

用Android控制Arduino小车

谢作如 浙江省温州中学 刘正云 南京师范大学

用Arduino做一辆小车,原本是一 个入门的项目,很多人都做过。但是,这 辆小车如果能用Android手机或者平板 电脑来控制,无疑就有趣多了。在MIT 的App Inventor帮助下,编写Android系 统上的App程序,也能够以搭积木的形 式完成。同样, Arduino方面的代码, 也 能够采用一款图形化的编程插件—— ArduBlock来编写。用Android控制 Arduino小车,就成为一个技术门槛很 低,却非常具有挑战性的综合性任务了。

项目描述

本项目指设计一辆能够通过 Android手机控制的小车,小车控制板 采用开源硬件Arduino。通过手机屏

幕或者手机的重力传感器,能 控制小车的前进、后退、左转、 右转、原地转等各种功能。本项 目的难度设计为小学生都能完 成,所以小车的程序我们选择用 ArduBlock编写, 手机的程序由 App Inventor编写。

因为Arduino机器人的形式很多, 如智能灯、机械臂、人形机器人等,所以 这个项目具有一定的可扩展性,还可以 实现更多的功能。

通讯分析

Android手机和Arduino小车的

通讯方式很多,但蓝牙方式无疑是最简 单、最方便的选择,因为蓝牙已经成为 Android手机的标配。App Inventor中 有蓝牙的编程模块,能实现通过蓝牙来 读取和发送数据。大部分的Arduino控 制板,都预设了蓝牙模块的接口,而蓝 牙模块的价格也相对低廉,淘宝上随 处可买。

手机控制小车的程序设计分为手 机程序和小车程序,即上位机与下位机 两部分。手机(上位机)部分通过手机自 带的蓝牙发送控制命令,如前进、后退、 左右转等。小车(下位机)部分则根据 蓝牙模块(串口)收到的命令,做出相应 的动作。具体的通讯过程如图1所示。

在这个项目中,设计手机和小车 的通讯数据格式是关键,即手机发送 的数据分别代表什么命令。考虑到 ArduBlock教育版只能获取串口数据 中的数字,所以我们设计了下面的通讯 协议,分别定义了数据和命令的对应关 系,如表1。

表1	通讯协议
数据内容	命令内容
1	前进
2	后退
3	左转
4	右转
9	停止

Arduino小车搭建和程序设计

1.硬件搭建

我们选择了DFrobot公司的 RoMeo VI和MiniQ小车底盘,这是我 们设计的开源课程《Arduino创意机 器人》中使用的机器人套件(如图2)。 《Arduino创意机器人》课程是国内第 一个完全开源的STEM课程,所有的教 学资源,如微视频、电子教材、教学设

> 计等都能在网上下载,关于小车 的搭建步骤详见我们的课程资 源,这里不再叙述。《Arduino 创意机器人》课程资源下载地 址:http://pan.baidu.com/ s/lqWFJ0EK。

图2

一般而言,蓝牙模块有4条线需 要和Arduino连接,分别为5V、GND、 TX和RX。5V和GND要与Arduino上 的5V和GND——对应,但是RX接在 Arduino的TX上,TX要接在Arduino 的RX上。因为我们选择的蓝牙模块也 是同一公司的,小车使用的控制板为 RoMeo VI,上面已经集成了蓝牙模块 接口,插上就可以直接使用,不用另外接 线(如图3)。

图3

BORNAB III 电机运行 电机运行 如果 9 停止电机

图4

2.程序编写

小车的程序比较简单, 先将串口读 取到的数值赋值给变量a, 再使用"如 果"模块进行判断即可。这里的数值 "1"、"2"、"3"、"4"、"9"分别根据通讯 协议(数据和命令对应表)来设置小车 的动作,具体代码见图4。

注意:①如果电机M1和M2为150时 小车没有前进,反而转弯了,只要调整 电机的接线即可。②如果用Arduino下 载程序出现错误,请先把蓝牙模块取 下,等下载成功后再插入。

