Mathematics 555 Test #1

- **1.** Let f be a function defined on an open interval and $x_0 \in I$.
 - (a) State what it means the derivative $f'(x_0)$ to exist.

Solution: This means that the limit

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Name:

Answer Key

exits.

(b) Prove that if f is differentiable at x_0 , then f is continuous at x_0 .

Solution: To show that f is continuous at x_0 it is enough show

$$\lim_{x \to x_0} f(x) = f(x_0).$$

We do this by our standard trick of finding an artfully complication of the function f(x).

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right)$$

$$= f(x_0) + \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right)$$

$$= f(x_0) + \left(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \right) \left(\lim_{x \to x_0} (x - x_0) \right)$$

$$= f(x_0) + f'(x_0)(0)$$

$$= f(x_0)$$
(As $f(x_0)$ is constant.)

where we have used a theorem about the product of limits that exist.

(c) Prove the product rule: If f and g are both differentiable at x_0 then so is the product p(x) = f(x)g(x) and $p'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.

Solution: We are given that the limits

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 and $g'(x_0) = \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$

exist. Thus (and again we use an artfully complication)

$$p'(x_0) = \lim_{x \to x_0} \frac{p(x) - p(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0}g(x) + f(x_0)\frac{g(x) - g(x_0)}{x - x_0}\right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \lim_{x \to x_0} g(x) + f(x_0) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

We have used that $\lim_{x\to x_0} g(x) = g(x_0)$ as g is differentiable at x_0 and thus continuous at x_0 .

2. (a) State Rôlle's theorem.

Solution: If f continuous on the closed interval [a,b], differentable on the open interval (a,b), and f(a) = f(b), then there is a $\xi \in (a,b)$ with such that $f'(\xi) = 0$.

(b) Prove that if h is twice differentiable on an interval (a, b) and there are points $x_1, x_2, x_3 \in (a, b)$ with $x_1 < x_2 < x_3$ and $h(x_1) = h(x_2) = h(x_3) = 0$, then there is a point $\xi \in (x_1, x_3)$ with $h''(\xi) = 0$.

Solution: By Rôlle's theorem there is ξ_1 between x_1 and x_2 with $h'(\xi_1) = 0$ and a ξ_2 between x_2 and x_3 with $h'(\xi_2) = 0$. The function h' is differentable on (ξ_1, ξ_2) so by another application of Rôlle's theorem there is a $\xi \in (\xi_1, \xi_2) \subseteq (x_1, x_3)$ with $h''(\xi) = (h')'(\xi) = 0$.

(c) Prove if f and g are twice differentiable on the open interval (a, b) and there are $x_1, x_2, x_3 \in (a, b)$ with $x_1 < x_2 < x_3$ and

$$f(x_1) = g(x_1),$$
 $f(x_2) = g(x_2),$ $f(x_3) = g(x_3)$

then there is a point $\xi \in (x_1, x_2)$ with $f''(\xi) = g''(\xi) = 0$.

Solution: This follows more or less directly form part (b). Let h = f - g. Then $h(x_1) = h(x_2) = h(x_3) = 0$. Thus by (b) there is a $\xi \in (x_1, x_3)$ with $h''(\xi) = (f - g)''(\xi) = f''(\xi) - g''(\xi) = 0$. Thus $f''(\xi) = g''(\xi)$.

3. (a) State the mean value theorem.

Solution: If f continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there is a $\xi \in (a, b)$ with such that

$$f(b) - f(a) = f'(\xi)(b - a).$$

(b) Let f be a function defined on \mathbb{R} such that for all x the inequality

$$|f'(x)| \le 42$$

hold for all x. Show that for all $x, y \in \mathbb{R}$

$$|f(x) - f(y)| \le 42|x - y|.$$

Solution: By the mean value theorem there is a ξ between x and y such that $f(x) - f(y) = f'(\xi)(x-y)$. Using this and $|f'(\xi)| \le 42$ gives

$$|f(x) - f(y)| = |f'(\xi)(x - y)| = |f'(\xi)||x - y| \le 42|x - y|$$

as required. \Box

4. (a) State Taylor's theorem with Lagrange's form of the remainder.

Solution: If f is n+1 times differentiable on an open interval I and $a, x \in I$ then there is a ξ between a and x such that

$$f(x) = f(a) + f'(a)(x - a) + \frac{f'(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - a)^{n+1}.$$

(b) What are the first three terms of the Taylor expansion of $f(x) = \sqrt{1+x}$ about x = 0.

Solution: We have

$$f(x) = (1+x)^{1/2} f(0) = 1$$

$$f'(x) = \frac{1}{2}(1+x)^{-1/2} f'(0) = \frac{1}{2}$$

$$f''(x) = \frac{-1}{4}(1+x)^{-3/2} f''(0) = \frac{-1}{4}$$

and therefore the first three terms of the Taylor expansion are

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \dots = 1 + \frac{x}{2} - \frac{x^2}{8} + \dots$$

(c) What is the Taylor series for $\sin(x)$ about x = 0. (You do not have to derive it, you just have to state it.)

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \cdots$$

5. (a) State the fundamental theorem of calculus.

Solution: If f is Riemann integrable on [a, b], F is defined by

$$F(x) = \int_{a}^{x} f(t) dt,$$

and f is continuous at x_0 , then F is differentiable at x_0 and

$$F'(x_0) = f(x_0).$$

(b) Prove that if f is continuous on [a, b] there is a $\xi \in (a, b)$ such that

$$f(\xi) = \frac{1}{b-a} \int_{a}^{b} f(t) dt$$

Hint: One way is to apply the mean value theorem to the function

$$F(x) = \int_{a}^{x} f(t) dt.$$

Solution: As f is continuous on [a,b] the function F is differentiable at all points of (a,b) by the fundamental theorem of calculus. Thus the mean value theorem applies and we have that there is a $\xi \in (a,b)$ with

(1)
$$F(b) - F(a) = F'(\xi)(b - a).$$

But

$$F(b) - F(a) = \int_{a}^{b} f(t) dt - \int_{a}^{a} f(t) dt = \int_{a}^{b} f(t) dt - 0 = \int_{a}^{b} f(t) dt.$$

And by the fundamental theorem of calculus

$$F'(\xi) = f(\xi).$$

Using these facts in (1) gives

Using these facts in (1) gives
$$\int_a^b f(t) dt = f(\xi)(b-a).$$
 Dividing by $(b-a)$ now gives the result.