AROUND $\text{Hom}(\mathbb{G}_a, \mathbb{G}_m[1])$ **IN CHARACTERISTIC ZERO**

In this document we work always over \mathbb{Q} and if there is a topology we will always assume the descendable topology. We will someitmes refer to symmetric monoidal presentable stable categories as 1-rings, and objects in the opposite category as 1-affine schemes. The \mathbb{E}_{∞} group scheme $\widehat{\mathbb{G}}_m$ (which can be identified with $\widehat{\mathbb{G}}_a$ via the exponential map) can be extended to a functor on \mathbb{Q} -linear symmetric monoidal categories. That it, for any \mathbb{Q} -linear symmetric monoidal category T, we define $\widehat{\mathbb{G}}_m(T)$ to be

$$\operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}^L_{\operatorname{st}})}(\operatorname{QCoh}(\widehat{\mathbb{G}_{\operatorname{m}}}),T)$$

The \mathbb{E}_{∞} -group structure on $\widehat{\mathbb{G}_m}$ induces a bialgebra structure on $\mathrm{QCoh}(\widehat{\mathbb{G}_m})$ and thus an \mathbb{E}_{∞} -group structure on $\widehat{\mathbb{G}_m}(T)$.

Using the fact that $\operatorname{QCoh}(\widehat{\mathbb{G}_m})$ is an idempotent $\operatorname{QCoh}(\mathbb{G}_m)$ -algebra, which is itself an idempotent $\operatorname{QCoh}(\mathbb{A}^1)$ -algebra, we see that $\widehat{\mathbb{G}_m}(T)$ is simply the subspace of x in $\Omega^\infty(\operatorname{End}_T(\mathbf{1}_T))$ such that $\operatorname{colim}(\mathbf{1}_T \xrightarrow{x-1} \mathbf{1}_T \ldots) \cong 0$ (or if R is an \mathbb{E}_∞ -ring, this is equivalent to the image of x-1 in $\pi_0(R)$ being nilpotent). For an \mathbb{E}_∞ -ring R, $\widehat{\mathbb{G}_m}(R)$ only depends on the connective cover of R.

Because $(i_0)_*\mathbb{Q} \in \operatorname{QCoh}(\widehat{\mathbb{G}_m})$ is compact, the dual category $\operatorname{QCoh}(\widehat{\mathbb{G}_m})^\vee$ is the module category over a commutative cocommutative bialgebra. Duality theory in Elliptic I Proposition 3.8.5 implies that for symmetric monoidal \mathbb{Q} -linear presentable stable categories T,

$$(0.1) \qquad \operatorname{Hom}_{\operatorname{CMon}(T\operatorname{-Alg}(\operatorname{Pr}_{\operatorname{c}}^{L})^{\operatorname{op}})}((\widehat{\mathbb{G}_{m}})_{T},\operatorname{Pic}_{T}^{\dagger}) \cong \operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}_{\operatorname{c}}^{L})}(\operatorname{QCoh}(\widehat{\mathbb{G}_{m}})^{\vee},T)$$

where $(\widehat{\mathbb{G}_m})_T$ is the bialgebra category $\operatorname{QCoh}(\widehat{\mathbb{G}_m}) \otimes T$ and $\operatorname{Pic}_T^{\dagger}$ is the bialgebra category corepresenting the functor

$$C \mapsto (C^{\cong})^{\times}$$

sending a symmetric monoidal T-linear presentable stable category to its \mathbb{E}_{∞} -monoid of units. The bialgebra category is the categorified group algebra on the sphere spectrum over T, i.e. $T[\Omega^{\infty}\mathbb{S}]$.

