Analyse

Chapitre 2 : Étude autour des fonctions continues sur un compact

Lucie Le Briquer

23 novembre 2017

C(X, F) où X métrique compact et F métrique.

- **Propriété 1** (Rappel) –

• Si X métrique compact, F est métrique. On munit $\mathcal{C}(X,F)$ de la distance :

$$d(f,g) = \sup_{x \in X} d_F(f(x), g(x))$$

- Si F est complet, d rend C(X, F) complet.
- Si F est un Banach, alors $\mathcal{C}(X,F)$ est un Banach pour $\|f\|_{\infty} = \sup_{x \in X} \|f(x)\|_F$

1 Compacts de C(X, F)

- **Définition 1** (équicontinuité) -

Soit $\mathcal{A} \subset \mathcal{C}(X, F)$.

• \mathcal{A} est équicontinue en $x \in X$ si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall y \in X, \ d(x,y) < \eta \Rightarrow \forall f \in \mathcal{A}, d(f(x), f(y)) < \varepsilon$$

ullet A est uniformément équicontinue si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x,y \in X, \ d(x,y) < \eta \Rightarrow \forall f \in \mathcal{A}, d(f(x),f(y)) < \varepsilon$$

Exercice 1.

E, F espaces métriques

- 1. Montrer que si $\mathcal A$ finie, alors $\mathcal A$ est équi continue en tout point.
- 2. Montrer que si \mathcal{A} ne contient que des fonctions k-lipschitziennes, \mathcal{A} est uniformément équicontinue.

3. Montrer que si \mathcal{A} est équicontinue sur un compact X, \mathcal{A} est uniformément équicontinue sur X.

Solution 1.

1. Soit $x \in X$, $\mathcal{A} = \{f_1, ..., f_n\} \subset \mathcal{C}(X, F)$. Si $\varepsilon > 0, \exists \eta_1, ..., \eta_n$ tels que :

$$d(x,y) < \eta_i \Rightarrow d(f_i(x), f_i(y)) < \varepsilon$$

On prend alors $\eta = \min \eta_i$.

2. Soit $\varepsilon > 0$, on pose $\eta = \frac{\varepsilon}{k}$. Alors si:

$$d(x,y) \leqslant \eta, \ d(f(x),f(y)) < kd(x,y) \leqslant k\eta \leqslant \varepsilon$$

3. Par l'absurde.

$$\exists \varepsilon > 0, \ \forall n > 0, \ \exists (x_n, y_n) \in X^2, \quad d(x_n, y_n) < \frac{1}{n} \text{ et } \exists f_n \in \mathcal{A}, \ d(f_n(x_n), f_n(y_n)) > \varepsilon$$

Par compacité, $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} x$ alors $x_{\varphi(n)} \xrightarrow[n \to +\infty]{} x$. Mais $\mathcal A$ équicontinue en x donc :

$$\exists \alpha > 0, \ \forall u,v \in X, \ d(x,u) < \alpha \ \text{et} \ d(y,u) < \alpha \quad \Rightarrow \quad d(f(u),f(v)) < \varepsilon \ \forall f \in \mathcal{A}$$

Or $x_{\varphi(n)} \xrightarrow[n \to +\infty]{} x$ et $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} y$ donc à partir d'un certain rang N :

$$d(x, x_{\varphi(N)}) < \alpha \text{ et } d(x, y_{\varphi(N)}) < \alpha \text{ mais } d(f_{\varphi(N)}(x_{\varphi(N)}), f_{\varphi(N)}(y_{\varphi(N)})) > \varepsilon$$

Absurde. Donc \mathcal{A} uniformément équicontinue.

- **Théorème 1** (Ascoli) —

Soit X métrique compact et F métrique complet. Soit $\mathcal{A} \subset \mathcal{C}(X,F)$. Sont équivalents :

- 1. A est relativement compact (d'adhérence compacte).
- 2. \mathcal{A} est équicontinue en tout point et $\forall x \in X, \mathcal{A}_x = \{f(x), f \in \mathcal{A}\}$ est relativement compact.

Remarque. Sert à :

- Montrer la compacité d'un opérateur
- Extraire des sous-suites convergentes

Preuve.

