Math 6417 Homework 2

Jacob Hauck

September 19, 2023

A continuous function $\sigma: \mathbf{R} \to \mathbf{R}$ is called **sigmoidal** if there exists T > 0 such that

$$\sigma(t) = \begin{cases} 1 & t \ge T, \\ 0 & t \le -T. \end{cases} \tag{1}$$

Let σ be sigmoidal in the following problems.

Question 1.

Let $y \in \mathbf{R}^n$, and $(\theta, \phi) \in \mathbf{R}^2$. For $x \in \mathbf{R}^n$, define

$$\sigma_{\lambda}(x;\theta,\phi) = \sigma\left(\lambda\left(y^{T}x + \theta\right) + \phi\right). \tag{2}$$

Then

$$\sigma_{\lambda}(x;\theta,\phi) \to \gamma(x) = \begin{cases} 1 & y^T x + \theta > 0 \\ 0 & y^T x + \theta < 0 \\ \sigma(\phi) & y^T x + \theta = 0 \end{cases} \quad \text{as } \lambda \to \infty.$$
 (3)

Proof. If $y^T x + \theta = 0$, then $\sigma_{\lambda}(x; \phi, \theta) = \sigma(\phi)$ for all λ , and the result is clear. Otherwise, let $s = \text{sgn}(y^T x + \theta)$. Then

$$\lambda \ge \frac{T - s\phi}{|y^T x + \theta|} \tag{4}$$

implies that $\lambda\left(y^Tx+\theta\right)+\phi\geq T$ if s=1, and $\lambda\left(y^Tx+\theta\right)+\phi\leq -T$ if s=-1. Then (4) implies that $\sigma_{\lambda}(x;\theta,\phi)=1$ if s=1, and $\sigma_{\lambda}(x;\theta,\phi)=0$ if s=-1. The result follows.

Question 2.

Let $y \in \mathbf{R}^n$, let $\Pi_{y,\theta} = \{x \mid y^T x + \theta = 0\}$, and let $H_{y,\theta} = \{x \mid y^T x + \theta > 0\}$. If μ is a finite Borel measure on $[0,1]^n$ such that

$$\int_{[0,1]^n} \sigma_{\lambda}(x) \, d\mu(x) = 0 \quad \text{for all } (\lambda, \theta, \phi) \in \mathbf{R}^3,$$
 (5)

then

$$\sigma(\phi)\mu(\Pi_{u,\theta}) + \mu(H_{u,\theta}) = 0 \quad \text{for all } (\lambda, \theta, \phi) \in \mathbf{R}^3.$$
 (6)

Proof. Fix $(\theta, \phi) \in \mathbf{R}^2$. For any $\lambda \in \mathbf{R}$, the function $\sigma_{\lambda}(\cdot; \theta, \phi)$ is dominated by the constant function $C(x) = \max_{t \in [-T,T]} |\sigma(t)|$. Since σ is continuous, σ_{λ} is continuous as well, so σ_{λ} is integrable on $[0,1]^n$. By the previous problem, σ_{λ} converges to γ pointwise as $\lambda \to \infty$. Thus, the Dominated Convergence Theorem implies that

$$0 = \lim_{\lambda \to \infty} \int_{[0,1]^n} \sigma_{\lambda}(x) \, d\mu(x) = \int_{[0,1]^n} \gamma(x) \, d\mu(x) = \sigma(\phi)\mu(\Pi_{y,\theta}) + \mu(H_{y,\theta}). \tag{7}$$

Question 3.

Suppose that μ satisfies (5). Then $\mu = 0$.

Proof. Define the linear functional $F: L^{\infty}(\mathbf{R}) \to \mathbf{R}$ by

$$F(h) = \int_{[0,1]^n} h\left(y^T x\right) d\mu(x)$$
(8)

First, let $h = \chi_{[\theta,\infty)}$ for some $\theta \in \mathbf{R}$.