Milestone II: Descriptive Stats

```
In [1]:
         #Classic Libraries
        import pandas as pd
        import numpy as np
        import random
        import math
        import time
        import datetime
        import operator
        import sys
        import statsmodels.api as sm
        import re
        #Data Viz
        import matplotlib.pyplot as plt
        import matplotlib.colors as mcolors
        import seaborn as sns
        import plotly.express as px
        import plotly.graph objs as go
        from plotly.subplots import make subplots
        import plotly.figure factory as ff
        pd.options.plotting.backend = "plotly"
        #SQL Libraries
        import sqlalchemy
        import psycopg2
        from sqlalchemy import create_engine
        from sqlalchemy_utils import database_exists, create_database
        pd.set option('display.max columns', 500)
        pd.set option('display.max rows', 500)
        import warnings
        warnings.filterwarnings('ignore')
        %load ext sql
```

First I am going to load the clean and joined data I went through in Milestone 1 and exported from Databricks

```
In [2]: %sql postgresql+psycopg2://postgres:pass@localhost/postgres
Out[2]: 'Connected: postgres@postgres'
In [3]: conn = psycopg2.connect("postgresql://postgres:pass@localhost/postgres")
```

My Hypothesises

- 1. On a per capita basis smaller and pooere countires will probably have a higher medal count and some of them will be outliers.
- 2. Countries farther North will excel in the winter and vice versa for the South in the summer.
- 3. Competitors that are taller will have an advantage.
- 4. Competitors that weigh more will have an advantage.

Hypothesis I and !!

On a per capita basis smaller and pooere countires will probably have a higher medal count and some of them will be outliers.

In order to see the accuracy of this hypothesis about both smaller population and less wealthy countries and their relation to their medal counts I am going to need a little more data. I downloaded two data sets from the data. WorldBank to get the data i need in relation to GDP and the other in relation to population. First I'm going to have to load them data frame behind those dataframes with the medal count by countries to start.

As for the second hypothesis I am planning on making an animated graphic with this data that will be rotating between Summer and Winter Olympics so we should be able to look that way.

GDP

```
In [4]:
    gdp = pd.read_excel('worldgdp1960.xlsx')
    gdp.columns = gdp.columns.str.replace(r"\(.*\)","")
    gdp = gdp.rename(columns={'United States':'USA', 'United Kingdom':'UK'})
    gdp = gdp.rename(columns ={'Country Name':'year'}).set_index('year')
    stack = gdp.stack()
    stack = pd.DataFrame(stack) #
    stack.index.names=['year', 'country']
    stack.columns = ['gdp_per_capita']
    stack
```

Out[4]:	adp pe	r_capita
0	gap_pc	_capita

year	country	
1960	Africa Eastern and Southern	147.507808
	Afghanistan	59.773234
	Africa Western and Central	107.932233
	Australia	1810.619230
	Austria	935.460427
•••	•••	
2020	Samoa	4067.843459
	Kosovo	4346.637931
	South Africa	5655.867654
	Zambia	985.132436
	Zimbabwe	1214.509820

12836 rows × 1 columns

Population

```
In [5]:
    pop = pd.read_csv('country_populations.csv')
    pop.columns = pop.columns.str.replace(r"\(.*\)","")
    pop = pop.rename(columns={'United States':'USA', 'United Kingdom':'UK'})
    pop = pop.rename(columns ={'Country Name':'year'}).set_index('year')
    pop= pop.stack()
    pop =pd.DataFrame(pop)
    pop.index.names = ['year', 'country']
    pop.columns = ['population']
    pop
```

```
country
year
1960
                           Aruba
                                       54208.0
      Africa Eastern and Southern 130836765.0
                     Afghanistan
                                    8996967.0
       Africa Western and Central
                                   96396419.0
                          Angola
                                    5454938.0
2020
                         Kosovo
                                    1775378.0
                     Yemen, Rep.
                                   29825968.0
                     South Africa
                                   59308690.0
                         Zambia
                                   18383956.0
                       Zimbabwe
                                   14862927.0
```

