2018 级《微积分》(一)(下)课程期中考试试题

(2019年4月22日, 用时100分钟)

ŧ	业班级		学号		姓名		
	题 号	_	=	三	四	总 分	
	分数						
	阅卷人 得 分	一、填空题 (每空 2 分, 共 24 分)					
1. 函数 $f(x,y,z) = x^3y + e^{xz} + zy$ 的梯度 $\nabla f = (3x^2y + ze^{xz}, x^3 + z, xe^{xz} + z)$						$+z, xe^{xz}+y)$	
	f 在点 (1,1	1,1) 处关于方	前 $\vec{a} = (1, 2, 3)$	3) 的方向导数	(8+	$-4e)/\sqrt{14}$.	
2.		,	$-\pi \leqslant x < 0$ $0 \leqslant x \leqslant \pi$ $0) = 1/2$			为 $S(x)$,则 $(\pi) = 1/2$ 。	
3.						$\overline{3}$; 平面 $, 1-2t, -2+t)$;	
			$\sqrt{66}/3$		(60, 9, 10)	, , , - , - , - , - , -	
4.						$x_0, y_0, u_0, v_0)$ 满足	
	条件 <u>(x</u>	$(x_0, y_0, u_0, v_0) \neq$	=(0,0,0,0)	_ 时,存在 (x	(x_0,y_0) 在 \mathbb{R}^2 「	中的邻域 V , 以及	

 $(u_0, v_0) 在 \mathbb{R}^2 中的邻域 U, 使得 u = u(x, y), v = v(x, y) 是由该方程组所确定的隐$ $函数; 此时 <math>\frac{\partial u}{\partial x} = \underbrace{ v^3(e^{x+y} + y)/(u^4 + v^4)}_{4(u^4 + v^4)}, \frac{\partial^2 u}{\partial x \partial y} = \underbrace{ \frac{(4v^3(e^{x+y} + x) - u)(8u^3v^3(e^{x+y} + x) - u^4 + v^4)}{4(u^4 + v^4)^3} + \frac{12v^2u^3(e^{x+y} + x)(e^{x+y} + y) + 4v^3(u^4 + v^4)(e^{x+y} + 1) - v^3(e^{x+y} + y)}{4(u^4 + v^4)^2}.$

阅卷人	
得 分	

二、计算 (每题 8 分,共 32 分)

5. 函数 $f(x) = \ln \frac{1+x}{1-x}$ 在 $x_0 = 0$ 处的 Taylor 展开式。

解: 由
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, -1 < x \le 1$$
 得

$$f(x) = \ln(1+x) - \ln(1-x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (-x)^n$$
$$= \sum_{n=1}^{\infty} \frac{-1 + (-1)^{n-1}}{n} x^n, |x| < 1.$$

6. 函数 z = z(x,y) 由 $z = \frac{x+y}{x-y}$ 给出,求 $\frac{\partial^{2019}z}{\partial x^{1010}\partial y^{1009}}$.

解:由
$$z = \frac{-x+y+2x}{x-y} = -1 + \frac{-2x}{y-x}$$
 得,当 $n \ge 1$ 时,

$$\frac{\partial^n z}{\partial y^n} = (-2x) \cdot (-1) \cdot \dots \cdot (-n) \cdot (y-x)^{-n-1} = (-1)^n (n!) \frac{2x}{(y-x)^{n+1}}$$
$$= n! \cdot \frac{2(x-y) + 2y}{(x-y)^{n+1}} = 2 \cdot n! \cdot \left((x-y)^{-n} + y(x-y)^{-n-1} \right),$$

所以,对于 $m \ge 1$,

$$\frac{\partial^{n+m} z}{\partial x^m \partial y^n} = 2 \cdot n! \left((-n) \cdots (-n-m+1)(x-y)^{-n-m} + y \cdot (-n-1) \cdots (-n-m)(x-y)^{-n-m-1} \right)$$
$$= (-1)^m 2 \cdot (n+m-1)! \frac{nx+my}{(x-y)^{n+m+1}}.$$

从而

$$\frac{\partial^{2019}z}{\partial x^{1010}\partial y^{1009}} = -2\cdot 2018! \cdot \frac{1010x + 1009y}{(x-y)^{2020}}.$$

7. 求
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3} x^{4n+3}$$
 的收敛域以及和函数,从而计算 $\sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3}$.

