厦门大学高等代数 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

第六章 特征值

§6.2 可对角化

习题

1. 判断下面矩阵是否可对角化.

$$\left(\begin{array}{ccc} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{array}\right), \qquad \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right), \qquad \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 3 \end{array}\right)$$

解(1)(法一)直接计算知

$$f_A(\lambda) = \det(\lambda E_3 - A) = (\lambda + 1)^3.$$

所以, A 的特征值为 $\lambda_1=\lambda_2=\lambda_3=-1$. 假设 A 可对角化,则存在可逆矩阵 P,使得 $P^{-1}AP=-E_3$. 即 $A=-PE_3P^{-1}=-E_3$,矛盾.所以 A 不可对角化.

(法二) 直接计算知

$$f_A(\lambda) = \det(\lambda E_3 - A) = (\lambda + 1)^3.$$

所以, A 的特征值为 $\lambda_1=\lambda_2=\lambda_3=-1$. 对于特征值 -1, 解线性方程组 $(-E_3-A)X=0$, 即解线性方程组

$$\begin{pmatrix} -3 & 1 & -2 \\ -5 & 2 & -3 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

因为 r(-E-A) = 2, 所以特征值 -1 的几何重数为 1, 而其代数重数为 3, 所以 A 不可对角化.

- (2) (法一)A 的特征多项式 $f_A(\lambda) = \lambda^3$. 所以 A 的特征值为 $\lambda_1 = \lambda_2 = \lambda_3 = 0$. 假设 A 可对角化,则存在可逆矩阵 P,使得 $P^{-1}AP = 0$,因此 A = 0,矛盾.故 A 不可对角化.
- (法二) A 的特征多项式 $f_A(\lambda) = \lambda^3$. 所以 A 的特征值为 $\lambda_1 = \lambda_2 = \lambda_3 = 0$. 对于特征值 0, r(0E A) = 2, 所以特征值 0 的几何重数为 1, 而其代数重数为 3, 所以 A 不可对角化.
- (3) A 的特征多项式 $f_A(\lambda) = \lambda^2(\lambda 3)$. 所以 A 的特征值为 $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 3$. 特征值 $\lambda_3 = 3$ 是 $f_A(\lambda)$ 单根,其代数重数必等于其几何重数. 对于特征值 $\lambda_1 = \lambda_2 = 0$,解线性方程组 $(0E_3 A)X = 0$. 因为 $\mathbf{r}(0E_3 A) = 1$. 故特征值 0 的几何重数等于其代数重数. 所以 A 可对角化.

对于特征值 $\lambda_1 = \lambda_2 = 0$,解线性方程组 $(0E_3 - A)X = 0$,即解线性方程组 $-2x_1 - 3x_3 = 0$,得到基础解系 $X_1 = (0, 1, 0)^T$, $X_2 = (3, 0, -2)^T$.

对于特征值 $\lambda_3=3$, 解线性方程组 $(3E_3-A)X=0$, 即解线性方程组

$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ -2 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

得到基础解系 $X_3 = (0,0,1)^T$.

$$P^{-1}AP = diag(0, 0, 3).$$

2. 已知 A 与 B 相似, 其中

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & a \end{pmatrix}.$$

- (1) 求 a 的值;
- (2) 求满足 $P^{-1}AP = B$ 的可逆阵 P.
- **解** (1) 因 A 与 B 相似,故它们有相同的迹.于是 a=6.
- (2) 因相似矩阵有相同的特征值,而对角阵 B 的特征值是 2,2,6. 所以 A 有特征值 $\lambda_1 = \lambda_2 = 2, \lambda_3 = 6$.

对于 $\lambda_1 = \lambda_2 = 2$,

$$\begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ 3 & 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

得到基础解系 $X_1 = (1, -1, 0)^T$, $X_2 = (1, 0, 1)^T$. 同理,可得属于特征值 $\lambda_3 = 6$ 的一个特征向量为 $X_3 = (1, -2, 3)^T$. 于是令

$$P = (X_1, X_2, X_3) = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix},$$

则 $P^{-1}AP = B$.

