UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO. CONFIRMATION NO		
10/575,401	04/10/2006	Kazuo Hara	NNA-111-B	3767	
48980 YOUNG BASI	7590 06/01/201 LE	0	EXAMINER		
3001 WEST BI	G BEAVER ROAD	LICHTI, MATTHEW L			
SUITE 624 TROY, MI 48084			ART UNIT	PAPER NUMBER	
			3663		
			NOTIFICATION DATE	DELIVERY MODE	
			06/01/2010	ELECTRONIC	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

docketing@youngbasile.com audit@youngbasile.com

Office Action Summany		Applicati	on No.	Applicant(s)			
		10/575,40	01	HARA ET AL.			
	Office Action Summary	Examine	•	Art Unit			
		Matthew I		3663			
Period fo	The MAILING DATE of this communication or Reply	appears on the	e cover sheet with the c	orrespondence ad	ldress		
WHIC - Exter after - If NC - Failu Any r	ORTENED STATUTORY PERIOD FOR RECHEVER IS LONGER, FROM THE MAILING asions of time may be available under the provisions of 37 CF SIX (6) MONTHS from the mailing date of this communication period for reply is specified above, the maximum statutory pere to reply within the set or extended period for reply will, by seply received by the Office later than three months after the red patent term adjustment. See 37 CFR 1.704(b).	G DATE OF THE R 1.136(a). In no even. eriod will apply and we tatute, cause the app	HIS COMMUNICATION ent, however, may a reply be tin ill expire SIX (6) MONTHS from lication to become ABANDONE	N. nely filed the mailing date of this of D (35 U.S.C. § 133).	•		
Status							
1)	Responsive to communication(s) filed on <u>6</u>	06 April 2010					
•	· · · · · · · · · · · · · · · · · · ·	This action is r	on-final.				
′=	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is						
٠,٠	closed in accordance with the practice under <i>Ex parte Quayle</i> , 1935 C.D. 11, 453 O.G. 213.						
Dispositi	on of Claims						
 4) ☐ Claim(s) 1-25 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-25 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or election requirement. 							
Applicati	on Papers						
10)	The specification is objected to by the Exar The drawing(s) filed on is/are: a) Applicant may not request that any objection to Replacement drawing sheet(s) including the co	accepted or b) the drawing(s) b rrection is requir	ne held in abeyance. See ed if the drawing(s) is obj	e 37 CFR 1.85(a). ected to. See 37 C	• '		
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.							
Priority ι	ınder 35 U.S.C. § 119						
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 							
	e of References Cited (PTO-892)		4) Interview Summary				
2) Notic 3) Inform	e of Draftsperson's Patent Drawing Review (PTO-948 nation Disclosure Statement(s) (PTO/SB/08) r No(s)/Mail Date <u>04/06/2010</u> .)	Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	ate			

Art Unit: 3663

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed 02/08/10 have been fully considered but they are not persuasive.

- 2. Applicant argues that Kato does not teach changing coefficients or gains conditional on hands-free or hands-off state. Kato teaches different formulas for hand-on and hands-off state that use different variables including steering angle, angular speed, angular velocity, etc. The formulas would have the same basic effect of using one formula with different coefficients and gains. Serizawa provides the teaching of using one formula with steering angle, angular velocity, and angular acceleration and changing the coefficients based on vehicle speed. It would have been obvious to apply the those teachings to changing coefficients based on hand-on/hands/off state because it would have the same predictable result of reducing the reaction force when it is desirable to do so such as hands-free state and higher vehicle speeds.
- 3. Applicant argues that Kato does not teach the combination of steering angle, angular speed, angular velocity used together. These three terms are well known in the art and would be obvious to use together in one formula as shown be Serizawa.
- 4. Applicant argues that Serizawa only teaches the hands-on state. Since Kato teaches reducing reaction force in hands-off state, it would have been obvious to apply that to the formula of Serizawa.

