

# BC26-OpenCPU 低功耗 应用指导

### LPWA 模块系列

版本: BC26-OpenCPU\_低功耗应用指导\_V1.1

日期: 2019-04-22

状态: 受控文件



上海移远通信技术股份有限公司始终以为客户提供最及时、最全面的服务为宗旨。如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司

上海市徐汇区虹梅路 1801 号宏业大厦 7楼 邮编: 200233

电话: +86 21 51086236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/cn/support/sales.htm

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/cn/support/technical.htm

或发送邮件至: <u>support@quectel.com</u>

#### 前言

上海移远通信技术股份有限公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范、参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,上海移远通信技术股份有限公司有权对该文档进行更新。

#### 版权申明

本文档版权属于上海移远通信技术股份有限公司,任何人未经我司允许而复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2019, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2019.



## 文档历史

## 修订记录

| 版本  | 日期         | 作者 | 变更表述     |
|-----|------------|----|----------|
| 1.0 | 2019-04-22 | 梁维 | 初始版本     |
| 1.1 | 2019-04-22 | 梁维 | 修正模块耗流数据 |



## 目录

| 文档 | 当历史.        |                                         | 2   |
|----|-------------|-----------------------------------------|-----|
| 目園 | ₹           |                                         | 3   |
| 表材 | 格索引.        |                                         | 4   |
| 图表 | 長索引.        |                                         | 5   |
| 1  | 리늘          |                                         | 6   |
| '  |             |                                         |     |
| 2  | 基本棒         | 既念                                      |     |
|    | 2.1.        | DRX                                     |     |
|    | 2.2.        | eDRX                                    | 8   |
|    | 2.3.        | PSM                                     |     |
|    | 2.4.        | Idle                                    | 9   |
|    | 2.5.        | Deep Sleep                              | 10  |
| 3  | 讲入          | Deep Sleep 模式                           | 11  |
|    | 3.1.        | AT+CPSMS                                |     |
|    | 3.2.        | QI_SleepEnable()                        |     |
|    | ** . L >    | # \ D_== 0 == # <del>-</del>            | 40  |
| 4  | 祭止:<br>4.1. | <b>性入 Deep Sleep 模式</b><br>AT+CPSMS     |     |
|    | 4.1.        | QI SleepDisable()                       |     |
|    |             |                                         |     |
| 5  | 从 De        | ep Sleep 模式唤醒                           |     |
|    | 5.1.        | TAU 唤醒                                  | 14  |
|    | 5.2.        | PSM_EINT 引脚唤醒                           | 14  |
|    | 5.3.        | RTC Timer 超时唤醒                          | 14  |
| 6  | 耗流.         |                                         | 16  |
| 7  |             | 可题和注意事项                                 |     |
| 1  | 帝火心<br>7.1. | J <b>越和注息争坝</b>                         |     |
|    | 7.1.        | 如何快速进入 Deep Sleep                       |     |
|    | 7.3.        | 执行 AT+CFUN=0 后 60s 内并没有进入 Deep Sleep 模式 |     |
|    | 7.4.        | QI OS GetMessage 接口的作用                  |     |
|    | 7.5.        | 判断 Modem 是否进入 PSM 的方法                   |     |
|    | 7.6.        | TCP 链路需要断开后模块才会进入 Deep Sleep            |     |
|    | 7.7.        | USB 口抓 Gennie Log                       |     |
|    | 7.8.        | Cold Start 和 Deep Sleep 唤醒的区别           |     |
|    | 7.9.        | 如何快速释放 RRC 连接                           |     |
|    |             | 如何快速释放 AT 命令 Lock                       |     |
| 0  |             | A 参考文档及术语缩写                             |     |
| 8  | ויונו       |                                         | /[] |



## 表格索引

| 表 1: | 模块系统耗流(3.3V VBAT 供电) | 16 |
|------|----------------------|----|
| 表 2: | 参考文档                 | 20 |
| 表 3: | 术语缩写                 | 20 |



## 图表索引

| 图 1: | DRX 图解        | 7 |
|------|---------------|---|
| 图 2: | EDRX 图解       | 8 |
| 图 3: | PSM 图解        | S |
| 图 4: | MODEM 已进入 PSM | 8 |



## 1 引言

在嵌入式应用中,产品的功耗越来越受到人们的重视;使用电池供电的便携式系统,对产品功耗方面的要求尤为明显。降低产品功耗,延长电池的寿命,就是降低产品的运营成本。产品功耗的最小化需要从软件和硬件设计两方面入手,本文档重点介绍如何通过软件配置实现功耗最小化。

