Análise exploratória

Suellen Teixeira Zavadzki de Pauli

DAEST/UTFPR

O que é estatística?

Estatística é um conjunto de técnicas para, sistematicamente:

- Planejar a coleta de dados oriundos de estudos ou experimentos, realizados em qualquer área do conhecimento;
- Descrever, analisar e interpretar dados;
- Extrair informações para subsidiar decisões;
- Avaliar evidências empíricas sob hipóteses de interesse.

Exemplos de aplicações:

- Opinião da população brasileira sobre o novo governo.
- Avaliar a efetividade de uma nova droga para a cura do câncer.
- Entender os hábitos de compra dos clientes de uma loja virtual.
- Recomendação personalizada de produtos.
- Comparar a produtividade da soja sob diferentes formas de

Conceitos fundamentais

- População: Conjunto de todos os elementos sob investigação;
- Amostra: Subconjunto da população;
- Variável: Característica a ser observada com cada indivíduo da amostra.

Exemplos...

Divisões básicas da estatística

Estatística descritiva e exploratória:

- Consistência dos dados e interpretações iniciais.
- Visualização dos dados e relações entre variáveis.

Probabilidade:

Fornece ferramentas para lidar/quantificar incerteza.

Inferência estatística:

- Estimação de quantidades desconhecidas.
- Formular e testar hipóteses.
- Extrapolar para a população resultados obtidos na amostra.

Etapas da análise estatística

- Definir a população de interesse;
 - População factível
- Estabelecer os objetivos da pesquisa;
 - Definir critérios objetivos sobre quais dados coletar;
 - Postular a análise estatística a ser utilizada.
- Definir o método para coletar as amostras
 - Fonte de dados secundários (IBGE, IPEA, etc);
 - Banco de dados da empresa;
 - Pesquisas amostrais;
 - Experimentos em laboratórios, etc.
- Análise dos dados
 - Análise descritiva e exploratória (o que aconteceu na amostra?).
 - Análise inferencial (o que acontece na população?).

Exemplo

Uma pesquisa foi realizada com alunos. As variáveis são as seguintes:

- Id: identificação do aluno;
- Turma: A ou B;
- Sexo: feminino (F) ou masculino (M);
- Idade: em anos;
- Alt: altura em metros:
- Peso: em quilogramas; Filhos: nº de filhos na família;
- Fuma: hábito de fumar: sim (S) ou não (N);
- Toler: tolerância ao cigarro: (I) indiferente; (P) incomoda pouco; (M) incomoda muito;
- Exerc.: horas de atividade física, por semana;
- Cine: nº. de vezes que vai ao cinema por semana;
- OpCine: opinião a respeito das salas de cinema na cidade:
 (B) regular a boa; (M) muito boa;

Organização dos dados

- A partir de um conjunto de dados coletado, a questão é: Como extrair informações a respeito de uma ou mais características de interesse?
- Basicamente há duas opções:
 - Tabelas de frequências;
 - Gráficos.
- É importante levar em consideração a natureza dos dados.

Organização dos dados

- Uma típica tabela de dados brutos contém:
 - Variáveis (características, medições, etc) nas colunas.
 - Sujeito (indivíduo, objetos, etc) nas linhas.

```
Id Turma Sexo Idade Alt Peso Filhos Fuma Toler Exerc Cine OpCine TV OpTV
            F
                 17 1.60 60.5
                                 2
                                    NAO
                                                     1
                                                           B 16
1
  1
        Α
                                                0
                                                                  R.
2
  2
          F
                18 1.69 55.0
                                 1 NAO
                                                                  R.
3
  3 A M
                18 1.85 72.8
                                 2 NAO
                                                5 2
                                                           M 15
                25 1.85 80.9
                                 2 NAO
                                                           B 20
 5
          F 19 1.58 55.0
                                 1 NAO
                                           M
                                                                  R.
6
  6
                 19 1.76 60.0
                                 3 NAO
                                                                  R.
```

- Tipos de variáveis:
 - Qualitativa nominal: Turma, Sexo, Fuma;
 - Qualitativa ordinal: Toler, OpCine, OpTV;
 - Quantitativa discreta: Idade, Filhos, Exerc, Cine, TV.
 - Quantitativa contínua: Alt, Peso.

Tabela de frequências

- A tabela de dados brutos pode ser muito longa, portanto será difícil extrair alguma informação.
- As tabelas de frequência ajudam a resumir a informação da variável de interesse.
- Vamos usar 3 tipos de frequência:
 - Frequência absoluta: contagem de cada valor observado.
 Representado por n_i o número de indivíduos com a característica i.
 - Frequência relativa: número de indivíduos com a característica i dividido pelo total de indivíduos n, ou seja $f_i = \frac{n_i}{n}$.
 - Frequência acumulada: frequência (absoluta ou relativa)
 acumulada até um certo valor, obtida pela soma das
 frequências de todos os valores da variável, menores ou iguais
 ao valor considerado.

