明細書

流体制御器

5

15

20

技術分野

この発明は、流体制御器に関し、特に、大流量の流体を扱 うのに適している流体制御器に関する。

背景技術

本発明が対象とする流体制御器は、ダイヤフラム弁と称さ 10 れてよく使用されており(例えば、特許文献1=特開200 3 一 4 2 3 1 4 号公報参照)、その典型的なものを図 4 に示 す。

この流体制御器(1)は、流体流入通路(2a)、流体流出通路 (2b) および上方に向かって開口した凹所(2c)を有しているブ ロ シ ク 状 本 体 (2)と、 流 体 流 入 通 路 (2a)の 周 縁 に 設 け ら れ た 環 状 弁 座(3)と、環状 弁座(3)に押圧または離間されて流体通路 (2a) を 開 閉 す る ダ イ ヤ フ ラ ム (4) と 、 ダ イ ヤ フ ラ ム (4) を 押 さ える 上下移動可能な弁体押さえ(5)と、本体(2)の凹所(2c)に 下 端 部 が 挿 入 さ れ て 上 方 に の び る 円 筒 状 ボ ン ネ ッ ト (6)と 、 本 体(2)の凹所(2c)内周に設けられためねじ部にねじ込まれてボ ン ネ ッ ト (6)を 本 体 (2)に 固 定 す る 筒 状 お ね じ 部 材 (7)と 、 筒 状 おねじ部材(7)よりも上方にあるボンネット(6)を覆うカバー (8) と、ボンネット(6)内に上下移動自在に挿入され下端が弁 25 体押さえ(5)に当接し上端部がカバー(8)よりも上方に突出し ている弁棒(9)と、弁棒(9)上端部に固定され回転させられる

ことにより弁棒(9)を上下移動させる開閉ハンドル(10)と、弁棒(9)下端部とボンネット(6)上端部との間に受け止められて 弁棒(9)を下向きに付勢する圧縮コイルバネ(11)とを備えている。

5 本体(2)の流体流入通路(2a)は、一端が左方に向かって開口しかつ他端が凹所(2c)の底面中央部に開口し、流体流出通路(2b)は、一端が右方に向かって開口し他端が凹所(2c)の底面右部に開口している。

カバー(8)は、頂壁(8a)を有する円筒状とされており、その 10 頂壁(8a)には、弁棒(9)上端部を挿通させる貫通孔が設けられ ている。ハンドル(10)は、平面より見て略長円形でかつその 長手方向の中央部にくびれ部(10a)を有する形状とされている。 カバー(8)は、その周壁を貫通する皿小ネジ(12)がボンネット (6)に設けられためねじにねじ込まれることにより、ボンネッ 15 ト(6)に固定されている。

弁棒(9)は、下端部にフランジ(9a)を有しており、ボンネット(6)の下端部に、このフランジ(9a)を上下移動可能に案内する内周面およびフランジ(9a)の所定位置よりも上方への移動を阻止する段部が設けられている。弁棒(9)のフランジ(9a)よりも上方の部分には、ベアリング(16)を介してばね受け用リング(17)が取り付けられている。圧縮コイルばね(11)は、このばね受け用リング(17)とボンネット(6)の上部に設けられた環状の段部とによって受け止められている。

20

カバー(8)の頂壁とボンネット(6)の頂面との間には、間隙 25 が設けられており、この間隙に位置する弁棒(9)の部分には、 水平軸(13)が貫通させられて、この両端部にそれぞれベアリ

ング (14) が取り付けられている。ボンネット (6) の上端には、これらのベアリング (14) を案内する平面から見て環状でかつ高さ方向に滑らかな凹凸状とされた案内面 (15) が形成されている。案内面 (15) のうちの180°離れた位置にある1対の凸部 (15a) がベアリング (14) を支持している。

