Supplementary material

IV. PROPOSED METHOD

F. Example for Implementation

For an illustration, an imbalanced dataset Ecoli1 from the KEEL database is selected to implement the proposed algorithm. Ecoli1 has 336 samples and 7 features, with an imbalance ratio of 3.36. At first, the dataset is divided into training set X_{trian} and test set X_{test} by 5-fold cross validation, and then the feature-weighted sum y of each majority class sample in the X_{trian} is calculated by Eq.(1). According to the ascending order of y, three balanced subsets X_1, X_2, X_3 can be obtained (Q = 3). For subset X_1 , the samples in the X_1 first find their three nearest neighbor samples (K = 3) and then concatenate with them to form the envelope dataset X_{1e} via Eq.(8). The FCM is used to cluster X_{1e} to obtain V_{1e} and LGSCM is used to enhance consistency of X_{1e}, V_{1e} and V_{1e}' can be obtained. The joint optimization of FCM and LGSCM as shown in Eq.(19) means a layer of DSENLG, after three layers of DSENLG, the $V_{1e}'^3$ (L = 3) can be obtained and used to train the base classifier C_1 . The other two subsets X_2, X_3 can be transformed in the same way to obtain the envelope sample set $V_{2e}'^3, V_{3e}'^3$, and $V_{2e}'^3, V_{3e}'^3$ are used to train the base classifier C_2, C_3 .

For a sample x_{test} in the test set X_{test} , the deep envelope samples x_{test}^3 , x_{test}^3 , x_{test}^3 , x_{test}^3 can be obtained via the trained DSENLG, and then input to the C_1 , C_2 , C_3 to obtain the predicted labels, respectively. After that, the final prediction result of the test sample is determined by the voting mechanism.

V. TIME COMPLEXITY ANALYSIS

A theoretical analysis for DSENLG-IE with respect to the computational complexity was conducted. The time complexity $T_{\text{DSENLG-IE}}$ is computed by

$$T_{\text{DSENLG-IE}} = T_{\text{SG}} + Q \cdot T_{\text{DSENLG}} + T_{\text{EVM}}$$
(25)

where T_{SG} , T_{DSENLG} , T_{EVM} denote computational costs for the SG, DSENLG network and EVM, respectively.

 $T_{\rm SG}$ is affected by the number of majority samples n_1 and features s, so $T_{\rm SG}$ can be given by

$$T_{\rm SG} = O(n_1 \cdot s) \tag{26}$$

 $T_{
m DSEN-LG}$ contains the computational costs of SNC, MIFCM and LGSCM as follows

$$T_{\text{DSENLG}} = T_{\text{DSEN}} + T_{\text{GS M}} = T_{\text{SNC}} + T_{\text{MIFCM}} + T_{\text{LGSCM}}$$
(27)

 $T_{\rm SNC}$ is related to the number of data $2n_2$ and features s, which can be given by

$$T_{\text{SNC}} = O(2n_2 s) \tag{28}$$

 $T_{\rm MIFCM}$ is related to the number of iterations w, the number of features s, the number of clusters c, the number of data $2n_2$ and the number of layers of clustering L. As the time complexity of the FCM algorithm is $O\left(wsc^22n_2\right)$ and $c=2(n_2-L)$, the $T_{\rm MIFCM}$ can be given by

$$T_{\text{MIFCM}} = O\left(wsLn_2^{3}\right) \tag{29}$$

 T_{LGSCM} includes computational costs of updating Θ , \mathcal{H} , \mathcal{G} . Suppose the number of iterations is w_1 . Then the computational costs of LGSCM can be given by

$$T_{LGSCM} = O(w_1 L n_2^3) + O(w_1 L n_2^2)$$
(30)

 T_{EVM} is related to the number of base classifiers Q. So T_{EVM} can be given by

$$T_{\text{EVM}} = Q \tag{31}$$

Therefore, the total time complexity of DSENLG-IE is approximately equal to:

$$T_{\text{DSENLG-IE}} = O(n_1 \cdot s) + Q \cdot \begin{pmatrix} O(n_2 s) + O(w s L n_2^3) \\ + O(w_1 L n_2^3) + O(w_1 L n_2^2) \end{pmatrix}$$
(32)

VI. EXPERIMENTAL RESULTS AND THEIR ANALYSIS

B. Ablation Study for Verification of DSENLG

To demonstrate the effectiveness of deep envelope samples obtained by DSEN-LG, ablation method was adopted to compare the proposed algorithm with the MIFCM and IE. Table II is the comparison results between the IE, MIFCM and proposed DSENLG-IE. From Table II, the proposed algorithm shows a large improvement in performance on all four metrics compared to MIFCM and IE method for most datasets. This indicates envelope samples generated through DSEN-LG network are of high quality and very effective. The DSENLG-IE is better than the IE. It means that the multilayer clustering can obtain envelope samples with high-quality, which are more helpful for imbalanced learning. The DSENLG-IE is better than the MIFCM. It means that the LGSCM can well enhance the consistency of the interlayer samples of MIFCM, thereby contributing to improving the quality of the envelope samples.

TABLE II
ABLATION METHOD FOR THE PROPOSED METHOD

Dataset	Measure	IE	MIFCM	TION METHOD FO DSENLG-IE	Dataset	Measure	IE	MIFCM	DSENLG-IE
Dataset	AUC	98.80±2.78	78.15±4.03	100.0±0.00	Butaset	AUC	74.62±6.70	67.11±3.92	76.35±6.29
	F-M	98.70±3.12	35.69±3.64	100.0±0.00		F-M	65.52±10.0	59.79±2.90	67.19±9.05
Iris0	G-M	98.75±2.95	75.69±4.34	100.0±0.00	Glass0	G-M	73.02±7.98	58.12±6.76	74.24±7.32
	Mcc	98.23±4.09	34.68±5.10	100.0±0.00		Mcc	51.64±13.5	38.10±5.74	57.95±12.6
	AUC	76.96±5.15	68.33±10.6	83.98±7.29		AUC	55.41±7.27	53.31±6.87	61.81±9.38
	F-M	68.64±7.27	58.33±14.7	78.41±7.08		F-M	37.86±9.36	38.89±7.01	43.65±8.57
Vertebral	G-M	76.10±5.89	68.31±10.1	82.98±8.10	Haberman	G-M	54.11±8.89	52.29±6.58	60.19±7.30
	Mcc	54.69±10.0	34.44±14.4	71.45±8.29		Mcc	9.76±13.32	5.98±12.31	21.59±8.67
	AUC	66.52±3.54	63.18±4.31	82.70±6.54		AUC	85.89±4.51	81.85±5.21	92.47±4.39
371:11	F-M	50.54±4.09	46.30 ± 5.32	67.23±6.25	F 111	F-M	69.34±6.91	64.82±6.97	80.42±7.52
Vehicle1	G-M	66.40±3.56	62.65±4.62	81.74±7.15	Ecoli1	G-M	84.94±5.21	81.19±5.29	92.09±4.84
	Mcc	29.33±6.45	23.97±7.87	57.01±9.87		Mcc	61.84±8.75	54.87±9.68	80.48±9.12
	AUC	95.06±4.83	70.00 ± 11.7	99.80±1.41		AUC	71.31±5.20	74.33±4.32	93.62±7.25
New-thyr	F-M	85.92±10.2	53.99±23.6	99.78±1.57	E1:2	F-M	39.84±5.18	42.42±3.79	82.79±7.79
oid1	G-M	94.85±5.12	60.96±18.8	99.79±1.49	Ecoli2	G-M	66.16±7.71	70.86 ± 5.04	92.76±7.51
	Mcc	84.10±11.4	58.01±19.1	100.0 ± 0.00		Mcc	31.95±6.89	35.53 ± 5.89	82.01±7.24
	AUC	86.32 ± 2.74	55.52±5.58	98.56 ± 0.76		AUC	92.02±5.97	72.97±8.45	98.13±5.07
Muele	F-M	58.88 ± 4.88	16.46 ± 1.63	92.59 ± 4.20	Glass6	F-M	77.01±12.4	37.50±15.0	95.91±7.79
Musk	G-M	85.61±3.01	31.90 ± 2.62	98.55±0.77	Giasso	G-M	91.83±6.13	67.78 ± 9.49	97.96±5.68
	Mcc	55.00±5.43	11.35 ± 5.22	91.50 ± 4.82		Mcc	74.46±13.7	32.56±17.9	95.77±7.92
	AUC	91.46 ± 2.54	67.95±3.16	97.71±1.99		AUC	86.28±3.68	78.15 ± 4.03	95.70±4.69
Yeast3	F-M	69.97±4.52	28.62±1.78	83.33±1.02	Ecoli3	F-M	50.22±5.68	35.69±3.64	73.37 ± 6.77
1 casts	G-M	91.40 ± 2.57	64.06±2.77	97.68±2.09	ECOHS	G-M	85.79±3.59	75.69±4.34	95.50±4.98
	Mcc	67.93 ± 4.81	22.81±3.97	82.56±1.12		Mcc	49.37±6.15	34.68 ± 5.10	74.30±6.93
	AUC	92.68±1.05	69.23 ± 2.92	98.14±0.39		AUC	92.40 ± 4.01	84.37±4.90	99.44±1.37
Page-bloc	F-M	64.61±3.00	35.59 ± 3.62	90.43 ± 3.06	Yeast	F-M	65.58 ± 8.91	51.82±7.79	76.08±11.6
ks0	G-M	92.56±1.05	67.98±4.15	98.12±0.40	2vs4	G-M	92.23 ± 4.06	84.26±4.93	99.44±1.39
	Mcc	64.06 ± 2.90	27.96 ± 4.28	89.80±3.21		Mcc	64.96 ± 9.15	49.43±8.70	76.48±11.7
	AUC	75.05 ± 5.13	67.02 ± 6.83	96.77±1.11		AUC	95.34±1.66	83.94±5.31	100.0 ± 0.00
Yeast	F-M	31.67±3.73	26.19 ± 4.51	72.73 ± 2.89	Vowel0	F-M	72.67±5.09	42.88±5.40	100.0±0.00
05679vs4	G-M	72.78±4.93	65.00±6.46	96.72±1.15		G-M	95.28±1.66	83.05±5.95	100.0±0.00
	Mcc	29.87±6.11	20.26±8.16	73.11±2.92		Mcc	72.34±4.86	42.98±6.50	100.0±0.00
CI.	AUC	70.45±12.5	58.71±2.73	89.39±11.6	Ecoli	AUC	75.39±5.08	74.25±7.69	97.81±3.15
Glass	F-M	29.99±11.1	19.07±2.87	22.22±10.9	0147vs235	F-M	29.94±3.56	31.70±7.55	81.97±10.5
016vs2	G-M	68.78±13.3	41.15±7.41	88.76±12.5	6	G-M	73.50±4.68	70.62±10.6	97.73±3.37
	Mcc	25.27±15.8	13.45±3.14	31.38±12.9		Mcc	29.04±5.71	31.85±9.79	77.34±10.8
	AUC	85.60±4.43	50.00±0.00	79.93±4.80		AUC	71.87±10.4	61.98±2.76	87.69±4.45
climate	F-M	47.50±6.38	0.000 ± 0.00	70.60±4.56	Glass2	F-M	26.12±7.01	18.52±2.56	24.72±9.54
	G-M	85.35±4.44	0.000±0.00 0.000±0.00	74.74±4.30 73.87±4.09		G-M	70.07±10.1	48.62±5.79	86.70±5.05 32.47±9.00
	Mcc AUC	47.25±6.91 54.17±8.29	0.000±0.00 54.00±14.6	73.87±4.09 84.48±9.24		Mcc AUC	24.09±11.5 99.07±0.33	15.57±2.65 90.57±9.19	32.4 /±9.00 100.0±0.00
	F-M	34.17±8.29 14.75±4.44	34.00±14.6 14.16±5.96	23.08±5.05	Shuttle-c0-	F-M	99.07±0.33 88.76±3.57	90.57±9.19 84.48±13.0	100.0±0.00 100.0±0.00
german	G-M	14.75±4.44 52.72±7.71	52.06±14.5	83.05±10.6	vs-c4	G-M	99.07±0.33	89.71±10.2	100.0±0.00 100.0±0.00
	Mcc	4.500±8.90	3.760±14.7	29.23±10.4	V3-04	Mcc	88.55±3.51	83.83±13.7	100.0±0.00 100.0±0.00
	AUC	4.300±8.90 71.74±6.88	60.30±7.95	83.72±6.06		AUC	80.30±5.24	63.63±13.7 74.92±2.66	98.54±4.88
Yeast	F-M	22.83±4.01	16.92±4.73	30.00±8.23		F-M	26.51±5.03	20.29±1.70	87.87±8.94
1vs7	G-M	70.50±7.30	58.68±9.12	82.12±6.46	Ecoli4	G-M	78.51±6.00	70.50 ± 3.81	98.37±5.72
1 437	Mcc	22.17±7.03	10.74±8.29	34.50±8.12		Mcc	30.37±5.55	23.73±2.37	88.61±8.51
_	AUC	94.47±2.45	72.19±15.8	98.50±1.38		AUC	91.24±5.72	97.78±1.30	100.0±0.00
Page-	F-M	55.13±11.1	45.72±22.2	77.11±9.46	Dermatolog	F-M	58.79±11.0	74.47±12.3	100.0±0.00
blocks	G-M	94.27±2.64	65.29±21.3	98.49±1.41	y-6	G-M	90.94±5.93	97.75±1.33	100.0±0.00
13vs4	Mcc	58.41±9.70	44.34±25.5	78.88±7.20	, ,	Mcc	60.14±10.4	75.74±11.3	100.0±0.00
	AUC	78.72 ± 10.0	51.98±7.20	80.70±8.98		AUC	58.38±8.88	51.85±7.52	72.14±9.29
svmguide	F-M	24.49±6.03	9.520±2.70	15.38±3.27	Yeast	F-M	10.20±2.41	8.580±1.60	15.08±3.70
3	G-M	77.36±10.8	49.86±10.3	78.36±7.87	1458vs7	G-M	55.14±7.50	43.88±6.27	68.13±10.8
	Mcc	27.62±9.51	1.760±10.4	17.37±5.21		Mcc	7.020 ± 7.41	1.700±7.15	18.43±7.42
Yeast4	AUC	84.70±3.80	74.62±5.99	87.71±4.70	Winequalit	AUC	62.93±4.27	41.53±9.49	71.33±9.39
		2 3-2.00		- · · · · - — • • • • •			·. - /		

