

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

PARTAMENTO INFORMÁTICA

Estructuras Discretas - Técnicas de Demostración

Versión 220223

Capítulos

- 1 Lógica de proposiciones y de predicados
- Técnicas de demostración
- 3 Conjuntos y Funciones
- 4 Relaciones
- 5 Introducción a Grafos
- 6 Coloreo de Grafos
- 7 Grafos Rotulados
- B Digrafos, Redes y Flujos
- 9 Permutaciones

Inferencia

Teoremas

Definición: teorema

Una expresión que se ha demostrado como verdadera con respecto a axiomas, teoremas existentes.

¿Comó se demuestra un teorema?

Teoremas

Definición: teorema

Una expresión que se ha demostrado como verdadera con respecto a axiomas, teoremas existentes.

¿Comó se demuestra un teorema?

- Debemos construir un argumento lógico (una demostración)
- Queremos demostrar que si las hipótesis del teorema se cumplen . . .
- ... entonces podemos deducir la conclusión del teorema.

Para construir un demostración, primero tenemos que saber como derivar nuevas expresiones a partir de las conocidas – estas son las reglas de inferencia.

Son reglas que justifican los pasos de una demostración:

- Estas reglas se derivan de tautologías básicas de la forma " $A \Rightarrow B$ "
- Esto es porque si asumimos que A es V, entonces el único caso en que $A \Rightarrow B$ es V es cuando B también es V

Ley de Combinación

$$egin{array}{ccccc} p & \longleftarrow & & & & & & & & \\ \hline q & & & & & & & & & \\ \hline p \wedge q & \longleftarrow & & & & & & & & \\ \end{array}$$
 conclusión

Significado: Si p es V, y además q es V, entonces podemos inferir que $p \wedge q$ es V

Tautología: $p \land q \Rightarrow p \land q$

- Hipótesis:
 - Hoy comí tostadas (p)
 - Hoy tomé café (q)
- Conclusión:

Ley de Combinación

$$egin{array}{cccc} p & \longleftarrow & & \text{hipótesis} \\ \hline q & & \longleftarrow & & \text{conclusión} \\ \hline \end{array}$$

Significado: Si p es V, y además q es V, entonces podemos inferir que $p \wedge q$ es V

Tautología: $p \land q \Rightarrow p \land q$

- Hipótesis:
 - Hoy comí tostadas (p)
 - Hoy tomé café (q)
- Conclusión: hoy comí tostadas y tomé café $(p \land q)$

Ley de Simplificación

$$\frac{p \wedge q}{p}$$

Significado: Si $p \land q$ es **V**, podemos inferir que p debe ser **V** (y lo mismo para q)

Tautología: $p \land q \Rightarrow p$

Ejemplo:

■ Hipótesis: Tome café y tome té $(p \land q)$

Conclusión:

Ley de Simplificación

$$\frac{p \wedge q}{p}$$

Significado: Si $p \land q$ es **V**, podemos inferir que p debe ser **V** (y lo mismo para q)

Tautología: $p \land q \Rightarrow p$

Ejemplo:

■ Hipótesis: Tome café y tome té $(p \land q)$

■ Conclusión: tome café (p)

Ley de Adición

$$\frac{p}{p \lor q}$$

Significado: Si p es V, podemos inferir que $p \lor q$ debe ser V (q puede ser cualquier cosa)

Tautología: $p \Rightarrow p \lor q$

- Hipótesis: Le eché leche a mi café (p)
- Conclusión:

Reglas de Inferencia Ley de Adición

$$\frac{p}{p \lor q}$$

Significado: Si p es V, podemos inferir que $p \lor q$ debe ser V (q puede ser cualquier cosa)

Tautología: $p \Rightarrow p \lor q$

- Hipótesis: Le eché leche a mi café (p)
- \blacksquare Conclusión: hay leche o azúcar en mi café $(p \lor q)$

Reglas de Inferencia Modus Ponens

$$\frac{p}{p \Rightarrow q}$$

Significado: Si tanto la implicancia $(p \Rightarrow q)$ como su antecedente (p) son V, entonces la conclusión de la implicancia (q) tiene que ser V

Tautología:
$$(p \land (p \Rightarrow q)) \Rightarrow q$$

- Hipótesis:
 - Si hoy hay sol, entonces vamos a la playa $(p \Rightarrow q)$
 - Hoy hay sol (*p*)
- Conclusión:

Reglas de Inferencia Modus Ponens

$$\frac{p}{p \Rightarrow q}$$

Significado: Si tanto la implicancia $(p \Rightarrow q)$ como su antecedente (p) son V, entonces la conclusión de la implicancia (q) tiene que ser V

Tautología:
$$(p \land (p \Rightarrow q)) \Rightarrow q$$

- Hipótesis:
 - Si hoy hay sol, entonces vamos a la playa $(p \Rightarrow q)$
 - Hoy hay sol (*p*)
- Conclusión: vamos a la playa (*q*)

Reglas de Inferencia Modus Tollens

$$\begin{array}{c}
\neg q \\
p \Rightarrow q \\
\hline
\neg p
\end{array}$$

Significado: Similar a Modus Ponens, pero con respecto a la contrarecíproca (recordar que $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$)

Tautología:
$$(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p$$

- Hipótesis:
 - Si hoy hay sol, entonces vamos a la playa $(p \Rightarrow q)$
 - Hoy no fuimos a la playa $(\neg q)$
- Conclusión:

