Отчёт по лабораторной работе №4.4.1 Амплитудная дифракционная решётка.

Плюскова Н.А. Б04-004

17 января 2024 г.

1. Аннотация

В работе требовалось отъюстировать гониометр, исследовать спектр ртутной лампы, определить период и спектральные характеристики решётки.

2. Теоретические сведения

Амплитудную решётку можно представить в виде непрозрачного экрана, в котором прорезано большое число N параллельных щелей — штрихов. Постоянство расстояний между штрихами d (период решётки, или шаг решётки) и шириной штриха b должно выдерживаться c большой точностью.

Рис. 1: Дифракция световой волны на амплитудной решётке

Наблюдение изображения спектра проводится с помощью зрительной трубы, настроенной на бесконечность (дифракции Фраунгофера на штрихах решётки). В этом случае амплитуда и интенсивность поля световой волны определяются углом φ между нормалью к решётке и направлением дифрагировавших лучей. Будем считать, что амплитуды всех интерферирующих волн одинаковы, т.е. фиксирована амплитуда падающей волны и постоянна площадь всех штрихов. Интенсивность дифрагированного света максимальна для углов φ_m , при которых волны, приходящие в точку наблюдения от всех щелей, оказываются в фазе:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Рассмотрим пример с двумя спектральными линиями красной и фиолетовой ($\lambda_{red} > \lambda_{purp}$). Для малых углов дифракции угловое расстояние между порядками $\varphi_{m+1} - \varphi \approx \lambda/d$ пропорционально длине волны, поэтому фиолетовые линии следуют чаще чем красные. При m=5 для красной и m=6 для фиолетовой они совпадут.

Некоторые формулы:

• Разрешающая способность характеризует возможность прибора различать две близкие спектральные линии с длинами волн λ и $\lambda + \delta \lambda$.

$$R = \frac{\lambda}{\delta \lambda} \tag{2}$$

• Угловая дисперсия - производная зависимости угла отклонения $\varphi(\lambda)$ волны диспергирующим элементом по λ . По величине угловой дисперсии можно определить угловое расстояние между двумя близкими спектральными линиями: $\delta \varphi \approx D \delta \lambda$:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d \cdot \cos \varphi_m} = \frac{m}{\sqrt{d^2 - m^2 \lambda^2}}$$
 (3)

• Угловое расстояние между линиями определяется:

$$\Delta \varphi \approx D\delta \lambda \tag{4}$$

• Полуширина линии:

$$\delta\varphi = \frac{\lambda}{Nd\cos\varphi_m} \tag{5}$$

• Дисперсионная область – предельная ширина спектального интервала $\Delta\lambda$ прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использован для анализа спектра.

3. Экспериментальная установка

Оптические приборы, в которых осуществялется физическое разложение электромагнитного излучения намонозроматические составляющие, называются спектральными. По характеру распределения интенсивности в спектральном разложении спектры могут быть разделены на линейчатые и непрерывные. Принципиальная установка изображена на рис.??. Свет от источника S попадает на экран с щелью. Коллиматор формирует близкие к параллельному пучок лучей. После, свет попадает надиспергирующий элемент. Наблюдение производится через трубу, установленну на ∞

Рис. 2: Схема прибора: источник-коллиматор — диспергирующий элемент — зрительная труба

Каждой монохроматической компоненте с λ соответствует один или несколько углов $\varphi(\lambda)$ на выходе из прибора, в направлении которых интенсивность прибора максимальна. При известной зависимости $\varphi(\lambda)$ по измеряемому углу поворота φ зрительной трубы можно определить длину волны спектральной линии.

Наиболее важными характеристиками спектральных приборов являются угловая дисперсия, разрешающая способность и дисперсионная область.

4. Результаты измерений и обработка данных

4.1 Определение периода решетки

Были измерены угловые координаты спектральных линий для +1 и -1 порядков. Результаты измерений сведем в таблицу 1:

Цвет	Координата		σ	sin/a		σ.	Длина волны λ , нм
цьет	σ_{φ_m} — $\sin \varphi_m$ — $\sin \varphi_m$		um	$\sigma_{sinarphi_m}$	длина волны д, нм		
Фиолетовый	191° 38' 56"	168° 18' 38"		-0,2019	0,2026		404,7
Синий	192° 33' 09"	167° 21' 53"		-0,2173	0,2187		435,8
Голубой	194° 10' 45"	165° 41' 53"		-0,2450	0,2470		491,6
Зеленый	195° 46' 30"	164° 03' 51"	2,5"	-0,2719	0,2746	0,0007	546,1
Желтый 1	196° 41' 11"	163° 07' 49"	2,5	-0,2871	0,2902	0,0007	577
Желтый 2	196° 44' 55"	163° 03' 59"		-0,2882	0,2913		579,1
Красный 1	197° 44' 02"	162° 03' 06"		-0,3046	0,3082		623,4
Красный 2	198° 03' 42"	161° 42' 50"		-0,3100	0,3138		690,7

Таблица 1: Координаты спектральных линий для ± 1 порядков

Здесь погрешность измерений гониометра φ_m бралось из таблицы ГОСТ, погрешность же $sin\varphi_m$ определялась следующей формулой:

$$\sigma_{\sin\varphi_m} = |\cos\varphi_m \cdot \sigma_{\varphi_m}|$$

Построим график зависимости $\sin \varphi_m$ от длины волны:

