(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. Februar 2006 (23.02.2006)

(10) Internationale Veröffentlichungsnummer WO 2006/018127 A1

(51) Internationale Patentklassifikation⁷: C08L 67/02

(21) Internationales Aktenzeichen:

PCT/EP2005/008339

(22) Internationales Anmeldedatum:

2. August 2005 (02.08.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10 2004 038 979.9 10. August 2004 (10.08.2004)

DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): EIPPER, Andreas [DE/DE]; Von Sturmfederstr. 30a, 67067 Ludwigshafen (DE). BRUCHMANN, Bernd [DE/DE]; Bahnhof-58, 67251 Freinsheim (DE). WEISS, Carsten [DE/DE]; Leuschnerstrasse 42, 67063 Ludwigshafen (DE). STUMBE, Jean-Francois [FR/FR]; 10, rue de Gresswiller, F-67200 Strasbourg (FR).
- (74) Gemeinsamer Vertreter: BASF AKTIENGE-SELLSCHAFT; 67056 Ludwigshafen (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: IMPACT-RESISTANT MODIFIED POLYESTER COMPRISING HYPERBRANCHED POLYESTERS/POLYCAR-**BONATES**

(54) Bezeichnung: SCHLAGZÄHMODIFIZIERTE POLYESTER MIT HYPERVERZWEIGTEN POLYESTERN/POLYCAR-

(57) Abstract: Thermoplastic molding compounds comprising: A) 10 to 98 % by weight of at least one thermoplastic polyester, B) 0.01 to 50 % by weight of B1) at least one highly branched or hyperbranched polycarbonate having an OH number of 1 to 600 mg KOH/g of polycarbonate (according to DIN 53240, part 2), or B2) at least one highly branched or hyperbranched type A_xB_y polyester, wherein x is at least 1.1 and y at least 2.1 and the mixtures thereof, C) 1 to 40 % by weight of an impact-resistant modified polymer, D) 0 to 60 % by weight of other additives, whereby the sum of the weight percentages of components A) to D) adds up to 100 %.

(57) Zusammenfassung: Thermoplastische Formmassen, enthaltend: A) 10 bis 98 Gew.-% mindestens eines thermoplastischen Polyesters, B) 0,01 bis 50 Gew.-% B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates mit einer OH-Zahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder B2) mindestens eines hoch- oder hyperverzweigten Polyesters des Typs A_xB_y mit x mindestens 1,1 und y mindestens 2,1 oder deren Mischungen C) 1 bis 40 Gew.-% eines schlagzähmodifizierenden Polymeren, D) 0 bis 60 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.

Schlagzähmodifizierte Polyester mit hyperverzweigten Polyestern/Polycarbonaten

Beschreibung

- 5 Die Erfindung betrifft thermoplastische Formmassen, enthaltend
 - A) 10 bis 98 Gew.-% mindestens eines thermoplastischen Polyesters,
 - B) 0,01 bis 50 Gew.-%
 - B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates mit einer OH-Zahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder
 - B2) mindestens eines hoch- oder hyperverzweigten Polyesters des Typs A_xB_y mit x mindestens 1,1 und y mindestens 2,1 oder deren Mischungen
 - C) 1 bis 40 Gew.-% eines schlagzähmodifizierenden Polymeren,
- 15 D) 0 bis 60 Gew.-% weiterer Zusatzstoffe,

wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.

Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Formmassen 20 zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art, sowie die hierbei erhältlichen Formkörper.

Polycarbonate werden üblicherweise aus der Reaktion von Alkoholen mit Phosgen oder aus der Umesterung von Alkoholen oder Phenolen mit Dialkyl- oder Diarylcarbonaten erhalten. Technisch bedeutend sind aromatische Polycarbonate, die zum Beispiel aus Bisphenolen hergestellt werden, aliphatische Polycarbonate spielen vom Marktvolumen her gesehen bisher eine untergeordnete Rolle. Siehe dazu auch Becker/Braun, Kunststoff-Handbuch Bd. 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl-Hanser-Verlag, München 1992, Seiten 118 - 119.

30

25

10

Die beschriebenen aliphatischen Polycarbonate sind in der Regel linear oder aber mit einem geringen Verzweigungsgrad aufgebaut. So beschreibt die US 3,305,605 die Verwendung fester linearer Polycarbonate mit einer Molmasse oberhalb 15000 Da als Weichmacher für Polyvinylpolymere.

35

Zur Verbesserung der Fließfähigkeit werden üblicherweise zu Thermoplasten niedermolekulare Additive zugegeben. Die Wirkung derartiger Additive ist jedoch stark beschränkt, da z.B. die Abnahme der mechanischen Eigenschaften bei Erhöhung der
Zugabemenge des Additivs nicht mehr tolerierbar ist.

40

Definiert aufgebaute, hochfunktionelle Polycarbonate sind erst seit kurzer Zeit bekannt.

S. P. Rannard und N. J. Davis, J. Am. Chem. Soc. 2000, 122, 11729, beschreiben die Herstellung von perfekt verzweigten dendrimeren Polycarbonaten durch Reaktion von Carbonylbisimidazol als Phosgen-analoger Verbindung mit Bis-hydroxyethylamino-2-propanol. Synthesen zu perfekten Dendrimeren sind vielstufig, daher kostenintensiv und für die Übertragung in einen industriellen Maßstab eher ungeeignet.

2

D.H. Bolton und K. L. Wooley, Macromolecules 1997, 30, 1890, beschreiben die Herstellung von hochmolekularen, sehr starren hyperverzweigten aromatischen Polycarbonaten durch Umsetzung von 1,1,1-Tris(4'-hydroxy)phenylethan mit Carbonylbisimidazol.

Hyperverzweigte Polycarbonate lassen sich auch gemäß WO 98/50453 herstellen. Nach dem dort beschriebenen Verfahren werden Triole wiederum mit Carbonylbisimidazol umgesetzt. Es entstehen zunächst Imidazolide, die dann intermolekular zu den Polycarbonaten weiterreagieren. Nach der genannten Methode fallen die Polycarbonate als farblose oder blassgelbe gummiartige Produkte an.

Die genannten Synthesen zu hoch- oder hyperverzweigten Polycarbonaten weisen folgende Nachteile auf:

20

5

10

15

- a) die hyperverzweigten Produkte sind entweder hochschmelzend oder aber gummiartig, dadurch wird eine spätere Verarbeitbarkeit deutlich eingeschränkt.
- b) während der Reaktion freiwerdendes Imidazol muß aufwändig aus dem Reaktionsgemisch entfernt werden.
- 25 c) die Reaktionsprodukte enthalten immer terminale Imidazolid-Gruppen. Diese Gruppen sind labil und müssen über einen Folgeschritt z.B. in Hydroxylgruppen umgewandelt werden.
 - d) Carbonyldiimidazol ist eine vergleichsweise teure Chemikalie, die die Einsatzstoffkosten stark erhöht.

30

Zur Verbesserung der Fließfähigkeit werden üblicherweise zu teilkristallinen Thermoplasten niedermolekulare Additive zugegeben. Die Wirkung derartiger Additive ist jedoch stark beschränkt, da z.B. die Abnahme der mechanischen Eigenschaften ab einer bestimmten Zugabemenge des Additivs nicht mehr tolerierbar ist.

35

40

Aus der WO-97/45474 sind Thermoplastzusammensetzungen bekannt, welche dendrimere Polyester als AB₂-Molekül in einem Polyester enthalten. Hierbei reagiert ein mehrfunktioneller Alkohol als Kernmolekül mit Dimethylpropionsäure als AB₂-Molekül zu einem dendrimeren Polyester. Dieser enthält nur OH-Funktionalitäten am Ende der Kette. Nachteilig an diesen Mischungen ist die hohe Glastemperatur der dendrimeren Polyester, die vergleichsweise aufwändige Herstellung und vor allem die schlechte Löslichkeit der Dendrimere in der Polyestermatrix.

Gemäß der Lehre der DE-A 101 32 928 führt die Einarbeitung derartiger Verzweiger mittels Konfektionierung und Nachkondensation in fester Phase zu einer Verbesserung der Mechanik (Molekulargewichtsaufbau). Nachteilig an der beschriebenen Verfahrensvariante ist die lange Herstellzeit sowie bereits oben aufgeführten nachteiligen Eigenschaften.

In den DE 102004 005652.8 und DE 102004 005657.9 wurden bereits neue Additive zur Fließverbesserung für Polyester vorgeschlagen.

10

20

30

40

5

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, thermoplastische Polyesterformmassen zur Verfügung zu stellen, welche eine gute Fließfähigkeit und gleichzeitig gute mechanische Eigenschaften aufweisen.

Demgemäß wurden die eingangs definierten Formmassen gefunden. Bevorzugte Ausführungsformen sind den Unteransprüchen zu entnehmen.

Als Komponente (A) enthalten die erfindungsgemäßen Formmassen 10 bis 98, bevorzugt 30 bis 97,99 und insbesondere 30 bis 95 Gew.-% mindestens eines thermoplastischen Polyesters, welcher verschieden von B) ist.

Allgemein werden Polyester A) auf Basis von aromatischen Dicarbonsäuren und einer aliphatischen oder aromatischen Dihydroxyverbindung verwendet.

25 Eine erste Gruppe bevorzugter Polyester sind Polyalkylenterephthalate, insbesondere solche mit 2 bis 10 C-Atomen im Alkoholteil.

Derartige Polyalkylenterephthalate sind an sich bekannt und in der Literatur beschrieben. Sie enthalten einen aromatischen Ring in der Hauptkette, der von der aromatischen Dicarbonsäure stammt. Der aromatische Ring kann auch substituiert sein, z.B. durch Halogen wie Chlor und Brom oder durch C₁-C₄-Alkylgruppen wie Methyl-, Ethyl-, i– bzw. n-Propyl– und n-, i- bzw. t-Butylgruppen.

Diese Polyalkylenterephthalate können durch Umsetzung von aromatischen Dicarbonsäuren, deren Estern oder anderen esterbildenden Derivaten mit aliphatischen Dihydroxyverbindungen in an sich bekannter Weise hergestellt werden.

Als bevorzugte Dicarbonsäuren sind 2,6–Naphthalindicarbonsäure, Terephthalsäure und Isophthalsäure oder deren Mischungen zu nennen. Bis zu 30 mol-%, vorzugsweise nicht mehr als 10 mol-% der aromatischen Dicarbonsäuren können durch aliphatische oder cycloaliphatische Dicarbonsäuren wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäuren und Cyclohexandicarbonsäuren ersetzt werden.

10

20

25

Von den aliphatischen Dihydroxyverbindungen werden Diole mit 2 bis 6 Kohlenstoffatomen, insbesondere 1,2-Ethandiol, 1,3-Propandiol, 1,4-Butandiol, 1,6-Hexandiol, 1,4-Hexandiol, 1,4-Cyclohexandiol, 1,4-Cyclohexandimethanol und Neopentylglykol oder deren Mischungen bevorzugt.

Als besonders bevorzugte Polyester (A) sind Polyalkylenterephthalate, die sich von Alkandiolen mit 2 bis 6 C-Atomen ableiten, zu nennen. Von diesen werden insbesondere Polyethylenterephthalat, Polypropylenterephthalat und Polybutylenterephthalat oder deren Mischungen bevorzugt. Weiterhin bevorzugt sind PET und/oder PBT, welche bis zu 1 Gew.-%, vorzugsweise bis zu 0,75 Gew.-% 1,6-Hexandiol und/oder 2-Methyl-1,5-Pentandiol als weitere Monomereinheiten enthalten.

Die Viskositätszahl der Polyester (A) liegt im allgemeinen im Bereich von 50 bis 220, vorzugsweise von 80 bis 160 (gemessen in einer 0,5 gew.-%igen Lösung in einem Phenol/o–Dichlorbenzolgemisch (Gew.–Verh. 1:1 bei 25°C) gemäß ISO 1628.

Insbesondere bevorzugt sind Polyester, deren Carboxylendgruppengehalt bis zu 100 mval/kg, bevorzugt bis zu 50 mval/kg und insbesondere bis zu 40 mval/kg Polyester beträgt. Derartige Polyester können beispielsweise nach dem Verfahren der DE-A 44 01 055 hergestellt werden. Der Carboxylendgruppengehalt wird üblicherweise durch Titrationsverfahren (z.B. Potentiometrie) bestimmt.

Insbesondere bevorzugte Formmassen enthalten als Komponente A) eine Mischung aus Polyestern, welche verschieden von PBT sind, wie beispielsweise Polyethylenterephthalat (PET). Der Anteil z.B. des Polyethylenterephthalates beträgt vorzugsweise in der Mischung bis zu 50, insbesondere 10 bis 35 Gew.-%, bezogen auf 100 Gew.-% A).

Weiterhin ist es vorteilhaft PET Rezyklate (auch scrap-PET genannt) gegebenenfalls in Mischung mit Polyalkylenterephthalaten wie PBT einzusetzen.

Unter Rezyklaten versteht man im allgemeinen:

- 35 1) sog. Post Industrial Rezyklat: hierbei handelt es sich um Produktionsabfälle bei der Polykondensation oder bei der Verarbeitung z.B. Angüsse bei der Spritzgussverarbeitung, Anfahrware bei der Spritzgussverarbeitung oder Extrusion oder Randabschnitte von extrudierten Platten oder Folien.
- 40 2) Post Consumer Rezyklat: hierbei handelt es sich um Kunststoffartikel, die nach der Nutzung durch den Endverbraucher gesammelt und aufbereitet werden. Der

25

35

mengenmäßig bei weitem dominierende Artikel sind blasgeformte PET Flaschen für Mineralwasser, Softdrinks und Säfte.

Beide Arten von Rezyklat können entweder als Mahlgut oder in Form von Granulat vorliegen. Im letzteren Fall werden die Rohrezyklate nach der Auftrennung und Reinigung in einem Extruder aufgeschmolzen und granuliert. Hierdurch wird meist das Handling, die Rieselfähigkeit und die Dosierbarkeit für weitere Verarbeitungsschritte erleichtert.

10 Sowohl granulierte als auch als Mahlgut vorliegende Rezyklate können zum Einsatz kommen, wobei die maximale Kantenlänge 10 mm, vorzugsweise kleiner 8 mm betragen sollte.

Aufgrund der hydrolytischen Spaltung von Polyestern bei der Verarbeitung (durch Feuchtigkeitsspuren) empfiehlt es sich, das Rezyklat vorzutrocknen. Der Restfeuchtegehalt nach der Trocknung beträgt vorzugsweise <0,2 %, insbesondere <0,05 %.

Als weitere Gruppe sind voll aromatische Polyester zu nennen, die sich von aromatischen Dicarbonsäuren und aromatischen Dihydroxyverbindungen ableiten.

Als aromatische Dicarbonsäuren eignen sich die bereits bei den Polyalkylenterephthalaten beschriebenen Verbindungen. Bevorzugt werden Mischungen aus 5 bis 100 mol-% Isophthalsäure und 0 bis 95 mol-% Terephthalsäure, insbesondere Mischungen von etwa 80 % Terephthalsäure mit 20 % Isophthalsäure bis etwa äquivalente Mischungen dieser beiden Säuren verwendet.

Die aromatischen Dihydroxyverbindungen haben vorzugsweise die allgemeine Formel

$$HO \longrightarrow Z \longrightarrow M$$

in der Z eine Alkylen- oder Cycloalkylengruppe mit bis zu 8 C-Atomen, eine Arylengruppe mit bis zu 12 C-Atomen, eine Carbonylgruppe, eine Sulfonylgruppe, ein Sauerstoff- oder Schwefelatom oder eine chemische Bindung darstellt und in der m den Wert 0 bis 2 hat. Die Verbindungen können an den Phenylengruppen auch C₁-C₀-Alkyl- oder Alkoxygruppen und Fluor, Chlor oder Brom als Substituenten tragen.

Als Stammkörper dieser Verbindungen seinen beispielsweise

Dihydroxydiphenyl, Di-(hydroxyphenyl)alkan,

- Di-(hydroxyphenyl)cycloalkan,
- Di-(hydroxyphenyl)sulfid,
- Di-(hydroxyphenyl)ether,
- Di-(hydroxyphenyl)keton,
- 5 di-(hydroxyphenyl)sulfoxid,
 - α,α'--Di--(hydroxyphenyl)--dialkylbenzol,
 - Di-(hydroxyphenyl)sulfon, Di-(hydroxybenzoyl)benzol

Resorcin und

Hydrochinon sowie deren kernalkylierte oder kernhalogenierte Derivate genannt.

