Задача 1. Сравнение элементов

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Дан массив из N чисел: $b_1, b_2, ..., b_N$.

Требуется для каждого элемента массива b_i посчитать количество элементов b_j , стоящих правее (i < j), но меньших него $(b_i > b_j)$.

Формат входных данных

В первой строке записано целое число N ($1 \le N \le 100$).

Во второй строке через пробел записано N целых положительных чисел — значения элементов массива. Гарантируется, что значения элементов не превосходят 100.

Формат выходных данных

Выведите N целых чисел через пробел: по порядку для каждого элемента входного массива выведите количество элементов, удовлетворяющих описанному выше условию.

Примеры

input.txt	output.txt
5	3 2 2 0 0
4 3 5 1 2	
3	2 1 0
3 2 1	
4	0 0 0 0
1 2 3 3	

Пояснение к примеру

В первом примере:

- Правее числа 4 стоят числа 3, 5, 1 и 2, три из которых имеют значение меньше 4.
- Правее числа 3 стоят числа 5, 1 и 2, два из которых имеют значение меньше 3.
- Правее числа 5 стоят числа 1 и 2, два из которых имеют значение меньше 5.
- Для чисел 1 и 2 справа нет чисел, имеющих значение меньше.

Задача 2. Суммы k-ых

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Дан массив из N чисел $a_1, a_2, ..., a_N$.

Требуется вывести N чисел t_k ($k=1,\ldots,N$), где t_k — сумма элементов массива с шагом k:

$$t_k = \sum_{j=1}^{N/k} a_{j \cdot k}$$

Т.е. t_1 равняется сумме всех элементов массива, t_2 равняется сумме каждого второго элемента массива, t_3 равняется сумме каждого третьего элемента и т.д.

Формат входных данных

В первой строке записано целое число N ($1 \le N \le 10^5$).

Во второй строке через пробел записано N целых чисел a_i ($1 \le a_i \le 10^4$).

Формат выходных данных

Выведите N строк: в k-й строке выведите значение t_k .

Пример

input.txt	output.txt
6	24
4 3 5 1 2 9	13
	14
	1
	2
	9

Пояснение к примеру

$$t_1 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 4 + 3 + 5 + 1 + 2 + 9 = 24$$

$$t_2 = a_2 + a_4 + a_6 = 3 + 1 + 9 = 13$$

$$t_3 = a_3 + a_6 = 5 + 9 = 14$$

$$t_4 = a_4 = 1$$

$$t_5 = a_5 = 2$$

$$t_6 = a_6 = 9$$

Задача 3. Гистограмма

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Дан массив из N чисел $a_0, a_1, ..., a_{N-1}$.

Постройте гистограмму значений элементов массива: для каждого значения подсчитайте сколько раз оно встречается в массиве.

Формат входных данных

В первой строке записано целое число $N\ (1\leqslant N\leqslant 10^5).$

Во второй строке через пробел записано N целых чисел a_i ($1 \le a_i \le 10^4$).

Формат выходных данных

Для каждого значения, которое встречается в массиве хотя бы раз, выведите сколько раз оно присутствует среди элементов массива в формате: "значение: количество".

Значения требуется выводить в порядке возрастания.

Для вывода двух целых чисел, разделённых двоеточием с пробелом, удобно использовать функцию printf со следующей форматной строкой:

input.txt	output.txt
10	1: 2
3 4 5 10 3 4 10 1 1 3	3: 3
	4: 2
	5: 1
	10: 2

Императивное программирование Контест 3,

Задача 4. Сумма

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Дан массив из N чисел $a_0, a_1, ..., a_{N-1}$.

Требуется найти два индекса L и R ($L \leqslant R$) таких, что сумма $a_L + a_{L+1} + \ldots + a_{R-1} + a_R$ будет максимальной.

Формат входных данных

В первой строке записано целое число N ($1 \le N \le 5000$).

Во второй строке через пробел записано N целых чисел, каждое из которых по модулю не превосходит $10\,000$.

