Métodos Numéricos Interpolação polinomial

Teresa Monteiro

Departamento de Produção e Sistemas

Escola de Engenharia

Universidade do Minho

tm@dps.uminho.pt

Objetivo

Encontrar uma aproximação (por exemplo, um polinómio) à função dada f(x) com o menor erro possível.

Porquê?

Objetivo

• Não é conhecida a expressão analítica da função f(x) - apenas se conhecem pontos discretos (x_i, f_i) (uma tabela de pontos) e há necessidade de prever valores em pontos intermédios (interpolar).

Dado um conjunto discreto de valores $(x_i, f_i), i = 0, 1, \ldots, n \ (n+1 \ \text{pontos}),$ pretende-se encontrar uma relação funcional (expressão) entre as variáveis x (variável independente) e f (variável dependente) para prever o comportamento entre as variáveis e poder estimar valores.

Objetivo

• Quando se conhece a expressão da função f(x) mas ela é muito complicada e operações como diferenciação ou integração são difíceis ou mesmo impossíveis, pelo que um modelo matemático mais simples é muito útil.

Pretende-se conhecer uma expressão mais simples que descreva o melhor possível o comportamento de f como função de x.

Sumário

- Introdução
- Diferenças divididas
- Polinómio interpolador de Newton
- Exercícios de aplicação
- Interpolação segmentada
- Splines lineares
- Splines cúbicas
- Exercícios de aplicação

Interpolação polinomial

O problema geral da interpolação polinomial consiste em, dados n+1 pontos distintos x_0,x_1,\ldots,x_n e respetivos valores y_0,y_1,\ldots,y_n em que $y_i=f(x_i)$, determinar um polinómio $p_n(x)$ de grau n tal que

$$p_n(x_i) = y_i, \quad i = 0, \dots, n.$$

O valor do resíduo é nulo para estes pontos, *i.e.*, $r(x_i) = f(x_i) - p_n(x_i) = 0, i = 0, ..., n.$

Este tipo de polinómio é conhecido na literatura como "colocativo".

Teorema

(Teorema de Weirstrass): Dadas uma função f(x) contínua num intervalo [a,b] e uma quantidade $\varepsilon>0$, existe sempre um polinómio $p_n(x)$, de grau $\leq n$, tal que o **erro** da aproximação $\|f(x)-p_n(x)\|<\varepsilon$.

O teorema seguinte informa que o polinómio existe e é único.

Teorema

Dados n+1 pontos distintos x_0,x_1,\ldots,x_n e n+1 valores y_0,y_1,\ldots,y_n , existe um e um só polinómio $p_n(x)$, de grau menor ou igual a n tal que:

$$p_n(x_i) = y_i, \quad i = 0, \dots, n.$$

Por 2 pontos quantas retas diferentes $(p_1(x))$ passam?

Tabela das diferenças divididas

Considere-se a tabela com os valores de x e f(x) para n+1 pontos:

A diferença dividida de primeira ordem relativa a x_j e x_{j+1} é dada por:

$$[x_j, x_{j+1}] = \frac{f_j - f_{j+1}}{x_j - x_{j+1}}, \quad j = 0, \dots, n-1$$

(há n diferenças divididas de ordem 1 (dd_1))

Tabela das diferenças divididas

A diferença dividida de segunda ordem envolvendo os pontos x_j , x_{j+1} e x_{j+2} relaciona as diferenças divididas de 1^a ordem $[x_j, x_{j+1}]$ e $[x_{j+1}, x_{j+2}]$:

$$[x_j, x_{j+1}, x_{j+2}] = \frac{[x_j, x_{j+1}] - [x_{j+1}, x_{j+2}]}{x_j - x_{j+2}}, \quad j = 0, \dots, n-2$$

(há n-1 diferenças divididas de ordem 2 (dd_2))

Tabela das diferenças divididas

A diferença dividida de ordem n relaciona as diferenças divididas de ordem n-1, $[x_0,x_1,\ldots,x_{n-1}]$ e $[x_1,x_2,\ldots,x_{n-1},x_n]$:

$$[x_0, x_1, \dots, x_{n-1}, x_n] = \frac{[x_0, x_1, \dots, x_{n-1}] - [x_1, x_2, \dots, x_{n-1}, x_n]}{x_0 - x_n}$$

(há 1 diferença dividida de ordem n - dd_n)

