Lab 5 Support Vector Machines

CREATED BY PROF. SUNDEEP RANGAN AND PROF. WANG FOR EE-UY 4563/EL-GY 9123

MODIFIED BY ARTIE SHEN

Outline

- Motivating example: Recognizing handwritten digits
 - Maximum margin classifiers
 - ■Support vector machines
 - Multi-class classification problem
 - **■**Evaluation metrics
 - ☐ Grid search
 - □Coding Exercise: apply SVM on the EMNIST dataset

MNIST Digit Classification

HANDWRITING SAMPLE FORM

- ☐ Problem: Recognize handwritten digits
- □Original problem:
 - Census forms
 - Automated processing
- □Classic machine learning problem
- □ Benchmark

From Patrick J. Grother, NIST Special Database, 1995

Problem Formulation

- ☐ Given an image of a handwritten digit
- Predict the number in the image
- **(**0,1,2,...,9)

Downloading MNIST

```
■MNIST data is available in many sources
import tensorflow as tf
                                                         ■Note: It has been removed from sklearn
(Xtr,ytr),(Xts,yts) = tf.keras.datasets.mnist.load data()
print('Xtr shape: %s' % str(Xtr.shape))
                                                         ☐ Tensorflow version:
print('Xts shape: %s' % str(Xts.shape))

    60000 training samples

ntr = Xtr.shape[0]

    10000 test samples

nts = Xts.shape[0]
nrow = Xtr.shape[1]
                                                         ☐ Each sample is a 28 x 28 images
ncol = Xtr.shape[2]
                                                         \BoxGrayscale: Pixel values ∈ {0,1, ..., 255}
Xtr shape: (60000, 28, 28)
                                                           0 = Black and
Xts shape: (10000, 28, 28)

    255 = White
```


Matrix and Vector Representation

- \square For this demo, we reshape data from $N \times 28 \times 28$ to $N \times 784$
- ☐But, you can easily go back and forth
- □Also, scale the pixel values from -1 to 1

$$S = Mat(x) = \begin{bmatrix} s_{11} & \cdots & s_{1,28} \\ \vdots & \vdots & \vdots \\ s_{28,1} & \cdots & s_{28,28} \end{bmatrix}$$

$$x = \text{vec}(S) = \begin{bmatrix} x_1 & \cdots & x_{784} \end{bmatrix}$$

Displaying Images in Python

4 random images in the dataset

A human can classify these easily

```
def plt digit(x):
   nrow = 28
   ncol = 28
   xsq = x.reshape((nrow,ncol))
   plt.imshow(xsq, cmap='Greys r') <
                                                 Key command
   plt.xticks([])
   plt.yticks([])
# Convert data to a matrix
X = mnist.data
y = mnist.target
# Select random digits
                                                 Sample
nplt = 4
nsamp = X.shape[0]
                                                 permutation is
Iperm = np.random.permutation(nsamp)
                                                 necessary for this
# Plot the images using the subplot command
                                                 dataset, as the
for i in range(nplt):
   ind = Iperm[i]
                                                 original data is
   plt.subplot(1,nplt,i+1)
                                                 ordered by digits
    plt digit(X[ind,:])
```


Outline

- Motivating example: Recognizing handwritten digits
- Maximum margin classifiers
- ■Support vector machines
- Multi-class classification problem
- ■Evaluation metrics
- ☐Grid search
- □Coding Exercise: apply SVM on the EMNIST dataset

Linear Separability and Non-Uniqueness of Separating plane

- ☐When the samples are linearly separable, one can find a separating hyper-plane as a linear classifier.
- ■Separating hyper-plane is not unique
- ☐ Fig. on right: Many separating planes
- ■Which one is optimal?
- ☐ Desired Properties:
 - Correctness
 - Robustness

Hyperplane Basics

□ A hyperplane in d-dimensional space is defined by

$$b + w_1 x_1 + \cdots w_d x_d = 0$$
 or $b + \mathbf{w}^T \mathbf{x} = 0$

- ☐ The parameters are unique only to a scaling factor:
 - (b, \mathbf{w}) and $(\alpha b, \alpha \mathbf{w})$ define the same plane.
 - For unique definition, we can require ||w||=1.
- \Box The norm vector to the hyperplane is $w/\|w\|$.
- \square Distance of any point **x** to the hyperplane is $f(x)/\|\mathbf{w}\|$, where $f(x) = b + \mathbf{w}^T x$.
- ■See ESL Sec. 4.5.

