Fast Elliptic Curve Rank Computation in Sage

Simon Spicer

University of Washington mlungu@uw.edu

October 6, 2014

Let E/\mathbb{Q} be an elliptic curve.

Let E/\mathbb{Q} be an elliptic curve. What is $\operatorname{rank}(E(\mathbb{Q}))$?

• Brute force point search.

Let E/\mathbb{Q} be an elliptic curve. What is $\operatorname{rank}(E(\mathbb{Q}))$?

- Brute force point search.
 - Only gives lower bounds to rank when do you stop?

Let E/\mathbb{Q} be an elliptic curve. What is $\operatorname{rank}(E(\mathbb{Q}))$?

- Brute force point search.
 - Only gives lower bounds to rank when do you stop?
 - ► Can be *very* inefficient:

- Brute force point search.
 - Only gives lower bounds to rank when do you stop?
 - ► Can be *very* inefficient:
 - $E: y^2 = x^3 157^2x$ has "smallest" point

$$P = (x, y) = \left(-\frac{43565582610691407250551997}{609760250665615167250729}, \frac{562653616877773225244609387368307126580}{476144382506163554005382044222449067}\right)$$

- Brute force point search.
 - ▶ Only gives lower bounds to rank when do you stop?
 - ► Can be *very* inefficient:
 - $E: y^2 = x^3 157^2x$ has "smallest" point

$$P=(x,y)=\left(-\frac{43565582610691407250551997}{609760250665615167250729},\,\frac{562653616877773225244609387368307126580}{476144382506163554005382044222449067}\right)$$

- Other algebraic methods (e.g. p-descent)
 - Complicated to implement
 - Not guaranteed to succeed
 - Uneven
 - Can be very slow

- Brute force point search.
 - Only gives lower bounds to rank when do you stop?
 - ► Can be *very* inefficient:
 - $E: y^2 = x^3 157^2x$ has "smallest" point

$$P = (x, y) = \left(-\frac{43565582610691407250551997}{609760250665615167250729}, \frac{562653616877773225244609387368307126580}{476144382506163554005382044222449067}\right)$$

- Other algebraic methods (e.g. p-descent)
 - Complicated to implement
 - Not guaranteed to succeed
 - Uneven
 - Can be very slow
- Analytic methods
 - Work with L-functions
 - Can be faster
 - ► Only give rank upper bounds

Underlying problem with these methods: how do they scale time-wise?

Underlying problem with these methods: how do they scale time-wise?

• What do they even scale with?

Elliptic Curve L-Functions

Definition

The L-function attached to E is

$$L_{E}(s) := \prod_{p \mid N} \frac{1}{1 - a_{p}p^{-s}} \prod_{p \mid N} \frac{1}{1 - a_{p}p^{-s} + p^{1-2s}} = \sum_{n=1}^{\infty} a_{n}n^{-s}$$

for $\Re(s) > \frac{3}{2}$.

The a_n are defined by multiplying out the Euler product.

Elliptic Curve L-Functions

Definition

The L-function attached to E is

$$L_{E}(s) := \prod_{p \mid N} \frac{1}{1 - a_{p}p^{-s}} \prod_{p \nmid N} \frac{1}{1 - a_{p}p^{-s} + p^{1-2s}} = \sum_{n=1}^{\infty} a_{n}n^{-s}$$

for $\Re(s) > \frac{3}{2}$.

The a_n are defined by multiplying out the Euler product.

Definition

The *completed* L-function attached to E is

$$\Lambda_E(s) := N^{s/2} (2\pi)^{-s} \Gamma(s) L_E(s)$$

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001) $L_E(s)$ extends to an entire function on \mathbb{C} .

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001) $L_F(s)$ extends to an entire function on \mathbb{C} .

Specifically,

$$\Lambda_E(s) = w\Lambda_E(2-s),$$

where $w = \pm 1$.

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001) $L_F(s)$ extends to an entire function on \mathbb{C} .

Specifically,

$$\Lambda_E(s) = w\Lambda_E(2-s),$$

where $w = \pm 1$.

 \implies can compute $L_E(s)$ for any s.