为了降低功耗,BC26 模块进入 Deep Sleep 模式后,除了 RTC 外,整个 CPU 会断开电源,客户软件设计中要注意 Cold Start(首次开机或复位后)和 Deep Sleep Wakeup 两种情况不同的代码逻辑。本文档将会向用户介绍在 OpenCPU 方案中如何管理产品的低功耗,以及程序设计中需要注意的事项。



## 2 基本概念

在通过 OpenCPU 方案管理功耗之前,请了解如下基本概念。

#### 2.1. DRX

DRX: Discontinuous Reception(不连续接收),为模块 Modem 的工作模式。

为了节省功耗,模块于每个 DRX 周期监听一次寻呼信道,以检查是否有下行业务到达。

如下图所示,当模块的 AP 进入 Idle 模式后,在 T3324 没有 Timeout 的一段时间内,模块处于 DRX 寻呼状态。由于 DRX 周期一般比较短,通常认为在这段时间内,如果 IoT 平台有下行数据,模块接收数据的时延一般较小。



图 1: DRX 图解

#### 备注

- 1. 常见的 DRX 周期为 1.28s 和 2.56s。
- 2. DRX 由网络决定,模块不可配。
- 3. DRX模式适用于实时性要求高,但是功耗要求不高的场景,如远程路灯。



#### 2.2. eDRX

eDRX: extended DRX(扩展不连续接收),为模块 Modem 的工作模式。

eDRX 是 3GPP Rel.13 引入的技术,eDRX 比 DRX 拥有更长的寻呼周期,使得终端能够更好的节省功耗,但是也会导致更长的下行数据延时。模块只能在 PTW(Paging Time Window,寻呼时间窗口)内按 DRX 周期监听寻呼信道,以便接收下行业务;PTW 外的时间处于睡眠态,不监听寻呼信道、不能接收下行业务。



图 2: eDRX 图解

#### 备注

- 1. eDRX 周期通常为 20.48s 或 81.92s。
- 2. 模块可以通过 AT+CEDRXS 配置 eDRX 周期,但是最终由网络决定是否接受配置。
- 3. eDRX 模式适用于一些对功耗要求比较严格、但实时性要求不高的应用,比如抄表。

#### 2.3. PSM

PSM: Power Saving Mode(省电模式),为模块 Modem 的工作模式。



模块 Modem 的 PSM 是 3GPP Rel.12 引入的技术;其原理是允许模块在空闲态一段时间(T3324)后,关闭信号的收发和 AS(接入层)相关功能,从而减少天线、射频、信令处理等的功耗消耗。模块在 PSM 期间,不接收任何网络寻呼,包括搜寻小区消息、小区重选等,对于网络侧来说,模块此时是不可达的,不再接收下行数据。

在 PSM 模式下,终端不再监听寻呼,但终端还是注册在网络中;因此,要发送数据时不需要重新连接或建立 PDN 连接。在模块 Modem 进入 PSM 模式后,仍然可以主动发送上行数据到平台。



图 3: PSM 图解

#### 备注

- 1. 模块可以通过 AT+CPSMS 配置是否使能 Modem PSM。
- 2. PSM 模式下的功耗会比 eDRX 模式下更低,可以更好的降低产品的功耗。

#### 2.4. Idle

模块当前的 Task 都处于挂起状态后,模块的 AP 将会进入 Idle,这时候 AP 不再有业务需要处理。



#### 备注

- 1. 模块的 AP 默认自动使能进入 Idle。
- 2. 用户可以通过 API 接口 QI\_SleepDisable 禁止 AP 进入 Idle; 禁用后,可通过 QI\_SleepEnable 使能 AP Idle。
- 3. 若通过 QI\_SleepDisable 禁止 AP 进入 Idle,则模块将无法进入 Light Sleep 和 Deep Sleep,但并不 影响 Task 的正常运行。

### 2.5. Deep Sleep

本文档中介绍的"低功耗模式"都是指 Deep Sleep 模式。当模块进入 Deep Sleep 模式,将会最大程度的降低模块的功耗。在此模式下,CPU 电源会被断开、程序停止运行、上下行数据无法处理、串口不再响应,模块处于类似关机的状态(仅 RTC 部分继续运行)。

- 一般情况下,模块要进入 Deep Sleep 模式需要符合如下两个条件:
- Modem 进入 PSM
- AP 进入 Idle

但在如下所述的特殊情况下,即使 AP 处于 Idle,模块亦可进入 Deep Sleep 模式;用户在实际使用过程中请多注意:

