

Residuals

Summary

- Inference for GLM
 - o Wald test; Score test; LR test.
 - \circ Goodness of Fit: Deviance, Pearson's χ^2
- Interval estimation for β

Reading

- McCullagh and Nelder (1989) Chapter 2 and Chapter 12.
- Dobson and Bartnett (2008) Chapter 7 and Chapter 9.

1

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Residuals

- Revisit: linear model
 - $\circ e_i = Y_i \hat{Y}_i = Y_i \hat{\mu}_i.$
 - o Residual plots (e.q., e_i vs. predicted .)
 - \circ Normal Q-Q plots for residuals
- In GLM, residuals can be used for
 - o the adequacy of fit
 - o check the choice of link function
 - o detection of outliers

-F2017

Types of residuals for GLM

For normat

1. Pearson residual

$$\gamma_i^P = \gamma_i - \hat{\mu}_i = \gamma_c \hat{\mu}_i$$

$$r_i^P = \frac{Y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)/m_i}},$$

(Since $V(\hat{\mu}_i)=1$ $m_i = V(\hat{\mu}_i)$ is the variance function. Thus,

R: resid(glm.fit, "pearson")

o SAS: output

reschi=pearson

$$V(M_i) = M_i - m_i = 1/2$$
. Deviance residual

$$\sum_{i=1}^{n} \left(Y_{i} \stackrel{\mathsf{p}}{\longrightarrow} \right)^{2} \qquad \qquad r_{i}^{D} = \mathrm{sign}(Y_{i} - \hat{\mu}_{i}) \sqrt{d_{i}},$$

 $=\frac{\frac{y_{i}/m_{i}^{\prime}-\hat{\gamma}_{i}^{\prime}}{\sqrt{\hat{\gamma}_{i}^{\prime}(1-\hat{\gamma}_{i}^{\prime})/m_{i}}}$

Recall $(y_i - \tilde{y}_i)^2$ $\chi^2 = \sum_i \frac{(y_i - \tilde{y}_i)^2}{V(\tilde{y}_i)/m_i}$

 $= \sum_{i} (\hat{y}_i^p)^2$

YiP= Yi/mi-Pi

For You Bin (P; Mi)

Consider You /mi.

where $D(\mathbf{Y},\hat{\mu}) = \sum_{i=1}^n d_i$, d_i is the ith subject's contribution to the

Sec P.138 in e.g., for Binomial data, $d\hat{x} = 2 \left[Y_i \log \left(\frac{y_R}{n_R \hat{x}} \right) + (N_R - y_R) \log \left(\frac{N_R - y_R}{n_R - N_R \hat{x}_{iQ}} \right), \hat{\pi}_R = \hat{\mu}_R$

Here, we use rob for STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

deviance. Thus,

$$\sum_{i=1}^{n} (r_i^D)^2 = \sum_{i=1}^{n} d_i = D(\mathbf{Y}, \hat{\mu}).$$

- R: resid(glm.fit, "deviance")
- SAS: output resdev=deviance

3. Working residual

$$r_i^W = Z_i - \hat{\eta}_i = (Y_i - \hat{\mu}_i) \frac{\partial \hat{\eta}_i}{\partial \hat{\mu}_i}.$$

R: resid(glm.fit, "working")

4. Response residual

$$r_i^R = Y_i - \hat{\mu}_i.$$

- R: resid(glm.fit, "response")
- o SAS: output resraw=response
- 5. For the normal distribution, Pearson = Deviance = Working = Response residual

Standardized Residuals for GLM

- Revisit: linear model
 - er= yo-mi = yo- Jr. Since Var(er) = o2(1-hor) o Studentized residual

$$r_i = rac{e_i}{\sqrt{\widehat{\mathsf{Var}}(e_i)}} = rac{e_i}{\sqrt{\hat{\sigma}^2(1-h_{ii})}},$$

where h_{ii} is the ith diagonal element of hat matrix ${f H}$ $= \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T)$

- In GLM.
 - o Define "Hat" matrix (similar idea as in linear model, see Section 7.6)

Let h_{ii} be the *i*th diagonal element of \mathbf{H} .

5

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Studentized standardized Pearson residual

$$r_{i}^{P'} = \frac{Y_{i} - \hat{\mu}_{i}}{\sqrt{\frac{a_{i}(\hat{\phi})V(\hat{\mu}_{i})(1 - h_{ii})}{\hat{\psi}/mc}}} \qquad \begin{array}{c} C_{i}m_{f}ured & \neq 0 \\ \gamma_{c}P = \frac{V_{c} - \hat{\mu}_{c}}{\sqrt{V(\mathcal{H}_{c})}} \end{array}$$

$$\text{dreschi=stdpearson}$$

- * SAS: output
- stdreschi=stdpea
- Studentized standardized deviance residual

$$r_i^{D'} = rac{r_i^D}{\sqrt{\hat{\phi}(1-h_{ii})}}.$$

- * SAS: output
- stdresdev=stddeviance

Standardized Residuals for GLM (cont'd)

• In SAS Proc GENMOD,

```
reschi= resdev= resraw= stdreschi= stdresdev=
• In R, Use package "boot" > library(boot) \stackrel{R}{\longrightarrow} ? glm.diag
```

in SAS Proc fermed, Then

> glm.diag(glm.fit)

Std reschi = > glm.diag(glm.fit)\$rp = standard: led Pearson residual

Std reschi = > glm.diag(glm.fit)\$rd = standard: led deviance residual

> glm.diag(glm.fit)\$rd = leverage of the observation him

> glm.diag(glm.fit)\$res = jackknife deviance residual

- o Always use <u>help</u>
 >help('glm.diag')
- Guideline for detection of outliers and influence observations may be defined similarly as for linear models.

