Honors Mathematics III RC 9

CHEN Xiwen

UM-SJTU Joint Institute

August 3, 2018

Table of contents

The Riemann Integral and Measurable Sets

Measurable Sets Integration over Cuboids

Integration in Practice

Ordinate and Simple Regions in \mathbb{R}^2 The Substitution Rule Improper Integrals Green's Theorem

Cuboids

Definition. n-cuiboid: Let $a_k, b_k, k = 1, ..., n$ be pairs of numbers with $a_k < b_k$. Then the set $\Omega \subset \mathbb{R}^n$ given by

$$Q = [a_1, b_1] \times \cdot \times [a_n, b_n] = \{x \in \mathbb{R}^n : x_k \in [a_k, b_k], k = 1, \dots, n\}$$

with volume

$$|Q|:=\prod_{k=1}^n(b_k-a_k)$$

Upper/Lower Volumes of Sets

Definition. Outer/inner volume:

$$\begin{split} & \overline{V}(\Omega) \\ &:= \inf \left\{ \sum_{k=0}^r |Q_k| : r \in \mathbb{N}, Q_0, \dots, Q_r \in \mathcal{Q}_n, \Omega \subset \bigcup_{k=0}^r Q_k \right\}, \\ & \underline{V}(\Omega) \\ &:= \sup \left\{ \sum_{k=0}^r |Q_k| : r \in \mathbb{N}, Q_0, \dots, Q_r \in \mathcal{Q}_n, \Omega \supset \bigcup_{k=0}^r Q_k, \bigcap_{k=0}^r Q_k = \emptyset \right\}. \end{split}$$

Measurable Sets

Integration over Cuboids

Integration in Practice

Ordinate and Simple Regions in \mathbb{R}^2 The Substitution Rule Improper Integrals

Measurable Sets

Definition. Let $\Omega \subset \mathbb{R}^n$ be a bounded set. Then Ω is said to be *(Jordan) measurable* if either

- 1. $\overline{V}(\Omega) = 0$ (*measure zero*) or
- 2. $\overline{V}(\Omega) = \underline{V}(\Omega)$.

Set of measure zero.

- 1. A bounded set in lower dimensions in high-dimensional spaces.
- 2. The set of rational numbers in the interval [0, 1].

Step Functions on Cuboids

Definition. A *partition* P of an n-cuboid $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is a tuple $P = (P_1, \dots, P_n)$ such that $P_k = (a_{k0}, \dots, a_{km_k})$ is a partition of the interval $[a_k, b_k]$. The partition P of Q induces cuboids of the form

$$Q_{j_1j_2...j_n} := [a_{1(j_1-1)}, a_{1(j_1)}] \times \cdots \times [a_{n(j_n-1)}, a_{n(j_n)}]$$

Definition. A *step function with respect to a partition P*:

$$f(x) = y_{j_1 j_2 \dots j_n}, \quad x \in \operatorname{int} Q_{j_1 j_2 \dots j_n}, \quad j_k = 1, \dots, m_k$$

3.3.11.Theorem. Let $Q \subset \mathbb{R}^n$ be a cuboid and $f: Q \to \mathbb{R}$ a step function with respect to some partition P of Q, then the *integral* is

$$\int_{Q} f := I_{P}(f) = \sum_{j_{1}=1,...,m_{1}} |Q_{j_{1}...j_{n}}| \cdot y_{j_{1}...j_{n}}$$

$$\vdots$$

$$j_{n}=1,...,m_{n}$$

Measurable Sets
Integration over Cuboids

Integration in Practice

Ordinate and Simple Regions in \mathbb{R}^2 The Substitution Rule Improper Integrals Green's Theorem

Integration over Cuboids

Definition. Let $Q \subset \mathbb{R}^n$ be an n-cuboid and f a bounded real function on Q. Let \mathcal{U}_f denote the set of all step functions u on Q such that $u \geq f$ and \mathcal{L}_f the set of all step functions v on Q such that $v \leq f$. The function f is **Darboux-integrable** if

$$\sup_{v\in\mathcal{L}_f}\int_Q v=\inf_{u\in\mathcal{U}_f}\int_Q u.$$

3.3.13.Theorem. A bounded function $f:Q\to\mathbb{R}$ is *Rieman-integrable* if an only if for every $\varepsilon>0$ there exist step functions u_ε and v_ε such that $u_\varepsilon\leq f\leq u_\varepsilon$ and

$$\int_{Q} u_{\varepsilon} - \int_{Q} v_{\varepsilon} \leq \varepsilon.$$

3.3.14.Proposition. f bounded and continuous almost everywhere $\Rightarrow f$ is (Riemann) integrable.