弁棒(9)は、圧縮コイルばね(11)によって常に下向きに付勢 されており、この付勢力によってベアリング (14)が案内面(1 5) に押圧されている。案内面(15)は、凸部(15a)から周方向に 移動するに連れて徐々に高さが低くなっていき、凸部(15a)か ら90°周方向に移動した位置において高さが最も低い凹部 10 (15b)を有している。 図は、流路閉状態を示しており、案内 面(15)のうちの1対の凹部(15b)がベアリング(14)を支持し、 これにより、弁棒(9)は、下方すなわち流体通路閉位置に位置 させられている。そして、図の状態から弁棒(9)が90°回転 させられた状態になるに際しては、圧縮コイルばね(11)の付 15 勢力によって案内面(15)に押圧された状態で、ベアリング(1 4) が案内面(15) 上を移動し、90°回転後に、案内面(15)の うちの1対の凸部(15a)がベアリング(14)を支持することにな り、この結果、弁棒(9)は、上方すなわち流体通路開位置に位 置させられる。こうして、ハンドル(10)が90°回転させら 20 れることにより閉と開とが切り替わるようになされている。

図4に一例を示した従来の流体制御器(1)では、流体流入通路(2a)の凹所側の開口が環状弁座(3)の内側に、流体流出通路(2b)の凹所側の開口が環状弁座(3)の外側に臨まされており、これらの開口の径は、いずれもダイヤフラム径(凹所の径)によってその最大値(ダイヤフラム径の1/3程度)が制限

25

されている。流量係数またはCv値を増加させるためには、各通路(2a)(2b)の凹所側の開口の径したがってダイヤフラム(4)の径の増加が必要であり、そのためには、流体制御器(1)を大サイズ化する必要があった。ところが、既存の装置では、設置スペースの問題から、流体制御器を大サイズ化できない場合が多く、大流量化が難しかった。

この発明の目的は、流体制御器を大きくすることなく大流量の流体を流すことが可能な流体制御器を提供することにある。

10

発明の開示

この発明による流体制御器は、流体流入通路、流体流出通 路および上方に向かって開口した凹所を有しているブロック 状本体と、本体の凹所内に配された環状弁座に押圧または離 間されて流体通路を開閉するダイヤフラムとを備えている流 体制御器において、凹所が開口に近い大径部および段差部を 介して大径部の下方に連なる小径部からなる形状とされると ともに、この凹所に嵌め入れられた流路形成ディスクをさら に備えており、流路形成ディスクは、凹所大径部に流体密に 嵌め合わせられている大径円筒部と、凹所小径部の内径より 20 も小さい外径を有し下端が凹所の底面で受け止められている 小径円筒部と、大径円筒部の下端部と小径円筒部の上端部と を連結しかつ凹所段差部に受け止められている連結部とから なり、ダイヤフラムの周縁部が流路形成ディスクの大径円筒 部の上端部に固定され、弁座が流路形成ディスクの小径円筒 25 部の上端部に設けられ、流路形成ディスクの大径円筒部内周、

ダイヤフラム、弁座および流路形成ディスクの連結部上面によって大径円筒部内側環状空間が形成され、流路形成ディスクの連結部に、流路形成ディスクの小径円筒部と凹所の小径部周面との間に形成された小径円筒部外側環状空間と大径円筒部内側環状空間とを連通する複数の貫通孔が形成され、流体流入通路および流体流出通路のいずれか一方が流路形成ディスクの小径円筒部下端に通じ、同他方が小径円筒部外側環状空間に通じるように形成されていることを特徴とするものである。

- 10 流路形成ディスクによって、流体流入通路と流体流出通路との間には、小径円筒部内、弁座~ダイヤフラム間、大径円筒部内側環状空間、連結部貫通孔および小径円筒部外側環状空間からなる通路が形成される。このうち、小径円筒部の断面積は、流体流入通路および流体流出通路の両方の開口が凹 所底面に臨まされている従来のものの通路開口より大きくでき、また、連結部貫通孔は、小径円筒部の外側の環状部分に形成されるので、その総断面積を小径円筒部の断面積に見合う程度にすることが容易であり、通路断面積を従来のものに 比べて大きくすることができる。
- 20 この発明による流体制御器において、ダイヤフラムを弁座 に押圧または離間させる操作駆動部としては、手動により弁 棒を上下させるものであってもよく、圧縮空気やソレノイド などによって上下させるものであってもよい。また、流体制 御器は、常時開タイプとすることも常時閉タイプとすること 25 もできる。