 $(2) \Rightarrow (1)$:

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$. On va montrer que l'on peut extraire une sous-suite de (f_n) convergente.

ullet Comme X est métrique compact, X est séparable. En effet :

$$X = \bigcup_{x \in X} \mathcal{B}\left(x, \frac{1}{n}\right) = \bigcup_{i=1}^{m} \mathcal{B}\left(x_{i}^{n}, \frac{1}{n}\right)$$

(cf. poly)

Soit $D = (x_n)_{n \in \mathbb{N}}$ dénombrable, dense dans X.

- 1. x_1 . $A_{x_1} = \{f(x_1), f \in A\}$ relativement compact. Donc de $(f_n(x_1))_n$ on peut extraire une sous-suite convergente : $f_{\varphi_1(n)}(x_1) \xrightarrow[n \to +\infty]{} f(x_1)$.
- 2. De même de $(f_{\varphi_1(n)}(x_2))_n$ on extrait une sous-suite convergente : $f_{\varphi_1 \circ \varphi_2(n)}(x_2) \xrightarrow[n \to +\infty]{} f(x_2)$
- 3. Pour x_p . $(f_{\varphi_1 \circ \dots \circ \varphi_{p-1}(n)}(x_p))_{n \in \mathbb{N}}$ est relativemen compact. On extrait $f_{\varphi_1 \circ \dots \circ \varphi_p(n)}(x_p) \xrightarrow[n \to +\infty]{} f(x_p)$. On pose $\psi(n) = \varphi_1 \circ \dots \circ \varphi_n(n)$ (procédé d'extraction diagonale). On vérifie que :

$$\forall p \in \mathbb{N}, \ f_{\psi(n)}(x_p) \xrightarrow[n \to +\infty]{} f(x_p)$$

• On veut prolonger f sur X grâce au théorème de prolongement vu au TD1. \rightarrow montrons que f est uniformément continue sur D.

Soit $\varepsilon > 0$. Comme \mathcal{A} est équicontinue sur X compact, elle est uniformément équicontinue. Donc $\exists \eta > 0, \ d(x,y) < \eta \Rightarrow \forall f \in \mathcal{A} \ d(f(x),f(y)) < \varepsilon$. Soit $x_k,x_l \in D$ tels que $d(x_k,x_l) < \eta$:

$$d(f(x_k), f(x_l)) \leq d(f(x_k), f_{\psi(n)}(x_k)) + d(f_{\psi(n)}(x_k), f_{\psi(n)}(x_l)) + d(f_{\psi(n)}(x_l), f(x_l))$$

$$\leq \varepsilon + \varepsilon + \varepsilon = 3\varepsilon$$

Donc f est uniformément continue sur D. Donc par théorème de prolongement, f se prolonge en une fonction uniformément continue pour tout X.

• Montrons que $(f_{\psi(n)})$ converge uniformément vers f sur X. Soit $\varepsilon > 0$, $x \in X$ $d(f(x), f_{\psi(n)}(x)) \leq \varepsilon$.

Idée. $d(f(x), f_{\psi(n)}(x)) \leq d(f(x), f(x_k)) + d(f(x_k), f_{\psi(n)}(x_k)) + d(f_{\psi(n)}(x_k), f_{\psi(n)}(x))$. Soit η associé à l'uniforme équicontinuité de \mathcal{A} . On sait que $X = \bigcup_{k \in \mathbb{N}} \mathcal{B}(x_k, \eta)$ (où $(x_k)_{k \in \mathbb{N}}$ sous-ensemble dense à partir duquel f est construite). Par compacité,

$$X = \bigcup_{i=1}^{n} \mathcal{B}(x_{k_i}, \eta)$$

Soit $i, d(x, x_{k_i}) < \eta$.

$$d(f(x), f_{\psi(n)}(x)) \leqslant \underbrace{d(f(x), f(x_{k_i}))}_{\leqslant \varepsilon \text{ (UF)}} + \underbrace{d(f(x_{k_i}), f_{\psi(n)}(x_{k_i}))}_{\leqslant \varepsilon \text{ (APCR idp de } x)} + \underbrace{d(f_{\psi(n)}(x_{k_i}), f_{\psi(n)}(x))}_{\leqslant \varepsilon}$$

