Cosmology Big Data

Rens Verkade

Cosmology in a nutshell

Cosmological model

- Current 'standard' ACDM model
- ullet A universe with Cold Dark Matter and a cosmological constant Λ
- Cold Dark matter allows for bottom-up clustering
- The Cosmological constant plays an important role in the expansion of the universe

EAGLE simulation

Standard candles

- Type I A Supernovae
- White dwarf in a binary system (usually with a red giant)

Nasa

Standard candles

- Type I A Supernovae
- White dwarf in a binary system (usually with a red giant)
- ullet Accretion until $M_{WD} \simeq 1.43 M_{\odot}$

Nasa

Standard candles

- Type I A Supernovae
- White dwarf in a binary system (usually with a red giant)
- ullet Accretion until $\,M_{WD} \simeq 1.43 M_{\odot}$
- The Chandrasekhar limit where $R_{WD} = 0$
- White dwarf contracts heavily and a runaway thermo-nuclear reaction produces the supernova

Nasa

An expanding universe

- Type Ia Supernovae have the same peak absolute magnitude
- Difference to observed magnitude gives distance
- Velocity from redshift of peak and spectral lines
- Hubble finds a linear relation!

$$v = H_0 d$$

E. Hubble, PNAS March, 1929, 15 (3) 168-174

Hubble parameter

The Hubble rate parameterises the growth/shrinkage of the universe

$$H(t) = rac{\dot{a}}{a}$$
 a Scale factor, $a(0) = 1$

Hubble parameter

The Hubble rate parameterises the growth/shrinkage of the universe

$$H(t) = rac{\dot{a}}{a}$$
 a Scale factor, $a(0) = 1$

 $H(t) = \frac{1}{a} \quad \text{a Scale ractor,} \qquad h \equiv \frac{H_0}{100 \, \mathrm{km/s/Mpc}}$ Little h is an often used unitless version

Hubble parameter

 The Hubble rate parameterises the growth/shrinkage of the universe

$$H(t) = \frac{a}{a}$$
 a Scale factor, $a(0) = 1$

- Little h is an often used unitless version $h \equiv \frac{H_0}{100\,\mathrm{km/s/Mpc}}$
- Depends on the cosmological contents

$$H(z) = H_0 \sqrt{\Omega_{\Lambda} + \Omega_k (1+z)^2 + \Omega_m (1+z)^3 + \Omega_r (1+z)^4}$$

$$\Omega_i = \frac{\rho_i}{\rho_{crit}} \qquad \Omega_k = 1 - \Omega_m - \Omega_r - \Omega_{\Lambda}$$

ullet Probability of B, given A P(B|A)

- Probability of B, given A P(B|A)
- Our goal is how likely the values of some parameters θ are, given how well they reproduce the data D.
- $\bullet \quad \text{Bayes' theorem} \qquad \qquad P(\theta|D) = \frac{\overline{P(D|\theta)P(\theta)}}{P(D)}$

- Probability of B, given A P(B|A)
- Our goal is how likely the values of some parameters θ are, given how well they reproduce the data D.
- Bayes' theorem $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$
- ullet Posterior P(heta|D)
- ullet Likelihood P(D| heta)

- Probability of B, given A P(B|A)
- Our goal is how likely the values of some parameters θ are, given how well they reproduce the data D.
- Bayes' theorem $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$
- ullet Posterior P(heta|D)
- $\qquad \qquad \qquad \qquad \qquad P(D|\theta) \\$
- ullet Prior P(heta)
 - Evidence P(D)

- The statistic we are interested in depends on what you want to know
- ullet Posterior tells you how likely your theory model is given the data P(heta|D)

- The statistic we are interested in depends on what you want to know
- ullet Posterior tells you how likely your theory model is given the data P(heta|D)
- ullet In discoveries we are more interested in the likelihood P(D| heta)
- Given your hypothesised model, probability of finding the data you have measured. Often we first predict and then measure. (Higgs!)

- Let's say you get tested for some disease
- It's rare so 1 in 100 people with the symptoms actually have the disease
- The test is positive, what is the probability you have the disease
- Not 1/100, we have additional info, the test

- Let's say you get tested for some disease
- It's rare so 1 in 100 people with the symptoms actually have the disease

- Let's say you get tested for some disease
- It's rare so 1 in 100 people with the symptoms actually have the disease
- The test is positive, what is the probability you have the disease

We need to first know the test's performance

- We need to first know the test's performance
- Test is 99% sensitive, if you have the disease and get tested, 99% of the tests are positive (True positive)

- We need to first know the test's performance
- Test is 99% sensitive, if you have the disease and get tested, 99% of the tests are positive (True positive)
- Test is 94% specific, if you don't have the disease and get tested,
 94% of tests are negative (True Negative)

- We need to first know the test's performance
- Test is 99% sensitive, if you have the disease and get tested, 99% of the tests are positive (True positive)
- Test is 94% specific, if you don't have the disease and get tested,
 94% of tests are negative (True Negative)

	Have the disease	Don't have the disease
Test positive	99%	1%
Test negative	6%	94%

• If 100 people get tested, we will have 1 true positive and 6 false positive. So probability to have the disease with a positive test 1/7

- If 100 people get tested, we will have 1 true positive and 6 false positive. So probability to have the disease with a positive test 1/7
- Check using Bayes' theorem $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

- If 100 people get tested, we will have 1 true positive and 6 false positive. So probability to have the disease with a positive test 1/7
- Check using Bayes' theorem

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

$$P(\text{have disease}|\text{positive test}) = \frac{P(\text{positive test}|\text{have disease})P(\text{have disease})}{P(\text{positive test})}$$

- If 100 people get tested, we will have 1 true positive and 6 false positive. So probability to have the disease with a positive test 1/7
- Check using Bayes' theorem $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

$$P(\text{have disease}|\text{positive test}) = \frac{P(\text{positive test}|\text{have disease})P(\text{have disease})}{P(\text{positive test})}$$

$$P(\text{have disease}|\text{positive test}|\text{have disease})P(\text{have disease})P(\text{have disease}) \\ P(\text{positive test}|\text{have disease})P(\text{have disease})P(\text{have disease})P(\text{no dise$$

$$P(\text{have disease}|\text{positive test}) = \frac{P(\text{positive test}|\text{have disease})P(\text{have disease})}{P(\text{positive test})}$$

$$P(\text{have disease}|\text{positive test}) = \frac{P(\text{positive test}|\text{have disease})P(\text{have disease})}{P(\text{positive test}|\text{have disease})P(\text{have disease}) + P(\text{positive test}|\text{no disease})P(\text{no disease}))}$$

$$P(\text{have disease}|\text{positive test}) = \frac{0.99 \times 0.01}{0.99 \times 0.01 + 0.06 \times 0.99} = \frac{1}{7}$$

Monte Carlo Markov Chain (MCMC)

ullet MCMC is one way to sample the probability distribution P(heta|D)

- The algorithm steps randomly and checks if the new Θ is better (χ^2 test)
- If the step is better we keep the new location, if not try again

Monte Carlo Markov Chain (MCMC)

Monte Carlo Markov Chain (MCMC)

ullet MCMC is one way to sample the probability distribution P(heta|D)

- The algorithm steps randomly and checks if the new Θ is better (χ^2 test)
- If the step is better we keep the new location, if not try again
- Stop after n steps, or preferably after some convergence test is met