COMP 250

Lecture 26

maps

Nov. 8/9, 2017

Map (Mathematics)

A map is a set of pairs $\{(x, f(x))\}.$

Each x in domain maps to exactly one f(x) in codomain, but it can happen that f(x1) = f(x2) for different x1, x2, i.e. many-to-one.

Familiar examples

Calculus 1 and 2 ("functions"):

 $f: real numbers \rightarrow real numbers$

Asymptotic complexity in CS:

 $t: input size \rightarrow number of steps in a algorithm.$

Map (in COMP 250)

A map is a set of (key, value) pairs. For each key, there is at most one value.

The black dots here indicate objects (or potential objects) of type K or V that are *not* in the map.

<u>Map</u> <u>Values</u> **Keys** Address book

Values <u>Map</u> **Keys** Address book Address, email.. Name Caller ID

Values Map **Keys** Address book Address, email.. Name Caller ID Phone # Name Student file

<u>Map</u>	<u>Keys</u>	<u>Values</u>
Address book	Name	Address, email
Caller ID	Phone #	Name
Student file	ID or Name	Student record
Index at back of book		

Map Keys Values

Address book Name Address, email..

Caller ID Phone # Name

Student file ID or Name Student record

Index at back of keyword List of book pages book

Map Entries

Each (key, value) pair is called an entry.

In this example, there are four entries.

Example

In COMP 250 this semester, the above mapping has ~600 entries. Most McGill students are not taking COMP 250 this semester.

Student ID also happens to be part of the student record.

Map ADT

```
    put(key, value) // add
    get(key) // why not get(key, value)?
    remove(key)
```

Data Structures for Maps

How to organize a set of (key, value) pairs, i.e. entries?

Array list

Singly (or Doubly) linked list

Important property of keys

Two different keys can have (map to) the same value.

One key cannot have (map to) two values.

Special case #1: what if keys are comparable?

Array list (sorted by key)

Binary Search Tree (sorted by key)

minHeap (priority defined by key)

Special case #1: what if keys are comparable?

Special case #2: what if keys are unique positive integers in small range?

Then, we could use an array of type V (value) and have O(1) access.

This would not work well if keys are 9 digit student IDs.

Special case #1: what if keys are comparable?

Special case #2: what if keys are unique positive integers in small range?

General Case:

Keys might not be comparable.

Keys might be not be positive integers. e.g. Keys might be strings or some other type. Strategy for the General Case (Hash Maps – next lecture):

Try to define a map from keys to *small* range of positive integers (array index), and then store the corresponding values in the array.

Rest of today:

Define a map from keys to large range of positive integers.

Such a map is called a *hash code*.

"default" hashcode() map in Java

$$\xrightarrow{\text{1-to-1}} \{0,1,2,\dots,2^{24}-1\}$$
(not many-to-1)

objects in a Java program (runtime)

object's starting ("base") address in JVM memory (24 bits)

By default, "obj1 == obj2" means "obj1.hashcode() == obj2.hashcode()"

For each String, define an integer.

Example hash code for Strings (not used in Java)

$$h(s) \equiv \sum_{i=0}^{s.length-1} s[i]$$

e.g.

$$h("eat") = h("ate") = h("tea")$$

ASCII values of 'a', 'e', 't' are 97, 101, 116.

s.hashCode()
$$\equiv \sum_{i=0}^{s.length-1} s[i] x^{s.length-1-i}$$

where x = 31.

s.hashCode()
$$\equiv \sum_{i=0}^{s.length-1} s[i] x^{s.length-1-i}$$

where x = 31.

e.g.
$$s = \text{``eat''}$$
 then $s.\text{hashcode}() = 101 * 31^2 + 97 * 31 + 116$
'e' 'a' 't'
 $s.\text{length} = 3$ $s[0]$ $s[1]$ $s[2]$

s.hashCode()
$$\equiv \sum_{i=0}^{s.length-1} s[i] x^{s.length-1-i}$$

where x = 31.

e.g.
$$s = \text{``ate''}$$
 then $s.hashcode() = 97 * 31^2 + 116 * 31 + 101$
'a' 't' 'e'
$$s.length = 3$$

$$s[0]$$
 $s[1]$
 $s[2]$

s.hashCode()
$$\equiv \sum_{i=0}^{s.length-1} s[i] * (31)^{s.length-1-i}$$

If s1.hashCode() == s2.hashCode() then ... ?

s.hashCode()
$$\equiv \sum_{i=0}^{s.length-1} s[i] * (31)^{s.length-1-i}$$

If s1.hashCode() == s2.hashCode() then ... ?

s1 may or may not be the same string as s2.

s.hashCode()
$$\equiv \sum_{i=0}^{s.length-1} s[i] * (31)^{s.length-1-i}$$

If s1.hashCode() == s2.hashCode() then ... ?
s1 may or may not be the same string as s2.

If s1.hashCode() != s2.hashCode() then ... ?

s.hashCode()
$$\equiv \sum_{i=0}^{s.length-1} s[i] * (31)^{s.length-1-i}$$

If s1.hashCode() == s2.hashCode() then ...

s1 may or may not be the same string as s2.

If s1.hashCode() != s2.hashCode() then ...

s1 is a different string than s2.

ASIDE: Use Horner's rule for efficient polynomial evaluation

$$s[0] * x^3 + s[1] * x^2 + s[2] * x + s[3]$$

There is no need to compute each x^i separately.

ASIDE: Use Horner's rule for efficient polynomial evaluation

$$s[0] * 31^{3} + s[1] * 31^{2} + s[2] * 31 + s[3]$$

$$= (s[0] * 31^{2} + s[1] * 31^{1} + s[2]) * 31 + s[3]$$

$$= ((s[0] * 31^{1} + s[1]) * 31 + s[2]) * 31 + s[3]$$

$$h = 0$$
for (i = 0; i < s.length; i++)
$$h = h*31 + s[i]$$

For a degree n polynomial, Horner's rule uses O(n) multiplications, not O(n^2).

Next lecture: hash maps

We want to map the keys to a *small* range of positive integers.

How?