 $(1) \Rightarrow (2)$:

 \mathcal{A} relativement compact. En particulier, \mathcal{A} est précompact. Soit $\varepsilon > 0$, $\mathcal{A} = \bigcup_{i=1}^n \mathcal{B}(f_i, \varepsilon)$. Soit $\eta_1, ..., \eta_n$ associés à l'uniforme continuité des f_i . Posons $\eta = \min \eta_i$. Soient $x, y \in X$ tels que $d(x, y) < \eta$. Soit $f \in \mathcal{A}$, $\exists i$ tel que $d(f, f_i) < \varepsilon$.

$$d(f(x), f(y)) \leqslant \underbrace{d(f(x), f_i(x))}_{\leqslant \varepsilon} + \underbrace{d(f_i(x), f_i(y))}_{\leqslant \varepsilon \text{ (UF de } f_i)} + \underbrace{d(f_i(y), f(y))}_{\leqslant \varepsilon} \leqslant 3\varepsilon$$

Donc \mathcal{A} est uniformément équicontinue. De plus, $\forall x$, \mathcal{A}_x est relativement compact puisque \mathcal{A} est relativement compact. D'où l'équivalence.

Remarque. Même équivalence sans l'hypothèse F complet.

Contre-exemples.

- Si A_x n'est pas relativement compact. Sur C([0,1]), $f_n(x) = n \ \forall x \in [0,1]$.
- Si \mathcal{A} n'est pas équicontinue en tout point. $f_n(x) = \sin(nx)$ si $f_{\psi(n)} \xrightarrow[n \to +\infty]{} f$ uniformément. On a :

$$\forall \varphi \in \mathcal{C}([0,\pi]) \quad \int_0^\pi \varphi(x) \sin(nx) dx \xrightarrow[n \to +\infty]{} 0$$

Alors

$$\forall \varphi \in \mathcal{C}([0,\pi]) \quad \int_0^\pi \varphi(x) f(x) dx = 0$$

et donc $\int_0^{\pi} f(x)^2 dx = 0$

Exercice 2.

On munit $C^1([a, b])$ de la norme $||f|| = ||f||_{+\infty} + ||f'||_{+\infty}$.

$$i \colon (\mathcal{C}^1([a,b]), \|.\|) \longrightarrow (\mathcal{C}([a,b]), \|.\|_{\infty})$$
 (l'identité)

Montrer que i est une application continue compacte. Solution 2.

• Continuité. $\forall f \in \mathcal{C}^1([a,b]),$

$$||i(f)||_{\infty} \leq ||f||$$

$$=$$

$$||f||_{\infty} \leq ||f||_{\infty} + ||f'||_{\infty}$$

• Compacité. Montrons que i est compacte. Soit $B = \overline{\mathcal{B}(0,1)}$ pour $\|.\|$ dans $\mathcal{C}^1([a,b])$. Montrons que i(B) = B (d'un point de vue ensembliste) est relativement compact dans $(\mathcal{C}([a,b]),\|.\|_{\infty})$.

Si $x \in [a, b]$, $A_x = \{f(x), f \in B\}$, $||f||_{\infty} \le ||f|| \le 1$. Donc $\forall x, A_x$ est borné dans \mathbb{R} donc relativement compact.

 \bullet Montrons que B est équicontinue. Par les inégalités des accroissements finis :

$$|f(x) - f(y)| \le ||f'||_{\infty} |x - y|$$
 comme $||f'||_{\infty} \le 1$ car $f \in B$

alors $\forall x, y, |f(x) - f(y)| \leq |x - y|$.

Donc B est composée de fonctions 1—lipschitzienne. Donc B est uniformémen équicontinue. Donc par Ascoli, B est relativement compact dans $\mathcal{C}([a,b])$.

Remarque. Si dim $F < +\infty$, A_x est relativement compact $\Leftrightarrow A_x$ est borné.

Exercice 3.

Soit X, Y compact métrique de \mathbb{R}^n , $K \in \mathcal{C}(X \times Y)$. Pour $f \in \mathcal{C}(X)$, on définit :

$$Tf(y) = \int_X K(x, y) f(x) dx$$

- 1. Montrer que T est un opérateur de $\mathcal{C}(X)$ dans $\mathcal{C}(Y)$.
- 2. Montrer que T est compact.

