B ALGORITHMS

Algorithm 1 BC-SDRPRL: Pre-Training and Initialization

1: STEP I: Offline Pre-Training (Behavioral Cloning)

Input:

 B^E : Expert trajectory (S^E, A^E)

T: Pre-training steps

- 2: Randomly initialize: Actor network a^A ($s \mid \theta_{\pi}$) and its target $a^{A'}$ ($s \mid \theta_{\pi'}$) weights.
- 3: **for** pre-training steps = 1, ..., T **do** Compute L_{BC} using eq. (1)
- 4: end for

Output:

 $a^{\bar{A}}$ ($s \mid \theta_{\pi}$): Actor-network $a^{A'}$ ($s \mid \theta_{\pi'}$): Target actor network

5: STEP II: Offline IOHMM Training (Specialization)

Input:

 B^E : Expert trajectory (S^E)

n: Number of hidden states

- 6: **while** expectation-maximization tolerance > 1 * 10¹ **do**
- Compute expectation-maximization ζ using eq. (3)

7: end while

Output:

 λ : Trained IOHMM model parameters

8: STEP III: Offline Value Initialization & State Classification

input:

 B_e : Expert trajectory (S^E)

W: Warmup steps

- 9: Randomly initialize: Value network $V\left(s\mid\theta_{V}\right)$ weights.
- 10: **for** warmup steps = 1, ..., W **do**

Compute L_V using eq. (10)

11: end for

Output:

 $V\left(s\mid\theta_{V}\right)$: Value network

- \hat{x} : Hidden states classification based on the value function x^* : Specialized hidden state (abnormal state)
- 12: **STEP IV:** Online Critic Initialization

Input:

env: Environment model

W: Warmup steps

13: Randomly initialize: Critic network $Q\left(\mathbf{s},\pi\left(\mathbf{s}\mid\theta_{\pi}\right)\mid\theta_{Q}\right)$ and its target $Q'\left(\mathbf{s},\pi\left(\mathbf{s}\mid\theta_{\pi}\right)\mid\theta_{Q'}\right)$ weights.

- 14: Compute x_t using eq. (4).
- 15: **for** warmup steps = 1, ..., W **do**
- 16: **if** x_t is x_t^* **then**

Compute L_O using eq. (7)

- 17: **end if**
- 18: end for

Output:

 $\hat{Q}(x^*, s, \pi \mid \theta_Q) \text{: Critic network}$

Algorithm 2 BC-SDRPRL: Training and Inference

1: STEP I: Desired Hidden State Identification

Input:

 s_t : State of the system

 λ : IOHMM trained parameters

 x^* : Specified hidden state

2: Compute x_t using eq. (4).

3: **if**
$$x_t$$
 is x^* **then**

$$\phi$$
 = True

4: end if

Output

 ϕ : Boolean activation for the residual policy learning

5: STEP II: Deep Residual Policy Reinforcement Learning

Input:

 B^A : Initialize empty RL agent buffer

env: Environment model

 $Q(\mathbf{s}, \pi(\mathbf{s} \mid \theta_{\pi}) \mid \theta_{O}), a^{A}(\mathbf{s} \mid \theta_{\pi})$: Pre-trained networks

 ϕ : Boolean activation for the residual policy learning

 $\tau \text{:}$ Target network soft update hyperparameter

L: Training steps

- 6: Compute x_t using eq. (4).
- 7: **for** training steps = 1, ..., L **do**
- if ϕ then
- Take superposed action combining expert's action and residual action based on the current state *s_t* as in eq. (2)
- 10: Observe reward r and next state s_{t+1}
- 11: Add s_t, a_t^A, r_t, s_{t+1} in B^A
- Sample batch of s_t , a_t^A , r_t , s_{t+1} from B^A
- Compute L_Q and L_A using eq. (7) and eq. (9), respectively.
- 14: Update actor and critic networks using Adam optimizer.
- 15: Update target networks using eq. (15):

$$\theta_{\pi'} \leftarrow \tau \theta_{\pi} + (1 - \tau) \theta_{\pi'}$$

$$\theta_{O'} \leftarrow \tau \theta_{O} + (1 - \tau) \theta_{O'}$$
(15)

- 16: **else**
- 17: Take expert's action
- 18: end if
- 19: end for

Output

 $\pi_{\theta}^*(s_t)$: Optimal control policy from eq. (2)