Worksheet 08

1 Vector Valued Functions

Definition A vector valued function is a function whose domain is a set of real numbers, and whose range is a set of vectors.

Usually, we borrow the notation of parametric functions to say that $\vec{r}(t)$ is a vector valued function with component functions, f(t), g(t), and h(t), or

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}.$$

Example Find a vector valued function that represents the curve of intersection of the surfaces described by:

$$z = \sqrt{x^2 + y^2}$$
$$y + z = 3$$

Exercise 1. Find a vector valued function that represents the curve of intersection of the surfaces described by:

$$x^2 + y^2 = 9$$

$$y + z = 3$$

Exercise 2. Find a vector valued function that represents the curve of intersection of the surfaces described by:

$$x^2 + y^2 = 4$$

$$z = x^3$$

Exercise 3. Find a vector valued function that represents the curve of intersection of the surfaces described by:

$$y = x^2$$

 $x^2 + 4y^2 + 4z^2 = 16 \text{ for } z \ge 0$

2 Derivatives of Vector Valued Functions

Definition The derivative of a vector valued function, $\vec{r}(t)$, is defined as

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h},$$

if this limit¹ exists.

We say that $\vec{r}'(t_0)$ describes the tangent vector to the curve defined by $\vec{r}(t)$ at the point described by $\vec{r}(t_0)$, provided $\vec{r}'(t_0)$ exists and is non-zero.

Theorem 1. If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}$, where f(t), g(t), and h(t) are differentiable functions, then

$$\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)\vec{i} + g'(t)\vec{j} + h'(t)\vec{k}.$$

The Product Rule

If $\vec{u}(t)$ is a vector valued function, and f(t) is a real valued function, then Theorem 1 and the product rule easily give us that

$$\frac{d}{dt}\left[f(t)\vec{u}(t)\right] = f'(t)\vec{u}(t) + f(t)\vec{u}'(t). \tag{1}$$

Exercise 4. Suppose $\vec{u}(t)$ and $\vec{v}(t)$ are vector valued functions. Which of the following is true?:

$$\frac{d}{dt} \left[\vec{u}(t) \bullet \vec{v}(t) \right] = \left(\vec{u}'(t) \bullet \vec{v}(t) \right) + \left(\vec{u}(t) \bullet \vec{v}'(t) \right) \tag{2}$$

$$\frac{d}{dt} \left[\vec{u}(t) \times \vec{v}(t) \right] = \left(\vec{u}'(t) \times \vec{v}(t) \right) + \left(\vec{u}(t) \times \vec{v}'(t) \right)$$
(3)

Prove your answer is correct.

¹Limits of vector valued functions are defined by taking the limits of the component functions.

3 Definite Integrals

Definition The definite integral of a vector valued function, $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, is defined as

$$\int_{a}^{b} \vec{r}(t)dt = \left(\int_{a}^{b} f(t)dt\right)\vec{i} + \left(\int_{a}^{b} g(t)dt\right)\vec{j} + \left(\int_{a}^{b} h(t)dt\right)\vec{k}.$$
 (4)

The Fundamental Theorem of Calculus then extends naturally to

$$\int_{a}^{b} \vec{r}(t)dt = \vec{R}(t)\Big|_{a}^{b} = \vec{R}(b) - \vec{R}(a),\tag{5}$$

where $\vec{R}(t)$ is any antiderivative of $\vec{r}(t)$.

Exercise 5. Find a parametric equation describing the tangent line to the curve traced out by the vector valued function

$$\vec{r}(t) = \langle t, e^t, 2t - t^2 \rangle,$$

at the point (0,1,0).

Exercise 6. Given the vector valued function

$$\vec{r}(t) = \langle t^2, t\sqrt{t-1}, t\sin(\pi t) \rangle,$$

evaluate

$$\int_{1}^{2} \vec{r}(t)dt$$

Challenge

Exercise 7. If a curve has property that the position vector $\vec{r}(t)$ is always perpendicular to the tangent vector $\vec{r}'(t)$, show that the curve lies on a sphere centered at the origin.