
LAST NAME :	Duration: 30min
First name :	No documents authorized

FITS AND TOLERANCES EXAM

Description:

lubricated bush to easibase.	pint represented on following page in a cross-section. The bore (hole) diam 15H7 max 15.018 min 15.000	nis revolute joint uses self- ould be embedded into the
PART 1: FITS		
Problem 1:	shaft diam 15p6 max 15.029 min 15.018	possible responses).
shaft 2 and hase 1	clearance = diam(bore)-diam(shaft) max=15.018-15.018=0 min=15.000-15.029=-0.029 clearance is negative = > tight	Maximum and minimum diameter clearance ? ?
bush 3 and wheel 4	Type of fit: tight fit Reason:?	?

Explain briefly why you would choose these fits, write down their standard form using symbols in the appropriate boxes on the drawing 1, and calculate the maximum and minimum clearances using the tables given below. The nominal diameters are given on the drawing.

PART 2: FUNCTIONAL CLEARANCES & CHAIN OF COTES

Problem 2: clearance c stack assemblies

Identify and draw the chain of cotes for the functional clearance c. Write down the equations corresponding to the functional clearance c:

?

A design engineer wants this clearance c to be between 0.25 and 0.5mm. Using the known dimension of the base 1, determine the tolerance cote to be used on the shaft. Place this cote on the drawing 2.

Problem 3: missing clearance "a"

Identify the functional clearance "a" necessary for the functioning of the revolute joint. Place the clearance vector on the drawing 1 and draw a corresponding chain of cotes associated with this clearance.

BONUS QUESTION:

Problem 4: What is the reason for the clearance "b"?

7

Table of the fundamental tolerances ISO

		DIMENSIONS (in mm)									
	from	0	3	6	10	18	30	50	80	120	180
	to (included)	3	6	10	18	30	50	80	120	180	250
diam 15 p6 =	quality	FUNDAMENTAL TOLERANCES TI (in μm)									
diam 15 po -	5	4	5	6	8	9	11	13	15	18	20
	6	6	8	9	11	13	16	19	22	25	29
min 15.018	7	10	12	15	18	21	25	30	35	40	46
max 15.029	8	14	18	22	27	33	39	46	54	63	72
	9	25	30	36	43	52	62	74	87	100	115
diam 15H7=	10	40	48	58	70	84	100	120	140	160	185
	11	60	75	90	110	130	160	190	220	250	290
max=15.018	12	100	120	150	180	210	250	300	350	400	460
min=15.000	13	140	180	220	270	330	390	460	540	630	720
	14	250	300	360	430	520	620	740	870	1000	1150
	15	400	480	580	700	840	1000	1200	1400	1600	1850
	16	600	750	900	1100	1300	1600	1900	2200	2500	2900

<u>Fundamental</u> <u>deviations for shafts</u>

Remark

<u>For bores</u>, deviation are symetrical around the nominal dimension.

Ex : Shaft : $10f7 = 10^{-13}_{-28}$

Bore : 10F7 = 10⁺²⁸

_	DUI E : 101 / = 10-8												
Shafts	from 0 to 3 included	from 3 to 6 included	from 6 to 10 included	from 10 to 18 included	from 18 to 30 included	from 30 to 50 included	from 50 to 80 included	from 80 to 120 included	from 120 to 180 included	from 180 to 250 included	from 250 to 315 included	from 315 to 400 included	from 400 to 500 included
d	- 20	- 30	- 40	- 50	- 65	- 80	- 100	- 120	- 145	- 170	- 190	- 210	- 230
	-	-	-	-	-	-	-	-	-	-	-	-	-
е	- 14	- 20	- 25	- 32	- 40	- 50	- 60	- 72	- 85	- 100	- 110	- 125	- 135
	-	-	-	-	ĺ	-	-	-	-	-	-	-	-
f	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36	- 43	- 50	- 56	- 62	- 68
	_	_	_	_		_	_	_	_	_	_	_	_
g	- 2	- 4	- 5	- 6	- 7	- 9	- 10	- 12	- 14	- 15	- 17	- 18	- 20
	-	-	-	-	-	-	-	-	-	-	-	-	-
h	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0
	-	-	-	-	-	-	-	-	-	-	-	-	-
js	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2	± IT/2
	+	+	+	+	+	+	+	+	+	+	+	+	+
k	+ 0	+ 1	+ 1	+ 1	+ 2	+ 2	+ 2	+ 3	+ 3	+ 4	+ 4	+ 4	+ 5
	+	+	+	+	+	+	+	+	+	+	+	+	+
m	+ 2	+ 4	+6	+ 7	+ 8	+ 9	+ 11	+ 13	+ 15	+ 17	+ 20	+ 21	+ 23
	+	+	+	+	+	+	+	+	+	+	+	+	+
n	+ 4	+ 8	+ 10	+ 12	+ 15	+ 17	+ 20	+ 23	+ 27	+ 31	+ 34	+ 37	+ 40
	+	+	+	+	+	+	+	+	+	+	+	+	+
P	+ 6	+ 12	+ 15	+ 18	+ 22	+ 26	+ 32	+37	+ 43	+ 50	+ 56	÷ 62	+ 68