Reglas de Inferencia Modus Tollens

$$\frac{\neg q}{p \Rightarrow q}$$

Significado: Similar a Modus Ponens, pero con respecto a la contrarecíproca (recordar que $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$)

Tautología:
$$(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p$$

- Hipótesis:
 - Si hoy hay sol, entonces vamos a la playa $(p \Rightarrow q)$
 - Hoy no fuimos a la playa $(\neg q)$
- Conclusión: hoy no hizo sol $(\neg p)$

Silogismo Hipotético

$$\begin{array}{c}
p \Rightarrow q \\
q \Rightarrow r \\
\hline
p \Rightarrow r
\end{array}$$

Significado: la implicancia es transitiva

Tautología:
$$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$$

- Hipótesis:
 - Si hoy hay sol, entonces haremos un asado $(p \Rightarrow q)$
 - Si hacemos un asado hoy, entonces hay que ir al supermercado $(q \Rightarrow r)$
- Conclusión:

Silogismo Hipotético

$$p \Rightarrow q$$

$$q \Rightarrow r$$

$$p \Rightarrow r$$

Significado: la implicancia es transitiva

Tautología:
$$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$$

- Hipótesis:
 - Si hoy hay sol, entonces haremos un asado $(p \Rightarrow q)$
 - Si hacemos un asado hoy, entonces hay que ir al supermercado $(q \Rightarrow r)$
- Conclusión: si hoy hay sol, entonces hay que ir al supermercado $(p \Rightarrow r)$

Silogismo Disyuntivo

$$\frac{p \vee q}{\neg p}$$

Significado: Similar a Modus Ponens, dado que $p \lor q \equiv \neg p \Rightarrow q$

Tautología: $[(p \lor q) \land \neg p] \Rightarrow q$

- Hipótesis:
 - Le eché azúcar o leche a mi café $(p \lor q)$
 - No le eché azúcar a mi café (¬p)
- Conclusión:

Silogismo Disyuntivo

$$\frac{p \vee q}{\neg p}$$

Significado: Similar a Modus Ponens, dado que $p \lor q \equiv \neg p \Rightarrow q$

Tautología: $[(p \lor q) \land \neg p] \Rightarrow q$

- Hipótesis:
 - Le eché azúcar o leche a mi café $(p \lor q)$
 - No le eché azúcar a mi café (¬p)
- Conclusión: le eché leche a mi café (q)

Ley de Resolución

$$\frac{p \vee q}{\neg p \vee r}$$

$$\frac{q \vee r}{q \vee r}$$

Significado:

- Si p es \mathbf{V} , entonces r tiene que ser \mathbf{V} ... y si p es \mathbf{F} , entonces q tiene que ser \mathbf{V}
- Entonces, para que ambas hipótesis sean verdadera, no importa el valor de p, lo que necesitamos es que q o r sean V

Tautología:
$$[(p \lor q) \land (\neg p \lor r)] \Rightarrow (q \lor r)$$

- Hipótesis:
 - Hace calor o Pedro juega fútbol $(p \lor q)$
 - No hace calor o Juan esta en la playa $(\neg p \lor r)$
- Conclusión:

Ley de Resolución

$$\begin{array}{c}
p \lor q \\
\neg p \lor r \\
\hline
q \lor r
\end{array}$$

Significado:

- Si p es \mathbf{V} , entonces r tiene que ser \mathbf{V} ... y si p es \mathbf{F} , entonces q tiene que ser \mathbf{V}
- Entonces, para que ambas hipótesis sean verdadera, no importa el valor de p, lo que necesitamos es que q o r sean V

Tautología:
$$[(p \lor q) \land (\neg p \lor r)] \Rightarrow (q \lor r)$$

- Hipótesis:
 - Hace calor o Pedro juega fútbol $(p \lor q)$
 - No hace calor o Juan esta en la playa $(\neg p \lor r)$
- Conclusión: Pedro juega fútbol o Juan esta en la playa $(q \lor r)$

Ejemplo

Demuestre que el siguiente argumento lógico es válido:

En otras palabras, deben mostrar que es posible deducir la conclusión de las hipótesis, usando las reglas de inferencia.

Ejemplo

Demuestre que el siguiente argumento lógico es válido:

$$r \Rightarrow p$$

$$\neg r \Rightarrow s$$

$$s \Rightarrow t$$

$$t$$

En otras palabras, deben mostrar que es posible deducir la conclusión de las hipótesis, usando las reglas de inferencia.

Solución:

Solucion.					
1.	$\neg p \land q$	hipótesis	5.	$\neg r \Rightarrow s$	hipótesis
2.	$\neg p$	simplificación (linea 1)	6.	S	m. ponens (lineas 4, 5)
3.	$r \Rightarrow p$	hipótesis	7.	$s \Rightarrow t$	hipótesis
4.	$\neg r$	m. tollens (lineas 2, 3)	8.	t	m. ponens (lineas 6, 7)

.: El argumento es correcto.

$$\frac{\forall x P(x)}{P(c)}$$

Significado: Si P(x) es **V** para todo x, entonces P(c) es **V**, donde c es un valor particular de x

- Hipótesis: Todos los cursos en la UTFSM son difíciles $(\forall x P(x))$
- Conclusión: INF-152 es difícil (P(c))

$$P(c)$$
 para c arbitrario $\forall x P(x)$

Significado: Si podemos demostrar que P(c) es V, donde c es un elemento arbitrario, entonces P(x) es V, $\forall x$