Art Unit: 3663

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 6. Claims 1, 3, 6, 7, 9, 12-14, 16, 19, 20, and 22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kato et al. (U.S. 6,082,482) by Kato et al. in view of in view of Serizawa et al. (U.S. 5,347,458).
- 7. Regarding claim 1, Kato et al. disclose a steering control device for use in a vehicle having a steering wheel that receives steering input, and an electronically-controlled steering unit that turns the vehicle's wheels over a road surface based on the position of the steering wheel, comprising:

a reaction force device (fig. 1, reaction force actuator 3) coupled to the steering wheel (2) and responsive to a control signal (reaction force torque signal from steering control unit 4) to apply a steering reaction force to the steering wheel (col. 6, lines 7-13); a hands-free sensor (fig. 1, steering control unit 4, vehicle speed sensor 6, torque

sensor 32) adapted to generate a signal indicative of whether the steering wheel is in a hands-on state or a hands-off state (fig. 3, col. 7, lines 15-29; col. 5, lines 27-29); and

a controller (steering control unit 4, reaction force inhibitor, col. 5, lines 29-31) adapted to vary the control signal in response to the hands-free sensor signal to reduce the steering reaction force applied when the hands-off state is indicated relative to the

Application/Control Number: 10/575,401

Art Unit: 3663

steering reaction force applied when the hands-on state is indicated (fig. 4, signal varied to reduce reaction force, col. 7, lines 11-14; fig. 10, col. 11, lines 1-11).

Page 4

Kato et al. further teaches in figures 2 through 10 summations for calculating the reaction force. The summations used in a hands-on state are shown in figure 5, and the parts of the summations used in hands-off state are shown in figures 4, 7, and 10. The figures also teach using steering angle Kp* θ , velocity kd*d θ /dt, and acceleration kdd*d^2 θ /dt. When hands-free state is detected, Kato teaches using steering angle θ M and θ s in steps S14 and S16 of figure 4, step 56 of figure 7, and step S74 of figure 10. Kato also teaches steering angular velocity d θ M and d θ s in step s58 and s60 of figure 7. The proportional element of step s66 is in effect a steering acceleration term because it takes a difference in steering velocity between two cycles which would be a change in steering velocity with respect to time.

- From step S66, the proportional element P_n equals $(\Delta H_n \Delta H_{n-1})^*K_{p3}$,
- By substituting from s62, P_n equals $((d\theta_{Mn} d\theta_{Mn-1}) (d\theta_{Sn} d\theta_{Sn-1})) *K_{p3}$
- This means P_n is proportional to ddθ_M ddθ_S, the difference between the measured and actual angular accelerations (col. 9, lines 40-47)

When the hands free-state is not detected, the control signal is based on a steering angle term θ_S (col. 8, lines 1-9, figure 5, step s30, T_M is based on θ_S). Since Kato et al. do not specifically teach using steering angular velocity and acceleration when handsfree state is not detected, the coefficients for these terms can be considered to be set to zero when hand-free state is not detected.

Kato further discloses (fig. 3) that vehicle speed is used to determine hands-off state and that the coefficients are lower in hands-off state. Therefor higher vehicle speeds correspond to lower coefficients for steering angle/velocity/acceleration.

However, Kato et al. do not specifically disclose a summation formula that uses a steering angle, steering velocity, and steering acceleration terms.

Serizawa et al. teach a reaction force device (figure 1, secondary actuator 6 for producing a steering reaction force) coupled to the steering wheel (steering shaft 2) and responsive to a control signal to apply a steering reaction force to the steering wheel, a value of the control signal equal to a summation of a plurality of terms, the plurality of terms including at least steering angle term Kp*theta, a steering angle velocity term Kd*d theta /dt and a steering angle acceleration term Kdd*d^2 theta /dt^2; wherein theta is a steering angle of the steering wheel, Kp is a steering angle gain dependent on the steering angle such that the steering angle gain is non-zero when the steering angle is non-zero and dependent on vehicle speed such that an absolute value of the steering angle gain is higher at a first vehicle speed than at a second vehicle speed lower than the first vehicle speed (fig. 5a, col. 6, lines 30-39), Kd is a steering angle velocity gain dependent on a steering angle velocity such that the steering angle velocity gain is nonzero when the steering angle velocity is non-zero and dependent on the vehicle speed such that an absolute value of the steering angle velocity gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5b, col. 6, lines 30-39), and Kdd is a steering angle acceleration gain dependent on a steering angle acceleration such that the steering angle acceleration gain is non-zero when the steering angle acceleration is

