Solutions to Problem Set 2

1. Given: sample space $S = \{(i, j) : i, j = 1, 2, ..., 6\}$ Events:

$$A_k = \{(i, j) : i + j \le k\}; k = 2, ..., 12$$

 $B_k = \{(i, j) : i + j > k\}; k = 2, ..., 12$

$$\Rightarrow \overline{A}_k = B_k \text{ and } \overline{B}_k = A_k$$

(Loose) Definition: a field of sets is a set of subsets that contains all of its complements (i.e. closed under complements) and unions (i.e. closed under union).

(a) A set of subsets \mathcal{K}_1 of the power set of S is given. Do they form a field of sets?

$$\mathcal{K}_1 = \{\emptyset, A_2, B_2, S\}$$

 \mathcal{K}_1 is a field of sets provided that the set of subsets contains all its complements and unions.

Complements in \mathcal{K}_1 :

$$\overline{\emptyset} = S \in \mathcal{K}_1; \overline{A_2} = B_2 \in \mathcal{K}_1; \overline{S} = \emptyset \in \mathcal{K}_1; \overline{B_2} = A_2 \in \mathcal{K}_1$$

Unions in \mathcal{K}_1 :

$$\emptyset \cup A_2 = A_2 \in \mathcal{K}_1; \ \emptyset \cup B_2 = B_2 \in \mathcal{K}_1; \ \emptyset \cup S = S \in \mathcal{K}_1; B_2 \cup A_2 = S \in \mathcal{K}_1; \ S \cup B_2 = S \in \mathcal{K}_1; \ A_2 \cup S = S \in \mathcal{K}_1;$$

The set \mathcal{K}_1 contains all complements and unions. Thus it is a field of sets.

(b) $\mathcal{K}_2 = \{A_{12}, B_{12}\}$

Because A_{12} is equal to the sample space und B_{12} is an empty set, and because S and \emptyset form the smallest possible field of sets, \mathcal{K}_2 is a field of sets. $(\emptyset \cup S = S \in \mathcal{K}_2; \overline{\emptyset} = S \in \mathcal{K}_2; \overline{S} = \emptyset \in \mathcal{K}_2)$

- (c) $\mathcal{K}_3 = \{A_{11}, B_{11}\}$ \mathcal{K}_3 is not a field of sets, as for example $A_{11} \cup B_{11} = S$ is not an element of the set \mathcal{K}_3 .
- (d) $\mathcal{K}_4 = \{A_k, B_l : k, l = 2, ..., 12\}$ \mathcal{K}_4 is not a field of sets, as for example $A_2 \cup B_{11} = \{(1, 1); (6, 6)\}$ is not an element of the set \mathcal{K}_4 .

2. We have for $\overline{A \cup B} = \overline{A} \cap \overline{B}$:

A	В	\overline{A}	\overline{B}	$A \cup B$	$\overline{A \cup B}$	$\overline{A} \cap \overline{B}$
Т	Т		F	Т	F	F
Τ	F	F	Γ	Т	\mathbf{F}	F
F	Γ	Т	F	Т	F	F
F	F	Т	Т	F	${ m T}$	${ m T}$

and for $\overline{A \cap B} = \overline{A} \cup \overline{B}$:

A	В	\overline{A}	\overline{B}	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
Т	Т	F	F	Т	F	F
Τ	F	F	Т	F	Τ	${ m T}$
F	Т	Τ	F	F	Τ	${ m T}$
F	F	Τ	Т	F	Т	${ m T}$

3. (a) sample space: $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$

event space: $\Upsilon = \{A : A \subset S\}$

set function: $P(A) = \sum_{x \in A} x/36$ for $A \in \Upsilon$.

- i $P(A) \ge 0$ because every A is a nonempty subset of S containing only x > 0 (non-negativity)
- ii $P(S) = \sum_{x \in S} x/36 = 1$ (standardization)
- iii Holds by assumption
- (b) sample space: $S = [0, \infty)$

event space: $\Upsilon = \{A : A \text{ is an interval subset of } S \vee \text{any set formed by unions, intersections, or complements of these interval subsets}\}$

set function: $P(A) = \int_{x \in A} e^{-x} dx$ for $A \in \Upsilon$.

