Appunti di Fisica 1

Giacomo Simonetto

Secondo semetre 2023-24

Sommario

Appunti del corso di Fisica 1 - (Meccanica e termodinamica) della facoltà di Ingegneria Informatica dell'Università di Padova.

Indice

1	I Introduzione 1.1 Interazioni fondamentali	4
2	1	4
	2.1 Introduzione al punto materiale	
	2.2 Grandezze elementari	
	2.3 Punto materiale in movimento - cinematica	
	2.4 Moto armonico semplice in una dimensione	
	2.5 Moto circolare uniforme sul piano xy	
	2.6 Moto vario	6
3	0 (1 1)	7
	3.1 Sviluppi di Taylor	
	3.2 Formule di Eulero	
	3.3 Derivate	
4		8
	4.1 Definizione	
	4.2 Prodotto per uno scalare	
	4.3 Somma di vettori	
	4.4 Versori	
	4.5 Prodotto scalare	
	4.6 Prodotto vettore	
	4.7 Derivata di vettore	
5	1	10
	5.1 Prima legge della dinamica - principio di inerzia	
	5.2 Seconda legge della dinamica - legge di Newton	
	5.3 Terza legge della dinamica - principio di azione-reazione	
	5.4 Sistemi di riferimento inerziali	
	5.5 Forza gravitazionale universale	
	5.6 Forza elastica	
	5.7 Forza di reazione vincolare	
	5.8 Forza di attrito radente	
	5.9 Forza di attrito viscoso	
6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
	6.1 Piano inclinato	
	6.2 Oscillatore armonico semplice	
	6.3 Trovare le soluzioni del moto per una forza generica in 1D	
	6.4 Oscillatore armonico con l'azione della forza peso	
	6.5 Oscillatore armonico smorzato (con forza peso e attrito)	
	6.6 Risonanza e oscillatore armonico	
	6.7 Velocità limite	
	6.8 Fili in tensione	
	6.9 Pendolo semplice	
	6.10 Pendolo conico	
	6.11 Curve sopraelevate (paraboliche)	10
7	0	10
	7.1 Introduzione	
	7.2 Lavoro della forza peso	
	7.3 Lavoro della forza peso	
	7.4 Lavoro della forza elastica	
	7.5 Lavoro della forza di reazione vincolare	
	7.6 Lavoro della forza di attrito radente	

	7.7	Segno del lavoro	10
8	Forz	ze conservative e non conservative	11
	8.1	Introduzione	11
	8.2	Energia potenziale	11
	8.3	Teorema dell'energia cinetica	11
	8.4	Applicazioni del lavoro ed energia	
	8.5	Potenza	
	8.6	Gradiente di una forza	
9	Qua	ntità conservate	11
	9.1	Lavoro	11
	9.2	Impulso	
	9.3	Momento angolare	
	9.4	Applicazioni del momento angolare	
10	Tras	sformazioni tra sistemi di riferimento	11
	10.1	Posizione	11
		Velocità	
		Accelerazione	
		Forze e forze apparenti	
		Esperimento di Guglielmini	

1 Introduzione

1.1 Interazioni fondamentali

Le interazioni (o forze) fondamentali sono:

- 1. forza gravitazionale: scoperta per prima nel 1600 circa da Galileo
- 2. forza elettromagnetica: scoperta nel 1800
- 3. forza debole: legata ai costituenti degli atomi (radioattività)
- 4. forza forte: legata ai costituenti degli atomi (quark)

Si sta cercando un legame tra la forza elettromagnetica e quella debole (forza elettrodebole) e una teoria che lega le forze elettromagnetica, debole e forte (teoria delle forze unificate). La forza gravitazione è considerata particolare in quanto:

- è molto meno intensa delle altre
- ha solo "carica" positiva (non esiste massa negativa)
- spazio e forza gravitazionale non possono essere sepatati
- non si è ancora riusciti a comprenderla quantisticamente

2 Il punto materiale

2.1 Introduzione al punto materiale

È una finzione matematica in quanto non esiste nella realtà, ma serve come approssimazione. Non ha estensione, ma ha una massa m ed è possibile determinarne la posizione. In un sistema di riferimento (cartesiano con 3 assi), la posizione è data dal vettore $\vec{r_0} = (x_0, y_0, z_0)$.

