

SEQUENCE LISTING

<110> Kloting, et al.
 <120> Use of the Multifunctional Transcription Factor Yin Yang 1 and
 Variants Thereof for Treating Illnesses, Especially Type I
 Diabetes
 <130> 30572/41384
 <150> PCT/EP03/014762
 <151> 2003-12-19
 <150> DE 102 61 650.7
 <151> 2002-12-20
 <160> 232
 <170> PatentIn version 3.3
 <210> 1
 <211> 2256
 <212> DNA
 <213> Rattus norv.
 <220>
 <221> Promoter
 <222> (1)..(72)
 <220>
 <221> CDS
 <222> (73)..(1125)
 <223> YY1 (BB/OK)
 <220>
 <221> misc_feature
 <222> (955)..(1125)
 <223> Zinc finger
 <220>
 <221> Intron
 <222> (1126)..(1758)
 <220>
 <221> misc_feature
 <222> (1759)..(1917)
 <223> Zinc finger
 <220>
 <221> CDS
 <222> (1759)..(1938)
 <223> YY1 (BB/OK)
 <400> 1
 ccgcctccctc gccccccctc ccgcagccca ggagccgagg ctgccgcggc cgtggccggcg 60
 gagccctcag cc atg gcc tcg ggc gac acc ctc tac att gcc acg gac ggc
 Met Ala Ser Gly Asp Thr Leu Tyr Ile Ala Thr Asp Gly
 1 5 10
 tcg gag atg cca gcc gag atc gtg gaa ctg cat gag att gag gtg gag 159
 Ser Glu Met Pro Ala Glu Ile Val Glu Leu His Glu Ile Glu Val Glu
 15 20 25

acc atc ccg gtg gag act atc gag acc acg gtg gtg ggc gag gag gag	30	35	40	45	207
Thr Ile Pro Val Glu Thr Ile Glu Thr Thr Val Val Gly Glu Glu Glu					
gac gac gac gaa gac gac gag gat ggt ggc ggc gga gac cac gac ggt ggc	50	55	60		255
Asp Asp Asp Glu Asp Asp Gly Gly Gly Asp His Gly Gly					
ggg ggc ggc cac ggg cac gct ggc cac cac cat cac cac cac cac cac	65	70	75		303
Gly Gly His Gly His Ala Gly His His His His His His His His His					
cac cac ccg ccc atg atc gcg ctg cag ccg ctg gtc acc gac gac ccg	80	85	90		351
His His Pro Pro Met Ile Ala Leu Gln Pro Leu Val Thr Asp Asp Pro					
acc caa gtg cac cac cac caa gag gtg att ctg gtg cag acg cgc gag	95	100	105		399
Thr Gln Val His His Gln Glu Val Ile Leu Val Gln Thr Arg Glu					
gag gta gtg ggt ggc gac gac tcg gac ggg ctg cgc gcc gag gac ggg	110	115	120	125	447
Glu Val Val Gly Gly Asp Asp Ser Asp Gly Leu Arg Ala Glu Asp Gly					
ttc gag gac cag atc ctc att ccg gta ccc gcg ccg gcc ggc gga gac	130	135	140		495
Phe Glu Asp Gln Ile Leu Ile Pro Val Pro Ala Pro Ala Gly Gly Asp					
gac gac tac atc gag cag acg ctg gtc acc gtg gcg gcg gcc ggc aag	145	150	155		543
Asp Asp Tyr Ile Glu Gln Thr Leu Val Thr Val Ala Ala Ala Gly Lys					
agc ggt ggc ggg tct tcg tcg ggc ggc cgc gtc aag aag ggc ggc	160	165	170		591
Ser Gly Gly Ser Ser Gly Gly Arg Val Lys Lys Gly Gly					
ggc aag aag agc ggc aag aag agt tac ctg ggc agc ggg gcc ggc gcg	175	180	185		639
Gly Lys Lys Ser Gly Lys Ser Tyr Leu Gly Ser Gly Ala Gly Ala					
gcg ggc ggt ggc ggc gac ccg ggt aat aag aag tgg gaa cag aag	190	195	200	205	687
Ala Gly Gly Gly Ala Asp Pro Gly Asn Lys Lys Trp Glu Gln Lys					
cag gtg cag atc aag acc ctg gag ggc gag ttc tcg gtc acc atg tgg	210	215	220		735
Gln Val Gln Ile Lys Thr Leu Glu Gly Glu Phe Ser Val Thr Met Trp					
tct tca gat gaa aaa aaa gat att gac cat gaa aca gtg gtt gaa gag	225	230	235		783
Ser Ser Asp Glu Lys Lys Asp Ile Asp His Glu Thr Val Val Glu Glu					
cag atc att ggg gag aac tca cct cct gat tat tct gaa tat atg aca	240	245	250		831
Gln Ile Ile Gly Glu Asn Ser Pro Pro Asp Tyr Ser Glu Tyr Met Thr					
ggc aag aaa ctc cct gga ggg ata cct ggc att gac ctc tca gac	255	260	265		879
Gly Lys Lys Leu Pro Pro Gly Gly Ile Pro Gly Ile Asp Leu Ser Asp					
ccc aag caa ctg gca gaa ttt gcc aga atg aag cca aga aaa att aaa	270	275	280	285	927
Pro Lys Gln Leu Ala Glu Phe Ala Arg Met Lys Pro Arg Lys Ile Lys					

