Неразрешимое итеративное пропозициональное исчисление

Боков Г.В.

23 апреля 2015 г.

Аннотация

В данной работе рассматриваются итеративные пропозициональные исчисления, представляющие собой конечные множества пропозициональных формул вместе с операцией modus ponens и операцией суперпозиции, заданной множеством операций Мальцева. Для таких исчислений изучается вопрос разрешимости проблемы выводимости формул. В работе построено неразрешимое итеративное пропозициональное исчисление, аксиомы которого зависят от трех переменных. Вывод формул в данном исчислении моделирует процесс решение проблемы соответствий Поста. В частности, в работе доказано, что общая проблема выразимости для итеративных пропозициональных исчислений алгоритмически неразрешима.

Ключевые слова: Итеративное пропозициональное исчисление, проблема выводимости, проблема выразимости, проблема соответствий Поста.

Введение

Пропозициональное исчисление в общем виде представляет собой пару — конечное множество пропозициональных формул в некоторой сигнатуре и множество операций над этими формулами. Вопрос о разрешимости таких исчислений впервые был поставлен Тарским [15] в 1946 году.

В классическом подходе в качестве операций вывода в пропозициональных исчислениях выступают операция $modus\ ponens$ (из формул A и $A \to B$ выводима формула B) и операция nodcmahobku (из формулы A(x) выводима формула A(B) для любой формулы B). Существование неразрешимого пропозиционального исчисления, а также алгоритмическая неразрешимость многих проблем для классического исчисления высказываний была впервые установлена в 1949 году Линиалом и Постом [12]. Аналогичные результаты для интуиционистского исчисления высказываний были получены Кузнецовым [3] в 1963 году. Исторический обзор корпуса алгоритмически неразрешимых проблем для классических пропозициональных исчислений можно найти в [9, 10]. В частности, в [10] приведен исторический обзор методов доказательства неразрешимых свойств таких исчислений.

Анализ моделирования алгоритмически неразрешимых проблем с помощью классических пропозициональных исчислений [10] показал, что оно по большому счету основывается на наличии в исчислениях операции подстановки. Без операции подстановки

не удается смоделировать ни одну алгоритмически неразрешимую проблему. С другой стороны, если рассмотреть функциональные системы конечнозначных функций, где вместо операции подстановки используется более слабая *операция суперпозиции*, обычно задаваемая совокупностью операций Мальцева [2], то нельзя не обратить внимание на то, что большинство проблем для этих систем, наоборот, алгоритмически разрешимы. Эти наблюдения заставляют задуматься о необходимости использования операции подстановки вместо более слабой операции суперпозиции.

Как отмечает Циткин в [11], в 1965 году Кузнецов [4] впервые ввел в рассмотрение операцию слабой подстановки (из формул A(x) и B выводима формула A(B)) как правило вывода в исчислениях. В [5, 6] данное правило и правило замены эквивалентным использовались для определения выразимости формул в той или иной логике относительной некоторой системы формул. Поскольку слабую подстановку можно представить в виде конечной последовательности операций Мальцева, то в [1] данную операцию было принято назвать операцией суперпозиции формул, а исчисления, в которых вместо операции подстановки используется операция суперпозиции, — итеративными, ввиду их схожести с итеративными алгебрами Поста, введенными Мальцевым [8].

В данной работе будет показано, что ослабление операции подстановки не позволяет полностью избавиться от неразрешимости исчислений. В частности, будет построено итеративное пропозициональное исчисление с неразрешимой проблемой выводимости формул, что доказывает алгоритмическую неразрешимость общей проблемы выразимости для таких исчислений.

Определения и основные результаты

Для начала напомним некоторые понятия. Рассмотрим язык, состоящий из счетного множества пропозициональных переменных $\mathcal V$ и конечное множество логических связок Σ , которое будем называть сигнатурой. Буквами x,y,p будем обозначать переменные. Как правило, логические связки унарные или бинарные, например, \neg , \lor , \land или \rightarrow .

