BE de Statistiques

Étude d'une base de données IENAC

Groupe 20

Dzieciol Nicolas Pastre Guillaume Bonneval Fabien Buisan Guilhem

Sommaire

Table des matières

Introduction	
I. Lecture du jeu de données	
II. Étude descriptive	
II.1. Étude unidimensionnelle	
II.1.1 Variables Qualitatives	
II.1.2 Variables Quantitatives	
II.2 Étude bidimensionnelle	
II.2.1 Croisement entre une variable quantitative et une variable qualitative	
II.2.2 Croisement entre variables quantitatives	
II.2.3 Croisement entre variables qualitatives	
III. Étude inférentielle	
III.1. Tests d'hypothèses pour un échantillon	
III.2. Tests d'hypothèses pour deux échantillons	
Conclusion	
Annexes	
Script:	
Graphes	

Introduction

Dans ce sujet, on se propose d'étudier les caractéristiques des étudiants ingénieur à l'ENAC afin de déterminer s'il existe des relations entre ces variables.

Nous nous intéresserons à un échantillon de 55 étudiants, et considérerons les variables présentées à la page suivante.

Pour effectuer une analyse la plus complète possible, nous regarderons en premier lieu le jeu de données, ensuite nous effectuerons une analyse descriptive des variables les plus parlantes, et enfin nous procéderons à une étude inférentielle pour valider ou invalider nos tests d'hypothèses.

I. Lecture du jeu de données

Question 2.2 : Les natures des différentes variables sont regroupées dans le tableau suivant :

Sexe	Qualitative Nominale
Bac	Qualitative Nominale
Mention	Qualitative Ordinale
Filière	Qualitative Nominale
Note Écrit	Quantitative Continue
Note Orale	Quantitative Continue
Moyenne	Quantitative Continue
Rang	Quantitative Discrète
Voeux	Quantitative Discrète
Concours	Qualitative Nominale
Note Analyse	Quantitative Continue
Note Proba	Quantitative Continue
Succès	Qualitative Nominale

Nature des variables

La variable succès représente l'obtention ou non d'une note supérieure à 10/20 en probabilités.

II. Étude descriptive

II.1. Étude unidimensionnelle

II.1.1 Variables Qualitatives

Question 3.1.1.a : Tables des fréquences

F M 8 47

Variable "sexe"

A	M	PC	SI	SVT
0	30	3	4	13

Variable "bac"

P	AB	В	ТВ
0	5	24	21

Variable "mention"

CI	CPP	MP	MP*	PC	PC*	PSI	PSI*
1	1	21	2	7	5	6	9

Variable "filière"

Civil	Fonctionnaire
48	7

Variable "concours"

Echec	Succès
16	39

Variable "succès"

Question 3.1.1.b : Diagrammes

bac

Spécialité au bac des étudiants : une majorité a fait spé maths

Mention au bac des étudiants : Peu ont eu AB comparé au nombre de B et TB

Provenance des étudiants de prépa : Une majorité vient de MP

Proportion des étudiants qui ont validé leur examen en probabilités ou non : environ 16 % ne l'ont pas validé

Proportion du sexe des étudiants : Bien plus de garçons sont présents dans l'échantillon que de filles

Question 3.1.1.c : Les graphes permettent de visualiser rapidement les proportions pour les variables qualitatives, mais, dans le cas du circulaire, ne présente pas les chiffres et est donc imprécis. On voit par exemple qu'il y a bien plus de garçons que de filles, que la majorité viennent d'un bac M avec pour la quasi totalité une mention B ou TB.

II.1.2 Variables Quantitatives

Question 3.1.2.a Résumés numériques

Variable	Moyenne	Ecart-Type	Ecart Interquartil e (Q3-Q1)	Minim um	Q1	Mediane	Q3	Maximum	n	NA
Analyse	14.78182	2.6260159	3.250	7.00	13.5	15.0	16.750	19.00	55	0
Ecrit	11.9638	1.1181105	1.35	9.95	11.3 325	11.865	12.682 5	14.69	50	5
Moyenne	12.8834	0.8080099	0.700	11.91	12.3 8	12.68	13.08	15.08		5

Oral	14.3428	1.5271917	2.225	10.99	13.4 275	14.125	15.652 5	17.35		5
Proba	11.27636	2.9688796	4.250	4.10	9.15	11.55	13.4	17.00		0
Rang	788.48	350.65002	482.0	48	595. 25	788.5	1077.2 5	1320		5
Voeux	3.28	2.2227029	2.0	1	2	3	4	13	50	5

Question 3.1.2.b Diagrammes

On observe les proportions des étudiants suivant la fourchette de leur note à l'écrit.

