

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS13060017601

FCC REPORT

Applicant: Eltop

Address of Applicant: 9F.,No.21,Ln221,Gangqian Rd.,Neuhu Districk,Taipei,Taiwan

Equipment Under Test (EUT)

Product Name: Broadband Digital Transmission System

Model No.: JetPalm 5M-15

FCC ID: 2AA3R-JPM5M15

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 19 Jun., 2013

Date of Test: 20 Jun., 2013 to 11 Oct., 2013

Date of report issued: 12 Oct., 2013

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCIS13060017601

2 Version

Version No.	Date	Description
00	12 Oct., 2013	Original

Prepared by:	Sera	Date:	12 Oct., 2013
	Report Clerk	_	
Reviewed by:	Loe. Shou	Date:	12 Oct., 2013
	Project Engineer		

3 Contents

			Page
1	COV	'ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	JUSTIFICATION	9
	6.2	ANTENNA REQUIREMENT	9
	6.3	CONDUCTED EMISSION	
	6.4	CONDUCTED OUTPUT POWER	
	6.5	OCCUPY BANDWIDTH	
	6.6	POWER SPECTRAL DENSITY	
	6.7	BAND EDGE	
	6.7.1 6.7.2		
	6.8	SPURIOUS EMISSION	
	6.8.1		
	6.8.2		
	0.0.2		
7	TES	T SETUP PHOTO	85
8	FUT	CONSTRUCTIONAL DETAILS	87

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Eltop
Address of Applicant:	9F.,No.21,Ln221,Gangqian Rd.,Neuhu Districk,Taipei,Taiwan
Manufacturer/ Factory:	Eltop
Address of Manufacturer/ Factory:	9F.,No.21,Ln221,Gangqian Rd.,Neuhu Districk,Taipei,Taiwan

5.2 General Description of E.U.T.

Product Name:	Broadband Digital Transmission System
Model No.:	JetPalm 5M-15
Operation Frequency:	5745MHz-5825MHz
Operation mode:	Fixed point-to-point operation
Channel numbers:	802.11a/ 802.11n20:5, 802.11n40:2
Channel separation:	802.11a/802.11n20 :20MHz, 802.11n40 :40MHz
Modulation technology: (IEEE 802.11a)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM
Data speed(IEEE 802.11a)	6MHz,9MHz,12MHz,18MHz,24MHz,36MHz,48MHz,54MHz
Data speed (IEEE	MCS0: 6.5MHz,MCS1:13MHz,MCS2:19.5MHz,MCS3:26MHz,
802.11n20):	MCS4:39MHz,MCS5:52MHz,MCS6:58.5MHz,MCS7:65MHz
Data speed (IEEE	MCS0:15MHz,MCS1:30MHz,MCS2:45MHz,MCS3:60MHz,
802.11n40):	MCS4:90MHz,MCS5:120MHz,MCS6:135MHz,MCS7:150MHz
Antenna Type:	Panel
Antenna gain:	15 dBi
	Adapter1: Model: GRT-240050
	Input:100-240V AC,50/60Hz 0.5A
Power supply:	Output:24V DC MAX0.5A
r ower suppry.	Adapter2: Model: AY012E-ZF243
	Input:100-240V AC,50/60Hz 0.5A
	Output:24V DC MAX0.5A

Operation Frequency each of channel

802.11a/802.11n20

Channel	Frequency
149	5745MHz
153	5765MHz
157	5785MHz
161	5805MHz
165	5825MHz

802.11n40

Channel	Frequency
151	5755MHz
159	5795MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11a/802.11n20

Channel	Frequency
The lowest channel	5745MHz
The middle channel	5785MHz
The Highest channel	5825MHz

802.11n40

Channel	Frequency
The lowest channel	5755MHz
The Highest channel	5795MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation in MIMO mode.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n20	6.5 Mbps
802.11n40	13 Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed in MIMO mode and duty cycle all above 98%, meet the requirements of KDB 558074.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23118282 Fax: 0755-23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 94

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC		CCIS0001	June 09 2013	June 08 2014
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	CCIS0002	N/A	N/A
3	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014
4	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
6	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014
7	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014
8	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014
9	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014
10	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014
11	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014
12	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014
13	Pre-amplifier (18-40GHz)	A.H System	PAM-1840	GTS219	Apr. 01 2013	Mar. 31 2014
14	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014
15	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
16	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
17	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2013	May. 24 2014
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 11 2013	Aug. 10 2014
19	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014
20	Spectrum Analyzer	HP	8564E	CCIS0150	May 24 2013	May 23 2014

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May 24 2014				
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2013	Mar. 31 2014				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Justification

According to section 5.2 of this report, the EUT have two types of antenna, so we test the maximum output power item base on the different antennas, and we selected the worst case one to perform the other conducted method test items(such as PSD, Band edge, Conducted spurious emission, etc.). The worst case for the conducted method tests is EUT with 15 dBi panel antenna (maximum conducted output power). For radiated method tests, all cases were tested.

