Page 1 of 2 Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-252290

(43) Date of publication of application: 14.09.2000

(51) Int. CI.

H01L 21/331 H01L 29/73

(21) Application number: 11-055895

(71) Applicant: SANYO ELECTRIC CO LTD

(22) Date of filing:

03, 03, 1999

(72) Inventor: KUBO HIROTOSHI

(54) SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a transistor device excellent in high frequency characteristic by performing emitter diffusion from the bottom surface of a trench formed on a base surface.

SOLUTION: A base region 13 is formed of an epitaxial layer on the surface of a semiconductor substrate 11 turning to a collector, and a trench 15 is formed on the surface of the base region 13. The side wall of the trench 15 is covered with a spacer 16, and a polycrystalline silicon film 20 is buried in the trench. An emitter region 14 is formed by impurity diffusion from the polycrystalline silicon film 20. Low leading-out resistance rb and fine base width Wb can be obtained.

LEGAL STATUS

[Date of request for examination]

03. 12. 2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-252290

(P2000-252290A)

(43)公開日 平成12年9月14日(2000, 9.14)

(51) Int CL7

益別配号

FΙ

デーマコート"(参考)

H01L 21/331 29/73

H01L 29/72

5F003

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21) 出願番号

(22)出題日

特頭平11-55895

平成11年3月3日(1999.3.3)

(71)出國人 000001889

三洋電機株式会社

大阪府守口市京阪本道2丁目5番5号

(72)発明者 久保 博稔

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(74)代理人 100111383

弁理士 芝野 正雅

Fターム(参考) 5F003 BA11 BA14 BB02 BB05 BB90

BC90 BE07 BE08 BF03 BP01

BP06 BP11 BP23 BP31 BP41

BP93

(54) 【発明の名称】 半導体装置とその製造方法

(57)【要約】

【課題】 ベース表面に形成した溝の底面からエミッタ 拡散を行うことにより、高周波特性に優れたトランジス タ装置を得る。

【解決手段】 コレクタとなる半導体基板 11の表面に エピタキシャル層によってベース領域13を形成し、ベ ース領域13の表面に溝15を形成する。溝15の側壁 をスペーサ16で被覆し、多結晶シリコン膜20で埋設 する。多結晶シリコン膜20からの不純物拡散によって エミッタ領域14を形成する。低い取り出し抵抗 г b と 微細なベース幅Wbを得ることができる。

13: ベース領域

は:エミッタ領域

15:蜂

16:スペーサ

20: 9 終品シリコン角

(2)

特開2000~252290

【特許請求の範囲】

【請求項】】 一導電型のコレクタ層の表面に形成した 逆導電型のベース領域と、

前記ベース領域の表面に設けた溝と、

前記簿の底部の前記ベース領域表面に形成した一導電型 のエミッタ領域とを具備することを特徴とする半導体装

【請求項2】 一導電型のコレクタ層の表面に、エピタ キシャル成長法によって形成した逆導電型のベース領域

前記ベース領域の表面に設けた溝と、

前記港の側壁を被覆するスペーサと

前記溝を埋設するように被覆する拡散源膜と、

前記拡散源膜下部の前記ベース領域表面に形成した一導 電型のエミッタ領域と、

前記ベース領域の表面にコンタクトするベース電極と、 を具備することを特徴とする半導体装置。

【請求項3】 一導電型のコレクタ層の表面に、エビタ キシャル成長法によって逆導電型のベース領域を形成す る工程と

前記ベース領域の表面に、前記コレクタ層には達しない 満を形成する工程と、

前記溝の内壁にスペーサを形成する工程、

前記溝の内部にエミッタ拡散用の不純物を含む多結晶シ リコン層を形成する工程と、

前記多結晶シリコン層から不純物を拡散してエミッタ拡 散を行う工程と、を具備することを特徴とする半導体装 置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高周波トランジス タ装置に関する。

[0002]

