Labor Force Participation, College Enrollment, and the Business Cycle

Zhifeng Cai & Rosemary Kaiser Rutgers University

August 6, 2024

Two motivating empirical observations:

1. Participation displays an inverted U-shape over the life cycle

Source: 2000-2022 average over monthly CPS data where non-participants due to disability, illness, or caring for house or family are discluded

Two motivating empirical observations:

- 1. Participation displays an inverted U-shape over the life cycle
- 2. Participation responsiveness declines with age

Same-Quarter Change Associated w/ 1% Higher GDP Growth

Two motivating empirical observations:

- 1. Participation displays an inverted U-shape over the life cycle
- 2. Participation responsiveness declines with age

Research Questions:

- 1. What factors contribute to the age-related dynamics of labor participation? Why do certain age groups appear more susceptible to business cycle shocks?
- 2. Can government intervention, such as search subsidies, improve overall welfare?

1. What factors contribute to the age-related dynamics of labor participation? Why do certain age groups appear more susceptible to business cycle shocks?

Contribution:

- Participation choice w/ three states (employment, unemployment, non-participation): Tripier (2003), Veracierto (2008), Krusell et al. (2011) (2017) (2020), Christiano et al. (2021)
 - We include age heterogeneity & skill accumulation dynamics
 - Four states: employed, unemployed, college, no activity
 - Erosa et al. (2016): 25+ age dynamics, no college choice

1. What factors contribute to the age-related dynamics of labor participation? Why do certain age groups appear more susceptible to business cycle shocks?

Contribution:

- Participation choice w/ three states (employment, unemployment, non-participation): Tripier (2003), Veracierto (2008), Krusell et al. (2011) (2017) (2020), Christiano et al. (2021)
 - We include age heterogeneity & skill accumulation dynamics
 - Four states: employed, unemployed, college, no activity
 - Erosa et al. (2016): 25+ age dynamics, no college choice

Overview: Key Model Ingredients

- Dynamics of age 18-24 only match the data well with endogenous college attendance choice (for all ages)
- Dynamics of age 55-64 explained by horizon effect benefit of search declines when approaching retirement age

2. Can government intervention, such as search subsidies, improve overall welfare?

Contribution:

- Search subsidies smooth consumption but incentivize more time in unemployment: Pavoni and Violante (2007), Pavoni et al. (2016), Gervals et al. (2022), among others
 - We study how simple search subsidies influence participation and college incentives as well
 - Our results would greatly differ if we assumed only directed search decisions were impacted by the policy

2. Can government intervention, such as search subsidies, improve overall welfare?

Contribution:

- Search subsidies smooth consumption but incentivize more time in unemployment: Pavoni and Violante (2007), Pavoni et al. (2016), Gervals et al. (2022), among others
 - We study how simple search subsidies influence participation and college incentives as well
 - Our results would greatly differ if we assumed only directed search decisions were impacted by the policy

Overview

 In a model w/ risk aversion & imperfect insurance against job loss: search subsidies are beneficial if not interfering much with college choice

Model

Population

- Agents populate the model from age 18-65, each period is a quarter
- Agents differ by age (a), skill level (z), and education (τ)
- In any period, an agent is employed, unemployed, attending college, or out of the labor force and not attending college
- Non-employed draw random search cost: can search, pay fixed college cost, or do neither
- Endogenous mass of firms determined via free entry

Population

- Agents populate the model from age 18-65, each period is a quarter
- Agents differ by age (a), skill level (z), and education (τ)
- In any period, an agent is employed, unemployed, attending college, or out of the labor force and not attending college
- Non-employed draw random search cost: can search, pay fixed college cost, or do neither
- Endogenous mass of firms determined via free entry

Productivity

- Aggregate productivity Z_t where $\ln Z_t = \rho \ln Z_{t-1} + \epsilon_t$, $\epsilon_t \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$
- Output of employed is $f(Z_t, z_t)$
- Non-employed enjoy leisure benefit $b(z_t)$

