



### 19107\_SAMANVAYA RACING\_CAD/CAE Report

**Author's Name: Geetansh Agrawal** 

### 1. INTRODUCTION

The objective of this report is to present the CAD design & analysis of our vehicle for ADVANCE EFFICYCLE 2019 SEASON.

Our aim is to design a vehicle with good built quality and better strength by using a high strength material for roll cage. We have also considered various measures for compactness, better ergonomics, safety etc. For this we have designed the roll cage in SOLIDWORKS 2016 x64 SR15.0. The analysis is done for different materials to finalize the material for roll cage

### 2. FRAME MATERIAL OPTIONS

The material is used with different cross-sections and its separate combinations are written below:

- i. Steel (AISI 1018) Cross-Section Type; 1in x 0.84in x 2mm
- ii. Steel (AISI 1018) Cross-Section Type; 1.25in x 1.13in x 1.5mm
- iii. Steel (AISI 4130) Cross-section type; 1.25in x 1.13in x 1.5mm
- iv. Steel (AISI 4130) Cross-section type; 1.25in x 1.11in x 1.65mm

| PROPERTIES/MATERIAL              | SAE<br>1018 | SAE<br>4130 |
|----------------------------------|-------------|-------------|
| Density (gm/cm <sup>3</sup> )    | 7.87        | 7.85        |
| Elongation (%)                   | 16-27       | 17-28       |
| Elastic Modulus (GPa)            | 205         | 205         |
| Yield Strength (MPa)             | 365         | 460         |
| Ultimate Tensile Strength (MPa)  | 440         | 560         |
| Poisson Ratio                    | 0.29        | 0.29        |
| Shear Modulus (GPa)              | 80          | 80          |
| Cost (per m)                     | Rs.375      | Rs.525      |
| Roll Cage Weight (kg)            | 29.14       | 28.83       |
| Lead time for delivery<br>(days) | 7           | 7           |

# 3. CALCULATION OF BENDING STRENGTH AND BENDING STIFFNESS

We know that,

Bending strength is given by:  $M = (S_v^*I)/C$ 

Where:  $S_v = \text{Yield strength}$ 

C = Distance from neutral axis to extreme fiber

Also, Bending Stiffness is considered to be proportional to the product EI.

### i.e. Bending Stiffness ∝ E.I

Where: E= Modulus of elasticity

*I*= Second moment of area for the structural cross section

| Dimension          | Grade        | I<br>(mm <sup>4</sup> )  | S <sub>Y</sub><br>(MP<br>a) | E<br>(GP<br>a) | M=<br>S <sub>Y</sub> I/<br>C<br>(N/<br>m <sub>2</sub> ) | S ∝<br>E.I<br>(Nm²)       |
|--------------------|--------------|--------------------------|-----------------------------|----------------|---------------------------------------------------------|---------------------------|
| 1.25inx1.5mm       | AISI<br>1018 | 1.61x<br>10 <sup>4</sup> | 365                         | 205            | 371.99                                                  | 3.381<br>x10 <sup>3</sup> |
| 1inx2 mm<br>(Ref.) | AISI<br>1018 | 1.01x<br>10 <sup>4</sup> | 365                         | 205            | 291.31                                                  | 2.128×<br>10 <sup>3</sup> |
| 1.25inx1.5mm       | AISI<br>4130 | 1.61x<br>10 <sup>4</sup> | 460                         | 205            | 468.82                                                  | 3.381<br>x10 <sup>3</sup> |
| 1.25inx1.65mm      | AISI<br>4130 | 1.01<br>x10 <sup>4</sup> | 460                         | 205            | 354.46                                                  | 3.014<br>x10 <sup>3</sup> |

### 4. CAE ANALYSIS OF VEHICLE/FRAME

Impact force = 2G
Meshing Conditions- Relevance Centre= Fine
Relevance=100
Element Size= 10mm

