Second-order Probabilism: Expressive Power and Accuracy

Rafal Urbaniak and Marcello Di Bello

2023-11-06

Table of contents

1	Introduction	2
2	Precise vs. imprecise probabilisms 2.1 Precise probabilism	2 2 3 6
3	Higher-order probabilism	7
4	Accuracy in the second-order setting 4.1 Accuracy	10
5	Handling evidence aggregation	15
6	Computational and representational considerations	19
7	Discussion	23
Aj	ppendix: propriety	25
Aj	ppendix: the strict propriety of $\mathcal{I}^2_{D_{\mathrm{KL}}}$	25
Re	eferences	28

DISCLAIMER: This is a draft of work in progress, please do not cite or distribute without permission.

1 Introduction

As rational agents, we form beliefs about a variety of propositions on the basis of the evidence available to us. But we are often uncertain, to a greater or lesser extent, about the truth of many propositions because the evidence we possess about them is hardly ever infallible. Believing a proposition, then, is not an all-or-nothing affair, but a matter of degrees. To represent this uncertainty, it is natural to use a probability measure which assigns to each proposition a value somewhere between 0 and 1. This view—known as *precise probabilism*—models an agent's state of uncertainty with a single probability measure: each proposition is assigned only one probability value. But, as we will see, a single probability measure is not expressive enough to distinguish between intuively different states of uncertainty brough about by different bodies of evidence. To avoid this problem, the uncertainty of a rational agent can be represented by a *set* of probability measures, rather than a single one. This view is known as *imprecise probabilism*. As the literatuyre has shown, imprecise probabilism outperforms precise probabilism in some respects, but also runs into several problems of its own (Section 2).

To make progress, this paper argues that the uncertainty of a rational agent is to be represented neither by a single probability measure nor a set of probability measures. Rather, it is to be represented by a higher-order probability measure, more specifically, a probability distribution over multiple probability measures. Call this view *higher-order probabilism*. The key insight is that a rational agent's uncertainty is not single-dimensional and thus cannot be mapped onto a one-dimensional scale like the real line. Uncertainty is best modeled by the shape of a probability distribution over multiple probability measures. We show that higher-order probabilism addresses all the problems and philosophical puzzles that plague both precise and imprecise probabilism (Section **XYZ**).

Moreover, Bayesian probabilistic programming already provides a fairly reliable implementation framework of this approach.

2 Precise vs. imprecise probabilisms

2.1 Precise probabilism

Precise probabilism (PP) holds that a rational agent's uncertainty about a proposition is to be represented as a single, precise probability measure. Bayesian updating regulates how the prior probability measure should change in light of new evidence that the agent learns. The updating can be iterated multiple times for multiple pieces of evidence considered successively. This is an elegant and simple theory with many powerful applications. Unfortunately, representing our uncertainty about a proposition in terms of a single, precise probability measure runs into a number of difficulties.

Precise probabilism fails to capture an important dimension of how our fallible beliefs reflect the evidence we have (or have not) obtained. A couple of stylized examples featuring coin tosses should make the point clear.

No evidence v. fair coin You are about to toss a coin, but have no evidence about its bias. You are completely ignorant. Compare this to the situation in which you know, based on overwhelming evidence, that the coin is fair.

On precise probabilism, both scenarios are represented by assigning a probability of .5 to the outcome *heads*. If you are completely ignorant, the principle of insufficient evidence suggests that you assign .5 to both outcomes. Similarly, if you know for sure the coin is fair, assigning

add structure description

Think about including synergy

.5 seems the best way to quantify the uncertainty about the outcome. The agent's evidence in the two scenarios is quite different, but precise probabilities fail to capture this difference.

Learning from ignorance You toss a coin with unknown bias. You toss it 10 times and observe *heads* 5 times. Suppose you toss it further and observe 50 *heads* in 100 tosses.

Since the coin initially had unknown bias, you should presumably assign a probability of .5 to both outcomes if you stick with precise probabilism. After the 10 tosses, you again assess the probability to be .5. You must have learned something, but whatever that is, it is not modeled by precise probabilities. When you toss the coin 100 times and observe 50 heads, you learn something new as well. But your precise probability assessment will again be .5.

These examples suggest that precise probabilism is not appropriately responsive to evidence. Representing an agent's uncertainty by a precise probability measure can fail to track what an agent has learned from new evidence. Precise probabilism ends up assigning the same probability in situations in which one's evidence is quite different: when no evidence is available about a coin's bias; when there is little evidence that the coin is fair (say, after only 10 tosses); and when there is strong evidence that the coin is fair (say, after 100 tosses). In fact, analogous problems also arise for evidence that the coin is not fair. If the rational agent starts with a weak belief that the coin is .6 biased towards heads. They can strengthen that belief by tossing the coin repeatedly and observing, say, 60 heads in 100 tosses. But this improvement in their evidence is not mirrored in the precise .6 probability they are supposed to assign to *heads*.

Here is another problem precise probabilism faces. Imagine a rational agent who does not know the bias of the coin. For precise probabilism, this state of uncertainty should be represented by a .5 probability assignment to the *heads*. Next, the agent learns that the bias towards heads, whatever the bias is, has been slightly increased, say by .001. The addition of this new information is called *sweetening* in the philosophical literature. This sweetening should now make the agent bet on heads: if the probability of *heads* was initially .5, it must be ever so slightly above .5 after sweetening. But, intuitively, the new information should leave the agent equally undecided about betting on heads or tails. Afer sweetening, the agent still does not know much about the actual bias of the coin.

add reference about sweetening

These problems generalize beyond cases of coin tossing. It is one thing not to know much at all about whether a proposition is true, for example, whether an individual is guilty of a crime. It is another thing to have strong evidence that favors a hypothesis and equally strong evidence that favors its negation, for example, strong evidence favoring the guilt hypothesis and equally strong evidence favoring the hypothesis of innocence. Despite this difference, precise probabilism would recomend that a probability of .5 be assigned to both hypotheses. Here, too, precise probabilism fails to be appropriately responsive to evidence. In addition, evidence can accumulate in a way that does not require changing our initial probability assignments. It could be that, at first, one has stronger evidence for A than for B. So the probability assigned to A should be greater than the probability assigned to B. As more evidence accumulates, suppose the overall evidence still favors A over B to the same degree. So no change in the probabilities is required. Something has changed about the agent's state of uncertainty towards A and B—the agent is now more certain that A is more probable than B—but this change is not reflected in the precise probabilities assigned to these propositions.

2.2 Imprecise probabilism

What if we give up the assumption that probability assignments should be precise? Imprecise probabilism (IP) holds that a rational agent's credal stance towards a hypothesis is to be represented by a *set of probability measures*, typically called a representor \mathbb{P} , rather than a single measure P. The representor should include all and only those probability measures which are

compatible with the evidence (more on this point later). It is easy to see that modeling an agent's credal state by sets of probability measure avoids some of the shortcomings of precise probabilism. For instance, if an agent knows that the coin is fair, their credal state would be represented by the singleton set {P}, where P is a probability measure that assigns .5 to *heads*. If, on the other hand, the agent knows nothing about the coin's bias, their credal state would be represented by the set of all probabilistic measures, since none of them is excluded by the available evidence. Note that the set of probability measures does not represent admissible options that the agent could legitimately pick from. Rather, the agent's credal state is essentially imprecise and should be represented by means of the entire set of probability measures.

But this is not the end of the story. Just as precise probabilism fails to be appropriately evidence responsive in certain scenarios, imprecise probabilism runs in similar difficulties in other scenarios. Consider this example:

Even v. uneven bias: You have two coins and you know, for sure, that the probability of getting heads is .4, if you toss one coin, and .6, if you toss the other coin. But you do not know which is which. You pick one of the two at random and toss it. Contrast this with an uneven case. You have four coins and you know that three of them have bias .4 and one of them has bias .6. You pick a coin at random and plan to toss it. You should be three times more confident that the probability of getting heads is .4. rather than .6.

The first situation can be easily represented by imprecise probabilism. The representor would contain two probability measures, one that assigns .4. and the other that assigns .6 to the hypothesis 'this coin lands heads'. But imprecise probabilism cannot represent the second situation. Since the probability measures in the set are all compatible with the agent's evidence, no probability measure can be assigned a greater (higher-order) probability than any other.²

These examples show that imprecise probabilism is not expressive enough to model certain scenarios. We believe that the solution is to add a probability distribution over the probability measures (more on this in the next section). Defenders of imprecise probabilism could insist it is at least more expressive than precise probabilism. It can model scenarios that precise probabilism cannot model. In this respect, imprecise probabilism outperformes precise probabilism. But this greater expressive power comes at a cost in several respects. As we will see below, despite its greater expressive power, imprecise probabilism suffers from a number of short-comings that do not affect precise probabilism. So, all things considered, it is questionable whether imprecise probabilism outperforms precise probabilism.

