

PCT/JP2004/010403

18.10.2004

日本国特許庁
JAPAN PATENT OFFICE

REC'D 11 NOV 2004

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2003年 7月22日

出願番号
Application Number: 特願2003-199655
[ST. 10/C]: [JP2003-199655]

出願人
Applicant(s): 住友化学工業株式会社
国立大学法人東京農工大学

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年10月13日

特許庁長官
Commissioner,
Japan Patent Office

八月

出証番号 出証特2004-3080203

【書類名】 特許願
【整理番号】 P156019
【提出日】 平成15年 7月22日
【あて先】 特許庁長官 殿
【国際特許分類】 G02B 5/30
B32B 27/12
G02F 1/1335 510

【発明者】

【住所又は居所】 新居浜市惣開町5番1号 住友化学工業株式会社内
【氏名】 松岡 祥樹

【発明者】

【住所又は居所】 茨城県つくば市北原6 住友化学工業株式会社内
【氏名】 齋田 雅明

【発明者】

【住所又は居所】 茨城県つくば市北原6 住友化学工業株式会社内
【氏名】 石飛 昌光

【発明者】

【住所又は居所】 神奈川県相模原市星が丘1-1-12-801
【氏名】 渡辺 敏行

【発明者】

【住所又は居所】 東京都小金井市東町4-33-4 グレース武藏野10
5
【氏名】 戸谷 健朗

【特許出願人】

【識別番号】 000002093
【氏名又は名称】 住友化学工業株式会社

【代理人】

【識別番号】 100093285

【弁理士】

【氏名又は名称】 久保山 隆

【電話番号】 06-6220-3405

【選任した代理人】

【識別番号】 100113000

【弁理士】

【氏名又は名称】 中山 亨

【電話番号】 06-6220-3405

【選任した代理人】

【識別番号】 100119471

【弁理士】

【氏名又は名称】 楠本 雅之

【電話番号】 06-6220-3405

【手数料の表示】

【予納台帳番号】 010238

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0212949

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 反射型偏光板、積層光学部材及び液晶表示装置

【特許請求の範囲】

【請求項 1】

断面形状が多角形であり、アスペクト比が2以上であり、長軸方向と短軸方向の屈折率差が0.05以上である複屈折体が、支持媒体中に分散配列してなることを特徴とする反射型偏光板。

【請求項 2】

複屈折体が繊維である請求項1記載の反射型偏光板。

【請求項 3】

繊維はほぼ正三角形の断面形状を有し、それが面内ではほぼ平行に、かつ隣り合う繊維の断面正三角形における頂点同士が接するように配列しており、該繊維の長軸に垂直な反射型偏光板の断面において、頂点同士が接する断面三角形の繊維で囲まれる支持媒体がほぼ正六角形になっている請求項2記載の反射型偏光板。

【請求項 4】

複屈折体の長軸方向の屈折率と短軸方向の屈折率のいずれか一方が、支持媒体の屈折率とほぼ一致している請求項1～3のいずれかに記載の反射型偏光板。

【請求項 5】

請求項1～4のいずれかに記載の反射型偏光板が、他の光学機能を示す光学層と積層されてなることを特徴とする積層光学部材。

【請求項 6】

光学層が吸收型偏光板である請求項5記載の積層光学部材。

【請求項 7】

光学層が位相差板である請求項5記載の積層光学部材。

【請求項 8】

反射型偏光板の一方の面に吸收型偏光板が積層され、他方の面に位相差板が積層されている請求項5記載の積層光学部材。

【請求項 9】

請求項5～8のいずれかに記載の積層光学部材が、液晶セルに配置されてなる

ことを特徴とする液晶表示装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、パーソナルコンピュータなどのディスプレイとして使用される液晶表示装置、並びにかかる液晶表示装置に好適な光学部材及び反射型偏光板に関するものである。

【0002】

【従来の技術】

現在、広く一般に使用されている液晶表示装置として、2枚の透明基板の間にネマチック液晶を挟持して液晶セルを構成し、このセルの両面に偏光板を配置した構造のパネルがある。このパネルと駆動用のLSI及びバックライトを組み合わせることにより、液晶表示装置が構成される。かかる液晶表示装置の例を図1に断面模式図で示す。この例では、2枚の透明基板11, 12の片面にそれぞれ透明電極14, 15を形成し、それらの透明電極を対向させ、その間に液晶17を挟持して、液晶セル10が構成されている。この液晶セル10の両面に、背面側偏光板21及び前面側偏光板22を貼り合わせ、さらに背面側偏光板21の裏面にバックライト40を配置して、液晶表示装置50が構成されている。

【0003】

ところで、このような液晶表示装置は、バックライトから発せられる光の利用効率が必ずしも高いとはいえない。これは、バックライト40から発する光のうち、50%以上が背面側偏光板21によって吸収されるためである。そこで、液晶表示装置におけるバックライト光の利用効率を高めるため、図2に示す如く、背面側偏光板21とバックライト40の間に、反射型偏光板45を配置する構成が知られている。図2は、図1に示す液晶表示装置50において、背面側偏光板21の裏面（バックライト40側）に、反射型偏光板45を貼り合わせたものであり、その他の符号は図1と同様なので、説明は省略する。

【0004】

反射型偏光板45は、ある種の偏光光を反射し、それと逆の性質を示す偏光光

を透過するものである。反射型偏光板45を透過した光が、直線偏光として偏光板（通常は吸收型偏光板）21を透過するように軸合わせをしておく。そして、図1に示すように偏光板21だけを配置した場合にはこの偏光板21で吸収されてしまう偏光光を、反射型偏光板45で反射させてバックライト40側へ戻してやることにより、バックライト40から発する光の利用効率を高めている。

【0005】

このような反射型偏光板としては、例えば、特開平6-281814号公報（特許文献1）や特開平8-271731号公報（特許文献2）に記載されているコレステリック液晶層と1/4波長板を組み合わせた反射型偏光板、特表平9-506837号公報（=W095/17303、特許文献3）や特表平10-511322号公報（=W096/19347、特許文献4）に記載されている複屈折層と等方性層の多重積層膜からなる反射型偏光板、特表2000-506990号公報（=W097/32224、特許文献5）に記載されている等方性粒子相が複屈折連続媒体に分散された反射型偏光板などが知られている。