Integration over Jordan-Measurable Sets

- 3.3.16.Lemma. Let $\Omega \subset \mathbb{R}^n$ be a bounded set. Then Ω is Jordan-measurable if and only if its boundary $\partial \Omega$ has Jordan measure zero.
- 3.3.17.Corollary. Let $\Omega \subset \mathbb{R}^n$ be a bounded Jordan-measurable set and let $f: \Omega \to \mathbb{R}$ be continuous a.e. Then f is integrable on Ω .

Measurable Sets
Integration over Cuboids

Integration in Practice

Ordinate and Simple Regions in $\ensuremath{\mathbb{R}}^2$

The Substitution Rule Improper Integrals Green's Theorem

Practical Integration over Cuboids

3.4.1.Fubini's Theorem. Let Q_1 be an n_1 -cuboid and Q_2 an n_2 -cuboid so that $Q:=Q_1\times Q_2\subset \mathbb{R}^{n_1+n_2}$ is an (n_1+n_2) -cuboid. Assume that $f:Q\to \mathbb{R}$ is integrable on Q and that for every $x\in Q_1$ the integral

$$g(x) = \int_Q f(x,\cdot)$$

exists. Then

$$\int_{Q} f = \int_{Q_1 \times Q_2} f = \int_{Q_1} g = \int_{Q_1} \left(\int_{Q_2} f \right).$$

Ordinate and Simple Regions in \mathbb{R}^2

Definition. A set $D \subset \mathbb{R}^2$ is called an *ordinate region with respect* to x_2 , if there exists an interval $I \subset \mathbb{R}$ and continuous, almost everywhere differentiable functions $\varphi_1, \varphi_2 : I \to \mathbb{R}$ such that

$$D = \{(x_1, x_2) \subset \mathbb{R}^2 : x_1 \in I, \varphi_1(x_1) \leq x_2 \leq \varphi_2(x_1)\}.$$

If D is an ordinate region both with respect to x_1 and x_2 , then D is a *simple region*.

Ordinate Regions in \mathbb{R}^n

Definition. A subset $U \subset \mathbb{R}^n$ is said to be an *ordinate region* (with respect to x_k) if there exists a measurable set $\Omega \subset \mathbb{R}^{n-1}$ and continuous, almost everywhere differentiable functions $\varphi_1, \varphi_2 : \Omega \to \mathbb{R}$, such that

$$U = \{x \in \mathbb{R}^n : x \in \Omega, \varphi_1(\hat{x}^{(k)}) \le x_k \le \varphi_2(\hat{x}^{(k)})\}$$

If *U* is an ordinate region with respect to each $x_k, k = 1, ..., n$, it is said to be a *simple region*.

Measurable Sets
Integration over Cuboids

Integration in Practice

Ordinate and Simple Regions in \mathbb{R}^2 The Substitution Rule Improper Integrals Green's Theorem

The Substitution Rule

3.4.12. Substitution Rule. Let $\Omega \subset \mathbb{R}^n$ be open and $g:\Omega \to \mathbb{R}^n$ injective and continuously differentiable. Suppose that $\det J_g(y) \neq 0$ for all $y \in \Omega$. Let K be a compact measurable subset of Ω . Then g(K) is compact and measurable and if $f:g(K)\to \mathbb{R}$ is integrable, then

$$\int_{g(K)} f(x) \mathrm{d}x = \int_K f(g(y)) \cdot |\det J_g(y)| \mathrm{d}y.$$

Coordinate Systems

► Polar coordinates:

$$x = r \cos \phi$$
, $y = r \sin \phi$, $|\det J(r, \phi)| = r$

Cylindrical coordinates:

$$x = r \cos \phi$$
, $y = r \sin \phi$, $z = \zeta$, $|\det J(r, \phi, \zeta)| = r$

