

Understanding Random Forests

Marc Garcia

PyData Madrid - April 9th, 2016

Introduction

About me: @datapythonista

NTTCommunications

- Python programmer since 2006
- Master in AI from UPC
- Working for Bank of America
- http://datapythonista.github.io

Introduction

Overview: Understanding Random Forests

- How decision trees work
- Training Random Forests
- Practical example
- Analyzing model parameters

Using a decision tree

Simple example:

- Event attendance: binary classification
- 2 explanatory variables: age and distance

```
from sklearn.tree import DecisionTreeClassifier

dtree = DecisionTreeClassifier()
dtree.fit(df[['age', 'distance']], df['attended'])
cart_plot(dtree)
```

Understanding Random Forests - Marc Garcia

Data visualization

Understanding Random Forests - Marc Garcia

Decision boundary visualization

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Decision boundary visualization

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Decision boundary visualization

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Decision boundary visualization

Understanding Random Forests - Marc Garcia 11 / 44

Decision boundary visualization

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Decision boundary visualization

Understanding Random Forests - Marc Garcia 13 / 44

How is the model?

```
def decision_tree_model(age, distance):
   if distance >= 2283.11:
       if age >= 40.00:
           if distance >= 6868.86:
               if distance >= 8278.82:
                   return True
                   return False
           else:
               return True
       else:
           return False
   else:
       if age >= 54.50:
           if age >= 57.00:
               return True
            else:
               return False
       else:
           return True
```


Understanding Random Forests - Marc Garcia

Training: Basic algorithm

```
def train_decision_tree(x, y):
    feature, value = get_best_split(x, y)

x_left, y_left = x[x[feature] < value], y[x[feature] < value]
    if len(y_left.unique()) > 1:
        left_node = train_decision_tree(x_left, y_left)
    else:
        left_node = None

x_right, y_right = x[x[feature] >= value], y[x[feature] >= value]
    if len(y_right.unique()) > 1:
        right_node = train_decision_tree(x_right, y_right)
    else:
        right_node = None

return Node(feature, value, left_node, right_node)
```

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Best split

Candidate split 1 age 18 19 21 27 29 34 38 42 49 54 62 64 attended F F T F T T F T T T

Split True False
Left 0 1
Right 7 4

Candidate split 2 age attended

18 19 21 27 29 34 38 42 49 54 62 64 F F T F T T F T T T

Split	True	False	
Left	0	2	
Right	7	3	

Understanding Random Forests - Marc Garcia

10 / 4-

Best split algorithm

```
def get_best_split(x, y):
    best_split = None
    best\_entropy = 1.
    for feature in x.columns.values:
        column = x[feature]
        for value in column.iterrows():
            a = y[column < value] == class_a_value
b = y[column < value] == class_b_value</pre>
             left_weight = (a + b) / len(y.index)
             left_entropy = entropy(a, b)
             a = y[column >= value] == class_a_value
             b = y[column >= value] == class_b_value
             right\_items = (a + b) / len(y.index)
             right_entropy = entropy(a, b)
             split_entropy = left_weight * left_etropy + right_weight * right_entropy
             if split_entropy < best_entropy:</pre>
                 best_split = (feature, value)
                 best_entropy = split_entropy
    return best_split
```

Understanding Random Forests - Marc Garcia

Entropy

For a given $subset^1$:

$$entropy = -Pr_{attending} \cdot \log_2 Pr_{attending} - Pr_{\neg attending} \cdot \log_2 Pr_{\neg attending}$$
 (1)

 $^{^{1}}$ Note that for pure splits it's assumed that $0 \cdot \log_2 0 = 0$

Understanding Random Forests - Marc Garcia

Entropy algorithm

```
import math
def entropy(a, b):
    total = a + b
    prob_a = a / total
    prob_b = b / total
        return - prob_a * math.log(prob_a, 2) \
- prob_b * math.log(prob_b, 2)
```

