Computer Architecture & Assembly Language 14:332:331

Lecture 5
Arithmetic for Computers

Naghmeh Karimi Fall 16

Adapted from *Computer Organization and Design*, *5th Edition*, Patterson & Hennessy, © 2013, Elsevier, and *Computer Organization and Design*, *4th Edition*, Patterson & Hennessy, © 2008, Elsevier and Mary Jane Irwin's slides from Penn State University.

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Machine Number Representation

- Bits are just bits (have no inherent meaning)
- conventions define the relationships between bits and numbers
- Binary numbers (base 2) integers

```
0000 \to 0001 \to 0010 \to 0011 \to 0100 \to 0101 \to \dots
```

- in decimal from 0 to 2ⁿ-1 for n bits
- Of course, it gets more complicated
- storage locations (e.g., register file words) are finite, so have to worry about overflow (i.e., when the number is too big to fit into 32 bits)
- have to be able to represent negative numbers, e.g., how do we specify 8 in

```
addi \$sp, \$sp, -8 \#\$sp = \$sp - 8
```

in real systems have to provide for more than just integers, e.g., fractions
 and real numbers (and floating point) and alphanumeric (characters)

Possible Representations

Sign Mag.	Two's Comp.	One's Comp.
	1000 = -8	
1111 = -7	1001= -7	1000 = -7
1110 = -6	1010 = -6	1001 = -6
1101 = -5	1011 = -5	1010 = -5
1100 = -4	1100 = -4	1011 = -4
1011 = -3	1101 = -3	1100 = -3
1010 = -2	1110 = -2	1101 = -2
1001 = -1	1111 = -1	1110 = -1
1000 = -0		1111 = -0
0000 = +0	0000 = 0	0000 = +0
0001 = +1	0001 = +1	0001 = +1
0010 = +2	0010 = +2	0010 = +2
0011 = +3	0011 = +3	0011 = +3
0100 = +4	0100 = +4	0100 = +4
0101 = +5	0101 = +5	0101 = +5
0110 = +6	0110 = +6	0110 = +6
0111 = +7	0111 = +7	0111 = +7

Issues:

- balance
- number of zeros
- ease of operations
- Which one is best? Why?

Number Representations

32-bit signed numbers (2's complement):

Two's Complement Operations

- Negating a two's complement number: complement all the bits and then add a 1
 - remember: "negate" and "invert" are quite different!
- Converting n-bit numbers into numbers with more than n bits:
 - MIPS 16-bit immediate gets converted to 32 bits for arithmetic
 - sign extend copy the most significant bit (the sign bit)
 into the empty bits

```
0010 -> 0000 0010
1010 -> 1111 1010
```

sign extension versus zero extend (1b vs. 1bu)

Addition & Subtraction

Just like in grade school (carry/borrow 1s)

$$\begin{array}{r} 0111 \\ + 0110 \\ \hline 1101 \end{array}$$

$$\begin{array}{r} 0111 \\ - 0110 \\ \hline 0001 \end{array}$$

$$\begin{array}{r} 0110 \\ - 0101 \\ \hline 0001 \end{array}$$

- Two's complement operations are easy
 - do subtraction by negating and then adding

$$\begin{array}{cccc}
0111 & \to & & 0111 \\
- & 0110 & \to & & + & 1010 \\
\hline
0001 & & & 1 & 0001
\end{array}$$

- Overflow (result too large for finite computer word)
 - e.g., adding two n-bit numbers does not yield an n-bit number

```
0111
+ 0001
1000
```

Dealing with Overflow

- Overflow occurs when the result of an operation cannot be represented in 32-bits, i.e., when the sign bit contains a value bit of the result and not the proper sign bit
 - When adding operands with different signs or when subtracting operands with the same sign, overflow can *never* occur

Operation	Operand A	Operand A Operand B	
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

■ MIPS signals overflow with an exception (aka interrupt) – an unscheduled procedure call where the EPC contains the address of the instruction that caused the exception

Building a 1-bit Binary Adder

Α	В	carry_in	carry_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

S = A xor B xor carry_in carry_out = A&B | A&carry_in | B&carry_in (majority function)

- How can we use it to build a 32-bit adder?
- How can we modify it easily to build an adder/subtractor?

