Гимназија "Бора Станковић" Ниш, Србија

МАТУРСКИ РАД

Предмет: Математика

Тема: Логаритам *једначине и неједначине*

Ученик: Лука Нешић, IV/6 Професор: Ненад Тотић

Садржај

1	Увод						
	1.1	Дефиниција логаритма	3				
	1.2	Ток и график функције	3				
	1.3	Антилогаритам	3				
2	Лог	Логаритамске једнакости					
	2.1	Логаритам степена основе	4				
	2.2	Логаритам производа	4				
	2.3	Логаритам количника	4				
	2.4	Логаритам степена броја	5				
	2.5	Промена основе логаритма	5				
3	Најчешће логаритамске основе						
	3.1	Основа 10	6				
	3.2	Основа 2	6				
	3.3	Основа е	7				
4	Бро	на вредност логаритма	8				
	4.1	Формула	8				
	4.2	Верижни разломак	8				
	4.3	Логаритамске таблице	9				
	4.4	Логаритмар	9				
5	Раз	10	10				
	5.1	Комплексни логаритам	10				
	5.2	Кватерниони	11				
	5.3	Извод	12				
	5.4	Интеграл	12				
	5.5	Лимес	12				
	5.6	Бенфордов закон	12				
6	Зад	аци и решења	13				
	6.1	Једначине	13				
		6.1.1 ФИТ	13				
		6.1.2 Једначина 2	13				
		6.1.3 Jjjj (yafe)	14				
		6.1.4 Četiri četvorke	14				
		6.1.5 Sveska 7	15				
		6.1.6 Beskonačni koren	15				
		6.1.7 Нет 3	16				
		6.1.8 Изумирање	16				
		6.1.9 Питагора	17				
	6.2	Неједначине	18				
		6.2.1 Sveska 11	18				
		6.2.2 Sveska 9	18				
		6.2.3 Sveska 10	19				

		6.2.4	Net 1	19			
		6.2.5	Net 2	20			
		6.2.6	Net 6	21			
		6.2.7	Границе	22			
	6.3	Кратк	ки примери	23			
		6.3.1	Земљотрес	23			
		6.3.2	Децималне цифре	23			
		6.3.3	Полураспад јода	23			
		6.3.4	Геометријски низ	23			
		6.3.5	Извод	24			
		6.3.6	i на i	24			
		6.3.7	$\ln(-z)$	24			
		6.3.8	Прво, па 1	24			
	6.4	Ручни	ı рад	25			
		6.4.1	Аналогни степен	25			
		6.4.2	Аналогни квадратни корен	25			
		6.4.3	ln 3	26			
7	Одреднице 27						
-	7.1		ратура				
	7.2						
	7.3	Линко	•	27 28			

1 Увод

Овај рад се бави *погаритамском функцијом*, једном од најважнијох функција у математици. Због своје важности, заједно са експоненцијалном, тригонометријским и њима инверзним функцијама, спада у групу *елементарних* функција. Описане су њене особине и дати пример њене употребе, као и задаци са решењама (укупно 27).

Сама реч логаритам потиче од грчких речи $\lambda \acute{o}\gamma o\varsigma$ (логос) и $\alpha \rho \iota \theta \mu \acute{o}\varsigma$ (аритмос), са значењем "одговарајући број".

1.1 Дефиниција логаритма

Функција

$$y = \log_b x \tag{1}$$

је решење по у једначине

$$x = b^y$$
,

где је b основа (база) логаритма, а x аргумент. (Изговара се "y је једнако логаритам од x за основу b" или краће "y је логаритам b од x".)

1.2 Ток и график функције

Функција је у скупу реалних бројева \mathbb{R} дефинисана за x>0 и $b>0 \land b\neq 1$. Функција је монотона: за b>1 функција је растућа, док за b<1 функција је опадајуће. Због тога важи бијекција: $\log_b u = \log_b v \Leftrightarrow u=v$. Функција има једну нулу, увек за x=1. Када $x\to 0$, онда $y\to -\infty$ за b>1, односно, $y\to +\infty$ за b<1.

Слика 1: График логаритамске функције $y = \log_b x$.

1.3 Антилогаритам

Инверзна функција логаритму је обично степеновање основе логаритма аргументом и зове се антилогаритам

$$\operatorname{antilog}_b x = \log_b^{-1} x = b^x \tag{2}$$

Из саме дефиниције важи

$$\log_b(\operatorname{antilog}_b x) = \operatorname{antilog}_b(\log_b x) = x \tag{3}$$

2 Логаритамске једнакости

За логаритамску функцију важе разне *једнакости* које се користе за упрошћивање и прилагођавање израза приликом решавања проблема и задатака.

2.1 Логаритам степена основе

По самој дефиницији логаритма, ако је $x = b^a$, онда је

$$\log_b b^a = a (4)$$

Ако ставимо да је $1 = b^0$, односно, $b = b^1$, добијамо да је

$$\log_b 1 = 0 \qquad \qquad \log_b b = 1 \tag{5}$$

Такође је битна једнакост

$$b^{\log_b x} = x \tag{6}$$

која произилази из саме дефиниције логаритма и антилогаритма.

2.2 Логаритам производа

Ако је

$$u = \log_b x \wedge v = \log_b y \iff x = b^u \wedge y = b^v$$

онда је, због једнакости (4)

$$x \cdot y = b^u b^v = b^{u+v} \quad \Rightarrow \quad \log_b(x \cdot y) = \log_b b^{u+v} = u + v.$$

Одавде је

$$\log_b(x \cdot y) = \log_b x + \log_b y \ . \tag{7}$$

Из ове једнакости се може извести и формула за логаритам факторијела броја. Ако је

$$n! = \prod_{k=1}^{n} k \quad \Rightarrow \quad \log(n!) = \sum_{k=1}^{n} \log k.$$

(Занимљиво је да је $\log(1 \cdot 2 \cdot 3) = \log 1 + \log 2 + \log 3 = \log(1 + 2 + 3)$.)

2.3 Логаритам количника

Слично логаритму производа, ако је

$$u = \log_b x \wedge v = \log_b y \iff x = b^u \wedge y = b^v,$$

онда је, због једнакости (4)

$$x/y = b^u b^{-v} = b^{u-v} \implies \log_b(x/y) = \log_b b^{u-v} = u - v.$$

Одавде је

$$\log_b(x/y) = \log_b x - \log_b y \quad . \tag{8}$$

Из ове једнакости следи

$$\log_b(1/x) = -\log_b x \tag{9}$$

2.4 Логаритам степена броја

Ако је

$$y = x^n = \underbrace{x \cdot x \cdot \cdots x}_{n \text{ nyra}},$$

онда, из једнакости за логаритам производа (7), следи да је

$$\log_b y = \log_b(\underbrace{x \cdot x \cdot \cdot \cdot x}_{n \text{ HyTa}}) = \underbrace{\log_b x + \log_b x + \dots + \log_b x}_{n \text{ HyTa}} = n \log_b x,$$

