Experiment No. 1

<u>Aim</u>: To find the multiplicative inverse of any number Zn using Extended Euclidean algorithm.

Theory: Extended Euclidean algorithm can be used to find the multiplicative inverse of number on modulus operation if exist. Relation can be derived as follows:

$$b(t) \equiv 1(modn)$$

i.e.
$$t = b^{-1}$$

This can be written as:

$$b(t) = n(q) + 1$$

$$b(t) + n(-q) = 1$$

Comparing it with:

$$b(x) + a(y) = GCD(b, a)$$

We inferred that inverse of 'b' (t) exist or $b(t) \equiv 1 \pmod{n}$ only holds, when GCD(b, n) = 1 and $b^{-1} = t = x$ in Extended Euclidean equation.

Above equation also clear that we can use Extended Euclidean algorithm to find multiplicative inverse of a number. Let us look at algorithm and example:

Extended Euclidean algorithm:

Initialize: r1 = b, r2 = n, t1 = 0 and t2 = 1

Repeat following steps till(r2 > 0):

1.
$$q = r1//r2$$
 ----- {Where, // refers to integer division}

$$2. r = r1 - q * r2$$

3. r1, r2 = r2, r ----- {Interchange r1 and r2 with r2 and r}

4.
$$t = t1 - q * t2$$

5. $t1, t2 = t2, t$ ----- {Interchange t1 and t2 with t2 and t}

After completion of iteration if r1 = 1 => GCD(b, n) = 1 then inverse exist and it is stored in $t1(b^{-1})$ variable.

Example:

Let
$$b = 420$$
, $n = 69$

q	r1	r2	r	t1	t2	t
6	420	69	6	0	0	-6
11	69	6	3	1	-6	67
2	2	6	0	-6	67	-140
	3	0		67	-140	

Since, r1! = 1 multiplicative inverse of 420 doesn't exist when mod with 69.

Implementation:

```
import pandas as pd

def multiplicative_inverse(b,n):
    r1,r2,t1,t2 = b,n,0,1
    arrays = [[] for _ in range(7)]

while(r2>0):
    q = r1//r2
    arrays[0].append(q), arrays[1].append(r1), arrays[2].append(r2)

    r = r1 - q*r2
    r1,r2 = r2,r
    arrays[3].append(r), arrays[4].append(t1), arrays[5].append(t2)

    t = t1 - q*t2
    t1,t2 = t2,t
    arrays[6].append(t)
```

```
b_inverse = t1 if r1 == 1 else False
    arrays[0].append(None), arrays[1].append(r1), arrays[2].append(r2)
    arrays[3].append(None), arrays[4].append(t1), arrays[5].append(t2)
    arrays[6].append(None)
    table = pd.DataFrame({
        "q": arrays[0],
        "r1": arrays[1],
        "r2": arrays[2],
        "r": arrays[3],
        "t1": arrays[4],
        "t2": arrays[5],
        "t": arrays[6]
    })
    return b_inverse,table
b,n = map(int,input("Please enter the value of two numbers to find their m
ultiplicative inverse: ").strip().split(" "))
b_inverse,table = multiplicative_inverse(b,n)
if not b inverse:
    print("Inverse doesn't exist")
    print(f"Inverse of b = {b inverse+n if b inverse<0 else b inverse}")</pre>
table
```

Output:

Please enter the value of two numbers to find their multiplicative inverse: $95\ 77$ Inverse of b = 40

	q	r1	r2	r	t1	t2	t
0	1.0	95	77	18.0	0	1	-1.0
1	4.0	77	18	5.0	1	-1	5.0
2	3.0	18	5	3.0	-1	5	-16.0
3	1.0	5	3	2.0	5	-16	21.0
4	1.0	3	2	1.0	-16	21	-37.0
5	2.0	2	1	0.0	21	-37	95.0
6	NaN	1	0	NaN	-37	95	NaN

Please enter the value of two numbers to find their multiplicative inverse: 7000 85 Inverse doesn't exist

	q	r1	r2	r	t1	t2	t
0	82.0	7000	85	30.0	0	1	-82.0
1	2.0	85	30	25.0	1	-82	165.0
2	1.0	30	25	5.0	-82	165	-247.0
3	5.0	25	5	0.0	165	-247	1400.0
4	NaN	5	0	NaN	-247	1400	NaN