Apprentissage profond et représentation latente de séquences peptidiques

Rémy Sun

Département d'informatique ENS Rennes

XTRA 2016

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

- Entrée A, poids W, biais b
- Transformation linéaire WA + b
- Activation non-linéaire :
- Evaluation (score) de la sortie
- Apprentissage de W et b par rétropropagation sur le score
- Réseau neuronal : plusieurs neurones en parralléle

- Entrée A, poids W, biais b
- Transformation linéaire WA + b
- Activation non-linéaire f
- Evaluation (score) de la sortie
- Apprentissage de W et b par rétropropagation sur le score
- Réseau neuronal : plusieurs neurones en parralléle

- Entrée A, poids W, biais b
- Transformation linéaire WA + b
- Activation non-linéaire f
- Evaluation (score) de la sortie
- Apprentissage de W et b par rétropropagation sur le score
- Réseau neuronal : plusieurs neurones en parralléle

- Entrée A, poids W, biais b
- Transformation linéaire WA + b
- Activation non-linéaire f
- Evaluation (score) de la sortie
- Apprentissage de W et b par rétropropagation sur le score
- Réseau neuronal : plusieurs neurones en parralléle

Plusieurs couches de neurones

- Hiérarchie : plusieurs niveaux de représentations
- Evanouissement de gradient
- Grands ensembles d'entraînement

- Plusieurs couches de neurones
- Hiérarchie : plusieurs niveaux de représentations
- Evanouissement de gradient
- Grands ensembles d'entraînement

- Plusieurs couches de neurones
- Hiérarchie : plusieurs niveaux de représentations
- Evanouissement de gradient
- Grands ensembles d'entraînement

- Plusieurs couches de neurones
- Hiérarchie : plusieurs niveaux de représentations
- Evanouissement de gradient
- Grands ensembles d'entraînement

- Plusieurs couches de neurones
- Hiérarchie : plusieurs niveaux de représentations
- Evanouissement de gradient
- Grands ensembles d'entraînement

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

Non supervisé

- Encodage
- Représentation latente
- Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage
- Représentation latente
- Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage
- Représentation latente
 - Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage
- Représentation latente
- Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage
- Représentation latente
- Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage
- Représentation latente
- Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage
- Représentation latente
- Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Non supervisé
- Encodage
- Représentation latente
- Décodage
- Eviter d'encoder l'identité
 - Compression
 - Bruitage
 - Régularisation

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

Réseaux Convolutionnels : recherche de caractéristique

- Filtres de caractéristiques
- Permet d'isoler des caractéristiques locales

Réseaux Convolutionnels : recherche de caractéristique

- Filtres de caractéristiques
- Permet d'isoler des caractéristiques locales

Réseaux Convolutionnels : recherche de caractéristique

- Filtres de caractéristiques
- Permet d'isoler des caractéristiques locales

Dépendance temporelles

- Sortie + état caché persistant (boucle de rétroaction)
- Pas de dépendances hiérarchiques
- Réseau « profond »à une couche
- Très utilisé en langages naturels
- Unité LSTM (Long Short-Term Memory)

- Dépendance temporelles
- Sortie + état caché persistant (boucle de rétroaction)
- Pas de dépendances hiérarchiques
- Réseau « profond »à une couche
- Très utilisé en langages naturels
- Unité LSTM (Long Short-Term Memory)

- Dépendance temporelles
- Sortie + état caché persistant (boucle de rétroaction)
- Pas de dépendances hiérarchiques
- Réseau « profond »à une couche
- Très utilisé en langages naturels
- Unité LSTM (Long Short-Term Memory)

- Dépendance temporelles
- Sortie + état caché persistant (boucle de rétroaction)
- Pas de dépendances hiérarchiques
- Réseau « profond »à une couche
- Très utilisé en langages naturels
- Unité LSTM (Long Short-Term Memory)

- Dépendance temporelles
- Sortie + état caché persistant (boucle de rétroaction)
- Pas de dépendances hiérarchiques
- Réseau « profond »à une couche
- Très utilisé en langages naturels
- Unité LSTM (Long Short-Term Memory)

- Dépendance temporelles
- Sortie + état caché persistant (boucle de rétroaction)
- Pas de dépendances hiérarchiques
- Réseau « profond »à une couche
- Très utilisé en langages naturels
- Unité LSTM (Long Short-Term Memory)

(b) After applying dropout.

Désactiver aléatoirement des neurones

- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

(b) After applying dropout.

- Désactiver aléatoirement des neurones
- Eliminer la concentration. d'information
- Faire travailler tout le
- Généraliser la
- Permet d'entraîner ad

(b) After applying dropout.

- Désactiver aléatoirement des neurones
- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

(b) After applying dropout.

- Désactiver aléatoirement des neurones
- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

Eviter le sur-entraînement

(b) After applying dropout.

