# ELEC-313 Lab 5: CMOS Circuits

October 18, 2013

Date Performed: October 16, 2013 Partners: Charles Pittman

Stephen Wilson

# Contents

| 1            | Objective                   | 3             |  |  |  |  |
|--------------|-----------------------------|---------------|--|--|--|--|
| 2            | Equipment                   |               |  |  |  |  |
| 3            | Schematics                  |               |  |  |  |  |
| 4            | Procedure 4.1 CMOS Inverter | <b>4</b><br>4 |  |  |  |  |
| 5            | Results                     |               |  |  |  |  |
| 6            | Conclusion                  | 5             |  |  |  |  |
| $\mathbf{L}$ | ist of Figures              |               |  |  |  |  |
|              | 1 Circuits used in this lab | 3             |  |  |  |  |
| ${f L}$      | ist of Tables               |               |  |  |  |  |
|              | 1 Logic Table               |               |  |  |  |  |

# 1 Objective

The objective is to construct and observe the operation of a CMOS inverter and NAND gate.

## 2 Equipment

• ALD1105 Dual N-channel and P-channel matched pair MOSFET

• Power supply: HP E3631A

• Oscilloscope: Agilent 54622D

 $\bullet$  Function generator: HP 33120A

## 3 Schematics



Figure 1: Circuits used in this lab.

#### 4 Procedure

#### 4.1 CMOS Inverter

First, the (+) and (-) terminals of the motor driver board were connected to the 6 V DC power supply. Wires were connected to the motor output terminals on the left side of the motor driver board. Inputs  $L_1$ ,  $L_2$ , and E1-2 (Enable) were connected in accordance with Table 1. The output of the DC power supply was set to 6 V and the motor output voltage  $(V_{out})$  was measured and the LED's were observed, with values recorded in Table 1. Then, the output of the DC power supply was turned off and 6 V DC motor was connected to the output of the motor driver board. The output of the DC power supply was set to 6 V and inputs were connected in accordance with Table 1 and the direction of motor rotation was also recorded in Table 1. Finally,  $L_1$ ,  $L_2$ , and Enable were set in the clockwise motor rotation and the DC power supply was swept from 6 V to 3 V in 0.1 V increments and the effect on the motor's speed.

#### 4.2 CMOS NAND

First the function generator was set to a square wave with a frequency of 20 kHz. Channel 1 of the oscilloscope was connected to the output of the function generator and the square wave was offset for  $0\,\mathrm{V}$  to  $5\,\mathrm{V}$ .  $L_1$  and  $L_2$  were again set for clockwise rotation and the Enable input was connected to the function generator. The DC power supply was turned on and set to  $6\,\mathrm{V}$ . Then, the %Duty of the square wave was swept from 20% to 80% in 10% increments and the motor driver board output was recorded in Table 2. After that, the output of the DC power supply was turned off and the %Duty of the function generator was rest to 50%. Then, the  $6\,\mathrm{V}$  DC motor was connected to the motor output of the motor driver board and the output of the DC power supply was set to  $6\,\mathrm{V}$ . The %Duty of the square wave was swept from 50--80% in 1% increments and motor speed was observed.

#### 5 Results

| Enable          | $L_1$        | $L_2$        | $V_{out}$         | $_{ m LED}$          | Motor |
|-----------------|--------------|--------------|-------------------|----------------------|-------|
| $\overline{}$ L | L            | L            | $-0.01{ m V}$     | off                  | off   |
| ${ m L}$        | L            | Η            | $-0.01{ m V}$     | off                  | off   |
| ${ m L}$        | $\mathbf{H}$ | $\mathbf{L}$ | $-0.01{ m V}$     | off                  | off   |
| ${ m L}$        | $\mathbf{H}$ | Η            | $-0.01{ m V}$     | off                  | off   |
| Н               | L            | $\mathbf{L}$ | $-0.18\mathrm{V}$ | off                  | off   |
| Н               | L            | Η            | $5.7\mathrm{V}$   | $\operatorname{red}$ | CW    |
| Н               | $\mathbf{H}$ | $\mathbf{L}$ | $5.5\mathrm{V}$   | green                | CCW   |
| Н               | $\mathbf{H}$ | Η            | $0.01{ m V}$      | both                 | off   |

Table 1: Logic Table.

| Duty Cycle | $ m V_{out}$      |
|------------|-------------------|
| 20%        | $-3.01\mathrm{V}$ |
| 30%        | $-3.39\mathrm{V}$ |
| 40%        | $-3.76\mathrm{V}$ |
| 50%        | $-4.13\mathrm{V}$ |
| 60%        | $-4.49\mathrm{V}$ |
| 70%        | $-4.84\mathrm{V}$ |
| 80%        | $-5.19\mathrm{V}$ |

Table 2: Pulse-width modulation

### 6 Conclusion

The motor driver board can be adjusted to control the speed and direction of the DC motor. First, the Enable input must "see" 5 V before the motor driver board can then allow the  $L_1$  and  $L_2$  inputs control the phase/rotation of the output. To control the output rotation, the  $L_1$  and  $L_2$  inputs must also see 5 V separately. In our configuration,  $L_1$  caused the motor to rotate counterclockwise. Similarly,  $L_2$  caused clockwise rotation, so enabling both causes the motor to stop.

The motor driver board speed was adjusted via two different approaches in the experiment: in part one, the input voltage was adjusted, changing the output voltage; in part two, the frequency of the input signal was adjusted, which also affected output voltage.