Therefore to identify the bialgebra $\operatorname{End}_{\operatorname{QCoh}(\widehat{\mathbb{G}_m})^{\vee}}(1)$, we can look at $\operatorname{Hom}_{\operatorname{CMon}(R^-\operatorname{Alg}(\operatorname{Pr}^L_{\operatorname{Sl}})^{\operatorname{op}})}((\widehat{\mathbb{G}_m})_R,\operatorname{Pic}_R^{\dagger})$ for \mathbb{E}_{∞} -rings R over \mathbb{Q} . The map $*\to \widehat{\mathbb{G}_m}$ of sheaves on nonconnective \mathbb{Q} -algebras is a descendable cover^2 . Additionally, the Hopf algebra dual of $\mathbb{Q}^{S^1} \cong \operatorname{Sym}_{\mathbb{Q}}(\mathbb{Q}[-1])$ is $\mathbb{Q}[S^1]$ which corepresents the functor $\Omega\mathbb{G}_m$. These two facts combine to show

$$(0.2) \qquad \begin{aligned} \operatorname{Hom}_{\operatorname{CMon}(R\text{-}\operatorname{Alg}(\operatorname{Pr}_{\operatorname{St}}^{L})^{\operatorname{op}})}((\widehat{\mathbb{G}_{m}})_{R},\operatorname{Pic}_{R}^{\dagger}) &\cong \operatorname{Hom}_{\operatorname{Shv}(\operatorname{ncAff}/\operatorname{Spec}_{R},\operatorname{Sp^{cn}})}((\tau_{\geq 1}\mathbb{G}_{m})^{\#},\operatorname{Pic}^{\dagger}) \\ &\cong \operatorname{Hom}_{\operatorname{Shv}(\operatorname{ncAff}/\operatorname{Spec}_{R},\operatorname{Sp^{cn}})}(\Omega\mathbb{G}_{m},\mathbb{G}_{m}) \\ &\cong \tau_{\geq 0}(R[1]) \end{aligned}$$

Hence we deduce that

$$\operatorname{QCoh}(\widehat{\mathbb{G}_m})^{\vee} \cong \operatorname{QCoh}(\operatorname{Sym}_{\mathbb{Q}}(\mathbb{Q}[-1])) \cong \operatorname{QCoh}(\mathbb{G}_a[1])$$

From this, we see that

$$(0.4) \qquad \operatorname{Hom}_{\operatorname{CMon}(T\operatorname{-}\operatorname{Alg}(\operatorname{Pr}_{\operatorname{c}_{1}}^{L})^{\operatorname{op}})}((\mathbb{G}_{a}[1])_{T},\operatorname{Pic}_{T}^{\dagger}) \cong \operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}_{\operatorname{c}_{1}}^{L})}(\operatorname{QCoh}(\widehat{\mathbb{G}_{\operatorname{m}}}),T) \cong \widehat{\mathbb{G}_{m}}(T)$$

¹meaning the inclusion is a (-1)-truncated map

²the same proof as Propsition 0.2 below shows that it is even descendable as 1-affine schemes

³the previous map is induced from the natural map $B\mathbb{Z} \to B\mathbb{G}_a$

for all symmetric monoidal \mathbb{Q} -linear presentable stable categories T (where $\mathbb{G}_a[1]$ corepresents the functor whose value on T is $\tau_{\geq 0}(\operatorname{End}_T \mathbf{1}[1])$). After the isomorphism (the topology (on 1-affine schemes) is that of descent for module categories—which we also call the descendable topology),

$$\operatorname{Hom}_{\operatorname{CMon}(T\operatorname{-Alg}(\operatorname{Pr}^L_{\operatorname{s}_{\mathsf{c}}})^{\operatorname{op}})}((\mathbb{G}_a[1])_T,\operatorname{Pic}_T^{\dagger})\cong \operatorname{Hom}_{\operatorname{Shv}(T\operatorname{-Alg}(\operatorname{Pr}^L_{\operatorname{s}_{\mathsf{c}}})^{\operatorname{op}},\operatorname{Sp^{\operatorname{cn}}})}(\mathbb{G}_a[1],\operatorname{Pic}^{\dagger})$$

note that there are two interpretations of $\mathbb{G}_a[1]$, the functor $\tau_{\geq 0}(\operatorname{End}_T \mathbf{1}[1])$ or the sheafification of the functor $\tau_{\geq 0}\operatorname{End}_T \mathbf{1}[1]$ but they agree because elements of $\Omega^{\infty}(\operatorname{End}_T \mathbf{1}[1])$ vanish descendable-locally. We conclude that

Proposition 0.1. For any 1-ring (symmetric monoidal presentable stable category) T of characteristic zero, we have the isomorphism of connective spectra

$$\operatorname{Hom}_{\operatorname{CMon}(1\operatorname{Aff}/\operatorname{Spec} T)}(\mathbb{G}_a,\mathbb{G}_m) \cong \widehat{\mathbb{G}_m}(T)$$

where 1Aff means the opposite category of 1-rings.

