EXPERIMENT 1: CHEMICAL REACTIONS

Group:	Section:	11	_Date:
Group members:			
-			_
			_
Instructor's/TA's siç	gnature and comments:		
Expt. 1		Expt. 6	
Expt. 2		Expt. 7	
Expt. 3		Expt. 8	
Expt. 4		Expt. 9	
Expt. 5		Approval	

1. Reactions of Cu²⁺

Reaction	Observation
0.5M CuSO ₄	
+ 2M NaOH	
0.5M CuSO ₄	
+ 2M NH ₄ OH	

2. Reactions of silver halides

Reaction	Observation
0.5M KCI	
+ 0.1M AgNO ₃	
+ 0.1W AGNO3	
0.5M KCI	
+ 0.1M AgNO₃	
+ 0.1W AGNO3	
+ 2M NH ₄ OH	
0.5M KBr	
+ 0.1M AgNO₃	
O. Till Agitos	
0.5M KBr	
+ 0.1M AgNO₃	
+ 2M NH ₄ OH	
0.5M KI	
+ 0.1M AgNO₃	
0.5M KI	
+ 0.1M AgNO3	
+ 2M NH ₄ OH	

3. Reactions of H₂O₂

Reaction	Observation
0.1M KMnO ₄	
+ 2M H ₂ SO ₄	
+ H ₂ O ₂	
0.1M KI	
+ 2M H ₂ SO ₄	
+ H ₂ O ₂	
H ₂ O ₂	
+ MnO ₂	

4. Reactions of Nitrate

Reaction	Observation
1M NaNO₃	
+ FeSO ₄	
+ concentrated	
H ₂ SO ₄	
1M NaNO ₂	
+ FeSO ₄	
+ concentrated	
H ₂ SO ₄	
1M NaNO ₃	
+ FeSO ₄	
+ concentrated	
СН₃СООН	

5. Reactions of KMnO₄

Reaction	Observation
0.5M Na ₂ SO ₃	
+ 2M H ₂ SO ₄	
+ 0.1M KMnO ₄	
0.5M Na ₂ SO ₃	
+ 6N NaOH	
+ 0.1M KMnO ₄	
0.5M Na ₂ SO ₃	
+ H ₂ O	
+ 0.1M KMnO ₄	

6. Reaction of Potassium Dichromate (K₂Cr₂O₇)

Reaction	Observation
2M K ₂ Cr ₂ O ₇	
+ 6M H ₂ SO ₄	
+ C ₂ H ₅ OH	

7. A. Reactions of Fe³⁺

Reaction	Observation
0.5M FeCl ₃	
+ 2M KOH	
0.5M FeCl ₃	
+ 2M NH ₄ OH	

7. B. Reactions of Fe²⁺

Reaction	Observation
0.5M FeSO ₄	
+ 2M KOH	
0.5M FeSO ₄	
+ 2M NH ₄ OH	

8. Reactions of Al3+

Reaction	Observation
0.5M Al ₂ (SO ₄) ₃	
+ 2M NaOH	
0.5M Al ₂ (SO ₄) ₃	
+ 2N NaOH	
+ 2M HCI	
0.5M Al ₂ (SO ₄) ₃	
+ 2M NaOH	
+ 2M NaOH	

9. Flame test

Solution	Dominant flame color
LiCI	
NaCl	
KCI	
CaCl ₂	
BaCl ₂	

EXPERIMENT 2: pH AND BUFFERS

Group members:			_
			•
			-
Instructor's/TA's si	gnature and comments:		
Expt. 1		Expt. 4	
Expt. 2		Expt. 5	
Expt. 3		Approval	

Group: _____ Section: ____2 ___ Date: _____

1. pH OF DEIONIZED WATER

Time	Observed pH		
(second)	1 st (your group) (Group)	2 nd (other group in the class) (Group)	
0			
20			
40			
60			
80			
100			
120			
140			
160			

2. pH OF STRONG ACID

		Measured pH		
Solution	Theoretical pH	1 st	2 nd	
		(Group)	(Group)	
10 mL of 0.1M HCI				
Add 90 mL of distilled water				
Add 10 mL of 0.1M NaOH				
Add 90 mL of 0.01M NaOH				

3. pH OF WEAK ACID

	Measured pH		
Solution	1 st	2 nd	Averaged K _a
	(Group)	(Group)	
0.1M acetic acid			
0.01M acetic acid			
0.001M acetic acid			

4. pH OF SALTS

		Measured pH		
Solution	Predicted pH	1 st	2 nd	
		(Group)	(Group)	
0.1M NaCl				
0.1M CH₃COONa				
0.1M NH₄CI				

5. pH OF BUFFERS

Duffer	Volume (mL)					Calculated	Measu	red pH
Buffer	0.1M CH₃COOH	0.1M CH₃COONa	[Acid]	[Base]	рН	1 st	2 nd	
	•	•				(Group)	(Group)	
A	10.0	40.0						
В	40.0	10.0						
С	25.0	25.0						

❖ Part I: Addition of 10 drops 0.1 M HCI

Buffer	pH from the start, pH _o	pH after adding 10 drops HCl	Total volume HCl (drops) to change pH by one unit (pH₀-1)
A			
В			
С			

❖ Part II: Addition of 10 drops 0.1 M NaOH

Buffer	pH from the start, pH _o	pH after adding 10 drops NaOH	Total volume NaOH (drops) to change pH by one unit (pH₀+1)
A			
В			
С			