流路形成ディスクの小径円筒部下端に通じる通路は、小径

円筒部下端から真下にのびる短通路と、短通路の下端から鋭角状に外方にのびる長通路とからなり、小径円筒部外側環状空間に通じる通路は、小径円筒部外側環状空間から斜め下外方にのびていることがある。

5 また、長通路に通じる傾斜状の通路を有する継手部が本体の一側面に突出状に設けられており、小径円筒部外側環状空間に通じる通路に通じる傾斜状の通路を有する継手部が本体の他側面に突出状に設けられていることがある。

流路形成ディスクの連結部に形成された複数の上下方向貫 10 通孔の合計断面積は、流路形成ディスクの小径円筒部の断面 積の0.5~2.0倍とされていることが好ましい。このよ うにすると、小さくかつ大流量の流体制御器を容易に得るこ とができる。

流路形成ディスクの下端面と本体の凹所の底面との間に、 シール部材が介在されていることが好ましい。この場合に、 流路形成ディスクの下端面および本体の凹所の底面に、シー ル部材の上下面にそれぞれ密接する環状シール突起が形成さ れていることがより好ましい。

シール部材は、金属製のガスケットとされ、そのビッカー
20 ス硬度は、80~200H v が好ましく、100~140H
v がより好ましい。流路形成ディスクの下端面と本体の凹所
の底面のビッカース硬度は、250~450H v が好ましく、
3000~400H v がより好ましい。また、シール突起は
鏡面仕上げをすることが好ましく、ガスケットには、テフロ
25 ンコーティングが施されることが好ましい。

この発明の流体制御器によると、通路断面積を従来のもの

に比べて大きくすることができるので、流体制御器の大きさを同じに保ちながら流量係数を増加させることができ、または、流量係数を保ちながら流体制御器のダウンサイジングを実現することができる。

5

図面の簡単な説明

図1は、この発明による流体制御器の第1実施形態を示す縦断面図である。

図2は、同平面図である。

10 図3は、この発明による流体制御器の第2実施形態を示す 縦断面図である。

図4は、この発明による流体制御器が対象とする従来の流体制御器を示す縦断面図である。

15 発明を実施するための最良の形態

この発明の実施の形態を、以下図面を参照して説明する。以下の説明において、左右は、図の左右をいうものとする。

図1および図2は、この発明の流体制御器の実施形態を示している。

 流体制御器(21)は、流体流入通路(23)、流体流出通路(24) および上方に向かって開口した凹所(25)を有しているブロック状本体(22)と、本体(22)の凹所(25)に嵌め入れられた流路 形成ディスク(26)と、流路形成ディスク(26)に設けられた環状弁座(27)と、弁座(27)に押圧または離間されて流体通路(2
 3)を開閉するダイヤフラム(28)と、ダイヤフラム(28)を弁座(27)に押圧または離間させる操作駆動部(29)とを備えている。

凹所(25)は、開口に近い大径部(25a)および段差部(25b)を 介して大径部(25a)の下方に連なる小径部(25c)からなる。

操作駆動部 (29)は、ダイヤフラム (28)の中央部分を押さえる上下移動可能なダイヤフラム押さえ (41)と、ダイヤフラム (28)の周縁部を下方に押し付けるように本体 (22)の凹所 (22 c)に下端部が挿入されて上方にのびる円筒状ボンネット (42)と、本体 (22)の凹所 (22c)外周に設けられたおねじ部 にねじ合わされボンネット (42)を本体 (22)に固定するボンネットナット (43)と、ボンネット (42)内に上下移動自在に挿入され下端が弁体押さえ (5)に当接している弁棒 (44)と、弁棒 (44)を下向きに付勢する圧縮コイルバネ (45)とを備えている。

