翻译《The Mathematical Theory of Finite Element Methods 3rd Ed (Brenner2007)》 11.3 节

2022年10月30日

1 有限元近似和锁定

为简单起见,我们假设 Ω 是一个凸多边形区域,并且 Γ_1 or Γ_2 中任意一个为空。对于纯位移问题 ($\Gamma_2 = \emptyset$),我们只需考虑齐次边界条件。

令 T^h 是 Ω 三角划分的一个非退化族。对于纯位移问题 $(\Gamma_2=\emptyset)$,我们使用有限元空间

(11.3.1)
$$V_h := \{ \nu \in H^1(\Omega) : \nu|_T$$
 为线性函数, $\forall T \in T^h \}$,

并且对于纯牵引力问题 $(\Gamma_1 = \emptyset)$, 我们使用

(11.3.2)
$$V_h := \{ \nu \in H^1(\Omega) : \nu|_T$$
 为线性函数, $\forall T \in T^h \}$,

根据第二章和第四章的理论我们得到以下定理。

(11.3.3) Theorem. \diamondsuit $u \in H^2(\Omega) \cap H^1(\Omega)$ 满足纯位移问题, 并且 $u_h \in V_h$ 满足

$$a(u_h, \nu) = \int_{\Omega} f \cdot \nu dx \quad \forall \nu \in V_h.$$

则存在一个正常数 $C_{(\mu,\lambda)}$ 使得

$$(11.3.4) ||u - u_h||_{H^1(\Omega)} \le C_{(\mu,\lambda)} h ||u||_{H^2(\Omega)}.$$

(11.3.5) Theorem. \diamondsuit $u \in H^2(\Omega)$ 满足纯牵引力问题。 \diamondsuit $u_h \in V_h$ 满足

$$a(u_h, \nu) = \int_{\Omega} f \cdot \nu dx + \int_{\Gamma} t \cdot \nu ds \quad \forall \nu \in V_h.$$

则存在一个正常数 $C_{(\mu,\lambda)}$ 使得

$$||u - u_h||_{H^1(\Omega)} \le C_{(\mu,\lambda)} h ||u||_{H^2(\Omega)}.$$

对于一般情况 $\emptyset \neq \Gamma_1 \neq \partial \Omega$ 下的收敛定理,查看练习 11.x.25. 对于固定的 μ 和 λ ,定理 11.3.3 和 11.3.5 给出了弹性问题令人满意近似的

有限元近似。但是这些有限元方法的性能随着 λ 趋向于 ∞ 而变差。这就是 所谓的锁定现象,我们将在本节的其余部分解释。

令 $\Omega = (0,1) \times (0,1)$. 我们考虑 $\mu = 1$ 时的纯位移边值问题:

(11.3.6)
$$div\{2\epsilon(u^{\lambda}) + \lambda tr(\epsilon(u^{\lambda}))\delta\} = f \quad in \quad \Omega$$

$$u^{\lambda}|_{\partial\Omega} = 0.$$

注意给定的 f ,当 $\lambda \to \infty$,(11.2.33) 说明 $\|divu^{\lambda}\|_{H^{1}(\Omega)} \to 0$. 换句话说,我们正在处理一种几乎不可能压缩的弹性材料。为了强调对 λ 的依赖,我们将应力张量 (11.1.3) $\sigma_{\lambda}(\nu)$ 和变分形式 (11.2.2) $a_{\lambda}(\nu,\omega)$ 表示为

$$\begin{split} \sigma_{\lambda}(\nu) &= 2\epsilon(\nu) + \lambda tr(\epsilon(\nu))\delta \\ a_{\lambda}(\nu,\omega) &= \int_{\Omega} \{2\epsilon(\nu) : \epsilon(\omega) + \lambda div\nu div\omega\} dx. \end{split}$$

令 T^h 为 Ω (cf. 图 1) 的一个规则三角剖分,并且 V_h 被定义为 (11.3.1)。 对于每一个 $u \in H^2(\Omega) \cap H^1_0(\Omega)$,我们定义 $u_h^{\lambda} \in V_h$ 为以下方程组的特解

$$a_{\lambda}(u_h^{\lambda}, \nu) = \int_{\Omega} [-div\sigma_{\lambda}(u)] \cdot \nu dx \quad \forall \nu \in V_h.$$

