

CSC380: Principles of Data Science

Probability 4

Xinchen Yu

Review: Random Variable Examples

X_1, X_2 : outcomes of two dice

- $R_1 = X_1 + X_2$
- $\bullet R_2 = \frac{(X_1 + X_2)}{2}$
- $R_3 = I\{X_1 = 1\}$

I: Indicator function

Random variable induces a partition of the outcome space!

$$\{R_3 = 1\} \Leftrightarrow \{(1,1), (1,2), ..., (1,6)\}$$

 $\{R_3 = 0\} \Leftrightarrow \{(2,1), (2,2), ..., (2,6), (3,1), (3,2), ..., (3,6), ..., (6,1), (6,2), ..., (6,6)\}$

Q: what distribution does R_3 follow with what parameter?

Bernoulli, PMF:
$$p(X = x) = \pi^x (1 - \pi)^{1-x}, \pi = \frac{1}{6}$$

Outline

- Continuous probability
- Continuous distribution
 - PDF
 - •CDF
- Useful continuous distributions

Continuous Probability

(TV show spin the wheel)

Continuous Probability

Experiment Spin continuous wheel and measure X displacement from 0

Say the circumference is 1.

Outcome space Ω is all points (real numbers) in (0,1]

Question Assuming uniform distribution,

what is P(X = x)?

Proof

Goal: Show P(X=x) = 0

- Say the displacement X is in (0, 1]
- Let *N* be a very large number. Q: how many such intervals?

• Let
$$I_k = (\frac{k-1}{N}, \frac{k}{N}]$$
 e.g., $I_1 = (\frac{1-1}{24}, \frac{1}{24}] = (0, \frac{1}{24}]$, $I_{21} = (\frac{21-1}{24}, \frac{21}{24}] = (\frac{20}{24}, \frac{21}{24}]$

•
$$P(X = x) \le P(X \in I_{j(x)}) = \frac{1}{N}$$
 e.g., $P(X = 21) \le P(X \in (\frac{20}{24}, \frac{21}{24}]) = \frac{1}{24}$

- We can make N as large as we want!
- \Rightarrow P(X=x) must be 0.

Continuous Probability

Maybe, it's not so weird.

•Q1: Probability that your house water usage tomorrow is 20.58 gallon?

•Q2: Probability that your house water usage tomorrow is 20.5891231285 gallon?

in reality, we never work with a precise real number. we work with intervals.

Continuous Probability

we could try to convince ourselves that it is sensible.

... or we could just accept this oddity...

Continuous Distributions

Fundamental Theorem of Calculus: example

• The area of any circular cylinder:

$$V = \pi \cdot r^2 \cdot x$$

• Think about slicing the cylinder into thin pieces, r = 2, $thickness = \Delta x$:

$$V_{slice} = \pi \cdot 2^2 \cdot \Delta x$$

• Letting $\Delta x \rightarrow 0$:

$$V = \int_0^3 \pi \cdot 2^2 \cdot dx = \int_0^3 4\pi \, dx$$

• Volume for each thin piece *dv*:

$$dv = 4\pi \ dx, \qquad \frac{dv}{dx} = 4\pi$$

Get antiderivative:

$$V = 4\pi x$$

• $V = \int_0^3 4\pi \, dx = V(3) - V(0) = 4\pi \cdot 3 - 0 = 12\pi$

Fundamental Theorem of Calculus: example

Fundamental Theorem of Calculus: example

Mapping example to continuous probability

Cumulative Distribution Function

Definition The <u>cumulative distribution function</u> (CDF) of a RV X is the function given by,

$$F(x) = P(X \le x)$$

Key properties:

F is monotonically increasing F(x) goes to 0/1 if x goes to $-\infty/+\infty$

Can easily measure probability of closed intervals,

$$P(a < X \le b) = F(b) - F(a)$$

e.g.
$$a = 64$$
, $b = 70$

CDF graph for heights

Probability Density Function

 \triangleright If F(X) is differentiable then,

Fundamental Theorem of Calculus

$$p(x) = \frac{dF(x)}{dx}$$

$$p(x) = \frac{dF(x)}{dx}$$
 and $F(t) = \int_{-\infty}^{t} p(x) dx$

0.4

p(x) is called X's **probability density function (PDF)**

$$\approx \frac{F(x) - F(x - \epsilon)}{x - (x - \epsilon)} = \frac{P(X \in (x - \epsilon, x])}{\epsilon} \text{ when } \epsilon \to 0$$

Intuition: p(x) characterizes how likely X takes values in the neighborhood of x

- $p(x) \ge 0$ for all x
- $P(a < X \le b) = F(b) F(a) = \int_a^b p(x) dx$
- $\int_{-\infty}^{+\infty} p(x) \mathrm{d}x = 1$

