9 Isométries directes sur \mathbb{F}_q^2

Leçons 120, 123, 190, (104, 106, 125)

Ref: [H2G2 Tome 1] VIII Prop 3.5

Ce développement consiste à déterminer le groupe des isométries directes sur \mathbb{F}_q^2 .

Théorème 1 Soit $p \in \mathfrak{P}$ un nombre premier impair, $n \in \mathbb{N}^*$ et $q = p^n$. Alors le groupe spécial orthogonal $SO_2(\mathbb{F}_q)$ est isomorphe à $\mathbb{Z}/(q-1)\mathbb{Z}$ si -1 est un carré dans \mathbb{F}_q^* , et à $\mathbb{Z}/(q+1)\mathbb{Z}$ sinon.

On note dans la suite $\mathbb{F}_q^{*(2)}:=\left\{x^2,\ x\in\mathbb{F}_q^*\right\}$ les carrés de \mathbb{F}_q^*

Démonstration. Étape 1. Description du groupe spécial orthogonal analogue au cas réel.

On commence par décrire $SO_2(\mathbb{F}_q)$. On rappelle que les éléments A de ce groupe sont caractérisés dans $\mathcal{M}_2(\mathbb{F}_q)$ par la relation ${}^t\!AA = I_2$ et par le fait que leur déterminant est 1. Ainsi, on a

$$SO_2(\mathbb{F}_q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ (a,b,c,d) \in \mathbb{F}_q^4, \ ad - bc = a^2 + b^2 = c^2 + d^2 = 1, ac + bd = 0 \right\}.$$

Soit $(a,b)\in \mathbb{F}_q^2$ tel que $a^2+b^2=1.$ On étudie le système

$$\begin{cases} ac + bd = 0 \\ ad - bc = 1 \end{cases}$$
 (S)

d'inconnue $(c,d) \in \mathbb{F}_q^2$. Alors (S) est équivalent à

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Mais comme la matrice $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ est inversible (car de déterminant non nul par hypothèse sur (a,b)), ce système a une unique solution, et elle est donnée par $\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} -b \\ a \end{pmatrix}$. On a alors également $c^2 + d^2 = 1$. Réciproquement, si une matrice est de la forme $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ avec $a^2 + b^2 = 1$, alors on vérifie que c'est un élément de $SO_2(\mathbb{R})$. L'application

$$\Phi: \left| \begin{array}{ccc} \mathbb{S}^1(\mathbb{F}_q) & \longrightarrow & SO_2(\mathbb{F}_q) & , \\ \left(\begin{matrix} a \\ b \end{matrix} \right) & \longmapsto & \left(\begin{matrix} a & b \\ -b & a \end{matrix} \right) \end{array} \right|$$

où $\mathbb{S}^1(\mathbb{F}_q)$ désigne la sphère unité de \mathbb{F}_q , est donc une bijection.

Étape 2. Cas où -1 est un carré dans \mathbb{F}_q^* .

On se donne $\omega \in \mathbb{F}_q^*$ tel que $\omega^2 = -1$, et $(a, b) \in \mathbb{F}_a^2$. On a alors

$$(a,b) \in \mathbb{S}^1(\mathbb{F}_a) \iff a^2 + b^2 = 1 \iff (a+b\omega)(a-b\omega) = 1.$$

On effectue alors le changement de variable

$$\begin{cases} x = a + b\omega \\ y = a - b\omega \end{cases},$$

qui est licite puisque le changement de variable inverse est donné par

$$\begin{cases} a = \frac{x+y}{2} \\ b = \frac{x-y}{2\omega} \end{cases},$$

où ω et 2 sont bien inversibles dans \mathbb{F}_q (on est en caractéristique différente de 2). On a donc

$$(a,b) \in \mathbb{S}^1(\mathbb{F}_q) \iff xy = 1.$$

Comme les ensembles considérés sont tous finis et en bijection, on a

$$|SO_2(\mathbb{F}_q)| = |\mathbb{S}^1(\mathbb{F}_q)| = |\{(x,y) \in \mathbb{F}_q^2, xy = 1\}| = q - 1,$$

où la dernière égalité vient du fait que l'on peut choisir x quelconque dans \mathbb{F}_q^* et que y est alors fixé $(y=x^{-1})$.

On pose alors

$$\varphi: \left| \begin{array}{ccc} SO_2(\mathbb{F}_q) & \longrightarrow & \mathbb{F}_q^* \\ \begin{pmatrix} a & b \\ -b & a \\ \end{array} \right| & \longmapsto & a+b\omega \end{array} \right..$$

On peut vérifier que φ est un morphisme de groupes. De plus, si $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ est dans le noyau de φ ,

alors $a+b\omega=1$, et donc $a-b\omega=\frac{a^2+b^2}{a+b\omega}=1$, ce qui montre que a=1 et b=0, et donc que A est l'identité. Ainsi, φ est injectif. Il est donc bijectif puisque les cardinaux des deux groupes sont les mêmes. Ainsi, c'est un isomorphisme. Comme \mathbb{F}_q^* est isomorphe à $\mathbb{Z}/(p-1)\mathbb{Z}^1$, on en déduit le théorème dans le cas où -1 est un carré dans \mathbb{F}_q^* .

