

Analog IC Design

Lecture 16 OTA Stability and Compensation

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs} \longrightarrow p_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs} \longrightarrow p$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \square Bulk effect: $g_m \rightarrow g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D ,V _{out} ,v _{out} ,sc V _x ,sc	R _D , V _{out} j _{out,sc} V _{in}	V _{in} V _x V _{out} i _{out,sc}
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb})R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} $ $\gg 1$

What is an OTA / Op-Amp?

- ☐ An op-amp is simply a high gain differential amplifier
- The gain can be increased by using cascodes and multi-stage amplifiers

Op-Amp vs OTA

- ☐ An OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	ОТА	
Rout	LOW	HIGH	
Model	$V_{in} \bigcirc V_{in} \bigcirc V_{out}$ $R_{in} = A_{v}V_{in} \bigcirc V_{out}$	$V_{in} \longrightarrow I_{in}$ $G_m V_{in} \longrightarrow R_{out}$ $Q_m V_{in} \longrightarrow R_{out}$	
Diff input, SE output			
Fully diff 16: OTA Stability and Compensation		12	

Negative Feedback

- \Box A_{OL} = Open loop (OL) gain $\gg 1$
- \square Error signal = $X X_F$

$$Y = A_{OL}(X - X_F) = A_{OL}(X - \beta Y)$$
$$A_{CL} = \frac{Y}{X} = \frac{A_{OL}}{1 + \beta \cdot A_{OL}} \approx \frac{1}{\beta}$$

Stability: Phase Margin

- \Box If $\omega_{p2}=\omega_u$: PM = 45° \Rightarrow typically inadequate (peaking/ringing)
- \Box The ultimate ω_u cannot exceed $\omega_{p2} o \omega_{p1} < \omega_u < \omega_{p2}$
 - For $\omega < \omega_u$ the Bode plot is similar to a 1st order system

Famous OTA Topologies

- 1. Simple single-stage OTA
- 2. Telescopic cascode OTA
- 3. Folded cascode OTA
- 4. Two-stage OTA
- Gain boosted OTA

Simple Single-Stage OTA

- ☐ Simple, but limited gain
- \square $\omega_{p1} < \omega_u < \omega_{p2}$
- The H.I.N. sets the dominant pole
 - OL bandwidth
- The first non-dominant pole (mirror pole) sets the max GBW
 - Max CL bandwidth (buffer)

Simple Single-Stage OTA: Poles

$$\omega_{p1} \approx \frac{1}{R_{out}C_{out}}$$

$$\omega_{p2} \approx \frac{g_{m3}}{C_E}$$

$$\omega_z = 2\omega_{p2}$$

$$\omega_z = 2\omega_{p2}$$

Telescopic Cascode

☐ Higher DC gain, but limited swing and additional poles

SE Output Telescopic Cascode: Poles

- \square $\omega_{p1} < \omega_u < \omega_{p2}$
- ☐ The H.I.N. sets the dominant pole
 - OL bandwidth
- The first non-dominant pole (mirror pole) sets the ultimate max GBW
 - Max CL bandwidth (buffer)
- \Box C_{as} is larger than other caps
- PMOS contributes larger capacitances (low ID/W)
- X and Y contribute a single pole

SE Telescopic Cascode: Compensation

- Push GX in: lower GBW
 - Increase C_L
 - Single-stage OTAs are compensated by large load capacitance

SE Telescopic Cascode: Compensation

- Push GX in: lower GBW
 - Increase C_L
 - Single-stage OTAs are compensated by large load capacitance
- lacktriangle Increasing R_{out} does not affect PM

Two-Stage OTA

- ☐ Isolates the gain and swing requirements
- But more power consumption
- And complicates stability requirements
 - More than two stages exist, but quite difficult to stabilize
- ☐ Second stage is typically configured as a simple common-source stage so as to allow maximum output swings

Two-Stage OTA: Poles

- ☐ Two H.I.N.s at 1 and 2
 - Two dominant poles

$$\omega_{p1} = \frac{1}{R_{out1}C_1}$$
 & $\omega_{p2} = \frac{1}{R_{out2}C_2}$

- Exploit Miller capacitance multiplication
- Pole splitting
 - Push the pole @ 1 inwards
 - Push the pole @ 2 outwards

- Exploit Miller capacitance multiplication
- Pole splitting

σ

Before compensation

$$\omega_{p1} = \frac{1}{R_{out1}C_1}$$
 & $\omega_{p2} = \frac{1}{R_{out2}C_2}$

After compensation

$$\omega_{p1} \approx \frac{1}{R_{out1}[(G_{m2}R_{out2})C_C + C_1]} \quad \& \quad \omega_{p2} \approx \frac{G_{m2}}{C_1 + C_2}$$

After compensation: more accurate expressions

$$\omega'_{p1} \approx \frac{1}{R_S[(1+g_{m9}R_L)(C_C+C_{GD9})+C_E]+R_L(C_C+C_{GD9}+C_L)}$$

$$\omega'_{p2} \approx \frac{R_S[(1+g_{m9}R_L)(C_C+C_{GD9})+C_E]+R_L(C_C+C_{GD9}+C_L)}{R_SR_L[(C_C+C_{GD9})C_E+(C_C+C_{GD9})C_L+C_EC_L)]}$$