An \mathbb{E}_{∞} -monoid in formal qcqs algebraic spaces (which we require to be completion of qcqs algebraic space at the complement of a quasi-compact open) G induces a cocommutative and commutative bialgebra QCoh(G) in presentable stable categories, which is dualizable as an underlying presentable stable category. The category of quasicoherent sheaves QCoh(X) on a formal qcqs algebraic space is self-dual using the usual duality data for qcqs schemes (Fourier-Mukai functors with diagonal sheaf) except we replace pushforward and pullback functors f_* and f^* with $\Gamma_{Z'}f_*i_Z$ and $\Gamma_Zf^*i_{Z'}$ (i.e. precomposing with torsion incarnation and postcomposing with pullback to the formal scheme). We denote these functors by \tilde{f}_* and \tilde{f}^* below. Duality in Pr^L_{St} swaps these pushfoward and pullback functors (altered as above in the formal case) if one identifies QCoh(X) and $QCoh(X)^{\vee}$ as above. Hence, the algebra structure on $QCoh(G)^{\vee}$ is the convolution tensor product on QCoh(G) induced by pushforward along $G \to G \times G$.

Proposition 0.2.

$$QCoh(\mathbb{Q}_a)^{\vee}\text{-} \ Mod \cong lim(QCoh(\mathbb{Q})\text{-} \ Mod \rightrightarrows QCoh(\mathbb{Q}) \otimes_{QCoh(\mathbb{Q}_a)^{\vee}} QCoh(\mathbb{Q})\text{-} \ Mod \xrightarrow{\longrightarrow} \ldots)$$

where Mod means modules in Pr_{St}^L .

Proof. Applying HA Corollary 4.7.5.3, it suffices to show that the functor

$$(0.5) \qquad \qquad {}_{-} \otimes_{QCoh(\mathbb{G}_a)^{\vee}} \mathbb{Q} : QCoh(\mathbb{G}_a)^{\vee} \text{-} Mod \to \mathbb{Q} \text{-} Mod$$

preserves limits and is conservative.

The base-change isomorphism for the pullback diagram

$$\begin{array}{ccc}
G \times G & \xrightarrow{\pi_1} & G \\
\downarrow^{\mu} & \downarrow \\
G & \longrightarrow & *
\end{array}$$

implies that the pullback functor $QCoh(\mathbb{Q}) \to QCoh(\mathbb{G}_a)$ is $QCoh(\mathbb{G}_a)^{\vee}$ -linear (as this is identified with $QCoh(\mathbb{G}_a)$ with the convolution product). Hence the unit in $QCoh(\mathbb{Q})$ is $QCoh(\mathbb{G}_a)^{\vee}$ -atomic and $QCoh(\mathbb{Q})$ is $QCoh(\mathbb{G}_a)^{\vee}$ -dualizable and thus (0.5) preserves limits.

Conservativity follows from the fact the limit diagram (in $QCoh(\mathbb{G}_a)^{\vee}$ - Mod)

$$QCoh(\mathbb{G}_a)^{\vee} \cong lim(QCoh(\mathbb{Q}) \rightrightarrows QCoh(\mathbb{Q}) \otimes_{QCoh(\mathbb{G}_a)^{\vee}} QCoh(\mathbb{Q}) \stackrel{\rightarrow}{\rightrightarrows} \ldots)$$

is preserved under tensoring as all nondegenerate transition functors admit linear left adjoints.