10

20

25

流路形成ディスク (26) は、凹所大径部 (25a) に流体密に嵌め合わせられている大径円筒部 (31) と、凹所小径部 (25 c) の内径よりも小さい外径を有し下端が凹所 (25) の底面で受け止められている小径円筒部 (33) と、大径円筒部 (31) の内側面下端部と小径円筒部 (33) の外側面上端部を連結しかつ凹所段差部 (25b) に受け止められている連結部 (32) とからなる。これにより、流路形成ディスク (26) の小径円筒部 (33) と凹所小径部 (25c) 周面との間に、小径円筒部外側環状空間 (S1) が形成されている。

弁座(27)は、流路形成ディスク(26)の小径円筒部(33)の上端面に設けられており、その先端(上端)は、流路形成ディスク(26)の大径円筒部(31)の上端の高さとほぼ同じとされている。ダイヤフラム(28)は、その外周縁部が流路形成ディスク(26)の大径円筒部(31)の上端部に固定されるとともに、ダイヤフラム押さえ(41)によって下方に押さえられた場合に、外周縁部よりも径方向内側の環状部分において弁座(27)の先

端に当接するようになされている。これにより、流路形成ディスク(26)の大径円筒部(31)内周、ダイヤフラム(28)、弁座(27)および流路形成ディスク(26)の連結部(32)上面によって囲まれた大径円筒部内側環状空間(S2)が形成されている。

流路形成ディスク (26)の連結部 (32)には、図 2 に示すように、小径円筒部外側環状空間 (S1)と大径円筒部内側環状空間 (S2)とを連通する複数の上下方向貫通孔 (34)が周方向に等間隔で形成されている。

5

20

25

流体流入通路(23)は、流路形成ディスク(26)の小径円筒部(33)下端開口から真下にのびる短通路(23b)と、短通路(23b)の下端から鋭角状に左方(外方)にのびる長通路(23a)とからなり、これにより、流体流入通路(23)の凹所側開口は、流路形成ディスク(26)の小径円筒部(33)下端に通じさせられている。本体(22)の左側面には、入口側の継手部(35)が突出状に設けられており、この継手部(35)には、流体流入通路(23)の長通路(23a)に延長状に連なる傾斜状の継手部材内通路(35a)が形成されている。

流体流出通路(24)は、小径円筒部外側環状空間(S1)の右面から右下(斜め下外方)にのびている。本体(22)の右側面には、出口側の継手部(36)が突出状に設けられており、この継手部(36)には、流体流出通路(24)に延長状に連なる傾斜状の継手部材内通路(36a)が形成されている。

入口側および出口側の継手部 (35) (36) の外周には、 おねじ 部が設けられている。これらの継手部 (35) (36) の形状は、こ れに限られるものではなく、種々のタイプが可能である。

上記流体制御器(21)によると、ダイヤフラム押さえ(41)が

上方に移動させられた流路開状態では、流体は、継手部 内通 路 (35a)、流体流入通路(23)、流路形成ディスク(26)の小径円 筒部(33)、弁座(27)とダイヤフラム(28)との間、大径円筒部 内 側 環 状 空間 (S2)、 流 路 形 成 ディスク (26)の 連 結 部 (32)の 貫 通 孔 (34)、 小 径 円 筒 部 外 側 環 状 空 間 (S1)、 流 体 流 出 通 路 (24)、 継手部内通路(36a)の順に流れていく。この際、流体流入通路 (23)および流体流出通路(24)の各凹所側の開口の大きさとこ れらの開口同士の連通路断面積とが大流量化のためのネック 部分となるが、流体流入通路(23)の凹所側の開口面積は、流 体 流 出 通 路 (24) が 凹 所 (25) の 底 面 に 開 口 してい ない 分 だ け 大 きくすることができ、また、流体流出通路(24)の凹所側の開 口面積は、小径円筒部外側環状空間(S1)の右面に必要な大き さを確保することができる。そして、流体流入通路(23)およ び流体流出通路(24)の凹所側開口同士の連通路断面積は、複 数の貫通孔(34)が環状とされた連結部(32)に形成されること によりその総断面積が確保されるとともに、小径円筒部外側 環状空間(S1)および大径円筒部内側環状空間(S2)がいずれも 環状とされることによってその断面積が確保され、従来のも のに比べて大きく取ることができる。したがって、流体制御 器(21)に大流量の流体を流すことが可能となる。こうして、 20 ダイヤフラム(28)径を増加することなく、流路面積を増加さ せることができ、したがって、流体制御器(21)の大きさを同 じに保ちながら流量係数を増加させることができ、または、 流 量 係 数 を 保 ち な が ら 流 体 制 御 器 (21)の ダ ウン サ イ ジン グ を 実現することができる。 25

