Estatística aplicada

Lino Costa

Departamento de Produção e Sistemas Escola de Engenharia Iac@dps.uminho.pt

Ano letivo 2015/2016

Sumário

1. Regressão linear simples

- modelo populacional e modelo estimado
- resíduos
- gráfico de resíduos
- coeficiente de determinação
- intervalo de confiança e teste de hipótese para o declive
- análise de variância para testar o declive

Correlação

- coeficiente de correlação populacional
- coeficiente de correlação amostral
- teste de correlação de Pearson

Análise de regressão

A análise de regressão é um técnica estatística para modelar a relação entre duas ou mais variáveis. Pretende-se, usando um modelo, prever a resposta de uma variável para um determinado valor de outra variável (regressão simples) ou variáveis (regressão múltipla).

Modelo populacional de regressão linear simples

Modelo que explica a relação linear entre duas variáveis ($x \in Y$):

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

- β₀ e β₁ são os coeficientes de regressão que representam, respetivamente, a interseção com o eixo das ordenadas e o declive da reta de regressão. O declive β₁ mede a alteração esperada em Y por cada alteração de uma unidade de x.
- x é a variável independente (preditora).
- Y é a variável dependente (resposta) com $Y \sim N(\beta_0 + \beta_1 x, \sigma^2)$.
- ε são erros aleatórios que representam a variação de Y relativamente à reta de regressão $\beta_0 + \beta_1 x \text{ com } \varepsilon \sim N(0, \sigma^2)$.

Modelo estimado de regressão linear simples

Os parâmetros β_0 e β_1 podem ser estimados pelo "Método dos Mínimos Quadrados" a partir dos n pares de obervações (x_i,y_i) com $i=1,\ldots,n$, obtendo-se o modelo de regressão linear simples estimado:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

onde

$$\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$$
 e $\hat{eta}_1 = rac{\sum\limits_{i=1}^n {\left({{x_i} - ar{x}}
ight)} {y_i}}{\sum\limits_{i = 1}^n {\left({{x_i} - ar{x}}
ight)} {y_i}}$

Resíduo

Aplicando a reta de regressão linear simples estimada para x_i obtém-se a estimativa \hat{y}_i (o valor médio de Y para $x=x_i$). A diferença entre o valor real y_i e o previsto \hat{y}_i é chamado de resíduo e_i que é uma estimativa do erro aleatório ε_i :

$$e_i = y_i - \hat{y}_i$$
 para $i = 1, \dots, n$

Variância dos resíduos

A estimativa da variância dos resíduos σ^2 é dada por

$$\hat{\sigma}^2 = s^2 = MQR = \frac{SQR}{n-2} = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$$

Exemplo 1

Com base nos dados da tabela, determine o modelo de regressão linear simples para prever a concentração de um anestésico ($\mu L/g$) a partir do tempo de injeção (min.).

Tempo (min.)	Conc. $(\mu L/g)$
4	106
8	105
12	170
16	240
20	210
24	280
28	310

- variável dependente: concentração de um anestésico ($\mu L/g$)
- variável independente: tempo de injeção (min.)
- modelo populacional: $Y = \beta_0 + \beta_1 x + \varepsilon \operatorname{com} \varepsilon \sim N(0, \sigma^2)$

$$\bullet \quad \text{modelo estimado: } \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \text{ com } \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \text{ e } \hat{\beta}_1 = \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$

Exemplo 1

	Tempo	Conc.	$(x_i - \bar{x})$	$(x_i - \bar{x})^2$	$(x_i - \bar{x})y_i$
	4	106	-12	144	-1272
	8	105	-8	64	-840
	12	170	-4	16	-680
•	16	240	0	0	0
	20	210	4	16	840
	24	280	8	64	2240
	28	310	12	144	3720
	112	1421	0	448	4008

•
$$n=7, \, \bar{x}=\frac{112}{7}=16 \; {\rm e} \; \bar{y}=\frac{1421}{7}=203$$

•
$$\hat{\beta}_1 = \frac{4008}{448} = 8.946$$
 e $\hat{\beta}_0 = 203 - 8.946 \times 16 = 59.857$

• modelo estimado: $\hat{y} = 59.857 + 8.946x$

Análise de resíduos

Os resíduos devem ser independentes e com distribuição Normal com média 0 e variância constante σ^2 :

$$\varepsilon \sim N(0, \sigma^2)$$

Gráfico de resíduos

A representação gráfica dos resíduos e_i versus \hat{y}_i ou e_i versus x_i permitem visualizar se são aleatórios e com variância constante. Um padrão de distribuição dos resíduos nestes gráficos pode indicar que o modelo de regressão linear não é adequado.

Coeficiente de determinação

O coeficiente de determinação (\mathbb{R}^2) indica a proporção da variância da variável dependente que é explicada pelo modelo de regressão. Os valores de \mathbb{R}^2 pertencem ao intervalo de 0 a 1 (quanto maior, mais explicativo é o modelo):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Exemplo 1

- Coeficiente de determinação: R² = 0.922 pelo que a proporção de variabilidade da variável dependente explicada pelo modelo é de 92.2%.
- Gráfico de resíduos indica que os resíduos são aleatórios e têm variância constante pelo que o modelo se considera adequado.

Intervalo de confiança para o declive (β_1)

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \sqrt{\frac{\hat{\sigma}^2}{\sum\limits_{i=1}^n (x_i - \bar{x})^2}}$$

Teste de hipótese para o declive (β_1)

$$\begin{split} H_0: \beta_1 &= 0 \\ H_1: \beta_1 \neq 0 \end{split}$$

$$E.T.: T &= \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}} \sim t_{n-2}$$

$$R.R.: |T| > t_{\alpha/2, n-2}$$

Nota: a não rejeição de H_0 pode significar a não existência de relação linear entre a variável dependente e a variável independente (mas pode existir outro tipo de relação).

Análise de variância para testar β_1

 $H_0: \beta_1 = 0$
 $H_1: \beta_1 \neq 0$

Região de rejeição

 $R.R.: F > F_{\alpha,1,n-2}$ onde α é o nível de significância.

Tabela ANOVA e estatística de teste F

Fonte	SQ	gl	MQ	F
Explicada	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	1	$\sum_{i=1}^{n} \hat{\beta}_1 (\hat{x}_i - \bar{x})^2$	$F = \frac{\sum_{i=1}^{n} \hat{\beta}_1 (\hat{x}_i - \bar{x})^2}{s^2}$
Resíduos	$\sum_{i=1}^{n} (y_i - \hat{y})^2$	n-2	s^2	
Total	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1		

Notas importantes

- validade prática da regressão: a relação entre a variável dependente e independente deve ter significado prático
- validade empírica/teórica da regressão: o sinal e a magnitude dos coeficientes do modelo devem ser comparados com resultados anteriores (empíricos ou teóricos)
- associação entre variáveis na regressão: confirmar a existência de uma relação causa-efeito entre a variável independente e variável dependente
- limites do modelo: o modelo só é válido para valores da variável independente na gama de valores dos dados usados na construção do modelo (isto é, não é válido generalizar ou extrapolar o modelo)
- ajuste do modelo: analisar a distribuição dos resíduos (e_i) e calcular o coeficiente de determinação (R^2)
- significância estatística do modelo: testar a significância do modelo de regressão (teste ao coeficiente β_1 ou análise de variância a β_1)

Exemplo 2

Determine o modelo de regressão linear simples (comprimento alar em *cm* em função da idade em dias) para os dados relativos a andorinhas.

Estime o comprimento alar para uma idade de 7 dias e para 15 dias.

Analise a qualidade do ajuste e a significância estatística do modelo.

Idade (dias)	Comprimento alar (cm)
3	1.4
4	1.5
5	2.1
6	2.4
8	3.1
9	3.2
10	3.3

- variável dependente: comprimento alar (cm)
- variável independente: idade (dias)
- modelo populacional: $Y = \beta_0 + \beta_1 x + \varepsilon \operatorname{com} \varepsilon \sim N(0, \sigma^2)$
- $\bullet \quad \text{modelo estimado: } \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \text{ com } \hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x} \text{ e } \hat{\beta}_1 = \frac{\sum\limits_{i=1}^n (x_i \bar{x}) y_i}{\sum\limits_{i=1}^n (x_i \bar{x})^2}$

Exemplo 2

- n = 7, $\hat{\beta}_1 = 0.515$ e $\hat{\beta}_0 = 0.298$
- modelo estimado: $\hat{y} = 0.515 + 0.298x$
- valor esperado para *Y* quando x = 7, $E(Y) = 0.515 + 0.298 \times 7 = 2.601$
- valor esperado para Y quando x=15, o modelo não deve ser usado para extrapolar (só deve ser utilizado para valores de x entre 3 dias e 10 dias).

Exemplo 2

- Coeficiente de determinação: R² = 0.964 pelo que a proporção de variabilidade da variável independente explicada pelo modelo é de 96.4%.
- Gráfico de resíduos indica que os resíduos são aleatórios e têm variância constante pelo que o modelo se considera adequado.

