

Deep Unsupervised Domain Adaptation and its Application to Generative Models

LI Rui

City University of Hong Kong ruili52-c@my.cityu.edu.hk

Outline

- Introduction to Domain Adaptation
- Main Idea for Recent Adaptation Works
- Proposed Works
 - Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation
 - Generating Target Image-Label Pairs for Unsupervised Domain Adaptation
 - Model Adaptation: Unsupervised Domain Adaptation without Source Data

Conclusions and Future Works

Outline

- Introduction to Domain Adaptation
- Main Idea for Recent Adaptation Works
- Proposed Works
 - Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation
 - Generating Target Image-Label Pairs for Unsupervised Domain Adaptation
 - Model Adaptation: Unsupervised Domain Adaptation without Source Data

Conclusions and Future Works

• Traditional supervised learning works often implicitly assume that the training dataset and the test dataset have the same distribution, thus, the pretrained model can achieve reliable performance during testing.

• However, in real scenarios, the training and test datasets are from related but different distributions. The performance of source model may be degraded (called **domain shift**).

• In the image classification task (Source: MNIST and Target: MNIST-M):

• In the semantic segmentation task (Source: GTA5 and Target: Cityscapes):

Source Data: $D_s = \{X_s, Y_s\}$ and Target Data: $D_t = \{X_t, Y_t\}$ Two Domains follow different data distributions, and the goal is to infer target labels as accurately as possible.

- If we have enough target labeled data: no need adaptation;
- If we have a few target labeled data: we can fine-tune the model trained on D_s with these target labeled data.
- If we have no labeled data, i.e., we only have $D_s = \{X_s, Y_s\}$ and $D_t = \{X_t\}$. This is referred to as **Unsupervised Domain Adaptation** (UDA), which is our main topic.

Domain adaptation allows to adapt the model from a label-rich (domain) to a label-scarce (target) domain.

Avoid learning from scratch.

• Transfer knowledge learnt from source data.

• Reduce the cost of annotation.

Outline

- Introduction to Domain Adaptation
- Main Idea for Recent Adaptation Works
- Proposed Works
 - Cross Domain Semantic Feature Learning via Adversarial Adaptation Networks
 - Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation
 - Generating Target Image-Label Pairs for Unsupervised Domain Adaptation
 - Model Adaptation: Unsupervised Domain Adaptation without Source Data

Conclusions and Future Works

• Reduce the domain discrepancy -- learning domain-invariant features (Feature-space alignment between two domains)

For feature extractor (blue blocks):

- Sharing layers or not
- Single or multiple layers

• Reduce the domain discrepancy -- learning domain-invariant features (Feature-space alignment between two domains)

For distance metric (Green block):

- Statistics metrics, i.e., MMD, CORAL, etc.
- Adversarial training with an extra discriminator or classifier.

Main Idea for Domain Adaptation

- Reduce the domain discrepancy -- Image-to-image translation (Pixel-space alignment between two domains)
 - Focus on generating reliable image-label pairs in the target domain.
 - The common tool is the **Generative Adversarial Networks** (GAN) for simulating the target distributions.

Main Idea for Domain Adaptation

• Reduce the domain discrepancy -- Image-to-image translation (Pixel-space alignment between two domains)

There are two requirements during the translation:

- Distribution matching: x_g and x_t should be undistinguishable by the discriminator.
- Semantic preservation: the semantic information between x_g and x_s should be the same.

• Reduce the domain discrepancy -- Image-to-image translation (Pixel-space alignment between two domains)

These generative-based methods have two benefits:

- Interpretable: visualize x_q .
- Flexible: the predictor and the adaptor are decoupled.

Outline

- Introduction to Domain Adaptation
- Main Idea for Recent Adaptation Works
- Proposed Works
 - Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation
 - Generating Target Image-Label Pairs for Unsupervised Domain Adaptation
 - Model Adaptation: Unsupervised Domain Adaptation without Source Data

Conclusions and Future Works

Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation

Rui Li, Wenming Cao, Qianfen Jiao, Si Wu, Hau-San Wong. Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation. Pattern Recognition Journal, PR, 2020.

• Many feature-level alignment methods focus on the image classification, which may not be effective on the semantic segmentation which requires accurate spatial information.

• Therefore, recent works tend to image-to-image translation for domain adaptation, which is the pixel-level alignment.

