試験開始の指示があるまで、この問題冊子の中を見てはいけません。

(1) 〔数学 I ` 数学 I · 数学 A 〕

I 注 意 事 項

- 1 解答用紙に、正しく記入・マークされていない場合は、採点できないことがあ ります。特に、解答用紙の解答科目欄にマークされていない場合又は複数の科目 にマークされている場合は、0点となります。
- 2 出題科目、ページ及び選択方法は、下表のとおりです。

出	題	科	目	ページ	選	択		法
数	- 学	ź	I	4~28	左の2科目	目のうちな	161科目	目を選択し,
数学	: I •	数	学 A	29~58	解答しなさん	· 7°		

- 3 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、いずれか2問を選択し、その問題番号の解答欄に解答し なさい。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 不正行為について
- ① 不正行為に対しては厳正に対処します。
- ② 不正行為に見えるような行為が見受けられた場合は、監督者がカードを用い て注意します。
- ③ 不正行為を行った場合は、その時点で受験を取りやめさせ退室させます。
- 7 試験終了後、問題冊子は持ち帰りなさい。

II 解答上の注意

解答上の注意は、裏表紙に記載してあります。この問題冊子を裏返して必ず読み なさい。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。
- 2 問題の文中の **ア | , | イウ |**などには, 符号(-, ±)又は数字(0~9)が 入ります。ア、イ、ウ、…の一つ一つは、これらのいずれか一つに対応します。 それらを解答用紙のア、イ、ウ、…で示された解答欄にマークして答えなさい。

┃ アイウ ┃に - 83 と答えたいとき

ア	
1	000000000000000000000000000000000000000
ウ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

例えば、
$$\frac{\textbf{工} \textbf{ }}{\textbf{ }}$$
 に $-\frac{4}{5}$ と答えたいときは、 $\frac{-4}{5}$ として答えなさい。

また. それ以上約分できない形で答えなさい。

例えば、 $\frac{3}{4}$ と答えるところを、 $\frac{6}{8}$ のように答えてはいけません。

4 小数の形で解答する場合、指定された桁数の一つ下の桁を四捨五入して答えな さい。また、必要に応じて、指定された桁まで $\mathbf{0}$ にマークしなさい。

例えば、 | キ | . | クケ | に 2.5 と答えたいときは、2.50 として答えなさい。

5 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答え なさい。

_____ に $4\sqrt{2}$ と答えるところを、 $2\sqrt{8}$ のように答え 例えば, てはいけません。

6 根号を含む分数形で解答する場合、例えば
$$y$$
 に $3+2\sqrt{2}$ と答えるところを、 $\frac{6+4\sqrt{2}}{4}$ や $\frac{6+2\sqrt{8}}{4}$ のように答えてはいけません。

- 7 問題の文中の二重四角で表記された 9 などには、選択肢から一つを選ん で、答えなさい。
- 「テプのように細字で表記します。 て, 2 度目以降は, | チツ |,

問題	選択方法
第1問	必答
第2問	必答
第3問	,
第 4 問	いずれか 2 問を選択し, 解答しなさい。
第5問	

数学 I ・数学 A (注) この科目には、選択問題があります。(29ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] 実数xについての不等式

$$|x+6| \le 2$$

の解は

$$\boxed{71} \leq x \leq \boxed{\Box}$$

である。

よって, 実数 a, b, c, dが

$$|(1-\sqrt{3})(a-b)(c-d)+6| \le 2$$

を満たしているとき、 $1-\sqrt{3}$ は負であることに注意すると、(a-b)(c-d) のとり得る値の範囲は

$$7$$
 + 1 $\sqrt{3} \le (a-b)(c-d) \le 1$ + 1 $\sqrt{3}$

であることがわかる。

(数学 I・数学 A 第 1 問は次ページに続く。)

特に・

であるとき, さらに

$$(a-c)(b-d) = -3 + \sqrt{3}$$
 ②

が成り立つならば

(2)

- (1) 点Oを中心とし、半径が5である円Oがある。この円周上に2点A、Bを AB=6となるようにとる。また、円Oの円周上に、2点A、Bとは異なる点Cをとる。
 - (i) sin ∠ACB = サ である。また、点 C を ∠ACB が鈍角となるようにとるとき、cos ∠ACB = シ である。
 - (ii) 点 C を $\triangle ABC$ の面積が最大となるようにとる。点 C から直線 AB に垂直な直線を引き、直線 AB との交点を D とするとき、

