الجمهورية الجزائوية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة : جوان 2009

امتحان شهادة بكالوريا التعليم الثانوي

الشعبة : تقني رياضي

المدة : 04 ساعات ونصف

احتبار في مادة : الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول: (20 نقطة)

التمرين الأوّل: (04) نقاط)

اً) حل في \mathbb{C} المعادلة $\mathbb{C}=2z+2z+2=0$ عيث \mathbb{C} هو المجهول.

$$(z+3)^2-2(z+3)+2=0$$
 : $z=0$ استنتج في $z=0$ حلول المعادلة ذات المجهول $z=0$ حيث $z=0$ مر اقق $z=0$

 (O, \vec{u}, \vec{v}) المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

النقط A، B، A الواحقها M، B، A النرتيب. النقط M، B

 \mathbb{R}^+ عين (Γ) مجموعة النقط M من المستوي حيث: |z-1-i|=|z-1-i| عندما $z=1-i+ke^{i\frac{5\pi}{4}}$ عندما $z=1-i+ke^{i\frac{5\pi}{4}}$ عندما z=1-i+i=|z-1-i| مجموعة النقط z=1-i+i=|z-1-i|

التمرين الثاني: (4) نقاط)

1. أ) عين الأعداد الطبيعية التي مربع كل منها يقسم 2009

ي و معددان طبيعيان غير معدومين، (u_n) متتالية هندسية أساسها a وحدَها الأول u_0 بحيث u_0

$$u_1^2 + u_2 + 35a^2 = 2009$$

 $w_0 = a + w$

n و a=7 و $u_0=2$ و احسب u_n بدلالة a=7

 $\Delta_n = u_0 + u_1 + ... + u_n$ in $\Delta_n = u_0 + u_1 + ... + u_n$

أ عبر عن أله بدلالة n

ب) عين العدد الطبيعي م حتى يكون 800 = كم

تمرين الثالث: (07) نقاط)

 $f(x) = x + \frac{2}{e^x + 1}$ كما يلي: \Re كما يلي الذالة \Re المعرّفة على

 $(O; ec{i}, ec{j})$ تمثيلها البياني في المعلم المتعامد والمتجانس (G_r)

- مركز تناظر $\omega(0;1)$ من أجل كل عدد حقيقي x ، ثمّ استنتج أنّ النقطة $\phi(0;1)$ هي مركز تناظر المنحنى $\phi(0;1)$
 - 2. ادرس تغيرات الذالة f على المجال $] + \infty$ ثمّ استنتج جدول تغيّراتها على \mathbb{R} .
 - . + ∞ عند (G_f) هو مستقيم مقارب المنحنى y=x المعادلة y=x

. -
$$\infty$$
 عند (G) مند المستقيم المقارب المنحنى المناتج المستقيم المقارب المنحنى المنحنى المنحنى الحسب

- $-1.7 < \alpha < -1.6$ بين أنّ للمعلالة f(x) = 0 حلا وحيدا α بين أنّ للمعلالة .4
 - $x \in \mathbb{R}$ من أجل $x \in \mathbb{R}$
 - $f(x) = x + \frac{2e^{-x}}{e^{-x} + 1}$ ، ه بين أنه من أجل كل x من x من أجل 6.
- 7. احسب (α) مساحة الحيز من المستوي المحدّد بالمنحنى (G_r) والمستقيمات ذات المعادلات

$$x = \alpha$$
 $y = x + 2$

 $\mathcal{A}(\alpha)$ بيّن أنّ $\mathcal{A}(\alpha) = 2\ln(-\alpha)$ بيّن أن $\mathcal{A}(\alpha) = 2\ln(-\alpha)$

التمرين الرّابع: (5) تقاط)

 $(O; \vec{i}, \vec{j}, \vec{k})$ الفضاء مزود بالمعلم المتعامد والمتجانس

$$\begin{cases} x=2t-1 \\ y=-t+2 \end{cases}$$
 همنتقيم من الفضاء تمثيله الوسيطي معطى بالجملة الثالية: $x=2t-1 \\ z=t+1 \end{cases}$

x + 3y + z + 1 = 0 مستو معرّف بالمعلالة P

عين في كل حالة من الحالات التالية الاقتراح أو الاقتراحات الصحيحة مع التعليل

$C\left(0,\frac{3}{2},\frac{3}{2}\right)$ النقطة: C_1	$B\left(-1,0,2 ight)$ النقطة: B_{1} تنتمي إلى $\left(\Delta ight)$	A (1,1,2) النقطة A (1,1,2) تنتمي إلى (∆)	1
$\overline{u''}(3,1,0):C_2$ (ک) شعاع توجیه شعاع توجیه	$\overrightarrow{u'}(1,3,1):B_2$ شعاع توجیه (Δ)	$ec{u}\left(-1,\frac{1}{2},\frac{-1}{2} ight):A_2$ شعاع توجیه (م)	2
P يوازي: (Δ) يوازي	P يقطع $(\Delta):B_3$	P محتوی فی A_3	3
المستوي Q_3 ذو المعلا: C_4 $x-y+2z+5=0$	المستوي Q_2 ذو المعادلة P المستوي $2x-y+rac{1}{2}z=0$	المستوي Q_1 ذو المعادلة A_4 : A_4 المستوي $x + 3y + z - 3 = 0$	4
المسافة بين النقطة (3,0 $_{5}$ المستوي P هي $\sqrt{11}$	المعنافة بين $eta_{ ext{c}}: eta_{ ext{c}}: المعنافة بين النقطة O\left(0,0,0 ight) والمستوي P هي rac{\sqrt{11}}{11}$	$D\left(1,1,1 ight)$ المسافة بين النقطة A_5 و المستوي P هي $\frac{6}{\sqrt{11}}$	5

الموضوع الثاني: (20 نقطة)

مرين الأول: (4) نقاط)

 $z^2 - 6z + 18 = 0$ (1) ! Ihad Zie !