なお、図1および図2に示した流体制御器(21)において、

ダイヤフラム (28)を弁座 (27)に押圧または離間させる操作駆動部 (29)としては、例えば図4に示した手動により弁棒を上下させるものであってももちろんよいが、圧縮空気やソレノイドなどによって上下させるものであってもよい。また、流体制御器 (21)は、常時開タイプとすることも常時閉タイプとすることもできる。

図3に、この発明による流体制御器の第2実施形態として、インナーディスクの下端部とボディとの突き合わせ部のより好ましい形態と操作駆動部の他の実施例とを示す。以下の説明において、図1および図2と同じ構成には同じ符号を付してその説明は省略する。

10

25

弁座(27)は、流路形成ディスク(46)の小径円筒部(53)の上端面に設けられており、その先端(上端)は、流路形成ディスク(46)の大径円筒部(51)の上端の高さとほぼ同じとされている。ダイヤフラム(28)は、その外周縁部が流路形成ディスク(46)の大径円筒部(51)の上端部に固定されるとともに、ダイヤフラム押さえ(41)によって下方に押さえられた場合に、

外周縁部よりも径方向内側の環状部分において弁座(27)の先端に当接するようになされている。これにより、流路形成ディスク(46)の大径円筒部(51)内周、ダイヤフラム(28)、弁座(27)および流路形成ディスク(46)の連結部(52)上面によって囲まれた大径円筒部内側環状空間(S2)が形成されている。

流路形成ディスク(46)の連結部(52)には、図2に示した実施形態の流路形成ディスク(26)の連結部(32)の上下方向貫通孔(34)と同様に、小径円筒部外側環状空間(S1)と大径円筒部内側環状空間(S2)とを連通する複数の上下方向貫通孔(54)が周方向に等間隔で形成されている。

10

15

この実施形態では、流路形成ディスク(46)の下端面と本体 (22)の凹所(25)の底面(25d)との間にシール部材としての短円 筒状の金属製ガスケット(47)が介在されており、凹所(25)の底面(25d)には、ガスケット(47)の下面に密接する環状シール 突起(48)が形成されている。また、流路形成ディスク(46)の 小径円筒部(53)の下端面には、ガスケット(47)の上端部が嵌め入れられている環状凹所(49)およびガスケット(47)の上面に密接する環状シール突起(50)がそれぞれ形成されている。

ガスケット(47)にはテフロンコーティングが施されており、 20 そのビッカース硬度は、流路形成ディスク(46)の下端面およ び本体(22)の凹所(25)の底面(25d)のビッカース硬度がそれぞ れ300Hv以上(約350Hv)であるのに対し、100 ~140Hvと相対的に小さい硬度とされている。流路形成 ディスク(46)を所定の圧力で本体(22)の凹所(25)に圧入する 25 と、相対的に軟らかいガスケット(47)が流路形成ディスク(46)と本体(22)との間で挟まれて変形し、これにより、流路形

成ディスク (46)の下端面と本体 (22)の凹所 (25)の底面 (25d)との間のシール性が確保されている。なお、流路形成ディスク (26)の小径円筒部 (33)の内径、短通路 (23b)の径およびガスケット (47)の内径は、すべて等しくされており、流体のスムーズな流れが保証されている。