population

16123 rows × 1 columns

Medal Count

Out[5]:

```
In [6]:
        %%sql countrymedals <<</pre>
        SELECT region, count(medal), year, "NOC"
        FROM sportstats
        Group by region, "NOC", year
        order by year
        * postgresql+psycopg2://postgres:***@localhost/postgres
        3290 rows affected.
        Returning data to local variable countrymedals
In [7]:
        countrymedals = pd.DataFrame(countrymedals)
        countrymedals.columns = ['country', 'medals', 'year', 'code']
        countrymedals.at[3289,'year']=2016
        countrymedals.year = countrymedals.year.astype(int)
        medaldf = countrymedals
        mdf = medaldf[medaldf['year']>1959]
        s= mdf.groupby(['year', 'country', 'code'], as_index=True, sort=False)
        medf = s.sum()
        medf
```

Out[7]: medals

	code	country	year
7	BUL	Bulgaria	1960
0	FIJ	Fiji	
0	VNM	Vietnam	
0	PUR	Puerto Rico	
31	JPN	Japan	
•••	•••		•••
2	IOA	Individual Olympic Athletes	2016
0	MAD	Madagascar	

```
Sierra Leone SLE 0
Iran IRI 8
Singapore SIN 0
```

2736 rows × 1 columns

:		year country		code	medals	population	gdp_per_capita
	0	1960	Afghanistan	AFG	0	8996967.0	59.77
	1	1960	Australia	AUS	46	10276477.0	1810.62
	2	1960	Austria	AUT	9	7047539.0	935.46
	3	1960	Belgium	BEL	4	9153489.0	1273.69
	4	1960	Bermuda	BER	0	44400.0	1902.40
	•••			•••			
	2153	2016	Uzbekistan	UZB	13	31847900.0	2704.68
	2154	2016	Vanuatu	VAN	0	278326.0	2805.67
	2155	2016	Vietnam	VIE	2	93640435.0	2192.17
	2156	2016	Zambia	ZAM	0	16363449.0	1280.81
	2157	2016	Zimbabwe	ZIM	0	14030338.0	1464.59

2158 rows × 6 columns

I am using the PyCountry-Convert Funtion to help me read in continent names for the data.

```
In [11]:
    df['continent'][df.country == 'UK'] = 'EU'
    df['continent'][df.country == 'Kosovo'] = 'AS'
    df['continent'][df.country == 'Timor-Leste'] = 'AS'
    df.loc[df.continent == 'AS', 'continent'] = 'Asia'
    df.loc[df.continent == 'OC', 'continent'] = 'Oceania'
    df.loc[df.continent == 'EU', 'continent'] = 'Europe'
    df.loc[df.continent == 'AF', 'continent'] = 'Africa'
    df.loc[df.continent == 'SA', 'continent'] = 'South America'
```

df.loc[df.continent == 'NA', 'continent'] = 'North America'
df

:		year	country	code	medals	population	gdp_per_capita	continent
	0	1960	Afghanistan	AFG	0	8996967.0	59.77	Asia
	1	1960	Australia	AUS	46	10276477.0	1810.62	Oceania
	2	1960	Austria	AUT	9	7047539.0	935.46	Europe
	3	1960	Belgium	BEL	4	9153489.0	1273.69	Europe
	4	1960	Bermuda	BER	0	44400.0	1902.40	North America
	•••							
	2153	2016	Uzbekistan	UZB	13	31847900.0	2704.68	Asia
	2154	2016	Vanuatu	VAN	0	278326.0	2805.67	Oceania
	2155	2016	Vietnam	VIE	2	93640435.0	2192.17	Asia
	2156	2016	Zambia	ZAM	0	16363449.0	1280.81	Africa
	2157	2016	Zimbabwe	ZIM	0	14030338.0	1464.59	Africa

2158 rows × 7 columns

3

1 10

Out[11]:

Now that we have the data cleaned and ready I'm going to create a plotly animation that measures both the GDP per capita population and medal counts along with shedding light on which continent each country it is from.

Countries Medals VS GDP over time.

