7.7. $c_{ij} \in \mathbb{R}$ i,j = 1,...,n $\lim_{i \to \infty} \sum_{i \to \infty} \sum_{j=1}^{\infty} c_{ij} x_{i} x_{j}, \text{ lie } x_{j} - \sum_{i=1}^{\infty} x_{i} = 1$ CAFOUREK $\begin{bmatrix} x_1 & x_1 \\ x_2 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix}$ XCX, Ide Com C= [cm. cm] a delo illeto ograduje mpetriolon notici la nemí symehinká $\Rightarrow \frac{1}{2}(C+C^T)$ Optimilier kodota je rooma nejnemiere vlastning cide matice $\frac{1}{2}(C+C^T)$. 7.2. Bude platit horsen v úloše 7.1. pohud motive A velude symetrická? Mebule. Klashni cisla malier A a modice $\frac{1}{2}(A+A^T)$ jaon jina. The PCA pracije se pragn. matier. Bes mi marke chylorý výsledek. 7.5. more { xTAX, X = R | xTX=1, viX=0, i=1...h} Dohurte: 1) opt bodrota je 1/2+1 $x^{T}A \times = x^{T}V \wedge V^{T}X = y^{T}A y = \lambda_{1}y_{1}^{2} + \dots + \lambda_{m}y_{n}^{2}$ x = Vy x = Vy $y = x^{T}VV^{T}X = x^{T}X$ $y = x^{T}VV^{T}X = x^{T}X$ $y = x^{T}VV^{T}X = x^{T}X$ $y = y^{2} + ... + y^{2} = 1$ $y^{2} + ... +$ 2) 12 A jædelosilo 18+1 plyne, se X = 10/8+1, potore po legge X+1 = 1 a other /2:1-1/m=0 plate y=lesso, Advie X= Vento = reato

CAFOUREK X, ..., Xx sloyce X dehaste: $t_{\mathcal{L}}(X^T A X) = \langle AX, X \rangle = \langle A, X X^T \rangle = x_1^T A x_1 + x_2^T A x_2$ 1) $t_n(x^TAx) = \langle AX, X \rangle$ $\langle AX, X \rangle = \sum_{i} \sum_{j} \langle ax \rangle_{ij} x_{ij} =$ => + \sim (XAX) = < AX, X>B = XTAX => bij = (ax) xi $(x^TAX) = \langle A, XX^T \rangle$ quirique dihas 1): $\langle A, XX^T \rangle = \pm r(A^T X X^T)$ Robud A je symetrické, tok $tn(A^TXX^T) = tn(AXX^T)$ tr(ABC) = tr(BCA) $=> \{\mu(x^TAX) = \langle A, XX^T \rangle$ => $t_{A}(AXX^{T})=t_{A}(X^{T}AX)$

3) $t_n(x^TAX) = x_1^TAx_1 + \dots + x_n^TAx_n$

powsigene 1): $B = X^TAX = > k_{ij} = \sum_{i} (ax)_{ki} \times a_{ij} = X_i A \times_j$ $t_n(B) = \sum_{i} b_{ij} \Rightarrow t_n(X^TAX) = X_q^TAX_q + X_q^TAX_q$ 7.13

CAFOUREK

Komutaje operace ortogonální projekce s operací těristě? body...an ERM $P(T(a_n, a_n)) \stackrel{?}{=} T(P(a_n), ..., P(a_n))$ P. projekto operace projekce T(an, an) operace Seriste asset $\frac{1}{n}\sum_{i=1}^{n}a_{i} = \frac{1}{n}\left(\sum_{i=1}^{n}P(a_{i})\right)$ Pje lineami $\frac{1}{n} \left(\sum_{i=1}^{n} P(a_i) \right) = \frac{1}{n} \left(\sum_{i=1}^{n} P(a_i) \right)$

Ano, Sombije.