 Désactiver aléatoirement des neurones

- Eliminer la concentration d'information
- Faire travailler tout le réseau
- Généraliser la représentation apprise
- Permet d'entraîner ad nauseam

Outline

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

- Acide aminés : molécules chimiques
- Structure primaire : chaîne d'acides amminés
- Structure secondaire : structures locales formé par les acides
- Structure tertiaire : forme tridimensionnelle

- Acide aminés : molécules chimiques
- Structure primaire : chaîne d'acides amminés
- Structure secondaire : structures locales formé par les acides
- Structure tertiaire : forme tridimensionnelle

- Acide aminés : molécules chimiques
- Structure primaire : chaîne d'acides amminés
- Structure secondaire : structures locales formé par les acides
- Structure tertiaire : forme tridimensionnelle

- Acide aminés : molécules chimiques
- Structure primaire : chaîne d'acides amminés
- Structure secondaire : structures locales formé par les acides
- Structure tertiaire : forme tridimensionnelle

- Acide aminés : molécules chimiques
- Structure primaire : chaîne d'acides amminés
- Structure secondaire : structures locales formé par les acides
- Structure tertiaire : forme tridimensionnelle

Outline

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires
 - H. R, P. K, L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - H. S, H. M, O. K. Fast model-based protein homology detection without alignment. 2007 1 seule couche récurrente
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map prediction.

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires
 - H. R, P. K, L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - H. S, H. M, O. K. Fast model-based protein homology detection without alignment, 2007 1 seule couche récurrente
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map prediction.

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires.
 - H. R, P. K, L. J 2015 Improving prediction of secondary structure,
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio
- Classification de protéines selon différents critéres
 - H. S. H. M. O. K. Fast model-based protein homology detection
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires.
 - H. R. P. K. L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio
- Classification de protéines selon différents critéres
 - H. S, H. M, O. K. Fast model-based protein homology detection
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires.
 - H. R. P. K. L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - H. S, H. M, O. K. Fast model-based protein homology detection
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires.
 - H. R. P. K. L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - H. S. H. M. O. K. Fast model-based protein homology detection
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires.
 - H. R. P. K. L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - H. S. H. M. O. K. Fast model-based protein homology detection without alignment. 2007 1 seule couche récurrente
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires
 - H. R, P. K, L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - H. S, H. M, O. K. Fast model-based protein homology detection without alignment. 2007 1 seule couche récurrente
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map prediction.

Succés en :

 Reconnaissance d'image, langages naturels, prédiction de sentiments, données bio-médicales, représentation, ...

- Prédiction de structures secondaires
 - H. R, P. K, L. J 2015 Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
 - S. M, E. J, C. J. 2015 A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
- Classification de protéines selon différents critéres
 - H. S, H. M, O. K. Fast model-based protein homology detection without alignment. 2007 1 seule couche récurrente
- Prédiction de contacts
 - L. PD, N. K, B. P. 2012 Deep architectures for protein contact map prediction.

Outline

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

- Tâche sur une chaîne longue : prédiction de classe structurale
 - Découpage de la chaîne en fragments courts
- Travaux usuels : représentation par pseudo-vecteur de fréquence des protéines
- Etude sur les séquences peptidiques
- Représentation de l'acide a_i par V = (v_k) où v_i = 1 et v_k = 0(k ≠ i)

- Tâche sur une chaîne longue : prédiction de classe structurale
 - Découpage de la chaîne en fragments courts
- Travaux usuels : représentation par pseudo-vecteur de fréquence des protéines
- Etude sur les séquences peptidiques
- Représentation de l'acide a_i par V = (v_k) où v_i = 1 et v_k = 0(k ≠ i)

- Tâche sur une chaîne longue : prédiction de classe structurale
 - Découpage de la chaîne en fragments courts
- Travaux usuels : représentation par pseudo-vecteur de fréquence des protéines
- Etude sur les séguences peptidiques
- Représentation de l'acide a_i par V = (v_k) où v_i = 1 et v_k = 0(k ≠ i)

- Tâche sur une chaîne longue : prédiction de classe structurale
 - Découpage de la chaîne en fragments courts
- Travaux usuels : représentation par pseudo-vecteur de fréquence des protéines
- Etude sur les séguences peptidiques
- Représentation de l'acide a_i par $V = (v_k)$ où $v_i = 1$ et $v_k = 0 (k \neq i)$

Outline

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

FIGURE – Carte de corrélation entre représentation latente et propriétés connues

- Entraînement sur des fragments de taille 11
- Augmentation de la taille de l'ensemble d'entraînement
- Encodeur récurrent
- Décodeur récurrent

FIGURE – Carte de corrélation entre représentation latente et propriétés connues

- Entraînement sur des fragments de taille 11
- Augmentation de la taille de l'ensemble d'entraînement
- Encodeur récurrent
- Décodeur récurrent

FIGURE – Carte de corrélation entre représentation latente et propriétés connues

- Entraînement sur des fragments de taille 11
- Augmentation de la taille de l'ensemble d'entraînement
- Encodeur récurrent
- Décodeur récurrent

