UNIVERSIDADE TUIUTI DO PARANÁ

DANIEL DEDA

ESTUDO DIRIGIDO - INTELIGÊNCIA ARTIFICIAL

CURITIBA 2018

DANIEL DEDA

ESTUDO DIRIGIDO - INTELIGÊNCIA ARTIFICIAL

Estudo Dirigido apresentado à matéria de Inteligncia Artificial, como requisito à obtenção de nota parcial do primeiro e do segundo bimestre.

Orientador: Prof. Chaua Quierolo

CURITIBA 2018

SUMÁRIO

1	INTRODUÇÃO	3
2	DESCRIÇÃO DO PROBLEMA	4
3	DESCRIÇÃO DOS ALGORITMOS	5
4	RESULTADOS EXPERIMENTAIS	6
4.1	RESULTADOS HILL CLIMBING	6
4.2	RESULTADOS TABU SEARCH	6
4.3	RESULTADOS TABU SEARCH + GRASP	6
4.4	COMPARAÇÃO DOS RESULTADOS	6
5	CONCLUSÃO	18

1 INTRODUÇÃO

Este trabalho consiste no relatório dos algoritmos desenvolvidos durante o primeiro bimestre de Inteligência Artificical, onde serão apresentados os resultados obtidos.

2 DESCRIÇÃO DO PROBLEMA

O problema proposto para ser resolvido no trabalho foi o Problema da Mochila, um dos 21 problemas NP-Completos de Richard karp. O problema consiste em maximizar o valor dos objetos que está sendo carregado, considerando o peso dos objetos e seus respectivos valores. Porém como o Problema da Mochila não foi concluído, para a analise dos algoritmos foi utilizado o Problema da Raiz, onde o objetivo é econtrar o valor da raiz da função 2.1 dado um valor X.

$$X^2 - 2$$
 (2.1)

3 DESCRIÇÃO DOS ALGORITMOS

Os algoritmos escolhidos para implementação foram o Tabu Search e GRASP em combinação com a Tabu Search. O algoritmo Tabu Search é uma Meta-Heuristica utilizada em algoritmos de busca como o Hill Climbing. Seu funcionamento consiste em utilizar listas que armazenam os estados já visitados pelo algoritmo (Listas Tabu) e impedir que o algoritmo os visite nomavente, otimizando a busca. Já o GRASP (Greedy Randomized Adaptive Search Procedure), é uma Meta-Heuristica que cria soluções de forma aleatória e as utiliza como estado inicial em um algoritmo de busca local, se a solução econtrada for melhor que a anterior esta é armazenada e usada como comparação para a próxima iteração do algoritmo. Isto é feito até que a solução escolhida satisfaça um critério de parada.

4 RESULTADOS EXPERIMENTAIS

Para comparação dos algoritmos, os algoritmos Hill Climbing, Tabu Search e Tabu Search + GRASP foram executados em ciclos de 10, 100 e 1000 iterações, 25 vezes cada um.

- 4.1 RESULTADOS HILL CLIMBING
- 4.2 RESULTADOS TABU SEARCH
- 4.3 RESULTADOS TABU SEARCH + GRASP
- 4.4 COMPARAÇÃO DOS RESULTADOS

Comparação do resultado ideal com a média dos resultados obtidos de cada algoritmo:

X	Y
-0,005886094181531	-1,99996535389529
0,000737436189993	-1,99999945618787
0,000224017711065	-1,99999994981607
0,002753076707572	-1,99999242056864
-0,000883796720316	-1,99999921890336
-0,001357998632019	-1,99999815583972
0,000368116696007	-1,9999998644901
0,001465370457473	-1,99999785268942
0,001644888149677	-1,99999729434298
0,00180836956747	-1,99999672979951
0,000634487119363	-1,9999995974261
0,000578991935533	-1,99999966476834
-0,002216349130615	-1,99999508779653
-0,000867582370237	-1,99999924730083
0,000675648930191	-1,99999954349852
0,000813493252509	-1,99999933822873
0,00029794996885	-1,99999991122582
0,000602174721303	-1,99999963738561
-0,000523977566344	-1,99999972544751
0,000572516034905	-1,99999967222539
0,001470432923736	-1,99999783782702
0,003151738919485	-1,99999006654178
0,000470864455613	-1,99999977828666
-0,001434333086684	-1,9999979426886
0,001009580765156	-1,99999898074668

TABELA 1 – 10 Iterações.

