1. Définitions Générales

 \triangle

Une **équation différentielle scalaire d'ordre** p est une équation de la forme :

$$F(t, y, y', \cdots, y^{(p)}) = 0 \qquad (S)$$

où $F:\mathbb{R} imes\mathbb{K}^{p+1} o\mathbb{K}$ est donnée. L'inconnue est une fonction $y:\mathbb{R} o\mathbb{K}$ p fois dérivable. Cette équation est "résolue" en la dérivée p-ième si elle peut se réécrire sous la forme :

$$y^{(p)}=G(t,y,y',\cdots,y^{(p-1)})$$

Une **équation différentielle linéaire scalaire d'ordre** $\,p\,$ est de la forme :

$$\sum_{k=0}^p lpha_k(t) y^{(k)}(t) = eta(t)$$

La linéarité entraîne que l'espace des solutions, s'il n'est pas vide, est un espace affine dirigé par l'ensemble des solutions de l'équation homogène associée.

2. Résolution des équations différentielles linéaires à coefficients constants : cas simple

$$(E) \qquad lpha_p y^{(p)} + \cdots + lpha_0 y = eta, \ \ lpha_i \in \mathbb{K}$$

Le polynôme caractéristique de $\ (E)$ est :

$$P = \alpha_p X^p + \dots + \alpha_0$$

Si $P(\lambda)=0$, alors $\,e^{\lambda t}\,$ est solution de l'équation homogène associée :

$$\sum_{k=0}^p lpha_k (e^{\lambda t})^{(k)} = e^{\lambda t} \sum_{k=0}^p lpha_k \lambda^k = e^{\lambda t} P(\lambda) = 0$$

Si P n'a que des racines simples $\lambda_1,\cdots,\lambda_p$ alors les fonctions $(e^{\lambda_k t})$ forment une base de l'espace vectoriel des solutions homogènes sur \mathbb{R} , c'est-à-dire pour $t\in\mathbb{R}$.

La base est réelle si les λ_k sont tous réels, complexe dans tous les cas. Si P est à coefficients réels et $\lambda=a+ib\in\mathbb{C}\setminus\mathbb{R}$ est racine, alors $\bar{\lambda}$ est aussi racine. Les solutions réelles correspondantes seront alors $f(t)=e^{at}\cos(bt)$ et $g(t)=e^{at}\sin(bt)$ car $\mathrm{Vect}(f,g)=\mathrm{Vect}(e^{\lambda t},e^{\bar{\lambda}t})$ en tant que \mathbb{C} -ev .

On suppose que $\beta=\gamma e^{\mu t},\ \gamma,\mu\in\mathbb{K}$ et que $P(\mu)\neq 0$. Dans ce cas, il existe alors une solution particulière de (E) $s=\theta e^{\mu t}$:

$$\theta e^{\mu t} P(\mu) = \gamma e^{\mu t} \iff \theta = \frac{\gamma}{P(\mu)}$$

3. Résolution des équations différentielles linéaires à coefficients constants : cas compliqué

A partir d'un polynôme P quelconque, on définit l'opérateur différentiel :

$$P\left(\frac{d}{dt}\right) = \sum_{k=0}^{p} \alpha_k \frac{d^k}{dt^k}$$

D'où

$$(E) \iff P\left(\frac{d}{dt}\right)(y) = \beta$$

Si P et Q sont deux polynômes, alors $P\left(\frac{d}{dt}\right)\circ Q\left(\frac{d}{dt}\right)=(P\circ Q)\left(\frac{d}{dt}\right)$

On s'intéresse dans un premier temps à $\,Q(X)=(X-\lambda)\,$ et à $\,y=t^qe^{\mu t},\,\,\,q\geq 1\,$.

$$\mathcal{L}$$

$$Q\left(rac{d}{dt}
ight)(t^qe^{\mu t})=\left(rac{d}{dt}-\lambda
ight)(t^qe^{\mu t})=e^{\mu t}(qt^{q-1}+(\mu-\lambda)t^q)$$

Pour $\,\mu=\lambda\,$, on trouve alors simplement $\,e^{\mu t}qt^{q-1}\,$. Pour $\,\mu
eq\lambda\,$, le résultat est un polynôme de même degré que $\,t^q\,$.

