Office européen des brevets

(11) EP 0 967 285 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 29.12.1999 Bulletin 1999/52

(51) Int. Cl.⁶: **C12N 15/57**, C12N 9/52, C12N 1/21

(21) Application number: 99106121.9

(22) Date of filing: 15.07.1992

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

(30) Priority: 24.07.1991 EP 91810595 12.03.1992 GB 9205457

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 92810537.8 / 0 524 906

(71) Applicant: Ciba-Geigy Japan Limited Hyogo-ken 665 (JP)

(72) Inventors:

Inaoka, Tetsuya
 Takatsuki-shi, Osaka 569 (JP)

Kokubo, Toshio
 Sanda-shi, Hyogo 669-13 (JP)

 Tsuru, Daisuke Nagasaki-shi, Nagasaki 852 (JP)

Yoshimoto, Tadashi
 Nagasaki-shi, Nagasaki 852 (JP)

(74) Representative:
Becker, Konrad et al
Novartis AG
Gelstiges Eigentum Konzern
Patent- und Markenabteilung CH
Postfach
4002 Basel (CH)

Remarks:

This application was filed on 01 - 04 - 1999 as a divisional application to the application mentioned under INID code 62.

(54) Prolylendopeptidase from Flavobacterium meningosepticum

(57) The invention concerns DNA encoding prolylendopeptidase, hybrid vectors containing such DNA, transformed hosts capable of expressing prolylendopeptidase, a process for the production of prolylendopeptidase comprising the steps of: culturing a host organism transformed with an expression vector comprising a DNA coding for prolylendopeptidase and optionally, recovering the produced prolylendopeptidase; and a process for the production of a C-terminal amidated peptide from two precursors thereof, comprising the steps of: placing the two precursors in contact with a prolylendopeptidase in a medium to convert the precursor peptides to the C-terminal amidated peptide, and recovering the resulting C-terminal amidated peptide.

Description

the enzyme.

55

[0001] The present invention relates to recombinant DNA coding for prolylendopeptidase and a process for the production of said DNA, a host transformed with the recombinant DNA and a process for the production of said transformed host, a process for the production of prolylendopeptidase using the transformed host, and use of the prolylendopeptidase to produce a physiologically active N-terminally amidated peptide.

BACKGROUND OF THE INVENTION

- [0002] Prolylendopeptidase was first found in human uterus by Walter et al., in 1971 as a specific endopeptidase which cleaves a peptide at the carboxyl- terminus side of a proline residue (Walter, R. et al. Science, 1971, 173, 827-829), and ever since the enzyme has been continuously studied with regard to its physiological role.
 [0003] On the other hand an endopeptidase showing a very similar specificity to mammalian prolylendopeptidase was found from a bacterium, <u>Flavobacterium meningosepticum</u> in 1978 (Yoshimoto, T., et al. Agric. Biol. Chem. 1978,42,2417-2419). This finding enabled a larger amount to be prepared (but still at a lab scale) of the enzyme, and prolylendopeptidase became available for specific cleavage (Yoshimoto, T., et al. J. Biol. Chem. 1980, 255,4786-4792.) of proteins and peptides. Its unique specificity, recognizing proline residues, makes the enzyme quite useful as a basic tool of protein engineering and draws more attention to the study of the structure and function relationship. The preparation of prolylendopeptidase from <u>F. meningosepticum</u>, however, has the following two crucial drawbacks arising from the bacterium. 1) The bacterium is pathogenic (Yoshimoto, T. et al., 1978, supra; Buchanan, R.E. et al. "Bergey's Manual of Determinative Bacteriology," 8th ed. 1974, The Williams & Wilkins Co., Baltimore.) and 2) it produces not only prolylendopeptidase but also significant amounts of other specific or non-specific peptidases (Yoshimoto, T. et al., 1978 supra). These problems have prevented industrial production of the endopeptidase, in spite of a growing demand for
- 25 [0004] Japanese Unexamined Patent Publication (KOKAI) No. H2-5880 describes cloning of post-proline peptidase gene derived from <u>Bacteroides gingivalis</u>, but this enzyme is clearly different from the present enzyme in that the former cleaves glycyl-proline-4-methoxy-β-naphtylamide which cannot be cleaved by the present prolylendopeptidase.
 [0005] D. Rennex et al., Biochemistry 30,2195-2203, 1991 describes a cloning of cDNA for prolylendopeptidase from the porcine brain, but does not describe an expression of the cDNA.
- [0006] It is believed that prolylendopeptidase is useful for modification of peptides, for example, C-terminal amidation of biologically active peptides such as LH-RH, oxytocin, calcitonins or the like, but for this purpose, it is necessary to obtain a large amount of the enzyme. Moreover, the enzyme preparation should be free of other peptidases, to ensure a desired reaction. Thus, the production of the enzyme by a gene recombination process is essential.

35 SUMMARY OF THE INVENTION

- [0007] Accordingly, the present invention provides a process for the production of prolylendopeptidase by gene engineering. As a precondition of the recombinant process, the present invention also provides recombinant DNA molecules comprising a gene coding for prolylendopeptidase and a process for the production thereof, as well as a host transformed with the recombinant DNA molecule and a process for the production thereof.
- [0008] More particularly, the present invention provides a process for the production of a recombinant DNA molecule comprising a gene coding for prolylendopeptidase, comprising the steps of preparing cDNA or genomic DNA from cells, preferentially bacterial cells, capable of producing prolylendopeptidase, inserting DNA fragments coding for prolylendopeptidase into a cloning vector, and selecting a hybrid vector containing the DNA coding for prolylendopeptidase.
- [0009] The present invention also relates to the DNA molecules prepared as above.
 - [0010] The present invention also relates to an expression vector comprising a gene coding for prolylendopeptidase of any origin and expression control sequences operably linked with the gene.
 - [0011] The present invention further provides a host transformed with the gene coding for prolylendepeptidase of any origin, and capable of producing the prolylendopeptidase.
- 50 [0012] The present invention still further provides a process for the production of prolylendopeptidase comprising the steps of:

culturing a host organism transformed with an expression vector comprising a DNA coding for prolylendopeptidase to produce the prolylendopeptidase, and optionally, recovering the produced prolylendopeptidase.

[0013] The present invention further provides a process for the production of a C-terminal amidated peptide from two precursors thereof, wherein one of the precursors is a precursor peptide forming N-terminal region of the C-terminal amidated peptide and having a proline residue at its C-terminus and another precursor is a precursor peptide or amino

acid forming a C-terminal portion of the C-terminal amidated peptide which precursor peptide or amino acid has been C-terminally amidated, comprising the steps of:

placing the two precursors in contact with a prolylendopeptidase in a medium to convert the precursor peptides to the C-terminal amidated peptide, and recovering the resulting C-terminal amidated peptide.

DETAILED DESCRIPTION OF THE INVENTION

5

10

Preparation of gene coding for prolylendopeptidase

[0014] Hereinafter, the term prolylendopeptidase is intended to include any prolylendopeptidase. The preferred meanings of the term, however, is a prolylendopeptidase derived from procaryotes, preferably from <u>Flavobacterium spec</u>, in particular from <u>F. mennigosepticum</u>, most preferentially from <u>F. mennigosepticum</u> strain IFO 12535 (ATCC 13253).

[0015] Accordingly, a DNA of the present invention coding for a prolylendopeptidase may be cloned from any cell containing a gene coding for prolylendopeptidase, including cucaryotes such as mammals and procaryotes such as bacteria. In the case a mammalian source, for example the uterus of a mammal, e.g., of human, is chosen, the DNA coding for prolylendopeptidase is preferentially derived from the RNA via cDNA production.

[0016] A preferred source for DNA coding for prolylendopeptidase is a bacterium belonging to the genus <u>Flavobacterium</u>, in particular <u>F. meningosepticum</u>, most preferentially <u>F. meningosepticum</u> strain IFO 12535 (ATCC 13253).

[0017] Since DNA derived from a prokaryote such as bacterium, for example, F. meningosepticum, does not include introns, a genomic DNA can be used to clone a prolylendopeptidase-encoding DNA if a prokaryotic cell is chosen as source. In this case, bacterial cells which produce prolylendopeptidase, for example, cells of F. meningosepticum, is homogenised and a whole genomic DNA is extracted according to a conventional procedure (Saito, H. et al. Biochim. Biophys. Acta, 1963, 72, 619-629). The extracted DNA is then digested completely or partially with an appropriate restriction enzyme such as Bgl II, Eco RI, Hinc II, Hind III, Pst I or Bam HI. The digestion product is then preferably subjected to preparative electrophoresis with low-melting-point agarose gel to enrich DNA fractions of a certain length. This is intended to enrich DNA fragments encoding prolylendopeptidase. Next, the DNA fragments are cloned into a suitable cloning vector. The cloning vector may be derived from any vector useful in the art of genetic engineering, such as from viruses, phages, cosmids, plasmids or chromosomal DNA, for example derivatives of SV40, Herpes-viruses, Papilloma viruses, Retroviruses, Baculovirus, phage λ, e.g., NM989 or EMBL4, or phage M13, bacterial plasmids, e.g. pBR322, pUC18, pSF2124, pBR317 or pPLMu., or yeast plasmids, e.g. yeast 2 μ plasmid, or also chromosomal DNA comprising an origin of replication or an autonomously replicating sequence (ARS). Preferably, the cloning vector is a bacterial vector such as pBR322, pUC18, pUC19 or the like.

[0018] Alternatively, a cDNA library may be prepared from a cell expressing prolylendopeptidase, e.g. from a bacterial cell such as preferably from a bacterium belonging to the genus <u>Flavobacterium</u>, in particular <u>F. meningosepticum</u>, most preferentially <u>F. meningosepticum</u> strain IFO 12535 (ATCC 13253), or from a eukaryotic cell or tissue, e.g. mammalian cell or tissue, which produces prolylendopeptidase. For example, RNA is extracted from the human uterus and enriched for mRNA according to a conventional procedure. Next, a cDNA library is constructed according to a conventional procedure such as the Okayama-Berg method (Okayama, H. et al. Mol. Cell. Biol. 1982, 2, 161-170), the method of Gubler and Hoffman (Gubler, U. et al. Gene, 1983, 25, 263-270) or the like.

[0019] A variety of methods are known in the art for the incorporation of double-stranded cDNA or genomic DNA into an appropriate vector. For example, complementary homopolymer tracts may be added to the double-stranded DNA and the vector DNA by incubation in the presence of the corresponding deoxynucleoside triphosphates and an enzyme such as terminal deoxynucleotidyl transferase. The vector and double-stranded DNA are then joined by base pairing between the complementary homopolymeric tails and finally ligated by specific joining enzymes such as ligases. Other possibilities are the addition of synthetic linkers to the termini of the double-stranded DNA, or the incorporation of the double-stranded DNA into the vector by blunt- or staggered-end ligation.

[0020] Screening of the genomic DNA library or cDNA library is preferably achieved using a DNA hybridization probe. Suitable DNA probes are DNAs of known nucleotide sequence consisting of at least 17 nucleotides, for example synthetic DNAs, cDNAs derived from mRNA coding for prolylendopeptidase, or genomic DNA fragments comprising e.g. adjacent DNA sequences which are isolated from a natural source or from a genetically engineered microorganism.

[0021] To design synthetic DNA probes for screening the above-mentioned genomic DNA library or cDNA library, pro-

lylendopeptidase for which a DNA coding region is to be cloned is purified, and its partial amino acid sequence is determined according to a conventional procedure. Next, DNA sequences are designed on the basis of the partial amino acid sequence thus determined. Where an exact nucleotide sequence coding for the amino acid sequence is not known, a combination of nucleotide sequences which partially or totally cover possible nucleotide sequences present due to the degeneracy of genetic codon may be used. Alternatively, the third nucleotide in a codon may be replaced with inosine, [0022] Synthetic DNA probes are synthesized according to known methods, for example by stepwise condensation

using the solid phase phosphotriester, phosphite triester or phosphoramidite method, e.g., the condensation of dinucleotide coupling units by the phosphotriester method. These methods are adapted to the synthesis of mixtures of the desired oligonucleotides by using mixtures of two, three or four nucleotides dA, dC, dG and/or dT in protected form or the corresponding dinucleotide coupling units in the appropriate condensation step as described by Y. IKe et al. (Nucleic Acids Research 11, 477,1983).

