Eudedeur Tronsformations

Translations:

Consider fer as minute a vector in \mathbb{R}^2 with components (x_i, x_i) we can take it to its new location (2; 50(2)) with

a displement (h, k) thus: displacement (h, k) thus: $\chi_i^2 = \chi_i + h$ $\chi_i^2 = \chi_i^2 + k$ $\begin{bmatrix} \chi_i^2 \\ \chi_i^2 \end{bmatrix} = \begin{bmatrix} \chi_i + h \\ \chi_i + k \end{bmatrix}$ lets transfer into the ferm $A\vec{x} = 6$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot \chi_1 + 0 \cdot \chi_2 \\ 0 \cdot \chi_1 + 1 \cdot \chi_2 \end{bmatrix}$$

In order to add (h, K) to (x, xz) we need a new dimension,

$$\begin{bmatrix}
0 & h \\
0 & k \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
0 & x_2
\end{bmatrix} = \begin{bmatrix}
1 \cdot x_1 + 0 \cdot x_2 + 1 \cdot h \\
0 \cdot x_1 + 1 \cdot x_2 + 1 \cdot h
\end{bmatrix} = \begin{bmatrix}
x_1 + h \\
x_2 + k \\
1
\end{bmatrix}$$

Rotate X_1 to X_1 by Odynus X_2 to X_2

$$\chi_1^2 = \chi_1 \cos \theta - \chi_2 \sin \theta$$

 $\chi_2^2 = \chi_1 \sin \theta + \chi_2 \cos \theta$

arhuise

Now in the ferm
$$A x = y$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \pi_1 \\ \pi_2 \end{bmatrix} = \begin{bmatrix} \pi_1 \\ \pi_2 \end{bmatrix}$$

Anti dormisa

Affine transportans

Ane ones which presents anyter

Scaling

Fo No this we need a facter fer each dimersion so far \mathbb{R}^2 lets have ply for areis $\hat{x_i}$ lets have ply for areis $\hat{x_i}$

$$\begin{bmatrix} x_1' \\ \chi_2' \end{bmatrix} = \begin{bmatrix} \rho \circ \\ \circ q \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} \qquad \begin{cases} \rho \chi_1 + \rho \chi_2 \\ O \chi_1 + q \chi_2 \end{cases}$$

If p=q than the scaling factor is simply a scalar which can be feetand at.

Skew

$$| \cdot x + S_{x} \cdot y = x$$

$$S_{y} \cdot x + 1 \cdot y = y$$