FORM-PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK CEEICE TRANSMITTAL LETTER TO THE UNITED STATES 001560-387 DESIGNATED/ELECTED OFFICE (DO/EO/US) U.S. APPLICATION NO. (If known, see 37 C.F.R 1.5) **CONCERNING A FILING UNDER 35 U.S.C. 371** INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED 16 February 1999 PCT/JP00/00876 16 February 2000 TITLE OF INVENTION GENE ENCODING A PROTEIN HAVING A GLYCOSYL TRANSFERASE ACTIVITY TO AURONES APPLICANT(S) FOR DO/EO/US Keiko SAKAKIBARA, Yuko FUKUI, Yoshikazu TANAKA, Takaaki KUSUMI, and Takafumi YOSHIKAWA Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information: \boxtimes This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination \boxtimes until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and the PCT Articles 22 and 39(1). A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date. 5. ∰⊠ A copy of the International Application as filed (35 U.S.C. 371(c)(2)) is transmitted herewith (required only if not transmitted by the International Bureau). \boxtimes b. has been transmitted by the International Bureau. is not required, as the application was filed in the United States Receiving Office (RO/US) 113 6. □⊠ A translation of the International Application into English (35 U.S.C. 371(c)(2)). M Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) 14 are transmitted herewith (required only if not transmitted by the International Bureau). have been transmitted by the International Bureau. h. have not been made; however, the time limit for making such amendments has NOT expired. \boxtimes have not been made and will not be made. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 図 An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). Items 11. to 16. below concern other document(s) or information included: M An Information Disclosure Statement under 37 CFR 1.97 and 1.98.

An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.

A FIRST preliminary amendment.

*

A SECOND or SUBSEQUENT preliminary amendment.

. A substitute specification.

15. A change of power of attorney and/or address letter.

16. Other items or information:

PCT Notice Informing the Applicant of the Communication of the International Application to the Designated Offices (Form PCT/IB/308) Cover page of published PCT international application (Publication No. WO 00/49155)

PCT Request Form(Japanese)

Sequence Listing (attached to Preliminary Amendment)

529 Rec'd PCT/PTO 16 OCT 2000

U.S. APPLICATION NO. (If known			NEY'S DOCKET NUMBER											
17. A The following	foce are submitted:	1,,			CAL	CULATIONS	PTO USE ONLY							
-	7. A The following fees are submitted: asic National Fee (37 CFR 1.492(a)(1)-(5)):													
Neither internations														
nor international se and International S	Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO													
USPTO but Interna	inary examination fee (37 CF tional Search Report prepared	by the	EPO or JPO	\$860.00 (970)										
but international se	ninary examination fee (37 CF) earch fee (37 CFR 1.445(a)(2))) paid to	USPTO	\$710.00 (958)										
International prelim but all claims did n	inary examination fee paid to ot satisfy provisions of PCT A	USPTO Article 30	(37 CFR 1.482) 3(1)-(4)	\$690.00 (956)										
International prelim and all claims satis	inary examination fee paid to fied provisions of PCT Article	USPTO 33(1)-(4	(37 CFR 1.482) 4)	\$100.00 (962)										
	ENTER	APPRO	OPRIATE BASIC F	EE AMOUNT =	\$	860.00								
Surcharge of \$130.00 (months from the earliest	154) for furnishing the oath o	or declara R 1.492	ation later than (e)).	20 🗆 30 🗆	\$									
Claims	Number Filed		Number Extra	Rate										
Total Claims	12 -20 =	0		X\$18.00 (966)	\$									
Independent Claims	1 -3 =	0		X\$80.00 (964)	\$									
Multiple dependent clain	n(s) (if applicable)			+ \$270.00 (968)	\$									
100 A 100 A		TOT	AL OF ABOVE CA	LCULATIONS =	\$	860.00								
Reduction for 1/2 for fill filed. (Note 37 CFR 1.9	ing by small entity, if applicat	ole. Veri	ified Small Entity state	ement must also be	\$		_							
THE CHARGE OF CITY 1.5	, 1.27, 1.20,			SUBTOTAL =	\$	860.00								
Processing fee of \$130.	.00 (156) for furnishing the E t claimed priority date (37 CF	nglish tra R 1.492	anslation later than	20 🗖 30 🗆	\$									
2 1 2			TOTAL N	ATIONAL FEE =	\$	860.00								
Fee for recording the en	closed assignment (37 CFR 1 eet (37 CFR 3.28, 3.31). \$4	1.21(h)). 10.00 (5	The assignment mus		\$	40.00								
				S ENCLOSED =	\$	900.00								
					A	mount to be:	\$							
						charged	\$							
a. 🛛 A check in t	he amount of \$ 900.00 to c	over the	ahove fees is enclose	ď										
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ge my Deposit Account No. <u>0</u>				e fees	. A duplicate o	copy of this sheet							
c.	ssioner is hereby authorized to . <u>02-4800</u> . A duplicate copy	o charge	any additional fees w	hich may be required,	or cre	dit any overpay	ment to Deposit							
NOTE: Where an	appropriate time limit under granted to restore the applica	37 CFR	1.494 or 1.495 has no	ot been met, a petition	to re	vive (37 CFR 1	.137(a) or (b))							
made bo mod and	grantou to rootere me approx		. /	11 1		Pac. l	10.							
SEND ALL CORRESPO			XII	yly H. (FOR	200	M 7214	718							
1	DANE, SWECKER & MATHIS	, L.L.P.	SIGN	NATURE	••••									
P.O. Box Alexandria	1404 a, Virginia 22313-1404		Fox. Don	nna M. Meuth										
(703) 836			NAM			-								
			36	607										
Date: October 16,	2000	ISTRATION NUMBER	(

09/673300 529 Rec'd PCT/PTO 16 OCT 2000

Patent

Attorney's Docket No. 001560-387

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)
Keiko SAKAKIBARA et al) Group Art Unit: Unassigned
Application No.: Unassigned Corresponding to PCT/JP00/00876) Examiner: Unassigned)
Filed: October 16, 2000)
For: GENE ENCODING A PROTEIN HAVING A GLYCOSYL TRANSFER- ASE ACTIVITY TO AURONES)))

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examination on the merits, please amend the above identified application as follows:

IN THE SPECIFICATION:

In compliance with 37 C.F.R. § 1.823(a), please insert the attached copy of the "Sequence Listing" after page 19 and before the claims of the instant application, and renumber the pages accordingly.

IN THE CLAIMS:

Please amend claims 5, 7, 9 and 12 as follows:

- 5. (Amended) A vector comprising a gene according to [any one of the claims 1 to 4] claim 1.
- 7. (Amended) A protein encoded by a gene according to [any one of the claims 1 to 4] claim 1.

- 9. (Amended) A plant into which a gene according to [any one of the claims 1 to 4] <u>claim 1</u> has been introduced, and a progeny and a tissue thereof having the same property as said plant.
- 12. (Amended) A method of stabilizing aurones in the plant body which method comprises introducing the gene according to [any one of the claims 1-4] <u>claim 1</u> into the plant body, allowing said gene to be expressed, and using the protein produced therein to transfer a glycosyl group to aurones in the plant body.

REMARKS

Entry of the foregoing and examination of the above-identified application is respectfully requested.

The paper copy of the Sequence Listing for the subject application, is by this amendment, added after page 19 and before the claims of the instant application. Please renumber the pages accordingly.

Claims 5, 7, 9 and 12 have been amended to eliminate the multiple dependency of the claims. New claims 12-20 have been added, directed to preferred embodiments of the invention. These claims are supported by the original claims 1-11. No new matter has been added by these amendments.

Early and favorable action in the form of a Notice of Allowance is respectfully requested.

In the event that there are any questions relating to this amendment or the application in general, it would be appreciated if the Examiner would contact the undersigned attorney be telephone so that prosecution would be expedited.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

By:/

Donna M. Meuth

Registration No. 36,607

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

Date: October 16, 2000

APRTS.

09/673300 529 Rec'd PCT/PTC 16 QCT 2000

DESCRIPTION

GENE ENCODING A PROTEIN HAVING A GLYCOSYL TRANSFERASE ACTIVITY TO AURONES

5

Technical Field

The present invention relates to a gene encoding a protein having a glycosyl transferase activity to aurones, said protein, and the uses thereof.

10

15

20

25

30

35

Background Art

The color of flowers are mainly based on three pigments: flavonoids, carotenoids, and betalains. Yellow colors are mostly derived from carotenoids and betalains, but in some plants they are derived from flavonoids.

Among the flavonoid pigments, major pigments that are thought to be associated with the development of yellow flowers are divided into three groups: chalcones, aurones, and yellow flavonols (Saito, Biohorti 1, pp. 49-57, 1990)

Aurones are substances in which two phenyl groups are joined together through three carbon atoms of dihydrofuran. As aurones, there are known 4,6,4'-trihydroxy aurone, aureusidin, sulfuretin, bracteatin, and the like. For example, aureusidin and bracteatin are contained in snapdragons, aureusidin is contained in limoniums, aureusidin is contained in morning glories, sulfuretin is contained in dahlias, bracteatin is contained in Helichrysum bracteatum, and sulfuretin is contained in Helianthus tuberosus.

Flavonoids have generally been modified by acylation, glycosilation, methylation and the like, and carotenoids and betalains have also been glycosilated in many cases. Among various modifications, glycosilation plays an important role in the color of flowers such as (1) contribution to enhancing the stability and solubility of pigments, (2) the presence as a step

10

15

20

25

30

35

preceding acylation that greatly affects the hue of colors, and (3) copigmentation effects by the glycosilated flavonoids, and the like.

It has been reported that, in snapdragon, a yellow pigment aurones (aureusidin, bracteatin), a kind of flavonoid, is present in a glycosilated at its position 6 corresponding to position 7 of flavonoids, and since aurones are present as glycosides in other auronecontaining plants as well, it has been considered that glycosilation is essential for the stability of aurones.

There are many reports on the genes for glycosyl transferases derived from plants that transfer a glycosyl group to flavonoids and on the activities of those enzymes.

By way of example, genes encoding UDP-glucose: flavonoid 3-glucosyl transferases (3GT) that transfer a glycosyl group to the position 3 of flavonoids have been obtained from many plants including corn, barley, and snapdragon, and has been analyzed in detail (The Flavonoids: Advanced in Research Since 1986. Published by Chapman & Hall, 1993).

Also, genes encoding UDP-glucose: flavonoid 5-glucosyl transferases (5GT) that transfer a glycosyl group to the position 5 of flavonoids have been cloned from perillas, torenias, and verbenas (International Patent Publication No. WO 99/05287).

However, as to the gene encoding UDP-glucose: flavonoid 7-glucosyl transferase (7GT) that transfers a glycosyl group to the position 7 of flavonoids, there is only one report on the purification of flavanone-specific 7-glucosyl transferase in grapefruits (Archives of Biochemistry and Biophysics 282, 1: 50-57, 1990).

With regard to enzymes that transfer a glycosyl group to the position 6 of aurones, there is a report on the measurement of a reaction that transfers a glycosyl group to the position 6 of sulfuretin, a kind of aurone (Plant Science 122: 125-131, 1997), but this only studied

10

15

20

25

30

35

the enzymatic property using a partially purified product, and has not been purified in a pure form.

On the other hand, there is a report on the isolation of a glycosyl transferase, pS.b UFGT1, that has an activity of transferring glucose to the position 7 of baicaleins, a kind of flavone, from the hairy roots of a Labuatae, Scutellaria baicalensis (1997, presented at the Fifteenth annual meeting of Japanese Society of Plant Cell and Molecular Biology). The gene product is also reported to be capable of transferring a glycosyl group to the position 7 of anthocyanidins and flavonols, but not reported on aurones (presented at the Fifteenth annual meeting of Japanese Society of Plant Cell and Molecular Biology).

As genes having a high homology to pS.b UFGT1, tabacco-derived IS10a and IS5a have been reported (Plant Molecular Biology, 31: 1061-1072, 1996), but its activity of transferring a glycosyl group to position 7 (7GT activity) has not been studied.

Reports to date teach that the glycosyl transferases that use flavonoids as substrates have a great variation in substrate specificity even among flavonoids. For example, when the gene of flavonoid-3-glycosyl transferase derived from gentians were cloned, expressed in <u>E. coli</u>, and the activity was determined, it was found to exhibit a 61% activity to cyanidins, a 38% activity to pelargonidins, and a good activity to anthocyanins relative to a 100% glycosyl transferase activity to delphinidins. On the other hand, it only shows an activity of 7.0%, 6.5%, and 4.4% to kaempferol, quercetin, and myricetin, respectively. Furthermore, it does not transfer a glycosyl group to dihydroflavonols (Tanaka et al., Plant Cell Physiol. 37: 711, 1996).