10

Von diesen werden

- 4,4'-Dihydroxydiphenyl,
- 2,4-Di-(4'-hydroxyphenyl)-2-methylbutan
- 15 α,α' -Di-(4-hydroxyphenyl)-p-diisopropylbenzol,
 - 2,2-Di-(3'-methyl-4'-hydroxyphenyl)propan und
 - 2,2-Di-(3'-chlor-4'-hydroxyphenyl)propan,

sowie insbesondere

20

- 2,2-Di-(4'-hydroxyphenyl)propan
- 2,2-Di-(3',5-dichlordihydroxyphenyl)propan,
- 1,1-Di-(4'-hydroxyphenyl)cyclohexan,
- 3,4'-Dihydroxybenzophenon,
- 25 4,4'-Dihydroxydiphenylsulfon und
 - 2,2-Di(3',5'-dimethyl-4'-hydroxyphenyl)propan

oder deren Mischungen bevorzugt.

- 30 Selbstverständlich kann man auch Mischungen von Polyalkylenterephthalaten und vollaromatischen Polyestern einsetzen. Diese enthalten im allgemeinen 20 bis 98 Gew.-% des Polyalkylenterephthalates und 2 bis 80 Gew.-% des vollaromatischen Polyesters.
- 35 Selbstverständlich können auch Polyesterblockcopolymere wie Copolyetherester verwendet werden. Derartige Produkte sind an sich bekannt und in der Literatur, z.B. in der US_A 3 651 014, beschrieben. Auch im Handel sind entsprechende Produkte erhältlich, z.B. Hytrel® (DuPont).
- 40 Als Polyester sollen erfindungsgemäß auch halogenfreie Polycarbonate verstanden werden. Geeignete halogenfreie Polycarbonate sind beispielsweise solche auf Basis von Diphenolen der allgemeinen Formel

20

30

35

worin Q eine Einfachbindung, eine C_1 - bis C_8 -Alkylen-, eine C_2 - bis C_3 -Alkyliden-, eine C_3 - bis C_6 -Cycloalkylidengruppe, eine C_6 - bis C_{12} -Arylengruppe sowie -O-, -S- oder $-SO_2$ - bedeutet und m eine ganze Zahl von 0 bis 2 ist.

Die Diphenole können an den Phenylenresten auch Substituenten haben wie C_1 - bis C_6 -Alkyl oder C_1 - bis C_6 -Alkoxy.

Bevorzugte Diphenole der Formel sind beispielsweise Hydrochinon, Resorcin, 4,4'Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxyphenyl)-2methylbutan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan. Besonders bevorzugt sind 2,2-Bis(4-hydroxyphenyl)-propan und 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, sowie 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.

15 Sowohl Homopolycarbonate als auch Copolycarbonate sind als Komponente A geeignet, bevorzugt sind neben dem Bisphenol A-Homopolymerisat die Copolycarbonate von Bisphenol A.

Die geeigneten Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 mol-%, bezogen auf die Summe der eingesetzten Diphenole, an mindestens trifunktionellen Verbindungen, beispielsweise solchen mit drei oder mehr als drei phenolischen OH-Gruppen.

Als besonders geeignet haben sich Polycarbonate erwiesen, die relative Viskositäten η_{rel} von 1,10 bis 1,50, insbesondere von 1,25 bis 1,40 aufweisen. Dies entspricht mittleren Molekulargewichten M_w (Gewichtsmittelwert) von 10 000 bis 200 000, vorzugsweise von 20 000 bis 80 000 g/mol.

Die Diphenole der allgemeinen Formel sind an sich bekannt oder nach bekannten Verfahren herstellbar.

Die Herstellung der Polycarbonate kann beispielsweise durch Umsetzung der Diphenole mit Phosgen nach dem Phasengrenzflächenverfahren oder mit Phosgen nach dem Verfahren in homogener Phase (dem sogenannten Pyridinverfahren) erfolgen, wobei das jeweils einzustellende Molekulargewicht in bekannter Weise durch eine entsprechende Menge an bekannten Kettenabbrechern erzielt wird. (Bezüglich polydiorganosiloxanhaltigen Polycarbonaten siehe beispielsweise DE–OS 33 34 782).

10

15

20

30

Geeignete Kettenabbrecher sind beispielsweise Phenol, p-t-Butylphenol aber auch langkettige Alkylphenole wie 4-(1,3-Tetramethyl-butyl)-phenol, gemäß DE-OS 28 42 005 oder Monoalkylphenole oder Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten gemäß DE-A 35 06 472, wie p-Nonylphenyl, 3,5-di-t-Butylphenol, p-t-Octylphenol, p-Dodecylphenol, 2-(3,5-dimethyl-heptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol.

Halogenfreie Polycarbonate im Sinne der vorliegenden Erfindung bedeutet, dass die Polycarbonate aus halogenfreien Diphenolen, halogenfreien Kettenabbrechern und gegebenenfalls halogenfreien Verzweigern aufgebaut sind, wobei der Gehalt an untergeordneten ppm-Mengen an verseifbarem Chlor, resultierend beispielsweise aus der Herstellung der Polycarbonate mit Phosgen nach dem Phasengrenzflächenverfahren, nicht als halogenhaltig im Sinne der Erfindung anzusehen ist. Derartige Polycarbonate mit ppm-Gehalten an verseifbarem Chlor sind halogenfreie Polycarbonate im Sinne vorliegender Erfindung.

Als weitere geeignete Komponenten A) seien amorphe Polyestercarbonate genannt, wobei Phosgen gegen aromatische Dicarbonsäureeinheiten wie Isophthalsäure und/oder Terephthalsäureeinheiten, bei der Herstellung ersetzt wurde. Für nähere Einzelheiten sei an dieser Stelle auf die EP–A 711 810 verwiesen.

Weitere geeignete Copolycarbonate mit Cycloalkylresten als Monomereinheiten sind in der EP-A 365 916 beschrieben.

Weiterhin kann Bisphenol A durch Bisphenol TMC ersetzt werden. Derartige Polycarbonate sind unter dem Warenzeichen APEC HT® der Firma Bayer erhältlich.

Als Komponente B) enthalten die erfindungsgemäßen Formmassen 0,01 bis 50, vorzugsweise 0,5 bis 20 und insbesondere 0,7 bis 10 Gew.-% B1) mindestens eines hochoder hyperverzweigten Polycarbonates, mit einer OH-Zahl von 1 bis 600, vorzugsweise 10 bis 550 und insbesondere von 50 bis 550 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2) oder mindestens eines hyperverzweigten Polyesters als Komponente B2) oder deren Mischungen wie nachstehend erläutert wird.

Unter hyperverzweigten Polycarbonaten B1) werden im Rahmen dieser Erfindung unvernetzte Makromoleküle mit Hydroxyl- und Carbonatgruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite ausgehend von einem Zentralmolekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste aufgebaut sein. Sie können auf der anderen Seite auch linear,
 mit funktionellen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrime-

20

30

ren und hyperverzweigten Polymeren siehe auch P.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.

Unter "hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad (Degree of Branching, DB), dass heißt die mittlere Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro Molekül, 10 bis 99.9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 – 95 % beträgt.

Unter "dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, daß der Verzweigungsgrad 99,9 - 100% beträgt. Zur Definition des "Degree of Branching" siehe H. Frey et al., Acta Polym. 1997, 48, 30 und ist definiert als

(wobei T die mittlere Anzahl der terminalen Monomereinheiten, Z die mittlere Anzahl der verzweigten Monomereinheiten und L die mittlere Anzahl der linearen Monomereinheiten in den Makromolekülen der jeweiligen Stoffe bedeuten).

Vorzugsweise weist die Komponente B1) ein Zahlenmittel des Molekulargewichtes M_n von 100 bis 15000, vorzugsweise von 200 bis 12000 und insbesondere von 500 bis 10000 g/mol (GPC, Standard PMMA).

Die Glasübergangstemperatur Tg beträgt insbesondere von -80°C bis +140, vorzugsweise von -60 bis 120°C (gemäß DSC, DIN 53765).

Insbesondere beträgt die Viskosität (mPas) bei 23°C (gemäß DIN 53019) von 50 bis 200000, insbesondere von 100 bis 150000 und ganz besonders bevorzugt von 200 bis 100000.

Die Komponente B1) ist vorzugsweise erhältlich durch ein Verfahren, welches mindestens die folgenden Schritte umfasst:

a) Umsetzung mindestens eines organischen Carbonats (A) der allgemeinen Formel RO[(CO)]_nOR mit mindestens einem aliphatischen, aliphatisch/aromatisch oder aromatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist, unter Eliminierung von Alkoholen ROH zu einem oder mehreren Kondensationsprodukten (K), wobei es sich bei R jeweils unabhängig voreinander um einen geradkettigen oder verzweigten aliphatischen, aromatisch/aliphatisch oder aromatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt, und wobei die Res-

te R auch unter Bildung eines Ringes miteinander verbunden sein können und n eine ganze Zahl zwischen 1 und 5 darstellt, oder

10

ab) Umsetzung von Phosgen, Diphosgen oder Triphosgen mit o.g. Alkohol (B) unter
 Chlorwasserstoffeliminierung

sowie

15

b) intermolekulare Umsetzung der Kondensationsprodukte (K) zu einem hochfunkti onellen, hoch- oder hyperverzweigten Polycarbonat,

wobei das Mengenverhältnis der OH-Gruppen zu den Carbonaten im Reaktionsgemisch so gewählt wird, dass die Kondensationsprodukte (K) im Mittel entweder eine Carbonatgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonatgruppe aufweisen.

Als Ausgangsmaterial kann Phosgen, Diphosgen oder Triphosgen eingesetzt werden, wobei organische Carbonate bevorzugt sind.

- Bei den Resten R der als Ausgangsmaterial eingesetzten organischen Carbonate (A) der allgemeinen Formel RO(CO)_nOR handelt es sich jeweils unabhängig voneinander um einen geradkettigen oder verzweigten aliphatischen, aromatisch/aliphatisch oder aromatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt. Die beiden Reste R können auch unter Bildung eines Ringes miteinander verbunden sein. Bevorzugt handelt es sich um einen aliphatischen Kohlenwasserstoffrest und besonders bevorzugt um einen geradkettigen oder verzweigten Alkylrest mit 1 bis 5 C-Atomen, oder um einen substituierten oder unsubstituierten Phenylrest.
- Insbesondere werden einfache Carbonate der Formel RO(CO)_nOR eingesetzt; n beträgt vorzugsweise 1 bis 3, insbesondere 1.
 - Dialkyl- oder Diarylcarbonate können zum Beispiel hergestellt werden aus der Reaktion von aliphatischen, araliphatischen oder aromatischen Alkoholen, vorzugsweise Monoalkoholen mit Phosgen. Weiterhin können sie auch über oxidative Carbonylierung der Alkohole oder Phenole mittels CO in Gegenwart von Edelmetallen, Sauerstoff oder NO_x hergestellt werden. Zu Herstellmethoden von Diaryl- oder Dialkylcarbonaten siehe auch "Ullmann's Encyclopedia of Industrial Chemistry", 6th Edition, 2000 Electronic Release, Verlag Wiley-VCH.
- 40 Beispiele geeigneter Carbonate umfassen aliphatische, aromatisch/aliphatische oder aromatische Carbonate wie Ethylencarbonat, 1,2- oder 1,3-Propylencarbonat, Diphenylcarbonat, Ditolylcarbonat, Dixylylcarbonat, Dinaphthylcarbonat, Ethylphenylcarbo-

10

15

30

35

40

nat, Dibenzylcarbonat, Dimethylcarbonat, Diethylcarbonat, Dipropylcarbonat, Dibutylcarbonat, Diisobutylcarbonat, Dipentylcarbonat, Dihexylcarbonat, Dicyclohexylcarbonat, Diheptylcarbonat, Dioctylcarbonat, Didecylacarbonat oder Didodecylcarbonat.

5 Beispiele für Carbonate, bei denen n größer 1 ist, umfassen Dialkyldicarbonate, wie Di(-t-butyl)dicarbonat oder Dialkyltricarbonate wie Di(-t-butyltricarbonat).

Bevorzugt werden aliphatische Carbonate eingesetzt, insbesondere solche, bei denen die Reste 1 bis 5 C-Atome umfassen, wie zum Beispiel Dimethylcarbonat, Diethylcarbonat, Dipropylcarbonat, Dibutylcarbonat oder Diisobutylcarbonat.

Die organischen Carbonate werden mit mindestens einem aliphatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist oder Gemischen zweier oder mehrerer verschiedener Alkohole umgesetzt.

Beispiele für Verbindungen mit mindestens drei OH-Gruppen umfassen Glycerin, Trimethylolmethan, Trimethylolethan, Trimethylolpropan, 1,2,4-Butantriol, Tris(hydroxymethyl)amin, Tris(hydroxyethyl)amin, Tris(hydroxypropyl)amin, Pentaerythrit, Diglycerin, Triglycerin, Polyglycerine, Bis(tri-methylolpropan), Tris(hydroxymethyl)isocyanurat,

Tris(hydroxyethyl)isocyanurat, Phloroglucinol,, Trihydroxytoluol, Trihydroxydimethylbenzol, Phloroglucide, Hexahydroxybenzol, 1,3,5-Benzoltrimethanol, 1,1,1-Tris(4'-hydroxyphenyl)methan, 1,1,1-Tris(4'-hydroxyphenyl)ethan, Bis(tri-methylolpropan) oder Zucker, wie zum Beispiel Glucose, tri- oder höherfunktionelle Polyetherole auf Basis trioder höherfunktioneller Alkohole und Ethylenoxid, Propylenoxid oder Butylenoxid, oder Polyesterole. Dabei sind Glycerin, Trimethylolethan, Trimethylolpropan, 1,2,4-Butan-

Polyesterole. Dabei sind Glycerin, Trimethylolethan, Trimethylolpropan, 1,2,4-Butantriol, Pentaerythrit, sowie deren Polyetherole auf Basis von Ethylenoxid oder Propylenoxid besonders bevorzugt.

Diese mehrfunktionellen Alkohole können auch in Mischung mit difunktionellen Alkoholen (B') eingesetzt werden, mit der Maßgabe, dass die mittlere OH-Funktionalität aller eingesetzten Alkohole zusammen größer als 2 ist. Beispiele geeigneter Verbindungen mit zwei OH-Gruppen umfassen Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2-und 1,3-Propandiol, Dipropylenglykol, Tripropylenglykol, Neopentylglykol, 1,2-, 1,3- und 1,4-Butandiol, 1,2-, 1,3- und 1,5-Pentandiol, Hexandiol, Cyclopentandiol, Cyclohexandiol, Cyclohexandimethanol, Bis(4-Hydroxycyclohexyl)methan, Bis(4-Hydroxycyclohexyl)ethan, 2,2-Bis(4-Hydroxycyclohexyl)propan, 1,1'-Bis(4-Hydroxyphenyl)-3,3-5-trimethylcyclohexan, Resorcin, Hydrochinon, 4,4'-Dihydroxyphenyl, Bis-(4-Bis(hydroxyphenyl)sulfid, Bis(4-Hydroxyphenyl)sulfon, Bis(hydroxymethyl)benzol, Bis(hydroxymethyl)toluol, Bis(p-hydroxyphenyl)methan, Bis(p-hydroxyphenyl)ethan, 2,2-Bis(p-hydroxyphenyl)propan, 1,1-Bis(p-hydroxyphenyl)cyclohexan, Dihydroxybenzophenon, difunktionelle Polyetherpolyole auf Basis Ethylenoxid, Propylenoxid, Butylenoxid oder

deren Gemische, Polytetrahydrofuran, Polycaprolacton oder Polyesterole auf Basis von Diolen und Dicarbonsäuren.

Die Diole dienen zur Feineinstellung der Eigenschaften des Polycarbonates. Falls difunktionelle Alkohole eingesetzt werden, wird das Verhältnis von difunktionellen Alkoholen B') zu den mindestens trifunktionellen Alkoholen (B) vom Fachmann je nach den gewünschten Eigenschaften des Polycarbonates festgelegt. Im Regelfalle beträgt die Menge des oder der Alkohole (B') 0 bis 50 mol-% bezüglich der Gesamtmenge aller Alkohole (B) und (B') zusammen. Bevorzugt beträgt die Menge 0 bis 45 mol-%, besonders bevorzugt 0 bis 35 mol-% und ganz besonders bevorzugt 0 bis 30 mol-%.

