ARCHITETTURA DEGLI ELABORATORI

Le principali caratteristiche degli elaboratori e il modello di Von Neumann

PRINCIPALI CARATTERISTICHE

DATI E MEMORIE

<u>La Memoria contiene i dati e i programmi</u> e la sua capacità è espressa in multipli del Byte. Il Byte è una sequenza di otto **bit** ovvero **0 (SPENTO)** o **1 (ACCESO)**.

8 bit = 1 Byte

1024 Bytes = 1 KiloByte

1024 KiloBytes = 1 MegaByte

1024 MegaBytes = 1 GigaByte

1024 GigaBytes = 1 TeraByte

IL MODELLO DI VON NEUMANN

PERIFERICHE

- INPUT: mouse, tastiera, microfono, etc...
 - Tutte quelle periferiche che immettono dati nella memoria centrale del computer lavorando in maniera unidirezionale (INGRESSO).
- OUTPUT: casse, monitor, stampante, etc...
 - Tutte quelle periferiche che ricevono dati dalla memoria centrale del computer lavorando in maniera unidirezionale (USCITA).
- INPUT/OUTPUT: modem, scheda video, cuffie con microfono integrato, etc...
 - Tutte quelle periferiche che immettono dati nella memoria centrale del computer e ricevono da essa dati lavorando in maniera bidirezionale.

CPU (Central Processing Unit): **PROCESSORE**

Il processore è il "cervello" dell' architettura. ricevute delle informazioni in ingresso, le elabora, producendo un risultato in uscita.

Input device(s

E' composto da tre elementi principali:

- ALU: arithmetic-logic unit, componente che effettua i calcoli
- UC: unit control, componente che coordina l'esecuzione delle istruzioni
- Registri e cache: piccole memorie aggiuntive dedicate.

La **velocità di clock** o **frequenza**, misura il numero di operazioni eseguite dalla CPU ogni secondo, misurata in GHz (giga**hertz**).

RAM (Random Access Memory): MEMORIA CENTRALE

PROPRIETA':

- Perde le informazioni in essa contenute se non alimentata da corrente: MEMORIA VOLATILE
- Molto veloce e consuma poca energia.
- Molto costosa e con una scarsa capienza.

MEMORIA DI MASSA

PROPRIETA':

- Memorizza permanentemente i dati anche in assenza di corrente: MEMORIA NON VOLATILE
- Velocità inferiore rispetto alla memoria centrale
- Costo inferiore rispetto alla memoria centrale e capienza maggiore

ESEMPIO

			1	1			
		1			1		
	1	1	1	1	1	1	
1							1

MEMORIA (capacità: 4 Byte)

0	0	0	1	1	0	0	0
0	0	1	0	0	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1

MEMORIA

0	0	0	1	1	0	0	0
0	0	1	0	0	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
istruzione per colorare i pixel							

MEMORIA

Il processore, forniti in INPUT dati e istruzioni, ELABORA LE INFORMAZIONI eseguendo i calcoli necessari, e fornisce in OUTPUT il risultato ottenuto.

ESEGUE LE ISTRUZIONI

istruzioni per colorare i pixel:

- · colora di nero i pixel accesi
- · colora di bianco i pixel spenti

0	0	0	1	1	0	0	0
0	0	1	0	0	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1

SCHERMO

ESEGUE LE ISTRUZIONI

istruzioni per colorare i pixel:

- · colora di nero i pixel accesi
- · colora di bianco i pixel spenti

SCHERMO

ESEGUE LE ISTRUZIONI

istruzioni per colorare i pixel:

- · colora di nero i pixel accesi
- · colora di bianco i pixel spenti

CLICCA PER FARE IL QUIZ