Ecrit: Histogramme

Le diagramme de dispersion de l'écrit : on observe un minimun d'environ 10, une moyenne d'un peu moins de 12, d'un maximum vers 14,5, et observons de même les quartiles.

Ecrit: Dispersion

Le diagramme quantile-quantile de l'écrit, pour voir les écarts par rapport aux résultats que l'on observerait si la distribution suivait une loi normale.

Ecrit: quantile-quantile

L'histogramme de répartition de la variable moyenne : une grande majorité des étudiants voient leur moyenne entre 12 et 13

Moyenne : histogramme

Les paramètres statistiques de la variable moyenne

Moyenne: dispersion

L'étalement des rangs aux concours des étudiants

Analyse: Dispersion

Question 3.1.2.c. Ces diagrammes pour les variables quantitatives : histogrammes pour variables continues, bâtons pour variables discrètes, permettent d'avoir un aperçu de l'ensemble des informations.

Mais parfois un manque de sens se fait sentir : une observation des rangs alors que les étudiants ne viennent pas de la même filière. On voit tout de même deux groupes, probablement les fonctionnaires et les civils.

Les diagrammes de dispersions sont utiles pour voir la répartition autour de la médiane, l'homogénéité, ce qui est particulièrement utile pour les notes.

L'étude unidimensionnelle des variables permet d'en apprendre plus sur elles, voir les répartitions par exemple permet de se faire une première idée sur leurs contenus, mais en revanche ne permet pas de repérer et mettre en évidence les éventuels lien entre les variables.

Il faut donc faire appel à l'étude bidimensionnelle pour étudier par exemple s'il peut y avoir corrélation entre notes d'analyse et de proba ou encore mettre en exergue certaines tendances.

II.2 Étude bidimensionnelle

II.2.1 Croisement entre une variable quantitative et une variable qualitative Question 3.2.1.1.a

				Ana	lyse								Pr	oba			
bac	Α		М	Р	С	SI		SVT	А			М	P	C	SI		SVT
	NA		15.000	14.	666	14.50	0 14	1.769	NA	A	11.	. 48333	11.1	.8333	12.887	50 10	.67692
			90	6	7	00		23									
concour		C	ivil		F	onctio			Civ	il			Foncti	onnai	-e		
		15.	78571			14.6		11	L.01	1771			13.0	5000			
filière	CI	СРР	MP	MP*	PC	PC*	PS	PSI	CI	СР	Р	MP	MP*	PC	PC *	PSI	PSI *
							Ι	*	15.3	8.	3	11.5	14.1	10.2		11.9	10.6
	18. 0	7.5	14. 904	18. 250	14. 642	15. 200	13. 750	14. 833				07	75	42	80	08	50
mention		P	A	В		В	-	ГВ	P AB						В		ТВ
	N	IA	15.2	0000	14.2	27083	15.5	50000	NA 10.62000			11.00625 11.95952					
sexe			F			ľ	1		F					М			
	14.8125					14.7	7766			13	3.01	L250		10.98085			
succès	Échec				Succès			Échec				Succès					
	13.00000				15.51282				7.565625				12.798718				

Résumé numérique entre variables qualitative et quantitatives (moyenne)

				Ana	lyse							Pro	oba				
bac	Α		М	Р	С	SI		SVT	Α		М	Р	С	SI		SVT	
	NA		15.00	14	. 50	15.2	5 1	6.00	NA		11.875	10.	350 12.150 1			10.800	
concour		Ci	vil		F	oncti	onnai	re		Ci	vil		Fonctionnaire				
		14	1.5			17	.0			1	1.5			13	. 85		
filière	CI	СРР	MP	МР*	PC	PC*	PS	PSI	CI	СРР	MP	MP*	PC	PC *	PSI	PSI *	
							I	*	15.3	8.30		14.1	10.3	12.3	13.8	10.8	
	18. 00	7.5 0	14. 50	18. 25	14. 50	15. 00	13. 25	16. 00	00	0	50	75	50	50	75	00	
mention	I	p	A	.B		В	-	ГВ	P AB			ιB		В	ТВ		
	N	IA	16	.5	14	1.5	10	5.0	N	IA	11	. 00	11.25 12.00				
sexe			F			ľ	4				F		М				
	15.5 15.0						13	3.00			11	. 35					
succès	Échec				Succès				Éc	hec		Succès					
	13.75				16.00					8	125		12.550				

