Gebze Technical University Computer Engineering

CSE 331 - 2018

HOMEWORK 2 REPORT

CELAL CAN KAYA 161044014

Course Assistant: Fatma Nur Esirci

ŞEMATİK TASARIMLAR

Şekil 1- Şematik Tasarımlar

Şekil 2 - Shifter Tasarımı

VERILOG MODÜLLERI

Alu32 – Top Level modülüm. 8:1 Mux Kullanarak seçilmiş olan operasyonu output olarak veriyorum.

```
_2mux - 1 Bitlik 2:1 Mux
```

_32Bit_2mux - 32 Tane 2:1 Mux Kullanılarak yapılmış 32 Bitlik 2:1 Mux

_32Bit_4mux - 3 Tane 32 Bitlik 2:1 Mux Kullanılarak yapılmış 32 Bitlik 4:1 Mux

_32Bit_8mux – 2 Tane 32 Bitlik 4:1 Mux ve 1 Tane 32 Bitlik 2:1 Mux Kullanılarak yapılmış 8:1 Mux. Alu'da select bitine göre hangi işlemin yapılacağını seçmek için yazdım.

```
_32Bit_and - 32 Bitlik And
```

_32Bit_or - 32 Bitlik Or

_32Bit_xor - 32 Bitlik Xor

_32Bit_nor - 32 Bitlik Nor

_32Bit_right_shift — 2:1 Lik Muxlar kullanılarak yapılmış Aritmetik right shift modülü. Kaç bit kaydırılacağını seçmek için B inputunun ilk 5 bitine bakıyorum. İlk 5 Bitten sonraki bitler 32'nin tam katı olacağından onları shifte dahil ettiğimizde sonuca herhangi bir etki yapmayacağından dolayı sadece ilk 5 bit üzerinden işlem yaptım.

_32Bit_left_shift – 2:1 Lik Muxlar kullanılarak yapılmış Logical left shift modülü. Kaç bit kaydırılacağını seçmek için B inputunun ilk 5 bitine bakıyorum. İlk 5 Bitten sonraki bitler 32'nin tam katı olacağından onları shifte dahil ettiğimizde sonuca herhangi bir etki yapmayacağından dolayı sadece ilk 5 bit üzerinden işlem yaptım.

Half_adder – 2 Tane 1 Bitlik Sayıyı toplayıp, toplamı ve carry bitini veren modül

Full_adder – Half adder kullanılarak yapılmış 2 Tane 1 Bitlik Sayı ve Carry bitini toplayıp, toplamı ve carry bitini veren modül

_32Bit_adder — Full adderlar kullanılarak yapılan ve M Inputu 0 verildiğinde 32 bit toplama yapan, M Inputu 1 verildiğinde 32 bit çıkarma yapan modül

SİMÜLASYON SONUÇLARI

```
# time = 0, Input1 = 00100100001010001110000000000100, Input2 = 00100100001110000000011110, select=000, out=00100100011000001100000000100
# time = 40, Input1 = 1011101011110101011111111111110111100, Input2 = 1010111110010111111101010111110, select=000, out=1010101010101010111110100011100
# time = 100, Input1 = 01000010000000001010110100000001, Input2 = 110100101111011111010100000010, select=001, out=11010010111101111111111110100000101
# time = 120, Input1 = 01100011111111011010100000011100, Input2 = 1000001000001011100000000011000, select=010, out=1110011000001001010100000110100
# time = 140, Input1 = 01000000000111010110000000000001, Input2 = 0111110000000000001110000010, select=010, out=101111000001110111011101101110000111
# time = 180, Input1 = 01000110100111111000000001110001,
                      Input2 = 11010011111001011110001110110100, select=011, out=10010101011110100110001111000101
# time = 320, Input1 = 10101101010000011110001111011001, Input2 = 00000000000000000000000110, select=101, out=11111111010110101000011110001111
# time = 340, Input1 = 10000000000000000000000111111111, Input2 = 0000000000000000000000011, select=101, out=1111110000000000000000001111
# time = 400, Input1 = 010001010111110101111010000001, Input2 = 110000000000000000000011, select=110, out=101010111101011110100000100000
# time = 460, Input1 = 011101011111101011111110000000001, Input2 = 10011101111101100000000000010, select=111, out=0000001000010000000001111111010
```

Tüm modüllerim testlerime göre düzgünce çalışıyor.Genel testbench hariç olarak bazı diğer modüllerim için de testbench yazdım.Ekstra olarak Overflow bitinide eklemiştim fakat test ederken output overflow bitini 1'den fazla modüle gönderdiğim için hata verdi ve düzeltemedim.Bu nedenle overflow bitini iptal ettim.