6.2 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The details of antenna plots as below:

Antenna

6.3 Conducted Emission

 Conducted Limbon					
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Frequency range (MHz) Limit (dBuV)				
	Quasi-peak Average				
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46				
	5-30 60 50				
	* Decreases with the logarithm of the frequency.				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be 				
Test setup:	positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details. Pre-scan EUT with two types of antenna, the test result all most same, so we just show the worst case one (EUT with 15 dBi antenna).				
Test results:	Passed				

Measurement Data

Model: GRT-240050

Line:

Trace: 48

: CCIS Conducted test Site : FCC PART 15C QP LISN LINE : 176RF Site

Condition Job NO. Test Mode Test Mode : TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Joe

rest	Engineer:	Joe						
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu∜	dBu√	<u>d</u> B	
1	0.150	37.28	10.25	0.79	48.32	56.00	-7.68	Average
2	0.154	52.81	10.25	0.79	63.85	65.78	-1.93	QP
3	0.182	51.07	10.22	0.77	62.06	64.42	-2.36	QP
4	0.186	37.51	10.22	0.77	48.50	54.20	-5.70	Average
5	0.194	35.23	10.21	0.76	46.20	53.84	-7.64	Average
6	0.234	46.17	10.23	0.75	57.15	62.30	-5.15	QP
1 2 3 4 5 6 7 8 9	0.527	40.09	10.26	0.76	51.11	56.00	-4.89	QP
8	0.527	29.52	10.26	0.76	40.54	46.00	-5.46	Average
9	3.025	30.68	10.29	0.92	41.89	46.00		Average
10	3.107	41.37	10.29	0.92	52.58	56.00	-3.42	QP
11	23.140	38.96	10.47	0.89	50.32	60.00	-9.68	QP
12	23, 140	35, 36	10.47	0.89	46.72	50.00	-3.28	Average

Neutral:

: CCIS Conducted test Site : FCC PART 15C QP LISN NEUTRAL : 176RF Site Condition

Test Mode : TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Joe Job NO.

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu₹	dBu∜	dB	
1	0.150	52.88	10.27	0.79	63.94	66.00	-2.06	QP
2	0.178	49.85	10.25	0.77	60.87	64.59	-3.72	QP
3	0.186	49.22	10.24	0.77	60.23	64.20	-3.97	QP
2 3 4 5 6	0.186	31.47	10.24	0.77	42.48	54.20	-11.72	Average
5	0.194	48.74	10.23	0.76	59.73	63.84	-4.11	QP
6	0.194	32.18	10.23	0.76	43.17	53.84	-10.67	Average
7 8 9	0.426	27.54	10.27	0.73	38.54	47.33	-8.79	Average
8	0.513	29.20	10.27	0.76	40.23	46.00	-5.77	Average
9	0.521	40.80	10.27	0.76	51.83	56.00	-4.17	QP
10	3.041	30.79	10.28	0.92	41.99	46.00	-4.01	Average
11	3.123	41.05	10.28	0.92	52.25	56.00	-3.75	QP
12	23.140	34.71	10.48	0.89	46.08	50.00	-3.92	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

Model: AY012E-ZF243

Line:

Trace: 66

Site Condition : CCIS Conducted test Site : FCC PART 15C QP LISN LINE

Job NO. : 176RF Test Mode: TX mode
Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Joe

1000	DIE THOOL.	300						
		Read	LISN			Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBuV	₫B	₫B	dBu∀	dBu∜	₫B	
1	0.154	41.31	10.25	0.79	52.35	65.78	-13.43	QP
2	0.289	31.64	10.26	0.74	42.64	50.54	-7.90	Average
3	0.299	39.51	10.26	0.74	50.51	60.28	-9.77	QP
4	0.313	35.12	10.26	0.74	46.12	49.88	-3.76	Average
1 2 3 4 5 6 7 8 9	0.474	32.06	10.27	0.75	43.08	56.45	-13.37	QP
6	0.474	24.01	10.27	0.75	35.03	46.45	-11.42	Average
7	0.595	24.06	10.22	0.77	35.05	46.00	-10.95	Average
8	0.876	29.55	10.20	0.83	40.58	56.00	-15.42	QP
9	16.226	31.52	10.26	0.91	42.69	60.00	-17.31	QP
10	16.226	27.32	10.26	0.91	38.49	50.00	-11.51	Average
11	23.140	33.98	10.47	0.89	45.34	60.00	-14.66	QP
12	23, 140	28, 99	10.47	0.89	40, 35	50, 00	-9.65	Average

Neutral:

Site : CCIS Conducted test Site Condition : FCC PART 15C QP LISN NEUTRAL

Job NO. : 176RF Test Mode : TX mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Joe

est	Engineer:	The second second	LICH	C-11-		73-34	^	
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫BuV	₫B	₫B	dBu∀	dBu₹	dB	
1	0.154	42.36	10.27	0.79	53.42	65.78	-12.36	QP
2	0.174	40.54	10.25	0.77	51.56	64.77	-13.21	QP
3	0.289	32.35	10.24	0.74	43.33	50.54	-7.21	Average
4	0.313	35.94	10.24	0.74	46.92	49.88	-2.96	Average
1 2 3 4 5 6 7 8 9	0.318	39.87	10.24	0.74	50.85	59.75	-8.90	QP
6	0.479	31.18	10.28	0.75	42.21	56.36	-14.15	QP
7	0.479	23.71	10.28	0.75	34.74	46.36	-11.62	Average
8	0.595	23.23	10.22	0.77	34.22	46.00	-11.78	Average
9	0.876	30.20	10.18	0.83	41.21	56.00	-14.79	QP
10	0.876	22.77	10.18	0.83	33.78	46.00	-12.22	Average
11	23.140	34.14	10.48	0.89	45.51	60.00	-14.49	QP
12	23, 140	29, 71	10.48	0.89	41.08	50, 00	-8.92	Average

