Санкт-Петербургский Политехнический университет Петра Великого Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчет по лабораторной работе №3

Дисциплина: Вычислительная математика

Вариант: 15

Выполнил		
студент гр. 3530901/90003		Руднев А.К.
	(подпись)	
Преподаватель		Цыган В.Н.
	(подпись)	
	«»	2021 г.

Входные данные: вариант 15

Привести дифференциальное уравнение: t(t+1)y'' + (3t+2)y' + y = 0 к системе двух дифференциальных уравнений первого порядка.

Решить на интервале $1 \le t \le 2$

Начальные условия: y(t-1) = 1; y'(t-1) = -1

Точное решение: $y(t) = \frac{1}{t}$

При выполнении лабораторной работы решить заданное уравнение:

- 1) используя программу RKF45 с шагом печати $\mathbf{h}_{print} = \mathbf{0.1}$ и выбранной Вами погрешностью EPS в диапазоне 0.001 0.00001;
- 2) используя метод Эйлера-Коши;

Сравнить результаты, полученные заданными приближенными способами, с точным решением.

Исследовать влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 1-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например, $h_{int}=0.05$; $h_{int}=0.025$ $h_{int}=0.0125$).

1. Ход решения

1.1 Приведение дифференциального уравнения второго порядка к системе двух дифференциальных уравнений первого порядка:

Пусть
$$y' = p$$
, тогда $t(t+1)y'' + (3t+2)y' = t(t+1)p' + (3t+2)p + y$

Исходя из замены получаем:

$$\begin{cases} y' = p \\ t(t+1)p' + (3t+2)p + y \end{cases} \leftrightarrow \begin{cases} y' = p \\ p' = \frac{-2tp - 2p - y}{t^2} \end{cases}$$

1.2 Применение метода Эйлера-Коши:

$$\begin{aligned} y_{i+1} &= y_i + \Delta \ y_i \,, \Delta \ y_i = \Delta \ y_{il} + \Delta \ y_{i2} \,, \\ \Delta \ y_{il} &= \frac{h}{2} \, f(x_i, y_i) \,, \Delta \ y_{i2} = \frac{h}{2} \, f(x_i + h \,, y_i + h \, f(x_i, y_i)) \end{aligned}$$

2

$$y_{i+1} = y_i + h \frac{f(x_i, y_i) + f(x_{i+1}, y_i + h f(x_i, y_i))}{2}.$$

Метод заключается в первоначальном поиске X_{n+1} , а потом в уточнении этого значения.

2. Решение:

- 1) Добавлю в проект уже реализованную подпрограмму RKF45
- 2) Добавлю в проект метод Эйлера-Коши
- 3) Создам все необходимые переменные, а также вспомогательные методы для решения дифференциального уравнения.
- 4) Локальной погрешность при решении методом Эйлера-Коши будет X(T + h) значение X в (T + h).

3. Листинг:

Листинг кода представлен в приложении 1.

4. Решение RKF45

Используя подпрограмму RKF45 с шагом печати $h_{print}=0.1$ и выбранной локальной и глобальной погрешностью EPS = 0.00001, решу дифференциальное уравнение. (рисунок 2). Сравню полученные результаты при различных значениях локальной и глобальной погрешностях:

На рисунке 2 приведены скриншоты работы подпрограммы RKF45. На первом снимке начальными условиями RELERR и ABSERR = 0.0001. На втором скриншоте было уменьшено значение RELERR и как видно из рисунка 2, уменьшение RELERR никак не отразилось на вычислениях. На третьем скриншоте представлено уменьшение значения ABSERR и как видно из рисунка 2, уменьшение ABSERR повлияло на значение на величину погрешности - уменьшив её.

