Real Analysis 1

Forrest Kennedy

February 28, 2025

Contents

Lecture 25: 02-28-25 Lecture

Friday 28 February 2025

-Midterm next Friday!

Theorem 1 (Cauchy Criterion for Series). The series $\sum_{n=1}^{\infty} a_n$ converges if and only if given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that whenever $n > m \geq N$ we have

$$|a_{m+1} + a_{m+2} + \ldots + a_n| < \varepsilon \tag{1}$$

Proof. Let (s_m) be the sequence of partial sums. Observe that if n > m, then

$$|s_n - s_m| = |(a_1 + a_2 + \dots + a_n) - (a_1 + a_2 + \dots + a_m)|$$
 (2)

$$= |a_{m+1} + a_{m+2} + \ldots + a_n| \tag{3}$$

Now the sequence (s_m) converges if and only if it is Cauchy (s_m) is Cauchy if given $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that whenever $n, m \geq N$ we have

$$|s_n - s_m| < \varepsilon \tag{4}$$

we can assume without loss of generality that n > m, i.e. $n > m \ge N$ then

$$|s_n - s_m| < \varepsilon \tag{5}$$

Theorem 2. If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim a_n = 0$

Proof. As $\sum_{n=1}^{\infty} a_n$ converges, it satisfies the Cauchy criterion. So let $\varepsilon > 0$ be given. By Cauchy criterion, there $\exists N \in \mathbb{N}$ such that if $n > m \geq N$ we have

$$|a_{m+1} + \ldots + a_n| < \varepsilon \tag{6}$$

Choose n = m + 1 then

$$|a_{m+1}| < \varepsilon \tag{7}$$

Thus $\forall n \geq N+1$ we have

$$|a_n - 0| < \varepsilon \tag{8}$$

Example. $\sum_{n=1}^{\infty} (-1)^n$ we observe that the sequence $(-1)^n$ does not converge to 0. Therefore, $\sum_{n=1}^{\infty} (-1)^n$ converges.

Theorem 3 (Comparison Test). Assume that (a_n) and (b_n) are sequences satisfying $0 \le a_n \le b_n \ \forall n \in \mathbb{N}$, then

- 1) If $\sum_{n=1}^{\infty} b_n$ converges, the $\sum_{n=1}^{\infty} a_n$ also converges.
- 2) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ also diverges.

Note. Notice that (1) and (2) are contrapositives, we only really need one, but both are useful.

Proof. As $\sum_{n=1}^{\infty} b_n$ converges, it satisfies the Cauchy criterion. We want to show

$$\sum_{n=1}^{\infty} a_n \text{ satisfies the Cauchy criterion} \tag{9}$$

Let $\varepsilon > 0$ be given. There exist $N \in \mathbb{N}$ such that whenever $n > m \ge N$ we have

$$|b_{m+1} + \ldots + b_n| < \varepsilon \tag{10}$$

But $0 \le a_k \le b_k$ so

$$\Rightarrow |a_{m+1} + \ldots + a_n| < \varepsilon \tag{11}$$

Hence proved.

Example. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges for $p \leq 1$

Proof. We have proved that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Observe that for all $n \in \mathbb{N}$ and $p \leq 1$ we have

$$0 < \frac{1}{n} \le \frac{1}{n^p} \tag{12}$$

Therefore, by the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges for $p \leq 1$.

Example (Geometric Series).

2

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \dots$$
 (13)

is called a geometric series

$$s_m = a + ar + \dots + ar^{m-1} \tag{14}$$

by induction we can prove that for $r \neq 1$

$$s_m = \frac{a(1 - r^m)}{1 - r} \tag{15}$$

If |r| < 1, then $\lim r^n = 0$. By the ALT, $\lim s_m = \frac{a}{1-r}$