

Ultra-high transfer rate high capacity holographic disk digital data storage system.

Sergei S. Orlov, William Phillips, Eric Bjornson, and Lambertus Hesselink

Stanford University

Robert Okas
Siros Technologies, Inc.

- Basic holographic disk data storage architecture;
- Optical system and holography;
- 1 Gbit/sec HDSS electronics and synchronization;
- Polaroid CROP ULSH-500 recording media;
- 1 Gbit/sec end-to-end demonstration;
- 10 Gbit/sec ultra-high speed demonstration;
- Summary.

Acknowledgments

• Stanford:

- Eric Bjornson;
- Lambertus Hesselink (PI);
- Xiachun Li;
- Sergei Orlov
- Loukas Paraschis;
- William Phillips;
- Yuzuru Takashima.

• Siros Technologies:

- Dave Davies;
- Harold Harrigan;
- Frank Kozar;
- Darren Kwan;
- Robert Okas;
- Ray Snyder.

• Polaroid/Aprilis:

- Richard Ingwall;
- David Waldman.

Coastal Optical Systems/ORA:

- James Kumler;
- Don Koch.
- DARPA:
 - L. N. Durvasula
- Part of this work was been performed under support from DARPA/NSIC Holographic Data Storage Systems (HDSS) and Photo Refractive Information Storage Materials (PRISM) Consortia.

Architectures for Thin and Thick Media

Thick volume medium, angular/phase multiplexing, high bit density (>100 bits/µm²).

Rotating disk format, thin volume medium, massive spatial multiplexing, (shift or correlation), high data rate, high capacity.

Digital holographic storage: binary patterns vs. analog images

Design considerations for high data rate high capacity system

• Holographic disk architecture:

- high data rate can be realized with rotating disk + pulsed laser source,
- high capacity achieved by massive spatial multiplexing (large media area),

High NA low distortion imaging optics:

- high bit density per hologram for high capacity at high data rate;
- ~0.5 bit/μm² density per hologram;
- shift/correlation multiplexing for multiple superimposed holograms.

• Hardware implemented channel, ECC decoding, and deconvolution electronics (for 1 Gbit/s data rate)

- rate efficient channel code, implementable in FPGA electronics => 6:8 encoding;
- -3×3 deconvolution using COTS electronic components.

Material - Polaroid CROP photopolymer:

- large M/# (>10.0 for plw), low shrinkage (<0.1%),
- high sensitivity (S > 1000 cm/J),
- thickness 200 to 500 μm.

Overall architecture of Stanford/HDSS holographic disk system

Stanford/HDSS holographic disk system

Holographic disk system components

• Low shrinkage material:

- Polaroid ULSH-500 photopolymer disk
 - S > 1000 cm/J
 - M/# > 2.4:
 - thickness 500 μ m/200 μ m;
 - thermal precure;
 - low shrinkage ($\varepsilon < 0.1\%$).

High NA imaging optics:

- F=17.1mm double Fourier transform:
- Total field of view 38 mm (dia) (including diffuser);
- Imaging area: $13.1 \times 13.1 \text{ mm}^2$
- low distortions (<0.25 pixel);
- $-NA_{pix} = 0.035;$
- $-\zeta = 1.7$
- Fourier stop: $1.1 \times 1.1 \text{ mm}^2$;
- Hologram spot area: ~2 mm²,.

• <u>Electronics/laser/transport system:</u>

- Seagull air-bearing spindle 300 RPM,
 optical shaft encoder, 40 nm edge position accuracy;
- Newport PM600, 25 nm repeatability;
- laser: 500μJ/pulse, 25 nsec Nd:YAG;
 - < 5 nsec rms. timing jitter;
- 1000 fps CCD and
- 1 Gbit/s decoding electronics,
- Synchronization electronics,
- IBM FLC SLM.

• <u>Shift/correlation Multiplexing</u>:

- 4º FWHM diffuser to generate speckle reference;
- Correlation distance ~1.2 μm;
- $-\delta x = 5 \mu m;$
- $NA_{speckle} = 0.4$
- Density = $0.5 \text{ bits/}\mu\text{m}^2/\text{hologram}$.

Optical system and holographic correlation multiplexing

Single-head optical design: High NA Double Fourier transform imaging with integrated reference optics

High NA imaging optics:

F=17.1mm double Fourier transform lens pair;

12 element design, high-index glass (ORA, Stanford);

Total field of view 38 mm (NA = 0.75) (including reference diffuser);

Imaging area: $13.1 \times 13.1 \text{ mm}^2$ (NA = 0.39)

Low distortions (<0.25 pixel over entire SLM field);

Fourier stop: $1.1 \times 1.1 \text{ mm}^2 \ (\zeta = 1.7)$;

Hologram spot area: ~2 mm²,

Storage density: 0.5 bits/mm² per hologram.