Пропозициональные формулы или Σ -формулы строятся из логических связок Σ и переменных $\mathcal V$ обычным образом. Например, следующие обозначения

$$x, \quad \neg A, \quad (A \lor B), \quad (A \land B), \quad (A \to B)$$

являются формулами в сигнатуре $\{\neg, \lor, \land, \rightarrow\}$. Заглавные буквы A, B, C будут использоваться для обозначения формул. Далее условимся опускать внешние скобки, а также скобки, однозначно восстанавливаемые из частичного порядка логических связок.

Итеративное пропозициональное исчисление P над множеством логических связок Σ это пара, состоящая из конечного множества Σ -формул P, называемых $a\kappa cuomamu$, и двух правил вывода:

1) modus ponens

$$A, A \rightarrow B \vdash B$$
;

2) суперпозиция (совокупность операций Мальцева)

$$A(x), B \vdash A(B).$$

Обозначим через [P] множество выводимых (или доказуемых) формул исчисления P. Bивоd в P из аксиом с помощью правил вывода определяется обычным образом. Выводимость формулы A из P будем обозначать через $P \vdash A$.

Исчисление \mathcal{P} будем называть *разрешимым*, если существует алгоритм, который по произвольной формуле A отвечает на вопрос: $P \vdash A$? Основным результатом данной работы является следующая теорема.

Теорема 1. Существует неразрешимое итеративное пропозициональное исчисление.

Определим на множестве всех пропозициональных исчислений предпорядок. Будем писать $P_1 \leq P_2$ (или $P_2 \geq P_1$), если каждая выводимая в P_1 формула также выводима в P_2 , т.е. $[P_1] \subseteq [P_2]$. Проблема выразимости для пропозициональных исчислений состоит в следующем: по двум исчислениям P_1 и P_2 требуется ответить на вопрос $P_1 \leq P_2$? Как следствие из Теоремы 1 имеем.

Следствие 1. Проблема выразимости для итеративных пропозициональных исчислений алгоритмически неразрешима.

Доказательство основного результата

Прежде чем доказывать основной результат, мы напомним проблему соответствий Поста. Долее мы закодируем слова конечного алфавита пропозициональными формулами и формально докажем сведения проблемы соответствий Поста к проблеме вывода формул в построенном итеративном исчислении.

Проблема соответствий Поста

Рассмотрим конечный алфавит \mathcal{A} , содержащий по крайней мере два символа. Обозначим через \mathcal{A}^+ множество непустых слов в алфавите \mathcal{A} . Проблема соответствий Поста [14] для алфавита \mathcal{A} состоит в следующем. Для последовательности Π пар непустых слов в алфавите \mathcal{A}

$$(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_{\mu}, \beta_{\mu})$$

требуется определить, существуют ли такое натуральное число $N \ge 1$ и такие индексы $i_1,\dots,i_N \in \{1,\dots,\mu\}$, что выполнено тождество

$$\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_N}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_N}.$$

Факт существования такого решения будем обозначать через П ↓.

Для наглядности рассмотрим следующий пример. Пусть дан алфавит $\{a,b\}$ и три пары непустых слов из данного алфавита

$$(\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3),$$

где $\alpha_1=a,\ \alpha_2=ab,\ \alpha_3=bba$ и $\beta_1=baa,\ \beta_2=aa,\ \beta_3=bb.$ Тогда одним из решений проблемы соответствий Поста для данной последовательности будет N=4 и индексы $i_1=3,\ i_2=2,\ i_3=3,\ i_4=1$:

$$\alpha_3\alpha_2\alpha_3\alpha_1 = bba + ab + bba + a = bbaabbbaa = bb + aa + bb + baa = \beta_3\beta_2\beta_3\beta_1$$
.

Поскольку далее мы будем сводить данную проблему к проблеме выводимости формул в итеративных исчислениях, то нам будет удобно определить аналог вывода решения из последовательности пар слов П. Для начала введем несколько вспомогательных конструкций.

Рассмотрим две пары (α, β) и (ξ, ζ) слов в алфавите \mathcal{A} . Будем говорить, что пара (α, β) элементарно выводима в Π из пары (ξ, ζ) , если найдется такое $i \in \{1, \dots, \mu\}$, что

$$\alpha = \alpha_i \xi$$
 и $\beta = \beta_i \zeta$.