Формат выходных данных

Выведите три целых числа через пробел: L, R и сумму элементов с индексами от L до R. Если существует несколько вариантов выбрать такие L и R, что сумма элементов будет максимальной, то требуется вывести вариант с минимальным L. Если сущесвует несколько с минимальным L, то среди таких требуется выбрать вариант с минимальным R.

input.txt	output.txt
3	0 2 6
1 2 3	
5	2 4 12
1 -2 3 4 5	
4	0 0 2
2 -2 1 1	

Задача 5. Функция

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Пусть P — множество целых чисел от 1 до N. Задано отношение R на множестве $P \times P$. Отношение задаётся списком принадлежащих ему элементов: множеством пар $(x,y) \in P \times P$. Для заданного отношения R требуется определить:

- 1. Является ли R функцией: $\forall x \in P$: $(x,u) \in R$ и $(x,v) \in R \Rightarrow u = v$ отсутствует многозначность.
- 2. Является ли R всюду определённой функцией: R является функцией и $\forall x \in N \; \exists \; y \mid (x,y) \in R$ значение определено на всём множестве P.
- 3. Является ли R инъективной функцией: R является функцией и $(x,u) \in R$ и $(y,u) \in R$ $\Rightarrow x = y$.
- 4. Является ли R сюръективной функцией: R является функцией и $\forall u \in N \; \exists \; x \; | \; (x,u) \in R$.
- 5. Является ли R биективной функцией: функция R и инъективна, и сюръективна.

Формат входных данных

Первая строка входного файла содержит два целых числа N и M, записанных через пробел — размер множества ($1 \le N \le 300$) и количество пар ($1 \le M \le N^2$).

В следующих M строках записано по два целых числа x и y $(1 \leqslant x, y \leqslant N)$ — элементы отношения R. Гарантируется, что все пары различны.

Формат выходных данных

Если отношение R не удовлетворяет ни одному из описанных свойств (то есть не является функцией), то выведите число 0.

В противном случае выведите через пробел в порякде увеличения номера свойств, которыми обладает отношение R.

input.txt	output.txt
3 5	0
1 2	
3 3	
1 3	
1 1	
2 1	
5 2	1
1 3	
2 3	
5 2	1 3
1 3	
2 5	
3 3	1 2 3 4 5
1 1	
2 3	
3 2	

Задача 6. Разница множеств

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Дано два массива целых чисел A и B.

Требуется найти все такие значения элементов массива A, которых нет среди элементов массива B.

Формат входных данных

В первой строке записано целое число N ($1 \le N \le 10^5$) — количество элементов массива A. Во второй строке через пробел записано N неотрицательных целых чисел, каждое из которых не превосходит 10^5 — элементы массива A.

В следующих двух строках в аналогичном формате записаны элементы массива B.

Формат выходных данных

В первой строке выведите одно целое число — количество значений, удовлетворяющих описанному условию.

Во второй строке выведите все такие значения в порядке возрастания.

input.txt	output.txt
7	3
1 2 3 3 6 8 8	2 6 8
4	
1 3 7 9	
3	0
1 2 3	
3	
3 2 1	

Императивное программирование Контест 3,

Задача 7. Навести порядок

Источник: повышенной сложности*

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Дан массив, состоящий из N целых чисел.

Требуется вывести эти N чисел в выходной файл, но в строго определённом порядке. Каждое следующее выведенное число должно быть больше предыдущего или равно ему.

Формат входных данных

В первой строке записано целое число N ($1 \le N \le 10^4$) — количество элементов массива. Во второй строке через пробел записано N целых чисел, каждое из которых по модулю не превосходит 10^5 .

Формат выходных данных

В единственной строке выведите все N элементов массива через пробел в указанном порядке.

input.txt	output.txt
5	1 3 3 4 5
1 4 3 5 3	

Императивное программирование Контест 3,

Задача 8. Системы счисления

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Дано число N в p-ичной системе счисления.

Требуется выполнить перевод числа N в q-ичную систему счисления.

Формат входных данных

В первой строке через пробел записаны три числа p, q и N ($2 \le p, q \le 36$). Гарантируется, что значение числа N в десятичной системе счисления не превосходит 10^9 .

Для записи цифр, значения которых в десятичной системе счисления имеют значения от 10 до 36, используются строчные латинские буквы 'a', 'b', . . . , 'z'.

Формат выходных данных

Выведите число N в q-ичной системе счисления.

input.txt	output.txt
2 16 101010	2a
7 20 22	g
20 7 g	22

Задача 9. Буквы алфавита

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Вам дана строка, состоящая из строчных букв латинского алфавита. Все буквы в ней различны.

Требуется переставить буквы данной строки так, чтобы получившаяся строка была лексикографически больше исходной.

