

(30) Données relatives à la priorité:

95/15146

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6:

C12N 15/12, 15/86, 5/10, C07K 14/47,
14/82, A61K 39/395, 48/00, C12Q 1/68,
G01N 33/574, 33/68

(11) Numér de publication internationale: WO 97/22695

(43) Date de publication internationale: 26 juin 1997 (26.06.97)

(21) Numéro de la demande internationale: PCT/FR96/02061

(22) Date de dépôt international: 20 décembre 1996 (20.12.96)

96/04853 18 avril 1996 (18.04.96) FR

20 décembre 1995 (20.12.95)

(71) Déposant (pour tous les Etats désignés sauf US): FONDATION JEAN DAUSSET-CEPH [FR/FR]; 27, rue Juliette-Dodu, F-75010 Paris (FR).

(72) Inventeurs; et
(75) Inventeurs/Déposants (US seulement): TALERMAN, Adam [FR/FR]; 12, rue de la Chaise, F-75007 Paris (FR). AMSON, Robert [FR/FR]; 10, rue Gay-Lussac, F-75005 Paris (FR). COHEN, Daniel [FR/FR]; 3, rue de l'Orme-au-Mesnier, F-91600 Savigny-sur-Orge (FR).

(74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiće

FR

Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.

(54) Title: NUCLEOTIDE SEQUENCES, PROTEINS, DRUGS AND DIAGNOSTIC AGENTS FOR TREATING CANCER

(54) Titre: SEQUENCES NUCLEOTIDIQUES, PROTEINES, MEDICAMENTS ET AGENTS DIAGNOSTIQUES UTILES DANS LE TRAITEMENT DU CANCER

(57) Abstract

A nucleotide sequence corresponding to a gene comprising (a) one of sequences SEQ ID 1 to 11, or an equivalent gene which comprises (b) a sequence hybridisable with one of the sequences of (a), (c) a sequence at least 80 % homologous with (a) or (b), or (d) a sequence coding for a protein encoded by a gene according to (a), (b) or (c), or for an equivalent protein, and the use thereof, in particular for controlling cancer as well as for therapeutic follow-up. These genes are in the TSAP (tumor suppressor activated pathway) group, designated TSAP 1 to TSAP 8 and TSAP 3 human (or HUMSIAH) and in TSIP (tumor suppressor inhibited pathway) group, designated TSIP 1 and TSIP 2, both types of genes corresponding to sequences activated or inhibited, respectively, during cellular apoptosis, particularly that induced by p53.

(57) Abrégé

La présente invention concerne une séquence nucléotidique correspondant à un gène comportant: (a) une séquence selon l'une des IND. SEQ 1 à 11 ou un gène équivalent qui comporte: (b) une séquence s'hybridant avec l'une des séquences selon (a), (c) une séquence présentant au moins 80 % d'homologie avec (a) ou (b), ou (d) une séquence codant pour une protéine codée par une gène selon (a), (b) ou (c) ou pour un protéine équivalente, et leur application notamment dans la suppression du cancer ainsi que dans le suivi thérapeutique. Ces gènes regroupés en TSAP (tumor suppressor activated pathway) et dénommés TSAP 1 à TSAP 8 et TSAP 3 humain (ou HUMSIAH), et en TSIP (tumor suppressor inhibited pathway) et dénommés TSIP 1 et TSIP 2, ces deux types de gènes correspondant respectivement à des séquences induites ou inhibées lors de l'apoptose cellulaire, notamment celles induites par p53.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

NE NE NL FIND NO PL FIND NO PL FIND NO PL FIND NO FIND	Mexique Niger Pays-Bas Norvège Nouvelle-Zélande Pologne Porrugal Roumanie Fédération de Russie Soudan Suède Singapour Slovénie
NL F	Pays-Bas Norvège Nouvelle-Zélande Pologne Porrugal Roumanie Fédération de Russie Soudan Suède Singapour
NO 1 NZ 1 PL 5 PT 1 RO 1 RU 1 Staire démocratique SD SE 5 Serée SG 5	Norvège Nouvelle-Zélande Pologne Porrugal Roumanie Fédération de Russie Soudan Suède Singapour
NZ PL PL PT I RO I RU PT I String démocratique SD SE SE STrée SG S	Nouvelle-Zélande Pologne Portugal Roumanie Fédération de Russie Soudan Suède Singapour
PL PT	Pologne Porrugal Roumanie Fédération de Russie Soudan Subde Singapour
PT PT PT PT PT PT PT PT	Porrugal Roumanie Fédération de Russie Soudan Subde Singapour
RO RU B RU B stire démocratique SD SE SE S rée SG S	Roumanie Fédération de Russie Soudan Suède Singapour
RU F aire démocratique SD SE SE S rée SG S	Fédération de Russie Soudan Suède Singapour
sire démocratique SD SE SE ST SG SG ST SE	Soudan Suède Singapour
SE S	Suède Singapour
réc SG S	Singapour
	• .
	Slovénie
SK S	Slovaquie
SN :	Sénégal .
SZ S	Swaziland
TD	Tchad .
TG :	Togo
TJ :	Tadjikistan
TT T	Trinité-et-Tobago
oldova UA I	Ukraine
UG (Ouganda
	Etats-Unis d'Amérique
	Ouzbékistan
US I	Viet Nam
(oldova UA U UG (US U UZ (

10

15

20

25

30

35

SÉQUENCES NUCLÉOTIDIQUES, PROTÈINES, MÉDICAMENTS ET AGENTS DIAGNOSTICS UTILES DANS LE TRAITEMENT DU CANCER.

La présente invention concerne la mise en évidence de genes impliqués dans les voies moléculaires de la suppression tumorale et l'utilisation des gènes ainsi mis en évidence pour le traitement de certains dysfonctionnements géniques, notamment les cancers.

La présente invention a été rendue possible par l'isolement d'ADNc correspondant à des ARN messagers exprimés ou réprimés lors du processus d'apoptose induit par le gène suppresseur p53.

Une analyse globale des événements moléculaires intervenant au cours du cycle cellulaire lors du développement et de l'apoptose cellulaire est nécessaire pour mieux comprendre l'importance du gène p53 dans le processus de suppression tumorale ou, au contraire, de cancérisation.

La transformation d'une cellule normale en cellule tumorale est un processus qui se déroule en plusieurs étapes et qui nécessite une suite d'événements moléculaires. Au niveau physiologique, ces événements se traduiront par une indépendance de la cellule tumorale vis-à-vis des signaux extérieurs ainsi que par une dérégulation interne menant à une croissance incontrôlée.

Deux groupes de génes sont responsables de cette transformation dite "maligne", d'une part, les oncogénes, d'autre part, les gènes suppresseurs ou anti-oncogénes. Les oncogénes, en raison de leur dérégulation dans le cancer (résultant le plus souvent d'une mutation ou d'une translocalisation) induiront un signal positif qui favorisera la croissance néoplasique. Au contraire, les gènes suppresseurs, du fait de leur délétion, de l'absence de leur expression par mutation du promoteur, par exemple, ou encore de mutations qui modifieront la structure et la fonction de la protéine, seront incapables dans le cancer de fournir le signal qui lui, normalement, devrait freiner cette croissance anormale. En conséquence, le dysfonctionnement des gènes suppresseurs contribue à la transformation néoplasique.

L'objet de la présente invention est l'isolement de genes ayant normalement une action dans la suppression tumorale et dont il sera alors possible de surveiller et de traiter les éventuels dysfonctionnements.

En particulier, l'isolement de ces genes permet d'avoir recours à une thérapie génique de remplacement ou bien à la synthèse d'agents pharmacologiques, protéiques ou non protéiques, qui, directement ou

15

20

25

30

indirectement, par leur action sur les promoteurs, induiront l'activation et l'expression de ces genes, ou encore la synthèse d'agents pharmacologiques qui permettront de mimer l'effet physiologique de ces genes suppresseurs.

L'objectif final est, soit d'inhiber la croissance tumorale, ou mieux, d'induire le processus apoptotique de ces cellules tumorales, c'est-à-dire de conduire les cellules tumorales à se "suicider".

La présente invention concerne la mise en évidence de genes qui sont impliqués dans cette apoptose. En effet, chaque cellule possède en elle un programme de mort physiologique. Il s'agit également d'un processus physiologique qui est impliqué dans le développement afin de maintenir l'homéostasie du corps et de ne pas voir des proliférations cellulaires anormales s'établir, même si, au demeurant, elles n'ont pas de caractère malin.

L'un des genes suppresseurs les plus importants impliqués dans l'apoptose est le gène p53. Dans sa fonction normale, ce gène contrôle la croissance cellulaire et le processus d'apoptose; en particulier, c'est ce gène qui bloque la croissance cellulaire et qui doit induire le processus apoptotique afin d'éviter le développement d'un cancer. On a ainsi mis en évidence que des souris nullizygotes pour le p53 étaient beaucoup plus sensibles à la formation de tumeurs. On a également mis en évidence le fait que, dans les cancers, le gène p53 était très souvent altéré et conduisait à la production de protéines incapables de véhiculer le message d'apoptose.

C'est cette particularité qui a été mise en oeuvre dans le cadre de la présente invention.

En effet, la présente invention repose sur la constatation qu'il n'est pas possible, ou du moins qu'il paraît très difficile, de mettre en place une thérapie de substitution directe lors d'un dysfonctionnement du gène p53. En effet, le p53 muté comme il l'est dans le cancer va annuler l'effet physiologique du p53 normal.

Il a donc fallu renoncer, du moins dans un premier temps, à une thérapie de substitution agissant directement au niveau de p53.

La présente invention s'est donc attachée à étudier les genes situés en aval de p53 afin de "bipasser" la difficulté évoquée précédemment.

Afin d'isoler les gènes activés ou inhibés par le p53 normal (wild-35 type p53) on a effectué un ratissage global de l'expression des gènes dans une cellule induite en apoptose et dans la même cellule maligne, plus particulièrement dans une cellule exprimant le p53 normal dans sa fonction

10

15

20

25

30

35

et dans une cellule exprimant le p53 muté dont la fonction est oncogénique. La comparaison des gènes exprimés (ARN messagers exprimés dans les deux types de cellule) a permis de mettre en évidence des gènes exprimés différentiellement, c'est-à-dire exprimés dans l'une des cellules alors qu'ils ne le sont pas dans l'autre (les gènes peuvent être activés ou inhibés).

On en déduit aisément que ces genes sont impliqués dans le processus de cancérisation, dans un cas par leur absence, et, dans l'autre cas, par leur présence.

Pour cette étude différentielle, la méthode utilisée est la méthode décrite en 1992 par Liang et Pardee (Differential display of eucaryotic mRNA by mean of a polymerase chaine reaction).

Jusqu'à présent, l'isolement des genes impliqués dans la suppression était effectué soit par clonage positionnel, soit par l'emploi des doubles hybrides. La première méthode permettait, par un calcul statistique, de calculer la plus haute probabilité où pouvait se localiser, au niveau chromosomique, un gène suppresseur candidat pour un type bien particulier de cancer, surtout ceux d'origines familiales. Le système de doubles hybrides permet d'isoler une à une les protéines qui-interagissent avec un gène donné.

L'approche du problème selon la présente invention a permis d'isoler des séquences directement reliées à une fonction. Dès lors, au contraire du séquençage aléatoire des EST, les séquences sont des séquences dont la fonction est connue et qui sont impliquées dans le processus d'apoptose induit par le gène suppresseur p53.

De façon plus précise, cette méthode a été utilisée sur un modèle cellulaire décrit par Moshe Oren, il s'agit de cellules myeloïdes tumorales de souris qui ont été transfectées par un mutant stable du gène p53. En fait, l'expression de ce gène est thermosensible, c'est-à-dire que dans des conditions de culture cellulaire à 37°C la protéine produite est une protéine mutée, c'est-à-dire qu'elle ne peut jouer le rôle de suppresseur de tumeur et donc que la lignée cellulaire correspondante se développe sous forme de cellule maligne, alors qu'à la température de 32°C la protéine p53 exprimée, comme la protéine naturelle, est capable de jouer le rôle de suppresseur et empêche la lignée cellulaire correspondante de devenir maligne.

Cette étude systématique a permis de mettre en évidence les gènes impliqués dans la cascade de suppression induite par p53.

20

25

35

C'est pourquoi la présente invention concerne ces nouvelles séquences et les gènes les comportant ainsi que l'utilisation de ces séquences, tant au niveau du diagnostic qu'au niveau de la thérapie, de même que pour la réalisation de modèles destinés à tester des produits anti-cancéreux.

La présente invention concerne tout d'abord une séquence nucléotidique correspondant à un gène comportant :

- une séquence selon l'une des IND.SEQ 1 à 10 ou un gène équivalent qui comporte :
- (b) une séquence s'hybridant avec l'une des séquences selon (a),
- 10 (c) une séquence présentant au moins 80 % d'homologie avec (a) ou (b), ou
 - (d) une séquence codant pour une protéine codée par un gène selon (a), (b) ou (c) ou pour une protéine équivalente,

et leur application notamment dans la suppression du cancer ainsi que dans le suivi thérapeutique.

De plus, la présente invention concerne un gene humain impliqué dans la cascade de suppression induite par p53 ainsi que l'utilisation des séquences de ce gène, tant au niveau du diagnostic qu'au niveau de la thérapie, de même que pour la réalisation de modèles destinés à tester des produits anti-cancéreux ainsi que leur application à titre d'agent antiviral.

La présente invention concerne donc également une séquence nucléotidique correspondant à un gene comportant :

- (a) une séquence selon l'IND.SEQ 11 correspondant au gene TSAP 3 humain ou HUMSIAH (Human Homologue of the Drosophila seven in absentia gene), ou un gène équivalent qui comporte :
- (b) une séquence s'hybridant avec l'une des séquences selon (a),
 - (c) une séquence présentant au moins 80 % d'homologie avec (a) ou (b), ou
- (d) une séquence codant pour une protéine codée par un gène seion (a), (b) ou (c) ou pour une protéine équivalente,

et leur application notamment dans la suppression du cancer ainsi que dans le suivi thérapeutique.

Concernant les séquences 1 à 11, la présente invention couvre aussi bien la séquence nucléotidique correspondant au gène entier que des fragments de ce gène, notamment lorsqu'ils codent pour une protéine équivalente comme cela sera décrit ci-après.

10

15

20

25

Les séquences nucléotidiques peuvent être aussi bien de l'ADN que de l'ARN ou des séquences dans lesquelles certains des nucléotides sont non naturels, soit pour améliorer leurs propriétés pharmacologiques, soit pour permettre leur identification.

Les séquences mentionnées en (b) (pour les IND.SEQ 1 à 11) sont essentiellement les séquences complémentaires totales ou partielles (notamment pour les cas évoqués précédemment).

Les séquences (a) et (b) (pour les IND.SEQ 1 à 10) permettent non seulement l'accès au gène murin dont elles sont issues, mais également aux gènes humains correspondant par homologie.

Ainsi, l'invention concerne également les séquences nucléotidiques des gènes présentant une forte homologie avec les gènes mentionnés précédemment, de préférence une homologie supérieure à 80 % sur les parties essentielles desdits gènes, soit en général au moins 50 % de la séquence, de préférence l'homologie sera sur ces parties supérieure à 90 %.

Enfin, lorsque lesdits gènes codent pour une protéine, la présente invention concerne également les séquences codant pour la même protéine, compte tenu de la dégénérescence du code génétique, mais également pour les protéines équivalentes, c'est-à-dire produisant les mêmes effets, notamment les protéines délétées et/ou ayant subi des mutations ponctuelles.

Les séquences selon la présente invention sont plus particulièrement les séquences qui sont induites ou inhibées lors de l'apoptose cellulaire, notamment celles induites par p53.

Lesdits genes sont regroupes en TSAP ou "Tumor Suppressor Activated Pathway" et dénommés de TSAP 1 à TSAP 8 et TSAP 3 humain, correspondant aux IND.SEQ 1 à 8 et 11 (HUMSIAH) respectivement, et en TSIP ou "Tumor Suppressor Inhibited Pathway" et dénommés TSIP 1 et TSIP 2, correspondant aux IND.SEQ 9 et 10.