100

1000 2

gdp_per_capita

10k

⁵ 100k

Countries Medals VS GDP over time. Over an inequal

Out[13]: OLS Regression Results

Dep. Variable: R-squared: 0.259 У OLS Model: Adj. R-squared: 0.244 Method: **Least Squares** F-statistic: 17.13 **Date:** Wed, 22 Dec 2021 **Prob (F-statistic):** 0.000137 Time: 17:25:02 Log-Likelihood: -226.40 No. Observations: 51 AIC: 456.8 **Df Residuals:** 49 BIC: 460.7 **Df Model:** 1 **Covariance Type:** nonrobust

coef std err t P>|t| [0.025 0.975]

```
-2.2490
                 4.200
                        -0.535 0.595
                                       -10.690
                                                  6.192
const
                                                  0.024
        0.0163
                 0.004
                         4.139 0.000
                                          0.008
                52.578
      Omnibus:
                           Durbin-Watson:
                                                1.872
Prob(Omnibus):
                  0.000
                         Jarque-Bera (JB):
                                              274.522
                  2.707
                                 Prob(JB):
                                             2.45e-60
         Skew:
```

Kurtosis: 12.993

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 1.53e+03

[2] The condition number is large, 1.53e+03. This might indicate that there are strong multicollinearity or other numerical problems.

ilil

Countries Medals VS Population over time


```
year=1960

| 1960 1972 1984 1994 2000 2006 2012
```

results = px.get_trendline_results(fig)
results.px fit results.iloc[0].summary()

Countries Medals VS Population over time. Over an include

Out[15]: OLS Regression Results

Dep. Variable: y **R-squared:** 0.029

Model: OLS Adj. R-squared: 0.009

Method: Least Squares **F-statistic:** 1.469

Date: Wed, 22 Dec 2021 **Prob (F-statistic):** 0.231

Time: 17:25:03 **Log-Likelihood:** -233.29

No. Observations: 51 AIC: 470.6

Df Residuals: 49 **BIC:** 474.4

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 8.7652
 3.559
 2.463
 0.017
 1.613
 15.917

 x1
 3.662e-08
 3.02e-08
 1.212
 0.231
 -2.41e-08
 9.73e-08

Omnibus: 69.656 Durbin-Watson: 1.679

Prob(Omnibus): 0.000 Jarque-Bera (JB): 612.253

Skew: 3.688 **Prob(JB):** 1.12e-133

Kurtosis: 18.288 **Cond. No.** 1.25e+08

Notes:

```
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

[2] The condition number is large, 1.25e+08. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [16]:
         %%sql totpercentsum <<</pre>
         SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PEF
         FROM sportstats
         WHERE season= 'Winter'
         GROUP BY region
         HAVING COUNT (medal) > 0
         Order by perc DESC;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         41 rows affected.
         Returning data to local variable totpercentsum
In [17]:
         %%sql goldpercentsum <<
         SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PEF
         FROM sportstats
         WHERE season= 'Winter'
         GROUP BY region, medal
         HAVING COUNT (medal) > 0
         AND medal = 'Gold'
         Order by perc DESC;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         33 rows affected.
         Returning data to local variable goldpercentsum
In [18]:
         %%sql silverpercentsum <<</pre>
         SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PER
         FROM sportstats
         WHERE season= 'Winter'
         GROUP BY region, medal
         HAVING COUNT (medal) > 0
         AND medal = 'Silver'
         Order by perc DESC;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         36 rows affected.
         Returning data to local variable silverpercentsum
In [19]:
         %%sql bronzepercentsum <<</pre>
         SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PEF
         FROM sportstats
         WHERE season= 'Winter'
         GROUP BY region, medal
         HAVING COUNT (medal) > 0
         AND medal = 'Bronze'
         Order by perc DESC;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         35 rows affected.
         Returning data to local variable bronzepercentsum
In [20]:
         totalsum = pd.DataFrame(totpercentsum)
         totalsum.columns = ['region', 'medals']
         sumtot =totalsum.head(30)
         goldsum = pd.DataFrame(goldpercentsum)
         goldsum.columns = ['region', 'medals']
         goldsum = goldsum.head(30)
```

```
silversum= pd.DataFrame(silverpercentsum)
silversum.columns = ['region', 'medals']
silversum = silversum.head(30)
bronzesum= pd.DataFrame(bronzepercentsum)
bronzesum.columns = ['region', 'medals']
bronzesum = bronzesum.head(30)
```

```
fig = make_subplots(rows=2,cols=2, subplot_titles=("Total", "Gold", "Silver", "Bronze
fig.add_trace(go.Bar(x = sumtot.region, y= sumtot.medals, name='Total'), row=1, col=1
fig.add_trace(go.Bar(x = goldsum.region, y= goldsum.medals, name='Gold'), row=1, col=1
fig.add_trace(go.Bar(x = silversum.region, y= silversum.medals, name='Silver'), row=2
fig.add_trace(go.Bar(x = bronzesum.region, y= bronzesum.medals, name='Bronze'), row=2
fig.update_layout(height=1000, width=1000, title = 'Per Capita Medal Winners Winter')
fig.show()
```