Productivity (continued)

- Agents enter with z=0 and no degree $\tau=1$
- Skill growth on-the-job can depend on education (τ) . When employed:

$$z_{t+1} = \begin{cases} z_t & \text{with probability } (1 - \pi_\tau) \\ z_t + \Delta_z & \text{with probability } \pi_\tau. \end{cases}$$

Productivity (continued)

- Agents enter with z=0 and no degree $\tau=1$
- Skill growth on-the-job can depend on education (τ) . When employed:

$$z_{t+1} = \begin{cases} z_t & \text{with probability } (1 - \pi_\tau) \\ z_t + \Delta_z & \text{with probability } \pi_\tau. \end{cases}$$

Endogenous College Attendance and Participation

- Non-employed agents (of any age) can pay κ to attend college at the start of the next period
- Attendees graduate with probability g; upon graduation their education-level becomes $\tau=2$ and they get one-time skill increase Δ_g

Productivity (continued)

- Agents enter with z = 0 and no degree $\tau = 1$
- Skill growth on-the-job can depend on education (τ) . When employed:

$$z_{t+1} = \begin{cases} z_t & \text{with probability } (1 - \pi_\tau) \\ z_t + \Delta_z & \text{with probability } \pi_\tau. \end{cases}$$

Endogenous College Attendance and Participation

- Non-employed agents (of any age) can pay κ to attend college at the start of the next period
- Attendees graduate with probability g; upon graduation their education-level becomes $\tau=2$ and they get one-time skill increase Δ_g
- Agents may not simultaneously attend college and search for a job
- Non-employed agents can pay $c_w \sim \text{log-normal}(\mu_{cw}, \sigma_{cw}^2)$ to search at the start of the next period

Search and Separations

- Agents direct their search for jobs offering fraction μ of production
- Jobs are destroyed with exogenous probabilities $\delta_a(\tau)$
- Job-to-job transitions: When a job is destroyed the worker can search and immediately match at the start of the next period

Search and Separations

- Agents direct their search for jobs offering fraction μ of production
- Jobs are destroyed with exogenous probabilities $\delta_a(\tau)$
- Job-to-job transitions: When a job is destroyed the worker can search and immediately match at the start of the next period

Matching Probabilities

- Vacancy posting cost c_f and CRTS matching function M(u, v)
- Submarket tightness: $\theta \equiv \frac{v}{u}$ determined by free entry
- Probability of meeting a firm: $\frac{M(u,v)}{u} \equiv p(\theta)$
- Probability of meeting a worker: $\frac{M(u,v)}{v} \equiv q(\theta)$

Z shocks

Non-employed

Can pay search

or college cost

Employed

- College attendance and search choice made at the same time: if the agent does not search they decide to pay college cost or do nothing
- No on-the-job search: job-to-job transitions occur after job destruction as agents immediately search and can match at the next period's start
- On-the-job skill accumulation occurs after production and right before possible job destruction

Value Functions

Non-employed

$$N_a(\tau,Z,z) = \max \left\{ N_a^N(\tau,Z,z), N_a^C(\tau,Z,z), N_a^S(\tau,Z,z) \right\}$$

Non-employed: Does Nothing

$$N_a^N(\tau, Z, z) = u(b(z)) + \beta \mathbb{E}[N_{a+1}(\tau, Z', z)]$$

Non-employed: Attends College

$$N_a^C(\tau, Z, z) = u(b(z) - \kappa) + \beta \mathbb{E} \left[(1 - g) N_{a+1}(\tau, Z', z) + g N_{a+1}(2, Z', z + \Delta_g) \right]$$

Non-employed: Searches

$$N_a^S(\tau, Z, z) = u(b(z) - c_w) + \beta \mathbb{E}[\widehat{U}_{a+1}(\tau, Z', z)]$$

