Multi-Task and Transfer Learning in Low-Resource Speech Recognition

Josh Meyer

PhD Candidate Department of Linguistics University of Arizona

Thank You!

Keeping me on track: Tom, Mihai, Mike, Clay

Keeping me funded: Dorian, Georgia, Shelley

Keeping me happy: MCV, Megan, Nick, Nick, Rilo, Elise, Shiloh, Rolando, Bill, Samwise, Gus, Ryan, Jaime, Dane, Emily, Joan, Yuan-Lu, David, Genet, Joe, Kevin,

Roadmap

- Overview of ASR.
- Overview of Transfer Learning
 - Multi-Task Learning
 - Copy-Paste Transfer
- Multi-Task Learning Studies
 - Linguistic Tasks
 - Engineered Tasks
- Copy-Paste Transfer Studies
 - Multilingual Transfer
 - Model Interpretability
- Conclusion

Introduction

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

But we can exploit similar use-cases!

"THE DOG"

"THE DOG"

ASR Acoustic Modeling

T H E D O G

Phonetic Labels

Phonetic Labels

Phonetic Labels

Phonetic Labels

[A]

[E]

Phonetic Labels

[I] [O] [U]

[A] [I] [0] [U][E] Phonetic Labels Where do we get labels? **Audio Features**

Phonetic Labels

Happy little phonetic decision trees!

Phonetic Decision Tree

Phonetic Decision Tree

Phonetic Decision Tree

Phonetic Decision Tree

Phonetic Decision Tree

Phonetic Decision Tree

Bias Transfer

Useful bias comes from a source domain

Useful bias comes from a source domain

source Dataset

Useful bias comes from a source domain

source Dataset

-or-

source Model

Example of Domain

Bias Source

Resource

source Dataset \rightarrow -or-

source Model \rightarrow

Example of Domain

Bias Source

Resource

source Dataset \rightarrow

English Speech Corpus

-or-

source Model \rightarrow

Example of Domain

Bias Source

Resource

source Dataset \rightarrow

English Speech Corpus

-or-

-or-

source Model \rightarrow

Trained English Model

Bias Source

Transfer Method

source Dataset \rightarrow

-or-

source Model \rightarrow

Bias Source

Transfer Method

```
source Dataset \rightarrow Multi-Task Learning -or-
```

source Model \rightarrow

Bias Source

Transfer Method

```
source Dataset \rightarrow Multi-Task Learning -or-
```

source Model \rightarrow Copy-Paste Transfer

What is a task?

{rottweiler, large}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

Multi-Task Studies

Can Linguistics help in a MTL Framework?

Can Linguistics help in a MTL Framework?

• Yes: Bells and Renals (2015), Huang et al. (2015), Chen & Mak (2015), Seltzer & Droppo (2013)

Can Linguistics help in a MTL Framework?

- **Yes**: Bells and Renals (2015), Huang et al. (2015), Chen & Mak (2015), Seltzer & Droppo (2013) ...
- No: Pironkov et al (2016)

"Using even broader phonetic classes (such as plosive, fricative, nasal...) is not efficient for MTL speech recognition."

	Bila	bial	Labio	dental	Den	tal	Alvec	olar	Postalv	eolar	Retro	oflex	Pal	atal	Ve	elar	Uvi	ılar	Phary	ngeal	Glo	ttal
Plosive	p	b					t	d			t	d	С	J	k	g	q	G			3	
Nasal		m		m				n				η		ŋ		ŋ		N				
Trill		В						r										R				
Tap or Flap				V				ſ				r										
Fricative	ф	β	f	V	θ	ð	S	Z	ſ	3	Ş	Z	ç	j	X	Y	χ	R	ħ	S	h	h
Lateral fricative							1	ß														
Approximant				υ				J				-F		j		щ						
Lateral approximant								1				l		Λ		L						