Building 32-bit Adder (Ripple Carry adder)

■ Just connect the carry-out of each FA to the carry-in of the next level

- Ripple Carry Adder (RCA)
 - advantage: simple logic, so small (low cost)
 - disadvantage: slow and lots of glitching (so lots of energy consumption)

A 32-bit Ripple Carry Adder/Subtractor

- □ Remember 2's complement subtraction is just
 - complement all the bits control

(0=add,1=sub)
$$\longrightarrow$$
 B_0 if control = 0
 B_0 if control = 1

 add a 1 in the least significant bit

A 0111
$$\rightarrow$$
 0111
B $-$ 0110 \rightarrow + 1001
0001 $-$ 1 0001

- > add/sub=0 → A+B
- > add/sub=1 → A -B

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic

■ We Discussed

- Instruction Set Architecture (ISA)
- Assembly and machine language

■ What's up ahead:

Implementing the architecture

Goal: Design an ALU for the MIPS ISA

 Must support the Arithmetic/Logic operations of the ISA

 Tradeoffs of cost and speed based on frequency of occurrence, hardware budget

Review: MIPS Arithmetic Instructions

□ 10 operations so can encode in 4 bits

<u>Type</u>	ор	<u>funct</u>
ADD	00	100000
ADDU	00	100001
SUB	00	100010
SUBU	00	100011
AND	00	100100
OR	00	100101
XOR	00	100110
NOR	00	100111

Type	ор	funct
	00	101000
	00	101001
SLT	00	101010
SLTU	00	101011
	00	101100

add

0

Design Trick: Divide & Conquer

Break the problem into simpler problems, solve them and glue together the solution

Example: assume the immediates have been taken care of before the ALU

- now down to 10 operations
- ¬ can encode in 4 bits

00	add	•
01	addu	
02	sub	
03	subu	
04	and	
05	or	
06	xor	
07	nor	
12	slt	
13	sltu	
·		•

Logic Operations

Logic operations operate on individual bits of the operand.

 How do we expand our FA design to handle the logic operations - and, or, xor, nor?

A Simple ALU Cell

A Simple ALU Cell (version 2)

A Simple 32-bit ALU

Tailoring the ALU to the MIPS ISA

- ■Need to support the set-on-less-than instruction (slt)
 - slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise
 - use subtraction: (a b) < 0 implies a < b
- □ Need to support test for equality (beq)
 - use subtraction: (a b) = 0 implies a = b
- Need to add the overflow detection hardware

Modifying the ALU Cell for slt

A MIPS ALU Implementation

(supporting SLT)

- First perform a subtraction
- Make the result 1 if the subtraction yields a negative result
- Make the result 0 if the subtraction yields a positive result

Overflow Detection

- Overflow occurs when the result is too large to represent in the number of bits allocated
 - adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive gives a negative
 - or, subtract a positive from a negative gives a positive
- On your own: Prove you can detect overflow by:
 - Carry into MSB xor Carry out of MSB

A MIPS ALU Implementation

Zero detect

(slt, slti, sltiu, sltu, beq, bne)

■ Enable overflow bit setting for signed arithmetic

(add, addi, sub)

Multiply

Binary multiplication is just a bunch of right shifts and adds

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

MIPS Multiply Instruction

- Low-order word of the product is placed in processor dedicated register 10 and the high-order word is placed in processor register hi
- mult uses signed integers and result is a signed 64-bit number. Overflow is checked in software
- MIPS uses multu for unsigned products

000000	ው ል	ተ - ጋ	00000	00000	25
()()()()()()()	5 SZ	1 5 S3		1 ()()()()()	/5

Multiply Instruction

The product needs to be moved to general purpose registers to become available for other operations. Instructions mfhi \$s0 and mflo \$s5 are provided for this.

mfhi	\$s0	000000	00000	00000	\$s0	00000	16
mflo	\$s5	000000	00000	00000	\$s5	00000	18

Multiplication is more complicated than addition - via shifting and addition

• m bits \times n bits = m+n bit product 32+32=64 bits double precision product produced – more time to compute

Multiply Instruction

- Binary numbers make it easy:
 - 0 => place 0s (0x multiplicand) in the proper place
 - 1 => place a copy of multiplicand in the proper
 place

- At each stage shift the multiplicand left (x 2)
- Use next LSB of b to determine whether to add in the shifted multiplicand
- Accumulate 2n bit partial product at each stage
- The process is repeated 32 times in MIPS

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

If Multiplier0 = 1 add multiplicand to product register

Multiplication Hardware

Multiplication Hardware

Multiply Algorithm Version 1

$1001_{two} \times 1001_{two}$

•	Multiplier	Multiplicand	Product
0	1001	00001001	0000000
1	1001	00001001	0000000
	1001	00010010	00001001
	0100	00010010	00001001
2	0100	00010010	00001001
	0010	00100100	00001001
3	0010	00100100	00001001
	0001	01001000	00001001
4	0001	01001000	00001001
	0000	10010000	01010001

Observations on Multiply Version 1

- 1 clock cycle per step => 100 clocks per multiply
 Ratio of multiply to add 1:5 to 1:100
- 1/2 bits in multiplicand always 0
 - => 64-bit adder is wasted
- O's inserted in right of multiplicand as it is shifted left
 - => least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?

