

AO4801A 30V P-Channel MOSFET

General Description

The AO4801A combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is suitable for use as a load switch or in PWM applications.

Product Summary

 $\begin{array}{lll} V_{DS} & -30V \\ I_{D} & (at \ V_{GS} \!\!=\!\! -10V) & -5A \\ R_{DS(ON)} & (at \ V_{GS} \!\!=\!\! -10V) & <48m\Omega \\ R_{DS(ON)} & (at \ V_{GS} \!\!=\!\! -4.5V) & <57m\Omega \\ R_{DS(ON)} & (at \ V_{GS} \!\!=\!\! -2.5V) & <80m\Omega \end{array}$

 $\begin{array}{cc} \text{100\% UIS Tested} \\ \text{100\%} \ \ \text{R}_{\text{g}} \, \text{Tested} \end{array}$

Absolute Maximum Ratings T _A =25℃ unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	-30	V		
Gate-Source Voltage		V _{GS}	±12	V		
Continuous Drain	T _A =25℃		-5			
Current	T _A =70℃	'D	-4	A		
Pulsed Drain Current ^c		I _{DM}	-28			
Avalanche Current ^C		I _{AS} , I _{AR}	17	A		
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	14	mJ		
	T _A =25℃	р	2	W		
Power Dissipation ^B	T _A =70℃	$-P_{D}$	1.3	VV		
Junction and Storage Temperature Range		Tı, Teta	-55 to 150	C		

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	48	62.5	℃/W			
Maximum Junction-to-Ambient AD	Steady-State $R_{\theta JA}$		74	90	℃/W			
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	32	40	℃/W			

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =-30V, V_{GS} =0V				-1	
			T _J =55℃			-5	μΑ
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} = ±12V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$		-0.5	-0.9	-1.3	V
I _{D(ON)}	On state drain current	V _{GS} =-4.5V, V _{DS} =-5V		-28			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-10V, I_D =-5A			40	48	mΩ
			T _J =125℃		60	72	11152
		V_{GS} =-4.5V, I_{D} =-3.5A			45	57	mΩ
		V_{GS} =-2.5V, I_{D} =-2.5A		60	80	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =-5 V , I_{D} =-5 A		18		S	
V_{SD}	Diode Forward Voltage	$I_S=-1A, V_{GS}=0V$		-0.7	-1	V	
Is	Maximum Body-Diode Continuous Current					-2.5	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		515	645	780	pF
C _{oss}	Output Capacitance			55	80	105	pF
C_{rss}	Reverse Transfer Capacitance			30	55	80	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		4	7.8	12	Ω
SWITCHI	NG PARAMETERS						
Q _g (4.5V)	Total Gate Charge	V _{GS} =-4.5V, V _{DS} =-15V, I _D =-5A		5	7	9	nC
Q_{gs}	Gate Source Charge				1.5		nC
Q_{gd}	Gate Drain Charge				2.5		nC
t _{D(on)}	Turn-On DelayTime				6.5		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =3 Ω , R_{GEN} =6 Ω			3.5		ns
t _{D(off)}	Turn-Off DelayTime				41		ns
t _f	Turn-Off Fall Time				9		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-5A, dI/dt=100A/μs		11	15	ns	
Q_{rr}	Body Diode Reverse Recovery Charge	_e I _F =-5A, dI/dt=100A/μs		3.5	5	nC	

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leqslant 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_J=25$ °C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse ratin g.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