この実施形態の操作駆動部(60)は、常時 閉タイプで圧縮空気を導入することにより開状態とするもので、ダイヤフラム押さえ(41)に嵌め被せられたボンネット(61)と、本体(22)上部に設けられた下部ケーシング(62)と、下部ケーシング(62)と、下部ケーシング(62)と、下部ケーシング(62)に3)によって形成された空間内に配置されて下端がダイヤフラム押さえ(41)に当接している弁棒(64)と、弁棒(64)に一体的に設けられたピストン(65)と、ピストン(65)を下向きに付勢する圧縮コイルバネ(66)とを備えている。

15 ダイヤフラム押さえ(41)は、円柱状に形成され、下端にフランジ部(41a)を有している。

20

25

ボンネット(61)は、円筒状に形成されており、その下端部 内周には、ダイヤフラム押さえ(41)のフランジ部(29a)の外径 より若干大きい内径を有する大径部(61a)が形成されている。 ボンネット(61)は、本体(22)の凹所大径部(25a)にきつく嵌め

入れられて、ダイヤフラム(28)の外周部を流路形成ディスク (46)に固定している。ダイヤフラム押さえ(41)は、ボンネット(61)内に下からゆるく嵌め入れられており、図に示した状態(通路閉の状態)において、下方には移動できないが、上方(通路を開く方向)には移動可能とされている。

下部ケーシング(62)は、底壁(62a)と、底壁(62a)に立ち上

がり状に設けられるとともに外周面におねじ部が形成された円筒状周壁(62b)と、底壁(62a)下面から下方にのびかつ内周面にめねじ部が形成された小径円筒状下方突出部(62c)とからなる。下部ケーシング(62)は、下方突出部(62c)のめねじ部が本体(22)の凹所大径部(25a)の外周面に設けられたおねじ部にねじ合わされることにより、本体(22)に固定されている。ボンネット(61)の上面には、下部ケーシング(62)の締め付け時にストッパとして機能する環状の突出部(61b)が設けられている。

10 下部ケーシング (62)の底壁 (62a)中央には、弁棒 (64)を上下 移動可能に案内する貫通孔 (67)が設けられている。

上部ケーシング(63)は、頂壁(63a)および円筒状周壁(63b)からなる。周壁(63b)の下部内周面には、めねじ部が形成されており、このめねじ部が下部ケーシング(62)の周壁(62b)のお15 ねじ部にねじ合わされることにより、上部ケーシング(63)と下部ケーシング(62)とが内部に空間を形成するように一体化されている。上部ケーシング(63)の頂壁(63a)には、その中央部に上向きに開口した圧縮空気導入管接続用めねじ部(68)と、このめねじ部(68)の下端に連なる圧縮空気導入用下向き通路(69)とが形成されている。上部ケーシング(63)の頂壁(63a)は、圧縮空気導入用下向き通路(69)を構成するその中央部が他の部分より若干下方に突出するように形成されており、頂壁(63a)下面には、この中央部を囲むように環状のばね受け用凹所(70)が形成されている。

25 弁棒(64)の下端部は、下部ケーシング(62)の中央貫通孔(67)に摺動自在に嵌め入れられ、同上端部は、上部ケーシング

(63)の頂壁(63a)の圧縮空気導入用下向き通路(69)内に摺動自在に嵌め入れられている。

ピストン(65)は、下部ケーシング(62)内に摺動自在に嵌め入れられている。ピストン(65)上面には、上部ケーシング(63)の頂壁(63a)に設けられた環状のばね受け用凹所(70)に対向するように環状のばね受け用凹所(71)が設けられている。

こうして、ピストン(65)の上面と上部ケーシング(63)の頂壁(63a)下面との間に上部空間(S3)が形成され、ピストン(65)の下面と下部ケーシング(62)の底壁(62a)上面との間に下部空間(S4)が形成されている。

10

圧縮コイルばね(66)は、その下端がピストン(65)の上面のばね受け用環状凹所(71)に受け止められ、その上端が上部ケーシング(63)の環状凹所(70)で受け止められている。

