МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования Московский технический университет связи и информатики

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

«Инфраструктура разработки программных пакетов и сборки программного обеспечения»

для очного и дистанционного режимов обучения магистратуры и дополнительного профессионального образования

Базовая кафедра общественно-государственного объединения «Ассоциация документальной электросвязи» «Технологии электронного обмена данными» в Московском техническом университете связи и информатики

Оглавление

Введе	ение	3
	1. Пакетный менеджер	5
1.1	Основной пакетный менеджер в Альт Платформа	7
1.2	Система управления пакетами	7
1.3	Установка необходимых пакетов для процесса сборки	10
Глава	2. Основные команды пакетного менеджера	13
2.1	Проверка установки пакета в системе	15
2.2	Просмотр файлов пакета, установленного в системе	15
2.3	Просмотр недавно установленных пакетов	15
2.4	Поиск пакета в системе	16
2.5	Проверка файла, относящегося к пакету	16

Введение

Учебно-методическое пособие «Инфраструктура разработки программных пакетов и сборки программного обеспечения» предназначено для проведения занятий в очном и дистанционном режиме обучения в рамках гуманитарнотехнологической платформы для целей обучения по программам магистратуры и дополнительного профессионального образования «Информационная культура цифровой трансформации».

<ТО DO> Пособие предназначено преподавателям и студентам Его можно применять для проведения семинаров и практикумов ...

Пособие состоит из

<END TO DO>

Пособие основано на реальном проекте разработки Сизиф и его стабильных бранчах (ветках), используемых ООО «Базальт СПО» для выпуска и обеспечения жизненного цикла коммерческих дистрибутивов. Часть из них включена в Единый реестр российских программ для электронных вычислительных машин и баз данных — это Альт СП имеющий сертификаты ФСТЭК России, Минобороны России и ФСБ России, Альт Виртуализация, Альт Сервер, Альт Рабочая станция, Альт Образование, так и другие, бесплатные и свободные: Simply Linux, различные стартеркиты (Starterkits) и регулярные (regular) сборки. Дистрибутив — это составное произведение, в составе которого есть программа для дистрибуции (установки), называемая инсталлятор и набор системного и прикладного ПО. В основе всех дистрибутивов лежат пакеты свободного программного обеспечения.

Свободное программное обеспечение (СПО) — это программное обеспечение, распространяемое на условиях простой (неисключительной) лицензии, которая позволяет пользователю:

- 1. использовать программу для ЭВМ в любых, не запрещённых законом целях;
- 2. получать доступ к исходным текстам (кодам) программы как в целях изучения и адаптации, так и в целях переработки программы для ЭВМ; распространять программу (бесплатно или за плату, по своему усмотрению);

4 Введение

3. вносить изменения в программу для ЭВМ (перерабатывать) и распространять экземпляры изменённой (переработанной) программы с учётом возможных требований наследования лицензии;

4. в отдельных случаях (CopyLeft лицензия) распространять модифицированную компьютерную программу пользователем на условиях, идентичных тем, на которых ему предоставлена исходная программа.

Примерами свободных лицензий являются:

- 1. GNU general public license. Version 3, 29 June 2007 (Стандартная общественная лицензия GNU. Версия 3, от 29 июня 2007 г.)
- 2. BSD license, New Berkley Software Distribution license (Модифицированная программная лицензия университета Беркли)

СПО отлично подходит для целей обучения и для разработки собственных решений, потому, что весь код доступен для изучения и модификации, однако авторы настоятельно советуют всем, кто использует СПО для построения сво-их программных продуктов учитывать особенности лицензирования не только самих пакетов, но и входящих в их состав библиотек, так как если вы используете copyleft библиотеку, это обязывает вас распространять свою программу под аналогичной лицензией — любой человек, который поучит вашу программу легальным способом может потребовать предъявить ему исходный код.

Глава 1

Пакетный менеджер

Операционная система состоит из разнообразных программ, библиотек, скриптов и приложений — число компонент может достигать тысячи единиц. В каждой из которых могут быть включены десятки файлов. Для удобства работы пользователя системные компоненты в Linux представлены в виде пакетов¹. Пакет объединяет в общий архив все файлы, используемые программой. Пользователь подбирает программы — устанавливает, обновляет, проверяет, удаляет их — только по имени пакета, не вдаваясь в отдельные детали подбора всех необходимых файлов. Работа с пакетом, как единым целым, позволяет управлять всеми данными программы.

