

Learning

Incomplete Data

Overview

Incomplete Data

- Multiple settings:
 - Hidden variables
 - Missing values
- Challenges
 - Foundational is the learning task well defined?
 - Computational how can we learn with incomplete data?

Why latent variables?

Model sparsity

Why latent variables?

• Discovering clusters in data

Treating Missing Data

Sample sequence: H,T,?,?,H,?,H

 Case I: A coin is tossed on a table, occasionally it drops and measurements are not taken

 Case II: A coin is tossed, but sometimes tails are not reported

We need to consider the missing data mechanism

Modeling Missing Data Mechanism

- $X = \{X_1,...,X_n\}$ are random variables
- \bigcirc O = {O₁,...,O_n} are observability variables
 - Always observed 0: = 12 xi observed
- \rightarrow Y = {Y₁,...,Y_n} new random variables
 - $-\operatorname{Val}(Y_i) = \operatorname{Val}(X_i) \cup \{?\}$
 - Always observed
 - Y_i is a deterministic function of X_i and O_i :

$$Y_i = \begin{cases} X_i & O_i = o^1 \\ ? & O_i = o^0 \end{cases}$$

Modeling Missing Data Mechanism Case II

(random missing values)

(deliberate missing values)

- When can we ignore the missing data mechanism and focus only on the likelihood?
- · Missing at Random (MAR) unobrand x's

$$P_{missing} \models (oldsymbol{Q} \perp oldsymbol{H} \mid oldsymbol{d})$$
 becomes value of

Identifiability

Likelihood can have multiple global maxima

- Example:
 - We can rename the values of the hidden variable H
 - If H has two values, likelihood has two global maxima
- With many hidden variables, there can be an exponential number of global maxima
- Multiple local and global maxima can also occur with missing data (not only hidden variables)

Likelihood for Complete Data

Input Data:

Х	Υ
\mathbf{x}^0	y ⁰
\mathbf{x}^0	y ¹
x ¹	y 0

- $\begin{array}{ccc} x^0 & x^1 \\ \hline \theta_{x^0} & \theta_{x^1} \end{array}$
- Likelihood decomposes by variables
- Likelihood decomposes within CPDs

Likelihood:

$$\begin{split} L(D:\theta) &= P(x[1], y[1]) \cdot P(x[2], y[2]) \cdot P(x[3], y[3]) \\ &= \underbrace{P(x^{0}, y^{0}) \cdot P(x^{0}, y^{1}) \cdot P(x^{1}, y^{0})}_{= \theta_{x^{0}} \cdot \theta_{y^{0}|x^{0}} \cdot \theta_{x^{0}} \cdot \theta_{y^{1}|x^{0}} \cdot \theta_{x^{1}} \cdot \theta_{y^{0}|x^{1}}}_{= \theta_{x^{0}} \cdot \theta_{x^{0}} \cdot \theta_{x^{1}} \cdot \theta_{x^{1}} \cdot \theta_{y^{0}|x^{0}} \cdot \theta_{y^{1}|x^{0}}}_{= \theta_{x^{0}} \cdot \theta_{x^{0}} \cdot \theta_{x^{1}} \cdot \theta_{x^{1}} \cdot \theta_{y^{0}|x^{0}}} \end{split}$$

X	
V	
→	
	_

	P(Y X)	
X	y 0	y ¹
x ⁰	$\theta_{y^0 x^0}$	$\theta_{y^1 x^0}$
x ¹	$\theta_{y^0 x^1}$	$\theta_{y^1 x^1}$

Likelihood for Incomplete Data

Input Data:

Х	Υ
(y ⁰
X ⁰	y ¹
()	y 0

x ⁰	X ¹
θ_{x^0}	θ_{x1}

- Likelihood does not decompose by variables
- Likelihood does not decompose within CPDs

Likelihood: Computing likelihood requires inference!

$$L(D:\theta) = P(y^{0}) \cdot P(x^{0}, y^{1}) \cdot P(y^{0})$$

$$= \left(\sum_{x \in Val(X)} P(x, y^{0})\right)^{2} \cdot P(x^{0}, y^{1}) \cdot P(x^{0}, y^{$$

	P(Y X)	
X	y^0	y ¹
x ⁰	$\theta_{y^0 x^0}$	$\theta_{y^1 x^0}$
x ¹	$\theta_{y^0 x^1}$	$\theta_{y^1 x^1}$

Multimodal Likelihood

Parameter Correlations

Total of 8 data points

• Some X's unobserved

Summary

- Incomplete data arises often in practice
- Raises multiple challenges & issues:
 - The mechanism for missingness
 - Identifiability
 - Complexity of likelihood function

Learning

Incomplete Data

Likelihood
Optimization
Methods

Likelihood with Incomplete Data

- Follow gradient of likelihood w.r.t. parameters
- Line search & conjugate gradient methods for fast convergence

Gradient Ascent

• Theorem:

$$\frac{\partial \log P(D \mid \Theta)}{\partial \theta_{x_i \mid u_i}} = \frac{1}{\theta_{x_i \mid u_i}} \sum_{m} P(x_i, u_i \mid d[m], \Theta)$$