Esta regla usualmente se aplica de la siguiente forma:

- Definir un elemento arbitrario c
- 2 Demostrar que P(c) es **V**. Como el elemento c es arbitrario, no pueden usar propiedades de c para demostrar que P(c) es **V**
- **3** Como c representa a cualquier elemento, podemos concluir que $\forall x P(x)$ es **V**

Ejemplo:

Si P(x): x > x - 1, ¿cuál de los dos argumentos lógicos es correcto?

$$\frac{P(3)}{\forall x P(x)}$$

$$\frac{P(n)}{\forall x P(x)}$$

La misma pregunta, donde C(p): persona p tiene cumpleaños

$$\frac{C(Maria)}{\forall p \, C(p)}$$

$$\frac{C(q)}{\forall p \, C(p)}$$

Ejemplo:

Si P(x): x > x - 1, ¿cuál de los dos argumentos lógicos es correcto?

$$\frac{P(n)}{\forall x P(x)}$$

La misma pregunta, donde C(p): persona p tiene cumpleaños

$$\frac{C(Maria)}{\forall p \, C(p)}$$

$$\frac{C(q)}{\forall p \, C(p)}$$

Ejemplo:

Si P(x): x > x - 1, ¿cuál de los dos argumentos lógicos es correcto?

$$\frac{P(n)}{\forall x P(x)}$$

La misma pregunta, donde C(p): persona p tiene cumpleaños

$$\frac{C(q)}{\forall p \, C(p)}$$

Reglas de Inferencia con Cuantificadores

EX UMBRA IN SOLEM

$$\exists x P(x)$$

 $P(c)$ para un elemento c

Significado: Si sabemos que existe un x tal que P(x) es \mathbf{V} , entonces le podemos dar nombre a este elemento

- Ojo que c debe ser una nueva variable, no puede ser una ya en uso en la demostración
- Generalmente, solo se sabe que existe, y no su valor. Como existe, se le puede dar nombre y continuar el argumento.

Ejemplo:

- Hipótesis: Alguien ha inscrito este ramo $(\exists x P(x))$
- Conclusión:

Particularización Existencial

Reglas de Inferencia con Cuantificadores

Particularización Existencial

$$\exists x P(x)$$
 $P(c)$ para un elemento c

Significado: Si sabemos que existe un x tal que P(x) es \mathbf{V} , entonces le podemos dar nombre a este elemento

- Ojo que c debe ser una nueva variable, no puede ser una ya en uso en la demostración
- Generalmente, solo se sabe que existe, y no su valor. Como existe, se le puede dar nombre y continuar el argumento.

- Hipótesis: Alguien ha inscrito este ramo $(\exists x P(x))$
- Conclusión: entonces, sea "Pedrito" ese alguien.

$$P(c)$$
 para un elemento c $\exists x P(x)$

Significado: Si conocemos un elemento c donde P(c) es \mathbf{V} , entonces podemos concluir que $\exists x P(x)$ es \mathbf{V}

- lacktriangle Hipótesis: Juan ha comido pizza (P(c))
- Conclusión:

$$P(c)$$
 para un elemento c $\exists x P(x)$

Significado: Si conocemos un elemento c donde P(c) es \mathbf{V} , entonces podemos concluir que $\exists x P(x)$ es \mathbf{V}

- Hipótesis: Juan ha comido pizza (P(c))
- Conclusión: Por lo tanto, alguien ha comido pizza $(\exists x P(x))$

Ejemplos

¿Es válido el siguiente argumento?

D(p): p es alumno de INF-152

C(p): p es alumno de Ing. Civil Informática

$$\frac{\forall p (D(p) \Rightarrow C(p))}{D(\mathsf{Juan})}$$
$$\frac{C(\mathsf{Juan})}{C(\mathsf{Juan})}$$

Ejemplos

¿Es válido el siguiente argumento?

D(p):p es alumno de INF-152

C(p): p es alumno de Ing. Civil Informática

$$\frac{\forall p \, (D(p) \Rightarrow C(p))}{D(\mathsf{Juan})}$$

Solución:

1. $\forall p (D(p) \Rightarrow C(p))$ hipótesis

2. $D(Juan) \Rightarrow C(Juan)$ part. universal, Juan es de tipo p

3. D(Juan) hipótesis

4. C(Juan) modus ponens, lineas 2 y 3

.: El argumento es correcto.

Ejercicio

Si los siguientes argumentos son correctos:

- Un alumno de este curso no ha bajado la guía de ejercicios
- Todos los alumnos aprobaron el primer certamen

Mostrar que lo anterior implica:

Alguien quien aprobó el primer certamen no bajó la guía de ejercicios

Ejercicio

Si los siguientes argumentos son correctos:

- Un alumno de este curso no ha bajado la guía de ejercicios
- Todos los alumnos aprobaron el primer certamen

Mostrar que lo anterior implica:

Alguien quien aprobó el primer certamen no bajó la guía de ejercicios

Primer paso: formalizar

- x : persona
- \blacksquare E(x): x es alumno de este curso
- $lackbox{ } G(x): x$ ha bajado la guía de ejercicios
- \blacksquare P(x): x ha aprobado el primer certamen

