[Total No. of Questions: 8]

S.E. (Comp.) (Semester - III) (RC) Examination, Nov./Dec. - 2011 LOGIC DESIGN

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any five questions; attempt at least one question from each module.

- 2) Assume suitable data if necessary.
- 3) Draw neat diagrams if required.
- 4) Write question numbers legibly while answering.
- 5) Write description for the questions based on the marks allotted.

MODULE - I

- Q1) a) Using Karnaugh Map simplify Boolean expression and give implementation of same using:
 - i) NAND gates only (SOP form)
 - ii) NOR gates only (POS form) $F(A, B, C, D) = \sum_{m} (0, 1, 2, 4, 5, 12, 14) + d(8, 10)$ [8]
 - b) Define (i) Prime Implicant (ii) Essential Prime Implicant
 Give example for each. [4]
 - c) The message below coded in 7 bit hamming code is transmitted through noisy channel. Decode message assuming that at most single error occurred in each code word.

1001001,0111001,1110110,0011011 [8]

- Q2) a) Show 8-bit addition of following decimal numbers into 2's complement representation: [6]
 - i) +125 and +68
 - ii) +37 and -115
 - iii) -43 and -78
 - b) Reduce following using Quine McClusky method [8] $F(A, B, C, D) = \sum_{m} (0, 1, 2, 3, 10, 11, 12, 13, 14, 15).$
 - c) Show that Ex-OR operation is not distributive over AND operation with logic diagrams. [6]

MODULE - II

Q3) a)	Derive characteristic equation of SR flipflop and JK flipflop. [6]
b)	Implement following logic function using Multiplexer
	$F(A, B, C, D) = \sum_{m} (1, 3, 4, 11, 12, 13, 14, 15).$ [4]
c)	Draw Block diagram of 4 bit adder-subtractor circuit using full adder and give
	brief description. [4]
d)	Explain how flipflops can be used in [6]
	i) Parallel data storage.
	ii) Frequency division.
Q4) a)	Define Encoder Design 4-bit priority encoder. [8]
b)	Design 4 bit BCD to Excess-3 code converter. [8]
c)	Explain Advantages of edge triggered flipflop over level triggered flipflop. [4]
MODULE - III	
Q 5) a)	Name and explain in short four basic types of shift registers and draw a block
	diagram for each. [8]
b)	Distinguish between Ring counter and Johnson counter. [6]
c)	Show the design of a 4 bit parallel load register with a load line using T flip-
	flops.
Q6) a)	Design mod 6 asynchronous counter using T flip-flops. [6]
b) ,	Design mod 6 self correcting counter whose counting sequence is 0-1-4-6-7-5-0.
	Use JK flip-flops for realization. [10]
c)	Mention differences between ripple and synchronous counter. [4]
MODULE - IV	
Q7) a)	Differentiate between PAL and FPAL. [6]
b)	Show how PLA circuit can be programmed to implement sum and carry output
	of full adder. [6]
c)	Show the design of a 2 bit full adder using PLA with AND-OR-NOT construct.
	Form the programming table of the design. [8]

ļ

Q8) a) Design sequential circuit for Serial Binary Adder.

[10]

b) Design a Sequential circuit for the following state diagram given in the figure below using D flip-flop. [10]