- 3. 求证:
- (1) 若矩阵 A 适合 $A^2 = E_n$, 则 A 必可对角化;
- (2) 若矩阵 A 适合 $A^2 = A$, 则 A 必可对角化;
- (3) 若 A 是非零矩阵且 $A^k = 0$, 则 A 必不可对角化;
- (4) 若实矩阵 A 适合 $A^2 + A + E_n = 0$, 则 A 在实数域上不可对角化.

证明 (1) 设 λ 是 A 的特征值,则 $\lambda^2 = 1$. 所以 A 的特征值只能是 1 或 -1. 当 A 的特征值全部为 1 或全部为 -1 时,A = E 或 A = -E,显然可对角化. 当 A 的一些特征值为 1,另外一些为 -1 时. 记特征值 $\lambda_1 = 1$ 的几何重数为 s_1 ,代数重数为 n_1 ;特征值 $\lambda_2 = -1$ 的几何重数为 s_2 ,代数重数为 n_2 . 则 $s_i = n - r(\lambda_i E - A)$,i = 1, 2. 由于 $A^2 = E$,所以 r(E + A) + r(E - A) = n,即 r((-1)E - A) + r(1E - A) = n. 故

$$n = n_1 + n_2 \ge s_1 + s_2 = (n - r(\lambda_1 E + A)) + (n - r(\lambda_2 E - A)) = n.$$

因此 $s_i = n_i$, i = 1, 2. 从而 A 必可对角化.

(2) 设 λ 是 A 的特征值,则 $\lambda^2 = \lambda$. 所以 A 的特征值只能是 1 或 0. 当 A 的特征值全部为 1 或全部为 0 时, A = E 或 A = 0,显然可对角化.当 A 的一些特征值为 1,另外一些为 0 时.记特征值 $\lambda_1 = 1$ 的几何重数为 s_1 ,代数重数为 n_1 ;特征值 $\lambda_2 = 0$ 的几何重数为 s_2 ,代数重数为 n_2 . 则 $s_i = n - r(\lambda_i E - A)$,i = 1, 2. 由于 $A^2 = E$,所以 $\mathbf{r}(E + A) + \mathbf{r}(E - A) = n$. 事实上,

$$\left(\begin{array}{cc} E-A & 0 \\ 0 & A \end{array}\right) \longrightarrow \left(\begin{array}{cc} E-A & A \\ 0 & A \end{array}\right) \longrightarrow \left(\begin{array}{cc} E & A \\ A & A \end{array}\right) \longrightarrow \left(\begin{array}{cc} E & A \\ 0 & A-A^2 \end{array}\right) \longrightarrow \left(\begin{array}{cc} E & A \\ 0 & 0 \end{array}\right).$$

因此 $r(E-A) + r(A) = r(E_n) = n$, 即 r(1E-A) + r(0E-A) = n. 故

$$n = n_1 + n_2 \ge s_1 + s_2 = (n - r(\lambda_1 E + A)) + (n - r(\lambda_2 E - A)) = n.$$

因此 $s_i = n_i$, i = 1, 2. 从而 A 必可对角化.

- (3) 由于 $A^k = 0$, 所以 A 的特征值只能是 0. 假设 A 可对角化,则 A 必相似于零矩阵,进而 A = 0, 矛盾.
- (4) 因为 $A^2 + A + E_n = 0$, 所以 A 的任意特征值 λ 必满足 $\lambda^2 + \lambda + 1 = 0$. 而 $\lambda^2 + \lambda + 1 = 0$ 无实根,所以 A 在实数域上不可对角化.
 - 4. 设矩阵

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{array}\right),$$

判断 A 是否可对角化, 并求 A^5 .

解 A 的特征多项式 $f_A(\lambda) = (\lambda - 1)(\lambda - 2)^2$, 因此 A 的特征值为 $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 2$.

对特征值 $\lambda_1 = 1$, 解线性方程组 $(1E_3 - A)X = 0$, 得到基础解系 $X_1 = (1,0,1)^T$. 对特征值 $\lambda_2 = \lambda_3 = 2$, 解线性方程组 $(2E_3 - A)X = 0$, 得到基础解系 $X_2 = (1,1,0)^T$, $X_3 = (-1,0,1)^T$.

