CS-GY 6763: Lecture 6 Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

- · Midterm in class next Tuesday. .
 - · See Ed post.
 - If you have permission to take remotely, please email asap so I know who you are.
 - List of topics covered and practice problems are on the course webpage.
- Tomorrow in the reading group Hayden Edelson will present Estimating Sizes of Social Networks via Biased Sampling. See you there!
- Thanks to Robert Ronan for the presentation last week.

GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint set S, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- Projection oracle: Evaluate $P_{\mathcal{S}}(\mathbf{x})$ for any \mathbf{x} .

Goal: Find $\hat{\mathbf{x}} \in \mathcal{S}$ such that $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon$.

GRADIENT DESCENT RECAP

Projected gradient descent:

- Select starting point $\mathbf{x}^{(0)}$, learning rate η .
- For i = 0, ..., T:
 - $z = x^{(i)} \eta \nabla f(x^{(i)})$
 - · $\mathbf{x}^{(i+1)} = P_{\mathcal{S}}(\mathbf{z})$
- Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.

Conditions for convergence:

- Convexity: f is a convex function, S is a convex set.
- · Bounded initial distance:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$$

Bounded gradients (Lipschitz function):

$$\|\nabla f(\mathbf{x})\|_2 \leq G$$
 for all $\mathbf{x} \in \mathcal{S}$.

Theorem: Projected Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$

iterations.

Convexity:

$$0 \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x})$$

 α -strong-convexity and β -smoothness:

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \le [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

Number of iterations for ϵ error:

	<i>G</i> -Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
lpha-strong convex	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

CONVERGENCE GUARANTEE

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-(T-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$$

We will prove this in the special case of

$$f(x) = ||Ax - b||_2^2$$

where $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$.

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $H = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $H \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

For vector **x**, **v**:

$$\nabla f(\mathbf{x} + t\mathbf{v}) \approx \nabla f(\mathbf{x}) + t \left[\nabla^2 f(\mathbf{x})\right] \mathbf{v}.$$

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $H = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathbf{H}_{i,j} = \left[\nabla^2 f(\mathbf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

Example: Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Recall that $\nabla f(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b})$.

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $H = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \geq 0$.

This is a natural notion of "positivity" for symmetric matrices. To denote that **H** is PSD we will typically use "Loewner order" notation (\succeq in LaTex):

$$H \succeq 0$$
.

We write $B \succeq A$ or equivalently $A \preceq B$ to denote that (B - A) is positive semidefinite. This gives a <u>partial ordering</u> on matrices.

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

For the least squares regression loss function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, $\mathbf{H} = \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A}$ for all \mathbf{x} .

We know that H is PSD because:

$$\mathbf{x}^T \mathbf{H} \mathbf{x} = 2 \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = 2 \|\mathbf{A} \mathbf{x}\|_2^2 \ge 0.$$

THE LINEAR ALGEBRA OF CONDITIONING

If f is β -smooth and α -strongly convex then at any point \mathbf{x} , $\mathbf{H} = \nabla^2 f(\mathbf{x})$ satisfies:

$$\alpha I_{d \times d} \leq H \leq \beta I_{d \times d}$$
,

where $I_{d\times d}$ is a $d\times d$ identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions:

$$\alpha \leq f''(x) \leq \beta$$
.

SMOOTH AND STRONGLY CONVEX HESSIAN

$$\alpha I_{d \times d} \leq H \leq \beta I_{d \times d}$$
.

Equivalently for any z,

$$\alpha \|\mathbf{z}\|_2^2 \leq \mathbf{z}^\mathsf{T} \mathsf{H} \mathbf{z} \leq \beta \|\mathbf{z}\|_2^2.$$

SIMPLE EXAMPLE

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagaonl matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

$$\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^\mathsf{T} \mathbf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2$$

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = 1, d_2^2 = 1$.

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = \frac{1}{3}, d_2^2 = 2$.

Any symmetric matrix **H** has an <u>orthogonal</u>, real valued eigendecomposition.

Here **V** is square and orthogonal, so $\mathbf{V}^T\mathbf{V} = \mathbf{V}\mathbf{V}^T = \mathbf{I}$. And for each \mathbf{v}_i , we have:

$$Hv_i = \lambda_i v_i$$
.

By definition, that's what makes $\mathbf{v}_1, \dots, \mathbf{v}_d$ eigenvectors.

Recall $VV^T = V^TV = I$.

Claim: H is PSD $\Leftrightarrow \lambda_1, ..., \lambda_d \geq 0$.

Recall $VV^T = V^TV = I$.