Die Reaktion von Phosgen, Diphosgen oder Triphosgen mit dem Alkohol oder Alkoholgemisch erfolgt in der Regel unter Eliminierung von Chlorwasserstoff, die Reaktion der Carbonate mit dem Alkohol oder Alkoholgemisch zum erfindungsgemäßen hochfunktionellen hochverzweigten Polycarbonat erfolgt unter Eliminierung des monofunktionellen Alkohols oder Phenols aus dem Carbonat-Molekül.

Die nach dem erfindungsgemäßen Verfahren gebildeten hochfunktionellen hochverzweigten Polycarbonate sind nach der Reaktion, also ohne weitere Modifikation, mit Hydroxylgruppen und/oder mit Carbonatgruppen terminiert. Sie lösen sich gut in verschiedenen Lösemitteln, zum Beispiel in Wasser, Alkoholen, wie Methanol, Ethanol, Butanol, Alkohol/Wasser-Mischungen, Aceton, 2-Butanon, Essigester, Butylacetat, Methoxypropylacetat, Methoxyethylacetat, Tetrahydrofuran, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Ethylencarbonat oder Propylencarbonat.

25

30

35

40

5

10

15

20

Unter einem hochfunktionellen Polycarbonat ist im Rahmen dieser Erfindung ein Produkt zu verstehen, das neben den Carbonatgruppen, die das Polymergerüst bilden, end- oder seitenständig weiterhin mindestens drei, bevorzugt mindestens sechs, mehr bevorzugt mindestens zehn funktionelle Gruppen aufweist. Bei den funktionellen Gruppen handelt es sich um Carbonatgruppen und/oder um OH-Gruppen. Die Anzahl der end- oder seitenständigen funktionellen Gruppen ist prinzipiell nach oben nicht beschränkt, jedoch können Produkte mit sehr hoher Anzahl funktioneller Gruppen unerwünschte Eigenschaften, wie beispielsweise hohe Viskosität oder schlechte Löslichkeit, aufweisen. Die hochfunktionellen Polycarbonate der vorliegenden Erfindung weisen zumeist nicht mehr als 500 end- oder seitenständige funktionelle Gruppen, bevorzugt nicht mehr als 100 end oder seitenständige funktionelle Gruppen auf.

Bei der Herstellung der hochfunktionellen Polycarbonate B1) ist es notwendig, das Verhältnis von den OH-Gruppen enthaltenden Verbindungen zu Phosgen oder Carbonat so einzustellen, dass das resultierende einfachste Kondensationsprodukt (im weiteren Kondensationsprodukt (K) genannt) im Mittel entweder eine Carbonatgruppe oder Carbamoylgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als

10

15

30

eine Carbonatgruppe oder Carbamoylgruppe enthält. Die einfachste Struktur des Kondensationsproduktes (K) aus einem Carbonat (A) und einem Di- oder Polyalkohol (B) ergibt dabei die Anordnung XY_n oder Y_nX , wobei X eine Carbonatgruppe, Y eine Hydroxyl-Gruppe und n in der Regel eine Zahl zwischen 1 und 6, vorzugsweise zwischen 1 und 4, besonders bevorzugt zwischen 1 und 3 darstellt. Die reaktive Gruppe, die dabei als einzelne Gruppe resultiert, wird im folgenden generell "fokale Gruppe" genannt.

Liegt beispielsweise bei der Herstellung des einfachsten Kondensationsproduktes (K) aus einem Carbonat und einem zweiwertigen Alkohol das Umsetzungsverhältnis bei 1:1, so resultiert im Mittel ein Molekül des Typs XY, veranschaulicht durch die allgemeine Formel 1.

$$R + HO-R^{\frac{1}{2}}OH$$
 $R + HO-R^{\frac{1}{2}}OH$ $R + HO-R^{\frac{1}{2}}OH$

Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem dreiwertigen Alkohol bei einem Umsetzungsverhältnis von 1 : 1 resultiert im Mittel ein Molekül des Typs XY₂, veranschaulicht durch die allgemeine Formel 2. Fokale Gruppe ist hier eine Carbonatgruppe.

$$R \rightarrow OR + HO \rightarrow R' \rightarrow OH$$
 $R \rightarrow OH$ OH OH OH OH OH

Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem vierwertigen Alkohol ebenfalls mit dem Umsetzungsverhältnis 1 : 1 resultiert im Mittel ein Molekül des Typs XY₃, veranschaulicht durch die allgemeine Formel 3. Fokale Gruppe ist hier eine Carbonatgruppe.

In den Formeln 1 bis 3 hat R die eingangs definierte Bedeutung und R¹steht für einen aliphatischen oder aromatischen Rest.

Weiterhin kann die Herstellung des Kondensationsprodukts (K) zum Beispiel auch aus einem Carbonat und einem dreiwertigen Alkohol, veranschaulicht durch die allgemeine Formel 4, erfolgen, wobei das Umsetzungsverhältnis bei molar 2:1 liegt. Hier resultiert

10

15

20

25

im Mittel ein Molekül des Typs X₂Y, fokale Gruppe ist hier eine OH-Gruppe. In der Formel 4 haben R und R¹ die gleiche Bedeutung wie in den Formeln 1 bis 3.

Werden zu den Komponenten zusätzlich difunktionelle Verbindungen, z.B. ein Dicarbonat oder ein Diol gegeben, so bewirkt dies eine Verlängerung der Ketten, wie beispielsweise in der allgemeinen Formel 5 veranschaulicht. Es resultiert wieder im Mittel ein Molekül des Typs XY₂, fokale Gruppe ist eine Carbonatgruppe.

In Formel 5 bedeutet R² einen organischen, bevorzugt aliphatischen Rest, R und R¹ sind wie vorstehend beschrieben definiert.

Es können auch mehrere Kondensationsprodukte (K) zur Synthese eingesetzt werden. Hierbei können einerseits mehrere Alkohole beziehungsweise mehrere Carbonate eingesetzt werden. Weiterhin lassen sich durch die Wahl des Verhältnisses der eingesetzten Alkohole und der Carbonate bzw. der Phosgene Mischungen verschiedener Kondensationsprodukte unterschiedlicher Struktur erhalten. Dies sei am Beispiel der Umsetzung eines Carbonates mit einem dreiwertigen Alkohol beispielhaft erläutert. Setzt man die Ausgangsprodukte im Verhältnis 1:1 ein, wie in (II) dargestellt, so erhält man ein Molekül XY₂. Setzt man die Ausgangsprodukte im Verhältnis 2:1 ein, wie in (IV) dargestellt, so erhält man ein Molekül X₂Y. Bei einem Verhältnis zwischen 1:1 und 2:1 erhält man eine Mischung von Molekülen XY₂ und X₂Y.

Die beispielhaft in den Formeln 1 – 5 beschriebenen einfachen Kondensationsprodukte (K) reagieren erfindungsgemäß bevorzugt intermolekular unter Bildung von hochfunktionellen Polykondensationsprodukten, im folgenden Polykondensationsprodukte (P) genannt. Die Umsetzung zum Kondensationsprodukt (K) und zum Polykondensationsprodukt (P) erfolgt üblicherweise bei einer Temperatur von 0 bis 250 °C, bevorzugt bei 60 bis 160°C in Substanz oder in Lösung. Dabei können allgemein alle Lösungsmittel verwendet werden, die gegenüber den jeweiligen Edukten inert sind. Bevorzugt ver-

15

wendet werden organische Lösungsmittel, wie zum Beispiel Decan, Dodecan, Benzol, Toluol, Chlorbenzol, Xylol, Dimethylformamid, Dimethylacetamid oder Solventnaphtha.

In einer bevorzugten Ausführungsform wird die Kondensationsreaktion in Substanz durchgeführt. Der bei der Reaktion freiwerdende monofunktionelle Alkohol ROH oder das Phenol, kann zur Beschleunigung der Reaktion destillativ, gegebenenfalls bei vermindertem Druck, aus dem Reaktionsgleichgewicht entfernt werden.

5

15

20

25

30

35

40

Falls Abdestillieren vorgesehen ist, ist es regelmäßig empfehlenswert, solche Carbonate einzusetzen, welche bei der Umsetzung Alkohole ROH mit einem Siedepunkt von weniger als 140°C freisetzen.

Zur Beschleunigung der Reaktion können auch Katalysatoren oder Katalysatorgemische zugegeben werden. Geeignete Katalysatoren sind Verbindungen, die zum Veresterungs- oder Umesterungsreaktionen katalysieren, zum Beispiel Alkalihydroxide, Alkalicarbonate, Alkalihydrogencarbonate, vorzugsweise des Natriums, Kaliums oder Cäsiums, tertiäre Amine, Guanidine, Ammoniumverbindungen, Phosphoniumverbindungen, Aluminium-, Zinn-, Zink, Titan-, Zirkon- oder Wismut-organische Verbindungen, weiterhin sogenannte Doppelmetallcyanid (DMC)-Katalysatoren, wie zum Beispiel in der DE 10138216 oder in der DE 10147712 beschrieben.

Vorzugsweise werden Kaliumhydroxid, Kaliumcarbonat, Kaliumhydrogencarbonat, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN), Diazabicycloundecen (DBU), Imidazole, wie Imidazol, 1-Methylimidazol oder 1,2-Dimethylimidazol, Titan-tetrabutylat, Titantetraisopropylat, Dibutylzinnoxid, Dibutylzinn-dilaurat, Zinndioctoat, Zirkonacetylacetonat oder Gemische davon eingesetzt.

Die Zugabe des Katalysators erfolgt im allgemeinen in einer Menge von 50 bis 10000, bevorzugt von 100 bis 5000 Gew. ppm bezogen auf die Menge des eingesetzten Alkohols oder Alkoholgemisches.

Ferner ist es auch möglich, sowohl durch Zugabe des geeigneten Katalysators, als auch durch Wahl einer geeigneten Temperatur die intermolekulare Polykondensationsreaktion zu steuern. Weiterhin lässt sich über die Zusammensetzung der Ausgangskomponenten und über die Verweilzeit das mittlere Molekulargewicht des Polymeren (P) einstellen.

Die Kondensationsprodukte (K) bzw. die Polykondensationsprodukte (P), die bei erhöhter Temperatur hergestellt wurden, sind bei Raumtemperatur üblicherweise über einen längeren Zeitraum stabil.

Aufgrund der Beschaffenheit der Kondensationsprodukte (K) ist es möglich, dass aus der Kondensationsreaktion Polykondensationsprodukte (P) mit unterschiedlichen Strukturen resultieren können, die Verzweigungen, aber keine Vernetzungen aufweisen. Ferner weisen die Polykondensationsprodukte (P) im Idealfall entweder eine Carbonatgruppe als fokale Gruppe und mehr als zwei OH-Gruppen oder aber eine OH-Gruppe als fokale Gruppe und mehr als zwei Carbonatgruppen auf. Die Anzahl der reaktiven Gruppen ergibt sich dabei aus der Beschaffenheit der eingesetzten Kondensationsprodukte (K) und dem Polykondensationsgrad.

16

10 Beispielsweise kann ein Kondensationsprodukt (K) gemäß der allgemeinen Formel 2 durch dreifache intermolekulare Kondensation zu zwei verschiedenen Polykondensationsprodukten (P), die in den allgemeinen Formeln 6 und 7 wiedergegeben werden, reagieren.

15
In Formel 6 und 7 sind R und R¹ wie vorstehend definiert.

Zum Abbruch der intermolekularen Polykondensationsreaktion gibt es verschiedene Möglichkeiten. Beispielsweise kann die Temperatur auf einen Bereich abgesenkt werden, in dem die Reaktion zum Stillstand kommt und das Produkt (K) oder das Polykondensationsprodukt (P) lagerstabil ist.

Weiterhin kann man den Katalysator deaktivieren, bei basischen z.B. durch Zugabe von Lewissäuren oder Protonensäuren.

20

5

17

In einer weiteren Ausführungsform kann, sobald aufgrund der intermolekularen Reaktion des Kondensationsproduktes (K) ein Polykondensationsprodukt (P) mit gewünschten Polykondensationsgrad vorliegt, dem Produkt (P) zum Abbruch der Reaktion ein Produkt mit gegenüber der fokalen Gruppe von (P) reaktiven Gruppen zugesetzt werden. So kann bei einer Carbonatgruppe als fokaler Gruppe zum Beispiel ein Mono-, Dioder Polyamin zugegeben werden. Bei einer Hydroxylgruppe als fokaler Gruppe kann dem Produkt (P) beispielsweise ein Mono-, Di- oder Polyisocyanat, eine Epoxydgruppen enthaltende Verbindung oder ein mit OH-Gruppen reaktives Säurederivat zugegeben werden.

10

5

Die Herstellung der erfindungsgemäßen hochfunktionellen Polycarbonate erfolgt zumeist in einem Druckbereich von 0,1 mbar bis 20 bar, bevorzugt bei 1 mbar bis 5 bar, in Reaktoren oder Reaktorkaskaden, die im Batchbetrieb, halbkontinuierlich oder kontinuierlich betrieben werden.

15

30

35

Durch die vorgenannte Einstellung der Reaktionsbedingungen und gegebenenfalls durch die Wahl des geeigneten Lösemittels können die erfindungsgemäßen Produkte nach der Herstellung ohne weitere Reinigung weiterverarbeitet werden.

In einer weiteren bevorzugten Ausführungsform wird das Produkt gestrippt, das heißt, von niedermolekularen, flüchtigen Verbindungen befreit. Dazu kann nach Erreichen des gewünschten Umsatzgrades der Katalysator optional deaktiviert und die niedermolekularen flüchtigen Bestandteile, z.B. Monoalkohole, Phenole, Carbonate, Chlorwasserstoff oder leichtflüchtige oligomere oder cyclische Verbindungen destillativ, gegebenenfalls unter Einleitung eines Gases, vorzugsweise Stickstoff, Kohlendioxid oder Luft, gegebenenfalls bei vermindertem Druck, entfernt werden.

In einer weiteren bevorzugten Ausführungsform können die erfindungsgemäßen Polycarbonate neben den bereits durch die Reaktion erhaltenden funktionellen Gruppen weitere funktionelle Gruppen erhalten. Die Funktionalisierung kann dabei während des Molekulargewichtsaufbaus oder auch nachträglich, d.h. nach Beendigung der eigentlichen Polykondensation erfolgen.

Gibt man vor oder während des Molekulargewichtsaufbaus Komponenten zu, die neben Hydroxyl- oder Carbonatgruppen weitere funktionelle Gruppen oder funktionelle Elemente besitzen, so erhält man ein Polycarbonat-Polymer mit statistisch verteilten von den Carbonat-oder Hydroxylgruppen verschiedenen Funktionalitäten.

Derartige Effekte lassen sich zum Beispiel durch Zusatz von Verbindungen während
der Polykondensation erzielen, die neben Hydroxylgruppen, Carbonatgruppen oder
Carbamoylgruppen weitere funktionelle Gruppen oder funktionelle Elemente, wie Mercaptogruppen, primäre, sekundäre oder tertiäre Aminogruppen, Ethergruppen, Derivate

18

von Carbonsäuren, Derivate von Sulfonsäuren, Derivate von Phosphonsäuren, Silangruppen; Siloxangruppen, Arylreste oder langkettige Alkylreste tragen. Zur Modifikation mittels Carbamat-Gruppen lassen sich beispielsweise Ethanolamin, Propanolamin, Isopropanolamin, 2-(Butylamino)ethanol, 2-(Cyclohexylamino)ethanol, 2-Amino-1-butanol, 2-(2´-Amino-ethoxy)ethanol oder höhere Alkoxylierungsprodukte des Ammoniaks, 4-Hydroxy-piperidin, 1-Hydroxyethylpiperazin, Diethanolamin, Dipropanolamin, Diisopropanol-amin, Tris(hydroxymethyl)aminomethan, Tris(hydroxyethyl)aminomethan, Ethylen-diamin, Propylendiamin, Hexamethylendiamin oder Isophorondiamin

10

15

25

30

verwenden.

5

Für die Modifikation mit Mercaptogruppen lässt sich zum Beispiel Mercaptoethanol einsetzten. Tertiäre Aminogruppen lassen sich zum Beispiel durch Einbau von N-Methyldiethanolamin, N-Methyldipropanolamin oder N,N-Dimethylethanolamin erzeugen. Ethergruppen können zum Beispiel durch Einkondensation von di- oder höherfunktionellen Polyetherolen generiert werden. Durch Reaktion mit langkettigen Alkandiolen lassen sich langkettige Alkylreste einbringen, die Reaktion mit Alkyl- oder Aryldiisocyanaten generiert Alkyl-, Aryl- und Urethangruppen oder Harnstoffgruppen aufweisende Polycarbonate.

