Definition 4.4.1

A multiplicative modular dynamic is a dynamic given by

$$\begin{array}{ccc}
\cdot a & (\bmod m) & : \mathbb{Z}/m \longrightarrow \mathbb{Z}/m \\
& \overline{x} \longmapsto \overline{x \cdot a}
\end{array}$$

Note that $\boxed{\cdot a \pmod m}$ is not invertible (this corresponds to the fact that $ax \equiv c \pmod m$ may be unsolvable). Hence, the dynamic could be complicated.

Definition 4.4.2

Let m be a modulus. We will use $\Phi(m)$ to denote the set of natural representatives of units in \mathbb{Z}/m . The Euler totient function $\varphi(m)$ counts its elements.

- Recall that a is invertible modulo m if and only if a is coprime to m (Theorem 4.2.8).
- The bijection $\mathbb{Z}/m \to \{0, 1, \dots, m-1\}$ allows us to identify $\Phi(m)$ with the set $(\mathbb{Z}/m)^{\times}$ of units in \mathbb{Z}/m . Moreover, we may translate the monoid structure $((\mathbb{Z}/m)^{\times}, \cdot, 1)$ to the set $\Phi(m)$. In this way, we obtain an operation on $\Phi(m)$:

 $(a,b) \in \Phi(m) \times \Phi(m) \longrightarrow$ natural representative of ab modulo m.

We will denote this operation as $ab \pmod{m}$.

Theorem 4.4.3

A modulus **m** is a prime number if and only if $\varphi(\mathbf{m}) = \mathbf{m} - 1$.

Proof. If m is a prime number, then any positive integer larger than 1 can either be a multiple of m, or coprime to m since m has no proper divisor other than 1. Hence, all members of $\{1, \dots, m-1\}$ are in $\Phi(m)$ since they are less than m.

Conversely, suppose $\varphi(m) = m - 1$. Since 0 is never coprime to m, all other natural representatives must be in $\Phi(m)$. But this implies that there is no positive integer between 1 and m can divide m. Namely, m is a prime number.

Hence, it is more reasonable to consider the following:

Definition 4.4.4

An multiplicative modular dynamic (on $\Phi(m)$) is a dynamic given by

$$\begin{array}{ccc}
\cdot a & (\bmod m) & : \Phi(m) \longrightarrow \Phi(m) \\
 & x \longmapsto x \cdot a & (\bmod m)
\end{array}$$

Theorem 4.4.5

Let m be a modulus and a be an integer coprime to m. Then the dynamic of $extbf{-}a \pmod{m}$ on $\Phi(m)$ consists of circles of the same length.

Proof. First note that the function $a \pmod{m}$ is invertible. Hence, in this dynamic, any node must have exactly one input and one output. Therefore, the dynamic only consists of circles and lines. But the entire set $\Phi(m)$ is finite. Hence, the dynamic cannot contain any lines. It remains to show each circle has the same length.

Proof. We start with the circle $(a^i)_i$ and let ℓ be its length.

For any $b \in \Phi(m)$, we claim that the circle $(ba^i \pmod m)_i$ has the same length ℓ . Indeed, since $a^{\ell} \equiv 1 \pmod m$, we have

$$ba^{\ell} \equiv b \pmod{m}$$
.

Hence, the length k must be at most ℓ .

But whenever we have $ba^k \equiv b \pmod{m}$, we must have

$$a^k \equiv 1 \pmod{m}$$

due to the cancelling property of $b \in \Phi(m)$. Therefore, k cannot be less than ℓ .

Definition 4.4.6

We will use $\ell_m(a)$ to denote the length of each circle contained in the dynamic of $a \pmod{m}$ on $\Phi(m)$.

Then theorem 4.4.5 tells us $\ell_m(a) \mid \varphi(m)$.

Definition 4.4.6

We will use $\ell_m(a)$ to denote the length of each circle contained in the dynamic of $a \pmod{m}$ on $\Phi(m)$.

Then theorem 4.4.5 tells us $\ell_m(a) \mid \varphi(m)$.

Let's say $\varphi(m) = k \cdot \ell_m(a)$. Then we have

$$a^{\varphi(m)} = (a^{\ell_m(a)})^k \equiv 1^k = 1 \pmod{m}.$$

We thus proved:

Theorem 4.4.7 (Euler-Fermat)

Let m be a modulus and $a \in \Phi(m)$. Then

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

Example 4.4.8

Let 9 be the modulus. Then $\Phi(9) = \{1, 2, 4, 5, 7, 8\}$. Hence, $\varphi(9) = 6$.

- We have $2^{2023} \equiv 2 \pmod{9}$ since $2023 \equiv 1 \pmod{6}$.
- Note that $3^6 \equiv (3^2)^3 = 0 \pmod{9}$.

Corollary 4.4.9 (Fermat's little theorem)

If p is a prime number, then for any integer a,

$$a^p \equiv a \pmod{p}$$
.