Chapter 2

The Complexity of Algorithms and the Lower Bounds of Problems

Outlines

- 2-1 The Time-Complexity of an Algorithm
- 2-2 The Best, Average and Worst Case Analysis of Algorithms
- 2-3 The Lower Bound of a Problem
- 2-4 The Worst Case Lower Bound of Sorting
- 2-5 Heapsort A Sorting Algorithm which Is Optimal in Worst Cases
- 2-6 The Average Case Lower Bound of Sorting
- 2-7 The Improving of a Lower Bound through Oracles
- 2-8 The Finding of Lower Bound by Problem **Transformation**

2 -3

1.1 Introduction

- How do we measure the goodness of an algorithm?
- How do we measure the difficulty of a problem?
- How do we know that an algorithm is optimal for a problem?
- exist any other better algorithm to solve How can we know that there does not the same problem?

Example 2-1 Straight insertion sort

input: 7,5,1,4,3

1,4,5,7,3

1,3,4,5,7

End

1,5,7,4,3

5,7,1,4,3

 $7,\underline{5},1,4,3$

Algorithm 2.1 Straight Insertion Sort

Input: x₁,x₂,...,x_n

Output: The sorted sequence of x₁,x₂,...,x_n

For j := 2 to n do

Inversion table

- $(a_1, a_2, ..., a_n)$: a permutation of $\{1, 2, ..., n\}$
- $(d_1, d_2, ..., d_n)$: the inversion table of $(a_1, a_2, ..., a_n)$
- d_i : the number of elements to the left of i that are greater than i
- (7514326)• e.g. permutation
- inversion table 2432110
- e.g. permutation (7 6 5 4 3 2 1) inversion table 6543210
- d_i : the number of movements executed for x_i in the inner do loop.

2 -7

Analysis of # of movements

M: # of data movements in straight insertion sort

e.g. $d_4=2$

$$X = \sum_{i=2}^{n} (2+d_i) = 2(n-1) + \sum_{i=2}^{n} (d_i)$$

2 -8

Analysis by inversion table

best case: already sorted

$$d_i = 0 \text{ for } 1 \le i \le n$$

 $\Rightarrow X = 2(n - 1) = O(n)$ worst case: reversely sorted

$$d_1 = 0$$
 $d_2 = 1$

$$d_{i} = n - i$$

 $d_{n} = n-1$

$$X = \sum_{i=2}^{n} (2+d_i) = 2(n-1) + \frac{n(n-1)}{2} = O(n^2)$$

average case

x, is being inserted into the sorted sequence

$$X_1 X_2 ... X_{i-1}$$

- the probability that x_i is the largest: 1/i
- takes 2 data movements (2+d_i=2, d_i=0)
- the probability that x_i is the second largest: 1/i
- takes 3 data movements
- # of movements for inserting x_i:

$$2 + d_i = \frac{2}{i} + \frac{3}{i} + \dots + \frac{i+1}{i} = \sum_{j=1}^i \frac{j+1}{i} = \frac{i+3}{2}$$

$$X = \sum_{i=2}^{n} \frac{i+3}{2} = \frac{1}{2} \left(\sum_{i=2}^{n} i + \sum_{i=2}^{n} 3 \right) = \frac{(n+8)(n-1)}{4} = O(n^{2})$$

Formula

$$\sum_{k=1}^{n} k = \frac{1}{2}(n^2 + n) = \frac{1}{2}n(n+1)$$

$$\sum_{k=1}^{n} k^2 = \frac{1}{6}(2n^3 + 3n^2 + n) = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{k=1}^{n} k^3 = \frac{1}{4}(n^4 + 2n^3 + n^2) = \frac{1}{4}n^2(n+1)^2$$

$$\sum_{k=1}^{n} k^4 = \frac{1}{30}(6n^5 + 15n^4 + 10n^3 - n) = \frac{1}{30}n(n+1)(2n+1)(3n^2 + 3n - 1)$$

$$\sum_{j=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$$

2 -11

Analysis of # of exchanges

- Method 1 (straightforward)
- x_i is being inserted into the sorted sequence

$$X_1 X_2 \dots X_{i-1}$$

- If x_i is the kth ($1 \le k \le i$) largest, it takes (k-1) exchanges.
- e.g. 1 5 7↔4

of exchanges required for x_i to be inserted:

$$\frac{0}{i} + \frac{1}{i} + \dots + \frac{i-1}{i} = \frac{i-1}{2}$$

of exchanges for sorting:

$$\sum_{i=2}^{n} \frac{i-1}{2}$$

$$= \sum_{i=2}^{n} \frac{i}{2} - \sum_{i=2}^{n} \frac{1}{2}$$

$$= \frac{1}{2} \cdot \frac{(n-1)(n+2)}{2} - \frac{n-1}{2}$$

$$= \frac{n(n-1)}{4} - \frac{n-1}{2}$$

Example 2-2 Binary search

sorted sequence: (search 9)