	F-M	20.68±2.11	14.56±2.38	43.34±6.42	y-	F-M	8.790±0.83	4.750±3.94	17.53±5.74
	G-M	83.90±3.54	73.78 ± 5.68	85.19±4.89	red-4	G-M	57.22±3.80	36.21±8.60	69.22 ± 9.92
	Mcc	28.11±3.25	18.71±4.68	47.68 ± 6.85		Mcc	9.680 ± 3.17	5.650±8.11	19.25±8.39
	AUC	64.99 ± 5.72	61.78 ± 8.39	81.23±8.50		AUC	96.67 ± 6.73	99.99 ± 0.07	100.0 ± 0.00
Yeast	F-M	9.510±1.31	9.060 ± 2.42	29.30±1.67	Abalone	F-M	96.00 ± 8.08	99.71 ± 2.02	100.0 ± 0.00
1289vs7	G-M	63.11±4.76	60.78±8.14	71.24±8.26	3vs11	G-M	96.33±7.41	99.99 ± 0.07	100.0 ± 0.00
	Mcc	10.60 ± 4.03	8.410 ± 6.05	34.32 ± 2.50		Mcc	96.25±7.58	99.72±1.96	100.0 ± 0.00
	AUC	94.90±1.31	86.39±1.55	97.55±5.15		AUC	68.32±2.51	60.79 ± 2.25	84.95±1.95
37	F-M	38.17±6.16	18.49±1.85	63.43±9.52	Ozone-one	F-M	8.760 ± 0.62	7.080 ± 0.41	58.20±4.42
Yeast5	G-M	94.75±1.39	85.29±1.82	97.52±5.95	hr	G-M	62.31±3.03	48.59±2.24	77.24±3.23
	Mcc	46.02 ± 5.24	27.22±2.04	66.92±8.83		Mcc	12.57±1.60	8.480±1.68	44.99±4.56
	AUC	98.54±0.32	64.21±1.65	100.0 ± 0.00		AUC	54.44±3.64	74.04±11.8	91.95±1.57
krvsk	F-M	66.39±5.17	7.360 ± 0.36	100.0 ± 0.00	Abalone21	F-M	5.140 ± 0.89	10.47±3.70	51.85±3.22
3vs11	G-M	98.53±0.32	53.23±3.08	100.0 ± 0.00	vs8	G-M	29.77±8.94	72.44±11.5	91.17±1.68
	Mcc	69.51±4.30	10.42 ± 0.85	100.0 ± 0.00		Mcc	4.620 ± 2.49	15.47±7.85	56.87±2.91
	AUC	82.39±4.41	79.01 ± 5.10	96.01±2.03	****	AUC	77.32±5.75	67.99±12.4	92.63±6.79
**	F-M	14.99±1.65	11.70±1.55	30.30±4.05	Winequalit	F-M	10.48 ± 1.68	10.88 ± 4.87	35.39±22.7
Yeast6	G-M	81.89 ± 4.09	77.89±4.67	95.92±3.47	y-	G-M	75.89 ± 4.90	64.82±15.5	91.99±8.05
	Mcc	22.54±2.94	18.57±3.38	40.54±3.30	white3vs7	Mcc	16.91 ± 3.49	13.14±8.99	46.85±20.3
****	AUC	71.33±8.76	64.28±6.25	76.50 ± 8.75		AUC	97.16±0.73	60.36±13.3	98.17±2.02
Winequali	F-M	7.740 ± 1.68	6.170 ± 1.17	10.18±2.75		F-M	40.80 ± 6.94	4.750±1.43	58.30±3.89
ty-red	G-M	68.96±7.87	61.80±4.64	75.24 ± 8.72	krvsk0vs8	G-M	97.12±0.75	55.30±11.0	98.14±2.06
8vs67	Mcc	12.30±5.00	8.200±3.48	16.19±5.53		Mcc	49.16±5.63	57.20±7.22	64.55±3.31
	AUC	99.30±0.23	57.96±11.5	100.0 ± 0.00	1 1 11 00	AUC	98.17±3.87	75.00±5.34	100.0±0.00
Shuttle-	F-M	68.77±7.45	11.76 ± 13.0	100.0 ± 0.00	kddbuffero	F-M	97.96±4.37	66.67±8.73	100.0 ± 0.00
2vs5	G-M	99.29±0.24	54.37±10.7	100.0 ± 0.00	ver	G-M	98.06±4.12	70.71±3.69	100.0 ± 0.00
	Mcc	71.99 ± 6.18	15.63±14.7	100.0 ± 0.00	flowvsback	Mcc	98.04 ± 4.17	70.47±10.3	100.0 ± 0.00
	AUC	98.25±0.51	78.07±13.3	100.0 ± 0.00		AUC	96.70±7.17	70.00±8.12	98.76±5.04
krvsk	F-M	42.81±7.48	9.900 ± 6.29	100.0 ± 0.00	kdd	F-M	95.93±9.09	57.14±10.3	87.19 ± 2.95
0vs15	G-M	98.24±0.52	70.06±18.2	100.0 ± 0.00	root	G-M	96.31±8.15	63.25±8.36	98.58±5.93
	Mcc	51.26±5.98	18.52±4.89	100.0 ± 0.00	kitback	Mcc	96.28±8.20	63.03±10.5	84.53±2.64
	AUC	89.55±0.29	55.82±0.17	99.29±0.86		AUC	96.70±5.64	53.34±0.43	98.62±0.19
skinnonsk	F-M	1.600±0.12	0.380 ± 0.02	78.32±3.93		F-M	23.02±15.2	0.280±0.04	54.67±1.64
in	G-M	88.93±0.33	34.13±0.49	99.11±0.86	cod	G-M	96.62±5.84	25.78±1.66	98.61±0.19
	Mcc	7.990±0.33	1.490±0.04	82.18±3.83		Mcc	33.40±15.9	0.960±0.02	61.48±1.97
	1,100	1.770=0.33	1.170=0.04	02:10-0:00		1,100	33.10=13.7	0.700=0.02	J1.10-1.7

C. Algorithm Comparison

1) Comparison with Classical IE Methods

Tables V lists the average AUC, F-M, G-M and Mcc values obtained by classical imbalanced ensemble methods and proposed DSENLG-IE method. It can be seen an overwhelming improvement of DSENLG-IE over the other imbalanced ensemble methods on all four criteria. In particular, when considering AUC and G-M, it is observable the method proposed in this paper provided the best performance on 40 and 39 datasets respectively, and never showed the worst performance on any dataset. For F-M and Mcc, the proposed method provided the best performance on 29 and 31 datasets respectively. Thus, DSENLG-IE perform best in most imbalanced datasets.

 $\label{table v} TABLE\ V$ Comparison results of the ensemble methods on 46 experimental datasets

Data	Mea	RBO[20]	SBO[21]	UBAG[22]	SBAG[10]	BBAG[37]	EYEE[38]	BACE[38]	GBDT[8]	DSENLG-IE
set	sure	KBO[20]	550[21]	OBMO[22]	SB/TG[10]	DB/(G[57]	E i EE[50]	Brick[50]	GDDT[0]	DOENEO IE
	AUC	99.90±0.70	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0±0.00	100.0 ± 0.00	99.00±2.00	100.0 ± 0.00
Iris0	F-M	99.89±0.74	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	98.95±2.11	100.0 ± 0.00
11180	G-M	99.90 ± 0.72	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	98.97±2.05	100.0 ± 0.00
	Mcc	99.85±1.04	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	98.52±2.97	100.0 ± 0.00
	AUC	78.40 ± 6.84	72.03±2.65	79.19±2.50	77.84 ± 6.31	80.97±5.19	79.54±7.01	77.14±7.00	76.60 ± 6.44	76.35 ± 6.29
Glas	F-M	70.27±8.72	62.09±3.89	71.81±4.20	69.88±8.30	73.46±6.27	71.62 ± 8.73	68.37±8.54	68.42 ± 8.84	67.19 ± 9.05
s0	G-M	77.56±7.42	70.92 ± 3.41	78.93±2.16	77.25±6.68	80.87 ± 5.20	79.33±7.27	76.50 ± 7.67	75.63 ± 7.10	74.24 ± 7.32
	Mcc	56.87±11.7	44.51±4.29	57.17±8.05	55.41±12.2	59.49±9.73	56.90±12.9	52.34±12.2	54.14±12.9	57.95±12.6
	AUC	74.00 ± 4.48	74.57±5.36	82.40±3.88	80.36 ± 3.97	82.64±2.36	79.62 ± 4.63	78.43 ± 6.03	78.29 ± 6.00	83.98±7.29
Vert	F-M	64.32±6.09	65.33±7.93	75.35±4.93	73.18±5.46	75.78 ± 3.07	71.21±5.41	70.15±7.39	70.39 ± 8.03	78.41 ± 7.08
ebral	G-M	73.04±5.27	73.19 ± 6.35	82.19±3.96	80.04 ± 4.12	82.45±2.54	79.39±4.53	78.06 ± 6.28	77.42 ± 6.63	82.98±8.10
	Mcc	47.69±7.66	50.96±10.3	63.11±7.42	60.26±8.11	63.76±4.74	55.99±8.84	55.59±10.7	57.51±10.9	71.45±8.29
	AUC	53.29±4.33	57.41±6.98	59.47±6.51	52.00±8.36	58.89±1.56	56.06±2.80	51.95±4.99	54.43±4.35	61.81±9.38
Habe	F-M	30.50±7.85	40.62 ± 8.01	43.01±7.45	30.40 ± 9.85	42.16±2.11	40.10±2.00	34.04±6.35	23.07±10.6	43.65±8.57
rman	G-M	47.55±7.64	56.81±7.09	58.82 ± 6.65	46.75 ± 8.88	57.88±1.70	55.52±2.38	50.65±5.46	36.59 ± 12.5	60.19 ± 7.30
	Mcc	6.240 ± 8.40	13.67±13.1	17.31±11.9	4.970±16.9	16.99±2.99	11.04±5.38	3.620 ± 9.07	13.60 ± 13.2	21.59±8.67
	AUC	66.51±5.23	70.29 ± 4.56	78.03 ± 3.79	72.62±3.32	75.10 ± 4.23	79.12±3.30	76.12±3.77	53.78 ± 2.83	82.70 ± 6.54
Vehi	F-M	49.55±8.93	55.56±6.30	64.67±4.67	59.01±4.72	61.53 ± 5.43	65.87±4.05	62.55 ± 4.55	14.91±9.90	67.23 ± 6.25
cle1	G-M	63.22 ± 7.82	69.06±5.12	77.91±3.81	71.53±3.81	74.72 ± 4.60	79.03±3.28	75.88±3.96	26.58±12.7	81.74±7.15
	Mcc	34.03 ± 9.72	39.60 ± 8.56	51.20±6.83	44.54±6.31	47.00±7.45	52.93±5.97	48.29 ± 6.45	17.91±9.50	57.01±9.87
Ecoli	AUC	84.31±5.21	86.15±5.44	87.70 ± 4.01	88.00±4.28	87.17±4.89	88.39±5.33	88.17±3.95	82.52±7.21	92.47±4.39
Econ	F-M	75.80±7.99	77.33±7.31	77.14±5.42	80.38±6.32	77.44±6.94	78.07±7.29	77.96±5.23	75.53±11.4	80.42±7.52

