Chapter 1

Introduction to Algorithms, Correctness and Efficiency.

1.1 Peaks-Finding.

Example 1.1.1 (Leading Example.). Consider an n-length array A such that $A_1, A_2,, A_n \in \mathbb{R}$. We will say that A_j is a peak (local minimum) if he's greater than his neighbors. Namely, $A_i \geq A_{i\pm 1}$ if $i\pm 1 \in [n]$. Whenever $i\pm 1$ is not in the range [n], we will define the inequality $A_i \geq A_{i\pm 1}$ to hold trivially. For example, for n=1, $A_1=A_n$ is always a peak. Write an algorithm that, given A, returns the position of an arbitrary peak.

Example 1.1.2. Warming up. How many peaks do the following arrays contain?

1.
$$A[i] = 1 \ \forall i \in [n]$$

2. $A[i] = \begin{cases} i & i < n/2 \\ n/2 - i & else \end{cases}$

3.
$$A[i] = i \ \forall i \in [n]$$

1.2 Naive solution.

To better understand the problem, let's first examine a simple solution before proposing a more intriguing one. Consider the algorithm examining each of the items A_i one by one.

Result: returns a peak of
$$A_1...A_n \in \mathbb{R}^n$$
1 for $i \in [n]$ do
2 | if A_i is a peak then
3 | return i
4 | end
5 end

Algorithm 1: naive peak-find alg.

Correctness. We will say that an algorithm is correct, with respect to a given task, if it computes the task for any input. Let's prove that the above algorithm is doing the job.

Proof. Assume towards contradiction that there exists an n-length array A such that the algorithm peak-find fails to find one of its peaks, in particular, the Alg. returns $j' \in [n]$ such that $A_{j'}$ is not a peak. Denote by j the first position of a peak in A, and note that if the algorithm gets to line (2) in the jth iteration then either it returns j or A_j is not a peak.

Hence it must hold that j' < j. But a satisfaction of the condition on line (2) can happen only if $A_{j'}$ is a peak, which contradicts the minimality of j.

Running Time. Question, How would you compare the performance of two different algorithms? What will be the running time of the naive peak-find algorithm? On the lecture you will see a well-defined way to treat such questions, but for the sake of getting the general picture, let's assume that we pay for any comparison a quanta of processing time, and in overall, checking if an item in a given position is a peak, cost at most $c \in \mathbb{N}$ time, a constant independent on n.

Question, In the worst case scenario, how many local checks does peak-finding do? For the third example in Example 1.1.2, the naive algorithm will have to check each item, so the running time adds up to at most $c \cdot n$.

1.3 Naive alg. recursive version.

Now, we will show a recursive version of the navie peak-find algorithm for demonstrating how correctness can be proved by induction.

```
Result: returns a peak of A_1...A_n \in \mathbb{R}^n

1 if A_1 \geq A[2] or n=1 then

2 | return 1

3 end

4 return 1 + peak-find(A_2,..A_n)

Algorithm 2: naive recursive peak-find alg.
```

Claim 1.3.1. Let $A = A_1, ..., A_n$ be an array, and $A' = A_2, A_3, ..., A_n$ be the n-1 length array obtained by taking all of A's items except the first. If $A_1 \leq A_2$, then any peak of A' is also a peak of A.

Proof. Let A'_j be a peak of A'. Split into cases upon on the value of j. If n-1>j>1, then $A'_j\geq A'_{j\pm 1}$, but for any $j\in [2,n-2]$ we have $A'_j=A_{j+1}$ and therefore $A_{j+1}\geq A_{j+1\pm 1}\Rightarrow A_{j+1}$ is a peak in A. If j'=1, then $A'_1>A'_2\Rightarrow A_2\geq A_3$ and by combining the assumption that $A_1\leq A_2$ we have that $A_2\geq A_1$, A_3 . So $A_2=A'_1$ is also a peak. The last case j=n-1 is left as an exercise.

We are ready to prove the correcttess of the recursive version by induction using Claim 1.3.1.

1. Base, single element array. Trivial.

- 2. Assumption, Assume that for any m-length array, such that m < n the alg returns a peak.
- 3. Step, consider an array A of length n. If A_1 is a peak, then the algorithm answers affirmatively on the first check, returning 1 and we are done. If not, namely $A_1 < A_2$, then by using Claim 1.3.1 we have that any peak of $A' = A_2, A_3, \ldots, A_n$ is also a peak of A. The length of A' is n-1 < n. Thus, by the induction assumption, the algorithm succeeds in returning on A' a peak which is also a peak of A.

1.4 An attempt for sophisticated solution.

We saw that we can find an arbitrary peak at $c \cdot n$ time, which raises the question, can we do better? Do we really have to touch all the elements to find a local maxima? Next, we will see two attempts to catch a peak at logarithmic cost. The first attempt fails to achieve correctness, but analyzing exactly why will guide us on how to come up with both an efficient and correct algorithm.

```
Result: returns a peak of A_1...A_n \in \mathbb{R}^n

1 i \leftarrow \lceil n/2 \rceil

2 if A_i is a peak then

3 | return i

4 end

5 else

6 | return i - 1 + \text{find-peak}(A_i, A_{i+1}..A_n)

7 end
```

Algorithm 3: fail attempt for more sophisticated alg.

Let's try to 'prove' it.

- 1. Base, single element array. Trivial.
- 2. Assumption, Assume that for any m-length array, such that m < n the alg returns a peak.
- 3. Step. If $A_{n/2}$ is a peak, we're done. What happens if it isn't? Is it still true that any peak of $A_i, A_{i+1}, \ldots, A_n$ is also a peak of A? Consider, for example, A[i] = n i.

