Exercise sheet

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Elements of convex learning problems

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. Show that: If g is convex function then f is convex function.

Solution. Let $u, v \in \mathbb{R}^d$ and $a \in [0, 1]$. It is

$$\begin{split} f\left(\alpha u + (1 - \alpha)v\right) &= g\left(<\alpha u + (1 - \alpha)v, x > + y\right) \\ &= g\left(<\alpha u, x > + < (1 - \alpha)v, x > + y\right) \\ &= g\left(\alpha\left(< u, x > + y\right) + (1 - \alpha)\left(< v, x > + y\right)\right) \qquad y = \alpha y + (1 - \alpha)y \\ &\leq \alpha g\left(< u, x > + y\right) + (1 - \alpha)g\left(< v, x > + y\right) \\ &= \alpha f\left(u\right) + (1 - \alpha)f\left(v\right) \end{split} \tag{g is convex}$$

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then, show that, f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Solution.

$$|f(w_1) - f(w_2)| = |g_1(g_2(w_1)) - g_1(g_2(w_2))|$$

$$\leq \rho_1 |g_2(w_1) - g_2(w_2)|$$

$$\leq \rho_1 \rho_2 |w_1 - w_2|$$

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then show that f is a $(\beta ||x||^2)$ -smooth.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

$$f(v) = g(\langle w, x \rangle + y)$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\langle v - w, x \rangle)^{2} \qquad (g \text{ is smooth})$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\|v - w\| \|x\|)^{2} \quad (Cauchy-Schwatz inequality)$$

$$= f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta \|x\|^{2}}{2} \|v - w\|^{2}$$

Exercise 4. (*)Show that $f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Solution. \Longrightarrow Let $f: S \to \mathbb{R}$ be ρ -Lipschitz over convex set $S, w \in S$ and $v \in \partial f(w)$.

- Since S is open we get that there exist $\epsilon > 0$ such as $u := w + \epsilon \frac{v}{\|v\|}$ where $u \in S$. So $\langle u w, v \rangle = \epsilon \|v\|$ and $\|u w\| = \epsilon$.
- From the subgradient definition we get

$$f(u) - f(w) \ge \langle u - w, v \rangle = \epsilon ||v||$$

• From the Lipschitzness of $f(\cdot)$ we get

$$f(u) - f(w) \le \rho ||u - w|| = \rho \epsilon$$

Therefore $||v|| \leq \rho$.

 \Leftarrow It is for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \leq \rho$.

• For any $u \in S$, it is

$$f\left(w\right)-f\left(u\right)\leq\left\langle v,w-u\right\rangle \qquad \qquad \text{(because }v\in\partial f\left(w\right)\text{)}$$
 (1)
$$\leq\left\|v\right\|\left\|w-u\right\| \qquad \text{by Cauchy-Schwarz inequality}$$

$$\leq\rho\left\|w-u\right\| \qquad \text{because }\left\|v\right\|\leq\rho$$

• Similarly it results $u, w \in S$

$$f(w) - f(u) \le \langle v, u - w \rangle ||v|| \le ||v|| ||u - w|| \le \rho ||u - w||$$

from (1) because w, u can be swaped in (1) as they both are any values in S.

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $f(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial f(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

Solution. Since g_k is convex, for all u

$$g_k(u) \ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

However $f(u) = \max_{\forall j} (g_j(u)) \ge g_k(u)$ for any j, and $f(w) = g_k(w)$ at w. Then

$$f(u) \ge g_k(u)$$

$$\ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

$$= f(w) + \langle u - w, \nabla g_k(w) \rangle$$

Then by the definition of the sub-gradient $\nabla g_k(w) \in \partial f(w)$

Exercise 6. (*)Consider the regression learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with predictor rule $h(x) = \langle w, x \rangle$ labeled by some unknown parameter $w \in \mathcal{W}$, loss function $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$, feature $x \in \mathcal{X}$, and target $y \in \mathbb{R}$. Let $\mathcal{W} = \mathcal{X} = \{\omega \in \mathbb{R}^d : |\omega| \leq \rho\}$ for some $\rho > 0$.

