Savoir-faire: les suites

Première 6

Calculer les termes d'une suite

On considère les suites *u* suivantes :

- 1. u est la suite des entiers positifs impairs. Calculer u_1, u_2, u_3 .
- 2. $u_n = u(n) = 3n + 4$. Calculer u_2 et u_24 .
- 3. u est donnée par la relation de récurrence $u_{n+1}=3u_n+4$. $u_0=2$. On donne $u_0=2$. Calculer u_1,u_2,u_3

Représenter graphiquement une suite

Sur votre cahier, représenter graphiquement (les cinq premiers termes) les suites (prendre une échelle de 1 gros carreau pour 2 unités en ordonnée et 1 gros carreau pour 1 unité en abscisse) :

- 1. u où u est la suite des entiers impairs.
- 2. v où $v_n = -2n + 3$.
- 3. $w \text{ où } w_0 = 2$, $w_{n+1} = -2w_n + 3$.
- 4. z où $w_0 = 1$, $w_{n+1} = -2w_n + 3$.

Mode de génération d'une suite

Dire si les suites suivantes sont définies par une relation de récurrence ou une formule explicite et calculer les trois premiers termes :

- 1. $u_0 = 0$; $u_n = 2n$.
- 2. $u_0 = 1$; $u_{n+1} = 2u_n$.
- 3. $u_0 = -1$; $u_{n+1} = u_n + 3$.
- 4. $u_0 = 5$; $u_n = 4n + 5$.

Etudier le sens de variation d'une suite

Etudier le sens de variation des suites suivantes :

- 1. u, définie par $u_0 = 3$, $u_{n+1} = u_n + 6$.
- 2. v définie par $v_n = 5n + 3$,
- 3. w définie par $w_n = n^2 + 3$,
- 4. t où $t_0 = -1$, $t_{n+1} = t_n + 2n + 4$,
- 5. z définie par $z_0 = 8$, $z_{n+1} = z_n^2 z_n + 1$

Montrer qu'une suite est géométrique

Montrer que les suites u suivantes sont géométriques, préciser leur raison :

- 1. $u_n = 5 \times 4^n$.
- 2. $u_n = 3 \times 2^{-n}$.
- 3. $u_n = -3 \times 5^{n+1}$

Une suite arithmético géométrique

On considère la suite u définie par $u_0 = 2$

$$u_{n+1}=2u_n-1.$$

Montrer que la suite v définie par $v_n = v_n - 1$ est une suite géométrique et déterminer sa raison.