Arithmétique modulaire

Fiche d'exercices n°1

Partie I: Divisibilité (~30min)

Exercice I.1

Construire un nombre divisible par 2,3,4,5,9 et 10 en se basant uniquement sur les critère de divisibilité.

Exercice I.2

...

Exercice I.3 Soient x et y des entiers. Montrer que 2x+3y est divisible par 7 si et seulement si 5x+4y l'est.

Exercice I.4: Pour quels entiers n strictement positifs, le nombre n^2+1 divise-t-il n+1?

Partie II: PGCD et nombres premiers (~2h00)

Exercice II.1

Donner la définition d'un nombre premier puis donner la liste des 20 premiers nombres premiers.

Exercice II.2

Les nombres suivants sont-ils premiers ? Justifier. 0,1,2,3,4,91,123

Exercice II.3

Décomposer en produit de facteurs premiers les nombres suivants : 12, 17, 84, 2520

Exercice II.4

Trouver la fraction irréductible égale à $\frac{84}{30}$ et $\frac{2520}{77}$.

Exercice II.5

Déterminer le PGCD de 4480 et 400 à l'aide de la décomposition en facteurs premiers.

Exercice II.6

Déterminer le PGCD de 3045 et 300 à l'aide de l'algorithme d'Euclide.

Exercice II.7

Déterminer tous les diviseurs communs à 60 et 100.

Exercice II.7 (bis)

Déterminer tous les diviseurs communs à 168 et 204.

Exercice II.8

Soit $a,b\in\mathbb{Z}^*$. Montrez que $orall n\in\mathbb{N}^*$, on a $PGCD(a^n,b^n)=PGCD(a,b)^n$

Exercice II.9

Soient a et b des nombres premiers entre eux. Montrer que ab et a+b sont aussi premiers entre eux.

Exercice II.10

Montrez que $PGCD(a,b) \times PPCM(a,b) = ab$.

Exercice II.11

Déterminer l'ensemble des naturels n tel que la fraction $\frac{3n+2}{n+2}$ soit irréductible.

Exercice II.12

Soit n un entier naturel.

Déterminer le PGCD de 9n+4 et de 2n+1 par deux méthodes.

Exercice II.13

Soit n un entier naturel.

Déterminer le PGCD de n+4 et de 3n+7 par deux méthodes.

Exercice II.14

Trouvez les entiers naturels a et b avec a < b tels que : ab = 7776 et PGCD(a, b) = 18.

Exercice II.15

Trouvez les entiers naturels a et b tels que : $ab-b^2=2028$ et PGCD(a,b)=13.

Exercice II.16

- 1. Déterminer l'ensemble des entiers naturels n tels que PGCD(2n+3,n)=3.
- 2. En déduire l'ensemble des entiers naturels n tels que PGCD(2n+3,n)=1

Exercice II.17

Si on divise 4294 et 3521 par un même entier naturel n, les restes respectifs sont 10 et 11. Quel est cet entier?

Exercice II.18

Un boîte parallélépipédique rectangle de dimensions intérieures 31,2cm, 13cm et 7,8cm est entièrement remplie par des cubes à jouer dont l'arête est un nombre entier de millimètres. Quel est le nombre maximal de cubes que peut contenir cette boîte ?

Exercice II.19

On pose $a=588\,\mathrm{et}~b=616.$

- 1. Décomposer a et b en produits de facteurs premiers.
- 2. En déduire PGCD(a,b)
- 3. Déduire également de la première question PPCM(a,b)

Exercice II.20 (l'algorithme d'Euclide)

Soient a et b deux entiers naturels, on note $\mathcal{D}(a,b)$ l'ensemble des diviseurs communs à a et b. Dans la suite, on considère que $a \geq b > 0$.

- 1. Montrer que $\mathcal{D}(a,b)=\mathcal{D}(a-b,b)$.
- 2. En déduire que PGCD(a,b) = PGCD(a-b,b)
- 3. Soit r le reste dans la division euclidienne de a par b. Montrer, en vous aidant de la question précédente, que PGCD(a,b) = PGCD(r,b).
- 4. En vous aidant des divisions euclidiennes ci-dessous:

$$416 = 2 \times 182 + 52$$

 $182 = 3 \times 52 + 26$
 $56 = 2 \times 26 + 0$

Déterminer PGCD(416, 182)

5. Ecrire en langage naturel un algorithme permettant de déterminer le PGCD de a et b.

Exercice II.21 (Nombres de Fermat et infinitude des nombres premiers)

On définit les **nombres de Fermat** comme étant les entiers $F_n=2^{2^n}+1$ avec n un entier naturel.

