Unit 3 D Flip-Flops, Register, Counter

2012학년 2학기

마이크로 프로세서 실습

CONTENTS

1	D FLIP-FLOPS

- 2 REGISTER
- 3 COUNTER

1

D FLIP-FLOP

GATED D LATCH

Gated D Latch

Symbol and Truth Table for Gated Latch

EDGE-TRIGGERED D FLIP-FLOP [1 of 3]

- D Latch와 달리 D Flip-Flop은 data input (D)와 Clock(Ck)로 구성
- D Flip-Flop은 input의 변화가 아닌 Clock에 반응하여 변화
- 출력이 clock 입력의 0에서 1로 전환 시에 변화한다면 Flip-Flop은 clock의 rising-edge에서 trigger
- 출력이 clock 입력의 0에서 1로 전환 시에 변화한다면 Flip-Flop은 clock의 falling-edge에서 trigger

EDGE-TRIGGERED D FLIP-FLOP [2 OF 3]

- Clock 입력에 반전 표시 방울이 있는 Flip-Flop은 falling edge trigger Flip-Flop
- 방울이 없는 경우 rising edge Filp-Flop
- Active edge(활성 에지)라는 용어는 Flip-Flop의 상태 변화를 촉발하는 clock edge(falling or rising) 을 지칭한다.

(b) Falling-edge trigger

D Flip-Flops

EDGE-TRIGGERED D FLIP-FLOP [3 of 3]

■ Active Clock edge 후의 D Flip-Flop의 상태(Q+)는 Active edge에서의 input D 와 같다

D	Q	Q^{+}
0	0	0
0	1	0
1	0	1
1	1	1

$$Q^+ = D$$

Timing for D Flip-Flop(falling edge trigger)

FLIP-FLOPS WITH ADDITIONAL INPUTS [1 of 4]

- Flip-Flop은 Clock과는 독립적으로 Flip-Flop을 initial state로 만들기 위한 부가적인 입력을 가질 수 있다.
- Initial state란 0 or 1의 상태를 나타낸다.
- Initial state 0으로 만드는 input : Clear (Clr)
- Initial state 1로 만드는 Input : Preset(pre)

Ck	D	PreN	ClrN	$\bigsqcup_{} Q^{^{+}}$
X	×	0	0	(not allowed)
X	X	0	1	1
X	X	1	0	0
\uparrow	0	1	1	0
\uparrow	1	1	1	1
0,1,	×	1	1	Q(no change)

D Flip-Flop with Clear and Preset

FLIP-FLOPS WITH ADDITIONAL INPUTS [2 of 4]

- 밑의 D Flip-Flop은 부가 입력신호 ClrN과 PreN은 작은 방울(반전 표시)을 가지고 있기 때문에 Flip-Flop을 1로 set하거나 0으로 clear시키기 위해서 1이 아닌 0이 입력 되야 한다는 것을 나타 낸다
- 이를 active low(저레벨 활성)이라고 부른다
- Clear + active low = ClrN
- Preset + active low = PreN
- 따라서 ClrN에 0이 입력되면 output Q는 0이 되고, PreN에 0이 입력되면 output Q는 1이 된다
- 이 입력들은 D input이나 Clock input에 상관 없이 비동기적으로 동작한다.

FLIP-FLOPS WITH ADDITIONAL INPUTS [3 of 4]

Timing Diagram for D Flip-Flop with Asynchronous Clear and Preset

FLIP-FLOPS WITH ADDITIONAL INPUTS [4 of 4]

- Flip-Flop의 enable(En), clock(Ck) 이 변하더라도 이전 데이터 값 유지 필요시
 - ◆ Clock 자체의 동작을 gating 하는 방식 : clock 지연 발생의 문제점 (a)
 - +Clock Enable (CE) 을 사용하는 방식 : CE = 1에서만 Flip-Flop 회로 동작 (b)

The characteristric equation : $Q^+ = Q \cdot CE' + D \cdot CE$

The MUX output : $Q^+ = D = Q \cdot CE' + D_{in} \cdot CE$

D Flip-Flop with Clock Enable

2

REGISTER

REGISTERS AND REGISTER TRANSFERS [1 of 8]

- 여러 개의 D Flip-Flop을 하나의 common clock 으로 묶어 하나의 register를 형성 (binary data 저장 및 shift 역할)
- Load, Clk, ClrN 신호의 의미와 역할을 이해
- Clk를 Load 신호와 AND gate로 묶었을 때의 문제점

(a) Using gated clock

4-bit D Flip-Flop register

REGISTERS AND REGISTER TRANSFERS [2 OF 8]