[0023] For hybridization, the DNA probes are labelled, e.g. radioactively labelled by the well known kinase reaction. The hybridization is performed according to known procedures, i.e., in buffer and salt solutions containing adjuncts, e.g. calcium chelators, viscosity regulating compounds, proteins, non-homologous DNA and the like, at temperatures favoring selective hybridization, e.g., between 0°C and 80°C, for example between 25°C and 50°C.

[0024] In the prefered embodiment, the DNA library of E. meningosepticum is used to transform an appropriate host such as E. coli cells, which are then plated and cultured on a solid medium to develop colonies, and positive clones are selected by a colony hybridization method using the above-mentioned DNA probes. The transformation of appropriate host cells with the DNA library and the selection and multiplication of transformed host cells are well known in the art. Examples of such methods are given below.

[0025] The nucleotide sequence of DNA selected as described above can be determined by methods known per se; for example, by the Maxam-Gilbert method using end-labelled DNA or by the dideoxy chain termination method of Sanger.

[0026] A nucleotide sequence of genomic DNA of <u>Flavobacterium meningosepticum</u> origin coding for prolylendopeptidase and a corresponding amino acid sequence are shown in the Sequence Listing, SEQ ID No. 1.

[0027] Once a nucleotide sequence coding for, or an amino acid sequence of, prolylendopeptidase is determined, a DNA coding for the enzyme also can be prepared by an <u>in vitro</u> synthesis according to conventional methods. Suitable methods of the synthesis of DNA have been presented in summary form by S.A. Narang (Tetrahedron 39, 3, 1983). The known synthesis techniques allow the preparation of polynucleotides up to 120 bases in length, in good yield, high purity and in a relatively short time. Suitably protected nucleotides are linked with one another by the phosphodiester method (K.L. Agarwal et al., Angew. Chemie 84, 489, 1972), the more efficient phosphotriester method (C.B. Reese, Tetrahedron 34, 3143, 1978), the phophite triester method (R.L. Letsinger et al., J. Am. Chem. Soc. 98, 3655, 1976) or phosphoramidite method (S.L. Beaucage and M.H. Carruthers, Tetrahedron Letters 22, 1859, 1981).

[0028] Simplification of the synthesis of the oligonucleotides and polynucleotides is made possible by the solid phase method, in which the nucleotide chains are bound to a suitable polymer. H. Rink et al. (Nucl. Acids Reserach 12, 6369, 1984) use trinucleotides instead of individual nucleotides and link them by the phosphotriester method in the solid phase synthesis. A polynucleotide can thus be prepared in a short time and with good yields. The actual double-stranded DNA is built up enzymatically from chemically prepared overlapping oligonucleotides from both DNA strands, which are held together in the correct arrangement by base-pairing and are then chemically linked by the enzyme DNA ligase. Another possibility comprises incubating overlapping single oligonucleotides from the two DNA strands in the presence of the four required deoxynucleoside triphosphates with a DNA polymerase, for example DNA polymerase I, the Klenow fragment of polymerase I or T4DNA polymerase, or with AMV (avian myeloblastosis virus) reverse transcriptase. The two oligonucleotides are thereby held together in the correct arrangement by base-pairing and are supplemented with the required nucleotides by the enzyme to give a complete double-stranded DNA (Scarpulla et al., Anal. Biochem. 121, 356, 1982).

Hybrid vector containing gene coding for prolylendopeptidase

[0029] In the present invention, hybrid vectors include a hybrid vector for cloning or amplifying a desired prolylendopeptidase gene, and expression vectors. A hybrid vector of the invention comprises a DNA sequence coding for prolylendopeptidase defined hereinbefore.

[0030] The hybrid vectors are derived from any vector useful in the art of genetic engineering, such as from viruses, phages, cosmids, plasmids or chromosomal DNA, for example derivatives of SV40, Herpes-viruses, Papilloma viruses, Retroviruses, Baculovirus, phage X, e.g. NM989 or EMBL4, or phage M13, bacterial plasmids, e.g. pBR322, pUC18, pSF2124, pBR317 or pPLMu., or yeast plasmids, e.g. yeast 2µ plasmid, or also chromosomal DNA comprising an origin of replication or an autonomously replicating sequence (ARS), or a defective virus, phage or plasmid in the presence of a helper virus, phage or plasmid allowing replication of said defective virus, phage or plasmid, e.g. M13(+)KS vector in presence of e.g. M13K07 helper phage. The Baculoviruses which can be used in the present inveniton are, for example, Autographa californica nuclear polyhedrosis virus (AcMNPV), Trichoplusia ni MNPV, Rachiplusia ou MNPV, Galleria mellonella MNPV, Bombyx mori nuclear polyhedrosis virus (BmNPV), and the like. A kit comprising a combination of an Autographa californica nuclear polyhedrosis virus and baculovirus transfer vectors pAc700, pAc701, pAc702, pVL1392 and pVL1393 is commercially available from Invitrogen.

[0031] A suitable vector of the invention is a vector which is operable in the microbial host cell chosen for multiplying the hybrid vector of for the expression of prolylendopeptidase. Suitable vectors contain a complete replicon and a

marker gene, which renders possible the selection and identification of the microorganisms transformed by the expression plasmids by means of a phenotype feature.

[0032] Thus, the hybrid vectors of the invention provide for replication of a desired prolylendopeptidase DNA in a suitable host, either as an extrachromosomal element or by integration in the host chromosome. Several possible vector systems are available for integration and expression of the cloned DNA of the invention. In principle, all vectors which replicate and/or comprise a recombinant gene which can be expressed in the chosen host are suitable. The vector is selected depending on the host cells envisaged for transformation. In general, such host cells may be prokaryotic or eukaryotic micro-organisms such as bacteria, fungi such as yeasts or filamentous fungi, or cells of higher eukaryotic origin such as animal, for example mammalian or insect, cells. Suitable host cells will be discussed in detail hereinbelow. In principle, the hybrid vectors of the invention comprise a DNA encoding prolylendopeptidase, an origin of replication or an autonomously replicating sequence, optionally dominant marker sequences, and, optionally, additional restriction sites.

[0033] An origin of replication or an autonomously replicating sequence (a DNA element which confers autonomously replicating capabilities to extrachromosomal elements) is provided either by construction of the vector to include an exogeneous origin such as derived from Simian virus (SV40) or another viral source, or by the host cell chromosomal mechanisms.

[0034] A hybrid vector of the invention may contain selective markers depending on the host which is to be transformed, selected and cloned. Any marker gene can be used which facilitates the selection of transformants due to the phenotypic expression of the marker. Suitable markers are particularly genes from which a polypeptide can be expressed which provides resistance against compounds toxic to the receipt organism or which completes the enzyme system of a mutant lackig such an essential polypeptide, e.g. of an auxotrophic mutant. Suitable marker genes express, for example, antibiotic resistance, e.g. against tetracycline, ampicillin, or cycloheximide or provide for prototrophy in an auxotrophic mutant, for example in a yeast deficient in the <u>ura3</u>, <u>leu2</u>, <u>his3</u> or <u>trpl</u> gene. It is also possible to employ as markers structural genes which are associated with an autonomously replicating segment providing that the host to be transformed is auxotrophic for the product expressed by the marker.

[0035] Within the meaning of hybrid vectors of the invention are also hybrid expression vectors for the expression of prolylendopeptidase. They have in general the same features as the hybrid vectors described hereinbefore, and additionally comprise expression control sequences allowing the production and, optionally, the secretion of prolylendopeptidase. Thus, hybrid expression vectors of the invention comprise a promoter region operably linked with a structural gene encoding prolylendopeptidase and, optionally, a DNA fragment encoding a leader or signal peptide, a transcriptional enhancer, a ribosomal binding site, a transcriptional terminator region and/or further regulatory sequences.

[0036] A wide variety of promoter sequences may be employed, depending on the nature of the host cell. Promoters that are strong and at the same time well regulated are the most useful. Sequences for the initiation of translation are for example Shine-Dalgarno sequences. Sequences necessary for the initiation and termination of transcription and for stabilizing the mRNA are commonly available from the noncoding 5'-regions and 3'-regions, respectively, of viral or eukaryotic cDNAs, e.g from the expression host.

[0037] Examples of suitable promoters are λP_L , λP_R , or λN , <u>E. coli</u> lac, trp, tac, or lpp, yeast TRP1-, ADHI-, ADHI-, PHO3-, PHO5-, or glycolytic promoters such as the promoter of the enolase, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase (PGK), hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase and glucokinase genes, or promoters derived from eukaryotic viruses, e.g. SV40, Rous sarcoma virus, adenovirus 2, bovine papilloma virus, papovavirus, cytomegalovirus or Baculovirus, e.g. <u>Autographa californica</u> nuclear polyhedrosis virus (AcMNPV), <u>Trichoplusia ni MNPV, Bachiplusia ou MNPV, Galleria mellonella MNPV, derived promoters or mammalian cell derived promoters, e.g. of the actin, collagen, myosin, or β -globin gene. A preferred eukaryotic promoter is a polyhedrin gene promoter of a Baculovirus, preferentially of the <u>Autographa californica</u> nuclear polyhedrosis virus (AcMNPV). The eukaryotic promoters may be combined with enhancing sequences such as the yeast upstream activating sequences (UAS) or viral or cellular enhancers such as the cytomegalovirus IE enhancers, SV40 enhancer, immuno-globulin gene enhancer or others.</u>

[0038] Enhancers useful for the expression are transcription-stimulating DNA sequences, e.g. derived from viruses such as Simian virus, Cytomegalovirus, polyoma virus, bovine papilloma virus or Moloney sarcoma virus, or of genomic origin. An enhancer sequence may also be derived from the extrachromosomal ribosomal DNA of Physarum.polyceph-alum (PCT WO 86/00089), or it may be the upstream activation site from the acid phosphatase PH05 gene (EP-B-0 213 593), or the PH05, trp. PH05-GAPDH hybrid (EP-B-0 213 593), or the like promoter.

[0039] Signal sequences which can be used for the present inveniton may be, for example, a presequence or secretory leader directing the secretion of the polypeptide, or the like. Signal sequences which can be used in the present invention are known in the literature, e.g. compiled in von Heijne, G., Nucleic Acids Res. 14, 4683 (1986). Another suitable signal sequence extends from amino acid 1 to 19 of the amino acid sequence depicted in the sequence listing

under SEQ ID No. 1. This signal sequence alone as well as a DNA molecule encoding same, preferably the DNA molecule represented by nucleotides 260 to 316 of SEQ ID No. 1 is also covered by the present invention.

[0040] A ribosomal binding site (Shine-Dalgamo Sequence) is either naturally linked to the promoter used or may be located on a short nucleotide sequence which may be covalently linked to the 5' end of the coding region for prolylen-dopeptidase. Ribosomal binding sites are known in the art.

[0041] A promoter chosen for the construction of a hybrid expression vector of the invention may be regulated by a regulatory protein and the production of prolylendopeptidase in the transformed host cell then may be inducible or derepressible. The gene for the regulatory protein may be located either in the genome of the host strain, on an additional plasmid vector the host strain may be cotransformed with, or on the hybrid vector of the invention. The selection of a suitable gene for a regulatory protein depends on the promoter used. The conditions for the induction or derepression of the production of prolylendopeptidase also depend on the promoter and on the regulatory protein. A regulatory protein which can be used in the present invention is, for example, a repressor protein, e.g. a product of the trpR, lacl, \(\lambda\) cro, or \(\lambda\)cl gene, or a temperature sensitive mutant thereof.

[0042] Preferred hybrid expression vectors of the invention are expression vectors suitable for the expression of mature prolylendopeptidase represented by the amino acid sequence shown in SEQ ID No. 1 in <u>E. coli</u>, more preferably such expression vectors comprising a signal sequence, preferably the signal sequence of the prolylendopeptidase gen shown under SEQ ID No. 1, operatively linked with the gene encoding the mature prolylendopeptidase.

[0043] Most preferred expression vectors are plasmids pFPH5-KD50, pUK-FPEP-a and pUK-FPEP-b characterized in the accompanying examples.

Transformed hosts and preparation thereof

[0044] The invention concerns a transformed host cell for multiplicating a recombinant DNA molecules of the invention or particularly for expressing a prolylendopeptidase structural gene comprised in a recombinant DNA molecule of the invention.