CDF vs. PDF

Cumulative distribution function:

 $\operatorname{cdf}(x)$

$$P(a < X \le b) = F(b) - F(a)$$
$$F(t) = \int_{-\infty}^{t} p(x) dx$$

$$p(x) = \frac{dF(x)}{dx}$$

PMF vs. PDF

 \rightarrow Events represented as intervals $a \leq X < b$ with probability,

$$P(a \le X < b) = \int_a^b p(X = x) \, dx$$

- → Specific outcomes have zero probability
- → But may have **nonzero** probability density

Notation

- For continuous RV X, use p(X = x), p(x), pX(x) to denote its PDF (probability density function)
 - Recall: P(X = x) is not its PDF value (in fact, always 0)

- For discrete RV X, use p(X = x), p(x), pX(x) to denote its PMF (probability mass function)
 - In this case, p(X = x) = P(X = x)

• General suggestions for HW / exams: to be extra safe, you can explicitly declare "we use p(X = x) to denote the PDF of continuous RV X"

Continuous Probability Distributions

Most definitions for discrete RVs hold, replacing sum with integral...

Law of Total Probability for continuous distributions,

$$p(x) = \int_{\mathcal{V}} p(x,y) \, dy$$
 Recall: for discrete X

All the rules apply when replacing PMF with PDF...

Conditional PDF:

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\int p(X,Y) dx}$$

Probability Chain Rule:

$$p(X,Y) = p(Y)p(X \mid Y)$$

Uniform Continuous Distribution

Uniform distribution on interval [a, b]:

$$p(x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{if } b \le x \end{cases} \qquad P(X \le x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{x-a}{b-a} & \text{if } a \le x \le b, \\ 1 & \text{if } b \le x \end{cases}$$

$$P(X \le x) = \int_{-\infty}^{x} p(t)dt$$

Notation:

p(x) for the PDF function at location x P(A) for the probability of event A

Again, PDF function ≠ probability

Uniform Continuous Distribution

Example: Let $X = \text{length of an eight-week-old baby's smile } (X \sim U(0, 23))$. The probability density function is $p(x) = \frac{1}{23-0} = \frac{1}{23}$ for $0 \le X \le 23$.

Q: find the probability that a random eight-week-old baby smiles more than 12 seconds knowing the baby smiles more than 8 seconds.

Method 1 (write a new PDF):

$$X \sim U(8, 23)$$

$$p(x) = \frac{1}{23 - 8} = \frac{1}{15}$$

$$P(23 > x > 12)$$

$$= \frac{(23 - 12)}{15}$$

$$\approx 0.7333$$

Method 2 (bayes rule):

$$P(x > 12 \mid x > 8)$$

$$= \frac{P(x > 12 \text{ and } x > 8)}{P(x > 8)} = \frac{P(x > 12)}{P(x > 8)}$$

$$= \frac{(23 - 12) \times \frac{1}{23}}{(23 - 8) \times \frac{1}{23}} \approx 0.7333$$

Uniform Continuous Distribution

numpy.random.uniform

numpy.random.uniform(low=0.0, high=1.0, size=None)

Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by uniform.

Example Draw 1,000 samples from a uniform on [-1,0),

```
a = -1
b = 0
N = 1000
X = np.random.uniform(a,b,N)
count, bins, ignored = plt.hist(X, 15, density=True)
plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
plt.show()
```

bins: length 16, consisting of boundary points

redline: PDF of uniform distr.

Gaussian/Normal Distribution

Gaussian (a.k.a. Normal) distribution with mean mean (location) μ and variance (scale) σ^2 parameters,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Compactly,
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Observations:

- Larger σ^2 : p(x) more "spread out"
- Larger μ : p(x) 's center shifts to the right more

Things that follow Gaussian

Female shoe size

Birth Weight

(From https://studiousguy.com/real-life-examples-normal-distribution/)

numpy.random

numpy.random.normal

scale =
$$\sqrt{\sigma^2}$$

numpy.random.normal(loc=0.0, scale=1.0, size=None)

Draw random samples from a normal (Gaussian) distribution.

Example Sample zero-mean gaussian with scale 0.1,

bins: length 31, consisting of boundary points

redline: PDF of gaussian distr.

Recap

Useful discrete distributions

- Bernoulli: "Coinflip Distribution"
- Binomial: Multiple Bernoulli draws
- Categorical: "Dice distribution"

Continuous probability

- P(X=x) = 0 does not mean you won't see x
- Probabilities assigned to *intervals* via CDF P(X > x)
- PDF measures probability density of single points p(X=x) >= 0

Useful continuous distributions

- Exponential: waiting time.
- Univariate / Multivariate Gaussian: Probably most ubiquitous distribution
- There are a lot more we will touch on later in the course...