Normal Forms

Bilinear

Travelling Wave

Solitary Wave Families in Two Non-Integrable Models Using Reversible Systems Theory

Jonathan Leto

Overview

Normal Forms

Travelling Wave

Definitions

- Background
- Literature Review
- Method of Solution
- The Generalized Pochammer-Chree Equations
- A Generalized Microstructure Equation

Reversible

System

Normal Forms

Travelling Wave

Reversible Dynamical System (looss & Adelmeyer)

Consider

$$\frac{dz}{dt} = F(z; \mu), z \in \mathbb{R}^n, \mu \in \mathbb{R}$$
 (1)

where

$$F\left(0;0\right) =0$$

. If there exists a unitary map

$$S: \mathbb{R}^n \mapsto \mathbb{R}^n, S \neq I$$

such that

$$F(Sz; \mu) = -SF(z; \mu)$$

for all z and μ then (1) is a reversible system.

Solitary Wave

Normal Forms

Travelling Wave

Families of Solitary Waves

Here we will use the term solitary wave or "soliton" to mean a pulse-like solution to an evolution equation. For example,

$$A(z) = \ell \operatorname{sech}^2 kz \tag{2}$$

is a two-parameter family of solitary waves.

where k and ℓ are parameters which determine the speed and the height of the wave.

0 10, 110,

Reversible System

Background

Normal Forms

Bilinear

....

Literature ixevie

GPC

Travelling Wave

11010111116 1101

Result

GP(

Normal Form Theory

After a nonlinear change of variables (looss & Adelmeyer) one may put the Center Manifold into Normal Form.

Two-Dimenional Center Manifold

- $\lambda_{1-4} = 0, 0, \pm \lambda, \lambda \in \mathbb{R}$
- $Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$

Four-Dimenional Center Manifold

- $\lambda_{1-4} = 0, 0, \pm i\omega, \omega \in \mathbb{R}$
- $Y = A\zeta_0 + B\zeta_1 + C\zeta_+ + \bar{C}\zeta_- + \Psi(\epsilon, A, B, C, \bar{C})$

where $\zeta_0, \zeta_1, \zeta_+, \zeta_-$ are eigenvectors of the linearized operator.

Definition

Reversible System

Background

Normal Forms Bilinear

Bilinear Functions

Literature Revie

CPC

MS

Travelling Wave

Result

GP(

Properties of Bilinear Functions

A function

$$B: \mathbb{C}x\mathbb{C} \mapsto \mathbb{C}$$

satisfying the following axioms

$$B(x+y,z) = B(x,z) + B(y,z)$$
 (3a)

$$B(\lambda x, y) = \lambda B(x, y) \tag{3b}$$

$$B(x, y + z) = B(x, y) + B(x, z)$$
 (3c)

$$B(x, \lambda y) = \lambda B(x, y) \tag{3d}$$

is called bilinear .

If B(x,y) is bilinear, then $f(y) \equiv B(y,y)$ is invariant under the transformation $y \mapsto -y$ and thus is **reversible**.

Normal Forms

GPC

Travelling Wave

The Generalized Pochammer-Chree Equations

The Generalized Pochammer-Chree Equations govern the propagation of longitudinal waves in elastic rods.

GPC1

$$(u - u_{xx})_{tt} - (a_1 u + a_2 u^2 + a_3 u^3)_{xx} = 0$$
 (4)

GPC2

$$(u - u_{xx})_{tt} - (a_1 u + a_3 u^3 + a_5 u^5)_{xx} = 0$$
 (5)

Background

Normal Forms Bilinear

Literature Rev

Literature Nev

GPC

IVIO

Travelling Wave

Result

MC

Travelling Wave ODE

Let z=x-ct and $u(x,t)=\phi(z)$ to reduce (4) and (5) to the Travelling Wave ODE

$$\phi_{zzzz} - q\phi_{zz} + p\phi = \mathcal{N}_{1,2}[\phi] \tag{6}$$

where

$$p \equiv 0$$

$$q \equiv 1 - \frac{a_1}{c^2}$$

$$L_{pq} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ q/3 & 0 & 1 & 0 \\ 0 & q/3 & 0 & 1 \\ q^2 - p & 0 & q/3 & 0 \end{pmatrix}$$
 (8a)

$$\mathcal{N}_{1} [\phi] = -\frac{1}{c^{2}} \left[3a_{3} \left(2\phi\phi_{z}^{2} + \phi^{2}\phi_{zz} \right) + 2a_{2} \left(\phi_{zz}\phi_{z} + \phi_{z}^{2} \right) \right]$$

$$\mathcal{N}_{2} [\phi] = -\frac{1}{c^{2}} \left[3a_{3} \left(2\phi\phi_{z}^{2} + \phi^{2}\phi_{zz} \right) + 5a_{5} \left(4\phi^{3}\phi_{z}^{2} + \phi^{4}\phi_{zz} \right) \right]$$

