REFERENCE STATE

0 to 2130 K crystal 2130 to 2952.078 K liquid above 2952.078 K ideal monatomic gas

Refer to the individual tables for details.

Chromium (Cr)

Heat Capacity and Entropy

Points	Method	T/K
76	ະ	14.10-274.43
23	. ც	56.1 –291.1
Smooth	. ლ	60-300
Graph	ີ່ປ	268-324
Smooth	·:	273–1073
Smooth	dorp	400-1500
\$	dorp	1267.2108
11	doop	303-1884
Smooth	່ຮ	320-1800
92	dop	673–1339

Fusion Data

Transition Data

Sublimation Data

 Clusius and P. Franzosini, Z. Naturforsch. 17a, 522 (1962).
 T. Anderson, J. Amer. Chem. Soc. 59, 488 (1937).
 I. Kalishevich, P. V. Gel'd, and R. P. Krentsis, Russ. J. Phys. Chem. 39, 1602 (1965).
 R. H. Beaumont, H. Chihara, and J. A. Morrison, Phil. Mag. 5, 188 (1960).
 L. D. Armstrong and H. Grayson–Smith, Can. J. Res. 28, 51 (1950). (October 1966)

Continued on page 975

				1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Cashellan D.	1		Collection Definition Transferred Transfer					Ę
$S^{\circ}(298.15 \text{ K}) = 23.618 \pm 0.21 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$				$\Delta H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$		aracine 10	J·K-'mol-'	1, = 4,70,13 n		KJ-mol-1	ine cressure :	Kimol-	
$T_{\rm tot} = 311.5 \rm K$ $T_{\rm tot} = 2130 \pm 20 \rm K$				$\Delta_{\rm tr} H^{\circ} = 0.0008 \text{kJ} \cdot \text{mol}^{-1}$	7.1	ಚ	·.0]- ·s	-{G*-H*(T,)}/T	$H^{\bullet}-H^{\bullet}(T_{i})$	Δ _t H.	₽ ′C•	log Kr	
I fin = 2150 = 20 IA				$\Delta_{\text{far}}H^{-} = 20.5 \pm 4.2 \text{ kJ·mol}$	٥	0.		NFINITE	-4.057	0.0	oʻ.	0.0	
Enthalpy of Formation Zero by definition.					288	19,860	14.869	25.58 25.880 25.880 880 880 880 880 880 880 880 880 880	-2.162 -1.102	တ်ဝ	ರರ	တ် တံ တံ	
					298.15	23.434		23.618	ď	6	ó	ó	
Heat Capacity and Entropy The heat capacity values for $T \le 10 \text{K}$ are chosen to be the same as those adopted by	chosen to be the	same as those adopted	by Hultgren et al. A g	Hullgren et al. A graphical integration of these C.	311.500	23.681	23.764	23.619	0.043	O. C. LAM	0. C, LAMBDA MAXIMUM	UM 0.	
data yields $S'(10 \text{ K}) = 0.005 \text{ kcal·mol}^{-1} \text{ and } H''(10 \text{ K}) - H''(0 \text{ K}) = 0.025 \text{ cal·mol}^{-1}$. These data also match well with the C_p^* studies of Clusius and Franzosini. The adopted C_p^* values are based on the following studies.	1°(10 K)—H°(0 F based on the fol	K) = 0 0252 cal·mol⁻¹. Towing studies.	These data also match we	ell with the C, studies of Clusius	350 350 400	23.681 24.393 25.230	24.654 27.453 30.765	23.541 23.508 24.562	0.316 1.240 2.481		TRANSITION 0. 0.		
Source	Points	Method	T/K		\$8	25.983 26.631	33.781	25.421 26.398	3.762 5.078	600	ioo	်ဝင်	
2	76	ئ	14 10-274 43		88	27.719	41.508	28.513	7977	o c	o c	o c	
m	នួន	ಌ೮	56.1 –291.1		888	29.434	49.715	32.877	13.511	i oʻ	öö	တ်ဝ	
• •	Smooth	ئ.	60-300		88	31.861	55.241 56.523	36.901	19.621	ာ် ဝ	ာ် ဝံ	ರ ರ	
n vo	Graph	ະະ	268–324		88	33.472	59.634	38.828	22.887	o o	o c	0 0	
1	Smooth	, d	400-1500		8	37.116	65.511	42.485	29.933	်ဝံ	öö	ံဝံ	
56 (48	dop	1267.2108		<u>\$</u>	39.125 41.200	88.334 71.104	4 5 5 1 1 1 1	33.744 37.760	ರ ರ	00	o o	
an S		drop	303-1884		0091	43.329	73.831	47.589	41.986	ď	ö	Ö	
2 =	Smooth 26	င [်]	320-1800 673-1339		88	47.706	76.523 79.186	49.212 50.804	46.427 51.087	ರ ರ	o o	o o	
•	ì	i.			86 200 200 200 200 200 200 200 200 200 20	52.204 52.204	81.825 84.444	52.367 53.905	55.970 61.077	ರ ರ	ರ ರ	o o	
The adopted C, values are obtained primarily by graphical techniques to ensure smoothness of the curve and a reasonable representation of	y by graphical to	chniques to ensure smo	othness of the curve an	d a reasonable representation of	2100	54,488	87.046	55.422	66.411	6	ď	ö	
the sometimes diverse results. A $\Delta L_p = 0$ is also adopted across I_p . Below 200 k, there is excellent agreement between three independent	also adopted acr	oss 7 m. Below 200 K, 1	here is excellent agreer	nent between three independent	2130.000	55.174	87.824	55.873	- 950'89	CRYSTAL	į	TIOND	
studies. Above 200 K unese futte studies drift apart by at most 0.00 kcal·mol. Above 298 K, there are considerable differences in the various sets of data, differences of the order of 0.2 kcal·mol ⁻¹ being typical. In terms of enthalpy, the data of Jaeger and Rosenbohm ¹¹ deviates	f 0.2 kcal·mol ⁻¹	most 0.06 kcal-mol being typical. In terms o	Above 298 K, there are if enthalpy, the data of J.	considerable differences in the aeger and Rosenbohm ¹¹ deviates	2200 2300	56.785 59.099	89.634 92.209	56.918 58.397	272.17 997.17	-19.336 -17.475	0.655 1.523	-0.016 -0.035	
from the adopted values by +150 to +350 cal-mol ⁻¹ ; the data of Lucks and Deem' by 0 to -450 cal-mol ⁻¹ ; the data of Hultgren and Land ² by -13 to 450 cal-mol ⁻¹ ; the data of Hultgren and Land ³ by -13 to 450 cal-mol ⁻¹ ; the data of Hultgren and Land ³ by -130 cal-mol ⁻¹ ; the data of Hultgren and	·mol ⁻¹ ; the data	of Lucks and Deem' b	y 0 to -450 cal·mol-1;	the data of Hultgren and Land	7400 7200 7200	61.425 63.764	94.774 97.328	59.859 61.307	83.795 90.055	-15.382 -13.055	2,305 2,995 2,995	-0.050	_
yelds enthalpies which are crudely 2 kcal-mol ⁻¹ less than the adopted values at 2000 K.	iol ⁻¹ less than th	re adopted values at 20	oo K.	mapy study by raining et al.	250 270 270 270 270 270 270 270 270 270 27	68.467	99.875	62.741	96.548	-10 495	3.587	-0.072	
Fusion Data Refer to the liquid table for details.					887	Con	1	3	110.242	100	4.40	5000	
Fransition Data Beaumont <i>et al.</i> * measured the heat capacity of 99.998% pure Cr in the region 268–324 K. The detailed C** measurements gave evidence of a Bambda-type anomaly, the maximum occurring at 311.5 K. Beaument <i>et al.</i> * estimated the heat associated with this transition to be 1.4 cal-mol⁻¹. Garnier and Salamon¹ used an extension of the ac calorimetric method to determine latent heat and heat capacity simultaneously. They concluded that annealing the Cr sample decreases the transition temperature and sharpens the peak. They also concluded that the transition was first order with a latent heat of 0.19 ± 0.04 cal-mol⁻¹ at a transition temperature of 311.5 K. Carnier and Salamon¹ calculated at latent heat of 0.23 ± 0.05 cal-mol⁻¹ and 0.25 ± 0.08 cal-mol⁻¹ from expansivity data and neutron-diffraction data, respectively. Sze and Meaden⁴ observed a large step in specific heat measurements (50%) and estimated a latent heat of 0.47 cal-mol⁻¹.	ty of 99.998% prunting at 311.5 tension of the ac decreases the 0.19 \pm 0.04 cal 0.19 \pm 0.08 cal measurement	ure Cr in the region 26. K. Beaument et al. ¹ est calorimetric method to the transition temperature rinol ⁻¹ at a transition ten capansivity (100 ⁻¹ from expansivity (100 ²) and estimated (100 ²) and estimated (100 ²).	8-324 K. The detailed (imated the heat associat determine latent heat and sharpens the peak riperature of 311.5 K. Glata and neutron-diffrad laten theat of 0.47 c. a latent heat of 0.47 c.	"pressurements gave evidence the with this transition to be 1.4 dd heat capacity simultaneously." They also concluded that the farmier and Salamon ¹³ calculated ition data, respectively. Sze and 11 mol ⁻¹ .									
We adopt $T_{tor} = 311.5 \text{ K}$ and $\Delta_{tor}H^{\circ} = 0.0002 \text{ kcal-mol}^{-1} \text{ based on the work by Garnier}$ the transition. The nature of the transition is not understood at this time.	22 kcal·mol ⁻¹ ba not understood	sed on the work by Gan at this time.	nier and Salamon. ¹³ In a	and Salamon. ¹³ In addition we adopt $\Delta C_{\rho}^{\bullet} = 0$ across									
Sublimation Data Refer to the ideal gas table for details.													
References 'R. Hullgren, R. L. Orr, and K. K. Kelley, Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys, Cr table, (October 1966).	Supplement to S	elected Values of Ther	modynamic Properties	of Metals and Alloys, Cr table,									
 ²K. Clusius and P. Franzosini, Z. Naturforsch. 17a, 522 (1962). ³C. T. Anderson, J. Amer. Chem. Soc. 59, 488 (1937). ⁴G. I. Kalishevich, P. V. Gel'd, and R. P. Krentsis, Russ. J. Phys. Chem. 39, 1602 (1965). ⁵R. H. Beaumont, H. Chihara, and J. A. Morrison, Phil. Mag. 5, 188 (1960). 	h. 17a, 522 (19088 (1937). rentsis, Russ. J. rrison, Phil. Ma	52). Phys. Chem. 39, 1602 g. 5, 188 (1960).	(1965).		PREVIOUS:						CUR	CURRENT. June 1973	973

Chromium (Cr)

Cr₁(cr)

J. Phys. Chem. Ref. Data, Monograph 9

ರರದರ ರದರದ

0.096 -0.286 -0.464 -0.631 -0.787

5.508 16.982 28.430 39.855 51.258 62.641

339.122

65.243 69.176 73.109 77.042 88.841 92.774 94.822 96.707 100.640 106.577 1108.505 1108.505

10.286 110.919

39.330 39.330 39.330 39.330 39.330 39.330 39.330 39.330

69.065 70.393 71.681 72.932 74.147 75.328 76.477 77.595 78.165

98.721 100.469 102.143 103.749 106.775 106.775 108.206

1400 1500 11700 11000 11

-0.315 -0.250 -0.194 -0.145 -0.103 -0.034 -0.034

5.943 4.720 3.535 1.311

25.219 24.492 23.542 22.368 20.967

62.490

88.111

97.449

39.330

33.779 37.712 41.645 45.578 49.511 53.444 57.377

86.196 88.581 90.829 92.955 94.972

39.330 39.330 39.330 39.330 39.330

8.449 7.190

26.103

80.944 83.658

39.330 39.330

15.727

GLASS

31.813

36.205 36.205 37.148 37.148 37.148 37.148 37.148 37.141 47.471 47.471 47.471 47.471 47.471 47.471 47.471 55.270 55

-3.910 -3.81 -2.747 -2.747 -2.369 -2.066 -1.612 -1.045 -0.704 -0.704 -0.390

22.316 22.232 21.663 20.405 19.775 17.259 16.000 14.742 13.483 12.225 10.967 9.708

25.057 25.057 25.057 25.057 25.057 25.058 25.058 25.058 25.058 25.058 25.058 25.058

0. 0.043 1.240 2.481 3.761 5.077 7.797 7.797 19.621 19.621 826.318 25.932 25.932

36.350 40.036 43.349 46.365 49.137 58.430 58.430 65.229 65.229 65.229 65.229 65.239 77.218 77.218 77.218 77.218

23.472 25.230 25.230 25.230 25.230 25.230 27.722 29.434 31.861 31.861 31.861 33.472 33.472 33.472 33.472 33.472

CURRENT: June 1973

A _r = 51.996 Chromium (
LIQUID	

E L

Standard State Pressure = p = 0.1 MPa

Enthalpy Reference Temperature = T, = 298.15 K

ည်

log K

₽Ġ.

K-mol- $\Delta_t H^{\circ}$

 $H^{\bullet}-H^{\bullet}(T_{i})$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

ť

ž

 $^{\circ}(298.15 \text{ K}) = [26.068] \text{ kJ·mol}^{-1}$ $\Delta_{\text{tus}}H^{\circ} = 20.5 \pm 4.2 \text{ kJ·mol}^{-1}$

5-10m1-7-1-1800 15 K) = (35 3081 1-18-1-1800)	$T_{\rm c} = 2130 \pm 20 V$

Chromium (Cr)

Enthalpy of Formation

The enthalpy of formation of Cr(I) at 298.15 K is calculated from that of the crystal by adding $\Delta_{lw}H^{o}$ and the difference in enthalpy, H°(2130 K)-H°(298.15 K), between the crystal and liquid.

Heat Capacity and Entropy

The heat capacity for Cr(I) is estimated as 9.4 cal·K⁻¹·mol⁻¹ by analogy with other monatomic metals. The same value was adopted by Hutgren et al. A glass transition is assumed at 1350 K. Below 1350 K, the C^og values are those of the crystal. The entropy is calculated in a manner analogous to that used for the enthalpy of formation.

Fusion Data

The value for the enthalpy of melting is adopted as $\Delta_{los}H^{\circ} = 4.9 \pm 1.0$ kcal·mol⁻¹. This value is calculated from $\Delta_{los}S^{\circ} = 2.3$ cal·K⁻¹·mol⁻¹. This estimated entropy of melting is consistent with the recently accepted $\Delta_{los}S^{\circ}$ values for V², 2.49 cal K - mol⁻¹), Nb², 2.33 cal·K⁻¹·mol⁻¹), and Ta², 2.68 cal·K⁻¹·mol⁻¹). This is in contrast to a value of $\Delta_{los}S^{\circ} = 1.9$ cal·K⁻¹·mol⁻¹ used by Hultgren *et al.*!

The melting temperature is adopted as Tin = 2130 K as was chosen by Hultgren et al. Values reported in the literature are:

T, K	2133 2118 ± 10	
Year	1949	1959
Source	~ * »	•

Vaporization Data

The value for $T_{v,p}$ calculated as the temperature for which the Gibbs energy for the reaction Cr(f) = Cr(g) is zero. The difference in the enthalpy of formation of Cr(f) and Cr(g) at $T_{v,p}$ is $\Delta_{v,p}H^{\circ}$.

R. Hultgren, R. L. Orr, and K. K. Kelley, Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys, Cr table,

 JANAF Thermochemical Tables: V(cr), 6-30-73; Nb(cr) and Ta(cr), 12-31-72.
 J. Carlile, J. W. Christian, and W. Hume-Rothery, J. Inst. Metals 76, 169 (1949).
 H. T. Greenaway, S. T. M. Johnstone, and M. K. McQuillan, J. Inst. Metals 89, 109 (1951).
 S. Bloom, J. W. Putman, and N. J. Grant, J. Metals 4, 626 (1952).
 C. W. Haworth and W. Hume-Rothery, J. Inst. Metals 87, 265 (1959). W. Haworth and W. Hume-Rothery, J. Inst. Metals 87, 265 (1959) (October 1966).

PREVIOUS:

Chromium (Cr)

Refer to the individual tables for details.