解: 因为 $\lim_{n\to\infty} \left(\frac{1}{4n+3}\right)^{1/n} = 1$,所以此级数的收敛半径为 1. 由 Leibniz 判别法可知 $\sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3}$ 收敛,所以它的收敛域为 [-1,1]. 设此幂级数和函数为 $f:[-1,1]\to \mathbb{R}$ 。由 Abel 第二定理可知,此幂级数在 [-1,1] 上一致收敛于 f,因此 f 在 [-1,1] 上连续。对任意的 $x \in (-1,1)$,有

$$f'(x) = \sum_{n=0}^{\infty} (-1)^n x^{4n+2} = \frac{x^2}{1+x^4}.$$

又因为 f(0) = 0, 所以当 $x \in (0,1)$,

$$f(x) = \int_0^x \frac{t^2}{1+t^4} dt = \frac{1}{2} \int_0^x \frac{\left(1+\frac{1}{t^2}\right) + \left(1-\frac{1}{t^2}\right)}{t^2 + \frac{1}{t^2}} dt$$

$$= \frac{1}{2} \int_0^x \frac{1}{(t-\frac{1}{t})^2 + 2} d\left(t-\frac{1}{t}\right) + \frac{1}{2} \int_0^x \frac{1}{(t+\frac{1}{t})^2 - 2} d\left(t+\frac{1}{t}\right)$$

$$= \frac{1}{2\sqrt{2}} \arctan\left(\frac{x-\frac{1}{x}}{\sqrt{2}}\right) + \frac{\pi}{4\sqrt{2}} + \frac{1}{4\sqrt{2}} \ln\left(\frac{x+\frac{1}{x}-\sqrt{2}}{x+\frac{1}{x}+\sqrt{2}}\right)$$

$$= \frac{1}{2\sqrt{2}} \arctan\left(\frac{x^2-1}{\sqrt{2}x}\right) + \frac{1}{4\sqrt{2}} \ln\left(\frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right) + \frac{\pi}{4\sqrt{2}}.$$

$$\begin{split} f(x) &= \frac{1}{2} \int_0^x \frac{1}{(t - \frac{1}{t})^2 + 2} d\left(t - \frac{1}{t}\right) + \frac{1}{2} \int_0^x \frac{1}{(t + \frac{1}{t})^2 - 2} d\left(t + \frac{1}{t}\right) \\ &= \frac{1}{2\sqrt{2}} \arctan\left(\frac{x - \frac{1}{x}}{\sqrt{2}}\right) - \frac{\pi}{4\sqrt{2}} + \frac{1}{4\sqrt{2}} \ln\left|\frac{x + \frac{1}{x} - \sqrt{2}}{x + \frac{1}{x} + \sqrt{2}}\right| \\ &= \frac{1}{2\sqrt{2}} \arctan\left(\frac{x^2 - 1}{\sqrt{2}x}\right) + \frac{1}{4\sqrt{2}} \ln\left(\frac{x^2 - \sqrt{2}x + 1}{x^2 + \sqrt{2}x + 1}\right) - \frac{\pi}{4\sqrt{2}}. \end{split}$$

从而由 f 的连续性得

$$f(1) = \lim_{t \to 1^{-}} f(t) = \frac{1}{4\sqrt{2}} \ln\left(\frac{\sqrt{2} - 1}{\sqrt{2} + 1}\right) + \frac{\pi}{4\sqrt{2}},$$
$$f(-1) = \lim_{t \to -1^{+}} f(t) = \frac{1}{4\sqrt{2}} \ln\left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right) - \frac{\pi}{4\sqrt{2}}.$$

8. 设函数 u=u(x,y) 为二阶连续可微函数,满足 $u(x,2x)=x,\,u_x(x,2x)=x^2$ 和

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0. ag{8.1}$$

求 $u_{xx}(x,2x)$, $u_{xy}(x,2x)$ 与 $u_{yy}(x,2x)$.

