

Applied Mathematical Finance I

Lecture 4: Vanilla Interest Rate Derivatives

Vladimir Shangin Vega Institute Foundation

October 12, 2023

Setup

• Consider a market consisting of a money-market account $B_t=\mathrm{e}^{\int_0^t r_s\,ds}$ and a family of zero-coupon bonds $\{p(\cdot,T)\}_{T\geq 0}$. We assume that there exists a risk-neutral measure i.e. a probability measure $\mathbb{Q}\sim\mathbb{P}$ such that, for any T>0,

$$rac{p(t,T)}{B_t},\quad t\in[0,T],$$

is a \mathbb{Q} -martingale.

• Arbitrage-free price at t of a derivative contract paying \mathcal{X}_T at $T \geq t$ is given by

$$PV_t = B_t \cdot \mathbb{E}_t^{\mathbb{Q}} \left[\frac{\mathcal{X}_T}{B_T} \right] = \mathbb{E}_t^{\mathbb{Q}} \left[e^{-\int_t^T r(s) \, ds} \cdot \mathcal{X}_T \right]. \tag{1}$$

ullet Choosing T-bond as a numéraire, we can switch to a T-forward measure \mathbb{Q}^T

$$PV_t = p(t, T) \cdot \mathbb{E}_t^T \left[\mathcal{X}_T \right]. \tag{2}$$

Forward Rate Agreement (FRA)

- Forward Rate Agreement (FRA) is an OTC market contract to exchange future spot rate $L(T,T+\tau)$ for a fixed rate K agreed at inception date t < T.
- Recall that $L(T, T + \tau)$ is the risk-free rate of return over period $[T, T + \tau]$.
- The market practice for FRA is not to wait until $T+\tau$ but settle the contract at time T when spot rate $L(T,T+\tau)$ is observed. Assuming the unit notional, the actual payment amount (from the viewpoint of a payer of the fixed rate) is then given by theoretical payoff discounted to time T

$$\frac{(L(T,T+\tau)-K)\tau}{1+\tau L(T,T+\tau)}.$$

• The fixed rate *K* which sets the contract value to zero at inception is called the FRA par rate.

FRA Par Rate

ullet By the fundamental pricing equation, we have under risk-neutral measure ${\mathbb Q}$

$$\mathrm{PV}_t^{\mathrm{FRA}} = B_t \cdot \mathbb{E}_t^{\mathbb{Q}} \left[\frac{(L(T,T+ au)-K) au}{1+ au L(T,T+ au)} \cdot \frac{1}{B_T} \right].$$

 \bullet Given the connection between $L(T,T+\tau)$ and $p(T,T+\tau)$

$$\frac{1}{p(t,T)}=1+\tau L(t,T),$$

we obtain

$$ext{PV}_t^{ ext{FRA}} = B_t \cdot \mathbb{E}_t^{\mathbb{Q}} \left[\frac{1 - (1 + K au) \cdot p(T, T + au)}{B_T} \right]$$

$$= p(t, T) - (1 + K au) \cdot p(t, T + au).$$

Therefore

$$PV_t^{FRA} = 0 \iff K = \frac{1}{\tau} \left[\frac{p(t, T)}{p(t, T + \tau)} - 1 \right] = F(t, T, T + \tau). \tag{3}$$

More About FRAs

- LIBOR forward rates are break-even rates for FRA contracts.
- Note that static replicating portfolio for FRA contract with strike price K consists of one T-bond bought and $(1+K\tau)$ units of $(T+\tau)$ -bond sold. This result is model independent.
- Could we consider a simpler linear payoff $(L(T,T+\tau)-K)\tau$ at T?
- We actually could, but this turns out to be a much harder case. The thing is that this payoff cannot be statically replicated with zero-coupon bonds.
- On the other hand, it can be replicated by either dynamically trading zero-coupon bonds (this require specifying a model) or with a static portfolio of vanilla options (more on this later).

Futures Contract

- FRAs are forward contracts on LIBOR that allow OTC market participants (institutions) to lock in interest rate for future period.
- In some sense, futures contracts on LIBOR are similar to FRAs but traded on exchanges.
- Futures contracts have the following properties
 - \circ Futures contract costs zero: it can be entered at no cost at any time t.
 - Marking to market: there exists a futures price $f(t,T,T+\tau)$ such that futures contract pays $f(t+dt,T,T+\tau)-f(t,T,T+\tau)$ in the interval [t,t+dt].
 - At maturity, futures price converges to spot rate: $f(T, T, T + \tau) = L(T, T + \tau)$.

