TERM PROJECT DIGITAL DESIGN 2 INF606

Oğuzhan Topal - 190503001

Summary:

In this project I made the simulation Control Unit of Mano Computer in Digital simulation tool. While making the Control Unit, I followed descriptions in the Computer System Architecture book written by M. Morris Mano (especially chapter 5).

Design Assumptions:

Control Unit takes 19 inputs from datapath and gives 31 control signals to datapath and display-test area. The sequence clocks is inside of Control Unit, It choose Arithmetic-Logic Units operations, it controls bus system and all the registers. It also needs to fulfill tests given by lecturer.

Control Unit

İnside Control Unit

Design Approach:

I mainly used table 5.6 in the Computer Systems Architecture book. Based on the functions given in the table I created the Circuits and connected them related İnputs and Outputs. The following pictures are Table 5.6 in the book and circuits inside the Control Unit.

TABLE 5-6 Control Functions and Microoperations for the Basic Computer Fetch $R'T_0$: $AR \leftarrow PC$ $IR \leftarrow M[AR], PC \leftarrow PC + 1$ R'T1: Decode $R'T_2$: $D_0, \ldots, D_7 \leftarrow \text{Decode } IR(12-14),$ $AR \leftarrow IR(0-11), I \leftarrow IR(15)$ $AR \leftarrow M[AR]$ Indirect $D'_{7}IT_{3}$: Interrupt: $T_0'T_1'T_2'(IEN)(FGI + FGO)$: $AR \leftarrow 0$, $TR \leftarrow PC$ RT_0 : $M[AR] \leftarrow TR$, $PC \leftarrow 0$ RT_1 : $PC \leftarrow PC + 1$, $IEN \leftarrow 0$, $R \leftarrow 0$, $SC \leftarrow 0$ RT_2 : Memory-reference: AND D_0T_4 : $DR \leftarrow M[AR]$ $AC \leftarrow AC \land DR$, $SC \leftarrow 0$ D_0T_5 : ADD D_1T_4 : $DR \leftarrow M[AR]$ D_1T_5 : $AC \leftarrow AC + DR$, $E \leftarrow C_{out}$, $SC \leftarrow 0$ LDA D_2T_4 : $DR \leftarrow M[AR]$ $AC \leftarrow DR$, $SC \leftarrow 0$ D_2T_5 : D_3T_4 : $M[AR] \leftarrow AC$, $SC \leftarrow 0$ STA $PC \leftarrow AR$, $SC \leftarrow 0$ BUN DATA: BSA D_5T_4 : $M[AR] \leftarrow PC$, $AR \leftarrow AR + 1$ D_5T_5 : $PC \leftarrow AR$, $SC \leftarrow 0$ ISZ D_6T_4 : $DR \leftarrow M[AR]$ $DR \leftarrow DR + 1$ DoTs: $M[AR] \leftarrow DR$, if (DR = 0) then $(PC \leftarrow PC + 1)$, $SC \leftarrow 0$ D_6T_6 : Register-reference: $D_7I'T_3 = r$ (common to all register-reference instructions) $IR(i) = B_i (i = 0, 1, 2, ..., 11)$ r: SC ←0 $AC \leftarrow 0$ CLA rB_{11} : CLE rB10: $E \leftarrow 0$ CMA rB9: $AC \leftarrow \overline{AC}$ $E \leftarrow \overline{E}$ CME rB₈: CIR $AC \leftarrow \text{shr } AC$, $AC(15) \leftarrow E$, $E \leftarrow AC(0)$ rB7: CIL rB₆: $AC \leftarrow \text{shl } AC$, $AC(0) \leftarrow E$, $E \leftarrow AC(15)$ INC rBs: $AC \leftarrow AC + 1$ If (AC(15) = 0) then $(PC \leftarrow PC + 1)$ SPA rB4: SNA rBs: If (AC(15) = 1) then $(PC \leftarrow PC + 1)$ SZA rB2: If (AC = 0) then $PC \leftarrow PC + 1)$ SZE If (E = 0) then $(PC \leftarrow PC + 1)$ rB_1 : HLT S ← 0 rB_0 : Input-output: $D_7IT_3 = p$ (common to all input-output instructions) $IR(i) = B_i (i = 6, 7, 8, 9, 10, 11)$ $SC \leftarrow 0$ p: $AC(0-7) \leftarrow INPR, FGI \leftarrow 0$ INP pB_{11} : OUT $OUTR \leftarrow AC(0-7), FGO \leftarrow 0$ pB_{10} : SKI pB_9 : If (FGI = 1) then $(PC \leftarrow PC + 1)$ SKO pB_8 : If (FGO = 1) then $(PC \leftarrow PC + 1)$ ION pB_7 : IEN ←1 IOF pB6: $IEN \leftarrow 0$

Test Cases:

The Control Unit passed all the tests given by lecturer.