12

step 1

step 3 step 2

best case: 1 step = O(1)

worst case: ($\lfloor \log_2 n \rfloor + 1$) steps = O($\log n$)

average case: O(log n) steps

Binary Search Algorithm

```
Input: a_1, a_2, \ldots, a_n, n > 0, with a_1 \le a_2 \le \ldots \le a_n, and x
                              Output: j if a_j = X and 0 if no j exists such that a_j = X.
                                                                                                                                                                                                          if (x = a_i) then output j & stop
                                                                                                                                                                                                                                            if (x < a_i) then m := j-1
                                                                                                                                                                        begin j := \lfloor (i+m)/2 \rfloor
                                                                                                                                                                                                                                                                              else i := j+1
                                                                                                                                        while (i \le m) do
                                                                                                                                                                                                                                                                                                                    end
                                                                                                                                                                                                                                                                                                                                                                                     output j
                                                                                                                                                                                                                                                                                                                                                j := 0
                                                                                                          n := n
                                                                    i:=1
```

2 -15

External nodes

The binary Search (Analysis- Average

case) * 找得到的情况

計有1 個情況,是找了

久即得

_log*n*] +

 $2\lfloor \log n \rfloor$

The binary Search (Analysis- Average case) * 找不到的情况:

在 (1+1) 種情況裡,每一種都得找 [logn] + 1 久方可確定。

.. 平均 "找"的次數
$$A(n) = \frac{1}{2n+1} \left(\sum_{i=1}^{k} i \cdot 2^{i-1} + k(n+1) \right)$$
 ($\Rightarrow = \lfloor \log n \rfloor + 1$)

利用歸納法 (induction) 可得 $A(n) < k = O(\lfloor \log n \rfloor)$

n cases for successful search

n+1 cases for unsuccessful search

Assume n=2k-1個

Average # of comparisons done in the binary tree:

$$A(n) = \frac{1}{2n+1} \left(\sum_{i=1}^{k} i 2^{i-1} + k(n+1) \right) \longleftarrow \underbrace{ \text{Katata} (n+1) / \text{M}}_{2 + 1}$$

2 -18

proved by induction on k (skip, ref. p.25)

A(n)=
$$\frac{1}{2n+1} \left(\sum_{i=1}^{k} i 2^{i-1} + k(n+1) \right)$$
A(n) =
$$\frac{1}{2n+1} ((k-1) 2^{k} + 1 + k(2^{k}))$$
A(n) \approx
$$\frac{1}{2^{k+1}} (2^{k} (k-1) + 1 + k2^{k})$$

$$= \frac{(k-1)}{2} + \frac{k}{2} = k - \frac{1}{2}$$

$$\approx k = \log n = O(\log n)$$
 as n is very large

Example 2-3 Straight selection sort

- Find the smallest number.
- exchanging a₁ with this smallest number. Let this smallest number occupy a₁ by
- numbers. That is, find the second smallest Repeat the above step on the remaining number and let it occupy a₂.
- Continue the process until the largest number is found.

Ex 2.3 Straight Selection Sort

- Input: a_1 , a_2 , ..., a_n .
- sedneuce Output: The sorted

of
$$a_1$$
, a_2 , ..., a_n .

For
$$j := 1$$
 to $n-1$ do

ror J := t co MTr Begin

Flag used to point the

Smallest element

$$f := j$$

For
$$k := j+1$$
 to n do
If $a_k < a_f$ then $f := k$

$$a_j \leftrightarrow a_f$$

Straight selection sort

7>5 change 5>1 change 1<4 no change 1<3 no change

- what the input data are, we always have to perform The number of comparisons of two elements is a fixed number; namely n(n-1)/2. That is, no matter n(n-l)/2 comparisons.
- Only consider # of changes in the flag which is used for selecting the smallest number in each iteration.
- best case: O(1) sorted sequence
- worst case: $O(n^2)$
- average case: O(n log n)

The change of flag depends upon the data. Consider n = 2. There are only two permutations:

and (2, 1).

For the first permutation, no change of flag is necessary while for the second permutation, one change of flag is necessary. Let $f(a_1, a_2, ..., a_n)$ denote the number of changing of flags needed to find the smallest number for the permutation a_1 , a_2 , ..., a_n . The following table illustrates the case for n = 3.

$f(a_1, a_2, a_3)$	0	0	1	1	1	2
a_3	3	7	3	1	7	1
a_2 ,	,	3,	1,	3,	1,	2,
a_1 ,	1,	1,	2,	2,	3,	3,

Recursive formula To determine $f(a_1, a_2, ..., a_n)$, we note the following:

- (1) If $a_n = 1$, then $f(a_1, a_2, ..., a_n) = 1 + f(a_1, a_2, ..., a_{n-1})$ because there must be a change of flag at the last step.
- (2) If $a_n \ne 1$, then $f(a_1, a_2, ..., a_n) = f(a_1, a_2, ..., a_{n-1})$ because there must not be a change of flag at the last step.

n reeds k changes of flags to find the smallest number. For instance $P_3(0) = \frac{2}{6}$, $P_3(1) = \frac{3}{6}$ and $P_3(2) = \frac{1}{6}$. Then the average number of changes of flags to find Let $P_n(k)$ denote the probability that a permutation a_1 , a_2 , ..., a_n of $\{1, 2, ..., a_n\}$ the smallest number is

 $X_n = \sum_{k=0}^{n-1} k P_n(k) \, .$

X_n:n個數時的平均次數

The average number of changes of flag for the straight selection sort is

$$A(n) = X_n + A(n-1)$$
.

