SBVORIN: Organização e Recuperação da Informação

Aula 06: Árvores Binárias de Busca Balanceadas: 2-3 Search Tree, Árvore Vermelho e Preto e B-Trees

2/43 2-3 Search Trees Introdução

- Por que a altura de uma ABB aumenta?
 - Cada inserção (put) cria um novo nó, podendo aumentar a altura da árvore;
- Solução: colocar mais de uma chave em cada nó!
- Difícil: fazer isso de modo que nenhum nó tenha mais que 2 chaves.
 - A árvore, que era binária, torna-se ternária.

3/43 2-3 Search Trees Introdução

- Uma Árvore 2-3 de Busca (2-3 Search Tree) é uma ABB que possui:
 - Uma árvore vazia:
 - 2-node: um nó simples, que contém uma chave e duas referências (dois filhos):
 - Uma referência da esquerda para uma árvore 2-3 que tem chaves menores que a chave do nó e uma referência da direita para uma árvore 2-3 que tem chaves majores:
 - 3-node: um nó duplo, que contém duas chaves e três referências (três filhos):
 - Uma referência da esquerda para uma árvore 2-3 que tem chaves menores; uma referência do meio para uma árvore 2-3 que tem chaves entre as duas chaves do nó; e uma referência da direita para uma árvore 2-3 que tem chaves maiores;
- Toda árvore 2-3 é perfeitamente balanceada:
 - Todos as referências nulas estão no mesmo nível.

4/43 2-3 Search Trees Busca por Chave

- Busca em uma Árvore 2-3 de Busca:
 - Comparar a chave pesquisada com as chaves do nó;
 - Encontra o intervalo contendo a chave pesquisada;
 - Segue pelo caminho associado ao intervalo recursivamente.

- Inserção em uma Árvore 2-3 de Busca:
 - Não esquecer o princípio base:
 - Toda Árvore 2-3 é perfeitamente balanceada, pois todas as referências nulas estão no mesmo nível;
 - Inserção em um 2-node:
 - Adiciona uma nova chave no 2-node para criar um 3-node;
 - Inserção em um 3-node:
 - Adiciona uma nova chave no 3-node para criar um nó 4-node temporariamente;
 - Movimenta a chave do meio do 4-node para o nó pai;
 - Se alcançar a raiz da árvore e for um nó 4-node, divida-o em três nós 2-node.

- Inserção em uma Árvore 2-3 de Busca:
 - Exemplo de inserção em um nó simples.

- Inserção em uma Árvore 2-3 de Busca:
 - Exemplo de inserção em um nó duplo isolado;

- Inserção em uma Árvore 2-3 de Busca:
 - Exemplo de inserção em um nó duplo cujo pai é um nó simples.

^{9/43} 2-3 Search Trees Inserção de uma Nova Chave

- Inserção em uma Árvore 2-3 de Busca:
 - Exemplo de inserção em um nó duplo cujo pai é um nó duplo.

- Inserção em uma Árvore 2-3 de Busca:
 - Exemplo de inserção em um nó duplo cujo pai é um nó duplo:
 - Repita a operação subindo em direção à raiz até encontrar um nó simples, sendo que nesse caso a altura não aumenta, ou até encontrar a raiz aumentando a altura.

- As transformações preservam as propriedades globais da árvore, ou seja, a árvore continua em ordem e perfeitamente balanceada;
 - Dividir um 4-node é uma transformação local: número constante de operações.

- Propriedades globais de uma Árvore 2-3 de Busca:
 - Mantem ordem simétrica, ou seja, cada nó tem uma chave e a chave de cada nó é maior do que todas as chaves em sua subárvore esquerda e menor do que todas as chaves em sua subárvore direita e balanceamento perfeito, ou seja, todos os caminhos da raiz até uma referência nula tem o mesmo comprimento;
 - Cada transformação mantém a ordem simétrica e o balanceamento perfeito;

2-3 Search Trees
Passo-a-passo da
Construção

Campus São João da Roa Vieta

14/43 2-3 Search Trees Desempenho do Pior Caso

- Árvores 2-3 foram inventadas para garantir um bom desempenho no pior caso:
 - Se existe uma satisfação com um bom desempenho médio, basta usar uma ABB;
- Considere uma Árvore 2-3 com n nós:
 - \blacksquare Se existem apenas nós simples, a altura da árvore será $\lfloor \lg n \rfloor$
 - \rightarrow Se existem apenas nós duplos, a altura da árvore será $\lfloor \log_3 n \rfloor$, que é igual a $\lfloor 0,63 \lg n \rfloor$
 - lacktriangle Conclusão: a altura nunca passa de $[\lg n]$
- Numa Árvore 2-3 com n nós, a busca e a inserção nunca visitam mais que $\lg n$ nós, mesmo no pior caso:
 - Cada visita faz no máximo 2 comparações de chaves;
- Balanceamento perfeito:
 - Todos os caminhos da raiz até uma referência nula tem o mesmo comprimento.

