This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

	-	·			A #Marin	<u> </u>		. ±					~			
				3	1	•	•			-						
			4.1	.i	* *	, .		•			,	*,	, è			
				 _{qk} \$, j ! 	.a.	i i		1 	e e y							
		i.			•				•					. **		
11/3	***	**		\$					•	(**. ** *)						
						a,				4 .		¥				
4.65		94	*.	*	į.			a	.	· #			M An experience		, r. v.	
- 5						i i j			75	. 194	, k.	6°;	· .		*	
:			*				÷.						- 1			
			1 14+	ine n	e enje	, , , , , , , , , , , , , , , , , , ,							411	1.		
. •5	3	**		, 1	. \$2	¥.		*		₩.						4
	* .		7.75	. •	.					iserim of a≽	ş.'	4 * * * * * * * * * * * * * * * * * * *		* ***	47), 1	<i>,</i> = 1
			4 1. 3+			• •	ž				· .	ر شد د				
	n.								,			ं शक्त	Α.		· · · · · · · · · · · · · · · · · · ·	
		. 11		·					÷	· · ·	ألهو					
						,					: "	4. T				
		.N*				,				*				-		•
						<u> </u>	4								r.	
				3	\$							*				
	F_{-}					je.		ē	·ē			•				
	• .							1	*							
							*		e*				· ·			
	1					•	:: :x -		•					•		
,	- -						* 1						: .			
					• • • •		day		,	- -				.*		
			, ***	2 - 2 62		*.		***		· ·	6		119 (#			•
								i		· *						
						•										
		* 21	ep .													
		1						4 Tes			A			k .		
-,4			*					* * * * * * * * * * * * * * * * * * *	Į.							
. 40	•	-						•		,						
						, t ·				4	1	t the	5 •···	218		
				:	1.					7.4				•.		
	n								•	ě.			*		,	
			,				1.						÷			
	* *	· ij	N.				* .							ruik .		. · ·
	**************************************						e Egreph	"ኔ ·		4	i,		•			
				•					¢	7 *						

4

HU 00/66

REC'D 1 2 SEP 2000

WIPO PCT

MAGYAR KÖZTÁRSASÁG

ELSŐBBSÉGI TANÚSÍTVÁNY

Ügyszám: P9902352

A Magyar Szabadalmi Hivatal tanúsítja, hogy

Gyógyszerkutató Intézet Kft., Budapest,

Magyarországon

1999. 07. 12. napján

26550/99 iktatószám alatt,

Eljárás pravasztatin mikrobiológiai előállítására

című találmányt jelentett be szabadalmazásra.

Az idefűzött másolat a bejelentéssel egyidejűleg benyújtott melléklettel mindenben megegyezik.

Budapest, 2000. év 07. hó 19. napján

a Szabadalmi Főosztály vezetője

The Hungarian Patent Office certifies in this priority certificate that the said applicant(s) filed a patent application at the specified date under the indicated title, application number and registration number. The attached photocopy is a true copy of specification filed with the application.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

ELSŐBBSÉGI PÉLDANY

1999 JÚL 12

Szolgálati találmány

Eljárás pravasztatin mikrobiológiai előállítására

Feltalálók:	
Jekkel Antalné dr.	40 %
Dr. Ambrus Gábor	8 %
Dr. Ilkőy Éva	8 %
Horváth Csabáné	7 %
Dr. Szabó István Mihály	5 %
Nagyné Szabó Zsuzsanna	5 %
Dr. Horváth Gyula	5 %
Mózesné Sütő Julianna	5 %
Barta István	4 %
Somogyi György	3 %
Salát János	2 %

	Budapest	
Kónya Attila	•	6 %
	Szolnok	

Boros Sándor		2 %
	Sződ	

A bejelentés napja: 1999. 07.

A találmány tárgya új eljárás a HMG-CoA reduktáz gátló pravasztatin mikrobiológiai előállítására.

A találmány közelebbről eljárás az (I) képletű vegyület mikrobiológiai előállítására valamely, a (II) képletű vegyület - ahol R⁺ jelentése alkálifém, vagy ammónium-ion - hidroxilezésére képes mikroorganizmus alkalmazásával, ahol a mikroorganizmus a Micromonospora genusba tartozó prokariota szervezet

Az atherosclerosis és különösen a szív koszorúérelzáródás legnagyobb kockázati tényezője a vérplazma magas koleszterin szintje. Az elmúlt két évtizedben kiterjedten tanulmányozták a szervezetben végbemenő koleszterin bioszintézis sebességét meghatározó kulcsenzimet, a 3-hidroxi-3-metil-glutaril-koenzim A reduktázt (EC.-1.1.1.34.). A mevinolin és a vele rokonszerkezetű vegyületek, melyeket különböző gombafajok bioszintetizálnak, kompetitív inhibitorai ennek az enzimnek [A. Endo és munkatársai, J. Antibiot. 29, 1346-1348 (1976); A. Endo és munkatársai, FEBS Lett. 72, 323-326 (1976); C.H. Kuo és munkatársai, J. Org. Chem. 48, 1991-1998 (1983)].

A pravasztatin szintén a HMG-CoA reduktáz enzim inhibitora. A pravasztatint M. Tanaka és munkatársai izolálták először (nem publikált eredmények) kutya vizeletéből, a kompaktin metabolizmusának tanulmányozása során [M. Arai és munkatársai, Sankyo Kenkyusyo Nenpo, 40, 1-38 (1988)]. A pravasztatin (a kompaktinsav-nátriumsójának hidroxilezett terméke) legjellemzőbb tulajdonsága a szövetszelektivitás, mely abban nyilvánul meg, hogy a koleszterin szintézist erősen gátolja a májban és a vékonybélben, míg más szervekben ez az enzimgátló hatás csak alig mutatható ki. Igen kedvező továbbá, hogy a pravasztatinnak a többi, forgalomban lévő HMG-CoA reduktáz inhibitor gyógyszerekkel szemben alacsony a toxicitása.

Az ismert szabadalmi leírások szerint a kompaktin mikrobiológiai hidroxilezése pravasztatinná eltérő mértékű konverzióval valósítható meg különböző nemzetségekbe tartozó gomba fajokkal, valamint az Actinomycetales rendbe tartozó baktériumokkal, így a Nocardia és az Actinomadura genusba tartozó egyes fajokkal, továbbá számos, Streptomyces genusba tartozó fajjal, köztük előnyösen a Streptomyces roseochromogenes és Streptomyces carbophilus fajokkal (5,179,013; 4,448,979; 4,346,227 és a 4,537,859 számú Amerikai

Egyesült Államok-beli szabadalmi leírások, 58,010,572 számú japán szabadalmi leirás).

Köztudott, hogy a pravasztatin fonalas gombákkal történő előállításánál általánosan előforduló problémát okoz, hogy a kompaktin antifungális hatása miatt a tenyészethez adagolt kompaktin szubsztrátot csak alacsony koncentrációban képesek elviselni a mikroorganizmusok [N. Serizawa és munkatársai, J. Antibiotics, 36, 887-891 (1983)].

