BIOSTAT 651

Notes #3: Maximum Likelihood

- Lecture Topics:
 - Maximum likelihood estimation (MLE)
 - Hypothesis testing

Data Structure

• The general set-up is described as follows:

• sample size: n subjects (independent)

 \circ response: Y_i

 \circ covariate $\mathbf{x}_i^T = (x_{i1}, x_{i2}, \ldots)$

 \circ model parameters: $\boldsymbol{\theta} = (\theta_1, \dots, \theta_q)^T$

$$\circ \text{ set } \mathbf{Y} = (Y_1, \dots, Y_n)^T$$

o design matrix:

$$\mathbf{X} = egin{bmatrix} \mathbf{x}_1^T \ \mathbf{x}_2^T \ dots \ \mathbf{x}_n^T \end{bmatrix}$$

• e.g., linear regression: $\boldsymbol{\theta} = (\boldsymbol{\beta}^T, \sigma^2)^T$

Parameter Estimation

- Consider a model of Y_i based on the parameter $\boldsymbol{\theta}$
 - \circ observed data: (\mathbf{x}_i^T, Y_i) for $i = 1, \dots, n$
 - \circ fitted values: \widehat{Y}_i
- Different choices of $\widehat{\boldsymbol{\theta}}$ will yield different $\widehat{\mathbf{Y}}$ Q: How to select the "best" $\widehat{\boldsymbol{\theta}}$?
- In linear regression we used LSE, which minimize the following function:

$$S_2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

• Many other possible criteria exist:

$$S_1 = \sum_{i=1}^n |Y_i - \widehat{Y}_i|$$

$$S_{\infty} = \max_{i=1,\dots,n} |Y_i - \widehat{Y}_i|$$

• Another well-known method: Maximum Likelihood

Likelihood

- density: $f(Y_i; \boldsymbol{\theta})$
- joint density: $f(\mathbf{Y}; \boldsymbol{\theta}) = \prod_{i=1}^n f(Y_i; \boldsymbol{\theta})$
 - \circ calculation based on various **Y** values, for fixed $\boldsymbol{\theta}$
- likelihood function: $L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Y})$
 - \circ often abbreviated to $L(\boldsymbol{\theta})$, or even L
 - \circ viewed as a function of $\boldsymbol{\theta}$, with (\mathbf{X}, \mathbf{Y}) held constant (at their realized values)
- likelihood is proportional to the joint density,

$$L(\boldsymbol{\theta}) \propto f(\mathbf{Y}; \boldsymbol{\theta})$$

 \circ derived by setting $L(\boldsymbol{\theta}) = f(\mathbf{Y}; \boldsymbol{\theta})$, then deleting multiples that are *not* functions of $\boldsymbol{\theta}$

Likelihood Principles (continued)

• Assuming that Y_1, \ldots, Y_n are independent,

$$L(\boldsymbol{\theta}) \propto \prod_{i=1}^n f_i(Y_i; \boldsymbol{\theta}),$$

• if, in addition, the Y_i 's are identically distributed,

$$L(\boldsymbol{\theta}) \propto \prod_{i=1}^n f(Y_i; \boldsymbol{\theta}),$$

• in most cases we consider, the (\mathbf{x}_i^T, Y_i) will be independent and identically distributed

Maximum Likelihood Estimators (MLE)

• A Maximum Likelihood Estimator (MLE) is a maximizer of the likelihood function $L(\boldsymbol{\theta}|\mathbf{Y})$, denoted as $\hat{\boldsymbol{\theta}}$, i.e.

$$L(\widehat{\boldsymbol{\theta}}) = \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}).$$

where Θ is the parameter space

- Note: MLE is also an maximizer of the log-likelihood, $\ell(\boldsymbol{\theta})$.
- For a given parametric model, maximum likelihood identifies the parameter values which make the realized data "most likely"

MLE: Functions

• For convenience, we often maximize the log-likelihood function:

$$\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta})$$

• score function,

$$U(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\theta}} \ell(\boldsymbol{\theta})$$

• observed information,

$$J(\boldsymbol{\theta}) = \frac{-\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \ell(\boldsymbol{\theta})$$

• expected information,

$$I(\boldsymbol{\theta}) = E[J(\boldsymbol{\theta})] = -E\left[\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \ell(\boldsymbol{\theta})\right]$$

- $\circ J(\boldsymbol{\theta})$ may be easier to calculate than $I(\boldsymbol{\theta})$
- In the book, \Im represents the expected information.

