

Departamento de Matemática da Universidade de Aveiro

Matemática Discreta 2020/2021 - UC 47166 (1ºAno/2ºSem)

Teste T3 Turma TP4/TP9 - Exemplo de Resolução

23/06/2021

Nome: NMec: Curso:

(5.0) 1. Resolva a seguinte relação de recorrência, justificando todos os passos:

$$a_n = 2a_{n-1} - a_{n-2} - 1$$
, $n \ge 2$, $a_0 = 1$, $a_1 = 2$.

A equação de recorrência dada é linear não homogénea, com solução geral

$$a_n = a_n^{(h)} + a_n^{(p)},$$

onde $a_n^{(h)}$ corresponde à solução da parte homogénea, $a_n - 2a_{n-1} + a_{n-2} = 0$, e $a_n^{(p)}$ é a solução particular associada a

$$a_n - 2a_{n-1} + a_{n-2} = f(n), \quad \text{com} \quad f(n) = -1.$$
 (1)

Da parte homogénea resulta a equação característica:

$$x^{2} - 2x + 1 = 0 \Leftrightarrow (x - 1)^{2} = 0 \Leftrightarrow x = 1$$

pelo que, 1 é raiz característica de grau de multiplicidade m=2. Assim,

$$a_n^{(h)} = (C_0 + C_1 n)1^n = C_0 + C_1 n$$
,

onde C_0 e C_1 são constantes a determinar.

Como f(n) = -1 é um polinómio de grau zero e 1 é raiz característica com multiplicidade m = 2, tem-se

$$a_n^{(p)} = An^m = An^2 .$$

Substituindo $a_n^{(p)}$ em (1), determina-se a constante A, vindo

$$An^2 = 2A(n-1)^2 - A(n-2)^2 - 1 \Leftrightarrow An^2 = 2An^2 - 4An + 2A - An^2 + 4An - 4A - 1 \Leftrightarrow -2A - 1 = 0 \Leftrightarrow A = -1/2.$$

Donde,

$$a_n = C_0 + C_1 n - n^2 / 2 ,$$

e, atendendo às condições iniciais, $a_0=1$ e $a_1=2$, podem calcular-se as constantes C_0 e C_1 :

$$\begin{cases} a_0 = 1 \\ a_1 = 2 \end{cases} \Leftrightarrow \begin{cases} C_0 = 1 \\ C_0 + C_1 - 1/2 = 2 \end{cases} \Leftrightarrow \begin{cases} C_0 = 1 \\ C_1 = 3/2 \end{cases}.$$

Logo,

$$a_n = 1 + \frac{3}{2}n - \frac{n^2}{2} , \quad n \ge 0 .$$

Formulário:
$$\sum_{n=0}^{\infty} \alpha^n x^n = \frac{1}{1-\alpha x} , \qquad \sum_{n=0}^{\infty} \binom{n+m-1}{n} \alpha^n x^n = \frac{1}{(1-\alpha x)^m} .$$

(2.5) 2. Determine a sucessão $(b_n)_{n\geq 0}$ associada à função geradora $\mathcal{B}(x) = \frac{1+x}{(1-x)^4}$

$$\mathcal{B}(x) = (1+x) \sum_{n=0}^{\infty} \binom{n+4-1}{n} x^n = \sum_{n=0}^{\infty} \binom{n+3}{3} x^n + \sum_{n=0}^{\infty} \binom{n+3}{3} x^{n+1}$$

$$\Leftrightarrow \qquad \mathcal{B}(x) = \binom{3}{3} x^0 + \sum_{n=1}^{\infty} \binom{n+3}{3} x^n + \sum_{n=1}^{\infty} \binom{n+2}{3} x^n$$

$$\Leftrightarrow \qquad \mathcal{B}(x) = 1 + \sum_{n=1}^{\infty} \left[\binom{n+3}{3} + \binom{n+2}{3} \right] x^n$$

A sucessão associada a $\mathcal{B}(x)$ é

$$b_0 = 1$$
 e $b_n = \left[\binom{n+3}{3} + \binom{n+2}{3} \right], n \ge 1.$

(2.5) 3. Considere o problema de determinar o número de maneiras de distribuir n melões por 5 caixas, de modo que uma caixa fique com um número par de melões e outra com um número ímpar de melões, não havendo restrições nas restantes, para $n \in \mathbb{N}_0$. Mostre que, a solução do problema pode ser obtida a partir da função geradora:

$$G(x) = \frac{x}{(1+x)^2 (1-x)^5} .$$

A solução do problema é dada pelo coeficiente de x^i x^j x^k x^l x^m , com $i=0,2,4,\ldots$ (número par de melões), $j=1,3,5,\ldots$ (número ímpar de melões), $k,l,m=0,1,2,3,\ldots$ (qualquer número de melões, sem restrições), tal que, i+j+k+l+m=n, no desenvolvimento em série de potências de x da função geradora:

$$\mathcal{G}(x) =$$

$$(x^0 + x^2 + x^4 + \dots)(x + x^3 + x^5 + \dots)(1 + x + x^2 + x^3 + \dots)(1 + x + x^2 + x^3 + \dots)(1 + x + x^2 + x^3 + \dots)$$

