EE698A- MACHINE LEARNING FOR SIGNAL PROCESSING

JINANG SHAH - 170649

Topics covered so far:

- Importance of Signal Processing and its Application in our regular life
- What is machine learning and why are we using it now?
- Quantization of signals
- Fourier Transform and its properties
- Short Term Fourier Transform and analysis
- Identifying necessary features of data
- Precision, Recall and their specific applications
- Confusion Matrix
- Mathematical representation of data
- Linear models for Classification and Regression
 - Gradient Descent
 - Challenges with regression like overshooting
 - Regularization to accommodate overshooting
 - L1 Regularization
 - L2 Regularization
 - Ridge Regression
 - LASSO
 - Min norm regularization
- Neural Networks and its methodology
- Optimization methods
 - Validation dataset for hyperparameters
 - Bias
 - Momentum Method
 - Rmsprop
 - Random initialization and Normalization of dataset
 - Stochastic Gradient Descent
 - Introducing noise
 - Dropouts
- Online and Offline learning and their differences
- Introduction to Probability and Probability Models
 - Bayes' theorem
 - > Expectation in probability
 - Maximum Likelihood Estimation

- MAP
- Probability Models
- Sampling in Probability Models
- Comparing two probability distribution functions
 - Cohen's Kappa
- Clustering and grouping
 - K-means Clustering also called Hard assignment
 - Gaussian Mixture Models
 - Introduction to Latent variables
 - Application and utility of Auxiliary functions
 - Jensen's Inequality for logarithmic and other concave functions
 - Expectation Maximization algorithm
- Loss functions and analysis
 - Entropy
 - Cross Entropy
 - > KL Divergence
- Dimensionality Reduction using PCA
- Matrix factorization
 - ➤ Non-Negative Matrix Factorization
 - For dimensionality reduction
 - For reconstruction
 - For in painting
 - For separating Sources
 - For classification
 - ➢ PLCA
 - Probabilistic Version of NMF with latent variable and Auxiliary functions
- Convolutional Neural Networks
- RNNs
- Hidden Markov Models (HMMs)
 - Continuous and discrete latent variables