To find X_n , we shall use the following equations which we discussed before:

$$f(a_1, a_2, ..., a_n) = 1 + f(a_1, a_2, ..., a_{n-1})$$

if
$$a_n = 1$$

$$= f(a_1, a_2, ..., a_{n-1})$$
 if $a_n \neq 1$

Based upon the above formulas, we have

$$P_n(k) = P(a_n = 1)P_{n-1}(k-1) + P(a_n \neq 1)P_{n-1}(k).$$

But $P(a_n = 1) = 1/n$ and $P(a_n \neq 1) = (n-1)/n$. Therefore, we have

$$P_n(k) = \frac{1}{n} P_{n-1}(k-1) + \frac{n-1}{n} P_{n-1}(k).$$

(2.2)

Furthermore, we have the following formula concerning with the initial P,(k): n個數字的排列

找最小數需要改變flag k

次的機率

conditions:

$$P_1(k) = 1$$
 if $k=0$

if
$$k \neq 0$$

0=

$$P_n(k) = 0$$

if
$$k < 0$$
, and if $k = n$.

(2.3)

$$P_2(0) = \frac{1}{2}$$

and

$$P_2(1) = \frac{1}{2}$$
;

$$P_3(0) = \frac{1}{3}P_2(-1) + \frac{2}{3}P_2(0) = \frac{1}{3} \times 0 + \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$$

and

$$P_3(2) = \frac{1}{3}P_2(1) + \frac{2}{3}P_2(2) = \frac{1}{3} \times \frac{1}{2} + \frac{2}{3} \times 0 = \frac{1}{6}.$$

In the following, we shall prove:

$$X_n = \sum_{k=1}^{n-1} kP_n(k) = \frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} = H_n - 1,$$

(2.4)

Proof by Induction (see page 30)

Since the average time-complexity of the straight selection sort is:

$$A(n) = X_n + A(n-1),$$

we have

$$A(n) = H_n - 1 + A(n - 1)$$

$$= (H_n - 1) + (H_{n-1} - 1) + \dots + (H_2 - 1)$$

$$= \sum_{i=2}^{n} H_i - (n - 1).$$
(2.5)

$$\sum_{i=1}^{n} H_{i} = H_{n} + H_{n-1} + \dots + H_{1}$$

$$= H_{n} + (H_{n} - \frac{1}{n}) + \dots + (H_{n} - \frac{1}{n} + \frac{1}{n-1} - \dots - \frac{1}{2}$$

$$= nH_{n} - (\frac{n-1}{n} + \frac{n-2}{n-1} + \dots + \frac{1}{2})$$

$$= nH_{n} - (1 - \frac{1}{n} + 1 - \frac{1}{n-1} + \dots + 1 - \frac{1}{2})$$

$$= nH_{n} - (n-1) - \frac{1}{n} - \frac{1}{n-1} - \dots - \frac{1}{2}$$

$$= nH_{n} - n + H_{n}$$

$$= (n+1)H_{n} - n.$$

Straight selection sort

Therefore

$$\sum_{i=2}^n H_i = (n+1)H_n - H_1 - n.$$

Substituting (2.6) into (2.5), we have

$$A(n) = (n+1)H_n - H_1 - (n-1) - n$$

$$= (n+1)H_n - 2n.$$

As n is large enough,

Rosen, p255, ex.57, 58

$$A(n) \cong n \log_e n = O(n \log n)$$
.

$$1 + \frac{n}{2} \le H_{2^{n}} \le 1 + n$$

$$H_{k} \le 1 + \log_{2} K$$

Example 2-4 QuickSort

- Quicksort is based upon the divide-and-conquer strategy.
- Divide-and-conquer strategy divides a problem into two individually and independently. We later merge the sub-problems and solves these two subproblems results.
- Applying this divide-and-conquer strategy to sort, we have a sorting method, called Quicksort.
- Given a set of numbers $a_1, a_2, ..., a_n$ we choose an element X to divide $a_1, a_2, ..., a_n$ into two lists.
- After the dividing, we may apply Quicksort to both L_1 and L_2 recursively and the resulting list is a sorted list.

QuickSort

Figure 2-1 Quicksort.

Quicksort

Recursively apply the same procedure.

Quick-sort Example

100	
30	
_	
50	
09	
80	
10	
20	
40	

- Given a pivot, partition the elements of the array such that the resulting array consists of:
- One sub-array that contains elements >= pivot
- Another sub-array that contains elements < pivot

Algorithm 2-4 \square Quick sort (f, l)

Input: a_f, a_{f+1}, \dots, a_l .

Output: The sorted sequence of a_f, a_{f+1}, \dots, a_l .

If $f \ge l$ then Return

$$X := a_f$$

$$i := f + 1$$

$$j := l$$

While i < j do

Begin

While $a_j \ge X$ and $j \ge f + 1$ do

$$j := j - 1$$

While $a_i \le X$ and $i \le l$ do

$$i := i + 1$$

if i < j then $a_i \leftrightarrow a_j$

$$a_f \leftrightarrow a_j$$

Quicksort(f, j-1)

Quicksort
$$(j+1,l)$$

Best case of Quicksort

- Best case: O(nlogn)
- A list is split into two sublists with almost equal size.

- log n rounds are needed
- 2 -35 In each round, n comparisons (ignoring the element used to split) are required.

