

Introduction

- Objective: Build a sentiment analysis model using supervised learning with vanilla Recurrent Neural Networks and LSTM
- Secondary Objectives:
- 1. Create a database with sentences and the type of sentiment of itself.
- 2. Tokenize the sentences to find a way to build a supervised learning model.
- 3. Implement a DummyClassifier for the model.
- 4. Implement a vanilla RNN sentiment analysis model.
- 5. Implement a LSTM sentiment analysis model.

Methodology

Define the problem

Gather Data

Explore and prepare data

Feature Engineerin

Split the Data

Choose a Model

Train the Model

Evaluate Model

Hyperparameter Tuning

Deploy

True and false classification True 49.6% 50.4% False

Clasiffication

Token length Distribution

Token length Dispersion

Token Word Cloud always Oreal 50 **Token Word Cloud** actor everything night far suck people eat give cool find Overall lot terrible anyone seen new say year defini low bought know right stupid story tob Men long worked day go going cast waste show ca n't quite avoid d family many camera everytry enough loved

Dummy Classifier Implementation

Scores in DummyClassifier

Cross validation vs Training results

ROC curve

RNN Model

RNN Cross validation

RNN Train Score vs Cross Validation

ROC curve

RNN Cross validation

LSMT Model

LMST Cross

validation

Train Score vs Cross Validation

ROC curve

RNN Cross validation