IMPORT LIBRARIES

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

LOADING THE DATASET

df = pd.read_csv('Churn_Modelling.csv', encoding='latin-1')
df

Age 0 42 1 41 2	RowNumbe	r Custome	rId	Surname	CreditScore	Geography	Gender
	\	1 15634	602	Hargrave	619	France	Female
		2 15647	311	Hill	608	S Spain	Female
		3 15619	304	Onio	502	Prance	Female
3		4 15701	354	Boni	699	France	Female
39 4 43		5 15737	888	Mitchell	856	Spain	Female
9995 39 9996 35 9997 36 9998 42 9999 28	999	6 15606	229	0bijiaku	771	. France	Male
	999	7 15569	892	Johnstone	516	France	Male
	999	8 15584	532	Liu	709	France	Female
	999	9 15682	355	Sabbatini	772	Germany	Male
	1000	0 15628	319	Walker	792	: France	Female
0 1 2 3 4	Tenure 2 1 8 1 2	Balance 0.00 83807.86 159660.80 0.00 125510.82	Num	OfProducts 1 1 3 2 1	HasCrCard 1 0 1 0 1	IsActiveMem	ber \ 1
9995 9996 9997 9998 9999	5 10 7 3 4	0.00 57369.61 0.00 75075.31 130142.79		2 1 1 2 1	1 1 0 1		0 1 1 0 0

```
EstimatedSalary Exited
0
             101348.88
                              1
             112542.58
1
                              0
2
             113931.57
                              1
3
                              0
              93826.63
4
              79084.10
                              0
                             . . .
              96270.64
                              0
9995
9996
             101699.77
                              0
9997
              42085.58
                              1
9998
              92888.52
                              1
9999
              38190.78
                              0
[10000 rows x 14 columns]
```

```
VISUALIZATIONS
#visualization of categorical features
fig, ax = plt.subplots(3, 2, figsize = (15, 12))
plt.title("Visualization")
sns.countplot('Geography', hue = 'Exited', data = df, ax = ax[0]
[0],palette='spring')
sns.countplot('Gender', hue = 'Exited', data = df, ax = ax[0]
[1],palette='spring')
sns.countplot('Tenure', hue = 'Exited', data = df, ax = ax[1]
[0],palette='spring')
sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1]
[1].palette='spring')
sns.countplot('HasCrCard', hue = 'Exited', data = df, ax = ax[2]
[0],palette='spring')
sns.countplot('IsActiveMember', hue = 'Exited', data = df, ax = ax[2]
[1],palette='spring')
ax[0][0].set title('Count Plot of Geography',color='red',fontsize=15)
ax[0][1].set_title('Count Plot of Gender',color='red',fontsize=15)
ax[1][0].set_title('Count Plot of Tenure',color='red',fontsize=15)
ax[1][1].set title('Count Plot of
NumOfProducts',color='red',fontsize=15)
ax[2][0].set title('Count Plot of HasCrCard',color='red',fontsize=15)
ax[2][1].set title('Count Plot of
IsActiveMember',color='red',fontsize=15)
plt.tight layout()
plt.show()
/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43:
```

FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

DESCRIPTIVE STATISTICS

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

```
df_num =
df[['RowNumber','Tenure','CustomerId','CreditScore','Age','NumOfProduc
ts','HasCrCard','IsActiveMember','Exited']]
```

```
df_cat = df[['Surname','Geography','Gender']]
df_num.head()
```

RowNumber	Tenure	CustomerId	CreditScore	Age	NumOfProducts
HasCrCard \ 0 1	2	15634602	619	42	1
1 1 2	1	15647311	608	41	1
0 3	8	15619304	502	42	3
3 4	1	15701354	699	39	2
0 4 5	2	15737888	850	43	1
1					

	IsActiveMember	Exited
0	1	1
1	1	0
2	0	1
3	0	0
4	1	0

df_cat.head()

	Surname	Geography	Gender
0	Hargrave	France	Female
1	Hill	Spain	Female
2	Onio	France	Female
3	Boni	France	Female
4	Mitchell	Spain	Female

df_num.describe()

