長庚大學資訊工程學系

Department of Computer Science and Information Engineering
Chang Gung University

腦血管疾病檢測系統 專題設計規格書

撰寫者: 資工三 B0929017 林峻陽

資工三 B0929032 許博森

資工三 B0929055 謝牧辰

資工三 B0843042 黃子庭

指導教授: 吳世琳 教授

中華民國 112年 1月-6月

目錄

1	系統簡介	3
	1.1 規格目的	3
	1.2 規格範圍說明	3
	1.3 參考資料	3
2	系統概述	5
	2.1 系統目標	5
	2.2 系統範圍	5
	2.3 系統架構	5
	2.4 軟/硬體架構及環境	6
	2.5 一般限制	6
3	設計內容	7
	3.1 作業程序設計說明	7
	3.2 輸入/輸出設計說明	8
4	設計規格回溯與版本管理	9
	4.1 設計規格回溯	9
	4.2 版本管理	9

1 系統簡介

1.1 規格目的

近年來腦血管疾病導致死亡率提升,其中腦中風占比極高,腦中風分成梗塞型及出血型腦中風,而出血型又分成腦內出血及蛛膜下腔出血;造成梗塞腦中風的主要原因包括大血管動脈硬化狹窄或阻塞、小血管阻塞、及心因性血栓,造成腦內出血的主要原因為小血管破裂,造成蜘蛛膜下腔出血的主要原因為腦動脈瘤破裂。

本系統結合電腦斷層的結果,規劃進行腦血管的偵測,提取腦血管後建構模型,經過切片處理後檢測血管之狹窄程度,搭配顯影劑變化圖,作為腦中風或壞死之風險評估輔助,以利醫護人員進行準確且有效的治療。

本文件為對於本系統之功能設計規劃,並針對功能內容進行解釋說明,使 得開發人員與維護人員理解本系統的相關開發標準和規範,以及標準規範的結 構內容,以便於其遵循運用。

1.2 規格範圍說明

本文件主要是透過建立模型的方式闡述系統設計的樣貌,藉由文字與圖表的相輔相成,在不考量技術開發層面的基礎下,針對系統的功能及性能,以及目標效果進行探討,以便在未來結合技術進行軟體開發時,能有明確的設計方向與架構,也以便在未來結合需求規格書,檢視設計與需求是否皆有完整切合。預計本文件的讀者包含:系統設計人員、專案管理人員、系統測試人員、系統開發人員、系統維護人員。

1.3 參考資料

- [1] Palágyi. K, et al.(2001). A Sequential 3D Thinning Algorithm and Its Medical Applications. *LNCS*, 2082
 - https://link.springer.com/chapter/10.1007/3-540-45729-1_42#Bib1
- [2] Tan IY, Demchuk AM, Hopyan J, et al. (2009). CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol, 30(3):525-31.
- [3] Palaniappan, Mirualini&Sakthi, S. M. Jai, et. al. (2015). 3D Coronary Artery Reconstruction using SVM. Research Journal of Applied Sciences, Engineering and Technology, 11:685-691.

 https://www.researchgate.net/publication/287388076_3D_Coronary_Artery Reconstruction using SVM

- [4] Garcia-Uceda Juarez, A., Selvan, R., Saghir, Z., de Bruijne, M. (2019). A Joint 3D UNet-Graph Neural Network-Based Method for Airway Segmentation from Chest CTs. LNIP, 11861 https://link.springer.com/chapter/10.1007/978-3-030-32692-0_67
- [5] Öman O, Mäkelä T, Salli E, et al. (2019). 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. *Eur Radiol Exp*, 3(1):8. https://link.springer.com/article/10.1186/s41747-019-0085-6
- [6] P. Mirunalini, C. Aravindan, et. a1(2019). Segmentation of Coronary Arteries from CTA axial slices using Deep Learning techniques. *TENCON*. https://ieeexplore.ieee.org/document/8929260
- [7] Yasuhiro Aoki, Hunter Goforth, et al. (2019). PointNetLK_Robust_amp_Efficient_Point_Cloud_Registratio n_Using_PointNet. *CVPR*. https://ieeexplore.ieee.org/document/8954359
- [8] He, Jiafa & Pan, Chengwei & Yang, Can & Zhang, Ming & Wang, Yang & Zhou, Xiaowei & Yu, Yizhou. (2020). Learning Hybrid Representations for Automatic 3D Vessel Centerline Extraction. 10. 1007/978-3-030-59725-2_3. https://www.researchgate.net/publication/346069413_Learning_Hybrid_Representations_for_Automatic_3D_Vessel_Centerline_Extraction
- [9] Fasen BACM, Heijboer RJJ, et al. (2020). CT Angiography in Evaluating Large-Vessel Occlusion in Acute Anterior Circulation Ischemic Stroke: Factors Associated with Diagnostic Error in Clinical Practice. AJNR Am J Neuroradiol, 41(4):607-611. https://pubmed.ncbi.nlm.nih.gov/32165362/
- [10] Pan J, Wu G, Yu J, et al. (2021). Detecting the Early Infarct Core on Non-Contrast CT Images with a Deep Learning Residual Network. *J Stroke Cerebrovasc Dis*, 30(6):105752.

 https://www.strokejournal.org/article/S1052-3057(21)00155-5/fulltext
- [11] Soun J, Chow D, Nagamine M, et al. (2021). Artificial Intelligence and Acute Stroke Imaging. *AJNR Am J Neuroradiol*, 42(1):2-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814792/
- [12] Mansour, R.F., Aljehane, N.O. (2021). An optimal segmentation with deep learning based inception network model for intracranial hemorrhage diagnosis. Neural Comput & Applic 33, 13831 13843.

