CLASSIFICATION METHODS

Chapter 04 (part 02)

LINEAR DISCRIMINANT ANALYSIS (LDA) & QUADRATIC DISCRIMINANT ANALYSIS (QDA)

Outline

- Overview of LDA
- Why not Logistic Regression?
- Estimating Bayes' Classifier
- LDA formulation
- Alternative LDA formulation
- 2-class performance measures
- Overview of QDA
- Comparison between LDA and QDA

Linear Discriminant Analysis

- Goal: Classify observations
 - Will a consumer buy a product or not?
 - Will a customer be satisfied or not?
 - Which candidate will a voter vote for?
- LDA Key intuition:
 - Represent each class as a simple distribution with parameters
 - Predict the class of a new observation by which class distribution has the highest probability at that observation's feature values

Assumptions of LDA

- The observations are an unbiased random sample (*i.i.d.*) of the population
- Each predictor variable is <u>normally distributed</u>
- All classes share <u>common</u> (co)variance parameters

Why not Logistic Regression?

 Logistic regression parameter values are unstable when the classes are well separated

Work on in-class Problem #1

- In the case where n is small, and the distribution of predictors X is approximately normal, then LDA is more stable than Logistic Regression
- LDA is also more popular than logistic regression when there are more than two response classes

Bayes' Classifier

- Bayes' classifier is the golden standard. Unfortunately, it is usually not determinable unless we are using synthetic data from a known distribution
- Concept check: What is the property associated with data points along the Bayes Classification Boundary?
- So far, we have estimated Bayes classifier with two methods:
 - KNN classifier
 - Logistic Regression

Estimating Bayes' Classifier

• With Logistic Regression we modeled the probability of Y being from the $k^{\rm th}$ class as

$$p(X) = \Pr(Y = k \mid X = x) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

However, Bayes' Theorem states for a K-class problem,

$$p_k(X) = \Pr(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

 $\mathcal{\pi}_k$: Prior Probability of coming from class k

 $f_k(x)$: Unknown density function for x given that x is an observation from class k (we can choose this function depending on our model)

Idea: Model classes using distributions, then use Bayes Theorem to make classification decisions

Bayes requires estimating π_k and $f_k(x)$

• We need to estimate π_k and $f_k(x)$ to compute p(x)

$$p_k(X) = \Pr(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

• The most common model for $f_k(x)$ is the Normal Density

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x - \mu_k)^2\right)$$

• Using the normal density, we only need to estimate three parameters to compute p(x):

$$\mu_{k}$$
 σ_{k}^{2} π_{k}

Use Training Data set for Estimation

- The mean $\hat{\mu}_k$ could be estimated by the feature-wise average of all training observations from the k^{th} class.
- The variance $\hat{\sigma}$ could be estimated as the weighted average of variances of all K classes. In LDA we make the assumption that the variances for each class are equal. $\sigma_k^2 = \sigma^2$
- Estimate, $\hat{\pi}_k$ as the proportion of the training observations that belong to the k^{th} class.

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k}^{K} x_{i} \qquad \hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_{i}=k}^{K} (x_{i} - \hat{\mu}_{k})^{2}$$

$$\hat{\pi}_{k} = \frac{n_{k}}{n}$$

Bayes Example with One Predictor (p =1)

- Suppose we have only one predictor (p = 1)
- Two normal density function $f_1(x)$ and $f_2(x)$, represent two distinct classes
- The two density functions overlap, so there is some uncertainty about the class to which an observation with an unknown class belongs

The dashed vertical line represents Bayes' decision

boundary

More complex example with one predictor (2-class, single feature)

- A discriminator is established at the point of equal probability...
- With a true Bayes classifier, this discriminator is not necessarily exactly between the class means

LDA intuition (2-class, single feature)

- LDA assumes that the observations in each class are Gaussian with the same variance but different means
- Model each class using
 - sample mean
 - (average) sample variance of each class
- Bayes classifier & LDA not necessarily equal

- Differences between Bayes and LDA performance are also due to sampling issues which are used to estimate class means and variances
 - 20 observations were drawn from each of the two classes
 - The dashed vertical line is the Bayes' decision boundary
 - The solid vertical line is the LDA decision boundary

Bayes' error rate: 10.6%

LDA error rate: 11.1%

Apply LDA

- LDA assumes that each class has a normal distribution with one mean per class but the same variance for every class $\hat{\mu}_k$ $\hat{\sigma}$
- The key variables are estimated from the training data

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k} x_{i} \qquad \hat{\pi}_{k} = \frac{n_{k}}{n} \qquad \hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_{i}=k} (x_{i} - \hat{\mu}_{k})^{2}$$

$$f_{k}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^{2}} (x - \mu_{k})^{2}\right)$$

• Bayes' theorem is used to compute p_k and the observation is assigned to the class with the maximum probability among all K probabilities

$$p_k(X) = \Pr(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

LDA intuition (more than 1 feature)

- If X is multidimensional (p > 1), we use exactly the same approach except the density function f(x) is modeled using the multivariate normal density
- Need to find the direction for which a projection into fewer dimensions yields the most information for discrimination of the LDA (Bayes-like) classifier using Covariance

Elements of Statistical Learning – Figure 4.9

Multiclass LDA

- Three classes & Two predictors (p =2)
- 20 observations were generated from each class
- The dashed lines are Bayes' boundaries