Tabela da Diferenças Divididas

					dd_{n-1}	
x_n	f_n	$[x_{n-1},x_n]$				
x_{n-1}	f_{n-1}	$[x_{n-2},x_{n-1}]$	$[x_{n-2}, x_{n-1}, x_n]$	•	$[x_1,\ldots,x_{n-1},x_n]$	$[x_0,x_1,\ldots,x_{n-1},$
		$[x_1, x_2]$:	$[x_0, x_1, \ldots, x_{n-1}]$	[TO T1 T 4
x_0 x_1	f_0 f_1	$[x_0, x_1]$	$[x_0,x_1,x_2]$		$[x_0, x_1, \dots, x_{n-1}]$ $[x_1, \dots, x_{n-1}, x_n]$	

Propriedades das diferenças divididas

- Podem ser calculadas para **qualquer** espaçamento (não constante) entre os pontos $x_0, x_1, \dots, x_{n-1}, x_n$
- as diferenças divididas são funções simétricas dos seus argumentos, *i.e.*, $[x_i, x_j] = [x_j, x_i]$
- as diferenças divididas de ordem n de um polinómio de grau n são iguais e diferentes de zero (as diferenças divididas de ordem n+1 são zero)

Propriedades das diferenças divididas

A seguinte fórmula relaciona a diferença dividida de ordem n com a derivada da mesma ordem de f(x) num ponto de $[x_0,x_n]$

Diferença dividida de ordem n e derivada de ordem n

$$[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!} \qquad \xi \in [x_0, x_n]$$

Sempre que a expressão da função f(x) for desconhecida e houver necessidade de estimar qualquer derivada, a tabela das diferenças divididas e a fórmula anterior permitem essa estimação.

NOTA: o recurso à tabela das diferenças divididas para estimação de derivadas, **apenas** deverá ser feito quando não é conhecida a expressão analítica de f(x).

O polinómio interpolador de Newton de grau $\leq n$ passa pelos n+1 pontos x_0, x_1, \ldots, x_n utilizando as diferenças divididas.

Polinómio interpolador de Newton de grau n

$$p_n(x) = f_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + \dots + (x - x_0)\dots(x - x_{n-1})[x_0, x_1, \dots, x_n].$$

O polinómio passa pelos n+1 pontos ou seja é colocativo:

$$p_n(x_i) = f(x_i) \quad i = 0, \dots, n.$$

O erro ou resíduo, nesses n + 1 pontos é zero:

$$p_n(x_i) - f(x_i) = 0$$
 $i = 0, ..., n$.

No entanto para pontos $x \in [x_0, x_n] : x \neq x_i, i = 0, \dots, n$ existe erro $(r(x) = f(x) - p_n(x) \neq 0)$. Esse erro é calculado a partir de um polinómio $R_n(x)$ de grau n + 1.

Erro do polinómio interpolador de Newton

$$R_n(x) = (x - x_0)(x - x_1) \dots (x - x_{n-1})(x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!} \xi \in [x_0, x_n]$$

Quando não é conhecida a expressão de f(x), para estimação da diferença dividida de ordem n+1, $\frac{f^{(n+1)}(\xi)}{(n+1)!}$, é necessário um ponto extra, x_{extra} , que não foi usado para construção de $p_n(x)$ e do qual se conhece $f(x_{extra})$:

$$[x_0, x_1, \dots, x_n, x_{extra}] = \frac{f^{(n+1)}(\xi)}{(n+1)!} \qquad \xi \in [x_0, x_n]$$

Interpolação direta - tem-se x pretende-se f(x)

Seja \bar{x} um ponto que não está na tabela.

Objetivo: Estimar $f(\bar{x})$ usando $p_n(\bar{x})$

- escolher n+1 pontos da tabela \Rightarrow polinómio de grau n
- ullet escolher pelo menos um ponto à direita e à esquerda de $ar{x}$
- escolher os n+1 pontos da tabela mais próximos de \bar{x}

Exemplos

Polinómio de grau 3

• Se $\bar{x} = 3$:

• Se $\bar{x} = 13$:

Exercício de aplicação 1

A velocidade do som na água varia com a temperatura de acordo com a tabela abaixo:

Temperatura (${}^{o}C$)					
Velocidade (m/s)	1552	1548	1544	1538	1532

Pretende-se estimar a velocidade do som na água a uma temperatura de $100^{\circ}C$, utilizando um polinómio interpolador de Newton de grau dois. Estime também o erro cometido.