gaa gat gat gct cca aga aca ata gct tgc cct cat aaa ggc tgc aca Glu Asp Asp Ala Pro Arg Thr Ile Ala Cys Pro His Lys Gly Cys Thr 290 295 300	975
aag atg ttc agg gat aac tct gct atg aga aag cat ctg cac acc cac Lys Met Phe Arg Asp Asn Ser Ala Met Arg Lys His Leu His Thr His 305 310 315	1023
ggt ccc aga gtc cac gtc tgt gca gaa tgt ggc aaa gcg ttc gtt gag Gly Pro Arg Val His Val Cys Ala Glu Cys Gly Lys Ala Phe Val Glu 320 325 330	1071
agc tca aag cta aaa cga cac cag ctg gtt cat act gga gaa aag ccc Ser Ser Lys Leu Lys Arg His Gln Leu Val His Thr Gly Glu Lys Pro 335 340 345	1119
ttt cag gtagagccag ttcctgttcc ccaaactgca agctagggtg ctggtcaggg Phe Gln 350	1175
tggttgcata caagcactat ggggcacccgg ttggggtatt ttattccat ccctcctgtc	1235
tgcttgggtt cctggttact gctcgggact gcagggttta cagatggggg tggagggatt	1295
atgcgaagca ccccccacact aaatttctag caggtttaca aaaactcaac agttttgtt	1355
tgttagtgagt agtgtgttga attactgata gagtgcttat aagtgtgtt ggctacagct	1415
ccaggtgaca cttggtgctg cttatagaag actcgtgagt tgacagttgg catcaactaa	1475
tatcttaatc atctgttagtc tacttcctag agtgtctctg aaaacactca agctgtaaat	1535
ttgcactcag cacagccctt ctgtttctca agaactagcc atgggttggt agtacagag	1595
atcccagtgt gtcagttcta aaataccctc agaagggttc cagacgagga aggaggcatg	1655
ctcagcagaa tagtaggtgg tttccatcta agcagtgagc catcgatccc caggttctgg	1715
tctcatttgc caagagggtt gatatctgg tttcccttga cag tgc aca ttc gaa Cys Thr Phe Glu 355	1770
ggc tgc ggg aag cgc ttt tca ctg gac ttc aat ttg cgc acg cat gtg Gly Cys Gly Lys Arg Phe Ser Leu Asp Phe Asn Leu Arg Thr His Val 360 365 370	1818
cga atc cat acc gga gac agg ccc tat gtg tgc ccc ttc gac ggt tgt Arg Ile His Thr Gly Asp Arg Pro Tyr Val Cys Pro Phe Asp Gly Cys 375 380 385	1866
aat aag aag ttt gct cag tca act aac ctg aaa tct cac atc tta aca Asn Lys Lys Phe Ala Gln Ser Thr Asn Leu Lys Ser His Ile Leu Thr 390 395 400	1914
cac gct aaa gcc aaa aac aac cag tgaaaagaag agagaagacc ttctcgaccc His Ala Lys Ala Lys Asn Asn Gln 405 410	1968
cgggaagcct cttcaggagt gtgattggga ataaatatgc ctctcccttg tatattttt	2028
ctaggaagaa ttttaaaaat gaatcctaca cacttaaggg acatgtttt ataaagtgt	2088
aaaaatttaa aaaaatactt taataagatg acattgctaa gatgctctat cttgctctgt	2148

aatctcgttt caaaaacaag gtgttttgt aaagtgtggc cccaacagga ggacaattca 2208
tgaacttcgc atcaaaagac aattctttat acaacagtgc taaaaatg 2256

<210> 2
<211> 411
<212> PRT
<213> Rattus norv.

<220>
<221> misc_feature
<222> (955)..(1125)
<223> Zinc finger

<220>
<221> misc_feature
<222> (1759)..(1917)
<223> Zinc finger

<400> 2

Met Ala Ser Gly Asp Thr Leu Tyr Ile Ala Thr Asp Gly Ser Glu Met
1 5 10 15

Pro Ala Glu Ile Val Glu Leu His Glu Ile Glu Val Glu Thr Ile Pro
20 25 30

Val Glu Thr Ile Glu Thr Thr Val Val Gly Glu Glu Asp Asp Asp
35 40 45

Glu Asp Asp Glu Asp Gly Gly Gly Asp His Gly Gly Gly Gly Gly
50 55 60

His Gly His Ala Gly His Pro
65 70 75 80

Pro Met Ile Ala Leu Gln Pro Leu Val Thr Asp Asp Pro Thr Gln Val
85 90 95

His His His Gln Glu Val Ile Leu Val Gln Thr Arg Glu Glu Val Val
100 105 110

Gly Gly Asp Asp Ser Asp Gly Leu Arg Ala Glu Asp Gly Phe Glu Asp
115 120 125

Gln Ile Leu Ile Pro Val Pro Ala Pro Ala Gly Gly Asp Asp Asp Tyr
130 135 140

Ile Glu Gln Thr Leu Val Thr Val Ala Ala Ala Gly Lys Ser Gly Gly
145 150 155 160

Gly Ser Ser Ser Gly Gly Gly Arg Val Lys Lys Gly Gly Gly Lys Lys
165 170 175

Ser Gly Lys Lys Ser Tyr Leu Gly Ser Gly Ala Gly Ala Ala Gly Gly
180 185 190

Gly Gly Ala Asp Pro Gly Asn Lys Lys Trp Glu Gln Lys Gln Val Gln
195 200 205

Ile Lys Thr Leu Glu Gly Glu Phe Ser Val Thr Met Trp Ser Ser Asp
210 215 220

Glu Lys Lys Asp Ile Asp His Glu Thr Val Val Glu Glu Gln Ile Ile
225 230 235 240

Gly Glu Asn Ser Pro Pro Asp Tyr Ser Glu Tyr Met Thr Gly Lys Lys
245 250 255

Leu Pro Pro Gly Gly Ile Pro Gly Ile Asp Leu Ser Asp Pro Lys Gln
260 265 270

Leu Ala Glu Phe Ala Arg Met Lys Pro Arg Lys Ile Lys Glu Asp Asp
275 280 285

Ala Pro Arg Thr Ile Ala Cys Pro His Lys Gly Cys Thr Lys Met Phe
290 295 300

Arg Asp Asn Ser Ala Met Arg Lys His Leu His Thr His Gly Pro Arg
305 310 315 320

Val His Val Cys Ala Glu Cys Gly Lys Ala Phe Val Glu Ser Ser Lys
325 330 335

Leu Lys Arg His Gln Leu Val His Thr Gly Glu Lys Pro Phe Gln Cys
340 345 350

Thr Phe Glu Gly Cys Gly Lys Arg Phe Ser Leu Asp Phe Asn Leu Arg
355 360 365

Thr His Val Arg Ile His Thr Gly Asp Arg Pro Tyr Val Cys Pro Phe
370 375 380

Asp Gly Cys Asn Lys Lys Phe Ala Gln Ser Thr Asn Leu Lys Ser His
385 390 395 400

Ile Leu Thr His Ala Lys Ala Lys Asn Asn Gln
405 410

```

<210> 3
<211> 2256
<212> DNA
<213> Rattus norv.

<220>
<221> Promoter
<222> (1)..(72)

<220>
<221> CDS
<222> (73)..(1125)
<223> YY1 (SHR)

<220>
<221> misc_feature
<222> (955)..(1125)
<223> Zinc finger

<220>
<221> Intron
<222> (1126)..(1758)

<220>
<221> misc_feature
<222> (1759)..(1917)
<223> Zinc finger

<220>
<221> CDS
<222> (1759)..(1938)
<223> YY1 (SHR)

<400> 3
ccgcctccctc gcccgcctc ccgcagccca ggagccgagg ctgccgcggc cgtggcggcg 60
gagccctcag cc atg gcc tcg ggc gac acc ctc tac att gcc acg gac ggc
Met Ala Ser Gly Asp Thr Leu Tyr Ile Ala Thr Asp Gly 111
1 5 10

tcg gag atg cca gcc gag atc gtg gaa ctg cat gag att gag gtg gag 159
Ser Glu Met Pro Ala Glu Ile Val Glu Leu His Glu Ile Glu Val Glu
15 20 25

acc atc ccg gtg gag act atc gag acc acg gtg gtg ggc gag gag gag 207
Thr Ile Pro Val Glu Thr Ile Glu Thr Val Val Gly Glu Glu Glu
30 35 40 45

gac gac gac gaa gac gac gag gat ggt ggc ggc gga gac cac ggt ggc 255
Asp Asp Asp Glu Asp Asp Glu Asp Gly Gly Gly Asp His Gly Gly
50 55 60

ggg ggc ggc cac ggg cac gct ggc cac cac cat cac cac cac cac 303
Gly Gly His Gly His Ala Gly His His His His His His His His
65 70 75

cac cac ccg ccc atg atc gcg ctg cag ccg ctg gtc acc gac gac ccg 351
His His Pro Pro Met Ile Ala Leu Gln Pro Leu Val Thr Asp Asp Pro
80 85 90

acc caa gtg cac cac cac caa gag gtg att ctg gtg cag acg cgc gag 399
Thr Gln Val His His His Gln Glu Val Ile Leu Val Gln Thr Arg Glu
95 100 105