EXPERIMENT 3: REDOX TITRATION

Group:	Section:	3	Date:
Instructor's/TA's si	gnature and comments:		
Expt. 1		Expt. 3	
Expt. 2		Expt. 4	
Approval			

GENERAL CHEMISTRY LABORATORY

1	TITRATION OF KMnO	SOLUTION WITH STANDARD H ₂ C ₂	O4 SOLUTION
		OOLOHON WHILL OLANDAND HIZOZ	204 00 20 11011

nO ₄ (N)	Normality of KMnO	Volume of KMnO ₄ (mL)	Burette reading (mL)	Trial #
			-	1
			-	2
			-	2

Average Normality of $KMnO_4 =$ (N)

2. TITRATION OF UNKNOWN CONCENTRATION H₂C₂O₄ SOLUTION WITH STANDARD KMnO₄ SOLUTION

Trial #	Burette reading (mL)	Volume of KMnO ₄ (mL)	Normality of H ₂ C ₂ O ₄ (N)
1	-		
2	-		

Average Normality of $H_2C_2O_4$ = (N)

3. TITRATION OF UNKNOWN CONCENTRATION FeSO₄ SOLUTION WITH STANDARD KMnO₄ SOLUTION

Trial #	Burette reading(mL)	Volume of KMnO₄ (mL)	Normality of FeSO ₄ (N)
1	-		
2	-		

Average Normality of $FeSO_4 =$ (N)

EXPERIMENT 4: CHEMICAL EQUILIBRIUM

Group:	Section:	4	Date:
Group members:			<u> </u>
			_
Instructor's/TA's signa	ature and comments:		
E. a. 4		Front 4	
Expt. 1		Expt. 4	
Expt. 2		Expt. 5	
Expt. 3		Approval	

1. ACID/BASE EQUILIBRIA

Equilibrium Syst	em: 2CrO ₄ ^{2–} _(aq) +	2H ⁺ (aq)	≓ Cı	r ₂ O 7 ^{2–} (aq)	+	H ₂ O _(I)
Description of conditions	Predicte	ed outcome				Observation
Initial solution						
+ Conc. HCl						
+ 6 N NaOH						

2. EQUILIBRIA OF ACID/BASE INDICATORS

Equilibrium Syste	em: H(MV) _(aq)	+	H ₂ O _(I)	=	H ₃ O ⁺ (aq)	+	MV ⁻ (aq)	
Addition	Predi	cted o	utcome			Ok	oservation	
None (control)								
6 M HCI								
6 M NaOH								
6 M HCI								

3. COMPLEX ION FORMATION

Equilibrium Syste	em: Fe ³⁺ (aq) + SCN ⁻(aq) <i>⇌</i>	: [Fe(SCN)] ²⁺ (aq)
Addition	Predicted outcome	Observation
None		
(control)		
0.01M FeCl₃		
0.04 M KCCN		
0.01 M KSCN		
6M NaOH		
OW NAOT		
Cold		
00.0		
Hot		
0.1M AgNO₃		

4. EQUILIBRIA OF PRECIPITATION REACTIONS

Equilibrium Syste	em: Ca ²⁺ (aq)	+	C ₂ O ₄ ²⁻ (aq)	=	CaC ₂ O _{4(s)}
Addition	Predict	ed out	come		Observation
Test tube 1:					
0.1 M Na ₂ C ₂ O ₄					
Test tube 2:					
+ 0.1 M					
H ₂ C ₂ O ₄					
Test tube 2:					
+ 6 M HCI					
T					
Test tube 2:					
+ 6 M NH ₄ OH					

5. TEMPERATURE EFFECTS ON EQUILIBRIA

Equilibrium Syste	em: $[Co(H_2O)6]^{2+}_{(aq)}$ + $4CI^{(aq)}$ $=$	2 [CoCl ₄] ²⁻ (aq) + 6H ₂ O(I)
Description of conditions	Predicted outcome	Observation
Nothing changed		
(control)		
Hot water bath		
Ice-water bath		

EXPERIMENT 5: FACTORS AFFECTING REACTION RATE

Group: _____ Section: ____5_ Date: ____

Expt. 1 Expt. 2		Expt. 3 Approval	
Instructor's/TA's siç	gnature and comments:		·
Group members:			-

1. EFFECT OF CONCENTRATION ON REACTION TIME

Reaction 1:
Reaction 2:
Calculate the initial concentrations of I ⁻ and S ₂ O ₈ ²⁻ ions:
Mixture # 5:
[l ⁻] =

 $[S_2O_8^{2-}] =$

Mixture	lodide ion	Peroxydisulfate	Time in seconds
1			
2			
3			
4			
5			
6			
Mixture	lodide ion	Peroxydisulfate	Time in seconds
7			
8			
9			
10			
11			

GENERAL CHEMISTRY LABORATORY

2. EFFECT OF TEMPERATURE ON THE REACTION RATE

Reaction	System:		
Description of conditions	Predicted outcome	Observation	Reaction time
Room			
temperature			
50°C			
90°C			

3. EFFECT OF A CATALYST ON THE REACTION RATE (30 pts)

Reacti	ion System:		
Trial	Description of conditions	Predicted outcome	Observation (Reaction rate)
1	+ MnCl ₂		
2	+ MnO ₂		
3	+ NaCl		
4	+ CaCl ₂		
5	+ Zn		
6	+ KNO ₃		
7	+ Fe(NO ₃) ₃		