Per Capita Medal Winners Winter

Hypothesis Check

Hypothesis 1:

From the animation and what I have gathered it definitely seems like both have and effect with positive correlation towards more medals. The main difference between population and GDP per capita is though that population has always had a mild steady correlation with medals while GDP per capita use to have a much stronger correlation but that has slowly diminished over time to not much more of a correlation than population correlation with metals.

Hypothesis 2:

There are a few outliers and if we were just to consider the Winter olympics it appears that most of the world does not really compete and the vast majority of the medals are won by those from Northern nations in North America, Europe and Asia.

Hypothesis III and IV

To start I think I'm just going to look at the breakdown by metal by country from there we can break it into height and weight as well. that way we have a general overview of how it has been an overtime.

```
In [23]:
```

```
%%sql
SELECT *
FROM sportstats
LIMIT 5
```

* postgresql+psycopg2://postgres:***@localhost/postgres 5 rows affected.

_			7
():	11	レフィ	
\cup	ич	40	

0 10110	arrececa.											
id	name	age	height	weight	Sex	team	games	year	season	sport	event	me
87378.0	Ramazan Nuristani	None	None	None	М	Afghanistan	1956 Summer	1956.0	Summer	Hockey	Hockey Men's Hockey	Nc
87377.0	Noor Ullah Nuristani	None	None	None	М	Afghanistan	1956 Summer	1956.0	Summer	Hockey	Hockey Men's Hockey	Nc
87375.0	Mohammad Jahan Nuristani	None	None	None	М	Afghanistan	1948 Summer	1948.0	Summer	Hockey	Hockey Men's Hockey	Nc
87374.0	Mohammad Amin Nuristani	None	None	None	М	Afghanistan	1956 Summer	1956.0	Summer	Hockey	Hockey Men's Hockey	Nc
87373.0	Jahan Gulam Nuristani	None	None	None	М	Afghanistan	1948 Summer	1948.0	Summer	Hockey	Hockey Men's Hockey	Nc

```
In [59]:
         %%sql
         SELECT COUNT (medal) AS medals won, region
         FROM sportstats
         Group BY region
         ORDER BY medals_won desc
          limit 10
          * postgresql+psycopg2://postgres:***@localhost/postgres
         10 rows affected.
Out[59]: medals_won
                     region
               5436
                       USA
               3945
                      Russia
               3752 Germany
               2065
                        UK
               1747
                      France
               1637
                       Italy
               1534
                     Sweden
               1349
                    Australia
               1344
                    Canada
               1135 Hungary
In [25]:
          %%sql gold won <<
         SELECT COUNT (medal) AS medals won, region
         FROM sportstats
         Group BY region, medal
          HAVING medal = 'Gold'
         ORDER BY medals won desc;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         99 rows affected.
         Returning data to local variable gold won
In [26]:
         %%sql silver won <<
         SELECT COUNT (medal) AS medals won, region
         FROM sportstats
         Group BY region, medal
         HAVING medal = 'Silver'
         ORDER BY medals won desc;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         116 rows affected.
         Returning data to local variable silver won
In [27]:
         %%sql bronze won <<
         SELECT COUNT (medal) AS medals won, region
         FROM sportstats
         Group BY region, medal
         HAVING medal = 'Bronze'
         ORDER BY medals won desc;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         112 rows affected.
         Returning data to local variable bronze won
In [28]:
         %%sql total medals won <<</pre>
         SELECT COUNT (medal) AS medals won, region
         FROM sportstats
```

```
Group BY region
         ORDER BY medals won desc
          * postgresql+psycopg2://postgres:***@localhost/postgres
         207 rows affected.
         Returning data to local variable total medals won
In [29]:
         total = pd.DataFrame(total medals won)
         total.columns = ['medals', 'region']
         toptot = total.head(30)
In [30]:
         gold = pd.DataFrame(gold won)
         gold.columns = ['medals', 'region']
         topgold = gold.head(30)
In [31]:
         silver = pd.DataFrame(silver won)
         silver.columns = ['medals', 'region']
         topslvr = silver.head(30)
In [32]:
         bronze = pd.DataFrame(bronze won)
         bronze.columns = ['medals', 'region']
         topbr = bronze.head(30)
In [33]:
         fig = make subplots (rows=2, cols=2, subplot titles=("Total", "Gold", "Silver", "Bronze
         fig.add trace(go.Bar(x = toptot.region, y= toptot.medals, name='Total'), row=1, col=1
         fig.add trace(go.Bar(x = topgold.region, y= topgold.medals, name='Gold'), row=1, col=
         fig.add_trace(go.Bar(x = topslvr.region, y= topslvr.medals, name='Silver'), row=2, cq
         fig.add trace(go.Bar(x = topbr.region, y= topbr.medals, name='Bronze'), row=2, col=2)
         fig.update layout(height=1000, width=1000, title = 'Top Medal Winners')
         fig.show()
```

