Chapitre: Produit scalaire dans l'espace

Dans tout le chapitre, on notera \mathscr{E} l'espace et \mathscr{P} le plan qui représente un plan quelconque de l'espace. Si on munit \mathscr{E} d'un repère $\left(0,\overrightarrow{\iota},\overrightarrow{\jmath},\overrightarrow{k}\right)$ il s'agira nécessairement d'un repère orthonormal.

1 Extension du produit scalaire à l'espace

L'espace & est muni d'un repère orthonormal $\left(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$.

1.1 Définition

Définition 1

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace ou du plan.

1. Le produit scalaire de \overrightarrow{u} et \overrightarrow{v} est le réel, noté $\overrightarrow{u} \cdot \overrightarrow{v}$ défini par :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\left\| \overrightarrow{u} + \overrightarrow{v} \right\|^2 - \left\| \overrightarrow{u} \right\|^2 - \left\| \overrightarrow{v} \right\|^2 \right)$$

une définition équivalente est :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\left\| \overrightarrow{u} \right\|^2 + \left\| \overrightarrow{v} \right\|^2 - \left\| \overrightarrow{u} - \overrightarrow{v} \right\|^2 \right)$$

2. Pour tout vecteur \overrightarrow{u} de l'espace on a $\overrightarrow{0} \cdot \overrightarrow{u} = \overrightarrow{u} \cdot \overrightarrow{0} = 0$.

1.2 D'autres expressions du produit scalaire et propriétés

Preuves comme dans le plan puisque deux vecteurs sont coplanaires.

Théorème 1 expression analytique du produit scalaire

- 1. Le plan \mathscr{P} est muni d'un repère orthonormal $(0, \vec{l}, \vec{j})$. Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ deux vecteurs de \mathscr{P} , alors $\vec{u} \cdot \vec{v} = xx' + yy'$.
- **2.** L'espace \mathscr{E} est muni d'un repère orthonormal $\left(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k}\right)$.
 - Soient $\overrightarrow{u}(x; y; z)$ et $\overrightarrow{v}(x'; y'; z')$ deux vecteurs de \mathscr{E} , alors : $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'$.
 - En particulier on a $\overrightarrow{u} \cdot \overrightarrow{u} = x^2 + y^2 + z^2$ donc $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2 + z^2}$
 - Et si \boldsymbol{A} et \boldsymbol{B} sont deux points de l'espace, la distance entre \boldsymbol{A} et \boldsymbol{B} est

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Exemple 1

On rappelle que dans un plan, des droites sécantes (EF) et (EH) sont perpendiculaires si et seulement si \overrightarrow{EF} \cdot $\overrightarrow{EH} = 0$.

- 1. Soit les points A(7;2;3), B(0;1;4) et C(0;4;-2). Les droites (AC) et (AB) sont-elles perpendiculaires?
- **2.** Dans un repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$ soient les points R (2;0;0), S $(1; \frac{1}{\sqrt{3}}; \frac{4}{\sqrt{6}})$ et T $(1; \sqrt{3}; 0)$. Calculer les distances OR, RS, ST et TO. Les points O, R, S et T sont-ils les sommets d'un losange?
- 3. Amérique du Sud Novembre 2017

On considère un cube ABCDEFGH.

- **a.** Simplifier le vecteur $\overrightarrow{AC} + \overrightarrow{AE}$.
- **b.** Sans utiliser de coordonnées, en déduire que $\overrightarrow{AG} \cdot \overrightarrow{BD} = 0$.
- **c.** En choisissant un repère orthonormal du plan, démontrer que $\overrightarrow{AG} \cdot \overrightarrow{BE} = 0$.
- **d.** Démontrer que la droite (AG) est orthogonale au plan (BDE).

1.3 Propriétés du produit scalaire

Deux vecteurs définissant un plan vectoriel, les propriétés suivantes démontrées en première sont aussi valables dans l'espace.

Propriété 1 projection orthogonale

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace et \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} trois points tels que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$. Soit \overrightarrow{H} le projeté orthogonal de \overrightarrow{C} sur (\overrightarrow{AB}) , et \overrightarrow{v}' le projeté orthogonal de \overrightarrow{v} sur la droite vectorielle dirigée par \overrightarrow{u} .

