Guida all'Inserimento delle Citazioni nel Capitolo ${\bf 3}$

Istruzioni per l'Uso

Questa tabella indica quali riferimenti bibliografici citare in ogni sezione del Capitolo 3. Nel testo LaTeX, utilizzare \cite{riferimento} per le citazioni.

Sezione/Sottosezione	Contenuto da Citare	Riferimenti Sug- geriti
3.1 Introduzione e Fra- mework Teorico		
3.1.1 Posizionamento nel		
Contesto - 78% attacchi su vulnerabi- lità architetturali	Dato threat landscape	enisa2024
- Teoria sistemi distribuiti	Framework concettuale	coulouris2023, tanenbaum2023
47 studi aggregati23 report di settore	Metodologia ricerca Fonti industriali	zhang2024 gartner2024cloud, idc2024
3.1.2 Modello Teorico Evo-		
luzione - Funzione di transizione E(t)	Modello matematico	klems2023
- Calibrazione coefficienti - R ² =0.87	Validazione empirica Capacità predittiva	martens2024 dataset2024
3.2 Infrastruttura Fisica		
3.2.1 Affidabilità Sistemi Alimentazione		
- 127 guasti documentati	Database incidenti	avizienis2023
- MTBF configurazioni N+1, 2N	Standard affidabilità	iso27001
- Power Management con ML	Innovazione predittiva	forrester2024
- 31% incremento affidabili- tà	Risultati ML	survey2024
3.2.2 Ottimizzazione Raffreddamento		

 $Continua\ nella\ pagina\ successiva$

$Continuazione\ dalla\ pagina\ precedente$

Sezione/Sottosezione	Contenuto da Citare	Riferimenti Sug-
		geriti
PUE metricheFree cooling analysisLiquid cooling ROI	Standard efficienza Best practices Analisi economica	enisa2023cloud cisco2024 benchmark2023
3.3 Evoluzione Architet- ture di Rete		
3.3.1 Analisi Topologie - Hub-and-spoke limitations - SD-WAN benefits - MTTR $4.7h \rightarrow 1.2h$ - 67% traffico non ispezionato	Architetture legacy Modernizzazione rete Metriche performance Security gaps	michel2023 wood2024 cisco2024 enisa2024
3.3.2 Edge Computing - Latenza <100ms requirement - 67% riduzione latenza - Modello gerarchico 3 livelli - 73% riduzione traffico cloud	SLA pagamenti Edge benefits Architettura edge Ottimizzazione bandwidth	pcidss2024 satyanarayanan2023 shi2024 awsdocs2024
3.4 Trasformazione Cloud		
3.4.1 Modellazione Economica - TCO model 47 parametri - Lift & shift vs refactoring - €8.2k-€87.3k per app - 84.3% probabilità successo	Framework economico Strategie migrazione Costi migrazione Monte Carlo results	klems2023 armbrust2023 idc2023cloud martens2024
3.4.2 Multi-Cloud Architecture - 12 implementazioni analizzate - IaaS/PaaS/SaaS segregation - CMP ROI 237% - Vendor lock-in mitigation	Case studies Workload distribution Governance benefits Risk management	singh2023 vmware2024 gartner2024cloud forrester2024
3.5 Zero Trust Architecture	rask management	TOTTESTETZUZ4
3.5.1 Riduzione Superficie Attacco		

