Basics

- dot product: $\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + ... = |\underline{a}||\underline{b}|\cos\theta$, $W = \underline{F} \cdot \underline{d}$ where F is force and d is distance
- Cross Product: $\underline{v} \times \underline{w} = \begin{vmatrix} i & -j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & W_3 \end{vmatrix}$
- The area of the quadrilateral which the vectors are enclosing is the determinant of the cross product
- Vector equation of line : $(x, y, z) = (x_0, y_0, z_0) + t(a, b, c)$; where (a, b, c) is a vector parallel to the line and (x_0, y_0, z_0) is a point on the line
- Standard equation of line/plane: $\underline{n} \cdot ((x, y, z) (x_0, y_0, z_0)) = 0$, where \underline{n} is a vector normal to the line/plane
- projection $\underline{\mathbf{a}}$ onto $\underline{\mathbf{b}}$: $Proj_{\underline{b}}(\underline{a}) = \underline{a}_{\underline{b}} = (\underline{a} \cdot \frac{\underline{a}}{|\underline{b}|}) \frac{\underline{b}}{|\underline{b}|})$

Parametrization and Tangents to planes ...

- Curve: $R^2 : \underline{r} = (x(t), y(t)) ; R^3 : \underline{r} = (x(t), y(t), z(t))$
- Tangent line at $t = t_0$: $L(s) = \underline{r}(t_0) + s\underline{r}(t_0)$
- Tangent plane of graph at (a,b,f(a,b)): $z=f(a,b)+f_x(a,b)(x-a)+f_x(a,b)(y-b)$

Parametrized Surface $(\underline{r}(u,v))$ and Curve and regular parametrization

- $\bullet \ \underline{r}(u,v) = (x(u,v),y(u,v),z(u,v))$
- $r_u(u_0, v_0)$ and $r_v(u_0, v_0)$ are two vectors parallel to the plane tangent to the surface at $\underline{r}(u_0, v_0)$
- $\underline{n} = \underline{r_u}(u_0, v_0) \times \underline{r_v}(u_0, v_0)$ is a vector normal to the above tangent plane, if $\underline{n} \neq \underline{0}$ then the parametrization is regular at $\underline{r}(u_0, v_0)$
- Tangent plane can be written in two ways:
 - As a parametrization: $(x, y, z) = \underline{r}(u_0, v_0) + a\underline{r}_{\underline{u}}(u_0, v_0) + br_{\underline{v}}(u_0, v_0)$
 - As a level set (Standard equation): $\underline{n} \cdot ((x, y, z) \underline{r}(u_0, v_0)) = 0$
- Parametrization of special surfaces
 - **cylinder**: $\underline{r}(\theta, z) = (R\cos(\theta), R\sin(\theta), z)$
 - sphere: $\underline{r}(\theta, \phi) = (R\sin(\phi)\cos(\theta), R\sin(\phi)\sin(\theta), R\cos(\phi))$
 - graph y = f(x): $\underline{r}(x) = (x, f(x))$
- Parametrization of curves
 - line segment: $\underline{r}(t) = \underline{a} + t(\underline{b} \underline{b})$
 - circle in R^2 : $\underline{r}(t) = (R\cos(t), R\sin(t))$
 - **graph** z = f(x, y): $\underline{r}(x, y) = (x, y, f(x, y))$

Surfaces and Gradient vectors

- Common surfaces:
 - Bowl/cup: $z = x^2 + y^2$ Cone: $z = \pm c\sqrt{x^2 + y^2}$
 - Saddle: $z = x^2 y^2$ Cylinder: $x^2 + y^2 = R^2$
 - **Sphere**: $x^2 + y^2 + z^2 = R^2$ **Plane**: ax + by + cz = d

Level sets

- level set of f(x,y) is a curve in the xy-plane: f(x,y) = const
- level set of f(x, y, z) is a graph in the xyz-plane: f(x, y, z) = const

Gradient Vector $\nabla f = (f_{x_1}, f_{x_2}, ..., f_{x_n})$

- $\bullet\,$ Maximum increase: the direction: direction of ∇f ; the rate: $|\nabla f|$
- Minimum increase: opposite direction of ∇f ; the rate: $-|\nabla f|$
- No change: the normal to ∇f
- Rate of change in direction \hat{u} : **directional derivative** $D_{\hat{u}}f(\underline{p}) = \nabla f(\underline{p}) \cdot \hat{u}$
- ∇f is normal to level sets
- Tangent set to level set at \underline{p} : $\nabla f(\underline{p}) \cdot (\underline{x} p) = 0$

Linear approximation, tangent plane, Local minimum and Maximum (optimization)

- Linearization: $L(\underline{x}) = f(\underline{p}) + \nabla f(\underline{p}) \cdot (\underline{x} \underline{p})$
- Linear Approximation : $f(\underline{x}) = L(\underline{x})$
- Critical Points: $\nabla f(p) = \underline{0}$
- Second derivative test: $D = f_{xx}f_{yy} (f_{xy})^2$ at point \underline{p}
 - If D > 0 and $(f_{xx} > 0 \text{ or } f_{yy} > 0)$, then p is a local min
 - If D > 0 and $(f_{xx} < 0 \text{ or } f_{yy} < 0)$, then \underline{p} is a local max
 - If D < 0 then $\underline{\mathbf{p}}$ is a saddle point
- chain rule: $f = f(\underline{x}), x_i = x_i(\underline{t})$ then $\frac{\partial f}{\partial t_i} = \nabla f(\underline{x}) \cdot \frac{\partial \underline{x}}{\partial t_i}$