- (Load = 1, Clk ↓) D -> Q
- 📘 (Load = 0) Data out 은 유지
- Gated Clk의 경우 clock delay, timing 문제 발생 -> Clock Enable 방식으로 해결

REGISTERS AND REGISTER TRANSFERS [3 OF 8]

(b) With clock enable

REGISTERS AND REGISTER TRANSFERS [4 of 8]

- Data Transfer Between Registers
 - 🛨 3-state bus 이용, A/B 두 개의 register중 출력 선탱
 - + (Load =1, En = 1, Clk↑) A-> Q, (Load = 1, En = 0, Clk ↑) B -> Q

Register A = flip-flops A_1 and A_2

Register B = flip-flops B_1 and B_2

Register Q = flip-flops Q_1 and Q_2

REGISTERS AND REGISTER TRANSFERS [5 of 8]

Logic Diagram for 8 bit register with Tri-state output When En=0, D \rightarrow Out

REGISTERS AND REGISTER TRANSFERS [6 of 8]

Data Transfer using a Tri-State Bus

Decoder 입력인 E,F 에 의해 레지스터 A, B, C, D 값을 G 혹은 H 에 저장

If
$$EF = 00, A \to G(LdG = 1) H(LdH = 1)$$

If $EF = 01, B \to G(LdG = 1) H(LdH = 1)$
If $EF = 10, C \to G(LdG = 1) H(LdH = 1)$
If $EF = 11, D \to G(LdG = 1) H(LdH = 1)$

REGISTERS AND REGISTER TRANSFERS [7 OF 8]

N-bit Parallel Adder with Accumulator

레지스터에 숫자(\mathbf{x}_i)를 저장하고, \mathbf{y}_n 더해 그 결과를 다시 accumulator (\mathbf{x}_i) 에 저장 ($\mathbf{x}_i + \mathbf{y}_i$) \implies \mathbf{x}_i

REGISTERS AND REGISTER TRANSFERS [8 OF 8]

Adder Cell with Multiplexer

$$x_i + y_i = s_i \rightarrow x_i$$

(Data Load)

@ Ld =1 , Ad = don't care, Clk ↑
y_i → Multiplexer Out → x_i
input data is saved at DFF

(addition)

@ Ld =0 , Ad=1, Clk \uparrow y_i renewed $x_i + y_i = s_i$

(Data Accumulation)

@ Ld = 0, Ad = 1, Clk
$$\uparrow$$

 $s_i \rightarrow x_i$
 $x_i + y_i = s_i$ for each Clk \uparrow

SHIFT REGISTERS [1 OF 8]

Binary data 저장 후, 매 clock 마다 data를 왼쪽 혹은 오른쪽으로 이동

(a) Flip-flop connections

Right-Shift Register

@shift=1 shift right for each clock rising @shift=0 output unchanged 초기상태: 0101

SI(serial in): 1

 $0101 \rightarrow 1010 \rightarrow 1101 \rightarrow 0110 \rightarrow 1011$

SHIFT REGISTERS [2 OF 8]

- 🧧 S-R Latch 를 이용한 Shift register 구성
- Serial-in : Data가 한번에 한 bit씩 첫 Flip-Flop으로 shift (cf. parallel in/out)
- Serial-out : Data를 마지막 Flip-Flop으로 부터 읽을 수 있음

8-bit serial-in, serial-out shift register

SHIFT REGISTERS [3 OF 8]

Typical timing diagram for shift register

Serial in 이후 8번째 클럭(즉, 7개 클럭 주기 후) 상승 에지에서 serial-out

SHIFT REGISTERS [4 OF 8]

■ 여러 개의 data 동시 load 및 out

Parallel-in, Parallel-out right shift register

SHIFT REGISTERS [5 OF 8]

Parallel-in, Parallel-out right shift register

Input		Next State	Action	Load = 1 Load i/p
Sh(Shift)	L(Load)	Q_3^+ Q_2^+ Q_1^+ Q_0^+		Shift = 1 shift rig - 용도 : Parallel-da
0	0	Q_3 Q_2 Q_1 Q_0	no change	로 변환
0	1	D_3 D_2 D_1 D_0	load	Q) Sh=L=0 에서 (유지 하는 이유
1	×	$SI Q_3 Q_2 Q_1$	right shift	

ght

ata를 serial-data

현 상태를 는?

