

Transformada de Fourier (motivação)

Operações de Processamento Digital de Imagem em que é usada a Transformada de Fourier:

- Filtragem no domínio da frequência:
 - suavização da imagem para remoção de ruído de alta frequência;
 - detecção de arestas (alta frequência) que delimitam diferentes regiões da imagem.
- Reconhecimento de objectos: extracção de características que permitam detectar e classificar diferentes objectos presentes na imagem; os coeficientes da Transformada Discreta de Fourier podem permitir a distinção entre a representação dos objectos (ex: círculos, rectângulos, caracteres...).
- Reconhecimento de padrões: idem, para texturas (padrões repetitivos).
- Compressão de imagem: o emissor pode enviar apenas um subconjunto dos coeficientes da Transformada de Fourier da imagem e o receptor reconstrói a imagem aproximada, somando as várias componentes de frequências (sinusóides).

Série de Fourier

A Análise de Fourier mostra-nos que qualquer função **periódica** (período *λ*) não sinusoidal pode ser decomposta numa série, **soma infinita de senos e cossenos** (ou, o que é equivalente, de **exponenciais complexas**), cujas frequências são **múltiplos inteiros da frequência fundamental**:

$$f(x) = \sum_{n = -\infty}^{\infty} F(n) \left[\cos \left(\frac{2\pi n}{\lambda} x \right) + j \cdot \sin \left(\frac{2\pi n}{\lambda} x \right) \right] = \sum_{n = -\infty}^{\infty} F(n) \cdot e^{j\frac{2\pi n}{\lambda} x}$$

O valor de cada coeficiente de Fourier — ponto F(n) no **domínio de Fourier** — é dado por:

$$F(n) = \frac{1}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(x) \cdot e^{-j\frac{2\pi n}{\lambda}x} dx = \Im\{f(x)\}$$

O domínio de Fourier é também chamado **domínio das frequências**, ainda que f(x) possa não ser uma função variável no tempo. (Se f(x) variar no **espaço**, podemos falar de **frequência espacial**.)

Cada F(n) representa uma sinusóide de "frequência" n que, no domínio de x, é uma componente constituinte da função f(x).

۲

Transformada de Fourier

Se a função f(x) **não** for **periódica**, a soma infinita passa a ser contínua (i.e., um **integral** de frequências crescentes) e o cálculo dos coeficientes de Fourier não pode ser limitado a um período (que, neste caso, é coisa que não existe...). Falamos então de Transformada de Fourier (directa e inversa, respectivamente):

$$F(\omega) = \int_{-\infty}^{\infty} f(x) \cdot e^{-j2\pi\omega x} dx \qquad f(x) = \int_{-\infty}^{\infty} F(\omega) \cdot e^{j2\pi\omega x} d\omega$$

Se a nossa **função** for **bidimensional** — f(x,y) —, desenvolvendo-se num plano, as fórmulas anteriores assumem as correspondentes formas:

$$F(u,v) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x,y) \cdot e^{-j2\pi(ux+vy)} dxdy \qquad f(x,y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} F(u,v) \cdot e^{j2\pi(ux+vy)} dudv$$

em que u e v são as **frequências espaciais** de sinusóides 2D que se desenvolvem nas direcções **horizontal** e **vertical**, respectivamente.

Transformada Discreta de Fourier

No entanto, as **imagens digitais** não são funções bidimensionais contínuas num domínio infinito, mas funções **discretas** num **domínio finito**, pelo que importa definir a Transformada Discreta de Fourier (**DFT**, na sigla em inglês):

$$F(u,v) = \frac{1}{L.C} \sum_{x=0}^{C-1} \sum_{y=0}^{L-1} f(x,y) e^{-j2\pi(\frac{ux}{C} + \frac{vy}{L})} = \text{Re}[F(u,v)] - j.\text{Im}[F(u,v)]$$
$$= \text{Re}[\mathfrak{F}\{f\}] - j.\text{Im}[\mathfrak{F}\{f\}]$$

e a respectiva Transformada Inversa (IDFT):

$$f(x,y) = \sum_{u=0}^{C-1} \sum_{v=0}^{L-1} F(u,v) \cdot e^{j2\pi(\frac{ux}{C} + \frac{vy}{L})}$$

Na DFT de uma imagem com L linhas e C colunas (logo, L.C píxeis) existem, por isso, L.C coeficientes de Fourier (complexos), em que:

- $F(\theta, \theta)$ representa a componente contínua da imagem (média das intensidades);
- F(C-1,L-1) representa as frequências mais altas em ambas as direcções x e y.

