

# 디바이스-엣지 클라우드 연계형 SDI 플랫폼

미래 모빌리티 연계형 협업 지능 서비스 핵심 기술 개발

2차년도 Kick-off 워크숍

2차년도 연구개발기간: 2025. 01. 01 ~ 2025. 12. 31.

위탁연구개발 기관: 경상국립대학교

연구책임자: 이성진

참여연구원: 최으뜸, 배창희 외 3명

발표자: 서정헌

개요

미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발

### 미래 모빌리티를 위한 소프트웨어 정의형 인프라스트럭처 기술 개발



## 세부 연구 개요

미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발

### 미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발



## 목표 및 내용

미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발

## 미래 모빌리티를 위한 소프트웨어 정의형 인프라스트럭처 기술 개발 세부1: 디바이스-엣지 클라우드 연계형 SDI 플랫폼

세부 목표

## 미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발

년차별 내용

#### 1년차

- 공통 HW 플랫폼 도출 및 연결성 기술 분석
- 모빌리티 가시화를 위한 요구사항 도출

### 2년차

- 단일 연결성 및 가시화 프로토타입 개발
- 연결성 및 성능 모니터링 수행

3년차

- 수요기업 기반의 연결성 및 가시화 기술 개발
- 테스트베드에서 연결성 및 성능 모니터링 수행

#### 4년차

- 3종 협업 모빌리티 시나리오 가시화 개발
- 협업 모빌리티 시나리오 실행 및 검증

AI 오프로딩 / 에너지 효율성

### 협업 기관과 실증

공통 HW 플랫폼 도출 및 연결성 기술 분석

## 연구 개발 (1년차)



디지털 트윈 기반 공통 플랫폼 도출

### AI 오프로딩 요구 사항 도출



OpenSDI 적용이 가능한 어플리케이션



## 연구 배경

미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발



## 1차년도 연구 수행 내용

미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발







RGB, 열화상 카메라 및 LiDAR 통합 드론 탑재형 모듈



LiDAR를 통해 건축물 외관과 거리 측정



고해상도 이미지 스티칭 및 균열 검출 통한 외관조사망도 생성 프로세스

## 1차년도 연구 결과

#### 미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발

## 실제 손상 측정 성능 평가

| 번호 | 구분 | 길이(mm, 레퍼런스) | 길이 측정값 | 길이 차이 | 길이 차이 절대값 | 정확도   |
|----|----|--------------|--------|-------|-----------|-------|
| 1  | 균열 | 905          | 680    | 225   | 225       | 75.2% |
| 2  | 균열 | 2,038        | 2,152  | - 114 | 114       | 94.4% |
| 3  | 균열 | 1,876        | 2,114  | - 238 | 238       | 87.3% |
| 4  | 균열 | 2,206        | 1,956  | 250   | 250       | 88.7% |
| 5  | 균열 | 216          | 250    | - 34  | 34        | 84.4% |
| 6  | 균열 | 321          | 360    | - 38  | 38        | 88.2% |
| 7  | 박락 | 1,106        | 982    | 124   | 124       | 88.8% |
| 8  | 균열 | 1,118        | 902    | 216   | 216       | 80.7% |
| 9  | 균열 | 483          | 487    | - 4   | 4         | 99.2% |

•

평균 107.03 82.5%

외관에 나타난 균열에 대한 길이 추정 정확성





(a) 참값

(b) 예측값

한 균열로 구분되는 그래프에 대해 간선 길이 총합의 차이로 평가

## 1차년도 연구 실적

#### 미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발

### 특허 1건, 국내외 학술대회 5건



Design of Network Recovery Method



### 2024, Excellence in Research Award,

International Symposium on Aerospace Technology & Manufacturing Process "Design of Network Recovery Method for UAVs by Neighbor Node Classification"

UAV의 운용 중에 발생할 수 있는 네트워크 이탈 상황에서 UAV의 이동성 기반으로 네트워크에 복귀하는 속도를 향상시키고 네트워크 지연을 최소화하는 시스템 구조를 제안하였음

#### 국외 학술대회 1건 및 수상 실적

# 소방 임무 보조 시스템\*

음영지역 파악을 통한 드론 운용 시스템 설계

환경 반응형 무인함공기 비해경로 동적 생성 시스템

출 원 번 호 통 지 서 특 기 사 항 심사청구(유) 공개신청(무) 참조번호(109751) 대리인 성명 특허법인 팬브릿지(9-2021-100141-1) 발명 자 성명 이성진 엄제용 최민식 송찬호 박영웅 백정린 발명의 명칭 스마트 어업 모니터링 방법 및 시스템 << 9HJ >>

【이 발명을 지원한 국가연구개발사업】

【과제고유번호】

【과제번호】 202404210001

【부처명】 과학기술정보통신부

【과제관리(전문)기관명】 정보통신기획평가원

[연구사업명] 미래 모빌리티를 위한 소프트웨어 정의형 인프라스트럭처

기술 개발 (위탁/1차년도)

[연구과제명] 미래 모빌리티를 위한 소프트웨어 정의형 인프라스트럭처

【과제수행기관명】 경상국립대학교

[연구기간] 2024.04.01 ~ 2024.12.31

국내 학술대회 4건, 한국컴퓨터종합학술대회 (KCC, 2024)

특허 출원 1건



## 2차년도 연구 계획

미래 모빌리티 연계형 협업 지능 서비스의 핵심 기술 개발

### 이종 드론-Edge 간 오프로딩 통한 배터리 사용량 최적화

#### 연구 목표







2차년도 드론 활용한 균열 탐지

- 균열 탐지 위한 SOTA Vision Encoder 중 Transformer
  및 CNN 계열의 Backbone 으로 성능 측정
- 성능 유지를 고려한 모델 경량화
- 균열 탐지 임무에서 이종 드론-Edge 서버 간 연동
- 이종 드론-Edge 서버 간 오프로딩 조합 고려한 배터리 성능 분석 및 절감

## 균열 탐지 응용에서 드론-Edge 서버 활용한 오프로딩 조합 분석





Edge Server Mission Computer

이종 드론 상에서 균열 탐지 성능 측정

# 디바이스-엣지 클라우드 연계형 SDI 플랫폼

미래 모빌리티 연계형 협업 지능 서비스 핵심 기술 개발

## 감사합니다

위탁연구개발 기관: 경상국립대학교

연구책임자: 이성진

참여연구원: 최으뜸, 배창희 외 3명

발표자: 서정헌