ITE1011		Computer Graphics		L T P J C	
Due ve aviaite		M A T 2002		3 0 0 4 4	
Pre-requisite		MAT 3003		Syllabus version	
Course Obje	ctives:			1.0	
		comprehensive introduction to computer g	graphics.		
To uncertainty	derstan	d basic terminology, progress, issues, and	trends in Compu	iter Graphics.	
• To stu	dy the	various applications of computer graphics			
Expected Co	urse O	utcome:			
1) Under	stand c	omputer graphics and interactive compute	r graphics archit	ecture.	
2) Analy	ze diffe	erent algorithms for the construction of gra	aphic models.		
3) Under	stand t	ne technical aspects of computer graphics	and various trans	sformations.	
		perspective of modern computer syst of 2D and 3D visual information.	em using mode	eling, analysis and	
5) Develo	op skill	s with respect to various clipping algorithm	ms in computer g	graphics	
, -		mplement advanced algorithms for curv hading techniques.	es and modeling	g with Illumination	
7) Under	stand a	nd implement the various visible surface a	and shading algor	rithms.	
8) Apply applic		mplement the various algorithms on co	omputer graphics	s for the real time	
Student Lear	rning (Outcomes (SLO): 1, 14			
		ility to apply knowledge of mathematics,	science, and engi	ineering.	
	-	design and conduct experiments, as well a	_	_	
Module:1 1	Introdi	votion	T	5 hour	
		omputer graphics and its Applications, Gra	 		
		s, Raster graphics system, vector graphics		, i ipeime,	
1 1					
Module:2	Graphi	cs primitives generation algorithms		7 hour	
_	_	ithms, Circle drawing algorithms, Ellip	se drawing algo	orithms and filling	
algorithms. A	ttribute	es of Output Primitives. Colour models.			
Module:3	Two di	mensional and Three dimensional		5 hour	
		rmations			
Translation, r	otation	, scaling, reflection and shearing, Homog	genous Coordinat	tes, Composition o	
Transformatio	ons.				

Module:4	Two dimensional viewing	;			6 hours
2D viewin	g pipeline, Window to	viewport trans	formation	. Three dimen	sional viewing
transformat	ions: 3D viewing pipeline, I	Projection, Type	s of proje	ction, Transform	ation matrix for
parallel and	perspective projection.				
Module:5	2D Clipping algorithms				7 hours
	ng, line clipping and polygon	n clipping algori	thms. 3D	clipping algorith	ms: point and
line clipping	g algorithms.				
Module:6	Curves and Modelling				6 hours
	Curves: Cubic Splines, Bezie		_	_	
_	arised Boolean set operation	_	_		-
Sweep, Bou	ndary, spatial-partitioning, o	constructive solic	d geometry	y and its compar	ison.
Module:7	Visible surface determi	nation, Illumir	nation		6 hours
	and shading				
	e determination algorithms:		-	•	
	Models: Diffuse, Specular	and Ambient R	eflection.	Polygon Shadin	g: Flat Shading,
Gouraud Sh	ading and Phong Shading.				
15 1 1 0			1		
Module:8	Contemporary issues:				3 hours
		T-4-114 1			45 h
		Total Lecture h	iours:		45 hours
Toy t Dools	(a)				
1. James 1	D.Foley, Andries Van Dam,	Stavan V Eainar	and E Uu	ghas John Cam	nutar Graphics
	les and Practice in C, Secon			_	puter Grapines
Reference 1	· · · · · · · · · · · · · · · · · · ·	d edition, realso	on Fuonca	111011, 2012.	
	Donald D. and Baker, M. Pa	aulina Computa	r Cranhia	unging C. Third	adition Prantice
-	·		r Grapmes	s using C, Third	edition, Prentice
	ofessional Technical Reference Marschner and Peter Shirley,		£ C	Cli CD	C D 2015
	• • • • • • • • • • • • • • • • • • • •		1	1 /	*
	Donald D. and Baker, M. Pa	_	-	using OpenGL,	routin edition,
FIGHT	e Hall Professional Technica	ii Kelelellee, 201		horatory Uours	30 hours
			Total La	boratory Hours	50 Hours
	lad by Doord of Studios	05 02 2016			
Recommend	ded by Board of Studies y Academic Council	05-03-2016 No. 40	Date	18-03-2016	