In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

df = pd.read_csv('/kaggle/input/used-car-price-prediction-dataset/used_cars.csv')

In [3]:

df

Out[3]:

	brand	model	model_year	milage	fuel_type	engine	transmission	е	
0	Ford	Utility Police Interceptor Base	2013	51,000 mi.	E85 Flex Fuel	300.0HP 3.7L V6 Cylinder Engine Flex Fuel Capa	6-Speed A/T		
1	Hyundai	Palisade SEL	2021	34,742 mi.	Gasoline	3.8L V6 24V GDI DOHC	8-Speed Automatic	Мо	
2	Lexus	RX 350 RX 350	2022	22,372 mi.	Gasoline	3.5 Liter DOHC	Automatic		
3	INFINITI	Q50 Hybrid Sport	2015	88,900 mi.	Hybrid	354.0HP 3.5L V6 Cylinder Engine Gas/Electric H	7-Speed A/T		
4	Audi	Q3 45 S line Premium Plus	2021	9,835 mi.	Gasoline	2.0L I4 16V GDI DOHC Turbo	8-Speed Automatic	(N	
4004	Bentley	Continental GT Speed	2023	714 mi.	Gasoline	6.0L W12 48V PDI DOHC Twin Turbo	8-Speed Automatic with Auto- Shift		
4005	Audi	S4 3.0T Premium Plus	2022	10,900 mi.	Gasoline	349.0HP 3.0L V6 Cylinder Engine Gasoline Fuel	Transmission w/Dual Shift Mode		
4006	Porsche	Taycan	2022	2,116 mi.	NaN	Electric	Automatic		
4007	Ford	F-150 Raptor	2020	33,000 mi.	Gasoline	450.0HP 3.5L V6 Cylinder Engine Gasoline Fuel	A/T		
4008	BMW	X3 xDrive30i	2020	43,000 mi.	Gasoline	248.0HP 2.0L 4 Cylinder Engine Gasoline Fuel	A/T		
4009 rows × 12 columns									
4									

In [4]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 4009 entries, 0 to 4008

Data columns (total 12 columns):

Column Non-Null Count Divine

#	Column	Non-Null Count	utype
0	brand	4009 non-null	object
1	model	4009 non-null	object
2	model_year	4009 non-null	int64
3	milage	4009 non-null	object
4	fuel_type	3839 non-null	object
5	engine	4009 non-null	object
6	transmission	4009 non-null	object
7	ext_col	4009 non-null	object
8	int_col	4009 non-null	object
9	accident	3896 non-null	object
10	clean_title	3413 non-null	object
11	price	4009 non-null	object
44	ac. int(1/1)	ab = a a + /11 \	

dtypes: int64(1), object(11)
memory usage: 376.0+ KB

In [10]:

```
df.describe().T
```

Out[10]:

 count
 mean
 std
 min
 25%
 50%
 75%
 max

 model year
 4009.0
 2015.51559
 6.104816
 1974.0
 2012.0
 2017.0
 2020.0
 2024.0

In [11]:

```
# Check for NULL Values in the Dataset
df.isna().sum()
```

Out[11]:

brand 0 model 0 model_year 0 0 milage fuel_type 170 engine 0 0 transmission ext_col 0 int_col 0 113 accident clean_title 596 price 0 dtype: int64

```
In [12]:
```

```
# Check for Duplicates in the Dataset
df.duplicated().sum()
Out[12]:
```

0

Cleaning of the Dataset

```
In [13]:
```

```
# Encoding 'brand' categorical data column
from sklearn.preprocessing import LabelEncoder
labelEncoder = LabelEncoder()
```

In [14]:

```
df['brand'] = labelEncoder.fit_transform(df['brand'])
```

In [26]:

```
# Create new Fature named 'milage_int'
# Contains Milage converted to int dtype

def return_milage_int(s):
    d = int((s.replace(',','')).replace(' mi.',''))
    return d

df['milage_int'] = df['milage'].map(return_milage_int)
df.drop('milage', axis=1, inplace=True)
```

In [28]:

```
# Create new Fature named 'price_int'
# Contains Price converted to int dtype

def return_price_int(s):
    d = int((s.replace(',','')).replace('$',''))
    return d

df['price_int'] = df['price'].map(return_price_int)
df.drop('price', axis=1, inplace=True)
```

In [35]:

```
# Fill NULL Values in 'clean_title' feature
df['clean_title'] = df['clean_title'].fillna('No')

# Encoding the 'clean_title' feature
df['clean_title'] = labelEncoder.fit_transform(df['clean_title'])
```

