内田碧 12 - 1

- 1. 関数 y=|x+1|+|x-3| のグラフをかけ。
- 2. 2 次関数のグラフ が 3 点 (-1, 16), (4, -14), (5, -8) を通るとき, その 2 次関数を求 めよ。
- 3. 2次関数 $y=ax^2+bx+c$ のグラフが右の図のように なるとき、次の値の符号を調べよ。
- $(1) \quad a \qquad (2) \quad b \qquad (3) \quad c \qquad (4) \quad b^{\,2} 4ac$
- (5) a + b + c

- 4. 放物線 $y=x^2+ax+b$ を原点に関して対称移動し、更に x 軸方向に -1、y 軸方向に 8だけ平行移動すると、放物線 $y=-x^2+5x+11$ が得られるという。このとき、定数 a、 b の値を求めよ。
- 5. 定義域を $0 \le x \le 3$ とする関数 $f(x) = ax^2 2ax + b$ の最大値が9, 最小値が1のとき, 定数 a, b の値を求めよ。
- 6. $x \ge 0$, $y \ge 0$, 2x + y = 8 のとき, xy の最大値と最小値を求めよ。また, そのときの x, y の値を求めよ。

以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。

- 7. $-1 \le x \le 1$ のとき、関数 $y = (x^2 2x 1)^2 6(x^2 2x 1) + 5$ の最大値、最小値を求めよ。
- 8. a を定数とする。 $a \le x \le a+2$ における関数 $f(x) = x^2-2x+2$ について、次のものを求 めよ。
 - (1) 最大値
 - (2) 最大値を M(a) とする。 M(a) を求めよ。
- 9. 関数 $y=x^2-2lx+l^2-2l$ $(0\leq x\leq 2)$ の最小値が 11 になるような正の定数 l の値を 求めよ。

内田碧 12-2

1

次の2次不等式を解け。

- $(1) \quad 2x^2 x 4 \ge 0$
- $(2) \quad 4x \ge 4x^2 + 1$
- (3) $\begin{cases} 2x^2 5x 3 < 0 \\ 3x^2 4x 4 \le 0 \end{cases}$
- (4) $|x^2-2x-3| \ge 3-x$

(1)~(3) 4 点 (4) 8 点

2

2 次不等式 $ax^2 + bx - 24 \ge 0$ の解が $x \le -2$, $4 \le x$ であるように, 定数 a, b の値を定めよ。

8点

3

2 次関数 $y=-x^2$ のグラフと直線 y=-2x+k の共有点の個数を調べよ。 ただし,k は定数とする。

8点

4

x についての不等式 $x^2 - (a+1)x + a < 0$, $3x^2 + 2x - 1 > 0$ を同時に満たす整数 x がちょうど 3 つ存在するような定数 a の値の範囲を求めよ。

12点

5

- (1) a は定数とする。次の方程式を解け。 $2ax^2 (6a^2 1)x 3a = 0$
- (2) 任意の実数 x に対して、不等式 $ax^2-2\sqrt{3}x+a+2\leq 0$ が成り立つ ような定数 a の値の範囲を求めよ。

各6点

以下の問題は途中経過も採点対象とする

6

 $0 \le x \le 8$ のすべての x の値に対して、不等式 $x^2 - 2mx + m + 6 > 0$ が成り立つような定数 m の値の範囲を求めよ。

12 点

7

kは定数とする。方程式 $|x^2-x-2|=2x+k$ の異なる実数解の個数を 調べよ。

12点

8

方程式 $x^2 + (2-a)x + 4 - 2a = 0$ が -1 < x < 1 の範囲に少なくとも 1 つの実数解をもつような定数 a の値の範囲を求めよ。

16 点

内田碧 12-3

1.	次のデータは、ある都市のある年の月ごとの最高気温を並べたものである。 5, 4, 8, 12, 17, 24, 27, 28, 22, 30, 9, 6 (単位は $\mathbb C$)
	(1) このデータの平均値を求めよ。(2) このデータの中で入力ミスが見つかった。30 ℃ となっている月の最高気温は正しくは 18 ℃ であった。この入力ミスを修正すると、このデータの平均値は修正前より何℃減少するか。
	(3) このデータの中で入力ミスが見つかった。正しくは 6 $\mathbb C$ が 10 $\mathbb C$, 30 $\mathbb C$ が 26 $\mathbb C$ で
	あった。この入力ミスを修正すると、このデータの平均値はプレ、分散は
	್
	「「「」、「」に当てはまるものを次の ①,②,③ から選べ。
	① 修正前より増加 ② 修正前より減少 ③ 修正前と一致 2 点 $ imes$ 4 $=$ 8点
2.	変量 x のデータの平均値 x が $x=21$,分散 s_x^2 が $s_x^2=12$ であるとする。このとき,次
	の式によって得られる新しい変量 y のデータについて,平均値 $\frac{1}{y}$,分散 s_y^2 ,標準偏差 s_y を求めよ。
	ただし、 $\sqrt{3}=1.73$ とし、標準偏差は小数第 2 位を四捨五入して、小数第 1 位まで求めよ。
	(1) $y=3x$ (2) $y=-2x+3$ 2 点×6=12 点
3.	次の方程式・不等式を解け。
	(1) $\sin \theta \tan \theta = -\frac{3}{2} (90^{\circ} < \theta \le 180^{\circ})$ (2) $2\cos^{2}\theta + 3\sin \theta < 3(0^{\circ} \le \theta \le 180^{\circ})$
4.	$\sin\theta + \cos\theta = \frac{\sqrt{2}}{2}~(0^\circ < \theta < 180^\circ)$ のとき、次の式の値を求めよ。
	(1) $\sin\theta\cos\theta$ (2) $\sin^3\theta+\cos^3\theta$ (3) $\sin\theta-\cos\theta$ (1) $2 = (2)(3) 4 = (2)$
5.	1 辺の長さが1の正八角形の面積を求めよ。 8 点
6.	1 辺の長さが 6 の正四面体 O ABC がある。辺 O A, O B, O C 上に,それぞれ点 L, M , N を O L=3, O M=4, O N=2 となるようにとる。このとき, \triangle LMN の面積を求め
	よ。 12 点
	以下の問いでは解決過程も採点対象である。根拠や記述が不十分な場合は減点対象となる。
7.	$30^\circ \le \theta \le 90^\circ$ のとき,関数 $y = \sin^2 \theta + \cos \theta + 1$ の最大値,最小値を求めよ。また,そ のときの θ の値も求めよ。 12 点
	12 m
8.	$0^\circ \le \theta \le 180^\circ$ とする。 x の 2 次方程式 $x^2 - 2\sqrt{2} (\cos \theta) x + \cos \theta = 0$ が,異なる 2 つの実数解をもち,それらがともに正となるような θ の値の範囲を求めよ。
	12 点
9.	円に内接する四角形 $ABCD$ がある。 $AB=4$, $BC=5$, $CD=7$, $DA=10$ のとき (1) $\cos A$ の値を求めよ。 (2) 四角形 $ABCD$ の面積を求めよ。
	各 8 点