Ejemplo

x: persona

G(x): x ha bajado la guía de ejercicios

E(x): x es alumno de este curso

P(x): x ha aprobado el primer certamen

Solución: demostrar de que el argumento es válido

Entonces:

$$\exists x (E(x) \land \neg G(x))$$

Eiemplo

x: persona

G(x): x ha bajado la guía de ejercicios

E(x): x es alumno de este curso

P(x): x ha aprobado el primer certamen

Entonces:

 $\exists x (E(x) \land \neg G(x))$

 $\frac{\forall x (E(x) \Rightarrow P(x))}{\exists x (P(x) \land \neg G(x))}$

Solución: demostrar de que el argumento es válido

 $\exists x (E(x) \land \neg G(x))$ hipótesis

2. $E(a) \wedge \neg G(a)$ part, existencial de linea 1, a es alumno

E(a)

simplificación de linea 2

 $\forall x (E(x) \Rightarrow P(x))$ hipótesis

5. $E(a) \Rightarrow P(a)$

part, universal de linea 4

6. P(a)

modus ponens de lineas 3, 5

7. $\neg G(a)$

simplificación de linea 2

 $P(a) \wedge \neg G(a)$

combinación de linea 6.7

9. $\exists x (P(x) \land \neg G(x))$

gen. existencial de linea 8

: El argumento es correcto.

Técnicas de demostración

Teoremas

Definición: teorema

Una expresión que se ha demostrado como verdadera con respecto a axiomas, teoremas existentes.

- Muchos teoremas se escriben como implicaciones: si $p_1, p_2, p_3, \dots p_n$ son todas verdaderas (hipótesis), entonces q también lo es
- En otras palabras, queremos demostrar teoremas de la forma

$$p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \Rightarrow q$$

Terminología

Definición: conjetura

Expresión cuyo valor de verdad es desconocido. Si podemos demostrar una conjetura, entonces esta se convierte en teorema

Definición: lema

Teorema sencillo usado en la demostración de otros teoremas (un resultado útil, pero no suficientemente "interesante" como para ponerle nombre)

Definición: corolario

Proposición que se puede establecer directamente a partir de un teorema ya demostrado

Técnicas de Demostración

Para teoremas de la forma $p \Rightarrow q$:

- Demostración Directa
- Demostración Indirecta
- Demostración Vacua
- Demostración Trivial
- Reducción al Absurdo (también conocida como "Demostración por Contradicción")
- Demostración por Casos
- Demostración de Equivalencia

Demostración Directa

Para demostrar $p \Rightarrow q$ de forma directa:

- 1 Asumir que p es V
- 2 Usar las reglas de inferencia y teoremas ya demostrados para demostrar que q también debe ser ${\bf V}$

Ejemplo: Demostrar que si n es un entero impar, entonces n^2 es un entero impar. Notar que:

- un entero n es par si $\exists k$ tal que $n = 2k \dots$
- \blacksquare ... y es impar si $\exists k$ tal que n = 2k + 1

Demostrar que si n es un entero impar, entonces n^2 es un entero impar. Demostración:

1 Primero, SIEMPRE especificar lo que se va a demostrar

- 1 Primero, SIEMPRE especificar lo que se va a demostrar
 - p: n es un entero impar
 - $q: n^2$ es un entero impar
 - Queremos demostrar que $p \Rightarrow q$
- 2 Asumir que p es V.

- 1 Primero, SIEMPRE especificar lo que se va a demostrar
 - \blacksquare p:n es un entero impar
 - \blacksquare $q:n^2$ es un entero impar
 - Queremos demostrar que $p \Rightarrow q$
- 2 Asumir que p es V. Es decir, n es impar, lo que significa que $\exists k$ tal que n = 2k + 1
- \blacksquare Ahora, tratar de deducir que q es V de lo que ya sabemos:

Demostrar que si n es un entero impar, entonces n^2 es un entero impar. Demostración:

- 1 Primero, SIEMPRE especificar lo que se va a demostrar
 - p: n es un entero impar
 - $q: n^2$ es un entero impar
 - Queremos demostrar que $p \Rightarrow q$
- Asumir que p es V. Es decir, n es impar, lo que significa que $\exists k$ tal que n = 2k + 1
- Ahora, tratar de deducir que q es V de lo que ya sabemos:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2\ell + 1$$

4 Conclusión:

Demostrar que si n es un entero impar, entonces n^2 es un entero impar. Demostración:

- 1 Primero, SIEMPRE especificar lo que se va a demostrar
 - p: n es un entero impar
 - $q: n^2$ es un entero impar
 - Queremos demostrar que $p \Rightarrow q$
- Asumir que p es V. Es decir, n es impar, lo que significa que $\exists k$ tal que n = 2k + 1
- 3 Ahora, tratar de deducir que q es V de lo que ya sabemos:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 = 2\ell + 1$$

Conclusión: como $\exists \ell$ tal que $n^2=2\ell+1$, podemos concluir que n^2 es entero impar si n es impar

Como este es un teorema simple, bastó con un poco de álgebra para inferir q, pero usualmente se deben aplicar reglas de inferencia

Demostración Indirecta

Para demostrar $p \Rightarrow q$ de forma indirecta:

- 1 Como $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$ (contrarecíproca)
- 2 Asumir que $\neg q$ es **V**
- Usar las reglas de inferencia y teoremas ya demostrados para demostrar que $\neg p$ también debe ser **V**

Es decir, una demostración indirecta de $p\Rightarrow q$ es una demostración directa de $\neg q\Rightarrow \neg p$