1.5 Sophisticated solution.

The example above points to the fact that we would like to have a similar claim to Claim 1.3.1 that relates the peaks of the split array to the original one. Let's prove correction by induction.

Proof. 1. Base, single element array. Trivial.

2. Assumption, Assume that for any m-length array, such that m < n the alg returns a peak.

```
Result: returns a peak of A_1...A_n \in \mathbb{R}^n

1 i \leftarrow \lceil n/2 \rceil

2 if A_i is a peak then

3 | return i

4 end

5 else if A_{i-1} \leq A_i then

6 | return i-1+ find-peak(A_i,A_{i+1}..A_n)

7 end

8 else

9 | return find-peak(A_1,A_2,A_3..A_{i-1})

10 end
```

Algorithm 4: sophisticated alg.

3. Step, Consider an array A of length n. If $A_{\lceil n/2 \rceil}$ is a peak, then the algorithm answers affirmatively on the first check, returning $\lceil n/2 \rceil$ and we are done. If not, then either $A_{\lceil n/2 \rceil} < A_{\lceil n/2 \rceil-1}$ or $A_{\lceil n/2 \rceil} < A_{\lceil n/2 \rceil+1}$. We have already handled the first case, that is, using Claim 1.3.1 we have that any peak of $A' = A_{\lceil n/2 \rceil+1}, A_{\lceil n/2 \rceil+2}, \ldots, A_n$ is also a peak of A. The length of A' is n/2 < n. So by the induction assumption, in the case where $A_{\lceil n/2 \rceil} < A_{\lceil n/2 \rceil-1}$ the algorithm returns a peak. In the other case, we have $A_{\lceil n/2 \rceil} < A_{\lceil n/2 \rceil+1}$ (otherwise $A_{\lceil n/2 \rceil}$ would be a peak). We leave finishing the proof as an exercise.

What's the running time? Denote by T(n) an upper bound on the running time. We claim that $T(n) \le c \log(n+1)$, let's prove it by induction.

- *Proof.* 1. Base. For the base case, n=1 we get that $c \log(1+1)=c$ on the other hand only a single check made by the algorithm, so indeed the base case holds.
 - 2. Induction Assumption. Assume that for any m < n, the algorithm runs in at most $c \log(m+1)$ time.
 - 3. Step. Notice that in the worst case, $\lceil n/2 \rceil$ is not a peak, and the algorithm calls itself recursively immediately after paying c in the first check. Hence:

$$T(n) \le c + T(n/2) \le c + c\log(\lceil n/2 \rceil + 1)$$

$$= c\log(2) + c\log(\lceil n/2 \rceil + 1) \le c = c\log(2(\lceil n/2 \rceil + 1))$$

$$\le c\log(n+1)$$

1.6 Induction.

What is induction?

1. A mathematical proof technique. It is essentially used to prove that a property P(n) holds for every natural number n.

1.6. INDUCTION. 5

- 2. The method of induction requires two cases to be proved:
 - (a) The first case, called the base case, proves that the property holds for the first element.
 - (b) The second case, called the induction step, proves that if the property holds for one natural number, then it holds for the next natural number.
- 3. The domino metaphor.

The two types of induction, their steps, and why it makes sense (Strong vs Weak) - Emphasize the change in the induction step.

Example 1.6.1 (Weak induction). *Prove that* $\forall n \in \mathbb{N}, \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Proof. Base: For $n=1, \sum_{i=0}^{1} 1=1=\frac{(1+1)\cdot 1}{2}$. Assumption: Assume that the claim holds for n. Step:

$$\sum_{i=0}^{n+1} i = \left(\sum_{i=0}^{n} i\right) + n + 1 = \frac{n(n+1)}{2} + n + 1$$
$$= \frac{n(n+1) + 2 \cdot (n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Example 1.6.2 (Weak induction.). Let $q \in \mathbb{R}/\{1\}$, consider the geometric series $1, q, q^2, q^3, \dots, q^k, \dots$ Prove that the sum of the first k elements is

$$1 + q + q^2 + \dots + q^{k-1} + q^k = \frac{q^{k+1} - 1}{q - 1}$$

Proof. Base: For n=1, we get $\frac{q^{k+1}-1}{q-1}=\frac{q-1}{q-1}=1$. Assumption: Assume that the claim holds for k. then: Step:

$$1 + q + q^2 + \dots + q^{k-1} + q^k + q^{k+1} = \frac{q^k - 1}{q - 1} + q^{k+1} = \frac{q^{k+1} - 1 + q^{k+1} (q - 1)}{q - 1} = \frac{q^{k+1} - 1 + q^{k+2} - q^{k+1}}{q - 1} = \frac{q^{k+2} - 1}{q - 1}$$

Example 1.6.3 (Strong induction). Let there be a chocolate bar that consists of n square chocolate blocks. Then it takes exactly n-1 snaps to separate it into the n squares no matter how we split it.

Proof. By strong induction. Base: For n=1, it is clear that we need 0 snaps. Assumption: Assume that for **every** m < n, this claim holds.

Step: We have in our hand the given chocolate bar with n square chocolate blocks. Then we may snap it anywhere we like, to get two new chocolate bars: one with some $k \in [n]$ chocolate blocks and one with n-k chocolate blocks.

From the induction assumption, we know that it takes k-1 snaps to separate the first bar, and n-k-1 snaps for the second one. And to sum them up, we got exactly

$$(k-1) + (n-k-1) + 1 = n-1$$

snaps. \Box