**Problem 15.13.** Consider the following real tridiagonal symmetric  $n \times n$  matrix

$$A = \begin{pmatrix} c & 1 & 0 & & \\ 1 & c & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & c & 1 \\ & & 0 & 1 & c \end{pmatrix}.$$

(1) Using Problem 10.6, prove that the eigenvalues of the matrix A are given by

$$\lambda_k = c + 2\cos\left(\frac{k\pi}{n+1}\right), \quad k = 1, \dots, n.$$

(2) Find a condition on c so that A is positive definite. It is satisfied by c = 4?

**Problem 15.14.** Let A be an  $m \times n$  matrix and B be an  $n \times m$  matrix (over  $\mathbb{C}$ ).

(1) Prove that

$$\det(I_m - AB) = \det(I_n - BA).$$

Hint. Consider the matrices

$$X = \begin{pmatrix} I_m & A \\ B & I_n \end{pmatrix}$$
 and  $Y = \begin{pmatrix} I_m & 0 \\ -B & I_n \end{pmatrix}$ .

(2) Prove that

$$\lambda^n \det(\lambda I_m - AB) = \lambda^m \det(\lambda I_n - BA).$$

Hint. Consider the matrices

$$X = \begin{pmatrix} \lambda I_m & A \\ B & I_n \end{pmatrix}$$
 and  $Y = \begin{pmatrix} I_m & 0 \\ -B & \lambda I_n \end{pmatrix}$ .

Deduce that AB and BA have the same nonzero eigenvalues with the same multiplicity.

**Problem 15.15.** The purpose of this problem is to prove that the characteristic polynomial of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & n \\ 2 & 3 & 4 & 5 & \cdots & n+1 \\ 3 & 4 & 5 & 6 & \cdots & n+2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n+1 & n+2 & n+3 & \cdots & 2n-1 \end{pmatrix}$$

is

$$P_A(\lambda) = \lambda^{n-2} \left( \lambda^2 - n^2 \lambda - \frac{1}{12} n^2 (n^2 - 1) \right).$$