MMM — Assignment

Due date: 06 January 2021, 11:59 PM

The kinematic system K consists of the motions of the particles P_1 and P_2 in the plane O_1xy subject to these constraints: $|O_1P_1| = l_1$, $|O_2P_2| = l_2$, $|P_1P_2| = l_2$. The points O_1 , O_2 , P_1 , and P_2 have coordinates (0, 0), $(l_1, 0)$, (x_1, y_1) , and (x_2, y_2) , respectively. (A four-bar linkage with fixed centers O_1 and O_2 .)

Let $l_1 = 1$ and $l_2 = 2 + n/1000$, where *n* is given by the last three digits of your matricola.

- 1. Consider K as a system of motions of the point (x_1, y_1, x_2, y_2) in 4-dimensional Cartesian space, $Ox_1y_1x_2y_2$. Give a system of polynomial equations describing the configuration space, C, of the system.
- 2. Let C_{x1} be the image of C by the projection $(x_1, y_1, x_2, y_2) \mapsto (x_2, y_2, x_1)$. Is C_{x1} a bijective image of C? Prove your answer. Make a 3D plot of C_{x1} in $O_{x2}y_2x_1$.
- 3. Let C_{y1} be the image of C by the projection $(x_1, y_1, x_2, y_2) \mapsto (x_2, y_2, y_1)$. Is C_{y1} a bijective image of C? Prove your answer.
- 4. Let C_{y2} be the image of C by the projection $(x_1, y_1, x_2, y_2) \mapsto (x_1, y_1, y_2)$. Is C_{y2} a bijective image of C? Prove your answer.
- 5. Let θ_i be the angle from the fixed O_1x axis to O_iP_i . Consider K as a system of motions of the point (θ_1, θ_2) on a torus, T^2 . Derive the equation (in terms of θ_1 and θ_2) defining the configuration space C on T^2 . Make a 2D plot of C on the periodic plane (θ_1, θ_2) , as well as in 3D on a torus. In the 3D plot use l_1 and l_2 as the small and large radii of the torus.
- 6. Make a drawing of each feasible configuration which has either a θ_1 value in $\{0, \pi/2, \pi, 3\pi/2\}$ or a θ_2 value in $\{0, \pi/2, \pi, 3\pi/2\}$. Mark each configuration on each of your plots.
- 7. Assume that the input is θ_1 and output is θ_2 . Find all singularities:
 - (a) configuration-space singularities;
 - (b) configurations allowing nonzero instantaneous motion for zero input velocity;
 - (c) configurations allowing nonzero instantaneous motion for zero output velocity. Illustrate each singularity with a drawing and identify it on all plots.

Remark: In all cases try to simplify the system of equations as much as possible without losing solutions.

Note.

- 1. Simulations must be performed in MATLAB *only*.
- 2. Submit both PDF file and MATLAB file for the plot. The PDF images must be clear, with proper aspect ratio. Upon running the MATLAB file, the plots should be generated

- 3. If the solution is written in LaTeX or Word file, place the plots (clear plots) inside the solution pdf in order of the question and the MATLAB files.
- 4. If the solution is hand-written, a PDF of the can of the solution, all the PDF files of images for the plots, and the MATLAB files for the simulation.