Ismeretes az is, hogy a *Streptomyces carbophilus* törzsnél japán kutatók *in vitro* DNS rekombinációval kísérelték meg a hidroxilezőképesség fejlesztését. A kompaktin pravasztatinná való hidroxilezéséhez citokróm P-450 mono-oxigenáz rendszer szükséges [T. Matsuoka és mtsi., Eur. J. Biochem. **184**, 707-713, (1989)]. A szerzők szerint azonban a bakteriális citokróm P-450 monooxigenáz rendszerben, az elektrontranszportban nem egy, hanem több fehérje játszik szerepet, ami a rekombináns DNS-technika alkalmazását megnehezíti.

A találmány célja olyan új mikrobiológiai eljárás kidolgozása volt, amellyel a korábbi szabadalmi leírásokban megadottaknál előnyösebben lehet kompaktinból pravasztatint előállítani.

Mintegy 6000, Actinomycetales rendbe tartozó, mikroorganizmus törzsre kiterjedő szűrővizsgálatunk során olyan hidroxiláz enzimmel rendelkező prokariota mikroorganizmus törzseket kerestünk, amelyek felhasználásával a kompaktint magas koncentrációban alakíthatjuk pravasztatinná. A screening vizsgálat eredményeként 10 baktérium törzset választottunk ki, melyek a kompaktint 6β-helyzetben képesek hidroxilezni.

A taxonómiai vizsgálatok szerint a kiválasztott 10 törzsből 5 törzs Streptomyces genusba tartozó fajok képviselőjeként volt azonosítható. Nevezetesen:

Streptomyces violaceus No. 1/43 (Kämpfer et al., 1991) Streptomyces rochei No. 1/41 (Berger et al., 1989) Streptomyces resistomycificus No. 1/44 (Lindenbein, 1952) Streptomyces lanatus (Frommer, 1959) Streptomyces sp. No. 1/28

A további 5 törzsről pedig megállapítottuk, hogy a Micromonospora genusba sorolható.

Miután a Micromonospora-król mind ez idáig nem volt ismeretes az irodalomból, hogy képesek a kompaktin 6β-hidroxilezése révén pravasztatint előállítani, ezért behatóan tanulmányoztuk a Micromonospora genusba tartozó mikroorganizmusokat.

A Micromonospora genus az Actinomycetales rendbe sorolható.

A <u>Micromonospora</u> genusba (Ørskov, 1923) tartozó fajok jellemzői az alábbiak: A jól fejlett, elágazó és szeptált micélium átlagosan 0,5 μm átmérővel rendelkezik. A mozgékonyságot nem mutató spórák magányosak, szesszilisek vagy rövid, ill. hosszú sporofórákon helyezkednek el, gyakran elágazó nyalábokban találhatók. A sporofórák elágazása általában monopodiális, ritkán szimpodiális. Légmicélium általában nincs, esetleg egyes tenyészetekben mint fehér vagy szürkés pszeudolégmicélium látható. A sejtfal mezodiaminopimelinsavat és/vagy ennek 3-hidroxi származékait és glicint tartalmaz. A sejthidrolizátumokból xilóz és arabinóz mutatható ki. Jellemző foszfolipidek: foszfatidiletanolamin, foszfatidilinozit és foszfatidilinozit-mannozidok. A Micromonospora fajok aerob vagy mikroaerofil és kemoorganotróf szervezetek, melyek érzékenyek 6,0 alatti pH értékekre. 20-40°C közötti hőmérsékleten általában növekednek, de 50°C felett már növekedés nem tapasztalható. Típusfaj: *Micromonospora chalcea* (Foulerton, 1905), (Ørskov, 1923).

Az általunk kiválasztott 5, Micromonospora genusba tartozó törzs közül 4 törzset a beható taxonómiai vizsgálatok alapján ismert Micromonospora fajok képviselőiként azonosítottunk. Nevezetesen, az általunk *Micromonospora purpurea* No. IDR-P₄-nek, illetve *Micromonospora echinospora ssp. echinospora* No. IDR-P₅-nek, továbbá *Micromonospora rosaria* No. IDR-P₇-nek jelölt izolátumok a Luedemann és Brodsky (1964) által leírt *M. purpurea*, illetve *M. echinospora*, valamint a Horan és Brodsky (1986) által leírt *M. rosaria* fajok képviselőinek, míg az általunk *Micromonospora megalomicea ssp. nigra* No. IDR-P₆-nak jelölt izolátum a Weinstein és munkatársai (1969) által leírt *M. megalomicea* faj képviselőjének bizonyult. Míg a screening vizsgálataink során kiválasztott *Micromonospora* sp. No. IDR-P₃-nak jelölt izolátum, - amely

0,1 g/liter kompaktinsav-nátriumsót 90 %-os hozammal volt képes pravasztatinná hidroxilezni - az elvégzett taxonómiai vizsgálatok alapján nem volt besorolható egyik ismert Micromonospora fajba sem.

Miután vizsgálataink szerint a Micromonospora genus egymástól rendszertanilag jelentősen különböző fajairól bizonyosodtunk meg, hogy képesek a kompaktin θβ-helyzetű hidroxilezésére, így e tulajdenságet a Micromonosporagenus fajainak jellemző tulajdonságaként értékeljük.

Az általunk kiválasztott *Micromonospora sp.* IDR- P_3 jelű törzset NCAIM P (B) 001268, a *Micromonospora purpurea* IDR- P_4 jelű törzset NCAIM P (B) 001271, a *Micromonospora echinospora ssp. echinospora* IDR- P_5 jelű törzset NCAIM P (B) 001272, a *Micromonospora megalomicea ssp. nigra* IDR- P_6 jelű törzset NCAIM P (B) 001273 és a *Micromonospora rosaria* IDR- P_7 jelű törzset NCAIM P (B) 001274 számon letétbe helyeztük a Mezőgazdasági és Ipari Mikroorganizmusok Nemzeti Gyűjteményében.

A legjobb biokonverziós képességgel rendelkező *Micromonospora sp.* IDR-P₃ jelű törzs tenyészetében a pravasztatin főtermék mellett csak nagyon kis mennyiségben képződnek más vegyületek, ezért kíválóan alkalmas a pravasztatin ipari gyártására. Az általunk izolált új Micromonospora törzs diagnosztikai jellemzőit az alábbiakban foglalhatjuk össze.

Az IDR-P₃ jelzésű *Micromonospora* törzs leírása

Mikromorfológiai tulajdonságok:

A szubsztrátmicélium jól fejlett, inkább hajlott, mint egyenes lefutású fonalakból áll. Paránytenyészetekben a sporuláló hifák (sporofórák) monopodiális elágazása jól megfigyelhető. A magányos spórák gömbölyűek, kb. 1,8 µm átmérőjűek, elszórtan találhatóak a hifafonalak mentén, szesszilisek vagy rövid nyél végén helyezkednek el. Levestenyészetekben a sporuláló hifafonalakon spórákat megfigyelni alig lehet, mert az érett spórák gyorsan kiszabadulnak.

Kulturális-morfológiai tulajdonságok:

Czapek-szacharóz agar: Közepes növekedés, a vöröses kolóniák felszínén pontszerűen fekete sporuláló területek.

Glükóz-aszparagin agar: Megfelelő növekedés, pontszerű vagy összefüggő, kissé kiemelkedő, vörösesbarna vagy fekete kolóniák, vöröses oldódó pigment. Nutrient agar: Megfelelő növekedés, összefüggő és kissé kiemelkedő, vörösesbarna, ill. fekete kolóniák. Vörösesbarna oldódó pigment.

Élesztőkivonat-malátakivonat agar (ISP Med. 2): Különálló, de jól fejlett, erősen kiemelkedő és gyűrt felszínű kolóniák, barna, ill. drapp színűek, néhol sporuláló területekkei, valamint fehér vagy kissé szürkés pszeudolégmicéliummal. Barnás vagy barnásvörös oldódó pigment.

Anorganikus só-keményítő agar (ISP Med. 4): Közepes növekedés, vörösesbarna, alig kiemelkedő, kissé gyűrt felszínű kolóniák. Gyér, vöröses oldódó pigment.

Glicerin-aszparagin agar (ISP Med. 5): Növekedés nyomokban, piszkosfehér vagy halvány narancsszínű, nem kiemelkedő kolóniák. Igen gyér, rózsaszínes oldódó pigment.

Az egyes táptalajokon megfigyelhető oldódó pigment részleges indikátorkarakterű: sav hatására sárga színű lesz, míg lúg hatására csak kissé változik, ekkor árnyalata sötétebb lesz.

Szénforrás értékesítés:

L-arabinózt, D-cellobiózt, D-fruktózt, D-glükózt, laktózt, D-maltózt, D-mannitot, D-mannózt, α-metil-D-glükozidot, L-ramnózt, D-ribózt, D-szacharózt, D-trehalózt és D-xilózt jól értékesít, viszont az adonit, dulcit, mio-inozit, inulin, D-melicitóz, D-raffinóz szénforrásokat nem hasznosítja. D-galaktóz, glicerin, D-melibióz és szalicin jelenlétében a növekedés valamelyest jobb, mint a negatív kontrollon.

Nitrogénforrás értékesítés:

Élesztőkivonatot és NZ-Amine-t hasznosít, aszparagint, glutaminsavat, NH₄NO₃-ot és NaNO₃-ot nem értékesít.

Egyéb fiziológiai-biokémiai tulajdonságok:

Keményítő, cellulóz bontása és tej emésztése erősen pozitív, nitrát-redukció negatív. Ferde burgonyaszeleten CaCO₃ nélkül (pH 5,8-6,0) nem növekedik.

Előfordulási helye:

Az IDR-P₃ jelzésű *Micromonospora* törzset a Balaton fenéküledékéből vett iszap-mintából izoláltuk.

A fentiek alapján a találmány új, mikrobiológiai eljárás az (I) képletű vegyület előállítására valamely (II) általános képletű - ahol R⁺ jelentése alkálifém, vagy ammónium-ion - vegyületből a (II) általános képletű vegyületet 6β-helyzetben hidroxilezni képes baktérium süllyesztett tenyészetével végzett aerob fermentációval és a biokonverzió során keletkező (I) képletű termék elkülönítése és tisztítása útján, amely abban áll, hogy a Micromonospora genus valamely, a (II) általános képletű vegyületet - ahol R⁺ jelentése a fenti - 6β-helyzetben hidroxilező speciesének kiválasztott törzsét asszimilálható szénés nitrogénforrásokat, valamint ásványi sókat tartalmazó táptalajon 25-32°C-on tenyésztjük, a kinőtt tenyészethez hozzáadagoljuk az átalakítandó szubsztrátot és a fermentációt a biokonverzió befejeződéséig folytatjuk, majd a keletkező (I) képletű vegyületet elkülönítjük a tenyészetből és kívánt esetben tisztítjuk.

A találmány oltalmi köre kiterjed a Micromonospora fajok vad típusú törzseire vagy bármely mutánsaira, amelyek képesek a kompaktin pravasztatinná történő biokonverziójára.

A találmány szerinti eljárásban a pravasztatin előállítására előnyösen az NCAIM P (B) 001268 számon letétbe helyezett *Micromonospora sp.* IDR-P₃ jelű, vagy az NCAIM P (B) 001271 számon letétbe helyezett *Micromonospora purpurea* IDR-P₄ jelű, vagy az NCAIM P (B) 001272 számon letétbe helyezett *Micromonospora echinospora ssp. echinospora* IDR-P₅ jelű, vagy az NCAIM P (B) 001273 számon letétbe helyezett a *Micromonospora megalomicea ssp. nigra* IDR-P₆ jelű, vagy az NCAIM P (B) 001274 számon letétbe helyezett *Micromonospora rosaria* IDR-P₇ jelű baktérium törzs vagy ezek valamely mutánsa tenyészetét használjuk.

Különösen előnyös az NCAIM P (B) 001268 számon letétbe helyezett *Micromonospora sp.* IDR-P₃ jelű baktérium törzsnek, vagy valamely mutánsának alkalmazása.

A találmány szerinti eljárás során előnyösen in situ fermentációt végzünk, azaz a hidroxilezési reakció aktívan növekedő mikroorganizmusok jelenlétében megy végbe.

A biokonverzió végezhető rázatott lombik tenyészetben vagy levegőztetett és kevertetett körülmények között úgy, hogy a (II) képletű vegyületet a növekedésben lévő tenyészethez adagoljuk, habzásgátló alkalmazásával egyidejűleg. A mikroorganizmusok növekedéséhez eptimális összetételű, szénés nitrogénforrásokat, ásványi sókat és nyomelemeket tartalmazó táptalajokat használunk.

A kiválasztott prokariota törzsek asszimilálható szénforrásként különösen jól hasznosítják a glükózt, glicerint, dextrint, burgonya keményítőt, vízoldható keményítőt, ramnózt, xilózt, szacharózt, stb. Asszimilálható nitrogénforrásként pedig a szójaliszt, kukoricalekvár, élesztőkivonat, pepton, húskivonat, ammónium-citrát, ammónium-szulfát, stb. alkalmazhatók. A pravasztatin termelésére szolgáló táptalajokban ásványi sóként kalcium-karbonát, nátriumfoszfátok, kálium-foszfátok lehetnek még jelen. A mikroorganizmusok növekedéséhez különösen előnyös táptalajok összetételét a példákban adjuk meg.

A biokonverziós folyamat fermentációs technológiával valósítható meg, ami lehet "batch tenyészet" vagy "fed-batch tenyészet". Különösen előnyös a kevertetett, folyékony, szubmerz tenyészet alkalmazása. A mikroorganizmusok tenyésztésére alkalmas hőmérséklet 25-37°C, de különösen előnyös a 25 és 32°C közötti tartomány.

A tenyészetek pH-ja 6,0 és 9,0 értékek között előnyös, de különösen alkalmas pH-tartomány a 7,0-8,5 értékek között van a biokonverzió során. A tenyészetek kevertetése 200-400 rpm között előnyös, de legelőnyösebb 250 rpm alkalmazása.

A találmány szerinti eljárás során a kompaktinsav-nátriumsó különböző koncentrációban alkalmazható, előnyösen 0,1 és 10 g/liter között, de 0,3-2,0 g/liter között alkalmazva a legelőnyösebb.

A találmány szerinti eljárásban Micromonospora törzsek alkalmazásával a kompaktin pravasztatinná történő átalakítása legalább 30 %-os biokonverzióval valósítható meg, de a legelőnyösebb esetben kb. 90 %-os átalakítás is elérhető.

Fermentáció közben a tenyészet hatóanyagtartalmát nagynyomású folyadék-kromatográfiás (HPLC) módszerrel határozzuk meg. A fermentlé nagynyomású-folyadékkromatográfiás analízisénél etilalkohollal 2-szeresére hígított fermentlé minták centrifugált felülúszóját használjuk (készülék: Waters HPLC automata rendszer; oszloptöltet: Nucleosil C₁₈ 5 μ (BST) előtét kolonna; Waters Novapack C₁₈ 5 μ analitikai kolonna; oszlopméret: előtét kolonna: 40x4,6 mm; analitikai kolonna: 150x3,9 mm; mérés 236 nm-nél, eluensek: A-eluens: acetonitril - 0,1M vizes NaH₂PO₄ (25:75); B-eluens: acetonitril - víz (70:30); áramlási sebesség: 0,6-0,9 ml/perc lineáris gradienst használva a 100 % A eluenstől a 100 % B eluensig 10 perc; injektálási térfogat: 10 μl. Retenciós idők: pravasztatinsav 10,6 perc, pravasztatin lakton 17,3 perc.

A biokonverzió során keletkezett pravasztatin a fermentléből bármely ismert módszerrel elkülöníthető.

A termék fermentléből való kinyerésére előnyös lehetőséget nyújt az a tény, hogy a pravasztatin sav-formában keletkezik a biokonverzió során és így a tenyészet szűrletéből anioncserélő gyanta oszlopon megkötve elkülöníthető. A termék izolálásához előnyösen polisztirol-divinil-benzol vázú kvaterner ammónium aktív csoportot hordozó, erősen bázikus anioncserélő gyantát, például Dowex AI 400 (OHT), Dowex 1x2 (OHT), Dowex 2x4 (OHT), AMBERLITE IRA 900 (OH-) gyantát alkalmazhatunk. A fermentlé szűrletéből a termék a hidroxil-ciklusú anioncserélő gyanta bekeverésével közvetlenül is megköthető. Az ioncserélő gyantán megkötött terméket ecetsavat vagy nátrium-kloridot tartalmazó aceton-víz eleggyel előnyösen 1 tömeg% nátrium-kloridot tartalmazó aceton - ionmentes víz (1:1) eleggyel eluáljuk az oszlopról. A pravasztatint tartalmazó frakciókat egyesítjük és az eluátumban lévő acetont vakuumban lepároljuk. A sűrítmény pH-ját 3,5-4,0 közé állítjuk 15 %-os kénsavval, majd a vizes oldatot etilacetáttal extraháljuk. Az etilacetátos extraktumból 1/10 és 1/20 térfogatú 5 %-os nátrium-hidrogén-karbonát oldattal vagy enyhén lúgos (pH 7,5-8,0) kémhatású vízzel vonhatjuk ki a pravasztatint. Kísérleteink során azt

tapasztaltuk, hogy a pravasztatin az így nyert alkalikus vizes kivonatból nem ionos adszorbens-gyantán történő oszlopkromatográfiával tiszta állapotban előállítható. Előnyösen úgy járhatunk el, hogy először a lúgos-vizes kivonatból a kivonatolás során beoldódott etilacetátot vakuum desztillációval eltávolítjuk és Diaion HP-20 gyantaoszlopra visszük fel a vizes kivonatot. Az oszlopon megkötődött pravasztatin-nátriumsót fokozatosan növekvő aceton tartalmú vizes oldatokkal eluálva kromatográfiásan tisztítjuk, a főkónt pravasztatintartalmazó frakciókat egyesítjük és vakuumban besűrítjük. A sűrítményt aktív szénnel való derítés után liofilizáljuk és etanol - etilacetát elegyből kristályosítjuk. Így gyógyászati tisztaságú pravasztatinhoz jutunk.

A biokonverzió befejezése után a fermentléből vagy a baktérium sejtek elkülönítése után kapott szűrletből extrakcióval is kinyerhetjük a pravasztatint. A baktérium sejteket szűréssel vagy centrifugálással távolíthatjuk el, célszerű azonban, különösen ipari méretben, a teljes fermentlét extrahálni. Az extrakciót megelőzően a fermentlét, illetve a fermentlé szűrletet megsavanyítjuk 3,5-3,7 pH értékre ásványi savval, előnyösen híg kénsavval. Az extrakciót célszerűen az ecetsav 2-4-szénatomos alifás alkoholokkal képzett észtereivel, előnyösen etilacetáttal vagy izo-butilacetáttal végezzük. Az etilacetátos extraktumot vízzel mossuk, majd vízmentes nátrium-szulfáton szárítjuk. Ezt követően a pravasztatin sav-formájából lakton-származékot képzünk. A lakton-képzést a szárított etilacetátos oldatban végezzük szobahőmérsékleten, keverés közben katalitikus mennyiségű trifluor-ecetsavval előidézve a gyűrűzárást. Az átalakulást vékonyrétegkromatográfiás analízissel követjük. A laktonná alakulás befejeződése után az etilacetátos oldatot 5 tömeg%-os vizes nátrium-hidrogénkarbonát oldattal, majd vízzel mossuk, ezután vízmentes nátrium-szulfáton szárítjuk és vakuumban bepároljuk. A bepárlási maradékot szilikagél-oszlopkromatográfiával tisztítjuk, eluensként fokozatosan növekvő etilacetát tartalmú etilacetát - n-hexán elegyeket használva. Ezután a kromatográfiás tisztítással nyert pravasztatin-laktonból etanolos közegben ekvivalens mennyiségű nátrium-hidroxiddal hidrolizálva, szobahőmérsékleten pravasztatint állítunk elő. A pravasztatin képződés befejezése után a terméket acetonnal leválasztjuk. A kivált csapadékot szűrjük, acetonnal és n-hexánnal mossuk, majd vákuumban szárítjuk. Ezt követően etanol-etilacetát elegyből történő kristályosítással jutunk a kromatográfiásan tiszta pravasztatinhoz.