弁棒(64)には、上端が上部ケーシング(63)の頂壁(63a)の圧 5 縮空気導入用下向き通路(69)に通じ下端が下部空間(S4)に通 じている圧縮空気通路(72)が形成されている。圧縮空気通路 (72)は、ピストン(65)の下面に設けられた凹所(73)に開口し、 この凹所(73)を介して下部空間(S4)に通じている。

ピストン(65)と下部ケーシング(62)との間には、Oリング
20 (74)が介在されており、弁棒(64)下端部と下部ケーシング(6
2)の中央貫通孔(67)の周面との間、および弁棒(64)の上端部と上部ケーシング(63)の圧縮空気導入用下向き通路(69)内周面との間にも、Oリング(75)が介在されており、これにより、圧縮空気導入用下向き通路(69)に導入された圧縮空気が上部25 空間(S3)に流入することが防止されている。

したがって、上部ケーシング (63)の頂壁 (63a)の圧縮空気導

入管接続用めねじ部 (68) に圧縮空気が導入されると、圧縮空気は、圧縮空気導入用下向き通路 (69) を介して下部空間 (S4) に導入される。これにより、ピストン (65) したがって弁棒 (64) が上方に移動し、ダイヤフラム押さえ (41) およびダイヤフラム(28) の開方向の移動が許容される。

産業上の利用可能性

この発明による流体制御器は、大流量の流体を扱うのに適しており、しかも、従来のものから大きくしなくてよいので、 10 種々の流体制御装置に適用できる。

請求の範囲

1. 流体流入通路、流体流出通路および上方に向かって開口した凹所を有しているブロック状本体と、本体の凹所内に配された環状弁座に押圧または離間されて流体通路を開閉するダイヤフラムとを備えている流体制御器において、

四所が開口に近い大径部および段差部を介して大径部の下方に連なる小径部からなる形状とされるとともに、この凹所に嵌め入れられた流路形成ディスクをさらに備えており、

流路形成ディスクは、凹所大径部に流体密に嵌め合わせられている大径円筒部と、凹所小径部の内径よりも小さい外径を有し下端が凹所の底面で受け止められている小径円筒部と、大径円筒部の下端部と小径円筒部の上端部とを連結しかつ凹所段差部に受け止められている連結部とからなり、

ダイヤフラムの 周縁部が流路形成ディスクの大径円簡部の 上端部に固定され、 弁座が流路形成ディスクの小径円筒部の 上端部に設けられ、 流路形成ディスクの大径円筒部内周、 ダ イヤフラム、 弁座 および流路形成ディスクの連結部上面によって大径円筒部内 側環状空間が形成され、 流路形成ディスク の連結部に、 流路 形成ディスクの小径円筒部と凹所の小径部 20 周面との間に形成 された小径円筒部外側環状空間と大径円筒 部内側環状空間と を連通する複数の貫通孔が形成され、 流体 流入通路および流 体流出通路のいずれか一方が流路形成ディ スクの小径円筒部 下端に通じ、 同他方が小径円筒部外側環状 空間に通じるように形成されていることを特徴とする流体制 25 御器。

2. 流路形成ディスクの小径円筒部下端に通じる通路は、小

径円筒 部下端から真下にのびる短通路と、短通路の下端から 鋭角状に外方にのびる長通路とからなり、小径円筒部外側環 状空間に通じる通路は、小径円筒部外側環状空間から斜め下 外方にのびている請求項1の流体制御器。

- 5 3. 長通路に通じる傾斜状の通路を有する継手部が本体の一側面に突出状に設けられており、小径円筒部外側環状空間に通じる通路に通じる傾斜状の通路を有する継手部が本体の他側面に突出状に設けられている請求項2の流体制御器。
- 4. 流路形成ディスクの連結部に形成された複数の上下方向 10 貫通孔の合計断面積は、流路形成ディスクの小径円筒部の断 面積の 0. 5~2. 0倍とされている請求項1から3までの いずれか1項の流体制御器。
 - 5. 流路形成ディスクの下端面と本体の凹所の底面との間に、シール部材が介在されている請求項1の流体制御器。
- 15 6. 流路形成ディスクの下端面および本体の凹所の底面に、シール部材の上下面にそれぞれ密接する環状シール突起が形成されている請求項5の流体制御器。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018537

