

Janeiro 2023 | 2nd Presentation

The Problem

DNS Tunneling presents a serious threat to business and security as a whole:

- **1.** Is a very flexible attack, can be used for C&C, exfiltration and others
- 2. Is hard to be detected because of the DNS protocol nature

Our focus

- We will monitor the network traffic patterns of known good users to understand how they behave.
- Using that behaviour we will try to establish a profile.
- Based on that profile we will try to distinguish the normal traffic from anomalous traffic

Used Datasets

Not malicious Source

The non-malicious datasets should be obtained from an IEEE dataset w/10 days of DNS traffic put it has some heird communications.

Malicious Source

Our malicious dataset will be generated in-house through the use of virtualization (VMs), DNScat2 (DNS Tunneling Software) and bind9(DNS software).

Test Scenario

client@vm:~/dnscat2/client\$ tail -4 /etc/resolv.conf
nameserver 192.168.122.58
nameserver 127.0.0.53
options edns0 trust-ad
search .

General approach of our attack

- 1° Attacker establishes a DNS connection with a client.
- 2 ° Attacker opens a shell session through DNS
- 3 ° Commands like pwd, ls, cat, echo are made to search, read and modify files in the client.
- 4 ° A selected file is exfiltrated.

Our Types of Attacks

Our attackers used DNS tunneling to send commands via DNS.

- Attack 1 uses DNS tunneling with 3 seconds delay.
- Attack 2 uses DNS tunneling with 3 seconds steady delay.
- Attack 3 uses DNS tunneling with 5 seconds delay.
- Attack 4 uses DNS tunneling with 5 seconds steady delay.

Delay -> Maximum delay between packets

Steady -> The system consistently waits for the specified delay before transmitting the next message

Data Processing

- Collect raw packet data with a sampling period of 5 and 10 seconds.
- Filter data to allow only DNS or Secure DNS packets.
- Detect anomalous user behaviour
- Observation Windows :
 - Size of and 10 minutes
 - Sliding 1 every minute

Extracted Metrics

 To extract these metrics a custom application was written using python and pyshark library

Metrics:

- Number of DNS Query packets
- Number of upload bytes
- Number of DNS Reply Packets
- Number of upload bytes
- Sum time between a DNS Reply and the last DNS Query packet
- Sum time between two sequential DNS Query packets
- Sum time between two sequential DNS packets
- Min time between two sequential DNS packets
- Max time between two sequential DNS packets

Extracted Features

- To extract these metrics a custom application was written using python and numpy library
- Number of DNS Query / DNS Reply packets:
 - Mean, Median, Standard Deviation, Variance
 - 90th, 95th, 98th, 99th percentiles
- Ratio Upload Bytes/DNS Query and Download Bytes/DNS Reply:
 - Mean, Median, Standard Deviation, Variance
 - 90th, 95th, 98th, 99th percentiles
- Silence periods DNS Query/Reply (threshold = 4)
 - Mean, Median, Standard Deviation, Variance
 - 90th, 95th, 98th, 99th percentiles

Extracted Features

- Sum of time between DNS response time / DNS Queries / DNS Packets:
 - Mean, Median, Standard Deviation, Variance
 - 90th, 95th, 98th, 99th percentiles
- Min/Max Time between DNS Packets:
 - Mean, Median, Standard Deviation, Variance
 - 90th, 95th, 98th, 99th percentiles
- Periodicity:
 - Sum time between DNS Queries / DNS Reply
 - Sum time between DNS Queries
 - Sum time between DNS packets
 - Min time between DNS packets
 - Max time between DNS packets

Extracted Features

- Covariance:
 - DNS Query and Upload bytes
 - DNS Reply and Upload bytes
 - Min and Max time between DNS packets
 - Sum of time between 2 DNS Queries and Max time between DNS packets

Features Processing

- Features are split into 2 dataset
 - Training, containing 75% of all normal features
 - Testing, containing the other 25% of all normal features and all anomaly features
- The data is scaled using a standard scaler
 - Fitted on the training data
 - It is recommended for support vector machines
- PCA is performed to reduce the number of features

DNS Attack 1

Through DNS this attacker sends responses with injected sh commands with steady non active for 3 seconds.

- Window size : 10 minutes
- Sliding window every : 1 minute
- Sampling period : 5 seconds

DNS Attack 1 - Kernel Linear results

Accuracy: 25.58%

Precision: 66.66%

Recall: 29.7%

F-1: 41.1%

DNS Attack 1 - Kernel Poly results

• Accuracy: 77.01%

Precision: 85.52%

Recall: 87.83%

F-1: 86.66%

DNS Attack 1 - LocalOutlierFactor results

• Accuracy: 96.55%

Precision: 96.10%

Recall: 100%

F-1: 98.01%

DNS Attack 2

Through DNS this attacker sends responses with injected sh commands with

steady active for 3 seconds.

Window size : 10 minutes

Sliding window every : 1 minute

Sampling period : 5 seconds

DNS Attack 2 - Kernel Linear results

Accuracy: 84.05%

Precision: 83.58%

Recall: 100%

F-1: 91.05%

DNS Attack 2 - Kernel Poly results

Accuracy: 84.05%

Precision: 83.58%

Recall: 100%

F-1: 91.05%

DNS Attack 2 - LocalOutlierFactor results

Accuracy: 95.65%

Precision: 94.91%

Recall: 100%

F-1: 97.39%

DNS Attack 3

Through DNS this attacker sends responses with injected sh commands with steady non active for 5 seconds.

- Window size : 10 minutes
- Sliding window every : 1 minute
- Sampling period : 10 seconds

DNS Attack 3 - Kernel Linear results

Accuracy: 97.43%

Precision: 97.14%

Recall: 100%

F-1: 98.55%

DNS Attack 3 - Kernel Poly results

Accuracy: 97.43%

Precision: 97.14%

Recall: 100%

F-1: 98.55%

DNS Attack 3 - LocalOutlierFactor results

Accuracy: 94,87%

Precision: 94.44%

Recall: 100%

F-1: 97.14%

DNS Attack 4

Through DNS this attacker sends responses with injected sh commands with steady non active for 5 seconds.

- Window size : 10 minutes
- Sliding window every : 1 minute
- Sampling period : 10 seconds

DNS Attack 4 - Kernel Linear results

Accuracy: 73.33%

Precision: 98.41%

Recall: 72.94%

F-1: 83.78%

DNS Attack 4 - Kernel Poly results

Accuracy: 73.33%

Precision: 98.41%

Recall: 72.94%

F-1: 83.78%

DNS Attack 4 - LocalOutlierFactor results

Accuracy: 97.77%

Precision: 97.70%

Recall: 100%

F-1: 98.83%

Any questions?

References

https://ieee-dataport.org/documents/ti-2016-dns-dataset https://scikit-learn.org/stable/modules/classes.html https://github.com/KimiNewt/pyshark https://numpy.org/doc/stable/reference/index.html#reference

https://github.com/Tiagura/TPR Project -> project code