[0045] The transformed microbial host strains are cultured in a liquid medium containing sources of carbon and nitrogen which can be assimilated by the microbial cell, and inorganic salts, applying methods known in the art. The culture of the hosts is carried out in a conventional nutrient medium which may be supplemented with or deprived of chemical compounds allowing negative or positive selection of the transformants, i.e. such hosts containing the desired DNA molecule together with a selection marker, from the non-transformants, i.e. such hosts lacking the desired DNA molecule. [0046] Any transformable hosts useful in the art may be used, e.g. bacteria, such as E. coli, fungi, such as Saccharomyces cerevisiae, Kluyveromyces lactis, or filamentous fungi, such as Aspergillus Spec., e.g. A. nidulans, A. oryzae, A. carbonarius, A. awamori or A. niger. However, the use of suitable hosts which are devoid of or poor in restriction enzymes or modification enzymes may be advantageous. Examples of such hosts are bacteria, e.g. Bacillus subtilis, Bacillus stearothermophilus, Pseudomonas, Haemophilus, Streptococcus and others, and yeasts, for example Saccharomyces cerevisiae, and in particular strains of Escherichia coli, for example E. coli X1776, E. coli Y1090, E. coli W3110, E. coli HB101/LM1035, E. coli JA 221, E. coli DH5α, or preferentially E. coli DH5αF', JM109, MH1 or HB101, or E. coli K12 strain. Further suitable hosts are cells of higher organisms, in particular established continuous human or animal cell lines, e.g. human embryonic lung fibroblasts L132, human malignant melanoma Bowes cells. HeLa cells. SV40 virus transformed kidney cells of African green monkey COS-7 or Chinese hamster ovary (CHO) cells. Other suitable host cells are established insect cell lines, for example, Spodoptera frugiperda, such as Sf21 or preferentially Sf9 (ATCC CRL1711), Mamestra brassicae, Bombyx mori cell systems using Bombyx mori nuclear polyhedrosis virus (BmNPV) and the like.

[0047] The invention concerns also a method for the preparation of such transformed hosts comprising treatment of a suitable host cell under transforming conditions with a recombinant DNA molecule of the present invention, especially a hybrid vector of the invention, optionally together with a selection marker gene and optionally selecting the transformants.

[0048] Transformation of microorganisms is carried out according to conventional methods as described in the literature, for example for <u>S. cerevisiae</u> (A. Hinnen et al., Proc. Natl. Acad Sci USA, <u>75</u>, 1929, 1978), for <u>B. subtilis</u> (Anagnostopoulos et al., J. Bacteriol. 81, 741, 1961), and for <u>E. coli</u> (M. Mandel et al., J. Mol. Biol <u>53</u>, 159, 1970).

[0049] Accordingly, the transformation procedure of <u>E. coli</u> cells includes, for example, Ca²⁺ pretreatment of the cells so as to allow DNA uptake, and incubation with the hybrid vector. The subsequent selection of the transformed cells can be achieved, for example, by transferring the cells to a selective growth medium which allows separation of the transformed cells from the parent cells dependent on the nature of the marker sequence of the vector DNA. Preferably, a growth medium is used which does not allow growth of cells which do not contain the vector. The transformation of yeast comprises, for example, steps of enzymatic removal of the yeast cell wall by means of glucosidases, treatment of the obtained spheroplasts with the vector in the presence of polyethylene glycol and Ca²⁺ ions, and regeneration of the cell wall by embedding the spheroplasts into agar. Preferably, the regeneration agar is prepared in a way to allow regener-

ation and selection of the transformed cells as described above at the same time.

[0050] Transformation of cells of higher eukaryotic origin, such as mammalian cell lines, is preferably achieved by transfection. Transfection is carried out by conventional techniques, such as calcium phosphate precipitation, microin-jection, protoplast fusion, electroporation, i.e. introduction of DNA by a short electrical pulse which transiently increases the permeability of the cell membrane, or in the presence of helper compounds such as diethylaminoethyldextran, dimethyl sulfoxide, glycerol or polyethylene glycol, and the like. After the transfection procedure, transfected cells are identified and selected e.g. by cultivation in a selective medium chosen depending on the nature of the selection marker, for example standard culture media such as Dulbecco's modified Eagle medium (DMEM), minimum essential medium, RPMI 1640 medium and the like, containing e.g. the corresponding antibiotic.

[0051] The transformed host cells are cultured by methods, known in the art in a liquid medium containing assimilable sources of carbon, e.g. carbohydrates such as glucose or lactose, nitrogen, e.g. amino acids, peptides, proteins or their degradation products such as peptones, ammonium salts or the like, and inorganic salts, e.g. sulfates, phosphates and/or carbonates of sodium, potassium, magnesium and calcium. The medium furthermore contains, for example, growth-promoting substances, such as trace elements, for example iron, zinc, manganese and the like.

[0052] The medium is preferably so chosen as to exert a selection pressure and prevent the growth of cells which have not been transformed or have lost the hybrid vector. Thus, for example, an antibiotic is added to the medium if the hybrid vector contains an antibiotic resistance gene as marker. If, for instance, a host cell is used which is auxotrophic in an essential amino acid whereas the hybrid vector contains a gene coding for an enzyme which complements the host defect, a minimal medium deficient of the said amino acid is used to culture the transformed cells.

[0053] Cells of higher eukaryotic origin such as mammalian cells are grown under tissue culture conditions using commercially available media, for example Dulbecco's modified Eagle medium (DMEM), minimum essential medium, RPMI 1640 medium and the like as mentioned above, optionally supplemented with growth-promoting substances and/or mammalian sera. Techniques for cell cultivation under tissue culture condition are well known in the art and include homogeneous suspension culture, e.g. in an airlift reactor or in a continuous stirrer reactor, or immobilized or entrapped cell culture, e.g. in hollow fibers, microcapsules, on agarose microbeads, porous glass beads, ceramic cartridges, or other microcarriers.

[0054] Culturing is effected by processes which are known in the art. The culture conditions, such as temperature, pH value of the medium and fermentation time, are chosen so that a maximum expression level of the polypeptide or derivative of the invention is obtained. Thus, an <u>E. coli</u> or yeast strain is preferably cultured under aerobic conditions by submerged culture with shaking or stirring at a temperature of about 20°C to 40°C, preferably at about 30°C, and a pH value of 4 to 8, preferably of about 7, for about 4 to 30 hours, preferably until maximum yields of the polypeptide or derivative of the invention are reached.

Production of prolylendopeotidase

35

[0055] The present invention concerns also a method for the production of prolylendopeptidase.

[0056] For the expression of prolylendopeptidase, either procaryotic or eucaryotic host cells may be used, e.g. <u>E. coli</u> strains defective in protease genes, e.g. in the <u>lon</u> protease gene, and genes involved in the regulation of heat shock induced protein synthesis, e.g. in the <u>htpR</u> gene (US Patent 4,758,512; Buell, G. et al., Nucleic Acids Res. 13: 1923-1938, 1985).

[0057] Preferably, prolylendopeptidase is produced using <u>E. coli</u>. In this case to improve the expression, a 5'-terminal non-coding region of the cloned DNA is preferably removed while maintaining the full length of the coding region, particularly the coding region of the mature polypeptide shown under SEQ ID No. 1. The coding region is most preferably functionally linked with a signal sequence allowing the secretion of the prolylendopeptidase. Moreover, the structural gene is functionally linked with a promoter region functional in <u>E. coli</u>, either heterologous to or natively linked with the prolylendopeptidase coding region. The linkage is performed according to a conventional procedure, for example, using an appropriate restriction enzyme site or deletion by digesting with an exonuclease such as <u>E. coli</u> exonuclease III and successive blunting with a nuclease, e.g. mung-bean nuclease.

[0058] In one of the most preferable embodiments, a genomic DNA having a linker sequence immediately upstream of a full length coding region for prolylendopeptidase is linked with a heterologous promoter such as tac promoter in an expression vector, for example, a plasmid based on pUC119 plasmid. Very particularly, a coding region in the genomic DNA from Flavobacterium meningosepticum encodes a pro-form of prolylendopeptidase, e.g. such consisting of a mature form of the enzyme, for example consisting of amino acid residue 1 to the end of the sequence shown under SEQ ID No. 1, and a signal peptide, for example amino acid residues -19 to -1 of the sequence shown under SEQ ID No. 1. When such a type of an expression plasmid is used to transform <u>E. coli</u> host, and the transformant is cultured, then prolylendopeptidase is produced in <u>E. coli</u> cells and secreted into the periplasmic region. In the process of secretion the signal peptide is removed to give a mature form of the enzyme which is not incorporated in inclusion bodies, and therefore, the produced prolylendopeptidase is easily recovered.

[0059] According to another embodiment of the present invention, a DNA coding for the present enzyme is inserted into a baculovirus transfer vector to construct a recombinant baculovirus transfer vector, and the recombinant baculovirus transfer vector is then co-transfected with a baculovirus DNA to insect cells to carry out a homologous recombination.

[0060] The baculovirus transfer vector is usually a plasmid containing a segment of baculovirus DNA, which segment comprises a gene not essential for the replication of baculovirus. The gene not essential for the replication of baculovirus is, for example, a polyhedrin gene comprising a polyhedrin structure gene and a promoter thereof. Such baculovirs transfer vectors are, for example, pAcYM1 (Matsuura, Y., et al., J. Gen. Virol. (1987) 68, 1233-1250), pAc311, pAc360, pAc373, pAc380(USP4,745,051), pAc700, pAc701, pAc702, pVL1392, pVL1393, and the like. Preferred is the use of pVL1392.

[0061] The baculoviruses used in the present invention are, for example, <u>Trichoplusia</u> ni MNPV, <u>Rachiplusia</u> ou MNPV, <u>Galleria mellonella</u> MNPV, and the like. Preferentially used is <u>Autographa californica</u> nuclear polyhedrosis virus (AcM-NPV). A kit comprising a combination of an <u>Autographa californica</u> nuclear polyhedrosis virus and baculovirus transfer vectors pAc700, pAc701, pAc702, pVL1392 and pVL1393 is commercially available from Invitrogen Corp., San Diego, CA, USA. The insect cells used in the present invention are established insect cell lines, for example, <u>Spodoptera frugiperda</u>, such as Sf21 or preferentially Sf9 (ATCC CRL1711), but also <u>Mamestra brassicae</u> and the like. A <u>Bombyx mori cell system using <u>Bombyx mori</u> nuclear polyhedrosis virus (BmNPV) can also be used in the present invention.</u>

[0062] The homologous recombination is carried out in accordance with a conventional procedure as described, for example, in "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, M.D. Summers et al., Texas Agricultural Experiment Station Bulletin No. 1555". The transfected insect cells are cultured in accordance with a conventional procedure. Namely, the transfected insect cells may be cultured in any tissue culture medium in which insect cells can grow, such as Grace's or TC100 medium supplemented with mammalian serum, serum-free medium EX-CELL400, or the like, at a temperature of 20°C to 30°C, preferably 27°C to 28°C, for example 27°C, for 2 to 10 days, preferably 3 to 5 days.

[0063] The expressed prolylendopeptidase can be extracted from microbial cells such as <u>E.coli</u> cells or a supernatant of a cell culture by conventional methods, e.g., comprising homogenization of the cells, chromatography such as ion-exchange, hydrophobic or size-exclusion chromatography, precipitation, e.g., with ammonium sulfate or acid, preparative electrophoresis such as polyacrylamide gel electrophoresis or isoelectric focussing, and the like. Particularly, prolylendopeptidase from <u>Flavobacterium meningosepticum</u>, which is expressed in <u>E. coli</u>, is easily and selectively extracted from the cells with an osmotic shock method if the enzyme is secreted to the periplasmic region. The obtained crude enzyme can be further purified with usual methods, e.g. comprising chromatography such as ion-exchange, hydrophobic or size-exclusion chromatography, preparative electrophoresis such as polyacrylamide gel electrophoresis, or isoelectric focussing, and the like.

