4. SKAITĻU TEORIJAS LAPA, 2022-02-04

Definīcija: Ar n apzīmējam jebkuru naturālu skaitli un ar p – kādu pirmskaitli. Par skaitļa n p-valuāciju sauc tādu skaitli k, ka n dalās ar p^k , bet nedalās ar p^{k+1} . Šo faktu pieraksta, izmantojot grieku burtu "nī":

$$\nu_p(n) = k.$$

Piemēri: Ja pirmskaitlis p = 3, tad

$$\begin{cases} \nu_3(1) = \nu_3(2) = \nu_3(4) = \nu_3(5) = \dots = 0 \\ \nu_3(3) = \nu_3(6) = \nu_3(12) = \nu_3(15) = \dots = 1 \\ \nu_3(9) = \nu_3(18) = \nu_3(36) = \nu_3(45) = \dots = 2 \\ \nu_3(27) = \nu_3(54) = \dots = 3 \\ \nu_3 81 = \dots = 4 \\ \dots \end{cases}$$

Teorēma (Adrien-Marie Legendre): Katram pirmskaitlim p un katram naturālam n p-valuācija ir aprēķināma pēc formulas

$$u_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor,$$

kur $\lfloor x \rfloor$ apzīmē apakšējo veselo daļu. (Izskatās, ka šajā vienādībā ir bezgalīga summa, bet jebkurām n un p vērtībām šajā summā ir tikai galīgs skaits nenulles saskaitāmo.)

Apgalvojums: Lielākā 2 pakāpe, ar ko dalās n! ir $n - S_2(n)$, kur ar $S_2(n)$ apzīmēta n ciparu summa divnieku pierakstā.

Teorēma (Ernst Kummer) Doti skaitļi n un m, kas apmierina nevienādības $n \geq m \geq 0$ un arī pirmskaitlis p. Tad binomiālajam koeficientam C_n^m p-valuācija sakrīt ar pārnesumu skaitu, ja m saskaita ar n-m skaitīšanas sistēmā ar bāzi p.

Šo teorēmu var pierādīt, izsakot binomiālo koeficientu:

$$C_n^m = \frac{n!}{m!(n-m)!}$$

un izmantojot Ležandra teorēmu.

Teorēma (Lucas): Visiem nenegatīviem m un n, un jebkuram pirmskaitlim p, ir spēkā šāda sakarība:

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

kur $n = n_k p^k + n_{k-1} p^{k-1} + \ldots + n_1 p + n_0$, bet $m = m_k p^k + m_{k-1} p^{k-1} + \ldots + m_1 p + m_0$.

Lemma 1 (Lifting the Exponent, LTE): Doti divi veseli skaitļi x un y un arī naturāls skaitlis $n \in \mathbb{N}$. Dots arī **nepāra** pirmskaitlis p. Izpildās šādi nosacījumi:

• x, y nedalās ar p.

• x-y dalās ar p.

Tad izpildās vienādība:

$$\nu_p(x^n - y^n) = \nu_p(x - y) + \nu_p(n).$$

3.1 lesildīšanās

1.uzdevums: Ar cik nullēm beidzas skaitlis 2022! (2022 faktoriāls, t.i. visu skaitļu no 1 līdz 2022 reizinājums)?

2.uzdevums: Ar kādu lielāko skaitļa 2 pakāpi dalās kombinācija C_{2022}^{415} ?

3.uzdevums: Atrast mazāko k vērtību, kurai $11^k - 1$ beidzas ar 4 nullēm.

4.uzdevums: Atrast 5-valuāciju reizinājumam

$$(2-1)\cdot(2^2-1)\cdot(2^3-1)\cdot\ldots\cdot(2^{1000}-1).$$

5.uzdevums: Atrast 7-valuāciju reizinājumam

$$(2-1)\cdot(2^2-1)\cdot(2^3-1)\cdot\ldots\cdot(2^{1000}-1).$$

6.uzdevums (UKMO2013): Skaitlis pierakstīts decimālās sistēmas bāzē satur 3²⁰¹³ ciparus 3; citu ciparu skaitļa pierakstā nav. Atrast augstāko skaitļa 3 pakāpi, kas dala šo skaitli.

