Module-4 Part - 3

Fitting of a curve of the form $y = ax^b$

Taking log on both sides

$$\log y = \log \left(ax^b \right)$$

 $\log y = \log a + b \log x$

$$Y = A + BX \qquad ---- (2)$$

where $Y = \log y$, $A = \log a$, B = b and $X = \log x$

$$\Sigma Y = nA + B\Sigma X$$
 and

$$\Sigma XY = A\Sigma X + B\Sigma X^{2}$$

Solving these equations we obtain A and B from which $a = e^A$ and b = B can be found.

Substituting these values of a and b in (1), we obtain the equation of the best fitting curve.

WORKED EXAMPLES

Fit a curve of the form $y = ax^b$ for the data

x	1	2	3	4	5	6
у	2.98	4.26	5.21	6.1	6.8	7.5

Taking log on both sides

$$\log y = \log \left(ax^{b}\right)$$

$$\log y = \log a + b \log x$$

$$Y = A + BX \qquad ---- (2)$$

where $Y = \log y$, $A = \log a$, B = b and $X = \log x$

$$\Sigma Y = nA + B\Sigma X$$
 and $\Sigma XY = A\Sigma X + B\Sigma X^2$

where $Y = \log y$, $A = \log a$, B = b and $X = \log x$

We prepare a relevant table as follows

Σ

x	у	X = log x	Y = log y	XY	X^2
1	2.98	0	1.0919	0	0
2	4.26	0.6931	1.4492	1.0044	0.4804
3	5.21	1.0986	1.6506	1.8133	1.2069
4	6.1	1.3863	1.8083	2.5068	1.9218
5	6.8	1.6094	1.9169	3.0851	2.5909
6	7.5	1.7918	2.0149	3.6103	3.2105
21	32.85	6.5792	9.9318	12.0199	9.4098

Here, n = 6, $\Sigma X = 6.5792$, $\Sigma Y = 9.9318$, $\Sigma XY = 12.0199$ and $\Sigma X^2 = 9.4098$

Substituting these values in the above normal equations, we get

$$9.9318 = 6A + 6.5792B$$
$$12.0199 = 6.5792A + 9.4098B$$

Solving these equations, we get

$$A = 1.0912, B = 0.5144$$

$$\Rightarrow a = e^A = e^{1.0912} = 2.9778$$
 and $b = B = 0.5144$

 \therefore The equation of the best fitting curve is $y = (2.9778)x^{0.5144}$

Fit a curve of the form $y = ax^b$ for the data

x	1	2	3	4	5
у	0.5	2	4.5	8	12.5

Taking log on both sides

$$\log y = \log \left(ax^{b}\right)$$

$$\log y = \log a + b \log x$$

$$Y = A + BX \qquad ---- (2)$$

where $Y = \log y$, $A = \log a$, B = b and $X = \log x$

$$\Sigma Y = nA + B\Sigma X$$
 and $\Sigma XY = A\Sigma X + B\Sigma X^2$

where $Y = \log y$, $A = \log a$, B = b and $X = \log x$

We prepare a relevant table as follows

	x	у	X = log x	Y = log y	XY	X^2
	1	0.5	0	-0.6931	0	0
	2	2	0.6931	0.6931	0.4804	0.4804
	3	4.5	1.0986	1.5041	1.6524	1.2069
	4	8	1.3863	2.0794	2.8827	1.9218
l	5	12.5	1.6094	2.5257	4.0649	2.5903
	15	27.5	4.7874	6.1092	9.0804	6.1993

Here, n = 5, $\Sigma X = 4.7874$, $\Sigma Y = 6.1092$, $\Sigma XY = 9.0804$ and $\Sigma X^2 = 6.1993$

Substituting these values in the above normal equations, we get

$$6.1092 = 5A + 4.7874B$$

$$9.0804 = 4.7874A + 6.1993B$$

Solving these equations, we get

$$A = -0.6929$$
, $B = 1.9998$

$$\Rightarrow a = e^A = e^{-0.6929} = 0.5$$
 and $b = B = 1.9998$

 \therefore The equation of the best fitting curve is $y = (0.5)x^{1.9998}$

An experiment gave the following values:

v (ft/min)	350	400	500	600
t (min)	61	26	7	2.6

It is known that v and t are connected by the relation $v = at^b$. Find the best possible values of a and b.

$$v = at^b \qquad ---- (1)$$

Taking log on both sides

$$\log v = \log \left(a t^b \right)$$

$$\log v = \log a + b \log t$$

$$Y = A + BX \tag{2}$$

where $Y = \log v$, $A = \log a$, B = b and $X = \log t$

$$\Sigma Y = nA + B\Sigma X$$
 and $\Sigma XY = A\Sigma X + B\Sigma X^2$

where $Y = \log v$, $A = \log a$, B = b and $X = \log t$

We prepare a relevant table as follows

υ	t	X = log t	Y = log v	XY	X^2
350	61	4.1109	5.8579	24.0812	16.8995
400	26	3.2581	5.9915	19.5209	10.6152
500	7	1.9459	6.2146	12.0930	3.7865
600	2.6	0.9555	6.3969	6.1122	0.9130
1850	96.6	10.2704	24.4609	61.8073	29.2142

Here, n = 4, $\Sigma X = 10.2704$, $\Sigma Y = 24.4609$, $\Sigma XY = 61.8073$ and $\Sigma X^2 = 29.2142$

Substituting these values in the above normal equations, we get

$$24.4609 = 4A + 10.2704B$$

$$61.8073 = 10.2704A + 29.2142B$$

Solving these equations, we get

$$A = 7.0167, B = -0.3511$$

$$\Rightarrow a = e^A = e^{7.0167} = 1115.10$$
 and $b = B = -0.3511$

EXERCISE

1. Fit a curve of the form $y = ax^b$ for the data

x	20	16	10	11	14
у	22	41	120	89	56

(VTU 2015)

2. Fit a curve of the form $y = ax^b$ for the data

X	1	2	4	6
у	6	4	2	2

3. Predict y at x = 3.75, by fitting a curve $y = ax^b$ for the data

х	1	2	3	4	5	6
y	2.98	4.26	5.21	6.10	6.80	7.50

4. Fit a curve of the form $y = ax^b$ for the data

X	1	2	3	4	5
у	0.5	2	4.5	8	12.5