Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК «Информатика и управление» КАФЕДРА ИУК5 «Информатика и вычислительная техника»

Лабораторная работа №1

«Инструментальные средства, подготовка эксперимента и анализ результатов»

ДИСЦИПЛИНА: «Проектирование программного обеспечения»

Выполнил: студент гр. ИУК4-11М		(Сафронов Н.С.
· · ·	(подпись)		(Ф.И.О.)
Проверил:		(Потапов А.Е.
	(подпись)		(Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Балльная с	оценка:		
- Оценка:			

Калуга, 2024

Цель работы: формирование практических навыков подготовки и настройки инструментальной среды анализа данных, умений подготовить эксперимент, представить и проанализировать полученные данные.

Задачи: подготовить и настроить среду исполнения Python, выполнить предобработку данных эксперимента, реализовать простейшие алгоритмы анализа данных (получение статистических характеристик), реализовать адекватное графическое представление результатов.

Результаты выполнения работы

Задание 1

Рисунок 1 – Результат загрузки данных в pandas

Задача 1

Сколько мужчин и женщин (признак sex) представлено в этом наборе данных?

Рисунок 2 – Результат получения количества мужчин и женщин в выборке

Каков средний возраст (признак age) женщин?

```
In [8]: data[data['sex'] == 'Female']['age'].mean()
Out[8]: np.float64(36.85823043357163)
```

Рисунок 3 – Вычисленный средний возраст женщин в выборке

Задача 3

Какова доля граждан Германии (признак native-country)?

```
In [9]: data[data['native-country'] == 'Germany']['native-country'].count() / data['native-country'].count()
Out[9]: np.float64(0.004207487485028101)
```

Рисунок 4 – Доля граждан Германии в выборке

Таким образом, доля граждан Германии -0.0042 или 0.42%.

Задачи 4-5

Каковы средние значения и среднеквадратичные отклонения возраста тех, кто получает более 50К в год (признак salary) и тех, кто получает менее 50К в год?

```
In [10]: data[data['salary'] == '>50K']['age'].mean(), data[data['salary'] == '>50K']['age'].std()
Out[10]: (np.float64(44.24984058155847), np.float64(10.519027719851826))
```

Рисунок 5 — Среднее значение и среднеквадратичное отклонение возраста тех, кто получает более 50К в год

Таким образом, среднее значение возраста тех, кто получает более 50K в год, - 44.25; среднеквадратичные отклонения – 10.52.

```
In [11]: data[data['salary'] == '<=50K']['age'].mean(), data[data['salary'] == '<=50K']['age'].std()
Out[11]: (np.float64(36.78373786407767), np.float64(14.02008849082488))</pre>
```

Рисунок 6 — Среднее значение и среднеквадратичное отклонение возраста тех, кто получает менее либо 50К в год

Таким образом, среднее значение возраста тех, кто получает более 50K в год, - 36.78; среднеквадратичные отклонения — 14.02.

Задача 6

Правда ли, что люди, которые получают больше 50k, имеют как минимум высшее образование? (признак education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters или Doctorate)

```
In [12]: df1 = data[data['salary'] == '>50K']
    df2 = df1[df1['education'].isin(['Bachelors', 'Prof-school', 'Assoc-acdm', 'Assoc-voc', 'Masters', 'Doctorate'])]
    df1.count == df2.count
Out[12]: False
```

Рисунок 7 – Результат сравнения числа тех, кто имеет и не имеет высшее образование, среди зарабатывающих более 50К

Таким образом, утверждение не является правдой, так как число тех, кто имеет и не имеет высшее образование, среди зарабатывающих более 50К не является равным.

Задача 7

Выведите статистику возраста для каждой расы (признак race) и каждого пола. Используйте groupby и describe. Найдите таким образом максимальный возраст мужчин расы Amer-Indian-Eskimo.

15]:	data.groupby(data[data.groupby(data['race'])['age'].describe()							
]:		count	mean	std	min	25%	50%	75 %	max
	race								
	Amer-Indian-Eskimo	311.0	37.173633	12.447130	17.0	28.0	35.0	45.5	82.0
	Asian-Pac-Islander	1039.0	37.746872	12.825133	17.0	28.0	36.0	45.0	90.0
	Black	3124.0	37.767926	12.759290	17.0	28.0	36.0	46.0	90.0
	Other	271.0	33.457565	11.538865	17.0	25.0	31.0	41.0	77.0
	White	27816.0	38.769881	13.782306	17.0	28.0	37.0	48.0	90.0

Рисунок 8 – Статистика возраста для каждой расы

Исходя из данных таблицы, максимальный возраст мужчин расы Amer-Indian-Eskimo – 82 гола.

Задача 8

Среди кого больше доля зарабатывающих много (>50K): среди женатых или холостых мужчин (признак marital-status)? Женатыми считаем тех, у кого marital-status начинается с Married (Married-civ-spouse, Married-spouse-absent или Married-AF-spouse), остальных считаем холостыми.

Рисунок 9 – Доля зарабатывающих много и мало среди женатых

```
In [21]: df = data[data['sex'] == 'Male']
    df[~df['marital-status'].str.startswith('Married')]['salary'].value_counts() / df[~df['marital-status'].str.starts

Out[21]: salary
    <=50K     0.915505
         >50K     0.084495
         Name: count, dtype: float64
```

Рисунок 10 – Доля зарабатывающих много и мало среди неженатых

Таким образом, доля зарабатывающих много больше у женатых мужчин.

Задача 9

Какое максимальное число часов человек работает в неделю (признак hours-per-week)? Сколько людей работают такое количество часов и каков среди них процент зарабатывающих много?

```
In [11]: m = data['hours-per-week'] .max()
    max_salary_df = data[data['hours-per-week'] == m]
    c = max_salary_df['hours-per-week'].count()
    top_c = max_salary_df[max_salary_df['salary'] == '>50K']['hours-per-week'].count()
    print('Max:', m)
    print('Count of Max:', c)
    print(f'Percentage of Max with high salary: {top_c / c * 100:.2f}%')

Max: 99
    Count of Max: 85
    Percentage of Max with high salary: 29.41%
```

Рисунок 11 – Расчёты для времени работы в неделю

Таким образом, максимальное число часов человек работает в неделю равно 99 часам; 85 человек работают такое количество часов и 29.41% из них зарабатывают много.

Посчитайте среднее время работы (hours-per-week) зарабатывающих мало и много (salary) для каждой страны (native-country).

50K native-country		<=50K native-country	
	45.547945	?	40.164760
ambodia	40.000000	Cambodia	41.416667
anada	45.641026	Canada	37.914634
hina	38.900000	China	37.381818
olumbia	50.000000	Columbia	38.684211
uba	42.440000	Cuba	37.985714
ominican-Republic	47.000000	Dominican-Republic	42.338235
cuador	48.750000	Ecuador	38.041667
1-Salvador	45.000000	El-Salvador	36.030928
ngland	44.533333	England	40.483333
•		France	41.058824
rance	50.750000	Germany	39.139785
ermany	44.977273	Greece	41.809524
reece	50.625000	Guatemala	39.360656
iuatemala	36.666667	Haiti	36.325000
aiti	42.750000	Holand-Netherlands	40.000000
onduras	60.000000	Honduras	34.333333
ong	45.000000	Hong	39.142857
ingary	50.000000	Hungary	31.300000
ndia	46.475000	India	38.233333
ran	47.500000	Iran	41.440000
reland	48.000000	Ireland	40.947368
taly	45.400000	Italy	39.625000
amaica	41.100000	Jamaica	38.239437
apan	47.958333	Japan	41.000000
aos	40.000000	Laos	40.375000
exico	46.575758	Mexico	40.003279
icaragua	37.500000	Nicaragua	36.093750
eru	40.000000	Outlying-US(Guam-USVI-etc)	41.857143
hilippines	43.032787	Peru	35.068966
oland	39.000000	Philippines	38.065693
ortugal	41.500000	Poland	38.166667
uerto-Rico	39.416667	Portugal	41.939394
cotland	46.666667	Puerto-Rico	38.470588
outh	51.437500	Scotland	39.444444
aiwan	46.800000	South	40.156250
nailand	58.333333	Taiwan	33.774194
rinadad&Tobago	40.000000	Thailand	42.866667
nited-States	45.505369	Trinadad&Tobago	37.058824
ietnam	39.200000	United-States	38.799127
ugoslavia	49.500000	Vietnam	37.193548
ugosiavia Jame: hours-per-week		Yugoslavia	41,600000
ame. Hours-per-week	utype. 1108104	Name: hours-per-week, dtype:	

Рисунок 12 — Среднее время работы зарабатывающих много по странам

Рисунок 13 — Среднее время работы зарабатывающих мало по странам

Задание 2

Рисунок 14 – Подготовительные действия над датасетом

В каком месяце (и какого года) было больше всего публикаций?

Рисунок 15 – Графическое отображение максимума на графике числа публикаций в месяц

Рисунок 16 — Число публикаций в 2015 году по месяцам Получаем, что наибольшее число публикаций было в марте 2015 года.

Проанализируйте публикации в месяце из предыдущего вопроса. Выберите один или несколько вариантов:

- Один или несколько дней сильно выделяются из общей картины.
- На хабре всегда больше статей, чем на гиктаймсе.
- По субботам на гиктаймс и на хабрахабр публикуют примерно одинаковое число статей.

Рисунок 17 – Число публикаций в марте 2015 году по дням на разных доменах

Таким образом, график цикличен, а следовательно, ни один из дней не выделяется из общей картины.

Рисунок 18 – Дни, когда на гиктаймс было больше статей, чем на хабре Таким образом, на хабре не всегда больше статей, чем на гиктаймсе.

```
In [30]: sat_groups = max_month_df[max_month_df['dayofweek'] == 6].groupby([max_month_df['day'], max_month_df['domain']]).s
sat_df = sat_groups.reset_index()
sat_df.columns = ['day', 'domain', 'count']
sns.barplot(data=sat_df, x='day', y='count', hue='domain')
```


Рисунок 19 – Публикации в субботу на доменах

Таким образом, в субботу действительно на обоих доменах приблизительно одинаковое число статей.

Выбираем только пункт «По субботам на гиктаймс и на хабрахабр публикуют примерно одинаковое число статей».

Задача 3

Когда лучше всего публиковать статью?

- Больше всего просмотров набирают статьи, опубликованные в 12 часов дня.
 - У опубликованных в 10 утра постов больше всего комментариев.
- Больше всего просмотров набирают статьи, опубликованные в 6 часов утра.
- Максимальное число комментариев на гиктаймсе набрала статья, опубликованная в 9 часов вечера.
 - На хабре дневные статьи комментируют чаще, чем вечерние.

```
In [31]: hourly_publications = df.groupby([df['hour']]).mean(True)
hourly_domain_publications = df.groupby([df['hour'], df['domain']]).mean(True)
sns.barplot(data=hourly_publications, x='hour', y='views')

Out[31]: <Axes: xlabel='hour', ylabel='views'>

20000
17500
15000
7500
5000
2500
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
```

Рисунок 20 – Просмотры статей относительно времени

Таким образом, больше всего просмотров набирают статьи, опубликованные в 6 часов утра, а не в 12 часов дня.

Рисунок 21 – Комментарии статей относительно времени

Таким образом, тезис «У опубликованных в 10 утра постов больше всего комментариев» опровергается.

Рисунок 22 – Комментарии статей относительно времени по доменам

Таким образом, тезис «На хабре дневные статьи комментируют чаще, чем вечерние» опровергается.

Рисунок 23 – Максимальные просмотры статей, опубликованных в заданный час, на гиктаймс

Таким образом, тезис «Максимальное число комментариев на гиктаймсе набрала статья, опубликованная в 9 часов вечера» опровергается.

Подтвердился лишь один тезис: «Больше всего просмотров набирают статьи, опубликованные в 6 часов утра».

Кого из топ-20 авторов (по количеству статей) чаще всего минусуют?

Рисунок 24 – Среднее количество минусов на статью для авторов

Таким образом, самым минусуемым автором из топ-20 является «Mithgol».

Задача 5

Сравните субботы и понедельники. Правда ли, что по субботам авторы пишут в основном днём, а по понедельникам — в основном вечером?

Рисунок 25 – Количество публикаций по дням недели для суббот и понедельников

Таким образом, по понедельникам и субботам пишут приблизительно в одно и то же время, но разные количества статей, так что тезис опровержен.

Вывод: в ходе выполнения лабораторной работы были получены практические навыки работы с большими массивами данных в pandas, а также навыки их визуализации с использованием библиотеки seaborn.