Spherical coordinates:

$$x = r \cos \phi \sin \theta, \quad y = r \sin \phi \sin \theta, \quad z = r \cos \theta$$

$$|\det J(r, \phi, \theta)| = r^2 \sin \theta.$$

Coordinate Systems

▶ Spherical coordinates in \mathbb{R}^n :

$$x_1 = r \cos \theta_1$$

$$x_2 = r \sin \theta_1 \cos \theta_2$$

$$x_3 = r \sin \theta_1 \sin \theta_2 \cos \theta_3$$

$$\vdots$$

$$x_{n-1} = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \cos \theta_{n-1}$$

$$x_n = r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \sin \theta_{n-1}$$

$$|\det J(r, \theta_1, \dots, \theta_{n-1})| = r^{n-1} \sin^{n-2} \theta_1 \sin^{n-3} \theta_2 \cdots \sin \theta_{n-2}$$

Note. $r > 0, 0 < \theta_k < \pi, k = 1, \dots, n-2, 0 < \theta_{n-1} < 2\pi$.

Measurable Sets
Integration over Cuboids

Integration in Practice

Ordinate and Simple Regions in \mathbb{R}^2 The Substitution Rule Improper Integrals

The Gauss Integral

To integrate

$$\lim_{a\to\infty}I(a):=\lim_{a\to\infty}\int_{-a}^a \mathrm{e}^{-x^2/2}\mathrm{d}x$$

we have

$$\lim_{a\to\infty}I(a)^2=\left(\int_{-\infty}^\infty \mathrm{e}^{-x^2/2}\mathrm{d}x\right)\left(\int_{-\infty}^\infty \mathrm{e}^{-y^2/2}\mathrm{d}y\right)$$

Measurable Sets
Integration over Cuboids

Integration in Practice

Ordinate and Simple Regions in \mathbb{R}^2 The Substitution Rule Improper Integrals

Green's Theorem

Green's Theorem

3.4.18.Green's Theorem. Let $R \subset \mathbb{R}^2$ be a bounded, simple region and $\Omega \supset R$ an open set containing R. Let $F: \Omega \to \mathbb{R}^2$ be a continuously differentiable vector field. Then

$$\int_{\partial R^*} F d\vec{s} = \int_{R} \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) dx$$

Exercise 1. Evaluate the integral

$$I = \int_{\mathbb{R}^2} e^{-(x^2 + (y - x)^2 + y^2)} dx dy$$

Solution. We introduce the substitution

$$\begin{pmatrix} u \\ v \end{pmatrix} = \Phi(x,y) = \begin{pmatrix} x+y \\ x-y \end{pmatrix}, \quad \Phi^{-1}(u,v) = \frac{1}{2} \begin{pmatrix} u+v \\ u-v \end{pmatrix}.$$

Then

$$x^{2} + (y - x)^{2} + y^{2} = \frac{1}{2}(u^{2} + 3v^{2})$$

and

$$|\det J_{\Phi^{-1}}| = rac{1}{4} \left| \det egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} \ \right| = rac{1}{2}.$$

Solution (continued). Then

$$\int_{\mathbb{R}^2} e^{-(x^2 + (y - x)^2 + y^2)} dx dy = \frac{1}{2} \int_{\mathbb{R}^2} e^{\frac{1}{2}(u^2 + 3v^2)} du dv$$
$$= \frac{1}{2} \int_{-\infty}^{\infty} e^{-u^2/2} du \cdot \int_{-\infty}^{\infty} e^{-3v^2/2} dv$$
$$= \frac{\pi}{\sqrt{3}}$$

Exercise 2. Consider the potential U:

$$U(x,y)=-x-y.$$

Let

$$\Omega = \{(x,y) \in \mathbb{R}^2 : \pi \leq y \leq 2\pi, |x| \leq |\sin y|\}$$

- 1. Sketch Ω .
- 2. Calculate $\int_{\Omega} U(x, y)$.

Exercise 3. Assume an object is distributed at the region $\Omega: x^2 + y^2 + 2z^2 \le x + y + 2z$. Its density function is $\rho(x, y, z) = x^2 + y^2 + z^2$. Calculate its mass

$$M = \int_{\Omega} \rho = \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz$$

Exercise 4. Consider the vector field *G*:

$$G(x,y)=(x+xy,-xy).$$

Let

$$\Gamma = \{(x, y) \in \mathbb{R}^2 : \pi \le y \le 2\pi, |x| = |\sin y|\}.$$

Calculate $\int_{\Gamma} G$ (in positive orientation).

Exercise 5. Calculate the volume V(B) of the *n*-dimensional ball:

$$B = \{x = (x_1, \dots, x_n) : ||x|| \le R\}$$

Thanks for your attention!