

Our course agenda

- Introduction and overview
- NumPy: Basic data handling with Numpy arrays
- Pandas
 - Exploratory data analysis
 - Data consolidation
 - Data cleaning
- Data visualization using Matplotlib and Seaborn
- Interacting with APIs
- Interacting with SQL databases
- Version Control with Git and GitHub
- Advanced Python

Python foundations

Operators

Functions

Control flow and iterators

Programming concepts & paradigms

See also Precourse Programming

Tooling

Installation

Visual Studio Code

Jupyter Notebooks

Packages

Virtual Environments

Git and Github

Python

Pandas in the Data Science Process

Be prepared

80 percent of a data scientist's valuable time is spent simply finding, cleansing, and organizing data, leaving only 20 percent to actually perform analysis...

IBM Data Analytics

Messy data

"Happy families are all alike; every unhappy family is unhappy in its own way."

— Leo Tolstoy

"Tidy datasets are all alike, but every messy dataset is messy in its own way."

— Hadley Wickham

Merge

Merge or join two datasets based on a common set of key columns

Key

	fruit	amount
0	"apples"	3
1	"bananas"	2
2	"cherries	5

_		fruit	price
	0	"cherries	3.49
	1	"bananas"	1.99
	2	"apples"	2.99

	fruit	amount	price
0	"apples"	3	2.99
1	"bananas"	2	1.99
2	"cherries	5	3.49

Inner Merge

▶ Use only intersection of keys from the left and right table

	fruit	amount
0	"apples"	3
1	"bananas"	2
2	"cherries	5

	fruit	price
0	"apples"	2.99
1	"bananas"	1.99
2	"dates"	4.99

<pre>pd.merge(left=amounts,)</pre>								
0	۰	0	0		0	0	0	right=prices,
	۰	۰	0			۰	0	·on="fruit",
	۰	0						<pre>how = "inner")</pre>

	fruit	amount	price
0	"apples"	3	2.99
1	"bananas"	2	1.99

Left Merge

Only keys from the left table

	fruit	amount
0	"apples"	3
1	"bananas"	2
2	"cherries	5

	fruit	price
0	"apples"	2.99
1	"bananas"	1.99
2	"dates"	4.99

<pre>pd.merge(left=amounts,</pre>							
	۰	۰	۰	o	۰	0	right=prices,
0	۰	۰	0	٥		۰	·on="fruit",
0	۰	0		o			how = "left")

	fruit	amount	price
0	"apples"	3	2.99
1	"bananas"	2	1.99
2	"cherries	5	NaN

Outer Merge

► Keys from the left and right table (union)

	fruit	amount
0	"apples"	3
1	"bananas"	2
2	"cherries	5

	fruit	price
0	"apples"	2.99
1	"bananas"	1.99
2	"dates"	4.99

pd.merge(left=amounts,							
	٠	۰	0	0		۰	right=prices,
	۰	٠	0			٠	·on="fruit",
	٠	٠					how = "outer")

	fruit	amount	price
0	"apples"	3	2.99
1	"bananas"	2	1.99
2	"cherries	5	NaN
3	"dates"	NaN	4.99

Pandas Merge Method

```
pd.merge(
                                               left: 'DataFrame | Series',
                                               right: 'DataFrame | Series',
                                               how: 'MergeHow' = 'inner',
                                               on: 'IndexLabel | None' = None,
                                              left on: IndexLabel | None' = None,
Useful if key columns have different names
                                              right_on: | 'IndexLabel | None' = None,
                                              left index: 'bool' = False,
       Merge can be performed via index
                                              right_index: 'bool' = False,
                                               sort: 'bool' = False,
  If left and right table contain identical
                                              suffixes: 'Suffixes' = ('_x', '_y'),
  column names, append specified suffixes
                                               copy: 'bool | None' = None,
                                              indicator: 'str | bool' = False,
Check merge success via merge indicator
                                              validate: 'str | None' = None,
                                               'DataFrame'
```

Merge Type Guidelines

Choice of merge type depends on use case!

- Choice only matters if data is incomplete
- ► Fact + Dimension Table → often left Join
- ► Fact + Fact Table → often outer Join

Always check for problems

- Do the keys match?
- If not, what are the reasons?
- Can you improve the merge?
 - e.g. provide consistent spelling in keys: DE vs. DEU
 - e.g. add new products to product dimension table

Pandas Concat Method

- Concatenate one below the other (axis = 0)
- Column names are matched
- Outer join: NaN values are filled in if column name is missing

				oncat(objs=[day1, day2],	
0		0		axis=0,	
0	۰			···join='outer',	
0	۰	۰	0	···ignore_index=True)	

	fruit	date	amount	price
0	"apples"	2024-03-01	5	2.99
1	"bananas"	2024-03-01	4	1.99
2	"cherries	2024-03-01	3	3.99

	fruit	date	
0	"apples"	10	2024-03-02
1	"bananas"	8	2024-03-02
2	"cherries	9	2024-03-02

	fruit	date	amount	price
0	"apples"	2024-03-01	5	2.99
1	"bananas"	2024-03-01	4	1.99
2	"cherries	2024-03-01	3	3.99
3	"apples"	2024-03-02	10	NaN
4	"bananas"	2024-03-02	8	NaN
5	"cherries	2024-03-02	9	NaN

Pandas Concat Method

- Concatenate <u>side</u> by <u>side</u> (axis = 1)
- Row names (indices) are matched
- Outer join: NaN values are filled in if index is missing
- → Equivalent to an outer merge <u>based on index</u>

ŀ	۰		0			0	axis=0,
0	۰	0	0	e.		0	· join='outer',
0	۰	۰	0	o	0	0	··ignore_index=True)

pd.concat(obis=[dav1, dav2],

	amount
"apples"	5
"bananas"	4
"cherries	3

	price
"apples"	2.99
"cherries	3.99
"bananas"	1.99
"dates"	4.99

	amount	price
"apples"	5	2.99
"bananas"	4	1.99
"cherries	3	3.99
"dates"	6	4.99

Tidy data?

	fruit	year	type	value
0	apples	2023	amount	5
1	apples	2023	price	2.99
2	apples	2024	amount	10
3	apples	2024	price	2.99
4	bananas	2023	amount	4
5	bananas	2023	price	1.99
6	bananas	2024	amount	8
7	bananas	2024	price	2.29
8	cherries	2023	amount	3
9	cherries	2023	price	3.99
10	cherries	2024	amount	9
11	cherries	2024	price	3.89

Tidy data?

	Amount		Price	
	2023	2024	2023	2024
apples	5	10	2.99	2.99
bananas	4	8	1.99	2.29
cherries	3	9	3.99	3.89

Tidy data?

	fruit	year	details
0	apples	2023	{"amount":5, "price": 2.99}
1	bananas	2023	{"amount":4, "price": 1.99}
2	cherries	2023	{"amount":3, "price": 3.99}
3	apples	2024	{"amount":10, "price": 2.99}
4	bananas	2024	{"amount":8, "price": 2.29}
5	cherries	2024	{"amount":9, "price": 3.89}

What defines tidy data?

1. Each variable forms one column

3.
Every value
has its
own cell

	fruit	year	amount	price
0	apples	2023	5	2.99
1	bananas	2023	4	1.99
2	cherries	2023	3	3.99
3	apples	2024	10	2.99
4	bananas	2024	8	2.29
5	cherries	2024	9	3.89

2.
Every
observation
forms one row

Benefits of tidy data

- ► Having data in a tidy format often simplisfies data analysis and processing:
 - Vectorized operations on columns (e.g. aggregations)
 - Data visualization packages (Seaborn, Plotly, Altair) prefer tidy data
 - Facilitates merge operations
 - Often necessary preprocessing step before statistical analysis of machine learning
- Some other use cases favor other formatting:
 - Reporting and presentation often favors a "wide" format
 - Heatmap visualizations often favor a "wide" format
- → Become confident with reshaping of data

Set and reset index

- ► Index methods
 - ◆ set_index: columns → indices
 - ◆ reset_index: indices → column
 - swaplevels

			Temperature	Wind
			°c	mph
	Oxford	2022-03-01	15	8
MultiIndex Rows	Oxiora	2022-03-02	16	9
Widitillidex Flows	London	2022-03-01	18	7
	London	2022-03-02	17.5	6

MultiIndex Columns

Stack and unstack

Shortcuts: pivot and melt

pivot: set_index + unstack

melt: stack + reset_index

	foo	bar	baz	Z00
0	one	Α	1	Х
1	one	В	2	у
2	one	С	3	Z
3	two	Α	4	q
4	two	В	5	W
5	two	С	6	t

bar	A	В	С
foo			
one	1	2	3
two	4	5	6

Missing values

Pandas methods:

- **isna** or **notna**: identify missing values
- dropna: dropping rows (axis=0) or columns (axis=1) with missing values
- ▶ fillna: replace missing values by specific other value
- fillna(method="",pad"): forward propagation
- ▶ interpolate: e.g. linear interpolation between existing values in time series

Imputation via other Python packages:

- sklearn
- fancyimpute
- missingno (visualization of NaN)

Types

Pandas dtype	Usage
object	Text or mixed numeric and
	non-numeric
int64	Integer numbers
float64	Floating point numbers
bool	True/False values
datetime64	Date and time values
timedelta[ns]	Differences between two datetimes
category	Finite list of text values

Get Data Types:

- df.dtypes
- df.info()

Convert Type:

- astype(type)
- to_numeric()
- to_datetime()

Dedicated functions/attributes:

- pd.Series.str.count()
- pd.Series.dt.year
- •

Many more useful functions

- **drop()**: Dropping columns or rows
- **rename()**: Rename columns or row index
- transform(): e.g. add aggregates at the group level to original DataFrame
- > apply(): apply some function to rows or columns of the DataFrame
- •••