Smart Highside Power Switch

Features

- Overload protection
- Current limitation
- Short-circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection¹)
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection²⁾
- Electrostatic discharge (ESD) protection

Application

- $^{\bullet}~\mu C$ compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- All types of resistive, inductive and capacitve loads
- Replaces electromechanical relays and discrete circuits

Product Summary

Overvoltage protection	V _{bb(AZ)}	63 V
Operating voltage	$V_{ m bb(on)}$	4.5 42 V
On-state resistance	Ron	18 m Ω
Load current (ISO)	<i>I</i> L(ISO)	21 A
Current limitation	/L(SCr)	70 A

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, integrated in Smart SIPMOS® chip on chip technology. Fully protected by embedded protection functions.

¹⁾ No external components required, reverse load current limited by connected load.

²⁾ Additional external diode required for charged inductive loads

SIEMENS

Pin	Symbol		Function
1	GND	-	Logic ground
2	IN	I	Input, activates the power switch in case of logical high signal
3	Vbb	+	Positive power supply voltage, the tab is shorted to this pin
4	ST	S	Diagnostic feedback, low on failure
5	OUT (Load, L)	0	Output to the load

Maximum Ratings at $T_i = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 3)	$V_{ m bb}$	63	V
Load dump protection $V_{\text{LoadDump}} = U_{\text{A}} + V_{\text{S}}$, $U_{\text{A}} = 13.5 \text{ V}$ $R_{\text{I}} = 2 \Omega$, $R_{\text{L}} = 1.1 \Omega$, $t_{\text{d}} = 200 \text{ ms}$, IN= low or high	V _{Load dump} ³⁾	80	V
Load current (Short-circuit current, see page 4)	<i>I</i> ∟	self-limited	Α
Operating temperature range	$T_{\rm j}$	-40+150	°C
Storage temperature range	T_{stg}	-55+150	
Power dissipation (DC)	P_{tot}	167	W
Inductive load switch-off energy dissipation, single pulse $T_{j=150}$ °C:	E _{AS}	2.1	J
Electrostatic discharge capability (ESD) (Human Body Model)	V _{ESD}	2.0	kV
Input voltage (DC)	V _{IN}	-0.5 +6	V
Current through input pin (DC)	I _{IN}	±5.0	mA
Current through status pin (DC)	<i>I</i> _{ST}	±5.0	
see internal circuit diagrams page 6			
Thermal resistance chip - case:	R_{thJC}	≤ 0.75	K/W
junction - ambient (free air):	R_{thJA}	≤ 45	

Semiconductor Group Page 2 8.Jan.96

 $^{^{3)}}$ V_{Load dump} is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839

Electrical Characteristics

Parameter and Conditions		Symbol	Values			Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless oth	erwise specified		min	typ	max	
Load Switching Capabilities	and Characteristics	.				
On-state resistance (pin 3 to 5	5)					
<i>I</i> ∟ = 5 A	<i>T</i> _i =25 °C:	R _{ON}		15	18	mΩ
	<i>T</i> _i =150 °C:			28	35	
Nominal load current (pin 3 to	'	I _{L(ISO)}	17	21		Α
ISO Proposal: $V_{ON} = 0.5 \text{ V}$,	<i>T</i> _C = 85 °C	,				
Output current (pin 5) while GI GND pulled up, V_{IN} = 0, see of T_{I} =-40+150°C		I _{L(GNDhigh)}			1	mA
Turn-on time	to 90% V _{OUT} :	<i>t</i> on	100		350	μS
Turn-off time	to 10% V _{OUT} :	$t_{ m off}$	10		130	
$R_{L} = 12 \Omega, T_{j} = -40+150$ °C						
Slew rate on		dV/dt_{on}	0.2		2	V/μs
10 to 30% V_{OUT} , $R_L = 12 \Omega$, 7	j =-40+150°C					
Slew rate off 70 to 40% V_{OUT} , $R_{\text{L}} = 12 \Omega$, 7	5 =-40 +150°C	-d <i>V</i> /dt _{off}	0.4		5	V/μs
Operating Parameters						
Operating voltage 4)	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(on)}$	4.5		42	V
Undervoltage shutdown	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(under)}$	2.4		4.5	V
Undervoltage restart	$T_{j} = -40 + 150$ °C:	$V_{ m bb(u\ rst)}$			4.5	V
Undervoltage restart of charge see diagram page 12	e pump Tj =-40+150°C:	$V_{ m bb(ucp)}$		6.5	7.5	V
Undervoltage hysteresis $\Delta V_{\rm bb(under)} = V_{\rm bb(u rst)} - V_{\rm bb(under)}$		$\Delta V_{ m bb(under)}$		0.2		V
Overvoltage shutdown	<i>T</i> j =-40+150°C:	$V_{ m bb(over)}$	42		52	V
Overvoltage restart	<i>T</i> _j =-40+150°C:	$V_{ m bb(o\ rst)}$	42			V
Overvoltage hysteresis	<i>T</i> _j =-40+150°C:	$\Delta V_{ m bb(over)}$		0.2		V
Overvoltage protection ⁵⁾	$T_{j} = -40$ °C:	$V_{bb(AZ)}$	60			V
<i>I</i> _{bb} =40 mA	$T_{\rm j}$ =25+150°C:		63	67		
Standby current (pin 3)	<i>T</i> _j =-40+25°C:	I bb(off)		12	25	μΑ
V _{IN} =0	<i>T</i> _j =150°C:			18	60	
Leakage output current (included NIN=0	ded in I _{bb(off)})	I _{L(off)}		6		μΑ
<u> </u>		<u> </u>				

