### **ORGANIC EL ELEMENT**

Publication number: JP7169567T1

Publication date:

1995-07-04

Inventor: Applicant: Classification:

- international:

H05B33/04; H01L51/50; H01L51/52; H05B33/04;

H01L51/50; H01L51/50

- European:

Application number: JP19930343635D 19931216 Priority number(s): JP19930343635 19931216

Report a data error here

Also published as:

📆 JP7169567 (A)

Abstract not available for JP7169567T1 Abstract of corresponding document: JP7169567 PURPOSE:To prevent the degradation of a light emitting characteristic caused by oxygen or moisture, and maintain a stable light emitting characteristic over a long period of time by arranging a layer of double layers composed of an oxygen barrier layer and an oxygen absorbing layer as a sealing layer of a layered body. CONSTITUTION: A sealing layer 4 is arranged outside of a structure body 1 as a layered body 2 through a protective layer 3. This sealing layer 4 is composed of one or more sets of double layers by forming an oxygen absorbing layer 41 and an oxygen barrier layer 42 as a single set. An organic compound, an oxygen absorbing compound, a fluorine compound, metallic fine powder and the like having small ionization potential are used as a material used in the oxygen absorbing layer 41. Metallic oxide, nitride, fluoride and the like used as the protective layer 3 are used as the oxygen barrier layer 42.



### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

# (11)特許出願公開番号

# 特開平7-169567

(43)公開日 平成7年(1995)7月4日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 5 B 33/04

# 審査請求 未請求 請求項の数22 FD (全 19 頁)

| <b>特顯平5-343635</b> | (71)出願人 000183646       |
|--------------------|-------------------------|
|                    | 出光興産株式会社                |
| 平成5年(1993)12月16日   | 東京都千代田区丸の内3丁目1番1号       |
|                    | (72)発明者 東海林 弘           |
|                    | 千葉県袖ケ浦市上泉1280番地 出光興産株   |
|                    | 式会社内                    |
|                    | (72)発明者 弘中 義雄           |
|                    | 千葉県袖ケ浦市上泉1280番地 出光興産株   |
|                    | 式会社内                    |
|                    | (72)発明者 松浦 正英           |
|                    | 千葉県袖ケ浦市上泉1280番地 出光興産株   |
| ,                  | 式会社内                    |
|                    | (74)代理人 弁理士 渡辺 喜平 (外1名) |
|                    | 最終頁に続く                  |
|                    |                         |

# (54) 【発明の名称】 有機EL素子

# (57)【要約】

【目的】 酸素や水分による発光特性の劣化を防止して、長期に亘って安定な発光特性が維持され、長寿命の 有機EL素子を提供する。

【構成】 陽極12,有機発光材料14および陰極13 からなる構造体1の外側に積層体2として、保護層3並 びにその外側に酸素吸収層41および酸素パリア層42 からなる封止層4を積層する。



#### 【特許請求の範囲】

【請求項1】 その少なくとも一方が透明または半透明 の互いに対向する一対の電極間に、有機発光材料を挟持 してなる構造体、並びに、その構造体の外側に配設した 保護層および/または封止層からなる積層体を有する有 機EL素子において、

前記積層体の封止層が、酸素パリアー層および酸素吸収 層からなる二重層の組を、一組以上有するものであるこ とを特徴とする有機EL素子。

らなる二重層の組が前記互いに対向する一対の電極のう ち陰極側の電極側に、酸素吸収層および酸素パリア一層 をこの順に積層したものであることを特徴とする請求項 1記載の有機EL素子。

【請求項3】 前記構造体が、基板、陽極、正孔注入輸 送層、発光層、電子注入輸送層、陰極、保護層および封 止層をこの順に有するものであり、かつ、その封止層 が、酸素吸収層及び酸素パリア一層をこの順に有する二 **重層の一組を、一組以上有するものであることを特徴と** する請求項1記載の有機EL素子。

【請求項4】 その少なくとも一方が透明または半透明 の互いに対向する一対の電極間に有機発光材料を挟持し てなる構造体、並びにその構造体の外側に配設した保護 層および/または封止層からなる積層体を有する有機E L素子において、

前記積層体の保護層および封止層の少なくとも一方が、 酸素を吸着、吸蔵又は消費する材料を含有するものであ ることを特徴とする有機EL素子。

【請求項5】 前記積層体の保護層が、酸素を吸着、吸 蔵又は消費する材料を含有するものである請求項1~3 30 のいずれか1項記載の有機EL素子。

【請求項6】 前記酸素を吸着、吸蔵又は消費する材料 が、酸化マグネシウム、炭酸マグネシウム、酸化鉄、酸 化チタン、ベントナイト、酸性白土、モンモリロナイ ト、ケイソウ土(粘土鉱物)、活性アルミナ、シリカア ルミナ、ゼオライト、シリカ、ジルコニア及び活性炭か らなる群から選ばれる一以上の物質からなるものである ことを特徴とする請求項4または5記載の有機EL素 子。

【請求項7】 前記酸素を吸着、吸蔵又は消費する材料 40 が、周期律表第四周期の金属の微粉末、薄膜、その金属 塩もしくはその酸化物、または周期律表第四周期の金属 の微粉末、薄膜、その金属塩もしくはその酸化物を酸化 マグネシウム、炭酸マグネシウム、酸化鉄、酸化チタ ン、ベントナイト、酸性白土、モンモリロナイト、ケイ ソウ土(粘土鉱物),活性アルミナ,シリカアルミナ, ゼオライト、シリカ、ジルコニア及び活性炭からなる群 から選ばれる一以上の物質に10重量%以下の濃度で担 持させたものであることを特徴とする請求項4または5 記載の有機EL素子。

【請求項8】 前記周期律表第四周期の金属がFe, C o. Ni, Mn, Cr, V, ZnもしくはCuの単体又 はそれらの一種以上の合金であることを特徴とする請求 項7記載の有機EL案子。

【請求項9】 前記周期律表第四周期の金属の合金が酸 化コパルト (II) であることを特徴とする請求項8記載 の有機EL素子。

【請求項10】 前記酸素を吸着、吸蔵又は消費する材 料が、炭素数が3~30の、一級または二級の炭素を持 【請求項2】 前記酸素パリアー層および酸素吸収層か 10 つ炭化水素を、周期律表第四周期の金属の微粉末、薄 膜、その金属塩もしくはその酸化物、または周期律表第 四周期の金属の微粉末、薄膜、その金属塩もしくはその 酸化物を酸化マグネシウム、炭酸マグネシウム、酸化 鉄、酸化チタン、ペントナイト、酸性白土、モンモリロ ナイト、ケイソウ土(粘土鉱物)、活性アルミナ、シリ カアルミナ、ゼオライト、シリカ、ジルコニア及び活性 炭からなる群から選ばれる一以上の物質に10重量%以 下の濃度で担持させたもの、または活性炭に1重量%以 下の濃度で含浸させたものであることを特徴とする請求 20 項4または5記載の有機EL素子。

> 【請求項11】 前記酸素を吸着、吸蔵又は消費する材 料が、白金、パラジウム、ロジウム、ルテニウム又は銀 を、酸化マグネシウム、炭酸マグネシウム、酸化鉄、酸 化チタン, ベントナイト, 酸性白土, モンモリロナイ ト、ケイソウ土(粘土鉱物),活性アルミナ、シリカア ルミナ、ゼオライト、シリカ、ジルコニア及び活性炭か らなる群から選ばれる一以上の物質に5重量%以下の濃 度で担持させたものであることを特徴とする請求項4ま たは5記載の有機EL素子。

【請求項12】 その少なくとも一方が、透明または半 透明の互いに対向する一対の電極間に有機発光材料を挟 持してなる構造体、並びにその構造体の外側に配設した 保護層および/または封止層からなる積層体を有する有 機EL素子において、

前記積層体の保護層が脱水剤を含有するものであること を特徴とする有機EL素子。

【請求項13】 前記積層体の保護層が脱水剤を含有す るものであることを特徴とする請求項1~11のいずれ か1項記載の有機EL素子。

【請求項14】 前記積層体の保護層が固体の有機物で あることを特徴とする請求項12または13記載の有機 EL素子。

【請求項15】 前記脱水剤が、アルカリ金属またはア ルカリ土類金属からなるものであることを特徴とする請 求項12~14のいずれか1項記載の有機EL素子。

【請求項16】 その少なくとも一方が透明または半透 明の互いに対向する一対の電極の間に有機発光材料を挟 持してなる構造体、並びにその構造体の外側に配設した 保護層および/または封止層からなる積層体を有する有 50 機EL素子において、前記積層体の封止層が、無機組成

物を含有する光または熱硬化性樹脂からなるものである ことを特徴とする有機EL素子。

【請求項17】 前記積層体の封止層が、無機組成物を 含有する光または熱硬化性樹脂からなるものであること を特徴とする請求項1~15のいずれか1項記載の有機 EL素子。

【請求項18】 前記無機組成物がシリカガラスである ことを特徴とする請求項16または17記載の有機EL 索子。

明の互いに対向する一対の電極の間に有機発光材料を挟 持してなる構造体、並びにその構造体の外側に配設した 保護層および/または封止層からなる積層体を有する有 機EL素子において前記積層体の保護層および封止層の 少なくとも一方が、酸素透過係数が1×10<sup>-12</sup> c c・ cm/cm²・S (cmHg)以下である有機層を少な くとも一層有するものであることを特徴とする有機EL 素子。

【請求項20】 前記積層体の保護層が、酸素透過係数 が1×10<sup>-12</sup> c c・c m/c m<sup>2</sup>・S (c m H g) 以下 20 である有機層を少なくとも一層有するものであることを 特徴とする請求項1~11のいずれか1項記載の有機E L素子。

【請求項21】 前記積層体の封止層が、酸素透過係数 が1×10<sup>-12</sup>cc・cm/cm<sup>2</sup>・S (cmHg) 以下 である有機層を少なくとも一層有するものであることを 特徴とする請求項4~15記載の有機EL素子。

【請求項22】 前記積層体の封止層の外側に、さらに 酸素透過係数が1×10<sup>-12</sup> c c · c m/c m<sup>2</sup> · S (c mHg) 以下である有機層を少なくとも一層有すること 30 報) 等が開示されている。 を特徴とする請求項1~18のいずれか1項記載の有機 EL素子。

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、有機EL(電界発光) 素子に関する。さらに詳しくは、主に、情報産業機器用 の各種ディスプレーや発光素子に好適に用いられる、長 期に亘って安定な発光特性が維持され、長寿命の有機E L素子に関する。

[0002]

【従来の技術】有機EL素子は、有機発光材料を一対の 対向電極で挟んだ構造体で構成されており、一方の電極 からは電子が注入され、他方の電極からは正孔が注入さ れる。この注入された電子と正孔とが、発光層内で再結 合するときに発光が生ずる。この有機EL素子は、その 耐衝撃性や視認性の高さと、有機物の持つ発光色の多様 性からフルカラーのフラットパネルディスプレーとし て、またはLEDに代わるものとして期待され開発が進 められている。

【0003】このような有機EL素子は、連続または不 50 た、温度サイクルによる素子の機械的劣化を防止して、

連続に一定期間駆動した場合、発光輝度、発光効率およ び発光の均一性等の発光特性が初期の場合に比べ著しく 低下することが知られている。このような発光特性の劣 化の原因としては、有機EL素子内に侵入した酸素によ る電極の酸化、駆動時の発熱による有機材料の酸化分 解、また、有機EL素子内に侵入した空気中に水分によ る電極の酸化、有機物の変性等を挙げることができる。 さらに酸素や水分の影響で構造体の界面が剥離したり、 駆動時の発熱や駆動時の環境が高温であったこと等が引 【請求項19】 その少なくとも一方が透明または半透 10 き金となって、各構成要素の熱膨張率の違いにより構造 体の界面で応力が発生し、界面が剥離する等の構造体の 機械的劣化をその原因として挙げることができる。