Solution 3.

1. Définition. $Tf \in \mathcal{C}(Y)$ car $\forall x \in X, y \mapsto K(x,y)f(x) \in \mathcal{C}(Y)$, et:

$$\forall y \in Y, \ \forall x \in X, \ |K(x,y)f(x)| \leq ||K||_{\infty} ||f||_{\infty}$$
 intégrable sur X

Donc par théorème de continuité, $Tf \in \mathcal{C}(Y)$.

Linéarité. Évident

Continuité. On a :

$$|Tf(y)| \le \int_X |K(x,y)||f(x)|dx \le ||K||_{\infty} ||f||_{\infty} \operatorname{Vol}(X)$$

Donc $||Tf||_{\infty} \leq ||K||_{\infty} ||f||_{\infty} \text{Vol}(X)$. Donc T est un opérateur.

- 2. Soit $B = \overline{\mathcal{B}(0,1)}$ dans $(\mathcal{C}(X), \|.\|_{\infty})$. Montrons que T(B) est relativement compact dans $(\mathcal{C}(Y), \|.\|_{\infty})$.
 - $\mathcal{A}_y = \{Tf(y), f \in B\}$

$$|Tf(y)| \leqslant \int_X |K(x,y)| \underbrace{|f(x)|}_{\leqslant 1} dx \leqslant ||K||_{\infty} \operatorname{Vol}(X)$$

Donc A_y est borné donc relativement compact.

• Soit $\varepsilon > 0$, $y \in Y$, et η associé à l'uniforme continuité $(x,y) \mapsto K(x,y)$ $(|x-x'|+|y-y'|<\eta \Rightarrow |K(x,y)-K(x',y')| \leqslant \varepsilon)$. Soit $y' \in Y$, $|y-y'|<\eta$ alors :

$$|Tf(y) - Tf(x)| = \left| \int_X (K(x, y) - K(x', y')) f(x) dx \right| \leqslant \varepsilon \int_X \underbrace{\|f\|_{\infty}}_{\leq 1} dx \leqslant \varepsilon \operatorname{Vol}(X)$$

Donc $(Tf)_{f \in B}$ est équicontinue en y. Par Ascoli, T(B) est relativement compact.

2 Théorème de Stone-Weierstrass

Théorème 2 (Dini) -

X espace métrique compact.

 $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}(X)^{\mathbb{N}}$ telle que $f_n\xrightarrow[n\to+\infty]{}f$ simplement, f continue et $\forall n\in\mathbb{N},\ f_{n+1}\geqslant f_n$

Alors la convergence est uniforme.

Preuve.

$$\Omega_n = \{ x \in X \mid f_n(x) > f(x) - \varepsilon \}$$

Par continuité des f_n et de f, Ω_n est ouvert. Par croissance des (f_n) , $\Omega_n \subset \Omega_{n+1}$. Par convergence simple, $X = \bigcup_{n \in \mathbb{N}} \Omega_n$. Comme X est compact, $X = \bigcup_{i=1}^m \Omega_{n_i} = \Omega_{n_m}$ (en supposant les n_i croissants).

Donc, $\forall n \geq n_m, \forall x \in X, f(x) - f_n(x) < \varepsilon$. Et comme $f \geq f_n$ (par croissance des (f_n)),

$$\forall n \geqslant n_m, \ \forall x \in X, \ |f(x) - f_n(x)| < \varepsilon$$

D'où la convergence uniforme.

Théorème 3 (Stone-Weierstrass) -

Soit X métrique compact. $A \subset \mathcal{C}(X)$, A sous-algèbre de $\mathcal{C}(X)$, unitaire et séparante.

(séparante)
$$\forall x, y \in X, x \neq y, \exists f \in \mathcal{A} \text{ tq } f(x) \neq f(y)$$

Alors \mathcal{A} est dense dans $\mathcal{C}(X)$.

