Scaler Case Study

Problem Statement

Scaler is an online tech-versity offering intensive computer science & Data Science courses through live classes delivered by tech leaders and subject matter experts. The meticulously structured program enhances the skills of software professionals by offering a modern curriculum with exposure to the latest technologies. It is a product by InterviewBit.

You are working as a data scientist with the analytics vertical of Scaler, focused on profiling the best companies and job positions to work for from the Scaler database. You are provided with the information for a segment of learners and tasked to cluster them on the basis of their job profile, company, and other features. Ideally, these clusters should have similar characteristics.

Data Dictionary:

- 'Unnamed 0'- Index of the dataset
- Email_hash- Anonymised Personal Identifiable Information (PII)
- Company hash- Current employer of the learner
- orgyear- Employment start date
- CTC- Current CTC
- Job_position- Job profile in the company
- CTC_updated_year: Year in which CTC got updated (Yearly increments, Promotions)

```
In [1]:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import re
    from sklearn.preprocessing import StandardScaler
    from sklearn.cluster import KMeans
    from sklearn.mixture import GaussianMixture
```

```
In [2]: df = pd.read_csv("scaler_clustering.csv")
```

2015.0

2017.0

2017.0

2

In [8]: df.shape

Out[8]: (205843, 6)

In [3]:	df.head()						
Out[3]:		Unnamed: 0	company_hash	email_hash	orgyear		
	0	0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0		
	1	1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018.0		

4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9...

effdede7a2e7c2af664c8a31d9346385016128d66bbc58...

6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520...

Statistical Summary

3

ojzwnvwnxw vx

ngpgutaxv

qxen sqghu

```
In [4]: df.shape
Out[4]: (205843, 7)
In [5]: | df.drop(columns="Unnamed: 0", inplace = True)
In [6]: df.head()
Out[6]:
                                                                 email_hash orgyear
             company_hash
                                                                                         ctc
               atrgxnnt xzaxv
                             6de0a4417d18ab14334c3f43397fc13b30c35149d70c05...
                                                                             2016.0 1100000
           0
                   qtrxvzwt
                  xzegwgbb
                            b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10...
                                                                             2018.0
                                                                                     449999
                    rxbxnta
             ojzwnvwnxw vx
                             4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9...
                                                                             2015.0 2000000
           3
                  ngpgutaxv
                             effdede7a2e7c2af664c8a31d9346385016128d66bbc58...
                                                                             2017.0
                                                                                     700000
                 qxen sqghu
                             6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520...
                                                                             2017.0 1400000
In [7]: df["company_hash"].isnull().sum()
Out[7]: 44
```

In [9]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 205843 entries, 0 to 205842

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	company_hash	205799 non-null	object
1	email_hash	205843 non-null	object
2	orgyear	205757 non-null	float64
3	ctc	205843 non-null	int64
4	job_position	153281 non-null	object
5	ctc_updated_year	205843 non-null	float64
dtvn	es: $float64(2)$, in	+64(1) object(3)	1

dtypes: float64(2), int64(1), object(3)

memory usage: 9.4+ MB

In [10]: df.describe()

Out[10]:

	orgyear	ctc	ctc_updated_year
count	205757.000000	2.058430e+05	205843.000000
mean	2014.882750	2.271685e+06	2019.628231
std	63.571115	1.180091e+07	1.325104
min	0.000000	2.000000e+00	2015.000000
25%	2013.000000	5.300000e+05	2019.000000
50%	2016.000000	9.500000e+05	2020.000000
75%	2018.000000	1.700000e+06	2021.000000
max	20165.000000	1.000150e+09	2021.000000

Exploratory Data Analysis

In [11]:	df.nunique()		
Out[11]:	<pre>company_hash email_hash orgyear ctc job_position ctc_updated_year dtype: int64</pre>	37299 153443 77 3360 1017 7	

In [12]:

```
for i in df.columns:
    print(df[i].value_counts(normalize=True)*100)
    print("\n\n")
```

```
nvnv wgzohrnvzwj otgcxwto
                                   4.051040
xzegojo
                                   2.614687
                                   1.691456
vbvkgz
zgn vuurxwvmrt vwwghzn
                                   1.657442
                                   1.574352
wqszxkvzn
onvamhwpo
                                   0.000486
bvsxw ogenfvqt uqxcvnt rxbxnta
                                   0.000486
agsbv oiontbo
                                   0.000486
vnnhzt xzegwgb
                                   0.000486
bvptbjngxu td vbvkgz
                                   0.000486
Name: company_hash, Length: 37299, dtype: float64
```

bbace3cc586400bbc65765bc6a16b77d8913836cfc98b77c05488f02f5714a4b

6842660273f70e9aa239026ba33bfe82275d6ab0d20124021b952b5bc3d07e6c 0.004372

298528ce3160cc761e4dc37a07337ee2e0589df251d73645aae209b010210eee 0.004372

3e5e49daa5527a6d5a33599b238bf9bf31e85b9efa9a94f1c88c5e15a6f31378 0.004372

b4d5afa09bec8689017d8b29701b80d664ca37b83cb883376b2e95191320da66 0.003886

. . .

bb2fe5e655ada7f7b7ac4a614db0b9c560e796bdfcaa4e5367e69eedfea93876 0.000486

d6cdef97e759dbf1b7522babccbbbd5f164a75d1b4139e02c945958720f1ed79 0.000486

700d1190c17aaa3f2dd9070e47a4c042ecd9205333545dbfaee0f85644d00306 0.000486

c2a1c9e4b9f4e1ed7d889ee4560102c1e2235b2c1a0e59cea95a6fe55c658407 0.000486

0bcfc1d05f2e8dc4147743a1313aa70a119b41b30d4a1f7e738a6a87d3712c31
0.000486

Name: email hash, Length: 153443, dtype: float64

2018.0	12.274674
2019.0	11.385761
2017.0	11.294391
2016.0	11.199133
2015.0	10.016670
2107.0	0.000486
1972.0	0.000486

```
2101.0 0.000486
208.0 0.000486
200.0 0.000486
```

Name: orgyear, Length: 77, dtype: float64

```
600000
           3.804842
400000
           3.691163
1000000
           3.682904
500000
           3.518215
800000
           3.280170
              . . .
1916000
           0.000486
5340000
           0.000486
2305000
           0.000486
4225000
           0.000486
3327000
           0.000486
```

Name: ctc, Length: 3360, dtype: float64

```
Backend Engineer
                                  28.414481
FullStack Engineer
                                   16.125286
0ther
                                   11.789459
Frontend Engineer
                                   6.796015
Engineering Leadership
                                    4.481964
ayS
                                    0.000652
Principal Product Engineer
                                    0.000652
Senior Director of Engineering
                                   0.000652
Seller Support Associate
                                    0.000652
Android Application developer
                                   0.000652
Name: job position, Length: 1017, dtype: float64
```

```
      2019.0
      33.369121

      2021.0
      31.565805

      2020.0
      24.020248

      2017.0
      3.673188

      2018.0
      3.277255

      2016.0
      2.672425

      2015.0
      1.421958
```