【従来の技術】一般的なNPN型のプレーナ型高周波ト ランジスタの構造を図5に示した。即ち、N+型の半導 体層1を具備するN型のコレクタ層2の表面にP型のベ ース領域3を形成し、ベース領域3表面にN+型のエミ ッタ領域4を形成し、表面をシリコン酸化膜5で被覆 し、絶縁膜5に開口部を形成してコンタクトホールと し、ベース電極6とエミッタ電極7を形成したものであ 40 向に一定の不純物プロファイルを持つ半導体層からな る。高周波特性は主としてベース幅Wbに依存するの で、エミッタ領域4周囲にP+外部ベース領域8を設け たクラフトベース型の構造が採用されている。この形状 では、狭いベース幅Wbが得られると同時に、ベース・ コレクタ接合に広がる空芝層の曲率を緩和し、且つベー ス取り出し抵抗を減じることが出来る。

【0003】また、浅いベース幅♥bを得るためには浅 いエミッタ接合が不可欠であり、このために不純物をド ープしたポリシリコン層9からの不純物拡散によってエ 特開平7-142497号)。

[0004]

【発明が解決しようとする課題】しかしながら、図5の クラフトベース型では、ベース領域3と外部ベース領域 8とをイオン注入と熱拡散によって形成するので、2回 のホトエッチング技術が必要であり、さらなる工程の簡 紊化が困難である欠点があった。

【0005】また、ベース領域3を熱拡散で形成するの で、その拡散深さがばらつきやすく、高周波特性のばら 10 つきが大きい欠点があった。

【0006】更に、ベースを熱拡散で形成しているの で、浅い接合を得るととが困難であり、しかも浅い接合 を得るためには不純物濃度も低く設定せざるを得ないの で、ベースの取り出し抵抗了bが大きくなりがちである 欠点があった。

[0007]

【課題を解決するための手段】本発明は上述した欠点に 鑑み成されたもので、一導電型のコレクタ層の表面に、 逆導電型のベース領域を形成し、ベース領域に溝を形成 20 し、診溝の底部にエミッタ領域を形成したことを特徴と するものである。

[0008]

【発明の実施の形態】以下に本発明の一実施例を詳細に 説明する。図1は本発明のNPN型のトランジスタ装置 を示す断面図である。

【0009】11はコレクタとなり、裏面側にN+型の 半導体層12を育する半導体整板、13はP型のベース 領域で、エピタキシャル層で構成される。14はベース 領域14の表面に形成したN+型のエミッタ領域、15 はベース領域13の一部に形成した溝、16は溝15の 側壁を被覆するスペーサ、17はペース領域13の表面 を被覆するシリコン酸化膜、18はシリコン酸化膜17 に開口されたコンタクトホールを通してベース領域13 の表面にコンタクトするベース電極、19はエミッタ電 極、20はエミッタ電極19の一部を構成しエミッタ領 域14の拡散源膜となる多結晶シリコン層である。

拡散深さに形成した拡散領域か、あるいは気相成長法に よって基板11の上に形成された、不純物濃度が厚み方 り、 碶厚は1. 0μm程度である。 溝15は幅が0.5 μ程度で且つベース領域13表面から下方向に約0.7 μπ程度掘り下げられたものである。 溝15の底部には P型のベース凉気13が踏出し、 該底部にエミッタ領域 14が0.1μπ程度の拡散深さで形成されている。 【0011】スペーサ16はノンドープシリコン酸化膜

【0010】ベース領域13は、熱拡散によって所定の

等の絶縁膜からなり、約0.1μmの膜厚で溝15の側 壁を被覆する。従って、溝15を0、5μm×0、5μ mの大きさで開口し、側壁にスペーサ16を設けたとす ミッタ領域を4形成することが行われている(例えば、 50 れば、清15の底部には0.3×0.3μmの大きさで

(3)

特開2000-252290

ベース領域13が露出する。

【0012】1.0µmのベース領域13に対して0. 7mmの溝15と0. 1mmのエミッタ領域14とによ り、このトランジスタのベース幅Wbは0.2mm程度 となる。

【0013】この様に、溝15の底部にエミッタ領域1 4を形成することによって、溝15の深さでベース幅♥ bを決定することが出来る。熱拡散で極めて浅い接合を 得るには不純物濃度を低下しなければならないのに対し 濃度を増大できるので、ベース領域13を1つの領域で 確保することができる。従って拡散工程を1つ不要にす る事が出来る。更に、ベース領域13の不純物濃度をあ る程度高く維持できるので、エミッタ領域14直下の、 ベースとして活性な領域からベース電極18までの抵抗 rbを低減することが可能である。