CLASSIFICATION OF SUBJECT MATTER Int.Cl⁷ F16K7/16 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁷ F16K7/00-7/20, 27/00-27/12 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2005 Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho 1971-2005 Jitsuyo Shinan Toroku Koho 1996-2005 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages 1-6 JP 2000-65225 A (CKD Corp.), Α 03 March, 2000 (03.03.00), Full text; Figs. 1 to 14 (Family: none) 1-6 Α JP 9-100930 A (Kabushiki Kaisha Esutekku), 15 April, 1997 (15.04.97), Full text; Figs. 1 to 5 (Family: none) 1 - 6JP 10-332003 A (CKD Corp.), Α 15 December, 1998 (15.12.98), Full text; Figs. 1 to 5 (Family: none) X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the document member of the same patent family priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 01 March, 2005 (01.03.05) 07 February, 2005 (07.02.05) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018537

Category* Citation of document, with indication, where appropriate, of the relevant passages A	
13 February, 2003 (13.02.03), Full text; Figs. 1 to 2 & US 2003-25099 A & EP 1281898 A A JP 2000-213667 A (Tadahiro OMI et al.), 02 August, 2000 (02.08.00), Full text; Figs. 1 to 9 & TW 471583 Y A JP 2977766 B2 (Benkan Corp.), 15 November, 1999 (15.11.99), Full text; Figs. 1 to 9 (Family: none) A US 6254057 B1 (Integra Dynamics Inc.), 03 July, 2001 (03.07.01), Full text; Figs. 1 to 12	
02 August, 2000 (02.08.00), Full text; Figs. 1 to 9 & TW 471583 Y A JP 2977766 B2 (Benkan Corp.), 15 November, 1999 (15.11.99), Full text; Figs. 1 to 9 (Family: none) A US 6254057 B1 (Integra Dynamics Inc.), 03 July, 2001 (03.07.01), Full text; Figs. 1 to 12	6
15 November, 1999 (15.11.99), Full text; Figs. 1 to 9 (Family: none) A US 6254057 B1 (Integra Dynamics Inc.), 03 July, 2001 (03.07.01), Full text; Figs. 1 to 12	6
03 July, 2001 (03.07.01), Full text; Figs. 1 to 12	·6
	·6
į	

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl. F16K 7/16

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. F16K 7/00-7/20, 27/00-27/12

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年

日本国公開実用新案公報 1971-2005年

日本国登録実用新案公報 1994-2005年

日本国実用新案登録公報 1996-2005年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

·C. 関連すると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
A	JP 2000-65225 A (シーケーディ株式会社), 2000.03.03,全文,第1-14図 (ファミリーなし)	1-6			
A	JP 9-100930 A(株式会社エステック), 1997.04.15,全文,第1-5図(ファミリーなし)	1-6			
A	JP 10−332003 A(シーケーディ株式会社), 1998.12.15,全文,第1−5図(ファミリーなし)	1-6			

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑惑を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

·	四际网里和日		
 C(続き).	関連すると認められる文献		
引用文献の カテゴリー*		関連する 請求の範囲の番号	
A	JP 2003-42314 A (株式会社フジキン), 2003.02.13,全文,第1-2図 & US 2003-25099 A & EP 1281898 A	1-6	
A	JP 2000-213667 A (大見忠弘 外1名), 2000.08.02,全文,第1-9図 & TW 471583 Y	1-6	
A	JP 2977766 B2 (株式会社ベンカン), 1999.11.15,全文,第1-9図 (ファミリーなし)	1-6	
A	US 6254057 B1 (Integra Dynamics Inc.), 2001. 07. 03, 全文, 第1-12図 & CA 2282037 A	1 - 6	
	·		