MA0505 - Análisis I

Lección VIII: Categorías de Baire

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

La Definición de Categorías

2 El Teorema

Conjuntos Densos en Ninguna Parte

Definición

Dado un espacio métrico (X, d), diremos que $A \subseteq X$ es denso en ninguna parte si $(\overline{A})^c$ es denso.

Note que $(\overline{A})^c$ es denso si y sólo si $(\overline{A})^c \cap B(x,r) \neq \emptyset$ para $x \in X$ y r > 0. Esto es equivalente a que $(\overline{A})^\circ = \emptyset$.

Primera y Segunda Categoría

Definición

- Un conjunto A es de primera categoría ó magro si A es una unión contable de conjuntos densos en ninguna parte.
- Un conjunto es de segunda categoría si no es de primera categoría.

El Teorema de Categorías

Teorema (Categorías de Baire)

Sea (X, d) un espacio completo. Si $G \subseteq X$ es un abierto no vacío, entonces G es de segunda categoría.

Antes de probar el teorema, probaremos el siguiente resultado.

Teorema (Baire)

Sea (X, d) completo. Si $\{G_n\}_{n=1}^{\infty}$ es una sucesión de conjuntos abiertos y densos en X, entonces $\bigcap_{n=1}^{\infty} G_n$ es denso en X.

Prueba del Teorema de Baire

Sea $A \subseteq X$ un abierto.

- Como G_1 es denso, existe $x_1 \in G_1$ tal que $x_1 \in A \cap G_1$.
- Como $A \cap G_1$ es abierto, existe r > 0 tal que

$$B(x_1, r_1) \subseteq A \cap G_1$$
.

• Sea $B_1 = B\left(x_1, \frac{r_1}{2}\right)$, entonces $\overline{B}_1 \subseteq A \cap G_1$.

Continuamos la Prueba

 De igual forma, al ser G₂ denso y abierto, existen x₂ ∈ G₂ y un r₂ > 0 tales que

$$B(x_2, r_2) \subseteq B_1 \cap G_2 \subseteq A \cap G_1 \cap G_2$$
.

• Sea $B_2 = B\left(x_2, \frac{r_2}{2}\right)$, entonces

$$\overline{B}_2 \subseteq B_1 \cap G_1 \subseteq A \cap G_1 \cap G_2$$
.

• Iterando, existe $x_n \in G_n$ y $r_n < \frac{r_{n-1}}{2} \leqslant \frac{r_1}{2^n}$ tal que

$$B(x_n,r_n)\subseteq B_{n-1}\cap G_n\subseteq A\cap\bigcap_{n=1}^{\infty}G_i.$$

Continuamos la Prueba

• Sea así $B_n = B\left(x_n, \frac{r_n}{2}\right)$, entonces

$$\overline{B}_n \subseteq B_{n-1} \cap G_n$$
.

• Si $n \geqslant m$ entonces $B_n \subseteq B_m$

$$\Rightarrow x_n, x_m \in B_m \Rightarrow d(x_n, x_m) < \frac{r_1}{2^m}.$$

- Así $\{x_n\}_{n=1}^{\infty}$ es de Cauchy, sea $x = \lim x_n$.
- Como $\{x_n\}_{n=1}^{\infty} \subseteq B_m$, tenemos que $x \in \overline{B}_m$.

Terminamos la Prueba

Por tanto $x \in A \cap \bigcap_{i=1}^m G_i$ para $m \ge 1$, lo que nos dice que

$$x \in A \cap \bigcap_{i=1}^{\infty} G_i$$
.

Concluimos que $\bigcap_{i=1}^{\infty} G_i$ es denso. Con este resultado ya podemos probar el Teorema de Categorías.

Prueba del Teorema de Categorías

- Sea G un abierto y asumamos que es de primera categoría.
- Así existen An densos en ninguna parte tal que

$$G=\bigcup_{n=1}^{\infty}A_n.$$

- Llamemos $G_n = (\overline{A}_n)^c$, entonces G_n es abierto y denso.
- Luego $\bigcap_{n=1}^{\infty} (\overline{A}_n)^c$ es denso.

Terminamos la Prueba

Como

$$\left(\bigcup_{n=1}^{\infty} A_n\right)^c = \left(\bigcup_{n=1}^{\infty} \overline{A}_n\right)^c = \bigcap_{n=1}^{\infty} (\overline{A}_n)^c$$

es un conjunto denso, entonces

$$G \cap \left(\bigcup_{n=1}^{\infty} A_n\right)^c \neq \emptyset$$

lo que nos lleva a una contradicción.

Resumen

- La definición 1 de denso por ninguna parte.
- La definición 2 de conjuntos magros.
- El teorema 1 de las Categorías de Baire.
- El teorema 2 de Baire para probar el teorema de cateogorías.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.