

07/07/2024 - FINAL PROJECT

GOLD PRICE PROBLEM PREDICTION

Chau Nguyen Mentor Tang Vi Thai

Nội dung trình bày

- 1 Giới thiệu về dữ liệu
- 2 Xử lý và làm sạch dữ liệu
- 3 Phân tích dữ liệu
- 4 Lựa chọn và huấn luyện mô hình
- 5 Kết quả vả kết luận

1. Giới thiệu về dữ liệu

Dataset

- Bộ dataset được thu thập từ trang Investing.com, trong đó có 13 chỉ số quan trọng có ảnh hưởng đến dự báo giá vàng.
- Thời gian dữ liệu:
 - Từ 1/1/2012 đến 03/07/2024

Chi tiết

- Gold Future Contract
- Silver Future
- Platinum Future
- Brent Oil
- Eldorado Gold Corporation
- USD/VND Exchange Rate
- United States Oil Fund
- VNIndex (Vietnam)
- DAX Index (European)
- Hang Seng Index (Hongkong)
- Nikken 225 (Japan)
- Dow Jones (US)
- S&P500 (US(

	Date	Close	Open	High	Low	Volume	Change
0	3/7/2024	2,372.45	2,339.45	2,372.85	2,335.95	NaN	1.67%
1	2/7/2024	2,333.40	2,341.60	2,346.10	2,327.40	153.71K	-0.24%
2	1/7/2024	2,338.90	2,338.90	2,348.80	2,328.20	142.60K	-0.03%
3	28/06/2024	2,339.60	2,338.60	2,350.60	2,329.70	135.38K	0.13%
4	27/06/2024	2,336.60	2,309.40	2,342.00	2,306.80	140.23K	1.55%
	***	***	***	***	***	•••	•••
3145	9/1/2012	1,608.10	1,617.70	1,624.60	1,605.70	134.39K	-0.54%
3146	6/1/2012	1,616.80	1,622.40	1,632.30	1,609.00	155.21K	-0.20%
3147	5/1/2012	1,620.10	1,614.40	1,626.80	1,597.70	176.47K	0.46%
3148	4/1/2012	1,612.70	1,604.90	1,619.80	1,593.80	154.22K	0.76%
3149	3/1/2012	1,600.50	1,571.00	1,608.70	1,566.80	112.94K	2.15%
Silver_	Close Silver_	Volume S	ilver_Change	· VNI_Clo	ose VNI_V	olume VN	NI_Change
	30.84	75.32K	3.99%	1,276	.85 5	89.51K	0.56%
	29.66	52.27K	0.15%	1,269	.79 5	28.47K	1.21%
	29.61	45.99K	0.18%	1,254	.56 4	87.19K	0.74%
	29.56	51.91K	1.04%	1,245	.32 8	40.43K	-1.09%
	29.26	63.25K	0.57%	1,259	.09 5	96.99K	-0.17%
	. Mark	****	1111		1995	1988	
	28.78	30.25K	0.35%	339	.32 1	71.19K	0.77%
	28.68	38.61K	-2.09%	336	.73	29.08K	-1.23%
	29.30	39.30K	0.68%	340	.94	20.63K	-2.26%
	29.10	36.12K	-1.61%	348	.84	25.45K	-0.33%
	29.57	35.83K	5.94%	3 3	350	20.64K	-0.44%

2. Xử lý và làm sạch dữ liệu

Thông tin dữ liệu

Xử lý null

Kết quả

0	Date	3150	non-null	object
1	Close	3150	non-null	object
2	0pen	3150	non-null	object
3	High	3150	non-null	object
4	Low	3150	non-null	object
5	Volume	3147	non-null	object
6	Change	3150	non-null	object
7	Silver_Close	3150	non-null	float64
8	Silver_Volume	3094	non-null	object
9	Silver_Change	3150	non-null	object
10	VNI_Close	3021	non-null	object
11	VNI_Volume	3021	non-null	object
12	VNI_Change	3021	non-null	object
13	EGO_Closing	3069	non-null	float64
14	EGO_Volume	3069	non-null	object
15	EGO_Change	3069	non-null	object
16	USD_VND_Rate	3107	non-null	object
17	USD_VND_Change	3107	non-null	object
18	USO_Close	3070	non-null	float64
19	USO_Volume	3069	non-null	object
39	DJ_Volume	3069	non-null	object
40	DJ_Change	3069	non-null	object

```
Silver Volume
                       56 Platin_Volume
                                               2447
Silver Change
                        0 Platin Change
VNI Close
                          Hseng_Close
                                                147
VNI_Volume
                          Hseng Volume
                                                152
VNI Change
                         Hseng Change
                                                147
EGO Closing
                       81 Nikkei Close
EGO_Volume
                       81 Nikkei_Volume
                                                194
EGO_Change
                       81 Nikkei Change
USD_VND_Rate
                       43 Dax Close
USD VND Change
                       43 Dax Volume
USO Close
                       80 Dax_Change
USO Volume
                       81 SP Close
                                                81
USO Change
                       80 SP_Change
```

