PDF Method in Raytracing

2024年7月9日

1 引言

在光线追踪的基本实现中,我们利用光路可逆的原理,假设以摄像机为 光源往各个角度发射光线(一个角度对应了最终图像中的一个像素),通过 计算光线的散射(漫反射,镜像反射,折射)来得到这个像素的颜色。这样 做存在一个问题:现实生活中,如果存在一个小光源,我们理应得到更多它 发出的光线,但在早期的漫反射实现中,我们仅考虑了漫反射面本身的特 性(使用 Lambertian 分布),这会导致在光源小或者远的情况下,小采样 的渲染会得到大量的噪点。如果有一种方式,使我们可以在计算散射光方向 更偏向光源,就可以解决上述问题。这就是应用 PDF(probability density function:概率密度函数)的理由

2 Monte Carlo Integration

Monte Carlo Integration 是如下的公式: $\int_a^b f(x)dx \approx \frac{1}{N}\sum_{i=1}^N \frac{f(x_i)}{p(x_i)}$, 其中 x_i 的分布服从 PDF p。当 N 充分大时可认为相等

考虑给 Lambertian 反射的散射光赋上 PDF p (描述对光源的偏向性,不妨称之为光源 PDF),再利用 Monte Carlo Integration 来估计 Lambertian 反射的结果。假设递归函数 f(x) 返回了一条光线的颜色, y_i 是入射光 x 的出射光, $scatter(y_i)$ 返回了产生出射光 y_i 的概率(这也是一种 PDF),有如下公式: $f(x) = \int scatter(y_i)f(y_i)dy \approx \frac{1}{N}\sum_{i=1}^{N}\frac{scatter(y_i)f(y_i)}{p(y_i)}$

3 生成光源 PDF

现在,我们希望描述上面提到的 PDF p。假设散射点 P 外一光源 A,其总面积为 A。方便起见,先考虑光源表面均匀采样的情况,这样光源表面的 PDF 就是常值函数 $\frac{1}{A}$ 。为了求出 P 点附近散射光的 PDF(可不失一般性假设散射光在以 P 点为球心的单位半球面上移动),取光源上 Q 点附近一极小的面积元 dS,利用投影与相似可以得到其在单位半球面上的投影面积 $dS' = \frac{dS\cos\theta}{|PO|^2}$ (其中 θ 是 PQ 连线与光源平面的夹角,可以轻易求出)

图 1: 简图

设 PQ 与半球面交点为 W,利用 $p(\overrightarrow{PW})dS'=\frac{1}{A}dS$ 可以得到 $p(\overrightarrow{PW})=\frac{|PQ|^2}{A\cos\theta}$ 。

现在,我们通过计算一系列随机散射光线 y_i 的 $\sum\limits_{i=1}^{N} \frac{scatter(y_i)f(y_i)}{p(y_i)}$,就可以得到大致的 f(x)

对于光源表面不均匀采样的情况,需要在材料类中定义光源表面的 PDF, 计算过程是类似的

4 Mixture PDF

如果仅按上面的方式生成光源 PDF,会碰到一个问题是:我们根本不 关心不指向光源的光线了,所以构建光源 PDF 还需要考虑到漫反射材质本 身的影响。为了解决这个问题,可以将 scatter 与 p 做加权的混合,再将这 个 PDF 作为新的光源 PDF 至此,我们已经对 Lambertian 反射构建了 PDF,为了更真实的渲染,我们可能会需要基于一个给定 PDF 的随机数发生器

5 基于 PDF 的随机数发生器

考虑现在有一个 PDF $f:[0,1]\to\mathbb{R}$,我们希望能从均匀的随机数发生器中得到一个服从 f 的随机数发生器。朴素的想法是令 $F(t)=\int_0^t f(x)dx$,然后求出 $F^{-1}(x)$,令 g 为一个 [0,1] 间的随机数,取 $F^{-1}(y)$ 为生成的随机数,这样做就得到了服从 f 的分布

实际应用中,大量的函数难以求积分或是求反函数。一个技术是对函数 线性化,首先利用充分多的随机样本 y_i 可以求出充分多的 $f(y_i)$ 。找到 $f(y_i)$ 的中位数 $f(y_{mid})$,将 $(0.5, f(y_{mid}))$ 与原点和 (1.0, 1.0) 用直线相连,得到 的分段函数可以对 F^{-1} 做一个近似。这个过程是可以对左右部分递归继续 做的,也就是说近似可以非常精细

下面举一个生成球面上随机点的例子,使用极坐标 (φ,θ)

图 2: 简图

考虑均匀分布,有 PDF $p_{\theta}(\theta) = \frac{1}{2\pi}, p_{\varphi}(\varphi) = \frac{\sin_{\varphi}}{2}$,生成两个随机数 r_1 与 r_2 ,则有 $r_1 = \int_0^{t_1} p_{\theta}(\theta), r_2 = \int_0^{t_2} p_{\varphi}(\varphi)$,解得: $t_1 = 2\pi r_1, r_2 = \frac{1-\cos t_2}{2}$,再利用极坐标 (t_2, t_1) 分别表达 x, y, z 即可

参考文献

[1] Peter Shirley, Trevor David Black, Steve Hollasch 《Ray Tracing: The Rest of Your Life》 2024-04-07