Precise probabilism offer an elegant model of learning from evidence: Bayesian updating. Imprecise probabilism, at least *prima facie*, would seem to offer an equally elegant model of learning from evidence, just richer and more nuanced. It is a natural extension of the classical

¹For the development of imprecise probabilism, see Keynes (1921); Levi (1974); Gärdenfors & Sahlin (1982); Kaplan (1968); Joyce (2005); Fraassen (2006); Sturgeon (2008); Walley (1991). Bradley (2019) is a good source of further references. Imprecise probabilism shares some similarities with what we might call **interval probabilism** (Kyburg, 1961; Kyburg Jr & Teng, 2001). On interval probabilism, precise probabilities are replaced by intervals of probabilities. On imprecise probabilism, instead, precise probabilities are replaced by sets of probabilities. This makes imprecise probabilism more general, since the probabilities of a proposition in the representor set do not have to form a closed interval.

²Other scenarios can be constructed in which imprecise probabilism fails to capture distinctive intuitions about evidence and uncertainty; see, for example, (Rinard, 2013). Suppose you know of two urns, GREEN and MYSTERY. You are certain GREEN contains only green marbles, but have no information about MYSTERY. A marble will be drawn at random from each. You should be certain that the marble drawn from GREEN will be green (G), and you should be more confident about this than about the proposition that the marble from MYSTERY will be green (M). In line with how lack of information is to be represented on IP, for each $r \in [0, 1]$ your representor contains a P with P(M) = r. But then, it also contains one with P(M) = 1. This means that it is not the case that for any probability measure P in your representor, P(G) > P(M), that is, it is not the case that RA is more confident of G than of M. This is highly counter-intuitive.

Bayesian approach that uses precise probabilities. When faced with new evidence E between time t_0 and t_1 , the representor set should be updated point-wise, running the standard Bayesian updating on each probability measure in the representor:

$$\mathbb{P}_{t_1} = \{ \mathbf{P}_{t_1} | \exists \, \mathbf{P}_{t_0} \in \mathbb{P}_{t_0} \,\, \forall \, H \,\, \left[\mathbf{P}_{t_1}(H) = \mathbf{P}_{t_0}(H|E) \right] \}.$$

The hope is that, if we start with a range of probabilities that is not extremely wide, point-wise learning will behave appropriately. For instance, if we start with a prior probability of *heads* equal to .4 or .6, then those measure should be updated to something closer to .5 once we learn that a given coin has already been tossed ten times with the observed number of heads equal 5 (call this evidence E). This would mean that if the initial range of values was [.4, .6] the posterior range of values should be more narrow.

Unfortunately, this narrowing of the range of values becomes impossisble whenever the starting point is complete lack of knowledge, as imprecise probabilism runs into the problem of **belief inertia** (Levi, 1980). This problem arises in situations in which no amount of evidence could lead the agent to change their belief state, according to a given modeling strategy. Consider a situation in which you start tossing a coin knowing nothing about its bias. The range of possibilities is [0,1]. After a few tosses, if you observed at least one tail and one heads, you can exclude the measures assigning 0 or 1 to *heads*. But what else have you learned? If you are to update your representor set point-wise, you will end up with the same representor set. For any sequence of outcomes that you can obtain and any probability value in [0,1], there will exist a probability measure (conditional on the oucomes) that assigns that probability to *heads*. Consequently, the edges of your resulting interval will remain the same. In the end, it is not clear how you are supposed to learn anything if you start from complete ignorance.³

Some downplay the problem of belief inertia. They insist that vacuous priors should not be used and that imprecise probabilism gives the right results when the priors are non-vacuous. After all, if you started with knowing truly nothing, then it is right to conclude that you will never learn anything. Joyce (2010) writes:

You cannot learn anything in cases of pronounced ignorance simply because a prerequisite for learning is to have prior views about how potential data should alter your beliefs (p. 291)

Another strategy is to say that, in a state of complete ignorance, a special updating rule should be deployed.⁴

No matter what we think about belief inertia, imprecise probabilism faces a foundational problem that does not arise for precise probabilism. This problem arises while measuring the accuracy of a representor set of probability measures. Workable *scoring rules* exist for measuring the accuracy of a single, precise probability measure, such as the Brier score. These rules measure the distance between a rational agent's probability measure (also called credence function) and the actual value. A requirement of scoring rules is that they be *proper*:

add reference. Joyce, J. M. (2010). A Defence of Imprecise Credences in Inference and Decision Making, *Philosophical Perspectives* 24, pp. 281–323

 $^{^3}$ Here's another example of inertia, coming from Rinard (2013). Either all the marbles in the urn are green (H_1) , or exactly one tenth of the marbles are green (H_2) . Suppose your initial credence about these two hypothesis is complete uncertainty with interval. Next, suppose you learn that a marble drawn at random from the urn is green (E). After using this evidence to condition each probability measure in your representor (which initially contains all possible probability measures over the relevant space) on this evidence, you end up with the same spread of values for H_1 that you had before learning E. This holds no matter how many marbles are sampled from the urn and found to be green. This is counterintuitive: if you continue drawing green marbles, even if you started with complete uncertainty, you should become more inclided towards the hypothesis that all marbles are green.

⁴Elkin (2017) suggests the rule of *credal set replacement* that recommends that upon receiving evidence the agent should drop measures rendered implausible, and add all non-extreme plausible probability measures. This, however, is tricky. One needs a separate account of what makes a distribution plausible from a principled account of why one should use a separate special update rule when starting with complete ignorance.

any rational agent will score their own probability measure to be more accurate than any other. After all, if an agent thought a different probability measure was more accurate, they should switch to it. Proper scoring rules are then used to formulate accuracy-based arguments for precise probabilism. These arguments show (roughly) that, if your precise measure follows the axioms of probability theory, no other measure is going to be more accurate than yours whatever the facts are. Can the same be done for imprecise probabilism? It cannot. Impossibility theorems demonstrate that **no proper scoring rules are available for representor sets**. So, as many have noted, the prospects for an accuracy-based argument for imprecise probabilism look dim (Campbell-Moore, 2020; Mayo-Wilson & Wheeler, 2016; Schoenfield, 2017; Seidenfeld, Schervish, & Kadane, 2012). Moreover, as shown by Schoenfield (2017), if an accuracy measure satisfies certain plausible formal constraints, it will never strictly recommend an imprecise stance, as for any imprecise stance there will be a precise one with at least the same accuracy.

Let us take stock. For one thing, imprecise probabilism is more expressive than precise probabilism. It can model the difference between a state in which there is no evidence whatsoever about a proposition and a state in which the evidence is in equipoise. But imprecise probabilism has its own expressive limitations: it cannot model the case of uneven coins. Worse still, imprecise probabilism faces a number of difficulties that do not affect precise probabilism: belief inertia and the impossibility of proper scoring rules for imprecise probability measures. In the next section, we show that higher-order probabilism overcomes the expressive limitations of imprecise probabilitm without falling prey to belief inertia or the impossibility of proper scoring rules.

2.3 The compatibility problem [to be revsied still and moved somewhere else]

A final problem that is peculiar to imprecise probabilism is worth mentioning. It has not received extensive discussion in the literature, but we find it quite compelling. Recall that, for imprecise probabilism, an agent's state of uncertainty is represented by those probability measures that are *compatible* with the agent's evidence. The question is, how should the notion of compatibility be understood here? Most simply, think of incompatibility as the fact that the agent's evidence excludes—conclusively, unequivocally—the measure in question. If the evidence conclusively establishes that the proposition is true, any probability measure that assigns a probability other than one to the proposition should be excluded. If, on the other hand, the evidence establishes that the proposition could be false (or could be true), any probability measure that assigns a probability of 1 (or a probability of 0) should be excluded. These are clear-cut cases. But, clear-cut cases aside, it is hardly ever the case that evidence can exclude a probability measure in a definitive manner. Just as it is a matter of degrees whether evidence favors a prospoition, so it must be a matter of degrees whether evidence excludes a probability measure.

This is not a mathematical question: mathematically (Bradley, 2012), non-trivial evidential constraints are easy to model. They can take the form, for example, of the *evidence of chances* $\{P(X) = x\}$ or $P(X) \in [x, y]$, or *structural constraints* such as "X and Y are independent" or "X is more likely than Y." While it is clear that these constraints are something that an agent can come to accept if offered such information by an expert to which the agent completely defers, it is not trivial to explain how non-testimonial evidence can result in such constraints for an epistemic agent that functions as IP proposes.

Most of the examples in the literature start with the assumption that the agent is told by a believable source that the chances are such-and-such, or that the experimental set-up is such that the agent knows that such and such structural constraint is satisfied. But, besides ideal circumstances, it is unclear how an agent could come to accept such structural constraints

upon observation. The chain of testimonial evidence has to end somewhere.

Admittedly, there are straightforward degenerate cases: if you see the outcome of a coin toss to be heads, you reject the measure with P(H)=0, and similarly for tails. Another class of cases might arise if you are randomly drawing objects from a finite set where the real frequencies are already known, because this finite set has been inspected. But such extreme cases aside, what else? Mere consistency constraint wouldn't get the agent very far in the game of excluding probability measures, as way too many probability measures are strictly speaking still consistent with the observations for evidence to result in epistemic progress.