Futures Rate

- Consider trading in a futures market. Let $\phi = (\phi^1, \phi^2)^\intercal$ be a self-financing trading strategy where ϕ^1 corresponds to the money market account B and ϕ^2 is the number of futures contracts with futures price f.
- Since it cost nothing to enter a futures contract, the value of the trading strategy ϕ is simply $V_t = \phi_t^1 B_t$.
- We have under risk neutral measure Q

$$d\frac{V_t}{B_t} = \frac{\phi_t^2}{B_t} df_t$$

meaning that f is a \mathbb{Q} -martingale.

Futures convexity adjustment is

$$f(t,T,T+\tau)-F(t,T,T+\tau)=-\frac{1}{p(t,T+\tau)}\operatorname{cov}\left[L(T,T+\tau),\mathrm{e}^{-\int_t^{T+\tau}}r_s\,ds\right].$$

Swaps

- An interest rate swap is an agreement between two counterparties to exchange one stream of cashflows for another one based on a specific principal amount (notional). These streams are called the legs of the swap.
- Some common types of swaps are
 - Plain Swaps: One counterparty pays fixed rate and the other one makes payments linked to some floating rate of the same currency.
 - Basis Swaps: Both counterparties make floating rate payments of the same currency but with different frequencies (e.g. 3M vs 6M).
 - Cross-Currency Swaps: One counterparty pays fixed rate and the other one makes payments linked to some floating rate of a different currency. There is usually exchange of notionals at the beginning and the end of a swap.
 - Cross-Currency Basis Swaps: Both counterparties make floating rate payments of different currencies. Again, there is usually exchange of notionals at the beginning and the end of a swap.

Plain Fix-for-Floating Swaps

• Swap schedule is given by a tenor structure i.e. an increasing sequence of times

$$0 \le T_0 < T_1 < \cdots < T_n, \quad T_i - T_{i-1} = \tau_i, \quad i \in \{1, \dots, n\}.$$

For simplicity, we will assume that the schedule is the same for both legs. Here T_0 is called the start of the swap and T_n is the maturity.

• For each of the periods $[T_{i-1},T_i]$, $i\in\{1,\ldots,n\}$, payer of the fixed rate makes simple interest payments based on the pre-agreed rate K, in return for simple interest payments linked to the LIBOR fixing $L(T_{i-1},T_i)$ observed at T_{i-1} . The payments are exchanged * at the end of each period i.e. at T_i .

^{*}In practice, the payments are netted meaning that only their difference is actually paid.

Pricing Fix-for-Floating Swap

• By applying (2) to each cash flow individually, the present value of a swap (with unit notional) at time $t \in [0, T_0]$ can be expressed as

$$PV_t^{\text{Swap}} = \sum_{i=1}^n p(t, T_i) \cdot \mathbb{E}_t^{T_i} \left[(L(T_{i-1}, T_i) - K) \tau_i \right]$$

$$= \underbrace{\sum_{i=1}^n p(t, T_i) F(t, T_{i-1}, T_i) \tau_i}_{\text{Floating leg value}} - \underbrace{\sum_{i=1}^n p(t, T_i) K \tau_i}_{\text{Fixed leg value}}. \tag{4}$$

• By convention, swaps cost zero at inception. Swap par rate, that is, value of the fixed rate K that makes swap cost zero at t=0, is given by the weighted average of forward rates

$$K = \sum_{i=1}^{n} \omega_i F(0, T_{i-1}, T_i), \quad \omega_i = \frac{p(0, T_i)\tau_i}{\sum_{i=1}^{n} p(0, T_i)\tau_i}.$$
 (5)

Annuity

- Note that formula (4) is model independent: present value only depends on the shape of the zero curve observed at *t*.
- We can rewrite (4) as

$$PV_t^{Swap} = A_t (R_t - R_0),$$

where $A_t = \sum_{i=1}^n p(t,T_i) au_i$ - is the annuity and R_t denotes par rate as seen at t

$$R_t = \sum_{i=1}^n \omega_i F(t, T_{i-1}, T_i), \quad \omega_i = \frac{p(t, T_i)\tau_i}{\sum_{j=1}^n p(t, T_j)\tau_j}.$$

- Annuity scaled by one basis point (1bp = 0.01%) has a clear financial meaning: it is the change in present value of a swap due to 1bp change in swap par rate.
- A_t is obviously a value of a self-financing portfolio and hence can be used as a valid numéraire.