⁴⁾ At supply voltage increase up to V_{bb} = 6.5 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V

⁵⁾ see also $V_{\mathrm{ON(CL)}}$ in table of protection functions and circuit diagram page 7. Meassured without load

⁶⁾ Add I_{ST} , if $I_{ST} > 0$, add I_{IN} , if $V_{IN} > 5.5 \text{ V}$

RTC 5/2 E2

21EIAIEIA2				BTS 5	42 E2
Parameter and Conditions	Symbol		Values	;	Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless otherwise specified		min	typ	max	
Protection Functions					
Initial peak short circuit current limit (pin 3 to 5) ⁷⁾ , (max 400 μ s if $V_{ON} > V_{ON(SC)}$)	I _{L(SCp)}				
$T_j = -40$ °C: $T_j = 25$ °C: $T_j = +150$ °C:		 45	95 	140 	Α
Repetitive short circuit current limit	I _{L(SCr)}				
$T_{\rm j} = T_{\rm jt}$ (see timing diagrams, page 10)		30	70		Α
Short circuit shutdown delay after input pos. slope $V_{\text{ON}} > V_{\text{ON(SC)}},$ $T_{\text{j}} = -40+150^{\circ}\text{C}$:	t _{d(SC)}	80		400	μS
min value valid only, if input "low" time exceeds 30 μs					
Output clamp (inductive load switch off) at $V_{\text{OUT}} = V_{\text{bb}} - V_{\text{ON(CL)}}$, $I_{\text{L}} = 30 \text{ mA}$	$V_{\rm ON(CL)}$		58		V
Short circuit shutdown detection voltage (pin 3 to 5)	$V_{ m ON(SC)}$		8.3		V
Thermal overload trip temperature	T_{jt}	150			°C
Thermal hysteresis	$\Delta T_{\rm jt}$		10		K
Inductive load switch-off energy dissipation ⁸⁾ ,	E _{AS}			2.1	J
$T_{\rm jStart}$ = 150 °C, single pulse $V_{\rm bb}$ = 12 V:	E _{Load12}			1.7	
$V_{\rm bb} = 24 \ \rm V:$	E _{Load24}			1.2	
Reverse battery (pin 3 to 1) 9)	-V _{bb}			32	V
Integrated resistor in $V_{\rm bb}$ line	R _{bb}		120		Ω
Diagnostic Characteristics					
Open load detection current T_j =-40 °C: (on-condition) T_i =25150°C:	I _{L (OL)}	2 2		1900 1500	mA

Open load detection current (on-condition)	<i>T</i> _j =-40 °C: <i>T</i> _j =25150°C:	I _{L (OL)}	2 2		1900 1500	mA
--	---	---------------------	--------	--	--------------	----

⁷⁾ Short circuit current limit for max. duration of td(SC) max=400 μs, prior to shutdown

While demagnetizing load inductance, dissipated energy in PROFET is $E_{AS} = \int V_{ON(CL)} * i_L(t) dt$, approx. EAS= $^{1}/_{2}$ * L * $^{2}/_{L}$ * ($\frac{V_{\rm ON(CL)}}{V_{\rm ON(CL)}}$ - $V_{\rm bb}$), see diagram page 8

Reverse load current (through intrinsic drain-source diode) is normally limited by the connected load. Reverse current I_{GND} of ≈ 0.3 A at V_{bb} = -32 V through the logic heats up the device. Time allowed under these condition is dependent on the size of the heatsink. Reverse I_{GND} can be reduced by an additional external GND-resistor (150 Ω). Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).

BTS 542 E2

Parameter and Conditions	Symbol		Values	;	Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless otherwise specified		min	typ	max	
Input and Status Feedback ¹⁰⁾					
Input turn-on threshold voltage $T_j = -40+150$ °C:	V _{IN(T+)}	1.5		2.4	V
Input turn-off threshold voltage $T_j = -40+150$ °C:	$V_{IN(T-)}$	1.0			V
Input threshold hysteresis	$\Delta V_{\rm IN(T)}$		0.5		V
Off state input current (pin 2), $V_{IN} = 0.4 \text{ V}$	I _{N(off)}	1		30	μΑ
On state input current (pin 2), $V_{IN} = 3.5 \text{ V}$	I _{IN(on)}	10	25	50	μΑ
Status invalid after positive input slope (short circuit) $T_{j=-40 \dots +150^{\circ}\text{C}}$:	t _{d(ST SC)}	80	200	400	μS
Status invalid after positive input slope (open load) T_{j} =-40 +150°C:	t _{d(ST)}	350		1600	μS
Status output (open drain)					
Zener limit voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V
ST low voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4	

 $^{^{\}rm 10)}\,$ If a ground resistor ${\rm R}_{\rm GND}$ is used, add the voltage drop across this resistor.

