Predictive Analytics

Aim

To clearly articulate understanding of the business problem and to present its solution to management.

Business Problem

There remains a great scope in improvement in the quality of service provided by BFA to its clients. The recommendations for various strategies regarding adoption of services such as Book_table and Online_order must be improved as the low quality has been affecting the overall revenue and the retention of clients. How can BFA provide effective consultancy to its clients (new and old restaurants in the Bangalore region) about what their strategy should be when formulating a service offering. Specifically, regarding offering secondary services of booking tables and online ordering to its patrons.

Solution: The proposed solution to the above business problem is to leverage the available data set to create predictive models that will allow BFA to predict the strategies for prospective and current clients, not based on instinct and human judgement but actual market trends backed by solid data. Interaction with the build analytical tools will allow management to offer confident suggestions to the restaurants. This will allow BFA to tackle the quality assurance issues, followed by which BFA can expect to see better client response, satisfaction, retention and financial returns in the medium to long run.

When adopted in the long run, BFA can expect to improve its service quality by multiple factors and increase its returns by multiple factors. Data driven solutions for quality assurance is a trusted approach, especially backed by the current success and trends of the market. IT is only wise to leverage these technologies and invest in the infrastructure to yield the untapped returns. The analytical process takes into account the detailed characteristics of the restaurants to predict what should be the behaviour of a restaurant that has the same or similar characteristics.

The proposed solutions offer recommendations for old as well new restaurants. The recommended plan of action is to beta run these solutions and see if the made recommendations in fact improve the consultancy quality or not. Once, the quality is assured the analytical processes can be deployed completely. This can also be approached by comparing satisfaction of clients who were given recommendations based on the results offered by this analytical solutions and the customer satisfaction of clients who were addressed with the previously adopted methodology. This will consolidate the value of this analytical solution to the company. Leveraging data for consultancy solution will allow BFA to be a industry leader in consultancy.

Data exploration and preparation in RapidMiner

Δim

To demonstrate your understanding of data and its non-text attributes.

Expectation

LP1:

As per graphs A&B: The Distribution of 'rate' is skewed leftward and 'average_cost' is skewed to the right. The medians for these variables are better representatives.

Illustra.A: Distribution of Rate

Illustra.B: Distribution of Average_cost

T H b III

The red dipicts the minority class of 'YES'(4896). It is an extremely unbalanced data. However, unbalanced data will be fixed if it allows higher accouracy for models predicting book table.

Illustra.C: Composition of 'book_table'

<u>LP2</u>:

	Name	! ·	Туре	Missing	
~	rate		Real	7992	
			•		
Y	reviews_text		Polynominal	6098	
V	menu_item		Polynominal	30866	
	menu_item		,		
			B. I	280	
	average_cost		Real	200	

Attribute	No. of missing values; treatment
Rate	7,992; Most represent reviews for new
	restaurants. Other replaced with median.
Reviews_text	6,098; most represent reviews for new
	restaurants so no treatment as the entries
	will be filtered out
Menu_item	30,866; attribute will be excluded as most
	of the values are missing.
Average_cost	280; no treatment.
Dish_nan	22,087; attribute will be excluded as
	majority of the values are missing

Process: The data is retrieved>The new restaurants(without feedback) are filtered out> 'rate'missing value are replaced with median>reviews representing the same restaurants are removed to avoid inflation of new aggregate>average_cost and rate are normalized[0,1]> attribute; rate/averagecost is generated> examples with average cost=0 are filtered out> the rate/average_cost variable is grouped as per neighborhood and is represented as a bar graph. BANASHANKARI is the most attractive Neighborhood.

Discovering Relationships and Data Transformation in RapidMiner

Aim

To demonstrate your understanding of data by describing complex relationships between non-text attributes.

