Enunciado do Trabalho para o Grau A – 2019/1

Simulador de Redes de Petri

O programa deverá permitir a montagem e execução de uma rede de Petri do tipo lugar-transição temporizadas (Timed *Place-Transitions* Nets).

A rede é montada de maneira <u>interativa</u> com o usuário (ou a partir da <u>leitura de um arquivo</u> que contém a descrição da rede), permitindo que o usuário defina a quantidade de lugares e o número de transições que a rede conterá, bem como a marcação inicial (quantidade de marcas em cada lugar da rede) e o peso dos arcos que unem lugares e transições.

Quando da execução da rede, esta execução deverá ser passo-a-passo, e a cada ciclo de execução deverá ser mostrado quais as transições habilitadas para o próximo ciclo e o número de marcas em cada um dos lugares da rede.

O usuário deverá poder salvar a rede em um arquivo bem como realizar a leitura da rede a partir de um arquivo. Não é necessário o uso de interface gráfica; a apresentação dos resultados pode ser feita toda via console, na forma de tabelas.

Exemplo de Rede de Petri:

Obs.: na rede acima, no arco que vai de L2 para T1, o valor (peso) 2 indica que é necessário consumir 2 marcas de L2 para disparar T1 (desde que seja consumida também uma marca de L1); este valor é denominado de **Peso do Arco**.

Comentários

1. a saída da execução do programa é textual; pode-se apresentar a informação através de tabelas. Exemplo:

Lugar	1	2	3	4	5
Marcação	1	2	0	1	0

Transição	1	2	3
Habilitada ?	S	N	N

- 2. Critério para definir o disparo de transições: deve haver marcas <u>suficientes</u> em TODOS lugares de entrada de uma transição para esta estar habilitada. Quando a transição for disparada, as marcas são consumidas dos lugares de entrada e são enviadas marcas para os lugares de saída. A quantidade de marcas consumidas e enviadas depende do peso dos arcos que conectam lugares e transições. Um arco sem valor associado tem peso=1.
- 3. Cada ciclo de execução corresponderá a execução do disparo de todas transições habilitadas; o número do ciclo deverá ser mostrado na tela; para passar de um ciclo a outro (isto é, avançar a simulação) o usuário deverá apertar a tecla ENTER.
- 4. No início da execução do programa o usuário poderá fornecer os dados necessários para a montagem da rede de forma interativa (ou através da leitura de um arquivo que contenha esta descrição). Exemplo:

Quantos lugares: 3

Quantas transições: 2

Quais são os lugares de entrada de T1? 1, 3

Quais são os lugares de entrada de T2? 2, 3

Quantas marcas em L1 ? 10

Quantas marcas em L2 ? 4

Quantas marcas em L3 ? 0

Qual o peso do arco de L1 para T1 ? 1

Qual o peso do arco de L3 para T1 ? 2

:

5. No caso de conflito/disputa por marca, deverá ser feito um sorteio para decidir qual transição irá consumir a marca. Exemplo:

Exemplo de rede e execução:

	Quantidade de marcas em cada lugar							Transição habilitada ?				
Núm. do ciclo	L1	L2	L3	L4	L5	L6	L7	L8	T1	T2	Т3	T4
0 (inicial)	2	-	2	-	5	-	-	-	S	N	N	N
1	0	2	2	-	5	-	-	-	N	S	N	N
2	-	1	-	1	2	-	-	-	N	N	S	N
3	-	1	2	-	2	1	1	-	Ν	N	N	S
4	-	1	2	-	5	_	-	1	Ν	S	N	N
5	-	-	-	1	2	-	-	1	N	N	S	N
6	-	-	2	-	2	1	1	1	N	N	N	S
7 Offssdf	-	-	2	-	5	-	-	2	N	N	N	N

A implementação de aspectos de temporização é opcional para este trabalho.

Quanto a <u>temporização</u>: cada lugar pode ter um **tempo** associado. A unidade de tempo é fictícia (**Z**). A rede possui um "relógio global" que é inicializado com **relógio = 0z** no início da simulação.

Exemplo: se $Z(L_3) = 7_Z$ se uma marca chegar no lugar L_3 com o relógio == 35_Z isso faz com que o tempo global salte para 42_Z (pois $35_Z + 7_Z = 42_Z$). A marca em L_3 só fica efetivamente disponível para consumo de outra transição após esta passagem de tempo.

No final de cada ciclo de simulação o simulador deve apresentar o valor do relógio global.