

EXPLORE MORE

DIODE CLIPPING CIRCUITS for Alternating Voltage

Assume: Silicon diodes with $V_{ON} = 0.7V$

Positive Diode Clipping Circuit

Case 1: when V_{in} is larger than V_{on} , the diode is turned on, $V_{out} = 0.7 \text{ V}$

Case 2: when V_{in} is smaller than V_{on} , the diode is turned off, $V_{out} = V_{in}$

Negative Diode Clipping Circuit

Case 1: when V_{in} is larger than $-V_{on}$, the diode is turned off, $V_{out} = V_{in}$

Case 2: when V_{in} is smaller than $-V_{on}$, the diode is turned on, $V_{out} = -0.7 \text{ V}$

Clipping Both Half Cycles

Case 1: when Vin is larger than Von, diode D1 is turned on, Vout = 0.7 V

Case 2: when Vin is smaller than -Von, diode D2 is turned on, Vout = -0.7V

Case 3: when Vin is within -Von and Von, both diodes are turned off, Vout = Vin

Positive Bias Diode Clipping

Case 1: When $V_{in} > V_{on} + V_{bias}$, the diode is on, so $V_{out} = V_{on} + V_{bias}$

Case 2: Otherwise, $V_{out} = V_{in}$

Negative Bias Diode Clipping

Case 1: When $V_{in} < -V_{on} - V_{bias}$, the diode is on, so $V_{out} = -V_{on} - V_{bias}$

Case 2: Otherwise, $V_{out} = V_{in}$

Diode Clipping - Different Bias Level

Case 1: When $V_{in} > V_{on} + 4$, diode D1 is on, so $V_{out} = V_{on} + 4$

Case 2: When $V_{in} < -V_{on} - 6$, diode D2 is on, so $V_{out} = -V_{on} - 6$

Case 3: Otherwise, $V_{out} = V_{in}$

A voltage-clipping circuit sets maximum or minimum output voltage

L18Q9: If the input voltage waveform is shown, what is the output waveform, assuming an ideal diode model ($V_{ON} = 0 \text{ V}$)?

L18Q9: If the input voltage waveform is shown, what is the output waveform, assuming an ideal diode model ($V_{ON} = 0 V$)?

EXPLORE MORE

Voltage Rectification with diode circuits

1

Half-Wave Rectifier Circuit

Case 1: When $V_s \ge V_{on}$, diode is on, $V_{out} = V_s - V_{on}$

Case 2: When $V_S < V_{on}$, diode is off, I = 0, $V_{out} = I \times R = 0$

Half-Wave Rectifier-Smoothing Capacitor

1

Supplementary Note for capacitor

Capacitor is different from resistor. Modifying the well-established state needs some time delay

- 1. At $t = t_0$, $V_1 = V_c$, the circuit reaches a balance
- 2. After $t = t_0$, $V_1 < V_c$, so the capacitor discharges, This discharge needs some time delay.
- 3. At $t = t_1$, $V_1 = V_c$, the circuit reaches a balance
- 4. After $t = t_1$, $V_1 > V_c$, so the capacitor charges (actually also needs time delay, here UIUC ignores)

1

Case 1: when $V_s \ge V_{on}$, D1 is on, $V_{out} = V_s - V_{on}$

Full-Wave Rectifier Circuit

Case 2: when $V_s \leq -V_{on}$, D2 is on, $V_{out} = |V_s| - V_{on}$

Case 3: otherwise, D1&D2 are off, $V_{out} = 0$

Current flows when D₁ conducts

Current flows when D₂ conducts Output voltage

Full-Wave Diode Bridge Rectifier

Diode Bridge – Positive Half-cycle

Diode Bridge - Negative Half-cycle

Diode Bridge with Smoothing Capacitor

Waveform

Resultant Output Waveform

EXPLORE MORE

Physical considerations on semiconductor diodes

L18 Learning Objectives

- a. Solve circuit analysis problems involving sources, resistances, and diodes
- b. Estimate power dissipation in diode circuits
- c. Select appropriate current-limiting resistors
- d. Determine voltage limits and waveforms at outputs of diode voltage-clipping circuits

Lecture 19: Exercises, Start Lecture 20!

- We will use this lecture to catch up, if needed
- We will do multiple exercises
- Slides may be distributed in lecture