

Fig. 1. Georg Friedrich Bernhard Riemann

1. Analytic Sets

Definition 1.1. Let G be a domain in \mathbb{C}^n , a close set $A \subseteq G$ is called **analytic set**, if and only if for any $z \in A$, there exists an open set $V \subseteq G$ containing z and finite many holomorphic functions $\{f_1, f_2, ..., f_q\}$, s.t. $Z(f_1, f_2, ..., f_q) = A \cap V$.

Proposition 1.2. Let A be an analytic set in domain G, if A has a inner point, then A = G, else $G \setminus A$ is dense and connected.

Proof. (The proof is not complete, also considerting the case that A has countable infinite discrete points.)

Case 1: Let G be a ball in \mathbb{C}^n and $\{f_1, ..., f_q\}$ be a set of finite many holomorphic functions on defined on G s.t. $A = Z(f_1, ..., f_q)$.

If A has at least one inner point, then $\{f_1, f_q\} = \{0\}$, therefore A = G.

If else, for any $z_1, z_2 \in G \setminus A$, let L be the unique complex line connecting z_1 and z_2 , then $\{f_1, f_q\}|_L$ can be viewed as a set of holomorphic functions of one variable, without loss of genelarity, assume that $L \nsubseteq Z(f_1)$, then $L \cap Z(f_1)$ is discrete and therefore, ww can find a path in $L \subseteq G = B$ connecting z_1 and z_2 , and avoiding A.(It a fact in algebraic topology.)

Case 2: Let G be a general domain in \mathbb{C}^n , and assume that A has no inner point.

Fig. 2. Augustin Louis Cauchy

柯西男爵抱有坚定的保皇信念和极端的宗教观点. 在他工作的这个活跃期间正值波旁王朝复辟,而在 1830 年的七月革命之后,柯西与皇族家庭一起移居到了意大利. 但到了 1838 年他返回了祖国并重新在一所天主教会学院里教数学,到了 1848 年他成了巴黎大学文理学院 (Sorbonne) 的教授 (但他拒绝宣普效忠于政府)

For any path γ in G connecting z_1 and z_2 , we can find finite open balls covering the path, then we can find an another path homotopic to γ avoiding A.

2. Analytic Continuation

If A in analytic in domain G. we call A is proper iff $A \neq G$.

Theorem 2.1 (Riemann Continuation Theorem). Let A analytic proper in domain $G \subseteq \mathbb{C}^n$, and f holomorphic in $A \nsubseteq G$, and f is locally bounded in any point $z \in A$, the f can be holomorphicly continuated to G.

Proof. Case 1: n=1. It's the known case in complex analysis of one variable. Case 2: n>1. For any $z_0 \in A$ we can find a complex L through z_0 , and **locally** $L \cap A = \{z_0\}.$ (why?).

Through complex linear transformation and moving orign, L satisfies the

FIG. 3. Kodaira Kunihiko (小平邦彦)

system $\{z_2 = z_2 = ... = z_n = 0\}$ Let r_1, r' be sufficiently small positive numbers s.t.

$$P = \{z = (z_{1}, z') \in \mathbb{C} \times \mathbb{C}^{n-1} | z' = (z_{2}, z_{n}), |z_{1}| < r_{1}, |z'| < r'\} \subseteq G.$$

and $A \cap \{z \in \mathbb{C}^n | |z_1| = r_1, |z'| < r'\} = \emptyset$, moreover for any $0 \le c \le r_1$, $A \cap \{z \in \mathbb{C}^n | |z_1| = r_1, |z'| < c\}$ can be viewed as the intersection $\mathbb{D} \cap A$. Then through the one dimensional case, we can continuate f on $G \setminus A$ holomorphicly to P and therefore to G.

FIG. 4. Kiyoshi Oka (冈洁) 1973 年摄于京都

3. Regular Points of Analytic Sets

Definition 3.1. Let G be a domain in $G \subseteq \mathbb{C}^n$, A is locally defined at $z_0 \in A$ by $Z(f_1, f_2, ., f_q)$ where $f_i \in \mathcal{O}(G)$, then $rank_{z_0}(f_1, f_2, ., f_q) := rank(J(f_1, f_2, ., f_q)(z_0)) = rank(\frac{\partial f_i}{\partial z_j}(z_0)) \leq q$. If such $\{f_1, f_2, ., f_q\}$ exists and $rank_{z_0}(f_1, f_2, ., f_q = 0)$ we call A is regular q codimensional at z_0 . z_0 is called a regular point of A. All regular points called the regular set of A(written as A_{reg}), the set of other points is called singluar set. (A_{sing})

Theorem 3.2 (local parameterization). Let A analytic in $domainG \subseteq \mathbb{C}^n, z_0 \in A$, then A is a codimensional regular at **iff** at z_0 G is locally biholomorphic to an open set $W \subseteq \mathbb{C}^n$ centered at the orign, and the biholomorphic map satisfies: $F(z_0) = 0$ and $F(U \cap A) = \{w = (w_1, ..., w_n) | w_{n-q+1} = ... = w_n = 0\}$

Proof. The proof is similar to the proof of implict function theory and omitted here. \Box

It is obvious that A_{reg} is open in A.

Theorem 3.3. Let G be a domain of \mathbb{C}^n , and $f \in \mathcal{O}(G)$ and f is not constant, then Z(f) has at least one regular point.

Proof. Case 1: n=1, obvious.

Case 2: n>1. Assume that $A = Z(F) = \emptyset$, then df = 0 on A.

For any $z_0 \in A$, we can always find $n_0 \in \mathbb{N}_+$, and a multiplied index v_0 , and $\lambda \in \{1, 2, ., n\}$, s.t $|v_0| = n_0$ and $(D^{v_0}f)(z_0) \neq 0$, moreover $D^v f)(z) = 0$ for any $z \in A$, $|v| \leq n$ we define $M = \{z \in G | D^{v_0}f(z) = 0\}$, then $A \subseteq M$ and M is regular at z_0 . Through a local parameterization at z_0 , we have $z_0 = 0$ and $M = \{z = (z_1, ., z_n) | z_1 = 0\}$, then $f(\zeta, \vec{0}) \neq 0$ for $|\zeta| \neq 0$ and small enough. Using **Argument principle**, we notice that viewing z_0 as variable, for $|\vec{\zeta}| < r$ small enough. $f(\eta, \vec{\zeta})$ has zero points in ball $|\vec{\zeta}| < r$, and therefore the points fall in A. Consequently, we have A = M. This leads to the contradiction. \square