UNIT 4: SOFTWARE QUALITY MANAGEMENT & METRICS

1. Project Process Control

Introduction:

Project process control ensures project activities stay on track with timelines, resources, risk management, and quality goals. It enables early detection of issues and timely corrective actions.

Detailed Explanation:

Project control activities include progress control, risk management control, schedule control, resource control, and internal/external participant control. Techniques like milestone tracking, reports, periodic assessments, and resource monitoring help maintain project stability.

Conclusion:

Effective process control ensures projects meet goals within time, cost, and quality constraints.

2. Computerized Tools for Quality Management

Introduction:

Computerized tools streamline and automate quality assurance activities across project management, testing, version control, CI/CD, and documentation.

Detailed Explanation:

Examples include JIRA, Trello, Redmine (tracking tools), SonarQube (code analysis), Git (version control), Jenkins (automation), and JMeter (performance testing). Tools improve efficiency, transparency, and error reduction.

Conclusion:

Choosing the right tools enhances quality management efficiency and accuracy.

3. Software Quality Metrics

Introduction:
Metrics objectively measure software processes and product quality to guide improvements.
Detailed Explanation:
Metrics are classified into process metrics (development efficiency) and product metrics (product quality).
Examples: defect density, test coverage, review efficiency. Metrics support quality control, project
management, and risk mitigation.
Conclusion:
Effective metric use leads to continuous quality improvement.
4. Cost of Software Quality (CoSQ)
Introduction:
CoSQ measures the total cost associated with ensuring software quality.
Detailed Explanation:
It includes Prevention Costs (training), Appraisal Costs (testing), Internal Failure Costs (rework), and External
Failure Costs (customer complaints). Investing more in prevention and appraisal reduces failure costs.
Conclusion:
Tracking CoSQ helps balance quality improvement investments and cost efficiency.
5. Classical Quality Cost Model
Introduction:
The classical model divides quality costs into four categories for analysis.

Prevention, Appraisal, Internal Failure, and External Failure costs are tracked. Emphasizes investing in prevention/appraisal to avoid high failure costs.

Detailed Explanation:

Conclusion:
Helps organizations optimize resource allocation for quality assurance.
6. Extended Quality Cost Model
Introduction:
Extended model adds Measurement and Improvement Costs for modern quality practices.
Detailed Explanation:
Measurement costs cover data gathering/analysis, and improvement costs cover process enhancements.
Focus on proactive quality culture beyond defect fixing.
Conclusion:
Supports continuous process improvement and future-proofing software quality.
7. Application of Cost Models
Introduction:
Applies cost models practically for budgeting and improvement.
Detailed Explanation:
Involves planning, recording quality-related costs, analyzing patterns, and driving improvements.
Conclusion:
Application ensures better quality management, reduced defects, and efficient resource use.
UNIT 5: STANDARDS, CERTIFICATIONS & ASSESSMENTS

1. Quality Management Standards

Introduction:
Quality standards like ISO 9001 ensure products and services consistently meet customer requirements.
Detailed Explanation:
Principles include customer focus, leadership, engagement, process approach, and continual improvement.
Software standards include ISO/IEC 12207, ISO/IEC 15504, and IEEE 1012/1028.
Conclusion:
Standards enable global recognition, efficiency, and quality assurance.
2. Capability Maturity Models (CMM and CMMI)
Introduction:
CMM/CMMI guide process improvement in software development.
Civilvi/Civilvii guide process improvement in software development.
Detailed Explanation:
CMM defines 5 maturity levels; CMMI integrates multiple CMMs into one model with continuous/staged
representations, applied across software, systems, and services.
Conclusion:
Following CMMI ensures disciplined, predictable, and improving processes.
3. Evolution of CMM
Introduction:
CMM evolved to address broader quality needs.
Detailed Explanation:
Variants like SE-CMM, T-CMM, SSE-CMM, and P-CMM emerged. Later unified as CMMI for better
integration and application across industries.

Conclusion:
Evolution broadened quality focus and integration possibilities.
4. CMMI Structure and Process Areas
Introduction:
CMMI structure provides organized process improvement steps.
Detailed Explanation:
Staged and continuous representations; key process areas like Project Planning, Risk Management,
Quantitative Management, and Innovation Deployment.
Conclusion:
Following CMMI structure ensures systematic quality growth.
5. Bootstrap Methodology
Introduction:
Bootstrap is a lightweight European quality improvement framework.
Detailed Explanation:
Combines ISO and CMM concepts, uses graded assessments, and focuses on gradual improvements,
especially for SMEs.
Conclusion:
Enables small organizations to efficiently improve processes.
6. SPICE Project (ISO/IEC 15504)
Introduction:
SPICE standardizes software process assessments globally.

Detailed Explanation:
Defines Process Reference Model, Assessment Model, and Measurement Framework (Level 0-5
Encourages systematic evaluation and improvement.
Conclusion:
SPICE ensures global process quality comparability.
7. Software Project Process Standards (IEEE 1012 & IEEE 1028)
Introduction:
Process standards regulate verification, validation, and review activities.
Detailed Explanation:
IEEE 1012 focuses on V&V, ensuring products meet requirements; IEEE 1028 defines review type
(inspections, walkthroughs, audits).
Conclusion:
Structured reviews and V&V improve quality and reliability.
8. Department Management Responsibilities
Introduction:
Department managers operationalize SQA principles.
Detailed Explanation:
Plan SQA activities, monitor compliance, manage project risks, allocate resources, and liaise with to
management. Ensure departmental quality alignment with organizational goals.
Conclusion:
Their role ensures consistent process execution and product quality.

9. Project Management Responsibilities

_	
Introd	luction:

Project managers drive quality within projects.

Detailed Explanation:

Prepare project/quality plans, oversee reviews/testing, manage staffing/training, handle customer communication, and intervene in schedule/resource deviations.

Conclusion:

Project managers are key to balancing quality, cost, and timelines effectively.