35 Production of C-terminally amidated peptides

[0064] The present invention concerns also a method for the production of C-terminus amidated peptides by use of prolylendopeptidase. Prolylendopeptidase catalyzes not only the hydrolytic cleavage of a peptide at the C-terminus side of a proline residue, but also, forming the peptide bond in the reverse manner of the hydrolysis, the coupling of a peptide fragment to C-terminus of the other fragment which is terminated by a proline residue. Under controlled conditions the coupling reaction is predominant and prolylendopeptidase is used to catalyze coupling of two peptide fragments (or of amino acid to a peptide fragment). The preferable conditions of the coupling are an excess of one of peptide fragments (or an amino acid), and the presence of an organic solvent, such as glycerol, ethylene glycol, butanediol, ethanol, n-propanol, i-propanol, acetonitrile, DMF, and DMSO, in a high concentration, typically more than 50 %.

[0065] In preferable embodiments of the present invention, biologically active peptides whose C-termini are α -amidated and have proline residues, preferably, at or near their C-termini are prepared with prolylendopeptidase from two precursors thereof, wherein one of the precursors is a precursor peptide forming N-terminal region of the amidated bioactive peptide and having a proline residue at its C-terminus and another precursor is a precursor peptide or amino acid forming a C-terminal portion of the amidated bioactive peptide which precursor peptide or amino acid has been amidated at C-terminus. The α -amidated bioactive peptides prepared with prolylendopeptidase involve aspartocin, bermorphin, calcitonin, CGRP, CGRP II, crustacean erythrophore concentrating hormone, cockroach myoactive peptide I, color change hormone, glumitocin, granuliberin-R, isotocin, LH-RH, mesotocin, morphine modulating neuropepride, α -MSH, oxytocin, phenypressin, SCP_A, SCP_B, valitocin, vasopressin, and vasotocin.

[0066] The present invention provides a process for the production of a recombinant DNA molecule comprising a gene coding for prolylendopeptidase, comprising the steps of preparing cDNA or genomic DNA from cells, preferentially bacterial cells, capable of producing prolylendopeptidase, inserting DNA fragments coding for prolylendopeptidase into a cloning extor, and selecting a hybrid vector containing the DNA coding for prolylendopeptidase.

[0067] The present invention concerns in particular the embodiments disclosed in the examples.

[0068]

5

- Fig. 1 represents restriction maps of the cloned inserts in pFPEPO2 and pFPEPO3. The open box represents the open reading frame of the prolylendopeptidase gene and the solid box a consensus sequence of the catalytic site of seine protease. Cloned inserts of pFPH6, pFPH5 and its deletion subclones (KD50, KD7 and KD6) are also aligned with the maps on the same scale.
- Figs. 2 to 4 represent a process for construction of expression plasmids pUK-FPEP-a and pUK-FPEP-b starting from an intermediate plasmid pFPEPO4.

EXAMPLES

- 15 [0069] The present invention will now be further illustrated by, but is no means limited to, the following examples.
 - [0070] In the Examples, the following materials and methods are commonly used.
 - [0071] The bacterial strains and plasmids used are listed in Table I.

.

20

Table 1

		1
		Strains and plasmids.
	Strains or plasmid	Relevant genotype
	Strains	
	E. Coli	
ĺ	JM 83	ara,Δ(lac-proAB), rpsL(=strA), Ø80 ^r , lacZ ΔM15
	JM109	recAl, endA1, gyrA96, thi, hsdR17, supE44, relAl, λ², Δ(lac-proAB), F¹[proAB², lacl², lacZΔM15, traD36]
	HB 101	F', hsdS20(r' _B , m' _B), recA13, ara-14, proA2, lacY1, galK2, rpsL20 (Sm'), xyl-5, mtl-l, supE44, λ', mcrA ⁺ , mcrB
	TGI	supE, hsd Δ5, thi, D(lac-proAB), F'[proAB+, lac/9, lacZ Δ M15, traD36]
	F. meningosepticum	IFO 12535 (ATCC 13253)
ſ	Plasmids	
ſ	pUC19	Amp ^r , lacl', lacZ'
-	pUC118	Amp ^r , lacl', lacZ', M13iG
	pUC119	Amp ^r , lacl', lacZ', M13IG

[0072] Transformation, restriction mapping, preparation of plasmids, and other molecular cloning procedures are done by standard methods. (Sambrook, J. et al. "Molecular cloning: a laboratory manual," 2nd ed. 1989, Cold Spring Harbor Laboratory, Cold Spring Harbor; Silhavy, T.J. et al. "Experiments with gene fusions," 1984, Cold Spring Harbor Laboratory, Cold Spring Harbor.) Restriction enzymes and DNA-modifying enzymes are used according to the recommendations of the manufacturers. Deletion with exonuclease III is carried out by use of a Kilo-Sequence Deletion kit (Yanisch-Perron, C. et al. Gene, 1985, 33, 103-119; Henikoff, S. Gene, 1984, 28, 351-359.). The nucleotide sequences are determined by the dideoxy method, by using a Sequenase kit. Genomic DNA from F. meningosepticum is isolated by the method of Saito and Miura (Saito, H. et al. Biochim. Biophys. Acta, 1963, 72, 619-629).

[0073] Restriction enzymes, DNA-modifying enzymes, the Kilo-Sequence Deletion kit and the MEGALABEL kit are purchased from Takara Shuzo Co. Ltd. (Kyoto). The Sequenase Ver.2.0 kit is the product of U.S. Biochemical Corp. (Cleveland, Ohio). Prolylendopeptidase from <u>F. meningosepticum</u> and Endoproteinase Asp-N are purchased from Seikagaku Corp. (Tokyo) and Boehringer Mannheim- Yamanouchi Co. Ltd. (Tokyo), respectively. The enzyme substrates, Z-Gly-Pro-β-naphthylamide and Z-Gly-Pro-P-nitroanilide, are obtained from Novabiochem AG(Laeufelfingen, Switzerland). Radio isotopes are purchased from Amersham Japan Co. Ltd. (Tokyo) and other biochemicals are obtained from Sigma Chemical Co. (St. Louis, Missouri), Wako Pure Chemical Industries Ltd. (Osaka) and Nacalai Tesque Inc. (Kyoto).

Example 1: Preparation of DNA probes

[0074] Commercially obtained prolylendopeptidase is purified by reverse phase HPLC on a 4.6×35 mm TSKgel Octadecyl NPR column (Tosoh Co. Ltd.). The column is eluted with 0.01 % TFA in water and a 3:1 mixture of CH $_3$ CN and i-PrOH, at a flow rate of 1 ml/min. The gradient from 35-70% of the organic solvent mixture is applied over 40 mm. and the major peak is collected.

[0075] Since N-terminus of the endopeptidase is blocked, the enzyme must be subjected to proteolytic cleavage to determine its partial primary structure. The proteases commonly used for the cleavage like trypsin do not give satisfactory results. Therefore, proteases and conditions of the hydrolytic cleavage are systematically investigated and Endoproteinase Asp-N is found to give the best result.

[0076] The purified enzyme (0.5 mg) in 10 mM ammonium carbonate, pH 7.9, containing 4mM urea is hydrolyzed by 1 μg of Endoproteinase Asp-N at 37°C for 24h. The peptide mixture obtained by this digestion is separated by reverse phase HPLC on a 4.6 x 250 mm Vydac C18 column (Separations Group Corp.) with the mobile phase of 0.01% TFA in water and a. 3:1 mixture of CH₃CN and i-PrOH. The flow rate is 1 ml/min. The isolated peptides are further purified by rechromatography. The amino acid sequence of the purified fragments are determined by manual Edman degradation using the methods described by Kobayashi and Tarr (Kobayashi, R. et al. Tanpakushitsu Kakusan Koso, 1986, 31, 991-1002; Tan, G.E. "Methods in protein sequencing analysis" (ed. Elzinga, M.), 1982, 223-232, Humana Press, New Jersey).

[0077] The nucleotide sequences for the probes are not uniquely determined from the amino acid sequences because of multiple codon usage. Out of the 23 partial amino acid sequences six which give relatively less combinations of possible nucleotide sequences are chosen to make DNA probes (Table II). Preferred codon usage in <u>F. meningosepticum</u> has not been known, and two guidelines are adopted in the design of the nucleotide probes. Namely, three of the 6 probes (A-12, 13 and 19) are designed so as to consist of a single oligonucleotide sequence, selecting the most probable codon for each amino acid residue on the assumption that the genome DNA of <u>F. meningosepticum</u> is GC rich. The other three (A-3, 9 and 18) are mixtures of oligonucleotides of the possible sequences. To reduce further the number of the possible sequences in the mixture, inosine (I) is placed at the position which can be one of four bases, A, G, C and T, since inosine forms stable base pairs with all of four.

Table II

30

35

40

45

Determined partial amino acid sequences of the fragments of prolylendopeptidase obtained by the Endoproteinase Asp-N digestion (shown by the amino acid residur No. in SEQ ID No. 1), and corresponding nucleotide positions in SEQ ID No. 1 of the probes designed from the amino acid sequences.

Fragment No.	Amino acid residue No. in SEQ ID No.1	Probe No.	Corresponding nucleotide position in SEQ ID No. 1
3	499-509	A-3	1811-1833
· 9	352-364	A-9	1370-1407
12	28-34	A-12	398-414
13	182-190	A-13	860-877
18	380-391	A-18	1454-1485
. 19	268-276	A-19	1118-1137

[0078] Oligonucleotides are synthesized with an Applied Biosystems Model 381A DNA synthesizer. After removal of dimethoxytrityl group at the end of the synthetic sequence the oligonucleotides are deprotected and cleaved from the supports, according to the protocols of the manufacturer. The synthesized DNA are then subjected to preparative electrophoresis with 8% polyacrylamide gel in 7M urea. Purified oligonucleotides are extracted from the separated bands and deionized by use of Waters Sep-Pack C-18 columns.

Example 2: Evaluation of the probes

[0079] The chromosomal DNA is isolated from <u>F. meningosepticum</u> and digested by 4 kinds of commonly used restriction enzymes recognizing hexanucleotide sequence, i.e., Pstl, Hindlll, EcoRI and BgIII.
 [0080] Oligonucleotide probes are radio-labeled by use of a MEGALABEL kit with [γ-³²P]ATP to give a specific activity of ca. 1 x 10⁶ cpm/pmol. The chromosomal fragments are electrophoresed on a 0.7% agarose gel and transferred to a

Millipore nitrocellulose filter by the method described by Sambrook et al. (Sambrook et al., 1989, supra).

[0081] After prehybridization according to a standard protocol (Sambrook et al., 1989, supra), hybridization is carried out in 6x SSC hybridization solution with 0.2 pmol/ml of the labeled probe at 45°C for 16 h. The filter is washed with 6x SSC three times for 3 min. at room temperature and then once for 1 mm. at 45°C. Autoradiography is performed with a Fuji Bio-image analyzer BAS 2000. Only the A-3 probe is found to give a clear and specific signal with each of the digested DNA.

Example 3: Preparation of genomic library and screening thereof

[0082] The molecular weight of prolylendopeptidase is found quite large, 76,000 by SDS-polyacrylamide gel electrophoresis (Yoshimoto et al, 1980, supra). The size of the enzyme corresponds to 2 kb of the coding region in the genome. The larger the cloned DNA fragment is, the higher the chance of including the full length of the open reading frame. Therefore, rather a long fragment but small enough to get a high efficiency in the transformation is desired and 7 kb of the Bglll fragment is selected. Namely, genomic DNA digested by Bglll is subjected to preparative electrophoresis with low-melting-point agarose and the fraction of the gel containing 7 kb fragments is cut out. The excised gel piece is dissolved in a ligation mixture and the extracted chromosomal fragments are cloned into BamHl site of pUC19. By this ligation mixture <u>E. coli</u> HB101 is transformed to give a genomic library comprising about 4,000 recombinants.

[0083] The genomic library is screened with the A-3 probe by colony hybridization and 119 positive clones are obtained. Sixteen positive clones are chosen and analyzed further by restriction endonuclease digestion and the enzyme assay. One clone with 7 kb insert is found to show a comparatively high prolylendopeptidase activity. The plasmid is named pFPEP02 and further characterized.