Score Function

• When $\ell(\boldsymbol{\theta})$ is differentiable w.r.t. $\boldsymbol{\theta}$, $\widehat{\boldsymbol{\theta}}$ can typically be obtained as the solution to the score equation, $U(\boldsymbol{\theta}) = \mathbf{0}$, where

$$U(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial \ell}{\partial \theta_1} \\ \frac{\partial \ell}{\partial \theta_2} \\ \vdots \\ \frac{\partial \ell}{\partial \theta_q} \end{bmatrix}$$

• This will work if $J(\theta)$ is positive-definite, where

$$J(\boldsymbol{\theta}) = -\begin{bmatrix} \frac{\partial^2 \ell}{\partial \theta_1 \partial \theta_1} & \cdots & \frac{\partial^2 \ell}{\partial \theta_1 \partial \theta_q} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \ell}{\partial \theta_q \partial \theta_1} & \cdots & \frac{\partial^2 \ell}{\partial \theta_q \partial \theta_q} \end{bmatrix}$$

Information Matrix

• Expected information is calculated as:

$$I(\boldsymbol{\theta}) = -E \begin{bmatrix} \frac{\partial^2 \ell}{\partial \theta_1 \partial \theta_1} & \cdots & \frac{\partial^2 \ell}{\partial \theta_1 \partial \theta_q} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \ell}{\partial \theta_q \partial \theta_1} & \cdots & \frac{\partial^2 \ell}{\partial \theta_q \partial \theta_q} \end{bmatrix}$$

• We then have

$$J(\boldsymbol{\theta}) = -\frac{\partial U^T}{\partial \boldsymbol{\theta}}$$
$$I(\boldsymbol{\theta}) = -E \left[\frac{\partial U^T}{\partial \boldsymbol{\theta}} \right]$$

MLE: Functions (cont'd)

• In the *iid* setting, we can write,

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} L_i(\boldsymbol{\theta})$$

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{\theta})$$

$$U(\boldsymbol{\theta}) = \sum_{i=1}^{n} U_i(\boldsymbol{\theta})$$

$$I(\boldsymbol{\theta}) = \sum_{i=1}^{n} I_i(\boldsymbol{\theta})$$

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} J_i(\boldsymbol{\theta})$$

MLE: Score and Information

• It can be shown that,

$$E[U(\boldsymbol{\theta}_0)] = \mathbf{0}$$

 $V[U(\boldsymbol{\theta}_0)] = E[U(\boldsymbol{\theta}_0)^{\otimes 2}] = I(\boldsymbol{\theta}_0),$

where $\boldsymbol{\theta}_0$ is the true underlying value of $\boldsymbol{\theta}$ and $\mathbf{z}^{\otimes 2} = \mathbf{z}\mathbf{z}^T$

• Note:

$$V[U(\boldsymbol{\theta}_0)] = E[U(\boldsymbol{\theta}_0)^{\otimes 2}]$$

$$= E\left[\sum_{i=1}^n U_i(\boldsymbol{\theta}_0) \sum_{j=1}^n U_j(\boldsymbol{\theta}_0)^T\right]$$

$$= E\left[\sum_{i=1}^n U_i(\boldsymbol{\theta}_0)^{\otimes 2}\right]$$

$$= nE\left[U_1(\boldsymbol{\theta}_0)^{\otimes 2}\right]$$

$$= nI_1(\boldsymbol{\theta}_0)$$

Maximum Likelihood Estimation

• Maximum likelihood estimator, $\widehat{\boldsymbol{\theta}}$, computed by solving the score equation,

$$U(\boldsymbol{\theta}) = \mathbf{0}$$

- Note: maximizer may lie on the boundary of Θ , in which case the MLE is ill-behaved.
 - in BIOSTAT 651, we assume that $\ell(\boldsymbol{\theta})$ is concave, with information matrix assumed to be positive-definite

MLE Example: Normal

• Example: Suppose that $Y_i \sim N(\mu, \sigma^2)$ with σ^2 known. Determine the MLE of μ .

$$f(Y_i; \mu) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(Y_i - \mu)^2/(2\sigma^2)}$$

$$L_i(\mu) = e^{-(Y_i - \mu)^2/(2\sigma^2)}$$

$$\ell_i(\mu) = -(Y_i - \mu)^2/(2\sigma^2)$$

$$U_i(\mu) = (Y_i - \mu)/\sigma^2$$

$$U(\mu) = \frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \mu)$$

$$\widehat{\mu} = \overline{Y}$$

• Note:

$$J(\mu) = I(\mu) = -\frac{\partial U}{\partial \mu} = \frac{n}{\sigma^2}$$

MLE Example: Normal

• Log likelihood function (n=100)

