The right-handed sneutrino as thermal dark matter in U(1) extensions of the MSSM

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique GDR Terascale, Lyon, April 20, 2011 G. Bélanger, J. Da Silva and A. Pukhov, in preparation

Outline

- Framework of the study
 - Context of dark matter candidates
 - The UMSSM
- $oxed{2}$ The case of $U(1)_{\psi}$ model $(heta_{ extsf{ iny E}_6}=\pi/2)$
 - Relic density profil
 - Direct detection
- Global scan
 - Characteristics
 - Results
- 4 Conclusion and perspectives

Framework of the study

- Framework of the study
 - Context of dark matter candidates
 - The UMSSM
- 2 The case of $U(1)_{\psi}$ model $(heta_{\mathsf{E}_6}=\pi/2)$
 - Relic density profil
 - Direct detection
- Global scan
 - Characteristics
 - Results
- Conclusion and perspectives

Dark matter and supersymmetry

Dark matter :

CMB, rotation curves, Bullet cluster, ... ⇒ more interesting candidates : WIMPs

Supersymmetry :

Hierarchy problem, unification of the couplings, ...

 \Rightarrow new particles interacting weakly with standard particles

Dark matter and supersymmetry

Dark matter :

CMB, rotation curves, Bullet cluster, ... ⇒ more interesting candidates : WIMPs

Supersymmetry :

Hierarchy problem, unification of the couplings, ...

⇒ new particles interacting weakly with standard particles

⇒ Dark matter candidates in supersymmetric models

Some candidates

Assuming R-parity:

- 2 WIMPs candidates in the MSSM ·
 - ▶ Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection ⇒ bad DM candidate

Some candidates

Assuming R-parity:

- 2 WIMPs candidates in the MSSM :
 - ► Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Neutrino oscillations and therefore massive neutrinos ⇒ interest on adding RH neutrino by introducing Dirac mass terms :
 - SUSY breaking scale RH sneutrino
 - It can be sterile, mixed with LH sneutrino, ...

Some candidates

Assuming R-parity:

- 2 WIMPs candidates in the MSSM :
 - ▶ Lightest neutralino : a lot of studies \Rightarrow good DM candidate
 - ▶ LH sneutrino : too high coupling with $Z^0 \Rightarrow$ don't satisfy experimental constraints on spin independent direct detection \Rightarrow bad DM candidate
- Neutrino oscillations and therefore massive neutrinos ⇒ interest on adding RH neutrino by introducing Dirac mass terms :
 - SUSY breaking scale RH sneutrino
 - It can be sterile, mixed with LH sneutrino, ...
 - ► In this talk : RH sneutrino couples to new vector, scalar field, adding a new abelian gauge group

The UMSSM

- Framework of the study
 - Context of dark matter candidates
 - The UMSSM
- 2 The case of $U(1)_{\psi}$ model $(heta_{\mathsf{E}_6}=\pi/2)$
 - Relic density profil
 - Direct detection
- Global scar
 - Characteristics
 - Results
- 4 Conclusion and perspectives

The new U(1) group

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g' and $g'_1 = g_1 = \sqrt{\frac{5}{3}}g'$
- Here it stems from E_6 model $\Rightarrow U'(1)$ is a combination with :

$$Q' = \cos\theta_{E_6} Q_\chi + \sin\theta_{E_6} Q_\psi, \qquad \theta_{E_6} \in [-\pi/2, \pi/2]$$

Q' choice	Q	ū	d	L	ē	$\bar{\nu}$	Hu	H_d	S
$\sqrt{40}Q_{\chi}$	-1	-1	3	3	-1	-5	2	-2	0
$\sqrt{24}Q_{\psi}$	1	1	1	1	1	1	-2	-2	4

The new U(1) group

- Symmetry group : $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$ Coupling constants associated : g_3 , g_2 , g' and $g'_1 = g_1 = \sqrt{\frac{5}{3}}g'$
- Here it stems from E_6 model $\Rightarrow U'(1)$ is a combination with :

$$Q' = \cos\theta_{E_6} Q_\chi + \sin\theta_{E_6} Q_\psi, \qquad \theta_{E_6} \in [-\pi/2, \pi/2]$$

Q' choice	Q	ū	d	L	ē	$\bar{\nu}$	Hu	H_d	S
$\sqrt{40}Q_{\chi}$	-1	-1	3	3	-1	-5	2	-2	0
$\sqrt{24}Q_{\psi}$	1	1	1	1	1	1	-2	-2	4

- Chiral supermultiplet S \Rightarrow new vev $\Rightarrow \mu$ problem resolved as the NMSSM : $\mu = \frac{\lambda v_s}{\sqrt{2}}$
- Vector supermultiplet ⇒ new gauge boson : B'

