

WeChat: cstutorcs

**EXAM CODES:** TITLE OF PAPER: Assignificant Project Exam Help
Introduction to Computer Science

**EXAM DURATION:** 

3 hours 10 mins

Email: tutorcs@163.com

#### Rules

During an exam, you must not have in our possession of the has not been authorised for your exam. This includes books, notes, paper, electronic device/s, mobile phone, smart watch/device, calculator, pencil case, or writing on any part of your body. Any authorised items are listed below. Items/materials on your desk, chair, in your clothing or otherwise on your person will be deemed to be in your possession.

No examination materials are to be removed from the room. This includes retaining, copying, memorising or noting down content of exam material for personal use or to share with any other person by any means following your exam.

Failure to comply with the above instructions, or attempting to cheat or cheating in an exam is a discipline offence under Part 7 of the Monash University (Council) Regulations, or a breach of instructions under Part 3 of the Monash University (Academic Board) Regulations.

| <u>Authorised Materials</u>  |     |             |
|------------------------------|-----|-------------|
| OPEN BOOK                    | YES | <b>✓</b> NO |
| CALCULATORS                  | YES | <b>✓</b> NO |
| SPECIFICALLY PERMITTED ITEMS | YES | <b>✓</b> NO |
| if ves, items permitted are: |     |             |

#### Instructions

Please answer all questions online. Noting and calculations to be done in the scriptbook or working sheets provided.

### Instructions

### Information

# formation 程序代写代做 CS编程辅导 Please answer all questions online. Noting and calculations to be done in the scriptbook or working

sheets provided.



WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

#### Information

## 程序代写代做 CS编程辅导



for FIT1008 and FIT2085 ter 1, 2019

System calls

| Call code | Service         | Arguments                                                         | Returns                      | Notes                   | 1    |
|-----------|-----------------|-------------------------------------------------------------------|------------------------------|-------------------------|------|
| (\$v0)    |                 |                                                                   |                              |                         |      |
| 1         | Print integer   | \$a0 = value to print                                             | -                            | value is signed         |      |
| 4         | Print string    | \$a0 and ess of string to print                                   | 4                            | string must be termi-   | 1    |
|           | V               | 7840 = value to print<br>7840 = address of string to print<br>CSI | utores                       | nated with '\0'         |      |
| 5         | Input integer   |                                                                   | \$v0 = entered integer       | value is signed         |      |
| 8         | Input string    | \$a0 = address at which the                                       | _                            | returns if \$a1-1 char- |      |
|           |                 | string will be stored                                             |                              | acters or Enter typed,  |      |
|           | l .             | \$a1 - maximum number of                                          | <b>T</b>                     | the string is termi-    | - 1  |
|           | lacksquare      | e e e e e e e e e e e e e e e e e e e                             | Project,                     | Havi gung               | PIN  |
| 9         | Allocate memory | ssignment                                                         | \$v0 = address of first byte |                         | toth |
| 10        | Exit            | -                                                                 | -                            | ends simulation         |      |
|           |                 |                                                                   |                              |                         |      |

Table 2: General-purpose registers

reserved for assembler R02, R03 \$v0, \$v1 system call code, return value system call and function arguments R04-R07 \$a0--\$a3 R28 pointer to global area \$gp R29 stack pointer \$вр frame pointer R30\$fp

.data assemble into data segment
.text assemble into text (code) segment
.word w1[, w2, ...] allocate word(s) with initial value(s)
.space n allocate n bytes of uninitialized, unaligned space
.ascii "string" allocate ASCII string, do not terminate
.asciiz "string" allocate ASCII string, terminate with '\0'

Table 4: Function calling convention

On function call:

Callee:
saves temporary registers on stack
passes arguments on stack
calls function using jal fn\_label

Callee:
saves value of \$ra on stack
saves value of \$fp on stack
copies \$sp to \$fp
allocates local variables on stack

On function return:

Callee:

sets \$v0 to return value
clears local variables off stack
restores saved \$fp off stack
restores saved \$ra off stack
returns to caller with jr \$ra

Caller:
clears arguments off stack
restores temporary registers off stack
uses return value in \$v0

