Definitions, results and examples

Abel Doñate Muñoz

Contents

1	Rings	2
2	Modules	2
3	D-modules	2
4	F-modules	2

1 Rings

2 Modules

Definition 1 (Projective module). P is projective if and only if for every surjective homomorphism $f: N \to M$ and every homomorphism $g: P \to M$, there exists a lifting $h: P \to N$ with the diagram commuting:

$$P \xrightarrow{g} M$$

Proposition 1 (Characterizations of projective modules). The following are equivalent:

- 1. P is projective.
- 2. The SES $0 \rightarrow A \rightarrow B \rightarrow P \rightarrow 0$ splits.
- 3. Hom(P, -) is an exact functor.
- 4. P is the direct sum of free modules.

Definition 2 (Flat module). M is flat if and only if for every injective homomorphism $f: K \to L$, the map $f \otimes_R id: K \otimes_R M \to L \otimes_R M$ is injective, that is:

$$\begin{array}{ccc} K & \Rightarrow & K \otimes_R M \\ \int_f & & \int_f \otimes id \\ L & \Rightarrow & L \otimes_R M \end{array}$$

Proposition 2 (Characterizations of flat modules). The following are equivalent:

- 1. M is flat.
- 2. $\otimes_R M$ is an exact functor.

Definition 3 (Torsion-free module). M is torsion free if and only if its torsion submodule (the module with all the zero-divisors) is $\{0\}$:

Proposition 3. In general we have the following implications of modules

$$Free \Rightarrow Projective \Rightarrow Flat \Rightarrow Torsion\text{-}free$$

Example 1 (Counterexamples of implications). Some counterexamples

- Projective \Rightarrow Free. $\mathbb{Z}/2\mathbb{Z}$ as $\mathbb{Z}/6\mathbb{Z}$ -module.
- Flat \Rightarrow Projective. \mathbb{Q} as \mathbb{Z} -module.
- Torsion-free \Rightarrow Flat. The ideal I = (x, y) as K[x, y]-module.

3 D-modules

4 F-modules

For all this section R is a commutative Noetherian ring with prime characteristic p.

Definition 4 (Frobenius endomorphism). homomorphism $f: R \to R$ where $f(r) = r^p$