Мультиоперации на конечных множествах

Перязев Николай Алексеевич

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

"Математические вопросы кибернетики" 15 апреля 2022 г.

Содержание

- §1. Основные понятия и обозначения.
- §2. Методы задания мультиопераций.
- §3. Алгебры операций и алгебры мультиопераций.
- §4. Алгебры фиксированной размерности.
- §5. Алгебры фиксированного ранга.

§1. Основные понятия и обозначения

§1.1. Мультиоперации и основные операторы

Пусть A — конечное множество и n — натуральное число.

- $f: A^n \to 2^A n$ -местная мультиоперация на A;
- $\mathcal{M}_A^{(n)}$ множество n-местных мультиопераций на A;

§1.1. Мультиоперации и основные операторы

Пусть A — конечное множество и n — натуральное число.

- $f: A^n \to 2^A n$ -местная мультиоперация на A;
- $\mathcal{M}_A^{(n)}$ множество n-местных мультиопераций на A;
- ullet пусть $f_0\in \mathcal{M}_{\mathcal{A}}^{(n)}$ и $f_1,...,f_n\in \mathcal{M}_{\mathcal{A}}^{(m)}$, тогда (n+1)-местный оператор суперпозиции:

$$(f_0 * f_1, ..., f_n)(a_1, ..., a_m) = \bigcup_{b_i \in f_i(a_1, ..., a_m)} f_0(b_1, ..., b_n);$$

§1.1. Мультиоперации и основные операторы

Пусть A — конечное множество и n — натуральное число.

- $f: A^n \to 2^A n$ -местная мультиоперация на A;
- $\mathcal{M}_A^{(n)}$ множество n-местных мультиопераций на A;
- ullet пусть $f_0\in\mathcal{M}_{\mathcal{A}}^{(n)}$ и $f_1,...,f_n\in\mathcal{M}_{\mathcal{A}}^{(m)}$, тогда (n+1)-местный оператор суперпозиции:

$$(f_0 * f_1, ..., f_n)(a_1, ..., a_m) = \bigcup_{b_i \in f_i(a_1, ..., a_m)} f_0(b_1, ..., b_n);$$

ullet пусть $f \in \mathcal{M}_A^{(n)}$, тогда одноместный оператор разрешимости по i-тому аргументу, $i \in \{1,...,n\}$:

$$(\mu_i f)(a_1,...,a_n) = \{a \mid a_i \in f(a_1,..,a_{i-1},a,a_{i+1},..,a_n)\}.$$

→ロ → ◆昼 → ◆ き → ● の へ ○

§1.2. Специальные мультиоперации

Пусть f n-местная мультиоперация на множестве A. Если для любых $a_1,...,a_n$ из A:

- $|f(a_1,...,a_n)| \geq 1
 ightharpoons f$ гипероперация;
- ullet $|f(a_1,...,a_n)| \leq 1
 ightharpoonup f$ квазиоперация;
- ullet f гипероперация и квазиоперация ightleftharpoons f операция;

§1.2. Специальные мультиоперации

Пусть f n-местная мультиоперация на множестве A. Если для любых $a_1, ..., a_n$ из A:

- $|f(a_1,...,a_n)| \ge 1 \Longrightarrow f$ гипероперация;
- ullet f гипероперация и квазиоперация ightleftharpoons f операция;
- ullet f и $(\mu_i f)$ для всех $i \in \{1,...,n\}$ гипероперации \rightleftharpoons f сюръективная гипероперация;
- ullet f и $(\mu_i f)$ для всех $i \in \{1,...,n\}$ квазиоперации \rightleftharpoons f инъективная квазиоперация;
- ullet f и $(\mu_i f)$ для всех $i \in \{1,...,n\}$ операции ightharpoonup f биективная операция.

§1.3. Стандартная кодировка

 $f\in\mathcal{M}_A^{(n)}$, где $A=\{a_0,...,a_{k-1}\}$ можно рассматривать как отображение $f:B^n o C$

где $B=\{2^0,2^1,...,2^{k-1}\}$ $C=\{0,1,...,2^k-1\},$ которое получаемое из f при кодировке

$$a_i \to 2^i$$
; $\varnothing \to 0$; $\{a_{i_1}, ..., a_{i_s}\} \to 2^{i_1} + ... + 2^{i_s}$.

Говорим, что f мультиоперация размерности n, ранга k, где $k \geq 2$.

6 / 35

§1.4. Обозначения для множеств мультиоперации

Для множеств мультиопераций размерности n, ранга k;

- $\bullet \ \mathcal{M}_k^{(n)}$ множество всех мультиопераций;
- $\circ \mathcal{P}_k^{(n)}$ множество квазиопераций;
- $\mathcal{H}_k^{(n)}$ множество гиперопераций;
- $\mathcal{O}_k^{(n)}$ множество операций;
- $\mathcal{IP}_k^{(n)}$ множество инъективных квазиопераций;
- $\mathcal{JH}_k^{(n)}$ множество сюръективных гиперопероаций;
- $\mathcal{BO}_k^{(n)}$ множество биективных операций.

§1.5. Пересечение множеств мультиопераций

§1.6. Мощность множеств мультиопераций

§1.6. Мощность множеств мультиопераций

§1.6. Мощность множеств мультиопераций

Bonpoc 1.
$$\left|\mathcal{IP}_{k}^{(n)}\right| - \left|\mathcal{JH}_{k}^{(n)}\right| - \left|\mathcal{BO}_{k}^{(n)}\right| - ?$$

§2. Методы задания мультиопераций

§2.1. Векторная форма мультиопераций

• Если $f \in \mathcal{M}_k^{(n)}$, то $f = (\alpha_1, ..., \alpha_{k^n})$ векторная форма, где $\alpha_i = f(2^{i_1}, ..., 2^{i_n})$, и $(i_1, ..., i_n)$ есть представление i-1 n-разрядным числом в системе исчисления по основанию k.

§2.1. Векторная форма мультиопераций

- Если $f \in \mathcal{M}_k^{(n)}$, то $f = (\alpha_1, ..., \alpha_{k^n})$ векторная форма, где $\alpha_i = f(2^{i_1}, ..., 2^{i_n})$, и $(i_1, ..., i_n)$ есть представление i-1 n-разрядным числом в системе исчисления по основанию k.
- Примеры:

$$k = 2, n = 3$$

211	2 ⁱ²	2 ⁱ 3	f
1	1	1	2
1	1	2	1
1	2 2	1	0
1	2	2	2
2	1	1	1
2	1	2	3
2 2 2 2	2 2	1	2
2	2	2	0

$$k = 3, n = 2$$

k = 3, n = 2			
211	212	g	
1	1	4	
1	1 2	2	
1	4	6	
2	1	5	
2	2	g 4 2 6 5 3 7	
2 2 2 4	4	7	
4	1	0	
4	2 4	1	
4	4	1	

$$f = (21021320)$$
 $g = (426537011)$

§2.2. Булевы пространственные матрицы

- Двоичной n-мерной матрицей k-го порядка называется функция $\alpha:N_k^n \to \{0,1\}$, где $N_k=\{1,...,k\}$. Обозначение: $M=[\alpha_{i_1...i_n}]$, где $\alpha_{i_1...i_n}=\alpha(i_1,...,i_n)$.
- При фиксированном значении i ($i \in N_k$) индекса s получается (n-1)—мерная матрица k-го порядка, которая называется i-сечением M по индексу s, обозначается M^{i_s} .