CURRENT. June 1979 (1 bar)

PREVIOUS: June 1979 (1 atm)

Cr ₁ (g)	Ž.	m.	1000		• -	-0"		0640	755	200	20.00	4 80 4			44	00 FC	- 85	1									
ວັ	= p = 0.1 MPa		-95.948 -95.948 -75.179			-38.280		-21.835 -18.172 -15.314 -13.033			-5.415					-0.818 -0.563		bar 0	್ರಿ	ತರರ	dodo	ರ ರರರರ		. ರರ	ಶರರ	ರರರ	o o
		395.340	367.374 359.816	352,551	352,272	327.254	307.554	292.877 278.311 263.854 249.504	235.265	193.250	165.864	125.780	99.743	87.589 75.788	64.044 52.350	40.702 29.096	5.994	- FUGACITY - 1 bar	်ဝံဝံ	ಶರರ	ರರರ	ರ ರಶರರ	ರಂಧರರ	600	ರರರ	ರರರ	ರರ
	Standard State Pressure KJ·mol ⁻¹	395.340	397.602 397.602 397.581	397.480	397.475	396.874 396.874 306.508	395.957	392.221 394.401 393.486 392.452	391.272	386.751 384.895	382.865	375.764	373.068	347,856 346,537	345.287 344.104	342.986 341.932	340.939 340.003	FUG	600	တ်တ်လ	ರರರ	ರ ರರದರ	್ ಲಿಲಿಲಿಲಿ	ರಂದ	ರ ೆ	ರರರ	ೆ ರ
	K H*-H*T)	-6.197	-2.040	0.	1.078	3.156 4.196	6274	8.333 10.432 12.511 14.593	16.679	23.015 25.175	27.372	34254	39.142	41.688	46.984 49.734	52.549 55.428	88.79 61.364	62.947	67.521 70.676	77.131	83.773 87.165 90.605	97.637 101.235 104.890 108.609 112.394	120.187 124.206 128.315 132.523	140.898	154.556 159.338	164244 169277 174.445	179.752
	Enthalpy Reference Temperature - T 298.15 J.KInol T.K. C. S I.G HPT.MT	INFINITE	176.212 174.653	174.311	174.312	175.127 175.854 176.666	178.390	181.788 183.375 184.877	186.296	190.110 191.256	192.350	195.367	196.299	198.975	199.751 200.557	201.343	203.601	203.979	205.033	207.086 207.086 207.748	208.399 209.041 209.673	210.910 211.517 212.115 212.706 213.290	214.438 215.003 215.563 216.117	217.207	218.814 219.342	219.867 220.390 220.909	221.427 221.942
	emperature	9 0.5	170.650		24.E	180.419	188.847	197,052 194,828 197,277 199,470	201.459	206.549 208.039	209.457	213.395	215.840	217.024	219.328 220.450	221.554	224.761	225.302	226.814	229.772 230.728	231.670 232.599 233.516 234.423	235.320 236.208 237.089 237.964 238.834	240.566 241.430 242.295 243.163	244.834	240.204 247.435 248.313	249 197 250.087 250.986	251.893 252.809
m (Cr)	Reference To	0.5	20.786	20.786	20.786	20.786 20.786	20.786	20.787 20.803 20.835	20.901	21.768 21.768	22.173	23.78	25.109	26.73	27.165 27.831	28.476		30.788	31.302	32.745 33.212	33.680 34.646 35.157	36.260 36.260 36.864 37.511 38.205	39.760 40.632 41.572 42.587	43.917	45.064 47.221 48.432	52.370 52.370	53.779 55.230
Chromiu	Enthalpy 1	- 2	888	298.15	88	\$ \$\$	88	8888	2002	8 <u>48</u> 8	991 100 100 100 100 100 100 100 100 100	888	2000	2300	2400 2500	2700	7800 7800 7800	3000	3200	3 % K	3600 3700 3800	8524444 85888888888888888888888888888888	8444 830 830 830 830 830 830 830 830 830 830	\$200 \$200	\$500 \$200 \$000 \$000	28 5500 8 5700 8 500 8 500 8 500	800 800 800 800
A _r = 51.996 Chromium (Cr)	$\Delta_t H^{\circ}(0 \text{ K}) = 395.34 \pm 4.2 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 397.48 \pm 4.2 \text{ kJ} \cdot \text{mol}^{-1}$							Inthalpy of Formation The many vanor pressure studies are treated by a 2nd and 3rd law analysis and are tabulated below. In all cases the reaction of interest is		nol-1 Drift 3rd law cal-K-1-mol-1				-4.29	90.06 1.28 $93.99 0.59 \pm 3.95$	1.48		95.50 1.62 ± 1.84		8.15 K) which are 10–15 kcal·mol ⁻¹	too low when compared to the results listed above. We adopt $\Delta_i H^*(298.15 \text{ K}) = 95.0 \pm 1.0 \text{ kcal·mol}^{-1}$ for Cr(g). This value is representative of the more recent 2nd law values tabulated above. $^{-10}$	Heat Capacity and Entropy The electronic levels and quantum weights are obtained from Moore; ¹³ although only the lowest levels are listed above. There are predicted levels which have not been observed and/or classified. It is anticipated that these levels will not significantly alter the entropy below 3000 K. The heat capacity and entropy values are very similar to those adopted boy Hultgren et al. !*					
IDEAL GAS	$^{\circ}H_{ m Q}$	Quantum Weights						nalysis and are tabulated below		Δ _t H*(298.15 K), kcal mol ⁻¹ 2nd law 3rd	94.05 ± 0.84	98.51 ± 2.16	97.60 ± 1.60 95 15 ± 1.00	101.14 ± 2.87	88.08 93.14 ± 5.70	92.50	91.79	92.78 ± 3.08		red as their work leads to Δ_H (25	value is representative of the m	¹³ although only the lowest levels that these levels will not significad byy Hultgren <i>et al.</i> '*	c. 72, 4142 (1950). 1952).	IME, 212, 102 (1958).	Chem. 34, 842 (1960). , 230 (1959).	247 (1961). 34A)	44 (1965).
10E		Electronic Levels and Quantum Weights		⁵ S ₂ 7593.16	. Do 7810.82	⁵ D ₂ 7927.47		d by a 2nd and 3rd law a		Method	Lanemuir	Knudsen	Langmuir	Knudsen	Knudsen Knudsen	Knudsen	Torsion-effusion	Knudsen	* Two points neglected due to failure of a statistical test. ** One point neglected due to failure of a statistical test.	Brunner ¹² are not conside	above. al·mol ⁻¹ for Cr(g). This	Heat Capacity and Entropy The electronic levels and quantum weights are obtained from Moore, 13 although only the low levels which have not been observed and/or classified. It is anticipated that these levels will no The heat capacity and entropy values are very similar to those adopted boy Hultgren et al. 14	References R. Speiser, H. L. Johnston, and P. B. Blackburn, J. Amer. Chem. Soc. 72, 4142 (1950). P. A. Gulbranson and K. F. Andrew, J. Electrochem. Soc. 99, 402 (1952).	¹ V. D. Burlakov, Phys. Metals and Metallog. 5, 72 (1957). ⁴ C. L. McCabe, R. G. Hudson, and H. W. Paxton, Trans. Mat. Soc. AIME, 212, 102 (1958).	'G. O. Piloyan, A. M. Evseev, and Ya. I. Gerasimov, Russ. J. Phys. Chem. 34, 847, An. N. Nesmeyanov and D. Dyk Man, Dokl. Akad. Nauk SSSR 116, 230 (1959).	 Kutzschewski and C. Heymer, Acta Met. 8, 410 (1950). E. A. Gulbranson and K. F. Andrew, Trans. Met. Sc. AIME 221, 1247 (1961). A Ta Idried and K. M. Merley. Trans. Mer. Sco. a IMF 230 735 (1964). 	10. S. Dickson, J. Myers, and R. K. Saxer, J. Phys. Chem. 69, 4044 (1965). 11. Greenwood Proc. Roy. Soc. A87, 306 (1960).
	$\text{IP(Cr, g)} = 54570 \pm 10 \text{ cm}^{-1}$ $S^{\circ}(298.15 \text{ K}) = 174.31 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$							tion Essure studies are treate		7/K	1283-1562	1162-1282	1292-1509	1381–1505	1302–1576 1317–1558	1441–1672	1376–1592	1559-1805	oints neglected due to fa	enwood" and Baur and	ed to the results listed : 3.15 K) = 95.0 ± 1.0 kg	Entropy s and quantum weights been observed and/or clentropy values are ver	nston, and P. B. Blackl	¹ V. D. Burlakov, Phys. Metals and Metallog. 5, 72 (1957). C. L. McCabe, R. G. Hudson, and H. W. Paxton, Trans. N.	Evseev, and Ya. I. Ge and D. Dyk Man, Dok	 U. Kudaschewski and U. Heymer, Acta Met. 8, 410 (1904). E. A. Gulbranson and K. F. Andrew, Trans. Met. Soc. AIM! A. T. Aldred and K. W. Weiler Trans. Met. Soc. AIM! 230. 	Myers, and R. K. Saxe
Chromium (Cr)	IP(Cr, g) = 54570 ± 10 cm ⁻¹ S°(298.15 K) = 174.31 ± 0.4.							Enthalpy of Formation The many vapor pressur	Cr(cr) → Cr(g).	Data Source Points		9	**01	6	edu ,	eqn		15**	* Two px	Early studies by Gre	to low when comparate $\Delta_{\rm P} H^{\circ}(29)$ Ne adopt $\Delta_{\rm P} H^{\circ}(29)$ sove.	Heat Capacity and Entropy The electronic levels and quan levels which have not been obser The heat capacity and entropy v	References 'R. Speiser, H. L. Joh 'E. A. Gulbranson and	V. D. Burlakov, Phy	3. O. Piloyan, A. M	Kubaschewski an A. Gulbranson an T. Aldred and K	D. S. Dickson, J. R. H. C. Greenwood P.
-	,							ш	J	· v	' '										= "	F	m = 4	-, ••	n	₩	

(October 1966).

CURRENT. March 1984 (1 bar)

Crt(g)

Chromium, Ion (Cr*)

IP(Cr*, g) = $133060 \pm 10 \text{ cm}^{-1}$ S*(298.15 K) = $173.029 \pm 0.05 \text{ J-K}^{-1} \cdot \text{mol}^{-1}$

.5 kJ·mol⁻¹ 0] kJ·mol⁻¹

M. = 51.99545 Chromium, Ion (Cr*)

IDEAL GAS

1196.00	0.00	£, cm_1
---------	------	---------

 $\Delta H^0(\text{Cr}^2, g, 0 \text{ K})$ is calculated from $\Delta H^0(\text{Ct}, g, 0 \text{ K})^{\dagger}$ using the spectroscopic value of IP(Cr) = 54570 ± 10 cm⁻¹ (652.80 ± 0.12 which is derived from the 1973 CODATA fundamental constants.3 Rosenstock et al.4 and Levin and Lias3 have summarized additional kl-mol-1) from Sugar and Corliss. The ionization limit is converted from cm-1 to kl-mol-1 using the factor, 1 cm-1 = 0 01196266 kl-mol-1, ionization and appearance potential data.

 $\Delta H^*(Ct^*, g, ^298.15 \, K)$ is calculated from $\Delta H^*(Ct, g, 0 \, K)$ by using IP(Cr) with JANAF¹ enthalpies, $H^*(0 \, K) \rightarrow H^*(298.15 \, K)$, for Cr(g), $Ct^*(g)$, and $e^-(ref)$. $\Delta H^*(Cr \rightarrow Cr^+e^-, 298.15 \, K)$ differs from a room temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. $^4\Delta H^*(298.15 \, K)$ should be changed by $-6.197 \, K$ mol⁻¹ if it is to be used in the ion convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

The information on electronic energy levels and quantum weights, given by Corliss and Sugar, is incomplete because many theoretically and the ionization potential for Cr*(g), all levels listed by Sugar and Corliss, as well as estimated levels, are used in the calculation. The observed levels are too numerous to list completely. The calculations indicate that for Cr*(g), the tehrmodynamic functions are independent of the estimated missing levels (for n = 4), the cut-off procedure, and the inclusion of n = 6 levels up to 6000 K, the Gibbs energy function predicted levels have not been observed. Although we have listed only the ground, the first excited state, the highest observed excited state, showing variations of 0.02% at this temperature. The reported uncertainty is S'(298.15 K) is due to uncertainties in the relative ionic mass, and the fundamental constants. Extension of these calculations above 6000 K may require consideration of the higher excited states (17-6), and use of different fill and cut-off procedures.6

References

¹ANAF Thermochemical Tables: Cr(g), 3-31-84, e⁻(ref), 3-31-82.

²C. E. Moore, U. S. Nar. Bur. Stand, NSRDS-NBS-34, (1970).

³E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

⁴H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (1977).

⁵R. D. Levin and S. G. Lias, U. S. Natl. Bur. Stand. NSRDS-NBS-71, (1982).

⁶J. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

Enthalpy R	eference T	Enthalpy Reference Temperature = T,	- T, = 298.15 K		Standard State Pressure		= p* = 0.1 MPa
7.K	ដ	S[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$	Δ,Η.	₽ C•	log Kr
0 200 250 250	0. 20.786 20.786 20.786	0. 150,322 164,730 169,368	INFINITE 191.510 174.931 173.372	-6.197 -4.119 -2.040 -1.001	1048.142		
298.15	20 786	173.029	173,029	ö	1056.480	1005.678	-176.191
88	20.786	173.158	173,030	0.038	1056.513	1005,363	-175.049
9	20.786	179.138	173.845	2.117	1058232	988.049	-129.026
38	20.786	181.286	175.385	4.18 8.18	1059.030	979.227 970.319	-113.666 -101.369
88	20.786	187.566	177.109	6.274	1061231	952.288	-82.904
3 <u>8</u>	20.786	193.545	180,506	8.333 10.431	1062.573	934.023	-69.698
88	20.786 20.786	195.994	182.094 183.595	12.510	1064.995	896.968	-52.059
82	20.787	200.165	185.013	16.667	1066.927	859.418	-40.810
38	20.78	203,638	187.618	20.825	1068.197	821 569	-36.587
9.50 0.00 0.00 0.00	20.808	205 180 206.616	188.818 189.958	22.906	1068.544	802.583 783.580	-29.945
0091	20.868	207.961	191.041	27.072	1068.626	764.573	-24.961
0081	20.526	209.228	192.074	29.162	1068.353	745.577	-22.909
2000	21.121	211.565	194,005	33.364	071 790	707.662	-19.455
2100	21.457	213 694	195 780	17.620	1065.141	660.103	-11.989
2200	21.686	214.698	196.617	39.776	1044.47	651.780	-15.475
2400 2400	22.283	215.667	197.425	41.958	1044.805	633 923	-14.397
2500	22.652	217.526	198.959	46.417	1045.554	598.164	-12.498
2500	23.069 23.533	218.422	199.690 200.400	48.702	1045.985	580.260	-11.658
2800	24.044	220.166	201.091	53.410	1046.985	544.398	-10.156
3000	25.199	221.863	202.419	55.842 58.332	1047.562 709.076	526.439 513.967	-9.482 -8.949
3100	25.839	222.700	203.060	60.883	710.601	507.438	-8.550
3300	27.230	224.358	204.301	66.188	713.704	494,233	-8.176
3200	27.975 28.750	225.182 226.004	204.903 205.494	68.948	715.292	487.559	-7.490
3600	29.550	226.825	206.075	74.699	718.557	474.069	-6.879
3800	30,374	228.467	206.647	71.695 27.695	720.240	467.255	-6.596
3300	32.078	229.289	207.766	83.939	723.712	453.488	-6.074
4100	33.838	230.936	208.856	90.530	727.320	439.540	-5.600
4300	35.635	232.590	209.392	93.938	731.050	432.499	-5379
64 60 60 60 60	36.542 37.452	233.420 234.251	210.446 210.966	101.085	732.952	418.283	-4.966
4600	38.366	235.085	211.481	108.576	736.807	403.894	-4.586
800	39.787 40.199	236.756	211.992	112.458	738.749	396.636	-4.408
\$ \$0 00 00 00 00 00 00 00 00 00 00 00 00 0	41.118	237.594	213.003	120.498	742,629	381.996	-4.072
2100	42.964	239.276	214,000	128.906	746.819	367.172	-3.761
2200	43.893	240.119	214.494	133.249	748.797	359.709	-3.613
\$ \$ 500\$	45.767	241.811	215.475	142.215	752.705	344.669	-3.334
2000	47.675	243.510	216.446	151.558	756.518	329.487	-3.073
2,500 2,000	48.645 49.629	244.362	216.928	156.374	758.379	321.845	-2.949
2800	50 627	246.073	217.887	166.300	761.988	306.464	-2.713
	1 0.15	666047	418,304	1/1.414	057.70	671 867	-2.601

PREVIOUS:

_
DEAL
ш
Ω
=
_
`~
Ü
දු
lon Ion
0
_

Chromium,

GAS

EA(Cr, g) = 0.666 ± 0.012 eV	$S^{(298.15 \text{ K})} = 173.030 \pm 0.003 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

$\Delta_H^{\circ}(0 \text{ K}) = 331.081 \pm 2 \text{ K}$	A 1707 TOTAL (V) - 1777 A. A.	A [+20.12c] = (A C1.0c2) 140	

Cr₁(g)

M. = 51.99655 Chromium, Ion (Cr7)

information on Cr $^{\circ}$ (g) may be obtained in the critical discussions of Hotop and Lineberger, $^{\circ}$ 4 Rosenstock *et al.*, and Massey, $^{\circ}$ $\Delta_f H^{\circ}$ (Cr $^{\circ}$, g, 298.15 K) is obtained from $\Delta_f H^{\circ}$ (Cr, g, 0 K) by using EA(Cr) with JANAF $^{\circ}$ enthalpies, H° (0 K)– H° (298.15 K), or Cr $^{\circ}$ Cr(g), and e (ref). $\Delta_f H^{\circ}$ (Cr $^{\circ}$ Cr + e $^{\circ}$, 298.15 K) differs from a room-temperature threshold energy due to inclusion of these enthalpies at to threshold effects discussed by Rosenstock *et al.*³ $\Delta_f H^{\circ}$ (298.15 K) should be changed by +6.197 kJ-mol⁻¹ if it is to be used in the convention that excludes the enthalpy of the electron. $\Delta H^{3}(G^{-}, g, 0 \text{ K})$ is calculated from $\Delta H^{3}(Gr, g, 0 \text{ K})^{4}$ using the adopted electron affinity of EA(Gr) = 0.666 \pm 0.012 eV (64.259 \pm 1. L³ mol⁻¹). This value, recommended by Hotop and Lmeberger² is based on a laser photodetachment electron spectrometry study. ³ Addition Stat Elec Enthalpy of Formation

Heat Capacity of Entropy

The ground state electronic configuration for Cr (g) is given by Hotop and Lineberger^{2 4} and Rosenstock et al. ⁵ Lacking any experiment evidence as to the stability of any excited states, we assume that no stable excited states exist.