Also, when the gene of flavonoid-3-glycosyl transferase derived from grapes was cloned and the activity was determined in <u>E. coli</u>, its Km was 30 μ M and Vmax was 905 nkatals/mg to cyanidins, whereas to

15

20

25

30

quercetins the Km was 15 μ M and Vmax was 18.9 nkatals/mg, exhibiting a great difference in reaction rates (Ford et al., J. Biol. Chem. 273: 9224, 1998).

These reports indicate that glycosyl transferases can distinguish the kinds of flavonoids and that the glycosyl transferase activity to a flavonoid does not readily permit the estimation of the glycosyl transferase activity to another flavonoids.

10 Disclosure of the Invention

As hereinabove described, glycosyl transferases using flavonoids as substrates have a great variation in substrate specificity and the estimation of a glycosyl transferase activity to a specific flavonoid cannot be easily made based on known glycosyl transferases.

Thus, the present inventors have attempted to obtain a gene encoding a protein having a glycosyl transferase activity to aurones among the flavonoid pigments, and thereby have completed the present invention.

The present inventors have demonstrated that a gene product of the ps.b UFGT1 gene derived from <u>Scutellaria baicalensis</u> has an activity of transferring a glycosyl group to aurones, and, using this gene as a probe, have obtained a gene encoding a protein having an activity of transferring a glycosyl group to aurones from snapdragons (<u>Antirrhinum majus</u>).

Also, using said gene obtained from snapdragons (Antirrhinum majus) as a probe, the present inventors have further obtained two genes encoding a protein having an activity of transferring a glycosyl group to aurones from a petunia (Petunia hybrida).

Thus, the present invention provides a gene encoding a protein having an activity of transferring a glycosyl group to aurones. Furthermore, the present invention provides a gene encoding a protein having the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 and having an activity of transferring a glycosyl group to

35

÷ .

aurones.

The present invention further provides a gene encoding a protein that has an amino acid sequence modified by the addition, deletion and/or substitution with other amino acids of one or more amino acids in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, and that has an activity of transferring a glycosyl group to aurones.

The present invention further provides a gene encoding a protein that hybridizes to a nucleic acid having a nucleotide sequence encoding the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 or a portion thereof under a stringent condition, and that has an activity of transferring a glycosyl group to aurones.

The present invention also provides a vector comprising said gene.

The present invention further provides a host transformed with said vector. The host may be a microorganism, plant cells, animal cells, or plants.

The present invention also provides a method of producing a protein having an activity of transferring a glycosyl group to aurones, by culturing, cultivating or breeding said host.

The present invention also provides a method of stabilizing aurones in the plant, said method comprising introducing said gene into the plant having aurones, allowing said gene to be expressed, and transferring a glycosyl group to aurones in the plants with a protein thus produced.

In cases where a new flower color is to be created by introducing and expressing the gene of an aurone synthase in plants that have no aurones, aurones can be stably expressed therein by expressing the gene obtained by the present invention.

Brief Description of Drawings

Figure 1 shows a process of constructing the plasmid

20

25

5

10

15

30

pESBGT-1.

5

10

15

20

25

30

35

Figure 2 shows a process of constructing the plasmid pETAmGT1.

Embodiments for Carrying out the Invention

First, a cDNA library is prepared from the petals of a yellow snapdragon. The cDNA library thus obtained is screened using pS.b UFGT1, a flavonoid-7-glycosyl transferase gene derived from <u>Scutellaria baicalensis</u>, and then a clone is obtained. The plasmid obtained from the clone is isolated and its nucleotide sequence is determined.

It is known that enzymatically active proteins have regions essential for the enzymatic activity and regions non-essential for the activity, and that the enzymatic activity is retained even when the non-essential regions are modified by the addition, deletion and/or substitution with other amino acids of one or more amino acids. Thus, the present invention encompasses not only a protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, but also a protein having an amino acid sequence modified by the addition, deletion and/or substitution with other amino acids of one or more amino acids in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, and that having an activity of transferring a glycosyl group to aurones, and a gene encoding said protein.

The number of amino acids to be modified is, for example, 50 or less, and preferably 30 or less, for example 20 or less or 10 or less.

The gene encoding the protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 can be obtained as cDNA or genomic DNA from snapdragons or petunias. The method of cloning cDNA is specifically described in Examples 2, 3 and 6. In order to obtain genomic DNA, a genomic library is constructed based on the standard method from snapdragons or petunias and then

10

15

20

25

30

35

screened using said cDNA or a fragment thereof according to the standard method.

A gene encoding a protein having an amino acid sequence modified in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 can be constructed by modifying a nucleotide sequence of a DNA, for example cDNA, encoding a protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, by a standard method for manipulating genes such as site-directed mutagenesis and the PCR method.

Once a gene encoding a protein having the enzymatic activity has been cloned, the nucleic acid that hybridizes to said gene or a portion thereof encodes, in most cases, an amino acid sequence that exhibits the enzymatic activity and that is similar to the original protein. Thus the present invention provides a gene that hybridizes to a nucleic acid having a nucleotide sequence encoding an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 or a portion thereof under a stringent condition, and that encodes a protein having an activity of transferring a glycosyl group to aurones.

In the above hybridization condition, the washing condition is preferably $5 \times SSC$, 0.1% SDS and 50°C, more preferably $2 \times SSC$, 0.1% SDS and 50°C, and more preferably $0.1 \times SSC$, 0.1% SDS and 50°C.

In the above hybridization, when a nucleic acid having a portion of the nucleotide sequence encoding an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 is used, the length of the nucleic acid is preferably at least 17 base pairs long, and more preferably at least 100 base pairs long. As target nucleic acids to be hybridized, there can be used nucleic acids prepared from Scutellaria baicalensis, snapdragons, petunias, limoniums, mornig glories, dahlias, Helichrysum bracteatum, Helianthus tuberosus, and the like, and preferably genomic DNA libraries or cDNA libraries are

used.

5

10

15

20

25

30

35

The present invention also provides a method of producing the above protein having an activity of transferring a glycosyl group to aurones. The method comprises introducing a vector comprising DNA encoding said protein into a host, culturing or growing said host, and recovering said protein as desired. The host may be host cells or plants, etc.

As the host cells, there can be used prokaryotic cells, particularly bacteria cells such as cells of Escherichia coli, a bacterium belonging to the genus Bacillus brevis, lower eukaryotes such as fungi, for example yeast such as a yeast belonging to the genus Saccharomyces, for example Saccharomyces, cerevisiae, or filamentous fungi such as the genus Aspergillus oryzae and Aspergillus oryzae and Aspergillus niger, and the like.

Furthermore, as higher eukaryotic hosts, there can be mentioned insect cells such as cells of silkworm, animal cells such as CHO cells, cultured human cells such as HeLa cells, and the like.

The gene of the present invention may also be expressed in an organism of, for example, a plant and so on.

Vectors comprising the DNA of the present invention, expression vectors in particular, may contain expression regulatory regions, and the expression regulatory regions depend on the host cell. For example, as promoters for bacterial expression vectors, there can be mentioned commonly used promoters such as the trc promoter, the tac promoter, the lac promoter, the T7 promoter and the like; as promoters for yeast expression vectors, there can be used the promoters of the genes of the glycolytic pathway such as glyceraldehyde-3-phosphate dehydrogenase promoter, galactokinase promoter, and the like; and as promoters for animal cell expression vectors, viral promoters can be used.

٠,

5

10

15

20

25

In order to recover proteins having an activity of transferring a glycosyl group to aurones, methods commonly used for isolation and purification of protein can be used such as liquid chromatography, and affinity chromatography.

With the current state in the art, it is possible to further ligate the cDNA under the control of a constitutive or inducible promoter, and introduced into a plant such as petunia, rose, carnation, chrysanthemum, torenia, verbena, gerbera, tobacco, strawberry, lisianthus, gentian, gladiolus, and tulip in a system utilizing Agrobacterium, particle guns, or electroporation, and to express the gene encoding the protein having an activity of transferring a glycosyl group to aurones in flower petals.

It is expected that in the flower petals in which a protein having an activity of transferring a glycosyl group to aurones was expressed, the aurones are glycosilated, and thereby are stabilized. The plants thus obtained can provide flowers having a hue of color that cannot be found in the conventional varieties.

In plants having no aurones, an aurone synthase gene are introduced, expressed, and at the same time a gene of the present invention encoding the protein having an activity of transferring a glycosyl group to aurones can be introduced and expressed, so that aurones can be stably expressed and new plants having a yellow hue can be provided. As the above plants having no aurones, there can be mentioned petunias, torenias, and tobaccoes.

Examples

The present invention will now be explained in further details with reference to the following Examples.

Example 1. Measurement of the activity of transferring a glycosyl group to aurones of a product of the ps.b UFGT1 gene derived from Scutellaria baicalensis

30

The activity of the pS.b UFGT1 gene derived from Scutellaria baicalensis of transferring a glycosyl group to aurones was determined using an expression vector pESBGT-1 in E. coli prepared by the following method.

First, the pS.b UFGT1 gene was subjected to a PCR reaction using two primers to introduce NdeI and BamHI sites.

5'-ATA ACT ACA TAT GGG ACA ACT CCAC-3' (SEQ ID NO: 3)

5'-CAG AAC AGG ATC CAC ACG TAA TTT A-3' (SEQ ID NO:

The PCR reaction mixture was prepared in a total volume of 50 μ l comprising 300 ng of pSBGT-1, 1 \times Native Pfu DNA polymerase reaction buffer (Stratagene), 0.2 mM dNTPs, 4 pg/ μ l each of the primers, and 2.5 U of Native Pfu DNA polymerase. The reaction was carried out, after 3 minutes at 95°C, for 30 cycles with one cycle comprising 95°C for 1 minute, 50°C for 2 minutes, and 72°C for 2 minutes, and finally was treated at 72°C for 7 minutes.

The PCR product was digested with NdeI and BamHI, and then was ligated to the NdeI- and BamHI-digested pET-3a vector (Stratagene) to construct pESBGT-1 (Figure 1). Using each of pESBGT-1 and pET-3a vector, it was transformed into Epicurian Coli BL21 (DE3) (Stratagene). The transformants were incubated overnight at 37°C in 3 ml of a LB medium containing 50 μ g/ml of ampicillin. The preculture (500 μ l) was added to 50 ml of a LB medium containing 50 μ g/ml of ampicillin, and cultured until

A600 reached 0.6-1.0. Then isopropyl- β -D-thiogalactopyranoside (IPTG) was added thereto to a final concentration of 0.5 mM, which was cultured at 28°C for 4 hours and centrifuged (5000 rpm, 10 minutes, 4°C) to collect the cells.

The pellets were suspended in 5 ml of the buffer (10

20

25

5

10

15

35

10

15

20

25

30

mM sodium phosphate, pH 6.5, 1 mM β -mercaptoethanol (2-ME)). After the <u>E. coli</u> cells were disrupted by a sonicator, it was centrifuged (15,000 rpm, 5 minutes, 4°C), and the supernatant obtained was used as a crude enzyme solution for the next enzyme reaction.

In addition to aureusidin, the enzymatic activity was determined using naringenin or luteolin as the substrate.

For aureusidin, the enzymatic activity was determined as follows:

To 50 μl of the crude enzyme solution were added 0.1 M Tris-HCl, pH 8.0, and 150 μl of 0.05% 2-ME, and then incubated at 30°C for 10 minutes. Then 5 μl of 4.66 mM aureusidin and 50 μl of 5 mM UDP-glucose were added thereto, and was allowed to react at 30°C for 1 hour. After the reaction was stopped by adding 200 μl of 90% acetonitrile containing 5% trifluoroacetic acid (TFA), it was centrifuged at 15,000 rpm and 4°C for 3 minutes. The supernatant thus obtained was filtered (pore size 0.45 μm, 4 mm Millex-LH, Millipore) to remove insoluble substances. The filtrate was analyzed by high performance liquid chromatography.