The solid lines are LDA boundaries

Alternative LDA formulation

 LDA involves the determination of linear equation (just like linear regression) that will predict which class the case belongs to.

$$D = w_0 + w_1 X_1 + w_2 X_2 + \ldots + w_i X_i$$

- D: discriminant hyperplane
- w: discriminant coefficients
- X: variable
- w_0 : constant (default = 0)

Alternative LDA formulation

- Goal: discriminate between the different categories
- Choose the w's in a way to <u>maximize the distance between the means</u> of different categories
- Features which help classify observations tend to have large w's (weight)

$$D = w_0 + w_1 X_1 + w_2 X_2 + \ldots + w_i X_i$$

Alternative LDA computation (2 class, 1 feature)

Select the discriminator line D such that

$$D = w_1 X_1 + w_0$$

where

$$w_1 = \frac{\mu_{c1} - \mu_{c0}}{\sigma}$$

 w_0 is default 0, or selectable to maximize training performance

Thus, select class $\{0,1\}$ according to: $w_1X_1 > w_0$

Alternative LDA computation (2 class, multi-feature)

Select the discriminator line D such that

$$D = w^T X + w_0$$

where

$$w = \frac{\mu_{c1} - \mu_{c0}}{\Sigma^{-1}}$$

 Σ^{-1} is the inverse (shared) covariance matrix of the classes w_0 is default 0, or selectable to maximize training performance Thus, select class $\{0,1\}$ according to: $w^T X > w_0$

Alternative LDA in practice

- In practice LDA is often combined with a feature reduction technique to reduce the effective dimensionality of the space
- When using LDA packages, select a smaller "components" parameter to enact dimensionality reduction
- sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=0.0001)[source]
 n_components: int, optional
 Number of components (< n classes 1) for dimensionality reduction.
- Further details in Elements of Statistical Learning

2-class Performance Measures

- Altering the decision boundary
- Confusion Matrix
- ROC

Altering the decision boundary

- Sometimes the (approximate) Bayes decision boundary may not be adequate for the business case
- Audience participation: Give an example of this and explain why

Classifier performance on Default Data (at p(y|x) > 0.5 as Threshold for Default)

		True Default Status		
		No	Yes	Total
Predicted	No	9644	252	9896
$Default\ Status$	Yes	23	81	104
	Total	9667	333	10000

- LDA makes 252+ 23 = 275 mistakes on 10000 predictions (2.75% misclassification error rate)
- But LDA miss-predicts 252/333 = 75.5% of defaulters
- We shouldn't use 0.5 as threshold for predicting default if this will cost the bank a lot of money

Use p(y|x) > 0.2 as Threshold for Default?

- Now the total number of mistakes is 235+138 = 373 (3.73% misclassification error rate)
- But we only miss-predicted 138/333 = 41.4% of defaulters

		True Default Status		
		No	Yes	Total
Predicted	No	9432	138	9570
$Default\ Status$	Yes	235	195	430
	Total	9667	333	10000

Threshold Values, Error Rates, ROC

- Black solid: overall error rate
- Blue dashed: Fraction of defaulters missed
- Orange dotted: non defaulters incorrectly classified

ROC Curve

In Class Work – Classifier Performance and ROC

Work on problem 2 now

Quadratic Discriminant Analysis (QDA)

- LDA assumed that every class has the same variance/ covariance
- However, LDA may perform poorly if this assumption is far from true
- QDA works identically as LDA except that it estimates separate variances/ covariance for each class

Which is better? LDA or QDA?

- Since QDA allows for different variances among classes, the resulting boundaries become quadratic
- Which approach is better: LDA or QDA?
 - QDA may work better when the variances are very different between classes and we have enough observations to accurately estimate the variances
 - LDA may work better when the variances are similar among classes or we don't have enough data to accurately estimate the true differences in the variances

Comparing LDA to QDA

- Black dotted: LDA boundary
- Purple dashed: Bayes' boundary
- Green solid: QDA boundary
- Left: variances of the classes are equal (LDA is better fit)
- Right: variances of the classes are not equal (QDA is better fit)

Comparison of Classification Methods

- KNN (Chapter 2)
- Logistic Regression (Chapter 4)
- LDA (Chapter 4)
- QDA (Chapter 4)

Logistic Regression vs. LDA

- Similarity: Both Logistic Regression and LDA produce linear boundaries
- <u>Difference:</u> LDA assumes that the observations are drawn from the normal distribution with common variance in each class, while logistic regression does not have this assumption.
 - LDA would do better than Logistic Regression if the assumption of normality holds,
 - otherwise logistic regression can outperform LDA

KNN vs. (LDA and Logistic Regression)

- KNN takes a completely different approach
- KNN is completely non-parametric: No assumptions are made about the shape of the decision boundary
- Advantage of KNN: We can expect KNN to dominate both LDA and Logistic Regression when the decision boundary is highly non-linear
- <u>Disadvantage of KNN:</u> KNN does not tell us which predictors are important (no table of coefficients)

QDA vs. (LDA, Logistic Regression, and KNN)

 QDA is a higher variance parametric model which offers a compromise in performance between non-parametric KNN method and linear methods such as LDA and logistic regression

- If the <u>true decision boundary</u> is:
 - Linear: LDA and Logistic outperforms
 - Moderately Non-linear: QDA outperforms
 - More complicated: KNN is superior