Übung 6

Zustandsänderungen und erster Hauptsatz

Aufgabe 1

Ein Mol eines idealen Gases habe den Druck $p_1 = 1000$ hPa und das Volumen $V_1 = 25$ l. Durch langsame Erwärmung erreicht es über eine geradlinige Verbindung im p-V-Diagramm den Endzustand mit $p_2 = 3000$ hPa und $V_2 = 75$ l. Welche Arbeit wird vom Gas verrichtet?

Gegebene Größen und Annahmen

$$p_1 = 1000 \,\mathrm{hPa} = 100\,000 \,\mathrm{Pa}$$

$$V_1 = 25 L = 0.025 \,\mathrm{m}^3$$

$$p_2 = 3000 \, \text{hPa} = 300 \, 000 \, \text{Pa}$$

$$V_2 = 75 \,\mathrm{L} = 0.075 \,\mathrm{m}^3$$

Es gibt eine geradlinige Verbindung im p-V-Diagramm zwischen Anfangs- und Endzustands, dann gilt:

$$p(V) = \frac{p_2 - p_1}{V_2 - V_1}(V - V_1) + p_1 \Rightarrow W_{1,2} = -\int_1^2 p(V) \cdot dV$$

Graphische Lösung: Die Arbeit entspricht die Fläche unter der trapezförmigen Kurve im p-V-Diagramm (siehe Vorlesungsfolie 46).

$$\begin{split} W_{1,2} &= -p\Delta V \\ &= \frac{1}{2} (300\,000\,\mathrm{Pa} + 100\,000\,\mathrm{Pa}) (0,\!075\,\mathrm{m}^3 - 0,\!025\,\mathrm{m}^3) \\ &= -10\,\mathrm{kJ} \end{split}$$

Aufgabe 2

Ein ideales Gas wird isotherm expandiert und leistet dabei eine Arbeit von 5000 J. Wie ändert sich die innere Energie des Gases und wie viel Wärme nimmt es auf?

Gegebene Größen und Annahmen

$$W = 5000 \, \text{J}$$

Bei einer isothermen Zustandsänderung gilt: $\Delta U=0.$ Mit $\Delta W=-5000\,\mathrm{J}$ 1. Hauptsatz:

$$\Delta U = \Delta Q + \Delta W$$
$$0 = \Delta Q + \Delta W$$
$$\Rightarrow \Delta Q = -\Delta W$$
$$= 5000 \,\text{J}$$

Aufgabe 3

Bei einer isobaren Expansion ändert sich der Druck nicht. Zeichnen Sie verschiedene Isobaren für ein ideales Gas, die das Volumen als Funktion der Temperatur darstellen.

Gegebene Größen und Annahmen

$$p \cdot V = n \cdot R \cdot T$$

Aus der idealen Gasgleichung mit n, R und p konst. wird V(T) hergeleitet:

$$V(T) = \frac{nR}{p}T$$

Hier ist zu erkennen, dass mit kleinerem Druck die Steigung der zugehörigen

Aufgabe 4

Wie groß ist die Änderung der inneren Energie und die Volumenausdehnungsarbeit beim Verdampfen von 1 kg Wasser? Berechnen Sie dazu zunächst das Dampfvolumen von Wasser bei 100 °C und Normaldruck ($M_{H_2O} = 18 \text{ g/mol}$).

Gegebene Größen und Annahmen

$$m=1\,\mathrm{kg}$$
 $T=100\,^{\circ}\mathrm{C}=373,15\,\mathrm{K}$ $p=1,013\cdot 10^5\,\mathrm{N/m^2}$ (Normaldruck) $M_{H_2O}=18\,\mathrm{g/mol}$ $\rho_{H_2O}=1000\,\mathrm{kg/m^3}$ $R=8,314\,\mathrm{J/(mol\,K)}$ $Q_V=2260\,\mathrm{kJ}$

Anfangsvolumen:

$$V_1 = \frac{m}{\rho} = \frac{1 \text{ kg}}{1000 \text{ kg/m}^3} = 0,001 \text{ m}^3$$

Dampfvolumen aus der idealen Gasgleichung:

$$\begin{split} V_2 &= \frac{m}{M_{H_2O}} R \frac{T}{p} \\ &= \frac{1 \, \mathrm{kg}}{18 \, \mathrm{g/mol}} 8,\! 314 \, \mathrm{J/(mol \, K)} \frac{373,\! 15 \, \mathrm{K}}{1,\! 013 \cdot 10^5 \, \mathrm{N/m^2}} \\ &= 1,\! 701 \, \mathrm{m^3} \end{split}$$

Volumenarbeit bei isobaren Zustandsänderung:

$$W_{1,2} = -p\Delta V$$

= -1,013 \cdot 10⁵ N/m²(1,701 m³ - 0,001 m³)
= -172 kJ

Innere Energie, 1. Hauptsatz:

$$\Delta U = Q_V + W$$

= 2260 kJ + (-172 kJ)
= 2088 kJ

Aufgabe 5

Ein Fahrradreifen wird adiabatisch von $p_1=2,5$ bar auf $p_2=5$ bar aufgepumpt. Welche Temperatur hat dann der Reifen, wenn die Anfangstemperatur $T_1=20$ °C war? (Luft: $\kappa=1,4$)

Wenn ein Rennradreifen an einen kühlen Morgen ($T_1 = 5$ °C) auf $p_1 = 9,5$ bar aufgepumpt wird, wie groß ist der Druck, wenn am Nachmittag auf einer heißen Straße ($T_2 = 40$ °C) gefahren wird?

Gegebene Größen und Annahmen $p_{1} = 2.5 \cdot 10^{5} \,\text{N/m}^{2}$ $p_{2} = 5 \cdot 10^{5} \,\text{N/m}^{2}$ $T_{1} = 20 \,^{\circ}\text{C} = 293.15 \,\text{K}$ $\kappa = 1, 4$ b) $p_{1} = 9.5 \cdot 10^{5} \,\text{N/m}^{2}$ $T_{1} = 5 \,^{\circ}\text{C} = 278.15 \,\text{K}$ $T_{2} = 40 \,^{\circ}\text{C} = 313.15 \,\text{K}$

a) Bei der adiabatischen Zustandsänderung gilt: $p_1^{(1-\kappa)}T_1^\kappa=p_2^{(1-\kappa)}T_2^\kappa$

$$T_2 = \sqrt[\kappa]{\frac{p_1^{(1-\kappa)} T_1^{\kappa}}{p_2^{(1-\kappa)}}}$$

$$= \sqrt[1/4]{\frac{(2.5 \cdot 10^5 \,\mathrm{N/m^2})^{-0.4} (293.15 \,\mathrm{K})^{1.4}}{(5 \cdot 10^5 \,\mathrm{N/m^2})^{-0.4}}}$$

$$= 357 \,\mathrm{K} = 84 \,\mathrm{^{\circ}C}$$

b) Bei der isochoren Zustandsänderung gilt: $\frac{p_2}{p_1} = \frac{T_2}{T_1}$

$$p_2 = p_1 \frac{T_2}{T_1}$$
= 9.5 \cdot 10^5 \text{ N/m}^2 \frac{313,15 \text{ K}}{278,15 \text{ K}}
= \frac{10.7 \cdot 10^5 \text{ N/m}^2}