> 【0004】このような発光特性の劣化を防止する発明 として、①有機EL素子の積層構造体の外表面に電気絶 緑性無機化合物からなる保護膜を設け、この保護層の外 側に、電気絶縁性ガラス、エポキシ樹脂、シリコーン樹 脂等の電気絶縁性高分子化合物および電気絶縁性気密流 体からなる群から選択される物質からなるシールド層を 設けた封止方法(特開平5-89959号公報)、②背 面基板および水分吸収体を有する固体状またはゲル状の 絶縁性材料により薄膜EL素子が封止されてなる薄膜E Lパネル(特開平2-12792号公報)、③EL素子 を箱詰めにして、その中に五酸化二リンをEL素子に触 れないように共有させる方法(特開平3-261091 号公報)、および④EL素子をフルオロカーボン油に沈 め、そのフルオロカーボン油中に脱水剤を混ぜ、水分を 除く方法(特開平5-41281号、及び114486 号公報)、および⑤光硬化性樹脂を用いた、気密性が高 く耐湿性のある封止技術(特開平5-182759号公

[0005]

【発明が解決しようとする課題】しかし、前記①の封止 方法では、酸素についての封止の効果が必ずしも十分に 満足できるものではなく、②の薄膜ELパネルでは、や はり酸素についての封止の効果が不十分であり、③の方 法では、EL素子を箱詰めにし、その中に五酸化二リン の入った別の容器を作らなければならないので素子の作 製が煩雑であり、また五酸化二リンはEL素子の電極や 有機物と激しく反応するため、耐衝撃性を考慮しなけれ 40 ばならないので、実用的ではなく、④の方法では、フル オロカーポン油は液体であるため、封止の際取扱いが困 難であり、また、破壊の際に液漏れの危険があるため実 用的ではなく、また、⑤の方法では、このような樹脂の 硬化時の収縮や、EL素子と封止層との膨張率の違い (温度サイクル)により、素子が機械的に劣化、延いて は破壊するという問題があった。本発明は上述の問題に 鑑みなされたもので、酸素や水分による発光特性の劣化 を防止して、長期に亘って安定な発光特性が維持され、 長寿命の有機EL素子を提供することを目的とする。ま

長期に亘って安定な発光特性が維持され、長寿命の有機 EL素子を提供することを他の目的とする。

【課題を解決するための手段】上記目的を達成するた め、本発明によれば、その少なくとも一方が透明または 半透明の互いに対向する一対の電極間に、有機発光材料 を挟持してなる構造体、並びに、その構造体の外側に配 設した保護層および/または封止層からなる積層体を有 する有機EL素子において、前記積層体の封止層が、酸 素パリアー層および酸素吸収層からなる二重層の組を、 一組以上有するものであることを特徴とする有機EL素 子が提供される。

【0007】また、前記酸素パリア一層および酸素吸収 層からなる二重層の組が前記互いに対向する一対の電極 のうち陰極側の電極側に、酸素吸収層および酸素パリア 一層をこの順に積層したものであることを特徴とする有 機EL素子が提供される。

【0008】また、前記構造体が、基板、陽極、正孔注 入輸送層、発光層、電子注入輸送層、陰極、保護層およ び封止層をこの順に有するものであり、かつ、その封止 20 層が、酸素吸収層及び酸素パリア一層をこの順に有する 二重層の一組を、一組以上有するものであることを特徴 とする有機EL素子が提供される。

【0009】また、その少なくとも一方が透明または半 透明の互いに対向する一対の電極間に有機発光材料を挟 持してなる構造体、並びにその構造体の外側に配設した 保護層および/または封止層からなる積層体を有する有 機EL素子において、前記積層体の保護層および封止層 の少なくとも一方が、酸素を吸着、吸蔵又は消費する材 が提供される。

【0010】また、前記積層体の保護層が、酸素を吸 着、吸蔵又は消費する材料を含有するものである有機E L素子が提供される。

【0011】また、前記酸素を吸着、吸蔵又は消費する 材料が、酸化マグネシウム、炭酸マグネシウム、酸化 鉄、酸化チタン、ペントナイト、酸性白土、モンモリロ ナイト,ケイソウ土(粘土鉱物),活性アルミナ,シリ カアルミナ、ゼオライト、シリカ、ジルコニア及び活性 あることを特徴とする有機EL素子が提供される。

【0012】また、前記酸素を吸着、吸蔵又は消費する 材料が、周期律表第四周期の金属の微粉末、薄膜、その 金属塩もしくはその酸化物、または周期律表第四周期の 金属の微粉末、薄膜、その金属塩もしくはその酸化物を 酸化マグネシウム、炭酸マグネシウム、酸化鉄、酸化チ タン、ベントナイト、酸性白土、モンモリロナイト、ケ イソウ土(粘土鉱物),活性アルミナ,シリカアルミ ナ、ゼオライト、シリカ、ジルコニア及び活性炭からな る群から選ばれる一以上の物質に10重量%以下の濃度 50 た保護層および/または封止層からなる積層体を有する

で担持させたものであることを特徴とする有機EL素子 が提供される。

【0013】また、前記周期律表第四周期の金属がF e, Co, Ni, Mn, Cr, V, ZnもしくはCuの 単体又はそれらの一種以上の合金であることを特徴とす る有機EL素子が提供される。

【0014】また、前記周期律表第四周期の金属の合金 が酸化コパルト(II)であることを特徴とする有機EL 素子が提供される。

【0015】また、前記酸素を吸着、吸蔵又は消費する 材料が、炭素数が3~30の、一級または二級の炭素を 持つ炭化水素を、周期律表第四周期の金属の微粉末、薄 膜、その金属塩もしくはその酸化物、または周期律表第 四周期の金属の微粉末、薄膜、その金属塩もしくはその 酸化物を酸化マグネシウム、炭酸マグネシウム、酸化 鉄、酸化チタン、ベントナイト、酸性白土、モンモリロ ナイト、ケイソウ土(粘土鉱物)、活性アルミナ、シリ カアルミナ、ゼオライト、シリカ、ジルコニア及び活性 炭からなる群から選ばれる一以上の物質に10重量%以 下の濃度で担持させたもの、または活性炭に1重量%以 下の濃度で含浸させたものであることを特徴とする有機 EL素子が提供される。

【0016】また、前記酸素を吸着、吸蔵又は消費する 材料が、白金、パラジウム、ロジウム、ルテニウム又は 銀を、酸化マグネシウム、炭酸マグネシウム、酸化鉄、 酸化チタン、ベントナイト、酸性白土、モンモリロナイ ト,ケイソウ土(粘土鉱物),活性アルミナ,シリカア ルミナ、ゼオライト、シリカ、ジルコニア及び活性炭か らなる群から選ばれる一以上の物質に5重量%以下の濃 料を含有するものであることを特徴とする有機EL素子 30 度で担持させたものであることを特徴とする有機EL素 子が提供される。

> 【0017】また、その少なくとも一方が、透明または 半透明の互いに対向する一対の電極間に有機発光材料を 挟持してなる構造体、並びにその構造体の外側に配設し た保護層および/または封止層からなる積層体を有する 有機EL素子において、前記積層体の保護層が脱水剤を 含有するものであることを特徴とする有機EL素子が提 供される。

【0018】また、前記積層体の保護層が脱水剤を含有 炭からなる群から選ばれる一以上の物質からなるもので *40* するものであることを特徴とする有機EL素子が提供さ

> 【0019】また、前記積層体の保護層が固体の有機物 であることを特徴とする有機EL素子が提供される。

> 【0020】また、前記脱水剤が、アルカリ金属または アルカリ土類金属からなるものであることを特徴とする 有機EL素子が提供される。

> 【0021】また、その少なくとも一方が透明または半 透明の互いに対向する一対の電極の間に有機発光材料を 挟持してなる構造体、並びにその構造体の外側に配設し

有機EL素子において、前記積層体の封止層が、無機組 成物を含有する光または熱硬化性樹脂からなるものであ ることを特徴とする有機EL素子が提供される。

【0022】また、前記積層体の封止層が、無機組成物 を含有する光または熱硬化性樹脂からなるものであるこ とを特徴とする有機EL素子が提供される。

【0023】また、前記無機組成物がシリカガラスであ ることを特徴とする有機EL素子が提供される。

【0024】また、その少なくとも一方が透明または半 透明の互いに対向する一対の電極の間に有機発光材料を 10 ②-1 陽極 挟持してなる構造体、並びにその構造体の外側に配設し た保護層および/または封止層からなる積層体を有する 有機EL素子において前記積層体の保護層および封止層 の少なくとも一方が、酸素透過係数が1×10<sup>-12</sup> c c ・cm/cm<sup>2</sup>・S (cmHg) 以下である有機層を少 なくとも一層有するものであることを特徴とする有機E し素子が提供される。

【0025】また、前記積層体の保護層が、酸素透過係 数が1×10<sup>-12</sup>cc・cm/cm²・S(cmHg)以 を特徴とする有機EL素子が提供される。

【0026】また、前記積層体の封止層が、酸素透過係 数が1×10<sup>-12</sup>cc・cm/cm<sup>2</sup>・S (cmHg) 以 下である有機層を少なくとも一層有するものであること を特徴とする有機EL素子が提供される。

【0027】さらに、前記積層体の封止層の外側に、さ らに酸素透過係数が1×10<sup>-12</sup> c c · c m/c m<sup>2</sup> · S (cmHg)以下である有機層を少なくとも一層有する ことを特徴とする有機EL素子が提供される。

【0028】以下、本発明に用いられる有機EL素子の 30 構成を説明する。まず、本発明に用いられる有機EL素 子の構造体について説明する。その構成は、特に限定さ れるものではなく任意の構成を採ることができる。たと えば、陽極/発光層/陰極、陽極/正孔注入層/発光層 /陰極、陽極/発光層/電子注入層/陰極、又は陽極/ 正孔注入層/発光層/電子注入層/陰極を挙げることが できる。また各層が複数の層の積層体でもよいし、複数 の材料の混合層でもよい。これらの有機物各層はたとえ ば特願平5-028659号に提案された有機物を入れ して蒸発させ、かつ、その蒸発させた有機物を一方の電 極上に堆積させて有機物層を形成する方法を用いて形成 することができる。各層の厚さは特に限定されるもので はない。陰陽の電極を除いた各層の厚さは通常5 nm~ 5μmである。また材料は通常有機EL素子に使われる ものなら特に限定されない。以下、具体的に、陽極/正 孔注入輸送層/発光層/電子注入輸送層/陰極からなる 有機EL素子の構造体について説明する。

【0029】①基板

本発明に用いられる有機EL素子の構造体は、基板上に 50 げることができる。その代表例としては

て形成することが好ましい。本発明に用いられる基板 は、透明性を有するものが好ましく、具体的にはガラ ス、透明プラスチック、石英などを挙げることができ る。

#### 【0030】②電極

本発明に用いられる電極は、その少なくとも一方が透明 または半透明の互いに対向する一対の電極(陽極及び陰 極)からなる、透明または半透明とするのは透明性を得 るためである。

本発明に用いられる陽極としては、仕事関数の大きい (4 e V以上) 金属、合金、電気伝導性化合物及びこれ らの混合物を電極物質とするものを好適に用いることが できる。このような電極物質の具体例としてはAuなど の金属、CuI、ITO、SnO₂、ZnOなどの誘電 性を有した透明材料または半透明材料を挙げることがで きる。この陽極は、これらの極物質を蒸着やスパッタリ ングなどの方法により、薄膜を形成させることにより作 成することができる。この電極より発光を取り出す場合 下である有機層を少なくとも一層有するものであること 20 には、透過率を10%より大きくすることが望ましく、 また、電極としてのシート抵抗は数百Ω/□以下とする ことが好ましい。さらに膜厚は材料にもよるが、通常1 0 nm~1 μm、好ましくは10~200 nmの範囲で 選ぶことができる。