RowNumber	Tenure	CustomerId	CreditScore		
Age \					
count 10000.00000	10000.000000	1.000000e+04	10000.000000		
10000.000000 mean 5000.50000	5.012800	1.569094e+07	650.528800		
38.921800	3.012000	1.3030340107	0301320000		
std 2886.89568	2.892174	7.193619e+04	96.653299		
10.487806					
min 1.00000	0.000000	1.556570e+07	350.000000		
18.000000					
25% 2500.75000	3.000000	1.562853e+07	584.000000		
32.000000					
50% 5000.50000	5.000000	1.569074e+07	652.000000		
37.000000					
75% 7500.25000	7.000000	1.575323e+07	718.000000		
44.000000					
max 10000.00000	10.000000	1.581569e+07	850.000000		

```
NumOfProducts
                       HasCrCard
                                 IsActiveMember
                                                       Exited
                                    10000.000000
       10000.000000
                     10000.00000
                                                 10000.000000
count
mean
           1.530200
                         0.70550
                                       0.515100
                                                     0.203700
           0.581654
                                       0.499797
std
                         0.45584
                                                     0.402769
           1.000000
                         0.00000
                                       0.000000
                                                     0.000000
min
25%
           1.000000
                         0.00000
                                       0.000000
                                                     0.000000
                                                     0.000000
50%
           1.000000
                         1.00000
                                       1.000000
75%
           2.000000
                         1.00000
                                       1.000000
                                                     0.000000
max
           4.000000
                         1.00000
                                       1.000000
                                                     1.000000
df_cat.describe(exclude = ['int64','float64'])
       Surname Geography Gender
                  10000 10000
        10000
count
         2932
                      3
unique
                             2
                          Male
        Smith
                 France
top
           32
                   5014
                          5457
freq
HANDLE THE MISSING VALUES
print("Column
                      Missing values")
print("----")
df.isnull().sum()
               Missing values
-----
RowNumber
                  0
CustomerId
                  0
Surname
                  0
CreditScore
                  0
Geography
                  0
Gender
                  0
Age
                  0
Tenure
                  0
Balance
                  0
NumOfProducts
                  0
HasCrCard
                  0
IsActiveMember
                  0
EstimatedSalary
                  0
Exited
                  0
dtype: int64
print(f"Our target variable is Exited. We can observe that it has only
two possible variables: {df['Exited'].unique().tolist()}")
Our target variable is Exited. We can observe that it has only two
possible variables: [1, 0]
df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)
```

```
new names = {
    'CreditScore': 'credit score',
    'Geography': 'country',
    'Gender': 'gender',
    'Age': 'age',
    'Tenure': 'tenure',
    'Balance': 'balance',
    'NumOfProducts': 'number_products',
    'HasCrCard': 'owns credit card',
    'IsActiveMember': 'is active member',
    'EstimatedSalary' 'estimated salary',
    'Exited': 'exited'
}
df.rename(columns=new names, inplace=True)
df.head()
                                                 balance
   credit_score country gender
                                  age tenure
number products
                                            2
                                                     0.00
0
            619 France Female
                                   42
1
1
            608
                  Spain Female
                                   41
                                            1
                                                83807.86
1
2
            502 France Female
                                   42
                                            8
                                               159660.80
3
3
            699
                 France Female
                                   39
                                            1
                                                    0.00
2
4
                                            2
            850
                  Spain Female
                                   43
                                               125510.82
1
   owns credit card
                    is active member
                                       estimated salary exited
                                               101348.88
0
                                     1
                                                                1
                  1
1
                  0
                                     1
                                               112542.58
                                                                0
2
                                                113931.57
                                                                1
                  1
                                     0
3
                  0
                                     0
                                                93826.63
                                                                0
4
                  1
                                     1
                                                79084.10
                                                                0
REPLACE OUTLIERS
def detect outlier(df):
 outlier = []
 threshold = 3
 mean = np.mean(df)
 std = np.std(df)
 for i in df:
     z \ score = (i - mean)/std
 if np.abs(z score)>threshold:
    outlier.append(i)
 return outlier
 CreditScore list = df['CreditScore'].tolist()
 Balance list = df['Balance'].tolist()
```

```
EstimatedSalary list = df cat['EstimatedSalary'].tolist()
 CreditScore outlier = detect outlier(CreditScore list)
 CreditScore outlier
 Output-[359, 350, 350, 358, 351, 350, 350, 350]
 Balance outlier = detect outlier(Balance list)
 Balance outlier
 EstimatedSalary_outlier = detect_outlier(EstimatedSalary list)
 EstimatedSalary outlier
print("Shape of Data before removing outliers: {}".format(df.shape))
Shape of Data before removing outliers: (10000, 11)
ENCODING
# Encoding Categorical variables into numerical variables
# One Hot Encoding
x = pd.qet dummies(x)
x.head()
x.shape
(10000, 13)
SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIALBLES
# splitting the dataset into x(independent \ variables) and y(dependent
variables)
x = df.iloc[:,0:10]
y = df.iloc[:,10]
print(x.shape)
print(y.shape)
print(x.columns)
#print(y)
(10000, 10)
(10000,)
Index(['credit_score', 'country', 'gender', 'age', 'tenure',
'balance',
       'number products', 'owns credit card', 'is active member',
       'estimated salary'],
      dtype='object')
SCALE THE INDEPENDENT VARIABLES
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
```

```
x train = pd.DataFrame(x train)
x train.head()
      credit score country
                             gender
                                                     balance
                                     age tenure
number products \
2967
               579
                   Germany
                             Female
                                      39
                                               5 117833.30
3
700
               750
                     France
                             Female
                                      32
                                               5
                                                        0.00
                             Female
3481
               729
                      Spain
                                      34
                                               9
                                                   53299.96
2
1621
                                      38
               689
                      Spain
                               Male
                                                   75075.14
1
800
               605
                     France
                               Male
                                      52
                                               7
                                                        0.00
2
      owns credit card
                        is active member
                                          estimated salary
2967
                                                    5831.00
                                       0
                     1
700
                                       0
                                                  95611.47
```

SPLIT THE DATA INTO TRAINING AND TESTING

3481

1621 800

(2500,)

1

1

1

splitting the data into training and testing set

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =
0.25, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

(7500, 10)
(7500,)
(2500, 10)
```

1

1

1

42855.97

173952.50

8651.92