Matrius i vectors (grup de matí)

Curs 2018–2019

14.1 Aplicacions lineals

Una aplicació $f: E \to F$ entre dos espais vectorials sobre \mathbb{R} es diu lineal si

- f(u+v) = f(u) + f(v) per a $u, v \in E$ arbitraris;
- f(cu) = c f(u) per a tot $u \in E$ i tot $c \in \mathbb{R}$.

Per exemple, les aplicacions següents són lineals:

- (a) L'aplicació identitat id: $E \to E$ per a qualsevol espai vectorial E.
- (b) L'aplicació zero, definida com f(v) = 0 per a tot $v \in E$.
- (c) Tota aplicació $f: \mathbb{R} \to \mathbb{R}$ de la forma f(x) = ax on a és un nombre fixat.
- (d) L'aplicació $\mathbb{R}[x] \to \mathbb{R}[x]$ que envia cada polinomi p(x) a la seva derivada p'(x).

En canvi, les aplicacions $f(x) = x^2$ o bé f(x, y, z) = xyz no són lineals.

Generalitzant l'exemple (c), les aplicacions $f \colon \mathbb{R}^n \to \mathbb{R}^m$ de la forma següent són lineals:

$$f(x_1, \dots, x_n) = (a_1^1 x_1 + \dots + a_n^n x_n, \dots, a_m^1 x_1 + \dots + a_m^n x_n).$$
 (14.1)

A continuació demostrarem que les úniques aplicacions $f: \mathbb{R}^n \to \mathbb{R}^m$ que són lineals són les de la forma (14.1).

14.2 Matriu d'una aplicació lineal en unes bases donades

Suposem donada una base v_1, \ldots, v_n de E. Aleshores tota aplicació lineal $f: E \to F$ està determinada pels vectors $f(v_1), \ldots, f(v_n)$, ja que si $u = x_1v_1 + \cdots + x_nv_n$ llavors

$$f(u) = f(x_1v_1 + \dots + x_nv_n) = x_1 f(v_1) + \dots + x_n f(v_n).$$

A més, si w_1, \ldots, w_m és una base de F, podem escriure

$$f(v_1) = a_1^1 w_1 + \dots + a_1^m w_m$$

$$\vdots$$

$$f(v_n) = a_n^1 w_1 + \dots + a_n^m w_m$$

i aleshores, si $u = x_1v_1 + \cdots + x_nv_n$, resulta que

$$f(u) = x_1 f(v_1) + \dots + x_n f(v_n)$$

$$= x_1 (a_1^1 w_1 + \dots + a_1^m w_m) + \dots + x_n (a_n^1 w_1 + \dots + a_n^m w_m)$$

$$= (x_1 a_1^1 + \dots + x_n a_n^1) w_1 + \dots + (x_1 a_1^m + \dots + x_n a_n^m) w_m.$$

Dit d'una altra manera, si un vector u té components (x_1, \ldots, x_n) en la base v_1, \ldots, v_n , llavors el vector f(u) té les components següents en la base w_1, \ldots, w_m :

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longmapsto \begin{pmatrix} x_1 a_1^1 + \dots + x_n a_n^1 \\ \vdots \\ x_1 a_1^m + \dots + x_n a_n^m \end{pmatrix} = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & & \vdots \\ a_1^m & \dots & a_n^m \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}. \tag{14.2}$$

La matriu $A = (a_i^j)$ de (14.2) és la matriu de f en les bases v_1, \ldots, v_n de E i w_1, \ldots, w_m de F. Observem que la matriu A té per columnes les components dels vectors $f(v_1), \ldots, f(v_n)$ en la base w_1, \ldots, w_m . L'expressió (14.2) ens diu que l'aplicació f s'expressa en components en les bases donades com f(X) = AX.

Exemple 14.1. Donades dues bases \mathcal{B}_1 i \mathcal{B}_2 d'un mateix espai vectorial E, la matriu de canvi de base $C(\mathcal{B}_1 \to \mathcal{B}_2)$ és la matriu de l'aplicació identitat id: $E \to E$ en les bases respectives \mathcal{B}_1 i \mathcal{B}_2 .

Teorema 14.2. Una aplicació $f: \mathbb{R}^n \to \mathbb{R}^m$ és lineal si i només si és de la forma f(X) = AX on A és una matriu $m \times n$.