Storage density:

$$D = \left(\frac{d}{z l F}\right)^2 \times N,$$

$$D = \left(\frac{2NA}{zl}\right)^2 \times N,$$

N - number of superimposed holograms; Multiplexing using speckle correlation mux.

Double Fourier transform lens pair (top view) manufactured by Coastal Optical Systems

Imaging, low distortion Double Fourier transform lens

Error map (0.1% area - corners)

SNR map

- Imaging distortion are < 0.25 pixels over entire SLM format (from Moiré pattern meas.);
- Both magnification and decenter compensators are implemented on second objective;
- Further image correction using hardware implemented 3×3 pixel deconvolution;
- Data interleaving for uniform BER (before ECC).

Correlation shift speckle multiplexing

(Gaussian speckle field as a reference beam)

Decorrelation (A.Darskii and V.V.Markov, Proc. SPIE **1600**, 318 (1992)):

$$h(d) = h_0 | 2 J_1 (k NA d)/(k NA d) |^2$$

$$d_x (FWHM) \sim 1.2 l / NA,$$

$$d_y (FWHM) \sim 1.2 l / NA.$$

- d_x , d_y are determined by speckle autocorrelation;
- selectivity is **independent** of shift direction;
- selectivity is independent of media thickness;
- crosstalk buildup depends on shift direction and thickness.

Superimposed holograms recorded in Polaroid 200 mm photopolymer with speckle reference

100 Holograms (exposure = 0.5mJ/cm² each)

Holograms are recorded with $\sim 5 \mu m$ shift of the media between each exposure.

$$M/\# = S h^{1/2} = 0.98$$
; $NA_{speckle} = 0.21$; $NA_{signal} = 0.015$

HDSS Electronics

1 Gbit/sec Siros/Stanford/HDSS hardware electronics operation

- 16 6:8 decoder boards (4 chan./board);
- 1 Multiplexer board;
- 1 ECC board (3 RS chips);
- 1 Synchronization board (disk/laser/camera/SLM);
- PCI-VME Bridge;
- Electronics is implemented using reprogrammable FPGA and CPLD electronic components.

Rotating disk/laser/camera synchronization

- Disk position is derived from optical shaft encoder $(4,096 2 \times \text{quadratures})$;
- Encoder: < 10 nsec rms edge jitter (i.e., <20 nm position error for 16,384 positions on the disk);
- Laser: 500mJ/pulse, 20 nsec Nd:YAG;
 - < 5 nsec rms. timing jitter;

Location Match (from positions table)

Siros/Stanford/HDSS 1 Gbit/sec electronics

ECC Board

Multiplexer board

Decoder boards (16)

Synchronization board

Kodak C7 camera electronics

Siros/Stanford HDSS electronics

Holographic recording material:

Polaroid CROP photopolymer

Recording material: Polaroid CROP photopolymer

• Requirements:

- large M/# (>10.0 for plw), low shrinkage (<0.1%),
- high sensitivity (S > 1000 cm/J),
- thickness 200 to 500 μm.

Material: Polaroid Cationic Ring-Opening Polymerization photopolymer;

• Composition:

- epoxy siloxane-based di- and multi-functional monomers;
- photoacid generator;
- photosensitizer dye;
- binder (siloxane-based).

Recording characteristics:

- ultra-low shrinkage (after precure) < 0.1%;
- sensitivity 500 to 3000 cm/J;
- dynamic range $(M/\#)_{plw}$ up to 20.0, $(M/\#)_{image} \sim 2.0$;
- thickness up to 500 μm;
- optical homogeneity: $BER_{imaging} < 10^{-14}$ (IBM HOST data);
- scatter: 1.5×10^{-3} srad⁻¹.

Polymerization and chain propagation in Polaroid CROP

- **Termination:** self-entanglement; reaction with quenching centers, etc.
- Ring opening step reduces shrinkage upon polymerization (ε < 0.1%, at M/# ~ 5.0);
- Index modulation due to diffusion and polymer/binder segregation.

Sensitivity of Polaroid CROP photopolymer

- optical preexposure/scheduled exposure early stage: viscosity buildup for hologram anchoring.
- thermal precure/scheduled exposure starting material is already a dry film; higher optical uniformity compared to optical preexposure.

