Lycée Buffon MPSI TD 15 Année 2020-2021

Dérivation

Exercice 1 : Déterminer la dérivée n-ième des fonctions suivantes :

$$1. \ x \mapsto \frac{1}{1-x}$$

3. $x \mapsto e^x \sin x$

$$2. \ x \mapsto \frac{1}{1 - x^2}$$

4. $x \mapsto x^2(1+x)^n$

Exercice 2: Soit f dérivable n fois dérivable sur [a,b]. Monter que si f s'annule n+1 fois sur [a,b] alors $f^{(n)}$ s'annule sur [a,b].

Exercice 3:

Soit $f:[a,b]\to\mathbb{R}$ deux fois dérivable telle que f(a)=f(b)=0 et $c\in]a,b[$.

En utilisant la fonction $\phi: x \mapsto f(x) - \frac{(x-a)(x-b)}{(c-a)(c-b)} f(c)$, montrer qu'il existe η tel que

$$f(c) = \frac{1}{2}(c-a)(c-b)f''(\eta)$$

Exercice 4 : Soit $f:[a,b] \to \mathbb{R}$ de classe \mathcal{C}^1 sur [a,b], deux fois dérivable sur]a,b[et $c \in]a,b[$.

En utilisant la fonction

$$\phi: x \mapsto f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) - \lambda(x - a)(x - b)$$

avec λ à déterminer, montrer qu'il existe η tel que

$$f(c) = f(a) + \frac{f(b) - f(a)}{b - a}(c - a) + \frac{1}{2}(c - a)(c - b)f''(\eta)$$