On a alors: $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$ et $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{v}'$

Remarque 1

Si K est le projeté orthogonal de B sur (AC), et \overrightarrow{u}' le projeté orthogonal de \overrightarrow{u} sur la droite vectorielle dirigée par \overrightarrow{v} , on a: $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AK} \cdot \overrightarrow{AC}$ et $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u}' \cdot \overrightarrow{v}$

Théorème 2 théorème du cosinus

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace, alors : $\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \times \cos(\widehat{\overrightarrow{u};\overrightarrow{v}})$. En particulier si $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$ on a : $\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos\widehat{BAC}$.

Exemple 2 Antilles juin 2017

L'espace est muni d'un repère orthonormé $(0, \vec{\iota}, \vec{\jmath}, \vec{k})$. On considère les points A(-1; 2; 0), B(1; 2; 4) et C(-1; 1; 1).

- 1. Démontrer que les points A, B et C ne sont pas alignés.
- **2.** Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 3. En déduire la mesure de l'angle \widehat{BAC} , arrondie au degré.

Propriété 2 Symétrie et bilinéarité

Soient \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} trois vecteurs de l'espace ou du plan et λ un réel.

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

2.
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

3.
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$$

4.
$$(\lambda \overrightarrow{u}) \cdot \overrightarrow{v} = \lambda (\overrightarrow{u} \cdot \overrightarrow{v})$$
 et $\overrightarrow{u} \cdot (\lambda \overrightarrow{v}) = \lambda (\overrightarrow{u} \cdot \overrightarrow{v})$

2 Orthogonalité dans l'espace

2.1 Vecteurs orthogonaux, droites orthogonales

Théorème 3

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls de l'espace, et trois points distincts O, A, B tels que $\overrightarrow{u} = \overrightarrow{OA}$ et $\overrightarrow{v} = \overrightarrow{OB}$.

Les propositions suivantes sont équivalentes :

- 1. Les droites (OA) et (OB) sont perpendiculaires.
- **2.** $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Définition 2

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} de l'espace sont orthogonaux si et seulement si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$. On note $\overrightarrow{u} \perp \overrightarrow{v}$. En particulier $\overrightarrow{0}$ est orthogonal à tout vecteur de l'espace.

Définition 3

Soient \mathscr{D} et \mathscr{D}' deux droites de l'espace de vecteurs directeurs respectifs \overrightarrow{u} et \overrightarrow{v} . \mathscr{D} et \mathscr{D}' sont orthogonales (on note $\mathscr{D} \perp \mathscr{D}'$) si et seulement si $\overrightarrow{u} \perp \overrightarrow{v}$ c'est-à-dire si et seulement si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Exemple 3

Soit \mathcal{D} une droite de représentation paramétrique $\begin{cases} x = 4 + 3t \\ y = -2 + t \\ z = 1 - 5t \end{cases}$, $t \in \mathbb{R}$

- **1.** Le point B(7; -1; -4) appartient-il à \mathcal{D} ?
- **2.** Soient E(9;3;-2) et F(11;2;-1), les droites \mathscr{D} et (BE) sont-elles orthogonales? Les droites \mathscr{D} et (BF) sont-elles orthogonales? Quelle propriété vraie dans le plan n'est plus vraie dans l'espace?
- 3. Soit \mathcal{D}' une droite de représentation paramétrique $\begin{cases} x = 5t \\ y = 5t \\ z = 4t \end{cases}$ Les droites \mathcal{D} et \mathcal{D}' sont-elles orthogonales? sécantes?

2.2 Droite orthogonale à un plan, vecteur normal à un plan

Définition 4

Dans l'espace, soient \mathscr{D} une droite de vecteur directeur \overrightarrow{n} et \mathscr{P} un plan dont un couple vecteurs directeurs (non colinéaires) est $(\overrightarrow{u}, \overrightarrow{v})$.

Les deux définitions suivantes sont équivalentes :

- $\mathscr D$ est orthogonale (ou perpendiculaire) à $\mathscr P$ et on note $\mathscr D \perp \mathscr P$ si et seulement si $\mathscr D$ est orthogonale à deux droites sécantes de $\mathscr P$.
- \mathscr{D} est orthogonale à \mathscr{P} si et seulement si $\begin{cases} \overrightarrow{n} \cdot \overrightarrow{u} = 0 \\ \text{et} \\ \overrightarrow{n} \cdot \overrightarrow{v} = 0 \end{cases}$

Définition 5

Soit n un vecteur non nul de l'espace $\mathcal E$ et soit $\mathcal P$ un plan de l'espace.

n est un vecteur normal à \mathcal{P} si et seulement si c'est un vecteur directeur d'une droite \mathcal{D} orthogonale à \mathcal{P} .