Notes:

- 4. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 5. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 6. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.4 Conducted Output Power

Measurement Data

Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result
	Lowest	TX0	26.42	00.40	20.00	Dana
802.11a		TX1	26.40	29.42	30.00	Pass
	Middle	TX0	26.54	00.50	20.00	_
		TX1	26.49	29.53	30.00	Pass
	Highest	TX0	26.45	20.44	20.00	Door
		TX1	26.40	29.44	30.00	Pass
	Lowest	TX0	26.37	29.41	00.00	
		TX1	26.42		30.00	Pass
000.44.00	NAC JUIL	TX0	26.49	00.50		_
802.11n20	Middle	TX1	26.48	29.50	30.00	Pass
		TX0	26.47	00.40		
	Highest	TX1	26.47	29.48	30.00	Pass
		TX0	26.51			
000 11 15	Lowest	TX1	26.46	29.50	30.00	Pass
802.11n40		TX0	26.51			
	Highest	TX1	26.77	29.65	30.00	Pass

Test plot as follows: TX0 Test mode: 802.11a *RBW 1 MHz *VBW 3 MHz 32.5 dBm 30 dB *SWT 20 ms 30 -20 A LVL 3DB -60 Span 40 MHz Center 5.745 GHz 4 MHz/ Tx Channel Bandwidth 20 MHz Power 26.42 dBm Lowest channel *RBW 1 MHz *VBW 3 MHz 32.5 dBm 30 dB *SWT 20 ms 30 -20 A 10 3DB -60 Span 40 MHz Center 5.785 GHz 4 MHz/ Tx Channel Bandwidth 20 MHz Power 26.54 dBm Middle channel *RBW 1 MHz *VBW 3 MHz *SWT 20 ms 32.5 dBm * Att 30 dB Ref Offs 30 Α 10 LVL -50 3DB -60 Tx Channel Bandwidth 20 MHz Power 26.45 dBm

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

TX0

Lowest channel

Highest channel

Highest channel

6.5 Occupy Bandwidth

Measurement Data

TX0

To at OU	6dE	6dB Occupy Bandwidth (MHz)					
Test CH	802.11a	802.11n20	802.11n40	Limit(kHz)	Result		
Lowest	14.40	13.80	26.56				
Middle	13.20	13.60		>500	Pass		
Highest	13.20	13.60	26.88				

Toot CH	99%	99% Occupy Bandwidth (MHz)					
Test CH	802.11a	802.11n20	802.11n40	Limit(kHz)	Result		
Lowest	17.70	18.20	36.48				
Middle	18.90	18.70		N/A	N/A		
Highest	18.40	18.50	38.08				

TX1

Toot CH	6dE	3 Occupy Bandwidth (MHz	<u>z</u>)		5
Test CH	802.11a	802.11n20	802.11n40	Limit(kHz)	Result
Lowest	14.40	13.60	26.56		
Middle	13.20	13.80		>500	Pass
Highest	13.20	13.60	26.72		

T (011	99%	99% Occupy Bandwidth (MHz)					
Test CH	802.11a	802.11n20	802.11n40	Limit(kHz)	Result		
Lowest	17.60	18.50	36.48				
Middle	18.40	19.00		N/A	N/A		
Highest	18.20	19.10	38.40				

Test plot as follows:

TX0

Test mode: 6dB BW

Date: 22.SEP.2013 14:48:58

Date: 22.SEP.2013 14:45:4

Date: 22.SEP.2013 14:54:37

Highest channel

Test mode: 6dB BW

802.11n20

Date: 22.SEP.2013 10:15:36

Lowest channel

Date: 22.SEP.2013 10:20:11

Middle channel

Date: 22.SEP.2013 10:22:57

Highest channel

Test mode: 6dB BW

802.11n40

Date: 22.SEP.2013 11:19:36

Lowest channel

Date: 22.SEP.2013 11:24:07

Highest channel

Test mode:99% BW

802.11a

Date: 22.SEP.2013 14:36:22

Lowest channel

Date: 22.SEP.2013 14:39:25

Middle channel

Date: 22.SEP.2013 14:35:03

Highest channel

Test mode: 99% BW

802.11n20

Date: 22.SEP.2013 10:14:08

Lowest channel

Date: 22.SEP.2013 10:12:56

Middle channel

Date: 22.SEP.2013 10:09:58

Highest channel

Test mode: 99% BW

Date: 22.SEP.2013 11:18:41

Lowest channel

Date: 22.SEP.2013 11:14:47

Highest channel

TX1

Test mode: 6dB BW

Date: 22.SEP.2013 14:49:49

Date: 22.SEP.2013 14:43:04

Date: 22.SEP.2013 14:53:39

Highest channel

Page 31 of 94

Test mode: 6dB BW

802.11n20

Date: 22.SEP.2013 10:16:34

Lowest channel

Date: 22.SEP.2013 10:19:29

Middle channel

Date: 22.SEP.2013 10:22:03

Highest channel

Test mode: 6dB BW

802.11n40

Date: 22.SEP.2013 11:20:25

Lowest channel

Date: 22.SEP.2013 11:25:27

Highest channel

Test mode:99% BW

802.11a

Date: 22.SEP.2013 14:37:05

Lowest channel

Date: 22.SEP.2013 14:38:21

Middle channel

Date: 22.SEP.2013 14:35:29

Highest channel

Page 34 of 94

Test mode: 99% BW

802.11n20

Date: 22.SEP.2013 10:14:30

Lowest channel

Date: 22.SEP.2013 10:13:25

Middle channel

Date: 22.SEP.2013 10:10:51

Highest channel

Test mode: 99% BW

802.11n40

Date: 22.SEP.2013 11:16:57

Lowest channel

Date: 22.SEP.2013 11:14:15

Highest channel

6.6 Power Spectral Density

Measurement Data

Mode	Test CH	Ant. Port	PSD (dBm)	Total PSD (dBm)	Limit (dBm)	Result	
	1	TX0	2.33	5.74	0.00	D	
	Lowest	TX1	3.04	5.71	8.00	Pass	
000.44	B 41 1 11	TX0	2.14		0.00		
802.11a	Middle	TX1	2.84	5.51	8.00	Pass	
		TX0	2.11			_	
	Highest	TX1	3.85	6.08	8.00	Pass	
		TX0	3.33	5.07	0.00		
	Lowest	TX1	2.55	5.97	8.00	Pass	
802.11n	B 41 1 11	TX0	3.83	0.40	0.00		
20	Middle	TX1	2.35	6.16	8.00	Pass	
	18.1	TX0	2.59	5.04	0.00		
	Highest	TX1	2.61	5.61	8.00	Pass	
		TX0	-0.41				
802.11n	Lowest	TX1	0.29	2.96	8.00	Pass	
40		TX0	0.44				
	Highest	TX1	0.62	3.54	8.00	Pass	

Test plot as follows:

TX0

Test mode:

802.11a

Date: 22.SEP.2013 15:14:40

Lowest channel

Date: 22.SEP.2013 15:12:51

Middle channel

Date: 22.SEP.2013 15:11:07

Highest channel

Page 39 of 94

Test mode:

802.11n20

Date: 22.SEP.2013 10:31:23

Lowest channel

Date: 22.SEP.2013 10:33:25

Middle channel

Date: 22.SEP.2013 10:29:40

Highest channel

Test mode:

802.11n40

Date: 22.SEP.2013 11:35:32

Lowest channel

Date: 22.SEP.2013 11:30:28

Highest channel

TX1

Test mode:

802.11a

Date: 22.SEP.2013 15:14:16

Lowest channel

Date: 22.SEP.2013 15:12:33

Middle channel

Date: 22.SEP.2013 15:09:24

Highest channel

Page 42 of 94

Test mode:

802.11n20

Date: 22.SEP.2013 10:31:50

Lowest channel

Date: 22.SEP.2013 10:32:47

Middle channel

Date: 22.SEP.2013 10:30:11

Highest channel

Test mode:

802.11n40

Date: 22.SEP.2013 11:34:42

Lowest channel

Date: 24.SEP.2013 15:27:14

Highest channel

6.7 Band Edge

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003, KDB 558074 and KDB 662911					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details. Base on the section 6.4 conducted output power; we selected EUT with 15 dBi antenna for test.					
Test results:	Passed					

Test plot as follows:

TX0

Test mode:

802.11a

Date: 22.SEP.2013 15:18:13

Lowest channel

Date: 22.SEP.2013 15:20:39

Highest channel

Test mode:

802.11n20

Date: 22.SEP.2013 10:36:15

Date: 22.SEP.2013 10:35:12

Lowest channel

Highest channel

Test mode:

802.11n40

Date: 22.SEP.2013 11:53:05

Date: 22.SEP.2013 11:48:17

Lowest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: CCIS130600176RF

TX1

Test mode:

Date: 22.SEP.2013 15:20:02

802.11a

Lowest shop

Lowest channel

Highest channel

Test mode:

Date: 22.SEP.2013 15:17:00

802.11n20

Date: 22.SEP.2013 10:34:37

Lowest channel

Date: 22.SEP.2013 10:37:00 Highest channel

Test mode:

802.11n40

Date: 22.SEP.2013 11:46:07

Lowest channel

Date: 22.SEP.2013 11:51:51

Highest channel

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4: 2003									
Test Frequency Range:	5.35 GHz to 5.46 GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	_									
·	Frequency Detector RBW VBW Rer									
	Above 1GHz Pe		1MHz	3MHz	Peak Value					
Limit:	Pe	1K	1MHz	10Hz	Average Value					
Littiit.	Frequency	I	_imit (dBuV/	/m @3m)	Remark					
	Above 1GHz		54.0		Average Value					
Test Procedure:	1. The EUT was place		74.0		Peak Value					
Test setup:	tower. 3. The antenna heighthe ground to deter Both horizontal and make the measure. 4. For each suspected case and then the ameters and the rotato find the maximur. 5. The test-receiver syspecified Bandwidt. 6. If the emission level the limit specified, the values of the EUT will did not have 10dB.	sition of meters a mount is various the vertical nent. I emission tenha table with the vertical restem with the of the nen test would borargin	of the highests away from ted on the ted ed from one te maximum all polarization, the EU awas turned that was turned that was turned that was turned that was turned that the EUT in peasiting could be reported, would be re	est radiation. Ithe interfer op of a variate meter to for a value of the ons of the art to heights from 0 degreeak Detect old Mode. It was arranged in the one of the was arranged in the order of the order of the one of the one as specified.	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a line of the field strength of the fiel					
Test Instruments:	Turn Table 0.8m 1m A A A A A A A A A A A A A A A A A A	letails	Amplifi	er B						
Test mode:	Refer to section 5.3 for									
Test results:	Passed	iotalio								
root roodito.	. 40004									

