Lecture on 10/12/2020 Rajendra S. Dhaka

rsdhaka@physics.iitd.ac.in, http://web.iitd.ac.in/~rsdhaka/

PYL101 course:

Electromagnetics & Quantum Mechanics

- Next few classes, we will discuss the following topics:
- Magnetostatics (ch5)
- Magnetic fields in matter (ch6)
- Electrodynamics (ch7)
- Continuity equation and Poynting's theorem (ch8)

Maxwell's equations *plus* the Lorentz force law, $\vec{F} = e(\vec{E} + \vec{v} \times \vec{B})$

summarize the entire theoretical content of classical electrodynamics.

♦ Maxwell's equations tell 'how charges produce fields'.....

stationary charges -> E) changing fields also...
moving charges -> B

Force law tells 'how fields affect charges' and their motion.....

Maxwell's Equations in Matter:

- Maxwell's equations are complete and correct, however, when we are working with materials that are subject to electric and magnetic **polarization**......
- there is a more convenient way to write these equations: (since there will be bound charges/ currents)

Static case electric polarization **P** produces bound charge density $\rho_b = -\nabla \cdot P$ & magnetic polarization (magnetization) **M** produces $\mathbf{J_b}$ $\mathbf{J_b} = \nabla \times \mathbf{M}$

- In <u>non-static case</u>, we have to consider that any change in electric polarization involves a flow of (bound) paired charges (means a current, & let's call it J_p).....
- \diamond so this current also should be included in the total **J**.

Let's examine a tiny chunk of polarized material.

Charge density on the surface is:

$$\sigma_b = P$$

When the **P** increases a bit, the charge on each end increases accordingly, giving a net current

$$dI = \frac{\partial \sigma_b}{\partial t} da_{\perp} = \frac{\partial P}{\partial t} da_{\perp}$$

The cumulative effect is the polarization current J_p .

Note that this **polarization current** (J_p) has nothing to do with the *bound* current J_b

 J_b is associated with *magnetization* of the material, and involves the spin and orbital motion of electrons; called magnetization current...

 J_p is the result of the linear motion of charges when the electric polarization changes, called – polarization current....

This polarization current density is:
$$\mathbf{J}_p = \frac{\partial \sigma_b}{\partial t} = \frac{\partial \mathbf{P}}{\partial t}$$

Let's check whether above equation is consistent with the continuity equation:

$$\nabla \cdot \mathbf{J}_p = \nabla \cdot \frac{\partial \mathbf{P}}{\partial t} = \frac{\partial}{\partial t} (\nabla \cdot \mathbf{P}) = -\frac{\partial \rho_b}{\partial t}$$

The continuity equation is satisfied; in fact, J_p is essential to ensure the conservation of bound charge.

A changing magnetization does not lead to any analogous accumulation of charge or current.

The bound current $J_b = \nabla \times M$ varies in response to changes in M, to be sure, but that's about it...

The total charge density has *two* parts:

$$\rho = \rho_f + \rho_b = \rho_f - \nabla \cdot \mathbf{P}$$

and the current density has *three* parts:

$$\mathbf{J} = \mathbf{J}_f + \mathbf{J}_b + \mathbf{J}_p = \mathbf{J}_f + \nabla \times \mathbf{M} + \frac{\partial \mathbf{P}}{\partial t}$$

Gauss's law can now be written as:

$$\mathbf{\nabla \cdot E} = \frac{1}{\epsilon_0} (\rho_f - \mathbf{\nabla \cdot P})$$

$$\nabla \cdot \mathbf{D} = \rho_f$$

 $\nabla \cdot \mathbf{D} = \rho_f$ where, **D** can be written as:

$$\mathbf{D} \equiv \epsilon_0 \mathbf{E} + \mathbf{P}$$

For, linear media $\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$

Ampere's law (with Maxwell's correction):

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$= \mu_0 \left(\mathbf{J}_f + \nabla \times \mathbf{M} + \frac{\partial \mathbf{P}}{\partial t} \right) + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Now, let's use

$$\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} \quad \& \mathbf{D} \equiv \epsilon_0 \mathbf{E} + \mathbf{P}$$

$$\mathbf{\nabla} \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$$

Note that **Faraday's law** and $\nabla \cdot B = 0$ are not affected, as they do not involve ρ or J.

Maxwell's equations:

in terms of free charges & currents

(i)
$$\nabla \cdot \mathbf{D} = \rho_f$$
, (iii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$,
(ii) $\nabla \cdot \mathbf{B} = 0$, (iv) $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$.

Maxwell's equations in matter now contain

both E & D, also B & H.

