SAE Contrôle d'une tête rotative de détection d'obstacles pour robot mobile.

DEVILLERS Tom | PATERNOTTE Mattéo

Plan de présentation :

- Présentation du système
- Présentation du fonctionnement
- Télémètre Infrarouge
- Sonar SRF05
- Visualisation d'un afficheur
- Servo moteur
- Communication Radio
- Réalisation d'une interface graphique
- Conclusion

Présentation du système

Présentation du fonctionnement


```
if(secteur==0&&sens_rotations==1&& reset==0){
   for(angle=0;angle<=8;angle++){
     balayage=70-angle*3.05;
     set_pwm3_duty(balayage);
     delay_ms(200);
     mesure(angle);
     reset=1;
     xbee_a(affichage);
}</pre>
```


PIN	SIGNAL NAME
1	Vo
2	GND
3	V _{CC}

Mesure avec	8bits / Vref=3,3V		
DISTANCE (cm)	Volts	Nombre binaire	
10	2,35	182	
12	2,02	156	
14	1,78	138	
16	1,59	123	
18	1,44	112	
20	1,32	102	
22	1,22	95	
24	1,14	88	
26	1,06	82	
28	1	77	
30	0,94	73	
32	0,89	69	
34	0,85	65	
36	0,81	62	
38	0,77	59	
40	0,74	57	
42	0,71	55	
44	0,68	52	

Mesure avec proteus 8bits / Vref=3,3V		Distance en cm = f(Nadc)			
DISTANCE (cm)	Volts	Nombre binaire	Polynome ordre 3	Polynome ordre 4	Puissance
10	2,35	182	-1781,3892	10749,50568	15,60941367
12	2,02	156	-844,0528	4839,79928	17,79747158
14	1,78	138	-430,5892	2538,06728	19,75469091
16	1,59	123	-203,9947	1383,03443	21,78703302
18	1,44	112	-93,3952	850,17848	23,59515334
20	1,32	102	-26,0932	532,56488	25,54986414
22	1,22	95	5,5125	380,89875	27,14341916
24	1,14	88	26,7008	273,05528	28,97027297
26	1,06	82	38,1308	207,36968	30,76463402
28	1	77	43,8993	167,07963	32,45665314
30	0,94	73	46,5953	142,25243	33,96405906
32	0,89	69	48,0017	122,66363	35,63253867
34	0,85	65	48,5025	107,26875	37,49022742
36	0,81	62	48,5148	97,95048	39,02851379
38	0,77	59	48,3957	90,20883	40,71104774
40	0,74	57	48,3233	85,80443	41,92352959
42	0,71	55	48,3125	81,93875	43,21740566
44	0,68	52	48,5168	77,05688	45,33028984

Calcul	Temps
Polynome ordre 3	726us
Polynome ordre 4	1240us
Puissance	4400us

```
void mesure(int angle)
  nadc = read_adc(); // demande de conversion, att
   delay_ms(53);// Attendre le temps maximum pour f
   calcul2=1308.3*pow(nadc, -0.851);// Calcul de la
  if(calcul2>10&&calcul2<70){// Si la distance mes
   fprintf(DEBUG, "n°%u; %lf \n\r", angle, calcul2);/
```

Sonar SRF05

Programmation:

```
void debut()
{
  output_high(Start);
  delay_us(10);
  output_low(Start);
  set_timer1(0);
}
```

```
Trigger pulse
10uS Mininum
void fonctionnement()
debut();
                                                      Trigger pulse 
input to SRF05
while(input(EPO)==0 && flag stop==0){
                                                                                      8 cycles off
                                                                                      sonic burst
                                                      Ultrasonic burst
while(input(EPO)==1 && flag stop==0){
                                                      transmitted
                                                      from SRF05
                                                                                                 Echo pulse - 100uS to 25mS. Times
                                                                                                 out after 30mS if no object detected
if(flag stop==0)
                                                    Echo pulse output
from SRF05 to
    sonar=get timer1();
                                                    users controller
    distance = (float)sonar/2*340/20000;
    fprintf(DEBUG, "distance SONAR: %f \r\n", distance);
    else
       fprintf(DEBUG," aucun obstacle \n\r");
       flag stop=0;
```

Visualisation d'un afficheur:

Digits: 8 7 6 5 4 3 2 1

- Programmation → Librairie du MAX7219
- Deux modes : décodage BCD une gestion binaire des segments.

```
void affichage 7219(float distance,int secteur)
centaine=(int)distance/100;
dizaine=(((distance+100)/10));
dizaine=dizaine%10:
unite=(int)distance%10;
decode7219(@b10010111);//
                            1 MODE BCD // 0 MODE GESTION DES SEGMENT DE FAÇONS BINAIRE
write7219(8, 5);// on affiche S positions 8
write7219(7, 0b1001111);// on affiche E positions 7
write7219(6, 0b1001110);// on affiche C positions 6
write7219(5, secteur);// on affiche le chiffre du secteur position 5
write7219(4, 0b0000001);// on affiche le tirret du secteur position 4
write7219(3, centaine );// on affiche la dizaine de la distance position 3
write7219(2, dizaine);// on affiche unite de la distance position 2
write7219(1, unite);// on affiche unite de la distance position 2
```

Servo moteur:

$$t1 = -90^{\circ}$$

$$t2 = 90^{\circ}$$

$$t1 = \frac{0.001}{\frac{1}{8 \times 10^{6}} \times 128} = 62.5$$

$$t2 = \frac{0.002}{\frac{1}{8 \times 10^{6}} \times 128} = 125$$

Programmation:

```
if(flag_objet_detecte==0)
    switch(secteur){
    case 4:
    sens rotations=1;
    set_pwm3_duty((int16)143);//+70 degrée
    break:
    case 3:
    set pwm3 duty((int16)121);//+35 degrée
    break;
    case 2:
    set_pwm3_duty((int16)100);// 0 degrée
    break;
   case 1:
    set pwm3 duty((int16)79);//-35 degrée
    break;
    case 0:
    sens_rotations=0;
    set_pwm3_duty((int16)58);//-70 degrée
    break;
```

degrée	nombre
-90	45
-70	58
-55	66
-50	70
-35	79
-15	91
0	100
15	109
35	121
50	130
55	133
70	143
90	155

Communication Radio:

Réalisation d'une interface graphique :


```
02/04/2024 10:34:35 noeud: debug 1
msg.payload: string[19]

▶ "
secteur n 1;59.13→"

02/04/2024 10:34:35 noeud: debug 1
msg.payload: string[12]

▶ "
pas n 0;00→"
```

Réalisation d'une interface graphique :

CONTRÔLE D'UNE TÊTE ROTATIVE DE DÉTECTION D'OBSTACLES POUR ROBOT MOBILE.

Conclusion

DEVILLERS Tom | PATERNOTTE Mattéo