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

• $ord_{s=1}L_E(s) = rank(E(\mathbb{Q}))$ "Analytic rank equals algebraic rank"

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- $ord_{s=1}L_E(s) = rank(E(\mathbb{Q}))$ "Analytic rank equals algebraic rank"
- There is a formula for the first nonzero Taylor coefficient for $L_E(s)$ at s=1 in terms of invariants of E.

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- $ord_{s=1}L_E(s) = rank(E(\mathbb{Q}))$ "Analytic rank equals algebraic rank"
- There is a formula for the first nonzero Taylor coefficient for $L_E(s)$ at s=1 in terms of invariants of E.

Specifically, that coefficient is

$$\frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

where

- Ω_E is the real period of (an optimal model of) E,
- Reg_E is the regulator of E,
- $\# \coprod (E/\mathbb{Q})$ is the order of the Shafarevich-Tate group attached to E/\mathbb{Q} ,
- $\prod_p c_p$ is the product of the Tamagawa numbers of E, and
- $\#E_{\mathsf{Tor}}(\mathbb{Q})$ is the number of rational torsion points on E.

Conjecturally: compute algebraic rank by computing analytic rank.

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$.

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

• Straightforward implementation

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

- Straightforward implementation
- $\tilde{O}(\sqrt{N})$ runtime

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

- Straightforward implementation
- $\tilde{O}(\sqrt{N})$ runtime
- Often faster than algebraic methods*

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

- Straightforward implementation
- $\tilde{O}(\sqrt{N})$ runtime
- Often faster than algebraic methods*

Downsides:

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

- Straightforward implementation
- $\tilde{O}(\sqrt{N})$ runtime
- Often faster than algebraic methods*

Downsides:

• Conjectural for $r_{an} \ge 2$

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

- Straightforward implementation
- $\tilde{O}(\sqrt{N})$ runtime
- Often faster than algebraic methods*

Downsides:

- Conjectural for $r_{an} \ge 2$
- Infeasible for large conductor

Conjecturally: compute algebraic rank by computing analytic rank. Standard method: compute Taylor coefficients by evaluating $L_E(s)$. Upsides:

- Straightforward implementation
- $\tilde{O}(\sqrt{N})$ runtime
- Often faster than algebraic methods*

Downsides:

- Conjectural for $r_{an} \ge 2$
- Infeasible for large conductor
- Finite precision ⇒ can only ever compute upper bounds on rank

The Central Zero

Example

Let Δ be a positive constant and let $\mathrm{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$, and consider the sum

$$\sum_{\gamma} \operatorname{sinc}^{2}(x)\big|_{x=\Delta\gamma}$$

where γ ranges over the imaginary parts of all the nontrivial zeros of the *L*-function of *E*.

Example

Let Δ be a positive constant and let $sinc(x) = \frac{sin(\pi x)}{\pi x}$, and consider the sum

$$\sum_{\gamma} \operatorname{sinc}^{2}(x)\big|_{x=\Delta\gamma}$$

where γ ranges over the imaginary parts of all the nontrivial zeros of the *L*-function of *E*.

Example

The curve $E: y^2 = x^3 - 18x + 51$ is a rank 1 curve, N = 750384.

Example

Let Δ be a positive constant and let $sinc(x) = \frac{sin(\pi x)}{\pi x}$, and consider the sum

$$\sum_{\gamma} \operatorname{sinc}^{2}(x)\big|_{x=\Delta\gamma}$$

where γ ranges over the imaginary parts of all the nontrivial zeros of the *L*-function of *E*.

Example

The curve $E: y^2 = x^3 - 18x + 51$ is a rank 1 curve, N = 750384. Its first few zeros in the upper half plane have imaginary parts 0, 0.522568720, 1.35341446, 1.93770878, 2.39321529, 3.25991966, 3.32420508, 3.87882138, 4.60372690, 4.97511170, ...

Because $\operatorname{sinc}^2(0)=1$ and $\operatorname{sinc}^2(\Delta\gamma)\to 0$ as $\Delta\to\infty$ for any nonzero γ , the zero sum limits to r_{an} as $\Delta\to\infty$.

Evaluate zero sum sum cleverly for large enough $\Delta \Longrightarrow$ compute analytic rank.

