

Algoritmos Genéticos aplicados na resolução de problemas de cripto-aritmética

Nome: Henrique Araújo Lima

1 Introdução

Neste trabalho serão apresentados problemas de cripto-aritmética e a solução deles utilizando técnicas de Algoritmos Genéticos(AG's). O objetivo é testar diversas configurações para cada problema e observar a taxa de convergência de cada uma para poder comparar quais configurações delas são mais indicadas para cada problema.

1.1 Problemas cripto-aritmética

Os problemas de cripto-aritmética que serão explorados são os seguintes:

- SEND + MORE = MONEY
- EAT + THAT = APPLE
- CROSS + ROAD = DANGER
- COCA + COLA = OASIS
- DONALD + GERALD = ROBERT

2 Experimentos

$2.1 \quad SEND + MORE = MONEY$

Inicialmente foi feito um experimento para o problema SEND + MORE = MONEY. Neste problema, diversas configurações do AG foram testadas. Segue as configurações utilizadas:

- Tamanho da População: 100;
- Número de gerações: 50;
- Taxa de Crossover: 60% e 80%;
- Taxa de Mutação: 5% e 10%;
- Tipo de Crossover: Cíclico e PMX;
- Tipo de Seleção: Torneio e roleta;
- Tipo de Reinserção: ordenada e elite (20% apenas).

-	-	-				
Taxa Crossover	Taxa Mutaçao	Crossover	Seleção	Reinserção	Convergência	Tempo
60	5	Ciclico	Torneio	Ordenada	37,3	1
60	5	Ciclico	Torneio	Elite	-	-
60	5	Ciclico	Roleta	Ordenada	48,8	3,6
60	5	Ciclico	Roleta	Elite	-	-
60	5	PMX	Torneio	Ordenada	61,5	11,1
60	5	PMX	Torneio	Elite	-	-
60	5	PMX	Roleta	Ordenada	67,7	13,3
60	5	PMX	Roleta	Elite	-	-
60	10	Ciclico	Torneio	Ordenada	52,5	1
60	10	Ciclico	Torneio	Elite	-	-
60	10	Ciclico	Roleta	Ordenada	60,1	3,6
60	10	Ciclico	Roleta	Elite	-	-
60	10	PMX	Torneio	Ordenada	68,2	11,1
60	10	PMX	Torneio	Elite	-	-
60	10	PMX	Roleta	Ordenada	75,5	13,8
60	10	PMX	Roleta	Elite	-	-
80	5	Ciclico	Torneio	Ordenada	42	1,1
80	5	Ciclico	Torneio	Elite	43,6	0,9
80	5	Ciclico	Roleta	Ordenada	49,1	4,6
80	5	Ciclico	Roleta	Elite	50,2	4,2
80	5	PMX	Torneio	Ordenada	61,8	16
80	5	PMX	Torneio	Elite	63,6	16
80	5	PMX	Roleta	Ordenada	69,3	18
80	5	PMX	Roleta	Elite	72,1	17,6
80	10	Ciclico	Torneio	Ordenada	50,5	1,1
80	10	Ciclico	Torneio	Elite	50	1,1
80	10	Ciclico	Roleta	Ordenada	58,6	4,6
80	10	Ciclico	Roleta	Elite	59,2	4,7
80	10	PMX	Torneio	Ordenada	66,9	16,4
80	10	PMX	Torneio	Elite	66,7	16,5
80	10	PMX	Roleta	Ordenada	75,4	17,8
80	10	PMX	Roleta	Elite	77,2	17,9

Figura 1: Experimentos para o problema SEND + MORE = MONEY

2.1.1 Resultados

O objetivo dos experimentos é calcular a taxa de convergência e o tempo gasto para cada uma das configuras apresentadas. Os resultados estão exibidos na Figura 1. Nota-se que o fatores que mais influenciaram foram: PMX e roleta. Enquanto o PMX garante uma maior diversidade no crossover, a roleta exerce uma pressão muito elevada para convergir para as melhores soluções.

2.2 Outros problemas de cripto-aritmética

Posteriormente, foram selecionadas as 4 configurações que apresentaram a melhor taxa de convergência para simular os experimentos dos demais problemas de cripto-aritmética propostos neste estudo. Na Figura 1, nota-se que as configurações com maiores taxas de convergências são:

- Taxa de crossover: 60%; Taxa de Mutação: 10%; Crossover: PMX; Seleção: Roleta; Reinserção: Ordenada;
- Taxa de crossover: 80%; Taxa de Mutação: 5%; Crossover: PMX; Seleção: Roleta; Reinserção: Elite;
- Taxa de crossover: 80%; Taxa de Mutação: 10%; Crossover: PMX; Seleção: Roleta; Reinserção: Ordenada;

	0 F P P										
	SEND+MORE		EAT+THAT		CROSS+ROADS		COCA+COLA		DONALD+GERALD		
Conf	Converg(%)	Tempo	Converg(%)	Tempo	Converg(%) Tempo		Converg(%)	Tempo	Converg(%)	Tempo	
00	75,5	13,8	7,7	13,8	1,3	13,8	9	13,1	2,2	13,5	
01	72,1	17,6	7,6	17,3	0,5	17,6	6,3	17,6	1,2	17,7	
10	75,4	17,8	8,5	17,6	0,9	18	7,8	17,6	1,6	18	
11	77,2	17,9	8	17,3	1,1	17,6	8,5	17,1	2	17,8	