одакле је

$$\log_b x^n = n \log_b x \tag{10}$$

Из ове једнакости следи једнакост

$$\log_b \sqrt[n]{x} = \frac{1}{n} \log_b x \tag{11}$$

као и једнакост

$$x^y = b^{y \log_b x} \tag{12}$$

2.5 Промена основе логаритма

Ако је

$$y = \log_a x \iff x = a^y,$$

онда је

$$\log_b x = \log_b a^y = y \log_b a = \log_a x \cdot \log_b a.$$

Одавде је

$$\log_a x = \frac{\log_b x}{\log_b a} \ . \tag{13}$$

Из ове једнакости, ако ставимо да је x = b, се добија и једнакост

$$\log_a b \cdot \log_b a = 1 \tag{14}$$

Из једнакости (4) и (13), ако ставимо да је $a = b^n$, следи једнакост

$$\log_{b^n} x = \frac{1}{n} \log_b x \tag{15}$$

Одавде, ако ставимо да је n = -1, следи

$$\log_{1/b} x = -\log_b x \tag{16}$$

а узевши у обзир и једнакост (9) добија се

$$\log_{1/b} x = \log_b(1/x) \ . \tag{17}$$

Треба бити опрезан код коришћења свих ових једнакости, нарочито код степеновања, и увек треба проверити опсег у коме се рачуна. На пример, из једнакости (10), следи $\log x^2 = 2\log x$, што је исправно за x > 0, међутим, $\log x^2 = 2\log |x|$ за било које $x \neq 0$.

3 Најчешће логаритамске основе

3.1 Основа 10

У инжењерству се најчешће користи логаритам са основом 10, зове се *декадни* или заједнички логаритам, и пише се

$$y = \log_{10} x.$$

Понекад се може видети и само

$$y = \log x$$

без навођења основе, али треба обратити пажњу на контекст. Ако је неки инжењерски текст у питању, нејвероватније се мисли на основу 10.

Декадни логаритам је погодан и када се користи, такозвани *научни* или *инжењерски* запис броја. На пример, *Планкова константа* (Max Planck) износи

$$h = 6,62607015 \times 10^{-34} \,\mathrm{J/Hz}$$

која има декадни логаритам

$$\log_{10} h = \log_{10}(6,62607015) - 34.$$

У физици се за мерење нивоа сигнала или звука користи јединица бел (B), али је чешће у практичној употреби 10 пута мања јединица децибел (dB), односно, $1 \, \mathrm{B} = 10 \, \mathrm{dB}$. Ниво сигнала L, који зависи од односа измерене снаге P и референтне снаге P_0 , изражен у децибалима износи

$$L = 10 \log_{10} \left(\frac{P}{P_0} \right) \, \mathrm{dB}.$$

Како се у акустици узима да је референтна снага $P_0=10^{-12}\,\mathrm{W}$, могло би се писати да је ниво звука у децибелима

$$L = 10 \log_{10}(P) - 120.$$

Нормалан говор је око $50\,\mathrm{dB}$, звук мотора млазног авиона при полетању је $150\,\mathrm{dB}$, а смртоносан је звук од $240\,\mathrm{dB}$ и више. Звучни топ Genasys LRAD има ниво звука око $160\,\mathrm{dB}$, што значи да је 10^{11} пута моћнији од говора.

Слична формула се користи и за одређивање јачине земљотреса, или pH вредности $pH = -\log[H^+]$.

3.2 Основа 2

У информатици се често користи логаритам са основом 2, који се зове бинарни логаритам, и пише се

$$y = \log_2 x$$
.

Користи се у комбинаторици, као за одређивање количине информација, односно, потербног броја битова меморије за смештање неког податка. Ако се зна да ће у меморију бити уписивани цели бројеви од 0 до n, онда је потребно резервисати

$$bits = \lfloor \log_2(n) \rfloor + 1 \tag{18}$$

битова меморије, где $\lfloor x \rfloor$ представља највећи сео број који је мањи или једнак x (изговара се "највеће цело од x"). На пример, ако ће у одређеној меморији највећи број бити милион, онда је за то потребно резервисати

$$bits = |\log_2(1\,000\,000)| + 1 = |19,9315685693| + 1 = 19 + 1 = 20$$

битова меморије. Највећи број који може стати у ових резервисаних 20 битова меморије је бинарни број који има 20 јединица и износи

Како су и реални бројеви у меморији представљени као уређени парови бинарних бројева у облику x = (mantissa, exponent), са значењем

$$x = mantissa \times 2^{exponent}$$
.

бинарни логаритам би био израчунат као

$$\log_2(x) = \log_2(mantissa) + exponent,$$

ако је mantissa > 0, иначе је недефинисан.

Бинарни логаритам се користи и у атомској физици. Време полураспада $t_{1/2}$ је време потребно да се распадне половина језгара атома неке материје. Ако имамо почетан број језгара N_0 и број језгара N_t након времена t, њихов однос се може представити формулом

$$\frac{N_0}{N_t} = 2^{t/t_{1/2}} \implies \frac{t}{t_{1/2}} = \log_2\left(\frac{N_0}{N_t}\right).$$
 (19)

Ова формула се користи и за одређивање старости стена или фосила.

3.3 Основа е

Ову логаритамску основу је открио Јакоб Бернули (Jacob Bernoulli) када је проучавао *сложену камату* и доказао да *континуална* сложена камата тежи константи

$$\mathbf{e} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n,$$

али је тек Ојлер (Leonhard Euler) одредио њену тачну вредност и дао јој име. Логаритам за ову основу се зове природни логаритам (logarithmus naturalis) и пише се

$$\ln x = \log_{\mathbf{a}} x$$
.

Антилогаритам је експоненцијална функција $\mathbf{e}^x = \exp(x)$, која је позната по томе што је то једина функција чији је први извод једнак самој функцији: $\exp'(x) = \exp(x)$. Бројна вредност се може израчунати формулом

$$\mathbf{e}^x = \exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ . \tag{20}$$

Ако ставимо да је x=1, бројна вредност основе природног логаритма ${\bf e}$ се може одредити

$$\mathbf{e} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$$

$$= 2,7182818284590452353602874713526624977572\dots$$
(21)

са жељеном тачношћу.

4 Бројна вредност логаритма

4.1 Формула

Бројна вредност природног логаритма може бити израчуната помоћу формуле

$$\ln x = \sum_{n=0}^{\infty} \frac{2}{2n+1} \left(\frac{x-1}{x+1}\right)^{2n+1} \tag{22}$$

до жељене тачности. Поступак којим се рачуна $y = \ln x$ са тачношћу ε изгледа овако:

$$r \leftarrow (x-1)/(x+1); \quad k \leftarrow 1; \quad p \leftarrow 2r; \quad q \leftarrow r^2; \quad a \leftarrow p; \quad y \leftarrow a;$$
 понављати док је $|a| > \varepsilon$:
$$k \leftarrow k+2; \quad p \leftarrow p \cdot q; \quad a \leftarrow p/k; \quad y \leftarrow y+a;$$
 (23)

Овим поступком се може израчунати вредност

$$\ln 2 = \frac{2}{1 \cdot 3^1} + \frac{2}{3 \cdot 3^3} + \frac{2}{5 \cdot 3^5} + \frac{2}{7 \cdot 3^7} + \frac{2}{9 \cdot 3^9} + \cdots$$

$$= 0.6931471805599453094172321214581765680755 \dots$$
(24)

као и вредност

$$\ln 10 = \frac{2}{1 \cdot 9^1} + \frac{2}{3 \cdot 9^3} + \frac{2}{5 \cdot 9^5} + \frac{2}{7 \cdot 9^7} + \frac{2}{9 \cdot 9^9} + \dots + 3 \ln 2$$

$$= 2.3025850929\,9404568401\,7991454684\,3642076011\dots$$
(25)

(Видети задатак 6.4.3 на страни 26.) Помоћу њих се могу израчунати бројне вредности бинарног $\log_2 x = \ln x / \ln 2$, односно, декадног $\log_{10} x = \ln x / \ln 10$ логаритма.