• However, for <u>unsupervised high-resolution image-to-image</u> <u>translation</u>, Cycle-GAN is often used:

• We aims to propose a simplified one-way translation method, designed for the semantic segmentation task:

Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation --- Method

Adversarial Loss: aims to match the target distribution.

$$L_{adv}(D,G) = \mathbb{E}_{X_t}[\log D(X_t)] + \mathbb{E}_{X_s}[\log (1 - D(G(X_s)))]$$

$$\min_{G,Seg} \max_{D} L_{adv}(D,G) + L_{semCon}(G) + L_{task}(Seg)$$

$$\min_{G,Seg} \max_{D} L_{adv}(D,G) + \underline{L_{semCon}(G)} + L_{task}(Seg)$$

Semantic-Content Loss: aims to preserve the semantic and content information.

$$L_{semCon}(G) = L_{sem} + L_{con}$$

Where
$$L_{sem} = \mathbb{E}_{X_S} \mathcal{H}[Seg(G(X_S)), Y_S]$$

 $L_{con} = \mathbb{E}_{X_S}[\|f(G(X_S)) - f(X_S)\|^2]$

Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation --- Method

Task Loss: computes cross entropy for each pixel with source and generated images.

$$L_{task}(Seg) = \mathbb{E}_{X_S} \{ \mathcal{H}[Seg(X_S), Y_S] + \mathcal{H}[Seg(G(X_S)), Y_S] \}$$

$$\min_{G,Seg} \max_{D} L_{adv}(D,G) + L_{semCon}(G) + L_{task}(Seg)$$

- Dataset Settings: focus on adaptation from synthetic domain to real domain:
 - GTA5: is a large-scale urban scene dataset that includes 24966 synthetic high-quality images with pixel-level annotations. All these images and annotations are collected from Grand Theft Auto V (GTA5).
 - SYNTHIA: is a dataset with large well-annotated synthetic images collected from virtual worlds across various environments.
 - Cityscapes: is a real-world urban scene dataset that includes 2975 training samples and 500 validation samples with fine pixel-level annotation.

Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation --- Experiments

CityU 香港城市大學 City University of Hong Kong

專業 創新 胸懷全球 Professional·Creative For The World

• GTA5 to Cityscapes (Generated images)

Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation --- Experiments

CityU 香港城市大學 City University of Hong Kong

專業 創新 胸懷全球 Professional·Creative For The World

• GTA5 to Cityscapes (Comparison before and after adaptation)

Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation --- Experiments

CityU 香港城市大學 City University of Hong Kong

專業 創新 胸懷全球 Professional·Creative For The World

• GTA5 to Cityscapes (Generation comparison)

(c) CyCADA (d) Our Results

• GTA5 to Cityscapes (Segmentation comparison)

Method	SourceOnly	FCNWild [42]	CDA [154]	MCD [109]	CBST [161]	OutputSpaceAdapt [128]	CyCADA [41]	DCAN [143]	SUIT	SUIT w/ Avg.W	SourceOnly	OutputSpaceAdapt [128]	DLOW [32]	SUIT	SUIT w/ Avg.W
Base Net		FCN8s-VGG16						Deeplab-v2							
mIoU (%)	26.4	27.1	28.9	28.8	30.9	35.0	35.4	36.2	38.9	40.6	34.2	41.4	42.3	43.7	45.3

• Transplant the pre-trained generator (with FCN-VGG16) to the other segmentation backbone.

Method	Seg Net	From GTA-5	From SYNTHIA
SourceOnly		34.2	37.4
OutputSpaceAdapt [128]	Deeplab-v2 [11]	41.4	45.9
SUIT		42.1	44.3
SUIT w/ Avg.W		44.5	46.5
SourceOnly		35.2	38.8
SUIT	Deeplab-v3 [12]	44.6	46.0
SUIT w/ Avg.W		46.2	47.1

Generating Target Image-Label Pairs for Unsupervised Domain Adaptation

Rui Li, Wenming Cao, Si Wu, Hau-San Wong. Generating Target Image-Label Pairs for Unsupervised Domain Adaptation. IEEE Transaction on Image Processing, TIP, 2020.

• Most domain adaptation works focus on reducing the discrepancy between two domains, which becomes difficult in case of the large domain gap.

• We propose for target generation from the shared label space, which can alleviate the large domain gap.

Generating Target Image-Label Pairs for Unsupervised Domain Adaptation --- Motivation

專業 創新 胸懷全球 Professional·Creative For The World

(a) Idea of label-to-image generation process

(b) Examples sampled from real target domain and generated by our model

• (Phase 1) Training the task prediction model (*T*) with the source data to obtain a weak *T* in the target domain.

• (Phase 2) Training the generator *G* and the discriminator *D* in adversarial manner to obtain target training pairs.

