기계 학습

Part V. 강화 학습

인공지능: 튜링 테스트에서 딥러닝까지

11.1 강화 학습

- * 강화 학습(reinforcement learning)
 - 어떤 모르는 환경에서 동작하는 에이전트가 있을 때, 에이전트가 현재 상태(state)에서 향후 기대되는 누적 보상값(reward)이 최대가 되도록 행동(action)을 선택하는 정책(policy)을 찾는 것

- " 강화학습 문제 표현
 - * 마르코프 결정 과정(MDP) 사용 표현
 - 불확실성 반영

☆ 마르코프 결정 과정(Markov Decision Process, MDP)

- **상태 전이**(state transition)가 **현재 상태 S_t와 입력** (또는 **행동**) A_t에 의 해서 확률적으로 결정되는 **마르코프 모델**(Markov model)
 - 마르코프 모델
 - 미래의 상태 S_{t+1} 는 현재 상태 S_t 에 영향을 받고 과거 상태 $S_{t-1}, S_{t-2}, ...$ 에는 영향을 받지 않는 시스템에 대한 확률 모델 (stochastic model)
 - $P(S_{t+1}|S_t, S_{t-1}, ..., S_0) = P(S_{t+1}|S_t)$

Andrei Andreyevich Markov

1856-1922 러시아, 수학자

- 마르코프 결정과정
 - $P(S_{t+1}|S_t, S_{t-1}, \dots, S_0, A_t) = P(S_{t+1}|S_t, A_t)$

- ☼ 마르코프 결정 과정(Markov Decision Process, MDP) cont.
 - 상태의 집합 $S = \{s_1, s_2, ..., s_N\}$
 - 행동의 집합 $A = \{a_1, a_2, ..., a_M\}$
 - 상태 전이(state transition) 결정 확률분포
 - t 시점의 상태 S_t 에서 행동 A_t 를 취할 때 도달하는 다음 상태 S_{t+1} 를 결정하는 것 (s_t, a_t, s_{t+1})
 - $P(S_{t+1} = s' | S_t = s, A_t = a) = T(s, a, s')$
 - 상태 전이가 일어날 때 즉시 보상값(immediate reward)
 - 상태 전이 (s_t, a_t, s_{t+1}) 에서 받는 즉시 보상값 r_{t+1}
 - $R(s_t, a_t, s_{t+1}) = R(s_{t+1}) = r_{t+1}$

❖ 강화학습의 목적

- 기대 누적 보상값(expected accumulated reward)이 최대가 되도록 하는 정책(policy)을 찾는 것
 - 정책 : 각 상태에서 선택할 행동 지정

※ 예. 강화 학습 문제

- $S = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)$ $(3,1), (3,2), (3,3), (4,1), (4,2), (4,3)\}$
- $A = \{east, west, south, north\}$
- 상태전이확률

$$T((3,1), north, (3,2)) = 0.8$$

 $T((3,1), north, (2,1)) = 0.1$
 $T((3,1), north, (4,1)) = 0.1$

■ 보상(Reward)

$$R((4,3)) = +1, R((4,2)) = -1$$

 $R((x,y)) = c \quad (x,y) \neq (4,1) \text{ or } (4,3)$

- ※ 예. 강화 학습 문제
 - 정책(policy)
 - 각 상태 s에서 취할 행동 a을 결정해 둔 것

$$R((4,3)) = +1$$
, $R((4,2)) = -1$, $R((x,y)) = c$ $(x,y) \neq (4,1)$ or $(4,3)$

$$c = -0.01$$

→	→	→	+1
†		1	-1
†	+	+	ţ

c = -0.04

$$c = -0.09$$

→	→	→	+1
†		†	-1
†	→	†	+

$$c = -2.00$$

11.2 누적 보상치

- ❖ 누적 보상치의 계산 방법
 - 단순 합계
 - $V(s_0, s_1, ...) = r(s_0) + r(s_1) + r(s_2) + ...$
 - 연속해서 보상치가 더해지면 지속적으로 커질 수 있음
 - 할인 누적 합계 (sum of discounted reward)
 - $V(s_0, s_1, ...) = r(s_0) + \gamma^* r(s_1) + \gamma^{2*} r(s_2) + ...$
 - 할인율 (discount factor) γ : $0 < \gamma < 1$
 - 가까운 보상이 먼 미래의 보상보다 가치가 있음

