Point Loma Reballast Stability Study

by

Michael A. Miner

A Project

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed January 17, 1997

DTIC QUALITY INSPECTED S

19970218 117

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

An Abstract for the Project of

Point Loma Reballast Stability Tests by Michael A. Miner

for the Degree of Master of Science in Civil Engineering Presented January 23, 1997

Abstract approved:		
•	Charles K. Sollitt	

Large scale model studies of the Point Loma sewer outfall (San Diego, California) were performed at the O. H. Hinsdale Wave Research Laboratory, Oregon State University, in order to determine the stability of a proposed armor mound structure. Two scale models were constructed, one at 1:24 scale and one at 1:33.6. The 1:24 scale model was tested at Froude scaling of 1:24, 1:28.8, and 1:33.6 to examine median prototype armor stone diameters of 20 inches, 24 inches and 28 inches. The 1:33.6 scale model was tested only at the 1:33.6 Froude scaling. Both monochromatic and random wave conditions were modeled at prototype periods between 12 and 20 seconds. The outfall pipe outside diameter was 128 inches, prototype. Experimental data were measured with five resistive type wave gauges and two acoustic current meters. Test runs were also video recorded from two underwater and one above water location. Test conditions are presented in tabular form. Hydrodynamic properties are shown in non-dimensional graphs and are compared to one theoretical model. Surveys were taken of the mound structure at scale changes and showed the greatest armor loss to be at the mound shoulders. The final stable stone size as determined by these tests and video monitoring is a 28 inch prototype stone. The greatest measured horizontal velocities in a test series (up to 19 ft/sec, prototype) usually resulted in some armor rock motion unless the prototype wave period was greater than 18 seconds. The 28 inch diameter stone remained stable for monochromatic prototype wave heights of 75 feet or less.

Point Loma Reballast Stability Study

by

Michael A. Miner

A Project

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed January 17, 1997

Table of Contents

	Page
1.0 Introduction	
1.1 Background 1.2 Scope	1 5
2.0 Method of Analysis	
 2.1 Stability Analysis 2.1.1 Stability Analysis - Method One 2.1.2 Stability Analysis - Method Two 2.2 Non-Dimensional Analysis 	11 15 17 18
3.0 Model Description	
3.1 Test Facility3.2 Bottom Profile3.3 Geologic Materials3.4 Outfall Pipe3.5 Model Construction	22 24 26 31 35
4.0 Experimental Tests	
4.1 Overview4.2 Instrumentation4.3 Wave Conditions4.4 Summary of Test Runs	40 42 45 46
5.0 Results	
 5.1 Overview 5.2 Analysis Methods 5.3 Summary of Results 5.3.1 Profile Measurements 5.3.2 Tabular Results 5.3.3 Graphical Results 	53 53 54 55 61 69
6.0 Summary and Conclusions	
6.1 Test Summary6.2 Results Summary	78 79
References	81

Appendix - Records of all data taken during the experiment, Monochromatic Waves listed first, then Random Waves.

List of Figures

Fig 1.1	ure Location of Point Loma Outfall and South Bay Outfall	Page 2
1.2	Pt. Loma Model Cross Sections Tested in February 1992 (after Ruggerio, 1993)	3
1.3	South Bay Diffuser Cross Sections Tested in 1994 (after Freeman, 1994)	3
1.4	Point Loma Outfall Profile With Vertical Exaggerated 20 Times Horizontal	4
1.5	Initial and Alternate Cross Section for Pt. Loma Reballasting Study	7
1.6	Plan View of Wave Channel in Area of Deep and Shallow Models	8
1.7	Cross Section of Revised Armor Mound (B) Design	9
2.1	Shield's Curve (after Vanoni, 1975)	13
2.2	Stanton Diagram for Friction Factor Under Waves as a Function of Reynolds Number (defined as $R_b = (U\zeta_b)/\upsilon$) and Relative Roughness (after Kamphuis 1975)	13
2.3	Design Wave Approach Angle at Point Loma	15
3.1	Schematic of O.H. Hinsdale Two-Dimensional Wave Channel Profile for Point Loma Stability Study Tests	23
3.2	Wave Channel Profile Enlargement Near Model Section	23
3.3	Profile of Existing Outfall With Wave Channel Bottom Superimposed	25
3.4	1:24 Scale Model Ready for Testing, Deep Model Upper Left Shallow Model Lower Right	25
3.5	Graded Filter (Aquarium Sand) Size Distribution	27
3.6	Mixing and Washing of Ballast Stone Prior to Building Model	27
3.7	Ballast Stone Layer Size Distribution for 1:24 Scale Model	28
3.8	Weighing of Armor Rock Design Mix Prior to Blending in Concrete Mixer	29

List of Figures

Distributions Distributions	30
3.10 Cross Section of 1:24 Scale Model Showing Both Model and Prototype Dimensions	34
3.11 1:33.6 Scale Model Cross Section Showing Prototype and Model Dimensions	34
3.12 Installation of Six-Inch Wide Non-Skid Tape at Armor Toe Locations	35
3.13 Placement and Smoothing of Aquarium Sand by Use of a Wooden Template	36
3.14 Placement of the Ballast Stone Following Pipe "Setting" on Bedding Layer	37
3.15 Placing of Armor Stone Design Mix Through Water	38
4.1 Plan View Schematic of Model Survey Locations	41
4.2 Plan View of Instrumentation in Area of Deep and Shallow Models	43
4.3 Instrumented East Wall of Wave Channel	44
5.1 Profile Changes for Shallow Model Phase A Testing	56
5.2 Profile Changes for Deep Model Phase A and B Testing	57
5.3 Profile Changes for Phase B Shallow Model Testing	58
5.4 Average Change in Cross Section Elevation for All Deep Model Runs Phase A and B Testing	59
5.5 Average Change in Cross Section Elevation for Shallow Model Runs Phase A	60
5.6 Average Change in Cross Section Elevation for Shallow Model Runs Phase B	60
5.7 Wave Steepness Versus Relative Water Depth at the Offshore Wave Gauge	71
5.8 Wave Steepness Versus Relative Water Depth at the Deep Model Center	72
5.9 Wave Steepness Versus Relative Water Depth at the Shallow Model Center	73
5.10 Maximum Dimensionless Horizontal Velocities at Deep Model with Deans Theoretical Velocities Versus Relative Water Depth, s/h = 0.235	74

List of Figures

5.11	Maximum Dimensionless Horizontal Velocities at Deep Model with Deans Theoretical Velocities Versus Relative Water Depth, s/h = 0.271	75
5.12	Maximum Dimensionless Horizontal Velocities at Shallow Model with Deans Theoretical Velocities Versus Relative Water Depth, s/h = 0.246	76
5.13	Maximum Dimensionless Horizontal Velocities at Shallow Model with Deans Theoretical Velocities Versus Relative Water Depth. s/h = 0.215	77