MLE Example: Normal - Fisher Information

- $J(\mu) = I(\mu) = -\frac{\partial U}{\partial \mu} = \frac{n}{\sigma^2}$
- n = 100(black) vs. n = 500(red)

MLE Example: Normal - Fisher Information

- $J(\mu) = I(\mu) = -\frac{\partial U}{\partial \mu} = \frac{n}{\sigma^2}$
- $\sigma^2 = 1$ (black) vs. $\sigma^2 = 2$ (red)

MLE Example: Binomial

• Example: Suppose that $Y_{\bullet} = Y_1 + \ldots + Y_n$ follows a Binomial distribution with parameter π . Compute the MLE of π .

$$p(Y;\pi) = \binom{n}{Y} \pi^{Y} (1-\pi)^{n-Y}$$

$$L(\pi) = \pi^{Y} (1-\pi)^{n-Y}$$

$$\ell(\pi) = Y \log(\pi) + (n-Y) \log(1-\pi)$$

$$U(\pi) = \frac{Y}{\pi} - \frac{n-Y}{1-\pi}$$

$$\widehat{\pi} = \overline{Y}$$

• Second derivative,

$$\frac{\partial U}{\partial \pi} = \frac{-Y}{\pi^2} - \frac{n-Y}{(1-\pi)^2}$$

MLE Example: Binomial

• Log likelihood function (n=100)

MLE Example: Poisson Case

• Example: Suppose that Y_i is distributed as Poisson(θ) for i = 1, ..., n. Determine the maximum likelihood estimator of θ .

$$f(Y_i; \theta) = \frac{e^{-\theta} \theta^{Y_i}}{Y_i!}$$

$$L_i(\theta) = e^{-\theta} \theta^{Y_i}$$

$$\ell_i(\theta) = -\theta + Y_i \log \theta$$

$$U_i(\theta) = -1 + \frac{Y_i}{\theta}$$

$$J_i(\theta) = \frac{Y_i}{\theta^2}$$

$$U(\theta) = \cdots$$

$$\widehat{\theta} = \cdots$$

• Expected and observed information:

$$J(\theta) =$$

$$I(\theta) =$$

MLE Example: Poisson

• Log likelihood function (n=100)

Maximum Likelihood Estimation

- Usually, a closed-form solution for $\widehat{\boldsymbol{\theta}}$ is not available
 - ex) Logistic regression
- Need to solve $U(\boldsymbol{\theta}) = \mathbf{0}$ through iterative methods
 - e.g., Newton-Raphson ...

Newton-Raphson Procedure

• Pre-specify tolerance, ξ ; start with an initial "estimate", $\widehat{\boldsymbol{\theta}}_{(0)}$, and

• e.g.,
$$\hat{\theta}_{(0)} = \mathbf{0}$$
, with $\xi = 10^{-4}$

• Update the estimate,

$$\widehat{\boldsymbol{\theta}}_{(j+1)} = \widehat{\boldsymbol{\theta}}_{(j)} + J^{-1}(\widehat{\boldsymbol{\theta}}_{(j)})U(\widehat{\boldsymbol{\theta}}_{(j)})$$

• Continue until until convergence is attained; e.g.,

$$||\widehat{\boldsymbol{\theta}}_{(j+1)} - \widehat{\boldsymbol{\theta}}_{(j)}|| < \xi$$
$$||U(\widehat{\boldsymbol{\theta}}_{(j)})|| < \xi$$

where
$$||\mathbf{z}|| = (\mathbf{z}^T \mathbf{z})^{1/2}$$

fourier.eng.hmc.edu/e176/lectures/NM/node20.html

Properties of MLEs

Properties of MLEs

- Under certain regularity conditions:
 - $\circ \ \widehat{\boldsymbol{\theta}}$ is the unique maximizer of $\ell(\boldsymbol{\theta})$
 - \circ $\widehat{\boldsymbol{\theta}}$ is a consistent estimator of $\boldsymbol{\theta}_0$

$$\widehat{m{ heta}} o m{ heta}_0$$

 $\circ n^{1/2}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$ converges to a mean zero Normal with a covariance $I_1(\boldsymbol{\theta}_0)^{-1}$

$$n^{1/2}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \Rightarrow N(0, I_1(\boldsymbol{\theta}_0)^{-1})$$

$$\circ n^{-1}J(\widehat{\boldsymbol{\theta}}) \stackrel{p}{\longrightarrow} I_1(\boldsymbol{\theta}_0)$$