Exemplo 2

- Intervalo de confiança de 95% para o declive: $0.231 \le \beta_1 \le 0.364$ (não inclui o 0 pelo que o modelo linear é significativo).
- Teste de hipótese para o declive ($\alpha=5\%$): $H_0: \beta_1=0; H_1: \beta_1\neq 0$, $E.T.: T=11.497, R.R.: |T|>t_{0.025,5}=2.571$ (tabela 6), rejeita-se H_0 para $\alpha=5\%$ pelo que o modelo linear é significativo.
- Análise de variância para o declive ($\alpha=5\%$): $H_0:\beta_1=0; H_1:\beta_1\neq 0$

Fonte	SQ	gl	MQ	F
Explicada	3.695	1	3.695	F = 132.174
Resíduos	0.140	5	0.028	
Total	3.834	6		

• $R.R.: F > F_{0.05,1,5} = 6.61$ (tabela 8), rejeita-se H_0 para $\alpha = 5\%$ pelo que o modelo linear é significativo.

Transformação de modelos não lineares em lineares

Algumas relações não lineares entre a variável dependente (Y) e a variável independente (x) podem ser transformadas matematicamente num modelo linear.

$$\hat{Y} = \hat{\beta}_0 + \frac{\hat{\beta}_1}{x} \iff \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 z \quad \text{com} \quad z = \frac{1}{x}$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 \ln x \iff \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 z \quad \text{com} \quad z = \ln x$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 e^x \iff \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 z \text{ com } z = e^x$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x^2 \iff \hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 z \text{ com } z = x^2$$

Coeficiente de correlação da população

Se X e Y forem variáveis aleatórias e n observações (X_i,Y_i) com $i=1,\ldots,n$ são obtidas a partir de uma distribuição Normal bivariada, então o coeficiente de correlação populacional é ρ e representa a relação linear normalizada entre X e Y.

Coeficiente de correlação amostral

O estimador de ρ é o coeficiente de correlação amostral (R):

$$R = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

- -1 ≤ R ≤ 1 mede o grau da correlação ou associação entre duas variáveis quantitativas (de escala proporcional ou intervalar)
- R = 1 correlação positiva perfeita entre as duas variáveis (uma aumenta e a outra também aumenta linearmente)
- R=-1 correlação negativa perfeita entre as duas variáveis (uma aumenta, a outra diminui)
- R = 0 as duas variáveis não estão associadas linearmente (no entanto, pode existir uma associação não linear)

Exemplo 3

Analise cada um dos seguintes gráficos de dispersão de duas variáveis aleatórias X e Y.

- R = 0.93 correlação positiva forte (uma aumenta e a outra também aumenta linearmente)
- R = -0.62 correlação negativa moderada (uma aumenta e a outra diminui linearmente)
- R = 0 correlação nula (não estão associadas linearmente)
- ullet R=0 correlação nula (não estão associadas linearmente, mas existe associação não linear)

Exemplo 4

O Índice de Desenvolvimento de Griffiths (IDR)de crianças é dado pelo coeficiente de correlação para as avaliações motora e intelectual.

Represente o gráfico de dispersão e determine o IDR para a seguinte amostra de 9 crianças com a idade de 4 anos.

Motor	Intelectual
84	77
73	85
101	105
74	86
88	108
100	116
86	96
95	100
82	100

Exemplo 4

	X_i	Y_i	$X_i - \bar{X}$	$Y_i - \bar{Y}$	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$
	84	77	-3	-20	9	400	60
	73	85	-14	-12	196	144	168
	101	105	14	8	196	64	112
	74	86	-13	-11	169	121	143
•	88	108	1	11	1	121	11
	100	116	13	19	169	361	247
	86	96	-1	-1	1	1	1
	95	100	8	3	64	9	24
	82	100	-5	3	25	9	-15
	783	873	0	0	830	1230	751

- n = 9, $\bar{X} = 87$ e $\bar{Y} = 97$
- $R = \frac{\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i \bar{X})^2 \sum_{i=1}^{n} (Y_i \bar{Y})^2}} = \frac{751}{\sqrt{830 \times 1230}} = 0.743$
- o coeficiente de correlação amostral é positivo (associação positiva linear)
- o IDR é de 74.3%

Teste de correlação de Pearson

$$H_0: \rho = 0$$
 $H_1: \rho \neq 0$
 $E.T.: T = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}} \sim t_{n-2}$
 $R.R.: |T| > t_{\alpha/2,n-2}$

Exemplo 4

Assumindo a normalidade, verifique se a correlação obtida é significativa ($\alpha=5\%$).

• Teste de correlação de Pearson ($\alpha=5\%$): $H_0: \rho=0$; $H_1: \rho\neq 0$, $E.T.: T=2.939, R.R.: |T|>t_{0.025,7}=2.365$ (tabela 6), rejeita-se H_0 para $\alpha=5\%$ pelo que a correlação é significativa.