Logic và Chứng minh

Lô gích (Logic) và Chứng minh

☐ Logic mệnh đề (Proposition logic)

☐ Logic vị từ (Predicate logic)

☐ Chứng minh (Proof)

Lượng từ lồng nhau (Nested quantifiers)

☐ Nhiều lượng từ cần được sử dụng để thể hiện được ý nghĩa của các phát biểu.

☐ Ví dụ:

- ☐ Mọi số thực đều có số âm tương đương với nó.
 - O Goi:
 - ♦ x là một số thực bất kỳ, và y là số âm tương ứng của nó.
 - \Rightarrow Vị từ P(x,y): "x + y =0"
 - O Khi đó chúng ta có thể viết:

$$\forall x \exists y P(x,y)$$

Lượng từ lồng nhau

- □ Ví dụ:
 - □ Có một người yêu mọi người.
 - O Đặt:
 - ♦ Biến x và y chỉ người
 - \diamond Vị từ L(x,y): "x yêu y"
 - O Khi đó chúng ta có thể viết:
 - $\Rightarrow \exists x \forall y L(x,y)$

Thứ tự các lượng từ

☐ Chỉ quan trọng khi các lượng tự là khác nhau

 $\square \ \forall \ x \ \exists \ y \ L(x,y) \ \# \ \exists \ y \ \forall \ x \ L(x,y)$

☐ Ví dụ:

 \square Vị từ L(x,y): "x yêu y"

- □ Khi đó: ∀ x ∃ y L(x,y): Mọi người đều yêu một ai đó.
- □ Còn: ∃ y ∀ x L(x,y): Có một ai đó được mọi người đều yêu.

Thứ tự các lượng từ

□ Không quan trọng nếu các lượng từ là giống nhau

- ☐ Ví dụ:
 - □ Với mọi x và y, nếu x là bố/mẹ của y thì y là con của x
 - □ Gọi:
 - O Parent(x,y): "x là bố/mẹ của y"
 - O Child(x,y): "x is a child of y"
 - □ Hai các viết sau là tương đương:
 - $\bigcirc \forall x \forall y Parent(x,y) \rightarrow Child(y,x)$
 - $\bigcirc \forall y \forall x Parent(x,y) \rightarrow Child(y,x)$

Lượng từ lồng nhau: thực hành

☐ Giả sử: □ Biến x,y chỉ người \Box L(x,y): "x yêu y". ☐ Hãy dịch các câu sau sang lô gích vị từ: $\forall x L(x,Nga)$ □ Mọi người đều yêu Nga. $\forall x \exists y L(x,y)$ Mọi người đều yêu một ai đó. Có một người mà mọi người đều yêu. $\exists y \forall x L(x,y)$ Có một người mà Nga không yêu. $O \exists y \neg L(Nga,y)$ □ Có người mà không ai trong lớp yêu cả. $O \exists y \forall x \neg L(x,y)$

Phủ định lượng từ

- ☐ Không có gì là hoàn hảo.
 - $\Box \neg \exists x Perfect(x)$

- ☐ Mọi thứ đều không hoàn hảo
 - $\square \forall x \neg Perfect(x)$

 \square Kết luận: $\neg \exists x P(x)$ tương đương $\forall x \neg P(x)$

Phủ định lượng từ

- ☐ Không phải mọi người dân Việt Nam đều thích bóng đá.
 - $\Box \neg \forall x (VN(x) \rightarrow Football(x))$

- ☐ Có một người Việt Nam mà ...
 - $\square \exists x(VN(x) \land \neg Football(x))$
 - □ Tương đương với:
 - $\bigcirc \exists x \neg (VN(x) \rightarrow Football(x))$
- \square Kết luận: $\neg \rightarrow x P(x)$ tương đương với $\exists x \neg P(x)$

Phủ định lượng từ (Luật DeMorgan cho lượng từ)

Phủ định	Tương đương với
¬∃x P(x)	∀x ¬P(x)
¬∀x P(x)	∃x ¬P(x)

Chứng minh

(Chính tắc và không chính tắc)