Hence, we also mention material equations along with them.

$$\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$$
, and $\mathbf{M} = \chi_m \mathbf{H}$,
 $\mathbf{D} = \epsilon \mathbf{E}$, and $\mathbf{H} = \frac{1}{\mu} \mathbf{B}$
 $\epsilon \equiv \epsilon_0 (1 + \chi_e)$ and $\mu \equiv \mu_0 (1 + \chi_m)$

Maxwell's equations:

$$\vec{\nabla} \cdot \vec{D} = \rho_f \qquad \Rightarrow (i) \quad \oint_S \vec{D} \cdot d\vec{a} = Q_{f_{end}}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \Rightarrow (ii) \quad \oint_S \vec{B} \cdot d\vec{a} = 0$$

Over any closed surface S

$$\begin{vmatrix} \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} & \Rightarrow (iii) & \oint_{P} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \left(\int_{S} \vec{B} \cdot d\vec{a} \right) \\ \vec{\nabla} \times \vec{H} = \vec{J}_{f} + \frac{\partial \vec{D}}{\partial t} & \Rightarrow (iv) & \oint_{P} \vec{H} \cdot d\vec{l} = I_{f_{encl.}} + \frac{d}{dt} \left(\int_{S} \vec{D} \cdot d\vec{a} \right) \end{vmatrix}$$
 For any surface S bounded by the closed loop P

- Now let's discuss the boundary conditions,
- Generally, the fields E, B, D, & H are discontinuous at a boundary between two different media or at a surface that carries charge density or current density....
- The discontinuities can be deduced from (the integral form of) Maxwell's equations.....

Boundary Conditions:

$$(i) \oint_{S} \vec{D} \cdot d\vec{a} = Q_{f_{end}}$$

Applying (i) to a wafer thin Gaussian pillbox existing just slightly into the material on either side of the boundary..

$$\vec{D}_1 \cdot \vec{a} - \vec{D}_2 \cdot \vec{a} = \sigma_f a$$

The edge of wafer contributes nothing in the limit of small thickness

$$\Rightarrow D_1^{\perp} - D_2^{\perp} = \sigma_f$$

• Identical reasoning, applied to (ii) gives

$$[(ii) \oint_{S} \vec{B} \cdot d\vec{a} = 0]$$

$$B_1^{\perp} - B_2^{\perp} = 0$$

Boundary Conditions:

(iii)
$$\oint_{P} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \left(\int_{S} \vec{B} \cdot d\vec{a} \right)$$

• For (iii) and (iv); consider a very thin Amperian Loop straddling the surface; Ampere's Law give

$$|\vec{E}_1 \cdot \vec{l} - \vec{E}_2 \cdot \vec{l}| = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{a}$$
 (no contribution from the 2 ends)

• In the limit as the width of the loop $\rightarrow 0$, the flux through the loop vanishes $\Rightarrow \vec{E}_1^{\parallel} - \vec{E}_2^{\parallel} = 0$

Components of E parallel to the interface are continuous across the boundary

$$(iv) \oint_{P} \vec{H} \cdot d\vec{l} = I_{f_{encl.}} + \frac{d}{dt} \left(\int_{S} \vec{D} \cdot d\vec{a} \right)$$

$$I_{f_{\text{enc}}} = \mathbf{K}_f \cdot (\hat{\mathbf{n}} \times \mathbf{l}) = (\mathbf{K}_f \times \hat{\mathbf{n}}) \cdot \mathbf{l}$$

As flux $\mathbf{D}.d\mathbf{a} \rightarrow 0$ in limit, loop width $\rightarrow 0$

• By same token as in (iii), (iv) gives

$$\Rightarrow \vec{H}_1 \cdot \vec{l} - \vec{H}_2 \cdot \vec{l} = I_{f_{\mathit{encl.}}} + 0 \Rightarrow \vec{H}_1^{\parallel} - \vec{H}_2^{\parallel} = \vec{K}_f \times \hat{n} \text{ by free surface current density}$$

• For a linear medium, the boundary conditions can be modified to:

$$(:\vec{D} = \varepsilon \vec{E} \quad \& \quad \vec{B} = \mu \vec{H})$$

$$\begin{cases} (i) & \varepsilon_{1}E_{1}^{\perp} - \varepsilon_{2}E_{2}^{\perp} = \sigma_{f}, & (iii) & \vec{E}_{1}^{\parallel} - \vec{E}_{2}^{\parallel} = 0 \\ (ii) & \vec{B}_{1}^{\perp} - \vec{B}_{2}^{\perp} = 0, & (iv) \frac{\vec{B}_{1}^{\parallel}}{\mu_{1}} - \frac{\vec{B}_{2}^{\parallel}}{\mu_{2}} = \vec{K}_{f} \times \hat{n} \end{cases}$$

Consider, if there are no free charges or

free currents at the interface, then rewrite.....