- 插 USIM 卡情况下,执行了 AT+CFUN=0
- eDRX 周期大于 81.92s
- 搜网阶段,进入 OOS 状态(底层上报无网)

如下情形会影响模块进入 Deep Sleep 模式:

- AP 非 Idle 状态(中断、定时器等业务需要频繁处理)
- TCP/MQTT 链路建立后未关闭
- PWRKEY 一直被拉低
- USB接口一直处于有电状态
- 无 USIM 卡

#### 备注

- 1. 如果满足以上条件,模块会自动进入 Deep Sleep 模式。
- 2. Modem 关闭 PSM(AT+CPSMS=0)或者禁用 AP 的 Idle 模式都可以控制模块不进入 Deep Sleep。
- 3. 模块进入 Deep Sleep 比较明显的特征是: 串口不再接收数据、VDD\_EXT 电压为 0V。
- 4. 如果需要保存掉电不丢失的重要数据,用户可以使用 API 接口(QI\_SecureData\_Store、QI\_SecureData\_Read)对数据进行备份和后续读取。模块被唤醒后将重新加载程序、运行 Task。



## **3** 进入 Deep Sleep 模式

模块默认使能自动进入 Deep Sleep。如果用户已经禁止 Modem 进入 PSM 或 AP 进入 Idle 态,可通过如下方式重新使能进入 Deep Sleep 模式,若用户未对默认配置进行更新,则可忽略本章节所述内容。

#### 3.1. AT+CPSMS

如果用户之前调用 AT+CPSMS=0 禁止了 Modem 进入 PSM,则需要使用 AT+CPSMS=1 打开 PSM。

另外,该命令还可配置 T3324 和 T3412 的周期;更多详情请参阅文档 [1]。

#### 备注

- 1. 配置 T3324 和 T3412 的周期,还需要运营商支持;目前仅中国移动支持所述定时器的周期配置,中国电信不支持,电信用户可以根据不同的 APN 来选择合适的周期。
- 2. 由于各地运营商机制不同,T3324 和 T3412 是否设置成功,用户还需通过 AT+CEREG=5 查询。有 关 AT+CEREG 的详情请参阅文档 [1]。

## 3.2. QI\_SleepEnable()

若客户之前调用了 QI\_SleepDisable()接口禁止 AP 进入 Idle,那么需要再调用 QI\_SleepEnable()方可使能 AP 进入 Idle。接口注释如下:



### 备注

QI\_SleepEnable()只是使能模块 AP 进入 Idle 模式; 具体进入 Deep Sleep 模式的时机,还需等到系统所有 Task 处于挂起状态且 Modem 进入 PSM。



## 4 禁止进入 Deep Sleep 模式

模块默认使能自动进入 Deep Sleep。客户可通过如下任一方式以禁止模块进入 Deep Sleep 模式。

#### 4.1. AT+CPSMS

用户可使用 AT+CPSMS=0 关闭 PSM。有关该命令的详情,请参阅文档 [1]。

对于功耗要求不高、但是对实时性要求比较高,且需要接收下行数据的应用中,可以通过该命令关闭 PSM 功能。

## 4.2. QI\_SleepDisable()

用户可以调用接口 QI\_SleepDisable()以禁止 AP 进入 Idle,接口注释如下:

/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

- \* Function: Ql\_SleepDisable
- \* Description:
- \* Disable the module from entering into deep sleep mode.
- \* Return:
- \* QL\_RET\_OK indicates this function successes.
- \* QI\_RET\_NOT\_SUPPORT this function is not supported.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

s32 Ql\_SleepDisable(void);

#### 备注

调用 QI\_SleepDisable()接口后,模块将也无法进入 Light Sleep。

## **5** 从 Deep Sleep 模式唤醒

OpenCPU 方案支持通过如下三种方式将模块从 Deep Sleep 唤醒,用户可以根据实际应用情况进行选择。

### 5.1. TAU 唤醒

#### ● 唤醒方式说明:

模块进入 Deep Sleep 状态后,当 T3412 超时后,进行跟踪区更新(TAU),这时模块将被唤醒,AP 的 Task 开始运行,Modem 退出 PSM。