X	Υ
-0,002926204622118	-1,99999143732651
0,048436678172053	-1,99765388820766
-0,035710016206366	-1,99872479474254
0,11538083202137	-1,98668726360206
-0,025679102021714	-1,99934058371936
0,007663948592701	-1,99994126389197
0,144236798853115	-1,97919574585661
0,018294505793659	-1,99966531105777
0,765855986671883	-1,41346460767884
0,160473401248705	-1,97424828749167
-0,080617341165746	-1,99350084430337
-0,039364211315219	-1,99845045886753
-0,038280865610201	-1,99853457532813
-0,045789369122034	-1,99790333367541
-0,012950901698454	-1,9998322741452
0,064353424694066	-1,99585863673015
0,161366900946887	-1,9739607232788
-0,216269731017548	-1,9532274034456
-0,146764651940384	-1,97846013694082
-0,004288334088575	-1,99998161019074
0,037071982394889	-1,99862566812131
-0,007992647360721	-1,99993611758817
-0,019493768618411	-1,99961999298505
-0,032414518260264	-1,99894929900596
0,049839621961353	-1,99751601208275

TABELA 2 – 100 Iterações.

X	Υ
0,035870363172417	-1,99871331704588
0,039740296183582	-1,99842070885924
-0,147327216718422	-1,978294691214
-0,030375036625787	-1,99907735714998
-0,015989336495993	-1,99974434111842
-0,074042005194418	-1,99451778146679
-0,182015388115688	-1,9668703984891
0,130985126380398	-1,98284289666711
-0,016452732781163	-1,99972930758403
-0,057406867015869	-1,99670445161942
-0,229911058241896	-1,94714090529809
0,008242761645341	-1,99993205688046
-0,033318127753847	-1,99888990236298
2,4402132637003	3,95464077233889
-0,048761931669797	-1,99762227401983
0,172492285961397	-1,97024641128381
-0,018885476028951	-1,99964333879516
-0,031816082481758	-1,99898773689551
0,07006176601799	-1,99509134894244
-0,061434523638066	-1,99622579930536
0,009465111860523	-1,99991041165747
0,094172371378308	-1,99113156446899
0,048424512986947	-1,99765506654198
0,142614648065465	-1,97966106215716
-0,102456511793808	-1,98950266319105

X	Υ
-0,005886094181531	-1,99996535389529
0,000737436189993	-1,99999945618787
0,000224017711065	-1,99999994981607
0,002753076707572	-1,99999242056864
-0,000883796720316	-1,99999921890336
-0,001357998632019	-1,99999815583972
0,000368116696007	-1,9999998644901
0,001465370457473	-1,99999785268942
0,001644888149677	-1,99999729434298
0,00180836956747	-1,99999672979951
0,000634487119363	-1,9999995974261
0,000578991935533	-1,99999966476834
-0,002216349130615	-1,99999508779653
-0,000867582370237	-1,99999924730083
0,000675648930191	-1,99999954349852
0,000813493252509	-1,99999933822873
0,00029794996885	-1,99999991122582
0,000602174721303	-1,99999963738561
-0,000523977566344	-1,99999972544751
0,000572516034905	-1,99999967222539
0,001470432923736	-1,99999783782702
0,003151738919485	-1,99999006654178
0,000470864455613	-1,99999977828666
-0,001434333086684	-1,9999979426886
0,001009580765156	-1,99999898074668

TABELA 3 – 1000 Iterações.