□ESL: Hastie, Tibshirani, Friedman, "The Elements of Statistical Learning". 2nd Ed. Springer.

Recap: Linear Separability and Margin

- ☐ Given training data (x_i, y_i) , i = 1, ..., N
- \square Binary class label: $y_i = \pm 1$
- \square Perfectly linearly separable if there exists a $\theta = (b, w_1, ..., w_d)$ and $\gamma > 0$ s.t.:

$$m = \frac{\gamma}{\|\boldsymbol{w}\|}$$

- $b + w_1 x_{i1} + \cdots w_d x_{id} > \gamma$ when $y_i = 1$
- $b + w_1 x_{i1} + \cdots w_d x_{id} < -\gamma$ when $y_i = -1$
- $\square(w,b)$ defines the separating hyperplane
- \blacksquare m is the margin: the minimal distance of a sample to the plane
- ☐ Single equation form:

$$y_i(b + w_1x_{i1} + \cdots w_dx_{id}) > \gamma \text{ for all } i = 1, ..., N$$

Recall that the distance of a point x to the line is $(b + w^T x)/||w||$. For points on the margin line, $b + w^T x = \gamma$, distance m= $\gamma/||w||$.

Which separating plane is better?

From Fig. 9.2 and Fig. 9.3 in ISL.

Maximum Margin Classifier

- ☐ For the classifier to be more robust to noise, we want to maximize the margin!
- ☐ Define maximum margin classifier

$$\max_{w,\gamma} \gamma$$
• Such that $y_i(b + \mathbf{w}^T \mathbf{x}) \ge \gamma$ for all i
•
$$\sum_{j=1}^d w_j^2 \le 1$$

Maximizes the margin

Ensures all points are correctly classified

Scaling on weights

- □ Called a constrained optimization
 - Objective function and constraints
 - More on this later.
- □ See closed form solution in Sec. 4.5.2 in ESL. Note notation difference.

Visualizing Maximum Margin Classifier

- ☐ Margin determined by closest points to the line
 - The maximal margin hyperplane represents the mid-line of the widest "slab" that we can insert between two classes
- ☐ In this figure, there are 3 points at the margin

ISL: James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer. 2013.

Problems with MM classifier

- □Data is often not perfectly separable
 - Only want to correctly separate most points

- ■MM classifier is not robust
 - A single sample can radically change line

Fig. 9.4

Fig. 9.5

Outline

- Motivating example: Recognizing handwritten digits
- ☐ Maximum margin classifiers
- Support vector machines
 - ■Multi-class classification problem
 - ■Evaluation metrics
 - ☐ Grid search
- □Coding Exercise: apply SVM on the EMNIST dataset

Support Vector Machine

- ☐ Key idea: Allow "slack" in the classification
 - Support vector classifier (SVC): Directly use raw features.
 Good when the original feature space is roughly linearly separable
 - Support vector machine (SVM): Map the raw features to some other domain through a kernel function

Hinge Loss

- \square Fix $\gamma = 1$
- □ Want ideally: $y_i(\mathbf{w}^T \mathbf{x} + b) \ge 1$ for all samples i
 - Equivalently, $y_i z_i \ge 1$, $z_i = b + \mathbf{w}^T \mathbf{x}$
- ☐But, perfect separation may not be possible
- □ Define hinge loss or soft margin:
 - $L_i(\mathbf{w}, b) = \max(0, 1 y_i z_i)$
- ■Starts to increase as sample is misclassified:
 - $y_i z_i \ge 1 \Rightarrow$ Sample meets margin target, $L_i(w) = 0$
 - ∘ $y_i z_i \in [0,1)$ ⇒ Sample margin too small, small loss
 - $y_i z_i \le 0 \Rightarrow$ Sample misclassified, large loss

SVM Optimization

- \square Given data (x_i, y_i)

$$J(\mathbf{w}, b) = C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \frac{1}{2} ||\mathbf{w}||^2$$

Hinge loss term

C controls final margin

Attempts to reduce

Misclassifications

margin= $1/\|\mathbf{w}\|$

- \square Constant C > 0 will be discussed below
- ■Note: ISL book uses different naming conventions.
 - We have followed convention in sklearn

Alternate Form of SVM Optimization

□ Equivalent optimization:

$$\min J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}), \qquad J_1(\boldsymbol{w}, b, \boldsymbol{\epsilon}) = C \sum_{i=1}^N \epsilon_i + \frac{1}{2} \|\boldsymbol{w}\|^2$$

■Subject to constraints:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \epsilon_i$$
 for all $i = 1, ..., N$

- ϵ_i = amount sample i misses margin target
- \square Sometimes write as $J_1(w, b, \epsilon) = C \|\epsilon\|_1 + \frac{1}{2} \|w\|^2$
 - $\| \epsilon \|_1 = \sum_{i=1}^N \epsilon_i$ called the "one-norm"
 - Generally one-norm would have absolute sign over ϵ_i . But in this case, when the constraint is met, $\epsilon_i >= 0$.