The analytical condition was as follows: The column used was Asahipak-ODP-50 (4.6 mm $\phi \times 250$ mm, Showa Denko). The mobile phase comprised water containing 0.1% TFA as solution A and 90% CH₃CN containing 0.1% TFA as solution B. After a linear gradient from 20% solution B to 100% solution B for 20 minutes, 100% solution B was retained for 5 minutes. The flow rate was 0.6 ml/min. Detection used A380 nm, and an absorption spectrum at 250-400 nm using Shimadzu PDA detector SPD-M6A.

For a reaction of the crude extract of $\underline{E.\ coli}$ cells in which pESBGT-1 was expressed, new substances were detected that eluted at 9.7, 12.0, and 13.1 minutes in addition to the substrate aureusidin (retention time 18.1

10

15

20

25

minutes). Since they were not detected in a reaction of the crude extract similarly prepared from <u>E. coli</u> cells in which the pET-3a vector was expressed, they were considered to be products resulting from the protein derived from pESBGT-1. The substance that eluted at 12.0 minutes among the products had the same retention time and the same absorption spectrum as that of aureusidin 6-glycoside. Other products also are considered to be aureusidin glycosides based on the absorption spectra.

For naringenin and luteolin, the enzymatic activity was determined as follows.

To 20 μ l of the crude enzyme solution were added 25 μ l of 0.1 M citric acid-phosphate buffer, pH 6.5, 5 μ l each of 5 μ M substrate, and 25 μ l of 5 mM UDP-glucose in a total volume of 250 μ l, and then incubated at 30°C for 30 minutes. After the reaction was stopped by adding 200 μ l of 90% acetonitrile containing 5% TFA, it was centrifuged at 15,000 rpm and 4°C for 3 minutes. The supernatant thus obtained was filtered (pore size 0.45 μ m, 4 mm Millex-LH, Millipore) to remove insoluble substances. The filtrate was analyzed by high performance liquid chromatography.

The analytical condition for naringenin was follows: The column used was YMC J's sphere ODS-M80 (4.6 mm ϕ × 150 mm, YMC). The mobile phase comprised water containing 0.1% TFA as solution A and 90% CH₃CN containing 0.1% TFA as solution B. After a linear gradient from 20% solution B to 80% solution B for 10 minutes, 80% solution B was retained for 5 minutes. The flow rate was 0.6 ml/min. Detection used A290 nm, and an absorption spectrum at 250-400 nm using Shimadzu PDA detector SPD-M6A.

The analytical condition for luteolin was as follows: The column used was YMC J's sphere ODS-M80 (4.6 mm φ \times 150 mm, YMC). The mobile phase comprised water

30

7.5

5

10

15

20

30

35

containing 0.1% TFA as solution A and 90% CH₃CN containing 0.1% TFA as solution B. After a linear gradient from 20% solution B to 80% solution B for 10 minutes, 80% solution B was retained for 5 minutes. The flow rate was 0.6 ml/min. Detection used A330 nm, and an absorption spectrum at 250-400 nm using Shimadzu PDA detector SPD-M6A.

When naringenin was used as the substrate, a new substance was detected that eluted at 6.9 minutes in addition to the naringenin (retention time 9.7 minutes). The substance was not detected in a reaction of the crude extract similarly prepared from <u>E. coli</u> in which the pET-3a vector was expressed. It had the same retention time as naringenin 7-glycoside but a different absorption spectrum, suggesting that a plurality of naringenin glycosides are present each at a trace amount.

When luteolin was used as the substrate, new substances were detected that eluted at 6.4, 7.7, and 8.0 minutes that were not be detected in a reaction of the crude extract similarly prepared from E. coli in which the pET-3a vector was expressed. The substance that eluted at 6.4 minutes among them had the same retention time as luteolin 7-glycoside.

The above result indicated that the pS.b UFGT1 gene derived from <u>Scutellaria baicalensis</u> is an enzyme that can glycosilate aureusidin. It was also demonstrated that it can glycosilate luteolin but had very little effect on naringenin.

It has already been shown that baicalein can be glycosilated at the position 7. After the reaction is complete for baicalein, almost 100% is detected as a 7 glycoside, but no reaction occurred to naringenin indicating that the expression product of the <u>Scutellaria baicalensis</u>-derived pS.b UFGT1 gene has a high substrate specificity.

Example 2. Construction of cDNA library of snapdragon petals

10

15

20

25

30

A cDNA library of the petals was prepared as follows: From 5 g of fresh petals of a yellow snapdragon (yellow butterfly), RNA was obtained using a method of employing guanidine thiocyanate and cesium chloride as described in detail in Method in Molecular Biology, Vol. 2, (Humana Press Inc., 1984) by R. McGookin et al., and polyA+RNA was purified therefrom using Oligotex dT30 (Nippon Roche). From the polyA+RNA, cDNA library was constructed using the cDNA synthesis kit, Uni-XR vector kit (Stratagene). The library obtained comprised 1.6 × 10⁵ plaque forming units (pfu).

Example 3. Collection of the full-length aurone glycosyl transferase

The snapdragon cDNA library obtained in Example 2 was screened using the full-length pS.b UFGT1, a hairy root-derived flavonoid-7-glycosyl transferase. The library was screened using a non-radio system DNA detection kit (Boehringer). Hybridization was carried out overnight at 37°C. Washing filter was carried out at 5 × SSC, 0.1% SDS and 50°C for 30 minutes. About 200,000 plaques were screened to finally obtain 2 clones. The method was based on Molecular Cloning (Sambrook et al., Cold Spring Harbour Laboratory Press, 1989).

Since the two clones encoded the sequences having the completely same length, one was designated as pAmGT1 and nucleotide sequence was determined.

The nucleotide sequence was determined by synthesizing an oligonucleotide primer and using DNA Sequencer model 310 (Applied Biosystems). The nucleotide sequence and the deduced amino acid sequence are shown in SEQ ID NO: 1 in the sequence listing.

pAmGT1 contained a 1751 bp gene AmGT1 encoding a protein of a molecular weight 53.9 kDa comprising 481 amino acids.

35 Example 4. Expression of the AmGT1 cDNA in E. coli

The expression of the AmGT1 cDNA was carried out

10

15

20

25

30

35

using the pET System (Stratagene).

First, in order to introduce NdeI and BamHI sites, the following 2 primers pETAmGT5' and pETAmGT3' were used in a PCR reaction.

petamgt5': 5'-ATA ACT ACA TAT GGG AAA ACT TCA C-3' (SEQ ID NO: 5)

pETAMGT3': 5'-GAA CAG GAT CCA CAC ACT AGA AGT CA-3' (SEQ ID NO: 6)

The PCR reaction mixture was prepared in a total volume of 100 μl comprising 100 ng of pAmGT1, the 1 \times the cloned Pfu DNA polymerase reaction buffer (Stratagene), 0.2 mM dNTPs, 0.5 pmol/ μl each of the primers, and 5.0 U of the cloned Pfu DNA polymerase. The reaction was carried out, after 45 seconds at 95°C, for 25 cycles with one cycle comprising 95°C for 45 seconds, 50°C for 45 seconds, and 72°C for 2 minutes, and was finally treated at 72°C for 10 minutes. The PCR product obtained was subcloned into the pCR2.1 TOPO vector (INVITROGEN).

Some of the clones of the plasmid pTOPO-ETAMGT1 thus obtained were reacted using M13 Reverse Primer and M13(-20) primer (TOYOBO) using ABI PRISM™ BigDye™ Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems), and the nucleotide sequences on both ends were confirmed using DNA Sequencer model 310 (Applied Biosystems). An about 2.7 Kb fragment obtained by digesting pTOPO-ETAMGT1 with NdeI, BamHI and ScaI was ligated to the NdeI and BamHI sites of the pET-3a vector (Stratagene) to obtain plasmid pETAMGT1 (Figure 2). Using pETAMGT1, it was transformed into Epicurian Coli BL21 (DE3) (Stratagene).

Example 5. Measurement of the glycosyl transferase activity of the AmGT1 cDNA recombinant protein

The transformant obtained in Example 4 was cultured, extracted and the enzymatic activity was measured as in Example 1.

When aureusidin was used as the substrate, new

10

15

20

25

substances were detected that eluted at 10.98, 11.27, and 11.85 minutes in addition to aureusidin (retention time 16.6 minutes). Since the substances were not detected in a reaction of the crude extract similarly prepared from E. coli in which the pET-3a vector was expressed, they were believed to be products that resulted from pESBGT-1-derived protein.

Among the products, the substance that eluted at 10.98 minutes had the same retention time as aureusidin 6-glycoside, and the one that eluted at 11.85 minutes had the same retention time as aureusidin 4-glycoside.

The above results indicated that AmGT1 can transfer a glycosyl group to the positions 6 and 4 of aureusidin. The substance that eluted at 11.27 minutes is also believed to be aureusidin glycoside based on the absorption spectra.

Example 6. Preparation of the gene of aurone glycosyl transferase derived from petunias

A cDNA library obtained from petals of a petunia variety "Old Glory Blue" (Nature 366: 276-279, 1993) was screened with the full-length AmGT1 gene obtained in Example 3. The library was screened using a non-radio system DNA detection kit (Boehringer). Hybridization was carried out overnight at 37°C. Washing filter was carried out at 5 × SSC, 0.1% SDS, and 50°C for 30 minutes. About 200,000 plaques were screened to finally obtain 2 clones. The method was based on Molecular Cloning (Sambrook et al., Cold Spring Harbour Laboratory Press, 1989).

The two clones were designated as pPh7GTa and pPh7GTb, respectively, and the nucleotide sequences were determined. The nucleotide sequence was determined by synthesizing an oligonucleotide primer and using DNA Sequencer model 310 (Applied Biosystems). The nucleotide sequence at the insertion site of pPh7GTa and the deduced amino acid sequence are shown in SEQ ID NO: 7 and 8, respectively, and the nucleotide sequence at the

35

10

15

20

25

insertion site of pPh7GTb and the deduced amino acid sequence are shown in SEQ ID NO: 9 and 10, respectively.

Example 7. Structural analysis of the gene of aurone qlycosyl transferase

pPh7GTa contained a 1750 bp gene, Ph7GTa, encoding a protein comprising 488 amino acids, and pPh7GTb contained a 1669 bp gene, Ph7GTb, encoding a protein comprising 476 amino acids. Using the deduced amino acid sequences obtained, they were compared with the AmGTI gene derived from Snapdragon obtained Example 3 and the pS.b UFGT1 gene derived from Scutellaria baicalensis. Accordingly, it was found that Ph7GTa had a 50% and 51% homology with AmGT1 and pS.b UFGT1, respectively. When compared with IS5a and IS10a derived from tobaccoes that are already reported to be genes having a high homology with pS.b UFGT1, they have exhibited homologies of 59% and 60%, respectively. Similarly, Ph7GTb had homologies of 59% and 56% with AmGT1 and pS.b UFGT1, respectively, and homologies of 88% and 86% with IS5a and IS10a derived from tabaccoes, respectively.

On the other hand, they only had a homology of about 20 to 25% with the gene of an enzyme (Tanaka et al. (1996) Plant Cell and Physiology 37: 711-716; Frutek D, Schiefelbein JW, Johnston F, Nelson Jr. OE (1988) Plant Molecular Biology 11: 473-481, Wise RP, Rohde W, Salamini F. (1990) Plant Molecular Biology 14: 277-279) that glycosilates the position 3 of flavonoids and the gene of an enzyme (WO 99/05287) that glycosilates the position 5 of flavonoids, and therefore, it was estimated that both of Ph7GTa and Ph7GTb are the genes of flavonoid-7-glycosyl transferase as are pS.b UFGT1 and AmGT1.

Example 8. Expression of Ph7GTa and Ph7TGTb cDNA in E. coli

The Ph7GTa gene was expressed using the pET System (Stratagene). First, in order to introduce NdeI and BamHI sites, the following 2 primers pETPh7GTa5' [5'-ATA ACT ACA TAT GGC TAT TCC CAC A-3' (SEQ ID NO: 11)] and

35

10

15

20

25

35

pETPh7GTa3' [5'-GAA CAG GAT CCT AAA AGG ACC T-3' (SEQ ID NO: 12)] were used in a PCR reaction.