Пакет — это специально подготовленный архив, содержащий программы, конфигурационные файлы, данные и управляющую информацию. Метаданные пакета содержат полное имя, номер версии, описание пакета, имя разработчика, контрольную сумму, зависимости от других пакетов. Управляющая информация пакета содержит контрольные суммы устанавливаемых файлов, зависимости устанавливаемого пакета от других пакетов, краткое описание, сценарии установки и удаления пакета, и прочую информацию, которую использует менеджер пакетов. Пакеты хранятся в специальном хранилище — репозитории пакетов.

Для удобства работы с пакетами придумали собственные форматы архивов:

- RPM (.rpm). Разработан компанией Red Hat. Применяется в системе Альт, Ред OC, RHEL и CentOS.
- DEB (.deb). Формат пакетов дистрибутива Debian, а также Ubuntu.
- TAR. XZ. Применяется в дистрибутивах ArchLinux и Manjaro.

 $^{^1 \}mbox{Курячий } \Gamma.,$ Маслинский К. (2010). Операционная система Linux. Курс лекций. ДМК Пресс.

Каждый пакет определяется архитектурой системы под которую он собран, именем программы, номером её версии и номером релиза этой программы в дистрибутиве. Если пакет не зависит от архитектуры процессора, то в качестве архитектуры указывается «noarch».

Например, admc-0.15.0-alt1.x86_64.rpm:

Имя: admc Номер версии: 0.15.0 Номер релиза: alt1 Архитектура: x86_64

Пакетный менеджер — это программа для управления установкой, удалением, настройкой и обновлением пакетов с различным программным обеспечением. Пакетные менеджеры упрощают для пользователя процесс управления программами в системе. Пакетный менеджер также ведёт учёт пакетов, установленных в системе. Существует также менеджер зависимостей — специальная программа, подбирающая пакеты, зависимые друг от друга, и загружающая эти пакеты из хранилища². Менеджер зависимостей подбирает правильные версии пакетов и определяет порядок их установки. При помощи менеджера зависимостей можно узнать, с каким пакетом поставляется тот или иной файл.

Задачи пакетного менеджера:

- установка программ. Позволяет устанавливать программы из центрального хранилища или из локальных источников;
- обновление программ. Позволяет обновлять установленные программы до последних версий, представленных в хранилище;
- удаление программ. Позволяет безопасно удалять программы и все связанные с ними файлы;
- управление зависимостями. Автоматически устанавливает и управляет зависимостями программ;
- проверка целостности пакетов. Предотвращает конфликты при установке новых программ, обеспечивая целостность. системы.

Пакетный менеджер позволяет:

- узнать информацию о пакете;
- определить пакет, которому принадлежит установленная программа;
- определить список компонент, установленных из указанного пакета.

Пакетные менеджеры делятся на две категории — низкоуровневые и высокоуровневые.

 $^{^2}$ Кетов Д. (2021). Внутреннее устройство Linux. 2-е изд,. перераб. и доп. БХВ-Петербург.

- **Низкоуровневые пакетные менеджеры**. Используются для установки локальных пакетов, загруженных вручную пользователем, или высокоуровневым пакетным менеджером.
- Высокоуровневые менеджеры. Применяются для поиска и скачивания пакетов из репозиториев. В процессе работы могут задействовать низкоуровневые менеджеры для установки загруженных программ.

В операционной системе **Альт** используется формат пакетов .rpm. Пакеты rpm хранятся в удалённом хранилище (Sisyphus и/или его подветках — бранчах). Для работы с такими пакетами применяется низкоуровневый пакетный менеджер RPM и консольная утилита APT (Advanced Packaging Tool).

1.1 Основной пакетный менеджер в Альт Платформа

В дистрибутивах Альт применяется пакетный менеджер RPM. RPM Package Manager — это семейство пакетных менеджеров, применяемых в различных дистрибутивах GNU/Linux. Практически каждый крупный проект, использующий RPM, имеет свою версию пакетного менеджера, отличающуюся от остальных.