non-zero and dependent on the vehicle speed such that an absolute value of the steering angle acceleration gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5c, col. 6, lines 30-39, steering angle obtained from potentiometers 3 and 4 and encoder 5, col. 5, lines 2-3, derivatives taken, col. 5, lines 21-26, col. 7, lines 8-18, Figure 4C of Serizawa shows the summation equation using gains M0, M1, and M2 for steering angle, velocity, and acceleration);

It would have been obvious to one of ordinary skill in the art at the time the invention was for the system of Kato et al. to include using steering angle, steering angle velocity, and steering angle acceleration to calculate the reaction force as taught by Serizawa et al. because the reaction force is supposed to replicate the feeling of a mechanically coupled steering wheel and steering velocity and acceleration effects the feeling of steering a mechanically coupled steering wheel. Since steering angle velocity & acceleration are used in the Kato's hands off state embodiment of figure 7, it would be obvious to use these terms in the hands-on state as well to simplify the formula, such as in the embodiment of figure 10, (col. 3, lines 51-54). It would have been obvious to increase the gains at lower speeds and decrease the gains at higher speeds as taught by Serizawa "so that the maneuverability of the vehicle at low speed and the stability of the vehicle at high speed can be both ensured (Serizawa, col. 1, lines 24-33)".

- 8. Regarding claims 7 and 22, Kato et al. disclose a vehicle having road wheels (fig. 1, wheels 10), comprising:
 - a steering unit (steering wheel 2);

Application/Control Number: 10/575,401

Art Unit: 3663

an electronically-controlled turning unit (steering motor 5) responsive to the steering unit (2) which turns the road wheels based on the position of the steering unit (col. 5, lines 22-27);

Page 7

a steering reaction force applicator (3) adapted for applying a steering reaction force to the steering unit (col. 5, lines 21-22);

a hands-free sensor (fig. 1, steering control unit 4, vehicle speed sensor 6, torque sensor 32) adapted for detecting whether the steering unit is in a hands-off state or a hands-on state (fig. 3, col. 7, lines 15-29; col. 5, lines 27-29); and

a steering reaction force correction component (reaction force inhibitor, col. 5, lines 29-31) adapted for reducing the steering reaction force applied when the hands-off state is detected relative to the steering reaction force applied when the hands-on state is detected (fig. 4, reaction force R8 reduced to if R4 is YES, col. 7, lines 11-14).

Kato et al. further teaches in figures 2 through 10 summations for calculating the reaction force. The summations used in a hands-on state are shown in figure 5, and the parts of the summations used in hands-off state are shown in figures 4, 7, and 10. The figures also teach using steering angle Kp* θ , velocity kd*d θ /dt, and acceleration kdd*d^2 θ /dt. When hands-free state is detected, Kato teaches using steering angle θ M and θ s in steps S14 and S16 of figure 4, step 56 of figure 7, and step S74 of figure 10. Kato also teaches steering angular velocity d θ M and d θ s in step s58 and s60 of figure 7. The proportional element of step s66 is in effect a steering acceleration term because it takes a difference in steering velocity between two cycles which would be a change in steering velocity with respect to time.

Application/Control Number: 10/575,401

Art Unit: 3663

• From step S66, the proportional element P_n equals $(\Delta H_n - \Delta H_{n-1})^*K_{p3}$,

• By substituting from s62, P_n equals $((d\theta_{Mn} - d\theta_{Mn-1}) - (d\theta_{Sn} - d\theta_{Sn-1})) *K_{p3}$

Page 8

 This means P_n is proportional to ddθ_M – ddθ_S, the difference between the measured and actual angular accelerations (col. 9, lines 40-47)

When the hands free-state is not detected, the control signal is based on a steering angle term θ_S (col. 8, lines 1-9, figure 5, step s30, T_M is based on θ_S). Since Kato et al. do not specifically teach using steering angular velocity and acceleration when handsfree state is not detected, the coefficients for these terms can be considered to be set to zero when hand-free state is not detected.

