Lucrarea de laborator nr. 6 CARACTERIZAREA MATERIALELOR FERO ŞIFERIMAGNETICE LA

SEMNAL MIC

Scopul lucrarii

Scopul acestei lucrari de laborator este de a evidentia caracteristicile materialelor feromagnetice și ferimagnetice in comportarea in frecvență a miezurilor magnetice ale acestor materiale, folosite in inductoare si supuse unui

"semnal mic".

6.4.1. Dependența de frecvență a permeabilității magnetice relative complexe a materialelor feromagnetice
Tabelul 6-1

f(kHz)		0,05	0,08	0,1	0,2	0,5	1	5	10	15	20
L_m	L_m (mH)	612,407	533,474	499,796	406,164	302,796	232,947	128,221	96,269	74,785	59,547
	R_m (Ω)	49,953	63,757	72,607	116,200	249,517	430,011	1627	3855	6047	7999
L_{md}	L _{md} (mH)	169,386	166,637	164,544	155,186	136,933	122,120	95,299	82,984	72,950	64,201
	$R_{md}(\Omega)$	4,700	7,002	8,594	17,368	46,579	98,242	721,382	2053	3721	5544
Lm_0	Lm ₀ (mH)	1,93	1,92	1,929	1,929	1,928	1,928	1,926	1,923	1,918	1,912
	$Rm_{ heta}(\Omega)$	1,53	1,54	1,540	1,541	1,547	1,567	2,142	3,870	6,647	10,362
Calcule	μ'	317,309	277,851	259,096	210,557	157,052	120,823	66,574	50,062	38,991	31,144
	μ"	79,863	64,457	58,635	47,301	40,939	35,368	26,854	31,873	33,415	33,245
	Q_m	3,973	4,309	4,419	4,451	3,836	3,416	2,479	1,571	1,169	0,937

	μ' _{ef}	87,764	86,385	85,300	80,448	71,023	63,340	49,480	43,151	38,034	33,578
	μ'' _{ef}	5,228	5,633	5,820	6,529	7,434	7,980	11,887	16,959	20,551	23,035
	$Q_{m_{ef}}$	16,786	15,335	14,656	12,321	9,552	7,937	4,162	2,544	1,850	1,458

Pentru a realiza calculele, am transformat toate valorile rezistentelor in Ω (acolo unde era cazul). Am calculat partea reala μ ' si cea imaginara μ ' pentru bobina fara intrefier L_m , respectiv μ'_{ef} si μ''_{ef} pentru bobina cu intrefier L_{md} pentru cele 10 frecvente din tabel, folosind relatia 6.5:

$$\underline{\mu} = \mu' - j\mu'' = \frac{L}{L_0} - j\frac{r - r_0}{\omega L_0}$$
 (6.5)

-unde L si L_0 sunt inductantele cu miez, respectiv fara miez ale bobinei, r_0 rezistenta de pierderi prin ef. Joule, r rezistenta echivalenta a bobinei cu miez, iar $\omega = f \cdot 2\pi$

Exemplu de calcul :
$$\mu' = \frac{L_m}{L_{m0}} = \frac{612,407}{1,93} \approx 317,309$$

$$\mu'' = \frac{R_m - R_{m0}}{\omega L_{m0}} = \frac{49,953 - 1,53}{2 \cdot \pi \cdot 1,93 \cdot 10^{-3} \cdot 0,05 \cdot 10^{3}} \approx 79,863$$

$$Q = \frac{\mu'}{\mu^{FF}}$$

Asemenea si pentru bobina Lmd:

$$\mu' = \frac{L_{md}}{L_{m0}} \; ; \; \; \mu'' = \frac{R_{md} - R_{m0}}{\omega L_{m0}}$$

In continuare, reprezentam grafic dependentele $\mu'(f)$, $\mu''(f)$, $Q_m(f)$, $\mu'_{ef}(f)$, $\mu''_{ef}(f)$, $Q_{mef}(f)$

- reala a permeabilitatii magnetice aproximativ egala, aceasta devenind aproape constanta in cazul ambelor bobine.
- In diagrama 2 observam faptul ca partea imaginara a permeabilitatii magnetice scade odata cu frecventa in cazul bobinei L_m , iar in cazul bobinei L_{md} partea imaginara creste, insa nu semnificativ (asemenea diagramei anterioare, dupa valoarea de 10 kHz a frecventei, ambele dependenze se aplatizeaza)
- In diagrama 3: factorul de calitate scade odata cu frecventa pentru ambele bobine. De data aceasta, in cazul bobinei L_{md} scaderea este mai drastica . Inmod similar diagramelor anterioare intalnim aplatizare .

