PREDICITVE MODELING OF OBESITY RISK

From The Wellness Warriors

BSD2223 DATA SCIENCE PROGRAMMING LANGUAGE II
GROUP PROJECT

TOPIC: GOOD HEALTH AND WELLBEING (SDG 3)

TO: ASSOCIATE PROFESSOR DR. ROSLINAZAIRIMAH ZAKARIA

DATE: 7th JUNE 2024

OUR TEAM MEMBERS

The Wellness Warriors

MUHAMMAD AIMAN IRFAN BIN AHMAD MUHYE

Outline

- **01.** INTRODUCTION & OBJECTIVE
- **02.** DATASET AND DATA DESCRIPTION
- **03.** DATA ANALYSIS, RESULT, DISCUSSION
- 04. CONCLUSION

INTRODUCTION

Predictive modelling of obesity risk factors is an important field of study addressing the global concern of increasing obesity rates. This project aims to identify high-risk individuals and inform preventive actions by learning about critical risk factors. It combines data science, public health, and behavioral research to enhance public health strategies.

Importance

Potential to improve public health strategies.

Analyzes variables such as age, gender, diet, physical activity, and lifestyle.

Identifies trends and connections increasing obesity risk.

Informs targeted treatments and individual healthcare plans.

Reduces risk of obesity-related problems.

Relevance to SDG 3

- Promotes healthy lifestyles and wellbeing globally.
- Contributes to achieving SDG 3 objectives.

OBJECTIVE

• To investigate the impact of different obesity risk factors on the overall f obesity risk

• To provide knowledge to individual risk profiles about the obesity prevention and management

• To visualize the behavior and habits regarding their obesity level.

Data Description Our dataset contains 20759 rows with 18 columns.

Title	Explanation	
Gender	Gender of the Patients	
Age	Age of the Patients	
Height	Height of the Patients	
Weight	Weight of the Patients	
family_history_ with_overweight	Family History of Patients with Overweight	
FAVC	Frequent consumption of high-caloric food	

Data Description

Title	Explanation
FCVC	Frequency of consumption of vegetables
NCP	Number of main meals
CAEC	Consumption of food between meals
SMOKE	History of Smoking of Patients
CH2O	Daily water consumption
SCC	Caloric beverages consumption

Data Description

Title	Explanation
FAF	Physical activity frequency
TUE	Time spent using technological devices
CALC	Consumption of alcohol
MTRANS	Mode of transportation
Level	Target variable representing obesity level
BMI	BMI of the patients

Dashboard 1:

Overview Analysis

Age

Distribution of Age

Obesity

Obesity Level Distribution

Relationship

Relation of Height and Weight

Height

Distribution of Height

Weight

Distribution of Weight

Dashboard 2:

Demographics

Obesity Level by Gender

- Horizontal bar chart
- Both gender highest frequency at obesity

Weight Distribution by Gender

- Boxplot
- The high obesity level is because the high average weight

Height Distribution by Gender

- Boxplot
- Shorter individual may have higher BMI

Transportation Mode by Gender

- Bar char
- Mejority both gender used public transportation as their daily transportation

Dashboard 3:

Lifestyle

Alcohol Consumption by Obesity Level

Physical Activity Frequency by Obesity Level

Smoking Status by Obesity Level

Time Using Technology Devices by Obesity Level

Dashboard 4:

Eating Habit

Frequent Consumption of High-Caloric Food by Obesity Level

- -obesity type 3 have higher frequent consume high-caloric foods, significantly contributing to their higher BMI.
- -Underweight individuals, suggesting poor eating habits.
- -Normal weight group does not maintain a balanced diet

Caloric beverages consumption (SCC)

- 96.7% do not consume caloric beverages.
- Only 3.3% do, indicating common dietary practice.
- · Alcoholic beverages contribute significantly to daily calorie intake.
- Broad use impacts public health, especially in weight management initiatives.

Conclusion

Utilizes data analytics to predict and reduce obesity risk.

Analyzes genetic, behavioral, and environmental risk factors.

Aims to develop personalized obesity prevention strategies based on individual risk profiles.

Potential to improve public health strategies, identify high-risk individuals, and guide targeted treatments.

Limitation

Limited Dataset

Missed information about obesity in older age groups.

Limited Time

Missed the chances to explore age and BMI relationship for a better understanding.

THANK YOU