Resolução

O polinómio interpolador é de grau $2 \log 5$ são precisos $3 \log 5$ pontos. Como o valor a estimar é em 100, os pontos a escolher são um imediatamente antes (98.9) e outro imediatamente depois (104.4), o terceiro ponto deve ser o mais próximo possível de 100 (93.3).

```
Variável independente: temperatura (x)
Variável dependente: velocidade (f(x))
```

Resolução

$$x_0 = 93.3, \quad x_1 = 98.9, \quad x_2 = 104.4$$

Tabela das diferenças divididas:

x_i	f_i		
93.3	1548		
		-0.71429	
98.9	1544		-0.03393
		-1.09091	
104.4	1538		

O polinómio é:

$$p_2(x) = 1548 + (x - 93.3) \times (-0.71429) + (x - 93.3) \times (x - 98.9) \times (-0.03393)$$

$$f(100) \approx p_2(100) = 1542.964$$

Para o cálculo do erro é necessária a diferença dividida de ordem 3. Para isso adiciona-se um ponto, em que é conhecido o valor de f(x) (o mais próximo possível do valor a interpolar (100))- pode ser colocado no fim ou no início da tabela, pois o valor da diferença dividida de ordem n+1 é igual.

x_i	$ f_i $			
93.3	1548			
		-0.71429		
98.9	1544		-0.03393	
		-1.09091		2.136829^{-3}
104.4	1538		1.755045^{-3}	
		-1.071429		
110	1532			

$$|R(100)| \le |(100-93.3)(100-98.9)(100-104.4) \times 2.136829^{-3}| = 0.06929$$

Exercício de aplicação 2

Pretende-se construir um desvio entre duas linhas de caminho de ferro paralelas. O desvio deve corresponder a um polinómio de grau três que une os pontos $(x_0, f_0) = (0, 0)$

e (x_4, f_4) , como mostra a figura

Com base nos dados da tabela

x_i	0	1	1.5	2	x_4
$f_i = p_3(x_i)$	0	0.3125	0.6328125	1	f_4

verifique se o ponto $(x_4, f_4) = (4, 2)$ pertence ao polinómio. Use 7 casas decimais nos cálculos.

Tabelas das diferenças divididas:

x_i	f_i	dd1	dd2	dd3	dd4
0	0				
		0.3125			
1	0.3125		0.21875		
		0.640625		-0.0625	
1.5	0.6328125		0.09375		0
		0.734375		-0.0625	
2	1		-0.09375		
		0.5			
4	2				

Uma vez que as dd3 são iguais e a dd4 é zero, conclui-se que f é um polinómio de grau 3 e o ponto (4,2) pertence a esse polinómio. Poderiam também calcular o $p_3(x)$ e verificar que $p_3(4)=2$.

- A técnica de interpolação por splines está na base da Gráfica Computacional (sw gráfico, CAD, etc).
- As splines são réguas de madeira utilizadas pelos desenhadores para traçar curvas suaves que passem por pontos dados.
- Esta técnica é muito utilizada na indústria naval para apurar a forma dos cascos a partir de esboços relativamente grosseiros.
- Surgiu pelos anos quarenta do século XX na engenharia naútica na elaboração de trajectórias de grandes navios as rotas deveriam ser curvas suaves a passarem pelos vários pontos de paragem.
- São também muito usadas nas trajectórias de movimento de robots.

Quando se utilizam polinómios de grau muito elevado, estes assumem um comportamento muito oscilatório, não refletindo o comportamento da função que pretendem estimar.

(se for usado um polinómio interpolador de grau 10)

Por outro lado, os polinómios são funções simples e computacionalmente atraentes.

Interpolação por splines

Utilizar vários polinómios de grau baixo em diferentes intervalos de pontos

Considere-se a representação gráfica dum função f(x):

Se for usado um polinómio interpolador de grau 10:

Se for usada uma spline linear:

Spline linear $s_1(x)$

- Junção de polinómios de grau 1.
- Para cada segmento i a forma do polinómio de grau 1 obtém-se:

$$s_1^i(x) = f_{i-1} + \frac{f_i - f_{i-1}}{x_i - x_{i-1}}(x - x_{i-1})$$

$$i=1,2,\ldots,n$$
.