Факт элементарной выводимости (α, β) из (ξ, ζ) будем записывать как

$$(\xi,\zeta) \xrightarrow{\Pi} (\alpha,\beta).$$

Расширим понятие выводимости пар слов по транзитивности. Будем назовем пару (α, β) выводимой в Π из пары (ξ, ζ) и записывать это как

$$(\xi,\zeta) \stackrel{\Pi}{\Longrightarrow} (\alpha,\beta),$$

если существует последовательность пар слов $(\xi 1, \zeta 1), \dots, (\xi n, \zeta n)$ такая, что

- 1. $\xi_1 = \xi$ и $\zeta_1 = \zeta$,
- 2. $\xi_n = \alpha$ и $\zeta_n = \beta$,
- 3. $(\xi_i, \zeta_i) \xrightarrow{\Pi} (\xi_{i+1}, \zeta_{i+1})$ для всех $1 \le i \le n-1$.

Последовательность пар $(\xi 1, \zeta 1), \dots, (\xi n, \zeta n)$ с данными свойствами будем называть *выводом* пары (α, β) из пары (ξ, ζ) в П. По определению будем считать, что $(\alpha, \beta) \stackrel{\Pi}{\Longrightarrow} (\alpha, \beta)$ для любой пары слов (α, β) .

Будем говорить, что пара слов (α, β) в алфавите $\mathcal A$ выводима из Π и записывать это как

$$\Pi \vdash (\alpha, \beta),$$

если (α, β) выводима в Π из $(\varepsilon, \varepsilon)$, т.е.

$$(\varepsilon, \varepsilon) \stackrel{\Pi}{\Longrightarrow} (\alpha, \beta),$$

где ε — это пустое слово.

Чтобы провести полную аналогию с выводом формул в пропозициональных исчислениях, определим оператор замыкания множества пар слов Π . Обозначим через $[\Pi]$ множество всех пар слов, выводимых из Π :

$$[\Pi] := \{(\alpha, \beta) \in \mathcal{A}^+ \times \mathcal{A}^+ \mid \Pi \vdash (\alpha, \beta)\}.$$

Несложно убедиться, что $[\cdot]$ является оператором замыкания.

В 1946 году Пост доказал, что проблема соответствий Поста алгоритмически неразрешима.

Теорема 2 (Пост). Не существует алгоритма, решающего проблему соответствий Поста для алфавита \mathcal{A} .

Он нашел эффективный способ задания однородных систем продукций Поста [13] последовательностями пар непустых слов Π в двубуквенном алфавите. Поскольку существует система однородных продукций Поста с алгоритмически неразрешимой проблемой остановки [7], то тем самым доказано существование множества пар Π , для которого множество выводимых пар $[\Pi]$ неразрешимо, т.е. не существует алгоритма, которой по произвольной паре слов (α, β) отвечал бы на вопрос, выводима ли (α, β) из множества пар Π , т.е. $\Pi \vdash (\alpha, \beta)$. Таким образом, верна следующая теорема, которая понадобится нам в дальнейшем.

Теорема 3. Существует множество непустых пар слов Π в алфавите \mathcal{A} , для которого множество $[\Pi]$ неразрешимо.

Кодирование букв и слов формулами

Рассмотрим конечный алфавит $\mathcal{A} = \{a_1, \dots, a_m\}$. Мы будем кодировать буквы и слова алфавита $\mathcal{A} \{\to\}$ -формулами от двух переменных. Для этого мы фиксируем уникальное переменное $p \in \mathcal{V}$ и введем обозначение

$$x \to_i x := ((x \to \underbrace{x) \to \dots \to x}_i) \to x$$

для каждого $i \ge 1$. Таким образом, $x \to_1 x$ — это формула $(x \to x) \to x$ и $x \to_2 x$ — это формула $((x \to x) \to x) \to x$.

Кодом букви a_i , $1 \le i \le m$, будем называть формулу:

$$\overline{a}_i[x] := x \to ((p \to_i p) \to (p \to p)).$$

Далее иногда будем опускать зависимость кода от переменного x и записывать для краткости \overline{a}_i вместо $\overline{a}_i[x]$.

