$12n_{0079} (K12n_{0079})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{15} - u^{14} + 2u^{12} + 4u^{11} - 5u^{10} + u^9 + 8u^8 + 3u^7 - 7u^6 + 3u^5 + 9u^4 - 2u^3 - u^2 + b + 2u + 1, \ a - u, \\ u^{16} - 2u^{15} + u^{14} + 2u^{13} + 3u^{12} - 10u^{11} + 6u^{10} + 8u^9 - u^8 - 14u^7 + 10u^6 + 9u^5 - 8u^4 - 2u^3 + 4u^2 + u - 1 \rangle$$

$$I_2^u = \langle -u^4 - 2u^3 + b + 2u - 1, \ a + u, \ u^5 + u^4 - u^2 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{15} - u^{14} + \dots + b + 1, \ a - u, \ u^{16} - 2u^{15} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{15} + u^{14} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{15} - u^{14} + \dots + u + 1 \\ 2u^{14} - u^{13} + \dots - 2u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{10} + u^{8} - 4u^{6} + 3u^{4} - 3u^{2} + 1 \\ u^{12} - 2u^{10} + 4u^{8} - 6u^{6} + 3u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{15} - u^{14} + \dots + u + 1 \\ u^{14} - u^{13} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{8} + u^{6} - 3u^{4} + 2u^{2} - 1 \\ -u^{8} - 2u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ -u^{6} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{15} - 5u^{14} + 4u^{13} + 4u^{12} + 4u^{11} - 23u^{10} + 23u^9 + 14u^8 - 9u^7 - 26u^6 + 37u^5 + 12u^4 - 22u^3 + 7u^2 + 13u - 4$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{16} - 2u^{15} + \dots + 27u + 1$
c_2, c_4	$u^{16} - 6u^{15} + \dots + 7u - 1$
c_3,c_6	$u^{16} + u^{15} + \dots + 192u + 32$
c_5, c_{10}	$u^{16} - 2u^{15} + \dots + u - 1$
c_7	$u^{16} - 2u^{15} + \dots - 4251u - 809$
c_8, c_9, c_{11} c_{12}	$u^{16} + 2u^{15} + \dots + 9u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} + 46y^{15} + \dots - 955y + 1$
c_2, c_4	$y^{16} + 2y^{15} + \dots - 27y + 1$
c_{3}, c_{6}	$y^{16} - 33y^{15} + \dots - 10752y + 1024$
c_5,c_{10}	$y^{16} - 2y^{15} + \dots - 9y + 1$
	$y^{16} + 110y^{15} + \dots - 17236113y + 654481$
c_8, c_9, c_{11} c_{12}	$y^{16} + 26y^{15} + \dots - 9y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.858338 + 0.530060I		
a = 0.858338 + 0.530060I	1.84411 - 3.14735I	-3.35371 + 5.50197I
b = 1.51033 - 0.15720I		
u = 0.858338 - 0.530060I		
a = 0.858338 - 0.530060I	1.84411 + 3.14735I	-3.35371 - 5.50197I
b = 1.51033 + 0.15720I		
u = 0.617248 + 0.695994I		
a = 0.617248 + 0.695994I	2.74741 - 1.38572I	-1.45957 + 2.65740I
b = 0.650070 - 0.294152I		
u = 0.617248 - 0.695994I		
a = 0.617248 - 0.695994I	2.74741 + 1.38572I	-1.45957 - 2.65740I
b = 0.650070 + 0.294152I		
u = -0.817802 + 0.908616I		
a = -0.817802 + 0.908616I	10.71530 + 0.17194I	-2.05934 - 0.49098I
b = -1.96334 - 1.19161I		
u = -0.817802 - 0.908616I		
a = -0.817802 - 0.908616I	10.71530 - 0.17194I	-2.05934 + 0.49098I
b = -1.96334 + 1.19161I		
u = -0.964243 + 0.807862I		
a = -0.964243 + 0.807862I	10.19210 + 6.12692I	-2.87109 - 4.85275I
b = -2.94387 - 0.69457I		
u = -0.964243 - 0.807862I		
a = -0.964243 - 0.807862I	10.19210 - 6.12692I	-2.87109 + 4.85275I
b = -2.94387 + 0.69457I		
u = -0.713406		
a = -0.713406	-1.05859	-9.11520
b = -0.602633		
u = -0.521527 + 0.359954I	1 01010 1 1 0000	F 0.4000 4.000 40.7
a = -0.521527 + 0.359954I	-1.01816 + 1.20835I	-7.94696 - 4.63242I
b = 0.685034 + 0.457929I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.521527 - 0.359954I		