Se observa diferentele de valori, mai ales pentru factorul de calitate la frecvente uzuale pentru aceste materiale (50 Hz, 100 Hz) si la frecventele mari (10 kHz, 20 kHz):

- Pentru bobina L_m, valoarea factorului de calitate scade, de la valori de 3,973/4,419 la frecventele joase, cele de 50 Hz/100 Hz, ajungând la valoride 1,571/0,937 pentru frecvente mari de 10 kHz/20 kHz.
- In cazul bobinei L_{md} , valoarea factorului de calitate scade drastic , de la valori de 16,786/14,656 la frecventele joase, cele de 50 Hz/100 Hz , ajungând la valori de 2,544/1,458 pentru frecvente mari de 10 kHz/20 kHz.
- De asemenea, se observa o diferenta intre valorile factorului de calitate al bobinei L_m fata de cele ale bobinei L_{md} , acestea fiind mult mai mici la frecvente uzuale, cum ar fi 50 Hz/100 Hz.

6.4.2 Dependența de frecvență a permeabilității relative complexe aferitelor (Tabelul 6.3)

F		50	80	100	200	500	800	1000	1500	2000
(kHz)										
	L_{m1}	223,005	222,876	222,836	223,328	228,362	235,468	241,126	257,019	275,528
a Lm1	(//H)									
Bobina	R_{m1}	0,42826	0,62615	0,77423	1,817	14,946	55,279	104,290	337,027	782,708
Be	(Ω)	7	1	7						
	L_{01}	1,995	1,979	1,971	1,940	1,914	1,904	1,902	1,902	1,912
Bobina $L_{\scriptscriptstyle 01}$	(//H)									
Bobin	$R_{01}(m\Omega)$	12,479	8,917	5,476	7,479	7,521	7,798	8,136	10,194	9,583

	k	1	1	1	1	1	1	1	1	1
sule	μ',	111,782	112,616	113,057	115,118	119,311	123,670	126,775	135,131	144,105
Calcule	μ"	0,664	0,621	0,621	0,743	2,486	5,778	8,730	18,810	32,592
	Q	168,412	181,403	182,034	155,013	48,001	21,403	14,521	7,184	4,421

Pentru a realiza calculele, am transformat toate valorile rezistentelor in $\Omega($ acolo unde era cazul). Am calculat μ ' si μ '' pentru bobina cu miez L_m , pentru cele 10 frecvente din tabel, folosind relatiile 6.16 :

$$\omega = f \cdot 2\pi$$

$$k(\omega) = 1 - \omega^2 L_{m1} C_p, \quad \mu' = \frac{L_{m1}}{k L_{01}}, \quad \mu'' = \frac{R_{m1} - R_{01}}{\omega L_{01}}$$
 (6.16)

Exemplu de calcul :
$$\mu' = \frac{223,005}{1,995} \approx 111,782$$

$$\mu'' = \frac{R_{m1} - R_{01}}{\omega L_{01}} = \frac{0.42867 - 12.479 \cdot 10^{-3}}{2 \cdot \pi \cdot 1,995 \cdot 10^{-6} \cdot 50 \cdot 10^{3}} \approx 0.664$$

$$Q = \frac{\mu}{\mu^{F_F}}$$

f(kHz)		50	80	100	200	500	800	1000	1500	2000
L ₀₂	$L_{02}(\mu H)$	76,502	74,538	73,339	69,722	67,788	68,651	69,954	75,704	86,209
Bobina L ₀₂	$R_{\theta 2}(\Omega)$	1,775	3,243	4,178	7,474	12,689	17,523	21,083	32,916	54,044
L_{03}	$L_{03}(\mu H)$	255,617	251,054	248,782	244,255	254,600	285,973	326,012	629,924	
Bobina L_{03}	$R_{03}(\Omega)$	3,948	6,840	8,516	14,565	30,316	56,384	88,746	530,605	7476
	$L_{04}(mH)$	1,542	1,551	1,562	1,664	3,148				
Bobina Lo4	$R_{04}(\Omega)$	2,761	4,944	6,401	15,332	355,880	3174			
	μ',	3,341	3,368	3,392	3,503	3,756				
	μ",	0,090	0,096	0,094	0,081	0,083				
Calcule	Q	36,937	35,065	36,015	43,264	45,353				
Calc	μ' _{ef}	20,156	20,808	21,298	23,866	46,439				
	μ'' _{ef}	0,041	0,045	0,048	0,090	1,612				
	$Q_{m_{ef}}$	491,063	458,097	441,267	265,969	28,802				