Value Functions

Value of Search

$$\begin{split} \widehat{U}_{a}(\tau, Z, z) &= \max_{\mu} \left\{ p\left(\theta_{a}(\tau, Z, z, \mu)\right) W_{a}(\tau, Z, z, \mu) \right. \\ &+ \left. \left(1 - p\left(\theta_{a}(\tau, Z, z, \mu)\right)\right) N_{a}(\tau, Z, z) \right\} \end{split}$$

Free Entry

$$c_f \ge q\left(\theta_a(\tau, Z, z, \mu)\right) J_a(\tau, Z, z, \mu) \quad \forall a, \tau, Z, z, \mu$$

Workers' Value of Employment

$$W_{a}(\tau, Z, z, \mu) = u(\mu f(Z, z)) + (1 - \delta_{a}(\tau))\beta \mathbb{E} \left[W_{a+1}(\tau, Z', z', \mu) \right]$$
$$+ \delta_{a}(\tau)\beta \mathbb{E} \left[\widehat{U}_{a+1}(\tau, Z', z') \right]$$

Firms' Value of Employing a Worker

$$J_a(\tau, Z, z, \mu) = (1 - \mu) f(Z, z) + (1 - \delta_a(\tau)) \beta \mathbb{E} \left[J_{a+1}(\tau, Z', z', \mu) \right]$$

Equilibrium

Recursive Equilibrium (RE) is given by:

- 1. Value functions $\left\{N_a^S(\tau,Z,z), N_a^C(\tau,Z,z), N_a^N(\tau,Z,z), N_a(\tau,Z,z), \widehat{U}_a(\tau,Z,z), W_a(\tau,Z,z,\mu), J_a(\tau,Z,z,\mu)\right\}$
- 2. Equilibrium market tightness function $\{\theta_a^U(\tau, Z, z)\}$ solves the workers' search problem
- 3. Optimal search and college attendance rules $G_a(\tau, Z, z)$ and $C_a(\tau, Z, z)$
- 4. Aggregate transition probabilities consistent with policy functions and stochastic Z process.

A Block Recursive Equilibrium (BRE) is a RE where value and policy functions depend on the aggregate state only through exogenous aggregate productivity Z.

A unique RE exists & is a BRE (follows from Menzio, Telyukova, & Visschers (2016))

Calibration and Model

Predictions

Calibration Overview

Assigned Parameter Values

Parameter	Description	Value
β	Discount factor	0.99
ρ	Autocorrelation of aggregate shocks	0.95
$\delta_a(au)$	Separation rates by age and education	CPS estimates (below)

Quarterly Total Separation Estimates by Age and Education

Calibration Overview

Assigned Parameter Values

Parameter	Description	Value
β	Discount factor	0.99
ρ	Autocorrelation of aggregate shocks	0.95
$\delta_a(au)$	Separation rates by age and education	CPS estimates

Calibrated Parameter Values

Parameter	Estimate	Targeted Moment	Data	Model
ℓ	2.415631	Unemployment rate (%) for age 20+	4.035	4.066
κ	0.610879	Pop. age 25+ with Bachelor's degree (%)	31.920	30.962
Δ_g	0.240492	Wage ratio: prime age to 20-24	1.646	1.541
π_2	0.330988	College wage premium (age 25+)	1.814	1.775
π_1	0.112303	Wage ratio: 55-64 to prime age	1.086	1.334
c_f	0.811151	Vacancy posting rate	4.153	4.179
μ_{cw}	-0.144348	Age 20-64 participation rate (%)	87.140	88.364
σ_{cw}	0.828930	Prime age/60-64 participation rate	1.500	1.523
b_c	0.806085	College to non-college employment rate ratio	1.316	1.103
g	0.035700	College graduation rate over 4 yrs	0.441	0.441
σ_{ϵ}	0.015200	Participation % change w/ 1% shock: ages 18-24	0.522	0.520

