Risoluzione del compito n. 5 (Aprile 2020)

PROBLEMA 1

Trovate tutte le soluzioni (z,w), con $z,w\in\mathbb{C}$, del sistema

$$\begin{cases} z^5 = \bar{w}^2 \\ w = i\bar{z} \end{cases}.$$

Se $w={\rm i}\bar{z}$ allora $\bar{w}=-{\rm i}z$ quindi $\bar{w}^2=-z^2$ e la prima equazione diviene $z^5=-z^2$ ossia

$$z^2(z^3+1) = 0 \ .$$

Dunque o z=0, da cui w=0, o $z^3=-1$, per cui z è una delle radici cubiche di -1,

$$z_1 = -1$$
, $z_{2,3} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

da cui

$$w_1 = -i$$
, $w_{2,3} = i\left(\frac{1}{2} \mp i\frac{\sqrt{3}}{2}\right) = \pm \frac{\sqrt{3}}{2} + \frac{1}{2}i$

e le quattro soluzioni sono

$$z=w=0\;,\qquad z=1,\; w=-\mathrm{i}\;,\qquad z=rac{1}{2}\pm\mathrm{i}rac{\sqrt{3}}{2},\; w=\pmrac{\sqrt{3}}{2}+rac{1}{2}\mathrm{i}\;.$$

PROBLEMA 2

Considerate la funzione $f(x) = 3x + \log(2x^2 - 3x + 1)$.

- a) Calcolatene il dominio ed i limiti agli estremi del dominio.
- b) Determinate gli intervalli di monotonia di f e i punti di massimo e/o minimo locale.
- c) Determinate gli intervalli di convessità e/o concavità di f.
- d) Disegnate il grafico di f.
- e) Scrivete l'equazione della retta tangente nel punto $\left(1/3,f(1/3)\right)$ il grafico di f .
- f) Motivando la risposta, trovate al variare di $k\in\mathbb{R}$ il numero di soluzioni dell'equazione $f(x)=-\frac{9}{2}x+k$.

Abbiamo

$$2x^2 - 3x + 1 > 0 \iff [x < 1/2 \ \mathbf{o} \ x > 1],$$

pertanto il dominio di f è $]-\infty,1/2[\cup]1,+\infty$ e per la diversa velocità di potenze e logaritmi

$$\lim_{x\to -\infty} f(x) = \lim_{x\to (1/2)^-} f(x) = \lim_{x\to 1^+} f(x) = --\infty , \qquad \lim_{x\to +\infty} f(x) = +\infty .$$

Notiamo (non è richiesto) che non ci sono asintoti obliqui, infatti per $x \to \pm \infty$ abbiamo che f(x)/x tende a 3 ma f(x)-3x tende a $+\infty$. La figura è scalata 1 : 6 per allargarla un po'.

Dato che

$$f'(x) = \frac{6x^2 - 5x}{2x^2 - 3x + 1} = \frac{6x(x - 5/6)}{2x^2 - 3x + 1}$$

e che il denominatore è sempre positivo, e osservando che 0<1/2<5/6<1, abbiamo subito che f cresce strettamente in $]-\infty,0]$ e per x>1, decresce strettamente in [0,1/2[ed ha un massimo locale per x=0, dove vale 0. Ora

$$f''(x) = -\frac{8x^2 - 12x + 5}{2x^2 - 3x + 1} < 0$$

dunque f è strettamente concava sia in $]-\infty, 1/2[$ che in $]1, +\infty[$.

Abbiamo $f(1/3) = 1 + \log(2/9)$ e f'(1/3) = -9/2 pertanto la retta tangente cercata ha equazione

$$y = f(1/3) + f'(1/3)(x - 1/3) = 1 + \log \frac{2}{9} - \frac{9}{2}(x - \frac{1}{3}) = \frac{5}{2} + \log \frac{2}{9} - \frac{9}{2}x$$
.

Per l'ultimo punto, osserviamo intanto che in $]1,+\infty[$ la funzione

$$\delta(x) = f(x) - \left(-\frac{9}{2}x + k\right)$$

è strettamente crescente e ha limiti $-\infty$ in 1 e $+\infty$ a $+\infty$, quindi si annulla una e una sola volta: dunque per ogni k l'equazione ha esattamente una soluzione maggiore di 1. Esaminiamo ora il tratto $]-\infty,1/3]$ — il discorso poi si ripete in [1/3,1/2[— e notiamo che per la stretta concavità di f (che si traduce nella stretta decrescenza di f') la funzione δ ha derivata strettamente positiva per x<1/3 e dunque è strettamente crescente in $]-\infty,1/3]$, e inoltre δ tende a $-\infty$ per $x\to-\infty$, mentre

$$\delta(1/3) = \frac{5}{2} + \log \frac{2}{9} - k :$$

dunque se questo numero è minore di zero — ossia $k > (5/2) + \log(2/9)$ — la funzione δ è negativa in $]-\infty,1/3]$ e l'equazione non ha soluzioni in quel tratto, altrimenti ne ha esattamente una. Ripetendo il discorso (ma δ ora risulta decrescente) in [1/3,1/2[concludiamo che l'equazione proposta ha:

una soluzione se $k > (5/2) + \log(2/9)$ due soluzioni se $k = (5/2) + \log(2/9)$ tre soluzioni se $k < (5/2) + \log(2/9)$.

