Tentamen – Linjär Algebra och Geometri 1

Skrivtid: 08:00-13:00. Tillåtna hjälpmedel: skrivdon. Varje korrekt löst uppgift kan ge högst 5 poäng. För betyg 3 krävs minst 18 poäng, för betyg 4 krävs minst 25 poäng, och för betyg 5 krävs minst 32 poäng. Lösningarna skall vara väl motiverade. Lycka till!

 (Ej nödvändig att lösa om man är godkänd på duggan) Bestäm lösningarna till ekvationssystemet

$$\begin{cases} x + cy + z = c \\ cx + y + z = 1 \\ x + y + cz = c^2 \end{cases}$$

för alla värden på $c \in \mathbb{R}$ där lösningar existerar.

2. Låt

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix}.$$

- (a) Är B inverterbar? Beräkna i så fall AB^{-1} (dvs A multiplicerad med inversen av B) (2p)
- (b) Lös ekvationen $(AX + I)^T = B$, där I är identitetsmatrisen. (3p)
- 3. Lös ekvationen

$$\begin{vmatrix} 1 & x & 1 & 2 \\ 2 & 1 & x & 1 \\ 1 & 1 & 2 & x \\ 2 & 1 & 2 & 1 \end{vmatrix} = 0$$

- **4.** Låt $\vec{u} = (a, 0, a + 2, 0, a)$, $\vec{v} = (0, a + 1, 0, a + 1, 0)$, $\vec{w} = (1, 2, 3, 2, 1)$, där a är ett reellt tal.
 - (a) Beräkna vinkeln mellan vektorerna \vec{u} och \vec{v} . (2p)
 - (b) För vilka värden på talet a är vektorerna \vec{u} , \vec{v} , och \vec{w} linjärt oberoende? (3p)

- **5.** (a) Bildar vektorerna $\vec{u}_1 = (1,5)$, $\vec{u}_2 = (-5,1)$, och $\vec{u}_3 = (2,-1)$ en bas för \mathbb{R}^2 ? I så fall, beräkna koordinaterna för vektorn $\vec{x} = (4,4)$ i denna bas.
 - (b) Bildar vektorerna $\vec{v}_1 = (1, 2, 3)$, $\vec{v}_2 = (2, 3, 4)$, och $\vec{v}_3 = (3, 2, 2)$ en bas för \mathbb{R}^3 ? I så fall, beräkna koordinaterna för vektorn $\vec{y} = (2, 0, -6)$ i denna bas.
- **6.** Betrakta punkterna A:(1,1,1), B:(2,0,0), C:(0,1,1).
 - (a) Beräkna arean för triangeln med hörn A, B, och C. (2p)
 - (b) Bestäm koordinaterna för en punkt D sådan att A, B, C, och D är hörnen i ett parallellogram (det finns flera sådana punkter, välj en). (3p)
- 7. Låt π_1 vara planet y-z=0, och låt π_2 vara det plan som är parallellt med π_1 och som innehåller linjen $l:(x,y,z)=(2t,-1-t,-t),\ t\in\mathbb{R}$. Bestäm avståndet mellan π_1 och π_2 , samt koordinaterna för den punkt på π_2 som befinner sig närmast punkten A:(1,1,1) (observera att A är en punkt på planet π_1).
- 8. Låt $T: \mathbb{R}^2 \to \mathbb{R}^3$ och $S: \mathbb{R}^3 \to \mathbb{R}^2$ vara definierade enligt T(x,y) = (y,-x,x+y), S(x,y,z) = (z-y,z-x).
 - (a) Bestäm standardmatriserna [T] och [S]. (2p)
 - (b) Bestäm $(S \circ T)(x, y)$ samt $(T \circ S)(x, y, z)$ för godtyckliga vektorer $(x, y) \in \mathbb{R}^2$ respektive $(x, y, z) \in \mathbb{R}^3$. (2p)
 - (c) $\text{Är } S \circ T \text{ respektive } T \circ S \text{ inverterbara?}$ (1p)

Lösningar

 ${\bf 1.}$ Vi löser medels Gauss-Jordan elimination utgående från ekvationssystemets totalmatris

$$\left(\begin{array}{c|cccc}
1 & c & 1 & c \\
c & 1 & 1 & 1 \\
1 & 1 & c & c^2
\end{array}\right) \sim
\left(\begin{array}{c|cccc}
1 & c & 1 & c \\
0 & 1 - c^2 & 1 - c & 1 - c^2 \\
0 & 1 - c & c - 1 & c^2 - c
\end{array}\right)$$

