Aeroelasticity Xeno Meienberg

Parameters

- Aerodynamic Force $\overline{F_A} = \overline{L} + \overline{D}$
- Lift Force L[N]
- Drag Force D[N]
- Aerodynamic Moment M_A [Nm]
- Dynamic Pressure $q = 1/2\rho V^2$ (Bernoulli) [Pa]
- Chord Length c[m]
- Surface Area $S = b \cdot c \ [m^2]$ (Rectangular)
- Wing Span b [m]
- Lift Coefficient $C_l = L/(1/2\rho V^2 \cdot S)$
- Drag Coefficient $C_d = D/(1/2\rho V^2 \cdot S)$
- Moment Coefficient $C_m = M_A/(1/2\rho V^2 \cdot c \cdot S)$
- Angle of Attack α [rad] (positive in clockwise direction)
- Lift curve slope $a = C_l/\alpha \approx tan(angle x axis to curve)$

Conventions throughout Course

- If L and D absolute \rightarrow use calculations above
- If L and D per span unit \rightarrow correct via dividing by b
- Sign conventions: Lift positive, Drag positive in x and y direction
- · Moments and angles positive in clockwise direction
- Our system coordinate system is defined by the wing. The angle of attack is defined relative to it
- The variables which describe the airfoil motion are the pitch θ and the plunge h which act at the shear centre of the wing

Mathematical Basics

•
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

- Inverse of Matrix (2D): $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
- Inverse of Matrix (3D):
 - 1. det (A), then transpose A
 - 2. Find the ajunct matrix (minors) of (cover row and column of element) of A^T and multiply with +- matrix $A^{-1} = 1/det(A) \cdot Adi(A^T)$
- The solutions of Ax = 0 for a matrix A, x cannot be just the trivial solution if A is not invertible
- $[rad] = \frac{\pi}{180} [deg]$

Steady Aerofoil and Wing Section Aerodynamics

- Aerofoil = 2-D wing section with goal to generate lift force perpendicular to the relative airspeed
- Convention: Lift is up, Drag is in direction of windspeed and Aerodynamic moment in clockwise direction acting on the aerodynamic center. Aerodynamic center is normally at the quarter chord position $c_{m,c/4}$ for syymetric airfoils. $x_{ac}=-m_0/2\pi+0.25$ with m_0 as a shape constant
- Further assumptions: No viscosity, incompressible fluid, Ma < 0.2, 0.3, no vortices, potential flow (Navier-Stokes)
- Another centre is the shear center (elastic axis) from mechanics
- $L=1/2\rho V^2 ca\alpha$, with a from tables (CFD and Wind Tunnel) $\lceil N/m \rceil$
- $M_A=1/2\rho V^2c^2c_{m0}$ with c_{m0} also from tables [N]

Lift curve $C_l(\alpha)$ and drag curve $C_d(\alpha)$

- At small ranges of α , both lift and drag increase with: $C_l \propto \alpha$ and $C_d \propto \alpha^2$
- In aeroelasticity and this course, α will be very small, hence drag will be negligble small

The aerodynamic moment M_A

- The aerodynamic moment is much more important than drag \mathcal{C}_d
- M_A varies with α in the small ranges of the angle of attack (very small, p. 7)
- Important to note: There exist a point at which the aerodynamic moment does not depend on α . This is the the aerodynamic centre
- The aerodynamic centre is not the same as the centre of pressure, which is defined as the point where the aerodynamic moment is zero given a certain angle of attack α
- Symmetric airfoils at $\alpha=0$ have no aerodynamic moment at all times ($M_A=0=const$). At the aerodynamic centre for symmetric foils results into no moment
- Asymmetric airfoils at $\alpha=0$ have a non-zero aerodynamic moment at all times (all angles α)

Assessment of C_l/α (Correction of value through Mach Number)

- The linear part of the lift curve is characterised by the slope $a=C_l/\alpha(M)=\frac{C_l/\alpha_{M=0}}{\sqrt{1-M^2}}$
- The Prandtl-Glauert factor is $1/\sqrt{1-M^2}$
- The factor is depending on the Mach number. The slop increases with increasing M (between 0 and 1)
- The dependence on Re is more subtle (p. 8)

Extension to wing aerodynamics (p. 8)

Aerofoil dynamics (2D) refer to the previous topics, however the 3-D case can be also modeled by through a couple examples. A finite wing is less stable and efficient than the airfoil since the tips have vortices on at the wing tips. These "induce" a velocity, which locally reduces the angle of attack. An important parameter is the so called **Aspect Ratio** $AR = b^2/S$. If the wing is assumed to be of surface $S = b \cdot c$, it follows AR = b/c.