 $tan \angle OAD =$ ス である。また、 $\triangle ABC$ の面積は セソ である。

0	<u>3</u> 5	$0 \frac{3}{4}$	$2 \frac{4}{5}$	3 1	$\Theta \frac{4}{3}$
5	<u>- 3</u> 5	6 $-\frac{3}{4}$	$0 - \frac{4}{5}$	③ −1	$9 - \frac{4}{3}$

(数学 I・数学A第1問は34ページに続く。)

(下書き用紙)

数学I・数学Aの試験問題は次に続く。

(2) 半径が5である球Sがある。この球面上に3点P,Q,Rをとったとき、これらの3点を通る平面 α 上でPQ=8,QR=5,RP=9であったとする。

球Sの球面上に点Tを三角錐TPQRの体積が最大となるようにとるとき、その体積を求めよう。

まず,
$$\cos \angle \mathsf{QPR} = \cfrac{ m{ 9} }{ m{ \mathcal{F}} }$$
であることから, $\triangle \mathsf{PQR}$ の面積は

ナの解答群

() PH < QH < RH

(1) PH < RH < QH

Q QH < PH < RH

3 QH < RH < PH

4 RH < PH < QH

6 RH < QH < PH

(下書き用紙)

数学 I・数学Aの試験問題は次に続く。

第 2 問 (必答問題) (配点 30)

[1] 太郎さんは、総務省が公表している 2020 年の家計調査の結果を用いて、地域による食文化の違いについて考えている。家計調査における調査地点は、都道府県庁所在市および政令指定都市(都道府県庁所在市を除く)であり、合計52市である。家計調査の結果の中でも、スーパーマーケットなどで販売されている調理食品の「二人以上の世帯の1世帯当たり年間支出金額(以下、支出金額、単位は円)」を分析することにした。以下においては、52市の調理食品の支出金額をデータとして用いる。

太郎さんは調理食品として、最初にうなぎのかば焼き(以下、かば焼き)に着目し、図1のように52市におけるかば焼きの支出金額のヒストグラムを作成した。ただし、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。

なお、以下の図や表については、総務省のWebページをもとに作成している。

(数学 I・数学 A 第 2 問は次ページに続く。)

- (1) 図1から次のことが読み取れる。
 - 第1四分位数が含まれる階級は ア である。
 - 第3四分位数が含まれる階級は イ である。
 - ・四分位範囲は ウ。

「ア」,「イ」の解答群(同じものを繰り返し選んでもよい。)

- **0** 1000 以上 1400 未満
- ① 1400以上1800未満
- 2 1800 以上 2200 未満
- 3 2200 以上 2600 未満
- 4 2600 以上 3000 未満
- ⑤ 3000以上3400未満
- 6 3400 以上 3800 未満 .
- ⑦ 3800以上4200未満
- 8 4200 以上 4600 未満
- 9 4600 以上 5000 未満

ウの解答群

- 0 800 より小さい
- ① 800 より大きく 1600 より小さい
- ② 1600 より大きく 2400 より小さい
- 3 2400 より大きく 3200 より小さい
- 4 3200 より大きく 4000 より小さい
- ⑤ 4000より大きい

(数学 I・数学 A 第 2 問は次ページに続く。)

- (2) 太郎さんは、東西での地域による食文化の違いを調べるために、52 市を 東側の地域 E(19 市) と西側の地域 W(33 市) の二つに分けて考えることにし た。
 - (i) 地域 E と地域 W について、かば焼きの支出金額の箱ひげ図を、図 2、図 3 のようにそれぞれ作成した。

エの解答群

- ① 地域 E と地域 W の範囲は等しい。
- ② 中央値は、地域 E より地域 W の方が大きい。
- ③ 2600 未満の市の割合は、地域 E より地域 W の方が大きい。

(数学 I・数学A第2問は次ページに続く。)

(ii) 太郎さんは、地域 E と地域 W のデータの散らばりの度合いを数値でとらえようと思い、それぞれの分散を考えることにした。地域 E におけるかば焼きの支出金額の分散は、地域 E のそれぞれの市におけるかば焼きの支出金額の偏差の オ である。

オーの解答群

- **②** 2 乗を合計した値
- ① 絶対値を合計した値
- ② 2乗を合計して地域Eの市の数で割った値
- ③ 絶対値を合計して地域 E の市の数で割った値
- ② 2 乗を合計して地域 E の市の数で割った値の平方根のうち 正のもの
- ⑤ 絶対値を合計して地域 E の市の数で割った値の平方根のうち 正のもの