RELERR = 0.00010		RELERR = 0.00001		RELERR = 0.00010	
ABSERR = 0.00010		ABSERR = 0.00010		ABSERR = 0.00000	
Tout = 1.1		Tout = 1.1		Tout = 1.1	
X[0] = 0.90909089	(-0.000000022266)	X[0] = 0.90909089	(-0.000000022266)	X[0] = 0.90909089	(-0.0000000222656661)
X[1] = -0.82644628	(-0.000000003242)	X[1] = -0.82644628	(-0.000000003242)	X[1] = -0.82644628	(-0.0000000032416427)
Tout = 1.2		Tout = 1.2		Tout = 1.2	
X[0] = 0.833333330	(-0.000000034682)	X[0] = 0.83333330	(-0.000000034682)	X[0] = 0.833333330	(-0.0000000346822081)
X[1] = -0.69444445	(-0.000000003059)	X[1] = -0.69444445	(-0.000000003059)	X[1] = -0.69444445	(-0.0000000030590750)
Tout = 1.3		Tout = 1.3		Tout = 1.3	
X[0] = 0.76923073	(-0.000000041888)	X[0] = 0.76923073	(-0.000000041888)	X[0] = 0.76923073	(-0.0000000418879914)
X[1] = -0.59171598	(-0.000000001897)	X[1] = -0.59171598	(-0.000000001897)	X[1] = -0.59171598	(-0.0000000018970184)
Tout = 1.4		Tout = 1.4		Tout = 1.4	
X[0] = 0.71428567	(-0.000000046182)	X[0] = 0.71428567	(-0.000000046182)	X[0] = 0.71428567	(-0.0000000461822500)
X[1] = -0.51020408	(-0.000000000585)	X[1] = -0.51020408	(-0.000000000585)	X[1] = -0.51020408	(-0.0000000005849747)
Tout = 1.5		Tout = 1.5		Tout = 1.5	
X[0] = 0.66666662	(-0.000000048771)	X[0] = 0.66666662	(-0.000000048771)	X[0] = 0.66666662	(-0.0000000487711634)
X[1] = -0.44444444	(0.000000000607)	X[1] = -0.44444444	(0.000000000607)	X[1] = -0.44444444	(0.0000000006066694)
Tout = 1.6		Tout = 1.6		Tout = 1.6	
X[0] = 0.62499995	(-0.000000050320)	X[0] = 0.62499995	(-0.000000050320)	X[0] = 0.62499995	(-0.0000000503195987)
X[1] = -0.39062500	(0.00000001607)	X[1] = -0.39062500	(0.000000001607)	X[1] = -0.39062500	(0.0000000016074318)
Tout = 1.7		Tout = 1.7		Tout = 1.7	
X[0] = 0.58823524	(-0.000000051210)	X[0] = 0.58823524	(-0.000000051210)	X[0] = 0.58823524	(-0.0000000512104077)
X[1] = -0.34602076	(0.000000002417)	X[1] = -0.34602076	(0.000000002417)	X[1] = -0.34602076	(0.0000000024174817)
Tout = 1.8		Tout = 1.8		Tout = 1.8	
X[0] = 0.55555550	(-0.000000051673)	X[0] = 0.55555550	(-0.000000051673)	X[0] = 0.55555550	(-0.0000000516727892)
X[1] = -0.30864197	(0.000000003060)	X[1] = -0.30864197	(0.000000003060)	X[1] = -0.30864197	(0.0000000030595587)
Tout = 1.9		Tout = 1.9		Tout = 1.9	
X[0] = 0.52631574	(-0.000000051849)	X[0] = 0.52631574	(-0.000000051849)	X[0] = 0.52631574	(-0.0000000518488158)
X[1] = -0.27700831	(0.000000003561)	X[1] = -0.27700831	(0.000000003561)	X[1] = -0.27700831	(0.0000000035610321)
Tout = 2.0		Tout = 2.0		Tout = 2.0	
X[0] = 0.49999995	(-0.000000051829)	X[0] = 0.49999995	(-0.000000051829)	X[0] = 0.49999995	(-0.0000000518293509)
X[1] = -0.25000000	(0.000000003948)	X[1] = -0.25000000	(0.000000003948)	X[1] = -0.25000000	(0.0000000039475241)

Рис. 2 - RKF45

5. Сравнение результатов RKF45 и метода Эйлера-Коши при разном шаге h. Исследования влияния шага на величину глобальной погрешности

Сравнение результатов с шагами h = 0.1, 0.05, 0.025, 0.01 результаты приведены на рисунках 3-6 соответственно.

```
Решение через программу RKF45
Решение через программу RKF45
                                              Tout = 2.0
                                              RELERR = 0.00010
RELERR = 0.00010
ABSERR = 0.00001
                                              ABSERR = 0.00001
                                              X[0] = 0.49999610
                                                                      (-0.000003904321)
X[0] = 0.49999610
                        (-0.000003904321)
                                              X[1] = -0.25000004
                                                                      (-0.000000040646)
X[1] = -0.25000004
                        (-0.000000040646)
                                              Решение методом Эйлера-Коши
Решение методом Эйлера-Коши
                                              Tout = 2.0
Tout = 2.0
h = 0.1000
                                              h = 0.0500
                                              X[0] = 0.65515533
                                                                      (0.15515533)
X[0] = 0.65287919
                        (0.15287919)
                                              X[1] = -0.47147994
                                                                     (-0.22147994)
X[1] = -0.45945421
                      (-0.20945421)
```

Рис. 3

```
Решение через программу RKF45
                                             Решение через программу RKF45
Tout = 2.0
                                             Tout = 2.0
RELERR = 0.00010
                                            RELERR = 0.00010
ABSERR = 0.00001
                                             ABSERR = 0.00001
X[0] = 0.49999610
                       (-0.000003904321)
                                            X[0] = 0.49999610
                                                                    (-0.000003904321)
X[1] = -0.25000004
                       (-0.000000040646)
                                             X[1] = -0.25000004
                                                                     (-0.000000040646)
Решение методом Эйлера-Коши
                                             Решение методом Эйлера-Коши
Tout = 2.0
                                             Tout = 2.0
h = 0.0250
                                            h = 0.0100
X[0] = 0.65026792
                       (0.15026792)
                                            X[0] = 0.65686317
                                                                     (0.15686317)
X[1] = -0.47067862
                       (-0.22067862)
                                             X[1] = -0.48066848
                                                                     (-0.23066848)
```

Рис. 5

Исходя из рисунков можно сделать вывод, что подпрограмма RKF45 оказалась эффективнее — более точна, чем подпрограмма RKF45. Из рисунков 3-6 видно, что уменьшение шага интегрирования приводит не только к уменьшению глобальной погрешности, но также может и увеличить её.

6. Исследование влияния величины шага интегрирования h_{int} на величину локальной погрешности решения заданного уравнения:

Из варьируемых параметров $h_{int} = 0.1, 0.05, 0.025$ на рисунках 3-6, можно сделать вывод, что h_{int} влияет на глобальную погрешность увеличивая или уменьшая её.

```
h=0.1000

Tn = 1.0000

Xn[0] = 1.00000000

Xn[1] = -1.00000000

Tn+1 = 1.1000 (полученное - настоящее)

Xn+1[0] = 0.95000000 (0.04090909)

Xn+1[1] = -0.90000000 (-0.07355372)

Tn = 1.1000

Xn[0] = 0.90909091

Xn[1] = -0.82644628

Tn+1 = 1.2000 (полученное - настоящее)

Xn+1[0] = 0.86776860 (0.03443526)

Xn+1[1] = -0.75131480 (-0.05687036)

Tn = 1.2000

Xn[0] = 0.83333333

Xn[1] = -0.69444444

Tn+1 = 1.3000 (полученное - настоящее)

Xn+1[0] = 0.79861111 (0.02938034)

Xn+1[1] = -0.63657407 (-0.04485810)

Tn = 1.3000

Xn[0] = 0.76923077

Xn[1] = -0.59171598

Tn+1 = 1.4000 (полученное - настоящее)

Xn+1[0] = 0.73964497 (0.02535926)

Xn+1[1] = -0.54619936 (-0.03599528)

Tn = 1.4000

Xn[0] = 0.71428571

Xn[1] = -0.51020408
```

Рис. 7

```
Tn = 1.5000

Xn[0] = 0.66666667

Xn[1] = -0.44444444

Tn+1 = 1.6000 (полученное - настоящее)

Xn+1[0] = 0.64444444 (0.01944444)

Xn+1[1] = -0.41481481 (-0.02418981)

Tn = 1.6000

Xn[0] = 0.62500000

Xn[1] = -0.39062500

Tn+1 = 1.7000 (полученное - настоящее)

Xn+1[0] = 0.60546875 (0.01723346)

Xn+1[1] = -0.36621094 (-0.02019018)

Tn = 1.7000

Xn[0] = 0.58823529

Xn[1] = -0.34602076

Tn+1 = 1.8000 (полученное - настоящее)

Xn+1[0] = 0.57093426 (0.01537870)

Xn+1[1] = -0.32566660 (-0.01702462)

Tn = 1.8000

Xn[0] = 0.55555556

Xn[1] = -0.30864198

Tn+1 = 1.9000 (полученное - настоящее)

Xn+1[0] = 0.54012346 (0.01380767)

Xn+1[1] = -0.29149520 (-0.01448689)

Tn = 1.9000

Xn[0] = 0.52631579

Xn[1] = -0.27700831

Tn+1 = 2.0000 (полученное - настоящее)

Xn+1[0] = 0.51246537 (0.01246537)

Xn+1[1] = -0.26242893 (-0.01242893)
```