• (Phase 3) Adding the generated data into training of *T*.

Generating Target Image-Label Pairs for Unsupervised Domain Adaptation --- Experiments

專業 創新 胸懷全球 Professional·Creative For The World

• Quantitative results.

Method	MNIST→USPS	USPS→MNIST	$MNIST \rightarrow MNIST-M$	SVHN→MNIST	$MNIST \rightarrow SVHN$
Not GAN-based Adaptation					
MMD [7]	81.1	-	76.9	71.1	-
CORAL [5]	81.7	-	57.7	63.1	-
DA_{assoc} [33]	-	-	89.5	97.6	-
DANN [43]	85.1	73.0	77.4	73.9	35.7
ADDA [44]	89.4±0.2	90.1 ± 0.8	-	76.0 ± 1.8	-
ATT [10]	-	-	94.2	86.2	52.8
DSN [16]	91.3	-	83.2	82.7	-
DRCN [32]	91.8±0.1	73.7 ± 0.1	-	82.0 ± 0.2	40.1 ± 0.1
VADA [45]	-	-	97.7	97.9	73.3
DIRT-T [45]	-	-	98.9	99.4	76.5
GAN-based Adaptation	•				
UNIT [53]	95.9	93.5	-	90.5	-
DuplexGAN [48]	96.01	98.75	-	92.46	62.65
GenToAdapt [47]	95.3±0.7	90.8 ± 1.3	-	92.4 ± 0.9	-
CoGAN [52]	91.2±0.8	89.1 ± 0.8	62.0	-	-
PixelDA [12]	95.9	-	98.2	-	-
SBADA-GAN C_t [55]	96.7	94.4	99.1	72.2	59.2
SBADA-GAN [55]	97.6	95.0	99.4	76.1	61.1
CyCADA pixel only [26]	$95.\overline{6\pm0.2}$	96.4 ± 0.1	-	70.3 ± 0.2	-
CyCADA pixel+feat [26]	95.6±0.2	96.5 ± 0.1	-	90.4 ± 0.4	-
Our results					
SourceOnly	92.4±1.7	86.1±1.3	54.2 ± 0.9	76.4±1.5	57.3±2.1
Label2Image-DA	96.9±0.5	98.9 ± 0.1	97.1 ± 0.2	99.0 ± 0.1	-
Label2Image-DA with \mathcal{L}_{reg}	98.1 ±0.3	99.4 ± 0.1	99.2 ± 0.1	99.5 ±0.03	91.3 \pm 0.2
	•	oral examii			

專業 創新 胸懷全球 Professional·Creative For The World

Generation results.

Generating Target Image-Label Pairs for Unsupervised Domain Adaptation --- Experiments

專業 創新 胸懷全球 Professional·Creative For The World

• Comparison between Image-to-Image Translation and Label-to-Image Translation.

(a) Image-to-Image Translation

(b) Label-to-Image Translation

Generating Target Image-Label Pairs for Unsupervised Domain Adaptation --- Experiments

專業 創新 胸懷全球 Professional·Creative For The World

• Our model is also applicable for the semantic segmentation task (Generation).

(a) Input Labels

(b) Generated Images (target-style)

(c) Corresponding Source Images

• Our model is also applicable for the semantic segmentation task (Segmentation).

Method	SourceOnly	FCNWild [42]	CDA [154]	MCD [109]	CyCADA pixel-only [41]	CyCADA [41]	Label2Image-DA	SourceOnly	CycleGAN [159]	OutputSpaceAdapt [128]	DLOW [32]	Label2Image-DA
Base Net	FCN8s-VGG16					Deeplab-v2						
mIoU (%)	26.4	27.1	28.9	28.8	34.8	35.4	37.5	34.2	41.0	41.4	42.3	43.8

Model Adaptation: Unsupervised Domain Adaptation without Source Data

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, Si Wu. Model Adaptation: Unsupervised Domain Adaptation without Source Data. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020.

- Considering source data are not always available:
 - For many companies, they will only provide the learned models instead of their customer data due to the data privacy and security issues.
 - The source datasets like videos or high-resolution images may be so large that it is not practical or convenient to transfer to different platforms.

• We focus on a more challenging setting – Model Adaptation, where we only have the pre-trained source model and the unlabeled target dataset during adaptation process.