11.3 가치 함수

- ⋄ 가치 함수 (value function)
 - 상태 가치 함수(state value function) $V^{\pi}(s)$
 - 상태 s에서 시작하여 정책 π에 따라 행동을 할 때 얻게 되는 기대 보상(expected reward)

$$\begin{split} V^{\pi}(s) &= \mathbf{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ \cdots \ | \ s_t = s, \pi] \\ &= \mathbf{E}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, \pi] \end{split}$$

- 상태-행동 가치 함수(state-action value function) $Q^{\pi}(s,a)$
 - 상태 s에서 행동 α 를 한 다음, 정책 π 에 따라 행동을 할 때 얻게 되는 기대 보상

$$\begin{split} Q^{\pi}(s,a) &= \mathbf{E} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ \cdots \ | \, s_t = s, a_t = a, \pi \right] \\ &= \mathbf{E} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | \, s_t = s, a_t = a, \pi \right] \end{split}$$

가치 함수

⋄ Bellman 방정식

상태 가치 함수와 상태-행동 가치 함수의 관계

$$\begin{split} V^{\pi}(s) &= \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | \ s_t = s, \pi] \\ &= \mathbb{E}\left[r_{t+1} + \gamma \sum_{s'} \gamma^k r_{t+k+2} | \ s_t = s, \pi\right] \\ &= \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_{t+1} = s'\right]\right] \\ &= \sum_{a} \pi(s, a) \left[\sum_{s'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V^{\pi}(s')\right]\right] \\ &= \sum_{a} \pi(s, a) Q^{\pi}(s, a) \end{split}$$

- $\pi(s,a)$: 정책 π 가 상태 s에서 행동 a를 선택할 확률
- $P^a_{ss'}$: 상태 s에서 행동 a를 할 때, 상태 s'이 될 확률
- $r_{ss'}^a$: 상태 s에서 행동 a를 할 때, 보상값
- γ : 할인율

$$V^{\pi}(s) = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$
$$Q^{\pi}(s, a) = \sum_{s} P^{a}_{ss'} \left[r^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

가치 함수

❖ 가치 함수 (value function)

$$V^{\pi}(s) = \sum_{a} \pi(s,a) Q^{\pi}(s,a)$$

가치 함수

❖ 가치 함수 계산 방법

- 동적계획법 방법 (dynamic programming, DP)
 - 모든 상태에 대한 섭렵하면서 Bellman 최적 방정식 성질을 이용하여 가치 함수 계산
 - 정책반복 학습, 값반복 학습 알고리즘
- 몬테 카를로 방법(Monte Carlo method)
 - 주어진 정책 π 에 따라 에이전트가 행동을 하여 상태와 행동에 따른 보상값을 기록하여 상태 가치 함수 또는 상태-행동 가치 함수 추정
- 모수적 함수(parameterized function) 학습 방법
 - 상태의 개수의 매우 많은 경우 각 상태에 대한 보상값 관리 곤란
 - 가치 함수의 역할을 하는 모수적 함수를 학습하여 사용

11.4 최적 정책

 $\stackrel{>}{\sim}$ 최적 정책(optimal policy) π^* 과 최적 상태 가치 함수 V^*

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}(s), \ (\forall s)$$

$$V^*(s) = V^{\pi^*}(s)$$

- ❖ Bellman 최적 방정식(optimality equation)
 - 최적 정책에 따른 가치 함수들이 만족하는 성질
 - 상태 가치 함수의 경우

$$V^{*}(s) = \max_{a} \sum_{s'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V^{*}(s') \right]$$