Name: ctc_updated_year, dtype: float64

Graphical and Non-Graphical Analysis

```
In [14]: object_list = []
    numerical_list = []

    for i in df.columns:
        if df[i].dtype == "0":
            object_list.append(i)
        else:
            numerical_list.append(i)

In [15]: object_list
Out[15]: ['company_hash', 'email_hash', 'job_position']
In [16]: numerical_list
Out[16]: ['orgyear', 'ctc', 'ctc_updated_year']
```

In [17]: plt.figure(figsize=(10,7))
 df["company_hash"].value_counts(normalize= True).sort_values(ascend)

Out[17]: <Axes: >

In []: # Above are the top occuring Companies in this which consitutes of

In [18]: df["company_hash"].value_counts(normalize= True).sort_values(ascend

Out[18]: 23.474846816554017

In [19]: df["company_hash"].value_counts(normalize= True).sort_values(ascend

Out[19]: nvnv wgzohrnvzwj otqcxwto xzegojo 0.026147 vbvkgz 0.016915 zgn vuurxwvmrt vwwghzn wgszxkvzn 0.015744

Name: company hash, dtype: float64

Type *Markdown* and LaTeX: α^2

In [20]: df["email_hash"].value_counts(normalize= True).sort_values(ascendin
plt.show()

In [21]: df["email_hash"].value_counts(normalize= True).sort_values(ascendin

Out [21]: 0.0007530010736337888

In [22]: df["email_hash"].value_counts(normalize= True).head(5)

Out[22]: bbace3cc586400bbc65765bc6a16b77d8913836cfc98b77c05488f02f5714a4b 0.000049

6842660273f70e9aa239026ba33bfe82275d6ab0d20124021b952b5bc3d07e6c 0.000044

298528ce3160cc761e4dc37a07337ee2e0589df251d73645aae209b010210eee

b4d5afa09bec8689017d8b29701b80d664ca37b83cb883376b2e95191320da66 0.000039

Name: email hash, dtype: float64

Type Markdown and LaTeX: α^2

In [23]: df["job_position"].value_counts(normalize= True).sort_values(ascend
plt.show()

In [24]: df["job_position"].value_counts(normalize= True).sort_values(ascend

Out [24]: 97.55677481227288

In [25]: df["job_position"].value_counts(normalize= True).sort_values(ascend

[
Out[25]:	Backend Engineer	28.414481				
		FullStack Engineer	16.125286			
		Other	11.789459			
		Frontend Engineer	6.796015			
		Engineering Leadership	4.481964			
		QA Engineer	4.297336			
		Data Scientist	3.502065			
		Android Engineer	3.494888			
		SDET	3.240454			
		Devops Engineer	3.008853			
		Support Engineer	2.350585			
		Data Analyst	1.895864			
		iOS Engineer	1.791481			
		Engineering Intern	1.756252			
		Product Designer	0.857249			
		Backend Architect	0.839634			
		Fullstack Engineer	0.825282			
		Research Engineers	0.801143			
		Product Manager	0.757432			
		Program Manager	0.531051			

Name: job_position, dtype: float64

In [27]: sns.kdeplot(df["orgyear"])

Out[27]: <Axes: xlabel='orgyear', ylabel='Density'>

In [28]: sns.kdeplot(df["ctc"])

Out[28]: <Axes: xlabel='ctc', ylabel='Density'>


```
In [30]: sns.histplot(df["ctc_updated_year"], bins = 5)
```

Out[30]: <Axes: xlabel='ctc_updated_year', ylabel='Count'>

In [31]: # Due to outliers/high income of some professionals, distribution v
Due to incorrect inputs from the users , distribution is skwewed.
Most professionals have got ctc updated in the span of 3 years(20)

Preprocessing Data

Null Values Imputations and Duplicated Values

In [32]:	df.nunique()/len(d	f)*100
Out[32]:	<pre>company_hash email_hash orgyear ctc job_position ctc_updated_year dtype: float64</pre>	18.120121 74.543706 0.037407 1.632312 0.494066 0.003401

```
In [33]: | df.isnull().sum()/len(df)*100
Out[33]: company_hash
                                0.021376
          email_hash
                                0.000000
          orgyear
                                0.041779
          ctc
                                0.000000
          job position
                               25.534995
          ctc_updated_year
                                0.000000
          dtype: float64
In [34]: | df.isnull().sum()
Out[34]: company_hash
                                  44
         email hash
                                   0
                                  86
          orgyear
          ctc
                                   0
          job_position
                               52562
          ctc_updated_year
                                   0
          dtype: int64
In [35]: df.shape
Out[35]: (205843, 6)
In [36]: #As the percentage of null values in the below columns are very low
In [37]: | df.dropna(subset=["company_hash" , "orgyear"] , inplace = True)
In [38]: | df.isnull().sum()/len(df)*100
Out[38]: company_hash
                                0.000000
          email_hash
                                0.000000
                                0.000000
          orgyear
          ctc
                                0.000000
                               25.524396
          job_position
          ctc updated year
                                0.000000
          dtype: float64
In [39]: # It has been observed that there are multiple duplicate values
         # With respect to the rows , there are duplicate rows with original
         # Hence , we are dropping those rows
In [40]: | temp = df[df.duplicated(subset=['company_hash', 'email_hash', 'orgy
                 'ctc_updated_year'], keep = False)].sort_values(["email_hash
In [41]: | temp.head(40)
Out [41]:
                 company hash
                                                             email hash orgyear
                              0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032...
                                                                        2021.0 1300
           51568
                       gunhb
```

