Factor Timing with Portfolio Characteristics

Anastasios Kagkadis, Ingmar Nolte, Sandra Nolte

The Review of Asset Pricing Studies, 2023

Interpreter: Weihao Zhao

School of Economics and management WHU

2024-11-06

What is portfolio charateristics?

Example:

- Assuming a L-S portfolio based on BM factor is constructed;
- Average MoM: Calculating average stocks momentum;
- High Avg MoM: in the past period, value stocks have performed well and shown an upward trend;

Research Question

- 1. Can portfolio charaterstics of factor portfolios predict stock returns?
- 2. Will portfolio characteristics improve the predictive performance of portfolio returns?

Why doing Factor Timing

- 1. Factor investment being mainstream in portfolio managing:
- Performance of factor portfolios fluctuates over time(Akbas 2016)
- Existing static strategies ignore temporal variability of returns;
- 2. How to capture temporal variability of returns?
- Expanding firm charaterisitics to portfolio charateristics;
- The existing approach has limitations:

Single to single, single to many, many to single.

Contribution

1. Literature exploring factor portfolio predictability

Prior: Factor momentum adapts to factor timing by comparing the relative performance of time and cross-sectional dimensions.(Gupta 2019)

• Using several indicators to predict MoM factor returns.(Daniel 2016)

Extension: Predict multi-factor rets using multi-portfolio charateristics;

Charateristics-based forecasts result in higher returns.

Contribution

2. Literature on Dimension Reduction in Asset Pricing

Prior: Using Lasso to filter charateristics (sparse model); (Gu et al. 2020, DeMiguel et al. 2020, and Feng et al. 2020)

• For diverse charateristic space, forcing the use of sparse model may affect prediction performance. (Kozak et al. 2020)

Extension: Extract characteristic PCs using PCA;

- Several dimensionality reduction steps in prediction process;
- Using lasso on characteristic PCs, balancing simplicity/accuracy.

Hypotheses

- 1. Portfolio charaterstics effectively predict factor returns.
- Different characteristics offer signals for different factor protfolios.
- Portfolio charateristics reflect the temporal variability of factors.
- 2. Dimensionality reduction effectively extract return information.
- PCA, PLS, Lasso: Focusing on a few important characteristics.

Modeling procedure

Charateristics model outperforms others

	Average return (%)			Standard deviation (%)			Sharpe ratio		
	LSS	TSFM	CSFM	LSS	TSFM	CSFM	LSS	TSFM	CSFM
A. Single factor									
PCA	-0.10	-0.03	-0.01	7.23	4.14	4.09	-0.01	-0.01	-0.00
PCA-PLS	1.16	0.74	0.76	8.57	5.27	5.25	0.13	0.14	0.14
RPPCA	0.20	0.20	0.21	5.64	3.11	3.15	0.03	0.06	0.07
RPPCA-PLS	1.12	0.73	0.74	8.28	4.81	4.81	0.13	0.15	0.15
B. Time-varying number of factors using lasso									
PCA	1.47	0.97	0.95	8.16	5.01	4.96	0.18	0.19	0.19
PCA-PLS	1.38	0.96	0.97	8.22	4.99	4.98	0.17	0.19	0.19
RPPCA	1.21	0.84	0.83	7.06	4.01	4.00	0.17	0.21	0.21
RPPCA-PLS	1.23	0.84	0.86	6.89	4.04	4.09	0.18	0.21	0.21
C. Benchmark models									
1mMOM	1.06	0.56	0.58	8.81	4.95	4.96	0.12	0.11	0.12
12mMOM	0.84	0.67	0.67	8.69	5.08	5.12	0.10	0.13	0.13
PCA-BM	0.79	0.59	0.61	6.16	3.79	3.79	0.13	0.16	0.16
IR spread	0.87	0.54	0.54	6.49	3.92	3.92	0.13	0.14	0.14
Sentiment	0.74	0.47	0.46	5.29	3.13	3.22	0.14	0.15	0.14
Historical sample mean	0.48	0.35	0.35	3.47	2.59	2.61	0.14	0.14	0.13

Conclusion

- 1. New framework for portfolio-charateristics-based prediction
- Explored impact of characteristic information on factor portfolios.
- 2. Reducing variables through dimensionality reduction
- Better in capturing key sources of changes in factor portfolio returns.
- 3. Dynamically adjusting portfolios is more effective than static investments

The Challenge of Factor Timing

Transaction costs:

Frequent portfolio adjustments can result in transaction costs, which may erode the potential returns of factor timing strategies.

Potential issues with multiple dimensionality reductions:

- 1). Information loss
- 2). Insufficient interpretability