```

gag gta gtg ggt ggc gac gac tcg gac ggg ctg cgc gcc gag gac ggg Glu Val Val Gly Gly Asp Asp Ser Asp Gly Leu Arg Ala Glu Asp Gly 110 115 120 125	447
ttc gag gac cag atc ctc att ccg gta ccc gcg ccg gcc ggc gga gac Phe Glu Asp Gln Ile Leu Ile Pro Val Pro Ala Pro Ala Gly Gly Asp 130 135 140	495
gac gac tac atc gag cag acg ctg gtc acc gtg gcg gcg gcc ggc aag Asp Asp Tyr Ile Glu Gln Thr Leu Val Thr Val Ala Ala Ala Gly Lys 145 150 155	543
agc ggt ggc ggg tct tcg tcg ggc ggc cgc gtt aag aag ggc ggc Ser Gly Gly Ser Ser Gly Gly Arg Val Lys Lys Gly Gly 160 165 170	591
ggc aag aag agt ggc aag aag agt tac ctg ggc agc ggg gcc ggc ggc Gly Lys Lys Ser Gly Lys Ser Tyr Leu Gly Ser Gly Ala Gly Ala 175 180 185	639
gcg ggc ggt ggc ggc gac ccg ggt aat aag aag tgg gaa cag aag Ala Gly Gly Gly Ala Asp Pro Gly Asn Lys Lys Trp Glu Gln Lys 190 195 200 205	687
cag gtg cag atc aag acc ctg gag ggc gag ttc tcg gtc acc atg tgg Gln Val Gln Ile Lys Thr Leu Glu Gly Glu Phe Ser Val Thr Met Trp 210 215 220	735
tct tca gat gaa aaa aaa gat att gac cat gaa aca gtg gtt gaa gag Ser Ser Asp Glu Lys Lys Asp Ile Asp His Glu Thr Val Val Glu Glu 225 230 235	783
cag atc att ggg gag aac tca cct cct gat tat tct gaa tat atg aca Gln Ile Ile Gly Glu Asn Ser Pro Pro Asp Tyr Ser Glu Tyr Met Thr 240 245 250	831
ggc aag aaa ctc cct cct gga ggg ata cct ggc att gac ctc tca gac Gly Lys Lys Leu Pro Pro Gly Gly Ile Pro Gly Ile Asp Leu Ser Asp 255 260 265	879
ccc aag caa ctg gca gaa ttt gcc aga atg aag cca aga aaa att aaa Pro Lys Gln Leu Ala Glu Phe Ala Arg Met Lys Pro Arg Lys Ile Lys 270 275 280 285	927
gaa gat gat gct cca aga aca ata gct tgc cct cat aaa ggc tgc aca Glu Asp Asp Ala Pro Arg Thr Ile Ala Cys Pro His Lys Gly Cys Thr 290 295 300	975
aag agg ttc agg gat aac tct gct atg aaa aag cat ctg cac acc cac Lys Arg Phe Arg Asp Asn Ser Ala Met Lys Lys His Leu His Thr His 305 310 315	1023
ggc ccc aga gtc cac gtc tgt gca gaa tgt ggc aaa ggc ttc gtt gag Gly Pro Arg Val His Val Cys Ala Glu Cys Gly Lys Ala Phe Val Glu 320 325 330	1071
agc tca aag cta aaa cga cac cag ctg gtt cat act gga gaa aag ccc Ser Ser Lys Leu Lys Arg His Gln Leu Val His Thr Gly Glu Lys Pro 335 340 345	1119
ttt cag gtatagccag ttccctgttcc ccaaactgca agcttagggtg ctggtcaggg Phe Gln 350	1175

tggttataat caagcaactat ggggcaccgg ttggggtatt ttattccat ccctcctgtc	1235
tgcttgggtt cctggtaact gctcgggact gcaggtgtta cagatggggg tggagggatt	1295
atgcgaagca cccccacact aaatttctag caggttaca aaaactcaac agttttgtt	1355
tgttagtgagt agtgtgttga attactgata gagtgcttat aagtgtgtt ggctacagct	1415
ccaggtgaca cttggtgctg cttatagaag acacgtgagt tgacagttgg catcactaaa	1475
tatcttaatc atctgttagtc tacttcctag agtgtctctg aaaacactca agctgtaaat	1535
ttgcactcag cacagccctt ctgtttctca agaactagcc atgggttgtt agtacagag	1595
atcccagtgt gtcagttcta aaataccctc acaagggttc cagacgagga aggaggcctg	1655
ctcagcagaa tagtaggtgg tttccatcta agcagtgagc catcgatccc caggttctgg	1715
tctcatttgc caagagggtt gatatctggt tttccttga cag tgc aca ttc gaa Cys Thr Phe Glu 355	1770
ggc tgc ggg aag cgc ttt tca ctg gac ttc aat ttg cgc acg cat gtg Gly Cys Gly Lys Arg Phe Ser Leu Asp Phe Asn Leu Arg Thr His Val 360 365 370	1818
cga atc cat acc gga gac agg ccc tat gtg tgc ccc ttc gac ggt tgt Arg Ile His Thr Gly Asp Arg Pro Tyr Val Cys Pro Phe Asp Gly Cys 375 380 385	1866
aat aag aag ttt gct cag tca act aac ctg aaa tct cac atc tta aca Asn Lys Lys Phe Ala Gln Ser Thr Asn Leu Lys Ser His Ile Leu Thr 390 395 400	1914
cac gct aaa gcc aaa aac aac cag tgaaaaagaag agagaagacc ttctcgaccc His Ala Lys Ala Lys Asn Asn Gln 405 410	1968
cggaaagcct cttcaggagt gtgattggga ataaatatgc ctctcccttg tatattattt	2028
ctaggaagaa tttaaaaat gaatcctaca cacttaaggg acatgttttataaagttagt	2088
aaaaatttaa aaaaatactt taataagatg acattgctaa gatgctctat cttgctctgt	2148
aatctcgttt caaaaacaag gtgttttgt aaagtgtggt cccaacagga ggacaattca	2208
tgaacttcgc atcaaaagac aattctttat acaacagtgc taaaaatg	2256

```

<210> 4
<211> 411
<212> PRT
<213> Rattus norv.

