Grupa symetrií pravidelného šestiúhelníku

Mějme grupu $D_6(D, \lambda)$. Tato grupa symetrií pravidelného šestiúhelníku je grupa stupně 12, *dihedrální* grupa D_6 , s operací λ pro skládání symetrií.

Je generována rotací R_1 a zrcadlením r_0 . R_n představuje rotaci o úhel $n*2\pi/6$ vzhledem ke středu šestiúhelníku. r_n představuje zrcadlení přes osu v úhlu $n*2\pi/6$ vzhledem k horizontální přímce procházející středem šestiúhelníku a dvěma jeho vrcholy.

Zde jsou efekty všech prvků po jejich aplikaci na šestiúhelník:

Multiplikační tabulku mějme zapsanou níže. Hodnota v řádku i a sloupci j reprezentuje složenou funkci i(j(j)), tedy funkce j(j) je na šestiúhelník aplikována jako první.

	id	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r_5
id	id	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r_5
R_1	R_1	R_2	R_3	R_4	R_5	id	r_1	r_2	r_3	r_4	r_5	r_0
R_2	R_2	R_3	R_4	R_5	id	R_1	r_2	r_3	r_4	r_5	r_0	r_1
R_3	R_3	R_4	R_5	id	R_1	R_2	r_3	r_4	r_5	r_0	r_1	r_2
R_4	R_4	R_5	id	R_1	R_2	R_3	r_4	r_5	r_0	r_1	r_2	r_3
R_5	R_5	id	R_1	R_2	R_3	R_4	r_5	r_0	r_1	r_2	r_3	r_4
r_0	r_0	r_5	r_4	r_3	r_2	r_1	id	R_5	R_4	R_3	R_2	R_1
r_1	r_1	r_0	r_5	r_4	r_3	r_2	R_1	id	R_5	R_4	R_3	R_2
r_2	r_2	r_1	r_0	r_5	r_4	r_3	R_2	R_1	id	R_5	R_4	R_3
r_3	r_3	r_2	r_1	r_0	r_5	r_4	R_3	R_2	R_1	id	R_5	R_4

 r_5 R_4 R_1 R_5 r_4 r_4 r_1 r_0 id R_3 R_5 R_{4} R_{2} R_1 r_5 r_2 r_1 r_0 id Řády všech prvků jsou následující:

 R_5 R_4 R_3 Prvek: R_2 id r_0 r_1 r_3 r_4 r_5 Řád: 2 2 1 3 2 3 6 2 2 2 2 6

Neutrálním prvek grupy D_6 je id, inverzní prvky jsou

 R_2 Prvek: id R_1 R_3 R_5 r_0 r_1 r_5 r_3 $R_5 R_4$ R_3 R_2 $R_1 r_0$ Inverzní prvek: id r_1 r_3 r_4 r_5 r_2

A zde je výčet všech podgrup:

Prvky:	io	d	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r ₅
Podgrupy:													
Triviální	ic	d											
C_2	ic	d			R_3								
C_3	ic	d		R_2		R_4							
C_6	ic	d	R_1	R_2	R_3	R_4	R_5						
C_2	ic	d						r_0					
C_2	ic	d							r_1				
C_2	io	d								r_2			
C_2	io	d									r_3		
C_2	io	d										r_4	
C_2	io	d											r_5
$C_2 + C_2$	io	d			R_3			r_0			r_3		
$C_2 + C_2$	io	d			R_3				r_1			r_4	
$C_2 + C_2$	io	d			R_3					r_2			r_5
D_3	ic	d		R_2		R_4		r_0		r_2		r_4	
D_3	ic	d		R_2		R_4			r_1		r_3		r_5
Grupa D ₆	ic	1	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r_5

Z tabulky jasně plyne, že nejmenší možnou podgrupou je triviální podgrupa obsahují pouze neutrální prvek, tedy identitu grupy. Obsahuje pouze jeden prvek, a to právě *id*. To, že se jedná o grupu, odvodíme z definice

def. 1Každá grupa obsahuje dvě tzv. **nevlastní podgrupy** (též **triviální podgrupy**), sebe samu a podgrupu obsahující pouze neutrální prvek. Ostatní podgrupy označujeme jako **vlastní** (nebo **netriviální**).