Различия между представителями семейства RPM выражаются в:

- наборе макросов, используемых в .spec-файлах;
- различии сборки rpm-пакетов «по умолчанию» при отсутствии какихлибо указаний в .spec-файлах, формате строк зависимостей;
- отличиях в семантике операций (например, в операциях сравнения версий пакетов);
- отличиях в формате файлов.

Для пользователя различия чаще всего заключаются в невозможности поставить пакет постороннего формата (например, .deb) из-за проблем с зависимостями другого формата пакета.

1.2 Система управления пакетами

Системой управления пакетами в дистрибутивах Альт является программа APT — Advanced Packaging Tool (усовершенствованный инструмент работы с пакетами). Программа APT способна автоматически устанавливать и настранивать программы в операционных системах Альт из предварительно откомпилированных пакетов и из исходных кодов. Утилита загружает пакеты из хранилища (репозитория), либо устанавливает с локального хранилища. Список источников пакетов хранится в файле /etc/apt/sources.list и в каталоге

\$ apt-get

/etc/apt/sources.list.d/. В системе Альт применяется графическая оболочка для apt — программа Synaptic³. Утилита apt значительно упрощает процесс установки программ в командном режиме.

Команда \$ apt-get выведет описание и возможности утилиты apt-get:

```
apt 0.5.15lorg2 для linux x86_64 собран Jul 26 2023 18:10:41
Использование: apt-get [параметры] команда
apt-get [параметры] install|remove пакет1 [пакет2 ...]
apt-get [параметры] source пакет1 [пакет2 ...]
apt-get предоставляет простой командный интерфейс для получения и
установки пакетов. Чаще других используются команды update (обновить)
и install (установить).
Команды:
update - Получить обновлённые списки пакетов
upgrade - Произвести обновление
install - Установить новые пакеты
remove - Удалить пакеты
source - Скачать архивы исходников
build-dep - Установить всё необходимое для сборки исходных пакетов
dist-upgrade - Обновление системы в целом, см. apt-get(8)
clean - Удалить скачанные ранее архивные файлы
autoclean - Удалить давно скачанные архивные файлы
снеск - Удостовериться в отсутствии неудовлетворённых зависимостей
dedup - Remove unallowed duplicated pkgs
```

Параметры:

- -h Краткая справка
- -q Скрыть индикатор процесса
- -qq Не показывать ничего кроме сообщений об ошибках
- -d Получить пакеты и выйти БЕЗ их установки или распаковки
- -s Симулировать упорядочение вместо реального исполнения
- -у Автоматически отвечать 'ДА' на все вопросы
- -f Пытаться исправить положение если найдены неудовлетворённые зависимости
- -т Пытаться продолжить если часть архивов недоступна
- -и Показать список обновляемых пакетов
- -b Собрать пакет после получения его исходника
- -D При удалении пакета стремиться удалить компоненты, от которых он зависит
- -V Подробно показывать номера версий
- -с=? Использовать указанный файл конфигурации
- -o=? Изменить любой из параметров настройки (например: -o dir::cache=/tmp)

 $^{^3{\}rm apt}$ и synaptic развиваются ALT Linux Team, не нужно сравнивать версии с аналогичными утилитами в ${\tt Debian}$

Более полное описание доступно на страницах руководства man: apt-get(8), sources.list(5) и apt.conf(5).

В ОС Альт утилита apt-get использует основной пакетный менеджер RPM Package Manager — RPM для установки, обновления, удаления пакетов (программ), управления зависимостями. Обе утилиты RPM и APT одинаково позволяют установить, обновить или удалить пакет.

Отличия RPM и APT:

- АРТ учитывает зависимости устанавливаемого пакета;
- АРТ умеет работать с репозиторием в целом:
 - искать пакеты;
 - вычислять список обновлений находить разницу версий пакетов, установленных локально и хранящихся в репозитории;
- АРТ получает информацию из пакетов, используя RPM.