```

```

<220>
<221> misc_feature
<222> (955)..(1125)
<223> Zinc finger

```

```

<220>
<221> misc_feature

```

<222> (1759)..(1917)
<223> Zinc finger

<400> 4

Met Ala Ser Gly Asp Thr Leu Tyr Ile Ala Thr Asp Gly Ser Glu Met
1 5 10 15

Pro Ala Glu Ile Val Glu Leu His Glu Ile Glu Val Glu Thr Ile Pro
20 25 30

Val Glu Thr Ile Glu Thr Thr Val Val Gly Glu Glu Asp Asp Asp
35 40 45

Glu Asp Asp Glu Asp Gly Gly Gly Asp His Gly Gly Gly Gly
50 55 60

His Gly His Ala Gly His Pro
65 70 75 80

Pro Met Ile Ala Leu Gln Pro Leu Val Thr Asp Asp Pro Thr Gln Val
85 90 95

His His His Gln Glu Val Ile Leu Val Gln Thr Arg Glu Glu Val Val
100 105 110

Gly Gly Asp Asp Ser Asp Gly Leu Arg Ala Glu Asp Gly Phe Glu Asp
115 120 125

Gln Ile Leu Ile Pro Val Pro Ala Pro Ala Gly Gly Asp Asp Asp Tyr
130 135 140

Ile Glu Gln Thr Leu Val Thr Val Ala Ala Ala Gly Lys Ser Gly Gly
145 150 155 160

Gly Ser Ser Ser Gly Gly Arg Val Lys Lys Gly Gly Lys Lys
165 170 175

Ser Gly Lys Lys Ser Tyr Leu Gly Ser Gly Ala Gly Ala Ala Gly Gly
180 185 190

Gly Gly Ala Asp Pro Gly Asn Lys Lys Trp Glu Gln Lys Gln Val Gln
195 200 205

Ile Lys Thr Leu Glu Gly Glu Phe Ser Val Thr Met Trp Ser Ser Asp
210 215 220

Glu Lys Lys Asp Ile Asp His Glu Thr Val Val Glu Glu Gln Ile Ile
225 230 235 240

Gly Glu Asn Ser Pro Pro Asp Tyr Ser Glu Tyr Met Thr Gly Lys Lys
245 250 255

Leu Pro Pro Gly Gly Ile Pro Gly Ile Asp Leu Ser Asp Pro Lys Gln
260 265 270

Leu Ala Glu Phe Ala Arg Met Lys Pro Arg Lys Ile Lys Glu Asp Asp
275 280 285

Ala Pro Arg Thr Ile Ala Cys Pro His Lys Gly Cys Thr Lys Arg Phe
290 295 300

Arg Asp Asn Ser Ala Met Lys Lys His Leu His Thr His Gly Pro Arg
305 310 315 320

Val His Val Cys Ala Glu Cys Gly Lys Ala Phe Val Glu Ser Ser Lys
325 330 335

Leu Lys Arg His Gln Leu Val His Thr Gly Glu Lys Pro Phe Gln Cys
340 345 350

Thr Phe Glu Gly Cys Gly Lys Arg Phe Ser Leu Asp Phe Asn Leu Arg
355 360 365

Thr His Val Arg Ile His Thr Gly Asp Arg Pro Tyr Val Cys Pro Phe
370 375 380

Asp Gly Cys Asn Lys Lys Phe Ala Gln Ser Thr Asn Leu Lys Ser His
385 390 395 400

Ile Leu Thr His Ala Lys Ala Lys Asn Asn Gln
405 410

<210> 5
<211> 1600
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (43)..(1284)
<223> YY1 (Human)

<400> 5
gaattcggca cgagggcggc cgtggcggcg gagccctcag cc atg gcc tcg ggc 54
Met Ala Ser Gly
1

gac acc ctc tac atc gcc acg gac ggc tcg gag atg ccg gcc gag atc 102
Asp Thr Leu Tyr Ile Ala Thr Asp Gly Ser Glu Met Pro Ala Glu Ile
5 10 15 20

gtg gag ctg cat gag atc gag gtg gag acc atc ccg gtg gag acc atc Val Glu Leu His Glu Ile Glu Val Glu Thr Ile Pro Val Glu Thr Ile 25 30 35	150
gag acc acg gtg gtg ggc gag gag gag gag gag gac gac gac gac gag Glu Thr Thr Val Val Gly Glu Glu Glu Glu Asp Asp Asp Asp Asp Glu 40 45 50	198
gac ggc ggc ggc gac cac ggc ggc ggg ggc ggc cac ggg cac Asp Gly Gly Gly Asp His Gly Gly Gly Gly His Gly His 55 60 65	246
gcc ggc cac cac cat cac cac cac cac cac cac cac ccg ccc Ala Gly His Pro Pro 70 75 80	294
atg atc gcg ctg gag ccg ctg gtg acg gac gac ccg acc caa gtg cac Met Ile Ala Leu Glu Pro Leu Val Thr Asp Asp Pro Thr Gln Val His 85 90 95 100	342
cac ctc cag gag gtg atc ctg gtg cag acg cgc gag gag gtc gtc ggg His Leu Gln Glu Val Ile Leu Val Gln Thr Arg Glu Glu Val Val Gly 105 110 115	390
ggg gac gac tcg gac ggg ctg cgc gcc gag gac ggc ttc gag gac gag Gly Asp Asp Ser Asp Gly Leu Arg Ala Glu Asp Gly Phe Glu Asp Glu 120 125 130	438
atc ctc atc ccg gtg ccc gcg ccg gcc ggc gac gac gac tac ata Ile Leu Ile Pro Val Pro Ala Pro Ala Gly Gly Asp Asp Asp Tyr Ile 135 140 145	486
gag cag acg ctg acc gtg gcg gcg gcc aag aag gac ggc ggc ggg Glu Gln Thr Leu Val Thr Val Ala Ala Ala Gly Lys Ser Gly Gly Gly 150 155 160	534
gcc tcg tcg ggc ggc ggt cgc gtg aag aag ggc ggc ggc aag aag aac Ala Ser Ser Gly Gly Arg Val Lys Lys Gly Gly Lys Lys Ser 165 170 175 180	582
ggc aag aag agt tac ctg ggc ggg gcc ggc gcg ggc ggc ggc ggc Gly Lys Lys Ser Tyr Leu Gly Gly Ala Gly Ala Ala Gly Gly Gly 185 190 195	630
ggc gcc gac ccg ggg aat aag aag tgg gag cag aag cag gtg cag atc Gly Ala Asp Pro Gly Asn Lys Lys Trp Glu Gln Lys Gln Val Gln Ile 200 205 210	678
aag acc ctg gag ggc gag tcc tcg gtc acc atg tgg tcc tcg gat gaa Lys Thr Leu Glu Gly Glu Ser Ser Val Thr Met Trp Ser Ser Asp Glu 215 220 225	726
aaa aaa gat att gac cat gaa aca gtg gtt gaa gag cag atc att gga Lys Lys Asp Ile Asp His Glu Thr Val Val Glu Glu Gln Ile Ile Gly 230 235 240	774
gag aac tca cct cct gat tat tct gaa tat atg aca ggc aag aaa ctc Glu Asn Ser Pro Pro Asp Tyr Ser Glu Tyr Met Thr Gly Lys Lys Leu 245 250 255 260	822
cct cct gga ggg ata cct ggc att gac ctc tca gac cct aag caa ctg Pro Pro Gly Gly Ile Pro Gly Ile Asp Leu Ser Asp Pro Lys Gln Leu 265 270 275	870

