Hardware Security

-- Modular Exponentiation

Cybersecurity Specialization

What Do We Expect to Learn?

- # What is modular exponentiation?
- # Why it is important in security?
- # How it is computed?
- # Are there any security vulnerabilities?
- # Background
 - Integer multiplication
 - Decimal to binary conversion

What is Modular Exponentiation?

- # Modular: finding the remainder
 - $=7 \div 2 = 3$ with remainder 1.
 - = 7 = 1 (mod 2): 7 is congruent to 1 modulo 2
 - = a = b (mod n): if a-b = n*k for some integer k
- # Modular exponentiation
 - $= a^e \equiv ? \pmod{n}$
 - $= 2^4 \equiv 6 \pmod{10}$ because $2^4 = 16$
 - **34**, 987,317^{10,357,198}
 - \equiv ? (mod 510,926,533,897)

Computing ae (mod n)

- #Exponentiation and modular
 - = ae = b
 - **b** (mod n)
- #Iterative exponentiation and modular
 - If $x \equiv y \pmod{n}$, then $ax \equiv ay \pmod{n}$
 - Modular whenever larger than n
- # How about 34, 987,317^{10,357,198} (mod 510,926,533,897)?

Computing ae (mod n)

- #Exponentiation and modular
 - = ae = b
 - = b (mod n)
- #Iterative exponentiation and modular
 - If $x \equiv y \pmod{n}$, then $ax \equiv ay \pmod{n}$
 - Modular whenever larger than n
- # Question for hardware designer: can we multiply less than e-1 times?