Totalmatrisens rang beror på värdet på c. Om c=1 blir den sista matrisen

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

vilket svarar mot ett ekvationssystem med den allmäna lösningen

$$(x, y, z) = (1 - s - t, s, t), \quad s, t \in \mathbb{R}.$$

Om $c \neq 1$ kan vi multiplicera den andra och den tredje raden med $\frac{1}{1-c}$, vilket ger matrisen

$$\left(\begin{array}{cc|c}
1 & c & 1 & c \\
0 & 1+c & 1 & 1+c \\
0 & 1 & -1 & -c
\end{array}\right) \leftarrow \left(\begin{array}{cc|c}
1 & c & 1 & c \\
0 & 1 & -1 & -c \\
0 & 0 & c+2 & (1+c)^2
\end{array}\right)$$

Här ser vi att koefficientmatrisens rang beror på c. Om c=-2 har vi

$$\left(\begin{array}{ccc|c}
1 & -2 & 1 & -2 \\
0 & -1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)$$

vilket svarar mot ett inkonsistent ekvationssystem. Alltså finns inga lösningar då c=-2. Om $c\neq 1,-2$ kan vi mutliplicera den sista raden med $\frac{1}{2+c}$ vilket ger

$$\begin{pmatrix}
1 & c & 1 & c \\
0 & 1 & -1 & -c \\
0 & 0 & 1 & \frac{(1+c)^2}{2+c}
\end{pmatrix}$$

$$\sim
\begin{pmatrix}
1 & c & 0 & -\frac{1}{2+c} \\
0 & 1 & 0 & \frac{1}{2+c} \\
0 & 0 & 1 & \frac{(1+c)^2}{2+c}
\end{pmatrix}$$

$$\sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & \left| -\frac{1+c}{2+c} \right| \\ 0 & 1 & 0 & \frac{1}{2+c} \\ 0 & 0 & 1 & \frac{(1+c)^2}{2+c} \end{array}\right)$$

Om $c \neq 1, -2$ har systemet alltså den entydiga lösningen

$$(x,y,z) = \left(-\frac{1+c}{2+c}, \frac{1}{2+c}, \frac{(1+c)^2}{2+c}\right)$$

2. (a) |B| = 8, så det följer att B är inverterbar. Jacobis metod t.ex. ger

$$AB^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \frac{1}{8} \begin{pmatrix} 2 & 2 & 2 \\ 1 & 5 & -3 \\ -3 & 1 & 1 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 1 & 5 & -3 \\ -3 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$

(b) $(AX+I)^T = B \Leftrightarrow AX+I = B^T \Leftrightarrow AX = B^T-I$. Matrisen A har determinant 1 och är därför inverterbar, så vi kan multiplicera båda led av ekvationen med A^{-1} med resultat $AX = B^T - I \Leftrightarrow X = A^{-1}(B^T - I)$. Valfri metod ger A^{-1}

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ vilket resulterar i}$$

$$X = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ -2 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) = \begin{pmatrix} -2 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

3. Beräkna först vänsterledet:

$$\begin{vmatrix} 1 & x & 1 & 2 \\ 2 & 1 & x & 1 \\ 1 & 1 & 2 & x \\ 2 & 1 & 2 & 1 \end{vmatrix} \leftarrow = \begin{vmatrix} 1 & x & 1 & 2 \\ 0 & 0 & x - 2 & 0 \\ 1 & 1 & 2 & x \\ 2 & 1 & 2 & 1 \end{vmatrix} \stackrel{R_2}{=} -(x - 2) \begin{vmatrix} 1 & x & 2 \\ 1 & 1 & x \\ 2 & 1 & 1 \end{vmatrix} \leftarrow$$

$$= -(x-2) \begin{vmatrix} 1 & x & 2 \\ 0 & 1-x & x-2 \\ 0 & 1-2x & -3 \end{vmatrix} \stackrel{K_1}{=} -(x-2) \begin{vmatrix} 1-x & x-2 \\ 1-2x & -3 \end{vmatrix} = -2(x-2)(x^2-x-\frac{1}{2})$$

Ekvationen lyder således $-2(x-2)(x^2-x-\frac{1}{2})=0$, och lösningarna är $x=2,\frac{1\pm\sqrt{3}}{2}$.