Si $\,\lambda\,$ est racine de $\,P\,$ de multiplicité $\,k\,$, et si $\,R\,$ est un polynôme de degré $\,l,\,$ alors

$$P\left(\frac{d}{dt}\right)(R(t)e^{\lambda t}) = 0$$

dans le cas où $\,l-k<0\,$. Sinon, le résultat est de la forme $\,S(t)e^{\lambda t}\,$ avec $\,\deg(S)=l-k\,$.

 $P = T(X)(X - \lambda)^k$ avec $T(\lambda) \neq 0$. Donc :

$$P\left(\frac{d}{dt}\right) = T\left(\frac{d}{dt}\right) \circ \left(\frac{d}{dt} - \lambda\right)^k$$

D'après le **lemme**, $\left(\frac{d}{dt} - \lambda\right)(Re^{\lambda t}) = Ue^{\lambda t}$ avec $\deg(U) = \deg(R) - 1$. Par récurrence : $\left(\frac{d}{dt} - \lambda\right)^k(Re^{\lambda t}) = Ve^{\lambda t}$ avec $\deg(V) = \max(0, \deg(R) - k) = \max(0, l - k)$. D'où

$$P\left(rac{d}{dt}
ight)(Re^{\lambda t})=T\left(rac{d}{dt}
ight)(Ve^{\lambda t})=Se^{\lambda t}$$

et comme $T(\lambda) \neq 0$, $\deg(S) = \deg(V) = \max(0, l - k)$.

Résolution de l'équation homogène :

P admet s racines $\lambda_1,\cdots,\lambda_s$ $\in \mathbb{C}$ de multiplicités respectives $m_1,\cdots,m_s, \ \sum\limits_{i=1}^s m_i=\deg P$.

Une base complexe des solutions homogènes sur $t{\in}\mathbb{R}$ est alors :

$$igcup_{i=1}^s \left(igcup_{j=1}^{m_i} t^j e^{\lambda_i t}
ight) = (e^{\lambda_1 t}, te^{\lambda_1 t}, \cdots, t^{m_1} e^{\lambda_1 t}, e^{\lambda_2 t}, \ldots)$$

Ici, chaque élément de la famille correspond aux hypothèses du corollaire dans le cas où $\,l-k<0\,$.

4. Second Membre Particulier

On s'intéressera à des seconds membres de la forme $\,Q(t)e^{\mu t}\,$.

 $m{i}$ Toute combinaison linéaire $\sum Q_i e^{\mu_i t}$ peut être traitée par la même technique, par le principe de superposition :

$$\left\{egin{array}{ll} P\left(rac{d}{dt}
ight)(\hat{y}_1) &=eta_1 \ P\left(rac{d}{dt}
ight)(\hat{y}_2) &=eta_2 \end{array}
ight. \implies P\left(rac{d}{dt}
ight)(a\hat{y}_1+z\hat{y}_2) = aeta_1+zeta_2, \ a,z\in\mathbb{K} \end{array}$$

Si μ n'est pas racine de P, il existe une solution particulière $\hat{y}=R(t)e^{\mu t}$ avec $\deg(R)=\deg(Q)$. Si μ est racine de P de multiplicité k, il existe une solution particulière $\hat{y}=R(t)e^{\mu t}\cdot t^k$ avec $\deg(R)=\deg(Q)$.

En ajoutant le facteur t^k , on s'assure en effet que l'image de \hat{y} par $P\left(\frac{d}{dt}\right) = T\left(\frac{d}{dt}\right) \circ \left(\frac{d}{dt} - \mu\right)^k$ sera $e^{\mu t}$ facteur d'un polynôme de même degré que R, donc de même degré que Q.

Méthode pratique : On résoud l'injection des coefficients inconnus de R dans (E) et on identifie avec les coefficients du second membre, c'est-à-dire avec ceux de Q, le facteur $e^{\mu t}$ se simplifiant des deux côtés.