PHYS 204 Formula Sheet

$\Phi_{ m B} = \int ec{B} \cdot dec{A}$	$\omega' = \sqrt{\omega^2 - \left(\frac{R}{2L}\right)^2}$	$I = \frac{1}{c\mu_0} E_{rms}^2$	
$\varepsilon = \oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$	$\frac{dU}{dt} = -i^2 R$	$I = \frac{P_s}{4\pi r^2}$	
$\Phi_B = BLx$	$arepsilon=arepsilon_m { m sin} \omega_{ m d} { m t}$	$I = \frac{1}{2}I_0 \; ; \; I = I_0 \cos^2 \theta$	
$\overrightarrow{F_d} = i\overrightarrow{L} \times \overrightarrow{B}$	$i = i_m \sin(\omega_d t - \varphi)$	$n_1 {\rm sin} \theta_1 = n_2 {\rm sin} \theta_2$	
$L = \frac{N\Phi_B}{i}$	$ \varepsilon_m = \frac{i_m}{R} $	$\theta_c = \sin^{-1} \frac{n_2}{n_1}$	
$\frac{L}{l} = \mu_0 n^2 A$	$V_R = i_m R$; $V_C = i_m X_C$; $V_L = i_m X_L$	$\theta_B = \tan^{-1} \frac{n_2}{n_1}$	
$arepsilon_L = -Lrac{di}{dt}$	$X_C = \frac{1}{\omega_d C} \; ; \; X_L = \omega_d L$	$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} = \frac{2}{r}$	
$i = \frac{\varepsilon}{R} \left(1 - e^{-\frac{t}{\tau_L}} \right)$	$i_m = \frac{\varepsilon_m}{\sqrt{R^2 + (X_L - X_C)^2}} = \frac{\varepsilon_m}{Z}$	$m = -\frac{i}{p} ; m = \frac{h'}{h}$	
$i = i_0 e^{-\frac{t}{\tau_L}}$	$\tan \varphi = \frac{X_L - X_C}{R}$	$\frac{n_1}{p} + \frac{n_2}{i} = \frac{n_2 - n_1}{r}$	
$U_B = \frac{1}{2}Li^2$	$P_{avg} = i_{rms}^2 R = \varepsilon_{rms} i_{rms} \cos \varphi$	$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$	
$u_B = \frac{B^2}{2\mu_0}$	$i_{rms} = \frac{i_m}{\sqrt{2}} \; ; \; \varepsilon_{rms} = \frac{\varepsilon_m}{\sqrt{2}}$	$m_{ heta} = rac{25 \ cm}{f} \; ; \; m_{ heta} = -rac{f_{ob}}{f_{ey}}$	
$u_E = \frac{1}{2} \varepsilon_0 E^2$	$\frac{V_s}{V_p} = \frac{N_s}{N_p} \; ; \; \frac{i_s}{i_p} = \frac{N_p}{N_s}$	$M = mm_{\theta} = -\frac{s}{f_{ob}} \cdot \frac{25 \ cm}{f_{ey}}$	
$M_{12} = \frac{N_1 \Phi_{12}}{i_2}$	$R_{eq} = \left(\frac{N_p}{N_s}\right)^2 R$	$n = \frac{c}{v} \; ; \; \lambda_n = \frac{\lambda}{n}$	
$\varepsilon_2 = -M \frac{di_1}{dt}$	$\oint_{S} ec{E} \cdot dec{A} = rac{q_{enc}}{arepsilon_{0}}$	$I = 4I_0 \cos^2 \frac{\varphi}{2} \; ; \; \varphi = \frac{2\pi}{\lambda} d\sin\theta$	
$U_E = \frac{q^2}{2C}$	$\oint_{\mathcal{S}} \vec{B} \cdot d\vec{A} = 0$	$N_2 - N_1 = \frac{L}{\lambda}(n_2 - n_1)$	
$U_B = \frac{Li^2}{2}$	$\oint_C \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$	$2n_2L = \left(m + \frac{1}{2}\right)\lambda ; 2n_2L = m\lambda$	
$U = U_E + U_B = \frac{Q^2}{2C}$	$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} + \ \mu_0 i_{enc}$	$N_m - N_a = \frac{2L}{\lambda}(n-1)$	
$\frac{dU}{dt} = L\frac{d^2q}{dt^2} + \frac{1}{C}q = 0$	$B = \frac{\mu_0 \varepsilon_0 r}{2\pi R^2} \frac{d\Phi_E}{dt} \; ; \; B = \frac{\mu_0 \varepsilon_0}{2\pi r} \frac{d\Phi_E}{dt}$	$a\sin\theta = \left(m + \frac{1}{2}\right)\lambda$; $a\sin\theta = m\lambda$	
$q = Q\cos(\omega t + \varphi)$	$M = \frac{\mu}{V} = C \frac{B_{ext}}{T}$	$I(\theta) = I_m \left(\frac{\sin\alpha}{\alpha}\right)^2; \alpha = \frac{\pi a}{\lambda} \sin\theta$	
$\omega = \frac{1}{\sqrt{LC}}$	$E = E_m \sin(kx - \omega t)$	$\sin\theta = 1.22 \frac{\lambda}{d}$; $\theta_R = 1.22 \frac{\lambda}{d}$	
$i = -\omega Q \sin(\omega t + \varphi)$	$B = B_m \sin(kx - \omega t)$	$I(\theta) = I_m \cos^2 \beta \cdot \left(\frac{\sin \alpha}{\alpha}\right)^2; \beta = \frac{\pi d}{\lambda} \sin \theta$	
$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$	$c = \frac{E_m}{B_m} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	$\Delta \theta_{hw} = \frac{\lambda}{Nd\cos\theta}; D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d\cos\theta};$ $R = \frac{\lambda_{avg}}{\Delta \lambda} = Nm$	
$q = Qe^{-\frac{Rt}{2L}}\cos(\omega't + \varphi)$	$\vec{S} = \frac{1}{\mu_0} \; \vec{E} \times \vec{B}$	$2d\sin\theta = m\lambda$	