Variational models

Dustin Tran
Department of Computer Science
Columbia University

Joint work with: Rajesh Ranganath, David M. Blei

[Rezende et al., 2014; Ranganath et al., 2015; Gregor et al., 2015]

- Deep generative models provide complex representations of data.
- Learning these representations are fundamentally tied to their inference method from data.
- With variational inference methods, the bottleneck is specifying a rich family of approximating distributions.

How we can build expressive variational families in a black box framework, which adapt to the model complexity at hand?

Background

Given:

- Data set x.
- Joint probability model $p(\mathbf{x}, \mathbf{z})$, with latent variables $\mathbf{z}_1, \dots, \mathbf{z}_d$.

Goal:

• Compute posterior $p(\mathbf{z} \mid \mathbf{x})$.

Variational inference:

- Posit a family of distributions $\{q(\mathbf{z}; \lambda) : \lambda \in \Lambda\}$.
- ullet Minimize $\mathrm{KL}(q \parallel p)$, which is equivalent to maximizing the <code>ELBO</code>

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{z};\lambda)}[\log p(\mathbf{x} \mid \mathbf{z})] - \mathsf{KL}(q(\mathbf{z};\lambda) \| p(\mathbf{z})).$$

• Commonly use a mean-field distribution $q(\mathbf{z}; \lambda) = \prod_{i=1}^d q(\mathbf{z}_i; \lambda_i)$.

Variational models

Interpret q as a variational model for posterior latent variables z.

Hierarchical variational models: prior $q(\lambda; \theta)$, likelihood $\prod_i q(\mathbf{z}_i \mid \lambda_i)$.

$$q(\mathbf{z}; \theta) = \int \left[\prod_{i} q(\mathbf{z}_{i} \mid \lambda_{i}) \right] q(\lambda; \theta) d\lambda$$

- Hierarchical variational models unify other expressive approximations (mixture, structured, MCMC, copula,...).
- Their expressiveness is determined by the complexity of the prior $q(\lambda)$.

Prior: Gaussian processes

Consider a data set of m source-target pairs $\mathcal{D} = \{(\mathbf{s}_n, \mathbf{t}_n)\}_{n=1}^m$, with $\mathbf{s}_n \in \mathbb{R}^c$ and $\mathbf{t}_n \in \mathbb{R}^d$.

We aim to learn a function $f:\mathbb{R}^c o \mathbb{R}^d$ over all source-target pairs,

$$\mathbf{t}_n = f(\mathbf{s}_n), \qquad p(f) = \prod_{i=1}^a \mathcal{GP}(f_i; \mathbf{0}, \mathbf{K}),$$

where each $f_i: \mathbb{R}^c \to \mathbb{R}$. Given data \mathcal{D} , the conditional $p(f \mid \mathcal{D})$ forms a distribution over mappings which interpolate between input-output pairs.

(fig. by Ryan Adams)

Variational Gaussian process

 $\mathcal{D} = \{(\mathbf{s}_n, \mathbf{t}_n)\}_{n=1}^m$ is *variational data*, comprising input-output pairs. θ are kernel hyperparameters.

Generative process:

- Draw latent input $\xi \in \mathbb{R}^c$: $\xi \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- Draw non-linear mapping $f: \mathbb{R}^c \to \mathbb{R}^d$ conditioned on \mathcal{D} : $f \sim \prod_{i=1}^d \mathcal{GP}(\mathbf{0}, \mathbf{K}) \mid \mathcal{D}$.
- Draw approximate posterior samples $\mathbf{z} \in \operatorname{supp}(p)$: $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_d) \sim \prod_{i=1}^d q(\mathbf{z} \mid f_i(\xi))$.

Variational Gaussian process

The density of the VGP is

$$q_{ ext{ iny VGP}}(\mathbf{z}; heta,\mathcal{D}) = \iint \left[\prod_{i=1}^d q(\mathbf{z}_i\,|\,f_i(\xi))
ight] \left[\prod_{i=1}^d \mathcal{GP}(f_i;\mathbf{0},\mathbf{K})\,|\,\mathcal{D}
ight] \mathcal{N}(\xi;\mathbf{0},\mathbf{I})\,\mathrm{d}f\,\mathrm{d}\xi.$$

- The VGP forms an ensemble of mean-field distributions—"weights" (mixing measure) are specified by a Bayesian nonparametric prior.
- \bullet The variational data ${\cal D}$ anchors the random non-linear mappings at certain input-output pairs.

