

Agent based modeling in R Irchel Pandemic

Table of contents

- Problem
- Research Questions
- Model Design
 - Assumptions
- Results and discussion
- Conclusion
- Limitations and future directions

Problem

Pôa**£5**a**£B**ärtschi, Laura Dikhoff, Jule Greshake

Problem

- Numbers of students increasing each year
- Higher risk for epidemics due to Globalisation
- How to design universities to keep the infection rate low

Research Question

₽8a,95a**2B**ärtschi, Laura Dikhoff, Jule Greshake

Research Questions

- What is the optimal classroom size too keep the attendance high and the costs low?
 - How does number of students per class affect the infections per week?
 - Our prediction: more students lead to more interactions causing higher infection rates
 - How does the distance between students affect the infections per week?
 - Our prediction: The smaller the distance between students the more infections per week

Model Design

Pôa**£5**a**£B**ärtschi, Laura Dikhoff, Jule Greshake

Model assumptions

- After 7 days are all students recovered, regardless of the timepoint of infection during the 7 days
- Fixed Beta value = 0.001
- Square Classroom
- Number of students per class must be a squared number
- Students are distributed into classes randomly and the seating is random as well

Model assumptions

- Students get infected in the class, can spread the virus the second day and go home before the third day
- After 7 days are 10% of the students chosen to be sick randomly
- No immunization after an infection
- Infection only in the classroom possible

Model assumptions

Results & discussion

₽‰£a2Bärtschi, Laura Dikhoff, Jule Greshake Seite 11

Visualisation of simulation dynamics

25 Students per class with 0.6 meters distance

How does <u>number of students per class</u> affect the infections per day?

How does spacing between students affect infections per day?

How does spacing between students affect infections per day?

Conclusion

Pôs£5a**2B**ärtschi, Laura Dikhoff, Jule Greshake

Optimal room size

Optimal spacing

Limitations and future directions

₽‰©5a2Bärtschi, Laura Dikhoff, Jule Greshake

Limitations

- Every Student's course of disease is the same
- The contagiousness of the students is the same
- Students only get infected in the class room
- No immunity after an infection

26.05.23

Future directions

For the Model:

- Make Students immune after an infection.
- Add randomness to the course of the disease
- Every students has individual regeneration time

For Universities:

- Contagious students should wear a mask
- Online lessons for the students who feel sick

GitHub repo