4.2 Верижни разломак

Бројна вредност природног логаритма може се израчунати и помоћу верижног разломка

$$\ln(1+x) = \frac{x}{1+\frac{1^2x}{2-1x+\frac{2^2x}{3-2x+\frac{3^2x}{4-3x+\cdots}}}}$$

$$= \frac{x}{1+\prod_{n=1}^{\infty} \frac{n^2x}{n+1-nx}}.$$
(26)

Попут симбола које се користе за суму ' Σ ' или производ ' Π ', Гаус (Johann Carl Friedrich Gauß) је смислио погодан начин за представљање верижних (*ланчаних*) разломака, где симбол 'K' потиче од немачке речи за *прекинути ланац* (*Kettenbruch*). Израз иза овог симбола показује како изгледа *општи члан* верижног разломка.

Ако помоћу ове формуле израчунамо првих 11 конвергената $\ln 2$ као $-\ln(1+x)$, где је x=-1/2, добићемо

$$\ln 2 \approx \frac{1}{2}, \frac{5}{8}, \frac{2}{3}, \frac{131}{192}, \frac{661}{960}, \frac{1327}{1920}, \frac{1163}{1680}, \frac{148969}{215040}, \frac{447047}{645120}, \frac{44711}{64512}, \frac{983705}{1419264}, \dots$$

где је последњи разломак тачан на 5 децимала.

4.3 Логаритамске таблице

Прве таблице логаритама је 1614. године израчунао шкотски математичар Непер (John Napier of Merchiston), које су практично садржале логаритам за основу 1/e, са скалираним аргументом и резултатом, иако сам Непер није знао за константу e. Савременим записом би логаритам из Неперових таблица био дефинисан као

NapLog(x) =
$$10^7 \log_{1/e}(x/10^7) = -10^7 \ln(x/10^7)$$
.

Неколико година касније, 1617. и 1624, енглески математичар Бригс (Henry Briggs) је израчунао таблице декадних логаритама са 14 цифара тачности, које се уз допуне и исправке користе и данас под именом *Бригсове таблице*.

4.4 Логаритмар

Пре појаве дигитрона, за приближно одређивање бројне вредности логаритма, користила се је аналогна механичка справа са неколико лењира звана *логаритмар*.

Слика 2: Шибер.

Лењири имају подеоке са децималном и логаритамском, а често и са синусном и неком другом скалом. Један од лењира је био клизни, те отуда популарно име *шибер* (од немачког *Rechenschieber*). Користи се једноставно, померањем клизача и читањем вредности са одговарајуће скале. (Видети задатке 6.4.1 и 6.4.2.)

Постојале су и кружне варијанте, па и џепне, где је џепни сат са логаритмаром и компасом био "iPhone" XIX и прве половине XX века.

Слика 3: Џепни логаритмар.

Таблице и логаритмари се и данас користе у војсци, као резерва у случају отказивања електронике. Први компјутер ENIAC (Electronic Numerical Integrator And Computer) је направљен 1946. године са наменом да израчуна таблице за војску.

5 Разно

5.1 Комплексни логаритам

Ако у комплексној равни имамо комплексан број $z \in \mathbb{C}$,

Слика 4: Број z у комплексној равни.

он може бити представљен као

$$z = x + iy$$
 правоугле координате,
= $\rho(\cos \theta + i \sin \theta)$ поларне координате.

Из Ојлерове формуле¹

$$\mathbf{e}^{i\theta} = \cos\theta + i\sin\theta \tag{27}$$

следи да је $z = \rho \, \mathbf{e}^{i\theta}$, одакле, из једнакости (7) и (4) се добија

$$\ln z = \ln \rho + i\theta$$
(28)

Пошто је $\rho=|z|=\sqrt{x^2+y^2}\geq 0$, следи да природни логаритам комплексног броја z није дефинисан само за z=0, када је $\ln z=\widetilde{\infty}$. Како је $y/x=\tan\theta$, природни логаритам комплексног броја, представљеног правоуглим координатама може се израчунати

$$\ln(x+iy) = \frac{1}{2}\ln(x^2+y^2) + i\arctan\left(\frac{y}{x}\right), \qquad (29)$$

као и

$$\exp(x+iy) = \mathbf{e}^x \left(\cos y + i\sin y\right) \ . \tag{30}$$

И за комплексне бројеве важи једнакост промене основе (13), тако да за два комплексна броја z и w, где је $z\neq 0, w\neq 0$ и $w\neq 1$, следи $\log_w z=\ln z/\ln w$, где се $\ln z$ и $\ln w$ рачунају помоћу формуле (28), односно, (29). На пример,

$$\log_{2+i}(3+4i) = 2, \qquad \log_i \mathbf{e} = \frac{2}{i\pi}, \qquad \log_2(-4) = 2 + \frac{i\pi}{\ln 2}.$$

Из Ојлерове формуле следи и најлепша формула у историји математике, у којој је употребљено 5 најважнијих математичких константи $(0, 1, \pi, \mathbf{e}, i)$

$$\mathbf{e}^{i\pi} + 1 = 0 \tag{31}$$

где, ако пребацимо 1 на десну страну и логаритмујемо, добијамо једнакост

$$\frac{\ln(-1)}{\sqrt{-1}} = \pi.$$

Ојлерова формула се лако доказује из формуле (20) и сличних формула за $\sin x$ и $\cos x$, које се добијају из Меклореновог реда (Cailean MacLabhruinn): $f(x) = \sum_{n=0}^{\infty} f^{(n)}(0) (x^n/n!)$, где $f^{(n)}$ представља n-ти извод функције f.

5.2 Кватерниони

Попут скупа комплексних бројева \mathbb{C} , који представљају објекте у 2D простору, скуп кватерниона \mathbb{H} , представља објекте у 3D простору. Први их је описао 1843. године ирски математичар Хамилтон (William Rowan Hamilton), те њему у част и ознака скупа \mathbb{H} . У информатици су неизбежни део свега што се дешава у 3D: навигација авиона, подморница, ракета, сателита, небеска и квантна механика, роботика, игре, графика, . . .