Bradley suggests that "statistical evidence might inform [evidential] constraints (...and that evidence) of causes might inform structural constraints" (125-126). This, however, is not a clear account of how exactly this should proceed. One suggestion might be that once a statistical significance threshold is selected, a given set of observations with a selection of background modeling assumptions yields a credible interval. But this is to admit that to reach such constraints, we already have to start with a second-order approach, and drop information about the densities, focusing only on the intervals obtained with fixed margins of errors. But as we will be insisting, if you have the information about densities to start with, there is no clear advantage to going imprecise instead, and there are multiple problems associated with this move. Moreover, such moves require a choice of an error margin, which is extra-epistemic, and it is not clear what advantage there is to use extra-epistemic considerations of this sort to drop information contained in densities.⁵

3 Higher-order probabilism

There is, however, a view in the neighborhood that fares better: a higher-order perspective. In fact, some of the comments by the proponents of imprecise probabilism tend to go in this direction. For instance, Bradley compares the measures in a representor to committee members, each voting on a particular issue, say the true bias of a coin. As they acquire more evidence, the committee members will often converge on a specific chance hypothesis. He writes:

...the committee members are "bunching up". Whatever measure you put over the set of probability functions—whatever "second order probability" you use—the "mass" of this measure gets more and more concentrated around the true chance hypothesis. (Bradley, 2012, p. 157)

Note, however, that such bunching up cannot be modeled by imprecise probabilism alone.⁶ In a similar vein, Joyce (2005), in a paper defending imprecise probabilism, attempts to explicate something that imprecise probabilism was advertised to handle better than precise probabilism: weight of evidence. But in fact, the explication uses a density over chance hypotheses to account for the notion of evidential weight and conceptualizes the weight of evidence as an increase of concentration of smaller subsets of chance hypotheses, without any reference to representors in the explication of the notion of weight.

The idea that one should use higher-order probabilities has also been suggested by critics of imprecise probabilism. For example, Carr (2020) argues that sometimes evidence requires uncertainty about what credences to have. Carr, however, does not articulate this suggestion more fully, does not develop it formally, and does not explain how her approach would fare

⁵Relatedly, in forensic evidence evaluation even scholars who disagree about the value of going higher-order agree that interval reporting is problematic, as the choice of a limit or uncertainty level is rather arbitrary (Sjerps et al., 2015; Taroni, Bozza, Biedermann, & Aitken, 2015).

⁶Bradley seems to be aware of that, which would explain the use of scare quotes: when he talks about the option of using second-order probabilities in decision theory, he insists that 'there is no justification for saying that there is more of your representor here or there.' ~[p.~195]

against the difficulties affecting precise and imprecise probabilism. This is the key goal of this paper.

The underlying idea of the higher-order approach we propose is that uncertainty is not a single-dimensional thing to be mapped on a single one-dimensional scale such as a real line. It is the whole shape of the whole distribution over parameter values that should be taken under consideration. From this perspective, when an agent is asked about their credal stance towards X, they can refuse to summarize it in terms of a point value P(X). They can instead express their credal stance in terms of a probability (density) distribution f_x treating P(X) as a random variable.

To be sure, an agent's credal state toward X could sometimes be usefully represented by the expectation, especially when the agent is quite confident about the probability of a given proposition. Generally, expectation is defined as $\int_0^1 x f(x) \, dx$. In the context of our approach here, we can think of x as the justified degree of belief in a given proposition, and of f as the density representing the agent's uncertainty about x. Another way to conceptualize this is that the imprecisers already have intuitions about the compatibility of evidence with a probability measure. The density here can be thought of a more general take on this notion. The difference, however, is that while it is not quite clear how evidence can completely exclude probability distributions, in non-degenerate cases, Bayesian methods—at least in more straightforward cases—provide guidance as to what shape the posterior density should have given certain evidence and priors.

Perhaps, such an expectation can be used as the precise, object-level credence in the proposition itself, where f is the probability density over possible object-level probability values. But this need not always be the case. If the probability density f is not sufficiently concentrated around a single value, a one-point summary might fail to do justice to the nuances of the agent's credal state. This approach lines up with common practice in Bayesian statistics, where the primary role of uncertainty representation is assigned to the whole distribution. Summaries such as the mean, mode standard deviation, mean absolute deviation, or highest posterior density intervals are only succinct ways for representing the uncertainty of a given scenario. For example, consider again the scenario in which the agent knows that the bias of the coin is either .4 or .6 but the former is three times more likely. Representing the agent's credal state with the expectation $P(X) = .75 \times .4 + .25 \times .6 = .45$ would fail to capture an important feature of RA's belief—that she believes the two biases to be of hugely different plausibilities, and that she in fact is certain that the bias is not .75.

This higher-order approach as a technical devise is not very surprising. Bayesian probabilistic programming languages embrace the well-known idea that parameters can be stacked and depend on each other in more or less complicated manners Bingham et al. (2021). What is however somehow surprising is that while the technical devise has been available, it hasn't been implemented to model agent's uncertainty, and by the same token to address all the challenging scenarios we discussed so far.

Once we allow more expressive power in this fashion, we obtain rather straightforwardly more honest representations of RA's credal states, illustrated in Figure 1. In particular, the scenario in which the two biases of the coin are not equally likely—which imprecise probabilism cannot model—can be easily modeled within high-order probabilism by assigning different probabilities to the two biases.

Besides its flexibility in modelling uncertainty, higher-order probabilism does not fall prey to belief inertia. Consider a situation in which you have no idea about the bias of a coin. So

added some explanation here, check

added this take on relation to compatibility, check

⁷Bradley admits this much (Bradley, 2012, p. 90), and so does Konek (Konek, 2013, p. 59). For instance, Konek disagrees with: (1) X is more probable than Y just in case p(X) > p(Y), (2) D positively supports H if $p_D(H) > p(H)$, or (3) A is preferable to B just in case the expected utility of A w.r.t. p is larger than that of B.

Figure 1: Examples of higher-order distributions for a few scenarios problematic for both precise and imprecise probabilism.

you start with a uniform density over [0,1] as your prior. By using binomial probabilities as likelihoods, observing any non-zero number of heads will exclude 0 and observing any non-zero number of tails will exclude 1 from the basis of the posterior. The posterior distribution will become more centered around the parameter estimate as the observations come in.

Figure 2 shows—starting with a uniform prior distribution—how the posterior distribution changes after successive observations of heads, heads again, and then tails. A further advantage of high-order probabilism over imprecise probabilism is that the prospects for accuracy-based arguments are not foreclosed. This is a significant shortcoming of imprecise probabilism, especially because such arguments exist for precise probabilism. One can show that there exist proper scoring rules for higher-order probabilism. These rules can then be used to formulate accuracy-based arguments. Another interesting feature of the framework is that the point made by Schoenfield against imprecise probabilism does not apply: there are cases in which accuracy considerations recommend an imprecise stance (that is, a multi-modal distribution) over a precise one. We will get back to these issues when we talk about accuracy.

The reader might be worried. The examples we discussed so far involve estimation of chances or population frequencies; but how are we to conceptualize higher order probabilities in a more general settings when we think of first-order probabilities as RAs degrees of belief? One might argue: since first-order probabilities capture one's uncertainty about a proposition of interest, second-order probabilities are supposed to capture one's uncertainty about how uncertain you are. But seems that agents with a decent amount of introspection should be aware

$$\begin{split} p(\theta|D) &= \frac{p(D|\theta)p(\theta)}{p(D)} \\ &= \frac{\theta^s (1-\theta)^{(n-s)} p(\theta)}{\int (\theta')^s (1-\theta')^{(n-s)} p(\theta') \ d\theta'}. \end{split}$$

Ref to section

The next two passages are somewhat new and need to be carefully read and revised. Marcello is unhappy about them!

⁸More generally, learning about frequencies, assuming independence and constant probability for all the observations, is modeled the Bayes way. You start with some prior density p over the parameter values. If you start with complete lack of information, p should be uniform. Then, you observe the data D which is the number of successes s in a certain number of observations n. For each particular possible value θ of the parameter, the probability of D conditional on θ follows the binomial distribution. The probability of D is obtained by integration. That is:

Figure 2: As observations of heads, heads and tails come in, extreme parameter values drop out of the picture and the posterior is shaped by the evidence.

of how uncertain they are, so "estimating" their first-order uncertainties seems unnecessary.

Let us propose a somewhat more general picture that we hope will address this concern. In many contexts, evidence justifies first-order probability assignments (for instance, population frequency estimates) to various degrees. For instance, suppose there is no evidence about the bias of a coin. Then, each first-order point uncertainty about it would be equally (un)-justified. If, instead, we know the coin is fair, the evidence clearly selects one preferred value, .5. But often and with respect to propositions other than straightforward propositions about a frequency, evidence is stronger than the former case and weaker than the latter case. The evidence justifies different values of first-order uncertainty to various degrees. On our picture, second order probabilities can be conceptualized in such a context as densities capturing the extent to which different first-order uncertainties are supported by the evidence.

The unavailability of a proper scoring rule was another weak spot of imprecise probabilism. Let us now turn to investigating how higher-order probabilism handles it.