Multiply Hardware Version 2

■ 32-bit Multiplicand register, 32 -bit ALU, 64-bit Product register, 32-bit Multiplier register

Multiply Algorithm Version 2

- Multiplicand stays still and product moves right
- Product register wastes space that exactly matches size of multiplier
- So we can combine Multiplier register and Product register

Multiply Algorithm Version 2

 $1001_{two} \times 1001_{two}$

•	Multiplier	Multiplicand	Product
0	1 001	1001	0000000
1	1001	1001	10010000
	1001	1001	01001000
	0100	1001	01001000
2	0100	1001	01001000
	0100	1001	00100100
	0010	1001	00100100
3	0010	1001	00100100
	0010	1001	00010010
	0001	1001	00010010
4	0001	1001	10100010
	0000	1001	01010001

Multiply Hardware Version 3

- 32-bit Multiplicand register, 32 -bit ALU, 64-bit Product register, (<u>0</u>-bit Multiplier register)
- 2 steps per bit
 because Multiplier
 & Product
 combined
- •MIPS registers

 Hi and Lo are left

 and right halves of
 the Product
- •Gives us MIPS instruction MultU

Multiply Algorithm Version 3

$1001_{two} \times 1001_{two}$

• Iter.	Multiplicand		Product
0	1001	0000	1001
1	1001	0000	1001
add	1001	1001	1001
shift	1001	0100	1100
2	1001	0100	1100
shift	1001	0010	0110
3	1001	0010	0110
shift	1001	0001	0011
4	1001	0001	0011
add	1001	1010	0011
shift	1001	0101	0001

Multiplication of signed integers

- What about signed multiplication?
- Easiest solution is to make both positive & remember whether to complement product when done (leave out the sign bit, run for 31 steps)
- Apply definition of 2's complement. Need to signerate extend partial products and subtract at the end
- Booth's Algorithm is elegant way to multiply signed numbers using same hardware as before and save cycles
- It can handle multiple bits at a time, thus it is faster

Motivation for Booth's Algorithm

Example 2 x 6 = $0010 \times 0110_{two}$:

• ALU with add or subtract gets same result in more than one way:

$$6 = -2 + 8$$

$$0110 = -00010 + 01000 = 11110 + 01000$$

Booth's Algorithm

Now the test in the algorithm depends on *two* bits. Results are placed in the left half of the product register.

Curre	nt Bit Bit to the Right	Explanation	Example	Op
1	0	Begins run of 1s	000111 <u>10</u> 00	subtract
1	1	Middle of run of 1s	00011 <u>11</u> 000	no op
0	1	End of run of 1s	00 <u>01</u> 111000	add
0	0	Middle of run of 0s	0 <u>00</u> 1111000	no op

Originally for Speed (when shift was faster than add)

Replace a string of 1s in multiplier with an initial subtract when we first see a 10 and then later add for the first 01

Booths Example (2 x 7)

			mythical bit
Operation	Multiplicand	Product register	next operation?
0. initial value	0010	0000 0111 0	10 -> subtract
■ 1a. P=P-r	n 1110	+	1110
1110 0111	0	shift P (sign extend)	
■ 1b.	0010	1111 0 011 1	11 -> nop, shift
2 .	0010	1111 10 01 1	11 -> nop, shift
3 .	0010	1111 110 0 1	01 -> add
• 4a. •	0010	+0010 0001 110 0 1	shift
■ 4b.	0010	0000 1110 0	done

Booths Example (2 x -3) (1111 1010_{two})

Operation	Multiplicand	Product	next?
0. initial value	0010	0000 1101 0	10 -> subtract
1a. P = P - m	1110	+	1110
1110 1101	0 shift P (sign	ext)	
1b.	0010	1111 0 110 1	01 -> add multiplicand
		+ 0010	
2a.		0001 0 110 1	shift P and sign ext.
2b.	0010	0000 10 11 0 +	10 -> sub multiplicand
3a.	0010	1110 10 11 0	shift and sign ext
3b. 4a 4b.	0010	1111 010 1 1 1111 010 1 1 1111 1010 1	11 -> no op shift done

Division: Paper & Pencil

A number can be subtracted, creating quotient bit on each step

```
Dividend = Quotient x Divisor + Remainder
```

- We assume for now unsigned 32-bit integers (dividend, divisor, quotient and remainder are all 32 bit integers
- Different versions of divide algorithm, successive refinement