#### 【0031】②-2 陰極

一方、陰極としては、仕事関数の小さい(4 e V以下) 金属,合金,電気伝導性化合物及びこれらの混合物を電 極物質とするものを用いることができる。このような電 極物質の具体例としては、ナトリウム、ナトリウムーカ リウム合金、マグネシウム、リチウム、マグネシウム/ 銅混合物,A1/(Al2 Os),インジウム,希土類 金属などを挙げることができる。該陰極は、これらの電 極物質を蒸着やスパッタリングなどの方法により、薄膜 を形成させることにより、作成することができる。ま た、電極としてのシート抵抗は数百Ω/□以下とするこ とが好ましく、膜厚は通常10nm~1μm, 好ましく は50~200nmの範囲で選ぶことができる。なお、 このEL素子においては、該陽極又は陰極のいずれか一 方を透明又は半透明とすることが、電極自体が発光を透 たポート、フィラメント等により抵抗加熱方式にて加熱 40 過して、発光の取り出し効率を向上させるため好まし

#### 【0032】③発光層

発光層の材料として使用可能な有機化合物としては、特 に限定はないが、ベンゾチアゾール系、ペンゾイミダゾ ール系、ベンゾオキサゾール系等の蛍光増白剤、金属キ レート化オキシノイド化合物、スチリルペンゼン系化合 物等を挙げることができる。

【0033】具体的に化合物名を示せば、例えば、特開 昭59-194393号公報に開示されているものを挙

2, 5-ビス (5, 7-ジーt-ペンチル-2-ペンゾ オキサゾリル) - 1, 3, 4 - チアジアゾール、4, 4'-ビス(5,7-t-ペンチル-2-ペンゾオキサ ゾリル) スチルベン、4,4'ーピス[5,7ージー (2-メチル-2-プチル) -2-ベンゾオキサゾリ ル] スチルベン、2, 5-ピス(5, 7-ジ-t-ペン チルー2ーペンゾオキサゾリル)チオフェン、2、5ー ピス [5-α, α-ジメチルベンジル-2-ベンゾオキ サゾリル] チオフェン、2, 5-ピス[5, 7-ジー ル] -3, 4ジオフェニルチオフェン、2, 5-ピス (5-メチル-2-ペンゾオキサゾリル) チオフェン、 4, 4'-ビス(2-ベンゾオキサゾリル) ビフェニ ル、5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル] ビニル] ベンゾオキサ ゾール、2-[2-(4-クロロフェニル) ビニル] ナ フト [1, 2-d] オキサゾール等のペンゾオキサゾー ル系、2-2'-(p-フェニレンジピニレン)-ピス ベンゾチアゾール等のベンゾチアゾール系、2-[2-ベンゾイミダゾール、2-[2-(4-カルポキシフェ ニル)ピニル] ペンゾイミダゾール等のペンゾイミダゾ ール系等の蛍光増白剤を挙げることができる。さらに、 他の有用な化合物は、ケミストリー・オブ・シンセティ ック・ダイズ1971,628~637頁および640 頁に列挙されている。

【0034】前記キレート化オキシノイド化合物として は、例えば特開昭63-295695号公報に開示され ているものを用いることができる。その代表例として (8-キノリノール) マグネシウム、ピス(ペンゾ [f] -8-キノリノール) 亜鉛、ビス(2-メチルー 8-キノリノラート) アルミニウムオキシド、トリス (8-キノリノール) インジウム、トリス(5-メチル -8-キノリノール) アルミニウム、8-キノリノール リチウム、トリス(5 - クロロ - 8 - キノリノール)ガ リウム、ピス (5-クロロ-8-キノリノール) カルシ ウム、ポリ [亜鉛 (II) - ピス (8-ヒドロキシ-5-キノリノニル) メタン] 等の8-ヒドロキシキノリン系 ができる。

【0035】また、前記スチリルベンゼン系化合物とし ては、例えば欧州特許第0319881号明細書や欧州 特許第0373582号明細書に開示されているものを 用いることができる。その代表例としては、1、4-ビ ス(2-メチルスチリル)ベンゼン、1,4-ピス(3 -メチルスチリル) ベンゼン、1, 4-ビス (4-メチ ルスチリル) ベンゼン、ジスチリルベンゼン、1,4-ピス (2-エチルスチリル) ペンゼン、1、4-ピス (3-エチルスチリル)ベンゼン、1,4-ビス(2-50 げることができる。

メチルスチリル) -2-メチルベンゼン、1,4-ビス (2-メチルスチリル)-2-エチルベンゼン等を挙げ ることができる。

10

【0036】また、特開平2-252793号公報に開 示されているジスチリルピラジン誘導体も発光層の材料 として用いることができる。その代表例としては、2, 5-ピス(4-メチルスチリル)ピラジン、2,5-ビ ス(4-エチルスチリル)ピラジン、2,5-ピス[2 (1ーナフチル)) ビニル] ピラジン、2,5ービス (2-メチル-2-ブチル) -2-ベンゾオキサゾリ 10 (4-メトキシスチリル) ピラジン、2,5-ビス[2 (4-ピフェニル) ピニル] ピラジン、2,5-ピス [2-(1-ピレニル) ピニル] ピラジン等を挙げるこ とができる。その他のものとして、例えば欧州特許第0 387715号明細書に開示されているポリフェニル系 化合物も発光層の材料として用いることもできる。

【0037】さらに、上述した蛍光増白剤、金属キレー ト化オキシノイド化合物、およびスチリルベンゼン系化 合物等以外に、例えば12-フタロペリノン(J. Appl. Phys., 第27卷, L713 (1988年))、1, 4 [4-(2-ベンゾイミダゾリル) フェニル] ビニル] 20 -ジフェニル-1, 3-ブタジエン、1, 1, 4, 4-テトラフェニルー1, 3プタジエン(以上Appl. Phys. Lett., 第56巻, L799 (1990年))、ナフタル イミド誘導体(特開平2-305886号公報)、ペリ レン誘導体(特開平2-189890号公報)、オキサ ジアゾール誘導体(特開平2-216791号公報、ま たは第38回応用物理学関係連合講演会で浜田らによっ て開示されたオキサジアゾール誘導体)、アルダジン誘 導体(特開平2-220393号公報)、ピラジリン誘 導体(特開平2-220394号公報)、シクロペンタ は、トリス(8-キノリノール)アルミニウム、ビス 30 ジエン誘導体(特開平2-289675号公報)、ピロ ロピロール誘導体(特開平2-296891号公報)、 スチリルアミン誘導体 (Appl. Phys. Lett., 第56巻, L799(1990年))、クマリン系化合物(特開平 2-191694号公報)、国際公開公報WO90/1 3 1 4 8 \$\phi\text{Appl. Phys. Lett., vol 58, 18, P1982(1991)} に記載されているような高分子化合物等も、発光層の材 料として用いることができる。

【0038】本発明では、特に発光層の材料として、芳 香族ジメチリディン系化合物(欧州特許第038876 金属錯体やジリチウムエピントリジオン等を挙げること *40* 8号明細書や特開平3-231970号公報に開示のも の)を用いることが好ましい。具体例としては、1,4 -フェニレンジメチリディン、4,4-フェニレンジメ チリディン、2、5-キシレンジメチリディン、2、6 ーナフチレンジメチリディン、1、4ーピフェニレンジ 、 メチリディン、1,4-p-テレフェニレンジメチリデ ィン、9、10-アントラセンジイルジルメチリディ ン、4, 4'-ビス(2, 2-ジ-t-プチルフェニル ピニル) ピフェニル、4,4'-ピス(2,2-ジフェ ニルピニル)ピフェニル等、およびそれらの誘導体を挙

【0039】このようにして形成される発光層の厚さに ついては特に限定はなく、状況に応じて適宜選択するこ とができるが、通常5nm~5μmの範囲が好ましい。 有機EL素子における発光層は、電界印加時に、陽極ま たは正孔注入層から正孔を注入することができ、かつ陰 極または電子注入層から電子を注入することができる注 入機能、注入された電荷(電子と正孔)を電界の力で移 動させる輸送機能、電子と正孔の再結合の場を提供し、 これを発光につなげる発光機能等を有している。なお、 は違いがあっても構わない。また、正孔と電子の移動度 で表される輸送機能に大小があってもよいが、少なくと もどちらか一方を移動させることが好ましい。

#### 【0040】④正孔注入層

必要に応じて設けられる正孔注入層の材料としては、従 来より光伝導材料の正孔注入材料として慣用されている ものや有機EL素子の正孔注入層に使用されている公知 のものの中から任意のものを選択して用いることができ る。正孔注入層の材料は、正孔の注入、電子の障壁性の いづれかを有するものであり、有機物あるいは無機物の 20 どちらでもよい。

【0041】具体例としては、例えばトリアゾール誘導 体(米国特許3,112,197号明細書等参照)、オ キサジアゾール誘導体(米国特許3,189,447号 明細書等参照)、イミダゾール誘導体(特公昭37-1 6096号公報等参照)、ポリアリールアルカン誘導体 (米国特許3, 615, 402号明細書、同第3, 82 0, 989号明細書、同第3, 542, 544号明細 書、特公昭45-555号公報、同51-10983号 05号公報、同56-4148号公報、同55-108 667号公報、同55-156953号公報、同56-36656号公報等参照)、ピラゾリン誘導体およびピ ラゾロン誘導体(米国特許第3,180,729号明細 書、同第4, 278, 746号明細書、特開昭55-8 8064号公報、同55-88065号公報、同49-105537号公報、同55-51086号公報、同5 6-80051号公報、同56-88141号公報、同 57-45545号公報、同54-112637号公 報、同55-74546号公報等参照)、フェニレンジ 40 ることが好ましい。 アミン誘導体(米国特許第3,615,404号明細 書、特公昭51-10105号公報、同46-3712 号公報、同47-25336号公報、特開昭54-53 435号公報、同54-110536号公報、同54-119925号公報等参照)、アリールアミン誘導体 (米国特許第3, 567, 450号明細書、同第3, 1 80,703号明細書、同第3,240,597号明細 書、同第3,658,520号明細書、同第4,23 2, 103号明細書、同第4, 175, 961号明細 **書、同第4, 012, 376号明細書、特公昭49-3 50 ニン、銅フタロシアニン、クロムフタロシアニン、亜鉛** 

5702号公報、同39-27577号公報、特開昭5 5-144250号公報、同56-119132号公 報、同56-22437号公報、西独特許第1,11 0.518号明細書等参照)、アミノ置換カルコン誘導 体(米国特許第3,526,501号明細書等参照)、 オキサゾール誘導体(米国特許第3,257,203号 明細書等に開示のもの)、スチリルアントラセン誘導体 (特開昭56-46234号公報等参照)、フルオレノ ン誘導体(特開昭54-110837号公報等参照)、 正孔の注入されやすさと電子の注入されやすさとの間に 10 ヒドラゾン誘導体(米国特許第3,717,462号明 細書、特開昭54-59143号公報、同55-520 63号公報、同55-52064号公報、同55-46 760号公報、同55-85495号公報、同57-1 1350号公報、同57-148749号公報、特開平 2-311591号公報等参照)、スチルペン誘導体 (特開昭61-210363号公報、同61-2284 51号公報、同61-14642号公報、同61-72 255号公報、同62-47646号公報、同62-3 6674号公報、同62-10652号公報、同62-30255号公報、同60-93445号公報、同60 -94462号公報、同60-174749号公報、同 60-175052号公報等参照)、シラザン誘導体 (米国特許第4、950、950号明細書)、ポリシラ ン系(特開平2-204996号公報)、アニリン系共 重合体(特開平2-282263号公報)、特開平1-211399号公報に開示されている導電性高分子オリ ゴマー(特にチオフェンオリゴマー)等を挙げることが できる。

