

# <u>C</u>onsequences

#### Module 5:

Brielle K Thompson & Michael E Colvin

Workshop: An overview of Structured Decision Making for natural resources, Midwest Fish and Wildlife Conference 2025, St. Louis, MO

Modified from: Fundamentals of Structured Decision Making TWS Conference Workshop 2023 & an Overview of Structured Decision-Making Washington Department of Fish and Wildlife 2022-2023



Source: Jean Fitts Cochrane





#### The role of science in structured decisions

- Science allows us to make predictions about how the world works
- We call the tools we use to make predictions *models*
- Models can take many different forms, but all must support us in making predictions
  - If we choose alternative X, what will the effect be on objective Y?







# The consequences step

- Consequences link objectives and alternatives
- Models (in SDM) are tools that help us predict consequences
- Need not be complex in all cases
  - Will I make an 8:30 meeting if I leave home at 7:45?
    - The model is my experience
    - Or the model is Google maps







# Simple example – set up

- I need to arrange a flight
- My objectives are:
  - Minimize price
  - Minimize flight duration
  - Minimize number of stops
  - Arrive before noon
  - Maximize quality of service
- I need to make predictions about each of these objectives
- Source of predictions:
  - Google flights: price, flight time, number of stops, and arrival time
  - TripAdvisor: airline service ratings







# Simple example – consequences

| Objectives         | Atteibuta       | Desired   | Alternatives |   |   |  |  |
|--------------------|-----------------|-----------|--------------|---|---|--|--|
| Objectives         | Attribute       | Direction | 1            | 2 | 3 |  |  |
| Price              | Cost            | Ţ         |              |   |   |  |  |
| Flight time        | Duration        | Ţ         |              |   |   |  |  |
|                    | Number of stops | <b>↓</b>  |              |   |   |  |  |
| Arrive before noon | Arrival time    | threshold |              |   |   |  |  |
| Service            | Service rating: | <b>1</b>  |              |   |   |  |  |
|                    | 1-5             | •         |              |   |   |  |  |
|                    | (# of raters)   |           |              |   |   |  |  |





# Simple example – consequences

| Ohioativas         | 1                      | Desired   | Alternatives |           |            |  |  |
|--------------------|------------------------|-----------|--------------|-----------|------------|--|--|
| Objectives         | Attribute              | Direction | 1            | 2         | 3          |  |  |
| Price              | Cost                   | <b>↓</b>  | \$558        | \$251     | \$391      |  |  |
| Flight time        | Duration               | <b>↓</b>  | 3h 40m       | 5h        | 5h 47m     |  |  |
|                    | Number of stops        | •         | nonstop      | 1         | 1          |  |  |
| Arrive before noon | Arrival time           | threshold | 11:11am      | 4:40pm    | 10:57am    |  |  |
| Service            | Service rating:<br>1-5 | 1         | 2<br>(2121   | 2<br>(233 | 3<br>(1875 |  |  |
|                    | (# of raters)          |           | raters)      | raters)   | raters)    |  |  |





#### Some Principles of Modeling in SDM

#### Models should

- Include 'hard data' (e.g., total cost) and subjective assessment (e.g., airline service) as appropriate
- Make the most of available information, including expert judgment
- 3. Report appropriate level of precision
- 4. Incorporate relevant uncertainty (e.g., structural, parametric uncertainty)





# Some Principles of Modeling in SDM

In designing a model, the important questions to ask are...

- What will help me make better predictions?
  - Ecological understanding is not the focus unless it improves prediction
    - As simple as possible but not simpler; as complicated as necessary but not more.
- What are the pertinent model variables?
  - Model inputs are essentially the alternatives
  - Model outputs are essentially the objectives
- What uncertainty needs to be included?
  - Focus on uncertainty that affects the decision
    - First model prototype often does not include uncertainty





#### Influence Diagrams

• Start with an influence diagram to develop a common understanding of the basic components of a model and the relationships between them

#### Influence diagram:

- Directed Acyclic Graph (DAG)
- Conceptually link the actions to objectives
- Distinguish between relationships that can and cannot be controlled
- Begin with objectives and move towards alternatives



