

Mini Course 2: Machine Learning I

Fundamental ML Concepts, ML Pipelines, Regression

Note on Resources

- This is meant to be a light introduction, so we won't go over the gritty details
- StatQuest is a great resource for learning linear algebra, and statistics, and machine learning!
 - Josh Starmer is very funny, and has great visuals ©

What we'll go over today

- Fundamental concepts in ML
- Essential ML Model Training Pipeline
- Linear Regression
- Multivariate Linear Regression
- Transforming Nonlinear Distributions
- Overfitting and Underfitting
- Exercise in Jupyter Notebook!

Fundamental Concepts in ML

- Each individual row in a dataset is an observation or sample
- Features are the parts of the data used for learning
 - An n-dimensional feature space uses n features
- Predictors (or labels) are what is being learned
- Supervised machine learning uses features to estimate predictors
- Unsupervised machine learning learns the underlying distribution without labels
- Regression learns continuous predictors
- Classification learns discrete predictors (e.g., labels like 'animal')

Make	Engine Size	Price
Toyota	130	13495
Toyota	152	17540
Subaru	122	11204
Honda	144	14582

Essential ML Model Training Pipeline

Linear Regression

- Goal: learn a weight matrix (w) that best transforms features into the predictor
- This means we want to minimize the difference between y and w*x (+b)
- For a line, each x and y are single observations, w is a single weight (slope) value
- Let's take a look at an example

$$y = w * x + b$$

predictor weights feature intercept

Example: Engine Size vs. Price

- Take the automobile dataset from the previous week, for example
- We plotted engine size vs. price and found a linear relationship
- We can try to train a linear regression model, which will learn a line of best fit
 - This line can now be used (and updated) on new data!

Multivariate Linear Regression

y = w * x + b

- Horsepower also predicts price quite well. Can we combine it with engine size to improve prediction?
 - Yes! This would mean that each observation in x has two elements (a 2-dimensional vector)
- Linear regression generalized: fit a (d-1)-dimensional hyperplane on a d-dimensional feature space
- Increasing the number of features can help prediction, but can also lead to overfitting

Multivariate Linear Regression

$$y = w * x + b$$

- Horsepower also predicts price quite well. Can we combine it with engine size to improve prediction?
 - Yes! This would mean that each observation in x has two elements (a 2-dimensional vector)
- Linear regression generalized: fit a (d-1)-dimensional hyperplane on a d-dimensional feature space
- Increasing the number of features can help prediction, but can also lead to overfitting

Horsepower vs Engine Size vs Price

Nonlinear Features

$$y = w * x^{-1} + b$$

- What if our data is not exactly linear?
 - The relationship between engine size and highway MPG is not exactly linear
- There are transformations that we can try to <u>linearize</u> the data
 - Note: This is why it's important to build intuitions about our data via exploration!
- We can transform feature x (engine size) into 1/x (MPG) before training in order to linearize it
 - This transformation is part of preprocessing

Nonlinear Features

- What if our data is not exactly linear?
 - The relationship between engine size and highway MPG is not exactly linear
- There are transformations that we can try to <u>linearize</u> the data
 - Note: This is why it's important to build intuitions about our data via exploration!
- We can transform feature x (engine size) into 1/x (MPG) before training in order to linearize it
 - This transformation is part of preprocessing

Quick Check-In!

- What are some potential features in the data you're working with? What are potential predictors/labels?
 - Are they continuous or discrete?
- Can you apply regression to the data you're working with this summer?
 - If so, how?
 - If not, why not?

Note on Overfitting and Underfitting

- Theoretically, we could define a polynomial that would fit our data perfectly
- But that would lead to a model that doesn't generalize to new data
- We must consider the tradeoff of bias (overfitting) and variance (underfitting) while creating machine learning models

Jupyter Notebook Time!

- Navigate to your local copy of the workshops repository
 - Return to previous instructions if you don't have this yet
- Note: You need to update your filesystem, as the structure of the repo has changed. Make sure you have folders called mc1/ and mc2/
- Run: git pull origin main
- Enter the mc2/ folder and open the file mc2.ipynb
- Follow the instructions in the document