122325	gunhb	0000d58fbc18012bf6fa2605a7b0357d126ee69bc41032	2021.0	1300
30512	ocu xnivz gbvz	00036c2c5212d88d07acdc5bda7eef5653f8b09bbe30b7	2011.0	2300
35942	ocu xnivz gbvz	00036c2c5212d88d07acdc5bda7eef5653f8b09bbe30b7	2011.0	2300
33768	ko	00037a2e4fcfe2830d91270102aaaf105a324a3ce17075	2012.0	1800
34435	ko	00037a2e4fcfe2830d91270102aaaf105a324a3ce17075	2012.0	1800
77648	sgrabvz ovwyo	00083d053a4ebf8e8eb99c08c63e0183a70caa0ce348a5	2014.0	3000
139004	sgrabvz ovwyo	00083d053a4ebf8e8eb99c08c63e0183a70caa0ce348a5	2014.0	3000
36797	bxzanxwprt	000be203953f54199c95d736e86a75096d0019592cc27c	2013.0	200
40946	bxzanxwprt	000be203953f54199c95d736e86a75096d0019592cc27c	2013.0	200
57197	xzegojo	000e23cee1f1c00d338672c6dbff0ea7a560916ccac258	2010.0	1000
66811	xzegojo	000e23cee1f1c00d338672c6dbff0ea7a560916ccac258	2010.0	1000
64538	nvnv wgzohrnvzwj otqcxwto	001059a637996b0b09d5fcbcd8b40d8e1f6cfa62b18b10	2019.0	500
105936	nvnv wgzohrnvzwj otqcxwto	001059a637996b0b09d5fcbcd8b40d8e1f6cfa62b18b10	2019.0	500
108551	nvnv wgzohrnvzwj otqcxwto	001059a637996b0b09d5fcbcd8b40d8e1f6cfa62b18b10	2019.0	500
3400	ctqntdux	001439ba74b1c44ff593eae85574ba7bc94d86eb399f02	2018.0	300
23462	ctqntdux	001439ba74b1c44ff593eae85574ba7bc94d86eb399f02	2018.0	300
59729	rvqotz nghmqg	00152a894efe1da15c1164467c09012a2e9fae65b907e1	2012.0	900
61015	rvqotz nghmqg	00152a894efe1da15c1164467c09012a2e9fae65b907e1	2012.0	900
188728	ltvcxg xzaxv ucn rna	0018d91337b46826a70a961962abbd7a8a8e8036e678bc	2019.0	550
192803	ltvcxg xzaxv ucn rna	0018d91337b46826a70a961962abbd7a8a8e8036e678bc	2019.0	550
3125	wgzwtznqxd	001944b076fabdf04328f934c7a93fd69de81114836c3d	2018.0	360
5043	wgzwtznqxd	001944b076fabdf04328f934c7a93fd69de81114836c3d	2018.0	360
90113	ytfrtnn uvwpvqa tzntquqxot	001b08c2b2993420c397fe98bf5c73ca17eca761f190ae	2012.0	1540
144946	ytfrtnn uvwpvqa tzntquqxot	001b08c2b2993420c397fe98bf5c73ca17eca761f190ae	2012.0	1540
4435	nvnv wgzohrnvzwj otqcxwto	001b3125da5372767bc5c560066e7e53525f2aece726e6	2017.0	1500

```
nvnv
                        wgzohrnvzwj
              27460
                                     001b3125da5372767bc5c560066e7e53525f2aece726e6...
                                                                                         2017.0 1500
                           otqcxwto
                               nvnv
                        wgzohrnvzwi
                                     001b3125da5372767bc5c560066e7e53525f2aece726e6...
                                                                                         2017.0
                                                                                                  360
             136720
                           otacxwto
                               nvnv
             143866
                        wgzohrnvzwj
                                     001b3125da5372767bc5c560066e7e53525f2aece726e6...
                                                                                         2017.0
                                                                                                  360
                           otacxwto
                               nvnv
                                     001b3125da5372767bc5c560066e7e53525f2aece726e6...
                                                                                         2017.0
                                                                                                  360
             202754
                        wgzohrnvzwj
                           otqcxwto
                               nvnv
              42452
                        wgzohrnvzwj
                                      001bfdb02614b9fc3a288a67944236bb8f3526a146bb1e...
                                                                                         2015.0
                                                                                                  900
                           otqcxwto
                               nvnv
              57692
                                      001bfdb02614b9fc3a288a67944236bb8f3526a146bb1e...
                                                                                                  900
                        wgzohrnvzwj
                                                                                         2015.0
                           otacxwto
              20114
                      ntwy bvyxzagy
                                      001da11b06165648239bf15bdbeafd2db64a9fc9b3523c...
                                                                                         2017.0
                                                                                                  200
                                      001da11b06165648239bf15bdbeafd2db64a9fc9b3523c...
              23577
                      ntwy bvyxzagy
                                                                                         2017.0
                                                                                                  200
                                       001fae6fc1e79d270f4a480bfb5a4f5c540ae0c024e794...
                                                                                         2010.0 2000
              27189
                           btaxwxni
                                       001fae6fc1e79d270f4a480bfb5a4f5c540ae0c024e794...
                                                                                         2010.0 2000
              27206
                           btaxwxni
                           xatvmgd
                                     00206e51a50d3080eb3782321ba75c780fc8602b87078d...
             121735
                                                                                         2017.0
                                                                                                  300
                       watvnxgzo rru
                           xatvmgd
                                     00206e51a50d3080eb3782321ba75c780fc8602b87078d...
                                                                                         2017.0
                                                                                                  300
             121999
                       wątvnxgzo rru
                                      0022e8883afda9ec717eceda94ea8aab89cfbf5ec3b359...
                                                                                         2015.0
                                                                                                  836
              38686
                             gqvwrt
                                      0022e8883afda9ec717eceda94ea8aab89cfbf5ec3b359...
                                                                                         2015.0
                                                                                                  836
              62738
                             aavwrt
In [42]: df[df.duplicated(subset=['company_hash', 'email_hash', 'orgyear',
                      'ctc_updated_year'], keep = False)].sort_values(["email_hash
Out[42]:
            company_hash
                                            0
```

```
email_hash
                          0
orgyear
                          0
                          0
ctc
                      27231
job position
ctc_updated_year
                          0
dtype: int64
```

```
In [43]:
         index_to_drop = temp[temp["job_position"].isnull()].index
             = df.drop(index_to_drop)
```

```
In [44]: | df2.shape
Out[44]: (178482, 6)
In [45]: df2.isnull().sum()/len(df2)
Out[45]: company_hash
                                0.000000
          email_hash
                                0.000000
          orgyear
                                0.000000
                                0.000000
          ctc
          job_position
                                0.141617
          ctc_updated_year
                                0.000000
          dtype: float64
In [47]: | df2["orgyear"].value_counts().tail(50)
Out[47]: 1996.0
                      125
          1995.0
                       84
                       64
          1993.0
          1991.0
                       64
          1994.0
                       59
          1992.0
                       42
          2024.0
                       41
          1990.0
                       34
          1989.0
                       21
                       17
          0.0
          2025.0
                       11
          1988.0
                       10
          2026.0
                        8
          1986.0
                        8
          1987.0
                        6
          3.0
                        6
          2031.0
                        5
                        5
          2029.0
                        4
          1985.0
          1984.0
                        3
                        3
          1982.0
                        3
          2.0
                        3
          2028.0
                        2
          20165.0
          1970.0
                        2
                        2
          6.0
                        2
          5.0
                        2
          1.0
                        2
          91.0
                        1
          1979.0
                        1
          83.0
                        1
          209.0
          2204.0
                        1
          1977.0
                        1
          1900.0
                        1
          201.0
                        1
```

```
38.0
              1
1976.0
              1
1971.0
              1
4.0
              1
206.0
              1
2027.0
1973.0
              1
1981.0
              1
2106.0
              1
2107.0
              1
1972.0
2101.0
              1
208.0
              1
200.0
              1
Name: orgyear, dtype: int64
```