RPM подразумевает работу с конкретными пакетами. Удовлетворение их зависимостей остаётся на усмотрении пользователя. APT позволяет вычислять, какие пакеты из репозитория нужно установить, чтобы удовлетворить зависимости, которые указаны в каждом конкретном RPM пакете. APT сам не устанавливает пакеты, он использует для этого RPM.

Установка пакетов в АЛЬТ Платформа осуществляется с помощью утилиты \mathtt{APT}

Репозиторий — актуализируемое хранилище электронных данных. В данном документе речь идёт о репозитории как об инфраструктуре разработки операционных систем, включающих, помимо системного ПО, любые программы пользовательского и серверного назначения («репозиторий пакетов»). Основная задача репозиториев этого рода — интеграция разных пакетов программ в единую систему. Объектом хранения в таких репозиториях выступают пакеты программ, где каждое наименование ПО (будь то ядро операционной системы, служебная библиотека, текстовый редактор, сервер для обслуживания электронных сообщений или медиа проигрыватель) представлено в виде отдельного пакета. В основе создания операционных систем ALT лежит экспериментальный репозиторий Sisyphus из которого формируются время от времени стабильные бранчи, на которых и создаются коммерческие операционные системы. На конец 2023 года стабильным бранчем является p10, называемый «Альт Платформа 10».

Репозиторий программных пакетов — это замкнутая совокупность программных пакетов (исходных и собранных из них бинарных, плюс метаинформации о них) с поддерживаемой целостностью, то есть программы с формализованными инструкциями по установке и разрешёнными зависимостями.

Наличие репозитория пакетов и APT автоматизирует процессы управления установкой, обновления и удаления программного обеспечения; исключают риск случайного повреждения целостности операционной системы и прикладных программ.

Программа APT по запросу пользователя получает метаданные из репозитория, рассчитывает зависимости, получает от пользователя информацию о том, какие именно пакеты он хочет обновить или установить. Утилита предложит пути решения — например, загрузит новые пакеты из репозитория, установит дополнительные или обновит имеющиеся пакеты. APT, в зависимости от настроек, может использовать удалённый репозиторий с помощью сетевого протокола (например, ftp), или использовать локальный репозиторий (например, на жёстком диске).

Для обновления практически всего программного обеспечения (за исключением ядра операционной системы) на локальном компьютере до новой версии необходимо выполнить команды:

apt-get update

apt-get dist-upgrade

При использовании APT и обновляемого стабильного репозитория операционная система может функционировать на компьютере годами, плавно обновляясь до новых версий без переустановки системы.

1.3 Установка необходимых пакетов для процесса сборки

Сборка — формирование пакета на основе сборочных инструкций.

Сборка программного обеспечения в RPM упрощает распространение, управление и обновление программного обеспечения. Упаковка программного обеспечения в пакеты RPM, а не обычный архив, имеет ряд преимуществ⁴:

- Пользователи могут использовать средства управления пакетами (например, Yum или PackageKit) для установки, переустановки, удаления, обновления и проверки пакетов RPM.
- Пакетный менеджер RPM предполагает наличие базы данных, которая с помощью специализированных утилит позволяет получать информацию о пакетах в системе.
- Каждый пакет RPM содержит метаданные, описывающие компоненты пакета, версию, выпуск, размер, URL проекта, установочные инструкции и т. д.
- RPM позволяет брать оригинальные источники программного обеспечения и упаковывать их в пакеты с исходным кодом(.src.rpm) и бинарные пакеты(.rpm). В пакетах с исходным кодом хранятся оригинальные исходные

 $^{^4}$ https://rpm-packaging-guide-ru.github.io/#Why-Package-Software-with-RPM

данные вместе со всеми изменениями(*.patch), а так же сборочные инструкции(.spec) и дополнительная информация. В бинарных пакетах вместо исходного кода упакованы подготовленные файлы и скрипты установки, но нет сборочных инструкций. Ещё существуют случаи распространения пакетов без исходного кода и бинарных данных, в таких пакетах присутствуют скрипты для скачивания и модификации файлов, необходимых для работы приложения.

