

PROJECT BRIEF – THE PROBLEM

USER REQUIREMENTS SPECIFICATIONS

TECHNICAL REQUIREMENTS SPECIFICATIONS

Functionality and Performance

- Fast Game Response (30ms 1s)
- Variety of Control Technologies

Usability, Interface and Ergonomics

- High Visibility and Contrast
- Universal Controls

Portability

Short Set-up time (< 5 min)</p>

Size and Weight

- > 700 x 700mm External
- Light weight (<12 kg)</p>

Life, Reliability and Maintenance

- Minimum Maintenance Required
- Safety and Security
 - Electrical/Children Safety

INITIAL DEVELOPMENT

Concept Generation

Board Game with Adaptable Control Inputs

John Chilton School

Specification

Definition 1

- John Chilton School Visit
- Children's Feedback

Background Research

- Input Control Technologies
- Disabilities Involved
- Most Popular Commercial Games

Concept Selection

Flipper Game

BACKGROUND RESEARCH

Most common disabilities

- > Speech impairment
- Lack of fine motor skills
- Lower limb paralysis

Already used control systems

- > Puff-control
- Eye-gaze control
- Touchscreen

Chosen control systems

- > Push-button
- Voice Recognition
- > MMG

Popular board games

- Hungry Hungry Hippos
- Connect 4
- > Chess

Chosen board game

- Flipper game (pinball type)
- > 4 players
- 3 different types of control

DESIGN – THE SOLUTION

- Game flow overview
- Mechanical Design:
 - i. General game assembly
 - ii. Flipper Mechanism
 - iii. Ball return Mechanism
- Electrical Design:
 - i. Controls
 - ii. Central Unit
 - iii. Goal Counting Mechanism
- Game flow overall

Fig. 2: CAD drawing of game design

GAME FLOW: GAME OVERVIEW

Action from the player

Input detected by the control units

Analysis and Processing

Signal processed by CPU

Fig. 3: Raspberry Pi, https://www.raspberrypi.org/ app/uploads/2017/05/Raspber ry-Pi-3-1-1619x1080.jpg

Action of the flipper

Output signal into electrical circuit

MECHANICAL DESIGN

MECHANICAL DESIGN: GENERAL GAME ASSEMBLY

MDF

Lightweight
Easy manufacture
Electrical Insulation
Appealing

- 1 Ball return hole
- 2 Ball return mechanism
- 3 Playfield with corner and center slopes
- 4 Ball return slope
- 5 Flippers

MECHANICAL DESIGN: CHASSIS STRUCTURE

Fig. 5: CAD drawing of metal chassis

MECHANICAL DESIGN: FLIPPER MECHANISM ASSEMBLY

Main features

- 50v coils
- Armature and coupling part with CAD
- EOS switch prevents overheating
- Spring returns armature to its initial position

Fig. 8: CAD drawing of Armature part

MECHANICAL DESIGN: BALL-RETURN MECHANISM ASSEMBLY

Fig. 8: CAD drawing of return mechanism:
a)wheel, belt, pulley and motor;
b) corner view showing all components

Main features

- Components:
 - Collecting slope
 - Return wheel
 - > Timing pulley and belt
 - Return hole
- Designed using SolidWorks
- 3D printed wheel and pulley
- Bearing reduces friction in wheel connection
- ❖ DC motor rotating at ~230rpm

MECHANICAL DESIGN: BALL-RETURN MECHANISM ASSEMBLY

Fig. 9: CAD simulation of mechanism rotating

ELECTRICAL DESIGN

ELECTRICAL DESIGN: BUTTON CONTROL UNIT

Switch Button

Jack

Adaptor

Central Raspberry Pi Unit

Flippers

 Signal sent when button is pressed

- Signal transmission
- Mimics switch buttons available at John Chilton School
- Jack to USB adaptor

- Input signal from switch
- Output voltage
- Voltage sent to flippers
- Mechanical activation

Fig. 10: buttons, http://www.inclusive.co.uk/dome-and-disc-switches-p4947

ELECTRICAL DESIGN: VOICE RECOGNITION CONTROL UNIT

Keyword

Input to microphone

Sound Card

Raspberry Pi 0 Raspberry Pi 3

- Hotword: "GO"
- Microphone picks up all audio signals
- All signals sent to Raspberry Pi 0 for processing
- Digitizes audio signals
- Converts jack to USB
- Probes microphone input for audio data
- Compares digital audio input against trained audio model
- Outputs binary signals to RPi 3 CPU

- Probes RPi 0 input
- CPU
- Activates flipper via transistors

Fig. I I: Snowboy Software, https://snowboy.kitt.ai/

ELECTRICAL DESIGN: VOICE RECOGNITION CONTROL UNIT

Fig 12:VR Control Unit LED demonstration

ELECTRICAL DESIGN: MMG CONTROL UNIT

Eyebrow Movement

MMG

Arduino Nano Central Raspberry Pi Unit

Flippers

- Head movement cancel any output
 (0)
- Microphone: muscle contraction
- IMU: rotation

- Output I to activate flippers
- Output 0 otherwise

- Input from Arduino
- Output voltage
- Voltage sent to flippers
- Mechanical activation

ELECTRICAL DESIGN: MMG CONTROL UNIT

Fig 6: MMG control unit activating an LED

ELECTRICAL DESIGN: BALL COUNTING MECHANISM

Infrared Light Emitting Diode

Photodiode detects IR light

Signal converted to a digital output (+5V) voltage

Digital Voltage used for activating visual and audio feedback

Fig. 6: Video of Operation of Prototype

GAME FLOW: **OVERALL GAMEFLOW**

Start of the game

- Start the ball return mechanisms
- Reset all goal counters
- Start the snowboy program

Flippers activated

- Produce the flipper sound
- Move the corresponding flipper pair

Goal scored

- Produce the goal sound
- Increase the corresponding goal counter
- Successfully return the ball

Goal threshold reached

- Stop the ball return wheels
- Produce the endof-game sound

EVALUATION PLAN

John Chilton

School

- Structural integrity
- Portability
- Functional mechanisms
- Control systems functioning
- Appealing custom-made look
- Gameplay user evaluation

MANUFACTURING PLAN: GANTT CHART

RISK EVALUATION

School

voort to reception

- Children's toys safety
- Electrical risk evaluation according to standards²
- Sound level test

- I. Regulations from the Health and Safety Executive, http://www.hse.gov.uk/electricity/standards.htm#power
- 2. Standards for insulating material, California referenced standards codes http://www.bearhfti.ca.gov/laws/insulation_regs.pdf

PROJECT MEMBERS:

Bezdadea, Beatrice-Cristina

Cazenave, Lucille

El Fekih, Amira

Evanson, Linnea

Fraser, Gionieva

Gkigkilinis, Emmanuel

Hadjipanayi, Charalambos

Lavrov, Maksim

Mambrilla Velazquez, Marta

Zuzarte, Wesley