§2.2. Булевы пространственные матрицы

- Двоичной n-мерной матрицей k-го порядка называется функция $\alpha:N_k^n \to \{0,1\}$, где $N_k=\{1,...,k\}$. Обозначение: $M=[\alpha_{i_1...i_n}]$, где $\alpha_{i_1...i_n}=\alpha(i_1,...,i_n)$.
- При фиксированном значении i ($i \in N_k$) индекса s получается (n-1)—мерная матрица k-го порядка, которая называется i-сечением M по индексу s, обозначается M^{i_s} .
- Умножение n-мерной матрицей k-го порядка M на вектор V длинны k по индексу s дает (n-1)-мерную матрицу k-го порядка $(M*_sV)=[\beta_{i_1...i_{s-1}i_{s+1}...i_n}]$, при

$$\beta_{i_1...i_{s-1}i_{s+1}...i_n} = M^{i_1...i_{s-1}i_{s+1}...i_n} * V,$$

где * является скалярным произведением векторов над булевым полукольцом B.

4 D > 4 B > 4 E > 4 E > 9 Q O

§2.3. Матричное представление мультиопераций

Пусть $B=\langle\{0,1\};+,\cdot\rangle$ — двухэлементное булево полукольцо. Для мультиоперации f размерности n, ранга k на A определим булеву пространственную (n+1)-мерную матрицу k-го порядка $M_f=[\alpha_{i_0i_1...i_n}]$ где:

$$lpha_{i_0i_1...i_n} = egin{cases} 1, & ext{если } a_{i_0} \in f(a_{i_1},...,a_{i_n}); \\ 0, & ext{если } a_{i_0}
otin f(a_{i_1},...,a_{i_n}). \end{cases}$$

§2.3. Матричное представление мультиопераций

Пусть $B=\langle\{0,1\};+,\cdot\rangle$ — двухэлементное булево полукольцо. Для мультиоперации f размерности n, ранга k на A определим булеву пространственную (n+1)-мерную матрицу k-го порядка $M_f=[\alpha_{i_0i_1...i_n}]$ где:

$$lpha_{i_0i_1...i_n} = egin{cases} 1, & ext{если } a_{i_0} \in f(a_{i_1},...,a_{i_n}); \\ 0, & ext{если } a_{i_0}
ot\in f(a_{i_1},...,a_{i_n}). \end{cases}$$

Теорема.

Пусть
$$f_0 \in \mathcal{M}_k^{(n)}$$
, $f_1, ..., f_n \in \mathcal{M}_k^{(m)}$, $M_{(f_0 * f_1, ..., f_n)} = [\beta_{i_0 i_1 ... i_m}]$. Тогда
$$\beta_{i_0 i_1 ... i_m} = (...((M_{f_0}^{i_0} *_n M_{f_n}^{i_1 ... i_m}) *_{n-1} M_{f_{n-1}}^{i_1 ... i_m})...) *_1 M_{f_1}^{i_1 ... i_m}$$

§2.3. Матричное представление мультиопераций

Пусть $B=\langle \{0,1\};+,\cdot \rangle$ — двухэлементное булево полукольцо. Для мультиоперации f размерности n, ранга k на A определим булеву пространственную (n+1)-мерную матрицу k-го порядка $M_f=[\alpha_{i_0i_1...i_n}]$ где:

$$lpha_{i_0i_1...i_n} = egin{cases} 1, & ext{если } a_{i_0} \in f(a_{i_1},...,a_{i_n}); \\ 0, & ext{если } a_{i_0}
otin f(a_{i_1},...,a_{i_n}). \end{cases}$$

Теорема.

Пусть
$$f_0 \in \mathcal{M}_k^{(n)}$$
, $f_1, ..., f_n \in \mathcal{M}_k^{(m)}$, $M_{(f_0 * f_1, ..., f_n)} = [\beta_{i_0 i_1 ... i_m}]$. Тогда
$$\beta_{i_0 i_1 ... i_m} = (...((M_{f_0}^{i_0} *_n M_{f_n}^{i_1 ... i_m}) *_{n-1} M_{f_{n-1}}^{i_1 ... i_m})...) *_1 M_{f_1}^{i_1 ... i_m}$$

Замечание. Порядок умножения на вектора не меняет результат.

4 D > 4 A > 4 E > 4 E > 9 Q P

§2.4. Пример представления суперпозиции

Пусть $f_0 = (426537011)$, $f_1 = (145)$, $f_2 = (273)$. Тогда $g = (f_0 * f_1, f_2) = (217)$.

$$M_{f_0} = \begin{bmatrix} 000 \ 111 \ 011 \ 000 \ 101 \ 101 \ 000 \end{bmatrix}, M_{f_1} = \begin{bmatrix} 101 \ 000 \ 011 \end{bmatrix} M_{f_2} = \begin{bmatrix} 011 \ 111 \ 010 \end{bmatrix}$$

$$M_g = \left(\begin{bmatrix} 000 \ 111 \ 011 \ 000 \ 101 \ 101 \ 000 \end{bmatrix} * \begin{bmatrix} 101 \ 000 \ 011 \end{bmatrix}, \begin{bmatrix} 011 \ 111 \ 010 \end{bmatrix} \right).$$

§2.4. Пример представления суперпозиции

Пусть $f_0=(426537011),\; f_1=(145),\; f_2=(273).$ Тогда $g=(f_0*f_1,f_2)=(217).$

$$M_{f_0} = \begin{bmatrix} 000 \ 111 \ 011 \ 000 \\ 101 \ 101 \ 000 \end{bmatrix}, M_{f_1} = \begin{bmatrix} 101 \\ 000 \\ 011 \end{bmatrix} M_{f_2} = \begin{bmatrix} 011 \\ 111 \\ 010 \end{bmatrix}$$
$$M_g = \left(\begin{bmatrix} 000 \ 111 \ 011 \\ 011 \ 101 \ 000 \\ 101 \ 101 \ 000 \end{bmatrix} * \begin{bmatrix} 101 \\ 000 \\ 011 \end{bmatrix}, \begin{bmatrix} 011 \\ 111 \\ 010 \end{bmatrix} \right).$$

Покажем вычисления по столбцам.

$$\begin{pmatrix} \left(\begin{bmatrix} 000 \ 111 \ 011 \\ 011 \ 011 \ 000 \end{bmatrix} *_{2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) *_{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 011 \\ 110 \\ 000 \end{bmatrix} *_{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{pmatrix} \left(\begin{bmatrix} 000 \ 111 \ 011 \\ 011 \ 011 \ 000 \end{bmatrix} *_{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right) *_{1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 011 \\ 110 \\ 110 \end{bmatrix} *_{1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{pmatrix} \left(\begin{bmatrix} 000 \ 111 \ 011 \\ 011 \ 011 \ 000 \end{bmatrix} *_{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right) *_{1} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 011 \\ 110 \\ 110 \end{bmatrix} *_{1} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{pmatrix} \begin{bmatrix} 000 \ 111 \ 011 \ 000 \\ 101 \ 101 \ 000 \end{bmatrix} *_{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

В итоге получаем
$$M_{
m g} = egin{bmatrix} 011 \\ 101 \\ 001 \end{bmatrix}$$
 .