The PCR reaction mixture was prepared in a total volume of 100 μ l comprising 100 ng of pAmGT1, the 1 \times the cloned Pfu DNA polymerase reaction buffer (Stratagene), 0.2 mM dNTPs, 0.5 pmol/µl each of the primers, and 5.0 Units of the cloned Pfu DNA polymerase. The reaction was carried out, after 45 seconds at 95°C, for 25 cycles with one cycle comprising 95°C for 45 seconds, 50°C for 45 seconds, and 72°C for 2 minutes, and was finally treated at 72°C for 10 minutes. The PCR product obtained was subcloned into the pCR2.1 TOPO vector (INVITROGEN). Some of the clones of the plasmid pTOPO-ETPh7GTa thus obtained were reacted using ABI $PRISM^{TM}$ $BigDye^{TM}$ Terminator CycleSequencing Ready Reaction Kit (Applied Biosystems), and the entire nucleotide sequences were confirmed using DNA Sequencer model 310 (Applied Biosystems). An about 1.7 Kb fragment obtained by digesting pTOPO-ETPh7GTa with NdeI and BamHI was ligated to the NdeI and BamHI sites of the pET-3a vector (Stratagene) to obtain plasmid pETPhGTa.

Using pETPhGTa, it was transformed into Epicurian Coli BL21 (DE3) (Stratagene).

For Ph7GTb also, in order to introduce NdeI and BamHI sites, the following 2 primers pETPh7GTb5' [5'-ATA ACT ACA TAT GGG TCA GCT CCA-3' (SEQ ID NO: 13)] and pETPh7GTb3' [5'-CTC GTA CCA TGG AAA ACT ATT CT-3' (SEQ ID NO: 14)] were used in a PCR reaction and then plasmid pETPhGTb was obtained.

30 <u>Example 9. Measurement of the glycosyl transferase</u> activity of Ph7GTa, Ph7GTb cDNA recombinant proteins

The transformants obtained in Example 8 were cultured, extracted and the enzymatic activity was measured as in Example 1. The enzymatic activity was measured using aureusidin as the substrate. The

10

15

enzymatic activity was measured as described in Example
1. For Ph7GTa and Ph7GTb, a peak was obtained that had
the same retention time and the same spectrum as
aureusidin 6-glycoside as a reaction product. For Ph7GTa
also, one peak, that is estimated to be an aurone
glycoside from the absorption spectrum, was obtained, and
for Ph7GTb two such peaks were obtained.

The foregoing results revealed that Ph7GTa and Ph7GTb encode enzymes having an activity of glycosilating aureusidin.

Industrial Applicability

Using the gene expression products obtained in the present invention, it was possible to glycosilate aurones. This enabled a stable expression of aurones in plant cells.

10

30

35

CLAIMS

- 1. A gene encoding a protein having an activity of transferring a glycosyl group to aurones.
- 2. The gene according to claim 1 encoding a protein that has an amino acid sequence as set forth in SEQ ID NO: 2, 8, and 10, and that has an activity of transferring a glycosyl group to aurones.
- 3. The gene according to claim 1 encoding a protein that has an amino acid sequence modified by the addition, deletion and/or substitution with other amino acids of one or a plurality of amino acids in the amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10, and that has an activity of transferring a glycosyl group to aurones.
- 15
 4. The gene according to claim 1 that hybridizes to a nucleic acid having a nucleotide sequence encoding an amino acid sequence as set forth in SEQ ID NO: 2, 8, or 10 or a portion thereof under a stringent condition, and that encodes a protein having an activity of transferring a glycosyl group to aurones.
 - 5. A vector comprising a gene according to any one of the claims 1 to 4.
 - 6. A host transformed with a vector according to claim 5.
- 7. A protein encoded by a gene according to any one of the claims 1 to 4.
 - 8. A method of producing a protein having an activity of transferring a glycosyl group to aurones, said method comprising culturing, cultivating, or breeding a host according to claim 6 and recovering said protein from said host.
 - 9. A plant into which a gene according to any one of the claims 1 to 4 has been introduced, and a progeny and a tissue thereof having the same property as said plant.
 - 10. A cut flower of the plant according to claim 9, or a progeny thereof having the same property as said

plant.

5

10

- 11. A method of stabilizing aurones which method comprises allowing the protein according to claim 7 to act on aurones thereby to transfer a glycosyl group to aurones.
- 12. A method of stabilizing aurones in the plant body which method comprises introducing the gene according to any one of the claims 1-4 into the plant body, allowing said gene to be expressed, and using the protein produced therein to transfer a glycosyl group to aurones in the plant body.

The first are the first and the first the second of the first and the fi

ABSTRACT

There is provided a gene encoding a protein derived from, for example, snapdragons and petunias, said protein having an amino acid sequence as set forth in SEQ ID NO: 2, 8, and 10, and having an activity of transferring a glycosyl group to aurones, and a method of producing said protein using said gene. By introducing this gene into plants that do not have said gene, a yellow pigment aurone can be stabilized and plants having yellow flowers can be obtained.

THE REAL SEAS OF THE SEAS OF T

5

1/2

₫ 🕏

PTO/SE/106 (8-96)
Approved for use through 9/30/96. OMB 0651-0032
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of Information unless it displays a valid OMB control number.

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下雪の氏名の発明者として、私は以下の通り宣言します。	As a below named inventor, I hereby decla: *hat:
私の住所、私費箱、国籍は下記の私の氏名の後に記載された通りです。	Ny residence, post office address and citizenship are as stated next to my name.
下記の名称の発明に関して請求範囲に記載され、特許出劇している発明内容について、私が最初かつ唯一の発明者(下記の氏名が一つの場合)もしくは最初かつ共同発明者であると(下記の名称が複数の場合)信じています。	is listed below) or an original, first and joint inventor (if plural
	GENE ENCODING A PROTEIN HAVING
	A GLYCOSYL TRANSFERASE
	ACTIVITY TO AURONES
上記発明の明細書(下記の欄でx印がついていない場合は 本書に添付)は、	the specification of which is attached hereto unless the following box is checked:
□	was filed onFebruary 16, 2000 as United States Application Number or PCT International Application Number PCT/JP00/00876 and was amended on (if applicable).
私は、特許請求範囲を含む上記訂正後の明細書を検討し、 内容を理解していることをここに表明します。	I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.
私は、連邦規則法典第37編第1条56項に定義される おり、特許資格の有無について重要な情報を開示する義務が あることを認めます。	

Page 1 of 4

Burden Hour Statement: This form is estimated to take 0.4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO: Commissioner of Patents and Trademarks, Washington, DC 20231.

Japanese Language Declaration

(日本語宣言書)

私は、米国法典第35編119条(a)-(d) 項又は365条(b) 項に基き下記の、 米 国以外の国の少なくとも一ヵ国を指定している特許協力条約365(a)項に基ずく国際出版、又は外国での特許出願もしくは発明者証の出版についての外国優先権をここに主張するとともに、優先権を主張している、本出顧の前に出願された特許または発明者証の外国出願を以下に、枠内をマークすることで、示しています。

Prior Foreign Application(s)

ţĦ

ijess je Kasa Man

ij

17

 外国での先行出版
 11-36801 (Pat. Appln.)
 Japan

 (Number)
 (Country)

 (番号)
 (図名)

 (Number)
 (Country)

 (番号)
 (図名)

私.と、第35編米国法典119条 (e) 項に基いて下記の米 国特許出顧規定に記載された権利をここに主張いたします。

(Application No.) (Filing Date) (出顧日)

私は、下記の米国法典第35編120条に基いて下記の米国特許出版に記載された権利、又は米国を指定している特許協力条約365条(c)に基ずく権利をここに主張します。また、木出順の各請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特計出版に開示されていない限り、その先行米国出版書提出日以降で木出願書の日本国内または特許協力条約国際提出日までの期間中に入手された、連邦規則法典第37編1条56項で定義された特許資格の有無に関する重要な情報について開示義務があることを認識しています。

(Application No.) (Filing Date) (出顧器号) (出顧日)

(Application No.) (Filing Date) (出版各号) (出版日)

私は、私自身の知識に基ずいて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基ずく表明が全て真実であると信じていること、さらに故意になされた虚偽の表明及びそれと同等の行為は米国法典第18欄第1001条に基ずき、罰金または拘禁、もしくはその両方により処罰されること。そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認識し、よってここに上記のごとく宣誓を致します。

I hereby claim foreign priority under Title 35, United States Code, Section 119 (a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed 優先権主張なし

16/February/1999
(Day/Month/Year Filed)
(出版年月日)

(Day/Month/Year Filed)
(出版年月日)

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

> (Application No.) (Filing Date) (出顧番号) (出顧日)

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 366(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

(Status: Patented, Pending, Abandoned) (現況: 特許許可濟、係属中、放棄濟)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Japanese Language Declaration (日本語宣言書)

委任状: 私は下記の発明者として、本出額に関する一切の 手続きを米特許商様局に対して遂行する弁理士または代理人 として、下記の者を指名いたします。(弁護士、または代理 人の氏名及び登録番号を明記のこと) POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

William L. Mathis Peter H. Smolka Robert S. Swecker Platon N. Mandros Benton S. Duffett, Jr. Joseph R. Magnone Norman H. Stepno Ronald L. Grudziecki Frederick G. Michaud, Jr. Alan E. Kopecki Regis E. Slutter Samuel C. Miller, III Ralph L. Freeland, Jr.	17,337 15,913 19,885 22,124 22,030 24,239 22,716 24,970 26,003 25,813 26,999 27,360 16,110	Robert G. Mukai George A. Hovanec, Jr. James A. LaBarre E. Joseph Gess R. Danny Huntington Eric H. Weisblatt James W. Peterson Teresa Stanek Rea Robert E. Krebs William C. Rowland T. Gene Dillahunty Patrick C. Keane Bruce J. Boggs, Jr.	28,531 28,223 28,632 28,510 27,903 30,505 26,057 30,427 25,885 30,888 25,423 32,858 32,344	William H. Benz Peter K. Skiff Richard J. McGrath Matthew L. Schneider Michael G. Savage Gerald F. Swiss Michael J. Ure Charles F. Wieland III Bruce T. Wieder Todd R. Walters	25,952 31,917 29,195 32,814 32,596 30,113 33,089 33,096 33,815 34,040

含類送付先

36

Send Correspondence to:

Ronald L. Grudziecki

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

P.O. Box 1404

Alexandria, Virginia 22313-1404

直接電話連絡先:

(名前及び電話番号)

Direct Telephone Calls to: (name and telephone number)

Ronald L. Grudziecki

at (703) 836-6620

唯一または第一発明者	6名	Full name of sole or first inventor Keiko Sakakibara
発明者の署名	日付	Inventor's signature Date 标序。 主子 October 10, 2000
任所		Residence Muko-shi, Kyoto, Japan J $ ho imes$
国籍		Cilizenship Japanese
私告箱		Post Office Address 3-1-327, Nishitanakase, Terado-cho,
		Muko-shi, Kyoto 617-0002, Japan
第二共同発明者		Full name of second joint inventor, if any 2
第二共同発明者	日付	Second inventor's signature Date 元
住所		Residence Mishima-gun, Osaka, Japan _ PX
国籍		ckizenship Japanese
私杏箱		Post Office Address 2-8-2-907, Minase, Shimamoto-cho,
		Mishima-gun, Osaka 617-0002, Japan

(第三以降の共同発明者についても同様に記載し、署名をすること)

(Supply similar information and signature for third and subsequent joint inventors.)

住 所

国 籍

私書箱

		•
第三共同発明者		Full name of third joint inventor, if any 3-00 Yoshikazu Tanaka
第三共同発明者	日付	Third inventor's signature Date 田中 良炉 October 10, 2000
住 所		Residence Otsu-shi, Shiga, Japan 🗔 🏳 🗶
国 籍		Citizenship Japanese
私書箱		Post Office Address 2-7-4, Ohginosato, Otsu-shi, Shiga 520-024
		Japan
第四共同発明者		Full name of fourth joint inventor, if any Takaaki Kusumi
第四共同発明者	日付	Fourth inventor's signature Date 7 11 3 October 10, 2000
住 所		Residence <u>Suita-shi</u> , Osaka, Japan ゴヤ×
国 籍		Citizenship Japanese
私書箱		Post Office Address 2-12-21-402, Yamate-cho, Suita-shi,
		Osaka 564-0073, Japan
第五共同発明者		Full name of fifth joint inventor, if any
第五共同発明者	日付	Fifth inventor's signature Date L W L October 10, 2000
住 .所		Residence <u>Chigasaki-shi</u> , Kanagawa, Japan 📑 🌫
国籍		Citizenship Japanese
私書箱		Post Office Address 6-31, Heiwa-cho, Chigasaki-shi,
		Kanagawa 253-0024, Japan
第六共同発明者	ALL	Full name of sixth joint inventor, if any
第六共同発明者	日付	Sixth inventor's signature Date

(第七以降の共同発明者についても同様に 記載し、署名をすること)

(Supply similar information and signature for seventh and subsequent joint inventors.)

