

Sistemas informáticos

Capítulo 2: Sistemas operativos. Introducción

Jesús Beas Arco

Funciones

- Actuar de interfaz entre el usuario y el hardware de manera transparente.
- Gestionar los recursos software y hardware del equipo.

Características

- Adaptabilidad: se debe acomodar a evoluciones software y hardware.
- Facilitar su uso.
- Eficiente: debe repartir recursos limitados entre usuarios, software y sistema operativo.

La administración del sistema por el sistema operativo (SO) se divide en:

- Gestión de procesos: el SO debe gestionar el reparto de tiempo del procesador:
 - Planificación orientada a usuarios
 - Planificación orientada al sistema
- Gestión de memoria: el SO debe gestionar la gestión de memoria principal y virtual (extensión de la principal), trasladando datos o instrucciones desde la memoria secundaria hasta los registros. Relacionado con la gestión de procesos (multiprogramación).
- Gestión de entradas y salidas: el SO de debe gestionar acciones sobre diferentes recursos.
- Gestión de almacenamiento secundario: la gestión de archivos se realiza mediante sistemas de archivos.
- Gestión de seguridad: servicio y disponibilidad de los recursos, la confidencialidad, la protección e integridad de datos, el control de accesos, la autenticidad de acciones, etc.
- Gestión de errores.
- Gestión de la interfaz de usuario (textual o gráfica).

Tipos de sistemas operativos

- Atendiendo al número de procesos que pueden ser ejecutados concurrentemente:
 - Monoprogramado (monotarea)
 - Multiprogramado (multitarea)
- Atendiendo al número de usuarios atendidos simultáneamente:
 - Monousuario
 - Multiusuario
- Atendiendo al tipo de procesamiento:
 - En tiempo real
 - Interactivos
- Atendiendo al sistema de interfaz: textuales y gráficos.
- Atendiendo a la forma de ofrecer servicios:
 - Cliente o de escritorio
 - En red
 - Distribuidos

- 2.1. Accede a las páginas web de QNX https://blackberry.qnx.com/ y LynxOS http://www.lynx.com/. Lee ambas páginas y comenta qué usos tienen estos sistemas operativos.
- 2.2. Busca en Internet dos versiones de sistemas operativos únicamente textuales y explica por qué no presentan interfaz gráfica. Busca dos versiones gráficas de sistemas operativos.

Arquitectura genérica de un S.O.

En 1972 se reescribió UNIX en C y se puso a disposición de organizaciones, compañías, universidades y el gobierno de EE. UU. Esto provocó que su uso y desarrollo creciera enormemente, surgiendo así multitud de versiones inspiradas en UNIX. Uno de los ejemplos más significativos fue el desarrollo de la Universidad de California en Berkeley (EE. UU.), lamado *Berkeley Software Distribution (BSD)*. A partir del cual se desarrollarían sistemas operativos como NetBSD, FreeBSD, Mac OS X o SunOS.

En este enlace a Wikipedia puedes consultar un gráfico con el desarrollo de sistemas operativos basados en UNIX:

https://upload.wikimedia.org/wikipedia/commons/7/77/Unix history-simple.svg

Actividad propuesta 2.3

Averigua en Internet la relación de Ken Thompson y Dennis Ritchie con los sistemas operativos MULTICS, UNICS y UNIX.

Arquitecturas

- Con capas o anillos: cada capa solo se puede comunicar con la capa inmediata inferior o superior para solicitar servicios o resolver peticiones respectivamente. Estructura:
 - Núcleo (kernel): componentes esenciales del SO
 - Servicios: conjunto de funciones básicas como:
 - Gestión de procesos
 - Gestión de memoria
 - Gestión de E/S
 - Gestión de la E/S
 - Interfaz
- Monolítico: SO con una única estructura dividida en rutinas con los mismos privilegios. Gran rendimiento.

- Microkernel: libera al núcleo del máximo de su funcionalidad. Mejora de seguridad, mayor estabilidad con respecto a monolíticos. El kernel se encarga de:
 - Gestión de procesos
 - Gestión de memoria
 - Comunicación entre procesos o servicios
- Híbrido: SO que aúna las arquitecturas monolítica y microkernel. Diseño microkernel con una implementación monolítica, consiguiendo una gran estabilidad y un significativo rendimiento.

Versiones de sistemas operativos más utilizadas

- Sistemas operativos de Microsoft:
 - Equipos de escritorio: Microsoft Windows 10 en versiones:
 Home, Pro, Enterprise, IoT, Education, Pro for Workstation.
 - Equipos de tipo servidor: Microsoft Windows Server 2019 en versiones: Datacenter, Standard y Essentials.
- Sistemas operativos GNU/Linux: gran variedad de distribuciones.
 - Equipos de escritorio: Ubuntu y Mint (genéricos), Arch Linux (usuarios avanzados), Kali Linux y Tails (Seguridad), Android, etc.
 - Equipos de tipo servidor: Red Hat Enterprise Linux, Ubuntu Server, CentOS, SUSE Linux Enterprise Server, Debian, FreeBSD.
- Sistemas operativos de Apple: macOS e iOS.

