Основы VerilogHDL/SystemVerilog (синтез и моделирование)

Задание Lab1

Задание lab1 (4 часа лабораторных занятий)

- Часть lab1_1
- □ Упражнение 1 (демонстрационная работа пошаговые инструкции приведены ниже).
- □ Имя проекта lab1_1. Имя модуля верхнего уровня lab1_1.
- □ Часть lab1_2
- □ На языке Verilog, используя логические выражения, опишите мультиплексор 2(4бит) =>1(4бит):
- □ Входы данных переключатели sw[7:4] и sw[3:0] соответственно
- □ Выходы светодиоды led[3:0]
- Управление переключением кнопка
 - \checkmark = 1: sw[7:4] => led[3:0]
 - \checkmark = 0: sw[3:0] => led[3:0]
- □ Имя проекта lab1_2. Имя модуля верхнего уровня lab1_2.

Задание lab1 (4 часа лабораторных занятий)

- Часть lab1_3
- На языке Verilog, используя логические выражения или оператор условного выбора, опишите устройство выбора максимума из двух 4-х разрядных данных (структурная схема приведена на рисунке)
- □ Входы данных переключатели sw[7:4] и sw[3:0]
- □ Выходы светодиоды led[3:0]
- Управление переключением кнопка
 - \checkmark = 1: sw[7:4] => led[3:0]
 - \checkmark = 0: sw[3:0] => led[3:0]
- □ Имя проекта lab1_3. Имя модуля верхнего уровня lab1_3.

Задание lab1 (4 часа лабораторных занятий)

- □ Часть lab1_4
- □ На языке Verilog, используя логические выражения, опишите преобразователь двоичного кода в позиционный код (один-из-N).
- □ Входы двоичных данных переключатели sw[1:0]
- □ Выходы светодиоды led[3:0]
- □ Имя проекта lab1_4. Имя модуля верхнего уровня lab1_4.
- Часть lab1_5
- □ На языке Verilog, используя логические выражения, опишите полный одноразрядный сумматор.
- □ Входы
 - ✓ Данных переключатели sw[1:0]
 - ✓ Входной перенос кнопка
- Выходы светодиоды led[1:0]
- □ Имя проекта lab1_5. Имя модуля верхнего уровня lab1_5.

Макет miniDiLaB-CIV (описание макета)

Кнопки, Переключатели, Светодиоды (описание макета)

- □ Кнопки
 - ✓ Не нажата 1
 - ✓ Нажата 0

- □ Светодиоды
- **□0** включает
- □ 1 выключает

□ Переключатели

Кнопки, Переключатели, Светодиоды (описание макета)

Имя	Выводы СБИС ЕР4СЕ6Е22			
сигнала на	Номер	Банк	Стандарт	Тип
схеме	вывода	ввода/вывода	_	вывода
				СБИС
	Кнопки			
pb_2	58	B4	2.5V	I/O
pb_1	64	B4	2.5 V	I/O
		Переключатели		
DIPA_1	24	B2	3.3-V	I
			LVCMOS	
DIPA_2	25	B2	3.3-V	I
			LVCMOS	
DIPA_3	46	B4	3.3-V	I/O
			LVCMOS	
DIPA_4	49	B4	3.3-V	I/O
			LVCMOS	
DIPB_1	91	В6	3.3-V	I
			LVCMOS	
DIPB_2	90	В6	3.3-V	I
			LVCMOS	
DIPB_3	89	B5	3.3-V	I
			LVCMOS	
DIPB_4	88	B5	3.3-V	I
			LVCMOS	
		Светодиоды		
1ed0	72	B4	2.5 V	I/O
led1	71	B4	2.5V	I/O
1ed2	70	B4	2.5V	I/O
1ed3	69	B4	2.5 V	I/O
led4	68	B4	2.5 V	I/O
1ed5	67	B4	2.5 V	I/O
1ed6	66	B4	2.5 V	I/O
1ed7	65	B4	2.5 V	I/O

□ На языке Verilog описать представленную ниже схему.

- □ Посмотреть синтезированную пакетом Q схему (RTL Viewer)
- □ Осуществить функциональное моделирование (в рамках пакета Q)
- □ Назначить выводы СБИС
- □ Осуществить полную компиляцию, программирование платы и проверить работу проекта на плате.

- Создайте рабочую папку: C:/Intel_trn/Verilog_SV/labs/lab1
- □ Создате проект:
 - ✓ Имя проекта lab1, entity lab1,
 - ✓ Рабочая папка ...\lab1,
 - ✓ DEVICE EP4CE6E22C8N
- □ Создате новый файл:
 - √ File=>New=>SystemVerilog HDL
 - ✓ Сохраните его под именем lab1.sv.

□ Введите текстовое описание схемы


```
module lab1
  input sw0, sw1, sw2,
   output led0, led1, led2, led3,
   output supply0 led4, led5, led6,
   output supply0 led7, led8, led9):
wire temp;
assign temp = sw0 \mid sw1;
assign led0 = 1'b1;
assign led1 = sw2 & temp;
assign led2 = ~temp;
assign led3 = 4'b1;
endmodule
```

- □ Осуществите компиляцию (Processing=>Start=>Analysis and Synthesis).
 - ✓ При необходимости исправить ошибки.
- □ Обратите внимание на предупреждение

▲ 10230 Verilog HDL assignment warning at lab1.sv(16): truncated value with size 4 to match size of target (1)

□ Посмотрите синтезированную пакетом схему (Tools=>Netlist Viewers=>RTL Viewer). Схема должна быть похожа на приведенную

ниже.

- □ Осуществите функциональное моделирование:
 - ✓ Создайте файл VWF (File=>New=>University Program VWF).
 - ✓ Сохраните его под именем lab1
 - ✓ Выберите входы, выходы и контрольные точки (сигнал temp)

Введите временные диаграммы как показано ниже. 0 ps 80.0 ns 160.0 ns 240.0 ns 320.0 ns 400.0 ns 480.0 ns 560.0 ns 640.0 ns 720.0 ns 800.0 ns 880.0 ns 960.0 ns Value at Name 0 ps 0 ps B 000 sw0 B 0 B O sw2 B O ΒU temp ВХ led1 led2 ВХ LED on BXX XX LED off B XXXXXX

- □ Запустите функциональное моделирование Simulation=>Run Functional Simulation
- Проверьте, что результаты моделирования соответствуют приведенному ниже рисунку.

- □ Задайте выводы СБИС:
 - ✓ Assignments=>Pin Planer
- □ Выполните полную компиляцию проекта Processing=>Start Compilation
- □ Откройте программатор и осуществите конфигурирование СБИС: Tools=>Programmer
 - Установите средство конфигурирования
 - ✓ Укажите конфигурационный файл
 - ✓ Выберите опцию Program/Configure и нажмите кнопку Start
- □ Проверьте работу проекта на плате.

Упражнение 1 завершено