Introduction to Machine Learning (NPFL054)

Homework 2

François Leroy, PhD student at CZU

2021-05-08

Contents

Set up the project			
1	Task 1 - Data analysis	2	
2	Task 2 - Model fitting, optimization, and selection	6	

Set up the project

```
library(ISLR) # for the data
library(tidyverse) # convenient
library(rpart) # for decision trees
library(randomForest) # for ensemble learning
library(glmnet) # for regularized logistic regression
library(ROCR) # for ROC curves
```

```
## Reproduce the result
set.seed(123)
## Create the splitting vector
split <- sample(nrow(Caravan), 1000)
## Create the test dataset
d_test <- Caravan[split,]
## Create the training dataset
d_train <- Caravan[-split,]</pre>
```

1. Task 1 - Data analysis

• First, check the distribution of the target attribute. What would be your precision if you select 100 examples by chance?

```
round(table(Caravan$Purchase), 2)
```

```
## No Yes
## 5474 348
```


We can see that there is 94% of customers who didn't purchase the insurance and that 6% who did. As the precision is the number of examples classified as *Yes* when the value is actually *Yes*, by chance, the precision should be 0.06.

• 1.a. Focus on the customer type MOSHOOFD: create a table with the number of customers that belong to each of 10 L2 groups and the percentage of customers that purchased a caravan insurance policy in each group. Comment the figures in the table. Then do the same for the

customer subtype MOSTYPE (41 subgroups defined in L1).

MOSHOOFD type:

group	size	purchase_prop
1	552	0.09
2	502	0.13
3	886	0.07
5	569	0.03
6	205	0.02
7	550	0.04
8	1563	0.06
9	667	0.06
10	276	0.02

From this first table, we can see that the customers that are more prone to purchase an insurance (13% of them) are the one belonging to the group 2, *i.e.* the *driven growers*. On the other hand, the customers belonging to the class 6 and 10, respectively the *cruising seniors* and the *farmers*, are less likely to subscribe to the insurance (only 2% in each group).

MOSHOOFD type:

```
table <-
Caravan %>%

count(MOSTYPE, Purchase) %>%

group_by(MOSTYPE) %>%

summarise(size = sum(n),
```

group	size	purchase_prop	group	size	purchase_prop
8	339	0.15	10	165	0.05
12	111	0.14	34	182	0.05
1	124	0.10	4	52	0.04
3	249	0.10	5	45	0.04
6	119	0.10	9	278	0.04
20	25	0.08	22	98	0.04
37	132	0.08	35	214	0.04
2	82	0.07	24	180	0.03
7	44	0.07	30	118	0.03
13	179	0.07	31	205	0.03
36	225	0.07	23	251	0.02
38	339	0.07	25	82	0.02
11	153	0.06	26	48	0.02
32	141	0.06	27	50	0.02
33	810	0.06	29	86	0.02
39	328	0.06	41	205	0.02

The two groups more prone to buy an insurance are the group 8 and 12, which correspond respectively to *middle class families* and *affluent young families*. Thus, we can say that families are potential good targets to sell insurances. We can see that the class 25, 26, 27 and 29 all have a low proportion of individuals buying a insurance. They are all related to old people (*i.e.*, *Young seniors in the city*, *Own home elderly*, *Seniors in apartments*, *Porchless seniors: no front yard*). Thus, old people are not a good target to sell

insurances.

1.b. Analyze the relationship between features MOSHOOFD and MOSTYPE.

```
Caravan %>%
  ggplot(aes(y = MOSTYPE, x = MOSHOOFD))+
  geom_point()+
  geom_smooth(method = "lm")+
  theme_bw()
```


We can clearly see a relationship between these two features which are MOSHOOFD = Customer main type and MOSTYPE = Customer Subtype. This is expected because MOSTYPE is just a more precise social position. For instance, we can see that when MOSHOOFD=10, MOSTYPE=40|41. We can see that MOSHOOFD=10 correspond to Farmers and that MOSTYPE=40|41 are two subclasses of farmers: Large family farms and Mixed rurals, respectively.

2. Task 2 - Model fitting, optimization, and selection