List of Tables

<u>Table</u>		Page
2.1	Froude Model Scaling Values	21
3.1	Graded Filter Material Size Distribution For 1:24 Scale Model	26
3.2	Ballast Stone Layer Material Size Distribution For 1:24 Scale Model	28
3.3	Armor Rock Size Distribution and Prototype Sizes for 1:24, 1:28.8, 1:33.6 Scale	30
4.1	Instrumentation	42
4.2	Data Log Summary of Tests	47-52
5.1	Video Logs	54
5.2	Average Cross Sections for Phase A Shallow Model (inches)	56
5.3	Average Cross Sections for Phase A and Phase B Deep Model (inches)	57
5.4	Average Cross Sections for Phase B Shallow Model (inches)	58
5.5	"A" Design Profile Change Compared to "B" Design Profile Change	61
5.6	Model Scale Hydrodynamic Conditions	63-65
5.7	Prototype Scale Hydrodynamic Conditions	66-68
5.8	Values of s/h Used to Interpolate Dimensionless Velocities From Stream Function Tables	70
6.1	Observed Armor Damage Events and Measured Horizontal Velocities	80

List of Notation

Symbol	<u>Definition</u>
γ	specific weight of liquid
$\gamma_{concrete}$	specific weight of concrete, 150 lbs/ft ³
$\gamma_{ m d}$	ratio of material density in model relative to material density in prototype
$\gamma_{ m p}$	peak enhancement factor in JONSWAP Spectrum
$\gamma_{(FRESH\ WATER)}$	specific weight of fresh water, 62.4 lbs/ft ³
$\gamma_{_{(SEA\ WATER)}}$	specific weight of sea water, 64.0 lbs/ft ³
$\gamma_{\rm s}$	specific weight of sediment grain or armor stone
λ	scale ratio
π	pi
ρ	liquid density
ρ_{s}	stone density
τ_0	shear stress exerted by fluid flow on boundary material
τ_{m}	critical shear stress on sediment grain to cause incipient motion
υ	kinematic viscosity of liquid
ω	wave angular frequency $(2\pi/T)$
$\zeta_{ m b}$	linear wave theory horizontal particle motion amplitude
$\zeta_{\rm b}$ (\perp)	the component of horizontal particle motion amplitude perpendicular to
	armor structure
a	acceleration
A	Area
D_{90}	sediment particle size for which 90% of grains are finer as used in Stanton Diagram
D_{50}	median diameter of armor rock
E	energy
f	frequency
f_o	filter cut-off frequency
f	friction factor
$\mathbf{F_r}$	Froude Number
F	force
g h	acceleration due to gravity
h H	water depth
H_b	waveheight breaking waveheight
H_{mo}	zero moment wave height
H _{1/3}	significant waveheight
\mathbf{H}_{rms}	root mean square waveheight
I.D.	inside diameter
k	wave number $(2\pi/L)$

List of Notation

	equivalent particle size on seabed as used in Stanton Diagram
	wavelength
l	characteristic length
	subscript denoting model units
	mass
O.D.	outside diameter
p	subscript denoting prototype units
-	power
Q	flow rate
R	Reynolds number
R_b	boundary Reynolds number as used in Stanton Diagram
	critical Boundary Reynolds number from Shield's curve
	spectral density function from JONSWAP equation
	height above seabed as used in Stream Function Tables
	time
T	wave period
T_p	period at spectral peak
τ*	critical dimensionless shear stress parameter from Shield's curve
\mathbf{U}_{max}	maximum horizontal velocity under a wave
	the component of maximum horizontal velocity perpendicular to armor
	structure
U	uniform horizontal velocity of fluid
	shear velocity
*	characteristic velocity
	volume
$W_{pvc(dry)}$	weight per foot of PVC model pipe when dry
$W_{pvc(full)}$	weight per foot of PVC model pipe when full of fresh water
Wpvc(displaced water)	
W _{pvc model}	total weight per foot of submerged PVC model pipe
•	S 1 S S S S S S S S S S S S S S S S S S
$W_{p(dry)}$	weight per foot of prototype concrete pipe when dry
$W_{p(full)}$	weight per foot of prototype concrete pipe when full of fresh water
W _{p(displaced water)}	buoyant weight per foot of prototype concrete pipe
W _{prototype}	total weight per foot of submerged prototype pipe
W PVC_MODEL(MIN	minimum total model weight required for PVC pipe
W _{MODEL(MIN)}	total weight per foot for PVC model pipe and added ballast required for
" MODEL(MIN)	· · · · · · · · · · · · · · · · · · ·
	proper Froude scaling
W _{total ballast}	total weight per foot of submerged rebar ballast
· · totai vaildSt	Total Holgar per 100t of Submerged febal ballast
$W_{\text{alum}(\text{dry})}$	weight per foot of aluminum model pipe when dry

List of Notation

$W_{alum(full)}$ $W_{alum(displaced water)}$ $W_{alum model}$ $W_{alum_MODEL(MIN)}$	weight per foot of aluminum model pipe when full of fresh water buoyant weight per foot of aluminum model pipe total weight per foot of submerged aluminum model pipe total weight per foot for aluminum model pipe and added ballast required
	for proper Froude scaling
X	horizontal distance corresponding to the longitudinal dimension of the two dimensional wave channel as referenced in Table 4.1 for instrumentation locations
Y	horizontal distance corresponding to the cross-channel direction of the two dimensional wave channel as referenced in Table 4.1 for instrumentation locations
Z	vertical distance referenced to the top of the false bottom slabs to a given point in the two dimensional wave channel as referenced in Table 4.1 for instrumentation locations
z	cartesian coordinate for vertical measurement; $z = 0$ at the still water evel, $z < 0$ below the still water level, and $z = -h$ at the bottom

Conversion Factors, Non-SI to SI (Metric) Units of Measurement

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

<u>Multiply</u>	<u>By</u>	To Obtain
feet	0.3048	meters
miles (US Statute)	1.609347	kilometers
inches	2.54	centimeters
pounds (weight)	0.4535924	kilograms
pounds (weight) per cubic	16.01846	kilograms per cubic meter
foot		

POINT LOMA REBALLAST STABILITY STUDY

1.0 Introduction

1.1 Background

The Point Loma Sewage Treatment Plant Outfall services the City of San Diego,
California. An additional sewage outfall will soon be in operation approximately 10 miles southsoutheast of Point Loma, that being the South Bay International Wastewater Treatment Plant
Outfall. The locations of both the existing Point Loma outfall and the future South Bay Outfall
are shown in Figure 1.1.

The Point Loma site experienced an outfall rupture between 35 ft. and 50 ft. depth in February 1992. It was hypothesized that air entrainment within the outfall coupled with wave induced forces could have caused the rupture. Hydraulic testing at Oregon State University (OSU) was performed in February and March 1992 to test this theory (Ruggerio, 1993). Both the original condition and a proposed design were tested as is shown in Figure 1.2. An additional 12,500 ft. of outfall was added to the Pt. Loma system in late 1992, increasing the distance to the effluent discharge from 2.1 miles offshore to 4.5 miles.

South Bay Outfall is unique in that the outfall is being built in a lined tunnel beneath the seabed and only the diffuser will be exposed to the environment of wave induced forces. The tunnel will terminate at approximately 3.8 miles offshore at a mean water depth of 90 feet.

Hydraulic testing at OSU was conducted to determine the better of two armor stone configurations (Freeman, 1994). The two diffuser cross sections tested in the wave channel are shown in Figure 1.3.