解: 对 u(x,2x) = x 两边求 $\frac{d}{dx}$ 得 $u_x(x,2x) + 2u_y(x,2x) = 1$. 注意到 $u \in C^2$, 所以 $u_{xy} = u_{yx}$. 再对 $u_x(x,2x) + 2u_y(x,2x) = 1$ 两边求 $\frac{d}{dx}$ 得

$$u_{xx}(x,2x) + 2u_{xy}(x,2x) + 2u_{xy}(x,2x) + 4u_{yy}(x,2x) = 0.$$
(8.2)

对 $u_x(x,2x) = x^2$ 求两边求 $\frac{d}{dx}$ 得

$$u_{xx}(x,2x) + 2u_{xy}(x,2x) = 2x. (8.3)$$

由 (8.1), (8.2), (8.3) 解得

$$u_{xx}(x,2x) = u_{yy}(x,2x) = -\frac{4}{3}x, \ u_{xy}(x,2x) = \frac{5}{3}x.$$

阅卷人	
得 分	

三、解答题 (每题 10 分,共 20 分)

- 9. (1) 设 $\alpha \in \mathbb{R}$, 讨论函数列 $f_n(x) = \frac{x}{1 + n^{\alpha}x^2}$ 在 \mathbb{R} 上的一致收敛性。
 - (2) 设 a < b 为实数, 讨论级数 $\sum_{n=0}^{\infty} \frac{\cos nx}{n}$ 在区间 [a,b] 上的一致收敛性。

解: (1) 当 $\alpha = 0$ 时, $f_n(x) = \frac{x}{1+x^2}$,因此 f_n 一致收敛于函数 $f(x) = \frac{x}{1+x^2}$.

当 $\alpha > 0$ 时,因为 $1 + n^{\alpha}x^{2} \ge 2n^{\alpha/2}|x|$,所以 $|f_{n}(x)| \le \frac{1}{2n^{\alpha/2}}$. 因此 $f_{n}(x)$ 收敛于 0. 并且 $\sup_{x \in \mathbb{R}} |f_{n}(x) - 0| \le \frac{1}{2n^{\alpha/2}} \to 0$,所以 $f_{n} \rightrightarrows 0$, $n \to \infty$.

当 $\alpha < 0$ 时, $f_n(x) \to x$, $\forall x \in \mathbb{R}^n$,并且 $|f_n(x) - x| = \frac{n^{\alpha}|x|^3}{1 + n^{\alpha}x^2}$. 所以

$$\sup_{x \in \mathbb{R}} |f_n(x) - x| = +\infty \to 0.$$

即 f_n 收敛于 f(x) = x, 但是不一致收敛。

(2) 当 $x_0 = 2k\pi$, $k \in \mathbb{Z}$ 时, $\cos nx_0 = 1$,所以 $\sum_{n=0}^{\infty} \frac{\cos nx_0}{n}$ 发散。因此,若存在 $k \in \mathbb{Z}$ 使得 $2k\pi \in [a,b]$ 那么, $\sum_{n=0}^{\infty} \frac{\cos nx_0}{n}$ 在 [a,b] 上发散。

若不存在 $k \in \mathbb{Z}$ 使得 $2k\pi \in [a,b]$,那么存在整数 m 使得 $[a,b] \subseteq (2m\pi,2(m+1)\pi)$. 因为 2π 是 $\cos nx$ 的周期,所以我们不妨假设 m=0,即 $[a,b] \subseteq (0,2\pi)$. 因为

$$\sin\frac{x}{2}\cos nx = \frac{1}{2}\left(\sin\frac{2n+1}{2}x - \sin\frac{2n-1}{2}x\right),\,$$

所以, 当 $x \in [a, b]$ 时

$$\sum_{n=1}^{N} \cos nx = \frac{1}{2\sin\frac{x}{2}} \left(\sin\frac{2N+1}{2}x - \sin\frac{1}{2}x \right),$$