MIPS Divide Instruction

div \$s2, \$s3

- The division quotient is placed in processor dedicated register lo and the remainder is placed in processor register hi
- div uses signed integers and result is a signed 64-bit number. Overflow and division by 0 are checked in software
- MIPS uses divu for unsigned divisions

_						
	000000	\$s2	\$s3	00000	00000	27

Division Hardware (version 1)

If Reminder63 = 1, Quotient0=0 Reminder63 = 0, Quotient0=1

Chapter 3 — Arithmetic for Computers — 54

Exercise

IF A	= 74 and B=	21, write	a table to ca	lculate the
valu	ol ware, Show	ng the -	first version o	f the division
han	olware, Show	. The co	ntents of ear	ch register at
eac	4 step. Assu	me A au	ud B are un	signed 6-bit
integ	ers			010001
C	le step. Assu, ers A = dividend =	74 octal =	60ten = 11110	0, B=210che=17,0=3
Step	Operation	Dootient	Divisor	
0		000000	01000100000	000000111100
١	Rem = Rem - Div	00000	010001000000	DO111111100
	Rento Rout Divas	000000		000000111100
	Rshift Divisor	000000	00100010000	001111000000
2	Rem = Rem - Div	000000	00100010000	00111000011100
	Renco, Ront Dir, O.CK	000000	00100010000	00 000 000 111 100
	Rshipt Divisor	000000	AND THE RESIDENCE AND ADDRESS OF	601111000000000

Exercise (Cont'd)

3	Ron= Ren- Div	000000	001101001111 000010001000
	Rento, Rental Que	000 000	00011110000000000010111000
	Rsky Divisor	000000	00011100000000001100010000
4	Ram= Rem - Div	000 000	001 011011 111 000 100 010 000
	Romco, Renthiv, QCL	000 000	000 010 001 000 000 000 111 100
	Rskit Divisor	000 000	000 111 000 600 001 000 1100 000
5	Rem Rem - Div	000 000	000 001 00100 111111111000
	Runco, RentDiv, Qci	000 000	000 001 000 100 000 000 111 100
	Rshigt Daisor	000 000	001 111 600 600 610 001 600 600
6	Ren= Ren- Div	00 0 0 00	010 11000000000000000000000000000000000
	Renzo, all 1	1000001	000 000 100010 000 000 011 010
	Behird Britis	100 000	010 IB 000 COO 100 CID CGC 06C
7	Ren = 1	austiut	Dirisor Remainder
	12x >0,7 Rshif Br	000011	100 100 000 000 000 000 001 001
		310	n n
	60/1710 =	3+9	910

Observations on Divide Version 1

- 1/2 bits in divisor always 0
 - => 1/2 of 64-bit adder is wasted
 - => 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift the remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise too big for the register)
 - => switch order to shift first and then subtract, can save 1 iteration

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Divide Algorithm Version 2

Observations on Divide Version 2

- Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide
- Signed Divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
 - Note: Dividend and Remainder must have <u>same</u> sign
 - Note: Quotient negated if Divisor sign & Dividend sign disagree

e.g.,
$$-7 \div 2 = -3$$
, remainder = -1

- And $7 \div (-2) = -3$, remainder = 1
- Possible for quotient to be too large: if divide 64-bit integer by 1, quotient is 64 bits ("called saturation")

Review: MIPS Instructions, so far

Category	Instruction	Op Code	Example	Meaning
	add	0 and 32	add \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3
	add unsigned	0 and 33	addu \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3
	subtract	0 and 34	sub \$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3
	subt unsigned	0 and 35	subu \$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3
Arithmetic	add immediate	8	addi \$s1, \$s2, 6	\$s1 = \$s2 + 6
(R & I format)	add immediate unsigned	9	addiu \$s1, \$s2, 6	\$s1 = \$s2 + 6
Í	multiply	0 and 24	mult \$s1, \$s2	hi lo = \$s1 * \$s2
	multiply unsigned	0 and 25	multu \$s1, \$s2	hi lo = \$s1 * \$s2
	divide	0 and 26	div \$s1, \$s2	lo = \$s1/\$s2, remainder in hi
	divide unsigned	0 and 27	divu \$s1, \$s2	lo = \$s1/\$s2, remainder in hi

