Adatbázisok 1. Relációs adatbázis tervezés – 4. rész

Funkcionális függőségek

Felbontások

Normálformák

Relációs sémák tervezése

- Cél: az anomáliák és a redundancia megszüntetése.
 - Módosítási anomália (update anomaly)
 - Törlési anomália (deletion anomaly)
 - Beszúrási anomália (insertion anomaly)

Példa: rosszul tervezett séma

Főnökök(<u>név</u>, cím, <u>kedveltTeák</u>, gyártó, kedvencTea)

név	cím	kedveltTeák	gyártó kedvencTea
Janeway	Voyager	Brisk	Lipton E. G.
Janeway	???	E. G.	Tetley ???
Spock	Enterprise	Brisk	??? Brisk

Redundáns adat, a ??? helyén a név -> cím kedvencTea és kedveltTeák -> gyártó FF-ek felhasználásával tudjuk, mi szerepel.

A rosszul tervezettség anomáliákat is eredményez

név	cím	kedveltTeák	gyártó kedvencTea
Janeway	Voyager	Brisk	Lipton E. G.
Janeway	Voyager	E. G.	Tetley E. G.
Spock	Enterprise	Brisk	Lipton Brisk

- Módosítási anomália: ha Janeway-t Judyra módosítjuk, megtesszük-e ezt minden sornál?
- Törlési anomália: ha már senki sem szereti a Brisk teát, azt sem fogjuk tudni, hogy ki gyártotta.
- Beszúrási anomália: ha nem lehet ismeretlen a kedveltTeákra vonatkozó érték, akkor nem tudunk felvenni egy teákat nem kedvelő főnököt

Relációk felbontása (decomposition)

- R relációt, $\{A_1, A_2, ..., A_n\}$ attribútumokkal helyettesítsük $S(B_1, B_2, ..., B_m)$ és $T(C_1, C_2, ..., C_k)$ relációkkal úgy, hogy
- 1. $\{A_1, A_2, ..., A_n\} = \{B_1, B_2, ..., B_m\} \cup \{C_1, C_2, ..., C_k\}$
- 2. $S = \Pi_{B1, B2, ..., Bm}(R)$
- 3. $T = \Pi_{C1, C2, ..., Ck}(R)$

Veszteségmentes felbontás (lossless join)

- Ha $r = \Pi_{R1}(r) |X| ... |X| \Pi_{Rk}(r)$ teljesül, akkor az előbbi összekapcsolásra azt mondjuk, hogy veszteségmentes. Itt r egy R sémájú relációt jelöl és R attribútumainak részhalmazai az R1, ..., Rk.
- Π_{Ri}(r) jelentése: r sorai az Ri attribútumaira projektálva.
- Megjegyzés: könnyen látható, hogy $r \subseteq \Pi_{R1}(r) |X| ... |X| \Pi_{Rk}(r)$ mindig teljesül. (Miért?)

A B C
a b c
d e f
c b c

R

 $\begin{array}{c|ccc}
R_1 & & & B \\
\hline
a & b \\
d & e \\
c & b \\
\end{array}$

B C b c e f

 R_2

Példa

• A szétvágás után keletkező relációk összekapcsolása nem veszteségmentes:

A B C a b c c b e

 $\begin{array}{c|cccc} R_1 & \hline A & B \\ \hline a & b \\ \hline c & b \\ \end{array}$

B C b c e

 R_2

Boyce-Codd normálforma (normal form)

- R reláció BCNF normálformában van, ha minden X ->Y nemtriviális FFre R-ben X szuperkulcs.
 - Nemtriviális: Y nem része X-nek.
 - Szuperkulcs: tartalmaz kulcsot (ő maga is lehet kulcs).

Példa

Főnökök(<u>név</u>, cím, <u>kedveltTeák</u>, gyártó, kedvencTea)

FF-ek: név->cím kedvencTea, kedveltTeák->gyártó

- Itt egy kulcs van: {név, kedveltTeák}.
- A baloldalak egyik FF esetén sem szuperkulcsok.
- Emiatt az Főnökök reláció nincs BCNF normálformában.