即

$$\left| \sum_{n=1}^{N} \cos nx \right| \leqslant \frac{1}{\sin \frac{x}{2}} \leqslant \max \left\{ \frac{1}{\sin \frac{a}{2}}, \frac{1}{\sin \frac{b}{2}} \right\},\,$$

 $\sum_{n=1}^{N} \cos nx$ 一致有界,由 A-D 判别法可知, $\sum_{n=0}^{\infty} \frac{\cos nx}{n}$ 在 [a,b] 上一致收敛。

10. 设
$$n, m, k$$
 为正整数,讨论函数 $f(x, y) = \begin{cases} \frac{x^n y^m}{x^k + y^2}, & x^k + y^2 \neq 0 \\ 0, & x^k + y^2 = 0 \end{cases}$ 在 $(0, 0)$ 处的

连续性。

解: 当 k 为奇数时, 选取 $\alpha = m + 1 + 2n/k$, 则 $\alpha > 2$,

$$\lim_{y \to 0+} f((-y^2 + y^{\alpha})^{1/k}, y) = \lim_{y \to 0+} \frac{(-y^2 + y^{\alpha})^{n/k} y^m}{y^{\alpha}} = \lim_{y \to 0+} \frac{(-1 + y^{\alpha - 2})^{n/k}}{y} = \infty,$$

所以 f 在 (0,0) 处不连续。

当 $k=2\ell$ 为偶数, 并且 $n+m\ell \leq k$ 时, f(0,0)=0, 但是

$$\lim_{x \to 0+} f(x, x^{\ell}) = \lim_{x \to 0+} \frac{1}{2} x^{n+m\ell-k} = \begin{cases} 1/2, & n+m\ell = k, \\ +\infty, & n+m\ell < k. \end{cases}$$

所以 f 在 (0,0) 处不连续。

当 $k = 2\ell$ 为偶数,并且 $n + m\ell > k$ 时,由平均值不等式得

$$x^{k} + y^{2} = \frac{x^{k}}{n} + \dots + \frac{x^{k}}{n} + \frac{y^{2}}{m\ell} + \dots + \frac{y^{2}}{m\ell} \geqslant (n + ml) \left(\frac{x^{kn}}{n^{n}} \cdot \frac{y^{2m\ell}}{(m\ell)^{m\ell}}\right)^{1/(n+m\ell)}$$
$$= (n + m\ell)n^{-n/(n+m\ell)} (m\ell)^{-m\ell/(n+m\ell)} (|x|^{n}|y|^{m})^{k/(n+m\ell)}.$$

因此

$$|f(x,y)| \le \frac{n^{n/(n+m\ell)} (m\ell)^{m\ell/(n+m\ell)}}{n+m\ell} (|x|^n |y|^m)^{\frac{n+m\ell-k}{n+m\ell}}.$$

从而

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0,$$

即 f 在 (0,0) 处连续。

阅卷人	
得 分	

四、证明题 (每题 12 分, 共 24 分)

11. 证明函数
$$f(x,y) = \begin{cases} \frac{x^5 + y^3}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x = y = 0 \end{cases}$$
 在点 $(0,0)$ 处不可微,在 $\mathbb{R}^2 \setminus \{(0,0)\}$

上可微。

证明: 由偏导数的定义可知

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{x} = \lim_{t \to 0} \frac{t^3}{t} = 0,$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{t}{t} = 1.$$

假设 f 在 (0,0) 处可微,则有

$$f(x,y) - f(0,0) = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + o(\sqrt{x^2 + y^2}), \ (x,y) \to (0,0),$$