Gauge bosons

• Electroweak and U'(1) symmetry breaking :

$$\langle H_d \rangle = \frac{v_d}{\sqrt{2}} \qquad \langle H_u \rangle = \frac{v_u}{\sqrt{2}} \qquad \langle S \rangle = \frac{v_s}{\sqrt{2}}$$

Physical abelian gauge bosons : Z_1 and Z_2 from $Z^0 = -\sin\theta_W B + \cos\theta_W W^3$ and Z' = B':

$$Z_1 = Z^0 \cos \alpha_Z + Z' \sin \alpha_Z$$

$$Z_2 = -Z^0 \sin \alpha_Z + Z' \cos \alpha_Z$$

Gauge bosons

Electroweak and U'(1) symmetry breaking :

$$\langle H_d \rangle = \frac{v_d}{\sqrt{2}} \qquad \langle H_u \rangle = \frac{v_u}{\sqrt{2}} \qquad \langle S \rangle = \frac{v_s}{\sqrt{2}}$$

Physical abelian gauge bosons : Z_1 and Z_2 from $Z^0 = -\sin\theta_W B + \cos\theta_W W^3$ and Z'=B':

$$Z_1 = Z^0 \cos \alpha_Z + Z' \sin \alpha_Z$$

$$Z_2 = -Z^0 \sin \alpha_Z + Z' \cos \alpha_Z$$

• Physical gauge bosons masses :
$$M_{Z_1,Z_2}^2 = \frac{1}{2} \left(M_{Z^0}^2 + M_{Z'}^2 \mp \sqrt{\left(M_{Z^0}^2 - M_{Z'}^2 \right)^2 + 4\Delta^4} \right)$$

$$M_{Z^0}^2 = \frac{g'^2 + g_2^2}{4} v^2, \quad v^2 = v_d^2 + v_u^2$$

$$M_{Z'}^2 = g_1'^2 \left(Q_{H_d}'^2 v_d^2 + Q_{H_u}'^2 v_u^2 + Q_S'^2 v_S^2 \right)$$

$$\Delta^2 = \frac{g_1' \sqrt{g'^2 + g_2^2}}{2} \left(Q_{H_d}' v_d^2 - Q_{H_u}' v_u^2 \right)$$

Gauge bosons

• Electroweak and U'(1) symmetry breaking :

$$\langle H_d \rangle = \frac{v_d}{\sqrt{2}} \qquad \langle H_u \rangle = \frac{v_u}{\sqrt{2}} \qquad \langle S \rangle = \frac{v_s}{\sqrt{2}}$$

• Physical abelian gauge bosons : Z_1 and Z_2 from $Z^0 = -\sin\theta_W B + \cos\theta_W W^3$ and Z'=B':

$$Z_1 = Z^0 \cos \alpha_Z + Z' \sin \alpha_Z$$

$$Z_2 = -Z^0 \sin \alpha_Z + Z' \cos \alpha_Z$$

• Physical gauge bosons masses :
$$M_{Z_1,Z_2}^2 = \frac{1}{2} \left(M_{Z^0}^2 + M_{Z'}^2 \mp \sqrt{\left(M_{Z^0}^2 - M_{Z'}^2 \right)^2 + 4\Delta^4} \right)$$

$$\begin{split} M_{Z^0}^2 &= \frac{g'^2 + g_2^2}{4} v^2, \quad v^2 = v_d^2 + v_u^2 \\ M_{Z'}^2 &= g_1'^2 \left(Q_{H_d}' v_d^2 + Q_{H_u}' v_u^2 + Q_S'^2 v_S^2 \right) \\ \Delta^2 &= \frac{g_1' \sqrt{g'^2 + g_2^2}}{2} \left(Q_{H_d}' v_d^2 - Q_{H_u}' v_u^2 \right) \end{split}$$
 J. Erler, Rojas,

 $M_W = \cos \theta_W M_{Z^0}$ small α_{7} J. Erler, P. Langacker, S. Munir and E.