Expectation

The labels: (A.)Book table (B.) Online_order

The predictors:COMMON for all models(new restaurants, old restaurants, book table, online order): (A.) Average_cost (B.)Cuisines (C.) location (D.) meal_type (E.) neighbourhood (D.) rest_type. For models concerned with established restaurants: (A.) average_cost (B.) rate (C.) votes

The adjacent box plot shows a relationship betwee online_order (Yaxis), book_table(Xaxis) and the average_cost(colour group). We can infer that reviews for restaurants with only the table booking service tend to have higher average_cost than other restaurants. While, restaurants without any of the services tend to have lower average_cost. (this graph was executed as average_cost has high weight for both the labels; book_table, online_order.)

The adjacent box plot shows a relationship betwee online_order(Yaxis), book_table(Xaxis) and the 'rate' variable. The reviews for restaurants with bot the services tend to have higher 'rate' than other restaurants. While the reviews for restaurants without any of the services has lower 'rate'. Rate has been assigned a higher weight for the labels. This shows a relationship between the two services and the rate variable.

	DOOK_(ADIC							
Attribut	rate	votes	average					
rate	1	0.432	0.385					
votes	0.432	1	0.381					
average	0.385	0.381	1					

There is a positive/direct correlation between all the numeric variables. The metrics are not very high and do not exceed 0.5 for any combination of variables.

Extension

attribute	weight	(A.)	(B)	attribute	wei
online_order	0.001			menu_item	0
neighborhood	0.002			book_table	0.00
location	0.012			neighborhood	0.00
meal_type	0.037			location	0.00
menu_item	0.042			rest_type	0.01
cuisines	0.044			cuisines	0.03
rest_type	0.069			meal_type	0.04
dish_liked	0.075			votes	0.05
rate	0.100			dish_liked	0.06
votes	0.224			rate	0.11
average_cost	0.317			average_cost	0.18

The adjacent illustration (A.) shows that as per weight (information gain) votes, rate and average cost have the maximum influence over book_table. Further, the illustration (B.) shows rate, average_cost, dish_liked have the maximum influence over online_order.

However, since the number of attributes are limited all the listed attributes could be used as predictors in the respective models.

The labels for the models would be online_order & book_table respectively as the business problem requires prediction of strategy related to table booking and online order for restaurants.

Create a Model(s) in RapidMiner

Aim

To explain details of developed classification models and selected methods for data preparation and reporting. **Expectation**

Performance

Illustra.F: Process designed for building a KNN model to predict Book_table for established restaurants.

Process; 1>The Zomato_train.cvs is retrieved2>Entries representing new restaurants are filtered out (no feedback, refer Illustra.G) 3>Missing values for rate are replaced with the median (refer Illustra.A) of '3.7'4> The label is set as book_table.5>the weights for the predictors are calculated in relation to the label.6> The attributes are selected for the model. 7>The categorical data is converted to numerical as KNN operates on measuring distances between data points and such distances cannot be measured between words or categories. 8> The numeric data is normalized to within a range of [0,1] so that KNN can estimate the distances without being influence by one variable with a large range,9&10> The outliers are detected and then removed using filter 'outliers=false' to avoid influence of outliers over the model.11>The SMOTE operator is used to avoid the influence of the unbalanced data over the model, since the data has an extremely unbalanced data (refer to Illustra.C) 2> Cross Validation operator is used to; train the KNN model, apply the model and then check the performance of the model using accuracy, Kappa, weighted mean precision and weighted

The same structure was used to build a process for Online_order(KNN), except without the **SMOTE** as the data was not imbalanced and the predictors were selected according to the weights estimated by information gain for this label.

k-NN

mean recall.

Extension

The same structure was used to build a process for <u>Online_order(decision tree</u>), except without the <u>SMOTE</u> as the data was not imbalanced and the predictors were selected according to the weights estimated by information gain for this label.

Evaluate and Improve the Model(s) in RapidMiner

To report and explain the performance of developed classification models.

