/humidity-download
Handling Instructions	当社温湿度センサーを正しく取扱 うためのガイドライン	当社ウェブの温湿度センサー ダウンロード センターからダウンロード可能: www.sensirion.com/humidity-download
Sensor Specification Statement	当社温湿度センサーの仕様の定義	当社ウエブの温湿度センサー ダウンロード センターからダウンロード可能: www.sensirion.com/humidity-download

表 23 本センサー(SHT3x-DIS)に関連する情報を記載した技術資料

改定履歴

日付	改訂版	ページ	変更点
2015年10月	1		
2016年6月	2	2 ~ 4	SHT35 の仕様を追加。
		6	ESD の仕様を改訂。
		7	表6の「端子の機能概要」欄の記載事項を一部改訂。
		7	表 6 の改訂に応じて図 11 も改定。
		11	測定データ用メモリーに関する情報について、「当該コマンドで測
			定データが読み出された後、測定データ用メモリーはクリアされ、
			測定データが存在しない状態になります。」と改訂。
		17	表 22 に SHT35 の発注に関する情報を追加 。
2016年8月	3	6	表3を改訂。
		7	表 4 を改訂。
		7	ESD 試験規格の情報を改訂。
		8	表6を改訂。
		8	図 11 及び表 6 を改訂。

重要な通知

警告、人身障害

本製品は、安全装置または緊急停止装置として使用してはならず、また製品の故障が(死亡も含む)負傷につながるおそれのあるその他の用途に使用しないでください。本製品は、その意図する用途、または認められた用途以外には使用しないでください。本製品の設置、取扱、使用、または整備を行う前に、データシートと各アプリケーションノートを参照してください。以上の指示事項に従わないと、死亡または重大な負傷を招くおそれがあります。

買手が SENSIRION の製品を、意図しない用途、または認められていない何らかの用途のために購入または使用する場合、買手は、SENSIRION にその製品の設計または製造に関する過失があったとの主張がなされた場合であっても、その意図しない用途、または認められていない用途に伴って起きた負傷または死亡についての請求に基づき直接または間接的に生じる一切の請求、費用、損害賠償、経費、および相応な弁護士費用から SENSIRION およびその役員、従業員、子会社、関連会社、販売店を守り、免責し、被害を被らないようにするものとします。

ESD 対策

本部品はその固有の設計により、静電気の放電(ESD)に対する 感度が高くなっています。ESDが誘発する損傷および/または劣化 を防ぐために、本部品の取扱に際しては慣習および法令に基づく ESD対策を取ってください。

詳しくはアプリケーションノート「ESD、ラッチアップ、EMC」 をご覧ください。

保証

SENSIRION は、本製品の元の購入者に対して、引渡日から 12 ヶ所 (1 年) の期間、本製品が SENSIRION の公表する製品仕様書に定める品質、材質、および仕上がりのものであることを保証します。この期間内に欠陥のあることが証明された場合には、SENSIRION は以下の各条件が満たされることを前提に、SENSIRION の裁量により、買手に対して無償で本製品の修理および/または交換を行うものとします。

- 欠陥が発生してから 14 日以内にその欠陥について書面にて SENSIRIONに通知してください。
- それらの欠陥は、SENSIRION の設計、材質、または仕上がりの不具合から生じたものであることを SENSIRION が合理的に納得できるものでなければなりません。

- 欠陥のある製品は買手の費用負担により SENSIRION の工場に 返却してください。
- 修理または交換後の製品の保証期間は当初の保障期間の未経過期間に限定されるものとします。

本保証は装置の意図する正しい用途のために SENSIRION が推奨する仕様の範囲内で設置および使用されていないものについては適用されません。本保障に明記された保証を除き、SENSIRION は明示的であるか暗示的であるかを問わず、製品に関するいかなる保証も行いません。市場性または特定の目的への適合性が制限を設けることなく含まれる一切の保証は明示的に除外され、否認されます。

SENSIRION は本製品の欠陥のうち、データシートに定める操作条件下で、かつ商品の正しい使用条件下で生じた欠陥に対してのみ責任を負います。SENSIRION は、技術的仕様に従わずに商品を操作または保管した期間については、明示的であるか暗示的であるかを問わず、あらゆる保証を明示的に否認します。

SENSIRION は、同社製品を応用/使用した製品や回路が引き起こす問題(結果的、具初的に起こる問題を含め、これに限定されません)に対しては、免責とさせていただきます。すべての操作パラメーター(推奨するパラメーターを含み、かつこれに限定されません)はお客様のアプリケーションに合わせてお客様の技術専門家が実証してください。推奨するパラメーターは応用製品ごとに変わる可能性があり、また現に変わるものです。

SENSIRION は、別途の通知なしに以下の権利を留保します。(i) 製品仕様および/または本書に記載する情報を変更する権利、および(ii) 本製品の信頼性、機能、設計を改善する権利。

本文書について

本文書は、以下の当社技術文書の英文版を和訳したものです。 記載内容に疑義が生じた場合は、当該英文版を正とします。

文書名: Datasheet SHT3x-DIS (Version 3)

著作権© 2016, SENSIRION

CMOSens® は Sensirion の登録商標です。

版権所有

当社の本社および日本現地法人

当社本社

センシリオン株式会社:

SENSIRION AG Laubisruetistr. 50 CH-8712 Staefa ZH Switzerland Tel: + 41 44 306 40 00 Fax: + 41 44 306 40 30 info@sensirion.com http://www.sensirion.com/ Tel: 03-3444-4940 Fax:03-3444-4939 info@sensirion.co.jp http://www.sensirion.co.jp