Рис. 8

Из рисунка 7 и 8 для шага интегрирования = 0.1 видно, что максимальная локальная погрешность для X[0] = 0.040909, а для X[1] = -0.073553.

```
h=0.0500
Tn = 1.0000
Xn[0] = 1.00000000
Xn[1] = -1.00000000
Tn+1 = 1.0500 (полученное - настоящее)
Xn+1[0] = 0.97500000 (0.02261905)
Xn+1[1] = -0.95000000 (-0.04297052)
Tn = 1.0500
Xn[0] = 0.95238095
Xn[1] = -0.99702948
Tn+1 = 1.1000 (полученное - настоящее)
Xn+1[0] = 0.92970522 (0.02061431)
Xn+1[1] = -0.86383760 (-0.03739132)
Tn = 1.1000
Xn[0] = 0.90909091
Xn[1] = -0.82644628
Tn+1 = 1.1500 (полученное - настоящее)
Xn+1[0] = 0.88842975 (0.01886453)
Xn+1[1] = -0.78888054 (-0.03273687)
Tn = 1.1500
Xn[0] = 0.86956522
Xn[1] = -0.75614367
Tn+1 = 1.2000 (полученное - настоящее)
Xn+1[0] = 0.85066163 (0.01732829)
Xn+1[1] = -0.72326786 (-0.02882341)
Tn = 1.2000
Xn[0] = 0.83333333
Xn[1] = -0.694444444
```

Рисунок 9

```
Tn+1 = 1.8000 (полученное - настоящее)
Xn+1[0] = 0.56326531 (0.00770975)
Xn+1[1] = -0.31720117 (-0.00855919)
Tn = 1.8000
Xn[0] = 0.55555556
Xn[1] = -0.30864198
Tn+1 = 1.8500 (полученное - настоящее)
Xn+1[0] = 0.54783951 (0.00729897)
Xn+1[1] = -0.30006859 (-0.00788451)
Tn = 1.8500
Xn[0] = 0.54054054
Xn[1] = -0.29218408
Tn+1 = 1.9000 (полученное - настоящее)
Xn+1[0] = 0.53323594 (0.00692015)
Xn+1[1] = -0.28428721 (-0.00727890)
Tn = 1.9000
Xn[0] = 0.55631579
Xn[1] = -0.27700831
Tn+1 = 1.9500 (полученное - настоящее)
Xn+1[0] = 0.51939058 (0.00657007)
Xn+1[1] = -0.26971862 (-0.00673374)
Tn = 1.9500
Xn[0] = 0.51282051
Xn[1] = -0.26298488
Tn+1 = 2.0000 (полученное - настоящее)
Xn+1[0] = 0.51282051
Xn[1] = -0.26298488
Tn+1 = 2.0000 (полученное - настоящее)
Xn+1[0] = 0.50624589 (0.00624589)
Xn+1[1] = -0.25624168 (-0.00624168)
```

Рисунок 10

Из рисунков 9 и 10 можно сделать вывод, что наибольшее значение локальной погрешности для шага интегрирования = 0.05 для X[0] = 0.022619, для X[1] = 0.00624168.

Рисунок 11

```
Tn+1 = 1.9250 (полученное - настоящее)
Xn+1[0] = 0.52285319 (0.00337267)
Xn+1[1] = -0.27336346 (-0.00350345)
Tn = 1.9250
Xn[0] = 0.51948052
Xn[1] = -0.26986001
Tn+1 = 1.9500 (полученное - настоящее)
Xn+1[0] = 0.51610727 (0.00328676)
Xn+1[1] = -0.26635533 (-0.00337046)
Tn = 1.9500
Xn[0] = 0.51282051
Xn[1] = -0.26298488
Tn+1 = 1.9750 (полученное - настоящее)
Xn+1[0] = 0.50953320 (0.00320409)
Xn+1[1] = -0.25961328 (-0.00324411)
Tn = 1.9750
Xn[0] = 0.50632911
Xn[1] = -0.25636917
Tn+1 = 2.0000 (полученное - настоящее)
Xn+1[0] = 0.50312450 (0.00312450)
Xn+1[1] = -0.25312399 (-0.00312399)
Tn = 2.0000
Xn[0] = 0.50000000
Xn[1] = -0.250000000
Tn+1 = 2.0250 (полученное - настоящее)
Xn+1[0] = 0.49687500 (0.00304784)
Xn+1[1] = -0.24687500 (-0.00300974)
```

