BCH Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 14, 2014

BCH Codes

- Discovered by Hocquenghem in 1959 and independently by Bose and Chaudhari in 1960
- Cyclic structure proved by Peterson in 1960
- Decoding algorithms proposed/refined by Peterson, Gorenstein and Zierler, Chien, Forney, Berlekamp, Massey...
- We will discuss a subclass of BCH codes binary primitive BCH codes

Binary Primitive BCH Codes

For positive integers $m \ge 3$ and $t < 2^{m-1}$, there exists an (n, k) BCH code with parameters

- $n = 2^m 1$
- n-k < mt
- $d_{min} > 2t + 1$

Definition

Let α be a primitive element in F_{2^m} . The generator polynomial g(x) of the t-error-correcting BCH code of length $2^m - 1$ is the least degree polynomial in $\mathbb{F}_2[x]$ that has

$$\alpha, \alpha^2, \alpha^3, \dots, \alpha^{2t}$$

as its roots.

Let $\varphi_i(x)$ be the minimal polynomial of α^i . Then g(x) is the LCM of $\varphi_1(x), \varphi_2(x), \dots, \varphi_{2t}(x)$.

Binary Primitive BCH Code of Length 7

- m = 3 and $t < 2^{3-1} = 4$
- Let α be a primitive element of F₈
- For t = 1, g(x) is the least degree polynomial in $\mathbb{F}_2[x]$ that has as its roots α , α^2
 - α is a root of $x^8 + x$

$$x^8 + x = x(x+1)(x^3 + x + 1)(x^3 + x^2 + 1)$$

- Let α be a root of $x^3 + x + 1$
- The other roots of $x^3 + x + 1$ are α^2, α^4
- For t = 1, $g(x) = x^3 + x + 1$
- For t = 2, g(x) is the least degree polynomial in $\mathbb{F}_2[x]$ that has as its roots α , α^2 , α^3 , α^4
 - The roots of $x^3 + x^2 + 1$ are $\alpha^3, \alpha^5, \alpha^6$
 - For t = 2, $g(x) = (x^3 + x + 1)(x^3 + x^2 + 1)$
- For t = 3, g(x) is the least degree polynomial in $\mathbb{F}_2[x]$ that has as its roots α , α^2 , α^3 , α^4 , α^5 , $\alpha^6 \implies g(x) = (x^3 + x + 1)(x^3 + x^2 + 1)$

Binary Primitive BCH Code of Length 7

For a BCH code with parameters *m* and *t*, we have

- $n-k \leq mt$
- $d_{min} \ge 2t + 1$

t	g(x)	n – k	mt	d _{min}	2 <i>t</i> + 1
1	$x^3 + x + 1$	3	3	3	3
2	$(x^3 + x + 1)(x^3 + x^2 + 1)$	6	6	7	5
3	$(x^3 + x + 1)(x^3 + x^2 + 1)$	6	9	7	7

Definition

A degree m irreducible polynomial in $\mathbb{F}_2[x]$ is said to be primitive if the smallest value of N for which it divides $x^N + 1$ is $2^m - 1$

Lemma

The minimal polynomial of a primitive element is a primitive polynomial.

Single Error Correcting BCH Codes are Hamming Codes

We will prove this for m = 3. The proof of the general case is similar.

Proof.

- Consider a BCH code with parameter m = 3 and t = 1
- Let α be a primitive element of F_8 and a root of $x^3 + x + 1$
- The generator polynomial $g(x) = x^3 + x + 1$
- The code has length 7 and dimension 4
- A polynomial $v(x) = v_0 + v_1 x + v_2 x^2 + \cdots + v_6 x^6$ is a code polynomial $\iff v(x)$ is a multiple of $g(x) \iff \alpha$ is a root of $v(x) \iff v(\alpha) = 0$

$$v(\alpha) = 0 \iff v_0 + v_1 \alpha + v_2 \alpha^2 + v_3 \alpha^3 + \cdots + v_6 \alpha^6 = 0$$

Single Error Correcting BCH Codes are Hamming Codes

Proof continued.

Power	Polynomial	Tuple		
0	0	(0	0	0)
1	1	(1	0	0)
α	α	(0	1	0)
$\begin{array}{c} \alpha \\ \alpha^2 \\ \alpha^3 \\ \alpha^4 \\ \alpha^5 \\ \alpha^6 \end{array}$	α^2	(O	0	1)
α^3	$1 + \alpha$	(1	1	0)
α^4	$\alpha + \alpha^2$	(O	1	1)
α^{5}	$1 + \alpha + \alpha^2$	(1	1	1)
α^{6}	$1 + \alpha^2$	(1	0	1)

$$v(\alpha) = 0 \iff v_0 + v_1 \alpha + v_2 \alpha^2 + v_3 \alpha^3 + \dots + v_6 \alpha^6 = 0$$

$$\iff \begin{bmatrix} 1 & \alpha & \cdots & \alpha^6 \end{bmatrix} \begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_6 \end{bmatrix} = 0 \iff \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_6 \end{bmatrix} = 0$$

Degree of Generator Polynomial

Theorem

For a binary primitive BCH code with parameters m, t and generator polynomial g(x), $deg[g(x)] \le mt$.

Proof.

- $g(x) = LCM \{ \varphi_1(x), \varphi_2(x), \varphi_3(x), \dots, \varphi_{2t}(x) \}$
- If *i* is an even integer, then $i = i'2^a$ where i' is odd
- $\alpha^i = \left(\alpha^{i'}\right)^{2^a} \implies \alpha^i$ and $\alpha^{i'}$ have same minimal polynomial
- Every even power of α has the same minimal polynomial as some previous odd power of α

$$g(x) = \mathsf{LCM} \{ \varphi_1(x), \varphi_3(x), \varphi_5(x), \dots, \varphi_{2t-1}(x) \}$$

• Since deg (φ_i) divides m, we have $n - k \le mt$

- We want to show that if the generator polynomial has roots $\alpha, \alpha^2, \dots, \alpha^{2t}$ then $d_{min} \ge 2t + 1$
- Suppose there exists a nonzero codeword $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ of weight $\delta \leq 2t$
- The corresponding code polynomial satisfies $\mathbf{v}(\alpha^i) = 0$ for $i = 1, 2, 3, \dots, 2t$

$$v_{0} + v_{1}\alpha + v_{2}\alpha^{2} + \dots + v_{n-1}\alpha^{n-1} = 0$$

$$v_{0} + v_{1}\alpha^{2} + v_{2}\alpha^{4} + \dots + v_{n-1}\alpha^{2(n-1)} = 0$$

$$\vdots$$

$$v_{0} + v_{1}\alpha^{2t} + v_{2}\alpha^{4t} + \dots + v_{n-1}\alpha^{2t(n-1)} = 0$$

• Let $j_1, j_2, \dots, j_\delta$ be the nonzero locations in the codeword

$$v_{j_1}(\alpha^i)^{j_1} + v_{j_2}(\alpha^i)^{j_2} + \dots + v_{j_\delta}(\alpha^i)^{j_\delta} = 0$$
for $i = 1, 2, \dots, 2t$

$$\begin{bmatrix} \mathbf{v}_{j_1} & \mathbf{v}_{j_2} & \cdots & \mathbf{v}_{j_{\delta}} \end{bmatrix} \begin{bmatrix} \alpha^{j_1} & (\alpha^2)^{j_1} & \cdots & (\alpha^{2t})^{j_1} \\ \alpha^{j_2} & (\alpha^2)^{j_2} & \cdots & (\alpha^{2t})^{j_2} \\ \alpha^{j_3} & (\alpha^2)^{j_3} & \cdots & (\alpha^{2t})^{j_{\delta}} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^2)^{j_{\delta}} & \cdots & (\alpha^{2t})^{j_{\delta}} \end{bmatrix} = \mathbf{0}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{2t} \\ \alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{2t} \\ \alpha^{j_3} & (\alpha^{j_3})^2 & \cdots & (\alpha^{j_3})^{2t} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \cdots & (\alpha^{j_{\delta}})^{2t} \end{bmatrix} = \mathbf{0}$$

$$\implies \begin{bmatrix} \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \end{bmatrix} \begin{bmatrix} \alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{\delta} \\ \alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{\delta} \\ \alpha^{j_3} & (\alpha^{j_3})^2 & \cdots & (\alpha^{j_3})^{\delta} \end{bmatrix} = \mathbf{0}$$

$$\vdots & \vdots & \vdots \\ \alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \cdots & (\alpha^{j_{\delta}})^{\delta} \end{bmatrix}$$

$$\implies \begin{vmatrix} \alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{\delta} \\ \alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{\delta} \\ \alpha^{j_3} & (\alpha^{j_3})^2 & \cdots & (\alpha^{j_3})^{\delta} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \cdots & (\alpha^{j_{\delta}})^{\delta} \end{vmatrix} = 0$$

$$\implies \alpha^{(j_1+\cdots+j_{\delta})} \begin{vmatrix} 1 & \alpha^{j_1} & \cdots & \alpha^{(\delta-1)j_1} \\ 1 & \alpha^{j_2} & \cdots & \alpha^{(\delta-1)j_2} \\ 1 & \alpha^{j_3} & \cdots & \alpha^{(\delta-1)j_3} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha^{j_{\delta}} & \cdots & \alpha^{(\delta-1)j_{\delta}} \end{vmatrix} = 0$$

- $\alpha^{j_1+\cdots+j_{\delta}}\neq 0$ since α is a nonzero field element
- The determinant is a Vandermonde determinant which is not zero
- This contradicts our assumption that a nonzero codeword of weight δ ≤ 2t exists

Questions? Takeaways?