Remarque 2

On peut déduire des théorèmes précédents que dans l'espace, la famille des vecteurs normaux à un plan est une famille de vecteurs colinéaires.

Droite orthogonale à un plan, vecteur normal à un pla

Théorème 4 admis

1. Soit \mathscr{P} un plan de l'espace et A un point. Il existe une unique droite \mathscr{D} passant par A et orthogonale à \mathscr{P} .

Le point d'intersection H de $\mathcal D$ avec $\mathcal P$ est **le projeté orthogonal** du point A sur le plan $\mathcal P$.

2. Soit B un point et \mathcal{D} une droite de l'espace, il existe un unique plan \mathcal{P} passant par B et orthogonal à \mathcal{D} .

Le point d'intersection H de \mathscr{P} et de \mathscr{D} est **le projeté orthogonal** du point B sur la droite \mathscr{D} .

Exemple 4

Soit \mathcal{D} la droite passant par A(2;0;1) et de vecteur directeur $\overrightarrow{u}(1;1;1)$.

- 1. Donner une représentation paramétrique de \mathcal{D} .
- **2.** Soit le point *B* (3; 2; 4).
 - **a.** Montrer que B n'appartient pas à la droite \mathcal{D} .
 - **b.** Déterminer les coordonnées du projeté orthogonal H de B sur \mathcal{D} , c'est-à-dire du point H de \mathcal{D} tel que $\overrightarrow{BH} \perp \overrightarrow{u}$.

Propriété 3

- 1. Une droite \mathcal{D} est orthogonale à deux droites sécantes d'un plan \mathcal{P} (et donc orthogonale à \mathcal{P} par définition) si et seulement si elle est orthogonale à toute droite incluse dans \mathcal{P} .
- **2.** Soit \mathscr{P} un plan de l'espace de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} et \overrightarrow{n} un vecteur non nul de l'espace. Les assertions suivantes sont équivalentes :
 - \overrightarrow{n} est un vecteur normal à \mathscr{P} .
 - Pour tout vecteur directeur \overrightarrow{w} d'une droite de \mathscr{P} on a $\overrightarrow{n} \cdot \overrightarrow{w} = 0$.
 - $\overrightarrow{n} \cdot \overrightarrow{u} = 0$ et $\overrightarrow{n} \cdot \overrightarrow{v} = 0$.

Preuve: ROC pour le 1.

1. On prouve les deux implications

 \longleftarrow **Hypothèse:** \mathscr{D} est orthogonale à toute droite incluse dans \mathscr{P} .

A fortiori, \mathcal{D} est orthogonale à deux droites sécantes incluses dans \mathcal{P} .

 \implies **Hypothèse:** \mathscr{D} est orthogonale à deux droites sécantes \mathscr{D}_1 et \mathscr{D}_2 incluses dans \mathscr{P} .

Soit \overrightarrow{u} un vecteur directeur de \mathcal{D}_1 et \overrightarrow{v} un vecteur directeur de \mathcal{D}_2 . \mathcal{D}_1 et \mathcal{D}_2 incluses dans \mathcal{P} et sécantes donc $(\overrightarrow{u}; \overrightarrow{v})$ est un couple de vecteurs directeurs de \mathcal{P} .

Soit \overrightarrow{n} un vecteur directeur de \mathcal{D} (par définition c'est un vecteur normal à \mathcal{P}).

