Corrigé du DS 9 Version A

Problème. Sur la notion de fonction génératrice.

1. (a) Soit $t \in \mathbb{R}$. La formule du transfert appliquée avec $f: x \mapsto t^x$ (définie sur \mathbb{N}) amène

$$G_X(t) = E(t^X) = \sum_{k \in X(\Omega)} P(X = k)t^k,$$

(b) Les variables X et Y ont même loi si et seulement si

$$\forall k \in X(\Omega) \quad P(X=k) = P(Y=k).$$

Les nombres ci-dessus sont les coefficients des polynômes G_X et G_Y . Or, deux polynômes sont égaux si et seulement si leurs suites de coefficients sont égales. On a donc bien que X et Y ont même loi si et seulement si $G_X = G_Y$.

- 2. On donne juste les réponses.
 - (a) $X \sim \mathcal{B}(p)$. $G_X(t) = (1-p) + pt$.
- (b) $U \sim \mathcal{U}([1, n])$. $G_U(t) = \frac{1}{n} \sum_{k=1}^n t^k = \begin{cases} \frac{t}{n(1-t)} (1-t^n) & \text{si } t \neq 1 \\ 1 & \text{si } t = 1 \end{cases}$.
- (c) $Y \sim \mathcal{B}(n, p)$. $G_Y(t) = (1-p+pt)^n$.
- 3. (a) On a, pour tout t réel,

$$G_X(t) = \sum_{k \in X(\Omega)} P(X = k) t^k \quad \text{d'où} \quad G_X'(t) = \sum_{k \in X(\Omega)} P(X = k) k t^{k-1}.$$

Évaluons en 1, on a

$$G'_X(1) = \sum_{k \in X(\Omega)} P(X = k)k = E(X).$$

(b) Si Y suit une loi $\mathcal{B}(n,p)$, on a vu que pour tout $t \in \mathbb{R}$, $G_Y(t) = (1-p+pt)^{n-1}$. Dérivons :

$$G'_{Y}(t) = np(1 - p + pt)^{n-1}.$$

Ainsi, en évaluant en 1,

$$E(Y) = G_Y'(1) = np.$$

4. (a) Soit t un réel. On a par définition,

$$G_{X+Y}(t) = E\left(t^{X+Y}\right) = E\left(t^X t^Y\right).$$

D'après le cours, puisque X et Y sont indépendantes, les variables t^X et t^Y le sont aussi. On a donc

$$G_{X+Y}(t) = E\left(t^X t^Y\right) = E\left(t^X\right) E\left(t^Y\right) = G_X(t)G_Y(t).$$

(b) Ici, X et Y suivent la loi uniforme sur [1,6], de sorte que, pour tout t réel,

$$G_X(t) = G_Y(t) = \frac{1}{6} \sum_{k=1}^{6} t^k.$$

D'après la question a), puisque X et Y sont indépendantes, $G_{X+Y} = G_X \times G_Y$; on développe :

$$G_{X+Y}(t) = \left(\frac{1}{6} \sum_{k=1}^{6} t^k\right)^2$$

$$= \frac{1}{36} \left(t^2 + 2t^3 + 3t^4 + 4t^5 + 5t^6 + 6t^7 + 5t^8 + 4t^9 + 3t^{10} + 2t^{11} + t^{12}\right)$$

Comme on l'a compris dès le début de ce problème, le coefficient devant t^k vaut P(X + Y = k), ce qui nous permet de donner la loi de la somme.

k	2	3	4	5	6	7	8	9	10	11	12
P(X+Y=k)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	5 36	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

(c) Calculons la fonction génératrice de X+Y, où X et Y sont les deux variables de l'énoncé. Comme elles sont indépendantes, la question précédente s'applique et on peut écrire le produit G_XG_Y . Rappelons qu'on a calculé la fonction génératrice d'une variable de loi binomiale en question 1 (c). On a, pour $t \in \mathbb{R}$

$$G_{X+Y}(t) = G_X(t)G_Y(t) = (1-p+pt)^m(1-p+pt)^n = (1-p+pt)^{m+n}.$$

On obtient la fonction génératrice d'une variable de loi $\mathcal{B}(m+n,p)$. Or, d'après la question (a), deux variables aléatoires ayant même fonction génératrice ont la même loi. Ceci prouve que $X + Y \hookrightarrow \mathcal{B}(m+n,p)$.

Exercice 1. Une inégalité.

Il s'agissait bien sûr ici d'écrire l'inégalité de Cauchy-Schwarz. L'espace euclidien sousjacent est \mathbb{R}^n , muni de son produit scalaire canonique. On considère les deux n-uplets

$$x = (x_1, ..., x_n)$$
 et $x_{\sigma} = (x_{\sigma(1)}, ..., x_{\sigma(n)}).$

L'inégalité de Cauchy-Schwarz s'écrit

$$|\langle x, x_{\sigma} \rangle| \le ||x|| \cdot ||x_{\sigma}||.$$

Or, on a

$$\langle x, x_{\sigma} \rangle = \sum_{i=1}^{n} x_{i} x_{\sigma(i)}, \quad \|x\| = \sqrt{\sum_{i=1}^{n} x_{i}^{2}}, \quad \|x_{\sigma}\| = \sqrt{\sum_{i=1}^{n} x_{\sigma(i)}^{2}}.$$

Or, puisque σ est une permutation de [1, n], on a $\sum_{i=1}^{n} x_{\sigma(i)}^2 = \sum_{i=1}^{n} x_i^2$.

Les deux racines carrées sont égales, et la valeur absolue est inutile : tout est positif. On obtient bien

$$\sum_{i=1}^{n} x_i x_{\sigma(i)} \le \sum_{i=1}^{n} x_i^2.$$

Exercice 2. Matrice d'un projecteur orthogonal.

On note p la projection orthogonale sur la droite $\operatorname{Vect}(a)$, ainsi que $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n .

On veut calculer

$$P = \operatorname{Mat}_{\mathcal{B}}(p).$$

• On sait que $\left(\frac{a}{\|a\|}\right)$ est une base orthonormée de $\operatorname{Vect}(a)$. La formule de projection orthogonale donne

$$p(x) = \left\langle x \mid \frac{a}{\|a\|} \right\rangle \frac{a}{\|a\|} = \frac{\left\langle x \mid a \right\rangle}{\|a\|^2} a.$$

On connaît

$$\|a\|^2 = \sum_{i=1}^n a_i^2.$$

Il est clair que

$$\langle e_j \mid a \rangle = a_j,$$

si bien que

$$p(e_j) = \frac{a_j}{\|a\|^2} a = \frac{a_j}{\|a\|^2} \sum_{i=1}^n a_i e_i.$$

On obtient

$$P = \frac{1}{\|a\|^2} \begin{pmatrix} a_1^2 & \dots & a_1 a_n \\ \vdots & & \vdots \\ a_n a_1 & \dots & a_n^2 \end{pmatrix} = \frac{1}{\|a\|^2} (a_i a_j)_{1 \le i, j \le n}.$$

• Notons $A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$. On sait que $A^T A = ||a||^2$. De plus,

$$AA^{\top} = (a_1A \mid \dots \mid a_nA) = (a_ia_j)_{1 \le i,j \le n}$$

On obtient bien

$$P = \frac{AA^{\top}}{A^{\top}A}$$