- Designed for Use With the TL851 in Sonar Ranging Modules Like the SN28827
- Digitally Controlled Variable-Gain Variable-Bandwidth Amplifier
- Operational Frequency Range of 20 kHz to 90 kHz
- TTL-Compatible
- Operates From Power Sources of 4.5 V to 6.8 V
- Interfaces to Electrostatic or Piezoelectric Transducers
- Overall Gain Adjustable With One External Resistor

(TOP VIEW) G1IN [16 GND XIN ∏ 2 15 GCD GADJ ∏ 3 14 T GCA 13 GCB LC [4 12 GCC V_{CC} [] 5 G10UT 6 11 NC G2IN [10 NC 9∏ REC BIAS [

N PACKAGE

NC - No internal connection

description

The TL852 is an economical sonar ranging receiver integrated circuit for use with the TL851 control integrated circuit. A minimum of external components is required for operation, and this amplifier easily interfaces to Polaroid's 50-kHz electrostatic transducer. An external 68-k Ω ±5% resistor from BIAS to GND provides the internal biasing reference. Amplifier gain can be set with a resistor from G1IN to GADJ. Required amplifier gain will vary for different applications. Using the detect-level measurement circuit of Figure 1, a nominal peak-to-peak value of 230 mV input during gain step 2 is recommended for most applications. For reliable operation, a level no lower than 50 mV should be used. The recommended detect level of 230 mV can be obtained for most amplifiers with an R1 value between 5 k Ω and 20 k Ω

Digital control of amplifier gain is provided with gain control inputs GCA, GCB, GCC, and GCD. These inputs must be driven synchronously (all inputs stable within 0.1 μ s) to avoid false receive output signals due to invalid logic counts. This can be done easily with the TL851 control integrated circuit. A plot showing relative gain for the various gain steps versus time can be seen in Figure 2. To dampen ringing of the 50-kHz electrostatic transducer, a 5-k Ω resistor from G1IN to XIN is recommended.

An external parallel combination of inductance and capacitance between LC and V_{CC} provides an amplifier with an externally controlled gain and Q. This not only allows control of gain to compensate for attenuation of signal with distance, but also maximizes noise and sidelobe rejection. Care must be taken to accurately tune the L-C combination at operating frequency or gain and Q will be greatly reduced at higher gain steps.

AC coupling between stages of the amplifier is accomplished with a 0.01-mF capacitor for proper biasing.

The receive output is normally held at a low level by an internal 1- μ A current source. When an input of sufficient amplitude is received, the output is driven alternately by the 1- μ A discharge current and a 50- μ A charging current. A 1000-pF capacitor is required from REC to GND to integrate the received signal so that one or two noise pulses will not be recognized.

XIN provides clamping for the transformer secondary when used for transducer transmit drive as shown in Figure 4 of the SN28827 data sheet.

The TL852 is characterized for operation from 0°C to 40°C.

functional block diagram

schematic of gain control inputs

SLSS003 - SEPTEMBER 1983 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Voltage at any pin with respect to GND	-0.5 V	to 7 V
Voltage at any pin with respect to V _{CC}	-7 V to	0.5 V
XIN input current (50% duty cycle)	±6	60 mA
Continuous power dissipation at (or below) 25°C free-air temperature (see Note 1)	115	0 mW
Operating free-air temperature range	- 40°C to	85°C
Storage temperature range –	65°C to	150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds		

[†] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: For operation above 25°C, derate linearly at the rate of 9.2 mW/°C.

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{CC}		4.5	6.8	V
High-level input voltage, VIH	GCA, GCB, GCC, GCD			\ \ \
Low-level input voltage, V _{IL}			0.6	V
Bias resistor between BIAS and GND			72	kΩ
Operating free-air temperature, T _A		0	40	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONI	TEST CONDITIONS		MAX	UNIT	
Innut clamp valtage at VINI	I _I = 40 mA			2.5	V	
Input clamp voltage at XIN	$I_{I} = -40 \text{ mA}$	I _I = - 40 mA			V	
Open-circuit input voltage at GCA, GCB, GCC, GCD	V _{CC} = 5 V,	I _I = 0	2.5		V	
High-level input current, I _{IH} , into GCA, GCB, GCC, GCD	V _{CC} = 5 V,	V _{IH} = 2 V	- 0.5		mA	
Low-level input current, I _{IL} , into GCA, GCB, GCC, GCD	V _{CC} = 5 V,	V _{IL} = 0		-3	mA	
Descript output output	$I_{G2IN} = -100 \mu A$,	V _O = 0.3 V	1		μА	
Raceive output current	$I_{G2IN} = 100 \mu\text{A},$	V _O = 0.1 V	- 50)		
Supply current, I _{CC}				45	mA	

[‡] Typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

APPLICATION INFORMATION

detect level versus gain step

Detect level is measured by applying a 15-cycle burst of 49.4 kHz square wave just after the beginning of the gain step to be tested. The least burst amplitude that makes REC reach the trip level is defined to be the detect level. System gain is then inversely proportional to detect level. See the test circuit in Figure 1.

Figure 1. Detect-Level Measurement Circuit and Waveforms

APPLICATION INFORMATION

GAIN STEP TABLE

GCD	GCC	GCB	GCA	STEP NUMBER
L	L	L	L	0
L	L	L	Н	1
L	L	Н	L	2
L	L	Н	Н	3
L	Н	L	L	4
L	Н	L	Н	5
L	Н	Н	L	6
L	Н	Н	Н	7
Н	L	L	L	8
Н	L	L	Н	9
Н	L	Н	L	10
Н	L	Н	Н	11

Receiver Gain vs

Figure 2

Gain Steps

ti.com 27-Feb-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL852CDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL852CDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL852CDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL852CN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL852CN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL852CNE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL852CNE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated