Prácticas de Matlab Métodos adaptativos Hoja 7

1.1 Práctica 5 (Solución que explota)

Considera el PVI

$$\begin{cases} x'(t) = x^2(t) \\ x(0) = 1 \end{cases} \tag{1}$$

La solución exacta es

$$x(t) = \frac{1}{1-t} \tag{2}$$

que es no acotada cuando $t \to 1$.

- Usando el método de *Euler* resuelve el problema en el intervalo [0 2].
- Utiliza ahora los 4 metodos adaptativos, con los datos $TOL = 0.001 \ hmin = 10^{(} 5), \ hmax = \frac{(intv(2) intv(1))}{50}, \ facmax = 5, fac = 0.9$
- ¿Qué sucede cerca de la discontinuidad que aparece en t=1?

1.1.1 RK45-Fehlberg

$t_{ m rkf-end}$	0.999248
Yrkf-end	1330.77
h_{stop}	9.9081e-06
h_{stop}	0.000009908097563202
t_{stop}	0.999247947676372150

 $y'(t) = y(t)^2 \\ \text{t vs y} \\ \text{t= mirkfehlberg45, intv=[0~1] y0=[1],TOL=0.001,hmin=1e-05,hmax=0.02 fac=0.9, fac:} \\ h_{stop} = 9.9081e - 06~t_{stop} = 0.999248}$

Figure 1: Explosión; método Runge-Kutta-Fehlberg45

1.1.2 mieuler 12.m

$$y'(t) = y(t)^2$$
t vs y

met= mieuler12, intv=[0 1] y0=[1], TOL=0.001, hmin=1e-05, hmax=0.02 fac=0.9, facmax=5 $h_{stop}=9.99915e-06$ $t_{stop}=0.769172$

Figure 2: Explosión; método Euler12

1.1.3 mieuler21.m

t _{eul21-end}	0.768899
Yeul21-end	4.32711
h_{stop}	9.99985e-06
h_{stop}	0.000009999845204677
t_{stop}	0.768899171511431057

$$y'(t) = y(t)^2$$
t vs y

met= mieuler21, intv=[0 1] y0=[1], TOL=0.001, hmin=1e-05, hmax=0.02 fac=0.9, facmax=5 $h_{stop}=9.99985e-06$ $t_{stop}=0.768899$

Figure 3: Explosión; método Euler21

1.1.4 Dormand-Prince

t_{dp-end}	1
y _{dp-end}	7.16186e + 06
h_{stop}	7.94991e-16
h_{stop}	0.0000000000000000795

 $y'(t) = y(t)^2 \\ \text{t vs y} \\ \text{met= DormandPrince, intv=[0 1] y0=[1],TOL=0.001,hmin=1e-15,hmax=0.02 fac=0.} \\ \text{facmax=5} \ h_{stop} = 7.94991e - 16 \ t_{stop} = 1$

Figure 4: Explosión; método Dormand Prince