(数学 I・数学A第2問は次ページに続く。)

(3) 太郎さんは、(2)で考えた地域 E における、やきとりの支出金額について も調べることにした。

ここでは地域 E において、やきとりの支出金額が増加すれば、かば焼きの支出金額も増加する傾向があるのではないかと考え、まず図 4 のように、地域 E における、やきとりとかば焼きの支出金額の散布図を作成した。そして、相関係数を計算するために、表 1 のように平均値、分散、標準偏差および共分散を算出した。ただし、共分散は地域 E のそれぞれの市における、やきとりの支出金額の偏差とかば焼きの支出金額の偏差との積の平均値である。

図4 地域 E における、やきとりとかば焼きの支出金額の散布図

表1 地域 E における、やきとりとかば焼きの支出金額の平均値、 分散、標準偏差および共分散

	平均值	分 散	標準偏差	共分散
やきとりの支出金額	2810	348100	590	124000
かば焼きの支出金額	2350	324900	570	124000

(数学 I・数学 A 第 2 問は次ページに続く。)

数学 I・数学A

表1を用いると、地域Eにおける、やきとりの支出金額とかば焼きの支出金額の相関係数は カ である。

カ については、最も適当なものを、次の0~9のうちから一つ選べ。

0	- 0.62	0	- 0.50	2	- 0.37	3	- 0.19
4	- 0.02	⑤	0.02	6	0.19	7	0. 37
8	0.50	9	0.62				

(数学 I・数学A第2問は次ページに続く。)

[2] 太郎さんと花子さんは、バスケットボールのプロ選手の中には、リングと同じ高さでシュートを打てる人がいることを知り、シュートを打つ高さによってボールの軌道がどう変わるかについて考えている。

二人は、図1のように座標軸が定められた平面上に、プロ選手と花子さんが シュートを打つ様子を真横から見た図をかき、ボールがリングに入った場合に ついて、後の**仮定**を設定して考えることにした。長さの単位はメートルである が、以下では省略する。

- 仮定 -

- 平面上では、ボールを直径 0.2 の円とする。
- リングを真横から見たときの左端を点 A(3.8,3), 右端を点 B(4.2,3) とし、リングの太さは無視する。
- ボールがリングや他のものに当たらずに上からリングを通り、かつ、ボールの中心がABの中点M(4,3)を通る場合を考える。ただし、ボールがリングに当たるとは、ボールの中心とAまたはBとの距離が0.1以下になることとする。
- ・プロ選手がシュートを打つ場合のボールの中心を点Pとし、Pは、はじめに点 $P_0(0,3)$ にあるものとする。また、 P_0 、Mを通る、上に凸の 放物線を C_1 とし、Pは C_1 上を動くものとする。
- ・ 花子さんがシュートを打つ場合のボールの中心を点 H とし、H は、はじめに点 $H_0(0,2)$ にあるものとする。また、 H_0 、M を通る、上に凸の 放物線を C_2 とし、H は C_2 上を動くものとする。
- 放物線 C_1 や C_2 に対して、頂点のy 座標を「シュートの高さ」とし、頂点のx 座標を「ボールが最も高くなるときの地上の位置」とする。
- (1) 放物線 C_1 の方程式における x^2 の係数を a とする。放物線 C_1 の方程式は

$$y = ax^2 - \boxed{+} ax + \boxed{2}$$

と表すことができる。また、プロ選手の「シュートの高さ」は

$$\sigma$$
 $a+$ \Box

である。

(数学 I・数学 A 第 2 問は次ページに続く。)

放物線 C_2 の方程式における x^2 の係数を p とする。放物線 C_2 の方程式は

$$y = p \left\{ x - \left(2 - \frac{1}{8p} \right) \right\}^2 - \frac{(16p - 1)^2}{64p} + 2$$

と表すことができる。

プロ選手と花子さんの「ボールが最も高くなるときの地上の位置」の比較の記述として、次の**②**~**③**のうち、正しいものは サ である。

サーの解答群

- ⑦ プロ選手と花子さんの「ボールが最も高くなるときの地上の位置」は、つねに一致する。
- ① プロ選手の「ボールが最も高くなるときの地上の位置」の方が、つねに M の x 座標に近い。
- ② 花子さんの「ボールが最も高くなるときの地上の位置」の方が、つねに M の x 座標に近い。
- ③ プロ選手の「ボールが最も高くなるときの地上の位置」の方が M の x 座標に近いときもあれば、花子さんの「ボールが最も高くなるとき の地上の位置」の方が M の x 座標に近いときもある。

(数学 I・数学 A 第 2 問は 46 ページに続く。)

(下書き用紙)

数学I・数学Aの試験問題は次に続く。

(2) 二人は、ボールがリングすれすれを通る場合のプロ選手と花子さんの 「シュートの高さ」について次のように話している。

太郎: 例えば、プロ選手のボールがリングに当たらないようにするには、Pがリングの左端 A のどのくらい上を通れば良いのかな。

花子: A の真上の点で P が通る点 D を、線分 DM が A を中心とする半径 0.1 の円と接するようにとって考えてみたらどうかな。

太郎:なるほど。Pの軌道は上に凸の放物線で山なりだから、その場合、図2のように、PはDを通った後で線分DMより上側を通るのでボールはリングに当たらないね。花子さんの場合も、HがこのDを通れば、ボールはリングに当たらないね。

花子: 放物線 C_1 と C_2 が D を通る場合でプロ選手と私の「シュートの高さ」を比べてみようよ。

(数学 I・数学 A 第 2 問は次ページに続く。)

図 2 のように、M を通る直線 ℓ が、A を中心とする半径 0.1 の円に直線 AB の上側で接しているとする。また、A を通り直線 AB に垂直な直線を引き、 ℓ との交点を D とする。このとき、 $AD = \frac{\sqrt{3}}{15}$ である。

よって、放物線 C_1 が D を通るとき、 C_1 の方程式は

$$y = -\frac{\boxed{\flat}\sqrt{\boxed{\lambda}}}{\boxed{\forall y}}\left(x^2 - \boxed{\ddagger}x\right) + \boxed{\flat}$$

となる。

また、放物線 G_2 が D を通るとき、(1) で与えられた C_2 の方程式を用いると、花子さんの「シュートの高さ」は約3.4 と求められる。

タの解答群

- <u>チ</u> については、最も適当なものを、次の**②**~**③**のうちから一つ選べ。
- **②** 約 1 個分 **①** 約 2 個分 **②** 約 3 個分 **③** 約 4 個分

数学 I・数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

番号によって区別された複数の球が、何本かのひもでつながれている。ただし、 各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け 方(以下、球の塗り方)を考える。

条件 -

- それぞれの球を, 用意した 5 色(赤, 青, 黄, 緑, 紫) のうちのいずれか 1 色で塗る。
- 1本のひもでつながれた二つの球は異なる色になるようにする。
- 同じ色を何回使ってもよく、また使わない色があってもよい。

例えば図Aでは、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。

(1) 図 B において、球の塗り方は アイウ 通りある。

(2) 図 C において、球の塗り方は エオ 通りある。

(3) 図 D における球の塗り方のうち、赤をちょうど 2 回使う塗り方は **カキ** 通りある。

(4) 図 E における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は **クケ** 通りある。

(数学 I・数学A第3問は次ページに続く。)

(5) 図 D において、球の塗り方の総数を求める。

そのために、次の構想を立てる。

図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。

図 F における球の塗り方は、図 B における球の塗り方と同じであるため、全部で P イウ 通りある。そのうち球 3 と球 4 が同色になる球の塗り方の総数と 一致する図として、後の $\mathbf{0}$ ~ $\mathbf{0}$ のうち、正しいものは $\mathbf{0}$ である。したがって、図 $\mathbf{0}$ における球の塗り方は $\mathbf{0}$ がある。

コの解答群

(数学 I・数学A第3問は次ページに続く。)

(6) 図 G において、球の塗り方は セソタチ 通りある。

数学 I・数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

色のついた長方形を並べて正方形や長方形を作ることを考える。色のついた長方形は、向きを変えずにすき間なく並べることとし、色のついた長方形は十分あるものとする。

(1) 横の長さが462で縦の長さが110である赤い長方形を、図1のように並べて正方形や長方形を作ることを考える。

_	_462_			
110	462 赤	赤	•••	赤 赤
	赤	赤	•••	赤
	:	:	٠.	÷
	赤	赤	•••	赤

図 1

(数学 I・数学A第4問は次ページに続く。)

462 と 110 の両方を割り切る素数のうち最大のものは アイ である。

赤い長方形を並べて作ることができる正方形のうち,辺の長さが最小であるものは,一辺の長さが**ウエオカ**のものである。

また、赤い長方形を並べて正方形ではない長方形を作るとき、横の長さと縦の 長さの差の絶対値が最小になるのは、462の約数と110の約数を考えると、差の 絶対値が **キク** になるときであることがわかる。

縦の長さが横の長さより キク 長い長方形のうち、横の長さが最小であるものは、横の長さが ケコサシ のものである。

(数学Ⅰ・数学A第4問は次ページに続く。)

(2) 花子さんと太郎さんは、(1)で用いた赤い長方形を1枚以上並べて長方形を作り、その右側に横の長さが363で縦の長さが154である青い長方形を1枚以上並べて、図2のような正方形や長方形を作ることを考えている。

このとき、赤い長方形を並べてできる長方形の縦の長さと、青い長方形を並べてできる長方形の縦の長さは等しい。よって、図2のような長方形のうち、縦の長さが最小のものは、縦の長さが スセソ のものであり、図2のような長方形は縦の長さが スセソ の倍数である。

(数学 I・数学 A 第 4 問は次ページに続く。)

二人は, 次のように話している。

花子:赤い長方形と青い長方形を図2のように並べて正方形を作ってみようよ。

太郎:赤い長方形の横の長さが462で青い長方形の横の長さが363だから、 図2のような正方形の横の長さは462と363を組み合わせて作ること ができる長さでないといけないね。

花子:正方形だから、横の長さは スセソ の倍数でもないといけないね。

462と363の最大公約数は タチ であり、 タチ の倍数のうちで

これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であることから、図2のような正方形のうち、辺の長さが最小であるものは、一辺の長さが ニヌネノ のものであることがわかる。

数学 I・数学 A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第5問 (選択問題)(配点 20)

(1) 円 0 に対して,次の手順1で作図を行う。

手順1 -

- (Step 1) 円 O と異なる 2 点で交わり、中心 O を通らない直線 ℓ を引く。 円 O と直線 ℓ との交点を A, B とし、線分 AB の中点 C をとる。
- (Step 2) 円 O の周上に、点 D を \angle COD が鈍角となるようにとる。直線 CD を引き、円 O との交点で D とは異なる点を E とする。
- (Step 3) 点 D を通り直線 OC に垂直な直線を引き、直線 OC との交点を F とし、円 O との交点で D とは異なる点を G とする。
- (Step 4) 点 G における円 O の接線を引き,直線 ℓ との交点を H とする。

このとき、直線ℓと点Dの位置によらず、直線 EH は円Oの接線である。このことは、次の構想に基づいて、後のように説明できる。

(数学 I・数学A第5問は次ページに続く。)

構想·

直線 EH が円 O の接線であることを証明するためには、

∠OEH = **アイ** °であることを示せばよい。

手順1の(Step 1)と(Step 4)により、4点 C, G, H, D は同一円周上にあることがわかる。よって、 $\angle CHG =$ D である。一方、点 E は円 O の周上にあることから、 D がわかる。よって、 $\angle CHG =$ D であるので、D は同一円周上にある。この円が点 D を通ることにより、D を示すことができる。

ウの解答群

- **0** B
- (1) D
- **2** F
- **3** 0

エの解答群

- **0** ∠AFC
- ① ∠CDF
- ② ∠CGH
- ③ ∠CBO
- **4** ∠FOG

オの解答群

- **②** ∠AED
- ① ∠ADE
- **②** ∠BOE
- 3 ∠DEG
- **4** ∠EOH

カの解答群

0 A

- ① D
- **2** E
- **3** F

(数学 I・数学A第5問は次ページに続く。)

(2) 円 O に対して、(1)の手順 1 とは直線 ℓ の引き方を変え、次の手順 2 で作図を 行う。

手順 2 -

- (Step 1) 円 O と共有点をもたない直線 ℓ を引く。中心 O から直線 ℓ に垂直な直線を引き、直線 ℓ との交点を P とする。
- (Step 2) 円 O の周上に、点 Q を \angle POQ が鈍角となるようにとる。直線 PQ を引き、円 O との交点で Q とは異なる点を R とする。
- (Step 3) 点 Q を通り直線 OP に垂直な直線を引き, 円 O との交点で Q と は異なる点を S とする。

(Step 4) 点 S における円 O の接線を引き、直線 ℓ との交点を T とする。

このとき、 $\angle PTS = \boxed{+}$ である。

円 O の半径が $\sqrt{5}$ で、OT = $3\sqrt{6}$ であったとすると、3点 O, P, R を通る

キ の解答群

O ∠PQS O ∠PST O ∠QPS O ∠QRS O ∠SRT