Les caractéristiques des séquences correspondent aux IND.SEQ 1 à 30 10 sont rassemblées dans le tableau ci-annexé.

Les séquences nucléotidiques correspondant aux gênes TSAP (y compris le TSAP 3 humain ou HUMSIAH), sont des séquences exprimées lors du processus d'apoptose alors que lorsqu'ils ne sont pas exprimés le processus d'oncogénèse se poursuit. Il est donc intéressant :

- de détecter toute anomalie dans le gène correspondant, laquelle peut conduire à une plus grande susceptibilité à l'oncogénèse, et
 - de pouvoir prévoir une thérapie de remplacement.

10

15

20

25

30

35

Il faut d'ailleurs rappeler que ces gènes peuvent intervenir dans d'autres processus que les processus oncogènes; en effet, p53 est en quelque sorte le gardien de l'intégrité du génome, dans ces conditions les gènes TSAP ou TSIP sont sans doute également impliqués dans cette fonction de contrôle, c'est donc l'ensemble des altérations possibles du génome qui peuvent être redevables de la détection et de la thérapie précédente. Au contraire, les gènes TSIP sont exprimés lors de l'oncogénèse et non lors de l'apoptose, il est donc là aussi intéressant de détecter l'éventuelle anomalie des TSIP et également de prévoir une thérapie d'inhibition/blocage.

La thérapie de remplacement pourra être effectuée par thérapie génique, c'est-à-dire en introduisant le gène TSAP avec les éléments qui permettent son expression in vivo. Les principes de la thérapie génique sont connus. On peut utiliser des vecteurs particuliers, viraux ou non viraux, par exemple des adénovirus, rétrovirus, virus herpès ou poxvirus. La plupart du temps ces vecteurs sont utilisés sous forme défectifs qui serviront de véhicules d'expression de TSAP avec ou sans intégration. Les vecteurs peuvent être également synthétiques, c'est-à-dire mimer des séquences virales, ou bien être constitués par de l'ADN ou de l'ARN nu selon la technique développée notamment par la société VICAL

Dans la plupart des cas, il faudra prévoir des éléments de ciblage assurant une expression spécifique des tissus ou organes, en effet, il n'est pas possible d'envisager d'activer un phénomène d'apoptose incontrôlé.

La présente invention concerne donc l'ensemble des vecteurs décrits précédemment.

La présente invention concerne également les cellules transformées par un vecteur d'expression tel que décrit précédemment ainsi que la protéine pouvant être obtenue par culture de cellules transformées.

Les systèmes d'expression pour produire des protéines peuvent être aussi bien des systèmes eucaryotes tels que les vecteurs précédents que des systèmes procaryotes dans des cellules de bactéries.

L'un des intérêts de la présente invention est qu'elle a mis en évidence l'implication de plusieurs gènes dans l'apoptose ; ainsi la surexpression de l'un des gènes par thérapie génique peut, pour certains d'entre eux, ne conduire à l'apoptose que les cellules dans lesquelles s'expriment déjà d'autres gènes déréglés, c'est-à-dire des cellules malignes.

La présente invention concerne également, à titre de médicament, un composé assurant l'expression cellulaire d'au moins une des séquences

10

15

20

25

30

35

nucléotidiques précédentes lorsqu'elle est induite lors de l'apoptose cellulaire, notamment des gènes TSAP 1 à TSAP 8 et TSAP 3 humain, ou au contraire assurant l'inhibition de l'expression cellulaire d'au moins une séquence cellulaire telle que décrite précédemment lorsqu'elle est inhibée lors de l'apoptose cellulaire, notamment TSIP 1 et TSIP 2.

Il est, par exemple, possible de prévoir d'autres approches que la thérapie génique, notamment l'utilisation de séquences nucléotidiques en stratégie sens ou antisens, c'est-à-dire pouvant bloquer l'expression de TSIP ou au contraire, agissant en amont, favorisant l'expression de TSAP.

On peut également prévoir une stratégie de remplacement directe par apport de protéines correspondant à TSAP ou d'anticorps inhibiteurs correspondant à TSIP.

Enfin, il est possible de prévoir l'utilisation de molécules non protéiques dont l'activité sera d'activer TSAP ou de mimer l'action de son produit d'expression ou bien d'inhiber TSIP ou bien de bloquer l'action de son produit d'expression.

Ces produits péuvent être aisément testés sur les cellules modifiées qui sont décrites dans les exemples en introduisant les produits à tester dans la culture cellulaire et en détectant l'apparition du phénomène apoptotique. Dans les stratégies à ADN, ARN ou protéique les produits sont bien entendu élaborés en fonction des séquences qui sont décrites.

La présente invention concerne en particulier l'utilisation des médicaments précédents en tant qu'agent anti-cancéreux.

Mais, le produit du gène TSAP 3 humain (HUMSIAII) est également utile comme agent antiviral, comme cela apparaîtra à la lecture de l'exemple 2. La présente invention concerne donc également l'utilisation des médicaments précédents comme agent antiviral.

La présente invention concerne également à titre d'agent de diagnostic pour la détermination de la prédisposition au cancer, tout ou partie des séquences selon l'invention à utiliser comme sonde nucléotidique ou comme amorce d'amplification, mais également à titre d'agent de diagnostic pour la détermination de la prédisposition au cancer un antigène correspondant à tout ou partie des protéines codées par la séquence selon l'invention ou les anticorps, notamment les anticorps monoclonaux, correspondants, éventuellement après culture.

Les méthodes de diagnostic sont connues, il peut s'agir, par exemple, de techniques de microséquençage des parties variables après

20

25

30

35

isolement et amplification éventuelle ou des méthodes de détection type RFLP ou d'amplification simple notamment. Les techniques différentielles peuvent, en particulier, permettre de mettre en évidence l'écart entre le TSAP ou TSIP normal et anormal.

5 L'invention concerne également des modèles mettant en oeuvre les séquences précédentes.

Le gene TSAP 3 humain (HUMSIAH) peut être isolé, notamment, en utilisant la méthode PCR ou d'autres méthodes d'amplification en mettant à profit la structure du gène. Il est également possible de synthétiser ce gene par morceau, si nécessaire.

Enfin, l'invention concerne un perfectionnement à la méthode de Liang et Pardee (1) caractérisé en ce que dans l'amplification par PCR on effectue une diminution en palier ("touch down") tel que décrit dans Don et al. (2).

D'autres caractéristiques de l'invention apparaîtront à la lecture des exemples ci-après faite notamment en se référant aux figures suivantes :

- Figure 1 - Quantification de l'expression différentielle des ARNm utilisant l'imageur 1200 β. Hybridation aux ARNm dérivés des cellules LTR6 à 37°C et des cellules LTR6 après 4 heures à 32°C. Les nombres en ordonnées de 0 à 500 correspondent au comptage détecté par 0,15 mm et sont proportionnels au signal d'hybridation.

C1 : ARNm exprime également en utilisant un clone sans expression différentielle :

C2: contrôle positif utilisant la Cycline G et montrant l'induction des ARNm correspondant à 32°C;

MER-LTR: montre l'induction de cette sequence à 32°C;

TSAP 1 à TSAP 8 : expression différentielle des 8 ARNm activés dans les 4 premières heures suivant l'induction de l'apoptose ;

TSIP 1 et TSIP 2 : expression différentielle des 2 ARNm inhibés dans les 4 premières heures suivant l'induction de l'apoptose.

- Figure 2 - Analyse Northern blot.

A: hybridation avec la sonde TSAP 3;

B: hybridation avec la sonde siah 1b de souris;

lignes 1 et 2 : ARNm polyA+ de cellules leucémiques myéloïdes M1 (clone S6) cultivées à 37°C et 32°C respectivement ;

lignes 3 et 4 : ARNm polyA+ de cellules LTR6 cultivées à 37° C et 32° C respectivement ;

la flèche indique l'expression différentielle du transcrit 1,9 kb de TSAP 3 siah 1b de souris ;

panneaux inférieurs : GAPDH ;

C: distribution tissulaire utilisant TSAP 3 comme sonde;

1: coeur, 2: cerveau, 3: rate, 4: poumon, 5: foic, 6: muscle du squelette, 7: rein, 8: testicule;

les flèches indiquent les transcrits de 1,9 et 2,4 kb;

panneau inférieur : β-actine.

- Figure 3 Analyse de l'hybridation in situ avec la sonde TSAP 3 ;
- A : cellules M1 incubées pendant 4 heures à 32°C et hybridées avec une sonde antisens TSAP 3 ;

B: cellules LTR6 incubées pendant 4 heures à 32°C et hybridées avec une sonde sens TSAP 3;

C : cellules LTR6 incubées à 37°C et hybridées avec une sonde antisens TSAP 3 :

D à F: cellules LTR6 cultivées à 32°C pendant respectivement 1, 2 et 4 heures et hybridées à une sonde antisens TSAP 3;

la barre dans le panneau A: 10 µm;

les flèches indiquent l'accumulation des ARNm TSAP 3 dans le cytoplasme.

- 20 Figure 4 Comparaison entre la séquence d'ADNc de TSAP 1 et la séquence nucléotidique correspondant à la phospholipose C bêta 4 de rat.
 - Figure 5 Comparaison entre la séquence d'ADNc de TSAP 2 et la séquence nucléotidique correspondant à la protéine digitée au zinc (ZFM 1) localisée dans le locus Multiple Endocrine Neoplasia (MEN 1).
- 25 Figure 6 Comparaison entre la séquence d'ADNc de TSAP 3 et la séquence nucléotidique correspondant au gène Drosophila seven in absentia (sina).
 - Figure 7 Comparaison entre le produit des genes sina de différentes espèces, humain (HUMSIAH), murin (MMSIAH 1B) et de drosophile (DROSINA).
- 30 Figure 8 Comparaison entre la séquence d'ADNc de TSIP 2 et la séquence d'ADNc du transcript S182 murin du gene AD3 impliqué dans la maladie d'Alzheimer.

MATERIELS ET METHODES

Cultures cellulaires

35 Cellules de leucémie myéloïde M1 (clone S6) et cellules M1 transfectées de façon stable avec un mutant sensible à la température val 135 p53 (LTR6) (3).

10

15

20

25

30

35

Ces cellules sont cultivées sur milieu RPMI 1640 avec 10 % FCS à 5 % de CO₂ à 37°C. Pour la modification de la température, les cultures sont placées dans un second incubateur à 32°C. Pour tous les essais effectués dans cette étude, les cellules sont testées après 12 et 24 heures pour la présence d'apoptose.

Etude des ADNc différentiels

Pour effectuer les tests dans des conditions expérimentales standards et pour obtenir une reproductivité totale des résultats, les modifications suivantes au protocole d'origine (1) ont été effectuées.

On utilise toujours des ARNm polyA+ purifiés deux fois sur colonne d'oligodT utilisant Fast Track (Invitrogen, San Diega CA). Après transcription réverse (M-MLV Reverse Transcriptase, Gibco BRL) sur 0,05 µg de polyA-utilisant 20 µM de chacun des dNTP (Boehringer-Nlannheim), aucun dNTP additionne n'est ajouté au mélange de PCR final. Un "hot start" à 94°C pendant 5 minutes est effectué avant la PCR (GeneAmp PCR system 9600 Perkin Elmer Cetus). Les échantillons sont refroidis rapidement sur de l'eau glacée. Un "touch down" (2) de 10 cycles de 50°C à 40°C est effectué (94°C 30 secondes - 50°C 1 minute - 72°C 30 secondes), suivi par 35 cycles (94°C 30 secondes - 40°C 1 minute - 72°C 30 secondes) et une extension finale de 5 minutes à 72°C. Les produits de la PCR sont séparés sur gels de polyacrylamide à 6 % non dénaturant (4). Les gels sont exposés sans séchage. Chaque présentation différentielle est effectuée en comparant N1S6 et LTR6 à 37°C et après 4 heures d'incubation des deux lignées cellulaires à 32°C.

La procédure de présentation différentielle est répétée dans 3 expériences différentes pour confirmer une parfaite reproductibilité.

Les bandes exprimées différentiellement sont découpées à partir du gel, éluées et réamplifiées (1). Les produits de PCR sont sous-clonés en utilisant le système TA-cloning (Invitrogen, San Diego CA) en suivant les indications fournies.

Pour chaque réaction de ligation, 10 clones recombinants sont séquences en utilisant le système automatique ABI.

Extraction des ARN, analyses et sondes Northern blots

L'ARN total est extrait avec du Trizol (Life Technologies). Les ARN polyA+ sont préparés en utilisant le kit OligotexdT (Qiagen, CA). 30 µg de l'ARN total ou 2 µg d'ARN polyA+ sont séparés sur agarose 1 %/1 x MOPS / 2 % gel de formaldéhyde, transférés sur membrane de nylon (Hybond N+, Appligène, France) comme cela a été décrit précédemment (5). Les Northern blots sont-

10

15

20

25

30

35

hybridés avec des sondes marqués au P32 sur les inserts TSAP et TSIP et lavés comme décrit précédemment (5). Pour vérifier l'induction de la fonction du p53 sauvage, les Northern blots sont hybridés avec une sonde cycline G (6). A titre de contrôle pour la quantité d'ARNm chargée, les blots sont hybridés avec une sonde GAPDH. Différents Northern blots (Clontech CA) sont utilisés dans des conditions identiques et hybridés pour le contrôle avec une sonde β-actine. Les produits de RT-PCR pour LTR6 sont amplifiés en utilisant les amorces siah 1b suivantes : 5'CAGTAAACCACTGAAAAACC3' et 5'CAAACCAAAACCACAC3'. Le produit de PCR sous-cloné est utilisé comme sonde contrôle de siah 1b. Les Northern blots sont exposés pendant 10 jours à - 80°C.

Slot blots

La reproductibilité des résultats obtenus par les analyses Northern blot. Les blots sont préparés (Bio-Rad, Hercules CA) en plaçant les produits de PCR (200 ng de Zeta-Probe Blotting Membranes, Bio-Rad, suivant les instructions du fabricant) de clones TSAP et hybridés avec une sonde ADNc marquée au P32 (Superscript II Gibco-BRL, Life Technologies) correspondant à l'ARN des cellules LTR6 incubées à 37°C et ensuite 4 heures à 32°C. Le produit de PCR du clone contenant la cycline G est également déposé sur les membranes et utilisé comme contrôle positif. Les Slot blots sont exposés une nuit à - 80°C.

Analyse quantitative des images

Celle-ci est effectuée en utilisant un imageur 1200 β (Biospace Instruments, Paris, France) sur les deux Northern blots (pour TSIP 1 et TSIP 2) et sur les Slot blots pour tous les contrôles ADNsc et TSAP 1 à 8. Pour l'analyse quantitative représentée dans les graphiques de la figure 1 on soustrait un nombre constant de chaque pic. Cette constante est calculée en mesurant la valeur moyenne du bruit de fond dans les slots qui ne contiennent pas d'ADNc. Les résultats du β imageur ont été obtenus en comptant les slot blots une nuit et en les confirmant par autoradiographie avec des temps variables d'exposition. Ces autoradiogrammes montrent les mêmes variations qualitatives relatives entre les activités à 32°C et à 37°C que les mesures effectuées avec le β imageur.

Hybridation in situ (7, 8)

Les cellules sont lavées 3 fois dans un tampon phosphate salin (PBS) "cytospinned" et fixées par du paraformaldéhyde à 4 % dans PBS pendant 10 minutes puis conservées dans l'éthanol à 70 %. Des transcrits

d'ARN marqués à la digoxigénine-11-urédine-5'-triphosphate (DIG) et à la biotine-11-UTP de TSAP 3 sont utilisés dans les analyses suivant la procédure décrite précédemment (Boehringer-Mannheim). Pour la détection des souches marquées à la digoxigénine hybridée les tranches sont incubées dans SAD-10 (10 nm d'anticorps anti-DIG de mouton marqués à l'or à 1/1000 de dilution, Biocell UK). L'analyse est effectuée en utilisant de la microscopie à laser confocal.