Invariance Property

- If $\widehat{\boldsymbol{\theta}}$ is the MLE for $\boldsymbol{\theta}_0$, then $g(\widehat{\boldsymbol{\theta}})$ will be the MLE for $g(\boldsymbol{\theta}_0)$
 - \circ i.e, assuming $g(\cdot)$ is a well-behaved function
 - e.g., continuous (differentiable)
- Application: depending on the specifics of the likelihood, it may be more convenient to maximize $L(g(\theta))$ than $L(\theta)$
 - $\circ \text{ obtain } \widehat{g(\boldsymbol{\theta})},$ then obtain $\widehat{\boldsymbol{\theta}} = g^{-1}\{\widehat{g(\boldsymbol{\theta})}\}$
- e.g., set $g(\boldsymbol{\theta}) = \log \boldsymbol{\theta}$

MLE: Interval Estimation

- Given the afore-listed large-sample properties of MLEs, interval estimators can be computed using the Normal approximation . . .
 - \circ e.g., 95% confidence interval for θ_0 :
 - \circ e.g., 95% confidence interval for $g(\theta_0)$:

- Note: could use *Delta Method* to compute interval estimate of a function of θ_0
 - \circ e.g., 95% confidence interval for $g(\theta_0)$:

Example: CI, Normal

Example: We return to the case where $\overline{Y_i} \sim N(\mu, \sigma^2)$ with σ^2 known. Compute a 95% confidence interval for μ .

Recall that

We then have

$$J(\mu) =$$

$$J(\mu) = V(\widehat{\mu}) =$$

such that a 95% CI is then given by:

CI Example: Binomial

• Example: We revisit the setting in which $Y_{\bullet} = Y_1 + \ldots + Y_n$ follows a Binomial distribution with parameter π . Compute an interval estimate of π .

Recall that:

$$\widehat{\pi} = \overline{Y}
\frac{\partial U}{\partial \pi} = \frac{-Y}{\pi^2} - \frac{n-Y}{(1-\pi)^2}$$

such that

$$J(\pi) = \frac{Y}{\pi^2} + \frac{n - Y}{(1 - \pi)^2}$$

$$I(\pi) = \frac{n}{\pi} + \frac{n}{(1 - \pi)} = \frac{n}{\pi(1 - \pi)}$$

• Therefore, the CI is given by:

CI Example: Binomial (continued)

• Q1: What is one limitation of the CI just derived?

• Q2: How to remedy?

CI Example: Poisson Case

• Example: Determine an interval estimator for the case where Y_i is distributed as $Poisson(\theta)$ for i = 1, ..., n.

• Based on previous calculations,

$$\widehat{\theta} = \overline{Y} \\
I(\theta) = \frac{n}{\theta}$$

such that we obtain the 95% CI as

• Q1: Problem with this estimator?

• Q2: Solution?

Hypothesis Testing

- For the next few slides, we consider the following setting:
 - o let $\boldsymbol{\theta}$ be a $q \times 1$ parameter, partitioned as, $\boldsymbol{\theta} = (\boldsymbol{\theta}_1^T, \boldsymbol{\theta}_2^T)^T$, where $\boldsymbol{\theta}_1$ and $\boldsymbol{\theta}_2$ are of dimension $q_1 \times 1$ and $q_2 \times 1$, respectively
 - \circ we wish to test $H_0: \boldsymbol{\theta}_1 = \boldsymbol{\theta}_{1H}$ versus $H_1: \boldsymbol{\theta}_1 \neq \boldsymbol{\theta}_{1H}$
 - estimation is based on ML
 - let $\widehat{\boldsymbol{\theta}}_H$ be the MLE, constrained by H_0 ; i.e., $\widehat{\boldsymbol{\theta}}_H = (\boldsymbol{\theta}_{1H}^T, \widehat{\boldsymbol{\theta}}_{2H}^T)^T$,
- Three most commonly used tests: Score, Wald and Likelihood ratio

Score Test

- Score test makes use of asymptotic result that $U(\boldsymbol{\theta}_0) \sim N(\mathbf{0}, I(\boldsymbol{\theta}_0))$
- Score test statistic:

$$U(\widehat{\boldsymbol{\theta}}_H)^T J(\widehat{\boldsymbol{\theta}}_H)^{-1} U(\widehat{\boldsymbol{\theta}}_H) \sim \chi_{q_1}^2$$

- Properties:
 - \circ only the restricted (H_0) MLE is computed, not the unrestricted (H_1)
 - computationally very fast

Wald Test

- The Wald test exploits the result that $\widehat{\boldsymbol{\theta}} \sim N(\boldsymbol{\theta}_0, I(\boldsymbol{\theta}_0)^{-1})$
- Wald statistic

$$(\widehat{\boldsymbol{\theta}}_1 - {\boldsymbol{\theta}}_{1H})^T V(\widehat{\boldsymbol{\theta}}_1)^{-1} (\widehat{\boldsymbol{\theta}}_1 - {\boldsymbol{\theta}}_{1H}) \sim \chi_{q_1}^2$$