²H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data. 14, 731 (1985).
³C. S. Feigerle, R. P. Cordeman, S. V. Bobashev and W. C. Lineberger, J. Chem. Phys. 74, 1580 (1981).
⁴H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).
⁵H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (1977).
⁶H. S. W. Massey, "Negative Ions," 3rd ed., Cambridge University Press, Cambridge, (1976). 'JANAF Thermochemical Tables: Cr(g), 6-30-73; e-(ref), 3-31-82.

kJ-mol ⁻¹	Enthalpy R	eference To	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure = p° = 0.1 MPa	Pressure = p	° = 0.1 MP2
- TOEF-12	ТК	೮	S - [G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{*})$	Δ _r H.	Δ_{iG}	log K.
	2880 2880	0. 20.786 20.786 20.786	0. 150,322 164,730 169,368	INFINITE 191.510 174.931 173.372	-6.197 -4.119 -2.040 -1.001	331,081		
	298.15	20.786	173.030	173.030	Ö	327.024	288.732	-50.585
	380	20.786	173.158	173.030	0.038	326.981	288.494	-50231
± 1.158	888	20.786	179.138	173.845	3.156	324.543	276.028	-36.046
dditional	3 8	20.786	187.76	28227	4.1% 6.77.4	310 777	752 001	10977
r Cr^(g),	888	20.786	07.061	178.837	833	316.412	242.068	-18.063
lpies and	885	20.786	195.994	182.094	12.510	310.519	22158	-12.861
iioi ain i	8 2	20.786	200.165	185.013	16.667	304.137	202.478	-9.615
	9 5 30 8	20.786	201.974	186.352	18.746	300.706	193,387	-8.418
rimental	1500	20.786	205.178	188.819	22.903	293.280	176.076	-6.569
	002	20.786	207.953	191.041	27.060	285.038	159.886	-5220
	0816	20.786	210.402	193.059	31.217	271.054	137.625	-4.201
	2100	20.786	213.606	17:261	37.453	260.612	124.103	-3.087
	825 826 80 80 80 80 80 80 80 80 80 80 80 80 80	20.786 20.786	214.573	196.604	39. 5 32 41.610	235.713	118.387	-2811
	7 4 00 7 2 00	20.786 20.786	216.381 217.230	198.178	43.689 45.768	223.914	108.068	-2352 -2.155
	2600	20.786	218.045	199.643	47.846	219.981	98.405	-1.977
	2808	20.786	219.586	201.013	52.004	212.115	89.348	-1.667
	38	20.786	220.122	202.299	54.082 56.161	208.182 -134.873	85.033 86.362	-1532
	3100 3200	20.786	221.701	202.914	58.239 60.318	-137.977 -141.132	93.788	-1.580
	3300 3400 3500	20.786 20.786 20.786	223.001 223.621 224.224	204.093 204.658 205.209	62.397 64.475 66.554	-144336 -147.587 -150.885	108.940	-1.724 -1.792 -1.858
	380	20.786	224.809	205.745	68.632	-154229	132.399	-1.921
	3800	20.786	225,379	206.268	70.711	-157.621 -161.061	140.407	-1.982
	889	20.786 20.786	226.999	207.276 207.763	74.868	-164.551 -168.093	156.700	-2.099 -2.154
	4 4 7 8 9 9	20.786	227.513	208.238	79.025 81.104	-171.691	173.353	-2.261
	0.54 0.04 0.00	20.786	228.503	209.158	83.183	-179,065	190,361	-2312
	4500	20.786	229.448	210.039	87.340	-186.708	711.702	-2411
	84 6	20.786	230,352	210.466	89.418 91.497	-190.643 -194.662	216.526	-2.50
	84 8 88 8 88 8	20.786 20.786	230.789	211.294	93.576 95.654	-198.771 -202.979	243.469 243.469	-2551 -2595
	2100	20.786	232.049	212.479	99.811	-211354	261.839	-2.682
	2200	20.786	232.453	212.859	101.890	-215.798	271.160	-2.72
	\$500 \$500	20.786	233,237	213.599	106.047	-225.012 -229.794	290.063 299.645	-2806
	2800	20.786	233.993	214.314	110.204	-234.700	309.315	-2.885
	2808	20.786 20.786	25.025	215.343	116.440	-244.901 -250.208 -255.58	338.862	-2962
	PREVIOUS						DDENT: Man	CTEPENT: March 1084 (1 har)
	r. F.			ŀ		3	AMEN'S. Pro-	1704 (1 04/1

M_r = 66.0027 Chromium Nitride (CrN)

 $\Delta_t H^{\circ}(0 \text{ K}) = -116.46 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$

CRYSTAL

Chromium Nitride (CrN)

2nd and 3rd law analyses of equilibrium nitrogen pressures for the reaction Cr2N(cr) + 0.5 N2(g) = 2 CrN(cr) cited in a recent review of the thermodynamic properties of the Cr-N system are made using revised thermal functions for Cr2N [2] and CrN (refer below) We have not taken into account, in our analysis, any variations in the compositions of the two nurides (see Phase Data Section). Results of our analysis $\Delta_t H^{\circ}(298 15 \text{ K}) = -117.15 \pm 8.4 \text{ kJ} \cdot \text{mol}$ $S^{(298.15 \text{ K})} = 37.71 \pm 2.1 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Enthalpy of Formation are tabulated below

Δ _t H°(298.15 K)* kcal·mol ⁻¹	-27.4 ± 1.7 -28.3 ± 1.1 -27.5 ± 1.6 -27.6 ± 1.0
Drift cal·K ⁻¹ ·mol ⁻¹	0.8 ± 1.0 1.7 ± 0.3 -9.5 -0.2
l mol ⁻¹ 3rd law	24.88 ± 0.37 26.58 ± 0.16 25.0 ± 1.2 25.26 ± 0.02
$\Delta_r H^\circ$, kcal mol ⁻¹ 2nd law 3rd	-25.9 -28.5 -13.0 -25.1
T/K	1083–1288 1104–1223 1178–1351 1173–1323
Data Points	8 6 10 ⁶ Equation
Source	Valensi³ Sano⁴ Smith⁵ Mills ⁶

1

Third law values; auxiliary data used $\Delta_i H^{\circ}(Cr_2N, cr, 298.15 \text{ K}) = -300 \pm 3.0 \text{ kcal·mol}^{-1}$. Data taken from reference, one point rejected due to failure of a statistical test.

for these discrepancies have been presented by DeLuca and Lettnaker. The drifts are both positive and negative which provides support for our revised thermal functions for the two nitrides. Neumann et al. 7 measured $\Delta_{t}H^{\circ}$ directly by combination of the elements in a bomb calorimeter. Two samples of chromium (99.2-99.7% purity) were heated to temperatures near 1200 K in 25 atmospheres of nitrogen. Under The equilibrium pressures of Sano⁴ are inconsistent with those of the other investigations, and no weight is given to these results. Reasons these conditions, 3 it is unlikely that significant amounts of subnitride (Cr₂N) were formed. Neumann et al. 7 recommended the value $\Delta_{i}H^{o}(Cr_{i}N)$ cr, 298 15 K) = $-29.5 \pm 0.5 \text{ kcal·mol}^{-1}$

We adopt ΔH°(CrN, cr, 298.15 K) value of -28.0 ± 2.0 kcal·mol⁻¹ (-117.152 ± 8.4 kJ·mol⁻¹) which is based mainly on the results from two equilibrium studies^{3,8} and to a lesser extent on the value determined by bomb calorimetry. Our adopted value agrees with that (-28.4 ± 1.5) selected by DeLuca and Leitnaker¹ but is 1.8 kcal·mol⁻¹ less negative than the NBS° value (-29.8).

Heat Capacity and Entropy

the graph at 25° temperature intervals are used to obtain a value for \$°(298 15 K) by integration. This method leads to \$°(298.15 K) = 9.0 cal K -1 mol -1 (37.656 J·K -1 mol -1) with \$°(73 K) = 0.39 cal K -1 mol -1. The latter value is obtained from the Debye function D(330/T). The uncertainty in our value for \$\(^2\)(298.15 K) is believed to be less than \(\pmo 0.5\) cal. K⁻¹·mol⁻¹. Previously published estimates of \$\(^2\)(298.15 K) are Other transition temperatures have been reported as 286 K¹² and 287 K¹³ The anomaly arises from an antiferromagnetic-paramagnetic transformation ^{12,13} which is accompanied by an orthorhombic to cubic structural change. ¹⁴ One low temperature heat capacity study ¹⁰ has been reported for CrN which covered the temperature range 73-315 K C, values taken from 8 56¹ and 7.85. ¹¹ The low temperature data set ¹⁰ contains a lambda peak at 281 7 K with C_p near the maximum equal to 75.1 cal·K⁻¹·mol⁻¹

Satoh¹⁵ has measured the heat contents of three chromium nitride samples at three temperatures each (372.6, 598.8, and 784.2 K), in an ice calorimeter. DeLuca and Leitnaker¹ have reevaluated his heat contents and presented C° data for CrN in the temperature range 298–1400 K. Their values above 400 K are adopted and joined smoothly with the low temperature C° data 10 near 350 K. C° data above 1400 K are obtained by graphical extrapolation.

Phase Data

The homogeneity range of the CrN phase is not known; however, results of two recent studies. 12 indicate that it is probably much smaller than that for Cr₂N.² X–ray diffraction patterns ^{16, 17} for CrN have been interpreted in terms of a cubic structure (NaCl type). Other information on the chromium-chromium nitride system has been reviewed by Storms. Decomposition Data

No information is available on the melting point of CrN. Upon heating we assume that the compound decomposes to its elements rather han melting. T_{em} is the temperature at which $\Delta_i G^a$ for the process $CrN(cr) = Cr(cr) + 0.5 N_1(g)$ equals zero.

P. DeLuca and J. M. Leitnaker, J. Amer. Chem. Soc. 56, 126 (1973).

²/ANAF Thermochemical Table. Cr₂/N(cr), 12–31–73. ³G. Valenski, J. Chim. Phys. Physicochim. Biol. 26, 202 (1929).

Sano, Nippon Kagaku Kaishi 58, 981 (1937). H. Smith, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N. Y., (1958). ⁴T. Mills, J. Less-Common Metals 22, 373 (1970).

Continued on page 975

Enthalpy	Reference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard St.	Standard State Pressure = k1-mol-1	p 0.1 MPa
7.	ប	ي -[و,	-[G*-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{r})$	Δ,Η*	₽ ′Q•	log Kr
°88°	0. 9.985 29.126		INFINITE 78.059 43.947	-7.705 -7.421 -5.478	-116.465 -117.943 -119.039	-116.465 -109.909 -101.378	INFINITE 57.410
298.15			37.711	0	-117.152	-92.790	16.256
388	49.078 49.748	51.780 62.804	37.712 39.599 43.176	0.096 4.873 9.814	-117.126 -116.350 -115.775	-92.639 -84.587	16.130
88	50.417	71.933	47.229	14.822	- =	-69.080	6.018
3 g g	51.714	86.618	55.320 55.321	19.898 25.037	-113.938	-61.539 -54.101	4.592
00	53.053	98.301	62.787	35.514		-46.745 -39.455	2.713 2.061
200	54.723	103,389	66.250	40.853		-32.212	1.530
300	55.020	112.471	72.679	51.729		-25.003	1.088
<u>8</u> 8	56.379 56.379	116.573	75.669 78.576	57.264	-111204	-10.630	0.397
0091	57.028	124.098	81.261	68 518		1761	0.120
85	57.697	127.575	83.884	74275	-112,123	10.988	-0.338
28	59.078	130.892	86.404 88 830	80.078	-112,755	18.247	-0.530
2000	59.831	137.117	91.168	91.897	-114504	32.891	-0.702
2100	60.375	140.049	93.427	97.906	-115.632	40.287	-100
222	61.003	142.872	95.610	103.974	-136.273	48.397	-1.149
240	62.467	148.242	87.72 87.73	110.110	-135.887	56.783	-1.290
2500	63.074	150.805	101.765	122.598	-134.915	73.497	-1.418
PREVIOUS:							

Cr₁N₁(cr)

-5.204 -4.875 -4.289 -4.108

259.028 251.994 245.032 238.139 235.926

442.878 440.928 438.987 437.055 96.116

68.820 68.820 77.601 76.390 80.188 81.998 87.819 91.652 95.499

-4.054 -4.004 -3.958 -3.915

245.317 250.066 254.850 259 670

95.036 93.919 92.769 91.588 90.378

103.238 107.133 111.046 114.978 118.931 122.904 126.900 130.919 134.961

40.604

-3.838 -3.803 -3.771 -3.741

264.524 269.413 274.337 279.295 284.288

89.139 87.874 86.580 85.258 83.905

-3.686 -3.661 -3.638 -3.616 -3.596

82.521 81.100 79.641 78.138

143.118 147.234 151.376 155.542 159.735

289.314 299.470 304.600 309.764

-3*577* -3*5*59 -3*5*26 -3*5*26

314.963 320.198 325.469 330.777

74.982 73.318 71.586 69.780 67.892

163.953 168.197 172.466 176.761 181.080

-3.497 -3.485 -3.473

341.479 346.895 352.349 357.842

168.953

-7.355 -6.837 -6.373 -5.949 -5.561

295.687 287.950 280.595 273.325 266.137

473.671 450.734 448.764 446.798

CURRENT: December 1973 (1 bar)

U	7	
d	ζ	
Ľ	3	
_	1	
q	C	
ш	í	
	1	
-	-	

Chromium Nitride (CrN)

M_r = 66.0027 Chromium Nitride (CrN)

Cr,N,(g)

Standard State Pressure = $p^* = 0.1 \text{ MPa}$

-82.125 -69.570 -60.161 -52.849 -47.004

171.876

NFINITE -258.224 -126.123 -99.717 -82.671

log Kr

H*-H*(T,)

