3. zÃąpoÄDtovÃą Þloha z 01RAD

Emanuel FrÃatrik

2021-12-16

1 3. zápočtová úloha z 01RAD

1.1 Popis úlohy

Datový soubor vychází z datasetu House Sales in King County, USA, který je k nalezení například na kaggle.com, nebo v knihovně library (moderndive) data house_prices. Původní dataset obsahuje prodejní ceny domů v oblasti King County, která obsahuje i město Seattle, a data byla nasbírána mezi květnem 2014 a květnem 2015. Pro naše potřeby bylo z datasetu vypuštěno jak několik proměnných, také byl dataset výrazně osekán a lehce modifikován.

Dále byl dataset již dopředu rozdělen na tři části, které všechny postupně v rámci 3. zápočtové úlohy využijete.

X	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
1	1	2395000	4	3.25	3800	19798	2.0	0
2	2	679000	3	2.50	2770	9350	2.0	0
3	3	664000	2	1.75	1720	5785	1.0	0
4	4	915000	5	2.50	2750	5589	1.5	0
5	5	450000	5	2.50	2850	209523	1.0	0
6	6	305000	4	2.50	2320	4683	2.0	0

view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	sqft_living15	sqft_lot15	split
0	3	10	3800	0	1969	2009	3940	18975	train
3	3	8	2770	0	1957	2000	2660	9695	train
0	3	6	860	860	1948	2002	1680	5184	train
0	5	9	1840	910	1910	0	1460	4250	train
0	4	7	1930	920	1925	1968	2220	209523	train
0	3	7	2320	0	2007	0	2230	5750	train

Data celkem obsahují následujících 18 proměnných, přičemž naším cílem je prozkoumat vliv 12 z nich na cenu nemovitostí price. Přičemž anglický popis jednotlivých proměnných (sloupců) je následující:

Feature	Description				
id	Our notation for a house				
price	Price is prediction target				
bedrooms	Number of Bedrooms/House				
bathrooms	Number of Bathrooms/Bedrooms				
sqft_living	Square footage of the home				
sqft_lot	Square footage of the lot				
floors	Total floors (levels) in house				
waterfront	House which has a view to a waterfront				
view	Has been viewed				
condition	How good the condition is Overall				
grade	Overall grade given to the housing unit				
sqft_above	Square footage of house apart from basement				
sqft_basement	Square footage of the basement				
yr_built	Built Year				
yr_renovated	Year when house was renovated				
sqft_living15	Living room area in 2015 (implies—some renovations)				
sqft_lot15	lotSize area in 2015 (implies—some renovations)				
split	Splitting variable with train, test and validation sample				

1.2 Podmínky a body

Úkol i protokol vypracujte samostatně. Pokud na řešení nějaké úlohy budete přesto s někým spolupracovat, radit se, nezapomeňte to u odpovědi na danou otázku uvést. Tato zápočtová úloha obsahuje 10 otázek po 1 bodu. Celkem za 3 zápočtové úlohy bude možné získat 30 bodů, přičemž pro získání zápočtu je potřeba více jak 20. Další dodatečné body mohu případně individuálně udělit za řešení mini domácích úkolů z jednotlivých hodin.

1.3 Odevzdání

Protokol ve formátu pdf (včetně příslušného Rmd souboru) odevzdejte prostřednictvím MS Teams, nejpozději do 31. 1. 2022.

1.4 Průzkumová a grafická část:

• Otázka 01

Ověřte rozměry datového souboru, typy jednotlivých proměnných, a shrňte základní popisné charakteristiky všech proměnných. Vykreslete histogram a odhad hustoty pro odezvu price, dá se z toho již něco odvozovat pro budoucí analýzu?

• Odpoveď 01

Dataset obsahuje 2000 pozorovaní popísaných 19 premennými pričom premenná X je rovnaká ako id a preto ju vylúčim. Ostatné relevantné premenné sú reprezentované numerickými hodnotami. Niektoré z nich ako napr. view alebo condition, waterfront, grade popisujú akési triedy a preto ich je možné reprezentovať ako kategorické premenné čo ale nie je nutné a preto to nevykonám. Podobne premenné yr_built a yr_renovated popisujú roky vzniku a renovácie domu ale keďže neplánujeme predikciu ceny podľa časovej rady bude možno vhodnejšie popisovať roky v desaťročiach resp. obe premenné faktorizovať. Popisné charakteristiky numerických a kategorických premenných sú zhrnuté v tabuľkách