- **4.** (a) $\vec{u} \cdot \vec{v} = 0$, så vinkeln mellan vektorerna är $\pi/2$.
 - (b) Vi beräknar rangen av matrisen $V = (\vec{w} \ \vec{u} \ \vec{v})$:

$$\left(\begin{array}{cccc}
1 & a & 0 \\
2 & 0 & a+1 \\
3 & a+2 & 0 \\
2 & 0 & a+1 \\
1 & a & 0
\end{array}\right) \qquad \sim \qquad \left(\begin{array}{ccccc}
1 & a & 0 \\
0 & 2(1-a) & 0 \\
0 & -2a & a+1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Om a=1 läser vi av rang(V)=2, och på samma sätt om a=-1 ser vi rang(V)=2. Om $a\neq\pm 1$ kan vi multiplicera den andra raden med $\frac{1}{2(1-a)}$, och fortsatta radoperationer ger matrisen

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Med andra ord har vi $\operatorname{rang}(V) = 3$ =antal kolonner. Vi har visat att \vec{u} , \vec{v} , och \vec{w} är linjärt oberoende omm $a \neq \pm 1$.

- **5.** (a) Nej, eftersom tre vektorer i \mathbb{R}^2 aldrig kan vara linjärt oberoende (t.ex. gäller $3\vec{u}_1+11\vec{u}_2+26\vec{u}_3=\vec{0}$)
 - (b) VI försöker att lösa ekvationssystemet $c_1\vec{v}_1+c_2\vec{v}_2+c_3\vec{v}_3=\vec{y}$, och i lösningen kan vi läsa av huruvida vektorerna bildar en bas eller ej. Gauss-Jordan elimination ger:

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 2 \\ 2 & 3 & 2 & 0 \\ 3 & 4 & 2 & -6 \end{array}\right) \qquad \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & -26 \\ 0 & 1 & 0 & 20 \\ 0 & 0 & 1 & -4 \end{array}\right)$$

De tre första kolonnerna bildar den radkanoniska matrisen radekvivalent med $V = (\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3)$, så rang(V) = 3 och alltså bildar \vec{v}_1 , \vec{v}_2 , och \vec{v}_3 en bas för \mathbb{R}^3 . Dessutom har vi visat att koordinaterna för vektorn \vec{y} i denna bas är (-26, 20, -4).

- **6.** (a) Triangelns area = $\frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\|$. $\overrightarrow{AB} = (1, -1, -1)$, $\overrightarrow{AC} = (-1, 0, 0)$, dvs $\overrightarrow{AB} \times \overrightarrow{AC} = (1, -1, -1) \times (-1, 0, 0) = (0, 1, -1)$. Alltså gäller att den sökta arean = $\frac{1}{2} \|(0, 1, -1)\| = \frac{1}{2} \sqrt{2} = \frac{1}{\sqrt{2}}$.
 - (b) Vi kan t.ex. välja punkten D att vara punkten man når genom följa vektorn \overrightarrow{AB} från punkten C, dvs punkten med koordinater (0,1,1)+(1,-1,-1)=(1,0,0). Punkterna A, B, C, D bildar då hörnen i ett parallellogram eftersom $\overrightarrow{CD}=\overrightarrow{AB}$ (per definition) och $\overrightarrow{BD}=\overrightarrow{AC}+\overrightarrow{CD}-\overrightarrow{AB}=\overrightarrow{AC}$.
- 7. Observera att punkten Q:(0,-1,0) ligger på linjen l och därför också i planet π_2 . Eftersom vektorn $\vec{n}=(0,1,-1)$ är normal mot båda planen är avståndet mellan planen normen av vektorn $\text{proj}_{\vec{n}}(\overrightarrow{QA})$. Det gäller $\overrightarrow{QA}=(1,1,1)-(0,-1,0)=(1,2,1)$, och alltså $\text{proj}_{\vec{n}}(\overrightarrow{QA})=\frac{(1,2,1)\bullet(0,1,-1)}{2}(0,1,-1)=\frac{1}{2}(0,1,-1)$. Avståndet mellan π_1 och π_2 är därmed $\frac{1}{2}\|(0,1,-1)\|=\frac{1}{\sqrt{2}}$. Punkten P på π_2 närmast A har ortsvektor $\overrightarrow{OA}-\text{proj}_{\vec{n}}(\overrightarrow{QA})=(1,1,1)-\frac{1}{2}(0,1,-1)=(1,\frac{1}{2},\frac{3}{2})$, dvs den sökta punkten är $P:((1,\frac{1}{2},\frac{3}{2}).$
- 8. (a) Vi läser av:

$$[T] = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 1 \end{pmatrix}, \quad [S] = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

(b)
$$[S \circ T] = [S][T] = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$
, och $[T \circ S] = [T][S] = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. Det följer att $(S \circ T)(x, y) = (2x + y, x)$ och $(T \circ S)(x, y, z) = (z - x, y - z, 2z - x - y)$.

(c) $\det([S\circ T])=-1\neq 0$ så $S\circ T$ är inverterbar. $\det([T\circ S])=0$ så $T\circ S$ är inte inverterbar.