ÁLGEBRA LINEAR ALGORÍTMICA-PLE-LABORATÓRIO 4

- 1. Neste laboratório implementaremos a decomposição QR de uma matriz usando o algoritmo de Gram-Schimdt. A função qr_decomp deve receber como entrada uma matriz quadrada A de tamanho $n \times n$ e retornar uma matriz ortogonal Q e uma matriz triangular superior R, ambas $n \times n$, tais que A = QR. No resto do laboratório denotaremos por A_i e Q_i as i-ésimas colunas das matrizes A e Q.
- 2. A função qr_decomp basicamente executa o algoritmo de Gram-Schimdt com algumas particularidades, que são apontadas a seguir:
 - 1. os vetores da base à qual será aplicada o algoritmo de Gram-Schimdt são as colnas de *A*;
 - 2. à medida que forem sendo gerados, os vetores da base ortonormal serão guardados como colunas da matriz *Q*;
 - 3. a entrada $r_{i,j}$ de R deve ser preenchida conforme a tabela abaixo:

Condição	Conteúdo da entrada $r_{i,j}$
j > i	produto interno de A_j com Q_i
j = i	norma do vetor A_j
j < i	zero

4. o cálculo dos valores de $r_{i,j}$, em uma iteração do algoritmo de Gram-Schimdt, deve ser feito usando produtos de matrizes.

 $\underline{\wedge}$ Os valores não nulos da segunda coluna da tabela serão todos gerados como parte das iterações do algoritmo de Gram-Schimdt e o preenchimento das posições da matriz R deve ser feito à medida que esses valores forem sendo gerados.

Desafio. Você consegue calcular todos os coeficientes $r_{i,j}$ em uma iteração do algoritmo de Gram-Schimdt fazendo apenas duas multiplicações de matrizes, não importando o tamanho da matriz A?

3. A segunda função a ser implementada como parte deste laboratório vai chamar-se qr_resolve. Tendo como entrada uma matriz quadrada A de tamanho $n \times n$ e uma matriz coluna b de tamanho $n \times 1$, a função usa a decomposição QR de A para resolver o sistema AX = b, em que X é uma matriz de variáveis $n \times 1$. A função deve executar os seguintes passos:

Passo 1: aplicar qr_decomp à matriz A do sistema;

Passo 2: usar a saída do passo 1 para obter matrizes A_1 e b_1 de um sistema triangular superior $A_1X = b_1$ equivalente a AX = b;

Passo 3: gerar o vetor coluna X cujas entradas são as variáveis x_1, \ldots, x_n ;

Passo 4: calcular a lista de equações do sistema $A_1X = b_1$;

Passo 5: resolver o sistema encontrado no passo 4.

♠ Dois comentários importantes:

- 1. Mais detalhes sobre como executar o passo 2 podem ser encontradas no artigo 5.4 do capítulo 5 das notas de aula.
- 2. Para simplificar o passo 5, você pode usar a função solve do Maxima para resolver o sistema triangular.
- 4. A tabela abaixo lista algumas funções do Maxima que podem ser úteis na execução deste laboratório. O fato de uma função estar na tabela não significa que ela tem que aparecer nas suas implementações.

Função	Retorna
zerofor(A)	matriz de zeros com as mesmas dimensões da matriz \boldsymbol{A}
col(M, i)	i-ésima coluna da matriz M
transpose(A)	transposta da matriz A
ev(leq,ls)	aplica às equações da lista leq as igualdades da lista ls,
	que devem ser da forma variável = constante
<pre>mat_norm(u,frobenius)</pre>	norma do vetor u representado como matriz coluna
addcol(M,r)	acrescenta a coluna r \dot{a} matriz M , (r \dot{b} pode ser
	uma lista ou uma matriz coluna
length(A)	dimensão da matriz quadrada A
solve(leq,lv)	resolve o sistema dado pela lista de equações leq nas
	variáveis lv.