【0006】

コレステリック液晶層と1/4波長板を組み合わせた反射型偏光板は、コレステリック液晶の螺旋ピッチに対応した波長の右（又は左）円偏光を透過して1/4波長板で直線偏光に変換し、左（又は右）円偏光を反射する。しかし、この反射型偏光板は、特許文献2の第7段落に記載されているように、可視光全域にわたって、コレステリック液晶層を透過した右（又は左）円偏光を1層の1/4波長板によって直線偏光に変換することは困難である。この困難を解決するためには、複数の1/4波長板を重畠して形成する必要がある。複数の1/4波長板を重畠する場合、製造工程が複雑になり、また1/4波長板間で剥離を生ずる可能性があるなどの問題を抱えることとなる。

【0007】

複屈折層と等方性層の多重積層膜からなる反射型偏光板では、数百層の交互積層構造を形成する必要があり、大がかりな製造設備が必要となる。また、異なる材料が積層されているため、層間で剥離が生じやすいという問題もある。

【0008】

等方性粒子相が複屈折連続媒体に分散された反射型偏光板は、比較的容易に製

造でき、層間剥離は生じにくい。しかし、連続媒体が大きな複屈折を示す1軸配向した物質である場合、分散相の体積分率の増加に伴って、著しい強度の低下が起こり、フィルムの形態を維持できなくなるおそれがある。このため、分散相の体積分率を低く抑える必要が生じ、偏光分離効率を高めることが難しいという問題を抱えている。

【0009】

【特許文献1】特開平6-281814号公報

【特許文献2】特開平8-271731号公報

【特許文献3】特表平9-506837号公報 (=W095/17303)

【特許文献4】特表平10-511322号公報 (=W096/19347)

【特許文献5】特表2000-506990号公報 (=W097/32224)

【0010】

【発明が解決しようとする課題】

前記の問題点に鑑み、本発明の目的は、液晶表示装置において光の利用効率を高めることができ、製造が比較的簡単で、層間剥離などの問題が生じにくい反射型偏光板を提供することにある。

【0011】

本発明のもう一つの目的は、かかる反射型偏光板に他の光学機能を示す光学層を積層することにより、液晶表示装置の光の利用効率を高めることができる光学部材を提供することにある。

【0012】

さらに本発明のもう一つの目的は、かかる反射型偏光板が積層された光学部材を用いて、バックライト光の利用効率が高められた液晶表示装置を提供することにある。

【0013】

【課題を解決するための手段】

そこで本発明によれば、断面形状が多角形であり、アスペクト比が2以上であり、長軸方向と短軸方向の屈折率差が0.05以上である複屈折体が、支持媒体中に分散配列してなる反射型偏光板が提供される。この反射型偏光板における複

屈折体は、繊維であることができる。この繊維は、ほぼ正三角形の断面形状を有し、それが面内ではほぼ平行に、かつ隣り合う繊維の断面正三角形における頂点同士が接するように配列しているのが好ましく、また繊維の長軸に垂直な反射型偏光板の厚さ方向断面においては、頂点同士が接する断面三角形の繊維で囲まれる支持媒体がほぼ正六角形になっているのが好ましい。これらいずれかの反射型偏光板において、複屈折体の長軸方向の屈折率と短軸方向の屈折率のいずれか一方が、支持媒体の屈折率とほぼ一致するように材料を選択するのが好ましい。

【0014】

これらの反射型偏光板は、他の光学機能を示す光学層と積層して、積層光学部材とすることができます。積層される光学層は、例えば、吸収型偏光板あるいは位相差板である。さらに、反射型偏光板の一方の面に吸収型偏光板を積層し、他方の面に位相差板を積層することもできる。

【0015】

これらの積層光学部材は、液晶セルと組み合わせて、液晶表示装置とすることができます。そこで本発明によれば、反射型偏光板と他の光学層との積層体である上記いずれかの積層光学部材が、液晶セルに配置されてなる液晶表示装置も提供される。

【0016】

【発明の実施の形態】

本発明においては、複屈折体を支持媒体中に分散配列させて、反射型偏光板とする。この複屈折体は、断面形状が多角形で、アスペクト比が2以上のものである。ここでアスペクト比は、好ましくは5以上であり、さらに好ましくは10以上である。アスペクト比は、短軸径に対する長さの比であるが、本発明では断面形状が多角形の複屈折体を用いるため、その短軸径は、その多角形の外接円の直径と定義する。このように断面が多角形で細長い形状の複屈折体を用い、さらにその屈折率を適切に選択すれば、その細長い方向と平行な向きに振動する直線偏光を反射し、その細長い方向と直交する向きに振動する直線偏光を透過するようになる。

【0017】

本発明に係る反射型偏光板の断面構造の具体例を、図3に示す。この例は、反射型偏光板の白抜き両矢印で示される透過軸に平行な厚さ方向断面を模式的に示したものである。図3を参照して、本発明の反射型偏光板30は、断面形状が多角形（この例ではほぼ正三角形）の複屈折体31（黒く塗られている部分）が、支持媒体33（白色でほぼ正六角形に描かれている部分）の中に分散配列したものである。複屈折体31は繊維で構成することができる。また支持媒体33は、透明であって、複屈折体31に対して良好な密着性を示すものであればよい。この反射型偏光板30の厚さは、符号 t で示されている。なお、「ほぼ正三角形」とか、「ほぼ正六角形」とかいうときの「ほぼ」は、当該正多角形を中心に、頂点の角度が $\pm 10^\circ$ 程度までは許容されることを意味する。その他、角度を表すときに「ほぼ」が付されている場合も同様に、表示の角度を中心に $\pm 10^\circ$ 程度までは許容されることを意味する。

【0018】

複屈折体31は、その断面形状が多角形のものであるが、中でも、ほぼ正多角形の断面形状を有するものが好ましく、さらには図示の如く、ほぼ正三角形の断面形状を有するものが好ましい。多角形の一辺の長さは、可視光の波長より大きくすることが必要であり、好ましくは $1\text{ }\mu\text{m}$ 以上、さらに好ましくは $5\text{ }\mu\text{m}$ 以上である。多角形の一辺の長さが $1\text{ }\mu\text{m}$ を下回ると、良好な偏光分離能が得られない。複屈折体31は、長軸方向（複屈折体の長さ方向）と短軸方向（多角形の直径方向）の屈折率差が0.05以上であることが必要であり、この屈折率差は、好ましくは0.1以上、さらに好ましくは0.2以上である。

