

PERCEPTRON

Dr. Hilman F. Pardede

Research Center for Informatics Indonesian Institute of Sciences

PERCEPTRON

- Perceptron = a linear classifier
 - The parameters that are often called weights (w)
- real-valued constants (can be positive or negative)
- A perceptron calculates 2 quantities:
 - A weighted sum of the input features
 - This sum is then thresholded by the T(.) function

- Perceptron: a simple artificial model of human neurons
- weights = "synapses"
- threshold = "neuron firing"

♣

- Input: by x₀, x₁, vector notation x
- Edge parameters: w + bias term b

A single neuron implements:

$$o(x;\theta) = \phi(\sum_{i} w_{i}x_{i} + b) = \phi(\mathbf{w}^{\top}\mathbf{x})$$
 (1)

$$\phi(\mathbf{x}) = logit(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}}}$$
(2)

• Bounded from 0 to 1. Smooth, positive function.

BINARY CLASSIFICATION

- Output is $o_c(\mathbf{x}) = P(y = c|\mathbf{x})$
- $o_1(\mathbf{x}) = P(y = 1|\mathbf{x}) = \phi(\mathbf{w}^{\top}\mathbf{x}) = logit(\mathbf{w}^{\top}\mathbf{x})$
- $o_0 = (1 o_1)$

GRADIENT DESCENT OPTIMIZATION

- Model:
 - $o_{\theta} = logit(\mathbf{w}^{\top} \mathbf{x} + b) = \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x} + b}}$ • $\theta : \{\mathbf{w}, b\}$
- Loss function:
 - $L(\mathbf{x}, y; \theta) = -\sum_{c} 1_{(y=c)} \log o_c = -\log o_y$
 - Log for numerical stability and math simplicity
- Gradient of L wrt w and b:
 - $\frac{\partial}{\partial w}L(.)$ for both w_0 and w_1
 - $\frac{\partial}{\partial b}L(.)$

GRADIENT DESCENT OPTIMIZATION

- Given a set of n examples $\{(\mathbf{x}, y)\}$.
- GD Update rule:
 - repeat until convergence

$$w \leftarrow w - \alpha \frac{\partial}{\partial w} L(\mathbf{x}, y; \mathbf{w}, b)$$

$$b \leftarrow b - \alpha \frac{\partial}{\partial b} L(\mathbf{x}, y; \mathbf{w}, b)$$

lacksquare α - learning rate

LIMITATION OF PERCEPTRON

LIMITATION OF PERCEPTRON

• it cannot solve linearly not separable data

LIMITATION OF PERCEPTRON

- it cannot solve linearly not separable data
- In shallow architecture such as SVM, transforming the features into high dimensional space is one way