Variational Gaussian process

Universal Approximation Theorem. For any posterior distribution $p(\mathbf{z} \mid \mathbf{x})$ with a finite number of latent variables and continuous inverse CDF, there exist a set of parameters (θ, \mathcal{D}) such that

$$\mathsf{KL}(q_{\scriptscriptstyle \mathrm{VGP}}(\mathbf{z}; \theta, \mathcal{D}) \, \| \, p(\mathbf{z} \, | \, \mathbf{x})) = 0.$$

The ${
m VGP}$'s complexity grows efficiently and towards any distribution, adapting to the generative model's complexity at hand.

The ELBO is analytically intractable due to the density $q_{VGP}(\mathbf{z})$.

We present a new variational lower bound:

$$\begin{split} \widetilde{\mathcal{L}} &= \mathbb{E}_{q_{\text{\tiny VGP}}}[\log p(\mathbf{x} \mid \mathbf{z})] \\ &- \mathbb{E}_{q_{\text{\tiny VGP}}}\Big[\left. \text{KL} \left(q(\mathbf{z} \mid f(\xi)) \middle\| p(\mathbf{z}) \right) + \text{KL} \left(q(\xi, f) \middle\| r(\xi, f \mid \mathbf{z}) \right) \right], \end{split}$$

where r is an auxiliary distribution.

Auto-encoder interpretation. Maximize the expected negative reconstruction error, regularized by expected divergences. It is a nested VAE bound.

$$\begin{split} \widetilde{\mathcal{L}}(\theta, \phi) &= \mathbb{E}_{q_{\text{VGP}}}[\log p(\mathbf{x} \mid \mathbf{z})] \\ &- \mathbb{E}_{q_{\text{VGP}}}\Big[\operatorname{KL}\Big(q(\mathbf{z} \mid f(\xi)) \Big\| p(\mathbf{z}) \Big) + \operatorname{KL}\Big(q(\xi, f; \theta) \Big\| r(\xi, f \mid \mathbf{z}; \phi) \Big) \Big] \end{split}$$

1. Inference networks. Specify inference networks to parameterize both the variational and auxiliary models:

$$\mathbf{x}_n \mapsto q(\mathbf{z}_n \mid \mathbf{x}_n; \mathcal{D}_n), \qquad \mathbf{x}_n, \mathbf{z}_n \mapsto r(\xi_n, f_n \mid \mathbf{x}_n, \mathbf{z}_n; \phi_n),$$

where r is specified as a fully factorized Gaussian with $\phi_n = (\mu_n, \sigma_n^2 \mathbf{I})$. This amortizes the cost of computation by making all parameters global.

$$\begin{split} \widetilde{\mathcal{L}}(\theta, \phi) &= \mathbb{E}_{q_{\text{\tiny VGP}}}[\log p(\mathbf{x} \mid \mathbf{z})] \\ &- \mathbb{E}_{q_{\text{\tiny VGP}}}\Big[\operatorname{KL}\Big(q(\mathbf{z} \mid f(\xi)) \Big\| p(\mathbf{z}) \Big) + \operatorname{KL}\Big(q(\xi, f; \theta) \Big\| r(\xi, f \mid \mathbf{z}; \phi) \Big) \Big] \end{split}$$

2. Analytic KL terms.

- KL $\left(q(\mathbf{z} \mid f(\xi)) \mid p(\mathbf{z})\right)$: Standard in VAEs—it is analytic for deep generative models such as the DLGM and DRAW.
- KL $\left(q(\xi,f) \middle| r(\xi,f \mid \mathbf{z})\right)$: Always analytic as we've specified both joint distributions to be Gaussian.