Worst case of Quicksort

- Worst case: O(n²)
- Sorted or reverse sorted.
- In each round, the number used to split is either the smallest or the largest.

$$n + (n-1) + \dots + 1 = \frac{n(n-1)}{2} = O(n^2)$$

Average case of Quicksort

Average case: O(n log n)

n-s include the splitter

The number of operations needed for first splitting operation

$$T(n) = Avg(T(s) + T(n-s)) + cn$$

$$1 \le s \le n$$

$$= \frac{1}{2} \sum_{s=0}^{n} (T(s) + T(n-s)) + cn$$

$$= \frac{1}{n} (T(1)+T(n-1)+T(2)+T(n-2)+\cdots+T(n)+T(0))+cn, T(0)=0$$

$$= \frac{1}{n} (2T(1)+2T(2)+\cdots+2T(n-1)+T(n))+cn$$

$$(n-1)T(n) = 2T(1)+2T(2)+\cdots+2T(n-1)+cn^2\cdots(1)$$

 $(n-2)T(n-1)=2T(1)+2T(2)+\cdots+2T(n-2)+c(n-1)^2\cdots(2)$
Let n=n-1 to (1)

$$(n-1)T(n) - (n-2)T(n-1) = 2T(n-1) + c(2n-1)$$

 $(n-1)T(n) - nT(n-1) = c(2n-1)$
 $\Rightarrow c(2n-1)$

$$\frac{T(n)}{n} = \frac{T(n-1)}{n-1} + c(\frac{1}{n} + \frac{1}{n-1})$$

$$= c(\frac{1}{n} + \frac{1}{n-1}) + c(\frac{1}{n-1} + \frac{1}{n-2}) + \cdots + c(\frac{1}{2} + 1) + T(1), T(1) = 0$$

$$= c(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{2}) + c(\frac{1}{n-1} + \frac{1}{n-2} + \cdots + 1)$$

$$= c(H_n-1) + cH_{n-1}$$

Harmonic number [Knuth 1986]

$$\begin{split} H_n &= 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \\ &= ln \ n + \gamma + \frac{1}{2n} - \frac{1}{12 \, n^2} + \frac{1}{120 \, n^4} - \epsilon \text{, where } 0 < \epsilon < \frac{1}{252 \, n^6} \\ \gamma &= 0.5772156649 \cdots . \end{split}$$

 $H_n = O(\log n)$

$$T(n)/n = c(H_n - 1) + cH_{n-1}$$

 $\Rightarrow T(n)/n = c(H_n + H_n - 1 - 1/n)$
 $\Rightarrow T(n) = 2cH_n - c(n+1) = O(n\log n)$

Example 2-5 2-D ranking finding

- <u>**Def**</u>: Let $A = (a_1, a_2)$, $B = (b_1, b_2)$. A <u>dominates</u> B iff $a_1 > b_1$ and a_2
- **Def**: If neither A dominates B nor B dominates A, then A and B are incomparable.
- <u>**Def**</u>: Given a set S of n points, the $\frac{\text{rank}}{\text{rank}}$ of a point x is the number of points dominated by x.

B, C and D dominate A.

All other pairs of points are D dominates A, B and C. incomparable. $rank(A) = 0 \ rank(B) = 1 \ rank(C) = 1 \ rank(D) = 3 \ rank(E) = 0$

Rank Finding Problem

- Find the rank of every points.
- Straightforward algorithm:
- compare all pairs of points : O(n²)
- Divide-and-conquer 2-D ranking finding
- Step 1: Split the points along the median line L into A and B.
- Step 2: Find ranks of points in A and ranks of points in B, recursively.
- Step 3: Sort points in A and B according to their yvalues. Update the ranks of points in B.

Local ranks before merge

- Find a straight line L perpendicular to the x-axis which separates the set of points into two subsets and these two subsets are of equal size.
- The rank of any point in A will not be affected by the presence of B. But the rank of a point in B may be affected the presence of

The Local Ranks of Point in A and B. Figure 2-4

More efficient algorithm (divide-and-conquer)

Algorithm 2-5 A rank finding algorithm

Input: A set S of planar points $P_1, P_2, ..., P_n$.

Output: The rank of every point in S.

If S contains only one point, return its rank as 0. Otherwise, choose a cut line L perpendicular to the x-axis such that n/2 points of S have Xvalues less than L (call this set of points A) and the remainder points have X-values greater than L (call this set B). Note that L is a median X-value of this set. Step 2. Recursively, use this rank finding algorithm to find the ranks of points in A and ranks of points in B. Sort points in A and B according to their y-values. Scan these points in A whose y-values are less than its y-value. The rank of this point is equal to the rank of this point among points in B (found in Step 2), plus sequentially and determine, for each point in B, the number of points the number of points in A whose y-values are less than its y-value.

step 3: O(n log n)

total time complexity:

$$T(n) \leq 2T(\frac{n}{2}) + c_1 n \log n + c_2 n \frac{\log n + \log \frac{n}{2} + \log \frac{n}{4} + \dots + \log 2}{= p + (p - 1) + (p - 2) + \dots + 1}$$

$$\leq 2T(\frac{n}{2}) + c n \log n$$

$$\leq 4T(\frac{n}{4}) + c n \log \frac{n}{2} + c n \log n$$

$$\leq 4T(\frac{n}{4}) + c n \log \frac{n}{2} + c n \log n$$

$$\leq nT(1) + c(n \log n + n \log \frac{n}{2} + \dots + n \log 2)$$

$$= nT(1) + \frac{c n \log n (\log n + \log \frac{n}{4} + \dots + n \log 2)}{2}$$

For average & worst case

 $= O(n \log^2 n)$

2-3 Lower bound

- How to we measure the difficulty of a problem?
- required for any algorithm which can be used to solve this **Def**: A lower bound of a problem is the least time complexity problem.
- ☆ worst case lower bound

 ☆ average case lower bound
- Def: $f(n) = \Omega(g(n))$ "at least", "lower bound" \exists c, and n_0 , \exists $|f(n)| \ge c|g(n)| \forall n \ge n_0$ e. g. $f(n) = 3n^2 + 2 = \Omega(n^2)$ or $\Omega(n)$
- The lower bound for a problem is not unique.
- e.g. $\Omega(1)$, $\Omega(n)$, $\Omega(n \log n)$ are all lower bounds for sorting.
- $(\Omega(1), \Omega(n) \text{ are trivial})$

Trivial lower bound

• ex.: sorting

 $\Omega(1), \Omega(n)$ 均為 trivial lower bound, 討論它們沒有意義!