#### ● 应用方式和场景:

用户通过向运营商配置不同的 T3412 时间来唤醒模块,一般适用对于实时性要求不高的场景,比如抄表等。

## 5.2. PSM\_EINT 引脚唤醒

#### ● 唤醒方式说明:

模块提供了一个 PSM\_EINT 中断引脚,给该中断引脚一个下降沿,模块将会从 Deep Sleep 模式唤醒。

#### ● 应用方式和场景:

适用于模块外部有 MCU、按键或者传感器,方便给 PSM\_EINT 引脚一个下降沿以唤醒模块的场景。

### 5.3. RTC Timer 超时唤醒

#### ● 唤醒方式说明:

用户可以创建一路 RTC Timer, 当 RTC Timer 超时后,模块会从 Deep Sleep 模式唤醒。



#### ● 应用方式和场景:

在模块进入 Deep Sleep 前启动一个 RTC Timer。如设置定时 10 分钟,则模块会每隔 10 分钟被唤醒一次;模块被唤醒后即可进行相关业务,业务处理完,模块继续进入 Deep Sleep 模式,等待下次再被唤醒。

#### 备注

- 1. PSM\_EINT 下降沿和 RTC Timer 超时,仅仅唤醒 AP,如果需要将 Modem 从 PSM 唤醒,还需主动 发送上行数据。
- 2. 用户可通过 QI\_GetPowerOnReason 接口来判断模块是从 Deep Sleep 模式唤醒还是重新开机。



## **6** 耗流

BC26-OpenCPU 模块的耗流值如下表所示,具体请参阅文档 [2]。

#### 表 1: 模块系统耗流 (3.3V VBAT 供电)

| 参数                | 系统<br>模式             | AP<br>模式 | Modem 模式及描述 最小值                             |            | 平均值 | 最大值1) | 单位  |    |
|-------------------|----------------------|----------|---------------------------------------------|------------|-----|-------|-----|----|
|                   | Deep<br>Sleep        | Idle     | PSM                                         |            | 3.5 |       | μΑ  |    |
|                   | Light<br>Sleep       | ldle     | eDRX=81.92s, PTW=40.96s                     |            |     | 288   |     | μΑ |
|                   |                      |          | @DRX=1.28s                                  |            | 541 |       | μΑ  |    |
|                   |                      |          | @DRX=2.56s                                  |            |     | 434   |     | μΑ |
|                   | Active <sup>2)</sup> | Normal   | Single-tone<br>(15kHz 载波频率)<br>@Connected   | B1 @23dBm  |     | 100   | 285 | mA |
|                   |                      |          |                                             | B3 @23dBm  |     | 107   | 308 | mA |
| I <sub>VBAT</sub> |                      |          |                                             | B5 @23dBm  |     | 107   | 303 | mA |
| · V DAT           |                      |          |                                             | B8 @23dBm  |     | 113   | 325 | mA |
|                   |                      |          |                                             | B20 @23dBm |     | 109   | 301 | mA |
|                   |                      |          | Single-tone<br>(3.75kHz 载波频率)<br>@Connected | B1 @23dBm  |     | 193   | 302 | mA |
|                   |                      |          |                                             | B3 @23dBm  |     | 215   | 335 | mA |
|                   |                      |          |                                             | B5 @23dBm  |     | 215   | 330 | mA |
|                   |                      |          |                                             | B8 @23dBm  |     | 224   | 344 | mA |
|                   |                      |          |                                             | B20 @23dBm |     | 215   | 329 | mA |

#### 备注

- 1. 1) 仪器测试状态下的耗流数据。
- 2. <sup>2)</sup> Active 模式下的"最大值"是指射频发射时的最大脉冲电流值。



## 7 常见问题和注意事项

## 7.1. Light Sleep 唤醒

当模块进入 Light Sleep 模式,串口需要先被唤醒再发业务数据,否则第一包数据会丢失。用户可以通过串口先发一包两个字节(比如 **AT**)的数据唤醒模块,再发业务数据。

## 7.2. 如何快速进入 Deep Sleep

频繁的中断或者 Timer,会导致模块 AP Task 一直有业务需要处理,进而延长进入 Idle 态的时间。如果想要快速进入 Deep Sleep,需要关闭频繁的中断或者 Timer。

在 AP Task 空闲、模块正常注册网络的情况下,执行 AT+CFUN=0 后,会使模块快速进入 Deep Sleep。

## 7.3. 执行 AT+CFUN=0 后 60s 内并没有进入 Deep Sleep 模式

网络正常注册后,执行 AT+CFUN=0 会马上返回 OK 进入 Deep Sleep 模式。但如果之前网络一直没有注册成功,此时若执行 AT+CFUN=0,按照协议需要等到 RRC 连接超时(60s~80s)才会返回 OK,然后模块才能快速进入 Deep Sleep 模式。