Формулы A и B будем называть cosmecmnыmu, если существуют такие подстановки σ и π формул вместо переменных, что

$$\sigma A = \pi B$$
.

В дальнейшем нам понадобиться следующая лемма.

Лемма 1. Формулы $\overline{a}[x]$ u $y \to \overline{b}[x]$ несовместны для любых $a, b \in \mathcal{A}$.

Доказательство. Если бы формулы $\overline{a}[x]$ и $y \to \overline{b}[x]$ были совместны, то совместными оказались бы формулы $p \to p$ и $(p \to_i p) \to (p \to p)$, что невозможно ни для какого $i \ge 1$. Лемма доказана.

Определим понятие $\kappa o \partial a$ слова $\alpha \in \mathcal{A}^+$ индукцией по длине слова $|\alpha|$. Если $|\alpha| = 1$, то $\alpha = a$ для некоторой буквы $a \in \mathcal{A}$ и код $\overline{\alpha}$ слова α совпадает с кодом \overline{a} буквы a. Пусть $\alpha = \beta b$ для некоторых $\beta \in \mathcal{A}^+$ и $b \in \mathcal{A}$, тогда код $\overline{\alpha}$ слова α определяется соотношением:

$$\overline{\alpha}[x] := \overline{\beta}[\overline{b}[x]].$$

Для кодов слов также будем иногда использовать $\overline{\alpha}$ вместо $\overline{\alpha}[x].$

Для таким образом определенного кодирования естественным образом задана операция конкатенации кодов слов:

$$\overline{\xi\zeta} = \overline{\xi}[\overline{\zeta}].$$

Кодом пустого слова ε будем считать формулу $\overline{\varepsilon}[x] := x$. Легко видеть, что такое определение кода пустого слова согласовано с тем, что оно является нейтральным элементом относительно операции конкатенации.

Исчисления, моделирующие решение проблемы соответствий Поста

Каждой конечной последовательности Π пар непустых слов в алфавите $\mathcal A$

$$(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_{\mu}, \beta_{\mu})$$

мы сопоставим итеративное исчисление P_{Π} , состоящее из следующих трех групп аксиом:

$$\begin{array}{ll} (\mathbf{A}_1) & \overline{a}_i[x] & \forall i \in \{1, \dots, m\}, \\ (\mathbf{A}_2) & \left(\overline{\alpha}_j[x] \to \overline{\beta}_j[y]\right) \to (x \to y) & \forall j \in \{1, \dots, \mu\}, \\ (\mathbf{A}_3) & \overline{a}_i[x] \to \overline{a}_i[x] & \forall i \in \{1, \dots, m\}. \end{array}$$

Далее мы покажем, что данное множество аксиом позволяет смоделировать процесс решения проблемы соответствия Поста для последовательности пар слов Π , т.е. существует формула, вывод которой в данном исчислении равносилен существованию решения для Π . Напомним, что решением проблемы соответствий Поста для последовательности пар слов Π является такое натуральное число $N \geq 1$ и такие индексы $i_1, \ldots, i_N \in \{1, \ldots, \mu\}$, для которых выполнено тождество

$$\alpha_{i_1}\alpha_{i_2}\dots\alpha_{i_N}=\beta_{i_1}\beta_{i_2}\dots\beta_{i_N}.$$

Но для начала введем несколько обозначений и докажем вспомогательные леммы.

Выводимость вычислений

Первая вспомогательная лемма, которая понадобится нам далее, показывает, что из аксиомы (A_1) выводим код любого непустого слова в алфавите \mathcal{A} .

Лемма 2. $(A_1) \vdash \overline{\alpha}$ для любого $\alpha \in \mathcal{A}^+$.

Доказательство. Докажем лемму индукцией по длине слова α . Пусть $\alpha = a_{i_1} \dots a_{i_n}$ для некоторого $n \geq 1$. Если n = 1, то $\overline{\alpha}$ является аксиомой (A_1) и, следовательно, $(A_1) \vdash \overline{\alpha}$.

