STD - 10

MATHS

CHAPTER - 1

REAL NUMBER

EXERCISE-1.3 (Q.1)(Q.2)

1. Prove that $\sqrt{5}$ is irrational.

 \triangleright Let us assume, that $\sqrt{5}$ is rational number.

i.e.
$$\sqrt{5} = \frac{x}{y}$$
 (where, x and y are co - primes)

$$y\sqrt{5}=X$$

Squaring both the sides, we get,

$$(y\sqrt{5})^2 = x^2$$

$$\Rightarrow 5y^2 = x^2 \dots (1)$$

Thus, x² is divisible by 5, so x is also divisible by 5.

Let us say, x = 5k, for some value of k and substituting the value of x in equation (1), we get,

$$5y^2 = (5k)^2$$

$$\Rightarrow$$
 y² = 5k²

y² is divisible by 5 it means y is divisible by 5.

Clearly, x and y are not co-primes. Thus, our assumption about $\sqrt{5}$ is rational is incorrect.

Hence, $\sqrt{5}$ is irrational number.

- 2. Prove that $3 + 2\sqrt{5} + is irrational$.
- \triangleright Let us assume 3 + 2 $\sqrt{5}$ is rational.

Then we can find co-prime x and y (y \neq 0) such that

$$3+2\sqrt{5}=\frac{x}{y}$$

Rearranging, we get,

$$2\sqrt{5} = \frac{x}{y} - 3$$

$$\sqrt{5} = \frac{1}{2} \left(\frac{X}{Y} - 3 \right)$$

Since, x and y are integers, thus,

$$\frac{1}{2} \left(\frac{X}{Y} - 3 \right)$$

is a rational number.

Therefore, $\sqrt{5}$ is also a rational number. But this contradicts the fact that $\sqrt{5}$ is irrational.

So, we conclude that $3 + 2\sqrt{5}$ is irrational.

Thanks

For watching