[13] Luo X, Wang J, Liang X, et al. (2022). Prediction of cerebral aneurysm rupture using a point cloud neural network. *J NeuroIntervent Surg*, 0:1-8.

https://jnis.bmj.com/content/early/2022/04/08/neurintsurg-2022-018655

- [14] Nguyen TN, Abdalkader M, et al. (2022). Noncontrast Computed Tomography vs Computed Tomography Perfusion or Magnetic Resonance Imaging Selection in Late Presentation of Stroke With Large-Vessel Occlusion. *JAMA Neurol*, 79(1):93. https://jamanetwork.com/journals/jamaneurology/fullarticle/278585
- [15] Wei YC, Huang WY, et al. (2022). Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images. *Neuroimage Clin, 35*:103044. https://pubmed.ncbi.nlm.nih.gov/35597030/

2 系統概述

4

2.1 系統目標

本系統的整體設計目標如下:

- 透過腦血管的立體模型,經過切片處理,檢測血管的異常及阻塞位置, 並標示於模型中,以加快醫護人員確認手術位置。
- 透過腦血管的立體模型,根據血管路徑做彎曲程度分析,有效輔助醫護人員規劃手術策略。

2.2 系統範圍

本系統主要提供醫護人員,評估病患大血管(如:大腦前動脈(ACA)、大腦中動脈(MCA)、內頸動脈(ICA))阻塞的情況,輔助醫護人員快速找出病患腦部血管阻塞位置,並結合彎曲程度數據,及時制定出適合病患的手術策略,做最適當的治療。

2.3 系統架構

- 1. 腦血管模型: 匯入病患之腦部 CT 圖,提供系統透過顯影劑所顯現的血管 部分,進行立體腦血管模型的建構。
- 2. 阻塞位置:為找尋手術取血栓的位置,經由腦血管模型切片,檢測血管阻 塞區段,並標示於腦血管模型中。

3. 彎曲程度:為規劃適合病患之手術策略,透過腦血管模型路徑,檢測彎曲 角度、彎曲次數等,整合彎曲程度評估數據。

2.4 軟/硬體架構及環境

本系統提供使用者端之服務,提供系統使用者操作之平台。

● 開發工具與環境

項目名稱	用途簡述
Visual Studio Code	匯入資料進行檔案類型轉換等前置處理彙整模型切片並檢測阻塞位置尋訪血管路徑並觀測彎曲程度
Cloud Compare	呈現血管三維點雲模型
ITK-snap	三維圖像分割與描繪
Clinical trial processor	將病患影像進行去識別化

• 系統運行硬體環境

項目名稱	規格簡述
處理器	Intel® Core™ i7 處理器
作業系統	Windows 10 以上
記憶體	8.00GB 以上
顯示卡	NVIDIA GeForce RTX 版本以上

系統運行軟體環境本系統建置環境需建置於 Microsoft Windows 11 之系統。

2.5 一般限制

- 1. 需匯入有打顯影劑的 CT 檢測資料,以檢測血管位置
- 2. 在系統檢測前務必經過匿名化處理,以確保病患的個人資料受到保障

3 設計內容

3.1 作業程序設計說明

本系統的作業程序由活動圖為主,循序圖為輔搭配表示:

圖1:活動圖

圖2:循序圖

3.2 輸入/輸出設計說明

本系統的輸入與輸出由使用案例圖表示說明:

圖3:使用案例圖

- 輸入:使用者輸入將有打顯影劑的CT圖匯入系統,檔案類型應為醫學文件NIfTI或是DICOM。
- 輸出:系統經檢測處理之後,回傳以下資料:
 - 1. 具阻塞位置標記且劃分區域(如:大腦前動脈(ACA)、大腦中動脈(MCA)、內頸動脈(ICA))之立體血管點雲模型。
 - 2. 血管彎曲程度數據,包含彎曲次數、彎曲角度等。

4 設計規格回溯與版本管理

4.1 設計規格回溯

以下功能回溯圖為幫助日後方便撰寫相關文件架構:

圖 4: 系統功能回溯圖

4.2 版本管理

針對每次的討論後彙整他人之意見,檢視自身評估及需求分析之欠缺及改良後,用此表紀錄修改部分,以便於未來能更加方便確認系統各方面是否到位。

版本號	修改部分	修改內容
0	全文件	進行系統初步設計
1	全文件	功能整理並增加說明