Computability Exam Solutions

June 20, 2012

Exercise 1

URM⁻ variant with predecessor P(n) instead of successor S(n)

The URM⁻ machine replaces the successor instruction S(n) with predecessor P(n), where P(n) replaces the content r_n of register n with $r_n \div 1$ (proper subtraction).

Relationship between C⁻ and C:

C⁻ ⊂ C (strict inclusion)

Proof:

1. $C^- \subseteq C$: Every URM⁻-computable function is URM-computable.

The predecessor function pred(x) = $x \div 1$ is URM-computable using standard URM instructions:

```
pred(x) can be computed by:
```

- Copy x to working register
- Use loop with successor and comparison to compute x-1

Since pred is URM-computable, any URM⁻ program can be simulated by a URM program by replacing each P(n) instruction with a subroutine that computes the predecessor.

2. $C^- \neq C$: The successor function succ(x) = x + 1 is not URM⁻-computable.

In URM⁻, we only have: Z(n), T(m,n), J(m,n,t), P(n).

With these instructions, we can only:

- Set registers to 0
- Copy between registers
- Jump based on equality
- Decrement registers

There is no way to increment a register value. Since all operations either preserve or decrease values, and we start with finite input, we cannot produce a value larger than the maximum input value.

Therefore, succ $\notin C^-$, but succ $\in C$.

Conclusion: $C^- \subset C$ (strict inclusion).

Exercise 2

Question: Does there exist a total non-computable $f: \mathbb{N} \to \mathbb{N}$ with $f(x) = x^2$ for every x such that $\phi_x(x) \downarrow$?

Answer: Yes, such a function exists.

Construction:

```
Define f: \mathbb{N} \to \mathbb{N} by:

f(x) = \{ \\ x^2 & \text{if } \varphi_x(x) \downarrow \\ 0 & \text{if } \varphi_x(x) \uparrow \\ \}
```

Verification:

- 1. **f is total:** For every $x \in \mathbb{N}$, either $\varphi_x(x) \downarrow \text{ or } \varphi_x(x) \uparrow$, so f(x) is defined.
- 2. **f satisfies the condition:** By construction, $f(x) = x^2$ whenever $\phi_x(x) \downarrow$.
- 3. **f is not computable:** Suppose f were computable. Then we could decide the halting problem:

```
For input x:

compute f(x)

if f(x) = x^2 then \phi_x(x) \downarrow

else \phi_x(x) \uparrow
```

This would make $K = \{x : \phi_x(x) \downarrow \}$ decidable, contradicting its undecidability.

Therefore, such a function f exists.

Exercise 3

Proof that $\bar{K} \leq_m A$ where $A = \{x \mid \phi_x \text{ is total}\}\$

We need to find a total computable function f such that:

```
x \in \bar{K} \iff f(x) \in A
```

Construction:

```
Define g: \mathbb{N}^2 \to \mathbb{N} by:
```

```
g(x,y) = \{
0 \quad \text{if } \varphi_{x}(x) \uparrow
\uparrow \quad \text{if } \varphi_{x}(x) \downarrow
}
```

This can be implemented as:

```
g(x,y) = \mu z. H(x,x,z)
```

By the s-m-n theorem, \exists total computable s: $\mathbb{N} \to \mathbb{N}$ such that $\phi_{s(x)}(y) = g(x,y)$.

Verification of the reduction:

- If $x \in \bar{K}$: $\phi_x(x) \uparrow$, so g(x,y) = 0 for all y, hence $\phi_{s(x)}$ is the constant 0 function (total), so $s(x) \in A$.
- If $x \in K$: $\phi_x(x) \downarrow$, so $g(x,y) \uparrow$ for all y, hence $\phi_{s(x)}$ is everywhere undefined (not total), so $s(x) \notin A$.

Therefore $\bar{K} \leq_m A$ via the reduction function s.

Exercise 4

Classification of B = $\{x \in \mathbb{N} : inc(W_x) = E_x\}$

where inc(X) = $X \cup \{x + 1 : x \in X\}$.