PROBLEMA 3

In questo esercizio, i coefficienti dei monomi vanno semplificati ai minimi termini. Siano

$$f(x) = 1 - \cos(2x)$$
, $g(x) = \sin(1 - \cos(2x))$.

- a) Scrivete lo sviluppo di Taylor di ordine 6 e centrato in $x_0 = 0$ di f(x).
- b) Scrivete lo sviluppo di Taylor di ordine 6 e centrato in $x_0 = 0$ di g(x).
- c) Trovate l'ordine e la parte principale di infinitesimo, per $x \to 0$, di f(x) g(x).
- d) Calcolate al variare di $\alpha \in \mathbb{R}$ il limite $\lim_{x \to 0^+} \frac{f(x) g(x)}{x^{\alpha}}$.

Abbiamo direttamente

$$f(x) = 1 - \left(1 - \frac{(2x)^2}{2} + \frac{(2x)^4}{24} - \frac{(2x)^6}{720} + o(x^6)\right) = 2x^2 - \frac{2x^4}{3} + \frac{4x^6}{45} + o(x^6),$$

che osserviamo essere un infinitesimo di ordine 2, pertanto

$$g(x) = \operatorname{sen}(f(x)) = \operatorname{sen}\left(2x^2 - \frac{2x^4}{3} + \frac{4x^6}{45} + o(x^6)\right)$$

$$= \left(2x^2 - \frac{2x^4}{3} + \frac{4x^6}{45} + o(x^6)\right) - \frac{1}{6}(\cdots)^3 + o(\cdots)^3$$

$$= \left(2x^2 - \frac{2x^4}{3} + \frac{4x^6}{45} + o(x^6)\right) - \frac{4}{3}x^6 + o(x^6) \qquad \left(= f(x) - \frac{4}{3}x^6 + o(x^6)\right)$$

$$= 2x^2 - \frac{2x^4}{3} - \frac{56x^6}{45} + o(x^6).$$

Come abbiamo messo in evidenza,

$$f(x) - g(x) = \frac{4}{3}x^6 + o(x^6) = x^6\left(\frac{4}{3} + \frac{o(x^6)}{x^6}\right)$$

è un infinitesimo di ordine 6 con parte principale $4x^6/3$, pertanto

$$\lim_{x \to 0^+} \frac{f(x) - g(x)}{x^{\alpha}} = \lim_{x \to 0^+} \left(\frac{4}{3} + \frac{o(x^6)}{x^6}\right) x^{6-\alpha} = \begin{cases} +\infty & \text{se } \alpha > 6\\ 4/3 & \text{se } \alpha = 6\\ 0 & \text{se } \alpha < 6. \end{cases}$$

PROBLEMA 4

Data la funzione $g(x) = \log(1+\sqrt{x})$, sia G(x) la primitiva di g(x) tale che G(0) = 0.

- a) Calcolate G(x).
- b) Calcolate l'integrale $\int_0^1 g(x) dx$.
- c) Calcolate infine il limite $\lim_{x\to 0^+} \frac{G(x)}{x^{3/2}}$.

La funzione g è definita solo per $x\geq 0$; cerchiamo intanto le primitive di g, sostituendo subito $\sqrt{x}=t$ che equivale a $x=t^2$ per $t\geq 0$, e poi integrando per parti:

$$\int \log(1+\sqrt{x}) dx = \int_{\substack{x=t^2}} \int 2t \log(1+t) dt = t^2 \log(1+t) - \int \frac{t^2+t-t-1+1}{1+t} dt$$

$$= t^2 \log(1+t) - \frac{t^2}{2} + t - \log(1+t) + c$$

$$= \int_{\substack{t=\sqrt{x}}} (x-1) \log(1+\sqrt{x}) + \sqrt{x} - \frac{x}{2} + c.$$

Si vede subito che il valore di $\,c\,$ per cui la primitiva si annulla in zero è $\,c=0\,,$ dunque

$$G(x) = (x - 1)\log(1 + \sqrt{x}) + \sqrt{x} - \frac{x}{2}$$

Abbiamo subito

$$\int_0^1 g(x) \, dx = G(1) - G(0) = G(1) = \frac{1}{2}$$

mentre dalla continuità di G ricaviamo che l'ultimo limite è nella forma 0/0, quindi possiamo tentare di applicare il Teorema di de l'Hôpital: ricordando che G'=g

$$\lim_{x \to 0^+} \frac{G(x)}{x^{3/2}} = \lim_{\substack{+ \ x \to 0^+}} \frac{g(x)}{3\sqrt{x}/2} = \frac{2}{3} \lim_{x \to 0^+} \frac{\log(1+\sqrt{x})}{\sqrt{x}} = \frac{2}{3} .$$

Esercizio 1. Se z è un numero complesso che ha modulo 13 e parte reale 5, allora:

(A)
$$|z - 5| = 12$$

(C)
$$|\Im z| = 8$$

(B)
$$\Im z = \pm 12i$$

(D)
$$|z - 12i| = 5$$

Esercizio 2. Sia S l'insieme delle soluzioni della disequazione $\sqrt{2x^2 + 3x - 2} \le x + 2$. Allora:

(A)
$$[3/5, e] \subset S$$
.

