FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuştean, Alexandra Otiman, Andrei Sipoş

Seminar 4

(S4.1) Arătați, pe rând, următoarele:

- (i) Dacă A este finită şi B este numărabilă, atunci $A \cup B$ este numărabilă.
- (ii) Dacă I este o mulțime numărabilă și $(A_i)_{i\in I}$ este o familie disjunctă de mulțimi numărabile, atunci $\bigcup_{i\in I} A_i$ este numărabilă.
- (iii) Dacă I este o mulțime numărabilă și $(A_i)_{i\in I}$ este o familie de mulțimi numărabile, atunci $\bigcup_{i\in I} A_i$ este numărabilă.
- (iv) Q este numărabilă.

Demonstraţie:

(i) Dacă A este finită, atunci are un număr natural de elemente n. Demonstrăm prin inducție după acel n.

Dacă n=0, atunci $A=\emptyset$ și $A\cup B=B$, numărabilă.

Presupunem acum adevărată pentru un n şi demonstrăm pentru n+1. Putem deci scrie $A=\{a\}\cup A'$ unde |A'|=n şi $a\notin A'$. Atunci $A'\cup B$ e numărabilă, din ipoteza de inducție – în particular, $A'\cup B\sim \mathbb{N}^*$. Scriem $A\cup B=\{a\}\cup A'\cup B$. Dacă $a\in B$, atunci $\{a\}\cup A'\cup B=A'\cup B$, numărabilă. Dacă $a\notin B$, atunci $\{a\}\cup A'\cup B\sim \{0\}\cup \mathbb{N}^*=\mathbb{N}$.

(ii) Oferim mai întâi demonstrația pentru $I = \mathbb{N}$.

Pentru orice $n \in \mathbb{N}$, A_n este numărabilă, deci $A_n = \{a_{n,0}, a_{n,1}, a_{n,2}, \dots, a_{n,k}, \dots\}$. Definim

$$f: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in N} A_n, \quad f(n, m) = a_{n,m}.$$

Se observă uşor, în felul următor, că f este bijecție. Pentru orice $a \in A$ există un unic $n_a \in \mathbb{N}$ a.î. $a \in A_{n_a}$ (deoarece $(A_n)_{n \in \mathbb{N}}$ este familie disjunctă), deci există un unic $m_a \in \mathbb{N}$ a.î. $a = a_{n_a,m_a}$. Inversa lui f se definește, așadar, astfel:

$$f^{-1}: \bigcup_{n \in \mathbb{N}} A_n \to \mathbb{N} \times \mathbb{N}, \quad f^{-1}(a) = (n_a, m_a).$$

Deoarece $\mathbb{N} \times \mathbb{N}$ este numărabilă, rezultă că $\bigcup_{n \in \mathbb{N}} A_n$ este numărabilă.

Considerăm acum cazul general, când I este mulțime numărabilă arbitrară și fie $F: \mathbb{N} \to I$ o bijecție. Notăm, pentru orice $n \in \mathbb{N}$, $B_n := A_{F(n)}$. Atunci $\bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} A_{F(n)} = \bigcup_{i \in I} A_i$. Însă, din cazul particular de mai sus, rezultă că $\bigcup_{n \in \mathbb{N}} B_n$ e numărabilă. Demonstrația este încheiată.

(iii) Oferim mai întâi demonstrația pentru $I = \mathbb{N}$.

Fie $A'_n := \{n\} \times A_n$. Atunci, conform (S2.5), $(A'_n)_{n \in \mathbb{N}}$ este o familie disjunctă de mulțimi numărabile. Aplicăm (ii) pentru a concluziona că $\bigcup_{n \in \mathbb{N}} A'_n$ este numărabilă. Definim

$$f: \bigcup_{n\in\mathbb{N}} A_n \to \bigcup_{n\in\mathbb{N}} A'_n, \quad f(a) = (n_a, a),$$

unde $n_a = \min\{n \in \mathbb{N} \mid a \in A_n\}$. Este evident că f este bine definită (din faptul că $a \in \bigcup_{n \in \mathbb{N}} A_n$, rezultă că există $n \in \mathbb{N}$ cu $a \in A_n$, deci mulțimea căreia îi căutăm minimul este nevidă) și injectivă. De asemenea, din (S3.4).(i), $\bigcup_{n \in \mathbb{N}} A_n$ este infinită, deoarece A_0 este infinită și incluziunea

$$j: A_0 \to \bigcup_{n \in \mathbb{N}} A_n, \quad j(a) = a$$

este injecție. În sfârșit, putem aplica (S3.4).(ii) pentru a conchide că $\bigcup_{n\in\mathbb{N}} A_n$ este numărabilă.