2.2 Grandezze elementari

```
massa: m, l'unità di misura è [m] = kg posizione: \vec{r_0} = (x_0, y_0, z_0), con unità di misura [x_0] = [y_0] = [z_0] = m tempo: t, con unità di misura [t] = s
```

2.3 Punto materiale in movimento - cinematica

Posizione

La posizione nello spazio di un punto sono le coordinate del punto un sistema di riferimeno cartesiano di 3 assi.

$$\vec{r}(t) = (x_0(t), y_0(t), z_0(t))$$
 $[x_0] = [y_0] = [z_0] = m$

Velocità

La velocità è lo spazio percorso in un tempo piccolo.

$$\vec{v}(t) = \frac{d}{dx}\vec{r}(t)$$
 $[v] = \frac{m}{s}$

Per ottenere la posizione dalla velocità:

$$\vec{r}(t) = \vec{r_0} + \int_{t0}^{t1} \vec{v}(\tau) d\tau$$

Accelerazione

L'accelerazione è la variazione della velocità nel tempo.

$$\vec{a}(t) = \frac{d}{dx}\vec{v}(t) = \frac{d^2}{dx^2}\vec{r}(t) \qquad [a] = \frac{m}{s^2}$$

Per ottenere la velocità dall'accelerazione:

$$\vec{v}(t) = \vec{v_0} + \int_{t0}^{t1} \vec{a}(\tau) d\tau$$

Per ottenere la posizione dall'accelerazione:

$$\vec{r}(t) = \vec{r_0} + \int_{t0}^{t1} \left(\vec{v_0}(\tau) + \int_{t0}^{t1} \vec{a}(\tau) d\tau \right) d\tau \quad \left(= \vec{r_0} + \vec{v_0}(t - t_0) + \int_{t_0}^{t_1} \vec{a}(\tau) d\tau^2 \right)$$

Moto uniformemente accelerato

Moto con accelerazione costante, le leggi orarie sono:

$$\begin{cases} \vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{1}{2}\vec{a}(t - t_0)^2 \\ \vec{v}(t) = \vec{v_0} + \vec{a}(t - t_0) \end{cases}$$

Per convenzione si sceglie $t_0 = 0$:

$$\begin{cases} \vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2 \\ \vec{v}(t) = \vec{v_0} + \vec{a}t \end{cases}$$

Si osserva che per trovare $\vec{r}(t)$ a partire dall'accelerazione è necessario conoscere i due dati iniziali $\vec{r_0}$ (posizione) e $\vec{v_0}$ (velocità), in quanto sono stati fatti due integrali nel calcolo.

Ogni vettore $\vec{r}(t)$, $\vec{v}(t)$ e $\vec{a}(t)$ può essere scomposto nelle tre componenti x, y, z degli assi cartesiani ottenendo tre equazioni del moto, una per ogni asse.

Esempi di applicazioni:

- caduta di un grave (da fermo e con moto orizzontale)
- moto di due automobili sulla stessa retta
- moto di un proiettile (con angolo inziale θ rispetto al suolo)

2.4 Moto armonico semplice in una dimensione

$$x(t) = A\sin(\omega t + \varphi_0) = A \cdot \sin(\omega(t - t_0)) \qquad \text{con } -\omega t_0 = \varphi_0$$

$$v(t) = A\omega \cos(\omega t + \varphi_0)$$

$$a(t) = -A\omega^2 \sin(\omega t + \varphi_0) = -\omega^2 x(t)$$

- A ampiezza del moto, [A] = m
- ω velocità angolare, $[\omega] = \frac{rad}{s}$
- φ_0 sfasamento iniziale, $[\varphi_0] = rad$
- si osserva che $[A]=m,\,[A\omega]=\frac{m}{s},\,\left[A\omega^2\right]=\frac{m}{s^2}$