-38.245 -32.000 -27.324 -23.694 -20.796

439,311

-18.431 -16.465 -14.807 -13.390 -12.167

388.127 378.251 368.502 358.885 349.406

-11.102 -10.167 -9.340 -8.604 -7.946

340.070 330.882 321.846 312.966 304.245

483.108 483.108 477.044

46.307 50.039 53.780 57.528 61.284

							Δ <i>H</i> °(0 K)=	504.62 + 20.9	kl-mol-1	Enthalpy Re	eference Ter	Enthaloy Reference Temperature = T. = 298.15	T. = 298.15
S°(298.151	S°(298.15 K) = 230.553 ± 8.4		J·K-1-mol-1			٧	$\Delta_t H^{\circ}(298.15 \text{ K}) = 505.01 \pm 20.9 \text{ kJ} \cdot \text{mol}^{-1}$	505.01 ± 20.9	KJ-mol-1	:		J.K ^{-'mol-} '-	
										7.K	ប	S* -[G*	$-[G^{\bullet}-H^{\bullet}(T_{i})]T$
			Electro State	Electronic Levels and Quantum Weights	uantum Weig	ghts 8.				0 000	0. 29.107 29.454	0. I 198.342 218.573	NFINITE 257.038 233.318
			M	0		<u> </u> 2				250	30.032	225.203	231.055
				[15000]		<u>8</u>			-	88	30.783	230.743	230.553
		3	m ⁻¹	•		Ē	_			\$ \$	33.000	239.814	231.779
		9	B. = [0.56115] cm ⁻¹	•	a. = [0.00375] cm ⁻¹		r [1.65] Å			8 8	33,286	247.169	234.145 236.846
Enthalov	Enthalpy of Formation	Ę								5 8 8	35.197 35.698	258.754 263.488	239.601 242.297
Srivastav	Srivastava and Farber have	have obser	ved mass spectro	observed mass spectrometrically CrN(g) as one of the vapor species in equilibrium with the Cr-V-N system.	as one of the	vapor species	in equilibrium w	vith the Cr-V-1	V system.	88	36.077 36.369	267.716 271.533	244 890 247.367
A substituti Ion intensiti	on reaction t	zetween VN:	and Cr was empla	A substitution reaction between VN and Cr was employed in the formation of gaseous mononitride in the temperature range 1900 to 2063 K. In intensities for the equilibrium species CrN VN V and N, were measured and converted to neutral measures by means of an intensities for the equilibrium species CrN VN V and N, were measured and converted to neutral measures of an intensities for the equilibrium species.	tion of gaseou	is mononitride	in the temperatur	re range 1900 to	2063 K.	82	36.599	275.010	249.724
sure relation	nship for Au	(g). Results	of a 2nd and 3rd	sure relationship for Au(g). Results of a 2nd and 3rd law analysis of their pressure data ¹ are given below.	heir pressure	data are giver	pleasures by like a below.	Sans of an intens	-bres-	888	36.939	281.154 283.896	254.099
10,000	Data	20.4	∆,H°(298.1	ΔH (298.15 K), kcal·mol ⁻¹		Drift	Δ _t H'(298	Δ _t H*(298.15 K)*, kcal·mol ⁻¹	ol-1	8 9 9	37.27	288.860	259.918
A	romts 7	1907_2063	2nd Law 1 -35 6	3rd Law -27 18 + 0		43+23	Znd Law	3rd Law	<u> </u>	88	37.447	291.123 293.261	263.383
; m	, ,	1903-2063		22.42 ± 0.33		4.5 ± 2.5 0.6 ± 1.3	118.1	1192		8 8 8 8 8	37.525 37.601	295.287 297.214	265.009 266.572
	Reactions:	(A) CrN(g)	- Cr(g) + 0.5 N ₂ (Reactions: (A) $CrN(g) = Cr(g) + 0.5 N_2(g)$ (B) $VN(g) + Cr(g) = CrN(g) + V(g)$	Cr(g) = CrN(g) + V(g)				2200	37.679 37.760	300,805	268.075 269.523
	*Auxiliary	Δ _t H° data' u	ısed (ın kcal·mol	⁻¹): Cr(g), 95.0 ±	1.0; VN(g),	125 ± 5; V(g)	, 123.2 ± 2.0.			2400 2500	37 938 38.039	304.098	272.269 273.574
We note	We note that several of the	of the log K,	values listed by S	og K, values listed by Srivastava and Farber¹ for the two gas phase reactions are inconsistent with their reported	er' for the tw	o gas phase rea	ctions are incons	istent with their	reported	2600	38.149	307.143	274.836
values are	sure data, Sir more relial	ice the srd ia ble than the	tw method is rela ose obtained by	partial pressure data, since the stollaw method is relatively insensitive to errors in the equilibrium constant, we believe the two Stollaw A.H. values are more reliable than those obtained by the 2nd law. Thus we adont the average 3rd law value of A.H. Cr.N. o	Thirs we a	e equilibrium c	onstant, we belie	eve the two 3rd	law ∆ _r H°	2808	38.400	309.979	277.246
298 15 K) =	120.7 ± 5.0	kcal·mol ⁻¹	(505.009 ± 20.5	298 15 K) = 120.7 ± 5.0 kcal·mol ⁻¹ (505.009 ± 20.9 kJ·mol ⁻¹). Taking into account estimated errors in the pressure determinations and	ng into accou	int estimated e	пого in the pres	sure determina	tions and	88	38.542 38.695	312.638	278.398 279.518
thermal fun	ictions, an o	verall uncert	tainty of ±5 kcal	thermal functions, an overall uncertainty of ± 5 kcal·mol ⁻¹ is assigned. The adopted $\Delta_i H^o$ value corresponds to a dissociation energy of $A_i H^o C_i H^o H^o H^o H^o H^o H^o H^o H^o H^o H^o$	d. The adopt	ed ∆ _r H° value	corresponds to	a dissociation e	energy of	3200	38.860	313.910	280.607
Although	g, 230.13 r	J = 0/J KCal perimental va	alue for $\Delta_n H^n$ is.	available, two est	unations have	been reported	. Gingerich. 4 usir	ne empirical co	rrelations	3300	39.224	316.350	282.700
of Colin an	d Goldfinge	اand Paulir and	ng, predicted a	of Colin and Goldfinger and Pauling, 6 predicted a value of $\Delta_a H^0$ (CrN, g, 298.15 K) = 96 kcal·mol ⁻¹ for CrN(g) by both methods. This	N, g, 298.15	K) = 96 kcal·r	nol for CrN(g)	by both metho	ods. This	3200	39.629	318.670	284.690
predicted va	alue is in reas	sonable agree	ement with that de	predicted value is in reasonable agreement with that determined experimentally by Srivastava and Farber' and reaffirms the usefulness of three eminical correlations ^{3–3} in medicting discociation energies for essents distance managinals.	entally by Sri	ivastava and Fa	rber' and reaffim	ns the usefulnes	s of three	3600 3700	39.846 40.071	319.789 320.884	285.649 286.587
			0	99						3800	40.303 40.541	321.956 323.006	287.503
The value	neat capacity and entropy The value of a (CrN) is obtain	intropy sobtained fr	om the expression	eat Capacity and entropy. Bat Capacity and entropy Bat Capacity is chained from the extraction of AMOL— (MM) = -0.073 \$ with or (C-0) = 1.677 \$ \$ Differences in the board learning	=-0.03 \$ 0	vith r (Cm) =	1 627 & 2 Differe	nces in the bony	1 lengths?	0024	40.785	324.035	289.278
for the oxid	les and nitrid	les of As, B,	P, Si, and Ti are	for the oxides and nitrides of As, B, P, Si, and Ti are used to establish the value of -0.023. B, is calculated from the estimated value for re-	the value of -	-0.023. Be is c	alculated from th	re estimated val	ue for re	85	41.286	326.037	290.981
The momer	nt of inertia	is calculated values of w.	to be 4.9881 \times	The moment of inertia is calculated to be 4.9881×10^{-39} g cm ² . The value of α_c is obtained from potential function. The values of ω_c and ω_c are assumed to lie between those for VO ² and AsN ²	value of α_c	is obtained from VO ² and AsN	m the other cons	stants assuming	a Morse	44 60 80 80 80	41.797	327.969	292.619
CrN is is	selectronic w	/ith VO; there	efore, the ground	CrN is isoelectronic with VO; therefore, the ground state electronic configuration is taken to be the same as that for VO? Also, the electronic	infiguration is	taken to be the	same as that for	VO2. Also, the e	electronic	9 8	42.310	329.839	294.197
the fact that	levels and quantum weights ar	ghts are estin	mated by analogy	e estimated by analogy with those for VO.* Futher support for the quartet ground state of CrN is provided by for Cr*3 are also quarters. Our adopted times leave and quantum weights contribute 0.13 cal. K ⁻¹ , mol ⁻¹ to	O.* Futher su	pport for the qu	nartet ground stat	te of CrN is pro	ovided by	88	42.819	331.650	295.720
the entropy	the entropy of CrN at 4000 K.		mh osman	ices. Our adopted	מלולים וכעבוו	uniment our	ACIENTS COMMINION	ייים כניים א	2	2005 0005	43,069	333.408	296.462 297.192
References	Ñ								•	\$200 \$200	43.797	334.268	298.618
R. D. Sriv.	astava and N rermochemic	 farber, Hi Tables: V 	¹ R. D. Srivastava and M. Farber, High Temp. Sci. 5, 489 (1973) ² JANAF Thermochemical Tables: VN(g), CrN(cr), CrO(g), and ⁷	¹ R. D. Srivastava and M. Farber, High Temp. Sci. 5, 489 (1973). ³ JANAF Thermochemical Tables: VN(g), CrN(g), CrO(g), and VO(g), 12-31-73; Cr(g), 6-30-73. N(g), 3-31-61.), 12-31-73;	Cr(g), 6-30-7.	3, N(g), 3–31–61			\$400 \$200 \$200	4.43 7.257 8.438	336.778	300.005
R. Colin ar	nd P. Goldfin	Iger in "Conc	densation and Ev	¹ R. Colin and P. Goldfinger in "Condensation and Evaporation of Solids," E. Rutner, P. Goldfinger, and J. P. Hirth, Eds., Gordon and Breach	s," E. Rutner	, P Goldfinger	and J. P. Hirth,	Eds., Gordon an	d Breach	5600	44.693	338,396	301,343
K. A. Ging	gerich, J. Cha gerich, J. Cha gerich, J. Cha	c., New Yor em. Phys. 49 em. Phys. 49	Science Publishers, Inc., New York, pp. 103 (1964). 4K. A. Gingerich, J. Chem. Phys. 49, 19 (1968). 5K. A. Gingerich, J. Chem. Phys. 49, 14 (1968).	٠.						2800 2800 2800 2800 2800 2800 2800 2800	45.101 45.293 45.479	339.971 340.744 341.507	302.648 303.288 303.918
									-				

Enthalpy of Formation

		1	
J.H"(298.15 K)*, kcal-mol-1	3rd Law	122.2	119.2
$\Delta_{e}H^{o}(298.15)$	2nd Law	130.6	118.1
Drift	cal·K-'-mol-'	4.3 ± 2.3	0.6 ± 1.3
c), kcal·mol ⁻¹	3rd Law	-27.18 ± 0.75	22.42 ± 0.33
A,H°(298.15 F	2nd Law	-35.6	21.3
	T/K	1903-2063	1903-2063
Data	Points	7	7
	Reaction	4	В

Heat Capacity and Entropy

References

"The Nature of the Chemical Bond," 3rd ed., Cornell University Press, Ithaca, New York, (1960). 3d., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, (1970). Pauling, "The Rosen, Ed.,"

E. Moore, U. S. Nat. Bur. Stand. Cir. 467, Vol. II, (1952)

Chromium Nitride (CrN)

PREVIOUS: December 1973 (1 atm)

-41.237 -54.536

156.028 133.023 130.980 128.933 126.881

65.744 69.543 73.348 77.160

277.347 278.811 280.222 281.585 282.902

37.955 38.021 38.087 38.153

313 735

316.794

84.804 88.637 92.476 96.324 100.179

284 177 285.412 286.609 287.772 288.901

319.637 320.987 322.294

38.289 38.361 38.435 38.512 38.593

323.561

0.560 0.805 0.805 1.139 1.124 1.484 1.484 1.484 1.484 1.484 1.484 1.023 0.631

-230,600 -232,118 -233,681 -235,290 -236,946

123.496 127.416 131.348 135.290 139.243

329.378 330.452 331.500 332.524 333.525

-71.335 -66.618 -61.860 -80.645

22,683 224,973 226,311 227,696 229,126

104.042 107.914 111.795 115.686 119.586

324.790 325.984 327.146 328.276

289.999 291.067 292.107 293.120 294.109 295.073 296.935 296.935 297.834

38.677 38.856 38.856 39.952 39.153 39.258 39.478 39.592

-57.060 -52.219 -47.336 -42.411 -37.444 -32.436 -27.385 -22.291 -17.155

-238.653

-6.752 9.191

250.158 250.158 252.335 254.603 256.971

303.626 304.390 305.141 305.878 306.602

40.315 40.439 40.563 40.687 40,935

259.084

307.313 308.701 309.378 310.045 310.701

1.00

244 107 246.050

143.208 147.185 151.174 155.175 159.188

299.575 300.418 301.244 302.054 302.848

336.401 337.321 338.223

39.947 40.069 40.191

339.107

334,504

39.709

	6	
	3	
	ξ	
۰	_	

Standard State Pressure = p = 0.1 MPa

Ċ

Enthalpy Reference Temperature = T, = 298.15 K

M_r = 67.9954 Chromium Oxide (CrO)

L.K-'mol-'

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

ž

NHIN

log K

NFINITE
-92.667
-43.298
-33.438

242.076 239.268

239,268

31,320

28.15

-26.876 -22.199 -18.698 -15.981

188.267 187.818 187.460 187.087

241.650

-10.568 -8.261 -6.540 -5.209

121.387 110.711 100.170 89.756 79.467

185.863 184.959 183.983 182.916 181.729

13.645 17.236 20.866 24.526

251.231 253.867 256.381

36.125 36.463 36.725

-3.291 -2.580 -1.984 -1.044 -0.670 -0.344 -0.059 0.192

20.509 2.016 -6.994 -15.842

170.914 168.388 165.641 162.667 159.463

46.856 50.618 54.389 58.167 61.952

269.098 270.889 272.603 274.248 275.828

304.862 308.654 310.421 312.112

37.816

298,384

37.576

37.48 37 663

69.305 59.271 49.370 39.606 29.984

180.392 178.889 177.201 175.314 173.220

261.046 263.207 265.265 267.226

90.614

36.934 37.106 37.250

28.209 35.629 39.361 43.103

258.773

107 O/O/O A	Δρτ (UN) = 10/.65 ± 41.8	V 1. 00 000 1/1 31 00/00/00 V
	CO/708 IS V) = 720 769 ± 6.3 + v = 1 = -1	2 (27.0.12 V) = 232.262 = 0.3 J.V. (mol.)