Résumé numérique entre variables qualitative et quantitatives (médiane)

				Ana	lyse					Proba									
bac	А		M	_	C	SI		S۱	VT	A			M	_	С	SI		S۱	/T
	NA		2.5930	1.2	583	3.4880		2.4291		NA	NA		913652	1.98	5783	3.2008	79 2	2.961321	
			94	0	6	75		2	24										
concour		Ci	vil		Fonctionnaire						Civ	/il			Fonctio	onna	ire		
		2.3	71685		4.081025					2.	. 960	0098			2.54	6730	9		
filière	CI	СРР	MP	MP*	PC	PC*	PS	5	PSI	CI	СР	Р	MP	MP*	PC	PC *	PS	I	PSI *
							I	1	*	NA	N/	4	2.42	1.66	2.26		4.8	- 1	3.10
	NA	NA	2.4 577	1.0 606	1.8 419	2.1 965	3.0 124		2.9 261				844	170	87	61	13	1	89
mention		P	A	В		В		ТВ	3	P AB						ТВ			
	N	IA	2.86	3564	2.69	98547	2.1	.09	502	NA 2.817490				2.803504 3.001525				1525	
sexe			F			ı	4			F					M				
	2.344256					2.69	4214	ļ			1.	700	0158		3.048584				
succès	Échec			Succès			Échec					Succès							
	3.011091				2.082152				1.721019				1.783273						

Résumé numérique entre variables qualitative et quantitatives (écart type)

Question 3.2.1.1.b

Variable analyse:

Analyse-bac : histogrammes

Analyse-concours: histogrammes

Analyse-concours: dispertion

An aly se-filiere: histogramme

Analyse-mention: histogrammes

Analyse-mention : dispertion

Analyse-sexe : histogrammes

Analyse-succes: dispertion

Variable proba:

Proba-mention: histogrammes

Proba-mention: dispertion

Proba-sexe : histogrammes

Proba-sexe : dispertion

Proba-succes : histogrammes

Proba-succes: dispertion

Question 3.2.1.1.c. L'analyse bidimensionnelle permet d'analyser les données différemment pour prendre en compte plus de paramètres, ainsi on observe l'influence de certaines variables qualitatives sur les notes d'analyses et de proba.

On observe les proportions d'étudiants en fonction de leur note en analyse, triés par succès à l'examen de probabilités . Une majorité d'étudiants ont une note plus haute dans la partie succès, et les notes les plus faibles dans la partie échec.

On peut aussi se demander s'il n'y pas une corrélation entre les notes d'analyse et celles de probabilités.

Question 3.2.1.3

Variable *rang* croisée avec *filiere*

Filière	CI	CPP	MP	MP*	PC	PC*	PSI	PSI*
rang	NaN	NaN	1074.9048	688.5000	558.2857	617.0000	640.8333	515.1111

Résumé numérique entre les variables rang et filière (moyenne)

Filière	CI	CPP	MP	MP*	PC	PC*	PSI	PSI*
rang	NA	NA	1104.0	688.5	644.0	757.0	631.5	473.0

Résumé numérique entre les variables rang et filière (médiane)

Filière	CI	CPP	MP	MP*	PC	PC*	PSI
rang	NA	NA	262.79077	590.43416	281.03067	307.66459	63.26584

Résumé numérique entre les variables rang et filière (écart type)

Ce graphe permet de résoudre visuellement le problème soulevé précédemment, celui du rang qui avait un sens différent suivant la filière. Désormais la distinction est marquée et l'analyse des données peut se faire de façon plus complète. Ainsi, de par la forte dépendance avec la variable *filière*, la variable *rang* est très difficilement utilisable sans prendre en compte la filière.

II.2.2 Croisement entre variables quantitatives

Question 3.2.2.1

	Analyse	Ecrit	Moyenne	Oral	Proba	Rang	Voeux
Analyse	1	0.2204279	0.16938465	-0.02439720	0.482642513	0.0044748	-0.125937
Ecrit		1	0.69603362	-0.22737578	0.137168956	-0.4337386	0.2390189
Moyenne			1	0.53989504	0.120149583	-0.6776006	0.0699118
Oral				1	0.011427337	-0.4085150	-0.182343
Proba					1	0.00594790	-0.097613
Rang						1	-0.148303
Voeux							1

Matrice de corrélation

Question 3.2.2.2

Nuages de points

Question 3.2.2.3 La matrice de corrélation permet d'observer les coefficients de corrélation entre deux variables deux à deux. On observe un fort taux de corrélation entre la *moyenne* et l'*écrit* (p=0,70), un taux élevé entre moyenne et oral (p=0,54) et pour confirmer l'intuition de la corrélation entre *analyse* et *proba*, on a : (p=0,48) ce qui dénote un certain lien entre les deux variables, qui n'est pas toujours respecté pour tous les résultats.