7

In R.

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Model Diagnostics

- Using residuals (just like in linear regression),
 - \circ Residual vs. each covariate X_j check linearity
 - \circ Normal Q-Q plot of standardized residuals: approximately normal
 - o Residual vs. index of measurements: check correlation
- See the example of seizure data.

Example: Seizure Data

• These data arise from a clinical trial of N=59 epileptics. Patients suffering from simple or complex partial seizures were randomized to receive either the antiepileptic drug progabide or a placebo, as an adjuvant to standard chemotherapy. At each of four successive post-randomization visits, the number of seizures occurring over the previous two weeks was collected. Baseline data at entry included the number of epileptic seizures recorded in the preceding 8-week period and patient age in years. [See Thall and Vail (1990), Biometrics, 46, 657-671 for details].

The R and SAS code for this example is attached.

9

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Example: Seizure Data (cont'd)

Variables:

- $\circ \ y1$. seizure count for weeks 0-2 post treatment assignment
- \circ y2: seizure count for weeks 2-4 post treatment assignment
- \circ y3: seizure count for weeks 4-6 post treatment assignment
- $\circ~y4$: seizure count for weeks 6-8 post treatment assignment
- o trt: treatment assignment (0=placebo, 1=progabide)
- o base: seizure count for weeks 8 weeks prior to treatment assignment
- age: subject age (in years)
- Seizure data: base line data

 y1 y2 y3 y4 trt base age

 5 3 3 3 0 11 31

of epileptic So:zure

10

Model Diagnostics: GOF

• Recall: If model is correct:

Recall:
$$\frac{D(Y, \hat{\mu})}{\phi} = 2 \frac{1}{2} \frac{1}{2}$$

$$\frac{D}{n-q}\left(\text{ or } \frac{X^2}{n-q}\right) \approx \phi.$$

Example:

o Normal
$$\frac{O}{n-3} = \frac{\chi^2}{n-9} = \frac{\sum (Y_i - \hat{\mu}_i)^2}{n-q} \approx \sigma^2$$

Binomial

o Binomial
$$\text{Y.*2B.:n(ρ_i, m_i$), } \frac{\text{X}^2}{n-9} = \sum_i \frac{m_i (Y_i - \hat{\mu}_i)^2}{(n-q)\hat{\mu}_i (1-\hat{\mu}_i)} \approx 1.$$

$$\text{Y.*= Y.**/m i.}$$

11

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Poisson

$$\chi^2 = \sum \frac{(Y_i - \hat{\mu}_i)^2}{(n-q)\hat{\mu}_i} \approx 1$$

Model Diagnostics: GOF (cont'd)

- For Binomial and Poisson models, if $X^2/(n-q)$ (or $D(\mathbf{Y},\hat{\mu})/(n-q)$) is much larger than 1, then the model is suspect. The data are said to be over-dispersed. Then, all the inferences based on the current model are invalid.
- Example. Seizure data use J4 as response variable, see seczure sas,

 o See the SAS or R outputs.

$$df = n - \frac{9}{6} = \frac{59 - 4}{59 - 4} = \frac{55}{n - q} = \frac{144.5692}{59 - 4} = 2.6285 > 1$$

$$\frac{X^2}{n - q} = \frac{133.585}{59 - 4} = 2.4288 > 1$$

Thus, these data are over-dispersed (i.e. inflated variance).

13

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Over-dispersion

- Reading:
 - o Dobson and Bartnett Chapter 7 (Binomial), Chapter 9 (Poisson)
 - o MN Section 4.5 (Binomial), Section 6.2.3 (Poisson)
- Binomial and Poisson data often have greater variance than expected:

$$\circ$$
 Binomial: $Y^*=Y/m$, $E[Y^*]=\mu$, $V[Y^*]>\frac{\mu(1-\mu)}{m}$

$$\circ$$
 Poisson: $E[Y] = \mu$, $V[Y] > \mu$

Such data are over-dispersed.

