Started on	Saturday, 7 December 2024, 9:01 PM
State	Finished
Completed on	Saturday, 7 December 2024, 9:08 PM
Time taken	7 mins 10 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Write the algorithm for **QR** decomposition using the Gram-Schmidt method.

For example:

Input	Result
([[1, 1, 0], [1,0,1], [0, 1, 1]])	The Q Matrix is [[0.70710678 0.40824829 -0.57735027] [0.70710678 -0.40824829 0.57735027] [0.

Answer: (penalty regime: 0. %)

Reset answer

```
1
 2
   Program to QR decomposition using the Gram-Schmidt method
 3
   Developed by: JAIYANTAN S
 4
    RegisterNumber: 24900025
 5
   import numpy as np
 6
7 ▼ def QR_Decomposition(A):
8
        n, m = A.shape
 9
        Q = np.empty((n,m))
10
        u = np.empty((n,m))
11
        R = np.zeros((n,m))
        u[:, 0] = A[:, 0]
12
        Q[:,0] = u[:, 0]/np.linalg.norm(u[:,0])
13
14
15 •
        for i in range(1, n):
16
            u[:, i] = A[:, i]
17 🔻
            for j in range(n):
18
                u[:, i] -= (A[:, i]@Q[:,j])*Q[:,j]
            Q[:, i] = u[:, i]/np.linalg.norm(u[:, i])
19
20 🔻
        for i in range(n):
21 🔻
            for j in range(i, m):
22
                R[i, j] = A[:, j]@Q[:, i]
        print(f"The Q Matrix is \n {Q}")
23
        print(f"The R Matrix is \n {R}")
24
25
    a = np.array(eval(input()))
26 QR_Decomposition(a)
```

	Input	Expected	Got	
~	([[1, 1, 0], [1,0,1], [0, 1, 1]])	The Q Matrix is [[0.70710678 0.40824829	The Q Matrix is [[0.70710678 0.40824829 -0.57735027] [0.70710678 -0.40824829 0.57735027] [0.	~
~	([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])	The Q Matrix is [[0.85714286 -0.39428571 -0.33142857] [0.42857143 0.90285714 0.03428571] [-0.28571429 0.17142857 -0.94285714]] The R Matrix is [[14. 2114.] [0. 17570.] [0. 0. 35.]]	The Q Matrix is [[0.85714286 -0.39428571 -0.33142857] [0.42857143 0.90285714 0.03428571] [-0.28571429 0.17142857 -0.94285714]] The R Matrix is [[14. 2114.] [0. 17570.] [0. 0. 35.]]	~

Passed all tests! 🗸

► Show/hide question author's solution (Python3)

Correct

Marks for this submission: 1.00/1.00.