Rojas, arXiv:0906.2435v3 [hep-ph]

Other modifications

• Higgs sector : 1 CP odd Higgs A^0 , 5 CP even Higgs : H^\pm , h_1 , h_2 and h_3 : Diagonalization of 3×3 matrix $M_{CPeven}^2: M_{h_1,h_2,h_3}^2 = Z_h^{-1} M_{CPeven}^2 Z_h$ Singlet-like Higgs mass near Z_2 mass with radiative corrections + pure UMSSM terms \Rightarrow good increase of m_{h_1}

Other modifications

- Higgs sector : 1 CP odd Higgs A^0 , 5 CP even Higgs : H^\pm , h_1 , h_2 and h_3 : Diagonalization of 3×3 matrix $M_{CPeven}^2: M_{h_1,h_2,h_3}^2 = Z_h^{-1} M_{CPeven}^2 Z_h$ Singlet-like Higgs mass near Z_2 mass with radiative corrections + pure UMSSM terms \Rightarrow good increase of m_{h_1}
- Gauginos sector: 6 neutralinos in the basis (\$\widetilde{B}\$, \$\widetilde{W}^3\$, \$\widetilde{H}_d^0\$, \$\widetilde{S}\$, \$\widetilde{B}'\$)
 J. Kalinowski, S.F. King et J.P. Roberts, arXiv:0811.2204v2 [hep-ph]
- Sparticles sector :

$$\boxed{ M_{\tilde{f}}^2 = \begin{pmatrix} m_{soft}^2 + m_f^2 + M_{Z^0}^2 \cos 2\beta (I_f^3 - e_f \sin^2 \theta_W) + \Delta_f & m_f (A_f - \mu(t_\beta)^{-2I_f^3}) \\ m_f (A_f - \mu(t_\beta)^{-2I_f^3}) & m_{soft}^2 + M_{Z^0}^2 \cos 2\beta (I_f^3 - e_f \sin^2 \theta_W) + m_f^2 + \Delta_{\tilde{f}} \end{pmatrix} }$$

where
$$\Delta_f = \frac{1}{2}g_1'^2 Q_f' (Q_{H_d}' v_d^2 + Q_{H_u}' v_u^2 + Q_S' v_s^2)$$

The case of $U(1)_{\psi}$ model $(heta_{E_6}=\pi/2)$

- Framework of the study
 - Context of dark matter candidates
 - The UMSSM
- $oxed{2}$ The case of $U(1)_{\psi}$ model $(heta_{\mathsf{E}_6}=\pi/2)$
 - Relic density profil
 - Direct detection
- Global scan
 - Characteristics
 - Results
- 4 Conclusion and perspectives

Parameter space regions with $\Omega_{\it WMP}\,h^2\approx 0.1 \Rightarrow$ need to rise the annihilation cross section :

Parameter space regions with $\Omega_{\scriptscriptstyle WIMP} h^2 \approx 0.1 \Rightarrow$ need to rise the annihilation cross section :

• WIMP mass near $m_{h_1}/2$:

$$\tilde{\nu}_R$$

$$\tilde{\nu}_R^*$$

$$h_1$$

$$W^+$$

$$W^-$$

Parameter space regions with $\Omega_{\scriptscriptstyle WIMP} h^2 \approx 0.1 \Rightarrow$ need to rise the annihilation cross section :

• WIMP mass near $m_{h_1}/2$:

 $\tilde{\nu}_R$ $\tilde{\nu}_R^*$ h_1 $W^ W^-$

• WIMP mass near $M_{Z_2}/2$:

Parameter space regions with $\Omega_{WMP}\,h^2pprox 0.1\Rightarrow$ need to rise the annihilation cross section :

- WIMP mass near $m_{h_1}/2$:
 - $\tilde{\nu}_R$ $\tilde{\nu}_R^*$ $\tilde{\nu}_R^*$ W^-
- WIMP mass near $M_{Z_2}/2$:

• WIMP mass near $m_{h_2,h_3}/2$:

$$\tilde{\nu}_R$$
 $\tilde{\nu}_R^*$
 h_2, h_3
 \bar{q}

$$\tilde{\nu}_R$$
 h_2, h_3
 W^+

Parameter space regions with $\Omega_{WMP}\,h^2pprox 0.1\Rightarrow$ need to rise the annihilation cross section :

- WIMP mass near $m_{h_1}/2$:
 - $\tilde{\nu}_R$ $\tilde{\nu}_R^*$ \tilde{h}_1 W^+ W^-
- WIMP mass near $M_{Z_2}/2$:

• WIMP mass near $m_{h_2,h_3}/2$:

$$\tilde{\nu}_R$$
 h_2, h_3
 W^+
 $\tilde{\nu}_R^*$
 W^-

Coannihilation processes (mainly higgsino-like) :

• Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , $\tan \beta$, α_Z Soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$

- Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , $\tan \beta$, α_Z Soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$
- \bullet Exemple with $\textit{M}_{\textit{Z}_2}=$ 900 GeV, $\textit{A}_{\lambda}=$ 60 GeV, $\alpha_{\textit{Z}}=10^{-3}~\text{rad}:\textit{m}_{\textit{h}_1}=$ 130 GeV/140 GeV

- Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , $\tan \beta$, α_Z Soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$
- ullet Exemple with $M_{Z_2}=900$ GeV, $A_{\lambda}=60$ GeV, $lpha_Z=10^{-3}$ rad : $m_{h_1}=130$ GeV/140 GeV

$\Omega_{WIMP} h^2 \approx 0.1$:

near h₁ resonance

- Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , $\tan \beta$, α_Z Soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$
- Exemple with $M_{Z_2}=900$ GeV, $A_{\lambda}=60$ GeV, $\alpha_Z=10^{-3}$ rad : $m_{h_1}=130$ GeV/140 GeV

$$\Omega_{WIMP} h^2 \approx 0.1$$
:

near h₁ resonance

$$\mu = \text{650 GeV and } \tan \beta = \text{10}$$

$$\downarrow \text{no efficient annihilation}$$

- Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , $\tan \beta$, α_Z Soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$
- ullet Exemple with $M_{Z_2}=900$ GeV, $A_\lambda=60$ GeV, $lpha_Z=10^{-3}$ rad : $m_{h_1}=130$ GeV/140 GeV

$$\Omega_{WIMP} h^2 \approx 0.1$$
:

ightharpoonup near h_1 resonance

$$\mu = 650 \text{ GeV}$$
 and $\tan \beta = 10$
 \downarrow
no efficient annihilation

$$\begin{split} g_{\tilde{\nu}_R \tilde{\nu}_R^* h_i} &= -\frac{g_1'^2 Q_{\tilde{\nu}}'}{2} \left[2 v Z_{h1i} (c_\beta^2 Q_{H_d}' + s_\beta^2 Q_{H_u}') - v \sin 2\beta Z_{h2i} (Q_{H_d}' - Q_{H_u}') \right. \\ &\left. - 2 v_s Z_{h3i} (Q_{H_d}' + Q_{H_u}') \right] \end{split}$$

- Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , tan β , α_Z Soft terms at 1 TeV, $M_1 = 1$ TeV, $M_2 = 2M_1$
- Exemple with $M_{Z_2}=900$ GeV, $A_{\lambda}=60$ GeV, $\alpha_Z=10^{-3}$ rad : $m_{h_1}=130$ GeV/140 GeV

$$\Omega_{WIMP} h^2 \approx 0.1$$
:

near h_1 resonance

$$\mu =$$
 650 GeV and $\tan \beta = 10$ \downarrow no efficient annihilation

$$\begin{vmatrix} g_{\tilde{\nu}_R \tilde{\nu}_R^* h_i} = -\frac{g_1'^2 Q_{\tilde{\nu}}'}{2} \left[2v Z_{h1i} (c_{\beta}^2 Q_{H_d}' + s_{\beta}^2 Q_{H_u}') - v \sin 2\beta Z_{h2i} (Q_{H_d}' - Q_{H_u}') - 2v_s Z_{h3i} (Q_{H_d}' + Q_{H_u}') \right]$$

 \Rightarrow since $Q'_{H_d} = Q'_{H_u}$, when $\frac{v}{v_e} \approx \frac{2Z_{h31}}{Z_{h11}}$ the coupling $\tilde{\nu}_R \tilde{\nu}_R^* h_1$ drastically decrease

- Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , $\tan \beta$, α_Z Soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$
- Exemple with $M_{Z_2}=900$ GeV, $A_\lambda=60$ GeV, $\alpha_Z=10^{-3}$ rad : $m_{h_1}=130$ GeV/140 GeV

$$\Omega_{WIMP} h^2 \approx 0.1$$
:

 \triangleright near h_1 resonance

$$\tan \beta = 38$$
:

we return to an efficient annihilation near h_1 resonance

- Relevant parameters : $M_{\tilde{\nu}_R}$, μ , A_{λ} , M_{Z_2} , $\tan \beta$, α_Z Soft terms at 1 TeV, $M_1=1$ TeV, $M_2=2M_1$
- Exemple with $M_{Z_2}=900$ GeV, $A_\lambda=60$ GeV, $\alpha_Z=10^{-3}$ rad : $m_{h_1}=130$ GeV/140 GeV

 $\Omega_{\it WIMP}\,\it h^2 \approx 0.1$:

near h₁ resonance

$$\tan \beta = 38$$
 :

we return to an efficient annihilation near h_1 resonance

- ▶ near Z_2 /singlet-like Higgs resonance
- ightharpoonup Coannihilation processes with NLSP higgsino-like can appear before Z_2 resonance

Direct detection

- - Context of dark matter candidates
 - The UMSSM
- The case of $U(1)_{\psi}$ model $(\theta_{E_6} = \pi/2)$
 - Relic density profil
 - Direct detection
- - Characteristics
 - Results