20 Durch Zugabe von Dicarbonsäuren, Tricarbonsäuren, z.B. Terephthalsäuredimethylester oder Tricarbonsäureester lassen sich Estergruppen erzeugen.

Eine nachträgliche Funktionalisierung kann man erhalten, indem das erhaltene hochfunktionelle, hoch- oder hyperverzweigte Polycarbonat in einem zusätzlichen Verfahrensschritt (Schritt c)) mit einem geeigneten Funktionalisierungsreagenz, welches mit den OH- und/oder Carbonat-Gruppen oder Carbamoylgruppen des Polycarbonates reagieren kann, umsetzt.

Hydroxylgruppen enthaltende hochfunktionelle, hoch oder hyperverzweigte Polycarbonate können zum Beispiel durch Zugabe von Säuregruppen- oder Isocyanatgruppen enthaltenden Molekülen modifiziert werden. Beispielsweise lassen sich Säuregruppen enthaltende Polycarbonate durch Umsetzung mit Anhydridgruppen enthaltenden Verbindungen erhalten.

Weiterhin können Hydroxylgruppen enthaltende hochfunktionelle Polycarbonate auch durch Umsetzung mit Alkylenoxiden, zum Beispiel Ethylenoxid, Propylenoxid oder Butylenoxid, in hochfunktionelle Polycarbonat-Polyetherpolyole überführt werden.

Ein großer Vorteil des Verfahren liegt in seiner Wirtschaftlichkeit. Sowohl die Umsetzung zu einem Kondensationsprodukt (K) oder Polykondensationsprodukt (P) als auch die Reaktion von (K) oder (P) zu Polycarbonaten mit anderen funktionellen Gruppen

oder Elementen kann in einer Reaktionsvorrichtung erfolgen, was technisch und wirtschaftlich vorteilhaft ist.

Als Komponente B2) können die erfindungsgemäßen Formmassen mindestens eines hyperverzweigten Polyesters des Typs A_xB_y enthalten, wobei

- x mindestens 1,1 vorzugsweise mindestens 1,3, insbesondere mindestens 2
- y mindestens 2,1, vorzugsweise mindestens 2,5, insbesondere mindestens 3

10 beträgt.

40

Selbstverständlich können als Einheiten A bzw. B auch Mischungen eingesetzt werden.

- Unter einem Polyester des Typs A_xB_y versteht man ein Kondensat, das sich aus einem x-funktionellen Molekül A und einem y-funktionellen Molekül B aufbaut. Beispielsweise sei genannt ein Polyester aus Adipinsäure als Molekül A (x = 2) und Glycerin als Molekül B (y = 3).
- Unter hyperverzweigten Polyestern B2) werden im Rahmen dieser Erfindung unvernetzte Makromoleküle mit Hydroxyl- und Carboxylgruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite ausgehend von einem Zentralmolekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste aufgebaut sein. Sie können auf der anderen Seite auch linear,
 mit funktionellen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrimeren und hyperverzweigten Polymeren siehe auch P.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.
- Unter "hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad (Degree of Branching, DB), dass heißt die mittlere Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro Molekül, 10 bis 99.9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 95 % beträgt. Unter "dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad 99,9 100% beträgt. Zur Definition des "Degree of Branching" siehe H. Frey et al., Acta Polym. 1997, 48, 30.
 - Die Komponente B2) weist vorzugsweise ein M_n von 300 bis 30 000, insbesondere von 400 bis 25000 und ganz besonders von 500 bis 20000 g/mol auf, bestimmt mittels GPC, Standard PMMA, Laufmittel Dimethylacetamid.

Vorzugsweise weist B2) eine OH-Zahl von 0 bis 600, vorzugsweise 1 bis 500, insbesondere von 20 bis 500 mg KOH/g Polyester gemäß DIN 53240 auf sowie bevorzugt eine COOH-Zahl von 0 bis 600, vorzugsweise von 1 bis 500 und insbesondere von 2 bis 500 mg KOH/g Polyester.

5

Die T_g beträgt vorzugsweise von -50°C bis 140°C und insbesondere von -50 bis 100°C (mittels DSC, nach DIN 53765).

Insbesondere solche Komponenten B2) sind bevorzugt, in denen mindestens eine OH-10 bzw. COOH-Zahl größer 0, vorzugsweise größer 0,1 und insbesondere größer 0,5 ist.

Insbesondere durch die nachfolgend beschriebenen Verfahren ist die erfindungsgemäße Komponente B2) erhältlich, u.z. indem man

15 (a) eine oder mehrere Dicarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren mindestens trifunktionellen Alkoholen

oder

25

30

35

20 (b) eine oder mehrere Tricarbonsäuren oder höhere Polycarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren Diolen

in Gegenwart eines Lösemittels und optional in Gegenwart eines anorganischen, metallorganischen oder niedermolekularen organischen Katalysators oder eines Enzyms umsetzt. Die Umsetzung im Lösungsmittel ist die bevorzugte Herstellmethode.

Hochfunktionelle hyperverzweigte Polyester B2) im Sinne der vorliegenden Erfindung sind molekular und strukturell uneinheitlich. Sie unterscheiden sich durch ihre molekulare Uneinheitlichkeit von Dendrimeren und sind daher mit erheblich geringerem Aufwand herzustellen.

Zu den nach Variante (a) umsetzbaren Dicarbonsäuren gehören beispielsweise Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Undecan-a,w-dicarbonsäure, Dodecan-a,w-dicarbonsäure, cis- und trans-Cyclohexan-1,2-dicarbonsäure, cis- und trans-Cyclohexan-1,4-dicarbonsäure, cis- und trans-Cyclopentan-1,2-dicarbonsäure sowie cis- und trans-Cyclopentan-1,3-dicarbonsäure,

40 wobei die oben genannten Dicarbonsäuren substituiert sein können mit einem oder mehreren Resten, ausgewählt aus

21

 C_1 - C_{10} -Alkylgruppen, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,

5

C₃-C₁₂-Cycloalkylgruppen, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl;

10 Alkylengruppen wie Methylen oder Ethyliden oder

 C_6 - C_{14} -Arylgruppen wie beispielsweise Phenyl, 1-Naphthyl, 2-Naphthyl, 1-Anthryl, 2-Anthryl, 9-Anthryl, 1-Phenanthryl, 2-Phenanthryl, 3-Phenanthryl, 4-Phenanthryl und 9-Phenanthryl, bevorzugt Phenyl, 1-Naphthyl und 2-Naphthyl, besonders bevorzugt Phenyl.

Als beispielhafte Vertreter für substituierte Dicarbonsäuren seien genannt: 2-Methylmalonsäure, 2-Ethylmalonsäure, 2-Phenylmalonsäure, 2-Methylbernsteinsäure, 2-Ethylbernsteinsäure, 1taconsäure, 3,3-Dimethylglutarsäure.

20

15

Weiterhin gehören zu den nach Variante (a) umsetzbaren Dicarbonsäuren ethylenisch ungesättigte Säuren wie beispielsweise Maleinsäure und Fumarsäure sowie aromatische Dicarbonsäuren wie beispielsweise Phthalsäure, Isophthalsäure oder Terephthalsäure.

25

Weiterhin lassen sich Gemische von zwei oder mehreren der vorgenannten Vertreter einsetzen.

Die Dicarbonsäuren lassen sich entweder als solche oder in Form von Derivaten ein-30 setzen.

Unter Derivaten werden bevorzugt verstanden

die betreffenden Anhydride in monomerer oder auch polymerer Form,

35

 Mono- oder Dialkylester, bevorzugt Mono- oder Dimethylester oder die entsprechenden Mono- oder Diethylester, aber auch die von h\u00f6heren Alkoholen wie beispielsweise n-Propanol, iso-Propanol, n-Butanol, Isobutanol, tert.-Butanol, n-Pentanol, n-Hexanol abgeleiteten Mono- und Dialkylester,

40

ferner Mono- und Divinylester sowie

10

30

35

gemischte Ester, bevorzugt Methylethylester.

Im Rahmen der bevorzugten Herstellung ist es auch möglich, ein Gemisch aus einer Dicarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es möglich, ein Gemisch mehrerer verschiedener Derivate von einer oder mehreren Dicarbonsäuren einzusetzen.

Besonders bevorzugt setzt man Bernsteinsäure, Glutarsäure, Adipinsäure, Phthalsäure, Isophthalsäure, Terephthalsäure oder deren Mono- oder Dimethylester ein. Ganz besonders bevorzugt setzt man Adipinsäure ein.

Als mindestens trifunktionelle Alkohole lassen sich beispielsweise umsetzen: Glycerin, Butan-1,2,4-triol, n-Pentan-1,2,5-triol, n-Pentan-1,3,5-triol, n-Hexan-1,2,6-triol, n-Hexan-1,2,5-triol, n-Hexan-1,3,6-triol, Trimethylolbutan, Trimethylolpropan oder Di-Trimethylolpropan, Trimethylolethan, Pentaerythrit oder Dipentaerythrit; Zuckeralkohole wie beispielsweise Mesoerythrit, Threitol, Sorbit, Mannit oder Gemische der vorstehenden mindestens trifunktionellen Alkohole. Bevorzugt verwendet man Glycerin, Trimethylolpropan, Trimethylolethan und Pentaerythrit.

Nach Variante (b) umsetzbare Tricarbonsäuren oder Polycarbonsäuren sind beispielsweise 1,2,4-Benzoltricarbonsäure, 1,3,5-Benzoltricarbonsäure, 1,2,4,5-Benzoltetracarbonsäure sowie Mellitsäure.

Tricarbonsäuren oder Polycarbonsäuren lassen sich in der erfindungsgemäßen Reaktion entweder als solche oder aber in Form von Derivaten einsetzen.

Unter Derivaten werden bevorzugt verstanden

- die betreffenden Anhydride in monomerer oder auch polymerer Form,
- Mono-, Di- oder Trialkylester, bevorzugt Mono-, Di- oder Trimethylester oder die entsprechenden Mono-, Di- oder Triethylester, aber auch die von höheren Alkoholen wie beispielsweise n-Propanol, iso-Propanol, n-Butanol, Isobutanol, tert.-Butanol, n-Pentanol, n-Hexanol abgeleiteten Mono- Di- und Triester, ferner Mono-, Di- oder Trivinylester
- sowie gemischte Methylethylester.

Im Rahmen der vorliegenden Erfindung ist es auch möglich, ein Gemisch aus einer Trioder Polycarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es im Rahmen der vorliegenden Erfindung möglich, ein Gemisch mehrerer ver-

23

schiedener Derivate von einer oder mehreren Tri- oder Polycarbonsäuren einzusetzen, um Komponente B2) zu erhalten.

Als Diole für Variante (b) der vorliegenden Erfindung verwendet man beispielsweise 5 Ethylenglykol, Propan-1,2-diol, Propan-1,3-diol, Butan-1,2-diol, Butan-1,3-diol, Butan-1,4-diol, Butan-2,3-diol, Pentan-1,2-diol, Pentan-1,3-diol, Pentan-1,4-diol, Pentan-1,5diol, Pentan-2,3-diol, Pentan-2,4-diol, Hexan-1,2-diol, Hexan-1,3-diol, Hexan-1,4-diol, Hexan-1,5-diol, Hexan-1,6-diol, Hexan-2,5-diol, Heptan-1,2-diol 1,7-Heptandiol, 1,8-Octandiol, 1,2-Octandiol, 1,9-Nonandiol, 1,10-Decandiol, 1,2-Decandiol, 1,12-Do-10 decandiol, 1,2-Dodecandiol, 1,5-Hexadien-3,4-diol, Cyclopentandiole, Cyclohexandiole, Inositol und Derivate, (2)-Methyl-2,4-pentandiol, 2,4-Dimethyl-2,4-Pentandiol, 2-Ethyl-1,3-hexandiol, 2,5-Dimethyl-2,5-hexandiol, 2,2,4-Trimethyl-1,3-pentandiol, Pinacol, Diethylenglykol, Triethylenglykol, Dipropylenglykol, Tripropylenglykol, Polyethylenglykole HO(CH₂CH₂O)_n-H oder Polypropylenglykole HO(CH[CH₃]CH₂O)_n-H oder Gemische 15 von zwei oder mehr Vertretern der voranstehenden Verbindungen, wobei n eine ganze Zahl ist und n = 4 bis 25 beträgt. Dabei kann eine oder auch beide Hydroxylgruppen in den vorstehend genannten Diolen auch durch SH-Gruppen substituiert werden. Bevorzugt sind Ethylenglykol, Propan-1,2-diol sowie Diethylenglykol, Triethylenglykol, Dipropylenglykol und Tripropylenglykol.

20

25

30

Die Molverhältnis der Moleküle A zu Molekülen B im A_x By-Polyester bei den Varianten (a) und (b) beträgt 4:1 bis 1:4, insbesondere 2:1 bis 1:2.

Die nach Variante (a) des Verfahrens umgesetzten mindestens trifunktionellen Alkohole können Hydroxylgruppen jeweils gleicher Reaktivität aufweisen. Bevorzugt sind hier auch mindestens trifunktionelle Alkohole, deren OH-Gruppen zunächst gleich reaktiv sind, bei denen sich jedoch durch Reaktion mit mindestens einer Säuregruppe ein Reaktivitätsabfall, bedingt durch sterische oder elektronische Einflüsse, bei den restlichen OH-Gruppen induzieren lässt. Dies ist beispielsweise bei der Verwendung von Trimethylolpropan oder Pentaerythrit der Fall.

Die nach Variante (a) umgesetzten mindestens trifunktionellen Alkohole können aber auch Hydroxylgruppen mit mindestens zwei chemisch unterschiedlichen Reaktivitäten aufweisen.

35

Die unterschiedliche Reaktivität der funktionellen Gruppen kann dabei entweder auf chemischen (z.B. primäre/sekundäre/tertiäre OH Gruppe) oder auf sterischen Ursachen beruhen.

Beispielsweise kann es sich bei dem Triol um ein Triol handeln, welches primäre und sekundäre Hydroxylgruppen aufweist, bevorzugtes Beispiel ist Glycerin.

24

Bei der Durchführung der erfindungsgemäßen Umsetzung nach Variante (a) arbeitet man bevorzugt in Abwesenheit von Diolen und monofunktionellen Alkoholen.

Bei der Durchführung der erfindungsgemäßen Umsetzung nach Variante (b) arbeitet man bevorzugt in Abwesenheit von mono- oder Dicarbonsäuren.

Das erfindungsgemäße Verfahren wird bevorzugt in Gegenwart eines Lösemittels durchgeführt. Geeignet sind beispielsweise Kohlenwasserstoffe wie Paraffine oder Aromaten. Besonders geeignete Paraffine sind n-Heptan und Cyclohexan. Besonders geeignete Aromaten sind Toluol, ortho-Xylol, meta-Xylol, para-Xylol, Xylol als Isomerengemisch, Ethylbenzol, Chlorbenzol und ortho- und meta-Dichlorbenzol. Weiterhin sind als Lösemittel in Abwesenheit von sauren Katalysatoren ganz besonders geeignet: Ether wie beispielsweise Dioxan oder Tetrahydrofuran und Ketone wie beispielsweise Methylethylketon und Methylisobutylketon.

15

20

25

30

10

5

Die Menge an zugesetztem Lösemittel beträgt erfindungsgemäß mindestens 0,1 Gew.-%, bezogen auf die Masse der eingesetzten umzusetzenden Ausgangsmaterialien, bevorzugt mindestens 1 Gew.-% und besonders bevorzugt mindestens 10 Gew.-%, Man kann auch Überschüsse an Lösemittel, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, einsetzen, beispielsweise das 1.01- bis 10-fache. Lösemittel-Mengen von mehr als dem 100-fachen, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, sind nicht vorteilhaft, weil bei deutlich niedrigeren Konzentrationen der Reaktionspartner die Reaktionsgeschwindigkeit deutlich nachlässt, was zu unwirtschaftlichen langen Umsetzungsdauern führt.

Zur Durchführung des erfindungsgemäß bevorzugten Verfahrens kann man in Gegen-

wart eines Wasser entziehenden Mittels als Additiv arbeiten, das man zu Beginn der Reaktion zusetzt. Geeignet sind beispielsweise Molekularsiebe, insbesondere Molekularsieb 4Å, MgSO₄ und Na₂SO₄. Man kann auch während der Reaktion weiteres Wasser entziehendes Mittel zufügen oder Wasser entziehendes Mittel durch frisches Wasser entziehendes Mittel ersetzen. Man kann auch während der Reaktion gebildetes Wasser bzw. Alkohol abdestillieren und beispielsweise einen Wasserabscheider einsetzen.