Ejemplo: Demostrar que si 3n+2 es entero impar, entonces n es entero impar

- Especificar lo que se va a demostrar
 - p: 3n+2 es un entero impar
 - \blacksquare q:n es un entero impar
 - Queremos demostrar que $\neg q \Rightarrow \neg p$

- Especificar lo que se va a demostrar
 - p: 3n+2 es un entero impar
 - \blacksquare q:n es un entero impar
 - Queremos demostrar que $\neg q \Rightarrow \neg p$
- 2 Asumir que $\neg q$ es V. Es decir, n es par, lo que significa que $\exists k$ tal que n=2k

- 1 Especificar lo que se va a demostrar
 - p: 3n+2 es un entero impar
 - \blacksquare q:n es un entero impar
 - Queremos demostrar que $\neg q \Rightarrow \neg p$
- Asumir que $\neg q$ es **V**. Es decir, n es par, lo que significa que $\exists k$ tal que n=2k
- 3 Se sigue entonces que $3n+2=3(2k)+2=6k+2=2(3k+1)=2\ell$

- 1 Especificar lo que se va a demostrar
 - p: 3n+2 es un entero impar
 - \blacksquare q:n es un entero impar
 - Queremos demostrar que $\neg q \Rightarrow \neg p$
- Asumir que $\neg q$ es **V**. Es decir, n es par, lo que significa que $\exists k$ tal que n=2k
- 3 Se sigue entonces que $3n+2=3(2k)+2=6k+2=2(3k+1)=2\ell$
- 4 Conclusión: como $\exists \ell$ tal que $3n+2=2\ell$, podemos concluir que 3n+2 es entero par (entonces, $\neg p$ es \mathbf{V})

Demostración Vacua

Para demostrar $p \Rightarrow q$ de forma vacua:

1 ¿Que sucede si *p* siempre es **F**?

Demostración Vacua

Para demostrar $p \Rightarrow q$ de forma vacua:

- 1 ¿Que sucede si p siempre es **F**?
- **2** En ese caso, $p \Rightarrow q$ es siempre **V**, sin importar el valor de q
- f 3 Entonces, si podemos demostrar que p es siempre ${f F}$, hemos demostrado que $p\Rightarrow q$ por vacuidad

Ejemplo: Muestre que la proposición P(0) es \mathbf{V} , donde P(n) es el predicado "si n>1, entonces $n^2>n$ "

Demostración Vacua

Para demostrar $p \Rightarrow q$ de forma vacua:

- 1 ¿Que sucede si p siempre es \mathbf{F} ?
- **2** En ese caso, $p \Rightarrow q$ es siempre **V**, sin importar el valor de q
- f 3 Entonces, si podemos demostrar que p es siempre ${f F}$, hemos demostrado que $p\Rightarrow q$ por vacuidad

Ejemplo: Muestre que la proposición P(0) es \mathbf{V} , donde P(n) es el predicado "si n>1, entonces $n^2>n$ "

Demostración:

- **1** P(0) es la implicación "si 0 > 1, entonces $0^2 > 0$ ", donde p : 0 > 1 y $q : 0^2 > 0$
- 2 Conclusión: como p siempre es \mathbf{F} , P(0) es \mathbf{V} de forma vacua

Demostración Trivial

Para demostrar $p \Rightarrow q$ de forma trivial:

- 1 ¿Que sucede si q siempre es \mathbf{V} ?
- **2** En ese caso, $p \Rightarrow q$ es siempre **V**, sin importar el valor de p
- f 3 Entonces, si podemos demostrar que q es siempre ${f V}$, hemos demostrado que $p\Rightarrow q$ por trivialidad

Ejemplo: Demuestre que si n es la suma de dos números primos, entonces n es par o impar

Demostración Trivial

Para demostrar $p \Rightarrow q$ de forma trivial:

- 1 ¿Que sucede si q siempre es \mathbf{V} ?
- **2** En ese caso, $p \Rightarrow q$ es siempre **V**, sin importar el valor de p
- f 3 Entonces, si podemos demostrar que q es siempre ${f V}$, hemos demostrado que $p\Rightarrow q$ por trivialidad

Ejemplo: Demuestre que si n es la suma de dos números primos, entonces n es par o impar

Demostración:

- 1 p:n es la suma de dos números primos, y q:n es par o impar
- Pero impar $\equiv \neg$ par, así que q siempre es **V**
- **3** Conclusión: como q siempre es V, $p \Rightarrow q$ es trivialmente V

Reducción al Absurdo

Demostración por Contradicción

Caso simple: demostrar que p es \mathbf{V} por reducción al absurdo

- **A**sumir que $\neg p$ es **V**
- lacktriangle Usar las reglas de inferencia y teoremas ya demostrados para llegar a una contradicción, es decir, $\neg p \Rightarrow {f F}$
- Si $\neg p \Rightarrow$ **F** es **V**, esto significa que $\neg p$ es **F** (es decir, nuestro supuesto inicial fue incorrecto), y que entonces p es **V**

Ejemplo: Muestre que $\sqrt{2}$ es número irracional

Reducción al Absurdo

Demostración por Contradicción

Caso simple: demostrar que p es \mathbf{V} por reducción al absurdo

- **A**sumir que $\neg p$ es **V**
- lacktriangle Usar las reglas de inferencia y teoremas ya demostrados para llegar a una contradicción, es decir, $\neg p \Rightarrow {f F}$
- Si $\neg p \Rightarrow$ **F** es **V**, esto significa que $\neg p$ es **F** (es decir, nuestro supuesto inicial fue incorrecto), y que entonces p es **V**

