

KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

LUKAS KUZMICKAS

Studijų modulio

P160B003 Tikimybių teorija ir statistika

1 laboratorinio darbo ataskaita

Kaunas, 2022

DARBO TIKSLAS

Ugdyti gebėjimus taikyti teorines statistikos žinias praktikoje, programuoti statistikos uždavinius, panaudojant R programavimo kalbą, atlikti tiriamąją duomenų analizę, tikrinti hipotezes, apskaičiuoti parametrų pasikliautinuosius intervalus, interpretuoti gautus rezultatus, formuluoti išvadas, rengti ataskaitas.

1. UŽDUOTIS.

1. APRAŠOMOJI STATISTIKA IR NEPARAMETRINĖS HIPOTEZĖS

Iš duomenų imties "duomenys_hipoteziu_tikrinimui.csv" nuskaitykite savo varianto duomenis tokiu būdu:

N=variantas#Reikia įrašyti savo varianto numerį N data=read.csv('duomenys_hipoteziu_tikrinimui.csv',header=TRUE) #Failas turi būti darbiniame kataloge data=data[1:1000,N] #Duomenys, kuriuos reikia analizuoti – imtis.

- **1.1.** Raskite skaitines imties charakteristikas: imties dydį, minimumą, maksimumą, imties plotį, kvartilius, kvartilių skirtumą (IQR), empirinį vidurkį, pataisytąją dispersiją, pataisytąjį standartinį nuokrypį.
- **1.2.** Nubraižykite histogramą ir stačiakampę diagramą. Pagal gautus grafikus, parinkite vieną iš trijų tolydžiųjų skirstinių (normalųjį, eksponentinį arba tolygųjį), kuris galėtų geriausiai tikti duotiesiems duomenims.
- 1.3. Raskite skirstinio parametrų taškinius įverčius.
- **1.4.** Suformuluokite ir patikrinkite atitinkamą suderinamumo hipotezę (reikšmingumo lygmenį α pasirinkite patys). Užrašykite nagrinėjamo populiacijos požymio skirstinio funkciją.

1 pav. Pirmosios užduoties sąlyga

1.1. R PROGRAMOS KODAS

2 pav. 1.1. užduoties kodas

```
Raskite skaitines imties charakteristikas: imties dydį,

    / #minimumą, maksimumą, imties plotį, kvartilius,
    / #kvartilių skirtumą (IQR), empirinį vidurkį,
    / #pataisytąją dispersiją, pataisytąjį standartinį nuokrypį.

> n = length(data)
> #Imties dydis
[1] 1000
> data_minimum = min(data)
> #Minimumas
> data_minimum
[1] -1.820401
> data_maximum = max(data)
> #Maximumas
  data_maximum
[1] 7.022358
> #imties plotis
> data_plot = diff(range(data))
> data_plot
[1] 8.842759
[1] 8.842739
> #kvartiliai
> quantile(data, c(0.25, 0.5, 0.75), type = 2)
25% 50% 75%
1.737733 4.7671800
0.4617784 2.5787572 4.7671800
> #Kvartiliu skirtumas
> KP <- IQR(data)
[1] 4.303099
> #Empirinis vidurkis
> emp_vidurkis = mean(data)
> emp_vidurkis
[1] 2.594081
> #Pataisytoji dispersija
> disp_pat <- var(data)
  disp_pat
[1] 6.356343
  #Pataisytasis standartinis nuokrypis
standartas_pat <- sd(data)
   standartas_pat
[1] 2.521179
```

3 pav. 1.1. užduoties rezultatai

Rezultatai:

- Imties dydis 1000 elementų.;
- Imties minimumas = -1.820401;
- Imties maximumas = 7.022358;
- Imties plotis = 8.842759;
- Kvantiliai (25%,50%,75%) kiek reikšmių didesnių;
- Kvantiliai: 25% (0.4617784);
- Kvantiliai: 50% (2.5787572);
- Kvantiliai: 75% (4.7671800);
- Kvartilių skirtumas (IQR) = 4.303099;
- Empirinis vidurkis = 2.594081;
- Pataisytoji dispersija = 6.356343;
- Pataisytasis standartinis nuokrypis = 2.521179.

1.2.R PROGRAMOS KODAS

4 pav. 1.2. uždavinio R kodas

REZULTATAI IR IŠVADOS

5 pav. 1.2. uždavinio pirmasis rezultatas

Histograma

6 pav. 1.2. uždavinio antrasis rezultatas

Remdamiesi histograma, nustatome, kad mums tinka tolygusis skirstinys.