Pour toute droite Δ incluse dans \mathscr{P} , un vecteur directeur \overrightarrow{w} de Δ peut se décomposer selon les vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} de \mathscr{P} :

Il existe x et y tels que :

$$\overrightarrow{w} = x\overrightarrow{u} + y\overrightarrow{v}$$

donc on a par linéarité du produit scalaire :

$$\overrightarrow{n} \cdot \overrightarrow{w} = \overrightarrow{n} \cdot (x\overrightarrow{u} + y\overrightarrow{v}) = x(\overrightarrow{n} \cdot \overrightarrow{u}) + y(\overrightarrow{n} \cdot \overrightarrow{v})$$

or \mathscr{D} orthogonale à \mathscr{D}_1 et \mathscr{D}_2 donc \overrightarrow{n} est orthogonal à \overrightarrow{u} et \overrightarrow{v}

$$\overrightarrow{n} \cdot \overrightarrow{w} = x \times 0 + y \times 0 = 0$$

On en déduit qu'un vecteur directeur \overrightarrow{n} de \mathcal{D} est orthogonal à un vecteur directeur \overrightarrow{w} de Δ donc \mathcal{D} est orthogonale à Δ et ceci est vrai pour toute droite Δ incluse dans \mathcal{P} .

2. Les assertions équivalentes traduisent vectoriellement avec des vecteurs directeurs l'équivalence démontrée en 1.

2.3 Plans perpendiculaires, plans parallèles

Définition 6

Deux plans \mathcal{P} et \mathcal{P}' sont perpendiculaires si et seulement si l'un des deux plans contient une droite orthogonale à l'autre.

Remarque 3

Attention, celà n'entraîne pas que toute droite d'un plan est orthogonale à toute droite de l'autre.

Propriété 4

- 1. Deux plans sont parallèles si et seulement si leurs vecteurs normaux sont colinéaires.
- 2. Deux plans sont perpendiculaires si et seulement si leurs vecteurs normaux sont orthogonaux.

Plans parallèles

Exemple 5

Soit ABCDEFGH un cube.

On munit l'espace du repère orthonormal $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

- **1.** Déterminer un vecteur normal au plan (*BED*).
- **2.** Citer trois plans perpendiculaires au plan (*BED*).

2.4 Equation cartésienne d'un plan

Théorème 5

Dans l'espace \mathscr{E} , soit A un point et \overrightarrow{n} un vecteur non nul.

- 1. Le plan \mathscr{P} passant par A et de vecteur normal \overrightarrow{n} est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.
- **2.** Le plan \mathscr{P} passant par A et de vecteur normal $\overrightarrow{n}(a;b;c)$ admet une équation cartésienne du type

$$ax + by + cz + d = 0$$

3. Réciproquement, l'ensemble des points M de $\mathscr E$ dont les coordonnées (x;y;z) vérifient l'équation

$$ax + by + cz + d = 0$$

où a,b,c non tous nuls, est un plan de vecteur normal \overrightarrow{n} (a;b;c).

Preuve: ROC pour le 2.

1. Soit A un point, \overrightarrow{n} un vecteur non nul et \mathcal{D} la droite passant par A et de vecteur directeur \overrightarrow{n} . Soit le plan \mathcal{P} passant par A et orthogonal à \mathcal{D} .

Soit Γ l'ensemble des des points M de l'espace tels que $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

Démontrons que $\Gamma = \mathcal{P}$ par double inclusion :

- Soit $M \in \mathcal{P}$:
 - $Si M = A on \ a \overrightarrow{AM} = \overrightarrow{0} \ donc \ \overrightarrow{AM} \cdot \overrightarrow{n} = 0.$
 - $Si M \neq A$, par définition de \mathcal{P} , la droite (AM) contenu dans \mathcal{P} est orthogonale à \mathcal{D} , donc $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

Dans tous les cas, on $a: M \in \mathscr{P} \Longrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0$ donc $\boxed{\mathscr{P} \subset \Gamma}$.

- Soit $M \in \Gamma$, on a $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$ donc:
 - Soit M = A et donc $M \in \mathcal{P}$.
 - Soit M≠ A, on a (AM) ⊥D. Si on considère une droite Δ de P passant par A, elle est sécante en A avec (AM) et on peut la choisir de telle sorte qu'elle ne soit pas confondue avec (AM) (car il existe une infinité de droites de ce type). Donc les droites Δ et (AM) définissent un plan perpendiculaire à P car les deux sont orthogonales à D. Or d'après le théorème 4, il existe un unique plan P passant par A et orthogonal à D, donc Δ et (AM) définissent P, donc M ∈ P.

Dans tous les cas, on $a: M \in \Gamma \Longrightarrow \mathscr{P} donc \boxed{\Gamma \subset \mathscr{P}}$.