DEAL GAS

Chromium Oxide (CrO)

± 6.3 J·K ⁻¹ ·mol ⁻¹			$\Delta_t H^0(0 \text{ K}) = 187.85 \pm 41.8 \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = 188.28 \pm 41.8 \text{ kJ·mol}^{-1}$
Electr	Electronic Levels and Quantum Weights State & C. cm-1	uantum Weights	
B X	0 16584.5	0.0	
$\omega_e = 898.8 \text{ cm}-1$ $B_e = 0.5286 \text{ cm}^{-1}$	3	ω _x = 6.50 cm ⁻¹ α = 0.0050 cm ⁻¹	0 = 1

Enthalpy of Formation

Based on the adopted ground state vibrational constants, a linear Brge-Sponer extrapolation yields a dissociation energy, of 3.796 eV (87.54 kcal mol-1). Applying a correction for the ionicity in the Cr-O bond, we recalculate D₆ = 4.017 eV (92.63 kcal mol-1). This in turn

Huldt and Lagerqvist, 3 using a spectroscopic flame technique, reported $D_0^0 = 4.4 \pm 0.5$ eV for CrO(g). This value was later corrected to corresponds to A_tH*(298.15 K) = 60.95 kcal·mol⁻¹ for CrO(g), using auxiliary data.

the calculation assumes that Gr and GrO are the only gaseous species containing Gr and that the CrO₂(g) partial pressure cannot be neglected $D_0^0 = 5.3 \text{ eV}$ (122.9 kcal·mol-1). 4 Grimley et at. mentioned that in determining D_0^0 values by the flame technique of Huldt and Lagerqvist. under these experimental conditions.

partial pressure data for Cr(g), CrO(g), CrO₂(g), and O₂(g) may be analyzed in terms of many different chemical equilibria. Our analyses Grimley et al. studied the vaporization of Cr₂O₃(cr) under neutral and oxidizing conditions using mass spectrometric methods. The reported of four equilibria in the neutral and oxidizing conditions are tabulated below

		Δ,H°(298.15 K	Δ,H'(298.15 K), kcal·mol ⁻¹	Drift	A.H°0008 15 EV Local-mol-	1-load-mol-1
	Reaction	2nd law	3rd law	cal·K ⁻¹ ·mol ⁻¹	2nd law	3rd law
Neutral conditions	*A	-39.5	-449	-28+21	333	
1842~20K2 K	•	6001	, ,	1:1	200	7.00
11702 7101	9 1	7.801	-100.4	4.0 ± 1.4	46.3	54.2
13 points	ပ	174.0	178.2	2.1 + 1.2	18.4	3.5
	<u>*</u>	206.3	0.500	1 + 6	100	17.0
	١ ٠		6.607	4.1 ± 7.0−	60.9	40,5
Oxidizing conditions	4	-27.2	-43.7	-86 + 131	819	
1893-1945 K	α	76.0		101 - 000	9,50	C.1C
	2	46.9	5.66-	-27.3 ± 4.0	107.6	55.2
3 points	U	1922	0 181	11105		7.00
•			2.101	441001	20.0	45.4
	۵	202.0	508.9	3.6 ± 9.0	36.6	43.5
	Reaction A	: Cr(g) + 1/2 O ₂ (g).	·C(0) C 1/2 Cr	Reaction A: Cr(g) + 1/2 O ₂ (g) = CrO(g) C: 1/2 CrO ₂ (cr) = CrO(g) + 1/4 O ₂ (g)	(0)	
	æ	B: Cr(g) + O(g) = Cr(g)		D: 10 Cr.O.(cr.) = Cr.O.(cr.) + 1/4 Cr.(cr.)		
	*One min	One point rejected due to a statistical	- 3	(1) + (3) - (1) (1) + (1) (1)	9	
		וישרונים מותר ווי מ או	abslical lest (1042 h.).	•		

higher than those of the condensed phase (reactions C and D) equilibria. Grimley et al. prefer the gas phase results while Brewer and Rosenblatt prefer the condensed phase results. We adopt $\Delta H^0(\text{CrO}, \text{cr. }298.15 \text{ K}) = 45.0 \pm 10.0 \text{ kcal·mol}^{-1} (188.280 \pm 41.8 \text{ kJ·mol}^{-1})$ as a value which is representative of the 2nd and 3rd law results in the neutral system. The adopted ΔH^0 value leads to $D^0 = 4.71 \text{ eV}$ (108.6 The drifts are less severe in the netural system so that there is better agreement in the 2nd and 3rd law results for the neutral conditions than in the oxidizing system. Note that the 3rd law AH°(298.15 K) values are slightly more positive for the oxidizing than the netural conditions for corresponding equilibria. The calculated $\Delta_t H^o(298.15~{\rm K})$ values for the gas phase (reactions A and B) are about 10 kcal-mol⁻¹ higher than those of the condensed phase (reactions C and D) equilibria. Grimley et al. 6 kcal·mol⁻¹).

gaseous Cr, CrO, CrO₂, and O during the evaporation process. The reported smoothed partial pressures of CrO(g) and CrO₂(g) lie higher than those reported by Grimley et al. ⁶ by a factor of 2-5, while the partial pressures of Cr(g) are less than a factor 2 different. These data were Chizhikov et al. * also studied the vaporization of Cr₂O₃ via mass spectrometry in the range 1690-2020 K. They reported the detection of not analyzed

Heat Capacity and Entropy

well as the electronic levels are those tabulated by Rosen. The ground state has not been firmly established. Weltner suggested a possible $^{1}\Sigma^{-}$ ground state. The free energy functions used here are 1.02 cal·K⁻¹ mol⁻¹ at 298 K and 1.57 cal·K⁻¹ mol⁻¹ at 3000 K lower than those suggested by Brewer and Rosenblatt.7 The difference arises in that Brewer and Rosenblatt7 approximated the CrO electronic levels with The spectroscopic work involving CrO(g) has been reviewed and referenced by Rosen. The adopted vibration and rotation constants as Cr electronic levels. The latter has a singlet ground state and many levels lying below 600 cm-1.

Chromium Oxide (CrO)

PREVIOUS: December 1973 (1 atm.)

CURRENT. December 1973 (1 bar)

7,0,(g)

Continued on page 975

	-
	7
•	
•	

CURRENT: December 1973 (1 bar)

_
2
Q
Ö
ت
2
픙
റ
Ξ
╘
=
E
2
흤
O
φ
*
ŏ
က္သ
æ
Щ
Ξ
_

Cr,O2(g)

	S K Sta
M _r = 83.9948 Chromium Oxide (CrO ₂)	Δ ₀ H ^o (0 K) = -73.78 ± 41.8 kJ·mol ⁻¹ Enthalpy Reference Temperature = T _s = 298.15 K 298.15 K) = -75.31 ± 41.8 kJ·mol ⁻¹ J·K ⁻¹ mol ⁻¹
$M_{\rm r} = 83.9948$	$\Delta_t H^{\circ}(0 \text{ K}) = -73.78 \pm 41.8 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -75.31 \pm 41.8 \text{ kJ·mol}^{-1}$
IDEAL GAS	_
Chromium Oxide (CrO ₂)	$S^{(298.15 \text{ K})} = 269.24 \pm 12.6 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

12.6 J.K ⁻¹ -mol ⁻¹	Δ _f H ² (0K) = -73.78 ± 41.8 kJ·mol ⁻¹ Enthalpy Reference Temperature AH ² /298 15 K) = -75.31 + 41.8 kJ·mol ⁻¹ 1.K ⁻¹ mol	Enthalpy R	eference Te	Temperatur
		7/K	ះ	٦ %
Vibrational Frequences and Degeneracies		٥	0.	0,0
u, cm ⁻¹		38 8	39.615	252.725
		82	41.517	261.768
(1) 866		298.15	43,390	269.241
(1)(00£)		300	43.461	269.510
(1) 8001		350	45.324	276.351
•		9	47.010	282.515
Comment Officers (1975) Living	•	420	48.482	288.135
Ground State Quantum Weight: [3]	7 = 0	8	49.742	293,315
Point Group: [C _{2*}]		009	51.712	302.568
Bond Distance: Cr-O = [1.627] A		902	53.121	310.651
Rond Angle: O. O. D. 1107		800	54.142	317.814
		8	54.896	324,237
Product of the Moments of Inertia: $I_AI_BI_C = [3.326337 \times 10^{-11.7}]$ g'-cm'		0001	55,464	330.052

	ΔrH°(298.15 K), kcal·mol ⁻¹), kcal·mol ⁻¹	Drift	Δ _p H°(298.15 K), kcal-mol ⁻¹
	2nd law	3rd law	cal·K - mol-1	kcal·mol ⁻¹
Neutral system, 13 points, 1843-2062 K				
Reaction A**	141.27	119.87	-10.9 ± 3.6	-15.31
Reaction B**	71.11	64.41	-3.4 ± 2.8	-19.41
Oxidizing system, 3 points, 1893-1945 K				
Reaction A	120.97	122.48	0.8 ± 9.2	-17.92
Reaction B	101.21		-17.9 ± 0.1	-21.82

Heat Capacity and Entropy

PREVIOUS: December 1973 (1 atm) CO(g) is assumed to have a molecular geometry similar to that observed for TiO₄g), ZrO₄g), and TaO₄g). The O-Cr-O bond is estimated as 110° while the Cr-O bond distance is estimated to be the same as that in CrO(g) [3]. The symmetric and asymmetric stretchin frequencies are obtained from the infrared spectra of gaseous tetrahedral CrO₂Cl₂ and CrO₅F₂. The bending frequency of 300 cm⁻¹ is estimated, based on analogies with TaO₂(g) and WO₂(g). Sefer also to the TiO₂ideal gas table. The electronic ground state is assumed the Ja₁ as in WO₂(g), The principal moments of inertia are $I_A = 2.8646 \times 10^{-39}$, $I_B = 9.4383 \times 10^{-39}$, and $I_C = 12.3029 \times 10^{-39}$ error.

$S^{\circ}(298.15 \text{ K}) = 269.24 \pm 12.6 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	$\Delta_t H^0(0 \text{ K}) = -73.78 \pm 41.8 \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = -75.31 \pm 41.8 \text{ kJ·mol}^{-1}$	Enthalpy R	eference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure = p° = 0.1 MPa kJ·mol-'	Pressure = p	-0.1
		7/8	ម	ر اور د	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	$\Delta_c H^{ullet}$	δ. Δ.G.	_
Vibrational Frequences and Degeneracies		0 0 0 0 0	0. 35.384 39.615	0. 226.805 252.725	305.163 273.086	-11.210 -7.836 -4.072	-73.781 -73.623 -74.354	-73.781 -78.544 -83.229	41.027 21.737
(1) 866		28.15	43.390		269.241	0.0	-75.312	-87.380	
(1) (20)(1)		350	43.461	269.510 276.351	269.242 269.778	0.080 2.301	-75.329 -75.887	-87.455 -89.426	
um Weight	σ=2	\$ \$ \$	47.010 48.482 49.742	282.515 288.139 293.315	270.991 272.588 274.406	4.610 6.998 9.454	-76.313 -76.723 -77.124	-91.331 -93.184 -94.991	
Point Group : $[C_{2n}]$ Bond Distance: $C_{r-}O = [1.627]$ Å		902	51.712 53.121	302.568	278.347	14.533	-77.924	-98.490 -101.852	
Bond Angle: O-Cr-O = [110]° Product of the Moments of Inertia: $I_A _B _C = [3.326337 \times 10^{-115}]$ g ³ -cm ⁶] g [.] cm ⁶	888	54.142 54.896 55.464	317.814 324.237 330.052	286.385 290.240 293.935	25.14 30.598 36.117	-79.618 -80.564 -81.623	-105.095 -108.223 -111.241	
Enthalpy of Formation Grimley at 1, studied the vaporization of Cr ₂ O ₃ (cr) under neutral and oxidizing conditions using mass spectrometric methods. In the range	mass spectrometric methods. In the range	1200 1300 1400	55.902 56.245 56.518 56.738	335,360 340,239 344,752 348,949	297.463 300.827 304.034 307.095	41.686 47.294 52.933 58.596	-82.829 -84.201 -85.760 -87.521	-114.145 -116.933 -119.599 -122.137	
10-4-2-602 N. (11 13-00) into Study detected quantuativety Cutg., Cutgg.), Cutg. and Oxfg. to the many fermical equilibria which could be analyzed, we shirlard below our 2rd and 3rd law analyzes of the emilibrium between Critical and CrO.10)	(2). Of the many cremical equilibria which (2) and CrO(2)	98	56.918	352.870	310.017	64.279	-89.495	-124.543	
Court of analyzed, we dedunated octow our and that analyses of the equilibrium octower.		822	57.193 57.193 58.193	360.012	315.487	69.979 75.692 81.417	-91.689 -94.109 -96.760	- 126.809 - 128.931 - 130.904	
$\Delta t H$ (298.15 K), Kezi-moi $D H H$ Zhd law cal·K ⁻¹ -mol ⁻¹	Ol ⁻¹ Δρ ⁴ (298.13 K), Kcal-moi γ kcal-mol ⁻¹	2000	57.388 57.466	366.384	320.515 322.883	87.151 92.894	-99.647	-132.723	
Neutral exetern 13 mints 1842-2062 K		2100	57.532	372.135	325.162	98.644	-106.144	-135.883	
141.27 119.87 – 10.9	+ 3.6 -15.31	7300 7400	57.642	377.374	329.478 331.525	110.162	-133.117	-136.854 -137.062	
tem, 3 points, 1893–1945 K		2600 2600	57.72 57.76	382.184	333.504 335.421	121.699	-135.155 -137.209	-137.184 -137.225	
Reaction A 120.97 122.48 0.8 ± 9.2	9.2 -17.92	2800	57.793	386.629	339,077	133.251	-139.282	-137.186	
17:101		3000	57.847 57.870	390.761 392.723	340.825 342.522	144.815	-143 479 -484.621	-136.880	
** One point (1865 K) rejected due to a statistical test. Reactions: (A) $CrO_2(g) = CrO(g) + O(g)$. (B) $CrO_2(g) = CrO(g) + 1/2 O_2(g)$.		3200	57.890 57.909 57.909	394.620 396.459 398.241	344.172 345.778 347.341	156.389	-485,933 -487,312 -488,755	-120.227 -108.409 -96.546	
We adopt $\Delta_t H^{*}(298.15 \text{ K}) = -18.0 \pm 10.0 \text{ kcal·mol}^{-1} (-75.312 \pm 41.8 \text{ kJ·mol}^{-1})$. This value is intermediate to the four results tabulated	is intermediate to the four results tabulated	3400	57.942 57.957	399.970 401.650	348.863 350.348	173.764	-490.260 -491.827	-84.638	
above with extra weight given to those of the neutral conditions. Our analysis of equations analysis vields the same trends as with CrO(s). The results are consistent with our adopted value	gous to those treated in the CrO(g) table	3600	57.970	403.283	351.795	185.355	-493.455	-60.687	
Using auxiliary data, we calculate $\Delta_{\rm u}H^* = 9.98$ eV (230.1 kcai·mol-') corresponding to CrO ₂ (g) = Cr(g) + 2 O(g). This value is a factor of 2.12 greater than D_0^2 (CrO ₂ g).	g) - Cr(g) + 2 O(g). This value is a factor	3800	57.994 58.004 58.014	406.418 407.925 409.393	355.937 355.937 357.255	202.752	-496.893 -498.705 -500.582	-36.552 -24.414 -12.229	
Chizhikov et al. 2 also studied the vaporization of Cr ₂ O ₃ via mass spectrometry in the range 1690-2020 K. They reported the detection of gaseous Cr, CrO, CrO ₂ , and O during the evaporation process. The reported smoothed partial pressures of CrO(g) and CrO ₂ (g) lie higher than	NO-2020 K. They reported the detection of ures of CrO(g) and CrO ₂ (g) lie higher than	4500 4500 8600 8600 8600 8600 8600 8600 8600 8	58.023 58.031	410.826	358.544	214.354	-502.526	0.004	
those of Grimley et al. by a factor of 2-5, while the partial pressures of Cr(g) are less than a fa further analyzed.	ctor of two difference. This study was not	4 4 500 4 500	\$8.046 \$8.053	414924	362.250 362.435	231.765 231.765 237.570	-508.796 -508.796 -511.046	24.013 36.994 49.423	
Mass spectrometric studies were made by Farber and Srivastava ⁷ on the reactions involved with vanadium and chromium additives in potassium-seeded H ₂ O, flames. Equilibrium values at an average flame temperature of 2250 K for the reaction for CrO4g)+2	vith vanadium and chromium additives in 250 K for the reaction for CrO ₄ (2)+2	4600 4700	58.059 58.065	417.505	364.597 365.736	243.375 249.182	-513,386 -515,821	61.903	
$H_2O(g) = H_2CIO_A(g) + 2H(g)$ were analyzed by Farber and Srivastava. They calculated $\Delta_1 H^0(298.15 \text{ K}) = -3.0 \pm 7 \text{ kcal-mol}^{-1}$ for $GO(g)$. The experimental elemination of $\Delta_1 H^0(298.15 \text{ K})$ value for $GO(g)$. Advisting the	15 K) = $-3.0 \pm 7 \text{ kcal·mol}^{-1}$ for CrO ₂ (g).	\$600 \$600 \$600 \$600	58.076 58.076	419.976	366.853 367.950 360.035	254.988 260.796	-518.359 -521.007	87.021 99.661	
consistent with the JANAF	Δ _t H°(298.15 K) value for CrO(g), we recalculate	2100	58.085	423.497	370.083	272.412	-526.302	125.080	
$\Delta_t H^*(298.15 \text{K}) = -11.0 \text{kcal·mol}^{-1}$ for CrO ₂ (g). Heat Consolity and Entropy		2830	28.094 58.094	425.731 426.817	372.141 372.141 373.143	284,030 289,839	-579725 -532,269 -535,442	150.738	
rical capacity and enturpy CrO4g) is assumed to have a molecular geometry similar to that observed for TiO4g). Zro	TiO4g), ZrO4g), and TaO4g). The O-Cr-O bond is	888	58.102	427.883	374.129	301 460	-538.748	176.630	
estimated as 110° while the Cr-O bond distance is estimated to be the same as that in CrO(g) [3]. The symmetric and asymmetric stretching frequencies are obtained from the infrared spectra of gaseous tetrahedral CrO ₂ Cl ₂ and CrO ₂ F ₂ ^{4 3} The bending frequency of 300 cm ⁻¹ is	The symmetric and asymmetric stretching The bending frequency of 300 cm ⁻¹ is	0088 0088	58.108	429.959	376.052 376.990	307.270	-545.786 -549.530	202.769	
estimated, based on analogies with TaO ₂ (g) and WO ₂ (g). Sefer also to the TiO ₂ ideal gas table. The electronic ground state is assumed to be 1 3, as in WO ₂ (s) of the principal moments of inergia are $I_{\rm c} = 2.8245 \times 10^{-39}$ $I_{\rm c} = 0.433 \times 10^{-39}$ and $I_{\rm c} = 12.3070 \times 10^{-39}$ and	The electronic ground state is assumed to 10 ⁻³⁹ and 1. = 12 3020 × 10 ⁻³⁹ cm ²	0009	58.117	432.940	378.822	324.704	-557.500	242.463	