Claim: $\alpha I \leq H \leq \beta I \Leftrightarrow \alpha \leq \lambda_d \leq ... \leq \lambda_1 \leq \beta$.

Recall $VV^T = V^TV = I$.

In other words, if we let $\lambda_{max}(H)$ and $\lambda_{min}(H)$ be the smallest and largest eigenvalues of H, then for all z we have:

$$\begin{split} \mathbf{z}^\mathsf{T} \mathbf{H} \mathbf{z} &\leq \lambda_{\mathsf{max}} (\mathbf{H}) \cdot \|\mathbf{z}\|^2 \\ \mathbf{z}^\mathsf{T} \mathbf{H} \mathbf{z} &\geq \lambda_{\mathsf{min}} (\mathbf{H}) \cdot \|\mathbf{z}\|^2 \end{split}$$

If the maximum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \beta$ and the minimum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \alpha$ then $f(\mathbf{x})$ is β -smooth and α -strongly convex.

$$\lambda_{\mathsf{max}}(\mathsf{H}) = \beta$$
 $\lambda_{\mathsf{min}}(\mathsf{H}) = \alpha$

POLYNOMIAL VIEW POINT

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2 \le e^{-T/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Goal: Prove for
$$f(x) = \|Ax - b\|_2^2$$
.

Let $\lambda_{max} = \lambda_{max}(\mathbf{A}^T\mathbf{A})$. Gradient descent update is:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{2 \lambda_{max}} 2 \mathbf{A}^{T} (\mathbf{A} \mathbf{x}^{(t)} - \mathbf{b})$$

ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^\mathsf{T} \mathbf{A}\right) (\mathbf{x}^{(t)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(\mathbf{I} - \frac{1}{\lambda_{\text{max}}} \mathbf{A}^T \mathbf{A}\right)$ in terms of the eigenvalues $\lambda_{\text{max}} = \lambda_1 \geq \ldots \geq \lambda_d = \lambda_{\text{min}}$ of $\mathbf{A}^T \mathbf{A}$?

UNROLLED GRADIENT DESCENT

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A}\right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

Approach: Show that the maximum eigenvalue of $\left(\mathbf{I} - \frac{1}{\lambda_{\max}}\mathbf{A}^T\mathbf{A}\right)^T$ is small – i.e., bounded by $e^{-T/\kappa} = \epsilon$.

Conclusion:

$$\cdot \|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2^2 = (\mathbf{x}^{(1)} - \mathbf{x}^*)^T \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A}\right)^{2T} (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

• Since $\lambda_{\max}(M) = \max_{\mathbf{z}} \frac{\mathbf{z}^t M \mathbf{z}}{\|\mathbf{z}\|_2^2}$, we have:

$$\|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2^2 \le \lambda_{\mathsf{max}} \left(\left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A} \right)^{2T} \right)$$

So we have $\|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2 \le$

UNROLLED GRADIENT DESCENT

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\mathsf{max}}} \mathbf{A}^T \mathbf{A}\right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(\mathbf{I}-\frac{1}{\lambda_{\max}}\mathbf{A}^T\mathbf{A}\right)^T$?

ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:

$$\begin{aligned} \cdot \ & \mathbf{x}^{(1)} = \mathbf{y}^{(1)} = \mathbf{z}^{(1)} \\ \cdot \ & \text{For } t = 1, \dots, T \\ \cdot \ & \mathbf{y}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)}) \\ \cdot \ & \mathbf{x}^{(t+1)} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) \mathbf{y}^{(t+1)} + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \left(\mathbf{y}^{(t+1)} - \mathbf{y}^{(t)}\right) \end{aligned}$$

Theorem (AGD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run AGD for T steps we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \kappa e^{-(t-1)\sqrt{\kappa}} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O(\sqrt{\kappa} \log(\kappa/\epsilon))$ achieve error ϵ .

INTUITION BEHIND ACCELERATION

Level sets of $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$.

Other terms for similar ideas:

- Momentum
- Heavy-ball methods

What if we look back beyond two iterates?

ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

- · Basics of Online Learning + Optimization.
- · Introduction to Regret Analysis.
- · Application to analyzing Stochastic Gradient Descent.

Many machine learning problems are solved in an <u>online</u> setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Image classification systems learn from mistakes over time (often based on user feedback).
- Content recommendation systems adapt to user behavior and clicks (which may not be a good thing...)

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image is classified via crowdsourcing (backed by huge network of amateurs and experts).
- Single model that is updated constantly, not retrained in batches.

