Основные принципы и понятия

Операционные системы

Процессы

Процесс это...

- Адресное пространство с уникальной виртуальной памятью (x86: CR3, arm: TTBR0, TTBR1)
- Один или несколько потоков исполнения
- В непривилегированном контексте процессора (x86: ring 3, arm: User)
- С стандартизированным интерфейсом в ядро (x86: syscall/sysenter/int, arm: svc)
- С собственным списком ресурсов (файлы, handles, etc.)
- Уникальный (рециклируемый) идентификатор pid

Адресное пространство

Virtual address space

Physical address space

Адресное пространство, трансляция

Поток исполнения

Single Process P with single thread

Single Process P with three threads

Системный вызов, syscall

Сигналы, синхронные и асинхронные

[>kill -l							
1)	SIGHUP	2)	SIGINT	3)	SIGQUIT	4)	SIGILL
5)	SIGTRAP	6)	SIGABRT	7)	SIGEMT	8)	SIGFPE
9)	SIGKILL	10)	SIGBUS	11)	SIGSEGV	12)	SIGSYS
13)	SIGPIPE	14)	SIGALRM	15)	SIGTERM	16)	SIGURG
17)	SIGSTOP	18)	SIGTSTP	19)	SIGCONT	20)	SIGCHLD
21)	SIGTTIN	22)	SIGTTOU	23)	SIGIO	24)	SIGXCPU
25)	SIGXFSZ	26)	SIGVTALRM	27)	SIGPROF	28)	SIGWINCH
29)	SIGINFO	30)	SIGUSR1	31)	SIGUSR2		

Ресурсы, файлы

Освобождение ресурсов

- Любое завершение процесса (exit syscall, fatal sync or async signal)
- Вся работа по освобождению ресурсов в ядре
- Освобождаются
 - память
 - файловые дескрипторы (файлы, советы)
 - семафоры
- Не освобождаются:
 - разделяемая память (shmget(2))
 - код выхода (wait(2)), процессы-зомби

fork(2) и exec(2)

posix_spawn(2)

Организация памяти процесса

SMP, NUMA

Планировщик

Global task queue

Алгоритмы планировщика *

^{*} HTTPS://OPENSOURCE.COM/ARTICLE/19/2/FAIR-SCHEDULING-LINUX

Настройка планировщика

- Приоритеты процессов/потоков
- Группы планирования
- Вычислительно-интенсивные и Ю-ориентированные процессы
- Process affinity и кеши
- Процессы реального времени и sched_setscheduler(2)
- Потенциальные проблемы: starvation, priority inversion

«To the optimist, the glass is half full. To the pessimist, the glass is half empty. To the engineer, the glass is twice as big as it needs to be.»

Anonymous