Lógica Computacional

Aula Teórica 8 Resolução proposicional

Ricardo Gonçalves

Departamento de Informática

12 de outubro de 2023

Como determinar a natureza de uma fórmula na FNC?

Verificação semântica e axiomática

- Se FNC(φ) então verificar $\models \varphi$ é simples:
 - proporcional ao número de símbolos proposicionais de φ
 - usa o Lema da validade da disjunção
- Como fazer automaticamente provas axiomáticas?
- Há métodos universais para determinar se dada fórmula é contraditória ou possível?
 - Vimos um que não é universal: algoritmo de Horn

Sistema formal de prova

Regra principal

Transitividade da implicação:

$$(L_1 \to L_2) \land (L_2 \to L_3) \models (L_1 \to L_3)$$

Transitividade da implicação escrita com disjunções

$$(\neg L_1 \lor \underline{L_2}) \land (\neg \underline{L_2} \lor L_3) \models (\neg L_1 \lor L_3)$$

Cláusulas

Disjunções como conjuntos

- Recordar: cláusula é uma disjunção de literais.
- Cláusula $L_1 \vee \ldots \vee L_n$ pode ser vista como $\{L_1, \ldots, L_n\}$.
- ullet O conjunto vazio denota ot (elemento neutro da disjunção).

Simplificações

- Omitimos \bot usando a lei do elemento neutro: $\bot \lor L \equiv L$.
- leis de idempotência: $L \lor L \equiv L$ e $C \land C \equiv C$;
- leis do elemento neutro: $L \lor \bot \equiv L$ e $C \land \top \equiv C$;

Exemplos

- $(p \lor \neg q \lor s \lor p \lor \neg r)$ é representada por $\{p, \neg q, s, \neg r\}$
- $(\bot \lor \neg s \lor q \lor \neg p \lor r)$ é representada por $\{\neg s, q, \neg p, r\}$
- $\neg p$ é representada por $\{\neg p\}$

Propriedades das cláusulas

Propriedades

- Toda a cláusula determina um conjunto de literais.
- O contrário não é verdadeiro: o conjunto $\{L_1,L_2\}$ pode resultar de $L_1\vee L_2$, ou de $L_2\vee L_1$, ou de $(L_1\vee L_2)\vee L_1$, ou de $L_1\vee (L_2\vee L_1)$, etc.

Proposição

Se duas cláusulas C_1 e C_2 determinam o mesmo conjunto, então:

$$C_1 \equiv C_2$$

Cláusulas como conjuntos

Proposição '

Se duas cláusulas C_1 e C_2 determinam o mesmo conjunto, então:

$$C_1 \equiv C_2$$

Esboço de prova

Os conjuntos não têm ordem nem repetições. Há 3 situações em que cláusulas sintaticamente diferentes geram o mesmo conjunto:

- Numa um dado literal ocorre mais vezes do que na outra pela lei da idempotência são equivalentes.
- 2 Um literal ocorre numa cláusula numa posição diferente da que ocorre na outra pela lei da comutatividade são equivalentes.
- 3 Os literais estão associados nas cláusulas de forma diferente pela lei da associatividade são equivalentes.

Conjuntos de cláusulas

Fórmulas como conjuntos de cláusulas

- Uma fórmula na FNC é uma conjunção de cláusulas.
- Seja $\varphi = \bigwedge_{i=1}^n C_i$ onde cada C_i é uma cláusula: φ é representada (univocamente) por $\{C_1, \ldots, C_n\}$.
- O conjunto vazio denota ⊤ (elemento neutro da conjunção)
- omitimos \top usando a lei do elemento neutro: $\top \land (p \lor q)$ é equivalente a $p \lor q$, que corresponde $\{\{p,q\}\}$

Exemplo

- $(p \lor q \lor \neg r) \land (r \lor s) \land \neg p \land (\neg q \lor \neg s)$ é representada por: $\{\{p,q,\neg r\},\{r,s\},\{\neg p\},\{\neg q,\neg s\}\}$
- $(s \lor t \lor \neg r \lor s) \land s \land \neg p \land (\neg p \lor \neg s)$ é representada por: $\{\{s,t,\neg r\},\{s\},\{\neg p\},\{\neg p,\neg s\}\}$

Propriedades dos conjuntos de cláusulas

Propriedades

- Toda a fórmula na FNC determina um conjunto de cláusulas.
- O contrário não é verdadeiro:
 - o conjunto $\{\{r,s\},\{p,\neg q\}\}$ pode resultar de:
 - $\bullet \ (r \vee s) \wedge (p \vee \neg q)$
 - $\bullet \ (\neg q \lor p) \land (r \lor s)$
 - $\bullet \ (r \lor s \lor r) \land (p \lor \neg q \lor p) \land (r \lor s)$
 - etc.

Proposição

Se φ_1, φ_2 são duas fórmulas na FNC e que determinam o mesmo conjunto de cláusulas, então $\varphi_1 \equiv \varphi_2$.