12

【0042】正孔注入層の材料としては上記のものを使 公報、特開昭51-93224号公報、同55-171 30 用することができるが、ポルフィリン化合物(特開昭6 3-2956965号公報等に開示のもの)、芳香族第 三級アミン化合物およびスチリルアミン化合物(米国特 許第4, 127, 412号明細書、特開昭53-270 33号公報、同54-58445号公報、同54-14 9634号公報、同54-64299号公報、同55-79450号公報、同55-144250号公報、同5 6-119132号公報、同61-295558号公 報、同61-98353号公報、同63-295695 号公報等参照)、特に芳香族第三級アミン化合物を用い

> 【0043】上記ポルフィリン化合物の代表例として は、ポルフィン、1,10,15,20-テトラフェニ ル-21H, 23H-ポルフィン銅(II)、1, 10, 15.20-テトラフェニル-21H, 23H-ポルフ ィン亜鉛 (II) 、5, 1·0, 15, 20-テトラキス (ペンタフルオロフェニル) −21H, 23H−ポルフ ィン、シリコンフタロシアニンオキシド、アルミニウム フタロシアニンクロリド、フタロシアニン(無金属)、 ジリチウムフタロシアニン、銅テトラメチルフタロシア

フタロシアニン、鉛フタロシアニン、チタニウムフタロ シアニンオキシド、Mgフタロシアニン、銅オクタメチ ルフタロシアニン等を挙げることができる。

【0044】また、前記芳香族第三級アミン化合物およ びスチリルアミン化合物の代表例としては、N,N, N', N' -  $\mathcal{F}$  ニル、N, N'ージフェニルーN, N'ーピスー(3-メチルフェニル) - [1, 1'-ピフェニル] - 4, 4'-ジアミン、2、2-ピス(4-ジ-p-トリルア ミノフェニル) プロパン、1, 1ーピス (4ージーpー 10 ば、電子注入層の材料としても用いることができること トリルアミノフェニル)シクロヘキサン、N, N, N',  $N' - \mathcal{F} + \mathcal{F} - \mathcal{F} - \mathcal{F} - \mathcal{F} + \mathcal{F$ フェニル、1、1ービス(4ージーpートリルアミノフ ェニル) - 4 - フェニルシクロヘキサン、ピス(4 - ジ メチルアミノー2-メチルフェニル)フェニルメタン、 ピス (4-ジーp-トリルアミノフェニル) フェニルメ タン、N, N'ージフェニル-N, N'ージ (4-メト キシフェニル) - 4, 4' -ジアミノビフェニル、N, N, N', N'-FFフェニルエーテル、4,4'-ビス(ジフェニルアミ ノ) クオードリフェニル、N, N, N-トリ(p-トリ ル) アミン、4 - (ジーp - トリルアミノ) - 4' -[4 (ジ-p-トリルアミノ) スチリル] スチルベン、 4-N, N-ジフェニルアミノ-(2-ジフェニルビニ ル) ベンゼン、3-メトキシ-4'-N, N-ジフェニ ルアミノスチルペンゼン、N-フェニルカルパゾール等 を挙げることができる。また、発光層の材料として示し た前述の芳香族ジメチリディン系化合物も、正孔注入層 の材料として使用することができる。

【 0 0 4 5 】正孔注入層としての厚さは特に制限されな 30 いが、通常は $5 nm \sim 5 \mu m$ である。この正孔注入層 は、上述した材料の1種または2種以上からなる一層構 造であってもよいし、同一組成または異種組成の複数層 からなる複層構造であってもよい。

#### 【0046】⑤電子注入層

必要に応じて設けられる電子注入層は、陰極より注入さ れた電子を発光層に伝達する機能を有していればよく、 その材料としては従来公知の化合物の中から任意のもの を選択して用いることができる。

誘導体、特開昭57-149259号公報、同58-5 5450号公報、同63-104061号公報等に開示 されているアントラキノジメタン誘導体、Polymer Prep rints, Japan Vol. 37, No. 3(1988) p. 681等に記載されてい るジフェニルキノン誘導体、チオピランジオキシド誘導 体、ナフタレンペリレン等の複素環テトラカルボン酸無 水物、カルボジイミド、Japanese Journal of Applied Physics, 27, L 269(1988)、特開昭60-69657号公 報、同61-143764号公報、同61-14815

導体、特開昭61-225151号公報、同61-23 3750号公報等に開示されているアントラキノジメタ ン誘導体およびアントロン誘導体、Appl. Phys. Lett., 55,15,1489や前述の第38回応用物理学関係連合講演会 で浜田らによって開示されたオキサジアゾール誘導体、 特開昭59-194393号公報に開示されている一連 の電子伝達性化合物等が挙げられる。なお、特開昭59 - 194393号公報では前記電子伝達性化合物を発光 層の材料として開示しているが、本発明者の検討によれ が明らかとなった。

【0048】また、8-キノリノール誘導体の金属錯 体、具体的にはトリス(8-キノリノール)アルミニウ ム、トリス(5,7-ジクロロ-8-キノリノール)ア ルミニウム、トリス(5、7-ジプロモ-8-キノリノ ール) アルミニウム、トリス (2-メチル-8-キノリ ノール)アルミニウム等や、これらの金属錯体の中心金 属がIn、Mg、Cu、Ca、Sn、またはPbに置き 代わった金属錯体等も電子注入層の材料として用いるこ 20 とができる。その他に、メタルフリーあるいはメタルフ タロシアニンまたはそれらの末端がアルキル基、スルホ ン基等で置換されているものも望ましい。また、発光層 の材料として例示したジスチリルピラジン誘導体も、電 子注入層の材料として用いることができる。

【0049】電子注入層としての厚さは特に制限されな いが、通常は5 n m ~ 5 μ m である。この電子注入層 は、上述した材料の1種または2種以上からなる一層構 造であってもよいし、同一組成または異種組成の複数層 からなる複層構造であってもよい。

【0050】次に、本発明に用いられる積層体(保護層 および/または封止層)について、各発明ごとに図面を 参照しながら具体的に説明する。保護層は、有機EL素 子の作製時、電極端子取り付けの際の機械的障害およ び、酸素、水分の影響を防止するために使用される。封 止層は、恒久的に外部の酸素、水分の影響を防ぐために 使用される。

# 【0051】1. 第一の発明

第一の発明の有機EL素子は、図1に示すように、積層 体2として構造体1の外側に保護層3を介して封止層4 【0047】具体例としては、ニトロ置換フルオレノン 40 を配設されている。この封止層4は、酸素吸収層41お よび酸素パリア層42を一組とした二重層の一組以上か ら構成されている。以下、保護層3及び封止層4につい てさらに具体的に説明する。

#### 【0052】1)保護層

封止層4を構成する材料自体の化学的性質から、または その積層時の物理的接触から下側の構造体1に損傷を与 えることがなければ必ずしも設ける必要はないが、構造 体1の損傷を最小限におさえるという観点から設けるこ とが好ましい。第一の発明の好ましい態様では、まず上 9 号公報等に開示されているフルオレニリデンメタン誘 50 述した構造体の外表面に電気絶縁性無機化合物からなる

保護層を設ける。保護層は、少なくとも対向電極の主表 面上に設けられていればよいが、構造体の外表面全面に 設けられていることが特に好ましい。また、構造上、対 向電極が発光層、正孔注入層または電子注入層のいずれ かの層の主表面の一部に設けられている有機EL素子で は、少なくとも、対向電極の下地となった層の主表面の うちで対向電極が設けられていない部分上と、対向電極 の主表面上とに保護層を設けることが好ましい。保護層 の材料である電気絶縁性無機化合物は、物理蒸着法(以 下、PVD法ということがある)により成膜可能な電気 10 絶縁性のものであればよく、具体例としてはMgO、G eO, Al2 O3, NiO, CaO, BaO, Fe2 O a、Y<sub>2</sub>O<sub>3</sub>、S 1O<sub>2</sub>、酸化チタン等の酸化物や、A IN、BN、Si₃ N₄、Li₃N等の窒化物、Si C、TiC等の炭化物、SrS、EuS、CuS、Zn S等の硫化物、またはMgF2、Mg(OH)2、Ba SO4 等、各種の電気絶縁性無機化合物を挙げることが できる。これらの電気絶縁性無機化合物のうち、反応性 蒸着法等により比較的マイルドな条件で成膜可能なGe

【0053】電気絶縁性無機化合物からなる保護層は、 用いる無機化合物に応じたPVD法により設けることが できる。保護層を設けた側を発光面とする場合には、有 機EL素子からのEL光に対する透光性に優れた保護層 が得られるように材料および形成方法を選択する。PV D法としては種々の方法が知られているが、真空蒸着法 またはスパッタ法を適用することが好ましい。それらは 例えば以下のように細分することができるが、いずれの 手法であっても適用することができる。

# a. 真空蒸着法

抵抗加熱法、電子ビーム加熱法、高周波誘導加熱法、反 応性蒸着法、分子線エピタキシー法、ホットウォール蒸 着法、イオンプレーティング法、クラスターイオンビー ム法等

#### b. スパッタ法

2極スパッタ法、2極マグネトロンスパッタ法、3極お よび4極プラズマスパッタ法、反応性スパッタ法、イオ ンピームスパッタ法、またはこれらを組合せた方法等

構造体を構成している有機物が変性しないように行うこ とが好ましい。有機物が変性しないための条件は、その 種類、換言すればその有機物が有する耐熱性などの特性 により異なるが、一般に有機物の温度を200℃以下に 保つことが好ましく、さらには100℃以下に保つこと が好ましい。もちろん、発光層等用の有機物として高分 子化合物のように熱に強い材料を使用したときは、この 限りでない。以下に、方法別に好ましい形成条件を述べ る。

#### ①真空蒸着法

このなかでも好ましい方法は反応性蒸着法、電子ビーム 蒸着法であり、例えば反応性蒸着法で金属酸化物(Mg O) からなる保護膜を形成する場合を例にとると、蒸着 時間は2時間以下、好ましくは1時間以下がよい。さら に好ましくは20分以下がよい。蒸着前の真空チャンパ - 内の真空度は1×10<sup>-2</sup> Pa以下、特に6×10<sup>-3</sup> P a以下が好ましく、その後真空チャンパー内に酸素およ び/または水蒸気を導入した段階では真空チャンパー内 の圧力を7×10-3Pa以上、好ましくは1×10-2P a以上にし、この後、蒸着原料である金属Mgを100 0℃以下に加熱して蒸着する。蒸着速度は10 nm/秒 以下、特に3nm/秒以下が好ましい。

16

#### ②スパッタ法

スパッタ法は、イオンでターゲットから堆積させたい物 質をはじき出すため、一般に真空蒸着法よりもエネルギ ーが高い。したがって真空蒸着法よりも条件は厳しい。 スパッタ法の中で特に好ましい方法は反応性スパッタ法 イオンピームスパッタ法である。反応性のイオンピーム スパッタ法でMgOからなる保護膜を形成する(酸素の O、MgO、A 12O3、NiO等の金属酸下物が特に 20 イオンピームで金属Mgをスパッタリングしかつ酸化す る) 場合を例にとると、蒸着時間は1時間以下、好まし くは30分以下、さらに好ましくは10分以下がよい。 また、酸素イオンの加速電圧は1200V以下、特に6 00V以下が好ましく、ビーム電流は500mA以下、 特に60mA以下が好ましい。

