Kernels

Jiali Lin

Virginia Tech

January 15, 2017

Outline

Kernel functions

The kernel trick

Support vector machines

Introduction

- ► **Goal:** measure the similarity between objects, that doesn't require preprocessing them into feature vector format.
- ► E.g. when comparing strings, we can compute the edit distance between them.
- ▶ Kernel function $\kappa(x, x')$: some measure of similarity between objects $x, x' \in \mathcal{X}$, where \mathcal{X} is some abstract space.

Mercer Kernel Functions

► A kernel function maps pairs of inputs to real numbers

$$\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$
 $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_i) = \kappa(\boldsymbol{x}_i, \boldsymbol{x}_i)$

Intuition: Larger values indicate inputs are "more similar".

▶ A kernel function is positive semidefinite if and only if for any $n \ge 1$, and any $x = \{x_1, x_2, \dots, x_n\}$, the Gram matrix is positive semidefinite

$$K \in \mathbb{R}^{n \times n}$$
 $K_{ij} = \kappa(x_i, x_j)$

► Mercer's Theorem: Assuming certain technical conditions, every positive definite kernel function can be represented as

$$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = \sum_{\ell=1}^d \phi_\ell(oldsymbol{x}_i) \phi_\ell(oldsymbol{x}_j)$$

▶ **Motivation**: Can be faster to compute kernel than features.

RBF kernels

► The squared exponential kernel (SE kernel) or Gaussian kernel

$$\kappa(\boldsymbol{x}, \boldsymbol{x'}) = \exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{x'})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{x'}))$$

▶ If Σ^{-1} is diagonal, this can be written as

$$\kappa(\boldsymbol{x}, \boldsymbol{x'}) = \exp(-\frac{1}{2} \sum_{i=1}^{D} \frac{1}{\sigma_j^2} (\boldsymbol{x}_j - \boldsymbol{x}_j')^2)$$

- ▶ We can interpret the σ_j as defining the **characteristic length scale** of dimension j.
- ▶ **ARD kernel**: If $\sigma_j = \infty$, the corresponding dimension is ignored.
- ightharpoonup Radial basis function: If Σ is spherical, we get the isotropic kernel

$$\kappa(\boldsymbol{x}, \boldsymbol{x'}) = \exp(-\frac{\|\boldsymbol{x} - \boldsymbol{x'}\|^2}{2\sigma^2})$$

 σ^2 is **bandwidth**. **RBF** kernel is only a function of $\|x - x'\|$.

Polynomial Kernels

- $ightharpoonup \mathcal{X}
 ightarrow \mathsf{real}$ vectors of some fixed dimension.
- ► Polynomial kernel

$$\kappa(\boldsymbol{x}, \boldsymbol{x'}) = (\gamma \boldsymbol{x}^T \boldsymbol{x'} + r)^M, \text{ where } r > 0$$

▶ If $M=2, \gamma=r=1$ and $x, x' \in \mathbb{R}^2$, we have

$$(1 + \mathbf{x}^T \mathbf{x'})^2 = (1 + \mathbf{x}_1 \mathbf{x}_1' + \mathbf{x}_2 \mathbf{x}_2')^2$$

$$= 1 + 2\mathbf{x}_1 \mathbf{x}_1' + 2\mathbf{x}_2 \mathbf{x}_2' + (\mathbf{x}_1 \mathbf{x}_1')^2 + (\mathbf{x}_2 \mathbf{x}_2')^2 + 2\mathbf{x}_1 \mathbf{x}_1' \mathbf{x}_2 \mathbf{x}_2'$$

$$= \phi(\mathbf{x})^T \phi(\mathbf{x})$$

where
$$\phi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]^T$$

- ▶ This is equivalent to working in a 6 dimensional feature space.
- ▶ In the case of a Gaussian kernel, the feature map lives in an infinite dimensional space.

