Supplementary Figures and Tables

Figure S1. Alginate production and promoter activity of P_{algU} and P_{algD} in PAO1, PAO1-VE2 (*mucE* overexpressed) and PAO1-VE22 (*cupB5* overexpressed). Strains were streaked on PIA plates and cultured overnight at 37°C. For alginate assay, carbencillin (300 μg ml⁻¹) was added to the medium to retain the plasmid. (A) Alginate production was measured after overnight culture. (B) Measurement of the activity of the *algU* promoter using pLP170-P_{algU} in different strains. The P_{algU} promoter was inserted into a pLP170 vector containing the promoterless *lacZ* gene. The P_{algU}-lacZ fusion in pLP170 was transferred into the respective strains via triparental conjugation. β-galactosidase activity was measured using the Miller assay as described in Experimental Procedures. (C) Measurement of activity of the *algD* promoter in different strains containing pLP170-P_{algD}.

Figure S2. CupB5 peptides do not relieve RseB inhibition of RseA cleavage by DegS. Rates of cleavage of *E. coli* RseA^{peri} (20 μ M) by DegS (0.5 μ M trimer) and YYF peptide (20 μ M). When present, the concentration of RseB dimer was 25 μ M and the concentrations of CupB5 peptides were 480 μ M.

Figure S3. The CupB5 GYYYTVV motif is found in many orthologs in sequenced strains of *P. aeruginosa*. A total of 22 putative *Pseudomonas* orthologs of CupB5 was obtained from www.pseudomonas.com. Homology was compared using the ClustalW algorithm of MacVector software. Shown is a small portion of the CupB5 amino-acid sequence containing the GYYYTVV motif when present. PA: *P. aeruginosa*; Protegens: *P. protegens*; Pdentrifi: *P. dentrificans*; and Psyringae: *P. syringae pv. Phaseolicola. P. aeruginosa* PA7 has two copies of *cupB5* in its genome, *P. protegens* CHA0 has four copies, and strain *P. protegens* Pf-5 has two copies.

Supplementary Table S1. Truncations of CupB5 to identify the signal that activates alginate production.

Strains	C-terminal	Phenotype
HA- <i>cupB5</i> (1018)-His -PAO1	-NIWH ₆	Mucoid
HA- <i>cupB5</i> (1015)-His -PAO1	-DYGH ₆	Mucoid
HA-cupB5(585aa)-His -PAO1	$-GSGH_6$	Mucoid
HA-cupB5(531aa)-His-PAO1	-GPAH ₆	Mucoid
HA-cupB5(520aa)-His-PAO1	-SYYH ₆	Mucoid
HA-cupB5(510aa)-His-PAO1	-YVLH ₆	Mucoid
HA-cupB5(507aa)-His-PAO1	-DGLH ₆	Mucoid
HA-cupB5(504aa)-His-PAO1	-KNLH ₆	Mucoid
HA-cupB5(497aa)-His-PAO1	-AQLH ₆	Mucoid
HA-cupB5(491aa)-His-PAO1	-TVVH ₆	Mucoid
HA-cupB5(490aa)-His-PAO1	-YTVH ₆	Non-mucoid
HA-cupB5(489aa)-His-PAO1	-YYTH ₆	Non-mucoid
HA-cupB5(488aa)-His-PAO1	-YYYH ₆	Non-mucoid
HA-cupB5(483aa)-His-PAO1	-YVSH ₆	Non-mucoid
HA-cupB5(404aa)-His-PAO1	-VNWH ₆	Non-mucoid
HA-cupB5(353aa)-His-PAO1	-GTWH ₆	Non-mucoid
HA-cupB5(231aa)-His-PAO1	-LNFH ₆	Non-mucoid
HA- <i>cupB5</i> (176aa)-His-PAO1	-YRFH ₆	Non-mucoid
HA- <i>cupB5</i> (144aa)-His-PAO1	-VLFH ₆	Non-mucoid
HA- <i>cupB5</i> (135aa)-His-PAO1	-QVFH ₆	Non-mucoid
HA-cupB5(132aa)-His-PAO1	-ANGH ₆	Non-mucoid