EXEMPLE 1

5

10

15

20

25

30

35

L'étude différentielle des ADNc par la méthode de Liang et Pardee permet de disposer d'un outil très puissant et efficace pour détecter les variations dans l'expression des gènes. Néanmoins, il a fallu modifier le protocole original comme cela a été indiqué précédemment afin d'écarter certains problèmes de reproductibilité observés lorsque l'on applique la méthode telle qu'elle est décrite à l'origine.

On a pu mettre en évidence une reproductibilité totale lorsque dans la méthode PCR on introduit un "hot start" suivi par un "touch down".

Les-bandes exprimées différentiellement après isolement et réamplification sont néanmoins souvent contaminées par des bandes provenant des ARN qui migrent dans les régions voisines de l'ADNc, si l'on utilise directement ces sondes sur des Northern blots ceci conduit à des erreurs. On a donc sous-cloné les produits de seconde PCR et fait effectuer les analyses des Northern blots utilisés à défaut de recombinant à sonde simple. Le séquençage systématique d'au moins 10 sous-clones recombinants pour chaque bande sélectionnée a montré qu'il était très efficace pour sélectionner les clones d'intérêt.

Le gène p53 est, dans l'état actuel de nos connaissances, le suppresseur tumoral qui est muté dans le plus grand nombre de cancers d'origines très diverses, et l'utilisation du mutant sensible à la température val-135 p53 s'est déjà montrée précédemment fournir des informations très importantes concernant le fonctionnement du p53 sauvage en induisant, soit l'arrêt de la croissance cellulaire en phase G-1, soit l'initiation du programme de mort cellulaire.

Jusqu'à maintenant, les voies moléculaires en amont et en aval de p53 et qui conduisent à la suppression tumorale étaient encore peu claires.

Jusqu'à maintenant un certain nombre de gènes en aval de p53 ont été identifiés, il s'agit notamment de gadd 45, mdm 2, mck, "Mouse endogenous retrovirus" LTR, p21-waf et Cycline G.

10

15

20

25

30

35

La présente invention a permis de mettre en évidence l'existence de 11 gènes qui sont exprimés différentiellement dans les cellules exprimant le p53 sous sa forme suppresseur actif ou bien dans des cellules tumorales exprimant le gène p53 non actif.

La figure 1 montre la quantification des signaux d'hybridation correspondant à l'expression différentielle de 8 de ces gènes qui sont activés à 32°C, c'est-à-dire dans lesquels la fonction de p53 sauvage est activée et conduit donc à l'apoptose des cellules, ces gènes qui sont activés seront dénommés ci-après TSAP (pour Tumor Suppressor Activated Pathway), par contre on constate que dans deux expériences 2 gènes exprimés à 37°C sont en partie inhibés à 32°C, ce qui impliquerait qu'ils sont inhibés durant la mort cellulaire programmée, ces gènes ont été dénommés TSIP (pour Tumor Suppressor Inhibited Pathway).

L'analyse des homologies des différentes séquences activées de TSAP 1 à TSAP 3 a montré qu'il s'agissait là de gènes déjà connus. Par contre, les autres ADNc TSAP 4 à TSAP 8 ne montrent aucune homologie significative avec des gènes connus.

Pour l'ADNc TSIP 1 qui est inhibé dans son expression pendant l'apoptose, il ne montre aucune homologie avec des genes connus.

Pour l'ADNc TSIP 2 qui est également inhibé dans son expression pendant l'apoptose, il montre une grande homologie avec le transcript \$182 du gène AD3 impliqué dans les voies métaboliques de la maladie d'Alzheimer (Sherrington et al.) (figure 8).

Par conséquent, il est possible d'agir sur les voics métaboliques de la maladie d'Alzheimer en agissant sur les voies métaboliques p53 dépendantes.

La présente invention a donc également pour objet, à titre de médicament, un composé assurant l'expression cellulaire de TSIP 2 destiné au traitement de la maladie d'Alzheimer ainsi qu'à titre d'agent de diagnostic pour la détermination de la prédisposition à la maladie d'Alzheimer, tout ou partie de la séquence de TSIP 2 à utiliser comme sonde nucléotidique ou comme amorce d'amplification ainsi qu'un antigène correspondant à tout ou partie des protéines codées par TSIP 2 ou les anticorps, notamment les anticorps monoclonaux correspondants, éventuellement après culture.

L'hypothèse que l'on peut faire sur ces gènes inhibés dans leur expression par le p53 sauvage est qu'ils peuvent coder pour des séquences oncogéniques qui seraient régulées en aval du processus de suppression

10

15

20

25

30

35

tumorale ou encore qu'il s'agit de protéines de structure ou du cytosquelette pour lesquelles la régulation en aval de l'expression est concomitante de la mort cellulaire par apoptose.

TSAP 1 est homologue à la phospholipase C bêta 4 de rat. La séquence de TSAP 1 présente 100 % d'identité avec la PLC entre les nucléotides 3967 et 3985; 82 % entre les nucléotides 3986 et 4116 et 85 % entre les nucléotides 4070 et 4220 (figure 4). La PLC est connue pour être impliquée dans la voie de signalisation des récepteurs de la tyrosine-kinase, et pour catalyser l'hydrolyse du phosphatidylinositol-4,5-biphosphate en diacylglycérol et inositol-1,4,5-triphosphate. Toutefois, la présente étude suggère que la PLC est une cible en aval dans l'apoptose à médiation p53.

TSAP 2 montre des séquences conservées (92 % d'identité entre les nucléotides 259 et 299 ; 100 % d'identité entre les nucléotides 418 et 458 et 92 % d'identité entre les nucléotides 645 et 685) avec la protéine digitée au zinc (ZFM 1) qui est localisée dans le locus Multiple Endocrine Neoplasia (MEN 1) (figure 5). MEN 1 est un désordre dominant autosomal associé avec le développement-de tumeurs affectant le lobe antérieur des glandes pituitaires et parathyroïdes et les cellules des îlots pancréatiques. Il est particulièrement intéressant d'avoir mis en évidence qu'à la fois ZFM et une isoenzyme de PLC sont colocalisés dans la même région chromosomique 11q13 contenant le gène de susceptibilité à MEN 1. Chez la souris, les régions homologues sont localisées sur le chromosome 19B. Le fait de trouver que TSAP 1 et TSAP 2 sont activés en réponse à p53 peut suggérer que ces gènes appartiennent à une voie de suppression des tumeurs plus globale et que p53 peut coopérer avec MEN 1.

TSAP 3 est identique à Siah 1b. Ce gène est l'homologue chez les vertébrés du gène Drosophila seven in absentia (sina). Le clone décrit présente 94 % d'identité avec l'homologue murin (nucléotides 1496 à 1634) (figure 6). Par analyse Northern blot en utilisant une sonde TSAP 3, on a pu détecter une expression différentielle d'un messager de 1,9 kb de ce gène (figure 2A). Ceci est confirmé en utilisant une seconde sonde correspondant à la même région de la séquence siah 1b-décrite (figure 2B). La figure 2C montre la distribution tissulaire de ce gène en utilisant une sonde TSAP 3 qui détecte à la fois l'ARNm de 1,9 et de 2,4 kb correspondant aux résultats mentionnés précédemment lorsqu'une sonde siah est utilisée. L'hybridation in situ montre que l'ARNm de TSAP 3 est induit rapidement 1 heure après l'induction de l'apoptose (figure 3D). Son expression augmente après 2 et

10

15

20

25

30

35

4 heures (figures 3E et 3F). Dans les cellules qui sont entrées en mitose aucun signal n'est détecté.

Carthew et Rubin ont montré que seven in absentia est nécessaire pour le développement de l'oeil de la drosophile. D'autre part, des mutants de ce gène dans la drosophile montrent un rôle beaucoup plus général dans le développement. L'homologue murin est subdivisé en deux groupes siah 1 et siah 2 et ces protéines montrent un degré de conservation tout à fait inhabituel par rapport à drosophila seven in absentia.

Nos résultats ont montré que TSAP 3 / siah 1b est activé dans le programme de mort cellulaire dans les cellules M1 induites par le gène suppresseur de tumeur p53. Comme ce gène code pour une protéine digitée au zinc nucléaire, il pourrait être un facteur de transcription régulateur qui est en aval du signal de p53. Les résultats montrent également un lien direct entre les gènes concernant le développement chez la drosophile et une voic majeure de suppression tumorale.

EXEMPLE 2

En utilisant le fragment d'ADNc murin (TSAP 3), décrit ci-dessus, obtenu par analyse différentielle d'ARNm, on a constitué une sonde pour isoler un fragment de 1,1 kb d'une librairie d'ADNc humain qui ensuite a été expansé jusqu'à la région codante entière par une RACE-PCR.

La figure 7 montre l'ADNc et la séquence d'acides aminés du gène humain sina (TSAP 3).

Cette séquence code une protéine de 282 amino-acides avec un motif digité au zinc C3HC4. Cette protéine présente également des analogies avec des protéines capables de se fixer sur l'ARN. La séquence en amino-acides est très conservée entre la Drosophile, la souris et le gène humain (figure 7).

La distribution tissulaire indique que le sina humain est exprimé de façon ubiquitaire et code pour un ARNm de 2,3 kb et, dans le placenta, il existe un transcrit additionnel de 2,5 kb.

En analysant des YAC du CEPH et des librairies BAC par PCR, en utilisant des amorces sina humains spécifiques, on a pu isoler 8 YAC (350-1000 kb) et 2 BAC (100 et 125 kb).

La fluorescence par hybridation in situ (FISH) utilisant les clones YAC et BAC montre que le seven in absentia est localisé sur le chromosome 16q12-13, c'est-à-dire dans une région contenant les gènes suppresseurs de tumeurs candidat dans différents cancers, notamment : cancer du sein (9),

WO 97/22695

16

PCT/FR96/02061

tumeur de Wilm's (10-12), syndrome de Laurence-Moon-Bard et-Biedl (13), syndrome de Beckwith-Wiederman (14).

Comme cela a été indiqué dans la demande de brevet français N° 95 15 146, on a trouvé que des transfectances stables de cellules M1 murines avec le mutant p53 sensible à la température montraient l'activation de seven in absentia après induction de l'apoptose à 32°C. Etant donné que le TSAP 3 murin a été isolé dans un modèle d'apoptose induit par le gène p53, il était logique d'approfondir l'analyse du gène TSAP3 (HUNSIAH) dans un modèle d'apoptose physiologique humain.

10 Ce modèle est décrit dans l'intestin où les cellules migrent du fond de la crypte vers la région apicale des vilosités où elles meurent par apoptose avant d'être larguées dans le lumen. Ces cellules en apoptose sont spécifiquement marquées par la technique TUNEL

D'autre part, ces mêmes cellules sont positives par hybridation in situ pour le gene TSAP 3 (HUMSIAH) dans l'apoptose physiologique chez l'humain.

15

20

25

30

35

Enfin, afin d'investiguer l'implication du gène TSAP 3 humain dans la suppression des tumeurs, on a utilisé un modèle basé sur l'ensemble des gènes plutôt que sur un seul gène. Ce modèle repose sur les propriétés biologiques du parvovirus H-1.

Des recherches très complètes dans ce domaine ont montre sur les 20 dernières années que le parvovirus tue préférentiellement les cellules tumorales alors qu'il épargne leur contrepartie normale.

De façon à élaborer un modèle, on a fait l'hypothèse suivante : s'il était possible de sélectionner, à partir d'une tumeur qui soit sensible à l'effet cytopathique du parvovirus H-1, les cellules qui étaient résistantes, cette résistance pourrait être due à un changement de leur phénotype malin. Ceci a pu être démontré pour les cellules KS sélectionnées à partir des cellules érythro-leucémiques K562 humaines. Tandis que les cellules parentales K562 sont sensibles à l'effet cytopathique du parvovirus H-1, les cellules KS, elles, sont résistantes. Ces cellules résistantes réexpriment le type sauvage de p53 et ont un phénotype supprimé à la fois in vitro et in vivo.

Pour confirmer ces observations sur d'autres cellules, on a sélectionné, à partir d'un monoclone d'une leucémie monocytaire U937 humaine, les cellules filles US3 et US4. Ces clones sont résistants à l'effet cytopathique des parvovirus H-1 et montrent une réversion du phénotype malin in vivo. L'analyse de marqueurs de surface pour 20 cellules, indique

10

20

25

30

35

qu'il n'y a pas de déplacement dans le stade de différentiation entre U937 et les clones US indiquant que la suppression du phénotype malin n'est pas due à une différentiation terminale.

Ni les cellules K562 ni les cellules U937 n'expriment p53. Par contraste aux cellules KS qui réexpriment p53, les cellules US3 et US4 ne réexpriment p53. Toutefois, on a pu mettre en évidence le fait que les cellules US3 et US4 montraient l'activation de WAF-1 par rapport aux cellules parentales malignes U937. Une telle activation de WAF-1 dans une voie indépendante de p53 alternative a été récemment décrite et les résultats actuels montrent que les clones US3 et US4 utilisent, semble-t-il, cette voie alternative WAF-1.

Le gène sina est activé par le type sauvage p53 inductible dans les cellules M1 de même que dans les cellules KS qui réexpriment le type sauvage p53.

Tandis que les cellules parentales U937 expriment très légèrement l'ARNm de sina, il est activé dans les clones filles US3 et US4 qui ont une réversion de leur phénotype malin et qui réexpriment p21waf-1.

De façon intéressante, sina est activé dans les cellules qui deviennent apoptotiques, comme cela est montré par un double marquage utilisant une sonde sina pour hybridation in situ combinée avec un essai TUNEL

Ceci permet de démontrer que le gene sina humain qui est très conservé dans la phylogénie joue un rôle dans l'apoptose et la suppression tumorale.

De façon encore plus importante, sina se situe au croisement des voies de p53 et de WAF-1.

En outre, en utilisant le modèle de U937 et US3 et US4, on a pu montrer un lien fonctionnel pour les molécules suppresseurs en utilisant un modèle biologique global qui permet la comparaison à des niveaux moléculaires entre les cellules malignes parentales et les cellules filles directement dérivées. Ces expériences indiquent qu'il n'est pas nécessaire de transférer les gènes suppresseurs de tumeur humains spécifiques de façon à leur conférer le phénotype suppresseur, mais que la réversion tumorale est sous le contrôle d'un système de régulation qui est toujours présent dans le matériel génétique des cellules tumorales bien qu'il soit nécessaire de le réactiver.

<u>TABLEAU</u>

CARACTERISTIQUES DES CLONES

5				
J	Clone à expression différentielle	<u>Amorces</u> <u>3' et 5'</u> *	<u>Taille de l'ARNm</u> <u>en kb</u>	<u>Homologie</u>
	TSAP 1	T11GC-16	2,0 et 4,5	PLC #
	TSAP 2	T11GC-5	5,9	NIENI §
10	TSAP 3 (IDS N° 3)	T11CG→	1,9	siah 1b¶
	TSAP 4	T11GC-6	5,0	Non
	TSAP 5	T11CG-5	1,2	Non
	TSAP 6	Tl1AG-1	2,8	Non
	TSAP 7	T11GC-16	> 8,0	Non
15	TSAP 8	T11GC-6	> 10,0	Non
	TSIP 1	T11CG-8 -	3,0	Non
	TSIP 2	T11AA-5	3,1	AD3 #

- * Les chiffres et les séquences des amorces en 5' correspondent à ceux rapportés par Bauer et al. (4)
 - # Rat phospholipase C-béta 4 ARNm (RATPHOSCB)
 - § ARNm humains (HUMMEN1C: HUMZFM1C: HUMZFM1A: HUMMEN1A)
 - siah-1B ARNm (MMSIAH1B)
- # AD3, transcript S182 ARNm murin (homologue S182 ARNm humain) 25 (Sherrington et al.).