Les graphes en nuages de points permettent d'observer des relations existantes entre les variables, et peuvent apporter plus d'informations que les coefficients de corrélation de la matrice : on peut observer quatre populations différentes dans la superposition de *rang* et de *moyenne* (les quatre principales filières) avec une relation très linéaire (le *rang* augmente quand la *moyenne* diminue).

II.2.3 Croisement entre variables qualitatives

Question 3.2.3.1.a)

Succes/bac	A	M	PC	SI	SVT
échec	0	8	1	0	5
succès	0	22	2	4	8

Succes-Bac : table de contingence

Succes/concours	Civil	Fonctionnaire
Échec	15	1
Succès	33	6

Succes-concours : table de contingence

Succes/fil iere	CI	CPP	MP	MP*	PC	PC*	PSI	PSI*
Échec	0	1	5	0	3	1	2	3
Succès	1	0	16	2	4	4	4	6

Succes-filiere : table de contingence

Succes/mention	P	AB	В	ТВ
Échec	0	2	8	4
Succès	0	3	16	17

Succes-mention : table de contingence

Succes/sexe	F	M
Échec	0	16
Succès	8	31

Succes-sexe : table de contingence

Étonnamment, un fort pourcentage des étudiants ayant fait spé maths au lycée n'ont pas validé leur examen de probabilités

Succes-bac: profil colonnes

Succes/bac	A	M	PC	SI	SVT
échec	NaN	26.7	33.3	0	38.5
succès	NaN	73.3	66.7	100	61.5

Succes-bac : table de contingence (pourcents)

Succes/concours	Civil	Fonctionnaire	
Échec	31.2	14.3	
Succès	68.8	85.7	

Succes-concours: table de contingence (pourcents)

 $Succes-mention: profil\ colonne$

Succes/mention	P	AB	В	ТВ
Échec	NaN	40	33.3	19
Succès	NaN	60	66.7	81

Succes-mention: table de contingence (pourcents)

On retrouve un pourcentage de succès qui augmente avec le prestige de la mention au bac

Succes-sexe : *profil colonnes*

Succes/sexe	F	M
Échec	0	34
Succès	100	66

Succes-sexe : table de contingence (pourcents)

Question 3.2.3.2

Croiser la variable *succes* avec les autres variables qualitatives nous a permis d'observer les proportions d'étudiants ayant réussi ou échoué à l'examen de probabilités suivant les critères des autres variables, comme le sexe, la filière en classes prépa, la mention au bac...

On peut alors observer des liens logiques : en proportion les étudiants qui ont eu mention TB au bac ont plus réussi que ceux qui ont eu B à 81% de succès contre 66.7%

On retrouve les résultats dans les diagrammes en barre pour une visualisation facile.

Il y a tout de même un effet taille très important: on pourrait comprendre que les étudiants de la filière CI réussissent énormément bien (100% de réussite) alors que ceux de la filière CPP ont de grosses difficultés (100 % d'échec). Mais l'échantillon sur ces deux filières est de taille 1 ! Ce qui n'est pas suffisant pour se ramener à la population.

Ainsi, l'étude descriptive bidimensionelle noua a permis dans un premier temps d'observer les moyennes, variances, et autre indicateurs statistiques des variables quantitatives en les croisant avec les variables qualitatives.

Ensuite nous avons pu tester la corrélation entre variables quantitatives (rand, moyenne, ...)

Enfin, nous avons pu observer les proportions des étudiants entre variables qualitatives (succès, ...) ce qui permet de trouver des tendances.

Il faut effectuer des tests afin de confirmer ou d'infirmer les conjectures émises précédemment.

III. Étude inférentielle

III.1. Tests d'hypothèses pour un échantillon

Question 4.1.1

Test d'adéquation à une loi normale pour la variable analyse :

Hypothèses maintenues : $(X_1,...,X_n)$ indépendant identiquement distribué (iid) de fonction de répartition F inconnue.

En effet, la note obtenue par un étudiant i n'influe normalement pas sur la note obtenue par un autre étudiant (sauf éventuelle triche). De plus, on admet que toutes les notes suivent la même loi.