Поскольку в данной постановке задача слишком простая и может иметь не единственное решение, то вам требуется среди всех таких строк выбрать лексикографически минимальную.

Строка s, состоящая из символов s_0, s_1, \ldots, s_n , считается лексикографически меньше строки t, состоящей из символов t_0, t_1, \ldots, t_n , если сущесвует индекс k такой, что:

- $s_i = t_i$ для всех $i = 0, 1, \dots, k-1$;
- $s_k < t_k$.

Иными словами, лексикографическое сравнение строк - это привычное нам сравнение слов "по алфавиту", когда мы находим первую букву, в которой две строки различаются, и на основании этой буквы делалем вывод о том, какое из слов "меньше". Лексикографическое сравнение окружает нас повсюду: его можно найти в порядке людей в списках групп, в порядке номеров в телефонной книге, и т.д.

Формат входных данных

В первой строке записано целое число N ($2 \le N \le 26$) — количество символов в строке. Во второй строке через пробел записано N строчных букв латинского алфавита. Гарантируется, что все буквы различны.

Формат выходных данных

Выведите через пробел символы требуемой строки.

Гарантируется, что требуемая перестановка существует.

input.txt	output.txt
5	a b c e d
a b c d e	
3	wqz
q z w	

Задача 10. Шоколадная палочка Фрикс

Источник: космической сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Мухи любят уединение. А ещё они очень любят шоколад, в особенности шоколадные палочки от известной фирмы "Фрикс". Когда новая муха хочет сесть на палочку, она старается выбрать себе место подальше от остальных мух, сидящих на ней.

Представим шоколадную палочку в виде отрезка [0, L] на координатной прямой. Будем считать, что каждая сидящая на палочке муха занимает некоторый интервал длины W. В любой момент времени все интервалы, занимаемые мухами, не пересекаются и не выходят за пределы палочки.

Допустим, на палочке уже сидит некоторое количество мух, и хочет сесть ещё одна. Если на палочке нет подходящего свободного места, то муха улетает. В противном случае она садится таким образом, чтобы расстояние от неё до других мух и концов палочки было наибольшим.

Формально говоря, место, на которое садится новая муха, определяется следующим образом. Пусть Y — множество, равное объединению всех интервалов, на которых уже сидят мухи, и концевых точек палочки $\{0,L\}$. Интервал, который занимает вновь прилетевшая муха, таков, что расстояние от его центра до множества Y максимально. Если на палочке есть несколько таких точек, то в качестве центра из них выбирается точка с минимальной координатой.

Изначально нужно разместить на палочке ровно N мух. Далее к палочке по одному будут подлетать мухи и садиться на неё по вышеописанным правилам. Это будет продолжаться до тех пор, пока на палочке не закончится свободное место.

В задаче требуется найти два варианта изначальной рассадки мух. В первом варианте окончательное количество сидящих на палочке должно быть минимально возможным, в во втором — максимально возможным.

Формат входных данных

В первой строке входного файла задано два целых числа N и W ($1 \le N \le 100\,000$, $1 \le W \le 10^9$). Во второй строке записано целое число L ($1 \le L \le 10^{17}$).

Гарантируется, что можно разместить N мух на палочке.

Формат выходных данных

В первую строку выходного файла нужно вывести два целых числа — минимально возможное количество уместившихся на палочке и максимально возможное количество. Далее необходимо вывести два варианта рассадки — рассадку, при которой достигается минимальное количество, а затем рассадку, при которой количество мух максимально.

Каждая рассадка должна занимать N строк, по одному числу в каждой. Каждое число — это координата центра интервала, занимаемого мухой. Все числа в одной рассадке должны идти в порядке возрастания. Разрешается выводить вещественные числа, но не более чем с 9-ю десятичными знаками после запятой. Гарантируется, что существуют оптимальные рассадки, которые можно представить таким образом.

Пример

input.txt	output.txt
3 2	3 6
13	2.75
	6.5
	10.25
	3
	8.0
	12.00

Комментарий

На картинке изображены обе рассадки из примера.

В минимальной рассадке на палочке есть четыре свободных отрезка, однако все они имеют длину 1.75, поэтому сесть больше никто не может.

В максимальной рассадке сначала сидят три мухи. Потом подлетают ещё три, их места обозначены буквами ${\bf A}(5.5),\,{\bf B}(1),\,{\bf C}(10)$ в порядке их появления.