Instituto Superior de Engenharia de Lisboa LEIC, LEIRT e LEIM

Segurança Informática

Época Normal, Semestre de Inverno, 2023/24 – 5 de janeiro de 2024

Duração: 2 horas

- Respostas às questões 4 a 9 em grupos de folhas diferentes, como indicado no enunciado
- Todas as respostas às perguntas de desenvolvimento têm de ser justificadas. Valoriza-se a objetividade das respostas.
- Nas questões 1, 2 e 3, indique V, F, ou deixe a caixa em branco se não tiver a certeza que a afirmação é verdadeira ou falsa. A indicação errada desconta 50% da cotação atribuída à afirmação.

Número:	Nome:
1. (2) Con	siderando que se pretende cifrar um ficheiro de 50 bytes com um esquema de cifra simétrica:
(ex	O criptograma final pode ter mais de 50 bytes se for usado um modo de operação em bloco :: Cipher Block Chaining).
dec	Se for usado vetor inicial (IV), o seu valor terá de ser conhecido antes de iniciar o processo de cifra.
	A dimensão da chave depende da dimensão do ficheiro.
	A cifra e a decifra são feitas com chave pública e privada, respetivamente.
2. (2) No o	contexto dos certificados X.509, do protocolo TLS e da biblioteca JCA:
	Um certificado auto-assinado é universalmente considerado de confiança.
a s	No certificado fornecido no segundo trabalho, para representar o servidor www.secure-server.edu ua chave pública não é usada para verificar a assinatura desse certificado.
mé	A classe Mac da JCA produz uma marca cuja dimensão depende do algoritmo indicado no todo fábrica getIntance.
nat	O record protocol garante a integridade das mensagens com um esquema assimétrico de assitura digital.
3. (2) No cional:	contexto dos mecanismos para autenticação e autorização de utilizadores de um sistema computa-
	O controlo de acessos é normalmente feito antes de autenticar o utilizador.
	Os modelos de controlo de acessos têm em conta utilizadores específicos do sistema.
	Os modelos RBAC consideram apenas permissões positivas na relação <i>Permission-Assignment</i> .
apl	A biblioteca Casbin, usada no segundo trabalho, é específica para o controlo de acessos em licações web.

v1 1/2

- 4. (3) No RFC 7516, parcialmente implementado no primeiro trabalho, existem duas chaves: a chave de cifra do texto (CE_k) e a chave pública do destinatário da mensagem (K_e) . A chave K_e é usada para cifrar a chave CE_k , a qual cifra a mensagem de texto t.
 - 4.1. Indique uma razão para serem usadas duas chaves para o processo de cifrar o texto t.
 - 4.2. Qual é, resumidamente, o processo de decifra?
- 5. (3) Considere o protocolo Transport Layer Security (TLS).
 - 5.1. Considere que um atacante modifica as mensagens iniciais trocadas durante o handshake protocol entre um cliente e um servidor, com o objetivo de que ambos usem versões mais antigas dos algoritmos criptográficos. De que forma é este ataque detetado?
 - 5.2. A propriedade *perfect forward secrecy* tem como objetivo resolver possíveis ataques a qual ou quais partes do sistema: i) cliente, ii) servidor, iii) canal de comunicação?

Grupo 2.

6. (2) No Bitcoin, uma ou mais transações financeiras são organizadas em blocos que por sua vez são encadeados numa lista. Entre os campos do *header* de cada bloco, são armazenados o valor do *hash* do *header* do bloco anterior (h_1) e um *hash* do conjunto de transações do bloco atual (h_2) .

Por exemplo, dado os bloco b_i e b_{i-1} , e as transações t_1 e t_2 armazenadas no bloco b_i , o header do bloco b_i seria composto pelos hashs $h_1 = H(b_{i-1})$ e $h_2 = H(t_1, t_2)$.

Explique como um atacante poderia tentar alterar as transações de um determinado bloco **sem alterar nenhum outro bloco da cadeia**. A resposta deve explicitar quais campos do *header* do bloco alterado mudam (se algum). Além disto, considerando que o Bitcoin utiliza uma boa função de *hash* criptográfico, diga se este ataque é computacionalmente fazível justificando a resposta.

7. (2) Considere uma aplicação web onde as passwords dos utilizadores são armazenadas na forma

$$p_u = E(k)(pwd_u)$$

onde E é uma função de cifra simétrica conhecida, k é a chave simétrica usada para todos os utilizadores e pwd_u a palavra-passe de um utilizador u. Tanto os valores de p_u como o valor de k são armazenados na base de dados da aplicação.

Assumindo que um atacante obteve acesso a uma cópia recente da base de dados, descreva as implicações para a segurança da aplicação e dos seus utilizadores. De que forma poderiam as passwords ter sido armazenadas para mitigar o risco associado à situação descrita e em simultâneo mitigar ataques de dicionário e de pré-computação do dicionário? Apresente na sua resposta uma função alternativa para p_u .

 $Grupo 3_{-}$

- 8. (1) Considere a seguinte política definida sobre o modelo $RBAC_1$:
 - $U = \{u_1, u_2\}, R = \{r_0, r_1, r_2, r_3, r_4\}, P = \{p_1, p_2\}$
 - $\{r_0 \leq r_1, r_0 \leq r_2, r_2 \leq r_3, r_1 \leq r_4\} \subseteq RH$
 - $UA = \{(u_1, r_1), (u_2, r_3)\}$
 - $PA = \{(r_1, p_1), (r_2, p_2)\}$

Sendo s_0 um identificador de sessão, e $user(s_0) = u_2$, é possível que $r_1 \in roles(s_0)$? E que $r_0 \in roles(s_0)$?

- 9. (3) Considere os protocolos OAuth2 e OpenID Connect:
 - 9.1. O parâmetro scope existe nos dois protocolos? Qual é o seu objetivo?
 - 9.2. Considere os endpoints *authorization endpoint* e o *token endpoint*. De que forma a aplicação cliente acede a cada um destes endpoints?

v1 2/2