Par double inclusion on a démontré que $\Gamma = \mathcal{P}$

2. Soit le plan \mathscr{P} passant par A et de vecteur normal \vec{n} (a;b;c), d'après la propriété qu'on vient de démontrer :

$$M \in \mathcal{P} \iff \overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

 $M \in \mathcal{P} \iff a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$
 $M \in \mathcal{P} \iff ax + by + cz - ax_A - by_A - cz_A = 0$

 $si\ on\ pose\ d = -ax_A - by_A - cz_A\ il\ vient:$

$$M \in \mathscr{P} \iff ax + by + cz + d = 0$$

3. Soit Γ l'ensemble des points M(x; y; z) tels que ax + by + cz + d = 0 où a, b, c non tous nuls.

On peut supposer par exemple $b \neq 0$ alors $A\left(0; \frac{-d}{b}; 0\right)$ appartient à Γ .

Soit \overrightarrow{n} (a; b; c) et soit \mathscr{P} le plan passant par A et de vecteur normal \overrightarrow{n} (a; b; c).

D'après 1. on a:

$$M \in \mathscr{P} \Longleftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

 $M \in \mathscr{P} \Longleftrightarrow ax + b\left(y + \frac{d}{b}\right) + cz = 0$
 $M \in \mathscr{P} \Longleftrightarrow ax + by + cz + d = 0$
 $M \in \mathscr{P} \Longleftrightarrow M \in \Gamma$

Donc $\Gamma = \mathcal{P}$, c'est un plan de vecteur normal \overrightarrow{n} (a; b; c).

Exemple 6 lire d'abord les Méthodes 3 et 4 page 309

Dans l'espace muni d'un repère orthonormal $\left(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k}\right)$, soit A(3; -1; 4), B(2; 1; 4) et C(3; -2; 0).

1. L'espace est muni d'un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soit le plan \mathscr{P} d'équation cartésienne x + y + 3z + 4 = 0. On note S le point de coordonnées (1; -2; -2). Déterminer si l'affirmation suivante est *vraie* ou *fausse*.

Affirmation: La droite passant par S, qui est perpendiculaire à \mathcal{P} , est paramétrée par $\begin{cases} x = 2+t \\ y = -1+t \\ z = 1+3t \end{cases}$

- **2.** Déterminer une équation de chacun des trois plans de base de repères respectifs $(O; \vec{\iota}, \vec{j}), (O; \vec{\iota}, \vec{k}), (O; \vec{\iota}, \vec{k})$.
- **3.** Déterminer une équation cartésienne du plan \mathscr{P}_1 passant par B et de vecteur normal \overrightarrow{n} (4; -3; 1).
- **4.** Déterminer une équation cartésienne du plan \mathcal{P}_2 passant par A et orthogonal à la droite (BC).
- **5.** Déterminer une équation cartésienne du plan \mathcal{P}_3 passant par C et parallèle au plan \mathcal{P}_2 .

- **6. a.** Démontrer que les points *A*, *B*, *C* définissent un plan.
 - **b.** Equation de (ABC), 1^{ere} méthode

Déterminer les coordonnées d'un vecteur $\overrightarrow{n}(a;b;c)$ orthogonal à \overrightarrow{AB} et \overrightarrow{AC} , en déduire une équation de (ABC).

c. Equation de (ABC), $2^{\grave{e}me}$ méthode

Résoudre le système de trois équations à quatre inconnues a,b,c,d: $\begin{cases} ax_A + by_A + cz_A + d = 0 \\ ax_B + by_B + cz_B + d = 0 \\ ax_C + by_C + cz_C + d = 0 \end{cases}$

En déduire une équation de (ABC).

3 Intersections dans l'espace

3.1 Intersection d'une droite et d'un plan

Propriété 5

Dans l'espace, soit \mathscr{D} une droite de vecteur directeur \overrightarrow{u} et soit \mathscr{P} un plan de vecteur normal \overrightarrow{n} .

- Si \overrightarrow{u} et \overrightarrow{n} ne sont pas orthogonaux alors \mathscr{D} et \mathscr{P} sont sécants.
- Si \overrightarrow{u} et \overrightarrow{n} sont orthogonaux :
 - Si A appartient à $\mathcal P$ alors $\mathcal D$ est incluse dans $\mathcal P$.
 - Si A n'appartient pas à $\mathcal P$ alors $\mathcal D$ et $\mathcal P$ n'ont aucun point commun.