# 程序代写代做 CS编程辅导

|                          |                                         | uction (and pseudoing                  | struction) set |                         |            |
|--------------------------|-----------------------------------------|----------------------------------------|----------------|-------------------------|------------|
| Instruction format       |                                         | ration                                 | Immediate      | Unsigned format         | ]          |
| add Rdest, Rsrc1, Src2   |                                         | st = Rsrc1 + Src2                      | addi           | addu (no overflow trap) | 1          |
| sub Rdest, Rsrc1, Src2   |                                         | st = Rsrc1 - Src2                      | -              | subu (no overflow trap) |            |
| mult Rsrc1, Src2         |                                         | Lo = Rsrc1 * Src2                      | -              | mulu                    |            |
| div Rsrc1, Src2          |                                         | = Rsrc1/Src2;                          | -              | divu                    |            |
|                          | Tutor CS                                | = Rsrc1 % Src2                         |                |                         |            |
| and Rdest, Rsrc1, Src2   |                                         | st = Rsrc1 & Src2                      | andi           | -                       | 1          |
| or Rdest, Rsrc1, Src2    |                                         | $st = Rsrc1 \mid Src2$                 | ori            | -                       |            |
| xor Rdest, Rsrc1, Src2   |                                         | $\blacksquare$ st = Rsrc1 $\land$ Src2 | xori           | -                       |            |
| nor Rdest, Rsrc1, Src2   |                                         | $st = \sim (Rsrc1 \mid Src2)$          | -              | -                       |            |
| sllv Rdest, Rsrc1, Src2  | Shift Left Logical                      | Rdest = Rsrc1 << Src2                  | sll            | -                       | 1          |
| srlv Rdest, Rsrc1, Src2  | Shift Right Logical                     | Rdest = Rsrc1 >> Src2                  | srl            | -                       |            |
|                          |                                         | (MSB=0)                                |                |                         |            |
| srav Rdest, Rsrc1, Src2  | Still Right Arithmetic                  | Rdest = Rsrc1 >> Src2                  | sra            | -                       |            |
|                          | l weuna                                 | (MSE preserved)                        | rcs            |                         |            |
| mfhi Rdest               | Move from Hi                            | Rdest = Hi                             | -              | -                       | 1          |
| mflo Rdest               | Move from Lo                            | Rdest = Lo                             | -              | -                       |            |
| lw Rdest, Addr           | Load word                               | Rdest = mem32[Addr]                    | -              | -                       | 1          |
| sw Rsrc, Addr            | Store word                              | mem 32[Addr] = Bsrc                    | · - ,          | <b>T</b>                | <b>4</b> 1 |
| la Rdest, Addr(or label) | La Addes fourth                         | nale talt Pro                          | 11ect          | Exam F                  | lein       |
|                          |                                         | Riscalety I I C                        |                |                         | TOIP       |
| beq Rsrc1, Rsrc2, label  | Branch if equal                         | if $(Rsrc1 == Rsrc2)$                  | -              | -                       | 1 🔭        |
|                          |                                         | PC = label                             |                |                         |            |
| bne Rsrc1, Rsrc2, label  | Branch if not equal                     | if (Rsrc1 != Rsrc2)                    | -              | -                       | 1          |
|                          | Email                                   | PC = label C                           | 162            | com                     |            |
| slt Rdest, Rsrc1, Src2   | Lmail:                                  | UPRUSS C                               |                |                         |            |
|                          |                                         | Rdest = 1                              |                |                         |            |
|                          |                                         | else $Rdest = 0$                       |                |                         |            |
| j label                  | Jump                                    | PC = label                             | -              | -                       | ]          |
| jal label                | Jump and link                           | 000017/                                | -              | -                       |            |
|                          | 111111111111111111111111111111111111111 | 1901 <b>1</b> 904 / 6                  | <b>D</b>       |                         |            |
| jr Rsrc                  | Junto register                          | PC = Rsrc                              | -              | -                       |            |
| jalr Rsrc                | Jump and link register                  | m = PC + 4;                            | -              | -                       |            |
|                          |                                         | PC = Rsrc                              |                |                         | ]          |

### Python to MIPS translation

### **Question 1**

Translate the following Python pode taithfully into MIPS assembly language Makes until unit of the MIPS function calling and membry usage convenions.



```
def func (n):
    if n <= 0:
        result = 0
    else:
        result = 4*n-
    return result</pre>
```

We ask that you translate the true translation of all 6 answ **FE** true translation of the Python code above.