- i $P(A) \ge 0$ because A contains at least one interval of length zero, hence the equality. Otherwise, an integral over a positive function is positive.
- ii $P(S) = \int_0^\infty e^{-x} dx = |-e^{-x}|_0^\infty = 1$
- iii Holds by assumption
- (c) sample space: $S = \{x : x \text{ is a positive integer } (1,2,3,...)\}$ event space: $\Upsilon = \{A : A \subset S\}$

set function: $P(A) = \sum_{x \in A} x^2 / 10^5$ for $A \in \Upsilon$.

Not a probability set function because $10^5 \in S$ and therefore $P(S) \neq 1$

(d) sample space: S = (2, 5)

event space: $\Upsilon = \{A: A \text{ is an interval subset of } S \vee \text{any set formed by unions, intersections, or complements of these interval subsets}\}$

set function: $P(A) = \int_{x \in A} \frac{1}{3} dx$ for $A \in \Upsilon$.

- i $P(A) \ge 0$ because A contains at least one interval of length zero, hence the equality. Otherwise, an integral over a positive function is positive.
- ii $P(S) = \int_2^5 \frac{1}{3} dx = |\frac{1}{3}x|_2^5 = \frac{5}{3} \frac{2}{3} = 1$
- iii Holds by assumption
- 4. (a) $A_1 A_2 = A_1 \cap \bar{A}_2$

Given: $(A_1 \cap \bar{A}_2) \& (A_1 \cap A_2)$ are disjoint. Therefore: $P((A_1 \cap \bar{A}_2) \cup (A_1 \cap A_2)) = P(A_1 \cap \bar{A}_2) + P(A_1 \cap A_2)$

$$\Rightarrow P(A_1) = P\left([A_1 \cap \bar{A}_2] \cup [A_1 \cap A_2]\right)$$

$$P(A_1) = P(A_1 \cap \bar{A}_2) + P(A_1 \cap A_2) \text{ (disjoint sets)}$$

$$\implies P(A_1 \cap \bar{A}_2) = P(A_1 - A_2) = P(A_1) - P(A_1 \cap A_2)$$

- (b) Given:
- $(1) \quad [A_1 \cap \bar{A}_2] \cap [\bar{A}_1 \cap A_2] = \emptyset$
- (2) $[A_1 \cap \bar{A}_2] \cup [\bar{A}_1 \cap A_2] = [A_1 \cup A_2] [A_1 \cap A_2]$

$$\implies P\left(\underbrace{[A_{1} \cup A_{2}] - [A_{1} \cap A_{2}]}_{\text{use (2)}}\right) = P\left[[A_{1} \cap \bar{A}_{2}] \cup [\bar{A}_{1} \cap A_{2}]\right]$$

$$= P(A_{1} \cap \bar{A}_{2}) + P(\bar{A}_{1} \cap A_{2}) \text{ (because of 1)}$$

$$= P(A_{1} - A_{2}) + P(A_{2} - A_{1}) \text{ (because of 3a)}$$

$$= P(A_{1}) - P(A_{1} \cap A_{2}) + P(A_{2}) - P(A_{2} \cap A_{1})$$
q.e.d.

5. (a)

$$P(A) = 1 - P(\bar{A})$$

$$P(B) = 1 - P(\bar{B})$$

$$\implies P(A) \le P(B) \implies 1 - P(\bar{A}) \le 1 - P(\bar{B})$$

$$P(\bar{A}) \ge P(\bar{B})$$

$$[A\cap B]\subset C\implies \bar{C}\subset [\overline{A\cap B}]=\bar{A}\cup \bar{B}$$

$$\begin{split} P(\bar{C}) \leq & \quad P(\bar{A} \cup \bar{B}) \\ & \quad P(\bar{A} \cup \bar{B}) \leq P(\bar{A}) + P(\bar{B}), \\ & \quad \text{because } P(\bar{A} \cup \bar{B}) = P(\bar{A}) + P(\bar{B}) - P(\bar{A} \cap \bar{B}) \end{split}$$