Normal Forms

GPC

Travelling Wave

Reversible Form

Denoting $Y = \langle v_1, v_2, v_3, v_4 \rangle^T = \langle \phi, \phi_7, \phi_{77}, \phi_{777} \rangle^T$ equation (6) can be written

$$\frac{dY}{dz} = L_{pq}Y - G_{1,2}(Y,Y) \tag{9}$$

where

$$L_{pq} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ q/3 & 0 & 1 & 0 \\ 0 & q/3 & 0 & 1 \\ q^2 - p & 0 & q/3 & 0 \end{pmatrix}$$

$$\textit{G}_{1,2}(\textit{Y},\textit{Y}) = \left\langle 0,0,0,-\mathcal{N}_{1,2}\left(\textit{Y},\textit{Y}\right)\right\rangle^{\textit{T}}$$

Normal Forms

GPC

Travelling Wave

Near C_0 : Normal Form

The eigenvalues are $\lambda_{1,4}=0,0,\pm\lambda,\ \lambda\in\mathbb{R}$, We write the Center Manifold

$$Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B) \tag{10}$$

with corresponding normal form

$$\frac{dA}{dz} = B \tag{11a}$$

$$\frac{dB}{dz} = b\epsilon A + \tilde{c}A^2 \tag{11b}$$

where ϵ measures the perturbation about C_0 and

$$\zeta_0 = \langle 1, 0, -q/3, 0 \rangle^T \tag{12a}$$

$$\zeta_1 = \langle 0, 1, 0, -2q/3 \rangle^T \tag{12b}$$

How do we determine the coefficients b and \tilde{c} ?

Normal Forms

GPC

Travelling Wave

Finding Coefficients Of The Normal Form

When you follow two separate chains of thought, Watson, you will find some point of intersection which should approximate the truth. - Sir Arthur Conan Doyle

By computing $\frac{dY}{dz}$ in two ways and comparing the coefficients of each term in the normal form, we find systems of equations which determine each coefficient. For example, to find \tilde{c} , we compare $\mathcal{O}(A^2)$ terms.

Method 1

Use the Center Manifold

$$Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$$

Two Ways to Compute $\frac{dY}{dz}$

in the reversible system

$$\frac{dY}{dz} = L_{pq}Y - G_{1,2}(Y,Y)$$

and repetedly use the bilinear properties of $G_{1,2}$ to simplify.

J.A. Leto

O VEI VIEV

Reversible System

Background Normal Forms

Normal Forms
Bilinear
Functions

Literature Revi

GPC

Travelling Wave

GPC MS

Overview

Reversible System Solitary Way

Background Normal Forms Bilinear Functions

Literature Revi

GPC

MS

Travelling Wave

Result

Two Ways to Compute $\frac{dY}{dz}$

Method 1

Use the Center Manifold

$$Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$$

in the reversible system

$$\frac{dY}{dz} = L_{pq}Y - G_{1,2}(Y,Y)$$

and repetedly use the bilinear properties of $G_{1,2}$ to simplify.

where

Method 2

Differentiate the Center Manifold

$$Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$$

and use the Normal Form

$$\frac{dA}{dz} = B$$

$$\frac{dB}{dz} = b\epsilon A + \tilde{c}A$$

to simplify all derivatives.

$$\Psi(\epsilon, A, B) = \epsilon A \Psi_{10}^1 + \epsilon B \Psi_{01}^1 + A^2 \Psi_{20}^0 + AB \Psi_{11}^0 + B^2 \Psi_{02}^0 + \cdots$$

Finding \tilde{c}

Matching $\mathcal{O}(A^2)$ terms in each method gives us the two systems of equations

GPC 1

$$\tilde{c}\zeta_1 = L_{0q}\Psi^0_{20} - G_1(\zeta_0, \zeta_0)$$

Let $\Psi_{20}^0 = \langle x_1, x_2, x_3, x_4 \rangle^T$ which implies

$$0 = x_{2}$$

$$\tilde{c} = \frac{q}{3}x_{1} + x_{3}$$

$$0 = \frac{q}{3}x_{2} + x_{4} \implies x_{4} = 0$$

$$-\frac{2q}{3}\tilde{c} = \frac{q}{3}\left(\frac{q}{3}x_{1} + x_{3}\right) + \frac{q}{3c^{2}}\left(3a_{3} + 5a_{5}\right)$$

$$= \frac{q}{3}\tilde{c} + \frac{q}{3c^{2}}a_{3}$$

$$\implies \tilde{c} = -\frac{a_3}{3c^2}$$

Travelling Wave

Finding \tilde{c}

Matching $\mathcal{O}(A^2)$ terms in each method gives us the two systems of equations