Định lý và chứng minh

- ☐ Định lý: một phát biểu cần được chứng minh là đúng.
 - ☐ Thường được viết dưới dạng:

$$(p1 \land p2 \land p3 \land \dots \land pn) \land q$$

Các tiền đề (giả thuyết) kết luận

- ☐ Ví dụ:
 - □ Định lý Fermat nhỏ:
 - O Nếu p là một số nguyên tố và a là một số không chia hết cho p thì: $a^{p-1} \equiv 1 \pmod{p}$

Các chứng minh chính tắc (formal proofs)

- ☐ Chứng minh:
 - □ Đưa ra một lập luận chỉ ra tính đúng của kết luận trong phát biểu cần chứng minh:
 - O Các tiên đề giả thuyết (Premises)
 - O Các định đề (Axioms)
 - O Các kết quả của các định lý khác đã được chứng minh
- ☐ Chứng minh chính tắc:
 - □ Các bước tuân được thực hiện một cách đúng lô gích

Sử dụng các luật tương đương (lô gích)

- ☐ Sử dụng một chuỗi các luật biến đổi tương đương lô gích để dẫn đến (thu được) kết luận.
- **□ Ví dụ:** CMR $(p \land q) \rightarrow p$ là hằng đúng. (hay là: $(p \land q) \rightarrow p <=> T$)
 - $\Box (p \land q) \rightarrow p \iff \neg(p \land q) \lor p$

 $\langle = \rangle [\neg p \lor \neg q] \lor p$

 $\langle = \rangle [\neg q \lor \neg p] \lor p$

hoán

$$<=> \neg q \lor [\neg p \lor p]$$

 $\langle = \rangle \neg q \vee [T]$

Luật hữu ích

DeMorgan

Giao

Kết hợp

Luật hữu ích

Các luật suy diễn (Rules of inference)

- ☐ Cho phép suy diễn ra các phát biểu đúng mới từ các phát biểu cũ
 - □ Tương đương lô gích
- ☐ Ví dụ:
 - □ Modus Ponens (luật phân rã the Law of Detachment)

p			
<u>p</u> -	\rightarrow	q	
•	q		

р	q	$p \rightarrow q$
False	False	True
False	True	True
True	False	False
True	True	True

- O Với p đúng và phép kéo theo $p \rightarrow q$ đúng, khi đó q đúng.
- O Dạng hằng đúng: $(p \land (p \rightarrow q)) \rightarrow q$

☐ Luật cộng (Addition)

$$\mathbf{p} \rightarrow (\mathbf{p} \vee \mathbf{q})$$

$$\frac{\mathbf{p}}{\therefore \mathbf{p} \vee \mathbf{q}}$$

- ☐ Ví dụ: Hà Nội là thủ đô Việt Nam. Do đó, Hà Nội là thủ đô Việt Nam hoặc trời đang mưa.
- ☐ Luật đơn giản hoá (Simplification)

$$(\mathbf{p} \wedge \mathbf{q}) \rightarrow \mathbf{p}$$

$$\mathbf{p} \wedge \mathbf{q}$$

☐ Ví dụ: Hà Nội là thủ đô Việt Nam hoặc trời đang mưa. Do đó trời đang mưa.

☐ Modus Tollens (modus ponens cho phản đảo)

$$[\neg q \land (p \to q)] \to \neg p$$

$$\neg q$$

$$p \rightarrow q$$

∴ ¬p

☐ Tam đoạn luận giả thuyết (Hypothetical Syllogism)

$$[(p \to q) \land (q \to r)] \to (p \to r)$$

$$p \rightarrow q$$

$$q \rightarrow r$$

$$\therefore p \rightarrow r$$

☐ Tam đoạn luận tuyển (Disjunctive Syllogism)

$$[(p \lor q) \land \neg p] \to q$$

$$p \vee q$$

$$\frac{\neg p}{\therefore a}$$

- ☐ Tương đương lô gích
 - \Box A <=> B
 - \Box A \rightarrow B là một hằng đúng
- ☐ Ví dụ: Luật De Morgan
 - $\Box \neg (p \lor q) \iff \neg p \land \neg q$
 - $\Box \neg (p \lor q) \rightarrow \neg p \land \neg q$ là một hằng đúng