B is saturated: $B = \{x \mid \phi_x \in B\}$ where $B = \{f \mid inc(dom(f)) = cod(f)\}$.

B is not r.e.: We use Rice-Shapiro theorem. Consider the identity function id.

- dom(id) = N
- $inc(dom(id)) = inc(\mathbb{N}) = \mathbb{N} \cup \{x+1 : x \in \mathbb{N}\} = \mathbb{N}$
- cod(id) = N

So inc(dom(id)) = cod(id), hence $id \in B$.

Consider the finite function $\theta = \{(0,2)\}.$

- $dom(\theta) = \{0\}$
- $inc(dom(\theta)) = \{0\} \cup \{1\} = \{0,1\}$
- $cod(\theta) = \{2\}$

Since $\{0,1\} \neq \{2\}$, we have $\theta \notin B$.

Since id \in B and \exists finite $\theta \subseteq$ id with $\theta \notin$ B, by Rice-Shapiro theorem, B is not r.e.

 $\vec{\mathbf{B}}$ is not r.e.: Consider the empty function \emptyset .

- $inc(dom(\emptyset)) = inc(\emptyset) = \emptyset$
- $cod(\emptyset) = \emptyset$

So $inc(dom(\emptyset)) = cod(\emptyset)$, hence $\emptyset \in B$.

For any function $f \notin B$, consider $\theta = \emptyset \subseteq f$. We have $\theta \in B$.

Since $\forall f \notin B$, \exists finite $\theta \subseteq f$ with $\theta \in B$, by Rice-Shapiro theorem, \bar{B} is not r.e.

Wait, this reasoning is incorrect. Let me reconsider B.

Consider f(x) = x + 2. Then:

- dom(f) = N
- inc(dom(f)) = N
- $cod(f) = \{2,3,4,...\}$

Since $\mathbb{N} \neq \{2,3,4,...\}$, we have $f \notin B$.

Consider $\theta = \{(0,2)\} \subseteq f$:

- $inc(dom(\theta)) = \{0,1\}$
- $cod(\theta) = \{2\}$

Since $\{0,1\} \neq \{2\}$, we have $\theta \notin B$.

This suggests we need a different approach. Actually, by Rice's theorem, since B is saturated and non-trivial, B is not recursive. Combined with B not being r.e., we get that \bar{B} is also not r.e.

Final classification: B and B are both not r.e. (and hence not recursive).

Exercise 5

Second Recursion Theorem

For every total computable function $f: \mathbb{N} \to \mathbb{N}$, there exists $e_0 \in \mathbb{N}$ such that:

$$\phi_{e0} = \phi f(e_0)$$

Proof that $C_x = \{x : f(x) \in W_x\}$ is not saturated for injective total computable f

Since f is injective and total computable, define $g : \mathbb{N} \to \mathbb{N}$ by:

```
g(x) = some index for the constant function that outputs f(x)
```

More precisely, by s-m-n theorem, \exists total computable g such that $\varphi g(x)(y) = f(x)$ for all y.

By the Second Recursion Theorem, $\exists e$ such that $\phi_e = \phi g(e)$.

This means $\varphi_e(y) = f(e)$ for all y, so $W_e = \mathbb{N}$ and $E_e = \{f(e)\}$.

Since $f(e) \in E_e = \{f(e)\}\$ and $W_e = \mathbb{N}$, we have $f(e) \in W_e$, so $e \in C_x$.

Now consider any $e' \neq e$ such that $\phi_e' = \phi_e$ (such e' exists since there are infinitely many indices for each function).

We have $\varphi_e' = \varphi_e$, so they compute the same function, but:

- $e \in C_x$ since $f(e) \in W_e = W_e'$
- For $e' \in C_x$, we need $f(e') \in W_e' = \{f(e)\}$

Since f is injective and e \neq e', we have f(e) \neq f(e'). So f(e') \notin {f(e)} = W_e', hence e' \notin C_x.

Therefore, ϕ_e = $\phi_e{}^{{}_{\! '}},$ e \in $C_{x{}_{\! '}}$ but $e^{{}_{\! '}}\not\in$ $C_{x{}_{\! '}}$ showing C_x is not saturated.