Пусть n>1 и утверждение леммы верно для слова $\gamma=a_{i_1}\dots a_{i_{n-1}},$ т.е.

$$(A_1) \vdash \overline{\gamma}.$$

Так как $\overline{\alpha} = \overline{\gamma}[\overline{a}_{i_n}]$, то с помощью операции суперпозиции из кода $\overline{\gamma}$ слова γ и аксиомы \overline{a}_{i_n} выводим код $\overline{\alpha}$ слова α . Лемма доказана.

Следующая лемма показывает, что аксиом (A_1) и (A_2) достаточно, чтобы смоделировать элементарный вывод в Π .

Лемма 3. Если $(\xi, \zeta) \xrightarrow{\Pi} (\alpha, \beta)$, то $P_{\Pi}, \overline{\alpha} \to \overline{\beta} \vdash \overline{\xi} \to \overline{\zeta}$.

Доказательство. Если $(\xi,\zeta) \stackrel{\Pi}{\longrightarrow} (\alpha,\beta)$, то для некоторого $i \in \{1,\ldots,\mu\}$ выполнено

$$\alpha = \alpha_i \xi$$
 и $\beta = \beta_i \zeta$.

Следовательно, $\overline{\alpha} = \overline{\alpha}_i[\overline{\xi}]$ и $\overline{\beta} = \overline{\beta}_i[\overline{\zeta}]$.

Согласно лемме 2 из аксиомы (A_1) выводимы коды $\overline{\xi}$ и $\overline{\zeta}$ слов ξ и ζ соответственно. Поэтому с помощью операции суперпозиции из аксиомы (A_2) выводима формула

$$(\overline{\alpha}_i[\overline{\xi}] \to \overline{\beta}_i[\overline{\zeta}]) \to (\overline{\xi} \to \overline{\zeta}).$$

Тогда непосредственной проверкой убеждаемся, что с помощью операции $modus\ ponens$ из данной формулы и формулы $\overline{\alpha} \to \overline{\beta}$ выводима формула $\overline{\xi} \to \overline{\zeta}$. Лемма доказана. \square

Используя индуктивное определение вывода в Π и лемму 3, несложно убедиться, что исчисление P_{Π} позволяет моделировать любой вывод в Π .

Следствие 2. Если
$$(\xi,\zeta) \stackrel{\Pi}{\Longrightarrow} (\alpha,\beta)$$
, то $P_{\Pi},(\overline{\alpha} \to \overline{\beta}) \vdash (\overline{\xi} \to \overline{\zeta})$.

Вычисление выводимых формул

Для произвольной пары слов (α, β) в алфавите \mathcal{A} обозначим через $P_{(\alpha,\beta)}$ множество кодов пар слов, из которых выводима пара (α, β) :

$$P_{(\alpha,\beta)} := \{ \overline{\xi} \to \overline{\zeta} \mid (\xi,\zeta) \stackrel{\Pi}{\Longrightarrow} (\alpha,\beta) \}.$$

Ясно, что $\overline{\alpha} \to \overline{\beta} \in P_{(\alpha,\beta)}$.

Для произвольной формулы A обозначим через A^* множество подстановочных вариантов формулы A, т.е.

$$A^* := \{ \sigma A \mid \sigma - \text{подстановка формул вместо переменных} \}.$$

Для произвольного множества формул M положим

$$M^* := \bigcup_{A \in M} A^*.$$

Также определим множество

$$P_{\mathcal{V}} := \{ (x \to_i x) \to (x \to x) \mid i \ge 1, \ x \in \mathcal{V} \}.$$

Следующая лемма описывает множество выводимых в исчислении P_{Π} формул.

Лемма 4.
$$[P_{\Pi} \cup \{\overline{\alpha} \to \overline{\beta}\}] \subseteq P_{\Pi}^* \cup P_{(\alpha,\beta)}^* \cup P_{\mathcal{V}}^* \cup \mathcal{V}.$$

Доказательство. Доказательство будем вести индукцией по длине вывода n. Если n=0, то имеют место включения

$$P_{\Pi} \subseteq P_{\Pi}^* \quad \text{ и } \quad \overline{\alpha} \to \overline{\beta} \in P_{(\alpha,\beta)}^*.$$

Пусть утверждение леммы верно для $n \geq 1$, докажем его для n+1. Поскольку правая часть включения замкнута относительно операции суперпозиции, то достаточно рассмотреть только случай применения операции modus ponens. Рассмотрим произвольную формулу B, длина вывода которой равна n+1, и пусть формулы A и $A \to B$ имеют вывод в $P_{\Pi} \cup \{\overline{\alpha} \to \overline{\beta}\}$, длина которого не превосходит n для некоторой формулы A.