Кватернион $q \in \mathbb{H}$ може бити представљен као збир

$$q = s + v \tag{32}$$

који се састоји од *скаларног* дела $s \in \mathbb{R}$ и *векторског* дела $v \in \mathbb{R}^3$, где је

$$v = xi + yj + zk \tag{33}$$

3D вектор са координатама (x, y, z), а где су i, j и k јединични вектори по x, y и z оси, за које важи

$$i^2 = j^2 = k^2 = ijk = -1, \quad ij = k, \quad jk = i, \quad ki = j.$$
 (34)

У скупу кватерниона $\mathbb H$ за операцију множења, уопштено, не важи закон комутације: $ji=-ij=-k,\ kj=-jk=-i,\ ik=-ki=-j.$ Ово је логично кад се стимо да и код *Рубикове коцке* најчешће није свеједно којим редоследом окрећемо странице. Важи *асоцијативност*: $(p\cdot q)\cdot r=p\cdot (q\cdot r).$

Да би q=s+v био *прави* кватернион, мора бити $v\neq 0$, иначе је q обичан реалан број, када се примењују операције и функције из скупа $\mathbb R$. Ако одредимо апсолутну вредност кватерниона

$$\lambda = |v| = \sqrt{x^2 + y^2 + z^2}, \qquad \rho = |q| = \sqrt{s^2 + \lambda^2}$$

која се зове норма, одредимо јединични вектор (unit) векторског дела кватерниона

$$u = \frac{v}{\lambda},$$

који се зове $\mathit{версоp}$ и где је по дефиницији $^2|u|=1$ и $u^2=-1$, као и угао оријентације

$$\varphi = \arccos\left(\frac{s}{\rho}\right),\,$$

можемо добити поларни запис кватерниона

$$q = \rho \left(\cos \varphi + u \sin \varphi\right) = \rho e^{u\varphi}.$$
 (35)

Из свега овога се може добити

$$\ln(q) = \ln \rho + u\varphi \tag{36}$$

И

$$\exp(q) = \mathbf{e}^{s} \left(\cos \lambda + u \sin \lambda\right)$$
 (37)

Остале операције и функције нису тема овог рада, али сабирање и одузимање је уобичајено, код множења треба обратити пажњу на формулу (34) и комутативност, а реципрочна вредност је $q^{-1} = \bar{q}/\rho^2$, где је $\bar{q} = s - v$, конјугована вредност. Тригонометријске и хиперболичне функцихе се могу изразити помоћу експоненцијалне, а њихове инверзне помоћу логаритамске функције.

 $^{^2}$ У скупу \mathbb{H} , $\sqrt{-1}$ има бесконачно решења: сваки кватернион који се налази на *јединичној сфери* је решење $(s=0 \land x^2+y^2+z^2=1)$, односно, сваки версор.

5.3 Извод

Ако је

$$y = \ln x \quad \Rightarrow \quad y' = \frac{1}{x},$$

одакле се, помоћу једнакости (13) и једнакости за извод сложене функције, добија

$$y = \log_b(f(x)) \quad \Rightarrow \quad y' = \frac{f'(x)}{f(x)\ln b}$$
 (38)

Површина фигуре испод функције y=1/x до x-осе, у опсегу од 1 до x износи $\ln x$. Математички записано: $\int_1^x dx/x = \ln x$.

Слика 5: Геометријско значење $\ln x$.

(На слици је $x = \mathbf{e}$, тако да је површина осенчане фигуре једнака 1.)

5.4 Интеграл

Неодређени интеграл природног логаритма је

$$\int \ln x \, dx = x \ln x - x + \text{constant.} \tag{39}$$

5.5 Лимес

Ојлер је доказао да је

$$\ln x = \lim_{n \to \infty} n(\sqrt[n]{x} - 1). \tag{40}$$

5.6 Бенфордов закон

Вероватноћа да почетне цифре неке математичке или физичке константе (као и дужине реке, висине планине, броја становника, стања на рачуну, ...), буду ℓ за бројну основу b, прати такозвани Бенфордов закон (Frank Benford), и износи

$$P(b,\ell) = \log_b \left(1 + \frac{1}{\ell} \right). \tag{41}$$

6 Задаци и решења

6.1 Једначине

6.1.1 ФИТ

⊳ Задатак: Нађи решење једначине

$$\log_2(x-2) + \log_4(x-2) + \log_{16}(x-2) = 7.$$

(Задатак са мог пријемног испита на ФИТ "Метрополитан".)

▶ Решење: Видимо да су основе логаритама степени броја 2, па из једнакости за логаритам степена основе(15) следи

$$\log_2(x-2) + \log_{2^2}(x-2) + \log_{2^4}(x-2) =$$

$$\log_2(x-2) + \frac{1}{2}\log_2(x-2) + \frac{1}{4}\log_2(x-2) =$$

$$\frac{7}{4}\log_2(x-2) = 7,$$

односно, после скраћивања,

$$\log_2(x-2) = 4.$$

Одавде је

$$x - 2 = 2^4 = 16 \quad \Rightarrow \quad x = \boxed{18}.$$

6.1.2 Једначина 2

⊳ Задатак: Reši jednačinu

$$2\log(x) - \log(6 - x) = 0.$$

▶ Решење: Da bi logaritam u jednačini bio definisan mora biti

$$x > 0 \land 6 - x > 0 \Rightarrow 0 < x < 6.$$

Zbog jednakosti (10) možemo pisati

$$\log(x^2) = \log(6 - x)$$

odakle sledi

$$x^2 = 6 - x$$
$$x^2 + x - 6 = 0.$$

Rešavanjem³ kvadratne jednačine

$$x_{1,2} = \frac{-1 \pm \sqrt{1^2 + 4 \cdot 1 \cdot 6}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2},$$

dobijamu rešenja $x_1=2$ i $x_2=-3$, odakle je jedinstveno rešenje

$$x = \boxed{2}$$
.

³U nastavku rada, postupak rešavanja linearne i kvadratne jednačine će biti izostavljen.

6.1.3 Jjjj (yafe)

⊳ Задатак: Reši jednačinu

$$\ln(x) = \ln(15 - x) - \ln(x + 1).$$

► Решење: Jednačina je definisana za

$$x > 0 \land 15 - x > 0 \land x + 1 > 0 \implies 0 < x < 15.$$

Ako zapišemo jednačinu kao

$$\ln(x) + \ln(x+1) = \ln(15 - x)$$

iz jednakosti za logaritam proizvoda (7), možemo pisati

$$\ln(x(x+1)) = \ln(15 - x)$$
$$\ln(x^2 + x) = \ln(15 - x)$$
$$x^2 + x = 15 - x$$
$$x^2 + 2x - 15 = 0$$

Rešavanjem kvadratne jednačine dobijamo 2 rešenja, $x_1 = 3$ i $x_2 = -5$, ali zbog uslova, ostaje jedinstveno

$$x = \boxed{3}$$
.