	CM	02 (0) 5 71	05.71 + 5.00	07.52+4.10	07.70+4.52	06.02+5.12	00.10+5.60	00.02+4.06	00.72+0.20	02.00+4.04
1	G-M	83.68±5.71	85.71±5.90	87.52±4.19	87.70±4.53	86.93±5.13	88.18±5.60	88.03±4.06	80.73±9.29	92.09±4.84
Marri	Mcc	69.04±10.3 98.84±2.27	70.84±9.35 98.10±2.93	70.45±7.01 98.47±1.74	74.78±8.27 97.96±2.98	70.82±9.06 98.23±2.33	71.79±9.59 98.42±1.62	71.48±6.94 98.22±2.67	70.97±12.3 96.49±5.29	80.48±9.12 99.80±1.41
New -thy	AUC F-M	98.84±2.27 97.10±3.97	96.10±2.93 96.23±4.63	98.47±1.74 93.30±7.09	97.90±2.98 95.61±5.14	98.23±2.33 94.06±6.43	98.42±1.62 92.99±6.77	98.22±2.07 95.81±4.94	96.49±3.29 95.22±6.30	99.78±1.57
roid	G-M	98.81±2.34	98.05±3.02	98.44±1.79	97.91±3.07	98.20±2.39	98.39±1.66	98.17±2.76	96.29±5.71	99.79±1.49
1	Mcc	96.62±4.65	95.64±5.40	92.36±7.96	94.92±5.99	93.19±7.32	92.00±7.62	95.16±5.71	94.75±6.81	100.0±0.00
-	AUC	90.14±5.05	84.02±6.30	89.29±7.92	87.75±7.21	89.01±7.40	87.02±6.84	87.16±7.98	87.12±4.49	93.62±7.25
Ecoli	F-M	83.43±3.96	70.21±8.79	77.19±12.8	82.55±7.52	77.28±11.3	74.32±10.0	77.22±9.39	80.65±7.76	82.79±7.79
2	G-M	89.55±5.73	83.25±7.12	88.85±8.37	86.57±8.19	88.62±7.72	86.50±7.31	86.07±9.36	86.38±6.16	92.76±7.51
	Mcc	81.38±3.88	64.79±10.7	73.38±15.3	81.37±7.62	73.33±13.6	70.00±12.2	74.26±10.4	78.60 ± 7.58	82.01 ± 7.24
	AUC	87.03±1.32	92.67±0.51	95.21±0.61	91.38±1.40	93.22±1.05	95.00 ± 0.77	96.55±1.29	67.55 ± 2.05	98.56±0.76
Mus	F-M	78.83±1.23	86.87±1.47	88.91±1.86	87.23±1.76	85.82±2.71	88.63±1.97	93.87±1.39	51.84±4.40	92.59±4.20
k	G-M	86.49±1.60	92.55±0.52	95.20±0.62	91.10±1.51	93.16±1.06	94.98±0.78	96.51±1.33	59.16±3.40	98.55±0.77
	Mcc	75.18±1.51	84.46±1.74	86.95±2.15	85.08±2.01	83.24±3.18	86.62±2.25	92.77±1.63	55.94±3.42	91.50±4.82
CL	AUC	91.98±6.05	89.92±7.78	92.84±3.64	89.98±7.16	91.17±6.87	93.05±4.18	92.57±2.30	86.74±8.27	98.13±5.07
Glas s6	F-M G-M	85.39±9.35 91.55±6.54	83.73±10.2 89.03±8.70	84.02±12.3 92.58±3.76	82.47±8.23 89.28±7.80	81.87±12.1 90.80±7.26	85.17±5.98 92.84±4.32	81.80±6.30 92.34±2.39	80.23±11.9 85.22±10.6	95.91±7.79 97.96±5.68
SO	Mcc	83.62±10.5	82.59±11.0	82.61±12.6	80.42±9.48	79.57±13.8	92.84±4.32 83.21±7.08	80.00±6.29	79.16±11.1	97.90±5.08 95.77±7.92
	AUC	84.85±4.52	87.88±3.09	93.94±2.08	88.45±2.14	91.10±2.41	89.39±2.54	86.74±2.54	85.75±4.49	97.71±1.99
Yeas	F-M	62.65±4.75	65.88±5.13	77.50±4.20	81.25±5.94	69.77±3.41	72.73±3.61	71.23±2.32	68.76±7.76	83.33±1.02
t3	G-M	84.63±5.65	87.83±3.41	93.94±2.12	87.92±2.28	91.10±2.51	89.28±2.57	86.38±2.76	84.62±6.16	97.68±2.09
	Mcc	58.54±4.78	62.65±3.41	75.67±4.59	79.04±6.87	67.47±4.00	69.70±4.14	67.65±2.72	81.36±7.58	82.56±1.12
	AUC	78.70 ± 8.84	77.00 ± 8.62	86.93±7.10	76.72±8.26	85.94±7.35	87.04±5.71	85.67±6.93	66.33±9.03	95.70±4.69
Ecoli	F-M	59.14±12.8	55.54±13.0	62.06±10.0	58.74±13.6	62.22±10.6	62.46±8.16	64.54 ± 9.51	44.79±11.2	73.37 ± 6.77
3	G-M	75.91±12.1	74.05±12.0	86.48 ± 7.68	73.34±11.6	85.35±8.12	86.69±6.07	84.97±7.78	53.63±11.4	95.50±4.98
3	Mcc	55.88±13.1	51.21±14.0	59.41±11.5	55.02±14.6	59.28±12.0	59.80±9.09	61.51±10.8	46.14±11.6	74.30 ± 6.93
Page	AUC	87.48±3.40	93.79±1.72	95.67±1.09	93.89±1.39	95.15±1.12	95.70±1.07	95.32±0.88	80.54±2.58	98.14±0.39
-bloc	F-M	78.10±4.43	84.13±3.75	81.20±2.29	86.29±2.07	81.49±2.55	81.25±2.20	85.73±2.09	73.79±3.91	90.43±3.06
ks0	G-M	86.78±3.98	93.71±1.78	95.66±1.09	93.79±1.46	95.14±1.13	95.69±1.07	95.29±0.89	78.23±3.27	98.12±0.40
	Mcc AUC	75.84±4.67 93.92±6.61	82.51±3.99 98.92±9.14	79.93±2.43 95.70±3.44	84.77±2.30 94.37±5.44	80.07±2.66 98.39±5.01	79.98±2.35 95.16±2.31	84.34±2.24 98.39±7.62	73.28±3.68 90.00±5.50	89.80±3.21 99.44±1.37
Yeas	F-M	67.14±12.8	69.74±11.8	65.61±7.49	73.47±10.1	66.13±8.34	66.13±9.15	71.55±7.84	69.82±8.79	76.08±11.6
t	G-M	93.84±7.99	98.92±10.4	95.60±3.48	94.30±6.16	98.37±5.23	95.04±2.28	98.37±8.24	89.44±7.21	99.44±1.39
2vs4	Mcc	64.20±14.1	67.20±10.9	63.52±8.13	71.22±10.7	64.11±9.23	64.08±9.92	69.60±8.43	69.42±8.80	76.48±11.7
Yeas	AUC	89.21±5.02	89.74±3.98	93.42±4.99	88.44±4.72	93.16±3.99	91.88±3.43	89.21±6.44	84.47±7.79	96.77±1.11
t	F-M	60.00±8.18	62.07±5.55	81.82±2.86	76.19±7.59	62.86±5.80	64.00±5.51	60.00±8.33	77.78±6.97	72.73±2.89
0567	G-M	89.21±7.49	89.74±5.85	93.34±5.29	88.03±5.79	92.91±4.71	86.12±3.84	89.21±8.15	83.22±6.30	96.72±1.15
9vs4	Mcc	58.62±8.79	60.60±5.94	80.12±3.73	73.68±9.20	62.90±6.71	60.98±6.25	58.62±9.68	76.29±7.08	73.11±2.92
	AUC	94.55±4.45	95.20±3.48	96.85±1.94	96.27±2.71	96.41±2.33	97.19±1.72	97.15±2.02	90.57±5.83	100.0±0.00
Vow	F-M	88.72±6.38	89.43±5.55	83.01±5.73	92.31±4.34	82.90±6.01	83.98±5.09	90.37±4.72	86.56±7.07	100.0±0.00
el0	G-M	94.35±4.74	95.07±3.66	96.82±1.96	96.18±2.85	96.38±2.36	97.17±1.73	97.12±2.06	89.88±6.69	100.0 ± 0.00
	Mcc	87.76±6.99	88.55±6.00	82.30±5.74	91.66±4.71	82.05±6.21	83.25±5.20	89.64±5.03	86.01±6.89	100.0 ± 0.00
Glas	AUC	80.48±11.9	84.64±11.8	81.79±14.4	72.14±7.86	79.05±12.1	88.57±12.4	80.00±13.8	63.81±2.70	89.39±11.6
S	F-M	57.14±19.3	66.67±18.8	54.55±14.0	50.00±18.2	50.00±12.6	42.86±12.1	30.00±9.44	33.33±7.22	22.22±10.9
016v	G-M	79.28±29.2	84.09±30.0	81.50±23.6	68.66±25.9	78.07±21.5	87.83±22.7	77.46±21.4	56.06±10.4	88.76±12.5
s2	Mcc	53.56±22.5	62.88±20.4	50.26±19.0	44.29±20.3	46.34±16.5	45.87±15.9	32.54±16.3	27.62±8.11	31.38±12.9
Ecoli 0147	AUC	81.78±8.88 67.54±14.2	82.11±9.93 61.42±14.4	86.16±7.91	83.53±11.3 73.42±17.9	84.90±8.10	85.40±8.96	89.01±8.29 73.94±13.0	70.72±12.9	97.81±3.15
vs23	F-M G-M	79.42±11.4	80.08±12.5	63.72±11.6 85.17±9.74	80.76±14.9	63.96±12.2 83.86±9.19	61.06±12.4 84.38±10.5	88.17±9.49	52.88±13.7 60.73±12.3	81.97±10.5 97.73±3.37
56	Mcc	66.05±15.2	59.07±15.7	61.81±12.4	72.96±17.9	61.43±13.3	58.96±13.7	72.57±14.0	54.93±13.3	77.34±10.8
50	AUC	70.39±8.93	72.73 ± 6.92	85.62±6.38	80.81±8.66	81.82±7.45	85.35±5.39	81.31±6.74	75.00±6.45	79.93±4.80
clim	F-M	45.73±15.4	45.83±10.9	54.29±8.92	60.00±14.0	51.49±8.40	60.87±6.79	63.16±8.85	66.67±17.1	70.60±4.56
ate	G-M	64.69±13.2	69.29±9.46	85.25±7.24	79.56±12.2	80.95±8.31	85.02±5.76	79.98±7.87	70.71±17.3	74.74±4.30
	Mcc	41.41±16.9	40.88±12.2	52.64±10.0	56.31±14.5	48.64±10.0	58.18±7.68	59.71±10.0	68.97±17.7	73.87±4.09
	AUC	69.83±4.81	60.10±8.63	70.07±13.8	57.13±7.50	66.55±9.52	69.46±6.24	67.10±11.1	59.94±5.29	87.69±4.45
Glas	F-M	33.59 ± 2.85	21.46±11.9	28.50±11.9	20.38±17.0	27.68±10.8	28.83±6.06	23.91±6.97	28.57±15.5	24.72±9.54
s2	G-M	67.20±7.17	44.22±22.8	66.30±21.0	32.37±26.5	63.51±12.6	68.11±8.18	65.10±13.0	48.70±18.8	86.70±5.05
	Mcc	28.44±3.93	13.20±14.0	24.26±16.7	15.95±18.1	21.78±13.2	24.12±7.88	19.05±12.1	22.60±18.1	32.47±9.00
or common	AUC	67.35±11.2	82.52±10.9	82.73±9.16	81.15±10.8	83.68±8.56	82.85±10.6	84.67±8.61 69.25±13.1	82.67±13.2	84.48±9.24 23.08±5.05
germ an	F-M G-M	39.00±21.0 55.82±24.5	64.44±17.1 79.95±14.4	59.41±13.7 80.88±11.7	73.43±9.06 77.11±17.0	62.06±14.3 82.04±11.1	59.68±16.7 80.68±13.8	82.98±10.7	72.18±12.3 78.44±10.0	83.05±10.6
an	Mcc	36.42±22.6	63.10±17.3	58.36±14.4	74.71±17.0	60.65±14.6	58.58±17.5	68.14±13.7	73.03±10.9	29.23±10.4
Shutt	AUC	98.90±6.99	99.95±0.08	99.91±0.08	99.95±0.09	99.91±0.11	99.90±0.12	99.91±0.04	99.43±1.12	100.0±0.00
le-c0	F-M	96.70±13.8	99.37±1.14	98.73±1.17	99.29±1.23	98.74±1.46	98.71±1.52	98.82±1.18	98.83±1.51	100.0±0.00
-vs-c	G-M	97.90±13.9	99.95±0.08	99.91±0.08	99.95±0.09	99.91±0.11	99.90±0.12	99.91±0.08	99.42±1.14	100.0±0.00
4	Mcc	96.61±13.8	99.33±1.21	98.65±1.23	99.25±1.30	98.66±1.54	98.63±1.60	98.74±1.25	98.76±1.60	100.0 ± 0.00
	AUC	61.35±3.44	63.74 ± 8.35	71.96 ± 8.88	60.15 ± 9.02	70.55 ± 11.5	75.41±11.6	73.26 ± 7.97	59.31±7.53	83.72 ± 6.06
Yeas	F-M	28.49±5.22	25.59±10.3	31.13±9.80	28.31±8.71	28.48 ± 10.8	33.51±9.57	27.18±5.93	27.29±8.31	30.00 ± 8.23
t _	G-M	49.89±7.80	56.75±14.6	70.16±10.8	41.49±10.8	67.17±16.7	73.62±13.5	72.42±7.94	38.39±11.7	82.12±6.46
1vs7	Mcc	25.03±4.71	20.15±12.0	28.04±12.0	25.61±8.00	25.36±14.1	31.72±13.4	25.91±8.63	29.97±10.2	34.50±8.12
E. P	AUC	89.67±9.28	86.71±7.42	90.61±5.46	89.84±9.40	91.99±5.99	92.15±5.92	91.71±6.46	82.18±12.6	98.54±4.88
Ecoli 4	F-M G-M	76.06±15.3	74.81±7.46	69.88±5.80	85.48±13.3	63.43±7.79	68.55±16.5	81.11±11.8	71.84 ± 13.9	87.87±8.94
4	G-M Mcc	88.61±10.9 75.61±15.9	85.37±8.79 74.82±7.53	90.15±5.79 69.47±5.93	88.65±10.8 85.79±12.8	91.73±6.23 63.84±8.42	91.82±6.18 69.40±15.8	91.25±6.83 80.07±12.6	76.01±11.3 73.09±13.6	98.37±5.72 88.61±8.51
	14100	10.01-10.7	17.04-1.33	U).T1-J.73	05.17-12.0	03.07±0.44	U7.TU-1J.0	00.07-12.0	13.07-13.0	00.01-0.01