- 모든 가능한 행동 중에서 가장 큰 기대보상값을 주는 행동의 값
- **상태-행동 가치 함수의** 경우

$$Q^*(s,a) = \sum_{s'} P^a_{ss'} \left[r^a_{ss'} + \gamma V^*(s') \right]$$

11.5 강화 학습 알고리즘

- \Rightarrow 정책 평가 (policy evaluation) $\pi \to V^{\pi}$
 - 주어진 정책 π 을 따를 때, 각 상태에서 얻게 되는 기대보상 값 V^{π} 계산

$$V_{k+1}(s) = \sum_{a} \pi(s, a) \sum_{k'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V_{k}(s') \right]$$

■ 임의의 가치 함수 V_0 에서 시작하여, V_k 가 수렴할 때까지 반복

```
Input : 평가할 정책 \pi
V(s) \leftarrow 0 for each s \in S
repeat
\Delta \leftarrow 0
for each s \in S
temp \leftarrow V(s)
V(s) \leftarrow \sum_{a} \pi(s,a) \sum_{k'} P_{ss'}^{a} \left[ r_{ss'}^{a} + \gamma V_{k}(s') \right]
\Delta \leftarrow \max(\Delta, |temp - V(s)|
until \Delta < \theta (작은 양수)
Output : V \approx V^{\pi}
```


강화 학습 알고리즘

- \Rightarrow 정책 개선 (policy improvement) $V^{\pi} \rightarrow \pi$
 - 상태 가치 함수 *V*(*s*) 값으로 부터 정책 *π* 결정 $\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$ $= \arg\max_{a} \sum_{s'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V^{\pi}(s') \right]$

Input : 상태가치 함수 *V*

for each $s \in S$

or each
$$s \in S$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s'} P^a_{ss'} \left[r^a_{ss'} + \gamma V^\pi(s') \right]$$
 utput : 정책 π

Output : 정책 π

정책 반복 학습 알고리즘

⋄ 정책 반복(policy iteration) 학습

$$\pi_0$$
 정책평가 V^{π_0} 정책개선 π_1 정책평가 T^{π_1} 정책개선 T^{π_1} 장책개선 T^{π_2} 장책개선 T^{π_3} 장착개선 T^{π_4} 장착개선 T^{π_4}

임의의 정책 π에서 시작하여, π에 대해서 Bellman 방정식을 수렴할 때까지(즉, 바뀌지 않을 때까지) 적용하여 V^π를 계산하고, V^π를 사용하여 π를 개선하는 과정을 정책 π가 수렴할 때까지 반복

9	-3.0		←	←	\
0	-2.9	1	Ţ	Ţ	↓
9	-2.4	1	₽	Ļ	→
4	0.0	₽	1	1	

		\leftrightarrow	$ \Longleftrightarrow $
1	\Leftrightarrow	\Rightarrow	\Leftrightarrow
$ \Longleftrightarrow $	\Leftrightarrow	\Leftrightarrow	+
${\longleftrightarrow}$	\Leftrightarrow	1	

	0.0	-6.1	-8.4	-9.
x = 10	-6.1	-7.7	-8.4	-8.
1 – 10	-8.4	-8.4	-7.7	-6.
	-9.0	-8.4	-6.1	0.

	←		Ç
1	Ţ	Ţ	→
1	₽	Ļ	ţ
₽	\rightarrow	\rightarrow	

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	←		\longleftrightarrow
1	Ţ	\Rightarrow	↓
1	\Leftrightarrow	Ļ	↓
\Leftrightarrow	\rightarrow	\rightarrow	

	0.0	-14.	-20.	-22
$k = \infty$	-14.	-18.	-20.	-20
$\kappa = \infty$	-20.	-20.	-18.	-14
	-22.	-20.	-14.	0.0

	←		\
1	Ţ	Ţ	ţ
1	₽	ightharpoons	ţ
₽	†	\uparrow	

값 반복 학습 알고리즘

$$V_{k+1}(s) = \max_{a} \sum_{s'} P_{ss'}^{a} \left[r_{ss'}^{a} + \gamma V_{k}(s') \right]$$