15/43 2-3 Search Trees

- Implementações diretas de Árvores 2-3 são complicadas:
 - Necessita de múltiplas comparações para descer a árvore;
 - É necessário subir de volta na árvore para dividir 4-nodes;
 - Ocorre um grande número de casos de divisão;
- Para implementar uma Árvore 2-3, deve-se utilizar nós de dois tipos:
 - Um com uma chave e duas referências;
 - Outro com duas chaves e três referências;
- Uma ideia melhor:
 - Usar ABBs para simular Árvores 2-3!

16/43 Árvores Vermelho e Preto Introdução

- Uma Árvore Binária de Busca Vermelho e Preto / Rubro-Negras (Red-Black BST) é:
 - É uma ABB que simula uma Árvore 2-3;
 - Cada nó duplo da Árvore 2-3 é representado por dois nós simples ligados por uma referência vermelha;
 - Śão conhecidas como ABBs inclinadas à esquerda, pois as referências vermelhas são sempre inclinados para a esquerda;
 - Representação de um nó duplo por meio de dois nós simples ligados por uma referência vermelha.

17/43 Árvores Vermelho e Preto Propriedades

- Referências vermelhas se inclinam para a esquerda;
- Nenhum nó incide em duas referências vermelhas;
- Balanceamento preto perfeito:
 - Todo caminho da raiz até uma referência nula tem o mesmo número de referências pretas;
- Se as referências vermelhas forem desenhadas horizontalmente e depois contraídos, tem-se uma Árvore 2-3:

18/43 Árvores Vermelho e Preto Propriedades

Todos as referências nulas estão à mesma profundidade preta;

- A profundidade preta de um nó x é o número de referências pretas no caminho da raiz até x.
- A altura preta da árvore é o máximo da profundidade preta de todos os nós.

Árvores Vermelho e Preto Representação

- É inconveniente armazenar a cor de uma referência na estrutura de dados, sendo mais simples armazenar essa informação nos nós como um atributo. A cor de um nó é a cor da única referência que entra nele.
- A raiz é considerada preta.

```
private static final boolean RED
private static final boolean BLACK = false;
private class Node
                                                   h.left.color
                                                                              h.right.color
                                                      is RED
   Key key;
                                                                                 is BLACK
   Value val;
   Node left, right;
   boolean color; // color of parent link
private boolean isRed(Node x)
   if (x == null) return false;
   return x.color == RED;
                              null links are black
```


Árvores Vermelho e Preto Implementação da Busca

- O lógica de busca (get) para Árvores Vermelho e Preto é exatamente igual ao das ABBs comuns, ou seja, ignora-se as cores das referências
 - Por outro lado é mais rápida. Por quê?
 - As Árvores Vermelho e Preto tem um balanceamento melhor!

```
public Val get(Key key)
  Node x = root;
  while (x != null)
      int cmp = key.compareTo(x.key);
              (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else if (cmp == 0) return x.val;
   return null;
```

^{21/43} Árvores Vermelho e Preto Implementação da Inserção

- O código de inserção (put) é complicado, pois depende de operações de rotação durante operações internas para manter:
 - A ordem simétrica;
 - O balanceamento preto perfeito;
- Durante uma operação de inserção, pode-se ter, temporariamente, uma referência vermelha inclinada para a direita ou duas referências vermelhas incidindo no mesmo nó;
- Para corrigir isso, utiliza-se de operações de rotações e troca de cores.