gca gaa ttt gcc aga atg aag cca aga aaa att aaa gaa gat gat gct Ala Glu Phe Ala Arg Met Lys Pro Arg Lys Ile Lys Glu Asp Asp Ala 280 285 290	918
cca aga aca ata gct tgc cct cat aaa ggc tgc aca aag atg ttc agg Pro Arg Thr Ile Ala Cys Pro His Lys Gly Cys Thr Lys Met Phe Arg 295 300 305	966
gat aac tct gct atg aga aag cat ctg cac acc cac ggt ccc aga gtc Asp Asn Ser Ala Met Arg Lys His Leu His Thr His Gly Pro Arg Val 310 315 320	1014
cac gtc tgt gca gag tgt ggc aaa gcg ttc gtt gag agc tca aag cta His Val Cys Ala Glu Cys Gly Lys Ala Phe Val Glu Ser Ser Lys Leu 325 330 335 340	1062
aaa cga cac cag ctg gtt cat act gga gaa aag ccc ttt cag tgc aca Lys Arg His Gln Leu Val His Thr Gly Glu Lys Pro Phe Gln Cys Thr 345 350 355	1110
ttc gaa ggc tgc ggg aag cgc ttt tca ctg gac ttc aat ttg cgc aca Phe Glu Gly Cys Gly Lys Arg Phe Ser Leu Asp Phe Asn Leu Arg Thr 360 365 370	1158
cat gtg gga atc cat acc gga gac agg ccc tat gtg tgc ccc ttc gac His Val Gly Ile His Thr Gly Asp Arg Pro Tyr Val Cys Pro Phe Asp 375 380 385	1206
ggt tgt aat aag aag ttt gct cag tca act aac ctg aaa tct cac atc Gly Cys Asn Lys Phe Ala Gln Ser Thr Asn Leu Lys Ser His Ile 390 395 400	1254
tta aca cac gct aaa gcc aaa aac aac cag tgaaaagaag agagaagacc Leu Thr His Ala Lys Ala Lys Asn Asn Gln 405 410	1304
ttctcgaccc ggaaagcctc ttcaaggatg agattggaa taaatatgcc tctcctttgt atattatttc taggaagaat tttaaaaatg aatcctacac acttaaggga catgtttga taaagtagta aaaatttaaa aaatacttta ataagatgac attgctaaga tgctatatct tgctctgtaa tctcgttca aaaacaaggt gttttgtaa agtgtggtcc caacaggagg acaattcatg aacttcgcat caaaagacaa ttcttatac aacagtgcta aaaatg	1364 1424 1484 1544 1600

<210> 6
 <211> 414
 <212> PRT
 <213> Homo sapiens

<400> 6

Met Ala Ser Gly Asp Thr Leu Tyr Ile Ala Thr Asp Gly Ser Glu Met
1 5 10 15

Pro Ala Glu Ile Val Glu Leu His Glu Ile Glu Val Glu Thr Ile Pro
20 25 30

Val Glu Thr Ile Glu Thr Thr Val Val Gly Glu Glu Glu Glu Asp
35 40 45

Asp Asp Asp Glu Asp Gly Gly Gly Asp His Gly Gly Gly Gly Gly
50 55 60

Gly His Gly His Ala Gly His
65 70 75 80

His His Pro Pro Met Ile Ala Leu Glu Pro Leu Val Thr Asp Asp Pro
85 90 95

Thr Gln Val His His Leu Gln Glu Val Ile Leu Val Gln Thr Arg Glu
100 105 110

Glu Val Val Gly Gly Asp Asp Ser Asp Gly Leu Arg Ala Glu Asp Gly
115 120 125

Phe Glu Asp Glu Ile Leu Ile Pro Val Pro Ala Pro Ala Gly Gly Asp
130 135 140

Asp Asp Tyr Ile Glu Gln Thr Leu Val Thr Val Ala Ala Ala Gly Lys
145 150 155 160

Ser Gly Gly Ala Ser Ser Gly Gly Gly Arg Val Lys Lys Gly Gly
165 170 175

Gly Lys Lys Ser Gly Lys Ser Tyr Leu Gly Gly Ala Gly Ala
180 185 190

Ala Gly Gly Gly Ala Asp Pro Gly Asn Lys Lys Trp Glu Gln Lys
195 200 205

Gln Val Gln Ile Lys Thr Leu Glu Gly Glu Ser Ser Val Thr Met Trp
210 215 220

Ser Ser Asp Glu Lys Lys Asp Ile Asp His Glu Thr Val Val Glu Glu
225 230 235 240

Gln Ile Ile Gly Glu Asn Ser Pro Pro Asp Tyr Ser Glu Tyr Met Thr
245 250 255

Gly Lys Lys Leu Pro Pro Gly Gly Ile Pro Gly Ile Asp Leu Ser Asp
260 265 270

Pro Lys Gln Leu Ala Glu Phe Ala Arg Met Lys Pro Arg Lys Ile Lys
275 280 285

Glu Asp Asp Ala Pro Arg Thr Ile Ala Cys Pro His Lys Gly Cys Thr
290 295 300

Lys Met Phe Arg Asp Asn Ser Ala Met Arg Lys His Leu His Thr His
305 310 315 320

Gly Pro Arg Val His Val Cys Ala Glu Cys Gly Lys Ala Phe Val Glu
325 330 335

Ser Ser Lys Leu Lys Arg His Gln Leu Val His Thr Gly Glu Lys Pro
340 345 350

Phe Gln Cys Thr Phe Glu Gly Cys Gly Lys Arg Phe Ser Leu Asp Phe
355 360 365

Asn Leu Arg Thr His Val Gly Ile His Thr Gly Asp Arg Pro Tyr Val
370 375 380

Cys Pro Phe Asp Gly Cys Asn Lys Lys Phe Ala Gln Ser Thr Asn Leu
385 390 395 400

Lys Ser His Ile Leu Thr His Ala Lys Ala Lys Asn Asn Gln
405 410

<210> 7
<211> 1080
<212> DNA
<213> Rattus norv.