Exemple 7 Antilles juin 2017

L'espace est muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

On considère les points A(-1; 2; 0), B(1; 2; 4) et C(-1; 1; 1).

1. Démontrer que les points A, B et C ne sont pas alignés.

Soit \overrightarrow{n} le vecteur de coordonnées $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$.

- **2. a.** Démontrer que \overrightarrow{n} est un vecteur normal au plan (ABC).
 - **b.** Déterminer une équation cartésienne du plan (ABC).
- **3.** Soit \mathcal{P}_1 le plan d'équation 3x + y 2z + 3 = 0 et \mathcal{P}_2 le plan passant par O et parallèle au plan d'équation x 2z + 6 = 0.
 - **a.** Démontrer que le plan \mathcal{P}_2 a pour équation x = 2z.
 - **b.** Démontrer que les plans \mathcal{P}_1 et \mathcal{P}_2 sont sécants.
 - ${f c.}~$ Soit la droite ${\cal D}$ dont un système d'équations paramétriques est

$$\begin{cases} x = 2t \\ y = -4t - 3, & t \in \mathbb{R}. \\ z = t \end{cases}$$

Démontrer que \mathcal{D} est l'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 .

4. Démontrer que la droite \mathcal{D} coupe le plan (ABC) en un point I dont on déterminera les coordonnées.

3.2 Intersection de deux plans

3.2.1 Propriétés

Propriété 6

soit deux plans \mathscr{P} et \mathscr{P}' de l'espace de vecteurs normaux respectifs \overrightarrow{n} et \overrightarrow{n}' , 3 cas sont possibles :

 1^{er} cas \mathscr{P} et \mathscr{P}' sont strictement parallèles.

 $\mathcal{P} \cap \mathcal{P}' = \emptyset$ et \overrightarrow{n} et \overrightarrow{n}' colinéaires.

 $2^{\grave{e}me}$ cas \mathscr{P} et \mathscr{P}' sont parallèles et confondus.

 $\mathcal{P}\cap\mathcal{P}'=\mathcal{P}$ et \mathcal{P}' ont au moins un point commun et \overrightarrow{n} et \overrightarrow{n}' colinéaires.

 $3^{\grave{e}me}$ cas \mathscr{P} et \mathscr{P}' sont sécants et leur intersection est une droite \mathscr{D} .

 $\mathcal{P} \cap \mathcal{P}' = \mathcal{D}$ \overrightarrow{n} et \overrightarrow{n}' non colinéaires.

Propriété 7

Dans l'espace \mathscr{E} , soit deux plans \mathscr{P} d'équation ax + by + cz + d = 0 (a, b, c non tous nuls) et \mathscr{P}' d'équation a'x + b'y + c'z + d' = 0 (a', b', c' non tous nuls).

1. \mathscr{P} et \mathscr{P}' sont parallèles si et seulement si ils admettent des vecteurs normaux colinéaires. Ce qui se traduit analytiquement par :

$$\mathscr{P} / \mathscr{P}'$$
 équivaut à a, b, c proportionnels à a', b', c'

2. \mathscr{P} et \mathscr{P}' sont perpendiculaires si et seulement si ils admettent des vecteurs normaux orthogonaux. Ce qui se traduit analytiquement par :

$$\mathscr{P} \perp \mathscr{P}' \iff aa' + bb' + cc' = 0$$

Preuve:

Soit le plan \mathscr{P} d'équation ax + by + cz + d = 0 donc de vecteur normal \overrightarrow{n} (a; b; c) et le plan \mathscr{P}' d'équation a'x + b'y + c'z + d' = 0 donc de vecteur normal \overrightarrow{n} (a'; b'; c').

1.

$$\mathcal{P} \parallel \mathcal{P}' \iff \overrightarrow{n} \ et \ \overrightarrow{n}' colinéaires$$

 $\mathcal{P} \parallel \mathcal{P}' \iff a, b, c \ proportionnels \ \grave{a}a', b', c'$

2.

$$\mathcal{P} \perp \mathcal{P}' \Longleftrightarrow \overrightarrow{n} \perp \overrightarrow{n}'$$
$$\mathcal{P} \perp \mathcal{P}' \Longleftrightarrow aa' + bb' + cc' = 0$$

Exemple 8

L'espace \mathscr{E} est muni d'un repère orthonormal $(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$.

