Department of Computer Science University of Bristol

COMS30030 - Image Processing and Computer Vision

Lecture 02

Filtering Images

Majid Mirmehdi | majid@cs.bris.ac.uk

Image Transforms

- **Image Transform** → a *new representation* of the input data (e.g. by re-encoding it in another [parameter] space, e.g. Fourier, Hough, Wavelet, Haar, etc.)
- Image Transforms are classic processing techniques, used in filtering, compression, feature extraction, and much more

Convolution

Convolution = A mathematical operation on two functions (f and g) that produces a third function (h=f*g), representing how the shape of one is modified by the other. (Wikipedia)

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - x) g(x) \, \partial t$$
Signal

- Used for filtering images in the spatial domain
- Application in other parameter spaces, e.g. frequency domain
- Fundamental to Convolutional Neural Nets for deep Learning
- much, much more

An Intuitive look at Convolution

$$f * g = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) \, \partial t$$

An Intuitive look at Convolution

$$f * g = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) \, \partial t$$

1D Discrete Convolution

$$g(x) = h(x) *f(x)$$

- $\triangleright f$ is the signal, h is the convolution filter
 - h has an origin

Example 1D kernel

Normalization factor (sum of the absolute values of the filter) is also part of the filter!

> The discrete version of convolution is defined

as:
$$g(x) = \sum_{m=-s}^{s} f(x-m)h(m) \quad \text{for } s \ge 1$$

2D Discrete Convolution

The discrete version of 2D convolution is defined as:

$$g(x,y) = \sum_{m} \sum_{n} f(x-m, y-n)h(m,n)$$

$$f(x+1, y+1)h(-1,-1)$$

$$+ f(x+1, y)h(-1,0)$$

$$+ f(x+1, y-1)h(-1,1)$$

$$+ f(x, y+1)h(0,-1)$$

$$+ f(x, y)h(0,0)$$

$$+ f(x, y-1)h(0,1)$$

$$+ f(x-1, y+1)h(1,-1)$$

$$+ f(x-1, y)h(1,0)$$

$$+ f(x-1, y-1)h(1,1)$$

2D Discrete Correlation

The discrete version of 2D correlation is defined as:

$$g(x,y) = \sum_{m} \sum_{n} f(x+m,y+n)h(m,n)$$

Correlation

≡ Convolution when kernel is symmetric under 180° rotation, e.g.

1	2	1
1	2	1
1	2	1

Spatial Low/High Pass Filtering

Low Pass

High Pass

$$h = \begin{array}{c|ccc} 0 & -1 & 0 \\ -1 & 5 & -1 \\ \hline 0 & -1 & 0 \end{array}$$

Properties of Convolution

Commutative:

$$f * h = h * f$$

Associative

$$(f * g) * h = f * (g * h)$$

Distributes over addition

$$f * (g + h) = (f * g) + (f * h)$$

Scalars factor out

$$af * g = f * ag = a(f * g)$$

Identity:

Given unit impulse e = [..., 0, 0, 1, 0, 0, ...] then f * e = f

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

f(x,y)

g(x,y)

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

f(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

g(x,y)

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

f(x,y)

g(x,y)

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

f(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

g(x,y)

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

f(x,y)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

g(x,y)

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
 10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$g(x,y) = \sum_{m} \sum_{n} f(x+m, y+n)h(m,n)$$

Normalising the Convolution Result!

The weights will affect pixel values and the result could fall outside the 0-255 range > Normalise them such that they sum to 1.

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
Smooth

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
3x3 Gaussian Blur

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
Sharpen

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Basic Edge Detector

Unsharp Masking

Gaussian Filter Kernel

The Gaussian filter is very commonly used in image processing. The parameter σ determines the width of the filter and hence the amount of smoothing.

Applying the Gaussian filter

Efficient Gaussian Filtering

Filtering with a 2D Gaussian can be achieved faster using two 1D Gaussian filters! This is because the linear Gaussian kernel is *separable*.

$$K = \frac{1}{256} \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{pmatrix} x \frac{1}{16} (1 \quad 4 \quad 6 \quad 4 \quad 1)$$

Filtering an $m \times m$ image with an $n \times n$ kernel is $\mathcal{O}(m^2n^2)$ complexity, but with a separable kernel, it would be $O(m^2n)$.