Comments are not mandate described by the start of a line in your MIPS code to add a comment.

### def func (n): WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

|            | <u></u> |
|------------|---------|
| if n <= 0: |         |
|            | 7       |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
| result = 0 | J       |
| result = 0 |         |

# 程序代写代做 CS编程辅导



else:

WeChat: cstutores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

result = 4\*n+ntdps://tutorcs.com

return result

# 程序代写代做 CS编程辅导



The Python function above can easily be implemented iteratively, rather than recursively. Assume the iterative version uses N bytes of Heap memory. What value is N and how many bytes will the recursive version use? Explain why (no particle) CStutores

Assume now that the iterative version uses N bytes of Stack memory. What value is N and how many bytes will the recursive version use? Explain why (no explanation no marks). Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

### Scoping with classes in Python

### **Question 2**

You are provided with the Pyther my Pass 中間中代做 CS编程辅导



```
class myclass:
   def __init__(self,x):
       self.x = x
   def a(self):
       self.x = sel
   def b(self):
       self.x = x
   def c(self):
       x = self.x
   def __str__(self):
       return str(self.x)
                    WeChat: cstutorcs
def a(x):
   x = x - 1
def b():
   x = x + 2
```

This module will be imported in each of the following questions. In each of the following questions, there will be exactly one print statement. We ask that you find the value being printed by each piece of code.

Email: tutorcs@163.com

For example, if the question is:

```
print(1)
```

Then your answer should be 10: 149389476

Pick one answer in this column for each of the boxes on the left

```
from myclass import
                                                                                            \cdot 7 \cdot 4 \cdot No output. The code produces an error.
                                  https://tutorcs.com<sup>3·0·8·5·6·None·2·10·1·9</sup>
myobject = myclass(1)
print(myobject)
from myclass import
                                                                                            \cdot 7 \cdot 4 \cdot No output. The code produces an error.
myobject = myclass(x)
                                                                                            \cdot 3 \cdot 0 \cdot 8 \cdot 5 \cdot 6 \cdot None \cdot 2 \cdot 10 \cdot 1 \cdot 9
x = 1
print(myobject)
from myclass import *
                                                                                            \cdot 7 \cdot 4 \cdot No output. The code produces an error.
myclass.x = 3
                                                                                            \cdot 3 \cdot 0 \cdot 8 \cdot 5 \cdot 6 \cdot None \cdot 2 \cdot 10 \cdot 1 \cdot 9
myobject = myclass(2)
print(myobject)
from myclass import *
                                                                                            \cdot 7 \cdot 4 \cdot No output. The code produces an error.
myobject = myclass(3)
                                                                                            \cdot 3 \cdot 0 \cdot 8 \cdot 5 \cdot 6 \cdot None \cdot 2 \cdot 10 \cdot 1 \cdot 9
myclass.x = 4
print(myobject.x)
from myclass import *
                                                                                            \cdot 7 \cdot 4 \cdot No output. The code produces an error.
myclass.x = 6
myobject = myclass(myclass.x)
                                                                                            \cdot 3 \cdot 0 \cdot 8 \cdot 5 \cdot 6 \cdot None \cdot 2 \cdot 10 \cdot 1 \cdot 9
a(myclass.x)
print(myobject.x)
from myclass import *
                                                                                            \cdot 7 \cdot 4 \cdot No output. The code produces an error.
x = 5
                                                                                            \cdot 3 \cdot 0 \cdot 8 \cdot 5 \cdot 6 \cdot None \cdot 2 \cdot 10 \cdot 1 \cdot 9
myclass.x = 3
print(myclass(1).b())
from myclass import
                                                                                           \cdot 7 \cdot 4 \cdot No output. The code produces an error.
                                                                                            \cdot 3 \cdot 0 \cdot 8 \cdot 5 \cdot 6 \cdot None \cdot 2 \cdot 10 \cdot 1 \cdot 9
myobject = myclass(x)
myobject.c()
print(x)
```



WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

### **Question 3**

Year 2069. A malevolent alien species who species in Python has sent the following message Earth:



```
def mystery(x):
    y = x % 2
    x = x // 2
    if x > 0:
        y = y + myster
    return y

def enigma(x):
    y = mystery(x)
    if y > 1:
        y = y + enign
    return y

#puny humans must print:
print(enigma(4095))
```

If we do not compute and serving the result of enig salt of enig salt of enig salt of the serving serv

Write the output of the function mystery for the input values:

- x=1 Email: tutorcs@163.com
- x=2
- x=3
- QQ: 749389476
- X-0
- x=15

What does the function myslettopiste//tutorcs.com

What is the time complexity of mystery, using the O() notation? Prove your answer.