X	Υ
0,030509191108127	-1,99906918925793
0,010676203237916	-1,99988601868442
-0,068141649402064	-1,99535671561677
0,006268349741848	-1,99996070779151
0,041442590888351	-1,99828251166046
0,002017326995903	-1,99999593039179
0,012954103556696	-1,99983219120104
-0,111904619225132	-1,98747735619608
0,150768049639511	-1,9772689952079
0,166476217900645	-1,9722856688735
0,015026283840875	-1,99977421079393
0,06706098772954	-1,99550282392474
-0,027430830924641	-1,99924754951478
0,063252445119669	-1,99599912818638
0,032674412230727	-1,99893238278538
-0,076740483591394	-1,99411089817816
0,026625053214514	-1,99929110654132
-0,140266445758929	-1,98032532419416
-0,197260071229448	-1,96108846429855
-0,011760728914798	-1,99986168525539
0,013090299213332	-1,99982864406651
-0,03121906710427	-1,99902536984914
0,034123347229249	-1,99883559717387
0,033351295019133	-1,99888769112055
0,04449386174972	-1,9980202962666

TABELA 4 – 10 Iterações.

X	Υ
0,001874282478339	-1,99999648706519
-0,013368694961909	-1,99982127799502
-0,004666895888276	-1,99997822008277
0,018084315617433	-1,99967295752865
-0,006996041986069	-1,99995105539653
0,002456289985101	-1,99999396663951
-0,01753680561526	-1,99969246044881
-0,00201475892736	-1,99999594074647
0,006358924382513	-1,9999595640807
0,018007039428202	-1,99967574653103
-0,005202524592793	-1,99997293373786
0,014373013401887	-1,99979341648575
0,00035366641915	-1,99999987492006
-0,017861942970487	-1,99968095099332
0,008786304313415	-1,99992280085651
0,011877172112302	-1,99985893278261
0,00239397699041	-1,99999426887417
0,023953248421325	-1,99942624189007
-0,001779080491697	-1,9999968348726
0,003744896692352	-1,99998597574876
0,001777096283641	-1,9999968419288
-0,022583514526721	-1,99948998487162
0,003280578712968	-1,99998923780331
-0,000521822136952	-1,99999972770166
0,009460577623138	-1,99991049747104

TABELA 5 – 100 Iterações.

X	Υ
0,00088560371432	-1,99999921570606
-0,001323775909727	-1,99999824761734
0,000952277099951	-1,99999909316832
-0,000281509833113	-1,99999992075221
-0,001594710432267	-1,99999745689864
0,002821322716105	-1,99999204013813
-0,000598687021292	-1,99999964157385
0,000575290373522	-1,99999966904099
-0,000469232193978	-1,99999977982115
0,000852246453899	-1,99999927367598
-0,000762378072982	-1,99999941877967
0,002433945578256	-1,99999407590892
0,000631025691177	-1,99999960180658
-0,002187600012288	-1,99999521440619
-0,000586243504304	-1,99999965631855
-0,002390887491885	-1,999994283657
-0,000824571725656	-1,99999932008147
-0,000199113793426	-1,9999999603537
-0,00105574161295	-1,99999888540965
-0,000992863867455	-1,99999901422134
0,000224338622568	-1,99999994967218
-0,000173706041037	-1,99999996982621
0,000557304520842	-1,99999968941167
0,000557304520842	-1,99999968941167
0,000282534807	-1,99999992017408

TABELA 6 – 1000 Iterações.