Considerăm acum cazul general, când I este o mulțime numărabilă arbitrară și fie $F: \mathbb{N} \to I$ o bijecție. Considerăm familia $(B_n)_{n \in \mathbb{N}}$ definită, pentru orice $n \in \mathbb{N}$, prin:

$$B_n := A_{F(n)}$$

Atunci $\bigcup_{i \in I} A_i = \bigcup_{n \in \mathbb{N}} B_n$ şi deci $\bigcup_{i \in I} A_i \sim \bigcup_{n \in \mathbb{N}} B_n \sim \mathbb{N}$.

(iv) Notăm, pentru orice $n \in \mathbb{N}$, $A_n := \{\frac{m}{n+1} \mid m \in \mathbb{Z}\}$. Arătăm că mulțimile ce compun această familie numărabilă sunt și ele numărabile. Luăm pentru orice $n \in \mathbb{N}$, bijecția $f_n : \mathbb{Z} \to A_n$, definită, pentru orice m, prin $f_n(m) = \frac{m}{n+1}$. Observăm acum că \mathbb{Q} este reuniunea familiei, deci este și ea numărabilă, aplicând (iii).

(S4.2) Să se arate că mulțimea Form, a formulelor logicii propoziționale, este numărabilă.

Demonstrație: Avem că $Expr = \bigcup_{n \in \mathbb{N}} Sim^n = \{\lambda\} \cup \bigcup_{n \in \mathbb{N}^*} Sim^n$. Deoarece $Sim = V \cup \{\neg, \rightarrow, (,)\}$ şi V este numărabilă, obținem, din (S4.1).(i), că Sim este numărabilă. Conform (S2.4).(ii), Sim^n este numărabilă pentru orice $n \in \mathbb{N}^*$. Aplicând (S4.1).(ii) şi (S4.1).(i), rezultă că Expr este numărabilă. Deoarece $V \subseteq Form$, din (S3.4).(i) rezultă că Form este infinită. Însă $Form \subseteq Expr$, deci Form este o submulțime infinită a unei mulțimi numărabile. Aplicăm (S3.4).(ii) pentru a conchide că Form este numărabilă. \square

(S4.3) Fie următoarele propoziții exprimate în limbaj natural:

- (i) Merg în parc dacă îmi termin treaba și nu apare altceva.
- (ii) Este necesar să nu plouă ca să putem observa stelele.
- (iii) Treci examenul la logică numai dacă înțelegi subiectul.
- (iv) Treci examenul la logică dacă faci o prezentare de calitate.

Transpuneți-le în formule ale limbajului formal al logicii propoziționale.

Demonstrație:

(i) Fie $\varphi=$ Merg în parc dacă îmi termin treaba și nu apare altceva. Considerăm propozițiile atomice:

p = Merg în parc. $q = \hat{I}\text{mi termin treaba.}$ r = Apare altceva.

Atunci $\varphi = (q \wedge (\neg r)) \to p$.

(ii) Fie $\psi=$ Este necesar să nu plouă ca să putem observa stelele. Considerăm propozițiile atomice:

s = Plouă. t = Putem observa stelele.

Atunci $\psi = t \rightarrow \neg s$.

(iii) Fie θ = Treci examenul la logică numai dacă înțelegi subiectul. Considerăm propozițiile atomice:

w = Treci examenul la logică. $z = \hat{I}$ nțelegi subiectul.

Atunci $\theta = w \to z$.

(iv) Fie χ = Treci examenul la logică dacă faci o prezentare de calitate. Considerăm propozițiile atomice:

u = Treci examenul la logică. v = Faci o prezentare de calitate.

Atunci $\chi = v \rightarrow u$.

(S4.4) Să se arate că pentru orice formulă φ , numărul parantezelor deschise care apar în φ coincide cu numărul parantezelor închise care apar în φ .

Demonstrație: Notăm, pentru orice $\varphi \in Form$, cu $l(\varphi)$ numărul parantezelor deschise și cu $r(\varphi)$ numărul parantezelor închise care apar în φ . Definim următoarea proprietate \boldsymbol{P} : pentru orice formulă φ ,

 φ are proprietatea \boldsymbol{P} dacă și numai dacă $l(\varphi) = r(\varphi)$.

Demonstrăm că orice formulă φ are proprietatea P folosind Principiul inducției pe formule. Avem următoarele cazuri:

- Formula φ este în V, deci există $n \in \mathbb{N}$ cu $\varphi = v_n$. Atunci $l(\varphi) = l(v_n) = 0 = r(v_n) = r(\varphi)$.
- Există $\psi \in Form$ cu $\varphi = (\neg \psi)$. Presupunem că ψ satisface \boldsymbol{P} . Obținem

$$l(\varphi) = l(\psi) + 1 = r(\psi) + 1 = r(\varphi).$$

• Există $\psi, \chi \in Form$ cu $\varphi = (\psi \to \chi)$. Presupunem că ψ, χ satisfac \boldsymbol{P} . Obținem

$$l(\varphi) = l(\psi) + l(\chi) + 1 = r(\psi) + r(\chi) + 1 = r(\varphi).$$

(S4.5) Să se dea o definiție recursivă a mulțimii variabilelor unei formule.