Sistema dedutivo

Resolvente

Sejam C_1 e C_2 duas cláusulas tal que para algum $p \in P$ se tem $p \in C_1$ e $\neg p \in C_2$. Então um *resolvente* de C_1 e C_2 é a cláusula

$$R = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$$

Exemplo

Sejam $C_1 = \{p, \neg q, r\}, C_2 = \{q, \neg r, s\} \in C_3 = \{\neg p\}:$

- ullet um resolvente de C_1 e C_2 é a cláusula $\{p, \neg q, q, s\}$
- outro resolvente de C_1 e C_2 é a cláusula $\{p, r, \neg r, s\}$
- o único resolvente de C_1 e C_3 é a cláusula $\{\neg q, r\}$
- Não há nenhum resolvente de C_2 e C_3

Correcção do sistema dedutivo

Propriedades do resolvente

Seja R um resolvente de duas cláusulas C_1 e C_2 . Então:

- ullet Se a fórmula $C_1 \wedge C_2$ é fórmula possível, então R também é.
- $\{C_1, C_2\} \models R$
- $R=\emptyset$ se e só se $C_1=\{L\}$ e $C_2=\{\overline{L}\}$, para algum literal L

Resolução

Algoritmo de Resolução

Seja $\varphi = \bigwedge_{i=1}^n C_i$ uma fórmula em FNC.

Define-se a função Res de geração de resolventes da seguinte forma:

- $\operatorname{Res}^0(\varphi) \stackrel{\text{def}}{=} \{C_1, \dots, C_n\}.$
- Para qualquer n > 0 define-se:

$$\begin{array}{l} \operatorname{\mathsf{Res}}^n(\varphi) \stackrel{\mathrm{def}}{=} \operatorname{\mathsf{Res}}^{n-1}(\varphi) \cup \\ \{R \mid R \text{ \'e resolvente de duas cláusulas de } \operatorname{\mathsf{Res}}^{n-1}(\varphi)\} \end{array}$$

• $\operatorname{Res}^*(\varphi) \stackrel{\text{def}}{=} \bigcup_{n \geq 0} \operatorname{Res}^n(\varphi)$

Exemplificação do cálculo dos resolventes

Resultados

- A função Res é monótona crescente
- Se $C \in \mathsf{Res}^n(\varphi)$, para algum n, então $C \in \mathsf{Res}^*(\varphi)$
- Se $\emptyset \in \operatorname{Res}^n(\varphi)$, para algum n, então $\emptyset \in \operatorname{Res}^*(\varphi)$
- Para dado φ , o conjunto $\operatorname{Res}^*(\varphi)$ é único
- ullet Se $\mathrm{Res}^n(\varphi)=\mathrm{Res}^{n+1}(\varphi)$, então $\mathrm{Res}^*(\varphi)=\mathrm{Res}^n(\varphi)$

A última propriedade indica que para encontrar $\mathrm{Res}^*(\varphi)$ basta encontrar um ponto fixo.

Exemplificação do cálculo dos resolventes

$$\varphi = (p \lor p \lor q) \land (\neg p) \land (s) \land (r \lor \neg q) \land (\neg p)$$

A fórmula é composta pelas seguintes cláusulas:

$$C_1 = \{p,q\}, \ C_2 = \{\neg p\}, \ C_3 = \{s\}, \ C_4 = \{r, \neg q\}, \ C_5 = \{\neg p\}$$

Logo:

$$Res^{0}(\varphi) = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\} = \{\{p, q\}, \{s\}, \{r, \neg q\}, \{\neg p\}\}\}\$$

$$\begin{aligned} \mathsf{Res}^1(\varphi) &= \mathsf{Res}^0(\varphi) \cup \{\{p,r\}, \{q\}\} = \\ &= \{\{p,q\}, \{s\}, \{r, \neg q\}, \{\neg p\}, \{p,r\}, \{q\}\} \end{aligned}$$

$$\begin{aligned} \operatorname{Res}^2(\varphi) &= \operatorname{Res}^1(\varphi) \cup \{\{r\}\} \\ &= \{\{p,q\},\{s\},\{r,\neg q\},\{\neg p\},\{p,r\},\{q\},\{r\}\} \end{aligned}$$

$$\operatorname{Res}^n(\varphi) = \operatorname{Res}^2(\varphi)$$
, para qualquer $n > 2$, logo

$$\mathsf{Res}^*(\varphi) = \{\{p,q\},\{s\},\{r,\neg q\},\{\neg p\},\{p,r\},\{q\},\{r\}\}$$

Algoritmo de Resolução

Finitude do ponto fixo

Para toda a fórmula φ em FNC existe um $m \in \mathbb{N}_0$ tal que:

- $\operatorname{Res}^*(\varphi) = \operatorname{Res}^m(\varphi)$ e
- $\operatorname{Res}^k(\varphi) = \operatorname{Res}^m(\varphi)$, para todo k > m

Esboço de prova

As fórmulas são conjuntos finitos de símbolos, logo qualquer fórmula contém um número finito de símbolos proposicionais. O conjunto de todas as cláusulas sobre um conjunto finito de símbolos proposicionais é finito. Res* (φ) é um conjunto de cláusulas sobre os símbolos proposicionais de φ .