Model Adaptation: Unsupervised Domain Adaptation without Source Data --- Motivation

專業 創新 胸懷全球 Professional·Creative For The World

Conventional data-based adaptation

Proposed model adaptation

Source data:

+ +

Source model: —

Target data: + 🔸

Adapted model: ----

• Collaborative Class Conditional GAN (Generation)

$$\min_{G} \max_{D} \ell_{adv} + \ell_{sem}$$

$$\ell_{sem}(G) = \mathbb{E}_{y,z} \left[-y \log C(G(y,z)) \right]$$

Model Adaptation: Unsupervised Domain Adaptation without Source Data --- Method

專業 創新 胸懷全球 Professional·Creative For The World

Collaborative Class Conditional GAN (Adaptation)

$$\ell_{gen} = \mathbb{E}_{x_g, y} \left[-y \log C(x_g) \right]$$

$$\ell_{wReg} = \|\theta_C - \theta_{C_S}\|$$

$$\ell_{cluReg} = \mathbb{E}_{x_t}[-C(x_t)\log C(x_t)] + [\text{KL}\left(C(x_t)||C(x_t + \tilde{r})\right)]$$

Model Adaptation: Unsupervised Domain Adaptation without Source Data --- Experiments

專業 創新 胸懷全球 Professional·Creative For The World

Collaborative behavior

(a) Before Adaptation

(b) After Adaptation

• Adaptation results from synthetic domain to real domain

Method	Syn.Digits → SVHN	Syn.Sign → GTSRB
DANN	91.1	88.7
DSN	91.2	93.1
AssocDA	91.8	97.6
VADA	94.8	98.8
DIRT-T	96.1	99.5
Source-Only	86.2	78.3
3C-GAN (Ours)	95.9	99.6

Model Adaptation: Unsupervised Domain Adaptation without Source Data --- Experiments

專業 創新 胸懷全球 Professional·Creative For The World

Visualization of the generator

(a) Syn.Digits→SVHN

(b) Syn.Sign→GTSRB

專業 創新 胸懷全球 Professional·Creative For The World

• Adaptation results in Office31 dataset (based on ResNet50)

	A	D	W	A	D	W	
Method	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	Avg
	\mathbf{W}	\mathbf{W}	D	D	A	A	
ResNet50 [40]	68.4 ± 0.2	96.7 ± 0.1	99.3 ± 0.1	68.9 ± 0.2	65.2 ± 0.3	60.7 ± 0.3	76.1
DAN [72]	80.5 ± 0.4	97.1 ± 0.2	99.6 ± 0.1	78.6 ± 0.2	63.6 ± 0.3	62.8 ± 0.2	80.4
RTN [75]	84.5 ± 0.2	96.8 ± 0.1	99.4 ± 0.1	77.5 ± 0.3	66.2 ± 0.2	64.8 ± 0.3	81.6
DANN [29]	82.6 ± 0.4	96.9 ± 0.2	99.3 ± 0.2	81.5 ± 0.4	68.4 ± 0.5	67.5 ± 0.5	82.7
ADDA [131]	86.2 ± 0.5	96.2 ± 0.3	98.4 ± 0.3	77.8 ± 0.3	69.5 ± 0.4	68.9 ± 0.5	82.9
JAN [74]	86.0 ± 0.4	96.7 ± 0.3	99.7 ± 0.1	85.1 ± 0.4	69.2 ± 0.4	70.7 ± 0.5	84.6
MADA [92]	90.0 ± 0.2	97.4 ± 0.1	99.6 ± 0.1	87.8 ± 0.2	70.3 ± 0.3	66.4 ± 0.3	85.2
GenToAdapt [110]	89.5 ± 0.5	97.9 ± 0.3	99.8 ± 0.2	87.7 ± 0.5	72.8 ± 0.3	71.4 ± 0.4	86.5
Our Model	93.7 ±0.2	98.5 ±0.1	99.8 ±0.2	92.7 ±0.4	75.3 ±0.5	77.8 ±0.1	89.6

Model Adaptation: Unsupervised Domain Adaptation without Source Data --- Experiments

專業 創新 胸懷全球 Professional·Creative For The World

Adaptation process with a toy example

Outline

- Introduction to Domain Adaptation
- Main Idea for Recent Adaptation Works
- Proposed Works
 - Simplified Unsupervised Image Translation for Semantic Segmentation Adaptation
 - Generating Target Image-Label Pairs for Unsupervised Domain Adaptation
 - Model Adaptation: Unsupervised Domain Adaptation without Source Data

Conclusions and Future Works

Conclusions

- We propose a simplified one-way translation method for flexible adaptation on semantic segmentation.
- We introduce a Label2ImageDA approaches to avoid cross-domain discrepancy reduction for challenging adaptation tasks.
- We develop a collaborative learning scheme with GAN, which enables unsupervised domain adaptation without source data.