In [48]: # There were multiple incorrect values in orgyear , imputing correc

if values are less than 10, it is possible , user was mentioning

if values are greater than 2021 , imputed to 2021

#Rest were hardcoded

```
In [49]: def Orgyear_fixing(x):
              if x["orgyear"]<=10:</pre>
                  k = x["ctc_updated_year"]-x["orgyear"]
                  return k
              if x["orgyear"] > 2021:
                  return 2021
              if x["orgyear"]>=200 and x["orgyear"]<=202:</pre>
                  return x["orgyear"]*10
              if x["orgyear"]==206.0:
                  return 2006
              if x["orgyear"]==209.0:
                  return 2009
              if x["orgyear"]==208.0:
                  return 2008
              if x["orgyear"] == 91.0:
                  return 1991
              if x["orgyear"] == 83.0:
                  return 1983
              if x["orgyear"] == 38.0:
                  return 2021
              if x["orgyear"] == 1900.0:
                  return x["ctc_updated_year"]
                  return x["orgyear"]
```

In [50]: df2["orgyear"] = df2.apply(Orgyear_fixing , axis = 1)

```
In [51]: df2["orgyear"].value_counts().tail(50)
Out[51]: 2018.0
                     21515
          2016.0
                     20186
          2017.0
                     20009
          2019.0
                     19052
          2015.0
                     18200
          2014.0
                     14911
          2013.0
                     11099
          2020.0
                     11007
          2012.0
                      9408
          2011.0
                      7079
                      5147
          2010.0
          2021.0
                      4255
          2009.0
                      3377
          2008.0
                      2425
          2007.0
                      2004
          2006.0
                      1870
          2005.0
                      1666
          2004.0
                      1314
          2003.0
                       909
          2001.0
                       642
          2002.0
                       618
                       456
          2000.0
          1999.0
                       310
          1998.0
                       265
          1997.0
                       219
          1996.0
                       125
          1995.0
                        84
          1991.0
                        66
          1993.0
                        64
                        59
          1994.0
          1992.0
                        42
          1990.0
                        34
          1989.0
                        21
          1988.0
                         10
          1986.0
                          8
          1987.0
                          6
          1985.0
                          4
          1982.0
                          3
                          3
          1984.0
                          2
          1970.0
          1972.0
                          1
                          1
          1981.0
          1973.0
                          1
          1976.0
                          1
          1971.0
                          1
          1977.0
                          1
                          1
          1983.0
          1979.0
          Name: orgyear, dtype: int64
```

```
In [52]: df2["orgyear"].plot(kind = "hist")
```

Out[52]: <Axes: ylabel='Frequency'>


```
In [53]: df2["orgyear"].describe()
```

Out[53]: count 178482.000000 2015.004034 mean 4.250953 std 1970.000000 min 25% 2013.000000 50% 2016.000000 75% 2018,000000 2021.000000 max

Name: orgyear, dtype: float64

In [60]: # distribution of the orgyear looks cleaner and better after imputi

Highest Number of professionals have joined within the range of 2

In [55]: # For Job positions, according to business logic, Imputing Others i

In [56]: df2["job_position"].fillna("Others" , inplace=True)

Feature Engineering

Adding Two features

- TYOE: Total Years of Experience
- Exp After ctc update

```
In [59]: df3["TY0E"] = 2023 - df3["orgyear"]
df3["Exp After ctc update"] = 2023 - df3["ctc_updated_year"]
```

Analysis on Company, Job Position, TYOE

```
In [64]: ctc_summary = df3.groupby(by = ["company_hash" , "job_position" , "
    ctc_summary.reset_index(inplace = True )

In [65]: merged_data_frame = df3.merge(ctc_summary , how = "inner" , on = ["
    In [66]: merged_data_frame.head(20)

Out[66]:
```

	company_hash	email_hash	orgyear	ctc
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	1100000
1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018.0	449999
2	qtrxvzwt xzegwgbb rxbxnta	f4fa64972185ac2b73e99c0cc10d1bf50d6dbfbc9a2cba	2018.0	620000
3	qtrxvzwt xzegwgbb rxbxnta	be3bcde831f8816f2bad9781f1282f09908f803c2fafb3	2018.0	950000

4	qtrxvzwt xzegwgbb rxbxnta	ddf45c7b7bd4c461890121c416b2fdff9ba34fbaea2ad4	2018.0	750000
5	qtrxvzwt xzegwgbb rxbxnta	4a1fcd83b7e904c089f71c77897d4f67728a919776f176	2018.0	850000
6	qtrxvzwt xzegwgbb rxbxnta	a14e42082606250faf5a138be230ca0d1504377799daf8	2018.0	600000
7	qtrxvzwt xzegwgbb rxbxnta	fb16948f8da112d0742984f7604d6c4b47c950172f441d	2018.0	1200000
8	ojzwnvwnxw vx	4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9	2015.0	2000000
9	ngpgutaxv	effdede7a2e7c2af664c8a31d9346385016128d66bbc58	2017.0	700000
10	ngpgutaxv	30a88256b5586ba59b25e6fe78fada76950fd65ca9f250	2017.0	1200000
11	ngpgutaxv	2fab5e919a339803876fb532a618ab93c7b83c49746dd7	2017.0	1750000
12	ngpgutaxv	803bccee8b046cc228a77cc32e5f22704dab529b336ff7	2017.0	800000
13	ngpgutaxv	c9e14b4d46b1a76974a2e06bc546886cff85bd441f21b8	2017.0	1600000
14	ngpgutaxv	400aea75dc1316022b8c4436c60a0646fbea2962e26a5a	2017.0	1210000
15	ngpgutaxv	65ffc5106a7a9e3efb6c94fe3535b9d7d84a0b6b5347aa	2017.0	850000
16	qxen sqghu	6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520	2017.0	1400000
17	yvuuxrj hzbvqqxta bvqptnxzs ucn rna	18f2c4aa2ac9dd3ae8ff74f32d30413f5165565b90d8f2	2018.0	700000
18	lubgqsvz wyvot wg	9bf128ae3f4ea26c7a38b9cdc58cf2acbb8592100c4128	2018.0	1500000
19	lubgqsvz wyvot wg	76e48bc7e0f9c6a8e4147ad476cdad4c7c9ffa6c621081	2018.0	1500000

```
In [67]: # Label function is implemented to create labels for the users, on
         # Company , TYOE.
         # If the max salary is equal to the ctc , then 1 category is chosen
         # users are already high paid,
         # in the current organisation.
         # If ctc exceeds the 75 percentile , it is labeled as 1 , as the us
         # if salary is between the IQR range, it is labeled as 2 , as there
         # in the current organisation,
         # if ctc is below 25 percentile ,it is labeled as 2, stating that t
         def labelling(x):
             if x["max"] ==x["ctc"]:
                 return 1
             else:
                 if x["ctc"]>x["75%"]:
                     return 1
                 elif x["ctc"] >= x["25\%"] and x["ctc"] <= x["75\%"]:
                     return 2
                 else:
                     return 3
```

In [68]: merged_data_frame.head()

company_hash

Out [68]:

