

# Power Module

# Installation et manuel utilisateur V1.7

Configuration module seul 51,2V 105AH, 5,37KWh



Configuration grands assemblages série/parallèle avec SuperMaster jusqu'à 128 modules, 819,2V 688KWh







| Indice des modifications |                                                                                                                      |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                     | P. modifiées                                                                                                         | Description de la modification                                                                                                                                                                                                                      | Auteur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10/12/20                 | création                                                                                                             |                                                                                                                                                                                                                                                     | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 02/09/21                 | création                                                                                                             | Mise en forme                                                                                                                                                                                                                                       | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20/10/21                 | Corrections                                                                                                          | Correction interface CAN                                                                                                                                                                                                                            | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 03/11/21                 | Corrections                                                                                                          | Wording                                                                                                                                                                                                                                             | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16/09/22                 | Corrections                                                                                                          | Bouchons et maintenance                                                                                                                                                                                                                             | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10/11/23                 | Corrections                                                                                                          | Précautions assemblage parallèle                                                                                                                                                                                                                    | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 06/02/24                 | Corrections                                                                                                          | Première mise en service + Led End<br>of charge                                                                                                                                                                                                     | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 05/03/24                 | Corrections                                                                                                          | PowerModule avec Précharge                                                                                                                                                                                                                          | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 08/03/24                 | Corrections                                                                                                          | Statut 2 Supermaster                                                                                                                                                                                                                                | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12/03/24                 | Corrections                                                                                                          | Charge et équilibrage                                                                                                                                                                                                                               | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22/03/24                 | Corrections                                                                                                          | Explication décodage CAN                                                                                                                                                                                                                            | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23/07/2023               | Corrections                                                                                                          | Manipulations PowerModule  Correction Protocole CAN                                                                                                                                                                                                 | Tech Dpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | 10/12/20<br>02/09/21<br>20/10/21<br>03/11/21<br>16/09/22<br>10/11/23<br>06/02/24<br>05/03/24<br>08/03/24<br>12/03/24 | Date P. modifiées  10/12/20 création 02/09/21 création 20/10/21 Corrections 03/11/21 Corrections 16/09/22 Corrections 10/11/23 Corrections 06/02/24 Corrections 05/03/24 Corrections 08/03/24 Corrections 12/03/24 Corrections 22/03/24 Corrections | DateP. modifiéesDescription de la modification10/12/20créationMise en forme02/09/21créationMise en forme20/10/21CorrectionsCorrection interface CAN03/11/21CorrectionsWording16/09/22CorrectionsBouchons et maintenance10/11/23CorrectionsPrécautions assemblage parallèle06/02/24CorrectionsPremière mise en service + Led End<br>of charge05/03/24CorrectionsPowerModule avec Précharge08/03/24CorrectionsStatut 2 Supermaster12/03/24CorrectionsCharge et équilibrage22/03/24CorrectionsExplication décodage CAN23/07/2023CorrectionsManipulations PowerModule |





#### SOMMAIRE

| ı           | INTRODUCTION                                   | 4  |
|-------------|------------------------------------------------|----|
| 1.1         | Usage de ce manuel                             | 5  |
| 1.2         | · · · · · · · · · · · · · · · · · · ·          |    |
|             | 9                                              |    |
| 2           | CARACTERISTIQUES D'UN MODULE SEUL              |    |
| 2.1         |                                                |    |
| 2.2         |                                                |    |
| 2.3         |                                                |    |
| 2.4         |                                                |    |
| 2.5         | ,                                              |    |
| 2.6         | / 1 1                                          |    |
| 2.7         | ' Système BMS,                                 | 8  |
| 3           | INTERFACES                                     | 9  |
| 3.1         |                                                |    |
| 3.2         | ·                                              |    |
| 3.3         |                                                |    |
| 3.4         |                                                |    |
| 3.5         |                                                |    |
| 3.6         | · · · · · · · · · · · · · · · · · · ·          |    |
|             |                                                |    |
| 4           | ASSEMBLAGE DE POWERMODULES SANS SUPERMASTER    | 14 |
| 4.1         | Assemblage parallèle                           | 14 |
| _           |                                                |    |
| 5           | ASSEMBLAGE MECANIQUE DES POWERMODULES          |    |
| 5.1         | Installation de plusieurs PowerModules         | 17 |
| 6           | ASSEMBLAGE DE POWERMODULES AVEC SUPERMASTER    | 18 |
| 6.1         | Rôle du SuperMaster                            | 19 |
| 6.2         | $\cdot$                                        |    |
|             | 6.2.1 Description physique du SuperMaster      |    |
|             | 6.2.2 Code d'allumage de la LED                |    |
|             | 6.2.3 Option Gateway et monitoring             | 25 |
| 7           | MISE EN SERVICE D'UN SYSTEME POWERMODULE       | 29 |
| <b>7</b> .1 |                                                |    |
|             | <u> </u>                                       |    |
| 8           | MAINTENANCE                                    | 31 |
| 9           | PRECAUTIONS GENERALES                          | 32 |
| <b>9</b> .1 |                                                |    |
| 9.2         | , ·                                            |    |
| 9.3         |                                                |    |
|             |                                                |    |
|             | PROTOCOLE CAN                                  |    |
|             | .1 Errors / Warnings de la batterie            |    |
| 10.         | .2 Protocole CAN bus Power Module              |    |
|             | 10.2.1 Identifiants                            | 35 |
|             | 10.2.2 Command ID utilisé pour les opérations  |    |
|             | 10.2.3 Messages périodiques                    |    |
|             | 10.2.3.1 Global Status 1 Master module         |    |
|             | 10.2.3.3 Global Status 1 Super Master 1 module |    |
|             | 10.2.3.4 Global Status 2 Super Master 1 module |    |
|             | 10.2.3.5 Error et Warning Master et Slave      | 44 |
|             | 10.2.3.6 Messages Error et Warning SuperMaster |    |
|             | 10.2.3.7 Status 1 SuperMaster                  |    |
|             | 10.2.3.9 Status 1 Master et Slave              |    |
|             | 10.2.3.10 Status 2 Master et Slave             |    |
|             |                                                |    |
|             | 10.2.4 Autres Messages CAN bus                 | 53 |
|             | 10.2.4.1 Maintenance Message                   |    |





| 10.2.4.2 | Cell voltage                      | . 54 |
|----------|-----------------------------------|------|
|          | Cell balancing                    |      |
|          | Ouverture-fermeture du contacteur |      |
|          | Management chauffage              |      |
| 10.2.4.6 | Parametres                        | . 57 |





### 1 Introduction

Le Système PowerModule est une batterie modulaire, intelligente et évolutive, utilisant une technologie de stockage qui offre des performances exceptionnelles, tant au niveau de la puissance disponible, de la densité d'énergie et de la durée de vie. Les configurations les plus évoluées peuvent être reliées à internet (cloud) pour un monitoring distant.

Le PowerModule est une batterie Lithium avancée pour véhicules industriels, pour traction moyenne ou lourde, la robotique et les applications nécessitant une capacité élevée et / ou une haute tension jusqu'à 819,2 V nominal. Jusqu'à 128 modules peuvent être assemblés en série, en parallèle ou les deux.

Pour les petits systèmes avec jusqu'à 16 modules, qui ne nécessitent pas de surveillance dans le cloud, ni de précharge, un BMS externe n'est pas nécessaire. Un BMS externe additionnel, appelé Supermaster, permet une surveillance dans le cloud, Il est nécessaire dans le cas d'un assemblage comprenant un grand nombre de PowerModules.

Le système embarque la technologie intelligente BMSMatrix® qui facilite grandement le déploiement, la maintenance et assure un fonctionnement fiable de la batterie pour un grand nombre d'années. Toute la complexité inhérente au bon fonctionnement et à la sécurité des batteries LiFePO4 est transparente pour l'utilisateur et est inclue dans l'électronique et les algorithmes embarqués dans la technologie BMSMatrix®

Ce manuel donne les caractéristiques techniques et les plages de fonctionnement du PowerModule, Il décrit également les assemblages de PowerModules.

**Important**: pour une bonne mise en service, consulter le chapitre « **Première mise en service** et charge ».

#### Points forts du système Li-ion PowerModule:

- BMSMatrix®: Modularité totale de 50V à 819VDC et 5kWh à 688KWh
- Boitiers extrêmement résistants empilables en inox
- 96% d'efficacité énergétique (Roundtrip efficiency)
- Choix de la technologie embarquée : Technologie Lithium Fer Phosphate (LiFePO4 ou LFP) totalement sécurisée et intrinsèquement stable, offrant une grande durée de vie
- Plusieurs milliers de cycles de charge/décharge disponibles
- Décharge profonde sans effet remarquable sur la durée de vie de la batterie
- Pas d'effet mémoire
- Pas de perte d'énergie à forts niveaux de décharge (Pertes de Peukert extrêmement faibles)
- Temps de charge rapide comparativement à d'autres types de batteries
- BMS (Battery Management System) embarqué dans chaque PowerModule assurant le contrôle total de la batterie (tensions de cellules, SoC, SoH, mesure de courant, équilibrage, coupure de sécurité)
- Communication par Bus CAN 2.0B.
- Coupure de puissance assurée par contacteur de puissance.
- Fusible intégré dans chaque PowerModule pour un second niveau de sécurité
- Gestion d'un circuit de pré-charge intégré dans le SuperMaster.
- Gain de poids de 70% par rapport à une batterie au plomb
- Dimensions réduites
- Sans entretien, pas de niveaux de liquide à faire





• Pas de dégagement de gaz

#### 1.1 <u>Usage de ce manuel</u>

Ce manuel est un guide pour l'installation, l'utilisation et l'entretien des batteries PowerModules. Il est indispensable que chaque personne qui travaille sur ou avec une batterie LiFePO4 ait une bonne connaissance du contenu de ce manuel et qu'il/elle suive scrupuleusement les instructions qu'il contient.

L'installation et les interventions sur une batterie Li-ion doivent être confiés uniquement à un personnel autorisé, qualifié et formé, agissant en conformité avec les normes en vigueur localement et les recommandations de sécurité.

Pour les installations comprenant plusieurs modules, il est important de maitriser l'installation d'un Module seul.

#### 1.2 Limites de garantie

PowerTech Systems garantit que la batterie LiFePO4 a été fabriquée suivant les normes et cahiers des charges légalement en vigueur. Des opérations non conformes aux instructions contenues dans ce manuel peuvent endommager la batterie ou altérer ses caractéristiques. Dans ces cas la garantie devient caduque.

La garantie est limitée à la réparation et/ou au remplacement du produit. Elle ne couvre pas les frais de main-d'œuvre d'installation ou d'envoi des pièces défectueuses.



ATTENTION : Les dommages causés à la batterie suite à une décharge profonde prolongée et maintenue ne sont pas couverts par la garantie.

La période de validité et les conditions d'application de la garantie figurent sur les conditions générales de ventes.

PowerTech Systems n'accepte aucune responsabilité pour :

- Les dommages indirects consécutifs à l'utilisation du produit PowerModule
- Les possibles erreurs de ce manuel et leurs conséquences





### 2 Caractéristiques d'un module seul



### 2.1 <u>Dimensions</u>



Remarque : sur les premières versions du PowerModule les fiches IN et OUT sont inversées





### 2.2 <u>Caractéristiques</u>

| Technologie                             | Lithium Ferro Phosphate (LFP - LiFePo4) |
|-----------------------------------------|-----------------------------------------|
| Tensions Min / Nominal / Max            | 48.0 V / 51.2 V / 58.4 V                |
| Capacité/Energie nominale (at 1C, 25°C) | 105Ah/5.376 KWh                         |
| Poids (+/- 3 %)                         | 43.5 Kg                                 |
| Dimensions (I x w x h)                  | 400 x 290 x 230 mm                      |
| Température d'utilisation               | de -20°C, à +60°C                       |
| Températures négatives                  | Système de chauffage intégré            |
| Connecteur de puissance                 | Amphenol Powerlok IP67                  |
| Energie spécifique                      | 123.5 Wh/Kg                             |
| Densité d'énergie                       | 201.5 Wh/l                              |
| Courant de décharge continu (à 20 °C)   | 125 A (6.40kW)                          |
| Courant de décharge pic (5 minutes)     | 200 A (10.24kW)                         |
| Courant de décharge pic (30 s)          | 250 A (12.80kW)                         |
| Tension de charge recommandée           | 57.0 V                                  |
| Tension de charge maximale              | 58,4 V                                  |
| Tension de float recommandée            | 54.0 V                                  |
| Courant de charge standard              | 50 A (2.56kW)                           |
| Courant de charge rapide                | 100 A (5.12kW)                          |
| Orientation                             | Aucun élément sensible à l'orientation  |
| Classe de protection                    | IP54 (IP66 sur demande à la commande)   |
| Autodécharge                            | <5% par mois en stockage                |

#### 2.3 Fusible

Chaque PowerModule est équipé d'un fusible supportant 250 Ampères, Il ne devrait agir qu'en cas de problème grave. Pour protéger les circuits d'utilisation de toute fausse manœuvre, vous devez mettre un fusible de calibre inférieur en amont du système. Il est conseillé de mettre un fusible sur chaque pôle de la batterie.

### 2.4 Chauffage interne

Le chauffage interne est constitué d'une résistance alimentée par la batterie. Il est piloté par des commandes BUS-CAN de mise en marche et d'arrêt décrites dans le chapitre protocole BUS-CAN

Une commande permet le chauffage automatique en charge si la température est basse.

