Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №5 з дисципліни: «Схемотехніка-2. Цифрова схемотехніка»

Лічильники

Виконавець:		
Студент 4-го курсу	(підпис)	А.С. Мнацаканс
Перевірила:		_ Г.С. Порева

Мета роботи - дослідити схемні особливості та принцип роботи двійкових лічильників по- слідовного та паралельного типів, лічильника з довільним коефіцієнтом перера- хунку та двійково-десяткового лічильника.

Рис. 1: Схеми лічильників що досліджуються в цій лабораторній роботі.

Робоче завдання

- 1) Вивчити принцип дії лічильників за допомогою лекційного матеріалу та підручників.
- 2) Накреслити часові діаграми роботи лічильників, які можна очікувати зважаючи на теоретичні відомості для:
- 2.1) лічильника послідовного типу (що ми очікуємо побачити на виводах KT1, KT6 KT8)
- 2.2) лічильника паралельного типу (що ми очікуємо побачити на виводах KT1 KT5)
- 2.3) двійково-десяткового лічильника (що ми очікуємо побачити на виводах KT1, KT10 KT14)
- 2.4) лічильника з довільним коефіцієнтом перерахунку (що ми очікуємо по-бачити на виводах КТ1, КТ6 КТ9).

Результати вимірювань

Рис. 2: Часові діаграми двійкового лічильника послідовного типу.

Рис. 3: Часові діаграми двійкового лічильника паралельного типу.

Рис. 4: Часові діаграми лічильника з довільним коефіцієнтом перерахунку.

Рис. 5: Часові діаграми двійково - десяткового лічильника (N=0).

Рис. 6: Часові діаграми двійково - десяткового лічильника (N = 3).

 Табл. 1: Порівняння затримок поширення для лічильників послідовного та

 паралельного типів.

<i>t</i> 110	Двійковий лічильник	Двійковий лічильник
$t_{3.\pi.}, \text{ HC}$	послідовного типу	паралельного типу
2^{0}	72	104
2^{1}	156	104
2^{2}	304	200

Висновок

В ході лабораторної роботи було досліджено різні лічильники, такі як: Двійковий лічильник (послідовного та паралельного типу), з довільним коефіцієнтом перерахунку та з режимом завантаження константи, та їх принципи роботи, відліку та перенесення лічення на перший розряд. У двійковому лічильнику з послідовним переносом перемикання старших розрядів відбувається чітко коли перемкнуться молодші розряди, саме це і є лічильник з послідовним переносом. Такі схеми прості, але як ми бачимо з таблиці 1, подальше збільшення кількості тригерів веде до збільшення затримки поширення в два рази за кожний тригер. У двійковому з паралельним переносом точка КТ4 - вона є коректуючою для розряду КТ5 у тому плані, що на- віть якщо молодший розряд КТ3 перемкнеться трошки пізніше - все одно при переході КТ4 в 0 КТ5 чітко перемкнеться також в 0. В цьому випадку затримка перемикання розряду КТ5 визначатиметься затримкою лише пари вентилів Шефера, але ж це набагато краще ніж затримка через цілий тригер.

Захист