Calibration

Calibrated Parameter Values					
Parameter	Estimate	Targeted Moment	Data	Model	
ℓ	2.415631	Unemployment rate (%) for age 20+	4.035	4.066	
κ	0.610879	Pop. age 25+ with Bachelor's degree (%)	31.920	30.962	
Δ_g	0.240492	Wage ratio: prime age to 20-24	1.646	1.541	
π_2	0.330988	College wage premium (age 25+)	1.814	1.775	
π_1	0.112303	Wage ratio: 55-64 to prime age	1.086	1.334	
c_f	0.811151	Vacancy posting rate	4.153	4.179	
μ_{cw}	-0.144348	Age 20-64 participation rate (%)	87.140	88.364	
σ_{cw}	0.828930	Prime age/60-64 participation rate	1.500	1.523	
b_c	0.806085	College to non-college employment rate ratio	1.316	1.103	
g	0.035700	College graduation rate over 4 yrs	0.441	0.441	
σ_ϵ	0.015200	Participation % change w/ 1% shock: ages 18-24	0.522	0.520	

- \bullet Stochastic cost of participation calibrated to match the relative participation rate between the prime-aged and 55+
- Variance of this cost distribution has a long right tail

Calibration

Parameter	Estimate	Targeted Moment	Data	Model
ℓ	2.415631	Unemployment rate (%) for age 20+	4.035	4.066
κ	0.610879	Pop. age 25+ with Bachelor's degree (%)	31.920	30.962
Δ_g	0.240492	Wage ratio: prime age to 20-24	1.646	1.541
π_2	0.330988	College wage premium (age 25+)	1.814	1.775
π_1	0.112303	Wage ratio: 55-64 to prime age	1.086	1.334
c_f	0.811151	Vacancy posting rate	4.153	4.179
μ_{cw}	-0.144348	Age 20-64 participation rate (%)	87.140	88.364
σ_{cw}	0.828930	Prime age/60-64 participation rate	1.500	1.523
b_c	0.806085	College to non-college employment rate ratio	1.316	1.103
$oldsymbol{g}$	0.035700	College graduation rate over 4 yrs	0.441	0.441
σ_ϵ	0.015200	Participation % change w/ 1% shock: ages 18-24	0.522	0.520

• Model matches key statistics related to the endogenous college choice, including the wage premium, college share, and employment ratio

Calibration

Assigned Parameter Values

Parameter	Description	Value
β	Discount factor	0.99
ρ	Autocorrelation of aggregate shocks	0.95
$\delta_a(au)$	Separation rates by age and education	CPS estimates

Calibrated Parameter Values

Parameter	Estimate	Targeted Moment	Data	Model
ℓ	2.415631	Unemployment rate (%) for age 20+	4.035	4.066
κ	0.610879	Pop. age 25+ with Bachelor's degree (%)	31.920	30.962
Δ_g	0.240492	Wage ratio: prime age to 20-24	1.646	1.541
π_2	0.330988	College wage premium (age 25+)	1.814	1.775
π_1	0.112303	Wage ratio: 55-64 to prime age	1.086	1.334
c_f	0.811151	Vacancy posting rate	4.153	4.179
μ_{cw}	-0.144348	Age 20-64 participation rate (%)	87.140	88.364
σ_{cw}	0.828930	Prime age/60-64 participation rate	1.500	1.523
b_c	0.806085	College to non-college employment rate ratio	1.316	1.103
g	0.035700	College graduation rate over 4 yrs	0.441	0.441
σ_ϵ	0.015200	Participation % change w/ 1% shock: ages 18-24	0.522	0.520

• Two key sources of risk: job loss $(\delta_a(\tau))$ and the risk of aggregate shocks affecting employment opportunities

Model Predictions

Age (in years)

Percent Who are College Graduates by Age (Untargeted) 2000-2022 Avg. over Cohorts 1980, 1985, and 1990 Cohorts ******************* 35% 35% Percent who are College Graduates 15% 15% 15% 15% Graduates who are College Percent 5% Model Data 25 50 25

• Agents in the model can attend college at any age, but the benefit is greatest when young

Age (in years)