(i)
$$\varepsilon_1 E_1^{\perp} - \varepsilon_2 E_2^{\perp} = 0$$
 (iii) $\vec{E}_1^{\parallel} - \vec{E}_2^{\parallel} = 0$
(ii) $\vec{B}_1^{\perp} - \vec{B}_2^{\perp} = 0$ (iv) $\frac{\vec{B}_1^{\parallel}}{\mu_1} - \frac{\vec{B}_2^{\parallel}}{\mu_2} = 0$

We shall see again,.. that these equations are the basis for the theory of reflection and refraction.

Electromagnetic (EM) waves?

- ♦ Faraday's law told us that "timevarying magnetic fields generate electric fields"
- ♦ Maxwell found that "time-varying electric fields generate magnetic fields"

If we take both together, then electric field \rightarrow magnetic field \rightarrow electric field \rightarrow ...

with this we can have disturbances in the electric and magnetic fields that propagate across space

Note: No medium is required, E and B can exist in a vacuum

Energy in electromagnetic waves/review:

Results from Ch.2:

Work necessary to assemble static charge distribution <u>against</u> the Coulomb's repulsion is (eq.2.45)

☐ Energy content of electric field:

$$W_e = \frac{\varepsilon_0}{2} \int E^2 \, d\tau$$

Results from Ch.7:

Work required to get currents going (against back emf) is, eq.7.34/7.35

☐ Energy in magnetic field:

$$W_m = \frac{1}{2\mu_0} \int B^2 d\tau$$

This suggests that the <u>total electromagnetic energy stored</u> in the volume V (energy density):

$$U_{em} = \frac{1}{2} \int (\varepsilon_0 E^2 + \frac{B^2}{\mu_0}) d\tau$$

The Poynting Vector

- > Electric and magnetic fields store energy.
- Energy can also be transported by electromagnetic waves that consist of both E & B fields.....

- \diamond Consider a plane electromagnetic wave passing through a small volume element of area A and thickness dx...
- ♦ The total energy stored in the electromagnetic fields in the volume element is given by

$$dU = uA dx = (u_E + u_B)A dx = \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right) A dx$$

Because the EM wave propagates with the speed of light c, the amount of time it takes for the wave to move through the volume element is dt = dx/c

The Poynting Vector

 \Leftrightarrow the rate of change of energy per unit area, denoted by the symbol S, as

$$S = \frac{dU}{A dt} = \frac{c}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right)$$
 The SI unit of S is [W·m⁻²].

Recall that the magnitude of the fields satisfy E = cB and $c = 1/\sqrt{\mu_0 \varepsilon_0}$

$$S = \frac{c}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right) = \frac{cB^2}{\mu_0} = c\varepsilon_0 E^2 = \frac{EB}{\mu_0}$$

The rate of energy flow per unit area is called the "Poynting vector" and defined by the vector product

$$|\vec{\mathbf{S}}| = \frac{1}{\mu_0} |\vec{\mathbf{E}} \times \vec{\mathbf{B}}| = \frac{|\vec{\mathbf{E}} \times \vec{\mathbf{B}}|}{\mu_0} = \frac{EB}{\mu_0} = S$$

For our plane transverse electromagnetic waves, the fields \vec{E} and \vec{B} are perpendicular, and the magnitude of \vec{S} is

The Poynting Vector

EM waves are able to transport energy from transmitter to receiver......

(example: from the Sun to our skin).

The power transported by the wave and its direction is quantified by the <u>Poynting vector</u>.

For EM wave, since **E** is perpendicular to **B**:

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

J. Henry Poynting

(1852-1914)

In a wave, the fields change with time..

Therefore, the Poynting vector changes too!!

The direction is constant, but the magnitude changes from 0 to a max value. 17.....

 \diamond Let **E** and **B** are fields at time \underline{t} to due to some $\rho \& J$ distribution. In the next instant dt, the charges move a bit...

Q: What is the work done dW by EM forces acting on theses charges in the interval dt?

