PCMI 2021: Supersingular isogeny graphs in cryptography Exercises Lecture 1: Elliptic curves, Isogenies, CGL Hash Function

TA: Jana Sotáková

version July 26, 2021

Use Magma to do the following exercises. If you need help to get started, please ask on the Discord!

- 1. (Elliptic curves) Over \mathbb{F}_p for p=431:
 - (a) Define an elliptic curve E/\mathbb{F}_p with $E: y^2 = x^3 + x$.
 - (b) Compute its j-invariant;
 - (c) Find an elliptic curve E_1/\mathbb{F}_p with j-invariant 234;
 - (d) Is this elliptic curve supersingular?
 - (e) Find another elliptic curve E_2 with j-invariant 234. Are E_1 and E_2 isomorphic over \mathbb{F}_p ? Can you find a non-isomorphic such pair? Hint¹
- 2. (Isogenies) Compute the following for $E: y^2 = x^3 + x/\mathbb{F}_{431^2}$
 - (a) Isogeny $\varphi: E \to E'$ with kernel generated by (0,0). What is the degree?
 - (b) Compute the dual isogeny $\hat{\varphi}: E' \to E$;
 - (c) Find all the isogenies of degree 2 from E.
 - (d) Find all the cyclic isogenies of degree 16 from E.
 - (e) Compute a cyclic isogeny of degree 16 as a sequence of 2-isogenies.
- 3. (Modular polynomial) Use the modular polynomial $\Phi_N(X,Y)$ to find isogenous curves:
 - (a) Find all the 2-isogenies curves to $E: y^2 = x^3 + 26x + 279/\mathbb{F}_{431^2}$;
 - (b) Find j-invariants of elliptic curves admitting a 16-isogeny from E. Hint²
 - (c) Find all the self-loops in the $\ell\text{-isogeny}$ graph for $\ell \leq 11.$
- 4. (Supersingular isogeny graphs) Write code to generate the supersingular isogeny graph over \mathbb{F}_{p^2} , using the following steps. On input coprime primes p and ℓ ;
 - (a) Find one supersingular elliptic curve over E_0/\mathbb{F}_{p^2} , represented by the *j*-invariant;
 - (b) Write a neighbor function that on input an elliptic curve E, finds all the neighbours of E in the SSIG \mathcal{G}_{ℓ} : (the j-invariants) all the supersingular elliptic curves ℓ -isogenous to E.
 - (c) Using a breadth-first-search approach, generate the graph by starting from the curve found in Step (b) and the Neighbor function from Step (c).
- 5. (If you've done Exercise 4), for primes $p \equiv 1 \mod 12$, find the adjacency matrix A of the SSIG and find the diameter. SSIGs have very short diameters.
- 6. (CGL Hash function) For a small prime p and any starting supersingular elliptic curve E, find a collision for the CGL hash fuction on the 2-isogeny SSIG. I.e., find two strings that hash to the same elliptic curve. Hint³

¹Quadratic twists.

²To deal with the large coefficients, reduce the polynomial to \mathbb{F}_{p^2}

³Requires you to decide on the ordering of the edges in the SSIG. Find two isogenies to the same curve.