Continued on page 975

DEAL GAS

Chromium Oxide (CrO₃)

CURRENT December 1973 (1 bar)

					L							
$S^{\circ}(298.15 \text{ K}) = [266.2 \pm 16.7] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$			$\Delta_t H^*(0 \text{ K}) = -288.2$ $\Delta_t H^*(298.15 \text{ K}) = -292.88$	$\Delta_t H^{\circ}(298.15 \text{ K}) = -288.2 \pm 41.8 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -292.88 \pm 41.8 \text{ kJ·mol}^{-1}$		Reference To	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ I·K ⁻¹ mol ⁻¹	•	Standard State Pressure = $p^* = 0.1 \text{ MPa}$	Pressure = p	- 0.1 MPa
,					7/K	ະ	S -[G	-[G*-H*(T,)]/T	H*-H*(T,)	A.H.	₽ <i>C</i> •	log K _r
iv	Vibrational Frequencies and Degeneracies	and Degeneracies			0 2	34 969		NFINITE 308 811	-12.379	-288.176	-288.176	INFINITE
1	u, CIII				88	45.791 51.301	245.909	270.989	-5.016 -2.586	-291.432 -201.432	-279.595	73.023 23.023
	(1)[095]				298.15	\$6.025		266.178	6	-292.880	-273.452	47.908
	969 (2)				888	56.193 60.386	266.525 275.510	266.179	3.021	-292.901 -293.500	-273.332 -270.016	47.591
C cond primary	7)[c74]				\$\$\$	66.695 69.037	291.495	268.483 270.618 773.068	6.129 9.394 7.394	-293.875 -294.165 -204.300	-266.634 -263.211	34.819
Cround State Cuant Point Group: [D's]	Ground State Cutantum Weignt: [1] Point Group: [D ₃₆]				98	72.542	311.564	278.431		-294.767	-252.795	22.008
Bond Distance:	Bond Distance: Cr-O = [1.627] A				288	76.658	333.065	289.506	34847	-295.401	-245.774	18.340
Product of the	Boun Angle: O-CI-O = [120] Product of the Moments of Inertia = [1][0] = [2.348053 × 10^-114] o ^{3.cm}	//le/c = [2.348053 ×	10-1141 03.cm6		88	78.819	350.426	300.010		-295.772 -296.243	-231.601 -224.447	13.442
Enthalpy of Formation			4		200	80.07. 1.0.08. 1.0.08.	357.973	304.942		-296.854 -297.628	-217.239 -209.968	10.316 9.140
The vaporization of CrO, under oxidizing conditions was studied by Grimley, Burns, and Inghram' using mass spectrometric methods.	nditions was studied by	y Grimley, Burns, an	I Inghram' using ma	ss spectrometric methods.	1500 1500 1500 1500	80.855 81.140	382.912	318.456 322.569	82.414 90.514	-298.750 -299.750 -301.128	- 202.626 - 195.202 - 187.688	8.142 7.283 6.536
1914, and 1942 K, IPTS—68) are analyzed for four different reactions by the 2nd and 3rd law methods.	ur different reactions b	and O ₂ . The vapor j by the 2nd and 3rd la	ressures at three diff w methods.	erent temperatures (1893,	000	81.375 81.572	388.156	326.506 330.279		-302.729 -304.560	-180.074 -172.353	5.879 5.296
Reartion	ΔH°(298.15 K), kcal·mol ⁻¹	;), kcal·mol ⁻¹	Drift	Δ _t H°(298.15 K)	2000	81.879 82.000	402.186 406.389	333 900 337,379 340,725	114.953 123.134 131 328	-306.628 -308.939 -311.406	-164.518 -156.561	474
indication of the section of the sec	Apr law	3rd law	cal·K "'·mol"!	kcal·mol ⁻¹	2300	82.104	410.392	343.948		-314.303	-140.257	3.489
Cf(g) + 3 O(g) = CfO ₃ (g) Cf(g) + 1 5 O ₂ (g) = CfO ₂ (g)	-279.80	-332.47	-27.5 ± 6.4	-58.79	2300	82.275	414214	347.055 350.055		-336.700 -338.155	-131.242 -121.871	3.116
0.5 Cr ₂ O ₃ (cr) + 1.5 O(g) = CrO ₃ (g)	-220.32 -30.81	-165.48 -24.28	28.7 ± 21.1 3.4 ± 1.4	-70.48 -70.04	7500 7500	82.345 82.406	421.373 424.735	352.955 355.759	164203	-339.637	-112.437	2.447
$0.5 \text{ Cr}_2O_3(cr) + 0.75 O_2(g) - \text{Cr}O_3(g)$	-1.17	59.22	31.5 ± 12.4	-75.88	2600 2700	82.461 82.511	427.968	358.474		-342.678	-93.381	1.876
The 2nd law results are considered less reliable due to the small number of data points and the small temperature range studied (52 K). We	lue to the small number	r of data points and the	e small temperature	range studied (52 K). We	288	82.55 82.594 82.594	434.083	363.659	197.186	-345.825 -347.436	-74.086 -64.353	1.382
word Life (Closs &, 230.13 N) = -10.0 \(\pi\) 10 Kea mol \(\left(-292.880 \pm 41.8 \kg/\text{mol}^{-1}\). Washbum \(^3\) in a mass spectrometric study of the sublimation of C-0 (cs) stand that the	al mol (= 292.880 ±	41.8 kJ·mol ").			3100	82.830 83.630	439.781	368.546		-688.092	-49.951	0.870
among themselves but not with O(g). If the same situation were to hold in the study by Grimley et al., a value intermediate to -70 04	security of Close to ho	is stated that the gase id in the study by G	ous Cr-containing mo rimley et al' a valu	e intermediate to -70 04	3200	82.692	445.116	373.167		-689.833	-28.665	0.120
and -75.88 kcal·mol-1 might be more appropriate. However, the adopted value with its assigned uncertainty is still consistent with this possibility.	ate. However, the ador	oted value with its as	signed uncertainty is	still consistent with this	3,400	82.743 82.765	450.131 452.530	377.548 379.657	246.781 246.781	-690.813 -691.862 -692.981	13.989 35.363 56.763	0.52
Mass spectrometric studies were made by Farber and Srivastava6 on the reactions involved with variadium and chromium additives in	ber and Srivastava ⁶ on	the reactions involv	ed with vanadium an	d chromium additives in	3600	82 786	454.862	381.713		-694.166	78.206	-1.135
polassium-seeded Hy/O, flames. Equilibrium values at an average flame temperature of 2250 K for the reaction	m values at an	average flame te	nperature of 2250	0 K for the reaction	3800	82.805 82.823	457.130 459.339	383.721 385.682		-695.420 -696.741	99.677	-1.407
CO3(g). The experimental determination of $\Delta_1H^3(298.15 \text{K})$ for H-CO4(g) also required the $\Delta_1H^3(298.15 \text{K})$ and $\Delta_2H^3(298.15 \text{K})$ for H-CO4(g) also required the $\Delta_1H^3(298.15 \text{K})$ value for C-CA9.	y raucer and Shvæta P(298.15 K) for H ₂ CrC	va.* They calculated A(g) also required th	Δ _t H*(298.15 K) = - 2 Δ _t H*(298.15 K) val	64.6 ± 7 kcal·mol ⁻¹ for	4 9 9 9 9 9	82.839 82.854	461.490 463.588	387.598 389.472	288.178	-698.131	142.728	-1.912
the calculations of Farber and Srivastava to be consistent with the JANAF Δ_H (298 15 K) value for CrO(g), we recalculate	be consistent with	the JANAF AHP (2	8 15 K) value for	CrO(g), we recalculate	4200	82.868	465.634	391,305		-701.126	185.922	-2.369
Defining the dissociation by CO(g) = Cr(g), we calculate $\Delta_{\mu}H^{\alpha} = 14.8$. $D_{\alpha}^{\alpha} = 4.71$ eV for CP(r) and A $H^{\alpha} = 0.00$ eV for CP(30(g), we calculate Δ	$_{\text{M}}H^{\circ} = 14.8 \pm 0.4 \text{ eV}$	(340.3 ± 10 kcal·mo	$\pm 0.4 \text{ eV} (340.3 \pm 10 \text{ kcal·mol}^{-1})$. This compares with	84 84 86 86 86 86	82.893	469.581 471.487	394.854 396.575	329.615	-704.427 -706.201	229.271 251.005	-2782 -2785 -2980
101 A3 02:5 = 17#1 pin (9) 00 101 101 101 101	COAST TOT SIMILAR O	ISSOCIATIONS.			4600	82.924	475.173	399.912		- /08.063 710.023	294.597	-3.166
Heat Capacity and Entropy	6		,		004 008	82.934 82.942	476.956 478.702	401.533		-712.083	316,459	-3517
The principal moments of incrita are $I_A = I_B = 10.5494 \times 10^{-39}$ and $I_C = 21.0987 \times 10^{-39}$ g·cm ² .	with D_{2a} symmetry. 11.5494 \times 10 ⁻³⁹ and I_C =	he three Cr–O bond d = 21.0987×10^{-39} g··	stances are taken to b :m².	e the same as in CrO(g).2	2000 2000	82.950 82.958	480.413	404.682		-716536 -718.944	360.320 382.321	-3.841
Barraclough et al. doserved a vibrational frequency at 969 cm ⁻¹ in the infrared frequency was assigned to represent the treathing frequency was assigned to represent the treathing frequency was	luency at 969 cm ⁻¹ in	the infrared spectrum	n of CrO ₃ (cr) dispers	spectrum of CrO ₃ (cr) dispersed in a Nujol mull. This	\$100 \$200	82.965 82.972	483.731	407.718		-721.123	404.344	-4.141
represents the stretching mode in the vapor phase. This infrared work is supported by the infrared and Raman studies of Mattes. The remaining	This infrared work is su	ree Cr-O groups m cr pported by the infrare	ystailine CrO3. we as d and Raman studies o	ssume this frequency also of Mattes. The remaining	\$300 \$400	82.978 82.984	486.923	410.647		-726.409	448.581	-4.421
vibrational frequencies are those suggested by Grimley et al. 1 The electronic groun	rimley et al." The elect	ronic ground state is	d state is assumed to be a singlet.	jet.	\$500	82.990 e2 996	489.997	413.476		-732237	493.025	-4.682
References					200	83.001 2001 2001	492.961	416.214		-738.658	515.332 537.694	-4.807
¹ R. F. Grimley, R. P. Burns, and M. G. Inghram, J. Chem. Phys. 34, 664 (1961). ² JANAF Thermochemical Tables: CrO(g) and CrO ₂ (g), 12-31-73.	J. Chem. Phys. 34, 66 (10-21-73).	54 (1961).			0009 0009	83.010 83.015	494.403 495.824 497.219	417.549 418.864 420.158	445.761 454.062 462.363	-742.106 -745.723 -749.514	560.117 582.598 605.145	-5.044 -5.158
	Ò										,	2

Enthalpy of Formation

Δ _t H°(298.15 K) kcal·mol ⁻¹	.1 -70.48 4 -70.04 4 -70.04 .4 -75.88
Drift cal·K ⁻¹ ·mol ⁻	-27.5 ± 6.4 28.7 ± 21.1 3.4 ± 1.4 31.5 ± 12.4
Δ,H°(298.15 K), kcal·mol ⁻¹ nd law 3rd law	-332.47 -165.48 -24.28 59.22
Δ,H°(7) 2nd law	-279.80 -220.52 -30.81 -1.17
Reaction	Crg) + 3 O(g) = CrO ₁ (g) Crg) + 1.5 O ₇ (g) = CrO ₁ (g) 0.5 Cr ₂ O ₃ (cr) + 1.5 O(g) = CrO ₃ (g) 0.5 Cr ₂ O ₃ (cr) + 0.75 O ₇ (g) = CrO ₃ (g)

Heat Capacity and Entropy

References

¹C. A. Washburn, U. S. Clearinghouse Fed. Sci. Tech. Inform., PB-183562 (1969); Chem. Abstr. 71, 755276 (1969).

⁴C. G. Barraclough, J. Lewis and R. S. Nyholm, J. Chem. Soc. 1959, 3552 (1959).

⁵R. Mattes, Z. Naturforsch B24, 772 (1969).

⁶M. Farber and R. D. Srivastava, Combustion and Flame 20, 43 (1973).

Chromium Oxide (CrO₃)

December 1973 (1 atm)

PREVIOUS

CURRENT. December 1973

CRYSTAL

Chromium Nitride (Cr₂N)

M_r = 117.9987 Chromium Nitride (Cr₂N)

Enthalpy Reference Temperature = T, = 298.15 K

Cr2N₁(cr)

Standard State Pressure = $p^* = 0.1$ MPa

log Kr

Ş

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

S. -[G.-H'(T,)]/T

ť

ž

 $S^{(298.15 \text{ K})} = [64.85 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Enthalpy of Formation

 $C_2N_{\infty 99}(cr) + 1.50_2(g) = C_2O_3(cr) + 0.4845 \, N_2(g)$, we calculate $\Delta_1H^0(298.15 \, \text{K}) = -241.29 \pm 1.5 \, \text{kcal-mol}^{-1}$ at unit fugacities of oxygen and nitrogen. Impurity corrections are based on JANAF enthalpy of formation data. When the value for ΔH° is combined with the enthalpy of formation for C_2O_3 , one obtains $\Delta_t H^o(C_2N_{0.900}, c_r, 298.15 \text{ K}) = -29.9 \pm 3.5 \text{ kcal-mol}^{-1}$. The large uncertainty arises from impurities in 흄 ğ data of chromium subnitride at 303.15 K. From her the subnitride sample, as well as from the uncertainty (± 2.0 kcal·mol⁻¹) in the $\Delta_l H^{\circ}$ of Cr_2O_3 . combustion ö enthalpy has measured the

 $\Delta_i H^{\circ}(0 \text{ K}) = \text{Unknown}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -125.52 \pm 12.6 \text{ kJ·mol}^{-}$

account in our analysis any variations in the composition of the subnitride.	account in our analysis any variations in the composition of the subnitride.	emposition of the subm	itride.		
Source	Data Points	T/K	Drift cal·K ⁻¹ ·mol ⁻¹	$\Delta_i H^{\circ}(298.$ 2nd law	$\Delta_t H^{\circ}(298.15 \text{ K}), \text{kcal·mol}^{-1}$ 1 law 3rd law
Sano*	9	1229-1395	-3.7 ± 0.2	-24.0	-28.8 ± 0.5
Mozgovai and Samarin ⁵	Equation	1600-1750	-14.0	-10.2	-33.8 ± 1.7
Seybolt and Oriani*	·v	1273-1673	-7.8 ± 5.4	-21.3	-32.8 ± 3.9
Tomilin and Savost'yanova?	Equation	1517-1724	-32.6	-20.3	-32.6 ± 5.7
Mills*	Equation	1337-1653	-21	-29.2	-32.3 ± 0.5
Schwerdtfeger		1373-1583	-3.7 ± 0.7	-27.1	-32.5 ± 0.8
Smith 10	2	1333-1370	-13.4	-13.6	-31.7 ± 0.7

17.906 17.771 12.312 12.312 12.313 13.313 13.313 14.256 14.256 14.256 16.537 16

-116.500 -115.828 -115.305 -114.942

108.629 113.949 119.066 123.994 128.749

93.261 95.981 98.742 101.504

168,307

184.330 191.749 198.846

205.663

107.027

-44.224

-30.923 -24.366 -17.853 -4.902 1.558 8.022 14.501 21.006 28.854 37.169 45.362

-114.912 -115.306

115.709 126.550 137.669 149.029 160.644 172.514 184.644 197.020 229.630

133.345 137.793 142.106 146.294 150.366

224.731 230.688

109.788 112.508 114.767 117.487

-115.907 -155.386 -152.693 -149.771

154.329 158.192 161.961 165.643

236.479 242.121 247.622 252.989 258.233

19.955 122.591 124.934 127.277 129.704

-79.270 -72.003 -64.876 -57.878 -50.999

-121,362 -120,304 -119,244 -118236

0. 0.122 7.136 14.649 30.548 33.910 47.546 47.546 56.645 75.108 84.844 84.844 94.856 105.145

56.191 73.429 76.735

We adopt $\Delta_t H^0(C_2N, cr. 298.15 \, K) = -30.0 \pm 3.0 \, kcal·mol^{-1} (-125.52 \pm 12.6 \, kJ·mol^{-1})$ which is based on the 2nd and 3rd law results from the two equilibrium studies. ¹ and the $\Delta_t H^0$ value determined by combustion calorimetry. ¹ Our adopted value agrees with that selected by NBS (-30.5)¹¹ but is 1 8 kcal·mol⁻¹ less negative than the selected value of DeLuca and Leitnaker. ³

Heat Capacity and Entropy

for the treaction 2 M(cr) + 0.5 N₄(g) = M₂N(cr) where M=Fe, Mo, Nb, Ta, and V, we calculate an average Δ_1 0° of = 18.7 cal·K⁻¹-mol⁻¹. This value is combined with entropies for Cr and N₂² to give 15.5 cal·K⁻¹-mol⁻¹ as 5°(298.15 K) for Cr₂N(cr). Other reported estimates in cal·K⁻¹-mol⁻¹ for S°(298.15 K) are 14.3³ and 17.7 ± 1.0.4 No low temperature heat capacity data for Cr.N have been reported. By analogy with entropies? 12.13 for other transition-metal subnitrides.

