R 语言环境下的文本挖掘

刘思喆

@ 上海财经大学

2012年11月3日

目录

- 1 文本挖掘的概述
- 2 网页数据抓取的利器 -XML
- g tm 包及相关应用
- 4 应用的实例

目录

- 1 文本挖掘的概述
- ◎ 网页数据抓取的利器 -XML
- 3 tm 包及相关应用
- △ 应用的实例

文本挖掘的处理流程 相关的 R 包

文本挖掘的一般流程

对于文本处理过程首先要拥有分析的语料(text corpus), 比如报告、出版物、网页文章等。而后根据这些语料建立半结构化的文本库(text database), 生成包含词频的结构化的词条 -文档矩阵(term-document matrix)。

Figure: 文本挖掘的处理流程

文本挖掘的适用范围

解析后的结构化数据会被用于后续的分析,比如:

- 语法分析;
- 信息提取和修复;
- 文档信息汇总,比如提取相关有代表性的关键词、句子等。
- 文本分类,比如根据现有的文本分类情况,对未知文本进行归类;
- 其他

文本挖掘相关的 R 包

- XML
- tm
- topicmodels
- RWeka, Isa, RTextTools, zipfR, TextRegression, wordcloud

目录

- 文本挖掘的概述
- ② 网页数据抓取的利器 -XML
- 3 tm 包及相关应用
- △ 应用的实例

网页数据的获取函数 实际的例子

XML 文件的解析

在 R 中对网页解析 (XML、HTML 文件,或包含 XML、HTML 的字符串) 有多种方法,比较成熟的方法是使用 XML 包。这个包能够将 XML、HTML 网页树 (tree) 解析成 R 结构数据。

解析函数

对标准 XML 文件的解析函数 xmlParse ,以及适应性更强的 htmlTreeParse 函数 ,这些函数都拥有大量的参数来适应解析需要。

解析的 XML 文件

```
<doc>
 <a xmlns:omegahat="http://www.omegahat.org">
  <b>
  <c>
    <b/>
  </c>
  </b>
  <br/><br/>b omegahat:status="foo">
   <r:d>
    <a status="xyz"/>
    \langle a/\rangle
    <a status="1"/>
   </r:d>
  </b>
 </a>
</doc>
```

XML 支持的功能远不止如此,可参考 XML 包的帮助文档

XML 支持的功能远不止如此,可参考 XML 包的帮助文档

获得国家地震科学数据共享中心的地震数据

- 我们先观察一下它的网页

获得国家地震科学数据共享中心的地震数据

- 我们先观察一下它的网页
- 再看看怎么抓取

获得国家地震科学数据共享中心的地震数据

- 我们先观察一下它的网页
- 再看看怎么抓取
- 其实这就是一个"爬虫"

目录

- 文本挖掘的概述
- ◎ 网页数据抓取的利器 -XML
- g tm 包及相关应用
- △ 应用的实例

中文分词

词条 -文档关系矩阵

中文分词工具的 R 包 rmmseg4j

rmmseg4j 调用了 Java 分词程序对语句进行分词。下面是一个例子:

```
library(rmmseg4j)
```

- > mmseg4j('花儿为什么这样红')
- [1] "花儿 为什么 这样 红"

这段话被分为了"花儿","为什么","这样","红"。这个空格分隔的结果集,后期就可以按照英文的方式进行后续处理。

由于 rmmseg4j 这个包已经发布 CRAN 仓库上,正常安装:

install.packages("rmmseg4j")

语料库

在 tm 中主要的管理文件的结构被称为语料库(Corpus), 代表了一系列的文档集合。 动态语料库:

```
Corpus(x,
readerControl = list(reader = x$DefaultReader, language = "en"),
...)

静态语料库 (需要 filehash 包的支持):
PCorpus(x,
```

```
readerControl = list(reader = x$DefaultReader, language = "en"),
dbControl = list(dbName = "", dbType = "DB1"),
...)
```