2.5 Moto circolare uniforme sul piano xy

$$\vec{r}(t) = (A\cos(\omega t + \varphi_0), A\sin(\omega t + \varphi_0), 0)$$

$$\vec{v}(t) = (-A\omega\sin(\omega t + \varphi_0), A\omega\cos(\omega t + \varphi_0), 0)$$

$$\vec{a}(t) = (-A\omega^2\cos(\omega t + \varphi_0), -A\omega^2\sin(\omega t + \varphi_0), 0) = -\omega^2\vec{r}(t)$$

- il vettore velocità è tangente alla circonferenza e perpendicolare al raggio
- il vettore accelerazione è perpendicolare a \vec{v} , opposto a \vec{r} e diretto verso il centro
- l'accelerazione del moto è chiamata accelerazione centripeta

2.6 Moto vario

- la posizione è data da $\vec{r}(t)$
- la velocità è data da $\vec{v}(t)=\lim_{\Delta t\to 0}\frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}=\frac{d}{dt}\,\vec{r}(t)$
- l'accelerazione è data da $\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) \vec{v}(t)}{\Delta t} = \frac{d}{dt} \vec{v}(t) = \frac{d^2}{dt^2} \vec{r}(t)$
- la velocità è tangente alla traiettoria, ma non è detto che sia perpendicolare al vettore \vec{r}

Funzioni goniometriche (ripasso e proprietà) 3

3.1 Sviluppi di Taylor

$$\sin \theta = \theta - \frac{\theta^3}{3!} + o(\theta^5) \qquad \qquad \cos \theta = 1 - \frac{\theta^2}{2!} + o(\theta^4)$$

- le formule valgono solo se θ è un numero puro (non posso ad esempio sommare m e m^2).
- $[\theta] = rad$, si misura in radianti (numero puro), un radiante è il rapporto tra la lunghezza dell'arco di circonferenza che sottende un angolo θ e il raggio della circonferenza.

3.2 Formule di Eulero

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \qquad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

- le formule valgono solo se
$$\operatorname{Im}(\sin \theta) = \operatorname{Im}(\cos \theta) = 0$$
 per $\theta \in \mathbb{Q}$: ricordando che $\operatorname{Re}(z) = \frac{z+z^*}{2}$, $\operatorname{Im}(z) = \frac{z-z^*}{2i}$, si ha:
$$\operatorname{Im}(\cos \theta) = \frac{1}{2i} \cdot \left(\frac{e^{i\theta} + e^{-i\theta}}{2} - \frac{e^{-i\theta} + e^{i\theta}}{2}\right) = \frac{0}{2i} = 0$$
$$\operatorname{Im}(\sin \theta) = \frac{1}{2i} \cdot \left(\frac{e^{i\theta} - e^{-i\theta}}{2i} - \frac{e^{-i\theta} - e^{i\theta}}{2i}\right) = \frac{0}{2i} = 0$$

- si osserva che
$$|\cos \theta| \le 1$$
, $|\sin \theta| \le 1$:
$$|\cos \theta| = \left| \frac{e^{i\theta} + e^{-i\theta}}{2} \right| = \frac{1}{2} \left| e^{i\theta} + e^{-i\theta} \right| \le \frac{1}{2} \left| 1 \cdot e^{i\theta} \right| + \left| 1 \cdot e^{-i\theta} \right| = \frac{1}{2} (1+1) = 1$$
$$|\sin \theta| = \dots$$

Derivate 3.3

$$\frac{d}{d\theta}\sin\theta = \cos\theta \qquad \frac{d}{d\theta}\cos\theta = -\sin\theta$$

$$\frac{d}{d\theta}\sin\theta = \cos\theta \qquad \frac{d}{d\theta}\cos\theta = -\sin\theta$$
$$\frac{d^2}{d\theta^2}\sin\theta = -\sin\theta \qquad \frac{d^2}{d\theta^2}\cos\theta = -\cos\theta$$

4 Vettori e versori

4.1 Definizione

Un vettore è un "segmento orientato", cioè definito da 3 proprietà: lunghezza, direzione e verso. Un vettore si indica con lettere minuscole come \vec{a}, \vec{b}, \dots Questa definizione ci permette di essere indipendenti dal sistema di coordinate di riferimento.