Example 4: Restriction mapping and DNA sequencing of the isolated clones

[0084] The restriction map of the insert of pFPEP02 is shown in Fig. 1. To locate the coding region the insert DNA is cleaved by appropriate restriction enzymes and subcloned into pUC118 or pUC119. The clone which has 2.6kb of HincII - EcoRI fragment (pFPH6) shows the highest enzyme activity. To determine the entire nucleotide sequence of this fragment a series of deletion subclones are generated from either end of a larger fragment which includes the 2.6 kb fragment (pFPEP03, deposited as FERM BP-3466). From the deletion mutants and the subcloned restriction fragments, the whole sequence of the 2.6 kb fragment is determined by the dideoxy method (SEQ ID No. 1).
 [0085] The prolylendopeptidase gene is represented by the open box in Fig. 1. The gene is found to have an open reading frame of 2,118 bp, which is preceded by a putative promoter sequence separated by 28 bp from the ATG initiation codon. The endopeptidase, predicted from the nucleotide sequence, consists of 705 amino acid residues with a calculated molecular weight of 78,700, in good agreement with the value of 77,500 determined by sedimentation equilibrium (Yoshimoto, T. et al. Agric. Biol. Chem. 1982, 46, 2157-2158). The enzyme has been thought a serine protease based on the inhibitor study (Yoshimoto et al., 1980, supra). In agreement with the assumption there is a consensus sequence of catalytic site of seine protease, Gly-X-Ser-X-Gly, in the c-terminal region. The G-C content of the cloned HincII-EcoRI fragment is 38.4% and rather low, contrary to expectations. In the protein data banks, NBRF-PIR and SWISS-PROT, no protein which has a significant homology with prolylendopeptidase is found.

Example 5: Expression of prolylendopeptidase

40

[0086] For the expression of prolylendopeptidase, <u>E. coli</u> transformed with a plasmid is cultured in TY medium at 37°C with agitation in a rotary shaker (120 rpm). TY-broth used for expression of prolylendopeptidase in <u>E. coli</u> contains 1% Bacto-tryptone, 0.1% Bacto-yeast extract, 0.1% glucose, 0.8% NaCl, pH 7. <u>F. meningosepticum</u> is grown in a polypeptone medium which contains 1% polypeptone, 0.2% Bacto-yeast extract, 0.1% MgSO₄ 7H₂O and 2.5% NaCl (pH7), according to instructions of a culture collection.

[0087] Two assay methods (A and B) are employed for qualitative estimation of the enzyme activity and for the quantitative evaluation, respectively. In the method A, Z-Gly-Pro- β -naphthylamide (Z = N-benzyloxycarbonyl) is used as a substrate. To 0.8 ml of 20 mM Tris-HCl buffer, pH 7.0, is added 0.1 ml of E. coli culture or diluted cell suspension and the mixture was preincubated at 37°C for 3 min. The reaction is started by the addition of 0.1 ml of the substrate solution (5 mM) in 40% dioxane and terminated after 10 min. by the addition of 0.5 ml Fast Garnet GBC solution (1 mg/ml) containing 10% Triton X-100 in 1 M acetate buffer, pH 4.0. The reaction mixture is left at room temperature for 20 min. and centrifuged at 12,000 g for 5 min. The absorbance of the supernatant is measured at 550 nm.

[0088] In the quantitative assay (B), <u>E. coli</u> cells are harvested by centrifugation, washed with 0.1 M HEPES (pH 7.4), and suspended in the same volume of the HEPES solution as the culture. The cell suspension is sonicated on ice for 60 s with intervals over 3 min. to give a cell lysate. To 0.94 ml of 0.1 M potassium phosphate buffer, pH 7.0, is added 0.05 ml of 4 mM Z-Gly-Pro-p-nitroanilide in 40% dioxane. After 3 min. preincubation at 30°C, 0.01 ml of the diluted

lysate is added to the mixture and the change of the absorbance is followed at 410 nm with a Hitachi spectrophotometer U-3210 at 30°C. One unit of the enzyme activity is defined as the amount of the enzyme that releases 1 µmol of p-nitroaniline per minute, corresponding to 8.87 OD/min. with this standard procedure.

[0089] Although the clone having the HincII-EcoRI fragment (pFPH6) clearly shows the activity of prolylendopeptidase, the activity is much smaller than that of the original bacterium. To improve the expression level, another set of deletion mutants are prepared from the clone having HincII-BamHI fragment (pFPH5). As the deletion is extended from the 5' end of the fragment, the enzyme activity increases gradually to reach maximum with pFPH5-KD50 (Fig. 1). And then the activity decreases but still moderate (pFPFH5-KD7), when the deletion reaches to the initial part of the reading frame. Very little activity is detected from a clone with further deletion (pFPH5-KD6). Therefore, the expression of the enzyme in KD50 is further investigated in detail.

[0090] The plasmid pFPH5-KD50 contains 120 bp of upstream noncoding region comprising the putative promoter sequence, together with the full length of the open reading frame. E. coli (JM83) transformed by this plasmid is grown in TY medium, and the time-course of the expression of prolylendopeptidase is followed with the enzyme activity of the total protein in homogenate of the washed cell (Table III). Around 6 to 12 h, as the growth of the bacterium stops, total activity of the enzyme increases rapidly and reaches the maximum value of 3,371 units/L, corresponding to 10 times of the enzyme activity attained by E. meningosepticum (346 units/L). The total activity stays constant until 24 h and then slowly decreases. On the other hand, the specific activity shows the rapid increase around 6 to 12 h similar to the total activity, but it increases gradually even after 24 h. A maximal specific activity of 10.6 units/mg protein is reached around 36 h. Since typical specific activity of purified prolylendopeptidase is about 115 units/mg protein, the expression level of prolylendopeptidase in this clone amounts to about 1/10 of the total protein.

[0091] Such a high expression level of prolylendopeptidase is also demonstrated in the SDS-PAGE analysis. Sample for SDS-PAGE is prepared by mixing the lysates described before with an equal volume of sample buffer containing SDS and β -mercaptoethanol and incubated at 96°C for 5 min. The electrophoresis is performed using a precast plate (12.5%, 84 x 90 x 1.0 mm) and the apparatus obtained from Daiichi Pure Chemicals Co. Ltd. (Tokyo), according to the protocols given by the manufacturer. The gel is stained with Coomassie Brilliant blue R250.

[0092] At 12 h appearance of a new band is clearly distinguished at the same position as the standard of prolylen-dopeptidase from <u>F. meningosepticum</u>. Intensity of this band is highest around 12-24 h, concomitantly with the change of the total activity of the enzyme.

[0093] The production of prolylendopeptidase is shown in the following Table III.

Table III

Expr	ession of prolylendopeptida	se in <u>E. coli</u> (JM83) harl	boring pFPH5-KD50.
Time (h)	Absorbance at 550 nm in culture medium	Total activity (unit/L)	Specific activity (unit/mg protein)
0	0.12	0	0
6	4.14	572	2.2
12	6.06	3371	8.8
24	5.75	3388	9.7
36	5.20	3003	10.6
48	4.69	2494	10.5

Example 6: Further improvement of expression

30

35

40

45

[0094] The expression in <u>E. coli</u> JM 83 harboring pFPH5-KD50 has reached quite a high level, but an even higher level would be preferable for the industrial production of prolylendopeptidase. In pFPH5-KD50 a putative promoter sequence, originating from <u>F. meningosepticum</u>, is found and assumed to function in <u>E. coli</u>. To improve the expression level further, this native promoter is replaced by the strong <u>trp-lac</u> hybrid promoter (or <u>tac</u> promoter), as follows.

[0095] Plasmid pFPEPO2 is digested with HincII to obtain a 3.1 k bp HincII fragment containing prolylendopeptidase gene, which is then subcloned at the Smal site of pUC118 by blunt end ligation to give pFPEPO4. After the ligation, the insertion points at the both ends of the fragment are cleavable neither by HincII nor Smal (Fig. 2). To delete the Scal

insertion points at the both ends of the fragment are cleavable neither by HinclI nor Smal (Fig. 2). To delete the Scal and Pvull sites in the coding region the synthetic double-stranded oligonucleotide fragment which corresponds to the sequence between the Smal and Pvull sites but is mutated at two positions (Synthetic Fragment I, see SEQ ID No. 2) is prepared by annealing the lower strand and the upper strand only whose 5' end has been phosphorylated beforehand

by T4 polynucleotide kinase.

[0096] On the other hand, the plasmid pFPEPO4 is cleaved at the single Smal site existing in the open reading frame, and the mutated Smal - Pvull fragment mentioned above is ligated to the linearized plasmid at both terminus Smal sites. The ligation product is then digested by Sacl and the longer fragment, containing the 5' portion of the coding region, is isolated by agarose gel electrophoresis. After kinasing the isolated fragment the missing piece between Pvull and Sacl sites, prepared separately from pFPEPO4, is ligated to construct plasmid pFPEPO4'. Since one nucleotide at the terminus generated by Pvull has been changed in the synthetic fragment, the Pvull site is not regenerated by this cyclization.

[0097] Next, a new EcoRI site is created immediately upstream from the initiation codon of the prolylendopeptidase gene as follow (see Fig. 3). Synthetic Fragment II (SEQ ID No.3) is prepared by ligation of the four oligonucleotides U1, U2, L1 and L2 (see SEQ ID No.4, 5, 6 and 7, respectively), where two of them (U2 and L1) have been phosphorylated at their 5' termini. The prepared fragment corresponds from the initiation codon to PvuII site in the upstream coding region and has protruding cohesive 5' terminus immediately upstream of the initiation site to introduce EcoRI site after ligation. For the following ligation the both 5' ends of the prepared fragment are phosphorylated by T4 polynucleotide kinase.

[0098] The plasmid pFPEPO4*, in which one of four Pvull has been deleted, is digested with Pvull, and the fragment containing most of the coding region is isolated by agarose gel electrophoresis and ligated to the second synthetic fragment described above. The product obtained by the ligation is digested with EcoRI to isolate the complete open reading frame with the 5' protruding cohesive ends at both termini, which is then subcloned at the EcoRI site of pUC119. The two synthetic regions in the obtained plasmid, pFPEP-EE, are sequenced and the mutated nucleotide sequences are confirmed. The resulting plasmid is pFPEP-EE.

[0099] In the next step of the vector construction, as shown in Fig. 4, the whole coding region, together with a short downstream non-coding region, is cleaved out from pFPEP-EE by EcoRI. The fragment is then inserted into the EcoRI site of the expression vector, pKK223-3, to provide pKK-FPEP in which the transcription of the prolylendopeptidase gene is under the control of the <u>tac</u> promoter.

[0100] The replication origin of pKK223-3 originates from pBR322 and the copy number of this expression vector in a single cell is usually low. Because of the higher dose effect of the gene a high copy number plasmid is preferable as an expression vector for a higher expression level. Therefore, a) a set of the promoter and the coding region or b) a set of the promoter, the coding region and the terminator is excised by BamHI or BbiII, respectively, and transplanted into the high copy number plasmid, pUC119. Since the peptidase gene is transferred from pKK-FPEP together with the tac promoter, the original lac promoter of pUC119 is removed by PvuII in order to avoid the double promoter. In between the blunt ends generated by this PvuII digestion either the gene set a) or the set b), which has been blunted by T4 DNA polymerase, is inserted to give pUK-FPEP-a or pUK-FPEP-b, respectively (Fig. 4).

[0101] For overexpression of prolylendopeptidase, <u>E. coli</u>, JM 109, is transformed by pUK-FPEP-a or pUK-FPEP-b. The transformants are selected on LB plates containing 50 µg/ml of ampicillin and grown in LB medium with the ampicillin overnight. For expression of prolylendopeptidase 100 ml of CIRCLEGROW (BIO 101, Inc., Vista, California) medium (without ampicillin) is inoculated with 2 ml of the overnight culture and shaken at 37°C. In a preliminary experiment the maximum expression level in the transformant harboring pUK-FPEP-a (13,500 units/L) is found twice as high as that for pUK-FPEP-b (6,600 units/L) when the expression is boosted with 1 mM IPTG on a half day after the inoculation. Without the IPTG the basal expression levels for both clones are still quite high; in the case of pUK-FPEP-b it is even higher (8,060 units/L) than the level obtained by the addition of IPTG.