- **1.** Soit \mathcal{P}_1 le plan d'équation 5x + 2y 4z + 7 = 0 et \mathcal{P}_2 le plan d'équation -10x 4y + 8z 7 = 0. Montrer que \mathcal{P}_1 et \mathcal{P}_2 sont strictement parallèles.
- **2.** Soit \mathcal{P}_3 le plan d'équation 4x + 2y 6z + 8 = 0 et \mathcal{P}_4 le plan d'équation -6x 3y + 9z 12 = 0. Montrer que \mathcal{P}_3 et \mathcal{P}_4 sont confondus.
- **3.** Soit \mathscr{P}_5 un plan de vecteur normal $\overrightarrow{n_5}$ (1; -1; 1) et \mathscr{P}_6 un plan de vecteur normal $\overrightarrow{n_6}$ (0; 2; 2). Démontrer que \mathscr{P}_5 et \mathscr{P}_6 sont perpendiculaires.

3.2.2 Système d'équations cartésiennes d'une droite dans l'espace

Propriété 8

L'espace \mathscr{E} est muni d'un repère orthonormal $(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$.

1. soit a, b, c et a', b', c' des triplets de réels qui ne sont pas proportionnels alors l'ensemble des points M dont les coordonnées (x; y; z) vérifient le système :

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$$

est la droite \mathcal{D} d'intersection des plans \mathcal{P} d'équation ax + by + cz + d = 0 et \mathcal{P}' d'équation a'x + b'y + c'z + d' = 0.

2. Réciproquement, toute droite \mathcal{D} de l'espace est l'intersection de deux plans donc admet un système d'équations du type :

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$$

avec a, b, c non proportionnels à a', b', c'.

Méthode

Soit \mathscr{S} $\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$ avec a, b, c non proportionnels à a', b', c', un système d'équations cartésiennes d'une droite \mathscr{D} de l'espace.

Pour obtenir une représentation paramétrique de \mathcal{D} , on prend pour paramètre t une des trois variables x, y ou z puis on résout le système de deux équations avec les deux inconnues restantes que l'on exprime en fonction de t (le système de deux équations avec les inconnues restantes doit posséder un unique couple solution en fonction du paramètre).

Exemple 9 Méthode 6 page 311

Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un repère orthonormal de l'espace. On considère les plans \mathcal{P}_1 d'équation x + 2y - z = -1 et \mathcal{P}_2 d'équation 3x + 4y - 2z + 5 = 0.

- 1. Étudier la position relative des plans \mathcal{P}_1 et \mathcal{P}_2 .
- **2.** Si elle existe, déterminer une représentation paramétrique de leur droite \mathcal{D} d'intersection.
- **3.** Répondre aux mêmes questions avec les plans \mathcal{P}_2 et \mathcal{P}_3 d'équation 4z y = x.

Exemple 10 *d'après Pondichéry avril 2017*

On considère le cube ABCDEFGH ci-dessous. L'espace est rapporté au repère $\left(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}\right)$.

- 1. Déterminer les systèmes d'équations des trois axes (AB), (AD) et (AE) du repère.
- **2.** On note \mathscr{P} le plan d'équation $x + \frac{1}{4}y + \frac{1}{2}z 1 = 0$.

Reproduire la figure ci-dessous et construire la section du cube par le plan \mathscr{P} .

La construction devra être justifiée par des calculs ou des arguments géométriques.

TABLE DES MATIÈRES TABLE DES MATIÈRES

Table des matières

1	Ext	ension du produit scalaire à l'espace	1
	1.1	Définition	1
		D'autres expressions du produit scalaire et propriétés	
		Propriétés du produit scalaire	
2	Orthogonalité dans l'espace		
	2.1	Vecteurs orthogonaux, droites orthogonales	3
		Droite orthogonale à un plan, vecteur normal à un plan	
		Plans perpendiculaires, plans parallèles	
		Equation cartésienne d'un plan	
3	Inte	ersections dans l'espace	10
	3.1	Intersection d'une droite et d'un plan	10
	3.2	Intersection de deux plans	12
		3.2.1 Propriétés	
		3.2.2 Système d'équations cartésiennes d'une droite dans l'espace	14