§.2.5. Матричное представление оператора разрешимости, проекций и нулевой мультиоперации

- $M_{(\mu_i f)} = M_f^T$ транспонирование пространственной матрицы по нулевому и i индексам;
- $M_{e_s} = E_s (n+1)$ -мерная матрица k-го порядка такая, что все сечения $M_s^{i_1...i_{s-1}i_{s+1}...i_n}$ являются диагональными квадратными матрицами k-го порядка;
- ullet $M_o=O$ нулевая (n+1)-мерная матрица k-го порядка.

§2.6. Стандартная форма мультиопераций

Пусть
$$\cap (a,b) = \{a\} \cap \{b\}; \; d_{i,\alpha}^{\;n} = (2^k-1,...,2^k-1,\overset{i}{\alpha},2^k-1,...,2^k-1).$$

§2.6. Стандартная форма мультиопераций

Пусть
$$\cap (a,b) = \{a\} \cap \{b\}; \ d_{i,\alpha}^{\ n} = (2^k-1,...,2^k-1,\overset{i}{\alpha},2^k-1,...,2^k-1).$$

• Стандартная форма.

Пусть $f \in \mathcal{M}_k^{(n)}$. Тогда

$$f(x_1,...,x_n) = \bigcap_j d_j(x_{i_1},...,x_{i_m}),$$

где $d_j \in \{d_{i,\alpha}^m \mid 0 \le m \le n, \alpha \in \{0,...,2^k-1\}\}.$

§2.6. Стандартная форма мультиопераций

Пусть
$$\cap (a,b) = \{a\} \cap \{b\}; \ d_{i,\alpha}^{\ n} = (2^k-1,...,2^k-1,\overset{i}{\alpha},2^k-1,...,2^k-1).$$

ullet Стандартная форма. Пусть $f\in \mathcal{M}_{oldsymbol{\iota}}^{(n)}$. Тогда

$$f(x_1,...,x_n) = \bigcap_j d_j(x_{i_1},...,x_{i_m}),$$

где $d_j \in \{d_{i,\alpha}^{\ m} \mid 0 \le m \le n, \alpha \in \{0,...,2^k-1\}\}.$

ullet Совершенная стандартная форма. Пусть $f \in \mathcal{M}_k^{(n)}$ и $f
eq (2^k-1,...,2^k-1)$. Тогда

$$f(x_1,...,x_n) = \bigcap_j d_j(x_1,...,x_n),$$

где
$$d_j \in \{ \ d_{i,\alpha}^{\ n} \ | \alpha = 2^k - 2^s - 1, \ s \in \{0,...,k-1\} \}.$$

《ロトペラトペラト 後) を養り を Терязев Н. А. (Санкт-Петербург) Мультиоперации на конечных множест MBK 16 / 35

§2.7. Ключевая стандартная форма мультиопераций

Теорема. Пусть $f \in \mathcal{M}_k^{(n)}$ и $f \neq (2^k - 1, ..., 2^k - 1)$. Тогда существует такое стандартное представление

$$f(x_1,...,x_n) = \bigcap_j d_j(x_{i_1},...,x_{i_m}),$$

где $d_j \in \{ \ d_{i,\alpha}^{\ m} \mid \alpha = 0 \$ или $\alpha = 2^k - 2^s - 1, \ s \in \{0,...,k-1\}\},$ при котором выполняется $d_j \in \left\langle f, d_{1,1}^1,...,d_{s,2^{s-1}}^1,...,d_{k,2^{k-1}}^1 \right\rangle.$

§2.7. Ключевая стандартная форма мультиопераций

Теорема. Пусть $f \in \mathcal{M}_k^{(n)}$ и $f \neq (2^k - 1, ..., 2^k - 1)$. Тогда существует такое стандартное представление

$$f(x_1,...,x_n) = \bigcap_j d_j(x_{i_1},...,x_{i_m}),$$

где $d_j \in \{ \ d_{i,\alpha}^{\ m} \ | \ \alpha = 0 \$ или $\alpha = 2^k - 2^s - 1, \ s \in \{0,...,k-1\}\},$ при котором выполняется $d_j \in \left\langle f, d_{1,1}^1,...,d_{s,2^{s-1}}^1,...,d_{k,2^{k-1}}^1 \right\rangle.$

• Пусть
$$f(x, y, z) = (13212003)$$
.

$$f = d_{3,2}^2(y,z) \cap d_{3,2}^2(x,z) \cap d_{3,2}^2(x,y) \cap d_{1,1}^3(x,y,z) \cap d_{4,1}^3(x,y,z) \cap d_{4,1}^3(x,z) \cap d_{4,1}^3(x,z)$$

$$\cap d_{6,0}^3(x,y,z) \cap d_{7,0}^3(x,y,z)$$

• Пусть
$$f(x, y) = (071646351)$$
.

$$f = d_{1,0}^2(x,y) \cap d_{3,3}^2(x,y) \cap d_{3,5}^2(x,y) \cap d_{2,6}^1(x) \cap d_{5,5}^2(x,y) \cap$$

$$\cap d_{7,3}^2(x,y) \cap d_{8,5}^2(x,y) \cap d_{9,3}^2(x,y) \cap d_{9,5}^2(x,y)$$

§3. Алгебры операций и алгебры мультиопераций

Предполагаем $n \geq 2$, ранее предположили $k \geq 2$.

• Алгеброй операций размерности n, ранга k называется любое $\mathcal{F} \subseteq \mathcal{O}_k^{(n)}$, содержащее все n-местные проекции и замкнутое относительно оператора суперпозиции.

- Алгеброй операций размерности n, ранга k называется любое $\mathcal{F} \subseteq \mathcal{O}_k^{(n)}$, содержащее все n-местные проекции и замкнутое относительно оператора суперпозиции.
- Алгеброй мультиопераций размерности n, ранга k называется любое $\mathcal{R} \subseteq \mathcal{M}_k^{(n)}$, содержащее все n-местные проекции, пустую мультиоперацию и замкнутое относительно операторов суперпозиции и разрешимости (по первому аргументу).