6.1.4 Četiri četvorke

 \triangleright Задатак: Dokazati da svaki prirodan broj $n \in \mathbb{N}$, može biti predstavljen sa 4 broja 4, pomoću logaritamske funkcije i kvadratnog korena

$$n = \log_{\sqrt{4}/4} \left(\log_4 \underbrace{\sqrt{\sqrt{\cdots \sqrt{4}}}}_{n \text{ korena}} \right).$$

▶ Решење: Како је

$$\frac{\sqrt{4}}{4} = \frac{1}{2} \qquad i \qquad \underbrace{\sqrt{\sqrt{\cdots \sqrt{4}}}}_{n \text{ leaves}} = \mathbf{4}^{(1/2)^n},$$

izraz može biti uprošćen

$$\log_{\sqrt{4}/4} \left(\log_{4} \underbrace{\sqrt{\sqrt{\cdots \sqrt{4}}}}_{n \text{ korena}} \right) = \log_{1/2} \left(\log_{4} 4^{(1/2)^{n}} \right),$$

gde iz jednakosti za logaritam stepena osnove (4), sledi

$$= \log_{1/2}(1/2)^n$$
$$= \boxed{n}.$$

★ Додатак: Davno je u jednom časopisu postavljen sličan zadatak: da se sa što manje istih brojeva, koristeći bilo koju matematičku funkciju, predstavi svaki prirodan broj n. Rešio ga je nobelovac Pol Dirak (Paul Dirac) sa 3 broja 2, čije originalno rešenje izgleda

$$-\log_2 \log_2 \sqrt{\cdots n \cdots \sqrt{2}} = -\log_2 \log_2 2^{2^{-n}} = -\log_2 2^{-n} = n.$$

6.1.5 Sveska 7

 \triangleright Задатак: Nadi x ako je

$$x^{\log x} = 1000x^2.$$

▶ Решење: Ako logaritmujemo obe strane dobijamo

$$\log x^{\log x} = \log(1000x^2)$$
$$\log x \log x = \log 1000 + \log x^2$$
$$\log^2 x = 3 + 2\log x,$$

gde, posle smene $t = \log x$, dobijamo kvadratnu jednačinu

$$t^2 - 2t - 3 = 0$$

čija su rešenja $t_1 = 3$ i $t_2 = -1$, odakle su

$$x_1 = 10^3 = \boxed{1000}$$
 i $x_2 = 10^{-1} = \boxed{\frac{1}{10}}$.

6.1.6 Beskonačni koren

⊳ Задатак: Odredi vrednost

 $x = \ln \left(\mathbf{e} \sqrt[2]{\mathbf{e} \sqrt[3]{\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[5]{\cdots}}}} \right).$

▶ Решење: Kako je ln e = 1 i koristeći jednakost za logaritam proizvoda (7) i jednakost za logaritam korena (11), možemo pisati

$$x = 1 + \frac{1}{2} \ln \left(\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[4]{\cdots}}} \right)$$

$$= 1 + \frac{1}{2} \left(1 + \frac{1}{3} \ln \left(\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[4]{\cdots}} \right) \right)$$

$$= 1 + \frac{1}{2} \left(1 + \frac{1}{3} \left(1 + \frac{1}{4} \ln \left(\mathbf{e} \sqrt[5]{\cdots} \right) \right) \right)$$

$$= 1 + \frac{1}{2} \left(1 + \frac{1}{3} \left(1 + \frac{1}{4} \ln \left(\mathbf{e} \sqrt[5]{\cdots} \right) \right) \right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5} + \cdots$$

$$= \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$$

Ako pogledamo formulu (21) na strani 7, možemo videti da je ovaj zbir jednak

$$x = \boxed{\mathbf{e} - 1},$$

jer iz sume za izračunavanje e nedostaje nulti član 1/0! = 1.

6.1.7 Her 3

⊳ Задатак: Одреди *п*³ ако је

$$\log_{5n} 30\sqrt{5} = \log_{4n} 48.$$

▶ Решење: Пребацимо логаритме у основу 6, јер је 6 изд за 30 и 48 из израза

$$\frac{\log_6 30\sqrt{5}}{\log_6 5n} = \frac{\log_6 48}{\log_6 4n}$$

$$\frac{\log_6 6 + \log_6 5 + \frac{1}{2}\log_6 5}{\log_6 5 + \log_6 n} = \frac{\log_6 6 + \log_6 8}{\log_6 4 + \log_6 n}$$

$$\frac{1 + \frac{3}{2}\log_6 5}{\log_6 5 + \log_6 n} = \frac{1 + 3\log_6 2}{2\log_6 2 + \log_6 n}$$

Када извршимо смену $n=6^t$, односно, $t=\log_6 n$ и $u=\log_6 2$ и $v=\log_6 5$, добијамо

Одавде је

$$n^3 = 6^{3t} = \boxed{36}.$$

6.1.8 Изумирање

 \triangleright Задатак: Нађи n ако је

$$\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \log_5 6 \cdots \log_n (n+1) = 10.$$

▶ Решење: Ако пребацимо све логаритме у основу 2, добијамо

$$\log_2 3 \cdot \frac{\log_2 4}{\log_2 3} \cdot \frac{\log_2 5}{\log_2 4} \cdot \frac{\log_2 6}{\log_2 5} \cdots \frac{\log_2 (n+1)}{\log_2 n} = 10.$$

Видимо да ће, након масовног скраћивања, изумрети сви изрази осим

$$\log_2(n+1) = 10,$$

одакле је,

$$n+1=2^{10}=1024 \implies n=\boxed{1023}$$
.

6.1.9 Питагора

 \triangleright Задатак: Одреди x са слике.

Слика 6: Правоугли троугао $\triangle ABC$.

(Задатак са Tik-Toka.)

▶ Решење: Нађимо најпре решење општег случаја

$$a = \ln(px), \quad b = \ln(qx), \quad c = \ln(rx).$$

Због лакшег писања, извршимо смену

$$t = \ln x$$
, $u = \ln p$, $v = \ln q$, $w = \ln r$,

одакле је

$$a = t + u$$
, $b = t + v$, $c = t + w$.

Из Питагорине теореме $a^2 + b^2 = c^2$, следи да је

$$(t+u)^{2} + (t+v)^{2} = (t+w)^{2}$$
$$t^{2} + 2tu + u^{2} + t^{2} + 2tv + v^{2} = t^{2} + 2tw + w^{2}$$

где, након сређивања, добијамо квадратну једначину

$$t^{2} + 2(u + v - w)t + (u^{2} + v^{2} - w^{2}) = 0,$$

чија су решења

$$t_{1,2} = w - u - v \pm \sqrt{2(w - u)(w - v)},$$

али нас занима само позитивно. Када вратимо смену добијамо

$$\ln x = \ln \left(\frac{r}{pq}\right) + \sqrt{2\ln \left(\frac{r}{p}\right)\ln \left(\frac{r}{q}\right)},$$

где је, после антилогаритмовања

$$x = \frac{r}{pq} \cdot \mathbf{e}^{\sqrt{2\ln(r/p)\ln(r/q)}}.$$

Због логаритама испод корена видимо да мора бити p,q,r>0 или p,q,r<0, и |p|,|q|<|r|, где ће x имати исти знак као p,q и r.

Када заменимо вредности са слике, p = 1, q = 2 и r = 3, добијамо да је

$$x = \left[\frac{3}{2} e^{\sqrt{2\ln(3)\ln(3/2)}} \right] \approx 3,85488,$$

а странице троугла су приближно

$$a \approx 1,34934, \quad b \approx 2,04249, \quad c \approx 2,44795.$$

(Ha слици је 1 = '———'.)

6.2 Неједначине

6.2.1 Sveska 11

⊳ Задатак: Reši nejednačinu

$$\log_3^2 x - 5\log_3 x + 6 \le 0.$$

ightharpoonup Решење: Kada izvršimo smenu $t = \log_3 x$, možemo pisati da je

$$t^2 - 5t + 6 < 0$$

Kako su rešenja kvadratne jednačine $t_1 = 2$ i $t_2 = 3$, nejednačina je zadovoljena kada je $t \in [2,3]$. Pošto je $x = 3^t$, sledi da je nejednačina zadovoljena za $x \in [3^2, 3^3]$, odnosno,

Слика 7: $y = \log_3^2 x - 5 \log_3 x + 6$.