Kato further discloses (fig. 3) that vehicle speed is used to determine hands-off state and that the coefficients are lower in hands-off state. Therefor higher vehicle speeds correspond to lower coefficients for steering angle/velocity/acceleration.

However, Kato et al. do not specifically disclose a summation formula that uses a steering angle, steering velocity, and steering acceleration terms.

Serizawa et al. teach a reaction force device (figure 1, secondary actuator 6 for producing a steering reaction force) coupled to the steering wheel (steering shaft 2) and responsive to a control signal to apply a steering reaction force to the steering wheel, a value of the control signal equal to a summation of a plurality of terms, the plurality of terms including at least steering angle term Kp*theta, a steering angle velocity term Kd*d theta /dt and a steering angle acceleration term Kdd*d^2 theta /dt^2; wherein theta is a steering angle of the steering wheel, Kp is a steering angle gain dependent on the steering angle such that the steering angle gain is non-zero when the steering angle is

non-zero and dependent on vehicle speed such that an absolute value of the steering angle gain is higher at a first vehicle speed than at a second vehicle speed lower than the first vehicle speed (fig. 5a, col. 6, lines 30-39), Kd is a steering angle velocity gain dependent on a steering angle velocity such that the steering angle velocity gain is nonzero when the steering angle velocity is non-zero and dependent on the vehicle speed such that an absolute value of the steering angle velocity gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5b, col. 6, lines 30-39), and Kdd is a steering angle acceleration gain dependent on a steering angle acceleration such that the steering angle acceleration gain is non-zero when the steering angle acceleration is non-zero and dependent on the vehicle speed such that an absolute value of the steering angle acceleration gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5c, col. 6, lines 30-39, steering angle obtained from potentiometers 3 and 4 and encoder 5, col. 5, lines 2-3, derivatives taken, col. 5, lines 21-26, col. 7, lines 8-18, Figure 4C of Serizawa shows the summation equation using gains M0, M1, and M2 for steering angle, velocity, and acceleration);

It would have been obvious to one of ordinary skill in the art at the time the invention was for the system of Kato et al. to include using steering angle, steering angle velocity, and steering angle acceleration to calculate the reaction force as taught by Serizawa et al. because the reaction force is supposed to replicate the feeling of a mechanically coupled steering wheel and steering velocity and acceleration effects the feeling of steering a mechanically coupled steering wheel. Since steering angle velocity & acceleration are used in the Kato's hands off state embodiment of figure 7, it would be

obvious to use these terms in the hands-on state as well to simplify the formula, such as in the embodiment of figure 10, (col. 3, lines 51-54). It would have been obvious to increase the gains at lower speeds and decrease the gains at higher speeds as taught by Serizawa "so that the maneuverability of the vehicle at low speed and the stability of the vehicle at high speed can be both ensured (Serizawa, col. 1, lines 24-33)".

9. Regarding claim 13, Kato et al. disclose a vehicle (fig. 1) for controlling road wheels (10) of the vehicle comprising:

means (motor 5) for turning the road wheels (10) in response to a steering input of a steering unit (steering wheel 5, col. 5, lines 22-27);

means (reaction force actuator 3) for applying a steering reaction force to the steering unit (col. 5, lines 21-22);

means (fig. 1, steering control unit 4, vehicle speed sensor 6, torque sensor 32) for detecting whether the steering unit is in a hands-on or hands-off state (fig. 3, col. 7, lines 15-29; col. 5, lines 27-29); and

means (reaction force inhibitor, col. 5, lines 29-31) for reducing the steering reaction force in the hands-on state when the hands-off state is detected (fig. 4, reaction force reduced in hands-off state, col. 7, lines 11-14).