The only high temperature enthalpy study reported for Cr₂N is that of Satoh, ¹⁵ who measured heat contents [H°(T)-H°(273.15 K)] three nitride samples at three temperatures each (372.6, 598.8, and 784.2 K) in an ice calorimeter. DeLuca and Leitnaker have shown that the range 298-1800 K. A comparison of their value (17.0 cal·K⁻¹·mol⁻¹) for $C_s^*(298.15 \text{ K})$ with similar data for other transition-metal submitrides^{2–12,13} indicates it is probably too large by 1-2 cal·K⁻¹·mol⁻¹. We find a $\Delta_s C_s^*$ of 1.1 cal·K⁻¹·mol⁻¹ for several submitrides^{2–12}. 13 which leads to a Covalue of 15.79 cai K-1 moi - 1 for CraN at 298.15 K. This value is adopted and joined smoothly with the data of Deluca subnitride sample used by Satoh¹³ was substoichiometric, reevaluated his heat contents and presented C, data for Cr₂N in the temperature and Leitnaker near 400 K. C, data above 1800 K are obtained by graphical extrapolation.

Phase Data

has examined the homogeneity limits of Cr3N as a function of temperature. The upper limiting composition was determined to be CrN_{0.8} with only a small variation with temperature. The lower limiting composition of Cr₂N varied widely with temperature in the range 1273-1373 K. Mills⁸ reported the limiting composition as CrN_{0.41}, at 1273 K and CrN_{0.77} at 1373 K. Other information on the chromium-chromium nitride system has been reviewed by Storms. Blix 16 has determined the structure of the subnitride phase as hexagonal by x-ray diffraction methods, and he indicated that the homogeneity limits extend from CrNo, 41 to CrNo, Eriksson, has reported that the phase exists between CrNo, and CrNo, Mills, using a thermogravi-

Decomposition Data

No information is available on the melting point of Cr3N. We assume that the subnitride decomposes prior to melting, according to the eaction $Cr_2N(cr) \to 2$ Cr(cr) + 0.5 N/g). T_{dem} is the temperature at which ΔG^2 for the decomposition process equals zero.

References

A. D. Mah, U. S. Bur. Mines RI 5529, (1960).

JANAF Thermochemical Tables: N₂(g), 9-30-66, Cr(cr), 6-30-73; Cr₂O₃(cr) and VN_{a463}(cr), 12-31-73.

P. DeLuca and J. M. Leitnaker, J. Amer. Ceram. Soc. 56, 126 (1973) Sano, Nippon Kagaku Kaishi 58, 981 (1937).

Chromium Nitride (Cr₂N)

PREVIOUS:

Continued on page 975

CRYSTAL

Chromium Oxide (Cr₂O₃)

 Δ_H *(298.15 K) = -1134.70 ± 8.4 kJ·mo $S^{(298.15 \text{ K})} = 81.15 \pm 1.3 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Enthalpy of Formation

 $T_{ha} = 2603 \pm 15 \text{ K}$

reported AH (298.15 K) value is based on an average of the results for these seven runs with no correction for incomplete combustion Two oxygen bomb calorimetric studies on Cr(cr) led to reported values of $\Delta_t H^0(C_2O)$, cr, 298.15 K) = -272.6 ± 0.4 kcal·mol⁻¹ by M applied corrections. Of the fourteen runs by Golutvin and Chin'k'uei,2 seven had a completeness of combustion of 91,88 to 98,96%. The impurities. These latter authors2 also stated that there was no clear dependence between the enthalpy of combustion and completeness combustion. Early calorimetric studies led to reported values for $\Delta_i H^\circ$ of -267.8 (298 K), 3-288.9 ± 1.0 (292 K), 4 and -268.9 ± and -271.0 ± 1.8 kcal-mol⁻¹ by Golutvin and Chin'k'uei.² Mah¹ reported that completions of combustion ranged from 95.30 to 98.90% kcal·mol⁻¹ (294 K).

There are many equilibrium studies involving Cr₂O₃(cr). Our analysis of the more recent studies are tabulated below. The free energy formation equation presented by Richardson and Jeffes[‡] is representative of the earlier equilibrium studies.⁹

			Data	8.15 K)	kcal·mol ⁻¹	Drift	Δ _t H°(298.15 K), kcal·mol	kcal·mol ⁻¹
Source	Keaction	1K	Points	2nd law	3rd law	cal·K - 'mol -	2nd law	3rd law
_	A	873-1773	Egii.	-270.62	-268.44	1.7	-270.62	-268.44
• !	B(transpiration)	871-1427	4	-32.89 ± 0.65	-31.61 ± 0.65		-272.05	-268.22
2 :	B(static)	1313-1573	5(47)	-32.17 ± 0.75	-32.36 ± 0.19	-0.1 ± 0.5	-269.89	-270.46
= :	B(transpiration)	1493-1893	S	-32.85 ± 0.94	-32.79 ± 0.30	0.1 ± 0.6	-271.94	-271.76
<u>.</u>	A(cmf)	1000-1700	뗦	-264.60	-268.91	-3.3	-264.60	-268.91
2	A(cmf)	1173-1523	떕.	-269.71	-270.32	-0.5	-269.71	-270.32
	Reactions. (A) 2 ($Cr(cr) + 3/2 O_2(g) = Cr_2O_3(cr)$	(g) = Cr ₂ O ₃	(B) 2/3 (Cr(cr) + H ₂ O(g) = 1/3	= 1/3 Cr2O3(cr) + H2(g)	ċ	

We adopt $\Delta H^{0}(Cr_{0}O_{3}, cr, 298.15 \text{ K}) = -271.2 \pm 2.0 \text{ kcal-mol}^{-1} (1134.701 \pm 8.4 \text{ kJ-mol}^{-1})$. This value is an average of two combust studies, ^{1,2} and three equilibrium studies which have a small third law drift, ^{10, 11, 13}

Kelly et al. 6 investigated experimentally the thermodynamic properties of the chromium carbides. They measured the CO(g) equilibri pressure in four distinct systems. A combination of our analyses of these four equilibria? leads to Δμ1/(Cr,O, cr, 298.15 K) = -26 ccal·mol_l

Heat Capacity and Entropy

The heat capacity of Cr₂O₁(cr) was measured by Anderson [14 (56–336 K)] and by Volger (graph, 100–350 K). ¹ Using the combinati of Debye and Einstein functions suggested by Anderson, ¹⁴ we calculate S'(50 K) = 0.386 cal·K⁻¹ mol⁻¹ and H'(50 K) = 14.3 cal·mol⁻¹. Be studies^{14 15} indicated a maximum in the C_p curve at 205 K. The data of Volger¹⁵ lies considerably higher than that of Anderson. ¹⁴ Early h $(\sim \text{cal-K}^{-1} \text{ mol}^{-1})$ until 325-340 K, at which point the values show little change with temperature. The adopted C, values below T = 330capacity data by Russell (137-299 K)16 is in good agreement with that of Anderson.14 Above 305 K the heat capacity values decrease rapi are based on the study by Anderson.14

Enthalpy data on Cr₂O₃(cr) were measured by Kelley et al. (298-1774 K)⁴ and Laschschenko and Kompanskii (288-1428 K). ¹⁷ The adop heat capacity values are those suggested by Kelley et al., 6 except that the values in the region 350-500 K are shifted slightly so as to smoothly with the low temperature heat capacity results. ¹⁴ The derived enthalpy values agree with the enthalpy data of Kelley et al. within ±0.5%, the maximum deviation of 25 cal or .5% occurring at 479 K.

Phase Data

Brewer¹⁸ summarized the phase data and reported that Cr₂O₃ has a homogeneity range of x = 1.50-1.56 for CrO₂. Cr₂O₃has the α-corund structure and is antiferromagnetic with structural distortion occurring below the Curie temperature of 305 K.

Fusion Data

Refer to the liquid table for details.

References

A. D. Mah, J. Amer. Chem. Soc. 76, 3363 (1954).

²Yu. M. Golutvin and L. Chin'k'uei, Russ. J. Phys. Chem. 35, 62 (1961).

¹W. G. Mixler, Amer. J. Sci. 39, 295 (1915).
 ⁴W. A. Roth and G. Becker, Z. Physik. Chem. A145, 461 (1929).
 ⁵W. A. Roth and U. Wolf, Z. Elektrochem. 46, 45 (1940).

K. K. Kelley, F. S. Boericke, G. E. Moore, E. H. Huffman, and W. M. Bangert, U. S. Bur. Mines Tech. Paper 662 (1944). JANAF Thermochemical Tables: Cr₃C₂(cr), Cr₂C₃(cr), and Cr₂C₄(cr), 12-31-73

Continued on page 975

- 1128.84 ± 8.4 kJ·mol ⁻¹	Enthalpy Re	eference To	emperature	Enthalpy Reference Temperature = T, = 298.15 K	X	Standard Sta	Standard State Pressure = p = 0.1 MPa	0.1 MPa
Δ _{lus} H° = [129.7] kJ·mol ⁻¹	7/K	ប	J·K-'mol-' S - [G	$-[G^*-H^*(T_t)]T$	H*-H*(T,)	LV-mor" A.H.	A.G.	log Kr
5 ± 0.4 kcal·mol⁻¹ by Mah¹	000	0. 24.255 75.412	0. 10.093 43.065	INFINITE 155.642 90.567	-15282 -14555 -9501	-1128.844 -1133.096 -1135.576	-1128.844 -1107.252 -1080.105	S78.369
I from 95.30 to 98.90% and	298.15	120.366	81.154	81.154	0.	-1134.701	-1053.066	184.493
of 91.88 to 98.96%. Their	300		81.904	81.157	0.224	-1134,645	-1052,560	183,267
ustion and completeness of	305.000		83.958	81.186 81.186	0.845	- 5 LAM	C, LAMBDA MAXIMUM TRANSITION	
292 K), and -268.9 ± 0.6	6 8	112,675	113.736	85.534 93.829	11.281 22.837	-1133.129 -1131.353	-1025.421 -998.699	133.906 104.333
below. The free energy of	8888	120.549 122.625 124.290 125.725	161.232 179.977 196.463	103.300 112.945 122.375 131.440	34.759 46.922 59.270	-1129.610 -1127.958 -1126.413 -1125.007	-972.333 -946.252 -920.401 -894.736	84.649 70.610 80.096
H°(298.15 K). kcal·mol ⁻¹	80	127.009	224.501	140.091		-1123.795	-869.217	45.403
3	88 123 138	128.202	247.867	148.325		-1122.829 -1122.137	-843.808 -818.475	40.069 35.627
	88	130.411	258.261	163.618	123.036 136.130	-1121.754 -1121.703	-793.188 -767.918	31.871 28.651
272.05 - 268.22	8 8	132,482	277.069	177.518		-1121.999	-742.639	25.861
1 1	823	134.478	293.774	190.230		-1123.676	-691.967	21.262
	200	136.880	308.848	201.935	189.517 203.135 216.888	-1125.077 -1126.833 -1128.937	-666.534 -641.013 -615.301	19.342
	2100	139.056	322.665	212.785		-1131.423	-589.654	14.667
average of two combustion	8888 8888 8888 8888	140.839	335.395	222.900 227.714 237.714	258.739 272.867	-1172.557 -1172.074 -1172.074	-534.738 -507.017 -470.318	12.14 11.035
wed the CO(g) equilibrium	2600	143.526	352.824	236.903		-1170.937	-451.640	9.074
), α, 298.15K) = -269.9	2603.000	143.553	352.989	750.752	Ċ	-	AL <> LIQUID	
	30000 3000 3000	145.333 145.333 146.242 147.155	358.257 363.526 368.642 373.615	241.298 245.570 249.726 253.773	315.791 330.279 344.857 359.527	-1170.281 -1169.566 -1168.789 -1845.987	-423.987 -396.359 -368.759 -331.960	8203 7.394 6.642 5.780
(). ¹⁵ Using the combination () K) = 14.3 cal·mol ⁻¹ . Both of Anderson ¹⁴ Early heat								
city values decrease rapidly C, values below T = 330 K								
88–1428 K). ¹⁷ The adopted hifted slightly so as to join								
y data of Kelley et al.6 to								
. Cr.O.has the α-corundum								
662 (1944).	PREVIOUS:						CURRENT: D	CURRENT: December 1973

Cr2O3(cr)

Chromium Oxide (Cr₂O₃)

ć	5
ز	2
ב ביילים	275
	5
5	5

$\Delta_t H^o(298.15 \text{ K}) = [-1018.381] \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\text{tra}} H^o = [129.7] \text{ kJ} \cdot \text{mol}^{-1}$	$S^{\circ}(298.15 \text{ K}) = [125.595] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tis}} = 2603 \pm 15 \text{ K}$
A.H°7298 15 K) = [-1018 3811 k1·mol	C-0798 15 K) = [175 595] 1.K-1.mol-1

LIQUID

Cr₂O₃(I)

 $M_r = 151.9902$ Chromium Oxide (Cr₂O₃)

Enthalpy of Formation

A.H. (Cr.O.), 1, 298.15 K) is calculated from that of the crystal by adding A.H. and the difference in enthalpy, H°(2603 K)-H°(298.15 K between the crystal and liquid.

Heat Capacity and Entropy

The heat capacity for Crool(I) is estimated to be 7.5 cal·K⁻¹·mol⁻¹. A glass transition is assumed at 1800 K. Below 1800 K, the C* value are those of the crystal with the exception that the values below 500 K are a smooth extrapolation to C* = 24.32 cal·K⁻¹·mol⁻¹ at 298.15 F. The entropy is calculated in a manner analogous to that used for the enthalpy of formation.

Fusion Data

The melting point is chosen to be $T_{lm} = 2603 \pm 15$ K, as suggested by Charlesworth. This result is based on the work by McNally et al. The heat of melting is estimated by analogy with $\Delta_{lm}S^* = 12.03$ for corundum.³

References

H. Charlesworth, AFML-TR-70-137, (October 1970).
 R. N. McNally, F. I. Peters, and P. H. Ribbs, J. Amer. Ceramic Soc. 44, 491 (1961).
 JANAF Thermochemical Tables: Al₂O₃(cr), 6-30-72.

