

Forrest Collman, JoAnn Buchanan, Kristen D. Phend, Kristina D. Micheva, Richard J. Weinberg, and Stephen J Smith

Presented by Elizabeth Morgan

Summary

- Conjugate array tomography
 - Molecular survey of synapses from a region in the mouse neocortex
- Combined immunofluorescence and scanning electron microscopy array imaging with computational image reconstruction, visualization and analysis methods

Opportunity

- Synapses have many variations in structure
 - Understanding development,
 plasticity, storage, etc.
- Quantitative analysis and mapping of synapses have been limited by singlesynapse measurement methods

Annotated SEM

Challenge

- Array tomography (AT) reconstruction from ultrathin sections
 - Immunofluorescence (IF) molecular information and large synapse populations
 - Scanning electron microscopy (SEM) detailed synapse recognition
 - Different requirements for preservation of immunoreactivity and ultrastructure limit the use of IF-AT and SEM-AT on the same specimens

Action

- DAPI
- Optimization of freeze-substitution methods
 - Lowicryl HM-20
- Used both presynaptic and postsynaptic markers
- Identified synapses belonging to 4 basic subtypes
- Methods for computational alignment and registration of different types of images

Action

Table 1. List of antibodies, sources, and dilutions used in this study

Antigen	Host	Antibody source	Dilution
Synapsin 1	Rabbit	Cell Signaling Technology 5297S	1:200
Synaptophysin	Mouse	Abcam ab8049	1:15
VGluT1	Guinea pig	Millipore AB5905	1:5000
PSD-95	Rabbit	Cell Signaling Technology 3450S	1:200
GluN1	Mouse	Millipore MAB363	1:200
GABA	Guinea pig	Millipore AB175	1:10000
GAD2	Rabbit	Cell Signaling Technology 5843	1:200
Gephyrin	Mouse	Biosciences Pharmingen 612632	1:100
α-Tubulin	Rabbit	Abcam ab18251	1:100
Acetylated α -tubulin	Mouse	Sigma-Aldrich T6793	1:100
βIII-tubulin	Chicken	Abcam 41489	1:200
γ-Actin	Mouse	Sigma-Aldrich A8481	1:100
Glutamine synthetase	Mouse	BD Biosciences 610517	1:25
Prohibitin	Rabbit	Abcam ab28172	1:100
GFP	Chicken	GeneTex GTX13970	1:100
MBP	Chicken	AVES MBP	1:100

GABAergic

Glutamatergic

Resolution

- Conjugate AT provides high-resolution structural and molecular imaging
- Alignment and tracing accurate within 1 pixel
- Found 90.9 ± 2.1% of glutamatergic synapses
- Map 3D shape of synapses

Future

- Broader efforts to map synapses and the connectome
 - o can be applied in many different brain regions, tissues, and species
- Further improvements in treating the samples might allow for better EM imaging
- Automated synapse detection from EM is being developed
 - o immunofluorescence channels could aid automated detection

Discussion

Pros

- Allows identification of all synapses within SEM
- Provides gold standard to compare with automated detection

Cons

- Doesn't replace techniques optimized for EM imaging
- Detailed axonal processes can't be reliably traced over long distances

