New HOPS: a discussion

Geoff Crew, MIT Haystack Observatory Hilo, Hawaii, December 2, 2019

The ngEHT Mandate

- Picking up from where M. Janssen left off from Monday...
- HOPS performed adequately for 2017 data reduction
 - consistency with AIPS and CASA was established
 - the HOPS-based pipeline was adopted for production work*
- The ngEHT funding via MSRI-I calls for updates to HOPS:
 - 4 years of development to become "shovel ready"
 - N stations more than doubles (e.g. to 20-30)
 - Bandwidth quadruples at some sites (e.g. 8 GHz)
 - Simultaneous 230 / 345 GHz observing perhaps
 - Anything else that gets decided in then next 4 years

So What's Broken?

- We've (almost) come to the end of what can be fixed with "bandaids"
- Maximum # of channels is 64 and that's hard to fix (a-zA-Z0-9%\$)
- No full complex bandpass corrections (only per-channel phase+delay)
- single-baselines are both a virtue and a problem:
 - HOPS finds more fringes than AIPS or CASA
 - station-based phases and delays are not readily accessible
- Fourfit is a one-shot process; multi-step processing not supported
- User interface is a challenge:
 - control file syntax is a bit arcane
 - all you get is one fourfit plot that either works or is garbage

An Embedded History of VLBI

- HOPS code has 30+ years of history in it
 - was coded in C, but reads like the Fortran it was ported from
 - not modular except for a few of the i/o libraries
 - was written for hardware correlators
 - was written for computers that no longer exist
 - little endianism won out over big endianism (apparently)
 - was (successfully) successfully adapted to DiFX (but not e.g. SFXC)
- Plotting and results are not independently generated
 - amplitude and SNR come as side-effects of what you plotted
 - PGPLOT is maybe ok today, but not really supported anymore

Some New Features

- Global fringe solutions (and station based-quantities)
- Complex bandpass

OBSERVATORY W:

- A more human-friendly interface (e.g. Python as CASA does)
- Allow distributed computing and/or parallelization (threads, OpenMPI)
- Insert hooks to allow plug-in modules for customizations as needed
- Allow a strategy for iterative calibration and fringing
- Improved data formats (internal in-memory as well as disk storage)
- Enable better exchange with other analysis packages:
 - FITS-IDI? (or HDF5 or whatever else comes along?), CASA MS?, ...
 - (either enables better use of HOPS with simulated data)
- A more flexible/interactive plotting system
 - single summary is fine when everything is working
 - provide real support for investigation of problems

Likely Changes, Part 1

- Maintain existing tools "as is" for serious regression (probably patched)
- Arbitrary number of channels; eliminate internal magic sizing numbers
- New control file format (e.g. use python or some config module)
- New internal data formats (rationalized, new structures or objects)
- - machine/compiler independent little-endian (not big-endian)
 - rationalized data types (as with internal formats, optimized for disk i/o)
 - new root file format (ovex is ancient history, and current root is artificial)
 - preserve the current m4py-type capability
 - allow translator tools to exchange with "hops", "mk4" and other formats

Likely Changes, Part 2

- Basically: FIX what is broken
- Not gratuitously break the current pipelines, but allow simplification
- Most likely to be implemented in a mix of C, C++ or Python
- Provide a more canonical adaptation to unix/linux environments
- Implement what is most important to have available in 4 years

So, We're Looking for Input

- Don't bother saying "just use my package"
- Tell us what you think is missing (Me, John Barrett, Lindy Blackburn)
- Provide input on priorities:
 - "gotta haves" vs "things to enable and implement in the future"
 - there is really not a lot of support for this
 - community partners may be interested in making some enhancements