Example: Crane Nest Failure

- Actions (rectangles)
- Stochastic factors (ovals)
- Intermediate factors (rounded rectangles)
- Objectives (hexagons)





University of Missouri

# Example: Black Rail



Stantial et al. *Unpublished manuscript*See Stantial et al. 2023

\*BLRA prototype





# Example: Black Rail Bayesian Decision Network



Stantial et al. *Unpublished manuscript* 





# Modeling step

- A variety of models can be used to generate consequences (i.e. results)
- For example:
  - Population models (\*most common)
    - Discrete time population models
    - Integrated population models
    - Occupancy models
    - Etc!
  - Expert opinion/ expert elicitation



da Silveira Costa & dos Anjos 2019

 Conduct rapid prototyping: start simple, adjust, and build up





#### Consequence table

- After obtaining results, we can organize the outcomes
- Consequence tables = A convenient way to display predictions for multi-objective decisions
  - Matrix of predictions by objective and alternative
  - Can give us an overall sense of our alternatives
  - Facilitates solving multi-objective decisions

|             | Alternative 1 | Alternative 2 | ••• | Alternative n |
|-------------|---------------|---------------|-----|---------------|
| Objective 1 | prediction    | prediction    |     | prediction    |
| Objective 2 | prediction    | prediction    |     | prediction    |
|             |               |               |     |               |
| Objective m | prediction    | prediction    |     | prediction    |





# Example: consequence table

Gregory R and Long G. 2009. Using structured decision making to help implement a precautionary approach to endangered species management. Risk Analysis 29:518-532.

| Objective    | Attribute                        | Direction         | Statist | go press ru | Connings | cial Refrifts | Bereite | e Pairi       | R Pain? | Lilding Spead | the Pain 3 |
|--------------|----------------------------------|-------------------|---------|-------------|----------|---------------|---------|---------------|---------|---------------|------------|
| Conservation | % meeting Rec Plan Objective 1   | H %               | 73%     | 76%         | 82%      | 80%           | 72%     | 80%           | 84%     | 79%           | 81%        |
| Conservation | % meeting Rec Plan Objective 2   | H 2               | 32%     | 33%         | 33%      | 34%           |         | 35%           |         | 33%           | 34%        |
| Conservation | No of returns in 2010            | H # 000           | 6.3     | 7.8         | 12.5     | 8.7           | 6.5     | 8.6           | 13.2    | 8.0           | 8.9        |
| Conservation | No of returns in 2016-2019 (ave) | H # 000           | 16.9    | 24.3        | 47.7     | 31.1          | 16.8    | 30.1          | 53.8    | 28.7          | 35.7       |
| Conservation | Probability of extinction        | L z               | 2.4%    | 1.1%        | 0.0%     | 0.3%          | 3.4%    | 0.2%          | 0.0%    | 0.4%          | 0.2%       |
| Conservation | % Enhanced fish 2010             | L ż               | 27%     | 21%         | 56%      | 34%           | 26%     | 35%           | 52%     | 37%           | 46%        |
| Conservation | % Enhanced ave fish 2016-2019    | L 2               | 33%     | 29%         | 45%      | 41%           | 32%     | 42%           | 41%     | 45%           | 46%        |
| Costs        | Total Costs                      | L !Yr An Ave \$00 | \$ 171  | \$ 309      | \$ 588   | \$ 488        | \$ 171  | <b>\$</b> 523 | \$ 588  | \$ 328        | \$ 500     |
| Catch        | Total Downstream                 | H # 000           | 1,925   | 304         | 6,601    | 3,391         | 3,391   | 4,642         | 1,925   | 4,618         | 4,642      |
| Catch        | Total Upstream                   | H # 000           | 637     | 2,884       | 504      | 2,365         | 2,365   | 2,335         | 3,054   | 2,131         | 2,335      |
| Catch        | Total First Nations              | H # 000           | 777     | 739         | 769      | 796           | 796     | 768           | 797     | 768           | 768        |
| Jobs         | Total FTEs                       | H # FTEs          | 1.60    | 2.80        | 4.10     | 3.70          | 1.60    | 3.30          | 4.10    | 2.50          | 4.10       |



# Case study: (Runge et al. 2011)

See attachment of case study description (CaseStudyDescription.pdf)

#### **Exercise:** Consequences step

- Given the objectives you identified
- And given the alternatives generated
- Identify characteristics of the models we would want to build for this case study, including:
  - Inputs
  - Outputs
  - Model types
- Hint: Use an influence diagram
- Task: Create a consequence table (it is okay to make up answers!)