2

Transformada Discreta de Fourier

Fórmulas alternativas da DFT e da IDFT, quando L = C = N, são:

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-j2\pi \frac{ux + vy}{N}} \qquad f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{j2\pi \frac{ux + vy}{N}}$$

A expressão da transformada permite-nos determinar:

• Espectro do sinal (espectro de Fourier ou magnitude de Fourier = amplitude da sinusóide 2D):

$$|\Im\{f\}| = \sqrt{\text{Re}^2[\Im\{f\}] + \text{Im}^2[\Im\{f\}]} = A(u, v)$$

• Ângulo de fase (desfasamento da sinusóide 2D em relação à origem):

$$\angle [\mathfrak{I}{f}] = \tan^{-1} \left[\frac{\operatorname{Im}(u, v)}{\operatorname{Re}(u, v)} \right] = \phi(u, v)$$

Espectro de energia:

$$E(u,v) = \left| \Im\{f\} \right|^2$$

Transformada Discreta de Fourier

Exemplo 1D:

$$f(0) = 2$$
 $f(1) = 3$ $f(2) = 4$ $f(3) = 4$

$$F(u) = \frac{1}{N} \sum_{x=0}^{3} f(x) \exp\left(-j\frac{2\pi ux}{N}\right), \quad u = 0,1,2,3$$

$$F(0) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp(0) = \frac{1}{4} \sum_{x=0}^{3} f(x) = \frac{1}{4} [2 + 3 + 4 + 4] = 3.25$$

$$F(1) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp(-j\frac{2\pi x}{4}) = \frac{1}{4} \left[2e^0 + 3e^{-j\pi/2} + 4e^{-j\pi} + 4e^{-j3\pi/2} \right] = \frac{1}{4} \left[2 - 3j - 4 + 4j \right] = -0.5 + 0.25j$$

$$F(2) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp(-j\frac{4\pi x}{4}) = \frac{1}{4} \left[2e^{0} + 3e^{-j\pi} + 4e^{-j2\pi} + 4e^{-j3\pi} \right] = \frac{1}{4} \left[2 - 3 + 4 - 4 \right] = -0.25$$

$$F(3) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp(-j\frac{6\pi x}{4}) = \frac{1}{4} \left[2e^{0} + 3e^{-j3\pi/2} + 4e^{-j3\pi} + 4e^{-j9\pi/2} \right] = \frac{1}{4} \left[2 + 3j - 4 - 4j \right] = -0.5 - 0.25j$$

Transformada Discreta de Fourier

Espectro do sinal

(amplitude das sinusóides 1D)

$$|F(0)| = 3.25$$

$$|F(1)| = \sqrt{(-\frac{2}{4})^2 + (\frac{1}{4})^2} = \frac{\sqrt{5}}{4} \approx 0.56$$

$$|F(2)| = 0.25$$

$$|F(3)| = \sqrt{(-\frac{2}{4})^2 + (-\frac{1}{4})^2} = \frac{\sqrt{5}}{4} \approx 0.56$$

Ângulo de fase

(desfasamento das sinusóides 1D)

$$\angle [F(0)] = \tan^{-1} \left(\frac{0}{3.25}\right) = 0$$

$$\angle [F(1)] = \tan^{-1} \left(\frac{0.25}{-0.5}\right) \approx -0.464$$

$$\angle [F(2)] = \tan^{-1} \left(\frac{0}{-0.25}\right) = 0$$

$$\angle [F(3)] = \tan^{-1} \left(\frac{-0.25}{-0.5}\right) \approx 0.464$$

٧

Transformada Discreta de Fourier

Exemplo 2D:

 $\log(1+|F(u,v)|)$

Transformada Discreta de Fourier

Pergunta: Qual das componentes — **magnitude** ou **fase** — contém **informação** visualmente **mais relevante**?

Reconstrução só com informação de magnitude

Reconstrução só com informação de fase

Sinusóides 2D

Mas antes de avançarmos, um parênteses para responder à pergunta:

O que são "sinusóides 2D"?