Demostració. Tota aplicació de la forma f(X) = AX és lineal, ja que

$$f(X_1 + X_2) = A(X_1 + X_2) = AX_1 + AX_2 = f(X_1) + f(X_2)$$

i també f(cX) = A(cX) = cAX = c f(X) per a tot $c \in \mathbb{R}$. Recíprocament, si f és lineal i denotem per A la seva matriu en les bases canòniques de \mathbb{R}^n i \mathbb{R}^m , llavors f s'expressa, per (14.2), com f(X) = AX.

Si una aplicació lineal $f \colon E \to F$ té matriu A en unes bases v_1, \ldots, v_n de E i w_1, \ldots, w_m de F, i una altra aplicació lineal $g \colon F \to G$ té matriu B en la base w_1, \ldots, w_m de F i una base u_1, \ldots, u_k de G, aleshores l'aplicació composta $g \circ f$ també és lineal i té matriu BA en les bases v_1, \ldots, v_n i u_1, \ldots, u_k . Per demostrar aquest fet, si expressem f, g i $g \circ f$ en components en les bases donades, és suficient escriure que

$$(g \circ f)(X) = g(f(X)) = g(AX) = B(AX) = (BA)X,$$

d'on deduïm que $g \circ f$ és lineal i té matriu BA.

14.3 Nucli i imatge d'una aplicació lineal

Donada una aplicació lineal $f: E \to F$, el *nucli* de f és el conjunt de vectors $u \in E$ tals que f(u) = 0. El nucli de f es denota per Nuc f o bé Ker f.

La imatge d'una aplicació lineal $f : E \to F$ és el conjunt de vectors de F de la forma f(u) per a algun vector $u \in E$. La imatge de f es denota per Im f.

Proposició 14.3. Per a tota $f: E \to F$ lineal, el nucli Ker f és un subespai vectorial de E i la imatge Im f és un subespai vectorial de F.

Demostració. Si u_1 i u_2 són vectors de Ker f, llavors

$$f(u_1 + u_2) = f(u_1) + f(u_2) = 0 + 0 = 0,$$

d'on $u_1 + u_2 \in \text{Ker } f$. També si $u \in \text{Ker } f$ i $c \in \mathbb{R}$, llavors f(cu) = c f(u) = 0 i per tant $cu \in \text{Ker } f$.

Si v_1 i v_2 són vectors de Im f, llavors existeixen vectors u_1 i u_2 de E tals que $f(u_1) = v_1$ i $f(u_2) = v_2$. Aleshores $f(u_1 + u_2) = v_1 + v_2$, d'on $v_1 + v_2 \in \text{Im } f$. Si $v \in \text{Im } f$ i $c \in \mathbb{R}$, podem posar v = f(u) per a algun $u \in E$ i tenim que f(cu) = cv, la qual cosa implica que $cv \in \text{Im } f$.

De la proposició 14.3 es dedueix que, si E i F són de dimensió finita, llavors

$$\dim \operatorname{Ker} f \leq \dim E, \qquad \dim \operatorname{Im} f \leq \dim F$$

per a tota aplicació lineal $f: E \to F$.

Si escollim una base v_1, \ldots, v_n de E i una base w_1, \ldots, w_m de F i diem A a la matriu d'una aplicació lineal $f: E \to F$ en aquestes bases, llavors el nucli de f és el conjunt de solucions del sistema lineal AX = 0 i per tant

$$\dim \operatorname{Ker} f = \dim E - \operatorname{rang} A.$$

D'altra banda, la imatge de f és el subespai de F generat pels vectors $f(v_1), \ldots, f(v_n)$, i les components d'aquests vectors en la base w_1, \ldots, w_m són les columnes de la matriu A; per tant,

$$\dim F = \operatorname{rang} A.$$

D'aquests fets es dedueix el resultat general següent:

Teorema 14.4. Per a tota aplicació lineal $f: E \to F$ es compleix

$$\overline{\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim E}.$$

Demostració. dim Ker $f + \dim \operatorname{Im} f = (\dim E - \operatorname{rang} A) + \operatorname{rang} A = \dim E$.

