Average effect of condition

Statistics: p-values adjusted for search volume

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	otation p values adjusted for sourch volume										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	set-level			peak-level				mm mm mm			
1.000 0.675 1 0.675 1.000 0.835 14.82 3.33 0.000 38 34 1.000 0.600 4 0.372 1.000 0.835 14.70 3.32 0.000 0 -26 1.000 0.653 3 0.442 1.000 0.905 14.24 3.27 0.001 40 -50 1.000 0.549 5 0.317 1.000 0.932 14.00 3.24 0.001 8 52 1.000 0.675 1 0.675 1.000 0.932 13.98 3.24 0.001 -14 -48 1.000 0.675 1 0.675 1.000 0.932 13.92 3.24 0.001 20 0 1.000 0.675 1 0.675 1.000 0.932 13.89 3.23 0.001 40 -14 1.000 0.675 1 0.675 1.000 0.932 13.89 3.23 0.001 40 -14 1.000 0.539 6 0.273 1.000 0.937 13.79 3.22 0.001 30 -78 1.000 0.675 1 0.675 1.000 0.937 13.79 3.22 0.001 30 -78 1.000 0.675 1 0.675 1.000 0.950 13.63 3.20 0.001 46 8 1.000 0.675 1 0.675 1.000 0.950 13.63 3.20 0.001 46 8 1.000 0.675 1 0.675 1.000 0.950 13.48 3.19 0.001 46 -66 1.000 0.675 1 0.675 1.000 0.950 13.48 3.19 0.001 46 -66 1.000 0.675 1 0.675 1.000 0.950 13.45 3.18 0.001 46 -66 1.000 0.675 1 0.675 1.000 0.972 13.29 3.16 0.001 2 -76 1.000 0.675 1 0.675 1.000 0.974 13.05 3.14 0.001 12 6 1.000 0.675 1 0.675 1.000 0.974 13.05 3.14 0.001 12 6 1.000 0.675 1 0.675 1.000 0.974 13.05 3.14 0.001 12 6 1.000 0.675 1 0.675 1.000 0.974 13.05 3.14 0.001 24 38 1.000 0.675 1 0.675 1.000 0.974 13.05 3.14 0.001 24 38 1.000 0.675 1 0.675 1.000 0.974 12.96 3.13 0.001 24 38 1.000 0.675 1 0.675 1.000 0.974 12.96 3.13 0.001 24 38 1.000 0.675 1 0.675 1.000 0.974 12.95 3.12 0.001 24 38 1.000 0.675 1 0.675 1.000 0.974 12.95 3.12 0.001 24 38 1.000 0.675 1 0.675 1.000 0.974 12.95 3.12 0.001 22 -24	р с	$\rho_{FWE-corr} q_{FDR-corr} k_{E}$	p_{uncorr}	p_{FWE-c}	g F orr FDR-corr	(Z_{\equiv})	$p_{ m uncorr}$				
1.000 0.675 1 0.675 1.000 0.978 12.82 3.11 0.001 48 50 1.000 0.675 1.000 0.978 12.77 3.10 0.001 -48 -68 table shows 3 local maxima more than 8.0mm apart		1.000 0.675 1 1.000 0.600 4 1.000 0.653 3 1.000 0.675 1	0.675 0.372 0.4417 0.6775 0.6775 0.6775 0.6775 0.6775 0.6775 0.6775 0.6775 0.6775 0.6775	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.835 14.83 0.835 14.70 0.905 14.20 0.932 13.93 0.932 13.83 0.932 13.83 0.932 13.83 0.932 13.83 0.937 13.73 0.950 13.43 0.950 13.43 0.950 13.43 0.972 13.23 0.974 13.03 0.974 13.03 0.974 12.93 0.974 12.93 0.974 12.93 0.974 12.93 0.974 12.93 0.974 12.93 0.976 12.83 0.978 12.83	3.32 3.27 3.24 3.24 3.23 3.23 3.23 3.23 3.23 3.23	0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0 4 8 4 4 0 4 0 6 0 1 4 6 8 6 2 4 6 1 5 6 2 4 6 2 4 6 2 4 8 2 2 6 0 2 2 4 8 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	-26 -552 -400 -108 -788 -406 -72 -380 -380 -380 -384 -382 -382 -382 -382 -382 -382 -382 -382	22 -28 -22 32 -24 -8 60 24 11 12 -16 32 8 -24 40 46 83 20	

Height threshold: F = 12.66, p = 0.001 (1.000 grees of freedom = [1.0, 39.0] Extent threshold: k = 0 voxels FWHM = 8.2 8.1 8.2 mm mm mm; 4.1 4.1 4.1 {voxels} Expected voxels per cluster, <k> = 5.400 Volume: 1337776 = 167222 voxels = 2244.2 resels Expected number of clusters, <c> = 33.31 Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 68.57 voxels FWEp: 37.909, FDRp: Inf, FWEc: 99, FDRp: 37.909, FDRp: Inf, FWEc: 99, FDRp: 10.000 grees of freedom = [1.0, 39.0]