4 Accuracy in the second-order setting

4.1 Accuracy

As we already discussed, one challenge for the imprecisers is providing a workable scoring rule that would be a counterpart of, say, the Brier scoring rule for the precise case. While the imprecisers have hard time defining what the accuracy of a set of measures is, that is not the case for the second-order approach. Already some work has been done on the notion of accuracy of continuous probability distributions (Hersbach (2000), Pettigrew (2012), Gneiting & Raftery (2007)). One key notion in use is that of continuous ranked probability score (CRPS) of a distribution p with respect to a possible world w:

$$I(p,w) = \int_{-\infty}^{\infty} |\mathbf{P}(x) - \mathbf{1}(x \geq V(w))|^2 \, dx$$

where P is the cumulative probability corresponding to a given density, and

$$\mathbf{1}(x \ge V(w)) = \begin{cases} 1 & \text{if } x \ge V(w) \\ 0 & \text{o/w.} \end{cases}$$

The CRPS score takes the Cramer-Von-Mises measure of distance between densities, defined in terms of the area under the squared euclidean distances between the corresponding cumulative density functions:

$$\mathcal{C}(p,q) = \int_0^1 |P(x) - Q(x)|^2 dx$$

and uses it to measure distance to an epistemically omniscient chance hypothesis, which either puts full weight on 0, if a given proposition is false, or on 1, otherwise. We will start building by reflecting on this approach. ⁹

Let's consider a scenario similar to Schoenfield's (EMS), with an added layer of uncertainty, we have the following situation: An opponent has two coins. One of these coins has a normal distribution of Heads centered around .3, and the other is centered around .5. Both coins have a standard deviation of .05. The opponent randomly selects one of these coins and flips it. The RA knows all the details of this setup.

What does EMS stand for?

Now, let's consider three possible stances that RA could take, although there are many possible options:

Figure 3: Three (out of many) candidates in a vague EMS scenario. All distributions are built from normal distributions with standard deviation .5, the bimodal ones are "glued" in the middle.

⁹For the computational ease, we will be using a grid approximation of the densities, as in practice we are unable to work with infinite precision anyway (note for instance that there are no readily computable solutions to the integral used in the definition of CRPS, although it can sometimes be evaluated in closed form) (Gneiting & Raftery, 2007, p. 366).

An impreciser might be inclined to say that it is the bimodal distribution that's appropriately evidence-responsive. The centered one, while centering on the expected value, definitely gets the chances wrong, while the wide bimodal has its guesses too close to truth values and too far from the actual known chances. Now, is this in any way mirrored by CRPS and expected CRPS calculations? It turns out it isn't.

distribution	CRPS1	CRPS0	KLD1	KLD0	ExpCRPS	ExpKLD
bimodal	534.7305	334.9305	80.06971	33.90347	414.8505	52.36997
centered	571.2192	371.4192	110.84220	53.13440	451.3392	76.21752
wide bimodal	485.4052	285.6177	54.13433	19.50965	365.5340	33.35974

Table 1: CPRS and KLD inaccuracies of the three distributions to the TRUE and FALSE omniscient functions, with expected inaccuracies (average assessment of how well the distribution aligns with both omniscient functions setups).

Based on Table 1, it is worth noting that the expected inaccuracy metric recommends the wide bimodal distribution, which does not seem desirable! Furthermore, this conclusion remains consistent even when we use the KL divergence from the omniscient measure instead of the CRPS. This suggests that the choice of the evaluation metric itself is not the root cause of this recommendation.

The problem here is that all these distributions share the same expected value: .4, which is used in the calculations of the expected inaccuracies. This also means that not only the wide bimodal distribution expects itself¹⁰ to be the least inaccurate, but also that other measures expect it to be the least inaccurate! This observation raises concerns about the strategy of (i) calculating two distances/divergencies from the two extreme omniscient measures and (ii) averaging by plugging in the expected value, because it will not result in a proper inaccuracy score.

This approach however is clearly against the spirit of our enterprise. If we start with the idea that expected values are often not good representations of RA's uncertainty, it is not particularly surprising that they fail to yield reasonable expected inaccuracy calculations. Because all three distributions share the same expected value, the difference in the probabilities they assign will be insignificant in the weightning stage (ii). This leaves us with a question, how can we adequately account for the complexity of RA's credal state in the expected inaccuracy considerations?

If we instead treat RA's higher-order probabilities as beliefs regarding which parameter values are the righ ones (e.g. true chances, real population frequencies, the point credences justified by the evidence) we should see how taking these intuitions seriously plays out.

Rather than measuring inaccuracy in relation to just two omniscient credences that peak at either 0 or 1 and then averaging using expected values, we should instead utilize a set of n potential true probability hypotheses. Each of these hypotheses corresponds to a single bin in our approximation. We would then compute all the inaccuracies with respect to their corresponding omniscient functions and determine the expected inaccuracy scores using the entire distributions rather than relying solely on their expected values.

For the three distributions we're discussing in this chapter, the inaccuracies calculated using CRPS and KL divergence with respect to various potential true probability distributions look as in Figure 4.

¹⁰The distribution expects itself - the expected inaccuracy distribution is measured with the use of the inaccuracy score of the distribution. The outcome when the distribution does not find itself to be the most accurate signifies a violation of strict propriety.

Figure 4: CLPSR and KL divergence based inaccuracies vs (omniscient functions corresponding to) n true probability hypotheses for the three distributions discussed in this section.

One important difference transpires between using CRPS rather than KLD. Notice how for chance hypotheses between the actual peaks the inaccuracy remains flat. This seems to be an artifice of choosing a squared distance metric. If instead we go with a more principled, information-theory-inspired KL divergence, inaccuracy in fact jumps a bit for values in between the peaks for the bimodal distributions, which seems intuitive and desirable.

Note that now the expected inaccuracies of the distributions from their perspective look as in Table 2.

	CPRS			KLD		
	bimodal	centered	wide bimodal	bimodal	centered	wide bimodal
bimodal	64.670	78.145	88.380	8.577	10.655	11.336
centered	41.657	28.181	85.911	9.239	7.690	15.627
wide bimodal	137.699	171.719	113.989	11.541	19.231	8.689

Table 2: Expected inaccuracies of the three distributions from their own perspectives. Each row corresponds to a perspective.

It's worth noting that the results now match our common sense: each distribution recommends itself. But how does the framework capture the idea that it is the bimodal distribution that seems more adequate than the others?

One way to interpret that is by looking at inaccuracy concerning chance hyphoteses given by the testimonoial evidence. In this case, these are H_3 , where the true chance is 0.3, and H_5 , where the true chance is 0.5. You can find the specific inaccuracies for them in Table 3.

	CR	PS.	KLD		
	Н3	H5	Н3	Н5	
bimodal	55.475	55.378	7.935	7.935	
centered	72.281	72.090	9.836	9.825	
wide bimodal	86.230	86.223	10.871	10.882	

Table 3: CRPS and KLD inacurracies of the three distributions with respect to the two hypotheses. Note that on both inaccuracy measures the bimodal distribution dominates the other two

To make sure that this favorable outcome isn't due to not using pointed credences, we can redo the calculations using the pointed version. In the pointed version, all the focus is on 0.4, or the weight is evenly divided between 0.3 and 0.5, or between 0.2 and 0.6. As anticipated, when we consider inaccuracy, both of these setups recommend the bimodal version, regardless of which of the two hypotheses is in play (see Table 4).

	CR	PS .	KLD		
	Н3	H5	Н3	Н5	
pointed bimodal	49.75	49.75	1.00	1.00	
pointed centered	100.00	100.00	16.61	16.61	
pointed wide bimodal	99.75	99.75	16.61	16.61	

Table 4: CRPS and KLD inacurracies of the three pointed distributions with respect to the two hypotheses.

The discussion so far, while based on an example, might leave the reader wondering about the strict propriety of the KLD inaccuracy measure. To address this concern, a proof is provided in the paper's appendix. In essence, the argument demonstrates that for a second-order discretized probability mass p over a parameter space [0,1], given that the real probability is θ as the Kullback-Leibler divergence of p from the indicator distribution of θ (which assigns 1 to θ and 0 to all other parameter values in the parameter space), denoted as $\mathcal{I}^2_{D_{\mathrm{KL}}}$. It turns out that this is a strictly proper inaccuracy measure: each p expects itself to be the least inaccurate distribution. p

While imprecisers face challenges in formulating appropriate scoring rules, the second-order approach, which incorporates KLD and centers its focus on the distribution of all conceivable hypotheses, emerges as a more coherent framework.

This section has been revised here and there to flow better as an argument against imprecise probabilism, read more carefully.

¹¹The argument generalizes to parameter spaces that correspond to probabilities of multiple propositions which are Cartesian products of parameter spaces explicitly used in the argument in this section.

¹²The argument has four key moves:

^{1.} the inaccuracy of p w.r.t. to parameter θ is just $-\log_2 p(\theta)$,

^{2.} the expected inaccuracy of p from the perspective of p is the entropy of p, H(p),

^{3.} the inaccuracy of q from the perspective of p is the cross-entropy H(p,q),

^{4.} and it is an established result that cross-entropy is strictly larger than entropy as soon as $p \neq q$.

5 Handling evidence aggregation

This is not the end of the story. Beyond the difficulties discussed in the literature, we also think that both precise and imprecise probabilities have difficulties when it comes to evidence aggregation when it comes to more realistic cases. In this section we illustrate this with a running example of two pieces of evidence. In the next section, we discuss how the approach we proposed can exploit existing computational methods to handle even more complex cases. Our strategy is to go over a stylized, but fairly realistic case in which it makes an important difference whether we approach the problem from the precise, imprecise, or higher-order perspective.

