

NPCI Cohort 4 Machine Learning Project

Adult Data Set

Presented By: Group 4

Bajjoori Chandu Mehlam Taheri Nalla Pavan Kumar Choudhury Raj Abhishek Maurya Ravi Jadam

27 October, 2022

Introduction

Problem Statement:

The objective of the dataset is to predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Characteristics:

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05- 01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	1403336

© Copyright, Talent

Approach

Step 1 Understanding the Dataset.

Step 2 Loading Libraries and Dataset.

Step 3 Descriptive Analysis.

Step 4 Exploratory Data Analysis

Step 5 Data Preprocessing.

Step 6 Data Modeling and Evaluation.

talent /sprint/s

Loading Libraries and Dataset.

The dataset contains the labels which we have to predict and the labels are discrete and binary. So the

problem we have is a Supervised Classification type.

```
1 # Import libraries
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import seaborn as sns
6
7 import warnings
8 warnings.filterwarnings('ignore')
1 # Importing dataset
2 dataset = pd.read_csv('/content/adult.csv')
```

```
1 dataset.info()
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 32561 entries, 0 to 32560
    Data columns (total 15 columns):
        Column
                        Non-Null Count Dtype
                        32561 non-null
     0
        age
                                       int64
        workclass
                        32561 non-null object
        fnlwgt
                        32561 non-null int64
        education
                        32561 non-null object
        education.num
                        32561 non-null int64
        marital.status 32561 non-null object
        occupation
                        32561 non-null object
        relationship
                        32561 non-null object
                        32561 non-null object
        race
                        32561 non-null object
        sex
        capital.gain
                        32561 non-null int64
        capital.loss
                        32561 non-null int64
     12 hours.per.week
                        32561 non-null int64
        native.country
                        32561 non-null object
        income
                        32561 non-null int64
    dtypes: int64(7), object(8)
    memory usage: 3.7+ MB
```


Descriptive Analysis

Checking for NULL values and values with '?'

[8]	1 # Check for nu 2 round((dataset	ll values .isnull().sum() /
	age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income dtype: object	0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

[9]	1 # Check for 2 round((datas	'?' in dataset et.isin(['?']).sum()
	age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income dtype: object	5.66 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Descriptive Analysis

Checking the counts of label (Income) categories.

```
[10] 1 # Checking the counts of label(income) categories
2 income = dataset['income'].value_counts(normalize=True)
3 round(income * 100, 3).astype('str') + ' %'

<=50K    75.919 %
>50K    24.081 %
Name: income, dtype: object
```

OBSERVATIONS:

- 1. Dataset does not have any NULL Values, but it contain missing values in form of '?'
- 2. The dataset is unbalanced, as the dependent feature 'income' contains 75.92% values have income less than 50k\$ and 24.08% have income more than 50k\$

Exploratory Data Analysis: Univariate Analysis

© Copyright, TalentSp

NSE talent

Exploratory Data Analysis: Univariate Analysis

Exploratory Data Analysis:

Multivariate Analysis

Creating a Pairplot of Dataset

Correlation Heatmap.

OBSERVATIONS:

- 0.1

- 0.0

-0.1

- -0.2

-0.4

--0.5

- In this dataset most no. of people are young, male, high school graduates with 9 to 10 years of education and work 40 hours per week.
- 2. From the correlation heatmap we can see that dependent feature 'income' is highly correlated with age, numbers of year of education, capital gain and no. of hours per week.

Data Preprocessing


```
1 dataset = dataset.replace('?', np.nan)
 1 # Checking null values
 2 round((dataset.isnull().sum() / dataset.shape[0]) * 100, 2).astype(str) + ' %'
                   0.0 %
age
workclass
                  5.64 %
fnlwgt
                   0.0 %
education
                   0.0 %
education.num
                   0.0 %
marital.status
                   0.0 %
                  5.66 %
occupation
relationship
                   0.0 %
                   0.0 %
race
                   0.0 %
sex
capital.gain
                   0.0 %
capital.loss
                   0.0 %
hours.per.week
                   0.0 %
native.country
                  1.79 %
income
                   0.0 %
dtype: object
 1 columns with nan = ['workclass', 'occupation', 'native.country']
 1 for col in columns with nan:
       dataset[col].fillna(dataset[col].mode()[0], inplace=True)
```

Fixing '?' values in the dataset.

