Surface plot of Ψ for S

Surface plot of Ψ^2 for S

Maximum probability density of finding the electron?

Surface plot of Ψ and Ψ^2 for S

Maximum probability of finding the electron?

Surface plot of 1s

Surface plot of 2s

P ORBITALS: wavefunctions

Not spherically symmetric: depend on θ, ϕ

"Shapes" of orbitals depend on Orbital quantum number I and Magnetic quantum no. m₁

$$\mathbf{m=0\;case:}\quad \psi_{210}=\psi_{2p_{z}}=\left(32\pi a_{0}^{3}\right)^{-1/2}\left(r/a_{0}\right)e^{-r/2a_{0}}\cos\theta$$

 ψ_{2p_z} independent of ϕ — symmetric about z axis

No ϕ dependence: symmetric around z axis

radial nodes
$$n-l-1=0$$
 (note difference from 2s: $R_{nl}(r)$ depends on l as well as n)

angular nodes l=1

total nodes n-1=1

xy nodal plane - zero amplitude at nucleus

Number of Angular Nodes = 1

What are we up to?

$$\Psi_{2pz} = (re^{-r})x(Cos\theta)$$

Angular part of Wave Functions

m = 0 case:
$$\psi_{210} = \psi_{2p_z} = (32\pi a_0^3)^{-1/2} (r/a_0) e^{-r/2a_0} \cos\theta$$

$$\psi_{2p_z}$$
 independent of ϕ symmetric about z axis $\Psi_{210}(2p_z) = N \rho e^{-\rho/2}.\cos\theta$

Angle in radians

Is this a "p" orbital?

What are we up to?

$$\Psi_{2pz} = (re^{-r})x(Cos\theta)$$

Surface plot of re- & Cos θ for all Φ

Surface plot of $\Psi_{2pz} = (re^{-r})x(Cos\theta)$

Surface plot of Ψ^2_{2pz} ~ $(r^2e^{-2r})x(Cos^2\theta)$

In books, or in class, one of the low valued probability density contour are shows as "Orbitals"

Surface plot of Ψ^2_{2pz} ~ $(r^2e^{-2r})x(Cos^2\theta)$

Review: Surface plot of Ψ_{2pz} = (re-r)x(Cos θ)

Nodal Plane is represented by a line in 2D plot Radial node is represented by circle in 2D plot

Surface plot of Ψ^2_{2pz} ~ $(r^2e^{-2r})x(Cos^2\theta)$ x or y he with

At θ = π /2 we are in the xy plane regardless of the values of r and ϕ , so θ = π /2 describes the nodal plane in the 2pz orbital

Wavefunction/Probability-density contours for 2p_z

Each contour line is called "equal probability iso-surface"

A low probability contour is what is shown in your textbook as a "p" orbital

Wavefunction/Probability-density contours for 3p_x

Probability-density contours for 3p.