FIGURE – Carte de corrélation entre représentation latente et propriétés connues

- Entraînement sur des fragments de taille 11
- Augmentation de la taille de l'ensemble d'entraînement
- Encodeur récurrent
- Décodeur récurrent

- Tâche : classifier les classes structurales des protéines
- Classificateur convolutionnel
- Premières couches pré-entraînées
- Validation de la représentation latente acquise

- Tâche : classifier les classes structurales des protéines
- Classificateur convolutionnel
- Premières couches pré-entraînées
- Validation de la représentation latente acquise

- Tâche : classifier les classes structurales des protéines
- Classificateur convolutionnel
- Premières couches pré-entraînées
- Validation de la représentation latente acquise

- Tâche : classifier les classes structurales des protéines
- Classificateur convolutionnel
- Premières couches pré-entraînées
- Validation de la représentation latente acquise

Outline

- Apprentissage profond?
 - Pourquoi l'apprentissage « profond » ?
 - Entraînement non-supervisé
 - Architectures standards
 - Application : Protéines
 - Etat de l'art
- Etude réalisée
 - Séquences peptidiques
 - Architectures entrainées
 - Résultats

FIGURE – Carte de corrélation entre représentation latente et propriétés connuesphysico-chimiques

- Dimensions liées dans l'espace latent
- Corrélation de coordonnées à l'hydropathie, à la charge ...
- Pas de corrélation à la structure secondaire observées

FIGURE – Carte de corrélation entre représentation latente et propriétés connuesphysico-chimiques

- Dimensions liées dans l'espace latent
- Corrélation de coordonnées à l'hydropathie, à la charge ...
- Pas de corrélation à la structure secondaire observées

FIGURE – Carte de corrélation entre représentation latente et propriétés connuesphysico-chimiques

- Dimensions liées dans l'espace latent
- Corrélation de coordonnées à l'hydropathie, à la charge ...
- Pas de corrélation à la structure secondaire observées

FIGURE – Carte de corrélation entre représentation latente et propriétés connuesphysico-chimiques

- Dimensions liées dans l'espace latent
- Corrélation de coordonnées à l'hydropathie, à la charge ...
- Pas de corrélation à la structure secondaire observées

- Comparaison favorable au même classificateur non pré-entrainé :
 - Atteinte plus rapide de la précision maximale
 - Précision maximale plus élevée
- Pertinence de la représentation latente

- Comparaison favorable au même classificateur non pré-entrainé :
 - Atteinte plus rapide de la précision maximale
 - Précision maximale plus élevée
- Pertinence de la représentation latente

- Comparaison favorable au même classificateur non pré-entrainé :
 - Atteinte plus rapide de la précision maximale
 - Précision maximale plus élevée
- Pertinence de la représentation latente

- Comparaison favorable au même classificateur non pré-entrainé :
 - Atteinte plus rapide de la précision maximale
 - Précision maximale plus élevée
- Pertinence de la représentation latente

- Architectures d'auto-encodeurs à attention
- Acquisition d'une représentation pertinente des acides aminés
- Etude plus approfondie des hyper-paramètres
- Hiérarchiser les caractéristiques à utiliser en apprentissage
- Initialisation couche par couche?

- Architectures d'auto-encodeurs à attention
- Acquisition d'une représentation pertinente des acides aminés
- Etude plus approfondie des hyper-paramètres
- Hiérarchiser les caractéristiques à utiliser en apprentissage
- Initialisation couche par couche?

- Architectures d'auto-encodeurs à attention
- Acquisition d'une représentation pertinente des acides aminés
- Etude plus approfondie des hyper-paramètres
- Hiérarchiser les caractéristiques à utiliser en apprentissage
- Initialisation couche par couche?

- Architectures d'auto-encodeurs à attention
- Acquisition d'une représentation pertinente des acides aminés
- Etude plus approfondie des hyper-paramètres
- Hiérarchiser les caractéristiques à utiliser en apprentissage
- Initialisation couche par couche?

- Architectures d'auto-encodeurs à attention
- Acquisition d'une représentation pertinente des acides aminés
- Etude plus approfondie des hyper-paramètres
- Hiérarchiser les caractéristiques à utiliser en apprentissage
- Initialisation couche par couche?

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Peu d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisée en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Peu d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisée en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Peu d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisée en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Peu d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisée en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Peu d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisée en langages naturels.
 - Influence des hyper paramètres.

- L'apprentissage profond permet de détecter des structure hiérarchiques ou temporelles.
- Problème particulier : Peu d'exemples labélisés et chaînes très longues.
- Apparition de corrélations entre la représentation latente et des caractéristiques des séquences peptidiques.
- Perspectives
 - Utilisation d'autres architectures utilisée en langages naturels.
 - Influence des hyper paramètres.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50–100, 2000.