- Xóa cột Platin_volume do dữ liệu bị null nhiều
- Forward fill hay backward fill các tệp dữ liệu null còn lại

2. Xử lý và làm sạch dữ liệu

Bộ dữ liệu cuối cùng

0	Date	3149 non-null	datetime64[ns]
1	Close	3149 non-null	float64
2	0pen	3149 non-null	float64
3	High	3149 non-null	float64
4	Low	3149 non-null	float64
5	Volume	3149 non-null	float64
6	Change	3149 non-null	float64
7	Silver_Close	3149 non-null	float64
8	Silver_Volume	3149 non-null	float64
9	Silver_Change	3149 non-null	float64
10	VNI_Close	3149 non-null	float64
11	VNI_Volume	3149 non-null	float64
12	VNI_Change	3149 non-null	float64
13	EGO_Closing	3149 non-null	float64
14	EGO_Volume	3149 non-null	float64
15	EGO_Change	3149 non-null	float64
16	USD_VND_Rate	3149 non-null	float64
17	USD_VND_Change	3149 non-null	float64
18	USO_Close	3149 non-null	float64
19	USO_Volume	3149 non-null	float64
38	DJ_Volume	3149 non-null	float64
39	DJ_Change	3149 non-null	float64

- Chuyển đổi dữ liệu chứa
 K,M,B về dạng số
- Sắp xếp thứ tự ngày tháng năm theo thứ tự tăng dần

Chuyển đổi cột Date

sang dang datatime

- Chuyển tỷ lệ % sang dạng số
- Chuyển các cột dữ liệu số thành dạng "float64"

Data đã sạch, không còn dữ liệu bị thiếu và null

Mô tả dữ liệu

	Date	Close	Open	High	Low	Volume	Change
count	3150	3,150.00	3,150.00	3,150.00	3,150.00	3,149.00	3,150.00
mean	2018-04-03 04:15:05.142857216	1,531.30	1,531.49	1,542.08	1,520.31	207,545.75	0.02
min	2012-01-03 00:00:00	1,049.60	1,051.50	1,062.70	1,045.40	390.00	-9.34
25%	2015-02-18 06:00:00	1,264.80	1,265.20	1,272.80	1,256.83	145,490.00	-0.45
50%	2018-04-04 12:00:00	1,437.20	1,448.00	1,459.70	1,423.85	188,890.00	0.02
75%	2021-05-18 18:00:00	1,791.15	1,790.97	1,802.68	1,780.07	247,720.00	0.53
max	2024-07-03 00:00:00	2,449.50	2,442.30	2,464.50	2,425.60	816,530.00	5.95
std	NaN	310.74	310.68	313.22	308.07	90,350.38	0.98

GIAI ĐOẠN 2012-2024

Giá vàng:	USD
 Cao nhất (25/05/2024) 	2449.5
 Thấp nhất (17/12/2015) 	1049.6
 Đa số 	1791.15
Khối lượng giao dịch:	Contract
 Cao nhất (09/11/2015) 	816,530
 Thấp nhất (18/06/2024) 	390
Trung bình	207.545
Tỷ lệ tăng/giảm trong ngày	%
 Tăng mạnh nhất 	5.95
 Giảm mạnh nhất 	9.34

Giá vàng dao động nhiều nhất và ít nhất ở vùng giá nào?

Biểu đồ chuyển động của giá vàng qua các năm

Kiểm tra tương quan giữa các biến với giá vàng

- * Các chỉ số SP, Silver, Nikkei, VNI, Dax,USD_VND, Hengseng có tỷ lệ tương quan với giá vàng khá nhiều (>35%)
- * Các chỉ số USO, Brient_Oil,... có độ tương quan thấp
- => Xóa bớt các cột có độ tương quan nhỏ hơn 35%

Bảng hệ số tương quan của các biến

Close	1.00
Low	1.00
High	1.00
Open	1.00
SP_Close	0.74
Silver_Close	0.71
DJ_Close	0.70
Date	0.65
Nikkei_Close	0.61
VNI_Close	0.58
Dax_Close	0.57
USD_VND_Rate	0.51
DJ_Volume	0.44
Nikkei_Volume	0.44
Hseng_Close	0.41
Hseng_Volume	0.32
USO_Close	0.30
Brient_Oil_Close	0.25
EGO_Volume	0.21
USO_Volume	0.18
Dax_Volume	0.15
Silver_Volume	0.07
Brient_Oil_Volume	0.05