即

$$\frac{x^5 + y^3}{x^2 + y^2} - y = o(\sqrt{x^2 + y^2}), \ (x, y) \to (0, 0),$$

换句话说,成立

$$\lim_{(x,y)\to(0,0)}\frac{x^5-x^2y}{(x^2+y^2)^{3/2}}=0.$$

但是

$$\lim_{x \to 0} \frac{x^5 - x^3}{(x^2 + x^2)^{3/2}} = 2^{-3/2} \neq 0,$$

从而得出矛盾,即假设不成立,得到f在(0,0)处不可微。

对于任意的 $(x_0,y_0)\neq (0,0), x_0^2+y_0^2\neq 0$, 因为函数 $g(x,y)=x^2+y^2$ 在 (x_0,y_0) 处连续且不为 0, 所以函数 $h(x,y)=\frac{1}{x^2+y^2}$ 在 (x_0,y_0) 处连续。当 $(x,y)\neq (0,0)$ 时,

$$\frac{\partial f}{\partial x}(x,y) = \frac{3x^6 + 5x^4y^2 - 2xy^3}{(x^2 + y^2)^2}, \ \frac{\partial f}{\partial y}(x,y) = \frac{2x^2y - 2x^5y}{(x^2 + y^2)^2},$$

因此 $\frac{\partial f}{\partial x}$ 与 $\frac{\partial f}{\partial y}$ 都在 (x_0, y_0) 处连续。从而得到 f 在 (x_0, y_0) 处可微。

12. (1) 设 $1=n_1 < n_2 < \cdots < n_m < \cdots$ 为一个正整数数列。设 $\{a_m\}_{m\geqslant 1}$ 为一个实数数列。如果对于任意的 $m\geqslant 1$,都有 $a_{n_m},a_{n_m+1},\cdots,a_{n_{m+1}-1}$ 同号,并且级数

$$\sum_{m=1}^{\infty} \left(a_{n_m} + a_{n_{m+1}} + \dots + a_{n_{m+1}-1} \right)$$

收敛, 利用 Cauchy 收敛准则证明 $\sum_{m=1}^{\infty} a_m$ 收敛。

(2) 证明 $\sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n}$ 收敛,其中 [x] 为不超过 x 的最大整数。

证明: (1) 令 $A_m = a_{n_m} + a_{n_{m+1}} + \cdots + a_{n_{m+1}-1}$, 则级数 $\sum_{m=1}^{\infty} A_m$ 收敛,由 Cauchy 收敛准则可知,对于任意的 $\varepsilon > 0$,存在正整数 $N = N_{\varepsilon}$ 使得当 $m \ge N$ 时,对于任意的非负整数 k 都有

$$|A_m + \dots + A_{m+k}| \leqslant \varepsilon.$$

对 $n \ge n_N$ 以及任意的非负整数 ℓ , 设 $n_m \le n < n_{m+1}, n_{m+k} \le n + \ell < n_{m+k+1},$ 那么

$$|a_n + \dots + a_{n+\ell}| \le |a_n + \dots + a_{n+1-1}| + |a_{n+1} + \dots + a_{n+\ell-1}| + |a_{n+k} + \dots + a_{n+\ell}|$$

$$\le |A_m| + |A_{m+1} + \dots + |A_{m+k-1}| + \dots + |A_{m+k}| \le 3\varepsilon.$$

- 由 Cauchy 收敛准则可知 $\sum_{m=1}^{\infty} a_m$ 收敛。
- (2) 当 $m^2 \le n \le (m+1)^2 1$ 时, $[\sqrt{n}] = m$, 因此

$$\sum_{n=m^2}^{(m+1)^2-1} \frac{(-1)^{[\sqrt{n}]}}{n} = (-1)^m \sum_{n=m^2}^{(m+1)^2-1} \frac{1}{n}.$$

$$B_m = \sum_{n=m^2}^{(m+1)^2 - 1} \frac{1}{n} \leqslant \int_{m^2 - 1}^{(m+1)^2 - 1} \frac{1}{x} dx = \ln \frac{(m+1)^2 - 1}{m^2 - 1} = \ln \frac{m}{m - 1};$$

当 $m \ge 1$ 时,有

$$B_m = \sum_{n=m^2}^{(m+1)^2 - 1} \frac{1}{n} \geqslant \int_{m^2}^{(m+1)^2} \frac{1}{x} dx = 2 \ln \frac{m+1}{m}.$$

从而 $B_m > B_{m+1}$ 对任意的 $m \ge 1$ 都成立。由 Leibniz 判别法可知 $\sum_{m=1}^{\infty} (-1)^m B_m$ 收敛。再由 (1) 可知 $\sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n}$ 收敛.