Megállapítottuk, hogy a Sephadex LH-gélen végzett kromatográfia is előnyösen alkalmazható a pravasztatin tisztítására, ezzel a módszerrel 99,5 %-nál tisztább pravasztatin is előállítható.

A pravasztatin fermentléből, vagy fermentlé szűrletből iparilag kivitelezhető módon történő és költségkímélő egyszerűen műveletekkel érdekében végzett kísérleteink során megállapítottuk, hogy az altalunk izolált, a (II) általános képletű vegyületet 6β-helyzetben hidroxilező Micromonospora törzsek, köztük a Micromonospora sp. IDR-P3 jelű törzs, fermentlevének vagy szűrletének szerves oldószeres extraktumából, előnyösen etilacetátos vagy izobutilacetátos kivonatából a sav-formában jelenlévő pravasztatin különböző szekunder aminokkal kristályos sóként leválasztható. A sóképzéshez alkil-, cikloalkil-, aralkil-, illetve aril-szubsztituenseket tartalmazó szekunder aminokat egyaránt alkalmasnak találtunk. Ezek közül célszerűen nem toxikus szekunder aminokat, például dioktil-amint, diciklohexil-amint, dibenzil-amint választottunk. A szerves szekunder amin só intermedier leválasztásánál, például a dibenzilamin-só esetében, célszerűen úgy járunk el, hogy az extraktumhoz a pravasztatin tartalomra számítva 1,5 ekvivalens dibenzil-amint adagolunk, majd az extraktumot besűrítjük az eredeti térfogat 5 %-ára vakuum desztillálással, majd újabb 0,2 ekvivalens dibenzil-amint adunk a sűrítményhez. A koncentrátumból a kristályos dibenzil-amin-só leválik. Ezután a kristályos nyersterméket leszűrjük és vakuumban súlyállandóságig szárítjuk, majd metanolos vagy acetonos oldatban aktív szénnel derítjük. Ezt követően acetonos átkristályosítással jutunk a vékonyrétegkromatográfiás vizsgálat alapján egységes pravasztatinsav-dibenzil-amin-só intermedierhez.

A pravasztatin szerves szekunder amin sói nátrium-hidroxiddal vagy nátrium-alkoholáttal, például nátrium-etiláttal pravasztatinná alakíthatók.

A pravasztatin szekunder amin só intermedieren keresztül végzett izolálása egyszerűbb eljárás az eddig ismert izolálási technológiáknál. Az eljárás kivitelezése során műtermékek nem keletkeznek, a pravasztatin tisztítása a biokonverzió során keletkező melléktermékektől és a hidroxilezést végző mikroorganizmus által bioszintetizált különböző anyagcsere termékektől előnyösen megoldható.

A találmány szerinti eljárást az alábbi példákkal szemléltetjük:

1. példa

A Micromonospora sp. IDR-P₃ jelű, NCAIM P (B) 001268 letéti számú baktérium törzs 7-10 napos, vízoldható keményítő tartalmú (SM), ferde agar tenyészetéről 5 ml desztillált vizzel sporaszuszpenziót készítűnk. Az ilymódonkapott spóraszuszpenzióval oltunk be 100 ml TI jelű inokulum táptalajt, melyet 500 ml-es Erlenmeyer lombikban mérve sterileztünk ki.

Az SM jelű agar táptalaj összetétele:

vízoldható keményítő	10,0 g
Na ₂ HPO ₄	1,15 g
KH ₂ PO ₄	0,25 g
KCI	0,2 g
MgSO ₄ x 7H ₂ O	0,2 g
agar	15,0 g
1000 ml desztillált vízben.	

Az agar táptalaj pH-ját sterilezés előtt 7,0 értékre állítjuk és 121°C-on 25 percig sterilezzük.

A TI-jelű inokulum táptalaj összetétele:

vízoldható keményítő	20,0 g
élesztőkivonat	10,0 g
1000 ml csapvízben.	

A táptalaj pH-ját sterilezés előtt 7,0 értékre állítjuk és 121°C-on 25 percig sterilezzük.

Az inokulum tenyészetet síkrázógépen rázatjuk (250 rpm, 2,5 cm kitérés) 3 napon át, 32°C hőmérsékleten, majd ennek az inokulum tenyészetnek 5-5 ml-ével 10 db 500 ml-es Erlenmeyer lombikban sterilezett, 100-100 ml TT jelű, 121°C-on, 25 percig sterilezett biokonverziós táptalajt oltunk be.

A TT jelű biokonverziós táptalaj összetétele:

burgonyakeményítő	30,0 g
szójaliszt	30,0 g
CaCO ₃	5,0 g
CoCl ₂ x 6H ₂ O	2,0 mg
pálmaolaj	2,0 g

1000 ml csapvizben.

A táptalaj pH-ját sterilezés előtt 7,0 értékre állítjuk.

A fermentációt 32°C-on 72 órán át síkrázógépen rázatva végezzük, majd a tenyészethez lombikonként 50 mg kompaktinsav-nátriumsót adagolunk steril desztillált vízben oldva és a biokonverziót további 96 órán át folytatjuk. A kompaktinsav-nátriumsó pravasztatinná való átalakításának HPLC-vel meghatározott mértéke 82 %. A fermentáció befejezése után a tenyészeteket egyesítjük. Az így kapott fermentléből, mely HPLC módszerrel mérve 410 mg pravasztatint tartalmaz, a hatóanyagot izoláljuk. A pravasztatin kinyerésekor az alábbi módon járunk el. A fermentlevet 2500 fordulatszámon 20 percen át centrifugáljuk. A centrifugált fermentlevet és a baktérium sejteket elválasztjuk, majd a micéliumot 250 ml vízzel 1 órán át kevertetjük és végül leszűrjük. A centrifugált fermentlé és a szűrlet egyesítése után az oldat kémhatását 15 %-os kénsavval pH 4-re állítjuk és 3x300 ml etilacetáttal extraháljuk. Az egyesített etilacetátos extraktumot 300 ml vízzel mossuk, majd vízmentes nátrium-szulfáton szárítjuk és vákuumban 100 ml térfogatra koncentráljuk. Ezután a pravasztatin savból pravasztatin-laktont képezünk oly módon, hogy az etilacetátos extraktumhoz katalitikus mennyiségű trifluor-ecetsavat adunk keverés közben, szobahőmérsékleten. A pravasztatin-lakton képződését vékonyrétegkromatográfiás módszerrel követjük. Adszorbensként Kieselgel 60 F₂₅₄ DC (Merck) alufóliát, kifejlesztő oldószerelegyként aceton - benzol ecetsav (50:50:1,5) elegyet, előhívó reagensként foszformolibdénsav reagenst (1,5 g foszformolibdénsav + 40 ml metanol + 40 ml víz + 10 ml cc. kénsav) használunk. A pravasztatin-lakton R_f értéke: 0,7. A laktonképződés befejezése után az etilacetátot kétszer 20 ml 5 %-os vizes nátrium-hidrogén-karbonát oldattal, majd 20 ml vízzel mossuk, vízmentes nátrium-szulfáton szárítjuk és vákuumban bepároljuk. A kapott 0,5 g bepárlási maradékot 10 g Kieselgel 60 adszorbensből készített oszlopon (oszlopátmérő:1,2 cm, töltet magasság:

17 cm) kromatografáljuk. Eluáló oldószerelegyként növekvő etilacetát tartalmú etilacetát - n-hexán elegyet használunk. A termék 60 % etilacetát - 40 % n-hexán eleggyel eluálódik az oszlopról. A terméket tartalmazó frakciókát egyesítjük és vákuumban bepároljuk.

A pravasztatin-laktonból nátriumsót képzünk az alábbi módon:

a 230 mg terméket 5 ml etanolban oldjuk, majd 1M etanolos nátrium-hidroxid oldatból 110 mol% lúgoldatot adunk hozzá keverés közben. Fél óra keverés után az oldatot vákuumban kb. 2 ml-re koncentráljuk és a koncentrátumhoz 4 ml acetont adunk. A kapott csapadékos elegyet egy éjszakán át + 5°C-on állni hagyjuk. Ezután a csapadékot leszűrjük, 2 ml acetonnal és 2 ml n-hexánnal mossuk és vákuumban szárítjuk. Az így nyert 210 mg pravasztatint etanolban oldva aktív szénnel derítjük, majd etanol - etilacetát elegyből kristályosítjuk. Így 170 mg pravasztatint kapunk. Op: 168-171°C. $\left[\alpha\right]_{0}^{20} = +156 \text{ (c=0,5, víz)}.$

A kapott termék spektroszkópiai jellemzői:

Ultraibolya spektrum (20 μ g/ml-es metanolos oldat): λ_{max} 231, 237, 245 nm (log ϵ = 4,263; 4,311; 4,136).

Infravörös színkép (KBr): v_{OH} 3415, v_{CH} 2965, $v_{C=O}$ 1730, v_{COO} -1575 cm⁻¹.

¹H-NMR spektrum (D₂0 δ, ppm): 0,86 d, 3H (2-CH₃); 5,92, dd, J = 10,0 és 5,4 Hz, 1H (3-H); 5,99, d, J = 10,0 Hz, 1H (4-H); 5,52, br, 1H (5-H); 4,24, m, 1H (6-H); 5,34, br, 1H (8-H); 4,06, m, 1H (β-H); 3,65, m, 1H (δ-H); 1,05, d, 3H (2'-CH₃); 0,82, t, 3H (4'-H₃).

¹³C-NMR spektrum (D₂O, δ, ppm): 15,3, q (2-CH₃); 139,5, d (C-3); 129,5, d (C-4); 138,1, s, (C-4a); 127,7, d (C-5); 66,6, d (C-6); 70,1, d (C-8); 182,6, s (COO⁻); 72,6, d (C-β); 73,0, d (C-δ); 182,0, s (C-1') 18,8, q (2'-CH₃); 13,7, q (C-4');

Pozitív FAB tömegspektrum (jellemző ionok): 469 [M+Na]⁺; 447 [M+H]⁺.

Negatív FAB tömegspektrum (jellemző ionok): 445 [M-H]; 423 [M-Na]; 101 [2-metil-vajsav - H].

2. példa

A 100-100 ml MT₁ jelű biokonverziós táptalajt tartalmazó 10 db 500 ml-es Erlenmeyer lombikot az 1. példában megadott módon készített inokulum tenyészettel oltunk be és 28°C-on, 96 órán át inkubáljuk, majd lombikonként 50 mg kompaktinsav-nátriumsót adagolunk steril desztillált vízben oldva a tenyészetekhez. Ezt követően a hidroxilezést 72 órán át folytatjuk, majd újabb 50-50 mg steril desztillált vízben oldott szubsztrátot adagolunk a tenyészetekhez és a biokonverziót 72 órán át folytatjuk, majd a fermentleveket egyesítjük és a képződött pravasztatint kinyerjük.

Az MT₁ jelű biokonverziós táptalaj összetétele:

burgonyakeményítő	10,0 g
glükóz	20,0 g
szójaliszt	10,0 g
élesztőkivonat	10,0 g
CaCO ₃	5,0 g
napraforgóolaj	2,0 g
1000 ml csapvízben.	

A biokonverziós táptalaj pH-ját sterilezés előtt 7,0 értékre állítjuk és 121°C-on 25 percig sterilezzük.

pravasztatint 750 mg fermentlevet, mely egyesített 2500 fordulatszámon 20 percen át centrifugáljuk. Az elválasztott baktérium sejteket 250 ml vízzel 1 órán át kevertetjük, majd leszűrjük. A kiülepített oldat és a szűrlet egyesítése után az oldat kémhatását 15 %-os kénsavval pH 3,5-4,0-re állítjuk, majd a savas szűrletet 3x300 ml etilacetáttal extraháljuk. Az etilacetátos oldathoz 150 mol% dibenzil-amint adunk, majd az oldatot vákuumban kb. 30 ml térfogatra koncentráljuk. Ezután újabb 20 mol% dibenzilamint adunk az oldathoz. A csapadékos oldatot egy éjszakán át 0-5°C-on tartjuk, majd leszűrjük. A csapadékot hűtött etilacetáttal és n-hexánnal mossuk és vákuumban szárítjuk. A nyersterméket (1,1 g) 33 ml acetonban oldjuk forráshőmérsékleten és 0,1 g aktív szénnel derítjük fél órán át. Ezt követően az elegyet leszűrjük, az aktív szenet 10 ml meleg acetonnal mossuk. A szűrletből kivált csapadékot forráshőmérsékleten újra oldatba visszük. Ezután az oldatot egy éjszakán át 0-5°C-on állni hagyjuk. A kivált kristályokat kiszűrjük, hűtött

acetonnal és n-hexánnal mossuk és vákuumban szárítjuk. Az így nyert 0,7 g pravasztatinsav-dibenzil-amin-sót felszuszpendáljuk 10 ml etanolban és 1M vizes nátrium-hidroxidból 110 mol% lúgoldatot adunk hozzá, majd az elegyet fél órán át szobahőmérsékleten kevertetjük. A sóképzés befejezése után az elegyhez 30 ml vizet adunk és az oldatot semlegesítjük, majd az etanolt vákuumban lepároljuk. A vizes koncentrátumot 50 ml Diaion HP-20 gyantából készített oszlopon (oszlopátmérő: 1,5 cm, toltetmagasság: 28 cm) kromatografáljuk. Eluáló elegyként 5 %-onként növekvő aceton tartalmú aceton - ionmentes víz elegyet használunk. A pravasztatin 15 % aceton tartalmú aceton - ionmentes víz eleggyel eluálódik a oszlopról. A frakciók pravasztatin tartalmát vékonyrétegkromatográfiás módszerrel analizáljuk az 1. példában megadott módszerrel. A pravasztatin Rf értéke: 0,5. A terméket tartalmazó frakciókat egyesítjük és aceton tartalmukat vákuumban bepároljuk, majd a vizes maradékot liofilizáljuk. Ily módon 390 mg kromatográfiásan tiszta pravasztatint kapunk.

