CMPS 319 The Need For Security Chapter 2

Our bad neighbor makes us early stirrers, Which is both healthful and good husbandry.

-- William Shakespeare (1564-1616), King Henry, in Henry V, act 4, sc. 1, l. 6-7.

Learning Objectives

Upon completion of this chapter, you should be able to:

- Understand the business need for information security.
- Understand a successful information security program is the responsibility of an organization's general management and IT management.
- Understand the threats posed to information security and the more common attacks associated with those threats.
- Differentiate threats to information systems from attacks against information systems.

Business Needs First, Technology Needs Last

Information security performs four important functions for an organization:

- Protects the organization's ability to function
- Enables the safe operation of applications implemented on the organization's IT systems
- Protects the data the organization collects and uses
- Safeguards the technology assets in use at the organization

Protecting the Ability to Function

- Management is responsible
- Information security is
 - -a management issue
 - -a people issue
- Communities of interest must argue for information security in terms of impact and cost

Enabling Safe Operation

- Organizations must create integrated, efficient, and capable applications
- Organization need environments that safeguard applications
- Management must not abdicate to the IT department its responsibility to make choices and enforce decisions

Protecting Data

- One of the most valuable assets is data
- Without data, an organization loses its record of transactions and/or its ability to deliver value to its customers
- An effective information security program is essential to the protection of the integrity and value of the organization's data

Safeguarding Technology Assets

- Organizations must have secure infrastructure services based on the size and scope of the enterprise
- Additional security services may have to be provided
- More robust solutions may be needed to replace security programs the organization has outgrown

Threats

- Management must be informed of the various kinds of threats facing the organization
- A threat is an object, person, or other entity that represents a constant danger to an asset
- By examining each threat category in turn, management effectively protects its information through policy, education and training, and technology controls

Threats

- The 2002 CSI/FBI survey found:
 - 90% of organizations responding detected computer security breaches within the last year
 - 80% lost money to computer breaches, totaling over \$455,848,000 up
 from \$377,828,700 reported in 2001
 - The number of attacks that came across the Internet rose from 70% in 2001 to 74% in 2002 Trojans Malicious Exploits Overflow Access Misuse
 - Only 34% of organizations reported their attacks to law enforcement

Threats to Information Security

TABLE 2-1 Threats to Information Security⁴

Categories of threat		Examples
1.	Acts of human error or failure	Accidents, employee mistakes
2.	Compromises to intellectual property	Piracy, copyright infringement
3.	Deliberate acts of espionage or trespass	Unauthorized access and/or data collection
4.	Deliberate acts of information extortion	Blackmail of information disclosure
5.	Deliberate acts of sabotage or vandalism	Destruction of systems or information
6.	Deliberate acts of theft	Illegal confiscation of equipment or information
7.	Deliberate software attacks	Viruses, worms, macros, denial-of-service
8.	Forces of nature	Fire, flood, earthquake, lightning
9.	Deviations in quality of service from service providers	Power and WAN service issues
10.	Technical hardware failures or errors	Equipment failure
11.	Technical software failures or errors	Bugs, code problems, unknown loopholes
12.	Technological obsolescence	Antiquated or outdated technologies

Acts of Human Error or Failure

- Includes acts done without malicious intent
- Caused by:
 - Inexperience
 - Improper training
 - Incorrect assumptions
 - Other circumstances
- Employees are greatest threats to information security – They are closest to the organizational data

Acts of Human Error or Failure

- Employee mistakes can easily lead to the following:
 - revelation of classified data
 - entry of erroneous data
 - accidental deletion or modification of data
 - storage of data in unprotected areas
 - failure to protect information
- Many of these threats can be prevented with controls

Who is the biggest threat to your organization?

Tom Twostory convicted burglar

Dick Davis a.k.a. "wannabe amateur hacker"

Harriet Allthumbs
Employee
accidentally
deleted the one copy
of a critical report

FIGURE 2-1 Acts of Human Error or Failure

Deviations in Quality of Service by Service Providers

- Situations of product or services not delivered as expected
- Information system depends on many interdependent support systems
- Three sets of service issues that dramatically affect the availability of information and systems are
 - Internet service
 - Communications
 - Power irregularities

Internet Service Issues

- Loss of Internet service can lead to considerable loss in the availability of information
 - organizations have sales staff and telecommuters working at remote locations
- When an organization outsources its web servers, the outsourcer assumes responsibility for
 - All Internet Services
 - The hardware and operating system software used to operate the web site

Communications and Other Services

- Other utility services have potential impact
- Among these are
 - telephone
 - water & wastewater
 - trash pickup
 - cable television
 - natural or propane gas
 - custodial services
- The threat of loss of services can lead to inability to function properly

Power Irregularities

Voltage levels can increase, decrease, or cease:

