Data Structure CSE-207 Tree

Tree

- A nonlinear data structure
- Contain a distinguished node R, called the root of tree and a set of subtrees.
- Two nodes n1 and n2 are called siblings if they have the same parent node.

- A binary tree T is defined as a finite set of elements, called nodes such that:
 - T is empty
 - T contains a distinguished node R, called the root of T and the remaining nodes of T form an ordered pair of disjoint binary trees T1 and T2.
 - T1 and T2 are called the left and right subtrees of R.
- Any node N in a binary tree T has either 0, 1 or 2 successors.
- Nodes with no successors are called terminal nodes or leaf nodes.

☐Binary Tree: T

□Root: A

□Nodes with 2 Successors: A, B

□Nodes with 1 Successors: C, E

☐ Terminal Nodes: D, F, G

Similar binary tree

 Two binary trees are similar if they have the same structure or same shape.

Copy Binary Trees

 Two binary trees are copies if they are similar and they have the same contents at the corresponding nodes.

Figure: Similar T1 and T2.

- Edge: A line from a node N of T to a successor is called is an edge.
- Path: A sequence of consecutive edges is called a path.
- Branch: A path from root node to a leaf node is called branch.
- Level of Binary Tree: Each node in a binary tree T is assigned a level number. The root R of T has level number 0 and every other node has level number which is one more than the level number of its parent.
- Depth of Binary Tree: Maximum number of nodes in a branch of T is the depth of T.

3inary Tree: T

Edge: (1, 2), (3, 6)

Path: (1, 2, 4), (1, 3, 6)

3ranch: (1, 2, 4, 8), (1, 2, 5), (1, 3, 6), (1, 3, 7)

Depth: 4

Complete Binary Trees

- A binary tree T is said to be complete if
 - all its level, except possibly the last, have the maximum number of possible nodes
 - all the nodes at the last level appear as far left as possible.
 - The depth D_n of the complete binary tree with n nodes $\lfloor \log_2 n + 1 \rfloor$

Extended Binary Tree (2-Tree)

- A binary tree T is said to be an extended binary tree if
 - each node N has either 0 or 2 children.
 - Nodes with 2 children are called internal nodes.
 - Nodes with 0 children are called external nodes.
 - Internal nodes are represented by circles and external nodes by squares.

Algebraic Expression as Binary Tree

- An algebraic expression E can be represented by means of binary tree T
- Example: ((c*d)+e)/(a-b)

Representing Binary Tree in Memory

- Let T be a binary tree, then T can be represented in memory using two ways.
 - 1. Linked Representation
 - 2. Sequential Memory Representation/ Array representation

Linked Representation of Binary Tree

- Use Three parallel arrays Info, Left and Right and a pointer variable Root.
 - Info[K]: Contains data at node N.
 - Left[K]: Contains location of left child of N
 - Right[K]: Contains location of right child of N

Root: Contains location of Root

Sequential Representation of Binary Tree

- Use only a single liner array Tree.
 - Tree[1] represents the Root of T.
 - If node N is in Tree[K], then its left child is in Tree[2K]
 - If node N is in Tree[K], then its right child is in Tree[2K+1].

Tree =	1	2	3	4	5	6	7	8	9	10
	Α	В	С	D	E		F			

Sequential Representation of Binary Tree

- If a tree has depth d then it will require a array of maximum 2^{d+1}.
 - If T has depth 5
 - then it requires an array of 2⁵⁺¹=64 elements

Traversing a Binary Tree

Traversing Binary Tree

There are 3 ways of traversing a binary tree T having root R.

1. Preorder Traversing

- Steps:
 - (a) Process the root R
 - (b) Traverse the left subtree of R in preorder.
- (c) Traverse the right subtree of R in preorder.

Preorder Traversal of T

A, B, D, H, E, C, F, I, J, G

Figure: Binary Tree T

2. Inorder Traversing

- Steps:
 - (a) Traverse the left subtree of R in inorder.
 - (b) Traverse the root R.
 - (c) Traverse the right subtree of R in inorder.
- Example:

Inorder Traversal of T

D, H, B, E, A, I, F, J, C, G

Figure: Binary Tree T

3. Postorder Traversing

- Steps:
 - (a) Traverse the left subtree of R in postorder.
 - (b) Traverse the right subtree of R in postorder.
 - (c) Traverse the root R.
- Example:

Postorder Traversal of T

H, D, E, B, I, J, F, G, C, A

Figure: Binary Tree T

End