3. példa

Laboratóriumi fermentorban 121°C-on, 45 percen át sterilezett, 4,5 liter TT/2 jelű táptalajt, 500 ml - az 1. példában leírt módon készített - inokulum tenyészettel oltunk be. A tenyésztést 32°C-on, 250 l/h steril levegőbevezetés mellett és 300 rpm kevertetéssel flat blade típusú keverőt alkalmazva folytatjuk. A fermentáció 3. napján 2,5 g kompaktinsav-nátriumsót adagolunk sterilre szűrt vizes oldatából. 48 óra elteltével a kompaktin-szubsztrát elfogy a tenyészetből. Ekkor újabb 2,5 g kompaktin-szubsztrátot adagolunk a tenyészethez és további 24 órán át folytatjuk a biokonverziót, ez idő alatt a szubsztrát 90 %-os hozammal pravasztatinná alakul.

A TT/2 jelű biokonverziós táptalaj összetétele:

glükóz	75,0 g
vízoldható keményítő	50,0 g
szójaliszt	50,0 g
élesztőkivonat	50,0 g
pepton	5,0 g
NaNO ₃	20,0 g
CaCO ₃	25,0 g
1000 ml csapvízben.	

4. példa

Laboratóriumi fermentorban 121°C-on, 45 percig sterilezett, 4,5 liter TT/1 jelű fermentációs táptalajt 500 ml, az 1. példában megadott módon készített inokulum tenyészettel oltunk be és 28°C-on tenyésztjük 200 l/h steril levegő átáramoltatás és 300 rpm kevertetéssel flat blade típusú keverőt alkalmazva.

A TT/1 jelű biokonverziós táptalaj összetétele:

glükóz	125,0 g
burgonyakeményítő	25,0 g
szójaliszt	50,0 g
élesztőkivonat (Gistex)	50,0 g
pepton	50,0 g
CoCl ₂ x 6H ₂ O	2,0 mg
napraforgóolaj	2,0 g
1000 ml csapvízben.	

A biokonverziós táptalaj pH-ját sterilezés előtt 7,0 értékre állítjuk.

A fermentációt 28°C-on 96 órán át folytatjuk. Ekkor 2,5 g kompaktinsavnátriumsót adagolunk sterilre szűrt vizes oldatából a tenyészethez. A fermentáció 5. napjára a kompaktinsav-nátriumsó elfogy, azaz pravasztatinná alakul, ekkor további 2,5 g szubsztrátot adagolunk a tenyészethez. 24 óra elteltével a második adag kompaktinsav-nátriumsó is elfogy. A 2,5 g kompaktin-szubsztrát adagolását az előzőekben leírt módon, 2,5 grammonként, további 2 napon át folytatjuk. A fermentáció befejezésekor 10 g szubsztrátból 9 g pravasztatin képződését mértük HPLC módszer alkalmazásával. A kompaktinsav-nátriumsó pravasztatinná való konverziójának mértéke 90 %. A fermentléből a hatóanyagot az alábbi módon nyerjük ki.

5 liter fermentléből, mely a fermentáció befejezésekor nyitott hidroxisav formában 1800 μg/ml pravasztatint tartalmaz, az alábbi módon izoláljuk a terméket:

A kapott 5 liter fermentlevet 2500 fordulatszámon 20 percen át ülepítjük. Az elválasztott baktérium sejtekhez 2 l vizet adunk és a micélium szuszpenziót

1 órán át kevertetjük, majd leszűrjük. A két szűrletet egyesítjük és 300 g (540 ml) Dowex Al 400 (OH⁻) gyantából készített oszlopon (oszlopátmérő: 4 cm, gyantaágy magasság: 43 cm) 500 ml/óra sebességgel átfolyatjuk, majd a gyantát 1 liter ionmentes vízzel mossuk. Ezután a gyantát 1 liter 10 g nátriumkloridot tartalmazó aceton - ionmentes víz (1:1) eleggyel eluáljuk, 50 ml-es frakciókat szedve. Az eluátumot az első példában megadott vékonyrétegkromatográfiás módszerrel vizsgaljuk. A terméket tartalmazó frakciókat egyesítjük és vákuumban az acetont lepároljuk. A vizes koncentrátum kémhatását 15 %-os kénsavval pH 3,5-4,0 értékre állítjuk és háromszor 250 ml etilacetáttal extraháljuk. Az egyesített etilacetátos extraktumhoz 40 ml ionmentes vizet adunk, majd a pH-t 1M nátrium-hidroxid oldattal 7,5-8,0 értékre állítjuk. A fázisokat 15 perc keverés után elválasztjuk, majd az etilacetátos extraktumot még kétszer 40 ml ionmentes víz jelenlétében pH 7,5-8,0 értéken kivonatoljuk. Az egyesített lúgos vizes oldatot vákuumban mintegy 50 ml térfogatra koncentráljuk. A koncentrátumot 600 ml DIAION HP-20 (Mitsubishi Co., Japán) gyantából készített oszlopra (oszlopátmérő: 3,8 cm, gyantaágymagasság: 53 cm) visszük fel.

A gyantaoszlopot 600 ml ionmentes vízzel mossuk, majd ezt követően 5 %-onként növekvő aceton tartalmú aceton - ionmentes víz eleggyel eluáljuk. Az eluálás során 50 ml-es frakciókat szedünk, melyeket az 1. példában megadott vékonyrétegkromatográfiás módszerrel analizálunk. A pravasztatin 15 % aceton tartalmú aceton - ionmentes víz eleggyel eluálódik az oszlopról. A pravasztatint tartalmazó frakciókat egyesítjük és a kapott oldatot vákuumban kb. 150 ml térfogatra koncentráljuk. A koncentrált vizes oldathoz 0,6 g aktív szenet adva a pravasztatint 1 órán át szobahőmérsékleten derítjük, majd a szenet szűréssel eltávolítjuk és a szűrletet liofilizáljuk. A 6,5 g liofilizált terméket etanol - etilacetát elegyből kétszer átkristályosítjuk. A kivált kristályos terméket leszűrjük és 20 ml etilacetáttal, majd 20 ml n-hexánnal mossuk és vákuumban szobahőmérsékleten szárítjuk. Így 4,6 g kromatográfiásan tiszta pravasztatint kapunk.