- The lift curve can become a function of AR if due to the different tips. Approximately, the lift slope a_0 is adjusted via following formula:
- $a = a_0 \frac{AR}{AR+4}$
- The values a and c_{m0} will hence be corrected with a a^* and c^*_{m0}

Strip Theory (p.9)

- If AS is very small (delta wings), the integral of multiple airfoils
- Define multiple airfoils stacked next to each other along the span \boldsymbol{b}
- Example, the wing is an elliptical $f(y) = \sqrt{1-(\frac{y}{b/2})^2} \cdot \overline{f}_{\phi}$
- $f(y) = a\alpha c = C_l c$ with c = chord length.

Steady-state (static) Aeroelasticity

Typical Section = 1DOF model

- 2-D problem with a rigid wing. We can have multiple typical sections stacked onto each other, which would be later adding dimensionality to the variable θ . The idea is later on to model the torsional spring to be a torsional stiffness of a beam (since a real wing is actually a beam with a certain stiffness).
 - The torsion acts in a beam section on the shear centre, however in aeroelasticity on the elastic axis
 - The goal of engineering is always to move the shear center to the front (comes with risk to thin out the rear longeron and thicken the front longeron)

- In equilibrium, we know that the aerodynamic forces are equal to the spring forces
- $M_t + L \cdot e = \theta k_\theta = (qc^2 c_{m0} + qca\theta e) \cdot b$ (moment equations)
- Pitching moment M_t acting on section with k_{θ} stiffness
- $k_{\theta}\theta = qc(C_{l/a}e(\theta + \alpha_0) + cC_{m0})$

Static Instability or Divergence

- If the elastic twist θ would become infinity for a given stiffness if the denominator of equation
- $\theta = qc \frac{C_{l,a}e\alpha_0 + cC_{m,0}}{k_\theta cqC_{l,a}e}$, $\theta = \infty \Leftrightarrow \text{denominator} = 0$
- If the dynamic pressure $q=\frac{k_{\theta}}{cC_{l,a}e}=q_{div}
 ightarrow ext{instable}$ (divergence)
- Divergence = Static Instability
- $M_{tot} = (k_{\theta} qSae)\theta qSa(e\alpha_0 + C_mc)$ (In equilibrium $M_{tot} = 0$) ($M_{tot} > 0$ if in anti-clockwise direction)
- Different interpretation: $\frac{\partial M_{tot}}{\partial \theta} \geq 0 \Leftrightarrow \text{increasing total}$ moment in section for increasing $\theta \Leftrightarrow \Delta \theta > 0$
- $\frac{\partial M_{tot}}{\partial \theta} \geq 0 \Leftrightarrow$ overall moment brings blade section back to original position
- The divergent dynamic pressure can be found by differentiating w.r.t. θ

Lagrange Equation (Energy interpretation)

- L = T U (Kinetic and potential energy)
- $\frac{d}{dt} \frac{\partial L}{\partial \dot{x}_i} \frac{\partial L}{\partial x_i} = 0$
- In statics: $\frac{\partial U}{\partial x_i} = 0$ (Potential energy conservative)
- Here: $\frac{\partial U}{\partial x_i} = \frac{\partial}{\partial x} \frac{\delta W}{\delta x}$ (Virtual work), hence for θ
- $\frac{\partial U}{\partial \theta} = \frac{\partial}{\partial \theta} \frac{\delta W}{\delta \theta} = 0$ (Check for q)
- Resulting q provides the divergence
- $U=1/2\cdot k_{\theta}\theta^{2}=\int F(\theta)d\theta$ (For system with only one spring)

Section with more than 1 DOF

- 1. Number of DOF = Dimensions of Stiffness Matrix and number of equations needed (full rank) K
- 2. Define a potential energy matrix for mechanical system $K_{i,j}=\frac{\partial U}{\partial x_i\partial x_j}=K_{j,i}$
- 3. Define aerodynamic matrix K_a based on aerodynamic forces (independent on e for example)
- 4. If a matrix is not symmetric = Non-conservative forces
- Similar to before, instead of asking if the system is stable if the denominator is zero, we must know if the determinant of the transfer function is zero
- 6. Transfer Function: $[K qK_a] = K_{ael}$ is 'Aeroelastic K'
- 7. Find a q for which the transfer function determinant becomes zero, which is divergence dynamic pressure. The solution (forces acting) is the so called divergence mode
- 8. If all eigenvalues are $> 0 \Leftrightarrow$ stable, if one is at least $< 0 \Leftrightarrow$ unstable (for sections)