【0019】

本発明では、複屈折体31を支持媒体33中に分散配向させて、反射型偏光板30とするのであるが、実質的に複屈折体31が一方向に配向した構造とすることが好ましく、さらには、複屈折体31が密に充填されていることがより好ましい。とりわけ、図3に示した如く、正三角形の断面形状を有する複屈折体31が面内ではほぼ平行に、かつ隣り合う複屈折体31の断面正三角形における頂点同士が接するように配列しているのが好ましく、また複屈折体31の長軸に垂直な反射型偏光板の厚さ方向断面においては、頂点同士が接する断面三角形の複屈折体

31で囲まれる支持媒体33がほぼ正六角形になっているのが好ましい。このような構造体において、三角形の各頂点は、一辺の長さの半分以内程度で、上下左右斜め方向にズレが生じても構わない。

【0020】

また、図示の如く、正三角形の断面形状を有する複屈折体31が面内ではほぼ平行に、かつ隣り合う複屈折体31の断面正三角形における頂点同士が接するよう、三角形が交互に厚さ方向の向きを変えて積み重なった状態で配列している場合には、その複屈折体31の反射型偏光板30における厚さ方向の層数は、5～100層程度であるのが好ましい。図示した例は、複屈折体31が厚さ方向に約21層積み重なった状態となっており、断面がほぼ正六角形になっている支持媒体33の層でいえば、約10.5層積み重なった状態になっている。

【0021】

このように構成した反射型偏光板30では、偏光板内において複屈折体31が実質的に一方向に配向している。そして、複屈折体31の長軸方向の屈折率と短軸方向の屈折率のいずれか一方は、支持媒体33の屈折率とほぼ一致させるのが好ましい。この場合、複屈折体31は複屈折性なので、その残りのもう一方の屈折率は、支持媒体33の屈折率と一致しないことになる。特に、複屈折体31として纖維を使用する場合には、その短軸方向（多角形の直径方向）の屈折率を支持媒体33の屈折率と一致させ、纖維長軸方向の屈折率と支持媒体33の屈折率とが不一致となるようにするのが好ましい。これにより、複屈折体31と支持媒体33との屈折率が一致している方向に振動する直線偏光は透過するのに対し、複屈折体31と支持媒体33との屈折率が一致していない方向に振動する直線偏光は、複屈折体31と支持媒体33の界面で反射され、偏光分離能が発現する。

【0022】

本発明では原理上、複屈折体31として複屈折性を示す種々の物質が使用できるが、配向や断面形状の安定性、耐久性などの観点から、複屈折体31は固体であることが好ましい。さらに、断面形状が多角形であり、アスペクト比が2以上の物質を複屈折体31として使用する。このような条件に見合う物質の中でも、支持媒体33中で簡単に高度に配向することが可能であり、かつ複屈折が効果的

に発現することから、複屈折体31を連続繊維とするのが最も好ましい。

【0023】

複屈折体31として使用する繊維について説明すると、このような繊維としては、ポリエチレンやポリテトラフルオロエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニル、ポリアクリロニトリル、ポリ(4-メチル-1-ペンテン)の如きポリオレフィン・ビニル系繊維、ナイロン6やナイロン66、ナイロン46の如き脂肪族ポリアミド系繊維、ポリ(m-フェニレンイソフタルアミド)やポリ(p-フェニレンテレフタルアミド)の如き芳香族ポリアミド系繊維(アラミド繊維)、ポリエチレンテレフタレートやポリエチレンナフタレート、ポリ-ε-カプロラクトンの如きポリエステル系繊維、ポリプラスチックス社から販売されている“ベクトラ”や、住友化学工業社から販売されている“スミカスーパー”の如き商品名が付された製品に代表される芳香族液晶性ポリエステル系繊維、ポリ(p-フェニレンベンゾビスオキサゾール)やポリ(p-フェニレンベンゾビスチアゾール)、ポリベンズイミダゾール、ポリフェニレンスルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトンの如きヘテロ原子含有繊維、ポリピロメリットイミドの如きポリイミド系繊維、レーヨンの如きセルロース系繊維、ポリ(メチルメタクリレート)の如きアクリル系繊維、ポリカーボネート系繊維、ウレタン系繊維などが例示できる。これらの中でも、特にベンゼン環やナフタレン環などの芳香族環を有し、可視光領域に吸収が少ない、又は吸収のない繊維を複屈折体として使用することが好ましい。

【0024】

また、支持媒体との接着性を向上させることを目的として、繊維表面に、コロナ処理などの各種易接着処理が施されていてもよい。さらに、繊維の複屈折性を向上させることを目的として、低分子液晶化合物やウイスカーなど、形状異方性を有するフィラーなどを添加したり、マルチフィラメントタイプの高分子相互配列体繊維としたりすることも、有用な技術である。

【0025】

複屈折性を向上させることを目的に繊維に添加される低分子液晶化合物としては、ビフェニル系、フェニルベンゾエート系、シクロヘキシリベンゼン系、アゾ

に発現することから、複屈折体31を連続繊維とするのが最も好ましい。

【0023】

複屈折体31として使用する繊維について説明すると、このような繊維としては、ポリエチレンやポリテトラフルオロエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニル、ポリアクリロニトリル、ポリ(4-メチル-1-ペンテン)の如きポリオレフィン・ビニル系繊維、ナイロン6やナイロン66、ナイロン46の如き脂肪族ポリアミド系繊維、ポリ(m-フェニレンイソフタルアミド)やポリ(p-フェニレンテレフタルアミド)の如き芳香族ポリアミド系繊維(アラミド繊維)、ポリエチレンテレフタレートやポリエチレンナフタレート、ポリ-ε-カプロラクトンの如きポリエステル系繊維、ポリプラスチックス社から販売されている“ベクトラ”や、住友化学工業社から販売されている“スマカスーパー”の如き商品名が付された製品に代表される芳香族液晶性ポリエステル系繊維、ポリ(p-フェニレンベンゾビスオキサゾール)やポリ(p-フェニレンベンゾビスチアゾール)、ポリベンズイミダゾール、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトンの如きヘテロ原子含有繊維、ポリピロメリットイミドの如きポリイミド系繊維、レーヨンの如きセルロース系繊維、ポリ(メチルメタクリレート)の如きアクリル系繊維、ポリカーボネート系繊維、ウレタン系繊維などが例示できる。これらの中でも、特にベンゼン環やナフタレン環などの芳香族環を有し、可視光領域に吸収が少ない、又は吸収のない繊維を複屈折体として使用することが好ましい。