Рис. 3: Зависимость $\sin \varphi_m$ от длины волны

Найдем коэффициент наклона касательной:

$$k = \sqrt{\frac{\langle xy \rangle - \langle x \rangle \cdot \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle}}$$

$$\sigma_k = \sqrt{\frac{1}{n-1} \left(\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2\right)}$$
$$k = (4.23 \pm 0.38) \cdot 10^{-4} \text{ HM}^{-1}$$

Найдем период дифракционной решетки по формуле (1). Здесь $\varepsilon_d = \varepsilon_k \approx 9\%$:

$$d=rac{\lambda}{\sinarphi_m}=rac{1}{k}=(2{,}364\pm0{,}213)$$
 мкм

4.2 Определение угловой дисперсии

Рассчитаем по линиям жёлтого дублета угловую дисперсию в спектрах разного порядка (формула (3.1)). Построим график зависимости угловой дисперсии от порядка спектра и сравните эту зависимость с расчётной по формуле (3.3) для средней длины волны жёлтого дублета.

Результаты для наглядности представим в таблице:

Порядок	Координата		Δ	σ.	$\Delta \lambda$, A	D рад / А. 10-5	$\sigma_D, \mathrm{pag/A} \cdot 10^{-5}$
Порядок	1 линия	2 линия	$\Delta \varphi_m$	$\sigma_{\Delta \varphi_m}$	$\Delta \lambda, \Lambda$	D,рад/ А 10	[0D, pad/A]
3	117° 13' 31"	116° 47' 44"	0,430°			37,1	0,5
2	144° 11' 13"	144° 01' 51"	$0,156^{\circ}$			12,9	0,5
1	163° 07' 49"	163° 03' 59"	$0,064^{\circ}$	5"	$\begin{vmatrix} 2,1 \end{vmatrix}$	5,3	0,5
-1	196° 41' 11"	196° 44' 55"	$0,062^{\circ}$		2,1	5,2	0,5
-2	214° 44' 09"	214° 52' 45"	0,143°			11,9	0,5
-3	237° 46' 52"	238° 05' 59"	0,319°			26,5	0,5

Таблица 2: Значения для желтых дуплетов разных порядков

Отсюда находим средние значения угловой дисперии для разных порядков:

Порядок	1	2	3
$< D >$, рад $/ A \cdot 10^{-5}$	$5,24 \pm 0,50$	$12,45 \pm 0,50$	$31,79 \pm 0,50$

Построим график зависимости угловой дисперсии от порядка спектра:

Рис. 4: Зависимость угловой дисперсии от порядка спектра, найденная экспериментально Рассчитаем угловую дисперсию по формуле (3.3)

$$D = \frac{m}{\sqrt{d^2 - (m\lambda)^2}}$$

Значения угловой дисперии для разных порядков:

Порядок	1	2	3
< D >, рад/А ·10 ⁻⁵	$5,03 \pm 0,048$	$11,71 \pm 0,011$	$27,51 \pm 0,6$

Важно отметить, что экспериментальное и теоретическое значения сходятся в пределах погрешности.

4.3 Оценка разрешающей способности

В этом пункте мы измеряли ширину желтых спектральных линий, ниже представим результаты измерений:

Порядок	Порядок Координаты концов		$\delta \varphi$	σs	Длина волны λ ,	$D = \sigma_D$	R	σn	
Порядок	начало	конец	$\int_{-\infty}^{\infty} d\varphi$	σ_{\deltaarphi}	длина волны д		σ_D	11	σ_R
3	116 15' 04"	116 17' 20"	0,0211	- 5"	" 578	0,2046	0,0007	5601,7	0,7
2	144 05' 20"	144 04' 30"	0,0139			0,0743	0,0007	3092,1	0,6
1	164 04' 01"	164 03' 28"	0,0092			0,0304	0,0007	1916,9	0,6
-1	196 45' 21"	196 44' 41"	0,0111			0,0296	0,0007	1539,8	0,4
-2	214 53' 22"	214 52' 44"	0,0106			0,0683	0,0007	3740,0	0,9
-3	238 06' 32"	238 05' 33"	0,0164			0,1517	0,0007	5350,1	0,8

Порядок	1	2	3
$\langle R \rangle$	$1728,3 \pm 0,5$	$3416,0 \pm 0,8$	$5475,9 \pm 0,8$

По формуле $R = m \cdot N$ найдем количество эффективно работающих шрихов:

- $N_1 = 1728$
- $N_2 = 1708$
- $N_3 = 2738$

5. Вывод

В этой работе мы исследовали спектр ртутной лампы, поработали с амплитудной дифракционной решеткой. Был определен период самой решетки, найденное значение $(2,364\pm0,213)$ мкм. Также, двумя способы мы рассчитали экспериментальную и теоретическую угловые дисперсии,которые совпадают в пределах погрешности, сведем эти результаты в таблицу ниже для наглядности. Также была оценена разрешающая способность спектрального прибора.

Порядок	1	2	3
$< D_{ m эксп} >$, град/нм	$5,24 \pm 0,50$	$12,45 \pm 0,50$	$31,79 \pm 0,50$
$< D_{\text{теор}} >$, град/нм	$5,03 \pm 0,048$	$11,71 \pm 0,11$	$27,51 \pm 0,26$