Manner == rows

	Bila	ibial	Labioc	dental	Den	tal	Alveol	ar	Postalveolar	Retr	oflex	Pal	atal	Ve	lar	Uv	ular	Phary	ngeal	Glo	ttal
Plosive	p	b					t	1		t	d	С	J	k	g	q	G			3	
Nasal		m		m			1	1			η		ŋ		ŋ		N				
Trill		В					1	•									R				
Tap or Flap				V			ſ	•			r										
Fricative	ф	β	f	V	θ	ð	S Z	7	\int 3	Ş	Z	ç	j	X	Y	χ	R	ħ	S	h	ĥ
Lateral fricative						,	ł	3													
Approximant				υ			J	[J		j		щ						
Lateral approximant							1				l		λ		L						

$$Manner == rows$$

$$Place == columns$$

	Bila	abial	Labio	dental	Den	ıtal	Alve	olar	Postaly	eolar	Retro	oflex	Pal	atal	Ve	elar	Uvi	ılar	Phary	ngeal	Glo	ttal
Plosive	p	b					t	d			t	q	С	J	k	g	q	G			3	
Nasal		m		m				n				η		ŋ		ŋ		N				
Trill		В						r										R				
Tap or Flap				V				ſ				r										
Fricative	ф	β	f	V	θ	ð	S	Z	ſ	3	Ş	Z	ç	j	X	Y	χ	R	ħ	S	h	ĥ
Lateral fricative							1	ß														
Approximant				υ				J				J		j		щ						
Lateral approximant								1				l		λ		L						

$$Manner == rows$$

$$Place == columns$$

	Bila	bial	Labio	dental	Den	tal	Alvec	olar	Postalv	eolar	Retro	oflex	Pal	atal	Ve	elar	Uvi	ılar	Phary	ngeal	Glo	ttal
Plosive	p	b					t	d			t	d	С	J	k	g	q	G			3	
Nasal		m		m				n				η		ŋ		ŋ		N				
Trill		В						r										R				
Tap or Flap				V				ſ				r										
Fricative	ф	β	f	V	θ	ð	S	Z	ſ	3	Ş	Z	ç	j	X	Y	χ	R	ħ	S	h	h
Lateral fricative							1	ß														
Approximant				υ				J				-F		j		щ						
Lateral approximant								1				l		Λ		L						

$$Voicing == cells$$

Example: Collapsing on Voice

Methods

Data

С	ORPUS
Train	\mathbf{Test}
 1	LibriSpeech-B Kyrgyz Audiobook

Data

	Corpus								
	Train	Test	0.5 hou						
-	LibriSpeech-A LibriSpeech-A	LibriSpeed	h-B						
	4.86 hours								

Data

Corpus								
Train	Test 0.5 h	01120						
•	LibriSpeech-B Kyrgyz Audiobook	, at 8						
4.86 hours	1.6 ho	77						

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1,000 leaves
 - 2,000 Gaussian components

DNN Training Procedure

- 5 Layer, Time-Delay Neural Network
- 500 Nodes / Layer
- ReLU Activations
- Stochastic Gradient Descent for 2 epochs

	C	ORPUS
	Train	\mathbf{Test}
Speaker	LibriSpeech-A	LibriSpeech-B
	LibriSpeech-A	Kyrgyz Audiobook

	$\mathbf{WER}\%$						
Auxiliary Tasks	Triphones	Monophones					
STL Baseline	4	1.67					
Voice	41.16	42.36					
Place	42.66	40.61					
Manner	42.03	41.70					
Voice + Place	42.90	41.49					
Voice + Manner	42.45	42.66					
Place + Manner	42.66	41.82					
Voice + Manner + Place	42.42	42.72					

Not so great :(

	\mathbf{W}	$\overline{\mathrm{ER}\%}$
Auxiliary Tasks	Triphones	Monophones
STL Baseline	4	1.67
Voice	41.16	42.36
Place	42.66	40.61
Manner	42.03	41.70
Voice + Place	42.90	41.49
Voice + Manner	42.45	42.66
Place + Manner	42.66	41.82
Voice + Manner + Place	42.42	42.72

The main task is more important...

The main task is more important...

Implement a relative weighting!

Source: Target Weighting

1:1

1/3:1

	\mathbf{W}	$\mathbf{ER}\%$	\mathbf{W}	${ m ER}\%$
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones
STL Baseline	4	1.67	4	1.67
Voice	41.16	42.36	41.00	40.43
Place	42.66	40.61	41.37	41.46
Manner	42.03	41.70	40.43	41.34
Voice + Place	42.90	41.49	41.31	41.28
Voice + Manner	42.45	42.66	41.25	42.18
Place + Manner	42.66	41.82	42.03	42.48
Voice + Manner + Place	42.42	42.72	41.64	41.88

Now, that looks better:)

Source: Target Weighting

1:1

1/3:1

	\mathbf{W}	$\mathbf{ER}\%$	\mathbf{W}	${ m ER}\%$
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones
STL Baseline	4	1.67	4	1.67
Voice	41.16	42.36	41.00	40.43
Place	42.66	40.61	41.37	41.46
Manner	42.03	41.70	40.43	41.34
Voice + Place	42.90	41.49	41.31	41.28
Voice + Manner	42.45	42.66	41.25	42.18
Place + Manner	42.66	41.82	42.03	42.48
Voice + Manner + Place	42.42	42.72	41.64	41.88

CORPUS
Train
Test

Speaker LibriSpeech-A LibriSpeech-B
Language LibriSpeech-A Kyrgyz Audiobook

Standard Linguistic English Kyrgyz

	$\mathbf{WER}\%$		
Auxiliary Tasks	Triphones	Monophones	
STL Baseline	53.07		
Phonemes	53.95	52.78	
Voice	54.05	53.85	
Place	55.22	53.95	
Manner	53.37	53.27	
Voice + Place	55.22	53.46	
Voice + Manner	55.12	53.46	
Place + Manner	55.51	53.66	
Voice + Manner + Place	54.15	54.44	

Not so great :(

	m WER%		
Auxiliary Tasks	Triphones	Monophones	
STL Baseline	53.07		
Phonemes	53.95	52.78	
Voice	54.05	53.85	
Place	55.22	53.95	
Manner	53.37	53.27	
Voice + Place	55.22	53.46	
Voice + Manner	55.12	53.46	
Place + Manner	55.51	53.66	
Voice + Manner + Place	54.15	54.44	

Source: Target Weighting

1:1

1/3:1

	m WER%		$\overline{ m WER\%}$	
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones
STL Baseline	53.07		53.07	
Phonemes	53.95	52.78	51.80	51.61
Voice	54.05	53.85	52.39	53.46
Place	55.22	53.95	51.90	52.29
Manner	53.37	53.27	52.00	51.80
Voice + Place	55.22	53.46	52.68	52.78
Voice + Manner	55.12	53.46	51.22	51.32
Place + Manner	55.51	53.66	50.83	53.66
Voice + Manner + Place	54.15	54.44	52.78	52.39

Now, that looks better:)

Source: Target Weighting

1:1

1/3:1

	m WER%		$\overline{ m WER\%}$	
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones
STL Baseline	53.07		53.07	
Phonemes	53.95	52.78	51.80	51.61
Voice	54.05	53.85	52.39	53.46
Place	55.22	53.95	51.90	52.29
Manner	53.37	53.27	52.00	51.80
Voice + Place	55.22	53.46	52.68	52.78
Voice + Manner	55.12	53.46	$\boldsymbol{51.22}$	51.32
Place + Manner	55.51	53.66	50.83	53.66
Voice + Manner + Place	54.15	54.44	52.78	52.39

Summary: Linguistic Tasks

- Linguistics can help for transfer!
 - But we must keep in mind weighting
- More Tasks isn't always better
 - Monolingual: 1 extra task is best
 - Multilingual: 2 extra tasks is best

Engineered Tasks

Engineered Tasks

Can we find useful linguistic bias without a linguist?

Engineered Tasks

Can we find useful linguistic bias without a linguist?

Focus on multilingual scenario

Linguist-Crafted Tasks

Linguist-Crafted Tasks

Lots of unused structure...

Linguist-Crafted Tasks

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- "Half-phones"
 - 25 iterations of Baum-Welch
 - 792 leaves
 - 5,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1584 leaves
 - 5,000 Gaussian components

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- "Half-phones" (Half-way down the tree)
 - 25 iterations of Baum-Welch
 - 792 leaves
 - 5,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1584 leaves
 - 5,000 Gaussian components

DNN Training Procedure

- 5 Layer, Time-Delay Neural Network
- 500 Nodes / Layer
- ReLU Activations
- Stochastic Gradient Descent for 10 epochs

DNN Training Procedure

Smarter weighting

DNN Training Procedure

Smarter weighting

Source:Target Ratio	Target Weighting		
2:1	1.53x		
1:1	3.06x		
1:2	6.12x		

Multilingual Engineered Tasks

CORPUS
Train
Test

Speaker LibriSpeech-A LibriSpeech-B
Language LibriSpeech-A Kyrgyz Audiobook

Multilingual Engineered Tasks

Auxiliary (Source Lang) Tasks		e:Target 1-to-1	Weighting 2-to-1
STL Baseline	50.54		
Monophones	48.20	47.32	47.41
Halfphones	48.68	46.73	48.68
Triphones	49.37	47.12	46.73
${\bf Monophones + Halfphones}$	48.20	48.49	48.10
Halfphones + Triphones	50.05	48.00	47.90
Monophones + Halfphones + Halfphones	48.88	48.20	48.59