Árvores Vermelho e Preto Implementação da Inserção - Rotações

- Rotação Esquerda (Left Rotation) ou Anti-Horária em torno de um nó h:
 - O filho direito de h sobe e adota h como seu filho esquerdo.


```
private Node rotateLeft(Node h)
  assert isRed(h.right);
  Node x = h.right;
  h.right = x.left;
  x.left = h;
  x.color = h.color;
  h.color = RED;
   return x;
```


Árvores Vermelho e Preto Implementação da Inserção - Rotações

- Rotação Direita (Right Rotation) ou Horária em torno de um nó h:
 - O filho esquerdo de h sobe e adota h como seu filho direito.


```
private Node rotateRight(Node h)
  assert isRed(h.left);
  Node x = h.left:
   h.left = x.right;
  x.right = h;
  x.color = h.color;
   h.color = RED;
   return x;
```


Arvores Vermelho e Preto Implementação da Inserção - Rotações

- Inversão de Cores (Color Flip) em torno de um nó h:
 - A inversão de cores implementa a divisão de um 4-node temporário na Árvore 2-3;
 - A cor vermelha é retirada das duas referências que partem de h e passa para a referência que entra em h. Diz-se que a cor vermelha "passa para cima".


```
private void flipColors(Node h)
   assert !isRed(h);
   assert isRed(h.left);
   assert isRed(h.right);
   h.color = RED;
   h.left.color = BLACK;
   h.right.color = BLACK;
```


^{25/43} Árvores Vermelho e Preto Inserção de um Novo Nó

- Um novo nó sempre se liga à árvore por uma referência vermelha.
- **Exemplo:** Suponha que a árvore só tem a raiz:
 - Se o novo nó é pendurado à esquerda da raiz, não é preciso fazer mais nada;
 - Se o novo nó é pendurado à direita da raiz, é preciso fazer uma rotação para a esquerda (anti-horária) em torno da raiz, ou seja, root=rotateLeft(root), para que a árvore fique inclinada à esquerda:

^{26/43} Árvores Vermelho e Preto Inserção de um Novo Nó

- Caso 01: Inserir em um 2-node:
 - Pendurar um novo nó em um nó simples, ou seja, um nó que não incide em uma referência vermelha;
 - Fazer a inserção padrão da ABB, colorindo a nova referência de vermelho;
 - Se a nova referência vermelha for para a direita, realizar a rotação esquerda.

^{27/43} Árvores Vermelho e Preto Inserção de um Novo Nó

- Inserir uma árvore com dois nós:
 - Pendurar um novo nó em um dado nó duplo, isto é, em um par de nós ligados por uma referência vermelha;
 - Dependendo da chave, o novo nó pode ser pendurado em três lugares;
 - Em cada caso, pendure por uma referência vermelha e depois use rotações e inversão de cores para restabelecer as propriedades que caracterizam a Árvore Vermelho e Preta.

Resumindo: toda inserção de um novo nó precisa de zero, uma, ou duas rotações seguidas de uma inversão de cores.

^{28/43} Árvores Vermelho e Preto Inserção de um Novo Nó

- Caso 02: Inserir em um 3-node:
 - Fazer a inserção padrão da ABB colorindo a nova referência de vermelho;
 - Rotacionar para equilibrar o 4-node se necessário;
 - Inverter as cores para subir a referência vermelha para um nível acima.
 - Se necessário, rotacionar para inclinar para a esquerda.

^{29/43} Árvores Vermelho e Preto Inserção de um Novo Nó

- Caso 02: Inserir em um 3-node:
 - Fazer a inserção padrão da ABB colorindo a nova referência de vermelho;
 - Rotacionar para equilibrar o 4-node se necessário;
 - Inverter as cores para subir a referência vermelha para um nível acima.
 - Se necessário, rotacionar para inclinar para a esquerda.
 - Repetir o Caso 01 ou o Caso 02 na árvore se necessário.

Arvores Vermelho e Preto Implementação da Inserção

put() é recursivo: a operação desce pela árvore até achar o nó certo e depois volta, desempilhando as chamadas recursivas e fazendo as rotações e inversões de cores que forem necessárias.

- O método put() é o mesmo para todos os casos:
 - Se filho direito é vermelho e o filho esquerdo preto: Rotação Esquerda
 - Se filho esquerdo e neto esquerdo-esquerdo são vermelhos: Rotação Direita
 - Se dois filhos são vermelhos: Inversão de Cores


```
private Node put(Node h, Key key, Value val)
                                                                           insert at bottom
  if (h == null) return new Node(key, val, RED);
                                                                           (and color it red)
  int cmp = key.compareTo(h.key);
           (cmp < 0) h.left = put(h.left, key, val);</pre>
   else if (cmp > 0) h.right = put(h.right, key, val);
   else if (cmp == 0) h.val = val;
                                               h = rotateLeft(h); ← lean left
  if (isRed(h.right) && !isRed(h.left))
                                                                         balance 4-node
  if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); 
                                                                          split 4-node
  if (isRed(h.left) && isRed(h.right))
                                               flipColors(h);
   return h;
                 only a few extra lines of code provides near-perfect balance
```