- (1) Show that the resulting learning problem is Convex-Lipschitz-Bounded learning problem.
- (2) Specify the parameters of Lipschitnzess.

Solution. According to the definitions given in the lecture:

• Convex-Lipschitz-Bounded Learning Problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with parameters ρ , and B, is called the learning problem whose the hypothesis class \mathcal{H} is a convex set, for all $w \in \mathcal{H}$ it is $||w|| \leq B$, and the loss function $\ell(\cdot, z)$ is convex and ρ -Lipschitz function for all $z \in \mathcal{Z}$.

I have:

Convexity: The function $g: \mathbb{R} \to \mathbb{R}$, defined by $g(a) = a^2$ is convex convex. Eg. $\frac{d^2}{da^2}g(a) = 1 \ge 0$ is non-negative. The convexity of $\ell(w, z = (x, y))$ for all z follows as a composition of g with a linear function.

Lipschitzness: The function $g(a) = a^2$ is 1-Lipschitz since It is

$$\left|g\left(a_{2}\right)-g\left(a_{1}\right)\right|=\left|a_{2}^{2}-a_{1}^{2}\right|=\left|\left(a_{2}+a_{1}\right)\left(a_{2}-a_{1}\right)\right|\leq2\rho\left(a_{2}-a_{1}\right)=2\rho\left|a_{2}-a_{1}\right|$$

Hence because $|x| \le \rho$, g(a) is $2\rho^2$ -Lipschitz as a composition.

Boundness: The norm of each hypothesis w is bounded by ρ according to the assumptions. Therefore,

- (1) the learning problem under consideration is a Convex-Lipschitz-Bounded learning problem.
- (2) the parameter of Lipschitzness is $2\rho^2$.

Exercise 7. (*) If f is λ -strongly convex and u is a minimizer of f then for any w

$$f(w) - f(u) \ge \frac{\lambda}{2} \|w - u\|^2$$

Hint:: Use the definition, and set $\alpha \to 0$.

Solution.

The following is given as a homework (Formative assessment 1)

Exercise 8. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex and β -smooth function.

(1) Show that for $v, w \in \mathbb{R}^d$

$$f(v) - f(w) \in \left(\left\langle \nabla f(w), v - w \right\rangle, \left\langle \nabla f(w), v - w \right\rangle + \frac{\beta}{2} \left\| v - w \right\|^2\right)$$

(2) Show that for $v, w \in \mathbb{R}^d$ such that $v = w - \frac{1}{\beta} \nabla f(w)$, it is

$$\frac{1}{2\beta} \left\| \nabla f\left(w\right) \right\|^{2} \le f\left(w\right) - f\left(v\right)$$

(3) Additionally assume that f(x) > 0 for all $x \in \mathbb{R}^d$. Show that for $w \in \mathbb{R}^d$,

$$\|\nabla f(w)\| \le \sqrt{2\beta f(w)}$$

Solution.

(1) If $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth then it is

$$f(v) \le f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|^{2}$$
$$f(v) - f(w) \le \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|^{2}$$

If it is convex then it is

$$f(v) \ge f(w) + \langle \nabla f(w), v - w \rangle$$
$$f(v) - f(w) \ge \langle \nabla f(w), v - w \rangle$$

Together these conditions imply upper and lower bounds

$$f(v) - f(w) \in \left(\left\langle \nabla f(w), v - w \right\rangle, \left\langle \nabla f(w), v - w \right\rangle + \frac{\beta}{2} \|v - w\|^2 \right)$$