Tabela de frequência - qualitativa nominal

Considerando a variável Sexo

	n _i	f_i
F	37	0.74
М	13	0.26
Total	50	1.00

• Neste caso não faz sentido usar frequência acumulada.

Tabela de frequência - qualitativa ordinal

■ Considerando a variável OpTV

	n _i	f_i	f_{ac}
R	39	0.78	0.78
M	1	0.02	8.0
В	3	0.06	0.86
М	7	0.14	1.00
Total	50	1.00	

Tabela de frequência - quantitativa discreta

Considerando a variável Idade

	n _i	f_i	f_{ac}
17	9	0.18	0.18
18	22	0.44	0.62
19	7	0.14	0.76
20	4	0.08	0.84
21	3	0.06	0.90
22	0	0.00	0.90
23	2	0.04	0.94
24	1	0.02	0.96
25	2	0.04	1.00
Total	50	1.00	

Tabela de frequência - quantitativa contínua

- No caso de quantitativas contínuas não faz sentido contar cada valor pois podem existir muitos (potencialmente infinito).
- A solução é criar classes ou faixas de valores, e contar o número de ocorrências dentro destas classes
- Para definir as classes:
 - Defina a amplitude da classe, de maneira que se obtenham de 5 a 8 classes (de mesma amplitude).
 - Identifique os valores máximo e mínimo da variável e construa as classes de maneira que inclua todos os valores
- As classes de valores podem seguir um dos formatos:

Classe	Notação	Denominação	Resultado
[a,b)	a⊢b	Fechado em a, aberto em b	Inclui a, não inclui b
(a,b]	$a\dashvb$	Aberto em a, fechado em b	Não inclui a, inclui b

Tabela de frequência - quantitativa contínua

- Considerando a variável Peso.
- Foram construídas 6 classes de amplitude 10.
- As classes são do tipo [a, b) ou a ⊢ b.

	ni	f_i	f_{ac}
[40, 50)	8	0.16	0.16
[50, 60)	22	0.44	0.60
[60, 70)	8	0.16	0.76
[70, 80)	6	0.12	0.88
[80, 90)	5	0.10	0.98
[90, 100)	1	0.02	1.00
Total	50	1.00	

Tabela de frequência - quantitativa discreta (muitos valores)

- Considerando a variável TV.
- Apesar de ser discreta, o número de valores únicos é muito grande e não seria útil contar as frequências de cada valor.
- Neste caso, utiliza-se o mesmo procedimento usado para quantitativas contínuas

	n _i	f_i	f_{ac}
[0,6)	14	0.28	0.28
[6, 12)	17	0.34	0.62
[12, 18)	11	0.22	0.84
[18, 24)	4	0.08	0.92
[24, 30)	3	0.06	0.98
[30, 36)	1	0.02	1.00
Total	50	1.00	

Representação gráfica

- Podemos visualizar as tabelas através de gráficos.
- Existe um tipo de gráfico adequado para cada tipo de variável.
- Cuidado deve ser tomado com representações visuais pois um gráfico desproporcional pode gerar interpretações distorcidas.
- As principais representações gráficas são:
 - Diagrama circular (setores ou "pizza");
 - Gráfico de barras;
 - Histogramas;
 - Boxplots.

Diagrama circular

- Adequado para variáveis qualitativas nominal e ordinal.
- O uso deste tipo de gráfico deve ser evitado, pois pode ser de difícil interpretação.

Gráfico de barras

- Adequado para variáveis qualitativas nominal/ordinal e quantitativa discreta (poucos valores distintos).
- Podem ser usadas as frequências absolutas ou relativas.

Histograma

Adequado para quantitativa contínua.

Mediana e quartis

- Mediana: valor da variável que divide o conjunto de dados ordenado em dois subgrupos de mesmo tamanho.
- Quartis: valores da variável que divide o conjunto de dados ordenados em quatro subgrupos de mesmo tamanho.
- Posição dos quartis:
 - $Q_1 = 0.25 \cdot (N + 1)$ e arredonde
 - $Q_2 =$ média dos valores nas posições (N/2) e (N/2) + 1 se N par e $Q_2 =$ (N + 1)/2 se N ímpar.
 - $Q_3 = 0.75 \cdot (N + 1)$ e arredonde.

Boxplot

- Adequado para quantitativa contínua.
- Pode ser usado também para quantitative discreta com muitos valores.

Figure 1: RMSE of all model configurations for PETR4, VALE and ITUB4.