 $z_1 = 3 - 3i$ ميث z_1 المركب العدد المركب العدد المركب

(
$$\frac{\pi}{2}$$
 عمدة له) هو العدد المركب الذي طويلته $\frac{\pi}{2}$ عمدة له)

أ) اكتب z, على الشكل الأسي.

 $z_1 \times z_3 = 6(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12})$ ب) احسب طويلة العدد z_3 وعمدة له حيث (ب

أستنتج قيمتي cos 4 و sin 4.

C: B: A النقط C: B: A النقط ($O: \overline{u}, \overline{v}$) النقط المزود بالمعلم المتعامد والمتجانس ($O: \overline{u}, \overline{v}$) النقط المتعامد والمتعامد و

على الترتيب $\frac{\sqrt{2}}{2} + i \frac{\sqrt{6}}{2}$ على الترتيب

 G_{α} أ) عَيْن قيم العدد الحقيقي α حتى تقبل الجملة المثقلة $\{(A;1),(B;-1),(C;\alpha)\}$ مرجحا نرمز له بالرمز α عيّن مجموعة النقط α لمّا يتغيّر α في α المّا يتغيّر α في α

تمرین الثانی: (05 نقاط)

B(-1,0,-2) ، A(1,1,2) النقط $O(\vec{i},\vec{j},\vec{k})$ النقط المزود بالمعلم المتعامد والمتجانس C(-1,0,-6)

بيّن أنّ مجموعة النقط M(x,y,z) الذي تحقق M(x,y,z) هي مستو عمودي على المستقيم (AB) بيّن أنّ مجموعة النقط و برين معادلة له.

 $x^2+y^2+z^2-2x-2y-2z-6=0$ التي تحقق المعادلة M(x,y,z) التي المعادلة S مجموعة النقط و S النكن و برهن أن S هي سطح كرة يطلب تعيين مركزها و نصف قطرها S

 $\overrightarrow{GA} - \overrightarrow{GB} + \overrightarrow{GC} = 0$ نقطة من الغضاء معرّفة بالعلاقة: 3

أ) عين إحداثيات G ثم تاكد أنها نتتمي إلى S.

Q الذي يمس سطح الكرة Q في النقطة Q و الذي يمس سطح الكرة Q

تمرين الثالث: (07 نقاط)

 $g(x) = 2x + \ln x$ كما يلي: $g(x) = 2x + \ln x$ كما يلي:

أ) احسب نهاية الدالة x عندما يؤول x إلى $x + \infty$

ب) ادرس اتجاه تغيّر الدّالة ع.

 $g(x) \neq 0$ فإن $g(x) \neq 0$ بيّن أنه من أجل كل عدد حقيقي x من المجال $g(x) \neq 0$

$$f(x) = \frac{6 \ln x}{2x + \ln x}$$
 كما يلي: $f(x) = \frac{6 \ln x}{2x + \ln x}$ كما يلي:

$$x\in [1,+\infty[$$
 من أجل $f(x)=\frac{6\dfrac{\ln x}{x}}{2+\dfrac{\ln x}{x}}$ على الشكل وأبين أنه يمكن كتابة $f(x)$ على الشكل الشكل أبين أنه يمكن كتابة وأبين أنه يمكن كتابة الشكل الشكل

ب) احسب f(x) ماذا تستنتج! ب $x \to +\infty$

- ج) ادرس اتجاه تغيّر الدّالة /
- د) شكل جدول تغيّرات f ، ما هي قيم العدد الحقيقي k بحيث تقبل المعادلة f(x)=k حلين متمايزين؟ هـ) جد معادلة للمماس (Δ_1) للمنحنى (C_f) عند النقطة التي فاصلتها 1 حيث (C_f) يرمز إلى التمثيل البياني للدالة f في المعلم المتعامد والمتجانس $(C_f, \overline{f}, \overline{f})$.
- 3. نعتبر الذالة h المعرفة على h العبارة: $h(x) = f(e^x)$ بالعبارة: $h(x) = f(e^x)$ تمثيلها البياني في المعلم السابق. أ) شكل جدول تغيّرات الذالة h.
 - ب) جد معادلة للمماس (Λ_2) للمنحنى (\mathcal{C}_h) عند النقطة التي فاصلتها
 - ج) ارسم کلا من (Δ_1) ، (Δ_2) ، (Δ_1) في نفس المعلم السابق.

التمرين الرابع: (04 نقاط)

- $y' = (\ln 2)y$.1. حل المعادلة التفاضلية:
- f(x) عين عبارة (f(x) عين عبارة (f(x) عين عبارة (f(x) عبارة (f
 - 3. n عند طبيعي.
 - الدرس بو أقى القسمة الإقليدية على 7 للعدد "2.
 - ب) استنتج باقي القسمة الإقليدية على 7 للعدد 4-(2009).
 - $S_n = f(0) + f(1) + ... + f(n)$ حيث $S_n = f(0) + f(1) + ... + f(n)$ المجموع $S_n = f(0) + f(1) + ... + f(n)$
 - ب) عين قيم العدد الطبيعي n التي يقبل من أجلها S_n القسمة على 7.