Linear kernels

- ▶ Deriving the feature vector implied by a kernel is in general quite difficult, and only possible if the kernel is Mercer.
- ▶ However, deriving a kernel from a feature vector is easy: we just use

$$\kappa(\boldsymbol{x}, \boldsymbol{x'}) = \phi(\boldsymbol{x})^T \phi(\boldsymbol{x}) = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x'}) \rangle$$

lacktriangleright If $\phi(x)=x$, we get the linear kernel, defined by

$$\kappa(\boldsymbol{x}, \boldsymbol{x'}) = \boldsymbol{x}^T \boldsymbol{x'}$$

Outline

Kernel functions

The kernel trick

Support vector machines

Kernelized ridge regression

The primal problem:

▶ Let $x \in \mathbb{R}^D$ be some feature vector, and X be the corresponding $N \times D$ design matrix. We want to minimize

$$J(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|^2$$

► The optimal solution is given by

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_D)^{-1} \boldsymbol{X}^T \boldsymbol{y} = (\sum_{i} \boldsymbol{x_i} \boldsymbol{x_i}^T + \lambda \boldsymbol{I}_D)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Kernelized ridge regressionc(cont'd)

The dual problem:

▶ Rewrite the ridge estimate by the matrix inversion lemma

$$\boldsymbol{w} = \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{X}^T + \lambda \boldsymbol{I}_N)^{-1} \boldsymbol{y}$$

- ► Why?
 - This can be computationally advantageous if ${\cal D}$ is large.
 - Partially kernelize this, by replacing $m{X}m{X}^T$ with the Gram matrix $m{K}$.
- \blacktriangleright What about the leading X^T term?
 - Define the following dual variables

$$\alpha = (\boldsymbol{K} + \lambda \boldsymbol{I}_N)^{-1} \boldsymbol{y}$$

- Then we can rewrite the primal variables as follows

$$\boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{\alpha} = \sum_{i=1}^N \alpha_i \boldsymbol{x_i}$$

- Plug this in at test time to compute the predictive mean, we get

$$\hat{f}(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} = \sum_{i=1}^N \alpha_i \boldsymbol{x_i}^T \boldsymbol{x} = \sum_{i=1}^N \alpha_i \kappa(\boldsymbol{x_i})$$

Outline

Kernel functions

The kernel trick

Support vector machines

Introduction

lacktriangle Consider the ℓ_2 regularized empirical risk function

$$J(\boldsymbol{w}, \lambda) = \sum_{i=1}^{N} L(y_i, \hat{y}_i) + \lambda \|\boldsymbol{w}\|^2$$

- ► Support vector machine: use a modified loss function to ensure that the solution is sparse, so that predictions only depend on a subset of the training data.
- ► SVMs are very unnatural from a probabilistic point of view.
 - SVMs encode sparsity in the loss function rather than the prior.
 - SVMs encode kernels by using an algorithmic trick, rather than being an explicit part of the model.
 - SVMs do not result in probabilistic outputs (nonparametric).

Losses for Binary Classification

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n L(\tilde{y_i} \boldsymbol{w}^T \phi(\boldsymbol{x}_i)), \quad \text{where} \quad \tilde{y_i} \in \{+1, -1\}$$

Figure: Illustration of various loss functions for binary classification. The horizontal axis is the margin $y\eta$, the vertical axis is the loss. The log loss uses log base 2. Figure generated by HingeLossPlot.

Losses for Binary Classification (cont'd)

- ► Training Error Rate (0-1 loss)
 - For many classifications, the objective we really care about.
 - Hard to optimize (gradients zero almost everywhere).
 - Cannot distinguish top-performing training classifiers.
- ► Logistic Regression (logarithmic loss)
 - Estimates label probabilities for calibrated decision-making.
 - Easy to optimize (convex, smooth bound on 0-1 loss).
 - Scalability problems with large datasets and many features.
- ► Support Vector Machine (hinge loss)
 - Does not estimate valid probability distribution on labels.
 - Possible to optimize (convex, non-smooth bound on 0-1 loss).
 - Chooses boundary which maximizes margin of training data.
 - Gives sparse solutions, allowing greater scalability.

Support Vector Machines (SVMs)

▶ Goal

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^n L(\tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i))$$

► Hinge loss

$$L_{\text{hinge}}(y, \eta) = \max(0, 1 - y\eta) = (1 - y\eta)_{+}$$

► SVM Penalized Objective

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{n} (1 - \tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i))_{+}$$

► SVM Constrained Objective

$$\underset{\boldsymbol{w}, \boldsymbol{\xi}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{N} (\xi_i)$$
s.t. $\xi_i > 0$, $\tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i) > 1 - \xi_i$

- Quadratic Program: Quadratic function with linear constraints.
- Slack Variables: x_i penalize misclassified training examples.

Maximum Margin Hyperplanes

Figure: Illustration of the large margin principle. Left: a separating hyper-plane with large margin. Right: a separating hyper-plane with small margin.

- ► Margin: For a hyperplane which perfectly separates training data, orthogonal distance of closest training example to plane.
- ► Intuition: Expect similar features to have similar labels, so would like decision boundary as far as possible from data.
- Statistical Learning Theory: Formal bounds on generalization performance (test error) of large-margin classifiers.