	/			
_				
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	1100000
1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018.0	449999
2	qtrxvzwt xzegwgbb rxbxnta	f4fa64972185ac2b73e99c0cc10d1bf50d6dbfbc9a2cba	2018.0	620000
3	qtrxvzwt xzegwgbb rxbxnta	be3bcde831f8816f2bad9781f1282f09908f803c2fafb3	2018.0	950000
4	qtrxvzwt xzegwgbb rxbxnta	ddf45c7b7bd4c461890121c416b2fdff9ba34fbaea2ad4	2018.0	750000

email_hash orgyear

In [69]: merged_data_frame["Designation"] = merged_data_frame.apply(labellin

ctc i

```
In [70]: merged_data_frame["Designation"].value_counts().plot(kind = "bar")
```

Out[70]: <Axes: >

In [71]: merged_data_frame["Designation"].value_counts()

Out[71]: 1 114250

2 37422

3 26810

Name: Designation, dtype: int64

Analysis on Company Level

```
In [72]: ctc_summary_company = df3.groupby(by = "company_hash")["ctc"].descr
ctc_summary_company.reset_index(inplace = True)
```

In [73]: merged_data_frame2 = merged_data_frame.copy()

In [74]: merged_data_frame2.head()

Out[74]:

	company_hash	email_hash	orgyear	ctc	j
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	1100000	-
1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018.0	449999	
2	qtrxvzwt xzegwgbb rxbxnta	f4fa64972185ac2b73e99c0cc10d1bf50d6dbfbc9a2cba	2018.0	620000	
3	qtrxvzwt xzegwgbb rxbxnta	be3bcde831f8816f2bad9781f1282f09908f803c2fafb3	2018.0	950000	
4	qtrxvzwt xzegwgbb rxbxnta	ddf45c7b7bd4c461890121c416b2fdff9ba34fbaea2ad4	2018.0	750000	

Out [75]:

	company_hash	email_hash	orgyear	ctc j
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	1100000
1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018.0	449999
2	qtrxvzwt xzegwgbb rxbxnta	f4fa64972185ac2b73e99c0cc10d1bf50d6dbfbc9a2cba	2018.0	620000
3	qtrxvzwt xzegwgbb rxbxnta	be3bcde831f8816f2bad9781f1282f09908f803c2fafb3	2018.0	950000
4	qtrxvzwt xzegwgbb rxbxnta	ddf45c7b7bd4c461890121c416b2fdff9ba34fbaea2ad4	2018.0	750000

In [76]: merged_data_frame2 = merged_data_frame2.merge(ctc_summary_company ,

2014.0

2017.0

1000000

600000

In [77]: | merged_data_frame2.head()

atrgxnnt xzaxv

atrgxnnt xzaxv

```
Out[77]:
                company_hash
                                                                        email_hash orgyear
                                                                                                  ctc j
                 atrgxnnt xzaxv
                                 6de0a4417d18ab14334c3f43397fc13b30c35149d70c05...
                                                                                      2016.0
                                                                                              1100000
                 atrgxnnt xzaxv
                                  a309a8c6610af7e9f0a88cfb67f9a0095b0dde63475475...
                                                                                      2019.0
                                                                                               500000
                 atrgxnnt xzaxv
                                 ffc974693a2bfd0326c707d8460d6783861a9497e538e2...
                                                                                      2017.0
                                                                                             1700000
```

In [78]: merged_data_frame2["Tier"] = merged_data_frame2.apply(labelling , a
In [79]: merged_data_frame2.head()

b4dcd1e7ac426014a32ae303e4b527325d482e4d2c4bef...

0d2f25432591093f5907a8681d600f869bbe7c2ae39cd7...

Out[79]:

	company_hash	email_hash	orgyear	ctc	j
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	1100000	_
1	atrgxnnt xzaxv	a309a8c6610af7e9f0a88cfb67f9a0095b0dde63475475	2019.0	500000	
2	atrgxnnt xzaxv	ffc974693a2bfd0326c707d8460d6783861a9497e538e2	2017.0	1700000	
3	atrgxnnt xzaxv	b4dcd1e7ac426014a32ae303e4b527325d482e4d2c4bef	2014.0	1000000	
4	atrgxnnt xzaxv	0d2f25432591093f5907a8681d600f869bbe7c2ae39cd7	2017.0	600000	

Analysis On Company and Job Position Level

In [80]: ctc_summary_company_job = df3.groupby(by = ["company_hash" , "job_p") ctc_summary_company_job.reset_index(inplace = True) ctc_summary_company_job.head()

Out[80]:

	company_hash	job_position	count	mean	std	min	25%	50%	
0	0	Other	1.0	100000.0	NaN	100000.0	100000.0	100000.0	
1	0000	Other	1.0	300000.0	NaN	300000.0	300000.0	300000.0	
2	01 ojztqsj	Android Engineer	1.0	270000.0	NaN	270000.0	270000.0	270000.0	
3	01 ojztqsj	Frontend Engineer	1.0	830000.0	NaN	830000.0	830000.0	830000.0	
4	05mz exzytvrny uqxcvnt rxbxnta	Backend Engineer	1.0	1100000.0	NaN	1100000.0	1100000.0	1100000.0	1

In [81]: merged_data_frame3 = merged_data_frame2.copy() merged_data_frame3.drop(["count","mean","std","min","25%","50%","75 merged_data_frame3 = merged_data_frame3.merge(ctc_summary_company_j merged_data_frame3["Class"] = merged_data_frame2.apply(labelling , merged data frame3.head()

Out[81]:

	company_hash	email_hash	orgyear	ctc	j
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	1100000	
1	atrgxnnt xzaxv	696f674fbc0d337b20152f91c43082bafaa243da70932c	2014.0	1070000	
2	atrgxnnt xzaxv	a309a8c6610af7e9f0a88cfb67f9a0095b0dde63475475	2019.0	500000	
3	atrgxnnt xzaxv	b4dcd1e7ac426014a32ae303e4b527325d482e4d2c4bef	2014.0	1000000	
4	atrgxnnt xzaxv	ffc974693a2bfd0326c707d8460d6783861a9497e538e2	2017.0	1700000	

In [82]: merged_data_frame3["Class"].value_counts()/len(merged_data_frame3)

Out[82]: 2

0.411459

1 0.381977

0.206564

Name: Class, dtype: float64

In [83]: merged_data_frame3.drop(["count","mean","std","min","25%","50%","75
merged_data_frame3.head()

Out[83]:

	company_hash	email_hash	orgyear	ctc	j
					_
(atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016.0	1100000	
•	atrgxnnt xzaxv	696f674fbc0d337b20152f91c43082bafaa243da70932c	2014.0	1070000	
2	2 atrgxnnt xzaxv	a309a8c6610af7e9f0a88cfb67f9a0095b0dde63475475	2019.0	500000	
;	atrgxnnt xzaxv	b4dcd1e7ac426014a32ae303e4b527325d482e4d2c4bef	2014.0	1000000	
4	atrgxnnt xzaxv	ffc974693a2bfd0326c707d8460d6783861a9497e538e2	2017.0	1700000	

```
In [107]: fig, axes = plt.subplots(3 , figsize = [10,10])
    sns.countplot(x = merged_data_frame3["Designation"] , ax = axes[0])
    sns.countplot(x = merged_data_frame3["Tier"] , ax = axes[1])
    sns.countplot(x = merged_data_frame3["Class"] , ax = axes[2])
    plt.show()
```


In [117]: merged_data_frame3[["Tier" , "Designation" , "Class"]].value_counts
Out[117]: <Axes: xlabel='Tier,Designation,Class'>


```
In [113]: fig, axes = plt.subplots(2 , figsize = [10,10])
    sns.histplot(x = merged_data_frame3["TY0E"] , ax = axes[0] ,bins=10
    sns.histplot(x = merged_data_frame3["Exp After ctc update"] , ax =
    plt.show()
```


In [235]: # It has been observed that most people have got their appraisals b

In [126]: merged_data_frame3.groupby(["company_hash" , "job_position"])["ctc"

Out[126]: <Axes: ylabel='company_hash,job_position'>

In [236]: # Lowest Combination of Company and Position with respect to ctc.
These People can be targeted.