#### 2.5 Nombre de cycles estimés

Conditions de tests : charge à C/4 constant, décharge à C/2 constant, température ambiante de 25°C.

80% d'énergie résiduelle restante à l'issue des cycles.

à 70% de DOD ~6000

à 80% de DOD ~4000

à 90% de DOD ~3400

à 100% de DOD ~3000





Nombre de cycles fonction de la profondeur de décharge (DOD)



Le nombre de cycle est aussi variable avec la température de cyclage. Jusqu'à 35°C le SOH n'est pas trop affecté. A 45 °C, La perte de SOH est notable.

### 2.6 Synoptique interne du PowerModule



### 2.7 Système BMS,

#### Fonctionnalités:

- Équilibrage des 16 cellules composant le PowerModule
- Monitoring de la tension du pack et des cellules
- Monitoring temps réel du courant délivré
- Calcul précis du SoC (Etat de charge) par shunt de précision et capteurs à effet Hall
- Mesure du SoH (Etat de santé) par le biais d'algorithmes.
- Monitoring de la température de l'électronique et des cellules
- Sécurisation par contacteur de puissance
- •Communication numérique via CAN-BUS avec les autres éléments reliés aux systèmes, tels que les chargeurs, les onduleurs, les alternateurs, etc.







### 3 Interfaces

### 3.1 <u>Description</u>



#### 3.2 Connection de puissance

Utilisez des contacts Surlok femelle Amphenol pour connecter le faisceau électrique de puissance aux pôles plus et moins du PowerModule, par exemple :

Pour le pôle moins des connecteurs SLPPB35BSB (noir) Pour le pôle plus des connecteurs SLPPB35BSR (rouge)

### 3.3 Interfaces RJ45

#### Liaisons CAN

Les PowerModules sont pilotables en CAN-Bus, la spécification des commandes est décrite dans l'annexe 1

Numérotation connecteur RJ45, le pin de verrouillage du connecteur est au-dessus.







### **RJ45 OUT**

| PIN#   | NAME                | DESCRIPTION                                                                                                       |
|--------|---------------------|-------------------------------------------------------------------------------------------------------------------|
| 1      | CAN H               | CAN Isolé                                                                                                         |
| 2      | CAN L               |                                                                                                                   |
| 3      | Resistance<br>120 Ω | Option résistance de terminaison 120 Ohms<br>Relier cette pin 3 à la PIN 1 pour avoir une terminaison 120<br>Ohms |
| 4      | GND                 | GND CAN Isolé                                                                                                     |
| 5      | LIFELINE1           | Utilisé en option dans des assemblages                                                                            |
| 6      | ON/OFF<br>iso plus  | ON/OFF isolé<br>Appliquer une tension de +5V à 12V entre Pin7 and et Pin 6                                        |
| 7      | ON/OFF iso moins    | pour mettre la batterie sous tension (option inter externe relier 6 et 7)                                         |
| 8      | Wake<br>UP_IN       | Utilisé pour mettre en marche la batterie suivante dans des<br>assemblages                                        |
| shield |                     | GND CAN isolé                                                                                                     |

Un module seul peut être mis sous tension avec seulement ON/OFF alimenté en 5V ou 12V.

Quand le PowerModule est utilisé seul, Il doit être Master, il est donc équipé d'une précharge. Un PowerModule Master ne peut pas être utilisé en cas de configuration série. Le principe de la precharge est décrit dans le chapitre « Rôle du SuperMaster ». La résistance de précharge fait 25 Ohms.

Une mise sous tension par interrupteur peut être demandée en option. Le PowerModule est alors modifié, les pin 6 et 7 de RJ45 OUT doivent être connectés à l'interrupteur externe, il ne peut plus être mis sous tension par l'application d'une tension. Cette option ne doit être utilisée que pour des batteries seules ou en parallèles donc inférieures à 60V.

La liaison CAN-BUS peut être utilisée pour échanger des informations avec la batterie ; dans ce cas, selon la configuration physique du CAN, la résistance 120 Ohms de terminaison peut être utilisée.

Schéma conseillé: Un bouchon 120 Ohms à chaque extrémité du bus CAN.









RJ45 IN utilisé dans les assemblages

| PIN#   | NAME                | DESCRIPTION                                                                                                    |
|--------|---------------------|----------------------------------------------------------------------------------------------------------------|
| 1      | CAN H               | CAN Isolé relié au RJ45 IN                                                                                     |
| 2      | CAN L               |                                                                                                                |
| 3      | Resistance<br>120 Ω | Option résistance de terminaison 120 Ohms<br>Relier cette pin 3 à la PIN 1 pour avoir une terminaison 120 Ohms |
| 4      | GND                 | GND CAN Isolé                                                                                                  |
| 5      | LIFELINE2           | Utilisé en option dans des assemblages                                                                         |
| 6      | NC                  | Non connectés                                                                                                  |
| 7      | NC                  | Non connectes                                                                                                  |
| 8      | Wake<br>UP_OUT      | Utilisé pour mettre en marche la batterie suivante dans des<br>assemblages                                     |
| shield |                     | GND CAN isolé                                                                                                  |

### 3.4 Connexion du châssis à la terre

Le câblage de masse est installé avec une tresse de masse (non fournie) connectée sur l'équerre de fixation du système. Le type et les caractéristiques de la tresse doivent répondre aux normes en vigueur dans le pays d'installation. La tresse doit relier le châssis à la terre, conformément à la réglementation du pays.







### 3.5 Code d'allumage de la LED

| Mode          | Condition            | LED                |
|---------------|----------------------|--------------------|
| Mode Stand-by | -                    | OFF                |
| Warning       | -                    | Orange fixe        |
| Erreur        | -                    | Rouge fixe         |
|               | 0% ≤ SOC < 15%       | Orange flash 0.5Hz |
|               | 15% ≤ SOC < 100%     | vert flash 1Hz     |
| Nominal       | Contacteur puissance | rouge flash 0.5Hz  |
|               | ouvert manuellement  | 100ge ilusi 10.3Hz |
|               | End of Charge        | vert fixe          |

Une erreur stoppe la batterie: son contacteur de puissance interne s'ouvre.

Un warning ne stoppe pas la batterie, il indique une anomalie mineure.





### 3.6 Mise en service d'un PowerModule seul

Le PowerModule ne présente pas de tension aux bornes de puissance sans une mise sous tension.

Un PowerModule seul n'a besoin que d'un signal pour la mise sous tension, il s'agit du signal ON/OFF décrit en 3.3 : dans le connecteur RJ45 OUT deux contacts sont utilisés :

Appliquer une tension de +5V à 12V entre Pin7 (moins) et Pin 6 (plus) pour mettre la batterie sous tension. Ces contacts sont isolés donc complétement indépendants de la tension batterie :



Il existe des PowerModules avec **option interrupteur** externe, if suffit de relier ces Pin6 et 7, cette option ne doit pas être utilisée en assemblage série car le potentiel des contacts est relié au potentiel batterie.



Une liaison CANbus est prévue, cette liaison donne toutes les informations internes de la batterie. Les utilisateurs auront tous les avantages à utiliser ces informations dans leur système, notamment pour avoir l'état de charge de la batterie (SOC). Le câblage est décrit en 3.3 « connecteur RJ45 OUT ». La liaison CAN nécessite des résistances de terminaisons, en pratique une résistance de 120 Ohms à chaque extrémité de la ligne ; Le PowerModule comporte en interne une résistance qui peut être activée. Le bus CAN est isolé.



Les commandes CAN sont décrites dans ce document au chapitre « Protocole CAN bus Power Module »







### 4 <u>Assemblage de PowerModules sans SuperMaster</u>

Se passer de SuperMaster n'est valable que dans les assemblages parallèles.

Le nombre de PowerModules en parallèle doit être initialisé par un paramétrage logiciel dans le PowerModule Master pour qu'il puisse faire la synthèse de l'intensité.

### 4.1 Assemblage parallèle

Les modules peuvent être associés en parallèle avec un maximum de 31 modules en parallèle (31P).

Un PowerModule Master doit être utilisé, il est mis en marche par une tension externe ou par bouton poussoir en option, il met en marche les autres PowerModules.

IMPORTANT : les câbles de puissance « Plus » entre PowerModules et hub doivent avoir tous la même longueur, de même pour les câbles « moins ».

Dans le même but d'équilibrer l'intensité dans chaque branche parallèle Les liaisons dans les hubs doivent être soignées.

Exemple d'assemblage de 6 modules en parallèle sans SuperMaster :

Cet assemblage constitue une batterie aux caractéristiques suivantes :

Tension: 6 modules en parallèle soit 51,2V nominal.

Capacité 6x105Ah=630Ah

L'énergie est de 6x5,376kWH = 32,256kWh







15



Pour un assemblage en parallèle utiliser les hubs de liaison de puissance. Des fusibles doivent être installés sur le pôle négatif et le pôle positif de la batterie. Ils doivent être adaptés à l'utilisation pour protéger des appareils, des câbles ou des connexions, et inférieur au calibre du fusible interne des PowerModules qui est de 250A, donc si P batteries sont en parallèle, le fusible doit être inférieur à P fois 250A.

#### Option de démarrage avec interrupteur :

Le ON/OFF par interrupteur est possible. Les PowerModules Master peuvent être spécifiquement fabriqués avec cette option sur demande. Dans ce cas les PowerModules ne peuvent plus être mis en marche par une tension externe. L'interrupteur n'est pas isolé de la tension batterie, c'est pourquoi il faut réserver cette option pour des assemblages 1SxP, c'est-à-dire en parallèle uniquement (51.2V nominal).

### 5 Assemblage mécanique des PowerModules

Le PowerModule est facilement installé et s'adapte à n'importe quel espace, il n'y a donc pas besoin d'armoire spécifique. Les modules peuvent être assemblés à l'aide de plaques vissées.

PowerTech Systems fournit les pièces d'assemblage pour l'assemblage des Powermodules.







#### Représentation d'un assemblage 1S6P avec PowerHub



#### **POWERHUB**

Le PowerHub est nécessaire pour mettre des batteries en parallèle. Il est conçu pour équilibrer le courant entre les câbles d'entrée.

#### Dimensions du PowerHub:



Diamètre maximal des 10 câbles d'entrée 9mm, 20mm en sortie.

Pour Câbler un PowerHub, il est nécessaire de l'ouvrir avec un clé torx CR-V T20









Pour fixer les câbles équipés de cosses adaptées, mettre des boulons M8 avec rondelles plates et rondelles Grower. Serrer à 8,2Nm. Refermer le couvercle en serrant les 12 Vis à 2,4Nm.

### 5.1 <u>Installation de plusieurs PowerModules</u>

Dans Les installations comportant plusieurs PowerModules et lorsque l'intensité ne dépasse pas C/2 hors pics de courant, la distance suivante de parois est conseillée :





Dans le cas d'un caisson fermé, il faudra prévoir une aération haute et basse. Pour des courants plus élevé PowerTech Systems devra être consulté. note: les PowerModules peuvent être manipulés avec une ventouse :







### 6 <u>Assemblage de PowerModules avec SuperMaster</u>

L'utilisation d'un module SuperMaster avec les PowerModules permet d'atteindre des tensions et des puissances élevées.

Le **MainMaster** est le SuperMaster qui permet de dialoguer avec l'extérieur, il est équipé d'une précharge.

Principe général de câblage Y en série, X en parallèle



Exemple de calcul d'assemblage de 4 modules en série et 3 en parallèle avec leur 3 SuperMasters :

Cet assemblage constitue une batterie aux caractéristiques suivantes :

- Tension: 4 modules en série soit 4x51,2V=204,8V nominal.
- Capacité: 3x105Ah=315Ah
- L'énergie est de 4x3x5,376kWH = 64,512kWh

Les assemblages les plus importants nécessitent un ou plusieurs SuperMaster. Le SuperMaster est un module de gestion indépendant qui ne comprend pas d'éléments de batterie, il gère une ligne de batteries série au travers des liaison Bus CAN « verticales ». Une ligne de liaison Bus CAN « horizontale » relie les SuperMasters entre eux.

Des fusibles doivent impérativement être installés sur le pôle négatif et le pôle positif de la batterie.

Ils doivent être adaptés à l'utilisation pour protéger des appareils, des câbles ou des connexions. Et inférieur au calibre du fusible interne des PowerModules qui est de 250A, donc si P batteries sont en parallèle, le fusible doit être inférieur à P fois 250A.





### Possibilités d'assemblage de PowerModules avec SuperMaster

Jusqu'à 128 modules peuvent être assemblés pour atteindre une capacité nominale de 688kWh.

| 1\$ (51,2V) : de 1 à 128P<br>2\$ (102.4V) : de 1 à 64P<br>3\$ (153.6V) : de 1 à 42P<br>4\$ (204.8V) : de 1 à 32P<br>5\$ (256.0V) : de 1 à 25P<br>6\$ (307.2V) : de 1 à 21P<br>7\$ (358.4V) : de 1 à 18P<br>8\$ (409.6V) : de 1 à 16P<br>9\$ (460.8V) : de 1 à 14P<br>10\$ (512.0V) : de 1 à 12P<br>11\$ (563.2V) : de 1 à 11P<br>12\$ (614.4V) : de 1 à 10P<br>13\$ (665.6V) : de 1 à 9P<br>14\$ (716.8V) : de 1 à 9P |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14S (716.8V) : de 1 à 9P<br>15S (768.0V) : de 1 à 8P<br>16S (819.2V) : de 1 à 8P                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |

Le poids des plus grands assemblages dépasse 5000Kg, il faut vérifier la charge au sol admissible avant installation.

