XGBoost Algorithm

eXtreme Gradient Boosting

MUKESH KUMAR

Introduction to XGBoost

- Developed by Tianqi Chen
- Fast, accurate, and widely used gradient boosting implementation
- Popular in data science competitions like Kaggle

 XGBoost (Extreme Gradient Boosting) is a highly efficient and scalable machine learning algorithm based on gradient boosting. It builds decision trees sequentially, with each tree aiming to correct the errors of the previous one

Why XGBoost?

- Regularization to reduce overfitting
- High performance and scalability
- Supports parallel and distributed computing
- Handles missing values automatically

For Regression:

$$F(x) = F_0(x) + \eta \cdot h_1(x) + \eta \cdot h_2(x) + \dots + \eta \cdot h_M(x)$$

Where:

- ullet $F_0(x)$ is the initial guess (like mean of targets),
- Each $h_m(x)$ is a weak learner trained on **residuals** (errors).

How XGBoost Works?

Basic Concepts Recap

- Gradient Boosting: Ensemble method that builds models sequentially
- Each new model corrects the errors of the previous one
- Final prediction = sum of all weak learners

XGBoost Regression Tree

Sample Data

housesize	houseprice
1200	270000
1500	310000
1800	330000
2000	420000
2200	470000

Let's build Model 1

• We start with a mean like Gradient Boost

housesize	houseprice	Pred1
1200	270000	360000
1500	310000	360000
1800	330000	360000
2000	420000	360000
2200	470000	360000

Calculate Residual

Residual formula is Actual minus predicted value

housesize	houseprice	Pred1	residual_1	
1200	270000	360000	-90000	
1500	310000	360000	-50000	
1800	330000	360000	-30000	
2000	000 420000 360000		60000	
2200	470000	360000	110000	

Model 2 : Build a tree

• In XGBoost the way we build tree is different

Gradient boost uses Gini index/info gain to find the best split

XGBoost uses Greedy algorithm to find the best split

Similarity Score (Squared Error Loss)

XGBoost uses similarity score to decide best split

Formula for Similarity Score

The similarity score in XGBoost for a given node is calculated using the formula:

$$SimilarityScore = rac{(\sum Residuals)^2}{ ext{Number of Residuals} + \lambda}$$

Where:

- $\sum Residuals$ is the sum of all residual values in that node.
- Number of Residuals is the count of residual values in that node.
- λ (lambda) is a regularization parameter that helps to prevent overfitting. A common default value for λ is 1.

Similarity score for "Residual_1"

1. Calculate the sum of the residuals:

$$\sum Residuals = -90000 + (-50000) + (-30000) + 60000 + 110000 = 0$$

2. Count the number of residuals:

$$Number of Residuals = 5$$

- 3. Assume a default value for lambda: Let's assume the regularization parameter $\lambda=1$.
- 4. Calculate the similarity score:

$$SimilarityScore = rac{(0)^2}{5+1} = rac{0}{6} = 0$$

housesize	houseprice	Pred1	residual_1
1200	270000	360000	-90000
1500	310000	360000	-50000
1800	330000	360000	-30000
2000	420000	360000	60000
2200	470000	360000	110000

Find Midpoints of Subsequent 'housesize' Values:

Next, we calculate the midpoints between each subsequent pair of 'housesize' values. These midpoints will serve as our potential split points:

- Midpoint 1: (1200 + 1500)/2 = 1350
- Midpoint 2: (1500 + 1800)/2 = 1650
- Midpoint 3: (1800 + 2000)/2 = 1900
- Midpoint 4: (2000 + 2200)/2 = 2100

So, our potential split points for the 'housesize' feature are 1350, 1650, 1900, and 2100.

Create Splits and Calculate Similarity Score for Each Split:

• For each potential split point, we will divide the data into two nodes (left and right) based on whether the 'housesize' is less than or greater than the split point.

• Then, we calculate the similarity score for each of these resulting nodes. We'll use the same similarity score formula as before (assuming λ =1)

Potential Split 1: housesize < 1200

	housesize	residual_1
1350	1200	-90000
	1500	-50000
1650	1800	-30000
1900	2000	60000
2100	2200	110000

First split: similarity score

- Left Node (housesize < 1200): Empty (0 data points)
 - $\sum Residuals_{left} = 0$
 - $Number of Residuals_{left} = 0$
 - $SimilarityScore_{left}=rac{(0)^2}{0}=0$ (We'll treat division by zero as 0 gain contribution)
- Right Node (housesize ≥ 1200): All data points
 - $\sum Residuals_{right} = 0$
 - $Number of Residuals_{right} = 5$
 - $SimilarityScore_{right} = \frac{(0)^2}{5} = 0$
- Gain at split < 1200: 0 + 0 0 = 0

Potential Split 2: housesie in XGBoost for a given node is calculated using the formula

	housesize	residual_1
1350	1200	-90000
1650	1500	-50000
	1800	-30000
1900	2000	60000
2100	2200	110000

Potential Split 2: Similarity Score

- Left Node (housesize < 1500): [hs=1200, res=-90000]
 - $\sum Residuals_{left} = -90000$
 - $Number of Residuals_{left} = 1$
 - $SimilarityScore_{left} = \frac{(-90000)^2}{1} = 81000000000$
- Right Node (housesize ≥ 1500): [hs=1500, res=-50000], [hs=1800, res=-30000], [hs=2000, res=60000], [hs=2200, res=110000]
 - $\sum Residuals_{right} = -50000 30000 + 60000 + 110000 = 90000$
 - $Number of Residuals_{right} = 4$
 - $SimilarityScore_{right}=rac{(90000)^2}{4}=2025000000$
- \bullet Gain at split < 1500: 81000000000 + 20250000000 0 = 101250000000