Lemme 1

$$\exists (P_n)_{n\in\mathbb{N}}\in\mathbb{R}[X]^{\mathbb{N}}\mid P_n\xrightarrow[n\to+\infty]{}\mid \mid \text{uniformément sur }[-1,1]$$

Preuve. (du lemme)

En effet en prenant :

$$\begin{cases} P_0 = 0 \\ P_{n+1}(x) = P_n(x) + \frac{1}{2}(x^2 - P_n(x)^2) \ \forall x \in [-1, 1] \end{cases}$$

On montre que $\forall n \in \mathbb{N}, \ 0 \leqslant P_n(x) \leqslant P_{n+1}(x) \leqslant |x| \ \forall x \in [-1,1].$

Comme $(P_n(x))$ est croissante et majorée, $(P_n(x))$ converge vers f(x) qui vérifie :

$$f(x) = f(x) + \frac{1}{2}(x^2 - f(x)^2)$$

donc $f(x)^2 = x^2$ et $f(x) \ge 0$. Donc f(x) = |x|. Donc $P_n \xrightarrow[n \to +\infty]{} |$ simplement et (P_n) croissante. Donc par Dini on a la convergence uniforme.

Preuve. (du théorème de Stone-Weierstrass)

On va utiliser les 2 arguments suivants :

1. Si $f, g \in \mathcal{A}$, montrons que $\min(f, g)$ et $\max(f, g)$ sont dans $\overline{\mathcal{A}}$.

Si $f \in \mathcal{A}$, $f \neq 0$ alors $|f| \in \overline{\mathcal{A}}$. En effet, $\frac{f}{\|f\|_{\infty}}$ à valeurs dans [-1,1] et $P_n\left(\frac{f}{\|f\|_{\infty}}\right) \in \mathcal{A}$. Par convergence uniforme, $\left|\frac{f}{\|f\|_{\infty}}\right| \in \overline{\mathcal{A}}$. Donc $|f| \in \overline{\mathcal{A}}$. Or:

$$\max(f,g) = \frac{f+g}{2} + \frac{|f-g|}{2} \in \overline{\mathcal{A}} \quad \text{et} \quad \min(f,g) = \frac{f+g}{2} - \frac{|f-g|}{2} \in \overline{\mathcal{A}}$$

2. Soit $\alpha, \beta \in \mathbb{R}$ avec $\alpha \neq \beta$, et $x, y \in X$. Montrons qu'il existe $u \in \mathcal{A}$ tel que $u(x) = \alpha$ et $u(y) = \beta$.

En effet, il existe $v \in A$, $v(x) \neq v(y)$ et le système :

$$\begin{cases} \lambda v(x) + \mu = \alpha \\ \lambda v(y) + \mu = \beta \end{cases}$$
 est de Cramer

$$\begin{pmatrix} v(x) & 1 \\ v(y) & 1 \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

D'où l'existence d'un tel u.

Soit $f \in \mathcal{C}(X)$, $\varepsilon > 0$. Soit $x \in X$. $\forall y \in X$, il existe $u_y \in \mathcal{A}$ tel que $u_y(x) = f(x)$ et $u_y(y) = f(y)$ par (2). On pose :

$$O_y = \{ x' \in X \mid u_y(x') < f(x') + \varepsilon \}$$

 $u_y, f \in \mathcal{C}(X)$ donc O_y est ouvert et $x, y \in O_y$.

$$X = \bigcup_{y \in X, y \neq x} O_y$$

Or X compact donc il existe $y_1, ..., y_n \in X$ tel que $X = \bigcup_{i=1}^n O_{y_i}$. On pose $v_x = \min_{1 \leq i \leq n} u_{y_i} \in \overline{\mathcal{A}}$. Et, $\forall x' \in X$,

$$v_x(x') = \min_{1 \le i \le n} u_{y_i}(x') < f(x') + \varepsilon$$

Posons:

$$\forall x \in X, \quad \Omega_x = \{x' \in X \mid v_x(x') > f(x') - \varepsilon\}$$

 Ω_x est un ouvert, $x \in \Omega_x$ donc $X = \bigcup_{x \in X} \Omega_x$. Donc il exists $x_1, ..., x_n \in X$ tels que $X = \bigcup_{i=1}^n \Omega_{x_i}$.

On pose alors $v = \max_{1 \leq i \leq n} v_{x_i} \in \overline{\mathcal{A}}$.