Árvores Vermelho e Preto

> Passo-a-passo da Construção

TECNOLOGIA

Árvores Vermelho e Preto Desempenho do Pior Caso

- lacktriangle A altura de uma Árvore Vermelho e Preta com n nós é menor ou igual a $\lg n$
 - Refere-se a altura total, não da altura preta;
- Esboço da prova:
 - Pior caso é uma Árvore 2-3 que só tem nós duplos no caminho que desce pela borda esquerda da árvore;
 - Como nenhum nó incide em duas referências vermelhas, esse caminho pela borda extrema esquerda é apenas duas vezes mais longo que os caminhos que só passam por nós simples.

Em cada operação sobre uma Árvore Vermelho e Preta com n nós, o número de comparações entre chaves é limitado por $\lg n$ multiplicado por uma constante pequena, ou seja, o consumo de tempo de cada operação é logarítmico, mesmo no pior caso.

33/43 B-Trees Introdução

- Arvores B (B-Trees) são estruturas usadas para implementar tabelas de símbolos muito grandes;
- Uma Árvore B pode ser vista como um índice -análogo ao índice de um livro- para uma coleção de pequenas tabelas de símbolos: o índice diz em qual das pequenas tabelas de símbolos está a chave que se deseja buscar.
 - Pode-se dizer que uma Árvore B é uma "tabela de símbolos de tabelas de símbolos".

chave	valor
www.ebay.com	66.135.192.87
www.princeton.edu	128.112.128.15
www.cs.princeton.edu	128.112.136.35
www.harvard.edu	128.103.60.24
www.yale.edu	130.132.51.8
www.cnn.com	64.236.16.20
www.google.com	216.239.41.99
www.nytimes.com	199.239.136.200
www.apple.com	17.112.152.32
www.slashdot.org	66.35.250.151
www.espn.com	199.181.135.201
www.weather.com	63.111.66.11
www.yahoo.com	216.109.118.65
www.ime.usp.br	143.107.45.37

34/43 B-Trees Introdução

- Dois tipos de memória de um computador típico: a memória interna (ou principal) e a memória externa (ou secundária, usualmente um disco rígido ou memória de estado sólido)
 - A memória interna tem alta velocidade, mas pouca capacidade enquanto a memória externa tem baixa velocidade, mas grande capacidade;
- Daøda uma tabela de símbolos ordenada T, imagine que T tem um número enorme de chaves, tão grande que não cabe na memória rápida do computador:
 - Para manipular essa tabela de símbolos é preciso dividi-la em segmentos T_1, T_2, \dots, T_n , cada segmento sendo uma tabela de símbolos pequena o suficiente para caber com folga na memória rápida;
 - É natural definir os segmentos de modo que todas as chaves em um segmento sejam menores que todas as chaves no segmento seguinte;
- Para procurar uma chave nessa tabela de símbolos fracionada, precisa-se de um índice, ou seja, uma tabela de símbolos auxiliar que indique em qual dos segmentos T_1, T_2, \dots, T_n está a chave procurada:
 - A tabela de símbolos auxiliar é interna e as tabelas de símbolos T_1, T_2, \dots, T_n são externas.

35/43 B-Trees Introdução

- A tabela de símbolos interna A é organizada da seguinte maneira:
 - As chaves de A são $k_1, k_2, ..., k_n$, sendo k_i a menor chave de T_i ;
 - O valor que A associa com a chave k_i é uma referência a Ti;
- Para procurar por uma chave x, escolha o maior i tal que $k_i \leq x$, use A para localizar T_i , e então procure por x em T_i . Se um tal i não existe, x não está em T;
- \triangleright Q que acontece se A for grande demais para caber na memória rápida? Em outras palavras, o que acontece se A for muito maior que qualquer T_i ?
 - Nesse caso, aplique a A a mesma ideia de segmentação que aplicou-se a T e repita, recursivamente, se necessário. Isso resulta em uma árvore cujos nós são tabelas de símbolos, originando assim o conceito de Árvore B;
- Convém impor restrições ao número de chaves em cada nó da árvore:
 - Escolha um inteiro positivo par M e organize as coisas de modo que cada nó da árvore tenha no máximo M-1 chaves e no mínimo M/2 chaves
 - A raiz é excepcional: basta que ela tenha duas ou mais chaves.