In [127]: merged_data_frame3.groupby(["company_hash" , "job_position"])["ctc"

Out[127]: <Axes: ylabel='company_hash,job_position'>

In [237]: # Highest Combination of Company and Position with respect to ctc.

In [130]: fig, axes = plt.subplots(3 , figsize = [10,10])
 sns.lineplot(x =merged_data_frame3["TY0E"] ,y = merged_data_frame3[
 sns.lineplot(x =merged_data_frame3["TY0E"] ,y = merged_data_frame3[
 sns.lineplot(x =merged_data_frame3["TY0E"] ,y = merged_data_frame3[
 plt.show()

In [135]: sns.lineplot(y =merged_data_frame3["TY0E"] ,x = merged_data_frame3[

Out[135]: <Axes: xlabel='ctc', ylabel='TY0E'>

In [239]: # Designation flag is highest with 0-10 TYOE. # Tier flag is highest with 40-50 TYOE. # Class is similar to TIER.

Answering Questions:

In []:

In []: # Top 10 employees (earning more than most of the employees in the

In [138]: $merged_data_frame3[(merged_data_frame3["Tier"]==1) & (merged_data_frame3[) & (merged_data_$

Out[138]:

	company_hash	email_hash	orgyear	
152570	whmxw rgsxwo uqxcvnt rxbxnta	29a71dd13adf6d2d497571a565bb3096cf66cb46cd1ece	2015.0	1000
135810	obvqnuqxdwgb	5b4bed51797140db4ed52018a979db1e34cee49e27b488	2018.0	25
97637	aveegaxr xzntqzvnxgzvr hzxctqoxnj	06d231f167701592a69cdd7d5c825a0f5b30f0347a4078	2021.0	25(
96544	oygud 10x wgbbtqwt otqcxwto ucn rna	c84272422e4917b67dcadfc8c2e6dffbe4d018b9235ba6	2013.0	200
130287	vznxzg rvmo	634fd283565b8954513a6ad0e47cedb0fa8847923149fb	2019.0	200
159884	wrxwpgzwvqt qtnvxr ucn rna	3ad257a31e5448532319f105d5dd2097b5457001aab61e	2017.0	200
31945	fxuqg rxbxnta	89f343bf01094accb8b0b2c799499daf6bf881321db2e4	2017.0	200
108664	xzaxvmhrro	189dfe129dde29338bdbff63ced8c02dc3c2135fe6decc	2017.0	200
119751	axctqoxexta tztqsj ogrhnxgzo ucn rna	83f825e4d64d19bd374ea9ea4d5a16a0a22c08eb92e7ca	2018.0	200
130128	20152019	a947ac358ba9670159e9b8350ed4e64ee3fad1715521aa	2019.0	200

In []: #Top 10 employees of data science in Amazon / TCS etc earning more

In [140]: merged_data_frame3[(merged_data_frame3["Class"]==1) & (merged_data_

Out [140]:

	company_hash	email_hash	orgyear	
62644	mqxonrtwgzt v bvyxzaqv sqghu wgbuvzj	cda8d723438e81185d2ee8c348870a4612eea974cdb2db	2017.0	2000
70605	zgzt	268a5aa92f0b6d0c675fc9cc1e300eb0c5930a3a139a23	2021.0	2000
133258	ihvaqvnxw xzoxsyno ucn rna	bd222ea783ee372da4e0ad60fdccec0b8f37999a032025	2015.0	2000
91373	ptnovvr qtnvxr rru	72ed7ced98573f71c8f95bc8b75aac4f0677e8872c6bec	2019.0	1998
82473	myvoyjvb owyggr	ee8dd42d6ea8365909147d861c7978d19f727a8075ba96	2020.0	1025
114252	eqvhzygetq hov	2e1d492bc09bfe0d4cc9757a9c63a296c1527af1c8ecc8	2021.0	1000
167864	bvzyvnnvz wgrrtst	0a358600d0689dbe6c1bae2e27aeca2f248591361b6e65	2021.0	1000
110867	ptzgbt	4ddef8762b7585c6ee7b8c06834778f3aa00eb3be312b0	2020.0	1000
129169	xzzgcv ogrhnxgzo	6b6dd66bae787dd4dd417e1777f8ea5a057257e9019995	2016.0	1000
121330	utqtzsg	e7722fb701c61e5cad82c39ee8bf3debe160d429b72c64	2015.0	1000

In []: #Bottom 10 employees of data science in Amazon / TCS etc earning le

In [142]: merged_data_frame3[(merged_data_frame3["Class"]==3) & (merged_data_
Out[142]:

	company_hash email_has			С	
96391	bxyhu wgbbhzxwvnxgz	690f6fdab1ab7514a6a9325ebd6cfe910dbf12d46b6fde	2018.0	400	
130968	exznqhon ogrhnxgzo ucn rna	ab2dc9db23c3104f0b6b3dbd4cdd5bfb9e5829b8b7943d	2017.0	72(
114165	tkap	4ed3d04bca6467a839f7a4f878bc15737c3c4afa9cb3a5	2012.0	800	
107096	nyt mgongz wgzohrnxzs sqghu mws	cf663c71fc96db1ea5658342e2d73050b40ca479d324de	2016.0	800	
138819	ovuxtznzxnqg	d920a8aa9b63eb317a34bc6cfc4010ec1bb1146f149cb3	2016.0	900	
13336	ytfrtnn uvwpvqa tzntquqxot	8274b3188470cd1c4914e7face490111e27f239457e62d	2018.0	1000	
13200	hmtq	f091e63c9cc72c1159ad686e32a0a813a617976e44843e	2017.0	1080	
144370	nqtzavp	c5731552cb81ade004c50badb162f8d1ca616743c11343	2013.0	1400	
71267	eqttrvzwtq	10ea984d5c781f1faabc8867f4f4103a1fbf2ec76587bd	2012.0	2400	
149720	ojqvwhot hzxctqoxnj	84737b1d7c2ff2008c2c976f1b28d336d1caaa23159ca2	2018.0	2500	