Если $A \to B \in P_{(\alpha,\beta)}^*$, то формула B есть подстановочный вариант кода некоторого слова в алфавите A. Несложно убедиться, что данное слово не может быть пустым, т.к. в противном случае длина вывода B была бы меньше n+1, что противоречит выбору формулы B. Следовательно, B является подстановочным вариантом аксиомы (A_1) .

Поскольку A не является формулой вида $(x \to_i x)$ ни для какого $i \ge 1$, то $A \to B \notin P_{\mathcal{V}}^* \cup \mathcal{V}$. Поэтому $A \to B \in P_{\Pi}^*$ и остается рассмотреть только следующие три случая:

Случай 1. $A \to B$ — это подстановочный вариант аксиомы (A_1) , тогда $B \in P_{\mathcal{V}}^*$.

Случай 2. $A \to B$ — это подстановочный вариант аксиомы (A₂). Несложной проверкой убеждаемся, что $A \in P^*_{(\alpha,\beta)}$. Поэтому A является подстановочным вариантом формулы

$$\overline{\alpha}_i[\overline{\xi}] \to \overline{\beta}_i[\overline{\zeta}]$$

для некоторых слов $\xi, \zeta \in \mathcal{A}^*$ и $i \in \{1, \dots, \mu\}$ таких, что

$$(\alpha_i \xi, \beta_i \zeta) \stackrel{\Pi}{\Longrightarrow} (\alpha, \beta).$$

Тогда B является подстановочным вариантом формулы $\overline{\xi} \to \overline{\zeta}$, причем $(\xi, \zeta) \xrightarrow{\Pi} (\alpha_i \xi, \beta_i \zeta)$. Следовательно, $B \in P^*_{(\alpha,\beta)}$.

Случай 3. $A \to B$ — это подстановочный вариант аксиомы (A₃), тогда A = B, что противоречит выбору формулы B.

Данные случаи исключают все возможные варианты. Лемма доказана.

Как следствие из Леммы 4 имеем.

Следствие 3. Если $P_{\Pi}, \overline{\alpha} \to \overline{\beta} \vdash \overline{\xi} \to \overline{\zeta}, mo(\xi, \zeta) \stackrel{\Pi}{\Longrightarrow} (\alpha, \beta).$

Доказательство. Если $P_{\Pi}, \overline{\alpha} \to \overline{\beta} \vdash \overline{\xi} \to \overline{\zeta}$, то согласно Лемме 4 выполнено

$$\overline{\xi} \to \overline{\zeta} \in P_{\Pi}^* \cup P_{(\alpha,\beta)}^* \cup P_{\mathcal{V}}^* \cup \mathcal{V}.$$

Если слова ξ , ζ непустые, то $\overline{\xi} \to \overline{\zeta} \notin P_\Pi^*$ по Лемме 1. Если хотя бы одно из слов ξ , ζ пустое, то $\overline{\xi} \to \overline{\zeta} \notin P_\Pi^*$ выполнено согласно выбранному способу кодирования букв и слов формулами. Легко убедиться, что также выполнено

$$\overline{\xi} \to \overline{\zeta} \notin P_{\mathcal{V}}^* \cup \mathcal{V}.$$

Значит, $\overline{\xi} \to \overline{\zeta} \in P_{(\alpha,\beta)}^*$ и, следовательно, $(\xi,\zeta) \stackrel{\Pi}{\Longrightarrow} (\alpha,\beta)$ согласно определению множества $P_{(\alpha,\beta)}$. Следствие доказано.

Сведение проблемы соответствий Поста

Объединяя Следствия 2 и 3 мы приходим к следующей ключевой лемме.