Test de Shapiro-Wilk : H0 : F = Normale contre H1 : F ≠ Normale

On a : W = 0.933, p-value = 0.004373

Pour un risque de 5%, alpha > p-value donc **on rejette la normalité avec un risque de 5%**

Test d'adéquation à une loi normale pour la variable proba :

Hypothèses maintenues : $(X_1,...,X_n)$ iid de fonction de répartition F inconnue.

Test de Shapiro-Wilk : H0 : F = Normale contre $H1 : F \neq Normale$

On a : W = 0.9804, p-value = 0.5065

Pour un risque de 5 %, alpha < p-value donc on ne rejette pas la normalité avec un risque bêta non contrôlé.

Si la distribution des notes d'*analyses* ne ressemble pas à une loi normale, on voit que le test de Shapiro-Wilk est incapable de rejeter la loi normale pour la variable *proba*. Pourtant, ces deux variables représentent des notes obtenues dans deux matières différentes, on aurait pu s'attendre à ce qu'elles suivent la même loi.

Question 4.1.2.a

Hypothèses maintenues : $(X_1,...,X_n)$ iid, de loi normale par test de Shapiro-Wilk $N(\mu,\sigma^2)$, variance σ^2 inconnue.

H0 :
$$\mu$$
 > **12** contre **H1** : μ ≤ **12**

Test paramétrique de Student pour une moyenne (t-test univarié)

Question 4.1.2.b

Valeur de la statistique observée : 11.27636

Région critique :
$$W\alpha = \{\sqrt{n} \frac{\bar{x}_n - 12}{s'_n} < -t_{n-1;2\alpha}\}$$

On a: $W_{0,05} = \{-\infty; 11.94633\}$

Alors, $11.27636 \in W_{0,05}$, donc on rejette H0 avec un risque controlé de 5 %. La moyenne est inférieure à 12.

Question 4.1.2.c

On a la p-valeur α_c = 0.03812. Alors α = 0,05 > α_c . Par la p-valeur on rejette aussi H0 avec un risque contrôlé de 5 %.

Question 4.1.2.d

Le test nous a permis de confirmer à 95% que la moyenne de proba était inférieure à 12 sur toute la promo grâce à cet échantillon seulement. En revanche, l'absence de loi normale par Shapiro-Wilk laisse douter de la justesse de la conclusion du test (bien qu'on n'ait pas coché « loi normale »).

III.2. Tests d'hypothèses pour deux échantillons

Question 4.2.1.a

Pour répondre à la question « peut-on affirmer affirmer que les femmes réussissent mieux que les hommes en probabilités ?», il faut effectuer un **test de Student de comparaison des moyennes**.

Question 4.2.1.b

Pour répondre à la question « peut-on dire qu'il existe une différence entre les moyennes en analyse et en probabilités ? », il faut effectuer un **test de comparaison de deux moyennes-observations appariées.**

Question 4.2.1.c

Pour répondre à la question «peut-on dire que la variable *succes* dépend des autres variables qualitatives ? », il faut effectuer un **test d'indépendance du Khi-deux.**

Question 4.2.2.a

Pour la question « peut-on affirmer affirmer que les femmes réussissent mieux que les hommes en probabilités ?», le test de Student de comparaison des moyennes requiert les hypothèses maintenues :

- $(X_1, ..., X_{n1})$ i.i.d de loi normale $N(\mu_1, \sigma_1^2)$, μ_1 et σ_1^2 inconnues. (Les notes obtenues par les femmes en probabilités).
- $(Y_1, ..., Y_{n2})$ i.i.d de loi normale $N(\mu_2, \sigma_2^2)$, μ_2 et σ_2^2 inconnues. (Les notes obtenues par les hommes en probabilités).
- Variances supposées égales ($\sigma_1^2 = \sigma_2^2 = \sigma^2$). (Pas obligatoirement avec le test proposé dans R)
- $(X_1, ..., X_{n1})$ et $(Y_1, ..., Y_{n2})$ deux échantillons indépendants. (Les notes des femmes n'ont aucune raison d'être influencées ou d'influencer celles des hommes).