Még egy példa

Teák(<u>név</u>, gyártó, gyártóCím)

FF-ek: név->gyártó, gyártó->gyártóCím

- Az egyetlen kulcs {név}.
- név->gyártó nem sérti a BCNF feltételét, de a gyártó->gyártóCím függőség igen.

BCNF-re való felbontás

- Adott R reláció és F funkcionális függőségek.
- Van-e olyan X ->Y FF, ami sérti a BCNF-t?
 - Ha van olyan következmény FF *F*-ben, ami sérti a BCNF-t, akkor egy *F*-beli FF is sérti.
- Kiszámítjuk *X* +-t:
 - Ha itt nem szerepel az összes attribútum, X nem szuperkulcs.

R dekomponálása X -> Y felhasználásával

- R-t helyettesítsük az alábbiakkal:
 - 1. $R_1 = X^+$.
 - 2. $R_2 = R (X^+ X)$.
- Projektáljuk a meglévő F -beli FF-eket a két új relációsémára.

Dekomponálási kép

Példa: BCNF dekompozíció

Főnökök(név, cím, kedveltTeák, gyártó, kedvencTea)

```
F = név->cím, név->kedvencTea,
kedveltTeák->gyártó
```

- Vegyük név->cím FF-t:
- {név}+ = {név, cím, kedvencTea}.
- A dekomponált relációsémák:
 - 1. Főnökök1(<u>név</u>, cím, kedvencTea)
 - 2. Főnökök2(<u>név</u>, <u>kedveltTeák</u>, gyártó)

Példa -- folytatás

- Meg kell néznünk, hogy az Főnökök1 és Főnökök2 táblák BCNF-ben vannak-e.
- Az FF-ek projektálása könnyű.
- A Főnökök1(<u>név</u>, cím, kedvencTea), az FF-ek név->cím és név->kedvencTea.
 - Tehát az egyetlen kulcs: {név}, azaz az Főnökök1 BCNF-ben van.

Példa -- folytatás

 Az Főnökök2(<u>név</u>, <u>kedveltTeák</u>, gyártó) esetén az egyetlen FF

kedveltTeák->gyártó, az egyetlen kulcs: {név, kedveltTeák}.

- Sérül a BCNF.
- kedveltTeák+ = {kedveltTeák, gyártó}, az Főnökök2 felbontása:
 - 1. Főnökök3(<u>kedveltTeák</u>, gyártó)
 - 2. Főnökök4(<u>név</u>, <u>kedveltTeák</u>)

Példa -- befejezés

- Az Főnökök dekompozíciója tehát:
 - 1. Főnökök1(<u>név</u>, cím, kedvencTea)
 - 2. Főnökök3(<u>kedveltTeák</u>, gyártó)
 - 3. Főnökök4(<u>név, kedveltTeák</u>)
- A Főnökök1 a főnökökről, a Főnökök3 a teákról, a Főnökök4 a főnökökről és kedvelt teáikról tartalmaz információt.

Példa – anomáliák?

név	cím	kedveltTeák	gyártó	kedvencTea
Janeway	Voyager	Brisk	Lipton	E. G.
Janeway	Voyager	E. G.	Tetley	E. G.
Spock	Enterprise	Brisk	Lipton	Brisk

- 1. Főnökök1(<u>név</u>, cím, <u>kedvencTea</u>)
- 2. Főnökök3(<u>kedveltTeák</u>, gyártó)
- 3. Főnökök4(<u>név</u>, <u>kedveltTeák</u>)

név	cím	kedvencTea
Janeway	Voyager	E. G.
Spock	Enterprise	Brisk

kedveltTeák	gyártó
Brisk	Lipton
E. G.	Tetley

név	kedveltTeák
Janeway	Brisk
Janeway	E. G.
Spock	Brisk

Miért működik a BCNF?