### A. FRONTAL IMPACT ANALYSIS

Material-1 (Steel AISI 1018,1inx0.84inx2mm)

a) Assumption & Considerations:

effi.saenis.org EFFI-CYCLE 2019 Page 1 of 29





Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

Initial Speed=9.11m/s

Final Speed=0m/s

Reaction time=0.13s

### b) Calculation of Impact Forces:

Work Done= (0.5\*M\*V<sub>final</sub><sup>2</sup> - 0.5\*M\*V<sub>initial</sub><sup>2)</sup>

 $|W|{=}|\text{-}0.5^*M^*V_{initial}{}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement

=(F\*S)

S=Impact Time\*V<sub>max</sub>

=0.13\*9.114

=1.184m

So,

F=W/S

=9967.8/1.184

=8418.75N

≈8500N



### c) Analysis Results:

Safety Factor=0.16834



Equivalent Stress=1485.1MPa







=(F\*S)

Total Deformation = 18.628 mm



### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-2 (Steel AISI 1018,1.25inx1.13inx1.5mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

Initial Speed=9.11m/s

Final Speed=0m/s

Reaction time=0.13s

### b) Calculation of Impact Forces:

Work Done= (0.5\*M\*V<sub>final</sub><sup>2</sup> - 0.5\*M\*V<sub>initial</sub><sup>2</sup>)

 $|W| = |-0.5*M*V_{initial}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement

S=Impact Time\*V<sub>max</sub>

=0.13\*9.114

=1.184m

So,

F=W/S

=9967.8/1.184

=8418.75N

≈8500N



### c) Analysis Results:

Safety Factor=0.24542







Equivalent Stress=1018.6MPa



Total Deformation = 13.656 mm



### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-3 (Steel AISI 4130,1.25inx1.13inx1.5mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

Initial Speed=9.11m/s

Final Speed=0m/s

Reaction time=0.13s

### d) Calculation of Impact Forces:

Work Done= (0.5\*M\*V<sub>final</sub><sup>2</sup> - 0.5\*M\*V<sub>initial</sub><sup>2</sup>)

 $|W| = |-0.5*M*V_{initial}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement

=(F\*S)

S=Impact Time\*V<sub>max</sub>

=0.13\*9.114

=1.184m

So,

F=W/S

=9967.8/1.184

=8418.75N

≈8500N







### b) Analysis Results:



Equivalent Stress=1021.8MPa



### Total Deformation = 14.155mm



### d) Optimizations

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-4 (Steel AISI 4130,1inx1.11inx1.65mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

Initial Speed=9.11m/s

Final Speed=0m/s

Reaction time=0.13s

### b) Calculation of Impact Forces:

Work Done=  $(0.5*M*V_{final}^2 - 0.5*M*V_{initial}^2)$ 

 $|W| = |-0.5*M*V_{initial}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement

=(F\*S)

S=Impact Time\*V<sub>max</sub>

=0.13\*9.114

=1.184m

So,

F=W/S

=9967.8/1.184

=8418.75N

≈8500N





### Total Deformation 12.956 mm



### c) Analysis Results:





### Equivalent Stress=949.4MPa



### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### **B. SIDE IMPACT ANALYSIS**

### Material-1 (Steel AISI 1018, 1inx0.84inx2mm)

### a) Assumption& Considerations:

Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

Initial Speed=9.114m/s

Final Speed=0m/s

Reaction time=0.30s

### b) Calculation of Impact Forces:

Work Done=  $(0.5*M*V_{final}^2 - 0.5*M*V_{initial}^2)$ 

 $|W| = |-0.5*M*V_{initial}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement





### S=Impact Time\*V<sub>max</sub>

=0.30\*9.114

=2.73m

So,

F=W/S

=9967.8/2.73

=3645.6N

### ≈3700N



### c) Analysis Results:



### Equivalent Stress=270.47MPa



### Total Deformation = 4.2668mm



### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-2 (Steel AISI 1018, 1.25inx1.13inx1.5mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

effi.saenis.org EFFI-CYCLE 2019 Page 7 of 29





Final Speed=0m/s

Reaction time=0.30s

### b) Calculation of Impact Forces:

Work Done= (0.5\*M\*V<sub>final</sub><sup>2</sup> - 0.5\*M\*V<sub>initial</sub><sup>2</sup>)