Top Medal Winners


```
In [34]:
    %*sql totpercent <<
    SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PEF
    FROM sportstats
    GROUP BY region
    HAVING COUNT(medal) > 0
    Order by perc DESC;
```

* postgresql+psycopg2://postgres:***@localhost/postgres 136 rows affected.

Returning data to local variable totpercent

```
In [35]:
    %*sql totpercent <<
        SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PEF
        FROM sportstats
        GROUP BY region
        HAVING COUNT(medal) > 0
        Order by perc DESC;
```

* postgresql+psycopg2://postgres:***@localhost/postgres 136 rows affected.

Returning data to local variable totpercent

Returning data to local variable goldpercent

^{*} postgresql+psycopg2://postgres:***@localhost/postgres 99 rows affected.

```
In [37]:
         %%sql silverpercent <<</pre>
         SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PEF
         FROM sportstats
         GROUP BY region, medal
         HAVING COUNT (medal) > 0
         AND medal = 'Silver'
         Order by perc DESC;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         116 rows affected.
         Returning data to local variable silverpercent
In [38]:
          %%sql bronzepercent <<</pre>
         SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PER
         FROM sportstats
         GROUP BY region, medal
         HAVING COUNT (medal) > 0
         AND medal = 'Bronze'
         Order by perc DESC;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         112 rows affected.
         Returning data to local variable bronzepercent
In [39]:
         %%sql goldpercent <<
         SELECT region, CAST(COUNT(medal) AS float)/CAST(COUNT(DISTINCT name) AS float) as PEF
         FROM sportstats
         GROUP BY region, medal
         HAVING COUNT (medal) > 0
          AND medal = 'Gold'
         Order by perc DESC;
          * postgresql+psycopg2://postgres:***@localhost/postgres
         99 rows affected.
         Returning data to local variable goldpercent
In [40]:
         totalperc = pd.DataFrame(totpercent)
         totalperc.columns = ['region', 'medals']
         perctot =totalperc.head(30)
         goldperc = pd.DataFrame(goldpercent)
          goldperc.columns = ['region', 'medals']
         percgold = goldperc.head(30)
         silverperc= pd.DataFrame(silverpercent)
         silverperc.columns = ['region', 'medals']
         percslvr = silverperc.head(30)
         bronzeperc= pd.DataFrame(bronzepercent)
         bronzeperc.columns = ['region', 'medals']
          percbrnz = bronzeperc.head(30)
In [41]:
         silverperc= pd.DataFrame(silverpercent)
         silverperc.columns = ['region', 'medals']
         percslvr = silverperc.head(30)
         percslvr
Out[41]:
                region
                        medals
          0
               Namibia 4.000000
          1
              Zimbabwe 4.000000
          2
                Tunisia 1.500000
          3
               Slovakia 1.357143
          4
                Jamaica 1.339286
          5
                Algeria 1.333333
```

```
6 Luxembourg 1.333333
 7
        Norway 1.249135
 8
       Hungary 1.225092
 9
       Malaysia 1.222222
10
      Azerbaijan 1.200000
11
       Australia 1.198433
12
         Russia 1.197544
     Kazakhstan 1.190476
13
14
       Germany 1.184524
15
        Pakistan 1.184211
16
           Italy 1.182628
17
        Slovenia 1.181818
18
        Belgium 1.172619
19
          China 1.171141
20
        Sweden 1.170404
     Switzerland 1.166667
21
22
          Japan 1.161654
23
          Brazil 1.151316
24
       Romania 1.149425
25
        Finland 1.148936
26
           USA 1.144086
27
        Thailand 1.142857
28
        Trinidad 1.142857
29
          Kenya 1.138889
```

```
In [42]:
    fig = make_subplots(rows=2,cols=2, subplot_titles=("Total", "Gold", "Silver", "Bronze
        fig.add_trace(go.Bar(x = perctot.region, y= perctot.medals, name='Total'), row=1, col
        fig.add_trace(go.Bar(x = percgold.region, y= percgold.medals, name='Gold'), row=1, col
        fig.add_trace(go.Bar(x = percslvr.region, y= percslvr.medals, name='Silver'), row=2,
        fig.add_trace(go.Bar(x = percbrnz.region, y= percbrnz.medals, name='Bronze'), row=2,
        fig.update_layout(height=1000, width=1000, title = 'Per Capita Medal Winners')
        fig.show()
```

Per Capita Medal Winners

Now that we have really explored the medal counts per country and breaking it down by per capita participants battles. We have seen that on a per-capita basis smaller countries actually tend to do well. It is partially contradictory to my first hypothesis especially when you consider per capita it is the smaller countries who are at the top. Who would have guessed that Lichtenstein and Ethiopia hav the most Gold medals per capita.

Let us move on to height and weight though.

³⁶ rows affected.
Returning data to local variable height_weight

```
In [44]:
          %%sql height weightgold <<</pre>
          SELECT Year, AVG (height), AVG (weight) FROM sportstats Where medal='Gold' group by year
          * postgresql+psycopg2://postgres:***@localhost/postgres
         35 rows affected.
         Returning data to local variable height weightgold
In [45]:
          %%sql height weightsilver <<</pre>
          SELECT Year, AVG(height), AVG(weight) FROM sportstats Where medal='Silver' group by
          * postgresql+psycopg2://postgres:***@localhost/postgres
         35 rows affected.
         Returning data to local variable height weightsilver
In [46]:
          %%sql height weightbronze <<
          SELECT Year, AVG(height), AVG(weight) FROM sportstats Where medal='Bronze' group by
          * postgresql+psycopg2://postgres:***@localhost/postgres
         35 rows affected.
         Returning data to local variable height weightbronze
In [47]:
          hw = pd.DataFrame(height weight)
          hw.columns = ['year', 'height', 'weight']
          hwg = pd.DataFrame(height weightgold)
          hwg.columns = ['year', 'height', 'weight']
          hws = pd.DataFrame(height weightsilver)
          hws.columns = ['year', 'height', 'weight']
          hwb = pd.DataFrame(height_weightbronze)
          hwb.columns = ['year', 'height', 'weight']
In [48]:
          hwb.head()
Out[48]:
                      height
                                weight
              year
         0 1896.0
                  170.666667 65.666667
         1 1900.0
                  178.812500 74.200000
         2 1904.0
                  176.304348 75.571429
         3 1906.0 178.900000 80.000000
         4 1908.0 177.108696 74.430769
In [49]:
          t g hw = pd.merge(hw, hwg, on ='year')
          s b hw = pd.merge(hws, hwb, on ='year')
          mergehw = pd.merge(t_g_hw, s_b_hw, on ='year')
          mergehw.columns= ['year', 'avg_height', 'avg_weight', 'gold_height', 'gold_weight',
          mergehw
Out[49]:
               year avg_height avg_weight gold_height gold_weight silver_height silver_weight bronze_height bro
                   172.739130
          0 1896.0
                                71.387755
                                          175.153846
                                                       72.153846
                                                                  179.833333
                                                                               76.833333
                                                                                            170.666667
             1900.0
                   176.637931
                                74.556962
                                          177.407407
                                                       72.857143
                                                                  178.388889
                                                                               71.076923
                                                                                            178.812500
          2 1904.0 175.778302
                                72.275862
                                          177.215686
                                                       71.733333
                                                                  175.400000
                                                                               72.238095
                                                                                            176.304348
             1906.0 178.183594
                                75.921569
                                          179.125000
                                                       77.034483
                                                                  177.607143
                                                                               77.000000
                                                                                            178.900000
            1908.0 177.304348