- Properties:
 - o most intuitive
 - only the unrestricted (or "full model") MLE is computed
- Most frequently used test, especially when $q_1 = 1$

Likelihood Ratio Test

• LR Statistic:

$$\log \left\{ \left\lceil \frac{L(\widehat{\boldsymbol{\theta}})}{L(\widehat{\boldsymbol{\theta}}_H)} \right\rceil^2 \right\} \sim \chi_{q_1}^2$$

- Properties of LRT:
 - requires computation of both full and restricted MLEs
 - of the three tests, the LRT is considered the best
- Often written as $-2 \times \{\ell(\widehat{\boldsymbol{\theta}}_H) \ell(\widehat{\boldsymbol{\theta}})\}\$

Three tests

www.ats.ucla.edu

MLE Example: Exponential Model

1. Example: The following n = 10 failure times are observed and assumed to arise from an Exponential(θ) distribution.

• Summary statistic: $S \equiv \sum_{i=1}^{n} Y_i = 88$

Example: (a) Computing MLE

(a) Estimate θ using maximum likelihood.

$$f(Y_i; \theta) = \theta e^{-\theta Y_i}$$

$$L(\theta) = \theta^n \exp\left\{-\theta \sum_{i=1}^n Y_i\right\}$$

$$\ell(\theta) = n \log \theta - S\theta$$

$$U(\theta) = \frac{n}{\theta} - S$$

$$\widehat{\theta} = \frac{n}{S} = \frac{10}{88} = 0.114$$

Example: (b) Asymptotic CI

- (b) Derive a 95% confidence interval for θ by referring to the asymptotic properties of MLE's.
 - Recall: $U(\theta) = n/\theta S$

$$\frac{\partial U}{\partial \theta} \quad = \quad \frac{-n}{\theta^2}$$

$$I(\theta) = -E\left[\frac{-n}{\theta^2}\right] = \frac{n}{\theta^2}$$

$$I(\widehat{\theta}) = \frac{10}{(0.114)^2} = 769.47$$

$$\widehat{SE}(\widehat{\theta}) = (769.47)^{-1/2} = 0.036$$

$$CI(\theta) = 0.114 \pm (1.96)(0.036) = (0.043, 0.185)$$

Example: Hypothesis Testing

- A previous study, conducted under similar conditions but in a different university, estimated $\widehat{\theta} = 0.15$.
 - (c) Conduct a Wald test of whether or not the results of the current investigation are consistent with those of the previous study.

$$H_0: \theta = 0.15 \text{ vs. } H_1: \theta \neq 0.15$$
 from (b), $\widehat{SE}(\widehat{\theta}) = 0.036$

$$X_W^2 = \left\{ \frac{\widehat{\theta} - \theta_H}{\widehat{SE}(\widehat{\theta})} \right\}^2$$

$$= \left\{ \frac{0.114 - 0.15}{0.036} \right\}^2$$

$$= 1.00$$

$$< \chi_{0.95}^2 = 3.84$$

fail to reject $H_0: \theta = 0.15$.

Example: (d) Score Test

(d) Test $H_0: \theta = 0.15$ vs. $H_1: \theta \neq 0.15$ using the score test.

$$U(\theta_H) = U(0.15)$$

$$= \frac{10}{0.15} - S = -21.33$$

$$I(0.15) = \frac{10}{0.15^2} = 444.44$$

$$X_S^2 = (-21.33)(444.44)^{-1}(-21.33) = 1.02$$

$$< 3.84$$

• fail to reject $H_0: \theta = 0.15$

Example: (e) Likelihood Ratio Test

- (e) Test the same hypothesis using the likelihood ratio test.
 - computing the maximized and restricted log likelihoods,

$$\ell(\widehat{\theta}) = 10 \log(0.114) - (0.114)(88)$$

$$= -31.75$$

$$\ell(\theta_H) = 10 \log(0.15) - (0.15)(88)$$

$$= -32.17$$

$$2\{\ell(\widehat{\theta}) - \ell(\theta_H)\} = 2(32.17 - 31.75) = 0.84$$

• fail to reject H_0

Likelihood: Additional Comments

- Exact inference only available for select (and really simple) cases
 - o asymptotic results usually employed
 - \circ if applicability of large-sample results is in question (e.g., low n), re-sampling algorithm could be used
 - bootstrap
 - jackknife
- LR, score and Wald tests are asymptotically equivalent and usually yield similar results for even moderate size n