### 6.1 <u>Rôle du SuperMaster</u>

| Rôle du SuperMaster                   | Description                                                                                                                                                                                               |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ON/OFF Global                         | Fonction ON/OFF par contact entre 2 contacts du connecteur XLR situé à l'arrière du SuperMaster.                                                                                                          |
| BATTERY STACK OU SYSTEM<br>MANAGEMENT | Communication avec les modules slaves dépendants du SuperMaster,<br>Calcul du SOC (état de charge) et SOH (état de santé) global des<br>slaves associés<br>Communication avec les SuperMasters adjacents. |
| PRECHARGE (Optionnel)                 | Un SuperMaster peut gèrer la précharge en option.                                                                                                                                                         |
| COMMUNICATION INTERNE SYSTEME         | Les SuperMasters communiquent entre eux les données pour délivrer des informations globales de la batterie sur bus CAN.                                                                                   |
| COMMUNICATION EXTERNE SYSTEME         | En option Un gateway permet de transmettre des informations sur le WEB.                                                                                                                                   |





#### Précharge:

La précharge est utilisée pour limiter les appels de courant sur des condensateurs. À la mise sous tension de la batterie, avant la mise sous tension définitive, le pôle plus est connecté au plus batterie au travers d'une résistance interne au SuperMaster. Les condensateurs sont ainsi chargés avec une intensité limitée.

Le relais principal du MainMaster est ainsi préservé, lors de sa fermeture, la tension à ses bornes est limitée.

#### Détail de fonctionnement :

La batterie est hors tension, les contacteurs sont ouverts :



Sur une demande de mise en route, le contacteur de précharge se ferme. L'intensité i est limitée par le résistance de précharge :



Quand la tension est suffisante le contacteur principal peut se fermer, la tension à ses bornes étant faible :



La valeur de la résistance de précharge dépend de la tension de la batterie, de la valeur des condensateurs et de la durée de précharge. L'utilisateur doit connaître la valeur de ces condensateurs pour adapter la résistance au système.





### 6.2 <u>PowerModule "SuperMaster"</u>

L'unité PowerModule SuperMaster est plus petite que l'unité principale PowerModule. Cette unité n'embarque aucune cellule, mais uniquement un contrôle électronique, une communication numérique et une gestion de l'énergie électrique.

Le SuperMaster peut jouer 2 rôles distincts en fonction de l'application et de la quantité d'énergie requise. Ces rôles sont :

- Le SuperMaster
- Le **MainMaster** est un SuperMaster particulier du système, il concatène les données des SuperMasters du système pour délivrer les données globales de la batterie.

#### 6.2.1 Description physique du SuperMaster



- Slave IN: Port CAN RJ45 pour connecter la liaison CAN provenant d'un module esclave.
- Master IN: Port CAN RJ45 pour connecter la liaison CAN provenant d'un module maître.
- Master OUT: Port CAN RJ45 pour connecter la liaison CAN vers un autre module master.





- Gateway: Port RJ45 fournissant une interface de communication avec des protocoles autres que CAN.
- LED d'indication : Diode électroluminescente indiquant l'état de fonctionnement du système ou du module.
- Connecteur XLR 2 points «Power» est utilisé pour alimenter SuperMaster avec une tension de 12V ou 24V ou 51,2V suivant l'option de tension d'alimentation . Pin 1 plus, Pin 2 GND.
- Connecteur XLR 7 points « AUX » est utilisé pour réveiller le SuperMaster avec un contact sec entre la Pin 1 et la Pin 2. Les autres broches seront utilisées pour les applications futures.





#### 6.2.2 Code d'allumage de la LED

| Mode          | Condition            | LED                 |
|---------------|----------------------|---------------------|
| Mode Stand-by | -                    | OFF                 |
| Warning       | -                    | Orange fixe         |
| Erreur        | -                    | Rouge fixe          |
|               | 0% ≤ SOC < 15%       | Orange flash 0.5Hz  |
|               | 15% ≤ SOC < 100%     | vert flash 1Hz      |
| Nominal       | Contacteur puissance | rouge flash 0.5Hz   |
|               | ouvert manuellement  | 100ge 110311 0.3112 |
|               | End of charge        | vert fixe           |

Une erreur stoppe la batterie, son contacteur de puissance interne s'ouvre.

Un warning ne stoppe pas la batterie, il indique une anomalie mineure.





### Dimensions SuperMaster



### Caractéristiques Supermaster

| Tensions d'alimentation suivant options | 12.0 V / 24 V / 48 V                   |
|-----------------------------------------|----------------------------------------|
| Consommation sans gateway               | 340mA/160mA/128mA                      |
| Consommation avec gateway               | 540mA/260mA/80mA                       |
| Poids (+/- 3 %)                         | 4,9 Kg avec Gateway                    |
| Dimensions (I x w x h)                  | 350 x 250 x 100 mm                     |
| Température d'utilisation               | de -20°C, à +60°C                      |
| Connecteur de puissance                 | M8, câble diamètre 20mm                |
| Courant de décharge continu             | 400 A                                  |
| Orientation                             | Aucun élément sensible à l'orientation |
| Classe de protection                    | IP40*                                  |

<sup>\*(</sup>IP54 sur demande à la commande : caractéristiques mécaniques différentes)





RJ45 Slave IN utilisé dans les assemblages

|      | K3+3 Slave III Sillise dalis les asserriblages |                                                                        |  |
|------|------------------------------------------------|------------------------------------------------------------------------|--|
| PIN# | NAME                                           | DESCRIPTION                                                            |  |
| 1    | CAN H                                          | CAN Isolé                                                              |  |
| 2    | CAN L                                          |                                                                        |  |
| 3    | NC                                             |                                                                        |  |
| 4    | GND                                            | GND CAN Isolé                                                          |  |
| 5    | LIFELINE                                       | Utilisé en option dans des assemblages                                 |  |
| 6    | NC                                             | Non connectés                                                          |  |
| 7    | NC                                             | Non connectés                                                          |  |
| 8    | Wake UP<br>Slave                               | Utilisé pour mettre en marche le premier slave dans des<br>assemblages |  |
|      |                                                |                                                                        |  |

Un câble RJ45 droit est utilisé dans cette prise

RJ45 Master IN utilisé dans les assemblages

| K3-0 Masici iit oiliise aalis les asserriblages |                     |                                                                                                                |  |
|-------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|--|
| PIN#                                            | NAME                | DESCRIPTION                                                                                                    |  |
| 1                                               | CANH                | CAN Isolé                                                                                                      |  |
| 2                                               | CAN L               |                                                                                                                |  |
| 3                                               | Resistance<br>120 Ω | Option résistance de terminaison 120 Ohms<br>Relier cette pin 3 à la PIN 1 pour avoir une terminaison 120 Ohms |  |
| 4                                               | GND                 | GND CAN Isolé                                                                                                  |  |
| 5                                               | LIFELINE            | Utilisé en option dans des assemblages                                                                         |  |
| 6                                               | ON/OFF<br>iso       | Peut être utilisé mais préférer la prise ON/OFF                                                                |  |
| 7                                               | GND                 |                                                                                                                |  |
| 8                                               | Wake<br>UP_IN       | Utilisé pour mettre en marche le supermaster dans des<br>assemblages                                           |  |
|                                                 |                     |                                                                                                                |  |

Un câble RJ45 droit est utilisé dans cette prise





RJ45 Master OUT utilisé dans les assemblages

| PIN# | NAME                | DESCRIPTION                                                                                                                                                             |
|------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | CAN H               | CAN Isolé                                                                                                                                                               |
| 2    | CAN L               |                                                                                                                                                                         |
| 3    | Resistance<br>120 Ω | Option résistance de terminaison 120 Ohms<br>Relier cette pin 3 à la PIN 1 pour avoir une terminaison 120 Ohms<br>Option peu utilisée, Il existe un jumper sur la carte |
| 4    | GND                 | GND CAN Isolé                                                                                                                                                           |
| 5    | LIFELINE            | Utilisé en option dans des assemblages                                                                                                                                  |
| 6    | NC                  | Non connectós                                                                                                                                                           |
| 7    | NC                  | Non connectés                                                                                                                                                           |
| 8    | Wake<br>UP_OUT      | Utilisé pour mettre en marche le supermaster suivant dans des<br>assemblages                                                                                            |
|      |                     |                                                                                                                                                                         |

Un câble RJ45 droit est utilisé dans cette prise

### RJ45 GATEWAY utilisé dans les assemblages

Prise RJ45 Ethernet

### 6.2.3 Option Gateway et monitoring

Dans un système PowerModule, Le MainMaster peut être équipé en option d'une carte Gateway. Associée à un routeur, Elle rend l'accès distant aux paramètres de la batterie. Un monitoring permet de présenter simplement ces paramètres. Le routeur utilise la liaison Ethernet « Gateway » du SuperMaster.







#### Monitoring:

Chaque système de batterie sur l'exemple « avant » et « arrière » dispose de sa propre base de données. L'utilisateur sélectionne le système dans le menu « Browse Sites ».



Le monitoring principal présenté ci-dessous affiche toutes les données du système. Il est possible à l'utilisateur de sélectionner une date et une heure précise pour connaitre l'état du système à cet instant.



Les informations sont disponibles pour tous les BMS SuperMaster (fond noir) et tous les modules de batteries (fond blanc)







Des logs graphiques peuvent être présentés sous forme de graphe :







### Câblage général SuperMaster 3S3P:



Câblage SuperMaster 3S3P avec un seul supermaster. Ce câblage est limité en courant par le supermaster :







### 7 <u>Mise en service d'un système PowerModule</u>

Pour mettre en service réaliser le branchement comme indiqué dans les différents exemples, Dans le cas où il n'y a pas de Supermaster, le PowerModule Master sera mis en marche comme indiqué dans le chapitre « mise en service d'un PowerModule seul ». Le chaînage des autres PowerModules permet à ceux-ci de se mettre sous tension. L'option mise en route par interrupteur peut être utilisée dans le seul cas où les PowerModules sont en parallèle.

Dans le cas où il y a au moins 1 SuperMaster, l'interrupteur du MainSuperMaster (SuperMaster n°1) permettra de mettre sous tension l'ensemble du système au travers du chaînage des PowerModules et des SuperMasters.

Câbler les PowerModules et l'intérieur du ou des SuperMasters comme indiqué précédemment.

Brancher l'alimentation des SuperMasters

Si il y a plusieurs Supermasters, brancher l'interrupteur sur le MainSuperMaster seulement



Interrupteur Connecteur 2 points conseillé : LP-20-C02PE-01-22 de CNLINKO

Alimentation 12V ou 24V ou 51,2V suivant l'option Connecteur 7 points conseillé : LP-20-C07PE-01-22 de CNLINKO 1 plus, 2 moins

### 7.1 Première mise en service et charge

#### Important à la **première mise en service\_**:

A la mise en service, une charge initiale doit être réalisée. A l'issue de cette charge, tous les PowerModules doivent avoir atteint l'état End of Charge.

La charge complète a lieu quand le message END OF CHARGE est présenté sur le réseau CANBUS: Status 2= End of Charge System. Chaque charge doit se terminer par ce signal. End of Charge est aussi indiqué par le vert fixe de la LED.

#### Charge et équilibrage :

Dans certaines conditions, les PowerModules peuvent se déséquilibrer.

Ce déséquilibre correspond à une différence de tension entre les cellules en série à l'intérieur. Il peut survenir en cas de stockage prolongé ou si les charges ne sont pas complètes.

### Conséquences d'une batterie déséquilibrée :

- Toute la capacité de la batterie ne peut pas être utilisée
- La batterie coupe prématurément en charge, c'est à dire à une tension trop faible.
- La batterie coupe prématurément en décharge, c'est à dire à une tension trop élevée.





#### Comment équilibrer

L'équilibrage se fait en fin de charge. Il n'est parfaitement efficace qu'à partir d'une tension de charge de 56.0V.

La tension de charge recommandée est de 57.0V pour un PowerModule. Le message END OF CHARGE est présenté quand la batterie est chargée et l'équilibrage satisfaisant.

Afin de réaliser une charge complète, il est recommandé que le chargeur module son courant de charge à partir de la consigne de courant IMR. Cette consigne est périodiquement présentée sur le CANBUS, La description de ces messages se trouve dans ce document dans la partie protocole CAN, cette information est décrite dans « Global Status 1 ». Cette consigne IMR permet de charger et d'équilibrer les cellules sans dépasser les tensions maximales des cellules.

Si le chargeur n'a pas la possibilité de moduler son courant de charge à partir de l'IMR, la charge va probablement engendrer des ouvertures / fermetures de relais jusqu'à la fin de la charge et de l'équilibrage. Ce mode de fonctionnement est normal et consiste à mettre en protection la batterie des surcharges liées au chargeur qui ne gère pas la consigne IMR. La charge et l'équilibrage sans prise en charge de la consigne IMR est plus longue à s'effectuer.

Un très fort déséquilibre pourrait demander plusieurs jours de charge pour rétablir un fonctionnement nominal de la batterie.

Une autre méthode pour réaliser le processus d'équilibrage d'un PowerModule, est de faire une charge normale jusqu'à 55V puis de finir la charge avec un faible de courant de 0,4A jusqu'à 57V, ce qui peut être réalisé avec une alimentation stabilisée.

En conséquence, chaque charge doit être complète. En respectant cette consigne la batterie gardera ses performances au fil du temps.