Kato et al. further teaches in figures 2 through 10 summations for calculating the reaction force. The summations used in a hands-on state are shown in figure 5, and the parts of the summations used in hands-off state are shown in figures 4, 7, and 10. The figures also teach using steering angle $Kp^* \theta$, velocity $kd^*d\theta/dt$, and acceleration

kdd*d^2 θ /dt. When hands-free state is detected, Kato teaches using steering angle θ _M and θ _S in steps S14 and S16 of figure 4, step 56 of figure 7, and step S74 of figure 10. Kato also teaches steering angular velocity $d\theta$ _M and $d\theta$ _S in step s58 and s60 of figure 7. The proportional element of step s66 is in effect a steering acceleration term because it takes a difference in steering velocity between two cycles which would be a change in steering velocity with respect to time.

- From step S66, the proportional element P_n equals $(\Delta H_n \Delta H_{n-1})^* K_{p3}$,
- By substituting from s62, P_n equals $((d\theta_{Mn} d\theta_{Mn-1}) (d\theta_{Sn} d\theta_{Sn-1})) *K_{p3}$
- This means P_n is proportional to ddθ_M ddθ_S, the difference between the measured and actual angular accelerations (col. 9, lines 40-47)

When the hands free-state is not detected, the control signal is based on a steering angle term θ_S (col. 8, lines 1-9, figure 5, step s30, T_M is based on θ_S). Since Kato et al. do not specifically teach using steering angular velocity and acceleration when handsfree state is not detected, the coefficients for these terms can be considered to be set to zero when hand-free state is not detected.

Kato further discloses (fig. 3) that vehicle speed is used to determine hands-off state and that the coefficients are lower in hands-off state. Therefor higher vehicle speeds correspond to lower coefficients for steering angle/velocity/acceleration.

However, Kato et al. do not specifically disclose a summation formula that uses a steering angle, steering velocity, and steering acceleration terms.

Serizawa et al. teach a reaction force device (figure 1, secondary actuator 6 for producing a steering reaction force) coupled to the steering wheel (steering shaft 2) and

Art Unit: 3663

responsive to a control signal to apply a steering reaction force to the steering wheel, a value of the control signal equal to a summation of a plurality of terms, the plurality of terms including at least steering angle term Kp*theta, a steering angle velocity term Kd*d theta /dt and a steering angle acceleration term Kdd*d^2 theta /dt^2; wherein theta is a steering angle of the steering wheel, Kp is a steering angle gain dependent on the steering angle such that the steering angle gain is non-zero when the steering angle is non-zero and dependent on vehicle speed such that an absolute value of the steering angle gain is higher at a first vehicle speed than at a second vehicle speed lower than the first vehicle speed (fig. 5a, col. 6, lines 30-39), Kd is a steering angle velocity gain dependent on a steering angle velocity such that the steering angle velocity gain is nonzero when the steering angle velocity is non-zero and dependent on the vehicle speed such that an absolute value of the steering angle velocity gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5b, col. 6, lines 30-39), and Kdd is a steering angle acceleration gain dependent on a steering angle acceleration such that the steering angle acceleration gain is non-zero when the steering angle acceleration is non-zero and dependent on the vehicle speed such that an absolute value of the steering angle acceleration gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5c, col. 6, lines 30-39, steering angle obtained from potentiometers 3 and 4 and encoder 5, col. 5, lines 2-3, derivatives taken, col. 5, lines 21-26, col. 7, lines 8-18, Figure 4C of Serizawa shows the summation equation using gains M0, M1, and M2 for steering angle, velocity, and acceleration);

Art Unit: 3663

It would have been obvious to one of ordinary skill in the art at the time the invention was for the system of Kato et al. to include using steering angle, steering angle velocity, and steering angle acceleration to calculate the reaction force as taught by Serizawa et al. because the reaction force is supposed to replicate the feeling of a mechanically coupled steering wheel and steering velocity and acceleration effects the feeling of steering a mechanically coupled steering wheel. Since steering angle velocity & acceleration are used in the Kato's hands off state embodiment of figure 7, it would be obvious to use these terms in the hands-on state as well to simplify the formula, such as in the embodiment of figure 10, (col. 3, lines 51-54). It would have been obvious to increase the gains at lower speeds and decrease the gains at higher speeds as taught by Serizawa "so that the maneuverability of the vehicle at low speed and the stability of the vehicle at high speed can be both ensured (Serizawa, col. 1, lines 24-33)".

