INTRODUCTION TO FUNCTIONAL EQUATION

Problem 1.

- a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x f(x)) = x f(x) for all x. Prove that f(0) = 0 and x = 0 is the unique solution of equation f(x) = 0.
- b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $f(x-1)f(y^2) = y(f(xy) f(y))$ for all x, y and $f(2022) \neq 0$, calculate f(2022).

Problem 2.

- a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(xy) = xf(y) + yf(x) and $f(x^2) = f(f(x))$ for all $x, y \in \mathbb{R}$. Prove that f(x) = 0 for all x.
- b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) and $2f(x)^2 = f(x^2) + xf(x)$ for all x. It is given that $f(2022) \neq 0$, prove that f(x) = x for all x.

Problem 3.

a) Find all functions $f: \mathbb{R}^+ \to \mathbb{R}$ such that $f(1) = \frac{1}{2}$ and

$$f(xy) = f(x)f(4/y) + f(y)f(4/x)$$
 for all $x, y > 0$.

b) Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x+y) - f(x-y) = 2y(3x^2 + y^2)$$
 for all $x, y \in \mathbb{R}$.

Problem 4. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

- a) $f(y^2) = f(x+y)f(y-x) + x^2$ for all $x, y \in \mathbb{R}$.
- b) $f(x^2 + xy + f(y)) = f(x)^2 + xf(y) + y$ for all $x, y \in \mathbb{R}$.

Problem 5. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

- a) $f(x^2 + f(y)) = xf(x) + y$ for all $x, y \in \mathbb{R}$.
- b) $f(x^2 + xy) = f(x)f(y) + yf(x) + xf(x+y)$ for all $x, y \in \mathbb{R}$.

Problem 6. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

- a) f(f(x+y)) = f(x+y) + f(x)f(y) xy for all $x, y \in \mathbb{R}$.
- a') f(f(x-y)) = f(x) f(y) + f(x)f(y) xy for all $x, y \in \mathbb{R}$.
- b) $f((x+y)^2) = f(x)f(x+2y) + yf(x)$ for all $x, y \in \mathbb{R}$.
- b') $f((x+y)^2) = f(x)f(x+2y) + yf(y)$ for all $x, y \in \mathbb{R}$.

Problem 7*. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(0) = 0 and

$$2f(-\frac{1}{2}xy+f(x+y))=xf(y)+yf(x) \text{ for all } x,y\in\mathbb{R}.$$

Prove that f(-f(2)) = f(2).