

Winning Space Race with Data Science

Zhou Yuanyuan 2023.8.31

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis using SQL
 - Data Visualization
 - Machine Learning Models
- Summary of all results
 - EDA results
 - Interactive Visual Analytics and Dashboards
 - Predictive Analysis(Classification)

Introduction

Background

SpaceX, a leader in the space industry, strives to make space travel affordable for everyone. Its accomplishments include sending spacecraft to the international space station, launching a satellite constellation that provides internet access and sending manned missions to space. SpaceX can do this because the rocket launches are relatively inexpensive (\$62 million per launch) due to its novel reuse of the first stage of its Falcon 9 rocket. Other providers, which are not able to reuse the first stage, cost upwards of \$165 million each. By determining if the first stage will land, we can determine the price of the launch. To do this, we can use public data and machine learning models to predict whether SpaceX – or a competing company – can reuse the first stage.

- Exploration
- How payload mass, launch site, number of flights, and orbits affect first-stage landing success
- Rate of successful landings over time
- Best predictive model for successful landing (binary classification)

Methodology

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data by filtering the data, handling missing values and applying one hot encoding – to prepare the data for analysis and modeling
- Explore data via EDA with SQL and data visualization techniques
- Visualize the data using Folium and Plotly Dash
- **Build Models** to predict landing outcomes using classification models. Tune and evaluate models to find best model and parameters

Data Collection - SpaceX API

- Request data from SpaceX API (rocket launch data)
- Decode response using .json() and convert to a dataframe using .json_normalize()
- Request information about the launches from SpaceX API using custom functions
- Create dictionary from the data
- Create dataframe from the dictionary
- Filter dataframe to contain only Falcon 9 launches
- Replace missing values of Payload Mass with calculated .mean()
- Export data to csv file

Github URL

Data Collection - Scraping

- Request data (Falcon 9 launch data) from Wikipedia
- Create BeautifulSoup object from HTML response
- Extract column names from HTML table header
- Collect data from parsing HTML tables
- Create dictionary from the data
- Create dataframe from the dictionary
- Export data to csv file

Data Wrangling

- Perform EDA and determine data labels
- Calculate:
 - launches for each site
 - occurrence of orbit
 - occurrence of mission outcome per orbit type
- Create binary landing outcome column (dependent variable)
- Export data to csv file

EDA with Data Visualization

• Flight Number vs. Payload

• Flight Number vs. Launch Site

• Payload Mass (kg) vs. Launch Site

• Payload Mass (kg) vs. Orbit type

EDA with SQL

Display:

- Names of unique launch sites
- 5 records where launch site begins with 'CCA'
- Total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1.

List:

- Date of first successful landing on ground pad
- Names of boosters which had success landing on drone ship and have payload mass greater than 4,000 but less than 6,000
- Total number of successful and failed missions
- Names of booster versions which have carried the max payload
- Failed landing outcomes on drone ship, their booster version and launch site for the months in the year 2015
- Count of landing outcomes between 2010-06-04 and 2017-03-20 (desc)

Build an Interactive Map with Folium

Markers Indicating Launch Sites

- Added blue circle at NASA Johnson Space Center's coordinate with a popup label showing its name using its latitude and longitude coordinates
- Added red circles at all launch sites coordinates with a popup label showing its name using its name using its latitude and longitude coordinates

Colored Markers of Launch Outcomes

 Added colored markers of successful (green) and unsuccessful (red) launches at each launch site to show which launch sites have high success rates

Distances Between a Launch Site to Proximities

 Added colored lines to show distance between launch site CCAFS SLC-40 and its proximity to the nearest coastline, railway, highway, and city

Build a Dashboard with Plotly Dash

Dropdown List with Launch Sites

Allow user to select all launch sites or a certain launch site

Pie Chart Showing Successful Launches

Allow user to see successful and unsuccessful launches as a percent of the total

Slider of Payload Mass Range

Allow user to select payload mass range

Scatter Chart Showing Payload Mass vs. Success Rate by Booster Version

Allow user to see the correlation between Payload and Launch Success

Predictive Analysis (Classification)

- Create NumPy array from the Class column
- Standardize the data with StandardScaler. Fit and transform the data.
- **Split** the data using train_test_split
- Create a GridSearchCV object with cv=10 for parameter optimization
- **Apply** GridSearchCV on different algorithms: logistic regression (LogisticRegression()), support vector machine (SVC()), decision tree (DecisionTreeClassifier()), K-Nearest Neighbor (KNeighborsClassifier())
- Calculate accuracy on the test data using .score() for all models
- **Assess** the confusion matrix for all models
- **Identify** the best model using Jaccard_Score, F1_Score and Accuracy

