Lecture 15 Scribe: Anupam Last revised

Lecture 15

1 Streaming Algorithms: Frequent Items

Recall the streaming setting where we have a data stream x_1, x_2, \dots, x_n with $x_i \in [m]$, the available memory is $O(\log^c n)$. Today we will see algorithms for finding frequent items in a stream. We first present a deterministic algorithm that approximates frequencies for the top k items. We then introduce more efficient randomized algorithms that can handle insertions as well as deletions.

1.1 Deterministic algorithm

The following algorithm estimates item frequencies f_j within an additive error of n/k using with $O(k \log n)$ memory,

- 1. Maintain set S of k counters, initialize to 0. For each element x_i in stream:
- 2. If $x_i \in S$ increment the counter for x_i .
- 3. If $x_i \notin S$ add x_i to S if space is available, else decrement all counters in S.

An item in S whose count falls to 0 can be removed, the space requirement for storing k counters is $k \log n$ and the update time per item is O(k). The algorithm estimates the count of an item as the value of its counter or zero if it has no counter.

CLAIM 1

The frequency estimate n_j produced by the algorithm satisfies $f_j - n/k \le n_j \le f_j$.

PROOF: Clearly, n_j is less than the true frequency f_j . Differences between f_j and the value of the estimate are caused by one of the two scenarios: (i) The item $j \notin S$, each counter in S gets decremented, this is the case when x_j occurs in the stream but the counter for j is not incremented. (ii) The counter for j gets decremented due to an element j' that is not contained in S.

Both scenarios result in k counters getting decremented hence they can occur at most n/k times, showing that $n_j \geq f_j - n/k$. \square

1.2 Count min sketch

The turnstile model allows both additions and deletions of items in the stream. The stream consists of pairs (i, c_i) , where the $i \in [m]$ is an item and c_i is the number of items to be added or deleted. The count of an item can not be negative at any stage, the frequency f_j of item j is $f_j = \sum c_j$.

The following algorithm estimates frequencies of all items up to an additive error of $\epsilon |f|_1$ with probability $1 - \delta$, the ℓ_1 norm $|f|_1$ is the number of items present in the data set. The two parameters k and t in the algorithm are chosen to be $(\frac{2}{\epsilon}, \log(1/\delta))$.

- 1. Maintain t arrays A[i] each having k counters, hash function $h_i: U \to [k]$ drawn from a 2-wise independent family \mathcal{H} is associated to array A[i].
- 2. For element (j, c_j) in the stream, update counters as follows:

$$A[i, h_i(j)] \leftarrow A[i, h_i(j)] + c_i \quad \forall i \in [t]$$

3. The frequency estimate for item j is $\min_{i \in [t]} A[i, h(j)]$.

The output estimate is always more than the true value of f_j as the count of all the items in the stream is non negative.

1.2.1 Analysis

To bound the error in the estimate for f_j we need to analyze the excess X where $A[1, h_1(j)] = f_j + X$. The excess X can be expressed as a sum of random variables $X = \sum_i Y_i$ where the indicator random variable $Y_i = f_i$ if $h_1(j) = h_1(i)$ and 0 otherwise. As $h_1 \in \mathcal{H}$ is chosen uniformly at random from a 2-wise independent hash function family, $E[Y_i] = f_i/k$.

$$E[X] = \frac{|f|_1}{k} = \frac{\epsilon |f|_1}{2}$$

Applying Markov's inequality, we have

$$Pr[X > \epsilon |f|_1] \le \frac{1}{2}$$

The probability that all the excesses at $A[i, h_i(x_j)]$ are greater than $\epsilon |f|_1$ is at most $1/2^t \leq \delta$ as t was chosen to be $\log(1/\delta)$. The algorithm estimates the frequency of item x_j up to an additive error $\epsilon |f|_1$ with probability $1 - \delta$.

The memory required for the algorithm is the sum of the space for the array and the hash functions, $O(kt \log n + t \log m) = O(\frac{1}{\epsilon} \log(1/\delta) \log n)$. The update time per item in the stream is $O(\log \frac{1}{\delta})$.

1.3 Count Sketch

We present another sketch algorithm with error in terms of the ℓ_2 norm $|f|_2 = \sqrt{\sum_j f_j^2}$. The relation between the ℓ_1 and ℓ_2 norms is $\frac{1}{\sqrt{n}}|f|_1 \leq |f|_2 \leq |f|_1$, the ℓ_2 norm is less than the ℓ_1 norm so the guarantee for this algorithm is better than that for the previous one.

- 1. Maintain t arrays A[i] each having k counters, hash functions $g_i: U \to \{-1, 1\}$ and $h_i: U \to [k]$ drawn uniformly at random from a 2-wise independent families are associated to array A[i].
- 2. For element (j, c_i) in the stream, update counters as follows:

$$A[i, h_i(j)] \leftarrow A[i, h_i(j)] + g_i(j)c_i \quad \forall i \in [t]$$

3. The frequency estimate for item j is the median over the t arrays of $g_i(x_i)A[i,h(j)]$.

1.3.1 Analysis

Again, the entry $A[1, h_1(j)] = g_1(j)f_j + X$, we examine the contribution X from the other items by writing $X = \sum_i Y_i$ where the indicator variable Y_i is $\pm f_i$ if $h_1(i) = h_1(j)$ and 0 otherwise. Note that $E[Y_j] = 0$, so the expected value of $g_1(j)A[1, h(j)]$ is f_j .

The random variables Y_i are pairwise independent as h_1 is a 2-wise independent hash function, so the variance of X can be expressed as,

$$Var(X) = \sum_{i \in [m]} Var(Y_i) = \sum_{i \in [m]} \frac{f_i^2}{k} = \frac{|f|_2^2}{k}$$

We will use Chebyshev's inequality to bound the deviation of X from its expected value,

$$Pr[|X - \mu| > \Delta] \le \frac{Var(X)}{\Lambda^2}$$

The mean $\mu = f_j$ and the variance is $\frac{|f|_2^2}{k}$, choosing $\delta = \epsilon |f|_2$ and $k = 4/\epsilon^2$ we have,

$$Pr[|X - \mu| > \epsilon |f|_2] \le \frac{1}{\epsilon^2 k} \le \frac{1}{4}$$

For $t = \theta(\log(1/\delta))$, the probability that the median value deviates from μ by more than $\epsilon |f|_2$ is less than δ by a Chernoff bound. That is, the probability that there are fewer than t/2 success in a series of t tosses of a coin with success probability 3/4 is smaller than δ for $t = O(\log(1/\delta))$.

Arguing as in the count min sketch the space required is $O(\frac{1}{\epsilon^2} \log \frac{1}{\delta} \log n)$ and the update time per item is $O(\log \frac{1}{\delta})$.

1.4 Remarks

The count sketch approximates f_j within $\epsilon |f|_2$ but requires $\widetilde{O}(\frac{1}{\epsilon^2})$ space, while the count min sketch approximates f_j within $\epsilon |f|_1$ and requires $\widetilde{O}(\frac{1}{\epsilon})$ space. The approximation provided by the sketch algorithms is meaningful only for items that occur with high frequency.