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

ONLINE LEARNING FRAMEWORK

Choose some model $M_{\mathbf{x}}$ parameterized by parameters \mathbf{x} and some loss function ℓ . At time steps $1, \ldots, T$, receive data vectors $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(T)}$.

- At each time step, we pick ("play") a parameter vector $\mathbf{x}^{(i)}$.
- Make prediction $\tilde{y}^{(i)} = M_{\mathbf{x}^{(i)}}(\mathbf{a}_i)$.
- Then told true value or label $y^{(i)}$.
- · Goal is to minimize cumulative loss:

$$L = \sum_{i=1}^{n} \ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, y^{(i)})$$

For example, for a regression problem we might use the ℓ_2 loss:

$$\ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, \mathbf{y}^{(i)}) = \left| \langle \mathbf{x}^{(i)}, \mathbf{a}^{(i)} \rangle - \mathbf{y}^{(i)} \right|^2.$$

For classification, we could use logistic/cross-entropy loss.

ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single objective function f, we have a single (initially unknown) function $f_1, \ldots, f_T : \mathbb{R}^d \to \mathbb{R}$ for each time step.

- For time step $i \in 1, ..., T$, select vector $\mathbf{x}^{(i)}$.
- Observe f_i and pay cost $f_i(\mathbf{x}^{(i)})$
- Goal is to minimize $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})$.

We make <u>no assumptions</u> that f_1, \ldots, f_T are related to each other at all!

REGRET BOUND

In offline optimization, we wanted to find $\hat{\mathbf{x}}$ satisfying $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x})$. Ask for a similar thing here.

Objective: Choose $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$ so that:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

Here ϵ is called the **regret** of our solution sequence $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$.

Regret compares to the best fixed solution in hindsight.

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

It's very possible that $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) < \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right]$. Could we hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\sum_{i=1}^{T} \min_{\mathbf{x}} f_i(\mathbf{x})\right] + \epsilon.$$

HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

$$f_1(x) = |x - h_1|$$

$$\vdots$$

$$f_n(x) = |x - h_T|$$

where h_1, \ldots, h_T are i.i.d. uniform $\{0, 1\}$.

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

Beautiful balance:

- Either f_1, \ldots, f_T are similar, so we can learn predict f_i from earlier functions.
- Or f_1, \ldots, f_T are very different, in which case $\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ is large, so regret bound is easy to achieve.
- · Or we live somewhere in the middle.

Online Gradient descent:

- Choose $\mathbf{x}^{(1)}$ and $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 1, ..., T:
 - Play $\mathbf{x}^{(i)}$.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_i(\mathbf{x}^{(i)})$

If $f_1, \ldots, f_T = f$ are all the same, this looks a lot like regular gradient descent. We update parameters using the gradient ∇f at each step.

ONLINE GRADIENT DESCENT (OGD)

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$$
 (the offline optimum)

Assume:

- f_1, \ldots, f_T are all convex.
- Each is G-Lipschitz: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Online Gradient descent:

- Choose $\mathbf{x}^{(1)}$ and $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 1, ..., T:
 - Play $\mathbf{x}^{(i)}$.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_i(\mathbf{x}^{(i)})$

ONLINE GRADIENT DESCENT ANALYSIS

Let $\mathbf{x}^* = \arg\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ (the offline optimum)

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Average regret overtime is bounded by $\frac{\epsilon}{T} \leq \frac{RG}{\sqrt{T}}.$

Goes \rightarrow 0 as $T \rightarrow \infty$.

All this with no assumptions on how f_1, \ldots, f_T relate to each other! They could have even been chosen adversarially – e.g. with f_i depending on our choice of \mathbf{x}_i and all previous choices.

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Claim 1: For all i = 1, ..., T,

$$f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

(Same proof as last class. Only uses convexity of f_i .)

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Claim 1: For all $i = 1, \ldots, T$,

$$f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

Telescoping Sum:

$$\sum_{i=1}^{T} \left[f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \right] \le \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 + \frac{T\eta G^2}{2}$$
$$\le \frac{R^2}{2\eta} + \frac{T\eta G^2}{2}$$

STOCHASTIC GRADIENT DESCENT (SGD)

Efficient <u>offline</u> optimization method for functions f with <u>finite</u> sum structure:

$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x}).$$

Goal is to find $\hat{\mathbf{x}}$ such that $f(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon$.

- The most widely use optimization algorithm in modern machine learning.
- Easily analyzed as a special case of online gradient descent!

Recall the machine learning setup. In empirical risk minimization, we can typically write:

$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$$

where f_i is the loss function for a particular data example $(\mathbf{a}^{(i)}, y^{(i)})$.