(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: (B) TYPE: nucléotide 5			INFORMAT	IONS POUR L	A SEQ ID N°	: 1			•
(B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADNo (ix) CARACTERISTIQUE: (A) NOM/CLE: TSAP 1 10 (B) EMPLACEMENT: (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 1: TSAP1 10. TGATCACGTAC 15 20 20 30 40 50 60 70 TSAP1 ACACACACACACACACACACACACACACACACACACAC			(i)	CARACTERIS	TIQUES DE L	A SEQUENCI	E:		
C				(A) LONG	JEUR:				
(D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADNC (ix) CARACTERISTIQUE: (A) NOM/CLE: TSAP 1 10 (B) EMPLACEMENT: (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 1: TSAP1 10 TGATCACGTAC 15 TGATCACGTAC 20 20 30 40 50 60 70 TSAP1 ACACACACACACACACACACACACACACACACACACAC				(B) TYPE:	nucléotide				
(ii) TYPE DE MOLECULE : ADNC (ix) CARACTERISTIQUE:		5		(C) NOMB	RE DE BRINS	S: simple	•		
(ix) CARACTERISTIQUE:				(D) CONFI	GURATION:	linéaire			
(A) NOM/CLE: TSAP 1 10 (B) EMPLACEMENT: (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 1: TSAP1 10. TGATCACGTAC 15 FBEPLC CTTCTTCTACTTAACAATTTGACTATTGAATTTCTTTGGCCAACCAA			(ii) TYPE	DE MOLECUL	E : ADNc				
10 (B) EMPLACEMENT: (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 1: TSAP1 10. TGATCACGTAC 15 FREPLC CTTCTTCTACTTAACAATTTGACTATTGAATTTCTTTGGCCAACCAA			(ix) CARA	ACTERÍSTIQUE	<u>:</u> :				•
TSAP1				(A) NOM/	CLE: TSAP 1				
TSAP1 10. TGATCACGTAC 15 FREPLC CTTCTTCTAACAATTTGACTATTGAATTTCTTTGGCCAACCAA		10	•	(B) EMPLA	CEMENT:	••			
10. TGATCACGTAC FREPLC CTTCTTCTACTTAACAATTTGACTATTGAATTTCTTTGGCCAACCAA			(xi) DESC	RIPTION DE L	A SEQUENC	E: SEQ ID N°	1:		
10. TGATCACGTAC FREPLC CTTCTTCTACTTAACAATTTGACTATTGAATTTCTTTGGCCAACCAA				•					
### Falple CTTCTTCTACTAACAATTTGACTATTGACTATTGGCCAACCAA			TSAP1	•					
######################################			10.						TGATCACGTAC
### TSAP1 CCCCTATTCCTGACAGGCAGGGTGAACCATAATGGCTATAGGCTATGGC ##################################		15							
20 20 30 40 50 60 70 TSAP1 ACACACACACACACAGAGAGAGAGAGAGAGAGAGAGAGA			rat PLC			 TC2CT2TTC2:			
20 30 40 50 60 70 TSAPI ACACACACACACACAGAGAGAGAGAGAGAGAGAGAGAGA									
### 20 30 40 50 60 70 ##################################				3970	3,980	3990	4000	4010	4020
### ##################################		7 0							
FatPLC ACACACACACACACACACACACACACACACACACACA	-	-0		20	30	40	50	60	70
25 #030 4040 4050 4060 #050 100 110 120 130 TSAP1 CCCCTATTCCTGACAGGCAGAGTTGAATCATGATATATGGCTTAAACATGTTTGCTATGA #0 50 100 110 120 130 **TSAP1 CCCCTATTCCTGACAGGCAGAGTTGAATCATGATATATGGCTTAAACATGTTTGCTATGA #0 CCCCTATTCCTGACAGGCAGAGTTGAATCATATATGGCTTAAACATGTTTGCTATGA #0 CCCCTATTCCTGACAGGCAGAGTTGAACCATAATCCACAACTTAAACATGTTGGCTAGGC			TSAP1	ACACACAC	ACACAGAGAGA	^A GAGAGAGAGA	GAGAGAGGGG	GAGAGAGAGAG	AGAGAGAGAT
25 80 90 100 110 120 130 TSAP1 CCCCTATTCCTGACAGGCAGAGTTGAATCATGATATATGGCTTAAACATGTTTGCTATGA 30 FBLPLC CCCCTATTCCTGACAGGCAGAGTTGAACCATAATCCACAACTTAAACATGTTGGCTAGGC					:::: : : :	: : : :		: : : : :	: : ::: ::
25 80 90 100 110 120 130 TSAP1 CCCCTATTCCTGACAGGCAGAGTTGAATCATGATATATGGCTTAAACATGTTTGCTATGA 30 FBLPLC CCCCTATTCCTGACAGGCAGAGTTGAACCATAATCCACAACTTAAACATGTTGGCTAGGC			ratPLC	ACACACAC	ACACACACA	CACACACA		CACACACAC	ACACAGAAAT
TSAP1 CCCCTATTCCTGACAGGCAGAGTTGAATCATGATATATGGCTTAAACATGTTTGCTATGA 30 :::::::::::::::::::::::::::::::::::	_ 2	25	. •			:			4 · · · - (· · · · 8
TSAP1 CCCCTATTCCTGACAGGCAGAGTTGAATCATGATATATGGCTTAAACATGTTTGCTATGA 30 :::::::::::::::::::::::::::::::::::							4030	4030	
TSAP1 CCCCTATTCCTGACAGGCAGAGTTGAATCATGATATATGGCTTAAACATGTTTGCTATGA 30 :::::::::::::::::::::::::::::::::::			*						
30 ::::::::::::::::::::::::::::::::::::				80	90	100	110	120	130
ratplc ccctattcctgacaggcagagttgaaccataatccacaacttaaacatgttggctaggc			TSAPl	CCCCTATTO	CCTGACAGGCA	GAGTTGAATC	ATGATATATG	GCTTAAACATG	TTTGCTATGA
	3	30		:::::::		:::::::::::::::::::::::::::::::::::::::	:::::	:::::::::	:::::::
4070 4080 4090 4100 4110 4120			ratPLC	CCCCTATTC	CTGACAGGCA	GAGTTGAACC	ATAATCCACA:	ACTTAAACATG	TTGGCTAGGG
			4070	4080	4090	4100	4110	4120	

WO 97/22695

		140	150	160	170	180	190
	TSAP 1	GACAGCATC.	ACAAGCCAGT	GGGCTTGGTC	SATAACAACTC	тостттотост	GCATTAGGAC
		::::::::	:::::::::	::::::::::		:::::::::	:::::::::
5	ratPLC	GACAGCATCA	ACAAGCCAGT	GGCTTGGTG	ATAACAACTC	rgctttgtggt	GCATTAGGAC
	4130	4140	4150	4160	4170	4180	
		200	210	220	230		
10	TSAP1 1	ATTTTTGAGC	тсстсстсст	GCAAA-AAA	\ATAAGAGCCG	•	
		:: :: ::::	:::::::	: ::: :::	:: :: ::		
	ratPLC	ATGTTCGAGC	тсстсстс	GAAAAGGAA	AATTAGTGCAT	TAGTACTTTA	ATGGCAAGCG
	4190	4200	4210	4220	4230	4240	•
15	INFORMATION	NS POUR LA S	SEQ ID N° : 2	<u>.</u>			
•	(i) CARAG	TERISTIQUES:	DE LA-SEOU	ENCE:			
	•	A) LONGUE	• •		•		
	•	3) TYPE: nu					
	Ī) NOMBRE		simple			
20	(1) CONFIGU	RATION : lir	néaire			
	(ii) TYPE D	MOLECULE :	: ADNc				
	(ix) CARAC	TERISTIQUE:			•		
	(#	A) NOM/CLE	E: TSAP 2				
	({	B) EMPLACE	EMENT:				
25	(xi) DESCRI			SEQ ID N° 2	<u>-</u> -		
	TSAP2						
	10 2	0 30	9	o :	60 6	o	
20	TSAP2	GCTTGGA	ACCAATCTAC	\ACAGCGAGG	GGAAGCGGCTT	TAACACTCGAGA	AGTTCCGTACCC
<u> </u>		::	:: ::::::		:::::::::		:::::::::::::::::::::::::::::::::::::::
	humzfmlc.se	q CCCCTGAS	CCCATCTACA	ATAGCGAGGG	GAAGCGGCTT	AACACCCGAGA	AGTTCCGCACCC
		250	260	270	280	290	300

WO 97/22695 PCT/FR96/02061

		70	80	90	100	116	120
	TSAP2	GCAAAA		СТТСТСТТТ	CCTAAGCTTT'	r ccctgt gct?	GGGAAAGATCAGI
		::::::					
_	h f-1			CACCCCACA	. N.C.C.T.C. N.T.C. N.C.	\C\C\= C	CC) CTC) DCC
5	numzimic.se						GCACTCAATCCGG
		310	320	330	340	350	360
		130	140				
	mc. 1.73	•		\.T.C.C.D.D.			
10	TSAP2		CGTGGTTATAG.	ATTGGTT		-	
	humzimlo.se	- :-TTTC	CCC»CCTCC»	C1.TT1()	CECCLOCK L)	
	numerate. se						jn:
		370	390	390	400	410	
15	INFORMATION	S POUR LA	SEQ ID N° : :	3			
	(i) CARACT	ERISTIQUES	DE LA SEQU	ENCE:			
	(A) LONGUE	EUR:			• .	·
	. (B) TYPE: n	ucléotide				
	(C) NOMBRI	E DE BRINS:	simple			
20	(D) CONFIG	URATION : li	néaire			
	(ii) TYPE DE	MOLECULE	: ADNc				
	(ix) CARACTI	ERISTIQUE:					
	(A)) NOM/CL	E: TSAP 3				
	(B) EMPLAC	EMENT:				
25	(xi) DESCRIPT	TION DE LA	SEQUENCE:	SEQ ID N° 3	•		
	TSAP3						
	10						
30	TSAP3 3						**************************************
	mmsiahlb ecc						::::
	mmsiahlb.seq					SATTGTATTGT	TGACAATTTTT
		1450	1460	1470	1430	1490	1500

<u>22</u>

		20	30	40	50	50	70
	TSAP 3	CGGGGTGG	GGGTGTGCCT	GCACACATGO	GTGCACGTGT	GTGCTTGGTT	TTCCTTTAACAA
		:::::::	:::::::::	::::::::	:::::::::	:::::::::	:::::::::
5	mmsiahlb.seq	CGGGGTGGG	GGTGTGCCTG	CACACATGC	STGCACGTGTC	STGCTTGGTT	PASAATTTOOTI
		1510	1520	1530	1540	1550	1550
		80	90	100	110	120	130
10	TSAP 3	GCCATCTA	CGTGTCATAG	CCCACTGTTT	TCCCCTTGTG	AGTCAACACA	PASTOCTGCTGT
			::::::::	:::::::::	::::::::::	:::::::::	
	mmsiahlb.seq	GCCATCTAC	GTGTCATAGC	CCACTGTTT	rccccttgtgA	GTCAACACAT	'AGTGCTGCTGT
		1570	1580	1590	1500	1510	1520
15							
		140	· · · · · · · ·		. " * . *		
	TSAP3	CCTTTCCCT	TTGGT				
	•	::::: :::	::::;				
20	mmsiahlb.seq	CCTTTTCCT	TTGGTTTGCT	TTTGGTTTTT	סדפדפדפדפ	TATTTGATAA	ATTTTATTCTA
		1530	1540	1650	1550	1570	1550

25

	INFORMATIONS P	OUR LA SEQ ID N° : 4	
	(i) CARA	CTERISTIQUES DE LA SEQUENCE:	
	(A)	LONGUEUR:	
	(B)	TYPE: nucléotide	
5 [.]	(C)	NOMBRE DE BRINS: simple	
	(D)	CONFIGURATION : linéaire	
	(ii) TYPE DE MO	DLECULE : ADNo	
	(ix) CARACTÉRIS	STIQUE:	
	(A)	NOM/CLE: TSAP 4	
10	_(B)	EMPLACEMENT:	
	(xi) DESCRIPTIO	N DE LA SEQUENCE: SEQ ID N° 4 :	
	TSAP4		
	13AF4		
	AACTCCGTCG TGGC	STGTGGG GACCTAATTC CTTATATTTT TACAACAAGC ACTGTACAAA	50
	CTGTGCCTTT CCC1	FAATGCA GTTATACTAT TTCCATTAAS ATSGGTAACC TTAGTTAAGG	120
	CTTTATATTC ACTO	GCCATGG GTAGGAATGC TCACGGTGAA TGGGCCAACT TGTCATGGAA	160
	GAAGCCCTCA TTTT	CCAGTTG GC 202	
20	INFORMATIONS PO	OUR LA SEQ ID N° : 5	
	(i) CARACTERIS	STIQUES DE LA SEQUENCE:	
	· (A)	LONGUEUR:	
	(B)	TYPE: nucléotide	
	(C).	NOMBRE DE BRINS: simple	
25	(D)	CONFIGURATION : linéaire	
	(ii) TYPE DE MO	DLECULE : ADNo	
	(ix) CARACTERIS	STIQUE:	
	(A)	NOM/CLE: TSAP 5	
	(B)	EMPLACEMENT:	
20	(VI DESCRIPTION	NI DE LA CECHIENCE, CECHO Nº C	

TSAP5

	TAACAAGGAT	ATTCACCTTC	CCC) TTCCTM				
						C CTCCACGTGG	60
5	AACTGATTTC	CCAAGGGACA	GAAATGGTCT	TTGATCTTTC	TGAACCACT	T GTCTTCAAAC	120
	TCTTTGGAGG	ACGCAACCAC	CATGGCAGTC	AGGGCTCCGG	GGCCCACAC	A CTTCACCTCC	180
	GAATGAAGCT	CCTCTTTTAT	CTTTTCTGGG	ACAATGTCTT	CCCCCATAGO	CTCCTCCATC	240
	AACAGCAAAG	TACCTTCCCT	AAAGTTGAAG	TCCTTCACTT	TCCCTGCAAT	TTCCTGCTGA	. 300
10	GTCCTCAAGT	TCTTCTCCAA	CGCGAATGAT	GTTTGCTGAG	ACTGGGCGAG	CTGAAGCAGG	360
	AGCCTGGCGC	GGAGCAAAAA	GGCGCATGCT	TTCCTCCGAG	CCTCCATCTC	TGCCTCTTCC	420
	CTCCGCCTTG	CCAGGGAAGG	CATATTOTO (TGAGCACTA (CCACTCGCTT	CCACGGAGAG	480
	CAGTGCATTC	TCAGGCAAGG	TCGTGGGCAA	AGACAAAAGA	GAGCCTGTTC	CCGAGTGTAC	540
15	AGAGGAGGGA	CCGACGCCT	TGTCACTTGA	GGCAGAACTC	TTCTGTCCCT	GCGGTGACAC	600
	CCTGCTGGCA	GCCGGGCCC	TGGACTCAGG	TATGCCTCTG	CCAGCTTACA	CCASCTCCAC	660
	GGGTTGAGCG	GGTGCAAAGC	AATCAGCTTG	TGCAGGCAGA	AGATCGTGTG	CTCCCGGCTC	720
	TGCAGGCTGG .	AAAAGACGGC	CAGGTGGAGG	TGGAGCACCA	CGGTCAGATG	GTCTGTGTTG	780
20	GTGGCTTTGC ·	TTTCCAAGTC	TGCCGCCATC	TCCAGCGCCT	CCTCATGCCT	CCCAAGTGAG	840
	CCAGACACCG	AGCCTGGCCT	TCTTGGACAT	CCCTTTTCAT	GGCAAAATTA	GTAGATGGTA	900
	ATGTTCGGAG						950
	AGGTCCCCTC	rgaatttett j	GAGAGTGAGA	ACTTCAATAT	CGTCACTACA	TTCTGTCTCT	1020
25	TCATAAAACC A						– 1080
	GCTCCGGCCT (·					1140
	TCTCCATCGC (1200
•	ATCACCCAGC (1260
0	GACCTGCCCG_C						1250
							• • I O