Evaluate zero sum sum cleverly for large enough $\Delta \Longrightarrow$ compute analytic rank.

Definition

An explicit formula for an elliptic curve L-functions is one of a suite of formulae which relate sums over the nontrivial zeros of $L_E(s)$ to sums over the curve's a_p values.

Evaluate zero sum sum cleverly for large enough $\Delta \Longrightarrow$ compute analytic rank.

Definition

An explicit formula for an elliptic curve L-functions is one of a suite of formulae which relate sums over the nontrivial zeros of $L_E(s)$ to sums over the curve's a_p values.

Can compute zero sums *without* having to compute locations of the zeros themselves.

Evaluate zero sum sum cleverly for large enough $\Delta \Longrightarrow$ compute analytic rank.

Definition

An explicit formula for an elliptic curve L-functions is one of a suite of formulae which relate sums over the nontrivial zeros of $L_E(s)$ to sums over the curve's a_p values.

Can compute zero sums *without* having to compute locations of the zeros themselves.

Good news: explicit formula exists for sinc² zero sum!

The Explicit Formula for Elliptic curves

Definition

For $n \in \mathbb{N}$, let $c_n = c_n(E)$ be the *n*th Dirichlet coefficient of $\frac{L_E'}{L_E}(1+s)$, i.e.

$$c_n(E) := \begin{cases} -\left(\alpha_p^e + \beta_p^e\right) \cdot \frac{\log(p)}{p^e}, & n = p^e \ e \ge 1, \ p \nmid N \\ -a_p^e \cdot \frac{\log(p)}{p^e}, & n = p^e \ p \mid N \\ 0, & \text{otherwise} \end{cases}$$

The Explicit Formula for Elliptic curves

Definition

For $n \in \mathbb{N}$, let $c_n = c_n(E)$ be the *n*th Dirichlet coefficient of $\frac{L'_E}{L_E}(1+s)$, i.e.

$$c_n(E) := \begin{cases} -\left(\alpha_p^e + \beta_p^e\right) \cdot \frac{\log(p)}{p^e}, & n = p^e \ e \ge 1, \ p \nmid N \\ -a_p^e \cdot \frac{\log(p)}{p^e}, & n = p^e \ p \mid N \\ 0, & \text{otherwise} \end{cases}$$

Theorem (Explicit Formula, Distributional Version)

Let γ range over the imaginary parts of the zeros of $L_E(s)$ with multiplicity. Let $\varphi_E = \sum_{\gamma} \delta(x - \gamma)$ be the complex-valued distribution on $\mathbb R$ corresponding to summation over γ . Then as a distribution,

$$\varphi_E = \frac{1}{\pi} \left[\log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{\Gamma'}{\Gamma} (1 + ix) + \sum_{n=1}^{\infty} c_n \cos(x \log n) \right].$$

The Explicit Formula for Elliptic curves

Theorem (Explicit Formula, Fourier Version)

Suppose that $f(x): \mathbb{R} \to \mathbb{C}$ is even, piecewise continuous and integrable. Suppose that the Fourier transform $\hat{f}(y) = \int_{-\infty}^{\infty} e^{-ixy} f(x) \ dx$ exists and is such that $\sum_{n=1}^{\infty} c_n \hat{f}(\log n)$ converges absolutely. Then

$$\sum_{\gamma} f(\gamma) = \frac{1}{\pi} \left[\log \left(\frac{\sqrt{N}}{2\pi} \right) \hat{f}(0) + \int_{-\infty}^{\infty} (\Re F(1+it)) f(t) dt + \sum_{n=1}^{\infty} c_n \hat{f}(\log n) \right],$$

where γ runs over the imaginary parts of the zeros of $L_E(s)$.