• O segmento i é definido por $[x_{i-1}, x_i]$

Spline linear $s_1(x)$

Limite superior do erro de truncatura com a aproximação *spline* linear s_1 :

- (i) Seja f(x) contínua, com derivadas contínuas até à segunda ordem,
- (ii) sejam os pontos do intervalo [a, b]:

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b,$$

(iii) seja $s_1(x)$ a 'spline' linear composta pelos polinómios de grau 1 $s_1^i(x)$, $i=1,2,\ldots,n$ para aproximar f(x) em [a,b],

Spline linear $s_1(x)$

(iv) seja

$$\max_{\xi \in [a,b]} |f''(\xi)| \le M_2,$$

 M_2 majorante da segunda derivada de f(x) em [a,b]

(v) seja

$$h = \max_{0 \le i \le n-1} (x_{i+1} - x_i)$$

então

$$|f(x) - s_1(x)| \le \frac{1}{8}h^2 M_2$$

Nota: se f(x) não for dada por uma expressão, substitui-se M_2 pela diferença dividida de 2^a ordem de maior módulo em valor absoluto multiplicada por 2!.

Spline cúbica $s_3(x)$

Splines cúbicas

- derivadas contínuas até à segunda ordem
- fáceis de construir
- comportamento estável

Uma spline cúbica é uma função polinomial segmentada de grau 3, *i.e.*, definida por diferentes polinómios cúbicos em segmentos da reta real, sendo os polinómios escolhidos por forma a permitir uma "junção" suave.

Spline vs polinómio interpolador

Spline cúbica $s_3(x)$

Considere-se um conjunto de n+1 nós

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$$

- nós fronteira: x_0 e x_n
- n-1 nós interiores: $x_1, x_2, \ldots, x_{n-1}$

Estes n+1 pontos definem n segmentos - $[x_0,x_1],[x_1,x_2],...,[x_{n-1},x_n].$

A expressão para a função spline $s_3(x)$ é

$$s_3(x) = \left\{ \begin{array}{ll} s_3^1(x) & x \in [x_0,x_1] \text{ (para o segmento } 1) \\ s_3^2(x) & x \in [x_1,x_2] \text{ (para o segmento } 2) \\ \vdots & \vdots & \vdots \\ s_3^n(x) & x \in [x_{n-1},x_n] \text{ (para o segmento } n) \end{array} \right.$$

Spline cúbica $s_3(x)$

 $s_3^i(x)$ é o polinómio cúbico do segmento i com a seguinte expressão:

$$s_3^i(x) = \frac{M_{i-1}}{6(x_i - x_{i-1})} (x_i - x)^3 + \frac{M_i}{6(x_i - x_{i-1})} (x - x_{i-1})^3 +$$

$$+ \left[\frac{f_{i-1}}{(x_i - x_{i-1})} - \frac{M_{i-1}(x_i - x_{i-1})}{6} \right] (x_i - x) +$$

$$+ \left[\frac{f_i}{(x_i - x_{i-1})} - \frac{M_i(x_i - x_{i-1})}{6} \right] (x - x_{i-1}), \quad i = 1, 2, \dots, n.$$

 $M_i \equiv M(x_i)$ é o valor da segunda derivada de s_3 em x_i

$$M_i \approx f''(x_i)$$

Para que a ligação entre os vários segmentos seja suave, tem de haver continuidade nos nós e tem de se manter a curvatura. Em cada nó interior x_i , i = 1, 2, ..., n-1 tem de se verificar:

- $s_3^i(x_i) = s_3^{i+1}(x_i)$
- $s_3^{i'}(x_i) = s_3^{i+1'}(x_i)$
- $s_3^{i''}(x_i) = s_3^{i+1''}(x_i)$

A continuidade nas primeiras derivadas nos n-1 nós interiores

$$s_3^{i'}(x_i) = s_3^{i+1'}(x_i)$$
 $i = 1, 2, ..., n-1$

origina a seguinte equação, para o nó interior i:

$$= \frac{(x_i - x_{i-1})M_{i-1} + 2(x_{i+1} - x_{i-1})M_i + (x_{i+1} - x_i)M_{i+1}}{6} = \frac{6}{(x_{i+1} - x_i)}(f_{i+1} - f_i) - \frac{6}{(x_i - x_{i-1})}(f_i - f_{i-1}), i = 1, \dots, n-1$$

Substituindo a equação anterior para os n-1 nós interiores obtém-se um sistema de n-1 equações lineares nas n+1 incógnitas M $(M_0,M_1,...,M_n)$

O sistema tem mais duas incógnitas do que equações!!!