【0014】また、ベース領域をエピタキシャル層で形 成した場合は、その膜厚のばらつきが10%程度、溝1 5のエッチングによる深さのばらつきが約10%程度で あるので、結果ベース幅Wbのばらつきは14~20% 20 ベース電極18とベース電極19を形成する。 である。この値は、従来のイオン注入と熱拡散によって 形成したベース幅Wbが30%程度ばらついていたのに 対して、大幅に減じるととが出来るものである。

【0015】以下に、本発明の製造方法を説明する。

【0016】第1工程: 図2 (A) 参照

先ずはN型基板11を準備する。 裏面側にはコレクタ取 り出しとなる高濃度層12を具備している。基板11表 面を清浄化した後、全面に気相成長法によってP型のエ ピタキシャル層を形成してベース領域13とする。

【0017】ベース領域13の上に膜厚5000A程度 30 実施することが可能である。 のシリコン酸化膜17を形成し、通常のホトエッチング 技術によって開口部31を形成する。

【0018】第2工程: 図2(B)参照

シリコン酸化膜17をマスクにベース領域13のシリコ ンを異方性エッチングして、溝15を形成する。溝15 のエッチング深さは、前途したようにベース幅Wbを決 める深さとなる。

【0019】第3工程: 図2 (C) 参照

全面に、LPCVD法によって膜厚が8000AのNS G膜(ノンドープシリコン酸化膜)32を形成する。N 40 る。 SG膜32は溝15の内部を埋設する。

【0020】第4工程: 図3 (A) 参照

溝15の底部にベース領域13が露出するまでNSG膜 32を異方性エッチングして、溝15の側壁にスペーサ 16を形成する。

【0021】第5工程:図3(B)參照

CVD法によって全面に多結晶シリコン膜20を形成す る。多結晶シリコン膜20は溝15内部を埋設し、ベー ス領域13表面に接触する。全面にエミッタ拡散用の砥 素をイオン注入した後、通常のホトエッチング技術によ って多結晶シリコン膜20をパターニングし、溝15の 上部にのみ残して残りは除去する。

【0022】第6工程:図3(C)参照

全体に900~1000°C、0.5~2時間の熱処理を 与えるととにより、多結晶シリコン層 19から砒素を拡 て、樽15を形成することで、ベース領域13の不純物 10 散してエミッタ領域14を形成する。滯15の側壁がス ペーサ16で被覆されているので、溝15の底部にのみ 不純物を拡散することができる。

【0023】第7工程: 図4(A)参照

酸化腺1.7をホトエッチング技術によって開口して、ベ ース領域13の表面を露出するコンタクトホール33を 形成する。

【0024】第8工程: 図4(B)参照

全体にアルミニウム材料をスパッタ法あるいは蒸着法に よって形成し、これをホトエッチングすることによって

【0025】斯かる手法によって得られる本発明のトラ ンジスタ装置は、熱拡散処理がエミッタ拡散用の熱処理 だけですむので、全体の熱履歴を短縮でき、素子特性の ばらつきを低減できるものである。また、スペーサ16 を用いることにより、ホトエッチング技術の限界よりも 更に微細化した溝15を形成できるので、更に高周波特 性に優れたトランジスタ装置を得ることが出来る。

【0026】尚、本実施例はNPN型を例に取り説明し たが、導電型を反対にしてPNP型のトランジスタでも

[0027]

【発明の効果】以上に説明したとおり、本発明によれ は、溝15によって微細なベース幅Wbを得るので、従 来よりも高周波特性のばらつきを抑制したトランジスタ **装置を実現できる利点を有する。**

【0028】また、従来よりも微細なベース幅Wbが得 られると同時に、従来の外部ベースが不要であるので、 プロセスが簡略化され、ベースの取り出し抵抗「bが小 さいトランジスタ装置を得ることが出来る利点を有す

【図面の簡単な説明】

- 【図1】本発明を説明するための断面図である。
- 【図2】本発明を説明するための断面図である。
- 【図3】本発明を説明するための断面図である。
- 【図4】本発明を説明するための断面図である。
- 【図5】従来例を説明するための断面図である。

1/23

(4)

特開2000-252290

13: ベース領域

16: エミッタ領域

15:绛

16: 久如一寸

20: 外話品シリコン屋

(5)

特開2000-252290