【0024】

また、支持媒体との接着性を向上させることを目的として、繊維表面に、コロナ処理などの各種易接着処理が施されていてもよい。さらに、繊維の複屈折性を向上させることを目的として、低分子液晶化合物やウイスカーなど、形状異方性を有するフィラーなどを添加したり、マルチフィラメントタイプの高分子相互配列体繊維としたりすることも、有用な技術である。

【0025】

複屈折性を向上させることを目的に繊維に添加される低分子液晶化合物としては、ビフェニル系、フェニルベンゾエート系、シクロヘキシリベンゼン系、アゾ

キシベンゼン系、アゾベンゼン系、アゾメチル系、ターフェニル系、ビフェニルペングエート系、シクロヘキシリビフェニル系、フェニルピリミジン系、シクロヘキシリピリミジン系、コレステロール系の如き化合物をメソゲン（分子構造中の液晶性を発現させる中核的単位）として有する化合物などが例示できる。これらの低分子液晶化合物は、纖維の長軸方向に配向していれば、纖維中に溶解している低分子液晶化合物は、纖維の長軸方向に配向していれば、纖維中に溶解しても、ドメインで存在していても構わない。ただし、ドメインで存在する場合は、そのドメインの直径を $0.2\text{ }\mu\text{m}$ 以下にすることが好ましい。ドメインの直径が $0.2\text{ }\mu\text{m}$ より大きいと、纖維の長軸と垂直方向に振動する直線偏光が散乱されるため、好ましくない。

【0026】

また、複屈折性を向上させることを目的に纖維に添加されるウイスカーとしては、サファイア、炭化珪素、炭化ボロン、窒化珪素、窒化ボロン、硼酸アルミニウム、グラファイト、チタン酸カリウム、ポリオキシメチレン、ポリ（p-オキシベンゾイル）、ポリ（2-オキシ-6-ナフトイル）などが例示できる。これらのウイスカーは、その断面の平均直径が $0.05\sim 0.2\text{ }\mu\text{m}$ の範囲にあることが好ましい。平均直径が $0.2\text{ }\mu\text{m}$ より大きいと、低分子液晶化合物の場合と同様に、纖維の長軸と垂直方向に振動する直線偏光が散乱したり、ウイスカーによって纖維表面に突起が形成されたりする可能性があるため、好ましくない。

【0027】

高分子相互配列体纖維を複屈折体31として使用する場合、かかる高分子相互配列体纖維は、海成分中に島成分が分散配列したものとなる。この場合、島成分は、海成分より大きな屈折率を有する纖維で構成されていることが必要である。この場合も、島成分の直径は $0.2\text{ }\mu\text{m}$ 以下であることが好ましい。また、島成分は、海成分中に2個以上、さらに好ましくは4個以上存在していることが好ましい。なお、島成分にさらに、低分子液晶やウイスカーなど、形状異方性のあるフィラーが添加されていてもよい。

【0028】

本発明では、以上説明したような断面多角形でアスペクト比が2以上の複屈折体31、例えば纖維を、支持媒体33中に分散配列させる。支持媒体33は、複

屈折体31を固着する役割を果たす。支持媒体として用いられる材料は、可視光領域に吸収が少ないか又は吸収がなく、さらには繊維に対して良好な密着性を示すものであれば、どのようなものでもよい。例えば、透明な樹脂を挙げができる。具体的には、ポリ(メチルメタクリレート)の如きアクリル樹脂、ポリエチレンの如きポリオレフィン、ポリエチレンテレフタレートの如きポリエステル、ポリフェニレンオキシドの如きポリエーテル、ポリビニルアルコールの如きビニル樹脂、ポリウレタン、ポリアミド、ポリイミド、エポキシ樹脂、これらを構成するモノマーを2種以上用いた共重合体、さらには、ポリ(メチルメタクリレート)とポリ塩化ビニルの重量比82対18混合物、ポリ(メチルメタクリレート)とポリフェニレンオキシドの重量比65対35混合物、ポリスチレンとポリフェニレンオキシドの重量比71対29混合物、スチレン・無水マレイン酸共重合体とポリカーボネートの重量比77対23混合物の如き、非複屈折性のポリマーブレンドなどが例示できるが、これらに限定されるものではない。また、これらの支持媒体は、上述の物性を損なわない限り、酸化防止剤、光安定剤、熱安定剤、滑剤、分散剤、紫外線吸収剤、白色顔料、蛍光増白剤などの添加剤を含んでいてもよい。

【0029】

以上説明した複屈折体31を、支持媒体33中に分散配列させて、反射型偏光板30が構成される。複屈折体31と支持媒体33の屈折率差は、0.05以上であることが好ましく、より好ましくは0.1以上、さらに好ましくは0.2以上である。この屈折率差が大きいほど、効率的に入射光を後方へ反射することができ、偏光板の膜厚を薄くすることができる。なお、複屈折体31を構成する繊維と支持媒体33を構成する物質の組成比は、繊維が有効に支持媒体中で固着されていれば、いくらでもよい。ただ、例えば図3に示したように、繊維で構成される複屈折体31が断面正三角形であり、それが面内ではほぼ平行に、かつ隣り合う複屈折体31の断面正三角形における頂点同士が接するように配列し、複屈折体31の長軸に垂直な反射型偏光板の厚さ方向断面においては、頂点同士が接する断面三角形の複屈折体31で囲まれる支持媒体33がほぼ正六角形になっている場合には、複屈折体31：支持媒体33の体積比が1：3になる。

【0030】

本発明の反射型偏光板30の膜厚 t には、特に制限はない。ただ、薄すぎると偏光分離機能が発揮されず、逆に厚すぎると、反射型とはいえ、この偏光板によって吸収される光の量が大きくなったり、また材料コストが高くなったりするなどの問題が生じる。そこで通常は、膜厚を1~1,000μmの範囲とするのが適当であり、好ましくは5μm以上、さらには10μm以上であり、また好ましくは500μm以下、さらには200μm以下である。

