Statistical Computing Master Data Science

Prof. Tim Downie

Workshop 6 — Regression 1

Section 2 includes an exercise, to be done before next Friday.

1 During the Workshop

Preliminaries

- Start RStudio, and start a new R script Ctrl+Shift+N.
- Type in the comments

```
#Statistical Computing: Workshop 6
#Regression
```

- Save the file in your H: \\StatComp folder with the name Workshop6.R.
- Set your working directory to be H:\\StatComp. The code to do this is
 > setwd("H://StatComp")
- Clear your workspace using of objects from a previous session
 Session > clear workspace.
- Open a Word document or similar to answer the exercises in this workshop.

Exercise 1 Regression coefficients

In this exercise, you will use R to calculate coefficients using the formulae given in the lecture, to gain a better understanding of the calculations involved in fitting a regression model.

In order to see how the number of guests in a hotel affects water consumption, a hotel manager collected weekly data on the hotel's water consumption (Thousand litres per guest per night) and the hotel occupancy (number of guest-nights) over n = 5 weeks.

i	1	2	3	4	5
Occupancy x_i	20	50	70	100	100
Water consumption y_i	25	35	20	30	45

2

(a) Define two R Objects occupancy and consumption using the above data. Which of the two variables corresponds to x, in the classical regression notation, and which variable corresponds to y? occupancy is x and consumption is y

(b) Plot the two variables in a scatter plot. see below

(c) Calculate the following statistics, entering your answers in the Word document).

(i)
$$\bar{x} = 68$$

(v)
$$s_x^2 = 1170$$

(ii)
$$\overline{y} = 31$$

(vi)
$$s_{xy} = 152.5$$

(iii)
$$\sum_{i=1}^{5} (x_i - \overline{x})^2 = 4680$$

(vii) gradient
$$\hat{b}_1$$
 (hint: see lecture notes) = 0.1303 and

(iv)
$$\sum_{i=1}^{5} (x_i - \overline{x})(y_i - \overline{y}) = 610$$

(viii) intercept
$$\hat{b}_0 = 22.137$$

- (d) Write down the regression function f(x) = 22.137 + 0.1303x
- (e) Add the regression line to the scatter plot. Hint: abline(c(a,b)) draws a line on the existing plot with intercept a and gradient b] see below
- (f) What is the water consumption according to the regression model when the hotel has an occupancy of 70 guest-nights? This is called the predicted value. = 31.268
- (g) Calculate the 5 residuals. 0.2564, 6.346, -11.26, -5.171, and 9.829

Exercise 2 Regression using 1m

You will now repeat Exercise 1 but using the usual R commands to fit a simple linear regression using the command $lm(y\sim x)$ or $lm(y\sim x)$, data=dataframe). The second version is used when x and y are variables in dataframe. At each stage check that your results match up to those in Exercise 1.

- (a) Fit the linear regression model to the hotel data, and assign the result to the object called lm.obj1:
 - > lm.obj1<-lm(consumption~occupancy).</pre>
- (b) Look at the results:
 - > summary(lm.obj1)
- (c) Find \hat{b}_0 and \hat{b}_1 in the output.
- (d) Output the fitted values
 - > fitted(lm.obj1)
- (e) What is the water consumption according to the regression model when the hotel has an occupancy of 70 guest-nights? = 31.268
- (f) Output the five residuals
 - > resid(lm.obj1)

4

Tidying up

- ► Tidy up your script file including sensible comments.
- ► Save the script file (source file) again: $\boxed{\text{Strg} + \text{S}}$ or $File > Save \ as$.
- ► Leave RStudio by typing the command:
- > q()

When R asks you Save workspace image ...?, click on Don't save!

► Feierabend!

2 Homework exercise

The table below contains the heights of fathers x and their sons y. The data are from an american study so are given in inches (1 inch = 2.54 cm).

Do the heights of the 'sons depend on the heights of their fathers?

Fit a simple linear regression of the form $y_i = \hat{b}_0 + \hat{b}_1 x_i + \hat{\epsilon_i}$ to the 12 father-son pairs.

Father	Son						
x	y	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})^2$	$(x_i - \overline{x})(y_i - \overline{y})$	\widehat{y}_i	$y_i - \widehat{y}_i$
65	68	-1.67	0.42	2.78	-0.69		
63	66	-3.67	-1.58	13.44	5.81	65.84	0.16
67	68	0.33	0.42	0.11	0.14	67.74	0.26
64	65	-2.67	-2.58	7.11	6.89	66.31	-1.31
68	69	1.33	1.42	1.78	1.89	68.22	0.78
62	66	-4.67	-1.58	21.78	7.39	65.36	0.64
70	68	3.33	0.42	11.11	1.39	69.17	-1.17
66	65	-0.67	-2.58	0.44	1.72	67.27	-2.27
68	71	1.33	3.42	1.78	4.56	68.22	2.78
67	67	0.33	-0.58	0.11	-0.19	67.74	-0.74
69	68	2.33	0.42	5.44	0.97	68.69	-0.69
71	70	4.33	2.42	18.78	10.47	69.65	0.35
Totals 800	811	0	0	84.67	40.33		

The extra columns have been provided to make the calculations less time consuming.

(a) Calculate the following

(i)
$$\bar{x} \, \bar{x} = 66.67$$

(ii)
$$\bar{y} \, \bar{y} = 67.583$$

(iii) the variance of $x s_x^2 = 7.697$

(iv) the covariance of x and y
$$s_{xy} = \frac{40.33}{11} = 3.667$$

- (b) Determine the regression coefficients \hat{b}_1 , \hat{b}_0 , and give the formula for the regression line. $\hat{b}_1 = \frac{40.33}{84.67} = \frac{3.667}{7.696} = 0.4764$, $\hat{b}_0 = 67.58 0.48 \times 66.67 = 35.8248$ y = 35.8248 + 0.4764x
- (c) Calculate the first fitted value \hat{y}_1 (missing from the table). 66.79
- (d) Calculate the first residual $\hat{\epsilon}_1$ (missing from the table). 1.21
- (e) Show that the regression line passes through the point (\bar{x}, \bar{y}) $\bar{x} = 66.67$ Regression formula gives $y = 35.82 + 0.48\bar{x} = 67.5848$ compare with $\bar{y} = 67.583$. The difference is just numerical rounding error.