System (more than 1 section) with multiple DOF

- Define a system with multiple θ_i , whereas the calculations become similar to when when calculating one section with multiple DOF
- Make an Ansatz with the lagrange equations and define stiffness matrix K
- The aerodynamic matrix becomes the identity matrix (if we only speak about θ)
- ullet This implies that the solutions for q are the eigenvalues of K

Comment on eigenvalues

- The eigenvalues of the Aeorelastic K K_{ael} cannot guarantee that q are always the eigenvalues, since K_a is sometimes non-symmetric (most of the times, only if rotational degrees of freedom present)
- In general, following statement holds true: $det(K qK_a) = 0$

- $det(K_a^{-1}K qI) = det(A \lambda I) = 0$
- If A is not symmetric, we can say: There are less eigenvectors and values than the order (n), can be complex and come in complex conjugate pairs

Active conrol on sections

- With active control, the behaviour of the elastic twist θ can be controlled with for example a trailing edge flap
- As described in the script, a trailing edge flap can influence the lift and the moment as follows:
- $l = qcC_{l/\delta}\delta$, $m = qcC_{m/\delta}\delta$ ($C_{m/\delta} < 0$)
- Both forces contribute to the overall moment, hence will be added to the calculations we did previously
- With a so called 'Gain' G, the controller controls δ proportional to θ, hence a new linear equation system is formed
- Assuming the nose-down motion of controlling the the edge flap, we have to simplify terms, the end result is
- $q_{div,flap}=\frac{k_{\theta}}{cae-Gca^*}$, with $a^*=-(cC_{m/\delta}+eC_{l/\delta})/(c\delta)$

Ritz Method

... is a energy variational method whereas an equilibrium occurs in correspondence of an extreme of potential energy. A general application is the virtual work. According to the Hamilton's principle and Lagrange equations, we can define a set of equations.

- $\frac{\partial V}{\partial x_i} = 0$ for all i (x_i degrees of freedom)
- From mechanics, we need the bending stiffness (I) and the torsional stiffness (J)
- $I = 1/12 * b * h^3$ (w.r.t x) and $J = \frac{4A^2}{\int ds/t}$ (Integral is perimeter (Umfang) divided by thickness)

Derivation for a beam section

- Given aerodynamic forces are non-conservative, we use the concept of virtual work

- $\delta U = \delta W$ (Virtual work due to non-conservative forces)
- $\sum_{i=1}^{n} \frac{\partial U}{\partial x_i} \delta x_i = \sum_{i=1}^{n} \delta W_i$ (reformulated for small variations of one DOF)
- $\frac{\partial U}{\partial x_i} \frac{\delta W}{\delta x_i} = 0$ (reformulated)
- The work done by the external forces (aerodynamic) can be rewritten:
- $\delta W = \int_0^l m(x) \delta \theta(x) dx$
- m(x) generated by aerodynamic forces
- Without going into further detail, there are 2 distinct cases from which one has to go on in the calculation, either the functions are given in a generalised form or in matrix form
- $\theta(x) = \sum_{i=1}^{N} \phi_i(x) a_i = [\Phi]\{a\}$
- $[\Phi]$ is a row vector with elements ϕ_i !
- $\phi_i(x)$ are shape functions and a_i are coefficients and the linear combination of those make up $\theta(x)$
- Finally, the overall equations result in $[K]{a} = {f}$
- $K_{i,j} = \int_0^l GJ\phi_{ix}\phi_{jx}dx = GJ\frac{\partial^2 U}{\partial a_i\partial a_j}$ (Stiffness matrix entries, partial derivatives w.r.t. to x and a)
- $[K] = GJ \int_0^l [\Phi_x]^T [\Phi_x] dx$
- $f_i = \int_0^l m(x) [\Phi]_i(x) dx$ (index i for each element)
- $\{f\} = \int_0^l m(x) [\Phi]^T dx$ (in matrix form)

Following assumptions are drawn:

- · Elastic axis is perfectly straight
- · Aerodynamic center of all sections on a straight line
- External moments as before by aerodynamic forces: $m(x) = qcea(\theta(x) + \alpha_0)$

Replace all $\theta(x)$ with the above solutions

One single shape function (1-DOF)

One single shape function, Bending and Twisting

- For bending, the potential energy is: $U = \frac{1}{2} \int_0^l EI\psi_{xx}^2 dx$
- ψ =