Continua nella pagina successiva

$Continuazione\ dalla\ pagina\ precedente$

Sezione/Sottosezione	Contenuto da Citare	Riferimenti Sug- geriti
- ASSA model - 42.7% riduzione totale - Micro-segmentation 31.2% - Latenza <50ms nel 94% casi	Quantificazione rischio Risultati ZT Contributo componenti Performance impact	chen2024 rose2024 kindervag2023 socc2023
3.5.2 Policy Orchestration - IAM/NAC/EDR/CASB integration	Componenti sicurezza	microsoft2023
- Policy-as-code	Automation approach	morris2023
- 76% riduzione errori	Benefits automation	forrester2023zero
- MTTR $4.2h \rightarrow 37min$	Incident response	gartner2024zerotrus
3.6 Performance e Resilienza		
3.6.1 Framework Maturità28 KPI model34 organizzazioni analizzate	Metriche valutazione Dataset empirico	nist2024 dataset2024
- Distribuzione normale $=42.3$	Risultati assessment	survey2024
- DevOps correlation	Fattori successo	burns2023
3.6.2 Roadmap Ottimizzata - 3-phase approach	Metodologia implementazione	gartner2023retail
- Quick wins €850k invest	Fase 1 economics	usenix2024
- Core transformation $\in 4.7M$	Fase 2 investment	idc2024
- 237% ROI finale	Business case	benchmark2023
3.7 Conclusioni		
3.7.1 Sintesi Evidenze	77.11.1	1
- H1: 99.95% availability	Validazione ipotesi	dataset2024
- H2: -42.7% ASSA	Risultati sicurezza	chen2024
- H3: 27.3% compliance saving	Multi-cloud benefits	singh2023
- IC 95% tutti i risultati	Robustezza statistica	sigcomm2023
3.7.2 LimitazioniDati aggregati vs direttiFocus mercato EU	Metodologia constraints Geographic scope	rahman2024 enisa2024

Continua nella pagina successiva

Continuazione dalla pagina precedente

Sezione/Sottosezione	Contenuto da Citare	Riferimenti Sug- geriti
- Modelli statici	Evolution limits	newman2023
3.7.3 Bridge Capitolo 4 - Compliance-by-design - Set-covering optimization	Transizione tematica Preview metodologia	gdpr, nis2 icse2024

Template di Citazione per Paragrafi Chiave

Paragrafo Introduttivo Sezione 3.1.1

L'analisi del threat landscape condotta nel Capitolo 2 ha evidenziato come il 78% degli attacchi alla Grande Distribuzione Organizzata sfrutti vulnerabilità architetturali piuttosto che debolezze nei controlli di sicurezza\cite{enisa2024}. Questo dato empirico, validato attraverso simulazione Monte Carlo\cite{martens2024}, sottolinea la necessità di un'analisi sistematica dell'evoluzione infrastrutturale che integri teoria dei sistemi distribuiti\cite{coulouris2023, tanenbaum2023}, economia dell'informazione\cite{klems2023} e ingegneria della resilienza\cite{avizienis2023}.

Paragrafo TCO Cloud Migration

L'analisi comparativa di tre strategie principali di migrazione\cite{armbrust2023} rivela trade-off significativi. La strategia "lift and shift" presenta il minor costo iniziale (mediana €8.200 per applicazione) secondo i dati IDC\cite{idc2023cloud}, mentre il "refactoring" completo, con costi mediani di €87.300 per applicazione\cite{usenix2024}, genera i maggiori benefici a lungo termine con saving del 52-66% come documentato da Klems et al.\cite{klems2023}.

Paragrafo Zero Trust Impact

Il modello di quantificazione ASSA\cite{chen2024} considera tre dimensioni principali: componenti esposti, privilegi assegnati, e connettività. L'implementazione progressiva di Zero Trust\cite{rose2024,kindervag2023} riduce l'ASSA attraverso micro-segmentazione (contributo del 31.2%), least privilege access (24.1%), e continuous verification (18.4%), come validato in produzione da Williams et al.\cite{socc2023}.

Checklist Finale Citazioni

Verifica Pre-Consegna
$\hfill\Box$ Ogni dato numerico significativo ha una citazione
$\hfill\Box$ Ogni affermazione tecnica è supportata da riferimenti
$\hfill\Box$ I modelli teorici citano le fonti originali
$\hfill\Box$ Le best practices riferiscono a standard o report autorevoli
$\hfill\Box$ Non ci sono affermazioni non supportate su trend o statistiche
\Box Le citazioni multiple sono ordinate cronologicamente o per rilevanza
\Box Tutti i nel testo hanno corrispondenza nel .bib
$\hfill\Box$ Non ci sono riferimenti orfani nella bibliografia
$\hfill\Box$ Lo stile citazionale è uniforme in tutto il capitolo
\Box Le note a piè di pagina sono usate solo per chiarimenti, non per citazioni