INFORMATIONS POUR LA SEQ ID N°: 6

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR:
 - (B) TYPE: nucléotide
- 5 (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE : ADNo
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: TSAP 6
- . 10 (B) EMPLACEMENT:
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID Nº 6:

TSAP6

15	GTGAGTACA1	r ATCACATGTA	TGGGGTGTCA	TTCTGAGTAT	CTCASTTTAC	ACCTGCATCC	50
-	CAGGAATTAC	GATCTCAGCC	ACCCACGCAT	ATATCATCAC	CTCCCTCTC	AGCATCCAGA	120
	AAAGAGACCC	GAACCCAGCT	CAGOGCCCCC	ACAAGCCATO	TOCACTTOCA	GGGCCTCACA	130
	CGTGGCTTGT	TTTCTCCCCC	TGTGTGTGGT	CGCCGGACAG	CATGAACTTS	ACAGCCCCAT	2 4 0
20	CTTTCTCCCA	GCCCCTGCGG	ATCTTGGTGA	GTCTGCGGTT	TGAGGCAGGG	CAGGAGGAAG	300
	AGGCCCTTGG	CCAGGATGAT	TCACACAGGG	GCAGGGAGCA	GCSTGAGTST	GGAATSTGGG	350
•	GCGGGCAGGT	AGAACTTGKT	AGTGSTTTTT	CCTNICAAAAG	GCACGGGTCC	AGCCGTAGGT	420
	GAGTGTGTGC	ATTGTGCTGA	GTATCAGGGC	CACGAAGCCC	AGTGTGGACT	GCACGAAGCT	430
25	GAACTCCTTC	CAGTTGAGGG	AATTAGCAAT	CCYCCCCYCC	GAGGTGACAS	- CCAGCAGCGA	-540
	CAACATGCCC	AGGGCCAGCA	CACCCAGGGA	CAGGTATATC	TOCATOCTOC	AGACTTCTTC	600
	CTCAGCCCAG	AGGCGGCTCT	TGTTGGCCAG	GACCTGCTTC	ACAGCCAGAT	TGACCAGGTC	650
20	GTAGGCGGTG	GGAGCGGCGC	AGCGGCAGGC	AGAAGCTGTA	GASASCOTOC	AGCATCGCGA	720
30	AGAAGAAGCT	GAGCAGCCCG	ATCTGCTTGC	GATGCTGCAG	CCAGTGGTCC	AGCCAGTCTG	720
	GGAAGCGCTG	GTACTTGGTC	CCCCTCCGCA	GCTGAAGCSC	ASCTSCCASC	ACACCGGGCA	840
	GGTACACTAG	GGACAGCAGC	ACATAAGCCA	CACAGGGTAG	TOTOGTOTTO	ACCACAGACA	900
3-	AGGGCATCTT	GTAAAACTTG	TTCTCATCTT	TCCGAATGTN	TGGCTGTANA	ACCTCCCGGA	950
35	TGAAATTGTA	GGTGTANAAN	CACACAAAGA	CCCAGTGCC	CAGGAAGGTS	GGCCCCTTCC	1020

	AGAATGGAAG GAAGCNCAGG GGTTTNGCTT CTACCTCCCT CNCTGAAGGC CANGGATCCA	1080
	TNTCCAGGGG TTNAAACCAT NGGGCGTGCA TCTCTGAAAA TGGTCNCTTG GNTTCTGGTK	1140
	GATCAMTGCA AATAACNOCT GOOTGTTOON TOCOTTGGGG COACCOTNTM GGGGCCATGO	1200
5	CAA 1203	
	INFORMATIONS POUR LA SEQ ID N° : 7	
	(i) CARACTERISTIQUES DE LA SEQUENCE:	
	(A) LONGUEUR:	•
10	(B) TYPE: nucléotide	
	(C) NOMBRE DE BRINS: simple	
	(D) CONFIGURATION : linéaire	
	(ii) TYPE DE MOLECULE : ADNo	
	(ix) CARACTERISTIQUE:	
15	(A) NOM/CLE: TSAP 7	
	(B) EMPLACEMENT: -	•
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID Nº 7 :	
	TSAP7	
20	GCCCATCCAG TCATTCTTTA TTTCAGTGTG TGAAAGCCTC CTACGCATTT TCCCCCAAAT	50
	TAATTTTTAA TOOATTTTCA AACCAGCOTT TACTGTGGCC TTTTTCTGCTA TTTTTGATAT	120
	ATGTTASCAC GTGTGCATAG 140	
25 .	INFORMATIONS POUR LA SEQ ID N° :-8	
	(i) CARACTERISTIQUES DE LA SEQUENCE:	
	(A) LONGUEUR:	
	(B) TYPE: nucléotide	
	(C) NOMBRE DE BRINS: simple	
30	(D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE : ADNo	
	(ix) CARACTERISTIQUE:	
•	(A) NOM/CLE: TSAP 8	
	(B) EMPLACEMENT:	
35	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 8 :	

	TSAP8	
	CACGINARAG TACCACATCO NOCCOCATIG GIAGATATIG ANAGAGIATA TANATAGGNO	60
	GAAGCACAAT CTCTTCCCTT CCTNTGTACA CCTCANACCC AGTGACTTCC NACCNAAGCN	120
5	CNTGANTGTN TTTGTNGATA TGAGTGTCTG NGTGTGTGNA TNTGCGTCTC ACATGTATGG	130
	GACGACCNAC CCCACCCCA GCGGCCTTCA NGCACAATMG AGGACGCCTA TNGTGGATAC	240
	GNGCATCGGT_AAANAGC 257	
	INFORMATIONS POUR LA SEQ ID N° : 9	
10	(i) CARACTERISTIQUES DE LA SEQUENCE:	•
	(A) LONGUEUR:	
	(B) TYPE: nucléotide	
	(C) NOMBRE DE BRINS: simple	
	(D) CONFIGURATION: linéaire	
15	(ii) TYPE DE MOLECULE : ADNo	
	(ix) CARACTERISTIQUE:	
	(A) NOM/CLE: TSIP 1	
	(B) EMPLACEMENT:	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 9 :	
20	TSIP1	
	GGAGGGGGTC TAGCTTTCTC TTTAGTTATC ACTCTGAGGT GCTCAGGTCA CAGAGAAGGC	5 0
	ACTTAATTGG GAAGGTCATC TGATTCCGGC CATCTTCTCT CCCTTTACCA A 111	
25	INFORMATIONS POUR LA SEQ ID N°: 10	
	(i) CARACTERISTIQUES DE LA SEQUENCE:	
	(A) LONGUEUR:	
	(B) TYPE: nucléotide	
	(C) NOMBRE DE BRINS: simple	
30	(D) CONFIGURATION: linéaire	
	(.ii.) _TYPE_DE_MOLECULE :- ADNc	
	(ix) CARACTERISTIQUE:	
	(A) NOM/CLE: TSIP 2	
	(B) EMPLACEMENT	

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 10 :

TSIP2

	CACCGGTGAGACCTCTAGGGCGGGGCCTAGGACGACCTGCTCCGTGGGCCGCGAGTATTC	60
	GTCGGAAACAAAACAGCGGCAGCTGAGGCGGAAACCTAGGCTGCGAGCCGGCCG	120
5	CGCGGAGAGAAGGAACCAACACAAGACAGCCCCTTCGAGGTCTTTAGGCAGCTTGG	180
	AGGAGAACACATGAGAGAAAGAATCCCAAGAGGTTTTGTTTTCTTTGAGAAGGTATTTCT	240
	GTCCAGCTGCTCCAATGACAGAGATACCTGCACCTTTGTCCTACTTCCAGAATGCCCAGA	300
	TGTCTGAGGACAGCCACTCCAGCAGCGCCATCCGGAGCCAGAATGACAGCCAAGAACGGC	360
10	AGCAGCAGCATGACAGGCAGAGACTTGACAACCCTGAGCCAATATCTAATGGGCGGCCCC	420
	AGAGTAACTCAAGACAGGTGGTGGAACAAGATGAGGAGGGAAGACGAAGAGCTGACATTGA	480
	AATATGGAGCCAAGCATGTCATCATGCTCTTTGTCCCCGTGACCCTCTGCATGGTCGTCG	540
	TCGTGGCCACCATCAAATCAGTCAGCTTCTATACCCGGAAGGACGGTCAGCTAATCŤACA	600
	CCCCATTCACAGAAGACACTGAGACTGTAGGCCAAAGAGCCCTGCACTCGATCCTGAATG	660
15	CGGCCATCATGATCAGTGTCATTGTCATTATGACCATCCTCCTGGTGGTCCTGTATAAAT	720
	ACAGGTGCTACAAGGTCATCCACGCCTGGCTTATTATTTCATCTCTGTTGTTGCTGTTCT	780
	TTTTTCGTTCATTTACTTAGGGGAAGTATTTAAGACCTACAATGTCGCCGTGGACTACG	840
	TTACAGTAGCACTCCTAATCTGGAATTTTGGTGTGGTGGGGATGATTGCCATCCACTGGA	900
20	AAGGCCCCTTCGACTGCAGCAGGCGTATCTCATTATGATCAGTGCCCTCATGGCCCTGG	960
	TATTTATCAAGTACCTCCCCGAATGGACCGCATGGCTCATCTTGGCTGTGATTTCAGTAT	1023
	ATGATTTGGTGGCTGTTTTATGTCCCAAAGGCCCACTTCGTATGCTGGTTGAAACAGCTC	1030
	AGGAAAGAAATGAGACTCTCTTTCCAGCTCTTATCTATTCCTCAACAATGGTGTGGTTGG	1140
	TGAATATGGCTGAAGGAGACCCAGAAGCCCAAGGAGCCCCAAGTATA	1200
25	ACACÁCAÁAGÁGCGGAGAGAGAGACACAGGACAGTGGTTCTGGGAACGATGATGGTGGCT	1250
	TCASTGAGGAGTGGGAGGCCCAAAGAGACAGTCACCTGGGGCCTCATCGCTCCACTCCCG	1320
	AGTCAAGAGCTGCTGCCAGGAACTTTCTGGGAGCATTCTAACGAGTGAAGACCCGGAGG	1320
	AAAGAGGAGTAAAACTTGGACTGGGAGATTTCATTTTCTACAGTGTTCTGGTTGGT	1440
30	CCTCAGCAACCGCCAGTGGAGACTGGAACCATAGCCTGCTTTGTAGCCATACTGA	1500
	TCGGCCTGTGCCTTACATTACTCCTGCTCGCCATTTTCAAGAAAGCGTTGCCAGCCCTCC	1550
	CCATCTCCATCACCTTCGGGCTCGTGTTCTACTTCGCCACGGATTACCTTGTGCAGCCCT	1520
	TCATGGACCAACTTGCATTCCATCAGTTTTATATCTAGCCTTTCTGCAGTTAGAACATGG	1680
	ATGTTTCTTCTTGATTATCAAAAACACAAAAACAGAGAGCAAGCCCGAGGAGGAGACTG	1740
35	GTGACTTTCCTGTGTCCTCAGCTAACAAAGGCAGGACTCCAGCTGGACTTCTGCAGCTTC	1800
	CTTCCCACTCTCCTAGCCACCGCACTACTGGACTGTGGAAGGAA	1950

```
INFORMATIONS POUR LA SEQ ID N°: 11
    (i) CARACTERISTIQUES DE LA SEQUENCE:
           (A) LONGUEUR:
           (B) TYPE: nucléotide
           (C) NOMBRE DE BRINS: simple
5
           (D) CONFIGURATION: linéaire
    (ii) TYPE DE MOLECULE : ADNo
    (ix) CARACTERISTIQUE:
           (A) NOM/CLE: TSAP 3 humain
           (B) EMPLACEMENT:
10
    (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID N° 11:
    TSAP3 humain
      srqtatalptgtskcppsq
    atgagoogtoagactgotacagoattacotacoggtacotogaagtgtocaccatcocag
                  20
                       3.0
                                  40
                                          50
          10
    r v p a l t g t t a s n n d l a s l f e
15
    agggtgcctgccctgactggcacaactgcatccaaccaatgacttggcgagtctttttgag
         100.
                                            120
                                         110
    c p v c f d y v l p p i l q c q s g h
    tgtccagtctgctttgactatgtgttaccgcccattcttcaatgtcagagtggccatctt
                 140
                         150
                                 150
         130
     c s n c r p k l t c c p t c r g p l g
    gitigtagcaactgtcgcccaaagctcacatgttgtccaacttgccggggccttttggga
20
                 200
                         210
                                 220
         190
    sirnlamekvansvl fpcky
    tocattogoaacttggctatggagaaagtggctaattcagtacttttcccctgtaaatat
                 260
                         270 .
                                 230
    ass g ceitl phtekadheel
    gcgtcttctggatgtgaaataactctgccacacacagaaaaagcagaccatgaagagctc
                                    350___360_
                       330 340
         310
                 320
25
        frpyscpcpgasckwqgs
    tgigagtttaggccttattcctgtccgtgccctggtgcttcctgtaaatggcaaggctct
         370
                 380
                         390
                                 400
                                        410
    ldav mphl mhqhk sittleg
    ctggatgctgtaatgcccatCtgatgcatcagcataagtccattacaaccctacaggga
                440
                         450
         430
                                450
                                         470
30
    edivîla.tdinlpgavdwvm
    gaggatatagettttcttgctacagacattaatcttcctggtgctgttgactgggtgatg
         490
                 500
                         510
                                 520
                                         530
   m q s c f g f h f m l v l e k q e k y d
   atgcagtcctgttttggctttcacttcatgttagtcttagagaaacaggaaaaatacgat
                 560
                      . 570
         550
                                 530
                                        590
   ghq f · faivqligtrk qaen
35
   .620
                         630
         510
                                 640
                                        650
```