Summary: Engineered Tasks

- Smarter Weighting helps
 - Based on size of datasets
- We can find tasks in the tree
- Again, more tasks isn't always better

End-to-End Transfer Studies

Transfering Bias

Transfering Bias

Bias Source

Transfer Method

 $source\ Dataset\ \rightarrow\quad Multi-Task\ Learning$

-Or-

source Model \rightarrow Copy-Paste Transfer

End-to-end ASR

End-to-end ASR

"THE DOG"

End-to-end ASR

"THE DOG"

Mozilla's DeepSpeech

Transfer Experiments

Transfer Experiments

Transfer Experiments

CTC Transfer Experiments

CTC Transfer Experiments

Experimental Design

- 5 depths for slicing source model
- 2 update scenarios (frozen vs. fine-tuned)
- 12 target languages
- 120 experiments, in total

Experimental Design

- 5 depths for slicing source model
- 2 update scenarios (frozen vs. fine-tuned)
- 12 target languages
- 120 experiments, in total

Hyperparameters

- Single GPU training
- 24 train batch, 48 dev batch
- 20% dropout rate
- 0.0001 learning rate with ADAM
- Early stopping based on last 5 steps

Data (Common Voice)

Frozen

Summary: End-to-end Transfer

Multilingual Transfer

- Fine-tuning always helps
- LSTM transfer is best, but only with fine-tuning

Interpretability Experiments

Regression on Embeddings

Regression on Embeddings

Regression on Embeddings

Speech vs. Noise

Speech vs. Noise

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

English vs. German

English vs. German

- Copied layers, added final FC layer with single output and logistic activation
- English vs. German
- 5,000 train clips, 500 test clips per class

Interpretability Studies

English vs. German

Table 5. English vs. German Audio Classification Accuracy (%)

Interpretability Studies

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

Classification Accuracy								
Νü	ımber of	Layers (Copied fr	om Engl	ish			
1	1 2 3 4 5							
66.51	66.38	52.77	86.21	74.97	85.00			

Table 5. English vs. German Audio Classification Accuracy (%)

Summary: End-to-end Transfer

Interpretability Studies

- Before the recursive Layer, the model has Language-specific and language-agnostic representations

Conclusions

Summary: A Dissertation

Multi-Task Studies

- Abstract linguistic representations **are** helpful
- Engineered Tasks can discover useful bias in the phonetic decision tree
- Relative Task weighting is crucial to success

Copy-Paste Transfer Studies

- Transfer with fine-tuning always helps
- The source model has learned Language-general representations before recurrent knowledge is possible

APPENDIX A: Multi-Task

Linguistic Knowledge

Example: Collapsing on Voice

```
B P --> P
                bilabial plosives
CH JH --> CH
                alveo-palatal affricates
D T --> T
                alveolar plosives
DH TH --> TH
                interdental fricatives
F V --> F
                labio-dental fricatives
G K --> G
                velar plosives
S Z --> S
                alveolar fricatives
SH ZH --> SH
                alveo-palatal fricatives
```

APPENDIX B: DeepSpeech

Frozen Transfer Results

	Character Error Rate							
	Number of Layers Copied from English							
Lang.	None	1	2	3	4	5		
sl	23.35	23.93	25.30	18.87	17.53	26.24		
ga	31.83	29.08	36.14	27.22	29.07	32.27		
CV	48.10	46.13	47.83	38.00	35.23	42.88		
br	21.47	19.17	20.76	18.33	17.72	21.03		
tr	34.66	32.98	35.47	33.00	33.66	36.71		
it	40.91	39.20	41.55	38.16	39.40	43.21		
СУ	34.15	32.46	33.93	31.57	35.26	36.56		
tt	32.61	29.20	30.52	27.37	28.28	31.28		
ca	38.01	36.44	38.70	36.51	42.26	47.96		
fr	43.33	43.30	43.47	43.37	43.75	43.79		
kab	25.76	25.57	25.97	25.45	27.77	29.28		
de	43.76	44.48	44.08	43.70	43.77	43.69		