Ou seja,

$$\mathcal{G}(x) = \frac{1}{1-x^2} x \left(1 + x^2 + x^4 + \dots\right) \frac{1}{(1-x)} \frac{1}{(1-x)} \frac{1}{(1-x)}$$

$$\Leftrightarrow \qquad \mathcal{G}(x) = \frac{1}{1-x^2} \frac{x}{1-x^2} \frac{1}{(1-x)^3} = \frac{1}{(1-x)(1+x)} \frac{x}{(1-x)(1+x)} \frac{1}{(1-x)^3}$$

E, portanto,

$$\mathcal{G}(x) = \frac{x}{(1+x)^2 (1-x)^5} ,$$

tal como se pretendia mostrar.

4. Considere os grafos $G_i = (V(G_i), E(G_i))$, para i = 1, 2, ..., 13, representados na figura seguinte:

(3.5) 4.(a) Indique dois grafos da mesma ordem que sejam bipartidos e não isomorfos. Justifique devidamente.

Os grafos $G_{11} = (V(G_{11}), E(G_{11}))$ e $G_{12} = (V(G_{12}), E(G_{12}))$ são ambos de ordem 7, pois, $|V(G_{11})| = |V(G_{12})| = 7$. Não são isomorfos, porque, G_{12} tem dois vértices de grau 3 e G_{11} tem apenas um vértice de grau 3, por isso, a sequência dos graus dos vértices é diferente nos dois grafos. São ambos bipartidos, uma vez que não contêm ciclos de comprimento ímpar. De acordo com a numeração dos vértices destes grafos (acima na figura) é possível obter as seguintes bipartições dos conjuntos dos seus vértices, de modo a que as arestas unem apenas vértices de subconjuntos distintos:

$$G_{11} = (X, Y, E(G_{11})), \quad X = \{1, 3, 5, 7\}, \ Y = \{2, 4, 6\}, \quad \text{com} \quad V(G_{11}) = X \cup Y,$$

 $G_{12} = (W, Z, E(G_{12})), \quad W = \{1, 3, 5, 6\}, \ Z = \{2, 4, 7\}, \quad \text{com} \quad V(G_{12}) = W \cup Z.$

(1.5) 4.(b) Numere os vértices do grafo representado por G_5 e escreva a matriz de adjacência desse grafo.

5. Considere o grafo H = (V(H), E(H)), com $V(H) = \{1, 2, 3, 4, 5, 6\}$, definido pela matriz de custos:

$$W = \begin{pmatrix} 0 & 2 & 3 & 4 & \infty & 6 \\ 2 & 0 & 6 & \infty & \infty & 12 \\ 3 & 6 & 0 & \infty & \infty & \infty \\ 4 & \infty & \infty & 0 & 20 & 24 \\ \infty & \infty & \infty & 20 & 0 & 30 \\ 6 & 12 & \infty & 24 & 30 & 0 \end{pmatrix}.$$

(1.5) 5.(a) Represente o grafo H com indicação do custo associado em cada uma das arestas.

(3.5) 5.(b) Aplicando o algoritmo de Dijkstra, determine o caminho de custo mínimo entre os vértices 3 e 5 do grafo H representado na alínea anterior, indicando também qual é esse custo.

Aplicamos o algoritmo de Dijkstra, começando pelo vértice z=3 e parando quando o vértice z=5 se torna definitivo:

Iteração	1	2	3	4	5	6	z
0	$(\infty, -)$	$(\infty, -)$	(0, -)	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	3
1	(3, 3)	(6,3)	×	$(\infty, -)$	$(\infty, -)$	$(\infty, -)$	1
2	×	(5,1)	×	(7,1)	$(\infty, -)$	(9,1)	2
3	×	×	×	(7,1)	$(\infty, -)$	(9,1)	4
4	×	×	×	×	(27,4)	(9, 1)	6
5	×	×	×	×	(27, 4)	×	5

Concluímos que o caminho de custo mínimo entre os vértices 3 e 5 é P=3,1,4,5, com custo 27.