Lezione 4-12					 	
Polinomio minimo						
Sia A una matrice nx	en e sia pex) an polinom,	, O.			
Ha senso calcolore pc	A) (100 505	ture la muh	ice			
al posto d' x in pcx:) <u> </u>					
Se p(x)=a, x"+a	X + + a	X + 0				
	n-1					
allera						
	la 1					
p(A)=a, A+a, A	+ + a . A + a	. Id e un n	m mile			
n n-1	1		×4.			
		<u> </u>		i i i	 	

non nall.
Domanda: esistomo dei polinomi loshi che p(A) = 0 mulla
Part Part Part Part Part Part Part Part
Risposta SI: L'insième delle metris non è uno spario
retirale d' d'm. n2.
Consideramo Id, A, A, A.
aneste n2+1 mania non posson essere linearmente
indipendent. Ch2+1> h2-dim. d. M) quind.
non but the million
$\exists c_0, \dots, c_n z \in \mathbb{R}^2 + c.$
Co. Td+ C, A+ C. A++ C, Ah=0.
cornipante a il polininio paxi= Co+C, x+-+C, x n2

Teorema di Hamilton-Cayley. Sia A mabrice nxn, e sia pacx = det (A-x. Id) il suo polinguio anuteristio. Allon PA (A) = 0 Esempio $A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ $P_{A}(\lambda) = slet \begin{pmatrix} 2-1 & 0 \\ 1 & 4-1 \end{pmatrix} = c2-1 \cdot (4-1)$ $A = \begin{pmatrix} 4 & 0 \\ 6 & 16 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 6 & 16 \end{pmatrix}$ $A = \begin{pmatrix} 4 & 6 \\ 16 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 6 & 16 \end{pmatrix} = \begin{pmatrix} 12 & 0 \\ 6 & 24 \end{pmatrix} + \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Hamilton Cayley e mutice inversa.
$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$, if polyowish e $\lambda^2 - 6\lambda + 8$.
per H.C. A-6Ä+8 TJ=0
molhplichamo per A-1, olteniamo
A-6 IJ+8 A-1=0
cive A= 1 (6 Id-A)= 3, Id-1 A=
8 1 4 8 4
$= \begin{pmatrix} 34 & 0 \\ 0 & 34 \end{pmatrix} \begin{pmatrix} 14 & 0 \\ \frac{1}{8} & \frac{1}{2} \end{pmatrix}$
$=\begin{pmatrix} 4 \\ 0 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \\ 8 \\ 2 \end{pmatrix}$

Domanda: Come som futt tutti i polinomi par hul-che	
P(A)=07	
Risposta; Sono tulti e soli i polinomi maltipli di an	
polinomio speciale, detro il polinomio minimo d. A perde	
e il polinomio di grado + basso tra quelli che si annullaro	
in A	
Com't latt!	
Risposti:	
· Ha le stesse nadici del polinomio curalteristico (quindi	

gli autovalori d. A), solo eventralmente di molteplicita minore	
(ma sempre almeno 1).	
In particulare, se le rendici del pol. avent. sono tente diverse	
allon il pol. minimo e = al pol. canett.).	
· Se il pol. carult. ha radici multiple, queste compaiono	
nel polnomio minimo con uno le plicità aquale alla	
massimer dimensione del blocco de Jordan relative ad esse	
In part, se A è una matrice d'agarale, tulte le radici.	
hanno molt. 1.	
	-

Esempio: A matrice 3 x 3, psl. com	\mathbb{H} $(J_{5})^{3}$ \mathbb{H}
Quali-sour le possible forme d' So	
and sous de l'ossis, le forme de so	bron E i recuti h
(-)	
polinami minimi.	
(500) (510)	
	(510)
(005)	
PSI. min (1-5) (1-5)2	(1-5)
	Pd. covalteristr Co.
Esempio: A matrice 5x5	
L) emplo- /t mance 5x5	
$Psl-arett. (1-2)^{2} (1-2)^{3}$	
Pol. minimo (1-2) - (1-7)	

Trovare la Jorma camonica
Domanda: Come rono late trotte le matrici tuli che 1 = 2 A
Riscorro la relazione come A-2A=0
Questo mi dice che il polinomio x-2x annulla A.
Quint: x2-2x= x(x-2) e'un mulhplo del polnomo min, mo
Chi pur essere il polyonio minimo?

Determinare Porma d'Indusque retativa base d'Iorden	
Crewle e complessa)	
A= (10)-1 Pa (1)= Let (A-175)=	
0 $ 0 $ $ -1 $ $ 0 $ $ -1$	
$= \mathcal{A}\left(\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix}\right) = -\lambda \left(\begin{pmatrix} 2 \\ 1 & 1 \end{pmatrix}\right) -$	(-1)
3	
=-1 => 0 e autoralire e m (0)=3.	
a i l	
mgco) = dim (Ker A) = 3-rk(A) = 3-2=1 -> an blocus di Iondan	
d- Jondan	

A= (0) 1 2 pol. curult.

A= (0) 1 2 pol. curult.

P(1) = -13+3/2-3/+9

Q

Va e rudre di Pros = a x 4+ -- + a; "con q, e 7/

b allon a divide as In questi cur un'eventrale vadre rarioude deve essere 3 e' radice di $\rho_A(\lambda)$ $\rightarrow \rho_A(\lambda)$ e' duis, h. le per $(\lambda-3)$ $\rho_A(\lambda) = -(\lambda-3) \cdot (\lambda^2+3)$

V2 E Ker (A-iJ3 I) = Ker	1-1-1-2 2 0	
V_ E Rev (H-iN3]] = Ker		
4	$\left(\begin{array}{c c} 0 & 1-i\sqrt{3} & 2 \end{array}\right)$	
	2 0 1-1. 3	
(1-iv3).(1+iv3)=4	1-15 2 0 1	
	11-123 2 0 1	
$(1-i\sqrt{2})\cdot\frac{(1-i\sqrt{2})}{2}=2$	0 1-173 2	
	$0 - 1 - i\sqrt{3} - i\sqrt{3}$	
	$R_3 = \frac{(1+i\sqrt{3})}{2}, R_2$	
$Solutione \times = 2 \times = i \sqrt{3}.1$	K3 (K2	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$(1-i\sqrt{3})+2.\sqrt{2}=0$		
1 2 2 2 2		
\times \times = $-1-i\sqrt{2}$		
$\Rightarrow x = \frac{4}{1 - i\sqrt{3}} = -1 - i\sqrt{3}$		

Ew, Wz, W3 hase d. Sordan reale	
W=V-1° vellore base d' Tardon colx Crelatina a	
W=V-1° vellore base d' Jordan cplx (relution a autorettère veule)	
$W_2 = Recv_2 = Re((-1-i\sqrt{3}, 2, -1+i\sqrt{3})) = (-1, 2, -1)$	
$W_3 = I_{M}(V_2) = (-\sqrt{3}, 0, \sqrt{3})$	
Ewy Wz Wz & C' Sure d' Dordan reale	
Venificae du A. W = - \(\sigma_3 \), \(\sigma_3 \) = \(\sigma_3 \), \(\sigma_2 \)	
$(3,0,3) \qquad (-\sqrt{3},2\sqrt{3},-\sqrt{3})$	