Opportunities in Statistics Education Research

Beth L. Chance

Cal Poly – San Luis Obispo

(bchance@calpoly.edu)

Why you might want to

- * Improve your teaching
- * Synergy with classroom teaching
- Collaboration
- * Grant, publication, conference opportunities

Why you might not want to

- * Distracts from research agenda for tenure
- * Less "stature"?
- Requires some retraining and background reading
 - Educational psychology
 - Qualitative research
 - History across multiple disciplines

Start with

- * Theory on how students learn
- * Theory on how students learn statistics
 - Garfield (1995), Garfield & Ben-Zvi (2007)
 - Constructivism
 - Active learning increases student performance in science, engineering, and mathematics, Freeman et al (PNAS, 2014)
 - Learning with technology
 - Assessment (Eliciting student understanding)

Resources

- * Handbook of Research Design in Mathematics and Science Education
 - Kelly and Lesh, Eds. (2000)
- International Handbook of Research in Statistics Education
 - Ben-Zvi, Makar, and Garfield, Eds. (2018)
- CAUSEweb.org
 - https://www.causeweb.org/cause/research

Start with

- * Journal of Statistics and Data Science Education, Statistics Education Research Journal, Technology Innovations in Statistics Education, Teaching Statistics
- * What has been done before?
- * What are the open questions?
- * How can I contribute?

Start with

- * Approach individuals in the field
- * Form collaborative networks
 - USCOTS research clusters
 - Colleagues in education
 - Senior colleagues

First project?

- * Did this work in my classroom?
 - Quantitative data
 - Qualitative data (focus on process, not just final grades)
 - How does this relate to past work, what can be learned moving forward
- * Does this work in different types of classrooms, with different types of students?

Research Techniques

- * Randomized comparative experiments
 - Using statistics effectively in mathematics education research (Scheaffer et al., 2007)
- Cautions
 - long vs. short-term
 - confounding variables
 - realism
 - time delays
 - ethical issues
 - external perspective

Qualitative Research

- * SERJ special issue: Qualitative approaches in statistics education research (Nov. 2010)
- * Standards
 - Validity
 - Generalizability
 - Reliability
 - Objectivity
- * Consistent, Replicable, Well-documented, Fair and equitable

Classroom-Based Research

- * "Teachers researching their own practice of teaching."
 - Feldman & Minstrell in Kelly & Lesh (2000)
- * "It is most simply defined as ongoing and cumulative intellectual inquiry by classroom teachers into the nature of teaching and learning in their own classrooms."
 - Cross and Steadman (1986)

Classroom-Based Research

- * Narrows gap between theory and practice
 - direct link to classroom environment
- * Further insight into classroom, students
 - combined with nonparticipant viewpoint
- * Dynamic
- Open to alternative student interpretations
- Focus on process

Human Subjects

- * Talk to your institution's Institutional Review Board (IRB)
 - Exemption?
 - https://content-calpolyedu.s3.amazonaws.com/research/1/documents/Research%20De cision%20Chart%20Nov18rev.pdf
 - https://www.nsf.gov/pubs/2007/nsf07006/nsf07006.jsp
 - https://www.nsf.gov/bfa/dias/policy/human.jsp

Some Current Questions

- * Expert vs. Novice
- Student experience vs. instructor demonstration
- Large classes
- * Analyzing student interaction with technology
- Preparation of future teachers
- * Retention
- * Student attitudes
- * Statistics vs. Data Science

Some Current Efforts

- Service learning (e.g., Doehler; Nordmoe; Hydorn; Phelps), Experiential learning (e.g., Morris)
- * Context-driven statistics (e.g., Dierker, ProCivicStats, Strengthening Data Literacy across the Curriculum)
- * Beyond the first course (e.g., Kuiper; Tintle et al.; Chihara & Hesterberg; Nolan)
- * Connections to ed research (e.g., Son & Stigler)
- Assessment, Adaptive testing (e.g., Beckman; Sabbag; Broaddus; Cheng)
- * Interdisciplinary collaboration (e.g., STUB)

Advice - Designing a Lesson

- * What are the learning goals?
 - What are common student difficulties
- * How will I assess whether students have met those goals?
- * How does it connect to content before/after this lesson?
- * What is an engaging context?
- * How/when do I actively engage the students
 - Directly confront student difficulties
- Will technology be helpful?
- Immediate reflection

Advice – Designing a Research Question

- What is my audience?
- * What are the learning goals?
 - What are common student difficulties
- * What do I plan to do differently?
 - What are my preconceptions?
- * How does it connect to prior research?
 - Review for a journal (including JRME, MTL)
- * How will I assess whether students have met those goals/whether it works?

Advice – Designing a Research Study (Grant)

- * Familiarize yourself with the research, assessment tools
 - NSF Award Search
- Connect with others across institutions, disciplines, generations
 - Share proposals
- * Talk with program officer
- Initial "seed" grant

NSF Grant Funding Opportunities

- Improving Undergraduate STEM Education (IUSE, formally TUES)
 - Computing in Undergraduate Education
- * Advancing Innovation and Impact in Undergraduate STEM Education at Two-year Institutions of Higher Education
- Faculty Early Career Development Program (CAREER)
- Innovative Technology Experiences for Students and Teachers

NSF Grant Funding Opportunities

The IUSE program (formerly TUES) at the National Science Foundation supports curricular innovation, experimentation, and implementation

Track	Level
Engaged student learning	Level 1/Level 2/Level 3
Institutional and community transformation	Capacity building/Level 1/Level 2

Conferences

- * JSM
 - Section on statistics and data science education
- * USCOTS
- * ICOTS
 - The best locations! (Rosario, Argentina, 2022)
- * MathFest, NCTM, ICTCM...
- Colloquia

Summary

- Look to history
- * Importance of collaboration
 - Student involvement
- * Not all randomized experiments
 - Qualitative research, Think-aloud protocols, Learning trajectories, Classroom-based research
- New measurement tools
- Not only about students
 - Teacher preparation
 - Role of technology in teaching
 - Integration with data science, other disciplines

Any Questions?

- * bchance@calpoly.edu
- * Or if you want more complete reference citations...