#### **Charge Floating**

Un PowerModule chargé équilibré peut-être maintenu opérationnel sur une longue période avec un chargeur à la tension de floating de 53,4V. Le PowerModule restera parfaitement chargé pour une longue période, l'autodécharge sera compensée et le vieillissement sera moins important.





### 8 Maintenance

Le Système PowerModule ne nécessite pas d'entretien particulier. Il est nécessaire de vérifier l'installation électrique au moins une fois par an. Les défauts tels que du jeu dans les connexions, des câbles endommagés, brûlés, etc...doivent être corrigés immédiatement.

#### En utilisation

La température d'utilisation doit s'approcher autant que possible de 25°C. Lors d'un assemblage de PowerModules, ils doivent tous être à la même température : Une disparité entraine des déséquilibres en tension, en intensité et en vieillissement.

#### Stockage / hivernage

Tous les modules doivent être éteints avant d'être stockés. Le taux d'autodécharge est inférieur à 5% par mois. Ce taux ainsi que le vieillissement naturel de la batterie augmentent avec la température ambiante.

Dans le cas où une batterie Lithium-lon reste inutilisée, nous recommandons :

- de charger la batterie avant son stockage. Le niveau de charge pour le stockage doit être de 100%.
- De vérifier l'état de charge tous les trois mois et de procéder à une recharge ponctuelle si nécessaire.
- La batterie éteinte ne **doit jamais rester totalement déchargée plus de 7 jours** sous peine de dégrader la chimie des cellules et de diminuer sa durée de vie.
- Vieillissement calendaire : Les batteries vieillissent avec le temps même sans aucune utilisation. Éviter l'exposition prolongée à la chaleur, une température régulée de 15 à 25°C est idéale. Une température plus élevée accélère le vieillissement.

Le local de stockage doit être sec et ventilé

#### **IMPORTANT**

L'électronique embarquée (BMS) a une consommation d'énergie résiduelle continue pour assurer son fonctionnement. En cas de non-utilisation prolongée de la batterie, il est nécessaire de la couper pour éviter qu'elle ne se décharge lentement.

Si la batterie reste allumée trop longtemps sans recharge, le BMS va se couper automatiquement à partir d'un seuil de tension défini, ceci afin d'éviter d'endommager les cellules par une décharge profonde. Cependant le BMS embarqué et l'autodécharge des cellules continuent de décharger très lentement la batterie.

NE JAMAIS STOCKER UN SYSTEME POWERMODULE DECHARGE OU ALLUME

#### Remplacement d'un module :

Le remplacement d'un module ne peut pas se faire sans précautions :

La première concerne les précautions générales concernant la sécurité : se reporter au chapitre précautions générales.

La deuxième concerne l'état de charge : Lors de l'utilisation, le nouveau PowerModule doit arriver à 100% en même temps que les autres. La meilleure solution est de charger à 100% l'ensemble de la batterie avant modification puis de réaliser le changement avec le nouveau PowerModule indépendamment chargé à 100%. La batterie sera alors équilibrée et pourra délivrer la capacité maximum.





### 9 Précautions générales

### 9.1 Principales règles



Suivez ces instructions et conservez ce manuel à portée, non loin de la batterie Lithium-lon pour lecture ultérieure.

Les interventions sur la batterie Lithium-lon doivent être faites seulement par du personnel qualifié.



**Danger d'explosion ou de feux**. Evitez tout court-circuit au niveau des connecteurs de puissance. Interdire les décharges profondes ou les courants de charge et décharges élevés. Reportez-vous aux limites techniques de la batterie plus loin dans ce document.

En cas d'incendie, utilisez un extincteur à mousse type D ou CO2

#### **RISQUE ELECTRIQUE:**



Les modules PowerModule ont une tension nominale de 51.2V et une tension maximale de

58.4V. Ces produits appartiennent à la classification électrique **TBT (Très Basse Tension)** et doivent être manipulés et installés uniquement par du personnel formé et **habilité TBT**.

La **mise en série** de modules PowerModule présente un risque **d'électrisation**, **d'électrocution** ou de **choc électrique**. Cette opération doit être effectuée **EXCLUSIVEMENT** par un personnel formé et compétent.

L'installation et la manipulation d'un système PowerModule assemblé en série doit obligatoirement être effectué par **du personnel autorisé et habilité BT** (Basse Tension) selon la norme NF C 18-510.



En cas d'intervention à l'intérieur de la batterie (opération uniquement effectuée par du personnel habilité et autorisé), le port de lunettes, de gants de sécurité, et de vêtements de protection est nécessaire.



Les projections de matériaux de batterie tels que l'électrolyte ou la poudre sur la peau ou les yeux doivent être lavés abondement à l'eau claire. Il est nécessaire de consulter un médecin par la suite. Rincez à l'eau claire les projections sur les vêtements. Dans les conditions normales d'utilisation, le contact avec ce matériau est impossible.



Ne tentez jamais d'ouvrir ou de démonter le produit PowerModule. L'Electrolyte est un matériau très corrosif. Dans les conditions de fonctionnement normales, le contact avec l'électrolyte est impossible. Si le boitier de la batterie est endommagé et qu'il se produit des fuites d'électrolyte, ne touchez pas ces produits exposés qui sont agressifs pour la peau et les yeux.



Les batteries Lithium-Ion PowerModule peuvent être chargées avec une tension jusqu'à 58.4V.

Elles peuvent être déchargées jusqu'à 44V. Notez que cette plage de tension est plus large que celle que vous trouveriez pour des batteries d'un autre type, tel que les batteries au plomb. Ces tensions peuvent dépasser celles supportées par les équipements connectés.

Par conséquent, des mesures doivent être prises pour protéger les appareils alimentés.



La garantie est caduque en cas de non-observation des règles générales, de nonobservation des instructions d'utilisation, en cas d'intervention sur le produit ou d'ouverture des produits sans autorisation préalable.





### 9.2 Précaution pour le transport

La batterie lithium-ion PowerModule doit être transportée hors tension (mise hors tension et tous les connecteurs d'alimentation débranchés). Les connecteurs de puissance doivent être **isolés électriquement** (capot plastique sur chacun des connecteurs de puissance)

La batterie lithium-ion PowerModule doit être transportée dans son emballage d'origine.



N'utilisez pas les fiches pour soulever la batterie.

Les batteries appartiennent aux catégories UN3480 et UN3481, classe 9, Packaging Group II et doivent être transportées et expédiées conformément à ces réglementations.

Ceci signifie que pour les transports terrestres ou maritimes (ADR, RID et IMDG), elles doivent être emballées selon instructions P903. Pour le transport aérien (IATA), ce sont les instructions P965 qui s'appliquent.

### 9.3 Recyclage des batteries Lithium-Ion

Les batteries marquées du symbole de recyclage doivent être confiées à une agence de recyclage reconnue.

Elles peuvent être retournées au distributeur du produit. Sous accord préalable, elles peuvent être retournées au fabricant. Ne mêlez pas les batteries aux ordures ménagères ou industrielles.









### 10 Protocole CAN

La suite décrit le protocole de communication utilisé par le BMS (Battery Management System). Le protocole de bus sous-jacent est CAN 2.0b.

Rappel sur les termes Slave, Master, SuperMaster, Supermaster1 (ou MainMaster)

Dans cette configuration, M est **Master** Les autres Modules notés S sont des **Slaves** 





### 10.1 Errors / Warnings de la batterie

Les batteries maître et esclaves peuvent à la fois générer l'état des Errors et des Warnings de la batterie afin de protéger la batterie. Les informations sur les erreurs et les avertissements sont répertoriés ci-dessous (reportez-vous au message de bus CAN 0x022 pour plus de détails) :

Un Warning n'a aucun effet sur la batterie. C'est une information pour avertir l'utilisateur. Mais certaines erreurs peuvent agir sur le contacteur de puissance (voir l'Annexe IV Erreurs / avertissements et contacteur de puissance).





### 10.2 Protocole CAN bus Power Module

CAN est l'acronyme de "Controller Area Network".

Dans un réseau CAN, de nombreux messages courts portant des informations succinctes sur l'état des nœuds sont diffusées à l'ensemble du réseau, ce qui assure la cohérence des données dans chaque nœud du système. Standard CAN utilise un identifiant de 11 bits et Extended CAN utilise un identifiant de 29 bits.

#### Specifications bus CAN:

CAN Spec.: CAN 2.0B (compatible avec CAN 2.0A)

Bit rate: 125kbit/s, 250kbit/s (Default), 500kbit/s, 1Mbit/s

Message Type: Standard (11-bit Identifier) & Extended (29-bit Identifier Default)

Remote Frame: non utilisé

Data Format: Intel

#### 10.2.1 Identifiants

Le tableau ci-dessous présente la structure des identifiants du bus CAN avec le format étendu. PowerTech utilise le format étendu des identifiants pour son protocole de communication.



#### **Identifiants bus CAN**

\*Note : Tx : Un message simple ; Rx : demande d'écriture de données ; Dreq : demande d'envoi de données.

Vous trouverez ci-après quelques exemples de messages pour comprendre la structure des messages du protocole CAN de Powertech :

Le tableau ci-dessous montre quelques exemples de messages CAN pour comprendre la structure de l'identification.

<sup>\*\*</sup>Plus de détails dans le chapitre suivant





Chaque objet à une numérotation spécifique selon sa position dans le système.

Les PowerModule en série font partie du même stack auquel est attribué un numéro de 1 à n (n maximum=31) (stack number), chaque PowerModule en fonction de sa position dans le stack a un numéro dans le stack de 1 à n (n maximum=31) (module number).

Les supermasters ont pour numéro de module 0, les informations globales qui concernent l'ensemble des PowerModule sont transmises avec comme numéro de stack 0.

Les masters on pour numéro de module 0 lorsqu'ils transmettent des informations globales en tant que master ils ont pour numéro de module 1 s'ils transmettent des information en tant que slave.

Cette numérotation permet de savoir d'où provient l'information ou quels sont les éléments concernés par l'information transmise.

### Exemples de construction de l'ID

| ID messages | Description                                                 |
|-------------|-------------------------------------------------------------|
| 0x02821022  | Error/Warning Slave 1 in stack 1 priority 0 (High priority) |

### Construction de l'ID

| Priority      | high      | 0b0        |
|---------------|-----------|------------|
| Device        | battery   | 0b10       |
| Transmitter   | slave     | 0b10       |
| Module number | 1         | 0b00001    |
| Stack number  | 1         | 0b00001    |
|               | message   |            |
| Frame type    | simple    | 0b00       |
|               | error and | 0x022 (sur |
| ID message    | warning   | 10bits)    |



|     |    |    |    | Byt | e 3 |    |    |    |     |    |    | Byt | te 2  |    |    |    |    |       |    | Byte | 1   |    |   |   |   |    |    | Byt | e 0 |   |   |   |
|-----|----|----|----|-----|-----|----|----|----|-----|----|----|-----|-------|----|----|----|----|-------|----|------|-----|----|---|---|---|----|----|-----|-----|---|---|---|
| bit | 31 | 30 | 29 | 28  | 27  | 26 | 25 | 24 | 23  | 22 | 21 | 20  | 19    | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 | 8 | 7 | 6  | 5  | 4   | 3   | 2 | 1 | 0 |
|     |    |    |    | Р   |     |    | D  | ev | Tra | ns |    | n   | nodul | le |    |    | ;  | stack |    |      | fra | me |   |   |   | Со | mm | and | ID  |   |   |   |
| 0b  | 0  | 0  | 0  | 0   | 0   | 0  | 1  | 0  | 1   | 0  | 0  | 0   | 0     | 0  | 1  | 0  | 0  | 0     | 0  | 1    | 0   | 0  | 0 | 0 | 0 | 0  | 1  | 0   | 0   | 0 | 1 | 0 |
| 0x  |    | (  | )  |     |     | 2  | 2  |    |     | 3  | 3  |     |       | 2  | 2  |    |    | 1     | l  |      |     | 0  |   |   |   | 2  | 2  |     |     | 2 | 2 |   |

On a donc le message en hexadécimal 0x02821022





Autres exemples de construction de l'ID

|     | ID         | Description                                                                                   |
|-----|------------|-----------------------------------------------------------------------------------------------|
| ex1 | 0x12C21020 | Status 1 of Master with priority 1 (low priority)                                             |
| ex2 | 0x12841020 | Status 1 of Slave 2 in stack 1 with priority 1 (low priority)                                 |
| ex3 | 0x13041A05 | Maintenance message priority 1 (Low priority) Tool request cell voltage of Slave 2 in stack 1 |

Attention dans l'exemple 3 dans la première moitié du Byte 1 L'ID message 0x205 et le frame Dreq=0b10 se combinent. On obtient donc 0xA05.