- ☐ Cho các giả thuyết (hypotheses):
 - □ (1) Chiều nay trời không nắng và lạnh hơn hôm qua.
 - □ (2) Chúng ta sẽ đi bơi chỉ nếu trời nắng.
 - □ (3) Nếu không đi bơi chúng ta sẽ đi du thuyền.
 - □ (4) Nếu đi du thuyền thì chúng ta sẽ về nhà trước hoàng hôn.
- ☐ Kết luận:
 - □ Chúng ta sẽ về nhà trước hoàng hôn.

- ☐ Đặt các mệnh đề:
 - \Box p = Chiều nay trời nắng,
 - \Box q = lạnh hơn hôm qua,
 - \Box r = Chúng ta sẽ đi bơi,
 - □ s= Chúng ta sẽ đi du thuyền
 - □ t= Chúng ta sẽ về nhà trước hoàng hôn
- ☐ Biểu diễn:
 - \square Giả thuyết: (1) $\neg p \land q$, (2) $r \rightarrow p$, (3) $\neg r \rightarrow s$, (4) $s \rightarrow s$
 - □ Kết luận: t

 \square Giả thuyết: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$ ☐ Kết luận: t ☐ Chứng minh: \square 1. $\neg p \land q$ Giả thuyết □ 2. ¬ p Đơn giản hoá \square 3. r \rightarrow p Giả thuyết □ 4. ¬r Modus tollens (bước 2 và 3) \Box 5. $\neg r \rightarrow s$ Giả thuyết □ 6. s Modus ponens (bước 4 và 5) \square 7. s \rightarrow t Giả thuyết Modus ponens (bước 6 và 7) □ 8. t \Box **ĐPCM**

Các chứng minh không chính tắc

- ☐ Chứng minh các định lý trong thực tế:
 - □ Các bước có thể không được thể hiện ở ngôn ngữ lô gích
 - □ Các bước có thể dùng tiếng Anh, các công thức toán, v.v.

Các phương pháp chứng minh

- ☐ Chứng minh trực tiếp (Direct proof)
 - $p \rightarrow q$ được chứng minh bằng cách chỉ ra rằng: nếu p đúng thì q đúng.
- ☐ Chứng minh giá tiếp (Indirect proof)
 - \square Chứng minh trực tiếp cho phản đảo $\neg q \rightarrow \neg p$.
- ☐ Chứng minh bằng phản ví dụ (Proof by contradiction)
 - \square Chỉ ra (p $\land \neg$ q) mâu thuẫn với các giả thuyết
- ☐ Chứng minh bằng các trường hợp (Proof by cases)
- ☐ Chứng minh tương đương (Proofs of equivalence)
 - \square $p \leftrightarrow q$ được thay bằng $(p \rightarrow q) \land (q \rightarrow p)$

Chứng minh trực tiếp

- ☐ CMR: "nếu n lẻ thì n² lẻ."
- **□** CM:
 - ☐ Giả sử giả thuyết đúng: n là số lẻ.
 - \square Khi đó n = 2k + 1, với k là một số nguyên.

$$n^{2} = (2k + 1)^{2}$$

$$= 4k^{2} + 4k + 1$$

$$= 2(2k^{2} + 2k) + 1$$

 \square Do đó, n^2 là lẻ.

Chứng minh gián tiếp

- \square CMR: Nếu 3n + 2 lẻ thì n là số lẻ.
- **□** CM:
 - \square Giả sử n là số chẵn, khi đó n = 2k, với k nguyên bất kỳ.
 - □ Khi đó: 3n + 2 = 3(2k) + 2= 6k + 2

$$= 2(3k+1)$$

 \square Vậy nên 3n + 2 là chẵn.