- Для обеспечения верификации подлинности RPM-пакетов используется механизм электронных цифровых подписей GPG. Он позволяет подписать RPM пакет или обновить цифровую подпись: rpm -addsign package.rpm и rpm -resign package.rpm.
- Вы можете добавить свой пакет в RPM репозиторий, что позволит клиентам легко находить и устанавливать ваше программное обеспечение.

Задача сборки пакета начинается со сбора всех необходимых компонентов и завершается этапами сборки и тестирования.

Классическая сборка пакетов грт состоит из следующих этапов:

- поиск исходных данных;
- написание инструкций сборки;
- сборка пакета.

Для сокращения команд, встречающихся в тексте, будет использоваться нотация:

- команды **без административных привилегий** начинаются с символа **"\$"**:
- команды **с административными привилегиями** начинаются **с** символа "#".

Необходимые инструменты для сборки rpm-пакетов устанавливаются в системе через пакетный менеджер apt командой:

apt-get install gcc rpm-build rpmlint make python gear hasher patch rpmdevtools

В наборе параметров команды **install** перечислены имена пакетов, необходимых для сборочной инфраструктуры 5 :

• gcc — набор компиляторов для различных языков программирования, разработанный в рамках проекта GNU;

⁵https://www.altlinux.org/Технология сборки пакетов RPM

- rpm-build содержит сценарии и исполняемые программы, которые используются для сборки пакетов с помощью RPM;
- rpmlint инструмент для проверки распространённых ошибок в пакетах rpm. Можно проверить бинарные и исходные пакеты;
- make инструмент GNU, упрощающий процесс сборки для пользователей;
- python интерпретируемый интерактивный объектно-ориентированный язык программирования;
- \bullet gear этот пакет содержит утилиты для сборки пакетов RPM из GEAR. репозитория и управления GEAR. репозиториями;
- hasher современная технология создания независимых от сборочной системы пакетов;
- patch программа исправлений применяет патчи к оригиналам;
- rpmdevtools пакет содержит скрипты и файлы поддерживающие (X) Emacs, помогающие в разработке пакетов RPM.

Глава 2

Основные команды пакетного менеджера

Управлять пакетами можно из командной строки при помощи программы грм, которая имеет следующий синтаксис:

rpm [options]

Пакетный менеджер RPM предоставляет базовые возможности для управления пакетами. Основной набор коман $д^1$ позволяет установить, удалить, обновить пакеты, получить разнообразную информацию о самих пакетах и их содержимом:

• Информация о пакете: rpm -qi ИМЯ_ПАКЕТА ... rpm -qi выводит подробную информацию о конкретном установленном пакете.

rpm -qi означает «query information» (запросить информацию). Но в случае rpm -i <имя пакета>, -i означает инструкцию install (установи).

• Просмотр установленных пакетов: rpm -qa Эта команда выводит список всех установленных пакетов в системе.

-a: All (весь, все). rpm -qa означает «query all».

• Проверка установки пакета в системе: rpm -q ИМЯ_ПАКЕТА ... Эта команда проверяет установлен ли пакет в системе.

¹https://wiki.altlinux.ru/Команды RPM

• Проверка зависимостей пакета: rpm -qR ИМЯ_ПАКЕТА ... rpm -qR выводит список зависимостей (другие пакеты), необходимых для работы указанного пакета.

- -R: Requires (нуждается). Например, rpm -qR означает «query requires» (запрос нуждается).
- Проверка файла на принадлежность пакету: rpm -qf ФАЙЛ Команда rpm -qf определяет, к какому пакету принадлежит указанный файл.

- -f: File (файл). Например, rpm -qf означает «query file» (файл запроса).
- Просмотр файлов пакета: rpm -ql ИМЯ_ПАКЕТА ... rpm -ql выводит список всех файлов, содержащихся в установленном пакете.
- Установка пакета: rpm -i ФАЙЛ_ПАКЕТА
 Команда rpm -i используется для установки пакета из файла .rpm. Например, rpm -i package.rpm установит содержимое пакета в системе.
- Удаление пакета: rpm -e ФАЙЛ_ПАКЕТА rpm -e удаляет установленный пакет. Например, rpm -e package удалит пакет с именем package.
- Обновление пакета: rpm -U ФАЙЛ_ПАКЕТА Команда rpm -U обновляет пакет до новой версии, если он уже установлен.
- Проверка целостности пакета: rpm -V ИМЯ_ПАКЕТА | ФАЙЛ_ПАКЕТА . . . rpm -V проверяет целостность файлов в пакете, сравнивая их с информацией в базе данных rpm. Дополнительные ключи:
 - -v: Verbose (подробно). Например, rpm -qv означает «query verbose» (подробный запрос) и используется для вывода более подробной информации о пакете. Подробный вывод существует не для всех ключей утилиты.