Étape 3. Cas où -1 n'est pas un carré dans \mathbb{F}_q^* .

FIGURE 9.1 – Projection stéréographique de $\mathbb{S}^1(\mathbb{R})$

On utilise ici la projection stéréographique du cercle sur la droite x=1 (voir figure 9.1 pour la situation analogue dans le cas du corps des réels). Notons $N=(-1,0)\in\mathbb{F}_q^2$, et $M=(1,2t)\in\mathbb{F}_q$ pour un certain $t\in\mathbb{F}_q$. Alors la droite (NM) coupe le cercle unité en N et en un second point P(t). En effet, la droite a pour équation y=t(x+1) dans le plan \mathbb{F}_q^{2} , et le cercle a pour équation $x^2+y^2=1$. Ainsi, l'équation de leur intersection est

$$\begin{cases} y = t(x+1) \\ x^2(1+t^2) + 2t^2x + (t^2-1) = 0 \end{cases} .$$

Comme -1 n'est pas un carré dans \mathbb{F}_q^* , la seconde équation, celle qui détermine x, est de degré 2 en x. Le calcul du discriminant montre qu'elle admet deux solutions, x=-1 et $x=\frac{1-t^2}{1+t^2}$. Le premier cas

^{1.} Le groupe multiplicatif d'un corps fini est toujours cyclique.

^{2.} On écrit que son équation est $y = \alpha x + \beta$, et on trouve α et β en inversant le système obtenu en observant que N et M vérifient cette équation. Notons qu'on a pour cela une nouvelle fois besoin de choisir $p \neq 2$.

correspond bien sûr au point N, et donc on a bien un second point d'intersection P(t) donné par

$$P(t) = \begin{pmatrix} \frac{1 - t^2}{1 + t^2} \\ \frac{2t}{1 + t^2} \end{pmatrix}.$$

Réciproquement, si $M'=(x,y)\in\mathbb{S}^1(\mathbb{F}_q)$ est différent de N, alors $x\neq -1$. Ainsi, la droite (NM') possède un unique point d'intersection avec la droite $\{x=1\}$. Donc tout point de la droite correspond à un unique point du cercle, et réciproquement. Il y a donc une bijection entre \mathbb{F}_q et $\mathbb{S}^1(\mathbb{F}_q)\setminus\{N\}$, ce qui montre que $\mathbb{S}^1(\mathbb{F}_q)$ est de cardinal q+1, et $SO_2(\mathbb{F}_q)$ aussi d'après de l'étape 1. Il reste alors à montrer que $SO_2(\mathbb{F}_q)$ est cyclique.

Pour cela, on injecte $SO_2(\mathbb{F}_q)$ dans $\mathbb{F}_{q^2}^*$. Le corps \mathbb{F}_{q^2} est une extension de \mathbb{F}_q de degré 2 dans laquelle -1 est un carré. En effet, X^2+1 est irréductible dans $\mathbb{F}_q[X]$ (car de degré 2 sans racine) donc $\mathbb{F}_q[X]/(X^2+1)$ est une extension de degré 2 de \mathbb{F}_q qui est un corps de rupture de -1. Mais comme c'est un corps de cardinal q^2 , par unicité des corps finis, ce corps de rupture est isomorphe à \mathbb{F}_{q^2} . On effectue alors un raisonnement analogue à celui de l'étape $2:SO_2(\mathbb{F}_q)$ s'injecte dans $\mathbb{F}_{q^2}^*$ en utilisant une racine carrée ω de -1 dans $\mathbb{F}_{q^2}^*$ et en produisant le même raisonnement que pour l'injectivité de φ . Ainsi, d'après le théorème d'isomorphisme, $SO_2(\mathbb{F}_q)$ est isomorphe (en tant que groupe) à son image par cette injection, qui est un sous-groupe du groupe cyclique $\mathbb{F}_{q^2}^*$. Donc $SO_2(\mathbb{F}_q)$ est cyclique 3 , et est donc isomorphe à $\mathbb{Z}/(p+1)\mathbb{Z}$.

La question naturelle qui suit cette démonstration est celle du cas p=2. Je n'ai pas trouvé de livre traitant de cette question, mais elle n'est pas compliquée. On cherche à caractériser les éléments de $SO_2(\mathbb{F}_q)$, avec $q=2^n$. Les équations décrites dans la première étape montrent que ce sont exactement les matrices de la forme $\begin{pmatrix} 1+b & b \\ b & 1+b \end{pmatrix}$, pour $b\in \mathbb{F}_q$. De plus, il se trouve que l'application qui associe l'élément b à cette matrice est un morphisme de groupes entre $SO_2(\mathbb{F}_q)$ et \mathbb{F}_q , surjectif par ce qui précède. Bien sûr, il est aussi injectif (étude du noyau). Finalement, on obtient

$$SO_2(\mathbb{F}_q) \simeq \mathbb{F}_q$$
.

Ce résultat est très rapide à montrer donc peut permettre de combler si jamais il reste une ou deux minutes à la fin du développement. Dans tous les cas, je pense qu'il est bon de l'avoir en tête, cela me paraît être la question la plus évidente que le jury pourrait poser.

^{3.} Tout sous-groupe d'un groupe cyclique est cyclique.