10. Regarding claim 14, Kato et al. disclose a method for controlling the road wheels of a vehicle comprising:

turning the road wheels from a steering input via a steering unit (col. 5, lines 22-27);

applying a steering reaction force to the steering unit (col. 5, lines 21-22); detecting whether the steering unit is in a hands-on or hands-off state (fig. 3, col.

7, lines 15-29; col. 5, lines 27-29); and

Art Unit: 3663

reducing the steering reaction force applied when the hands-off state is detected relative to the steering reaction force applied when the hands-on state is detected (col. 5, lines 29-31, fig. 4, reaction force reduced if hands-off detected, col. 7, lines 11-14).

Kato et al. further teaches in figures 2 through 10 summations for calculating the reaction force. The summations used in a hands-on state are shown in figure 5, and the parts of the summations used in hands-off state are shown in figures 4, 7, and 10. The figures also teach using steering angle Kp* θ , velocity kd*d θ /dt, and acceleration kdd*d^2 θ /dt. When hands-free state is detected, Kato teaches using steering angle θ M and θ s in steps S14 and S16 of figure 4, step 56 of figure 7, and step S74 of figure 10. Kato also teaches steering angular velocity d θ M and d θ s in step s58 and s60 of figure 7. The proportional element of step s66 is in effect a steering acceleration term because it takes a difference in steering velocity between two cycles which would be a change in steering velocity with respect to time.

- From step S66, the proportional element P_n equals $(\Delta H_n \Delta H_{n-1})^* K_{p3}$,
- By substituting from s62, P_n equals $((d\theta_{Mn} d\theta_{Mn-1}) (d\theta_{Sn} d\theta_{Sn-1})) *K_{p3}$
- This means P_n is proportional to ddθ_M ddθ_S, the difference between the measured and actual angular accelerations (col. 9, lines 40-47)

When the hands free-state is not detected, the control signal is based on a steering angle term θ_S (col. 8, lines 1-9, figure 5, step s30, T_M is based on θ_S). Since Kato et al. do not specifically teach using steering angular velocity and acceleration when handsfree state is not detected, the coefficients for these terms can be considered to be set to zero when hand-free state is not detected.

Art Unit: 3663

Kato further discloses (fig. 3) that vehicle speed is used to determine hands-off state and that the coefficients are lower in hands-off state. Therefor higher vehicle speeds correspond to lower coefficients for steering angle/velocity/acceleration.

However, Kato et al. do not specifically disclose a summation formula that uses a steering angle, steering velocity, and steering acceleration terms.

Serizawa et al. teach a reaction force device (figure 1, secondary actuator 6 for producing a steering reaction force) coupled to the steering wheel (steering shaft 2) and responsive to a control signal to apply a steering reaction force to the steering wheel, a value of the control signal equal to a summation of a plurality of terms, the plurality of terms including at least steering angle term Kp*theta, a steering angle velocity term Kd*d theta /dt and a steering angle acceleration term Kdd*d^2 theta /dt^2; wherein theta is a steering angle of the steering wheel, Kp is a steering angle gain dependent on the steering angle such that the steering angle gain is non-zero when the steering angle is non-zero and dependent on vehicle speed such that an absolute value of the steering angle gain is higher at a first vehicle speed than at a second vehicle speed lower than the first vehicle speed (fig. 5a, col. 6, lines 30-39), Kd is a steering angle velocity gain dependent on a steering angle velocity such that the steering angle velocity gain is nonzero when the steering angle velocity is non-zero and dependent on the vehicle speed such that an absolute value of the steering angle velocity gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5b, col. 6, lines 30-39), and Kdd is a steering angle acceleration gain dependent on a steering angle acceleration such that the steering angle acceleration gain is non-zero when the steering angle acceleration is