16: OTA Stabi...,

Two-Stage Miller OTA

After compensation

$$\omega_{p1} \approx \frac{1}{R_{out1}[(G_{m2}R_{out2})C_C + C_1]} \approx \frac{1}{R_{out1}(G_{m2}R_{out2})C_C}$$

$$\omega_{p2} \approx \frac{G_{m2}}{C_1 + C_2} \approx \frac{G_{m2}}{C_L}$$

$$GBW \approx G_{m1}R_{out1}G_{m2}R_{out2} \cdot \frac{1}{R_{out1}(G_{m2}R_{out2})C_C}$$

$$GBW = \omega_u \approx \frac{G_{m1}}{C_C}$$

Two-Stage Miller OTA

$$\omega_{p2} \approx \frac{G_{m2}}{C_L}$$

$$GBW = \omega_u \approx \frac{G_{m1}}{C_C}$$

 \Box For $PM \approx 70^{\circ}$

$$\omega_{p2} \approx 3\omega_u$$

Take additional margin to account for parasitic capacitors

$$\frac{\omega_{p2} \approx 4\omega_u}{C_L} \approx \frac{4G_{m1}}{C_C}$$

Two-Stage Miller OTA

$$\frac{G_{m2}}{C_L} \approx \frac{4G_{m1}}{C_C}$$

 \square Assume $C_L = 5pF$ and $C_{Cmax} = 2pF$

$$\frac{G_{m2}}{G_{m1}} = 4 \times \frac{5}{2} = 10$$

☐ If both stages use the same gm/ID

$$\frac{I_{D2}}{I_{D1}} = 10$$

- More than 80% of the power is consumed in the second stage to achieve stability
 - Miller OTA is very energy inefficient!

Miller OTA: Pole Splitting with $oldsymbol{C}_{oldsymbol{C}}$

- lacktriangledown Too large $C_{\mathcal{C}}$ does not give more pole splitting: just smaller GBW
 - Usually we choose $C_1 < C_C < C_L$
 - Reasonable starting point: $C_C = (0.3 0.5) \times C_L$

Miller OTA: Pole Splitting with g_{m2}

- lacktriangle Increasing g_{m2} works even better than increasing $\mathcal{C}_{\mathcal{C}}$
 - But more power consumption in the 2nd stage

Two-Stage Miller OTA: RHP Zero

- ☐ RHP zero is bad for both magnitude and phase
 - Increases GX and decreases PX

$$\omega_z = \frac{G_{m2}}{C_C + C_{gd}}$$

Two-Stage Miller OTA: RHP Zero

 \blacksquare Add a resistance to control the value of the zero \rightarrow Move it to LHP

$$\frac{v_x}{R_Z + \frac{1}{S_Z C_C}} = g_m v_x$$

$$S_Z = \frac{1}{C_C \left(\frac{1}{g_m} - R_Z\right)}$$

$$C_E \downarrow V_{DD}$$

$$R_Z C_C$$

$$R_Z C_C$$

Two-Stage Miller OTA: LHP Zero Placement

- Can we cancel the first non-dominant pole with the LHP zero?
 - Theoretically yes

$$\frac{1}{C_C\left(\frac{1}{g_{m2}}-R_Z\right)} = \frac{g_{m2}}{C_L} \rightarrow R_Z = \frac{C_L+C_C}{g_{m2}C_C}$$

- But practically impossible due to variations
- The case of ω_z in the vicinity of ω_u will cause several disadvantages
 - > GX at high frequency in the vicinity of many non-dominant poles
 - ➤ Noise amplification
 - **≻**Do NOT do it
- Warning: Problems 10.19 and 10.20 in [Razavi, 2017] assumes that $A_o\omega_{p1}=\omega_u\gg\omega_{p2}$, which is incorrect

Two-Stage Miller OTA: LHP Zero Placement

- Of course we cannot cancel the dominant pole as well
 - Will cause poor settling behavior (pole-zero doublet)
 - A component of the output proportional to the mismatch between ω_{p1} and ω_z will settle slowly with $\tau=1/\omega_{p1}$ instead of $\tau=1/\omega_u$
 - See Problem 10.19 in [Razavi, 2017] (note that the assumption that $A_o\omega_{p1}=\omega_u\gg\omega_{p2}$ is incorrect).
- □ Conclusion: The LHP zero should be placed between the 1st and 2nd non-dominant poles
 - Make sure $\omega_z > 2\omega_u$ under all conditions

Two-Stage Miller OTA: R_Z Implementation

 \square R_Z can be implemented using a transistor in triode

Single vs Two-Stage OTA: Sensitivity to $oldsymbol{C}_L$

Thank you!

Two-Stage Miller OTA: R_Z Implementation

- \square R_Z can be implemented using a transistor in triode
- Generation of Vb for proper temperature and process tracking.
 - The principal drawback of this method is that it assumes square-law characteristics for all of the transistors.

Two-Stage Miller OTA: Compensation

- Other compensation techniques exist to avoid the RHP zero
 - The common idea is to cancel the feedforward path due to $\mathcal{C}_{\mathcal{C}}$
 - Example 1: CC/CG stage inserted in series with C_C
 - Example 2: C_C placed between the source of the cascode devices and the output nodes

Systems with Multiple 180° Crossings

☐ If $\angle \beta$ H crosses 180° an even (odd) number of times while $|\beta H| > 1$, then the system is stable (unstable)

