Algebra Qualifying Exam: August 29, 2014

Instructions: This exam consists of ten problems; answer as many as you can. Show all work for each problem. Here \mathbb{Z} denotes the integers, \mathbb{Q} is the rational numbers, \mathbb{R} is the real numbers, and \mathbb{C} is the complex numbers.

- 1. Let p be a prime integer, and let G be the multiplicative subgroup of the complex numbers $G = \{ z \in \mathbb{C} \mid z^{p^n} = 1 \text{ for some positive integer n } \}$.
 - (a) Show that every proper subgroup of G is finite.
 - (b) Show that G has no maximal subgroups. (A proper subgroup is maximal if it is not properly contained in any proper subgroup.)
- 2. Use Zorn's Lemma (or any other version of the Axiom of Choice) to prove that any ring R with a multiplicative identity $1 \in R$ has at least one maximal ideal. Explain why a similar argument does not show that every group has a maximal subgroup.
- 3. Note that $f(x) = x^7 1$ factors modulo two (over the field $F = \mathbb{Z}/2\mathbb{Z}$ of two elements) as $x^7 1 = (x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$. Use this to prove that the multiplicative group $GL_3(F)$ of invertible 3×3 matrices with entries in F has exactly two conjugacy classes of elements of order 7. Write down a representative of each conjugacy class.
- 4. Let $K \subseteq F$ be two fields such that F is a finite dimensional vector space over the subfield K. Prove that for any element $\alpha \in F$, there exists a polynomial $f(x) \in K[x]$ with coefficients in K such that α is a root, $f(\alpha) = 0$.
- 5. Let R be a ring which is a PID (principal ideal domain) and let M be an R-module. For each element $x \in M$, the annihilator is $A(x) = \{ a \in R \mid ax = 0 \}$. The torsion submodule of M is $N = Tor(M) = \{ x \in M \mid A(x) \neq (0) \}$.
 - (a) Show that N is a submodule of M.
 - (b) Show that the torsion submodule of the quotient module M/N is the zero submodule.
- 6. Let G be a simple group of order $168 = 2^3 \times 3 \times 7$. Prove that G contains a nonabelian group of order 21.

- 7. Let A be a square $n \times n$ matrix with entries in the rational numbers. Assume that $A^3 = 3A^2 2A + I$, where I is the $n \times n$ identity matrix.
 - (a) Prove that the determinant $det(A) \neq 0$.
 - (b) Prove that n is a multiple of 3.
- 8. Let $\omega = e^{\frac{2\pi i}{10}}$ be the primitive complex tenth root of unity. Determine all subfields of the extension field over the rational numbers $F = \mathbb{Q}(\omega)$.
- 9. Let $P \subseteq \mathbb{Z}[x]$ be a prime ideal in the ring of polynomials with integer coefficients. Assume that P contains no nonzero constants (so that $P \cap \mathbb{Z} = (0)$). Prove P is a principal ideal. Hint: the content of an integer polynomial is the GCD of its coefficients.
- 10. Let G be a finite group acting transitively on a finite set X. Let H be a normal subgroup of G. Assume that the index [G:H] of the subgroup is relatively prime to the cardinality |X|. Prove that H acts transitively on the set X.