Residence

Citizenship

Post Office Address

SEQUENCE LISTING

<110>	SUN	rory	LI	MITE	ED										
<120>	Gene	e co	din	g fo	or a	pr	otei	n h	avi	ng q	glyc	osy	l tı	ans	feras
	to a	auro	ne												
<160>	6														
<210>	1														
<211>	175	1													
<212>	DNA														
<213>	Ant	irrh	inu	m ma	ajus										
<220>															
<223>	Nuc.	leot	ide	sec	quen	ce	codi	ng	for	a p	prot	ein	hav	/ing	
	glyd	cosy	l t	rans	sfer	ase	to	aur	one						
<400>	1														
ctcact	agt a	actaa	aaaca	ac aa	aaact	tgaga	a aco	cctt	caaa	ttt	ccac	ttg a	atca	tatto	
attttc	ettt ·	taaaa													
					y Lys	s Let			e Ala	a Le	u Pho			l Met	:
				L 				5				10			159
gct car															1.79
ALA NI.	15	mrs	mec	TT-	FIO	20	nea	rsp	Mec	лта	25	пеа	1116	1111	
tca aga		ata	caa	aca	aca		att	tca	act	ctc		ttc	gct	gat	207
Ser Ar								_							
3					35					40					
ccg ata	a aac	aaa	gct	cgt	gat	tcg	ggc	ctc	gat	att	gga	cta	agc	atc	255
Pro Ile	e Asn	Lys	Ala	Arg	Asp	Ser	Gly	Leu	Asp	Ile	Gly	Leu	Ser	Ile	
45				50					55					60	
ctc aaa	a ttc	cca	cca	gaa	gga	tca	gga	ata	cca	gat	cac	atg	gtg	agc	303
Leu Ly	s Phe	Pro	Pro	Glu	Gly	Ser	Gly	Ile	Pro	Asp	His	Met	Val	Ser	
			65					70					75		

ctt	gat	cta	gtt	act	gaa	gat	tgg	ctc	cca	aag	ttt	gtt	gag	tca	tta	351
Leu	Asp	Leu	Val	Thr	Glu	Asp	Trp	Leu	Pro	Lys	Phe	Val	Glu	Ser	Leu	
			80					85					90			
gtc	tta	tta	caa	gag	cca	gtt	gag	aag	ctt	atc	gaa	gaa	cta	aag	ctc	399
Val	Leu	Leu	Gln	Glu	Pro	Val	Glu	Lys	Leu	Ile	Glu	Glu	Leu	Lys	Leu	
		95					100					105				
gac	tgt	ctc	gtt	tcc	gac	atg	ttc	ttg	cct	tgg	aca	gtc	gat	tgt	gcg	447
Asp	Cys	Leu	Val	Ser	Asp	Met	Phe	Leu	Pro	${\tt Trp}$	Thr	Val	Asp	Cys	Ala	
	110					115					120					
gct	aag	ttc	ggt	att	ccg	agg	ttg	gtt	ttc	cac	gga	acg	agc	aac	ttt	495
Ala	Lys	Phe	Gly	Ile	Pro	Arg	Leu	Val	Phe	His	${\tt Gly}$	Thr	Ser	Asn	Phe	
125					130					135					140	
gcg	ttg	tgt	gct	tcg	gag	caa	atg	aag	ctt	cac	aag	cct	tat	aag	aat	543
Ala	Leu	Cys	Ala	Ser	Glu	Gln	Met	Lys	Leu	His	Lys	Pro	Tyr	Lys	Asn	
				145					150					155		
gta	act	tct	gat	act	gag	aca	ttt	gtt	ata	ccg	gat	ttc	ccg	cat	gag	591
Val	Thr	Ser	Asp	Thr	Glu	Thr	Phe	Val	Ile	Pro	Asp	Phe	Pro	His	Glu	
			160					165					170			
ctg	aag	ttt	gtg	agg	act	caa	gtg	gct	ccg	ttt	cag	ctt	gcg	gaa	acg	639
Leu	Lys	Phe	Val	Arg	Thr	Gln	Val	Ala	Pro	Phe	Gln	Leu	Ala	Glu	Thr	
		175					180					185				
gag	aat	gga	ttc	tca	aag	ttg	atg	aaa	cag	atg	acg	gag	tct	gtt	ggt	687
Glu	Asn	$\mathtt{Gl}_{\mathtt{Y}}$	Phe	Ser	Lys	Leu	Met	Lys	Gln	Met	Thr	Glu	Ser	Val	${\tt Gly}$	
	190					195					200					
aga	agc	tac	ggt	gtt	gtg	gtt	aac	agt	ttt	tat	gag	ctc	gag	tcg	act	735
Arg	Ser	Tyr	Gly	Val	Val	Val	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser	Thr	
205					210					215					220	
tat	gtg	gat	tat	tac	aga	gag	gtt	ttg	ggt	aga	aag	tct	tgg	aat	ata	783
Tyr	Val	Asp	Tyr	Tyr	Arg	Glu	Val	Leu	${\tt Gly}$	Arg	Lys	Ser	Trp	Asn	Ile	
				225					230					235		
ggg	cct	ctg	ttg	tta	tcc	aac	aat	ggc	aat	gag	gaa	aaa	gta	caa	agg	831
Gly	Pro	Leu	Leu	Leu	Ser	Asn	Asn	Gly	Asn	Glu	Glu	Lys	Val	Gln	Arg	
			240					245					250			
gga	aag	gaa	tct	gcg	att	ggc	gaa	cac	gaa	tgc	ttg	gct	tgg	ttg	aat	879
Gly	Lys	Glu	Ser	Ala	Ile	Gly	Glu	His	Glu	Cys	Leu	Ala	Trp	Leu	Asn	
		255					260					265				

tcc	aag	aag	cag	aat	tcg	gtt	gtt	tac	gtt	tgt	ttt	gga	agt	atg	gcg	927
Ser	Lys	Lys	Gln	Asn	Ser	Val	Val	Tyr	Val	Cys	Phe	Gly	Ser	Met	Ala	
	270					275					280					
act	ttt	act	cca	gcg	cag	ttg	cgc	gaa	act	gcg	att	gga	ctc	gag	gaa	975
Thr	Phe	Thr	Pro	Ala	Gln	Leu	Arg	Glu	Thr	Ala	Ile	Gly	Leu	Glu	Glu	
285					290					295					300	
tca	ggc	caa	gag	ttc	att	tgg	gta	gtt	aaa	aag	gcc	aaa	aac	gaa	gaa	1023
Ser	$\mathtt{Gl}_{\mathtt{Y}}$	Gln	Glu	Phe	Ile	Trp	Val	Val	Lys	Lys	Ala	Lys	Asn	Glu	Glu	
				305					310					315		
gaa	gga	aaa	gga	aaa	gaa	gaa	tgg	ctg	cca	gaa	aat	ttt	gag	gaa	aga	1071
Glu	Gly	Lys	Gly	Lys	Glu	Glu	Trp	Leu	Pro	Glu	Asn	Phe	Glu	Glu	Arg	
			320					325					330			
gtg	aaa	gat	aga	ggc	ttg	atc	ata	aga	gga	tgg	gcg	ccg	caa	ttg	ttg	1119
Val	Lys	Asp	Arg	Gly	Leu	Ile	Ile	Arg	${\tt Gly}$	Trp	Ala	Pro	Gln	Leu	Leu	
		335					340					345				
ata	ctc	gat	cat	cct	gcg	gta	gga	gct	ttc	gtg	acg	cat	tgt	gga	tgg	1167
Ile	Leu	Asp	His	Pro	Ala	Val	Gly	Ala	Phe	Val	Thr	His	Cys	Gly	Trp	
	350					355					360					
aat	tcg	acg	ttg	gaa	gga	ata	tgc	gcc	ggt	gtg	cct	atg	gtg	act	tgg	1215
Asn	Ser	Thr	Leu	Glu	Gly	Ile	Cys	Ala	Gly	Val	Pro	Met	Val	Thr	Trp	
365					370					375					380	
cca	gtt	ttc	gca	gag	cag	ttt	ttc	aat	gag	aag	ttt	gtg	aca	gag	gtt	1263
Pro	Val	Phe	Ala	Glu	Gln	Phe	Phe	Asn	Glu	Lys	Phe	Val	Thr	Glu	Val	
				385					390					395		
ttg	ggg	acc	ggt	gtt	tcg	gtt	ggg	aat	aag	aag	tgg	cta	agg	gca	gca	1311
Leu	Gly	Thr	Gly	Val	Ser	Val	$\mathtt{Gl}_{\mathtt{Y}}$	Asn	Lys	Lys	Trp	Leu	Arg	Ala	Ala	
			400					405					410			
agt	gaa	ggt	gtg	tcg	agg	gag	gca	gtg	acg	aac	gcg	gtg	cag	cgt	gtt	1359
Ser	Glu	${\tt Gly}$	Val	Ser	Arg	Glu	Ala	Val	Thr	Asn	Ala	Val	Gln	Arg	Val	
		415					420					425				
atg	gtg	gga	gaa	aat	gcg	tcg	gag	atg	aga	aag	cga	gcg	aag	tat	tat	1407
Met	Val	Gly	Glu	Asn	Ala	Ser	Glu	Met	Arg	Lys	Arg	Ala	Lys	\mathtt{Tyr}	Tyr	
	430					435					440					
aag	gaa	atg	gcg	agg	cgg	gcg	gtt	gag	gaa	ggc	ggt	tcg	tct	tat	aat	1455
Lys	Glu	Met	Ala	Arg	Arg	Ala	Val	Glu	Glu	$\mathtt{Gl}_{\mathtt{Y}}$	Gly	Ser	Ser	Tyr	Asn	
445					450					455					460	

ggt ttg aat gag atg ata gag gat ttg agt gtg tac cgt gct cca gaa 1503 Gly Leu Asn Glu Met Ile Glu Asp Leu Ser Val Tyr Arg Ala Pro Glu 470 aaa caa gac tta aac tagattetta tagatgactt ctagtgtgac aattgtaatt 1558 Lys Gln Asp Leu Asn 480 ttttgccttt tattcaagtt tcctcattag tgttgagagc tttccctgta ttttcagaat 1618 tggtttgttc aatttttaca tgatttgtga tagatagctg catagtttct agctgttaac 1678 attgtttgat catattgagt tgatttaaaa tgagagtagc atgtgatctt cagattaaaa 1738 1751 aaaaaaaaa aaa <210> 2 <211> 481 <212> PRT <213> Antirrhinum majus <220> <223> Amino acid sequence of a protein having glycosyl transferase to aurone <400>2Met Gly Lys Leu His Ile Ala Leu Phe Pro Val Met Ala His Gly His 10 1 5 Met Ile Pro Met Leu Asp Met Ala Lys Leu Phe Thr Ser Arg Gly Ile 25 Gln Thr Thr Ile Ile Ser Thr Leu Ala Phe Ala Asp Pro Ile Asn Lys 45 35 40 Ala Arg Asp Ser Gly Leu Asp Ile Gly Leu Ser Ile Leu Lys Phe Pro 55 Pro Glu Gly Ser Gly Ile Pro Asp His Met Val Ser Leu Asp Leu Val 70 75 80 65 Thr Glu Asp Trp Leu Pro Lys Phe Val Glu Ser Leu Val Leu Leu Gln 85 90