【0055】上述のようにして形成される保護層の厚み は、蒸着速度と蒸着時間とのかねあいで決まる。保護層 は厚いほどその効果が期待できるが、厚い保護層を設け るためには蒸着時間を長くするか蒸着速度を早くしなけ 30 ればならず、これに伴って構造体中の有機物のダメージ も大きくなる。したがって、保護層の厚みにも上限が必 要となる。例えば反応性蒸着法でMg〇を成膜する場 合、最高の蒸着速度(10nm/秒)で成膜すると有機 物が受けるダメージが大きいため、この場合の蒸着時間 は20分以下にする必要がある。そして、この時の膜厚 の上限値は約12 µmである。一方、保護層の厚みの下 限はその保護効果の有無により決まり、一般に約10 n m未満では薄すぎて保護層としての機能を十分に発揮す ることができない。なお、長寿命の有機EL素子を得る 【0054】保護層の形成は、保護層を設けようとする 40 うえからは、保護層の形成過程での発光層や対向電極の 特性劣化をできるだけ抑止することが好ましく、そのた めには真空環境下で保護層を形成することが好ましい。 そして同様の理由から、構造体を構成する発光層の形成 から保護層の形成までを一連の真空環境下で行うことが 特に好ましい。

> 【0056】また、本発明においては保護層の他の材料 として、電気絶縁性高分子を好適に用いることができ る。この電気絶縁性髙分子化合物は、物理蒸着法(以 下、PVD法ということがある)により成膜可能なも 50 の、化学気相密着法(以下、CVD法ということがあ

る) により成膜可能なもの、またはパーフルオロアルコ ール、パーフルオロエーテル、パーフルオロアミン等の フッ素系溶媒に可溶なものであればよいが、透湿度の小 さなものが特に好ましい。各電気絶縁性高分子化合物の 具体例としては、それぞれ以下のものを挙げることがで きる。

【0057】①PVD法により成膜可能な電気絶縁性高 分子化合物

ポリエチレン、ポリプロピレン、ポリスチレン、ポリメ チルメタクリレート、ポリイミド (二種類のモノマーを 10 基板上に堆積させて重合させたもの。テクニカルジャー ナル, 1988, 30, 22参照)、ポリユリア(二種類のモノマ ーを基板上に堆積させて重合させたもの。テクニカルジ ャーナル, 1988, 30, 22参照)、特開昭63-18964 号公報に開示されているフッ素系高分子化合物、特開昭 63-22206号公報に開示されているフッ素系高分 子化合物、特開昭63-238115号公報に開示され ているフッ素系高分子化合物、ポリテトラフルオロエチ レン、ポリクロロトリフルオロエチレン、ポリジクロロ ジフルオロエチレン、クロロトリフルオロエチレンとジ 20 クロロジフルオロエチレンとの共重合体、環状構造を有 する含フッ素共重合体(特願平3-129852号公報 参照)等。

【0058】 ②CVD法 [プラズマ重合法 (プラズマC VD)]により成膜可能な電気絶縁性高分子化合物 ポリエチレン、ポリテトラフルオロエチレン、ポリビニ ルトリメチルシラン、ポリメチルトリメトキシシラン、 ポリシロキサン等。

【0059】③パーフルオロアルコール、パーフルオロ の電気絶縁性高分子化合物

特開昭63-18964号公報に開示されているフッ素 系高分子化合物、特開昭63-22206号公報に開示 されているフッ素系高分子化合物、特開昭63-238 115号公報に開示されているフッ素系高分子化合物、 ポリクロロトリフルオロエチレン、ポリジクロロジフル オロエチレン、クロロトリフルオロエチレンとジクロロ ジフルオロエチレンとの共重合体、環状構造を有する含 フッ素共重合体(特願平3-129852号公報参照) 等のフッ素系高分子化合物。

【0060】保護層は、用いる高分子化合物に応じて、 それぞれPVD法(上記①の高分子化合物)、CVD法 (上記②の高分子化合物)、キャスト法またはスピンコ ート法(上記③の高分子化合物)により設けることがで きる。この場合の保護層の厚さは、用いる材料や形成方 法にもよるが、10nm~100μmであることが好ま しい。また、保護層を設けた側を発光面とする場合に は、有機EL素子からのEL光に対する透光性に優れた 保護層が得られるように材料及び形成方法を選択する。 各方法による保護層の形成は、例えば以下のようにして 50 この順に有する二重層の組を一組以上積層する。

行うことができる。

・PVD法は無機電気絶縁性高分子の場合と同じ方法を 用いることができる。成膜条件は原料及び適用するPV D法の種類により異なるが、例えば真空蒸着法(抵抗加 熱法、電子ピーム加熱法、高周波誘導加熱法)の場合 は、蒸着前真空度は概ね1×10-2Pa以下好ましくは 6×10<sup>-3</sup> Pa以下、蒸着源の加熱温度は概ね700℃ 以下好ましくは600℃以下、基板温度は概ね200℃ 以下好ましくは100℃以下であり、蒸着速度を50n m/秒以下好ましくは3nm/秒以下として成膜するこ とが望ましい。

18

【0061】·CVD法

エチレン、プロピレン等の気体のモノマーをプラズマに より重合するプラズマ重合が好ましい。一般の熱分解C VDは基板温度が高温になるため不適である。

【0062】・キャスト法

原料をパーフルオロアルコール、パーフルオロエーテル またはパーフルオロアミン等のフッ素系溶媒に溶解さ せ、この溶媒を構造体に展開した後、8~16時間風乾 させることにより保護層を得る。乾燥時間は8時間以上 であれば何時間でもよいが、16時間を超えて乾燥させ ても乾燥の程度に大きな差はでないので不適である。乾 燥時間は通蔵12時間程度が適当である。溶液中の原料 の濃度は目的とする保護層の厚さに応じて適宜選択され る。

【0063】・スピンコート法

上記キャスト法の場合と同様にして得た溶液を、100 ~20000rpm好ましくは200~8000rpm で回転させている構造体上に適当量滴下し、この構造体 エーテル、パーフルオロアミン等のフッ素系溶媒に可溶 30 をそのままさらに  $5\sim60$  砂好ましくは  $10\sim30$  秒回 転させた後、キャスト法の場合と同様にして乾燥させる ことにより保護層を得る。このときの溶液の滴下量は、 構造体あるいは封止しようとする有機EL素子の大きさ により異なるが、通常のスライドガラスの大きさ(25 ×75×1.1mm)の構造体または有機EL素子で 0.6~6m1、好ましくは0.5~3m1である。溶 液中の原料の濃度はキャスト法の場合と同様に、目的と する保護層の厚さに応じて適宜選択されるが、その範囲 はキャスト法の場合より狭く、膜厚の制御や膜の均一性 40 等の点から、1~40g/100m1好ましくは4~2 0g/100mlである。

> 【0064】なお、キャスト法及びスピンコート法のい ずれの方法においても、風乾後に真空乾燥機等を用いて 30~100℃好ましくは50~80℃で、1~24時 間好ましくは8~16時間、さらに乾燥することが好ま ・しい。

【0065】2) 封止層

①構成:前記保護層3の上に構造体1の陰極13側に近 い方から、酸素吸収層41と酸素パリアー層42とを、

②膜厚:一組が数~数百 µ mが好ましい。

③積層方法: 積層時の構造体の損傷をできるだけ抑える 積層方法を採用することが好ましい。保護層と同様な積 層方法を用いることができる。他には、高分子の塗布方 法として知られている、浸漬法、スピンコーティング方 法等を用いることができる。

④酸素吸収層:酸素吸収層41に用いられる材料としては、(1)イオン化ポテンシャルイの小さい有機化合物、例えば電子写真感光体の正孔輸送材料、アミン系化合物、ヒドラゾン化合物等、(ii)酸素吸着性化合物、(iii)フッ素系化合物、例えばフッ素化炭化水素の不活性液体等、(iv)金属微粉末、例えば粒径が数μm程度のFe,Co,Ni,Cu、及びアルカリ金属、希土類金属等、仕事関数の小さい金属例えば、Al,In,Mg,Yb,Zi,Na,K等を挙げることができる。酸素の吸収層の形態としては、上記物質の単体の固体(蒸着膜、スパッター膜等)液体、または高分子への分散膜(プチラール樹脂、PC,PS等)を挙げることができる。

#### ⑤酸素パリアー層

酸素バリアー層としては、保護層として用いた金属酸化物、窒化物、フッ化物、酸素透過係数の小さいことが知られている物質、例えばポリビニルアルコール、ブチルゴム、ポリエチレン、ポリニトリル系樹脂、ポリ塩化ビニリデン(サラン)、ナイロン-6等のポリアミド系樹脂等、半導体素子のバッシュペーション膜として公知な、Si系窒化物等を挙げることができる。酸素バリアー層の形態としては、上記物質の蒸着膜、スパッタ膜、高分子塗布膜等を挙げることができる。

⑥なお、この他に必要に応じてこの封止層4の外側にさ 30 の らにガラスや樹脂によってフレーム5を設けてもよい。 【

【0066】2. 第二の発明

第二の発明の有機EL素子は、図2に示すように、積層 体2の保護層3および/または封止層4の少なくとも一 方が、酸素を吸着、吸蔵または消費する材料6を含有す ることを特徴とする。この第二の発明においては、保護 層と封止層との厳密な区別をする必要はない。また一方 だけを設けてもよい。なお、接着層7は、封止層として 固形物を用いた場合、より強力に基板との封止を行うた めに使用することが好ましい。封止層を接着層と兼用さ 40 せてもよい。これらの保護層および封止層のいずれか (以下、保護封止層2'という)の中に酸素を吸着、吸 蔵または消費する材料を含有させることにより、微量の 素子の内部の酸素を吸着、吸蔵または消費させて、電極 や有機材料への酸素の影響を防止する。接着層の中に酸 素を吸着等する物質を含有させてもよい。酸素の吸着方 法としては物理吸着、化学吸着のいずれでもよい。な お、酸素の吸蔵とは物理的または化学的に酸素が取りこ まれることをいい、その方法としては、例えば包接、イ

をの消費とは、化学反応による酸素の消費のことをい い、その方法としては、例えば水酸化、過酸化、水和な どの酸素や配位を挙げることができる。保護封止層の形 態としては、基板や構造体を被覆できるものであるなら ば特に制限はない。保護封止層が、金属の板状物、金属 **薄膜、樹脂製フィルム、樹脂成形品、ガラス製品からな** る場合、酸素吸着剤等を塗布したり、マイクロカプセル 化して、塗布、または蒸着させてもよい。また保護層お よび封止層の二つを区別して設けた場合、その間に挿入 10 してもよい。また、保護封止層がゲル状、半ねり状、液 状の物質からなる場合、酸素吸着剤等を混練して分散し て使用することができる。また、熱硬化性樹脂、光硬化 性樹脂、または反応性の樹脂等を用いて保護封止層を作 製する場合、酸素吸着剤等を原料に混練し、分散して使 用することができる。保護封止層を基板に接着する場 合、種々の接着剤を使用することができるが、接着剤の 中に酸素吸着剤等を混練して使用してもよい。酸素吸着 剤等の含有量は、保護封止層中10重量%以下であるこ とが好ましい。10重量%を超えると、保護封止層の均 20 一性が損なわれることがある。0.01~5%がさらに 好ましい。

20

【0067】酸素を吸着、吸蔵、または消費する材料としては、たとえば以下の物質を挙げることができる。 ①酸化マグネシウム、炭酸マグネシウム、酸化鉄、酸化チタン、ペントナイト、酸性白土、モンモリロナイト、ケイソウ土(粘土鉱物)、活性アルミナ、シリカアルミナ、ゼオライト、シリカ、ジルコニア、活性炭(不活性ガス中120℃以上の温度で焼成したものが好ましい。)からなる群から選ばれる一以上の物質からなるもの。