35

Man kann das Verfahren in Abwesenheit von sauren Katalysatoren durchführen. Vorzugsweise arbeitet man in Gegenwart eines sauren anorganischen, metallorganischen oder organischen Katalysators oder Gemischen aus mehreren sauren anorganischen, metallorganischen oder organischen Katalysatoren.

40

Als saure anorganische Katalysatoren im Sinne der vorliegenden Erfindung sind beispielsweise Schwefelsäure, Phosphorsäure, Phosphonsäure, hypophosphorige Säure, WO 2006/018127 PCT/EP2005/008339 **25**

5

10

15

30

35

Aluminiumsulfathydrat, Alaun, saures Kieselgel (pH = 6, insbesondere = 5) und saures Aluminiumoxid zu nennen. Weiterhin sind beispielsweise Alumiumverbindungen der allgemeinen Formel Al(OR)₃ und Titanate der allgemeinen Formel Ti(OR)₄ als saure anorganische Katalysatoren einsetzbar, wobei die Reste R jeweils gleich oder verschieden sein können und unabhängig voneinander gewählt sind aus

C₁-C₁₀-Alkylresten, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,

C₃-C₁₂-Cycloalkylresten, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclodecyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl.

Bevorzugt sind die Reste R in Al(OR)₃ bzw. Ti(OR)₄ jeweils gleich und gewählt aus Isopropyl oder 2-Ethylhexyl.

Bevorzugte saure metallorganische Katalysatoren sind beispielsweise gewählt aus Dialkylzinnoxiden R₂SnO, wobei R wie oben stehend definiert ist. Ein besonders bevorzugter Vertreter für saure metallorganische Katalysatoren ist Di-n-butylzinnoxid, das als sogenanntes Oxo-Zinn kommerziell erhältlich ist, oder Di-n-butylzinndilaurat.

Bevorzugte saure organische Katalysatoren sind saure organische Verbindungen mit beispielsweise Phosphatgruppen, Sulfonsäuregruppen, Sulfatgruppen oder Phosphonsäuregruppen. Besonders bevorzugt sind Sulfonsäuren wie beispielsweise para-Toluolsulfonsäure. Man kann auch saure Ionentauscher als saure organische Katalysatoren einsetzen, beispielsweise Sulfonsäuregruppen-haltige Polystyrolharze, die mit etwa 2 mol-% Divinylbenzol vernetzt sind.

Man kann auch Kombinationen von zwei oder mehreren der vorgenannten Katalysatoren einsetzen. Auch ist es möglich, solche organische oder metallorganische oder auch anorganische Katalysatoren, die in Form diskreter Moleküle vorliegen, in immobilisierter Form einzusetzen.

Wünscht man saure anorganische, metallorganische oder organische Katalysatoren einzusetzen, so setzt man erfindungsgemäß 0,1 bis 10 Gew.-%, bevorzugt 0,2 bis 2 Gew.-% Katalysator ein.

Das erfindungsgemäße Verfahren wird unter Inertgasatmosphäre durchgeführt, das heißt beispielsweise unter Kohlendioxid, Stickstoff oder Edelgas, unter denen insbesondere Argon zu nennen ist.

Das erfindungsgemäße Verfahren wird bei Temperaturen von 60 bis 200°C durchgeführt. Vorzugsweise arbeitet man bei Temperaturen von 130 bis 180, insbesondere bis 150°C oder darunter. Besonders bevorzugt sind maximale Temperaturen bis 145°C,

5 ganz besonders bevorzugt bis 135°C.

Die Druckbedingungen des erfindungsgemäßen Verfahrens sind an sich unkritisch. Man kann bei deutlich verringertem Druck arbeiten, beispielsweise bei 10 bis 500 mbar. Das erfindungsgemäße Verfahren kann auch bei Drucken oberhalb von 500 mbar durchgeführt werden. Bevorzugt ist aus Gründen der Einfachheit die Umsetzung bei Atmosphärendruck; möglich ist aber auch eine Durchführung bei leicht erhöhtem Druck, beispielsweise bis 1200 mbar. Man kann auch unter deutlich erhöhtem Druck arbeiten, beispielsweise bei Drucken bis 10 bar. Bevorzugt ist die Umsetzung bei Atmosphärendruck.

15

10

Die Umsetzungsdauer des erfindungsgemäßen Verfahrens beträgt üblicherweise 10 Minuten bis 25 Stunden, bevorzugt 30 Minuten bis 10 Stunden und besonders bevorzugt eine bis 8 Stunden.

Nach beendeter Reaktion lassen sich die hochfunktionellen hyperverzweigten Polyester leicht isolieren, beispielsweise durch Abfiltrieren des Katalysators und Einengen, wobei man das Einengen üblicherweise bei vermindertem Druck durchführt. Weitere gut geeignete Aufarbeitungsmethoden sind Ausfällen nach Zugabe von Wasser und anschließendes Waschen und Trocknen.

25

Weiterhin kann die Komponente B2) in Gegenwart von Enzymen oder Zersetzungsprodukten von Enzymen hergestellt werden (gemäß DE-A 101 63163). Es gehören die erfindungsgemäß umgesetzten Dicarbonsäuren nicht zu den sauren organischen Katalvsatoren im Sinne der vorliegenden Erfindung.

30

Bevorzugt ist die Verwendung von Lipasen oder Esterasen. Gut geeignete Lipasen und Esterasen sind Candida cylindracea, Candida lipolytica, Candida rugosa, Candida antarctica, Candida utilis, Chromobacterium viscosum, Geolrichum viscosum, Geotrichum candidum, Mucor javanicus, Mucor mihei, pig pancreas, pseudomonas spp., pseudomonas fluorescens, Pseudomonas cepacia, Rhizopus arrhizus, Rhizopus delemar, Rhizopus niveus, Rhizopus oryzae, Aspergillus niger, Penicillium roquefortii, Penicillium camembertii oder Esterase von Bacillus spp. und Bacillus thermoglucosidasius. Besonders bevorzugt ist Candida antarctica Lipase B. Die aufgeführten Enzyme sind kommerziell erhältlich, beispielsweise bei Novozymes Biotech Inc., Dänemark.

40

35

Bevorzugt setzt man das Enzym in immobilisierter Form ein, beispielsweise auf Kieselgel oder Lewatit®. Verfahren zur Immobilisierung von Enzymen sind an sich bekannt,

WO 2006/018127 PCT/EP2005/008339 27

beispielsweise aus Kurt Faber, "Biotransformations in organic chemistry", 3. Auflage 1997, Springer Verlag, Kapitel 3.2 "Immobilization" Seite 345-356. Immobilisierte Enzyme sind kommerziell erhältlich, beispielsweise bei Novozymes Biotech Inc., Dänemark.

5

Die Menge an immobilisiertem eingesetztem Enzym beträgt 0,1 bis 20 Gew.-%, insbesondere 10 bis 15 Gew.-%, bezogen auf die Masse der insgesamt eingesetzten umzusetzenden Ausgangsmaterialien.

- Das erfindungsgemäße Verfahren wird bei Temperaturen über 60°C durchgeführt. Vorzugsweise arbeitet man bei Temperaturen von 100°C oder darunter. Bevorzugt sind Temperaturen bis 80°C, ganz besonders bevorzugt von 62 bis 75°C und noch mehr bevorzugt von 65 bis 75°C.
- Das erfindungsgemäße Verfahren wird in Gegenwart eines Lösemittels durchgeführt. Geeignet sind beispielsweise Kohlenwasserstoffe wie Paraffine oder Aromaten. Besonders geeignete Paraffine sind n-Heptan und Cyclohexan. Besonders geeignete Aromaten sind Toluol, ortho-Xylol, meta-Xylol, para-Xylol, Xylol als Isomerengemisch, Ethylbenzol, Chlorbenzol und ortho- und meta-Dichlorbenzol. Weiterhin sind ganz besonders geeignet: Ether wie beispielsweise Dioxan oder Tetrahydrofuran und Ketone wie beispielsweise Methylethylketon und Methylisobutylketon.

Die Menge an zugesetztem Lösemittel beträgt mindestens 5 Gew.-Teile, bezogen auf die Masse der eingesetzten umzusetzenden Ausgangsmaterialien, bevorzugt mindestens 50 Gew.-Teile und besonders bevorzugt mindestens 100 Gew.-Teile. Mengen von über 10 000 Gew.-Teile Lösemittel sind nicht erwünscht, weil bei deutlich niedrigeren Konzentrationen die Reaktionsgeschwindigkeit deutlich nachlässt, was zu unwirtschaftlichen langen Umsetzungsdauern führt.

Das erfindungsgemäße Verfahren wird bei Drücken oberhalb von 500 mbar durchgeführt. Bevorzugt ist die Umsetzung bei Atmosphärendruck oder leicht erhöhtem Druck, beispielsweise bis 1200 mbar. Man kann auch unter deutlich erhöhtem Druck arbeiten, beispielsweise bei Drücken bis 10 bar. Bevorzugt ist die Umsetzung bei Atmosphärendruck.

35

25

Die Umsetzungsdauer des erfindungsgemäßen Verfahrens beträgt üblicherweise 4 Stunden bis 6 Tage, bevorzugt 5 Stunden bis 5 Tage und besonders bevorzugt 8 Stunden bis 4 Tage.

Nach beendeter Reaktion lassen sich die hochfunktionellen hyperverzweigten Polyester isolieren, beispielsweise durch Abfiltrieren des Enzyms und Einengen, wobei man das Einengen üblicherweise bei vermindertem Druck durchführt. Weitere gut geeignete

30

35

40

28

Aufarbeitungsmethoden sind Ausfällen nach Zugabe von Wasser und anschließendes Waschen und Trocknen.

Die nach dem erfindungsgemäßen Verfahren erhältlichen hochfunktionellen, hyperverzweigten Polvester, zeichnen sich durch besonders geringe Anteile an Verfärbungen und Verharzungen aus. Zur Definition von hyperverzweigten Polymeren siehe auch: P.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und A. Sunder et al., Chem. Eur. J. 2000, 6, No.1, 1-8. Unter "hochfunktionell hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung jedoch verstanden, dass der Verzweigungsgrad (Degree of 10 branching), das heißt die mittlere Anzahl von dendritischen Verknüpfungen plus die mittlere Anzahl von Endgruppen pro Molekül 10 – 99,9 %, bevorzugt 20 – 99 %, besonders bevorzugt 30 - 90 % beträgt (siehe dazu H. Frey et al. Acta Polym. 1997, 48, 30).

Die erfindungsgemäßen Polyester haben ein Molekulargewicht Mw von 500 bis 15 50 000 a/mol, bevorzugt 1000 bis 20 000, besonders bevorzugt 1000 bis 19 000. Die Polydispersität beträgt 1,2 bis 50, bevorzugt 1,4 bis 40, besonders bevorzugt 1,5 bis 30 und ganz besonders bevorzugt 1,5 bis 10. Sie sind üblicherweise gut löslich, d.h. man kann klare Lösungen mit bis zu 50 Gew.-%, in einigen Fällen sogar bis zu 80 Gew.-%, der erfindungsgemäßen Polyester in Tetrahydrofuran (THF), n-Butylacetat, Ethanol 20 und zahlreichen anderen Lösemitteln darstellen, ohne dass mit bloßem Auge Gelpartikel detektierbar sind.

Die erfindungsgemäßen hochfunktionellen hyperverzweigten Polyester sind carboxyterminiert, carboxy- und Hydroxylgruppen-terminiert und vorzugsweise Hydroxylgrup-25 pen-terminiert.

Die Verhältnisse der Komponenten B1) zu B2) betragen vorzugsweise von 1:20 bis 20:1, insbesondere von 1:15 bis 15:1 und ganz besonders von 1:5 bis 5:1, wenn diese in Mischung eingesetzt werden.

Bei den eingesetzten hyperverzweigten Polycarbonaten B1) / Polyestern B2) handelt es sich um Partikel mit einer Größe von 20 - 500 nm. Diese Nanopartikel liegen im Polymerblend fein verteilt vor, die Größe der Partikel im Compound beträgt von 20 bis 500 nm, vorzugsweise 50 – 300 nm.

Derartige Compounds sind im Handel als Ultradur ® high speed erhältlich.

Als Komponente (C) enthalten die erfindungsgemäßen thermoplastischen Formmassen 1 bis 40, vorzugsweise 1 bis 20 Gew.-% eines schlagzähmodifizierenden Polymeren (oft auch als kautschukelastisches Polymerisat oder Elastomer bezeichnet).

PCT/EP2005/008339

Bevorzugte kautschukelastische Polymerisate sind Polymerisate auf Basis von Olefinen, die aus folgenden Komponenten aufgebaut sind:

- 40 100 Gew.-% vorzugsweise 55 bis 79,5 Gew.-% mindestens eines α -Olefins mit 2 bis 8 C-Atomen,
- C_2 0 - 90 Gew.-% eines Diens,

5

25

- 0 45 Gew.-% bevorzugt 20 bis 40 Gew.-% eines C₁-C₁₂-Alkylesters der Acryl- C_3) säure oder Methacrylsäure oder Mischungen derartiger Ester,
- 0 40 Gew.-% bevorzugt 0,5 bis 20 Gew.-% einer ethylenisch ungesättigten Mo- C_4) no- oder Dicarbonsäure oder einem funktionellen Derivat einer solchen Säure, 10
 - 0 40 Gew.-% eines Epoxygruppen enthaltenden Monomeren, C_5
 - 0 5 Gew.-% sonstiger radikalisch polymerisierbaren Monomerer, C_6)

mit der Maßgabe, dass die Komponente (C) kein Olefinhomopolymerisat ist, denn hiermit, z.B. mit Polyethylen, erzielt man die vorteilhaften Wirkungen nicht in gleichem 15 Maße.

Als erste bevorzugte Gruppe sind die sogenannten Ethylen-Propylen-(EPM)- bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke zu nennen, die vorzugsweise ein Verhältnis von Ethylen- zu Propyleneinheiten im Bereich von 40:60 bis 90:10 aufweisen. 20

Die Mooney-Viskositäten (MLI+4/100°C) solcher, vorzugsweise unvernetzter, EPMbzw..EPDM-Kautschuke (Gelgehalte im allgemeinen unter 1 Gew.-%) liegen bevorzugt im Bereich von 25 bis 100, insbesondere von 35 bis 90 (gemessen am großen Rotor nach 4 Minuten Laufzeit bei 100°C nach DIN 53 523).

EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindungen mehr, während EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C-Atome aufweisen können.

Als Dien-Monomere C2) für EPDM-Kautschuke seien beispielsweise konjugierte Diene 30 wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1,4-dien, Hexa-1,4-dien, Hexa-1,5-dien, 2,5-Di-. methylhexa-1,,5-dien und Octa-1,4dien, cyclische Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopentadien sowie Alkenylnorbornene wie 5-Ethyliden-2-norbornen, 5-Butyliden-2norbornen, 2-Methallyl-5-norbornen, 2-Isopropenyl-5-norbornen und Tricyclodiene wie 35 3-Methyl-tricyclo(5.2.1.0.2.6)-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1,5-dien, 5-Ethyliden-Norbornen und Dicyclopentadien. Der Diengehalt der EPDM-Kau2chuke beträgt vorzugsweise 0,5 bis 50, insbesondere 2 bis 20 und besonders bevorzugt 3 bis 15 Gew.-0/o, bezogen auf das Gesamtgewicht des Olefinpo-40 lymerisats.

30

EPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien vor allem Acrylsäure, Methacrylsäure und deren Derivate sowie Maleinsäureanhydrid genannt.

Insbesondere bevorzugte Komponenten C) sind beispielsweise MBS-Kautschuke aufgebaut aus:

65 bis 99 Gew.-% eines Kerns aus

- C₂) 90 bis 100 Gew.-% eines Diens, 0 bis 10 Gew.-% weiterer vernetzbarer Monome rer
 sowie 1 bis 35 Gew.-% einer Schale aus
 - C₇) 1 bis 30 Gew.-% Styrol oder ungesättigten Styrolen oder deren Mischungen und
 - C₈) 70 bis 100 Gew.-% mindestens eines ungesättigten Nitrils.
- 15 Geeignete Monomere C₇) sind Styrole oder substituierte Styrole der allgemeinen Formel I

worin R einen C₁- bis C₈-Alkylrest, bevorzugt Methyl oder Ethyl, oder Wasserstoff bedeutet und R¹ einen C₁- bis C₈Alkylrest, bevorzugt Methyl oder Ethyl, darstellt und n den Wert 1, 2 oder 3 hat oder deren Mischungen.