Alors
$$\forall x \in X$$
, $v(x) \geqslant f(x) - \varepsilon$ et $v(x) < f(x) + \varepsilon$. Donc $|v(x) - f(x)| < \varepsilon \ \forall x \in X$. Donc $v \in \overline{\mathcal{A}}$ et $||v - f||_{\infty} \leqslant \varepsilon$. Donc $\overline{\mathcal{A}} = \mathcal{C}(X)$.

Remarques. (conséquences)

- Stone-Weierstrass \Rightarrow Weierstrass : les polynômes sont denses dans $\mathcal{C}([a,b])$, il suffit de vérifier que l'ensemble est bien une sous-algèbre.
- Les fonctions Lipschitziennes sont denses dans C([a,b]).
- Les polynômes sont-ils denses dans $\mathcal{C}(X,\mathbb{C})$ (X compact de \mathbb{C})? $X = S^1 = \{z \in \mathbb{C}, \ |z| = 1\}$ Soit $f: z \mapsto \frac{1}{z} \in \mathcal{C}(S^1,\mathbb{C})$

Si on a $f_n \xrightarrow[n \to +\infty]{} f$ uniformément sur S^1 on aurait :

$$\int_{S^1} P_n(z)dz = 0 \xrightarrow[n \to +\infty]{} \int_{S^1} \frac{dz}{z} = 2i\pi \quad \text{absurde}$$

- Si \mathcal{A} est stable par conjugaison, le théorème de Stone-Weierstrass reste vrai dans $\mathcal{C}(X,\mathbb{C})$ pour X un compact de \mathbb{C} . (se montre juste avec $\Re(u) = \frac{u+\bar{u}}{2}$)
- Soit $T = \mathbb{R}_{/2\pi\mathbb{Z}}$, les polynômes trigonométriques sont denses dans $\mathcal{C}(T,\mathbb{C})$ (puis T vérifie bien la stabilité par conjugaison).

Exemple.

$$S = \left\{ \sum_{n=-N}^{N} c_n e^{inx} \; ; \; c_n \in \mathbb{C} \right\}$$

S algèbre, unitaire, $T(x) \neq T(y)$ si $x \neq y$ avec $T(x) = e^{ix}$. Alors S est dense dans $\mathcal{C}^0(\mathbb{T}, \mathbb{C})$ muni de la norme $\|\cdot\|_{\infty}$.

2.1 Transformée de Fourier

Soit $L^1(\mathbb{T})$ l'ensemble des fonctions 2π -périodiques intégrables. Soit $f \in L^1(\mathbb{T})$. Pour $n \in \mathbb{Z}$ on peut définir :

$$\hat{f}(n) = \int_0^{2\pi} e^{-inx} f(x) dx$$

La suite $(\hat{f}(n))_{n\in\mathbb{Z}}$ appartient $l^{\infty}(\mathbb{Z})$.

En fait $(\hat{f}(n))_{n\in\mathbb{Z}} \in c_0(\mathbb{Z})$, l'espace des suites de limite nulle (lemme de Riemann-Lebesgue). En effet, si $f \in \mathcal{C}^1(\mathbb{T})$ (fonctions \mathcal{C}^1 2π -périodiques), alors :

$$\hat{f}(n) = \int \frac{1}{-in} \partial_X(e^{-inx}) f(x) dx$$
 puis $O\left(\frac{1}{n}\right)$ par IPP

Notons:

$$\mathcal{F} \colon \left\{ \begin{array}{ccc} L^1(\mathbb{T}) & \longrightarrow & c_0(\mathbb{Z}) \\ f & \longmapsto & (\hat{f}(n))_{n \in \mathbb{Z}} \end{array} \right.$$

Lemme 2

 \mathcal{F} est injective.

Preuve.

Si $\mathcal{F}(f) = 0$ alors $\int f(x)T(x)dx$ pour tout $T \in S$. Donc $\int f(x)g(x)dx = 0$ pour tout $g \in \mathcal{C}^0(\mathbb{T},\mathbb{C})$ par densité. On approche ensuite $\frac{\bar{f}}{|f|(+\varepsilon)}$ donc f = 0.

Est-ce que \mathcal{F} est surjective? cf. Chapitre 3