	Enthalpy Ke	ference Te	mperature	Enthalpy Reference Temperature = T, = 298.15 K	¥	Standard Sta	Standard State Pressure = p° = 0.1 MPa	. = 0.1 MPa	_
	7Æ	ູ່	J-K-'mol'.' S* -{G*	-H'(T,)]T	H*-H*(T,)	Δ'H°	.9 ⁷ Q	log Kr	
ξ.	0 0 0								
	298.15	101.755	125.595	125.595	Ö	-1018.381	-949.997	166.435	_
Sign	888	102.006	126.725	129.745 129.745	0.188 10.977 27.534	-1018.361 -1017.113 -1015.337	-926.786 -926.786	121.026 94.483	
Υ,	8	120.549	204.685	147.258	34.456	-1013.593	-882.388	76.819	
	588 888	122.625	233.430	156.831	58.967 11.460	-1011.942 -1010.396	-860.653 -839.147	\$4.73 54.73 54.73	
2,7	88	127.009	267.954	183.847	84.107	-1007.778	-796.654	41.613	
<u>;</u>	1200	128.202	280.116 291.319	192.054	96.868 109.745	-1006.812 -1006.121	-775.590 -754.602	36.830 32.847	
	888	130.411	301.714	207.305	135.826	-1005.737 -1005.687	-733.660 -712.735 -691.807	29.479 26.592	
	98	133.486	329.104	23.862	162.322 175.720	-1006.637	-670.838 -649.821	21.901	_
	1800.000	135.457	344.941	239.820	189217	9	٠,		
	1900	156.900	333.42	245.578	204.907	-1008.740	-607.615	16.705	
	700	156.900	369.127	256.609	236.287	-1009,566	-565.366	14.063	
	2200	156,900	376.426	261.891	251.977	-1049.387	-542.878 -519.902	12.890	
	2400 2500	156,900	390.078 396.483	272.013	283.357	-1043.265	-497.016 -474.213	10.817	
	2600	156.900	402.637	281.584	314.737	-1041.273			
	2603.000	156.900	402.818	281.724	315.208	CRYSTAL	AL <> LIQUID		-
	2800	156.900	408.558	286.178	346.117	-1039.325	478.844	855 855 865 865 865 865 865 865 865 865	-
	9,58 3,58 3,58 3,58 3,58 3,58 3,58 3,58 3	156.900	419.770	295.009 299.257	361.807	-1035.520 -1711.697	-383.762	6,912 6,130	
	3100	156.900	430.234	303.400	393.187	-1708.210	-306.830	5.170	
	3300	156.900	440.044	311.387	424.567	-1701.615	-216.631	3.429	
	3200	156.900	449.276	319.005	455.947	-1695.500	-126.816	1.893	
-	3600	156.900	453.696	322.685 326.285	487,327	-1692.618 -1689.852	-82.037	0.190 0.527	
	3800	156,900	462.179	329.806	503.017	-1687.205 -1684.678	7.291 51.850	-0.100 -0.694	
	400 400 60 60 60 60 60 60 60 60 60 60 60 60 6	156.900	470.227	330.628	550.087	-1680,003	140.782	-1.794	
	500	156,900	477.882	343.173	565.777	-1677.867	185.165	-2303	
	440 80 80 80 80	156.900	485.181	349.463	597.157 612.847	-1674.034 -1672.336	318.037	-3.250 -3.692	
	}								
-									
	PREVIOUS-						CURRENT:	CURRENT: December 1973	_p

•
(
1
Ċ
•
3
3
3
C
1
1

M _r = 151.9902	Chromium Oxide (Cr ₂ O ₃)	Oxide	(Cr ₂ O ₃)					Cr ₂ O ₃ (cr,!)
	Enthalpy Re	eference Te	mperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $1 \cdot \text{K}^{-1} \text{mol}^{-1}$		Standard State Pressure	ite Pressure = p*	°0.1 MPa
	τÆ	ະ	S -{G	-[G*-H*(T,)]/T	$H^{\circ}-H^{\circ}(T_{\circ})$	t	₽ 'C•	log K,
	0 00 5	0. 24.255	0. 10.093	INFINITE 155.642 90.567	-15.282	-1128.844 -1133.096	-1128 844	S78.369
	298.15	120.366		81.154	0	-1134.701	-1053.066	184.493
	930	121.922	81.904	81.157	0.224	-1134.645	-1052,560	183,267
	305 000	26 775 126.775	83 958 83.958	81.186 81.186	0.845 0.845	C, LAN	C, LAMBDA MAXIMUM TRANSITION	- M5
	88	112.675 117.711	113.736	85.534 93.829	11.281	-1133.129	-1025.421 -998.699	133.906
	96	120.549	161 232	103,300	34.759	-1129,610	-972.333	84.649
	888	124.290	196.463	122.375	59.270	-1126.413	- 920.401	60.09 60.096
	88	125.725	211.187	131.440 140.091	71.773 84.410	-1125.007 -1123.795	-894.736 -869.217	51.929 45.403
	100	128.202	236.663	148.325	97.171	-1122.829	-843.808	40.069
	88	130.411	258.261	163.618	123.036	-1121.754	-793.188	31.871
	2005	132.482	27.069	177.518	149.327	-1121.703	-742.639	28.651 25.861
	85	133.486	285.651 293.774	184,011	162.625	-1122.654	-717.329 -691.967	23 418
	00 E	135.457	301.486	196.199	189517	-1125.077	-666534	19.342
	2000	138.168	315.903	207.459	216.888	-1128.937	-615.391	16.072
	2200 2200	139.056	322.665	212.785	230.749	-1131.423	- 562.478	14 667
	2300 2400	140.839	335,395	222.900	258.739	-1172.557	-534.738	12.144
	2500	142.628	347.212	232.378	287.085	-1171.534	-479.318	10.015
	2600	143.526	352.824	236.903	301.393	-1170.937	-451 640	9.074
	2603.000	156,900	352.989 402.818	237.037 237.037	301.824 431.528	CRYST	AL <> LIQUID TRANSITION	
	2700	156.900	408.558	243.097	446 747		-428.844	
	280	156.900	419.770	249 109 254.899	462.437 478.127	-1037.407 -1035.520	-406.268 -383.762	7.579 6.912
	3000	156 900	425.090	260 484	493.817	-1711.697	-352.093	6.130
	3200	156.900	435.216	265.877 271.092	509.507 525.197	-1708.210	-306.830	5.170 4.271
	3300	156.900	440 044	276.139	540.887	-1701 615	-216.631	3.429
	3800	156.900	449.276	285.771	572.267	-1695.500	-126.816	1.893
	3,000	156 900	453.696	290.374	587.957	-1692.618	-82.037	1.190
	3800	156.900	462.179	299.196	619.337	-1687.205	7.291	-0.100
	869	156.900	466.254	303.427	635.027	-1684.678 -1682.276	51.850 24.34	-0.694
	4100	156 900	474.101	311.563	666.407	-1680.003	140.782	-1.794
	4300	156.900	481.574	315.478	697.787	-1677.867 -1675.874	185.165	-2.788
	64 4 0 64 0 64	156.900	485.181	323.027	713.477	-1674.034	318.037	-3.250
	2	2000	100	2000	101.721	0007101	216.03/	760.6
	PREVIOUS						CIRRENT	CIRRENT: December 1973

CRYSTAL-LIQUID

Refer to the individual tables for details.

Chromium Oxide (Cr₂O₃)

Continued from page 960

B. Conway and R. A. Hein in "Advances in Thermophysical Properties at Extreme Templeratures and Pressures," ⁷R. Hultgren and C. Land, Trans. Met. Soc. AIME 215, 165 (1959).

F. Lucks and H. W. Deem, WADC Tech. Rept. No. 55-496, (1956).
 R. Kohlhaas, M. Braun, and O. Vollmer, Z. Naturforsch 20a, 1077 (1965).
 F. M. Jaeger and R. Rosenbohm, Proc. Acad. Sci. Amsterdam 34, 489 (1934).
 A. Kirillin, A. E. Sheinalin, V. Ya. Chekhovskoi, and J. A. Zhukova, Teplofiz. Vys. Temp. 5, 1124 (1967).
 R. Garnier and Salamon, Phys. Rev. Lett. 27, 1523 (1971).

⁴N. H. Sze and G. T. Meaden, Phys. Lett. 35A, 329 (1971).

Continued from page 966

⁷B. Neumann, C. Kroger, and H. Haebler, Z. Anorg, Chem. 196, 65 (1931).

⁸E. K. Storms, Los Alamos Scientific Laboratory, LA-2942, Contract W-7405-Eng. 36, (August 1964).

⁹U. S. Nat. Bur. Stand. Tech. Note 270-4, (1969).

¹⁹J. Chaussy R. Georges, P. Mollard and J. Voeroir, J. Phys. (Paris), Colloq. (1) (Pt. 2), C1, 977 (1971).

¹⁰O. Kubaschewski, E. LL. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," 4th Edition, Pergamon Press,

New York, (1967).

D. Browne, P. R. Liddell, R. Street, and T. Mills, Phys. Stat. Sol. 1, 715 (1970).
 D. Browne, P. R. Liddell, R. Street, and R. Street, J. Phys. (Paris), Colloq. (1) (Pt. 2), CI, 974 (1971).
 L. M. Cofliss, N. Elliott, and J. M. Hastings, Phys. Rev. 117, 929 (1960).
 Saoth, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 34, 1001 (1938).
 P. G. Pinsker and S. V. Kavern, Kristallografiya 2, 380 (1957).
 R. Blu, Z. Physik, Chem. 3B, 229 (1929).

Continued from page 968

¹D. L. Hildenbrand and E. Murad, J. Chem. Phys. 51, 807 (1969).

²JANAF Thermochemical Tables: Cr(g), 6-30-73, O(g), 6-31-62.

Brewer and G. M. Rosenblatt in "Advances in High Temperature Chemistry," Vol. 2, L. Eyring, Ed., Academic Huldt and A. Lagenqvist, Arkiv Fysik 3, 525 (1951).
 Brewer, UCRL-8356, (1957).
 Lagenqvist and L. Huldt, Z. Naturforsch, 8a, 493 (1953).
 R. T. Grimley, R. P. Burns, and M. G. Inghram, J. Chem. Phys 34, 664 (1961).
 Brewer and G. M. Rosenblatt in "Advances in High Temperature Chemistry."

Rosen, editor, "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, (1970). Press, New York, pp. 1–83 (1967).

⁸D. M Chizhikov, Yu. V. Tsvetkov, E. K. Kazenas, and V. K. Tagirov, Russ. J Phys. Chem. 46, 468 (1972).

⁹B. Rosen, editor, "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, (1970).

¹⁰W. Weltner, Jr., Science 155, 155 (1967).

Continued from page 969

Continuation of discussions of selected Cr species

D. M. Chizhikov, Yu. V. Tsvetkov, E. K. Kazenas, and V. K. Tagirov, Russ. J Phys Chem. 46, 468 (1972). R. F. Grimley, R. P. Bums, and M. G. Inghram, J. Chem. Phys. 34, 664 (1961).

¹JANAF Thermochemical Tables: CrO(g), TiO₂(g), and TaO₂(g), 12-31-73; ZrO₂(g), 12-31-65, O(g), 6-30-62;

Hobbs, J. Chem. Phys. 28, 1220 (1958).
 G. Barraclough, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 1959, 3552 (1959).
 W. Weltner, Jr., and D. McLeod, Jr., J. Mol. Spectrosc. 17, 276 (1965); J. Chem. Phys. 42, 882 (1965).

M. Farber and R. D. Srivastava, Combustion and Flame 20, 43 (1973)

Continued from page 971

⁵V. S. Mozgovai and A. M. Samarin, Doklady Akad. Nauk. SSSR 74, 729 (1950).

⁶A. U. Seybolt and R. A. Oriani, J. Metals 8, AIME Trans. 206, 556 (1956).

T. A. Tomilin and N. Savost 'yanova, Issled. po Zharoproch. Splovam. Akad. Nauk SSSR, Inst. Mct. 10, 283 (1963).
 T. Mills, J. Less-Common Metals 22, 373 (1970).
 K. Schwerdrieger, Trans. AIME 239, 1432 (1967).
 I.W. H. Smith, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y., (1958).

¹¹U. S. Nat. Bur. Stand. Tech. Note 270-4, (1969).

¹²C. E. Wicks and F. E. Block, U. S. Bur. Mines Bull. 605, (1963).
 ¹³I. Barin and O. Knache, "Thermochemical Properties of Inorganic Substances," Springer-Verlag, Berlin, (1973).
 ¹⁴O. Kubaschewski, E. LL. Fivans, and C. B. Alcock," Metallurgical Thermochemistry," 4th ed., Pergamon Press,

New York, (1967).

Satoh, Sci. Pap. Inst. Phys. Chem. Res. Toyko 34, 1001 (1938).
 Satoh, Sci. Pap. Inst. Physik. Chem. 3B, 229 (1929).
 Blix, Z. Physik. Chem. 318, 530 (1934).
 Ericksson, Jernkont. Ann. 118, 530 (1934).
 E. K. Storms, Los Alamos Scientific Laboratory, LA-2942, Contract W-7405-Eng. 36, (August 1964).

Continued from page 972

¹F. D. Richardson and J. H. E. Jeffes, J. Iron Steel Inst. 160, 261 (1948).

⁹I. N. Ramsey, D. Caplan, and A. A. Burr, J. Electrochem. 103, 135 (1966).

¹⁰Y. Jeannin, C. Mannerskantz, and F. D. Richardson, Trans. Met. Soc. AIME 227, 300 (1963).

¹I. A. Novokhatskii and L. M. Lenev, Russ. J. Inorg. Chem. 11, 1078 (1966).
¹²K. Suzuki and K. Sambongi, Tetsu To Hagane 58, 1579 (1972).

¹F. N. Mazandarany and R. D. Pehlke, J. Electrochem. Soc., 121, 711–14(1974).

¹C. T. Anderson, J. Amer. Chem. Soc. 59, 488 (1937).

¹J. Volger, Nature 170, 1027 (1952).

¹S. Russell, Z. Physik, 13, 59 (1912).

N. Laschschenko and D. I. Kompanskii, J. Russ. Phys. Chem. Soc. 60, 579 (1928).

¹⁸L. Brewer, Chem. Rev. 52, 1 (1953)

Cs₁(ref)

0 to 301.55 K crystal 301.55 to 947.967 K liquid above 947.967 K ideal monatomic gas

Refer to the individual tables for details.

State Pressure = $p^* = 0.1 \text{ MPa}$	∆,G* log K ₁	o c		් ර ර ර	STAL <> LIQUID TRANSITION	00	00	:00	<> IDEAL GAS_	0.0	000 000	o o o	i de	:00	0 0 0	00	0 0	00	000		ರರ ೆ ರರರ		000 000		ರದರ		ರರರ ಧರರ		000		
Standard Stat	Δ.Η.	o'c	ان د		CRYSTAI	o o	o' o	်ဝဝ	LIQUID <>	0	ೆ	ooo	i de		ರ ರ	00	ರರ	ೆ	ರರರ	00	ರರರ	ರರ	ರರರ	ರರ	ಠಠಠ	00	ರರರ	ರರ	doc	Ö	ď
	H*-H*(T,)	717.7-	-2888	0.060	0.110	5.339 8.471	11.578	17.768	22.348	680.16	93.167 95.246	99.406	27.501	107.767 109.878	112,004	116.318	120.750 123.023	125.344	130.149 132.646 135.216	137,864	143,384	152.414	158.949 162.375 165.939	169.626	177.375 181.147 184.728	188.871	197.459 201.899 206.430	211.047	219.921 224.415 779.060	233.896	779.110
7, = 298.15 K	$-[G^{\bullet}-H^{\bullet}(T_{\bullet})]T$	INFINITE	87.892	85.148	85.149 85.149	88.110 91.506	94.817	100.808	104.696	109.665	118.037	136.746	145.799	153.131	159.232	164.417	168.904 170.935	172.846 174.648	176.353 177.971 179.510	180.978	183.725 185.016 186.258	187.455 188.610	189.729 190.812 191.864	192.887	194.854 195.795 196.706	197.608	199.357 200.206 201.039	201.857	203.436 204.205 204.854	205.716	200.430
mperature =	S -[G		73.453	85.347	85.514 92.436	101.458	114.113	125.662	128.270	200.754	202.735	207.750	210.533	213.002	215.233	217.289	219.217 220.145	221.055 221.950	222.835 22.711 24.583	225.451	227.175 228.043 228.915	229.792 230.671	231.557 232.447 233.349	234.259	236.104 236.365 237.756	238.667	240.494 241.409 242.335	243,239	244.931 245.763	247.483	7497
ference Te	ಚ	0.	27.804	32.355	32.501 32.393	31.518	30.999	30.932 30.957	30.976	20.786	20.788 20.788	20.814	20.886	21.048	21.349	21.830	22.527 22.960	23.456 24.016	25.326 25.326 26.082	26.905	28.599 29.572 30.600	31.680	33.902 35.036 36.250	37.488	40.010 40.717 40.901	41.940	43.924 44.859 45.748	46.588	47.729	48.599	437075
Enthalpy Reference Temperature	7.K	٥٥	02 2	300	301.550	688 688	88	888	947.967	1000	888 283	888	98	<u>88</u>	2000 2100	2300	2400 2500	2500	888	3200	3,430	3360 3700	986 986 986 986 986 986 986 986 986 986	4200	844 868	44 60 60 60 60 60 60 60 60 60 60 60 60 60	\$ 65 8 8 8 8 8 8 8 8	\$200 \$200	888 888 888	200	3