Topos Theory - Exercise Sheet 1

1. Show that a map $m: A \rightarrow B$ is a monomorphism if and only if the square

$$\begin{array}{ccc} A & & & & \\ \parallel & & & \downarrow^m \\ A & & & & B \end{array}$$

is a pullback. (And so a map is an epi if and only if ...)

- 2. Show that every equalizer is a mono (and therefore, every coequalizer is an epi).
- 3. Conversely, in a topos check that any mono $m:A\rightarrowtail B$ is an equalizer

$$A
ightharpoonup m
ightharpoonup B $\xrightarrow{\operatorname{true}_B} \Omega$$$

where true_B is the composite $B \to 1 \xrightarrow{\operatorname{true}} \Omega$ and $\chi_m : B \to \Omega$ is the classifying map of m.

4. Suppose we have an equalizer diagram

$$E \xrightarrow{e} A \xrightarrow{f} B$$

for the same map f, then e is an isomorphism.

- 5. For a category \mathcal{E} , let $M(\mathcal{E})$ be the category whose objects are the monomorphisms of \mathcal{E} and whose morphisms are pullback squares of monos. Show that a subobject classifier is the same thing as a terminal object of the category $M(\mathcal{E})$.
- 6. Let $f: A \to B$ be a morphism.
 - (a) Show that $(1, f): A \to A \times B$ is mono
 - (b) Define the graph G_f of f to be the subobject corresponding to this mono. Show that if $f': A \to B$ is another morphism such that $G_f = G_{f'}$ as subobjects of $A \times B$, then f = f'.

1