Ejemplo: Muestre que $\sqrt{2}$ es número irracional

Demostración:

- $\mathbf{1}$ $p:\sqrt{2}$ es número irracional. Queremos demostrar p por contradicción
- 2 Asumir que $\neg p$ es \mathbf{V} , es decir, $\sqrt{2}$ es número racional
- Si $\sqrt{2}$ es número racional, entonces existen dos enteros a, b tales que $\sqrt{2} = \frac{a}{b}$, donde a, b no tienen factores comunes
- 4 ...continúa

Reducción al Absurdo Ejemplo

Ejemplo: Muestre que $\sqrt{2}$ es número irracional

Reducción al Absurdo Ejemplo

Ejemplo: Muestre que $\sqrt{2}$ es número irracional

Demostración:

- Como $\sqrt{2}=\frac{a}{b}$, tenemos que $2=\frac{a^2}{b^2}$, así que $a^2=2b^2$, lo que implica que a^2 es un número par
- **5** Teo. 1: si n^2 es par, entonces n es par (propuesto: demostrar)
- **6** Usando Teo. 1, tenemos que a es par, es decir, $\exists c$ tal que a = 2c
- **7** Entonces, $2b^2 = (2c)^2$, por lo que $b^2 = 2c^2$
- B Usando Teo. 1, tenemos que b también es par
- Esto es una contradicción, nuestro supuesto en el paso 3 es que a y b no tienen factores comunes
- To Conclusión: como $\neg p$ es **F** por contradicción, podemos concluir que $\sqrt{2}$ es irracional

Reducción al Absurdo Demostración por Contradicción

Veamos como demostrar que $p \Rightarrow q$ es **V** por reducción al absurdo

- Asumir que $\neg(p \Rightarrow q)$ es **V**, es decir, que $p \land \neg q$ es **V**
- Usar las reglas de inferencia y teoremas ya demostrados para llegar a una contradicción, es decir, $p \land \neg q \Rightarrow \mathbf{F}$
- Una contradicción significa que nuestro supuesto de que $\neg q$ es **V** es incorrecto. Entonces, como q es **V**, tenemos que $p \Rightarrow q$ es **V**

Ejemplo: Mostrar que si m es un entero par, entonces m+7 es impar

Reducción al Absurdo Ejemplo

Ejemplo: Mostrar que si m es un entero par, entonces m+7 es impar

Reducción al Absurdo Ejemplo

Ejemplo: Mostrar que si m es un entero par, entonces m+7 es impar

Demostración:

- **1** p:m es entero par, q:m+7 es entero impar. Quiero demostrar $p\Rightarrow q$ por contradicción
- **2** Asumir que $p \land \neg q$ es **V**, es decir, $\exists k, \ell$ tal que m = 2k y $m + 7 = 2\ell$
- 3 Si $m+7=2\ell$, entonces $m=2\ell-7=2\ell-8+1=2(\ell-4)+1=2h+1$. Es decir, m es impar
- 4 Esto contradice nuestro supuesto inicial, entonces fue incorrecto asumir que $\neg q$ es **V**
- **5** Conclusión: como q es ${\bf V}$, podemos concluir que $p\Rightarrow q$ es ${\bf V}$

Demostración por Casos

¿Cómo podemos demostrar algo de la forma $(p_1 \lor p_2 \lor \cdots \lor p_n) \Rightarrow q$?

- $p_1, p_2, \dots p_n$ representan distintos casos
- Usemos equivalencias lógicas: $(n_1 \ / \ n_2 \ / \ ... \ / \ n_n) \Rightarrow a = (n_1 \Rightarrow a) \land (n_2 \Rightarrow a)$

$$(p_1 \lor p_2 \lor \cdots \lor p_n) \Rightarrow q \equiv (p_1 \Rightarrow q) \land (p_2 \Rightarrow q) \land \dots (p_n \Rightarrow q)$$

■ Es decir, si demostramos $p_i \Rightarrow q$, $\forall i = 1 \dots n$ (usando las técnicas que quieran), hemos demostrado la implicación original

Ejemplo: Demostrar que si x, y son números reales, entonces $\max(x, y) + \min(x, y) = x + y$

Demostración por Casos

¿Cómo podemos demostrar algo de la forma $(p_1 \lor p_2 \lor \cdots \lor p_n) \Rightarrow q$?

- $p_1, p_2, \dots p_n$ representan distintos casos
- Usemos equivalencias lógicas:

$$(p_1 \vee p_2 \vee \cdots \vee p_n) \Rightarrow q \equiv (p_1 \Rightarrow q) \wedge (p_2 \Rightarrow q) \wedge \dots (p_n \Rightarrow q)$$

■ Es decir, si demostramos $p_i \Rightarrow q$, $\forall i = 1 \dots n$ (usando las técnicas que quieran), hemos demostrado la implicación original

Ejemplo: Demostrar que si x, y son números reales, entonces $\max(x, y) + \min(x, y) = x + y$

Demostración:

- Identificar casos que sirvan para hacer la demostración. Por ejemplo, si hay mínimos y máximos, es útil saber cual número es mayor/menor, por lo que definiré: $p_1 : x < y$, $p_2 : x > y$, $p_3 : x = y$
- Quiero demostrar que si $(p_1 \Rightarrow q) \land (p_2 \Rightarrow q) \land (p_3 \Rightarrow q)$, donde $q : \max(x, y) + \min(x, y) = x + y$ sigue ...