Hypothèses de test : $H0: \mu_1 - \mu_2 \le 0$ contre $H1: \mu_1 - \mu_2 > 0$

Pour la question « peut-on dire qu'il existe une différence entre les moyennes en analyse et en probabilités ? »,le test de comparaison de deux moyennes-observations appariées requiert les hypothèses maintenues :

- $(X_1, ..., X_n)$ i.i.d de loi X, de moyenne μ_1 inconnue. (Les notes obtenues en analyse, indépendantes d'un individu à l'autre sauf cas de triche).
- $(Y_1, ..., Y_n)$ i.i.d de loi Y, de moyenne μ_2 inconnue. (Les notes obtenues en probabilités, indépendantes d'un individu à l'autre sauf cas de triche).
- (X₁, ..., X_n) et (Y₁, ..., Y_n) appariées. (En effet, les notes ont été obtenues par le même individu et ne sont donc pas indépendantes.)
- (D₁, ..., D_n) échantillon i.i.d tel que D_i = $X_i Y_i$ suive une loi normale N(μ_D , σ_D^2), $\mu_D = \mu_{1-}$ μ_2 et σ_D^2 inconnues.

Hypothèses de test : $\mathbf{H0}$: $\mu_D = \mathbf{0}$ contre $\mathbf{H1}$: $\mu_D \neq \mathbf{0}$

Pour la question «peut-on dire que la variable *succes* dépend des autres variables qualitatives ? »,le test d'indépendance du Khi-deux requiert les hypothèses maintenues :

- $(X_1, Y_1), ..., (X_n, Y_n)$ échantillon i.i.d, issu du couple (X, Y) (X variable *succes*, Y les autres variables qualitatives).
 - \circ X une v.a. à p modalités $c_1, ..., c_p$. Ici p = 2 et c_1 = succès et c_2 = échec

∘ Y une v.a. à q modalités $c'_1, ..., c'_q$.

Hypothèses de test : H0 : X et Y indépendantes contre H1 : X et Y liées

Question 4.2.2.b

Les femmes réussissent-elles mieux que les hommes ? :

Test de Shapiro-Wilk : p-value = 0,5065, on ne peut pas rejeter la normalité, donc on a bien une distribution normale pour la variable probabilité das l'échantillon.

Script:

t.test(proba~sexe, alternative='two.sided', conf.level=.95, var.equal=FALSE, data=ienac20)

Sortie:

data: proba by sexe

t = 2.7172, df = 16.028, p-value = 0.01521

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 $0.4468159\ 3.6164820$

sample estimates:

mean in group F mean in group M

13.01250 10.98085

Le test de Student de comparaison des moyennes rejette l'hypothèse d'égalité des moyennes en probabilité pour les hommes et les femmes avec une p-valeur de 0,01521 < 0,05 On peut donc affirmer à 95 % que les femmes réussissent mieux en moyenne que les hommes. Cependant, avec le faible nombre de filles étudiantes, on peut se poser des question sur la validité de la normalité de la distribution sur un si faible échantillon, et ainsi remettre en cause le résultat.

Peut-on dire qu'il existe une différence entre les moyennes en analyse et en probabilités ?:

Les 3 premières hypothèses sont vérifiées pour le test de comparaison de deux moyennesobservations appariées.

La dernière hypothèse maintenue, D = X-Y suit une loi normale est difficile à vérifier en revanche. En la supposant vraie, effectuons le test :

Script:

t.test(ienac20\$analyse, ienac20\$proba, alternative='two.sided', conf.level=.95, paired=TRUE)

Sortie:

Paired t-test

data: ienac20\$analyse and ienac20\$proba
t = 9.3204, df = 54, p-value = 7.771e-13
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.751412 4.259497
sample estimates:
mean of the differences
3.505455

Avec une telle p-valeur de 8e-13, on rejette aisément à 95 % l'hypothèse H0 : « Il n'y a pas de différence entre les moyennes d'analyse et de probabilités ». On peut par contre discuter de la validité de la dernière hypothèse maintenue, on devrait effectuer un test de normalité sur D pour savoir s'il est honnête d'effectuer le test sur échantillons appariés.

Peut-on dire que la variable succes dépend des autres variables qualitatives ? :

Les hypothèses du test d'indépendance du Chi-Deux citées plus haut sont bien vérifiées ici pour la variable succes comme pour toutes les autres variables qualitatives.

Script:

chisq.test(xtabs(~succes+concours, data=ienac20), correct=FALSE)

Sortie:

Pearson's Chi-squared test

data: xtabs(~succes + concours, data = ienac20) X-squared = 0.8523, df = 1, p-value = 0.3559

Le test d'indépendance du Chi-Deux n'arrive pas à montrer que les variables succès et concours ne sont pas indépendantes, on acceptera alors l'indépendance du statut Fonctionnaire/Civil avec le succès à l'examen de probabilités, bien que l'on attendait que les fonctionnaires soient meilleurs que les civils.