<220>
<221> CDS
<222> (883)..(894)
<223> Zinc finger

<220>
<221> CDS
<222> (898)..(1056)
<223> Zinc finger

<400> 7
atggcctcggtcgacacccttacattgccatcgacggctcgagatgccatggcggatc 60
gtggaaactgcatgagattgatgggagaccatccgggtggagactatcgacccacgggt 120
gtggggcgaggaggaggacgacgaagacgacgaggatgtggcggcggagaccacgggt 180
ggcgcccccgccacccatggccacaccatcaccaccaccaaccaccccg 240
cccatgatcgcgctgcagccgtggtcaccgacgacccga cccaaatgcaccaccaa 300
gaggtgattctggtgacgacgacgaggatgtgggtggacgactcggacggctg 360
cgcgccgaggacgggttcga ggaccagatcctcattccggtacccgcgcgg 420

tggtcttcag atgaaaaaaaa agatattgac catgaaacag tggtaaga gcagatcatt 720
ggggagaact cacctcctga ttattctgaa tatatgacag gcaagaaact ccctcctgga 780
gggatacctg gcattgacct ctcagacccc aagcaactgg cagaatttgc cagaatgaag 840
ccaagaaaaa ttaaagaaga tgatgctcca agaacaatag cttgccctca taaacagtgc 900
acattcgaag gctgcggaa gcgccttca ctggacttca atttgcgcac gcatgtgcga 960
atccataaccg gagacaggcc ctatgtgtgc cccttcgacg gttgtataaa gaagtttgct 1020
cagtcaacta acctgaaatc tcacatctta acacacgcta aagccaaaaa caaccagtga 1080

<210> 9
<211> 57
<212> PRT
<213> *Rattus norv.*

<400> 9

Cys Pro His Lys Cys Thr Phe Glu Gly Cys Gly Lys Arg Phe Ser Leu
1 , 5 10 . 15

Asp Phe Asn Leu Arg Thr His Val Arg Ile His Thr Gly Asp Arg Pro
20 25 30

Tyr Val Cys Pro Phe Asp Gly Cys Asn Lys Lys Phe Ala Gln Ser Thr
35 40 45

Asn Leu Lys Ser His Ile Leu Thr His
50 55

```
<210> 10
<211> 21
<212> DNA
<213> Artificial sequence
```

<220>
<223> Synthetic oligonucleotide primer

<400> 10
cacaqqcqtt tctcqtcqa q

```
<210> 11
<211> 22
<212> DNA
<213> Artificial sequence
```

<220>
<223> Synthetic oligonucleotide primer

<400> 11
aataaccaact cctcaacccccc qa

<210> 12

```

<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 12
cttcctccct ctgccttcct t 21

<210> 13
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 13
gagatcgtgg aactgcattga g 21

<210> 14
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 14
gtcttcgtcg tcgtccctcct cctc 24

<210> 15
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 15
cgagacgac gactacatcg a 21

<210> 16
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 16
gtgaccagcg tctgctcgat gtagt 25

<210> 17
<211> 21
<212> DNA
<213> Artificial sequence

```

```

<220>
<223> Synthetic oligonucleotide primer

<400> 17
ccaggttaact cttcttgcgg c 21

<210> 18
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 18
gttcccactt cttattaccc gg 22

<210> 19
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 19
caagaccctg gagggcgagt tc 22

<210> 20
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 20
acagtggttg aagagcagat cattg 25

<210> 21
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 21
ccaatgatct gctcttcaac cac 23

<210> 22
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

```

<400> 22	
gccaagaaaa attaaagaag atgatgc	27
<210> 23	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 23	
gctattgttc ttggagcatc atcttc	26
<210> 24	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 24	
gagagctcaa agctaaaacg acacc	25
<210> 25	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 25	
aaagggcttt tctccagtat gaacc	25
<210> 26	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 26	
aattgaagtc cagtaaaaag ggc	23
<210> 27	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 27	
acgcatgtgc gaatccatac cg	22

<210> 28
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 28
caaaacatgt cccttaagtg tgttagga 27

<210> 29
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 29
aattgtaaagc aacaggtgag cttcatg 27

<210> 30
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 30
gcgaaggcacc cccacactaa atttc 25

<210> 31
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 31
gcttataagt gctgtggct acagct 26

<210> 32
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 32
gtcacacctgga gctgttagcca ac 22

<210> 33
<211> 21
<212> DNA

<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 33
tcactggact tcaatttgcg c 21

<210> 34
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 34
ttttcactgg acttcaattt gcg 23

<210> 35
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 35
accagatcct cattccggta cc 22

<210> 36
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 36
ccctttcagt gcacattcga a 21

<210> 37
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 37
gacgacgaag acgacgagga t 21

<210> 38
<211> 25
<212> DNA
<213> Artificial sequence
<220>

<223> Synthetic oligonucleotide primer

<400> 38

gagagctcaa agctaaaacg acacc

25

<210> 39

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 39

ggagacgacg actacatcg a

22

<210> 40

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 40

cggagacgac gactacatcg a

21

<210> 41

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 41

tgagagctca aagctaaaac gacac

25

<210> 42

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 42

gaggaccaga tcctcattcc g

21

<210> 43

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 43

aactccctcc tggagggata cc

22

<210> 44
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 44
gagacgacga ctacatcgag cag

23

<210> 45
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 45
gaggaggacg acgacgaaga c

21

<210> 46
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 46
ttgagagctc aaagctaaaa cgaca

25

<210> 47
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 47
accctctaca ttgccacgga c

21

<210> 48
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 48
actacatcga gcagacgctg gt

22

```

<210> 49
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 49
gagctcaaag ctaaaaacgac acca                                24

<210> 50
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 50
ttcagtgacat attcgaaggc t                                21

<210> 51
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 51
tggagactat cgagaccacg gt                                22

<210> 52
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 52
tttcagtgca cattcgaagg c                                21

<210> 53
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 53
gtgcgaatcc ataccggaga c                                21

<210> 54
<211> 21
<212> DNA

```

<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 54
gaggtgattc tggcagac g 21

<210> 55
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 55
actccctcct ggaggatac ct 22

<210> 56
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 56
gtggagacta tcgagaccac gg 22

<210> 57
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 57
agaggtgatt ctggcaga cg 22

<210> 58
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 58
tggaaatctca catcttaca cacgct 26

