Rewriting modulo traced comonoid structure

George Kaye Dan Ghica

University of Birmingham

04 July 2023 - FSCD 2023, Rome

We want to reason equationally with processes with notions of feedback, copying and discarding (e.g. digital circuits)

What should the syntax for these processes be?

How do we reason with this syntax?

What is the best way to rewrite with this syntax?

Is this syntax suitable for automating rewrites?

1

The big picture

We have specialised previous work on hypergraph string diagram rewriting to settings with a traced comonoid structure.

The building blocks

The graphical syntax of string diagrams

$$m-f-n$$
 $n-g-p$

$$m-f-g-p$$
 $m-f-n$ $m-m-m$ $m-m$

(symmetric monoidal category)

We want to have feedback.

$$\begin{array}{c}
x \\
m
\end{array} \xrightarrow{f} x \Rightarrow m \xrightarrow{f} n$$
(traced structure)

We want to fork and stub.

$$- \underbrace{\hspace{1.5cm}} = - \underbrace{\hspace{1.5cm}$$

(commutative comonoid structure)

We want to copy and discard.

$$-f = -f = -f$$

(Cartesian structure)

$$F = F$$

We want to reason graphically.

(unfolding, fixpoint equation)

We want to do this reasoning computationally.

This is hard for terms, even with string diagrams.

(lots of shuffling around and bookkeeping required with the comonoid)

But computers like graphs...

What came before

String graphs

Dixon, Kissinger

What came before

Hypergraphs

Bonchi, Gadduchi, Kissinger, Sobocinski, Zanasi

The hyper kind of graph

The hyper kind of (interfaced) graph

Goal

string diagrams as cospans of hypergraphs

But which hypergraphs?

Keeping it single

Which cospans correspond to symmetric monoidal terms?

Monogamous acyclic hypergraphs

One connection on the left, one on the right

Getting the correspondence

monogamous acyclic hypergraphs

symmetric monoidal term

Monogamous acyclic hypergraphs are too restrictive.

Feeling special

Which terms correspond to arbitrary cospans of hypergraphs?

Terms with a special commutative Frobenius structure

Feeling special

Another correspondence

isomorphism class of hypergraphs

Frobenius term modulo equations

Arbitrary hypergraphs are not restrictive enough.

Frobenius to traced comonoid

Traced comonoid is 'half' Frobenius... +

Any category with Frobenius is self-dual compact closed...

Trace can be built from compact closed structure...

Partial left-monogamous hypergraphs

One connection on the left, many on the right

Special cases...

Trace of the identity

Trace of the fork

One more correspondence

partial left-monogamous hypergraphs

traced comonoid term

 \leftrightarrow

We can interpret terms as graphs

Now to reason with them!

Applying equations ↔ Graph rewriting

Double pushout (DPO) rewriting

One rule for them

Do the double pushout

Do the double pushout

Matching

25

Do the double pushout

Pushout complement

Do the double pushout

Pushout!

Give me complements

Which pushout complements are valid rewrites?

Symmetric monoidal setting? Exactly one pushout complement valid

Give me complements

Which pushout complements are valid rewrites?

Symmetric monoidal setting? Exactly one pushout complement valid

Give me complements

Which pushout complements are valid rewrites?

Symmetric monoidal setting? Exactly one pushout complement valid

Frobenius setting? All pushout complements valid

Which pushout complements are valid rewrites?

Symmetric monoidal setting? Exactly one pushout complement valid

Traced comonoid setting? Some pushout complements valid

Frobenius setting? All pushout complements valid

I need some validation

This cospan is partial left-monogamous:

Inputs of term
Outputs of rule

Remember me?

Unfolding again

Unfolding again

Unfolding again

Two contributions

Characterised partial left-monogamous cospans of hypergraphs as a suitable hypergraph interpretation of traced comonoid terms

Characterised the correct notion of pushout complement for traced comonoid terms