	ć	ě	3	}	,	Ξ		1		e		1	r	ı	g		h		r	r		r	ì		c.	W	é	2	a.	ŧ		D.
	ככ	ې ت	;c	כנ				20	t	g			aa	at	g				ag	gc	ga			cg,	a C	tţ			3 5	ga		cct
					5	70)			-	6	80					69	0				71	00				7]	LO	٠			720
•	r		•			h		e		g		i	а		t		a		i	m		n	s		f	С	נ		v	ŧ		d
	cg.	2 3	C :	t s		3 O		g	aa	g		a t 40	tд	Ca	ac		gc 75		3 E	ta	cga		ta9 60	gc	gad	ב ב כ	77		190	CC		gac
5					′						•	40					, ,	U				,	00				′ ′	U				780
	Э	ê						S		£			q		t			-	3	n			g	į		n			٤	i		s
	CC:	aç	J C 8	a :		3 C		a	gc	ישנ		00	gc	ag	Jac		aa 81			caa	3 6 1		20 299	gca	7 5 6	aa	83		220	:ca		5CC 940
																												_				
	n at	ر ع ت		: :	G á	aa	at	. 4	qc	:aa	at	caa	aа	ca	Et		tc	בכ	19	cca	290	g	.t:	aa	aa	ıct	to	ac	:::	.cc	aca	aga
			-			50		Ī	_			60					B 7				•	88					39		,			900
10	aa.	2.5	as	a q	<u>-</u>	:a	c c	: c	a t	ct	g	tc	Σg	c c	aa	10	= c	aa	ıa.	act	cc	בנ	cc	at	ac	: 4 5	ac	aa	120		cad	Cat
10				_	9 1							20	_				9 3					9 4			•	, ,	95					950
	ça	2 0	-	: c	aa	25	aa	:a	a a	qa	aa.	aga	ac	t g	C C	a	aa	t a	200	290	aa.	aac	ac	15.5	cc	at	۵E	ac	::a	aci	ec:	taa
	,	-	_		9 7					_		80		_			9 9			-		00		,			01		,			020
	ta	:a	Ξ:	: =	aa	aa	aa	ב	aa	g t	. c	aad	: :a	gt	aa	a	- c	ac	::0	;aa	aa	aa	a C a	:ca		:ta	τa	za	:ca	c: c (caa	aga
					03							40		_			25					106			-		07					230
	- ~ -		_ =			_		۔ ۔			۰.	a ~ :		ے د				- +	. . .	~ - :							~-					
15	- 5	6	<u> </u>		09			.9				00		-9	90		ΙI		٠ - ١	9		12					13		5	- 5		igt L40-
	- ~ -		~ -				- 	_		•	٠ 🖚	 مرتو -	• a	. ·	-	۰.			. - .			. ~ ~										
	tgt	. a	9 =		15			9	-		.1		, a		~ ~		- C		:			.18		ي ي.	-5		19			c.g.		500
				_		· •- ·	~ ~	.	- ~										۲.								٠.					
	919	_	y -		2 1				- 9		2:				-		23			-90		24		= -			25 25		9 -	C 44 ;		955 150
	- 1 -			_		۰,		ے.		~ _															~-							
20	CAS	_	y -		 2 7			٠,			28		, - 1	L C			9(9.	. 5 C		30			g C		31		-9	. G :		20
		_												~ -							. <u>.</u> .											
	554	; –			3 3			. а				40	ے ۔	9.0			35			: 40		.36			ac		37		g t	či 2 '		32G 32G
						_		_												 .				~ ~								
	gtt	۔ ـ	٠.		39		Li					00	-	٠.	La		11		ب ے .	,		.42		ت ي .			5C 43		₫,-	C		:ca :40
				_				_	- -			~~~																				
25	tgg	. –	-	ے . 1	c	0				-1	-4 (50-				14	17	0.	_		1	43	0	Ca			49		9	نے ع		90
				•																												
	aaa	-	۔ ۔		5 1		24	α.			52						33					54			Ça		55			2.50		60
	acc	_	99		22 57		= _	a 0	<u>۔</u>		58		.9				9 (عد	,		60		22	gg		51		CC	===		20
		_		_									_														•					
30 -	tet	-			= c 5 3		ے ج	در	3 ==		64						550			.aa		55		24	25		57:		ÇZ	a ta		30
				_		_	_		_						_									_								
	gat	Ξ.			a c 5 9		14	Cc	1 C		70		(110		בכ	; : :		72		Ξī	CC		a = . 73:		CC	בבק		162 140
						_		_			_								_					_	_		_					
	aet	C			52 75		בכ	Cā	12		76		Ξl				a:		τē	נכב		78		ĢС	ag		ga. 791		gc.	ato		.ca
					_					_			_			_			_													
	£ÇC	2	ca		:a 31		: =	5 (a		83		.2.9	g C			30		ככ	tg		24 84		22	33		3 C 1		g c	aaa		at 60
35																	٠.	-			_	J -1	-			-		-			_ 3	
	gtt	Ξ.			52 57		: =	כנ	a		21 88			52																		
						-				_	_	-																				

DISCOURT - WAY 0722606A2 I

REFERENCES BIBLIOGRAPHIQUES

- (1) Liang P. & Pardee A.B. (1992) Science, 257, 967-971.
- (2) Don R.H., Cox P.T., Wainwright B.J., Baker K. & Mattick J.S. (1991) Nucl. Acids Res., 19, 4008.
- (3) Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A. & Oren M. (1991) Nature 352, 345-347.
- (4) Bauer D., Muller H., Reich J., Riedel H., Ahrenkiel V., Warthoe P. & Strauss M. (1993) Nucl. Acids Res. 21, 4272-4280.
- 10 (5) Sambrook J., Fritsch E.F. & Maniatis T. (1989) Molecular Cloning: a laboratory manual.
 - (6) Okamoto K. & Beach D. (1994) EMBO J., 13, 4816-4822.
 - (7) Angerer L & Angerer R.C. (1991) Methods in cell biology: functional organization of the nucleus, 35, 37-71.
- 15 (8) Linares-Cruz G., Rigaut J.P., Vassy J., De Oliveira T.C., De Cremoux P., Olofsson B. & Calvo F. (1994) J. Microsc., 173, 27-38.
 - (9) Bieche I. and Lidereau R., Genes Chromosomes and Cancer 14, 227-251 (1995).
- (10) Wang-Wuu S., Soukup S., Bove K., Gotwals B. and Lampkin B., Cancer Research 50, 2786-2793 (1990).
 - (11) Maw M.A. et al., Cancer Research 52, 3094-3098 (1992).
 - (12) Austruy E. et al., Genes, Chromosomes and Cancer, 14, 285-294 (1995).
 - (13) Kuvtek-Black A.E. et al., Nat. Genet 5(4)n 392-396 (1993).
 - (14) Newsham I. et al., Genes Chromosomes and Cancer 12(1), 1-7, (1995).
- 25 (15) Sherrington et al., Nature, vol. 375, p. 754-760 (1995).

REVENDICATIONS

	1)	Séquence nucléotidique correspondant à un gène comportant :										
	(a)	une séquence selon l'une des IND.SEQ 4 à 11 ou										
5		un gène équivalent qui comporte :										
	(b)	une séquence s'hybridant avec l'une des séquences selon (a),										
	(c)	une sequence présentant au moins 80 % d'homologie avec (a)										
		ou (b), ou										
	(b)	une séquence codant pour une protéine codée par un gêne										
10	· •	selon (a), (b) ou (c) ou pour une protéine équivalente.										
	2)	Séquence selon la revendication 1, caractérisée en ce que										
	l'expression cellulaire du gène est induite lors de l'apoptose cellulaire.											
		Séquence nucléotidique correspondant à un gène comportant :										
	(a)	une séquence selon l'une des IND.SEQ 1 et 3 ou										
15		un gène équivalent qui comporte :										
	(b)	une séquence s'hybridant avec l'une des séquences selon (a).										
	(c)	une séquence présentant au moins 80 % d'homologie avec (a)										
20		ou (b), ou										
	(d)	une séquence codant pour une protéine codée par un gene										
		selon (a), (b) ou (c) ou pour une protéine équivalente,										
		en ce que l'expression cellulaire du gêne est induite par la										
	suppression t	•										
		Séquence nucléotidique correspondant à un gene comportant :										
25	(a)	une séquence selon l'une des IND.SEQ 2 ou										
Δ	(b)	un gène équivalent qui comporte :										
	(b) (c)	une séquence s'hybridant avec l'une des-séquences selon (a),										
	, (0)	une séquence présentant au moins 80 % d'homologie avec (a) ou (b), ou										
	(d)	•										
30		une séquence codant pour une protéine codée par un gene selon (a), (b) ou (c) ou pour une protéine équivalente,										
	caractérisée	en ce que l'expression cellulaire du gène est induite par										
	l'apoptose cel	Illulaire										
		Séquence selon l'une des revendications 1 à 4, caractérisée en										
	ce que l'expre	ession cellulaire du gêne est induite par p53.										
35		Séquence selon la revendication 2 ou 4, caractérisée en ce que										
	•	, caracterisee en ce que										

l'apoptose cellulaire est induite par p53.

10

20

25

- 7) Séquence selon l'une des revendications 1 à 6, caractérisée en ce qu'elle est choisie parmi TSAP 1 à TSAP 8 et TSAP 3 humain ou un gène équivalent.
- 8) Séquence selon la revendication I, caractérisée en ce que l'expression cellulaire du gène est inhibée lors de l'apoptose cellulaire.
- 9) Séquence selon la revendication 8, caractérisée en ce que l'apoptose cellulaire est induite par p53.
- 10) Séquence selon l'une des revendications 1 et 8 et 9, caractérisée en ce qu'elle est choisie parmi TSIP 1 et TSIP 2 ou un gène équivalent.
- 11) Vecteur d'expression cellulaire d'une séquence selon l'une des revendications 1 à 10.
- 12) Vecteur d'expression selon la revendication 11, caractérisé en ce qu'il s'agit d'un vecteur viral.
- 13) Vecteur selon la revendication 12, caractérisé en ce qu'il s'agit d'un adénovirus, d'un rétrovirus, d'un virus herpès ou d'un poxvirus.
 - 14) Vecteur selon la revendication 11, caractérisé en ce qu'il s'agit d'un vecteur à acide nucléique nu.
 - 15) Vecteur selon l'une des revendications 11 à 13, caractérisé en ce qu'il comporte une séquence assurant le ciblage et/ou l'expression spécifique des tissus ou organes.
 - 16) Cellule transformée par un vecteur d'expression selon l'une des revendications 11 à 15.
 - 17) Protéine pouvant être obtenue par culture de cellule transformée selon la revendication 16 et codée par la séquence selon l'une des revendications 1 à 10.
 - 18) A titre de médicament, un vecteur selon l'une des revendications 11 à 15 ou une protéine selon la revendication 17.
 - 19) A titre de médicament, un composé assurant l'expression cellulaire d'au moins une des séquences nucléotidiques selon l'une des revendications 1 à 7 ou de leurs produits.
 - 20) A titre de médicament_selon_la_revendication_19, un vecteur nucléotidique assurant l'expression cellulaire de ladite séquence.
- 21) A titre de médicament, un composé assurant l'inhibition de l'expression cellulaire d'au moins un gène cellulaire selon l'une des revendications 1, 8 à 10 ou de leurs produits.

10

20

25

- 22) A titre de médicament selon la revendication 21, un nucléotide activé assurant le blocage de la séquence nucléotidique.
- 23) A titre de médicament selon la revendication 21, un anticorps monoclonal dressé contre la ou les protéines codées par la séquence nucléotidique.
- 24) A titre de médicament destiné au traitement du cancer, un médicament selon l'une des revendications 18 à 23.
- 25) A titre de médicament destiné au traitement de la maladie d'Alzheimer, un médicament selon l'une des revendications 18 à 23.
- 26) A titre d'agent de diagnostic notamment pour la détermination de la prédisposition et le suivi des cancers, tout ou partie des séquences selon l'une des revendications 1 à 10 à utiliser comme sonde nucléotidique ou comme amorce d'amplification.
- 27) A titre d'agent de diagnostic notamment pour la détermination de la prédisposition et le suivi des cancers un antigène correspondant à tout ou partie des protéines codées par la séquence selon l'une des revendications 1 à 10 ou les anticorps correspondants.
- 28) A titre d'agent de diagnostic notamment pour la détermination de la prédisposition et le suivi de la maladie d'Alzheimer, tout ou partie des séquences selon l'une des revendications 1, 5, 7 à 10 à utiliser comme sonde nucléotidique ou comme amorce d'amplification.
- 29) A titre d'agent de diagnostic notamment pour la détermination de la prédisposition et le suivi de la maladie d'Alzheimer un antigéne correspondant à tout ou partie des protéines codées par la séquence selon l'une des revendications 1, 5, 7 à 10 ou les anticorps correspondants.
- 30) A titre d'agent antiviral, un médicament selon la revendication 20.
- 31) Modèle pour la mise en évidence de médicament anticancéreux, des cellules selon la revendication 16.
- 32) A titre de perfectionnement de la méthode de Liang et Pardee le fait d'utiliser une diminution en palier lors de l'amplification PCR.

FIG. 1

FIG. 2

FIG 3

4/16

TSAP1

4190 4200 4210 4220 4230 4240

5/16

TSAP2

10 20 30 40 50 60

TSAP2 GCTTGGAACCAATCTACAACAGCGAGGGGAAGCGGCTTAACACTCGAGAGTTCCGTACCC

humzfmlc.seq CCCCTGAGCCCATCTACAATAGCGAGGGGAAGCGGCTTAACACCCGAGAGTTCCGCACCC

250 260 270 280 290 300

70 80 90 100 110 120

TSAP2 GCAAAAAAAAATCTCTTGTGTTTTCCTAAGCTTTTCCCTGTGCTAGGGAAAGATCAGT

::::::

humzfmlc.seq GCAAAAAGCTGGAAGAGGGGGGCACAACCTCATCACAGAGATGGTTGCACTCAATCCGG

310 320 330 340 350 360

130 140

TSAP2 AAGTCCGTGGTTATAGATTGGTT

370 330 390 400 410

TSAP3

10

TSAP3 3

::::

						::::
mmsiahlb.seq	TTGTAAAA	FATTTCTGAA	CTTTGTATTT	GTTGTAGATTC	ATTGTATTG	TTGACAATTTT
	1450	1460	1470	1480	1490	1500
	20	30	40	50	60	70
TSAP 3	CGGGGTGG	GGGTGTGCCT	GCACACATGC	STGCACGTGTG	тосттостт	TTCCTTTAACAA
	:::::::	::::::::::	:::::::::	::::::::::	:::::::::::	
mmsiahlb.seq	соссотсьс	GGTGTGCCTG	CACACATGCG	TGCACGTGTG	rgettggttt	TECTTTAACAA
	1510	1520	1530	1540	1550	-1560
						
	80	90	100	110 1	.20	130
TSAP 3	GCCATCTAC	CGTGTCATAG	CCACTCTTT	CCCCTTCTGAG	STCAACACAT	AGTGCTGCTGT
		:::::::::::::::::::::::::::::::::::::::	::::::::::	:::::::::::		:::::::::::
mmsiahlb.seq	GCCATCTACO	TGTCATAGC	CACTGTTTT	CCCTTGTGAG	TCAACACAT	KSTSCTSCTST
	1570	1580	1590	1600	1510	1520

140

TSAP3 GGTTTGGGTTTGGT

mmsiahlb.seq GGTTTTGGTTTGGTTTTGGTTTTGATGTGTGTGTATTTGATAATTTTTATTCTA

1630 1640 1650 1660 1670 1530

HUMSIAH	MSRQTATALPTGTSKCPP5QRVPALTGTTASNN
MMSTAHIA_1	MSRQTATALPTGTSKCPPSQRVPALTGTTASNN
MMSIAH1B_1	MSRQAATALSTGTSKCPP5QRVPALTDTTASNN
DROSINA_1	doddaeleeeeeeethaanaaaaatatatatatataaaaaatteeethaaa
	• • • • • • • • • • • • • • • • • • • •
HUMSIAH	DLASLFEC9VCFDYVLPPILQCQSGHLVCSNCRPKLTCC9TCRG9LGSIRNLAME
MMSIAHIA_1	DLASLFECPVCFDYVLPPILQCQSGHLVCSNCRPKLTCCPTCRGPLGSIRNLAME
MMSIAH1B_1	DLASLFECPVCFDYVLPPILQCQSGHLVCSNCRPKLTCCPTCRGPLGSIRNLAME
DROSINA_1	AGMSADLTSLFECPVCFDYVLPPILQCSSGHLVCVSCRSKLTCCPTCRGPLAMIRNLAME
•	***************************************
HUMSIAH	KVANSVLFPCKYASSGCEITLPHTEKADHEELCEFRPYSCPCPGASCKWQGSLDAVMPHL
MMSIAH1A_1	KVANSVLFPCKYASSGCEITLPHTEKAEHEELCEFRPYSCPCPGASCKWQGSLDAVMPHL
MSIAH13_1	- KVANSVLFPCKYSASGCEITLPHTKKAEHEELCEFRPYSCPCPGASCKWQGSLDAVMPHL
DROSINA_1	KVASNVKFPCKHSGYGCTASLVYTEKTEHEETCECRPYLCPCPGASCKWQGPLDLVMQHL
	- · · · · · · · · · · · · · · · · · · ·
HUMSIAH	MHQHKSITTLQGEDIVFLATDINLPGAVDWVNDQSCFGFHFNLVLEKQEKYDGHQQFFAI
MMSIAHIA_1	MHQHKSITTLQGEDIVFLATDINLPGAVDWVMMQSCFGFHFMLVLEKQEKYDGHQQFFAI
MMSIAH1B_1	MHQHKSITTLQGEDIVFLATDINLPGAVDWVMMQSCFGFHFMLVLEKQEKYDGHQQFFAI
DROSINA_1	MSHKSITTLQGEDIVFLATDINLPGAVDWVMQSCFGHHFMLVLEKQEKYDGHQQFFAI
HUMSIAH	VQLIGTRKQAENFAYRLELNGHRRRLTWEATPRSIHEGIATAIMNSDCLVFEPSIAQLFA
MMSIAHIA_1	VQLIGTRKQAENFAYRLELNGHRRRLTWEATRRSIHEGIATAIMMSDCLVFDTSIAQLFA
MSIAH1B_1	VQLIGTRKQAENFAYRLELNGHRRRLTWEATPRSIHEGIATAINNSDCLVFDTSIAQLFA
DROSINA_1	VQLIGSRKEAENFVYRLELNGNRRRLTWEAMPRSIHEGVASAIHNSDCLVFDTSIAQLFA