Coordinate systems

- Rectangular Coordinates (x, y, z)
 - to cylindrical: $x = r \cos \theta$, $y = r \sin \theta$, z = z
 - from cylindrical : $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1}(\frac{y}{x})$, z = z
- Cylinder Coordinates (θ, r, z)
 - from spherical : $r = \rho \cos \phi$, $z = \rho \sin \phi$, $\theta = \theta$
 - to spherical : $\rho = \sqrt{r^2 + z^2}$, $\phi \tan^{-1}(\frac{r}{z}, \theta = \theta)$
- Spherical Coordinates (ϕ, θ, ρ)
 - from rectangular : $\rho = \sqrt{x^2 + y^2 + z^2}$, $\phi = \tan^{-1}(\frac{\sqrt{x^2 + y^2}}{z})$, $\theta = \tan^{-1}(\frac{y}{x})$
 - to rectangular: $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

Surface Area, Area, Volume, Mass, ...

- R^2 Area elements dA
 - Cartesian(x,y) dA = dxdy
 - $\mathbf{Polar}(\theta, r) dA = rdrd\theta$
- R^3 Volume elements dV
 - Cartesian(x, y), z dV = dxdydz
 - Cylindrical $(\theta, r, z) dV = r dr d\theta dz$
 - Spherical $(\theta, \rho, \phi) dV = \rho^2 \sin \phi d\rho d\phi d\theta$
- Surface Area element (dS) / Surface Area
 - Surface Area element: $dS = |r_u \times r_u| du dv$
 - * Graph z = f(x,y): $\underline{r}(x,y) = (x,y,f(x,y)) dS = \sqrt{f_x^2 + f_y^2 + 1}$
 - * Sphere $\underline{r}(\theta,\phi) = (R\sin(\phi)\cos(\theta),R\sin(\phi)\sin(\theta),R\cos(\phi))$: $dS = R^2\sin\phi d\phi d\theta$
 - * Cylinder $\underline{r}(\theta, z) = (R\cos(\theta), R\sin(\theta), z)$: $dS = Rdzd\theta$
 - Surface Area: $\iint_D dS = \iint_D dS \iint_D |\underline{r_u} \times \underline{r_v}| du dv$
- Mass given a density $\delta_a r(x,y)$ in R^2 or $\delta(x,y,z)$ in R^3 the mass is:
 - $-M = \int \int_{R} \delta_{a} r(x, y) dA M = \int \int \int_{R} \delta(x, y, z) dV$

Vector Fields, Line Integral (work), Conservative Field, Flux

- • Vector Field : R^2 : $\underline{F}(\underline{x}) = (P(x,y),Q(x,y))$ R^3 : $\underline{F}(\underline{x}) = (P(x,y,z),Q(x,y,z),R(x,y,z))$
- Divergence: $div\underline{F} = \nabla \cdot \underline{F}$, curl: $curl\underline{F} = \nabla \times \underline{F}$ in 2d : $curl = Q_x P_y$
- Line integral (work) of $\underline{F}=(P, Q, R)$ along a path (C) and parametrized by $\underline{r}(t)=(x(t),y(t))$ $t:a\to b$

$$\int_{c} \underline{F} \cdot d\underline{r} = \int_{a}^{b} \underline{F}(\underline{r}(t)) \cdot \underline{r}'(t) dt$$

- Conservative Field $\nabla \cdot \underline{F} = \underline{0}$ (curl is 0) :
 - * $\underline{F} = \nabla f$ where f is called the potential function , find f by integrating
 - * line integral becomes path independent (fundamental theorem of line integrals) $\int_c \underline{F} \cdot d\underline{r} = f(\underline{b}) f(\underline{a})$ where a and b are the points that path starts and ends from
- Flux of a vector field F through surface M:

$$Flux = \int \int_{\mathcal{M}} \underline{V} \cdot d\underline{S} = \int \int_{\mathcal{M}} \underline{V} \cdot \hat{n} dS = \int \int_{\mathcal{D}} \underline{V}(\underline{r}(u, v)) \cdot |\underline{r}_{\underline{u}} \times \underline{r}_{\underline{v}}| du dv$$

The three theorems for calculating work (line integral) and flux (all assume closed integrals)

Green's Theorem (line integral) : $\int_{\partial R} \underline{F} \cdot d\underline{r} = \int \int_{R} (Q_x - P_y) dA$ Divergence Theorem (flux) : $\int \int_{\partial E} \underline{F} \cdot \hat{n} dS = \int \int \int_{E} (\nabla \cdot \underline{F}) dV$ Stoke's Theorem (line integral) : $\int_{\partial R} \underline{F} \cdot d\underline{r} = \int \int_{M} (\nabla \times \underline{F}) \cdot \hat{n} dS$

- For green's theorem, may have to add paths to close the path, for divergence theorem, may have to add surfaces
- Corollary to stoke's theorem: two surfaces sharing the same boundary have the same line integral