Московский физико-технический институт (госудраственный университет)

Лабораторная работа по РТ лабам

Безынерционные линейные цепи [24]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Делитель напряжения		
	1.1	Измерение R^*	1
	1.2	Оценка коэффициента передачи K	1
2	Пат	раллельный сумматор	1

1 Делитель напряжения

1.1 Измерение R^*

Собрали на макетной плане делитель напряжения, с $E^* = 2B$, при напряжении питания E = 10B. Резистор R_1 выбрали 7.5 кОм, тогда $R_2 = 1,87 \approx 1,8$ кОм (ближайшее значение сопротивления, которые было в лаборатории на момент выполнения). При заданных R_1, R_2 получаем $E^*_{\text{теор}} = 1,94B$. Экспериментально было получено значение 1,98 В.

 R_l был выбран 1кОм, отсюда, при полученном $U_l = 0.8B$, следует значение для $R^* = 1.45$ кОм.

1.2 Оценка коэффициента передачи K

Теперь задействуем генератор, а именно подадим синусоидальное напряжение e. Измерив эффективные значение u,e получаем значение для K=0,193. Посчитаем теоретическое значение коэффициента передачи $K_{\text{теор}}=\frac{R_2}{R_1+R_2}=0,194$.

2 Параллельный сумматор

После сборки соответствующей схемы рассчитаем R_1, R_2, R для того, чтобы выполнялось $\alpha=0,4,\beta=0,2$. Так как это система уравнений с 3-мя неизвестными 2-го ранга, то одну переменную можно выбрать произвольно: $R_1=1$ кОм $\Rightarrow R_2=2$ кОм, а $R_1=1$ кОм.