# 10.6. Self-attention and Positional Encoding

Lecture based on "Dive into Deep Learning" http://D2L.AI (Zhang et al., 2020)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

#### Overview

- CNNs or RNNs often encode sequences.
- Now we will feed a sequence of tokens into an attention mechanism such that each token has its own query, keys, and values.
- When computing the output for a token, it can attend via its query vector to each other token based on their keys.
- The output is a weighted sum over the other tokens.
- Because each token is attending to each other token, this architecture is called self-attention.
- Additional information for the sequence order can be added to each token.

Given a sequence of input tokens  $\underline{\mathbf{x}}_1,\ldots,\underline{\mathbf{x}}_n$  where any  $\mathbf{x}_i\in\underline{\mathbb{R}^d}$   $(1\leq i\leq n)$ , its <u>self-attention</u> outputs a sequence of the same length  $\mathbf{y}_1,\ldots,\mathbf{y}_n$ , where

$$\mathbf{y}_{\underline{i}} = \underline{f}(\mathbf{x}_{\underline{i}}, (\mathbf{x}_1, \mathbf{x}_1), \dots, (\mathbf{x}_n, \mathbf{x}_n)) \in \mathbb{R}^d$$

according to the definition of  $\underline{\text{attention pooling}}.$  (batch size, number of time steps or sequence length in tokens, d)

# Convolutional layer with kernel size k



- For sequence length  $\underline{n}$ , d input and output channels, the computational complexity of the convolutional layer is  $\mathcal{O}(\underline{knd^2})$ .
- CNNs are hierarchical, so there are  $\mathcal{O}(1)$  sequential operations
- the maximum path length is  $\mathcal{O}(log_k(n))$ .

### Example (two-layer CNN)

 $\mathbf{x}_1$  and  $\mathbf{x}_5$  are within the receptive field of a two-layer CNN with kernel size 3.

4 Attention 14.06.2023

А

Comparison of CNN, RNN and Self-attention



- Updating the hidden state of RNNs involves multiplication of the  $\underline{d \times d}$  weight matrix and the  $\underline{d}$ -dimensional hidden state. Computational complexity per update is  $\mathcal{O}(d^2)$ .
- For sequence length is n, the computational complexity of the recurrent layer is  $\mathcal{O}(nd^2)$ .
- ullet There are  $\mathcal{O}(n)$  sequential operations that cannot be parallelized
- the maximum path length is  $\mathcal{O}(n)$ .



- Queries, keys, and values are  $n \times d$  matrices.
- For the scaled dot-product, a  $\underbrace{n \times d}_{n \times n}$  matrix is multiplied by a  $\underbrace{d \times n}_{n \times d}$  matrix, then the output  $\underbrace{n \times n}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix. Solf ( $\underbrace{X}_{n \times d}$ )  $\underbrace{X}_{n \times d}$ )  $\underbrace{X}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix is multiplied by a  $\underbrace{n \times d}_{n \times d}$  matrix.
- Each token is directly connected to any other token via self-attention.
- ullet Computation can be parallel with  $\mathcal{O}(1)$  sequential operations
- The maximum path length is  $\mathcal{O}(1)$ .

- All in all, both CNNs and self-attention allow for parallel computation and self-attention has the shortest maximum path length.
- However, the quadratic computational complexity with respect to the sequence length makes self-attention prohibitively slow for very long sequences.

## Why positional Encoding?

- Self-attention replaces sequential operations with parallel computation.
- However, self-attention by itself does not preserve the order of the sequence.
- positional encodings preserve information about the order of tokens as an additional input associated with each token.
- They can either be learned or fixed a priori.
- A simple scheme for fixed positional encodings is based on sine and cosine functions.

# Positional encodings using trigonometric functions

- ullet  $\mathbf{X} \in \mathbb{R}^{n \times d}$  d-dimensional inputs for n sequence tokens
- ullet  $\mathbf{P} \in \mathbb{R}^{n \times d}$  positional embedding matrix
- ullet element on the  $i^{
  m th}$  row and the  $(2j)^{
  m th}$  column

$$p_{i,2j} = \sin\left(\frac{i}{10000^{2j/d}}\right)$$

ullet element on the  $i^{
m th}$  row and the  $(2j+1)^{
m th}$  column





Positional encoding output  $\mathbf{X} + \mathbf{P}$ 

## Summary

- In self-attention, the queries, keys, and values all come from the same representation.
- Both CNNs and self-attention enjoy parallel computation and self-attention has the shortest maximum path length.
- The quadratic computational complexity with respect to the sequence length makes self-attention prohibitively slow for very long sequences.
- To use the sequence order information, we can inject absolute or relative positional information by adding positional encoding to the input representations.