Basis swaps

- In a single-currency basis swap, two parties exchange floating rates of the same currency with different frequencies, e.g. 3M vs 6M.
- We have showed that the initial value of a floating leg is

$$PV_0^{\text{Floating Leg}} = \sum_{i=1}^n p(0, T_i) F(0, T_{i-1}, T_i) \tau_i.$$
 (6)

• Given that $F(0,T_{i-1},T_i)=rac{1}{ au_i}\left(rac{p(0,T_{i-1})}{p(0,T_i)}-1
ight)$, we see that (6) reduces to just

$$PV_0^{\text{Floating Leg}} = p(0, T_0) - p(0, T_n). \tag{7}$$

• Therefore, initial value of a floating leg does not depend on frequency and hence, in our setup, any basis swap* automatically costs zero at inception.

Figure: EURIBOR 3M vs 6M basis spread for a 5Y swap.

Caps & Floors

- A caplet (floorlet) is a call (put) option on a reference interest rate.
- A standard option on a future spot rate L(T,T+ au) with strike price K pays out at T+ au (unit notional is assumed)
 - $\circ \ \ au(L(T,T+ au)-K)_+$ in case of a caplet.
 - $\circ \ \ au(K-L(T,T+ au))_+$ in case of a floorlet.

Caplets and floorlets are usually simply referred to as optionlets.

- The market, however, directly quotes series of caplets (floorlets) called caps (floors) instead of single period instruments.
- For instance, a standard 2Y cap on 3M LIBOR is a series of 7* caplets, each lasting for 3M. The price of the cap is just the sum of caplet prices.

^{*}The first period is ignored since the corresponding LIBOR rate is already observed.

Optionlet Pricing

• By the pricing equation (2), we obtain for $t \leq T$ under forward measure $\mathbb{Q}^{T+ au}$

$$PV_t^{\text{Optionlet}} = p(t, T + \tau) \cdot \mathbb{E}_t^{T+\tau} (\theta \, \tau [L(T, T + \tau) - K])_+, \tag{8}$$

where $\theta=\pm$ 1 depending on the type of the optionlet.

• Given that L(T,T+ au)=F(T,T,T+ au) we can rewrite (8) as

$$PV_t^{Optionlet} = p(t, T + \tau) \cdot \mathbb{E}_t^{T+\tau} (\theta \, \tau [F(T, T, T + \tau) - K])_+. \tag{9}$$

• Recall that forward rate $F(t,T,T+\tau),\,t\in[0,T],$ is a $\mathbb{Q}^{T+\tau}$ -martingale. Assuming some appropriate dynamics of $F(t,T,T+\tau),$ we can explicitly compute optionlet price.

Black-76 Formula

• Let us assume that $F(t,T,T+ au),\ t\in[0,T],$ follows a geometric Brownian motion with constant volatility σ_{Black} under $\mathbb{Q}^{T+ au}$

$$\frac{dF(t, T, T + \tau)}{F(t, T, T + \tau)} = \sigma_{\text{Black}} dW_t^{T + \tau},$$

where $W^{T+\tau}$ is a Brownian motion under $\mathbb{Q}^{T+\tau}$.

• We can now easily compute expectation in (8) to get Black's formula

$$PV_{t}^{Optionlet} = p(t, T + \tau)\tau \theta \left[F \Phi \left(\theta d_{+} \right) - K \Phi \left(\theta d_{-} \right) \right], \tag{10}$$

where
$$d_+=rac{\ln(F/K)}{\sigma_{
m Black}\sqrt{T-t}}+rac{\sigma_{
m Black}\sqrt{T-t}}{2}$$
, $d_-=d_+-rac{\sigma_{
m Black}\sqrt{T-t}}{2}$, Φ - standard normal CDF.

• We price caps/floors without modelling the evolution of the entire zero curve.

Bachelier Formula

• Under some circumstances rates can become negative so it may be more appropriate to assume that $F(t,T,T+\tau)$, $t\leq T$, follows a normal process

$$dF(t, T, T + \tau) = \sigma_{\text{Bachelier}} dW_t^{T+\tau}.$$

This leads to Bachelier pricing formula

$$\mathrm{PV}_t^{\mathrm{Optionlet}} = p(t, T + \tau) \tau \, \sigma_{\mathrm{Bachelier}} \, \sqrt{T - t} \left[\theta \, d \, \Phi(\theta \, d) + \phi(d) \right],$$

where
$$d=rac{F-K}{\sigma_{
m Bachelier}\sqrt{T-t}}$$
, and $\phi=\Phi'$ - standard normal PDF.