- (R, F) esetén ha R₁,..., R_k egy veszteségmentes felbontás, S₁, S₂ pedig R₁ veszteségmentes felbontása, akkor S₁, S₂, R₂,..., R_k is veszteségmentes felbontás.
- Könnyen ellenőrizhető, hogy a BCNF felbontásos dián az R₁, R₂ veszteségmentes. Ehhez:
 - Feladat: bizonyítsuk be, hogy ha az R(A, B, C) reláció esetén B \rightarrow C teljesül, akkor az R₁(A, B), R₂(B, C) felbontás mindig veszteségmentes.
- Minden két attribútumú séma BCNF normálformában van.
- A fentiekkel igazolható:
- Az algoritmus tehát valóban veszteségmentes felbontást ad, ám sajnos exponenciális lépésszámú is lehet a függőségek vetítése miatt.

Chase-teszt veszteségmentességhez I.

- Példa: adott R(A, B, C, D), F = { A → B, B → C, CD → A } és az R₁(A, D), R₂(A, C), R₃(B, C, D) felbontás. Kérdés veszteségmentes-e a felbontás?
- Vegyük $R_1 | X | R_2 | X | R_3$ egy t = (a, b, c, d) sorát. Bizonyítani kell, hogy t R egy sora. A következő tablót (tableau) készítjük el:

A	В	C	D
а	b ₁	c ₁	d
а	b ₂	С	d_2
a ₃	b	С	d

Itt pl. az (a, b_1 , c_1 , d) sor azt jelzi, hogy R-nek van olyan sora, aminek R_1 -re való levetítése (a, d), ám ennek a B és C attribútumokhoz tartozó értéke ismeretlen, így egyáltalán nem biztos, hogy a t sorról van szó.

Chase-teszt veszteségmentességhez II.

- Az F-beli függőségeket használva egyenlővé tesszük azokat a szimbólumokat, amelyeknek ugyanazoknak kell lennie, hogy valamelyik függőség ne sérüljön.
 - Ha a két egyenlővé teendő szimbólum közül az egyik index nélküli, akkor a másik is ezt az értéket kapja.
 - Két indexes szimbólum esetén a kisebbik indexű értéket kapja meg a másik.
 - A szimbólumok minden előfordulását helyettesíteni kell az új értékkel.
- Az algoritmus véget ér, ha valamelyik sor t-vel lesz egyenlő, vagy több szimbólumot már nem tudunk egyenlővé tenni.

Chase-teszt veszteségmentességhez III.

A	В	C	D	_
а	b ₁	c ₁	d	$A \to$
а	b ₂	С	d_2	
a_3	b	С	d	

Α	В	С	D
а	b ₁	c ₁	d
а	b_1	С	d_2
a_3	b	С	d

$B \rightarrow$	C

Α	В	С	D
а	b ₁	С	d
а	b_1	С	d_2
a ₃	b	С	d

Α	В	С	D
а	b ₁	С	d
а	b_1	С	d_2
а	b	С	d

Chase-teszt veszteségmentességhez IV.

- Ha t szerepel a tablóban, akkor valóban R-nek egy sora, és mivel t-t tetszőlegesen választottuk, ezért a felbontás veszteségmentes.
- Ha nem kapjuk meg t-t, akkor viszont a felbontás nem veszteségmentes.
- Példa: R(A, B, C, D), F = { B \rightarrow AD }, a felbontás: R₁(A, B), R₂(B, C), R₃(C, D).

Α	В	С	D			В		
а	b	C ₁	d_1	$B \to AD$	а	b	c ₁	d_1
a_2	b	С	d_2		а	b	С	d_1
a ₃	b ₃	С	d		a ₃	b ₃	С	d

Itt az eredmény jó ellenpélda, hiszen az összekapcsolásban szerepel t = (a, b, c, d), míg az eredeti relációban nem.

Chase-teszt veszteségmentességhez V.