In [42]:

In [74]:

```
df['fuel_type'].value_counts()
```

Out[74]:

fuel_type
Gasoline 3479
Hybrid 194
E85 Flex Fuel 139
Diesel 116
- 45
Plug-In Hybrid 34
not supported 2
Name: count, dtype: int64

In [68]:

```
sns.countplot(x='fuel_type', data=df)
```

Out[68]:

<Axes: xlabel='fuel_type', ylabel='count'>

In [77]:

```
# Fill the Mode Value i.e. 'Gasoline'
df['fuel_type'] = df['fuel_type'].fillna('Gasoline')

df['fuel_type'] = df['fuel_type'].replace({'-':'Hybrid', 'not supported':'Hybrid'})

# Perform Encoding on the 'fuel_type' Feature
df['fuel_type'] = labelEncoder.fit_transform(df['fuel_type'])
```

In [81]:

```
# Encoding 'ext_col' and 'int_col' Features

df['ext_col'] = labelEncoder.fit_transform(df['ext_col'])
df['int_col'] = labelEncoder.fit_transform(df['int_col'])
```

In [87]:

```
# Encoding the 'transmission' Feature

df['transmission'] = labelEncoder.fit_transform(df['transmission'])
```

```
In [91]:
# Encoding the 'engine' Feature
df['engine'] = labelEncoder.fit_transform(df['engine'])
In [95]:
# Encoding the 'model' Feature
df['model'] = labelEncoder.fit_transform(df['model'])
In [94]:
len(df['model'].unique())
Out[94]:
1898
In [93]:
df['model'].unique()
Out[93]:
array(['Utility Police Interceptor Base', 'Palisade SEL', 'RX 350 RX 3
50',
       ..., 'Martin DB7 Vantage Volante', 'Impala 2LZ', 'Taycan'],
      dtype=object)
In [108]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4009 entries, 0 to 4008
Data columns (total 12 columns):
 #
                   Non-Null Count Dtype
    Column
 0
    brand
                   4009 non-null
                                   int64
 1
    model
                   4009 non-null
                                   int64
 2
   model_year
                   4009 non-null
                                   int64
 3
   fuel_type
                   4009 non-null
                                   int64
 4
                   4009 non-null
    engine
                                   int64
   transmission 4009 non-null
                                   int64
 6
   ext_col
                   4009 non-null
                                   int64
 7
    int col
                   4009 non-null
                                   int64
 8
    accident
                   4009 non-null
                                   int64
     clean_title
                   4009 non-null
                                   int64
 10 milage_int
                   4009 non-null
                                   int64
 11 price_int
                   4009 non-null
                                   int64
dtypes: int64(12)
memory usage: 376.0 KB
```

Extract Feature and Target Variables

```
In [100]:
```

```
X = df.drop('price_int', axis=1)
Y = df['price_int']
```

In [101]:

```
from sklearn.model_selection import train_test_split
```

In [102]:

```
x_train,x_test,y_train,y_test = train_test_split(X, Y, test_size=0.20, random_state
=42)
```

Create and Train the SVR Model

In [117]:

```
from sklearn.svm import SVR
```

In [120]:

```
# Create an SVR model
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_rbf.fit(x_train, y_train)
```

Out[120]:

```
SVR
SVR(C=1000.0, gamma=0.1)
```

In [121]:

```
y_pred = svr_rbf.predict(x_test)
```

In [124]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4009 entries, 0 to 4008 Data columns (total 13 columns): Column # Non-Null Count Dtype brand 0 4009 non-null int64 1 model 4009 non-null int64 2 model_year 4009 non-null int64 fuel_type 3 4009 non-null int64 4 engine 4009 non-null int64 5 transmission 4009 non-null int64 6 ext col 4009 non-null int64 7 int_col 4009 non-null int64 8 accident 4009 non-null int64 9 clean title 4009 non-null int64 10 milage_int 4009 non-null int64 11 price_int 4009 non-null int64 model_year_trans 4009 non-null float64 dtypes: float64(1), int64(12) memory usage: 407.3 KB

In [125]:

```
# Plot the results
plt.figure(figsize=(10, 5))
plt.scatter(X['milage_int'], Y, color='darkorange', label='Data')
plt.plot(x_test, y_pred, color='navy', lw=2, label='SVR RBF')
plt.xlabel('Input')
plt.ylabel('Output')
plt.title('Support Vector Regression')
plt.legend()
plt.show()
```


In []:			