(2) For $v, w \in \mathbb{R}^d$ such that $v = w - \frac{1}{\beta} \nabla f(w)$, it is

$$f(v) \leq f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|_{2}^{2} \quad \text{(due to smoothness)}$$

$$\iff f(w) - f(v) \leq f(w) - f(v)$$

$$\iff \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} \|v - w\|_{2}^{2} \leq f(w) - f(v)$$

$$\iff \left\langle \nabla f(w), \frac{1}{\beta} \nabla f(w) \right\rangle + \frac{\beta}{2} \left\| \frac{1}{\beta} \nabla f(w) \right\|_{2}^{2} \leq f(w) - f(v)$$

$$\iff \frac{1}{2\beta} \|\nabla f(w)\|^{2} \leq f(w) - f(v)$$

$$\|\nabla f(w)\|^{2} \leq 2\beta \left(f(w) - f(v)\right)$$

as
$$f(\cdot) \ge 0$$

$$\left\|\nabla f\left(w\right)\right\|^{2} \leq 2\beta f\left(w\right)$$

(3) From part 2, this is obvious because f(x) > 0 for all $x \in \mathbb{R}^d$, as

$$\|\nabla f(w)\|^{2} \le 2\beta f(w) \Leftrightarrow \|\nabla f(w)\| \le \sqrt{2\beta f(w)}$$

The following is given as a homework (Formative assessment 1)

Exercise 9. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a λ -strongly convex function. Assume that w^* is a minimizer of f i.e.

$$w^* = \operatorname*{arg\,min}_{w} \left\{ f\left(w\right) \right\}$$

Show that for any $w \in \mathbb{R}^d$ it holds

$$f(w) - f(w^*) \ge \frac{\lambda}{2} \|w - w^*\|^2$$

Hint: Use the definition of λ -strongly convex function, properly rearrange it, and ...

Solution. We use the definition of λ -strongly convex function; i.e. for all w, u, and $\alpha \in (0,1)$ we have

$$f(aw + (1 - \alpha)u) \le af(w) + (1 - \alpha)f(u) - \frac{\lambda}{2}\alpha(1 - \alpha)\|w - u\|^{2} \Leftrightarrow \frac{f(aw + (1 - \alpha)u) - f(u)}{\alpha} \le f(w) + f(u) - \frac{\lambda}{2}(1 - \alpha)\|w - u\|^{2}$$

For $u = w^*$ it is

$$\frac{f(aw + (1 - \alpha)w^*) - f(w^*)}{\alpha} \le f(w) + f(w^*) - \frac{\lambda}{2}(1 - \alpha)\|w - w^*\|^2$$

When $a \to 0$

$$\frac{\lambda}{2}\alpha \left(1 - \alpha\right) \left\|w - w^*\right\|^2 \to 0$$

I know that w^* is the minimizer of f. So 0 is the minimizer of g with $g(a) = f(aw + (1 - \alpha)w^*)$ hencewhen $a \to 0$

$$\frac{f\left(aw + (1 - \alpha)w^*\right) - f\left(w^*\right)}{\alpha} \to \left.\frac{\mathrm{d}}{\mathrm{d}a}g\left(a\right)\right|_{a=0}$$

So

$$0 \le f(w) + f(w^*) - \frac{\lambda}{2} \|w - w^*\|^2$$

which concludes the proof.

Exercise 10. (*)Show that the function $J(x;\lambda) = \lambda ||x||^2$ is 2λ -strongly convex

Solution. We just need to check that for all w, u, and $\alpha \in (0,1)$ we have

$$J(aw + (1 - \alpha)u; \lambda) \le aJ(w; \lambda) + (1 - \alpha)J(u; \lambda) - \frac{2\lambda}{2}\alpha(1 - \alpha)\|w - u\|^2 \iff \|aw + (1 - \alpha)u\|_2^2 \le a\|w\|_2^2 + (1 - \alpha)\|u\|_2^2 - a(1 - \alpha)\|w - u\|_2^2 \iff 0 \le 0$$

