Applications, Challenges & Adversarial Influence of ML in Medicine

Machine Learning in Cybersecurity, 2019-20

{Saarland University, CISPA}

Shubham Agarwal, Awantee Deshpande

Motivation

Diabetic Retinopathy: A Background

- Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes.
- Its diagnosis is divided into 5 different stages type 0 denotes no symptoms, type 1 to 4 denotes gradual increase in the severity of the disease.

Diabetic Retinopathy

Machine Learning: Scope and Application

Article Open Access | Published: 20 September 2019

Deep learning algorithm predicts diabetic retinopathy progression in individual patients

Filippo Arcadu, Fe & Marco Prunotto

npj Digital Medicir

10k Accesses

DeepMind's AI can detect over 50 eye diseases as accurately as a doctor

The system analyzes 3D scans of the retina and could help speed up diagnoses in hospitals

By James Vincent | Aug 13, 2018, 11:01am EDT

However ...

Adversarial Machine Learning comes into picture - a technique employed in the field of machine learning which attempts to fool models through malicious attempts.

Sources: https://mc.ai/adversarial-robustness
https://www.kdnuggets.com/2019/06/machine-learning-adversarial-attacks.html
https://www.researchgate.net/figure/Adversarial-Machine-Learning-fig1-318227376

Why Machine Learning is vulnerable to adversarial attacks and how to fix it

However...

ML models may be subject to various adversarial attacks which could significantly disrupt its intended behavior.

Goal...

- Analysis of the performance of DNN on classification of the diabetic retinopathy disease.
- Performance of attacks on the NN model and analysis of their respective effectiveness.
- ➤ GAN implementation to generate synthetic data and overcome imbalanced dataset issue for future training tasks.
- Evaluation of the quality of the synthetic dataset over original dataset.

Training Dataset

- Kaggle Diabetic Retinopathy Detection Database - High Resolution Images of fundus (interior portion) of an eye for each class/type.
- > Training Data Points Available 35,216.
- Training Data Used 3500 (700 images from each class).

Experiments

Experiment I - CNN

Standard CNN Model to perform multiple classification tasks:

- Multi-class classification.
- 2. Binary Classification (type 0 vs Rest).
- 3. Binary Classification (0vs1, 0vs2, 0vs3, 0vs4).
- Evaluation of adversarial attacks on tasks 1 &
 2.

Experiment I - CNN (continued)

- Architecture Summary:
 - 1. 3 Convolution Layers.
 - 2. Activation Functions (ReLU & Softmax).
 - 3. Dropout & Dense Layers.
- Hyperparameters:
 - 1. Batch Size: 8 128.
 - 2. Epochs: 10 300.
 - 3. Kernel Size: 3.

Experiment I - CNN (continued)

Adversarial Attacks Performed on first two classification tasks:

- 1. FGSM Attack
- 2. Spatial Attack
- 3. Inversion Attack
- 4. Gaussian Blur Attack

Experiment I - System Flow

Experiment II - GAN

- DC-GAN to generate synthetic dataset for all the classes over original database.
- The images for each class are separately generated to retain the labels for further use.
- Different classes were trained on different hyperparameters based on original dataset.

 ${\mathcal X}$

G(z)

Evaluation

- Multiple classification tasks to obtain optimal accuracy.
- Classified between each pair of classes to better understand the ambiguities faced by the classifier.

Task	Accuracy	Precision	Recall	F1 Score
Multi-Class	53.4%	55%	53%	53%
Type 0 vs Rest	88.5%	87%	88%	87%
Type 0 vs Type 1	52.4%	97%	53%	67%
Type 0 vs Type 2	55.3%	62%	55%	56%
Type 0 vs Type 3	50.3%	50%	50%	50%
Type 0 vs Type 4	70%	73%	70%	71%

Task	Accuracy	Precision	Recall	F1 Score
Multi-Class	53.28%	55%	53%	53%
Type 0 vs Rest	88.5%	87%	88%	87%
Type 0 vs Type 1	52.4%	97%	53%	67%
Type 0 vs Type 2	55.3%	62%	55%	56%
Type 0 vs Type 3	50.3%	50%	50%	50%
Type 0 vs Type 4	70%	73%	70%	71%