$$\begin{split} \widetilde{\mathcal{L}}(\theta, \phi) &= \mathbb{E}_{q_{\text{\tiny VGP}}}[\log p(\mathbf{x} \mid \mathbf{z})] \\ &- \mathbb{E}_{q_{\text{\tiny VGP}}}\Big[\left. \text{KL} \left(q(\mathbf{z} \mid f(\xi)) \middle\| p(\mathbf{z}) \right) + \text{KL} \left(q(\xi, f; \theta) \middle\| r(\xi, f \mid \mathbf{z}; \phi) \right) \right] \end{split}$$

3. Reparameterization.

- For $\xi \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, apply location-scale transform $\mathbf{f}(\xi; \theta)$. This implies $\mathbf{f}(\xi; \theta) = f(\xi)$ for $f \sim \prod_{i=1}^d \mathcal{GP}(\mathbf{0}, \mathbf{K}) \mid \mathcal{D}$.
- Suppose the mean-field is also reparameterizable: let $\epsilon \sim w$ such that $\mathbf{z}(\epsilon;\mathbf{f}) \sim q(\mathbf{z}\,|\,f(\xi))$.

The reparameterized variational lower bound is

$$\begin{split} \widetilde{\mathcal{L}}(\theta,\phi) &= \mathbb{E}_{\mathcal{N}(\xi)} \Big[\mathbb{E}_{w(\epsilon)} \Big[\log p(\mathbf{x} \mid \mathbf{z}(\epsilon; \mathbf{f})) \Big] \Big] \\ &- \mathbb{E}_{\mathcal{N}(\xi)} \Big[\mathbb{E}_{w(\epsilon)} \Big[\operatorname{KL}(q(\mathbf{z} \mid \mathbf{f}) || p(\mathbf{z})) + \operatorname{KL}(q(\xi, f; \theta) || r(\xi, f \mid \mathbf{z}(\epsilon; \mathbf{f}); \phi)) \Big] \Big]. \end{split}$$

Run stochastic optimization:

- Stochastic gradients exhibit low variance due to analytic KL terms and reparameterization.
- Complexity is linear in the number of latent variables, which is the same as a mean-field approximation!

Experiments: Binarized MNIST

Model	$-\log p(\mathbf{x})$	\leq
DLGM + VAE [Burda et al., 2015]		86.76
DLGM + HVI (8 leapfrog steps) [Salimans et al., 2015]	85.51	88.30
DLGM + NF ($k = 80$) [Rezende + Mohamed, 2015]		85.10
EoNADE-5 2hl (128 orderings) [Raiko et al., 2015]	84.68	
DBN 2hl [Murray + Salakhutdinov, 2009]	84.55	
DARN 1hl [Gregor et al., 2014]	84.13	
Convolutional VAE + HVI [Salimans et al., 2015]	81.94	83.49
DLGM 2hl + IWAE ($k = 50$) [Burda et al., 2015]		82.90
DRAW [Gregor et al. 2015]		80.97
DLGM 1hl + VGP		83.64
DLGM 2hl + VGP		81.90
DRAW + VGP		80.11

We also find richer latent representations than the VAE or IWAE.

Experiments: Sketch

Model	Epochs	$\leq -\log$	$p(\mathbf{x})$
DRAW DRAW + VGP	100 200 300 100 200 300	526.8 479.1 464.5 475.9 430.0 425.4	BABBAB BABAB

Data set of 20,000 human sketches equally distributed over 250 object categories.

The $\rm VGP$ (top) learns texture and sharpness, able to sketch more complex shapes than the standard $\rm DRAW$ (bottom).

Summary

- Introduced the framework of variational models.
- Developed the variational Gaussian process—proven to be a universal approximator.
- Derived scalable black box inference—three key ingredients with inference networks, analytic KL terms, and reparameterization.

Discussion

- Can we apply black box variational inference for more complicated posterior estimands of interest?
- Can we obtain theoretical guarantees similar to Monte Carlo methods?
- Can we extend these results to learning Bayesian nonparametric models (without truncation)?
- How do we solve the automation challenges when integrating the VGP into ADVI?