- 1 Tích phân đường loại 1
 - Định nghĩa
 - Úng dụng
 - Cách tính
- Tích phân đường loại 2
 - Định nghĩa
 - Úng dụng ÀI LIỆU SƯU TẬP
 - Cách tính

BổI HCMUT-CNCP

Bài toán tính diện tích dải băng

- Xét một dải băng có đáy là cung C và chiều cao ứng với điểm (x,y) là f(x,y).
- Diện tích của dải băng được xấp xỉ bởi

$$S \approx \sum_{i=1}^{n} f(x_i^*, y_i^*) \cdot \Delta l_i,$$

trong đó $\Delta I_i = |\overrightarrow{P_{i-1}P_i}|$ và (x_i^*, y_i^*) là điểm mẫu tùy ý thuộc cung $P_{i-1}P_i$.

KHOACNCD

Định nghĩa

Cho C là một đường cong phẳng trơn và f(x, y) là một hàm số xác định trên C. **Tích phân đường loại 1 của** f **dọc theo** C là

$$\int_{C} f(x,y)dl = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}, y_{i}^{*}) \cdot \Delta I_{i},$$

nếu giới hạn này tồn tại.

BổI HCMUT-CNCP

Tính chất

Nếu C là một **đường cong trơn từng khúc (piecewise-smooth curve)**, tức là C là hợp của hữu hạn những đường cong trơn

Úng dụng tính diện tích dải băng

- Xét một dải băng có đáy là cung C và chiều cao ứng với điểm (x,y) là f(x,y).
- Diện tích của dải băng được tính bởi:

Ứng dụng tính khối lượng sợi dây

- Giả sử một sợi dây có hình dạng là một cung C và mật độ tại điểm (x,y) là $\rho(x,y)$.
- Khi đó, khối lượng của sợi dây được tính bởi:

$$m = \int \rho(x,y)dl$$
TÀI LIỆU SƯU TẬP
$$B \mathring{\sigma} I + CMUT - CNCP$$

B A C H K H O A C N C P . C O M

Ứng dụng tính chiều dài sợi dây

Nếu đường cong C là đồ thị của hàm số

$$y = y(x), \quad a \le x \le b$$

thì

$$dI = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + (y'(x))^2} dx,$$

do đó, tích phân đường loại 1 được tính bởi công thức:

$$\int_{C} f(x,y)dl = \int_{a}^{b} f(x,y(x))\sqrt{1 + (y'(x))^{2}}dx$$
BOLHCMUT-CNCP

Nếu đường cong C được tham số bởi

$$\overrightarrow{\mathbf{r}}(t) = x(t)\overrightarrow{\mathbf{i}} + y(t)\overrightarrow{\mathbf{j}}, \quad a \leq t \leq b,$$

thì

$$dI = \sqrt{(dx)^2 + (dy)^2} = \sqrt{(x'(t))^2 + (y'(t))^2} dt,$$

do đó, tích phân đường loại 1 được tính bởi công thức:

$$\int_{C} f(x,y)dl = \int_{a}^{b} f(x(t),y(t))\sqrt{(x'(t))^{2} + (y'(t))^{2}}dt$$

Viết ngắn gọn bởi công thức vectơ là

$$\int_{C} B \overrightarrow{O}I HCMUT-CNCP$$

$$\int_{C} f(x,y)dI = \int_{a}^{b} f(\overrightarrow{r}(t))|\overrightarrow{r}'(t)|dt$$
RACHKHOACNCP.COM

Ví dụ

Hãy tính tích phân đường loại 1

$$\int (2+x^2y)dl,$$

trong đó C là nửa trên của đường tròn đơn vị $x^2 + y^2 = 1$.

Ví du

Hãy tính tích phân đường loại 1

J 2xdl

trong đó C gồm cung C_1 của parabol $y = x^2$ từ (0,0) đến (1,1) và đoạn thẳng đứng C_2 từ (1,1) đến (1,2).

Tích phân đường loại 1 trong không gian

• Cho C là một đường cong tron trong không gian định bởi

$$x = x(t), \quad y = y(t), \quad z = z(t), \quad a \le t \le b,$$

và f(x,y,z) là một hàm số xác định trên C. Tích phân đường loại 1 của f dọc theo C cũng được định nghĩa tương tự như trường hợp C phẳng.

Công thức tính:

$$\int_{C} f(x,y,z) dl \text{LIEUSUUTÂP}$$

$$= \int_{a}^{b} f(x(t),y(t),z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$
BACHKHOACNCP.COM

Bài toán tính công của một trường lực

• Xét bài toán tính công W của một trường lực phẳng $\overrightarrow{\mathbf{F}}(x,y)$ khi di chuyển một chất điểm dọc theo **đường đi** C (path):

$$\overrightarrow{\mathbf{r}}(t) = \mathbf{x}(t)\overrightarrow{\mathbf{i}} + \mathbf{y}(t)\overrightarrow{\mathbf{j}},$$

theo chiều $t: a \rightarrow b$.

