

EL2-Praktikum #07: Spule und Wechselstrom mit LTspice

In diesem Praktikum wird messtechnisch die Induktivität einer Luftspule über ein gewisses Frequenzband bestimmt und mit dem Nennwert verglichen.

Vorbereitende Berechnungen

Die im Labor vorhandene Luftspule weist eine Induktivität von 2.2 mH und einen Drahtwiderstand von 2 Ω auf. Damit der Drahtwiderstand in den folgenden Messungen vernachlässigt werden kann, ist die unterste Messfrequenz so zu wählen, dass der Widerstandswert 1% der Impedanz der Induktivität ausmacht. Berechnen Sie diese Startfrequenz f_0 .

Die Spule werde direkt an den Funktionsgenerator TG5011 angeschlossen. Der TG5011 wird auf Sinus-Spannung, 20 $V_{Spitze-Spitze}$ (High-Z, d.h. Leerlaufspannung) eingestellt. Der Generator weist einen Innenwiderstand von 50 Ω auf.

Berechnen Sie die Amplitude der Spannung an der Spule und die Amplitude des Stroms durch die Spule bei f_0 und bei $10 \cdot f_0$.

Messgeräte und ihre parasitären Eigenschaften

Die Startfrequenz f_0 ist wesentlich grösser als die maximale Messfrequenz der Fluke DMM 175 Multimeter, welche bei 1 kHz liegt. Deshalb muss die Spannung an der Spule mit dem Oszilloskop gemessen werden. Das Oszilloskop Tektronix TDS2012 hat einen Eingangswiderstand von $R_{\rm OSZ}$ = 1 M Ω parallel zu $C_{\rm OSZ} \approx 100$ pF ohne Sonde. Mit der 10X Sonde wird $R_{\rm OSZ}$ = 10 M Ω und $C_{\rm OSZ} \approx 12$ pF.

Beeinflussen diese Messgeräteeigenschaften die Resultate im Frequenzbereich f_0 bis $10 \cdot f_0$? Spielt es eine Rolle, ob man mit oder ohne Sonde misst?

Strommessung

Im realen Praktikum wird die Stromstärke mit einer Stromzange gemessen. Dies entfällt hier und muss auch nicht berücksichtig werden, da der Einfluss der Stromzange auf die Strommessung vernachlässigbar ist.

Messaufgabe 1

Modellieren Sie die Schaltung ohne Oszilloskop und ohne Stromzange in LTspice. Messen Sie zunächst die Spannung über der Spule U_S und den Strom durch die Spule I_S bei der Startfrequenz f_0 . Nehmen Sie sodann ca. 10 Messpunkt-Paare bis $10 \cdot f_0$ auf.

Auswertungsaufgabe 1

Berechnen Sie aufgrund der Messwerte den Verlauf der Impedanz der Spule und stellen Sie diese in einer doppelt-logarithmischen Darstellung dar (x-Achse: Frequenz, y-Achse: Impedanz, beide Achsen logarithmisch skaliert). Welche Kurvenform ergibt sich? Stimmt diese Kurvenform mit der erwarteten Kurvenform überein?

Messaufgabe 2

Repetieren Sie die obigen Messungen im Bereich 10 Hz bis 1 kHz. Da der Drahtwiderstand nicht vernachlässigt werden kann, entspricht das Messobjekt einer RL Serieschaltung.

Auswertungsaufgaben 2

Stellen Sie die Impedanz der RL-Schaltung wieder mit doppelt logarithmische Achsen dar. Erklären Sie, wie der prinzipielle Verlauf der Kurve basierend auf den Elementen R und L sowie ihrer Zusammenschaltung zustande kommt.