

DÉPLOYEZ UN MODÈLE DANS LE CLOUD

DATA SCIENCE

PRESENTATION DU PROJET

Contexte

- Proposition des solutions innovantes pour la récolte des fruits.
- Mise en place d'une application de classification des images de fruits.
- Application mobile sera la première version de l'architecture Big data.

PRESENTATION DU PROJET

Objectifs

- Développer le traitement des données : le preprocessing et la réduction de dimension..
- Déployer le traitement des données dans un environnement Big Data

Contraintes

- Tenir compte de l'augmentation rapidement des données après la livraison de ce projet
- Paramétrer l'installation afin d'utiliser des serveurs situés sur le territoire européen

PRESENTATION DU PROJET

Méthodologie

- Présentation du jeu de données,
- Création de l'environnement Big Data
- Réalisation de la chaîne de traitement des images dans un environnement Big Data
- Démonstration d'exécution du script PySpark sur le Cloud
- Synthèse et conclusion

RAPPEL DE LA PROBLÉMATIQUE ET PRÉSENTATION DU JEU DE DONNÉES

Présentation du jeu de données

Nous avons un jeu de données de milliers photos images :

- ☐ Le jeu de données est un répertoire d'espèces de fruit,
- ☐ Chaque espèce de fruit est composé de plusieurs labels (63 labels au total)
- ☐ Chaque label est composé de plus d'une centaine de photos du fruits prises sur plusieurs angles.

RAPPEL DE LA PROBLÉMATIQUE ET PRÉSENTATION DU JEU DE DONNÉES

Présentation du jeu de données

Liste de Labels

RAPPEL DE LA PROBLÉMATIQUE ET PRÉSENTATION DU JEU DE DONNÉES

Présentation du jeu de données

Photos du fruit Apple Brueburn

Le choix technique

Amazon Web Services

Amazon Web Services (AWS) est le prestataire qui offre à ce jour l'offre la plus large dans le cloud computing.

Certaines de leurs offres sont parfaitement adaptées à notre problématique.

L'objectif premier est de pouvoir, grâce à AWS, <u>louer de la puissance de calcul à la demande</u>:

- □ Le service EMR permet de louer des instances
 EC2 avec des applications préinstallées et configurées,
- □ Amazon S3, est une solution très efficace pour la gestion du stockage des donnée.

N.B : Nos services ont été paramétrés sur la région de Paris

Configuration de l'environnement de travail

Amazon S3

Sur Amazon S3, qui est la Solution de stockage des données, nous allons créer un bucket.

A l'intérieur du bucket :

- □ Uploader nos données images à traitées,
- Uploader notre fichier Bootstrap.sh
- ☐ Uploader le script PySpark exécutable
- Enregistrer le résultat de notre travail.

Configuration de l'environnement de travail

Configuration du serveur EMR

La configuration va consister à la création d'un cluster; qui s'effectuera en plusieurs étapes :

- Nom et applications
- ☐ Configuration de cluster
- Dimensionnement du cluster
- Actions d'amorçage
- Sécurité et autorisations
- Rôle Identity and Access Management (IAM)
- ☐ Créer un cluster

Configuration du serveur EMR

Nom et applications

Configuration du serveur EMR

Configuration de cluster

Configuration du serveur EMR

Dimensionnement du cluster

Configuration du serveur EMR

Actions d'amorçage

Configuration du serveur EMR

Sécurité et autorisations

Le Cluster créé

RÉALISATION DE LA CHAÎNE DE TRAITEMENT

Installations, définition PATH et Charger les images

Installations, définition PATH

Dans la première partie de notre script, nous allons procéder aux actions suivantes :

- ☐ Installation des packages (Bootstraping);
- ☐ Import des librairies;
- Définition des PATH;
- ☐ Démarrage de la session Spark

RÉALISATION DE LA CHAÎNE DE TRAITEMENT

Traitement des images

Préprocessing

- ☐ Préparation du modèle :
 - Transfert learning : ResNet 50
 - La méthode broadcast des "weights"
- ☐ Fonction Pandas UDF (User Defined Function):

Cela permet de traiter efficacement nos grandes quantités d'images en parallèle.

- □ Application sur nos données images
- Enregistrement en format Parquet dans bucket

RÉALISATION DE LA CHAÎNE DE TRAITEMENT

Traitement des images

Réduction de dimension (PCA)

- ☐ Vecteurs denses
- ☐ Instance de PCA
- ☐ Enregistrement en format Parquet dans bucket
- ☐ Chargement du résultat : On charge les données enregistrées dans un DataFrame Spark.
- ☐ Affichage de la DataFrame Spark :
 - Les 2 premières lignes;
 - Les dimensions.

DÉMONSTRATION D'EXÉCUTION DU SCRIPT PYSPARK SUR LE CLOUD

Dimensions: (10605, 4)

CONCLUSION

L'objectif était de pouvoir anticiper une future augmentation de la charge de travail. Notre tâche a donc consisté à créer un réel cluster de calculs.

Amazon Web Services nous a permis de louer à la demande de la puissance de calculs grâce service EMR.

Nous avons également opté pour le service Amazon S3 pour stocker les données de notre projet.

Les données utilisées sont des images de fruit et non est des informations se rapportant à une personne physique identifiée ou identifiable. Nous avons également choisi des serveurs situés sur le territoire européen (Paris)

Nous avons pu exécuter notre script comme si nous étions en local.

Nous avons exécuté le traitement sur l'ensemble des images; ce qui n'aurait pas été possible en local.

Il nous sera également facile de faire face à une monté de la charge de travail en redimensionnant simplement notre cluster de machines.

