CS2100: Computer Organisation

Tutorial #7: Combinational Circuits

(Week 9: 15 – 19 March 2021)

Answers to Selected Questsions

Tutorial questions

Note that for questions on logic design, you may assume that logical constants 0 and 1 are always available. However, complemented literals are <u>not available</u> unless otherwise stated.

1. [Past-year's question]

You are to design a circuit to implement a function V(A,B,C,D,E) that takes in input ABCDE and generates output 1 if ABCDE is a valid input for the circuit in question D3 above, or 0 if ABCDE is an invalid input. You are allowed to use only the following devices: full adder, 2-bit parallel adder, and 4-bit magnitude comparator. You should use the fewest number of these approved devices, and no other devices or logic gates. The block diagrams for these devices are shown below.

Answer:

Idea: Count the number of 1's in ABCDE. If count > 1, then it's a valid input.

- 2. [Past year's exam question]
 - a. You want to construct a circuit that takes in a 4-bit unsigned binary number ABCD and outputs a 4-bit unsigned binary number EFGH where EFGH = (ABCD + 1) / 2. Note that the division is an integer division. For example, if ABCD = 0110 (or 6 in decimal), then EFGH = 0011 (or 3 in decimal). If ABCD = 1101 (or 13 in decimal), then EFGH = 0111 (or 7 in decimal).
 - Construct the above circuit using a single **4-bit parallel adder** and at most one logic gate with no restriction on its fan-in.
 - b. The following table shows the 4221 code and 8421 code (also known as BCD code) for the ten decimal digits 0 through 9.

Digit	4221 code	8421 code
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0110	0100
5	1001	0101
6	1100	0110
7	1101	0111
8	1110	1000
9	1111	1001

You want to construct a 4221-to-8421 decimal code converter, which takes in a 4-bit 4221 decimal code *PQRS* and generates the corresponding 4-bit 8421 decimal code *WXYZ*.

Let's call the circuit you created in part (a) above the A1H (Add-1-then-Half) device, represented by the block diagram below. Implement your 4221-to-8421 decimal code converter using this A1H device with the fewest number of additional logic gates.

P	Q	R	S	W	X	Y	Ζ
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	1	0	0	1	0	0
1	0	0	1	0	1	0	1
1	1	0	0	0	1	1	0
1	1	0	1	0	1	1	1
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	1

3. [Past year's exam question]

The BCD code (also known as 8421 code) values for the ten decimal digits are given below:

Digit:	0	1	2	3	4	5	6	7	8	9
Code:	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

For example, the decimal value 396 is represented as 0011 1001 0110 in BCD code.

Given two decimal digits A and B, represented by their BCD codes $A_3A_2A_1A_0$ and $B_3B_2B_1B_0$ respectively, implement a circuit <u>without using any logic gates</u> to calculate the BCD code of the 3-digit output of $(51\times A) + (20\times (B\%2))$, where % is the modulo operator. Name the outputs $F_{11}F_{10}F_9F_8$ $F_7F_6F_5F_4$ $F_3F_2F_1F_0$.

For example, if A=2 (or 0010 in BCD) and B=7 (or 0111 in BCD), then $(51\times A) + (20\times (B\%2)) = 122$ or 0001 0010 0010 in BCD. Hence, the circuit is to produce the output 0001 0010 0010 for the inputs 0010 and 0111.

[Hint: Fill in the table below that computes $5\times A$.]

А				EvA								
A_3	A_2	A_1	A_0	5× <i>A</i>								
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	1	0	1	
0	0	1	0	0	0	0	1	0	0	0	0	
0	0	1	1	0	0	0	1	0	1	0	1	
0	1	0	0	0	0	1	0	0	0	0	0	
0	1	0	1	0	0	1	0	0	1	0	1	
0	1	1	0	0	0	1	1	0	0	0	0	
0	1	1	1	0	0	1	1	0	1	0	1	
1	0	0	0	0	1	0	0	0	0	0	0	
1	0	0	1	0	1	0	0	0	1	0	1	