Pro naše podgrupy P_1 , P_2 takové, že $P_1 \subset P_2 \subset D_6$, si zvolíme například

$$P_1 = C_2\{id, R_3\}$$

 $P_2 = C_2 + C_2\{id, R_3, r_0, r_3\}$

Potřebujeme pro ně ověřit následující vlastnosti:

Necht' (G, \circ) grupa. Pak $\varnothing = H \subseteq G$ je její podgrupa právě tehdy, když

- 1) $\forall a, b \in H : a \circ b \in H$;
- 2) $\forall a \in H : a^{-1} \in H.$

Snadno se navíc vidí, že obě podmínky v předchozí větě lze shrnout do jediné:

$$\forall a, b \in H : a \circ b^{-1} \in H$$
, pro nás $\forall a, b \in H : a \triangleright b^{-1} \in H$

Inverzní prvky pro P1 jsou

Prvek: $id R_3$ Inverzní prvek: $id R_3$

Vidíme, že se vyskytují v nosné množině, P1 je tedy uzavřená na operace. Z tabulky snadno vyčteme, že podmínka $\forall a, b \in H : a \triangleright b^{-1} \in H$ platí.

	id	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r_5
id	id	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r_5
R_1	R_1	R_2	R_3	R_4	R_5	id	r_1	r_2	r_3	r_4	r_5	r_0
R_2	R_2	R_3	R_4	R_5	id	R_1	r_2	r_3	r_4	r_5	r_0	r_1
${f R_3}$	R_3	R_4	R_5	id	R_1	R_2	r_3	r_4	r_5	r_0	r_1	r_2
R_4	R_4	R_5	id	R_1	R_2	R_3	r_4	r_5	r_0	r_1	r_2	r_3
R_5	R_5	id	R_1	R_2	R_3	R_4	r_5	r_0	r_1	r_2	r_3	r_4
r_0	r_0	r_5	r_4	r_3	r_2	r_1	id	R_5	R_4	R_3	R_2	R_1
r_1	\mathbf{r}_1	r_0	r_5	r_4	r_3	r_2	R_1	id	R_5	R_4	R_3	R_2
r_2	r_2	r_1	r_0	r_5	r_4	r_3	R_2	R_1	id	R_5	R_4	R_3
r_3	r_3	r_2	\mathbf{r}_1	r_0	r_5	r_4	R_3	R_2	R_1	id	R_5	R_4
r_4	r_4	r_3	r_2	r_1	r_0	r_5	R_4	R_3	R_2	R_1	id	R_5
r_5	r_5	r_4	r_3	r_2	r_1	r_0	R_5	R_4	R_3	R_2	\mathbf{R}_1	id
r_5	r_5	r_4	r_3	r_2	r_1	r_0	R_5	R_4	R_3	R_2	R_1	

Pro P_2 budeme postupovat analogicky. Inverzní prvky pro P_2 jsou

Prvek: id R_3 r_0 r_3 \check{R} ád: id R_3 r_0 r_3

Vidíme, že se vyskytují v nosné množině, P_2 je tedy uzavřená na operace.

Z tabulky snadno vyčteme, že podmínka $\forall a, b \in H: a \triangleright b^{-1} \in H$ platí.

	id	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r_5
id	id	R_1	R_2	R_3	R_4	R_5	r_0	r_1	r_2	r_3	r_4	r_5
R_1	R_1	R_2	R_3	R_4	R_5	id	r_1	r_2	r_3	r_4	r_5	r_0
R_2	R_2	R_3	R_4	R_5	id	R_1	r_2	r_3	r_4	r_5	r_0	r_1
R_3	R_3	R_4	R_5	id	R_1	R_2	r_3	r_4	r_5	r_0	r_1	r_2
R_4	R_4	R_5	id	R_1	R_2	R_3	r_4	r_5	r_0	r_1	r_2	r_3
R_5	R_5	id	R_1	R_2	R_3	R_4	r_5	r_0	r_1	r_2	r_3	r_4
r_0	r_0	r_5	r_4	r_3	r_2	r_1	id	R_5	R_4	R_3	R_2	R_1
r_1	r_1	r_0	r_5	r_4	r_3	r_2	R_1	id	R_5	R_4	R_3	R_2
r_2	r_2	r_1	r_0	r_5	r_4	r_3	R_2	R_1	id	R_5	R_4	R_3
r_3	r_3	r_2	r_1	r_0	r_5	r_4	R_3	R_2	R_1	id	R_5	R_4
r_4	r_4	r_3	r_2	r_1	r_0	r_5	R_4	R_3	R_2	R_1	id	R_5
r_5	r_5	r_4	r_3	r_2	r_1	r_0	R_5	R_4	R_3	R_2	R_1	id

Ověřili jsme tedy, že P_1 , P_2 jsou podgrupy grupy D_6 takové, že $P_1 \subset P_2 \subset D_6$.