DEFINICION DE LA DERIVADA $F'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

FUNCION	PROPIEDADES DE LA DERIVADA
F(x)=k	F'(x)=0
F(x)=kx	F'(x)=k
F(x)=x	F'(x)=1
$F(x)=x^n$	$F'(x)=nx^{n-1}$
$F(x)=kx^n$	$F'(x) = k * n x^{n-1}$
F(x)=ln(u)	$F'(x) = \frac{u'}{u}$
$F(x)=e^{x}$	$F'(x)=e^x$
F(x)=sen x	$F'(x) = \cos x$
$F(x) = \cos x$	F'(x) = -sen x
F(x)=tanx	$F'(x)=sec^2x$
Regla de la cadena	$\frac{dy}{dx}[(fx)^n] = n(fx)^{n-1} * f'(x)$
Regla del producto	F(x) = g(x) * h'(x) + g'(x) * h(x)
F(x)=g(x)*h(x)	
Regla del cociente $F(x) = \frac{g(x)}{h(x)}$	$F(x) = \frac{h(x)*g'(x) - g(x)*h'(x)}{[h(x)]^2}$
FUNCION	FUNCION REESCRITA
$F(x) = \frac{k}{x^n}$	$F(x)=kx^{-n}$
$F(x) = \sqrt[n]{x^m}$	$F'(x)=x\frac{m}{n}$