Se a spline for **natural** então

$$M_0 = 0 e M_n = 0$$

e o sistema passa a ter n-1 equações e n-1 incógnitas

$$M_1, M_2, ..., M_{n-1}$$

Se a spline for **completa**, adicionam-se ao sistema as seguintes equações, relativas aos nós fronteira inferior e superior, respectivamente:

$$2(x_1 - x_0)M_0 + (x_1 - x_0)M_1 = \frac{6}{(x_1 - x_0)}(f_1 - f_0) - 6f_0'$$

$$2(x_n - x_{n-1})M_n + (x_n - x_{n-1})M_{n-1} = 6f'_n - \frac{6}{(x_n - x_{n-1})}(f_n - f_{n-1})$$

O sistema passa a ter n+1 equações e n+1 incógnitas!

As equações envolvem o cálculo da derivada nos nós fronteira $(f_0' \in f_n')$. Se a expressão analítica da função f(x) for conhecida, esse cálculo é imediato, caso contrário tem de ser estimado através de diferenças divididas.

Utilizam-se para tal, dois pontos auxiliares que não sejam nós da spline: x_a deve estar o mais próximo possível de x_0 para estimar f_0' e x_b deve estar o mais próximo possível de x_n para estimar f_n'

Deve ter-se o cuidado inicial de retirar esses dois pontos e não os utilizar como nós da spline

Erro na spline

$$|f(x) - s_3(x)| \le \frac{5}{384} h^4 M_4 \qquad |f'(x) - s'_3(x)| \le \frac{1}{24} h^3 M_4$$

em que

$$h = \max_{0 \le i \le n-1} (x_{i+1} - x_i)$$
 e $\max_{\xi \in [x_0, x_n]} |f^{iv}(\xi)| \le M_4$

 $(M_4$ é um majorante do valor absoluto da quarta derivada de f(x) em $[x_0, x_n]$).

Spline completa vs spline natural

Exercício de aplicação 1

Ao efectuar observações astronómicas medindo as variações na magnitude aparente, M, de uma estrela variável chamada variável Cepheid, ao longo de um período de tempo, t, foram obtidos os seguintes valores:

tempo (t)	0.0	0.3	0.5	0.6	0.8
Magnitude aparente (M)	0.302	0.106	0.240	0.579	0.468

Determine um valor aproximado da magnitude aparente da *variável Cepheid* no instante t=0.4, utilizando uma spline cúbica natural.

Resolução:

$x_0 = 0$				
$f_0 = 0.302$	$f_1 = 0.106$	$f_2 = 0.240$	$f_3 = 0.579$	$f_4 = 0.468$

Para os pontos interiores $(x_1, x_2 ex_3)$ substitui-se na equação do nó interior o índice i por 1, 2, 3 obtendo-se:

$$\begin{cases} 0.3M_0 + 1M_1 + 0.2M_2 = 7.94\\ 0.2M_1 + 0.6M_2 + 0.1M_3 = 16.32\\ 0.1M_2 + 0.6M_3 + 0.2M_4 = -23.67 \end{cases}$$

Este sistema tem 3 equações mas 5 incógnitas. Como a spline é natural tem-se $M_0=M_4=0$ eliminando-se duas incógintas:

$$\begin{cases} 1M_1 + 0.2M_2 = 7.94 \\ 0.2M_1 + 0.6M_2 + 0.1M_3 = 16.32 \\ 0.1M_2 + 0.6M_3 = -23.67 \end{cases}$$

Este sistema é resolvido por um método direto e estável (EGPP):

$$M_1 = 1.065031$$
, $M_2 = 34.374847$, $M_3 = -45.179141$.

O valor a estimar x=0.4 pertence ao segmento 2 ($[x_1,x_2]$), então substitui-se na equação do segmento da spline o índice i por 2 para obter $s_3^2(x)$.

Para estimar f(0.4) calcula-se $s_3^2(0.4) = 0.084400 \approx f(0.4)$.

Exercício de aplicação 2

Resolver o exercício anterior mas com uma *spline* cúbica completa.

Como a spline é completa e não conhecemos a expressão de f(x) guardam-se 2 pontos o mais próximo possível dos pontos extremos que irão servir para estimar o valor de f'(x) nos pontos extremos.

A nova tabela fica:

$x_0 = 0$				
$f_0 = 0.302$	$f_a = 0.106$	$f_1 = 0.240$	$f_b = 0.579$	$f_2 = 0.468$

Os pontos da spline são $(x_0,f_0),\,(x_1,f_1),\,(x_2,f_2)$ tendo apenas um ponto interior.