Page	AUC	98.05±4.29	96.21±6.54	98.74 ± 0.97	97.34±3.94	98.90±1.00	98.80 ± 0.70	99.76±0.37	96.25±5.54	98.50±1.38
-bloc	F-M	89.57±10.5	92.61±9.92	84.63 ± 9.25	94.28±6.33	86.62±10.6	84.71±8.36	96.77±4.97	92.92 ± 7.63	77.11±9.46
ks13	G-M	97.95±4.64	95.86±7.52	98.73 ± 0.99	97.23±4.12	98.89±1.02	98.78 ± 0.78	99.76±0.38	96.00 ± 6.03	98.49±1.41
vs4	Mcc	89.52±10.6	92.52±9.94	84.88±8.68	94.11±6.60	86.89±10.2	84.94±7.88	96.71±5.01	92.89±7.62	78.88±7.20
Der	AUC	99.99±0.10	100.0±0.00	100.0±0.00	100.0±0.00	97.72±4.79	100.0±0.00	99.93±0.22	97.37±5.54	100.0±0.00
mato	F-M	99.78±1.56	100.0±0.00	100.0±0.00	100.0±0.00	96.98±5.71	100.0±0.00	98.89±3.33	95.05±7.25	100.0±0.00
logy-	G-M	99.99±0.10	100.0±0.00	100.0±0.00	100.0±0.00	97.56±5.14	100.0±0.00	99.93±0.22	97.14±6.15	100.0±0.00
6	Mcc	99.78±1.57	100.0±0.00	100.0±0.00	100.0±0.00	97.03±5.62	100.0±0.00	98.88±3.37	95.13±6.99	100.0±0.00
svmg	AUC	57.08±11.8	62.67±11.8	67.89±12.8	55.48±7.56	67.10±16.1	66.56±16.0	72.36±8.46	57.03±9.75	80.70±8.98
uide	F-M	16.26±12.5	25.01±18.3	21.24±10.3	15.37±10.1	20.78±12.5	20.12±12.1	20.52±5.21	18.94±14.2	15.38±3.27
3	G-M	30.34±21.3	48.28±26.6	62.41±22.3	21.16±27.0	59.33±27.7	57.87±28.7	71.32±8.23	23.80±19.8	78.36±7.87
**	Mcc	12.13±10.1	21.18±20.0	19.28±14.1	15.23±12.2	18.50±17.6	17.82±17.2	21.30±8.00	19.71±16.1	17.37±5.21
Yeas	AUC	56.01±10.1	57.18±10.0	62.65±8.40	51.06±3.30	63.31±13.0	60.66±12.9	63.30±7.91	50.42±2.27	72.14±9.29
t	F-M	13.93±10.4	13.86±10.6	14.49±4.43	4.440±3.89	14.54±6.69	13.74±7.82	11.78±2.29	2.090±7.12	15.08±3.70
1458	G-M	40.01±22.8	43.72±25.1	58.89±10.2	8.100±16.2	59.06±16.8	55.62±17.5	60.54±6.59	3.260±11.0	68.13±10.8
vs7	Mcc	8.670±13.0	9.23±12.83	11.94±7.61	2.970±9.22	12.35±11.7	10.31±12.5	10.95±6.52	1.700±9.33	18.43±7.42
Vana	AUC	74.42±8.23 38.82±9.91	75.98±1.78	82.24±6.18	68.48±4.35	81.61±9.49	79.25±4.25	81.04±3.07	60.13±1.41	87.71±4.70 43.34±6.42
Yeas t4	F-M	70.40±11.1	38.81±3.85 73.49±2.45	29.76±4.97	40.14±7.27	30.87±7.82 80.63±10.4	28.43±4.16 78.53±4.84	28.98±4.05 80.72±3.24	27.75±3.23 45.94±2.96	45.34±0.42 85.19±4.89
14	G-M Mcc	37.77±10.9	73.49±2.43 38.14±3.40	81.81±6.61 33.62±6.60	61.36±6.88 38.73±7.26	34.19±10.2	78.33±4.84 31.23±4.68	32.47±4.44	43.94±2.96 27.45±3.60	47.68±6.85
Wina	AUC	54.75±5.08	55.89±5.23		51.61±2.87					
Wine	F-M	9.950±5.88	33.89±3.23 11.29±6.04	67.73±6.74 16.59±4.02	6.010 ± 2.87	62.18±6.80 13.29±4.48	67.51±6.66 16.66±4.36	55.46±7.47 7.580±1.82	51.52±3.46 5.330±9.51	71.33±9.39 17.53±5.74
quali ty-re	G-M	36.12±15.6	39.70±13.9	65.02±9.21	13.04±16.2	56.95±11.1	64.74±9.08	54.65±7.23	10.27±16.9	69.22±9.92
d-4	Mcc	6.370±6.67	7.800±6.88	16.80±6.17	4.860±8.84	11.70 ± 6.48	16.75±6.31	3.910±5.36	4.490±10.9	19.25±8.39
Yeas	AUC	54.05±8.28	65.20±3.98	74.33±8.92	54.29±4.40	66.69±11.6	74.17±11.5	61.98±8.57	57.86±6.35	81.23±8.50
t	F-M	11.70±7.50	19.22±5.55	17.85±4.74	13.89±11.3	14.72±6.27	18.98±6.23	8.970±2.33	22.87±6.86	29.30±1.67
1289	G-M	27.37±21.2	59.79±5.85	71.66±11.1	24.38±19.9	62.16±17.1	72.45±13.0	59.67±9.25	33.61±12.2	71.24±8.26
vs7	Mcc	8.060±9.27	17.95±5.94	20.99±7.69	13.21±13.1	14.99±10.1	21.74±9.80	8.590±6.12	25.22±9.04	34.32±2.50
Abal	AUC	99.51±0.48	99.98±0.09	99.63±0.45	99.98±0.10	99.63±0.45	99.60±0.43	99.90±0.12	99.93±0.18	100.0±0.00
one	F-M	87.65±10.8	99.43±2.80	90.64±10.5	99.43±2.80	90.64±10.5	89.71±10.0	97.14±5.71	98.00±4.96	100.0±0.00
3vs1	G-M	99.50±0.49	99.98±0.10	99.63±0.45	99.98±0.10	99.63±0.45	99.60±0.43	99.90±0.21	99.93±0.18	100.0±0.00
1	Mcc	88.33±10.1	99.45±2.71	91.14±9.82	99.45±2.71	91.14±9.82	90.22±9.36	97.23±5.54	98.06±4.80	100.0±0.00
•	AUC	89.95±7.84	87.01±8.12	95.40±3.60	86.57±6.90	95.36±3.54	95.07±3.92	93.41±6.76	74.50±8.43	97.55±5.15
	F-M	61.05±10.3	67.05±12.2	57.02±7.87	69.70±9.17	57.63±7.60	55.29±6.57	67.23±9.45	55.94±14.5	63.43±9.52
Yeas	G-M	89.10±9.51	85.67±9.92	95.32±3.70	85.26±8.38	95.28±3.64	94.97±4.05	92.97±7.85	69.12±12.7	97.52±5.95
t5	Mcc	62.30±10.5	66.80±12.6	60.77±7.09	69.50±9.31	61.26±6.71	59.25±6.21	68.47±9.54	56.55±14.6	66.92±8.83
	AUC	64.75±7.27	64.27±6.17	80.79±5.34	67.65±4.51	78.30±5.52	80.40±5.03	80.15±5.54	59.59±3.13	84.95±1.95
Ozon	F-M	36.36±7.63	33.33±7.23	30.11±3.58	47.62±5.14	30.14±3.69	24.81±3.63	20.58±3.13	27.27±8.65	58.20±4.42
e-on	G-M	55.95±13.4	55.25±11.1	80.26±5.94	59.64±4.41	77.36±6.42	79.89±5.57	79.84±5.82	44.54±4.53	77.24±3.23
ehr	Mcc	37.52±8.68	34.28±8.13	37.72±4.99	49.58±5.11	33.95±5.03	29.22±4.90	25.83±4.70	27.86±8.26	44.99±4.56
Krvs	AUC	98.71±1.84	96.49±3.57	97.82±2.42	95.12±4.59	97.41±2.63	97.35±2.52	98.18±2.52	93.62±4.10	100.0±0.00
k	F-M	93.03±5.14	94.65±4.67	83.64±5.94	93.56±5.58	83.94±7.24	83.39±6.66	95.28±5.05	92.18±4.68	100.0±0.00
3vs1	G-M	98.68±1.88	96.35±3.83	97.78±2.50	94.87±4.92	97.36±2.71	97.30±2.59	98.13±2.60	93.30±4.43	100.0±0.00
1	Mcc	93.04±5.06	94.66±4.57	84.12±5.51	93.64±5.45	84.27±6.97	83.78±6.33	95.22±5.09	92.28±4.51	100.0±0.00
Abal	AUC	84.83±2.86	83.56±4.31	85.87±9.92	79.03±5.03	87.35±2.63	86.51±1.43	88.42±1.22	69.88±1.36	91.95±1.57
one	F-M	50.08±3.52	56.34±3.61	35.27±3.23	59.40±3.03	35.88 ± 2.99	35.60±1.33	45.06±3.08	44.24±2.63	51.85±3.22
21vs	G-M	81.93±8.40	78.58±4.23	84.75±9.25	71.06±7.78	85.17±8.05	84.38±6.85	86.97±3.50	55.80±3.03	91.17±1.68
8	Mcc	51.94±3.81	57.56±3.16	39.96±3.97	61.02±3.14	41.06±4.53	40.52±1.79	49.28±3.43	45.03±2.75	56.87±2.91
	AUC	94.31±9.34	90.79±1.35	95.34±6.56	92.51±8.61	96.37±6.84	98.10±7.43	93.60±6.32	91.65±8.30	96.01±2.03
Yeas	F-M	29.79±11.1	48.00±9.51	34.15±5.43	80.00±1.49	40.00±6.04	56.00±6.66	27.45±6.00	60.00±7.74	30.30 ± 4.05
t6	G-M	94.14±12.2	90.65±11.6	95.23±7.13	92.26±1.25	96.30±7.64	98.09±8.29	93.38±7.34	91.46±8.16	95.92±3.47
	Mcc	39.38±11.6	51.86±8.15	43.21±6.52	79.67±1.52	48.15±6.96	61.17±7.96	37.25±6.44	61.77±7.16	40.54±3.30
Wine	AUC	71.31±11.1	72.73±10.6	81.53±12.6	84.09±10.4	84.38±12.7	82.10±12.6	81.25±11.5	87.50 ± 9.37	92.63±6.79
quali	F-M	21.05±15.8	28.57±11.0	21.43±8.81	31.58 ± 25.0	33.33 ± 9.06	23.08±7.87	20.69 ± 8.16	28.57±9.14	35.39 ± 22.7
ty-w	G-M	68.05 ± 29.6	69.08±23.5	81.27±20.1	83.60 ± 29.2	83.85±18.4	81.79±20.1	81.01±19.4	86.60±8.17	91.99±8.05
hite	Mcc	18.76±17.0	29.25±12.8	27.35±12.0	36.36±27.1	37.84±12.1	28.89±11.3	26.64±10.2	27.48±10.3	46.85±20.3
3vs7										
Wine	AUC	57.37±1.13	57.09±7.51	61.09±2.44	54.45 ± 6.64	60.90±2.41	60.57±2.37	58.00 ± 8.88	54.22 ± 6.40	76.50 ± 8.75
quali	F-M	10.23±1.12	9.840±8.98	7.190±3.81	13.27 ± 3.80	7.380±4.40	7.050 ± 4.08	5.120±1.44	11.16±1.52	10.18 ± 2.75
ty-re	G-M	30.68 ± 3.08	33.70 ± 7.75	55.00±1.87	17.75 ± 4.81	52.70±4.18	53.35±3.06	52.37±7.59	18.36 ± 2.45	75.24 ± 8.72
d		0.0=0 :	0.000	5.05 0.5		# 400	5 010	# O+0 = = :	10 = 1 :	4220 ===
8vs6	Mcc	9.070±1.38	8.300 ± 8.68	7.270 ± 3.16	14.33 ± 2.16	7.430 ± 8.49	7.010 ± 8.23	5.010 ± 7.21	10.71 ± 1.68	16.19±5.53
7		06.00	00.42 = 15	01 88 0 1	0.5.65	00.00	0446	04.60 = 55	5 0.10.10.5	0045 505
krvs	AUC	86.32±8.68	89.42±7.19	91.72±8.44	85.67±4.22	90.72±7.28	94.10±5.58	94.60±7.21	70.19±10.7	98.17±2.02
k	F-M	53.45±8.77	74.17±8.89	31.87±7.68	77.07±6.94	32.43±8.99	33.68±6.15	59.07±8.41	46.24±19.4	58.30±3.89
0vs8	G-M	84.72±8.12	88.48±8.26	91.20±9.49	83.25±4.45	90.37±7.80	93.89±5.99	94.20±7.15	61.25±17.8	98.14±2.06
	Mcc	55.36±8.47	74.58±8.89	39.95±8.90	78.68±5.07	39.93±9.18	42.35±6.50	62.46±8.48	47.53±19.0	64.55±3.31
Shutt	AUC	99.97±0.09	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
le-2v	F-M	98.24±5.38	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
s5	G-M	99.97±0.09	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
	Mcc	98.35±5.01 99.49±2.59	100.0±0.00 99.33±3.27	100.0±0.00	100.0±0.00	100.0±0.00 99.82±1.17	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
kddb	AUC E M	99.49±2.59 98.81±3.96	99.33±3.27 99.20±3.92	99.16±2.51	99.00±3.96		98.33±4.41	99.67±2.33 99.60±2.80	100.0±0.00	100.0±0.00
uffer	F-M G-M	98.81±3.96 99.45±2.83	99.20±3.92 99.27±3.60	98.63±3.92 99.12±2.63	98.80±4.75 98.90±4.36	98.76±3.18 99.81±1.22	97.77±5.54 98.20±4.80	99.60±2.80 99.63±2.57	100.0±0.00 100.0±0.00	100.0±0.00 100.0±0.00
	O-141	//. † J±4.03	11.41-3.00	11.1444.03	70.70±4.30	11.01-1.42	70.4U±4.0U	11.0344.31	100.0-0.00	100.0-0.00