- Алгеброй операций размерности n, ранга k называется любое $\mathcal{F} \subseteq \mathcal{O}_k^{(n)}$, содержащее все n-местные проекции и замкнутое относительно оператора суперпозиции.
- Алгеброй мультиопераций размерности n, ранга k называется любое $\mathcal{R} \subseteq \mathcal{M}_k^{(n)}$, содержащее все n-местные проекции, пустую мультиоперацию и замкнутое относительно операторов суперпозиции и разрешимости (по первому аргументу).
- Алгебру операций (мультиопераций) размерности n, ранга k, состоящую из $\mathcal{O}_k^{(n)}(\mathcal{M}_k^{(n)})$ будем называть полной алгеброй и обозначать \mathcal{AO}_k^n (\mathcal{AM}_k^n).

- Алгеброй операций размерности n, ранга k называется любое $\mathcal{F} \subseteq \mathcal{O}_k^{(n)}$, содержащее все n-местные проекции и замкнутое относительно оператора суперпозиции.
- Алгеброй мультиопераций размерности n, ранга k называется любое $\mathcal{R} \subseteq \mathcal{M}_k^{(n)}$, содержащее все n-местные проекции, пустую мультиоперацию и замкнутое относительно операторов суперпозиции и разрешимости (по первому аргументу).
- Алгебру операций (мультиопераций) размерности n, ранга k, состоящую из $\mathcal{O}_k^{(n)}(\mathcal{M}_k^{(n)})$ будем называть полной алгеброй и обозначать \mathcal{AO}_k^n (\mathcal{AM}_k^n) .
- Алгебру операций (мультиопераций) размерности n, ранга k, порожденную всеми n-местными проекциями (и n-местной нулевой мультиоперацией) ранга k будем называть тривиальной алгеброй и обозначать \mathcal{EO}_k^n (\mathcal{EM}_k^n).

§4. Алгебры фиксированной размерности

$\S4.1$. Класс алгебр \mathcal{T}_n .

Сигнатура $\Omega_n = \langle s, \varepsilon_1, ..., \varepsilon_n \rangle$.

Класс \mathcal{T}_n простых алгебр Менгера ранга n определяется аксиомами (1961, K.Menger):

- 1. $s(s(x, y_1, ..., y_n), z_1, ..., z_n) = s(x, s(y_1, z_1, ..., z_n), ..., s(y_n, z_1, ..., z_n));$
- 2. $s(\varepsilon_i, x_1, ..., x_n) = x_i$ для $i \in \{1, ..., n\}$;
- 3. $s(x, \varepsilon_1, ..., \varepsilon_n) = x$.

§4.1. Класс алгебр \mathcal{T}_n .

Сигнатура $\Omega_n = \langle s, \varepsilon_1, ..., \varepsilon_n \rangle$.

Класс \mathcal{T}_n простых алгебр Менгера ранга n определяется аксиомами (1961, K.Menger):

- 1. $s(s(x, y_1, ..., y_n), z_1, ..., z_n) = s(x, s(y_1, z_1, ..., z_n), ..., s(y_n, z_1, ..., z_n));$
- 2. $s(\varepsilon_i, x_1, ..., x_n) = x_i$ для $i \in \{1, ..., n\};$
- 3. $s(x, \varepsilon_1, ..., \varepsilon_n) = x$.

Теорема. 1) Любая алгебра операций размерности п принадлежит классу простых алгебр Менгера ранга п.

2) Любая конечная простая алгебра Менгера ранга п изоморфна некоторой алгебре операций размерности п (при интерпретации: $s \to *, \ \varepsilon_1 \to e_1, ..., \varepsilon_n \to e_n$).

(ロ) (固) (量) (量) (量) (型) (型)

$\S4.2$. Сигнатура класса алгебр \mathcal{K}_n .

Сигнатура
$$\Sigma_n = \langle \, s, \pi, \varepsilon_1, ..., \varepsilon_n, \bot \, \rangle \, , n \geq 2.$$

В Σ_n определим следующие символы:

$$\bullet \ \top = s(\pi(\varepsilon_2), \varepsilon_1, ..., \varepsilon_1);$$

•
$$\pi_i(x) = s(\pi(s(x,\varepsilon_i,\varepsilon_2,...,\varepsilon_{i-1},\varepsilon_1,\varepsilon_{i+1},...,\varepsilon_n)),\varepsilon_i,\varepsilon_2,...$$

 $...,\varepsilon_{i-1},\varepsilon_1,\varepsilon_{i+1},...,\varepsilon_n)$ для $i\in\{1,...,n\};$

•
$$x \wedge y = s(s(\varepsilon_1, \pi(\varepsilon_1), ..., \pi(\varepsilon_n)), x, y, ..., y);$$

$$\bullet \ \ x \leq y \Longleftrightarrow x \land y = x.$$

→ロト ←団 ト ← 豆 ト ← 豆 ・ り へ ○

$\S4.3$. Аксиомы класса алгебр \mathcal{K}_n .

```
1. x \land x = x:
 2. x \wedge y = y \wedge x;
 3. x \wedge (y \wedge z) = (x \wedge y) \wedge z;
 4. x \wedge \top = x:
5. s(\varepsilon_i, x_1, ..., x_n) = s(\top, x_1, ..., x_1) \wedge ... \wedge s(\top, x_{i-1}, ..., x_{i-1}) \wedge x_i \wedge ... \wedge s(\top, x_{i-1}, ..., x_n) \wedge .
                                                        \land s(\top, x_{i+1}, ..., x_{i+1}) \land ... \land s(\top, x_n, ..., x_n) для всех i \in \{1, ..., n\};
6. s(x_0, x_1, ..., x_n) = \bot при x_i = \bot хоть для одного i \in \{0, ..., n\};
 7. s(x, \varepsilon_1, ..., \varepsilon_{i-1}, \varepsilon_i, \varepsilon_{i+1}, ..., \varepsilon_{i-1}, \varepsilon_i, \varepsilon_{i+1}, ..., \varepsilon_n) = \pi_i(\pi_i(\pi_i(x)))
                                                                                                                                                                                                                                                                 для всех i, j \in \{1, ..., n\} и i \neq j;
8. \pi(\bot) = \bot;
 9. \pi_i(\top) = \top для всех i \in \{1, ..., n\};
 10. \pi_i(\varepsilon_i) = \varepsilon_i для всех i \in \{1, ..., n\};
11. \pi_i(\varepsilon_i) = s(\top, (\varepsilon_i \wedge \varepsilon_i), ..., (\varepsilon_i \wedge \varepsilon_i)) для всех i, j \in \{1, ..., n\} и i \neq j;
 12. \pi_i(\pi_i(x)) = x для всех i \in \{1, ..., n\};
 13. \pi_i(x \wedge y) = \pi_i(x) \wedge \pi_i(y) для всех i \in \{1, ..., n\};
```