3.2 Klases uzdevumi

1.uzdevums: Pamatot, ka harmoniskas rindas pirmo n locekļu summa:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

nevar būt vesels skaitlis, ja n > 1.

2.uzdevums: Cik kopā $\{0,1,2,\ldots,2012\}$ ir elementu k, kam C_{2012}^k : dalās ar 2012? Ar C_n^k apzīmējam kombinācijas no n pa k jeb

$$C_n^k = \frac{n!}{k!(n-k)!}$$

3.uzdevums: Atrast visus naturālo skaitļu (k, n) pārus, kuriem izpildās

$$k! = (2^n - 1)(2^n - 2)(2^n - 4) \cdots (2^n - 2^{n-1}).$$

4.uzdevums (IMO2000.5): Vai eksistē naturāls n, ka skaitlim n ir tieši 2000 dalītāji, kuri ir pirmskaitļi, un $2^n + 1$ dalās ar n. (Skaitlis n drīkst dalīties arī ar pirmskaitļu pakāpēm.)

5.uzdevums: Atrast veselu skaitli n, kam $100 \le n \le 1997$, ka n dala $2^n + 2$.

6.uzdevums (LV.TST.1992.12.1): Pierādīt, ka eksistē bezgalīgi daudz naturālu skaitļu kvadrātu, kurus var iegūt, divas reizes pēc kārtas uzrakstot kādu naturālu skaitli.

3.1. lesildīšanās 2

3.3 Mājasdarba uzdevumi

Iesniegšanas termiņš: 2023.g. 25.februāris.

Kam iesūtīt: kalvis.apsitis, domēns gmail.com

1.uzdevums (BW.2015.16): Ar P(n) apzīmējam lielāko pirmskaitli, ar ko dalās n. Atrast visus naturālos skaitļus $n \ge 2$, kam

$$P(n) + |\sqrt{n}| = P(n+1) + |\sqrt{n+1}|.$$

Piezīme: |x| apzīmē lielāko veselo skaitli, kas nepārsniedz x.

2.uzdevums (BW.2015.17): Atrast visus naturālos skaitlus n, kuriem $n^{n-1} - 1$ dalās ar 2^{2015} , bet nedalās ar 2^{2016} .

3.uzdevums (BW.2016.5): Dots pirmskaitlis p>3, kuram $p\equiv 3\pmod 4$. Dotam naturālam skaitlim a_0 virkni a_0,a_1,\ldots definē kā $a_n=a_{n-1}^{2^n}$ visiem $n=1,2,\ldots$ Pierādīt, ka a_0 var izvēlēties tā, ka apakšvirkne $a_N,a_{N+1},a_{N+2},\ldots$ nav konstanta pēc moduļa p nevienam naturālam N.

4.uzdevums (BW.TST.2015.15): Ar $\omega(n)$ apzīmēsim dažādo pirmskaitļu skaitu, ar ko dalās n. Pierādīt, ka ir bezgalīgi daudz tādu naturālu skaitļu n, kuriem $\omega(n) < \omega(n+1) < \omega(n+2)$.

5.uzdevums (BW.2015.17): Pirmskaitlim p un naturālam skaitlim n apzīmējam ar f(p,n) lielāko veselo skaitli k, kuram $p^k \mid n!$. Dots fiksēts pirmskaitlis p, bet m un c ir jebkādi naturāli skaitļi. Pierādīt, ka eksistē bezgalīgi daudzi tādi naturāli skaitli n, kuriem $f(p,n) \equiv c \pmod{m}$.

6.uzdevums: Pierādiet, ka eksistē bezgalīgi daudz naturālu skaitļu \$n\$, kuriem skaitlis \$2^n+2\$ dalās ar \$n\$.