RICE UNIVERSITY

The Research Project You Have Done for Your Qualification Exam

by

Graduate Student

A PROPOSAL SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR

PhD Candidacy

Houston, Texas

 $August,\ 2021$

Contents

1	The Fi	erst Section	1
	1.1	Subsection	1
	1.2	Another subsection	2
2	The Se	econd Section	2
	2.1	Subsection	2
	2.2	Subsection 2	2
3	The Tl	hird Section	2
	3.1	Subsection	3
	3.2	One more subsection	3
4	Future	Works	3
	4.1	One project	3
	4.2	Another project	3

The main text of the report starts here. The format is rather free. It should be absolutely fine to write something here before the first section.

1 The First Section

Starting with a topic sentence. The first section is probably an introduction section where the background of this research project is introduced. It would be nice to have a little equation:

$$(A, Z) \to (A, Z + 2) + 2e^{-} + 2\bar{\nu}_e + Q_{\beta\beta},$$
 (1)

no indent here because the equation is not the end of a paragraph but it is not always true. Here what everything mean in the equation should be explained. A figure just like Figure 1 might be helpful for explaining the equation. And a little citation [1] because why not. Now we can have a second equation:

$$(A, Z) \to (A, Z + 2) + 2e^{-} + Q_{\beta\beta}.$$
 (2)

This time a new paragraph is started and there is no need to put \noindent at the begining.

Figure 1 : Caption.

1.1 Subsection

Content here.

Table 1 : $T_{1/2}^{0\nu}$ and $\langle m_{\beta\beta} \rangle$ limits (90% C.L.) from selected recent measurements, sorted by the mass number. The $\langle m_{\beta\beta} \rangle$ limits are listed as reported in refereed publications. Adapted form [2]

Isotope	$T_{1/2}^{0\nu} \ (\times 10^{25} \ y)$	$\langle m_{\beta\beta} \rangle \text{ (eV)}$	Experiment
$^{76}\mathrm{Ge}$	> 8.0	< 0.12 - 0.26	GERDA [3]
	> 1.9	< 0.24 - 0.52	Majorana Demonstrator [4]
$^{130}\mathrm{Te}$	> 1.5	< 0.11 - 0.52	CUORE [5]
$^{136}\mathrm{Xe}$	> 10.7	< 0.061 - 0.165	KamLAND-Zen [6]
	> 1.8	< 0.15 - 0.40	EXO-200 [7]

1.2 Another subsection

Content here. And a table (Table 1).

2 The Second Section

Content here.

2.1 Subsection

Content here.

2.2 Subsection 2

Content here.

3 The Third Section

Content here.

3.1 Subsection

Content here.

3.2 One more subsection

Content here.

4 Future Works

Write about research projects that is going to be in a PhD thesis here.

4.1 One project

The first project for PhD thesis.

4.2 Another project

Something else. Change the bibliography style if you do not like it.

References

- 1. Moe, M. The First Direct Observation of Double-Beta Decay. Ann. Rev. Nucl. Part. Sci. **64**, 247–267 (2014).
- 2. Dolinski, M. J., Poon, A. W. P. & Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. *Ann. Rev. Nucl. Part. Sci.* **69**, 219–251. arXiv: 1902.04097 [nucl-ex] (2019).
- 3. Agostini, M. et al. Improved Limit on Neutrinoless Double- β Decay of ⁷⁶Ge from GERDA Phase II. Phys. Rev. Lett. **120**, 132503. arXiv: 1803.11100 [nucl-ex] (2018).
- 4. Aalseth, C. E. *et al.* Search for Neutrinoless Double-β Decay in ⁷⁶Ge with the Majorana Demonstrator. *Phys. Rev. Lett.* **120**, 132502. arXiv: 1710.11608 [nucl-ex] (2018).
- 5. Alduino, C. et al. First Results from CUORE: A Search for Lepton Number Violation via $0\nu\beta\beta$ Decay of ¹³⁰Te. Phys. Rev. Lett. **120**, 132501. arXiv: 1710.07988 [nucl-ex] (2018).
- 6. Gando, A. et al. Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen. Phys. Rev. Lett. 117. [Addendum: Phys.Rev.Lett. 117, 109903 (2016)], 082503. arXiv: 1605.02889 [hep-ex] (2016).
- 7. Albert, J. B. *et al.* Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector. *Phys. Rev. Lett.* **120**, 072701. arXiv: 1707.08707 [hep-ex] (2018).