overf lowv sbac k	Mcc	98.84±3.82	99.26±3.63	98.64±3.92	98.89±4.40	98.80±3.08	97.87±5.25	99.63±2.59	100.0±0.00	100.0±0.00
krvs	AUC	98.90±3.37	94.25±6.90	96.99±6.26	91.63±6.54	95.51±8.29	99.51±0.50	99.91±0.15	89.15±9.00	100.0 ± 0.00
k	F-M	96.41±8.16	91.94±8.81	84.72±6.46	89.36±7.96	79.38±8.41	84.56±3.36	94.16±8.39	83.60±13.2	100.0 ± 0.00
0vs1	G-M	98.83±3.61	93.77±7.62	96.72±6.95	90.46±7.25	94.88±4.31	98.27±5.74	99.91±0.15	87.84±10.8	100.0 ± 0.00
5	Mcc	96.57±7.83	92.29±8.44	85.45±5.77	90.38±7.32	80.44±7.84	85.41±2.67	94.50±7.65	84.45±12.4	100.0 ± 0.00
kddr	AUC	96.75±5.50	95.45±5.63	93.99±7.07	94.35±7.71	93.79±7.36	93.34±7.69	95.69±5.54	94.04±5.78	98.76±5.04
ootk	F-M	89.51±19.1	94.68±6.66	92.41±9.18	93.22±9.70	91.70±10.1	91.03±10.3	94.30±6.59	92.51±6.89	87.19±2.95
itbac	G-M	96.53±5.92	95.15±6.01	93.46±7.95	93.77±8.72	93.22 ± 9.70	92.69±8.73	95.41±5.91	93.65±6.17	98.58±5.93
k	Mcc	90.51±17.0	94.92±6.37	92.88±8.45	93.73±8.78	92.10 ± 9.63	91.56±9.54	94.55±6.32	92.83±6.63	84.53±2.64
alrinn	AUC	99.72±0.11	98.68 ± 2.80	99.38 ± 0.08	97.09±3.56	99.38±0.10	99.49±0.09	99.98±0.00	97.09±4.34	99.29±0.86
skinn onski	F-M	39.67±9.84	95.40±4.47	21.76±2.64	95.52±4.74	21.97±2.75	25.33±3.52	88.62±7.19	92.61±7.70	78.32±3.93
	G-M	99.72 ± 0.11	98.63±2.91	99.38 ± 0.08	96.98±3.71	99.38±0.10	99.49±0.09	99.98±0.00	96.93±4.61	99.11±0.86
n	Mcc	49.49±7.79	95.54±4.34	34.68 ± 2.39	95.63±4.67	34.87 ± 2.49	37.83 ± 3.03	89.36±6.49	92.80±7.59	82.18±3.83
	AUC	96.92 ± 4.43	92.55±7.87	96.90±4.11	92.96±7.45	97.08±3.71	96.88±4.35	96.03±5.38	82.91±11.5	98.62±0.19
and	F-M	16.42 ± 8.10	82.76±6.13	10.99±1.63	87.75±9.06	11.16±1.34	11.11±1.64	47.01±8.28	64.39±20.9	54.67±1.64
cod	G-M	96.78±4.77	91.81±9.01	96.78 ± 4.36	92.31±8.49	96.99±3.88	96.75±4.67	95.78±5.79	79.19±17.7	98.61±0.19
	Mcc	28.48±6.84	83.48±6.09	23.28±1.75	88.24±9.63	23.55±1.64	23.45±2.15	53.89±7.37	65.14±20.7	61.48±1.97

2) Comparison with State-of-the-art IE Methods

Table VIII records comparison results between the proposed DSENLG-IE method and six SOTA IE methods. The comparisons in Table VIII clearly demonstrated that the proposed DSENLG-IE provide better performance in terms of the four metrics than compared methods, suggesting that DSENLG-IE generates high-quality and high- separability envelope samples.

TABLE VIII COMPARISON RESULTS WITH STATE-OF-THE-ART IMBALANCED ENSEMBLE METHODS

COMPARISON RESULTS WITH STATE-OF-THE-ART IMBALANCED ENSEMBLE METHODS									
Dataset		Iri	is0			Gla	ıss0		
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
CBIS[26]	99.00				88.50				
HD-Ensemble[43]									
EASE[41]	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	74.73±6.66	65.85±8.34	74.45±6.85	47.40±12.8	
HOEC[42]									
SPE[40]	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	78.95±6.88	71.31±8.55	78.67±6.97	56.55±13.5	
Imbalance-XGBoost[9]	98.90 ± 2.07	98.77±2.38	98.88±2.13	98.25±3.40	76.44±5.55	67.95±7.63	75.49±6.34	53.46±10.5	
DSENLG-IE	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	76.35±6.29	67.19±9.05	74.24±7.32	57.95±12.6	
Dataset			ebral				rman		
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
CBIS[26]					64.80				
HD-Ensemble[43]									
EASE[41]	77.55±5.01	68.94±6.12	77.25±5.12	52.69±9.54	57.73±8.78	41.78±9.68	56.24±8.28	13.95±15.7	
HOEC[42]					62.42±1.93				
SPE[40]	78.93±6.12	70.89±7.88	78.53±6.54	56.70±11.4	60.02±6.32	43.82±7.77	59.31±7.02	17.92±11.3	
Imbalance-XGBoost[9]	79.28±6.07	71.49±8.06	78.75±6.65	58.11±11.3	56.06±6.19	32.83±11.5	48.27±11.6	12.94±13.5	
DSENLG-IE	83.98±7.29	78.41±7.08	82.98±8.10	71.45±8.29	61.81±9.38	43.65±8.57	60.19±7.30	21.59±8.67	
Dataset		Veh				Eco			
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
CBIS[26]	82.50				95.70				
HD-Ensemble[43]									
EASE[41]	72.21±3.97	57.13±4.82	72.05±4.04	39.96±7.13	86.43±2.94	76.61±4.16	86.17±3.11	69.79±5.47	
HOEC[42] SPE[40]	75.96±1.35 77.44±3.50	 63.92±4.39	77.31±3.68	50.11±6.22	88.16±0.87 86.33±4.22	78.46±5.92	85.88±4.66	72.40±7.57	
Imbalance-XGBoost[9]	69.99±3.92	55.32±5.73	67.96±4.81	40.75±7.38	84.71±6.62	76.40±3.92 76.63±9.26	83.80±7.64	70.74±11.0	
DSENLG-IE	82.70±6.54	67.23±6.25	81.74±7.15	57.01±9.87	92.47±4.39	80.42±7.52	92.09±4.84	80.48±9.12	
Dataset Dataset	02.70±0.54	New-th		37.01=7.07	72.4744.37		oli2	00.40±2.12	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
								IVICC	
CBIS[26]	99.70				93.40				
HD-Ensemble[43] EASE[41]	98.84±2.22	97.13±4.08	98.81±2.29	96.68±4.72	86.45±5.62	72.88±10.4	 86.14±5.79	68.01±12.4	
HOEC[42]	98.84±2.22	97.13±4.08	98.81±2.29	90.08±4.72	91.28±1.53	/2.86±10.4	80.14±3.79	08.01±12.4	
SPE[40]	98.21±2.89	96.82±4.74	98.15±2.99	96.37±5.41	89.92±6.36	80.67±7.85	89.38±7.10	77.87±8.93	
Imbalance-XGBoost[9]	96.36±4.44	93.68±6.26	96.22±4.67	92.68±7.30	84.47±6.84	75.63±10.6	83.23±7.92	72.18±12.2	
DSENLG-IE	99.80±1.41	99.78±1.57	99.79±1.49	1±0	93.62±7.25	82.79±7.79	92.76±7.51	82.01±7.24	
Dataset	7,700 -771-		usk		70112 1120		iss6		
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
CBIS[26]					93.40				
HD-Ensemble[43]									
EASE[41]	95.18±0.79	88.56±0.71	95.16±0.81	86.54±0.82	91.51±6.12	81.26±8.85	91.14±6.55	78.99±10.1	
HOEC[42]									