De la même sorte, on montre que le test ne peut pas rejeter l'indépendance de succès avec la variable mention (au bac), avec une p-valeur de 0,66. On les considère donc indépendantes (avec un risque bêta). On pouvait s'attendre à de meilleurs résultats de la part des hautes mentions, mais le test manque de puissance (ou le bac remonte à trop loin et les étudiants ont tout oubliés).

En revanche, on peut observer que le test rejette l'indépendance entre succès et sexe. Le test estime en effet que les deux sont liés. On aurait pu s'en douter, vu que dans l'échantillon 100 % des filles ont réussi, tandis que 16 garçons sur 47 ont échoué.

Synthèse:

L'étude inférentielle nous a permis d'effectuer et d'interpréter des tests d'hypothèses sur les variables de notre échantillon afin d'obtenir des informations sur la population générale des étudiants IENAC. Cependant, pour réaliser ces tests nous avons du nous accepter des hypothèses pas toujours réalistes, et devons donc manipuler les conclusions avec des pincettes.

Conclusion

Cette étude statistique des étudiants de l'ENAC en formation ingénieur nous a permis d'observer les répartitions des étudiants par rapport aux différentes variables proposées, et ainsi nous avons pu observer des liens entre variables, mais également réaliser des test d'hypothèse pour pouvoir généraliser l'observation de l'échantillon des 55 étudiants à toute la population du cursus.

Cette étude nous a confirmé quelques évidences (ceux qui ont eu mention TB au baccalauréat sont en moyenne meilleurs aux examens que les autres), mais nous a donné parfois des résultats surprenants, certains dénués de sens : Par exemple, en étudiant la variable succès et la variable sexe, on voit que 8 filles sur les 8 de l'échantillon ont réussi l'examen de probabilités, et de ce fait les tests trouvent un lien entre les 2 variables, ce qui paraît incohérent a priori.

Annexes

Script:

```
3.2.1.a)
# Table for analyse:
tapply(ienac20$analyse, list(bac=ienac20$bac), mean, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(bac=ienac20$bac), mean, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(concours=ienac20$concours), mean, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(concours=ienac20$concours), mean, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(filiere=ienac20$filiere), mean, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(filiere=ienac20$filiere), mean, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(mention=ienac20$mention), mean, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(mention=ienac20$mention), mean, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(sexe=ienac20$sexe), mean, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(sexe=ienac20$sexe), mean, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(succes=ienac20$succes), mean, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(succes=ienac20$succes), mean, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(bac=ienac20$bac), median, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(bac=ienac20$bac), median, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(concours=ienac20$concours), median, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(concours=ienac20$concours), median, na.rm=TRUE)
# Table for analyse:
```