|     |     |    |    |    | Byt | e 3 |    |    |    |     |     |    | Byt | e 2  |    |    |    |    |       |    | Byte | 1   |    |   |   |   |     | [   | Byte | e 0 |   |     |
|-----|-----|----|----|----|-----|-----|----|----|----|-----|-----|----|-----|------|----|----|----|----|-------|----|------|-----|----|---|---|---|-----|-----|------|-----|---|-----|
|     | bit | 31 | 30 | 29 | 28  | 27  | 26 | 25 | 24 | 23  | 22  | 21 | 20  | 19   | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 | 8 | 7 | 6   | 5   | 4    | 3   | 2 | 1 0 |
|     |     |    |    |    | Р   |     |    | De | ev | Tra | ıns |    | n   | nodu | le |    |    | ,  | stack | (  |      | fra | me |   |   |   | Cor | nma | and  | ID  |   |     |
| ex1 | 0b  | 0  | 0  | 0  | 1   | 0   | 0  | 1  | 0  | 1   | 1   | 0  | 0   | 0    | 0  | 1  | 0  | 0  | 0     | 0  | 1    | 0   | 0  | 0 | 0 | 0 | 0   | 1   | 0    | 0   | 0 | 0 0 |
| CVI | 0x  |    | 1  | 1  |     |     | 2  | 2  |    |     | (   | )  |     |      | 2  | 2  |    |    | 1     | 1  |      |     | 0  |   |   |   | 2   |     |      |     | 0 |     |
| ex2 | 0b  | 0  | 0  | 0  | 1   | 0   | 0  | 1  | 0  | 1   | 0   | 0  | 0   | 0    | 1  | 0  | 0  | 0  | 0     | 0  | 1    | 0   | 0  | 0 | 0 | 0 | 0   | 1   | 0    | 0   | 0 | 0 0 |
| EXZ | 0x  |    | 1  | 1  |     |     | 2  | 2  |    |     | 8   | 3  |     |      | 2  | ı  |    |    | 1     | 1  |      |     | 0  |   |   |   | 2   |     |      |     | 0 |     |
| ex3 | 0b  | 0  | 0  | 0  | 1   | 0   | 0  | 1  | 1  | 0   | 0   | 0  | 0   | 0    | 1  | 0  | 0  | 0  | 0     | 0  | 1    | 1   | 0  | 1 | 0 | 0 | 0   | 0   | 0    | 0   | 1 | 0 1 |
| exo | 0x  |    | 1  | 1  |     |     | 3  | 3  |    |     | (   | )  |     |      | 2  | 1  |    |    | 1     | 1  |      |     | Α  |   |   |   | 0   |     |      |     | 5 |     |

### 10.2.2 Command ID utilisé pour les opérations

L'ID de commande permet de distinguer différentes informations. Il est également possible de gérer et de surveiller le système de stockage de manière plus pratique. L'ID de commande représente les 10 bits les moins significatifs des identifiants du bus CAN. Pour un système de batterie, les messages les plus importants sont "Global Status 1" et "Global Status 2". Ils sont utilisés pour obtenir des informations sur l'ensemble du système, comme la tension, le courant, l'IMR, l'IMD, etc.

Le tableau ci-dessous présente l'ensemble des identifiants utilisés par le BMS.

| Command ID (sur 10 bits) | Name                | Specification              |
|--------------------------|---------------------|----------------------------|
| 0x002                    | Global status 1     | Periodic                   |
| 0x003                    | Global status 2     | Periodic                   |
| 0x011                    | Numbering           | On start                   |
| 0x015                    | Master command 2    | Reserved                   |
| 0x016                    | Master command 1    | Periodic                   |
| 0x017                    | Master command 3    | Reserved                   |
| 0x020                    | Status 1            | Periodic                   |
| 0x021                    | Status 2            | Periodic                   |
| 0x022                    | Error and warning   | Periodic if present (0.5s) |
| 0x103                    | Cell voltage 1 - 4  | On Request                 |
| 0x104                    | Cell voltage 5 - 8  | On Request                 |
| 0x109                    | Cell voltage 9 - 12 | On Request                 |





| 0x110                   | Cell voltage 13 - 16     | On Request                     |
|-------------------------|--------------------------|--------------------------------|
| 0x105<br>0x106<br>0x107 | Error_JDD                | Reserved                       |
| 0x200                   | Parameter                | Request / On request           |
| 0x203                   | Calibration courant 0A   | Reserved                       |
| 0x205                   | Maintenance              | Request                        |
| 0x206                   | SOC                      | Reserved                       |
| 0x207                   | init dialog apv          | Reserved                       |
| 0x208                   | Calibration 2 currents   | Reserved                       |
| 0x209                   | Cell balancing           | Periodic if present (1s)       |
| 0x20A                   | Total capacity discharge | Reserved                       |
| 0x20B                   | Calibration cell tension | Reserved                       |
| 0x20C                   | Contactor open - close   | Request                        |
| 0x20E                   | Option                   | On Request                     |
| 0x20F                   | Bit rate CAN bus         | On Request                     |
| 0x21F                   | Total slave              | On Start/ Request / On Request |
| 0x3E9                   | Update                   | Reserved                       |
| 0x3EA                   | Update old Gateway       | Reserved                       |
| 0x3EB                   | Soft Version             | Reserved                       |
| 0x3EC                   | Update BL                | Reserved                       |

Les outils externes peuvent adresser des requêtes au système de batterie de cette manière. Par exemple :

Pour gérer l'option sauvegardée dans le BMS, la commande ID 0x20E peut être utilisée. Pour demander une option, le type de trame (frame) est DREQ = 0b10. Les trois derniers demi-

octets de l'identifiant du message CAN sont donc 0xA0E.

Pour l'option d'écriture, le type de trame (frame), est RX = 0b01. Les trois derniers demi-

Pour l'option d'écriture, le type de trame (frame) est RX = 0b01. Les trois derniers demi-octets de l'identificateur de message CAN sont donc 0x60E.

Pour la réponse, le type de trame (frame) est TX = 0b00. Les trois derniers demi-octets de l'identificateur de message CAN sont donc 0x20E.

## 10.2.3 Messages périodiques

Les messages périodiques sont émis à intervalles réguliers et portent les informations de base du système

| Command ID (sur 10 bits) | Name             | Periodic                   |
|--------------------------|------------------|----------------------------|
| 0x016                    | Master command 1 |                            |
| 0x002                    | Global status 1  |                            |
| 0x003                    | Global status 2  | 1 second (Can be set-up)   |
| 0x020                    | Status 1         |                            |
| 0x021                    | Status 2         |                            |
| 0x022                    | Error et warning | Periodic if present (0.5s) |

Master command est un message périodique interne à destination des slaves, il permet d'envoyer des commandes aux slaves.







## 10.2.3.1 Global Status 1 Master module

|   | ID message | Period | Data Length |
|---|------------|--------|-------------|
| I | 0x02C00002 | 1s     | 7           |

Les informations pour les fonctions Global Status sont de module 0 et stack 0.

|     |    |    |    | Byt | e 3 |    |    |    |     |    |    | Byt | e 2  |    |    |    |    |       |    | Byte | 1   |    |   |   |   |     |    | Byt | e 0  |   |   |   |
|-----|----|----|----|-----|-----|----|----|----|-----|----|----|-----|------|----|----|----|----|-------|----|------|-----|----|---|---|---|-----|----|-----|------|---|---|---|
| bit | 31 | 30 | 29 | 28  | 27  | 26 | 25 | 24 | 23  | 22 | 21 | 20  | 19   | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 | 8 | 7 | 6   | 5  | 4   | 3    | 2 | 1 | 0 |
|     |    |    |    | Р   |     |    | D  | ev | Tra | ns |    | m   | nodu | le |    |    |    | stack | (  |      | fra | me |   |   | ( | Con | nm | and | l ID |   |   |   |
| 0b  | 0  | 0  | 0  | 0   | 0   | 0  | 1  | 0  | 1   | 1  | 0  | 0   | 0    | 0  | 0  | 0  | 0  | 0     | 0  | 0    | 0   | 0  | 0 | 0 | 0 | 0   | 0  | 0   | 0    | 0 | 1 | 0 |
| 0x  |    | (  | )  |     |     | 2  | )  |    |     | (  | 5  |     |      | (  | )  |    |    | (     | )  |      |     | 0  |   |   |   | 0   |    |     |      | 2 |   |   |

## Global Status 1 Message (transmis par Master module)

### **Description**:

Ce message est envoyé par le module **Master** pour fournir des informations agrégées de tous les esclaves présents dans le système.

Les informations concernent les erreurs, les avertissements et l'état général, l'IMR (courant de charge maximum), l'IMD (courant de décharge maximum) et le SOC (état de charge) du système.

| Data Name            | First Bit | Length | Unit  | Range              | Comments                                                                                |
|----------------------|-----------|--------|-------|--------------------|-----------------------------------------------------------------------------------------|
| SOC of global system | 0         | 16     | 0.01% |                    | System SOC                                                                              |
| IMR of system        | 16        | 14     | 100mA | 0 <b>→</b> 1638.3A | Max charge current                                                                      |
| IMD of system        | 30        | 12     | 1A    | 0 <b>→</b> 4096A   | Max discharge current                                                                   |
| Status of system     | 42        | 4      |       |                    | 0 : Idle (Internal code : #100) 1: Operative (#101) 2 : Error (#102) 4 : Part Operative |
| Error of system      | 46        | 1      |       |                    | At least one slave has error                                                            |
| Warn of system       | 47        | 1      |       |                    | At least one slave has warning                                                          |
| End of charge system | 48        | 1      |       |                    | End of charge system                                                                    |
| Floating system      | 49        | 1      |       |                    | Floating system                                                                         |







## 10.2.3.2 Global Status 2 Master module

| ID message | Period | Data Length |
|------------|--------|-------------|
| 0x02C00003 | 1s     | 6           |

|          |     |    |    |    | Byt | e 3 |    |    |    |     |     |    | Byt | e 2  |    |    |    |    |       |    | Byte | 1   |    |   |   |   |     | В   | Byte | 0   |   |   |
|----------|-----|----|----|----|-----|-----|----|----|----|-----|-----|----|-----|------|----|----|----|----|-------|----|------|-----|----|---|---|---|-----|-----|------|-----|---|---|
| bit numb | oer | 31 | 30 | 29 | 28  | 27  | 26 | 25 | 24 | 23  | 22  | 21 | 20  | 19   | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 | 8 | 7 | 6 ! | 5 4 | ١ 3  | 3 2 | 1 | 0 |
|          |     |    |    |    | Р   |     |    | D  | ev | Tra | ıns |    | m   | nodu | le |    |    | :  | stack | <  |      | fra | me |   |   |   | Con | ıma | nd   | ID  |   |   |
|          | 0b  | 0  | 0  | 0  | 0   | 0   | 0  | 1  | 0  | 1   | 1   | 0  | 0   | 0    | 0  | 0  | 0  | 0  | 0     | 0  | 0    | 0   | 0  | 0 | 0 | 0 | 0 ( | 0 0 | 0    | ) 0 | 1 | 1 |
|          | 0x  |    | (  | )  |     |     | 2  | 2  |    |     | (   | 5  |     |      | (  | )  |    |    | (     | 0  |      |     | 0  |   |   |   | 0   |     |      |     | 3 |   |

## Global Status 2 Message (transmis par Master module)

### **Description**:

Ce message est envoyé par le module **Master** et il complète les informations fournies par Global Status 1.

Les informations concernent le courant, la tension et le SOH (State of Health) du système actuel.

| Data Name         | First Bit | Length | Unit  | Range                     | Comments                             |
|-------------------|-----------|--------|-------|---------------------------|--------------------------------------|
| Current of system | 0         | 16     | 100mA | -3276.8 <b>→</b> +3276.7A | Current total<br>This data is signed |
| Voltage of system | 16        | 16     | 25mV  | 0 <b>→</b> 1638.375V      | Voltage total                        |
| SOH of system     | 32        | 16     | 0.01% | 0% → 100.00%              | State of Health total                |







## 10.2.3.3 Global Status 1 Super Master 1 module

| ID message | Period | Data Length |
|------------|--------|-------------|
| 0x02400002 | 1s     | 7           |

|          |    |    |    |    | Byt | te 3 |    |    |    |     |    |    | Byt | e 2   |    |    |    |    |       |    | Byte | 1   |    |   |   |   |     |    | Byte | e 0 |   |   |   |
|----------|----|----|----|----|-----|------|----|----|----|-----|----|----|-----|-------|----|----|----|----|-------|----|------|-----|----|---|---|---|-----|----|------|-----|---|---|---|
| bit numb | er | 31 | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22 | 21 | 20  | 19    | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 | 8 | 7 | 6   | 5  | 4    | 3   | 2 | 1 | 0 |
|          |    |    |    |    | Р   |      |    | D  | ev | Tra | ns |    | n   | nodul | .e |    |    |    | stack | (  |      | fra | me |   |   |   | Cor | nm | and  | ID  |   |   |   |
|          | 0b | 0  | 0  | 0  | 0   | 0    | 0  | 1  | 0  | 0   | 1  | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0     | 0  | 0    | 0   | 0  | 0 | 0 | 0 | 0   | 0  | 0    | 0   | 0 | 1 | 0 |
|          | 0x |    | (  | )  |     |      | 2  | 2  |    |     | 4  | 4  |     |       | (  | )  |    |    | (     | )  |      |     | 0  |   |   |   | 0   |    |      |     | 2 |   |   |

### Global Status 1 Message (transmis par SuperMaster 1 module)

### **Description**:

Ce message est envoyé par le premier **SuperMaster (SuperMaster 1)** pour fournir des informations agrégées de tous les esclaves présents dans le système. Les informations concernent les erreurs, les avertissements et l'état général, l'IMR (courant de charge maximum), l'IMD (courant de décharge maximum) et le SOC (état de charge) du système.

| Data Name            | First Bit | Length | Unit  | Range              | Coi                                 | mments                            |
|----------------------|-----------|--------|-------|--------------------|-------------------------------------|-----------------------------------|
| SOC of system        | 0         | 16     | 0.01% | 0→100.00%          | System                              | SOC value                         |
| IMR of system        | 16        | 14     | 100mA | 0 <b>→</b> 1638.3A | Current                             | max charge                        |
| IMD of system        | 30        | 12     | 1A    | 0 <b>→</b> 4095A   | Current m                           | nax discharge                     |
| Status of system     | 42        | 4      |       |                    | 0: Idle<br>1: Operative<br>2: Error | 3: Precharge<br>4: Part operative |
| Error of system      | 46        | 1      |       |                    | At least on                         | e rack has error                  |
| Warn of system       | 47        | 1      |       |                    | At least one                        | rack has warning                  |
| End of charge system | 48        | 1      |       |                    | End of cl                           | narge system                      |





Exemple de décodage de données

Pour le décodage des données on utilise la méthode du little endian c'est-à-dire que le bit de poids le plus faible est le dernier, la numérotation des bits est tel qu'indiqué dans le tableau ci-dessous.