Eine weitere Gruppe bevorzugter Olefinpolymerisate sind Copolymere von α -Olefinen mit 2 - 8 C-Atomen, insbesondere des Ethylens, mit C₁-C₁₈-Alkylestern der Acrylsäure und/oder Methacrylsäure.

Grundsätzlich eignen sich alle primären, sekundären und tertiären C₁-C₁₈-Alkylester der Acrylsäure oder Methacrylsäure, doch werden Ester mit 1 - 12 C-Atomen, insbesondere mit 2 - 10 C-Atomen bevorzugt.

Beispiele hierfür sind Methyl-, Ethyl-, Propyl-, n-, i-Butyl- und t-Butyl-, 2-Ethylhexyl-, Octyl- und Decylacrylate bzw. die entsprechenden Ester der Methacrylsäure. Von diesen werden n-Butylacrylat und 2-Ethylhexylacrylat besonders bevorzugt.

Der Anteil der Methacrylsäureester und Acrylsäureester C₃) an den Olefinpolymerisaten beträgt 0 - 60, vorzugsweise 10 - 50 und insbesondere 30 – 45 Gew.-%.

Anstelle der Ester C₃) oder zusätzlich zu diesen können in den Olefinpolymerisaten auch säurefunktionelle und/oder latent säurefunktionelle Monomere ethylenisch unge-

10

sättigter Mono- oder Dicarbonsäuren C_4) oder Epoxygruppen aufweisende Monomere C_5) enthalten sein.

Als Beispiele für Monomere C₄ seien Acrylsäure, Methacrylsäure, tertiäre Alkylester dieser Säuren, insbesondere tert.-Butylacrylat und.Dicarbonsäuren wie Maleinsäure und Fumarsäure oder Derivate dieser Säuren sowie deren Monoester genannt.

Als latent säurefunktionelle Monomere sollen solche Verbindungen verstanden werden, die unter den Polymerisationsbedingungen bzw. bei der Einarbeitung der Olefinpolymerisate in die Formmassen freie Säuregruppen bilden. Als Beispiele hierfür seien Anhydride von Dicarbonsäuren mit bis zu 20 C-Atomen, insbesondere Maleinsäureanhydrid und tertiäre C₁-C₁₂-Alkylester der vorstehend genannten Säuren, insbesondere tert.-Butylacrylat und tert.-Butylmethacrylat angeführt.

Die säurefunktionellen bzw. latent säurefunktionellen Monomeren und die Epoxygruppen-enthaltenden Monomeren werden vorzugsweise durch Zugabe von Verbindungen der allgemeinen Formeln I - IV zum Monomerengemisch in die Olefinpolymerisate eingebaut.

$$R_1C(COOR_2) = C(COOR_3)R_4$$
 (I)

$$\begin{array}{cccc}
R_1 \\
C & C \\
OC & CO
\end{array}$$
(II)

20

$$CHR^{7} = C - (CH_{2})_{m} O - (CHR^{6})_{n} - C - CHR^{5}$$
 (III)

$$H_2C=CR^9-COO-(CH_2)_n-C$$
CHR⁸ (IV)

wobei die Reste R¹ - R⁹ Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen 25 und m eine ganze Zahl von 0 bis 20 und n eine ganze Zahl von 0 bis 10 ist.

Bevorzugt für R^1 - R^7 ist Wasserstoff, für m der Wert 0 oder 1 und für n der Wert 1. Die entsprechenden Verbindungen sind Maleinsäure, Fumarsäure, Maleinsäureanhydrid, C_4) bzw. Alkenylglycidylether oder Vinylglycidylether C_5).

32

Bevorzugte Verbindungen der Formeln I, II, III und IV sind Maleinsäure und Maleinsäureanhydrid als Komponente C_4) und Epoxygruppen-enthaltende Ester der Acrylsäure und/oder Methacrylsäure, wobei Glycidylacrylat und Glycidylmethacrylat (als Komponente C_5) besonders bevorzugt werden.

5

Der Anteil der Komponenten C_4) bzw. C_5) beträgt jeweils 0,07 bis 40 Gew.-%, insbesondere 0,1 bis 20 und besonders bevorzugt 0,15 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Olefinpolymerisate.

10 Besonders bevorzugt sind Olefinpolymerisate aus

50 bis 98,9 insbesondere 55 bis 65 Gew.-% Ethylen,

0,1 bis 20, insbesondere 0,15 bis 10 Gew.-% Glycidylacrylat und/oder Glycidylmethacrylat, Acrylsäure und/oder Maleinsäureanhydrid,

15 1 bis 45, insbesondere 25 bis 40 Gew.-% n-Butylacrylat und/oder 2-Ethylhexylacrylat, sowie

0 bis 10, insbesondere 0,1 bis 3 Gew.-% Maleinsäureanhydrid oder Fumarsäure oder deren Mischungen.

Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.

Als sonstige Monomere C₆) kommen z.B. Vinylester und Vinylether in Betracht.

- Bei der Verwendung solcher Olefinpolymerisate beträgt deren Anteil bevorzugt 0 bis 20, insbesondere 4 bis 18 und ganz besonders 5 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (A) bis (D).
- Die Herstellung der vorstehend beschriebenen Ethylencopolymeren kann nach an sich bekannten Verfahren erfolgen, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur.

Der Schmelzindex der Ethylencopolymeren liegt im allgemeinen im Bereich von 1 bis 80 g/10 min (gemessen bei 190°C und 2,16 kg Belastung).

35

Weiterhin bevorzugt sind Acrylat Kautschuke C) aufgebaut aus:

a) 70 bis 90 Gew.-% und vorzugsweise 75 bis 85 Gew.-% vernetzten elastomeren Kern, der sich zusammensetzt aus:

40

1) 20 bis 90 Gew.-% eines Kerns, der aus einem Copolymer (1) eines n-Alkylacrylats, dessen Alkylgruppe 5 bis 12 Kohlenstoffatome und vorzugs-

5

10

15

20

25

40

33

weise 5 bis 8 Kohlenstoffatome aufweist, oder eines Gemisches von Alkylacrylaten, wobei die Anzahl der Kohlenstoffatome geradkettigen oder verzweigten Alkylgruppen im Bereich von 2 bis 12 und vorzugsweise 4 bis 8 liegt; eines polyfunktionellen Vernetzungsmilltels, wobei dieses Molekül ungesättigte Gruppen und darunter mindestens eine Gruppe vom Vinyltyp CH₂=C< aufweist, und gegebenenfalls eines polyfunktionellen Pfropfungsmittels besteht wobei dieses Molekül ungesättigte Gruppen und darunter mindestens eine Gruppe vom Allyltyp CH₂=CH-CH₂- aufweist, wobei der Kern eine molaren Menge des Vernetzungsmittels und gegebenenfalls des Pfropfungsmittels von 0,05 bis 5 % und vorzugsweise in einer Menge von 0,5 bis 1,5 Gew. % enthält,

- 2) 80 bis 10 Gew-% einer Schale, die aus einem Copolymer (II) eines n-Alkylacrylats, dessen Alkylgruppe 4 bis 12 Kohlenstoffatome und vorzugsweise 4 bis 8 Kohlenstoffatome aufweist, oder eines Gemisches von Alkylacrylaten gemäß der unter 1) angegebenen Definition und eines polyfunktionellen Propfungsmittels besteht, wobei dieses Molekül ungesättigte Gruppen und darunter mindestens eine Gruppe vom Allyltyp CH₂=CH-CH₂- aufweist, wobei die Schale das Pfropfungsmittel in einer molaren Menge von 0,05 bis 2,5 % und vorzugsweise in einer Menge von 0,5 bis 1,5 Gew.-% enthält, und
- b) 30 bis 10 Gew.-% und vorzugsweise 25 bis 15 Gew.-% einer auf den Kein gepfropften Schale, die aus einem Alkylmethacrylatpolymer, dessen Alkylgruppe 1 bis 4 Kohlenstoffatome aufweist, oder aus einem statistischen Copolymer eines Alkylmethacrylats, dessen Alkylgnppe 1 bis 4 Kohlenstoffatome aufweist, und eines Alkylacrylats besteht. dessen Alkylgruppe 1 bis 8 Kohlenstoffatome aufweist, wobei das Alkylacrylat in einer molaren Menge von 5 bis 40 % und vorzugsweise im Bereich von 10 bis 20 % enthalten ist.
- Von den n-Alkylacrylaten, die gemäß der vorliegenden Erfindung zur Bildung des Copolymers (1) verwendbar sind, können zur Erläuterung das n-Pentylacrylat n-Hexylacrylat, n-Heptylacrylat und insbesondere das n-Octylacrylat verwendet werden.
- Beispiele für n-Alkylacrylate, die gemäß der Erfindung zur Bildung des Copolymers (II) verwendbar sind, sind etwa n-Butylacrylat, n-Pentylacrylat, n-Hexylacrylat, n-Heptylacrylat und insbesondere das n-Octylacrylat.
 - Die zur Bildung der Copolymere (I) und/oder (II) verwendbaren n-Alkylacrylate können gleich oder verschieden sein.

Zur Erläuterung dar geradkettigen oder verzweigten Alkylacrylate, die gemäß der Erfindung zur Bitdung der Gemische von Alkylacrylaten in den Copolymeren (I) und/oder

35

40

- (II) verwendbar sind, können Ethylacrylat, n-Propylacrylat, n-Butylacrylat, Amylacrylat 2-Methylbubylacylet, 2-Ethylhexylacrytat, n-Hexylacrylat, n-Octylacrylat, n-Decylacrylat, n-Dodecylacrylat und 3,5,5-Trimethylhexylacrylat angegeben werden.
- Falls zur Bildung der Copolymere (I) und/oder (II) ein Gemisch von Alkylacrylaten eingesetzt wird, sollte das n Alkylacrylat in einem Gewichtsanteil von mindestens 10 Gew.-% des Gemisches von Alkylacrylaten verwendet werden, wobei diese Menge vorzugsweise im Bereich von 20 bis 80 % liegt.
- Wie oben angegeben wurde, können zur Herstellung der Copolymere (I) und/oder (II) identische oder unterschiedliche Gemische von Alkylacrylaten verwendet wenden.

Gemäß der vorliegenden Erfindung werden bevorzugt n-Alkylacrylate und insbesondere das n-Octylacrylat zur Herstellung der Copolymere (I) und (II) verwendet.

Wenn zur Bildung der Copolymere (I) und/oder (II) ein Gemisch von Alkylacrylaten verwendet wird, werden vorzugsweise 20 bis 80 Gew.-% n-Octylacrylat und vorzugsweise 80 bis 20 Gew.-% n-Butylacrylat eingesetzt.

- Beispiele für Alkylmethacrylate, die zur Bildung der auf den vernetzten elastomeren Kern gepfropften Schale gemäß der vorliegenden Erfindung zum Einsatz kommen können, sind beispielsweise Ethylmethacrylat, n-Propylmethacrylat, Isopropylmethacrylat; n-Butylmethacrylat, Isobutylacrylat und besonders das Methylmethacrylat.
- Das zur Bildung des Copolymers (I) verwendete Vernetzungsmittel kann gemäß der vorliegenden Erfindung insbesondere unter den Derivaten ausgewählt werden, die mindestens zwei Doppelbindungen vom Vinyltyp oder eine oder mehrere Doppelbindungen vom Vinyltyp und mindestens eine Doppelbindung vom Allyltyp aufweisen.
 Vorzugsweise werden Verbindungen eingesetzt, die in ihren Molekülen hauptsächlich
 Doppelbindungen vom Vinyltyp enthalten.

Zur Erläuterung für derartige Vernetzungsmittel können die Divinylbenzole, (Meth)acrylate von Polyalkoholen, wie beispielsweise Trimethylolpropantriacrylat, Trimethylolpropantrimethacrylat, Allylacrylat, Allylmethacrylat, Diacrylate oder Methacrylate von Alkylenglykolen mit 2 bis 10 Kohlenstoffatomen in der Alkylenkette und insbesondere Ethylenglykoldiacrylat, Ethylenglykoldimethacrylat, Butan-1,4-dioldiacrylat, Butan-1,4-dimethacrylat, Hexen-1,6-dioldiacrylat, Hexan-I,6-dimethacrylat, das Diacrylat oder Dimethacrylat von Polyoxyalkylenglykol der folgenden Formel:

$$\begin{array}{c|c} H_2C=C-C(O)O-[C_nH_{2n}O]_p-(O)C-C=CH_2 \\ X & X \end{array}$$

WO 2006/018127

5

10

20

25

30

35

worin X Wasserstoff oder Methyl bedeutet, n eine ganze Zahl von 2 bis 4 und p eine ganze Zahl von 2 bis 20 bedeutet, und insbesondere das Diacrylat oder Dimethacrylat vor Polyoxyethylenglykol angegeben werden, worin die Polyoxyethylengruppe eine Molmasse von etwa 400 aufweist (oben angegebene Formel mit n = 2 und p = 9).

Das zur Herstellung des Copolymers (II) verwendete Pfropfungsmittel kann gemäß der vorliegenden Erfindung insbesondere unter den Derivaten ausgewählt werden, die mindestens zwei Doppelbindungen vom Allyltyp oder eine oder mehrere Doppelbindungen vom Allyltyp und mindestens eine Doppelbindung vom Vinyltyp enthalten.

Es werden vorzugsweise Verbindungen verwendet, die in ihren Molekülen hauptsächlich Doppelbindungen vom Allyltyp enthalten.

Als Beispiele für solche Pfropfungsmittel kommen beispielsweise Diallylmaleat, Diallylitaconat, Allylacrylat, Allylmethacrylat, Triallylcyanurat, Triallylisocyanurat, Diallylterephthalat und Triallyltrimesat in Betracht.

Der bevorzugte Mengenanteil des Schlagzähmodifikators, der in das thermoplastische Polymer eingebracht wird, liegt im Bereich von 1 bis 30 Gew.-% und vorzugsweise 5 bis 10 Gew.-% auf 100 Gew.-% des verwendeten thermoplastischen Polymers.

Um die Molmasse des Schlagzähmodifikators zu beurteilen, kann eine Viskosität im geschmolzenen Zustand definiert werden, die sich in gleichem Maße verändert. Die Viskosität in geschmolzenem Zustand kann in einem ziemlich großen Bereich liegen, mit der Maßgabe, dass eine gute Dispersion des Schlagzähmodifikators bei den Arbeitsgängen der Verwendung der Harzzusammensetzung mit dem Modifikator gewährleistet ist. Als repräsentative Größe für diese Viskosität im geschmolzenen Zustand ist der Wert des Widerstandsmoments eines Brabender-Rheometers geeignet, das 50 g Schlagzähmodifikator enthält und bei einer Temperatur von 200°C mit einer Rotationsgeschwindigkeit der Rotoren von 40 U/min betrieben wird, wobei die Ermittlung des Drehmoments nach 20 min bei 200°C durchgeführt wird. Geeignete Werte für die Viskosität im geschmolzenen Zustand des Schlagzähmodifikators entsprechen Werten des oben genannten Drehmoments im Bereich von 600 bis 4000 mg. Für Harzzusammensetzungen, in denen das thermoplastische Polymer ein Polymer mit mindestens 80 Gew.-% polymerisiertem Vinylchlorid ist, entsprechen die bevorzugten Werte für die Viskosität des Schlagzähmodifikators im geschmolzenen Zustand Drehmomentwerten im Bereich von 800 bis 3000 mg und insbesondere im Bereich von 1000 bis 2500 mg.

40 Verfahren zur Herstellung derartiger Komponenten C) sind aus der EP-A 776 915 bekannt.

36 nonente D) können die erfindungsge

Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 60, insbesondere bis zu 50 Gew.-% weiterer Zusatzstoffe und Verarbeitungshilfsmittel enthalten, welche verschieden von B) und C) sind.

Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 5, vorzugsweise 0,05 bis 3 und insbesondere 0,1 bis 2 Gew.-% mindestens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40, bevorzugt 16 bis 22 C-Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40, vorzugsweise 2 bis 6 C-Atomen enthalten.

10

Die Carbonsäuren können 1- oder 2-wertig sein. Als Beispiele seien Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Dodecandisäure, Behensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäuren mit 30 bis 40 C-Atomen) genannt.

15

Die aliphatischen Alkohole können 1- bis 4-wertig sein. Beispiele für Alkohole sind n-Butanol, n-Octanol, Stearylalkohol, Ethylenglykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.

Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexamethylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamin-distearat, Glycerinmonopalmitrat, Glycerintrilaurat, Glycerinmonobehenat und Pentaerythrittetrastearat.

Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.

Als faser- oder teilchenförmige Füllstoffe D) seien Kohlenstofffasern, Glasfasern, Glaskugeln, amorphe Kieselsäure, Asbest, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat genannt, die in Mengen bis zu 50 Gew.-%, insbesondere bis zu 40 % eingesetzt werden.

35

Als bevorzugte faserförmige Füllstoffe seien Kohlenstoffasern, Aramid–Fasern und Kaliumtitanat–Fasern genannt, wobei Glasfasern als E–Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.

40

Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermoplasten mit einer Silanverbindung oberflächlich vorbehandelt sein.

Geeignete Silanverbindungen sind solche der allgemeinen Formel

$$(X-(CH_2)_n)_k-Si-(O-C_mH_{2m+1})_{4-k}$$

5

in der die Substituenten folgende Bedeutung haben:

n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4

m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2

10 k eine ganze Zahl von 1 bis 3, bevorzugt 1

Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimethoxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten.

15

25

35

Die Silanverbindungen werden im allgemeinen in Mengen von 0,05 bis 5, vorzugsweise 0,5 bis 1,5 und insbesondere 0,8 bis 1 Gew.-% (bezogen auf C) zur Oberflächenbeschichtung eingesetzt.

20 Geeignet sind auch nadelförmige mineralische Füllstoffe.

Unter nadelförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein mineralischer Füllstoff mit stark ausgeprägtem nadelförmigen Charakter verstanden. Als Beispiel sei nadelförmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein L/D–(Länge Durchmesser)–Verhältnis von 8:1 bis 35:1, bevorzugt von 8:1 bis 11:1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erforderlich.

Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt.

Als Komponente D) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher usw. enthalten.

Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren sind sterisch gehinderte Phenole und/oder Phosphite, Hydrochinone, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Gruppen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen genannt.

Als UV-Stabilisatoren, die im allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien verschiedene substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone genannt.

10

20

35

5

Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß, weiterhin organische Pigmente, wie Phthalocyanine, Chinacridone, Perylene sowie Farbstoffe, wie Nigrosin und Anthrachinone als Farbmittel zugesetzt werden.

Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminiumoxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.

Weitere Gleit- und Entformungsmittel werden üblicherweise in Mengen bis zu 1 Gew.-% eingesetzt. Es sind bevorzugt langkettige Fettsäuren (z.B. Stearinsäure oder Behensäure), deren Salze (z.B. Ca- oder Zn-Stearat) oder Montanwachse (Mischungen aus geradkettigen, gesättigten Carbonsäuren mit Kettenlängen von 28 bis 32 C-Atomen) sowie Ca- oder Na-Montanat sowie niedermolekulare Polyethylen- bzw. Polypropylenwachse.

Als Beispiele für Weichmacher seien Phthalsäuredioctylester, Phthalsäuredibenzylester, Phthalsäurebutylbenzylester, Kohlenwasserstofföle, N-(n-Butyl)benzolsulfonamid genannt.

Die erfindungsgemäßen Formmassen können noch 0 bis 2 Gew.-% fluorhaltige Ethy-30 lenpolymerisate enthalten. Hierbei handelt es sich um Polymerisate des Ethylens mit einem Fluorgehalt von 55 bis 76 Gew.-%, vorzugsweise 70 bis 76 Gew.-%.

Beispiele hierfür sind Polytetrafluorethylen (PTFE), Tetrafluorethylenhexafluorpropylen-Copolymere oder Tetrafluorethylen-Copolymerisate mit kleineren Anteilen (in der Regel bis zu 50 Gew.-%) copolymerisierbarer ethylenisch ungesättigter Monomerer. Diese werden z.B. von Schildknecht in "Vinyl and Related Polymers", Wiley-Verlag, 1952, Seite 484 bis 494 und von Wall in "Fluorpolymers" (Wiley Interscience, 1972) beschrieben.

40 Diese fluorhaltigen Ethylenpolymerisate liegen homogen verteilt in den Formmassen vor und weisen bevorzugt eine Teilchengröße d₅₀ (Zahlenmittelwert) im Bereich von 0,05 bis 10 μm, insbesondere von 0,1 bis 5 μm auf. Diese geringen Teilchengrößen

lassen sich besonders bevorzugt durch Verwendung von wässrigen Dispersionen von fluorhaltigen Ethylenpolymerisaten und deren Einarbeitung in eine Polyesterschmelze erzielen.

39

5 Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Ausgangskomponenten in üblichen Mischvorrichtungen wie Schneckenextrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel bei 230 bis 290°C.

Nach einer weiteren bevorzugten Arbeitsweise können die Komponenten B) sowie gegebenenfalls C)/D) mit einem Polyesterpräpolymeren gemischt, konfektioniert und granuliert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunktes der Komponente A) bis zur gewünschten Viskosität kondensiert.

Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine qute Fließfähigkeit bei gleichzeitig guter Mechanik aus.

Insbesondere ist die Verarbeitung der einzelnen Komponenten (ohne Verklumpung oder Verbackung) problemlos und in kurzen Zykluszeiten möglich, so dass insbesondere dünnwändige Bauteile als Anwendung in Frage kommen.

25

30

35

40

20

15

Der Einsatz für einen fließverbesserten Polyester ist in nahezu sämtlichen Spritzgussanwendungen denkbar. Die Fließverbesserung ermöglicht eine niedrigere Schmelzetemperatur und kann somit zu einer deutlichen Absenkung der gesamten Zykluszeit des Spritzgussprozesses führen (Absenkung der Herstellkosten eines Spritzgussteiles!). Des weiteren sind niedrigere Einspritzdrücke während der Verarbeitung notwendig, so dass eine geringere Gesamtschließkraft am Spritzgusswerkzeug benötigt wird (niedrigere Investitionskosten bei der Spritzgussmaschine).

Neben den Verbesserungen des Spritzgussprozesses kann die Absenkung der Schmelzeviskosität zu deutlichen Vorteilen bei der eigentlichen Bauteilgestaltung führen. So können dünnwandige Anwendungen, die z.B. bisher mit gefüllten Polyester-Typen nicht realisierbar waren, über Spritzguss hergestellt werden. Analog hierzu ist bei bestehenden Applikationen durch den Einsatz verstärkter aber leichter fließender Polyester-Typen eine Reduzierung der Wandstärken und somit eine Reduzierung der Teilegewichte denkbar.

40

Diese eignen sich zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art, insbesondere für Anwendungen als Hecker, Schalter, Gehäuseteile, Gehäusedeckel, Scheinwerferhintergrund (Bezel), Brausenkopf, Armaturen, Bügeleisen, Drehschalter, Herdknöpfe, Friteusendeckel, Türgriffe, (Rück-)spiegelgehäuse, (Heck-)scheibenwischer, Lichtwellenleiterummantelungen.

Im E/E-Bereich können mit dem fließverbesserten Polyestern Stecker, Steckerteile, Steckverbinder, Kabelbaumkomponenten, Schaltungsträger, Schaltungsträgerkomponenten, dreidimensional spritzgegossene Schaltungsträger, elektrische Verbindungselemente, mechatronische Komponenten oder optoelektronische Bauelemente hergestellt werden.

Im Auto-Innenraum ist eine Verwendung für Armaturentafeln, Lenkstockschalter, Sitzteile, Kopfstützen, Mittelkonsolen, Getriebe-Komponenten und Tür-module, im Auto-Außenraum für Türgriffe, Frontscheinwerferkomponenten, Außenspiegelkomponenten, Scheibenwischerkomponenten, Scheibenwischerschutzgehäuse, Ziergitter, Dachreling, Schiebedachrahmen sowie Karosserieaußenteile möglich.

Für den Küchen- und Haushaltsbereich ist der Einsatz des fließverbesserten Polyester zur Herstellung von Komponenten für Küchengeräte, wie z.B. Friteusen, Bügeleisen, Knöpfe, sowie Anwendungen im Garten-Freizeitbereich, z.B. Komponenten für Bewässerungssysteme oder Gartengeräte möglich.

Im Bereich der Medizintechnik können Inhalatorengehäuse, und deren Komponenten durch fließverbessertes Polyester einfacher realisiert werden.

Durch Transmissionselektronenmikroskopie wurde die Morphologie ausgewählter Compounds untersucht. Es zeigte sich eine gute Dispergierung der Partikel im Blend. Es wurden Partikelgrößen von 20 bis 500 nm beobachtet.

30

40

5

10

15

Beispiele

Komponente A/1:

Polybutylenterephthalat mit einer Viskositätszahl VZ von 130 ml/g und einem Carboxylendgruppengehalt von 34 mval/kg (Ultradur® B 4520 der BASF AG) (VZ gemessen in 0,5 gew.-%iger Lösung aus Phenol/o-Dichlorbenzol), 1:1-Mischung bei 25°C, enthaltend 0,65 Gew.-% Pentaerythrittetrastearat (Komponente D1 bezogen auf 100 Gew.-% A)

41

Herstellvorschrift für Polycarbonate B1

Allgemeine Arbeitsvorschrift:

In einem Dreihalskolben, ausgestattet mir Rührer, Rückflusskühler und Innenthermo-5 meter wurde gemäß Tabelle 1 der mehrfunktionelle Alkohol äquimolar mit Diethylcarbonat gemischt und 250 ppm Katalysator (bezogen auf die Menge an Alkohol) zugegeben. Die Mischung wurde anschließend unter Rühren auf 100°C, bei dem mit * gekennzeichneten Versuch auf 140°C erwärmt, und 2 h bei dieser Temperatur gerührt. Mit fortschreitender Reaktionsdauer reduzierte sich dabei die Temperatur des Reakti-10 onsgemisches bedingt durch die einsetzende Siedekühlung des freigesetzten Monoalkohols. Nun wurde der Rückflusskühler gegen einen absteigenden Kühler getauscht, Ethanol abdestilliert und die Temperatur des Reaktionsgemisches langsam bis auf 160°C erhöht.

15

Das abdestillierte Ethanol wurde in einem gekühlten Rundkolben gesammelt, ausgewogen und der Umsatz so gegenüber dem theoretisch möglichen Vollumsatz prozentual ermittelt (siehe Tabelle 1).

20 Die Reaktionsprodukte wurden anschließend per Gelpermeationschromatographie analysiert, Laufmittel war Dimethylacetamid, als Standard wurde Polymethylmethacrylat (PMMA) verwendet.

Tabelle 1

Kompo-	Alkohol	Kataly-	Destillat, Etha-	Molekular-	Visk. 23°C	OH-Zahl
nente		sator	nolmenge bez.	gewicht	Produkt	Produkt
			auf Vollumsatz	Produkt	(mPas)	(mg KOH/g)
			Mol%	(g/mol)		nach
				Mw		DIN 53240,
				Mn		Teil 2
B1/1	Glyc x EO	K ₂ CO ₃	90%	8230	-	-
	1:5			2898		
B1/2	TMP x EO	K ₂ CO ₃	90%	5907	1810	300
	1:3			2154		
B1/3	TMP/PO	K ₂ CO ₃	70%	2136	7200	461
	1:1,2			1446		

25

TMP = Trimethylolpropan

Glyc = Glycerin

EO = Ethylenoxid

PO = Propylenoxid

Komponente B2

Tabelle 2

	Monomere	Mn	Mw	OH-Zahl	Säure-Zahl
		(g/mol)	(g/mol)	(mg KOH/g)	(mg KOH/g)
B 2	Terephthalsäure und Glycerin	900	2390	416	0

5

10

Herstellung B2

1589 g (8.19 mol) Terephtalsäuredimethylester und 628 g (6.83 mol) Glycerin wurden in einem 5-l-Glaskolben vorgelegt, der mit Rührer, Innenthermometer, Gaseinleitungsrohr, Rückflusskühler und Vakuumanschluss mit Kühlfalle ausgerüstet war. Man gab 4.4 g Di-n-Butylzinnoxid zu, kommerziell erhältlich als Fascat® 4201, und erhitzte mit Hilfe eines Ölbads auf eine Innentemperatur von 140°C. Man legte einen verminderten Druck von 50 mbar an, um bei der Reaktion gebildetes Wasser abzutrennen. Die Reaktionsmischung wurde 34 Stunden bei der genannten Temperatur und den genannten Druck gehalten. Anschließend wurde auf Zimmertemperatur abgekühlt, man erhielt 1750 g hyperverzweigten Polyester als klare, sehr viskose Flüssigkeit. Die analytischen Daten sind in obiger Tabelle 2 zusammengefasst.

Komponente C

20

15

C/1) Ein Copolymerisat aus

67 Gew.-% Ethylen

25 Gew.-% Methylmethacrylat

8 Gew.-% Glycidylmethacrylat

25 (Lotader® AX 8900 der Firma Elf-Atochem)

- C/2) Ein Acrylat-Kautschuk mit einem vernetzten n-Butylacrylatkern (Durastrength[®] 400 der Firma Atofina)
- 30 C/3) Ein Kern-Schale Polymer aus
 70 Gew.-% Polybutadien als Kern
 und als Schale
 22,5 Gew.-% Styrol und
 7,5 Gew.-% Acrylnitril
 35 (Blendex® 338 der Firma General Electric)

43

C/4) Ein MBS Kautschuk aus
82,6 Gew.-% Polybutadien als Kern
und als Schale
15,1 Gew.-% Methylmethacrylat
2,3 Gew.-% Acrylsäure/n-Butylacrylat
(Paraloid® 6600 der Firma Rohm & Haas)

Herstellung der Formmassen

5

20

Die Komponenten A) bis C) wurden auf einem Zweischneckenextruder bei 250 bis 260°C abgemischt und in ein Wasserbad extrudiert. Nach Granulierung und Trocknung wurden auf einer Spritzgrussmaschine Prüfkörper gespritzt und geprüft.

Der MVR wurde gemäß ISO 11 33 bestimmt, der E-modul gemäß ISO 527-2, die Charpy-Schlagzähigkeit gemäß ISO 179-2/1eU, die VZ gemäß DIN 53728 bzw. ISO 1628.

Die erfindungsgemäßen Zusammensetzungen und die Ergebnisse der Messungen sind den Tabellen zu entnehmen.