A defendant in a criminal case may face multiple items of incriminating evidence whose strength can at least sometimes be assessed using probabilities. For example, consider a murder case in which the police recover trace evidence that matches the defendant. Hair found at the crime scene matches the defendant's hair (call this evidence hair). In addition, the defendant owns a dog whose fur matches the dog fur found in a carpet wrapped around one of the bodies (call this evidence dog). The two matches suggest that the defendant (and the defendant's dog) must be the source of the crime traces (call this hypothesis source). But how strong is this evidence, really? What are the fact-finders to make of it?

The standard story among legal probabilists goes something like this Urbaniak & Di Bello (2021). To evaluate the strength of the two items of match evidence, we must find the value of the likelihood ratio:

$$\frac{P(dog \land hair|source)}{P(dog \land hair|\neg source)}$$

For simplicity, the numerator can be equated to one. To fill in the denominator, an expert provides the relevant random match probabilities. Suppose the expert testifies that the probability of a random person's hair matching the reference sample is about 0.0253, and the probability of a random dog's hair matching the reference sample happens to be about the same, 0.0256.¹⁴

Presumably, the two matches are independent lines of evidence. In other words, their random match probabilities must be independent of each other conditional on either possible truth value of the source hypothesis. ¹⁵ Then, to evaluate the overall impact of the evidence on the source hypothesis, you calculate:

$$P(\text{dog} \land \text{hair}|\neg \text{source}) = P(\text{dog}|\neg \text{source}) \times P(\text{hair}|\neg \text{source})$$
$$= 0.0252613 \times 0.025641 = 6.4772626 \times 10^{-4}$$

This is a very low number. Two such random matches would be quite a coincidence. The expert facilitates your understanding of how this low number should be interpreted: they show you how the items of match evidence change the probability of the source hypothesis given a range of possible priors (Figure 5).

¹³The hair evidence and the dog fur evidence are stylized after two items of evidence in the notorious 1981 Wayne Williams case (Deadman, 1984b, 1984a).

¹⁴Probabilities have been slightly but not unrealistically modified to be closer to each other in order to make a conceptual point. The original probabilities were 1/100 for the dog fur, and 29/1148 for Wayne Williams' hair. We modified the actual reported probabilities slightly to emphasize the point that we will elaborate further on: the same first-order probabilities, even when they sound precise, may come with different degrees of second-order uncertainty.

¹⁵It is possible for A and B to be independent conditional on C, but not conditional on $\neg C$. Here, we require both independencies to hold.

The posterior of .99 is reached as soon as the prior is higher than 0.061.¹⁶ While perhaps not sufficient for outright belief in the source hypothesis, the evidence seems extremely strong: a minor additional piece of evidence could make the case against the defendant overwhelming.

Figure 5: Impact of dog fur and human hair evidence on the prior, point estimates.

Unfortunately, this analysis leaves out something crucial. You reflect on what you have been told and ask the expert: how can you know the random match probabilities with such precision? Shouldn't we also be mindful of the uncertainty that may affect these numbers? The expert agrees, and tells you that in fact the random match probability for the hair evidence is based on 29 matches found in a database of size 1148, while the random match probability for the dog evidence is based on finding two matches in a reference database of size 78.

The expert's answer makes apparent that the precise random match probabilities do not tell the whole story. Perhaps, the information about sample sizes is good enough and now you know how to use the evidence properly.¹⁷ But if you are like most human beings, you can't. What to do, then?

If you want to approach this from the impreciser's perspective, it is quite unclear how to proceed forward if one takes the binary notion of compatibility to one's heart. After all, pretty much all precise estimates of frequencies are still compatible with the evidence so far, except for the degenerate case. Perhaps, a less principled but defensible strategy is to defer to an expert (see however our earlier discussion of how the chain of deference should end somewhere).

So you ask the expert for guidance: what are reasonable ranges of the random match probabilities? What are the worst-case and best-case scenarios? The expert responds with 99% credible intervals—specifically, starting with uniform priors, the ranges of the random match probabilities are (.015,.037) for hair evidence and (.002, .103) for fur evidence. Now, your representor set is supposed to cover the convex hull of the probability measures that result in probabilities that are the edges of the intervals. For this reason, to investigate what span of probabilities the imprecise probabilities will end with, it is enough to focus on what happens at the edges of the interval. Reasoning with representor members at the edges of the intervals will lead you to the most extreme probability measure the impreciser is going to be committed to. So you redo your calculations using the upper bounds of the two intervals: .037 and .103 (assuming conditional independence). The rationale for choosing the upper bounds is that these

¹⁶These calculations assume that the probability of a match if the suspect and the suspect's dog are the sources is one.

¹⁷This is what, effectively, Taroni et al. (2015) seem to suggest when they insist the fact-finders should be simply given point estimates and information about the study set-up, such as sample size. We disagree.

¹⁸Roughly, the 99% credible interval is the narrowest interval to which the expert thinks the true parameter belongs with probability .99. For a discussion of what credible intervals are, how they differ from confidence intervals, and why confidence intervals should not be used, see Kruschke (2015).

numbers result in random match probabilities that are most favorable to the defendant. Your new calculation yields the following:

$$P(dog \land hair | \neg source) = .037 \times .103 = .003811.$$

This number is around 5.88 times greater than the original estimate. Now the prior probability of the source hypothesis needs to be higher than 0.274 for the posterior probability to be above .99 (Figure 6). So you are no longer convinced that the two items of match evidence are strongly incriminating.

Figure 6: Impact of dog fur and human hair evidence on the prior, charitable reading.

This result is puzzling. Are the two items of match evidence strongly incriminating evidence (as you initially thought) or somewhat weaker (as the new calculation suggests)? For one thing, using precise random match probabilities might be too unfavorable toward the defendant. On the other hand, your new assessment of the evidence based on the upper bounds might be too *favorable* toward them. Is there a middle way that avoids overestimating and underestimating the strength of the evidence?

To see what this middle path looks like, we should reconsider the calculations you just did. You made an important blunder: you assumed that because the worst-case probability for one event is x and the worst-case probability for another independent event is y, the worst-case probability for their conjunction is xy. But this conclusion does not follow if the margin of error (credible interval) is fixed. The intuitive reason is simple: just because the probability of an extreme (or larger absolute) value x for one variable X is .01, and so it is for the value y of another independent variable Y, it does not follow that the probability that those two independent variables take values x and y simultaneously is the same. This probability is actually much smaller. The interval presentation instead of doing us good led us into error.

In general, it is impossible to calculate the credible interval for the joint distribution based solely on the individual credible intervals corresponding to the individual events. We need additional information: the distributions that were used to calculate the intervals for the probabilities of the individual events. In our example, if you additionally knew, for instance, that the expert used beta distributions (as, arguably, they should in this context), you could in principle calculate the 99% credible interval for the joint distribution. It usually will not be the same as whatever the results of multiplying the individual interval edges, and it is unlikely that a human fact-finder would be able to correctly run such calculations in their head even if they knew the functional form of the distributions used. ¹⁹ So providing the fact-finder with indi-

¹⁹Also, in principle, in more complex contexts, we need further information about how the items of evidence are related if we cannot take them to be independent.

vidual intervals, even if further information about the distributions is provided, might easily mislead.²⁰

As it turns out, given the reported sample sizes, the 99% credible interval for the probability $P(dog \land hair|\neg source)$ is (0.000023, 0.002760). The upper bound of this interval would then require the prior probability of the source hypothesis to be above .215 for the posterior to be above .99. On this interpretation, the two items of match evidence are still not quite as strong as you initially thought, but stronger than what your second calculation indicated.

We still should think of credible intervals as rough summaries, which might be useful if the underlying distributions are fairly symmetrical, or narrow enough. But in our case, they might not be. For instance, Figure 7 depicts beta densities for dog fur and human hair, together with sampling-approximated density for the joint evidence.

The distribution for the joint evidence is not symmetric. If you were only informed about the edges of the interval, you would be oblivious to the fact that the most likely value (and the bulk of the distribution, really) does not simply lie in the middle between the edges. Just because the parameter lies in an interval with some posterior probability, it does not mean that the ranges near the edges of the interval are equally likely—the bulk of the density might very well be closer to one of the edges. Therefore, only relying on the edges can lead one to either overestimate or underestimate the probabilities at play. This also means that—following our advice on how to illustrate the impact of evidence on prior probabilities—a better representation of the dependence of the posterior on the prior should comprise multiple possible sampled lines whose density mirrors the density around the probability of the evidence (Figure 8).

Conditional densities for individual items of evidence if the source hypothesis is

Conditional density for joint evidence
(with .99 and .9 HPDIs)

750
250
0
0.000

0.001

0.002

0.003

0.004

Figure 7: Beta densities for individual items of evidence and the resulting joint density with .99 and .9 highest posterior density intervals, assuming the sample sizes as discussed and independence, with uniform priors.

probability

²⁰Investigation of the extent to which the individual interval presentation is misleading would be an interesting psychological study.

Figure 8: 300 lines illustrating the uncertainty about the dependence of the posterior on the prior given aleatory uncertainty about the evidence, with the distribution of the minimal priors required for the posterior to be above .99.

This, then, is the main claim illustrated in this section: higher-order approach to evidence evaluation is more reliable and more honest about the uncertainties involved. Whenever density estimates for the probabilities of interest are available (and they should be available for match evidence and many other items of scientific evidence if the reliability of a given type of evidence has been properly studied), those densities should be reported for assessing the strength of the evidence. This approach avoids hiding actual aleatory uncertainties under the carpet. It also allows for a balanced assessment of the evidence, whereas using point estimates or intervals may exaggerate or underestimate the value of the evidence.

Mathematically, we do not propose anything radically new—we just put together some of the items from the standard Bayesian toolkit. The novelty is rather in our arguing that that these tools are under-appreciated in formal epistemology and in the legal scholarship and should be properly used to incorporate second-order uncertainties in evidence evaluation and incorporation.

6 Computational and representational considerations

The higher-order framework we are advocating is not only applicable to the evaluation of individual pieces of evidence. Complex bodies of evidence and hypotheses—for example, those often represented by Bayesian networks—can also be approached from this perspective. The general strategy is this: (1) capture the uncertainties involving the individual items of evidence in a modular fashion using the standard tools for statistical inference. (2) Elicit other probabilities or densities from experts²¹, (3) put those together using a structure similar to that of a Bayesian network, except allowing for uncertainties of various levels to be put together—a usual tool for such a representation is a probabilistic program (Bingham et al., 2021), and (4) perform inference evaluating the relevant probabilities or densities of interest.

If the reader is more used to thinking in terms of Bayesian networks, a somewhat restrictive but fairly straightforward way to conceptualize a large class of such programs is to imagine

²¹For expert elicitation of densities in a parametric fashion and the discussion of the improvement to which doing so instead of eliciting point values leads, see (O'Hagan et al., 2006).

a probabilistic program as stochastically generating Bayesian networks using our uncertainty about the parameter values, update with the evidence, and propagate uncertainty to approximate the marginal posterior for nodes of interest.

As an illustration, let us start with a simplified Bayesian network developed by Fenton & Neil (2018). The network is reproduced in Figure 9 and represents the key items of evidence in the infamous British case R. v. Clark (EWCA Crim 54, 2000).²²

In a Bayesian network the arrows depict direct relationships of influence between variables, and nodes—conditional on their parents—are taken to be independent of their non-descendants. Amurder and Bmurder are binary nodes corresponding to whether Sally Clark's sons, call them A and B, were murdered. These nodes influence whether signs of disease (Adisease and Bdisease) and bruising (Abruising and Bbruising) were present. Also, since A's death preceded in time B's death, whether A was murdered casts some light on the probability that B was also murdered.

The choice of the probabilities in the network is quite specific, and it is not clear where such precise values come from. The standard response invokes *sensitivity analysis*: a range of plausible values is tested. As already discussed, this approach ignores the shape of the underlying distributions. Sensitivity analysis does not make any difference between probability measures (or point estimates) in terms of their plausibility, but some will be more plausible than others. Moreover, if the sensitivity analysis is guided by extreme values, these might play an undeservedly strong role. These concerns can be addressed, at least in part, by recourse to higher-order probabilities. In a precise Bayesian network, each node is associated with a probability table determined by a finite list of numbers (precise probabilities). But suppose that, instead of precise numbers, we have densities over parameter values for the numbers in the probability tables.²³ An example for the Sally Clark case is represented in Figure 10.

²²Sally Clark's first son died in 1996 soon after birth, and her second son died in similar circumstances a few years later in 1998. At trial, the pediatrician Roy Meadow testified that the probability that a child from such a family would die of Sudden Infant Death Syndrome (SIDS) was 1 in 8,543. Meadow calculated that therefore the probability of both children dying of SIDS was approximately 1 in 73 million. Sally Clark was convicted of murdering her infant sons. The conviction was reversed on appeal. The case of appeal was based on new evidence: signs of a potentially lethal disease were found in one of the bodies.

²³The densities of interests can then be approximated by (1) sampling parameter values from the specified distributions, (2) plugging them into the construction of the BN, and (3) evaluating the probability of interest in that precise BN. The list of the probabilities thus obtained will approximate the density of interest. In what follows we will work with sample sizes of 10k.

Figure 9: Bayesian network for the Sally Clark case, with marginal prior probabilities.

Using the probabilistic program, we can investigate the impact of different items of evidence on Sally Clark's probability of guilt (Figure 10). The starting point is the prior density for the Guilt node (first graph). Next, the network is updated with evidence showing signs of bruising on both children (second graph). Next, the assumption that both children lack signs of potentially lethal disease is added (third graph). Finally, we consider the state of the evidence at the time of the appellate case: signs of bruising existed on both children, but signs of lethal disease were discovered only on the first child. Interestingly, in the strongest scenario against Sally Clark (third graph), the median of the posterior distribution is above .95, but the uncertainty around that median is still too wide to warrant a conviction.²⁴ This underscores the fact that relying on point estimates can lead to overconfidence. Paying attention to the higher-order uncertainty about the first-order probability can make a difference to trial decisions.

N: I am still searching for a good fix of that plot

nl: This plot is not referenced anywhere, should it be visible?

²⁴The lower limit of the 89% Highest Posterior Density Intervals (HPDI) is at .83.

Figure 11: Impact of incoming evidence in the Sally Clark case.

One question that arises is how this approach relates to the standard method of using likelihood ratios to report the value of the evidence. On this approach, the conditional probabilities that are used in the likelihood ratio calculations are estimated and come in a package with an uncertainty about them. Accordingly, these uncertainties propagate: to estimate the likelihood ratio while keeping track of the uncertainty involved, we can sample probabilities from the selected distributions appropriate for the conditional probabilities needed for the calculations, then divide the corresponding samples, obtaining a sample of likelihood ratios, thus approximating the density capturing the recommended uncertainty about the likelihood ratio. Uncertainty about likelihood ratio is just propagated uncertainty about the involved conditional probabilities. For instance, we can use this tool to gauge our uncertainty about the likelihood ratios corresponding to the signs of bruising in son A and the presence of the symptoms of a potentially lethal disease in son A (Figure 12).

Figure 12: Likelihood ratios forbruising and signs of disease in child A in the Sally Clark case.

7 Discussion

Our approach does involve multiple parameters, uncertainty about them, along with a dependency structure between random variables. So it is only natural to ask whether what we propose is not just an old wolf in a new sheep's clothing, as one might think that what looks like a DAG and quacks like a DAG is always a hierarchical model. In this section we briefly clarify what the answer to this question is.

First, we need some clarity on what a Bayesian hierarchical model is. In the widest sense of the word, these are mathematical descriptions involving multiple parameters such that credible values for some of them meaningfully depend on the values of other parameters, and that dependencies can be re-factored into a chain of dependencies. For instance, think about a joint parameter space for two parameters θ and ω , where $p(\theta,\omega|D) \propto p(D|\theta,\omega)p(\theta,\omega)$. If, further, some independence-motivated re-factoring of the right-hand side—for instance as $p(D|\theta)p(\theta\omega)p(\omega)$ —is possible, we are dealing with a hierarchical model in the wide sense of the word.

Such models usually come useful when we are dealing with clustered data, such as a cohort study with repeated measures, or some natural groupings at different levels of analysis. Then, lower-level parameters are treated as i.i.d. and share the same parameter distribution characterized by some hyper-parameters in turn characterized by a prior distribution. As a simple example consider a scenario in which we are dealing with multiple coins created by one mint—each coin has its own bias θ_i , but also there is some commonality as to what these biases are in this mint, represented by a higher-level parameter θ . Continuing the example, assume $\theta_i \sim \text{Beta}(a,b)$ and $y_{i|s} \sim \text{Bern}(\theta_s)$, where the former distribution can be re-parametrized as $\text{Beta}(\omega(k-2)+1,(1-\omega)(k-2)+1)$. Let's keep k fixed, ω is our expected value of the θ_i parameters, with some dispersion around it determined by k. Now, if we also are uncertain about ω and express our uncertainty about it in terms a density $p(\omega)$, we got ourselves a hierarchical model with joint prior distribution over parameters $\prod p(\theta_i|\omega)p(\omega)$.

As another example, one can develop a multilevel regression model of the distributions of the random levels in various counties, where both the intercept and the slope vary with counties by taking

 $y_i \sim \text{Norm}(\alpha_{j[i]} + \beta_{j[i]}x_i, \sigma_y^2)$, where j is a county index, $\alpha_j \sim \text{Norm}(\mu_\alpha, \sigma_\alpha^2)$, and $\beta_j \sim \text{Norm}(\mu_\beta, \sigma_\beta^2)$. Then, running the regression one estimates both the county-level coefficients, and the higher-level parameters.

Our approach is similar to the standard hierarchical models in the most general sense: there is a meaningful independence structure and distributions over parameter values that we are working with. However, our approach is unlike such models in a few respects. For one, we are not dealing with clustered data, and the random variables are mostly propositions and their truth values. Given a hypothesis H and an item of evidence E for it, there seems to be no interesting conceptualization on which the underlying data would be clustered. For example, considering stains at a crime scene as a subgroup of crimes being committed doesn't make logical sense. Yes, there is dependency between these phenomena, but describing it as clustering would be at least misleading. Second, the dependencies proceed through the values of the random variables which are **not** parameters, but rather truth-values, and require also conditional uncertainties regarding the dependencies between these truth-values.

