Deep Q-Learning

Recap MDPs

MDP:

- A MDP is a Markov reward process with decisions. It is an environment in which all states are Markov.
- A Markov Decision Process is a tuple <S, A,P, R, γ>
- A policy π is a distribution over actions given states: $\pi(a|s) = P[At = a \mid St = s]$

Action - Value Function(Q(s,a)):

- The action-value function $q\pi(s, a)$ is the expected return starting from state s, taking action a, and then following policy π
- $q\pi(s, a) = E\pi [Gt | St = s, At = a]$
- The optimal action-value function q*(s, a) is the maximum action-value function over all policies

Bellman Optimality Equation

$$q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{ss'} \mathcal{P}_{ss'}^{a} \sum_{s'} \pi(a'|s') q_{\pi}(s',a')$$

An optimal policy can be found by maximising over $q_{*}(s,a)$,

$$\pi_*(a|s) = \left\{ egin{array}{ll} 1 & ext{if } a = ext{argmax } q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

Bellman Optimality Equation

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s',a')$$

Dynamic Programming Approach

- Bellman equation gives recursive decomposition
- Value function stores and reuses solutions

Policy Evaluation:

- Estimate $q\pi(s,a)$ given a policy using bellman equation
- Start with any random policy

Dynamic Programming Approach

Policy Iteration:

- Generate $\pi >= \pi'$ by acting greedily according to the bellman optimality equation.
- Guaranteed to converge to the optimal Policy (Proof by Contraction-Mapping)

Cons

Cannot work with Continuous variables, since the state space is large.

Difficult to work when MDPs are not specified, which is in most cases

Model based and Model Free approach

Model-Based:

- Explore environment & learn model, T=P(s'|s,a) and R(s,a) everywhere.
- Use policy-evaluation and policy-iteration on the MDP learnt.
- Not feasible in Large state spaces

Model-Free:

 Rather than learning a model for the environment learn actual state value or action value functions

Q Learning

- Utility-Sum of discounted rewards in the future
- For all q-states, s,a Compute Qi+1(s,a) from Qi by Bellman backup at s,a. Until max
 s,a |Qi+1(s,a) − Qi (s,a)| < €
- Bellman Equation

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_i(s') \right]$$

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]$$

Q Learning with Tables

- Consider a 4x4 grid with a start state and a goal state.
- The grid also consists of frozen blocks and some holes
- Design of the grid remains the same,however there is variable wind in action,which might blow the player away to another block when the player takes an action

```
SFFF (S: starting point, safe)
FHFH (F: frozen surface, safe)
FFFH (H: hole, fall to your doom)
HFFG (G: goal, where the frisbee is located)
```

Q Learning with Tables

- The reward on entering the goal state is +1,and -1 on entering a hole.
- Episode is terminated on entering either of the two states
- Reward is zero in intermediate states

```
SFFF (S: starting point, safe)
FHFH (F: frozen surface, safe)
FFFH (H: hole, fall to your doom)
HFFG (G: goal, where the frisbee is located)
```

Exploration vs Exploitation

- To decide upon what action is to be performed, a set probability value(epsilon) is used
- A randomly generated number is used to determine whether the agent will take random action(Explore) or take the best greedy action(exploit)
- If the random number is above the probability threshold, the optimal action yielding the highest q-value is selected (exploitation).
- Otherwise, a random action is selected (exploration)

Exponential Moving Average

Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1-\alpha) \cdot x_{n-1} + (1-\alpha)^2 \cdot x_{n-2} + \dots}{1 + (1-\alpha) + (1-\alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average
- Here **a** is the learning rate

$$\bar{x}_n = (1-\alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

A Model Free Approach : Deep Q Learning

- Approximate Q function using a neural network $f(x,\Theta)$ where Θ are learnable parameters of a neural network, x is input.
- The input to the neural net is the current state of the environment.
- Produce 4 Q-values for each of the action and take the maximum value among them

Loss Function and Backpropagation

- Do a feedforward pass for the current state s to get predicted Q-values for all actions.
- Do a feedforward pass for the next state s' and calculate maximum overall network outputs max a' Q(s', a')
- Set Q-value target for action to r + γmax a' Q(s', a')
- Update the weights using backpropagation

$$L = \frac{1}{2} [\underbrace{r + max_{a'}Q(s',a')}_{ ext{target}} - \underbrace{Q(s,a)}_{ ext{prediction}}]^2$$

Replay Memory

- Approximation of Q-values using non-linear functions is not very stable
- So, during gameplay all the experiences < s, a, r, s' > are stored into a replay memory
- When training the network, random mini batches from the replay memory are used instead of the most recent transition
- Breaks the similarity of subsequent training samples, which otherwise might drive the network into a local minimum
- Makes training task similar to Supervised Learning.

Implementation On Taxi-V2 and FrozenLake-Vo

Steps Per Episode on Taxi-V2

Rewards Per Episode on Taxi-V2

Reward Per Episode on FrozenLake-Vo

Steps Per Episode on FrozenLake-Vo

Future Plans

Self driving car simulator:

- Planning to train an agent to play in a continuous environment by looking at subsequent image frames and taking actions
- Implement this with the help of CNN's