Para simplificar o problema, vamos considerar uma imagem quadrada (L = C = N). Nesta situação:

$$e^{\pm j2\pi(\frac{ux}{C} + \frac{vy}{L})} = e^{\pm j\frac{2\pi}{N}(ux + vy)} = e^{\pm j\frac{2\pi\omega}{N}(x \cdot \cos\theta + y \cdot \sin\theta)}$$

em que:
$$\begin{cases} u = \omega . \cos \theta & v = \omega . \sin \theta \\ \omega = \sqrt{u^2 + v^2} & \theta = \tan^{-1}(\frac{v}{u}) \end{cases}$$

Fazendo
$$\lambda = \frac{N}{\omega}$$
 podemos escrever:

$$e^{\pm j\frac{2\pi}{\lambda}(x.\cos\theta + y.\sin\theta)} = \cos\left[\frac{2\pi}{\lambda}(x.\cos\theta + y.\sin\theta)\right] \pm j.\sin\left[\frac{2\pi}{\lambda}(x.\cos\theta + y.\sin\theta)\right]$$

Sinusóides 2D

Tanto a parte real como a parte imaginária da expressão anterior são "tons" sinusoidais de amplitude unitária, período espacial (i.e., comprimento de onda) λ e direcção θ .

Nestas condições, $\frac{\omega}{N}$ é a frequência espacial e $\frac{2\pi\omega}{N}$ é a frequência angular espacial.

Resumindo, uma sinusóide 2D é uma onda com **amplitude** A medida em NDC e **período** espacial (comprimento de onda) λ medido em píxeis, que se desenvolve no plano da imagem segundo uma dada **orientação** θ e com um eventual **desfasamento** ϕ face à origem:

$$\frac{A}{2} \left\{ \cos \left[\frac{2\pi}{\lambda} (x \cdot \cos \theta + y \cdot \sin \theta) + \phi \right] + 1 \right\}$$

Nos próximos slides esquematizaremos estes conceitos para os tornar mais claros.

Sinusóides 2D

Pontos no Plano de Fourier

Um ponto no plano de Fourier (domínio das frequências espaciais) representa, por isso, um padrão sinusoidal com orientação dada pelo ângulo θ e comprimento de onda λ (a que corresponde uma frequência ω).

(Visto a origem das coordenadas da imagem se situar no canto superior esquerdo, crescendo a coordenada ν no sentido descendente, neste exemplo θ é negativo.)

Coeficientes de Fourier

Um coeficiente de Fourier é um **número complexo**, com uma parte real e uma parte imaginária.

Se representarmos esse número no plano complexo, a distância do ponto à origem dá-nos a amplitude A e o ângulo em relação ao eixo real dá-nos desfasamento ϕ (face à origem) da correspondente sinusóide 2D de frequência ω e direcção θ .

Resumindo...

- O ponto (u,v) no plano de Fourier representa um padrão sinusoidal 2D com frequência ω (ou o correspondente comprimento de onda λ) e direcção θ .
- F(u,v), valor complexo de $\Im\{I\}$ no ponto (u,v), representa a **amplitude** A e o **desfasamento** ϕ dessa sinusóide 2D.

A Relação de Incerteza

Um pequeno objecto espaço tem um espectro de frequências extenso*, e vice-versa:

^{*} Voltaremos a isto quando virmos as propriedades da DFT.

A Relação de Incerteza

DFT: dois exemplos

Transformada de Fourier de uma aresta:

DFT: dois exemplos

Transformada de Fourier de uma barra:

Mais elevada frequência de uma sinusóide horizontal:

frequências: $(u,v) = (max_u,0)$

м

IDFT de impulsos (exemplos)

Mais elevada frequência de uma sinusóide vertical:

frequências: $(u,v) = (0,max_v)$

Mais elevada frequência de uma sinusóide horizontal+vertical:

frequências: $(u,v) = (max_u, max_v)$

Mais baixa frequência (não nula) de uma sinusóide horizontal:

frequências: (u,v) = (1,0)

comprimento de onda: $\lambda_u = 512$

Mais baixa frequência (não nula) de uma sinusóide vertical:

frequências: (u,v) = (0,1)

comprimento de onda: $\lambda_{\nu} = 384$

frequências: (u,v) = (2,0)

comprimento de onda: $\lambda_u = 256$

frequências: (u,v) = (0,2)

comprimento de onda: $\lambda_v = 192$

frequências: (u,v) = (4,3)

comprimentos de onda: $\lambda_u = \lambda_v = 128$

Separabilidade

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \exp\left[-j\frac{2\pi ux}{N}\right]_{y=0}^{N-1} f(x,y) \exp\left[-j\frac{2\pi vy}{N}\right]$$