Attention ici les données concernant plusieurs datas différentes peuvent se trouver sur le même byte, il faut donc faire attention au découpage.

On reçoit ici le message 0x0E13ACCDF38500

| bit number | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | 15 | 14 | 13 | 12  | 11 | 10 | 9   | 8  | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 |
|------------|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0b         | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 1   | 0  | 0  | 1   | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | 1  | 0  | 0  | 1  | 1  | 0  | 1  |
| 0x         |    | (  | )  |    |    | Е  |    |    |    | 1  | l  |     |    | 3  | 3   |    |    | I  | 4  |    |    | (  | )  |    |    | C  | )  |    |    |    | )  |    |
| bit number | 39 | 38 | 37 | 36 | 35 | 24 | 22 | 22 | 47 | 40 | 45 | 4.4 | 40 | 40 | 4.4 | 40 |    |    |    |    |    |    | 40 | 40 |    |    |    |    |    |    |    |    |
|            | 00 | 50 | 37 | 30 | 33 | 34 | 33 | 32 | 47 | 46 | 45 | 44  | 43 | 42 | 41  | 40 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 |    |    |    |    |    |    |    |    |
| 0b         | 1  | 1  | 1  | 1  |    | 0  |    |    |    |    |    | 0   |    |    | 0   |    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |    |    |    |    |    |    |    |    |









# 10.2.3.4 Global Status 2 Super Master 1 module

| ID message | Period | Data Length |
|------------|--------|-------------|
| 0x02400003 | 1s     | 6           |

|          |    |    |    |    | Byt | e 3 |    |    |    |     |     |    | Byt | e 2   |    |    |    |    |       |    | Byte | 1   |    |   |   |   |     |     | Byt | e 0 |   |   |   |
|----------|----|----|----|----|-----|-----|----|----|----|-----|-----|----|-----|-------|----|----|----|----|-------|----|------|-----|----|---|---|---|-----|-----|-----|-----|---|---|---|
| bit numb | er | 31 | 30 | 29 | 28  | 27  | 26 | 25 | 24 | 23  | 22  | 21 | 20  | 19    | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 | 8 | 7 | 6   | 5   | 4   | 3   | 2 | 1 | 0 |
|          |    |    |    |    | Р   |     |    | D  | ev | Tra | ans |    | n   | nodul | le |    |    | :  | stack | (  |      | fra | me |   |   |   | Coı | mma | and | ID  |   |   |   |
|          | 0b | 0  | 0  | 0  | 0   | 0   | 0  | 1  | 0  | 0   | 1   | 0  | 0   | 0     | 0  | 0  | 0  | 0  | 0     | 0  | 0    | 0   | 0  | 0 | 0 | 0 | 0   | 0   | 0   | 0   | 0 | 1 | 1 |
|          | 0x |    | (  | )  |     |     | 2  | 2  |    |     | 4   | 1  |     |       | (  | )  |    |    | (     | )  |      |     | 0  |   |   |   | 0   |     |     |     | 3 | } |   |

### Global Status 2 Message (transmis par SuperMaster 1 module)

## **Description**:

Ce message est envoyé par le premier **SuperMaster (SuperMaster 1)** et il complète les informations fournies par Global Status 1.

Les informations concernent le courant, la tension et le SOH (State of Health) du système actuel.

| Data Name            | First Bit | Length | Unit   | Range                | Comments              |
|----------------------|-----------|--------|--------|----------------------|-----------------------|
| Current of system    | 0         | 16     | 100mA  | -3276.8 → +3276.7A   | Current total         |
| Colletti oi systetti | U         | 10     | TOOTTA |                      | This data is signed   |
| Voltage of system    | 16        | 16     | 25mV   | 0 <b>→</b> 1638.375V | Voltage total         |
| SOH of system        | 32        | 16     | 0.01%  | 0% → 100.00%         | State of Health total |





# 10.2.3.5 Error et Warning Master et Slave

| ID message | Period                      | Data Length |
|------------|-----------------------------|-------------|
| 0x02YYY022 | 500ms when error or warning | 8           |

#### Note:

- "y1 y2 y3" représentent transmitter ID, module ID et stack ID concernés par les messages.

|          |    |    |    |    | Byt | te 3 |    |    |    |     |     |    | Byt | e 2  |    |    |    |    |       |          | Byte | : 1 |    |   |   |   |    |    | Byte | e 0 |   |   |   |
|----------|----|----|----|----|-----|------|----|----|----|-----|-----|----|-----|------|----|----|----|----|-------|----------|------|-----|----|---|---|---|----|----|------|-----|---|---|---|
| bit numb | er | 31 | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22  | 21 | 20  | 19   | 18 | 17 | 16 | 15 | 14    | 13       | 12   | 11  | 10 | 9 | 8 | 7 | 6  | 5  | 4    | 3   | 2 | 1 | 0 |
| _        |    |    |    |    | Р   |      |    | D  | ev | Tra | ıns |    | n   | nodu | le |    |    |    | stack | (        |      | fra | me |   |   |   | Со | mm | and  | ID  |   |   |   |
|          | 0b | 0  | 0  | 0  | 0   | 0    | 0  | 1  | 0  | у1  | у1  | у2 | у2  | у2   | у2 | у2 | уЗ | уЗ | уЗ    | уЗ       | уЗ   | 0   | 0  | 0 | 0 | 0 | 0  | 1  | 0    | 0   | 0 | 1 | 0 |
|          | 0x |    | (  | )  |     |      | 2  | 2  |    |     | ١   | 1  |     |      | ,  | 1  |    |    | ,     | <b>′</b> |      |     | 0  |   |   |   | 2  |    |      |     | 2 | 2 |   |

message Error/Warning (transmis par les modules Master et Slave)

### **Description**:

Ces messages sont envoyés par les modules **Master** et **Slave**. Ils sont collectés pour contrôler l'intégrité du stack.

Ce message est envoyé lorsqu'il y a au moins une erreur ou un avertissement. Dès qu'ils sont corrigés, le BMS envoie 2 fois ce message avec la donnée 0.

| <u>baia iniormation .</u>        |                        | 1         |        |                                                                                                                        |
|----------------------------------|------------------------|-----------|--------|------------------------------------------------------------------------------------------------------------------------|
| Data name                        | Internal<br>Event Code | First Bit | Length | Comments                                                                                                               |
| Error<br>Output Current          | #1                     | 0         | 1      | Rise when output current > 180A<br>or when output current > 170A during 30s,<br>Value max output current can be set-up |
| Error<br>Input Current           | #2                     | 1         | 1      | Rise when input current > 65A<br>or when input current > 60A during 30s,<br>Value max input current can be set-up      |
| Error<br>Cell Over<br>voltage    | #3                     | 2         | 1      | Rise when one cell > 3850mV,<br>This value can be set-up                                                               |
| Error<br>Cell Under<br>voltage   | #4                     | 3         | 1      | Rise when one cell is < 2800mV,<br>This value can be set-up                                                            |
| Error<br>Cell Over Temp          | #5                     | 4         | 1      | Rise if battery pack temp > 60°C,<br>This value can be set-up                                                          |
| Error<br>Cell Under<br>Temp      | #6                     | 5         | 1      | Rise if battery pack temp < 0°C during charge<br>or < -20°C during discharge,<br>These value can be set-up             |
| Error<br>BMS Board over<br>temp  | #7                     | 6         | 1      | Rise if BMS temperature > 60°C,<br>This value can be set-up                                                            |
| Error<br>BMS Board<br>under temp | #8                     | 7         | 1      | Rise if BMS temperature < -20°C,<br>This value can be set-up                                                           |
| Error<br>Power<br>Contactor      | #19                    | 8         | 1      | Power contactor was opened 3 times within 15 minutes / 3 errors rise within 15 minutes                                 |





|                                    |     | 1  | 1      |                                                                                                            |
|------------------------------------|-----|----|--------|------------------------------------------------------------------------------------------------------------|
| Lose<br>communication<br>Master    | #9  | 9  | 1      | Slave loses communication with Master                                                                      |
| Lose<br>communication<br>Slave     | #20 | 10 | 1      | Master loses communication with Slave                                                                      |
| Not used                           |     | 11 | 1      |                                                                                                            |
| Error current inconsistency        | #10 | 12 | 1      | Slave current isn't consistent with others slaves current                                                  |
| Error voltage<br>bus               | #21 | 13 | 1      |                                                                                                            |
| Error Heater                       | #22 | 14 | 1      |                                                                                                            |
| Error Stack                        | #23 | 15 | 1      | Error in stack or Error voltage bus stack                                                                  |
| Error LifeLine                     | #24 | 16 | 1      | LifeLine Error (LifeLine disconnected)  0: No error LifeLine (LifeLine connected or no option LifeLine)    |
| Error Ground                       | #25 | 17 | 1      | 1 : A grounding default has been detected within the stack                                                 |
| Error IMR                          | #26 | 18 | 1      | Input current > IMR and temperature negative                                                               |
| Error IMD                          | #27 | 19 | 1      | Output current > IMD and temperature negative                                                              |
| Not used                           |     | 20 | 12     | Not used                                                                                                   |
| warning<br>Output current          | #11 | 32 | 1      | Rise when output current > 170A,<br>This value can be set-up                                               |
| warning<br>Input current           | #12 | 33 | 1      | Rise when input current > 60A,<br>This value can be set-up                                                 |
| warning<br>Cell over<br>voltage    | #13 | 34 | 1      | Rise when one cell is > 3680mV,<br>This value can be set-up                                                |
| warning<br>Cell under<br>voltage   | #14 | 35 | 1      | Rise when one cell is < 2900mV,<br>This value can be set-up                                                |
| warning<br>Cell Over Temp          | #15 | 36 | 1      | Rise if battery pack temp > 55°C,<br>This value can be set-up                                              |
| warning<br>Cell Under<br>Temp      | #16 | 37 | 1      | Rise if battery pack temp < 5°C during charge<br>or < -15°C during discharge,<br>These value can be set-up |
| warning<br>BMS Board over<br>temp  | #17 | 38 | 1      | Rise if BMS temperature > 55°C,<br>This value can be set-up                                                |
| warning<br>BMS Board<br>under temp | #18 | 39 | 1      | Rise if BMS temperature < -15°C,<br>This value can be set-up                                               |
| IMR                                | #28 | 40 | 1      | Input current > IMR                                                                                        |
| IMD                                | #29 | 41 | 1      | Output current > IMD                                                                                       |
| Not used                           |     |    | 22bits | Not used                                                                                                   |





## 10.2.3.6 Messages Error et Warning SuperMaster

| ID message | Period                      | Data Length |
|------------|-----------------------------|-------------|
| 0x024YY022 | 500ms when error or warning | 8           |

#### Note:

Attention pour l'ID du stack, le bit 16 dans le byte 2 est égal à 1 si le numéro du stack est supérieur à 15.

| _ |          |    |    |    |    | Byt | te 3 |    |    |    |     |              |     | Ву | te 2 |    |       |    |    |    |    | Byte | 1  |    |   |            |   |   |   | Byt | e 0 |   |   |   |
|---|----------|----|----|----|----|-----|------|----|----|----|-----|--------------|-----|----|------|----|-------|----|----|----|----|------|----|----|---|------------|---|---|---|-----|-----|---|---|---|
|   | bit numb | er | 31 | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22           | 21  | 20 | 19   | 18 | 17    | 16 | 15 | 14 | 13 | 12   | 11 | 10 | 9 | 8          | 7 | 6 | 5 | 4   | 3   | 2 | 1 | 0 |
| _ |          |    |    |    |    | Р   |      |    | D  | ev | Tra | Trans module |     |    |      |    | stack |    |    |    |    |      | me |    |   | Command ID |   |   |   |     |     |   |   |   |
|   |          | 0b | 0  | 0  | 0  | 0   | 0    | 0  | 1  | 0  | 0   | 1            | 0   | 0  | 0    | 0  | 0     | у  | у  | у  | у  | у    | 0  | 0  | 0 | 0          | 0 | 0 | 1 | 0   | 0   | 0 | 1 | 0 |
|   |          | 0x |    | (  | )  |     |      | :  | 2  |    | 4   |              | 4 Y |    |      | Y  |       |    |    |    | 0  |      |    |    | 2 | 2          |   |   | 2 | 2   |     |   |   |   |

message Error/Warning (transmis par les modules SuperMaster)

### **Description**:

Ce message est envoyé par le module **SuperMaster**. Il contient des informations d'erreurs et d'avertissements concernant le stack géré. Ce message est envoyé lorsqu'il y a au moins une erreur ou un avertissement. Lorsque l'événement se termine, le SuperMaster envoie 2 fois ce message avec la donnée 0.