Tabelle 3 Vergleichstabelle (ohne Komponente B)

Komponente	1V	2V	3V	4V	5V	6V	7V	8V
A/1	95	90	95	90	95	90	95	90
C/1	5	10	· -	-	-	-	-	_
C/2	_	_	5	10	-	-	-	-
C/3	-	-	-	-	5	10	_	-
C/4	-	-	-	_	-	-	5	10
VZ [ml/g]	123,0	131,4	118,1	113,9	117,0	112,5	118,9	117,5
MVR [cm³/10 min]	39,7	21,2	47	36	41,4	28,2	42,5	23,5
Fließspirale [cm]	33,8	31,6	35,2	33,3	35,2	33,8	35,3	33,7
E-Modul [Mpa]	2390	2096	2443	2261	2406	2214	2328	2069
Streckspannung [Mpa]	52,50	46,13	53,69	49,65	53,04	48,67	51,12	44,59
Bruchspannung [%]	22,77	23,42	21,91	24,88	15,17	19,60	14,60	20,76
Streckdehnung [%]	7,0	6,1	3,9	4,0	3,7	3,8	3,8	3,9

44

Tabelle 4 Vergleichstabelle (ohne Komponente B)

	1V	2V	3V	4V	5V	6V	7V	8V
A/1	95	90	95	90	95	90	95	90
C/1	5	10	-	-	-	-	-	-
C/2	-	-	5	10	-	-	-	-
C/3	-	-	-	-	5	10	-	-
C/4	-	_	-	-	_	-	5	10
VZ [ml/g]	123,0	131,4	118	114	117	113	119	117,5
MVR [cm ³ /10min]	39,7	21,2	47	36	41,4	28,2	42,5	23,5
Fliesspirale [cm]	33,8	31,6	35,2	33,3	35,2	33,8	35,3	33,7
E-Modul [Mpa]	2390	2096	2443	2261	2406	2214	2328	2069
Streckspannung [MPa]	52,50	46,13	53,69	49,65	53,04	48,67	51,12	44,59
Bruchspannung [MPa]	22,77	23,42	21,91	24,88	15,17	19,60	14,60	20,76
Streckdehnung [%]	7,0	6,1	3,9	4,0	3,7	3,8	3,8	3,9

Tabelle 5

Komponente	1	2	3	4	5	6	7	8	9	10	11
[Gew%]	'	2	3	4	5	O	'	0	9	10	11
A1	94	89	94	89	94	89	94	89	78	77,25	77
B1/1	1	1	1	1							
B1/2					1	1	1	1			
B1/3										0,75	1
C1	5	10			5	10					
C2			5	10			5	10			
C4									22	22	22
VZ [ml/g]	105	112	108	106	112	114	109	111	96	87	85
MVR	69,9	48,7	73,6	40,3	81,8	47,2	85,2	44,2	6,5	13,5	15,2
[cm ³ /10 min]	03,3	40,7	70,0	40,0	01,0	41,2.	00,2	-1-1,2	0,0	10,0	10,2
Fließspirale	44,8	42,9	44,2	36,3	46,4	39,4	45,1	38,2	_	_	_
[cm]	11,0	12,0					,	·			
E-Modul [MPa]	2382	2121	2427	2229	2403	2037	2430	2220	1653	1615	1590
Streckspannung [MPa]	52,4	46,9	53,3	48,46	53,3	45,93	54,5	48,9	35,5	35,04	34,7
Bruchspannung [%]	39,1	33	38,1	26,12	35,4	24,50	39,3	27	27,7	27,5	27,3
Streckdehnung [%]	7,4	5,8	4,1	3,9	6,9	6,1	4,1	4,1	4	4	4
Schlagzähigkeit	260	NB	186	221	246	292	271	281	NB	NB	NB
Schlagzähigkeit 23°C, gekerbt	6,3	11,7	6,3	9,5	9,4	14,5	10,2	17,1	-	-	_

NB = no Break

Tabelle 6

Komponente	1	2	3	4	5	6	7	8
[Gew%]	•	2	J	4	,	U	'	0
A1	94	89	94	89	94	88	93	88
B2	1	1	1	1	1	2	2	2
C1	5	10			5	10		
C2			5	10			5	10
VZ [ml/g]	118	124	116	114	113	117	112	110
MVR [cm ³ /10 min]	80,6	39,7	53,2	43,3	150	99,7	87,1	60
Spannung [N/mm] bei Max.	53,86	47,3	54,6	50,1	55,6	48,8	55,7	50,9
Bruchdehnung [%]	12,6	16	22	16,3	10,3	9,7	14,4	12,9
Streckdehnung [MPa]	4,6	4,8	3,6	3,6	4,2	4,5	3,5	3,5
E-Modul [MPa]	2471	2149	2502	2294	2513	2179	2531	2333
Schlagzähigkeit [kJ/m²]	137	330	177	166	142	91	80	98,4
Schlagzähigkeit [kJ/m²], gekerbt	6	11,9	5,8	9,1	4,7	9,5	4,6	6,9
Fließspirale [mm]	42	37	37	34	50	47	44	39

Patentansprüche

- 1. Thermoplastische Formmassen, enthaltend
- 5 A) 10 bis 98 Gew.-% mindestens eines thermoplastischen Polyesters,
 - B) 0,01 bis 50 Gew.-%
 - B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates mit einer OH-Zahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder
- 10 B2) mindestens eines hoch- oder hyperverzweigten Polyesters des Typs A_xB_y mit x mindestens 1,1 und y mindestens 2,1 oder deren Mischungen
 - C) 1 bis 40 Gew.-% eines schlagzähmodifizierenden Polymeren,
 - D) 0 bis 60 Gew.-% weiterer Zusatzstoffe,

15

wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.

- Thermoplastische Formmassen nach Anspruch 1, in denen die Komponente B1)
 ein Zahlenmittel des Molekulargewichtes M_n von 100 bis 15000 g/mol aufweist.
 - 3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen die Komponente B1) eine Glasübergangstemperatur Tg von -80°C bis 140°C aufweist.

25

- 4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente B1) eine Viskosität (mPas) bei 23°C (gemäß DIN 53019) von 50 bis 200000 aufweist.
- 30 5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente B2) ein Zahlenmittel des Molekulargewichts M_n von 300 bis 30000 g/mol aufweist.
- 6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen die Komponente B2) eine Glasübergangstemperatur T_g von –50°C bis 140°C aufweist.
- Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, in denen die Komponente B2) eine OH-Zahl (gemäß DIN 53240) von 0 bis 600 mg KOH/g Polyester aufweist.

- 8. Thermoplastische Formmassen nach den Ansprüchen 1 bis 7, in denen die Komponente B2) eine COOH-Zahl (gemäß DIN 53240) von 0 bis 600 mg KOH/g Polyester aufweist
- 5 9. Thermoplastische Formmassen nach den Ansprüchen 1 bis 8, in denen die Komponente B2) wenigstens eine OH-Zahl oder COOH-Zahl größer 0 aufweist.
 - 10. Thermoplastische Frommassen nach den Ansprüchen 1 bis 9, in denen das Verhältnis der Komponenten B1): B2) von 1:20 bis 20: 1 beträgt.

11. Thermoplastische Formmassen nach den Ansprüchen 1 bis 10, enthaltend als Komponente (c) ein Copolymerisat aus

- C_1) 40 bis 100 Gew.-% mindestens eines α -Olefins mit 2 bis 8 C-Atomen,
- 15 C₂) 0 bis 90 Gew.-% eines Diens,

10

20

30

40

- C₃) 0 bis 45 Gew.-% eines C₁-C₁₂-Alkylesters der Acrylsäure oder Methacrylsäure oder Mischungen derartiger Ester,
- C₄) 0 bis 40 Gew.-% einer ethylenisch ungesättigten Mono- oder Dicarbonsäure oder einem funktionellen Derivat einer solchen Säure
- C₅) 0 bis 40 Gew.-% eines Eopoxygruppen enthaltenden Monomeren,
 - C₆) 0 bis 5 Gew.-% sonstiger radikalisch polymerisierbaren Monomerer,

mit der Maßgabe, dass die Komponente (c) kein Olefinhomopolymerisat ist.

- 12. Thermoplastische Formmassen nach Anspruch 11, enthaltend als Komponente(C) ein Copolymerisat aus
 - C₁) 55 79.5 Gew.-% mindestens eines α -Olefins mit 2 8 C-Atomen,
 - C_3) 20 40 Gew.-% eines C_1 - C_{12} -Alkylesters der Acrylsäure oder Methacrylsäure oder Mischungen derartiger Ester
 - C₄) 0,5 20 Gew.-% einer ethylenisch ungesättigten Mono- oder Dicarbonsäure oder einem funktionellen Derivat einer solchen Säure
 - C_5) 0 20 Gew.-% eines Epoxygruppen enthaltenden Monomeren.
- Thermoplastische Formmassen nach den Ansprüchen 1 bis 12 enthaltend als Komponente C) einen MBS-Kautschuk aufgebaut aus:
 65 bis 99 Gew.-% eines Kerns aus
 - C₂) 90 bis 100 Gew.-% eines Diens, 0 bis 10 Gew.-% weiterer vernetzbarer Monomerer

sowie 1 bis 35 Gew.-% einer Schale aus

- C₇) 0 bis 30 Gew.-% Styrol oder ungesättigten Styrolen oder deren Mischungen und
- C₈) 70 bis 100 Gew.-% mindestens eines ungesättigten Nitrils.

von 0,05 bis 5 % enthält,

5

- Thermoplastische Formmassen nach den Ansprüchen 1 bis 13 enthaltend als Komponente C) einen Acrylat-Kautschuk aufgebaut aus
 - a) 70 bis 90 Gew.-% vernetzten elastomeren Kern, der sich zusammensetzt aus:

15

10

20 bis 90 Gew.-% eines Kerns, der aus einem Copolymer (I) eines n-Alkylacrylats, dessen Alkylgruppe 5 bis 12 Kohlenstoffatome aufweist, oder eines Gemisches von Alkylacrylaten, wobei die Anzahl der Kohlenstoffatome der geradkettigen oder verzweigten Alkylgruppen im Bereich von 2 bis 12 liegt, eines polyfunktionellen Vernetzungsmittels, wobei dieses Molekül ungesättigte Gruppen und darunter mindestens eine Gruppe vom Vinyltyp CH₂=C< aufweist, und gegebenenfalls eines polyfuniktionellen Pfropfungsmittels besteht, wobei dieses Molekül ungesättigte Gruppen und darunter mindestens eine Gruppe vom Allyltyp CH₂=CH-CH₂- aufweist, wobei der Kern eine molare Menge des Vernetzungsmittels und gegebenenfalls des Pfropfungsmittels

20

80 bis 10 Gew.-% einer Schale, die aus einem Copolymer (II) eines n-Alkylacrylats, dessen Alkylgruppe 4 bis 12 Kohlenstoffatome aufweist, oder eines Gemisches von Alkylacrylaten gemäß der unter 1) angegebenen Definition und eines polyfunktionellen Pfropfungsmittels besteht, wobei dieses Molekül ungesättigte Gruppen und darunter mindestens eine Gruppen vom Allyltyp CH₂=CH-CH₂- aufweist, wobei die Schale des Pfropfungsmittels in einer molaren Menge von 0,05 bis 2,5 % enthält und

25

30

b) 30 bis 10 Gew.-% einer auf den Kern gepfropften Schale, die aus einem Alkylmethacrylatpolymer, dessen Alkylgruppe 1 bis 4 Kohlenstoffatome aufweist, oder aus einem statistischen Copolymer eines Alkylmethacrylats, dessen Alkylgruppe 1 bis 4 Kohlenstoffatome aufweist, und eines Alkylacrylats besteht, dessen Alkylgruppe 1 bis 8 Kohlenstoffatome aufweist, wobei das Alkylacrylat in einer molaren Menge von 5 bis 40 % enthalten ist.

35

- 40
- 15. Verwendung der thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 14 zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art.

16. Fasern, Folien und Formkörper jeglicher Art erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 14.

50

INTERNATIONAL SEARCH REPORT

Int ional Application No PCT/EP2005/008339

	Account of the second of the s						
	FICATION OF SUBJECT MATTER C08L67/02						
According to International Patent Classification (IPC) or to both national classification and IPC							
	SEARCHED						
Minimum do IPC 7	ocumentation searched (classification system followed by classification ${\tt C08L}$	on symbols)					
D- simonto	"" and all a three minimum do our exterior to the output that o	the summer are included in the fields of					
Documenta	lion searched other than minimum documentation to the extent that s	iuch documents are included in the heids se	arched				
	ata base consulted during the international search (name of data bas	se and, where practical, search terms used)				
EPO-In	ternal, WPI Data, PAJ						
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.				
X	EP 1 424 360 A (BAYER AKTIENGESEL 2 June 2004 (2004-06-02) paragraph '0128! - paragraph '014		1–16				
	claims; examples	,					
E .	WO 2005/075563 A (BASF AKTIENGESELLSCHAFT; 1-16 EIPPER, ANDREAS; BRUCHMANN, BERND;						
	SCHERZER,) 18 August 2005 (2005-0 cited in the application page 18, line 30 - page 24, line		1				
	claims; examples	<i>LL</i> ,					
E .	WO 2005/075565 A (BASF AKTIENGESE EIPPER, ANDREAS; BRUCHMANN, BERND);	1–16				
	SCHERZER,) 18 August 2005 (2005-0 cited in the application page 19, line 35 - page 25, line						
	claims; examples	,	ı				
,	_	-/					
X Furti	ner documents are listed in the continuation of box C.	χ Patent family members are listed in	n annex.				
° Special ca	tegories of cited documents :	"T" later document published after the inte	rnational filing date				
	ent defining the general state of the art which is not lered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or the	the application but				
E earlier document but published on or after the international filling date *X* document of particular relevance; the claimed invention cannot be considered to							
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "I" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the							
"O" document referring to an oral disclosure, use, exhibition or other means document is combined with one or more other such document is combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person skilled in the part of the combination being obvious to a person of th							
later than the priority date claimed "&" document member of the same patent family							
	actual completion of the international search	Date of mailing of the international seal	rch report				
	9 September 2005	06/10/2005					
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL 2280 HV Rijswijk	Authorized officer					
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schmitz, V					

INTERNATIONAL SEARCH REPORT

Intensional Application No
PCT/EP2005/008339

		PCT/EP200	5/008339
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	4107-4	Relevant to claim No.
X	WO 01/38436 A (BASF AKTIENGESELLSCHAFT; WEBER, MARTIN; HECKMANN, WALTER) 31 May 2001 (2001-05-31) the whole document		1-16
Α	DE 101 36 911 A1 (BUEHLER AG, UZWIL) 20 February 2003 (2003-02-20) claims; examples		1-16
A	WO 02/32982 A (AVECIA B.V; AVECIA LIMITED; OVERBEEK, GERARDUS, CORNELIS; TENNEBROEK,) 25 April 2002 (2002-04-25) claims; examples		1-16
			·

INTERNATIONAL SEARCH REPORT

■nformation on patent family members

Intentional Application No PCT/EP2005/008339

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
EP 1424360	Α	02-06-2004	DE 10255044 A1	03-06-2004
WO 2005075563	Α	18-08-2005	DE 102004005657 A1	25-08-2005
WO 2005075565	Α	18-08-2005	DE 102004005652 A1	25-08-2005
WO 0138436	Α	31-05-2001	AU 1279001 A DE 19956539 A1 EP 1232215 A1 US 6894112 B1	04-06-2001 31-05-2001 21-08-2002 17-05-2005
DE 10136911	A1	20-02-2003	NONE	
WO 0232982	Α	25-04-2002	AU 9399301 A EP 1337577 A1 US 2004030031 A1	29-04-2002 27-08-2003 12-02-2004

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP2005/008339

A. KLASSIFI	ZIERUNG	DES	ANMEL	DUNGSGE	GENST	ANDES
TPK 7	0.0816	57/(12			

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $\ \ \, IPK \ \ \, 7 \ \ \, C08L$

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.			
Х	EP 1 424 360 A (BAYER AKTIENGESELLSCHAFT) 2. Juni 2004 (2004-06-02) Absatz '0128! - Absatz '0148!; Ansprüche; Beispiele	1-16			
E	WO 2005/075563 A (BASF AKTIENGESELLSCHAFT; EIPPER, ANDREAS; BRUCHMANN, BERND; SCHERZER,) 18. August 2005 (2005-08-18) in der Anmeldung erwähnt Seite 18, Zeile 30 - Seite 24, Zeile 22; Ansprüche; Beispiele	1-16			
E	WO 2005/075565 A (BASF AKTIENGESELLSCHAFT; EIPPER, ANDREAS; BRUCHMANN, BERND; SCHERZER,) 18. August 2005 (2005-08-18) in der Anmeldung erwähnt Seite 19, Zeile 35 - Seite 25, Zeile 22; Ansprüche; Beispiele	1-16			
	_/				

 Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den allgemelnen Stand der Technik definiert, aber nicht als besonders bedeultsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	 *T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&' Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
29. September 2005	06/10/2005
Name und Postanschrift der internationalen Recherchenbehörde	Bevollmächtigter Bediensteter
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Schmitz, V

Siehe Anhang Patentfamilie

INTERNATIONALER RECHERCHENBERICHT

Interpretationales Aktenzeichen
PCT/EP2005/008339

		PCT/EP200	5/006339		
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommer	nden Teile	Betr. Anspruch Nr.		
X	WO 01/38436 A (BASF AKTIENGESELLSCHAFT; WEBER, MARTIN; HECKMANN, WALTER) 31. Mai 2001 (2001-05-31) das ganze Dokument		1–16		
Α	DE 101 36 911 A1 (BUEHLER AG, UZWIL) 20. Februar 2003 (2003-02-20) Ansprüche; Beispiele		1-16		
A	WO 02/32982 A (AVECIA B.V; AVECIA LIMITED; OVERBEEK, GERARDUS, CORNELIS; TENNEBROEK,) 25. April 2002 (2002-04-25) Ansprüche; Beispiele		1-16		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlich en die zur selben Patentfamilie gehören

Intercionales Aktenzeichen
PCT/EP2005/008339

Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP	1424360	Α	02-06-2004	DE	10255044	A1	03-06-2004
WO	2005075563	Α	18-08-2005	DE	102004005657	A1	25-08-2005
WO	2005075565	Α	18-08-2005	DE	102004005652	A1	25-08-2005
WO	0138436	Α	31-05-2001	AU DE EP US	1279001 19956539 1232215 6894112	A1 A1	04-06-2001 31-05-2001 21-08-2002 17-05-2005
DE	10136911	A1	20-02-2003	KEI	INE		
WO	0232982	Α	25-04-2002	AU EP US	9399301 1337577 2004030031	A1	29-04-2002 27-08-2003 12-02-2004