SPE[40] Imbalance-XGBoost[9] DSENLG-IE	97.17±0.98 92.25±1.43 98.56±0.76	95.97±1.21 89.63±2.12 92.59±4.20	97.14±1.00 91.99±1.53 98.55±0.77	95.27±1.42 88.01±2.45 91.50±4.82	91.64±5.68 89.68±8.85 98.13±5.07	83.00±8.67 82.29±13.6 95.91±7.79	91.30±6.07 88.56±11.1 97.96±5.68	80.74±9.97 80.91±13.6 95.77 ± 7.92
Dataset	76.30±0.70		ast3	91.30±4.82	<i>7</i> 6.13±3.07		oli3	73.11±1.92
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]	96.90				93.30			
HD-Ensemble[43]								
EASE[41] HOEC[42]	88.49±4.32	73.00±6.18	88.14±4.71	69.99±6.96	81.43±6.36 87.34±1.96	58.59±8.97	80.38±7.35	54.40±10.3
SPE[40]	88.77±3.79	75.68±5.65	88.39±4.16	72.83±6.34	83.68±7.73	61.37±8.98	82.59±9.19	57.91±10.5
Imbalance-XGBoost[9]	84.42±3.93	73.96±5.68	83.28±4.76	71.16±6.04	75.70 ± 9.93	56.94±16.7	71.57±14.1	53.86±17.1
DSENLG-IE	97.71±1.99	83.33±1.02	97.68±2.09	82.56±1.12	95.70±4.69	73.37±6.77	95.50±4.98	74.30±6.93
Dataset			olocks0				t2vs4	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26] HD-Ensemble[43]	98.70 				98.00 98.33±1.10		 94.20±3.70	
EASE[41]	93.24±1.36	83.68±1.74	93.14±1.42	81.93±1.94	98.91±5.64	75.43±8.74	98.91±6.18	73.09±9.85
HOEC[42]	92.94±0.30							
SPE[40]	93.24±1.73	86.24±2.03	93.09±1.83	84.72±2.26	99.46±1.53	75.31±9.87	99.46±1.40	73.04±10.7
Imbalance-XGBoost[9] DSENLG-IE	92.11±2.08 98.14±0.39	85.80±2.76 90.43±3.06	91.87±2.24 98.12±0.40	84.23±3.05 89.80 ± 3.21	95.00±6.19 99.44±1.37	76.58±10.8 76.08±11.6	94.87±7.37 99.44±1.39	74.53±11.8 76.48±11.7
Dataset	76.1 4 ±0.57		5679vs4	07.00-5.21	<i>)).</i> ¬¬±1.37		wel0	70.40±11.7
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]					98.10			
HD-Ensemble[43]	90.84±4.10		82.27±7.40		99.99±0.20		97.53±1.40	
EASE[41]	89.27±8.38	60.00±13.6	89.27±10.4	58.68±15.4	97.48±2.14	93.29±4.99	97.44±2.19	92.82±5.22
HOEC[42] SPE[40]	90.83±5.67	66.67±7.16	90.83±6.32	65.05±8.48	96.39±3.45	93.80±4.52	96.27±3.68	93.33±4.78
Imbalance-XGBoost[9]	92.92±6.92	78.26±11.8	92.87±7.04	76.49±12.1	95.24±3.60	90.52±4.90	95.09±3.81	89.71±5.32
DSENLG-IE	96.77±1.11	72.73±2.89	96.72±1.15	73.11±2.92	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
Dataset		Glass(17vs2356	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]	71.30		 77 11 12 2					
HD-Ensemble[43] EASE[41]	86.06±8.70 60.14±13.0	 22.84±16.2	77.11±13.3 48.03±27.9	 14.40±19.3	87.17±7.64	73.12±12.7	86.16±8.75	71.93±13.4
HOEC[42]					84.71±1.33			
CDELIOI	(4.10) 14.5	24 (5 : 10 ((0.10+20.4	17 15 17 1	0476.000	63.31±11.9	83.43±10.6	(1.22 12.2
SPE[40]	64.18±14.5	24.65±10.6	60.18±20.4	17.15±17.1	84.76 ± 8.88			61.22 ± 13.2
Imbalance-XGBoost[9]	51.85 ± 6.62	28.57±16.4	49.28 ± 22.6	21.76±17.1	79.41±10.9	66.98 ± 18.3	75.40 ± 15.6	67.33 ± 16.7
Imbalance-XGBoost[9] DSENLG-IE		28.57±16.4 22.22±10.9	49.28±22.6 88.76 ±1 2.5			66.98±18.3 81.97±10.5	75.40±15.6 97.73±3.37	
Imbalance-XGBoost[9] DSENLG-IE Dataset	51.85±6.62 89.39±11.6	28.57±16.4 22.22±10.9 clin	49.28±22.6 88.76±12.5 nate	21.76±17.1 31.38±12.9	79.41±10.9 97.81±3.15	66.98±18.3 81.97±10.5 Gla	75.40±15.6 97.73±3.37 ass2	67.33±16.7 77.34±10.8
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure	51.85±6.62 89.39±11.6 AUC	28.57±16.4 22.22±10.9 clin F-M	49.28±22.6 88.76 ±12.5 nate G-M	21.76±17.1 31.38±12.9	79.41±10.9 97.81±3.15	66.98±18.3 81.97±10.5 Gla F-M	75.40±15.6 97.73±3.37	67.33±16.7 77.34±10.8
Imbalance-XGBoost[9] DSENLG-IE Dataset	51.85±6.62 89.39±11.6	28.57±16.4 22.22±10.9 clin	49.28±22.6 88.76±12.5 nate	21.76±17.1 31.38±12.9	79.41±10.9 97.81±3.15	66.98±18.3 81.97±10.5 Gla	75.40±15.6 97.73±3.37 ass2 G-M	67.33±16.7 77.34±10.8
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41]	51.85±6.62 89.39±11.6 AUC 77.86±5.01	28.57±16.4 22.22±10.9 clin F-M	49.28±22.6 88.76 ±12.5 nate G-M	21.76±17.1 31.38±12.9	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3	66.98±18.3 81.97±10.5 Gla F-M	75.40±15.6 97.73±3.37 ass2 G-M	67.33±16.7 77.34±10.8
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07	21.76±17.1 31.38±12.9 Mcc 45.74±6.72	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7	67.33±16.7 77.34±10.8 Mcc 18.53±16.7
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07	21.76±17.1 31.38±12.9 Mcc 45.74±6.72	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7	67.33±16.7 77.34±10.8 Mcc 18.53±16.7
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56	49.28±22.6 88.76±12.5 mate G-M76.38±6.07 80.34±7.62 62.05±15.8	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle- F-M	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M	Mcc 18.53±14.3 22.66±19.8 32.47±9.00 Mcc
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle- F-M 	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00	Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle- F-M 99.15±1.37	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24	Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle- F-M 	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00	Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9]	51.85±6.62 89.39±11.6 AUC 	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle- F-M 99.15±1.37 98.91±1.35 99.17±1.26	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 cO-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00	Mcc
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69 82.27±9.96 84.48±9.24	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 t1vs7	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 cO-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69 82.27±9.96 84.48±9.24 AUC	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 t1vs7 G-M	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 oli4 G-M	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69 82.27±9.96 84.48±9.24	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 t1vs7	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 cO-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69 82.27±9.96 84.48±9.24 AUC 77.50 84.41±8.70 74.22±8.44	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 tlvs7 G-M	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00 AUC 96.40	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 bli4 G-M	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69 82.27±9.96 84.48±9.24 AUC 77.50 84.41±8.70 74.22±8.44 77.07±1.94	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M 36.93±10.7	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 tlvs7 G-M 77.67±7.70 72.04±11.1	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc 34.10±12.3	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0±0.00 99.53±1.21	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc F-M 79.61±12.4	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 obid G-M 94.05±4.80 88.78±10.1	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc 79.40±12.7
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69 82.27±9.96 84.48±9.24 AUC 77.50 84.41±8.70 74.22±8.44 77.07±1.94 72.46±7.07	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M 36.93±10.7 26.67±5.30	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 t1vs7 G-M 77.67±7.70 72.04±11.1 71.78±7.72	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc 34.10±12.3 24.96±7.80	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00 AUC 96.40 98.83±1.90 89.80±8.76 90.88±8.87	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc F-M 79.61±12.4 76.76±12.1	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 obi4 G-M 94.05±4.80 88.78±10.1 89.90±10.6	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc 79.40±12.7 77.03±11.6
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9]	51.85±6.62 89.39±11.6 AUC 	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M 36.93±10.7 26.67±5.30 33.11±9.73	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 t1vs7 G-M 77.67±7.70 72.04±11.1 71.78±7.72 44.70±12.3	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc 34.10±12.3 24.96±7.80 34.51±11.2	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00 AUC 96.40 98.83±1.90 89.80±8.76 90.88±8.87 81.72±12.6	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 F-M 79.61±12.4 76.76±12.1 71.95±20.9	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 bild G-M 94.05±4.80 88.78±10.1 89.90±10.6 78.04±16.7	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc 79.40±12.7 77.03±11.6 73.19±20.1
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40]	51.85±6.62 89.39±11.6 AUC 77.86±5.01 85.61±1.65 80.86±6.40 70.11±8.66 79.93±4.80 AUC 80.01±9.90 85.67±10.2 85.30±8.69 82.27±9.96 84.48±9.24 AUC 77.50 84.41±8.70 74.22±8.44 77.07±1.94 72.46±7.07	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M 36.93±10.7 26.67±5.30	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 t1vs7 G-M 77.67±7.70 72.04±11.1 71.78±7.72 44.70±12.3 82.12±6.46	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc 34.10±12.3 24.96±7.80	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00 AUC 96.40 98.83±1.90 89.80±8.76 90.88±8.87	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc F-M 79.61±12.4 76.76±12.1 71.95±20.9 87.87±8.94	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 obi4 G-M 94.05±4.80 88.78±10.1 89.90±10.6	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc 79.40±12.7 77.03±11.6
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE	51.85±6.62 89.39±11.6 AUC 	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M 26.67±5.30 33.11±9.73 30.00±8.23	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 t1vs7 G-M 77.67±7.70 72.04±11.1 71.78±7.72 44.70±12.3 82.12±6.46	21.76±17.1 31.38±12.9 Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc 34.10±12.3 24.96±7.80 34.51±11.2	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00 AUC 96.40 98.83±1.90 89.80±8.76 90.88±8.87 81.72±12.6	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc F-M 79.61±12.4 76.76±12.1 71.95±20.9 87.87±8.94	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 olid G-M 94.05±4.80 88.78±10.1 89.90±10.6 78.04±16.7 98.37±5.72	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc 79.40±12.7 77.03±11.6 73.19±20.1
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26]	51.85±6.62 89.39±11.6 AUC 	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M 26.67±5.30 33.11±9.73 30.00±8.23 Page-blo	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 tlvs7 G-M 77.67±7.70 72.04±11.1 71.78±7.72 44.70±12.3 82.12±6.46 cks13vs4	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc 34.10±12.3 24.96±7.80 34.51±11.2 34.50±8.12	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00 AUC 96.40 98.83±1.90 89.80±8.76 90.88±8.87 81.72±12.6 98.54±4.88	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc F-M 79.61±12.4 76.76±12.1 71.95±20.9 87.87±8.94 Dermat	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 c0-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 oli4 G-M 94.05±4.80 88.78±10.1 89.90±10.6 78.04±16.7 98.37±5.72 cology-6	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc 79.40±12.7 77.03±11.6 73.19±20.1 88.61±8.51
Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure CBIS[26] HD-Ensemble[43] EASE[41] HOEC[42] SPE[40] Imbalance-XGBoost[9] DSENLG-IE Dataset Measure	51.85±6.62 89.39±11.6 AUC 	28.57±16.4 22.22±10.9 clin F-M 49.80±5.75 45.64±8.02 51.10±17.1 70.60±4.56 gen F-M 74.84±16.8 66.28±11.6 73.86±15.1 23.08±5.05 Yeas F-M 26.67±5.30 33.11±9.73 30.00±8.23 Page-blo F-M	49.28±22.6 88.76±12.5 mate G-M 76.38±6.07 80.34±7.62 62.05±15.8 74.74±4.30 man G-M 69.61±16.0 83.64±13.5 83.85±10.4 79.45±12.7 83.05±10.6 tlvs7 G-M 77.67±7.70 72.04±11.1 71.78±7.72 44.70±12.3 82.12±6.46 cks13vs4 G-M	Mcc 45.74±6.72 43.23±9.28 51.54±16.8 73.87±4.09 Mcc 73.76±17.4 65.03±12.1 74.47±14.3 29.23±10.4 Mcc 34.10±12.3 24.96±7.80 34.51±11.2 34.50±8.12 Mcc	79.41±10.9 97.81±3.15 AUC 76.60 86.65±7.41 63.35±12.3 77.96±2.12 72.52±12.2 53.43±7.19 87.69±4.45 AUC 100.0±0.00 99.53±1.21 99.50±1.01 99.94±0.09 100.0±0.00 AUC 96.40 98.83±1.90 89.80±8.76 90.88±8.87 81.72±12.6 98.54±4.88 AUC	66.98±18.3 81.97±10.5 Gla F-M 25.13±13.6 24.07±9.93 25.00±18.2 24.72±9.54 Shuttle F-M 99.15±1.37 98.91±1.35 99.17±1.26 100.0±0.00 Ecc F-M 79.61±12.4 76.76±12.1 71.95±20.9 87.87±8.94 Dermat F-M	75.40±15.6 97.73±3.37 ass2 G-M 76.44±14.1 54.23±13.7 71.19±13.0 49.35±15.2 86.70±5.05 co-vs-c4 G-M 100.0±0.00 99.52±1.24 99.50±1.03 99.94±0.09 100.0±0.00 olid G-M 94.05±4.80 88.78±10.1 89.90±10.6 78.04±16.7 98.37±5.72 cology-6 G-M	67.33±16.7 77.34±10.8 Mcc 18.53±16.7 18.21±14.3 22.66±19.8 32.47±9.00 Mcc 99.10±1.44 98.84±1.43 99.12±1.33 100.0±0.00 Mcc 79.40±12.7 77.03±11.6 73.19±20.1 88.61±8.51

HOEC[42] SPE[40]	 99.78±0.34	 96.83±4.70	 99.77±0.34	 96.77±4.76	 99.94±0.20	 99.11±3.01	 99.94±0.20	 99.10±3.05
Imbalance-XGBoost[9] DSENLG-IE	97.03±5.90 98.50±1.38	92.58±9.80 77.11±9.46	96.77±6.77 98.49±1.41	92.47±9.91 78.88±7.20	97.87±5.18 100.0±0.00	95.62±7.05 100.0±0.00	97.67±5.78 100.0±0.00	95.69±6.79 100.0±0.00
Dataset	70.50=1.50		guide3	70.00=7.20	100.0=0.00		458vs7	100.0=0.00
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]					63.80			
HD-Ensemble[43]	79.43±10.8		67.37±18.7		69.16±10.9		63.08±10.7	
EASE[41]	71.22±12.7	29.80±14.6	65.37±21.3	27.97±17.1	62.92 ± 9.26	17.33±7.88	55.63±18.3	14.44 ± 10.3
HOEC[42]					66.08±3.44			
SPE[40] Imbalance-XGBoost[9]	63.50±10.6 53.58±7.79	14.42±5.91 10.73±10.4	60.22±10.6 12.99±14.7	12.17±10.0 10.83±12.9	58.98±7.58 51.09±3.08	10.71±2.34 4.210±9.68	57.55±7.01 6.520±14.9	7.380±6.24 4.460±12.3
DSENLG-IE	80.70±8.98	10.73±10.4 15.38±3.27	78.36±7.87	10.83±12.9 17.37±5.21	72.14±9.29	4.210±9.08 15.08±3.70	68.13±10.8	4.400±12.3 18.43±7.42
Dataset	00.70±0.70		ast4	17.37±3.21	/2,14±/,2/		lity-red-4	10.43±7.42
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]	91.40							
HD-Ensemble[43]								
EASE[41]	75.84 ± 6.81	39.11±7.71	72.67±9.10	38.48 ± 8.61	62.14±6.95	15.80 ± 6.17	53.65±14.1	13.81 ± 7.81
HOEC[42]	79.29±1.23				61.84±2.14			
SPE[40]	81.80±7.09	30.25±5.45	80.96±8.71	33.82±7.09	66.32±6.91	11.60±2.22	65.49±7.80	12.34±5.06
Imbalance-XGBoost[9] DSENLG-IE	65.18±6.67	37.70±4.43	54.15±3.71	37.38±5.05	51.31±2.67	4.700±7.94	9.260±15.1	4.55±9.43 19.25 ± 8.39
	87.71±4.70	43.34±6.42	85.19±4.89	47.68±6.85	71.33±9.39	17.53±5.74	69.22±9.92	19.25±8.39
Dataset	ALIC		.289vs7	14	ALIC		ne3vs11	M
Measure CBIS[26]	AUC 60.50	F-M 	G-M	Mcc 	AUC 	F-M	G-M	Mcc
HD-Ensemble[43]	78.14±8.20		68.73±13.1					
EASE[41]	70.70±8.00	23.96±6.91	66.80±10.5	24.11±8.67	99.93±0.18	98.00±4.96	99.93±0.18	98.06±4.80
HOEC[42]								
SPE[40]	65.18±8.30	10.64 ± 2.66	64.10±8.79	11.18 ± 6.03	99.97±0.12	99.14±3.39	99.97±0.12	99.17±3.29
Imbalance-XGBoost[9]	55.95±6.68	16.42±6.96	25.16±14.9	17.11±8.71	99.56±2.33	96.74±6.18	99.53±2.56	96.86±5.96
DSENLG-IE	81.23±8.39	29.30±1.67	71.24±8.26	34.32±2.50	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
Dataset			ast5				e-onehr	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]	97.00							
HD-Ensemble[43] EASE[41]	99.12±0.50 86.04±7.59	 68.27±11.1	95.89±0.90 84.57±9.31	 68.05±11.4	72.22±5.23	 32.02±6.19	 68.03±7.31	 31.44±6.93
HOEC[42]	80.04±7.39 	00.2/±11.1	64.37±9.31 	00.05±11.4 	72.22±3.23 73.97±1.88	32.02±0.19	08.03±7.31	31.44±0.93
SPE[40]	93.64±6.24	60.38±9.32	93.31±6.98	62.81±9.23	81.96±4.76	24.74±3.09	81.62±5.19	29.87±4.25
Imbalance-XGBoost[9]	79.10±8.98	62.77±13.6	75.55±11.9	62.91±13.5	55.02±4.91	15.68±3.81	53.23±8.41	17.66±5.49
DSENLG-IE	97.55±5.15	63.43 ± 9.52	97.52±5.95	66.92±8.83	84.95±1.95	58.20±4.42	77.24±3.23	44.99±4.56
Dataset			3vs11			Abalor	ne21vs8	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]								
HD-Ensemble[43]	100.0±0.00		99.87±0.10					
EASE[41]	96.59±2.91	93.75±3.94	96.48±3.06	93.77±3.96	80.41±1.50	57.06±2.63	73.1±2.79	57.49 ± 2.70
HOEC[42] SPE[40]	98.01±3.00	97.07±3.69	97.94±3.15	97.09±3.63	88.42±2.75	46.72±5.15	85.25±2.12	50.88±4.97
Imbalance-XGBoost[9]	94.50±3.94	92.81±4.90	94.24±4.26	92.86±4.78	71.90±1.69	47.27±3.13	56.40±3.49	49.19±3.18
DSENLG-IE	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	91.95±1.57	51.85±3.22	91.17±1.68	56.87±2.91
Dataset		Ye	ast6				y-white3vs7	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]	88.40							
HD-Ensemble[43]	94.19±3.80		86.59±6.10					
EASE[41]	91.65±7.97	42.11±9.21	91.46±8.29	41.90±9.53	86.08±2.12	50.00 ± 20.2	85.36±3.00	51.61±21.0
HOEC[42]				47.00:00				
SPE[40]	96.21±5.68	38.89±8.67	96.13±6.07	47.23±9.97	81.82±12.9	22.22±5.92	81.53±20.4	28.10±9.84
Imbalance-XGBoost[9] DSENLG-IE	84.51±9.89 96.01±2.03	52.63±8.82 30.30±4.05	83.49±10.3 95.92±3.47	53.17±8.34 40.54±3.30	74.43±9.61 92.63±6.79	23.79±22.9 35.39±22.7	70.31±9.07 91.99±8.05	25.32±24.8 46.85±20.3
Dataset	70.01=2.03		ty-red8vs67	40.5445.50	72.05-0.77		k0vs8	40.03-20.5
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]			G-IVI					
HD-Ensemble[43]					100.0±0.00		99.57±0.20	
EASE[41]	61.96±1.11	9.560±5.26	49.52±2.58	9.770±8.48	86.35±1.09	70.42±1.80	84.24±1.39	70.75±1.81
HOEC[42]	68.09 ± 3.80							
SPE[40]	58.27±1.09	5.330±1.87	56.57±1.02	4.740±6.23	93.97±6.99	53.39±9.04	93.57±8.00	57.71±8.77
Imbalance-XGBoost[9]	52.86±6.10	8.730±1.78	10.92±2.19	9.610±2.07	71.73±1.71	51.59±1.06	63.21±1.93	54.08±1.01
DSENLG-IE	76.50±8.75	10.18±2.75	75.24±8.72	16.19±5.53	98.17±2.02	58.30±3.89	98.14±2.06	64.55±3.31
Dataset	ATIC		e-2vs5	3.4	ATTO		erflowvsback	3.6
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26] HD-Ensemble[43]	 100.0±0.00	 	99.86±0.10		 100.0±0.00		 100.0±0.00	
TID-LIISCHIUIC[43]	100.0-0.00		JJ.00±0.10		100.0-0.00		100.0-0.00	

