P8) Write a program that can evaluate the expression $A \times B - C \times D$

Logic Used

Firstly, we load both A and B onto the accumulator. To perform their multiplication, we run through a loop to perform the multiplication and end it once we reach the final bit. Similarly, we perform the multiplication of C and D. For the subtraction step, we take the complement of RESULT₂(product of C and D) and add 1 to it to get its 16's complement. We, then, simply add RESULT₁(product of A and B) to get our desired result and store it in RESULT₃.

Other conditions: We check whether A or B are zero. If either of them are zero, we skip to multiplying C and D by branching there unconditionally (BUN SKIP). Similarly, we skip to performing the subtraction (BUN SUBTRACT) if either C or D are zero.

Program

```
LDA A
SZA
BUN B_O_CHECK
BUN SKIP
B_O_CHECK, LDA B
SZA
BUN MUL_1
BUN SKIP
MUL_1, LDA RESULT_1
ADD A
STA RESULT_1
LDA MUL_COUNTER_1
INC
STA MUL_COUNTER_1
CMA
AND B
SZA
BUN MUL_1
SKIP, LDA C
SZA
BUN D_O_CHECK
BUN SUBTRACT
D_O_CHECK, LDA D
SZA
BUN MUL_2
```

BUN SUBTRACT

```
MUL_2, LDA RESULT_2
```

ADD C

STA RESULT_2

LDA MUL_COUNTER_2

INC

STA MUL_COUNTER_2

CMA

AND D

SZA

BUN MUL_2

SUBTRACT, LDA RESULT_2

CMA

INC

ADD RESULT_1

STA RESULT_3

END, HLT

Input 1

A, HEX 0009

B, HEX OOOC

C, HEX 0005

D, HEX 0007

MUL_COUNTER_1, HEX 0000

MUL_COUNTER_2, HEX 0000

RESULT_1, HEX 0000

RESULT_2, HEX 0000

RESULT_3, HEX 0000

Result 1

0049

Output 1

Α	02A	HEX 0009	0009
В	02B	HEX 000C	000C
С	02C	HEX 0005	0005
D	02D	HEX 0007	0007
MUL_COUNTER_1	02E		000C
MUL_COUNTER_2	02F		0007
RESULT_1	030		006C
RESULT_2	031		0023
RESULT_3	032		0049

Input 2

A, HEX 0000

B, HEX OOOC

C, HEX 0005

D, HEX 0007

MUL_COUNTER_1, HEX 0000

MUL_COUNTER_2, HEX 0000

RESULT_1, HEX 0000

RESULT_2, HEX 0000

RESULT_3, HEX 0000

Result 2

FFDD

Output 2

A	02A	HEX 0000	0000
В	02B	HEX 000C	000C
С	02C	HEX 0005	0005
D	02D	HEX 0007	0007
MUL_COUNTER_1	02E	HEX 0000	0000
MUL_COUNTER_2	02F		0007
RESULT_1	030	HEX 0000	0000
RESULT_2	031		0023
RESULT_3	032		FFDD

Input 3

A, HEX 0009

B, HEX OOOC

C, HEX 0005

D, HEX 0000

MUL_COUNTER_1, HEX 0000

MUL_COUNTER_2, HEX 0000

RESULT_1, HEX 0000

RESULT_2, HEX 0000

RESULT_3, HEX 0000

Result 3

006C

Output 3

Α	02A	HEX 0009	0009
В	02B	HEX 000C	000C
С	02C	HEX 0005	0005
D	02D	HEX 0000	0000
MUL_COUNTER_1	02E		000C
MUL_COUNTER_2	02F	HEX 0000	0000
RESULT_1	030		006C
RESULT_2	031	HEX 0000	0000
RESULT_3	032		006C