Table 1: Popisné štatistiky pre numerické premenné

PREMENNÁ	PRIEMER	ROZPTYL	MEDIÁN	MIN	MAX	POČET NA
price	6.31e + 05	2.61e+11	5.01e+05	301	8.50e + 06	0
bedrooms	3.41e+00	7.47e-01	3.00e+00	2	6.00e+00	0
bathrooms	2.18e+00	6.10e-01	2.25e+00	1	4.75e + 00	0
sqft_living	2.15e+03	8.61e + 05	1.98e + 03	105	1.00e+04	0
sqft_lot	1.60e + 04	1.47e + 09	7.69e + 03	690	6.41e + 05	0
floors	1.50e+00	2.68e-01	1.50e+00	1	3.00e+00	0
waterfront	2.10e-02	2.10e-02	0.00e+00	0	1.00e+00	0
view	3.68e-01	9.31e-01	0.00e+00	0	4.00e+00	0
condition	3.33e+00	3.93e-01	3.00e+00	1	5.00e+00	0
grade	8.14e+00	7.80e + 01	7.00e+00	4	2.32e+02	0
sqft_above	1.82e + 03	6.56e + 05	1.65e + 03	580	7.68e + 03	0
sqft_basement	3.34e+02	2.10e+05	0.00e+00	0	2.36e+03	0
yr_built	1.96e + 03	9.44e + 02	1.96e + 03	1900	2.02e+03	0
yr_renovated	8.79e + 02	9.83e + 05	0.00e+00	0	2.02e+03	0
sqft_living15	1.97e + 03	4.64e + 05	1.83e + 03	780	5.79e + 03	0
sqft_lot15	1.31e+04	6.32e + 08	7.63e+03	1023	3.11e+05	0

?? a 2. Histogram rozdelenia premennej price je zobrazený na obrázku 1. Vidíme, že rozdelenie je vpravo zošikmené a teda nie normálne. Toto by ale nemalo spôsobovať problémy keďže vyžadovaná je len normalita reziduii.

Otázka 02

Jsou všechny proměnné použitelné pro analýzu a predikci ceny nemovitostí? Pokud data obsahují chybějící hodnoty, (případně nesmyslné hodnoty), lze je nějak nahradit (upravit), nebo musíme data odstranit?

• Odpoveď 02

Premenné relevantné na predikciu sú všetky okrem premennej id a split, ktoré nepopisujú nejaké vlastnosti domu ale sú to len pomocné premenné. Ostatné relevantné premenné bude treba preskúmať predovšetkým na multikolinearitu. Dataset neobsahuje žiadne chýbajúce hodnoty. Prediktor grade obsahuje 6 veľmi vysokých hodnôt oproti ostatným hodnotám. Tieto hodnoty sú pravdepodobne chybné. Takéto chybné pozorovania nemusíme nutne odstraňovať ale môžeme ich napr. nahradiť priemerom alebo v prípade kategorickej premennej skôr modusom teda najčastejšou hodnotou. Možné by bolo aj natrénovať model z ostatných dát a tento použiť na predikciu chýbajúcich/chybných dát.

• Otázka 03

Zkontrolujte pro 4 vybranné proměnné (price, sqft_living, grade, yr_built) bylo-li rozdělení datasetu pomocí proměnné split náhodné. Tj mají zmíněné proměnné ve skupinách train, test a validation přibližně stejné rozdělení?

• Odpoveď 03

Rovnakosť resp. homogenitu rozdelenie v skupinách train, test a validation pre 4 vybrané premenné

Table 2: Popisné charakteristiky pre kategorické premenné

PREMENNÁ	N = 2,000
yr_built	
1900-20	282 / 2,000 (14%)
1921-40	282 / 2,000 (14%)
1941-60	522 / 2,000 (26%)
1961-80	404 / 2,000 (20%)
1981-2000	273 / 2,000 (14%)
2000-2015	237 / 2,000 (12%)
yr_renovated	
never	1,119 / 2,000 (56%)
1931-40	3 / 2,000 (0.1%)
1941-50	6 / 2,000 (0.3%)
1951-60	24 / 2,000 (1.2%)
1961-70	39 / 2,000 (2.0%)
1971-80	54 / 2,000 (2.7%)
1981-90	158 / 2,000 (7.9%)
1991-2000	186 / 2,000 (9.3%)
2001-2010	246 / 2,000 (12%)
2011-2015	165 / 2,000 (8.2%)
¹ n / N (%)	