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

	Character Error Rate							
	Number of Layers Copied from English							
Lang.	None	1	2	3	4	5		
sl	23.35	23.93	25.30	18.87	17.53	26.24		
ga	31.83	29.08	36.14	27.22	29.07	32.27		
CV	48.10	46.13	47.83	38.00	35.23	42.88		
br	21.47	19.17	20.76	18.33	17.72	21.03		
tr	34.66	32.98	35.47	33.00	33.66	36.71		
it	40.91	39.20	41.55	38.16	39.40	43.21		
СУ	34.15	32.46	33.93	31.57	35.26	36.56		
tt	32.61	29.20	30.52	27.37	28.28	31.28		
ca	38.01	36.44	38.70	36.51	42.26	47.96		
fr	43.33	43.30	43.47	43.37	43.75	43.79		
kab	25.76	25.57	25.97	25.45	27.77	29.28		
de	43.76	44.48	44.08	43.70	43.77	43.69		

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

	Character Error Rate								
	Number of Layers Copied from English								
Lang.	None	1	2	3	4	5			
sl	23.35	23.93	25.30	18.87	17.53	26.24			
ga	31.83	29.08	36.14	27.22	29.07	32.27			
CV	48.10	46.13	47.83	38.00	35.23	42.88			
br	21.47	19.17	20.76	18.33	17.72	21.03			
tr	34.66	32.98	35.47	33.00	33.66	36.71			
it	40.91	39.20	41.55	38.16	39.40	43.21			
су	34.15	32.46	33.93	31.57	35.26	36.56			
tt	32.61	29.20	30.52	27.37	28.28	31.28			
ca	38.01	36.44	38.70	36.51	42.26	47.96			
fr	43.33	43.30	43.47	43.37	43.75	43.79			
kab	25.76	25.57	25.97	25.45	27.77	29.28			
de	43.76	44.48	44.08	43.70	43.77	43.69			

Table 2. Frozen Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

	Character Error Rate								
	Number of Layers Copied from English								
Lang.	None	1	2	3	4	5			
sl	23.35	21.65	26.44	19.09	15.35	17.96			
ga	31.83	31.01	32.2	27.5	25.42	24.98			
CV	48.1	47.1	44.58	42.75	27.21	31.94			
br	21.47	19.16	20.01	18.06	15.99	18.42			
tr	34.66	34.12	34.83	31.79	27.55	29.74			
it	40.91	42.65	42.82	36.89	33.63	35.10			
СУ	34.15	31.91	33.63	30.13	28.75	30.38			
tt	32.61	31.43	30.80	27.79	26.42	28.63			
ca	38.01	35.21	39.02	35.26	33.83	36.41			
fr	43.33	43.26	43.51	43.24	43.20	43.19			
kab	25.76	25.5	26.83	25.25	24.92	25.28			
de	43.76	43.69	43.62	43.60	43.76	43.69			

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

	Character Error Rate								
	Number of Layers Copied from English								
Lang.	None	1	2	3	4	5			
sl	23.35	21.65	26.44	19.09	15.35	17.96			
ga	31.83	31.01	32.2	27.5	25.42	24.98			
CV	48.1	47.1	44.58	42.75	27.21	31.94			
br	21.47	19.16	20.01	18.06	15.99	18.42			
tr	34.66	34.12	34.83	31.79	27.55	29.74			
it	40.91	42.65	42.82	36.89	33.63	35.10			
СУ	34.15	31.91	33.63	30.13	28.75	30.38			
tt	32.61	31.43	30.80	27.79	26.42	28.63			
ca	38.01	35.21	39.02	35.26	33.83	36.41			
fr	43.33	43.26	43.51	43.24	43.20	43.19			
kab	25.76	25.5	26.83	25.25	24.92	25.28			
de	43.76	43.69	43.62	43.60	43.76	43.69			

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Data Details

		Dataset Size						
		A	udio Cl	ips	Unique Speakers			
Language	Code	Dev	Test	Train	Dev	Test	Train	
Slovenian	sl	110	213	728	1	12	3	
Irish	ga	181	138	1001	4	12	6	
Chuvash	CV	96	77	1023	4	12	5	
Breton	br	163	170	1079	3	15	7	
Turkish	tr	407	374	3771	32	89	32	
Italian	it	627	734	5019	29	136	37	
Welsh	су	1235	1201	9547	51	153	75	
Tatar	tt	1811	1164	11187	9	64	3	
Catalan	ca	5460	5037	38995	286	777	313	
French	fr	5083	4835	40907	237	837	249	
Kabyle	kab	5452	4643	43223	31	169	63	
German	de	7982	7897	65745	247	1029	318	

Table 1. Number of audio clips and unique speakers per language per dataset split.

Effect of Data Size

