Interpreting Diverse Genomic Data Using Gene Sets

giovanni_parmigiani@dfci.harvard.edu

Nantucket NSF Workshop 2011

Alterations in the combined FGF, EGFR, ERBB2 and PIK3 pathways.

Red: Copy number alterations; Blue: Point mutations.

Why perform gene-set analysis?

Improvements in interpretability of experimental results.

Detection of subtle correlated changes in sets.

Detection of set-level biological signals.

Integration of diverse data sources.

The birthplaces of gene set analysis: I

Tavazoie etal Nature Genetics 2000

Hypergeometric p-value.

The birthplaces of gene set analysis: II

Mirnics et al Neuron 2000

Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex.

A Formalism for Two-Stage Gene Set Analysis

Binary response vector *Y* (phenotype, class label, case-control...) one for each of *N* samples

 $G \times N$ matrix X of genetic information on samples

 $G \times S$ binary membership matrix M

- Stage I Testing of differences between groups for each gene. Compute for each gene g a score $s_g(X, Y)$, capturing the relationship between the genomic measurements and a phenotype of interest.
- Stage II *Testing of differences in scores between sets.*Take the scores computed in Stage I as data, and look for association between the scores and the columns of *M*.

Outline, References and Acknowledgments

- **S. Tyekucheva**, L. Marchionni, R. Karchin and G. Parmigiani Integrating diverse genomic data using gene sets . *Submitted*, 2011.
- **S.M. Boca**, H. Corrada Bravo, B. Caffo, J.T. Leek and G. Parmigiani. A decision-theory approach to interpretable set analysis for high-dimensional data. *JHU Biostat Working Paper 211*, 2010.
- **S.M. Boca**, K.W. Kinzler, V.E. Velculescu, B. Vogelstein and G. Parmigiani. Patient oriented gene-set analysis for cancer mutation data. *Genome Biol.*, 11: R112, 2010.

Multiple data types

Gene-centric approaches for multiple data types

Binary response vector *Y* (phenotype, class label, case-control...)

 $G \times N$ matrix X of genetic information on samples

 $G \times S$ binary membership matrix M

Stage I	Stage II	
$s_g(X^1,\ldots,X^D,Y)$	$t_{\mathcal{S}}(\mathbf{s}, M_{\mathcal{S}})$	Integration
$s_g^1(X^d,Y) \dots s_g^D(X^d,Y)$	$t_s(\mathbf{s}^1 \dots \mathbf{s}^D, M_s)$	Meta-analysis
$s_g^1(X^d,Y) \dots s_g^D(X^d,Y)$	$t_{s}(\mathbf{s}^{1}, M_{s}) \ldots t_{s}(\mathbf{s}^{D}, M_{s})$	Visualization

Integrative more powerful than Meta-analytic

Independent Sets
ROC for classification of spiked-in sets

Integrative more robust than Meta-analytic

Chromosomal Segments
ROC for classification of spiked-in sets

Integrative discovers novel sets

Enrichment of 3 intersecting pathways for ER+ BC

X% (Y): X% out of Y genes are estimated to have densities from the alternative distribution.

Decision Theoretic Angle

- Divide genes into atoms based on sets.
- Truth is the list of alternatives.
- We search for estimators among the unions of atoms.
- The estimators are based on the loss function:

$$(1-w)\times$$
 # of FD $+w\times$ # of MD.

• The posterior expected loss is:

$$(1-w) \times \mathsf{EFD} + w \times \mathsf{EMD}.$$

Atomic False Discovery Rate

 We define the atomic false discovery rate for atom A as:

$$AFDR(A) = FD(A)/n_A$$
.

 Theorem (Boca et al., 2010) Atom A is included in the Bayes estimator if and only if the atomic FDR is thresholded by w:

$$\widehat{\mathsf{AFDR}}(A) \leq w$$
.

1 – AFDR estimates the fraction of alternatives in an atom.

Atomic FDR measures enrichment

		TP53 pathway				PI3K Pathway				RB1 pathway			
Tumor sample	TP53	MDM2	MDM4	All genes	PTEN	РІКЗСА	PIK3R1	IRS1	All genes	RB1	CDK4	CDKN2A	All genes
Br02X	Del			Alt				Mut	Alt			Del	Alt
Br03X	Mut			Alt	Mut				Alt				
Br04X	Mut			Alt	Mut				Alt	Mut			Alt
Br05X			Amp	Alt		Mut			Alt			Del	Alt
Br06X												Del	Alt
Br07X	Mut			Alt	Mut				Alt	Del			Alt
Br08X												Del	Alt
Br09P	Mut			Alt							Amp		Alt
Br10P	Mut			Alt									
Br11P	Mut			Alt									
Br12P	Mut			Alt			Mut		Alt				
Br13X	Mut			Alt								Del	Alt
Br14X							Mut		Alt			Del	Alt
Br15X										Mut		Del	Alt
Br16X		Amp	1	Alt							Amp		Alt
Br17X					Mut				Alt			Del	Alt
Br20P													
Br23X	Mut			Alt	Del				Alt				
Br25X					Mut				Alt			Del	Alt
Br26X						Mut			Alt			Del	Alt
Br27P	Mut			Alt							Amp		Alt
Br29P	Mut			Alt									
Fraction of tumors with	0.55	0.05	0.05	0.64	0.27	0.09	0.09	0.05	0.50	0.14	0.14	0.45	0.68

^{*} Mut, mutated; Amp, amplified; Del, deleted; Alt, altered "Fraction of affected tumors in 22 Discovery Screen samples

Gene-centric vs Patient Centric Scores