Implied Cap Volatility

- Cap volatility is a single volatility number given to all constituent caplets such that the cap market price is recovered.
- Market quotes imply different volatilities (either Black or Bachelier) for different strikes and maturities, giving the implied cap volatility surface.
- To price single caplets consistently with the market, one needs to bootstrap caplet volatilities (which are not directly observable) from the market cap volatilities.
- For example, a 1Y year cap with quarterly payments will generally have a different volatility (say, σ_1) to a 2Y cap volatility (say, σ_2) for the same strike, thus implying different volatility for the first three caplets. Given σ_1 and σ_2 , and picking up an interpolation method, one can construct volatility curve $\sigma(t)$ over [1Y, 2Y] such that the 2Y cap quote is matched.


```
Quote: VCAP10
                                                                            ¥ _ 0
Menu ▼ ↑ Q ▼ VCAP10
                             🔎 Search | Related 🕶 Trade 🕶 🖳 🔏 🛮
15:31 05N0V14
                  ICAP
                                                                               VCAP10
                      EUR Caps/Floors - Normal Volatilities
                                                                     4.00 5.00 10.0
         i57.96i36.8i38.3i40.8i43.9i46.8i56.8i65.4
                                          i55.7i60.7i64.9i68.2i72.2i80.2i88.0i
25Y11.76162.941
30Y | 1.80 | 61.10 |
                                          i54.0i58.7i62.7i65.9i69.8i77.6i85.2i
OPTIONS Index <VCAP>
                                                                   Disclaimer <IDIS>
ICAP Global Index <ICAP>
                                                   Forthcoming changes <ICAPCHANGE>
```

Figure: Caps/Floors - Bachelier volatilities.

Swaptions

- A swaption is an option on a swap. The purchaser of a European swaption buys the right to enter into a fix-for-floating interest rate swap with a pre-specified fixed rate on a specific date for a specific period.
- A receiver swaption gives the holder the right to receive a fixed rate while a
 payer swaption gives the right to pay the fixed rate.
- Swaptions are quoted similar to forward starting swaps. For example, a 1Y10Y swaption is the option to enter into a 10Y swap in 1Y (and hence the maturity of the swaption is 1Y).

Swaption pricing

- Let $\{T_i\}_{i=0}^n$ be an increasing sequence of future times. Consider a swaption with maturity T_0 and strike K that gives the right to enter at T_0 a plain swap with fixed rate K and payments on $\{T_i\}_{i=1}^n$.
- Recall that par swap rate at T_0 is given by

$$R_{T_0} = \frac{\sum_{i=1}^n p(T_0, T_i) \cdot F(T_0, T_{i-1}, T_i) \cdot \tau_i}{\sum_{i=1}^n p(T_0, T_i) \cdot \tau_i}.$$

ullet The payoff at T_0 of a cash-settled payer swaption can be then written as

$$A_{T_0}(R_{T_0}-K)_+$$
.

• Using (1) and (2) the PV of the swaption at $0 \le t \le T_0$ is then given by

$$\begin{aligned} \text{PV}_t^{\text{Swaption}} &= B_t \cdot \mathbb{E}_t^{\mathbb{Q}} \left[\frac{A_{T_0}(R_{T_0} - K)_+}{B_{T_0}} \right] \\ &= p(t, T_0) \cdot \mathbb{E}_t^{T_0} \left[A_{T_0}(R_{T_0} - K)_+ \right]. \end{aligned}$$

Swaption pricing and Annuity Measure

- ullet Both of the above expressions for $\mathrm{PV}_t^{\mathrm{Swaption}}$ are hard to compute. Let us invoke a change of numéraire technique again.
- Note that A_t is actually a valid numéraire and we get under the corresponding martingale measure \mathbb{Q}^A (so called annuity measure)

$$\mathrm{PV}_t^{\mathrm{Swaption}} = A_t \cdot \mathbb{E}_t^{\mathbb{Q}^A} (R_{T_0} - K)_+$$

- We see that payer swaption is equivalent to a call option on a swap rate.
- In view of (7), swap rate R_t , considered as a process on $t \in [0, T_0]$, is represented by a value of a self-financing portfolio deflated by numéraire A_t

$$R_t = \frac{p(t, T_0) - p(t, T_n)}{A_t}.$$

• The immediate consequence is that R_t is a martingale under the annuity measure \mathbb{O}^A .

Black and Bachelier Formulae for Swaptions

- Given that R_t , $t \leq T_0$, must be a martingale under \mathbb{Q}^A , we again appeal to Black and Bachelier formulae*. We can price European swaptions without modelling the dynamics of the entire interest rate curve.
- Market quotes imply different volatilities for swaptions with different specifications. In order to be consistent with a market, we need to put a correct implied volatility (whether it is normal or log-normal) in the corresponding formula.
- An interesting feature of swaption market is that it implies different swaption volatilities for different strikes and different start and end dates of the underlying swap. Therefore, we observe a three-dimensional implied volatility surface which is often referred to as a swaption cube.