La lungheza di un vettore è chiamata norma o modulo e si indica $||\vec{a}||$

4.2 Prodotto per uno scalare

Dati \vec{a} vettore e λ scalare (numero reale), allora $\vec{b} = \lambda \vec{a}$ è un vettore tale che:

- se $\lambda>0,\,\vec{b}$ ha stessa direzione e verso di $\vec{a},$ con lunghezza λ volte quella di \vec{a}
- se $\lambda < 0,\, \vec{b}$ ha stessa direzione e verso opposto di $\vec{a},$ con lunghezza $-\lambda$ volte quella di \vec{a}
- se $\lambda = 0$, \vec{b} è vettore nullo $\vec{0}$

4.3 Somma di vettori

Dati due vettori \vec{a} , \vec{b} la loro somma è un vettore $\vec{c} = \vec{a} + \vec{b}$ definita dalla regola del parallelogramma. La somma ha le seguenti proprietà:

- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- $-(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$
- $\vec{a}(\lambda_1 + \lambda_2) = \vec{a}\lambda_1 + \vec{a}\lambda_2$
- $-\vec{a} \vec{b} = \vec{a} + (-1)\vec{b}$
- $-\vec{a} \vec{a} = \vec{a}(1-1) = \vec{0}$

4.4 Versori

- i versori sono vettori unitari (con lunghezza 1).
- sono definiti come $\vec{u_a} = \frac{1}{||\vec{a}||} \cdot \vec{a}$.
- una terna di assi è definita da 3 versori $\vec{u_x}$, $\vec{u_y}$, $\vec{u_z}$.
- dato un vettore $\vec{a} = (a_x, a_y, a_z)$ si può esprimere come $\vec{a} = a_x \vec{u_x} + a_y \vec{u_y} + a_z \vec{u_z}$

4.5 Prodotto scalare

Dati due vettori \vec{a} e \vec{b} che formano un angolo θ misurato in senso antiorario, il prodotto scalare tra due vettori è uno scalare definito come $\vec{a} \cdot \vec{b} = ||\vec{a}|| \, ||\vec{b}|| \cos \theta$ con le seguenti proprietà:

- $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b}$
- $-(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$
- $-(\vec{a}+\vec{b})\cdot\vec{c}=\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c}$

Prodotto scalare tra versori

- $\vec{u_x} \cdot \vec{u_x} = \vec{u_y} \cdot \vec{u_y} = \vec{u_z} \cdot \vec{u_z} = 1$
- $\vec{u_x} \cdot \vec{u_y} = \vec{u_y} \cdot \vec{u_z} = \vec{u_z} \cdot \vec{u_x} = 0$

Prodotto scalare per componenti

- $\vec{a} \cdot \vec{b} = (a_x \vec{u_x} + a_y \vec{u_y} + a_z \vec{u_z}) \cdot (b_x \vec{u_x} + b_y \vec{u_y} + b_z \vec{u_z}) = a_x b_x + a_y b_y + a_z b_z$
- $\ \vec{a} \cdot \vec{a} = {||\vec{a}||}^2 = a_x^2 + a_y^2 + a_z^2 \quad \Rightarrow \quad {||\vec{a}||} = \sqrt{a_x^2 + a_y^2 + a_z^2}$

4.6 Prodotto vettore

Dati due vettori \vec{a} e \vec{b} con angolo θ misurato in senso antiorario, il prodotto vettore tra due vettori è un vettore definito come $\vec{c} = \vec{a} \times \vec{b} = ||\vec{a}|| ||\vec{b}|| \sin \theta \ \vec{u_c}$ con $\vec{u_c}$ versore perpendicolare al piano di \vec{a} e \vec{b} .