In []: #Bottom 10 employees (earning less than most of the employees in th

In [143]: merged_data_frame3[merged_data_frame3["Class"]==3].sort_values(by =

Out[143]:

company_hash		email_hash	orgyear	cto
175325	xm	b8a0bb340583936b5a7923947e9aec21add5ebc50cd60b	2016.0	15
144477	hzxctqoxnj ge fvoyxzsngz	f7e5e788676100d7c4146740ada9e2f8974defc01f571d	2021.0	200
61587	gig	b995d7a2ae5c6f8497762ce04dc5c04ad6ec734d70802a	2018.0	600
8668	xb v onhatzn	4eea97c023bd58395edce18538831df9a735180f88f79d	2020.0	1000
156986	wgd vhngbgnxct xzw	4d18008fc2cb66e4b90f3798ccbbc4792dfd4bad5a7a87	2016.0	1000
167944	kvrgqv sqghu	ae625c7063c1f8194deadfb28905d5dcc6f9077274a083	2017.0	1000
51945	sttpoegqsttpo	1694233be08738b7b50bdb7649b792f0ab8a514c01bec9	2016.0	1000
149182	uvsotshqg hgr	fc6c6989648ca9a8e78932e583b3f4e6f75a43e0e6c84a	2015.0	1000
87662	onvqnhu	d9476096e4e5d6f0b0f6079b0543145f62b43c82478bbc	2018.0	1000
115915	cxo wvqttqo	daa966561c4087398b3c3b13855ce17adcf5e08dda803f	2012.0	1000

In []: #Top 10 companies (based on their CTC)

In [148]: merged_data_frame3[merged_data_frame3["Tier"]==1].sort_values("ctc"

Out[148]:

	company_hash	ctc
152570	whmxw rgsxwo uqxcvnt rxbxnta	1000150000
135810	obvqnuqxdwgb	25555555
97637	aveegaxr xzntqzvnxgzvr hzxctqoxnj	250000000
71487	qmo	200000000
87626	onvqnhu	200000000
75662	mvlvl vhng rna	200000000
49532	otre tburgjta	200000000
131945	evwxrxg	200000000
131955	ogzj	200000000
49545	otre tburgjta	200000000

```
In []: #Top 10 employees in Amazon- X department - having 5/6/7 years of e
```

In [149]: merged_data_frame3[(merged_data_frame3["Class"]==1) & (merged_data_

Out[149]:

	company_hash	email_hash	orgyear				
135810	obvqnuqxdwgb	5b4bed51797140db4ed52018a979db1e34cee49e27b488	2018.0	255			
115634	ztnowqxmto	23f778fcb9c8c1cfc177fa5a1c892feca9e24e069e57f5	2018.0	2000			
129381	wyvrrtzst xzonxnhnxgz	7e447c2a4390a212cb825a72991d04251b2d943a1daf8d	2016.0	2000			
131945	evwxrxg	70a9894df841c880c220dbfd764e664b9e920be7f1a6b5	2016.0	2000			
131619	i wgzztin mhoxztoo ogrhnxgzo ucn rna	0a5eaf16728b44b9b5c8ac562df307860433f2fc7ab003	2017.0	2000			
130185	guug bgmxrto	9f36d2d7710f7c61aa1a31b86f6bf2d5b5664d71e011f2	2017.0	2000			
130094	vour	bc78793b18787e45a5f9509e2acbc4c03095f466b81707	2018.0	2000			
129897	dgq avnv tdwyvzst	df86594f0ff614dc9426cab6c87c2dd4a36caad56eeba4	2016.0	2000			
129896	bvqctr xzegwgbb ucn rna	a9ac257b8552a8ae1e607f7481d9ce5887fc1aa5970c5d	2018.0	2000			
129885	ngfvqao xzaxv	d5feb863469a246ff703b80fec5a9eaedee1e86ed64f61	2016.0	2000			
<pre>merged_data_frame4 = merged_data_frame3.copy()</pre>							

```
In [151]:
```

```
In [152]: from sklearn.preprocessing import LabelEncoder
          label = LabelEncoder()
          merged_data_frame4["company_hash"] = label.fit_transform(merged_dat
          merged_data_frame4["job_position"] = label.fit_transform(merged_dat
          merged_data_frame4["email_hash"] = label.fit_transform(merged_data_
```

```
In [154]: merged data encoded = merged data frame4.copy()
```

```
In [155]: merged_data_encoded.head()
```

```
Out[155]:
                                               ctc job_position ctc_updated_year TYOE
              company hash email hash orgyear
                                                                                  up
           0
                      968
                               65738
                                     2016.0 1100000
                                                         458
                                                                      2020.0
                                                                              7.0
                                                         458
            1
                      968
                               63094
                                     2014.0 1070000
                                                                      2018.0
                                                                              9.0
                      968
                                     2019.0
                                            500000
                                                         140
           2
                              97587
                                                                      2020.0
                                                                              4.0
                      968
                                     2014.0 1000000
                              108337
                                                          140
                                                                      2018.0
                                                                              9.0
                      968
                                     2017.0 1700000
                                                         208
                                                                      2020.0
                              153209
                                                                              6.0
In [156]:
           scaler = StandardScaler()
           scaled = scaler.fit transform(merged data encoded)
           scaled
Out[156]: array([[-1.65380593e+00, -2.46594672e-01,
                                                         2.34293053e-01, ...,
                   -6.87605701e-01, 2.34872799e-01, 2.34872799e-01],
                   [-1.65380593e+00, -3.06330884e-01, -2.36190995e-01, ...,
                   -6.87605701e-01, 2.34872799e-01, 1.57384581e+00],
                                                         9.40019125e-01, ...,
                   [-1.65380593e+00, 4.72973628e-01,
                   -6.87605701e-01,
                                       1.57384581e+00, -1.10410021e+00],
                   [ 1.50179732e+00, -1.16143532e+00, -2.36190995e-01, ...,
                   -6.87605701e-01, -1.10410021e+00, -1.10410021e+00],
                   [-7.55502670e-01, -4.33349408e-01, -4.71433019e-01, ...,
                   -6.87605701e-01, -1.10410021e+00, -1.10410021e+00],
                   [-1.45781735e+00, -2.83737763e-01, -9.48971086e-04, ...,
                   -6.87605701e-01, -1.10410021e+00, -1.10410021e+00]])
In [159]:
          final_database = pd.DataFrame(data = scaled , columns=merged_data_e
```

In [160]: final_database

Out[160]:

	company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year	
0	-1.653806	-0.246595	0.234293	-0.104926	0.700790	0.374759	-
1	-1.653806	-0.306331	-0.236191	-0.107351	0.700790	-1.117971	
2	-1.653806	0.472974	0.940019	-0.153427	-0.989553	0.374759	-
3	-1.653806	0.715850	-0.236191	-0.113010	-0.989553	-1.117971	
4	-1.653806	1.729648	0.469535	-0.056425	-0.628096	0.374759	-
178477	1.386022	-1.054728	-0.706675	-0.024090	0.711421	-1.117971	
178478	1.361067	0.037062	-0.471433	-0.125943	0.711421	-0.371606	
178479	1.501797	-1.161435	-0.236191	0.231836	0.711421	-3.357065	
178480	-0.755503	-0.433349	-0.471433	-0.186974	0.711421	-2.610700	
178481	-1.457817	-0.283738	-0.000949	0.000160	0.711421	-0.371606	