Part 2. Stochastic learning

Exercise 11. (\star) Assume a Bayesian model

$$\begin{cases} z_i | w & \stackrel{\text{ind}}{\sim} f(z_i | w), \ i = 1, ..., n \\ w & \sim f(w) \end{cases}$$

and consider that our objective is the discovery of MAP estimate w^* i.e.

$$w^* = \arg\min_{\forall w \in \Theta} \left(-\log\left(L_n\left(w\right)\right) - f\left(w\right)\right) = \arg\min_{\forall w \in \Theta} \left(-\sum_{i=1}^n \log\left(f\left(z_i|w\right)\right) - \log\left(f\left(w\right)\right)\right)$$

by using SGD with update

$$w^{(t+1)} = w^{(t)} + \eta_t \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) + \nabla_w \log \left(f\left(w^{(t)}\right) \right) \right)$$

for some randomly selected set $\mathcal{J}^{(t)} \subseteq \{1,...,n\}^m$ of m integers from 1 to n via simple random sampling (SRS) with replacement. Show that

$$\mathbb{E}_{\mathcal{J}^{(t)} \sim \text{simple-random-sampling}} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) \right) = \sum_{i=1}^n \nabla_w \log \left(f\left(z_i | w^{(t)}\right) \right)$$

Solution. It is

$$\begin{split} \mathbf{E}_{\mathcal{J}^{(t)} \sim \mathrm{SRS}} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right) &= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \mathbf{E}_{\mathcal{J}^{(t)} \sim \mathrm{SRS}} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right) \\ &= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \mathbf{E}_{\mathcal{J}^{(t)} \sim \mathrm{SRS}} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right) \\ &= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \frac{1}{n} \sum_{i=1}^n \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right) \\ &= \sum_{i=1}^n \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right) \end{split}$$

It is $E_{\mathcal{J}^{(t)} \sim SRS}\left(\nabla_w \log\left(f\left(z_j|w^{(t)}\right)\right)\right) = \frac{1}{n}\sum_{i=1}^n \nabla_w \log\left(f\left(z_i|w^{(t)}\right)\right)$ because the expectation is under the probability I get randomly an integer and for the *j*th on the probability is 1/n due to the random scheme. Also $|\mathcal{J}^{(t)}| = m$.

Exercise 12. (*) Let $\{v_t; t = 1, ..., T\}$ be a sequence of vectors. Consider an algorithm producing $\{w^{(t)}; t = 1, 2, 3, ...\}$ with

$$w^{(1)} = 0$$
$$w^{(t+1)} = w^{(t)} - \eta v_t$$

Show that

(1) it is

$$\langle w^{(t)} - w^*, v_t \rangle = \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \left\| v_t \right\|^2$$

(2) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle = \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

(3) (continue) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

Solution.

(1) It is

$$\langle w^{(t)} - w^*, v_t \rangle = \frac{1}{\eta} \langle w^{(t)} - w^*, \eta v_t \rangle$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t)} - w^* - \eta v_t \right\|^2 + \left\| w^{(t)} - w^* \right\| + \eta^2 \|v_t\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| + \eta^2 \|v_t\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \|v_t\|^2$$

(2) So

$$\sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle = \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

$$= \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

(3) So

$$\begin{split} \sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle &= \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \\ &\leq \frac{1}{2\eta} \left\| w^{(1)} - w^* \right\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \\ &= \frac{1}{2\eta} \|w^*\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \end{split}$$

Exercise 13. (*) Let $\{v_t; t = 1, ..., T\}$ be a sequence of vectors. Consider an algorithm producing $\{w^{(t)}; t = 1, 2, 3, ...\}$ with

$$w^{(1)} = 0$$

$$w^{(t+\frac{1}{2})} = w^{(t)} - \eta v_t$$

$$w^{(t+1)} = \arg\min_{w \in \mathcal{H}} \left(\left\| w - w^{(t+\frac{1}{2})} \right\| \right)$$

for t = 1, ..., T.