Write the output of the function enigma for the input values:

- $\bullet$  x = 1
- $\bullet x = 2$
- x = 3
- x = 7
- $\bullet$  x = 8
- x = 15

What does the function enigma compute?

What is the best and worst time complexity of enigma, using the O() notation?

Prove your answer. What does enigma(4095) return? Justify your answer.

### **Natural merging**

### **Question 4**

In this question we suppose the all Pringis desired to the CS编程辅导

We propose to write a new sorting algorithm that first detects when part of the data is already sorted. For example, if the input list is [0, 4, 1, 2, 8, 5, 7, 9, 3, 6], then the algorithm will first detect the

**-** [0, 4], [1,2,8], [5,7,9] and [3,6].

After this, the algorithm will

consecutive items that are

wo by two until the entire list is sorted.

Write a function find\_interval input list is already sorted. I sorted between indices 0 ar points outside of the input li s input, returns the list of indices between which the output would be [0, 2, 5, 8, 10], since the list is and 9. Note that the last index in the output list (10)

We ask that you use this template:

```
def find_intervals(list):
    separators = [0] WeChat: cstutorcs
    #TODO your code here characters
return separators
```

In the code above, the variable separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return. You may use any Python built-in methan separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the separators refers to the list of indices that you must return the list of indices that you must return th

def find\_intervals(I):
 separators = [0]

#TODO your code here Email: tutorcs@163.com

QQ: 749389476

return separators

https://tutorcs.com

What is the worst-case time complexity of the find\_intervals function you have written? Explain your answer.

Write a function natural\_merge which takes the list to sort as an input and sorts it. This function must call the previous function to determine intervals which are already sorted. You will not be penalised if you have not attempted or succeeded the previous questions. For this question you will be marked as if the previous questions had been answered correctly.

The function natural\_merge must implement the following algorithm:

- 1. Find the intervals of the input list where the data is already sorted by calling the previous function.
- 2. Iterate through the list and merge the first and the second interval together. After the merge, these two intervals become a single interval, hence there is one fewer interval in the list. This continues until there is only a single interval left. For example, for our input list, we would obtain the following steps:

[0, 4] [1, 2, 8] [5, 7, 9] [3, 6] and interval list [0, 2, 5, 8, 10]

[0, 1, 2, 4, 8] [5, 7, 9] [3, 6] and interval list [0, 5, 8, 10]

[0, 1, 2, 4, 5, 7, 8, 9] [3, 6] and interval list [0, 8, 10]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] and interval list [0, 10]

To do the merging, you must call the function merge provided below:



```
def merge(l, start, mid, end):
   """Merges the two sorted sublists of l
      between start and mid (excluded)
      and mid and end (excluded) ""
   tmp = [None] * (end start)
                         <sup>予</sup>代写代做 CS编程辅导
   k1 = start
   k2 = mid
   use1 = False
   for k in range(start, end):
       if k1 >= mid:
          use1 =
       elif k2 >= er
          use1 =
       if use1 is Tr
           k1 += 1
       else:
           tmp[k] = 1[k2]
           k2 += 1
   for k in range(st We Chat: cstutorcs
```

Although we provide the code, you only need to call the function merge according to its documentation. Write the function natural\_merge below:

Assignment Project Exam Help

def natural\_merge(I):

Email: tutorcs@163.com

QQ: 749389476

What is the worst-case time control of the the transfer of the

What is the best-case time complexity of the algorithm natural\_merge? Explain your answer. You may answer this question based on the description we provide of it, even if you have not implemented it.

What is the worst-case time complexity of the algorithm natural\_merge? Explain your answer. You may answer this question based on the description we provide of it, even if you have not implemented it.

How could a sorting algorithm with better time complexity be designed using the ideas presented in this question? Explain your answers.

### Resolving collisions

### **Question 5**

Suppose you are given the foliging et of reys phose print pla Hast table resize 捏: 辅导



The hash function is given below.

22, 23, 2, None, 37, 27, 39, 29, 17, 33, 21