Figura 2: Experimentos para todos os problemas

	Legenda								
00	Taxa de crossover: 60%; Taxa de Mutação: 10%; Crossover: PMX; Seleção: Roleta; Reinserção: Ordenada;								
01	Taxa de crossover: 80%; Taxa de Mutação: 5%; Crossover: PMX; Seleção: Roleta; Reinserção: Elite;								
10	Taxa de crossover: 80%; Taxa de Mutação: 10%; Crossover: PMX; Seleção: Roleta; Reinserção: Ordenada;								
11	Taxa de crossover: 80%; Taxa de Mutação: 10%; Crossover: PMX; Seleção: Roleta; Reinserção: Elite;								

 Taxa de crossover: 80%; Taxa de Mutação: 10%; Crossover: PMX; Seleção: Roleta; Reinserção: Elite;

2.2.1 Resultados

A tabela da Figura 2 mostra as 4 melhores configurações aplicadas em todos os 5 problemas de cripto-aritmética, bem como a taxa de convergência e o tempo gasto. Nota-se que para os demais problemas, a taxa de convergência foi bem baixa. A razão disso é o elevado número de soluções possíveis que o problema do SEND+MORE=MONEY possui em relação aos demais problemas.

2.3 Melhorias

Posteriormente, novos parâmetros foram testados em busca de conseguir uma taxa de convergências mais alta, são eles:

• Tamanho População: 200;

• Taxa de Mutação: 15%;

• Número de gerações: 100;

Considerando que o melhor resultado no primeiro experimento foi a seguinte configuração:

 Taxa de crossover: 80%; Taxa de Mutação: 10%; Crossover: PMX; Seleção: Roleta; Reinserção: Elite;

Então esta configuração foi escolhida para ser testada com os novos parâmetros para todos os problemas propostos. O resultado pode ser visualizado na Figura 3.

Figura 3: Experimentos para todos os problemas com melhorias

SEND+MORE		EAT+THAT		CROSS+ROADS		COCA+COLA		DONALD+GERALD	
Converg(%)	Tempo(s)	Converg(%)	Tempo(s)	Converg(%)	Tempo(s)	Converg(%)	Tempo(s)	Converg(%)	Tempo(s)
94,9	81	26,5	81	1,4	82	13,5	81	3,7	85

Figura 4: Experimentos para todos os problemas com novas melhorias

SEND+MORE		EAT+THAT		CROSS+ROADS		COCA+COLA		DONALD+GERALD		
	Converg(%)	Tempo(s)	Converg(%)	Tempo(s)	Converg(%)	Tempo(s)	Converg(%)	Tempo(s)	Converg(%)	Tempo(s)
	96,2	82	26,4	81	1,3	81	15,5	81	4,2	85

2.3.1 Resultados

A tabela da Figura 3 mostra a melhor configuração aplicada em todos os 5 problemas de cripto-aritmética, bem como a taxa de convergência e o tempo gasto. Nota-se que houve uma melhoria geral da taxa de convergência e uma perda significativa no tempo. A explicação é intuitiva, com o aumento das execuções você consegue avaliar um número maior de indivíduos (soluções), no entanto, para avaliá-los há um consumo de tempo proporcional ao aumento de avaliações.

2.3.2 Melhorias Extras

Por fim, foram realizadas no código em busca de melhorias. Dessa forma, foi evitado gerar pais repetidos e gerar mutação sempre entre dois genes distintos. Os resultados não foram muito melhores que os anteriores, mas nota-se que houve uma ligeira melhoria, com destaque para o problema do COCA+COLA=OASIS. A taxa que era antes de 13,5% passou para 15,5%. Os resultados podem ser vistos na Figura 4.

3 Metodologia

Este trabalho pode ser subdividido em quatro grandes fases, são elas: apanhado de material bibliográfico, redação do trabalho, desenvolvimento do modelo e desfecho. O catalogação de material bibliográfico consiste na leitura de trabalhos relacionados com o tema proposto, a fim de se familiarizar com esta área e entender as principais técnicas e alternativas utilizadas para o desenvolvimento desta temática. Já o processo de escrita deste trabalho deve ser levado paralelamente com o desenvolvimento do modelo. Além disso, é importante que a primeira fase já tenha sido concluída ou esteja em estágio final.

Na fase da escrita, será desenvolvida uma introdução que consistirá em descrever por linhas gerais o trabalho, bem como a motivação de estar desenvolvendo o trabalho e os objetivos a alcançar no final do projeto. Posteriormente, será apresentado uma fundamentação teórica, que consistirá em descrever de forma breve e objetiva os principais elementos teóricos que circundam este trabalho. Após ter concluído esta etapa, a próxima consiste em descrever o estado da arte. Em seguida, será especificado o modelo proposto, onde as principais características e técnicas serão apresentadas. A fase que segue é a experimentação, que consiste em descrever quais foram os experimentos, quais os resultados

UFU - Universidade Federal de Uberlândia

obtidos e e quais os resultados esperados previamente. Por fim, a conclusão e o resumo do trabalho serão desenvolvidos, concluindo-se assim a fase de escrita.

A fase de desenvolvimento consiste em instalar e configurar o ambiente, implementar o modelo proposto de acordo com as peculiaridades do ambiente e realizar os experimentos e coletas de dados.

No desfecho, será entregado a versão final do documento de redação, além de elaborar uma apresentação para a defesa do TCC.