Introduction to Artificial Intelligence

Intelligent Agents

Bernhard Beckert

UNIVERSITÄT KOBLENZ-LANDAU

Wintersemester 2003/2004

Outline

- Agents and environments
- PEAS (Performance, Environment, Actuators, Sensors)
- Environment types
- Agent types
- Example: Vacuum world

Agents and environments

Agents include

- humans
- robots
- software robots (softbots)
- thermostats
- etc.

Agent functions and programs

Agent function

An agent is completely specified by the agent function

$$f: \mathcal{P}^* \to \mathcal{A}$$

mapping percept sequences to actions

Agent functions and programs

Agent program

- $oldsymbol{\wp}$ runs on the physical architecture to produce f
- takes a single percept as input
- keeps internal state

```
function Skeleton-Agent(percept) returns action
static: memory /* the agent's memory of the world */
memory ← UPDATE-MEMORY(memory, percept)
action ← Choose-Best-Action(memory)
memory ← UPDATE-MEMORY(memory,action)
return action
```

AIMA code

Available at

```
http://aima.cs.berkeley.edu/code.html in different languages (Java, Lisp, ...)
```

Code for each topic divided into four directories

agents: code defining agent types and programs

algorithms: code for the methods used by the agent programs

environments: code defining environment types, simulations

domains: problem types and instances for input to algorithms

For experiments

Often algorithms on domains rather than agents in environments

Rationality

Goal

Specified by performance measure, defining a numerical value for any environment history

Rational action

Whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rationality

Goal

Specified by performance measure, defining a numerical value for any environment history

Rational action

Whichever action maximizes the expected value of the performance measure given the percept sequence to date

Note

 $\begin{array}{lll} {\sf rational} & \neq & {\sf omniscient} \\ {\sf rational} & \neq & {\sf clairvoyant} \\ {\sf rational} & \neq & {\sf successful} \end{array}$

Rationality

Goal

Specified by performance measure, defining a numerical value for any environment history

Rational action

Whichever action maximizes the expected value of the performance measure given the percept sequence to date

Note

 $\begin{array}{lll} \text{rational} & \neq & \text{omniscient} \\ \text{rational} & \neq & \text{clairvoyant} \\ \text{rational} & \neq & \text{successful} \end{array}$

Agents need to: gather information, explore, learn, ...

Example: Designing an automated taxi

Performance

Environment

Actuators

Example: Designing an automated taxi

Performance safety, reach destination, maximize profits,

obey laws, passenger comfort, ...

Environment

Actuators

Example: Designing an automated taxi

Performance safety, reach destination, maximize profits,

obey laws, passenger comfort, ...

Environment streets, traffic, pedestrians, weather, customers, ...

Actuators

Example: Designing an automated taxi

Performance safety, reach destination, maximize profits,

obey laws, passenger comfort, ...

Environment streets, traffic, pedestrians, weather, customers, ...

Actuators steer, accelerate, brake, horn, speak/display, ...

Example: Designing an automated taxi

Performance safety, reach destination, maximize profits,

obey laws, passenger comfort, ...

Environment streets, traffic, pedestrians, weather, customers, ...

Actuators steer, accelerate, brake, horn, speak/display, ...

Sensors video, accelerometers, gauges, engine sensors,

keyboard, GPS, ...

Example: Medical diagnosis system

Performance

Environment

Actuators

Example: Medical diagnosis system

Performance Healthy patient, minimize costs, avoid lawsuits,

Environment

Actuators

Example: Medical diagnosis system

Performance Healthy patient, minimize costs, avoid lawsuits, ...

Environment patient, hospital, staff, ...

Actuators

Example: Medical diagnosis system

Performance Healthy patient, minimize costs, avoid lawsuits, ...

Environment patient, hospital, staff, ...

Actuators questions, tests, diagnoses, treatments, referrals, ...

Example: Medical diagnosis system

Performance Healthy patient, minimize costs, avoid lawsuits,

Environment patient, hospital, staff, ...

Actuators questions, tests, diagnoses, treatments, referrals, ...

Sensors keyboard (symptoms, test results, answers), ...