<210> 59
<211> 21
<212> DNA
<213> Artificial sequence
<220>

<223> Synthetic oligonucleotide primer

<400> 59

tacatcgagc agacgctggc c

21

<210> 60

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 60

acgactacat cgagcagacg ct

22

<210> 61

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 61

gaaactccct cctggaggga tac

23

<210> 62

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 62

ctgcacaaaag atgttcaggg ataac

25

<210> 63

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 63

aaaacgacac cagctgggtc atac

24

<210> 64

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 64

taaaacgaca ccagctggtt catac

25

<210> 65
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 65
agaagagcgg caagaagagt tacc

24

<210> 66
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 66
acctgaaatc tcacatctta acacacg

27

<210> 67
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 67
cctgaaatct cacatcttaa cacacg

26

<210> 68
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 68
gacaccagct ggttcatact gga

23

<210> 69
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 69
ggtggagact atcgagacca cg

22

<210> 70	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 70	
agacgacgac tacatcgagc aga	23
<210> 71	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 71	
cagtggttga agagcagatc attg	24
<210> 72	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 72	
acagtggttg aagagcagat cattg	25
<210> 73	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 73	
ggttgaagag cagatcattg gg	22
<210> 74	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 74	
ggtcccagag tccacgtctg t	21
<210> 75	
<211> 25	
<212> DNA	

<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 75	
tgcacaaaga tggcaggga taact	25
<210> 76	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 76	
gatgctccaa gaacaatagc ttgc	24
<210> 77	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 77	
gtcccccagagt ccacgtctgt g	21
<210> 78	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 78	
gcttttcaact ggacttcaat ttgc	24
<210> 79	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 79	
agtgggtgaa gagcagatca ttgg	24
<210> 80	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	

<223> Synthetic oligonucleotide primer

<400> 80

gtggttgaag agcagatcat tgg

23

<210> 81

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 81

agagcggcaa gaagagttac ctg

23

<210> 82

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 82

tcacatctta acacacgcta aagcc

25

<210> 83

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 83

atctcacatc ttaacacacg ctaaagg

27

<210> 84

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 84

ctgaaaatctc acatcttaac acacgc

26

<210> 85

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 85

acgacaccag ctggttcata ctg

23

<210> 86
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 86
agatattgac catgaaaacag tggttga

27

<210> 87
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 87
gatattgacc atgaaaacagt ggttga

26

<210> 88
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 88
gagggataacc tggcattgac ct

22

<210> 89
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 89
agaccatccc ggtggagact at

22

<210> 90
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 90
gaagagcggc aagaagagtt acct

24

<210> 91	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 91	
ggagactatc gagaccacgg tg	22
<210> 92	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 92	
ggttcgagga ccagatcctc a	21
<210> 93	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 93	
gagcagatca ttggggagaa ctc	23
<210> 94	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 94	
gaagatgatg ctccaagaac aatagc	26
<210> 95	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 95	
cgctaaagcc aaaaacaacc agt	23
<210> 96	
<211> 22	
<212> DNA	

<213> Artificial sequence .

<220>

<223> Synthetic oligonucleotide primer

<400> 96
ataccggaga caggccatat gt 22

<210> 97

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 97
caatagcttg ccctcataaaa ggc 23

<210> 98

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 98
aagatattga ccatgaaaca gtggttg 27

<210> 99

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 99
acaatagctt gccctcataaa aggc 24

<210> 100

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 100
agaaaagccc tttcagtgc ca 22

<210> 101

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 101
atattgacca tgaaacagtg gttgaag

27

<210> 102
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 102
gcggcaagaa gagttacctg g

21

<210> 103
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 103
tattgaccat gaaacagtgg ttgaag

26

<210> 104
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 104
attgaccatg aaacagtgg tgaag

25

<210> 105
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 105
ttgaccatga aacagtgg ttgaag

24

<210> 106
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 106

gaacaatagc ttgccctcat aaagg

25

<210> 107
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 107
agaacaatag cttgccctca taaagg

26

<210> 108
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 108
acctctcaga ccccaagcaa ct

22

<210> 109
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 109
acgctaaagc caaaaacaac cag

23

<210> 110
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 110
aagatgatgc tccaagaaca atagctt

27

<210> 111
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 111
aaacgacacc agctggttca tact

24

```

<210> 112
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 112
cgacggttgt aataagaagt ttgctc 26

<210> 113
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 113
caagaacaat agcttgcctt cataaa 26

<210> 114
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 114
ggaacagaag caggtgcaga tc 22

<210> 115
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 115
aaaagccctt tcagtgcaca ttc 23

<210> 116
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 116
tctgctatga gaaaggcatct gcac 24

<210> 117
<211> 26
<212> DNA

```

```

<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 117
aaacagtgg tgaagagcag atcatt
26

<210> 118
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 118
ttcgacgg ttaataagaa gtttgc
26

<210> 119
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 119
agcgttcgtt gagagctcaa ag
22

<210> 120
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 120
gccccttcga cgggtgtaat a
21

<210> 121
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 121
caatgcgcag aatttgccag a
21

<210> 122
<211> 22
<212> DNA
<213> Artificial sequence
<220>

```

<223> Synthetic oligonucleotide primer

<400> 122

agttctcggt caccatgtgg tc

22

<210> 123

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 123

tgagaaaagca tctgcacacc c

21

<210> 124

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 124

atgagaaaagc atctgcacac cc

22

<210> 125

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 125

tatgagaaaag catctgcaca ccc

23

<210> 126

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 126

gagttctcggt tcaccatgtg gt

22

<210> 127

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 127

caccaccacc aagaggtgat tc

22

<210> 128
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 128
gacgacgact acatcgagca gac

23

<210> 129
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 129
cccggtggag actatcgaga c

21

<210> 130
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 130
cagaaggcagg tgcagatcaa gac

23

<210> 131
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 131
gctaaagcca aaaacaacca gtga

24

<210> 132
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 132
gacctctcag accccaagca a

21

<210> 133	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 133	
gcaaacttct tattacaacc gtcgaa	26
<210> 134	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 134	
acatagggcc tgtctccggt at	22
<210> 135	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 135	
agcaaacttc ttattacaac cgtcga	26
<210> 136	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 136	
agctttgagc tctcaacgaa cg	22
<210> 137	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 137	
gagcaaactt cttattacaa ccgtcg	26
<210> 138	
<211> 22	
<212> DNA	

<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 138
ctttgagctc tcaacgaacg ct 22

<210> 139
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 139
ggttgttttt ggcttttagcg tgt 23

<210> 140
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 140
ctgggttgtt ttggcttttag cgt 23

<210> 141
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 141
cctgtctccg gtatggattc g 21

<210> 142
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 142
ctgtctccgg tatggattcg c 21

