R Programming Language

Objectives of the workshop

- Introduction to R programming language
- Import data to Rstudio
- Summary measures
 - Mean, median, standard deviation, Centiles, N, min, max
- Visualize data
 - Bar plot, Histogram, Box plot, Scatter plot
- Hypothesis testing
 - T test
 - Pearson's Chisqaure test

R Programming Language

- R is a **free software** environment for statistical computing and graphics (Ref: https://www.r-project.org/)
- It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.
- R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand
- R is an implementation of the S programming language
 - by John Chambers while at Bell Labs
 - much of the code written for S runs unaltered

Tutorials

- P. Kuhnert & B. Venables, An Introduction to R: Software for Statistical Modeling & Computing
- J.H. Maindonald, Using R for Data Analysis and Graphics
- B. Muenchen, R for SAS and SPSS Users
- W.J. Owen, The R Guide
- D. Rossiter, Introduction to the R Project for Statistical Computing for Use at the ITC
- W.N. Venebles & D. M. Smith, An Introduction to R

Data analysis with R····

RStudio

- RStudio is a **free** and open source integrated development environment (IDE) for R
- RStudio is available in two editions:
 - RStudio Desktop, where the program is run locally as a regular desktop application
 - RStudio Server, which allows accessing RStudio using a web browser while it is running on a remote Linux server.

R basics

- R is a case sensitive language
 - FOO, Foo, and foo are three different objects
- Results of calculations can be stored in objects using the assignment operators:
 - An arrow (<-) formed by a smaller than character and a hyphen without a space!
 - The equal character (=)
- Object names
 - cannot contain `strange' symbols like !, +, -, #
 - dot (.) and an underscore () are allowed
 - can contain a number but cannot start with a number

Types of brackets used in R

- Round brackets / Parenthesis ()
 - For functions
 - mean(), sd(),max()
- Square brackets
 - For manipulating data
 - Data[1,1]
 - Data[1,]
 - Data[,1]

Data frames

- Way of storing data with different types
- Data can be of different types
- There are different ways to create and manipulate data frames
 - Create
 - Import data

Comma-separated values (CSV) file

- Common data exchange format
 - Widely supported by software applications.
 - Move tabular data between programs (SPSS, SAS,ect)
- Use commas as field separators
- Interpreted as a sequence of characters
 - human-readable by text editor
 - Each line data record

Selecting data

- Data frame
 - Elements
 - Rows
 - Columns

17 observations of 9 variables									
	YEAR	CBE	PPO	СРО	PFO	DINC	CFO	RDINC	RFP
1	1925	58.6	60.5	65.8	65.8	51.4	90.9	68.5	877
2	1926	59.4	63.3	63.3	68.0	52.6	92.1	69.6	899
3	1927	53.7	59.9	66.8	65.5	52.1	90.9	70.2	883
4	1928	48.1	56.3	69.9	64.8	52.7	90.9	71.9	884
5	1929	49.0	55.0	68.7	65.6	55.1	91.1	75.2	895
6	1930	48.2	59.6	66.1	62.4	48.8	90.7	68.3	874
7	1931	47.9	57.0	67.4	51.4	41.5	90.0	64.0	791
8	1932	46.0	49.5	69.7	42.8	31.4	87.8	53.9	733
9	1933	50.8	47.3	68.7	41.6	29.4	88.0	53.2	752
10	1934	55.2	56.6	62.2	46.4	33.2	89.1	58.0	811
11	1935	52.2	73.9	47.7	49.7	37.0	87.3	63.2	847
12	1936	57.3	64.4	54.4	50.1	41.8	90.5	70.5	845
13	1937	54.4	62.2	55.0	52.1	44.5	90.4	72.5	849
14	1938	53.6	59.9	57.4	48.4	40.8	90.6	67.8	803
15	1939	53.9	51.0	63.9	47.1	43.5	93.8	73.2	793
16	1940	54.2	41.5	72.4	47.8	46.5	95.5	77.6	798
17	1941	60.0	43.9	67.4	52.2	56.3	97.5	89.5	830

country	year	cases	population					
Afghanstan	100	45	18:57071					
Afghanistan	2000	2666	20!95360					
Brazil	1999	37737	172006362					
Brazil	2000	80488	174:04898					
China	1999	212258	1272915272					
Chin	200	21 66	1280 28583					
variables								

values

Summary measures

- Mean mean(variable)
- Standard deviation sd(variable)
- Quantiles quantile(variable, c(.32, .57, .98))
- Number of elements length()
- Minimum min()
- Maximum max()
- Tabulate table()
- Missing values is.na()

Graphs

- Histogram hist()
- Box plot boxplot()
- Scatter plot plot(x,y)
- Stem & leaf stem()
- Pie chart pie()
- Bar plot barplot()

R Help

- help.start()
- help(mean) or ? Mean
- RSiteSearch("mean")
- apropos("mean")
- example(mean)
- data()

Student's T test

- help(t.test)
- independent 2-group t-test
 - t.test(y~x) # where y is numeric and x is a binary factor
- independent 2-group t-test
 - t.test(y1,y2) # where y1 and y2 are numeric
- paired t-test
 - t.test(y1,y2,paired=TRUE) # where y1 & y2 are numeric
- one sample t-test
 - t.test(y,mu=3) # Ho: mu=3

Compare Two Variances

var.test(y1,y2)

Chisquared test

- help(chisq.test)
 - chisq.test(table)
 - fisher.test (table)

Simple Linear Regression

- y = mx + c
- plot(x,y)
- Formula
 - model<- $lm(y \sim x)$
 - summary(model)

Feedback

- 1. what did you like about this session?
- 2. what didn't you like about this session?
- 3. what did you learn from this session?

Thank you

