2383 A2
1) a) $n^3 + 8n^2 + 6n + 2$ $n^3 + 8n^2 + 6n + 2 \le C \cdot n^3$ $\le n^3 + 8n^3 + 6n^3 + 2n^3$
Let $C=17$, $N_0=1$ We have $n^3+8n^2+6n+2 \le C \cdot n^3$, for all $n \ge n_0=1$ $\vdots n^3+8n^2+6n+2$ is $O(n^3)$
$n^{3}+8n^{2}+6n+2 > c.n^{3}$ $\geq n^{3}$ (removed +ve terms) Let $c=1$, $n_{o}=1$ We have $n^{3}+8n^{2}+6n+2 > c.n^{3}$, $n>n_{o}=1$
:. $n^3 + 8n^2 + 6n + 2$ is $O(n^3)$:. $n^3 + 8n^2 + 6n + 2$ is $O(n^3)$ b) $8n^2 - 6n + 2$ Check
$8n^{2}-6n+2 \leq C \cdot n^{2}$ $\leq 8n^{2}+2$ $\leq 8n^{2}+2n^{2}$ $\leq 10 n^{2}$
Let $c=10$, $N_0=1$ We have $8n^2-6n+2 \le C \cdot n^2$, for all $n \ge n_0=1$ $\vdots \cdot 8n^2-6n+2$ is $O(n^2)$
$8n^{2}-6n+2 \approx c.n^{2}$ $8n^{2}-6n+2$ $8n^{2}-6n+2$ $2n^{2}+7n^{2}-6n+2$ Let $c=1, n=1$
We have $8n^2-6n+2 \ge c.n^2$, $n \ge n_0 = 1$: $8n^2-6n+2$ is $5 \le (n^2)$
Scanned with Cam

Scanned with CamSca

	$x \in 0$ $j \in 2$ while $(j \in X)$ $x \in X$		1) Ina	10910		(6) (
	$j < j^3$ $ion : 1st$	2nd		ath 1			K103x (109(n))
3	101 60	a Lustine	23	23	0(1	log log 1	
j	= 0 = N hile (j > 1)				l n		
	Γ	1 to j (do		n		
			///////////////////////////////////////	(a)(4n+	3 n)	

Scanned with CamSca

(4) Algorithm: sort Stack/input: Stack 5 / output: Sorted stack if (Is. is Empty ())
tempe s. pop();
sort Stack(s); sort NInsert (s, temp); return s: Algorithm: sort NInsert (s, temp)
input: Stack s, int temp if (s.isEmpty() | temp < s.peek())
s.push (temp); temp2 < s.pop(); sort N Insert (s, temp); s. push (temp2); Algorithm: reverse(n, rev)/input: int n, int rev ontput: reversed n if (n=0) rent vent 10 + (n% lo); reverse (n/lo, rev); return revis

Algorithm palindrome (w) / input; Int w output: "palindrome" or "Not palindrome" YWE O: YW ← reverse (w, rw); if (w = rw) return " Palindrome"; 6) Algorithm is Recursion (ACI,n) / input: int ACI, int noutput: sorted array using insertion sort. if (n<2) isRecursion (A, n-1); last & A[n-1]; for(ifn; i > 0 && A[i] > last) Aci+1] = Aci];
Aci+1] = last; (implied) Scanned with CamSCa