Demostración por Casos Ejemplo

Demostrar que $(p_1 \Rightarrow q) \land (p_2 \Rightarrow q) \land (p_3 \Rightarrow q)$

Demostración por Casos Ejemplo

Demostrar que $(p_1 \Rightarrow q) \land (p_2 \Rightarrow q) \land (p_3 \Rightarrow q)$

- Caso 1: $(x < y \Rightarrow q)$
 - 11 Si x < y, sabemos que $\max(x, y) = y$, $\min(x, y) = x$ (def. de *max*, *min*)
 - Entonces, max(x,y) + min(x,y) = y + x = x + y (conmut. +)
 - 3 Conclusión: $(x < y \Rightarrow q)$, por demostración directa
- Caso 2: $(x > y \Rightarrow q)$. Demostración similar a la anterior, solo que $\max(x,y) = x$ y $\min(x,y) = y$
- \blacksquare Caso 3: $(x = y \Rightarrow q)$
 - 11 Si x = y, sabemos que max(x,y) = x = y, min(x,y) = x = y

 - 3 Conclusión: $(x = y \Rightarrow q)$, por demostración directa

Conclusión: como $(p_1 \Rightarrow q) \land (p_2 \Rightarrow q) \land (p_3 \Rightarrow q)$ es **V**, podemos concluir que $p \Rightarrow q$ es

Demostración de Equivalencia

Para demostrar cosas de la forma $p \Leftrightarrow q$

- Podemos usar la tautología $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
- Usando las técnicas de demostración que quieran, deben demostrar las dos implicaciones para demostrar que $p \Leftrightarrow q$ es V

Ejemplo: Demostrar que el entero n es impar si, y solo si, n^2 es impar

Demostración de Equivalencia

Para demostrar cosas de la forma $p \Leftrightarrow q$

- Podemos usar la tautología $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
- Usando las técnicas de demostración que quieran, deben demostrar las dos implicaciones para demostrar que $p \Leftrightarrow q$ es **V**

Ejemplo: Demostrar que el entero n es impar si, y solo si, n^2 es impar

- **1** p:n es impar, $q:n^2$ es impar, queremos demostrar que $p \Leftrightarrow q$
- **2** Ya demostramos que $p \Rightarrow q$, ver ejemplo de *Demostración Directa*
- **3** Falta probar que $q \Rightarrow p$

Ejemplo

Demostrar que n^2 es impar $\Rightarrow n$ es impar $(q \Rightarrow p)$

Ejemplo

Demostrar que n^2 es impar $\Rightarrow n$ es impar $(q \Rightarrow p)$

- Intento 1: demostración directa
 - Asumir que n^2 es impar, demostrar que n es impar
 - Si n^2 es impar, significa que $\exists k$ tal que $n^2 = 2k + 1$
 - 3 Entonces, $n = \pm \sqrt{2k+1} \dots$ ¿y que mas podemos inferir?

Ejemplo

Demostrar que n^2 es impar $\Rightarrow n$ es impar $(q \Rightarrow p)$

- Intento 1: demostración directa
 - 1 Asumir que n^2 es impar, demostrar que n es impar
 - Si n^2 es impar, significa que $\exists k$ tal que $n^2 = 2k + 1$
 - Entonces, $n=\pm\sqrt{2k+1}\dots$ ¿y que mas podemos inferir? esto parece ser un camino sin salida, cambiemos de técnica
- Intento 2: demostración indirecta
 - 1 Asumir que n es par, demostrar que n^2 es par
 - Si *n* es par, entonces $\exists k$ tal que n = 2k
 - 3 Entonces, $n^2=(2k)^2=2(2k^2)=2\ell$, es decir, n^2 es número par
 - 4 Conclusión: hemos demostrado que la contrareciproca de $q \Rightarrow p$ es ${\bf V}$, así que la implicación original es ${\bf V}$

Conclusión: como $p \Rightarrow q$ y $q \Rightarrow p$ son **V**, sabemos que $p \Leftrightarrow q$ es **V**

OJO: Si no logran completar una demostración, intenten con otra técnica, otra formalización de p, q, otros casos, etc.

Técnicas de Demostración

Para teoremas con cuantificadores:

- Para demostrar que $\forall x P(x)$ es **V**:
 - **1** Aplicar particularización universal: P(c), donde c es elemento arbitrario
 - f 2 Demostrar que P(c) es f V, tal como lo hemos hecho en las diapos anteriores
 - **3** Generalizar el resultado para concluir que $\forall x P(x)$ es **V**
- Demostración de Existencia
- Demostración de Unicidad
- Contraejemplos

Demostración de Existencia

Existen dos estrategias para demostrar teoremas de la forma $\exists x P(x)$:

- **1** Encontrar un elemento a tal que P(a) es **V**. No siempre se conoce el valor de a, solo hay que demostrar que existe
- **2** Demostrar que tal elemento no existe, es decir, que $\forall x \neg P(x)$ es **V**

Ejemplo: Muestre que existen dos números irracionales x, y tales que x^y es racional

Demostración de Existencia

Existen dos estrategias para demostrar teoremas de la forma $\exists x P(x)$:

- **1** Encontrar un elemento a tal que P(a) es **V**. No siempre se conoce el valor de a, solo hay que demostrar que existe
- **2** Demostrar que tal elemento no existe, es decir, que $\forall x \neg P(x)$ es **V**

Ejemplo: Muestre que existen dos números irracionales x, y tales que x^y es racional

- 1 Del ejemplo de *Reducción al Absurdo*, sabemos que $\sqrt{2}$ es número irracional
- **2** Consideremos el número $\sqrt{2}^{\sqrt{2}}$:
 - Caso 1: si $\sqrt{2}^{\sqrt{2}}$ es racional, hemos encontrado valores de x, y que hacen que el teorema sea verdadero
 - Caso 2: ¿y si $\sqrt{2}^{\sqrt{2}}$ es irracional?