EASE[41]	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	99.69±1.51	100.0 ± 0.00	99.70±1.47
HOEC[42]								
SPE[40]	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	99.85±1.08	100.0 ± 0.00	99.85±1.05
Imbalance-XGBoost[9]	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00
DSENLG-IE	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0 ± 0.00	100.0 ± 0.00
Dataset		krvsk	0vs15			kddroot	tkitback	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]								
HD-Ensemble[43]	100.0 ± 0.00		100.0 ± 0.00		100.0 ± 0.00		100.0 ± 0.00	
EASE[41]	98.42±3.75	97.07±5.33	98.32 ± 4.01	97.14±5.25	97.75±4.25	85.71±4.74	97.62±4.50	86.50±4.54
HOEC[42]								
SPE[40]	99.98 ± 0.04	98.63±3.15	99.98 ± 0.04	98.67±3.07	95.40 ± 7.49	94.64±10.2	95.02±8.59	94.98±9.48
Imbalance-XGBoost[9]	91.89±8.95	87.38±12.8	90.92±10.6	88.17±11.6	94.25±6.64	93.34±7.95	93.79±7.30	93.74±7.35
DSENLG-IE	100.0±0.00	100.0±0.00	100.0±0.00	100.0 ± 0.00	98.76±5.04	87.19±2.95	98.58±5.93	84.53±2.64
Dataset		skinne	onskin			co	od	
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc
CBIS[26]								
HD-Ensemble[43]	100.0 ± 0.00		99.93 ± 0.00		96.23±5.60		83.06±16.7	
EASE[41]	100.0 ± 0.00	98.67±2.67	100.0 ± 0.00	98.71±2.59	90.29±7.36	63.47 ± 9.91	89.38 ± 8.32	64.22 ± 9.50
HOEC[42]								
SPE[40]	98.52±2.96	96.08±5.05	98.46±3.08	96.20 ± 4.89	92.74 ± 7.83	75.15±11.3	92.02±8.92	76.69±10.6
Imbalance-XGBoost[9]	96.31±6.24	93.76±9.07	95.97±7.10	94.10±8.33	86.26±11.1	76.57±18.1	83.93±14.4	77.76±18.1
DSENLG-IE	99.29±0.86	78.32±3.93	99.11±0.86	82.18±3.83	98.62±0.19	54.67±1.64	98.61±0.19	61.48±1.97

3) Comparison with Deep Learning based Imbalanced Methods

Six DL based imbalanced classification methods are chosen for comparison. Table X records comparison results in this section. The best results are shown in boldface. It can be seen the performance of DSENLG-IE is superior to the other deep learning based imbalanced methods on all four criteria.

 $\label{table X} TABLE~X$ Comparison with deep learning based imbalanced classification methods

Datasets	Measure	CNN+SMOTE	CNN+AE+GAN	BED	RVGAN-TL	EAL-GAN [47]	DLE-ISMOTE	DSENLG-IE
	ALIC	[14]	[15]	[16]	[18]		[49]	02.47:4.20
	AUC F-M	65.22±3.81	83.76±5.41	84.95±2.51	81.23±5.10	92.26±4.41 69.68±9.60	76.63±5.99 58.26±7.10	92.47±4.39
Ecoli1	G-M	46.68±5.09	43.03±6.90	75.84±2.68	72.52±6.54			80.42±7.52
		64.05±3.99 28.24±7.33	82.95±5.56	84.67±2.69 68.23±3.49	79.91±5.83 65.86±7.84	86.24±5.18 60.68±12.4	74.63±9.10 45.96±9.19	92.09±4.84 80.48±9.12
	Mcc AUC		43.10±6.71	93.66±0.53				
		87.58±3.12	91.59±0.86 83.41±0.33	93.00±0.53 85.47±1.20	87.97±3.10 84.03±4.04	89.49±0.84 67.98±1.17	95.39±0.43 86.43±1.25	98.56±0.76 92.59±4.20
Musk	F-M	77.16±6.51						
	G-M	87.21±3.23	91.48±0.92	93.63±0.54	87.21±3.56	80.36±1.22	95.39±0.43	98.55±0.77
	Mcc	73.04±7.89	80.37±0.42	82.89±1.37	82.04±4.18	62.16±1.38	84.22±1.43	91.50±4.82
	AUC	82.88±8.31	83.25±1.29	91.97±2.12	74.43±8.83	92.00±5.74	84.52±1.83	95.70±4.69
Ecoli3	F-M	48.10±6.36	49.44±3.05	59.41±6.79	56.21±15.6	60.86±15.3	52.27±2.27	73.37±6.77
	G-M	82.09±8.51	83.21±1.34	91.59±2.31	70.31 ± 11.8	86.50±6.64	84.51±1.85	95.50±4.98
	Mcc	45.76±9.45	56.65±3.09	59.67±6.42	52.39±17.3	56.30±17.1	49.63±2.26	74.30±6.93
CI 016	AUC	60.25±7.65	60.65±9.32	71.33±7.75	59.35±16.0	63.89±12.9	66.98±12.1	89.39±11.6
Glass016	F-M	21.51±6.01	23.14±8.72	24.88±4.16	19.67±24.1	37.04±12.5	22.69±7.69	22.22±10.9
vs2	G-M	56.29±8.42	59.52±10.7	68.87±6.82	32.69±15.6	59.92±9.97	61.43±14.0	88.76±12.5
	Mcc	12.93±9.58	15.23±8.73	23.36±8.30	14.06±25.6	31.01±13.9	19.47±12.6	31.38±12.9
Q11	AUC	99.57±0.88	99.97±0.07	100.0±0.00	100.0±0.00	99.60±1.20	97.91±0.22	100.0±0.00
Shuttle-c	F-M	99.18±1.12	99.59±0.91	100.0±0.00	100.0±0.00	99.40±1.43	97.87±0.54	100.0±0.00
0-vs-c4	G-M	99.57±0.89	99.97±0.07	100.0±0.00	100.0±0.00	99.05±2.34	97.89±0.28	100.0±0.00
	Mcc	99.14±1.18	99.56±0.96	100.0±0.00	100.0±0.00	99.35±4.53	97.75±0.61	100.0±0.00
	AUC	100.0±0.00	100.0±0.00	92.35±6.65	97.35±7.46	100.0±0.00	100.0±0.00	100.0±0.00
Dermatol	F-M	100.0±0.00	100.0±0.00	89.21±6.19	94.44±9.24	100.0±0.00	100.0±0.00	100.0±0.00
ogy-6	G-M	100.0±0.00	100.0±0.00	91.81±7.14	96.92±8.74	99.77±0.82	100.0±0.00	100.0±0.00
	Mcc	100.0±0.00	100.0±0.00	89.34±6.08	94.72±9.45	100.0±0.00	100.0±0.00	100.0±0.00
	AUC	82.79±3.25	79.70±3.35	85.73±0.80	63.52±7.55	87.64±6.04	85.52±1.79	87.71±4.70
Yeast4	F-M	29.63±2.04	29.83±5.38	25.08±1.55	33.28±7.16	30.45±11.3	29.10±2.52	43.34±6.42
	G-M	82.50±3.49	79.07±3.80	85.62±0.84	49.48±9.37	45.33±11.3	85.45±1.81	85.19±4.89
	Mcc	33.81±2.29	32.50±5.17	31.79±1.54	32.56±8.99	27.98±11.7	34.71±2.55	47.68±6.85
	AUC	99.38±0.45	99.90±0.23	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
Abalone3	F-M	77.33±5.96	96.00±8.94	100.0±0.00	100.0±0.00	98.77±1.67	100.0±0.00	100.0±0.00
vs11	G-M	99.38±0.23	99.90±0.23	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00	100.0±0.00
	Mcc	78.98±5.03	96.25±8.39	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0±0.00	100.0 ± 0.00
	AUC	92.42±5.13	91.83±3.98	97.85±0.16	79.91±7.21	97.15±3.91	96.87±0.86	97.55±5.15
Yeast5	F-M	49.22±11.2	43.35±5.60	59.25±1.68	66.38±8.78	55.56±2.42	48.10±7.07	63.43±9.52
1 00000	G-M	92.28±5.60	91.68±4.08	97.82±0.16	76.85±9.77	80.94±2.64	96.82±0.89	97.52±5.95
	Mcc	55.20±11.3	48.60±4.56	63.47±1.37	67.46±7.17	54.17±2.47	54.52±5.79	66.92±8.83
krvsk3vs	AUC	92.06±2.42	87.60±2.39	98.47±1.78	99.39±1.21	99.53±0.09	98.07±1.41	100.0 ± 0.00
11	F-M	32.74±2.48	26.54±1.14	89.82±5.37	99.37±1.25	93.75 ± 2.40	59.26±2.63	100.0 ± 0.00
11	G-M	91.98±2.36	87.56±2.37	98.45±1.80	99.38±1.23	95.14±1.60	98.05±1.42	100.0 ± 0.00

	Mcc	40.62±2.57	33.86±1.79	89.86±5.27	99.37±1.27	93.57±2.48	63.63±2.60	100.0±0.00
	AUC	87.39±5.17	86.63±7.44	88.29±2.91	70.98 ± 6.78	93.36±3.55	93.45±1.86	96.01 ± 2.03
Yeast6	F-M	27.53±5.67	24.85±5.50	25.86±1.47	48.21±15.4	54.76±9.82	27.17±2.61	30.30 ± 4.05
i easto	G-M	87.24±5.32	86.39±7.54	88.23±2.82	64.15±11.6	70.20 ± 4.96	93.21±1.92	95.92±3.47
	Mcc	34.59 ± 6.23	32.17±7.29	33.70 ± 2.11	48.53±16.3	53.76±10.1	36.95 ± 2.42	40.54±3.30
W:1	AUC	64.34±7.62	60.26±3.15	66.13±6.21	64.70±1.93	52.94±16.9	57.22±8.10	76.50 ± 8.75
Winequal	F-M	8.96 ± 2.88	5.500 ± 0.41	8.010±1.42	38.00±6.53	4.000 ± 10.0	9.57±7.91	10.18 ± 2.75
ity-red	G-M	62.50 ± 9.34	60.02±3.27	65.87±6.19	54.47±3.72	0.000 ± 0.00	57.14±8.65	75.24±8.72
8vs67	Mcc	10.27±5.50	5.67±1.30	10.01±3.87	41.11±10.4	1.938±10.3	5.810±7.54	16.19±5.53
	AUC	99.94±0.08	99.89 ± 0.04	99.91±0.08	100.0 ± 0.00	100.0 ± 0.00	99.92±0.08	100.0 ± 0.00
Shuttle-2	F-M	96.36±4.98	93.51±2.37	94.53±4.71	100.0 ± 0.00	100.0 ± 0.00	95.45±4.55	100.0 ± 0.00
vs5	G-M	99.94±0.08	99.89 ± 0.04	99.91±0.08	100.0 ± 0.00	100.0 ± 0.00	99.92±0.08	100.0 ± 0.00
	Mcc	96.46±4.85	93.62±2.26	94.66±4.50	100.0 ± 0.00	100.0 ± 0.00	95.57±4.43	100.0 ± 0.00
	AUC	99.93±0.06	90.50±10.2	100.0 ± 0.00	100.0 ± 0.00	95.38 ± 0.92	93.75±6.25	98.76 ± 5.04
kddrootki	F-M	94.14±5.41	85.32±13.8	100.0 ± 0.00	100.0 ± 0.00	91.90±1.74	92.86±7.14	87.19±2.95
tback	G-M	99.93±0.06	89.35±12.1	100.0 ± 0.00	100.0 ± 0.00	92.98±1.61	93.30 ± 6.70	98.58±5.93
	Mcc	94.34±5.22	89.28±12.1	100.0 ± 0.00	100.0 ± 0.00	91.82±1.76	93.25±6.75	84.53±2.64
	AUC	94.63±5.37	93.24±4.84	89.62±0.01	87.49±7.64	99.26±2.15	97.54±4.28	98.62 ± 0.19
	F-M	8.04 ± 0.85	37.68±2.35	20.76±1.92	78.27 ± 9.22	46.33±3.09	27.74±1.42	54.67±1.64
cod	G-M	94.44±5.59	93.11±4.95	89.11±0.01	86.16±8.68	95.92 ± 9.24	97.43±4.52	98.61±0.19
	Mcc	19.33±2.02	24.57±10.7	30.69±1.64	79.14±9.08	46.26±3.09	38.56±1.09	61.48±1.97

D. Robust Analysis

Robustness checking of the proposed model is conducted with three groups of experiments. In 1st group of experiment, the stability of the accuracies on all datasets and four evaluation criteria are shown in Fig.9. More stable the accuracy is, more robust the method is. In 2nd group of experiment, different methods are compared when the data has noise (noise rate 10%) as shown in Table XI. Higher the accuracy is, more robust the method is. In 3rd group of experiment, different methods are compared when the class label has noise (noise rate 10%) as shown in Table XII. Higher the accuracy is, more robust the method is. From the Fig.9, it can be seen that the performance of the proposed algorithm is most stable, i.e., the overall performance of the proposed algorithm tends to be better as the IR increases, indicating its good robustness. In the Tables XI- XII, it can be observed that the performance of the proposed DSENLG-IE algorithm is optimal on four evaluation criteria in most cases. For data with noise, the proposed method provided the best performance on 15,7,15 and 9 datasets for AUC, F-M, G-M and Mcc respectively. For class label with noise, the proposed method provided the best performance on 13,11,10 and 9 datasets for AUC, F-M, G-M and Mcc respectively. This indicate the proposed DSENLG-IE algorithm has a strong robustness.