Test mode: 8	Test mode: 802.11a		Test channel:Lowest		Level:		Peak	
Fraguenay	Read	Antenna	Cable	Preamp	Lovol	Limit Line	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	Level (dBuV/m)	(dBuV/m)	Limit	Polarization
(IVITIZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(ubu v/III)	(dB)	
5350.00	46.35	31.78	9.15	40.18	47.10	74.00	-26.90	Horizontal
5460.00	48.03	31.99	9.16	40.23	48.95	74.00	-25.05	Horizontal
5350.00	47.25	31.78	9.15	40.18	48.00	74.00	-26.00	Vertical
5460.00	49.39	31.99	9.16	40.23	50.31	74.00	-23.70	Vertical

-		•		•		•		
_	Read	Antenna	Cable	Preamp			Over	
Frequency	Level	Factor	Loss	Factor	Level	Limit Line	Limit	Polarization
(MHz)					(dBuV/m)	(dBuV/m)		1 Glatization
, ,	(dBuV)	(dB/m)	(dB)	(dB)	(/	((dB)	
5350.00	38.30	31.78	9.15	40.18	39.05	54.00	-14.95	Horizontal
5460.00	34.27	31.99	9.16	40.23	35.19	54.00	-18.82	Horizontal
5350.00	35.34	31.78	9.15	40.18	36.09	54.00	-17.91	Vertical
5460.00	39.24	31.99	9.16	40.23	40.16	54.00	-13.84	Vertical

Level:

Average

Remark:

Test mode: 802.11a

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Test channel:Lowest

- 2. "*", means average level is not recorded when its peak level is less than average limit.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	mode: 802.11n-HT20 Test channel:Lowest		:Lowest	Leve	el:	Peak		
Fraguenay	Read	Antenn	a Cable	Preamp	Lovol	Limit Line	Over	
Frequency (MHz)	Level	Factor	r Loss	Factor	Level (dBuV/m)	(dBuV/m)	i ilmit	Polarization
(1011 12)	(dBuV)	(dB/m) (dB)	(dB)	(ubuv/III)	(ubu v/III)	(dB)	
5350.00	45.33	31.78	9.15	40.18	46.08	74.00	-27.92	Horizontal
5460.00	49.31	31.99	9.16	40.23	50.23	74.00	-23.77	Horizontal
5350.00	48.25	31.78	9.15	40.18	49.00	74.00	-25.00	Vertical
5460.00	47.02	31.99	9.16	40.23	47.94	74.00	-26.06	Vertical

_	Read	Antenna	Cable	Preamp	Lavial	Line it Line	Over	
Frequency	Level	Factor	Loss	Factor	Level	Limit Line	Limit	Polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
5350.00	35.35	31.78	9.15	40.18	36.10	54.00	-17.90	Horizontal
5460.00	36.28	31.99	9.16	40.23	37.20	54.00	-16.80	Horizontal
5350.00	37.05	31.78	9.15	40.18	37.80	54.00	-16.20	Vertical
5460.00	39.14	31.99	9.16	40.23	40.06	54.00	-13.94	Vertical

Level:

Average

Remark:

Test mode: 802.11 n-HT20

4. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Test channel:Lowest

- 5. "*", means average level is not recorded when its peak level is less than average limit.
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	ode: 802.11n-HT40 Test channel:Lowest Level:		el:	Peak				
Eroguenev	Read	Antenn	a Cable	Preamp	Level	Limit Line	Over	
Frequency (MHz)	Level	Factor	r Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization
(IVITIZ)	(dBuV)	(dB/m) (dB)	(dB)	(ubuv/iii)	(ubu v/III)	(dB)	
5350.00	48.24	31.78	9.15	40.18	48.99	74.00	-25.01	Horizontal
5460.00	46.39	31.99	9.16	40.23	47.31	74.00	-26.70	Horizontal
5350.00	45.38	31.78	9.15	40.18	46.13	74.00	-27.87	Vertical
5460.00	47.53	31.99	9.16	40.23	48.45	74.00	-25.55	Vertical

Fraguenay	Read	Antenna	Cable	Preamp	Lovol	Limit Line	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	Level (dBuV/m)	(dBuV/m)	Limit	Polarization
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(ubuv/III)	(dB)	
5350.00	35.28	31.78	9.15	40.18	36.03	54.00	-17.97	Horizontal
5460.00	34.39	31.99	9.16	40.23	35.31	54.00	-18.70	Horizontal
5350.00	38.65	31.78	9.15	40.18	39.40	54.00	-14.60	Vertical
5460.00	34.38	31.99	9.16	40.23	35.30	54.00	-18.70	Vertical

Level:

Average

Remark:

Test mode: 802.11 n-HT40

- 7. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 8. "*", means average level is not recorded when its peak level is less than average limit.
- 9. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Lowest

6.8 Spurious Emission

6.8.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003, KDB 558074 and KDB 662911						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details. Base on the section 6.4 conducted output power; we selected EUT with 15 dBi antenna for test.						
Test results:	Passed						

Test plot as follows:

TX0

Test mode: 802.11a

Lowest channel

Date: 22.SEP.2013 15:25:07

30MHz~30GHz

30GHz-40GHz

#RBW 100 kHz Marker 1 [T1] *VBW 300 kHz Marker 1 [T1] *VBW 300 kHz 3 s 25.804200000 GHz 30 Offset 10 dB -20 -10 -10 -20 -11 -20 -21 36 dBm -30 -30 Start 30 MHz 2.997 GHz/ Stop 30 GHz

Date: 22.SEP.2013 15:23:55

30GHz-40GHz

Date: 22.SEP.2013 15:22:31

30GHz-40GHz

Test mode: 802.11n20

Date: 22.SEP.2013 10:49:14

30GHz-40GHz

Date: 22.SEP.2013 10:53:26

30MHz~30GHz 10dB MKR

30GHz-40GHz

Date: 22.SEP.2013 10:56:54

30MHz~30GHz

30GHz-40GHz

Test mode: 802.11n40

Date: 22.SEP.2013 12:01:08

30GHz-40GHz

Date: 22.SEP.2013 11:56:04

30GHz-40GHz

TX1

Test mode: 802.11a

Lowest channel

Date: 22.SEP.2013 15:24:38

30MHz~30GHz

30GHz-40GHz

Date: 22.SEP.2013 15:23:28

30MHz~30GHz

30GHz-40GHz

#RBW 100 kHz Marker 1 [T1] * YBW 300 kHz Marker 1 [T1] * YBW 3

Date: 22.SEP.2013 15:21:48

30MHz~30GHz

30GHz-40GHz

SWP

2.50sec

START

×RB₩

30.00GHz

100kHz

Test mode: 802.11n20

Date: 22.SEP.2013 10:45:56

30GHz-40GHz

Date: 22.SEP.2013 10:51:44

30GHz-40GHz

Date: 22.SEP.2013 10:55:29

30GHz-40GHz

Test mode: 802.11n40

Date: 22.SEP.2013 11:59:55

30GHz-40GHz

Date: 22.SEP.2013 11:57:37

30MHz~30GHz

30GHz-40GHz

6.8.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4:2003								
Test Frequency Range:	30MHz to 40GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:									
·	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above Toriz	Peak	1MHz	10Hz	Average Value				
Limit:		<u> </u>							
	Freque		Limit (dBuV/	m @3m)	Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21		43.5		Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0		Quasi-peak Value				
	Above 1	GHz –	54.0		Average Value				
Test Procedure:	1. The EUT w		74.0		Peak Value e 0.8 meters above				
	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the number of the limit specified Education of the limit specified for the lin	at a 3 meter of the position ras set 3 meter thich was mountained and vertice the antennation of the color of	camber. The toof the highest rs away from the natural from one the maximum cal polarization was turned from the was turned from the maximum Higher EUT in peasesting could be reported. In would be reported from the reported from the state of the state o	table was rest radiation. The interfer pop of a variation and the interfer to for a value of the ins of the ansof th	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 frees to 360 degrees. Function and s 10dB lower than				

Below 1GHz

Model:GRT-240050

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 176RF Condition

Job NO. Test mode : TX mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Joe

10.00	Fred		Antenna Factor				Limit	Over	Remark
	MHz	dBu∜					dBuV/m		
1	58,613	51.44	12.79	1.37	29.09	36.51	40.00	-3.49	QP
2	64.659	54.61	10.84	1.38	29.66	37.17	40.00	-2.83	QP
2	102.001	55.94	12.97	1.96	30.05	40.82	43.50	-2.68	QP
4 5	104.536	56.70	12.73	1.99	29.99	41.43	43.50	-2.07	QP
5	106.759	55.76	12.54	2.02	29.95	40.37	43.50	-3.13	QP
6	141.330	53.52	8.20	2.42	29.35	34.79	43.50	-8.71	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Job NO. Test mode : 176RF Test mode : TX mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Joe

est	Engineer:	Joe							
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	₫B	dB	dBuV/m	$\overline{dBuV/m}$	dB	
1	30.531	49.52	12.33	0.78	26.32	36.31	40.00	-3.69	QP
2	58.613	51.51	12.79	1.37	29.09	36.58	40.00	-3.42	QP
3	60.069	50.37	12.69	1.38	29.21	35.23	40.00	-4.77	QP
4	102.001	54.19	12.97	1.96	30.05	39.07	43.50	-4.43	QP
5	104.536	54.86	12.73	1.99	29.99	39.59	43.50	-3.91	QP
6	143.326	55.32	8.22	2.44	29.33	36.65	43.50	-6.85	QP

Model:AY012E-ZF243

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 176RF Condition

Job NO. Test mode : TX mode Power Rating : AC 120V/60Hz

Temp: 25.5°C Huni: 55% Joe Environment : Test Engineer:

CSI	Engineer.	100							
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	55.805	51.53	12.99	1.36	28.83	37.05	40.00	-2.95	QP
2	58.613	52.82	12.79	1.37	29.09	37.89	40.00	-2.11	QP
1 2 3	112.920	53.81	11.73	2.09	29.83	37.80	43.50	-5.70	QP
4	180.017	51.12	9.68	2.73	26.51	37.02	43.50	-6.48	QP
5	243.377	53.38	12.08	2.82	29.63	38.65	46.00	-7.35	QP
5	900.147	47.48	21.09	3.71	30.14	42.14	46.00	-3.86	QP

