Discrete Mathematics: Lecture 2

- Last time
 - Chap 1.1: Propositional Logic
 - Chap 1.2: Applications of Propositional Logic
 - Chap 1.3: Propositional Equivalences
- Today
 - Finishing Chap 1.3
 - CNF and DNF
- Next time
 - Chap 1.3: Predicates and Quantifiers
 - Chap 1.4: Nested Quantifiers

Review of last time (1)

- Propositions, atomic propositions, compound propositions
- $p \rightarrow q$: it is true if p is false, p and q do not have to be related
- p if q: q is a sufficient condition for p, $q \rightarrow p$
- p only if q: q is a necessary condition for p, $p \rightarrow q$
- p unless q: p if not q, $\neg q \rightarrow p$
- \bullet The converse, contrapositive, inverse of $p \rightarrow q$
- Translating English into logic: identify atomic propositions and logical connectives

Review of last time (2)

- Satisfiability, validity, logical equivalence
- Commonly used logical equivalences
- Proving logical equivalences
 - using truth table
 - using existing logical equivalences

Commonly used logical equivalences

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

•
$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Proving logical equivalence: Method 2

A drawback of using truth table: when there are n atoms, there are 2^n rows in the truth table

Use already-known logical equivalences and the following results

- If $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$
- Replacement theorem: If B is a subformula of A and $B \Leftrightarrow B'$, let A' be the result of replacing B in A by B', then $A \Leftrightarrow A'$

Examples:

- $\neg (p \to q) \Leftrightarrow p \land \neg q$
- $\bullet \neg (p \lor (\neg p \land q)) \Leftrightarrow \neg p \land \neg q$
- $p \land q \rightarrow p \lor q \Leftrightarrow T$

Propositional satisfiability (命题可满足性)

Are the following formulas satisfiable?

- $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$

Applications of satisfiability

Sudoku puzzle

Given a partially filled 9×9 grid T, fill T with digits s.t.

- each column,
- each row,
- each of the nine 3×3 sub-grids

contains all of the digits from 1 to 9.

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

Modeling the puzzle as a satisfiability problem

$$p(i,j,n)$$
: fill (i,j) with n

- every row contains every number
- every column contains every number
- every 3×3 sub-grid contains every number
- each cell contains at most one number

Solving satisfiability problems

- Using truth table
 - **1** by hand: ≤ 20 variables, $2^{20} = 1,048,576$
 - 2 by computer: checking 2^{1000} truth assignments requires > 10^{12} years
- No computer program is known that can determine if an arbitrary formula is satisfiable in a reasonable amount of time
- Many computer programs have been developed for solving satisfiability problems which have practical use

Conjunctive normal from (CNF) and disjunctive normal form (DNF)

- A literal is an atom or its negation, e.g., p, $\neg p$
- A clause is a disjunction of literals, e.g., $p \lor \neg q \lor r$
- A term is a conjunction of literals, e.g., $p \land \neg q \land \neg r$
- A formula is in CNF if it is a conjunction of clauses, e.g., $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$
- A formula is in DNF if it is a disjunction of terms, e.g., $(p \land q \land \neg r) \lor (\neg p \land \neg q \land r)$

Theorem. Every formula is logically equivalent to one in CNF.

Proof method 1: We convert a formula into CNF as follows:

- **①** Eliminate \leftrightarrow and \rightarrow using $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ and $p \rightarrow q \equiv \neg p \lor q$
- ② Push ¬ inward using ¬ $(p \lor q) \equiv \neg p \land \neg q$ and ¬ $(p \land q) \equiv \neg p \lor \neg q$
- **3** Distribute \vee over \wedge using $p \vee q \wedge r \equiv (p \vee q) \wedge (p \vee r)$
- Simplify using $p \lor p \equiv p$, $p \lor \neg p \equiv T$, $p \land T \equiv p$

Theorem. Every formula is logically equivalent to one in CNF.

Proof method 2: Using truth table

- For a truth assignment τ , we use c_{τ} to denote the clause c s.t. $c^{\tau}=0$, e.g., let $\tau=001$, then $c_{\tau}=p\vee q\vee \neg r$
- 2 c_{τ} has the property that τ is the unique truth assignment which makes c_{τ} false
- **③** For a formula ϕ , let ϕ' be the conjunction of all c^{τ} s.t. $\phi^{\tau} = 0$
- Then $\phi \equiv \phi'$
- $\textbf{9} \ \, \text{Proof: for any } \tau', \ (\phi')^{\tau'} = 0 \ \text{iff there is a } \tau \text{ s.t. } \phi^{\tau} = 0 \text{ and } c^{\tau'}_{\tau} = 0 \ \text{iff there is a } \tau \text{ s.t. } \phi^{\tau} = 0 \text{ and } \tau' = \tau \text{ iff } \phi^{\tau'} = 0$

Theorem. Every formula is logically equivalent to one in DNF.

Proof method 1: We convert a formula into DNF as follows:

- **①** Eliminate \leftrightarrow and \rightarrow using $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ and $p \rightarrow q \equiv \neg p \lor q$
- ② Push ¬ inward using ¬ $(p \lor q) \equiv \neg p \land \neg q$ and ¬ $(p \land q) \equiv \neg p \lor \neg q$
- **3** Distribute \land over \lor using $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- Simplify using $p \land p \equiv p$, $p \land \neg p \equiv F$, $p \lor F \equiv p$

Theorem. Every formula is logically equivalent to one in DNF.

Proof method 2: Using truth table

- For a truth assignment τ , we use t_{τ} to denote the term t s.t. $t^{\tau}=1$, e.g., let $\tau=001$, then $t_{\tau}=\neg p \wedge \neg q \wedge r$
- 2 t_{τ} has the property that τ is the unique truth assignment which makes t_{τ} true
- **3** For a formula ϕ , let ϕ' be the disjunction of all t^{τ} s.t. $\phi^{\tau} = 1$
- Then $\phi \equiv \phi'$
- $\textbf{9} \ \, \text{Proof: for any } \tau', \ (\phi')^{\tau'} = 1 \ \text{iff there is a } \tau \text{ s.t. } \phi^{\tau} = 1 \text{ and } t^{\tau'}_{\tau} = 1 \ \text{iff there is a } \tau \text{ s.t. } \phi^{\tau} = 1 \text{ and } \tau' = \tau \text{ iff } \phi^{\tau'} = 1$