Demonstrație: Se observă că $Var: Form \rightarrow 2^V$ satisface următoarele condiții:

$$(R0) \qquad Var(v) \qquad = \{v\}$$

$$(R1) \quad Var(\neg \varphi) \quad = Var(\varphi)$$

$$(R2) \quad Var(\varphi \to \psi) = Var(\varphi) \cup V(\psi).$$

Aplicăm Principiul recursiei pe formule pentru $A=2^V$ și pentru

$$G_0: V \to A, \qquad G_0(v) = \{v\},$$

 $G_{\neg}: A \to A, \qquad G_{\neg}(\Gamma) = \Gamma,$
 $G_{\rightarrow}: A \times A \to A, \quad G_{\rightarrow}(\Gamma, \Delta) = \Gamma \cup \Delta.$

pentru a concluziona că Var este unica funcție care satisface (R0), (R1) și (R2).

(S4.6) Să se arate că pentru orice $e:V\to\{0,1\}$ și pentru orice formule φ,ψ avem:

(i)
$$e^+(\varphi \vee \psi) = e^+(\varphi) \vee e^+(\psi)$$
;

(ii)
$$e^+(\varphi \wedge \psi) = e^+(\varphi) \wedge e^+(\psi);$$

(iii)
$$e^+(\varphi \leftrightarrow \psi) = e^+(\varphi) \leftrightarrow e^+(\psi)$$
.

Demonstrație:

(i)

$$e^+(\varphi \lor \psi) = e^+(\neg \varphi \to \psi) = e^+(\neg \varphi) \to e^+(\psi) = \neg e^+(\varphi) \to e^+(\psi) \stackrel{(*)}{=} e^+(\varphi) \lor e^+(\psi).$$

Pentru (*), demonstrăm că pentru orice $x, y \in \{0, 1\}$, avem $\neg x \rightarrow y = x \lor y$:

\boldsymbol{x}	y	$\neg x$	$\neg x \to y$	$x \lor y$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	1	0	0

(ii)

$$e^{+}(\varphi \wedge \psi) = e^{+}(\neg(\varphi \rightarrow \neg\psi))$$

$$= \neg e^{+}(\varphi \rightarrow \neg\psi)$$

$$= \neg(e^{+}(\varphi) \rightarrow e^{+}(\neg\psi))$$

$$= \neg(e^{+}(\varphi) \rightarrow \neg e^{+}(\psi))$$

$$\stackrel{(*)}{=} e^{+}(\varphi) \wedge e^{+}(\psi).$$

Pentru (*), demonstrăm că pentru orice $x,y\in\{0,1\},$ avem $\neg(x\to\neg y)=x\land y$:

\boldsymbol{x}	y	$\neg y$	$x \rightarrow \neg y$	$\neg(x \to \neg y)$	$x \wedge y$
1	1	0	0	1	1
1	0	1	1	0	0
0	1	0	1	0	0
0	0	1	1	0	0

(iii)

$$\begin{split} e^+(\varphi \leftrightarrow \psi) &= e^+((\varphi \to \psi) \land (\psi \to \varphi)) \\ &\stackrel{\text{(ii)}}{=} e^+(\varphi \to \psi) \land e^+(\psi \to \varphi) \\ &= (e^+(\varphi) \to e^+(\psi)) \land (e^+(\psi) \to e^+(\varphi)) \\ \stackrel{\text{(*)}}{=} e^+(\varphi) \leftrightarrow e^+(\psi). \end{split}$$

Pentru (*), demonstrăm că pentru orice $x, y \in \{0, 1\}$, avem $(x \to y) \land (y \to x) = x \leftrightarrow y$:

\boldsymbol{x}	y	$x \to y$	$y \rightarrow x$	$(x \to y) \land (y \to x)$	$x \leftrightarrow y$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1
		!	ļ!		

(S4.7) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

(i)
$$((x_0 \to x_1) \to x_0) \to x_0 = 1;$$

(ii)
$$(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$$
.

Demonstrație:

(i)

x_0	x_1	$x_0 \rightarrow x_1$	$(x_0 \to x_1) \to x_0$	$((x_0 \to x_1) \to x_0) \to x_0$
1	1	1	1	1
1	0	0	1	1
0	1	1	0	1
0	0	1	0	1

(ii) Notăm $f(x_1, x_3, x_4) := (x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)).$

x_1	x_3	x_4	$x_3 \rightarrow x_4$	$x_4 \rightarrow x_1$	$x_3 \rightarrow x_1$	$(x_4 \to x_1) \to (x_3 \to x_1)$	$f(x_1, x_3, x_4)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1
0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1
0	0	0	1	1	1	1	1
			I	I	ı	•	ı