Measurement of the B_s^0 - $ar{B}_s^0$ Oscillation Frequency

Oliver Dahme

University of Zurich

o.dahme@cern.ch

December 6, 2016

Abstract

- ullet first precise measurement of the B_s^0 $ar{B}_s^0$ oscillation frequency Δm_s
- $1fb^{-1}$ of data from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV
- 3600 fully reconstructed B_s decays and 37000 partially reconstructed semileptonic B_s decays
- $\Delta m_s = 17.31^{+0.33}_{-0.18}(stat) \pm 0.07(syst)ps^{-1}$
- $V_{td}/V_{ts} = 0.208^{+0.001}_{-0.002}(expt)^{+0.008}_{-0.006}(theor)$

Theory

ullet probability for a $ar{B}_q^0$ produced at time t=0 to decay as a B_q^0 at time t

$$P_{\pm}(t) = rac{\Gamma_q}{2} e^{-\Gamma_q t} \left[1 \pm \cos(\Delta m_q t)
ight]$$

- ullet $\Delta m_q=$ mass difference between $B_{q,H}^0$ and $B_{q,L}^0$
- \bullet Γ_q is the decay width

Theory

Figure: Feynman Diagram of B^0 - \bar{B}^0 oscillation

Measurment method

- 2 decay modes reconstructed:
- $\bar{B}_s^0 \to D_s^+ \pi^-, D_s^+ \pi^- \pi^+ \pi^-$
- $\bullet \ \bar{B}^0_s \to D_s^+ \ell^- \bar{\nu}_\ell, \ell = e \ {\rm or} \ \mu$
- using charged particles only
- calculating decay time from distance and momentum measurment between production and decay
- flavor at decay determined by charge of decay products

Tagging initial B

- 2 techniques to identify flavor of the B at production
- ullet same-side tag: uses secondary meson K^- for $ar{B}^0_s$ and K^+ for B^0_s
- ullet high sensitivity at large values of Δm
- opposite-side tag: uses charge of the lepton from the semileptonic decay
- ullet high sensitivity at low values of Δm

checking for unitarity of the CKM matrix

• the measured oscillation frequency can be used to derive:

$$\frac{V_{td}}{V_{ts}} = \epsilon \sqrt{\frac{\Delta m_d}{\Delta m_s} \frac{m_{B_s^0}}{m_{B^0}}} \sim 0.208$$

- which is consistent with standart model expectations
- can be used to improve constrains on the unitarity of the CKM matrix or on new physics
- it is still a topic in state of the art research in the LHCb experiment

Questions?