$\begin{array}{c} \text{IN310} \\ \text{Correction du contrôle continu du vendredi} \\ 28/10/22 \end{array}$

Exercice 1

Q.1 $(A75E)_{16} = (1011\ 0111\ 0101\ 1110)_2 = (10\ 11\ 01\ 11\ 01\ 01\ 11\ 10)_2 = (22131132)_4.$

On peut aussi passer par une écriture avec somme et puissances de 16 puis faire apparaître les puissances de 4 (mais c'est beaucoup plus long !) $(A75E)_{16} = 10 \times 16^3 + 7 \times 16^2 + 5 \times 16 + 14$. Or $16 = 4^2$, $10 = 2 \times 4 + 2$, 7 = 4 + 3, 5 = 4 + 1 et $14 = 3 \times 4 + 2$. D'où

$$(A75E)_{16} = (2 \times 4 + 2) \times 4^{3 \times 2} + (4 + 3) \times 4^{2 \times 2} + (4 + 1) \times 4^{2} + (3 \times 4 + 2)$$

$$(A75E)_{16} = 2 \times 4^{1+6} + 2 \times 4^{6} + 1 \times 4^{4+1} + 3 \times 4^{4} + 1 \times 4^{2+1} + 1 \times 4^{2} + 3 \times 4 + 2$$

$$(A75E)_{16} = 2 \times 4^{7} + 2 \times 4^{6} + 1 \times 4^{5} + 3 \times 4^{4} + 1 \times 4^{3} + 1 \times 4^{2} + 3 \times 4 + 2$$

$$(A75E)_{16} = (22131132)_{4}$$

Q.2 On utilise ici la méthode générique vue en cours et en TD : divisions euclidiennes et lecture des restes dans le bon sens.

$$7821 = 2607 \times 3 + 0$$

$$2607 = 869 \times 3 + 0$$

$$869 = 289 \times 3 + 2$$

$$289 = 96 \times 3 + 1$$

$$96 = 32 \times 3 + 0$$

$$32 = 10 \times 3 + 2$$

$$10 = 3 \times 3 + 1$$

$$3 = 1 \times 3 + 0$$

$$1 = 0 \times 3 + 1$$

$$0 = 0 \times 3 + 0$$

 $(7821)_{10} = (101201200)_3$

Exercice 2

Q.1 Le calcul d'une addition en base b se fait comme pour la base 10, il faut seulement prendre en compte la retenue lorsqu'on dépasse b.

$$(73054)_8 + (66427)_8 = (161503)_8$$

Q.2 En base b, la multiplication de a par une puissance de b, par exemple b^5 s'observe par un décalage de l'écriture de a en base b de 5 positions vers la gauche (et on comble les 5 positions vides par des 0). On peut évidemment poser la multiplication, mais c'est plus long... $(765)_8 \times (8^5)_{10} = (76500000)_8$.

Exercice 3

Pour tout $n \ge 1$, on note P(n) la propriété suivante: " $9^n - 5^n$ est divisible par 4". Montrons par récurrence que P(n) est vérifiée pour tout $n \ge 1$.

Initialisation Pour commencer, montrons que la propriété est vérifiée au premier rang, *i.e.*, montrons que P(1) est vérifiée¹.

$$9^1 - 5^1 = 4$$
 et $4 \mid 4$ donc $P(1)$ est bien vérifiée.

Hérédité Montrons désormais la propriété suivante :

"Pour tout $n \ge 1$, **si** P(n) est vérifiée, **alors** P(n+1) est aussi vérifiée". Soit $n \ge 1$. Supposons la propriété P(n) vérifiée. Montrons alors que P(n+1) l'est aussi.

$$9^{n+1} - 5^{n+1} = 9 \times 9^n - 5 \times 5^n = (5+4) \times 9^n - 5 \times 5^n = 5(9^n - 5^n) + 4 \times 9^n.$$

Or, par hypothèse (de récurrence), il existe $k \in \mathbb{Z}$ tel que $9^n - 5^n = 4k$. On en déduit donc:

$$9^{n+1} - 5^{n+1} = 5(9^n - 5^n) + 4 \times 9^n = 5 \times 4k + 4 \times 9^n = 4(5k + 9^n)$$

Ainsi, $9^{n-1} - 5^{n+1}$ est bien divisible par 4 et P(n+1) est vérifiée.

On a donc montré que, quelque soit $n \ge 1$, si P(n) est vérifiée, alors P(n+1) est aussi vérifiée.

¹Ici on veut montrer une propriété pour tout entier supérieur ou égal à 1, le premier d'entre eux est 1, pas 0 !

²Comme dans la très grande majorité des cas, pour prouver une propriété commençant par un "pour tout", on commence par introduire un élément **quelconque**.

³Il s'agit ici d'une preuve directe, la manière la plus "naturelle" de montrer $A \implies B$, c'est bien de supposer A et de montrer que B est alors vérifiée.

Conclusion Puisque P(1) est vérifée et que " $P(n) \implies P(n+1) \ \forall n \ge 1$ " est aussi vérifiée, on en déduit, par un raisonnement par récurrence, que P(n) est vérifiée pour tout $n \ge 1$.

