

MAT-243-J3996 Applied Statistics for STEM 23EW3

Print Module 5 Discussion Post

MAT-243-J3996 Applied Statistics for STEM 23EW3 Module Discussions 5-3 Discussion: Simple Linear Regression

Module 5 Discussion Post

Created by Traver Yates on Feb 1, 2023 3:19 PM

The scatterplot shows a negative trend; whereas the weight of the car increases, the miles per gallon decrease. This trend is expected because heavier cars generally have lower fuel efficiency. The correlation coefficient between miles per gallon and weight is -0.861287, which is a strong negative correlation. The sign of the correlation coefficient is negative, indicating that as the weight of the car increases, the miles per gallon decreases. The simple linear regression equation for miles per gallon as the response variable and weight as the predictor variable is mpg = 37.989 - 5.619 * weight. The car rental company can use this model to predict the miles per gallon of a car, given its weight. The slope coefficient is -5.619, which indicates that for every one-unit increase in weight, the miles per gallon decrease by 5.619 units. The P-value for weight in the Python output is 0, meaning that the coefficient is significant at a 5% significance level (alpha=0.05).

Cars data frame (showing only the first five observations)

	Unnamed: 0	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
10	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4

mpg wt mpg 1.000000 -0.861287 wt -0.861287 1.000000

OLS Regression Results

Dep. Variable	e:	m	pg	R-sq	uared:		0.742
Model:		OLS		Adj.	R-squared:		0.733
Method:		Least Squar	es	F-st	atistic:		80.45
Date:		Wed, 01 Feb 20	23	Prob	(F-statistic)	:	1.00e-09
Time:		13:13:	40	Log-	Likelihood:		-75.264
No. Observat:	ions:		30	AIC:			154.5
Df Residuals	:		28	BIC:			157.3
Df Model:			1				
Covariance Ty	ype:	nonrobu	st				
=========				=====		=======	
		f std err				_	=
Intercept		2.035					
wt	-5.618	0.626	-8		0.000		
	======					=======	
Omnibus:		4.3	95	Durb	in-Watson:		1.878
Prob(Omnibus):	0.1	11	Jarq	ue-Bera (JB):		3.458
Skew:		0.8	31	Prob	(JB):		0.177
Kurtosis:		3.0	50	Cond	. No.		12.8
=========	======		====	=====	========	=======	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

		• •	
N	l O	items	found