 $\Omega(n^2)$ 如何?已有heapsort 其worst case為 $\Omega(n\log n)$ 由 Def. 可知lower bound 必須是所有 algorithms 中最小者,所以 $\Omega(n^2)$ 也不對!lower bound 至多是 $\Omega(n\log n)$ 。

若目前 problem 之 highest lower bound 為 $\Omega(n \log n)$ 而找 到的algorithm 最快的是 $O(n^2)$,则:

■ 若問題的 lower bound 為 $\Omega(n\log n)$ 且找到的 algorithm 的 timecomplexity 為 O(nlogn)

則 optimal algorithm of this problem 即已找到! lower bound 與 algorithm 都無法再 improve。

2 -49

2.4 The worst case lower bound of sorting

- Execution of an algorithm can be represented as binary trees.
- operation is compare and exchange operation can be In general, any sorting algorithm whose basic described by a binary tree.
- Straight insertion sort.

6 permutations for 3 data elements

a_3	3	2	3		2	
\mathbf{a}_2	7	κ		∞		7
a_1	\leftarrow	\leftarrow	2	2	8	8

Straight insertion sort

input data: (2, 3, 1)

 $(1) a_1:a_2$

(2) $a_2:a_3, a_2\leftrightarrow a_3$

(3) $a_1:a_2$, $a_1\leftrightarrow a_2$

input data: (2, 1, 3)

 $(1)a_1:a_2, a_1\leftrightarrow a_2$

 $(2)a_2:a_3$

Decision tree for straight insertion sort

Lower bound of sorting

- corresponds to one path from the top of the tree to a leaf The action of a sorting algorithm based upon compare and exchange operations on a particular input data set
- Each *leaf node* therefore corresponds to a particular permutation.
- The longest path from the top of the tree to a leaf node, which is called the depth of the tree, represents the worst case time-complexity o this algorithm.
- To find the lower bound of the sorting problem, we have to find the smallest depth of some tree, among all possible binary decision trees modeling sorting algorithms.

Lower bound of sorting

- To find the lower bound, we have to find the depth of a binary tree with the smallest depth.
- n! distinct permutations
- n! leaf nodes in the binary decision tree.
- balanced tree has the smallest depth:

 $\lceil \log(n!) \rceil = \Omega(n \log n)$

lower bound for sorting: \O(n \log n)

(See the next page.)

Method 1:

$$log(n!) = log(n(n-1)\cdots 1)$$

$$= log_2 + log_3 + \cdots + log_n = (2-1)log_2 + (3-2)log_3$$

$$> \int_1^n log_x dx$$

$$= log_2 e \int_1^n ln_x dx$$

$$= log_1^n e[x ln_x - x]_1^n$$

 $\log_a b = \frac{\ln b}{\ln a}$

 $\geq n \log n - 1.44n$ = $\Omega(n \log n)$

 $= n \log n - n \log e + 1.44$

 $= \log e(n \ln n - n + 1)$

 $\int \ln x \, dx = x \ln x - x + C$

Method 2:

Stirling approximation:

$$n! \approx S_n = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

 $\log n! \approx \log \sqrt{2\pi} + \frac{1}{2} \log n + n \log \frac{n}{e} \approx n \log n = \Omega(n \log n)$

n	n!	$^{\mathrm{u}}\mathrm{S}$
1	1	0.922
2	2	1.919
3	9	5.825
4	24	23.447
5	120	118.02
9	720	68.707
1.0	3,628,800	3,598,600
20	2.433×10^{18}	2.423×10^{18}
100	9.333×10^{157}	9.328×10^{157}

2.5 knockout sort

- have extracted by finding the first smallest smallest number, the information we may Note that when we try to find the second number is not used at all.
- This is why the straight insertion sort behaves so clumsily.
- efficient to find the second smallest number. It keeps some information after it finds the first smallest number so that it is quite

Knockout sort (example)

Input: 2, 4, 7, 3, 1, 6, 5,8 Construct Knockout tree Find minimum Min->∞

ထ

28

Time complexity of Knockout(淘汰) sort

- The first smallest number is found after (n-1) comparisons.
- comparisons are needed. Therefore the total number of For all of the other selections, only | log n |-1 comparisons 18

$(n-1)+(n-1)(\log n - 1)$.

- Thus the time-complexity of knockout sort is O(nlogn) which is equal to the lower.
- Knockout sort is therefore an optimal sorting algorithm.
- We must note that the time-complexity O(nlogn) is valid for best, average and worst cases.
- Drawbacks: space 2n.