| Data information :                   | Look a sourced         |                                                      |        |                                                                                                                                                                                                                              |  |  |  |  |  |
|--------------------------------------|------------------------|------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Data Name                            | Internal<br>Event Code | First Bit                                            | Length | Comments                                                                                                                                                                                                                     |  |  |  |  |  |
| Error<br>Output Current              | #30                    | 0                                                    | 1      | Output current too high (based on SM Hall sensor<br>measurement)<br>This value can be set-up                                                                                                                                 |  |  |  |  |  |
| Error<br>Input Current               | #31                    | 1                                                    | 1      | Input current too high (based on SM Hall sensor<br>measurement)<br>This value can be set-up                                                                                                                                  |  |  |  |  |  |
| Time out<br>Precharge                | #32                    | 2                                                    | 1      | 1: Time out precharge                                                                                                                                                                                                        |  |  |  |  |  |
| Error<br>Power Contactor             | #33                    | 3                                                    | 1      | Power contactor is opened 3 times because of error within one hour                                                                                                                                                           |  |  |  |  |  |
| Lose<br>communication<br>Main Master | #34                    | 4 1 SuperMaster loses the communica with Main Master |        |                                                                                                                                                                                                                              |  |  |  |  |  |
| Lose<br>communication<br>SuperMaster | #35                    | 5                                                    | 1      | MainMaster loses the communication with SuperMaster                                                                                                                                                                          |  |  |  |  |  |
| Lose<br>communication<br>Slave       | #36                    | 6                                                    | 1      | SuperMaster loses the communication with slave                                                                                                                                                                               |  |  |  |  |  |
| Error Voltage bus                    | #37                    | 7                                                    | 1      | <ul> <li>During Precharge: When Bus voltage do not reach 80% of battery voltage</li> <li>When a SuperMaster need to join a pool of stack,</li> <li>If 95% of bus voltage &gt;Stack Voltage&gt;105% of bus voltage</li> </ul> |  |  |  |  |  |

<sup>- &</sup>quot;y" représente l'ID du stack concerné par les messages.





| Number Slave<br>Error       |     | 8  | 5  | Number of slave modules with an open error status                                                             |
|-----------------------------|-----|----|----|---------------------------------------------------------------------------------------------------------------|
| LifeLine Error              | #38 | 13 | 1  | 1: LifeLine Error (LifeLine disconnected)     0: No error LifeLine (LifeLine connected or no option LifeLine) |
| Ground Error                | #39 | 14 | 1  | 1 : A grounding default has been detected within the stack                                                    |
| Error current inconsistency | #40 | 15 | 1  | Stack current isn't consistent with others stack current measurement                                          |
| Not Used                    |     | 16 | 16 | Not used                                                                                                      |
| warning<br>output current   | #41 | 32 | 1  | Output over current warning (based on SM Hall sensor measurement)  This value can be set-up                   |
| warning<br>input current    | #42 | 33 | 1  | Input over current warning (based on SM Hall sensor measurement)  This value can be set-up                    |
| Number Slave<br>warning     |     | 34 | 5  | Number of slave modules with an open warning status                                                           |
| Not Used                    |     | 35 | 25 |                                                                                                               |





# 10.2.3.7 Status 1 SuperMaster

| ID message | Period | Data Length |
|------------|--------|-------------|
| 0x124YY020 | 1s     | 8           |

### Note:

- "y" représente l'ID du stack concerné par les messages.

Attention pour l'ID du stack, le bit 16 dans le byte 2 est égal à 1 si le numéro du stack est supérieur à 15.

|          |    |    |    |    | Byt | e 3 |    |    |    |                |    |    | Byt | e 2 |    |             |    |     |    |    | Byte | 1  |    |   |   |     |     |       | Ву | te 0 |   |   |   |
|----------|----|----|----|----|-----|-----|----|----|----|----------------|----|----|-----|-----|----|-------------|----|-----|----|----|------|----|----|---|---|-----|-----|-------|----|------|---|---|---|
| bit numb | er | 31 | 30 | 29 | 28  | 27  | 26 | 25 | 24 | 23             | 22 | 21 | 20  | 19  | 18 | 17          | 16 | 15  | 14 | 13 | 12   | 11 | 10 | 9 | 8 | 7   | 6   | 5     | 4  | 3    | 2 | 1 | 0 |
|          |    |    |    |    | Р   |     |    | D  | ev | Trans module s |    |    |     |     |    | stack frame |    |     |    |    |      |    |    |   | C | omr | nan | nd ID |    |      |   |   |   |
|          | 0b | 0  | 0  | 0  | 1   | 0   | 0  | 1  | 0  | 0              | 1  | 0  | 0   | 0   | 0  | 0           | у  | у   | у  | у  | у    | 0  | 0  | 0 | 0 | 0   | 0   | 1     | 0  | 0    | 0 | 0 | 0 |
|          | 0x |    | 1  | l  |     |     | 2  | 2  |    |                | 4  |    |     | 4 Y |    |             |    | Y 0 |    |    |      |    |    |   | 2 | 2   |     |       | 0  |      |   |   |   |

### Status 1 message pour SuperMaster

### **Description**:

Ce message est envoyé par le **SuperMaster**. Il contient des informations sur l'état de la batterie. Le délai entre chaque message est de 1s. Ces informations concernent le stack géré.

| Data Name | First Bit | Length | Unit  | Range                 | Comments                                                                                      |  |  |  |  |  |  |
|-----------|-----------|--------|-------|-----------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Voltage   | 0         | 16     | 25mV  | 0V <b>→</b> 1638.375V | Rack voltage calculated by<br>SuperMaster                                                     |  |  |  |  |  |  |
| Current   | 16        | 16     | 100mA | -3276.8→ +3276.7A     | Current IN or OUT value, this data is signed. Current IN is positive, Current OUT is negative |  |  |  |  |  |  |
| SOC       | 32        | 16     | 0.01% | 0% → 100.00%          | State of Charge in percent                                                                    |  |  |  |  |  |  |
| SOH       | 48        | 16     | 0.01% | 0% → 100.00%          | State of Health in percent                                                                    |  |  |  |  |  |  |





# 10.2.3.8 Status 2 SuperMaster

| ID message | Period | Data Length |
|------------|--------|-------------|
| 0x124YY021 | 1s     | 8           |

### Note:

- "y" représente l'ID du stack concerné par les messages.

Attention pour l'ID du stack, le bit 16 dans le byte 2 est égal à 1 si le numéro du stack est supérieur à 15.

|           |     |    |    |    | Byt | e 3 |    |    |    |              |    |     | Byt | e 2 |             |    |    |    |    |    | Byte | 1          |    |   |   |   |   |   | Byte | e 0 |   |   |   |
|-----------|-----|----|----|----|-----|-----|----|----|----|--------------|----|-----|-----|-----|-------------|----|----|----|----|----|------|------------|----|---|---|---|---|---|------|-----|---|---|---|
| bit numbe | r ( | 31 | 30 | 29 | 28  | 27  | 26 | 25 | 24 | 23           | 22 | 21  | 20  | 19  | 18          | 17 | 16 | 15 | 14 | 13 | 12   | 11         | 10 | 9 | 8 | 7 | 6 | 5 | 4    | 3   | 2 | 1 | 0 |
|           |     |    |    |    | Р   |     |    | D  | ev | Trans module |    |     |     |     | stack frame |    |    |    |    |    |      | Command ID |    |   |   |   |   |   |      |     |   |   |   |
| C         | b   | 0  | 0  | 0  | 1   | 0   | 0  | 1  | 0  | 0            | 1  | 0   | 0   | 0   | 0           | 0  | у  | у  | у  | у  | у    | 0          | 0  | 0 | 0 | 0 | 0 | 1 | 0    | 0   | 0 | 0 | 1 |
|           | X   |    | 1  |    |     |     | 2  | 2  |    | 4            |    | 4 Y |     |     | Y           |    |    |    |    | 0  |      |            |    | 2 |   | T |   | 1 |      |     |   |   |   |

Status 2 message pour SuperMaster

## **Description**:

Ce message est le même que celui du satus 1 **SuperMaster** et contient des informations supplémentaires.

| Dala Illioilliallo |           |        |       |                    |                                             |
|--------------------|-----------|--------|-------|--------------------|---------------------------------------------|
| Data Name          | First Bit | Length | Unit  | Range              | Comments                                    |
| Open Power         |           |        |       |                    | Contactor is manually opened by message     |
| Contactor          | 0         | 1      |       |                    | 0x30C                                       |
| manually           |           |        |       |                    | see chapter 6 : contactor Open close        |
| Status             | 1         | 1      |       |                    | 1: Power Contactor closed                   |
| Power Contactor    | I         | I      |       |                    | 0: Power Contactor open                     |
| Status             | 2         | 1      |       |                    | 1: Precharge active                         |
| Precharge          | Z         | Į      |       |                    | 0: Precharge not active                     |
| Number slave in    | 3         | 5      |       | 0→31               | Number of slave in balancing                |
| balancing          | J         | J      |       | 0731               | Number of slave in balancing                |
| Number slave inter | 8         | 5      |       | 0→31               | Number of slave in inter balancing by Super |
| balancing          | 0         | J      |       | 0 731              | Master                                      |
| End of charge      | 13        | 1      |       |                    | 1: end of charge. Battery full              |
| Not used           | 14        | 2      |       |                    |                                             |
| IMR                | 16        | 14     | 100mA | 0 <b>→</b> 1638.3A | Recommended max charge current              |
| IMD                | 30        | 12     | 1A    | 0 <b>→</b> 4095A   | Recommended max discharge current           |
|                    |           |        |       |                    | 0: Idle                                     |
| Status SuperMaster | 42        | 4      |       |                    | 1: Operative                                |
|                    |           |        |       |                    | 2: Error                                    |
| Not Used           | 46        | 2      |       |                    |                                             |
| Voltage bus        | 48        | 16     | 100mV | 0 <b>→</b> 6553.6V | Voltage bus measured by SuperMaster         |





### 10.2.3.9 Status 1 Master et Slave

|   | ID message | Period | Data Length |
|---|------------|--------|-------------|
| ſ | 0x12YYY020 | 1s     | 8           |

Note: "y1 y2 y3" représentent transmitter ID, module ID et stack ID concernés par les messages.

|            |    |    |    | Byt | te 3 |    |    |    |     |    |    | Byt | e 2   |    |    |    |    |       |    | Byte | 1   |    |   |   |   |    |          | Byt | e 0 |   |   |   |
|------------|----|----|----|-----|------|----|----|----|-----|----|----|-----|-------|----|----|----|----|-------|----|------|-----|----|---|---|---|----|----------|-----|-----|---|---|---|
| bit number | 31 | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22 | 21 | 20  | 19    | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 | 8 | 7 | 6  | 5        | 4   | 3   | 2 | 1 | 0 |
|            |    |    |    | Р   |      |    | D  | ev | Tra | ns |    | n   | nodul | le |    |    |    | stack | (  |      | fra | me |   |   |   | Со | mm       | and | ID  |   |   |   |
| 0b         | 0  | 0  | 0  | 1   | 0    | 0  | 1  | 0  | у1  | у1 | у2 | y2  | у2    | y2 | у2 | уЗ | уЗ | уЗ    | уЗ | уЗ   | 0   | 0  | 0 | 0 | 0 | 0  | 1        | 0   | 0   | 0 | 0 | 0 |
| 0x         |    |    | 1  |     |      | 2  | 2  |    |     | ١  | 1  |     |       | ,  | Y  |    |    | ١     | /  |      |     | 0  |   |   |   | 2  | <u> </u> |     |     | C | ) |   |

Status 1 message pour Master et Slave

#### **Description**:

Ce message est envoyé par les modules **Master** et **Slave**. Les messages permettent de connaître l'état comme la tension, le courant, le SOC, SOH de chaque module.

Master identifiant est 0x12C21020. la priorité est faible (1), le numéro de module et le numéro de stack sont 1, l'émetteur du module est 0b11 et le type de trame(frame) est 0x00(TX).