Direct detection cross section

• Neutral CP-even Higgs and abelian gauge bosons contribution

Direct detection cross section

- Neutral CP-even Higgs and abelian gauge bosons contribution
- Abelian gauge boson contribution to direct detection :

$$\sigma_{\tilde{\nu}_R N}^{Z_1, Z_2} = \frac{\mu_{\tilde{\nu}_R N}^2}{\pi} (g_1' Q_{\tilde{\nu}}')^2 [(y(1 - 4s_W^2) + y')Z + (-y + 2y')(A - Z)]^2$$

with
$$y = \frac{g' \sin \alpha_Z \cos \alpha_Z}{4 \sin \theta_W} \left(\frac{1}{M_{Z_2}^2} - \frac{1}{M_{Z_1}^2} \right), \ y' = -\frac{g_1'}{2} Q_V'^d \left(\frac{\sin^2 \alpha_Z}{M_{Z_1}^2} + \frac{\cos^2 \alpha_Z}{M_{Z_2}^2} \right)$$

$$\mu_{\tilde{\nu}_R N} = \frac{M_{\tilde{\nu}_R} m_N}{M_{\tilde{\nu}_R} + m_N}, \qquad Q_V'^d = Q_Q' - Q_d'$$

Direct detection cross section

- Neutral CP-even Higgs and abelian gauge bosons contribution
- Abelian gauge boson contribution to direct detection :

$$\sigma_{\bar{\nu}_R N}^{Z_1, Z_2} = \frac{\mu_{\bar{\nu}_R N}^2}{\pi} (g_1' Q_{\bar{\nu}}')^2 [(y(1 - 4s_W^2) + y')Z + (-y + 2y')(A - Z)]^2$$

with
$$y = \frac{g' \sin \alpha_Z \cos \alpha_Z}{4 \sin \theta_W} \left(\frac{1}{M_{Z_2}^2} - \frac{1}{M_{Z_1}^2} \right), \ y' = -\frac{g_1'}{2} Q_V'^d \left(\frac{\sin^2 \alpha_Z}{M_{Z_1}^2} + \frac{\cos^2 \alpha_Z}{M_{Z_2}^2} \right)$$

$$\mu_{\tilde{\nu}_R} N = \frac{M_{\tilde{\nu}_R} m_N}{M_{\tilde{\nu}_R} + m_N}, \qquad Q_V'^d = Q_Q' - Q_d'$$

in
$$U(1)_{\psi}$$
 model $Q_{V}^{'d}=0$ $\qquad \qquad \downarrow$ low values of $\sigma_{\tilde{\nu}_{R}N}^{SI}$

 h_1 and Z_1 contribution

 $\sin^2 \alpha_Z$ suppression of the gauge boson part (dashed line : $\alpha_Z = 10^{-4}$ rad)

Global scan

- - Context of dark matter candidates
 - The UMSSM
- - Relic density profil
 - Direct detection
- Global scan
 - Characteristics
 - Results

The set of parameters

	Fixed pa	ramete	rs	Free parameters			
	Soft t	terms		Name	Domain of variation		
m_{Q_i}	1 TeV	m_{L_i}	1 TeV	$m_{\bar{\nu}_3}^2$	[-4 000, 4 000] TeV		
$m_{\bar{u}_i}$	1 TeV	$m_{\bar{d}_i}$	1 TeV	M_{Z_2}	$[M(\theta_{E_6}), 2 000] \text{ GeV}$		
$m_{\bar{e}_i}$	_		μ	[100, 1 000] GeV			
i e	∈ {1, 2, 3}	·, j ∈ {:	1, 2}	A_{λ}	[0, 1 000] GeV		
Trilinear couplings $+ M_K$				t_{eta}	[2, 60]		
A_t	1 TeV	TeV A _b 0 TeV		α_Z	$[0, 3.10^{-3}]$ rad		
A_c	0 TeV	A_s	0 TeV	θ_{E_6}	$[-\pi/2, \pi/2] {\sf rad}$		
A_u	0 TeV	A_d	0 TeV	M_1 , M'_1	[100, 1 000] GeV		
A_I	0 TeV	M_K	1 eV	$M_2 = 2M_1$ et $M_3 = 6M_1$			

Q' choice	Q_{χ}	Q_{ψ}	Q_{η}	Q_I	Q_S	Q_N
M_{Z_2} (GeV)	892	878	904	789	821	861

CDF Collaboration, Phys. Rev. Lett. 102, 091805 (2009)