• Responsiveness of 18-24 enrollment to positive 1% GDP shock: data -0.30%, model -0.28%

Model Predictions

Same-Quarter Change in Participation Rate Associated with 1% Higher GDP Growth (Untargeted)

Less than Bachelor's Degree

Bachelor's Degree or More

D

Counterfactual Results

Counterfactual: Subsidize Search

Introducing a subsidy for search:

• Smooths consumption as risk-averse agents move between employment states in an environment with no private insurance market

Counterfactual: Subsidize Search

Introducing a subsidy for search:

- Smooths consumption as risk-averse agents move between employment states in an environment with no private insurance market
- Influences incentives:
 - Encourages non-employed to search
 - Opportunity cost of college attendance increases
 - Agents are willing to spend more time unemployed: direct their search to higher-wage jobs with lower matching probabilities

Counterfactual: Subsidize Search

Introducing a subsidy for search:

- Smooths consumption as risk-averse agents move between employment states in an environment with no private insurance market
- Influences incentives:
 - Encourages non-employed to search
 - Opportunity cost of college attendance increases
 - Agents are willing to spend more time unemployed: direct their search to higher-wage jobs with lower matching probabilities
- Fiscal externality: agents do not fully internalize the benefit they create from finding employment (generated tax revenue)

Steady-State Effects of Search Subsidy

First, consider the effects of search subsidies in the risky steady-state

- ullet Lump-sum subsidy s paid to the unemployed
- Financed by proportional income tax on wages of the employed

Steady-State Effects of Search Subsidy

Employment Rate

Steady-State Effects of Search Subsidy

Incentive effects:

- Although participation increases, avg. time in unemployment increases
- Opportunity cost of college increases: this has sizeable effects when younger agents are given the search subsidy

Steady-State Effects of Search Subsidy

- Only offering very small subsidies to 55+ slightly increased utility
- \bullet Subsidies offered only to 55+ were most effective in increasing total utility (maximizing subsidy is 0.74% of avg. wage)
- Calibration suggests many 55+ are almost indifferent regarding participation, subsidy is cost-effective in encouraging participation

Search Subsidy: Decomposing Results

If only directed search decisions (and not participation and college attendance) were impacted by the subsidies:

Search Subsidy: Decomposing Results

If only directed search decisions (and not participation and college attendance) were impacted by the subsidies:

- Would underestimate the budget-balancing tax rate
- Would get qualitatively different results regarding effect on avg. utility

Conclusion

- We develop a model that captures the dynamics of participation both over the life cycle and business cycle
 - Including a college attendance option was necessary for capturing participation dynamics of younger individuals

Conclusion

- We develop a model that captures the dynamics of participation both over the life cycle and business cycle
 - Including a college attendance option was necessary for capturing participation dynamics of younger individuals
- Subsidizing the search of all ages discourages college attendance
 - Subsidizing only older agents results in higher total utility
 - A model with only a directed search margin would yield qualitatively different predictions

Conclusion

- We develop a model that captures the dynamics of participation both over the life cycle and business cycle
 - Including a college attendance option was necessary for capturing participation dynamics of younger individuals
- Subsidizing the search of all ages discourages college attendance
 - Subsidizing only older agents results in higher total utility
 - A model with only a directed search margin would yield qualitatively different predictions
- Increasing (decreasing) search subsidies during recessions (booms) promotes (discourages) search when it is least (most) productive

Thank You!

r.ka is er @rutgers.edu

Appendix: 2020 Participation Response

Source: U.S. Bureau of Labor Statistics, Labor Force Participation Rate (Seasonally Adjusted) - 25-54 Yrs, 20-24 Yrs, 55 Yrs and over, retrieved from FRED, Federal Reserve Bank of St. Louis

Appendix: Response - Only Pre-Pandemic Data

IRFs Using 2000-2022 Data IRFs Using 2000-2019 Data 0.5 ----- Age 18-24 ----- Age 18-24 Age 25-29 Age 25-29 -- Age 35-39 0.4 0.4 Age 50-54 Age 50-54 0.3 0.3 0.2 0.1 -0.1 -0.1 -0.2 Quarters Following Shock Quarters Following Shock