- spike momentary increase
- surge prolonged increase
- sag momentary low voltage
- brownout prolonged drop
- fault momentary loss of power
- blackout prolonged loss
- Electronic equipment is susceptible to fluctuations, controls can be applied to manage power quality

Espionage/Trespass

- Broad category of activities that breach confidentiality
 - Unauthorized accessing of information
 - Competitive intelligence vs. espionage
 - Shoulder surfing can occur any place a person is accessing confidential information
- Controls implemented to mark the boundaries of an organization's virtual territory giving notice to trespassers that they are encroaching on the organization's cyberspace
- Hackers uses skill, guile, or fraud to steal the property of someone else

FIGURE 2-2 Shoulder Surfing

Traditional hacker profile:
Age 13-18, male with limited parental supervision spends all his free time at the computer

Modern hacker profile:
Age 12-60, male or female, unknown background, with varying technological skill levels; may be internal or external to the organization

FIGURE 2-3 Hacker Profiles

Espionage/Trespass

- Generally two skill levels among hackers:
 - Expert hacker
 - develops software scripts and codes exploits
 - usually a master of many skills
 - will often create attack software and share with others
 - Script kiddies
 - hackers of limited skill
 - use expert-written software to exploit a system
 - do not usually fully understand the systems they hack
- Other terms for system rule breakers:
 - Cracker an individual who "cracks" or removes protection designed to prevent unauthorized duplication
 - Phreaker hacks the public telephone network

Information Extortion

- Information extortion is an attacker or formerly trusted insider stealing information from a computer system and demanding compensation for its return or non-use
- Extortion found in credit card number theft

Sabotage or Vandalism

- Individual or group who want to deliberately sabotage the operations of a computer system or business, or perform acts of vandalism to either destroy an asset or damage the image of the organization
- These threats can range from petty vandalism to organized sabotage
- Organizations rely on image so Web defacing can lead to dropping consumer confidence and sales
- Rising threat of hacktivist or cyber-activist operations – the most extreme version is cyberterrorism

Deliberate Acts of Theft

- Illegal taking of another's property physical, electronic, or intellectual
- The value of information suffers when it is copied and taken away without the owner's knowledge
- Physical theft can be controlled a wide variety of measures used from locked doors to guards or alarm systems
- Electronic theft is a more complex problem to manage and control - organizations may not even know it has occurred

Deliberate Software Attacks

 When an individual or group designs software to attack systems, they create malicious code/software called malware

> Designed to damage, destroy, or deny service to the target systems

- Includes:
 - macro virus
 - boot virus
 - worms
 - Trojan horses
 - logic bombs
 - back door or trap door
 - denial-of-service attacks
 - polymorphic
 - hoaxes

FIGURE 2-8 Trojan Horse Attack

Compromises to Intellectual Property

- Intellectual property is "the ownership of ideas and control over the tangible or virtual representation of those ideas"
- Many organizations are in business to create intellectual property
 - trade secrets
 - copyrights
 - trademarks
 - patents

Compromises to Intellectual Property

- Most common IP breaches involve software piracy
- Watchdog organizations investigate:
 - Software & Information Industry Association (SIIA)
 - Business Software Alliance (BSA)
- Enforcement of copyright has been attempted with technical security mechanisms

Forces of Nature

- Forces of nature, force majeure, or acts of God are dangerous because they are unexpected and can occur with very little warning
- Can disrupt not only the lives of individuals, but also the storage, transmission, and use of information
- Include fire, flood, earthquake, and lightning as well as volcanic eruption and insect infestation
- Since it is not possible to avoid many of these threats, management must implement controls to limit damage and also prepare contingency plans for continued operations

Technical Hardware Failures or Errors

- Technical hardware failures or errors occur when a manufacturer distributes to users equipment containing flaws
- These defects can cause the system to perform outside of expected parameters, resulting in unreliable service or lack of availability
- Some errors are terminal, in that they result in the unrecoverable loss of the equipment
- Some errors are intermittent, in that they only periodically manifest themselves, resulting in faults that are not easily repeated

Technical Hardware Failures or Errors

- This category of threats comes from purchasing software with unrevealed faults
- Large quantities of computer code are written, debugged, published, and sold only to determine that not all bugs were resolved
- Sometimes, unique combinations of certain software and hardware reveal new bugs
- Sometimes, these items aren't errors, but are purposeful shortcuts left by programmers for honest or dishonest reasons

Technological Obsolescence

- When the infrastructure becomes antiquated or outdated, it leads to unreliable and untrustworthy systems
- Management must recognize that when technology becomes outdated, there is a risk of loss of data integrity to threats and attacks
- Ideally, proper planning by management should prevent the risks from technology obsolesce, but when obsolescence is identified, management must take action