Art Unit: 3663

non-zero and dependent on the vehicle speed such that an absolute value of the steering angle acceleration gain is higher at the first vehicle speed than at the second vehicle speed (fig. 5c, col. 6, lines 30-39, steering angle obtained from potentiometers 3 and 4 and encoder 5, col. 5, lines 2-3, derivatives taken, col. 5, lines 21-26, col. 7, lines 8-18, Figure 4C of Serizawa shows the summation equation using gains M0, M1, and M2 for steering angle, velocity, and acceleration);

It would have been obvious to one of ordinary skill in the art at the time the invention was for the system of Kato et al. to include using steering angle, steering angle velocity, and steering angle acceleration to calculate the reaction force as taught by Serizawa et al. because the reaction force is supposed to replicate the feeling of a mechanically coupled steering wheel and steering velocity and acceleration effects the feeling of steering a mechanically coupled steering wheel. Since steering angle velocity & acceleration are used in the Kato's hands off state embodiment of figure 7, it would be obvious to use these terms in the hands-on state as well to simplify the formula, such as in the embodiment of figure 10, (col. 3, lines 51-54). It would have been obvious to increase the gains at lower speeds and decrease the gains at higher speeds as taught by Serizawa "so that the maneuverability of the vehicle at low speed and the stability of the vehicle at high speed can be both ensured (Serizawa, col. 1, lines 24-33)".

11. Regarding claims 3, 9, and 16, Kato et al. teach using a different gain/coefficient for steering angle in hands-off state than when hands off state is not detected (in hands-on, a table is used from steering angle, col. 8, lines 1-9; different coefficients used in the

Art Unit: 3663

hands on embodiments of figure 4 which uses KI). The embodiment of figure 10 teaches reducing the reaction force in the hands-off state which would reduce the the reaction force corresponding to steering angle (col. 11, lines 1-10)

12. Regarding claims 4, 5, 10, 11, 17, and 18 Kato et al. disclose steering velocity and acceleration gains in the hands-off state (figure 7, velocity gain KI3 in step s64, acceleration gain Kp3 in step s66) and reducing all components of the reaction force in hands-off state from the reaction force used in the hands-on state (col. 11, lines 1-10). However Kato et al. do not particularly disclose reducing the reaction force corresponding to steering velocity/acceleration.

Serizawa et al. teach a steer by sire system with steering angle velocity and acceleration detection sensors adapted to generate a signal indicative of the steering angle velocity and acceleration (steering angle obtained from potentiometers 3 and 4 and encoder 5, col. 5, lines 2-3, derivatives taken, col. 5, lines 21-26); wherein the steering reaction device applies a steering reaction force corresponding to the indicated steering angle velocity and acceleration (col. 7, lines 8-18, fig. 4c);

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the steer-by-wire system of Kato et al. to include using steering angle velocity and/or steering angle acceleration to calculate the reaction force as taught by S et al. because the reaction force is supposed to replicate the feeling of a mechanically coupled steering wheel and steering velocity and acceleration effects the feeling of steering a mechanically coupled steering wheel. It would be obvious to use

Application/Control Number: 10/575,401

Art Unit: 3663

with the embodiment of figure 10 of Kato where all components of the reaction force are reduced.

Page 18

- 13. Regarding claims 6, 12, and 19, Kato et al. disclose a steering torque detection sensor (torque sensor 32) adapted to generate a signal indicative of steering torque (figure 3, step S6); and wherein the controller is further adapted to vary the reaction force when the indicated steering torque decreases (col. 7, lines 11-14, col. 11, lines 3-8).
- 14. Regarding claim 20, Kato et al. disclose reducing the reaction force when steering torque decreases (fig. 3, hands-off state detected based on steering torque, reaction force reduced based on steering torque). Kato et al. do not particularly teach that coefficients for steering angle, steering angle velocity, and steering angle acceleration terms depend on steering torque. It would have been obvious to reduce any or all coefficients in order to reduce reaction force when steering torque indicates a hands-off state.
- 15. Claims **2**, **8**, **15**, **21**, **and 23-25** are rejected under 35 U.S.C. 103(a) as being unpatentable over Kato et al. (U.S. 6,082,482) in view of Serizawa et al. (U.S. 5,347,458) and Higashira et al. (U.S. 5,908,457).
- 16. Regarding claims 2, 8, and 15, Kato considers the road surface (col. 2, lines 22-32) in the reaction torque which is based on replicating the steering feel of a mechanically connected steering wheel in a hands on state (col. 1, lines 49-67) but only applies torque to return to neutral in a hands off state (col. 2, lines 11-21). The term "indicative of road surface reaction force" is very broad, and does not require any