178482 rows × 11 columns

In [167]: plt.figure(figsize=(10,8))
 sns.heatmap(final_database.corr(), annot=True)

Out[167]: <Axes: >

Modelling

```
In [168]: wcss = []
for k in range(1, 10):
    model = KMeans(n_clusters = k)
    model.fit(scaled)
    wcss.append(model.inertia_)
```

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning: The default value of `n _init` will change from 10 to 'auto' in 1.4. Set the value of `n_i nit` explicitly to suppress the warning

warnings.warn(

Out[177]: Text(0, 0.5, 'WCSS')

plt.ylabel("WCSS")

In [240]: # From the elbow method , there should be 5 Clusters

```
In [214]: kmean = KMeans(n_clusters = 5)
kmean.fit(scaled)
kmean.labels_ , kmean.inertia_
```

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4 . Set the value of `n_init` explicitly to suppress the warning

Out[214]: (array([1, 2, 1, ..., 2, 2, 1], dtype=int32), 1215155.2024409636)

```
In [215]: final_database["labels"] = kmean.labels_
```

In [216]: $sns.scatterplot(x = final_database["TY0E"] , y = final_database["ct$

Out[216]: <Axes: xlabel='TY0E', ylabel='ctc'>


```
In [217]: import plotly.express as px

fig = px.scatter_3d(final_datase, x='Class', y='Tier', z='ctc', col
fig.update_traces(marker=dict(size=2), selector=dict(mode='markers'
fig.show()
```

```
In [218]: import plotly.express as px

fig = px.scatter_3d(final_datase, x='job_position', y='TYOE', z='ct
fig.update_traces(marker=dict(size=2), selector=dict(mode='markers'
fig.show()
```

Hierarchical Clustering

```
In [203]: hc_d=final_database.sample(5000)
X = hc_d.copy()
```

```
In [204]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaler.fit(X)
    X = scaler.transform(X)
```

In [205]: scaled_df = pd.DataFrame(X, columns=hc_d.columns, index=hc_d.index)

In [206]: import scipy.cluster.hierarchy as sch
Z = sch.linkage(scaled_df, method='ward', metric='euclidean')

In [207]: fig, ax = plt.subplots(figsize=(20, 12))
 sch.dendrogram(Z, labels=scaled_df.index, ax=ax, color_threshold=2)
 plt.xticks(rotation=90)
 ax.set_ylabel('distance')

Out[207]: Text(0, 0.5, 'distance')

In []: # Numbers of clusters are inconclusive with the help of Dendogram.

In [220]: **from** sklearn.cluster **import** AgglomerativeClustering

hc = AgglomerativeClustering(n_clusters = 5, affinity='euclidean', hc.fit(X)

/Users/arjunarora/Library/Python/3.9/lib/python/site-packages/skle arn/cluster/_agglomerative.py:983: FutureWarning:

Attribute `affinity` was deprecated in version 1.2 and will be rem oved in 1.4. Use `metric` instead

Out[220]: AgglomerativeClustering(affinity='euclidean', n_clusters=5)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [227]: | clusters = pd.DataFrame(X, columns=final_database.columns) clusters['HC_labels'] = hc.labels_ clusters.head(10)

Out[227]:

	company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year	TY
0	-1.496995	-0.075133	-3.727946	0.503442	-0.351254	-2.730877	3.727
1	-0.221412	-1.123954	1.168806	-0.151704	-0.971477	1.107643	-1.168
2	0.720863	1.382563	0.679131	-0.099858	0.743576	-1.195469	-0.679
3	-0.238557	0.715556	0.923968	-0.128137	1.406945	0.339939	-0.923
4	-0.088870	-0.177754	0.923968	18.630710	-0.604736	0.339939	-0.923
5	1.458639	-0.739708	0.679131	-0.137564	-0.604736	-0.427765	-0.679
6	-0.920455	0.147582	1.413643	-0.163016	-0.367433	1.107643	-1.413
7	0.852605	-0.143562	0.923968	-0.161130	2.976381	1.107643	-0.923
8	-0.131866	1.256018	0.923968	-0.062152	0.754362	-0.427765	-0.923
9	1.080556	-1.586445	1.168806	-0.109284	0.754362	1.107643	-1.168

```
In [234]: import plotly.express as px

fig = px.scatter_3d(final_datase, x='job_position', y='Class', z='c
fig.update_traces(marker=dict(size=2), selector=dict(mode='markers'
fig.show()
```

```
In [230]:
gmm = GaussianMixture(n_components=3).fit(scaled)
```

```
In [231]: final_database["GMM Labels"]=gmm.predict(scaled)
```

fig.show()

```
In [233]:
    fig = px.scatter_3d(final_database, x='Tier', y='Class', z='ctc', c
    fig.update_traces(marker=dict(size=2), selector=dict(mode='markers')
```

Actionable Insights

- 1. Organisations with the highest Employees in the data set
- nvnv wgzohrnvzwj otqcxwto
- xzegojo
- vbvkgz
- zgn vuurxwvmrt vwwghzn
- 2. Highest Current Jobs with percentages.
- Backend Engineer 28.414481
- FullStack Engineer 16.125286
- Frontend Engineer 6.796015
- Engineering Leadership 4.481964
- QA Engineer 4.297336
- 3. Due to outliers/high income of some professionals, ctc distribution seems normal but skewed to the left.
- 4. Most professionals have got ctc updated in the span of 3 years(2019-2021)
- 5. It has been observed that there are multiple duplicate values, where an entry is repeated but with Null Job Position in the data set.
- There are mutplitple incorrect values in the orgyear, which do not make sense.
 Hence, orgyear distribution is skwewed. Values have been imputed with Business Logic.
- 7. Highest Number of professionals have joined within the range of 2010-2020.
- 8. Highesr number of Professionals are Class 2 and tier 2.
- 9. Lowest number of Professionals are Class 3 and tier 3.
- 10. Tier Designation Class Vs CTC. Below combinations should be focused as they have low ctc.
 - 131
 - 323
 - 322
 - 232
- 11. Designation flag is highest with 0-10 TYOE.
- 12. Tier flag is highest with 40-50 TYOE.
- 13. Class is similar to TIER.
- 14. Positive co relation between CTC and TYOE
- 15. It has been observed that most people have got their appraisals between 2-4 years.
- 16. Elbow method suggests 5 Clusters

Recommendations

- 1. There should be 9 clusters according to business sense. Tier X Class. But as the elbow method suggests we are working on 5-6 Clusters
- 2. Data does not provide clear clusters.
- 3. Company should focus on lower Tier Designation Class combinations mentioned.
- 4. Company should target professionals with more than 2-4 years of Experience after CTC Update.
- 5. Company should target Data Professionals as current data suggests very few of them in the industry, considering the Future Al Transition.