【0068】②周期律表第四周期の金属(Fe, Co, Ni, Mn, Cr, V, Zn, Cu)の微粉末、薄膜、その金属塩、もしくはその酸化物、または周期律表第四周期の金属(Fe, Co, Ni, Mn, Cr, V, Zn, Cu)、その金属塩もしくはその酸化物を酸化マグネシウム、炭酸マグネシウム、酸化鉄、酸化チタン、ベントナイト、酸性白土、モンモリロナイト、ケイソウ土(粘土鉱物)、活性アルミナ、シリカアルミナ、ゼオライト、シリカ、ジルコニア、活性炭(不活性ガス中120℃以上の温度で焼成したものが好ましい。)からなる群から選ばれる一以上の物質からなるものに担持した物質

担持する濃度は10重量%以下が好ましく5%以下がさらに好ましい。たとえば、酸化コパルト(II) CoO結晶を挙げることができる。この物質は、酸素を吸着する結晶性の化合物で酸素と以下の反応式で反応する。

 $CoO + 1/4O_2 \rightarrow 1/2Co_2 O_3$ 

お、酸素の吸蔵とは物理的または化学的に酸素が取りこ 【0069】③炭素数が3~30の一級または二級の炭まれることをいい、その方法としては、例えば包接、イ 素を持つ炭化水素、たとえば、アルキルシクロヘキサンターカレーション、吸着を挙げることができる。酸素 50 ン、アルカン、アルケン、クメン等を、周期律表第四周

期の金属の微粉末、薄膜、その金属塩もしくはその酸化 物、または周期律表第四周期の金属の微粉末、薄膜、そ の金属塩もしくはその酸化物を、酸化マグネシウム、炭 酸マグネシウム、酸化鉄、酸化チタン、ベントナイト、 酸性白土、モンモリロナイト、ケイソウ土(粘土鉱 物), 活性アルミナ、シリカアルミナ、ゼオライト、シ リカ、ジルコニア及び活性炭からなる群から選ばれる一 以上の物質に10重量%以下の濃度で担持させたもの、 又は活性炭に1重量%以下の濃度で含浸させた物質

ムまたは銀を、好ましくは5重量%以下(さらに好まし くは1重量%以下0.001重量%以上)の濃度で酸化 マグネシウム、炭酸マグネシウム、酸化鉄、酸化チタ ン、ベントナイト、酸性白土、モンモリロナイト、ケイ ソウ土(粘土鉱物)、活性アルミナ、シリカアルミナ、 ゼオライト、シリカ、ジルコニア及び活性炭からなる群 から選ばれる一以上の物質に担持させた物質

【0071】このような物質を本発明において好適に用\*

\*いることができる理由を以下説明する。 ①の場合、表面 積の大きい化合物は酸素や有機物分子を吸着する能力が ある。②の場合、金属自身、酸素によって酸化されるこ とにより酸素を消費する。また金属、金属塩、金属酸化 物は酸素を吸着する能力がある。酸化コパルト(II)の 場合は、結晶が酸素を吸収して別の結晶になる反応を利 用したものである。③の場合、アルカンやアルケンの存 在により、金属は触媒作用を示し、下記式に示すような 反応により酸素を消費する。特に無機物に担持された金 [0070] ④白金, パラジウム, ロジウム, ルチニウ 10 属の場合、これらの生成物も酸素を吸着して酸素を系外 に出すことはないので優れている。

22

[0072]

【化1】

$$R-CH_2-R \xrightarrow{O_2} R-CH-R \xrightarrow{O_2O_1}$$

[0073]

【化2】

$$R-CH=CH-R \xrightarrow{1/2O_2} R-CH-CH-R$$

$$\frac{H_2O}{\longrightarrow} R - CH - CH - R$$

$$OH OH$$

【0074】④の場合、②、③と同様の能力がある。特 に活性炭を担体に用いた場合、その表面積の広さから効 果的である。また

 $1/2O_2 + C \rightarrow CO$ 

される。

【0075】3. 第三の発明

第三の発明に用いられる保護層は図3に示すように脱水 剤31を含有する。第三の発明に用いられる保護層3の 基材としては、室温で固体のものであれば特に制限はな く、例えばポリオレフィン、ポリエーテル、ポリカーボ ネート、ポリアミド等のポリマー、デュポン社製、商品 名:テフロンAFのようなアモルファス状の有機物、ア ルミや鉛等の金属膜、または $\alpha - Si: \alpha - SiC$ 、 $\alpha$ -C、GeOのような無機物を用いることができる。中 でもテフロンAFが特に好ましい。また、保護層の作製 法としては、特に制限はなく、たとえば塗布法、蒸着 法、スピンコート法、スパッタリング、CVD法等を挙 げることができるが有機発光材料は熱に弱いため、スピ ンコート法が好ましい。保護層中に含有させる脱水剤3 1としては、例えば、塩の無水物 (無水硫酸マグネシウ ム、無水硫酸ナトリウム等)、塩化物(塩化カルシウ ム、塩化リチウム等)酸化物(酸化カルシウム等)、シ リカゲル、ゼオライト、モレキュラーシープ、活性炭、 グラファイト等を用いることができるが、アルカリ金属 50

またはアルカリ土類金属(ナトリウム、カリウム、カル シウム、マグネシウム等)が特に好ましい。脱水剤の含 有量は、保護層中、10重量%以下である。10重量% を超えた量の脱水剤は保護層を不安定化させることがあ の反応も起り、一酸化炭素はそのまま、活性炭中へ吸着 30 る。なお、脱水剤31を含有する保護層3の外側に、さ らに、封止層等を設けてもよい。

【0076】4. 第四の発明

第四の発明に用いられる封止層は、図4に示すように、 無機組成物44を含有する光または熱硬化性樹脂層43 からなる。また、必要に応じてこの封止層4の上に他の 封止層を積層してもよい。また、この封止層4の下側に 保護層を設けてもよい。無機組成物44としては、金属 **微粒子、無機酸化物粒子等を挙げることができる。具体** 的には、アルミナ、シリカガラス、コロイダルシリカ、 40 ホウケイ酸ガラス, β-ユークリプタイト, パリウムガ ラス、チッ化ケイ素、チッ化ペリリウム、炭化ケイ素等 の粒子を挙げることができる。これらの無機組成物は、 全封止層に対し50重量%以上95重量%以下の組成比 であることが好ましく、60重量%以上85重量%以下 の組成比であることがさらに好ましい。光硬化性樹脂と しては、特に制限はなく、硬化前の組成として少なくと も、多官能性モノマー、光重合開始剤(光増感剤)、環 元剤,重合禁止剤等からなるものが好ましい。光の波長 域としては特に制限はないが好ましくは、可視光領域 (380~650nm) で反応する成分を含有するのが 好ましい。封止層4を上記の組成により制御することに より均一な膜を形成し、封止層の硬化(重合)時におけ る収縮率や熱膨張係数を制御することができ、素子にあ たえる広力に伴なう劣化を抑制することができる。前述 のように、このような無機組成物44を含有する光硬化 性樹脂層43からなる封止層4上に他の封止層を積層し てもよい。他の封止層としては、例えば酸素パリアー 層, 撥水層, 酸素吸着層, 吸湿層等を挙げることができ る。また、上記光または熱硬化性樹脂は、硬化前は流動 性であるために、有機EL素子を設置する状況に応じて 10 背後面の形状をかえて硬化することが可能である。この ため、上記の他の封止層を積層する場合も、初期に流動 性を有し、かつ適当な処理を行なうことにより固化しう る材料や可撓性を有するフィルムが好ましい。このよう な光硬化性樹脂または熱硬化性樹脂としては、たとえば プチルゴム系樹脂、スチレンプタジエンゴム系樹脂、ク ロロプレン系樹脂、アクリル系樹脂、エポキシ樹脂、フ ッ素系樹脂、シリコーン系樹脂などを例示することがで きる。さらに、上記材料は電気絶縁性に優れ、硬化の際 に副産物の発生のないものであることが好ましく、この 20 ことから特にエポキシ系樹脂、シリコーン系樹脂が好ま しい。

#### 【0077】5. 第五の発明

第五の発明に用いられる積層体は、図5に示すように、 酸素透過係数が1×10-12cc·cm/cm2·s· (cmHg)以下である有機層22を少なくとも一層設 けたものからなる。この有機層22の上又は下側に、さ らに耐水性の封止層を積層するのが好ましい。また、こ の有機層22の下側に保護層を設けてもよい。図5に示 い。酸素透過係数の測定法としては、例えば、高分子化 学第16巻第168号(1959)に記載されている方 法、J. Polym. Sci. part2A-2 vol.8 p.467 (197 0) に記載されている方法等を挙げることができる。具 体的な材料としては、ポリビニリデンクロライド(商品 名:サラン),ポリビニルクロライド,ポリビニルアル コール、セルロース、セロファン、酢酸繊維等の薄膜を 挙げることができる。その成膜法としては、特に制限は なく、蒸着法、重合法、スパッタ法、キャスト法、スピ ンコート法等を用いることができる。なお、その他の方 40 法として、上記材料からなるフィルムを熱圧着する方法 であってもよい。さらに、湿式法(例えばキャスト法, スピンコート法) を用いる場合、あらかじめ耐水性耐薬 品性の封止層を形成後成膜するのが好ましい。以上、各 発明ごとに説明したが、第一から第五までの発明を適宜 組み合わせたものであってもよい。

[0078]

【実施例】以下、本発明を実施例によってさらに具体的 に説明する。

#### [実施例1]

有機EL素子の構造体の作製

25×75×1、1mmのサイズのガラス板(HOYA 社製の白板ガラス)を基板として用い、この基板上にⅠ TO膜を100nmの厚さで成膜して透明電極とした (以下、ITO膜が成膜された基板を透明支持基板とい う)。この透明支持基板をイソプロピルアルコールで3 0分間超音波洗浄した後、純水で5分間洗浄し、その後 イソプロピルアルコールでリンスした後に乾燥N2 ガス を吹き付けて乾燥させた。最後にUVオゾン洗浄装置 (サムコインターナショナル社製) で10分間洗浄し た。洗浄後の透明支持基板を市販の真空蒸着装置(日本 真空技術社製) の基板ホルダーに固定し、モリプデン製 抵抗加熱ボートにN, N'ージフェニルーN, N'ービ スー (3-メチルフェニル) - [1, 1'-ピフェニ ル] -4, 4'-ジアミン(以下、TPDという)を2 00mg入れ、また違うモリプデン製抵抗加熱ポートに トリス (8-キノリノール) アルミニウム (以下、A1 q. という)を200mg入れて、真空チャンパー内を 1×10<sup>-4</sup> Paまで減圧した。

24

【0079】次いで、TPDを入れた前記抵抗加熱ボー トを215~220℃まで加熱して、TPDを蒸着速度 0.1~0.3 n m/秒で透明支持基板の I T O 膜上に 堆積させて、膜厚60nmの正孔注入層を成膜した。こ のときの基板温度は室温であった。次いで、正孔注入層 が成膜された透明支持基板を基板ホルダーに固定したま ま、Alq. を入れたモリプデン製抵抗加熱ポートを2 75℃まで加熱して、Alq. を蒸着速度0.1~0. 2nm/秒で正孔注入層上に堆積させて、膜厚60nm の発光層を成膜した。このときの基板温度も室温であっ す具体例のほかに図6及び図7に示す構成であってもよ 30 た。次に、マグネシウム(Mg)1gを予め入れておい たモリプデン製抵抗加熱ポートと銀(Ag)500mg を予め入れておいたモリブデン製抵抗加熱ポートとをそ れぞれ加熱し、Mgを1.6nm/秒の蒸着速度で蒸着 させ、同時にAgを0.1 nm/秒の蒸着速度で蒸着さ せて、MgとAgとの混合金属からなる膜厚160nm の電極(対向電極)を発光層上に設けた。ガラス基板上 にITO膜(電極)、正孔注入層、発光層、および対向 電極を設けたことで有機EL素子が得られた。なお、こ の構造体では、ガラス基板上に設けられたITO膜、正 孔注入層、発光層、および対応電極により積層構造体が 形成されている。ここで、ITO上及びITO上にはな いMg:Ag面よりIn圧着により導線をとり出した。 この状態でもう一度、真空槽に戻し、1×10-4 Paま で減圧した。