^{*}Note that in this case the underlying is the swap rate R instead of forward rate F and that the deflator is the annuity A_t instead of zero-coupon bond.

Swaption Volatility Cube

				Strike 0.1%														
					1y	2y	3y	4y	5y			8y	9y	10y	15y	20y	25y	30y
				28-Nov-14	,		-			• • • • • • • • • • • • • • • • • • • •		-			-			-
	Strike 0.25%															55.04%		
		ı		1y	2 y	3у	4y	5y	6у	7 y	8y	9y	10y	15y	20y	25y	30y	61.25%
		ı	28-Nov-14	47.71%	56.53%			59.06%	57.68%	57.40%	56.58%	56.30%	56.10%	55.00%	51.12%	45.40%	43.43%	80.72%
	Strike 0.5%																43.89%	55.95%
			1y	2y	3у	4y	5y	6у	7y	8y	9у	10y	15y	20y	30y	30y	49.06%	74.02%
	28-1	Nov-14	58.14%	60.91%	49.08%	44.78%	45.67%	44.42%	44.36%	43.85%	43.81%	43.82%	43.54%	40.98%	36.93%	36.00%	64.72%	87.08%
	Strike 1% 35.9:															35.95%	44.26%	97.11%
	1y		2y	Зу	4 y	5у	6у	7 y	8y	9у	10y	15y	20y	25y	30y	39.59%	58.26%	91.94%
28-Nov-14	6	7.14%	72.50%	56.95%	43.40%	38.57%	34.16%	32.90%	31.87%	31.65%	31.63%	31.77%	30.90%	29.18%	29.87%	51.50%	68.57%	79.25%
28-Jan-15		9.91%	66.17%	52.04%				32.16%	31.73%	31.26%			30.62%	29.34%	28.99%	35.00%	76.76%	73.20%
28-Apr-15	7	0.39%	62.28%			38.15%	35.94%	34.89%	34.35%	33.64%	33.25%	31.86%	32.19%	31.20%	30.37%	46.16%	72.47%	70.20%
28-Oct-15	6	3.25%	53.06%	46.34%	42.56%	40.76%	39.36%	38.38%	37.49%	36.40%	35.59%	33.30%	33.22%	34.95%	37.56%	54.44%	61.82%	74.76%
28-Oct-16	6	3.30%	63.68%	59.04%	54.69%	50.60%	48.09%	45.67%	43.33%	40.98%	38.82%	32.61%	23.85%	23.78%	25.49%	61.12%	56.89%	74.17%
30-Oct-17	6	1.44%	62.75%	58.88%	54.94%	51.27%	48.92%	46.68%	44.69%	42.69%	40.90%	34.37%	29.95%	31.23%	33.86%	57.92%	54.49%	
29-Oct-18	5	9.99%	59.08%	56.07%	53.26%	50.57%	48.59%	46.73%	45.00%	43.40%	41.94%	35.69%	33.92%	36.34%	40.05%	49.61%	57.20%	
28-Oct-19	5	7.32%	54.94%	52.94%	50.98%	49.11%	47.49%	45.88%	44.60%		·	36.55%	·		45.08%	45.48%	56.52%	
28-Oct-21	5	6.52%	53.87%	51.93%	50.10%	48.24%	46.88%	45.63%	44.34%	43.37%	42.32%	37.23%	37.75%	40.18%	43.22%	43.49%		
28-Oct-24	5	3.64%	51.73%	49.90%	48.18%	46.25%	45.44%	44.44%	43.35%	42.19%	40.99%	38.86%	37.94%	38.01%	37.79%	45.41%		
29-Oct-29		8.70%	46.13%	43.92%	41.74%	39.67%	39.31%	38.84%	38.29%	37.67%	37.03%	34.23%	33.73%	33.95%	34.41%	44.78%		
30-Oct-34	4	2.76%	40.46%	38.36%	36.38%	34.50%	34.34%	34.11%	33.82%	33.49%	33.16%	31.66%	31.71%	32.29%	32.77%			
28-Oct-39	3	8.22%	36.25%	35.15%	33.15%	31.83%	32.11%	32.32%	32.46%	32.56%	32.63%	31.36%	32.12%	32.97%	34.17%			
28-Oct-44	3	5.52%	34.71%	32.73%	32.03%	30.96%	31.06%	31.20%	31.36%	31.53%	31.70%	31.87%	32.91%	33.60%	33.63%			