Hint: You can use the following Lemma

(**Projection Lemma**): Let \mathcal{H} be a closed convex set and let v be the projection of w onto \mathcal{H} ,i.e.

$$v = \operatorname*{arg\,min}_{x \in \mathcal{H}} \|x - w\|^2$$

then for every $u \in \mathcal{H}$ it is

$$||v - u||^2 \le ||w - u||^2$$

Show that

(1) it is

$$\langle w^{(t)} - w^*, v_t \rangle \le \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \left\| v_t \right\|^2$$

(2) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

(3) (continue) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

Comment: Above we show that Lemma ?? from "Handout ??: Gradient descent" holds even when a projection step is included. Hence, even if a projection step is included after the update step of the recursion of GD algorithm or the SGD algorithm the analysis in Section ?? in "Handout ??: Gradient descent" holds. Hence, even if a projection step is included after the update step of the recursion of SGD algorithm or the SGD algorithm the analysis in Section ?? in "Handout ??: Stochastic gradient descent" holds.

Solution.

(1) It is

$$\left\langle w^{(t)} - w^*, v_t \right\rangle = \frac{1}{\eta} \left\langle w^{(t)} - w^*, \eta v_t \right\rangle$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t)} - w^* - \eta v_t \right\|^2 + \left\| w^{(t)} - w^* \right\| + \eta^2 \|v_t\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+\frac{1}{2})} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| + \eta^2 \|v_t\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+\frac{1}{2})} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \|v_t\|^2$$

$$\leq \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \|v_t\|^2$$

because from the Projection Lemma

$$\left\| w^{(t+1)} - w^* \right\|^2 \le \left\| w^{\left(t + \frac{1}{2}\right)} - w^* \right\|^2$$

(2) So

$$\begin{split} \sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle &\leq \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \\ &= \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \end{split}$$

(3) So

$$\sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle \le \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

$$\le \frac{1}{2\eta} \left\| w^{(1)} - w^* \right\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

$$= \frac{1}{2\eta} \left\| w^* \right\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

The following is given as a homework (Formative assessment 2)

Exercise 14. (*) ¹Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \le L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0 \\ +1, & \text{if } \xi > 0 \end{cases}$$

 ± 1 means either -1 or +1, $\mathbb{R}_{+}:=(0,+\infty)$, and $\left\Vert x\right\Vert _{2}:=\sqrt{\sum_{\forall j}\left(x_{j}\right)^{2}}$ for the Euclidean distance.

 $^{^{1}\}mathrm{We}$ use standard notation

rule $h_w: \mathbb{R}^d \to \{-1, +1\}$ with

$$(2) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$= \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class is

(4)
$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$, it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$ where

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

(5)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\top}x) + \lambda ||w||_{2}^{2}$$

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following:

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (5) is convex.

Hint:: You may use Proposition ?? from Handout ??: Elements of convex learning problems.

(2) Show that the loss $\ell(w, z)$ for $\lambda = 0$ (5) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$.

Hint:: You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 - yw_2^\top x \le 1 - yw_1^\top x$, and then take cases $1 - yw_2^\top x > \text{or} < 0$ and $1 - yw_1^\top x > \text{or} < 0$ to deal with the max.

(3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in

order to discover w^* such as

(6)
$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm should be implemented for the above learning problem and tailored to 2, 4, and 5.

- (5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using appropriate values for m, η_t and T_{max} , code in R the algorithm you designed in part 4, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
 - (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (6).
 - (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z <- matrix(z, nrow = n, ncol = 3)</pre>
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x <- z[,1:2]
y <- z[,3]
return(list(z=z, x=x, y=y))
n_obs <- 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
#z_obs2[z_obs[,3]==-1,3]=0
\#w\_true \leftarrow as.numeric(glm(z\_obs2[,3]^ 1+ z\_obs2[,2],family = "binomial")
)$coefficients)
```

Solution.