Тест начат	вторник, 9 января 2024, 12:39
Состояние	Завершены
Завершен	вторник, 9 января 2024, 13:18
Прошло времени	38 мин. 58 сек.
Оценка	5,00 из 5,00 (100 %)

вопрос Инфо

Код, который будет в видео следующих шагов, доступен в репозитории курса

Вы можете скачать его и выполнять у себя на компьютере, либо импортировать в Colab,.

вопрос Инфо

Вопрос 1					
Выполнен					
Баллов: 1,00 из 1,00					
Что делает атрибут requires_grad=True при создании тензора?					
Выберите один или несколько ответов:					
🛮 а. Сообщает о том, что данный тензор является переменной, по которой нужно будет считать градиенты					
 □ b. Говорит о том, что данная функция дифференцируема 					
🕜 с. Превращает тензор-константу в тензор-переменную					
Ваш ответ верный.					
вопрос Инфо					

Вопрос 2

Верно

Баллов: 1,00 из 1,00

Реализуйте расчет градиента для функции $f(w) = \prod\limits_{i,j} log_e(log_e(w_{i,j}+7))$ в точке w = [[5,10],[1,2]]

Подсказка: перемножить все значения функции можно с помощью метода .prod()

Ответ: (штрафной режим: 0, 0, 30, ... %)

```
Сброс ответа
```

```
import torch

w = torch.tensor([[5.0, 10.0], [1.0, 2.0]], requires_grad=True)

function = torch.prod(torch.log(torch.log(w + 7)))

function.backward()

print(w.grad) # Код для самопроверки
#print(w.grad) # Код для самопроверки
```

	Тест	Ожидаемый	Получено	
~	print(w.grad)	tensor([[0.0201, 0.0109] [0.0449, 0.0351]		~

Прошли все тесты! ✔

Баллы за эту попытку: 1,00/1,00.

Вопрос 3

Верно

Баллов: 1,00 из 1,00

```
Реализуйте градиентный спуск для той же функции f(w) = \prod\limits_{i,j} log_e (log_e(w_{ij}+7))
```

Пусть начальным приближением будет $w^{t=0}=[[5,10],[1,2]]$, шаг градиентного спуска alpha=0.001.

Чему будет равен $w^{t=500}$?

Ответ: (штрафной режим: 0 %)

Сброс ответа

```
import torch
 1
3
    w = torch.tensor([[5., 10.], [1., 2.]], requires_grad=True)
 5
    for _ in range(500):
    # critical: calculate the function inside the loop
 6
 7
 8
        function = (w + 7).log().log().prod()
9
        function.backward()
        w.data -= alpha * w.grad
10
        w.grad.zero_()
11
12
13 #print(w) # Код для самопроверки, не забудьте закомментировать перед отправкой на проверку
```

Прошли все тесты! ✔

Баллы за эту попытку: 1,00/1,00.

Вопрос 4

Верно

Баллов: 1,00 из 1,00

Перепишите пример, используя torch.optim.SGD

Изменился ли ответ?

Ответ: (штрафной режим: 0, 0, 30, ... %)

```
Сброс ответа
```

```
1
   import torch
2
   w = torch.tensor([[5., 10.], [1., 2.]], requires_grad=True)
4
   alpha = 0.001
    optimizer = torch.optim.SGD([w], lr=alpha)
 5
 6
 7 ▼ for _ in range(500):
8 🔻
       # it's critical to calculate function inside the loop:
9
        function = (w + 7).log().log().prod()
       function.backward()
10
11
       optimizer.step()
12
       optimizer.zero_grad()
13
14
   #print(w) # Код для самопроверки
15
```

Прошли все тесты! ✔

Баллы за эту попытку: 1,00/1,00.

Вопрос 5 Выполнен

Баллов: 1,00 из 1,00

Нам дана функция $f(x)=x^2$ и начальная точка $x^{t=0}=1$

При каком lpha > 0 градиентный спуск перестает сходиться (итерации не приводят к минизации функции)?

P.S: Ответ можно вывести аналитически, а можно подобрать

Ответ: 1