Figure 1: Histogramový a jadrový odhad hustoty premennej price

Table 3: Výsledky Chi squared testu homogenity rozdelenia premenných vybraných premenných v 'train', 'test' a 'validation' kategoriach

premenná	chi2 statistic	p-value
price	70.1	0.822
sqft_living	93.4	0.898
grade	27.1	0.618
yr_built	7.4	0.687

môžme overiť pomocou chi-squared testu homogenity pričom spojité premenné je potrebné najskôr kategorizovať. Zhrnutie výsledkov testu môžme vidieť v tabuľke 3. Vo všetkých štyroch prípadoch vyšiel výsledok testu nesignifikantne na hladine 0.05 a preto nezamietame hypotézu o homogenite rozdelenia v kategóriach train, test a validation vo všetkých štyroch prípadoch.

1.5 Lineární model (použijte pouze trénovací data, tj. split == "train"):

Table 4: VIF faktor pre dizajnovu maticu všetkych regresorov

	GVIF	Df	$GVIF^(1/(2*Df))$
bedrooms	1.84	1	1.36
bathrooms	3.01	1	1.73
sqft_living	18188.68	1	134.87
sqft_lot	2.45	1	1.57
floors	2.19	1	1.48
waterfront	1.41	1	1.19
view	1.76	1	1.33
condition	1.38	1	1.17
grade	308.15	1	17.55
sqft_above	14667.14	1	121.11
sqft_basement	4487.23	1	66.99
yr_built	3.55	5	1.14
yr_renovated	2.84	9	1.06
sqft_living15	2.75	1	1.66
sqft_lot15	2.59	1	1.61

• Otázka 04

Spočtěte korelace mezi jednotlivými regressory a graficky je znázorněte. Dále spočtěte číso podmmíněnosti matice regresorů Kappa a VIF. Pokud se v datech vyskytuje znatelná multicollinearita, rozhodněte jaké proměnné a proč použijete v následném linárním modelu.

• Odpoveď 04

Korelačné koeficienty ako aj scatterploty resp. boxploty sú znázornené na obrázku 2. Vysoká korelácia medzi prediktormi môže naznačovať kolinearitu medzi danými prediktormi. Z obrázka vidíme, že takýmito kolineárnymi prediktormi môžu byť napríklad sqft_living a bathrooms ďalej sqft_living a sqft_above čo je v zhode s popisom daných dvoch regresorov. Vysokú mieru korelácie vykazujú aj regresory sqft_living a sqft_living15 a podobne aj sqft_lot a sqft_lot15. Čo sa týka VIF faktora tak tento je zobrazený v tabuľke 4 pričom v prvom stĺpci vidíme klasickú hodnotu VIF a v poslednom stĺpci tabuľku zobecnený VIF, ktorý je použiteľný aj pre faktorové premenné keďže zahŕňa aj počet stupňov voľnosti. VIF faktor poukazuje na multikolinearitu pravdepodobne medzi regresormi sqft_living, sqft_above a sqft_basement. Po odstránení regresoru sqft_above sa hodnoty VIF

Figure 2: Scatter plot medzi numerickými premennými

Table 5: VIF faktor pre dizajnovu maticu po vynechani niektorych regresorov

	GVIF	Df	$GVIF^(1/(2*Df))$
bedrooms	1.65	1	1.28
bathrooms	2.59	1	1.61
floors	2.04	1	1.43
waterfront	1.40	1	1.18
view	1.73	1	1.32
condition	1.37	1	1.17
grade	1.11	1	1.06
sqft_basement	1.68	1	1.30
yr_built	3.36	5	1.13
yr_renovated	2.66	9	1.06
sqft_living15	1.66	1	1.29
sqft_lot15	1.10	1	1.05

znížili pod hodnotu 5. Ďalej predpokladám, že cena jednotlivých domov bola stanovená práve v roku 2014-15 a preto na ňu mal vplyv aktuálny stav. Na základe tejto úvahy ale aj koeficientov korelácie som sa rozhodol ďalej z datasetu vylúčiť regresory sqft_livng a sqft_lot a ponechať len korešpondujúce regresory pre rok 2015. VIF faktor po odstránení troch regresorov je zobrazený v tabuľke 5 pričom už nedetekujem výraznú multikolinearitu. Pre 2 kategorické premenné je lepšie analyzovať zobecnený VIF pričom tento ešte umocniť na druhú. Takto prepočítaný zobecnený VIF pre yr_built a yr_renovated nepoukazujú na možnú multikolinearitu. Kappa koeficient pre plnú dizajnovú maticu bez faktorových premenných bol odhadnutý na 606.914 čo sa po odstránení troch spomínaných regresorov znížilo na 3.313.