1.3. R PROGRAMOS KODAS

```
#Seriausiai tinka tolygusis skirstinys
#1.3. Raskite skirstinio parametry taškinius iverčius.
#Taškiniai iverčiai - didžiausio tiketumo metodas
install.packages("MASS")
library(MASS)
task_iverciai <- fitdistr(data, "normal")
task_iverciai
```

```
#Geriausiai tinka tolygusis skirstinys.
#1.3. Raskite skirstinio parametry taškinius iverčius.
#Taškiniai iverčiai - didžiausio tiketumo metodas
#Tolydaus skirstinio taškiniai iverčiai

a = floor(min(data))
b = ceiling(max(data))
a
b
k <- ceiling(log10(length(data))*3.32+1)
k
bin = seq(a, b, length.out = k+1)
bin
k = k - 1
bin1 = c(a, bin[2:k], b)
bin1
p = c(punif(bin1[1:k+1],a,b) - punif(bin1[0:k],a,b))
p
sum(p)
p
```

7 pav. 1.3. uždavinio R kodas

8 pav. 1.3. uždavinio rezultatai

1.4 R PROGRAMOS KODAS

```
#(reikšmingumo lygmeni a pasirinkite patys).
#Užrašykite nagrinėjamo populiacijos požymio skirstinio funkcija.
#Taikydami kolmogorovo kriterijų patikriname hipoteze.
#kad duomenys pasiskirste pagal tolyguii dėsni
a = -2
data = sort(data)
n = length(data)
FoX = punif(data, a, b)
FnX = seq(1:n)/n
Fnx = seq(1:n)/n  # 1/n
Fn1x = (seq(1:n)-1)/n  # (i-1)/n
# Apskaičiuojame skirtumus su teorine funkcija
Dp = FnX - FoX
Dm = FoX - Fn1X
Lentele = cbind(data, FnX, Fn1X, FoX, Dp, Dm)
Lentele
DP = max(Dp)
DP
DM = max(Dm)
DM
Dn = max(DP,DM)
Dn :
alpha = 0.05
# eanal apytiksję formulę apskaičiuojame Kolmogorovo skirstinio kvantili
k = sqrt(-log(alpha/2)/(2*n))-1/(6*n)
 *Kadangi 0.03022493 < 0.04278027, galime teigti, kad atsitiktinis dydis
* pasiskirstes pagal tolygyii dėsni, neprieštaravia imties dyomenims,
*F(x) = ??!
| norm(data
dnorm(data, emp_vidurkis, standartas_pat)
```

9 pav. 1.4. uždavinio R kodas

```
> # Apskaičiuojame Kolmogorovo statistikos D_n reikšmę Dn:
> Dn = max(DP,DM)
> Dn
[1] 0.03022493
> # Apibrėžiame reikšmingumo lygmenį alpha.
> alpha = 0.05
> # Pagal apytikslę formulę apskaičiuojame Kolmogorovo skirstinio kvantilį k:
> k = sqrt(-log(alpha/2)/(2*n))-1/(6*n)
> k
[1] 0.04278027
```

10 pav. 1.4. uždavinio rezultatai

Iš 9-10 paveikslėlių rezultatų, tikrindami ar duomenys pasiskirste pagal tolydujį dėsnį (Kolmogorovo dėsnis), padarome hipotezę (reikšmingumo lygmenį pasirenkame patys).

2. UŽDUOTIS.

2. GRAFINĖ ANALIZĖ IR PARAMETRINĖS HIPOTEZĖS

Iš duomenų imties "normalusis_parametru_iverciams.csv" nuskaitykite savo varianto duomenis tokiu būdu (nagrinėsime tik normaliuosius atsitiktinius dyžius):

N=variantas # Reikia įrašyti savo varianto numerį N data=read.csv('normalusis_parametru_iverciams.csv',header=TRUE) # Failas turi būti darbiniame kataloge pasikliovimo_lygmuo=data[1,N] # variantui skirtas pasikliovimo lygmuo γ=1- α. data=data[2:1001,N] # Duomenys, kuriuos reikia analizuoti - imtis

- **2.1.** Nubraižykite histogramą, stačiakampę diagramą ir kvantilinį grafiką (Q-Q plot). Parašykite, kokios šių grafikų savybės rodo, kad nagrinėjamo atsitiktinio dydžio skirstinys yra normalusis (po vieną savybę iš kiekvieno grafiko).
- 2.2. Raskite taškinius vidurkio ir dispersijos įverčius.
- **2.3.** Sudarykite parametrų pasikliautinuosius intervalus su pasikliovimo lygmeniu $\gamma=1-\alpha$. Parašykite po vieną išvadą apie populiacijos parametro intervalinį įvertį.
- 2.4. Suformuluokite ir patikrinkite hipotezę apie vidurkio lygybę skaičiui m₀ su alternatyviąja hipoteze:
- 1) H_a : m≠ m₀ ir reikšmingumo lygmeniu α, kai varianto numeris yra *lyginis skaičius*;
- 2) H_a : m> m_0 ir reikšmingumo lygmeniu α , kai varianto numeris yra pirminis skaičius;
- 3) H_a : m< m_0 ir reikšmingumo lygmeniu α , kai varianto numeris yra nelyginis ir nepirminis.

11 pav. Antro uždavinio sąlyga

2.1. R PROGRAMOS KODAS

12 pav. 2.1. uždavinio kodas

13 pav. 2.1. uždavinio rezultatai

Išvados ir komentarai (12 paveikslėlis).