Fully observable (otherwise: partially observable)

Agent's sensors give it access to the complete state of the environment at each point in time

Fully observable (otherwise: partially observable)

Agent's sensors give it access to the complete state of the environment at each point in time

Deterministic (otherwise: stochastic)

The next state of the environment is completely determined by the current state and the action executed by the agent (strategic: deterministic except for behavior of other agents)

Fully observable (otherwise: partially observable)

Agent's sensors give it access to the complete state of the environment at each point in time

Deterministic (otherwise: stochastic)

The next state of the environment is completely determined by the current state and the action executed by the agent (strategic: deterministic except for behavior of other agents)

Episodic (otherwise: sequential)

The agent's experience is divided atomic, independent episodes (in each episode the agent perceives and then performs a single action)

Static (otherwise: dynamic)

Environment can change while the agent is deliberating (semidynamic: not the state but the performance measure can change)

Static (otherwise: dynamic)

Environment can change while the agent is deliberating (semidynamic: not the state but the performance measure can change)

Discrete (otherwise: continuous)

The environment's state, time, and the agent's percepts and actions have discrete values

Static (otherwise: dynamic)

Environment can change while the agent is deliberating (semidynamic: not the state but the performance measure can change)

Discrete (otherwise: continuous)

The environment's state, time, and the agent's percepts and actions have discrete values

Single agent (otherwise: multi-agent)

Only one agent acts in the environment

	Crossword puzzle	Chess	Back- gammon	Internet shopping	Тахі	Part-picking robot
Fully observable						
Deterministic						
Episodic						
Static						
Discrete						
Single agent						

	Crossword puzzle	Chess	Back- gammon	Internet shopping	Тахі	Part-picking robot
Fully observable	yes					
Deterministic	yes					
Episodic	no					
Static	yes					
Discrete	yes					
Single agent	yes					

	Crossword puzzle	Chess	Back- gammon	Internet shopping	Тахі	Part-picking robot
Fully observable	yes	yes				
Deterministic	yes	strat.				
Episodic	no	no				
Static	yes	semi				
Discrete	yes	yes				
Single agent	yes	no				

	Crossword puzzle	Chess	Back- gammon	Internet shopping	Тахі	Part-picking robot
Fully observable	yes	yes	yes			
Deterministic	yes	strat.	no			
Episodic	no	no	no			
Static	yes	semi	yes			
Discrete	yes	yes	yes			
Single agent	yes	no	no			

	Crossword puzzle	Chess	Back- gammon	Internet shopping	Тахі	Part-picking robot
Fully observable	yes	yes	yes	no		
Deterministic	yes	strat.	no	(yes)		
Episodic	no	no	no	no		
Static	yes	semi	yes	semi		
Discrete	yes	yes	yes	yes		
Single agent	yes	no	no	no		

	Crossword	Chess	Back- gammon	Internet shopping	Taxi	Part-picking robot
Fully observable	yes	yes	yes	no	no	
Deterministic	yes	strat.	no	(yes)	no	
Episodic	no	no	no	no	no	
Static	yes	semi	yes	semi	no	
Discrete	yes	yes	yes	yes	no	
Single agent	yes	no	no	no	no	

	Crossword puzzle	Chess	Back- gammon	Internet shopping	Taxi	Part-picking robot
Fully observable	yes	yes	yes	no	no	no
Deterministic	yes	strat.	no	(yes)	no	no
Episodic	no	no	no	no	no	yes
Static	yes	semi	yes	semi	no	no
Discrete	yes	yes	yes	yes	no	no
Single agent	yes	no	no	no	no	yes

The real world is

- partially observable
- stochastic
- sequential
- dynamic
- continuous
- multi-agent

Agent types

Four basic types

(in order of increasing generality)

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents

Simple reflex agents

Model-based reflex agents

Goal-based agents

Utility-based agents

Percepts

- location
- dirty / not dirty

Percepts

- location
- dirty / not dirty

Actions

- left
- right
- suck
- noOp

Performance measure

+100 for each piece of dirt cleaned up -1 for each action -1000 for shutting off away from home

Environment

- grid
- dirt distribution and creation

Observable? Deterministic? Episodic? Static? Discrete?