Example: least squares linear regression.

$$f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{x}^{T} \mathbf{a}^{(i)} - \mathbf{y}^{(i)})^{2}$$

Note that by linearity, $\nabla f(\mathbf{x}) = \sum_{i=1}^{n} \nabla f_i(\mathbf{x})$.

Main idea: Use random approximate gradient in place of actual gradient.

Pick $\underline{\text{random}} j \in 1, ..., n$ and update \mathbf{x} using $\nabla f_j(\mathbf{x})$.

$$\mathbb{E}\left[\nabla f_j(\mathbf{x})\right] = \frac{1}{n}\nabla f(\mathbf{x}).$$

 $n\nabla f_j(\mathbf{x})$ is an unbiased estimate for the true gradient $\nabla f(\mathbf{x})$, but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

Stochastic first-order oracle for $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$.

- Function Query: For any chosen j, x, return $f_j(x)$
- Gradient Query: For any chosen j, \mathbf{x} , return $\nabla f_j(\mathbf{x})$

Stochastic Gradient descent:

- Choose starting vector $\mathbf{x}^{(1)}$, learning rate η
- For $i = 1, \ldots, T$:
 - Pick random $j_i \in 1, ..., n$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

VISUALIZING SGD

Assume:

- Finite sum structure: $f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x})$, with f_1, \dots, f_n all convex.
- · Lipschitz functions: for all \mathbf{x} , j, $\|\nabla f_j(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
 - What does this imply about Lipschitz constant of f?
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Stochastic Gradient descent:

- Choose $\mathbf{x}^{(1)}$, steps T, learning rate $\eta = \frac{D}{G'\sqrt{T}}$.
- For i = 1, ..., T:
 - Pick random $j_i \in 1, ..., n$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

Approach: View as online gradient descent run on function sequence f_{j_1}, \ldots, f_{j_r} .

Only use the fact that step equals gradient in expectation.

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After
$$T = \frac{R^2G'^2}{\epsilon^2}$$
 iterations:

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \le \epsilon.$$

Claim 1:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{1}{T} \sum_{i=1}^{T} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right]$$

Prove using Jensen's Inequality:

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After $T = \frac{R^2 G'^2}{c^2}$ iterations:

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \epsilon.$$

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right]$$

$$= \frac{1}{T} \sum_{i=1}^{T} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$$

$$= \frac{1}{T} \sum_{i=1}^{T} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^{offline})\right]$$

$$= \frac{n}{T} \cdot \mathbb{E}\left[\sum_{i=1}^{T} f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$$

$$\leq \frac{n}{T} \cdot \left(R \cdot \frac{G'}{n} \cdot \sqrt{T}\right) \qquad \text{(by OGD guarantee.)}$$

Number of iterations for error ϵ :

- Gradient Descent: $T = \frac{R^2G^2}{\epsilon^2}$.
- Stochastic Gradient Descent: $T = \frac{R^2G'^2}{\epsilon^2}$.

Always have $G \leq G'$:

$$\max_{\mathbf{x}} \|\nabla f(\mathbf{x})\|_{2} \leq \max_{\mathbf{x}} (\|\nabla f_{1}(\mathbf{x})\|_{2} + \ldots + \|\nabla f_{n}(\mathbf{x})\|_{2}) \leq n \cdot \frac{G'}{n} = G'.$$

So GD converges strictly faster than SGD.

But for a fair comparison:

- SGD cost = (# of iterations) O(1)
- GD cost = (# of iterations) O(n)

We always have $G \le G'$. When it is <u>much smaller</u> then GD will perform better. When it is closer to this upper bound, SGD will perform better.

What is an extreme case where G = G'?

What if each gradient $\nabla f_i(\mathbf{x})$ looks like random vectors in \mathbb{R}^d ? E.g. with $\mathcal{N}(0,1)$ entries?

$$\mathbb{E}\left[\|\nabla f_i(\mathbf{x})\|_2^2\right] =$$

$$\mathbb{E}\left[\|\nabla f(\mathbf{x})\|_{2}^{2}\right] = \mathbb{E}\left[\|\sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})\|_{2}^{2}\right] =$$

Takeaway: SGD performs better when there is more structure or repetition in the data set.

PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function g(x) with the same minimum but which is better suited for first order optimization (e.g., has a smaller conditioner number).

Claim: Let
$$h(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}^d$$
 be an invertible function. Let $g(\mathbf{x}) = f(h(\mathbf{x}))$. Then

$$\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{x}} g(\mathbf{x})$$
 and $\underset{\mathbf{x}}{\operatorname{arg min}} f(\mathbf{x}) = h\left(\underset{\mathbf{x}}{\operatorname{arg min}} g(\mathbf{x})\right)$.