Heap

- A heap is a binary tree satisfying the following conditions:
- This tree is completely balanced.
- If the height of this binary tree is h, then leaves can be at level h or level h-1.
- All leaves at level h are as far to the left as possible.
- are smaller than the datum associated with this node. The data associated with all descendants of a node

Max-heap or min-heap

Heapsort—An optimal sorting algorithm

■ A maximal heap: parent ≥ son

output the maximum and restore:

Heapsort:

Phase 1: Construction

Phase 2: Output

Phase 1: construction

input data: 4, 37, 26, 15, 48

restore the subtree rootedat A(2):

A Heap

Phase 2: output

Output 4

Implementation

Notice:

- The left child of index i is at index 2*i+1
- The right child of index i is at index 2*i+2
- Example: the children of node 3 (19) are 7 (18) and 8 (14)

Removing and replacing the root

- The "root" is the first element in the array
- The "rightmost node at the deepest level" is the last element
- Swap them...

... And pretend that the last element in the array no longer exists—that is, the "last index" is 11 (9)

Time complexity Phase 1: construction

 $d = \lfloor \log n \rfloor$: depth

be L. The worst case 2(d-L) comparisons Have to be made to perform the restore. Let the level of an internal node

of comparisons is at most:

2^L: number of nodes in level L

$$\sum_{\mathbf{L}} 2(\mathbf{d} - \mathbf{L}) 2^{\mathbf{L}}$$

$$= 2d \sum_{L=0}^{d-1} 2^{L} - 4 \sum_{L=0}^{d-1} L2^{L-1}$$

$$(\sum_{L=0}^{k} L2^{L-1} = 2^{k}(k-1)+1)$$

$$=2d(2^{d}-1)-4(2^{d-1}(d-1-1)+1)$$

 $= cn - 2\lfloor \log n \rfloor - 4, \quad 2 \le c \le 4$

Time complexity

Phase 2: output (delete element from heap)

$$2\sum_{i=1}^{n-1} \lfloor \log i \rfloor$$

$$= :$$

$$= 2n \lfloor \log n \rfloor - 4cn + 4, \quad 2 \le c \le 4$$

$$= O(n \log n)$$

To evaluate this formula, let us consider the case of n=10.

$$\log 1 = 0$$

$$[\log 2] = [\log 3] = 1$$

$$\lfloor \log 4 \rfloor = \lfloor \log 5 \rfloor = \lfloor \log 6 \rfloor = \lfloor \log 7 \rfloor = 2$$

$$\lfloor \log 8 \rfloor = \lfloor \log 9 \rfloor = 3$$
.

We observe that there are

2 numbers equal to
$$\lfloor \log 2^1 \rfloor = 1$$

$$2^2$$
 numbers equal to $\lfloor \log 2^2 \rfloor = 2$

and
$$10-2^{\lfloor \log 10 \rfloor} = 10-2^3 = 2$$
 numbers equal to $\lfloor \log n \rfloor$.

$$2\sum_{i=1}^{n-1} \lfloor \log i \rfloor$$

$$= 2 \sum_{i=1}^{\lfloor \log n \rfloor - 1} + 2(n - 2^{\lfloor \log n \rfloor}) \lfloor \log n \rfloor$$

$$= 4 \sum_{i=1}^{k} i2^{i-1} + 2(n - 2^{\lfloor \log n \rfloor}) \lfloor \log n \rfloor.$$
Using
$$\sum_{i=1}^{k} i2^{i-1} = 2^{k} (k-1) + 1 \quad \text{(Eq. 2.1)}$$

 $^{-1} = 2^{k}(k-1)+1$ (Eq. 2.1 in section 2-2)

$$2\sum_{i=1}^{n-1} \lfloor \log i \rfloor$$

$$= 4 \sum_{i=1}^{\lfloor \log n \rfloor - 1} i 2^{i-1} + 2(n - 2^{\lfloor \log n \rfloor}) \lfloor \log n \rfloor$$

$$= 4(2^{\lfloor \log n \rfloor - 1}(\lfloor \log n \rfloor - 1 - 1) + 1) + 2n \lfloor \log n \rfloor - 2\lfloor \log n \rfloor + 2 \lfloor \log n$$

$$= 2 \cdot 2^{\lfloor \log n \rfloor} \lfloor \log n \rfloor - 8 \cdot 2^{\lfloor \log n \rfloor - 1} + 4 + 2n \lfloor \log n \rfloor - 2 \cdot 2^{\lfloor \log n \rfloor} \lfloor \log n \rfloor$$

$$= 2 \cdot n \lfloor \log n \rfloor - 4 \cdot 2^{\lfloor \log n \rfloor} + 4$$

$$= 2n \lfloor \log n \rfloor - 4cn + 4$$
 where $2 \le c \le 4$

$$= O(n \log n)$$
.

2-6 Average case lower bound of sorting

- By binary decision tree
- of comparisons executed for this input data set. The length of this path is equal to the number
- The average time complexity of a sorting algorithm:
- sum of the lengths of paths from root to each leaf the external path length of the binary tree is the node.
- Leaf number: n!
- The external path length is minimized if the tree is balanced.

(all leaf nodes on level d or level d-1)

unbalanced

external path length = 4.3 + 1 = 13

external path length = 2.3+3.2 = 12

Tree Modification

Figure 2-16 An Unbalanced Binary Tree.

• Modify the tree such the external path length is decreased without changing the # of leaf nodes.

The tree can be modified such that the external path length is decreased without changing the number of leaf node.

The Modification of an Unbalanced Binary Tree. Figure 2-15

The external path length of a binary tree is minimized if and only if the tree is balanced.

