Mega store

Team ID: SC_14

Team members:

	Name	University ID	
1	محمد عبدالرؤف أحمد عبد الشافي	20191700557	
2	فاطمة محمود عبد الحكم موسى بدر	20201700571	
3	مصطفى محمد بيومي محمد	20201700837	
4	مصطفى هانى محمد محروس	20201700843	
5	عمر محمد عبدالرؤوف إبراهيم	20201700545	
6	رحمة ايمن عطية عوض	20201700257	

Milestone 1

Report

First: Splitting data:

- we have divided the data into two parts: X(input features) and Y(target) then we divided each of them into train(80%) and test(20%), and we have used shuffle parameter to shuffle the data randomly before splitting to avoid any order biases.
 Finally, the random_state parameter is set to 42, which ensures that the split will be the same every time the code is run.
- After split the entire data to train and test we call processing(X_train) which explained below.

Second: preprocessing data:

- We have implemented a preprocessing.py which contains three functions.
 - pre_processing(X)
 - This function takes the data frame of features and makes some changes to it and then returns it again.
 - the changes are represented in:
 - 1- split columns of date {'Order Date', 'Ship Date'} each to three columns day, month, year.
 - 2- Split the column => 'Category tree' which data type is Dictionary to number of columns same as the number of unique Keys is all samples.
 - The output data frame contains 8 new columns, and we drop the old 3 columns so its net size increase by 5 columns.
 - o numerical_Categorical(X:pd.dataframe())
 - This function takes a data frame of features and returns the numerical and categorical columns as two data frames.
 - date_split(X:pd.dataframe , cols)
 - This function takes two parameters:
 - X: data frame which contains a date column.
 - cols: List of string holds the names of columns which contain date.
 - split columns of date each to three columns day, month, and year.

- Encoding:

- After some experiments we decide to use The Ordinal Encoder from the categorical_encoders library with two arguments:
 - handle unknown='value' and handle missing='value'
 - We used handle_unknown argument to handle categories in the test set that has not seen in the training set.
 - We used handle_missing argument to handle missing values in the data

- Feature selection:

After separating data into categorical and numerical we made feature selection on each one

1- SelectKBest method from the scikit-learn library to select the top k features based on their F-scores, The F-score measures the linear dependence between the target variable and each feature in the categorical data to find out the most important of columns, then we have taken 6 of them.

~ Selected categorical features: main Category, subcategory, state, region, ship Mode, product name.

2- Correlation method for numerical data by selecting the top features that have a correlation coefficient greater than 0.2 with the 'Profit' variable We used correlation to find out the variables that are highly related to the target variable and can help in building a better predictive model.

~ Selected numerical features: sales, discount

Third: Regression models:

Model	Train MSE	Test MSE	Model score
Polynomial model Degree(3)	2388.3440	2317.6800	0.9366
Random forest regressor Max_depth = 12	2067.4593	3185.283	0.9129
elasticNet model	33731.2383	19050.1557	0.4791
Ridge model	31664.5149	18683.0855	0.4892
Lasso model	31693.5716	18507.0796	0.4939
Linear-multivariable model	31664.4741	18690.8967	0.4889

```
mean square error of elasticNet train data set: 33731.238398328256
mean square error of elasticNet test data set: 19050.155687498733
elasticNet score: 0.47912795442623324
mean square error of ridge train data set: 31664.514973292124
mean square error of ridge test data set: 18683.085507303163
ridge model score : 0.48916443910194984
mean square error of lasso train data set: 31693.571627158366
mean square error of lasso test data set: 18507.07959326607
lasso model score : 0.49397681764527823
mean square error of Linear-multivariable train data set: 31664.474112899126
mean square error of Linear-multivariable test data set: 18690.896749667652
Linear-multivariable model score : 0.4889508630107301
mean sqr error of random-forest-regressor train data set: 2067.4593162503174
mean square error of random forest regressor test data set: 3185.283172843259
random forest regressor model score : 0.9129075379127042
mean square error of Polynomial train data set: 2388.3439852475585
mean square error of Polynomial test data set: 2317.68000367696
Polynomial model Score : 0.9366296662187993
```

Train and test size for each:

Lasso model:

Train size: 6396 samples and 8 features

Test size: 1599 samples and 8 features

Ridge model:

Train size: 6396 samples and 8 features

Test size: 1599 samples and 8 features

elasticNet model:

Train size: 6396 samples and 8 features

Test size: 1599 samples and 8 features

Linear multivariable model:

Train size: 6396 samples and 8 features

Test size: 1599 samples and 8 features

Random forest model:

Train size: 6396 samples and 8 features

Test size: 1599 samples and 8 features

Polynomial model:

Train size: 6396 samples and 165 features

Test size: 1599 samples and 165 features

Conclusion - At the end we find that the polynomial model with degree = 3 is the best model to fit in our task that it has the minimum mean square error for training and testing. - The random forest regressor is close to the polynomial model. - The linear, Lasso, ridge and elasticNet models are very bad and their accuracy is less than 50%