The Explicit Formula for the sinc² Sum

$$\sum_{\gamma} \operatorname{sinc}^{2}(\Delta \gamma) = \frac{1}{\pi \Delta} \left[-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{1}{2\pi \Delta} \left(\frac{\pi^{2}}{6} - \operatorname{Li}_{2} \left(e^{-2\pi \Delta} \right) \right) - \sum_{\substack{p^{n} < e^{2\pi \Delta} \\ \text{optimes}}} \frac{\left(\alpha_{p}^{n} + \beta_{p}^{n} \right) \log(p)}{p^{n}} \left(1 - \frac{n \log p}{2\pi \Delta} \right) \right]$$

The Explicit Formula for the sinc² Sum

$$\begin{split} \sum_{\gamma} \mathsf{sinc}^2(\Delta \gamma) &= \frac{1}{\pi \Delta} \left[-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{1}{2\pi \Delta} \left(\frac{\pi^2}{6} - \mathsf{Li}_2 \left(e^{-2\pi \Delta} \right) \right) \right. \\ &\left. - \sum_{\substack{p^n < e^{2\pi \Delta} \\ p \text{ prime}}} \frac{\left(\alpha_p^n + \beta_p^n \right) \log(p)}{p^n} \left(1 - \frac{n \log p}{2\pi \Delta} \right) \right] \end{split}$$

where

- γ ranges over the nontrivial zeros of the *L*-function attached to *E* and Δ is a positive parameter
- η is the Euler-Mascheroni constant = 0.5772 . . . and N is the conductor of E
- Li₂(x) is the dilogarithm function, defined by Li₂(x) = $\sum_{k=1}^{\infty} \frac{x^k}{k^2}$
- α_p and β_p are the two complex roots of $x^2 a_p x + p = 0$ (if p has good reduction)

$$\sum_{\gamma} \mathrm{sinc}^2(\Delta \gamma) = \frac{1}{\pi \Delta} \left[-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{1}{2\pi \Delta} \left(\frac{\pi^2}{6} - \mathrm{Li}_2\left(e^{-2\pi \Delta} \right) \right) - \sum_{\substack{p^n < e^{2\pi \Delta} \\ p \text{ prime}}} \frac{(\alpha_p^n + \beta_p^n) \log(p)}{p^n} \left(1 - \frac{n \log p}{2\pi \Delta} \right) \right]$$

- Everything on RHS is effectively (and efficiently) computable
- Prime power sum is *finite*, so no truncation error.

$$\sum_{\gamma} \mathrm{sinc}^2(\Delta \gamma) = \frac{1}{\pi \Delta} \left[-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{1}{2\pi \Delta} \left(\frac{\pi^2}{6} - \mathrm{Li}_2\left(e^{-2\pi \Delta} \right) \right) - \sum_{\substack{p^n < e^{2\pi \Delta} \\ p \text{ prime}}} \frac{(\alpha_p^n + \beta_p^n) \log(p)}{p^n} \left(1 - \frac{n \log p}{2\pi \Delta} \right) \right]$$

- Everything on RHS is effectively (and efficiently) computable
- Prime power sum is *finite*, so no truncation error.

Tactic:

$$\sum_{\gamma} \mathrm{sinc}^2(\Delta \gamma) = \frac{1}{\pi \Delta} \left[-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{1}{2\pi \Delta} \left(\frac{\pi^2}{6} - \mathrm{Li}_2\left(e^{-2\pi \Delta} \right) \right) - \sum_{\substack{p^n < e^{2\pi \Delta} \\ p \text{ prime}}} \frac{(\alpha_p^n + \beta_p^n) \log(p)}{p^n} \left(1 - \frac{n \log p}{2\pi \Delta} \right) \right]$$

- Everything on RHS is effectively (and efficiently) computable
- Prime power sum is *finite*, so no truncation error.

Tactic:

ullet Pick a sufficiently large* value of Δ

$$\sum_{\gamma} \mathrm{sinc}^2(\Delta \gamma) = \frac{1}{\pi \Delta} \left[-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{1}{2\pi \Delta} \left(\frac{\pi^2}{6} - \mathrm{Li}_2\left(e^{-2\pi \Delta} \right) \right) - \sum_{\substack{\rho^n < e^{2\pi \Delta} \\ \rho \text{ prime}}} \frac{(\alpha_\rho^n + \beta_\rho^n) \log(\rho)}{\rho^n} \left(1 - \frac{n \log \rho}{2\pi \Delta} \right) \right]$$

- Everything on RHS is effectively (and efficiently) computable
- Prime power sum is *finite*, so no truncation error.