Demostración de Existencia Ejemplo

Ejemplo: Muestre que existen dos números irracionales x, y tales que x^y es racional

- Sabemos que $\sqrt{2}$ es número irracional
- Caso 1: si $\sqrt{2}^{\sqrt{2}}$ es racional, hemos encontrado valores de x, y que hacen que la expresión sea verdadera
- Caso 2: ¿y si $\sqrt{2}^{\sqrt{2}}$ es irracional?

Demostración de Existencia Ejemplo

Ejemplo: Muestre que existen dos números irracionales x, y tales que x^y es racional

Demostración:

- Sabemos que $\sqrt{2}$ es número irracional
- Caso 1: si $\sqrt{2}^{\sqrt{2}}$ es racional, hemos encontrado valores de x, y que hacen que la expresión sea verdadera
- Caso 2: ¿y si $\sqrt{2}^{\sqrt{2}}$ es irracional? Tomemos $x = \sqrt{2}^{\sqrt{2}}$ e $y = \sqrt{2}$. Entonces, $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}.\sqrt{2}} = \sqrt{2}^2 = 2$, que claramente es racional

Conclusión: en ambos casos encontramos valores de x, y irracionales tales que x^y es racional, así que la expresión es ${\bf V}$

Demostración de Unicidad

Algunos teoremas afirman la existencia de un único elemento con cierta propiedad $(\exists!xP(x))$. Para demostrar esto, debemos probar dos cosas:

- 1 Existencia: existe un elemento que cumple la condición
- 2 Unicidad: este elemento es único

Esto es lo mismo que demostrar $\exists x (P(x) \land \forall y (y \neq x \Rightarrow \neg P(y)))$

Técnica común para estas demostraciones:

- Demostrar que $\exists x P(x)$
- Asumir que que existe $y \neq x$ tal que P(y) sea V, y llegar a una contradicción

Demostración de Unicidad Ejemplo

Ejemplo: si a y b son números reales y $a \neq 0$, entonces existe un único número real r tal

que ar + b = 0

Demostración de Unicidad Ejemplo

Ejemplo: si a y b son números reales y $a \neq 0$, entonces existe un único número real r tal que ar+b=0

Demostración:

Existencia: es fácil ver que $r=-\frac{b}{a}$ es la solución de la ecuación ar+b=0, así que existe un número real r tal que ar+b=0

Demostración de Unicidad Ejemplo

Ejemplo: si a y b son números reales y $a \neq 0$, entonces existe un único número real r tal que ar+b=0

Demostración:

- Existencia: es fácil ver que $r=-\frac{b}{a}$ es la solución de la ecuación ar+b=0, así que existe un número real r tal que ar+b=0
- Unicidad:
 - 1 Asumir que existe un número real $s \neq r$ tal que as + b = 0
 - Como ar + b = 0 y as + b = 0, tenemos que ar + b = as + b
 - \blacksquare Restando b a ambos lados, nos queda que ar = as
 - 4 Como ar = as y $a \neq 0$ (parte de la premisa), la única posibilidad es que r = s, lo que contradice nuestro supuesto inicial
 - **5** Conclusión: no existe $s \neq r$ tal que as + b = 0, es decir, si $s \neq r$, entonces $as + b \neq 0$

Conclusión: como hemos demostrado la existencia y unicidad de r, podemos concluir que la expresión es ${\bf V}$

Contraejemplos

Quieren demostrar una expresión de la forma $\forall x P(x)$

- Pero encuentran un valor de x tal que P(x) es \mathbf{F} . . .
- ... por lo que $\forall x P(x)$ es **F**. Este x es un *contraejemplo*

Ejemplo: para todo n, si n es entero impar, entonces $\frac{n+1}{2}$ también es entero impar

Demostración:

Existe un n_0 tal que n_0 es impar pero $\frac{n_0+1}{2}$ sea **par**?

Contraejemplos

Quieren demostrar una expresión de la forma $\forall x P(x)$

- Pero encuentran un valor de x tal que P(x) es \mathbf{F} ...
- ... por lo que $\forall x P(x)$ es **F**. Este x es un *contraejemplo*

Ejemplo: para todo n, si n es entero impar, entonces $\frac{n+1}{2}$ también es entero impar

Demostración:

- **Existe** un n_0 tal que n_0 es impar pero $\frac{n_0+1}{2}$ sea **par**?
- ¿Qué tal $n_0 = 7$? Es fácil ver que $\frac{n_0+1}{2} = \frac{8}{2} = 4$, que es par
- Conclusión: la expresión es falsa

Recomendación: antes de intentar demostrar un \forall , intenten ver si existe algún contraejemplo. **Importante**: no pueden demostrar que un \forall es \mathbf{V} usando solo ejemplos