Constraints on the scan

- Relic density at 3σ with $\Omega_{\mbox{\tiny WIMP}} \, h^2 = 0.1123 \pm 0.0035$ N. Jarosik et al, arXiv:1001.4744v1 [astro-ph.CO]
- Higgs mass limit for doublet-like Higgs : $m_{h_1} \ge 114.4 \text{ GeV}$ LEP Working Group for Higgs boson searches, Phys. Lett. B565(2003) 61
- LEP constraints on sparticles masses implemented in the micrOMEGAs code G. Bélanger, F. Boudjema, A. Pukhov et A. Semenov, arXiv:0803.2360v2 [hep-ph]
- Spin independent direct detection cross section

XENON100 Collaboration, arXiv :1104.2549v1 [astro-ph.CO] CDMS Collaboration, arXiv :0912.3592v1 [astro-ph.CO]

Results

- Framework of the study
 - Context of dark matter candidates
 - The UMSSM
- $oxed{2}$ The case of $U(1)_{\psi}$ model $(heta_{E_6}=\pi/2)$
 - Relic density profil
 - Direct detection
- Global scan
 - Characteristics
 - Results
- 4 Conclusion and perspectives

New processes

Interesting WIMP mass \mid from 50 GeV to TeV-scale As in the $U(1)_{\psi}$ model, constraints respected near :

- h₁ resonance
- Z₂/singlet-like Higgs resonance
- Coannihilation with NLSP neutralino

New processes

Interesting WIMP mass from 50 GeV to TeV-scale As in the $U(1)_{\psi}$ model, constraints respected near :

- h₁ resonance
- Z_2 /singlet-like Higgs resonance
- Coannihilation with NLSP neutralino

New processes

Interesting WIMP mass from 50 GeV to TeV-scale As in the $U(1)_{\psi}$ model, constraints respected near :

- h₁ resonance
- Z₂/singlet-like Higgs resonance
- Coannihilation with NLSP neutralino

But also for:

- Coannihilation with sfermions
- Annihilation into W pairs through Higgs exchange arround $M_{\tilde{\nu}_P}=100$ GeV $(\theta_{E_S}<0)$

$$\theta_{E_6} = -0.42\pi$$

 \Rightarrow due to the increase of $g_{\tilde{\nu}_R \tilde{\nu}_R^* h_1}$

Direct detection constraint

Small values of $|\theta_{\it E_6}|$ very constrained, especially for $\theta_{\it E_6} < 0$:

Direct detection constraint

Small values of $|\theta_{\it E_6}|$ very constrained, especially for $\theta_{\it E_6} < 0$:

 \Rightarrow Lower is $|\theta_{E_6}|$, higher are Z_2 processes, barring higher M_{Z_2}

- Framework of the study
 - Context of dark matter candidates
 - The UMSSM
- $oxed{2}$ The case of $U(1)_{\psi}$ model $(heta_{E_6}=\pi/2)$
 - Relic density profil
 - Direct detection
- Global scan
 - Characteristics
 - Results
- 4 Conclusion and perspectives

RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- \triangleright Resonance (h_1 , Z_2 and singlet-like Higgs)
- Coannihilation (higgsino-like neutralino, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model

RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- Resonance (h_1 , Z_2 and singlet-like Higgs)
- Coannihilation (higgsino-like neutralino, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model

- This model can be tested with other experimental results like indirect detection, flavour physics, ...
- Uptated with new M_{Z_2} limits coming from LHC

RH sneutrino is a viable dark matter candidate

it respects experimental limits in the case of some processes :

- Resonance (h_1 , Z_2 and singlet-like Higgs)
- Coannihilation (higgsino-like neutralino, others sfermions)
- Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model

- This model can be tested with other experimental results like indirect detection, flavour physics, ...
- Uptated with new M_{Z2} limits coming from LHC

Thanks for your attention!

BACKUP

UMSSM fields

Chiral supermultiplets						
Supermultiplets		spin 0	spin 1/2	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$		
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L d_L)$	$(3, 2, \frac{1}{6}, Q_Q')$		
(3 families)	ū	\widetilde{u}_R^*	\bar{u}_R	$(\bar{3}, 1, -\frac{2}{3}, Q'_{u})$		
	ā	\widetilde{u}_R^* \widetilde{d}_R^*	\bar{d}_R	$(\bar{\bf 3},{\bf 1},\frac{1}{3},{\bf Q}_d')$		
sleptons, leptons	L	$(\widetilde{\nu}_L \ \widetilde{e}_L)$	$(\nu_L e_L)$	$(1, 2, -\frac{1}{2}, Q'_{L})$		
(3 families)	$ar{ u}$	$\widetilde{ u}_{R}^{*}$	$ar{ u}_R$	$(1, 1, 0, Q'_{\bar{\nu}})$		
	ē	\widetilde{e}_R^*	\bar{e}_R	$(1, 1, \frac{1}{6}, Q'_e)$		
Higgs, higgsinos	Hu	$(H_u^+ H_u^0)$	$(\widetilde{H}_{u}^{+}\ \widetilde{H}_{u}^{0})$	$(1, 2, \frac{1}{2}, Q'_{H_u})$		
	H_d	$(H_d^0 H_d^-)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$	$(1, 2, -\frac{1}{2}, Q'_{H_d})$		
	5	5	Š	$(1, 1, 0, Q'_S)$		