Para saber más, se recomienda la lectura del artículo "Cómo es el kernel de Windows y cuáles son sus diferencias con el de Linux" (Genbeta).

https://www.genbeta.com/a-fondo/como-es-el-kernel-de-windows-y-cuales-son-sus-diferencias-con-el-de-linux?utm source=whatsapp&utm medium=social&utm campaign=botoneramobile

Actividades propuestas

- 2.4. La página web https://distrowatch.com/s aglutina mucha información y permite comparar multitud de distribuciones GNU/Linux, BSD y Solaris. ¿Cuáles son las diez distribuciones más populares actualmente, según el ranking ofrecido por esta página? Establece una comparativa, indicando: tipo de sistema operativo, en qué sistema operativo está basado y para qué plataformas o entornos (seguridad, sobremesa, servidores).
- 2.5. El bajo coste, la filosofía de software abierto para desarrollar cualquier proyecto y la robustez de los sistemas operativos GNU/Linux (estabilidad, flexibilidad al optimizar los recursos y seguridad) hacen de estos los dominadores en supercomputadoras. No obstante, también se emplean para otros entornos, como servidores, desktop o dispositivos móviles.

En la web https://www.top500.org/ encontramos una lista actualizada de los quinientos sistemas de computación más potentes. Realiza una tabla con los cinco primeros, donde se indique:

- Localización: ciudad y país.
- Fabricante.
- El número de núcleos.
- El número de operaciones máximas en TFlops.
- El sistema operativo empleado.

Instalación de un sistema operativo

- **Requisitos:**
 - Cada sistema operativo establece unos requisitos mínimos para poder ejecutar el sistema operativo y usarse.
 - Los propietarios pueden establecer unos requisitos recomendables, más en sintonía con la eficiencia y la ligereza del sistema en condiciones de cierto estrés.
- Planificación y consideraciones previas:
 - Realizar copias de seguridad de datos posiblemente afectados.
 - Diseñar el proceso de arranque.
 - Mantener alimentación eléctrica redundante.
 - Recopilar todos los componentes software necesarios.
 - Planificar y establecer la instalación del SO con esquema de particiones GPT (UEFI) o MBR (BIOS heredado).

Proceso de instalación de Ubuntu Desktop en Oracle VM VirtualBox

- Adecuación de los medios de almacenamiento virtuales
- Proceso de instalación:
 - Selección de idioma
 - Selección organización teclas
 - Selección de actualización e instalación de aplicaciones
 - Selección del tipo de instalación

Instalación de Ubuntu Desktop: selección de idioma y selección del tipo de instalación.

Medios de almacenamiento en VirtualBox.

- Proceso de instalación (continuación):
 - Registro de usuario y contraseña
 - Reinicio
 - Carga e inicio de Ubuntu Desktop recién instalado

Instalación de Ubuntu Desktop: registro de usuario y contraseña, autenticación de usuario y escritorio de Ubuntu Desktop.

Actividad propuesta 2.7

Crea una unidad flash USB arrancable Ubuntu sobre Microsoft Windows, siguiendo los pasos dados en los tutoriales oficiales de Ubuntu.

https://ubuntu.com/tutorials/create-a-usb-stick-on-windows#1-overview

Actividad propuesta 2.8

Realiza una instalación de Ubuntu Desktop en una máquina virtual en Oracle VM Virtual-Box.

Proceso de instalación de Microsoft Windows 10 Pro en Oracle VM VirtualBox

- Adecuación de los medios de almacenamiento virtuales
- Proceso de instalación:
 - Selección de idioma, formato de hora y moneda y organización teclas
 - Activación del producto
 - Aceptación de los términos de licencia y avisos aplicables
 - Selección del tipo de instalación: actualización o personalizada

Instalación de Windows: selección de idioma, formato hora y moneda y organización de teclas y selección del tipo de instalación.

- Proceso de instalación (continuación):
 - Gestión de particiones en tipo de instalación Personalizada
 - Reinicio
 - Configuración del sistema
 - Inicio de sesión con cuenta Microsoft o registro de nuevas cuentas (Microsoft o locales)
 - Carga e inicio de Microsoft Windows

Instalación de Windows: gestión de particiones, autenticación de usuario y escritorio de Windows.

Actividad propuesta 2.9

Realiza una instalación de Microsoft Windows 10 Pro en una máquina virtual en Oracle VM VirtualBox.

Instalaciones desatendidas

En ocasiones, no resulta práctico la instalación del sistema operativo que requiera la intervención del usuario.

- Windows
 - Herramientas:
 - Windows SIM
 - NTLite
- Ubuntu
 - Herramientas:
 - Edición de archivo de texto preseed
 - Kickstart

Configuración de imagen de Instalación de Windows con NTLite.

Actividad propuesta 2.10

Investiga a través de tutoriales oficiales de Ubuntu el proceso de creación de imágenes desatendidas y realiza una. Prueba la imagen desatendida de Ubuntu en una máquina virtual.