- 14. $s(s(x, y_1, ..., y_n), \varepsilon_{i_1}, ..., \varepsilon_{i_n}) = s(x, s(y_1, \varepsilon_{i_1}, ..., \varepsilon_{i_n}), ...$..., $s(y_n, \varepsilon_{i_1}, ..., \varepsilon_{i_n}))$ для всех $i_1, ..., i_n \in \{1, ..., n\}$;
- 15. $s(s(x, y_1, ..., y_n), z_1, ..., z_n) \le s(x, s(y_1, z_1, ..., z_n), ...$..., $s(y_n, z_1, ..., z_n)$;
- 16. $\pi_j\Big(s(x_0,x_1,...,x_n)\Big) \leq \bigwedge_{i=1}^n s\Big(\pi_j(x_i),\varepsilon_1,...,\varepsilon_{j-1},s\big(\pi_i(x_0),$ $\top,...,\top,\underbrace{\varepsilon_j}_i,\top,...,\top\big),\varepsilon_{j+1},...,\varepsilon_n\Big)$ для всех $j\in\{1,...,n\}$;
- $17.s(x_0,...,x_{i-1},x_i \wedge y_i,x_{i+1},...,x_n) \leq s(x_0,...,x_{i-1},x_i,x_{i+1},...,x_n) \wedge s(x_0,...,x_{i-1},y_i,x_{i+1},...,x_n)$ всех для $i \in \{1,...,n\}$.
- 18. $x \wedge s(y, z_1, ..., z_n) \leq s\Big((s(x, s(\pi_1(z_1), \varepsilon_1, \top, ..., \top), ...$ $..., s(\pi_n(z_n), \top, ..., \top, \varepsilon_n)) \wedge y\Big), (s(\pi_1(y), x, \top, ..., \top) \wedge z_1), ...$ $..., (s(\pi_n(y), \top, ..., \top, x) \wedge z_n)\Big).$

4 ロ ト 4 回 ト 4 豆 ト 4 豆 ト 9 9 9 9

$\S4.4$. Класс алгебр \mathcal{K}_n .

Предложение. В любой алгебре класса \mathcal{K}_n выполняются утверждения:

- 1. $\perp \leq x$;
- 2. $s(x, \varepsilon_1, ..., \varepsilon_n) = x$;
- 3. $\pi_i(\bot) = \bot$ для всех $i \in \{1,...,n\}$;
- 4. $\pi_j(\varepsilon_i) = \pi_i(\varepsilon_j)$ для всех $j, i \in \{1,...,n\}$;
- 5. $\pi_i(\pi_j(\pi_i(x))) = \pi_j(\pi_i(\pi_j(x)))$ для всех $j, i \in \{1, ..., n\}$;
- 6. $x \le y \Rightarrow \pi_i(x) \le \pi_i(y)$ для всех $i \in \{1, ..., n\}$;
- 7. $s(x_0 \wedge y_0, x_1, ..., x_n) \leq s(x_0, x_1, ..., x_n) \wedge s(y_0, x_1, ..., x_n);$
- 8. $x_i \leq y_i$ для всех $i \in \{0,...,n\} \Rightarrow s(x_0,...,x_n) \leq s(y_0,...,y_n)$.

$\S4.4$. Класс алгебр \mathcal{K}_n .

Предложение. В любой алгебре класса \mathcal{K}_n выполняются утверждения:

- 1. $\perp \leq x$;
- 2. $s(x, \varepsilon_1, ..., \varepsilon_n) = x$;
- 3. $\pi_i(\bot) = \bot$ для всех $i \in \{1, ..., n\}$;
- 4. $\pi_j(\varepsilon_i) = \pi_i(\varepsilon_j)$ для всех $j, i \in \{1, ..., n\};$
- 5. $\pi_i(\pi_j(\pi_i(x))) = \pi_j(\pi_i(\pi_j(x)))$ для всех $j, i \in \{1, ..., n\}$;
- 6. $x \le y \Rightarrow \pi_i(x) \le \pi_i(y)$ для всех $i \in \{1, ..., n\}$;
- 7. $s(x_0 \wedge y_0, x_1, ..., x_n) \leq s(x_0, x_1, ..., x_n) \wedge s(y_0, x_1, ..., x_n);$
- 8. $x_i \leq y_i$ для всех $i \in \{0,...,n\} \Rightarrow s(x_0,...,x_n) \leq s(y_0,...,y_n)$.

Теорема. Любая алгебра мультиопераций размерности n принадлежат классу \mathcal{K}_n (при интерпретации:

$$s \to *, \ \pi \to \mu, \ \varepsilon_1 \to e_1, , , , \varepsilon_n \to e_n, \bot \to o).$$

$\S4.4$. Класс алгебр \mathcal{K}_n .

Предложение. В любой алгебре класса \mathcal{K}_n выполняются утверждения:

- 1. $\perp \leq x$;
- 2. $s(x, \varepsilon_1, ..., \varepsilon_n) = x$;
- 3. $\pi_i(\bot) = \bot$ для всех $i \in \{1, ..., n\}$;
- 4. $\pi_j(\varepsilon_i) = \pi_i(\varepsilon_j)$ для всех $j, i \in \{1, ..., n\};$
- 5. $\pi_i(\pi_j(\pi_i(x))) = \pi_j(\pi_i(\pi_j(x)))$ для всех $j, i \in \{1, ..., n\}$;
- 6. $x \le y \Rightarrow \pi_i(x) \le \pi_i(y)$ для всех $i \in \{1, ..., n\}$;
- 7. $s(x_0 \wedge y_0, x_1, ..., x_n) \leq s(x_0, x_1, ..., x_n) \wedge s(y_0, x_1, ..., x_n);$
- 8. $x_i \leq y_i$ для всех $i \in \{0,...,n\} \Rightarrow s(x_0,...,x_n) \leq s(y_0,...,y_n)$.

Теорема. Любая алгебра мультиопераций размерности n принадлежат классу \mathcal{K}_n (при интерпретации:

$$s \to *, \ \pi \to \mu, \ \varepsilon_1 \to e_1, , , , \varepsilon_n \to e_n, \bot \to o).$$

Вопрос 2. Аксиоматизация класса алгебр мультиопераций размерности n.

§5. Алгебры фиксированного ранга

§5.1. Связь Галуа для упорядоченных множеств

Пусть \mathcal{C}, \mathcal{D} упорядоченные множества.

Пара соответствий $\rho:\mathcal{C}\to\mathcal{D}$ и $\pi:\mathcal{D}\to\mathcal{C}$ определяет связь Галуа для \mathcal{C} и \mathcal{D} , если выполняется условия:

- 1) для любых $c_1,c_2\in\mathcal{C}$ и $d_1,d_2\in\mathcal{D}$ если $c_1\leq c_2$ и $d_1\leq d_2$, то $\rho(c_1)\geq \rho(c_2)$ и $\pi(d_1)\geq \pi(d_2)$;
- 2) для любых $c\in \mathcal{C}$ и $d\in \mathcal{D}$ верно $\pi(
 ho(c))\geq c$ и $ho(\pi(d))\geq d$.