Understanding Random Forests - Marc Garcia 19 / 44

Information gain

For a given **split**:

$$information_gain = entropy_{parent} - \left(\frac{items_{left}}{items_{total}} \cdot entropy_{left} + \frac{items_{right}}{items_{total}} \cdot entropy_{right}\right) \quad (2)$$

Understanding Random Forests - Marc Garcia 20 / 44

Etsy dataset

- Features:
 - Feedback (number of reviews)
 - Age (days since shop creation)
 - Admirers (likes)
 - Items (number of products)
- Response variable:
 - Sales (number)
- Samples:
 - 58,092
- Source:
 - www.bigml.com

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Features distribution

Understanding Random Forests - Marc Garcia

Sales visualization

Understanding Random Forests - Marc Garcia 24 / 44

Feature correlation

	sales	admirers	age	feedback	items
sales	1.000000	0.458261	0.181045	0.955949	0.502423
admirers	0.458261	1.000000	0.340939	0.401995	0.268985
age	0.181045	0.340939	1.000000	0.184238	0.167535
feedback	0.955949	0.401995	0.184238	1.000000	0.458955
items	0.502423	0.268985	0.167535	0.458955	1.000000

Correlation to sales

Understanding Random Forests - Marc Garcia

Decision tree visualization

Decision tree visualization (top)

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Decision tree visualization (left)

Understanding Random Forests - Marc Garcia

Decision tree visualization (right)

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

What is wrong with the tree?

- Only one variable used to predict in some cases
- Lack of **stability**:
 - If feedback = 207 we predict 109 sales
 - If feedback = 208 we predict 977 sales
 - Our model can change dramatically if we add few more samples to the dataset
- Overfitting: We make predictions based on a single sample

Ensembles: The board of directors

- Why companies have a BoD?
- What is best?
 - The best point of view
 - A mix of good points of view
- How was our best tree?
 - What about a mix of not so good trees?

Ensemble of trees

- How do we build optimized trees, that are different?
 - We need to randomize them
 - Samples: bagging
 - Features
 - Splits

Bagging: Uniform sampling with replacement

Understanding Random Forests - Marc Garcia

Randomizing features

- Even with bagging, trees will usually make the top splits by the same feature
- max_features parameter:
 - Regression: Use all
 - Classification: Use the squared root

Understanding Random Forests - Marc Garcia 36 / 44

Randomizing splits

- A split per sample is considered in the original decision tree
- We can consider a subset
 - We obtain randomized trees
 - Performance is improved
- sklearn implements ExtraTreeRegressor and ExtraTreeClassifier

Understanding Random Forests - Marc Garcia

What happened with our example problems

- Only **one variable** used to predict in some cases
 - We can avoid it by not using all features
- Lack of **stability**:
 - Our model is smoother
- Overfitting: We make predictions based on a single sample
 - Overfitting is mostly avoided
 - Random forests come with built-in cross validation

Understanding Random Forests - Marc Garcia

Smoothing

Understanding Random Forests - Marc Garcia

Parameter optimization (Etsy)

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Parameter optimization (Bank marketing)

Data source: [Moro et al., 2014] S. Moro, P. Cortez and P. Rita.

A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014

Understanding Random Forests - Marc Garcia

When should we use Random Forests?

- Using a CART is usually good as part of exploratory analysis
- Do **not** use CART or RF when the problem is linear
- They are specially good for ordinal (categorical but sorted) variables
- Performance
 - CART is slower than linear models (e.g. logit)
 - RF trains N trees, and takes N times but it works in multiple cores, seriously
 - But RF is usually much faster than ANN or SVM, and results can be similar

Summary

- CART is a simple, but still powerful model
 - Visualizing them we can better understand our data
- Ensembles usually improve the predictive power of models
- Random Forests fix CART problems
 - Better use of features
 - More stability
 - Better generalization (RFs avoid overfitting)
- Random Forests main parameters
 - min samples leaf (inherited from CART)
 - num_estimators

 ${\bf Understanding\ Random\ Forests\ -\ Marc\ Garcia}$

Thank you

QUESTIONS?