On Multiphase-Linear Ranking Functions

Xie Li

May 7, 2020

Contributions

- Equivalence of different classes of ranking function.
- ▶ Algorithms for converting between ranking functions.
- Complete solution for ranking functions on integer.
- Depth bound and iteration bound for MΦRF.

Single Path Linear Constraint Loop

Example

while
$$(x \ge -z)$$
 do $x' = x + y$, $y' = y + z$, $z' = z - 1$

while
$$(x_2-x_1\leq 0,\, x_1+x_2\geq 1)$$
 do $x_2'=x_2-2x_1+1,\, x_1'=x_1$

Definition (SLC)

while
$$(B\mathbf{x} \leq \mathbf{b})$$
 do $A\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix} \leq \mathbf{c}$

$$A'' = \begin{pmatrix} B & 0 \\ A \end{pmatrix} \qquad \qquad \mathbf{c}'' = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

Ranking Functions

Definition (Linear Ranking Function(LRF))

$$f(x_1,...,x_n) = a_1x_1 + ... a_nx_n + a_0$$
, such that

- $f(\mathbf{x}) \ge 0$ for any \mathbf{x} satisfies the loop constraints.
- ▶ $f(\mathbf{x}) f(\mathbf{x}') \ge 1$ for any transition from \mathbf{x} to \mathbf{x}' .

Example

while
$$(x-1>0)$$
do $x'=x-1$

Its LRF:
$$f(x) = x - 1$$

We can define a binary relation $\mathbf{x} \succeq \mathbf{x}'$ iff $f(\mathbf{x}) - f(\mathbf{x}') \ge 1$ and $f(\mathbf{x}) \ge 0$

Example: Multiphase Ranking Function

Problem: LRF is not strong enough for all loops.

Example

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

$$f(x, y, z) = a_1x + a_2y + a_3z + b$$

y cannot be used for non-existence of its lower bound.

$$f(x,y,z)=x+z$$

Problem?

Example: Multiphase Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Attempt to use a ranking function that has several phases: $\langle z+1,y+1,x \rangle$

X	у	Z	z+1	y+1	X
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	-7	2
-6	-13	-6	-5	-12	-6

Multiphase Ranking Function

Definition

Given a set of transitions $T\subseteq \mathbb{Q}^{2n}$, we say $\langle f_1,\ldots,f_d\rangle$ is a multiphase ranking function for T if for every $\mathbf{x}''\in T$, there is an index $i\in [1,d]$, s.t.

$$\forall j \leq i \cdot \Delta f_j(\mathbf{x}'') \geq 1,$$

 $f_i(\mathbf{x}) \geq 0,$
 $\forall j < i \cdot f_j(\mathbf{x}) \leq 0.$

We say that \mathbf{x}'' is ranked by f_i (for the minimal).

Example Revisit

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

 $\forall j \le i \cdot \Delta f_j(\mathbf{x}'') \ge 1,$ $f_i(\mathbf{x}) \ge 0,$ $\forall j < i \cdot f_j(\mathbf{x}) \le 0.$

Nested Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Loop condition: x + z > 0. We only want to use this constraint for the ranking function.

$$\langle z+1, y+1, x+z \rangle$$

Definition (Nested Ranking Function)

A tuple $\langle f_1, \dots, f_d \rangle$ is a nested ranking function for T if the following requirements are satisfied for all $\mathbf{x}'' \in T$

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

Let $f_0 = 0$.

Nested is Multiphase, but not the opposite.

Lexicography Linear Ranking Function

Intuition: remind binary relation $\mathbf{x} \succeq \mathbf{x}'$ iff $f(\mathbf{x}) - f(\mathbf{x}') \ge 1$ and $f(\mathbf{x}) \ge 0$.

Generalize it into several phases using lexicographical order of ranking functions.

$$\langle f_1, f_2, \dots, f_d \rangle$$

(2, 3, 1, 3) \geq (2, 1, 5, 4)

Definition (LLRF)

Given a set of transitions T we say that $\langle f_1, f_2, \dots, f_d \rangle$ is a LLRF (of depth d) for T if for every $\mathbf{x}'' \in T$ there is an index i such that

$$\forall j < i \cdot \Delta f_j(\mathbf{x''}) \ge 0,$$

 $\Delta f_i(\mathbf{x''}) \ge 1,$
 $f_i(\mathbf{x}) \ge 0,$

A LLRF is weak if...

Example: LLRF

Example

while
$$(x\geq 0,y\leq 10,z\geq 0,z\leq 1)$$
do
$$x'=x+y+z-10,y'=y+z,z'=z-1$$
 $\langle 4y,4x-4z+1\rangle$

Example: MΦRF is a LLRF

$$\forall j < i \cdot \Delta f_j(\mathbf{x''}) \ge 0,$$

 $\Delta f_i(\mathbf{x''}) \ge 1,$
 $f_i(\mathbf{x}) \ge 0,$

while (x>-z)do x'=x+y, y'=y+z, z=z-1Attempt to use a ranking function that has several phases: $\langle z+1,y+1,x\rangle$

X	у	Z	z+1	y+1	X
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	−7	2
-6	-13	-6	-5	-12	-6

LLRF to MΦRF?

Theorem (weak LLRF to MΦRF)

If T has a weak LLRF of depth d, it has a $M\Phi RF$ of depth d.