CM078: Introdução à Topologia (Prova 3)

Prof. Alberto Ramos Junho de 2018

Nome:	\Q:	1		ാ	4	Э	rotar	
	P:	30	20	30	10	20	110	
	N:							

O. 1 2 2 4 5 Total

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

(a) |10| Seja $C \subset \mathbb{R}$. Mostre que C é conexo se, e somente se C é um intervalo. (b) $\lceil 10 \rceil$ Prove que, para n > 1, a esfera $S^n := \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}$ não é homeomorfa a S^1 . (c) 10 Prove que $X \times Y$ é conexo se, e somente se X e Y são conexos. Seja $f: X \to Y$. Mostre que f é contínua se, e somente se para toda net (x_{α}) com $x_{\alpha} \to x$ temos que $(f(x_{\alpha}))$ converge a f(x). Seja X um espaço de Hausdoff. Prove que são equivalentes:

- (a) |20| X é normal
- (b) 10 Para toda cobertura finita de abertos $\{U_i: i=1,\ldots,n\}$ de X, existem funções contínuas $f_i: X \to [0,1]$ tais que $f_i(y) = 0, \forall y \notin U_i, \forall i \in \sum_{i=1}^n f_i(x) = 1,$ para todo $x \in X$. ¹

Seja X um espaço topológico com a propriedade que toda função contínua com valores reais limitada definida sobre um conjunto fechado, possue uma extensão continua a todo X. Mostre que se X é um

Escolha uma das sequintes afirmações.

espaço de Tychonoff, então X é normal.

- (a) Seja (X,d) é um espaço métrico compacto e $T:X\to X$ uma aplicação tal que d(Tu,Tv)< d(u,v)para todo $u, v \in X$, $u \neq v$. Mostre que T possue um único ponto fixo.
- (b) Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ uma contração. Prove que $g: \mathbb{R}^n \to \mathbb{R}^n$ definida como $g(x) = f(x) x, \forall x \in X$ é um homeomorfismo de \mathbb{R}^n .

¹Dica: Pode usar o fato que se X é normal então dado uma cobertura de abertos $\{O_i: i=1,\ldots,m\}$, é possível encontrar uma outra cobertura de abertos $\{Q_i : i = 1, ..., m\}$ tal que $\overline{Q}_i \subset O_i, \forall i = 1, ..., m$.