Review: MIPS ISA, continued

Category	Instr	Op Code	Example	Meaning
Shift	sll	0 and 0	sll \$s1, \$s2, 4	\$s1 = \$s2 << 4
(R	srl	0 and 2	srl \$s1, \$s2, 4	\$s1 = \$s2 >> 4
format)	sra	0 and 3	sra\$s1, \$s2, 4	\$s1 = \$s2 >> 4
Data	load word	35	lw \$s1, 24(\$s2)	\$s1 = Memory(\$s2+24)
Transfer	store word	43	sw \$s1, 24(\$s2)	Memory($\$s2+24$) = $\$s1$
(I format)	load byte	32	lb \$s1, 25(\$s2)	\$s1 = Memory(\$s2+25)
	load byte unsigned	36	lbu \$s1, 25(\$s2)	\$s1 = Memory(\$s2+25)
	store byte	40	sb \$s1, 25(\$s2)	Memory($\$s2+25$) = $\$s1$
	load upper imm	15	lui \$s1, 6	$\$s1 = 6 * 2^{16}$
	move from hi	0 and 16	mfhi \$s1	\$s1 = hi
	move to hi	0 and 17	mthi \$s1	hi = \$s1
	move from lo	0 and 18	mflo \$s1	\$s1 = lo
	move to lo	0 and 19	mtlo \$s1	lo = \$s1

Review: MIPS ISA- continued

Category	Instr	Op Code	Example	Meaning
Cond.	br on equal	4	beq \$s1, \$s2, L	if (\$s1==\$s2) go to L
Branch	br on not equal	5	bne \$s1, \$s2, L	if (\$s1 !=\$s2) go to L
(I & R format)	set on less than	0 and 42	slt \$s1, \$s2, \$s3	if (\$s2<\$s3) \$s1=1 else \$s1=0
	set on less than unsigned	0 and 43	sltu \$s1, \$s2, \$s3	if (\$s2<\$s3) \$s1=1 else \$s1=0
	set on less than immediate	10	slti \$s1, \$s2, 6	if (\$s2<6) \$s1=1 else \$s1=0
	set on less than imm. unsigned	11	sltiu \$s1, \$s2, 6	if (\$s2<6) \$s1=1 else \$s1=0
Uncond.	jump	2	j 2500	go to 10000
Jump (J & R format)	jump and link	3	jal 2500	go to 10000; \$ra=PC+4
	jump register	0 and 8	jr \$s1	go to \$s1
	jump and link reg	0 and 9	jalr \$s1, \$s2	go to \$s1, \$s2=PC+4

Representing Big (and Small) Numbers

- What can be represented in N bits?
- Unsigned 0 to 2^N -1
- 2s Complement -2^{N-1} to 2^{N-1} 1
- What if we want to encode the approx. age of the earth? 4,600,000,000 or 4.6 x 109
- or the weight in kg of one a.m.u. (atomic mass unit)
 0.0000000000000000000000166 or 1.6 x 10-27
- There is no way we can encode either of the above in a 32-bit integer.

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

MIPS Register bit allocation

- Representation of floating point means that the binary point "floats" to get a non-0 bit before it. The binary point is not fixed.
- Since number of bits in register is **fixed** we need to **compromise**

	1	8 bits	23 bits
sign	S	E	F

■When exponent is too large – or too small – an exception Overflow, or underflow

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- Significand: 1+Fraction
- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

IEEE 754 - continued

• If the 23 significand bits are numbered from *left-to-right* then the floating point number represented by these bits is

$$N = (-1) \times (1 + s_1 \cdot 2^{-1} + s_2 \cdot 2^{-2} + \dots + s_{23} \cdot 2^{-23}) \times 2^{(E-bias)}$$

So the register containing the bits

represents

$$N = (-1) \times (1+2^{-1}+2^{-2}+2^{-3}) \times 2^{(2^{7}+2^{1}+2^{0}-127)}$$

$$N = -1 \times (1+0.5+0.25+0.125) \times 2^{(128+2+1-127)}$$

$$= -1.875 \times 2^{(131-127)}$$

$$N = -1.875 \times 2^{4} = -1.875 \times 16 = -30$$

Exercise

 \blacksquare Show the IEEE 754 representation of 10_{ten} in single and double precision

$$10_{ten} = 1010_{two} = 1.01 \times 2^3$$
 in normalized notation

The sign bit is 0, the exponent is $3+127 = 130 = 1000 \quad 0010_{two}$ 23 bits

			/	
0	1000 0010	01000	0	sp

• In double precision the exponent is 3+1023=1026

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Floating-Point Addition

- Consider a 4-digit binary example
 - $-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - I wc1, I dc1, swc1, sdc1
 - e.g., I dc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add. s, sub. s, mul. s, div.s
 - e.g., add. s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add. d, sub. d, mul. d, di v. d
 - e.g., mul . d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx. s, c. xx. d (xx is eq, I t, I e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c. I t. s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow

