Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №3 по дисциплине «Компьютерные сети»

Выполнил студент: Бочкарев Илья Алексеевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Постановка задачи	2					
2	Теория	2					
3	Реализация	2					
4	Результаты	3					
5	Обсуждение	4					
Список иллюстраций							
C	писок таблиц						
	1 результаты решения задачи при разных n,m	3					

1 Постановка задачи

Нужно реализовать решение задачи византийских генералов алгоритмом Лампорта.

2 Теория

Имеется n генералов, из которых m предатели. Между каждым из n генералов установлен надёжный (исключающий подмену сообщения) канал связи. Каждый из n-m верных генералов каждый раз посылает истинное и неизменяемое сообщение, а каждый из m предателей посылает ложное и, возможно, изменяемое сообщение. Верным генералам, в результате обмена сообщений, необходимо определить предателей.

Будем решать задачу в частном случае, когда число предателей не меняется. Для этого случая существует алгоритм Лампорта, который состоит из следующих шагов.

- Каждый генерал посылает всем остальным сообщение, верные генералы истинное, предатели ложное.
- В результате у каждого генерала формируется массив из n элементов (полученных сообщений, включая и своё)
- Каждый генерал посылает всем остальным полученный на прошлом шаге массив.
- В конце каждый генерал имеет набор векторов, свой и полученный от других генералов. Для каждого i элемента каждого вектора находится то, которое чаще других встречается. Если оно встречается как минимум n-m раз, то оно считается истинным и помещается в результирующий вектор, иначе в результирующий вектор помещается нуль.

Доказано, что генералы всегда придут к согласию при условии 3m < n.

3 Реализация

Весь код написан на языке Python (версии 3.9.5). Ссылка на GitHub с исходным кодом.

4 Результаты

Рассмотрим пример работы алгоритма на модельном случае с $n=7,\ m=2$. В качестве индексов сопоставим генералам числа от 0 до 6 включительно. Последний генерал будет византийским, остальные – честными. Византийский генерал будет на первом этапе отправлять значения вида v_i , где i – индекс генерала, которому адресовано сообщение, а на втором шаге – v_i , где i – индекс генерала, которому адресовано сообщение, j – индекс генерала, от которого (как утверждает византийский генерал) было получено это значение на первом этапе.

Итоговые вектора (прочерк на месте генералов-предателей):

$$\begin{aligned} 0 &: [0,1,2,3,4,5,6,-,-], \\ 1 &: [0,1,2,3,4,5,6,-,-], \\ 2 &: [0,1,2,3,4,5,6,-,-], \\ 3 &: [0,1,2,3,4,5,6,-,-], \\ 4 &: [0,1,2,3,4,5,6,-,-], \\ 5 &: [0,1,2,3,4,5,6,-,-], \\ 6 &: [0,1,2,3,4,5,6,-,-], \end{aligned}$$

Генералы пришли к согласию. В качестве альтернативы рассмотрим модельный случай с $n=4,\ m=3.$

$$0: [v_0_0, v_0_v_3, v_0_v_3, v_0_v_1], \\ 1: [v_1_0, v_1_v_3, v_1_v_3, v_1_v_2], \\ 2: [v_2_0, v_2, v_2_v_3, v_2], \\ 3: [v_3_0, v_3_v_2, v_3, v_3_v_2]$$
 (2)

Условие 3m < n не выполнилось, генералы не пришли к согласию. Построим также таблицу успешности результатов для $n=\overline{2,7},\ m=\overline{0,n-1}$

Таблица 1: результаты решения задачи при разных n, m

n m	0	1	2	3	4	5	6
2	+	-					
3	+	+	-				
4	+	+	-	-			
5	+	+	-	-	-		
6	+	+	+	-	-	-	
7	+	+	+	-	-	-	-

5 Обсуждение

В результате работы реализован алгоритм Лампорта для решения частного случая задачи Византийских генералов. Показана работоспособность алгоритма. Кроме того, получен результат, говорящий о том, что условие 3m < n является досаточным, но не необходимым для успешного решения.