Figure 1.1 Location of Point Loma Outfall and South Bay Outfall

Figure 1.2 Pt. Loma Model Cross Sections Tested in February 1992 (After Ruggerio, 1993)

Figure 1.3 South Bay Diffuser Cross Sections Tested in 1994(After Freeman, 1994)

Underwater surveys have revealed that Pt. Loma Outfall is in need of additional ballast stone between the mean sea level depths of 60 to 175 feet. This portion of the outfall is located upon the steepest portion of the ocean floor profile as can be seen in Figure 1.4. The existing ballast material reaches the springline of the pipe in some areas, other sections have lost enough ballast material that so that the pipe is unsupported for short spans. A re-rocking effort must be performed in order to ensure this portion of outfall is protected against extreme hydrodynamic conditions which can generate wave heights of 80 feet in the vicinity of the outfall.

Figure 1.4 Point Loma Outfall Profile With Vertical Exaggerated 20 Times Horizontal

A composite underwater structure, such as a rubble armor protected pipeline, must be analyzed by considering stability of pipe as well as stability of the stone. The Morison equation can be used to determine the wave forces on pipelines (see Grace 1978), but the composite materials of pipe, armor stone and underlying bedding rock make force calculations much more complex. The stability of rubble structures built near still water level such as breakwaters and jetties is fairly well understood and design guidance is well documented (Shore Protection Manual, 1984). For an underwater armor stone ballasted pipe no clear design guidance has been written, so designs must be quite conservative or they must employ creative approaches based on past experience and physical model studies.

Most designs are subjected to hydraulic testing to confirm design effectiveness while minimizing construction cost. Parsons Engineering Science, Incorporated contracted with Oregon State University to perform model tests examining the stability of the Point Loma reballasting design.

1.2 Scope

This report discusses the scale model testing of the Point Loma reballasting design. The tests were undertaken at the Oregon State University O.H. Hinsdale Wave Research Laboratory in the large two dimensional wave channel. A false bottom was constructed from 12 ft. square by 6 in. thick concrete panels to simulate the ocean floor profile under the outfall. Shoreward of the false bottom 60 ft. depth the slabs were placed on a 1:12 slope to induce wave breaking and reduce reflection as is appropriate to the natural beach at Point Loma.

Parson's Engineering Science, Incorporated provided an initial replacement $\ armor$ rock design mix ranging from 12 to 24 in. with a median (D_{50}) of 20 in. A scale ratio of

1:24 was selected as it optimized the WRL facility size to the desired prototype wave heights. The model armor design distribution was obtained by sieving local quarry rock in the range of 1/2 to 1.0 in., and combining it in the appropriate proportions. The existing ballast rock was modeled with a uniform mixture of 1/8 to 1/4 in. gravel, simulating 3 to 6 in. prototype ballast. The 128 in. concrete reinforced outfall was modeled with a 5 in. PVC pipe (O.D. of 5.56 in.). Number 8 reinforcing steel was inserted into the model pipe to provide a submerged weight greater than the scaled prototype pipe. Ventilated end caps were placed on model pipe to allow pipe to fill while avoiding large surge flows induced by pipe-end pressure differentials.

Two design cross sections were provided by Parson's Engineering Science Incorporated shown in Figure 1.5. The initial design (A) places the existing ballast rock at the springline of the pipe, and the new replacement armor terminates at approximately 1 o'clock and 11 o'clock. The alternate design (A1) has the same ballast rock condition but the pipe is covered with a single layer of armor stone. The A1 design was only to be tested if the A design was severely damaged under design wave conditions.

Figure 1.6 shows the two pipe sections that were modeled in the tests. The shallower model was centered at station 67+15 at a prototype depth of 98.5 feet. The deeper section was centered at station 71+25 with a depth of 110.5 feet. The 35° angle between pipe model and channel wall was used as it simulates the direction of severe storm wave approach to the Pt. Loma Outfall. The two test sections were each 20 ft. long simulating a total length of 960 ft. prototype at the 1:24 scale ratio.

Figure 1.5 Initial and Alternate Cross Section for Pt. Loma Reballasting Study

Figure 1.6 Plan View of Wave Channel in Area of Deep and Shallow Models

The initial test series of the A design was conducted at a 1:24 scale ratio, where D_{50} was equal to 20 in. The armor was unstable for wave heights greater than 60 ft. The scale ratio was changed to 1:28.8. Changing the scale ratio while using the same size model rock makes the apparent rock size larger. This is illustrated with the following example. The depth over station 67+15 is 98.5 feet prototype, so at the 1:24 scale ratio the model depth is $\frac{98.5 \, ft}{24}$ or 4.1ft. When using 1:28.8 scale ratio, prototype depth remains constant so model depth must change to $\frac{98.5 \, ft}{28.8}$

or 3.4 ft. Changing the scale ratio from 1:24 to 1:28.8 also changes the apparent prototype rock size; instead of the 1.0 in. model rock equaling 24 in. prototype, it is equivalent to 28.8 in.

Testing at the 1:28.8 scale ratio indicated the armor was unstable near the design wave conditions so the scale ratio was increased to 1:33.6. Armor rock was significantly more stable at the design wave conditions and a revised mound design was decided upon rather than testing the A1 (complete burial) design shown in Figure 1.5. The revised design (B) is shown as Figure 1.7 and it was built at a 1:33.6 scale ratio and replaced the 1:24 scale shallow model. A four inch aluminum pipe served as the model outfall with the same armor and ballast stone from the A design used in the B design. The 20 ft. model pipe simulated 672 ft. of the prototype, from approximately station 70+51 to station 63+79.

Figure 1.7 Cross Section of Revised Armor Mound (B) Design

The model was subjected to monochromatic and random waves with prototype periods of 12, 14, 16, 18, and 20 seconds. For random waves, the periods correspond to spectral peak periods. Each monochromatic wave test had a duration of 200 seconds while the random tests were 600 seconds. The testing procedure subjected the model outfall to a full range of wave heights at each scale ratio until significant rock motion was observed.

Wave conditions and rock stability were observed during the test runs. Five resistive type wave gauges measured the wave profile, and two acoustic velocity sensors measured water velocity above the pipe. Rock stability was observed through underwater video cameras.

Quantitative surveys of the model pipe and armor mound cross-section were conducted at specific times corresponding to significant changes in the test conditions. The wave data and stability observations establish the stable rock size for Point Loma reballasting design.

Included in this report is a quantitative summary of the hydrodynamic conditions of each test run. Data collected during diver surveys is presented in terms of model profile changes.

Results of experiments are given in tabular form for both model and prototype.

2.0 Method of Analysis

2.1 Stability Analysis

The purpose of the Point Loma reballast design tests was to determine the armor rock size that would be stable under the design wave conditions. Parson's Engineering Science,

Incorporated provided a prototype design wave height H=83.16 feet and T=14 seconds. The greatest wave induced velocities associated with the design wave are at the shallowest section of the outfall being studied. In this study Station 67+15, with a depth of 98.5 feet below mean sea level, is the location where the rearmoring effort is to begin and the location where extreme design wave kinematics are utilized.

An analysis of stable stone size is briefly described by two methods. Both methods use the Shield's curve and empirically derived friction factors. The first method utilizes friction factors that were developed by Kamphuis (1975) for mean sediment grain sizes varying from 0.5mm to 40mm (0.02 in. to 1.57 in.). The second method obtains friction factors by boundary layer equations for turbulent rough flow through pipes.

The Shield's curve was developed for steady flow conditions rather than for oscillating flow, but numerous experiments have shown that data from oscillatory flows fit the Shield's curve quite well (Sleath, 1984). Consider a sediment grain or armor stone (with median diameter of D_{50}) surrounded by other similar armor stones lying on the bottom of a wide channel. The channel is carrying a uniform flow of liquid that has a uniform horizontal velocity of U. Let the liquid's density and kinematic viscosity be designated by ρ and υ , respectively. The stone density is ρ_s . The specific weight of the armor stone is γ_s , and the specific weight of the liquid is γ .