specific sensors. The steering angle and steering torque signals used to determine reaction force in the hands-on state (Kato, figure 5, col. 8, lines 1-14) can be indicative of a road surface reaction force, and the coefficients are different in the hands-off state of figures 4, 7, and 10. However, Kato do not particularly disclose reducing a road surface reaction torque coefficient or gain.

Higashira et al. teach steer-by-wire system with a road surface reaction force sensor adapted to generate a signal indicative of road surface reaction force (fig. 1, sensors 7b, 7c, & 7d determine the friction coefficient of the road surface), wherein the reaction force device is further adapted to apply the steering reaction force corresponding to the indicated road surface reaction force, and wherein the road surface reaction force gain is dependent on the read surface reaction force such that the road surface reaction force gain is non-zero when the road surface reaction force is non-zero and dependent on vehicle speed such that an absolute value of the road surface reaction force gain is higher at the first vehicle speed than at the second vehicle speed. (col. 9, lines 44-57).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the steer-by-wire system that reduces reaction force when a hands off state is detected of Kato et al. to include using a using road surface friction to calculate the reaction force as taught by Higashira et al. because the reaction force is supposed to replicate the feeling of a mechanically coupled steering wheel and the road surface friction effects the feeling of steering a mechanically coupled steering

Art Unit: 3663

wheel. Since the purpose of the road surface reaction force is to recreate the feel, it would be obvious to reduce or eliminate in a hands-off state.

17. Regarding claims 21, 23, and 24, Kato considers the road surface (col. 2, lines 22-32) in the reaction torque which is based on replicating the steering feel of a mechanically connected steering wheel in a hands on state (col. 1, lines 49-67) but only applies torque to return to neutral in a hands off state (col. 2, lines 11-21). The term "indicative of road surface reaction force" is very broad, and does not require any specific sensors. The steering angle and steering torque signals used to determine reaction force in the hands-on state (Kato, figure 5, col. 8, lines 1-14) can be indicative of a road surface reaction force, and the coefficients are different in the hands-off state of figures 4, 7, and 10. However, Kato do not particularly disclose a road surface reaction torque coefficient or gain.

Higashira et al. teach steer-by-wire system with a road surface reaction force sensor adapted to generate a signal indicative of road surface reaction force (fig. 1, sensors 7b, 7c, & 7d determine the friction coefficient of the road surface), wherein the reaction force device is further adapted to apply the steering reaction force corresponding to the indicated road surface reaction force (col. 9, lines 44-57).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the steer-by-wire system of Kato et al. to include using a using road surface friction to calculate the reaction force as taught by Higashira et al. because the reaction force is supposed to replicate the feeling of a mechanically

coupled steering wheel and the road surface friction effects the feeling of steering a mechanically coupled steering wheel.

18. Regarding claim 25, Kato et al. disclose reducing the reaction force when steering torque decreases (fig. 3, hands-off state detected based on steering torque, reaction force reduced based on steering torque). Kato et al. do not particularly teach that coefficients for steering angle, steering angle velocity, steering angle acceleration, and road surface reaction force terms depend on steering torque. It would have been obvious to reduce any or all coefficients in order to reduce reaction force when steering torque indicates a hands-off state.

Conclusion

19. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

Art Unit: 3663

the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Matthew Lichti whose telephone number is (571) 270-5374. The examiner can normally be reached on Monday - Friday 8:30 AM - 5:30 PM EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jack Keith can be reached on (571)272-6878. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/M. L./ Examiner, Art Unit 3663

Art Unit: 3663

/JACK KEITH/

Supervisory Patent Examiner, Art Unit 3663