Reasoning about capability machines using logical relations

Lau Skorstengaard

Aarhus University

KU Leuven, November 2016

Road map

Capability Machine

Formalisation

Example program

Logical Relation

Example revisited

Current work

Road map

Capability Machine

Formalisation

Example program

Logical Relation

Example revisited

Current work

Why should I care about capability machines?

Current low-level protection mechanisms

- Coarse-grained compartmentalisation
- Expensive context switches
- Well-suited for high-level applications
- Does not scale well

Why should I care about capability machines?

Current low-level protection mechanisms

- Coarse-grained compartmentalisation
- Expensive context switches
- Well-suited for high-level applications
- Does not scale well

Capability machines

- Fine-grained compartmentalisation
- Cheap compartments
- Fine-grained sharing
- Well-suited for applications with need for many compartments

What is a capability?

What is a capability?

Unforgeable token of authority

What is a capability?

Unforgeable token of authority

What is a capability in a capability machine?

What is a capability?

Unforgeable token of authority

What is a capability in a capability machine?

Unforgeable pointer

Figure: CHERI capability [1]

What is a capability?

Unforgeable token of authority

What is a capability in a capability machine?

- Unforgeable pointer
- Range of memory

Figure: CHERI capability [1]

What is a capability?

Unforgeable token of authority

What is a capability in a capability machine?

- Unforgeable pointer
- Range of memory
- Permission

Figure: CHERI capability [1]

- Read
- Write
- Execute

- Read
- Write
- Execute
- Enter

- Read
- Write
- Execute
- ► Enter
 - ▶ When jumped to, it becomes a read and execute capability
 - Cannot be used in any other way

- Read
- ▶ Write
- Execute
- Enter
 - ▶ When jumped to, it becomes a read and execute capability
 - Cannot be used in any other way
 - Used by distrusting pieces of code to cross security domains

- Read
- Write
- Execute
- Enter
 - ▶ When jumped to, it becomes a read and execute capability
 - Cannot be used in any other way
 - Used by distrusting pieces of code to cross security domains
 - Modularisation

▶ Same instructions as in a normal low-level machine

- ▶ Same instructions as in a normal low-level machine
 - ▶ jmp, jnz, move, plus, load, store

- Same instructions as in a normal low-level machine
 - ▶ jmp, jnz, move, plus, load, store
 - ▶ Instructions may require capability with certain permission.

- Same instructions as in a normal low-level machine
 - jmp, jnz, move, plus, load, store
 - Instructions may require capability with certain permission.
- Capability manipulation instructions

- ▶ Same instructions as in a normal low-level machine
 - jmp, jnz, move, plus, load, store
 - Instructions may require capability with certain permission.
- Capability manipulation instructions
 - ▶ lea, restrict, subseg

- Same instructions as in a normal low-level machine
 - ▶ jmp, jnz, move, plus, load, store
 - Instructions may require capability with certain permission.
- Capability manipulation instructions
 - ▶ lea, restrict, subseg
 - No instruction generates new capability

- Same instructions as in a normal low-level machine
 - ▶ jmp, jnz, move, plus, load, store
 - ▶ Instructions may require capability with certain permission.
- Capability manipulation instructions
 - ▶ lea, restrict, subseg
 - No instruction generates new capability
 - Manipulation of capabilities cannot result in authority amplification

Capabilities

- Capabilities
 - Permissions

- Capabilities
 - Permissions
 - Range of authority

- Capabilities
 - Permissions
 - Range of authority
- Capability aware instructions

- Capabilities
 - Permissions
 - Range of authority
- Capability aware instructions
- Heap and registers

- Capabilities
 - Permissions
 - Range of authority
- Capability aware instructions
- Heap and registers
 - Can contain data and capabilities

Road map

Capability Machine

Formalisation

Example program

Logical Relation

Example revisited

Current work

► A mathematical model of the system

- ► A mathematical model of the system
- Allows us to reason formally

- ► A mathematical model of the system
- Allows us to reason formally
- May make some abstractions

- A mathematical model of the system
- Allows us to reason formally
- May make some abstractions
- Needs to stay true to a real system

- A mathematical model of the system
- Allows us to reason formally
- May make some abstractions
- Needs to stay true to a real system
- This formalisation is of a capability machine (not CHERI or the M-Machine)

Formalisation - Permissions

Permissions

➤ To simplify matters, we only allow certain combinations of permissions

```
\operatorname{Perm} \stackrel{\text{def}}{=} \{
```

- To simplify matters, we only allow certain combinations of permissions
- ▶ No permissions,

$$Perm \stackrel{\text{def}}{=} \{o, \dots \}$$

- To simplify matters, we only allow certain combinations of permissions
- ▶ No permissions, read only,

$$Perm \stackrel{\textit{def}}{=} \{o, ro, \}$$

- To simplify matters, we only allow certain combinations of permissions
- ▶ No permissions, read only, read-write,

$$Perm \stackrel{\textit{def}}{=} \{o, ro, rw, \}$$

- To simplify matters, we only allow certain combinations of permissions
- ▶ No permissions, read only, read-write, read-execute,

$$Perm \stackrel{\textit{def}}{=} \{o, ro, rw, rx, \}$$

- To simplify matters, we only allow certain combinations of permissions
- ▶ No permissions, read only, read-write, read-execute, enter,

$$Perm \stackrel{\text{\tiny def}}{=} \{o, ro, rw, rx, e, \}$$

- To simplify matters, we only allow certain combinations of permissions
- No permissions, read only, read-write, read-execute, enter, read-write-execute

$$\operatorname{Perm} \stackrel{\textit{\tiny def}}{=} \{ o, ro, rw, rx, e, rwx \}$$

$$\operatorname{Cap} \stackrel{{}^{\mathit{def}}}{=}$$

Capability

$$\operatorname{Cap} \stackrel{\text{\tiny def}}{=}$$

Capability

$$\operatorname{Cap} \stackrel{{\scriptscriptstyle \operatorname{def}}}{=} \operatorname{Perm}$$

- Permission
- Range of authority

$$\operatorname{Cap} \stackrel{\scriptscriptstyle def}{=} \operatorname{Perm}$$

- Permission
- Range of authority

$$\operatorname{Addr} \stackrel{\scriptscriptstyle def}{=} \mathbb{N}$$

$$\operatorname{Cap} \stackrel{{\scriptscriptstyle \operatorname{def}}}{=} \operatorname{Perm}$$

- Permission
- Range of authority

$$\operatorname{Addr} \stackrel{\scriptscriptstyle def}{=} \mathbb{N}$$

$$\operatorname{Cap} \stackrel{\scriptscriptstyle def}{=} \operatorname{Perm} \times \operatorname{Addr} \times \operatorname{Addr}$$