14.4 Monomorfismes, epimorfismes i isomorfismes

- Una aplicació $f: E \to F$ és injectiva si $f(u_1) = f(u_2)$ implica que $u_1 = u_2$. Les aplicacions lineals injectives s'anomenen monomorfismes.
- Una aplicació $f: E \to F$ és exhaustiva si per a tot $v \in F$ existeix algun $u \in E$ tal que f(u) = v. Les aplicacions lineals exhaustives s'anomenen epimorfismes.
- Una aplicació $f: E \to F$ és bijectiva si és injectiva i exhaustiva alhora. Tota aplicació $f: E \to F$ té una inversa $f^{-1}: F \to E$ tal que $f^{-1}(f(u)) = u$ per a tot $u \in E$ i $f(f^{-1}(v)) = v$ per a tot $v \in F$. Les aplicacions lineals bijectives s'anomenen isomorfismes.

Aquesta terminologia prové del fet que una aplicació lineal també s'anomena un morfisme entre espais vectorials.

Proposició 14.5. Una $f: E \to F$ lineal és injectiva si i només si Ker $f = \{0\}$.

Demostració. Suposem primer que Ker $f = \{0\}$. Si f(u) = f(v), llavors f(u-v) = 0, d'on $u - v \in \text{Ker } f$ i per tant u - v = 0, és a dir, u = v. Recíprocament, si f és injectiva i hi ha un $u \in E$ tal que f(u) = 0, llavors f(u) = f(0) i per tant u = 0. \square

Proposició 14.6. Una $f: E \to F$ lineal és exhaustiva si i només si $\operatorname{Im} f = F$.

Demostració. L'afirmació que f és exhaustiva equival a l'afirmació que tot vector de F és imatge d'algun vector de E, que és el mateix que dir que $\operatorname{Im} f = F$.

14.5 Inversa d'una aplicació lineal bijectiva

Proposició 14.7. Si $f: E \to F$ és lineal i bijectiva, llavors dim $E = \dim F$.

Demostració. Com que f és injectiva, dim Ker f=0, i com que f és exhaustiva, dim Im $f=\dim F$. Aleshores el teorema 14.4 implica que dim $E=\dim F$.

Proposició 14.8. Si una aplicació lineal $f: E \to F$ és bijectiva, llavors la seva inversa $f^{-1}: F \to E$ també és lineal. Si f té matriu A en unes bases v_1, \ldots, v_n de E i w_1, \ldots, w_n de F, llavors f^{-1} té la matriu A^{-1} en les mateixes bases.

Demostració. Si escrivim, en les bases donades, f(X) = AX, llavors la igualtat Y = AX és equivalent a $X = A^{-1}Y$ i per tant l'aplicació inversa ve donada per $f^{-1}(Y) = A^{-1}Y$, que també és lineal.

14.6 Determinant d'un endomorfisme

Una aplicació lineal $f: E \to E$ d'un espai vectorial en ell mateix s'anomena un endomorfisme. Quan es treballa amb endomorfismes s'acostuma a fixar la mateixa base de E en l'espai de sortida i en el d'arribada.

Si $\mathcal{B}_1 = (u_1, \dots, u_n)$ i $\mathcal{B}_2 = (v_1, \dots, v_n)$ són dues bases diferents de E, llavors la matriu A_1 de f en la base \mathcal{B}_1 i la matriu A_2 de f en la base \mathcal{B}_2 es relacionen per l'expressió següent:

$$A_2 = C(\mathcal{B}_1 \to \mathcal{B}_2) \cdot A_1 \cdot C(\mathcal{B}_2 \to \mathcal{B}_1).$$

D'aquest fet es dedueix el teorema següent. Observem que la matriu d'un endomorfisme en una base qualsevol és necessàriament una matriu quadrada.

Teorema 14.9. Per a qualsevol endomorfisme $f: E \to E$, el determinant de la matriu de f en una base de E no depèn de la base escollida.

Demostració. Si \mathcal{B}_1 i \mathcal{B}_2 són dues bases de E i les matrius respectives de f en aquestes bases són A_1 i A_2 , llavors

$$\det A_2 = \det C(\mathcal{B}_1 \to \mathcal{B}_2) \cdot \det A_1 \cdot \det C(\mathcal{B}_2 \to \mathcal{B}_1) = \det A_1,$$
ja que $C(\mathcal{B}_2 \to \mathcal{B}_1) = C(\mathcal{B}_1 \to \mathcal{B}_2)^{-1}$.

Per tant, donat un endomorfisme $f \colon E \to E$, té sentit parlar del determinant de f, que es denota per det f, ja que no depèn de la base de E que fem servir per calcular-lo. Un endomorfisme f és bijectiu si i només si det $f \neq 0$, i en aquest cas f s'anomena un automorfisme.