§ 1 指数関数 (p.101~p.108)

問1

$$(1)\sqrt[3]{15}$$

$$(2)\sqrt[5]{-5}$$

$$(3) \pm \sqrt[4]{2}$$

問2

(1) 与式 =
$$\sqrt[5]{2^5}$$

$$= (\sqrt[5]{2})^5 = \mathbf{2}$$

(2) 与式 =
$$\sqrt[3]{4 \times 2}$$

= $\sqrt[3]{2^2 \times 2}$
= $\sqrt[3]{2^3}$
= $(\sqrt[3]{2})^3 = \mathbf{2}$

(3) 与式 =
$$\sqrt[4]{\frac{9}{4} \times 36}$$

= $\sqrt[4]{9^2}$
= $\sqrt[4]{(3^2)^2}$
= $\sqrt[4]{3^4}$
= $(\sqrt[4]{3})^4 = 3$

(4) 与式 =
$$\sqrt[4]{\frac{80}{5}}$$

$$= \sqrt[4]{16}$$

$$= \sqrt[4]{2^4}$$

$$= (\sqrt[4]{2})^4 = \mathbf{2}$$

問3

(3)
$$= a^3 \times a^{-6} \times (b^2)^{-3} \times (a^{-2})^3 \times (b^3)^3$$

$$= a^3 \times a^{-6} \times b^{-6} \times b^9$$

$$= a^{3-6} \times b^{-6+9}$$

$$= a^{-3} \times b^3$$

$$= \frac{1}{a^3} \times b^3 = \frac{b^3}{a^3}$$

問4

(2) 与式 =
$$\frac{1}{a^{\frac{3}{4}}}$$
 = $a^{-\frac{3}{4}}$

(3) 与式 =
$$a^{-\frac{2}{3}\times(-3)}$$
 = a^2

(4) 与式 =
$$\sqrt[3]{a^{\frac{1}{2}}}$$

$$= (a^{\frac{1}{2}})^{\frac{1}{3}}$$

$$= a^{\frac{1}{2} \times \frac{1}{3}}$$

$$= a^{\frac{1}{6}}$$

問5

(1) 与式 =
$$a^{-\frac{4}{10}}$$

= $a^{-\frac{2}{5}}$
= $(a^{-2})^{\frac{1}{5}}$
= $\sqrt[5]{a^{-2}}$

(2) 与式 =
$$a^{\frac{125}{100}}$$
 = $a^{\frac{5}{4}} = \sqrt[4]{a^5}$

(3) 与式
$$= \frac{1}{a^{-\frac{25}{10}}}$$
 $= \frac{1}{a^{-\frac{5}{2}}}$ $= a^{\frac{5}{2}} = \sqrt{a^5}$

(4) 与式
$$= a^{-3.6+4.3}$$
 $= a^{0.7}$ $= a^{\frac{7}{10}} = \sqrt[10]{a^7}$

問6

(1) 与式 =
$$\frac{a \cdot a^{\frac{1}{3}}}{a^{\frac{1}{6}}}$$
= $a^{1+\frac{1}{3}-\frac{1}{6}}$
= $a^{\frac{7}{6}}$

(2) 与式 =
$$a^{\frac{3}{4}} \times a^{\frac{4}{6}}$$

$$= a^{\frac{3}{4} + \frac{4}{6}}$$

$$= a^{\frac{17}{12}}$$

(3) 与式 =
$$a^{(p-q)r} \times a^{(q-r)p} \times a^{(r-p)q}$$

= $a^{(p-q)r+(q-r)p+(r-p)q}$
= $a^{pr-qr+pq-pr+qr-pq}$
= $a^0 = 1$

問7

(1)
$$x=0$$
 のとき , $y=1.5^0=1$ $x=1$ のとき , $y=1.5^1=1.5$

グラフは , 2 点 $(0,\ 1),(1,\ 1.5)$ を通り , 単調に増加する曲線となる .

(2)
$$x=0$$
 のとき , $y=2.5^0=1$ $x=1$ のとき , $y=2.5^1=2.5$

グラフは , 2 点 $(0,\ 1),(1,\ 2.5)$ を通り , 単調に増加する曲線となる .

(
$$3$$
)
$$x=0\, \mathfrak{O}$$
とき, $y=0.8^0=1$
$$x=1\, \mathfrak{O}$$
とき, $y=0.8^1=0.8$

グラフは , 2 点 $(0,\ 1),(1,\ 0.8)$ を通り , 単調に減少する曲線となる .

問8

$$(1) y = \frac{2^x}{2^2}$$
$$= 2^{x-2}$$

この関数のグラフは , $y=2^x$ のグラフを , x 軸方向に 2 平行移動したものである .

(2) この関数のグラフは , $y=3^x$ のグラフと , x 軸に関して対称である .

(3) この関数のグラフは , $y=2^x$ のグラフと , 原点に関して対称である .

問9

(1)
$$3^{2x} = 27^{\frac{1}{2}}$$
 $3^{2x} = (3^3)^{\frac{1}{2}}$ $3^{2x} = 3^{\frac{3}{2}}$ よって

$$2x = \frac{3}{2}$$
$$x = \frac{3}{4}$$

(2)
$$4^{-x} = 16^{\frac{1}{3}}$$

 $4^{-x} = (4^2)^{\frac{1}{3}}$
 $4^{-x} = 4^{\frac{2}{3}}$
 5
 $-x = \frac{2}{3}$
 $x = -\frac{2}{3}$

$$(\ 3\)$$
 $2^x=X$ とおくと $X>0$, $4^x=(2^2)^x=(2^x)^2=X^2$ であるから $X^2-X=56$ $X-^2-X-56=0$ $(X+7)(X-8)=0$ $X=-7,\ 8$ $X>0$ より , $X=8$ よって $2^x=8$ $2^x=2^3$ $x=3$

問10

(1)
$$\left(\frac{1}{2}\right)^x < 2$$
 $(2^{-1})^x < 2$ $2^{-x} < 2^1$ 底が1より大きいので

$$x>-1$$
 (2) $3^{3x+2}>3^4$ 底が1より大きいので $3x+2>4$ $3x>2$ $x>rac{2}{3}$

-x < 1