* Додатак: Funkcija ima minimum za t=5/2, odnosno, u tački $(9\sqrt{3},-1/4).$

6.2.2 Sveska 9

⊳ Задатак: Odredi u kojim granicama je zadovoljen uslov

$$\log_3(x^2 - 4) < \log_3 5.$$

▶ Решење: Ako se oslobodimo logaritma

$$x^2 - 4 < 5$$
$$x^2 < 9,$$

dobićemo da je -3 < x < 3. Međutim, da bi logaritam bio definisan mora biti

$$x^2 - 4 > 0$$
$$x^2 > 4$$

odnosno, x < -2 ili x > 2. Odavde je

$$x \in \left[(-3, -2) \cup (2, 3) \right].$$

Слика 8: $y = \log_3(x^2 - 4)$; $\log_3 5$.

6.2.3 Sveska 10

⊳ Задатак: Reši nejednačinu

$$\log_5 x \ge \frac{1}{2} \log_5(3x - 2).$$

▶ Решење: Da bi logaritam bio definisan, vidimo da mora biti

$$3x - 2 > 0 \quad \Rightarrow \quad x > \frac{2}{3}.$$

Ako nejednačinu pomožimo sa 2, dobijamo

$$2\log_5 x \ge \log_5(3x - 2)$$
$$\log_5 x^2 \ge \log_5(3x - 2)$$
$$x^2 \ge 3x - 2$$
$$x^2 - 3x + 2 \ge 0.$$

Kvadratna jednačina ima rešenja $x_1=1$ i $x_2=2,\;\mathrm{pa}$ je rešenje nejednačine

$$x \in \left\lceil \left(\frac{2}{3}, 1\right] \cup [2, \infty) \right\rceil.$$

Слика 9: $y = \log_5 x$; $\frac{1}{2} \log_5 (3x - 2)$.

6.2.4 Net 1

⊳ Задатак: Reši

$$\log_{3x+5}(9x^2 + 8x + 8) > 2.$$

▶ Решење: Ako antilogaritmujemo obe strane dobijamo

$$9x^{2} + 8x + 8 > (3x + 5)^{2}$$
$$9x^{2} + 8x + 8 > 9x^{2} + 30x + 25$$
$$8x + 8 > 30x + 25.$$

gde je nakon sredivanja

$$x < -\frac{17}{22}$$

Sledeći uslov je da osnova bude veća od 1, to jest

$$3x + 5 > 1$$
$$x > -\frac{4}{3},$$

odakle sledi rešenje

$$x \in \boxed{\left(-\frac{4}{3}, -\frac{17}{22}\right)}.$$

Слика 10: $y = \log_{3x+5}(9x^2 + 8x + 8)$; 2.

6.2.5 Net 2

⊳ Задатак: Nadi vrednosti koje zadovoljavaju nejednačinu

$$\log_7(x+5) > \log_5(x+5).$$

▶ Решење: Prebacimo izraz u zajednički logaritam

$$\frac{\log(x+5)}{\log 7} > \frac{\log(x+5)}{\log 5}$$
$$\log 5 \log(x+5) > \log 7 \log(x+5).$$

Kako je $\log 5 < \log 7$ i pozitivni su, da bi uslov važio, mora biti

$$\log(x+5) < 0,$$

odakle je

$$x + 5 < 1$$
$$x < -4,$$

a da bi logaritam bio definisan mora da važi i

$$x + 5 > 0$$
$$x > -5,$$

odakle je rešenje

$$x \in \boxed{(-5, -4)}$$

14

Слика 11: $y = \log_7(x+5)$; $\log_5(x+5)$.

6.2.6 Net 6

⊳ Задатак: Koje vrednosti zadovoljavaju uslov

$$\log_2(x+1) > \log_4 x^2?$$

► Решење: Ako levu stranu zapišemo kao

$$2 \cdot \frac{1}{2} \log_2(x+1) = \log_{2^2}(x+1)^2$$

što sledi iz jednakosti (15) i (10), dobićemo

$$\begin{aligned} \log_4(x+1)^2 &> \log_4 x^2 \\ &(x+1)^2 > x^2 \\ x^2 + 2x + 1 > x^2 \\ &2x + 1 > 0 \\ &x > -\frac{1}{2}. \end{aligned}$$

Kako mora da važi x > -1 i $x \neq 0$, dobijamo konačno rešenje

$$x \in \left[\left(-\frac{1}{2}, 0 \right) \cup (0, \infty) \right].$$

Слика 12: $y = \log_2(x+1) - \log_4 x^2$.

 \star Додатак: Kao što je na strani 5 napomenuto, da smo $\log_4 x^2$ jednostavno predstavili kao $\log_{2^2} x^2 = \log_2 x$, dobili bismo netačno rešenje. Ispravno bi bilo $\log_4 x^2 = \log_2 |x|$, kada bismo posebno gledali 2 slučaja: za x > 0 i za x < 0.

6.2.7 Границе

⊳ Задатак: Докажи да важи неједнакост

$$1 - \frac{1}{x} \le \ln x \le x - 1 \quad , \tag{42}$$

којом се дефинишу доња и горња граница природног логаритма.

▶ Решење: Погледајмо прво десни део неједнакости. Ако дефинишемо функцију

$$y = \ln x - (x - 1),$$

потребно је да докажемо да је $y \le 0$ за свако x > 0. Интуитивно је јасно да тврђење важи, јер $\ln x$ много спорије расте од x-1, и формални доказ ће нам се заснивати на томе.

Први извод функције је

$$y' = \frac{1}{x} - 1,$$

који има јединствену нулу y'=0 za x=1, где је и y=0. Како је други извод

$$y'' = -\frac{1}{x^2} < 0,$$

увек негативан, то значи да функција y нема превојних тачака и да тачка (1,0) представља максимум функције y, одакле је $y \le 0$, односно,

$$\boxed{\ln x \le x - 1}.$$

Ако у ову неједнакост уместо x ставимо 1/x, можемо писати

$$\ln(1/x) \le \frac{1}{x} - 1$$
$$-\ln x \le \frac{1}{x} - 1,$$

где, када изрази замене стране и знак, добијамо

$$\boxed{1 - \frac{1}{x} \le \ln x},$$

што представља леви део неједнакости из задатка.

* Додатак: Све три функције из неједнакости се додирују у тачки (1,0), што значи да у тој тачки све три имају исту тангенту, односно, исти први извод y'(1) = 1; иначе би се секле и неједнакост не би важила.

Слика 13: y = 1 - 1/x; $\ln x$; x - 1.

6.3 Кратки примери

6.3.1Земљотрес

 \triangleright Задатак: Магнитуда земљотреса M по Pихтеровој скали у епицентру зависи логаритамски од интензитета земљотреса I

$$M = \log_{10} I.$$

У августу 2009, јапанско острво Хоншу је погодио земљотрес магнитуде $M_1=6.1$ по Рихтеру, а у марту 2011, разарајући земљотрес који је био око 800 пута јачи од првог. Колико степени по Рихтеру је имао други? (Користи логаритамске таблице или логаритмар.)