Fig. 9. Stability of classification accuracy on different datasets: (a) AUC, (b) F-M, (c) G-M, (d) Mcc

				DATA WITH NOIS	SE (NOISE RATE 10				
Dataset	Ecoli1			Musk					
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	80.23±3.55	67.02±4.54	79.93±3.77	56.60±6.00	91.99±1.18	81.53±1.94	91.95±1.21	78.27±2.30	
SPE[40]	82.00±5.36	69.48±7.69	81.66±5.65	60.12±10.3	90.06±1.48	79.21 ± 2.28	89.94±1.55	75.41 ± 2.72	
Imbalance-XGBoost[9]	80.87±5.91	70.36 ± 8.93	79.89 ± 6.82	62.19±11.4	88.97±1.35	85.25±1.85	88.41±1.50	83.18±2.08	
DSENLG-IE	87.58±6.23	74.01±10.4	86.93±6.88	67.21±13.4	92.33±5.78	77.42±1.47	92.15±5.88	74.68±1.65	
Dataset		Ec	oli3		Glass016vs2				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	81.57±7.52	57.20±10.3	80.48±8.76	53.21±11.6	60.36±12.9	23.02±14.5	50.63±25.1	14.71±18.5	
SPE[40]	77.54±8.46	56.38±13.1	75.03±10.9	51.95±14.8	57.81±12.7	19.73±12.5	47.54±25.9	10.05±16.6	
Imbalance-XGBoost[9]	73.21±9.90	53.54±17.7	68.11±14.6	49.82±19.5	50.57±4.99	4.970±12.6	7.190±17.9	1.580±13.7	
DSENLG-IE	95.51±3.06	75.34±14.3	95.35±3.22	75.04±14.0	61.42±15.4	22.62±9.64	58.55±15.7	13.46±19.1	
Dataset		Shuttle-	c0-vs-c4			Dermate	ology-6		
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	98.90±1.71	98.23±2.00	98.88±1.76	98.14±2.10	97.09±5.78	94.34±8.48	96.85±6.38	94.33±8.49	
SPE[40]	98.83±1.57	98.35±1.81	98.81±1.61	98.26±1.90	96.38±5.58	94.23±7.04	96.13±5.98	94.25±7.06	
Imbalance-XGBoost[9]	99.31±1.18	98.32±2.14	99.30±1.20	98.22±2.28	93.88±8.35	90.85±11.6	93.16±9.97	91.15±10.6	
DSENLG-IE	99.99±0.03	99.92±0.40	99.99±0.03	99.92±0.42	99.90±0.39	98.61±5.14	99.90±0.40	98.64±4.99	
Dataset Dataset	//.//±0.03		ast4)).) <u>Z</u> ±0. 7 Z)).)0±0.5)	Abalon		70.04±4.77	
	ALIC			M	ALIC	F-M		Mar	
Measure	AUC	F-M	G-M	Mec	AUC		G-M	Mcc	
EASE[41]	76.12±6.51	37.03±8.74	73.34±8.94	36.74±9.41	92.08±10.1	83.66±15.5	90.99±12.0	84.30±14.8	
SPE[40]	77.78±6.12	36.07±5.89	75.63±8.26	36.66±6.68	95.03±8.82	86.00±14.1	94.34±10.5	86.54±13.5	
Imbalance-XGBoost[9] DSENLG-IE	61.81±5.69 80.45 ± 6.53	30.75±12.7 39.61±4.87	47.67±13.2 78.33±6.78	31.26±13.4 37.95 ± 4.83	91.73±11.1 99.24±5.30	82.36±18.3 98.51±8.68	89.82±16.9 98.99 ± 7.07	82.99±17.9 98.71±7.40	
Dataset	00.43±0.33		ast5	37.93±4.63	99.24±3.30			96./1±/.40	
	AUC	F-M	G-M	Mcc	krvsk3vs11 AUC F-M G-M Mec				
Measure								Mcc	
EASE[41]	84.25±4.79	65.03±5.99	82.77±6.14	47.14±12.4	93.92±3.78	87.10±5.59	93.66±4.04	86.89±5.72	
SPE[40] Imbalance-XGBoost[9]	87.22±7.63	66.71±11.3	85.99±9.27	47.73±9.83	94.17±4.05	88.41±6.06	93.91±4.36	88.23±6.17	
DSENLG-IE	75.99±8.33 92.64±9.30	56.64±14.4 63.43±11.4	71.25±12.8 91.82±10.8	48.61±18.3 65.95 ± 9.95	88.88±5.82 100.0±0.00	81.66±8.18 100.0±0.00	87.97±6.79 100.0±0.00	81.61±8.09 100.0±0.00	
Dataset	92.04±9.30			05.95±9.95	100.0±0.00			100.0±0.00	
	Yeast6			Winequality-red8vs67					
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	79.25±8.87	46.98±11.8	76.07±12.2	47.14±12.4	65.27±11.9	11.61±6.52	55.83±25.2	12.79±9.90	
SPE[40]	84.01±8.16	46.00±9.10	82.43±9.94	47.73±9.83	62.28±12.5	7.190±3.86	55.81±23.3	7.800±8.14	
Imbalance-XGBoost[9]	69.84±9.39	47.21±18.2	60.96±16.9	48.61±18.3	52.16±5.24	6.800±15.7	8.460±19.4	7.780±18.7	
DSENLG-IE	90.05±7.70	32.39±8.86	89.15±8.75	39.52±7.60	79.64±8.86	10.53±2.05	76.99±8.21	18.15±5.02	
Dataset	Shuttle-2vs5				kddrootkitback				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	97.92±3.12	97.77±3.40	97.85±3.26	97.82±3.30	95.38±6.35	82.80±8.74	95.02±6.91	83.07±8.47	
SPE[40]	97.94±2.93	97.81±3.17	97.88±3.05	97.85±3.09	95.53±5.86	93.04±8.08	95.22±6.31	93.27±7.88	
Imbalance-XGBoost[9]	97.62±2.98	97.47±3.22	97.54±3.10	97.51±3.14	95.09±5.94	93.41±7.56	94.75±6.39	93.68±7.29	
DSENLG-IE	99.94±0.23	97.31±9.23	99.94±0.23	97.59±8.20	99.68±0.10	88.96±6.17	99.68±0.10	85.08±5.38	
Dataset			od						
Measure	AUC	F-M	G-M	Mcc					
EASE[41]	86.02±7.25	72.36±11.4	84.38±9.22	73.24±10.8					
SPE[40]	88.40 ± 7.90	68.21±9.94	87.17±9.11	69.34±10.1					
Imbalance-XGBoost[9]	82.25±0.04	68.51±16.5	79.20±13.4	69.68±15.8					
DSENLG-IE	92.33±1.16	51.71±0.29	92.00±1.26	58.54 ± 0.84					

 $\begin{tabular}{ll} TABLE~XII\\ Comparison~results~when~class~label~with~noise~(noise~rate~10\%) \end{tabular}$

Dataset	Ecoli1				Musk				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	85.24±6.59	74.28±8.85	84.98±6.89	66.44±12.0	68.59±1.26	49.39±1.51	68.55±1.25	31.84±2.32	
SPE[40]	85.82 ± 4.38	76.44 ± 6.29	85.45±4.71	69.61±8.20	69.76 ± 1.82	51.29±2.26	69.48±1.91	34.93±3.25	
Imbalance-XGBoost[9]	85.53 ± 6.08	77.42 ± 8.29	84.85±6.78	71.42±10.3	72.68±1.67	60.31±2.94	68.85±2.34	53.94±3.08	
DSENLG-IE	88.16±8.19	79.09±13.9	87.37±9.35	73.44±17.7	74.41 ± 8.60	57.51±11.1	72.10±9.49	47.42±17.0	
Dataset	Ecoli3				Glass016vs2				
Dataset		Eco	oli3			Glass0	16vs2		
Measure Measure	AUC	F-M	G-M	Mcc	AUC	Glass0 F-M	016vs2 G-M	Mcc	
	AUC 59.98±6.15			Mcc 15.84±9.62	AUC 55.82±11.2			Mcc 8.710±17.2	
Measure		F-M	G-M			F-M	G-M		
Measure EASE[41]	59.98±6.15	F-M 34.83±6.54	G-M 59.08±6.81	15.84±9.62	55.82±11.2	F-M 23.87±12.9	G-M 49.04±20.1	8.710±17.2	

Dataset	Shuttle-c0-vs-c4				Dermatology-6				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	64.43±2.96	37.62±3.54	63.15±3.53	17.05±9.80	61.12±6.31	31.58±7.95	58.94±9.07	17.05±9.80	
SPE[40]	64.94±2.97	38.46±3.66	63.59±3.42	16.58±13.1	60.51±8.05	31.54 ± 9.72	58.28±10.1	16.58±13.1	
Imbalance-XGBoost[9]	69.07±2.07	53.47±3.60	62.40±3.62	35.87±16.0	63.92±7.47	39.38±16.1	53.54±14.4	35.87±16.0	
DSENLG-IE	69.66±6.37	45.48±8.73	67.63±7.92	36.24±21.6	73.63±13.04	45.19±15.6	70.59±15.9	36.24±21.6	
Dataset	Yeast4				Abalone3vs11				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	55.11±4.23	24.09±3.71	54.47±4.92	7.010±5.81	58.21±6.15	26.49±6.53	56.06±8.33	11.86±8.96	
SPE[40]	54.82±3.48	22.82±4.47	49.62±5.61	7.630 ± 5.56	59.29±5.72	28.12±7.27	54.03±8.55	15.47±9.04	
Imbalance-XGBoost[9]	53.54±2.08	14.64 ± 6.04	29.02±8.20	12.93±7.82	60.85 ± 5.47	33.36±12.6	47.26±11.3	32.64±13.2	
DSENLG-IE	66.11±2.26	39.10±2.38	57.84±2.57	19.47±4.21	53.06±3.23	24.02±1.42	29.17±6.13	7.500±7.17	
Dataset		Ye	ast5		krvsk3vs11				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	52.65±3.98	21.54±2.79	52.42±3.98	3.490±5.24	56.24±2.09	23.70±2.16	53.94±2.89	8.950±2.99	
SPE[40]	56.39±4.63	24.07±4.69	54.25±6.07	9.100 ± 6.60	56.92±3.23	24.41±3.36	54.55±4.09	10.00 ± 4.66	
Imbalance-XGBoost[9]	55.52±2.68	20.34±7.16	36.19 ± 7.71	17.11 ± 6.73	58.79±2.17	29.25±5.81	42.82±5.23	31.62 ± 5.81	
DSENLG-IE	60.89±3.56	31.85±9.14	55.43±7.16	18.43±5.36	62.21±4.93	30.47±5.53	60.44±5.86	18.27±7.64	
Dataset		Ye	ast6		Winequality-red8vs67				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	55.22±4.03	22.37±3.81	53.95±5.49	7.000±5.45	51.05±5.43	19.03±4.84	48.45±6.87	1.480±7.48	
SPE[40]	54.79±4.36	21.95±4.00	52.77±5.59	6.610±5.99	51.16±5.64	19.27±5.01	49.17±7.22	1.550±7.67	
Imbalance-XGBoost[9]	53.59±2.53	14.96±7.06	29.20±10.0	13.03 ± 8.73	50.27±2.18	6.840 ± 5.90	17.02±12.9	0.780 ± 6.80	
DSENLG-IE	63.45±6.66	28.57±4.47	54.08±8.95	15.80±9.95	51.74±1.35	22.28±0.62	20.86±3.83	5.620±4.04	
Dataset	Shuttle-2vs5				kddrootkitback				
Measure	AUC	F-M	G-M	Mcc	AUC	F-M	G-M	Mcc	
EASE[41]	54.32±1.74	20.64±1.58	52.27±2.16	5.860±2.37	54.36±3.48	20.59±2.67	53.82±3.99	5.530±4.42	
SPE[40]	53.95±2.55	20.26±2.40	51.54±3.36	5.390 ± 3.48	52.39±2.99	19.18 ± 2.26	51.78±3.43	3.030 ± 3.79	
Imbalance-XGBoost[9]	55.73±1.68	20.54±5.15	34.46 ± 5.06	25.56±6.21	54.11±1.90	15.64±5.89	29.69±6.52	18.28±7.69	
DSENLG-IE	56.30±4.13	22.44±1.95	46.95±5.94	9.220±5.61	51.92±4.06	20.54±1.64	16.48±14.1	4.680 ± 6.85	
Dataset	cod								
Measure	AUC	F-M	G-M	Mcc					
EASE[41]	50.43±1.28	16.98±0.81	50.35±1.31	0.520±1.54					
SPE[40]	50.34±1.10	17.03 ± 0.68	50.32±1.10	0.400 ± 1.33					
Imbalance-XGBoost[9]	50.48 ± 0.26	2.080 ± 1.02	9.840 ± 3.08	6.510±2.90					
DSENLG-IE	50.49±0.55	18.52 ± 0.18	12.74±2.99	2.050 ± 2.28					