[0102] Since pUK-FPEP-a shows the highest expression level, reaching 39 times of the enzyme activity obtained by E. meningosepticum and 4 times of the expression level attained with the pFPH5-KD50, the time course of the expression is followed with or without the addition of IPTG (Table IV). As the growth, monitored by the absorbance of the culture broth at 550 nm, slowed down around 4 h after the inoculation, the activity of the enzyme increases linearly along the time course. Without the boosting the expression by the IPTG the activity increases further linearly up to 20 h to attain the maximum level of 7,400 units/L at 24 h and then decreases. The specific activity of the endopeptidase stayed constant around 11 units/mg protein after 12 h. On the other hand, when 1 mM IPTG is added at 12 h, the increase is clearly enhanced immediately after the addition, reaching the highest expression level of 13,500 units/L at 28 h. A significant increase in the specific activity is also seen simultaneously with the sharp increase in the expression level and the maximum specific activity, 40 units/mg protein, is observed at 28 h and later, clearly demonstrating the effect of the IPTG induction on the tac promoter. Since a typical pure preparation of prolylendopeptidase from E. meningosepticum was reported to show a specific activity of 115 units/mg protein (Yoshimoto, T.et al., 1978 supra), the expressed enzyme accounts for over 30% of the total protein extracted from E. coli.

[0103] Such a high expression of prolylendopeptidase is also demonstrated in SDS-PAGE analysis. Already at 6 h after the inoculation, appearance of a new band is clearly noticed at the same position as the standard of prolylendopeptidase, and the expansion of that band demonstrates the increase in the expression level clearly during the time course from 12 h to 28 h, concomitantly with the change of the total activity of the enzyme.

Tabelle IV

Expression of prolylendopeptidase in E. coli (JM109) harboring pUK-FPEP-a.^a

		Without IPTG			With IPTGb	
Time (h)	Absorbance at 550 nm	Total activity (unit/L)	Specific activity (unit/mg protein)	Absorbance at 550 nm	Total activity (unit/L)	Specific activity (unit/mg protein)
0	0.15	14.5	17.7	0.15	14.5	17.7
4	2.17	369	2.3	2.18	351	2.5
∞	3.92	2206	7.1	3.90	1977	8.3
12	4.63	3601	11.1	4.71	2915	8.6
14	5.12	4119	10.7	4.87	4762	14.8
16	5.86	5038	11.3	5.06	7708	24.7
20	6.24	7129	13.6	4.88	11340	35.2
24	6.35	7416	12.7	4.79	12850	37.5
28	09.9	6120	11.0	5.13	13490	39.8
36	5.60	4683	10.9	4.86	10400	40.4

The transformed E. coli is cultured in CIRCLEGROW medium at 37°C with agitation in a rotary shaker (120 rpm). Growth of the cells is monitored by absorbance at 550 nm and specific activity and total activity are followed over 36h after inoculation.

To boost the expression 1 mM IPTG is added at 12h.

Example 7: Production of recombinant prolylendopeptidase

[0104] Since prolylendopeptidase is expressed in <u>E. coli</u> in a soluble and active form and the expression level is so high (more than 30% of the total extracted protein), the isolation of the expressed enzyme is quite straightforward.

[0105] E. coli cells transformed with the expression plasmid pUK-FPEP-a are cultured in the CIRCLEGROW medium with boosting by IPTG for 28 hours at 37 °C. E. coli cells are harvested by centrifugation (3,000 g for 10 min) and washed with cold 0.1 M HEPES buffer, pH 7.4. The washed cells are re-suspended in 0.1 M HEPES and disrupted by sonication intermittently over 20 mm with a SONIFIER 450 (BRANSON Sonic Power Co.). The lysate is then fractionated with ammonium sulfate precipitation. The protein precipitated at 65 - 90% saturated ammonium sulfate is dissolved in 20 mM phosphate buffer, pH 6.2 and dialyzed against the same buffer. The dialyzate is applied to a CM52 column (Whatman BioSystems Ltd.) equilibrated with the same buffer. The enzyme is eluted by a linear gradient of NaCl. Active fractions are combined, concentrated by ultrafiltration with a Amicons cell and a YM30 membrane (Amicon Div., W.R.Grace & Co.) and dialyzed against 20 mM phosphate buffer, pH 6.8. Prolylendopeptidase is further purified on a Mono S HR 10/10 column (Pharmacia LKB Biotechnology AB). With a NaCl gradient (0 - 0.075 M) the endopeptidase is eluted in a sharp peak around 0.035 M of NaCl. The purified enzyme appears to be homogeneous yielding only a single band in SDS-PAGE.

Example 8: Production of luteinizing hormone-releasing hormone (LH-RH)

[0106] Since LH-RH (a decapeptide) has a proline residue at the penultimate position, it is prepared from the non-apeptide precursor and glycine-amide. In the presence of a catalytic amount of prolylendopeptidase (0.08 μ M), 1 mM of the precursor and 2.0 M glycineamide are incubated in 60% glycerol at pH 7.0 and 30°C. In 48 h the coupling comes to equilibrium with the hydrolysis and LH-RH is obtained in the conversion of 67% in a quantitative yield (97% isolation yield). The rest of the precursor is recovered in HPLC purification and no side reaction is noticed.

Example 9: Production of oxytocin

30

[0107] Oxytocin, a nonapeptide having a proline residue at the third position from its c-terminus, is obtained by coupling the precursor of the first seven residues to leucylglycine-amide with prolylendopeptidase. In a typical example 1 mM of the oxytocin precursor [1-7] and 0.8 M leucylglycine-amide are incubated with 0.13 µM prolylendopeptidase in 60% glycerol at pH 6.5 and 30°C. The coupling proceeds to reach an equilibrium after 48 h and 55% of the precursor is converted to oxytocin in a quantitative yield (91% isolation yield). No by-product is detected and 43% of the starting material is recovered.

Example 10: Alternative method for purification of recombinant prolylendopeptidase

[0108] E. coli cells expressing prolylendopeptidase are harvested by centrifugation (10,000 g for 10 min) and washed with cold 0.1 M Tris-HCl buffer, pH 8.0. The washed cells are re-suspended in 0.5 M sucrose solution containing 5 mM EDTA buffered at pH 8.0 with 0.1 M Tris-HCl. Lysozyme (160 µg/ml) is added to the suspension and the mixture is left on ice for 2 min before dilution with the same volume of ice-cold water. The diluted cell suspension is further left on ice for 30 mm and then centrifuged at 10,000 g for 20 min. The supernatant is diluted again with the same volume of ice-cold water and its pH is adjusted to 7.0 with 1 N NaOH. The obtained crude enzyme solution (a periplasma fraction) is directly applied to a CM 52 column (Whatman BioSystems Ltd.) equilibrated with 20 mM phosphate buffer, pH 6.8. The enzyme is eluted in a single peak with a linear gradient (0 - 0.25 M) of NaCl. In this alternative purification method with the osmotic shock procedure, prolylendopeptidase is purified to homogeneity as judged by SDS-page analysis with a single chromatography step.

Example 11: Properties of recombinant prolylendopeptidase from Flavobacterium meningosepticum expressed in E. coli

[0109] The method (B) described in Example 5 is modified to assay purified prolylendopeptidase. DTT (1 mM) and BSA (100 µg/ml) are included in the buffer solution of 0.1 M phosphate (pH 7.0) for the assay to improve reproducibility and accuracy of the kinetic measurement. To 0.94 ml of this buffer solution is added 0.05 ml of 4 mM Z-Gly-Pro-pnitroanilide in 40 % dioxane. After 3 min preincubation at 30°C, 0.01 ml of the enzyme solution obtained in example 10 is added to the mixture and changes of the absorbance at 410 nm is followed at 30°C.

[0110] In a typical purification the enzyme with a specific activity higher than 120 units/mg protein is obtained. The molecular weight is estimated to be 71,000 and 74,000 by gel filtration with a TSK-GEL G3000SW column (Tosoh Corp.) and SDS-PAGE, respectively. The enzyme shows an extinction coefficient E(1%/280 nm) of 15.5. There are two cysteine residues according to the deduced amino acid sequence with SEQ ID No. 1, but no free sulfhydryl group is detectable by titration with p-chloromercuribenzoic acid under a denatured condition with 8 M urea.

[0111] The N-terminal sequence of the recombinant prolylendopeptidase is found to start with Ala and follows with Gln, Asn, Ser, Asn, X (unknown), Leu, Lys, Tyr, and Pro, proving that the first 19 amino acid residues shown in the

sequence with SEQ ID No. 1 encode a signal sequence and are missing from the N-terminus of the matured enzyme.

Deposited Microorganisms

10

· 15

20

25

30

35

45

50

55

[0112] <u>E. coli</u> TG1/pFPEPO3 was deposited under the Budabest Treaty with with the Fermentation Research Institute, Agency of Industrial Science and Technology (FRI), 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki, Japan, on July 5, 1991, as FERM BP-3466.

SEQUENCE LISTING

5	SEQ ID No. 1	
	SEQUENCE TYPE: Nuceleotide with corresponding protein	
	SEQUENCE LENGTH: 2636 base pairs	
10	STRANDNESS: double	
	TOPOLOGY: linear	
	MOLECULE TYPE: genomic DNA	
	ORIGINAL SOURCE	
15	ORGANISM: Flavobacterium meningosepticum	
	INTERMEDIATE EXPERIMENTAL SOURCE	
	NAME OF PLASMID: pFPEP03	
20	FEATURE: genomic DNA coding for prolylendopeptidase	
	from 1 to 259 promoter region	
	from 260 to 316 signal sequence	
25	induze profit chaopeptidase	
	coding region from 2375 to 2377 stop codon	
	Trom 2575 to 2577 stop codon	
30	GTTGACGGTA AAGTAGTATT TACTAAAAAG AGAGATAACA GGTCTTACGT	50
50	AMOREMACCA, COLORED LA PROPERTIE LA PROPERTI	
	CANCONANCE MONCOMPERE PROPERTY AND	
	A COMORMA CO. MARIA PROPERTO A PARA PARA PARA PARA PARA PARA PARA P	
35 '	TCCTCA A MC CONSTITUTION TO TOTAL TO	
	ACCAATTCT ATG AAG TAC AAC CTT TCT GTG GCA GTT GCA GCC 29) 5
	Met Lys Tyr Asn Lys Leu Ser Val Ala Val Ala Ala	
40	-19 -15 -10	
	TTT CCT TTT CC3 CCT CT3 TC3 CC3 C33 337 TC7 337 CT	
•	TTT GCT TTT GCA GCT GTA TCA GCA CAA AAT TCT AAT GTT TTG 33	37
45	Phe Ala Phe Ala Ala Val Ser Ala Gln Asn Ser Asn Val Leu -5 -1 +1 5	
	-5 -1 +1 5	
	AAA TAT CCC GAA ACT AAA AAA GTA AGC CAT ACC GAT ACC TAT 37	
50		9
JU	Lys Tyr Pro Glu Thr Lys Lys Val Ser His Thr Asp Thr Tyr	
	10 15 20	

					GTA										421
5	Phe	Gly	Thr	Gln 25	Val	Ser	Asp	Pro	Tyr 30	Arg	Trp	Leu	Glu	Asp 35	
	GAC	AGA	GCC	GAA	GAT	ACA	AAA	GCC	TGG	GTA	CAA	CAG	GAA	GTT	463
10	Asp	Arg	Ala	Glu	Asp	Thr	Lys	Ala	Trp	Val	Gln	Gln	Glu	Val	
					40					45					
15					GAC										505
	Lys	Phe	Thr	Gln	Asp	Tyr	Leu	Ala	Gln	Ile	Pro	Phe	Arg	Asp	
	50					55					60				
20	CAG	СТТ	AAA	AAG	CAA	TTA	ATG	GAC	ATC	TGG	AAT	TAT	GAG	AAA	547
	Gln	Leu	Lys	Lys	Gln	Leu	Met	Asp	Ile	Trp	Asn	Tyr	Glu	Lys	
		65					70					75			
25	ATT	TCA	GCA	CCG	TTT	AAA	AAA	GGT	AAA	TAC	ACC	ТАТ	TTT	тст	589
					Phe										
		٠,	80					85					90		
30															
	AAA	AAT	GAT	GGT	CTT	CAG	GCG	CAA	TCT	GTA	CTT	TAC	AGA	AAA	631
	Lys	Asņ	Asp	Gly	Leu	Gln	Ala	Gln	Ser	Val	Leu	Tyr	Arg	Lys	
05				95					100					105	
35															
					AAG										673
	Asp	Ala	Ala	Gly	Lys	Thr	Glu	Val	Phe	Leu	Asp	Pro	Asn	Lys	
40					110					115					
	TTT	TCG	GAA	AAA	GGA	ACC	ACT	TCT	CTG	GCA	AGT	GTT	TCT	ттт	715
-	Phe	Ser	Glu	Lys	Gly	Thr	Thr	Ser	Leu	Ala	Ser	Val	Ser	Phe	
45 .	120					125	•				130				
	AAT	AAA	AAA	GGA	ACT	CTG	GTC	GCT	TAT	AGT	ATA	TCA	GAA	GGA	757
50	Asn	Lys	Lys	Gly	Thr	Leu	Val	Ala	Tyr	Ser	Ile	Ser	Glu	Gly	
		135					140					145			