【0031】

本発明の反射型偏光板は、例えば、複屈折体である繊維を紡糸・延伸した後、これらの繊維を一方向に配列させた不織布を作製し、さらにこの不織布に支持媒体を含浸させ、固着させるという三つの段階を経て、製造することができる。複屈折体である繊維の紡糸・延伸工程及び不織布の製造工程は、公知の方法によつて行えばよく、特に限定はない。不織布に支持媒体を含浸させ、固着させるにあたっては、支持媒体の前駆体であるモノマー及び／又はオリゴマー中に不織布を浸漬したのち、光及び／又は熱で支持媒体の前駆体を重合させる方法、支持媒体のポリマー溶液中に不織布を浸漬したのち、溶媒を除去する方法、また、支持媒体を微粉末とし、その微粉末を不織布に含浸させたのち、溶融させる方法などが採用できる。

【0032】

さらに別法として、溶融押出法により本発明の反射型偏光板を製造するのも、有効な手段である。具体的には、押出機吐出口を多数の口金で区切っておき、複屈折体を構成する樹脂が一つおきの口金から多角形状に押し出され、支持媒体を構成する樹脂がその間の口金から押し出される異形押出法が採用できる。この場合は、押出機の口金から異なる種類の溶融樹脂が交互に所定の形で押し出されて前記したような分散配列構造体が形成されるように、押出機及び口金を設計すればよい。

【0033】

本発明の反射型偏光板は、その使用に際し、少なくとも一方の面に他の光学機能を示す光学層を積層して、積層光学部材とすることができます。積層光学部材の

形成を目的に、本発明の反射型偏光板に積層される光学層として、例えば、吸収型偏光板や位相差板などが挙げられる。

【0034】

特に、吸収型偏光板を本発明の反射型偏光板に積層することで、液晶表示装置等における輝度の向上を目的とした輝度向上フィルムとして利用できる。すなわち、吸収型偏光板と本発明の反射型偏光板を、両者の透過軸がほぼ平行となるように積層し、その反射型偏光板がバックライト側、吸収型偏光板が液晶セル側となるように配置すれば、反射型偏光板を透過した直線偏光は、吸収型偏光フィルムで方位がそろえられて液晶セルへと出射し、一方、反射型偏光板で反射した直線偏光は、バックライト側へ戻って再利用されるようになる。吸収型偏光板としては、ヨウ素や染料などの二色性色素を一軸配向したポリビニルアルコールなどに吸着させ、さらにホウ酸などで架橋して偏光子とし、その偏光子の少なくとも片面に、トリアセチルセルロースなどからなる透明フィルムを接着したものを持げることができる。

【0035】

また、位相差板を本発明の反射型偏光板に積層することで、反射した光の一層の有効利用を図ることができる。すなわち、反射型偏光板で反射した直線偏光を位相差板で円偏光に変換してバックライトへ戻してやれば、バックライトの反射板で反射するときに偏光反転を生じ、反射前とは逆方向に回転する円偏光になるので、これが再度位相差板を通過した後では、当初の直線偏光と直交する向きに振動する直線偏光に変わり、反射型偏光板を透過するようになる。これにより、光の有効利用が図られる。この場合、位相差板として $1/4$ 波長板が有利に用いられる。反射型偏光板に $1/4$ 波長板を積層する場合、反射型偏光板の透過軸と $1/4$ 波長板の遅相軸が 45° 又は 135° で交わるように配置すればよい。位相差板としては、ポリカーボネートや環状ポリオレフィンの如き各種プラスチックの延伸フィルムからなる複屈折性フィルム、ディスコチック液晶やネマチック液晶が配向固定されたフィルム、フィルム基材上に上記の液晶層が形成されたものなどを挙げができる。

【0036】

また、図4に示すように、反射型偏光板30の一方の面に吸収型偏光板21を積層し、他方の面に位相差板25を積層して、積層光学部材35とするのも有効である。この場合の原理は、上で吸収型偏光板だけを積層する場合及び位相差板だけを積層する場合について述べたのと同様であり、この場合も、位相差板として1/4波長板が有利に用いられる。この場合は、反射型偏光板の透過軸と吸収型偏光板の透過軸がほぼ平行となるようにし、反射型偏光板の透過軸と1/4波長板の遅相軸がほぼ45°又は135°で交わるようすればよい。図4のように構成した積層光学部材は、液晶表示装置等における輝度の向上を目的とした輝度向上フィルムとして、一層有効に作用する。

【0037】

積層光学部材の作製にあたっては、接着剤を用いて、反射型偏光板に吸収型偏光板や位相差板などの光学層が一体化されるが、そのために用いる接着剤は、接着層が良好に形成されるものであれば特に限定はない。接着作業の簡便性や光学歪の発生防止などの観点から、粘着剤（感圧接着剤とも呼ばれる）を使用することが好ましい。粘着剤には、アクリル系重合体や、シリコーン系ポリマー、ポリエステルやポリウレタン、ポリエーテルなどをベースポリマーとしたものを用いることができる。

【0038】

なかでも、アクリル系粘着剤のように、光学的な透明性に優れ、適度な濡れ性や凝集力を保持し、基材との接着性にも優れ、さらには耐候性や耐熱性などを有し、加熱や加湿の条件下で浮きや剥がれ等の剥離問題を生じないものを選択して用いることが好ましい。アクリル系粘着剤においては、メチル基やエチル基やブチル基のような、炭素数が20以下のアルキル基を有する（メタ）アクリル酸のアルキルエステルと、（メタ）アクリル酸や（メタ）アクリル酸ヒドロキシエチルなどからなる官能基含有アクリル系モノマーとを、ガラス転移温度が好ましくは25°C以下、さらに好ましくは0°C以下となるように配合した、重量平均分子量が10万以上のアクリル系共重合体が、ベースポリマーとして有用である。

