我是用 Roberta model,tokenizer 用 Roberta-base 作為預訓練資料。資料集我選擇了 The Stanford Sentiment Treebank(sst2)和 Recognizing Textual Entailment(rte)。資料集載入後就已經分好 train, validation, test 了,所以不用特別去處理。我先對兩個進行編碼,sst2 只有 sentence 要處理,rte 有 sentence1 和 sentence2 兩個要弄,處理完再輸入到 model。PEFT 的部分我嘗試了 BitFit 和 Lora。

BitFit 是選擇 model 裡面有 bias 的部分去更新,所以沒有 bias 的就不去更新

```
# BitFit
num_param = 0
for name, param in model.named_parameters():
    if "bias" not in name:
        param.requires_grad = False
    else:
        num_param += param.numel()
num_param

102914
```

Lora 在更新參數時,把比較大的矩陣運算分成兩個比較小的去計算,算完再結 合起來

```
# lora
from peft import LoraConfig, TaskType, get_peft_model

config = LoraConfig(task_type=TaskType.CAUSAL_LM)

model = get_peft_model(model, config)
```

我整體跑完的感覺是用 PEFT 後,時間會縮短蠻多的,像原本 SSt2 甚麼都不做要跑 1 小時左右,而有用 PEFT 後就縮短大概剩半小時,rte 原本跑 12 分鐘,但有座 PEFT 就剩大概 5 分鐘,時間上節省很多。而準確度的方面,我是覺得要看資料集,像 SSt2 在有 PEFT 後,準確率在 9 成左右,不過沒有 PEFT 也才 0.94 而已,其實差不太大,而 rte 原本大概接近 7 成,在 PEFT 後只有 5 成,這個就差異蠻大的,不過我這次只有試著實作 PEFT,沒有特別去調整讓 PEFT 前後的準確度差不多。

SST2

No PEFT

	Accuracy	Validation Loss	Training Loss	Step
Trair	0.915138	0.241495	0.355000	500
train	0.907110	0.248446	0.290100	1000
metr	0.926606	0.216583	0.202500	1500
'trair	0.924312	0.260425	0.269000	2000
'trair	0.925459	0.236062	0.248700	2500
'tota	0.925459	0.250967	0.232000	3000
'tra	0.931193	0.262399	0.129000	3500
'epo	0.934633	0.221042	0.242000	4000
ОРО	0.933486	0.256578	0.141700	4500
	0.931193	0.283625	0.148800	5000
	0.932339	0.293963	0.216100	5500
	0.933486	0.282357	0.095900	6000
	0.928899	0.290690	0.194500	6500
	0.932339	0.275291	0.107900	7000
	0.928899	0.249021	0.131800	7500
	0.939220	0.230835	0.157500	8000
	0.943807	0.312093	0.132800	8500
	0.935780	0.310971	0.073900	9000
	0.933486	0.356428	0.147300	9500
	0.938073	0.329415	0.085000	10000
	0.935780	0.319992	0.236400	10500
	0.930046	0.340400	0.157400	11000
	0.936927	0.331999	0.145700	11500
	0.938073	0.316955	0.099100	12000
	0.940367	0.312330	0.125400	12500

TrainOutput(global_step=12627, training_loss=0.1843268603904873, metrics={'train_runtime': 3139.3357, train_samples_per_second': 64.36, train_steps_per_second': 4.022, total_flos': 6955865942774760.0, 'train_loss': 0.1843268603904873,

'epoch': 3.0})