Então, $\operatorname{Res}^*(\varphi)$ é finito. Como Res é função monotona crescente, temos que existe um m tal que $\operatorname{Res}^{m+i}(\varphi) = \operatorname{Res}^m(\varphi)$, com $i \geq 1$.

Algoritmo de Resolução

Teorema da correção e completude da Resolução

Dada $\varphi \in F_P$ com $FNC(\varphi)$, então:

 $\emptyset \in Res^*(\varphi)$ se e só se φ é contraditória

Esboço da prova da correção

Já sabemos que existe $m \in \mathbb{N}_0$ tal que $\operatorname{Res}^*(\varphi) = \operatorname{Res}^m(\varphi)$.

- Se m=0: $\emptyset \in \mathrm{Res}^0(\varphi)$ se e só se $C_i=\bot$ para algum i. Como \bot é elemento absorvente da conjunção, φ é contraditória.
- Caso $\emptyset \notin \mathrm{Res}^m(\varphi)$ mas $\emptyset \in \mathrm{Res}^{m+1}(\varphi)$. Então \emptyset é o resolvente de duas cláusulas unitárias $\{p\}$ e $\{\neg p\}$ de $\mathrm{Res}^m(\varphi)$. Logo, tanto p como $\neg p$ são consequências de φ , o que implica que φ é contraditória.

Algoritmo de Resolução

Objetivo do algoritmo da Resolução

Dada uma fórmula φ na FNC:

verificar se φ é contraditória ou não.

Fórmulas contraditórias

Se φ é contraditória, não precisamos calcular explicitamente Res*:

Derivamos \emptyset calculando resolventes a partir das cláusulas de φ .

Exemplo

Seja
$$\varphi \stackrel{\mathrm{def}}{=} (p \vee q \vee \neg r) \wedge (p \vee \neg q) \wedge \neg p \wedge (p \vee q \vee r)$$

Passo	Dedução	Justificação
1	$\{p,q,\neg r\}$	Cláusula C_1
2	$\{p,q,r\}$	Cláusula C_4
3	$\{p,q\}$	Resolvente de 1 e 2
4	$\{p, \neg q\}$	Cláusula C_2
5	$\{p\}$	Resolvente de 3 e 4
6	$\{\neg p\}$	Cláusula C_3
7	Ø	Resolvente de 5 e 6

Pelo Teorema da Correção conclui-se que a fórmula é contraditória.

Fórmulas possíveis

Seja
$$\varphi \stackrel{\mathrm{def}}{=} (p \vee q) \wedge (r \vee s) \wedge \neg p \wedge (\neg q \vee \neg s)$$

Pelo Lema da disjunção de literais, a fórmula não é válida.

A fórmula é composta pelas seguintes cláusulas:

$$C_1 = \{p, q\}, \ C_2 = \{r, s\}, C_3 = \{\neg p\}, \ C_4 = \{\neg q, \neg s\}$$

Por definição,

$$Res^{0}(\varphi) = \bigcup_{i=1}^{4} \{C_{i}\} = \{\{p, q\}, \{r, s\}, \{\neg p\}, \{\neg q, \neg s\}\}\$$

$$\operatorname{Res}^{1}(\varphi) = \operatorname{Res}^{0}(\varphi) \cup \{\{q\}, \{p, \neg s\}, \{r, \neg q\}\}\$$

$$\mathrm{Res}^2(\varphi) = \mathrm{Res}^1(\varphi) \cup \{\{p,r\}, \{r\}, \{\neg s\}\}$$

$$\mathrm{Res}^n(\varphi)=\mathrm{Res}^2(\varphi)$$
, para qualquer $n>2$

Como $\emptyset \notin \mathsf{Res}^*(\varphi)$, a fórmula não é contraditória. Logo, é possível.

Exemplo

Seja
$$\varphi \stackrel{\mathrm{def}}{=} (p \vee s) \wedge \neg q \wedge (\neg p \vee r) \wedge (q \vee \neg s) \wedge (\neg p \vee \neg r)$$

Será contraditória? Se sim, não precisamos calcular Res*

Passo	Dedução	Justificação
1	$\{\neg q\}$	Cláusula C_2
2	$\{q, \neg s\}$	Cláusula C_4
3	$\{\neg s\}$	Resolvente de 1 e 2
4	$\{p,s\}$	Cláusula C_1
5	$\{p\}$	Resolvente de 3 e 4
6	$\{\neg p, r\}$	Cláusula C_3
7	$\{r\}$	Resolvente de 5 e 6
8	$\{\neg p, \neg r\}$	Cláusula C_5
9	$\{\neg r\}$	Resolvente de 5 e 8
10	Ø	Resolvente de 7 e 9

Pelo Teorema da Correção conclui-se que a fórmula é contraditória.

Exemplo

$$\varphi \stackrel{\mathrm{def}}{=} (p \vee s) \wedge \neg q \wedge (\neg p \vee r) \wedge (q \vee \neg s) \wedge (p \vee \neg r \vee \bot) \wedge (p \vee r \vee \neg p)$$

É válida?

Será contraditória?

Em caso de dúvida, podemos sempre calcular $\operatorname{Res}^*(\varphi)$

Exercício!