R	od	. e J.		<u>ئ</u>	
9	901	311	M	7	17

- different types: parametric (today), nonparametric (not covered)
 - semiparametric (not covered)
- Monte Carlo requires us to know the underlying distribution under Ho
 - -not always possible if Ho is composite (i.e. many possibilities exist)
- -> Utilize Parametric Bootstrap to estimate underlying distribution

Ex: Test for independence

You roll 2 4-sided dice and want to see if there is a correlation.

Data:

5+	l	2	3	Ч	Total	22-test for independent
1	15	28	30	12	85	72 = 55 (0;; - E;;)2 (1) E;;
2	22	41	10	8	81	i= row, j= column 2² ≈ 29.802
3	30	42	28	19	119	df = (4-17(4-17 = 9
4	31	20	(0	10	71	p-value ≈ 0.0005
Total	98	131	78	49	356	

Estimate distribution of each roll by taking row totals and dividing by sample size estimated probability of $\hat{\rho}_{1} = \begin{bmatrix} 85 & 81 & 119 & 71 \\ 356 & 356 & 356 & 356 \end{bmatrix}$ the first roll resulting in $\hat{\rho}_{2} = \begin{bmatrix} 98 & 131 & 78 & 49 \\ 356 & 356 & 356 \end{bmatrix}$