• The work done on a charge q (using Lorentz force law) is,

$$dW = \overrightarrow{F} \cdot \overrightarrow{dl} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}) \cdot \overrightarrow{v}dt$$

$$= q\overrightarrow{E} \cdot \overrightarrow{v}dt$$
zero

 $\therefore q = \rho d\tau \& J = \rho v$, the <u>rate</u> at which work is done <u>on</u> all charges in a volume V is, $dW \in \mathcal{A} \to \mathcal{A}$

$$\frac{dW}{dt} = \int_{V} (\overrightarrow{E} \cdot \overrightarrow{J}) d\tau$$

E.J ≡ work done per unit time, per unit volume (i.e. power delivered/vol.)

$$\vec{E} \cdot \vec{J} = \left(\frac{1}{\mu_0}\right) \vec{E} \cdot \left(\vec{\nabla} \times \vec{B} - \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}\right) \text{ (using J from Maxwell's 4th eqn.)}$$

$$= \frac{1}{\mu_0} \vec{E} \cdot (\vec{\nabla} \times \vec{B}) - \varepsilon_0 \vec{E} \cdot \frac{\partial \vec{E}}{\partial t}$$

$$= \frac{1}{\mu_0} \vec{E} \cdot (\vec{\nabla} \times \vec{B}) - \varepsilon_0 \vec{E} \cdot \frac{\partial \vec{E}}{\partial t}$$

$$\vec{E} \cdot \frac{\partial \vec{E}}{\partial t} = \frac{1}{2} \frac{\partial (E^2)}{\partial t}$$
Product rule 6:
$$\vec{\nabla} \cdot (\vec{E} \times \vec{B}) = \vec{B} \cdot (\vec{\nabla} \times \vec{E}) - \vec{E} \cdot (\vec{\nabla} \times \vec{B})$$

$$\vec{E} \cdot (\vec{\nabla} \times \vec{B}) = \vec{B} \cdot (\vec{\nabla} \times \vec{E}) - \vec{\nabla} \cdot (\vec{E} \times \vec{B})$$

$$\vec{E} \cdot \vec{J} = -\frac{1}{\mu_0} \left[\frac{1}{2} \frac{\partial B^2}{\partial t} + \vec{\nabla} \cdot (\vec{E} \times \vec{B}) \right] - \frac{\varepsilon_0}{2} \frac{\partial E^2}{\partial t}$$
(only in terms of $\vec{E} \cdot \vec{B}$)

$$|\vec{E} \cdot \vec{J} = -\frac{1}{\mu_0} \left[\frac{1}{2} \frac{\partial B^2}{\partial t} + \vec{\nabla} \cdot (\vec{E} \times \vec{B}) \right] - \frac{\varepsilon_0}{2} \frac{\partial E^2}{\partial t} \quad \text{(only in terms)}$$

$$\Rightarrow \vec{E} \cdot \vec{J} = -\frac{1}{2} \frac{\partial}{\partial t} \left[\frac{B^2}{\mu_0} + \varepsilon_0 E^2 \right] - \frac{1}{\mu_0} \vec{\nabla} \cdot (\vec{E} \times \vec{B})$$

$$\therefore \frac{dW}{dt} = \int_{V} (\overrightarrow{E} \cdot \overrightarrow{J}) d\tau = -\frac{d}{dt} \int_{V} \frac{1}{2} (\varepsilon_{0} E^{2} + \frac{B^{2}}{\mu_{0}}) d\tau - \frac{1}{\mu_{0}} \int_{V} \overrightarrow{\nabla} \cdot (\overrightarrow{E} \times \overrightarrow{B}) d\tau$$

Using Divergence theorem on 2nd term,

$$\frac{dW}{dt} = -\frac{d}{dt} \int_{V} \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right) d\tau - \frac{1}{\mu_0} \oint_{S} (\vec{E} \times \vec{B}) \cdot d\vec{a}$$
(I) (II)

"work-energy theorem" of electrodynamics

This is "Poynting's Theorem"

$$\frac{dW}{dt} = -\frac{d}{dt} \int_{V} \frac{1}{2} \left(\varepsilon_0 E^2 + \frac{B^2}{\mu_0} \right) d\tau - \frac{1}{\mu_0} \oint_{S} (\vec{E} \times \vec{B}) \cdot d\vec{a}$$

If we define
$$\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$$
, then $\frac{dW}{dt} = -\frac{dU_{em}}{dt} - \oint \vec{S} \cdot d\vec{a}$

LHS \equiv Rate of work done <u>on</u> charges by EM force RHS, Ist term \equiv <u>Rate of decrease</u> of total energy stored in the fields RHS, IInd term \equiv Energy flowing per unit time out of the surface

$$\Rightarrow$$
 $S = energy flux density$

The energy per unit time, per unit area, transported by the EM fields is called the "Poynting Vector (S)"....

 $S \cdot da$ = energy per unit time crossing the infinitesimal surface da

 $\int \vec{S} \cdot d\vec{a}$ gives the total power passing through the closed surface.