GEN 253 - Circuitos Digitais

Prof. Luciano L. Caimi Icaimi@uffs.edu.br

- Como discutido anteriormente os circuitos lógicos digitais são divididos em duas grandes áreas:
 - → Circuitos Combinacionais: em que as saídas do circuito dependem exclusivamente do valor presente na entrada. Como nos multiplexadores, somadores, codificadores, etc...
 - → Circuitos Sequenciais: onde as saídas do circuito dependem dos valores presentes nas entradas e do estado anterior em que o circuito se encontra. Como exemplo temos os registradores, os contadores, as máquinas de estado, dentre outros.

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Elementos básicos: Latches e Flip-Flops

- Latches: são elementos assíncronos, ou seja, operam sem restrições temporais
- Flip-Flops são elementos síncronos, isto é, operam com restrições de tempo
- O funcionamento lógico de Latches e Flip-Flops são semelhantes, sendo as diferenças baseadas nas existência ou não de restrições temporais
- Por definição tanto os latches como os flip-flops possuem duas saídas com valores opostos (Q = 1, Q' = 0 ou Q = 0 e Q' = 1)

Latch RS

R	S	Q _t	\mathbf{Q}_{t+1}	Comentário
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Latch RS

R	S	Q _t	\mathbf{Q}_{t+1}	Comentário
0	0	0	0	Igual Q _t
0	0	1	1	Igual Q _t
0	1	0	1	Set
0	1	1	1	Set
1	0	0	0	Reset
1	0	1	0	Reset
1	1	0	-	Inválido
1	1	1	-	Inválido

$((R = 1 ^ S = 0) ^ (R = 0 ^$	S = 1) ((R = 0 ^ S = 1) ^v
$(R = 0 ^ S = 0))$	$(R = 0 ^ S = 0))$
Reset	Set

 $(R = 1 ^ S = 0)$

R	S	Q_{t+1}	Comentário
0	0	Q _t	mantém anterior
0	1	1	estado set
1	0	0	estado reset
1	1	-	estado inválido

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Latch RS

R	S	\mathbf{Q}_{t+1}	Comentário
0	0	Q _t	mantém anterior
0	1	1	estado set
1	0	0	estado reset
1	1	-	estado inválido

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Comentário Е R S Q_{t+1} **Circuitos Sequenciais** mantém anterior X Q_t Latch RS 0 mantém anterior 0 0 Q_t estado set 0 estado reset 0 0 0 estado inválido 0 R S Е UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Flip-Flop RS

Como fica a tabela-verdade?

Flip-Flop RS

clk	R	S	$\mathbf{Q}_{t^{+1}}$	Comentário
1	X	X	Q _t	mantém anterior
0	X	X	Qt	mantém anterior
1	X	X	Qt	mantém anterior
1	0	0	\mathbf{Q}_{t}	mantém anterior
↑	0	1	1	estado set
↑	1	0	0	estado reset
1	1	1	-	estado inválido

Como fica o diagrama de estados?

Flip-Flop RS

UFFS

Detecção de borda

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

- Os tempos de **setup** e **hold** são parâmetros que devem ser observados para que o flip-flop possa trabalhar de modo confiável
- O tempo de setup (tsu), corresponde ao intervalo no qual as entradas devem permanecer estáveis antes da transição do clock
- O tempo de hold (th), corresponde ao intervalo no qual as entradas devem permanecer estáveis depois da transição do clock

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Flip-Flop RS

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitals

clk

0

R

X

X

X

S

X

X

X

 Q_{t+1}

Q,

 Q_t

Q,

Comentário

mantém anterior

mantém anterior

mantém anterior

Flip-Flop RS gatilhado na descida do clock

Flip-Flop RS gatilhado na descida do clock

clk	R	S	Q_{t+1}	Comentário
1	X	X	Q _t	mantém anterior
0	X	X	Q _t	mantém anterior
1	X	X	Qt	mantém anterior
1	0	0	Q _t	mantém anterior
1	0	1	1	estado set
1	1	0	0	estado reset
1	1	1	-	estado inválido

clear

Flip-Flop RS com entradas assíncronas de preset e clear

 Nesta configuração duas entradas assíncronas permitem colocar o flip-flop com saída Q = 0 (clear) ou Q = 1 (preset) independente da transição de clock, permitindo, por exemplo a inicialização do FF

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

S

clk

clear

preset

clk

R

S

Comentário

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

clear

Flip-Flop RS com entradas assíncronas de preset e clear complementar

 Comportamento igual ao circuito anterior mas utilizando a lógica complementar nas entradas preset e clear, ou seja, ativa em nível lógico zero

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

clear

preset

clk

R

S

 Q_{t+1}

Comentário

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

- Além das Latches e Flip-Flops tipo RS existem outros tipos elementares:
 - → JK
 - **→** D
 - **→** T
- Embora ocorra variações na funcionalidade de cada tipo, as variações quanto ao enable normal e complementar, transição de gatilho do clock, preset e clear normal e complementar, estão presentes em todos os tipos

Latch JK

 $((J = 0 ^ K = 1) ^ (J = 1 ^ K = 1))$

 $(J = 0 ^ K = 0)$

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Q

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Latch JK com Enable

Е	J	K	Q_{t+1}	Comentário
0	X	X	Q _t	mantém anterior
1	0	0	Q _t	mantém anterior
1	0	1	0	estado reset
1	1	0	1	estado set
1	1	1	$\overline{\mathbf{Q}_{t}}$	inverte anterior

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Flip-Flop JK com *preset* e *clear* clear

preset

K

clk

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Latch D

D	K	Q_{t+1}	Comentário
0		Qt	mantém anterior
0	1	0	estado reset
1	0	1	estado set
1		$\overline{\mathbf{Q}_{\mathrm{t}}}$	inverte anterior

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Latch T

Т	K	Q_{t+1}	Comentário
0	0	Q _t	mantém anterior
0		0	estado reset
1	0	1	estado set
1	1	$\overline{\mathbf{Q}_{\mathrm{t}}}$	inverte anterior

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Registrador de carga paralela

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Registrador de carga paralela

CP: Carga de dados na borda de subida

MR': Reset assíncrono

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Exercício: apresente as saídas Qa, Qb e Qc

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Exercício: apresente as saídas Qa, Qb e Qc

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Exercício: apresente os valores de Z e X

Banco de Registradores

- Neste exemplo:
 - entrada e armazenamento de dados de 4 bits
 - 8 registradores
 - 2x3 bits de seleção de leitura
 - 3 bits de seleção de escrita
 - 1 bit para escrita (clk)

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais