M624 HOMEWORK - SPRING 2017

Prof. Andrea R. Nahmod

SETS 1 & 2 - Due 02/09/2017

From Chapter 3 (pp 145-152): 14, 15,19, 23, 32.

From Chapter 3 (pp 153): 4.

Additional Questions (Chapter 3; left in class):

- 1) Explain why $J_F(y) J_F(x) \le \sum_{n:x < x_n < y} \alpha_n \le F(y) F(x)$ (proof of Lemma 3.13).
- 2) Show rigorously that $J_F(x) F(x)$ is continuous (in proof of Lemma 3.13).
- 3) Rewrite explaining fully the proof of Theorem 3.14 in Chapter 3. Note you need to solve and use exercise 14 (given above in Chapter 3).

From Chapter 4:

Recall carefully the proof of both Theorem 2.2 (Riesz-Fisher) on Chaper 2 (p. 70) and the one for Theorem 1.2 Chapter 4 (p. 159) (as we did in class). Then do:

Additional Problem: For any $1 \le p < \infty$ consider the space

$$L^p(\mathbb{R}^d) := \{ f : \mathbb{R}^d \to \mathbb{C}, \text{ measurable, } : \|f\|_{L^p(\mathbb{R}^d)} := \left(\int_{\mathbb{R}^d} |f(x)|^p \, dm \right)^{\frac{1}{p}} < \infty \}.$$

Assume that $||f||_{L^p(\mathbb{R}^d)}$ is a norm (challenge: can you guess what would you need to prove the triangle inequality when $p \neq 2$?), whence $d_p(f,g) := ||f - g||_{L^p(\mathbb{R}^d)}$ defines a metric and L^p is a metric space. **Prove** that $L^p(\mathbb{R}^d)$ is complete.

From Chapter 4 (pp 193-194): 1, 2, 3, 4, 5, 6, 7, 8a).

From Chapter 4 (pp 202): 2*a)b)

From Chapter 4 (pp 195-197): 10, 11, 12, 13, 20

Pb. I. Consider the subspace S of $L^2([0,1])$ spanned by the functions: 1, x, and x^3 .

- a) Find an orthonormal basis of S.
- b) Let $P_{\mathcal{S}}$ denote the orthogonal projection on the subspace \mathcal{S} , compute $P_{\mathcal{S}}x^2$.

Pb. II. Consider a function $f \in L^2([-\pi, \pi])$ whose Fourier series is $\sum_{n \in \mathbb{Z}} a_n e^{inx} = \lim_{N \to \infty} S_N(f)(x)$ - equal a.e. to f(x). Show that on any subinterval $[a, b] \subset [-\pi, \pi]$ we have,

$$\int_a^b f(x) dx = \sum_n \int_a^b a_n e^{inx} dx.$$

In particular if $g(x) = \int_a^x f(y)dy$, the Fourier coefficients and series of g(x) can be obtained from a_n , the Fourier coefficients of f.

Pb. III. For $0 < \alpha < 1$, we say that a function f is C^{α} -Hölder continuous with exponent α if there exists a constant $c = c_{\alpha} > 0$ such that $|f(x) - f(y)| \le c |x - y|^{\alpha}$ for all x, y. For $k \in \mathbb{N}$, we can also define the space $C^{k,\alpha}$ to be that of functions which are k-th times differentiable and whose k-th derivative is C^{α} -Hölder continuous (we could relabel C^{α} as $C^{0,\alpha}$).

Consider now f a 2π -periodic $C^{k,\alpha}$ function. If a_n are the Fourier coefficients of f, show that for some C > 0 independent of n,

$$|a_n| \le \frac{C}{|n|^{k+\alpha}}$$

From Chapter 4 (pp 205): 11*a)b).

SET 4 - DUE
$$03/02/17$$

From Chapter 4 (pp 197-202): 18, 19, 21a), 22, 24, 26.

From Chapter 4 (pp 196-202): 15, 21b), 23, 25, 28, 30, 32, 33.

Additional Problems (Bonus): 29 (p 199-200) and 6* (p. 203-204). These are about Fredholm's Alternative for compact operators.

SET 6 - DUE
$$03/30/17$$

From Chapter 5: 1

<u>Definition</u>: A Fourier multiplier operator T on \mathbb{R}^d is a linear operator on $L^2(\mathbb{R}^d)$ determined by a bounded function m (the multiplier) such that T is defined by the formula

$$\widehat{T(f)}(\xi) := m(\xi)\widehat{f}(\xi)$$

for all $\xi \in \mathbb{R}^d$ and any $f \in L^2(\mathbb{R}^d)$.

From Chapter 6: Read/Study the proofs in Section 1.

From Chapter 6: 1, 2a), 3.

SET 7 - Thursday April 20th

From Chapter 6 (pp 317-322): 5, 8, 10, 11a)b), 16a)b)

Additional Problems:

(A1) Let ν be a signed measure on (X, \mathcal{M}) . Show that for any $E \in \mathcal{M}$

$$|\nu|(E) =$$

$$= \sup \{ \sum_{k=1}^{K} |\nu(E_k)| : E_1, \dots E_K \text{ are disjoint and } E = \bigcup_{k=1}^{K} E_k \}$$

(2)
$$= \sup \{ \sum_{k=1}^{\infty} |\nu(E_k)| : E_1, E_2, \dots \text{ are disjoint and } E = \bigcup_{k=1}^{\infty} E_k \}$$

(3)
$$= \sup\{ |\int_{E} f d\nu| : |f| \le 1 \}$$

You may want to proceed for example by proving that $(1) \le (2) \le (3) \le (1)$.

- (A2) Let $F \in BV([a,b])$ and right continuous. Let $G(x) = |\mu_F|([a,x])$. Show that $|\mu_F| = \mu_{T_F}$ by showing that $G = T_F$. To do so you may proceed by proving:
 - 1) $T_F \leq G$ (use definition of T_F).
 - 2) $|\mu_F(E)| \leq \mu_{T_F}(E)$ for any Borel set E (do for an interval first).
 - 3) Show that $|\mu_F| \leq \mu_{T_F}$ and hence $G \leq T_F$ (use (A1)).

Problems to do (but do not turn in): 14, 16c)d)e)f).

From Chapter 1 of [SS, Vol. 4] (pp 34-43): 1, 3, 5, 6, 7, 8.

From Chapter 1 of [SS, Vol. 4] (pp 36-43): 9, 12 (do this on \mathbb{R}^n with Lebesgue measure), 13, 15, 16, 17, 19, 20, 34, 35.