4. Lựa chọn và huấn luyện mô hình

MÔ HÌNH LỰA CHON

- Linear Regression
- DecisionTree Regression, XGBRegresion, RandomForest Regression
- ARIMA (Autoregressive Intergrated Moving Average)
- LSTM (Long Short Term Memory networks)

DecisionTree Regression, XGBRegresion, RandomForest Regression

QUY TRÌNH HUẨN LUYỆN

- Standard Scaler (sklearn.preprocessing)
- Train, Test Split (sklearn.model_selection)
- Sử dụng GridSearchCV để train các mô hình (sklearn.model_selection)
- Huẩn luyện mô hình
- Độ tin cậy và độ lệch chuẩn

```
find best model(X1, y1):
algos = {
     'decision tree': {
         'model': DecisionTreeRegressor(),
         'param': {
             'criterion': ['mse', 'friedman_mse'],
            'splitter': ['best', 'random']}},
     'random forest': {
         'model': RandomForestRegressor(),
             'n estimators': [10, 50, 100, 130],
            'criterion': ['squared_error', 'absolute_error', 'friedman_mse', 'poisson'],
             'max depth': range(2, 4, 1),
             'max_features': ['auto', 'log2']}},
     'xgb regressor': {
         model': XGBRegressor(),
             'learning_rate': [0.5, 0.1, 0.01, 0.001],
             'max_depth': [2, 3],
             'n estimators': [10, 50, 100, 200]}}}
scores = []
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=20)
for algo name, config in algos.items():
    gs = GridSearchCV(config['model'], config['param'], cv=cv, return_train_score=False)
    gs.fit(X1, y1)
    scores.append({
         'model': algo name,
        'best score': gs.best score ,
         'best params': gs.best params
return pd.DataFrame(scores, columns=['model', 'best score', 'best params'])
```

DecisionTree Regression, XGBRegresion, RandomForest Regression

KÉT QUẢ

	model	best_score	best_params
0	decision_tree	0.99	{'criterion': 'friedman_mse', 'splitter': 'best'}
1	random_forest	0.92	{'criterion': 'friedman_mse', 'max_depth': 3, 'max_features': 'log2', 'n_estimators': 130}
2	xgb_regressor	0.99	{'learning_rate': 0.5, 'max_depth': 3, 'n_estimators': 200}

Linear Regression

KÉT QUẢ

R2_score của mô hình Linear Regreesion > 90% => Mô hình đang bị overfitting

Các thành phần của chuỗi thời gian

• Trend (Xu hướng):

- 1.Trong năm 2013 đến 2016 có sự tụt giảm nhẹ. bắt đầu từ năm 2016 đến 2019 xu hướng tăng nhẹ qua thời gian.
- 2.Các năm 2019-2022 có sự tăng mạnh.

• Seasonal (Mùa vụ):

Xu hướng mùa vụ biến động đều đặn qua các năm

Resid (Nhiễu trắng) (Hay gọi là yếu tố bất thường)

Hoạt động tốt

LOGARITHM

Giảm Biến Động và Biến Đổi Không Tuyến Tính Đảm Bảo Tính Bình Ôn (Stationarity) và ảnh hưởng yếu tổ ngoại lai

df3['Close'] = np.log(df3['Close'])

TRAIN, TEST

Train: 80% giá trị đầu tiên của dataset

Test: 20% giá trị còn lại

train = df3['Close'][: int(len(df3)*0.8)]
test = df3['Close'][int(len(df3)*0.8):]

STATIONARY

Sử dụng kiểm định Dickey và Fuller mở rộng (ADF) -> Hàm adfuller

Không dừng

ACF Plot and PCAF Plot

Check p_value

TRANSFORM TO STATIONARY: DIFFERENCING

Biểu đồ phần dư trên trục đầu tiên

Check p_value

```
from statsmodels.tsa.stattools import adfuller
    adf_test_diff = adfuller(df3_train_diff)
    p_value = adf_test_diff[1]
    print(f'p-value: {p_value}')

    if adf_test_diff[1] < 0.05:
        print("Reject the null hypothesis. The differenced time series is stationary.")
    else:
        print("Fail to reject the null hypothesis. The differenced time series is non-stationary.")

        v 0.1s

p-value: 0.0
Reject the null hypothesis. The differenced time series is stationary.</pre>
```