Tactic:

- Pick a sufficiently large* value of Δ
- Compute everything on the RHS and add it all up

$$\sum_{\gamma} \mathrm{sinc}^2(\Delta \gamma) = \frac{1}{\pi \Delta} \left[-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) + \frac{1}{2\pi \Delta} \left(\frac{\pi^2}{6} - \mathrm{Li}_2\left(e^{-2\pi \Delta} \right) \right) - \sum_{\substack{\rho^n < e^{2\pi \Delta} \\ \rho \text{ prime}}} \frac{(\alpha_\rho^n + \beta_\rho^n) \log(\rho)}{\rho^n} \left(1 - \frac{n \log \rho}{2\pi \Delta} \right) \right]$$

- Everything on RHS is effectively (and efficiently) computable
- Prime power sum is *finite*, so no truncation error.

Tactic:

- Pick a sufficiently large* value of Δ
- Compute everything on the RHS and add it all up
- Resulting value is an upper bound for the analytic rank of E; hopefully close.

The c_n Sum for $E: y^2 = x^3 + 103x$?51, with $\Delta = 1$

- $\sum_{\log n < 2\pi\Delta} c_n \cdot (2\pi\Delta \log n)$.
- The black lines are the triangular function $y = \pm (2\pi\Delta x)$
- Blue line at $x = \log n$ has height $c_n \cdot (2\pi\Delta \log n)$.
- \bullet Sum the signed lengths of the blue lines to get value of the sum over n
- Only 120 non-zero terms ⇒ quick to compute.

How Big should Δ Be?

• The number of terms in the prime power sum is $O(e^{2\pi\Delta})$ \Longrightarrow Time complexity of the method is exponential in Δ

How Big should Δ Be?

- The number of terms in the prime power sum is $O(e^{2\pi\Delta})$ \Longrightarrow Time complexity of the method is exponential in Δ
 - $\Delta = 1 \Rightarrow O(\text{milliseconds}) \text{ runtime}$
 - ▶ $\Delta = 2 \Rightarrow O(\text{seconds})$ runtime
 - $\Delta = 3 \Rightarrow O(\text{hours}) \text{ runtime}$

How Big should Δ Be?

- The number of terms in the prime power sum is $O(e^{2\pi\Delta})$ \Longrightarrow Time complexity of the method is exponential in Δ
 - $ightharpoonup \Delta = 1 \Rightarrow O(\text{milliseconds}) \text{ runtime}$
 - $\Delta = 2 \Rightarrow O(\text{seconds})$ runtime
 - $\Delta = 3 \Rightarrow O(\text{hours}) \text{ runtime}$
- Zero density is O(log N)

- The number of terms in the prime power sum is $O(e^{2\pi\Delta})$ \Longrightarrow Time complexity of the method is exponential in Δ
 - $\Delta = 1 \Rightarrow O(\text{milliseconds}) \text{ runtime}$
 - $\Delta = 2 \Rightarrow O(\text{seconds})$ runtime
 - $\Delta = 3 \Rightarrow O(\text{hours}) \text{ runtime}$
- Zero density is O(log N)
- Choosing $\Delta(N) = \alpha \cdot \frac{1}{\pi} \left(-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) \right)$ for any constant α \Longrightarrow bounds are tight a constant proportion of the time.

- The number of terms in the prime power sum is $O(e^{2\pi\Delta})$ \Longrightarrow Time complexity of the method is exponential in Δ
 - $\Delta = 1 \Rightarrow O(milliseconds)$ runtime
 - $\Delta = 2 \Rightarrow O(\text{seconds})$ runtime
 - $\Delta = 3 \Rightarrow O(\text{hours}) \text{ runtime}$
- Zero density is $O(\log N)$
- Choosing $\Delta(N) = \alpha \cdot \frac{1}{\pi} \left(-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) \right)$ for any constant α \Longrightarrow bounds are tight a constant proportion of the time.
- \Longrightarrow Time complexity is $O(N^{\alpha})$, but with small constants sitting in front.

