ANCOVA of Change from Baseline Glucose (mmol/L) at Week 24 LOCF Efficacy Analysis Population

	Baseline		Week 24		Change from Baseline		
Treatment	Ν	Mean (SD)	N	Mean (SD)	N	Mean (SD)	LS Mean (95% CI) ^a
Placebo	79	5.7 (2.23)	57	5.7 (1.83)	57	-0.1 (2.68)	0.07 (-0.27, 0.41)
Xanomeline Low Dose	79	5.4 (0.95)	26	5.7 (1.26)	26	0.2 (0.82)	-0.11 (-0.45, 0.23)
Xanomeline High Dose	74	5.4 (1.37)	30	6.0 (1.92)	30	0.5 (1.94)	0.40 (0.05, 0.75)
Pairwise Comparison			Difference in LS Mean (95% CI) ^a				p-Value
Xanomeline Low Dose - Placebo			-0.17 (-0.65, 0.30)				0.757
Xanomeline High Dose - Placebo			0.33 (-0.16, 0.82)				0.381

^aBased on an ANCOVA model after adjusting baseline value. LOCF approach is used to impute missing values. ANCOVA = Analysis of Covariance, LOCF = Last Observation Carried Forward CI = Confidence Interval, LS = Least Squares, SD = Standard Deviation