- Permission
- Range of authority
- Pointer

$$\operatorname{Addr} \stackrel{\scriptscriptstyle def}{=} \mathbb{N}$$

$$\operatorname{Cap} \stackrel{\text{\tiny def}}{=} \operatorname{Perm} \times \operatorname{Addr} \times \operatorname{Addr}$$

- Permission
- Range of authority
- Pointer

$$\operatorname{Addr} \stackrel{\scriptscriptstyle def}{=} \mathbb{N}$$

$$\operatorname{Cap} \stackrel{\textit{\tiny def}}{=} \operatorname{Perm} \times \operatorname{Addr} \times \operatorname{Addr} \times \operatorname{Addr}$$

Capability

- Permission
- Range of authority
- Pointer

$$\operatorname{Addr} \stackrel{\scriptscriptstyle def}{=} \mathbb{N}$$

$$\operatorname{Cap} \stackrel{\textit{\tiny def}}{=} \operatorname{Perm} \times \operatorname{Addr} \times \operatorname{Addr} \times \operatorname{Addr}$$

Example: (e, 30, 42, 30)

Words

 $\operatorname{Word} \stackrel{{\scriptscriptstyle def}}{=}$

Words

$$\operatorname{Word} \stackrel{{\scriptscriptstyle def}}{=}$$

Words

$$\operatorname{Word} \stackrel{{\scriptscriptstyle def}}{=} \operatorname{Cap}$$

Words

- Capability
- Data (and instructions)

Word
$$\stackrel{\text{def}}{=}$$
 Cap

Words

- Capability
- Data (and instructions)

$$\operatorname{Word} \stackrel{{\scriptscriptstyle \operatorname{def}}}{=} \operatorname{Cap} + \mathbb{Z}$$

Words

- Capability
- Data (and instructions)
- ▶ In the real machine capabilities are tagged

Word
$$\stackrel{\text{\tiny def}}{=} \operatorname{Cap} + \mathbb{Z}$$

Words

- Capability
- Data (and instructions)
- ▶ In the real machine capabilities are tagged

Word
$$\stackrel{\text{\tiny def}}{=} \operatorname{Cap} + \mathbb{Z}$$

Register file

$$\text{Reg} \stackrel{\textit{def}}{=}$$

Words

- Capability
- Data (and instructions)
- In the real machine capabilities are tagged

$$\operatorname{Word} \stackrel{\text{\tiny def}}{=} \operatorname{Cap} + \mathbb{Z}$$

Register file

► Assume finite set of registers RegisterName ∋ pc

$$\mathrm{Reg} \stackrel{\scriptscriptstyle def}{=}$$

Words

- Capability
- Data (and instructions)
- ▶ In the real machine capabilities are tagged

$$\operatorname{Word} \stackrel{\text{\tiny def}}{=} \operatorname{Cap} + \mathbb{Z}$$

Register file

lacktriangle Assume finite set of registers $RegisterName \ni pc$

$$\operatorname{Reg} \stackrel{\mathit{def}}{=} \operatorname{RegisterName} \to \operatorname{Word}$$

Heap

 $\operatorname{Heap} \stackrel{\scriptscriptstyle def}{=}$

Heap

► Map from Addr to Word

$$\operatorname{Heap} \stackrel{\text{\tiny def}}{=} \operatorname{Addr} \to \operatorname{Word}$$

Heap

▶ Map from Addr to Word

$$\operatorname{Heap} \stackrel{\text{\tiny def}}{=} \operatorname{Addr} \to \operatorname{Word}$$

$$\operatorname{Conf} \stackrel{\scriptscriptstyle def}{=}$$

Heap

▶ Map from Addr to Word

$$\operatorname{Heap} \stackrel{\scriptscriptstyle def}{=} \operatorname{Addr} \to \operatorname{Word}$$

Configuration

Executable configuration

$$\operatorname{Conf} \stackrel{\scriptscriptstyle def}{=}$$

Heap

▶ Map from Addr to Word

$$\operatorname{Heap} \stackrel{\scriptscriptstyle def}{=} \operatorname{Addr} \to \operatorname{Word}$$

Configuration

Executable configuration

$$\operatorname{Conf} \stackrel{\text{\tiny def}}{=} \operatorname{Reg} \times \operatorname{Heap}$$

Heap

▶ Map from Addr to Word

$$\operatorname{Heap} \stackrel{\scriptscriptstyle def}{=} \operatorname{Addr} \to \operatorname{Word}$$

- Executable configuration
- Successfully halted configuration

$$\operatorname{Conf} \stackrel{\scriptscriptstyle def}{=} \operatorname{Reg} \times \operatorname{Heap}$$

Heap

▶ Map from Addr to Word

$$\operatorname{Heap} \stackrel{\scriptscriptstyle def}{=} \operatorname{Addr} \to \operatorname{Word}$$

- Executable configuration
- Successfully halted configuration

$$\operatorname{Conf} \stackrel{\text{def}}{=} \operatorname{Reg} \times \operatorname{Heap} + \{ halted \} \times \operatorname{Heap}$$

Heap

► Map from Addr to Word

$$\operatorname{Heap} \stackrel{\text{\tiny def}}{=} \operatorname{Addr} \to \operatorname{Word}$$

- Executable configuration
- Successfully halted configuration
- Failed configuration

$$\operatorname{Conf} \stackrel{\text{\tiny def}}{=} \operatorname{Reg} \times \operatorname{Heap} + \{ \textit{failed} \} + \{ \textit{halted} \} \times \operatorname{Heap}$$

Syntax

Instructions ::=

Syntax

```
rn ::= n \mid r
Instructions ::=
```

Syntax

The normal instructions

$$rn ::= n \mid r$$
Instructions ::=

Syntax

The normal instructions

- The normal instructions
- The capability manipulation instructions

```
rn ::= n \mid r
Instructions ::= jmp r \mid jnz r rn \mid move r rn \mid
load r r \mid store r r \mid plus r rn rn
```

- The normal instructions
- The capability manipulation instructions

```
rn ::= n \mid r
Instructions ::= jmp \ r \mid jnz \ r \ rn \mid move \ r \ rn \mid
load \ r \ r \mid store \ r \ r \mid plus \ r \ rn \ rn \mid
lea \ r \ rn \mid restrict \ r \ rn \mid
subseg \ r \ rn \ rn
```

- The normal instructions
- The capability manipulation instructions
- Instructions for stopping the machine

```
rn ::= n \mid r
Instructions ::= jmp \ r \mid jnz \ r \ rn \mid move \ r \ rn \mid
load \ r \ r \mid store \ r \ r \mid plus \ r \ rn \ rn \mid
lea \ r \ rn \mid restrict \ r \ rn \mid
subseg \ r \ rn \ rn
```