125

Glu Pro Val Glu Lys Leu Ile Glu Glu Leu Lys Leu Asp Cys Leu Val

Ser Asp Met Phe Leu Pro Trp Thr Val Asp Cys Ala Ala Lys Phe Gly

120

105

100

115

TTE	Pro	Arg	Leu	vaı	Pne	HIS	стХ	Inr	ser	Asn	Pne	Ата	ьeu	Cys	АТа
	130					135					140				
Ser	Glu	Gln	Met	Lys	Leu	His	Lys	Pro	Tyr	Lys	Asn	Val	Thr	Ser	Asp
145					150					155					160
Thr	Glu	Thr	Phe	Val	Ile	Pro	Asp	Phe	Pro	His	Glu	Leu	Lys	Phe	Val
				165					170					175	
Arg	Thr	Gln	Val	Ala	Pro	Phe	Gln	Leu	Ala	Glu	Thr	Glu	Asn	Gly	Phe
			180					185					190		
Ser	Lys	Leu	Met	Lys	Gln	Met	Thr	Glu	Ser	Val	Gly	Arg	Ser	Tyr	Gly
		195					200					205			
Val	Val	Val	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser	Thr	Tyr	Val	Asp	Tyr
	210					215					220				
Tyr	Arg	Glu	Val	Leu	Gly	Arg	Lys	Ser	Trp	Asn	Ile	Gly	Pro	Leu	Leu
225					230					235					240
Leu	Ser	Asn	Asn	Gly	Asn	Glu	Glu	Lys	Val	Gln	Arg	Gly	Lys	Glu	Ser
				245					250					255	
Ala	Ile	Gly	Glu	His	Glu	Cys	Leu	Ala	Trp	Leu	Asn	Ser	Lys	Lys	Gln
			260					265					270		
Asn	Ser	Val	Val	Tyr	Val	Cys	Phe	${\tt Gly}$	Ser	Met	Ala	Thr	Phe	Thr	Pro
		275					280					285			
Ala	Gln	Leu	Arg	Glu	Thr	Ala	Ile	Gly	Leu	Glu	Glu	Ser	Gly	Gln	Glu
	290					295					300				
Phe	Ile	Trp	Val	Val	Lys	Lys	Ala	Lys	Asn	Glu	Glu	Glu	Gly	Lys	Gly
305					310					315					320
Lys	Glu	Glu	Trp	Leu	Pro	Glu	Asn	Phe	Glu	Glu	Arg	Val	Lys	Asp	Arg
				325					330					335	
Gly	Leu	Ile	Ile	Arg	Gly	Trp	Ala	Pro	Gln	Leu	Leu	Ile	Leu	Asp	His
			340					345					350		
Pro	Ala	Val	Gly	Ala	Phe	Val	Thr	His	Cys	Gly	Trp	Asn	Ser	Thr	Leu
		355					360					365			
Glu	Gly	Ile	Cys	Ala	Gly	Val	Pro	Met	Val	Thr	Trp	Pro	Val	Phe	Ala
	370					375					380				
Glu	Gln	Phe	Phe	Asn	Glu	Lys	Phe	Val	Thr	Glu	Val	Leu	Gly	Thr	Gly
385					390					395					400
Val	Ser	Val	Gly	Asn	Lys	Lys	Trp	Leu	Arg	Ala	Ala	Ser	Glu	Gly	Val
				405					410					415	
Ser	Arg	Glu	Ala	Val	Thr	Asn	Ala	Val	Gln	Arg	Val	Met	Val	Gly	Glu
			420					425					430		

Asn Ala		Glu	Met	Arg	Lys		Ala	Lys	Tyr	Tyr		Glu	Met	Ala		
	435					440					445					
Arg Arg		Val	Glu	Glu		Gly	Ser	Ser	Tyr		Gly	Leu	Asn	Glu		
450					455					460						
Met Ile	Glu	Asp	Leu		Val	Tyr	Arg	Ala		Glu	Lys	Gln	Asp			
465				470					475					480		
Asn																
<210>	3															
<211>																
<212>																
<213>		Lfic	ial	Sec	ruen	ce										
<220>																
<223>	Prin	ner														
<400>																
ataacta	cat a	atggg	jacaa	ac to	cac										25	
<210>	4															
<211>	25															
<212>	DNA															
<213>	Arti	fic	ial	Seq	uen	ce										
<220>																
<223>	Prim	ıer														
<400>																
cagaaca	gga t	ccac	acgt	a at	tta										25	
<210>																
<211>																
<212>																
<213> .	Arti	fic	ial	Seq	uen	ce										
<220>																
<223> 1	Prim	er														

<400>	5														
ataact	acat	atgo	gaaa	aac t	tcad	2									25
<210>															
<211>															
<212>															
<213>	Art	ifi	cial	l Se	que	nce									
4000															
<220>	Dank	m a													
<223>	Pri	mer													
<400>	6														
gaacag	gatc	caca	cact	ag a	agto	:a									26
<210>	7														
<211>	175	0													
<212>	DNA														
<213>	Pet	unia	a hy	bri	da										
<220>															
<223>											prot	ein	ha	ving	
	gly	cosy	7l t	ran	sfer	ase	to	aur	cone						
	_														
<400>															
ccaaatt	ctc	tgat	cttt	cc a	ctaa	taat	t to								53
]		Ala	Ile :	Pro '	Thr \	Val	
caa cca	cat	ttt	ata	cta	ctt	cat	ttc	ato	1	C22	aaa	as t	5	22+	101
Gln Pro															101
		10					15					20			
ccc atg	att	gac	atc	gca	cgc	cta	ttg	gca	caa	cgc	gga	gtt	ata	atc	149
Pro Met															
	25					30					35				
acc att															197
Thr Ile		Thr	Thr	His	Phe	Asn	Ala	Thr	Arg	Phe	Lys	Thr	Val	Val	
40					45					50					

gat	cgg	gca	gta	gtg	gca	gca	cta	aag	att	cag	gta	gtt	cac	ctc	tat	245
Asp	Arg	Ala	Val	Val	Ala	Ala	Leu	Lys	Ile	Gln	Val	Val	His	Leu	Tyr	
55					60					65					70	
ttt	cca	agc	tta	gag	gct	gga	cta	cct	gaa	ggg	tgt	gaa	gct	ttc	gac	293
Phe	Pro	Ser	Leu	Glu	Ala	Gly	Leu	Pro	Glu	Gly	Cys	Glu	Ala	Phe	Asp	
				75					80	•				85		
atg	ctt	cct	tca	atg	gat	ttc	gca	atg	aaa	ttc	ttt	gat	gct	acc	agt	341
Met	Leu	Pro	Ser	Met	Asp	Phe	Ala	Met	Lys	Phe	Phe	Asp	Ala	Thr	Ser	
			90					95					100			
agg	ctt	caa	cca	caa	gtg	gaa	gaa	atg	ctt	cat	gaa	ctg	caa	ccg	tca	389
Arg	Leu	Gln	Pro	Gln	Val	Glu	Glu	Met	Leu	His	Glu	Leu	Gln	Pro	Ser	
		105					110					115				
cca	agt	tgc	ata	ata	tct	gat	atg	tgt	ttt	cca	tgg	aca	act	aat	gtt	437
Pro	Ser	Cys	Ile	Ile	Ser	Asp	Met	Cys	Phe	Pro	Trp	Thr	Thr	Asn	Val	
	120					125					130					
gca	caa	aaa	ttc	aac	att	cct	agg	ctt	gtt	ttt	cat	ggg	atg	tgc	tgt	485
Ala	Gln	Lys	Phe	Asn	Ile	Pro	Arg	Leu	Val	Phe	His	Gly	Met	Cys	Cys	
135					140					145					150	
ttt	tct	tta	ttg	tgc	ttg	cac	aat	ttg	aga	gat	tgg	aag	gag	ttg	gag	533
Phe	Ser	Leu	Leu	Cys	Leu	His	Asn	Leu	Arg	Asp	Trp	Lys	Glu	Leu	Glu	
				155					160					165		
tct	gat	ata	gaa	tat	ttt	caa	gtt	cca	gga	tta	cat	gac	aaa	att	gaa	581
Ser	Asp	Ile	Glu	Tyr	Phe	Gln	Val	Pro	Gly	Leu	His	Asp	Lys	Ile	Glu	
			170					175					180			
tta	aac	aaa	gat	cag	ctt	tca	aat	att	gtt	aag	cca	aga	ggt	cct	gat	629
Leu	Asn	Lys	Ala	Gln	Leu	Ser	Asn	Ile	Val	Lys	Pro	Arg	$\mathtt{Gl}_{\mathbf{Y}}$	Pro	Asp	
		185					190					195				
tgg	aat	gaa	ttt	gca	gat	caa	ctg	aag	aaa	gca	gaa	gaa	gaa	gct	tat	677
Trp	Asn	Glu	Phe	Ala	Asp	Gln	Leu	Lys	Lys	Ala	Glu	Glu	Glu	Ala	Tyr	
	200					205					210					
ggg	ata	gta	gct	aat	agc	ttt	gaa	gag	tta	gaa	cca	gaa	tat	gtc	aag	725
Gly	Ile	Val	Ala	Asn	Ser	Phe	Glu	Glu	Leu	Glu	Pro	Glu	Tyr	Val	Lys	
215					220					225					230	
gga	ttg	gaa	aag	gca	aaa	ggc	ttg	aaa	att	tgg	cca	att	ggt	cct	gtt	773
Gly	Leu	Glu	Lys	Ala	Lys	Gly	Leu	Lys	Ile	Trp	Pro	Ile	Gly	Pro	Val	
				235					240					245		

tet	ccg	tge	aac	aaa	gag	aaa	cag	gac	aag	gct	gaa	aga	gga	aac	aag	821
Ser	Leu	Cys	Asn	Lys	Glu	Lys	Gln	Asp	Lys	Ala	Glu	Arg	Gly	Asn	Lys	
			250					255					260			
gct	tca	att	gat	gaa	cac	cag	tgt	cta	aaa	tgg	cta	gat	tct	tgg	gga	869
Ala	Ser	Ile	Asp	Glu	His	Gln	Cys	Leu	Lys	Trp	Leu	Asp	Ser	Trp	${\tt Gly}$	
		265					270					275				
gca	aac	tct	gta	ctc	ttt	gta	tgt	ctc	ggg	agc	cta	tcg	cgc	ctt	cca	917
Ala	Asn	Ser	Val	Leu	Phe	Val	Cys	Leu	Gly	Ser	Leu	Ser	Arg	Leu	Pro	
	280					285					290					
acg	cca	caa	atg	ata	gag	ctg	gga	ctt	ggc	tta	gaa	tcg	tcg	aaa	aga	965
Thr	Pro	Gln	Met	Ile	Glu	Leu	Gly	Leu	Gly	Leu	Glu	Ser	Ser	Lys	Arg	
295					300					305					310	
ccc	ttt	att	tgg	gtt	gtt	aga	cac	aag	tca	gat	gaa	ttt	aaa	agt	tgg	1013
Pro	Phe	Ile	Trp	Val	Val	Arg	His	Lys	Ser	Asp	Glu	Phe	Lys	Ser	Trp	
				315					320					325		
cta	gtt	gaa	gaa	aat	ttt	gag	gaa	aga	gtt	aaa	gga	caa	gga	ctt	tta	1061
Leu	Val	Glu	Glu	Asn	Phe	Glu	Glu	Arg	Val	Lys	Gly	Gln	Gly	Leu	Leu	
			330					335					340			
atc	cat	ggt	tgg	gca	cca	caa	gta	cta	ata	tta	tct	cac	act	tca	att	1109
Ile	His	Gly	Trp	Ala	Pro	Gln	Val	Leu	Ile	Leu	Ser	His	Thr	Ser	Ile	
		345					350					355				
gga	gga	ttc	ttg	act	cat	tgt	gga	tgg	aat	tcg	agt	gtc	gaa	gga	ata	1157
Gly	Gly	Phe	Leu	Thr	His	Сұѕ	Gly	Trp	Asn	Ser	Ser	Val	Glu	Gly	Ile	
	360					365					370					
tct	gca	ggc	gtt	cca	atg	atc	act	tgg	cca	atg	ttt	gct	gaa	caa	ttc	1205
Ser	Ala	Gly	Val	Pro	Met	Ile	Thr	Trp	Pro	Met	Phe	Ala	Glu	Gln	Phe	
375					380					385					390	
tgt	aat	gaa	agg	cta	ata	gtg	aat	gta	ctg	aag	aca	gga	gta	aag	gct	1253
Cys	Asn	Glu	Arg	Leu	Ile	Val	Asn	Val	Leu	Lys	Thr	${\tt Gly}$	Val	Lys	Ala	
				395					400					405		
gga	att	gag	aat	cct	gtt	atg	ttt	gga	gag	gaa	gaa	aaa	gtt	gga	gca	1301
Gly	Ile	Glu	Asn	Pro	Val	Met	Phe	Gly	Glu	Glu	Glu	Lys	Val	${\tt Gly}$	Ala	
			410					415					420			
caa	gtg	agc	aaa	gat	gat	att	aag	atg	gtt	att	gaa	aga	gtc	atg	ggc	1349
Gln	Val	Ser	Lys	Asp	Asp	Ile	Lys	Met	Val	Ile	Glu	Arg	Val	Met	Gly	
		425					430					435				

gaa	gaa	gag	gaa	gct	gaa	atg	aga	aga	aaa	aga	gca	aaa	gag	tta	gga	1397
Glu	Glu	Glu	Glu	Ala	Glu	Met	Arg	Arg	Lys	Arg	Ala	Lys	Glu	Leu	Gly	
	440					445					450					
gaa	aag	gca	aag	agg	gct	atg	gag	gaa	ggg	ggt	tcc	tca	cac	ttc	aac	1445
Glu	Lys	Ala	Lys	Arg	Ala	Met	Glu	Glu	Gly	Gly	Ser	Ser	His	Phe	Asn	
455					460					465					470	
ttg	aca	cag	ttg	att	caa	gat	gtc	act	gag	caa	gca	aat	att	tta	aaa	1493
Leu	Thr	Gln	Leu	Ile	Gln	Asp	Val	Thr	Glu	Gln	Ala	Asn	Ile	Leu	Lys	
				475					480					485		
tcc	atc	tagg	gatta	ata a	agto	cgatt	co ca	agti	catt	tta	cgat	tcaa	ttto	ctaac	cca	1549
Ser	Ile															
tcta	ctac	gag a	tggt	aaca	a to	ccaaa	actgo	ga	ettt	ttg	caca	aataa	att a	attgt	tttat	1609
gtto	agct	ag d	cacaa	aaaq	gt ti	acta	attag	, tag	gaaat	att	tcag	gatgo	gaa o	etgeo	gaact	1669
gcta	tgta	aca c	tgat	ggaa	ac aa	atgta	atgto	ato	ctat	tca	aatt	caact	ct g	gagct	gaaaa	1729
tato	atat	ag g	gaget	gatt	t t											1750
<21	0> 8	8														
-21	1 .	400														