We can interpret Proposition 0.2 as showing that $QCoh(\mathbb{G}_a)^{\vee} \to QCoh(\mathbb{Q})$ is descendable (where a map of symmetric monoidal stable categories is descendable if there's descent for module categories). Duality theory in the form of Elliptic I Proposition 3.8.5 implies that for symmetric monoidal \mathbb{Q} -linear presentable stable categories T,

$$(0.7) \qquad \operatorname{Hom}_{\operatorname{CMon}(T\operatorname{-Alg}(\operatorname{Pr}_{\operatorname{s}_{1}}^{L})^{\operatorname{op}})}((\mathbb{G}_{a})_{T},\operatorname{Pic}_{T}^{\dagger}) \cong \operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}_{\operatorname{s}_{1}}^{L})}(\operatorname{QCoh}(\mathbb{G}_{a})^{\vee},T)$$

Proposition 0.2 implies that the right hand side is the sheafification of its 1-connective cover. As

$$\Omega \operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}_{\operatorname{Sr}}^L)}(\operatorname{QCoh}(\mathbb{G}_{\operatorname{a}})^{\vee}, T) \cong \operatorname{Hom}_{\operatorname{Shv}(T\operatorname{-Alg}(\operatorname{Pr}_{\operatorname{Sr}}^L)^{\operatorname{op}}, \operatorname{Sp^{\operatorname{cn}}})}((\mathbb{G}_{\operatorname{a}}[1])_T, \operatorname{Pic}_T^{\dagger})$$

we conclude from (0.3) and (0.4) that

$$\Omega \operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}_{\operatorname{S}_{\! I}}^L)}(\operatorname{QCoh}(\mathbb{G}_{\operatorname{a}})^\vee, T) \cong \operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}_{\operatorname{S}_{\! I}}^L)}(\operatorname{QCoh}(\widehat{\mathbb{G}_{\operatorname{m}}}), T)$$

and therefore

Proposition 0.3. For any characteristic zero 1-ring T,

$$\operatorname{Hom}_{\operatorname{CAlg}(\operatorname{Pr}_{\operatorname{sc}}^L)}(\operatorname{QCoh}(\mathbb{G}_{\operatorname{a}})^{\vee},T) \cong (\widehat{\mathbb{G}_m}[1])^{\#}(T)$$

which implies that $\operatorname{QCoh}(\mathbb{G}_a)^{\vee} \cong \operatorname{QCoh}(B\widehat{\mathbb{G}_m})$ and (after Proposition 0.2) $(B\widehat{\mathbb{G}_m})^{\#}$ is 1-affine⁴.

Corollary 0.4. For any characteristic zero connective ring R,

$$\mathsf{Hom}_{\mathsf{Shv}(\mathsf{Aff}_{/R},\mathsf{Sp^{cn}})}(\mathbb{G}_a,(\mathbb{G}_m[1])^{\#}) \cong (B\widehat{\mathbb{G}_m})_{1-desc}^{\#}(R) \cong \mathsf{Hom}_{\mathsf{CAlg}(\mathsf{Pr}_{\mathsf{St}}^L)}(\mathsf{QCoh}(\mathsf{B}\widehat{\mathbb{G}_m}),\mathsf{QCoh}(\mathsf{R}))$$

where the sheafification is over R-linear 1-affine schemes with the descendable topology.

Proof. Direct consequence of the sequence

$$(\mathbb{G}_m[1])^{\#} \to \operatorname{Pic}^{\dagger} \to (\mathbb{Z})^{\#}$$

(which can be seen from Postnikov truncation in Zariski topology) and the fact that all group maps from \mathbb{G}_a to \mathbb{Z} are 0.

Let $\mathbb{G}_{a,dR}$ be defined (on 1-affine schemes) to be the fibre $(B\widehat{\mathbb{G}_a})^\# \to (B\mathbb{G}_a)^\#$. It is corepresentable by the symmetric monoidal category $\operatorname{QCoh}(\mathbb{Q}) \otimes_{\operatorname{QCoh}(B\widehat{\mathbb{G}_a})} \operatorname{QCoh}(B\mathbb{G}_a)$. Because $\widehat{\mathbb{G}_a} \to \mathbb{G}_a$ is (-1)-truncated, $\mathbb{G}_{a,dR}$ is valued in discrete abelian groups for any symmetric monoidal category of characteristic zero. If R is a connective \mathbb{Q} -algebra, we have the short exact sequence of abelian groups

$$(0.8) 0 \to R_{red} \to \mathbb{G}_{a,dR}(R) \to H^1_{1-desc}(\operatorname{Spec} R, \widehat{\mathbb{G}_a}) \to 0$$

