2b)的习惯法德网络nition 28。 统一行动。

设 (Ω, P) 概率空间网络定义,和 $X: \Omega \to \{X_1, \dots, X_N\}$ 上 Ω 的随机变量。他们说, X 均匀分布 只要:

$$\forall$$
 我∈ **♦** 1; p , P($X=X_i$)=1 p

这就是说,我们有所有事件的概率相等(X=X_{我)。}注意这一点:

定义29。 统一行动。

设 (Ω, P) 概率空间网络定义,和 $X: \Omega \rightarrow \{0; 1\}$ 上 Ω 的随机变量。他们说,X遵循伯努利 参数P只要:

$$P(X=1) = \rho \pi P(X=0) = 1 - \rho$$

注意这一点:

注22。 在{0值的随机变量; 1}的步骤 总是 参数伯努利 p=P(X=1)。特别是,如果(Ω ,P)是一个概率空间,存在的指示符函数 \overline{g} : ♦ -~B(P(A))。

最后,如果一个实验只有两个结果(例如, 小号 如果成功的话, E 在失败的情况下),则在随机变量 小号 和同事1 E 0联合如下伯努利。

定义30。 设 (Ω, P) 概率空间网络定义,和 X L Ω 的随机变量。他们说, X 二项分布 参数 p \in [0,1] 和 \tilde{n} \in \tilde{n} * 只要:

$$X: Ω → Φ0; ñ 和 ∀ F∈ Φ0; ñ, P(X=K)=Φñ$$
 $pκ(1-p) ñ-k$

注意这一点:

注23。 它维拉在本章的后面,添加 \widetilde{n} 两个未决以下伯努利参数独立随机变量 p,一个随机变量是在接着一个二项式分布参数获得 \widetilde{n} 和 \overline{D} 。

2.C) nishing31双网络连接的随机变量。 让 X和 \ddot{y} 在概率空间两个随机变量(Ω , P)。 应用:

$$\mathsf{P}x, \gamma \colon \mathsf{P}\left(\ X\big(\ \Omega\ \right) \times Y\big(\ \Omega\ \right)\) \to [0;1]$$

$$(\{X\},\{Y\})$$
的 $\rightarrow P((X=X) \cap (Y=Y))$ 通过加和无限延长,

定义了 Ω 的概率,所谓的 联合分布 的 X和 Y,或 扭矩法 (X, Y) ω

注24。 在一个随机变量的情况下,一个简单的表苏FFI已知表征法。在一对夫妇的情况下,我们有一个表 *双输入* 将包含值

 $P((X=X_B) \cap (Y=Y_j)*)$ 对于每个值对(X_B 那里 $_j)$ $_{B} \in X(\Omega) \times Y(\Omega)$ 。考虑一个随机变量 X 在值 $_{A} \times X_1 \times X_2 \times X_3 \times X_3 \times X_4 \times X_4$

X 那里	<i>X</i> ₁	X2	<i>X</i> ₃
<i>那里</i> 1	$P((X=X_1) \cap (Y=Y_1)) P((X=X_1))$	$(=X_2) \cap (Y=Y_1) \cap P((X=X_3) \cap$	$(Y=Y_1))$
<i>那里</i> 2	$P((X=X_1) \cap (Y=Y_2)) P((X=X_1))$	$(=X_2) \cap (Y=Y_2) \cap P((X=X_3) \cap$	$(Y=Y_2)$

定义32。 让 (X,Y) 一对夫妇的随机变量,称为 边缘分布 对 (X,Y) 随机变量法 X和 Y. 他们可以在以前的双项"页边距"表添加。

实施例19。 在前面的例子,在表中的概率选择的值。然后,线和列,在边缘人的,我们(分别)将 X和 Y:

X	X1 X2	<i>X</i> ₃P(Y = Y _我)	
<i>那里</i> 1	18 —	1月1 — 6日	3月1	000
那里2	14 —	18 —	14 —	000
P(<i>X=X_我)</i>	000	000	000	000

为了获得利润的值,它スFFI吨添加的行或列的值。

注25。 一般来说,知道边缘人是不是苏FFI cient确定联合分布。在前面的例子,如果你只知道表中的利润值,我们不能找到独特的价值 P(($X=X_{\mathcal{B}}$) \cap ($Y=Y_{j})_{\mathcal{B}}$)。