 $|W|=|-0.5*M*V_{initial}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement

=(F\*S)

S=Impact Time\*V<sub>max</sub>

=0.30\*9.114

=2.73m

So,

F=W/S

=9967.8/2.73

=3645.6N

≈3700N



### c) Analysis Results

Safety Factor=1.1433



Equivalent Stress=218.66MPa



Total Deformation = 3.8935mm







### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-3 (Steel AISI 1018, 1.25inx1.13inx1.5mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

Initial Speed=9.114m/s

Final Speed=0m/s

Reaction time=0.30s

### b) Calculation of Impact Forces:

Work Done= (0.5\*M\*V<sub>final</sub><sup>2</sup> - 0.5\*M\*V<sub>initial</sub><sup>2)</sup>

 $|W| = |-0.5*M*V_{initial}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement

=(F\*S)

S=Impact Time\*V<sub>max</sub>

=0.30\*9.114

=2.73m

So,

F=W/S

=9967.8/2.73

=3645.6N

### ≈3700N



### c) Analysis Results

### Safety Factor=0.94963



### Equivalent Stress=217.98MPa











### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-4 (Steel AISI 4130, 1inx1.11inx1.65mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for performing the analysis for frontal impact on frame/vehicle.

Impact force was applied on the foremost part of the roll cage.

Mounting points of suspension arms were fixed.

Initial Speed=9.114m/s

Final Speed=0m/s

Reaction time=0.30s

### b) Calculation of Impact Forces:

Work Done=  $(0.5*M*V_{final}^2 - 0.5*M*V_{initial}^2)$ 

 $|W|=|-0.5*M*V_{initial}^2|$ 

=|-0.5\*240\*9.1142|

=9967.8 Nm

Work Done=Force \* Displacement

=(F\*S)

S=Impact Time\*V<sub>max</sub>

=0.30\*9.114

=2.73m

So,

F=W/S

=9967.8/2.73

=3645.6N

≈3700N



### c) Analysis Results

Safety Factor=1.0757







Reaction Time=0.13 sec





### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### C. ROLLOVER ANALYSIS

Material-1 (Steel AISI 1018, 1inx0.84inx2mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for Lower most members were fixed performing the analysis for rollover on frame/vehicle.

Mounting points of suspension arms were fixed.

b) Calculation of Impact Forces:

 $M * g * h = 0.5 * M * v^{2}$ 

v=√2 \* 9.81 \* 2

=6.2641 m/s

(Now from work energy principal)

Work Done=Change in Kinetic Energy

 $|W| = |-0.5^*M^*v_{initial}^2|$ 

=|0.5\*240\*6.26412|

=4708.70N

S=Impact time \* v<sub>max</sub>

=0.13\*6.2641

=0.814333m

F=W/S

=4708.70/0.81433

=5782.30N

≈5800N



Impact force = G





### Safety Factor=0.36825



### Equivalent Stress=678.88MPa



### Total Deformation = 16.629mm



### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-2 (Steel AISI 4130, 1inx0.84inx2mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for

Lower most members were fixed performing the analysis for rollover on frame/vehicle.

Mounting points of suspension arms were fixed.

Impact force = G

Meshing Conditions- Relevance Centre = Fine Relevance = 100

Element Size = 10mm

Reaction Time=0.13 sec

### b) Calculation of Impact Forces:

 $M * g * h = 0.5 * M * v^2$ 

v=√2 \* 9.81 \* 2

=6.2641m/s

(Now from work energy principal)

Work Done=Change in Kinetic Energy

 $|W| = |-0.5^*M^*v_{initial}^2|$ 

=|0.5\*240\*6.26412|

=4708.70N

S=Impact time \* v<sub>max</sub>

=0.13\*6.2641

=0.814333m

F=W/S

=4708.70/0.81433

=5782.30N

≈5800N





### Equivalent Stress=522.83MPa



Total Deformation = 13.184mm

### c) Analysis Results:

Safety Factor=0.47816





### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-3 (Steel AISI 1018, 1.25inx1.13inx1.5mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for

Lower most members were fixed performing the analysis for rollover on frame/vehicle.