5. példa

A kompaktint 6β-helyzetben hidroxilezni képes Micromonospora echinospora ssp. echinospora IDR-P₅ jelű NCAIM P (B) 001272 számú baktérium törzs vízoldható keményítőt és ásványi sókat tartalmazó, az 1. példában leírt összetételű ferdeagaron növesztett, 10 napos tenyészetéről 5 ml steril desztillált vízzel spóraszuszpenziót keszitűnk és ezzel 500 ml-es Erlenmeyerlombikban sterilezett, 100 ml Tl jelű, az 1. példában megadott összetételű, inokulum táptalajt oltunk. A tenyészetet síkrázógépen (250 fordulat/perc, 2,5 cm kitérés) 3 napig, 28°C-on rázatjuk, majd a kapott inokulum tenyészet 5-5 ml-ével 500 ml-es Erlenmeyer lombikban, 25 percig, 121°C-on sterilezett 100-100 ml TT/1 jelű, a 3. példában megadott összetételű, biokonverziós táptalajt oltunk. A lombikokat 25°C-on síkrázógépen (250 fordulat/perc, 2,5 cm kitérés) 3 napig rázatjuk, majd a tenyészetekhez sterilre szűrt vizes oldatban 10-10 mg kompaktin-szubsztrátot (kompaktinsav-nátriumsó) adagolunk és a tenyésztést tovább folytatjuk. A fermentációt 168 óráig folytatjuk. A fermentlé hatóanyagtartalmát HPLC módszerrel határozzuk meg. A biokonverzió leállításakor a fermentlében a pravasztatin koncentráció átlagosan 40 μg/ml.

6. példa

A Micromonospora megalomicea ssp. nigra IDR-P₆ jelű, NCAIM P (B) 001273 letéti számú baktérium törzzsel az 5. példában leírt módon végezzük a fermentációt, a szubsztrát adagolását és a biokonverziót. A fermentlé hatóanyagtartalmát nagynyomású folyadékkromatográfiás (HPLC) módszerrel határozzuk meg. A biokonverzió leállásakor a fermentlében a pravasztatin koncentráció átlagosan 50 μg/ml.

7. példa

A Micromonospora purpurea IDR-P₄ jelű, NCAIM P (B) 001271 letéti számú baktérium törzzsel, az 1. példában leírt módon készített inokulum tenyészet 5-5 ml-ével 500 ml-es Erlenmeyer lombikban, 25 percig, 121°C-on sterilezett 100-100 ml TT/14 jelű táptalajt oltunk be.

A TT/14 jelű biokonverziós táptalaj összetétele:

burgonya keményítő	5,0 g
glükóz	25,0 g
élesztőkivonat (GISTEX)	15,0 g
pepton	15,0 g
CaCO3	1,0 g

1000 ml csapvízben.

A biokonverziós táptalaj pH-ját sterilezés előtt 7,0 értékre állítjuk.

A lombikokat 25°C-on, síkrázógépen (250 fordulat/perc, 2,5 cm kitérés) 3 napig rázatjuk. A szubsztrát adagolását, a biokonverziót és a fermentlé ható-anyagtartalmának meghatározását az 5. példában leírt módon végezzük. A biokonverzió leállításakor a fermentlében a pravasztatin koncentráció átlagosan 40 µg/ml.

8. példa

A Micromonospora rosaria IDR-P₇ jelű, NCAIM P (B) 001274 letéti számú baktérium törzzsel az 1. példában leírt módon végezzük a fermentációt, a szubsztrát adagolását és a biokonverziót. A biokonverzió leállításakor a fermentlében, nagynyomású folyadékkromatográfiás (HPLC) módszerrel mérve átlagosan 350 μg/ml a pravasztatin koncentráció.

Szabadalmi igénypontok

- 1. Mikrobiológiai eljárás az (I) képletű vegyület előállítására valamely (II) általános képletű ahol R+ jelentése alkálifém, vagy ammónium-ion vegyületből, a (II) általános képletű vegyületet 6β-helyzetben hidroxilezni képes baktérium törzs süllyesztett tenyészetével végzett aerob fermentációval és a biokonverzió során keletkező (I) képletű termék elkülönítése és tisztítása biokonverzió során keletkező (I) képletű termék elkülönítése és tisztítása útján, azzal jellemezve, hogy a Micromonospora genus valamely, a (II) általános képletű vegyületet ahol R+ jelentése a fenti 6β-helyzetben hidroxilező speciesének kiválasztott törzsét asszimilálható szén- és nitrogénforrásokat, valamint ásványi sókat tartalmazó táptalajon 25-32°C-on tenyésztjük, a kinőtt tenyészethez hozzáadagoljuk az átalakítandó szubsztrátot és a fermentációt a biokonverzió befejeződéséig folytatjuk, majd a keletkező (I) képletű vegyületet elkülönítjük a tenyészetből és kívánt esetben tisztítjuk.
 - 2. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy a Mezőgazdasági és lpari Mikroorganizmusok Nemzeti Gyűjteményében NCAIM P (B) 001268 számon letétbe helyezett *Micromonospora sp.* IDR-P₃ jelű törzset, vagy ennek valamely, a (II) általános képletű vegyületet 6β-helyzetben hidroxilezni képes mutánsát tenyésztjük.
 - 3. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy a Mezőgazdasági és lpari Mikroorganizmusok Nemzeti Gyűjteményében NCAIM P (B) 001271 számon letétbe helyezett Micromonospora purpurea IDR-P₄ jelű törzset, vagy ennek valamely, a (II) általános képletű vegyületet 6β-helyzetben hidroxilezni képes mutánsát tenyésztjük.
 - 4. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy a Mezőgazdasági és lpari Mikroorganizmusok Nemzeti Gyűjteményében NCAIM P (B) 001272 számon letétbe helyezett *Micromonospora echinospora ssp. echinospora* IDR-P₅ jelű törzset, vagy ennek valamely, a (II) általános képletű vegyületet 6β-helyzetben hidroxilezni képes mutánsát tenyésztjük.
 - 5. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy a Mezőgazdasági és lpari Mikroorganizmusok Nemzeti Gyűjteményében NCAIM P (B) 001273 számon letétbe helyezett Micromonospora megalomicea ssp. nigra IDR-P₆

jelű törzset, vagy ennek valamely, a (II) általános képletű vegyületet 6β-helyzetben hidroxilezni képes mutánsát tenyésztjük.

- 6. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy a Mezőgazdasági és Ipari Mikroorganizmusok Nemzeti Gyűjteményében NCAIM P (B) 001274 számon letétbe helyezett Micromonospora rosaria IDR-P₇ jelű törzset, vagy ennek valamely, a (II) általános képletű vegyületet 6β helyzetben hidroxilezni képes mutánsát tenyésztjük.
- 7. Az 1-6. igénypontok bármelyike szerinti eljárás, azzal jellemezve, hogy a biokonverzió során keletkező (I) képletű vegyületet anioncserélő gyantán való megkötéssel, vagy vízzel nem elegyedő oldószeres extrakcióval különítjük el a tenyészetből, majd laktonszármazékának vagy valamely szekunder amin sójának mint intermediernek előállításán keresztül, vagy a fermentlé szerves oldószeres extraktumából nyert alkalikus vizes kivonat nemionos adszorbens gyantán való kromatografálásával tisztítjuk és kívánt esetben átkristályosítjuk.

EMRI-PATENT KFT 4032 Debrecen, Kartács u. 36.

A

(II)