Maximum Margin Hyperplanes (cont'd)

Figure: (a) Geometry of a linear decision boundary. (b) Soft margin principle.

Maximum Margin Hyperplanes (cont'd)

- ▶ Referring to Figure, w is perpendicular to the boundary, so $\overrightarrow{x_{\perp}}\overrightarrow{x}$ is parallel to w, i.e. $\overrightarrow{x_{\perp}}\overrightarrow{x} = r\frac{w}{\|w\|}$.
- ▶ Thus, $x = x_{\perp} + r \frac{w}{\|w\|}$, where r is the distance of x from the decision boundary whose normal vector is w, and x_{\perp} is the orthogonal projection of x onto this boundary.
- ▶ Multiply both sides by \boldsymbol{w}^T and plus w_0 to get $f(\boldsymbol{x}) = f(\boldsymbol{x}_\perp) + r \|\boldsymbol{w}\|$. Now $f(\boldsymbol{x}_\perp) = 0$, thus $r = \frac{f(\boldsymbol{x})}{\|\boldsymbol{w}\|}$.

Margins and SVMs

- $\blacktriangleright \ \text{Let} \ \phi(\boldsymbol{x}) = \boldsymbol{x}_{\perp} + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}.$
- ▶ Now make this distance $r = \frac{f(x)}{\|w\|}$ as large as possible.
- ► Accuracy: Classify all training data correctly by enforcing

$$\tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i) > 0$$

► Margin: Maximize distance of closest point to boundary

$$\max_{\boldsymbol{w}_0, \boldsymbol{w}} \min_{i=1,...n} \frac{\tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i)}{\|\boldsymbol{w}\|}$$

ightharpoonup Invariance: Scale w so closest point distance 1 from boundary

$$\underset{\boldsymbol{w}, \boldsymbol{\xi}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{N} (\xi_i)$$
s.t. $\xi_i \geq 0$, $\tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i) \geq 1 - \xi_i$

Support Vectors and Sparsity

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{n} (1 - \tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i))_+$$

► Optimal solution takes following form:

$$\hat{\boldsymbol{w}} = \sum_{i=1}^{n} \alpha_i \tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i) \quad \alpha_i > 0$$

- ▶ Here, the α_i are Lagrange multipliers for constrained QP.
- ▶ Because loss exactly zero for arguments greater than one, only a sparse subset of training examples have $\alpha_i > 0$.
- ► Training examples with non-zero weight are support vectors.
- ▶ **Optimization**: quadratic program solver.
- Improvement: sequential minimal optimization or SMO algorithm.

SVMs and Kernels

 Optimal weights always the form, with non-zero weights only for support vectors

$$\boldsymbol{w} = \sum_{j=1}^{n} \beta_j \phi(\boldsymbol{x}_j)$$

- ► Kernel Tricks: for $K \in \mathbb{R}^{n \times n}$, $K_{ij} = \kappa(x_i, x_j) = \phi(x_i)^T \phi(x_j)$.
- ▶ Then $f = K\beta$, $f_i = w^T \phi(x_i)$. Thus, $||w||^2 = f^T K^{-1} f$.
- ▶ Dual SVM

$$\hat{\boldsymbol{f}} = \underset{\boldsymbol{f}}{\operatorname{argmin}} \frac{\lambda}{2} \boldsymbol{f}^T \boldsymbol{K}^{-1} \boldsymbol{f} + \sum_{i=1}^{n} (1 - \tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i))_{+}$$

► Primal SVM

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{n} (1 - \tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i))_{+}$$

SVMs and Gaussian Processes

► Logistic Regression

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{n} \log(1 + e^{\tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i)})$$

► GP Classification

$$\hat{f} = \underset{f}{\operatorname{argmin}} \frac{\lambda}{2} f^T K^{-1} f + \sum_{i=1}^{n} \log(1 + e^{\tilde{y_i} f_i})$$

► Dual SVM

$$\hat{\boldsymbol{f}} = \underset{\boldsymbol{f}}{\operatorname{argmin}} \frac{\lambda}{2} \boldsymbol{f}^T \boldsymbol{K}^{-1} \boldsymbol{f} + \sum_{i=1}^{n} (1 - \tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i))_{+}$$

► Primal SVM

$$\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{n} (1 - \tilde{y}_i \boldsymbol{w}^T \phi(\boldsymbol{x}_i))_{+}$$