Vector supermultiplets					
Supermultiplets	spin 1/2	spin 1	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$		
gluino, gluon	\widetilde{g}	g	(8, 1, 0, 0)		
winos, W bosons	$\widetilde{W}^{\pm} \widetilde{W}^3$	$W^{\pm} W^3$	(1, 3, 0, 0)		
bino, B boson	B	В	(1, 1, 0, 0)		
bino', B' boson	$\widetilde{B'}$	B'	(1, 1, 0, 0)		

Some new lagrangian terms

Superpotential :

$$\begin{split} W_{MSSM} = & \bar{u}y_uQH_u - \bar{d}y_dQH_d - \bar{e}y_eLH_d + \mu H_uH_d \\ W_{UMSSM} = & W_{MSSM}(\mu = 0) + \lambda SH_uH_d + \bar{\nu}y_\nu LH_u \end{split}$$

Soft supersymmetry breaking :

$$\begin{split} \mathcal{L}_{soft}^{MSSM} &= -\frac{1}{2} (M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \mathrm{c.c.}) \\ &- (\widetilde{u}_R^* a_u \widetilde{Q} H_u - \widetilde{d}_R^* a_d \widetilde{Q} H_d - \widetilde{e}_R^* a_e \widetilde{L} H_d + \mathrm{c.c.}) \\ &- \widetilde{Q}^\dagger m_Q^2 \widetilde{Q} - \widetilde{L}^\dagger m_L^2 \widetilde{L} - \widetilde{u}_R^* m_{\tilde{e}}^2 \widetilde{u}_R - \widetilde{d}_R^* m_d^2 \widetilde{d}_R - \widetilde{e}_R^* m_{\tilde{e}}^2 \widetilde{e}_R \\ &- m_{H_u}^2 H_u^\dagger H_u - m_{H_d}^2 H_d^\dagger H_d - (b H_u H_d + \mathrm{c.c.}) \\ \mathcal{L}_{soft}^{UMSSM} &= \mathcal{L}_{soft}^{MSSM} (b = 0) - \left(\frac{1}{2} M_1' \widetilde{B'} \widetilde{B'} + M_K \widetilde{B} \widetilde{B'} + \widetilde{\nu}_R^* a_\nu \widetilde{L} H_u + \mathrm{c.c.}\right) \\ &- \widetilde{\nu}_R^* m_{\tilde{\nu}}^2 \widetilde{\nu}_R - (\lambda A_\lambda S H_u H_d + \mathrm{c.c.}) - m_S^2 S^* S \end{split}$$

LanHEP, A. Semenov, arXiv:0805.0555v1 [hep-ph]

Higgs masses

$$\begin{split} m_{A0}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\phi} v + \Delta_{EA} & \tan \phi = \frac{v \sin 2\beta}{2v_s} \\ m_{H\pm}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\beta} v_s - \frac{\lambda^2}{2} v^2 + \frac{g_2^2}{2} v^2 + \Delta_{\pm} & \tan \beta = \frac{v_u}{v_d} \\ M_{CPeven}^2 &: \\ \left(\mathcal{M}_+^0\right)_{11} &= \left[\frac{(g'^2 + g_2^2)^2}{4} + Q_1'^2 g_1'^2 \right] (v c_{\beta})^2 + \frac{\lambda A_{\lambda} t_{\beta} v_s}{\sqrt{2}} + \Delta_{11} \\ \left(\mathcal{M}_+^0\right)_{12} &= -\left[\frac{(g'^2 + g_2^2)^2}{4} - \lambda^2 - Q_1' Q_2' g_1'^2 \right] v^2 s_{\beta} c_{\beta} - \frac{\lambda A_{\lambda} v_s}{\sqrt{2}} + \Delta_{12} \\ \left(\mathcal{M}_+^0\right)_{13} &= \left[\lambda^2 + Q_1' Q_2' g_1'^2 \right] v c_{\beta} v_s - \frac{\lambda A_{\lambda} v s_{\beta}}{\sqrt{2}} + \Delta_{13} \\ \left(\mathcal{M}_+^0\right)_{22} &= \left[\frac{(g'^2 + g_2^2)^2}{4} + Q_2'^2 g_1'^2 \right] (v s_{\beta})^2 + \frac{\lambda A_{\lambda} v_s}{t_{\beta} \sqrt{2}} + \Delta_{22} \\ \left(\mathcal{M}_+^0\right)_{23} &= \left[\lambda^2 + Q_2' Q_2' g_1'^2 \right] v s_{\beta} v_s - \frac{\lambda A_{\lambda} v c_{\beta}}{\sqrt{2}} + \Delta_{23} \\ \left(\mathcal{M}_+^0\right)_{33} &= Q_5'^2 g_1'^2 v_s^2 + \frac{\lambda A_{\lambda} v^2 s_{\beta} c_{\beta}}{v_s \sqrt{2}} + \Delta_{33} \end{split}$$

