교과목명: 알고리즘

1. 다음 그래프에 대한 설명 중 옳은 것을 모두 고르시오.(10점) (10점) 月里以至等是 7年日到年季江

(Y) 모든 트리는 그래프라 할 수 있다. O

(2) 인접행렬에서 어떤 정점 v의 진입 차수는 인접 행렬의 v번째 행의 값들을 전부 더한다.×

(3) 최소비용 신장 트리란 모든 정점을 연결하는 간선들의 숫자가 최소가 되는 간선들의 합 12 6a といるアラカ 山谷の ましたいちは ラント (scowing tree) 이다.\*X

9343) EU 는 연산의 시간 복잡도는 O(n) 이다. O

(5) 깊이우선 탐색은 순환호출을 사용하고 너비 우선 탐색은 스택을 사용한다. 🗡

(b) 정점의 개수를 n, 간선의 개수를 e인 무방향 그래프를 인접 리스트로 표현하였을 경우 인접 리스트상의 총 노드의 개수는 2e개이다. 〇 천 총 22년 이번 = ( 개 2 )

(7) /그래프에는 사이클이 존재하면 안 된다. 人

(9) 인접행렬이 {0,1,0,0}, {1,0,1,1}, {0,1,0,0}, {0,1,0,0} 이라면 여기에 대응하는 인접리 스트의 노드의 개수는 6이다 〇

) 정점이 3개이고 간선이 3개가 있는 무방향 그래프에서 가능한 신장 트리의 개수는 3개 이다.0 0 0

2. 다음 그래프에 대하여 답하시오. 단 노드 번호가 작은 값부터 큰 값 순으로 연결되어져 있다고 가정한다. (20점)



1) 인접행렬을 그리시오.(3점)

|   | 0  | 1  | 2  | 3  | 4   | 5  | 6   |
|---|----|----|----|----|-----|----|-----|
| 0 | 0  | 3  | 00 | 5  | 2   | 00 | 00  |
| 1 | 3  | 0  | 6  | 00 | 00  | 00 | 12  |
| 2 | 00 | 6  | 0  | 7  | 00  | 00 | 00  |
| 3 | 5  | 00 | 7  | 0  | 4   | 00 | 00  |
| 4 | 2  | 00 | 00 | 4  | 0   | 8  | 00. |
| 5 | 00 | 00 | 00 | 00 | 8   | 6  | 1   |
| 6 | 00 | 12 | 0  | 00 | 00. | 1  | 0   |

2) 인접리스트를 그리시오, 노드구조는 노드인덱스 가중치 다음노드 주소 이다.(3점)



- 3) 정점 0을 출발 정점으로 하였을 때의 깊이우선탐색과 너비우선탐색을 완성하시오.(4점)
  - a) 깊이우선 탐색: 0-1-2-3-4-5-6.
  - b) 너비우선 탐생: 0-1-3-4-2-6-5



4) 최소비용 신장트리를 Kruskal의 알고리즘을 이용하여 구할 때 서로소집합의 배열을 단계적으로 그리시오.(10점)

| 단계 | 선택<br>이음선 | 0 | 1 | 2 | 3 | 4 | 5 | 6  |
|----|-----------|---|---|---|---|---|---|----|
| 초기 |           | 0 | 1 | 2 | 3 | 4 | 5 | 6  |
| 1  | (5,6)     | 0 | 1 | 2 | 3 | 4 | 5 | 5  |
| 2  | (0,4)     | 0 | 1 | 2 | 3 | 0 | 5 | 5  |
| 3  | (0,1)     | 0 | 0 | 2 | 3 | 0 | 5 | 5  |
| 4  | (3,A)     | 0 | 0 | 2 | 0 | 0 | 5 | 5  |
| 5  | 41,2)     | 0 | 0 | 0 | 0 | 0 | 6 | 5- |
| 6  | (4,5)     | 0 | 0 | 0 | 9 | 0 | 0 | 0. |

3. 다음은 수업시간에 배운 Dijkstra 알고리즘의 최단경로 프로그램이다. 아래의 빈칸을 완성하 시오.(10점)

```
void shortest_path(int start, int n)
{

int i, u, w;

for(i=0; i<n; i++) { // 초기화

distance[i] = weight[start][i];

found[i] = FALSE;
}

found[start] = TRUE; // 시작 정점 방문 표시

distance[start] = 0;

for(i=0; i<n-2; i++){

u = choose(distance, n, found);

found[u] = TRUE;

for(w=0;w<n; w++)

if(!found[w])

//아래를 완성하시오

if (distance[u] + weight[u][w] < istance[w])

distance[w] = distance[u] + weight[u][w];
```

## Dijkstra의 최단경로 알고리즘의 단계별 상태를 나타내는 표를 완성하시오.(10점)



|    |        | 0 12345          | 0 1 2 3 4 9                             |
|----|--------|------------------|-----------------------------------------|
| 단계 | 선택된 정점 | found 배열         | distance 배열                             |
| 1  | 0      | 1, 0, 0, 0, 0, 0 | 0, 50, 45, 10, ∞, ∞                     |
| 2  | 3      | 1,0,0,1,0,0      | 0,50, 45, 10,20,00                      |
| 3  | 4      | 1,0,0,1,1,0      | 050,45)1925,00                          |
| 4  | 2.     | 1,0,4,1,1,00     | a 5 45 6 50 00                          |
| 5  | 1      | 1,1,1,1,0        | 600000000000000000000000000000000000000 |
| 6  | 5      | 1,1,1,1          | 0,50,45,10,26,00                        |