Mathematics for IT - Assignment 07 Linear Algebra

August 31, 2018

Question 01

State True or False. Justify your answer

- 1. If AB = 0, then the column space of B is in the nullspace of A
- 2. If P is a projection matrix, so is I P
- 3. If two matrices have equal reduced row echelon forms, then their column spaces are equal
- 4. If A is symmetric matrix, then its column space is perpendicular to its nullspace
- 5. If a subspace S is contained in a subspace V, then S^{\perp} contains V^{\perp}
- 6. If A is an orthogonal matrix, there exists an orthonormal basis of eigenvectors for A
- 7. If A and B are matrices whose eigenvalues, counted with their algebraic multiplicities, are the same, then A and B are similar
- 8. If A and B are matrices whose eigenvalues, counted with their algebraic multiplicities, are the same, then A and B are similar.

Question 02

Consider the following system of equations

$$x + 2y + 2z = 2$$

 $2x + 2y + 3z = 1$
 $3x + 2y + 4z = 2$ (1)

Find a vector \mathbf{y} for above system such that $A^T\mathbf{y} = 0$ and $\mathbf{y}^T\mathbf{b} = 1$.

Question 03

Let L be the line through the origin in \Re^3 which is parallel to the vector $\begin{bmatrix} 1\\-1\\2 \end{bmatrix}$

- 1. Find the standard matrix of the orthogonal projection onto L.
- 2. Find the point on L which is closest to the point (1, 0, 0).

Ouestion 04

Let
$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{x_2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and let P be the plane through the origin spanned by $\mathbf{x_1}$ and $\mathbf{x_2}$. Find an orthonormal basis of P as well as the standard matrix of the orthogonal projection onto P .

Ouestion 05

Inside of \Re^3 , consider the subset of vectors $\begin{bmatrix} a \\ b \\ a \end{bmatrix}$. satisfying the following requirements. Which of them are subspaces?

- 1. a and b are both zero.
- 2. a is zero or b is zero or both are zero.
- 3. a and b are equal.
- 4. a, b are both positive, both negative, or both zero.

Question 06

In the vector space of polynomials P_3 , determine if the set S is linearly independent or linearly dependent where

$$S = \{2 + x - 3x^2 - 8x^3 \cdot 1 + x + x^2 + 5x^3, 3 - 4x^2 - 7x^3\}$$
 (2)

Question 07

Define the linear transformation
$$T: \mathcal{C}^3 \to \mathcal{C}^2$$
, $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - x_2 + 5x_3 \\ -4x_1 + 2x_2 - 10x_3 \end{bmatrix}$

Verify that T is a linear transformation.

Question 08

If
$$T: \mathcal{C}^2 \to \mathcal{C}^2$$
, $T\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix}$ and $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\2\end{bmatrix}$. Find $T\left(\begin{bmatrix}4\\3\end{bmatrix}\right)$

Ouestion 09

Given
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{bmatrix}$$

- 1. Find an orthonormal basis of \Re^3 consisting of eigenvectors for A
- 2. Find a 3×3 orthogonal matrix S and a 3×3 diagonal matrix D such that $A = SDS^T$

Question 10

Suppose A is a 4×4 identity matrix with its last column removed. A is now 4×3 . Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of A. Determine the projection matrix P.

Question 11

Find the singular values as well as SVD for
$$A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Question 12

Construct a basis of \Re^3 consisting of eigenvectors of the following matrices:

$$A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$