- Requires computing $P(X_i, U_i | d[m], \Theta)$ for all i, m
- Can be done with clique-tree algorithm, since X_i, U_i are in the same clique

Gradient Ascent Summary

- Need to run inference over each data instance at every iteration
- Pros

- Flexible, can be extended to non table CPDs
- Cons
 - Constrained optimization: need to ensure that parameters define legal CPDs
 - For reasonable convergence, need to combine with advanced methods (conjugate gradient, line search)

Expectation Maximization (EM)

- Special-purpose algorithm designed for optimizing likelihood functions
- Intuition
 - Parameter estimation is easy given complete data
 - Computing probability of missing data is "easy" (=inference) given parameters

EM Overview

- Pick a starting point for parameters
- Iterate:
 - E-step (Expectation): "Complete" the data using current parameters
 - M-step (Maximization): Estimate
- parameters relative to data completion Guaranteed to improve $L(\theta : D)$ at each iteration

Expectation Maximization (EM)

- Expectation (E-step):
 - For each data case d[m] and each family X,U compute
 - Compute the <u>expected sufficient</u>
 <u>statistics</u> for each x, \mathbf{u} $M = \begin{bmatrix} x & y \end{bmatrix} = \sum_{P}^{M} P$
- Maximization (M-step):
 - Treat the expected sufficient statistics (ESS) as if real
 - Use MLE with respect to the ESS

$$\frac{d \, sufficient}{\overline{M}_{\theta^{t}}[x, u]} = \sum_{m=1}^{M} P(x, u \mid d[m], \theta^{t})$$

soft completion

$$\underline{\theta_{x|\mathbf{u}}^{t+1}} = \frac{\overline{M}_{\theta^t}[x,\mathbf{u}]}{\overline{M}_{\theta^t}[\mathbf{u}]}$$

Example: Bayesian Clustering

$$ar{M}_{m{ heta}}[c] := \sum_{m} P(c \mid \underline{x_1[m], \ldots, x_n[m], m{ heta}^t}) \qquad heta_c^{t+1} = rac{ar{M}_{m{ heta}}[c]}{M} \ ar{M}_{m{ heta}}[x_i, c] := \sum_{m} P(c, x_i \mid \underline{x_1[m], \ldots, x_n[m], m{ heta}^t}) \qquad heta_c^{t+1} := rac{ar{M}_{m{ heta}}[x_i, c]}{ar{M}_{m{ heta}}[c]}$$

EM Summary

- Need to run inference over each data instance at every iteration
- Pros
 - Easy to implement on top of MLE for complete data
 - Makes rapid progress, especially in early iterations
- Cons
 - Convergence slows down at later iterations

Learning

Incomplete Data

EM Analysis

- Use current point to construct local approximation
- Maximize new function in closed form

More Formal Intuition

- d: observed data in instance
- H: hidden variables in instance
- Q(H): distribution over hidden variables $\ell(\boldsymbol{\theta}:\langle \boldsymbol{d},\boldsymbol{h}\rangle) = \sum_{\substack{i=1\\n}} \sum_{(x_i,u_i)\in Val(X_i,\mathbf{Pa}_{X_i})} \mathbf{1}_{\langle \boldsymbol{d},\boldsymbol{h}\rangle}[x_i,u_i] \log \theta_{x_i|u_i}$ $E_{Q(H)}[\ell(\boldsymbol{\theta}:\langle \boldsymbol{d},\boldsymbol{H}\rangle)] = \sum_{i=1} \sum_{(x_i,u_i)\in Val(X_i,\mathbf{Pa}_{X_i})} E_{Q(H)}[\mathbf{1}_{\langle \boldsymbol{d},\boldsymbol{H}\rangle}[x_i,u_i]] \log \theta_{x_i|u_i}$ $= \sum_{i=1}^n \sum_{(x_i,u_i)\in Val(X_i,\mathbf{Pa}_{X_i})} Q(x_i,u_i) \log \theta_{x_i|u_i}$

