情感分类实验报告

仲嘉暄 计35 2023010812

Honor Code和项目介绍在最后。

结构和流程

RNN-LSTM结构

- 首先通过和 CNN 一样的 embedding 层。
- 然后经过循环层 1stm(x),输入大小为词向量长度,设置隐藏层的大小、层数、dropout,设置双向 LSTM。 取本层输出的隐藏状态,取 LSTM 最后一层正反的输出,拼接起来。
- 然后是两层全连接,中间用 relu 函数和 dropout 两个操作。它们把 2 * hidden_size 也就是拼接起来之后 的长度映射到某个 internal ,再映射到 2 输出。

● 总结构:输入→嵌入层→循环层→全连接层1→全连接层2→输出。

RNN-GRU结构

• 和 LSTM 相比, GRU 仅在取循环层输出的隐藏状态有微小差别,不再赘述。下面两幅图前者是 LSTM ,后者则 是 GRU 。

CNN结构

- 首先通过 embedding 层, embedding 层将每个词索引 (整数) 翻译成一个词向量 (数组)。
- 然后,经过适当变形,通过卷积层。卷积层包含 len(filter_sizes) 个 1 通道输入、num_filters 通道输出,每个滤波器 的大小为 filter_height * embedding_dim,也就是 同时卷积词数 * 词向量长度,即论文所说的 $w \in \mathbb{R}^{hk}$ 。每个 filter_sizes 对应数组里一个 batch_size * num_filters * (aligned_length filter_height + 1) 的输出组,也就是每个句子、每个滤波器都输出一个 aligned_length filter_height + 1 长度(即 $\mathbf{c} = [c_1, c_2, \ldots, c_{n-h+1}]$)的特征图,特征图是一维数组。
- 然后进行最大特征池化,在每个输出组的第三维,也就是取每个 \mathbb{R}^{n-h+1} 的最大值。此时输出的是 $|\text{len(filter_sizes)}|$ $|\text{batch_size}|$ * num_filters 的张量。
- 将它们拼接起来,每个句子长度变成 num_filters * len(filter_sizes) ,经过 dropout ,和 num_filters * len(filter_sizes) 输入、2 输出的全连接层。

● 总结构:输入→嵌入层→卷积层→池化层→全连接层→输出。

MLP (baseline) 结构

- 先通过 embedding 层。
- 全连接层先把 embedding_dim 长度的向量映射到 hidden_size 长度上,然后经过 relu ,对每个句子的各个 词做最大池化,dropout ,最后全连接把 hidden_size 输入映射到 2 输出。
- 总结构:输入→嵌入层→全连接层1→池化层→全连接层2→输出。

流程

- 先 parser_data ,设置所有相关参数配置 config ,并构建模型,将相关的参数和模型返回主文件。在生成配置的时候同时调取 wiki_word2vec_50.bin 的词向量存起来,这样直接通过配置传入嵌入层即可。
- 再 getDataloader 取得 train、val、test 的 dataloader,即先从语料取得——对应的句子数组和标签数组,每个句子对应一个情感标签。然后将二者做成数据集,数据集打乱、多线程生成加载器。
- 设置交叉熵函数、优化器、学习率调度器,优化器权值衰减来对应论文中的 l_2 范数约束。
- 在每个 epoch ,先后进行 train() 训练、用验证集和测试集的加载器进行 evaluate() 测试。
- 训练时进入循环,对每批数据,调用优化器、损失函数进行梯度清零、反向传播和参数更新等。同时计算本批总数和正确数和本批损失,把实际标签和预测标签附加在某列表后面。最后跳出循环计算平均损失、总准确率、使用调度器、计算f1.
- 评估的 evaluate() 的区别是,在 with torch.no_grad() 条件下,不再进行梯度清零、反向传播和参数更新,跳出循环之后也不使用学习率调度器。