3.小车通讯测试

给小车下载程序后,应先做通讯 协议方面的测试。这里的测试分为两 步:第一步是使用串口监视器测试。先用 Arduino的串口监视器,通过USB串口给

> 小车发送1、2、3、4、9几 个数字,看小车是否能 做出相应的动作。别忘 了要把小车的轮子悬空 哦! 第二步是使用手机 蓝牙串口工具测试。如

果你的电脑有蓝牙适配器,可以试着连 接Arduino的蓝牙模块,然后通过串口监 视器发送数据,如果成功,就说明蓝牙 模块工作正常。当然也可以直接跳过这 一步,直接用手机的蓝牙连接,用"蓝牙 串口助手"发送数据来测试。

一般来说,如果第一步测试通过 而第二步没有成功,请检查蓝牙模块的 波特率。ArduBlock使用的串口波特率 是9600,蓝牙模块的波特率也要设置为 9600才能正常通讯。蓝牙模块的波特率 可以通过AT命令来设置,请查阅技术 文档或者询问蓝牙产品的技术人员。

注意:如果使用DFRobot的V7扩 展板,一定要记着把板子上的小开关 扳到"RUN"一档。

Android程序设计

1.App界面设计

App Inventor分为在线版和离线 版两种,二者在使用上没有什么区别。 如果网络够快,就用在线版吧。不过如 果是大班教学,应该自己搭建一个离线 版的服务器。

控制Arduino小车的App软件在编写上并不难。我们在界面设计上并没有花多大功夫,主要还是侧重于其功能实现(如上页图5)。

App中添加的控件有: ①Button 按键(上、下、左、右箭头以及stop按键):按下后通过蓝牙发送相应的数字;②ListPicker(Select Device):按下它,会访问到一个列表,用来存储蓝牙信息;③HorizontalArrangement/VerticalArrangement:用于排版,使页面整齐美观;④BluetoothClient:蓝牙连接客户端控件,主要用于配对蓝牙,连接以及通信;⑤Notifier:警示窗口,当软件运行出现意外时,会提示相关信息,以避免程序崩溃。

2.App功能实现

(1)连接蓝牙

点击Select Device时,应该出现选择蓝牙设备的界面(如图6)。

选择ListPickerl控件的 BeforePicking事件,编写如图7的 代码。

需要说明的是,图6中列出的是手机已经配对过的蓝牙设备。如果还没有配对,请先使用手机系统自带的蓝牙管理器来配对设备。

为了使App操作更加简洁,我们可以在选择设备后,就让手机开始连接蓝牙,连接蓝牙的代码要写在ListPickerl控件的AfterPicking事件中(如图8)。

(2)发送数据

App主要通过上下左右四个箭头 控制小车前进、后退、左右转,通过stop 键让小车停止,代码如图9。

用这两个传感器来控制小车的方向和 速度,项目的可玩性就更强了。当然,我 们要设计的通讯协议也复杂了起来。

总结

在这个项目的基础上,我们还可以 实现很多其他的功能,如解决单独使用 语音模块控制小车声音干扰的问题,制 作出无线控制的语音识别模块,或者 是直接调用Google的语音库,制作出

应用

这个手机控制小车的项目还是比较简单的,最大的不足是无法动态调速。当然,我们可以设计一个摇杆来发送更加复杂的数据给Arduino小车,如1200表示前进200,2100表示后退100等。只要设计好通讯协议,编写代码并不困难。图10是笔者设计的一个用摇杆控制小车速度和方向的App界面。

因为Android手机上有重力加速 度传感器(AccelerometerSensor)和方 向传感器(OrientationSensor)。如果利

手机语音控制的机器人小车……不要 小看图形化编程软件,App Inventor 和ArduBlock已经足够强大了,赶紧动 手吧! \mathcal{C}