(C)
$$\pi \in S$$

(B)
$$1/3 \in S$$
.

(C)
$$\pi \in S$$
.
(D) $]-2,3[\subset S$.

Conviene risolvere la disequazione:

$$\begin{cases} 2x^2 + 3x - 2 \ge 0 \\ x + 2 \ge 0 \\ 2x^2 + 3x - 2 \le (x+2)^2 \end{cases} \iff \begin{cases} x \le -2 & \mathbf{o} \ x \ge 1/2 \\ x \ge -2 \\ -2 \le x \le 3 \end{cases}$$

dunque $S=\{-2\}\cup[1/2,3]\supset]3/5,\,\mathbf{e}]$.

dunque $S = \{-2\} \cup [1/2, 3] \supset [3/5, e]$. **Esercizio 3.** La successione $n^2 \log[\cos(4/n)]$ ha limite:

$$(A) -8.$$

(C)
$$-\infty$$
.
(D) -16 .

Possiamo usare gli sviluppi di Taylor o i limiti notevoli: osserviamo che $\cos(4/n) \to 1$ e scriviamo

$$n^2 \log[\cos(4/n)] = n^2 \frac{\log[1 + (\cos\frac{4}{n} - 1)]}{\cos\frac{4}{n} - 1} \frac{\cos\frac{4}{n} - 1}{(4/n)^2} \left(\frac{4}{n}\right)^2 \to 1 \cdot \left(-\frac{1}{2}\right) \cdot 16 = -8.$$

Esercizio 4. La funzione $f(x) = x^4 + \frac{8x^3}{3} + 2x^2 + 7$

- (B) è convessa nell'intervallo [-1, -1/3].
- (A) è decrescente nella semiretta $]-\infty,0]$. (C) ha almeno un punto di massimo locale (o relativo).
 - (D) non è limitata inferiormente.

La funzione è continua su \mathbb{R} e tende a $+\infty$ agli estremi, quindi per un corollario del Teorema di Weierstraß ha minimo, dunque è limitata inferiormente. Per decidere fra le altre, calcoliamo

$$f'(x) = 4x^3 + 8x^2 + 4x = 4x(x+1)^2$$

che è negativa per x < 0 tranne in un punto, dunque f è decrescente in $]-\infty,0]$.

Esercizio 5. Al variare dell' esponente reale α , la serie $\sum n^{\alpha^2-2\alpha-8} \cdot \frac{\sqrt{n}+n}{\sqrt{n}+n^2}$ risulta

- (A) convergente se e solo se $-2 < \alpha < 4$. (C) divergente se e solo se $\alpha \le 1 2\sqrt{2}$ oppure $\alpha \ge 1 + 2\sqrt{2}$.
 - (D) divergente per ogni $\alpha < 0$.

Osserviamo che la serie è a termini positivi e che da

$$\frac{\sqrt{n}+n}{\sqrt{n}+n^2} \simeq \frac{n}{n^2} = \frac{1}{n} \;,$$

segue che, per il criterio del confronto asintotico, la serie ha lo stesso carattere di $\sum_n n^{\alpha^2-2\alpha-9}$ che converge se e solo se

$$-\alpha^2 + 2\alpha + 9 > 1 \quad \iff \quad -2 < \alpha < 4.$$

Esercizio 6. Sia F la funzione integrale $F(x) = \int_0^x (t^2 - 2|t|) dt$. Allora:

- (A) F è decrescente su [-2,2]. (B) F è derivabile due volte in [-3,3]. (C) F(x)=0 se e solo se x=0. (D) F(-x)=F(x) per ogni x reale.

La derivata di F è la funzione $f(x) = x^2 - 2|x|$, che è pari (quindi F non è pari), non è derivabile in zero (quindi F non è derivabile due volte), è negativa in [-2,2] salvo un punto quindi F è decrescente in tale intervallo. In particolare F(2) < F(0) = 0 ma poi F tende a $+\infty$ quindi si annulla ancora.

Esercizio 7. Fissato l'esponente reale α , il limite $\lim_{x\to 0^+} \frac{1+\sin x - e^x\cos x}{x^{\alpha}}$

(A) vale 1/6 se $\alpha = 3$.

(C) vale 0 se $\alpha = 3$.

(B) vale $+\infty$ se $\alpha = 2$.

(D) è un numero reale se $\alpha = 4$.

Con gli sviluppi di Taylor

$$1 + \sin x - e^{x} \cos x$$

$$= 1 + x - \frac{x^{3}}{6} + o(x^{3}) - \left(1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3})\right) \left(1 - \frac{x^{2}}{2} + o(x^{3})\right)$$

$$= \frac{x^{3}}{6} + o(x^{3})$$

e il limite vale 1/6 se $\alpha = 3$.