Part I of Assignment 8

Please consider a Markov Decision Process (MDP) with $S = \{s^A, s^B, s^C\}$.

Given a particular state $s \in \mathcal{S}$, the agent is allowed to either try staying there or switching to any of the other states. Let's denote an intention to move to state s^A by a^A , to state s^B by a^B , and to state s^C by a^C . The agent does not know transition probabilities, including the distributions of rewards. There is, however, some evidence that the agent gets rewards only at the entrance to s^C ; and transition MDP probabilities to/from s^A appear to be same (or nearly same) as to/from s^B .

Suppose the agent chooses policy $\pi(a^A|s) = 0.05$, $\pi(a^B|s) = 0.05$, $\pi(a^C|s) = 0.90$ for all $s \in \{s^A, s^B, s^C\}$. Because of the apparent symmetry between s^A and s^B , it makes sense to assume that $v_{\pi}(s^A) \approx v_{\pi}(s^B)$ and approximate the state-values as follows:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}) = w_1 \cdot \mathbb{1}_{(s=s_A)} + w_1 \cdot \mathbb{1}_{(s=s_B)} + w_2 \cdot \mathbb{1}_{(s=s_C)}.$$

Please notice that $\hat{v}(s^A, \mathbf{w}) = \hat{v}(s^B, \mathbf{w})$ for any choice of weights.

Assume the agent runs the $TD(\lambda)$ with Approximation for estimating v_{π} :

$$\mathbf{z}_{-1} \doteq (0,0)^T,$$

$$\mathbf{z}_t \doteq \gamma \lambda \mathbf{z}_{t-1} + \nabla \hat{v}(S_t, \mathbf{w}_t) \text{ for } t \geq 0,$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \mathbf{z}_t \text{ for } t \geq 0,$$

where $\lambda = 0.2$, $\alpha = 0.1$, $\gamma = 0.9$, and weights \mathbf{w}_t are set to zero at time t = 0.

If the agent observes the following sequence of states, actions, and rewards:

$$S_0 = s^A, A_0 = a^C, R_1 = 20,$$

 $S_1 = s^C, A_1 = a^B, R_2 = 0,$
 $S_2 = s^B, A_2 = a^C, R_3 = 20,$
 $S_3 = s^C, A_3 = a^C, R_4 = 20,$
 $S_4 = s^C, A_4 = a^B, R_5 = 0,$
 $S_5 = s^B.$

find (a) weights \mathbf{w}_t and (b) corresponding approximations $\hat{v}(s, \mathbf{w}_t)$ for t = 1, 2, ..., 5. Specifically, please fill the tables in below:

SOLUTION:

(a) weights $\mathbf{w}_t = (w_{1,t}, w_{2,t})^T$:

	t = 0	t = 1	t=2	t = 3	t=4	t=5
$w_{1,t}$	0					
$w_{2,t}$	0					

(b) approximations $\hat{v}(s, \mathbf{w}_t)$:

	t = 0	t = 1	t=2	t=3	t=4	t = 5
$\hat{v}(s^A, \mathbf{w}_t)$	0					
$\hat{v}(s^B, \mathbf{w}_t)$	0					
$\hat{v}(s^C, \mathbf{w}_t)$	0					