Interpreting Parameters

- \square Margin is $1/\|w\|$
- \square Parameter ϵ_i called the slack variable
 - $\epsilon_i = 0 \Rightarrow$ Sample on correct side of margin
 - $0 \le \epsilon_i < 1 \Rightarrow$ Sample violates the margin (are inside the margin)
 - $\cdot \epsilon_i \ge 1 \Rightarrow$ Sample misclassified (wrong side of hyperplane)
- \square Parameter \mathcal{C} :
 - Balance between first term (violations) and second term (inverse of margin)
 - C large: Forces minimum number of violations, but small margin.
 - Highly fit to data. Low bias, higher variance
 - C small: Enables more samples violations, but large margin.
 - · Higher bias, lower variance
 - Found by cross-validation

Illustrating Effect of C

☐ Fig. 9.7 of ISL

- Note: C has opposite meaning in ISL than python
- Here, we use python meaning

\square Low C:

- Leads to large margin
- But allow many violations of margin.
- Many more SVs
- Reduces variance by using more samples

☐ Large C:

- Leads to small margin
- Reduce number of violations, and fewer SVs.
- Highly fit to data. Low bias, higher variance
- More chance to overfit

Parameter Selection

- □ Consider SVM with:
 - Parameter C > 0, RBF with $\gamma > 0$
- \square Higher C or γ
 - Fewer SVs
 - Classifiers averages over smaller set
 - Lower bias, but higher variance
- ☐ Typically select via cross-validation
 - Try out different (C, γ)
 - Find which one provides highest accuracy on test set
- ☐ Python can automatically do grid search

http://peekaboo-vision.blogspot.com/2010/09/mnist-for-ever.html

Hyperparameter Search

- Grid Search + Cross Validation

 ∘ for C in [c1, c2, ..., ck]:
 - ∘ for gamma in [g1, g2, ..., gk]:
 - do 10-fold CV
 - report best performance
- Random search
 - o for i in range(n_iter):
 - sample hyper_param_i from a generative distribution
 - train a model using hyper_param_i
 - evaluate the model on the validation set
 - report best performance
- Bayesian Optimization
 - Build a surrogate probability model of the objective function
 - Find the hyperparameters that perform best on the surrogate
 - Apply these hyperparameters to the true objective function
 - Update the surrogate model incorporating the new results
 - Repeat steps above
- More to read:

https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f

Support Vectors

- ■Support vectors: Samples that either:
 - Are exactly on margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$
 - Or, on wrong side of margin: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 1$
- ☐ Changing samples that are not SVs
 - Does not change solution
 - Provides robustness

Outline

- Motivating example: Recognizing handwritten digits
- ☐ Maximum margin classifiers
- ■Support vector machines
- Multi-class classification problem
- □Coding Exercise: apply SVM on the EMNIST dataset

Multi-Class SVMs

- \square Suppose there are K classes
- One-vs-one:
 - Train $\binom{K}{2}$ SVMs for each pair of classes
 - Test sample assigned to class that wins "majority of votes"
 - Best results but very slow
- One-vs-rest:
 - Train K SVMs: train each class k against all other classes
 - \circ Pick class with highest z_k
- ☐ Sklearn has both options

- Accuracy
- Confusion Matrix
 - By definition a confusion matrix C is such that C_{i,j} is equal to the number of observations known to be in group i and predicted to be in group j.

