

School of Engineering and Technology

AI-Powered ECG Analysis for Early Heart Disease Detection : A Research Study

Project ID: Y1-2024-25-G304

.

Supervisor: Dr Yogita Raghav **Team Members:**

Anantika Paul (2401560042) Jimni Gogoi (2401560041)

Introduction to the Problem

- Cardiovascular diseases (CVDs) are the leading cause of death worldwide.
- **Early detection** is critical for effective treatment and management.
- Electrocardiograms (ECGs) are the primary tool for diagnosing heart abnormalities.
- Manual ECG interpretation is **time-consuming**, **error-prone**, and requires **expertise**.
- There's a strong need for **automated**, **accurate**, **and interpretable** ECG classification systems.

Proposed Solution Overview

- Investigate a hybrid CNN-LSTM-SVM model for ECG classification.
- Integrate **SVM** for robust classification from learned deep features.
- Incorporate **explainable AI (SHAP & LIME)** for transparency and interpretability.
- Validate the proposed method using benchmark
 ECG datasets (e.g., MIT-BIH)
- Contribute to the field of interpretable AI in healthcare diagnostics.

Structure of Proposed Hybrid CNN-LSTM + SVM model

Key Innovations Over Existing Methods

Feature	Our Approach	Typical Existing Methods	
Model Type	CNN + LSTM for features + SVM for classification	End-to-end deep models (e.g., CNN only)	
Explainability	Uses SHAPE and LIME	Usually lacks explainability	
Preprocessing	Wavelet denoising	Often use raw or filtered signals	
Hybrid Strategy	Combines deep learning + classical ML	Usually deep learning only	
Scalability	Modular pipeline can be deployed in parts	Monolithic and less flexible	
Trustworthiness	Explanations support clinical decisions	Black-box, difficult to validate clinically	

Model	Accuracy (%)	Precision (0)	Precision (1)	Recall (0)	Recall (1)	F1-Score (0)	F1-Score (1)
CNN	99.00	0.99	0.99	0.98	1.00	0.97	1.00
LSTM	82.77	0.79	0.88	0.90	0.75	0.84	0.81
LSTM + CNN	99.08	0.99	0.99	0.99	0.99	0.99	0.99
LSTM-CNN + RandomForest	93.21	0.92	0.95	0.95	0.92	0.93	0.93
LSTM-CNN + SVM	83.60	0.84	0.75	0.93	1.00	0.88	0.87

Comparison Table of The Models

THANK YOU