The shear stress exerted by the flow on the boundary material (the stones) is τ_0 . Let the armor stone stress just before incipient motion occurs be τ_m . Combining the above variables non-dimensionally, two dimensionless parameters are plotted forming the Shield's curve. Figure 2.1 exhibits the shear stress parameter

$$\tau_* = \frac{\tau_o}{(\gamma_s - \gamma)D_{50}} = \frac{\tau_o}{(\rho_s - \rho)gD_{50}} , \qquad (2.1)$$

and a boundary Reynolds number

$$R_* = \frac{U}{v} D_{50} = \frac{\sqrt{\tau_o / \rho}}{v} (D_{50}). \tag{2.2}$$

For the fully turbulent flow regime, as can be expected in most natural cases such as large waves over a pipeline, the boundary Reynolds number of $R_* \ge 500$, yields a shear stress parameter, τ_* , of 0.06.

The fluid flow boundary shear stress, τ_0 , can be determined from the equation

$$\tau_0 = \frac{f}{4} \left(\rho \frac{U^2}{2} \right),\tag{2.3}$$

where f is the friction factor and U is the steady, uniform flow speed. Solving for U under the wave crest in oscillatory flow yields U_{max} which can be computed by linear wave theory and the friction factor is determined empirically.

By using the Shield's curve and setting the flow shear stress (τ_0) from equation 2.3 equal to the stress on the armor stone at incipient motion (τ_m) and solving for the case where τ_* = 0.06 the following equation

$$D_{50} = \frac{\frac{f}{4} \left(\frac{\rho U_{\text{max}}^2}{2} \right)}{(\gamma_s - \gamma)(0.06)}$$
 (2.4)

Figure 2.1 Shield's Curve (after Vanoni, 1975)

Figure 2.2 Stanton Diagram for Friction Factor Under Waves as a Function of Reynold's Number (defined as $R_b = (U\zeta_b)/v$) and Relative Roughness (after Kamphuis 1975)

is used to iteratively solve for a stable stone size.

Using the expression for a shoaling wave breaking depth,

$$\frac{\text{depth of breaking}}{\text{breaking wave height}} = \frac{d_b}{H_b} = 1.28$$
(2.5)

and the outfall depth at Station 67+15 of 98.5 feet, the design wave shallow water breaking height is 77 feet. The following sample calculations use H= 80 feet rather than the calculated depth limited breaking height for the outfall local depth of 98.5 feet as follows:

$$U_{\text{max}} = \frac{\omega H}{2\sinh(kh)} = \frac{2\pi / 14\sec^* 80 ft}{2\sinh[(2\pi / 707 ft)^* 98.5 ft]} \approx 18 ft / \sec. \tag{2.6}$$

Figure 2.2 is a diagram developed by Kamphuis (1975) which shows $\frac{f}{4}$ from equation 2.3 as a function of Boundary Reynolds parameter and relative roughness. For rough turbulent flow the $\frac{f}{4}$ value is not dependent on Boundary Reynolds parameter and remains constant for a given roughness. The term ζ_b is the amplitude of the water particle motion at the bottom (h = - z) in the absence of a boundary layer. Equivalent particle size on the seabed is k_e , and D_{90} is the particle size for which 90% of the grains are finer. ζ_b is found from linear wave theory:

$$\zeta_{\rm b} = -\frac{H \cosh k(h+z)}{2 \sinh(kh)} = \frac{80 ft}{2 \sinh[(2\pi / 707 ft) * 98.5 ft]} \approx 40 ft.$$
 (2.7)

As can be seen in Figure 2.3, the design wave approach angle is assumed to be at 55° from outfall. By using the U_{max} and ζ_b as determined above, large values for the stable stone size are obtained by the two stability methods shown below. Calculations for stable stone size are also shown by using the normal component of velocity to the armor stone shown in Figure 2.3.

Figure 2.3 Design Wave Approach Angle at Point Loma

2.1.1 Stability Analysis - Method One

The friction factor shown on Figure 2.2 is obtained by selecting some value for D_{90} and calculating the ratio of ζ_b / D_{90} . Inserting the resulting value of $\frac{f}{4}$ into equation (2.4) and solving for d_s refines the stone diameter. Although Kamphuis defined the curves based on D_{90} , for these approximate stability calculations it is assumed the difference between D_{50} and D_{90} can be ignored.

Specific gravity of armor stone is assumed to be 2.65, yielding a γ_s =165lbs/ft. Using the velocity and water particle amplitude calculated for the design wave, the final iteration is shown below for D₉₀=24.9ft.

Specific gravity of armor stone is assumed to be 2.65, yielding a γ_s =165lbs/ft³. Using the velocity and water particle amplitude calculated for the design wave, the final iteration is shown below for D₉₀=24.9ft.

$$D_{50} = \frac{\frac{f}{4} \left(\frac{\rho U_{\text{max}}^{2}}{2} \right)}{(\gamma_{s} - \gamma)(0.06)} = \frac{0.47 \left(\frac{64 lbs / ft^{3}}{32.2 ft / s^{2}} \frac{(18 ft / s)^{2}}{2} \right)}{(165 lbs / ft^{3} - 64 lbs / ft^{3})(0.06)} = 24.9 ft.$$
 (2.8)

However, a much smaller value results when using the normal component of U_{max} and ζ_b as is shown below. From Figure 2.3 it is seen the normal components of U_{max} and ζ_b are

$$U_{\text{max}}(\perp) = \cos 55^{\circ}(U_{\text{max}}) = 0.574 (18 \text{ ft/sec}) = 10.3 \text{ ft/sec}, \text{ and}$$
 (2.9)

$$\zeta_b (\perp) = \cos 55^{\circ}(\zeta_b) = 0.574 (40 \text{ ft}) = 23.0 \text{ ft.}$$
 (2.10)

By using a D₉₀ of 2.36ft and substituting the value of (2.10) into the relative roughness ratio of Figure 2.2, a friction factor over four $\left(\frac{f}{4}\right)$ value of 0.136 is obtained and,

$$D_{50} = \frac{\frac{f}{4} \left(\frac{\rho \left[U_{\text{max}}(\perp) \right]^2}{2} \right)}{(\gamma_s - \gamma_s)(0.06)} = \frac{0.136 \left(\frac{64lbs / ft^3}{32.2 ft / s^2} \frac{(10.3 ft / s)^2}{2} \right)}{(165lbs / ft^3 - 64lbs / ft^3)(0.06)} = 2.36 ft.$$
 (2.11)

Kamphuis lab work glued armor stones in a natural pattern to the shear plate in the experimental set-up so using the normal component of velocity and the normal component of water particle displacement in the above equations does not seem appropriate. However the resulting stable stone size calculated with maximum velocities and water particle displacements is unreasonably high. Considering that Kamphuis utilized an oscillating water tunnel with water particle displacements of 0.5m to 3m (1.64 ft to 9.84 ft) and periods of 2.5 seconds to 15 seconds to develop Figure 2.2 it may be inappropriate to use the resulting friction factors on a prototype

with more than four times the water particle displacement. Additionally, the largest experimental sediment used by Kamphuis was a D_{90} = 46mm (1.81 in.) and for both sample calculations the boundary Reynolds number exceeds the range of Figure 2.2 being in one case $7x10^7$ and in the other $2x10^7$.