The flatness of \mathbb{G}_a and nilcompleteness of $(B\mathbb{G}_m)^{\#}$ implies (with the Breen-Deligne resolution) that

$$\operatorname{Hom}_{\operatorname{Shv}(\operatorname{Aff}_{/R},\operatorname{Sp^{cn}})}(\mathbb{G}_a,(\mathbb{G}_m[1])^{\#}) \cong (B\widehat{\mathbb{G}_a})_{1-\operatorname{desc}}^{\#}(R)$$

is nilcomplete. It is also infinitesimally cohesive from the Breen-Deligne resolution and the fact that \mathbb{G}_a is flat.

Let u be an element of $\operatorname{Hom}_{\operatorname{Shv}(\operatorname{Aff}_{/R},\operatorname{Sp^{cn}})}(\mathbb{G}_a,(\mathbb{G}_m[1])^{\#})$. The cotangent complex of $\operatorname{Eq}(u,0)$ (the space of trivializations) at a R-algebra S (and a trivialization ϕ of u over S) exists and is the S-module corepresenting the functor (on connective S-modules)

$$M \mapsto \operatorname{fib}(\widehat{\mathbb{G}_m}(S \oplus M) \to \widehat{\mathbb{G}_m}(S))$$

i.e. the trivial module S. Thus we obtain

$$(B\widehat{\mathbb{G}_m})_{1-desc}^{\#}(R) \to (B\widehat{\mathbb{G}_m})_{1-desc}^{\#}(\tau_{\leq n}R)$$

⁴where the sheafification is in the descendable topology on 1-affine schemes

is n + 1-connective. Thus (0.8) only depends on $\pi_0(R)$ (where we identified $\widehat{\mathbb{G}}_a$ and $\widehat{\mathbb{G}}_m$ with the exponential map).

We thus assume R is discrete from now on. Now, by the Breen-Deligne resolution and the fact that $\operatorname{Hom}_{\operatorname{Shv}(\operatorname{Aff}_{/R},\operatorname{Sp^{cn}})}(\mathbb{G}_a,(\mathbb{G}_m[1])^{\#})$ can be computed in the étale topos, we know that it commutes with filtered colimits in R. As $\operatorname{Ext}^1(\mathbb{G}_a,\mathbb{G}_m)$ (in any topology) is nil-invariant by deformation theory, we see that it only depends on R_{red} for any connective \mathbb{Q} -algebra R. So we may also assume R reduced as well as discrete.⁵

We claim that $\mathbb{G}_{a,dR}(R) \cong R^{awn}$ where R^{awn} is the absolute weak normalization of R (which agrees with the seminormalization of R because we are in characteristic zero). Lemma 0CN8 and Lemma 0EUR of Stacks project imply that the functor $R \mapsto R^{awn}$ preserves filtered colimits. Hence it suffices to show this statement for finite-type \mathbb{Q} -algebras, as long as we show it functorially.

 $\mathbb{G}_{a,dR}$ is an h-sheaf on the site of underived(!) finite-type affine schemes over \mathbb{Q} because any h-cover is descendable and $\mathbb{G}_{a,dR}(R)$ only depends on the classical reduced part of R. Hence, there's a map from $(R_{\text{red}})_h^\#$ to $\mathbb{G}_{a,dR}$. The natural transformation $\mathbb{G}_{a,dR}(R) \to \mathbb{G}_{a,dR}(R^{awn})$ is pointwise an isomorphism by h-descent along $R \to R^{awn}$. Now, we are done because the map $R \to \mathbb{G}_{a,dR}(R)$ is an isomorphism when R is absolute weakly normal (= seminormal because we are in characteristic zero) as $\text{Ext}^1(\mathbb{G}_a, \mathbb{G}_m)$ vanishes (by the Breen-Deligne resolution and the \mathbb{A}^1 -invariance of Pic as a 1-truncated space on seminormal characteristic zero schemes).

⁵Compare with Lemma 6.4 of Ribeiro-Rosengarten