Matrix Analysis

Yunwei Ren

Contents

1	Eigenvalues, eigenvectors, and similarity	2
	1.1 Introduction	2

1 Eigenvalues, eigenvectors, and similarity

1.1 Introduction

1.

Proof. Let $S = \{x \in \mathbb{R}^n : x^T x = 1\}$, which is clearly a compact subset of \mathbb{R}^n . Consider the function $f: x \mapsto x^T A x$. Since,

$$||f(x+\delta) - f(x)|| = ||(x^T A)\delta + \delta^T (Ax) + \delta^T A\delta|| \le K||\delta||$$

for every $x \in \mathbb{R}$ and some fixed K, f is continuous. Hence, by Weierstrass's theorem, f attains its maximum value at some point $x \in S$. Namely, (1.0.3) has a solution x. Therefore, there exists some $\lambda \in \mathbb{R}$ such that $2(Ax - \lambda x) = 0$, implying that every real symmetric matrix has at least one real eigenvalue.

2.

Proof. Let $S = \{x \in \mathbb{R}^n : x^Tx = 1\}$ and m be the maximum value of $x \mapsto x^TAx$ in S. Suppose λ is an eigenvalue of A and $u \neq 0$ is its associated eigenvector, then

$$Au = \lambda u \quad \Rightarrow \quad u^T Au = \lambda \|u\|^2 \quad \Rightarrow \quad (u/\|u\|)^T A(u/\|u\|) = \lambda \quad \Rightarrow \quad m \ge \lambda.$$

Meanwhile, by the previous discussion, m it self is a eigenvalue of A. Hence, it is the largest real eigenvalue of A.