Programación Científica

Simulación:

Comportamiento caótico de un péndulo simple

03 de febrero de 2023

Propósito

Analizar el comportamiento caótico de un péndulo simple que realiza oscilaciones forzadas debido a la acción de una fuerza externa de la forma $F = f \cos(\omega t)$.

Ecuación del movimiento:

$$\frac{d^2\theta}{dt^2} = -{\rm sen}\theta - q\,\frac{d\theta}{dt} + b\cos(\omega t)$$

$$q = \frac{r}{Lm} \quad {\rm y} \quad b = \frac{f}{m}$$

m: Masa del péndulo.

L: Longitud del péndulo.

r: coeficiente de rozamiento.

Paramétros:

•
$$\omega = \frac{2}{3}\omega_0$$
 , $\omega_0 = \sqrt{\frac{g}{L}} = 1$

• a = 0.5

La ecuación de movimiento se resolverá con el método Runge-Kutta 4.

Actividades

1. Con b = 1.02, 1.08, 1.09 y 1.1, simular el movimiento para un tiempo igual a 100T $(T = \frac{2\pi}{\omega})$ con las condiciones iniciales $\theta_0 = 1$ y $\dot{\theta}_0 = 0$,

Para cada simulación:

- Graficar la evolución temporal de θ para 0 < t < 20T
- Graficar la trayectoria en el espacio de fases.
- Graficar la sección de Poincaré.
- 2. Simular para un tiempo igual a 100000
T $(T=\frac{2\pi}{\omega})$ y b=1.1y 1.2. Para cada simulación construir las secciones de Poincaré
- 3. Con b=0.6,0.8,1.0,1.02,1.06 y 1.1, simular el movimiento del péndulo para un tiempo igual a 50T con dos grupos de condiciones iniciales ($\theta_0=1$, $\dot{\theta}_0=0$) y ($\theta_0=1.001$, $\dot{\theta}=0$). Para cada simulación:
 - Graficar $\ln |\Delta \theta|$ vs t.
 - Encontrar el coeficiente de Liapunov.

Estructura del Reporte

1. Introducción

- Descripción del sistema de estudio.
- Secciones de Poincaré y coeficientes de Liapunov.
 Para esto, consultar un libro(s) de mecánica clásica e incluirlo(s) como referencia(s)
 NO INCLUIR PAGINAS DE INTERNET COMO REFERENCIAS
- Planteamiento del problema.

2. Metodología

- Estructura de los programas utilizados.
- Condiciones de las simulaciones.
- Procedimiento para el análisis y el tratamiento de los datos.

3. Resultados

- Para las condiciones iniciales $\theta_0 = 1$ y $\dot{\theta}_0 = 0$ y b = 1.02, 1.08, 1.09 y 1.1
 - Graficos con la evolución temporal de θ para 50T < t < 100T
 - Graficos con las trayectorias en el espacio de fases.
 - Graficos de las secciones de Poincare.
- Gráfico de las secciones de Poincaré para b=1.1 y 1.2
- Sensibilidad con las condiciones iniciales para b = 0.6, 0.8, 1.0, 1.02, 1.06 y 1.1

4. Conclusiones

Las conclusiones deben relacionarse directamente con lo presentado en la sección anterior.

Fecha de entrega del reporte: 10 de febrero de 2023

Marco V Bayas