More Formal Intuition

$$\begin{split} \mathbf{E}_{Q(H)}[\ell(\boldsymbol{\theta}:\langle \boldsymbol{d},\boldsymbol{H}\rangle)] &= \sum_{i=1}^{n} \sum_{(x_{i},\boldsymbol{u}_{i})} Q(x_{i},\boldsymbol{u}_{i}) \log \theta_{x_{i}|\boldsymbol{u}_{i}} \\ Q_{m}^{t}(\boldsymbol{H}[m]) &= P(\boldsymbol{H}[m] \mid \boldsymbol{d}[m],\boldsymbol{\theta}^{t}) \\ \sum_{m=1}^{M} \underline{\mathbf{E}_{Q_{m}^{t}(\boldsymbol{H}[m])}[\ell(\boldsymbol{\theta}:\langle \boldsymbol{d}[m],\boldsymbol{H}[m]\rangle)]} \\ &= \sum_{i=1}^{n} \sum_{(x_{i},\boldsymbol{u}_{i})} \sum_{m=1}^{M} P(x_{i},\boldsymbol{u}_{i} \mid \boldsymbol{d}[m],\boldsymbol{\theta}^{t}) \log \theta_{x_{i}|\boldsymbol{u}_{i}} \\ &= \sum_{i=1}^{n} \sum_{(x_{i},\boldsymbol{u}_{i})} \underline{\bar{M}}_{\boldsymbol{\theta}^{t}}[x_{i},\boldsymbol{u}_{i}] \log \theta_{x_{i}|\boldsymbol{u}_{i}} & \text{complete data} \\ &= \sum_{i=1}^{n} \sum_{(x_{i},\boldsymbol{u}_{i})} \underline{\bar{M}}_{\boldsymbol{\theta}^{t}}[x_{i},\boldsymbol{u}_{i}] \log \theta_{x_{i}|\boldsymbol{u}_{i}} & \text{complete data} \\ &= \sum_{i=1}^{n} \sum_{(x_{i},\boldsymbol{u}_{i})} \underline{\bar{M}}_{\boldsymbol{\theta}^{t}}[x_{i},\boldsymbol{u}_{i}] \log \theta_{x_{i}|\boldsymbol{u}_{i}} & \text{complete data} \end{split}$$

More Formal Intuition

- Use current point to construct local approximation
- Maximize new function in closed form

EM Guarantees

- $L(D: \theta^{\dagger+1}) \geq L(D: \theta^{\dagger})$
 - Each iteration improves the likelihood

gradient is zero

- If $\theta^{t+1} = \theta^t$, then θ^t is a stationary point of $L(D:\theta)$
 - Usually, this means a local maximum

Learning

Incomplete Data

EM in Practice

EM Convergence in Practice

G. Elidan

Daphne Koller

- Early stopping using cross validation
- Use MAP with parameter priors rather than MLE G. Elidan

G. Elidan

Significance of Local Optima

G. Elidan

Initialization is Critical

- Multiple random restarts
- From prior knowledge
- From the output of a simpler algorithm

clustering (1c-nears
hierorchical
agglomerative
clustering)

Summary

- Convergence of likelihood ≠ convergence of parameters
- Running to convergence can lead to overfitting
- Local optima are unavoidable, and increase with the amount of missing data
- Local optima can be very different
- Initialization is critical

Learning

Incomplete Data

Learning with Latent Variables

Discovering User Clusters

MSNBC Story clusters

Readers of commerce and technology stories (36%):

- E-mail delivery isn't exactly guaranteed
- Should you buy a DVD player?
- Price low, demand high for Nintendo

Sports Readers (19%):

- Umps refusing to work is the right thing
- Cowboys are reborn in win over eagles
- Did Orioles spend money wisely?

Readers of top promoted stories (29%):

- 757 Crashes At Sea
- (Israel, Palestinians Agree To Direct Talks
- · (Fuhrman Pleads Innocent To Perjury

Readers of "Softer" News (12%):

- The truth about what things cost
- Fuhrman Pleads Innocent To Perjury
- · Real Astrology

Speech Recognition HMM

Lexicon phase database

Dan Jurafsky, Stanford

3D Robot Mapping

- Input: Point cloud from laser range finder obtained by moving robot
- Output: 3D planar map of environment
- Parameters: Location & angle of walls (planes)
 - Latent variables: Assignment of points to walls

Thrun, Martin, Liu, Haehnel, Emery-Montemerlo, Chakrabarti, Burgard, IEEE Transactions on Robotics, 2004

Thrun, Martin, Liu, Haehnel, Emery-Montemerlo, Chakrabarti, Burgard, IEEE Transactions on Robotics, 2004

Thrun, Martin, Liu, Haehnel, Emery-Montemerlo, Chakrabarti, Burgard, IEEE Transactions on Robotics, 2004

Body Parts from Point Cloud Scans

Anguelov, Koller, Pang, Srinivasan, Thrun UAI 2004

Collective Clustering Model

Anguelov, Koller, Pang, Srinivasan, Thrun UAI 2004

Anguelov, Koller, Pang, Srinivasan, Thrun UAI 2004

Helicopter Demo Alignment

- Input: Multiple sample trajectories by different pilots flying same sequence
- Output:
 - Aligned trajectories
 - Model of "template" trajectory

Coates, Abbeel, Ng, ICML 2008

Graphical model

Coates, Abbeel, Ng, ICML 2008

All Expert Demos

Coates, Abbeel, Ng, ICML 2008

Picking Latent Variable Cardinality

- If we use likelihood for evaluation, more values is always better
- Can use score that penalizes complexity
 - BIC tends to underfit
 - Extensions of BDe to incomplete data (approximations)
- Can use metrics of cluster coherence to decide whether to add/remove clusters
- Bayesian methods (Dirichlet processes) can average over different cardinalities

 (MCML)

Summary

- Latent variables are perhaps the most common scenario for incomplete data
 - often a critical component in constructing models for richly structured domains
- Latent variables satisfy MAR, so can use EM
- Serious issues with unidentifiability & multiple optima necessitate good initialization
- Picking variable cardinality is a key question