ACF Plot and PCAF Plot

Fit the ARIMA model

SARIMAX Results									
Dep. Variable: Close No. Observations: 2519									
Model:		ARIMA(1, 1,	0) I	og	Likelihood		8040.815		
Date:	5	un, 07 Jul 2	024 <i>l</i>	ΝIC			-16077.631		
Time:		07:46	:36 E	3IC			-16065.968		
Sample:			0 I	łQIC			-16073.398		
		- 2	519						
Covariance	Type:		opg						
	 coef 	std err		Z	======== P> z 	[0.025	0.975]		
ar.L1	-0.0413	0.015	-2.7	744	0.006	-0.071	-0.012		
sigma2	9.858e-05	1.39e-06	70.9	961	0.000	9.59e-05	0.000		
======= Ljung-Box (======= (L1) (Q):	========	 0.0	====)0	======== Jarque-Bera	======= (ЈВ):	6771 . 9	== 98	
Prob(Q):			0.9	9	9 Prob(JB):		0.0	90	
Heteroskedasticity (H):			0.8	32	Skew:	-0.5		58	
Prob(H) (two-sided):			0.6	90	Kurtosis:		10.9	95	
========	=======================================								

TRAIN MODEL

Biến phụ thuộc Close Số lượng quan sát 2519 Model ARIMA (1,1,0)

Residual

Mẫu hình của phần dư

Phân phối của phần dư

Ghi chú:

- Phần dư không có mẫu hình rõ ràng, điều đó cho thấy mô hình có thể phù hợp với dữ liệu.
- Phần dư phân phối chuẩn đều đặn xung quanh giá trị trung bình là 0.

Dự báo không theo kịp các biến động thực tế của dữ liệu kiểm tra.

Hiệu suất của mô hình kiểm tra rõ ràng là không tốt, vì mô hình không dự báo được các biến động và xu hướng trong dữ liệu thực tế. => Mô hình tăng dần theo diễn biến kinh tế ngoài thị trường.

- MAPE là 0.081, tương đương với 8.1%. Điều này cho thấy rằng, trung bình, mô hình dự báo với sai số khoảng 8.1% so với giá trị thực tế
- MAE là 167.98, dự báo của mô hình sai lệch khoảng 167.98 USD so với giá trị thực tế
- RMSE là 225.36, đại diện cho độ lệch chuẩn của lỗi dự báo.

Mô hình LSTM

Train & test (80:20)

Xây dựng mô hình

```
# Tạo vòng lặp các giá trị
X2_train, y2_train = [],[]
for i in range (50,len(train)):
    X2_train.append(data[i-50:i,0])
    y2_train.append(data[i,0])

print(len(X2_train)) #2096 - 50 dòng
print(len(y2_train))

# Xếp dũ liệu thành 1 mảng:
X2_train = np.array(X2_train)
y2_train = np.array(y2_train)

# Xếp lại dữ liệu thành mảng 1 chiều:
X2_train = np.reshape(X2_train, (X2_train.shape[0], X2_train.shape[1],1))
y2_train = np.reshape(y2_train, (y2_train.shape[0],1))
```

```
# Xây dựng mô hình:
model = Sequential()
model.add(LSTM(units=120, input_shape = (X2_train.shape[1],1),return_sequences=True))
model.add(LSTM(units=64))
model.add(Dropout(0.5))
model.add(Dense(1))
model.compile(loss='mean_absolute_error',optimizer = 'adam')
```

Mô hình LSTM

Huấn luyện mô hình

Tập train

Tập test

```
# Huấn luyện mô hình:
# Define the checkpoint
save_model = 'save_model.keras'
best_model = ModelCheckpoint(save_model, monitor='loss', verbose=2, save_best_only=True, mode='auto')

# Fit the model
model.fit(X2_train, y2_train, epochs=100, batch_size=50, verbose=2, callbacks=[best_model])

# dữ liệu train
y2_train = ss.inverse_transform(y2_train) #=> Quy lại giá trị y_train giá ban đầu , convert to the original value final_model = load_model('save_model.keras')
y_train_pred = final_model.predict(X2_train)
y_train_pred = ss.inverse_transform(y_train_pred)
len(y_train_pred)
```

Mô hình LSTM

- Mô hình LSMT dự đoán khá tốt so với mô hình ARIMA
- MAPE là 0.7%, tỷ lệ chênh lệnh khá nhỏ giữa giá dự đoán và giá thực tế.
- R2_square cao do mô hình học tốt trong 50 ngày trước và dự báo tốt cho ngày tiếp theo.

Mean_absolute_percentage_error là 0.0071409052105087835 Mean_absolute_error là 13.981750604538693 Mean_squared_error là 18.436004203991832 R2_square là 0.989491184432478

Thank for listening

Chau Nguyen

Final Project DA54 _ Khóa 3 "Data Analyst

