BRAC

BRAC University

Dept. of Computer Science and Engineering

Assessment: Assignment 1

Due: 12 PM 10 October 2023

Full Marks: 50

Nam	e:	
Stud	ent ID:	

Semester: Fall 2023 Course Code: CSE251 Section: **15**

Course Name: Electronic Devices and Circuits

- \checkmark Write down your student ID on the top right corner of each of the pages.
- Clearly write the solutions, along with the questions, on white paper with black ink (no need to use color pen, don't use pencils).
- ✓ Use CamScanner, or Adobe Scan, or Microsoft Office Lens, or any other software to scan the pages and make a single PDF file.
- ✓ After creating the PDF, make sure that (a) there are no pages missing, (b) all of the pages are legible, (c) your student ID on each page are visible.
- ✓ Please note, collaboration ≠ copying. You are allowed to discuss the questions and clear confusion you might have, but you have to write your solutions independently and be able to explain your answers during a random viva.
- ✓ [Very Important] Rename the PDF in the following format: "A1_StudentID_FullNameWithoutSpace.pdf". For example, if my student ID is 12345678 and my name is Shadman Shahid, the filename should be "A1_12345678_ShadmanShahid.pdf".
- ✓ Submission Link: https://forms.gle/DUiHoK6iKJCWW2QB6

Question 1: 10 Marks

In the above circuit A = 100, $R_i = 100 \text{ k}\Omega$ and $R_o = 1 \text{ k}\Omega$. Answer the following questions

a) Write the node equations for the nodes indicated by v_i and v_o .

[CO1] 4

b) Solve the node equations to find the values of v_i and v_o .

- [CO2] 3
- c) Can circuit theorems based on linearity principle (such as superposition principle) be applied [CO1] 3 to the above circuit? Explain in short why or why not.

Question 2:

8 Marks

For $\emph{\textbf{R}}=100~\Omega,~\emph{\textbf{R}}_\emph{\textbf{L}}=10~\textrm{k}\Omega,~\emph{\textbf{r}}_\emph{\textbf{z}}=20~\Omega,~\emph{\textbf{V}}_\emph{\textbf{Z0}}=3~\textrm{V},~\textrm{and}~\emph{\textbf{I}}_\emph{\textbf{Z}}=1~\textrm{mA}.$

a) Find V_0 , I_L

[CO2] 4

b) Find I, V^+ .

[CO2] 4

[CO2] 3

[CO2] 3

Question 3:

In the adjacent circuit $\beta = 100$.

- a) Derive an expression of I_E in terms of I_B and β . [CO1] 2
- b) Find the value of the currents I_E , and I_B .
- c) Find the value of the voltage at the output node v_o . [CO2] 2
- d) Express v_o in terms of I_B and $oldsymbol{eta}$. Thereafter, determine how v_o would change for changing the value of $m{\beta}$. Show the change in $m{v}_o$ for $m{\beta}={f 50}$ and $\beta = 20.$

10 Marks

Question 4: 12 Marks

a) Analyze the circuit in the Figure above to find i_x in terms of v_S , R_S , R_O , and b.

[CO1] ₂

b) For the above circuit, find the value of $v_{\it o}$.

[CO2] 4

c) In the above circuit, $\beta=80$. Find the current I_0 and v_0 from the given circuit.

[CO2] 6

Question 5: 10 Marks

- a) Write down the two KVL equations for the lines (loops) indicated by the red lines L_1 and L_2 .
 - [CO1] 3
- b) Solve the circuit to find v_0 , I_1 and I_2 . You may use either mesh analysis or nodal analysis. [CO2] 4

c) Analyze the circuit to find v_0 and I_0 . [Use any technique of your choice.]

[CO2] 3