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \exp\left[j\frac{2\pi ux}{N}\right] \sum_{v=0}^{N-1} F(u,v) \exp\left[j\frac{2\pi vy}{N}\right]$$

Ou seja, a DFT* bidimensional pode ser calculada em dois passos unidimensionais:

Translação

Se F(u,v) for a transformada de f(x,y), relação que representaremos por:

$$f(x,y) \Leftrightarrow F(u,v)$$

então:

$$F(u-u_0, v-v_0) \Leftrightarrow f(x, y) \exp\left[j2\pi \frac{u_0 x + v_0 y}{N}\right]$$
$$f(x-x_0, y-y_0) \Leftrightarrow F(u, v) \exp\left[-j2\pi \frac{u x_0 + v y_0}{N}\right]$$

No caso, de particular interesse — conforme veremos nos *slides* seguintes —, em que desejamos **deslocar a origem** da DFT para o **centro** do quadrado $N \times N$ das frequências, basta multiplicar f(x,y) por $(-1)^{x+y}$, pois:

$$\exp\left[j2\pi \frac{\frac{N}{2}x + \frac{N}{2}y}{N}\right] = e^{j\pi(x+y)} = (-1)^{x+y}$$

A translação **não afecta o espectro do sinal**:

$$\left| F(u,v) \exp\left[-j2\pi \frac{ux_0 + vy_0}{N} \right] \right| = \left| F(u,v) \right|$$

Periodicidade e Simetria Conjugada

A DFT é periódica, com **período** N, em ambas as direcções, ou seja:

$$F(u,v) = F(u+N,v) = F(u,v+N) = F(u+N,v+N)$$

Daqui resulta que **basta um período** da transformada para **especificar** F(u,v) no domínio das frequências e, a partir dela, **reconstruir** f(x,y) no domínio espacial.

Se f(x,y) for **real**, a Transformada de Fourier exibe igualmente a propriedade de simetria conjugada:

$$F(u,v) = F^*(-u,-v)$$

$$|F(u,v)| = |F(-u,-v)|$$

Em conjunto, as propriedades de translação, periodicidade e simetria permitem deslocar a origem da transformada para o centro* da "imagem" da DFT, conforme se esquematiza no *slide* seguinte.

^{*} Para uma imagem de dimensões $N \times N$, este é o ponto de coordenadas $\left(\frac{N}{2}, \frac{N}{2}\right)$.

i Tophodadoo da Di

Esquematização 1D:

Deslocar a origem das frequências para o centro facilita a compreensão do resultado da transformada.

Esquematização 2D:

Exemplo 2D:

10

Propriedades da DFT

Rotação

Se redefinirmos as variáveis espaciais e de frequência em termos de **coordenadas polares**:

$$x = r \cos \varphi$$
 $y = r \sin \varphi$ $u = \omega \cos \theta$ $v = \omega \sin \theta$

então f(x,y) e F(u,v) passam a $f(r,\varphi)$ e $F(\omega,\theta)$, respectivamente.

Se efectuarmos uma rotação no domínio espacial, ela ocorre igualmente no domínio de Fourier:

$$f(r, \varphi + \varphi_0) \Leftrightarrow F(\omega, \theta + \varphi_0)$$

Distributividade

A Transformada de Fourier é distributiva em relação à **adição**, mas <u>não</u> em relação à **multiplicação**, pois:

$$\Im\{f_1(x,y) + f_2(x,y)\} = \Im\{f_1(x,y)\} + \Im\{f_2(x,y)\}$$

mas, em geral:

$$\mathfrak{F}\{f_1(x,y).f_2(x,y)\} \neq \mathfrak{F}\{f_1(x,y)\}.\mathfrak{F}\{f_2(x,y)\}$$
 atenção!

