

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

22 de Junio de 2022

Definición.

- ① Dada una sucesión $\{a_n\}$, se dice que el límite de a_n es más infinito y se escribe $\lim_{n\to\infty} a_n = +\infty$, para significar que, dado cualquier A>0, existe $N\in\mathbb{N}$ tal que si n>N implica $a_n>A$.
- ② Análogamente, $\lim_{n\to\infty} a_n = -\infty$ significa que, para todo A>0 dado, se puede encontrar $N\in\mathbb{N}$ tal que $n>N\Longrightarrow a_n<-A$.

Se debe enfatizar que $+\infty$ y $-\infty$ no son números y que, si $\lim_{n\to\infty} a_n = +\infty$ y $\lim_{n\to\infty} b_n = -\infty$, las sucesiones $\{a_n\}$ y $\{b_n\}$ no son convergentes.

Observación Como $\lim_{n\to\infty}(a_n)=+\infty \iff \lim_{n\to\infty}(-a_n)=-\infty$, limitaremos nuestros comentarios al primer caso.

Proposición.

Si $\lim_{n\to\infty} a_n = +\infty$ entonces la sucesión $\{a_n\}$ no está acotada superiormente.

EJEMPLO 1 El recíproco de la proposición anterior es falso. La sucesión dada por $a_n = n + (-1)^n n$ no está acotada superiormente, sin embargo no se tiene $\lim_{n \to \infty} a_n = +\infty$, pues $a_{2n-1} = 0$ para todo $n \in \mathbb{N}$.

Proposición.

Sea $\{a_n\}$ una sucesión creciente.

Si
$$\{a_n\}$$
 no esta acotada, entonces $\lim_{n\to\infty} a_n = +\infty$

EJEMPLO 2 Se tiene que $\lim_{n\to\infty} n = +\infty$

EJEMPLO 3 Probar que $\lim_{n\to\infty} \exp(n) = +\infty$.

Solución Usando la desigualdad fundamental

$$e^n \geqslant 1 + n \geqslant n$$

Haciendo $n \to \infty$ se ve que $e^n \to +\infty$.

EJEMPLO 4 Probar que $\lim_{n\to\infty} \ln(n) = +\infty$

EJEMPLO 5 Se tiene que $\lim_{n\to\infty} \arctan(n) = \frac{\pi}{2}$.

Teorema.

- ① Si $\lim_{n\to\infty} a_n = +\infty$ y $\{b_n\}$ está acotada inferiormente, entonces $\lim_{n\to\infty} (a_n + b_n) = +\infty$.
- ② Si $\lim_{n\to\infty} a_n = +\infty$ y existe c>0 tal que $b_n>c$ para todo $n\in\mathbb{N}$ entonces $\lim_{n\to\infty} (a_n\cdot b_n) = +\infty$.
- \odot Si $a_n>c>0$, $b_n>0$ para todo $n\in\mathbb{N}$ y $\lim_{n\to\infty}b_n=0$ entonces $\lim_{n\to\infty}rac{a_n}{b_n}=+\infty$.
- **③** Si $\{a_n\}$ está acotada y $\lim_{n\to\infty}(b_n)=+\infty$ entonces $\lim_{n\to\infty}\frac{a_n}{b_n}=0$.

Demostración

- Existe $c \in \mathbb{R}$ tal que $b_n \geqslant c$ para todo $n \in \mathbb{N}$. Dado cualquier A > 0, existe $N \in \mathbb{N}$ tal que n > N entonces $a_n > A c$. Se sigue que si n > N entonces $a_n + b_n \geqslant A c + c = A$. Luego $\lim_{n \to \infty} (a_n + b_n) = +\infty$
- ② Dado cualquier A > 0 existe $N \in \mathbb{N}$ tal que si n > N implica que $a_n > A/c$. Luego si n > N entonces

$$a_n \cdot b_n > (A/c) \cdot b_n > (A/c) \cdot c = A$$

por lo que $\lim_{n\to\infty} (a_n \cdot b_n) = +\infty$.

① Dado A>0, existe $N\in\mathbb{N}$ tal que $n>N\Longrightarrow b_n< c/A$. Entonces, $n>N\Longrightarrow a_n/b_n>c\cdot A/c=A$, de donde $\lim_{n\to\infty}(a_n/b_n)=+\infty$.

• Existe c>0 tal que $|a_n|\leqslant c$ para todo $n\in\mathbb{N}$. Dado cualquier $\varepsilon>0$, existe $N\in\mathbb{N}$ tal que $n>N\Longrightarrow b_n>c/\varepsilon$. Entonces $n>N\Longrightarrow |a_n/b_n|< c\cdot\varepsilon/c=\varepsilon$, luego $\lim_{n\to\infty}(a_n/b_n)=0$.

EJEMPLO 6 Si $\lim_{n\to\infty} a_n = 0$ no implica que $\lim_{n\to\infty} \frac{1}{a_n} = +\infty$. Por ejemplo, si $a_n = \frac{(-1)^n}{n}$ converge a cero, pero $\frac{1}{a_n} = (-1)^n n$ no diverge a ∞ ni a $-\infty$.

EJEMPLO 7 Si x>1 entonces $\lim_{n\to\infty}x^n=+\infty$. En efecto, si x>1 entonces $0<\frac{1}{x}<1$ entonces $b_n=\frac{1}{x^n}>0$ y

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\left(\frac{1}{x}\right)^n=0$$

Por el inciso 3 del teorema se deduce que

$$\lim_{n\to\infty}\frac{1}{b_n}=\lim_{n\to\infty}x^n=+\infty$$