定义33。 让 (X,Y) 的概率空间的一个随机变量扭矩 (Ω,P) 和 $X \in X(\Omega)$,使得 P(X=X)>0。然后对 $\overline{\mathit{BP}} \in Y(\Omega)$,称为 条件概率 的 (Y=Y) 知道 (X=X) 概率:

$$P((Y=Y)/(X=X))=P((X=X)n(Y=Y))$$

 $P(X=X)$

此外,我们呼吁 条件分布 的 \ddot{y} 会心 X=X 随机变量"的法律 \ddot{y} 会心

X=X",其中指出:

2.D)随机变量音响nishing 34的独立性。 让(X , Y J 上的一对的概率空间中定义的随机变量(Ω , P J D

少随机变量 X和 ÿ是说 独立 只要:

$$\forall (X,Y) \in X(\Omega) \times Y(\Omega) P((X=X) \cap (Y=Y)) = P(X=X) \times P(Y=Y)$$

注26。 随着德网络nition以前,我们注意到, *在独立的随机变量的情况下(* 只有在这种情况下!)都称为边缘人FFI的T知识来确定的联合分布(X ,Y)。

建议21。 如果 X和 \ddot{y} 是在概率空间(Ω 限定的两个独立的随机变量, P)则:

$$\forall (A,B) \in P(R) \circ P(X \in A) \cap (\mathring{y} \in B) = P(X \in A) \times P(\mathring{y} \in B)$$

命题22。 如果 X和 \ddot{y} 是在概率空间(Ω 限定的两个独立的随机变量, P) 如果我们采取了两个功能: F , G : [R → [R 然后 F (X) 和 \dot{E} (Y) 是独立的随机变量。

定义35。 是否 $\vec{n} \in \vec{n} \cdot$ 和 ($X_1 \ldots X_N$) 上的概率空间中定义的随机变量的元组 (Ω , P)。 我们说的随机变量 $X_1 \ldots X_N$ 是 相互独立

只要:

23号提案。 是否 $\tilde{n} \in \tilde{n} \cdot$ 和 ($X_1 \ldots X_N$) 上的概率空间中定义的相互独立的随机变量的n元组 (Ω , P)。 则:

$$\hat{n} \qquad \qquad \Diamond \qquad \qquad$$

建议24。 是否 $\tilde{n} \in \tilde{n} \cdot \mathbb{N}$ ($X_1 = \dots + X_n$)相互独立的随机变量的n元组,每个以下伯努利 B (p) 同 $p \in [0; 1]$ 。随机变量 $Y = X_{1+} \cdots + X_n$ 然后遵循二项式 分布 B (N, P) 。

样品17。

2.E)希望,方差,标准差德网络nition 36。 是否 X上的概率空间中定义的真正的随机变量 (Ω, P) 和记

 $X(\Omega) = \{X_1, \dots, X_N, \text{ 他们呼吁 希望 的 } X$ 该 平均值值采取 X 加权 概率:

实施例20。 如果我们把例子 15-16 轮盘,可以计算出我们的增益的希望(上大量部件的平均收益),当你下注10 — C对数 8:

注27。 你也可以通过求和计算Ω预期,但很少会发生的情况:

$$E[X] = \Phi \qquad P(\{ \}\omega) X(\omega)$$

$$w^{A} \in \Omega$$

注28。 当一个随机变量具有 没有希望 (E [X] = 0) ,它被称为随机变量 居中。

建议25。 希望习惯法

是否X的概率空间中的随机变量 (Ω, P) 则:

•如果 *X* 是恒定的, *X =λ ,* 然后 *E [X] =λ。*

•如果 X 〜B (p) 然后 E [X] = 页。

•如果 X∽B(N,P),然后 E[X]=NP。

•如果 X = � -同 一⊂Ω,然后 E [X] = P(A)。

样品18。

建议26。 希望的性质

随机变量的期望遵循以下性能; 为 X, Y 随机变量 , A∈R:

1- 线性: E [\lambda X + Y] =\lambda E[X] + E [Y]

2- **阳性**: X 0 = ⇒ E[X] 0 3- 成长: X Y = ⇒ E[X] E[Y]

建议27。 科幻奈德索姆

如果 X_1 。。。, X_n 是在概率空间(Ω 定义随机变量,P)则:

$$\stackrel{\bar{n}}{\Leftrightarrow} \qquad \stackrel{\hat{\bullet}}{\Leftrightarrow} \qquad \stackrel{\hat{\bullet}}{\Leftrightarrow} \qquad \stackrel{\hat{E}}{E} \qquad \qquad X_{\mathcal{R}} = \bar{n} \qquad E[X_{\mathcal{R}}]$$