- se due vettori sono paralleli, $\vec{a}\times\vec{b}=\vec{0}$
- l'orientamento di $\vec{u_c}$ è una scelta convenzionale secondo la "regola della mano destra"

-
$$\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$$
 \Rightarrow $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

-
$$(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b})$$

-
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$

$$- \vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \vec{c} \times \vec{b}$$

-
$$(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$$

Prodotto vettore tra versori

-
$$\vec{u_x} \times \vec{u_x} = \vec{u_y} \times \vec{u_y} = \vec{u_z} \times \vec{u_z} = 0$$

-
$$\vec{u_x} \times \vec{u_y} = \vec{u_z}$$

-
$$\vec{u_y} \times \vec{u_z} = \vec{u_x}$$

-
$$\vec{u_z} \times \vec{u_x} = \vec{u_y}$$

4.7 Derivata di vettore

- Dato un vettore $\vec{a}(t) = (a_x(t) \ \vec{u_x} + a_y(t) \ \vec{u_y} + a_z(t) \ \vec{u_z})$, la sua derivata è definita come $\frac{d}{dt} \vec{a}(t) = \left(\frac{d}{dt} a_x(t) \ \vec{u_x} + \frac{d}{dt} a_y(t) \ \vec{u_y} + \frac{d}{dt} a_z(t) \ \vec{u_z}\right)$
- Dato un versore $\vec{u}(t)$, la sua derivata è definita come $\frac{d}{dt}\vec{u}(t) = \frac{d\theta(t)}{dt}\vec{u}_{\perp}(t)$ con $\vec{u}_{\perp}(t)$ versore perpendicolare a $\vec{u}(t)$ e con θ angolo spazzato da $\vec{u}(t)$ in Δt piccolo.

Sia $\vec{r}(t)$ vettore qualsiasi, la sua derivata è definita come

$$\frac{d}{dt}\vec{r}(t) = \frac{d||\vec{r}(t)||}{dt}\vec{u_r}(t) + ||\vec{r}(t)||\frac{d\theta(t)}{dt}\vec{u_\perp}(t)$$

5 Dinamica del punto materiale

- 5.1 Prima legge della dinamica principio di inerzia
- 5.2 Seconda legge della dinamica legge di Newton
- 5.3 Terza legge della dinamica principio di azione-reazione
- 5.4 Sistemi di riferimento inerziali
- 5.5 Forza gravitazionale universale
- 5.6 Forza elastica
- 5.7 Forza di reazione vincolare
- 5.8 Forza di attrito radente
- 5.9 Forza di attrito viscoso

6 Trovare le equazioni del moto

- 6.1 Piano inclinato
- 6.2 Oscillatore armonico semplice
- 6.3 Trovare le soluzioni del moto per una forza generica in 1D
- 6.4 Oscillatore armonico con l'azione della forza peso
- 6.5 Oscillatore armonico smorzato (con forza peso e attrito)
- 6.6 Risonanza e oscillatore armonico
- 6.7 Velocità limite
- 6.8 Fili in tensione
- 6.9 Pendolo semplice
- 6.10 Pendolo conico
- 6.11 Curve sopraelevate (paraboliche)

7 Lavoro ed energia

- 7.1 Introduzione
- 7.2 Lavoro della forza peso
- 7.3 Lavoro della forza peso
- 7.4 Lavoro della forza elastica
- 7.5 Lavoro della forza di reazione vincolare
- 7.6 Lavoro della forza di attrito radente
- 7.7 Segno del lavoro

8 Forze conservative e non conservative

- 8.1 Introduzione
- 8.2 Energia potenziale

Potenziali da ricordare

Potenziali in 1D

- 8.3 Teorema dell'energia cinetica
- 8.4 Applicazioni del lavoro ed energia
- 8.5 Potenza
- 8.6 Gradiente di una forza
- 9 Quantità conservate
- 9.1 Lavoro
- 9.2 Impulso
- 9.3 Momento angolare
- 9.4 Applicazioni del momento angolare
- 10 Trasformazioni tra sistemi di riferimento
- 10.1 Posizione
- 10.2 Velocità
- 10.3 Accelerazione
- 10.4 Forze e forze apparenti
- 10.5 Esperimento di Guglielmini