2.1.2 Stability Analysis - Method Two

Grace (1978) proposes the use of a friction factor obtained through boundary value equations based on rough turbulent pipe flow,

$$\frac{1}{\sqrt{f}} = 2\log_{10}\frac{h}{D_{50}} + 2.11\tag{2.12}$$

where h = the depth of the fluid flow and D_{50} = median stone diameter. Solving equation (2.12) for f and inserting into equation (2.4) results in

$$D_{50} = \frac{\frac{1}{8} \left[2\log_{10} \frac{h}{D_{50}} + 2.11 \right]^{-1/2} \rho U_{\text{max}}^{2}}{(\gamma_{s} - \gamma)(0.06)}$$
 (2.13)

By using the value of U_{max}=18ft/sec the final iteration is

$$D_{50} = \frac{\frac{1}{8} \left[2\log_{10} \frac{98.5 ft}{6.26 ft} + 2.11 \right]^{-1/2} \rho (18 ft / s)^2}{(\gamma_s - \gamma)(0.06)} = 6.26 ft, \qquad (2.14)$$

and by using the normal component of velocity to the outfall ($U_{max}(\bot) = 10.3$ ft/sec) the stable stone diameter becomes

$$D_{50} = \frac{\frac{1}{8} \left[2\log_{10} \frac{98.5 ft}{1.84 ft} + 2.11 \right]^{-1/2} \rho (10.3 ft / s)^2}{(\gamma_s - \gamma_t)(0.06)} = 1.84 ft.$$
 (2.15)

This method results in a more reasonable range of stone sizes. Comparing empirical friction factors to an outfall that will be many times higher than a single layer of armor is at best a rough approximation. The actual rock size distribution within the armor mound, the effect of structural porosity, and breaking wave conditions are not considered with this type of stability analysis. However, these sample calculations offer a starting point for model testing. This project modeled median armor diameters of 20, 24, and 28 inches. The closest predicted diameters were 22 inches and 28 inches, obtained using the normal component of U_{max} in both methods discussed above.

2.2 Non-Dimensional Analysis

Two forms of scaling are commonly used to represent the relationship between model and prototype. In modeling the gravitational restoring force the Froude Number is used. Froude scaling employs the ratio of inertial to gravitational forces. Modeling the viscous forces is accomplished by use of the Reynolds Number. The Reynolds Number represents the ratio of inertial forces to viscous forces. Both gravitational and viscous forces are important in the design of underwater structures. It would be ideal for a model study to modify these two forces to an appropriate scale ratio, but the use of low viscosity fluids or centrifuges (which can achieve this result) are unnecessarily complicated and costly.

With large scale modeling it was observed by Sollitt and Debok, (1976) that scaling errors associated with viscosity become negligible. As long as a Reynolds number exceeding 2×10^5 is maintained in the model fluid flow, then viscous effects with errors less than 3% relative to prototype are realized when the same fluid is used throughout.

With larger scale modeling it is assumed water is incompressible and that surface tension is negligible. Having achieved Reynolds similarity via a large scale model, dynamic similitude is assured by maintaining equality of Froude number during scaling. Inertial forces per unit mass are scaled as convective accelerations which equal the product of velocity times the velocity gradient. This is the same as the velocity squared divided by the length scale. Gravitational forces per unit mass are simply scaled as the gravitational acceleration constant. The Froude number is expressed as the ratio of inertial force per unit mass divided by the gravitational force per unit mass,

$$F_r = \frac{(V^2 / l)}{g} = \frac{V^2}{gl} \ . \tag{2.16}$$

In equation 2.16, V = characteristic velocity, g = gravitational acceleration constant, and l = characteristic length. Therefore equation 2.16 can be written as

$$\left(\frac{V}{\sqrt{gl}}\right)_{p} = \left(\frac{V}{\sqrt{gl}}\right)_{m} \tag{2.17}$$

where the subscripts p and m stand for Prototype and Model, respectively.

Transposing equation 2.17 provides the ratio of model to prototype velocity as

$$\frac{V_m}{V_p} = \sqrt{\frac{l_m}{l_p}} = (\lambda)^{1/2} \tag{2.18}$$

where $\lambda = l_m / l_p$.

Time scales as the ratio of length to velocity or

$$\frac{t_m}{t_p} = \frac{l_m / V_m}{l_p / V_p} = \sqrt{\frac{l_m}{l_p}} = \lambda^{-1/2}.$$
 (2.19)

Acceleration scales as the ratio of velocity to time or

$$\frac{a_m}{a_p} = \frac{V_m / t_m}{V_p / t_p} = \frac{V_m / V_p}{t_m / t_p} = \frac{\lambda^{-1/2}}{\lambda^{-1/2}} = \lambda^{-0} = 1.0 .$$
 (2.20)

Area scales as the square of the length ratio or

$$\frac{A_m}{A_p} = \frac{l_m^2}{l_p^2} = \lambda^{-2} \ . \tag{2.21}$$

Volume scales as the cube of the length ratio or

$$\frac{Vol_m}{Vol_p} = \frac{l_m^3}{l_p^3} = \lambda^{-3} \qquad (2.22)$$

Mass scales as the product of density times volume or

$$\frac{M_m}{M_p} = \frac{\rho_m Vol_m}{\rho_p Vol_p} = \frac{\rho_m}{\rho_p} \lambda^{-3} = \gamma_d \lambda^{-3}$$
(2.23)

where the quantity γ_d is the ratio of material density in the model relative to the material

density in the prototype. Weight scales as the product of mass times gravity or

$$\frac{W_m}{W_p} = \frac{M_m g_m}{M_p g_p} = \gamma_d \lambda^{-3} \qquad (2.24)$$

Force scales according to Newton's Law as the product of mass times acceleration or

$$\frac{F_m}{F_p} = \frac{M_m a_m}{M_p a_p} = \gamma_d \lambda^{-3} (1.0) = \gamma_d \lambda^{-3} . \tag{2.25}$$

Energy scales as the product of the force times the distance (or characteristic length) as

$$\frac{E_m}{E_p} = \frac{F_m l_m}{F_p l_p} = \gamma_d \lambda^{-3} \lambda = \gamma_d \lambda^{-4} . \tag{2.26}$$

Power scales as the product of the force times velocity or

$$\frac{P_m}{P_p} = \frac{F_m V_m}{F_p V_p} = \gamma_d \lambda^{-3} \lambda^{-1/2} \gamma_d \lambda^{-7/2} . \qquad (2.27)$$

Flow rate scales as volume per unit time or

$$\frac{Q_m}{Q_p} = \frac{Vol_m / t_m}{Vol_p / t_p} = \lambda^{-3} \lambda^{-1/2} = \lambda^{-5/2} \qquad . \tag{2.28}$$

Pressure scales as force per unit area or

$$\frac{PRESSURE_{m}}{PRESSURE_{p}} = \frac{F_{m} / A_{m}}{F_{p} / A_{p}} = \gamma_{d} \lambda^{-3} \lambda^{-2} = \gamma_{d} \lambda . \qquad (2.29)$$

The scale ratio used in building the model for the Pt. Loma Reballast Project was 1:24 and 1:33.6. The relationships between the model and prototype parameters are summarized in Table 2.1 for Froude Scaling at the given scale ratio.