<211> 488

<212> PRT

<213> Petunia hybrida

<220>

<223> Amino acid sequence of a protein having glycosyl transferase to aurone

<400> 8

Gly Cys Glu Ala Phe Asp Met Leu Pro Ser Met Asp Phe Ala Met Lys 85 90 95

Phe	Phe	Asp	Ala	Thr	Ser	Arg	, Leu	Glr	Pro	Glr	ı Val	. Glu	ı Glu	ı Met	: Let
			100					105	5				110)	
His	Glu	Leu	Gln	Pro	Ser	Pro	Ser	Cys	Il∈	: Ile	e Ser	Asp	Met	: Суз	Phe
		115					120	1				125	5		
Pro	Trp	Thr	Thr	Asn	Val	Ala	Gln	Lys	Phe	Asn	ılle	Pro	Arg	Lev	ı Val
	130					135	,				140	1			
Phe	His	Gly	Met	Cys	Суѕ	Phe	Ser	Leu	Leu	Суз	Leu	His	Asn	Lev	Arç
145					150					155	5				160
Asp	Trp	Lys	Glu	Leu	Glu	Ser	Asp	Ile	Glu	Tyr	Phe	Gln	Val	Pro	Gly
				165					170					175	i
Leu	His	Asp	Lys	Ile	Glu	Leu	Asn	Lys	Ala	Gln	Leu	Ser	Asn	Ile	. Val
			180					185					190		
Lys	Pro	Arg	$\mathtt{Gl}_{\mathtt{Y}}$	Pro	Asp	Trp	Asn	Glu	Phe	Ala	Asp	Gln	Leu	Lys	Lys
		195					200					205			
Ala	Glu	Glu	Glu	Ala	Tyr	Gly	Ile	Val	Ala	Asn	Ser	Phe	Glu	Glu	Leu
	210					215					220				
Glu	Pro	Glu	Tyr	Val	Lys	Gly	Leu	Glu	Lys	Ala	Lys	Gly	Leu	Lys	Ile
225					230					235					240
Trp	Pro	Ile	Gly	Pro	Val	Ser	Leu	Cys	Asn	Lys	Glu	Lys	Gln	Asp	Lys
				245					250					255	
Ala	Glu	Arg	Gly	Asn	Lys	Ala	Ser	Ile	Asp	Glu	His	Gln	Cys	Leu	Lys
			260					265					270		
Trp	Leu	Asp	Ser	Trp	Gly	Ala	Asn	Ser	Val	Leu	Phe	Val	Cys	Leu	Gly
		275					280					285			
Ser	Leu	Ser	Arg	Leu	Pro	Thr	Pro	Gln	Met	Ile	Glu	Leu	Gly	Leu	Gly
	290					295					300				
Leu	Glu	Ser	Ser	Lys	Arg	Pro	Phe	Ile	Trp	Val	Val	Arg	His	Lys	Ser
305					310					315					320
Asp	Glu	Phe	Lys	Ser	Trp	Leu	Val	Glu	Glu	Asn	Phe	Glu	Glu	Arg	Val
				325					330					335	
Lys	Gly	Gln	Gly	Leu	Leu	Ile	His	Gly	Trp	Ala	Pro	Gln	Val	Leu	Ile
			340					345					350		
Leu	Ser	His	Thr	Ser	Ile	Gly	Gly	Phe	Leu	Thr	His	Cys	Gly	Trp	Asn
		355					360					365			
Ser	Ser	Val	Glu	Gly	Ile	Ser	Ala	Gly	Val	Pro	Met	Ile	Thr	Trp	Pro
	370					375					380			-	
Met	Phe	Ala	Glu	Gln	Phe	Cys	Asn	Glu	Arg	Leu	Ile	Val	Asn	Val	Leu
385					390					205					400

	Thr	Gly	Val	Lys	Ala	Gly	Ile	Glu	Asn	Pro	Val	Met	Phe	Gly	Glu	
				405					410					415		
Glu	Glu	Lys	Val	Gly	Ala	Gln	Val	Ser	Lys	Asp	Asp	Ile	Lys	Met	Val	
			420					425					430			
Ile	Glu	Arg	Val	Met	Gly	Glu	Glu	Glu	Glu	Ala	Glu	Met	Arg	Arg	Lys	
		435					440					445				
Arg		Lys	Glu	Leu	Gly	Glu	Lys	Ala	Lys	Arg	Ala	Met	Glu	Glu	Gly	
	450					455					460					
	Ser	Ser	His	Phe		Leu	Thr	Gln	Leu	Ile	Gln	Asp	Val	Thr	Glu	
465					470					475					480	
Gln	Ala	Asn	Ile		Lys	Ser	Ile									
				485												
<21	0>	9														
<21	1>	1669	9													
<21	2>	DNA														
<21	3> :	Peti	ınia	. hv	brid	la										
				4												
-22	٥.															
<22	U >															
		Nuc]	leot	ide	sec	ruen	ce (codi	.na	for	a r	rot.	ein	hav	ring	
	3> :							codi to	_		a p	rot	ein	hav	ring	
	3> :							codi to	_		a p	rot	ein	hav	ring	
	3> :	glyc							_		a p	rot	ein	hav	ring	
<22 <40	3> ;	glyc 9	cosy	l t:	rans	fer	ase	to	aur	one					-	60
<22	3> : 0> :	glyd 9 Est d	cosy	l to	rans	fer	ase	to c cac	aur	one 19tt	ttac	:ttat	caa t	itttg	gtttc	60
<22	3> : 0> :	glyd 9 Est d	cosy	l to	rans	fer	ase	to	aur	one 19tt	ttac	:ttat	caa t	ittto laa a	rtttc itg	60 116
<22	3> : 0> :	glyd 9 Est d	cosy	l to	rans	fer	ase	to c cac	aur	one 19tt	ttac	:ttat	caa t	ittto laa a	gtttc	
<22 <40 atct	3> : 0> : cctct	glyd 9 cet d cac t	cosy ctctc	l to	rans cg aa gt ac	fer aaga	ase aacc	to c cac	aur caaco	one ggtt itca	ttac aaca	ettat	ccc t	cttto aaa a M	rtttc itg fet 1	116
<22 <40 atest	3> ; 0> ; cetet	glyd 9 cet d cae t	ctctc cacta	l ti	rans g as gt ac ttc	fer aaga acat	ase aacc ccttt	to cac ctt	aur	one ggtt atca	ttac aaca gct	ettat acttt cat	cee t	cttto naa a M	gttttc itg Met 1 atg	
<22 <40 atest	3> ; 0> ; cetet	glyd 9 cet d cae t	ctctc cacta	l ti	rans g as gt ac ttc	fer aaga acat	ase aacc ccttt	to c cac	aur	one ggtt atca	ttac aaca gct	ettat acttt cat	cee t	cttto naa a M	gttttc itg Met 1 atg	116
<22 <40 atot tget	3> ; 0> ; catct cag Gln	glyc 9 cet c cac t ctc Leu	cat His	l to	rans g as gt ac ttc Phe	fer aaga acat ttc Phe	ase aacc cttt ttt Phe	to cac	aur caaco ctcta atg Met	one ggtt itca atg Met	ttac aaca gct Ala	ettat ecttt cat His	ggc Gly	cttto naa a M Cac His	rtttc itg fet 1 atg Met	116
<22 <40 atct tgct ggt Gly att	3> ; 0> ; cag Gln cct	glyc 9 cet c cac t ctc Leu	cat His cta	l to	rans g aa gt ac ttc Phe atg	aaga acat ttc Phe	ase aacc ccttt ttt Phe	to cac ctt	aur caacc tcts atg Met	one ggtt atca atg Met gct	ttac aaca gct Ala tca	cttat cttt cat His	ggc Gly 15	cttto naa a M Cac His	gttttc atg Met Aatg Met	164
<22 <40 atct tgct ggt Gly att	3> ; 0> ; cag Gln cct	glyc 9 cet c cac t ctc Leu	cat His cta	l to	rans g aa gt ac ttc Phe atg	aaga acat ttc Phe	ase aacc ccttt ttt Phe	ccc Pro 10 ctt	aur caacc tcts atg Met	one ggtt atca atg Met gct	ttac aaca gct Ala tca	cttat cttt cat His	ggc Gly 15	cttto naa a M Cac His	gttttc atg Met Aatg Met	164
<22 <40 atct tgct ggt Gly att Ile	0> cag Cag Gln cct	glyc 9 cct c cac t ctc Leu aca Thr	cat His cta Leu	l to	ttc Phe atg	ttc Phe gct	ase aaacc cttt ttt Phe aag Lys 25	ccc Pro 10 ctt	aur caacc ctcta atg Met ttc	ggtt atca atg Met gct Ala	ttac aaca gct Ala tca Ser	cat His cgt Arg 30	ggc Gly 15 ggt Gly	cac His gtt Val	sttttc atg Met aag Lys	164
<22 <40 atct tgct ggt Gly att Ile	3> : 0> : cetet cag Gln cet Pro	glyc glyc ctc ctc Leu aca Thr 20 ata	cat His cta Leu	ttt Phe gac Asp	ttc Phe atg Met	aaaga acat ttc Phe gct Ala	ase aaacc ccttt ttt Phe aag Lys 25 ctc	ccc Pro 10 ctt Leu	aur caaco tcta atg Met ttc Phe	one ggtt atca atg Met gct Ala tca	ttac aaca gct Ala tca Ser	cat His cgt Arg 30	ggc Gly 15 ggt Gly	cac His gtt Val	gttttc atg Met aag Lys	1164