实验效果

已知最好的实验效果来源于 os.system("python main.py -lr 2e-3 -e 1 -a 80 -b 20 -hs 64 -d 0.2 -f 128 -u"),也就是学习率 2×10^3 ,epoch=1 ,句子对齐到 80 长度,一批训练 20 个,使用卷积神经网络,丢弃率 0.2,滤波器 120 个,允许更新词向量。其结果为

Train Loss: 0.2046, Train Acc: 0.9190, Train F1: 0.9189

Val Loss: 0.3877, Val Acc: 0.8449, Val F1: 0.8534 Test Loss: 0.3307, Test Acc: 0.8726, Test F1: 0.8798

这里的损失较低,准确率很高,达到近似 $Acc \ge 85$ 。 F1 很高,说明没有盲猜的情况。

如果增加 epoch ,可以发现验证集和测试集的 loss 急剧上升到接近甚至超过 1,这是因为允许根据训练集修改词向量,导致参数极其接近训练集情况(训练集准确率在第 8 个 epoch 甚至能达到 1,即全对),但验证和测试集准确率却会下降,造成了过拟合。

调参(主要是CNN模型)

句子对齐长度:

align	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
20	0.8856	0.8850	0.7563	0.7600	0.7534	0.7507
50	0.9169	0.9169	0.8112	0.8168	0.8130	0.8150
80	0.9155	0.9153	0.8218	0.8228	0.8266	0.8202
120	0.9176	0.9175	0.8158	0.8146	0.8347	0.8291
150	0.9176	0.9176	0.8207	0.8201	0.8266	0.8222

可见截取 50-80 就已经足够表达句意了,过长反而会引入噪声。

批大小

batch	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
20	0.9406	0.9406	0.8192	0.8175	0.8293	0.8264
35	0.9293	0.9292	0.8223	0.8197	0.8211	0.8146
50	0.9158	0.9157	0.8172	0.8174	0.8293	0.8255
65	0.9078	0.9076	0.8188	0.8135	0.8211	0.8081
80	0.8969	0.8969	0.8190	0.8211	0.8374	0.8324

可见批大小还是小一点好。过大可能影响参数更新,参考本文。

丢弃率

dropout	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
0.1	0.9508	0.9508	0.8186	0.8186	0.8157	0.8152
0.2	0.9313	0.9313	0.8161	0.8194	0.8428	0.8415
0.3	0.9148	0.9146	0.8160	0.8105	0.8266	0.8161
0.4	0.9026	0.9025	0.8138	0.8110	0.8157	0.8090
0.5	0.8797	0.8796	0.8140	0.8156	0.8266	0.8242

丢弃率过小则测试集表现不佳,出现过拟合或过参数化,丢弃率过大则整体表现不佳。0.2 的时候比较合适。

epoch

epoch	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
3	0.8222	0.8224	0.8010	0.7863	0.7886	0.7636
5	0.8666	0.8665	0.8135	0.8036	0.8022	0.7834
10	0.9117	0.9114	0.8193	0.8167	0.8211	0.8125
15	0.9194	0.9192	0.8186	0.8176	0.8266	0.8192
20	0.9256	0.9256	0.8160	0.8162	0.8455	0.8403

随着训练量增大,训练集准确率上升,但验证集准确率反而下降,出现过拟合。

卷积核个数

filter	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
16	0.8490	0.8485	0.8026	0.8072	0.8022	0.8032
32	0.8814	0.8813	0.8092	0.8085	0.8103	0.8034
64	0.9127	0.9127	0.8181	0.8184	0.8320	0.8278
96	0.9379	0.9378	0.8167	0.8082	0.8266	0.8150
128	0.9521	0.9521	0.8202	0.8219	0.8428	0.8415