36/43 B-Trees Exemplo com M = 6

- Exemplo de uma Árvore B com M=6:
 - As chaves são *, B, C, ..., X, Y
 - As chaves são comparadas em ordem alfabética, assim, * é a menor das chaves
 - Um nó com m chaves é chamado m-nó:
- No exemplo utiliza-se um valor pequeno de M, como 4 ou 6:
 - Um valor mais realista pode ficar em torno de 1000;
 - Na prática, cada nó é um arquivo, armazenado na memória lenta, ou uma página na web por exemplo.

37/43 B-Trees Definição

- **Definição:** Para qualquer inteiro positivo par M, uma Árvore B de ordem M é uma áryore com as seguintes propriedades:
 - Cada nó contém no máximo M-1 chaves;
 - ightharpoonup A raiz contém, no mínimo, 2 chaves e cada um dos demais nós contém no mínimo M/2chaves;
 - Cada nó que não seja uma folha tem um filho para cada uma de suas chaves;
 - Todos os caminhos da raiz até uma folha têm o mesmo comprimento, ou seja, é perfeitamente balanceada;
- Uma Árvore B de ordem 4 é essencialmente uma Árvore 2-3, embora existam algumas diferenças que abordaremos a seguir.

38/43 B-Trees **Aplicações**

- Árvores B são a estrutura subjacente a muitos sistemas de arquivos e bancos de dados;
- Por exemplo:
 - O sistema de arquivos NTFS do Windows;
 - O sistema de arquivos HFS do macOS;
 - Os sistemas de arquivos ReiserFS, XFS, Ext3FS, JFS do Linux;
 - Os bancos de dados ORACLE, DB2, INGRES, SQL e PostgreSQL.

39/43 B-Trees **Buscar Chave**

- Operação de Busca (semelhante à busca em ABBs):
 - . Inicia a pesquisa na raiz;
 - 2. Encontra o intervalo da chave pesquisada e caminha pela referência correspondente;
 - 3. A busca termina em um nó externo;
- Exemplo: Busca pela chave E em uma Árvore B de ordem 6 que armazena as chaves *, B, C, ..., W, X

40/43 B-Trees Inserir Nova Chave

- Operação de Inserção:
 - ./ Pesquisa pela nova chave;
 - 2. Insere na parte inferior da árvore;
 - 3. Divide os nós em *M* pares (chave, referência) na subida da árvore;

Exemplo: Inserção da chave uma Árvore B de ordem 6 que armazena as chaves *, B, C, ..., W, X

41/43 B-Trees

Análise do Desempenho

- O consumo de tempo de cada operação na memória rápida é muito menor que o tempo necessário para trazer uma página da memória lenta para a rápida ou levar uma página da memória rápida para a lenta
 - Assim, faz sentido ignorar o custo das operações na memória rápida e contar apenas o número de sondagens;
 - /Uma sondagem é o primeiro acesso a uma página durante uma busca ou inserção;
- **Proposição:** Uma busca ou inserção em uma Árvore B de ordem M com n chaves envolve entre $\log_m n$ e $\log_{\frac{m}{2}} n$ sondagens.
- Prova: O número de sondagens é igual à altura da árvore:
 - No melhor caso, todas as páginas internas têm M-1 filhos;
 - No pior caso, todas as páginas internas, exceto a raiz, têm M/2 filhos;
- Se M é da ordem de 1000, por exemplo, a altura da árvore não passa de 4 se n for menor que 62 bilhões.

42/43 B-Trees Construindo uma Árvore Grande

- Evolução do conjunto de páginas externas de uma Árvore B de ordem 8:
 - Em cada linha da Figura é apresentado o resultado da inserção de uma chave em alguma página externa;
 - Cada pequena barra horizontal representa uma página externa: a porção preta da barra é a parte ocupada da página e a porção branca é a parte desocupada;
 - Cada barra vermelha representa uma página externa cheia que está prestes a receber uma nova chave e transbordar.
 - Começamos com uma só página externa (cheia) e terminamos com 22 páginas externas.

43/43 Bibliografia

SEDGEWICK, R.; WAYNE, K. Algorithms. 4. ed. Boston: Pearson Education, 2011. 955 p.

GOODRICHM M. T.; TAMASSIA, R. Estruturas de Dados & Algoritmos em Java. Porto Alegre: Bookman, 2013. 700 p. CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C.

Algoritmos – Teoria e Prática. 3. ed. São Paulo: GEN LTC, 2012. 1292 p.