GPC 1

$$\tilde{c}\zeta_{1} = \mathit{L}_{0q}\Psi_{20}^{0} \, - \, \mathit{G}_{1} \, \left(\zeta_{0}, \, \zeta_{0}\right)$$

Let
$$\Psi^0_{20} = \langle x_1, x_2, x_3, x_4 \rangle^T$$
 which implies

$$\bar{c} = \frac{q}{3}x_1 + x_3$$

$$0 = \frac{q}{3}x_2 + x_4 \implies x_4 = 0$$

$$-\frac{2q}{3}\bar{c} = \frac{q}{3}\left(\frac{q}{3}x_1 + x_3\right) + \frac{q}{3c^2}\left(3a_3 + 5a_5\right)$$

$$= \frac{q}{5}\bar{c} + \frac{q}{23}a_3$$

$$\implies \tilde{c} = -\frac{a_3}{3c^2}$$

GPC 2

$$\tilde{c}\zeta_1 = L_{0q}\Psi^0_{20} - G_2(\zeta_0, \zeta_0)$$

Letting
$$\Psi^0_{20} = \left< x_1^{}, x_2^{}, x_3^{}, x_4^{} \right>^T$$
 yields the equations

$$0 = x_{2}$$

$$\bar{c} = \frac{q}{3}x_{1} + x_{3}$$

$$0 = \frac{q}{3}x_{2} + x_{4} \implies x_{4} = 0$$

$$-\frac{2q}{3}\bar{c} = \frac{q}{3}\left(\frac{q}{3}x_{1} + x_{3}\right) + \frac{q}{3c^{2}}\left(3a_{3} + 5a_{5}\right)$$

$$= \frac{q}{3}\bar{c} + \frac{q}{3c^{2}}\left(3a_{3} + 5a_{5}\right)$$

$$\implies \tilde{c} = -\frac{1}{3c^2} \left(3a_3 + 5a_5 \right)$$

Overview

Reversible System Solitary Way

Background Normal Forms Bilinear

Literature Pevie

Literature Kevi

GPC

MS

Travelling Wave

, and

GPC

Normal Form Near C₀

Therefore the Normal Form near C_0 is **GPC 1 GPC 2**

$$\begin{array}{lll} \frac{dA}{dz} & = & B & \frac{dA}{dz} & = & B \\ \frac{dB}{dz} & = & -\frac{\epsilon}{q}A - \frac{a_3}{c^2}A^2 & \frac{dB}{dz} & = & -\frac{\epsilon}{q}A - \frac{1}{3c^2}\left(3a_3 + 5a_5\right)A^2 \end{array}$$

These equations admit homoclinic solutions near C_0 of the form

$$A(z) = \ell \mathrm{sech}^2(kz)$$

Normal Forms

GPC

Travelling Wave

Finding k and ℓ

To determine k and ℓ , we write the Normal Form as a single second order equation, use our expression for A(z) and note the hyperbolic identity $\operatorname{sech}^2(z) - \operatorname{sech}^4(z) = \operatorname{sech}^2(z) \tanh^2(z)$ which implies

GPC 1

GPC 2

$$k = \sqrt{\frac{-\epsilon}{4q}} \qquad k = \sqrt{\frac{-\epsilon}{4q}}$$

$$\ell = \frac{-3\epsilon c^2}{2qa_3} \qquad \ell = \frac{-9\epsilon c^2}{2q(3a_3 + 5a_5)}$$

Normal Forms

MS

Travelling Wave

A Generalized Microstructure PDF

One dimensional wave propagation in microstructured solids has recently been modeled [?] by an equation

$$v_{tt} - bv_{xx} - \frac{\mu}{2} \left(v^2 \right)_{xx} - \delta \left(\beta v_{tt} - \gamma v_{xx} \right)_{xx} = 0$$
 (20)

Normal Forms

Bilinear

Library David

Literature ivevie

Travelling Wave

Travelling vvav

GPC MS

Travelling Wave ODE

Let z=x-ct and $u(x,t)=\phi(z)$ to reduce to the Travelling Wave ODE

$$\phi_{zzzz} - q\phi_{zz} + p\phi = \mathcal{N}[\phi] \tag{21}$$

where

$$\mathcal{N}\left[\phi\right] = -\Delta_1 \phi_z^2 - b\Delta_1 \phi \phi_{zz}$$

$$\Delta_1 = \frac{\mu}{\delta \left(\beta c^2 - \gamma\right)}$$
(22)

Solitary Wave Families in Two Non-Integrable Models Using Reversible Systems Theory

J.A. Leto

Reversible

Normal Forms

Travelling Wave

GPC MS

Results: The Generalized Pochammer-Chree Equations

(23)

0 101 11011

D C 111

Reversible System

Solitary Wa

Backgrour

Normal Forms

ilinear

Literature Revie

0. 0

IVIS

Travelling Wave

Results

MS

Results: A Generalized Microstructure PDE