很明显,卷积核多多益善。

隐藏层大小(仅限RNN)

hidden	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
32	0.8144	0.8161	0.8028	0.8021	0.8103	0.8011
64	0.8318	0.8331	0.8119	0.8173	0.8293	0.8293
96	0.8241	0.8265	0.8046	0.8146	0.8266	0.8298
128	0.8120	0.8131	0.7991	0.8069	0.8211	0.8263
160	0.8300	0.8320	0.8072	0.8027	0.8211	0.8125

这个大小在 64 时比较好,并不是越复杂就越好的。

隐藏层数(仅限RNN)

layer	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
1	0.8204	0.8224	0.8069	0.8095	0.8266	0.8202
2	0.8270	0.8283	0.8042	0.8045	0.8320	0.8268
3	0.5000	0.6667	0.4996	0.6663	0.5068	0.6727

隐藏层数的复杂化没什么用,只会大大拖慢训练时间,设置成 2 即可。

学习率

rate	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
0.0001	0.7846	0.7863	0.7731	0.7739	0.7778	0.7670
0.0005	0.8721	0.8722	0.8099	0.8083	0.8184	0.8102
0.001	0.9208	0.9206	0.8184	0.8206	0.8293	0.8274

rate	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
0.002	0.9391	0.9393	0.8238	0.8224	0.8238	0.8189
0.005	0.9043	0.9041	0.8128	0.8069	0.8211	0.8125
0.01	0.8778	0.8778	0.8030	0.8017	0.8157	0.8090
0.1	0.6619	0.6332	0.7280	0.7119	0.7507	0.7294

经过多次尝试,选择学习率为0.002。其表现明显优于其他学习率。

是否更新词向量

update	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
False	0.9206	0.9206	0.8140	0.8167	0.8103	0.8098
True	0.9991	0.9991	0.8506	0.8519	0.8347	0.8365

看起来更新词向量后,在验证和测试集也有一定优势,可能由于语料库里影评、商品评价之类内容之间有共性,和 wiki的有一点微小的区别。

internal (仅限RNN)

修改中间层维度为64,迅速过拟合,无实际应用价值。

模型

model	Train Acc	Train F1	Val Acc	Val F1	Test Acc	Test F1
CNN	0.9158	0.9155	0.8192	0.8189	0.8211	0.8167
RNN_LSTM	0.8267	0.8290	0.8108	0.8156	0.8320	0.8297
RNN_GRU	0.8512	0.8522	0.8215	0.8252	0.8482	0.8495
MLP	0.8296	0.8288	0.8193	0.8182	0.8103	0.8066

CNN 的训练准确率显著高于其他,但在验证、测试集上却没有什么特殊优势,过于"柔软",影响了其泛化能力。循环神经网络在验证和测试集上普遍表现更好,尤其是 RNN_GRU 双料第一,说明 RNN 在实际应用中更能够学到句子的情感特征。

baseline 模型 MLP 结构简单,就是单纯的全连接+ relu + dropout ,效果虽然不如 CNN 和 RNN ,但相差不多。后续实验表明,如果不用 dropout , MLP 会在第 2 个 epoch 之后迅速进入过拟合状态,说明这些优化对 MLP 也很重要。

可以看到,F1 分数和准确率相差不大,表明这几个模型类别均衡做的不错,不存在由于类别不均导致的盲猜现象。综上所述,CNN 、RNN 与 baseline 相比都有优化,CNN 在准确率提高之外,训练速度也大大提升了(大约 CNN 4s/epoch,RNN 20s/epoch,MLP 10s/epoch)。但是,baseline 仍有一个较高的正确率,这是两层全连接带来的足够复杂性导致的。综合考虑准确率和训练速度,CNN 的优势比较大。但如果对正确率非常敏感,建议采用 RNN,尤其是 GRU。