Appendix: Participation Response Decomposition

Decomposing Changes in Participation: Same-Quarter Percentage Point Responses Associated with 1% Higher GDP Growth

Appendix: Demographic

Participation by Gender

Source: 2000-2022 average over monthly CPS data where non-participants due to disability, illness, or caring for house or family are discluded

Return

Appendix: Demographic

Participation Responsiveness: Percentage Change in Participation Associated with 1% Higher GDP Growth in the Same Quarter

Appendix: Enrollment Response to Positive Shock

- Seasonally adjust age 18-24 enrollment rate data from the CPS
- Estimate VAR in GDP growth and enrollment rate with data from 1990-2019 and use Cholesky decomposition

College Enrollment Response to 1% Higher GDP Growth

Notes: This data was obtained from the monthly Current Population Survey (CPS) and was seasonally adjusted. Individuals who reported not participating due to illness, disability, or because they were caring for their home/family were excluded from the sample

- Take quarterly averages of data to compare with model response
- Simulate shock resulting in 8.48% drop in GDP

Age 20-24 Participation Response

- Take quarterly averages of data to compare with model response
- Simulate shock resulting in 8.48% drop in GDP

Age 20-24 Participation Response

- Take quarterly averages of data to compare with model response
- \bullet Simulate shock resulting in 8.48% drop in GDP

Age 20-24 Participation Response

2020 Participation Dynamics

Subjecting all age groups to the same shock results in the same response pattern observed in the data

Appendix: Budget-Balancing Tax Rate

- Total cost of the subsidy is the subsidy amount multiplied by the mass of agents receiving the subsidy: $\left(s\sum_{a=a_s}^{\overline{a_s}}u(a)\right)$
 - $\underline{a_s}$ and $\overline{a_s}$ are the lowest/highest age receiving the subsidy respectively, u(a) is mass unemployed at age a
- ullet For any subsidy, the corresponding tax rate au must satisfy

$$s\sum_{a=\underline{a_s}}^{\overline{a_s}}u(a)=\sum_a\sum_w\tau we(a,w)$$

 \bullet e(a, w) is the mass employed at age a with wage w

Appendix: SS Subsidy Robustness

Average Utility

Appendix: CEV and Related Calculations

Consumption equivalent variation (CEV): share of remaining lifetime consumption each agent would be willing to forgo (or must receive) to experience the policy change

• Scale in percentages: 0.8 means would be willing to give up 0.8%

→ Return

Appendix: CEV and Related Calculations

% Change Value of New Entrant

CEV of New Entrant

→ Return

Appendix: CEV and Related Calculations

Percent Who Would Vote for Each Policy Change

→ Return

Appendix: Transition Paths

Participation Rate

Return

Appendix: Decomposing Search Subsidy Results

Avg. Qrterly Job-Finding Prob. GDP: Production from Employment

Return

Appendix: Shock-Responsive Subsidy Simulation

Simulation of Aggregate Productivity AR(1) Process

Approximate aggregate productivity AR(1) process as a 17-state Markov chain following Tauchen (1986)

Appendix: Shock-Responsive Subsidy Simulation

Appendix: Shock-Responsive Subsidy Simulation

Appendix: Shock-Responsive Subsidy Simulation Robustness

We check that our results are consistent when looking over ten total series each consisting of 1,000 simulated quarters in the model economy

Mean over Simulated Shocks: Robustness			
	Fixed Subsidy to 55+	Subsidy 1	Subsidy 2
Avg. Utility: % Change	0.996%	0.653%	0.335%
Consumption: % Change	0.180%	0.156%	0.136%
GDP: % Change	0.030%	0.001%	-0.004%
18-64 Participation: Rate Change	0.032%	0.030%	0.026%
55+ Participation: Rate Change	0.163%	0.156%	0.140%