

Ω

μJ

**Product Summary** 

1200

0.100

170

 $BV_{DS}$ 

R<sub>DS(ON)max</sub>

 $E_{TS,typ}$ 

### **Normally-OFF Trench Silicon Carbide Power JFET**

#### Features:

- Compatible with Standard Gate Driver ICs
- Positive Temperature Coefficient for Ease of Paralleling
- Extremely Fast Switching with No "Tail" Current at 150 ℃
- 150 °C Maximum Operating Temperature
- $R_{DS(on)max}$  of 0.100  $\Omega$
- Voltage Controlled
- Low Gate Charge
- Low Intrinsic Capacitance

### **Applications:**

- Solar Inverter
- SMPS
- Power Factor Correction
- Induction Heating
- UPS
- Motor Drive





Internal Schematic

### **MAXIMUM RATINGS**

| Parameter                         | Symbol                 | Conditions                         | Value       | Unit |  |
|-----------------------------------|------------------------|------------------------------------|-------------|------|--|
| Continuous Drain Current          | I <sub>D, Tj=100</sub> | T <sub>j</sub> = 100 ℃             | 17          | Α    |  |
|                                   | I <sub>D, Tj=150</sub> | T <sub>j</sub> = 150 ℃             | 10          |      |  |
| Pulsed Drain Current (1)          | I <sub>DM</sub>        | T <sub>j</sub> = 25 ℃              | 30          | Α    |  |
| Short Circuit Withstand Time      | t <sub>SC</sub>        | $V_{DD}$ < 800 V, $T_{C}$ < 125 °C | 50          | μs   |  |
| Power Dissipation                 | $P_{D}$                | T <sub>C</sub> = 25 °C             | 114         | W    |  |
| Gate-Source Voltage               | $V_{GS}$               | AC <sup>(2)</sup>                  | -15 to +15  | V    |  |
| Operating and Storage Temperature | $T_{j},T_{stg}$        |                                    | -55 to +150 | °C   |  |
| Lead Temperature for Soldering    | T <sub>sold</sub>      | 1/8" from case < 10 s              | 260         | ℃    |  |

<sup>(1)</sup> Limited by pulse width

#### THERMAL CHARACTERISTICS

| Parameter                               | Symbol     | Va  | Unit |        |  |
|-----------------------------------------|------------|-----|------|--------|--|
| Faranietei                              | Syllibol   | Тур | Max  | Oilit  |  |
| Thermal Resistance, junction-to-case    | $R_{thJC}$ | -   | 1.1  | °C / W |  |
| Thermal Resistance, junction-to-ambient | $R_{thJA}$ | -   | 50   | ]      |  |

 $<sup>^{(2)}</sup>$  Rg<sub>EXT</sub> = 1 ohm,  $t_p \le 200$ ns, see Figure 5 for static conditions