tapply(ienac20\$analyse, list(filiere=ienac20\$filiere), median, na.rm=TRUE)

```
# Table for proba:
tapply(ienac20$proba, list(filiere=ienac20$filiere), median, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(mention=ienac20$mention), median, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(mention=ienac20$mention), median, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(sexe=ienac20$sexe), median, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(sexe=ienac20$sexe), median, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(succes=ienac20$succes), median, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(succes=ienac20$succes), median, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(bac=ienac20$bac), sd, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(bac=ienac20$bac), sd, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(concours=ienac20$concours), sd, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(concours=ienac20$concours), sd, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(filiere=ienac20$filiere), sd, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(filiere=ienac20$filiere), sd, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(mention=ienac20$mention), sd, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(mention=ienac20$mention), sd, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(sexe=ienac20$sexe), sd, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(sexe=ienac20$sexe), sd, na.rm=TRUE)
# Table for analyse:
tapply(ienac20$analyse, list(succes=ienac20$succes), sd, na.rm=TRUE)
# Table for proba:
tapply(ienac20$proba, list(succes=ienac20$succes), sd, na.rm=TRUE)
3.2.1.1.b)
with(ienac20, Hist(analyse, scale="frequency", breaks="Sturges", col="darkgray"))
with(ienac20, Hist(ecrit, scale="frequency", breaks="Sturges", col="darkgray"))
with(ienac20, Hist(moyenne, scale="frequency", breaks="Sturges", col="darkgray"))
with(ienac20, Hist(oral, scale="frequency", breaks="Sturges", col="darkgray"))
```

```
with(ienac20, Hist(proba, scale="frequency", breaks="Sturges", col="darkgray"))
with(ienac20, Hist(rang, scale="frequency", breaks="Sturges", col="darkgray"))
with(ienac20, Hist(voeux, scale="frequency", breaks="Sturges", col="darkgray"))
Boxplot( ~ analyse, data=ienac20, id.method="y")
Boxplot( ~ ecrit, data=ienac20, id.method="y")
Boxplot( ~ movenne, data=ienac20, id.method="v")
Boxplot( ~ oral, data=ienac20, id.method="y")
Boxplot( ~ proba, data=ienac20, id.method="y")
Boxplot( ~ rang, data=ienac20, id.method="y")
Boxplot( ~ voeux, data=ienac20, id.method="v"
3.2.1.3)
tapply(ienac20$rang, list(filiere=ienac20$filiere), mean, na.rm=TRUE)
tapply(ienac20$rang, list(filiere=ienac20$filiere), median, na.rm=TRUE)
tapply(ienac20$rang, list(filiere=ienac20$filiere), sd, na.rm=TRUE)
Boxplot(rang~filiere, data=ienac20, id.method="y")
3.2.2.1)
cor(ienac20[,c("analyse","ecrit","moyenne","oral","proba","rang","voeux")],
use="complete")
3.2.2.2)
tapply(ienac20$proba, list(succes=ienac20$succes), sd, na.rm=TRUE)
scatterplotMatrix(~analyse+ecrit+movenne+oral+proba+rang+voeux, reg.line=lm,
smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal = 'density', data=ienac20)
```{r}
scatterplotMatrix(~proba+rang+voeux | concours, reg.line=lm, smooth=TRUE,
spread=FALSE, span=0.5,
 id.n=0, diagonal= 'density', by.groups=FALSE, data=ienac20)
```{r}
scatterplotMatrix(~proba+rang+voeux | concours, reg.line=lm, smooth=TRUE,
spread=FALSE, span=0.5,
 id.n=0, diagonal= 'density', by.groups=FALSE, data=ienac20)
```

```
```{r}
scatterplotMatrix(~analyse+ecrit+movenne+oral+proba+rang+voeux | bac,
reg.line=lm, smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal= 'density', by.groups=FALSE,
data=ienac20)
```{r}
scatterplotMatrix(~analyse+ecrit+moyenne+oral+proba+rang+voeux | concours,
reg.line=lm, smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal= 'density', by.groups=FALSE,
data=ienac20)
```{r}
scatterplotMatrix(~analyse+ecrit+moyenne+oral+proba+rang+voeux | concours,
reg.line=lm, smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal='density', by.groups=FALSE,
data=ienac20)
```{r}
scatterplotMatrix(~analyse+ecrit+moyenne+oral+proba+rang+voeux | filiere,
reg.line=lm, smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal='density', by.groups=FALSE,
data=ienac20)
```{r}
scatterplotMatrix(~analyse+ecrit+moyenne+oral+proba+rang+voeux | mention,
reg.line=lm, smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal='density', by.groups=FALSE,
data=ienac20)
scatterplotMatrix(~analyse+ecrit+movenne+oral+proba+rang+voeux | sexe,
reg.line=lm, smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal= 'density', by.groups=FALSE,
data=ienac20)
scatterplotMatrix(~analyse+ecrit+moyenne+oral+proba+rang+voeux | succes,
```

```
reg.line=lm, smooth=TRUE,
 spread=FALSE, span=0.5, id.n=0, diagonal= 'density', by.groups=FALSE,
data=ienac20)
3.2.3)
1.a)
xtabs(~succes+bac, data=ienac20)
xtabs(~succes+concours, data=ienac20)
xtabs(~succes+filiere, data=ienac20)
xtabs(~succes+mention, data=ienac20)
xtabs(~succes+sexe, data=ienac20)
1.b)
colPercents(xtabs(~succes+bac, data=ienac20))
colPercents(xtabs(~succes+concours, data=ienac20))
colPercents(xtabs(~succes+filiere, data=ienac20))
colPercents(xtabs(~succes+mention, data=ienac20))
colPercents(xtabs(~succes+sexe, data=ienac20))
1.c)
barplot(xtabs(~succes+bac, data=ienac20), legend.text=T,xlab="bac",ylab="%")
barplot(xtabs(~succes+concours, data=ienac20),
legend.text=T,xlab="concours",ylab="%")
barplot(xtabs(~succes+filiere, data=ienac20), legend.text=T,xlab="filiere",ylab="%")
barplot(xtabs(~succes+mention, data=ienac20),
legend.text=T,xlab="mention",ylab="%")
barplot(xtabs(~succes+sexe, data=ienac20), legend.text=T,xlab="sexe",ylab="%")
```

## **Graphes**

Vous trouverez tous les graphes dans le dossier compressé ci-joint