HUMSIAH	ENGNLGINVTISMC
MMSIAHIA 1	ENGNLGINVTISMC
MMSIAH18_1	ENGNEGIN/TIEMC
DROSINA_1	DNGNLGINVTISLV

	•

	10	10	30
1 mms162			
p P tsip2	CACCGGTGAG ACCT	CTAGGG COGG	GCCT:C
	40	50	60
l mmsi82		<u> </u>	
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • •
P tsip2	GACGACCTGC 1'CCG'	COCC GCGA	GTATTC
	70	80	90
1 mm.s152	acc anaca	incggc aget	gaggcg
2 cs:53	GTCGGAAACA AAACA	GCGGC AGCTG	SAGGCG
	1 40	110	120
1 mms182-	gaaacctagg ctgcg	agecg geege	ccggg
u 2 tsip2	GAAACCTAGG CTGCG	year contra	
·	130	150	
mms182	cgcggagaga gaagg		150
)			
tsip2	CGCUGAGAGA UAAGG	AACCA ACACA	AGACA
	150	170	160
mms182	gcagccctc gaggt	ctta ggcag	cttgg
tsip2	GCAGCCCTTC GAGGT	TTTA GGCAG	CTTGG
	190	3 0 C	210
mms132	aggaçaacac atgaga	agaaa gaatco	ccaag
tsip2	AGGAGAACAC ATGAGA	GAAA GAATC	
	230	230	243
mms182		gaga aggta:	
tsip2		GAGA AGGTAT	TTTCT
	250	250	270
mms182	gtccagctgc tccaet	gaca gagata	cctg
tsip2	GTCCAGCTGC TCCAAT	GACA GAGATA	CCTC
	នគំន	290	300
mms132	cacctuigte ctacut	ccag aacgco	caga
tsip2	CACCTTTGTC CTACTT	CCAG AATGCC	CAGA
•	310	320	330
mms182			
tsip2	TGTCTGAGGA CAGCCA	CTCC AGCAGC	GCCY

FIG. 8

·	340	٥٥ د
1 mms162	cccggagcca q	aatgacage caagaacg
tsip2		
		AATGACAGC CAAGAACG
	. 375	38c
mms162	agcagca to	acaggeag agactegad
tsip2	AGCAGCAGCA TO	GACAGGCAG AGACTTGAG
	400	410
mms182		
		tatctaat gggcggccc
tsip2	ACCCTGAGCC AA	TATCTAAT GGGCGGCCC
	٥٢٠	40 4
mms182	agagtaactc aa	gacaggtg gtggaacaa
tsip2		GACAGGTG GTGGAACAA
	}	
mms182	450	470 4
	acgaggagga aga	cyaagag ctgacattg
tsip2	ATGAGGAGGA AGA	CGAAGAG CTGACATTG
	٥ ﴿ ﴾	500 51
mms182	aatatggage caa	gcatgtc atcatgctct
csip2		
	AATATGGAGC CAA	GCATGTC ATCATGCTCT
	520	530 54
ms162	regreecege gae	cctctgc atggtcgtcg
sip2	TTGTCCCCGT GAC	CUTCTGC ATGGTCGTCG
	550	550 57
ms182		Téaatta gitagoitti
sip2	TCGTGGCCAC CAT	CAAATCA GTCAGCTTC'
	5 3 0	530 630
ms182	atacceggae ggae	ggtcag ctaatctaca
sip2	ATACCCGGAA GGAC	GGTCAG CTAATCTACA
	510	630 230
ns182		
	aga	garact gagactgtag
sip2	CCCCATTCAC AGAA	GACACT GAGACTGTAG
	540	550 660
2512	gccaaagag: cctg	casting atomigating
- 	GCCAAAGAGC CCTG	CACTCG ATCCTGAATG

FIG. 8 (suite)

	670	ino 1	65
mms182	cggccatcac gat	cagtgtc attgt	catta
tsip2	CCCCCC TCC TCC TCC		
CS192	CGGCCATCAT GAT		CATTA
	700	710	1
mms182	tgaccatect cet	gguggto etgta	taaat
tsip2	TGACCATCCT CCT	GGTGGTC CTGTA	TAAAT
	730	740	750
mms 182	acaggtgcta caaç	1915aic caces	1
tsip2	ACAGGTGCTA CAAC	GTCATC CACGO	CTGGC
	750	770	78.0
mms182	CEACCACCE ACCE	cigity tiget	T T C E
tsip2	TTATTATTTC ATCT	CTGTTG TTGCTC	
•	790	800	310
mms182			i
10.13 1 0 2	ttttttegtt catt	ggggaa	grat
tsip2	TTTTTTCGTT CATT	TACTTA GGGGAA	GTAT
	320	9 20	8 4 0
mms182	ttaagaccta caat	gtcgcc gtggac	tacg
tsip2	TTAAGACCTA CAAT		
	350	950	370
mms182	ctacagtage actes	taato tggaat	tttg
tsip2	TTACAGTAGC ACTO	TAATO TOGAAT	TTTC
	n a o	390	900
ms132	gtgtggtegg şalga	ittgec atceac	
siož			
-3.22	GTGTGGTCGG GATGA		TGGA
	3;0	920	930
nns132	aaggcccct tegac	tgcag caggog:	tato
sip2	AAGGCCCCCT TCUAC	TGCAG CAGGCG	TATC
	940	950	960
ms 132	trattatgat casts	cccc atggcc	
sip2	TCATTATGAT CAGTG		
	573	990	990
ms182 .	tatitaties gieco	teces gastgga	ccg
sip2	TATTTATCAA GTACC	TCCCC GAATGGA	
•	:		

FIG. 8 (suite)

	1000	1210	1320
1 mms152	catggetest et	eggetgte attt	CACTAL
þ 2 tsip2			
[CS_52	CATGGCTCAT CT		CAGTAT
1	1030	:2:0	1050
1 mms192	atgatttggt ygu	egeteta egeco	canag
p csip2	ATGATTTGGT GGC	TOTTTA TOTCO	CAAAG
	1050	1070	1080
1 mms132	gcccacttcg tat	gerger gaaac	agctc
p 2 tsip2	GCCCACTTCG TAT	GCTGGTT GAAAC	AGCTC
	1090	1100	1110
1 mms132	aggaaagaaa tga	gactoto totoo	AGCEC
3 . 2 tsip2	AGGAAAGAAA TGA		
	1120		
mms132		1130	1140
3	ttatctattc ctc		
? tsip?	TTATETATTE CTC	AACAATG GTGTG	STTGG -
	1150	1150	1170
. mms162	tgaatatggc tgee	gçagac ccaga	gece
tsip2	TGAATATGCC TGAA	GGAGAC CCAGA	AGCCC .
	1130	1190	1200
mms132	aaaggayggt accc		tata
tsip2	AAAGGAGGGT ACCC	AAGAAC CCCAAG	TATA
. .	1212	1220	1230
mms182	acacacssag agry	yagaya gagaca	EASS
tsip2	ACACACAAAS AGCO		
		1250	1250
mms182	acagiggite tggg	catygt	
tsip2	ACAGTGGTTC TGGG	AACGATL-CATGGT	GGCT
	1270	1250	1290
mms182 tsip2	tcagtgagga gtgg	gaggee caaaga	gaca
tsip2	TCAGTGAGGA GTGG	GAGGCC CAAAGA	GACA
	1350	:3:0	1320
mms132	greacerggg geer	catege tecact	scca
tsip2	GTCACCTGGG-GGGT	CATCOC TOCACT	cccc

FIG. 8 (suite)

· .		1336	1.1+0	1350
1 mms182		agtcaagagc tg	ctgcccag gaac	tttctg
tsip?		AGTCAAGAGU TG:	TTGTCCAG GAAC	TTTCTG
		13,60	13,70	1383
l mms152		ggagcattet and	gagtgae gacco	ggagg
csip2		GGAGCATTCT AAC	CUAGTGAA GACCO	GGAGG
		1 390	1400	1410
mms182		aaagaggagt aaa		agatt
tsip?		AAAGAGGAGT AAA	ACTTGGA CTGGG	AGATT
		1420	7 4 7 0	1440
mms182		tcattttcta cag	tgttctg gttgg	taagg
tsip2		TCATTTTCTA CAS	TCTTCTG GTTGG	TAAGG
		1050	1460	1470
mms182		cctcagcaac cgc	caglyca garts	gaaca
tsip2		CCTCAGCAAC CGC	CAGTGGA GACTG	GAACA
		1450	1490	1500
mms182		caaccatage ctg	tttgta gccat	
tsip2		CAACCATAGC CTG		
		1510	1520	1530
mm.s 1 = 2		teggeetgtg cett	acatta ciccio	gctcg
tsip2		TOGGCOTUTG COTT	PACATTA CTCCTO	CTCC
		1540	1550	1550
mms152		ccattitcaa gaaa	gegttg ccages	cccc
tsip2		CCATTTTCAA GAAA	GCGTTG CCAGCC	CTCC
		1570	1580	1590
mms182		ccatctccat cacc	ttoggg ctcgtg	TEECE
tsip2		CCATCTCCAT CACC	ייידכססס כדכסדכ	הדבר ביים <i>ב</i>
		1500	1610	1520
mms182		acttcgccac ggat	cacct gigcag	
tsipl		ACTTOCCAC GUAT	TACETT STECAS	CCCT
		1530	15:0	1550
mms182	-	teatggacea actt	gcattu catcag	
tsip2		TCATGGACCA ACTT	GUATTC CATCAC	7777

FIG. 8 (suite)

		1650	157	0 1681
1 mms182		atatotagoo	tttctgcagt	tagaacatgg
tsip2		ATATCTAGCC	TTTCTGCAGT	TAGAACATGG
		1590	170	1710
mms192		atgtttette	ccigattetc	aaaaacacaa
tsip2		ATGTTTCTTC	FFFGATTATC	AAAAAACACAA
		1720	1736	1740
mms182		aaacagagag c	aagcccgag	gaggagactg
tsip2		AAACAGAGAG C	AAGCCCGAG	GAGGAGACTG
		1750	1760	1770
mms182		gtgactttcc t	gigiccica	gctaacaaag
tsip2		GTGACTTTCC T	GTGTCCTCA	GCTAACAAAG
		1750	1790	18,00
mms182		gcaggactcc a		cigcagcitc
tsip2	٠	GCAGGACTUC A	GCTGGACTT (TGCAGCTTC
		1310	1320	1830
mms132		cttccgagtc to	ccctagcca	ccgcactac
tsip2		CTTCCGAGTC TO	CCTAGCCA (CCCCACTAC
		19:0	1950	1860
mms182		tggactgtgg as	ggaagegt	cacagagga
tsip2		TGGACTGTGG AA	AGGAAGCGT C	TACAGAGGA
		1870	1930	18,90
mms132		acggittes ac	accatege	tgcagtaga
tsip2		ACGSTTTCCA AG	ATCCATCG C	TGCAGCAGA
•		1900	19,10	1920
mms 182		cygratect ca	gigaritg a	gagacaagg
:				
tsip2	****	CGGTGTCCCT CA		UAGACAAGG
		1930	1940	1950
nns 1 8 2		acaaggaaat gt	getgggee a	aggagetge
tsip2		ACAAGGAAAT GT	CCTGSGCC A	AGGAGCTSC
		1960	1973	1980
ms182		cgtgctctgc ta		gtgggcatg
sip2		CGTGCTCTGC TA	GUTTIGAC C	CTGGGCATG
			_	_

FIG. 8 (suite)

	,	•
	1990 2003	2010
mms162	gagatttace egsactgtga	accessaag
tsip2	GAGATTTACC CGCACTUTUA	ACTCTCTAAG
	2020 2030	2046
mms182	gtaaacaaag vçaygtyaac	c
Lsip2	GTAAACANAG TGAGGTGAAC	CANNCAGAGC
	2050 2060	2070 1
mms182	<==	
tsip2	TGCCATYCTT CCACACCATG	TTGGAAATAA
	2010 2090	21,00
mms182	<== <==	<u> </u>
tsip2	AACCGTCCTA GCTGGAACCC 1	TACTGTCCC
·	2110 4 2120	2130
mms182	<==	
tsip2	AGGAGGTTCC GTGTGGGGGT .G	GCACTGGGC
	2140 2150	2150
mms182	<==	
tsip2	CGGGCCTCCC TCTCAGGCTC C	TTTGCTGCC
•	2170 2180	2190
mas182	<==	
tsip2	<==	
	CACTTGTAAG TTTAAATAAG G	ACACCGCCC
	CACTTGTAAG TTTAAATAAG G	ACACCGCCC 2220
nns 1 5 2	2203 2210 <==	
	2203 2210 <== <==	2220
nns182	2203 2210 <==	2220
nns182	Z203 2210 <== <== TACACAAACC TCACCCCTGT CACCCCTGT CACCCCCTGT CACCCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT C	2220 ACATCCAGT
ms182	2203 2210 <== <== TACACAAACC TCACCCCTGT C. 2230 2240 <== <==	2220 ACATCCACT 2250
nms182 :sip2	Z203 Z210 <== C== TACACAAACC TCACCCCTGT C. Z230 Z240 <== C== GACTCTGACC- ACTTTAGTTC TG	2220 ACATCCAGT 2250 ZAAACTCTC
ms182 ms182	2203 2210 <==	2220 ACATCCACT 2250
nms182 isip2 ims182 isip2	2203 2210 <== TACACAAACC TCACCCCTGT C. 2230 2240	ACATCCAGT 2250 CAAACTCTC 2280
ms182 ms182	Z203 Z210 <== C== TACACAAACC TCACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCTCTAGTTC TG Z210 Z220 Z270 <== C== C== TCACTATTAT CTGTGGTTGC CACCTCTAGTTC CACCTATTAT CTGTGGTTGC CACCTATTAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATATATATATATATATATATATATATATAT	ACATCCAGT 2250 CAAACTCTC 2280
nms152 :sip2 :ms182 :sip2 :ms182 sip2	2203 2210 <== TACACAAACC TCACCCCTGT C. 2230 2240 <== GACTCTGACC- ACTTTAGTTC TC 2260 2270 <== TCACTATTAT CTGTGGTTGC CC 2290 2300	ACATCCAGT 2250 CAAACTCTC 2280
nms182 isip2 ims182 isip2	Z203 Z210 <== C== TACACAAACC TCACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCCCTGT CACCTCTAGTTC TG Z210 Z220 Z270 <== C== C== TCACTATTAT CTGTGGTTGC CACCTCTAGTTC CACCTATTAT CTGTGGTTGC CACCTATTAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATAT CTGTGGTTTGC CACCTATTATATATATATATATATATATATATATATAT	ZZZO ACATCCAGT ZZSO ZZSO ZZSO ZZSO

FIG. 8 (suite)

				•
		2320	2330	2340
mms182	<==			
3	<==	•		
2 tsip2	TCTAT	CCTGA GAGT	TGTAAC CTCA	ACTTCC
		2350	23,60	23,70
				
mms182	<==	_		
tsip2	AAAGT	TTATA TTTT	CTTGAA ATGA	TGGATC
)	2380	2390	2400
mms182	<==			
tsip2		CTCAA CAGT	CCCTGT CATC	CTTAAG
		2410	2420	. 2130
mms182 ·	<==			
tsip2	YC2CT	יירייהה הזייריי	CCCACA AATT	CCTC≯C
tsip2	11000			
	į	2440	2450	2460
mms132	<==			
	<==		ccm m.cm	T.C.T.C.C.C.
tsip2	TTTTAC	SACAC ACTE	INAGCT TACT	IC TOGC
		2470	2480	2490
mms182	<==			
	<==	•		
tsip2	CTGGAT	CCTT CCTC	recers rere	TCCCTT
		2500	25,10	2520
mms132	<==			
	<==		•	
tsip2	GCCCCA	CAGC GGTT	CCTGA CAGC	AGACAA
		25,30	25 - 0	25,50
mms182	- -=			
4	<==			
tsip2	GGCAGC	TOTO GGAGO	STAGET AGTA	TCCAAT
		25,60	25,70	25,50
mms1S2			<u> </u>	
nend 10	<==			
tsip2	AACCCA	COTTY DDDD.	TCATS TGAT	TAAAD
		2590	2500	2510
122	\ <==	l		
mms132	<==			
tsip2	1	TOTO CAACO	AATCA GTGC	TGTCAA
•		2520	26)0———	2640
mms182	<== <==			
tsip2	1	GCCA TAGCT	CCTTC GATG	TAAADE
				
	†			

FIG. 8 (suite)

16/16

		2550	2660	2570
1 mms132 3. 2 tsip2	<== <== AGGATGTG	TG CCCA	AAGAAT TAAA	GCGATC
·		2630	2690	2700
1 mms182 3 2 tsip2	<== <== AGTGGCTG	GT G		
	1		٠.	