Factores de Escala

$$a.f(x,y) \Leftrightarrow a.F(u,v)$$

$$f(a.x,b.y) \Leftrightarrow \frac{1}{|a.b|} F\left(\frac{u}{a}, \frac{v}{b}\right)$$

Média

$$\mu_f = \bar{f}(x, y) = \frac{1}{N}F(0, 0)$$

Laplaciano

$$\Im{\{\nabla^2 f(x,y)\}} = -4\pi^2 (u^2 + v^2).F(u,v)$$

Teorema da Convolução

Considerem-se duas matrizes, f e g, de dimensões $C_f \times L_f$ e $C_g \times L_g$, respectivamente. A sua convolução discreta é dada por:

$$f(x,y) * g(x,y) = \sum_{c=0}^{C-1} \sum_{l=0}^{L-1} f(c,l) \cdot g(x-c,y-l)$$

em que $C \ge C_f + C_g - 1$ e $L \ge L_f + L_g - 1$.

Se $\Im\{f(x,y)\} = F(u,v)$ e $\Im\{g(x,y)\} = G(u,v)$, então:

$$\Im\{f(x,y)*g(x,y)\} = F(u,v).G(u,v)$$

$$\Im\{f(x,y).g(x,y)\} = F(u,v) * G(u,v)$$

M

Propriedades da DFT

Consequência do Teorema da Convolução

Teorema da Correlação

Com os mesmos pressupostos anteriores, a convolução discreta de duas matrizes $f \in g$ é dada por:

$$f(x,y) \circ g(x,y) = \sum_{c=0}^{C-1} \sum_{l=0}^{L-1} f^*(c,l) \cdot g(x+c,y+l)$$

Em que * representa o conjugado complexo.

Então:

$$\Im\{f(x,y)\circ g(x,y)\} = F^*(u,v).G(u,v)$$

$$\mathfrak{F}\left\{f^{*}(x,y).g(x,y)\right\} = F(u,v) \circ G(u,v)$$

Propriedades da DFT

Considere as seguintes imagens (esquerda) e respectivo logaritmo do espectro de Fourier (direita):

Pergunta-se: Como justificar a semelhança entre os dois espectros?

Filtragem com Transf. de Fourier

Suavização/Esbatimento

A suavização (ou esbatimento) de imagens pode ser realizada:

- No domínio espacial: através de um filtro (espacial) de média:
 - Cada píxel na saída é a média aritmética ponderada dos píxeis numa vizinhança.
 - É obtida pela convolução da máscara ou filtro (matriz) com a imagem original.
 - A soma de todos os pesos do filtro é (em geral) igual a 1.
- No domínio das frequências: através de filtragem passa-baixo:
 - As frequências elevadas são eliminadas ou atenuadas e as baixas são amplificadas.
 - As componentes individuais de frequência são **multiplicadas** por uma função de ω , monótona não crescente, tal que $1/\omega = 1/\sqrt{u^2 + v^2}$.

Os **valores** da imagem de saída são todos **não negativos**, em princípio já na gama $[0; N_{NDC}-1]$.

۲

Filtragem com Transf. de Fourier

Detecção de Arestas/Realce da Imagem

A detecção de arestas e o realce de imagens podem ser realizados:

- No domínio espacial: através de um filtro (espacial) de diferença:
 - Cada píxel na saída é a diferença entre o seu valor original e uma média ponderada dos píxeis numa vizinhança.
 - É obtida pela **convolução** da máscara ou filtro (matriz) com a imagem original.
 - A soma de todos os pesos do filtro é (em geral) igual a 0.
- No domínio das frequências: através de filtragem passa-alto:
 - As frequências elevadas são amplificadas e as baixas são atenuadas ou eliminadas.
 - As componentes individuais de frequência são **multiplicadas** por uma função de ω , monótona não decrescente, tal que $\alpha\omega = \alpha\sqrt{u^2 + v^2}$, em que α é uma constante

Os valores da imagem de saída são positivos e negativos, havendo que fazer o remapeamento para a gama $[0; N_{NDC}-1]$.

Filtro Passa-Baixo Ideal

Filtragem Passa-Baixo Óptima: Filtro Gaussiano

Filtro Passa-Alto Ideal

... convoluir com isto.

representação no domínio das frequências

representação no domínio espacial

cortes ao longo de um eixo que passe pela origem (centro)

Filtragem Passa-Alto Óptima: Filtro Gaussiano

Comparativo: Ideal vs. Gaussiano

Comparativo: Ideal vs. Gaussiano

Filtragem Passa-Baixo Gaussiana

Imagem original

Filtragem Passa-Alto Gaussiana

Realce da imagem (sharpening)

Imagem original

Realce da imagem (sharpening)

Imagem realçada