Table 2.1 Froude Model Scaling Values

Property	Scaling	λ=1:24	λ=1:33.6
Length	λ	1:24	1:33.6
Area	λ^2	1:576	1:1129
Volume	λ^3	1:13,824	1:37,933
Time	$\lambda^{1/2}$	1:4.899	1:5.797
Velocity	$\lambda^{1/2}$	1:4.899	1:5.797
Acceleration	λ^{0}	1.0	1.0
Weight	$\gamma_{\rm d}\lambda^3$	1: 13,824γ _d	1:37,933γ _d
Force	$\gamma_{\rm d}\lambda^3$	1: 13,824γ _d	$1:37,933\gamma_{d}$
Energy	$\gamma_{ m d}\lambda^4$	1:331,776γ _d	1:1,274,551γ _d
Power	$\gamma_{ m d}\lambda^{7/2}$	1:67,723γ _d	1:219,881γ _d
Flow Rate	$\lambda^{5/2}$	1:2821.8	1:6544
Pressure	$\gamma_{ m d}\lambda$	1:24γ _d	1:33.6γ _d

3.0 Model Description

3.1 Test Facility

Model tests were performed at Oregon State University's O.H.Hinsdale Wave Research Laboratory. The laboratory two dimensional wave channel is shown in Figure 3.1. The channel is 342 feet long, 12 feet wide, and 15 feet deep, sloping to 18 feet deep at the hydraulically driven, hinged flap wave board. Sixty four channels of digital data collection and wave generator control are optically linked to a VAX server 3400 and two VAX 3100 stations. The wave generator is servo-hydraulically driven with direct digital controls. A 150 horsepower electric motor powers a 3000 psi, 76 gpm hydraulic pump which is the driving mechanism for the 8 inch diameter wave board actuator. The actuator ram has a stroke of \pm 30 inches and is located 10 feet above channel bottom. The waveboard is dewatered on the back side and the hydrostatic pressure head is countered by a nitrogen gas spring applied to the actuator. The waveboard sides are sealed with plastic wiping seals which slide on stainless steel cladding epoxied to the channel walls.

The waveboard is controlled by two feedback loops, one for displacement control and one for board velocity. The displacement control senses waveboard position and applies a correction to minimize displacement errors relative to the input position signal. Velocity control senses the wave profile on the wave board face. Calculation of the linear wave solution for the waveboard transfer function allows the velocity to be corrected to generate the desired wave profile. The velocity feedback loop provides active absorption of reflected waves within the channel.

Wave Channel Profile for Point Loma Stability Study Tests Figure 3.1 Schematic of O.H. Hinsdale Two-Dimensional

Wave Channel Profile Enlargement Near Model Section Figure 3.2.

3.2 Bottom Profile

The bottom profile shown in Figure 3.1 and amplified in Figure 3.2 was constructed using false bottom sections bolted to the channel walls. These six inch thick slabs can be placed at one foot increments and shimmed to six inch increments to yield bottom profile slopes of 1:24, 1:12, or zero. For this series of tests the bottom profile consisted of two 1:12 sloping sections, one flat section, one 1:12 sloping section, two 1:24 sloping sections, one flat section, and a 1:12 sloping section which shoaled the incident waves as they proceeded toward the model.

The bottom profile used for these tests closely follows the profile slope shown of Figure 3.3 which is a redrawn portion of "as-built" survey data on the Point Loma Outfall. The two portions of the model shown in Figure 3.4 were built across a sloping section of 1:12, a flat section, and another 1:12 sloping section corresponding to stations 72+00 to 66+00 in Figure 3.3. Approximately half of the deeper model is built on a 1:12 sloped panel and the other half is on a flat panel. About five feet of shallow model is on a flat panel and the remainder on a 1:12 sloped panel. Shoreward of the model, three flat sections followed by four 1:12 sloping sections induced wave breaking and minimized reflection, simulating the effect of the Point Loma shoreline. The model was placed in the channel with a 35° orientation from the east wall of wave channel to simulate the direction of large design waves as shown in Figure 3.4. The portions of outfall especially of interest in the testing were from station 67+15 (in prototype depth of 98.5 feet), to station 74+34 (at prototype depth of 118.5 feet) which scaled to be the center of the two model pipes.

Figure 3.3 Profile of Existing Outfall With Wave Channel Bottom Superimposed

Figure 3.4 1:24 Scale Model Ready For Testing. Deep Model Upper Left, Shallow Model Lower Right

3.3 Geologic Materials

The reballast design requires two rock layers, an existing ballast stone layer covered by a courser armor stone layer. A third layer was used in the model, a finer aggregate than the ballast stone which acted as a graded filter between the concrete false bottom and the ballast stone.

The model used a commercial product, RMC Lonestar Coarse Aquarium Sand, as the under-ballast graded filter. This sand was purchased in 100 lb bags and was placed on wave channel false bottom prior to model pipe installation. The distribution of model graded filter material and corresponding prototype sizes (for 1:24 Scale model) are listed in Table 3.1 and shown graphically in Figure 3.5.

The intermediate layer of model rock was obtained by sieving local crushed quarry rock using a Gilson Test-Master Sieve producing fractions with divisions of 1/8 in., 3/16 in. and 1/4 in. Gradation of ballast layer was prepared by the following mix proportions: 50% of 1/8 in. - 3/16 in., 50% of 3/16 in. - 1/4 in. The batches of rock were washed and mixed in a concrete mixer for approximately 5 minutes as is shown in Figure 3.6. Sieve analysis of the resulting mixture are listed in Table 3.2 and shown graphically in Figure 3.7. This material simulates the existing ballast rock which is graded between 3 in. and 6 in.

Table 3.1
Graded Filter Material Size Distribution For 1:24 Scale Model

Cumulative % Passing	Sieve Size (US Standard)	Sieve Size (millimeters)	Prototype Size (inches)
99 ± 1	#4	4.75	4.49
70 ± 7	#6	3.35	3.17
10 ± 3	#8	2.36	2.23
2 ± 2	#12	1.70	1.61
1 ± 1	#16	1.18	1.12

Graded Filter (Aquarium Sand) Size Distribution

Figure 3.6 Mixing and Washing of Ballast Stone Prior to Building Model

Table 3.2
Ballast Stone Layer Material Size Distribution For 1:24 Scale Model

		TOTAL TOTAL TOTAL
Cumulative % Passing	Sieve Size (inches)	Prototype size (inches)
100	1/4	6
50	3/16	4.5
0	1/8	3

Figure 3.7
Ballast Stone Layer Size Distribution for 1:24 Scale

Armor rock for the model was sieved with the Gilson Test-Master and produced fractions with divisions of 1/2 in., 5/8 in., 3/4 in., 7/8 in., and 1 in. The specified armor layer gradation was prepared by the following mix proportions: 10% of 1/2 to 5/8 in., 15% of 5/8 to 3/4 in.,

3/4" to 7/8", and 30% of 7/8" to 1". The photograph in Figure 3.8 shows the four model armor stone stockpiles and weighing of rock prior to placing it into the concrete mixer. Each resulting 100 lb batch was washed and mixed for approximately 10 minutes in the concrete mixer. Sieve analysis of the mixture can be seen in Table 3.3 and Figure 3.9. Both prototype armor sizes are shown in Table 3.3 for the 1:24 Scale and the 1: 33.6 Scale.