Справку по ключам можно получить, набрав в консоли команду rpm -help

2.1 Проверка установки пакета в системе

Чтобы проверить, установлен ли пакет, введите следующую команду:

```
$ rpm -q ИМЯ_ПАКЕТА
Пример:
$ rpm -q gpupdate
```

```
gpupdate-0.9.12.2-alt2.noarch
$ rpm -q mediinfo
```

пакет mediinfo не установлен

2.2 Просмотр файлов пакета, установленного в системе

Чтобы получить список файлов пакета, введите следующую команду:

```
$ rpm -ql MMA_NAKETA ...
```

В этой команде используется ключ «-1» (list).

Для развернутой информации укажите ключ «-i».

Пример использования:

\$ rpm -ql admc /usr/bin/admc /usr/lib64/libadldap.so /usr/share/applications/admc.desktop

Чтобы узнать содержимое неустановленного **rpm**-пакета, используйте команду:

```
$ rpm -qlp MMA_NAKETA ...
```

Пример выполнения команды:

```
$ rpm -qlp udisks2-2.9.4-alt1.1.src.rpm
udisks-2.9.4.tar.bz2 udisks2.control udisks2.spec
```

2.3 Просмотр недавно установленных пакетов

Чтобы получить список последних установленных пакетов, введите следующую команду:

```
rpm -qa -last|head
```

Вывод:

```
smplayer-23.6.0-alt2.10169.x86 64
                                              Пт 01 дек 2023 12:45:39
gt5-wayland-5.15.10-alt1.x86_64
                                              Пт 01 дек 2023 12:35:44
gt5-tools-5.15.10-alt2.x86_64
                                              Пт 01 дек 2023 12:35:44
qt5-sql-mysql-5.15.10-alt1.x86_64
                                              Пт 01 дек 2023 12:35:44
qt5-dbus-5.15.10-alt2.x86_64
                                              Пт 01 дек 2023 12:35:44
libqt5-xmlpatterns-5.15.10-alt1.x86_64
                                             Пт 01 дек 2023 12:35:44
libgt5-x11extras-5.15.10-alt1.x86_64
                                              Пт 01 дек 2023 12:35:44
libqt5-webenginewidgets-5.15.15-alt1.x86_64 Пт 01 дек 2023 12:35:44
libqt5-test-5.15.10-alt1.x86_64
                                              Пт 01 дек 2023 12:35:44
libgt5-guickparticles-5.15.10-alt1.x86_64
                                              Пт 01 дек 2023 12:35:44
```

Команда rpm -qa -last используется для вывода списка всех установленных пакетов, отсортированных по времени их установки. Пакеты будут отсортированы в порядке убывания времени установки — самые последние установленные пакеты отобразятся в верхней части списка.

Фильтрация вывода: утилита grep отфильтрует вывод и поможет найти искомый пакет. Например, следующая команда выведет информацию только о тех пакетах, название которых содержит «kernel»:

```
rpm -qa -last | grep kernel
```

2.4 Поиск пакета в системе

Чтобы найти в системе необходимый пакет среди уже установленных, используйте утилиту grep. Утилита grep находит строки по запросу.

```
$ rpm -qa | grep ИМЯ_ПАКЕТА

Например, запрос:
kde5-smplayer-common-22.7.0-alt1.noarch
smplayer-23.6.0-alt2.10169.x86_64
```

2.5 Проверка файла, относящегося к пакету

Чтобы определить, какому пакету принадлежит указанный файл, используйте команду:

```
$ rpm -qf ФАЙЛ

Например, запрос:
$ rpm -qf /usr/share/FBReader/help
Предоставит вывод:
fbreader-0.99.5-alt6.x86_64
```