Benchmark Hill Climbing and Simulated Annealing exploring the minimum

Adrian-Valentin Panaintescu October 29, 2021

Abstract

Heuristic search refers to a search strategy that attempts to optimize the solution by iteratively improving the solution based on a given heuristic function or a cost measure. A heuristic search method does not always guarantee to find the optimal solution, but may instead find an acceptable solution within a reasonable amount of time and memory space. The most common methods includes hill climbing methods, the best-first search, the \mathbf{A}^* algorithm, simulated-annealing, and genetic algorithms.

1 Introduction

In this article we will describe how these algorithms: Hill Climbing best or first improvement and Simulated Annealing handle the problem of finding the minimum. The tests are perform using 4 specific mathematical functions:

- De Jong 1 function
- Schwefel's function
- Rastrigin's function
- Michalewicz's function

Testing for each function all three methods and varying with dimensions: 5, 10, 30. Also in the experiment we took into account the accuracy of the numbers and the size of its representation.

2 Motivation

In this experiment we will analyze how one method is better than another and in what circumstances. And to what extent it influences various parameters such as: dimension, method or precizion result and computation time.

3 Methods

As a mention, the start point is generating into a binary representation by generating $c \cdot n$ bits. That c represent minimal of bits used to represent o value and is computed in the beginning by:

$$f(a,b,p) = \lfloor \frac{\ln(10^p \cdot (b-a))}{\ln(2)} \rceil \tag{1}$$

where:

a =lower range limit of the domain

b = upper range limit of the domain

p = precision

A neighbor is recognized that the difference by binary representation is only a bit.

3.1 Hill Climbing First Improvement

In Hill Climbing technique, starting at the base of a hill, we walk upwards until we reach the top of the hill. In other words, we start with initial state and we keep improving the solution until its optimal. The improvement is made when you find an optimal neighbor.

As a mention, we start from a random point and we are looking through his neighbors and we move on to the first neighbor who is better.

3.2 Hill Climbing Best Improvement

Like Hill Climbing First Improvement, a gradient search is made only that it differs in the fact that all the neighbors are evaluated and the best is our jump.

3.3 Simulated Annealing

It is also a gradient search, only that the neighbors consider themselves a little closer step by step, so that approaching the optimal solution it will converge in the optimal.

4 Experimental

During the experiment each parameter configuration was run 30 times and taken in the minimum, minimum horse but especially the average together with the standard deviation.

The precision was 5 to maintain uniformity and facilitate comparison.

Hill Climbing has an 10000 internal iterations and Simulated Annealing run with start with temperature T=200 and accepted temperature $T\gtrsim 0.00001$ and the function for actualization:

$$f(T) = T \cdot s, s = 0.95$$

4.1 Functions

Using the following functions, we can argue that the search space is one that does not allow a greedy approach. These functions are characterized by the fact that they have several local optimal and plateau.

Figure 1: Rastrigin's Function

Figure 2: Schwefel's Function

Figure 3: De Jong 1 Function

Figure 4: Michalewicz's Function

4.1.1 De Jong 1

$$f(x) = \sum_{i=1}^{n} x_i^2, x_i \in [-5.12, 5.15]$$

4.1.2 Schwefel's

$$f(x) = \sum_{i=1}^{n} -x_i \cdot \sqrt{|x_i|}, x_i \in [-500, 500]$$

4.1.3 Rastrigin's

$$f(x) = A \cdot n + \sum_{i=1}^{n} x_i^2 - 10 \cdot \cos(2 \cdot \pi \cdot x_i), x_i \in [-5.12, 5.12], A = 10$$

4.1.4 Michalewicz's

$$f(x) = -\sum_{i=1}^{n} \sin(x_i) \cdot \left[\sin(\frac{i \cdot x_i^2}{\pi}) \right]^{2 \cdot m}, x_i \in [0, \pi], m = 10$$

5 Results

5.1 De Jong 1

Algorithm	Dim	Mean	Min	Max	Deviation	Time (s)
hc-first	10	0	9.76682e-07	9.76682e-07	8.47033e-22	2.08212
hc-best	10	0	2.51984e-05	0.000133805	2.30341e-05	0.812047
sa	10	0	9.76682e-07	9.76682e-07	8.47033e-22	2.04219
hc-first	15	0	1.46502e-06	1.46502e-06	6.35275e-22	3.8621
hc-best	15	0.00014	4.91271e-05	0.0016712	0.000103252	0.705516
sa	15	0	1.46502e-06	1.46502e-06	6.35275e-22	3.95299
hc-first	30	0	2.93004e-06	2.93004e-06	1.27055e-21	0.14188
hc-best	30	0.00019	8.10646e-05	0.000568624	5.19716e-05	0.915175
sa	30	0	2.93004e-06	2.93004e-06	1.27055e-21	8.16611