Phản chứng

- \square Cần chứng minh p \rightarrow q
 - \Box Giả sử rằng p \rightarrow q sai, tức là (p $\land \neg q$) đúng
 - O Nếu chỉ ra được (p ∧ ¬q) là sai (hoặc q hoặc ¬ p là đúng) thì điều giả sử là sai.
 - → Điều cần chứng minh là đúng
- \square Ví dụ: CMR: nếu 3n + 2 lẻ thì n lẻ
 - CM: Giả sử 3n + 2 lẻ và n chẵn, khi đó n = 2k, với k nguyên bất kỳ.
 - ☐ Khi đó: 3n + 2 = 3(2k) + 2= 6k + 2= 2(3k + 1)
 - □ Do vậy 3n + 2 chẵn: Mâu thuẫn với giả thuyết rằng 3n+2 là số lẻ.
 □ Do đó n là số lẻ (ĐPCM).

Chứng minh rỗng (Vacuous proof)

- \square Để chứng minh: $p \rightarrow q$
 - □ Chứng minh p luôn sai
 - O $p \rightarrow q$ luôn đúng.

- ☐ Ví dụ:
 - \square P(n): "Nếu n > 1 thì n²> n".
 - \square CMR P(0) đúng.
 - O Với n=0 giả thuyết luôn sai. Do đó P(0) luôn đúng

Chứng minh tầm thường (Trivial proofs)

- \square Để chứng minh p \rightarrow q
 - □ Chỉ ra q luôn đúng
- □ Ví dụ:
 - \square P(n): "Nếu a >=b thì aⁿ >= bⁿ"
 - □ CMR: P(0) đúng
 - O $a^0 >= b^0$ trở thành 1=1 luôn đúng.

Chứng minh qua các ví dụ

- \square Để chứng minh p1 \vee p2 \vee ... \vee pn \vee q
 - \square Cần chứng minh: $(p1 \rightarrow q) \land (p2 \rightarrow q) \land ... \land (pn \rightarrow q)$

- ☐ Lý do:
 - \square p1 \vee p2 \vee ... \vee pn \rightarrow q $\langle = \rangle$
 - $\square \neg (p1 \lor p2 \lor ... \lor pn) \lor q <=>$
 - $\square (\neg p1 \land \neg p2 \land ... \land \neg pn) \lor q \iff$
 - $\square (\neg p1 \lor q) \land (\neg p2 \lor q) \land \dots \land (\neg pn \lor q) <=>$
 - \square $(p1 \rightarrow q) \land (p2 \rightarrow q) \land ... \land (pn \rightarrow q)$

Chứng minh qua các ví dụ

- \square CMR: |x||y|=|xy|.
- \square CM
 - □ 4 cases:
 - $\Box x >= 0, y >= 0$
 - $\Box x > = 0, y < 0$
 - $\Box x < 0, y > = 0$
 - \square x<0, y<0

Chứng minh qua các ví dụ

- \square CMR: |x||y|=|xy|.
- ☐ CM qua 4 trường hợp:
 - $\Box x >= 0, y >= 0: |xy| = xy = |x||y|$
 - $\Box x >= 0, y <0: |xy| = -xy = x (-y) = |x||y|$
 - $\Box x < 0, y > = 0 \mid : |xy| = -xy = (-x) y = |x||y|$
 - $\Box x < 0, y < 0 : |xy| = (-x)(-y) = |x||y|$
 - □ Cả 4 trường hợp đều đúng.

Chứng minh tương đương

- □ Để chứng minh p ↔ q
 - \square Cần chứng minh: $(p \rightarrow q) \land (q \rightarrow p)$

- ☐ Ví dụ: CMR: n lẻ nếu và chỉ nếu n² lẻ.
- \square Chứng minh (p \rightarrow q):
 - □ Sử dụng chứng minh trực tiếp
- \square Chứng minh $q \rightarrow p$
- ☐ Do cả 2 đều đúng nên có ĐPCM

Chứng minh với các lượng từ

- ☐ Chứng minh tồn tại
 - □ Các mệnh đề với các lượng từ tồn tại

- ☐ Theo cách kiến thiết (Constructive)
 - O Tìm ra ít nhất một ví dụ mà mệnh đề đúng.
- ☐ Theo cách không kiến thiết (Nonconstructive)
 - O Chứng minh bằng phản chứng.