Over-dispersion (cont'd)

• Over-dispersion: if for any GLM,

$$V[Y] > a(\phi)V(\mu).$$

- Consequences
 - * Usual GLM inferences invalid
 - * SE's too small since variance is underestimated
- Correction
 - * Dispersion (scale) parameter
 - * Mixture model

15

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Example: Over-dispersion

- Example [Seed data. Crowder M.J. (1978), JRSS C, Appl. Stat., 27 34-37]. The R and SAS code for this example is attached.
 - o Study of germination of 2 types of seeds treated with 2 root extracts.
 - Variables
 - * seed=types 1, 2; extract=extracts 1,2;
 - $st\ r=$ number of germinated seeds; m= number of seeds on plate.
 - Binomial GLM with logit link:
 - *~Y=r/m= proportion of germinated seeds
 - $*~E[Y] = \mu = \text{probability of germination}$
 - $* V[Y] = \mu(1-\mu)/m$,

$$\log\left(\frac{\mu}{1-\mu}\right) = \beta_0 + \beta_1 S + \beta_2 E + \beta_3 S \times E.$$

Seed data:

seed		${\tt extract}$	r	m	3	【
	1	1	10	39	0	2564103
	1	1	23	62	0	3709677
	1	1	23	81	0	2839506
	1	1	26	51	0	5098039
	1	1	17	39	0	4358974
	1	2	5	6	0	8333333
	1	2	53	74	0	7162162

17

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Example: Over-dispersion (cont'd)

- Interpretation of over-dispersion for seed data.
- Is the binomial distribution reasonable?
 - o Yes, for a Single plate
 - * seeds are independent with same probability of germination.
 - o No, for a Across plates within test conditions
 - * Probability of germination may vary across plates due to amount of extract extract batch seed batch incubation time, temperature etc.
 - This is an example of a mixture model: a mixture of plates (clusters) with possibly different germination probabilities.

Over-dispersion (cont'd)

- General approach to over-dispersed GLMs:
- Is the binomial distribution reasonable?
 - o Assume

$$V[\mu]^* = \sigma^2 V(\mu).$$
o Properties: (later in quasi-likelihood theory)
$$* \text{ Distribution of } \hat{\beta} \text{ Reall } (\beta \sim MVN(\beta, (\mathbf{X}^T W\mathbf{X})^T))$$

$$replace in the inverse of t$$

* Analysis of deviance:

$$D(\text{Reduced model}) - D(\text{Full model}) \sim \sigma^2 \chi_{p-q}^2.$$
If σ^2 is larger than I the p -value becomes larger Recall in our definition. $D = \psi$ log (likelihood ratio)
$$= \sigma^2 \log \left(\text{likelihood ratio} \right)$$
Scaled deviance $D^* = \bigcup_{p} \sim \log \left(\text{likelihood ration} \right)$
STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017 $\chi^2(p-2)$

* Estimation of dispersion parameter

ersion parameter:
$$\tilde{\sigma}^2 = \frac{X^2}{n-q} = \sum_{i=1}^n \frac{(Y_i - \hat{\mu}_i)^2}{(n-q)V(\hat{\mu})}, \begin{cases} \text{Reses this based on} \\ \text{some quasi distribution}, \\ \text{e.g., quasi binomial or} \\ \text{quasi-poisson} \end{cases}$$

R uses this,

or

$$\tilde{\sigma}^2 = \frac{D(\mathbf{Y}, \hat{\mu})}{n-q}, \begin{cases} \text{SAS uses this or } \chi^2/n-q, \\ \text{depending on Scale} = \text{deviance} \\ \text{or scale} = \text{pearson.} \end{cases}$$

SAS uses this or $\frac{X^2}{n-q}$ depends on the option in Proc GENMOD, scale=deviance or pearson.

Recall Nobe#6, D/ + ~ 2(n-8)

Over-dispersion (cont'd)

- Example 1. Seed data
- Example 2. Seizure data
- R and SAS commands for correcting standard errors automatically by using the scale parameter
 - o R
 - * Logistic regression: , Ruses -x2 , family=quasibinomial,
 - * Poisson regression: , family=quasipoisson, glm(
 - SAS
- SAS uses $\frac{D}{n-\xi}$ (Scale = dev:ance)

 or $\frac{Y^2}{n-\xi}$ (Scale = pearson)

 / dist=bin scale=pearson; * Logistic regression: proc genmod

; model

21

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

Over-dispersion (cont'd)

- Where over-dispersion does not exist:
 - Bernoulli 0, 1 variable (i.e. upgrouped binary data):
 - * e.g., logistic regression with continuous covariates
 - One batch per condition
 - * e.g., in Seed data example, if for each seed-extract combination only one batch of seed had been observed. But in the current example, there are five batches for each combination.
- Underdispersion
 - The opposite of overdispersion with $\sigma^2 < 1$.
 - It occurs less frequently in practice (usually not our concern)
 - o e.g.,
 - * in competition situations: seeds in a batch compete for fertilizer the winner grows, the looser does not.

Pearson's χ^2

• Revisit: Pearson's χ^2

$$X^2 = \sum_{i=1}^n rac{(Y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)/\mathsf{mi}}$$
 see Note #6

- \circ Large X^2 implies
 - * systematic deficiencies of the model (poor fit) possibly due to wrong link missing covariate necessity to transform some covariates outlying observations
 - * unexplained random variation (over-dispersion) random variation in response probabilities correlation between binary responses
- Remove systematic deficiencies before looking into over-dispersion.

23

STAT 635-GLM-Lecture Notes 7, Diagnostics for Generalized Linear Models, Fall 2017

• For examples of over-dispersion, see SAS codes budworm.sas, seed sas and seizure.sas and the attached R and SAS programs.