Figure 5: De Jong 1 results table

5.2 Schwefel's

Algorithm	Dim	Mean	Min	Max	Deviation	Time (s)
hc-first	10	-3073.32	-3684.07	-2624.63	193.153	2.63315
hc-best	10	-3959.01	-4189.83	-3637.51	122.819	0.691972
sa	10	-3319.24	-3680.93	-2730.96	221.817	2.6178
hc-first	15	-4679.9	-5291.33	-3963.48	243.603	4.70815
hc-best	15	-6027.99	-6284.12	-5654.59	118.773	0.709938
sa	15	-4980.69	-5510.63	-4239.05	288.24	4.67842
hc-first	30	-9342.27	-9988.14	-8395.22	294.608	14.0914
hc-best	30	-11937.5	-12347.7	-11407.5	175.155	1.00358
sa	30	-9888.68	-10835.3	-8710.03	419.934	14.3921

Figure 6: Schwefel's results table

5.3 Rastrigin's

Algorithm	Dim	Mean	Min	Max	Deviation	Time (s)
hc-first	10	23.8912	9.95389	40.9455	7.12647	1.6802
hc-best	10	13.2314	2.99668	26.3303	6.20286	0.584127
sa	10	20.7069	6.95289	38.183	5.5531	1.7013
hc-first	15	36.9367	18.8341	49.994	7.28582	3.00671
hc-best	15	15.7768	6.4644	27.418	4.98917	0.65536
sa	15	29.3345	15.6853	48.5941	7.20882	3.08207
hc-first	30	73.2062	40.4491	112.753	11.5703	8.68145
hc-best	30	35.0751	21.6035	54.4033	7.20532	0.899367
sa	30	56.7813	38.6183	75.9252	7.05237	8.7485

Figure 7: Rastrigin's results table

5.4 Michalewicz's

Algorithm	Dim	Mean	Min	Max	Deviation	Time (s)
hc-first	10	-7.3794	-8.82491	-4.40354	0.744486	2.46225
hc-best	10	-9.21779	-9.88988	-8.71383	0.284067	0.869014
sa	10	-8.10464	-9.21586	-6.86494	0.598839	2.4336
hc-first	15	-11.5333	-13.6796	-9.25147	0.920931	4.85392
hc-best	15	-14.0174	-14.648	-13.0156	0.348111	1.08516
hc-first	30	-22.1946	-24.4272	-18.7593	0.921606	16.4472
hc-best	30	-27.8643	-29.0349	-25.9075	0.523017	1.72776
sa	30	-23.6245	-27.053	-20.2618	1.36884	16.7719

Figure 8: Michalewicz's results table

5.5 Obeservation

It is clear that the computation time has increased with increasing size but what you could see is that this increase is not more pronounced for Simulated Annealing.

We can see that the number of dimensions plays a very important role in the purpose the better the number of variables of the function, the weaker the result will be, which does not detract from the global minimum we want to approach.

As far as the result and the size are concerned, something like would have a relation:

$$r=\dim*C$$

6 Conclusions

One method is better than another. I believe that not every method can be classified as the best. It simply depends on the context and we as humans must use our reasoning to decide what and when is best in context with the problem. In the future I could run the experiment using some characteristics being variable, such as computing machinery or different precision.

References

- [1] Wiley, De Jong 1's function figure https://onlinelibrary.wiley.com/cms/asset/ ab373f57-0fc8-41a3-99bb-a85c8931e035/cplx21560-fig-0012-m.png
- [2] Sfu, Schwefel's function figure https://www.sfu.ca/~ssurjano/schwef.html
- [3] Sfu, Rastrigin's function figure https://www.sfu.ca/~ssurjano/rastr.html
- [4] Sfu, Michalewicz's function figure https://www.sfu.ca/~ssurjano/michal.html
- [5] Stackexchange.com pgfplot: 3d function plot https://tex.stackexchange.com/questions/194018/ pgfplot-3d-function-plot
- [6] Manual for Package pgfplots http://pgfplots.sourceforge.net/pgfplots.pdf
- [7] Wikipedia
 Simulated Annealing
 https://en.wikipedia.org/wiki/Simulated_annealing
- [8] Simulated Annealing on Sciencedirect
 https://www.sciencedirect.com/topics/materials-science/
 simulated-annealing
- [9] Springer
 Heuristic Search
 https://link.springer.com/referenceworkentry/10.1007%
 2F978-1-4419-9863-7_875

[10] Baeldung

Example of Hill Climbing Algorithm in Java

https://www.baeldung.com/java-hill-climbing-algorithm

[11] Youtube

Hill Climbing Algorithm

https://www.youtube.com/watch?v=oSdPmxRCWws

[12] profs.info.uaic.ro

Teaching: Genetic Algorithms https://profs.info.uaic.ro/eugennc/teaching/ga/

[13] Stackexchange.com

Rounding to nearest integer symbol in Latex

https://tex.stackexchange.com/questions/433101/rounding-to-nearest-integer-symbol-in-latex

[14] Stackexchange.com

LaTeX figures side by side

https://tex.stackexchange.com/questions/37581/

latex-figures-side-by-side

[15] Stackexchange.com

No natural log parentheses when typesetting

https://tex.stackexchange.com/questions/314609/

no-natural-log-parentheses-when-typesetting

[16] Stackexchange.com

How to write a perfect equation parameters description

https://tex.stackexchange.com/questions/95838/

 $\verb|how-to-write-a-perfect-equation-parameters-description|\\$