Results

Exploratory data analysis results

- Launch success has improved over time
- KSC LC-39A has the highest success rate among landing sites
- Orbits ES-L1, GEO, HEO and SSO have a 100% success rate
- Interactive visualization analytics
- Predictive analysis results

Decision Tree model is the best predictive model for the dataset

Flight Number vs. Launch Site

- Earlier flights had a lower success rate (blue = fail)
- Later flights had a higher success rate (orange = success)
- Around half of launches were from CCAFS SLC 40 launch site
- VAFB SLC 4E and KSC LC 39A have higher success rates
- We can infer that new launches have a higher success rate

Payload vs. Launch Site

- Typically, the higher the payload mass (kg), the higher the success rate
- Most launces with a payload greater than 7,000 kg were successful
- KSC LC 39A has a 100% success rate for launches less than 5,500 kg
- VAFB SKC 4E has not launched anything greater than ~10,000 kg

Success Rate vs. Orbit Type

- 100% Success Rate: ES-L1, GEO, HEO and SSO
- 50%-80% Success Rate: GTO, ISS, LEO, MEO, PO
- 0% Success Rate: SO

Flight Number vs. Orbit Type

- The success rate typically increases with the number of flights for each orbit
- This relationship is highly apparent for the LEO orbit
- The GTO orbit, however, does not follow this trend

Payload vs. Orbit Type

- Heavy payloads are better with LEO, ISS and PO orbits
- The GTO orbit has mixed success with heavier payloads

Launch Success Yearly Trend

- The success rate improved from 2013-2017 and 2018-2019
- The success rate decreased from 2017-2018 and from 2019-2020
- Overall, the success rate has improved since 2013

All Launch Site Names

Launch Site Names

• CCAFS LC-40 • CCAFS SLC-40 • KSC LC-39A • VAFB SLC-4E

Launch Site Names Begin with 'CCA'

sqlit e.	e:///my_d	ata1.db							
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- Present your query result with a short explanation here

```
Display the total payload mass carried by boosters launched by NASA (CRS)

%sql SELECT SUM(PAYLOAD_MASS__KG_) as "Total Payload Mass(Kgs)", Customer FROM 'SPACEXTBL' WHERE Customer = 'NASA (CRS)';

* sqlite:///my_datal.db
one.

Total Payload Mass(Kgs) Customer

45596 NASA (CRS)
```

Average Payload Mass by F9 v1.1

Display average payload mass carried by booster version F9 v1.1

```
%sq1 SELECT AVG(PAYLOAD_MASS__KG_) \
    FROM SPACEXTBL \
    WHERE BOOSTER_VERSION = 'F9 v1.1';

* sqlite://my_data1.db
one.

AVG(PAYLOAD_MASS__KG_)

2928.4
```

First Successful Ground Landing Date

Task 5

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

```
%sq1 SELECT MIN(DATE) FROM 'SPACEXTBL' WHERE "Landing _Outcome" = "Success (ground pad)";
```

* sqlite://my_data1.db Done.

MIN(DATE)

01-05-2017

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%sql SELECT DISTINCT Booster_Version, Payload FROM SPACEXTBL WHERE "Landing _Outcome" = "Success (drone ship)" AND PAYLOAD_MASS__KG_ > 4
```

* sqlite:///my_data1.db

Payload	Booster_Version
JCSAT-14	F9 FT B1022
JCSAT-16	F9 FT B1026
SES-10	F9 FT B1021.2
SES-11 / EchoStar 105	F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

%sql SELECT "Booster_Version", Payload, "PAYLOAD MASS_KG_" FROM SPACEXTBL WHERE "PAYLOAD MASS_KG_" = (SELECT MAX("PAYLOAD MASS_KG_") F * sqlite:///my_datal.db lone. Booster Version Payload PAYLOAD MASS KG F9 B5 B1048.4 Starlink 1 v1.0, SpaceX CRS-19 15600 F9 B5 B1049.4 Starlink 2 v1.0, Crew Dragon in-flight abort test 15600 F9 B5 B1051.3 Starlink 3 v1.0, Starlink 4 v1.0 15600 Starlink 4 v1.0, SpaceX CRS-20 15600 F9 B5 B1056.4 Starlink 5 v1.0, Starlink 6 v1.0 F9 B5 B1048.5 15600 F9 B5 B1051.4 Starlink 6 v1.0, Crew Dragon Demo-2 15600 F9 B5 B1049.5 Starlink 7 v1.0, Starlink 8 v1.0 15600 F9 B5 B1060.2 Starlink 11 v1.0, Starlink 12 v1.0 15600 F9 B5 B1058.3 Starlink 12 v1.0, Starlink 13 v1.0 15600 F9 B5 B1051.6 Starlink 13 v1.0, Starlink 14 v1.0 15600 F9 B5 B1060.3 Starlink 14 v1.0, GPS III-04 15600 F9 B5 B1049.7 Starlink 15 v1.0, SpaceX CRS-21 15600

2015 Launch Records