Rechecking for NULL Values

Replacing NULL values with Mode value of the particular column.

© Copyright, TalentSpr

Data Preprocessing


```
1 for col in dataset.columns:
       if dataset[col].dtypes == 'object':
           encoder = LabelEncoder()
           dataset[col] = encoder.fit transform(dataset[col])
 1 dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
    Column
                     Non-Null Count Dtype
 0
    age
                     32561 non-null int64
    workclass
                    32561 non-null
                                   int64
    fnlwgt
                    32561 non-null int64
    education
                     32561 non-null int64
    education.num
                     32561 non-null int64
    marital.status
                    32561 non-null
                                    int64
    occupation
                     32561 non-null int64
    relationship
                     32561 non-null
                                    int64
                     32561 non-null int64
 8
     race
                     32561 non-null int64
 9
     sex
     capital.gain
                     32561 non-null
                                    int64
     capital.loss
                     32561 non-null int64
    hours.per.week
                    32561 non-null int64
    native.country
                    32561 non-null int64
    income
                     32561 non-null int64
dtypes: int64(15)
```

Label Encoding

Data Modelling


```
4.5: Decision Tree Classifier
      1 from sklearn.tree import DecisionTreeClassifier
      2 dec tree = DecisionTreeClassifier(random state=42)
      1 dec_tree.fit(X train, Y train)
     DecisionTreeClassifier(random state=42)
      1 Y pred dec tree = dec tree.predict(X test)
4.6: Random Forest Classifier
      1 from sklearn.ensemble import RandomForestClassifier
      2 ran for = RandomForestClassifier(random state=42)
      1 ran for.fit(X train, Y train)
     RandomForestClassifier(random state=42)
      1 Y pred ran for = ran for.predict(X test)
```

1 Y pred knn = knn.predict(X test)


```
1 print('Logistic Regression:')
2 print('Accuracy score:', round(accuracy_score(Y_test, Y_pred_log_reg) * 100, 2))
3 print('F1 score:', round(f1_score(Y_test, Y_pred_log_reg) * 100, 2))

Logistic Regression:
Accuracy score: 68.74
F1 score: 66.28

1 print('KNN Classifier:')
2 print('Accuracy score:', round(accuracy_score(Y_test, Y_pred_knn) * 100, 2))
3 print('F1 score:', round(f1_score(Y_test, Y_pred_knn) * 100, 2))

KNN Classifier:
Accuracy score: 73.13
F1 score: 75.13
```

```
1 print('Decision Tree Classifier:')
2 print('Accuracy score:', round(accuracy_score(Y_test, Y_pred_dec_tree) * 100, 2))
3 print('F1 score:', round(f1_score(Y_test, Y_pred_dec_tree) * 100, 2))

Decision Tree Classifier:
Accuracy score: 91.59
F1 score: 92.01

1 print('Random Forest Classifier:')
2 print('Accuracy score:', round(accuracy_score(Y_test, Y_pred_ran_for) * 100, 2))
3 print('F1 score:', round(f1_score(Y_test, Y_pred_ran_for) * 100, 2))

Random Forest Classifier:
Accuracy score: 93.25
F1 score: 93.53
```

Model Evaluation

Conclusion:

- In this project we build various models like Logistic Regression, KNN Classifier, Decision Tree Classifier and Random Forest Classifier
- 2. Random Forest Classifier gives the highest accuracy score of 93.25 and f1 score of 93.53

Challenges

Selecting the appropriate column names.

Exploration of each column.

Understanding multivariate analysis with target columns.

Statistics

Number of Lines of Code

220

Miscellaneous

Libraries Used:

- Pandas
- Numpy
- Matplotlib
- Seaborn
- 5. Scikit-learn

Algorithms Used:

- Logistic Regression
- KNN Classifier
- **Decision Tree Classifier**
- Random Forest Classifier

भारतीय राष्ट्रीय भुगतान निगम NATIONAL PAYMENTS CORPORATION OF INDIA