Supplementary Table S2. Strains and plasmids used in this study

Strains and plasmids	Phenotype and genotype	Source or reference
P. aeruginosa strains		
PAO1	Non-mucoid, prototroph	P. Phibbs ^a
PAO1-VE2	PAO1 TA flanked aacC1 (Gm ^R) inserted upstream of mucE (PA4033), mucoid	(Qiu et al., 2007)
PAO1-VE22	PAO1 TA flanked aacC1 (Gm ^R) inserted upstream of cupB5 (PA4082), mucoid	This study
PA14	Non-mucoid, prototroph	F. Ausubel ^b
FRD2	Non-mucoid, derived from mucA22 strain FRD1	(Olson and Ohman, 1992)
CF3715	Non-mucoid, clinical strain	D. Speert [°]
CF4009	Non-mucoid, clinical strain	D. Speert [°]
CF2	Non-mucoid, mucA mutant, algU wild type, derived from clinical mucoid strain	(Yin et al., 2013a)
CF14	Non-mucoid, mucA mutant, algU mutant, derived from clinical mucoid strain	(Yin <i>et al.</i> , $2013b$)
CF17	Non-mucoid, mucA mutant, algU wild type, derived from clinical mucoid strain	(Y in et al., $2013b$)
CF4349	Non-mucoid, mucA mutant, algU wild type, derived from clinical mucoid strain	(Y in et al., $2013b$)
$PAO1 \triangle algW$	PAO1 algW::tet ^R , nonmucoid	(Qiu et al., 2007)
$PAO1 \triangle mucP$	PAO1 mucP::tet ^R , nonmucoid	(Qiu et al., 2007)
$PAO1 \triangle clpX$	PAO1 $clpX$::Gm R	(Qiu et al., 2008b)
PAO1 $\triangle clpP$	PAO1 $clpP$::Gm R	(Qiu et al., 2008b)
PAO1 $\triangle algU$	PAO1 with in-frame deletion of $algU$	(Qiu <i>et al.</i> , 2007)
PAO1 $\triangle algD$	PAO1 with in-frame deletion of algD	This study
E. coli strains		
TOP10	DH5a derivative	Invitrogen
SM10/1 pir	thi thr leu tonA lacY supE rec $A :: RP4-2-Tc :: Mu$ lpirR6K Km R	Laboratory strain
Plasmids		
pFAC	Mini-himarI mariner transposon with a selectable marker $\operatorname{Gm}^R\operatorname{Ap}^R$	(Wong and Mekalanos, 2000)

pRK2013	Km ^R <i>Tra Mob CoIE1</i>	(Figurski and Helinski, 1979)
pHERD 20T	pUCP20T P_{lac} replaced by fragment of $araC$ - $P_{\rm BAD}$ cassette	(Qiu et al., 2008a)
pLP170	8.3-kb, lacZ, ApR, multiple cloning site	Passador Lab ^d
PHERD 20T-HA-cupB5-His	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (585	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (531	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (520	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (510	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (507	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (504	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (497	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (491	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (490	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (489	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (488	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (483	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (404	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (353	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (231	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (176	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (144	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA-cupB5 (135	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
PHERD 20T-HA- <i>cupB5</i> (132	cupB5 (PA4082) from PAO1 in pHERD20T EcoRI/HindIII	This study
pEX100- $\Delta algW$	A 1.4-kb $algW$ -flanked fragment with in-frame deletion of $algW$ in pEX100 NotI	(Qiu et al., 2007)
$\mathrm{pLP170\text{-}P}_{algW}$	Promoter of algW (PA4446) from PAO1 in pLP170 EcoRI/HindIII	(T. Ryan Withers et al., 2013)
	9	

(T. Ryan Withers et al.,	(T. Ryan Withers et al.,
Promoter of algU (PA0762) from PAO1 in pLP170 EcoRI/HindIII	Promoter of algD (PA3540) from PAO1 in pLP170 EcoRI/HindIII
${ m pLP170} ext{-}{ m P}_{algU}$	${ m pLP170-P}_{algD}$

al., 2013) al., 2013)

University of British Columbia, CA; ^dUniversity of Rochester, USA.

^a, East Carolina University, USA; ^b, Harvard Medical School, USA; ^c,

References:

- Figurski D.H., Helinski D.R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. *Proc Natl Acad Sci USA* **76**: 1648-1652.
- Olson J.C., Ohman D.E. (1992). Efficient production and processing of elastase and LasA by *Pseudomonas aeruginosa* require zinc and calcium ions. *J Bacteriol* **174**: 4140-4147.
- Qiu D., Damron F.H., Mima T., Schweizer H.P., Yu H.D. (2008a). PBAD-based shuttle vectors for functional analysis of toxic and highly regulated genes in *Pseudomonas* and *Burkholderia spp*. and other bacteria. *Appl Environ Microbiol* 74: 7422-7426.
- Qiu D., Eisinger V.M., Head N.E., Pier G.B., Yu H.D. (2008b). ClpXP proteases positively regulate alginate overexpression and mucoid conversion in *Pseudomonas aeruginosa*. *Microbiology* **154**: 2119-2130.
- Qiu D., Eisinger V.M., Rowen D.W., Yu H.D. (2007). Regulated proteolysis controls mucoid conversion in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A* 104: 8107-8112.
- Withers T.R., Damron F.H., Yin Y., Yu H.D. (2013). Truncation of type IV pilin induces mucoidy in *Pseudomonas aeruginosa* strain PAO579. *Microbiology Open* (accepted).
- Wong S.M., Mekalanos J.J. (2000). Genetic footprinting with mariner-based transposition in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A* **97**: 10191-10196.