SHIFT REGISTERS [6 OF 8]

SHIFT REGISTERS [7 OF 8]

Inp	out	Next State	Action
Sh(Shift)	L(Load)	Q_3^+ Q_2^+ Q_1^+ Q_0^+	
0	0	Q_3 Q_2 Q_1 Q_0	no change
0	1	D_3 D_2 D_1 D_0	load
1	×	SI Q_3 Q_2 Q_1	right shift

$$\begin{aligned} Q_3^+ &= Sh^{'} \cdot L^{'} \cdot Q_3 + Sh^{'} \cdot L \cdot D_3 + Sh \cdot \text{SI} \\ Q_2^+ &= Sh^{'} \cdot L^{'} \cdot Q_2 + Sh^{'} \cdot L \cdot D_2 + Sh \cdot Q_3 \\ Q_1^+ &= Sh^{'} \cdot L^{'} \cdot Q_1 + Sh^{'} \cdot L \cdot D_1 + Sh \cdot Q_2 \\ Q_0^+ &= Sh^{'} \cdot L^{'} \cdot Q_0 + Sh^{'} \cdot L \cdot D_0 + Sh \cdot Q_1 \end{aligned}$$

The next-state equations for the Flip-Flot

SHIFT REGISTERS [8 OF 8]

Shift register with inverted feedback -> johnson counter

(a) Flip-flop connections

3-bit shift register

Successive states

마지막 FF 의 반전된 출력을 첫 FF 입력으로 피드백 두 개의 루프 존재 가능

3

COUNTER

DESIGN OF BINARY COUNTERS [1 of 14]

- Synchronous counter(동기식 카운터)
 - ➡ Flip-Flop입력이 공통입력 펄스에 의해 동기화 되는 counter

Synchronous Binary Counter

Counting sequence

CBA: $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$

DESIGN OF BINARY COUNTERS [2 OF 14]

DESIGN OF BINARY COUNTERS [3 OF 14]

<u> </u>	현재상티	H	7	차기상E	H	플립	입플롭 엽	입력
С	В	Α	C+	B+	A +	T _C	T _B	T _A
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

State Table for Binary Counter

DESIGN OF BINARY COUNTERS [4 OF 14]

플립플롭 입력					
T _C	T _B	T _A			
0	0	1			
0	1	1			
0	0	1			
1	1	1			
0	0	1			
0	1	1			
0	0	1			
1	1	1			

Karnaugh Map for Binary Counter

$$T_C = AB$$
, $T_B = A$, $T_A = 1$

DESIGN OF BINARY COUNTERS [5 OF 14]

State Table for Binary Counter using D-FF

3	현재상티	H	7	차기상E	H	플립	입플롭 엽	입력
С	В	Α	C+	B+	A +	D _c	D_B	D _A
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

DESIGN OF BINARY COUNTERS [6 OF 14]

플립플롭 입력					
D _c	D _B	D _A			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			
0	0	0			

$$\mathcal{D}_{\mathcal{A}}=\mathcal{A}^{\scriptscriptstyle +}=\mathcal{A}^{\scriptscriptstyle '}$$

(A change state every clock cycle)

$$D_B = B^+ = BA^{'} + B^{'}A = B \oplus A$$

(B change state when A = 1)

$$D_{C} = C^{+} = C^{'}BA + CB^{'} + CA^{'} = C^{'}BA + C(BA)^{'}$$

 $= C \oplus BA$ (C change state when B = A = 1)

DESIGN OF BINARY COUNTERS [7 OF 14]

Binary Counter with D Flip-Flops

DESIGN OF BINARY COUNTERS [8 OF 14]

Up/Down Counter

◆ 제어신호에 의해 계수 값 증가 혹은 감소

CBA	C^+B^-	$^{\scriptscriptstyle +}A^{\scriptscriptstyle +}$		
	UP	DOWN		
000	001	111		
001	010	000		
010	011	001		
011	100	010		
100	101	011		
101	110	100		
110	111	101		
111	000	110		

When U=1, Up counting
When D=1, Down counting

State Graph and Table for Up-Down counter

DESIGN OF BINARY COUNTERS [9 OF 14]

U=1, D=0 경우 이진 UP 카운터와 동일

현	현재상태 차기			기상	상태		플립플롭 입력		
С	В	Α	C +	B +	A +	D c	D B	D A	
0	0	0	0	0	1	0			
0	0	1	0	1	0	0			
0	1	0	0	1	1	0			
0	1	1	1	0	0	1			
1	0	0	1	0	1	1			
1	0	1	1	1	0	1			
1	1	0	1	1	1	1			
1	1	1	0	0	0	0			

$$D_{A} = A^{+} = A^{'}$$
 $D_{B} = B^{+} = BA^{'} + B^{'}A = B \oplus A$
 $D_{C} = C^{+} = C^{'}BA + CB^{'} + CA^{'} = C^{'}BA + C(BA)^{'} = C \oplus BA$

DESIGN OF BINARY COUNTERS [10 OF 14]

U=0, D=1 경우 이진 down 카운터와 동일

현	재상	·태	차기상태			플립플 <u>롭</u> 입력				
С	В	Α	C +	B +	A +	D c	D B	D A		
0	0	0	1	1	1	1				
0	0	1	0	0	0	0				
0	1	0	0	0	1	0				
0	1	1	0	1	0	0				
1	0	0	0	1	1	0				
1	0	1	1	0	0	1				
1	1	0	1	0	1	1				
1	1	1	1	1	0	1				

$$D_{A} = A^{+} = A \oplus 1 = A^{'}$$
 (A change state every clock cycle)
 $D_{B} = B^{+} = B \oplus A^{'}$ (B change state when $A = 0$)
 $D_{C} = C^{+} = C \oplus B^{'}A^{'}$ (C change state when $B = A = 0$)

DESIGN OF BINARY COUNTERS [11 OF 14]

$$D_A = A^+ = A^-$$

$$D_B = B^+ = BA^{'} + B^{'}A = B \oplus A$$

$$D_C = C^+ = C^{'}BA + CB^{'} + CA^{'} = C^{'}BA + C(BA)^{'} = C \oplus BA$$
 U=0, D=1 경우

$$D_A = A^+ = A \oplus 1 = A^-$$
 (A change state every clock cycle)

$$D_B = B^+ = B \oplus A^{'}$$
 (B change state when $A = 0$)

$$D_C = C^+ = C \oplus B'A'$$
 (C change state when $B = A = 0$)

$$D_{A} = A^{+} = A \oplus (U + D)$$

$$D_{B} = B^{+} = B \oplus (UA + DA^{'})$$

$$D_{C} = C^{+} = C \oplus (UBA + DB^{'}A^{'})$$

DESIGN OF BINARY COUNTERS [12 OF 14]

Loadable counter

DESIGN OF BINARY COUNTERS [13 OF 14]

■ Load 가능한 counter 설계 ~Ld 신호에 의해 초기값 load

(a)

ClrN	Ld	Ct	$C^{\scriptscriptstyle +}$	$B^{\scriptscriptstyle +}$	A^{+}	
0	×	×	0	0	0	
1	1	×	D_{C}	$D_{\scriptscriptstyle B}$	$D_{\scriptscriptstyle A}$	(load)
1	0	0	\boldsymbol{C}	В	\boldsymbol{A}	(no change)
1	0	1	pre	sent	state +	-1

State table

DESIGN OF BINARY COUNTERS [14 OF 14]

3bit binary counter circuit

COUNTERS FOR OTHER SEQUENCES [1 of 6]

The sequence of states of a counter is not in straight binary order

State Graph for Counter

<i>C</i>	\boldsymbol{B}	\boldsymbol{A}	C^{+}	$B^{\scriptscriptstyle +}$	A^{+}
0	0	0	1	0	0
0	O	1	_	-	_
O	1	0	0	1	1
O	1	1	0	0	O
1	0	0	1	1	1
1	0	1	_	-	_
1	1	0	_	-	_
1	1	1	$\mid o \mid$	1	0

State Table

COUNTERS FOR OTHER SEQUENCES [2 OF 6]

현	재상	·태	차기상태				립플 입력	롭
С	В	Α	C +	B +	A +	T	T B	T A
0	0	0	1	0	0	1		
0	0	1	-	-	-	0		
0	1	0	0	1	1	0		
0	1	1	0	0	0	0		
1	0	0	1	1	1	0		
1	0	1	-	-	-	1		
1	1	0	-	-	-	1		
1	1	1	0	1	0	1		

COUNTERS FOR OTHER SEQUENCES [3 OF 6]

$$T_C = C' \cdot B' + C \cdot B$$
 $T_B = C' \cdot A + C \cdot B'$ $T_A = C + B$

Counter Using T Flip-Flops

COUNTERS FOR OTHER SEQUENCES [4 OF 6]

Timing Diagram

State Graph for Counter

COUNTERS FOR OTHER SEQUENCES [5 of 6]

Counter Design using D Flip-Flop

현	현재상태 차기상태 플립플롭 입				차기상태			- 입
С	В	Α	C+	B+	A +	D _c	D_{B}	D _A
0	0	0	1	0	0	1		
0	0	1	-	-	-	X		
0	1	0	0	1	1	0		
0	1	1	0	0	0	0		
1	0	0	1	1	1	1		
1	0	1	-	-	-	Х		
1	1	0	-	-	-	Х		
1	1	1	0	1	0	0		

D F/F 경우 Q+ = D 이므로, D 입력은 다음 상태 값과 동일함

Counters for Other Sequences [6 of 6]

Counter of Figure 12-21 Using D Flip-Flops

THANK YOU