Task	Accuracy	Precision	Recall	F1 Score
Multi-Class	53.28%	55%	53%	53%
Type 0 vs Rest	88.5%	87%	88%	87%
Type 0 vs Type 1	52.4%	97%	53%	67%
Type 0 vs Type 2	55.3%	62%	55%	56%
Type 0 vs Type 3	50.3%	50%	50%	50%
Type 0 vs Type 4	70%	73%	70%	71%

Task	Accuracy	Precision	Recall	F1 Score
Multi-Class	53.28%	55%	53%	53%
Type 0 vs Rest	88.5%	87%	88%	87%
Type 0 vs Type 1	52.4%	97%	53%	67%
Type 0 vs Type 2	55.3%	62%	55%	56%
Type 0 vs Type 3	50.3%	50%	50%	50%
Type 0 vs Type 4	70%	73%	70%	71%

Adversarial perturbations on input to force the model to misclassify data point.

Attacks	Multi-Class	Binary
FGSM	0.43%	60.14%
Spatial	5.57%	72.86%
Inversion	9.71%	74.86%
Gaussian Blur	6.0%	70.43%

In addition to the original dataset, trained on the synthetic dataset generated from GAN to evaluate its performance.

Task	Accuracy in Experiment 1	Accuracy with GAN
Multi-Class	53.2%	23.4%
Binary	87%	74.1%

Results from Experiment II - Sample I

Sample Training Image

GAN Generated Image

Results from Experiment II - Sample II

Overall Training Across Epochs

Training Across Epoch for Single Image

Discussion

- Standard CNN model used for classification, can improve on the model architecture further.
- > Imbalanced original dataset an issue.
- > Features overlap across certain classes, weighted loss might help in this case.
- DCGAN is ineffective in capturing the necessary features, doesn't really help improve the initial multi-class classification.

Summary

- Binary Classification performs significantly well when compared to pinpoint classification to identify exact class of each input.
- The adversarial attacks and their results from experiment 1 strongly suggests to consider the adversarial conditions for the ML models used in sensitive applications such as in medicine.
- Much like other medical diagnosis problems, imbalanced dataset remains an issue & other variant of GANs such as CGAN & WGAN is worth exploring for generating synthetic dataset.

Related Work

- 1) DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images [Yi Zhou, Boyang Wang, Xiaodong He, Shanshan Cui, Fan Zhu, Li Liu, Ling Shao]
- 2) Pathological Evidence Exploration in Deep Retinal Image Diagnosis [Yuhao Niu, Lin Gu, Feng Lu, Feifan Lv, Zongji Wang, Imari Sato, Zijian Zhang, Yangyan Xiao, Xunzhang Dai, Tingting Cheng]
- 3) Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems [Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, Feng Lu]
- 4) Synthesizing retinal and neuronal images with generative adversarial nets [He Zhaoab, Huiqi Li, Sebastian Maurer-Stroh, Li Cheng]
- 5) Practical Black-Box Attacks against Machine Learning [Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, Ananthram Swami]

Questions?

Goal...

- ➤ Analysis of the performance of DNN on classification of the diabetic retinopathy disease.
- Performance of attacks on the NN model and analysis of their respective effectiveness.
- GAN implementation to generate synthetic data and overcome imbalanced dataset issue for future training tasks.
- Evaluation of the quality of the synthetic dataset over original dataset.

Overall Training Across Epochs

Training Across Epoch for Single Image

Summary

- Binary Classification performs significantly well when compared to pinpoint classification to identify exact class of each input.
- The adversarial attacks and their results from experiment 1 strongly suggests to consider the adversarial conditions for the ML models used in sensitive applications such as in medicine.
- Much like other medical diagnosis problems, imbalanced dataset remains an issue & other variant of GANs such as CGAN & WGAN is worth exploring for generating synthetic dataset.