Mounting points of suspension arms were fixed.

Impact force = G





Meshing Conditions- Relevance Centre = Fine Relevance = 100 Element Size = 10mm

Reaction Time=0.13 sec

### b) Calculation of Impact Forces:

 $M * g * h = 0.5 * M * v^{2}$ 

v=√2 \* 9.81 \* 2

=6.2641m/s

(Now from work energy principal)

Work Done=Change in Kinetic Energy

 $|W| = |-0.5*M*v_{initial}^2|$ 

=|0.5\*240\*6.26412|

=4708.70N

S=Impact time \* v<sub>max</sub>

=0.13\*6.2641

=0.814333m

F=W/S

=4708.70/0.81433

=5782.30N

≈5800N



### c) Analysis Results:

Safety Factor=0.39613



Equivalent Stress=522.56MPa



Total Deformation = 13.661mm







### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### Material-4 (Steel AISI 4130, 1.25inx1.11inx1.65mm)

### a) Assumption & Considerations:

Following assumptions & consideration were made for Lower most members were fixed performing the analysis for rollover on frame/vehicle.

Mounting points of suspension arms were fixed.

Impact force = G

Meshing Conditions- Relevance Centre = Fine Relevance = 100 Element Size = 10mm

Reaction Time=0.13 sec

### b) Calculation of Impact Forces:

 $M * g * h = 0.5 * M * v^2$ 

v=√2 \* 9.81 \* 2

=6.2641m/s

(Now from work energy principal)

Work Done=Change in Kinetic Energy

 $|W| = |-0.5*M*v_{initial}^2|$ 

=|0.5\*240\*6.26412|

=4708.70N

S=Impact time \* v<sub>max</sub>

=0.13\*6.2641

=0.814333m

F=W/S

=4708.70/0.81433

=5782.30N

≈5800N



### c) Analysis Results:

Safety Factor=0.43513



Equivalent Stress=475.72MPa









500.00



### d) Optimizations:

- \* Unnecessary members are removed
- \* T joints are preferred instead of corner joints

### C) FINAL MATERIAL SELECTION

Comparison based on CAE results:

| MATERIAL                  | AISI 1018 |              |         | AISI 4130               |        |                         |         |         |                          |         |        |         |
|---------------------------|-----------|--------------|---------|-------------------------|--------|-------------------------|---------|---------|--------------------------|---------|--------|---------|
| DIMENSION                 | 1in       | x 0.84in x 2 | mm!     | 1.25in x 1.13in x 1.5mm |        | 1.25in x 1.13in x 1.5mm |         |         | 1.25in x 1.11in x 1.65mm |         |        |         |
| IMPACT                    | Front     | Side         | Roll    | Front                   | Side   | Roll                    | Front   | Side    | Roll                     | Front   | Side   | Roll    |
| SAFETY FACTOR             | 0.16834   | 0.92433      | 0.36285 | 0.24542                 | 1.1433 | 0.478146                | 0.20259 | 0.94963 | 0.39613                  | 0.21803 | 1.0757 | 0.43513 |
| TOTAL DEFORMATION(IN mm)  | 18.628    | 4.2668       | 16.629  | 13.656                  | 3.8935 | 13.184                  | 14.155  | 4.035   | 13.661                   | 12.956  | 3.5984 | 12.402  |
| EQUIVALENT STRESS(IN Mpa) | 1485.1    | 270.47       | 678.88  | 1018.6                  | 218.66 | 522.83                  | 1021.8  | 217.98  | 522.56                   | 949.4   | 192.43 | 475.72  |
| WEIGHT OF ROLLCAGE(kg)    |           | 39.57        |         |                         | 29.68  |                         |         | 29.6    |                          |         | 32.57  |         |