- Macro v.s. Micro
 - Macro-averaging metrics give equal weight to each class.
 - Micro-averaging evaluation metrics, on the other hand, weight all items equally.
- Example:
 - Precision = TP / (TP + FP)
 - Suppose that we have 4 classes: {A,B,C,D}
 - Class A: 1 TP and 1 FP, Precision_A = 1/2
 - Class B: 10 TP and 90 FP, , Precision_B = 1/10
 - Class C: 1 TP and 1 FP, Precision_C = 1/2
 - Class D: 1 TP and 1 FP, Precision_D = 1/2
 - Precision_Macro = $(Precision_A + Precision_B + Precision_C + Precision_D)/4 = 0.4$
 - Precision_Micro = $(TP_A + TP_B + TP_C + TP_D) / (2+100+2+2) = 0.123$

Metric	Formula	Evaluation focus
Average Accuracy	$\frac{\sum_{i=1}^{k} \frac{tp_i + tn_i}{tp_i + tn_i + fp_i + tn_i}}{k}$	The average per-class effectiveness of the classifier
Error Rate	$\frac{\sum_{i=1}^{k} \frac{fp_i + fn_i}{tp_i + tn_i + fp_i + tn_i}}{k}$	The average per-class classification error
Precision _µ	$\frac{\sum_{i=1}^{k} tp_i}{\sum_{i=1}^{k} (tp_i + fp_i)}$	Agreement of the true class labels with those of the classifier's, calculated by summing all TPs and and FPs in the system, across all classes
Recall _µ	$\frac{\sum_{i=1}^{k} t p_i}{\sum_{i=1}^{k} (t p_i + f n_i)}$	Effectiveness of a classifier to identify class labels, calculated by summing all TPs and and FNs in the system, across all classes
F1-score _µ	$\frac{2*Precision_{\mu}*Recall_{\mu}}{Precision_{\mu}+Recall_{\mu}}$	The harmonic mean of the micro-average precision and recall
Precision _M	$\frac{\sum_{i=1}^{k} \frac{tp_i}{tp_i + fp_i}}{k}$	Average per-class agreement of the true class labels with those of the classifier's
Recall _M	$\frac{\sum_{i=1}^{k} \frac{tp_i}{tp_i + fn_i}}{k}$	Average per-class effectiveness of a classifier to identify class labels
F1-score _M	$\frac{2*Precision_{M}*Recall_{M}}{Precision_{M}+Recall_{M}}$	The harmonic mean of the macro-average precision and recall

- ☐ Macro v.s. Micro
 - Macro-level metrics give equal weight to each class.
 - Micro-level evaluation metrics, on the other hand, weight all items equally.
- Macro-AUC
 - Example: 3-class classification problem, prediction = (p1, p2, p3)
 - Calculate AUC for class 1: score = p1, label = 1 if y = 10 if y = 2 or 3
 - Average AUC across class 1, 2, 3

MNIST Results

- ☐Run classifier
- □Very slow
 - Several minutes for 40,000 samples
 - Slow in training and test
 - Major drawback of SVM
- \square Accuracy ≈ 0.984
 - Much better than logistic regression
- ☐ Can get better with:
 - pre-processing
 - More training data
 - Optimal parameter selection

```
# Create a classifier: a support vector classifier
svc = svm.SVC(probability=False, kernel="rbf", C=2.8, gamma=.0073,verbose=10)

svc.fit(Xtr,ytr)

[LibSVM]

SVC(C=2.8, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape=None, degree=3, gamma=0.0073, kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=10)

yhat1 = svc.predict(Xts)
acc = np.mean(yhat1 == yts)
```

```
Accuaracy = 0.984000
```

print('Accuaracy = {0:f}'.format(acc))

MNIST Errors

■Some of the error are hard even for a human

What you should know

- ☐ Understand the margin in linear classification and maximum margin classifier
- □SVM classifier: Allow violation of margin by introducing slack variables (More robust than linear classifier)
- ■Select SVM parameters from cross-validation
- □Adapt a binary classification model for multi-class problems
- □ Evaluate the effectiveness of multi-class classifiers

Coding Exercise

- ■Now let's apply SVM to the EMNIST dataset
- □ Also contains letters

```
BBCBEFBGIJKIMNOPARCHUVWXYZOO
ABCDEFGGIJTLLMNOPARSHUVWXYZJI
ABCDEFGHIJKIMNOPARSHUVWXYZJZ
ABCDEFGHIJKIMNOPARSHUVWXYZJY
ABCDEFGHIJKLMNOPARSHUVWXYZJY
ABCDEFGHIJKLMNOPARSHUVWXYZJY
ABCDEFGHJIKLMNOPARSHUVWXYZJO
ABCDEFGHJIKIMNOPARSHUVWXYZJO
ABCDEFGHJIKIMNOPARSHUVWXYZJO
ABCDEFGHJIKIMNOPARSHUVWXYZJO
```