Again, continuing the hypothesis-evidence example, we have $H \sim \mathrm{Bern}(p_h)$, $p_h \sim \mathrm{Beta}(a_h,b_h)$, and $E \sim \mathrm{Bern}(p_e)$. But then we also have the beta distributions for the probability of the evidence conditional on the actual values of the random variables—the truth-values—thus $p_e|H=1 \sim beta(a_+,b_+)$ and $p_e|H=0 \sim \mathrm{Beta}(a_-,b_-)$. But the re-factoring in terms of the actual values of the random variables (which just happen to resemble probabilities because they are truth values) makes it quite specific, at the same time allowing for the computational use of a probabilistic program. Finally, the reasoning we describe is not a regression the way it is normally performed: the learning task is delegated to the bottom level of whatever happens to the Bayesian networks once updated with evidence. We would prefer to reserve the term *hierarchical model* for a class of models dealing with interesting cluster structures in the data. A more fitting term for the representation tool we propose should be used here is *probabilistic programs*. We do not claim any originality in devising this tool: it's an already existing tool. What we argue for, though, is its ability for being usefully deployed in the context of forensic evidence evaluation and integration with other assumptions and hypotheses.

Perhaps, you might dislike the idea of going higher-order for theoretical reasons. One might be that you don't like the complexity. This seems to be the line taken by Bradley, who refuses to go higher-order for the following reason:

Why is sets of probabilities the right level to stop the regress at? Why not sets of sets? Why not second-order probabilities? Why not single probability functions? This is something of a pragmatic choice. The further we allow this regress to continue, the harder it is to deal with these belief representing objects. So let's not go further than we need. 131-132

We have argued extensively, that given the difficulties of both PP and IP and how the current approach handles it, we are not going further than we need in using higher-order probabilities. We're going where we should be. And the supposed pragmatic concerns that one might have are unclear: parameter uncertainty, approximations and other computational methods I have used in fact quite embedded in Bayesian statistical practice and decent computational tools for the framework I propose are available.²⁵

Another concern that you might have is that it is not clear what the semantics of such an

²⁵Also, you can insist that instead of going higher order we could just take our sample space to be the cartesian product of the original sample space and parameter space, or use parameters having certain values as potential states of a bayesian network. If you prefer not to call such approaches first-order, I don't mind, as long as you effectively end up assigning probabilities to certain probabilities, the representation means I discussed in this paper should be in principle available to you.

approach should look like. While a more elaborate account is beyond the scope of this paper, the general gist of the approach can be modeled by a slight modification of a framework of probabilistic frames (Dorst, 2022b, 2022a). Start with a set of possible worlds W. Suppose you consider a class of probability distributions D, a finite list of atomic sentences q_1, \ldots, q_2 corresponding to subsets of W, and a selection of true probability hypotheses C (think of the latter as omniscient distributions, $C \subseteq D$, but in principle this restriction can be dropped if need be). Each possible world $w \in W$ and a proposition $p \subseteq W$ come with their true probability distribution, $C_{w,p} \in D$ corresponding to the true probability of p in p, and the distribution that the expert assigns to p in p, p, p, p. Then, various propositions involving distributions can be seen as sets of possible worlds, for instance, the proposition that the expert assigns p is the set of worlds p such that p, p and p is the set of worlds p such that p, p and p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p such that p is the set of worlds p

The reader might also be eager to point out that some of the techinques we mentioned are already available to the impreciser. For instance, one can use uniform sampling with Bayesian networks to approximate the impreciser's epistemic commitments given their assumptions. This doesn't mathematically differ from relying on probabilistic programs with the restriction that some variables corresponding to probabilities are sampled from distributions that are uniform over a set of values determined by the imprecisor's representor. However, this only shows that a computational implementation of the impreciser's perspective is not out of reach—which is to be expected. A critical survey of an approach along these lines uses roughly this computational approach to argue that in complex reasoning situations, if the imprecisor's stance is taken, ''the imprecision of inferences increases rapidly as new premises are added to an argument''. This is in line with our criticism.

Added this passage

Cite https: //arxiv.org/ abs/2302.0 9656

add ref to https://www. sciencedirec t.com/scienc e/article/pii/ S000437029 6000215

Appendix: propriety

Appendix: the strict propriety of $\mathcal{I}^2_{D_{\mathrm{KL}}}$

Let us start with a definition.

Definition 1 (concavity). A function f is convex over an interval (a,b) just in case for all $x_1, x_2 \in (a,b)$ and $0 \le \lambda \le 1$ we have:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

A function f is concave just in case:

$$f(\lambda x_1 + (1-\lambda)x_2) \geq \lambda f(x_1) + (1-\lambda)f(x_2)$$

A function f is strictly concave just in case the equality holds only if either $\lambda = 0$ or $\lambda = 1$.

For us it is important that if a function is twice differentiable on an interval, then it is (strictly) concave just in case its second derivative is non-positive (negative). In particular, as $(\log_2(x))'' = -\frac{1}{x^2 ln(2)}$, \log_2 is strictly concave over its domain.²⁷

Lemma 1 (Jensen's inequality). If f is concave, and g is any function of a random variable, $\mathbb{E}(f(g(x))) \leq f(\mathbb{E}(g(x)))$. If f is strictly concave, the equality holds only if $g(x) = \mathbb{E}g(x)$, that is, if g(x) is constant everywhere.

²⁶There is at least one important difference between this approach and that developed by Dorst. His framework is untyped, which allows for an enlightening discussion of the principle of reflection and alternatives to it. In this paper I prefer to keep this complexity apart and use an explicitly typed set-up.

²⁷I line with the rest of the paper, we'll work with log base 2. We could equally well use any other basis.

Proof. For the base case consider a two-point mass probability function. Then,

$$p_1 f(g(x_1)) + p_2 f(g(x_2)) \le f(p_1 g(x_1) + p_2 g(x_2))$$

follows directly from the definition of concativity, if we take $\lambda = p_1$, $(1 - \lambda) = p_2$, and substitute $g(x_1)$ and g(x+2) for x_1 and x_2 .

Now, suppose that $p_1 f(g(x_1)) + p_2 f(g(x_2)) = f(p_1 g(x_1) + p_2 g(x_2))$ and that f is strictly concave. That means either $(p_1=1 \wedge p_2=0)$, or $(p_1=0 \wedge p_2=1)$. Then either x always takes value x_1 , in the former case, or always takes value x_2 , in the latter case. $\mathbb{E}g(x) =$ $p_1g(x_1)+p_2g(x_2)$, which equals $g(x_1)$ in the former case and $g(x_2)$ in the latter.

Now suppose Jensen's inequality and the consequence of strict contativity) holds for k-1mass points. Write $p_i' = \frac{p_i}{1-p_k}$ for $i=1,2,\ldots,k-1$. We now reason:

$$\begin{split} \sum_{i=1}^k p_i f(g(x_i)) &= p_k f(g(x_k)) + (1-p_k) \sum_{i=1}^{k-1} p_i' f(g(x_i)) \\ &\leq p_k f(g(x_k)) + (1-p_k) f\left(\sum_{i=1}^{k-i} p_i' g(x_i)\right) \quad \text{by the induction hypothesis} \\ &\leq f\left(p_k(g(x_k)) + (1-p_k) \sum_{i=1}^{k-1} p_i' g(x_i)\right) \quad \text{by the base case} \\ &= f\left(\sum_{i}^k p_i g(x_i)\right) \end{split}$$

Notice also that at the induction hypothesis application stage we know that the equality holds only if $p_k=1 \lor p+k=0$. In the former case g(x) always takes value $x_k=\mathbb{E}g(x)$. In the latter case, p_k can be safely ignored and $\sum_{i=1}^k p_i g(x_i) = \sum_{i=1}^{k-1} p' g(x_i)$ and by the induction hypothesis we already know that $\mathbb{E}g(x)=g(x)$.

In particular, the claim holds if we take g(x) to be $\frac{q(x)}{p(x)}$ (were both p and q are probability mass functions), and f to be log_2 . Then, given that A is the support set of p, we have:

$$\sum_{x \in A} p(x) \log_2 \frac{q(x)}{p(x)} \leq \log_2 \sum_{x \in A} p(x) \frac{q(x)}{p(x)}$$

Moreover, the equality holds only if $\frac{q(x)}{p(x)}$ is constant, that is, only if p and q are the same pmfs. Let's use this in the proof of the following lemma.

Lemma 2 (Information inequality). For two probability mass functions $p, q, D_{KL}(p, q) \ge 0$ with equality iff p = q.

Proof. Let A be the support set of p, and let q be a probability mass function whose support

is B.

$$\begin{split} -D_{\mathrm{KL}}(p,q) &= -\sum_{x \in A} p(x) \log_2 \frac{p(x)}{q(x)} & \text{(by definition)} \\ &= \sum_{x \in A} p(x) - (\log_2 p(x) - \log_2 q(x)) \\ &= \sum_{x \in A} p(x) \left(\log_2 q(x) - \log_2 p(x)\right) \\ &= \sum_{x \in A} p(x) \log_2 \frac{q(x)}{p(x)} \\ &\leq \log_2 \sum_{x \in A} p(x) \frac{q(x)}{p(x)} & \text{by Jensen's inequality} \\ &\text{(and the equality holds only if } p = q) \\ &= \log_2 \sum_{x \in A} q(x) \\ &\leq \log_2 \sum_{x \in B} q(x) \\ &= \log(1) = 0 \end{split}$$

Observe now that D_{KL} can be decomposed in terms of cross-entropy and entropy.