【0039】

偏光板への粘着層の形成は、例えば、トルエンや酢酸エチルなどの有機溶媒に

粘着剤組成物を溶解又は分散させて10～40重量%の溶液を調製し、これを偏光板上に直接塗工して粘着剤層を形成する方式や、予めプロテクトフィルム上に粘着剤層を形成しておき、それを偏光板上に移着することで粘着剤層を形成する方式などにより、行うことができる。粘着層の厚さは、その接着力などに応じて決定されるが、通常は1～50μmの範囲である。

【0040】

また、粘着層には必要に応じて、ガラス纖維やガラスピーズ、樹脂ビーズ、金属粉やその他の無機粉末などからなる充填剤、顔料や着色剤、酸化防止剤、紫外線吸収剤などが配合されていてもよい。紫外線吸収剤には、サリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などがある。

【0041】

積層光学部材は、図2に示したのと同様の形態で、同図における反射型偏光板45に替えて、又は反射型偏光板45と吸収型偏光板21の積層体に替えて、液晶セルに適用し、液晶表示装置とすることができます。図4に示した吸収型偏光板21／反射型偏光板30／位相差板25の層構成からなる積層光学部材35を液晶表示装置に組み込んだ例を図5に示す。図5は、液晶セル10のバックライト40側に、図4に示したのと同じ積層光学部材35を配置したものであり、その他の符号は図1及び図2と同様なので、説明は省略する。

【0042】

液晶表示装置に用いる液晶セルは任意であり、例えば、薄膜トランジスタ型に代表されるアクティブマトリクス駆動型のもの、スーパーツイステッドネマチック型に代表される単純マトリクス駆動型のものなど、種々の液晶セルを使用して液晶表示装置を形成することができる。

【0043】

本発明の反射型偏光板、及びこれを備えた積層光学部材は、パソコンコンピュータ、ワードプロセッサー、エンジニアリング・ワークステーション、携帯情報端末、ナビゲーションシステム、液晶テレビ、ビデオの如き、液晶セルを用いた表示画面に好適に用いることができ、輝度の向上及び消費電力の低減を実現す

る。

【0044】

【実施例】

以下に、断面形状が正三角形である三角柱体が支持媒体中に均一に分散した場合と、断面形状が円である円柱体が支持媒体中に均一に分散した場合について、シミュレーションによる計算例を示す。以下において、偏光度の計算には、光線追跡法ソフトウェア “Trace Pro 2.3.4” (Lambda Research 社製) を用いた。

【0045】

実施例1

空間の位置を表す右手系の直交座標系を (x , y , z) として、この例で計算に用いた系の概要を図6に示す。図6の(a)は、計算に用いた直方体領域を右手系の (x , y , z) 直交座標系に模式的に表したものであり、同(b)は、この直方体の $x = 0$ の $y - z$ 平面における断面模式図であり、同(c)は、(b)における座標軸の向きを表している。なおこれらの図、特に(a)において、縮尺は原寸に対応していないので、留意されたい。図中にある数字の単位は μm である。また(b)において、斜線部分は空気層を、黒く塗られた部分は三角柱体の層を、白色部分は支持媒体の層を、それぞれ表す。

【0046】

計算に用いた領域は、図6 (a) に示すように、

$$-1 \mu\text{m} \leq x \leq 1 \mu\text{m},$$

$$-10 \mu\text{m} \leq y \leq 10 \mu\text{m},$$

$$0 \leq z \leq 216 \mu\text{m}$$

の直方体内部とした。

【0047】

$y = -10 \mu\text{m}$ と $y = 10 \mu\text{m}$ の二つの $z - x$ 平面に平行な面は、完全反射面とした。一方、 $x = z = 0$ 、 $-10 \mu\text{m} \leq y \leq 10 \mu\text{m}$ の y 軸に平行な線分を光源とし、 z 軸正方向に 5001 本の光線を発生させた。

【0048】

$0 \leq z \leq 10 \mu\text{m}$ と $210 \mu\text{m} \leq z \leq 216 \mu\text{m}$ の計算領域内の空間を空気層

(屈折率1) とし、 $z = 214 \mu\text{m}$ の $x - y$ 平面に平行な平面を観測面と定義した。 $10 \mu\text{m} \leq z \leq 210 \mu\text{m}$ の計算領域内の空間を偏光板の領域とし、次に述べる三角柱体の領域を除いて、屈折率を1.5とした。

【0049】

三角柱体は屈折率を1.8とし、 x 軸方向に軸を持ち、底面の1辺が $10 \mu\text{m}$ 、高さが $2 \mu\text{m}$ の正三角柱とし、一つの底面が、 $x = -1 \mu\text{m}$ の $y - z$ 平面に平行な面に含まれるようにした。三角柱体は32個を設定し、各三角柱体の位置は、 $x = 0$ の $y - z$ 平面における三角柱体の断面である正三角形により、以下のとおり定義する。

【0050】

すなわち、三角柱体は、各正三角形の一つの頂点の y 座標と z 座標が、

$$\begin{aligned}(y, z) = & (-10, 23 + 5\sqrt{3}), \\ & (-10, 23 + 25\sqrt{3}), \\ & (-10, 23 + 45\sqrt{3}), \\ & (-10, 23 + 65\sqrt{3}), \\ & (-10, 23 + 85\sqrt{3}), \\ & (-10, 23 + 105\sqrt{3}), \\ & (10, 23 + 5\sqrt{3}), \\ & (10, 23 + 25\sqrt{3}), \\ & (10, 23 + 45\sqrt{3}), \\ & (10, 23 + 65\sqrt{3}), \\ & (10, 23 + 85\sqrt{3}), \\ & (10, 23 + 105\sqrt{3}), \\ & (0, 23 + 15\sqrt{3}), \\ & (0, 23 + 35\sqrt{3}), \\ & (0, 23 + 55\sqrt{3}), \\ & (0, 23 + 75\sqrt{3}), \\ & (0, 23 + 95\sqrt{3})\end{aligned}$$