# 【0080】保護層の形成

真空チャンパー内に酸素を導入して、真空チャンパー内 の圧力を8×10-3Paにした。次いで、Mgが入った モリプデン製抵抗加熱ポート(対向電極作製時のもの) を485℃に加熱して、Mgを0.5nm/秒の蒸着速 50 度で蒸着させるとともに真空チャンパー内の酸素と反応

させて、積層構造体の外表面に膜厚0.3 μm(300 nm)のMgO膜(保護層)を設けた。

【0081】酸素吸着層・酸素パリアー層の形成 その後再度1×10-4Paまで減圧してMgを1nm/\* \*秒の蒸着速度で0.5 µm酸素吸着層として蒸着した。 その後再度上記Mg〇を同様な方法で酸素パリアー層と して0.5μm積層成膜した。上記、封止層まで積層 後、素子を発光させた。

| 電圧(V) | 電流密度(mA/cm²) | 輝度(cd/m²) | 発光効率(lm/w) |
|-------|--------------|-----------|------------|
| 6     | 10.3         | 290       | 1. 47      |

なお、発光面内 (0. 3 c m²) には、10倍の拡大像 10%【0082】 [実施例2] 実施例1のMgO (酸素パリ において、無発光点の数は5個しか見あたらず、均一性 がかなり良好な発光であった。後述する比較例1の結果 より、保護層及び封止層の積層により、発光性能及び発 光均一性は損なわれていないことがわかった。

アー層)の上に、さらに第二のくり返し単位としてM g,MgOを同一の方法により同一膜厚で積層した。封 止終了後の素子性能は、以下の様に殆ど実施例1と同様 であった。

| 電圧(V) | 電流密度(mA/cm²) | 輝度(cd/m²) | 発光効率(1m/₩) | ・無発光点の数 |
|-------|--------------|-----------|------------|---------|
| 6     | 10.0         | 270       | 1. 45      | 7個      |

\* 以下実施例1と同様、10倍の拡大像にて観察 【0083】 [実施例3] 実施例1の酸素吸収層のMg の代わりにポリカーボード樹脂(Pc)へのFe微粉末 分散膜を以下の手順で100 μm積層した。Feの平均 粒径は5 μm, 分散濃度はPc:Fe=50:30重量 %の条件で、CH2 C12 溶液から浸漬塗布法により成★

20★膜した。次に酸素バリアー層として高密度ポリエチレン (出光石油化学社製、商品名:440M)を1×10-2 Paの真空中、アルミナるつぼに仕込んで真空蒸着法 (るつば温度:370℃) により10 µm積層した。封 止終了後の素子性能は以下の通りで、実施例1及び2と 同様であった。

| 電圧(V) | 電流密度(mA/cm²) | 輝度(cd/m²) | 発光効率(lm/w) | 無発光点の数 |
|-------|--------------|-----------|------------|--------|
| 6     | 10.5         | 287       | 1. 43      | 8個     |

【0084】 [比較例1] 保護層及び封止層(酸素吸収 層と酸素バリアー層)を設けなかったこと以外は実施例☆

☆1と同様にして有機EL素子を作製した。素子性能は以 下の通りであった。

| 電圧(V) | 電流密度(mA/cm <sup>2</sup> ) | 輝度(cd/m²) | 発光効率(lm/w) | 無発光点の数 |
|-------|---------------------------|-----------|------------|--------|
| 6     | 10.6                      | 3 0 4     | 1. 50      | 3個     |

【0085】 [比較例2] 保護層のみを積層したこと以 外は実施例1と同様にして素子を作製した。発光性能◆ ◆は、比較例1とほぼ同様であった。

| 電圧(V) | 電流密度(mA/cm²) | 輝度(cd/m²) | 発光効率(lm/w) | 無発光点の数 |
|-------|--------------|-----------|------------|--------|
| 6     | 10.5         | 300       | 1. 50      | 4個     |

【0086】ダークスポット抑制効果の確認 素子作製終了後、大気中、室温 (23℃) にて、定電流 連続駆動により発光面の均一性の変化を観測した。素子 作製1000時間後無発光点の数は以下のようになっ

た。測定は実施例、比較例と同様10倍の拡大視野にて 行った。なお、カッコ内の数字は初期の値から増加した 数を示す。

比較例1 比較例2 実施例1 実施例2 実施例3

10 (5) 11 (4) 9 (1) 105 (92) 70 (66)

この結果により酸素吸収層及び酸素パリア一層から成る 封止層により有効に、無発光点の発生が抑制されている ことがわかった。

【0087】輝度低下抑制効果の確認

\*大気中、室温 (23℃) にて、初期100cd/m³の 輝度から、定電流連続駆動により輝度の変化を測定し

28

|           | 輝度の半減時間(時間) | 素子の震壊時間 (時間)<br>・ |
|-----------|-------------|-------------------|
| <br>実施例 1 | 4,600       | 15,000            |
| 実施例2      | 9, 300      | 20,000            |
| 実施例3      | 7, 500      | 17,000            |
| 比較例1      | 212         | 953               |
| 比較例 2     | 5 0 8       | 12,000            |

酸素吸収層及び酸素パリアー層から成る封止層により、 輝度の低下が有効に抑えられることがわかった。

【0088】 [実施例4]

#### 有機EL素子の構造体の作製

25mm×75mm×1.1mmのサイズのガラス基板 状にITO電極を100nmの厚さで成膜したものを透 明支持基板とした。これをイソプロピルアルコールで3 0分間超音波洗浄した後、純水で30分間洗浄し最後に 再びイソプロピルアルコールで30分間長音波洗浄し た。そしてこの透明支持基板を市販の真空蒸着装置(日 本真空技術社製)の基板ホルダーに固定し、モリプデン 製の抵抗加熱ポートにN, N'ージフェニルーN, N' ーピスー (3ーメチルフェニル) ー [1, 1'ーピフェ れ、また違うモリプデン製抵抗加熱ボートにトリス(8) -キノリノール) アルミニウム (Alq.) を200m g入れ真空チャンパー内を1×10<sup>-4</sup>Paまで減圧し た。その後TPD入りの前記ポート215~220℃ま で加熱しTPDを蒸着速度0.1~0.3 nm/秒で基 板上に堆積させ、膜厚60mmの正孔注入層を成膜し た。このときの基板温度は室温であった。これを真空層 から取り出すことなく正孔注入層の上に、もう一つのボ ートよりAla. を発光層として60nm積層蒸着し 0. 1~0. 2 nm、基板温度は室温であった。次に、 モリプデン製抵抗加熱ポートにマグネシウム1gを入 れ、また別のモリプデン製抵抗加熱ボートにインジウム 500mgをいれた。その後真空層を2×10<sup>-4</sup>Paま で減圧してインジウムを0.03~0.08 nm/秒の 蒸着速度で蒸発させ同時に抵抗加熱法によりもう一方の モリプデン製ポートからマグネシウムを1.7~2.8 nm/秒の蒸着速度で蒸着した。マグネシウム、インジ ウムのポート温度は、それぞれ500℃、800℃程度 であった。以上の条件でマグネシウムとインジウムの混 50

合金属電極を発光層のうえに150mm積層蒸着し対向 電極とした。ITO/TPD/Alq/Mg:Inの素 子構成の有機EL素子の構造体ができた。この有機EL 20 素子の初期性能は電圧7 V、電流密度3.6 mA/cm <sup>2</sup> 、輝度105cd/m³ で電力変換効率1.3 1m /Wであった。

#### 【0089】保護封止層の形成

住友スリーエム社製、商品名:フロリナートFC-4 8、100m1に、テトラフルオロエチレンとパーフル オロー2、2-ジメチルー1、3-ジオキソールとの無 定形共重合体粉末 (デュポン社製、商品名:テフロンA FNo. 1600) 50gを溶解させた溶液を窒素ガス を流通させたグローボックスにいれ、白金5重量%を担 ニル] -4, 4'-ジアミン (TPD) を200mgい 30 持した活性炭 (和光純薬社製) 1gを乳鉢で粉体にした 後、加えて攪拌分散した。次に、この溶液を上記の構造 体に塗布してキャスト膜を作製し保護封止層とした(膜 厚10ミクロン)。

【0090】 [実施例5] イソオクタン0. 01gをエ ーテル5m1に溶かした溶液にパラジウム0.1重量% 担持活性炭1gを加えて含浸させた後、窒素ガスを流通 させた焼成炉で100℃30分間乾燥させ、乳鉢で粉体 にした後、窒素ガスを流通させたグローボックス中でデ ュポン社製テフロンAFNo. 1600、50gを溶解 た。蒸着条件は、ボート温度が275℃で蒸着速度が 40 させた住友スリーエム社製フロリナートFC-43、溶 液140m1に加え、攪拌分散した。次に、この溶液を 実施例4で用いた構造体に塗布してキャスト膜を作製し 保護封止層とした(膜厚0.2ミリ)。

> 【0091】[実施例6]住友スリーエム社製、商品 名:フロリナートFC-43、100mlにデュポン社 製テフロンAFNo.1600、50gを溶解させた溶 液に一酸化コパルト(II)の粉末0.5gを実施例4と 同様の方法で分散させ、この溶液を実施例4で用いた構 造体に塗布してキャスト膜を作製し保護封止層とした (膜厚0.5ミリ)。

【0092】「実施例7]シュウ酸パナジウム0.1g を蒸留水10m1に溶解させ、活性アルミナ(和光純薬 社製、商品名:ワコーゲルQ-50)10gを加えて攪 拌し、蒸発皿で乾固させた後、電気炉に入れ、600℃ で2時間に加熱した。得られた黄色粉末を、窒素ガスを 流通させたグローボックス中で50℃に加熱したパラフ ィン (m. p. = 42~44℃) に加えて混練した。こ の溶液を実施例4で用いた構造体に塗布し、放冷して厚 膜を作製し保護封止層とした(膜厚約1ミリ)。

ートFC-43、100m1にテトラフオロエチレンと パーフルオロー2、2-ジメチルー1,3-ジオキソー ルとの無定形共重合体粉末(デュポン社製、商品名:テキ \*フロンAFNo. 1600) 50gを溶解させた溶液を 窒素ガスを流通させたグローボックスにいれ、この溶液 を実施例4で用いた構造体に塗布してキャスト膜を作製 し保護封止層とした(膜厚10ミクロン)。

【0094】 [比較例4] 窒素ガスを流通させたグロー ポックス中で50℃に加熱したパラフィン(m. p. = 42~44℃) を実施例4で用いた構造体に塗布し、放 冷して厚膜を作製し保護封止層とした (膜厚約13 リ)。実施例4~7および比較例3~4の有機EL素子 【0093】 [比較例3] 住友スリーエム社製フロリナ 10 を窒素ガスを流通させたグローボックス中で、初期輝度 100cd/m² で定電流連続駆動および1ケ月毎の非 定常駆動を行った。

|      | 連続      | 駆   | 動<br>———— | 1 ケ月毎の非定常駆動<br>(保存寿命)          |
|------|---------|-----|-----------|--------------------------------|
|      | 半減寿命    | 破   | 壞寿命       |                                |
| 実施例4 | 4,500時間 | 20, | 000時間以上   | 12ケ月後変化なし                      |
| 実施例5 | 5,000時間 | 20, | 000時間以上   | 12ケ月後変化なし                      |
| 実施例6 | 4,000時間 | 20, | 000時間以上   | 12ケ月後変化なし                      |
| 実施例7 | 8,000時間 | 10, | 000時間以上   | 12ケ月後変化なし                      |
| 比較例3 | 150時間   | 2,  | 000時間以上   | 1ヶ月後                           |
| 比較例4 | 150時間   | 1,  | 000時間以上   | ダークスポット発生<br>1ケ月後<br>ダークスポット発生 |