§5.1. Связь Галуа для упорядоченных множеств

Пусть \mathcal{C}, \mathcal{D} упорядоченные множества.

Пара соответствий $\rho:\mathcal{C}\to\mathcal{D}$ и $\pi:\mathcal{D}\to\mathcal{C}$ определяет связь Галуа для \mathcal{C} и \mathcal{D} , если выполняется условия:

- 1) для любых $c_1,c_2\in\mathcal{C}$ и $d_1,d_2\in\mathcal{D}$ если $c_1\leq c_2$ и $d_1\leq d_2$, то $ho(c_1)\geq
 ho(c_2)$ и $\pi(d_1)\geq \pi(d_2)$;
- 2) для любых $c\in \mathcal{C}$ и $d\in \mathcal{D}$ верно $\pi(
 ho(c))\geq c$ и $ho(\pi(d))\geq d$.

 $\pi(
ho(c))$ — замыкание Галуа в \mathcal{C} , $ho(\pi(d))$ — замыкание Галуа в \mathcal{D} .

§5.1. Связь Галуа для упорядоченных множеств

Пусть \mathcal{C}, \mathcal{D} упорядоченные множества.

Пара соответствий $ho:\mathcal{C} o\mathcal{D}$ и $\pi:\mathcal{D} o\mathcal{C}$ определяет связь Галуа для $\mathcal C$ и $\mathcal D$, если выполняется условия:

- 1) для любых $c_1, c_2 \in \mathcal{C}$ и $d_1, d_2 \in \mathcal{D}$ если $c_1 \leq c_2$ и $d_1 \leq d_2$, то $\rho(c_1) > \rho(c_2)$ in $\pi(d_1) > \pi(d_2)$;
- 2) для любых $c \in \mathcal{C}$ и $d \in \mathcal{D}$ верно $\pi(\rho(c)) \geq c$ и $\rho(\pi(d)) \geq d$.

$$\pi(
ho(c))$$
 — замыкание Галуа в \mathcal{C} , $ho(\pi(d))$ — замыкание Галуа в \mathcal{D} .

Если $\pi(\rho(c)) = c$, то связь Галуа совершенна в \mathcal{C} .

Если $\rho(\pi(d)) = d$, то связь Галуа совершенна в \mathcal{D} .

Если выполняются оба условия, то совершенная связь Галуа.

§5.2. Стабилизаторы и нормализаторы

ullet Пусть $f\in \mathcal{M}_k^{(n)}$ и $g\in \mathcal{M}_k^{(m)}$. Если выполняется

$$(f*(g*e_1^{nm},\ldots,e_m^{nm}),\ldots,(g*e_{(n-1)m+1}^{nm},\ldots,e_{nm}^{nm}))\subseteq$$
 $\subseteq (g*(f*e_1^{nm},e_{m+1}^{nm},\ldots,e_{(n-1)m+1}^{nm}),\ldots,(f*e_m^{nm},e_{2m}^{nm},\ldots,e_{nm}^{nm})),$ то f стабильна относительно g , а g нормальна относительно f .

§5.2. Стабилизаторы и нормализаторы

ullet Пусть $f\in \mathcal{M}_k^{(n)}$ и $g\in \mathcal{M}_k^{(m)}$. Если выполняется

$$(f*(g*e_1^{nm},\ldots,e_m^{nm}),\ldots,(g*e_{(n-1)m+1}^{nm},\ldots,e_{nm}^{nm}))\subseteq$$
 $\subseteq (g*(f*e_1^{nm},e_{m+1}^{nm},\ldots,e_{(n-1)m+1}^{nm}),\ldots,(f*e_m^{nm},e_{2m}^{nm},\ldots,e_{nm}^{nm})),$ то f стабильна относительно g , а g нормальна относительно f .

$$ullet$$
 Пусть $g\in\mathcal{M}_k^{(m)}$ и $\mathcal{R}\subseteq\mathcal{M}_k^{(m)}$ $S^n(g)=\{f\,|\,f\in\mathcal{O}_k^{(n)},f$ стабильна отн. $g\}$ — n -стабилизатор g ; $S^n(\mathcal{R})=\bigcap_{g\in\mathcal{R}}S^n(g)$ — n -стабилизатор \mathcal{R} .

§5.2. Стабилизаторы и нормализаторы

ullet Пусть $f\in \mathcal{M}_k^{(n)}$ и $g\in \mathcal{M}_k^{(m)}$. Если выполняется

$$(f*(g*e_1^{nm},\ldots,e_m^{nm}),\ldots,(g*e_{(n-1)m+1}^{nm},\ldots,e_{nm}^{nm}))\subseteq$$
 $\subseteq (g*(f*e_1^{nm},e_{m+1}^{nm},\ldots,e_{(n-1)m+1}^{nm}),\ldots,(f*e_m^{nm},e_{2m}^{nm},\ldots,e_{nm}^{nm})),$ то f стабильна относительно g , а g нормальна относительно f .

- ullet Пусть $g\in\mathcal{M}_k^{(m)}$ и $\mathcal{R}\subseteq\mathcal{M}_k^{(m)}$ $S^n(g)=\{f\,|\,f\in\mathcal{O}_k^{(n)},f$ стабильна отн. $g\}$ n-стабилизатор g; $S^n(\mathcal{R})=igcap_{g\in\mathcal{R}}S^n(g)$ n-стабилизатор $\mathcal{R}.$
- ullet Пусть $f \in \mathcal{O}_k^{(n)}$ и $\mathcal{F} \subseteq \mathcal{O}_k^{(n)}$ $N^m(f) = \{g \mid g \in \mathcal{M}_k^{(m)}, g ext{ нормальна отн. } f\}$ —m-нормализатор f $N^m(\mathcal{F}) = \bigcap_k N^m(f) m$ -нормализатор $\mathcal{F}.$

 $f \in \mathcal{F} \qquad \qquad \text{(i)} \qquad \text{in nopmation sure } g \text{ (i)}$

Обозначения:

- ullet [\mathcal{F}] алгебра операций размерности n, ранга k порожденная множеством $\mathcal{F}\subseteq\mathcal{O}_k^{(n)}$;
- ullet \mathcal{V}_k^n решетка алгебр операций размерности n, ранга k.