Lora	3			BitFi	t		
Step	Training Loss	Validation Loss	Accuracy	Step	Training Loss	Validation Loss	Accuracy
500	0.701200	0.693839	0.490826	500	0.699600	0.692876	0.521789
1000	0.673400	0.678896	0.509174	1000	0.681900	0.693897	0.509174
1500	0.543400	0.542241	0.565367	1500	0.675500	0.693602	0.509174
2000	0.478900	0.487387	0.852064	2000	0.674700	0.682883	0.509174
2500	0.340800	0.416550	0.886468	2500	0.479700	0.485322	0.848624
3000	0.413500	0.309826	0.888761	3000	0.487100	0.405401	0.858945
3500	0.349000	0.294305	0.891055	3500	0.448200	0.379682	0.862385
4000	0.406700	0.284147	0.901376	4000	0.465000	0.369830	0.866972
4500	0.284600	0.277787	0.902523	4500	0.358800	0.356569	0.871560
5000	0.265700	0.270504	0.907110	5000	0.391600	0.351986	0.872706
5500	0.251800	0.264294	0.908257	5500	0.364300	0.343075	0.875000
6000	0.261900	0.271743	0.903670	6000	0.336700	0.342192	0.878440
6500	0.308300	0.252660	0.913991	6500	0.421900	0.327646	0.880734
7000	0.235900	0.243402	0.918578	7000	0.286400	0.323573	0.880734
7500	0.241600	0.258529	0.908257	7500	0.405400	0.327272	0.878440
8000	0.235900	0.240111	0.912844	8000	0.315000	0.315254	0.886468
8500	0.279100	0.253426	0.911697	8500	0.365300	0.320504	0.883028
9000	0.227700	0.244254	0.913991	9000	0.273200	0.310700	0.887615
9500	0.251200	0.246645	0.911697	9500	0.294000	0.309080	0.888761
10000	0.369400	0.244606	0.912844	10000	0.433600	0.306957	0.891055
10500	0.327400	0.239054	0.913991	10500	0.383100	0.309659	0.887615
11000	0.264400	0.240210	0.911697	11000	0.315300	0.304541	0.892202
11500	0.268700	0.238253	0.912844	11500	0.334600	0.305781	0.891055
12000	0.175300	0.238260	0.911697	12000	0.283800	0.302965	0.891055
				12500	0.314300	0.302356	0.893349
TrainC	Output(global	_step=12627,		TrainO	utput(global_s	tep=12627,	
trainir	ng_loss=0.355	550995000309	19,	trainir	ng_loss=0.434	4785081298917	75,
metric	cs={'train_run	time': 1923.131	6,	metric	cs={'train_runt	ime': 1769.146,	
'train_	_samples_per	_second': 105.0	061,	'train_s	amples_per_s	econd': 114.206	5,
'train_	_steps_per_se	cond': 6.566,		'train_s	teps_per_seco	ond': 7.137,	
'total_	_flos': 697981	7059242984.0	,	'total_	_flos': 695586	5942774760.0,	
'trair	_loss': 0.355	509950003091	9,	'train_	loss': 0.43447	850812989175	, 'epoch':
'eno	ch': 3.0})			3.0})			

RTE

TrainOutput(global_step=468, training_loss=0.6401754108249632,

metrics={'train_runtime': 722.7767, 'train_samples_per_second': 10.335,

'train_steps_per_second': 0.648, 'total_flos': 1120914762487200.0,

'train_loss': 0.6401754108249632, 'epoch': 3.0})

BitFit

			(468/468
Step	Training Loss	Validation Loss	Accuracy
100	0.692700	0.693730	0.480144
200	0.691100	0.693414	0.490975
300	0.693200	0.693338	0.487365
400	0.700000	0.693414	0.487365

TrainOutput(global_step=468, training_loss=0.6948993796976204,

metrics={'train_runtime': 298.7863, 'train_samples_per_second': 25.001,

'train_steps_per_second': 1.566, 'total_flos': 1120914762487200.0,

'train_loss': 0.6948993796976204, 'epoch': 3.0})

Lora

		[468/468 (
Step	Training Loss	Validation Loss	Accuracy	
100	0.693500	0.691913	0.527076	
200	0.688800	0.691801	0.527076	
300	0.699500	0.691704	0.527076	
400	0.694800	0.691640	0.527076	

TrainOutput(global_step=468, training_loss=0.6969056323043301,

metrics={'train_runtime': 307.8018, 'train_samples_per_second': 24.269,

'train_steps_per_second': 1.52, 'total_flos': 1124774405592480.0,

'train_loss': 0.6969056323043301, 'epoch': 3.0})