このように単に保護封止層をつけるよりも、その中に脱 酸素剤等を含有させることにより半減寿命、破壊寿命、 保存寿命の延長に効果がみられた。

【0095】[実施例8]

#### 有機EL素子の構造体の作製

基板ガラスに1000AのITO(酸化インジウム-酸 化錫)膜を形成した透明電極付きガラス基板(松崎真空 社製)をアセトン中で超音波洗浄し、次いで、エタノー ル中で煮沸処理した。さらに、空気組成のプラズマ処理 をした。この表面処理した透明電極付きガラス基板を真 空装置にセットし、5×10<sup>-6</sup> torrの真空度でN, N'-ジフェニル-N, N'-(3-メチルフェニル) PDという)を200A蒸着し、引続きTPDと8-オ キシキノリンのアルミニウム錯体(以下Alg゜とい う) との成分が連続して変化する濃度勾配を持つ部分 (傾斜構造部) 100Åを形成し、引き続きAlq³を 200A蒸着した。さらに、マグネシウム(Mg)と銀 (Ag) を10:1の原子比で200nm共蒸着して有 機EL素子の構造体を作製した。

【0096】保護層の形成

次に、住友スリーエム社製フロリナートFC-72中 に、デュポン社製テフロンAFNo. 1600、とマグ 50

ネシウム粉末を重量比で100:1になるような比で分 散させ、これをスポイトを用いて得られた構造体上に静 **30 かに塗布し、乾くのを待って数回同じ操作を繰り返して** 保護層を形成した。以上の操作は全て窒素雰囲気中で行 った。このようにして作成した有機EL素子は完全固体 素子であるため取り扱い易く、液漏れの心配もない。ま た、この素子を室温、空気中に放置したとこり、半年 後、直流電圧をかけたところ、均一に発光し素子に欠陥 を生じなかった。

【0097】 [比較例5] 実施例8の素子の保護層にマ グネシウム粉末を添加しないこと以外は全く同じ操作で 素子を作製し、空気中に放置した素子を発光させたとこ -1, 1' -ピフェニル-4, 4' -ジアミン(以下T 40 ろ1ケ月で素子の表面に肉眼でも見える大きさの黒い欠 陥が多数生じた。

> 【0098】 [実施例9] 実施例8で用いた脱水剤とし てのマグネシウムをモレキュラーシープ4A(広島和光 社製)に代えた以外は同様にして素子を作製した。その 結果、4ケ月間素子に欠陥が生じなかった。

> 【0099】 [実施例10] 実施例8で用いた脱水剤と してのマグネシウムを無水硫酸マグネシウム(広島和光 社製) に代えた以外は同様にして素子を作製した。その 結果、3ヶ月間素子に欠陥が生じなかった。

| 脱水剤         | 性能*       |       |
|-------------|-----------|-------|
| Mg          | 6 ケ月間欠陥なし | 実施例8  |
| モレキュラーシープ4A | 4 ケ月間欠陥なし | 実施例9  |
| 無水MgSO4     | 3 ケ月間欠陥なし | 実施例10 |
| なし          | 1 ケ月で欠陥生成 | 比較例5  |

なお、性能は直流電圧10Vを印加した時の発光面の状 態を観察した。

# 【0100】 [実施例11] 有機EL素子の構造体の作製

25mm×75mm×1.1mmのガラス基板上にIT 〇を蒸着法により10nmの厚さで製膜したものを透明 支持基板とした。この透明支持基板をイソプロピルアル コール中にて5分間洗浄後に、純水中で5分間超音波洗 浄を行ない、さらにUVオゾン洗浄を5分間行なった。 このUVオゾン洗浄には、株式会社サムコインターナシ ョナル研究所製の装置を用いた。この透明支持基板を市 販の蒸着装置(日本真空技術社製)の基板ホルダに固定 20 して、モリブデン製の抵抗加熱ポートにN, N'-ピス (3-メチルフェニル)-N, N'-ジフェニル[1, 1'-ピフェニル]-4, 4'-ジアミン (TPD) を 200mg入れ、また違うモリプデン製ポートに4, 4'-ビス(2,2'-ジフェニルビニル)ピフェニル (DPVB1) を200mg入れて真空槽を1×10<sup>-4</sup> Paまで減圧した。その後、TPD入りの上記ポートを 215~220℃まで加熱し、TPDを蒸着速度0.1 ~0.3 nm/秒で透明支持基板上に蒸着して、膜厚6 0 nmの正孔注入層を成膜した。このときの基板温度は 30 室温であった。これを真空槽から取り出すことなく、正 孔注入層の上に、もう一つのポートよりDPVBiを発 光層として40nm積層蒸着した。蒸着条件はボート温 度が240℃であり、蒸着速度は0.1~0.3nm/ 秒、基板温度は室温であった。これを真空槽から取り出 して、上記発光層の上にステンレススチール製のマスク を設置し、再び基板ホルダに固定した。次に、モリブデ ン製ポートにトリス(8-キノリノール)アルミニウム (Alq³)を200mg入れて真空槽に装着した。さ ボンを1g入れ、また違うタングステン製のパスケット に銀ワイヤを500mg入れ蒸着した。その後、真空槽 を1×10-4Paまで減圧してから、Alq3の入った ボートを230℃まで加熱し、Alq <sup>3</sup> を0.01~ 0.03 nm/秒の蒸着速度で20 nm蒸着した。さら に、銀を0.01nm/秒の蒸着速度で同時に抵抗加熱 法により、もう一方のモリプデンポートからマグネシウ ムを1.4nm/秒の蒸着速度で蒸着し始めた。上記条 件でマグネシウムと銀の混合金属電極を発光層の上に1 50nmの厚さで積層蒸着し、対向電極とした。この素 50 作製した。

子の構造体を乾燥窒素中にて、0Vから10V、0Vか 10 ら-10Vへ0.5V間隔で5秒ずつで印加し、エージ ングを行なった。

32

# 【00101】封止層の形成

次に、封止層として可視光硬化型接着剤(東亜合成化学 工業社製商品名アロンタイトVL) へ平均粒径1μmの シリカガラス(触媒化成社製)を70重量%の比率で混 合した。この封止層を上記作製の素子の構造体の有機多 層部及び電極を覆うように滴下し、太陽光により硬化さ せ、厚さ1mmの封止層を形成した。

【0102】 [比較例6] 実施例11と同じ構成、工程 で素子の構造体を作製した。封止層として東亜合成化学 工業社製、商品名アロンタイトVLを用い、構造体の上 に実施例11と同じ条件で封止層を形成した。実施例1 1及び比較例6の封止した素子をそれぞれ50個ずつ作 製したところ、封止によりショート、または機械的破壊 により全く発光性能をもたなくなった素子は実施例11 では5個、比較例6では40個であった。また、実施例 11及び比較例6の封止した素子をそれぞれ10個ずつ 耐久試験装置(タバエエスペック社製SH-220)内 に設置し、温度を25℃→60℃を30分、60℃→2 5℃を30分変化させる熱サイクルを10回繰り返す熱 サイクル耐久試験を行なった。この結果、まったく発光 性能を持たなくなった素子は実施例11で2個、比較例 6で7個あった。上記二つの試験結果より、明らかに実 施例11は比較例6に比べて作製時の歩留まりの向上、 熱サイクルに対する耐久性の向上がみられた。

#### 【0103】 [実施例12]

# 有機EL素子の構造体の作製

基板ガラスに1000ÅのITO(酸化インジウム-酸 化錫)膜を形成した透明電極付きガラス基板(ジオマテ らに、モリプデン製の抵抗加熱ボートにマグネシウムリ 40 ィック社製)をアセトン中で超音波洗浄し、次いで、U V洗浄装置(株式会社サムコインターナショナル研究所 社製UV-300) にて洗浄した。この表面処理した透 明電極付きガラス基板を真空装置にセットし、5×10 -5 torrの真空度でN, N'- (3-メチルフェニ ル) -1, 1'-ピフェニル-4, 4'-ジアミン(T PD)を600A蒸着し、引続き8-ヒドロキシキノリ ノールアルミニウム鉗体Alq3を500A蒸着した。 さらに、マグネシウム(Mg)と銀(Ag)を10:1 の原子比で2000人共蒸着し有機EL素子の構造体を

#### 【0104】積層体の形成

この素子の構造体を真空中(10<sup>-4</sup>torr以下)に て、この素子の構造体上に旭化成社製、商品名:サラン ラップ (サランラップの酸素透過係数は5.3×10 -13 cc・cm/cm²・s・(cmHg))をかぶ せ、素子の構造体の端の部分を熱プレス(180℃、1 0秒) した。以上のように作製した素子を下記の評価条 件下にて初期輝度100cd/m² にて定電流駆動し た。

【0105】 [比較例7] 実施例12で用いた構造体を 10 示す断面図である。 その上に積層体を形成することなく、初期輝度100c d/m² にて定電流駆動で下記の評価条件下にて連続駆 動した。両者500時間連続駆動後、素子内の発光面積 は実施例12の場合3.95cm²に対し、比較例7の 場合2 c m² であった。評価条件は25℃乾燥空気(純 度99、99%以上の酸素とチッ素の1:4の混合気 体) 中(ガラスケース内) で駆動した。その結果、実施 例12に示すように、封止することで無発光領域の発生 を抑制する効果がみられた。

#### [0106]

【発明の効果】以上説明したように、本発明の第一~第 三、及び第五の発明によれば酸素や水分による発光特性 の劣化を防止して、長期に亘って安定な発光特性を維持 することができ、長寿命の有機EL素子を提供すること ができる。また、本発明の第四の発明によれば、温度サ イクルによる素子の機械的劣化を防止して長期に亘って 安定な発光特性を維持することができ長寿命の有機EL 素子を提供することができる。さらに、第一~第五の発 明を適宜組み合わせることによって酸素、水分、温度サ イクル等による素子の劣化を防止して、さらに品質の優 30 44…無機組成物 れた長寿命の有機EL素子を提供することができる。

#### 【図面の簡単な説明】

【図1】本発明の、第一の発明の具体例を模式的に示す 断面図である。

【図2】本発明の、第二の発明の具体例を模式的に示す 断面図である。

【図3】本発明の、第三の発明の具体例を模式的に示す 断面図である。

【図4】本発明の、第四の発明の具体例を模式的に示す 断面図である。

【図5】本発明の、第五の発明の具体例を模式的に示す 断面図である。

【図6】本発明の、第五の発明の他の具体例を模式的に

【図7】本発明の、第五の発明の他の具体例を模式的に 示す断面図である。

#### 【符号の説明】

- 1…構造体
- 10…有機EL素子
- 11…基板
- 12…陽極
- 13…陰極
- 14…有機発光材料
- 20 2…積層体
  - 2'…保護封止層
  - 21…酸化透過係数が1×10<sup>-12</sup> cc·cm/cm<sup>2</sup>
  - ・s・(cmHg)の有機層
  - 3…保護層
  - 3 1 …脱水剤
  - 4…封止剤
  - 41…酸素吸収層
  - 4 2…酸素パリア層
  - 43…光または熱硬化性樹脂層

  - 5…フレーム(ガラスまたは樹脂製)
  - 6…接着層
  - 7…封止基板
  - 8…固体ケース

[図1]



[図2]



【図3】



[図4]



【図5】



【図6】



【図7】



フロントページの続き

(72)発明者 中村 浩昭

千葉県袖ケ浦市上泉1280番地 出光興産株 式会社内 (72)発明者 川村 久幸

千葉県袖ケ浦市上泉1280番地 出光興産株 式会社内