

EJERCICIO PRÁCTICO 9: ANOVA PARA MUESTRAS CORRELACIONADAS

CONTEXTO

En forma similar a la actividad anterior, recordemos que la prueba T de Student permite comparar dos mediciones pareadas de una variable aleatoria, que usualmente provienen de un mismo grupo de individuos u objetos. Ahora estamos conociendo que el **análisis de varianza (ANOVA)** nos permite **comparar más de dos mediciones pareadas**. Recordemos que esta prueba está compuesta de una etapa ómnibus, más un análisis post hoc si corresponde. Este ejercicio apunta a que practiquemos este procedimiento.

OBJETIVOS DE APRENDIZAJE

- 1. Aplicar procedimientos de análisis de varianza para muestras correlacionadas, usando el entorno R.
- 2. Aplicar herramientas disponibles en el entorno R para realizar un análisis *post-hoc* con muestras correlacionadas.

ÉXITO DE LA ACTIVIDAD

- 1. El equipo obtiene y manipula correctamente los datos entregados y propone hipótesis pertinentes a contrastar para cada problema.
- 2. El equipo se asegura que cada caso cumple las condiciones para utilizar ANOVA con validez, usando gráficos o pruebas estadísticas auxiliares disponibles en el entorno R.
- 3. El equipo realiza de forma correcta y completa una prueba ANOVA ómnibus para cada problema.
- 4. El equipo determina correctamente si corresponde o no hacer un análisis *post-hoc* en cada caso, el que aplica de forma correcta y completa (cuando corresponda).
- 5. El equipo interpreta adecuadamente los resultados de las pruebas y responde las preguntas planteadas en cada caso, basándose en la prueba ómnibus y, si corresponde, considerando también el análisis *post-hoc*.

ACTIVIDADES

- 1. Descargar desde el directorio compartido para este ejercicio práctico el enunciado con el nombre "EPO9-enunciado-sala-i", donde i es el número de la sala asignada. **Importante:** recuerde consultar con su profesor(a) la nueva conformación de grupos a contar de este ejercicio.
- 2. Identificar a los integrantes del equipo, con RUT, nombre y apellido, como comentario al inicio de un script.
- 3. Obtener los datos en cada caso y proponer hipótesis que permitan responder las preguntas planteadas.
- 4. Escribir código R para verificar si se cumplen las condiciones para aplicar ANOVA con validez para el caso en estudio.
- 5. Escribir código R para realizar una prueba ANOVA ómnibus con los datos apropiados.
- 6. Escribir código R para realizar pruebas *post-hoc*, si corresponde.

7. Concluir a la luz de los resultados de la prueba.

Antes de que venza el plazo para esta actividad, cada equipo debe subir el script realizado al correspondiente directorio compartido o espacio destinado para ello en UVirtual, con el nombre "EP09-respuesta-sala-i", donde i es el número de la sala asignada.

CRITERIOS DE EVALUACIÓN

Categoría	Nivel de logro	Puntos
Datos	Obtienen los datos necesitados para realizar la prueba solicitada correctamente, tanto en formato ancho como en formato largo	2
	Formulan, con claridad y explícitamente, hipótesis nula y alternativa que mencionan las medias de mediciones repetidas	3
Condiciones	Verifican el cumplimiento de todas las condiciones requeridas por ANOVA para muestras correlacionadas, usando para ello gráficos o pruebas estadísticas adecuadas	3
Prueba omnibus	Realizan una prueba ANOVA ombibus para muestras correlacionadas, usando para ello un formato pertinente para los datos y los parámetros correspondientes	3
Prueba post hoc	Realizan una prueba post-hoc para muestras correlacionadas, usando para ello un formato pertinente para los datos y los parámetros correspondientes	3
Conclusión	Entregan una conclusión correcta y completa a la pregunta planteada, basándose en el resultado de la prueba realizada (omnibus o post-hoc, según corresponda) y el contexto del problema	3
Código fuente	Escriben código R -ordenado, bien indentado, sin sentencias espurias y bien comentado- que realiza de forma completa y correcta la prueba seleccionada con los datos adecuados en cada caso	3
Ortografía y redacción	Escriben con buena ortografía y redacción (<3 errores), usando vocabulario propio de la disciplina y el contexto del problema	3
	TOTAL	23
	NOTA	7,0