Compute the min external path length

- 1. Depth of balanced binary tree with c leaf nodes: depth $d = |\log c|$
- Leaf nodes can appear only on level d or d-1(balanced).
- 2. x_1 leaf nodes on level d-1 •Assume x_2 is even. x, leaf nodes on level d

Two leave in level d has a

parent in

- $x_1 + x_2 = c$
- $x_1 + \frac{x_2}{2} = 2^{d-1}$
- $\Rightarrow x_1 = 2^d c$ $x_2 = 2(c 2^{d-1})$

is the lower bound of the sorting(in average case). The external path length of a balanced binary tree

3. External path length:

$$M = x_1(d - 1) + x_2d$$

$$= (2^d - c)(d - 1) + 2(c - 2^{d-1})d$$

$$= c + cd - 2^d, \quad \log c \le d < \log c + 1$$

$$\geq c + c \log c - 2^* 2^{\log c}$$

$$= c \log c - c$$

4. c = n!

$$M = n! \log n! - n!$$

$$M/n! = \log n! - 1$$

$$= \Omega(n \log n)$$

Average case lower bound of sorting: \Omega(nlog n)

Quicksort & Heapsort

- Quicksort is optimal in the average case.
- (O(n log n) in average)
- (i) worst case time complexity of heapsort is
- O(n log n)
- (ii) average case lower bound: Ω(n log n)
- average case time complexity of heapsort is O(n log n)
- Heapsort is optimal in the average case.

2-7 Improving a lower bound through oracles

- does not produce a very meaningful LB. (can be In some cases, the binary decision tree model improved)
- Problem P: merge two sorted sequences A and B with lengths m and n.
- Conventional 2-way merging:
- 2 3 5 6
- 1 4 7 8
- Complexity: at most m+n-1 comparisons

Input: Two sorted lists X and Y of length n and m.

We may assume $n \geq m$.

Standard Merge:

 $\Theta(n+m)$

Binary Insertion of Y in X:

 $\Theta(m \log n))$

For "large" m $(m = \Theta(n))$:

$$\Theta(n+m) = \Theta(m(\log(n/m) + 1))$$

For "small" m (e.g. $m = O(\sqrt{n})$):

the overall complexity will be O(m log(n/m)). elements from b are evenly spread along a each insertion will take O(log (n/m)) and

$$\Theta(m\log n) = \Theta(m(\log(n/m) + 1))$$

E.g. for $m = \Theta(n/\log n)$:

$$\Theta(m(\log(n/m) + 1)) = \Theta(n \frac{\log \log n}{\log n}) = o(n)$$

(1) Binary decision tree:

- How many possible different merged sequence are there?
- Assume (m+n) elements are distinct.

There are $\binom{m+n}{n}$ ways to merge n elements (") into m elements without

disturbing the original order. (why?)

 $_n$ | leaf nodes in the decision tree. $\lceil \log \binom{m+n}{n} \rceil \le m+n-1$ (conventional merging) \Rightarrow The lower bound for merging: (m+n)

2 -85

When m = n

$$\log \binom{m+n}{n} = \log \frac{(2m)!}{(m!)^2} = \log((2m)!) - 2\log m!$$

Using Stirling approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{-}\right)^n$$

$$\log \left(\frac{m+n}{n}\right) \approx (\log \sqrt{2\pi} + \log \sqrt{2m} + 2m \log \frac{2m}{e}) - 2(\log \sqrt{2\pi} + \log \sqrt{m} + m \log \frac{m}{e})$$

Optimal algorithm: conventional merging needs 2m-1 comparisons

 $\approx 2m - \frac{1}{2}\log m + O(1) < 2m - 1$

(2) Oracle (聖賢;哲人)<u>:</u>

The oracle tries its best to cause the algorithm to work as hard as it might. (to give a very hard data set)->to find worst case.

Two sorted sequences:

• A: a₁ < a₂ < ... < a_m

B: $b_1 < b_2 < ... < b_m$

The very hard case:

a₁ < b₁ < a₂ < b₂ < ... < a_m < b_m

$$a_{1}: b_{1}$$
 $b_{1}: a_{2}$
 $a_{2}: b_{2}$

$$a_2 \cdot b_2$$

$$b_{m-1}$$
: a_{m-1}

$$\mathbf{a}_{\mathtt{m}} : \mathbf{b}_{\mathtt{m}}$$

Otherwise, we may get a wrong result for some input data. e.g. If b_1 and a_2 are not compared, we can not distinguish

$$a_1 < a_2 < b_1 < b_2 < ... < a_m < b_m$$

Thus, at least 2m-1 comparisons are required.

The conventional merging algorithm is optimal for m = n.

2 -88

Finding lower bound by problem transformation

iff A can be solved by using any algorithm which Problem A reduces to problem B (A~B) solves B.

If A∝B, B is more difficult.

