

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica

Aprendizagem de Máquina

Tarefa 02 - Regra de Hebb

Docente:

Prof. Keiji Yamanaka

Discente:

Augusto Soares Porto - 12121ECP016

Uberlândia 15 de agosto de 2024 SUMÁRIO 1

Sumário

α			_	•	
•	11	\mathbf{m}	•	rı	\cap
N	u	LLL	a	ъъ	v

1	Introdução	2
2	Saída do código realizado	2
3	Referências	11

1 Introdução 2

1 Introdução

A Regra de Hebb trata-se de uma ferramenta para modelo de aprendizado em Aprendizagem de Máquina (*Machine Learning*), pois oferece um modelo simples, porém poderoso, para compreender e desenvolver algoritmos, especialmente aqueles voltados para redes neurais artificiais.

Neste relatório, utilzou-se a Regra de Hebb para desenvolver a construção das 16 funções lógicas de 2 variáveis e sua análise, por meio de um código formalizado o qual pode ser visto no material de apoio.

2 Saída do código realizado

TABELA	DA	FUNÇÃO	Constante	0:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	-1	-1	1	-1	-2	0	-2
-1	1	-1	1	-1	-1	-1	-1	-3
-1	-1	-1	1	1	-1	0	0	-4

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [-4, -4, -4, -4] e, portanto, f(yin) = [-1, -1, -1, -1]

Tabela de resultados:

x1	x2	t	yin	fyin
1	1	-1	-4	-1
1	-1	-1	-4	-1
-1	1	-1	-4	-1
-1	-1	-1	-4	-1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A AND B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	-1	-1	1	-1	0	2	0
-1	1	-1	1	-1	-1	1	1	-1
-1	-1	-1	1	1	-1	2	2	-2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [2, -2, -6] e, portanto, f(yin) = [1, -1, -1, -1]

Tabela de resultados:

x1	x2	t	yin	fyin
1	1	1	2	1
1	-1	-1	-2	-1
-1	1	-1	-2	-1
-1	-1	-1	-6	-1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A AND NOT B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	1	1	-1	1	0	-2	0
-1	1	-1	1	-1	-1	1	-3	-1
-1	-1	-1	1	1	-1	2	-2	-2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [-2, 2, -6, -2] e, portanto, f(yin) = [-1, 1, -1, -1]

sTabela de resultados:

x1	x2	t	yin	fyin
1	1	-1	-2	-1
1	-1	1	2	1
-1	1	-1	-6	-1
-1	-1	-1	-2	-1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	1	1	-1	1	2	0	2
-1	1	-1	1	-1	-1	3	-1	1
-1	-1	-1	1	1	-1	4	0	0

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [4, 4, -4, -4] e, portanto, f(yin) = [1, 1, -1, -1]

Tabela de resultados:

x1	x2	\mathbf{t}	yin	fyin
1	1	1	4	1
1	-1	1	4	1
-1	1	-1	-4	-1
-1	-1	-1	-4	-1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO NOT A AND B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	-1	-1	1	-1	-2	0	-2
-1	1	1	-1	1	1	-3	1	-1
-1	-1	-1	1	1	-1	-2	2	-2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [-2, -6, 2, -2] e, portanto, f(yin) = [-1, -1, 1, -1]

Tabela de resultados:

x1	x2	t	yin	fyin
1	1	-1	-2	-1
1	-1	-1	-6	-1
-1	1	1	2	1
-1	-1	-1	-2	-1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	-1	-1	1	-1	0	2	0
-1	1	1	-1	1	1	-1	3	1
-1	-1	-1	1	1	-1	0	4	0

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [4, -4, 4, -4] e, portanto, f(yin) = [1, -1, 1, -1]

Tabela de resultados:

x1	x2	t	yin	fyin	
1	1	1	4	1	
1	-1	-1	-4	-1	
-1	1	1	4	1	
-1	-1	-1	-4	-1	

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A XOR B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	1	1	-1	1	0	-2	0
-1	1	1	-1	1	1	-1	-1	1
-1	-1	-1	1	1	-1	0	0	0

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [0, 0, 0, 0] e, portanto, f(yin) = [1, 1, 1, 1]

	x1	x2	t	yin	fyin
	1	1	-1	0	1
Tabela de resultados:	1	-1	1	0	1
	-1	1	1	0	1
	-1	-1	-1	0	1

Os resultados obtidos são diferentes do esperado, portanto, a regra de Hebb é inválida.

