Document 12: Subspaces of \mathbb{R}^n

Let X be the domain of a function f, and Y be the codomain. For arbitrary elements $x, y, y = f(x), x = f^{-1}(y)$. Given a transformation $T(\vec{x}) = \begin{bmatrix} \cos(x) \\ \sin(x) \end{bmatrix}$, the transformation is nonlinear, with a domain \mathbb{R}^1 , and a codomain \mathbb{R}^2 . The image is a unit circle. Lets try another example. Use the following definition of A for the following example.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$

Define a transformation $T(\vec{x}) = A\vec{x}, T : \mathbb{R}^2 \to \mathbb{R}^3$. $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = A\vec{x} = C(x_1)$

$$x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. Since \vec{x} is arbitrary, x_1, x_2 are arbitrary. We are summing

all arbitrary combinations of these two vectors. The image this creates is a plane.

The sum of some number of terms defined by an arbitrary scalar multiplied by a specific vector is defined as the span of the specific vectors. However, there is a more formal definition.

Definition: Let $m, n \in \mathbb{R}$ be arbitrary. Let $c_1, c_2, \dots, c_n \in \mathbb{R}$ be arbitrary. Let $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \in \mathbb{R}^m$ be arbitrary vector. We define the span of vectors $\vec{v_1}$ through $\vec{v_n}$ as $c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_n\vec{v_n}$ and write span $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$.

Lets examine some essential properties of images of linear transformations. Then, we will summarize these properties and introduce a corollary.

Properties:

- 1. $\vec{0}_m \in \mathbb{R}^m$ is in $\operatorname{im}(T)$. Proof: $A_{m \times n} \vec{0}_n = \vec{0}_{m \times 1} \Rightarrow T(\vec{0}_n) = \vec{0}_m$
- 2. Let $\vec{v}_1, \vec{v}_2 \in \operatorname{im}(T)$. Then $\vec{v}_1 + \vec{v}_2 \in \operatorname{im}(T)$. Proof: Since $\vec{v}_1, \vec{v}_2 \in \operatorname{imm}(T)$, then $\exists \vec{w}_1, \vec{w}_2 \in \mathbb{R}^n$ such that $T(\vec{w}_1) = \vec{v}_1, T(\vec{w}_2) = \vec{v}_2$. By the linearity of T, we have $T(\vec{w} + \vec{v}) = T(\vec{w}) + T(\vec{v})$. Combining, we have $T(\vec{w}_1 + \vec{w}_2) = T(\vec{w}_1) + T(\vec{w}_2) = \vec{v}_1 + \vec{v}_2$. Since T has a codomain that is the image space, $T(\vec{w}_1 + \vec{w}_2)$ is in the image

space. Since $T(\vec{w}_1 + \vec{w}_2) = \vec{v}_1 + \vec{v}_2$, the sum $\vec{v}_1 + \vec{v}_2$ is in the image space.

3. Let $\vec{v} \in \text{im}(T), k \in \mathbb{R}$. Then $kv \in \text{im}(T)$.

Proof: $\vec{v} \in \text{im}(T) \to \exists \vec{w}, T(\vec{w}) = \vec{v}$. Introducing our constant k, we have $kT(\vec{w}) = k\vec{v}$. By linearity, we have $kT(\vec{w}) = T(k\vec{w})$. Hence, $T(k\vec{w}) = k\vec{v}$, and $k\vec{v}$ is in the image.

Summary:

- 1. $\vec{0}_m \in \mathbb{R}^m$ is in imm(T).
- 2. The image is closed under addition.
- 3. The image is closed under scalar multiplication.

Now lets examine kernels. Kernels are subsets of the domain that satisfy the following for a given transformation $T: S \to D, T(\vec{x}) = A\vec{x}$: $A(\vec{x} \in S) = \vec{0} \in D$. So, $\ker(T)$ is the null space of A.