Lys Lys Gln Leu Asp Glu Thr Leu Leu Asp Val Lys Phe Ser 165 170 175 GGA ATT TCA TGG TTG GGA GAT GAA GGA TTC TTT TAT TCC AGC 8 Gly Ile Ser Trp Leu Gly Asp Glu Gly Phe Phe Tyr Ser Ser 180 185 TAT GAT AAG CCA AAA GAA GGA AGC GTA CTT TCC GGG ATG ACA 9 Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190 195 200 GAT AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205 210 215 TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220 225 230 AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 235 240 245 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11		GGT	TCG	GAC	TGG	AAT	AAG	ATT	ATT	ATT	CTG	GAT	GCG	GAA	ACC	799
AAA AAG CAA CTT GAT GAA ACT CTA TTG GAT GTT AAG TTC AGT 8 Lys Lys Gln Leu Asp Glu Thr Leu Leu Asp Val Lys Phe Ser 165	5	Gly	Ser	Asp	Trp	Asn	Lys	Ile	Ile	Ile	Leu	Asp	Ala	Glu	Thr	. •
Lys Lys Gln Leu Asp Glu Thr Leu Leu Asp Val Lys Phe Ser 165 170 175 GGA ATT TCA TGG TTG GGA GAT GAA GGA TTC TTT TAT TCC AGC 8 Gly Ile Ser Trp Leu Gly Asp Glu Gly Phe Phe Tyr Ser Ser 180 185 TAT GAT AAG CCA AAA GAA GGA AGC GTA CTT TCC GGG ATG ACA 9 Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190 195 200 GAT AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205 210 215 TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220 225 230 AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 235 240 245 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11	•	•		150					155					160		
Lys Lys Gln Leu Asp Glu Thr Leu Leu Asp Val Lys Phe Ser 165 170 175 GGA ATT TCA TGG TTG GGA GAT GAA GGA TTC TTT TAT TCC AGC 8 Gly Ile Ser Trp Leu Gly Asp Glu Gly Phe Phe Tyr Ser Ser 180 185 TAT GAT AAG CCA AAA GAA GGA AGC GTA CTT TCC GGG ATG ACA 9 Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190 195 200 GAT AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205 210 215 TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220 225 230 AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 235 240 245 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11																
Lys Lys Gln Leu Asp Glu Thr Leu Leu Asp Val Lys Phe Ser 165	10	AAA	AAG	CAA	CTT	GAT	GAA	ACT	CTA	TTG	GAT	GTT	AAG	TTC	AGT	841
GGA ATT TCA TGG TTG GGA GAT GAA GGA TTC TTT TAT TCC AGC 8 G1y Ile Ser Trp Leu Gly Asp Glu Gly Phe Phe Tyr Ser Ser 180 185 TAT GAT AAG CCA AAA GAA GGA AGC GTA CTT TCC GGG ATG ACA 9 Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190 195 200 GAT AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205 210 215 TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220 225 230 AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 245 GTG GTT TCG GCT GCA AAT GCA ACC ACC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11	10	Lys	Lys	Gln	Leu	Asp	Glu	Thr	Leu	Leu	Asp	Val	Lys	Phe	Ser	
20 TAT GAT AAA CAC AAA GTT TYP Leu Gly Asp Glu Gly Phe Phe Tyr Ser Ser 180					165					170					175	
20 TAT GAT AAA CAC AAA GTT TYP Leu Gly Asp Glu Gly Phe Phe Tyr Ser Ser 180																
20 TAT GAT AAG CCA AAA GAA GGA AGC GTA CTT TCC GGG ATG ACA 9 Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190 AAA CAC AAA GTT TAT TTT CAT AAA TT GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205 TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 230 AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 245 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11	15	GGA	ATT	TCA	TGG	TTG	GGA	GAT	GAA	GGA	TTC	TTT	TAT	TCC	AGC	883
TAT GAT AAG CCA AAA GAA GGA AGC GTA CTT TCC GGG ATG ACA 9 Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190		Gly	Ile	Ser	Trp	Leu	Gly	Asp	Glu	Gly	Phe	Phe	Tyr	Ser	Ser	
Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190						180					185					
Tyr Asp Lys Pro Lys Glu Gly Ser Val Leu Ser Gly Met Thr 190																
25 GAT AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205	20	TAT	GAT	AAG	CCA	AAA	GAA	GGA	AGC	GTA	CTT	TCC	GGG	ATG	ACA	925
25 GAT AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205 TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220 AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 235 GTG GTT TCG GCT GCA AAT GCA ACC AAC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11		Tyr	Asp	Lys	Pro	Lys	Glu	Gly	Ser	Val	Leu	Ser	Gly	Met	Thr	
AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205		190					195					200				
AAA CAC AAA GTT TAT TTT CAT AAG TTA GGA ACG AAG CAG 9 Asp Lys His Lys Val Tyr Phe His Lys Leu Gly Thr Lys Gln 205	0E															
205	23	GAT	AAA	CAC	AAA	GTT	TAT	TTT	CAT	AAG	TTA	GGA	ACG	AAG	CAG	967
TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220		Asp	Lys	His	Lys	Val	Tyr	Phe	His	Lys	Leu	Gly	Thr	Lys	Gln	
TCT CAG GAT GAA TTG ATT ATT GGG GGT GAT AAA TTT CCA AGA 10 Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220			205					210					215			
Ser Gln Asp Glu Leu Ile Ile Gly Gly Asp Lys Phe Pro Arg 220	30														•	
220		TCT	CAG	GAT	GAA	TTG	ATT	ATT	GGG	GGT	GAT	AAA	TTT	CCA	AGA	1009
35 AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 235 GTG GTT TCG GCT GCA AAT GCA ACC AAC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11		Ser	Gln	Asp	Glu	Leu	Ile	Ile	Gly	Gly	Asp	Lys	Phe	Pro	Arg	
AGA TAT ATA GGA GCT TAT GTA ACC GAT GAT CAG AGA TAT CTG 10 Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 235 GTG GTT TCG GCT GCA AAT GCA ACC AAC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11				220					225					230		
Arg Tyr Ile Gly Ala Tyr Val Thr Asp Asp Gln Arg Tyr Leu 245 GTG GTT TCG GCT GCA AAT GCA ACC AAC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11	35															
235 240 245 GTG GTT TCG GCT GCA AAT GCA ACC AAC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 255 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11		AGA	TAT	ATA	GGA	GCT	TAT	GTA	ACC	GAT	GAT	CAG	AGA	TAT	CTG	1051
GTG GTT TCG GCT GCA AAT GCA ACC AAC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 255 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11		Arg	Tyr	Ile	Gly	Ala	Tyr	Val	Thr	Asp	Asp	Gln	Arg	Tyr	Leu	
GTG GTT TCG GCT GCA AAT GCA ACC AAC GGA AAC GAG CTT TAC 10 Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 255 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11	40			٠	235					240					245	
Val Val Ser Ala Ala Asn Ala Thr Asn Gly Asn Glu Leu Tyr 250 255 ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11	10															
ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11		GTG	GTT	TCG	GCT	GCA	AAT	GCA	ACC	AAC	GGA	AAC	GAG	CTT	TAC	1093
ATT AAA GAC CTG AAG AAT AAA ACA GAT TTT ATT CCG ATT ATT 11		Val	Val	Ser	Ala	Ala	Asn	Ala	Thr	Asn	Gly	Asn	Glu	Leu	Tyr	
	45					250					255					
																1135
Ile Lys Asp Leu Lys Asn Lys Thr Asp Phe Ile Pro Ile Ile			Lys	Asp	Leu	Lys	Asn	Lys	Thr	Asp	Phe	Ile	Pro	Ile	Ile	
50 260 265 270	50	260					265					270				

	ACA	GGT	TTT	GAT	AGC	AAT	GTA	AAT	GTT	GCA	GAT	ACC	GAC	GGT	1177
	Thr	Gly	Phe	Asp	Ser	Asn	Val	Asn	Val	Ala	Asp	Thr	Asp	Gly	•
5		275					280					285			
									•						
	GAT	ACG	CTT	TAT	TTG	TTC	ACC	GAT	AAA	GAT	GCA	CCG	AAT	AAG	1219
10	Asp	Thr	Leu	Tyr	Leu	Phe	Thr	Asp	Lys	Asp	Ala	Pro	Asn	Lys	
			290			•		295					300		
15				AAA											1261
75	Arg	Leu	Val	Lys	Thr	Thr	Ile	Gln	Asn	Pro	Lys	Ala	Glu	Thr	
			-	305					310					315	
•															
20				GTG											1303
	Trp	Lys	Asp	Val		Ala	Glu	Thr	Ser		Pro	Leu	GIU	iie	
					320					325					
25		200	CCA	GGC	CCT	ጥለጥ	ምም ር	ጥጥጥ	CCT	እ ር ጥ	ጥአጥ	እጥሮ	מממ	CAT	1345
				Gly											1343
	330	1111	GIY	GIY	Gry	335	rne	rne	AIG	1111	340	1766	D _J S	тор	
	330					333					5.0				
30	GCA	ATC	GAT	CAG	GTA	AAG	CAA	TAT	GAT	AAA	AAC	GGA	AAG	CTT	1387
	Ala	Ile	Asp	Gln	Val	Lys	Gln	Tyr	Asp	Lys	Asn	Gly	Lys	Leu	
		345					350					355			
35															
	GTA	AGG	GCT	ATA	AAA	TTA	CCG	GGA	AGT	GGT	AAT	GCA	AGC	GGT	1429
	Val	Arg	Ala	Ile	Lys	Leu	Pro	Gly	Ser	Gly	Asn	Ala	Ser	Gly	
40			360					365	٠				370		
	TTT	GGG	GGT	GAA	AAA	ACG	GAA	AAG	GAT	CTG	TAT	TAC	TCT	TTC	1471
45	Phe	Gly	Gly	Glu	Lys	Thr	Glu	Lys	_		Tyr	Tyr	Ser		
40				375					380					385	
												_			
														GTA	1513
50	Thr	Asn	Tyr	Ile			Pro	Thr	Ile		_	Tyr	Asn	Val	
					390					395					

		ACA	ACA	GGT	AAT	TCT	GAA	GTT	TAC	CAG	AAG	CCG	AAA	GTG	AAG	1555	
_		Thr	Thr	Gly	Asn	Ser	Glu	Val	Tyr	Gln	Lys	Pro	Lys	Val	Lys		
5		400					405					410					
									-								
														TAT		1597	
10	0	Phe		Pro	Glu	Asn	Tyr	Val	Ser	Glu	Gln	Val	Phe	Tyr	Thr		
			415					420					425				
		mc.	mcm	616	000												
15	5													TAC		1639	
		ser		430	GIA	Thr	ràs	iie		Met	Met	He	Ser	Tyr	Lys		
				100					435					440			
20	0	AAA	GGC	CTG	AAA	AAA	GAC	GGT	AAA	AAC	ССТ	ACA	ATA	TTA	TAC	1681	
														Leu			
					445					450					455		
25	5								•								
4.	,	AGC	TAC	GGA	GGA	TTT	AAT	ATC	AGT	CTT	CAG	CCT	GCT	TTC	TCT	1723	
		Ser	Tyr	Gly	Gly	Phe	Asņ	Ile	Ser	Leu	Gln	Pro	Ala	Phe	Ser		
						460					465						
30	7																
														TAT		1765	
				Asn	Ala	Ile		Met	Glu	Asn	Gly	Gly	Ile	Tyr	Ala		
35	5	470	•				475					480					
		CTT	ccc	አእጥ	እጥር	CCT	CC 10	CC TO	003			~~=					
														AAA Lys		1807	
40		,,,	485	ASII	116	ALG	GIĀ	490	GIY		ıyı	GIY	495	Lys	Trp		
								100					493				
		CAT	GAT	GCC	GGA	ACT	AAA	ATG	CAG	AAA	AAG	AAT	GTA	TTT	AAT	1849	
45	i													Phe			
				500					505					510			
_														GGT		1891	
50		Asp	Phe	Ile	Ala	Ala	Gly	Glu	Tyr	Leu	Gln	Lys	Asn	Gly	Tyr		
					515					520					525		

	ACA	TCT	AAG	GAA	TAT	ATG	GCG	СТТ	TCC	GGA	CGT	TCC	AAC	GGC	1933
			Lys												
5					530					535				•	
										•					
	GGT	CTT	CTT	GTA	GGG	GCT	ACG	ATG	ACA	ATG	CGC	CCT	GAT	TTG	1975
10	Gly	Leu	Leu	Val	Gly	Ala	Thr	Met	Thr	Met	Arg	Pro	Asp	Leu	
	540					545					550				
•															
15 ·			GTT												2017
	AIG	555	Val	АТА	Pne	Pro	560	vai	GTÀ	vaı	Leu	-	Met	Leu	
		333					360					565			
20	CGT	TAT	AAT	AAG	TTT	ACA	GCT	GGT	GCC	GGT	TGG	GCT	TAT	GAT	2059
			Asn												
			570					575	•				580	-	
25					•										
20														CTG	2101
	Tyr	Gly	Thr		Glu	Asp	Ser	Lys	Glu	Met	Phe	Glu	Tyr	Leu	
•				585					590					595	
30	220	TC TO	m a m	mom	000								•	,	
			TAT												2143
	БУЗ	261	Tyr	ser	600	Agr	HIS	ASN	vai	605	Ата	GIĀ	Thr	Cys	
35					000					605					
	TAT	CCT	TCT	ACG	ATG	GTC	ATT	ACA	AGT	GAT	CAT	GAT	GAC	AGA	2185
			Ser												
40	610					615			•		620				
			•												
			CCC						-						2227
45	Val		Pro	Ala	His	Ser		Lys	Phe	Gly	Ser	Glu	Leu	Gln	
		625					630					635			
	GCA	444	CAA	ጥርጥ	ጥርጥ	ח ת ת	አአጥ	CCM	a mm	C m m	3 m C	00-		~~ -	2252
50			Gln												2269
		, -	640		-, 0	-, 5	5	645	116	neu	116	ALG	650	GIU	
			_	•				5.0					000		

	ACA AAT GCT GGA CAC GGA GCA GGA CGT TCC ACA GAA CAG GTC	2311
	Thr Asn Ala Gly His Gly Ala Gly Arg Ser Thr Glu Gln Val	
5	655 660 665	•
	GTT GCT GAG AAT GCC GAT CTG CTT TCA TTC GCA TTA TAT GAA	2353
10	Val Ala Glu Asn Ala Asp Leu Leu Ser Phe Ala Leu Tyr Glu	
	670 675	
	ATG GGA ATT AAA AGT TTA AAA TAG ATTTCAAATA CTAAATATAA	2397
15	Met Gly Ile Lys Ser Leu Lys	
	680 685	
	AACAGGCAGG TCTTTTTGAT TTGCCTGTTT TTTTATGATA CTATTGAGTT	2447
20	TGGATTATGT TAAATAGATT AGATCATGAG ATTTATATCT CAGGAAATGA	2497
	TTAACTTTAA TACAAAATCT TATACAATGG AAAATCATGA CATGACAACT	2547
	TTAGTACAGG TAATGAATAC TTTGAAAAGA AGAGGCGTGG ACAAAGAAAT	2597
	CCAGATGACA GATGATAGGA AATTTATACT TCAGAATTC	2636
25		
	SEQ ID No. 2	
	SEQUENCE TYPE: Nucleotide	
30	SEQUENCE LENGTH: 44 base pairs	
	STRANDNESS: double	
	TOPOLOGY: linear	
	MOLECULE TYPE: synthetic DNA	
·35		
	GGGAGTAGGA GTTCTGGATA TGCTTCGTTA TAATAAGTTT ACTG	44
40	SEQU ID No. 3	•
	SEQUENCE TYPE: Nucleotide	
	SEQUENCE LENGTH: 54 base pairs	
45	STRANDNESS: double	
40	TOPOLOGY: linear	
	MOLECULE TYPE: synthetic DNA	
50	AATTCATGAA GTACAACAAA CTTTCTGTGG CAGTTGCAGC CTTTGCTTTT	50
	GCAG	54

	SEQ ID NO. 4	
_	SEQUENCE TYPE: Nucleotide	
5	SEQUENCE LENGTH: 23 base	
	STRANDNESS: single	
	TOPOLOGY: linear	
10	MOLECULE TYPE: synthetic DNA	
•		
	AATTCATGAA GTACAACAAA CTT	23
15		
	SEQ ID No. 5	
	SEQUENCE TYPE: Nucleotide	
	SEQUENCE LENGTH: 31 base	
20	STRANDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: synthetic DNA	
25	TCTCTCCCAC MTCCACCOCT TOTAL	
	TCTGTGGCAG TTGCAGCCTT TGCTTTTGCA G	31
	SEQ ID No. 6	
30	SEQUENCE TYPE: Nucleotide	
	SEQUENCE LENGTH: 25 base	
	STRANDNESS: single	
•	TOPOLOGY: linear	
35	MOLECULE TYPE: synthetic DNA	
	CACAGAAAGT TTGTTGTACT TCATG	25
40		23
	SEQ ID No. 7	
	SEQUENCE TYPE: Nucleotide	
45	SEQUENCE LENGTH: 25 base	
45	STRANDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: synthetic DNA	
50		
	CTGCAAAAGC AAAGGCTGCA ACTGC	25
•		

Claims

5

15

30

35

40

45

50

- A recombinant DNA molecule comprising a DNA sequence encoding the Flavobacterium meningosepticum prolylendopeptidase shown in SEQ ID No. 1.
- 2. A recombinant DNA molecule according to claim 1 comprising the coding region shown in SEQ ID No. 1.
- 3. A recombinant DNA molecule according to claim 2 which is plasmid pFPEPO3 (FERM BP-3466).
- 4. A recombinant DNA molecule according to claim 1 or claim 2 which is an expression vector comprising a DNA sequence coding for prolylendopeptidase operably linked to an expression control sequence.
 - 5. A recombinant DNA molecule according to claim 4 wherein the DNA sequence encoding prolylendopeptidase operably linked to an expression control sequence is the nucleic acid sequence shown in SEQ ID No. 1, extending 120bp upstream of the translation initiation site and to the BamHI site downstream of the stop codon.
 - A recombinant DNA molecule according to claim 4 wherein the expression control sequence is the <u>E, coli tac</u> promoter.
- 20 7. A host organism transformed with a recombinant DNA molecule according to any one of claims 1 to 6.
 - A host according to claim 7, which is <u>E. coli</u> transformed with an expression vector according to any one of claims 4 to 6, and capable of producing prolylendopeptidase.
- 9. A process for the production of a recombinant DNA encoding the Flavobacterium meningosepticum prolylendopeptidase shown in SEQ ID No. 1, comprising the steps of:
 - preparing cDNA or genomic DNA coding for prolylendopeptidase from *F. meningosepticum* cells or preparing DNA coding for the *F. meningosepticum* prolylendopeptidase shown in SEQ ID No. 1 by chemical synthesis, inserting the DNA into a cloning vector, and selecting a hybrid vector containing DNA coding for prolylendopeptidase.
 - 10. A process for production of prolylendopeptidase comprising the steps of: culturing a host organism transformed with an expression vector according to any one of claims 4 to 6 and, optionally, recovering the produced prolylendopeptidase.
 - 11. A process according to claim 10, wherein the host organism is E. coli.
 - 12. A signal sequence having the amino acid sequence of the signal sequence shown in SEQ ID No. 1.

Claims for the following Contracting States: ES, GR

- 1. A process for the production of a recombinant DNA encoding the *Flavobacterium meningosepticum* prolylendopeptidase shown in SEQ ID No. 1, comprising the steps of:
 - preparing cDNA or genomic DNA coding for prolylendopeptidase from *F. meningosepticum* cells or preparing DNA coding for the *F. meningosepticum* prolylendopeptidase shown in SEQ ID No. 1 by chemical synthesis, inserting the DNA into a cloning vector, and selecting a hybrid vector containing DNA coding for prolylendopeptidase.
- 2. A process according to claim 1 for the preparation of a recombinant DNA molecule comprising the coding region shown in SEQ ID No. 1.
- 3. A process according to daim 1 for the preparation of a recombinant DNA molecule which is plasmid pFPEPO3
 (FERM BP-3466).
 - 4. A process according to claim 1 for the preparation of a recombinant DNA molecule which is an expression vector comprising a DNA sequence coding for prolylendopeptidase operably linked with an expression control sequence.

- 5. A process for the preparation of recombinant DNA molecule according to claim 4 wherein the DNA sequence encoding prolylendopeptidase operably linked to an expression control sequence is the nucleic acid sequence shown in SEQ ID No. 1, extending 120bp upstream of the translation initiation site and to the BamHI site downstream of the stop codon
- 6. A process according to claim 4 for the preparation of a recombinant DNA molecule wherein the expression control sequence is the <u>E. coli tac</u> promoter.
- 7. A process for the preparation of a transformed host comprising transforming a host organism with a recombinant DNA molecule as defined in any one of claims 1 to 6.
- 8. A process according to claim 7 in which <u>E. coli</u> is transformed with an expression vector as defined in any one of clams 4 to 6.
- 9. A process for production of prolylendopeptidase comprising the steps of: culturing a host organism transformed with an expression vector as defined in any one of claims 4 to 6 and, optionally, recovering the produced prolylendopeptidase.
 - 10. A process according to claim 9, wherein the host organism is E. coli.

5

10

20

25

30

35

40

45

50

- 11. A process for the production of a C-terminal amidated peptide from two precursors thereof, wherein one of the precursors is a precursor peptide forming N-terminal region of the C-terminal amidated peptide and having a proline residue at its C-terminus and another precursor is a precursor peptide or amino acid forming a C-terminal portion of the C-terminal amidated peptide which precursor peptide or amino acid has been C-terminal amidated, comprising the steps of:
 - placing the two precursors in contact with *F. meningosepticum* prolylendopeptidase having the sequence shown in SEQ ID No. 1 in a medium to convert the precursor peptides to the C-terminal amidated peptide, and recovering the resulting C-terminal amidated peptide.
- 12. A process for the expression of recombinant protein comprising using a signal sequence having the amino acid sequence of the signal sequence shown in SEQ ID No. 1.

EUROPEAN SEARCH REPORT

Application Number EP 99 10 6121

Category		dication, where appropriate,	Relevant	CLASSIFICATION OF THE
D,X	of relevant passages YOSHIMOTO T ET AL: "Proline-specific endopeptidase from Flavobacterium" JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 255, no. 10, 1980, pages 4786-4792, XP002119593 MD US * the whole document *		1-12	C12N15/57 C12N9/52 C12N1/21
A	SAMBROOK J ET AL: "Molecular cloning" 1989 , COLD SPRING HARBOUR PRESS , NEW YORK XP002119596 * page 17.10 - page 17.14 *		1-11	
P,X	YOSHIMOTO T ET AL: "Prolyl endopeptidase from Flavobacterium meningosepticum: Cloning and sequencing of the enzyme gene" JOURNAL OF BIOCHEMISTRY., vol. 110, December 1991 (1991-12), pages 873-878, XPO02119594 JAPANESE BIOCHEMICAL SOCIETY, TOKYO., JP ISSN: 0021-924X * the whole document *		1-12	TECHNICAL FIELDS SEARCHED (Int.CI.6)
Ρ,Χ	CHEVALLIER S ET AL: "Characterization of a prolyl endopeptidase from flavobacterium meningosepticum" JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 267, no. 12, 25 April 1992 (1992-04-25), pages 8192-8199, XP002119595 MD US * the whole document *		1-12	CIZN
	The present search report has	been drawn up for all claims		
	Place of search	. Date of completion of the search		Examiner
THE HAGUE		20 October 1999	Va	n der Schaal, C
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier patent of after the filing of the comment cited by the comme	locument, but put late I in the applicatio I for other reason	olished on, or n