Esquemas de particiones

- Particiones y sistemas de archivos.
- Sistemas con estándar BIOS (particionamiento MBR).
- Sistemas con estándar UEFI (particionamiento GPT):
 - Modo de arranque Heredado (MBR)
 - Modo de arranque UEFI (GPT)
- Particiones en Windows con arranque UEFI:

Particiones en Windows con arranque heredado:

Actividad resuelta 2.1

Averiguar el esquema de particionamiento de un volumen en Microsoft Windows.

SOLUCIÓN

Podemos conocer el esquema de partición de los discos en Microsoft Windows 10. Para ello, ejecutamos el 'Administrador de discos' (diskmgmt.msc). Aparecerán las unidades y seleccionamos con el botón secundario sobre la unidad en propiedades. Se abrirá una nueva ventana con las propiedades de la unidad y seleccionamos la pestaña 'Hardware'. Volvemos a seleccionar el disco correspondiente a la unidad y pulsamos en el botón 'Propiedades'. Aparecerá la información de dicho disco. En la pestaña 'Volúmenes' pulsamos en el botón 'Rellenar' y el apartado 'Estilo de partición' mostrará si es del tipo MBR o GPT.

Otra manera de conocer el estilo de partición de un disco en Windows es ejecutando el comando msinfo32. En el apartado 'Modo de BIOS' aparecerá 'Heredado' o 'UEFI'.

Gestor de arranque de Windows

- > BOOTMGR (Windows Boot Manager) y se encarga de:
 - Cargar aplicaciones de arranque: OS Loader y Resume Loader.
 - Mostrar menú de selección de usuario.
- BOOTMGR hace uso de un almacén de datos de configuración (BCD) mediante bcdedit.exe.
- BOOTMGR carga el cargador del sistema operativo seleccionado por el usuario (WINLOAD). Este último carga a su vez el núcleo del sistema operativo (NTOSKRNL).

Gestor de arranque de Linux

- GRUB 2. Se gestiona con /boot/grub/grub.cfg. Archivos de configuración:
 - /etc/default/grub
 - Contenidos en /etc/grub.d/
- GRUB 2 lanza el kernel de Linux /boot/vmlinuz-<versión> u otro gestor de arranque.

Administración de actualizaciones en Windows

- Mediante Windows Update
- Tipos de actualizaciones:
 - Críticas e importantes
 - Recomendadas
 - Opcionales

Administración de actualizaciones en Ubuntu

- Ubuntu actualiza tanto el software del sistema (incluidos los drivers), como las aplicaciones instaladas.
- Mediante Software y actualizaciones.
- Tipos de actualizaciones:
 - De seguridad
 - Recomendadas
 - Sin asistencia técnica

Actividad propuesta 2.11

Accede a Windows Update y lista todas las actualizaciones del sistema. Desinstala la última de ellas e intenta actualizar el sistema e instalarla de nuevo.

Identificación, instalación y desinstalación de aplicaciones

- Windows: gestión mediante Aplicaciones y características.
- Ubuntu: gestión mediante Software de Ubuntu y Synaptic.

Software de Ubuntu.

Synaptic.

Actividad propuesta 2.12

Descarga e instala Synaptic Package Manager. Comenta las diferencias entre el centro de Software de Ubuntu y Synaptic. Realiza un breve estudio de la estructura de Synaptic y la forma de instalar, actualizar y desinstalar paquetes.

- Los sistemas operativos actuales son una evolución de sistemas informáticos originados en los años 40, que establecieron los fundamentos de la computación moderna. Así, conceptos como *multiusuario*, *tiempo compartido* o *multitarea* se emplean hoy en día en sistemas operativos como Microsoft Windows o Ubuntu Desktop.
- La principal función de un sistema operativo es la de gestionar:
 - El procesador.
 - La memoria.
 - Las entradas y salidas.
 - El almacenamiento secundario.
 - La seguridad.
 - Los errores.
 - Las interfaces de usuario.
- Además, estos han de ser: adaptables (con capacidad de evolucionar para adecuarse a un nuevo software y hardware), eficientes ante la competencia por los recursos y de fácil uso a través de interfaces textuales o gráficas.
- La catalogación de los sistemas operativos permite estudiar las características y peculiaridades de estos, como, por ejemplo, distinguiendo entre sistemas operativos atendiendo al procesamiento: en *tiempo real* frente a *tiempo compartido*.
- Además, las arquitecturas nos adentran en el diseño de los propios sistemas operativos y cómo afecta a su desarrollo, eficiencia, estabilidad o rendimiento (distinguiendo anillo, monolítico, microkernel o híbrido).
- El proceso de instalación de los sistemas operativos, posterior a una planificación previa y teniendo en cuenta unos requisitos mínimos y recomendados, consiste en una práctica obligatoria para entender la función de los mismos. Los procedimientos de instalación los hemos desarrollado mediante Microsoft Windows y Ubuntu Desktop sobre Oracle VM VirtualBox.
- El estudio mediante máquinas virtuales nos ha permitido profundizar en los gestores de arranque y su configuración, necesarios para la carga de los sistemas operativos. Por último, hemos estudiado las actualizaciones de los sistemas operativos y la gestión de aplicaciones.