### Manufactuability:

| Material      | AISI 1018 | AISI 4130 |  |  |
|---------------|-----------|-----------|--|--|
| Weight        | 3         | 4         |  |  |
| Strength      | 2         | 5         |  |  |
| Machinability | 4         | 4         |  |  |
| Availability  | 4         | 4         |  |  |
| Cost          | 4         | 2         |  |  |
| Weldability   | 4         | 4         |  |  |
| TOTAL         | 21        | 23        |  |  |

Materials Selected for frame:

1) Material 1: STEEL AISI 4130,1.25inx1.11inx1.65mm

### D) CAE ANALYSIS OF OTHER PARTS

a) CAE analysis: Steering Crank

Force applied by tie rod = 500 N

### Safety Factor=2.74



Equivalent Stress=91.11 MPa





Total Deformation = 0.101 mm



### Equivalent Stress=257.3 MPa



### b) CAE analysis: Knuckle + Steering arm



Total Deformation = 0.878 mm



### Safety Factor=1.43



### c) CAE analysis: Trailing arm

Trailing arm is subjected to a Maximum Force of  $1500\ N$ 









100.00



Total Deformation = 0.43451 mm



### Safety Factor=1.8459



### d) CAE analysis: Upper A - arm



effi.saenis.org EFFI-CYCLE 2019 Page 18 of 29





### Equivalent Stress=150.41 MPa



Total Deformation = 1.085 mm



### e) CAE analysis: Lower A- arm



### Safety Factor=1.4069



### Equivalent Stress=177.7 MPa









### f) CAE analysis: Brake disc





# A: Static Structural Force 2 Time: 1.s 20-Sep-194:18 PM Force 2: 1125.1 N Components: 0.,0.,1125.1 N 0.00 100.00 (mm) 50.00

Safety Factor=15



Equivalent Stress=8.7182 MPa















The same of the sa

effi.saenis.org EFFI-CYCLE 2019 Page 21 of 29



### g) CAE analysis: Shaft 1

Maximum Moment= 70000 N-mm



### Factor of safety =4.0818



### Equivalent stress= 61.248MPa



### Total deformation=0.022994mm



### h) CAE analysis: Shaft 2











### Safety Factor=3.8249



## E) VEHICLE VIEWS

Vehicle views are included at the Appendix-1 with all dimensions as asked (all views given at Appendix-1 are mandatory). Complete CAD model with the placement of all components are shown.

All hand sketches, 2D drawings, prototype images may be included in Appendix-2.

**EFFI-CYCLE 2019** Page 23 of 29 effi.saenis.org





# **APPENDIX-1: Vehicle Views**

Figure-1 (Isometric View of Vehicle)







Figure-2 (Front View of Vehicle)



effi.saenis.org EFFI-CYCLE 2019 Page 25 of 29





Figure-3 (Side View of Vehicle)







Figure-4 (Top View of Vehicle)





{Different Materials/Cross-section should be shown with different colors.}

Figure-5 (CAD Model of Frame)







### **GUIDELINES**

- 1. The CAD model must be complete for the presentation in CAD/CAE Report.
- The document must be prepared in this template only. Change in format (header/footer/sequence) will not be accepted. Any heading cannot be omitted.
- 3. Document size should not exceed 5MB, whereas number of pages is not restricted.
- This format is a 97-9003 word template. Document must be saved as Team ID\_Team Name\_CAD/CAE Report as a separate '.pdf' file.
- The file must be submitted as a part of documentation package before the submission deadlines as mentioned in current season rulebook.
- 6. The font must be "Helvetica", black, 10 size.

### **HOW TO USE REPORT TEMPLATE**

- 7. Open the report template. File extension is .dot.
- Save it as word document with document name Team ID\_Team Name\_CAD/CAE Report (write your team ID and Team name here)
- Now check the file extension. It should be .doc or .docx.
- 10. Check that the document has the header and footer same as given in the template.
- 11. Start writing your content in the new document created by you.
- 12. After the completion of document, check the format of such as header, footer, 2 columns format, pictures placement etc.
- 13. Now save as .pdf file and then submit as mentioned in guidelines above.

effi.saenis.org EFFI-CYCLE 2019 Page 29 of 29