Лемма 5.
$$(\xi, \zeta) \stackrel{\Pi}{\Longrightarrow} (\alpha, \beta) \Leftrightarrow P_{\Pi}, \overline{\alpha} \to \overline{\beta} \vdash \overline{\xi} \to \overline{\zeta}.$$

Следующая теорема описывает формальное сведение проблемы соответствий Поста для последовательности Π к проблеме вывода формул в итеративном исчислении P_{Π} .

Теорема 4. $\Pi \downarrow m$ огда u mолько mогда, когда $P_{\Pi} \vdash (x \to x)$.

Доказательство. По определению проблема соответствий Поста для входной последовательности Π имеет решение, если

$$(\varepsilon, \varepsilon) \stackrel{\Pi}{\Longrightarrow} (\gamma, \gamma)$$

для некоторого непустого слова $\gamma \in \mathcal{A}^+$. По Лемме 5 данное условие равносильно выводимости

$$P_{\Pi}, \overline{\gamma} \to \overline{\gamma} \vdash x \to x.$$

Поскольку формула $\overline{\gamma} \to \overline{\gamma}$ выводима в P_{Π} для любого непустого слова $\gamma \in \mathcal{A}^+$, мы получаем, что проблема соответствий Поста для входной последовательности Π имеет решение тогда и только тогда, когда $P_{\Pi} \vdash (x \to x)$. Теорема доказана.

Как следствие из Теорем 3 и 4 мы имеем доказательство Теоремы 1.

Список литературы

- [1] *Боков Г. В.* Итеративные пропозициональные исчисления. // Интеллектуальные системы, т. 18, N_2 4, с. 99–106, 2014.
- [2] Кудрявцев В. Б. Функциональные системы. Москва, Изд-во Моск. ун-та, 1982.
- [3] *Кузнецов А. В.* Неразрешимость общих проблем полноты, разрешимости и эквивалентности для исчислений высказываний. // Алгебра и логика, т. 2, № 4, с. 47-66, 1963.
- [4] *Кузнецов А. В.* Аналоги "штриха Шеффера"в конструктивной логике. // ДАН СССР, т. 160, № 2, с. 274–277, 1965.
- [5] *Кузнецов А. В.* О функциональной выразимости в суперинтуиционистских логиках. // Матем. исследования, т. 6, \mathbb{N} 4, с. 75–122, 1971.
- [6] *Кузнецов А. В.* О средствах для обнаружения невыводимости или невыразимости. // Логический вывод. М., Наука, с. 5–33, 1979.
- [7] Мальцев А. И. Алгоритмы и рекурсивные функции. Москва, Наука, 1965.
- [8] *Мальцев А. И.* Итеративные алгебры и многообразия Поста. // Алгебра и логика, т. 5, \mathbb{N} 2, с. 5–24, 1966.
- [9] Bokov Grigoriy V. Undecidability of the problem of recognizing axiomatizations for propositional calculi with implication. // Logic Journal of the IGPL, vol. 23, no. 2, p. 341–353, 2015.
- [10] Bokov Grigoriy V. Undecidable problems for propositional calculi with implication. // Journal of Symbolic Logic, Received 3 February 2015.
- [11] Citkin Alexander A mind of a non-countable set of ideas. // Logic and Logical Philosophy, vol. 17, p. 23–39, 2008.

- [12] Linial Samuel, Post Emil L. Recursive unsolvability of the deducibility, Tarski's comleteness, and independence of axioms problems of the propositional calculus. // Bulletin of the American Mathematical Society, vol. 55, p. 50, 1949.
- [13] Post Emil L. Formal reduction of the general combinatorial decision problem. // American Journal of Mathematics, vol. 65, p. 197–215, 1943.
- [14] Post Emil L. A variant of a recursively unsolvable problem. // Bull. Amer. Math. Soc., vol. 52, no. 4, p. 264–268, 1946.
- [15] Sinaceur Hourya Address at the Princeton University bicentennial conference on problems of mathematics (December 17–19, 1946), by Alfred Tarski.. // Bulletin of Symbolic Logic, vol. 6, no. 1, p. 1-44, 2000.