- The number of terms in the prime power sum is $O(e^{2\pi\Delta})$ \Longrightarrow Time complexity of the method is exponential in Δ
 - $\Delta = 1 \Rightarrow O(milliseconds)$ runtime
 - $\Delta = 2 \Rightarrow O(\text{seconds})$ runtime
 - $\Delta = 3 \Rightarrow O(\text{hours}) \text{ runtime}$
- Zero density is O(log N)
- Choosing $\Delta(N) = \alpha \cdot \frac{1}{\pi} \left(-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) \right)$ for any constant α \Longrightarrow bounds are tight a constant proportion of the time.
- \Longrightarrow Time complexity is $O(N^{\alpha})$, but with small constants sitting in front.
- For $\alpha=1$, computed bound is actually the analytic rank 99.75% of the time.

- The number of terms in the prime power sum is $O(e^{2\pi\Delta})$ \Longrightarrow Time complexity of the method is exponential in Δ
 - $\Delta = 1 \Rightarrow O(milliseconds)$ runtime
 - $\Delta = 2 \Rightarrow O(\text{seconds})$ runtime
 - $\Delta = 3 \Rightarrow O(\text{hours}) \text{ runtime}$
- Zero density is $O(\log N)$
- Choosing $\Delta(N) = \alpha \cdot \frac{1}{\pi} \left(-\eta + \log \left(\frac{\sqrt{N}}{2\pi} \right) \right)$ for any constant α \Longrightarrow bounds are tight a constant proportion of the time.
- \Longrightarrow Time complexity is $O(N^{\alpha})$, but with small constants sitting in front.
- For $\alpha = 1$, computed bound is actually the analytic rank 99.75% of the time.
- $\alpha=1\Rightarrow \Delta(\textit{N}\approx 10^9)\sim 2.5$, so practical for curves with conductor not too large.

Proportion rank bound \neq rank

- Proportion of all curves up to conductor N for which rank bound ≠ true rank.
- For entire Cremona db, only 0.25% had rank bound \neq rank.
- Sampling at higher conductors yields similar fidelity.

When the Method Doesn't Work

Method fails for curves with anomalously low-lying zeros.

When the Method Doesn't Work

Method fails for curves with anomalously low-lying zeros.

 The zero sum rank estimation method has been implemented for Sage in Python and Cython as part of my Google Summer of Code 2014 project.

- The zero sum rank estimation method has been implemented for Sage in Python and Cython as part of my Google Summer of Code 2014 project.
- Can be found at https://github.com/haikona/GSoC_2014:

```
Chrome File Edit View History Bookmarks Window Help
                                                                                                                                                                                                                                                                                                                                   A $\infty$ A $\infty$ $\in
                    GSoC_2014/zero_sums.py ×
     C # GitHub, Inc. (US) https://github.com/haikona/GSoC 2014/blob/gsoc/src/sage/lfunctions/zero sums.pv
                            cdef extern from "kmath.h>":
                                          double c exp "exp"(double)
                                          double c_log "log"(double)
                                          double c_cos "cos"(double)
                                          double c_acos "acos"(double)
                                          double c sqrt "sqrt"(double)
                            cdef class LFunctionZeroSum abstract(SageObject):
                                          Abstract class for computing certain sums over zeros of a motivic L-function
                                          without having to determine the zeros themselves
                                          cdef N
                                          cdef k
                                          cdef C8
                                          cdef _C1
                                          cdef _pi
                                          cdef euler gamma
                                          def level(self):
                                                       Return the level of the form attached to self. If self was constructed
                                                       from an elliptic curve, then this is equal to the conductor of 'E'.
                                                       EXAMPLES::
                                                                    sage: E = EllipticCurve('389a')
                                                                    sage: Z = LFunctionZeroSum(E)
                                                                    sage: Z.level()
                                                                    389
```

• Usually much faster than traditional analytic rank methods.

