Random Walk, Diffusion, and Cluster Growth

Connor Hann, Xiaomeng Jia, Peifan Liu and Xinyu Wu

Physics Department, Duke University

March 24, 2016

Outline

- 2D Random Walk
 - One-dimensional random walks
 - Two-dimensional random walks
- 2 Diffusion
 - Mathematical background
 - Numerical results
- Crystal Growth
 - Background
 - Fractal Dimension

1D Random Walk

RMS distance of an ensemble of random walkers after n steps

$$\sqrt{\langle x_n^2 \rangle} = \sqrt{\sum_{i=1}^n \sum_{j=1}^n \langle \Delta x_i \Delta x_j \rangle} = \sqrt{n} \Delta x \tag{1}$$

Diffusive motion:

$$\langle x^2(t) \rangle = 2Dt \tag{2}$$

where $D = v \cdot \Delta x/2 = (\Delta x)^2/(2\Delta t)$ is the diffusion constant.

2D Random Walk (1)

Diffusive motion:

$$\langle r^2(t) \rangle = 2Dt \tag{3}$$

Where $D = (\Delta x)^2/(4\Delta t)$.

2D Random Walk (2)

Diffusion

Diffusion equation

$$\frac{\partial \rho}{\partial t} = D\nabla^2 \rho \tag{4}$$

discretize $t = k\Delta t, x = i\Delta x$,

$$\rho_{i,k+1} = \rho_{i,k} + D \frac{\Delta t}{\Delta x^2} (\rho_{i+1,k} + \rho_{i-1,k} - 2\rho_{i,k})$$
 (5)

with
$$\Delta t < \frac{\Delta x^2}{2D}$$

Normal Distribution

One-dimensional normal distribution

$$\rho(x,t) = \frac{1}{\sqrt{2\pi\,\sigma(t)^2}} \exp\left(-\frac{x^2}{2\sigma(t)^2}\right) \tag{6}$$

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma(t)} x^2 \exp(-\frac{x^2}{2\sigma(t)^2}) = \sigma(t)^2$$
 (7)

Animation

Diffusion time dependence

$$\langle x^2 \rangle = \sigma(t)^2 = 2Dt$$

Crystal Growth with Diffusion Limited Aggregation (DLA)

DI A Method:

- Consider a lattice of points with a seed particle at the origin
- Release a particle from a random location a distance R from the origin
- Let the particle perform a random walk until it hits the perimeter of the cluster or strays too far
- Repeat until cluster reaches the desired size

Example DLA cluster

Typical clusters

Fractal Dimension d_f (1)

$$m(r) \sim r^{d_f}$$

 $\log(m) = d_f \log(r)$

Fractal Dimension d_f (2)

Cluster	1	2	3	4	5	6	7	8	9	10
d_f	1.74	1.63	1.77	1.55	1.66	1.58	1.64	1.74	1.74	1.75

Average value over 10 runs: $d_f = 1.68(07)$

Expected value: $d_f = 1.65$

