Encoders

Encoder (1/3)

- An encoder is an inverse of a decoder
 - Converts a one-hot input signal to a binary-encoded output signal
 - Other input patterns are forbidden in the truth table
- Example: a 4-to-2 encoder

а3	a2	a1	a0	b1	b0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	(0
1	0	0	0		1

Encoders (2/3)

 A combinational logic that performs the inverse operation of a decoder

of a decoder
$$\chi = D_{\zeta} + D_{$$

Inputs On the Decoration of t	Outputs
8-to-3 encoder Truth Table of an Octal-to-Binary Encoder	Z=D1+D3+D5+D7
 Can be implemented with OR gates 	J - D2+03+06,04
This one input has value i at any given the	$M = M^{-1} D + M^{-1} D$

inputs							Outp	outs		
D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	X	y	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0		0	0
0	0	0	0	0	1	0	0		0	1
0	0	0	0	0	0	1	0		1	0
0	0	0	0	0	0	0	1	$\overline{1}$	1	1

Encoders (3/3)

Limitations

Illegal Inputs

- When both D_3 an D_6 go high, output will be 111 \rightarrow ambiguity
- Use priority encoder!

Priority Encoders (1/2)

- Ensure only one of the input is encoded
- D₃ has the highest priority, while D₀ has the lowest priority
- X is the don't care conditions
- V is the valid output indicator

Status flag

Truth	Table	of a	Priority	' Encod	er

	Inputs				Outputs		
	D_0	D ₁	D ₂	D ₃	X	y	v
	0	0	0	0	X	X	0
	1	0	0	O	don't 0	0	1
2 minterm	XX	1)	0	0	COVE O	1	1
4 0	X	X	1	0	1	0	1
8 %	X	X	X	1	1	1	1

Priority Encoders (2/2)

Multiplexer

Multiplexers

 A multiplexer (or MUX) selects (usually by n select lines) binary information from one of many (usually 2ⁿ) input lines and directs it to a single output line

2-to-1 MUX (2:1 MUX)

$$Y = S'I_0 + SI_1$$

20 62

4-to-1-line MUX

s_1	s_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

Quadruple 2-to-1-line MUX

		. 11
Н	unction	table
	unction	table

E	S	Output Y
1	X	all 0's
0	0	select A
0	1	select B

Lec04-1

Boolean Function Implementation (1/4)

MUX: decoder + OR gate

 2^{n-1} -to-1 MUX can implement any Boolean function of n

Lec04-1

Boolean Function Implementation (2/4)

Boolean Function Implementation (3/4)

- For an n-variable function
- Assign an ordering sequence of the n-1 input variables to the selection input of MUX
- The last (rightmost) variable will be used for the input lines
- Construct the truth table
- Consider a pair of consecutive minterms starting from m₀

2n-1 to-1

 Determine the input lines according to the last variable and output signals in the truth table

Boolean Function Implementation (4/4)

• Example: $F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15)$

Lec04-1

Three-State Gates

(Tri-state)

Three-State Gates (1/2)

- A multiplexer can be constructed with three-state gates
- Output states: 0, 1, and Z (high-impedance, or open circuits)

- Three-state gates can be used to build up a bus
 - A communication channel among different modules in a digital system

nMOS 0m Vad PMOS on Vdd VAN C=D, Y=hi-s Lec04-1 EECS1010 01 CT 2020

71

Three-State Gates (2/2)

Examples: multiplexers with three-state gates