Рисунок 12

Из рисунка 7 и 8 для шага интегрирования = 0.025 видно, что максимальная локальная погрешность для X[0] = 0.011890, а для X[1] = -0.003009.

Xn+1[0] = 0.51150559 (0.00130151) Xn+1[1] = -0.26163624 (-0.00132803) Xn[0] = 0.51020408Xn[1] = -0.26030820Xn+1[0] = 0.50890254 (0.00128833) Xn+1[1] = -0.25898010 (-0.00130791) Xn[0] = 0.50761421Xn[1] = -0.25767219Tn+1 = 1.9800 (полученное - настоящее) Xn+1[0] = 0.50632585 (0.00127535) Xn+1[1] = -0.25636421 (-0.00128820) Tn = 1.9800Xn[0] = 0.50505051Xn[1] = -0.25507601Tn+1 = 1.9900 (полученное - настоящее) Xn+1[0] = 0.50377512 (0.00126256) $Xn+1[1] = -0.25378775 \quad (-0.00126887)$ Xn[0] = 0.50251256Tn+1 = 2.0000 (полученное - настоящее) (0.00124997)

Рисунок 13

Рисунок 14

Из рисунка 7 и 8 для шага интегрирования = 0.025 видно, что максимальная локальная погрешность для X[0] =0.004900, а для X[1] =-0.001249.

Составлю таблицу зависимости X[1] от Т (таблица 1).

Таблица 1

n	hn	Т	і от Х	$M_n = X_i$ (полученное) M_{n-1}		h_{n-1}
				$-X_i$ (реальное) $\overline{M_n}$		$\overline{h_n}$
1	0.100	2	1	-0.012428		
2	0.050	2	1	-0.006241	1,99	2
3	0.025	2	1	-0.003009	2,07	2
4	0.010	2	1	-0.001249	2,4	2,5
5	0.100	1.1	1	0.040909		
6	0.050	1.1	1	0.022619	1,81	2
7	0.025	1.1	1	0.011890	1,91	2
8	0.010	1.1	1	0.004900	2,42	2,5

Метод Эйлера-Коши является методом второго порядка точности. Следовательно, локальная погрешность этого метода должна быть прямо пропорциональна величине $h^3*y'''=h^3*\left(\frac{1}{t}\right)'''=h^3*\left(\frac{1}{t}\right)'''=h^3*\frac{-6}{t^4}$

Из таблицы 1 и рисунков 7-14 можно сделать вывод, что для вектора X погрешность первой компоненты прямо пропорциональна $h^{3*}y$ ". А для вектора X второй компоненты также прямо пропорциональна $h^{3*}y$ ".

Вывод: в ходе выполнения работы были получены результаты решения дифференциального уравнения с помощью подпрограммы RKF45 и метода Эйлера-Коши. Было произведено сравнение полученных результатов с точным значением и оказалось, что подпрограмма справляется лучше справляется лучше, так как она обеспечивает пятый порядок точности, в отличии от метода Эйлера-Коши, который является методом второго порядка точности.

Было исследовано влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешности. Нельзя однозначно утверждать, что уменьшение шага интегрирования будет приводить к уменьшению глобальной погрешности, так как исходя из полученных результатов при уменьшении шага интегрирования сначала было уменьшение глобальной погрешности, а потом увеличение. Что касается локальной погрешности, то было выявлено, что при уменьшении шага интегрирования h=0.1 -> h=0.025, локальная погрешность уменьшается.

Приложение 1

```
double <u>RELERR</u> = 0.00001; //относительная погрешность double <u>ABSERR</u> = 0.00001; //абсоляютная погрешность
void ActualSolution(double T, double *actualX) {...}
//Решение + вывод результатов с помощью подпрограммы RKF45
     for (; T < Tout; T += h) {
   for (int i = 0; i < n; i++) {...}</pre>
```