Figure 3.8 Weighing of Armor Rock Design Mix Prior to Blending in Concrete Mixer

Table 3.3
Armor Rock Size Distribution and Prototype Sizes for 1:24, 1:28.8, and 1:33.6 Scale

		· · · · · · · · · · · · · · · · · · ·		
Cumulative %	Sieve Size	1:24 Scale	1:28.8 Scale	1:33.6 Scale
Passing	(inches)	(inches)	(inches)	(inches)
100	1	24	28.8	33.6
70	7/8	21	25.2	29.4
25	3/4	18	21.6	25.2
10	5/8	15	18	21
0	1/2	12	14.4	16.8

Figure 3.9 Model Armor Size Distribution with Target Maximum and Minimum Distributions.

3.4 Outfall Pipe

The prototype outfall is a concrete pipe with a 128 in. outside diameter (10.67 ft.), and a pipe wall thickness of 10 in. The model pipe used for phase A testing was 5 in. schedule 40 PVC which has outside diameter of 5.56 in. To exactly scale the model at 1:24 a 5.33 in. outside diameter pipe would have been required--not a common size. Figure 3.10 exhibits the cross section of the pipe and armor for the 1:24 scale model testing.

A determination of the correct model weight is necessary to preserve dynamic similitude. Five inch schedule 40 PVC has a dry weight $[W_{pvc(dry)}]$ of 2.71 lbs/ft. The weight of the water in model pipe when full is

$$W_{\text{pvc(full)}} = \frac{\pi}{4} (I.D.)^2 \gamma_{(FRESH WATER)} = \frac{\pi}{4} \left(\frac{5}{12} ft \right)^2 62.4 lbs / ft^3 = 8.51 lbs / ft.$$
 (3.1)

The buoyant force on the model pipe in laboratory wave channel is

$$W_{\text{pvc(displaced water)}} = \frac{\pi}{4} (O.D.)^{2} \gamma_{(FRESH WATER)} = \frac{\pi}{4} \left(\frac{5.56}{12} ft \right)^{2} 62.4 lbs / ft^{3}$$

$$= 10.52 lbs / ft . \tag{3.2}$$

From these calculations the total weight of the model pipe when full of water and submerged is

$$W_{\text{pvc model}} = W_{\text{pvc(dry)}} + W_{\text{pvc(full)}} - W_{\text{pvc(displaced water)}} = 2.71 \text{ lbs/ft} + 8.51 \text{ lbs/ft} - 10.52 \text{ lbs/ft}$$
$$= 0.7 \text{ lbs/ft}. \tag{3.3}$$

The dry weight of the prototype pipe is

$$W_{p(dry)} = \frac{\pi}{4} [(O.D.)^{2} - (I.D.)^{2}] \gamma_{concrete}$$

$$= \frac{\pi}{4} [(10.67 ft)^{2} - (9.0 ft)^{2}] 150 lbs / ft^{3} = 3870 lbs / ft.$$
(3.4)

The weight of the fresh water in the prototype pipe is

$$W_{p(full)} = \frac{\pi}{4} (I.D)^2 \gamma_{(FRESH WATER)} = \frac{\pi}{4} (9 ft)^2 62.4 lbs / ft^3 = 3970 lbs / ft.$$
 (3.5)

When prototype is full of fresh water and is also submerged in salt water the buoyant force on pipe is found by

$$W_{\text{p(displaced water)}} = \frac{\pi}{4} (O.D.)^2 \gamma_{(SEA WATER)} = \frac{\pi}{4} (10.67 ft)^2 64 lbs / ft^3 = 5723 lbs / ft.$$
 (3.6)

From the above, the total weight of the prototype pipe when submerged is

$$W_{prototype} = W_{p(dry)} + W_{p(full)} - W_{p(displaced water)} = (3870 + 3970 - 5723)lbs/ft$$

$$= 2117 lbs/ft. \qquad (3.7)$$

Using Froude Scaling (with $\lambda = 1/24$) as described in Section 2.2 of this report, the minimum model weight required is

$$W_{PVC_MODEL(MIN)} = \gamma_d \lambda^3 (W_{prototype}) = \gamma_d \lambda^2 (W_{prototype}) \text{ unit length}.$$
 (3.8)

The specific weight of laboratory freshwater is 62.4 lb/ft³ while that of the prototype ocean water is 64 lb/ft³. This scales the density as

$$\gamma_{\rm d} = = \frac{\gamma_{MODEL}}{\gamma_{PROTOTYRE}} = \frac{62.4}{64.0} = 0.975. \tag{3.9}$$

By substituting (3.9) into (3.8), the required model weight is determined

$$W_{MODEL(MIN)} = \gamma_d \lambda^2 (2117 \text{ lbs/ft}) = 0.975(1/24)^2 (2117 \text{ lbs/ft}) = 3.58 \text{ lbs/ft}.$$
 (3.10)

The weight of the PVC pipe alone was 0.7 lbs/ft so an additional 2.88 lbs/ft was required for ballast in the model pipe. A number 8 reinforcing steel bar weighs 2.67 lbs/ft in air. The fully submerged weight of No. 8 rebar is

$$W_{\text{total ballast}} = W_{\text{ballast (air)}} - W_{\text{ballast (displaced water)}} = 2.67 lbs / ft - \frac{\pi}{4} (O.D)^{2} \gamma_{\text{(FRESH WATER)}}$$

$$= 2.67lbs / ft - \frac{\pi}{4} (1/12ft)^2 62.4lbs / ft^3 = 2.67 - 0.34 = 2.33lbs / ft.$$
 (3.11)

In order to achieve the required ballast of 2.88lbs/ft averaged over the pipe length, the No. 8 rebars were overlapped by 25% (1.25 * 2.33lbs/ft = 2.91lbs/ft).

For the testing with the revised design (Phase B) a scale ratio of 1:33.6 requires that the model pipe diameter be λ^* prototype length = (1/33.6)*128 in. = 3.81 in. A four inch outside diameter aluminum pipe (inside diameter 3.90 in.) was chosen for use in the model. The four inch pipe has a dry weight [W_{alum(dry)}] of 1.0 lb/ft. The aluminum pipe full of water weighs

$$W_{\text{alum(full)}} = \frac{\pi}{4} (I.D.)^2 \gamma_{(FRESH WATER)} = \frac{\pi}{4} \left(\frac{3.9}{12} ft \right)^2 62.4 lbs / ft^3 = 5.17 lbs / ft . \tag{3.12}$$

The buoyant force on the aluminum pipe in laboratory wave channel is

$$W_{\text{alum(displaced water)}} = \frac{\pi}{4} (O.D.)^2 \gamma_{(FRESH WATER)} = \frac{\pi}{4} \left(\frac{4}{12} ft\right)^2 62.4 lbs / ft^3 = 5.45 lbs / ft.$$
 (3.13)

From these calculations the total weight of the aluminum pipe when full of water and submerged is

$$W_{\text{alum model}} = W_{\text{alum(dry)}} + W_{\text{alum(full)}} - W_{\text{alum(displaced water)}} = 1.0 \text{ lb/ft} + 5.17 \text{ lbs/ft} - 5.45 \text{ lbs/ft}$$

$$= 0.72 \text{ lbs/ft}. \qquad (3.14)$$

Substituting $\lambda = (1/33.6)$ into (3.8), the minimum weight required for the model is

$$W_{alum_MODEL(MIN)} = \gamma_d \lambda^2 (W_{prototype}/unit length) = \left(\frac{62.4}{64.0}\right) \left(\frac{1}{33.6}\right)^2 2117lbs / ft = 1.82lbs / ft$$
. (3.15)

The addition of one #8 rebar with a submerged weight per unit length of 2.33 lbs/ft within the four inch aluminum pipe exceeds the minimum required weight and that was used in the B Phase model. Figures 3.10 and 3.11 show the two model cross sections, with the prototype dimensions on the left, for each phase of testing.

