The snowplow problem

Point 1:

Si nous prenons la suite de maisons :

[-9,-2,1,6,8]

Dans le cas où on suivrait l'ordre sorted, on obtiendrait :

$$\textbf{-9} \rightarrow \textbf{-2} \rightarrow \textbf{1} \rightarrow \textbf{6} \rightarrow \textbf{8}$$

En terme de temps :

Maison : Temps auquel elle sera nettoyée

-9	9
-2	16
1	19
6	24
8	26

Total: 9 + 16 + 19 + 24 + 26 = 94

Donc 94 / 5 = 18.8 d'attente en moyenne

Dans le cas où on irait au plus proche à chaque fois, on obtiendrait :

$$1 \rightarrow -2 \rightarrow 6 \rightarrow 8 \rightarrow -9$$

En terme de temp :

1	1
-2	4
6	12
8	14
-9	31

Total: 1 + 4 + 12 + 14 + 31 = 62

Donc 62 / 5 = 12.4 d'attente en moyenne

Alors que la séquence la plus rapide est :

$$1 \rightarrow 6 \rightarrow 8 \rightarrow -2 \rightarrow -9$$

En terme de temps :

1	1
6	6
8	8
-2	18
-9	25

Total: 1 + 6 + 8 + 18 + 25 = 58

Donc 58 / 5 = 11.6 d'attente en moyenne

Point 3:

Comparison between parcours runtime and O(n*log(n)) curve

parcours runtime
O(n*log(n)) curve

