Engineering Calculation Report: Problem 1

October 13, 2025

Description

If $\t = 60 \text{ } / \text{circ} \$ and $\t = 450 \text{ } / \text{mathrm} \$ determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive $\t \times \$ axis.

1 Known Variables

Symbol	Name	Value	Unit
$F_{1_m ag}$	F 1 Magnitude	450	N
F_{1_angle}	F 1 Direction	60	0
$F_{2_m ag}$	F 2 Magnitude	700	N
F_{2angle}	F 2 Direction	-165	0

2 Unknown Variables (To Calculate)

Symbol	Name	Unit
F_{1_x}	F 1 X-Component	N
F_{1_u}	F 1 Y-Component	N
F_{2_x}	F 2 X-Component	N
F_{2y}	F 2 Y-Component	N
$F_{R_m ag}$	Resultant Force Magnitude	N
$F_{R_a ngle}$	Resultant Force Direction	0
F_{R_x}	Resultant Force X-Component	N
F_{R_y}	Resultant Force Y-Component	N

3 Equations Used

- 1. $ResultantForce^2 = F1^2 + F2^2 2 \cdot F1 \cdot F2 \cdot \cos gamma$
- 2. $\frac{\sin alpha}{F1} = \frac{\sin gamma}{ResultantForce}$

4 Step-by-Step Solution

Step 1: Solve for ResultantForceMagnitude

Equation:

$$ResultantForce^2 = F1^2 + F2^2 - 2 \cdot F1 \cdot F2 \cdot \cos gamma$$

Substitution:

$$\mathit{ResultantForce}^2 = (450.00\ N)^2 + (700.00\ N)^2 - 2\cdot (450.00\ N)\cdot (700.00\ N)\cdot \cos 45.0^\circ$$

Result:

 $Resultant Force Magnitude = 497.01\,N$

Step 2: Solve for ResultantForceDirection

Equation:

$$\frac{\sin alpha}{F1} = \frac{\sin gamma}{ResultantForce}$$

Substitution:

$$\frac{\sin alpha}{450.00\, N} = \frac{\sin 45.0^{\circ}}{497.01\, N}$$

Result:

ResultantForceDirection = 155.19 $^{\circ}$

5 Summary of Results

Variable	Name	Final Value	Unit
F_{1_x}	F 1 X-Component	225	N
F_{1_y}	F 1 Y-Component	389.711	N
F_{2_x}	F 2 X-Component	-676.148	N
F_{2_y}	F 2 Y-Component	-181.173	N
$F_{R_m ag}$	Resultant Force Magnitude	497.014	N
$F_{R_a ngle}$	Resultant Force Direction	2.70861	0
F_{R_x}	Resultant Force X-Component	-451.148	N
F_{R_y}	Resultant Force Y-Component	208.538	N

6 Vector Diagram

Problem 1 F₁ F₂ F_R 350 F_R 175 F_R = 497 N 195.0° 195

Figure: Vector diagram showing all forces and their orientations

Disclaimer

IMPORTANT NOTICE:

While every effort has been made to ensure the accuracy and reliability of the calculations provided, we do not guarantee that the information is complete, up-to-date, or suitable for any specific purpose. Users must independently verify the results and assume full responsibility for any decisions or actions taken based on its output. Use of this calculator is entirely at your own risk, and we expressly disclaim any liability for errors or omissions in the information provided.

Report Details:

• Generated Date: October 13, 2025

• Generated Using: Qnty Library

• Version: Beta (Independent verification required for production use)

Professional Review and Approval:

Role	Name	Signature	Date
Calculated By			
Reviewed By			
Approved By			

Report generated using Qnty Library For questions or support, please refer to the Qnty documentation