• Otázka 05

Pouze pomocí trénovacích dat (tj., split == "train") a všech vybranných proměnných najděte vhodný lineární regresní model, který má za úkol predikovat co nejlépe cenu, tj. minimalizovat střední kvadratickou chybu reziduí (MSE). Jakou jinou metriku pro výběr modelu byste případně navrhovali a proč? U výsledného modelu porovnejte VIF a Kappa s původní celkovou maticí regresorů.

• Odpoveď 05

Zhrnutie vybraného modelu je v tabuľke ??. Podľa môjho názoru sa ako metrika pre výber môže použiť aj štatistika R^2 nakoľko tiež hodnotí relatívnu pridikčnú kvalitu modelu podobne ako MSE. Namiesto strátovej funkcie L_2 v prípade MSE môžme použiť napr. L_1 a získame tak MAE metriku.

• Otázka 06

Pro Vámi vybraný model z předešlé otázky spočtěte příslušné infulenční míry. Uveďtě id pro 20 pozorování s největší hodnotou DIFF, největší hodnotou leverage (hatvalues) a největší hodnotou Cookovy vzdálenosti. (tj. 3 krát 20 hodnot). Jaká pozorování považujete za vlivná a odlehlá pozorování a proč?

• Odpoveď 06

... TODO

• Otázka 07

Validujte model pomocí grafického znázornění reziduí (Residual vs Fitted, QQ-plot, Cookova vzdálenost, Leverages, ...). Identifikovali jste na základě této a předchozí otázky v datech nějaká podezřelá pozorování, která mohla vzniknout při úpravě datasetu? Doporučili byste tyto pozorování z dat odstranit?

Table 6:

	Vybraný model
(Intercept)	-471088.4749
	p-val = 0.0001
bedrooms	-15782.4815
	p-val = 0.4487
bathrooms	94222.6010
	p-val = 0.0011
floors	130906.5066
	p-val = 0.0007
waterfront	223481.2875
	p-val = 0.0589
view	52479.7635
	p-val = 0.0048
condition	72288.1313
	p-val = 0.0045
grade	4348.3487
	p-val = 0.0003
$sqft_basement$	90.6289
	p-val = 0.0233
$yr_built1921-40$	-69354.5940
	p-val = 0.1968
yr_built1941-60	-108447.9493
	p-val = 0.0264
yr_built1961-80	-144040.1727
	p-val = 0.0083
yr_built1981-2000	-235007.0260
	p-val = 0.0004
yr_built2000-2015	-160536.8253
	p-val = 0.0271
$yr_renovated 1931-40$	-175442.8847
	p-val = 0.5814
$yr_renovated 1941-50$	-24304.3635
	p-val = 0.9258
$yr_renovated 1951-60$	-17893.6784
	p-val = 0.8865
$yr_renovated 1961-70$	-104574.8393
	p-val = 0.3323
$yr_renovated 1971-80$	-49115.4737
	p-val = 0.5779
$yr_renovated 1981-90$	126771.0459
	p-val = 0.0448
$yr_renovated 1991-2000$	100378.2751
	p-val = 0.0721
$yr_renovated 2001-2010$	137684.5440
	p-val = 0.0100
$yr_renovated 2011-2015$	88127.0416
	p-val = 0.1392
$sqft_living15$	260.7181
	p-val = 0.0000
$sqft_lot15$	-0.7729
	p-val = 0.1350
Num.Obs.	1000
R2	0.328
RMSE 8	437 360.16
TUMDE	491 900.10

1.6 Train, test, validation ...:

• Otázka 08

Pokud jste se rozhodli z dat odstranit nějaká pozorování, tak dále pracujtes s vyfiltrovaným datasetem a přetrénujte model z otázky 5. A spočtěte pro tento model R^2 statistiku a MSE jak na trénovacích tak testovacích datech (split == "test").

• Otázka 09

Pomocí hřebenové regrese (případně pomocí LASSO a Elastic Net) zkuste najít nejlepší hyperparametr(y) tak, aby výsledný model měl co nejmenší MSE na testovacích datech. K odhadu regresních koeficientů použijte ale pouze trénovací data.

• Otázka 10

Vyberte výsledný model a porovnejte MSE a R^2 na trénovacích, testovacích a validačních datech. Co z těchto hodnot usuzujete o kvalitě modelu a případném přetrénování? Je váš model vhodný pro predikci cen nemovitostí v okolí King County? Pokud ano, má tato predikce nějaká omezeni?