2.2. R PROGRAMOS KODAS

```
#2.2. Raskite taškinius vidurkie ir dispersiios įveršius.
m=mean(data)
m n=length(data)
xvid = mean(data)
xvid
disp = ((n-1)/n)*var(data)
install.packages("MASS")
library(MASS)
iverciai <- fitdistr(data,"normal")
#Vidurkie įversiai
iverciai
#Dispersiia
disp
```

14 pav. 2.2. uždavinio R kodas

REZULTATAI IR IŠVADOS

15 pav. 2.2. uždavinio rezultatai

Vidurkio įverčiai (mean ir sd), dispersija (15 paveikslėlis).

2.3. R PROGRAMOS KODAS

```
#2.3. Sudarvkite parametru pasikliautinuosius intervalus su pasikliovimo lvameniu y-1- a. Parašykite po vieną
#istada spie populiatios parametro intervaliai iventi.
n = length(data)
n
xvid = mean(data)
xvid pasikliovimo_lygmuo
pasikliovimo_lygmuo
**Exantilis
zp = qnorm(pasikliovimo_lygmuo)
zp
**Intervaliais iventis (Teorinės formulės paudojimas)
PI <- c(xvid-disp*zp/sqrt(n),xvid+disp*zp/sqrt(n))
PI <- c(xvid-disp*zp/sqrt(n),xvid+disp*zp/sqrt(n))
#fopuliacijos parametro intervalas atitinka teorines reikėmes
```

16 pav. 2.3. uždavinio R kodas

REZULTATAI IR IŠVADOS

```
> #2.3. Sudarykite parametrų pasikliautinuosius intervalus su pasikliovimo lygmeniu γ=1- α. Parašykite po vieną
> #išvadą apie populiacijos parametro intervalinį įvertį.
> #01SPERSIJA YRA ŽINOMA
> n = length(data)
> n
[1] 1000
> xvid = mean(data)
> xvid
[1] 2.594081
> pasikliovimo_lygmuo
[1] 0.9
> #Kvantilis
> zp = qnorm(pasikliovimo_lygmuo)
> zp
[1] 1.281552
> #Intervalinis įvertis (Teorinės formulės naudojimas)
> PI <- c(xvid-disp*zp/sqrt(n),xvid+disp*zp/sqrt(n))
> PI
[1] 2.484353 2.703809
> #Populiacijos parametro intervalas atitinka teorines reikšmes
```

17 pav. 2.3. uždavinio rezultatai

Išvados ir rezultatai (16-17) paveikslėliuose, komentarai.

2.4. R PROGRAMOS KODAS

```
#2.4. Suformuluokite ir patikrinkite hipoteze apie vidurkie lygybe skaičiui mo su alternatyviaja hipoteze:
#1) Ha : m= mo ir reikšmingume lygmeniu a, kai variante numeris vna pizminis skaičius;
#2) Ha : m> mo ir reikšmingume lygmeniu a, kai variante numeris vna pizminis skaičius;
#3) Ha : m< mo ir reikšmingume lygmeniu a, kai variante numeris vna pizminis skaičius;
#1 variantas mo = 3.2, variante numeris = 40
#1 variantas mo = 3.2, variante numeris = 40
#1 variantas mo = 3.2, variante numeris = 40
#1 variantas mo = 3.2, variante numeris = 40
#1 variantas mo = 3.2, variante numeris = 40
#1 variantas numeris
data=read.csv('normalusis_parametru_iverciams.csv', header=TRUE)
pasikliovimo_lygmuo = data[1,N]
data = data[2:1001,N]
data = data[2:1001,N]
data = data[2:1001,N]
data = 3.2 #skaičius paintas iš intervalinie iverčio reikšmių
install.packages("UsingR")
library(UsingR)
library(datasets)
data(msleep)
attach(msleep)
#1 reikšmė vna mažesnė už reikšmingume lygmeni, 2.2e-16 < 0.95, todėl
#palime atmesti nuline bipoteze, kad vidutinė reikšmė vna lygi 3.2, Galime teigti jog ši reikšmė statistiškai skiriasi nuo 3.2
t.test(sleep_total, mu = mo, conf.level = 0.95, alternative = 'two.sided')
detach(msleep)
```

18 pav. 2.4. uždavinio R kodas

REZULTATAI IR IŠVADOS

```
> library(datasets)
> data(msleep)
> data(msleep)
> #p refiksme yna mažesnė už refiksmingumo lygmenį, 2.2e-16 < 0.95, todėl
> #p refiksme yna mažesnė už refiksmingumo lygmenį, 2.2e-16 < 0.95, todėl
> #p refiksme yna mažesnė už refiksmingumo lygmenį, 2.2e-16 < 0.95, todėl
> #galime atmesti nulinę hipotezę, kad vidutine refiksme yra lygi 3.2. Galime teigti jog ši reiksmė statistiškai skiriasi nuo 3.2
> t.test(sleep_total, mu = m0, conf.level = 0.95, alternative = 'two.sided')

One Sample t-test

data: sleep_total
t = 14.808, df = 82, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 3.2
95 percent confidence interval:
9.461972 IJ.403497
sample estimates:
mean of x
10.43373</pre>
```