Utiliza-se a equação dos pontos interiores para i=1 (índice do único ponto interior):

$$(x_1 - x_0)M_0 + 2(x_2 - x_0)M_1 + (x_2 - x_1)M_2 =$$

$$= \frac{6}{(x_2 - x_1)}(f_2 - f_1) - \frac{6}{(x_1 - x_0)}(f_1 - f_0) \Leftrightarrow$$

$$\Leftrightarrow 0.5M_0 + 1.6M_1 + 0.3M_2 = 5.304$$

Fica uma equação com 3 incógnitas:

- como a spline é completa adicionam-se as duas equações para os pontos fronteira.

A primeira envolve o cálculo de $f'(x_0)$ e a última o cálculo de $f'(x_2)$. Como não é conhecida a expressão analítica de f(x) vão utilizar-se os pontos auxiliares que foram guardados.

$$f'(x_0) \approx \frac{f_0 - f_a}{x_0 - x_a} = -0.653333$$
$$f'(x_2) \approx \frac{f_2 - f_b}{x_2 - x_b} = -0.555$$

$$2(x_1 - x_0)M_0 + (x_1 - x_0)M_1 = \frac{6}{(x_1 - x_0)}(f_1 - f_0) - 6f_0' \Leftrightarrow \Leftrightarrow M_0 + 0.5M_1 = 3.175998$$

$$2(x_2 - x_1)M_2 + (x_2 - x_1)M_1 = 6f_2' - \frac{6}{(x_2 - x_1)}(f_2 - f_1) \Leftrightarrow 0.3M_1 + 0.6M_2 = -7.89$$

O sistema fica então:

$$\begin{cases} M_0 + 0.5M_1 = 3.175998 \\ 0.5M_0 + 1.6M_1 + 0.3M_2 = 5.304 \\ 0.3M_1 + 0.6M_2 = -7.89 \end{cases}$$

Resolvido por EGPP vem:

$$M_0 = -0.016086, M_1 = 6.384168, M_2 = -16.342084.$$

O valor a estimar x=0.4 pertence ao segmento 1 ($[x_0,x_1]$), então substitui-se na equação do segmento o índice i por 1 para obter $s_3^1(x)$.

Para estimar f(0.4) calcula-se $s_3^1(0.4) = 0.175919 \approx f(0.4)$.

Exercício de aplicação 3

Considere a função

$$f(x) = \left\{ \begin{array}{ll} \frac{4}{27}(9x-6x^2+x^3), & \text{para } 0 \leq x \leq 3 \\ 0, & \text{para outros valores de } x. \end{array} \right.$$

Pretende-se construir uma *spline* cúbica completa para aproximar f(x) baseada apenas nos valores de x: 0, 1.5 e 3. Calcule a aproximação fornecida pela *spline* para f(1).

Resolução:

$$\begin{array}{c|cccc} x_0 = 0 & x_1 = 1.5 & x_2 = 3 \\ \hline f_0 = 0 & f_1 = 0.5 & f_2 = 0 \end{array}$$

Há apenas um ponto interior. Utiliza-se a equação dos pontos interiores para i=1 (índice do único ponto interior):

$$(x_1 - x_0)M_0 + 2(x_2 - x_0)M_1 + (x_2 - x_1)M_2 =$$

$$= \frac{6}{(x_2 - x_1)}(f_2 - f_1) - \frac{6}{(x_1 - x_0)}(f_1 - f_0) \Leftrightarrow$$

$$\Leftrightarrow 1.5M_0 + 6M_1 + 1.5M_2 = -4$$

Fica uma equação com 3 incógnitas - como a spline é completa adicionam-se duas equações para os pontos fronteira.

A primeira envolve o cálculo de $f'(x_0)$ e a última o cálculo de $f'(x_2)$.

Como é conhecida a expressão analítica de f(x) calcula-se $f'(0)=\frac{4}{3}$ e f'(3)=0.

Equações para os pontos fronteira:

$$\begin{cases} 3M_0 + 1.5M_1 = -6 \\ 1.5M_1 + 3M_2 = 2 \end{cases}$$

Sistema final:

$$\begin{cases} 3M_0 + 1.5M_1 = -6\\ 1.5M_0 + 6M_1 + 1.5M_2 = -4\\ 1.5M_1 + 3M_2 = 2 \end{cases}$$

Os valores, obtidos por EGPP são:

$$M_0 = -1.(7), M_1 = -0.(4), M_2 = 0.(8).$$

O valor a estimar x=1 pertence ao segmento 1 ($[x_0,x_1]$)-substitui-se na equação do segmento o índice i por 1 para obter $s_3^1(x)$.

Para estimar f(1) calcula-se $s_3^1(1) = 0.592593 \approx f(1)$.