## 7.4. QI\_OS\_GetMessage 接口的作用

当模块有消息需要处理时,会通过这个接口来处理;没有消息时 Task 挂起,可以立刻让 AP 进入 Idle 模式。



### 7.5. 判断 Modem 是否进入 PSM 的方法

- 1) 设置 AT+QNBIOTEVENT=1,1 以允许通过 URC 上报 PSM 状态。如果 Modem 进入了 PSM,会上报 URC \r\n+QNBIOTEVENT: "ENTER PSM"。
- 2) 查看 GKI Log 以判断 Modem 是否进入 PSM,如下 Log 表示 Modem 已经进入 PSM。



图 4: Modem 已进入 PSM

## 7.6. TCP 链路需要断开后模块才会进入 Deep Sleep

因为在建立 TCP 链路时,AP 做了 Lock 操作,所以 AP 无法进入 Idle,从而导致模块无法进入 Deep Sleep。

但 TCP 链路的建立不会影响模块进入 Light Sleep 以及 Modem 进入 PSM。

#### 备注

MQTT 基于 TCP 协议实现,所以如果 MQTT 建立链接后没有关闭,也会导致模块不能进入 Deep Sleep 模式。

## 7.7. USB 口抓 Gennie Log

模块使用 USB 口接 Gennie 工具抓 Log 时,由于 USB 一直处于工作模式,模块将不会进入 Deep Sleep。



### 7.8. Cold Start 和 Deep Sleep 唤醒的区别

Cold Start 会从硬件 PMU 初始化开始,然后进入 BootROM 阶段。BootROM 会检查是否有 Flash 烧录:若有,则进行 Firmware Download;若无,则直接进入 BootLoader。BootLoader 阶段主要的工作之一,就是进行 DFOTA,若无需进行 DFOTA,则进到 FreeRTOS。FreeRTOS 阶段,会对 AP 端与 Modem 端的工作做初始化,开始执行 Task。

Deep Sleep 唤醒后的工作与 Cold Start 的流程几乎相同;两者的差别在于:

- 由 Deep Sleep 唤醒不需要检查是否在 Flash 烧录模式;
- 在进入 FreeRTOS 后, AP 与 Modem 的初始化行为可以由 RTC RAM 得到前次接入网络的信息, 因此可以大大减少初始化的时间。

### 7.9. 如何快速释放 RRC 连接

通过 AT+QNBIOTRAl=<rai>命令可以配置;有关该命令的详细信息,请参考文档 [1]。

目前 NB-IoT 网络中,都是网络侧主动发起释放;但是可以通过所述命令通知网络:UE 再也没有数据传送了;这样网络会决定是否立即释放 RRC 连接。

<rai>参数值选项如下:

- 0 No information available (or none of the other options apply) (default)
- 1 TE will send only 1 UL packet and no DL packets expected
- 2 TE will send only 1 UL packet and only 1 DL packet expected

若想要快速释放,需要设置<rai>参数值为1或者2:

- 1 是指终端发送一个上行,不期望有下行包的,比如 UDP 协议,发送完上行就会释放 RRC
- 2 是指终端发送一个上行,且有下行 ACK 包,那么收到下行包后会立即释放 RRC,比如 PING;如果这类场景使用了参数 1,上行发送完成后也会被立即释放,但是因为网络要给终端回复 ACK, 所以网络会再次寻呼终端重新建立 RRC 连接。

### 7.10. 如何快速释放 AT 命令 Lock

当模块通过 RIL 接口发送 AT 命令到内核处理时,AP 会默认锁住 10s 不让模块进入 Deep Sleep,如果客户想要快速释放当前的 Lock 操作,可以使用 AT+QRELLOCK 释放。有关该命令的详细信息,请参考文档 [1]。



## 8 附录 A 参考文档及术语缩写

#### 表 2:参考文档

| 序号  | 文档名称                            | 备注                  |
|-----|---------------------------------|---------------------|
| [1] | Quectel_BC26_AT_Commands_Manual | BC26 AT 命令手册        |
| [2] | Quectel_BC26-OpenCPU_硬件设计手册     | BC26-OpenCPU 硬件设计手册 |

#### 表 3: 术语缩写

| 缩写    | 描述                               |
|-------|----------------------------------|
| AP    | Application Processor            |
| Modem | Modulator-Demodulator            |
| AS    | Access Stratum                   |
| CPU   | Central Processing Unit          |
| DRX   | Discontinuous Reception          |
| eDRX  | extended Discontinuous Reception |
| IoT   | Internet of Things               |
| PDN   | Public Data Network              |
| PSM   | Power Saving Mode                |
| PTW   | Paging Time Window               |
| RTC   | Real Time Clock                  |
| TAU   | Tracking Area Update             |
| TCP   | Transmission Control Protocol    |