▶ Решење: $M_2 = M_1 + \log_{10} 800 \approx 6.1 + 2.9 = |9,0|$ степени Рихтера.

6.3.2Децималне цифре

▶ Задатак: Колико децималних цифара d има 128-битна променљива?

▶ Решење:
$$d = \lfloor \log_{10} 2^{128} \rfloor + 1 = \lfloor 128 \log_{10} 2 \rfloor + 1 = \lfloor 38,53184 \rfloor + 1 = 38 + 1 = \boxed{39}$$
.

6.3.3 Полураспад јода

Вадатак: Ако имамо 63 g изотопа јода ¹³¹I, а знамо да смо пре 11 дана имали 163 g, које је време полураспада овог изотопа? (Користи природни логаритам.)

19

▶ Решење: Из формуле (19) на страни 7, следи да је време полураспада

$$t_{1/2}=rac{t}{\log_2(m_0/m_t)}=rac{t\ln 2}{\ln(m_0/m_t)}=rac{11\ln 2}{\ln(163/63)}pprox iggl[8.02iggr]$$
 дана.

Геометријски низ

ightharpoonup Задатак: За $0 \le x < 1$, упростити израз

$$y = \log(1 + x + x^2 + x^3 + x^4 + \cdots).$$

► Решење: Како је збир бесконачног геометријског низа⁴

$$s = 1 + x + x^2 + x^3 + x^4 + \dots = \frac{1}{1 - x},$$

може се писати

$$y = \log\left(\frac{1}{1-x}\right),\,$$

где из једнакости за реципрочну вредност (9), следи

$$= \boxed{-\log(1-x)}.$$

$$= \boxed{-\log(1-x)}.$$

$$^4 \textbf{Доказ:} \ s=1+x\cdot(1+x+x^2+x^3+x^4+\cdots)=1+x\cdot s, \text{ одакле је } s-x\cdot s=1, \text{ следи да је } s=1/(1-x).$$

6.3.5 Извод

- ightharpoonup Задатак: Одреди извод функције $f(\alpha) = \ln \operatorname{sinc} \alpha$, где је $\operatorname{sinc} \alpha = \frac{\sin \alpha}{\alpha}$.
- 21

▶ Решење: Помоћу једнакости (8) разложимо функцију на

$$f(\alpha) = \ln \sin \alpha - \ln \alpha,$$

а како је извод $\sin \alpha$ једнак $\cos \alpha$ и из једнакости (38) за извод логаритма функције, следи да је

$$f'(\alpha) = \frac{\cos \alpha}{\sin \alpha} - \frac{1}{\alpha} = \boxed{\cot \alpha - \frac{1}{\alpha}}.$$

6.3.6 i на i

ightharpoonup Задатак: Одреди вредност i^i где је $i=\sqrt{-1}$, имагинарна јединица.

22

▶ Решење: Како у комплексној равни i има поларне координате $\rho = 1$ і $\theta = \pi/2$, ако га представимо Ојлеровом формулом као $i = \mathbf{e}^{i\pi/2}$ и из једнакости (12) и (4), следи да је

$$i^{i} = \mathbf{e}^{i \ln i} = \mathbf{e}^{i \ln \mathbf{e}^{i\pi/2}} = \mathbf{e}^{i^{2}\pi/2} = \boxed{\mathbf{e}^{-\pi/2}} \approx 0.20788$$

реалан број.

6.3.7 $\ln(-z)$

 \triangleright Задатак: У скупу комплексних бројева \mathbb{C} , ако знамо $\ln z$, колико је $\ln(-z)$?

22

▶ Решење: Како је у комплексној равни -z једнако z заротирано око координатног почетка за угао од $180^\circ = \pi$, добијамо

$$\ln(-z) = \left[\ln z + i\pi \right].$$

Ако проверимо, из Ојлерове једнакости (31), добијамо

$$\mathbf{e}^{\ln(-z)} = \mathbf{e}^{\ln z + i\pi} = \mathbf{e}^{\ln z} \cdot \mathbf{e}^{i\pi} = z \cdot (-1) = -z.$$

 \star Додатак: Хммм ..., трик са ротацијом није баш потпуно тачан: добили бисмо -z и за угао $-\pi$, па би било $\ln(-z) = \ln z - i\pi$, што је такође тачно; у ствари, тачно је за било који угао $\pi + 2k\pi$ где је $k \in \mathbb{Z}$ цео број. Одавде би следило да је

$$\ln(-z) = \ln z + i(\pi + 2k\pi), \ k \in \mathbb{Z}.$$

И сама формула (28), $\ln z = \ln \rho + i\theta$, представља само *главну грану* комплексног логаритма, који је некаква врста 4D спирале. Потпуна формула би била

$$\ln z = \ln \rho + i(\theta + 2k\pi), \ k \in \mathbb{Z} \ . \tag{43}$$

6.3.8 Прво, па 1

⊳ Задатак: Колики проценат цена од игле до локомотиве почиње цифром 1?

24

- ▶ Решење: Из формуле (41) са стране 12, следи да је $P(10,1) = \log_{10} 2 \approx \boxed{30\%}$.
- **★** Додатак: У филму Рачуновођа (The Accoutant), главни лик (Ben Afflec) открива да су финансијски извештаји преправљани, јер увиђа да износи не прате ово правило.

6.4 Ручни рад

6.4.1 Аналогни степен

 \triangleright Задатак: Одреди логаритмаром приближну вредност $z=2,3^{1,7}$.

25

▶ Решење: Помоћу једнакости (12) представимо

$$z = 2.3^{1.7} = 10^{1.7 \cdot \log(2.3)}$$
.

Прво одређујемо вредност $\log(2,3)$ тако што за x=2,3 читамо испод вредност $\log x$. Налазимо да је $\log(2,3)\approx 0.362$ (види нит обележену са '‡').

Након тога, ту вредност на клизачу поравнамо са x=1. Како на клизачу не постоји 0,362, поставићемо на 3,62, с тим што ћемо резултат поделити са 10. Сада, за x=1,7 читамо вредност на клизачу испод (\uparrow)

и налазимо да је око 6,15, што значи да је 1,7 $\cdot \log(2,3) \approx 0,615$. Потом, за y=0,615 читамо вредност 10^y и налазимо да је око 4,12 што је и решење

$$z = 2,3^{1,7} \approx \boxed{4,12},$$

а тачна вредност је z = 4,120380...

6.4.2 Аналогни квадратни корен

ightharpoonup Задатак: Објасни начин за одређивање вредности \sqrt{x} логаритмаром.

2.6

▶ Решење: Уз мало вежбе, квадратни корен можемо директно читати са логаритмара ако *у глави* извршимо дељење са 2 и, по потреби, сабирање са 0,5 што је врло једноставно јер се ради о бројевима између 0 и 1 са највише 3 децимале. Како је

$$\sqrt{x} = 10^{\frac{1}{2}\log x},$$

потребно је прочитати вредност $\log x$, а онда, за двоструко мању вредност од ње, прочитати вредност 10^y . На пример, за израчунавање вредности $\sqrt{5,3}$, читамо да је $\log(5,3)\approx 0,724$ (\downarrow), потом, за y=0,724/2=0,362 (\uparrow), читамо вредност 10^y и добијамо $\sqrt{5,3}\approx 2,3$ ($2,3^2=5,29$). За $\sqrt{53}$ треба у y додати још 0,5 тако да ће бити y=0,362+0,5=0,862 (\uparrow), одакле је $\sqrt{53}\approx 7,28$ ($7,28^2=52,9984$).