Vernon Barger, Paul Langacker, Hye-Sung Lee and Gabe Shaughnessy, arXiv:hep-ph/0603247v3

Other scan characteristics

- 2.10⁶ points generated for light LSP ($M_{\tilde{\nu}_R} < 100$ GeV), 0.01% of these points pass the constraints
- 2.10⁵ points generated for heavy LSP (100 GeV $< M_{\tilde{\nu}_R} <$ 1 TeV), 0.5% of these points pass the constraints
- h₁ masses obtained :

h₂ masses obtained :

WIMP interactions

Playing with μ , A_{λ} , M_{Z_2} and $\tan \beta$: masses in the Higgs sector modified \Rightarrow switch of the singlet-like Higgs can also affect relic density profil

$$g_{h_iW^+W^-})_{\mu
u}=g_2M_WZ_{h1i}g_{\mu
u},$$
 with generally $Z_{h12}\ll Z_{h13}$

$$M_{Z_2}=850$$
 GeV, $M_{\tilde{
u}_R}=20$ GeV, $an eta=10$ and $A_{\lambda}=100$ GeV

Arround
$$\mu = 600 \text{ GeV}$$
 :

$$\frac{v}{v_s} \approx \frac{2Z_{h3}}{Z_{h11}}$$

Direct detection constraint

Abelian gauge boson contribution to direct detection :

$$\begin{split} \sigma_{\tilde{\nu}_R N}^{Z_1,Z_2} &= \frac{\mu_{\tilde{\nu}_R N}^2}{\pi} (g_1' Q_{\tilde{\nu}}')^2 [(y(1-4s_W^2)+y')Z+(-y+2y')(A-Z)]^2 \\ \text{with } y &= \frac{g' \sin \alpha_Z \cos \alpha_Z}{4 \sin \theta_W} \left(\frac{1}{M_{Z_2}^2} - \frac{1}{M_{Z_1}^2}\right), \ y' &= -\frac{g_1'}{2} \frac{Q_V'^d}{Q_V'} \left(\frac{\sin^2 \alpha_Z}{M_{Z_1}^2} + \frac{\cos^2 \alpha_Z}{M_{Z_2}^2}\right) \end{split}$$

$$M_1=2.2$$
 TeV, $A_\lambda=1$ TeV, $\mu=M_{\tilde{
u}_R}+300$ GeV and $M_{\tilde{
u}_R}=M_{Z_2}/2$

 \Rightarrow stringent constraints for small $|\theta_{E_6}|$ because of $Q_V^{'d}$ term

Coannihilation with sfermions

Sparticles sector:

$$\boxed{ M_{\tilde{f}}^2 = \begin{pmatrix} m_{\text{soft}}^2 + m_f^2 + M_{Z^0}^2 \cos 2\beta (l_f^3 - e_f \sin^2 \theta_W) + \Delta_f & m_f (A_f - \mu(t_\beta)^{-2l_f^3}) \\ m_f (A_f - \mu(t_\beta)^{-2l_f^3}) & m_{\tilde{\text{soft}}}^2 + M_{Z^0}^2 \cos 2\beta (l_{\tilde{f}}^3 - e_{\tilde{f}} \sin^2 \theta_W) + m_f^2 + \Delta_{\tilde{f}} \end{pmatrix} }$$

where
$$\Delta_f = \frac{1}{2} g_1'^2 Q_f' (Q_{H_d}' v_d^2 + Q_{H_u}' v_u^2 + Q_S' v_s^2)$$

 \Rightarrow in this graph Δ terms = $\operatorname{sgn}(\Delta_f)\sqrt{|\Delta_f|}$

Coannihilations ·

 $\theta_{E_6} > 0$: generally $\tilde{t_1}$ $\theta_{E_6} < 0$: generally RH down soarks