Computer Grafik Blatt 7

June 2023

Aufgabe 1.

(a)

T(0.3,0.9) = T(0,1) = 100 da die Stelle in dem Pixel T(0,1) liegt. Wir gehen hier davon aus, das die Pixel durch ihren Mittelpunkt gegeben sind.

(b)

$$T(0,0.9) = 0.1 \cdot (0,0) + 0.9 \cdot (0,1) = 4 + 90 = 94$$

$$T(1,0.9) = 0.1 \cdot (1,0) + 0.9 \cdot (1,1) = 15 + 189 = 204$$

$$T(0.3,0.9) = 0.7 \cdot (0,0.9) + 0.3 \cdot T(1,0.9) = 65,8 + 61,2 = 127$$

(c)

50	157	150	40		140	130		111
158	195	186	144					
241	49	69	204		90	84		
40	30	42	21					

(d)

Da
$$p = \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix}$$
 auf der Linie zwischen $a = \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix}$ und $b = \begin{pmatrix} 10 \\ 2 \\ 1 \end{pmatrix}$ liegt, brauchen wir

p nur linear zwischen a und b interpolieren. Es ist ersichtlich, dass $p = \frac{3}{4}a + \frac{1}{4}b$ da die Entfernung von a nach b gleich 4 ist, und von a nach p gleich 1. In der Textur heißt das $p_t = \frac{3}{4}(0,0) + \frac{1}{4}(1,0.5) = (\frac{1}{4},\frac{1}{8})$

(e)

 $\sum_{i=0}^{\infty}\frac{n}{4^i}=n\sum_{i=0}^{\infty}\frac{1}{4^i}\approx\frac{4}{3}n$ da $\sum_{i=0}^{\infty}\frac{1}{4^i}=\sum_{i=0}^{\infty}(\frac{1}{4})^i$ eine Geometrische Reihe ist, die gegen $\frac{4}{3}$ Konvergiert. In der Realität liefert $\frac{4}{3}n$ immer $\frac{1}{3}$ zu viel.

(f)

$$n_e = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, n_s = \frac{n_e + z}{||n_e + z||} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \div 2 = \begin{pmatrix} 0 \\ 0.5 \\ 0.5 \end{pmatrix} \text{ woraus sich die Texturkoordinaten } (0,0.5) \text{ ergeben.}$$