1 Coherent Sheaves

2 Analytic Spaces

(DO DEFINITION!!!)

Definition 2.1. An affine analytic space X is

Definition 2.2. An analytic space X is a locally ringed space (X, \mathcal{O}_X) which is locally isomorphic to affine analytic spaces.

Theorem 2.3. Let X be an analytic space. Then \mathcal{O}_X is coherent.

3 Analytification

Definition 3.1. Analytification is the unique functor $(-)^{an}: \mathbf{Var}_k \to \mathbf{AnSpa}_k$ along with a map $a: X^{an} \to X$ of locally ringed spaces satisfying: (DO THIS!!!!)

Lemma 3.2. The canonical map $a: X^{\mathrm{an}} \to X$ of locally ringed spaces is:

- (a). flat
- (b). open

(c).

Definition 3.3. Let \mathscr{F} be a \mathcal{O}_X -module on a k-variety X. Then the analytification of \mathscr{F} is the $\mathcal{O}_X^{\mathrm{an}}$ -module $\mathscr{F}^{\mathrm{an}} = a^*\mathscr{F}$ on X^{an} where a is the canonical map $a: X^{\mathrm{an}} \to X$.

Proposition 3.4. If \mathscr{F} is a coherent \mathcal{O}_X -module. Then $\mathscr{F}^{\mathrm{an}}$ is a coherent $\mathcal{O}_X^{\mathrm{an}}$ -module.

4 The Main Theorems

4.1 The Equivalence of Cohomology

Theorem 4.1. Let X be a projective variety over k and \mathscr{F} be a coherent \mathcal{O}_X -module. Then the natural map,

$$H^q(X,\mathscr{F}) \xrightarrow{\sim} H^q(X^{\mathrm{an}},\mathscr{F}^{\mathrm{an}})$$

is an isomorphism.

4.2 The Equivalence of Morphisms

Lemma 4.2. Let M, N be A-modules and B an A-algebra. Then the natural map,

$$\operatorname{Hom}_A(M, N) \otimes_A B \to \operatorname{Hom}_A(M, N \otimes_A B) = \operatorname{Hom}_B(M \otimes_A B, N \otimes_A B)$$

is an isomorphism when M is finite projective or B is A-flat.

$$Proof.$$
 (DO THIS!!!!)

Lemma 4.3. Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F}, \mathscr{G} be \mathcal{O}_X -modules. Then the natural map,

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})_x \to \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x)$$

is an isomorphism when \mathscr{F} is finitely-presented.

Proof. Gortz, T. Wedhorn: Algebraic Geometry 1, Chapter 7, Prop. 7.27 EGA I, chapter 0, 6.7.6

Lemma 4.4. Let $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of ringed spaces and \mathscr{F},\mathscr{G} be \mathcal{O}_Y -modules. Then the natural map,

$$f^* \mathcal{H}om_{\mathcal{O}_Y}(\mathcal{F}, \mathcal{G}) \to \mathcal{H}om_{\mathcal{O}_X}(f^*\mathcal{F}, f^*\mathcal{G})$$

is an isomorphism when \mathscr{F} is finite locally free or \mathscr{F} is finitely presented and $f:X\to Y$ is flat.

Theorem 4.5 (GAGA II). Let X be a (projective?) variety over k (hypotheses?). Then, for coherent \mathcal{O}_X -modules \mathscr{F},\mathscr{G} the natural map,

$$\mathscr{H}\!\mathit{om}_{\mathcal{O}_{X}}\!(\mathscr{F},\mathscr{G})^{\mathrm{an}} \xrightarrow{\sim} \mathscr{H}\!\mathit{om}_{\mathcal{O}_{X}^{\mathrm{an}}}\!(\mathscr{F}^{\mathrm{an}},\mathscr{G}^{\mathrm{an}})$$

is an isomorphism.

Proof. This is simply an application of the previous lemma to the map $f: X^{\mathrm{an}} \to X$ of locally ringed spaces which is flat. Since \mathscr{F} and \mathscr{G} are coherent they are finitely presented.

Corollary 4.6. Let X be a projective variety over k and let \mathscr{F}, \mathscr{G} be coherent \mathcal{O}_X -modules. Then,

$$\operatorname{Hom}_{\mathcal{O}_{X}^{\operatorname{an}}}\left(\mathscr{F}^{\operatorname{an}},\mathscr{G}^{\operatorname{an}}\right)=\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathscr{F},\mathscr{G}\right)$$

Proof. Use GAGA II to give $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})^{\mathrm{an}} = \mathcal{H}om_{\mathcal{O}_X^{\mathrm{an}}}(\mathcal{F}^{\mathrm{an}},\mathcal{G}^{\mathrm{an}})$ and GAGA I to give,

$$\begin{aligned} \operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathscr{F},\mathscr{G}\right) &= H^{0}(X,\mathscr{H}\!\mathit{om}_{\mathcal{O}_{X}}\!(\mathscr{F},\mathscr{G})) = H^{0}(X^{\operatorname{an}},\mathscr{H}\!\mathit{om}_{\mathcal{O}_{X}}\!(\mathscr{F},\mathscr{G})^{\operatorname{an}}) \\ &= H^{0}(X^{\operatorname{an}},\mathscr{H}\!\mathit{om}_{\mathcal{O}_{X}^{\operatorname{an}}}\!(\mathscr{F}^{\operatorname{an}},\mathscr{G}^{\operatorname{an}})) = \operatorname{Hom}_{\mathcal{O}_{X}^{\operatorname{an}}}\left(\mathscr{F}^{\operatorname{an}},\mathscr{G}^{\operatorname{an}}\right) \end{aligned}$$

4.3 The Equivalence of ...

5 Other Fields