Preliminaries

- The ability of biological brains to sense, perceive, analyse and recognise patterns can only be described as stunning.
- They also have the ability to learn from new examples with or without being taught.
- Mankind's understanding of how biological brains operate exactly is embarrassingly limited.
- However, there do exist numerous practical techniques that give machines the appearance of being intelligent.
- This is the domain of statistical pattern recognition and machine learning.

Preliminaries

Preliminaries

Instead of attempting to mimic the complex workings of a biological brain, this course

- aims at explaining mathematically well-founded techniques for analysing patterns and learning from them, and is therefore
- a mathematically involved introduction into the field of pattern recognition and machine learning.
- ▶ It will prepare you for further study/research in
 - Pattern Recognition
 - Machine Learning
 - Computer Vision
 - Big Data Analytics
 - and others areas attempting to solve Artificial Intelligence (AI) type problems.

Introduction

Machine Learning and Pattern Recognition are different names for essentialy the same thing.

- Pattern Recognition arose out of Engineering.
- ► Machine Learning arose out of Computer Science.
- ▶ Both are concerned with automatic discovery of regularities in data.
- Regularity implies order. Learning implies exploiting order in order to make predictions.

Machine Learning

Supervised Learning

- ► Classification: Assign x to *discrete* categories.
 - Examples: Digit recognition, face recognition, etc..
- ▶ Regression: Find *continuous* values for x.
 - Examples: Price prediction, profit prediction.

Unsupervised Learning

- ► Clustering: Discover groups of similar examples.
- Density Estimation: Determine probability distribution of data.
- Dimensionality Reduction: Map data to a lower dimensional space.

Reinforcement Learning

- ► Find actions that maximise a reward. Example: chess playing program competing against a copy of itself.
- Active area of ML research.
- ▶ We will not be covering reinforcement learning in this course.

Problem: Given an image x of a digit, classify it between $0, 1, \ldots, 9$.

Non-trivial due to high variability in hand-writing.

Classical Approach: Make hand-crafted rules or heuristics for distinguishing digits based on shapes of strokes.

Problems:

- Need lots of rules.
- Exceptions to rules and so on.
- Almost always gives poor results.

ML Approach:

- ▶ Collect a large *training set* $x_1, ..., x_N$ of hand-written digits with known labels $t_1, ..., t_N$.
- ► Learn/tune the parameters of an *adaptive* model.
 - ► The model can adapt so as to reproduce correct labels for all the training set images.

- Every sample x is mapped to f(x).
- ▶ ML determines the mapping f during the *training phase*. Also called the *learning phase*.
- ▶ Trained model f is then used to label a new *test image* x_{test} as $f(x_{test})$.

Terminology

- Generalization: ability to correctly label new examples.
 - Very important because training data can only cover a tiny fraction of all possible examples in practical applications.
- Pre-processing: Transform data into a new space where solving the problem becomes
 - easier, and
 - ► faster.

Also called *feature extraction*. The extracted features should

- be quickly computable, and
- preserve useful discriminatory information.

Essential Topics for ML

- 1. Probability theory deals with uncertainty.
- Decision theory uses probabilistic representation of uncertainty to make optimal predictions.
- 3. Information theory

Example: Polynomial Curve Fitting

Problem: Given N observations of input x_i with corresponding observations of output t_i , find function f(x) that predicts t for a new value of x.

First, let's generate some data.

```
N=10;
x=0:1/(N-1):1;
t=sin(2*pi*x);
plot(x,t,'o');
```

Notice that the data is generated through the function $\sin(2\pi x)$.

Real-world observations are always 'noisy'.

Let's add some noise to the data

```
n=randn(1,N)*0.3;
t=t+n;
plot(x,t,'o');
```

Real-world Data

Real-world data has 2 important properties

- 1. underlying regularity,
- 2. individual observations are corrupted by noise.

Learning corresponds to discovering the underlying regularity of data (the $sin(\cdot)$ function in our example).

Polynomial curve fitting

• We will fit the points (x, t) using a polynomial function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

where M is the *order* of the polynomial.

- Function $y(x, \mathbf{w})$ is a
 - non-linear function of the input x, but
 - ▶ a linear function of the parameters w.
- ▶ So our model $y(x, \mathbf{w})$ is a *linear model*.

Polynomial curve fitting

- Fitting corresponds to finding the optimal w. We denote it as w*.
- Optimal w* can be found by minimising an error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- ▶ Why does minimising $E(\mathbf{w})$ make sense?
- ▶ Can $E(\mathbf{w})$ ever be negative?
- ► Can $E(\mathbf{w})$ ever be zero?

Geometric interpratation of the sum-of-squares error function.

Over-fitting

- ► Lower order polynomials can't capture the variation in data.
- ► Higher order leads to *over-fitting*.
 - ► Fitted polynomial passes *exactly* through each data point.
 - But it oscillates wildly in-between.
 - Gives a very poor representation of the real underlying function.
- Over-fitting is bad because it gives bad generalization.

Over-fitting

- ▶ To check generalization performance of a certain \mathbf{w}^* , compute $E(\mathbf{w}^*)$ on a *new* test set.
- Alternative performance measure: root-mean-square error (RMS)

$$E_{RMS} = \sqrt{\frac{2E(\mathbf{w}^*)}{N}}$$

- Mean ensures datasets of different sizes are treated equally. (How?)
- Square-root brings the squared error scale back to the scale of the target variable t.

Curve Fitting Regularized Curve Fittin

Root-mean-square error on training and test set for various polynomial orders M.

Paradox?

- A polynomial of order M contains all polynomials of lower order.
- ▶ So higher order should *always* be better than lower order.
- But, it's not better. Why?
 - Because higher order polynomial starts fitting the noise instead of the underlying function.

Over-fitting

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^\star				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

- ► Typical magnitude of the polynomial coefficients is increasing dramatically as *M* increases.
- This is a sign of over-fitting.
- ► The polynomial is trying to fit the data points exactly by having larger coefficients.

Over-fitting

- ▶ Large $M \implies$ more flexibility \implies more tuning to noise.
- ▶ But, if we have more data, then over-fitting is reduced.

- Fitted polynomials of order M=9 with N=15 and N=100 data points. More data reduces the effect of over-fitting.
- ▶ Rough heuristic to avoid over-fitting: Number of data points should be greater than $k|\mathbf{w}|$ where k is some multiple like 5 or 10.

How to avoid over-fitting

Since large coefficients ⇒ over-fitting, discourage large coefficients in w.

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

where $||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$ and λ controls the relative importance of the regularizer compared to the error term.

► Also called regularization, shrinkage, weight-decay.

For a polynomial of order 9

For $\lambda = e^{-18}$ No over-fitting

 $\text{For } \lambda = 1$ Too much smoothing (no fitting)

Effect of regularization

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

- As λ increases, the typical magnitude of coefficients gets smaller.
- We go from over-fitting ($\lambda = 0$) to no over-fitting ($\lambda = e^{-18}$) to poor fitting ($\lambda = 1$).
- Since M = 9 is fixed, regularization controls the degree of over-fitting.

Graph of root-mean-square (RMS) error of fitting the M=9 polynomial as λ is increased.

How to avoid over-fitting

- ▶ A more principled approach to control over-fitting is the *Bayesian approach* (to be covered later).
 - Determines the effective number of parameters automatically.
- ▶ We need the machinery of probability to understand the Bayesian approach.
- Probability theory also offers a more principled approach for our polynomial fitting example.
- Will be covered in the next lecture.