→ a significant reduction in computations!

Separability of the Gaussian Filter

Separability means that a 2D convolution can be reduced to the product of two 1D convolutions - one on the rows and one on the columns:

$$g(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{y^2}{2\sigma^2}}\right)$$

$$=g(x)g(y)$$

Example benefit of the Gaussian Filter

When we smooth an image, the easier the next stage of processing, in

this case edge detection

Noise Removal: The Median Filter

- Returns the median value of the pixels in a neighborhood
- Relationship to a uniform blurring filter?
- Is non-linear

Neighbourhood values:

115, 119, 120, 123, 124, 125, 126, 127, 150

Median value: 124

original

Conquest small mine in two respects
aboutles, and to petition the Govern
Awell regulated William, being

median filtered

Conques shall make no low respects
assemble, and to petition the Govern

A well regulated Willian, being

Slide adapted from Richard Peter

Noise Removal: The Median Filter

Original

salt & pepper noise added

3x3 averaging filter

3x3 median filter

Noise Removal: The Median Filter

original

corrupted (*i.e. p*=5% that a bit is flipped)

median filtered

Median Filter: the algorithm

- Let *I* be a monochrome image.
- Let Z define a neighborhood of arbitrary shape.
- At each pixel location, $\mathbf{p}=(x,y)$, in I...
- ... select the *n* pixels in the Z-neighborhood of \mathbf{p} ,
- \dots sort the *n* pixels in the neighborhood of **p** by value into a list L(j) for j = 1,...,n.
- The output value at **p** is L(m), where $m = \lfloor n/2 \rfloor + 1$. 6.

Sharpening Revisited

h(m,n)

Sharpening spatial filters seek to highlight fine detail

- Remove blurring from images
- Highlight edges

Sharpening filters are based on spatial differentiation.

0	-1	0
-1	4	-1
0	-1	0

Sharpening

What does blurring take away?

Let's add it back:

1st Derivative

The 1st derivative of a function is:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

→ it's the difference between subsequent values and measures the rate of change of the function.

2nd Derivative

The 2nd derivative of a function is:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

→ Takes into account the values both before and after the current value.

Using Second Derivatives For Image Enhancement

Now in 2-dimensions for images:

The 2nd derivative is more useful for image sharpening than the 1st derivative

✓ Stronger response to fine detail

The Laplacian Filter:

- ✓ Isotropic
- ✓ One of the simplest filters for sharpening

0	1	0
1	-4	1
0	1	0

The Laplacian

The Laplacian is defined as:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

where the partial 1^{st} order derivative in the x direction is:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

and in the y direction: $\frac{\partial^2 f}{\partial v^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$

So, the Laplacian can be:

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1)] - 4f(x,y)$$

0	1	0
1	-4	1
0	1	0

About the Laplacian Operator

As it is a derivative operator:

- it highlights gray-level discontinuities in an image.
- it de-emphasizes regions with slowly varying gray-levels.
- Very sensitive to noise as taking derivatives increases noise!

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

(a) Blurred image of the North Pole. (b) Laplacian without scaling and (c) with scaling, (d) and (e) Image sharpening using two different masks.

LoG: Laplacian of Gaussian

Because the Laplacian is noise sensitive, it is always combined with a smoothing operation ©

$$\nabla^2(f(x,y)*G(x,y)) = \nabla^2G(x,y)*f(x,y)$$

Laplacian of a Gaussian-filtered image

Laplacian of Gaussian of a filtered image

Summary: Image Filtering

- Images are often corrupted by random variations in intensity, illumination, or have poor contrast and cannot be used directly
- Filtering allows us to achieve:
 - Enhancement: improves contrast
 - Smoothing: removes noise
 - Template matching: detects known patterns
 - Feature Extraction: provides clues about objects etc., for further analysis
 - Many other uses...

Adapted from E.G.M. Petrakis