X	Υ
0,030509191108127	-1,99906918925793
0,010676203237916	-1,99988601868442
-0,068141649402064	-1,99535671561677
0,006268349741848	-1,99996070779151
0,041442590888351	-1,99828251166046
0,002017326995903	-1,99999593039179
0,012954103556696	-1,99983219120104
-0,111904619225132	-1,98747735619608
0,150768049639511	-1,9772689952079
0,166476217900645	-1,9722856688735
0,015026283840875	-1,99977421079393
0,06706098772954	-1,99550282392474
-0,027430830924641	-1,99924754951478
0,063252445119669	-1,99599912818638
0,032674412230727	-1,99893238278538
-0,076740483591394	-1,99411089817816
0,026625053214514	-1,99929110654132
-0,140266445758929	-1,98032532419416
-0,197260071229448	-1,96108846429855
-0,011760728914798	-1,99986168525539
0,013090299213332	-1,99982864406651
-0,03121906710427	-1,99902536984914
0,034123347229249	-1,99883559717387
0,033351295019133	-1,99888769112055
0,04449386174972	-1,9980202962666

TABELA 7 – 10 Iterações.

X	Υ
0,001874282478339	-1,99999648706519
-0,013368694961909	-1,99982127799502
-0,004666895888276	-1,99997822008277
0,018084315617433	-1,99967295752865
-0,006996041986069	-1,99995105539653
0,002456289985101	-1,99999396663951
-0,01753680561526	-1,99969246044881
-0,00201475892736	-1,99999594074647
0,006358924382513	-1,9999595640807
0,018007039428202	-1,99967574653103
-0,005202524592793	-1,99997293373786
0,014373013401887	-1,99979341648575
0,00035366641915	-1,99999987492006
-0,017861942970487	-1,99968095099332
0,008786304313415	-1,99992280085651
0,011877172112302	-1,99985893278261
0,00239397699041	-1,99999426887417
0,023953248421325	-1,99942624189007
-0,001779080491697	-1,9999968348726
0,003744896692352	-1,99998597574876
0,001777096283641	-1,9999968419288
-0,022583514526721	-1,99948998487162
0,003280578712968	-1,99998923780331
-0,000521822136952	-1,99999972770166
0,009460577623138	-1,99991049747104

TABELA 8 – 100 Iterações.

X	Υ
0,00088560371432	-1,99999921570606
-0,001323775909727	-1,99999824761734
0,000952277099951	-1,99999909316832
-0,000281509833113	-1,99999992075221
-0,001594710432267	-1,99999745689864
0,002821322716105	-1,99999204013813
-0,000598687021292	-1,99999964157385
0,000575290373522	-1,99999966904099
-0,000469232193978	-1,99999977982115
0,000852246453899	-1,99999927367598
-0,000762378072982	-1,99999941877967
0,002433945578256	-1,99999407590892
0,000631025691177	-1,99999960180658
-0,002187600012288	-1,99999521440619
-0,000586243504304	-1,99999965631855
-0,002390887491885	-1,999994283657
-0,000824571725656	-1,99999932008147
-0,000199113793426	-1,9999999603537
-0,00105574161295	-1,99999888540965
-0,000992863867455	-1,99999901422134
0,000224338622568	-1,99999994967218
-0,000173706041037	-1,99999996982621
0,000557304520842	-1,99999968941167
0,000557304520842	-1,99999968941167
0,000282534807	-1,99999992017408

TABELA 9 – 1000 Iterações.

Iterações	Precisão
10	0,030669189189442
100	0,167319448986654
1000	0,000003106882918

TABELA 10 – Precisão do Hill Climbing.

Iterações	Precisão
10	0,006074141718766
100	0,000129752101887
1000	0,000001480486737

TABELA 11 – Precisão do Tabu Search.

FONTE: o próprio autor.

Iterações	Precisão
10	0,011824755738298
100	0,000045151509044
1000	0,000000645853345

TABELA 12 - Precisão do Tabu Search + GRASP.

5 CONCLUSÃO

Após analisar os resultados dos testes, quando comparado com o Hill Climbing, o Tabu Search consegue obter resultados ligeiramente melhores. Porém o maior ganho nos resultados foi obtido pela junção do Tabu Search com o GRASP, onde os resultados obtidos chegaram a mais de uma casa decimal.