                                75.070513
                                          176.261538
                                                       76.423077
                                                                  176.612245
                                                                               76.514286
                                                                                            177.108696
             1912.0 177.437936
                                73.081081
                                          178.135135
                                                       74.754098
                                                                  176.725490
                                                                               74.893617
                                                                                            177.511111
            1920.0 175.704724
                                72.950959
                                          177.804348
                                                                                            175.050000
                                                       74.037500
                                                                  174.340426
                                                                               74.304878
          7 1924.0 174.954119
                                71.681223
                                          176.279661
                                                       70.698630
                                                                  174.218750
                                                                               74.814286
                                                                                            175.164179
```

8	1928.0	175.160455	70.994366	176.051020	72.484848	174.818182	72.309091	175.681818
9	1932.0	174.248938	70.410714	174.200000	71.123077	174.479675	71.175439	175.094340
10	1936.0	175.730118	71.488277	177.846847	73.829787	177.448718	72.490909	176.328125
11	1948.0	176.115917	71.543058	179.456790	74.114943	177.135135	73.285714	177.709677
12	1952.0	174.095588	69.987109	178.341463	76.062992	177.347368	73.314607	176.541667
13	1956.0	173.832202	70.305545	177.362245	75.251309	175.628866	72.451282	174.582090
14	1960.0	173.130440	69.297825	176.021084	72.432927	175.799373	72.740506	175.393293
15	1964.0	173.416752	69.672856	176.483461	73.588235	176.387755	73.817010	175.620779
16	1968.0	173.941503	69.581497	177.904077	74.346988	176.767726	73.293399	176.879808
17	1972.0	174.579646	70.027027	177.603412	74.377919	177.280353	73.789357	177.721174
18	1976.0	174.918925	70.130863	178.089463	74.929577	177.874239	74.287755	177.281437
19	1980.0	175.530201	70.719890	178.088462	74.451923	177.864762	74.022945	177.378531
20	1984.0	175.523165	70.228378	178.078431	73.725490	177.894444	73.022181	178.033451
21	1988.0	175.722973	70.469093	179.122924	74.858804	178.623946	74.300169	178.639291
22	1992.0	176.173326	71.136291	178.716239	74.650602	178.600977	74.467532	177.812006
23	1994.0	175.164028	71.033030	175.438095	71.800000	176.240741	73.333333	175.972727
24	1996.0	175.898702	70.907016	178.068783	73.664273	178.089127	73.482206	178.400000
25	1998.0	174.572484	70.918089	175.444444	72.958333	175.631944	72.388889	174.221477
26	2000.0	176.097879	71.124095	178.465961	74.412747	177.786910	73.321157	177.878698
27	2002.0	174.698234	71.185559	175.409938	73.043750	175.474359	73.346154	174.654088
28	2004.0	175.981542	71.291159	178.013575	74.200603	178.271212	74.040909	178.176036
29	2006.0	174.619657	70.513402	176.181818	73.744318	175.920000	72.514286	175.542857
30	2008.0	176.222098	71.411892	178.328358	74.286145	178.571644	74.358974	178.154173
31	2010.0	174.913330	70.723594	176.603448	74.075145	175.426901	72.255952	175.128655
32	2012.0	176.287254	71.341748	179.011094	74.443730	177.802862	73.166934	178.170877
33	2014.0	174.814914	70.754604	176.517413	73.529101	174.832487	72.015789	174.690355
34	2016.0	176.049047	71.005510	179.009063	74.503030	178.512232	73.840491	177.632479