语料库的处理

作用	函数
转化纯文本	tm_map(reuters, as.PlainTextDocument)
去除空白	<pre>tm_map(reuters, stripWhitespace)</pre>
小写变化	<pre>tm_map(reuters, tolower)</pre>
停止词去除	<pre>tm_map(reuters, removeWords, stopwords("english"))</pre>
剔除数字	<pre>tm_map(ovid,removeNumbers)</pre>

词条 -文档关系矩阵

词条 -文档关系矩阵是后续构建模型的基础。假设我们有两个文档分别是 text mining is funny 和 a text is a sequence of words,那么其映射到空间上对应的矩阵为:

	а	funny	is	mining	of	sequence	text	words
Doc 1	0	1	1	1	0	0	1	0
Doc 2	2	0	1	0	1	1	1	1

在 tm 包里,根据词条、文档分别作为行、列或反之,对应两种矩阵:

- TermDocumentMatrix
- DocumentTermMatrix

文档 -词条关系矩阵的相关操作

- findFreqTerms(dtm, 5)
- findAssocs(dtm, "opec", 0.8)
- removeSparseTerms(dtm, 0.4)

延伸阅读

- ① tm 的扩展,包括并行计算
- ② 根据条件进行文档过滤(tm_filter)
- 3 元数据的管理 (meta, DublinCore)
- 4 字典(Dictionary)的应用

目录

- ① 文本挖掘的概述
- ② 网页数据抓取的利器 -XML
- g tm 包及相关应用
- ₫ 应用的实例

wordcloud

文档识别和聚类

主题模型 (topic model)

关键词网络

文档识别的原理

假如我们有下表这样的矩阵,那能做分类么?

Table: 矩阵示例

Υ	data	big	market	last	google	new	
1	0	1	1	0	0	0	
1	0	0	0	0	1	1	
0	1	0	9	1	2	2	
0	0	0	2	0	1	1	
1	0	0	1	0	0	0	
0	0	1	1	0	1	0	

一般的 Classification 类的方法都可以使用在这个矩阵上,比如从最简单的 knn,稍稍高 级点的 regression、decision tree , 甚至 SVMs 等方法都可以使用。

主题模型简介

主题模型是专门抽象一组文档所表达"主题"的统计技术。最早的模型是 probabilistic latent semantic indexing (PLSI),后来 Latent Dirichlet allocation (LDA,潜在狄利克雷分配模型)模型成为了最常见的主题模型,它可以认为是 PLSI 的泛化形式。 LDA 主题模型涉及到贝叶斯理论、Dirichlet 分布、多项分布、图模型、变分推断、EM算法、Gibbs 抽样等知识。

详细参考统计之都主站文章:

http://cos.name/2010/10/lda_topic_model/

应用实例(一)

在某个门户网站上收集了 720 篇文章, 对这些文档构建 LDA 模型,参数设置为 6 类,模型提取出 6 个类别的关键词分别是美食、旅游、拍摄、购物、汽车和招聘,每个关键词对应的文档数量如下图所示:

Table: 预测种类及主题关键词

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6
美食	旅游	拍摄	购物	汽车	招聘
102	140	118	110	129	121

应用实例(二)

实际上收集的这些文章分属不同频道: "购物类", "旅游类", "美食类", "汽车类", "数码类", "招聘类", 共计六类。对比网站编辑的人工标记同模型标记的差异情况:

Table: 预测种类同人工判别种类的混淆矩阵

	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6
购物类	9	1	3	91	15	1
旅游类	0	113	0	4	0	3
美食类	90	24	0	5	1	0
汽车类	3	0	0	7	110	0
数码类	0	2	115	0	3	0
招聘类	0	0	0	3	0	117

注:在使用 topic model 过程中设置了 6 类的参数是为了和实际情况进行比对

24 / 27

刘思喆 (统计之都) R 语言环境下的文本挖掘 2012 年 11 月 3 日

关键词网络

- 22996 首中文流行歌曲的歌词 (844 位歌手)
- 这些歌词是怎么组织在一起的?

爱情 永远 寂寞 邮件:sunbjt<at>gmail.com

• 博客: http://www.bjt.name

- 微博: @ 刘思喆

Jump to first slide