```
%sql SELECT substr(Date, 7, 4), substr(Date, 4, 2), "Booster_Version", "Launch_Site", Payload, "PAYLOAD_MASS__KG_", "Mission_Outcome", "Launch_Site", Payload, "Payload, "Payloa
```

* sqlite:///my_datal.db

Done.

substr(Date, 7, 4)	substr(Date, 4, 2)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Mission_Outcome	Landing _Outcome
2015	01	F9 v1.1 B1012	CCAFS LC- 40	SpaceX CRS-5	2395	Success	Failure (drone ship)
2015	04	F9 v1.1 B1015	CCAFS LC- 40	SpaceX CRS-6	1898	Success	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

*sq!	SELECT *	FROM SPACEXTBL WE	EKE Landing	_Outcome LIKE	'Success%' AND (Date B	ETWEEN	04-06-2010 AND	20-03-2017) ORDER	BY Date DE
sqli ne.	te:///my_c	latal.db							
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
19- 02- 2017	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
18- 10- 2020	12:25:57	F9 B5 B1051.6	KSC LC-39A	Starlink 13 v1.0, Starlink 14 v1.0	15600	LEO	SpaceX	Success	Success
18- 08- 2020	14:31:00	F9 B5 B1049.6	CCAFS SLC- 40	Starlink 10 v1.0, SkySat- 19, -20, -21, SAOCOM 1B	15440	LEO	SpaceX, Planet Labs, PlanetIQ	Success	Success
18- 07- 2016	04:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
18- 04- 2018	22:51:00	F9 B4 B1045.1	CCAFS SLC- 40	Transiting Exoplanet Survey Satellite (TESS)	362	HEO	NASA (LSP)	Success	Success (drone ship)
17- 12- 2019	00:10:00	F9 B5 B1056.3	CCAFS SLC- 40	JCSat-18 / Kacific 1, Starlink 2 v1.0	6956	GTO	Sky Perfect JSAT, Kacific 1	Success	Success

Markers of all launch sites on global map

All launch sites are in proximity to the Equator, (located southwards of the US map). Also all the launch sites are in very close proximity to the coast.

Launch outcomes for each site

- Green markers for successful launches
- Red markers for unsuccessful launches
- Launch site CCAFS SLC-40 has a 3/7 success rate (42.9%)

Distances between a launch site to its proximities

CCAFS SLC-40

- 86 km from nearest coastline
- 21.96 km from nearest railway
- 23.23 km from nearest city
- 26.88 km from nearest highway

Launch Success by Site

KSC LC-39A has the most successful launches amongst launch sites (41.2%)

Launch Success (KSC LC-29A)

- KSC LC-39A has the highest success rate amongst launch sites (76.9%)
- 10 successful launches and 3 failed launches

Payload Mass and Success

- Payloads between 2,000 kg and 5,000 kg have the highest success rate
- 1 indicating successful outcome and 0 indicating an unsuccessful outcome

Classification Accuracy

Accuracy:

All the models performed at about the same level and had the same scores and accuracy. This is likely due to the small dataset. The Decision Tree model slightly outperformed the rest when looking at .best_score_

	ML Method	Accuracy Score (%)
0	Support Vector Machine	83.333333
1	Logistic Regression	83.333333
2	K Nearest Neighbour	83.333333
3	Decision Tree	83.333333

	LogReg	SVM	Tree	KNN
Jaccard_Score	0.800000	0.800000	0.800000	0.800000
F1_Score	0.888889	0.888889	0.888889	0.888889
Accuracy	0.833333	0.833333	0.833333	0.833333

Confusion Matrix

- All the confusion matrices were identical
- The fact that there are false positives
 (Type 1 error) is not good
- Confusion Matrix Outputs:
 - 12 True positive
 - 3 True negative
 - 3 False positive
 - O False Negative

Conclusions

- **Model Performance:** The models performed similarly on the test set with the decision tree model slightly outperforming
- **Equator:** Most of the launch sites are near the equator for an additional natural boost
- due to the rotational speed of earth which helps save the cost of putting in extra fuel and boosters
- Coast: All the launch sites are close to the coast Launch Success: Increases over time
- **KSC LC-39A:** Has the highest success rate among launch sites. Has a 100% success rate for launches less than 5,500 kg
- Orbits: ES-L1, GEO, HEO, and SSO have a 100% success rate
- **Payload Mass:** Across all launch sites, the higher the payload mass (kg), the higher the success rate