であり、その対辺が y 軸に平行で、かつ対辺の z 座標がそれぞれ、

$z = 23,$

$23 + 20\sqrt{3},$

$23 + 40\sqrt{3},$

$23 + 60\sqrt{3},$

$23 + 80\sqrt{3},$

$23 + 100\sqrt{3},$

$23,$

$23 + 20\sqrt{3},$

$23 + 40\sqrt{3},$

$23 + 60\sqrt{3},$

$23 + 80\sqrt{3},$

$23 + 100\sqrt{3},$

$23 + 10\sqrt{3},$

$23 + 30\sqrt{3},$

$23 + 50\sqrt{3},$

$23 + 70\sqrt{3},$

$23 + 90\sqrt{3}$

であるもの〔図6（b）において、上向きに尖った正三角形〕と、

各正三角形の一つの頂点のy座標とz座標が、

$$\begin{aligned}
 (y, z) &= (-10, 23 + 5\sqrt{3}), \\
 &\quad (-10, 23 + 25\sqrt{3}), \\
 &\quad (-10, 23 + 45\sqrt{3}), \\
 &\quad (-10, 23 + 65\sqrt{3}), \\
 &\quad (-10, 23 + 85\sqrt{3}), \\
 &\quad (10, 23 + 5\sqrt{3}), \\
 &\quad (10, 23 + 25\sqrt{3}), \\
 &\quad (10, 23 + 45\sqrt{3}), \\
 &\quad (10, 23 + 65\sqrt{3}), \\
 &\quad (10, 23 + 85\sqrt{3}),
 \end{aligned}$$

(0, $23 + 15\sqrt{3}$)、
 (0, $23 + 35\sqrt{3}$)、
 (0, $23 + 55\sqrt{3}$)、
 (0, $23 + 75\sqrt{3}$)、
 (0, $23 + 95\sqrt{3}$)

であり、その対辺がy軸に平行で、かつ対辺のz座標がそれぞれ、

$z = 23 + 10\sqrt{3}$ 、
 $23 + 30\sqrt{3}$ 、
 $23 + 50\sqrt{3}$ 、
 $23 + 70\sqrt{3}$ 、
 $23 + 90\sqrt{3}$ 、
 $23 + 10\sqrt{3}$ 、
 $23 + 30\sqrt{3}$ 、
 $23 + 50\sqrt{3}$ 、
 $23 + 70\sqrt{3}$ 、
 $23 + 90\sqrt{3}$ 、
 $23 + 20\sqrt{3}$ 、
 $23 + 40\sqrt{3}$ 、
 $23 + 60\sqrt{3}$ 、
 $23 + 80\sqrt{3}$ 、
 $23 + 100\sqrt{3}$

であるもの〔図6（b）において、下向きに尖った正三角形〕とからなる。ただし、上記数値は小数点以下6位までを用い、計算に用いた領域からはみ出した部分は無視した。

【0051】

上記計算系について、x軸に平行な電場ベクトルを持つ偏光を入射光として、観測面を通過した光線のエネルギーを計算し、これをE_xとする。

【0052】

次に、上記計算系において三角柱体の屈折率を1.5に置き換えた系で、y軸

に平行な電場ベクトルを持つ偏光を入射光として同様の計算を行い、観測面を通過した光線のエネルギーを E_y とする。このように、三角柱体の屈折率を変えて計算を行うことにより、複屈折体が分散する場合のシミュレーションとした。

【0053】

さらに、光源から出射した光線の全エネルギーを E_0 とすると、 x 軸に平行な電場ベクトルを持つ偏光に対する透過率 T_x 、及び y 軸に平行な電場ベクトルを持つ偏光に対する透過率 T_y は、それぞれ、

$$T_x = E_x / E_0 ,$$

$$T_y = E_y / E_0$$

と定義でき、偏光度 P は、

$$P = (T_y - T_x) / (T_y + T_x)$$

として算出できる。この例の計算系においては、 $T_x = 0$ 、 $T_y = 0.922$ となり、 $P = 1.00$ となった。

【0054】

なお、この例では、断面が 1 辺 $10 \mu\text{m}$ の正三角形であり、高さが $2 \mu\text{m}$ の正三角柱を用いて計算しており、ここから文字どおりに計算するとアスペクト比は 1 より小さくなる。しかし、計算に用いた系は $y = 0$ の $z - x$ 平面に対して面对称であり、かつ $y = -10 \mu\text{m}$ と $y = 10 \mu\text{m}$ の二つの $z - x$ 平面上に平行な面が完全反射面であることから、計算に用いた系に y 軸方向の周期境界条件を課したことと同じ効果がある。したがって、三角柱体は高さが無限大であり、アスペクト比も無限大であるのと同じになる。

【0055】

比較例 1

空間の位置を表す右手系の直交座標系を (x, y, z) として、この例で計算に用いた系の概要を図 7 に示す。図 7 の (a) は、計算に用いた直方体領域を右手系の (x, y, z) 直交座標系に模式的に表したものであり、同 (b) は、この直方体の $x = 0$ の $y - z$ 平面における断面模式図であり、同 (c) は、(b) における座標軸の向きを表している。なおこれらの図、特に (a) において、縮尺は原寸に対応していないので、留意されたい。図中にある数字の単位は μm で

ある。また (b)において、斜線部分は空気層を、黒く塗られた部分は円柱体の層を、白色部分は支持媒体の層を、それぞれ表す。

【0056】

計算に用いた領域は、図7 (a)に示すように、

$$\begin{aligned} -1 \mu\text{m} &\leq x \leq 1 \mu\text{m}, \\ -15 \mu\text{m} &\leq y \leq 15 \mu\text{m}, \\ 0 &\leq z \leq 300 \mu\text{m} \end{aligned}$$

の直方体内部とした。

【0057】

$y = -15 \mu\text{m}$ と $y = 15 \mu\text{m}$ の二つの $z - x$ 平面に平行な面は、完全反射面とした。一方、 $x = z = 0$ 、 $-15 \mu\text{m} \leq y \leq 15 \mu\text{m}$ の y 軸に平行な線分を光源とし、 z 軸正方向に 500 本の光線を発生させた。

【0058】

$0 \leq z \leq 10 \mu\text{m}$ と $290 \mu\text{m} \leq z \leq 300 \mu\text{m}$ の計算領域内の空間を空気層(屈折率1)とし、 $z = 295 \mu\text{m}$ の $x - y$ 平面に平行な平面を観測面と定義した。 $10 \mu\text{m} \leq z \leq 290 \mu\text{m}$ の計算領域内の空間を偏光板の領域とし、次に述べる円柱体の領域を除いて、屈折率を 1.6 とした。