Lemma 3 (decomposition). $D_{KL} = H(p,q) - H(p)$.

Proof.

$$\begin{split} D_{\mathrm{KL}}(p,q) &= \sum_{p_i} \left(\log_2 p_i - \log_2 q_i\right) \\ &= -\sum_{p_i} \left(\log_2 q_i - \log_2 p_i\right) \\ &= -\sum_{p_i} \log_2 q_i - \sum_{p_i} - \log_2 p_i \\ &- \underbrace{\sum_{p_i} \log_2 q_i}_{H(p,q)} - \underbrace{\sum_{p_i} \log_2 p_i}_{H(p)} \end{split}$$

With information inequality this easily entails Gibbs' inequality:

Lemma 4 (Gibbs' inequality). $H(p,q) \ge H(p)$ with identity only if p=q.

Now we are done with our theoretical set-up. Here is how it entails the propriety of $\mathcal{I}^2_{D_{\mathrm{KL}}}$. First, let's systematize the notation. Consider a discretization of the parameter space [0,1] into n equally spaced values θ_1,\ldots,θ_n . For each i the "true" second-order distribution if the true parameter indeed is θ_i —we'll call it the indicator of θ_i — is defined by

$$Ind^k(\theta_i) = \begin{cases} 1 & \text{if } \theta_i = \theta_k \\ 0 & \text{otherwise} \end{cases}$$

I will write Ind_i^k instead of $Ind^k(\theta_i)$.

Now consider a probability distribution p over this parameter space, assigning probabilities p_1,\ldots,p_n to θ_1,\ldots,θ_n respectively. It is to be evaluated in terms of inaccuracy from the perspective of a given 'true' value θ_k . The inaccuracy of p if θ_k is the 'true' value, is the divergence between $IndI^k$ and p.

$$\begin{split} \mathcal{I}_{D_{\text{KL}}}^2(p,\theta_k) &= D_{\text{KL}}(Ind^k,p) \\ &= \sum_{i=1}^n Ind_i^k \left(\log_2 Ind_i^k - \log_2 p_i\right) \end{split}$$

Note now that for $j \neq k$ we have $\ln d^k_j = 0$ and so $Ind_j^k (\log_2 Ind_j^k - \log_2 p_j) = 0$. Therefore we continue:

$$= Ind_k^k \left(\log_2 Ind_k^k - \log_2 p_k\right)$$

Further, $Ind_k^k=1$ and therefore $\log_2 Ind_k^k=0$, so we simplify:

$$=-\log_2 p_k$$

Now, let's think about expected values. First, what the inaccuracy of p as expected by p, EI(p,p)?

$$\begin{split} EI(p,p) &= \sum_{i=1}^n p_i \mathcal{I}_{D_{\mathrm{KL}}}^2(p,\theta_k) \\ &= \sum_{i=1}^n p_i - \log_2 p_k \\ &= -\sum_{i=1}^n p_i \log_2 p_k = H(p) \end{split}$$

Analogously, the inaccuracy of q as expected from the perspective of p is:

$$\begin{split} EI(p,q) &= \sum_{i=1}^n p_i \left(-\log_2 q_i \right) \\ &= -\sum_{i=1}^n p_i \log_2 q_i \right) = H(p,q) \end{split}$$

But that means, by Gibbs' inequality, that $EI(p,q) \ge EI(p,p)$ unless p=q, which completes the proof.

References

Bingham, E., Koppel, J., Lew, A., Ness, R., Tavares, Z., Witty, S., & Zucker, J. (2021). Causal probabilistic programming without tears. *Proceedings of the Third Conference on Probabilistic Programming*.

Bradley, S. (2012). *Scientific uncertainty and decision making* (PhD thesis). London School of Economics; Political Science (University of London).

- Bradley, S. (2019). Imprecise Probabilities. In E. N. Zalta (Ed.), *The Stanford encyclopedia of philosophy* (Spring 2019). https://plato.stanford.edu/archives/spr2019/entries/imprecise-probabilities/; Metaphysics Research Lab, Stanford University.
- Campbell-Moore, C. (2020). Accuracy and imprecise probabilities.
- Carr, J. R. (2020). Imprecise evidence without imprecise credences. *Philosophical Studies*, 177(9), 2735–2758. https://doi.org/10.1007/s11098-019-01336-7
- Deadman, H. A. (1984a). Fiber evidence and the wayne williams trial (conclusion). *FBI L. Enforcement Bull.*, *53*, 10–19.
- Deadman, H. A. (1984b). Fiber evidence and the wayne williams trial (part i). FBI L. Enforcement Bull., 53, 12–20.
- Dorst, K. (2022a). Higher-order evidence. In M. Lasonen-Aarnio & C. Littlejohn (Eds.), *The routledge handbook for the philosophy of evidence*. Routledge.
- Dorst, K. (2022b). Higher-order uncertainty. In M. Skipper & A. S. Petersen (Eds.), *Higher-order evidence: New essays*.
- Elkin, L. (2017). *Imprecise probability in epistemology* (PhD thesis). Ludwig-Maximilians-Universität; Ludwig-Maximilians-Universität München.
- Fenton, N., & Neil, M. (2018). *Risk assessment and decision analysis with bayesian networks*. Chapman; Hall.
- Fraassen, B. C. V. (2006). Vague expectation value loss. *Philosophical Studies*, *127*(3), 483–491. https://doi.org/10.1007/s11098-004-7821-2
- Gärdenfors, P., & Sahlin, N.-E. (1982). Unreliable probabilities, risk taking, and decision making. *Synthese*, *53*(3), 361–386. https://doi.org/10.1007/bf00486156
- Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association*, 102(477), 359–378. https://doi.org/10.1198/016214506000001437
- Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. *Weather and Forecasting*, *15*(5), 559–570. https://doi.org/10.1175/1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2
- Joyce, J. M. (2005). How probabilities reflect evidence. *Philosophical Perspectives*, 19(1), 153–178.
- Kaplan, J. (1968). Decision theory and the fact-finding process. *Stanford Law Review*, 20(6), 1065–1092.
- Keynes, J. M. (1921). A treatise on probability, 1921. London: Macmillan.
- Konek, J. (2013). *New foundations for imprecise bayesianism* (PhD thesis). University of Michigan.
- Kruschke, J. (2015). Doing bayesian data analysis (second edition). Boston: Academic Press.
- Kyburg, H. E. (1961). Probability and the logic of rational belief. Wesleyan University Press.
- Kyburg Jr, H. E., & Teng, C. M. (2001). *Uncertain inference*. Cambridge University Press.
- Levi, I. (1974). On indeterminate probabilities. *The Journal of Philosophy*, 71(13), 391. https://doi.org/10.2307/2025161
- Levi, I. (1980). The enterprise of knowledge: An essay on knowledge, credal probability, and chance. MIT Press.
- Mayo-Wilson, C., & Wheeler, G. (2016). Scoring imprecise credences: A mildly immodest proposal. *Philosophy and Phenomenological Research*, *92*(1), 55–78. https://doi.org/10.111/phpr.12256
- O'Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., ... Rakow, T. (2006). *Uncertain judgements: Eliciting experts' probabilities*.
- Pettigrew, R. (2012). Epistemic utility and norms for credences.
- Rinard, S. (2013). Against radical credal imprecision. *Thought: A Journal of Philosophy*, 2(1), 157–165. https://doi.org/10.1002/tht3.84

- Schoenfield, M. (2017). The accuracy and rationality of imprecise credences. *Noûs*, *51*(4), 667–685. https://doi.org/10.1111/nous.12105
- Seidenfeld, T., Schervish, M., & Kadane, J. (2012). Forecasting with imprecise probabilities. *International Journal of Approximate Reasoning*, *53*, 1248–1261. https://doi.org/10.1016/j.ijar.2012.06.018
- Sjerps, M. J., Alberink, I., Bolck, A., Stoel, R. D., Vergeer, P., & Zanten, J. H. van. (2015). Uncertainty and LR: to integrate or not to integrate, that's the question. *Law, Probability and Risk*, 15(1), 23–29. https://doi.org/10.1093/lpr/mgv005
- Sturgeon, S. (2008). Reason and the grain of belief. *Noûs*, 42(1), 139–165. Retrieved from http://www.jstor.org/stable/25177157
- Taroni, F., Bozza, S., Biedermann, A., & Aitken, C. (2015). Dismissal of the illusion of uncertainty in the assessment of a likelihood ratio. *Law, Probability and Risk*, *15*(1), 1–16. https://doi.org/10.1093/lpr/mgv008
- Urbaniak, R., & Di Bello, M. (2021). Legal Probabilism. In E. N. Zalta (Ed.), *The Stanford encyclopedia of philosophy* (Fall 2021). https://plato.stanford.edu/archives/fall2021/entries/legal-probabilism/; Metaphysics Research Lab, Stanford University.
- Walley, P. (1991). Statistical reasoning with imprecise probabilities. Chapman; Hall London.

Figure 10: An illustration of a probabilistic program for the Sally Clark case.