Subje	ct	Juu	C. 1.	20.	TU.
	T				
COP		100	100		

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)

Affiliated to Dr. A.P. J Abdul Kalam Technical University, Uttar Pradesh, Lucknow

Course B. Tech

Year- (2021-22) **Examination PUT**

Subject Name: Design & Analysis of Algorithms Max. Marks:60

Time: 2:00 Hrs

1. This Question paper consists of 3 pages & 4 questions. It comprises of three Sections A, B, & C. 1. This Question paper consists of 3 pages & 4 questions. It comprises of answer type questions carrying 1 mark each, Q. No. 2 is short answer type 2. Section A -Q.No. 1 is Very short answer type questions carrying as directed.

Question carrying 2 mark each. You are expected to answer them as directed. Question carrying 2 mark each. You are expected to answer trying 5 marks each. Attempt any four out of five questions 3. <u>Section B-Q.No-3</u> is Short answer type questions

given.
4. Section C-Q. No.4 is Long answer type questions carrying 6 marks each. Attempt any four out of six questions

gi	ven.	SECTION - A			
)•				[8x1=08]	
	Atten	npt all parts	(1)	COS	
1	1-a.	Define Approximation algorithm.	(1)	CO	
-	1-b.	Define Greedy approach.	(1)	CO	
	1-c.	Define B-tree.	(1)	CO	
	1-d.	Define Dynamic programming.	(1)	CO	
	1-e.	Define Branch & Bound.	(1)	CO	
	1-f.	Define Optimal solution.	(1)	CO	
	1-g.	Define Minimum Spanning tree.	(1)	CO	
	1-h.	Define Backtracking.	147	<2=08	
2.	Atte	mpt all parts	(2)	T-0	
	2-a.	Write down the difference between BFS & DFS.	(2)	100	
	2-b.	Write down the properties of Binomial Tree.	1	100	
-	2-c.	Write down the properties of B-tree.	(2)	1	

		Well	-	-				
	2-d.	Write down the properties of Red-Black tree.	(2)	CO2				
	SECTION-B							
3.	Atten	npt any four out of five questions-						
	3-a.	Explain Longest common subsequence(LCS) problem. Solve the following problem:- X= ABCXYZAY and Y= XYZABCB						
	3-b.	Explain sum of subset problem. Solve the following problem: - Input: The Set: {10, 7, 5, 18, 12, 20, 15} The sum Value: 35						
	3-с.	Explain Travelling salesman problem. Solve the below problem using branch & Bound method. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(5)	CO4				
1	3-d.	Explain Dijkstra's single source shortest path algorithm. Solve the below problem using Dijkstra's algorithm: -	(5)					
	3-е.	Every Red Black Tree with n nodes has height <= 2Log ₂ (n+1)	(5) CO2				
1	3/2-		1	1				

SECTION - C				
4.	Attempt any four out of six questions-			6=24]
	4-a.	Solve the following string matching problem using Rabin-karp matcher: Working modulo q = 11, how many spurious hits does the Rabin-Karp matcher encounter in the text T= 3141592653589793 when looking for the pattern P = 26.	(6)	
	4-b.	Solve the following problem of string matching using KMP algorithm:- T=ababcabcabababd and pattern p= ababd	(6)	CO5
	4-c.	Explain all pair shortest path algorithm with any example.	(6)	CO4
	4-d.	Solve the following problem using Bell-man ford algorithm:	(6)	C03
	4-e.	Explain N-queen problem with help of example.	(6)	CO4
	4-f.	Solve the following problem using 0/1 Knapsack problem: - Consider the problem having weights and profits are: Weights: {3, 4, 6, 5} Profits: {2, 3, 1, 4} The weight of the knapsack is 8 kg	(6)	C04

Sallkbio cold