【0059】

円柱体は屈折率を 2.3 とし、 x 軸方向に軸を持ち、底面の半径が $10 \mu\text{m}$ 、高さが $2 \mu\text{m}$ のものとし、一つの底面が、 $x = -1 \mu\text{m}$ の $y - z$ 平面に平行な面に含まれるようにした。円柱体は 15 個を設定し、各円柱体の位置は、 $x = 0$ の $y - z$ 平面による円柱体の断面である円の中心により、以下のとおり定義する。

【0060】

すなわち、円の中心の y 座標と z 座標が、

$$\begin{aligned} (y, z) &= (0, 23 + 5\sqrt{3}), \\ &(-15, 23 + 20\sqrt{3}), \\ &(15, 23 + 20\sqrt{3}), \\ &(0, 23 + 35\sqrt{3}), \\ &(-15, 23 + 50\sqrt{3}), \end{aligned}$$

- (15, 23 + 50√3) ,
- (0, 23 + 65√3) ,
- (-15, 23 + 80√3) ,
- (15, 23 + 80√3) ,
- (0, 23 + 95√3) ,
- (-15, 23 + 110√3) ,
- (15, 23 + 110√3) ,
- (0, 23 + 125√3) ,
- (-15, 23 + 140√3) ,
- (15, 23 + 140√3)

のものからなる。ただし、上記数値は小数点以下6位までを用い、計算に用いた領域からはみ出した部分は無視した。

【0061】

上記計算系について、x軸に平行な電場ベクトルを持つ偏光に対する透過率 T_x 、及びy軸に平行な電場ベクトルを持つ偏光に対する透過率 T_y を、実施例1と同様に計算したところ、 $T_x = 0.390$ 、 $T_y = 0.896$ となり、偏光度 $P = 0.393$ となった。

【0062】

なお、この例でも、断面が半径 $10\mu m$ （直径 $20\mu m$ ）の円であり、高さが $2\mu m$ の円柱体を用いて計算しているが、計算に用いた系は $y = 0$ の $z - x$ 平面に対して面对称であり、かつ $y = -15\mu m$ と $y = 15\mu m$ の二つの $z - x$ 平面に平行な面が完全反射面であることから、この円柱体は高さが無限大であり、アスペクト比も無限大となるのと同じ効果が得られていることは、実施例1と同様である。

【0063】

【発明の効果】

本発明の反射型偏光板は、簡便な方法で複屈折体が実質的に一方向に分散・配向した構造体を形成することができ、さらには異なる材料間の界面が単純な平面でないことに由来して、剥離が生じにくい。また、複屈折体を固着する支持媒体

が等方性を示す物質で構成されており、複屈折体の体積分率の増加に伴う強度の低下が比較的小さく、複屈折体の体積分率を高めることが容易である。さらに、この反射型偏光板を、吸収型偏光板を備えた液晶パネルの観察者側と反対側に配置することにより、光の利用効率が向上することに由来して、輝度が高く、電力消費を小さくすることができる液晶表示装置を提供することが可能となる。

【図面の簡単な説明】

【図 1】

従来の液晶表示装置の例を示す断面模式図である。

【図 2】

図 1 の液晶表示装置に反射型偏光板を配置して、バックライト光の利用効率を高める場合の例を示す断面模式図である。

【図 3】

本発明に係る反射型偏光板の透過軸に平行な厚さ方向断面の例を示す模式図である。

【図 4】

本発明に係る積層光学部材の例を示す断面模式図である。

【図 5】

本発明に係る液晶表示装置の例を示す断面模式図である。

【図 6】

実施例 1 で計算に用いた系の概要を示す図である。

【図 7】

比較例 1 で計算に用いた系の概要を示す図である。

【符号の説明】

1 0 ……液晶セル、

1 1, 1 2 ……透明基板、

1 4, 1 5 ……透明電極、

1 7 ……液晶、

2 1, 2 2 ……吸収型偏光板、

2 5 ……位相差板、

- 3 0反射型偏光板、
- 3 1複屈折体、
- 3 3支持媒体、
- 3 5積層光学部材、
- 4 0バックライト、
- 4 5反射型偏光板（従来）、
- 5 0液晶表示装置。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

(c)座標軸の向き

数字の単位は μm

【図7】

(b)

(c) 座標軸の向き

数字の単位は μm

【書類名】 要約書

【要約】

【課題】 液晶表示装置の光の利用効率を高めることができ、製造が比較的簡単で、層間剥離などの問題が発生しにくい反射型偏光板を提供し、さらにそれを用いた積層光学部材及び液晶表示装置を提供する。

【解決手段】 反射型偏光板30は、支持媒体33中に、断面形状が多角形でアスペクト比が2以上、そして長軸方向と短軸方向の屈折率差が0.05以上である複屈折体31が分散配列したものである。複屈折体31は纖維であることができ、この纖維は、ほぼ正三角形の断面形状を有し、それが面内ではほぼ平行に、かつ隣り合う纖維の断面正三角形における頂点同士が接するように配列しており、頂点同士が接する断面三角形の纖維で囲まれる支持媒体がほぼ正六角形になっているものが好ましい。反射型偏光板30に他の光学層を積層して積層光学部材とすることができます、この積層光学部材を液晶セルの片面に配置して液晶表示装置とすることができます。

【選択図】 図3

【書類名】 出願人名義変更届
【あて先】 特許庁長官殿
【事件の表示】
【出願番号】 特願2003-199655
【承継人】
【識別番号】 504132881
【氏名又は名称】 国立大学法人東京農工大学
【代表者】 宮田 清▲蔵▼
【手数料の表示】
【予納台帳番号】 258162
【納付金額】 4,200円

認定・付加情報及

特許出願の番号	特願2003-199655
受付番号	50401212854
書類名	出願人名義変更届
担当官	塩原 啓三 2404
作成日	平成16年10月 5日

<認定情報・付加情報>

【提出日】 平成16年 7月20日

特願 2003-199655

出願人履歴情報

識別番号 [000002093]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住所 大阪府大阪市中央区北浜4丁目5番33号
氏名 住友化学工業株式会社

特願 2003-199655

出願人履歴情報

識別番号

[504132881]

1. 変更年月日

[変更理由]

住 所

氏 名

2004年 4月 1日

新規登録

東京都府中市晴見町3-8-1

国立大学法人東京農工大学