att	gaa	aga	aac	aag	cat	gaa	att	gac	atc	cgt	ttg	atc	aaa	ttc	caa	308
Ile	Glu	Arg	Asn	Lys	His	Glu	Ile	Asp	Ile	Arg	Leu	Ile	Lys	Phe	Gln	
50					55					60					65	
gct	gtt	gaa	aat	ggc	ttg	cct	gaa	ggt	tgt	gag	cgt	att	gat	ctt	atc	356
Ala	Val	Glu	Asn	Gly	Leu	Pro	Glu	Gly	Cys	Glu	Arg	Ile	Asp	Leu	Ile	
				70					75					80		
cct	tct	gat	gac	aag	ctt	taa	aat	ttt	ttg	aaa	gct	gca	gct	atg	atg	404
Pro	Ser	Asp	Asp	Lys	Leu	Ser	Asn	Phe	Leu	Lys	Ala	Ala	Ala	Met	Met	
			85					90					95			
caa	gaa	cca	ctt	gag	cag	ctt	att	gaa	gaa	tgt	cat	ccc	aat	tgt	ctt	452
Gln	Glu	Pro	Leu	Glu	Gln	Leu	Ile	Glu	Glu	Cys	His	Pro	Asn	Cys	Leu	
		100					105					110				
gtt	tct	gat	atg	ttc	ctt	cct	tgg	act	act	gat	act	gca	gcc	aag	ttt	500
Val	Ser	Asp	Met	Phe	Leu	Pro	Trp	Thr	Thr	Asp	Thr	Ala	Ala	Lys	Phe	
	115					120					125					
aac	att	cca	aga	ata	gtt	ttc	cat	ggt	acg	agt	ttc	ttt	gca	ctt	tgt	548
Asn	Ile	Pro	Arg	Ile	Val	Phe	His	Gly	Thr	Ser	Phe	Phe	Ala	Leu	Cys	
130					135					140					145	
gta	gag	aat	agt	aac	agg	act	aat	aag	cca	ttc	aag	aac	gtc	tct	tct	596
Val	Glu	Asn	Ser	Asn	Arg	Thr	Asn	Lys	Pro	Phe	Lys	Asn	Val	Ser	Ser	
				150					155					160		
gat	tct	gaa	act	ttt	gtt	gta	cca	aat	ttg	cct	cac	gaa	atc	agg	cta	644
Asp	Ser	Glu	Thr	Phe	Val	Val	Pro	Asn	Leu	Pro	His	Glu	Ile	Arg	Leu	
			165					170					175			
act	aga	aca	caa	ttg	tct	ccg	ttt	gag	caa	tca	ttg	gaa	gag	aca	cca	692
Thr	Arg	Thr	Gln	Leu	Ser	Pro	Phe	Glu	Gln	Ser	Leu	Glu	Glu	Thr	Pro	
		180					185					190				
atg	tcc	cga	atg	ata	aaa	gca	gtt	agg	gaa	tcg	gac	gcg	aag	agt	tat	740
Met	Ser	Arg	Met	Ile	Lys	Ala	Val	Arg	Glu	Ser	Asp	Ala	Lys	Ser	Tyr	
	195					200					205					
gga	gtt	atc	ttc	aac	agc	ttc	tat	gag	ctt	gaa	tca	gat	tat	gtt	gaa	788
Gly	Val	Ile	Phe	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser	Asp	Tyr	Val	Glu	
210					215					220					225	
cat	tat	acc	aag	gtt	ctt	ggt	aga	aag	tct	tgg	gct	att	ggc	ccg	ctt	836
His	Tyr	Thr	Lys	Val	Leu	Gly	Arg	Lys	Ser	Trp	Ala	Ile	Gly	Pro	Leu	
				230					235					240		

tct	ttg	tgc	aat	agg	gac	att	gaa	gat	aaa	gct	gaa	aga	ggg	aag	att	884
Ser	Leu	Cys	Asn	Arg	Asp	Ile	Glu	Asp	Lys	Ala	Glu	Arg	Gly	Lys	Ile	
			245					250					255			
tcc	tct	att	gat	aaa	cat	gag	tgt	ttg	aat	tgg	ctt	gat	tca	aag	aaa	932
Ser	Ser	Ile	Asp	Lys	His	Glu	Cys	Leu	Asn	Trp	Leu	Asp	Ser	Lys	Lys	
		260					265					270				
cca	agt	tcc	att	gtt	tat	gtt	tgc	ttc	ggg	agc	gta	gca	gat	ttc	act	980
Pro	Ser	Ser	Ile	Val	Tyr	Val	Cys	Phe	Gly	Ser	Val	Ala	Asp	Phe	Thr	
	275					280					285					
gca	gca	caa	atg	cgt	gaa	ctt	gca	ttg	gga	att	gaa	gca	tct	gga	caa	1028
Ala	Ala	Gln	Met	Arg	Glu	Leu	Ala	Leu	Gly	Ile	Glu	Ala	Ser	${\tt Gly}$	Gln	
290					295					300					305	
gaa	ttc	att	tgg	gct	gtt	aga	aga	ggc	aaa	gag	gaa	caa	gac	aat	gaa	1076
Glu	Phe	Ile	Trp	Ala	Val	Arg	Arg	$\mathtt{Gl}_{\mathtt{Y}}$	Lys	Glu	Glu	Gln	Asp	Asn	Glu	
				310					315					320		
gag	tgg	ttg	cct	gaa	gga	ttc	gag	gaa	aga	acg	aaa	gaa	aaa	ggt	cta	1124
Glu	Trp	Leu	Pro	Glu	Gly	Phe	Glu	Glu	Arg	Thr	Lys	Glu	Lys	${\tt Gly}$	Leu	
			325					330					335			
att	att	aga	gga	tgg	gcg	ccc	caa	gtg	cta	att	ctt	gat	cac	caa	gct	1172
Ile	Ile	Arg	Gly	Trp	Ala	Pro	Gln	Val	Leu	Ile	Leu	Asp	His	Gln	Ala	
		340					345					350				
gtg	gga	gct	ttt	gtc	act	cat	tgt	ggt	tgg	aat	tca	acg	ctt	gaa	gga	1220
Val	Gly	Ala	Phe	Val	Thr	His	Cys	Gly	Trp	Asn	Ser	Thr	Leu	Glu	Gly	
	355					360					365					
gta	tca	gca	ggg	gtg	cct	atg	gtg	acc	tgg	cct	gtg	ttt	gca	gag	caa	1268
Val	Ser	Ala	Gly	Val	Pro	Met	Val	Thr	Trp	Pro	Val	Phe	Ala	Glu	Gln	
370					375					380					385	
					ttg											1316
Phe	Phe	Asn	Glu	Lys	Leu	Val	Thr	Glu	Val	Leu	Arg	Thr	Gly	Ala	Gly	
				390					395					400		
gtt	ggt	tca	atg	caa	tgg	aaa	aga	tca	gct	agc	gag	gga	gta	aaa	agg	1364
Val	Gly	Ser	Met	Gln	Trp	Lys	Arg	Ser	Ala	Ser	Glu	\mathtt{Gly}	Val	Lys	Arg	
			405					410					415			
gaa	gca	ata	gct	aag	gca	ata	aag	aga	gtc	atg	gtg	agt	gaa	gaa	gca	1412
Glu	Ala	Ile	Ala	Lys	Ala	Ile	Lys	Arg	Val	Met	Val	Ser	Glu	Glu	Ala	
		420					425					430				

gag gga ttc aga aac cga gct aaa gcc tac aaa gag atg gca aaa caa 1460 Glu Gly Phe Arg Asn Arg Ala Lys Ala Tyr Lys Glu Met Ala Lys Gln 440 gct att gaa gaa gga gga tet tet tae tet gga ttg act act ttg eta 1508 Ala Ile Glu Gly Gly Ser Ser Tyr Ser Gly Leu Thr Thr Leu Leu 450 455 460 465 caa gat ata agt aca tat agt tcc aaa agt cat taactgcaca actaaaaaaa 1561 Gln Asp Ile Ser Thr Tyr Ser Ser Lys Ser His 470 475 tgtagtgttg ttctatacaa tttttatgct tttttatgcg tgtactaatt taaacatgga 1621 tttagtgaca gcactttttg ttacttctta taatgacatt tcggatgg <210> 10 <211> 476 <212> PRT <213> Petunia hybrida <220> <223> Amino acid sequence of a protein having glycosyl transferase to aurone <400> 10 Met Gly Gln Leu His Phe Phe Phe Phe Pro Met Met Ala His Gly His 1 5 10 15 Met Ile Pro Thr Leu Asp Met Ala Lys Leu Phe Ala Ser Arg Gly Val 20 25 Lys Ala Thr Ile Ile Thr Thr Pro Leu Asn Glu Ser Val Phe Ser Lys 35 40 45 Ala Ile Glu Arg Asn Lys His Glu Ile Asp Ile Arg Leu Ile Lys Phe 55 Gln Ala Val Glu Asn Gly Leu Pro Glu Gly Cys Glu Arg Ile Asp Leu 65 70 Ile Pro Ser Asp Asp Lys Leu Ser Asn Phe Leu Lys Ala Ala Met 90 Met Gln Glu Pro Leu Glu Gln Leu Ile Glu Glu Cys His Pro Asn Cys 100 105 110 Leu Val Ser Asp Met Phe Leu Pro Trp Thr Thr Asp Thr Ala Ala Lys

125

120

115

	Phe		Ile	Pro	Arg	Ile	Val	Phe	His	Gly	Thr	Ser	Phe	Phe	Ala	Leu
		130					135					140				
	Cys	Val	Glu	Asn	Ser	Asn	Arg	Thr	Asn	Lys	Pro	Phe	Lys	Asn	Val	Ser
	145					150					155					160
	Ser	Asp	Ser	Glu	Thr	Phe	Val	Val	Pro	Asn	Leu	Pro	His	Glu	Ile	Arg
					165					170					175	
	Leu	Thr	Arg	Thr	Gln	Leu	Ser	Pro	Phe	Glu	Gln	Ser	Leu	Glu	Glu	Thr
				180					185					190		
	Pro	Met	Ser	Arg	Met	Ile	Lys	Ala	Val	Arg	Glu	Ser	Asp	Ala	Lys	Ser
			195					200					205			
	Tyr	Gly	Val	Ile	Phe	Asn	Ser	Phe	Tyr	Glu	Leu	Glu	Ser	Asp	Tyr	Val
		210					215					220				
	Glu	Hıs	Tyr	Thr	Lys	Val	Leu	Gly	Arg	Lys	Ser	Trp	Ala	Ile	Gly	Pro
	225					230					235					240
	Leu	Ser	Leu	Cys	Asn	Arg	Asp	Ile	Glu	Asp	Lys	Ala	Glu	Arg	Gly	Lys
					245					250					255	
	Ile	Ser	Ser	Ile	Asp	Lys	His	Glu	Cys	Leu	Asn	Trp	Leu	Asp	Ser	Lys
				260					265					270		
	Lys	Pro	Ser	Ser	Ile	Val	Tyr	Val	Cys	Phe	Gly	Ser	Val	Ala	Asp	Phe
			275					280					285			
	Thr	Ala	Ala	Gln	Met	Arg	Glu	Leu	Ala	Leu	Gly	Ile	Glu	Ala	Ser	Gly
		290					295					300				
	Gln	Glu	Phe	Ile	Trp	Ala	Val	Arg	Arg	Gly	Lys	Glu	Glu	Gln	Asp	Asn
	305					310					315					320
	Glu	Glu	Trp	Leu	Pro	Glu	${\tt Gly}$	Phe	Glu	Glu	Arg	Thr	Lys	Glu	Lys	Gly
					325					330					335	
	Leu	Ile	Ile	Arg	${\tt Gly}$	\mathtt{Trp}	Ala	Pro	Gln	Val	Leu	Ile	Leu	Asp	His	Gln
				340					345					350		
	Ala	Val	$\mathtt{Gl}_{\mathtt{Y}}$	Ala	Phe	Val	Thr	His	Cys	Gly	Trp	Asn	Ser	Thr	Leu	Glu
			355					360					365			
	Gly	Val	Ser	Ala	Gly	Val	Pro	Met	Val	Thr	Trp	Pro	Val	Phe	Ala	Glu
		370					375					380				
	Gln	Phe	Phe	Asn	Glu	Lys	Leu	Val	Thr	Glu	Val	Leu	Arg	Thr	${\tt Gl}_{{\tt Y}}$	Ala
	385					390					395					400
,	Gly	Val	Gly	Ser	Met	Gln	Trp	Lys	Arg	Ser	Ala	Ser	Glu	Gly	Val	Lys
					405					410					415	
	Arg	Glu	Ala	Ile	Ala	Lys	Ala	Ile	Lys	Arg	Val	Met	Val	Ser	Glu	Glu
				420					425					430		

```
Ala Glu Gly Phe Arg Asn Arg Ala Lys Ala Tyr Lys Glu Met Ala Lys
                          440
Gln Ala Ile Glu Gly Gly Ser Ser Tyr Ser Gly Leu Thr Thr Leu
    450
                      455
                                         460
Leu Gln Asp Ile Ser Thr Tyr Ser Ser Lys Ser His
465
                  470
                                     475
<210> 11
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 11
                                                               25
ataactacat atggctattc ccaca
<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 12
gaacaggatc ctaaaaggac ct
                                                               22
<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 13		
ataactacat atgggtcagc	tcca	24
<210> 14		
<211> 23		
<212> DNA		
<213> Artificial S	Sequence	
<220>		
<223> Primer		
<400> 14		
ctcgtaccat ggaaaactat	tet	23