Khi đó, ta xấp xỉ công W bởi

$$W \approx \sum_{i=1}^{n} \overrightarrow{\mathbf{F}}(x_{i}^{*}, y_{i}^{*}) \cdot \overrightarrow{P_{i-1}P_{i}} = \sum_{i=1}^{n} \overrightarrow{\mathbf{F}}(x_{i}^{*}, y_{i}^{*}) \cdot \Delta \overrightarrow{\mathbf{r}}_{i}$$

Dinh nghĩa

Định nghĩa

Tích phân đường loại 2 của trường vecto $\overrightarrow{\mathbf{F}}(x,y)$ dọc theo chiều của đường đi C là

$$\int_{C} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} = \lim_{n \to \infty} \sum_{i=1}^{n} \overrightarrow{\mathbf{F}} (x_{i}^{*}, y_{i}^{*}) \cdot \Delta \overrightarrow{\mathbf{r}}_{i},$$

nếu giới hạn này tồn tại. EUSUUTÂP

BỞI HCMUT-CNCP

Ta có

$$d\overrightarrow{r}=(dx,dy),$$

• Do đó, nếu P, Q lần lượt là hai hàm thành phần của trường

$$\overrightarrow{\mathbf{F}}(x,y) = \Big(P(x,y),Q(x,y)\Big),$$

thì tích phân đường loại $2 \int \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}}$ còn được ký hiệu là

Ứng dụng tính công của một trường lực

Công của một trường lực \overrightarrow{F} khi di chuyển một chất điểm dọc theo đường đi C được tính bởi tích phân đường loại 2:

Nếu đường đi C (path) có phương trình tham số:

$$\overrightarrow{\mathbf{r}}(t) = x(t)\overrightarrow{\mathbf{i}} + y(t)\overrightarrow{\mathbf{j}},$$

theo chiều $t:a\to b$, thì tích phân đường loại 2 được tính bởi công thức

$$\int_{C} P(x,y)dx + Q(x,y)dy$$

$$= \int_{a}^{b} \left(P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t) \right)dt$$

Viết ngắn gọn bằng công thức vectơ là

$$\int_{C} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} = \int_{a}^{b} \mathbf{F}(\overrightarrow{\mathbf{r}}(t)) \cdot \overrightarrow{\mathbf{r}}'(t) dt$$

$$E = \int_{a}^{b} \mathbf{F}(\overrightarrow{\mathbf{r}}(t)) \cdot \overrightarrow{\mathbf{r}}'(t) dt$$

$$E = \int_{a}^{b} \mathbf{F}(\overrightarrow{\mathbf{r}}(t)) \cdot \overrightarrow{\mathbf{r}}'(t) dt$$

Cách tính

Nếu đường đi C là đồ thị của hàm số

$$y = y(x)$$

theo chiều $x:a\to b$, thì tích phân đường loại 2 được tính bởi công thức

$$\int_{C} P(x,y)dx + Q(x,y)dy$$

$$= \int_{a}^{b} \left(P(x,y(x)) + Q(x,y(x))y'(x) \right) dx$$
BOTHCMUT-CNCP

Ví du

Hãy tính công được thực hiện bởi trường lực

$$\overrightarrow{\mathbf{F}}(x,y) = x^2 \overrightarrow{\mathbf{i}} - xy \overrightarrow{\mathbf{j}},$$

khi di chuyển một chất điểm đi từ điểm (1,0) đến điểm (0,1) dọc theo cung góc tư của đường tròn đơn vị tâm O.

Ví du

Hãy tính tích phân đường $\int_C y^2 dx + x dy$, trong mỗi trường hợp sau:

- (a) C là đoạn thẳng C_1 từ điểm (-5, -3) đến điểm (0, 2).
- (b) C là một cung C_2 của parabol $x = 4 y^2$ từ điểm (-5; -3) đến điểm (0; 2).

- Hàm vectơ r(t) = x(t)i + y(t)j, t: a → b xác định một
 đường đi C có chiều ứng với chiều của t: a → b, tức là đi từ điểm r(a) đến điểm r(b).
- Ta ký hiệu -C là đường cong trùng với C nhưng ngược chiều với C, đó là chiều $t: b \to a$, tức là đi từ $\overrightarrow{r}(b)$ đến $\overrightarrow{r}(a)$.

Ta có

$$\int_{-C} \overrightarrow{F} \cdot d\overrightarrow{r} = -\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} \text{ (tich phân đường loại 2),}$$

$$\int_{-C} f(x,y)dl = \int_{C} f(x,y)dl \text{ (tich phân đường loại 1).}$$

$$\overrightarrow{ABACH HOCONCP COM}$$

Nếu đường đi C là một đường cong trong không gian:

$$\overrightarrow{\mathbf{r}}(t) = x(t)\overrightarrow{\mathbf{i}} + y(t)\overrightarrow{\mathbf{j}} + z(t)\overrightarrow{\mathbf{k}}, \quad t: a \to b,$$

và trường vectơ $\overrightarrow{\mathbf{F}}$ gồm 3 thành phần P, Q, R xác định trên C

$$\overrightarrow{\mathbf{F}}(x,y,z) = P(x,y,z)\overrightarrow{\mathbf{i}} + Q(x,y,z)\overrightarrow{\mathbf{j}} + R(x,y,z)\overrightarrow{\mathbf{k}},$$

thì với định nghĩa tương tự, ta có tích phân đường loại 2 trong không gian:

$$\int_{C} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} = \int_{C} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

Ví du

Hãy tính tích phân đường $\int_{C} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}}$, trong đó $\overrightarrow{\mathbf{F}} = (xy, yz, zx)$,

và C là đường đi theo chiều t: 0
ightarrow 1 có phương trình tham số

$$x=t, \quad y=t^2, \quad z=t^3.$$