- 임의의 가치 함수 V₀에서 시작하여 정책은 계산하지 않고 가치 함수가 수렴할 때까지 반복
- ullet 수렴한 가치 함수 V^* 를 사용하여 **정책** π 를 결정

```
V(s) \leftarrow 0 for each s \in S repeat \Delta \leftarrow 0 for each s \in S temp \leftarrow V(s) V(s) \leftarrow \max_{a} \sum_{s'} P_{ss'}^a \left[ r_{ss'}^a + \gamma V_k(s') \right] \Delta \leftarrow \max(\Delta, |temp - V(s)| until \Delta < \theta (작은 양수)

정책결정 for each s \in S \pi(s) = \arg\max_{a} \sum_{s'} P_{ss'}^a \left[ r_{ss'}^a + \gamma V^\pi(s') \right]
```

Q-learning 알고리즘

- ❖ 정책 반복, 값 반복 학습 알고리즘
 - 정확한 MDP 모델이 필요
 - 실제 상황에서는 정확한 MDP 모델을 모르는 경우가 많음
- ❖ Q-learning 알고리즘
 - 모델이 없이 학습하는 강화학습 알고리즘

```
for each s and a \hat{Q}(s,a) \leftarrow 0 현재 상태 s 관찰 repeat forever 행동 a를 선택하여 수행 즉시보상값 r를 관측 새로운 상태 s'관찰 \hat{Q}(s,a) \leftarrow r + \gamma \max_{a} \hat{Q}(s',a') s \leftarrow s'
```

Q-learning 알고리즘

```
for each s and a
\hat{Q}(s,a) \leftarrow 0
현재 상태 s 관찰
repeat forever
행동 a를 선택하여 수행
즉시보상값 r를 관측
새로운 상태 s'관찰
\hat{Q}(s,a) \leftarrow r + \gamma \max_{a} \hat{Q}(s',a')
s \leftarrow s'
```

상태
$$s=1$$
에서 시작, $\gamma=0.8$ 행동 $a=5$ 선택 수행
새로운 상태 $s'=5$ 관측
 $\hat{Q}(1,5) \leftarrow r(1,5)+0.8*\max\{\hat{Q}(5,1),\hat{Q}(5,4),\hat{Q}(5,5)\}$ =100+0.8*0 = 100

Action						Action							
State	0	1	2	3	4	5	State	0	1				5
0	0	0	0	0	0	0	0 1 r 2 3 4						
1	0	0	0	0	0	0	1	-1	-1	-1	0	-1	100
$\widehat{Q}(s,a)\frac{2}{3}$	0	0	0	0	0	0	r^2	-1	-1	-1	0	-1	-1
3	0	0	0	0	0	0	3	-1	0	0	-1	0	-1
4	0	0	0	0	0	0	4	0	-1	-1	0	-1	100
5	0	0	0	0	0	0	5	-1	0	-1	-1	0	100

강화 학습 알고리즘

- ❖ 강화 학습 알고리즘
 - 몬테카를로 방법(Monte Carlo method)
 - 시간 차이 학습(temporal difference learning, TD-learning)
 - 정책 그레이언트 알고리즘(policy gradient algorithm)
 - 연속구간 행동을 갖는 강화학습

11.6 역강화 학습

- ☼ 역강화 학습(inverse reinforcement learning)
 - 보상함수가 직접적으로 제공되지 않는 경우 적용
 - 전문가의 바람직한 행동 시연이 가능한 상황
 - 시연을 관측한 데이터로부터 보상함수 학습
 - → 보상함수를 사용하여 가치함수를 함수를 학습하고 정책 결정
 - 상태 s에 대한 전형적인 보상함수 R(s)의 표현
 - 상태 s의 특징 $\phi_i(s)$ 들에 대한 선형결합 표현

$$R(s) = \sum_{i=1}^{N} w_i \phi_i(s)$$

4.7 전이 학습

- ❖ 전이 학습(transfer learning)
 - 특정 문제를 해결하는 데 사용되는 지식 또는 모델을 관련된 다른 문제의 학습에 이용하는 것

활용 가능한 학습 데이터가 부족할 때, 과거에 습득한 지식을 목표영역으로 이전시켜야
 할 때 유용