Наравно, $\sqrt{530}$ се рачуна као $10\sqrt{5,3}$, или $\sqrt{0,53} = \frac{1}{10}\sqrt{53}$.

$6.4.3 \ln 3$

Вадатак: У част Непера и Бригса, помоћу поступка (23) са стране 8, израчунај пешке приближну вредност ln 3 у 5 корака. За упоређивање, тачна вредност је

 $\ln 3 = 1,0986122886681096913952452369225257046475\dots$

▶ Решење: За x=3 биће r=(x-1)/(x+1)=1/2. У нултом кораку постављамо почетне вредности:

Корак
$$\theta$$
. $k = 1$, $p = 2r = 1$, $q = r^2 = 1/4$, $a = p = 1$, $y = a = 1$.

Следе кораци итерације — повећамо k за 2, помножимо p са q, члан суме a постаје p/k, кога додајемо у резултат y:

Kodak 1. k = 3, p = 1/4, a = 1/12, y = 13/12;

k = 5, p = 1/16, a = 1/80, y = 263/240; Корак 2.

Корак 3. $k=7, \quad p=1/64, \quad a=1/448, \quad y=7379/6720;$ Корак 4. $k=9, \quad p=1/256, \quad a=1/2304, \quad y=88583/80640;$ Корак 5. $k=11, \quad p=1/1024, \quad a=1/11264, \quad y=3897967/3548160.$

Резултат је

$$\ln 3 \approx \frac{3897967}{3548160} = \boxed{1.098588...}$$

што није лоше за само 5 корака, јер је апсолутна грешка око 2.4×10^{-5} . Али ..., може боље.

★ Додатак: Ако већ имамо прецизно израчунату вредност ln 2, онда је боље рачунати $\ln 3$ као $\ln(3/4) + 2\ln 2$, јер ће, уместо r = 1/2, бити r = (3/4 - 1)/(3/4 + 1) = -1/7, односно, уместо q = 1/4, биће q = 1/49, што доводи до много бржег израчунавања. У истом броју корака бисмо добили

$$\ln\frac{3}{4}\approx-\frac{2}{7},-\frac{296}{1029},-\frac{72526}{252105},-\frac{24876448}{86472015},-\frac{522405418}{1815912315},-\frac{281576520392}{978776737785},$$

где последњи разломак има грешку од око 1.6×10^{-12} , што је више од двоструко тачних цифара. Када му (са стране 8) додамо 2 ln 2, добићемо

$$\ln 3 \approx 2 \ln 2 - \frac{281576520392}{978776737785} = \underbrace{1,09861228866972615081}_{12 \text{ тачних цифара}} 972615081 \dots$$

Уопштено, поступак је најбржи ако рачунамо $\ln x = \ln(x/2^n) + n \ln 2$, где бирамо n такво да $x/2^n$ буде што ближе 1, односно, да q буде најмање могуће (види програм).

```
9 STOP statement, 99:1
```

Слика 14: ZX Spectrum BASIC програм.

7 Одреднице

7.1 Литература

- [1] Larousse: "Математика", Општа енциклопедија (1967)
- [2] Небојша Икодиновић, Слађана Димитријевић, Сузана Алексић: "Уџбеник са збирком задатака за 2. разред гимназије", Математика 2 (2019)
- [3] Вене Боглославов: "Збирка решених задатака из математике 2", (2008–2011)
- [4] Марјан М. Матејић, Лидија В. Стефановић, Бранислав М. Ранђеловић, Игор Ж. Миловановић: "Комплети задатака за пријемни испит", *Математика* (2011)
- [5] Раде Николић: "Задаци за пријемни испит из математике на Факултет информационих технологија", (2020)
- [6] Milton Abramowitz, Irene Stegun: "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", Applied Mathematics (1964)
- [7] Градимир В. Миловановић, Ђорђе Р. Ђорђевић: "Програмирање нумеричких метода", (1981)
- [8] Donald E. Knuth: "Seminumerical Algorithms", The Art of Computer Programming (1968–)
- [9] Драгољуб Васић, Вене Богославов, Глиша Нешковић: "Логаритамске таблице", (2008)
- [10] Henry Briggs: "Arithmetica logarithmica", (1624)
- [11] Donald E. Knuth: "The TeXbook", Computers and Typesetting (1996)
- [12] John D. Hobby: "User's manual", METAPOST (2024)

7.2 Софтвер

- [1] Mathematica Wolfram Research
- [2] Visual Studio Code (Integrated Development Environment) Microsoft
- [3] **ZX BASIC** (programming language) Sinclair Research Ltd.
- [4] Pascal (programming language) Niklaus Wirth
- [5] = Google (programming language) Google
- [6] **Python** (programming language) Python Software Foundation
- [7] METAPOST (PostScript programming language)— John D. Hobby
- [8] T_EX (typesetting system) Donald E. Knuth
- [9] LATEX (TeX macros) Leslie Lamport
- [10] AMS-TeX (TeX macros) American Mathematical Society

7.3 Линкови

- [1] GitHub Лука С. Нешић Матурски рад https://github.com/Nasumica/LukaMaturski-cyr/
- [2] WIKIPEDIA Logarithm https://en.wikipedia.org/wiki/Logarithm
- [3] Wolfram MathWorld Logarithm https://mathworld.wolfram.com/Logarithm.html
- [4] Wolfram MathWorld Antiogarithm https://mathworld.wolfram.com/Antilogarithm.html
- [5] Wolfram Language & System Documentation Center Logarithm https://reference.wolfram.com/language/ref/Log.html
- [6] WolframAlpha Computational Intelligence https://www.wolframalpha.com/
- [7] A reconstruction of the tables of Briggs' Arithmetica logarithmica (1624) https://inria.hal.science/inria-00543939/PDF/briggs1624doc.pdf
- [8] WIKIPEDIA Benford's law https://en.wikipedia.org/wiki/Benford's_law
- [9] IMDb The Accountant (2016) https://www.imdb.com/title/tt2140479/
- [10] WIKIPEDIA Quaternion https://en.wikipedia.org/wiki/Quaternion
- [11] Wolfram Language & System Documentation Center Quaternions Package https://reference.wolfram.com/language/Quaternions/tutorial/Quaternions.html
- [12] YouTube Log Tables Numberphile https://www.youtube.com/watch?v=VRzH4xB0GdM
- [13] YouTube The iPhone of Slide Rules Numberphile https://www.youtube.com/watch?v=xRpR1rmPbJE
- [14] YouTube The Four 4s Numberphile https://www.youtube.com/watch?v=Noo41N-vSvw
- [15] YouTube Fantastic Quaternions Numberphile https://www.youtube.com/watch?v=3BR8tK-LuB0
- [16] GitHub Србислав Д. Нешић Numerical recipes in Pascal https://github.com/Nasumica/Wirth/