问题思考

停止训练问题

我认为,等到在验证集、测试集上的准确率不再上升就可以停止了,而在我代码中实现的是为了方便起见的固定长度 epoch=10。固定长度的好处是,简单易实现,可以根据 epoch 推进输出的准确率和损失来人工决定最佳epoch; 缺点则是可能导致训练不足,重新训练就要白费功夫,而如果训练过多的话,既导致过拟合,也浪费时间,尤其对于一个 epoch 比本实验久的多的超大规模参数模型,epoch 过多的影响会更加巨大。通过验证集调整,也就是若干轮损失不减少、验证集准确率不增加就停止的好处是,这种方法是结果导向的停止方法,所以很可能会达到一个最优、至少局部最优的结果然后自适应地停止,保证充足而不过多的训练。但其缺点是,需要验证集大小够大以减小随机性,并且需要额外的代码实现。最重要的问题就是怎么设定一个停止条件,是简单的连续固定长度 epoch 损失不下降就停止,还是用一个复杂函数处理损失、准确率乃至 F1 score? 我认为早停法已经足够了。当然,应该对波动有一定认识,也就是如果连续几个 epoch 的损失下降在某个很小的数以内就停止。如果这么实现,我认为,在工程实践上,根据验证集停止训练是更好的。

参数初始化

查询原码发现,Conv2d 和 Linear 使用的是 kaiming 初始化,LSTM 和 GRU 使用的是 pytorch 自己对 RNN 进行的 $U(-\frac{1}{\sqrt{hiddensize}},\frac{1}{\sqrt{hiddensize}})$ 初始化。

- 零均值初始化是将参数初始化为均值为 0 的随机分布(如均匀分布或高斯分布)。但如果所有参数初始化为完全相同的值(如全零),会导致梯度消失。通常用于简单的模型或作为其他初始化方法的基础。
- 高斯分布初始化是从 $N(\mu, \sigma^2)$ 随机采样作为参数,相对于全零初始化,参数的随机性有助于打破对称性,避免神经元的输出完全相同。但是,方差过大或过小都可能导致梯度消失。方差过大,很大的输入使函数值接近 0 和 1 而梯度消失;方差过小,深层网络可能因权重值过越来越小导致梯度消失。适合深度较浅的网络或小型模型。
- 正交初始化是将权重初始化为正交矩阵。通过对某个高斯随机矩阵进行QR分解后,得到Q矩阵实现。通过保输入向量和梯度向量的范数,避免了梯度消失或梯度爆炸的问题。因此,适合深度很深的网络和循环神经网络。
- Xavier 初始化:由于神经网络的输入输出 $y=f(w_1x_1+w_2x_2+\ldots+w_ix_i+b)$,考虑激活函数 f 线性或近似线性、偏置 b=0,由权值、输入的独立性, $\mathrm{Var}(y)=n\mathrm{Var}(w_1)\mathrm{Var}(x_1)$ 。为了保 y 和 x 的方差不变,需要 $\mathrm{Var}(w_1)=\frac{1}{n}$ 。考虑前向和反向, $\mathrm{Var}(w_1)=\frac{2}{n_{in}+n_{out}}$ 。那么, $W\sim U\left(-\sqrt{\frac{6}{n_{in}+n_{out}}},\sqrt{\frac{6}{n_{in}+n_{out}}}\right)$ 或 $W\sim N\left(0,\frac{2}{n_{in}+n_{out}}\right)$ 。适用于近似线性的激活函数,浅层网络或激活函数非线性较弱的深层网络。
- Kaiming 初始化专门针对 ReLU 做了改进。由于 ReLU,上一层的输入有一半都是 0, $\mathrm{Var}(y)=rac{1}{2}n\mathrm{Var}(w_i)\mathrm{Var}(x_i)$ 所以 $\mathrm{Var}(w_i)=rac{2}{n}$,将上面的改成 $W\sim U\left(-\sqrt{rac{6}{n}},\sqrt{rac{6}{n}}
 ight)$ 或 $W\sim N\left(0,rac{2}{n}
 ight)$ 。适用于含有 ReLU 的深层神经网络。