FIG. 8 (fin)

PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

WO 97/22695 (51) Classification internationale des brevets 6: (11) Numéro de publication internationale:

C12N 15/12, 15/86, 5/10, C07K 14/47, 14/82, A61K 39/395, 48/00, C12Q 1/68, G01N 33/574, 33/68

A3

(43) Date de publication internationale:

FR

FR

26 juin 1997 (26.06.97)

PCT/FR96/02061 (21) Numéro de la demande internationale:

20 décembre 1996 (20.12.96) (22) Date de dépôt international:

(81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(30) Données relatives à la priorité:

95/15146 96/04853 20 décembre 1995 (20.12.95)

18 avril 1996 (18.04.96)

Publiée

Avec rapport de recherche internationale.

(71) Déposant (pour tous les Etats désignés sauf US): FONDATION JEAN DAUSSET-CEPH [FR/FR]; 27, rue Juliette-Dodu, F-

75010 Paris (FR).

(88) Date de publication du rapport de recherche 18 septembre 1997 (18.09.97) internationale:

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): TALERMAN, Adam [FR/FR]; 12, rue de la Chaise, F-75007 Paris (FR). AMSON, Robert [FR/FR]; 10, rue Gay-Lussac, F-75005 Paris (FR). COHEN, Daniel [FR/FR]; 3, rue de l'Orme-au-Mesnier, F-91600 Savigny-sur-Orge (FR).

(74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(54) Title: NUCLEOTIDE SEQUENCES, PROTEINS, DRUGS AND DIAGNOSTIC AGENTS FOR TREATING CANCER

(54) Titre: SEQUENCES NUCLEOTIDIQUES, PROTEINES, MEDICAMENTS ET AGENTS DIAGNOSTIQUES UTILES DANS LE TRAITEMENT DU CANCER

(57) Abstract

A nucleotide sequence corresponding to a gene comprising (a) one of sequences SEQ ID 1 to 11, or an equivalent gene which comprises (b) a sequence hybridisable with one of the sequences of (a), (c) a sequence at least 80 % homologous with (a) or (b), r (d) a sequence coding for a protein encoded by a gene according to (a), (b) or (c), or for an equivalent protein, and the use thereof, in particular for controlling cancer as well as for therapeutic follow-up. These genes are in the TSAP (tumor suppressor activated pathway) group, designated TSAP 1 to TSAP 8 and TSAP 3 human (or HUMSIAH) and in TSIP (tumor suppressor inhibited pathway) group, designated TSIP 1 and TSIP 2, both types of genes corresponding to sequences activated or inhibited, respectively, during cellular apoptosis, particularly that induced by p53.

(57) Abrégé

La présente invention concerne une séquence nucléotidique correspondant à un gène comportant: (a) une séquence selon l'une des IND. SEQ 1 à 11 ou un gêne équivalent qui comporte: (b) une séquence s'hybridant avec l'une des séquences selon (a), (c) une séquence présentant au moins 80 % d'homologie avec (a) ou (b), ou (d) une séquence codant pour une protéine codée par une gène selon (a), (b) ou (c) ou pour un protéine équivalente, et leur application notamment dans la suppression du cancer ainsi que dans le suivi thérapeutique. Ces gènes regroupés en TSAP (tumor suppressor activated pathway) et dénommés TSAP 1 à TSAP 8 et TSAP 3 humain (ou HUMSIAH), et en TSIP (tumor suppressor inhibited pathway) et dénommés TSIP 1 et TSIP 2, ces deux types de gènes correspondant respectivement à des séquences induites ou inhibées lors de l'apoptose cellulaire, notamment celles induites par-p53.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Arménie	GB	Royaume-Uni	MW	Malawi
AT	Autriche	GE	Géorgie	··· MX	Mexique
AU	Australie	GN	Guinée	NE	Niger
 BB.	Barbade	GR	Grèce	NL	Pays-Bas
BE	Belgique	HU	Hongrie	NO	Norvège
BF	Burkina Faso	IE	Irlande	NZ	Nouvelle-Zélande
BG	Bulgarie	IT	Italie	PL	Pologne
BJ	Bénin	JP	Japon	PT	Portugal
BR	Brési)	· KE	Kenya	RO	Roumanie
BY	Bélarus	KG	Kirghizistan	RU	Pédération de Russie
CA	Canada	KP	République populaire démocratique	SD	Soudan
CF	République centrafricaine		de Corée	SE	Subde
CG	Congo	KR	République de Corée	SG	Singapour
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovaquie
 CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LR	Libéria	SZ	Swaziland
CS	Tchécoslovaguie	LT	Lituanie	TD	Tchad
CZ	République tchèque	LU	Luxembourg	TG	Togo
DE	Allemagne	LV	Lettonie	TJ	Tadjikistan
DK	Danemark	MC	Monaco	TT	Trinité-et-Tobago
EE	Estonie	MD	République de Moldova	UA	Ukraine
ES	Espagne	MG	Madagascar	UG	Ouganda
FI	Finlande	ML	Mali	US	Etats-Unis d'Amérique
FR	France	MN	Mongolie	UZ	Ouzbékistan
GA	Gabon	MR	Mauritanic	VN	Vict Nam

aal Application No inten. PCT/FR 96/02061

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 C12N15/12 C12N15/86 C07K14/82 CO7K14/47 C12N5/10 G01N33/68 G01N33/574 C12Q1/68 A61K39/395 A61K48/00 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C12N C07K A61K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1,3,7,17 J. BIOL. CHEM., X vol. 268, no. 28, 5 October 1993, pages 21318-21327, XP002013539 "Purification, molecular cloning and sequencing of phospholipase C-beta4" see the whole document 26 4,7,17 HUMAN MOLECULAR GENETICS, X vol. 3, no. 3, 1994, pages 465-470, XP002013540 "Isolation and characterization of TODA: a novel gene encoding nuclear protein at a locus (D11S636) tightly linked to multiple endocrine neoplasia type 1 (MEN1)* see the whole document 26 A Patent family members are listed in annex.]X Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person stilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 30.06.97 12 June 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

Gac, G

1

Inter. -nal Application No PCT/FR 96/02061

		PCT/FR 96/02061	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Х	DEVELOPMENT, vol. 117, no. 4, 1993, pages 1333-1343, XP000601972 DELLA: "Isolation and characterization of	1,3,7,17	
	murine homologues of the Drosophila seven in absentia gene (sina)" see the whole document & DATABASE EMBL ID: MMSIAHIA, AC=Z19579, see the comparison or alignment of the nucleotide and protein sequences	· ·	
A	FEBS LETT., vol. 374, no. 3, 6 November 1995, pages 384-386, XP002013541 GUENAL: "Studies of specific gene induction during apoptosis of cell lines conditionally immortalized by SV40" see the whole document	1-9,11, 15,26,31	
A	WO 95 19367 A (LA JOLLA CANCER RESEARCH FOUNDATION) 20 July 1995 see the whole document	1-27	
A	WO 95 11301 A (THE REGENTS OF THE UNIVERSITY OF MICHIGAN) 27 April 1995 see the whole document	1-27	
A	ONCOGENE, vol. 9, no. 12, 1994, pages 3743-3751, XP000602314 ZHAN: "Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis" see the whole document	1-27	
Y	SCIENCE, vol. 257, 14 August 1992, pages 967-971, XP000508268	32	
o o	LIANG: "Differential display of eukaryotic messenger RMA by means of the polymerase chain reaction" cited in the application see the whole document		
Y	NUCLEIC ACIDS REASEARCH, vol. 19, no. 14, 25 July 1991,	32	
	page 4008 XP002013542 DON: ""Touchdown" PCR to circumvent spurious priming during gene amplification" cited in the application see the whole document		
	-/		

Inter. nal Application No PCT/FR 96/02061

C.(Continu	ition) DOCUMENTS CONSIDERED TO BE RELEVANT	To the No.	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	DATABASE EMBL ID: HS152227, AC= H72152, 2 November 1995 XP002019920 see the alignment of nucleotide and protein sequences; the descriptors & UNPUBLISHED, 1995, HILLIER ET AL.:	1,3,7,	
A,P	DATABASE EMBL ID: HS49264, AC=N31049, 12 January 1996 XP002019921 see the alignment of nucleotide and protein sequences; the descriptors. & UNPUBLISHED, 1996, HILLIER ET AL.:	1,3,7, 17,26	
P,X	PROC. NATL ACAD. SCI., vol. 93, no. 9, 30 April 1996, pages 3953-3957, XP002032914 AMSON ET AL.: "Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of Drosophila seven in absentia gene" see the whole document	1-10,17, 19,21, 24,26,27	
P,X	PROC. NATL ACAD. SCI., vol. 93, no. 17, 20 August 1996, pages 9039-9042, XP000611649 NEMANI ET AL.: "Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression" see the whole document	1-3,5-7, 17,19,26	
A	NATURE, vol. 375, 29 June 1995, pages 754-760, XP002032915 SHERRINGTON ET AL.: "Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease" cited in the application see the whole document	1,8,10, 25,28,29	
A	AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE, vol. 25, no. 6, December 1995, pages 845-851, XP000610669 DELLA N G ET AL: "A COMBINED GENETIC AND BIOCHEMICAL APPROACH TO MAMMALIAN SIGNAL TRANSDUCTION" see the whole document		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

1

Inten nal Application No

Patent document ited in search report	Publication date	Patent fam member(s		Publication date
√O 9519367 A	20-07-95	US 548471	0 A	16-01-96
√O 9511301 A	27-04-95	AU 798329	14 A	08-05-95

: Internationale No Den.

PCT/FR 96/02061 CLASSEMENT DE L'OBJET DE LA DEMANDE IB 6 C12N15/12 C12N15/8 C07K14/82 C07K14/47 CIB 6 C12N5/10 C12N15/86 G01N33/68 G01N33/574 C12Q1/68 A61K48/00 A61K39/395 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) C12N C07K A61K Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche C. DOCUMENTS CONSIDERES COMME PERTINENTS no, des revendications visées Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents Catégorie 1,3,7,17 J. BIOL. CHEM., X vol. 268, no. 28, 5 Octobre 1993, pages 21318-21327, XP002013539 "Purification, molecular cloning and sequencing of phospholipase C-beta4° voir le document en entier 26 4,7,17 HUMAN MOLECULAR GENETICS, X vol. 3, no. 3, 1994, pages 465-470, XP002013540 "Isolation and characterization of TODA: a novel gene encoding nuclear protein at a locus (DilS636) tightly linked to multiple endocrine neoplasia type 1 (MEN1)* voir le document en entier 26 A Les documents de familles de brevets sont indiqués en annexe X Voir la suite du cadre C pour la fin de la liste des documents X document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention Catégories spéciales de documents cités: document définissant l'état général de la technique, non considéré comme particulièrement pertinent "X" document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent l'invention revendiquèe ne peut être considèrée comme impliquant une activité inventive lorsque le document est associé. à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier 'O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée '&' document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée

1

Formulaire PCT/ISA/210 (dauxième feuille) (juillet 1992)

Fax: (+31-70) 340-3016

Nom et adrésse postale de l'administration chargée de la recherche internationale Office Europeen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

12 Juin 1997

30.06.97

Fonctionnaire autorisé

Gac, G

Dem. Internationale No PCT/FR 96/02061

atégone "	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visée
	DEVELOPMENT, vol. 117, no. 4, 1993, pages 1333-1343, XP000601972 DELLA: "Isolation and characterization of murine homologues of the Drosophila seven in absentia gene (sina)" voir le document en entier & DATABASE EMBL ID: MMSIAHIA, AC=Z19579, voir la comparaison / l'alignement des séquences nucléotidiques et protéiques	1,3,7,17
	FEBS LETT., vol. 374, no. 3, 6 Novembre 1995, pages 384-386, XP002013541 GUENAL: "Studies of specific gene induction during apoptosis of cell lines conditionally immortalized by SV40" voir le document en entier	1-9,11, 15,26,31
A .	WO 95 19367 A (LA JOLLA CANCER RESEARCH FOUNDATION) 20 Juillet 1995 voir le document en entier	1-27
A	WO 95 11301 A (THE REGENTS OF THE UNIVERSITY OF MICHIGAN) 27 Avril 1995 voir le document en entier	1-27
	ONCOGENE, vol. 9, no. 12, 1994, pages 3743-3751, XP000602314 ZHAN: "Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis" voir le document en entier	1-27
,	SCIENCE, vol. 257, 14 Août 1992, pages 967-971, XP000508268 LIANG: "Differential display of eukaryotic messenger RMA by means of the polymerase chain reaction" cité dans la demande voir le document en entier	32
/ 	NUCLEIC ACIDS REASEARCH, vol. 19, no. 14, 25 Juillet 1991, page 4008_XP002013542 DON: ""Touchdown" PCR to circumvent spurious priming during gene amplification"	32

PCT/FR 96/02061

	<u></u>	PC1/FR 98/82861		
	suite) DOCUMENTS CONSIDERES COMME PERTINENTS tégorie * Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents no. des revendications visées			
atégorie °	Identification des documents cités, avec, le cas echeant, i indication des passages professiones			
	DATABASE EMBL ID: HS152227, AC= H72152, 2 Novembre 1995 XP002019920 voir l'alignements des séquences nucléotidiques et protéiques; les descripteurs & UNPUBLISHED, 1995, HILLIER ET AL.:	1,3,7, 17,26		
A, P	DATABASE EMBL ID: HS49264, AC=N31049, 12 Janvier 1996 XP002019921 Voir l'alignement des séquences nucléotidiques et protéiques; les descripteurs. & UNPUBLISHED, 1996, HILLIER ET AL.:	1,3,7, 17,26		
P,X	PROC. NATL ACAD. SCI., vol. 93, no. 9, 30 Avril 1996, pages 3953-3957, XP002032914 AMSON ET AL.: "Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of Drosophila seven in absentia gene" voir le document en entier	1-10,17, 19,21, 24,26,27		
P,X	PROC. NATL ACAD. SCI., vol. 93, no. 17, 20 Août 1996, pages 9039-9042, XP000611649 NEMANI ET AL.: "Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression" voir le document en entier	1-3,5-7, 17,19,26		
A	NATURE, vol. 375, 29 Juin 1995, pages 754-760, XP002032915 SHERRINGTON ET AL.: "Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease" cité dans la demande voir le document en entier	1,8,10, 25,28,29		
A	AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE, vol. 25, no. 6, Décembre 1995, pages 845-851, XP000610669 DELLA N G ET AL: "A COMBINED GENETIC AND BIOCHEMICAL APPROACH TO MAMMALIAN SIGNAL TRANSDUCTION" voir le document en entier			

1

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (juillet 1992)

Renseignements relatifs aux membres de familles de brevets

Demi. Internationale No PCT/FR 96/02061

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9519367 A	20-07-95	US 5484710 A	16-01-96
WO 9511301 A	27-04-95	AU 7983294 A	08-05-95