Usually much faster than traditional analytic rank methods.

```
Sage Version 6.2, Release Date: 2014-05-06
Type "notebook()" for the browser-based notebook interface.
Type "help()" for help.

sage: E = EllipticCurve([-2934,19238]); E
Elliptic Curve defined by y^2 = x^3 - 2934*x + 19238 over Rational Field sage: %time E.analytic_rank(algorithm='rubinstein')
CPU times: user 2.79 ms, sys: 6.08 ms, total: 8.87 ms
Wall time: 1min 12s
1
sage: %time E.analytic_rank(algorithm='zero_sum')
CPU times: user 23.8 ms, sys: 2.45 ms, total: 26.3 ms
Wall time: 41.9 ms
```

Usually much faster than traditional analytic rank methods.

```
Sage Version 6.2, Release Date: 2014-05-06
Type "notebook()" for the browser-based notebook interface.
Type "help()" for help.

sage: E = EllipticCurve([-2934,19238]); E
Elliptic Curve defined by y^2 = x^3 - 2934*x + 19238 over Rational Field
sage: %time E.analytic_rank(algorithm='rubinstein')
CPU times: user 2.79 ms, sys: 6.08 ms, total: 8.87 ms
Wall time: 1min 12s

1
sage: %time E.analytic_rank(algorithm='zero_sum')
CPU times: user 23.8 ms, sys: 2.45 ms, total: 26.3 ms
Wall time: 41.9 ms
```

• Actually works better on curves of larger rank.

- This method is sensitive to the lowest nontrivial non central zero
 - ► Curve with large lowest first zero ⇒ method computes rank quickly
 - ▶ Curve with small lowest first zero ⇒ method computes slowly/fails to provide tight bound

- This method is sensitive to the lowest nontrivial non central zero
 - ► Curve with large lowest first zero ⇒ method computes rank quickly
 - ► Curve with small lowest first zero ⇒ method computes slowly/fails to provide tight bound
- Lowest zero location is intimately related to size of leading coefficient (that predicted by BSD conjecture):

- This method is sensitive to the lowest nontrivial non central zero
 - ► Curve with large lowest first zero ⇒ method computes rank quickly
 - ► Curve with small lowest first zero ⇒ method computes slowly/fails to provide tight bound
- Lowest zero location is intimately related to size of leading coefficient (that predicted by BSD conjecture):
- Bound leading coefficient from below bound lowest zero away from central point

- This method is sensitive to the lowest nontrivial non central zero
 - lacktriangle Curve with large lowest first zero \Longrightarrow method computes rank quickly
 - ► Curve with small lowest first zero ⇒ method computes slowly/fails to provide tight bound
- Lowest zero location is intimately related to size of leading coefficient (that predicted by BSD conjecture):
- Bound leading coefficient from below bound lowest zero away from central point
- My thesis work: assume full BSD, GRH and ABC;
 - \Longrightarrow Effective method to compute rank with known time complexity.

- This method is sensitive to the lowest nontrivial non central zero
 - lacktriangle Curve with large lowest first zero \Longrightarrow method computes rank quickly
 - ► Curve with small lowest first zero ⇒ method computes slowly/fails to provide tight bound
- Lowest zero location is intimately related to size of leading coefficient (that predicted by BSD conjecture):
- Bound leading coefficient from below bound lowest zero away from central point
- My thesis work: assume full BSD, GRH and ABC;
 - \Longrightarrow Effective method to compute rank with known time complexity.

$$\frac{L_E^{(r)}(1)}{r!} = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \coprod (E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

$$\frac{L_E^{(r)}(1)}{r!} = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_{\rho} c_{\rho}}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

• How small can Reg_E be in terms of N?

$$\frac{L_E^{(r)}(1)}{r!} = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_{\rho} c_{\rho}}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

- How small can Reg_F be in terms of N?
- How small can Ω_E be in terms of N?:

$$\frac{L_E^{(r)}(1)}{r!} = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

- How small can Reg_F be in terms of N?
- How small can Ω_F be in terms of N?:

Long and short: rank should be in $\tilde{O}(N^{\beta})$ time for some $\beta >> 1$.

$$\frac{L_E^{(r)}(1)}{r!} = \frac{\Omega_E \cdot \mathsf{Reg}_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_{\rho} c_{\rho}}{(\# E_{\mathsf{Tor}}(\mathbb{Q}))^2}$$

- How small can Reg_F be in terms of N?
- How small can Ω_E be in terms of N?:

Long and short: rank should be in $\tilde{O}(N^{\beta})$ time for some $\beta >> 1$. Most likely not practical, but first such result.

Thank You