### **PRELIMINARY**

## Silicon Carbide

# **SJEP120R100**

### **ELECTRICAL CHARACTERISTICS**

| Parameter                               | Symbol              | Symbol Conditions                                                          |      | Value |      | Unit  |  |
|-----------------------------------------|---------------------|----------------------------------------------------------------------------|------|-------|------|-------|--|
| raiametei                               | Symbol              | Conditions                                                                 | Min  | Тур   | Max  | Offic |  |
| Off Characteristics                     |                     |                                                                            |      |       |      |       |  |
| Drain-Source Blocking Voltage           | BV <sub>DS</sub>    | $V_{GS} = 0 \text{ V}, I_D = 600 \mu\text{A}$                              | 1200 | -     | -    | V     |  |
|                                         |                     | $V_{DS} = 1200 \text{ V}, V_{GS} = 0 \text{ V}, Tj = 25^{\circ}\text{C}$   | -    | 100   | 600  |       |  |
|                                         |                     | $V_{DS} = 1200 \text{ V}, V_{GS} = 0 \text{ V}, Tj = 150^{\circ}\text{C}$  | -    | 300   | -    |       |  |
| Total Drain Leakage Current             | I <sub>DSS</sub>    | $V_{DS} = 1200 \text{ V}, V_{GS} \le -15 \text{ V},$                       | _    | 1     | _    | μΑ    |  |
| Total Brain Ecanage Carron              | 1022                | $Tj = 25^{\circ}C$<br>$V_{DS} = 1200 \text{ V}, V_{GS} \le -15 \text{ V},$ | - '  |       |      | μΛ    |  |
|                                         |                     |                                                                            | _    | 10    | _    |       |  |
|                                         |                     | Tj = 150°C                                                                 |      |       |      |       |  |
| Total Gate Reverse Leakage              | I <sub>GSS</sub>    | V <sub>GS</sub> = -15 V, VDS = 0V                                          | -    | -0.1  | -0.3 | mA    |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 466                 | V <sub>GS</sub> = -15 V, VDS = 1200V                                       | -    | -0.1  | -    |       |  |
| On Characteristics                      |                     |                                                                            |      |       |      |       |  |
|                                         |                     | $I_D = 10 \text{ A}, V_{GS} = 3 \text{ V},$                                |      | 0.08  | 0.1  |       |  |
| Drain-Source On-resistance              | R <sub>DS(on)</sub> | T <sub>j</sub> = 25 ℃                                                      | -    | 0.06  | 0.1  |       |  |
| Diani-Source On-resistance              | ¹¹DS(on)            | $I_D = 10 \text{ A}, V_{GS} = 3 \text{ V},$                                | _    | 0.2   | _    | Ω     |  |
|                                         |                     | T <sub>j</sub> = 100 ℃                                                     | -    | 0.2   | -    |       |  |
| Gate Threshold Voltage                  | $V_{GS(th)}$        | $V_{DS} = 1 V, I_{D} = 34 mA$                                              | 0.75 | 1.00  | 1.25 | V     |  |
| Gate Forward Current                    | $I_{GFWD}$          | V <sub>GS</sub> = 3 V                                                      | -    | 220   | -    | mA    |  |
| Gate Resistance                         | $R_{G}$             | f = 1 MHz, drain-source shorted                                            | -    | 6     | -    | Ω     |  |
| Cate Hesistance                         | $R_{G(ON)}$         | V <sub>GS</sub> >2.7V; See Figure 5                                        | -    | 0.5   | -    | Ω     |  |
| Dynamic Characteristics                 |                     |                                                                            |      |       |      |       |  |
| Input Capacitance                       | C <sub>iss</sub>    |                                                                            | -    | 670   | -    | pF    |  |
| Output Capacitance                      | C <sub>oss</sub>    | V <sub>DD</sub> = 100 V                                                    | -    | 103   | -    |       |  |
| Reverse Transfer Capacitance            | $C_{rss}$           |                                                                            | -    | 97    | -    |       |  |
| Effective Output Capacitance,           | C                   | $V_{DS} = 0 \text{ V to } 600 \text{ V},$                                  |      | 60    |      |       |  |
| energy related                          | $C_{o(er)}$         | $V_{GS} = 0 V$                                                             | -    | 60    | -    |       |  |
| Curitahina Charactariatica              |                     |                                                                            |      |       |      |       |  |
| Switching Characteristics Turn-on Delay | t <sub>on</sub>     |                                                                            |      | 10    | _    |       |  |
| Rise Time                               | t <sub>r</sub>      | $V_{DS} = 600 \text{ V}, I_{D} = 12 \text{ A},$                            |      | 12    |      |       |  |
| Turn-off Delay                          | t <sub>off</sub>    | Inductive Load, T <sub>J</sub> = 25°C                                      |      | 30    |      | ns    |  |
| Fall Time                               | t <sub>f</sub>      | Gate Driver = +15V, -15V,                                                  |      | 25    | _    |       |  |
| Turn-on Energy                          | E <sub>on</sub>     |                                                                            | _    | 68    | _    |       |  |
| Turn-off Energy                         | E <sub>off</sub>    | See Figure 15 and application note for                                     | _    | 87    | _    | μJ    |  |
| Total Switching Energy                  | E <sub>ts</sub>     | gate drive recommendations                                                 | _    | 155   | _    | μο    |  |
| Turn-on Delay                           | t <sub>on</sub>     |                                                                            | -    | 10    | -    |       |  |
| Rise Time                               | t <sub>r</sub>      | $V_{DS} = 600 \text{ V}, I_{D} = 12 \text{ A},$                            | -    | 15    | -    | ns    |  |
| Turn-off Delay                          | t <sub>off</sub>    | Inductive Load, T <sub>J</sub> = 150°C                                     | -    | 30    | -    |       |  |
| Fall Time                               | t <sub>f</sub>      | Gate Driver = +15V, -15V,                                                  | -    | 25    | -    |       |  |
| Turn-on Energy                          | E <sub>on</sub>     |                                                                            | -    | 82    | -    |       |  |
| Turn-off Energy                         | E <sub>off</sub>    | See Figure 15 and application note for                                     | -    | 94    | -    | μJ    |  |
| Total Switching Energy                  | E <sub>ts</sub>     | gate drive recommendations                                                 | -    | 176   | -    |       |  |
| Total Gate Charge                       | $Q_g$               | V 600 V I 5 A                                                              | -    | 30    | -    |       |  |
| Gate-Source Charge                      | $Q_{gs}$            | $V_{DS} = 600 \text{ V}, I_D = 5 \text{ A},$                               | -    | 1     | -    | nC    |  |
| Gate-Drain Charge                       | $Q_{gd}$            | $V_{GS} = +2.5 \text{ V}$                                                  | -    | 24    | -    |       |  |