Attacks

- An attack is the deliberate act that exploits vulnerability
- It is accomplished by a threat-agent to damage or steal an organization's information or physical asset
 - An exploit is a technique to compromise a system
 - A vulnerability is an identified weakness of a controlled system whose controls are not present or are no longer effective
 - An attack is then the use of an exploit to achieve the compromise of a controlled system

Malicious Code

- This kind of attack includes the execution of viruses, worms, Trojan horses, and active web scripts with the intent to destr or steal information
- The state of the art in attackir systems in 2002 is the multivector worm using up to six attack vectors to exploit a variety of vulnerabilities in commonly found information system devices

TABLE 2-2 Attack Replication Vectors

Vector	Description
IP scan and attack	Infected system scans random or local range of IP addresses and targets any of several vulnerabilities known to hackers or left over from previous exploits such as Code Red, Back Orifice, or PoizonBox
Web browsing	If the infected system has write access to any Web pages, it makes all Web content files (.html, .asp, .cgi, and others) infectious, so that users who browse to those pages become infected
Virus	Each infected machine infects certain common executable or script files on all computers to which it can write with virus code that can cause infection
Shares	Using vulnerabilities in file systems and the way many organizations configure them, it copies the viral component to all locations it can reach
Mass mail	By sending e-mail infections to addresses found in the infected system's address book, copies of the infection are sent to many users whose mail-reading programs automatically run the program and infect other systems
Simple Network Management Protocol (SNMP)	In early 2002, the SNMP vulnerabilities known to many in the IT industry were brought to the attention of the multi- vector attack community. SNMP buffer overflow and weak community string attacks are expected by the end of 2002

- IP Scan and Attack Compromised system scans random or local range of IP addresses and targets any of several vulnerabilities known to hackers or left over from previous exploits
- Web Browsing If the infected system has write access to any Web pages, it makes all Web content files infectious, so that users who browse to those pages become infected
- Virus Each infected machine infects certain common executable or script files on all computers to which it can write with virus code that can cause infection

- Unprotected Shares using file shares to copy viral component to all reachable locations
- Mass Mail sending e-mail infections to addresses found in address book
- Simple Network Management Protocol SNMP vulnerabilities used to compromise and infect
- Hoaxes A more devious approach to attacking computer systems is the transmission of a virus hoax, with a real virus attached

- Back Doors Using a known or previously unknown and newly discovered access mechanism, an attacker can gain access to a system or network resource
- Password Crack Attempting to reverse calculate a password
- Brute Force The application of computing and network resources to try every possible combination of options of a password
- Dictionary The dictionary password attack narrows the field by selecting specific accounts to attack and uses a list of commonly used passwords (the dictionary) to guide guesses

- Denial-of-service (DoS)
 - attacker sends a large number of connection or information requests to a target
 - so many requests are made that the target system cannot handle them successfully along with other, legitimate requests for service
 - may result in a system crash, or merely an inability to perform ordinary functions
- Distributed Denial-of-service (DDoS) an attack in which a coordinated stream of requests is launched against a target from many locations at the same time

In a denial-of-service attack, a hacker compromises a system and uses that system to attack the target computer, flooding it with more requests for services than the target can handle.

In a distributed denial-of-service attack, dozens or even hundreds of computers (known as zombies) are compromised, loaded with DoS attack software and then remotely activated by the hacker to conduct a coordinated attack.

FIGURE 2-9

Denial-of-Service Attacks

- Spoofing technique used to gain unauthorized access whereby the intruder sends messages to a computer with an IP address indicating that the message is coming from a trusted host
- Man-in-the-Middle an attacker sniffs packets from the network, modifies them, and inserts them back into the network
- Spam unsolicited commercial e-mail while many consider spam a nuisance rather than an attack, it is emerging as a vector for some attacks

FIGURE 2-10 IP Spoofing

FIGURE 2-11 Man-in-the-Middle Attack

- Mail-bombing another form of e-mail attack that is also a DoS, in which an attacker routes large quantities of e-mail to the target
- Sniffers a program and/or device that can monitor data traveling over a network. Sniffers can be used both for legitimate network management functions and for stealing information from a network
- Social Engineering within the context of information security, the process of using social skills to convince people to reveal access credentials or other valuable information to the attacker

- "People are the weakest link. You can have the best technology; firewalls, intrusion-detection systems, biometric devices ... and somebody can call an unsuspecting employee. That's all she wrote, baby. They got everything."
- "brick attack" the best configured firewall in the world can't stand up to a well placed brick

Buffer Overflow –

- application error occurs when more data is sent to a buffer than it can handle
- when the buffer overflows, the attacker can make the target system execute instructions, or the attacker can take advantage of some other unintended consequence of the failure

Timing Attack –

- relatively new
- works by exploring the contents of a web browser's cache
- can allow collection of information on access to passwordprotected sites
- another attack by the same name involves attempting to intercept cryptographic elements to determine keys and encryption algorithms