Expectation

TableA: Table showing the accuracy and kappa for different models on training and testing data,

Т	rainin	g data	T	esting	Data							Tes	ting Da	a Te	esting	Data
							Label	Trainin	g Data	Testing	g Data	_				
Perform accurac Confus:	_	77%		ormanceVeracy: 93			Model type	Accu racy	Kapp a	Accu racy	Kapp a	Performan acculacy: Confusion		accura	manceVe cy: 85 ionMat:	.80%
True:	No	Yes	Confi True	usionMat: : No	rix: Yes		Book_table;					True: N	o Yes 8031 811	True: No:	No	Yes
No: Yes: kappa:	8630 345 0.745	306 1162	No: Yes:	5600 386	81 934	•	Decision Tree	93.77	0.745	93.33	0.761	12717-1-1111	910 2013 822	No: Yes: kappa:	5264 722 0.516	272 743
Confus:		ix: Yes		a: 0.761 usionMat:	rix:		KNN	91.12	0.822	85.80	<u>0.516</u>	True: N	o Yes	Confus True:	ionMat: No	rix: Yes
No: Yes:	8630 345	306 1162	True No:	5600	Yes 81		Online_orde r;					Yes: 2	910 2013	No: Yes:	5264 722	272 743
Performa accuracy Confusio	y: 62.93	8	accurac	386 nanceVect y: 64.09	8		Decision Tree KNN	62.93 69.07	0.003 0.313	64.09 79.93	0.003	Performan accuracy: Confusion True: N	69.07% Matrix:	accura	manceVect cy: 79.93 ionMatrix	3%
No: Yes: kappa: 0		Yes 0 6562	True: No: Yes: kappa:	OnMatrix No 6 2514	Yes 0 4481		ance measuren	nent usi	ng hold	out		No: 1	929 1283 944 5278 313 Matrix:	Yes: kappa:	8482 4455 0.557 ionMatrix	2533 19340
No:	No 10 3871	Yes 0 6562		onMatrix No	Yes	KNN mo	<mark>0.822 &0.516)</mark> fo odel is selected	to predi	ct the Bo	OOK_tak	e ole	No: 1 Yes: 1	929 1283 944 5278	Yes:	8482 4455	2533 19340
			Yes:	2514	4481		as it has a high ances on traini					,	have gused for		licatio	on

on new data sets. But KNN has a relatively superior metric, therefore it is a better model to use for new data sets. Similarly, in case for Online_order KNN is a better model as it has a higher Kappa (0.313 &0.557) for the training and test data, however, even though the metrics are relatively high both variants are not a good choice for deployment as they have low accuracy and kappa.

Extension:

The processes for decision trees and KNN for predicting book table and online order decisions were put through cross validation and honest tested using the ZOMATO.TEST data set. The results have been tabulated below. The metrics used are accuracy, Kappa, Tue positive rate and false positive rate. When comparing the honest testing and training data results, we have the same final result as hold out validation for the online_order label, which is that the

Label	Trainir	ng Data			Testing Data			
Model type	Accu	Карр	TPR	FPR	Accu	Карр	TPR	FPR
	racy	а			racy	а		
Book_table;								
Decision Tree	91.61	0.832	0.91	0.082 5	90.99	0.692	0.63	0.15
KNN	93.90	0.878	0.90	0.018 5	85	0.516	0.50	0.049
Online_orde r;								
Decision Tree	62	0.002	0.628	0.171	64	0.003	0.64	0
KNN	69	0.324	<i>0.73</i>	0.39	69.53	0.324	<i>0.73</i>	0.39

KNN is a better model. However, these processes offer extremely low accuracy. Which may be a problem for future datasets. Furthermore for the book table label the honest testing results show that decision tree is a better alternative than KNN. This means that there is a possibility that Decision tree may work better on unseen and new data than KNN even if it fails to perform better on the training data. The true positive rate for decision tree for the book table models see a drop. This means that the proportion of positive values

correctly determined in relation to the total actual positive values drops when the model is applied to a new data set.

The blue curve represents the decision tree's ROC curve and the red curve represents the KNN's ROC. The shapes of the ROC suggest that Decision tree is a better alternative than KNN for building a predictive model; Book table(label). *However the ROCS for online order suggest

that KNN is a better alternative for building a predictive model.