TABELA DA FUNÇÃO A OR B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	1	1	-1	1	2	0	2
-1	1	1	-1	1	1	1	1	3
-1	-1	-1	1	1	-1	2	2	2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [6, 2, 2, -2] e, portanto, f(yin) = [1, 1, 1, -1]

Tabela de resultados:

x1	x2	t	yin	fyin
1	1	1	6	1
1	-1	1	2	1
-1	1	1	2	1
-1	-1	-1	-2	-1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A NOR B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	-1	-1	1	-1	-2	0	-2
-1	1	-1	1	-1	-1	-1	-1	-3
-1	-1	1	-1	-1	1	-2	-2	-2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [-6, -2, -2, 2] e, portanto, f(yin) = [-1, -1, -1, 1]

Tabela de resultados:

x1	x2	\mathbf{t}	yin	fyin
1	1	-1	-6	-1
1	-1	-1	-2	-1
-1	1	-1	-2	-1
-1	-1	1	2	1
	1 1 -1	1 1 1 -1 -1 1	1 1 -1 1 -1 -1	1 1 -1 -6 1 -1 -1 -2 -1 1 -1 -2

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A XNOR B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	-1	-1	1	-1	0	2	0
-1	1	-1	1	-1	-1	1	1	-1
-1	-1	1	-1	-1	1	0	0	0

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [0, 0, 0, 0] e, portanto, f(yin) = [1, 1, 1, 1]

Tabela de resultados:

x1	x2	t	yin	fyin
1	1	1	0	1
1	-1	-1	0	1
-1	1	-1	0	1
-1	-1	1	0	1

Os resultados obtidos são diferentes do esperado, portanto, a regra de Hebb é inválida.

TABELA DA FUNÇÃO NOT B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	1	1	-1	1	0	-2	0
-1	1	-1	1	-1	-1	1	-3	-1
-1	-1	1	-1	-1	1	0	-4	0

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [-4, 4, -4, 4] e, portanto, f(yin) = [-1, 1, -1, 1]

Tabela de resultados:

x1	379	+	yin	fwin
X1	XZ	U	ym	19111
1	1	-1	-4	-1
1	-1	1	4	1
-1	1	-1	-4	-1
-1	-1	1	4	1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO B -> A:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	1	1	-1	1	2	0	2
-1	1	-1	1	-1	-1	3	-1	1
-1	-1	1	-1	-1	1	2	-2	2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [2, 6, -2, 2] e, portanto, f(yin) = [1, 1, -1, 1]

Tabela de resultados:

x1	x2	\mathbf{t}	yin	fyin
1	1	1	2	1
1	-1	1	6	1
-1	1	-1	-2	-1
-1	-1	1	2	1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO NOT A:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	-1	-1	1	-1	-2	0	-2
-1	1	1	-1	1	1	-3	1	-1
-1	-1	1	-1	-1	1	-4	0	0

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [-4, -4, 4, 4] e, portanto, f(yin) = [-1, -1, 1, 1]

Tabela de resultados:

x1	x2	t	yin	fyin
1	1	-1	-4	-1
1	-1	-1	-4	-1
-1	1	1	4	1
-1	-1	1	4	1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A -> B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	-1	-1	1	-1	0	2	0
-1	1	1	-1	1	1	-1	3	1
-1	-1	1	-1	-1	1	-2	2	2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [2, -2, 6, 2] e, portanto, f(yin) = [1, -1, 1, 1]

Tabela de resultados:

x1	x2	t	yin	fyin
1	1	1	2	1
1	-1	-1	-2	-1
-1	1	1	6	1
-1	-1	1	2	1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO A NAND B:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	-1	-1	-1	-1	-1	-1	-1
1	-1	1	1	-1	1	0	-2	0
-1	1	1	-1	1	1	-1	-1	1
-1	-1	1	-1	-1	1	-2	-2	2

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [-2, 2, 2, 6] e, portanto, f(yin) = [-1, 1, 1, 1]

Tabela de resultados:

x1	x2	\mathbf{t}	yin	fyin
1	1	-1	-2	-1
1	-1	1	2	1
-1	1	1	2	1
-1	-1	1	6	1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

TABELA DA FUNÇÃO Constante 1:

x1	x2	t	dW1	dW2	db	W1	W2	b
1	1	1	1	1	1	1	1	1
1	-1	1	1	-1	1	2	0	2
-1	1	1	-1	1	1	1	1	3
-1	-1	1	-1	-1	1	0	0	4

TESTE DE HEBB

Ao aplicar o teste de Hebb, obtemos os seguintes resultados: yin = [4, 4, 4, 4] e, portanto, f(yin) = [1, 1, 1, 1]

Tabela de resultados:

3 Referências 11

x1	x2	t	yin	fyin
1	1	1	4	1
1	-1	1	4	1
-1	1	1	4	1
-1	-1	1	4	1

Os resultados obtidos são iguais ao esperado, portanto, a regra de Hebb é válida.

3 Referências

- Link do diretório com código feito: https://github.com/AugustoSoaresPorto/amaqufu