Обозначения:

- \bullet [\mathcal{F}] алгебра операций размерности n, ранга k порожденная множеством $\mathcal{F} \subseteq \mathcal{O}_{\iota}^{(n)}$;
- ullet \mathcal{V}_k^n решетка алгебр операций размерности n, ранга k.
- ullet $\langle \mathcal{R} \rangle$ алгебра мультиопераций размерности n, ранга k порожденная множеством $\mathcal{R} \subseteq \mathcal{M}_k^{(n)}$;
- ullet \mathcal{W}_k^n решетка алгебр мультиопераций размерности n, ранга k;

Обозначения:

- \bullet [\mathcal{F}] алгебра операций размерности n, ранга k порожденная множеством $\mathcal{F} \subseteq \mathcal{O}_{\iota}^{(n)}$;
- ullet \mathcal{V}_k^n решетка алгебр операций размерности n, ранга k.
- ullet $\langle \mathcal{R} \rangle$ алгебра мультиопераций размерности n, ранга k порожденная множеством $\mathcal{R} \subseteq \mathcal{M}_k^{(n)}$;
- ullet \mathcal{W}_k^n решетка алгебр мультиопераций размерности n, ранга k;

Теорема.

Пара соответствий S^n и N^m определяет связь Галуа для \mathcal{V}^n_k и \mathcal{W}^m_k .

Обозначения:

- \bullet [\mathcal{F}] алгебра операций размерности n, ранга k порожденная множеством $\mathcal{F}\subseteq\mathcal{O}_{\iota}^{(n)}$;
- ullet \mathcal{V}_k^n решетка алгебр операций размерности n, ранга k.
- ullet $\langle \mathcal{R} \rangle$ алгебра мультиопераций размерности n, ранга k порожденная множеством $\mathcal{R} \subseteq \mathcal{M}_k^{(n)}$;
- ullet \mathcal{W}_k^n решетка алгебр мультиопераций размерности n, ранга k;

Теорема.

Пара соответствий S^n и N^m определяет связь Галуа для \mathcal{V}^n_k и \mathcal{W}^m_k .

Вопрос 3. При каких n и m эти соответствия определяют совершенную связь Галуа для $k \geq 3$.

§5.4. Совершенная связь Галуа для решеток алгебр ранга 2

Теорема. Для решеток \mathcal{V}_2^n и \mathcal{W}_2^m выполняется:

- 1) связь Галуа совершенна в $\mathcal{V}_2^n \Longleftrightarrow m \geq \max\{3, n-1\};$
- 2) связь Галуа совершенна в $\mathcal{W}_2^m \Longleftrightarrow n \geq \max\{3, m+1\};$
- 3) связь Галуа совершенна для \mathcal{V}_2^n и $\mathcal{W}_2^m \Longleftrightarrow n-1=m\geq 3.$

§5.4. Совершенная связь Галуа для решеток алгебр ранга 2

Теорема. Для решеток \mathcal{V}_2^n и \mathcal{W}_2^m выполняется:

- 1) связь Галуа совершенна в $\mathcal{V}_2^n \Longleftrightarrow m \geq \max\{3, n-1\};$
- 2) связь Галуа совершенна в $\mathcal{W}_2^m \iff n \ge \max\{3, m+1\};$
- 3) связь Галуа совершенна для \mathcal{V}_2^n и $\mathcal{W}_2^m \Longleftrightarrow n-1=m\geq 3.$

Следствие.

1) для любого $\mathcal{F}\subseteq\mathcal{O}_2^{(n)}$ при $m\geq n-1\geq 3;$

$$[\mathcal{F}] = S^n(N^m(\mathcal{F}));$$

(2) для любого $\mathcal{R}\subseteq\mathcal{M}_2^{(m)}$ при $n\geq m+1\geq 4$

$$\langle \mathcal{R} \rangle = N^m(S^n(\mathcal{R}));$$

3) решетки алгебр \mathcal{V}_2^n и \mathcal{W}_2^{n-1} при $n \geq 4$ антиизоморфны.

Предложение. Для алгебр следующие условия зквивалентны:

- 1) алгебра Q не представима в виде объединения собственных подалгебр;
- 2) алгебра Q имеет единственную максимальную подалгебру;
- 3) любой базис (минимальная система порождающих) алгебры Q является одноэлементным.

Предложение. Для алгебр следующие условия зквивалентны:

- 1) алгебра $\mathcal Q$ не представима в виде объединения собственных подалгебр;
- 2) алгебра Q имеет единственную максимальную подалгебру;
- 3) любой базис (минимальная система порождающих) алгебры $\mathcal Q$ является одноэлементным.

Число алгебр размерности <i>п</i>	2	3	4	5	 <i>n</i> ≥ 3
алгебр операций	26	46	54	62	 8n + 22
алгебр мультиопераций	44	54	62	70	 8n + 30
∪-неразложимых алгебр					
операций	10	12	14	16	 2n + 6
∪-неразложимых алгебр					
мультиопераций	14	15	17	19	 2n + 9

3-стабилизаторы для $\mathcal{M}_2^{(2)}$ и 2-нормализаторы для $\mathcal{O}_2^{(3)}$

		1	2	3	4	5	6	7	8	9	10	11	12	 44
		(12121212)	(21212121)	(11111111)	(2222222)	(12221222)	(11121112)	(12212112)	(11121222)	(11111222)	(11122222)	(11112122)	(11212222)	
1	(1212)	1	1	1	1	1	1	1	1	1	1	1	1	 1
2	(2121)	1	1	0	0	0	0	1	1	0	0	0	0	 0
3	(1221)	1	0	1	0	0	0	0	1	0	0	0	0	 1
4	(2112)	1	0	0	1	0	0	1	0	0	0	0	0	 0
5	(1332)	1	1	1	1	0	0	0	0	0	0	0	0	 0
6	(1313)	1	0	1	1	1	1	0	1	1	1	0	0	 0
7	(3332)	1	0	1	1	0	1	0	0	0	0	0	0	 0
8	(1333)	1	0	1	1	1	0	0	0	0	0	0	0	 0
9	(1111)	1	0	1	0	1	1	1	1	1	1	1	1	 0
10	(2222)	1	0	0	1	1	1	1	1	1	1	1	1	 0
11	(3131)	1	0	1	0	0	1	0	1	1	0	1	0	 0
12	(2323)	1	0	0	1	1	0	0	1	0	1	0	1	 0
13	(3331)	1	0	1	0	0	1	0	0	1	0	1	0	 0
14	(2333)	1	0	0	1	1	0	0	0	0	1	0	1	 0
:		:	:	:	:	:	:	:		:	:	:	:	
42		1	0	0	0	0	1	0	0	1	0	0	0	