Deployment in RapidMiner

Aim

To explain how to execute the developed process(es), either to replicate the results or to apply it to new data.

Expectation

The deployment of the selected models to process new data requires the execution of the following steps:

- 1.) The process of the desired model is accesses through the repository.(for ex: Process named: 'A1 old book table KNN GO cross validation and honest testing')
- 2.) The new data is read using 'read CSV operator' and using the parameter to reach the destination where the csv is stored on the system and is stored using the 'store' operator, the destination for the store operator is changed to the file where the process is stored. If the data already exists on the RapidMiner;s local repository then the 'retrieve' operator is used to directly access the desired data.
- 3.) Then the data is put through basic preparation that it requires to match the dimensions of the data that was used to prepare the model, to avoid errors and inexecution. For example, to filter out missing values use filter examples, and add an entry that describes the desired constraint. Some of such operators are highlighted referring to the ILLUSTRA.H (like: rate is not missing (14), to replace missing values(15), 'replace missing values' is used, or to convert the nominal data to numerical(18) for KNN,
- 4.) The 'set role' (17) operator is used and the parameter of this operator is changed to label and the relevant attribute that is to be predicted is selected, for instance: book table.
- 5.) The 'apply model' (20) operator is used, and the previous operator is connected to 'apply model' through the 'unl' port and the prepared model is input to the apply model through the 'mod' port. **ILLUSTRA.H:**
- The 'apply model' operator is followed by the 'performance'
 (21) operator.
- 7.) The 'performance' operator connected to the output port and the process is executed for results.

The interpretation of the results is done through the performance tab. The accuracy and kappa tell how fit the model is. And comparing these values to the performance measures of the trained model will tell if the model was overfitted for the train data or not. Accuracy, is based on the

percentage of predictions done correctly, kappa gives an inference about the same but also takes into consideration the uneven size of the categories. **SOLUTION B:**The strategy for new restaurants for booking_table and online_order is predicted using processes that factor in the attributes other than the customer feedback restaurants such as rate, yote, average, cost and review, text. The entries that do not have these

such as rate, vote, average_cost and review_text. The entries that do not have these values are included in the data set and are processed (using filter examples operator and then using the invert_selection parameter). The processes for this solution are under the name 'A1 NEW restaurants book_table' and 'A1 NEW restaurants Online_order'.

Extension: **SOLUTION C**NOTE: The strategy for established restaurants for booking table and online ordering can be accessed through the process files:

'A1 old book table KNN GO cross validation' and honest testing and 'A1 old online order KNN GO cross validation and honest testing'

The processes can be accessed to the zip.file and can be used for new data. The processes have been tested and compared to other alternatives for quality assurance. These model will allow the management to tackle the business

problem of providing better quality consultancy to its clients. These models take into consideration the various dimensions of the restaurants and allow the user to predict what should be the strategy of the user Based on those considerations. The existing trends and booking_table and online_order strategies of the existing restaurants in the Bangalore region are used as the basis to make these recommendations.

These accurate recommendations will allow BFA to provide better services to its clients and ensure retention of clients in the short run and increase in revenue and clientele in the long run. Once the process is executed the cross valudation(example set) tab can be used to access the results; whether a certain restaurants

should have booking table and online order as a strategy.

Further Research and Extensions in RM (one page)

Aim

To demonstrate your ability to seek new ways of solving analytic problems.

Expectation

On research, it was discovered how a decision tree and KNN operate and produce the desired results. While, decision trees work on entropy and information gain, which is estimated by various metrics such as GINI coefficient.

New analytic methods should be used (2-3) for your data analysis, modelling or visualisation - beyond what was covered in class (lectures, labs or demos up to the deadline). You can use RapidMiner, but also R, Python, or some other tool (for this section only).

Extension

Vijay Kotu, Bala Deshpande, (2019) Data Science: Concept and Practices Jacob Cybluski,(n.d.) 'Ironfrown', Youtube Tutorials and help, Rapidminer.com