Truth Table

	Input-	Output	Status	
	level	level	542 D2	542 E2
Normal	L	L	H H	H
Open load	H L	H 11)	H	Н
	Н	H	L	L
Short circuit	L	L	Н	Н
to GND	Н	L	L	L
Short circuit	L	Н	Н	Η
to V _{bb}	Н	Н	H (L ¹²⁾)	H (L ¹²⁾)
Overtem-	L	L	L	L
perature	Н	L	L	L
Under-	L	L	L ¹³⁾	Н
voltage	Н	L	L ¹³⁾	Н
Overvoltage	Ĺ	L	L	Н
	Н	L	L	Н

L = "Low" Level H = "High" Level

Terms

Input circuit (ESD protection)

 ZD_{11} 6.1 V typ., ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Status output

ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 250 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

¹¹⁾ Power Transistor off, high impedance

¹²⁾ Low resistance short $V_{\rm bb}$ to output may be detected by no-load-detection

¹³⁾ No current sink capability during undervoltage shutdown

Short Circuit detection

Fault Condition: $V_{ON} > 8.3 \text{ V typ.}$; IN high

Inductive and overvoltage output clamp

V_{ON} clamped to 58 V typ.

Overvolt. and reverse batt. protection

 R_{bb} = 120 Ω typ., V_Z + R_{bb} *40 mA = 67 V typ., add RGND, RIN, RST for extended protection

Open-load detection

ON-state diagnostic condition: $V_{\rm ON} < R_{\rm ON} * I_{\rm L(OL)}$; IN high

GND disconnect

Any kind of load. In case of Input=high is $V_{OUT} \approx V_{IN}$ - $V_{IN(T+)}$. Due to V_{GND} >0, no V_{ST} = low signal available.

GND disconnect with GND pull up

Any kind of load. If $V_{GND} > V_{IN} - V_{IN(T+)}$ device stays off Due to $V_{GND} > 0$, no $V_{ST} =$ low signal available.

V_{bb} disconnect with charged inductive load

Inductive Load switch-off energy dissipation

 $E_{\text{Load}} < E_{\text{L}}, E_{\text{L}} = \frac{1}{2} * L * I_{\text{L}}^2$

Options Overview

all versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection, protection against loss of ground

Type BTS	542D2	542E2
Logic version	D	Е
Overtemperature protection		
$T_{\rm i}$ >150 °C, latch function ¹⁴⁾¹⁵⁾	X	
$T_{\rm i}$ >150 °C, with auto-restart on cooling		X
Short-circuit to GND protection		
switches off when $V_{\rm ON}>8.3$ V typ. ¹⁴⁾ (when first turned on after approx. 200 μ s)	Х	Х
Open load detection		
in OFF-state with sensing current 30 μA typ. in ON-state with sensing voltage drop across power transistor	X	X
Undervoltage shutdown with auto restart	Х	X
Overvoltage shutdown with auto restart	Х	Х
Status feedback for		
overtemperature	X	X
short circuit to GND	X	X
short to V _{bb}	_16)	_16)
open load	X	X
undervoltage	X	-
overvoltage	X	-
Status output type		
CMOS	X	
Open drain		X
Output negative voltage transient limit (fast inductive load switch off)		
to V _{bb} - VON(CL)	Х	X
Load current limit		
high level (can handle loads with high inrush currents)	Х	X
medium level		
low level (better protection of application)		

1

Latch except when $V_{\rm bb}$ - $V_{\rm OUT}$ < $V_{\rm ON(SC)}$ after shutdown. In most cases $V_{\rm OUT}$ = 0 V after shutdown ($V_{\rm OUT}$ \neq 0 V only if forced externally). So the device remains latched unless $V_{\rm bb}$ < $V_{\rm ON(SC)}$ (see page 4). No latch between turn on and $t_{\rm d(SC)}$.

With latch function. Reseted by a) Input low, b) Undervoltage, c) Overvoltage

¹⁶⁾ Low resistance short $V_{\rm bb}$ to output may be detected by no-load-detection

Timing diagrams

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a lamp,

Figure 2b: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit,

D13 342 1

Figure 3b: Turn on into overload,

Figure 3c: Short circuit while on:

Figure 4a: Overtemperature: Reset if $T_j < T_{jt}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

B13 342 I

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

VON [V]

Von

Von(CL)

off

Volver)

bb(over)

bb(over)

Vbb
Vbb [V]

charge pump starts at Vbb(ucp) = 6.5 V typ.

Figure 7a: Overvoltage:

Package and Ordering Code All dimensions in mm

Standard TO-218AB/5		Ordering code
DTC 540 50		007000 00054 40

