學號: B06901180 系級: 電機三 姓名: 鄭謹譯

1. (2%) 請比較實作的 generative model 及 logistic regression 的準確率,何者較 佳?請解釋為何有這種情況?

	Training Acc.
generative	0.872530
logistic	0.883617

Generative model 會自行建構出原本未給的資料與模型,將所有資料視為常態分佈,在資料量充足時此行為容易產生誤差 (underfit),因此降低準確率。

2. (2%) 請實作 logistic regression 的正規化 (regularization),並討論其對於你的模型 準確率的影響。接著嘗試對正規項使用不同的權重 (lambda),並討論其影響。(有 官 regularization 請參考 https://goo.gl/SSWGhf p.35)

Lambda	0	0.001	0.01	0.1
Training Acc.	0.883617	0.883658	0.883002	0.878599
Dev. Acc.	0.873387	0.873203	0.873940	0.870807
Lambda	1	10	100	1000
Training Acc.	0.863240	0.796559	0.794266	Nan fail
Dev. Acc.	0.863068	0.799668	0.796351	Nan fail

由圖可知·training 和 dev. 的結果在 Lambda 大於 1 後皆驟降,可知過重的 penalize 會造成 training 過程誤差過大。但由圖與數據可發現,當 Lambda 介於 0.001-0.01 間時,準確度皆有略微提升,推測是因為 Lambda 讓 training curve 更平滑,使準確度些微上升,然而整體準確率並無太大差別。

3. (1%) 請說明你實作的 best model, 其訓練方式和準確率為何?

使用 logistic model 搭配 SGD 為基礎,經以下幾個步驟提升準確率。

- (1) Feature Selection,大致計算相關性,最後刪除父母、自己國籍三欄資料。
- (2) 針對數值項(非選題)增加 Feature,增加該項的 0.2 0.4 0.6 0.8 1.2 次方,小於 1 的次方能壓低特別大的數值,使大小中間的數值在標準化後比例放大,凸顯其價值。不同次方大小可以產生不同比例放大(1.2:縮小)的效果。
- (3) Ensemble 對其初始WB取 random,產生五組不同的 model,再使用

Logistic Regression 的方法 train 一個 model 利用五組 model 預測結果,然而效果沒有顯著提升,值得探討。

4. (1%) 請實作輸入特徵標準化 (feature normalization),並比較是否應用此技巧,會對於你的模型有何影響。

	Training Acc.	Dev. Acc.
Not normalize	0.762011	0.762440
Normalization	0.883617	0.873387

Feature normalization 減少 bias,同時除掉標準差可減少劇烈變化,以二(三)維來說讓 error space 接近圓(球),使機器更容易學出結果,結果有顯著的差別。