PRECONDITIONING

First Goal: We need $g(\mathbf{x})$ to still be convex.

Claim: Let P be an invertible $d \times d$ matrix and let $g(\mathbf{x}) = f(P\mathbf{x})$.

 $g(\mathbf{x})$ is always convex.

PRECONDITIONING

Second Goal:

 $g(\mathbf{x})$ should have better condition number κ than $f(\mathbf{x})$.

Example:

•
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
. $\kappa_f = \frac{\lambda_1(\mathbf{A}^T \mathbf{A})}{\lambda_d(\mathbf{A}^T \mathbf{A})}$.

•
$$g(\mathbf{x}) = \|\mathbf{A}\mathbf{P}\mathbf{x} - \mathbf{b}\|_2^2$$
. $\kappa_g = \frac{\lambda_1(\mathbf{P}^T\mathbf{A}^T\mathbf{A}\mathbf{P})}{\lambda_d(\mathbf{P}^T\mathbf{A}^T\mathbf{A}\mathbf{P})}$.

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

- · Let $D = diag(A^T A)$
- Intuitively, we roughly have that $D \approx A^T A$.
- Let $P = \sqrt{D^{-1}}$

P is often called a **Jacobi preconditioner**. Often works very well in practice!

DIAGONAL PRECONDITIONER

A = -734 33 9111 0 -31 108 5946 -19 232 3502 101 10 426 -65 12503 -373 26 9298 -236 -2 -94 2398 2024 -132 -6904 -25 -2258 92 -6516 2229 11921 -22 338 -5 -16118 -23

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then $\nabla g(x) = P^T \nabla f(Px)$.

 $\nabla g(\mathbf{x}) = \mathbf{P} \nabla f(\mathbf{P}\mathbf{x})$ when \mathbf{P} is symmetric.

Gradient descent on *g*:

• For
$$t = 1, ..., T$$
,
• $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \mathbf{P} \left[\nabla f(\mathbf{P} \mathbf{x}^{(t)}) \right]$

Gradient descent on g:

• For
$$t = 1, ..., T$$
,
• $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \eta \mathbf{P}^2 \left[\nabla f(\mathbf{y}^{(t)}) \right]$

When **P** is diagonal, this is just gradient descent with a different step size for each parameter!

ADAPTIVE STEPSIZES

Algorithms based on this idea:

- · AdaGrad
- · RMSprop
- · Adam optimizer

(Pretty much all of the most widely used optimization methods for training neural networks.)

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Gradient Descent: When $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, approximate $\nabla f(\mathbf{x})$ with $\nabla f_i(\mathbf{x})$ for randomly chosen i.

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a <u>single random</u> entry of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} 0 \\ \frac{\partial f}{\partial x_i}(\mathbf{x}) \\ \vdots \\ 0 \end{bmatrix}$$

Update: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \eta \nabla_i f(\mathbf{x}^{(t)})$.

COORDINATE DESCENT

When \mathbf{x} has d parameters, computing $\nabla_i f(\mathbf{x})$ often costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ for $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{x} \in \mathbb{R}^d, \mathbf{b} \in \mathbb{R}^n$.

- $\cdot \nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} 2\mathbf{A}^{\mathsf{T}}\mathbf{b}.$
- $\nabla_i f(\mathbf{x}) = 2 \left[\mathbf{A}^\mathsf{T} \mathbf{A} \mathbf{x} \right]_i 2 \left[\mathbf{A}^\mathsf{T} \mathbf{b} \right].$

STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size η .
- For $i = 1, \ldots, T$:
 - Pick random $j_i \in 1, ..., d$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla_{j_i} f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$.

COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)

Given a G-Lipschitz function f with minimizer \mathbf{x}^* and initial point $\mathbf{x}^{(1)}$ with $\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2 \le R$, SCD with step size $\eta = \frac{1}{Rd}$ satisfies the guarantee:

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \frac{2GR}{\sqrt{T/d}}$$

Often it doesn't make sense to sample i uniformly at random:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -.5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

$$\mathbf{b} = \begin{vmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{vmatrix}$$

Select indices i proportional to $\|\mathbf{a}_i\|_2^2$:

$$Pr[select index i to update] = \frac{\|\mathbf{a}_i\|_2^2}{\sum_{j=1}^d \|\mathbf{a}_j\|_2^2} = \frac{\|\mathbf{a}_i\|_2^2}{\|\mathbf{A}\|_2^2}$$