a = -0.521527 - 0.359954I	-1.01816 - 1.20835I	-7.94696 + 4.63242I
b = 0.685034 - 0.457929I		
u = 0.955354 + 0.984451I		
a = 0.955354 + 0.984451I	-15.8844 + 1.1391I	-2.89439 + 0.24176I
b = 2.82102 - 2.06263I		
u = 0.955354 - 0.984451I		
a = 0.955354 - 0.984451I	-15.8844 - 1.1391I	-2.89439 - 0.24176I
b = 2.82102 + 2.06263I		
u = 0.995518 + 0.955803I		
a = 0.995518 + 0.955803I	-16.0250 - 8.2475I	-3.10340 + 4.00403I
b = 4.02659 - 1.00397I		
u = 0.995518 - 0.955803I		
a = 0.995518 - 0.955803I	-16.0250 + 8.2475I	-3.10340 - 4.00403I
b = 4.02659 + 1.00397I		
u = 0.467631		
a = 0.467631	-2.17859	2.49220
b = -1.96901		

II.
$$I_2^u = \langle -u^4 - 2u^3 + b + 2u - 1, \ a + u, \ u^5 + u^4 - u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u^{4} + 2u^{3} - 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u^{4} + u^{3} - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} + u^{3} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} - u^{3} + u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8u^4 u^3 + 5u^2 + 7u 18$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^5$
c_{3}, c_{6}	u^5
C4	$(u+1)^5$
<i>C</i> ₅	$u^5 - u^4 + u^2 + u - 1$
c_7, c_{11}, c_{12}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$
c_{8}, c_{9}	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
c_{10}	$u^5 + u^4 - u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_3, c_6	y^5
c_5,c_{10}	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.758138 + 0.584034I		
a = -0.758138 - 0.584034I	0.17487 - 2.21397I	-5.34777 + 4.39723I
b = -1.92595 + 0.86150I		
u = 0.758138 - 0.584034I		
a = -0.758138 + 0.584034I	0.17487 + 2.21397I	-5.34777 - 4.39723I
b = -1.92595 - 0.86150I		
u = -0.935538 + 0.903908I		
a = 0.935538 - 0.903908I	9.31336 + 3.33174I	-2.87586 - 2.18947I
b = 2.96269 + 1.26507I		
u = -0.935538 - 0.903908I		
a = 0.935538 + 0.903908I	9.31336 - 3.33174I	-2.87586 + 2.18947I
b = 2.96269 - 1.26507I		
u = -0.645200		
a = 0.645200	-2.52712	-21.5530
b = 1.92652		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{16}-2u^{15}+\cdots+27u+1)$
c_2	$((u-1)^5)(u^{16}-6u^{15}+\cdots+7u-1)$
c_{3}, c_{6}	$u^5(u^{16} + u^{15} + \dots + 192u + 32)$
c_4	$((u+1)^5)(u^{16}-6u^{15}+\cdots+7u-1)$
	$(u^5 - u^4 + u^2 + u - 1)(u^{16} - 2u^{15} + \dots + u - 1)$
<i>C</i> ₇	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)(u^{16} - 2u^{15} + \dots - 4251u - 809)$
c_8,c_9	$(u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1)(u^{16} + 2u^{15} + \dots + 9u + 1)$
c_{10}	$(u^5 + u^4 - u^2 + u + 1)(u^{16} - 2u^{15} + \dots + u - 1)$
c_{11}, c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)(u^{16} + 2u^{15} + \dots + 9u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(y^{16} + 46y^{15} + \dots - 955y + 1)$
c_2, c_4	$((y-1)^5)(y^{16} + 2y^{15} + \dots - 27y + 1)$
c_3, c_6	$y^5(y^{16} - 33y^{15} + \dots - 10752y + 1024)$
c_5, c_{10}	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^{16} - 2y^{15} + \dots - 9y + 1)$
c_7	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)$ $\cdot (y^{16} + 110y^{15} + \dots - 17236113y + 654481)$
c_8, c_9, c_{11} c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^{16} + 26y^{15} + \dots - 9y + 1)$