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

Site Condition Job NO. Test mode : 176RF Test mode : TX mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Joe

	Freq		Antenna Factor					Over Limit	
	MHz	dBu₹	dB/m	dB	−−−−dB	dBuV/m	dBuV/m	dB	
1 2 3 4	30.531	49.35	12.33	0.78	26.32	36.14	40.00	-3.86	QP
2	56.001	51.83	12.97	1.36	28.85	37.31	40.00	-2.69	QP
3	58.613	52.30	12.79	1.37	29.09	37.37	40.00	-2.63	QP
4	112.920	54.69	11.73	2.09	29.83	38.68	43.50	-4.82	QP
5	242.525	55.38	12.08	2.82	29.63	40.65	46.00	-5.35	QP
6	801.786	46.91	20.06	4.34	30.40	40.91	46.00	-5.09	QP

Above 1GHz

Test mode: 8	302.11a	Т	est channel:	:Lowest	Level:		Peak					
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over					
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization				
(1411.12)	(dBuV)	(dB/m)	(dB)	(dB)	(abaviii)	(aBa v/iii)	(dB)					
11490.00	42.32	40.23	13.81	40.73	55.63	74.00	-18.37	Vertical				
17235.00	38.35	41.43	16.12	37.83	58.07	74.00	-15.93	Vertical				
11490.00	46.32	40.23	13.81	40.73	59.63	74.00	-14.37	Horizontal				
17235.00	35.39	41.43	16.12	37.83	55.11	74.00	-18.89	Horizontal				

Test mode: 8	302.11a	10	est channel	Lowest	Leve	el:	Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
11490.00	36.35	40.23	13.81	40.73	49.66	54.00	-4.34	Vertical			
17235.00	29.34	41.43	16.12	37.83	49.06	54.00	-4.94	Vertical			
11490.00	31.35	40.23	13.81	40.73	44.66	54.00	-9.34	Horizontal			
17235.00	24.32	41.43	16.12	37.83	44.04	54.00	-9.96	Horizontal			

Remark:

- 10. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 11. "*", means average level is not recorded when its peak level is less than average limit.
- 12. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	302.11a	٦	Test channel:	:Middle	Level:		Peak	
							_	
Frequency (MHz)	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polarization
	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/iii)	(ubu v/III)	(dB)	
11570.00	42.32	40.17	13.78	40.91	55.36	74.00	-18.64	Vertical
17355.00	35.35	42.22	16.37	37.63	56.31	74.00	-17.69	Vertical
11570.00	46.32	40.17	13.78	40.91	59.36	74.00	-14.64	Horizontal
17355.00	39.53	42.22	16.37	37.63	60.49	74.00	-13.51	Horizontal

Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization
(IVII 12)	(dBuV)	(dB/m)	(dB)	(dB)	(aba v/iii)	(aBa v/iii)	(dB)	
11570.00	35.35	40.17	13.78	40.91	48.39	54.00	-5.61	Vertical
17355.00	26.35	42.22	16.37	37.63	47.31	54.00	-6.69	Vertical
11570.00	32.35	40.17	13.78	40.91	45.39	54.00	-8.61	Horizontal

37.63

Level:

46.31

54.00

Remark:

17355.00

25.35

42.22

Test mode: 802.11a

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

16.37

- 2. "*", means average level is not recorded when its peak level is less than average limit.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Middle

Project No.: CCIS130600176RF

Average

Horizontal

-7.69

Test mode: 8	Test mode: 802.11a			Highest	Level:		Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
11650.00	42.35	39.75	13.71	41.13	54.68	74.00	-19.32	Vertical					
17475.00	35.25	43.33	16.65	37.48	57.75	74.00	-16.25	Vertical					
11650.00	43.31	39.75	13.71	41.13	55.64	74.00	-18.36	Horizontal					
17475.00	31.29	43.33	16.65	37.48	53.79	74.00	-20.21	Horizontal					

Test mode: 8	302.11a	T	est channel	:Highest	Level:		Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
11650.00	32.20	39.75	13.71	41.13	44.53	54.00	-9.47	Vertical			
17475.00	26.35	43.33	16.65	37.48	48.85	54.00	-5.15	Vertical			
11650.00	35.27	39.75	13.71	41.13	47.60	54.00	-6.40	Horizontal			
17475.00	21.29	43.33	16.65	37.48	43.79	54.00	-10.22	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means average level is not recorded when its peak level is less than average limit.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n-HT20			Test channe	l:Lowest	Level:		Peak				
Frequency (MHz)	Read Level (dBuV)	Antenn Factor (dB/m)	r Loss	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	l limit	Polarization			
11490.00	42.23	40.23	13.81	40.73	55.54	74.00	-18.46	Vertical			
17235.00	35.20	41.43	16.12	37.83	54.92	74.00	-19.08	Vertical			
11490.00	41.28	40.23	13.81	40.73	54.59	74.00	-19.41	Horizontal			
17235.00	33.64	41.43	16.12	37.83	53.36	74.00	-20.64	Horizontal			

Test mode: 8	Test mode: 802.11n-HT20			Lowest	Level:		Average					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
11490.00	32.96	40.23	13.81	40.73	46.27	54.00	-7.73	Vertical				
17235.00	25.42	41.43	16.12	37.83	45.14	54.00	-8.86	Vertical				
11490.00	33.40	40.23	13.81	40.73	46.71	54.00	-7.29	Horizontal				
17235.00	25.30	41.43	16.12	37.83	45.02	54.00	-8.98	Horizontal				