# 5 minute break!









- Objective 1: Be respectful of non-human life
  - Reflects a value that taking life (rainbow trout, an invasive species) should be purposeful and done with good intent
- Measurable attribute (constructed scale):
  - 10-point constructed scale considers the relative degree of respectfulness for the proposed end uses of fish taken
    - 0 = strong lack of respect for the lives of the fish taken
    - 10 = strong respect for the lives of the fish taken
- Model: expert elicitation
  - Representatives from three tribes scored the alternatives on this objective, integrating their cultural understanding

Who should predict consequences?





- Objective 2: Contribute to humpback chub recovery
  - Measurable attribute (natural scale):
    - Probability of the adult humpback chub population remaining above 6000 over the next 30 years
  - Model: Fish community dynamics
    - Dynamics modeled in the Colorado River (LCR) below Glen Canyon Dam with a Population Viability Analysis (three submodels)







- Objective 3: Minimize disturbance of wilderness experience as a result of non-native fish management in Grand Canyon NP wilderness
  - Measurable attribute (constructed scale):
    - Penalized user-days/year in the wilderness area during boat/helicopter trips for removal.
    - Staff size\*number of days\*penalty factors (for activities that result in greater disturbance)
  - Model: Nonnative fish population model
    - Included predictions of how many removal trips would be needed each year; multiply by the average staff size of a removal trip, the average length of a trip, and penalty factors





|                  | Alternative              | Respect Life | HBC Recovery | Wilderness<br>Disturbance | Cost     |
|------------------|--------------------------|--------------|--------------|---------------------------|----------|
|                  |                          | 0-10 scale   | P(N>6000)    | User-days                 | M\$/5-yr |
|                  |                          | Max          | Max          | Min                       | Min      |
|                  |                          |              |              |                           |          |
| Α                | No action                | 6.00         | 0.232        | 0                         | 0        |
| C <sub>2</sub>   | LCR removal (lethal)     | 6.33         | 0.343        | 5003                      | 3.17     |
| C <sub>3</sub>   | LCR removal (mix)        | 6.33         | 0.341        | 5037                      | 3.53     |
| C <sub>4</sub>   | LCR removal (live, boat) | 9.67         | 0.341        | 5003                      | 3.38     |
| C <sub>5</sub>   | LCR removal (live, heli) | 9.67         | 0.341        | 5154                      | 4.65     |
| $D_1$            | Removal curtain (lethal) | 8.00         | 0.532        | 6824                      | 3.47     |
| D <sub>2</sub>   | Removal curtain (mix)    | 6.33         | 0.532        | 6824                      | 3.98     |
| $D_3$            | Removal curtain (live)   | 9.67         | 0.532        | 6867                      | 4.36     |
| $J_1$            | Kitchen Sink I           | 1.67         | 0.555        | 6753                      | 3.43     |
| J <sub>1</sub> ' | Kitchen Sink I w/ stock  | 1.67         | 0.536        | 6777                      | 3.62     |
| $J_2$            | Kitchen Sink II          | 1.67         | 0.555        | 6793                      | 4.08     |
| J <sub>2</sub> ' | Kitchen Sink II w/ stock | 1.67         | 0.536        | 6818                      | 4.32     |
| K                | Zuni-Hopi-NPS            | 9.00         | 0.291        | 5400                      | 3.03     |

Runge MC, Bean E, Smith DR, Kokos S. 2011. Non-native fish control below Glen Canyon Dam—report from a structured decision-making project. U.S. Geological Survey Open-File Report 2011-1012, 74 p.