图 1: 单位正方形的规则三角剖分

定义 $L_{\lambda,h}$ 为

$$L_{\lambda,h} := \sup \{ \frac{|u - u_h^{\lambda}|_{H^1(\Omega)}}{\|div\sigma_{\lambda}(u)\|_{L^2(\Omega)}} : 0 \neq u \in H^2(\Omega) \cap H^1(\Omega) \}.$$

我们要证明存在一个与 h 无关的正常数 C 使得

(11.3.7)
$$\lim_{\lambda \to \infty} \inf L_{\lambda,h} \ge C.$$

式(11.3.7)意味着: 无论 h 取多小,只要 λ 足够大,我们都能找到 $u \in H^2(\Omega) \cap H^1(\Omega)$ 使得相对误差 $|u-u_h|_{H^1(\Omega)}/\|div\sigma_\lambda(u)\|_{L^2(\Omega)}$ 以一个与 h 无关的常数为下界。换句话说,有限元方法的性能将会随着 λ 变大而变坏。

为证明式 (11.3.7), 我们首先观察到

$$\{\nu \in V_h : div\nu = 0\} = \{0\}$$

(cf.exercise 11.x.14). 因此, 映射 $\nu \to div\nu$ 是有限维空间 V_h 到 $L^2(\Omega)$ 的一个一对一映射, 并且存在一个正常数 $C_1(h)$ 使得

(11.3.9)
$$\|\nu\|_{H^1(\Omega)} \le C_1(h) \|div\nu\|_{L^2(\Omega)} \quad \forall \nu \in V_h.$$

令 ψ 是 $\overline{\Omega}$ 上的无穷次可微函数,使得在 Ω 的边界上 $curl\psi = 0$ 且 $\|\epsilon(curl\psi)\|_{L^2(\Omega)} = 1$ 。令 $u := curl\psi$ 。则 $u \in H^2(\Omega) \cap H^1(\Omega)$,并有

$$(11.3.10) divu = 0,$$

(11.3.12)
$$\sigma_{\lambda}(u) = 2\epsilon(u).$$

根据 (11.3.10), (11.3.11) 和 11.2 节开始的分步积分得

$$(11.3.13) - \int_{\Omega} div \epsilon(u) \cdot u dx = \int_{\Omega} \epsilon(u) : \epsilon(u) dx = 1.$$

根据 (11.3.12), (11.3.13) 推断

(11.3.14)
$$\lim_{\lambda \to \infty} div \sigma_{\lambda}(u) = 2 div \epsilon(u) \neq 0.$$

由 (2.5.10) 得,

(11.3.15)
$$a_{\lambda}(u - u_h^{\lambda}, u - u_h^{\lambda}) = \min_{\nu \in V_h} a_{\lambda}(u - \nu, u - \nu) \le a_{\lambda}(u, u).$$

由 (11.3.10) 和 (11.3.11), 我们得到

$$(11.3.16) a_{\lambda}(u, u) = 2.$$

因此,对于 λ 足够大时有

$$(11.3.17) a_{\lambda}(u - u_h^{\lambda}, u - u_h^{\lambda}) \le 2.$$

由 (11.3.10) 和 (11.3.17) 得

$$\begin{split} \sqrt{\lambda} \| div u_h^{\lambda} \|_{L^2(\Omega)} &= \sqrt{\lambda} \| div (u - u_h^{\lambda}) \|_{L^2(\Omega)} \\ &\leq \sqrt{a_{\lambda} (u - u_h^{\lambda}, u - u_h^{\lambda})} \\ &< \sqrt{2} \end{split}$$

对足够大的 λ 有

$$\lim_{\lambda \to \infty} \|div u_h^{\lambda}\|_{L^2(\Omega)} = 0.$$

由式 (11.3.9) 有

(11.3.18)
$$\lim_{\lambda \to \infty} \|u_h^{\lambda}\|_{H^1(\Omega)} = 0.$$

最后, 我们得到 (cf.exercise 11.x.16)

(11.3.19)
$$\lim_{\lambda \to \infty} \inf L_{\lambda,h} \ge \lim_{\lambda \to \infty} \inf \frac{|u - u_h^{\lambda}|_{H^1(\Omega)}}{\|div\sigma_{\lambda}(u)\|_{L^2(\Omega)}}$$

$$= \frac{|u|_{H^1(\Omega)}}{\|div\sigma(u)\|_{L^2(\Omega)}} > 0.$$

对这个特别例子的锁定的讨论到此为止。有关锁定的更多信息请参考 (Babuska & Suri 1992)。