因此 A 可对角化. 取

$$P = (X_1, X_2, X_3) = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix},$$

有

$$P^{-1}AP = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

故

$$A^{5} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}^{5} P^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1^{5} & 0 & 0 \\ 0 & 2^{5} & 0 \\ 0 & 0 & 2^{5} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$=\frac{1}{2}\left(\begin{array}{ccc} 33 & 31 & -31\\ 0 & 64 & 0\\ -31 & 31 & 33 \end{array}\right).$$

- 5. 设 φ 是数域 F 上 n 维线性空间 V 的线性变换,则下列命题等价:
- $(1) \varphi$ 可对角化;
- (2) $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_t}$, 这里 $\lambda_1, \lambda_2, \cdots, \lambda_t$ 是 φ 的全部互异特征值;
- (3) $\sum_{i=1}^{t} \dim V_{\lambda_i} = n$, 这里 $\lambda_1, \lambda_2, \dots, \lambda_t$ 是 φ 的全部互异特征值.

证明 (1) \Rightarrow (2). 因为 φ 可对角化,所以它的各个特征值的几何重数等于代数重数. 故 $s_1+s_2+\cdots+s_t=n$. 设 $\alpha_{i1},\alpha_{i2},\cdots,\alpha_{is_i}$ 是 V_{λ_i} 的一个基, $1\leq i\leq t$. 由于根据不同特征值的特征向量线性无关,知

$$\{\alpha_{ij} \mid 1 \leq i \leq t; 1 \leq j \leq s_i\}$$

构成 V 的一个基. 所以 $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_t}$.

- $(2) \Rightarrow (3)$. 显然.
- $(3) \Rightarrow (1)$. 设 λ_i 的几何重数和代数重数分别是 s_i 和 $n_i, 1 \leq i \leq t$. 由已知条件有 $\sum_{i=1}^t s_i = n$. 由于 $s_i \leq n_i$, 故 $n = \sum_{i=1}^t s_i \leq \sum_{i=1}^t n_i = n$. 所以 $s_i = n_i$, $1 \leq i \leq t$. 故 φ 可对角化.
- 6. 设 φ 是数域 F 上 n 维线性空间 V 的非零非恒等的线性变换,且满足 $\varphi^2 = \varphi$. 求证:
 - $(1) \varphi$ 的特征值是 0 和 1;
 - (2) $V = V_0 \oplus V_1$.

证明 (1) 由 $\varphi^2 = \varphi$, 则 φ 的特征值 λ 满足 $\lambda^2 = \lambda$, 得 $\lambda = 0$ 或 $\lambda = 1$.

(2) (法一) 取定 V 的一个基 $\xi_1, \xi_2, \dots, \xi_n$, 设 φ 在这组基下的矩阵为 A, 则 $A^2 = A$, 所以

$$r(A) + r(E - A) = n.$$

又

$$\dim V_0 = n - r(A), \quad \dim V_1 = n - r(E - A),$$

进而

 $\dim V_0 + \dim V_1 = n.$

所以 $V = V_0 \bigoplus V_1$.

(法二) 先证 $V=V_0+V_1$. 事实上, 对任意 $\alpha\in V$, 取 $\alpha_0=\alpha-\varphi(\alpha)$, $\alpha_1=\varphi_1(\alpha)$. 则有 $\alpha=\alpha_0+\alpha_1$. 由 $\varphi^2=\varphi$, 直接验证得到 $\varphi(\alpha_0)=0$, $\varphi(\alpha_1)=\alpha_1$. 所以 $\alpha_0\in V_0$, $\alpha_1\in V_1$.

其次,证明 $V_0 \cap V_1 = 0$. 事实上,设 $\alpha \in V_0 \cap V_1$,则 $\varphi(\alpha) = 0$ 且 $\varphi(\alpha) = \alpha$. 故 $\alpha = 0$.

综上, $V = V_0 \oplus V_1$.

由 (2) 的证明知 $\mathbf{r}(A)+\mathbf{r}(E-A)=n$. 因 φ 非零, 故 $\mathbf{r}(A)>0$, 从而 $\mathbf{r}(E-A)< n$, 说明 1 是 A 的特征值. 同理因 φ 非恒等变换,因此 $\mathbf{r}(E-A)>0$, 从而 $\mathbf{r}(A)< n$, 因此 0 是 A 的特征值. 由同构即得 φ 的一部分特征值为 1, 一部分为 0.