<210> 143
<211> 21
<212> DNA
<213> Artificial sequence
<220>

<223> Synthetic oligonucleotide primer

<400> 143

gtctccggta tggattcgca c

21

<210> 144

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 144

agcgtctgct cgatgttagtc gt

22

<210> 145

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 145

ttctgttccc acttcttatt acccg

25

<210> 146

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 146

tctgctcgat gtagtcgtcg tct

23

<210> 147

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 147

actggtttgtt ttggcttta gcg

23

<210> 148

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 148

gtctgctcga tgtagtcgtc gtc

23

<210> 149
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 149
atcctcgatcg tcttcgtcgt c

21

<210> 150
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 150
cagtatgaac cagctgggtgt cgt

23

<210> 151
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 151
ttgagctctc aacgaacgct tt

22

<210> 152
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 152
agaccacatg gtgaccgaga ac

22

<210> 153
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 153
cttcttattatc cccgggtcgg c

21

<210> 154
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 154
ctgctcgatg tagtcgtcgt ctc 23

<210> 155
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 155
tcgatgttagt cgtcgatcc g 21

<210> 156
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 156
ttttagctct caacgaacgc tt 22

<210> 157
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 157
ccacttctta ttacccgggt cg 22

<210> 158
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 158
cacttcttat tacccgggtc gg 22

<210> 159
<211> 21
<212> DNA

<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 159
gaccagcgtc tgctcgatgt a 21

<210> 160
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 160
aattgaagtc cagtgaaaag cgc 23

<210> 161
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 161
tgaaccagct ggtgtcggtt tag 23

<210> 162
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 162
gaccacatgg tgaccgagaa ct 22

<210> 163
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide primer
<400> 163
aacttcttat tacaaccgtc gaaggg 26

<210> 164
<211> 23
<212> DNA
<213> Artificial sequence
<220>

<223> Synthetic oligonucleotide primer

<400> 164

tgttcccact tcttattacc cg

23

<210> 165

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 165

cccaggttaac tcttcttgcc g

21

<210> 166

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 166

agaggtcaat gccaggtatc cc

22

<210> 167

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 167

ccaggttaact cttcttgccg c

21

<210> 168

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 168

ttgaagtcca gtgaaaagcg ct

22

<210> 169

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 169

tgaggatctg gtcctcgaac c

21

<210> 170
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 170
cacatggta ccgagaactc g

21

<210> 171
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 171
gtatgaacca gctggtgtcg tttt

24

<210> 172
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 172
tcaatctcat gcagttccac gat

23

<210> 173
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 173
tcaatctcat gcagttccac ga

22

<210> 174
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 174
agtatgaacc agctgggtgtc gttt

24

<210> 175
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 175
ggtctcgata gtctccaccg g 21

<210> 176
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 176
aagaccacat ggtgaccgag aa 22

<210> 177
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 177
caatctcatg cagttccacg atc 23

<210> 178
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 178
ggaatgagga tctggtcctc g 21

<210> 179
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 179
ttccccacttc ttattacccg ggt 23

<210> 180
<211> 22
<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 180
tgaaagtccag tgaaaaagcgc tt 22

<210> 181

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 181
gctcgtatgtat gtcgtcgatcc 22

<210> 182

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 182
gtatgaacca gctgggtgtcg tttta 25

<210> 183

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 183
ttccccacttc ttattacccg gg 22

<210> 184

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 184
gaatgaggat ctgggtcctcg aac 23

<210> 185

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 185

gaggtcaatg ccaggtatcc ct

22

<210> 186

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 186

gtggtctcga tagtctccac cg

22

<210> 187

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 187

agtaactct tcttgcgcct ctcc

24

<210> 188

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 188

cacattctgc acagacgtgg a

21

<210> 189

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 189

aaaggcctt tctccagtat gaacc.

25

<210> 190

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 190

accatcctcg tcgtttcgt c	21
<210> 191	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 191	
gcttctgttc ccacttctta ttaccc	26
<210> 192	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 192	
cacattctgc acagacgtgg ac	22
<210> 193	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 193	
caggtaactc ttcttgccgc tct	23
<210> 194	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 194	
gatgctttct catagcagag ttatccc	27
<210> 195	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 195	
ctgaagacca catggtgacc g	21

<210> 196	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 196	
cctgcttctg ttcccaacttc ttattac	27
<210> 197	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 197	
accagcgtct gctcgatgta gt	22
<210> 198	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 198	
tcttattaca accgtcgaag ggg	23
<210> 199	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 199	
ttgtttttgg cttagcgtg tgtt	24
<210> 200	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 200	
actgaaaggg cttttctcca gtatg	25
<210> 201	
<211> 25	
<212> DNA	

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 201
cactgaaagg gctttctcc agtat 25

<210> 202

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 202
gaggtgagtt ctccccaatg atc 23

<210> 203

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 203
ggtaccggaa tgaggatctg gt 22

<210> 204

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 204
gtctcgatag tctccaccgg g 21

<210> 205

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 205
cttcaaccac tgtttcatgg tcaata 26

<210> 206

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 206

cctttatgag ggcaagctat tgttc

25

<210> 207

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 207

cttcaaccac tgtttcatgg tcaatat

27

<210> 208

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 208

tttttggctt tagcgtgtgt taagat

26

<210> 209

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 209

ttgtttttgg cttagcgtg tgtta

25

<210> 210

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 210

cttgggggtct gagaggtcaa tg

22

<210> 211

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 211

gtccgtggca atgtagaggg t	21
<210> 212	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 212	
tctggcaaat tctgccagtt g	21
<210> 213	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 213	
tcactggttg ttttggctt tagc	24
<210> 214	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 214	
ctttgtgcag cctttatgag gg	22
<210> 215	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 215	
gttgttttg gctttagcgt gtgt	24
<210> 216	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide primer	
<400> 216	
tgaaaggcgt tttctccagt atga	24

```

<210> 217
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 217
gcaagctatt gttcttggag catc 24

<210> 218
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 218
gcctttatga gggcaagcta ttg 23

<210> 219
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 219
gcttggggtc tgagaggtca at 22

<210> 220
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 220
ccaatgatct gctcttcaac cac 23

<210> 221
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 221
ccaccgtggc ctcgatagtc tc 22

<210> 222
<211> 27
<212> DNA

```

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 222
ctgcttctgt tcccaacttct tattacc 27

<210> 223

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 223
ttggcttcat tctggcaaat tc 22

<210> 224

<211> 25

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 224
cttcaaccac tgtttcatgg tcaat 25

<210> 225

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 225
aatctcatgc agttccacgta tctc 24

<210> 226

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 226
cttcaaccac tgtttcatgg tcaa 24

<210> 227

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 227

gggctttctt ccagtatgaa cca

23

<210> 228

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 228

accacatggt gaccgagaac tc

22

<210> 229

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 229

gtgcagatgc tttctcatag caga

24

<210> 230

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 230

tgtgcagatg ctttctcata gcag

24

<210> 231

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 231

cattctgcac agacgtggac tc

22

<210> 232

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide primer

<400> 232

tctgagaggt caatgccagg tatac

24