In [50]:

Line of Best Fit - Average Height

Q + ... 0

iiii

Line of Best Fit - Average Weight

OLS Regression Results Out[51]: R-squared: 0.322 Dep. Variable: У OLS Model: Adj. R-squared: 0.301 Method: Least Squares F-statistic: 15.66 Wed, 22 Dec 2021 Prob (F-statistic): 0.000380 Time: 17:25:12 Log-Likelihood: -55.836 No. Observations: 35 AIC: 115.7

Df Residuals: 33 BIC: 118.8

Df Model: 1

nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 388.9011
 80.258
 4.846
 0.000
 225.616
 552.186

 x1
 -96.4440
 24.370
 -3.957
 0.000
 -146.026
 -46.862

Omnibus: 3.255 Durbin-Watson: 0.894

Prob(Omnibus): 0.196 Jarque-Bera (JB): 2.071

Skew: 0.556 **Prob(JB):** 0.355

Kurtosis: 3.426 **Cond. No.** 1.39e+03

Notes:

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [52]:
    results = px.get_trendline_results(fig)
    results.px_fit_results.iloc[0].summary()
```

Out[52]: OLS Regression Results

Dep. Variable: y **R-squared:** 0.322

Model: OLS Adj. R-squared: 0.301

Method: Least Squares F-statistic: 15.66

Date: Wed, 22 Dec 2021 **Prob (F-statistic):** 0.000380

Time: 17:25:12 **Log-Likelihood:** -55.836

No. Observations: 35 AIC: 115.7

Df Residuals: 33 **BIC:** 118.8

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 388.9011
 80.258
 4.846
 0.000
 225.616
 552.186

 x1
 -96.4440
 24.370
 -3.957
 0.000
 -146.026
 -46.862

Omnibus: 3.255 Durbin-Watson: 0.894

Prob(Omnibus): 0.196 Jarque-Bera (JB): 2.071

 Skew:
 0.556
 Prob(JB):
 0.355

 Kurtosis:
 3.426
 Cond. No.
 1.39e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.

5-point moving average - Average Height

5-point moving average - Average Weight

Exponentially-weighted moving average of Average Height (halflife of 2 |

Exponentially-weighted moving average of Average Weight (halflife of 2

ilii

Average Height Over Time by Medal Winner

Average Weight Over Time by Medal Winner

It does appear after looking at many variations of trend lines for both height and weight over time and medal winners whether it be gold silver or bronze. That having a higher Heights and larger weight definitely leads to more success in winning a medal. Of course I'm sure there is outliers if I was to break this down by event I'm sure gymnasts probably need to be on the smaller side while weightlifters and those kids. And field competitions benefit from a height and weight.

Conclusion

After going through this analysis I was able to both prove my hypothesis true. The last two about weight and height we're quite accurate and even the one regarding the season and which part of the world would win primarily the the North in the Winter. Also per capita smaller countires do tend to when more medals than larger ones like China, USA, Etc.

Honestly could probably go through a million other questions I have at the moment but I will save that for later like breaking it down amongst events in who excels in which events weather certain countries excel at certain events we're certain demographics to. There is an endless amounts of analysis to be found in this data.

I look forward to exploring it some more.