Figure 1. Typical Output Characteristics



Figure 3. Typical Output Characteristics  $I_D = f(V_{DS}); T_i = 150 \text{ }^{\circ}\text{C}; \text{ parameter: } V_{GS}$ 



Figure 5. Gate-Source Current



Figure 2. Typical Output Characteristics



Figure 4. Typical Transfer Characteristics



Figure 6. Drain-Source On-resistance

 $R_{DS(on)} = f(I_D); V_{GS} = 3.0;$  parameter: Tj





Figure 7. Drain-Source On-resistance



Figure 9. Typical Capacitance  $C = f(V_{DS}); V_{GS} = 0 V; f = 1 MHz$ 



Figure 11. Gate Threshold Voltage



Figure 8. Drain-Source On-resistance



Figure 10. Gate Charge



Figure 12. Drain-Source Leakage





Figure 13. Switching Energy Losses





### Figure 14. Switching Energy Losses

 $E_s = f(R_{GEXT}); V_{DS} = 600V; I_D = 12A, GD = +15V/-15V$ 







Figure 16. Test Circuit & Test Conditions



#### **Test Conditions**

- Single Device configuration
- $V_{DD} = 600V$ ,  $I_{LPK} = 12A$ ,  $T_A = 25^{\circ}C$
- RC snubber: R= 22 and C = 4.7nF
- 400uH load inductance
- Each device driven by separate SGD300P1
- · Gate driver approx. 5mm from gate terminal
- · 3.3nF gate-source capacitive clamp

The SGDR300P1 is a gate driver reference design available for purchase from SemiSouth. See applications note AN-SS2 for full circuit description, test results, schematics, and bill of materials. Gerber files also available upon request.



Figure 17. Transient Thermal Impedance

 $Z_{th(jc)} = f(t_P)$ ; parameter: Duty Ratio











| DIM        | MILLIM | IETERS | INCHES |       |  |
|------------|--------|--------|--------|-------|--|
|            | MIN    | MAX    | MIN    | MAX   |  |
| Α          | 4.903  | 5.157  | 0.193  | 0.203 |  |
| <b>A</b> 1 | 2.273  | 2.527  | 0.090  | 0.100 |  |
| A2         | 1.853  | 2.108  | 0.073  | 0.083 |  |
| b          | 1.073  | 1.327  | 0.042  | 0.052 |  |
| b1         | 2.873  | 3.381  | 0.113  | 0.133 |  |
| b2         | 1.903  | 2.386  | 0.042  | 0.052 |  |
| С          | 0.600  | 0.752  | 0.024  | 0.029 |  |
| D          | 20.823 | 21.077 | 0.820  | 0.830 |  |
| D1         | 17.393 | 17.647 | 0.685  | 0.695 |  |
| D2         | 1.063  | 1.317  | 0.042  | 0.052 |  |
| е          | 5.450  |        | 0.215  |       |  |
| Е          | 15.773 | 16.027 | 0.621  | 0.631 |  |
| E1         | 13.893 | 14.147 | 0.547  | 0.557 |  |
| L          | 20.053 | 20.307 | 0.789  | 0.799 |  |
| L1         | 4.168  | 4.472  | 0.165  | 0.175 |  |
| Q          | 6.043  | 6.297  | 0.238  | 0.248 |  |
| ØΡ         | 3.560  | 3.660  | 0.140  | 0.144 |  |
| ØP1        | 7.063  | 7.317  | 0.278  | 0.288 |  |



#### **PRELIMINARY**

### Silicon Carbide

# SJEP120R100

Published by SemiSouth Laboratories, Inc. 201 Research Boulevard Starkville, MS 39759 USA © SemiSouth Laboratories, Inc. 2011

Information in this document supersedes and replaces all information previously supplied.

Information in this document is provided solely in connection with SemiSouth products. SemiSouth Laboratories, Inc. reserves the right to make changes, corrections, modifications or improvements, to this document without notice.

No license, express or implied to any intellectual property rights is granted under this document.

Unless expressly approved in writing by an authorized representative of SemiSouth, SemiSouth products are not designed, authorized or warranted for use in military, aircraft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage.