Olympiade Mathématique Belge 2018 - Mini - Eli

Extrait du règlement du concours

Ce questionnaire contient 30 questions; répondez à 5 questions au moins. La plupart des questions sont à choix multiple. Chacune est suivie de réponses désignées par A, B, C, D et E. Chaque question possède une seule réponse correcte. Certaines questions sont sans réponses préformulées. Dans ce cas, la réponse correcte est un nombre entier dans [0;999]. Vous recevez 5 points par réponse correcte, 2 points par abstention et 0 point par réponse fausse.

Le questionnaire éliminatoire 2018

Question 1

 $1 - \left(\frac{1}{2}\right)^2 =$

A: 0

B: $\frac{1}{4}$

 $C: \frac{1}{2}$

D: $\frac{3}{4}$

 $E: \frac{5}{4}$

Question 2

Combien peut-il y avoir au maximum de lundis dans une période de 75 jours consécutifs?

A: 10

B: 11

C: 12

D: 13

E: 15

Question 3 Sans réponse préformulée

Un car peut transporter 62 personnes (en plus du chauffeur). Si une école de 692 élèves et 35 de leurs professeurs doivent partir en excursion, combien faudra-t-il de cars de ce type, au minimum, pour que tous aient une place assise?

Question 4

Une salle de cinéma compte onze rangées de sièges, numérotées de 1 à 11. Les rangées dont le numéro est impair ont 15 sièges chacune, tandis que les rangées dont le numéro est pair ont 16 sièges chacune. Combien y a-t-il de sièges dans le cinéma?

A: 76

B: 165

C: 170

D: 171

E: 186

Question 5

Une grille 3×3 est remplie par des nombres un, deux et trois écrits de trois manières : en chiffres indo-arabes, en chiffres romains et en faces de dés. Dans chaque ligne et dans chaque colonne se trouvent les trois valeurs et les trois écritures. Que contient la case centrale (grisée)?

1	II
	•

A: 2

B: 3

C: 🖸

D: I

E: III

Question 6 Sans réponse préformulée

La somme des chiffres de 2018 est divisible par 11. Combien d'années faudra-t-il attendre pour que cela se reproduise pour la première fois?

Sans réponse préformulée Question 7

Fred ouvre sa tirelire. Il y découvre 11,20€ en pièces de monnaie. Il y a le même nombre de pièces de 1 centime, de 5 centimes et de 10 centimes ; il n'y a pas de pièce d'une autre valeur. Combien y a-t-il de pièces de monnaie de chaque sorte?

Question 8 Sans réponse préformulée

La longueur des arêtes d'un cube est multipliée par 5. Par combien est multiplié son volume?

Question 9

Pierre et Paul fêtent ensemble leurs anniversaires au restaurant avec quelques amis. S'ils divisent l'addition entre tous, la part de chacun est de 30€. Mais à la fin du diner, les amis insistent pour que Pierre et Paul ne paient pas ; chacun des autres paie alors 40 € . Combien de personnes étaient présentes à ce repas, en plus de Pierre et de Paul?

A: 6

B: 8

C: 10

D: 30

E: 40

Question 10

Quel est le double de $2, 3 \cdot 10^4$?

 $A: 4,6 \cdot 10^4$

B: $2, 3 \cdot 10^8$ C: $4, 6 \cdot 10^8$ D: $2, 3 \cdot 20^4$

 $E: 4, 6 \cdot 20^4$

Question 11

Dans le tableau ci-dessous, un nombre dans une case blanche est la somme des nombres situés dans les deux cases blanches les plus proches de la rangée précédente (au-dessus); par exemple, le 9 est la somme de 4 et de 5. Que vaut x?

A: 4

B: 6

C: 7

D: 8

E: 10

Question 12

L'aire du parallélogramme ci-dessous est 6. Que vaut l'aire ombrée?

A: 1 B: 2 C: 3

D: 4

E: Elle dépend des positions

de A et B.

Question 13

Sur une ligne de chemin de fer, la distance entre les villes A et B est de $70 \, km$. Une ville C est située sur la ligne, entre A et B, à $40 \, km$ de A. Si un train, roulant à vitesse constante, est parti de A à 10h07 et arrivé en B à 10h49, à quelle heure est-il passé en C?

A: 10h21

B: 10h24

C: 10h27

D: 10h31

E: 10h35

Question 14

Si m et n désignent des nombres naturels impairs, alors, parmi les nombres suivants, lequel est forcément impair?

A: m+n

 $C: m \cdot n$

E: Aucun des précédents.

B: m-n

D: 3m + 7n

Question 15 Sans réponse préformulée

A un triangle équilatéral de côté 1 sont accolés des trapèzes isocèles dont les côtés non parallèles sont de longueur 1, de manière à former des triangles équilatéraux emboités. Que mesure la grande base du trapèze dont l'aire vaut 21 fois celle du triangle initial?

Question 16

Que vaut ab - (a + b) si a = 7 et b = 11

A: 715

B: 693

C: 634

D: 81

E: 59

Question 17 Sans réponse préformulée

Quel est le plus petit nombre naturel non nul divisible par 8, 12 et 30?

Question 18

Le premier jour, il pleuvait; le marchand de crème galcée a peu vendu. Le deuxième et le troisième jour, il a doublé chaque fois sa vente du jou précédent et, mieux encore, le quatrième jour et le cinquième jour il a chaque fois triplé la vente de la veille. Sa vente du 5^e jour étant de 396 glaces, combien a-t-il vendu de glace sur les cinq jours?

Question 19

Bill change 600 dollars en euros au taux de 1,25 \$ par euro. Ayant annulé son voyage, il reconvertit tous ces euros en dollars au nouveau taux de 1,20 \$ par euro. Combien reçoit-il de dollars?

A: 576

B: 600

C: 625

D: 630

E: 720

Question 20

Quel est l'encadrement correct de la fraction $\frac{3}{7}$?

A:
$$\frac{1}{4} < \frac{3}{7} < \frac{1}{2}$$

B:
$$\frac{1}{3} < \frac{3}{7} < \frac{2}{5}$$

$$A: \ \frac{1}{4} < \frac{3}{7} < \frac{1}{3} \qquad \quad B: \ \frac{1}{3} < \frac{3}{7} < \frac{2}{5} \qquad \quad C: \ \frac{2}{5} < \frac{3}{7} < \frac{1}{2} \qquad \quad D: \ \frac{1}{2} < \frac{3}{7} < \frac{3}{5} \qquad \quad E: \ \frac{3}{5} < \frac{3}{7} < \frac{2}{3}$$

D:
$$\frac{1}{2} < \frac{3}{7} < \frac{3}{5}$$

E:
$$\frac{3}{5} < \frac{3}{7} < \frac{2}{3}$$

Question 21

Si ABCDEF est un hexagone régulier d'aire 60, que vaut l'aire du triangle ACF?

Question 22

Dans l'écriture 17, 3765, la partie surlignée indique la partie périodique de 17, 3765765765... Parmi les nombres suivants, lequel est le plus grand?

B:
$$17,376\overline{5}$$

C:
$$17,37\overline{65}$$

E:
$$17, \overline{3765}$$

Question 23

Quel est le pourcentage d'une réduction unique qui équivaut à des réductions successives de 10% et de 20%?

Question 24

Combien compte de carrés la figure suivante?

A: 18

B: 20

C: 22

D: 31

E: 35

Question 25

Si p est un diviseur premier de 240, alors forcément

A: p divise 30;

C: *p* divise 75;

E: Aucune des réponses

B: *p* divise 48;

D: *p* divise 80;

précédentes.

Question 26 Sans réponse préformulée

Dans figure imprécise suivante, l'angle \widehat{AFD} mesure 94° et les angles \widehat{CIJ} et \widehat{CJI} mesurent 80°. Que mesure, en degrés, $\widehat{FGH} + \widehat{GHI}$?

Question 27

Audrey a aligné vingt pièces de $0,20 \in$ sur une table. Bernard a alors remplacé une pièce sur quatre, à partir de la 4^e , par une pièce de $0,50 \in$. Ensuite, Charlotte a remplacé une pièce sur trois, à partir de la 3^e , par une pièce de $1 \in$. Finalement, David a remplacé une pièce sur six, à partir de la 6^e , par une pièce de $2 \in$. Quel est maintenant le montant total de la rangée de pièces de monnaie?

A: 10,5€

C: 13€

E: Une autre réponse.

B: 12,2€

D: 13,5€

Question 28

Le trapèze ABCD vérifie : $(AB) \parallel (DC)$, AB = AD et DB = BC. Si l'angle \widehat{DAB} mesure 110°, que mesure l'angle \widehat{ABC} ?

 $A: 135^{\circ}$

C: 145°

E: Une autre réponse.

B: 140°

D: 150°

Question 29

Dans la figure suivante, les points partagent les côtés sur lesquels ils se trouvent en segments de mêmes longueurs. L'aire du triangle *ABC* est 180; quelle est celle du triangle gris?

A: 9

B: 18

C: 27

D: 36

E: 45

Question 30

La figure ci-dessous est un rectangle; que vaut p + q?

A: 17

B: 18

C: 20

D: 21

E: 22

Solutions

Solution - Question 1, p. 1

 $A: \frac{3}{4}$

Solution détaillée :

$$1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4}$$

Solution - Question 2, p. 1

B:11

Solution détaillée :

 $75 = 7 \cdot 10 + 5$; 75 jours consécutifs forment 10 semaines et 5 cinq jours; 10 + 1 = 11 lundis au maximum.

Solution – Question 3, p. 1

12

Solution détaillée :

 $(692 + 35) : 62 = 727 : 62 = (682 + 45) : 62 = 11 + \frac{45}{62}$; il faudra donc 12 cars.

Solution - Question 4, p. 1

C:170

Solution détaillée :

 $6 \cdot 15 + 5 \cdot 16 = 90 + 80 = 170$; il y a 170 sièges dans le cinéma.

Solution – Question 5, p. 1

A:2

Solution détaillée :

1		II
III	2	•
•	I	3

Solution – Question 6, p. 1

9

Solution détaillée :

Il faudra attendre 9 ans (2018 + 9 = 2027) car la somme des chiffres de 2027 est égale à 2 + 0 + 2 + 7 = 11.

Solution – Question 7, p. 2

70

Solution détaillée :

 $0,01 \cdot x + 0,05 \cdot x + 0,10 \cdot x = 11,20 \Leftrightarrow 0,16 \cdot x = 11,20 \Leftrightarrow x = 1120 : 16 \Leftrightarrow x = 70$ pièces de monnaie.

Solution - Question 8, p. 2

125

Solution détaillée :

 $V_{\rm avant}=a^3$; $V_{\rm après}=(5\cdot a)^3=125\cdot a^3=125\cdot V_{\rm avant}$; le volume est multiplié par 125.

pk Solutions 7 - 10

Solution - Question 9, p. 2

A:6

Solution détaillée :

 $30 \cdot (x+2) = 40 \cdot x \iff 30x + 60 = 40x \iff 10x = 60 \iff x = 6$; 6 personnes étaient présentes à ce repas, en plus de Pierre et de Paul.

Solution - Question 10, p. 2

 $A: 4, 6 \cdot 10^4$

Solution détaillée :

$$2, 3 \cdot 10^4 \cdot 2 = 2, 3 \cdot 2 \cdot 10^4 = 4, 6 \cdot 10^4$$

Solution – Question 11, p. 2

D:8

Solution détaillée :

Solution - Question 12, p. 2

C:3

Solution détaillée :

$$A = A_1 + A_2 = \frac{1}{2} \cdot b_1 \cdot h + \frac{1}{2} \cdot b_2 \cdot h = \frac{1}{2} \cdot h \cdot (b_1 + b_2) = \frac{1}{2} \cdot h \cdot b = \frac{1}{2} \cdot A_{\text{parallélogramme}} = \frac{1}{2} \cdot 6 = 3$$

Solution - Question 13, p. 2

D: 10h31

Solution détaillée :

 $\frac{42}{70} = \frac{x}{40} \iff x = \frac{42 \cdot 40}{70} \iff x = 6 \cdot 4 \iff x = 24$; le train passe à « 10h07 + 00h24 = 10h31 » en C.

Solution – Question 14, p. 3

 $C: m \cdot n$

Solution détaillée :

$$m \cdot n = (2p+1) \cdot (2q+1) = 4pq + 2p + 2q + 1 = \underbrace{2 \cdot (2pq+p+q)}_{\text{pair}} + 1$$

Solution - Question 15, p. 3

11

Solution détaillée :

$$A_{\text{trapèze}} = 21 \cdot A_{\text{triangle}} \iff \tfrac{1}{2} \cdot (b_1 + b_2) \cdot h = 21 \cdot \tfrac{1}{2} \cdot b \cdot h \iff b_1 + b_2 = 21 \iff b_1 = 10 \wedge b_2 = 11$$

Solution - Question 16, p. 3

E:59

Solution détaillée :

$$ab - (a + b) = 7 \cdot 11 - (7 + 11) = 77 - 18 = 59$$

pk Solutions 8 - 10

Solution - Question 17, p. 3

120

Solution détaillée :

 $ppcm(8; 12; 30) = 2^3 \cdot 3^1 \cdot 5^1 = 120$

Solution - Question 18, p. 3

605

Solution détaillée :

Soit x le nombre de glaces vendu le premier jour, alors le deuxième jour il a vendu $2 \cdot x = 2x$, le troisième jour $2 \cdot (2x) = 4x$, le quatrième jour $3 \cdot (4x) = 12x$ et le cinquième jour $3 \cdot (12x) = 36x$ glaces.

Or, $36x = 396 \iff x = 11$. Au total, il a vendu $x + 2x + 4x + 12x + 36x = 55x = 55 \cdot 11 = 605$ glaces.

Solution - Question 19, p. 3

A:576

Solution détaillée :

Il reconvertit $\frac{1\cdot600}{1,25} = \frac{600\cdot100}{125} = \frac{600\cdot4}{5} = 120\cdot4 = 480$ euros en dollars au taux de change de 1, 20 \$. 1, $20\cdot480 = 12\cdot48 = 480 + 96 = 576$ dollars.

Solution – Question 20, p. 3

C:
$$\frac{2}{5} < \frac{3}{7} < \frac{1}{2}$$

Solution détaillée :

$$\frac{2}{5} < \frac{3}{7} < \frac{1}{2} \iff \frac{2 \cdot 14}{5 \cdot 14} < \frac{3 \cdot 10}{7 \cdot 10} < \frac{1 \cdot 35}{2 \cdot 35} \iff \frac{28}{70} < \frac{30}{70} < \frac{35}{70}$$

Solution - Question 21, p. 4

C:20

Solution détaillée :

L'hexagone régulier peut être divisé en 6 triangles identiques et $[ACF] = \frac{1}{6} \cdot 60 + \frac{1}{2} \cdot \frac{2}{6} \cdot 60 = 10 + 10 = 20$.

Solution - Question 22, p. 4

D: $17, \overline{3765}$

Solution détaillée :

$$17, 3\overline{765} = 17, 3765765... > \begin{cases} 17, 3765 \\ 17, 3765555... \\ 17, 3765656... \\ 17, 3765376... \end{cases}$$

Solution - Question 23, p. 4

B: 28%

Solution détaillée :

$$-10\% - (1 - 10\%) \cdot 20\% = -\frac{10}{100} - \left(1 - \frac{10}{100}\right) \cdot \frac{20}{100} = -\frac{10}{100} - \frac{90}{100} \cdot \frac{20}{100} = -\frac{10}{100} - \frac{18}{100} = -\frac{28}{100} = -28\%$$

La remise est de 28%.

Solution - Question 24, p. 4

E:35

Solution détaillée :

Supposons que le carré a un côté de 4 unités, il y a 4 très petits carrés (de côté 0,5), 17 petits carrés (de côté 1), 9 moyens carrés (de côté 2), 4 grands carrés (de côté 3) et 1 très grand carré (de côté 4); 4+17+9+4+1=35.

Solution - Question 25, p. 4

A : *p* divise 30

Solution détaillée :

 $240 = 2^4 \cdot 3^1 \cdot 5^1$, donc $div_{\text{premiers}} 240 = \{2; 3; 5\}$, or les diviseurs premiers 2, 3 et 5 divisent 30.

pk Solutions 9 - 10

Solution - Question 26, p. 4

B:

Solution détaillée :

FGHIJ est un pentagone (n = 5) et donc $\Sigma_{\text{angles}} = (n - 2) \cdot 180^{\circ} = (5 - 2) \cdot 180^{\circ} = 3 \cdot 180^{\circ} = 540^{\circ}$.

$$\widehat{FGH} + \widehat{GHI} + \widehat{HIJ} + \widehat{IJF} + \widehat{JFG} = 540^{\circ}$$

$$\Leftrightarrow \widehat{FGH} + \widehat{GHI} + \left(180^{\circ} - \widehat{CIJ}\right) + \left(180^{\circ} - \widehat{CJI}\right) + \widehat{AFD} = 540^{\circ}$$

$$\Leftrightarrow \widehat{FGH} + \widehat{GHI} + (180^{\circ} - 80^{\circ}) + (180^{\circ} - 80^{\circ}) + 94^{\circ} = 540^{\circ}$$

$$\Leftrightarrow \widehat{FGH} + \widehat{GHI} + 294^{\circ} = 540^{\circ}$$

$$\Leftrightarrow \widehat{FGH} + \widehat{GHI} = 246^{\circ}$$

Solution – Question 27, p. 4

C:13€

Solution détaillée :

$$3\cdot2$$
 € +3⋅1 € +4⋅0,5 € +10⋅0,2 € = 6 € +3 € +2 € +2 € = 13 € Solution – Question 28, p. 5

C: 135°

Solution détaillée :

$$\triangle ABD \sim \triangle BCD$$
, les triangles ABD et BCD sont semblables et donc $\widehat{DBC} = \widehat{DAB} = 110^\circ$. $\widehat{ABC} = \widehat{ABD} + \widehat{DBC} = \left(180^\circ - \widehat{DAB}\right) : 2 + \widehat{DAB} = (180^\circ - 110^\circ) : 2 + 110^\circ = 35^\circ + 110^\circ = 145^\circ$

Solution - Question 29, p. 5

B:18

Solution détaillée :

$$A = \left(\frac{1}{4} \cdot AC \cdot h\right) : 2 = \left(\frac{1}{4} \cdot AC \cdot \frac{2}{5} \cdot H\right) : 2 = \frac{1}{10} \cdot AC \cdot H : 2 = \frac{1}{10} \cdot \frac{AC \cdot H}{2} = \frac{1}{10} \cdot [ABC] = \frac{1}{10} \cdot 180 = 18$$

Solution – Question 30, p. 5

D:21

Solution détaillée :

p = 11 et q = 10; ainsi p + q = 11 + 10 = 21.