- 13. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 14. "*", means average level is not recorded when its peak level is less than average limit.
- 15. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n-HT20			Test channel	:Middle	Level:		Peak		
Fraguency	Read	Antenn	a Cable	Preamp	Level	Limit Line	Over		
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization	
(IVITZ)	(dBuV)	(dB/m)) (dB)	(dB)	(ubuv/iii)	(ubu v/III)	(dB)		
11570.00	42.35	40.17	13.78	40.91	55.39	74.00	-18.61	Vertical	
17355.00	36.21	42.22	16.37	37.63	57.17	74.00	-16.83	Vertical	
11570.00	42.15	40.17	13.78	40.91	55.19	74.00	-18.81	Horizontal	
17355.00	34.28	42.22	16.37	37.63	55.24	74.00	-18.76	Horizontal	

Test mode: 8	302.11n-H	T20	Test channel	:Middle	Level:		Ave	rage	
Frequency	Read	Antenn	a Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polarization	
(1011 12)	(dBuV)	(dB/m)) (dB)	(dB)	(ubu v/III)	(dBuV/m) Limit (dB)	(dB)		
11570.00	32.51	40.17	13.78	40.91	45.55	54.00	-8.45	Vertical	
17355.00	24.05	42.22	16.37	37.63	45.01	54.00	-8.99	Vertical	
11570.00	33.10	40.17	13.78	40.91	46.14	54.00	-7.86	Horizontal	

45.06

54.00

-8.94

Horizontal

37.63

Remark:

17355.00

24.10

42.22

4. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

16.37

- 5. "*", means average level is not recorded when its peak level is less than average limit.
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	302.11n-H	T20	Test channel	:Highest	Level:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenn Factor (dB/m	r Loss	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	42.31	39.75	13.71	41.13	54.64	74.00	-19.36	Vertical
17475.00	32.34	43.33	16.65	37.48	54.84	74.00	-19.16	Vertical
11650.00	42.33	39.75	13.71	41.13	54.66	74.00	-19.34	Horizontal
17475.00	30.27	43.33	16.65	37.48	52.77	74.00	-21.23	Horizontal

Test mode: 802.11n-HT20			Test channel:Highest			Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenn Factor (dB/m	r	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	32.51	39.75		13.71	41.13	44.84	54.00	-9.16	Vertical
17475.00	25.34	43.33		16.65	37.48	47.84	54.00	-6.16	Vertical
11650.00	32.10	39.75		13.71	41.13	44.43	54.00	-9.57	Horizontal
17475.00	22.38	43.33		16.65	37.48	44.88	54.00	-9.12	Horizontal

- 4. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 5. "*", means average level is not recorded when its peak level is less than average limit.
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	st mode: 802.11n-HT40		Test channel:Lowest		Level:		Peak			
Frequency (MHz)	Read Level (dBuV)	Antenn Factor (dB/m)	r Loss	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization		
11510.00	41.35	40.25	13.82	40.75	54.67	74.00	-19.33	Vertical		
17265.00	32.55	41.58	16.18	37.79	52.52	74.00	-21.48	Vertical		
11510.00	43.52	40.25	13.82	40.75	56.84	74.00	-17.16	Horizontal		
17265.00	32.71	41.58	16.18	37.79	52.68	74.00	-21.32	Horizontal		

Test mode: 8	302.11n-H	140	l est channel:	Lowest	Leve	el:	Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
11510.00	32.81	40.25	13.82	40.75	46.13	54.00	-7.87	Vertical			
17265.00	25.35	41.58	16.18	37.79	45.32	54.00	-8.68	Vertical			
11510.00	32.00	40.25	13.82	40.75	45.32	54.00	-8.68	Horizontal			
17265.00	26.35	41.58	16.18	37.79	46.32	54.00	-7.68	Horizontal			

- 16. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 17. "*", means average level is not recorded when its peak level is less than average limit.
- 18. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	302.11n-H	T40	Test channe	l:Highest	Level:		Peak	
Frequency	Read	Antenn	a Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Facto	r Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization
(1711 12)	(dBuV)	(dB/m) (dB)	(dB)	(ubu v/III)	(dbd v/III)	(dB)	
11590.00	42.35	40.17	13.78	40.91	55.39	74.00	-18.61	Vertical
17385.00	35.38	42.22	16.37	37.63	56.34	74.00	-17.66	Vertical
11590.00	41.06	40.17	13.78	40.91	54.10	74.00	-19.90	Horizontal
17385.00	34.35	42.22	16.37	37.63	55.31	74.00	-18.69	Horizontal

Test mode: 802.11n-HT40			Test channe	el:Highest	Level:		Average			
Frequency (MHz)	Read Level (dBuV)	Antenn Factor (dB/m)	Loss	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
11590.00	32.62	40.17	13.78	40.91	45.66	54.00	-8.34	Vertical		
17385.00	28.35	42.22	16.37	37.63	49.31	54.00	-4.69	Vertical		
11590.00	35.25	40.17	13.78	40.91	48.29	54.00	-5.71	Horizontal		
17385.00	26.38	42.22	16.37	37.63	47.34	54.00	-6.66	Horizontal		

- 7. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 8. "*", means average level is not recorded when its peak level is less than average limit.
- 9. The emission levels of other frequencies are very lower than the limit and not show in test report.