Meromorphität

- Funktion f ist meromorph auf U, wenn
 - A⊆U hat in U keine Häufungspunkte
 - f holomorph auf U bis auf A
 - f hat in A höchstens Pole
 - A Menge der Singularitäten in f

Residuensatz

- $\oint_C f(z) dz = 2\pi i \sum_{a \in A} Ind_C(a) Res_{z=a} f(z),$ wenn
 - f meromorph auf U
 - U sternförmig
 - A die Menge der Singularitäten von f
 - C eine geschlossene Kurve in U, die nicht durch A verläuft
- Beispiel

Bestimmung von Residuen

- Pole erster Ordnung
 - $-\frac{p(z)}{q(z)}$
 - * p(z) holomorph um z_0
 - $*\ q(z_0)=0,\, q'(z_0)\neq 0$
 - $\ Res_{z=z_0} \tfrac{p(z)}{q(z)} = \tfrac{p(z_0)}{q'(z_0)}$
- Pole höherer Ordnung m>1

Res_{z=z₀}
$$f(z) = \frac{1}{(m-1)!} \left(\frac{d}{dz} \right)^{m-1} [(z-z_0)^m f(z)] \Big|_{z=z_0}$$

 $[[{\bf Singularit\"{a}t}]]$