Lecture on Bayesian Belief Networks (Basics)

Patrycja Gradowska

Open Risk Assessment Workshop Kuopio, 2009

Lecture contents

- Brief introduction to BBN and example
- Definition of BBN
- Purpose of BBN
- Construction of BBN
- Concluding remarks

A simple example

Problem:

Two colleagues Norman and Martin live in the same city, work together, but come to work by completely different means - Norman usually comes by train while Martin always drives. The railway workers go on strike sometimes.

Goal:

We want to predict whether Norman and Martin will be late for work.

A simple example

Two causal relations:

- > Strike of the railway can cause Norman to be late
- Strike of the railway can cause Martin to be late

IMPORTANT:

These relations are **NOT** absolute!!

Strike of the railway does **NOT** guarantee that Norman and Martin will be late for sure. It **ONLY** increases the probability (chance) of lateness.

What is Bayesian Belief Network (BBN)?

Bayesian Belief Network (**BBN**) is a directed acyclic graph associated with a set of conditional probability distributions.

BBN is a set of nodes connected by directed edges in which:

- nodes represent discrete or continuous random variables in the problem studied,
- directed edges represent direct or causal relationships between variables and do not form cycles,
- each node is associated with a conditional probability distribution
 which quantitatively expresses the strength of the relationship between
 that node and its parents.

3 discrete (Yes/No) variables

0.5

0.5

What do we need BBNs for?

Bayesian Belief Network:

- gives the intuitive representation of the problem that is easily understood by non-experts
- incorporates uncertainty related to the problem

and also

allows to calculate probabilities of different scenarios (events) relevant to the problem and to predict consequences of these scenarios

Train strike	Probability
Y	0.1
N	0.9

		Train strike	
		Y	N
Norman	Y	0.8	0.1
late	N	0.2	0.9

		Train	strike
		Y	N
Martin Y		0.6	0.5
late	N	0.4	0.5

$$P(ML = Y, NL = Y, TS = N)$$

$$P(ML = Y, NL = N, TS = N)$$

• • •

$$P(ML = m, NL = n, TS = t)$$

- joint probability

 $P(ML,NL,TS) = P(ML|TS) \cdot P(NL|TS) \cdot P(TS) - joint distribution$

$$P(ML = Y, NL = Y,TS = N) =$$

= $P(ML = Y|TS = N) \cdot P(NL = Y|TS = N) \cdot P(TS = N)$
= $0.5 \cdot 0.1 \cdot 0.9 = 0.045$

ML	NL	TS	Probability
Y	Y	Y	0.048
N	Y	Y	0.032
Y	N	Y	0.012
N	N	Y	0.008
Y	Y	N	0.045
N	Y	N	0.045
Y	N	N	0.405
N	N	N	0.405

$$P(ML = Y, NL = Y)$$

- marginal probability

$$P(ML, NL) = \sum_{t} P(ML, NL, TS = t) - \text{marginal distribution}$$
(marginalization)

ML	NL	TS	Probability
Y	Y	Y	0.048
N	Y	Y	0.032
Y	N	Y	0.012
N	N	Y	0.008
Y	Y	N	0.045
N	Y	N	0.045
Y	N	N	0.405
N	N	N	0.405

$P(ML = Y, NL = Y) = \sum P(ML = Y, NL = Y, TS = t) =$
t
= P(ML = Y, NL = Y, TS = Y) + P(ML = Y, NL = Y, TS = N)
=0.048+0.045=0.093

ML	NL	Probability
Y	Y	0.093
N	Y	0.077
Y	N	0.417
N	N	0.413

$$P(NL = Y)$$

- marginal probability

$$P(NL) = \sum_{t} \sum_{m} P(ML = m, NL, TS = t) - \text{marginal distribution}$$
(marginalization)

$$\begin{split} P(NL = \textbf{Y}) &= \sum_{m} \sum_{t} P(ML = m, NL = \textbf{Y}, TS = t) = \\ &= P(ML = Y, NL = \textbf{Y}, TS = Y) + P(ML = N, NL = \textbf{Y}, TS = N) + \\ &+ P(ML = N, NL = \textbf{Y}, TS = Y) + P(ML = Y, NL = \textbf{Y}, TS = N) \\ &= 0.048 + 0.045 + 0.032 + 0.045 = 0.17 \end{split}$$

OR easier

$$P(NL = Y) = \sum_{m} P(ML = m, NL = Y) =$$
= $P(ML = Y, NL = Y) + P(ML = N, NL = Y) =$
= $0.093 + 0.077 = 0.17$

ML	NL	TS	Probability
Y	Y	Y	0.048
N	Y	Y	0.032
Y	N	Y	0.012
N	N	Y	0.008
Y	Y	N	0.045
N	Y	N	0.045
Y	N	N	0.405
N	N	N	0.405

ML	NL	Probability
Y	Y	0.093
N	Y	0.077
Y	N	0.417
N	N	0.413

NL	Probability
Y	0.17
N	0.83

Building and quantifying BBN

- 1. Identification and understanding of the problem (purpose, scope, boundaries, variables)
- 2. Identification of relationships between variables and determination of the graphical structure of the BBN
- 3. Verification and validation of the structure
- 4. Quantification of conditional probability distributions
- 5. Verification and validation of the model test runs
- Analysis of the problem via conditionalization process

NOT easy in practice

Additional remarks on BBNs

- there are other BBNs in addition to discrete ones, i.e. continuous BBNs, mixed discrete-continuous BBNs
- BBNs are not only about causal relations between variables, they also capture probabilistic dependencies and can model mathematical (functional) relationships
- BBNs can be really large and complex
- but once the right BBN is built the analysis of the problem is fun and simple using available BBN software, e.g. Netica, Hugin, UniNet