- The normal instructions
- The capability manipulation instructions
- Instructions for stopping the machine

```
rn ::= n \mid r
Instructions ::= jmp \ r \mid jnz \ r \ rn \mid move \ r \ rn \mid
load \ r \ r \mid store \ r \ r \mid plus \ r \ rn \ rn \mid
lea \ r \ rn \mid restrict \ r \ rn \mid
subseg \ r \ rn \ rn \mid fail \mid halt
```

$$\rightarrow \subseteq (\text{Reg} \times \text{Heap}) \times \text{Conf}$$

Execution relation

$$\rightarrow \subseteq (\text{Reg} \times \text{Heap}) \times \text{Conf}$$

 $executionAllowed(\Phi)$

Execution relation

$$\rightarrow \subseteq (\text{Reg} \times \text{Heap}) \times \text{Conf}$$

$$\Phi.\mathrm{reg}(\mathrm{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})$$

 $executionAllowed(\Phi)$

$$\rightarrow \subseteq (\text{Reg} \times \text{Heap}) \times \text{Conf}$$

$$\frac{\Phi.\mathrm{reg}(\mathrm{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})}{\textit{base} \leq \textit{a} \leq \textit{end}}$$

$$\frac{\textit{executionAllowed}(\Phi)}{\textit{executionAllowed}(\Phi)}$$

$$\rightarrow \subseteq (\operatorname{Reg} \times \operatorname{Heap}) \times \operatorname{Conf}$$

$$\frac{\Phi.\operatorname{reg}(\operatorname{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})}{\textit{base} \leq \textit{a} \leq \textit{end} \quad \textit{perm} \in \{\operatorname{rx}, \operatorname{rwx}\}}{\textit{executionAllowed}(\Phi)}$$

$$\rightarrow \subseteq (\operatorname{Reg} \times \operatorname{Heap}) \times \operatorname{Conf}$$

$$\frac{\Phi.\mathrm{reg}(\mathrm{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})}{\textit{base} \leq \textit{a} \leq \textit{end} \quad \textit{perm} \in \{\mathrm{rx}, \mathrm{rwx}\}}{\textit{executionAllowed}(\Phi)} \qquad \frac{\neg \textit{executionAllowed}(\Phi)}{\Phi \rightarrow}$$

$$\rightarrow \subseteq (\operatorname{Reg} \times \operatorname{Heap}) \times \operatorname{Conf}$$

$$\frac{\Phi.\mathrm{reg}(\mathrm{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})}{\textit{base} \leq \textit{a} \leq \textit{end} \quad \textit{perm} \in \{\mathrm{rx}, \mathrm{rwx}\}}{\textit{executionAllowed}(\Phi)} \qquad \frac{\neg \textit{executionAllowed}(\Phi)}{\Phi \rightarrow \textit{failed}}$$

$$\rightarrow \subseteq (\text{Reg} \times \text{Heap}) \times \text{Conf}$$

$$\frac{\Phi.\operatorname{reg}(\operatorname{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})}{\textit{base} \leq \textit{a} \leq \textit{end} \quad \textit{perm} \in \{\operatorname{rx}, \operatorname{rwx}\}}{\textit{executionAllowed}(\Phi)} \qquad \frac{\neg \textit{executionAllowed}(\Phi)}{\Phi \rightarrow \textit{failed}}$$

$$\frac{\textit{executionAllowed}(\Phi)}{\Phi \rightarrow}$$

$$\rightarrow \subseteq (\operatorname{Reg} \times \operatorname{Heap}) \times \operatorname{Conf}$$

$$\frac{\Phi.\operatorname{reg}(\operatorname{pc}) = (\mathit{perm}, \mathit{base}, \mathit{end}, \mathit{a})}{\mathit{base} \leq \mathit{a} \leq \mathit{end} \quad \mathit{perm} \in \{\operatorname{rx}, \operatorname{rwx}\}}{\mathit{executionAllowed}(\Phi)} \qquad \frac{\neg \mathit{executionAllowed}(\Phi)}{\Phi \rightarrow \mathit{failed}}$$
$$\frac{\mathit{executionAllowed}(\Phi) \quad \mathit{i} = \Phi.\operatorname{heap}(\mathit{a})}{\Phi \rightarrow \mathit{j}}$$

$$\rightarrow \subseteq (\operatorname{Reg} \times \operatorname{Heap}) \times \operatorname{Conf}$$

$$\frac{\Phi.\operatorname{reg}(\operatorname{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})}{\textit{base} \leq \textit{a} \leq \textit{end} \quad \textit{perm} \in \{\operatorname{rx}, \operatorname{rwx}\}}{\textit{executionAllowed}(\Phi)} \qquad \frac{\neg \textit{executionAllowed}(\Phi)}{\Phi \rightarrow \textit{failed}}$$
$$\frac{\textit{executionAllowed}(\Phi) \qquad \textit{i} = \Phi.\operatorname{heap}(\textit{a})}{\Phi \rightarrow \lceil\!\lceil \textit{i} \rceil\!\rceil(\Phi)}$$

 $\llbracket \texttt{load} \; r_1 \; r_2 \rrbracket \left(\Phi \right) =$

$$w = \Phi.\mathrm{heap}(r_2)$$

$$\frac{}{ \llbracket \mathsf{load} \ r_1 \ r_2 \rrbracket \left(\Phi \right) = } \Phi[\mathrm{reg}.r_1 \mapsto w]$$

$$w = \Phi.\mathrm{heap}(a)$$
 $\Phi.\mathrm{reg}(r_2) = (perm, base, end, a)$
$$\frac{}{\llbracket \mathsf{load} \; r_1 \; r_2 \rrbracket(\Phi) = \Phi[\mathrm{reg}.r_1 \mapsto w]}$$

$$w = \Phi.\text{heap}(a) \qquad \Phi.\text{reg}(r_2) = (perm, base, end, a)$$

$$\frac{perm \in \{\text{ro}, \text{rw}, \text{rx}, \text{rwx}\}}{[\![\text{load } r_1 \ r_2]\!](\Phi) = \qquad \Phi[\text{reg}.r_1 \mapsto w]}$$

$$w = \Phi.\text{heap}(a) \qquad \Phi.\text{reg}(r_2) = (\textit{perm}, \textit{base}, \textit{end}, a)$$

$$perm \in \{\text{ro}, \text{rw}, \text{rx}, \text{rwx}\} \qquad \textit{base} \leq a \leq \textit{end}$$

$$\boxed{[load r_1 r_2](\Phi) = \qquad \Phi[\text{reg}.r_1 \mapsto w]}$$

```
w = \Phi.\text{heap(a)} \quad \Phi.\text{reg}(r_2) = (perm, base, end, a)
perm \in \{\text{ro}, \text{rw}, \text{rx}, \text{rwx}\} \quad base \leq a \leq end
[[load r_1 r_2]](\Phi) = updatePc(\Phi[\text{reg}.r_1 \mapsto w])
```

$$w = \Phi.\text{heap}(a)$$
 $\Phi.\text{reg}(r_2) = (perm, base, end, a)$
 $perm \in \{\text{ro}, \text{rw}, \text{rx}, \text{rwx}\}$ $base \leq a \leq end$
 $[[load r_1 r_2]](\Phi) = updatePc(\Phi[\text{reg}.r_1 \mapsto w])$

$$updatePc(\Phi) = \Phi[reg.pc \mapsto$$

$$w = \Phi.\text{heap}(a) \qquad \Phi.\text{reg}(r_2) = (perm, base, end, a)$$

$$perm \in \{\text{ro}, \text{rw}, \text{rx}, \text{rwx}\} \qquad base \leq a \leq end$$

$$[[load r_1 r_2]](\Phi) = updatePc(\Phi[\text{reg}.r_1 \mapsto w])$$

$$\Phi.\operatorname{reg}(\operatorname{pc}) = (\mathit{perm}, \mathit{base}, \mathit{end}, \mathit{a})$$

$$updatePc(\Phi) = \Phi[\operatorname{reg.pc} \mapsto]$$

$$w = \Phi.\operatorname{heap}(a) \quad \Phi.\operatorname{reg}(r_2) = (perm, base, end, a)$$

$$\frac{perm \in \{\operatorname{ro}, \operatorname{rw}, \operatorname{rx}, \operatorname{rwx}\} \quad base \leq a \leq end}{[[\operatorname{load} r_1 \ r_2]](\Phi) = updatePc(\Phi[\operatorname{reg}.r_1 \mapsto w])}$$

$$\Phi.\operatorname{reg}(\operatorname{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a}) \ newPc = (\textit{perm}, \textit{base}, \textit{end}, \textit{a} + 1) \ updatePc(\Phi) = \Phi[\operatorname{reg.pc} \mapsto]$$

$$w = \Phi.\operatorname{heap}(a) \quad \Phi.\operatorname{reg}(r_2) = (perm, base, end, a)$$

$$\frac{perm \in \{\operatorname{ro}, \operatorname{rw}, \operatorname{rx}, \operatorname{rwx}\} \quad base \leq a \leq end}{[[\operatorname{load} r_1 \ r_2]](\Phi) = updatePc(\Phi[\operatorname{reg}.r_1 \mapsto w])}$$

$$\frac{\Phi.\operatorname{reg}(\operatorname{pc}) = (\textit{perm}, \textit{base}, \textit{end}, \textit{a})}{\textit{newPc} = (\textit{perm}, \textit{base}, \textit{end}, \textit{a} + 1)}$$
$$\frac{\textit{updatePc}(\Phi) = \Phi[\operatorname{reg.pc} \mapsto \textit{newPc}]}{\textit{updatePc}(\Phi) = \Phi[\operatorname{reg.pc} \mapsto \textit{newPc}]}$$

$$w = \Phi.\text{heap}(a) \qquad \Phi.\text{reg}(r_2) = (perm, base, end, a)$$

$$perm \in \{\text{ro}, \text{rw}, \text{rx}, \text{rwx}\} \qquad base \leq a \leq end$$

$$[[load r_1 r_2]](\Phi) = updatePc(\Phi[\text{reg}.r_1 \mapsto w])$$

$$w = \Phi. \operatorname{heap}(a) \quad \Phi. \operatorname{reg}(r_2) = (perm, base, end, a)$$
 $perm \in \{\operatorname{ro}, \operatorname{rw}, \operatorname{rx}, \operatorname{rwx}\} \quad base \leq a \leq end$
 $[\operatorname{load} r_1 \ r_2] (\Phi) = updatePc(\Phi[\operatorname{reg}.r_1 \mapsto w])$
 $\Phi. \operatorname{reg}(r_2) = (perm, base, end, a)$
 $[\operatorname{restrict} r_1 \ r_2 \ r_3] = \Phi[\operatorname{reg}.r_1 \mapsto c]$
 $\Phi. \operatorname{reg}(\operatorname{pc}) = (perm, base, end, a)$
 $newPc = (perm, base, end, a + 1)$
 $updatePc(\Phi) = \Phi[\operatorname{reg}.\operatorname{pc} \mapsto newPc]$

$$w = \Phi.\operatorname{heap}(a)$$
 $\Phi.\operatorname{reg}(r_2) = (perm, base, end, a)$
 $perm \in \{\operatorname{ro}, \operatorname{rw}, \operatorname{rx}, \operatorname{rwx}\}$ $base \leq a \leq end$
 $[\![\operatorname{load} r_1 \ r_2]\!] (\Phi) = updatePc(\Phi[\operatorname{reg}.r_1 \mapsto w])$
 $\Phi.\operatorname{reg}(r_2) = (perm, base, end, a)$
 $newPerm = decodePerm(\Phi, r_3)$
 $[\![\operatorname{restrict} r_1 \ r_2 \ r_3]\!] = \Phi[\operatorname{reg}.r_1 \mapsto c]$
 $\Phi.\operatorname{reg}(\operatorname{pc}) = (perm, base, end, a)$
 $newPc = (perm, base, end, a + 1)$
 $updatePc(\Phi) = \Phi[\operatorname{reg}.\operatorname{pc} \mapsto newPc]$

```
w = \Phi.\text{heap}(a) \Phi.\text{reg}(r_2) = (perm, base, end, a)
      perm \in \{ro, rw, rx, rwx\} base \le a \le end
      \lceil \text{load } r_1 \ r_2 \rceil \rangle (\Phi) = updatePc(\Phi[\text{reg.} r_1 \mapsto w])
              \Phi.reg(r_2) = (perm, base, end, a)
               newPerm = decodePerm(\Phi, r_3)
newPerm 

□ perm
    \lceil \text{restrict } r_1 r_2 r_3 \rceil =
                                                \Phi[\text{reg.}r_1 \mapsto c]
              \Phi.reg(pc) = (perm, base, end, a)
              newPc = (perm, base, end, a + 1)
            updatePc(\Phi) = \Phi[reg.pc \mapsto newPc]
```

```
w = \Phi.\text{heap}(a) \Phi.\text{reg}(r_2) = (perm, base, end, a)
     perm \in \{ro, rw, rx, rwx\} base \le a \le end
     \lceil \text{load } r_1 \ r_2 \rceil \rangle (\Phi) = updatePc(\Phi[\text{reg.} r_1 \mapsto w])
             \Phi.reg(r_2) = (perm, base, end, a)
              newPerm = decodePerm(\Phi, r_3)
newPerm \sqsubseteq perm c = (newPerm, base, end, a)
    [restrict r_1 r_2 r_3] = \Phi[reg.r_1 \mapsto c]
            \Phi.reg(pc) = (perm, base, end, a)
            newPc = (perm, base, end, a + 1)
           updatePc(\Phi) = \Phi[reg.pc \mapsto newPc]
```

```
w = \Phi.\text{heap}(a) \Phi.\text{reg}(r_2) = (perm, base, end, a)
      perm \in \{ro, rw, rx, rwx\} base \le a \le end
      \lceil \text{load } r_1 \ r_2 \rceil \rangle (\Phi) = updatePc(\Phi[\text{reg.} r_1 \mapsto w])
               \Phi.reg(r_2) = (perm, base, end, a)
                newPerm = decodePerm(\Phi, r_3)
newPerm \sqsubseteq perm c = (newPerm, base, end, a)
    \llbracket \operatorname{restrict} r_1 \ r_2 \ r_3 \rrbracket = updatePc(\Phi[\operatorname{reg}.r_1 \mapsto c])
              \Phi.reg(pc) = (perm, base, end, a)
              newPc = (perm, base, end, a + 1)
            updatePc(\Phi) = \Phi[reg.pc \mapsto newPc]
```

▶ Need a *failed* case for each of the rules

- ▶ Need a *failed* case for each of the rules
- ► The operational semantics of the remaining instructions defined in a similar fashion

Road map

Capability Machine

Formalisation

Example program

Logical Relation

Example revisited

Current work

Example program

► High-level programs - ML style

Example program

- ► High-level programs ML style
- ▶ let 1 = 1 in ... allocates a new cell on the heap and sets the value to 1 (assume some trusted malloc exists).

Example program

- High-level programs ML style
- ▶ let 1 = 1 in ... allocates a new cell on the heap and sets the value to 1 (assume some trusted malloc exists).
- assert(1 == 1) if the assertion is true, then execution continues. If the assertion is false, then an assertion flag (a designated heap cell) is set to 1 and execution halts.

Example program

- High-level programs ML style
- ▶ let 1 = 1 in ... allocates a new cell on the heap and sets the value to 1 (assume some trusted malloc exists).
- assert(1 == 1) if the assertion is true, then execution continues. If the assertion is false, then an assertion flag (a designated heap cell) is set to 1 and execution halts.

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

Example program

- High-level programs ML style
- ▶ let 1 = 1 in ... allocates a new cell on the heap and sets the value to 1 (assume some trusted malloc exists).
- assert(1 == 1) if the assertion is true, then execution continues. If the assertion is false, then an assertion flag (a designated heap cell) is set to 1 and execution halts.

```
let f = fun adv =>
    let l = 1 in
    adv();
    assert (l == 1)
```

Lemma

Given any program adv, f(adv) either runs forever, ends up in the failed configuration, or halts in a configuration where the assertion flag is 0.

Road map

Capability Machine

Formalisation

Example program

Logical Relation

Example revisited

Current work

Logical relations in general

Strong proof method

- Strong proof method
- Used to show properties about programs

- Strong proof method
- Used to show properties about programs
- Designed such that any program in the relation has a certain property

- Strong proof method
- Used to show properties about programs
- Designed such that any program in the relation has a certain property
- Can be used when a direct proof does not suffice

- Strong proof method
- Used to show properties about programs
- Designed such that any program in the relation has a certain property
- Can be used when a direct proof does not suffice
 - e.g., strong normalisation for STLC

- Strong proof method
- Used to show properties about programs
- Designed such that any program in the relation has a certain property
- Can be used when a direct proof does not suffice
 - e.g., strong normalisation for STLC
- Can be used to reason about programs written in "real" programming languages

- Strong proof method
- Used to show properties about programs
- Designed such that any program in the relation has a certain property
- Can be used when a direct proof does not suffice
 - e.g., strong normalisation for STLC
- Can be used to reason about programs written in "real" programming languages
- Extensional not interested in what happens doing the execution, only interested in the result

What we hope to achieve

Any program will respect the limitations of the capability system.

The property of this logical relation

Any capability such that

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge,
 - end up in the failed configuration

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge,
 - end up in the *failed* configuration, or
 - halt where the heap still satisfies the invariants

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

World

▶ Collection of regions with invariants (e.g. $h(27) \mapsto 5$)

World

- ▶ Collection of regions with invariants (e.g. $h(27) \mapsto 5$)
- ► Model of the heap

1

Heap satisfaction

Regions model parts of the heap

- Regions model parts of the heap
- ► Non-overlapping

- Regions model parts of the heap
- ► Non-overlapping

- Regions model parts of the heap
- ► Non-overlapping

- Regions model parts of the heap
- ► Non-overlapping
- ▶ h: W

Future World

- ▶ Heap changes over time, worlds have to cope with this:
- \triangleright W
 - ► Same regions as before

Future World

- ▶ Heap changes over time, worlds have to cope with this:
- \triangleright $W' \supset W$
 - ► Same regions as before
 - ► New region(s)

1

Future World

▶ Old regions model the same parts of the heap as before

Future World

- ▶ Old regions model the same parts of the heap as before
- ► New part model new part of the heap

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

- the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

$$\mathcal{O} \stackrel{\scriptscriptstyle def}{=} \lambda W. \{(\mathit{reg}, \mathit{h}) \mid$$

- the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

$$\mathcal{O} \stackrel{\text{\tiny def}}{=} \lambda W. \{ (reg, h) \mid (\forall h'. (reg, h) \rightarrow^* (halted, h') \\ \Rightarrow \exists W' \supseteq W. h' : W') \lor$$

- the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

$$\mathcal{O} \stackrel{\text{def}}{=} \lambda W. \{ (reg, h) \mid (\forall h'. (reg, h) \rightarrow^* (halted, h') \\ \Rightarrow \exists W' \sqsubseteq W. h' : W') \lor \\ (reg, h) \Downarrow \lor$$

- the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

$$\mathcal{O} \stackrel{\text{def}}{=} \lambda W. \{ (reg, h) \mid (\forall h'. (reg, h) \rightarrow^* (halted, h'))$$

$$\Rightarrow \exists W' \supseteq W. h' : W') \lor$$

$$(reg, h) \Downarrow \lor$$

$$(reg, h) \rightarrow^* failed \}$$

Logical Relation - Observation relation

Property

- the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

$$\mathcal{O} \stackrel{\text{def}}{=} \lambda W. \{ (reg, h) \mid (\forall h'. (reg, h) \rightarrow^* (halted, h') \\ \Rightarrow \exists W' \supseteq W. h' : W') \lor \\ (reg, h) \Downarrow \lor \\ (reg, h) \rightarrow^* failed \}$$

Logical Relation - Observation relation

Property

- the execution will either
 - diverge,
 - end up in the failed configuration, or
 - halt where the heap still satisfies the invariants

$$\mathcal{O} \stackrel{\text{\tiny def}}{=} \lambda W. \{ (reg, h) \mid (\forall h'. (reg, h) \rightarrow^* (halted, h') \\ \Rightarrow \exists W' \supseteq W. h' : W') \}$$

Logical Relation

The property of this logical relation

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge,
 - end up in the *failed* configuration, or
 - halt where the heap still satisfies the invariants

Logical Relation

The property of this logical relation

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either
 - diverge,
 - end up in the *failed* configuration, or
 - halt where the heap still satisfies the invariants

- Any capability such that
 - ▶ when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - ▶ the execution will either ...

$$\mathcal{E} \stackrel{\scriptscriptstyle def}{=} \lambda W. \{c \mid$$

- Any capability such that
 - when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either ...

$$\mathcal{E} \stackrel{\text{\tiny def}}{=} \lambda W. \{c \mid \forall reg \in \mathcal{R}(W).$$

- Any capability such that
 - ▶ when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either ...

$$\mathcal{E} \stackrel{\textit{def}}{=} \lambda W. \{c \mid \forall reg \in \mathcal{R}(W). \ \forall h : W.$$

- Any capability such that
 - ▶ when executed in a "well-behaved" register-file, and
 - a heap that satisfies certain invariants, then
 - the execution will either ...

"Well-behaved" register-file

$$\mathcal{R} \stackrel{\text{\tiny def}}{=} \lambda W. \{ \textit{reg} \mid$$

"Well-behaved" register-file

▶ All registers but the pc-register

$$\mathcal{R} \stackrel{\text{def}}{=} \lambda W. \{ reg \mid \forall r \in \text{RegisterName} \setminus \{ pc \}.$$

"Well-behaved" register-file

- ▶ All registers but the pc-register
 - $lackbox{pc}$ was overwritten in the ${\mathcal E}$ anyway

$$\mathcal{R} \stackrel{\text{def}}{=} \lambda W. \{ reg \mid \forall r \in \text{RegisterName} \setminus \{ pc \}.$$

"Well-behaved" register-file

- All registers but the pc-register
 - $lackbox{pc}$ was overwritten in the ${\cal E}$ anyway
- should contain a "well-behaved" word

$$\mathcal{R} \stackrel{\text{def}}{=} \lambda W. \{ reg \mid \forall r \in \text{RegisterName} \setminus \{ \text{pc} \}.$$

$$reg(r) \in \mathcal{V}(W) \}$$

```
\mathcal{V} \stackrel{\text{def}}{=} \lambda \ W. \ \{i \mid i \in \mathbb{Z}\} \cup
                  \{(o, base, end, a)\} \cup
                  \{(ro, base, end, a) \mid
                  \{(rw, base, end, a) \mid
                  \{(rx, base, end, a) \mid
                  \{(e, base, end, a) \mid
                  \{(rwx, base, end, a) \mid
```

```
}U
 }U
    \cup
```

```
\mathcal{V} \stackrel{\text{def}}{=} \lambda \ W. \ \{i \mid i \in \mathbb{Z}\} \cup
               \{(o, base, end, a)\} \cup
               \{(ro, base, end, a) \mid readCondition(base, end, W)\} \cup
               \{(rw, base, end, a) \mid readCondition(base, end, W) \land \}
                                                                                         }∪
               \{(rx, base, end, a) \mid readCondition(base, end, W) \land \}
                                                                                           \cup
               \{(e, base, end, a) \mid
               \{(rwx, base, end, a) \mid readCondition(base, end, W) \land \}
```

```
\mathcal{V} \stackrel{\text{def}}{=} \lambda \ W. \ \{i \mid i \in \mathbb{Z}\} \cup
               \{(o, base, end, a)\} \cup
               \{(ro, base, end, a) \mid readCondition(base, end, W)\} \cup
               \{(rw, base, end, a) \mid readCondition(base, end, W) \land \}
                                           writeCondition(base, end, W)}\cup
               \{(rx, base, end, a) \mid readCondition(base, end, W) \land \}
                                                                                       \cup
               \{(e, base, end, a) \mid
               \{(rwx, base, end, a) \mid readCondition(base, end, W) \land \}
                                             writeCondition(base, end, W)\land
```

```
\mathcal{V} \stackrel{\text{\tiny def}}{=} \lambda \ W. \ \{i \mid i \in \mathbb{Z}\} \cup
              \{(o, base, end, a)\} \cup
              \{(ro, base, end, a) \mid readCondition(base, end, W)\} \cup
              \{(rw, base, end, a) \mid readCondition(base, end, W) \land \}
                                          writeCondition(base, end, W)}\cup
              \{(rx, base, end, a) \mid readCondition(base, end, W) \land \}
                                         executeCondition(base, end, W)}\cup
              \{(e, base, end, a) \mid
              \{(rwx, base, end, a) \mid readCondition(base, end, W) \land \}
                                           writeCondition(base, end, W)\land
                                           executeCondition(base, end, W)
```

```
\mathcal{V} \stackrel{\text{\tiny def}}{=} \lambda \ W. \ \{i \mid i \in \mathbb{Z}\} \cup
              \{(o, base, end, a)\} \cup
              \{(ro, base, end, a) \mid readCondition(base, end, W)\} \cup
              \{(rw, base, end, a) \mid readCondition(base, end, W) \land \}
                                         writeCondition(base, end, W)}\cup
              \{(rx, base, end, a) \mid readCondition(base, end, W) \land \}
                                        executeCondition(base, end, W)}\cup
              \{(e, base, end, a) \mid enterCondition(base, end, a, W) \cup \}
              \{(rwx, base, end, a) \mid readCondition(base, end, W) \land \}
                                           writeCondition(base, end, W)\land
                                           executeCondition(base, end, W)
```

Execution condition

$$executeCondition(base, end, W) \stackrel{def}{=}$$

Execution condition

▶ May be used at any point in the future

$$executeCondition(base, end, W) \stackrel{def}{=} VW' \supseteq W.$$

Execution condition

- May be used at any point in the future
- ► Can be executed from any address in the range of authority

```
executeCondition(base, end, W) \stackrel{\text{def}}{=} \forall W' \supseteq W. \forall a \in [base, end].
```

Execution condition

- May be used at any point in the future
- ► Can be executed from any address in the range of authority
- ▶ Should produce a "well-behaved" result, i.e., it should be in the \mathcal{E} -relation

```
executeCondition(base, end, W) \stackrel{\text{def}}{=} \forall W' \supseteq W. \forall a \in [base, end]. (rx, base, end, a) \in \mathcal{E}(W')
```

Enter condition

 $enterCondition(base, end, a, W) \stackrel{def}{=}$

Enter condition

May be used at any point in the future

enterCondition(base, end, a, W)
$$\stackrel{\text{def}}{=}$$
 $\forall W' \supseteq W$.

Enter condition

- May be used at any point in the future
- Can only be executed from the specified address

enterCondition(base, end, a, W)
$$\stackrel{\text{def}}{=}$$
 $\forall W' \supseteq W$.

Enter condition

- May be used at any point in the future
- Can only be executed from the specified address
- ▶ Should produce a "well-behaved" result, i.e., it should be in the \mathcal{E} -relation

Read condition

World models heap, so it describes what we might read

 $readCondition(base, end, W) \stackrel{def}{=}$

Read condition

- World models heap, so it describes what we might read
- Some region should govern the part of the heap we can read from

readCondition(base, end, W) $\stackrel{\text{def}}{=}$ $\exists r \in \text{RegionName}.$

Read condition

- World models heap, so it describes what we might read
- Some region should govern the part of the heap we can read from
- ▶ The region may govern a larger part of the heap

```
readCondition(base, end, W) \stackrel{def}{=} 
\exists r \in \text{RegionName}.
\exists [base', end'] \supseteq [base, end].
```

Read condition

lacktriangle The region should be subset of the standard region $\iota_{\mathit{base}',\mathit{end}'}$

```
readCondition(base, end, W) \stackrel{def}{=} 

\exists r \in \text{RegionName}.

\exists [base', end'] \supseteq [base, end].

W(r) \subseteq \iota_{base',end'}
```

Read condition

lacktriangle The region should be subset of the standard region $\iota_{\mathit{base}',\mathit{end}'}$

readCondition(base, end,
$$W$$
) $\stackrel{\text{def}}{=}$

$$\exists r \in \text{RegionName}.$$

$$\exists [base', end'] \supseteq [base, end].$$

$$W(r) \subseteq \iota_{base',end'}$$

 $ightharpoonup \iota_{base',end'}$ is a standard region that requires

Read condition

lacktriangle The region should be subset of the standard region $\iota_{\mathit{base}',\mathit{end}'}$

```
readCondition(base, end, W) \stackrel{\text{def}}{=} \exists r \in \text{RegionName}. \exists [base', end'] \supseteq [base, end]. W(r) \subseteq \iota_{base',end'}
```

- $\iota_{base',end'}$ is a standard region that requires
 - ▶ Range of heap segment to be [base', end']

Read condition

▶ The region should be subset of the standard region $\iota_{\mathit{base}',\mathit{end}'}$

```
readCondition(base, end, W) \stackrel{def}{=} 

\exists r \in \text{RegionName}.

\exists [base', end'] \supseteq [base, end].

W(r) \subseteq \iota_{base',end'}
```

- $ightharpoonup \iota_{base',end'}$ is a standard region that requires
 - Range of heap segment to be [base', end']
 - lacktriangle All the words in the heap segment should be in the ${\cal V}$ -relation

Read condition

- ▶ The region should be subset of the standard region $\iota_{\textit{base}',\textit{end}'}$
- ► Intuition:
 - If untrusted code got this capability, then it should only be able to read "well-behaved" words.

$$readCondition(base, end, W) \stackrel{def}{=}$$

 $\exists r \in \text{RegionName}.$
 $\exists [base', end'] \supseteq [base, end].$
 $W(r) \subseteq \iota_{base',end'}$

- $\triangleright \iota_{base',end'}$ is a standard region that requires
 - ▶ Range of heap segment to be [base', end']
 - ightharpoonup All the words in the heap segment should be in the ${\cal V}$ -relation

Write condition

World should describe what we are allowed write

$$writeCondition(base, end, W) \stackrel{def}{=}$$

- $ightharpoonup \iota_{\mathit{base}',\mathit{end}'}$ is a standard region that requires
 - Range of heap segment to be [base', end']
 - lacktriangle All the words in the heap segment should be in the ${\cal V}$ -relation

Write condition

- World should describe what we are allowed write
- ▶ Some region governs the part of the heap we may write to

```
writeCondition(base, end, W) \stackrel{def}{=}

\exists r \in \text{RegionName}.

\exists [base', end'] \supseteq [base, end].
```

- $\triangleright \iota_{base',end'}$ is a standard region that requires
 - ▶ Range of heap segment to be [base', end']
 - ightharpoonup All the words in the heap segment should be in the \mathcal{V} -relation

Write condition

lacktriangle The region should be *superset* of the standard region $\iota_{\mathit{base}',\mathit{end}'}$

```
writeCondition(base, end, W) \stackrel{\text{def}}{=}

\exists r \in \text{RegionName}.

\exists [base', end'] \supseteq [base, end].

W(r) \supseteq \iota_{base',end'}
```

- $\triangleright \iota_{base',end'}$ is a standard region that requires
 - ▶ Range of heap segment to be [base', end']
 - lacktriangle All the words in the heap segment should be in the ${\cal V}$ -relation

Logical Relation - Read and write conditions

Write condition

- ▶ The region should be *superset* of the standard region $\iota_{base',end'}$
- ► Intuition:
 - If untrusted code got this capability, then it can at least write something well-behaved, but also other things.

writeCondition(base, end, W)
$$\stackrel{\text{def}}{=}$$

 $\exists r \in \text{RegionName}.$
 $\exists [base', end'] \supseteq [base, end].$
 $W(r) \supseteq \iota_{base',end'}$

- $\triangleright \iota_{base',end'}$ is a standard region that requires
 - ▶ Range of heap segment to be [base', end']
 - ightharpoonup All the words in the heap segment should be in the ${\cal V}$ -relation

Lemma (FTLR)

For all $W \in World$ and $c \in Caps$,

$$c \in \mathcal{E}(W)$$
.

▶ The pc-register can be accessed like any other register

Lemma (FTLR)

For all $W \in \text{World}$ and $c \in \text{Caps}$,

$$c \in \mathcal{E}(W)$$
.

- ▶ The pc-register can be accessed like any other register
- Capability must behave when used for read/write

```
Lemma (FTLR)
For all W \in \text{World}, perm \in \text{Perm}, and base, end, a \in \text{Addr},
if
            perm = rx and readCondition(W, base, end),
or
          perm = rwx and read-/writeCond(W, base, end)
then
                     (perm, base, end, a) \in \mathcal{E}(W).
```

Road map

Capability Machine

Formalisation

Example program

Logical Relation

Example revisited

Current work

Lemma

Given any program adv, f(adv) either runs forever, ends up in the failed configuration, or halts in a configuration where the assertion flag is 0.

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

Proof sketch

Assuming adv is only code and given as enter capability

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Assuming adv is only code and given as enter capability
- Run program until just after the jump to adv

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Assuming adv is only code and given as enter capability
- Run program until just after the jump to adv
- Define world with the following regions:

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Assuming adv is only code and given as enter capability
- Run program until just after the jump to adv
- Define world with the following regions:
 - ▶ f code remains unchanged

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Assuming adv is only code and given as enter capability
- Run program until just after the jump to adv
- Define world with the following regions:
 - f code remains unchanged
 - ▶ 1 remains 1

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Assuming adv is only code and given as enter capability
- Run program until just after the jump to adv
- Define world with the following regions:
 - f code remains unchanged
 - ▶ 1 remains 1
 - standard region governs adv

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Assuming adv is only code and given as enter capability
- Run program until just after the jump to adv
- Define world with the following regions:
 - f code remains unchanged
 - ▶ 1 remains 1
 - standard region governs adv
 - assertion flag is 0

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Assuming adv is only code and given as enter capability
- Run program until just after the jump to adv
- Define world with the following regions:
 - f code remains unchanged
 - ▶ 1 remains 1
 - standard region governs adv
 - assertion flag is 0
- Use FTLR on adv capability

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

Proof sketch (continued)

► Use FTLR on adv capability

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Use FTLR on adv capability
- ▶ By design, the heap satisfies the world

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Use FTLR on adv capability
- By design, the heap satisfies the world
- ▶ Register-file in *R*-relation:

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Use FTLR on adv capability
- ▶ By design, the heap satisfies the world
- ▶ Register-file in *R*-relation:
 - ▶ All registers but two contain 0, so trivial.

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Use FTLR on adv capability
- By design, the heap satisfies the world
- ▶ Register-file in *R*-relation:
 - All registers but two contain 0, so trivial.
 - ▶ One is pc-register, so we don't care about it.

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- Use FTLR on adv capability
- By design, the heap satisfies the world
- ▶ Register-file in *R*-relation:
 - All registers but two contain 0, so trivial.
 - ▶ One is pc-register, so we don't care about it.
 - The other is the continuation (passed as enter capability), so enterCondition must hold

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- World highlights:
 - ▶ f code remains unchanged
 - ▶ 1 remains 1
 - assertion flag is 0
- ▶ The continuation satisfies *enterCondition*:

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- World highlights:
 - ▶ f code remains unchanged
 - ▶ 1 remains 1
 - assertion flag is 0
- The continuation satisfies enterCondition:
 - lacktriangle In a future world, the continuation must be in ${\mathcal E}$

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- World highlights:
 - ▶ f code remains unchanged
 - ▶ 1 remains 1
 - assertion flag is 0
- ▶ The continuation satisfies *enterCondition*:
 - ightharpoonup In a future world, the continuation must be in $\mathcal E$
 - Executing from continuation, 1 is still 1, so assertion does not fail.

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- World highlights:
 - ▶ f code remains unchanged
 - ▶ 1 remains 1
 - assertion flag is 0
- ▶ The continuation satisfies *enterCondition*:
 - \blacktriangleright In a future world, the continuation must be in $\cal E$
 - Executing from continuation, 1 is still 1, so assertion does not fail.
 - Execution halts and assertion flag is 0

Proof sketch (continued)

▶ Backtracking a lot, we have just shown that the register-file was in the \mathcal{R} -relation

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

- ▶ Backtracking a lot, we have just shown that the register-file was in the \mathcal{R} -relation
- ▶ By $adv \in \mathcal{E}$: execution diverges, fails, or terminates without the assertion failing.

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

Lemma

Given any program adv, f(adv) either runs forever, ends up in the failed configuration, or halts in a configuration where the assertion flag is 0.

```
let f = fun adv =>
            let l = 1 in
            adv();
            assert (l == 1)
```

Road map

Capability Machine

Formalisation

Example program

Logical Relation

Example revisited

Current work

```
let f = fun adv =>
  let 1 = 0 in
  adv();
  assert(1 == 0);
  l := 1;
  adv()
```

```
let f = fun adv =>
  let l = 0 in
  adv();
  assert(l == 0);
  l := 1;
  adv()
```

► Assuming standard calling convention, can we show that the assertion never fails?

```
let f = fun adv =>
  let l = 0 in
  adv();
  assert(l == 0);
  l := 1;
  adv()
```

- ► Assuming standard calling convention, can we show that the assertion never fails?
 - ► No,

```
let f = fun adv =>
  let l = 0 in
  adv();
  assert(l == 0);
  l := 1;
  adv()
```

- Assuming standard calling convention, can we show that the assertion never fails?
 - ▶ No, adv may save the continuation from the first call

```
let f = fun adv =>
  let l = 0 in
  adv();
  assert(l == 0);
  l := 1;
  adv()
```

- Assuming standard calling convention, can we show that the assertion never fails?
 - No, adv may save the continuation from the first call

Local capabilities

```
let f = fun adv =>
  let l = 0 in
  adv();
  assert(l == 0);
  l := 1;
  adv()
```

- Assuming standard calling convention, can we show that the assertion never fails?
 - No, adv may save the continuation from the first call

Local capabilities

local/global capabilities

```
let f = fun adv =>
  let l = 0 in
  adv();
  assert(l == 0);
  l := 1;
  adv()
```

- Assuming standard calling convention, can we show that the assertion never fails?
 - No, adv may save the continuation from the first call

Local capabilities

- local/global capabilities
- permit write local capabilities

```
let f = fun adv =>
  let l = 0 in
  adv();
  assert(l == 0);
  l := 1;
  adv()
```

- Assuming standard calling convention, can we show that the assertion never fails?
 - No, adv may save the continuation from the first call

Local capabilities

- local/global capabilities
- permit write local capabilities
- Local capabilities can only be stored through permit write local capabilities

Questions?

References

[1] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton, and Michael Roe. The cheri capability model: Revisiting risc in an age of risk. In *International Symposium on Computer Architecuture*, pages 457–468, Piscataway, NJ, USA, 2014. IEEE Press.