Derivative

1 Last Time

1.1 Polynomial Function

1.2 Chain Rule

†
$$y = (3x+4)^2 \to \frac{dy}{dx} = 2(3x+4) \cdot \frac{d(3x+4)}{dx} = 2(3x+4) \cdot 3$$

1.3 Partial Derivative

1.4 Squared Error Function

†
$$E(w,b) = \frac{1}{2} \sum_{i=1}^{n} (w \cdot x_i + b - y_i)^2 \rightarrow \frac{\partial E(w,b)}{\partial w} = \frac{1}{2} \sum_{i=1}^{n} 2(w \cdot x_i + b - y_i) \cdot \frac{\partial (w \cdot x_i + b - y_i)}{\partial w} = \sum_{i=1}^{n} (w \cdot x_i + b - y_i) \cdot x_i + \frac{\partial E(w,b)}{\partial b} = \frac{1}{2} \sum_{i=1}^{n} 2(w \cdot x_i + b - y_i) \cdot \frac{\partial (w \cdot x_i + b - y_i)}{\partial b} = \sum_{i=1}^{n} (w \cdot x_i + b - y_i) \cdot 1$$

2 New Function

2.1 Exponential Function

$$\dagger \quad y = e^x \to \frac{dy}{dx} = e^x$$

2.2 Chain Rule

$$\label{eq:continuous_def} \dagger \quad y = e^{wx} \rightarrow \frac{dy}{dx} = e^{wx} \cdot \frac{d(wx)}{dx} = e^{wx} \cdot w$$

2.3 Partial Derivative

†
$$y = e^{wx} \rightarrow \frac{\partial y}{\partial w} = e^{wx} \cdot \frac{\partial (wx)}{\partial w} = e^{wx} \cdot x$$

3 Logistic Function

3.1 Basic

3.2 Partial Derivative

3.3 Error Function

$$\dagger E(w) = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{1}{1 + e^{-wx_i}} - y_i \right)^2 \rightarrow$$

$$\frac{\partial E(w)}{\partial w} = \sum_{i=1}^{n} \left(\frac{1}{1 + e^{-wx_i}} - y_i \right) \cdot \left(\frac{1}{1 + e^{-wx_i}} \right) \cdot \left(1 - \frac{1}{1 + e^{-wx_i}} \right) \cdot x_i$$