Potential Split 3: housesize < 1800

	housesize	residual_1
1350	1200	-90000
	1500	-50000
1650	1800	-30000
1900	2000	60000
2100	2200	110000

Potential Split 3: Similarity Score

- Left Node (housesize < 1800): [hs=1200, res=-90000], [hs=1500, res=-50000]
 - $\sum Residuals_{left} = -90000 50000 = -140000$
 - $Number of Residuals_{left} = 2$
 - $SimilarityScore_{left} = \frac{(-140000)^2}{2} = 98000000000$
- Right Node (housesize ≥ 1800): [hs=1800, res=-30000], [hs=2000, res=60000], [hs=2200, res=110000]
 - $\sum Residuals_{right} = -30000 + 60000 + 110000 = 140000$
 - $Number of Residuals_{right} = 3$

Potential Split 4: housesize < 2000

	housesize	residual_1
1350	1200	-90000
	1500	-50000
1650	1800	-30000
1900	2000	60000
2100	2200	110000

Potential Split 4: Similarity Score

- Left Node (housesize < 2000): [hs=1200, res=-90000], [hs=1500, res=-50000], [hs=1800, res=-30000]
 - $\sum Residuals_{left} = -90000 50000 30000 = -170000$
 - $Number of Residuals_{left} = 3$
 - $SimilarityScore_{left} = \frac{(-170000)^2}{3} pprox 96333333333333$
- Right Node (housesize ≥ 2000): [hs=2000, res=60000], [hs=2200, res=110000]
 - $\sum Residuals_{right} = 60000 + 110000 = 170000$
 - $Number of Residuals_{right} = 2$
 - $SimilarityScore_{right}=rac{(170000)^2}{2}=14450000000$

Potential Split 5: housesize < 2200

	housesize	residual_1
1350	1200	-90000
	1500	-50000
1650	1800	-30000
1900	2000	60000
2100	2200	110000
'		

Potential Split 5: Similarity score

- Left Node (housesize < 2200): [hs=1200, res=-90000], [hs=1500, res=-50000], [hs=1800, res=-30000], [hs=2000, res=60000]
 - $\sum Residuals_{left} = -90000 50000 30000 + 60000 = -110000$
 - $Number of Residuals_{left} = 4$
 - $SimilarityScore_{left}=rac{(-110000)^2}{4}=3025000000$
- Right Node (housesize ≥ 2200): [hs=2200, res=110000]
 - $\sum Residuals_{right} = 110000$
 - $Number of Residuals_{right} = 1$
 - $SimilarityScore_{right}=rac{(110000)^2}{1}=12100000000$
- \bullet Gain at split < 2200: 3025000000 + 12100000000 0 = 15125000000

Summary of Gains

Split Point (housesize <)	Gain (Change in Similarity Score)
1200	0
1500	10125000000
1800	1633333333333
2000	2408333333333
2200	15125000000

As we can see, the split at housesize < 2000 yields the highest gain.

Model 2

Find model 2 Predictions and Residuals

Residuals = Actual - Predicted

housesize	houseprice	Pred1	residual_1	pred_2	Updated_M odel2_pred	residual_2
1200	270000	360000	-90000	-56666.668	303333.332	-33333.332
1500	310000	360000	-50000	-56666.668	303333.332	6666.66797
1800	330000	360000	-30000	-56666.668	303333.332	26666.668
2000	420000	360000	60000	85000	445000	-25000
2200	470000	360000	110000	85000	445000	25000

Model 3

housesize	houseprice	Pred1	residual_1	pred_2	Updated_M odel2_pred	residual_2	pred_3	final_pred
1200	270000	360000	-90000	-56666.668	303333.332	-33333.332	-33333.332	270000
1500	310000	360000	-50000	-56666.668	303333.332	6666.66797	8333.33496	311666.667
1800	330000	360000	-30000	-56666.668	303333.332	26666.668	8333.33496	311666.667
2000	420000	360000	60000	85000	445000	-25000	8333.33496	453333.335
2200	470000	360000	110000	85000	445000	25000	8333.33496	453333.335

Final Prediction Formula

$$\hat{y}(x) = \hat{y}_0 + \eta \cdot f_1(x) + \eta \cdot f_2(x) + \eta \cdot f_3(x)$$

Final Prediction

• Learning rate is called "eta"

$$\hat{y}(x) = \hat{y}_0 + \eta \cdot f_1(x) + \eta \cdot f_2(x) + \eta \cdot f_3(x)$$

housesize	houseprice	Pred1	residual_1	pred_2	Updated_M odel2_pred	residual_2	pred_3	final_pred
1200	270000	360000	-90000	-56666.668	303333.332	-33333.332	-33333.332	270000
1500	310000	360000	-50000	-56666.668	303333.332	6666.66797	8333.33496	311666.667
1800	330000	360000	-30000	-56666.668	303333.332	26666.668	8333.33496	311666.667
2000	420000	360000	60000	85000	445000	-25000	8333.33496	453333.335
2200	470000	360000	110000	85000	445000	25000	8333.33496	453333.335

360000 + -56666.668 + -33333.332 = 270000

XGB Advantages and Disadvantages

Jupyter notebook