防止过拟合

- 数据层面-数据增强:打乱数据,增加数据量,训练的模型会更接近实际情况。
- 权重层面-正则化:进行 l_2 正则化权重衰减,避免模型参数过大,学到噪声。
- 模型层面-dropout: 丢弃一部分神经元,防止神经元过度协同。
- 训练层面-早停:验证集的性能不再提升时停止训练。

模型优缺点

- 1. CNN
- 优点:
 - o CNN 通过卷积操作提取局部特征,发现局部相关性。
 - o 卷积核共享参数,显著减少了模型的参数数量。
 - 由于参数较少,以及可以并行计算,训练速度快于 RNN 和 MLP。
- 缺点:
 - o 无法捕捉长距离依赖。
 - 。 卷积核大小限制,可能丢失语义信息。
- 2. RNN
- 优点:
 - o RNN 通过循环结构能够记忆上下文。
 - o RNN 输入可变长度。
 - o RNN 可以保留一定顺序信息。
- 缺点:
 - 。 循环结构导致训练时间较长,难以并行化。
 - 相当于很深很深的网络,容易发生梯度消失或梯度爆炸。
- 3. MLP
- 优点:
 - o 结构简单,易于实现和理解。
 - 。 可并行计算或者利用矩阵计算提高效率。
- 缺点:
 - 每一层的神经元与上一层的所有神经元相连,参数量大,易过拟合。
 - 无法捕捉局部特征和序列信息,表达能力差。

心得体会

在这次实验中,我通过AI学习法,并结合学长代码仓库,从头开始、动手实践,了解了如何调库搭建起一个自己的模型,以及模型训练与评价所需的标准、调度器、优化器及其操作,了解了大量有关神经网络的知识,比如如何规避过拟合、如何进行初始化等等。但最重要的还是自己学习的能力,在拿到代码仓库之后,如何利用互联网资源和AI把前人代码吃透,如何从论文中获得必要信息并检查是否实现一致(比如,前人的CNN代码似乎没有像论文要求的那样进行 l_2 正则化?),等一系列科研、工作中都需要的能力。同时,要感谢前人代码,让我少走了无数弯路,比如把参数全都初始化为0而造成梯度消失等等。总之,在自己动手操作下,课上据说很厉害的那些神经网络也就发挥了实力,才真正落到实处,有了真实感。在实际过程中,有和理论很一致的,比如RNN对序列信息的处理、CNN并行计算带来的高效,也有和我上完课之后想象不一样的,比如不同的模型之间的差别也就两三个点,并没有每种模型对任务远超其他模型的感觉(当然,有可能是因为优化过了)。我还认识到了参数的重要性,参数带来的影响比模型不同的影响大多了。虽说调参如炼丹,但还是应该用理智和科学先算一遍,因为测试不同参数的模型真的太耗时耗电了。还有,我的工程能力也提高了,主要是通过把学长代码拆的更加细碎,捋清了项目脉络,有的一个文件就一个函数,非常专用。这样,耦合度就大大降低了,爽!

其他

Honor Code

我参阅了<u>赵晨阳学长的代码</u>和<u>熊泽恩学长的代码</u>,还使用了copilot、deepseek、豆包、元宝deepseek等多种大模型,Xavier和Kaiming初始化相关信息看了<u>csdn-Xavier参数初始化方法和Kaiming参数初始化方法详细介绍及其原理</u>详解。

项目介绍

log: 调参过程的日志文件。

config.py:输入参数,初始化配置。dataloader.py:创建数据装载器。

load.py:从语料库里获得一切词语,安排索引,把索引、词语、词向量联系起来。

log2md.py:通过正则表达式把log文件转换成markdown表格的脚本,与项目无关,只用来写报告。

main.py: 主逻辑,进行训练和测试。

models.py: 实现四种神经网络,继承nn.Module。

pipeline.py: 训练的时候一键运行批量训练测试不同参数的模型。