Sample multiplexed hologram recorded in Polaroid CROP using correlation multiplexing

- 500 microns thick recording medium;
- Material thermally precured before recording;
- Image: 1024×1024 pixels, 6:8 encoding;
- Byte error rate: $5 \cdot 10^{-3}$ (~ 5% area masked).

Demonstrations

1Gbit/sec demonstration summary (10/99)

- JPEG image data encoded into SLM images (6:8 code);
- Page capacity = 65.3 Kbytes (user);
- Holograms were sequentially recorded at 300 RPM disk rotation rate (each hologram was recorded with ~ 12 laser pulses);
- Material: 200 μm Polaroid ULSH-500 6.5" diameter disk;
- Holograms were retrieved at 1 Gbit/sec and channel/ ECC decoded by hardware;
- Data are captured by Tektronix logic analyzer and converted back to JPEG files.
- Currently: 12 simultaneous video-streams playback from holographic disk (at 650 fps).

1 Gbit/sec end-to-end demonstration in Stanford/HDSS holographic disk system

Sample retrieved hologram Raw Byte error rate: 3×10^{-3} h ~ 5×10^{-3}

Sample **Retrieved JPEG data** (data distributed between different holograms).

Original JPEG data

Recording density vs. scatter; HDSS photopolymer disk system

- Material figure-of-merit \propto N of holograms, density \propto C \times (M/#)/ ($e \ddot{0}$ scatter)
- M/# > 3 to 5 is not feasible due to shrinkage distortions.
- Recording density is currently ~ 10 bits/mm²
- Signal strength allows faster transfer rates: 10 Gbit/sec and higher.

Recording density in ULSH-500 photopolymer

Error rate increases with density due to hologram distortions arising from material shrinkage.

Ultra-high transfer rate demonstration (laser pulse energy consideration)

- Pulse energy decreases with repetition rate for f > 1 kHz (weaker signal at higher rate (LightWave Electronics 210G, doubled Nd:YAG laser).
- Required diffraction efficiency (due to scatter rather than signal strength limitations) allows hologram readout even at faster rates (upto 10kHz).

10 Gbit/sec readout timing diagram (4/00 and 9/00)

- Laser trigger frequency: every 8 counts;
- Camera trigger frequency: every 96 counts;
- Camera width:

2 counts (50 μ sec).

10 Gbit/sec transfer rate demonstration

- Page capacity = 68.5 Kbytes (user);
- Holograms incrementally recorded at 300 RPM disk rotation speed;
- Material: 200 μm thick Polaroid ULSH-500, 6.5" dia disk;
- Holograms retrieved at 10 Gbit/sec (10,000 fps),
- Camera and electronics sampled holograms at ~1 Gbit/sec (every 12th image, camera integration window = $25 \mu sec$),
- Data captured with logic analyzer;
- Images uploaded from decoder boards memory to verify raw error rate (~ 1%).

Holograms read out at > 1Gbit/s optical transfer rate

• 6 Gbps (~ 1% raw Byte errors)

- 10 Gbps (~1.5% raw Byte errors);
- different set of optics: higher optical efficiency than 1 and 6 Gbit/sec.

Material: 200 mm and 500 mm thick CROP photopolymer, thermally precured.

Search in rotating holographic disk system

Auto-and cross- correlation for binary images (amplitude modulation / confocal detection)

SLM contrast: $C = I_{n_1} / I_{n_0}$ p - average number of 1's.

$$\left. \frac{\left\langle signal \right\rangle}{\left\langle crosscorrelation \right\rangle} \right|_{p=p_{optimum}} = \frac{\left(C-1\right)^4}{16C\left(\sqrt{C}-1\right)^4}$$

- For typical FLC C~ 5 to 8 => SCR ~1.5 at best.
- Stronger signal at higher p.

$$p_{optimum} = \frac{1}{\sqrt{C} - 1} - \frac{2}{C - 1}$$

$$C \otimes \Psi, p_{optimum} \otimes 0$$

$$C \otimes 1, p_{optimum} \otimes 0.5$$

Summary

- 1 Gbit/sec end-to-end demonstration in holographic disk system;
- Hardware implemented holographic channel decoding, deconvolution, and Reed-Solomon ECC electronics;
- 10 Gbit/sec sustained optical transfer rate from a holographic disk system demonstrated (end-to-end operation possible with faster camera, e.g., CMOS, and new HDSS electronics);
- Density: ~ 10 bits/mm² (at 1 to 10 Gbit/sec transfer rate);
- Higher bit density at present data rate is possible in reduced scatter materials.
- Potential application for relational data base search.
- Acknowledgements: DARPA/NSIC HDSS Consortium (systems);
 DARPA/NSIC PRISM Consortium (materials).