定理15。 定理要么转移 X 上的概率空间中定义的真正的随机变量 (Ω, P) 同 $X(\Omega)$ = $\{X_1, \dots, X_N, \dots, X_N\}$

是否 $F:X(\Omega)$ → [R 一个函数,那么预期F(X) 计算公式如下:

$$\begin{array}{ccc}
& & & \\
& & & \\
E[F(X)] = \tilde{n} & & F(X_{\mathcal{R}}) P(X = X_{\mathcal{R}})
\end{array}$$

定理16。 产品设灵 X 和 \ddot{y} 上的概率空间中定义的两个随机变量 (Ω, P) 同 $X(\Omega)$ =

{X₁,..,X_N和Y(Ω)={那里₁,..,那里_N。则:

此外,如果 X 和 ÿ 是 独立,则:

$$E[XY] = E[X] E[Y]$$

注29。 请注意,最后一个等式是不是真的一般。就拿两个随机变量 X和 \ddot{y} 同 X=Y和 $X\sim$ B (02)。

定义37。 是否 X上的概率空间中定义的真正的随机变量 (Ω, P) 它定义了方差 的 X表示为 V[X] 如:

$$V[X] = E[(X - E[X])_{2}]$$

这是平均从均值偏差平方。它定义了 标准偏差 的 X记录 $\sigma(X)$ 如:

$$\sigma(X) = \Leftrightarrow V[X]$$

建议28。 如果 X是随机变量,则 V[X]0 $\sigma(X)$ 0。

注30。 方差和标准差是分散的措施,它们表征随机变量的偏差的平均值,考虑到每个值的概率。

建议29。 关系惠更斯

是否 X上的概率空间中定义的真正的随机变量 (Ω, P) 然后

 $V[X] = E[X_2] - E[X]_2$

建议30。 差异和功能FFI做

是否 X上的概率空间中定义的真正的随机变量 (Ω, P) 是 $(A, B) \in [R_2$ 然后

V[AX + B] = -2 V[X]

和 $\sigma(AX+B)=|-\uparrow /\sigma(X)$

定理17。 马尔科夫的不平等无论是 X 上的概率空间中定义的真正的随机变量 (Ω, P) 然后

定理18。 切比雪夫不等式无论是 X 上的概率空间中定义的真正的随机变量 (Ω, P) 然后

建议31。 方差习惯法

是否X的概率空间中的随机变量 (Ω, P) 则:

•如果 X 是恒定的, X = A, 然后 V [X] = 0。

•如果 X ∽U(� 1; ñ) 然后 *V [X] = N*2-1

12.

•如果 X ∽B (ρ) 然后 V[X] = P (对-1)。

•如果 X∽B(N,P),然后 V[X] = NP (对-1)。

2.F) 练习练习II-15。 两个骰子被抛出6分平衡的面孔。注 X随机变量"两个骰子的总和"和 \dot{y} 随机变量"两个骰子的产品" \dot{z} 随机变量"最大两个骰子的"和 w^{Λ} 随机变量"最低两个骰子的"。

1-计算 E [X] 和 V [X]

2-计算 E [Y] 和 V [Y]

3-显示该 X 和 ÿ 不是独立的。4-计算 E [XY]。

5找出规律 w ^ 和 Z.

6-计算 E [W] 和 E [Z]。

7计算 V [W] 和 V [Z]。

练习II-16。 考虑一个随机变量 X利用其值 ◆ 1; ñ, 而法律由下式给出: ∀ ķ ∈ ◆ 1; ñ, P (X = K) = AK。

1-确定 *一。*

2-计算 E [X] 和 V [X]。

3-我们推出10个骰子,难以区分,而不是伪造的。什么是具有至少2个6的概率 知道至少有一个实际。

练习II-17。 让 ñ ∈ ñ · 和 λ ∈ R. 注 X 在值的随机变量 � 0; ñ 法:

 $\forall k \in \Phi \ 0; \ \tilde{n} \ , \ P(X=K)=\lambda \qquad \frac{K+1}{K+1}$

1-确定 *l。*

2-计算 E [X + 1] , 并推断 E [X]。

计算3- E[X(X+1)], 和演绎 V[X]。