- 1. Etablir que pour tous entiers naturels n et k, on a: $F_{n+k}=(F_n-1)^{2^k}$
- 2. En déduire que si k est un entier naturel non nul alors pour tout entier naturel n, on a : $F_{n+k} \equiv 2[F_n]$
- 3. En déduire que deux nombres de Fermat distincts sont premiers entre eux.
- 4. Retrouver alors qu'il existe une infinité de nombres premiers.

Partie III: Décomposition en base b (~30min)

Exercice III.1

Calculez les 10 premières puissances de 2.

Exercice III.2

Donnez les écritures des nombres entiers suivants dans la base binaire (b=2): 5, 54, 127, 256, 501, 1010

Exercice III.3

Calculez les 5 premières puissances de 3.

Exercice III.4

Donnez les écritures des nombres entiers suivants dans la base ternaire (b=3): 54, 127, 256, 501, 1010

Exercice III.5

Calculez les 3 premières puissances de 16.

Exercice III.6

Donnez les écritures des nombres entiers suivants dans la base hexadécimale (b=16): 54, 127, 256, 501, 1010

Partie IV: Congruences (~1h30)

<u>ici</u>

Exercice IV.1

Les propositions suivantes sont-elles vraies ? (a) $37 \equiv 4[3]$ (b) $101 \equiv 1[5]$ (c) $-16 \equiv 0[6]$ (d) $-15 \equiv 6[7]$

Exercice IV.2

Démontrer les propriétés de cours suivantes.

- 1. Démontrer que $a \equiv b \, [n] \Leftrightarrow n ext{ divise } a-b$
- 2. Démontrer que (1) si dessus. (i.e. $a+a'\equiv b+b'\,[n]$)

Exercice IV.3

...

Exercice IV.4

Démontrer les propositions suivantes:

a. $\forall n \in \mathbb{N}, \ n\left(n^2+11\right) \text{ est divisible par } 3$

b. $orall n \in \mathbb{N}, \; n^3 + 5n \; ext{est} \; ext{divisible par 6}$

Exercice IV.5

Déterminer le reste de la division euclidienne de 2024^{2024} par 5.

Exercice IV.7:

Démontrer que $a \equiv b \, [n] \Leftrightarrow {\rm a} \ {\rm et} \ {\rm b} \ {\rm ont} \ {\rm le} \ {\rm meme} \ {\rm reste} \ {\rm dans} \ {\rm la} \ {\rm division} \ {\rm euclidienne} \ {\rm par} \ {\rm n}$

Exercice IV.8

Démontrer que tout entier naturel n, n(n+1)(2n+1) est divisible par 6

Exercice IV.9

Démontrer que pour tout entier naturel $n_{\!\scriptscriptstyle 1}$ n^3-n est divisible par 2 et par 3

Exercice IV.10

Démontrer que pour tout entier naturel n impair, n^2-1 est divisible par 8

Exercice IV.11

Déterminer les entiers relatifs n tels que n-4 divise 3n-17. \$\$

Exercice IV.12

Résoudre le système suivant, d'inconnue $x\in\mathbb{Z}$:

$$\begin{cases} x \equiv 1[5] \\ x \equiv 2[11] \end{cases}$$

Exercice IV.13

- 1. Montrer que tout entier naturel est congru modulo 9 à la somme des chiffres de son écriture décimale.
- 2. En déduire que, quels que soient les entiers naturels $x=\overline{a_n\ldots a_0},\ y=\overline{b_m\ldots b_0}$ et $z=\overline{c_p\ldots c_0},$ si xy=z, alors $\left(\sum_{i=0}^n a_i\right)\left(\sum_{i=0}^m b_i\right)\equiv \left(\sum_{i=0}^p c_i\right)[9]$

Exercice IV.14

Une bande de 17 pirates possède un trésor constitué de pièces d'or d'égale valeur. Ils projettent de se les partager également, et de donner le reste au cuisinier chinois. Celui-ci recevrait alors 3 pièces. Mais les pirates se querellent, et six d'entre eux sont tués. Un nouveau partage donnerait au cuisinier 4 pièces. Dans un naufrage ultérieur, seuls le trésor, six pirates et le cuisinier sont sauvés, et le partage donnerait alors 5 pièces d'or à ce dernier. Quelle est la fortune minimale que peut espérer le cuisinier s'il décide d'empoisonner le reste des pirates ?