Exercice 4

Pour tout couple $(a, b) \in \mathbb{R} \times \mathbb{R}$, on introduit la fonction $f_{a,b} \colon \mathbb{R} \to \mathbb{R}$ définie par $\forall x \in \mathbb{R}$, $f_{a,b}(x) = ax + b$. (Il s'agit donc des fonctions affines.) L'objectif est de déterminer toutes les valeurs de (a, b) pour lesquelles la fonction $f_{a,b}$ est injective (resp. surjective). Il faut donc vérifier **toutes les couples** (a, b).

Injectivité Soit $(a, b) \in \mathbb{R} \times \mathbb{R}$.

Supposons que a=0. Soit $x \in \mathbb{R}$. Alors $f_{a,b}(x)=b$. On observe que l'image de x est toujours égale à b, (qui est **fixée** avant x). Autrement dit, si a=0, alors la fonction $f_{a,b}$ est une fonction constante. En particulier, on observe que $f_{a,b}(0)=b=f_{a,b}(1)$ mais $0 \neq 1$, donc la fonction n'est pas injective. On vient donc de montrer que si a=0, alors $f_{a,b}$ n'est pas injective.

Supposons désormais que $a \neq 0$. Soient $x, x' \in \mathbb{R}$. Supposons que $f_{a,b}(x) = f_{a,b}(x')$. Alors ax + b = ax' + b. On peut alors soustraire b des deux côtés de l'équation, et on obtient alors ax = ax'. Mais par hypothèse, $a \neq 0$, on peut donc diviser des deux côtés de l'équation par a et on observe alors que x = x'. On vient donc de montrer que $f_{a,b}$ est injective.

<u>Finalement</u>, on a complètement caractérisé (et prouvé) la (non-)injectivité des fonctions $f_{a,b}$: si a=0 alors $f_{a,b}$ n'est pas injective. En revanche, si $a \neq 0$, $f_{a,b}$ est injective.

Surjectivité Soit $(a, b) \in \mathbb{R} \times \mathbb{R}$.

Supposons que a=0. Alors la fonction $f_{a,b}$ est une fonction constante (prouvée dans la partie **Injectivité**). En particulier, $f_{a,b}$ ne prend qu'une seule valeur : b. Soit $y \in \mathbb{R}, y \neq b$ (par exemple y=b-1). Alors pour tout $x \in \mathbb{R}, f_{a,b}(x) = b \neq y$. Donc y n'admet aucun antécédent par $f_{a,b}$. On vient donc de montrer que si a=0, alors $f_{a,b}$ n'est pas surjective.

Supposons désormais que $a \neq 0$. Soit $y \in \mathbb{R}$. On considère l'équation suivante, d'inconnue x.

$$y = ax + b$$

Puisque $a \neq 0$, on peut réécrire cette équation :

$$y = ax + b \iff y - b = ax \iff \frac{y - b}{a} = x$$

On observe alors que cette équation admet une solution x, à savoir, $x = \frac{y-b}{a}$. Autrement dit, y admet $\frac{y-b}{a}$ comme antécédent par $f_{a,b}$. y est ici un élément quelconque de \mathbb{R} : on vient finalement de montrer la surjectivité de $f_{a,b}$, dans le cas où $a \neq 0$.

<u>Finalement</u>, on a complètement caractérisé (et prouvé) la surjectivité des fonctions $f_{a,b}$: si a=0 alors $f_{a,b}$ n'est pas surjective. En revanche, si $a \neq 0$, $f_{a,b}$ est surjective.

Exercice 5

On considère les relations $\mathcal{R}, \mathcal{S}, \mathcal{T}$ (définies ci-dessous) sur l'ensemble A, $A := \{0, 1, 2, 3\}$.

- a) $\mathcal{R} = \{(0,0), (1,1), (2,2), (3,3)\}$
 - Réfléxivité : \mathcal{R} est bien réfléxive : en effet les éléments de A sont 0, 1, 2, et 3 et les éléments (0,0),(1,1),(2,2) et (3,3) appartiennent bien à \mathcal{R} .
 - Symétrie : \mathcal{R} est bien symétrique : en effet soit $(x,y) \in \mathcal{R}$. Alors x = y. On en déduit donc immédiatement que $(y,x) = (x,y) \in \mathcal{R}$.
 - Anti-symétrie : \mathcal{R} est anti-symétrique : puisque tous les éléments de \mathcal{R} sont de la forme $(x, x), x \in A$, il n'existe aucun élément de la forme $(x, y), x, y \in A, x \neq y$ dans \mathcal{R} , et donc il n'existe en particulier pas de contre-exemple à l'anti-symétrie.
 - Transitivité: \mathcal{R} est bien transitive: en effet, soient $(x, y), (y, z) \in \mathcal{R}$. Alors d'après la structure de \mathcal{R} , y = z. Donc, $(x, z) = (x, y) \in \mathcal{R}$.
 - Totalité : \mathcal{R} n'est pas totale : en effet, $0, 1 \in A$ mais $(0, 1) \notin \mathcal{R}$ et $(1, 0) \notin \mathcal{R}$.
- **b)** $S = \{(0,0), (0,1), (1,0), (1,1), (1,0), (2,3), (3,2)\}$
 - Réfléxivité : S n'est pas réfléxive : en effet $2 \in A$ mais $(2,2) \notin S$.
 - Symétrie : S est bien symétrique : en effet soit $(x,y) \in \mathcal{R}$. Si x = y, on en déduit immédiatement que $(y,x) = (x,y) \in \mathcal{R}$ (c'est le cas pour (0,0) et (1,1)). Sinon $x \neq y$. Dans ce cas $(x,y) \in \{(0,1),(1,0),(2,3),(3,2)\}$. On observe alors, par disjonction des cas que:
 - $\text{ si } x = 0, \text{ alors } (x, y) = (0, 1) \text{ et } (1, 0) \in \mathcal{S}.$
 - si x = 1, alors (x, y) = (1, 0) et $(0, 1) \in \mathcal{S}$.
 - si x = 2, alors (x, y) = (2, 3) et $(3, 2) \in \mathcal{S}$.
 - $\text{ si } x = 3, \text{ alors } (x, y) = (3, 2) \text{ et } (2, 3) \in \mathcal{S}.$

Donc S est symétrique.

- Anti-symétrie : S n'est pas anti-symétrique : en effet $(1,0) \in S$, $(0,1) \in S$ mais $0 \neq 1$.
- Transitivité : S n'est pas transitive : en effet, $(2,3) \in S$, $(3,2) \in S$ mais $(2,2) \notin S$.
- Totalité : S n'est pas totale : en effet, $0, 2 \in A$ mais $(0, 2) \notin S$ et $(2, 0) \notin S$.
- c) $\mathcal{T} = \{(1,0), (1,3), (2,2), (3,0), (3,1), (3,2)\}$
 - Réfléxivité : \mathcal{T} n'est pas réfléxive : en effet $0 \in A$ mais $(0,0) \notin \mathcal{T}$.
 - Symétrie : \mathcal{T} n'est pas symétrique : en effet $(1,0) \in \mathcal{T}$ mais $(0,1) \notin \mathcal{T}$.
 - Anti-symétrie : \mathcal{T} n'est pas anti-symétrique : en effet $(1,3) \in \mathcal{T}$, $(3,1) \in \mathcal{T}$ mais $1 \neq 3$.
 - Transitivité : \mathcal{T} n'est pas transitive : en effet, $(1,3) \in \mathcal{T}$, $(3,2) \in \mathcal{T}$ mais $(1,2) \notin \mathcal{T}$.
 - Totalité : \mathcal{T} n'est pas totale : en effet, $1, 2 \in A$ mais $(1, 2) \notin \mathcal{T}$ et $(2, 1) \notin \mathcal{T}$.

Exercice 6

- a) On considère \mathcal{R} la relation sur \mathbb{R} définie par $x\mathcal{R}y \iff xy \neq 0$.
 - Réfléxivité : \mathcal{R} n'est pas réfléxive : en effet $0 \in \mathbb{R}$ mais $0 \times 0 = 0$ donc $0\mathcal{R}0$.
 - Symétrie : \mathcal{R} est symétrique : en effet soit $(x,y) \in \mathbb{R} \times \mathbb{R}$ tel que $x\mathcal{R}y$. Alors $xy \neq 0$. Or xy = yx donc $yx \neq 0$, d'où $y\mathcal{R}x$.
 - Transitivité: \mathcal{R} est transitive: en effet soit $(x,y),(y,z) \in \mathbb{R} \times \mathbb{R}$ tel que $x\mathcal{R}y$ et $y\mathcal{R}z$. Alors $xy \neq 0$ et $yz \neq 0$. On en déduit donc que $x \neq 0, y \neq 0$ et $y \neq 0, z \neq 0$. En particulier, $x \neq 0$ et $z \neq 0$ donc $xz \neq 0$, d'où $x\mathcal{R}z$.
- b) On considère S la relation sur \mathbb{Z} définie par $aSb \iff a-b$ est divisible par 2 ou par 3.
 - Réfléxivité : S est réfléxive : en effet, soit $a \in \mathbb{Z}$. Alors a a = 0 et 0 est divisible par $2 : 0 = 2 \times 0$.

- Symétrie : S est symétrique : en effet soit $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ tel que aSb. Alors il existe $k \in \mathbb{Z}$ tel que a b = 2k ou tel que a b = 3k. Or b a = -(a b), donc b a = 2(-k) ou b a = 3(-k). On en déduit donc que b a est divisible par 2 ou par 3 et donc bSa.
- Transitivité : S n'est pas transitive.

En effet, prenons a=5, b=2, c=4. a-b=3 est divisible par 3 donc $a\mathcal{S}b$. $b-c=-2=2\times(-1)$ est divisible par 2 donc $b\mathcal{S}c$. Mais a-c=1 et 1 n'est ni divisible par 2, ni divisible par 3. donc $a\mathcal{S}c$.