T(tr1) + T(tr2) < T(B) $T(A) \le T(tr1) + T(tr2) + T(B) \sim O(T(B))$ Note:

Problem Convex Hull(S)

- Input: S is a sequence of points (x_i, y_i) in the plane.
- Output: permute S and return k such that $S_1, \dots S_k$ is the convex hull of S.
- The reduction of Sorting problem to Convex Hull problem:
- Reduction sortByConvexHull(S)
- {// S is a sequence of numbers.
- /* in other words, set $P = \{ (x, x^2) \mid x \text{ in } S \} */$ 1. for i in 1..n, set P[i] = point(S[i], S[i]²);
- 2. k = convexHull(P);
- /* We know in advance that k will be size(P).*/
- 3. for i in 1..n, set S[i] = **P[i].first**;
- /* first = the x of a (x, x²) pair. */

2.8 The lower bound of the convex hull problem

₩ W an instance of A: $(x_1, x_2, ..., x_n)$

an instance of B: $\{(x_1, x_1^2), (x_2,$

 x_2^2 ,..., (x_n, x_n^2)

assume: $x_1 < x_2 < ... < x_n$

Solve A by transform A to B, and solve B, the result of B can be Easily transformed to the solution of A.

- If the convex hull problem can be solved, we can also solve the sorting problem.
- The lower bound of sorting: Ω(n log n)
- The lower bound of the convex hull problem: \O(n log n)

minimal spanning tree (MST) problem The lower bound of the Euclidean

sorting ~ Euclidean MST

≪

an instance of A: (x₁, x₂,..., xn)
 ↓transformation

an instance of B: $\{(x_1, 0), (x_2, 0), ..., (x_n, 0)\}$

- Assume $x_1 < x_2 < x_3 < ... < x_n$
- \Leftrightarrow there is an edge between $(x_i, 0)$ and $(x_{i+1}, 0)$ the MST, where $1 \le i \le n-1$

- If the Euclidean MST problem can be solved, we can also solve the sorting problem.
- The lower bound of sorting: Ω(n log n)
- The lower bound of the Euclidean MST problem: \O(n log n)

Sorting In Linear Time

- Counting sort
- No comparisons between elements!
- **But...** depends on assumption about the numbers being sorted
- We assume numbers are in the range *I.. k*
- The algorithm:
- Input: A[1..n], where A[j] $\in \{1, 2, 3, ..., k\}$
- Output: B[1..n], sorted (notice: not sorting in place)
- Also: Array C[1..k] for auxiliary storage

Figure 8.2 The operation of COUNTING-SORT on an input array A[1..8], where each element of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after line 4. (b) The array C after line 7. (c)-(e) The output array B and the auxiliary array C after one, two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of array B have been filled in. (f) The final sorted output array B.

7

What will be the running time?

- Total time: O(n + k)
- Usually, k = O(n)
- Thus counting sort runs in O(n) time
- But sorting is $\Omega(n \log n)$!
- No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
- Notice that this algorithm is stable

穩定排序法(stable sorting),如果鍵值相同之資料,在排序後相對位置與排序前相同時 稱穩定排序。

(例如)

排序前:3,5,19,1,3*,10

排序後:1,3,3*,5,10,19

(因為兩個3,3*的相對位置在排序前與後皆相同。)

- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large $(2^{32} = 4,294,967,296)$

- How did IBM get rich originally?
- Answer: punched card readers for census tabulation in early 1900's.
- In particular, a card sorter that could sort cards into different bins
- Each column can be punched in 12 places
- Decimal digits use 10 places
- Problem: only one column can be sorted on at a time

Radix sort

329	355	436	457	657	720	839
			Ā			
720	329	436	839	355	457	657
			Ť			
720	355	436	457	657	329	839
			#			
329	457	657	839	3	720	355

- Intuitively, you might sort on the most significant digit (MSD), then the second MSD, etc.
- Problem: lots of intermediate piles of cards (read:
 - scratch arrays) to keep track of
- Key idea: sort the *least* significant digit first

RadixSort(A, d)

for i=1 to d

StableSort(A) on digit i

Example: Fig 9.3

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
- Assume lower-order digits {j: j<i} are sorted
- Show that sorting next digit i leaves array correctly sorted
- If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
- lower-order digits. Since we use a stable sort, the numbers If they are the same, numbers are already sorted on the stay in the right order

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
- Sort n numbers on digits that range from 1..k
- Time: O(n+k)
- Each pass over n numbers with d digits takes time O(n+k), so total time O(dn+dk)
- When d is constant and k=O(n), takes O(n) time
- How many bits in a computer word?

- Problem: sort 1 million 64-bit numbers
- Treat as four-digit radix 2¹⁶ numbers
- Can sort in just four passes with radix sort!
 - Compares well with typical $O(n \log n)$ comparison sort
- Requires approx. $\log n = 20$ operations per number being sorted
- So why would we ever use anything but radix sort?

In general, radix sort based on counting sort

Fast

Asymptotically fast (i.e., O(n))

Simple to code

A good choice

To think about: Can radix sort be used on floating-point numbers?

Bucket Sort

- Bucket sort
- Assumption: input is n reals from [0, 1)
- Basic idea:
- Create *n* linked lists (buckets) to divide interval [0,1) into subintervals of size 1/n
- Add each input element to appropriate bucket and sort buckets with insertion sort
- Uniform input distribution \rightarrow O(1) bucket size
- Therefore the expected total time is O(n)
- These ideas will return when we study hash tables

Bucket Sort

Bucket Sort

```
BUCKET-SORT(A)
```

1
$$n \leftarrow length[A]$$

2 **for** $i \leftarrow 1$ **to** n

2 for
$$i \leftarrow 1$$
 to n

do insert
$$A[i]$$
 into list $B[[nA[i]]]$

4 for
$$i \leftarrow 0$$
 to $n-1$

do sort list
$$B[i]$$
 with insertion sort

6 concatenate the lists
$$B[0]$$
, $B[1]$, ..., $B[n-1]$ together in order