Slave identifiant est 0x12yyy020: la priorité est faible (1), le numéro de module est à définir, le numéro de pile(stack) est 1, l'émetteur du module est 0b10 et le type de trame(frame) est 0b00(TX).

| Data<br>name | First Bit | Length | Unit  | Range                     | Comments                                                                                        |
|--------------|-----------|--------|-------|---------------------------|-------------------------------------------------------------------------------------------------|
| Voltage      | 0         | 16     | mV    | 0 <b>→</b> 65.535V        | Battery pack voltage                                                                            |
| Current      | 16        | 16     | 10mA  | -327.68 <b>→</b> +327.67A | Current IN or OUT value, This data is signed.  Current IN is positive,  Current OUT is negative |
| SOC          | 32        | 16     | 0.01% | 0% → 100.00%              | State of Charge value                                                                           |
| SOH          | 48        | 16     | 0.01% | 0% → 100.00%              | State of Health in percent                                                                      |







## 10.2.3.10 Status 2 Master et Slave

| ID message | Period | Data Length |
|------------|--------|-------------|
| 0x12YYY021 | 1s     | 8           |

Note: "y1 y2 y3" représentent transmitter ID, module ID et stack ID concernés par les messages.

|   |          |    |    |    |    | Byt | te 3 |    |    |    |     |     |          | Byt | e 2  |    |    |    |    |       |    | Byte | 1   |    |     |   |     |    | Byt | e 0 |   |   |   |
|---|----------|----|----|----|----|-----|------|----|----|----|-----|-----|----------|-----|------|----|----|----|----|-------|----|------|-----|----|-----|---|-----|----|-----|-----|---|---|---|
| t | oit numb | er | 31 | 30 | 29 | 28  | 27   | 26 | 25 | 24 | 23  | 22  | 21       | 20  | 19   | 18 | 17 | 16 | 15 | 14    | 13 | 12   | 11  | 10 | 9 8 | 7 | 6   | 5  | 4   | 3   | 2 | 1 | 0 |
|   |          |    |    |    |    | Р   |      |    | D  | ev | Tra | ans |          | n   | nodu | le |    |    |    | stack |    |      | fra | me |     |   | Со  | mm | and | IID |   |   |   |
|   |          | 0b | 0  | 0  | 0  | 1   | 0    | 0  | 1  | 0  | у1  | у1  | у2       | у2  | у2   | у2 | у2 | уЗ | уЗ | уЗ    | уЗ | уЗ   | 0   | 0  | 0 0 | 0 | 0   | 1  | 0   | 0   | 0 | 0 | 1 |
|   |          | 0x |    | 1  | 1  |     |      | 2  | 2  |    |     | ,   | <b>′</b> |     |      | ١  | Y  |    |    | ١     | 1  |      |     | 0  |     |   | - 2 | 2  |     |     | 1 |   |   |

## Status 2 pour Master et Slave

### **Description**:

Ce message est envoyé par les modules **Master** et **Slave**. Il est identique au message Status 1 et contient des informations supplémentaires.

| Data name                           | First Bit | Length | Unit | Range                      | Comments                                                                                                         |
|-------------------------------------|-----------|--------|------|----------------------------|------------------------------------------------------------------------------------------------------------------|
| Open Power<br>Contactor<br>manually | 0         | 1      |      |                            | Contactor is manually opened by message 0x30C see chapter 6 : contactor Open close                               |
| Status<br>Power<br>Contactor        | 1         | 1      |      |                            | 1: Power Contactor closed<br>0: Power Contactor open                                                             |
| Reserved                            | 2         | 1      |      |                            |                                                                                                                  |
| Number cells<br>In Balancing        | 3         | 5      |      | 0-31<br>(0→16<br>cellules) | number of cellules in balancing                                                                                  |
| Status<br>Balancing<br>Active       | 8         | 1      |      |                            | 1: At least one slave in balancing     0: no slave in balancing     Message available for Master module     only |
| End of charge                       | 9         | 1      |      |                            | 1: end of charge. Battery full                                                                                   |
| Status heater                       | 10        | 1      |      |                            | 1: heater active                                                                                                 |
| Floating mode                       | 11        | 1      |      |                            | 1: floating mode                                                                                                 |
| Not used                            | 11        | 4      |      |                            |                                                                                                                  |





| IMR              | 16 | 16 | 100mA                 | 0A →<br>6553.5A              | Recommended Max charge current<br>Value of IMR [0 - 1000] = 0A - 100A                                                                      |
|------------------|----|----|-----------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| IMD              | 32 | 8  | 1A                    | 0A <b>→</b><br>255A          | Recommended Max discharge<br>current<br>Value of IMD: [0 - 150] = 0A - 150A                                                                |
| Temp board       | 40 | 8  | °C<br>(offset<br>-40) | (0→255)<br>(-40°C<br>→215°C) | BMS board temperature<br>Example: Value temp = 100<br>=> real temp = 100 - 40 = 60°C                                                       |
| Temp pack<br>n°1 | 48 | 8  | °C<br>(offset<br>-40) | (0→255)<br>(-40°C<br>→215°C) | Temperature of battery bank n°1 Example: Value temp = 100 => real temp = 100 - 40 = 60°C Example: Value = 60 => real temp = 60 - 40 = 20°C |
| Temp pack<br>n°2 | 56 | 8  | °C<br>(offset<br>-40) | (0→255)<br>(-40°C<br>→215°C) | Temperature of battery bank n°2<br>Example: Value = 40 => real temp =<br>40 - 40 = 0°C                                                     |





### 10.2.4 Autres Messages CAN bus

### 10.2.4.1 Maintenance Message

| ID message | Period  | Data Length |
|------------|---------|-------------|
| 0x13yyyA05 | Request | 1           |

### **Description**:

Ce message est envoyé par un **contrôleur externe**. L'ID de ce message est 0x205 avec le type de trame(frame) 10 : Dreq. Cette requête est utilisée pour récupérer des informations d'un Slave.

En mode SuperMaster/Slave, si vous voulez avoir les status des Slaves, vous devez demander "Slave Status" en mettant « All Slave status » = 1.

En mode Master/Slave, vous n'avez pas besoin de demander "Slave Status", car Status 1 et Status 2 sont envoyés périodiquement par le Master et le Slave.

Si vous voulez avoir le "Slave cell voltage" ou/et le "Slave Cell balancing" de tous les Slaves dans le même Rack, vous devez envoyer ce message à chaque Slave (Par exemple le message 0x13041A05 avec 1 donnée 0x03 pour avoir le "Slave cell voltage" et le "Slave cell balancing" du Slave 2 dans le Stack 1)

| Signal Name          | First Bit | Length | Comments                                                       |
|----------------------|-----------|--------|----------------------------------------------------------------|
| Slave cell voltage   | 0         | 1      | 1: Request Slave or SuperMaster to forward cell voltage values |
| Slave cell balancing | 1         | 1      | 1: Request Slave SuperMaster to forward cell balancing status  |
| All Slave status     | 2         | 1      | Request Super Master sent all slaves status 1 and 2            |
| Time                 | 3         | 1      | Reserved SuperMaster                                           |
| Renumber Slave       | 4         | 1      | Reserved SuperMaster                                           |
| Reboot all           | 5         | 1      | Reserved SuperMaster                                           |
| Slave error/warning  | 6         | 1      | Request SuperMaster sent slaves status error/Warning message   |
| Slave status 3       | 7         | 1      | Min/Max Battery voltage/current                                |
| Not use              | 8         | 4      |                                                                |
| Slave status 1       | 12        | 1      | Request SuperMaster sent one slaves status 1                   |
| Slave status 2       | 13        | 1      | Request SuperMaster sent one slaves status2                    |





## 10.2.4.2 Cell voltage

| ID message | Period     | Data Length |
|------------|------------|-------------|
| 0x12yyy103 | On request | 8           |
| 0x12yyy104 |            |             |
| 0x12yyy109 |            |             |
| 0x12yyy110 |            |             |

### **Description:**

Ces messages sont envoyés par **Master** et **Slave**. Ils contiennent les tensions des cellules du pack (1-16). Chaque message contient 4 tensions de cellules.

0x12yyy103: tensions des cellules 1 à 4 0x12yyy104: tensions des cellules 5 à 8 0x12yyy109: tensions des cellules 9 à 12 0x12yyy110: tensions des cellules 13 à 16

Pour demander à un Slave d'envoyer ces messages, vous devez utiliser le message de maintenance (ID : 0x205) avec l'ID du Slave.

### Exemple:

Le message de maintenance 0x13021605 (avec Activation de la tension de cellule = 1) permet au Slave 1 du Stack 1 d'envoyer les tensions des cellules (en une seule fois).

Le slave 1 du stack va donc répondre avec l'ID 0x12821103 suivis des tensions des cellules 1 à 4 du pack.

| Data Name    | First Bit | Length | Unit | Comments     |
|--------------|-----------|--------|------|--------------|
| Cell voltage | 0         | 16     | mV   | Cell voltage |
| Cell voltage | 16        | 16     | mV   |              |
| Cell voltage | 32        | 16     | m۷   |              |
| Cell voltage | 48        | 16     | m۷   |              |





# 10.2.4.3 Cell balancing

| ID message | Period     | Data Length |
|------------|------------|-------------|
| 0x1Ayyy209 | On request | 2           |

# **Description:**

Dans ce message, vous pouvez voir quelles sont les cellules en équilibrage (balancing).

| Data Name    | First Bit | Length | Comments                                 |
|--------------|-----------|--------|------------------------------------------|
| Bal. Cell 1  | 0         | 1      | 1 = cell in balancing ; 0 = no balancing |
| Bal. Cell 2  | 1         | 1      |                                          |
| Bal. Cell 3  | 2         | 1      |                                          |
| Bal. Cell 4  | 3         | 1      |                                          |
| Bal. Cell 5  | 4         | 1      |                                          |
| Bal. Cell 6  | 5         | 1      |                                          |
| Bal. Cell 7  | 6         | 1      |                                          |
| Bal. Cell 8  | 7         | 1      |                                          |
| Bal. Cell 9  | 8         | 1      |                                          |
| Bal. Cell 10 | 9         | 1      |                                          |
| Bal. Cell 11 | 10        | 1      |                                          |
| Bal. Cell 12 | 11        | 1      |                                          |
| Bal. Cell 13 | 12        | 1      |                                          |
| Bal. Cell 14 | 13        | 1      |                                          |
| Bal. Cell 15 | 14        | 1      |                                          |
| Bal. Cell 16 | 15        | 1      |                                          |





### 10.2.4.4 Ouverture-fermeture du contacteur

| ID message | Period  | Data Length |
|------------|---------|-------------|
| 0x030yy60C | Request | 1           |

### **Description**:

Ce message est envoyé par un **contrôleur externe**. Il a l'ID 0x20C avec "Frame type 01 : RX". Par exemple : pour commander le contacteur de puissance du Master, le message 0x0302160C doit être envoyé. Pour le contacteur de puissance du Slave2 dans le stack 1, il faut envoyer le message 0x0304160C.

Cette requête permet de forcer l'ouverture ou la fermeture du contacteur de puissance s'il n'y a pas d'erreur.

### Plus de détails :

Le contacteur de puissance est contrôlé en permanence par le BMS : il s'ouvre en cas d'erreur détectée (erreur de courant, erreur de tension...).

Dès que l'erreur est levée, le contacteur se ferme et reconnecte la sortie de la batterie. Dans le cas où le contacteur de puissance est ouvert 3 fois en 15 minutes, il restera ouvert pendant 15 minutes afin de protéger la batterie et sera fermé automatiquement par la suite.

### Data information:

| Data Name                 | First Bit | Length | Comments                |
|---------------------------|-----------|--------|-------------------------|
| Close power contactor     | 0         | 1      | 1 close power contactor |
| Open power contactor      | 1         | 1      | 1 open power contactor  |
| Close all power contactor | 2         | 1      | Reserved                |
| Open all power contactor  | 3         | 1      | Reserved                |

## 10.2.4.5 Management chauffage

| ID message | Period  | Data Length |
|------------|---------|-------------|
| 0x03yyyA11 | request | 4           |

### **Description:**

Ce message est envoyé par un **contrôleur externe**. Il est utilisé pour activer ou désactiver le chauffage (heater).

| Signal Name | First Bit | Length | Comments                                                                      |  |
|-------------|-----------|--------|-------------------------------------------------------------------------------|--|
| Ctlheat     | 0         | 8      | 0x01 active heater; 0x00 disable heater                                       |  |
| TempHeat    | 8         | 8      | Target Temperature offset -40 (0°C = 40) Value from 20 to 100 (-20°C to 60°C) |  |
| Rateheat    | 16        | 8      | Rate active heater from 1 to 10                                               |  |
| DelayHeat   | 24        | 8      | delay holding the heater active after target temperature reached (in minute)  |  |





### 10.2.4.6 Parametres

Ces demandes permettent de gérer (lire/écrire) les paramètres du BMS.

10.2.4.6.1 Message of Parameters

| ID message | Period     | Data Length |
|------------|------------|-------------|
| 0x12yyy200 | On Request | 3 or 8      |

#### **Description:**

Ce message contient les paramètres qui sont sauvegardés dans l'E2PROM. Vous pouvez recevoir ce message en envoyant le message "Request Parameter". Et vous pouvez également modifier les paramètres un par un avec le message "Set Parameter". La longueur des données est de 3 ou 8. L'octet 2 des données correspond au nombre de paramètres dans ce message. Lorsque l'octet 2 des données est 1, il y a un paramètre et la longueur des données est 3. Lorsque l'octet 2 est 3, il y a trois paramètres et la longueur des données est 8.

#### Data information:

| Signal Name       | First Bit | Length | Comments                               |  |  |
|-------------------|-----------|--------|----------------------------------------|--|--|
| Address parameter | 0         | 8      | The address of parameter in the E2PROM |  |  |
| Number parameter  | 8         | 8      | Number of parameters to be sent        |  |  |
| Parameter 1       | 16        | 16     |                                        |  |  |
| Parameter 2       | 32        | 16     |                                        |  |  |
| Parameter 3       | 48        | 16     |                                        |  |  |

## 10.2.4.6.2 Setting Parameter

|   | ID message | Period  | Data Length |
|---|------------|---------|-------------|
| Γ | 0x13vvv600 | Request | 3           |

### **Description:**

Ce message est utilisé pour mettre à jour un paramètre.

#### Data information:

| Signal Name       | First Bit | Length | Comments                                          |
|-------------------|-----------|--------|---------------------------------------------------|
| Address parameter | 0         | 8      | Address E2PROM you want to write data             |
| Data 1            | 8         | 8      | The new value of parameter byte 1 write in E2PROM |
| Data 2            | 16        | 8      | The new value of parameter byte 2 write in E2PROM |

#### 10.2.4.6.3 Request Parameter

| ID message | Period  | Data Length |
|------------|---------|-------------|
| 0x13yyyA00 | Request | 0           |

### **Description:**

Ce message demande au BMS d'envoyer tous les paramètres. Vous recevrez plusieurs messages 0x2yyy200 avec 8 octets de données. Chaque message contient 3 paramètres

Data information: No data