3-стабилизаторы для $\mathcal{M}_2^{(3)}$ и 3-нормализаторы для $\mathcal{O}_2^{(4)}$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	54
		(12121212121212)	(21212121212121)	(1221211212212112)	(1112122211121222)	(111111111111111)	(22222222222)	(111211121112)	(122212221222)	(1111212211112122)	(1121222211212222)	(1111122211111222)	(1112222211122222)	(111111111111112122)	(11121222122222)	
1	(12121212)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	(21212121)	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
3	(12212112)	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0
4	(13321332)	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0
5	(13131313)	1	0	0	1	1	1	1	1	0	0	1	1	1	1	1
6	(33323332)	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0
7	(13331333)	1	0	0	0	1	1	0	1	0	0	0	0	0	0	1
8	(11111111)	1	0	1	1	1	0	1	1	1	1	1	1	1	1	0
9	(2222222)	1	0	1	1	0	1	1	1	1	1	1	1	1	1	0
10	(31313131)	1	0	0	1	1	0	1	0	1	0	1	0	1	0	0
11	(23232323)	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0
12	(33313331)	1	0	0	0	1	0	1	0	1	0	1	0	1	0	1
13	(23332333)	1	0	0	0	0	1	0	1	0	1	0	1	0	1	0
14	(33333331)	1	0	0	0	1	0	1	0	1	0	1	0	0	0	0
15	(23333333)	1	0	0	0	0	1	0	1	0	1	0	1	0	0	0
		:	:	:	:	:	:	:	:	:	:	:	:		:	
54		1	0	1	0	0	0	0	0	0	0	0	0	0	0	

Заметим, что $|\mathcal{O}_3^{(2)}|=19\,683$, $|\mathcal{M}_3^{(2)}|=134\,217\,728$.

Заметим, что $|\mathcal{O}_3^{(2)}|=19\,683$, $|\mathcal{M}_3^{(2)}|=134\,217\,728$.

- \mathcal{V}_3^n при $n \geq 2$ содержит 18 максимальных алгебр (1962, В.М.Гниденко);
- \circ V_3^2 содержит 64 минимальных алгебр (2020, Д.А.Еременко);
- V_3^n при $n \ge 3$ содержит 84 минимальных алгебр (1983, $B.\mathit{Csákány}$);

Заметим, что $|\mathcal{O}_3^{(2)}|=19\,683,\,|\mathcal{M}_3^{(2)}|=134\,217\,728.$

- $m{\circ}\ {\cal V}_3^n$ при $n \geq 2$ содержит 18 максимальных алгебр (1962, В.М.Гниденко);
- \circ V_3^2 содержит 64 минимальных алгебр (2020, Д.А.Еременко);
- V_3^n при $n \ge 3$ содержит 84 минимальных алгебр (1983, $B.\mathit{Csákány}$);
- \circ \mathcal{V}_3^2 содержит 561 надминимальную алгебру (2021, Д.А.Еременко);

Заметим, что $|\mathcal{O}_3^{(2)}|=19\,683$, $|\mathcal{M}_3^{(2)}|=134\,217\,728$.

- \mathcal{V}_3^n при $n \ge 2$ содержит 18 максимальных алгебр (1962, В.М.Гниденко);
- \circ V_3^2 содержит 64 минимальных алгебр (2020, Д.А.Еременко);
- V_3^n при $n \ge 3$ содержит 84 минимальных алгебр (1983, $B.Cs\'{a}k\'{a}ny$);
- \circ V_3^2 содержит 561 надминимальную алгебру (2021, Д.А.Еременко);
- \mathcal{W}_3^n при $n \ge 2$ содержит 18 минимальных алгебр (2020, С.И.Тодиков).

Заметим, что $|\mathcal{O}_3^{(2)}|=19\,683$, $|\mathcal{M}_3^{(2)}|=134\,217\,728$.

Минимальные и максимальные подалгебры в полной алгебре \mathcal{AO}_k^n , соответственно \mathcal{AM}_k^n , будем называть максимальными и минимальными алгебрами в решетке \mathcal{V}_k^n , соответственно \mathcal{W}_k^n .

- \mathcal{V}_3^n при $n \ge 2$ содержит 18 максимальных алгебр (1962, В.М.Гниденко);
- \circ V_3^2 содержит 64 минимальных алгебр (2020, Д.А.Еременко);
- \mathbf{V}_{3}^{n} при $n \geq 3$ содержит 84 минимальных алгебр (1983, $B.\mathit{Csákány}$);
- \circ V_3^2 содержит 561 надминимальную алгебру (2021, Д.А.Еременко);
- \mathfrak{W}_3^n при $n \geq 2$ содержит 18 минимальных алгебр (2020, С.И.Тодиков).

Вопрос 4. Сколько максимальных алгебр в \mathcal{W}_3^n при $n \geq 2$?

Для операций выполняется тождественное равенство суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)=(f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$

Для операций выполняется тождественное равенство суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)=(f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$
 Для мультиопераций выполняется тождественное включение

суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)\subseteq (f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$

Для операций выполняется тождественное равенство суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)=(f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$
 Для мультиопераций выполняется тождественное включение суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)\subseteq (f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$

Алгебраическое замыкание множества мультиопераций $\mathcal R$ можно ослабить (назовем логическим замыканием и обозначим $\lfloor \mathcal R \rfloor$), если допускать суперпозиции только следующих видов:

$$(f*f_1,...,f_n)$$
 и $(\mu_i f*f_1,...,f_n)$, где $f\in\mathcal{R}$ и $f_1,...,f_n\in \lfloor\mathcal{R}\rfloor$.

Для операций выполняется тождественное равенство суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)=(f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$
 Для мультиопераций выполняется тождественное включение суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)\subseteq (f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$

Алгебраическое замыкание множества мультиопераций \mathcal{R} можно ослабить (назовем логическим замыканием и обозначим $\lfloor \mathcal{R} \rfloor$), если допускать суперпозиции только следующих видов:

$$(f*f_1,...,f_n)$$
 и $(\mu_i f*f_1,...,f_n)$, где $f\in\mathcal{R}$ и $f_1,...,f_n\in \lfloor\mathcal{R}\rfloor$.

• Для ранга $k \ge 3$ алгебраическое и логическое замыкания в множестве мультиопераций не совпадают (2021, С.И.Тодиков).

Для операций выполняется тождественное равенство суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)=(f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$
 Для мультиопераций выполняется тождественное включение суперассоциативности:

$$((f*g_1,\ldots,g_n)*h_1,\ldots,h_m)\subseteq (f*(g_1*h_1,\ldots,h_m),\ldots,(g_n*h_1,\ldots,h_m))$$

Алгебраическое замыкание множества мультиопераций $\mathcal R$ можно ослабить (назовем логическим замыканием и обозначим $\lfloor \mathcal R \rfloor$), если допускать суперпозиции только следующих видов:

$$(f*f_1,...,f_n)$$
 и $(\mu_i f*f_1,...,f_n)$, где $f\in\mathcal{R}$ и $f_1,...,f_n\in \lfloor\mathcal{R}\rfloor$.

• Для ранга $k \ge 3$ алгебраическое и логическое замыкания в множестве мультиопераций не совпадают (2021, С.И.Тодиков).

Вопрос 5. Совпадают ли алгебраическое и логическое замыкания в множестве мультиопераций ранга 2? Гипотеза: совпадают.

イロト (個) (重) (重) (重) のQで