Figure 3.11 1:33.6 Scale Model Cross-section Showing Prototype and Model Dimensions

3.5 Model Construction

The model was constructed with the materials described in previous sections in several stages. The surface of the wave channel false bottom is smoothly finished concrete. Since the armor stones would rest directly upon this surface, six inch wide non-skid adhesive tape was placed upon the wave channel slabs as shown in Figure 3.12. The roughened surface provided a frictional effect approximating that which prototype armor stone might experience on a natural seabed.

Figure 3.12. Installation of Six-inch Wide Non-skid Tape at Armor Toe Locations

The coarse aquarium sand was placed to model the bedding material upon which the prototype pipe is placed as is displayed in Figure 3.13. The model pipe was cut and bent at the locations necessary to keep the pipe parallel to the model profile slope, and duct tape sealed the cut. Reinforcing steel ballast was inserted into the pipe and ventilated end caps were placed over pipe ends prior to pipe installation. Hand pressure and body weight on the model pipe helped embed it into the aquarium sand.

Figure 3.13 Placement and Smoothing of Aquarium Sand by Use of a Wooden Template

Placement of the ballast stone then proceeded as is shown in Figure 3.14. The washed model ballast stones were carefully poured from buckets such that the bedding layer was not disturbed. As the photograph in Figure 3.14 indicates, the desired cross sectional thickness of this layer was obtained by screeding with a wood template. The ballast layer did not cover any of the non-skid tape.

Figure 3.14 Placement of the Ballast Stone Following Pipe "Setting" on Bedding Layer

The water level in the channel was then raised so that 12 inches of water covered the shallowest point of the model and armor rock was placed by dropping from five gallon buckets as is seen in Figure 3.15. The channel level was lowered leaving both models dry so that a plywood template could be used to ensure the minimum design cross section of the structure was in place prior to testing.

Figure 3.15. Placing of Armor Stone Design Mix Through Water

Following run A3420037, the water level was lowered so that the shallow model could be disassembled and a new reduced scale shallow model constructed. The pipe and ballast layer of rock were carefully removed. A wooden template similar to the one shown in Figure 3.13 was

employed to reshape the aquarium sand to meet the design cross-section. The aluminum pipe was then placed upon the aquarium sand and "set" into position. Following ballast stone installation the channel level was raised so that armor stone could be dropped through a minimum of 12 inches of water onto the model. The channel was then dewatered, and the surface screeded with a template to achieve the design cross section.

4.0 Experimental Tests

4.1 Overview

The Point Loma Reballasting construction and testing occurred between February 5 and February 22, 1996. Experimental tests were accomplished in two phases. Phase A testing modeled the prototype pipe at a 1:24 scale. The prototype length under Phase A testing was from station 73+65 to station 64+75. The design cross-section for the A design had the ballast stone placed to the springline of the pipe and the armor to approximately 11 and 1 o'clock. The initial test series of the A design was at a 1:24 scale. It was determined during the initial test series that the armor rock was unstable for wave heights of 60 feet or more. Testing was then done at a scale ratio of 1:28.8 and 1:33.6 which increased the apparant rock median diameters to 24 inches and 28 inches, respectively. Some significant rock motion was observed on the leeward toe of the shallow model with a prototype 16 second, 80 foot high wave but in all other 1:33.6 scale tests the 28 inch median diameter appeared to be a stable armor size to consider for a revised design.

Phase B testing modeled the prototype pipe at a 1:33.6 scale and simulated the prototype outfall from station 70+51 to station 63+79. The shallow model from the Phase A testing was removed and the B design model was built in its place. The B design had a more conservative ballast stone configuration where the stone met the pipe at approximately 3:30 and 8:30 rather than the springling (see Figure 3.11). Only the 1:33.6 scale ratio was used in the Phase B testing.

Significant deep model rock motion was observed two times out of thirty seven test runs in Phase A, and then only at the greater scale ratios where the median rock diameter was less than 28 in. Because of this, only the shallow portion of the model was rebuilt for the Phase B testing.

testing. Phase A testing consisted of 37 test runs and Phase B consisted of 28 test runs. Both phases of model testing were subjected to monochromatic and random waves.

Quantitative surveys at three locations were taken on both the shallow and deep models. A metal template was placed across the pipe and armor structure and eleven elevations were measured per transect. Each pipe model was surveyed prior to testing (in the dry) and at scale ratio changes (by a SCUBA diver) when the still water level of the channel was being decreased. The three pipe transect positions surveyed on each model are shown in Figure 4.1.

Figure 4.1 Plan View Schematic of Model Survey Locations

4.2 Instrumentation

Quantitative data recorded during each test run included wave profile and fluid velocity measurements with a total of nine data channels. Table 4.1 Indentifies each of the nine data channels in operation throughout the testing as well as their positions in the wave channel. All measurements are referenced with the following conventions:

X direction, horizontal positive toward beach with zero being location of the wavegauge closest to waveboard (data channel 1).

Y direction, horizontal positive away from the west wall of wave channel.

Z direction, vertical positive upwards with zero being the top of false channel bottom at the local position.

Table 4.1 Instrumentation

Channel	Instrument	Measurement	(X,Y,Z) in feet
1	Resistive Wave Gauge	wave profile	(0,1,*)
2	Resistive Wave Gauge	wave profile	(11.67,1,*)
3	Resistive Wave Gauge	wave profile	(23.67,1,*)
4	Resistive Wave Gauge	wave profile	(29.67,1,*)
5	Resistive Wave Gauge	wave profile	(35.67,1,*)
6	Horizontal Current Meter	Horizontal Velocity	(6.50,3.58,1.20)
7	Vertical Current Meter	Vertical Velocity	(6.50,3.58,1.20)
8	Horizontal Current Meter	Horizontal Velocity	(24.0,3.50,0.84) A [24.0,3.33,0.74] B
9	Vertical Current Meter	Vertical Velocity	(24.0,3.50,0.84) A [24.0,3.33,0.74] B

^{*} Z Not applicable

When the Phase B model was re-constructed the current meter location was changed, and the revised positions are noted in the table. Figure 4.2 gives a plan view of the instrument locations and Figure 4.3 displays the east wall of channel and the line of gauges, cameras and meters.

Figure 4.2 Plan View of Instrumentation in area of Deep and Shallow Models

Figure 4.3 Instrumented East Wall of Wave Channel

Each channel of raw data was pre-conditioned to a ± 10 volt full scale reading, filtered using a 5 pole Bessel low-pass filter (f_0 = 10 Hz), digitally sampled at 30 Hz and recorded with the Laboratory digital data acquisition system.

Calibration of the wave gauges occurred prior to testing and on the morning of February 14, 1996 and February 23, 1996. The procedure consists of raising the water level in the channel and correlating the voltage output from gauges with a video record of the surface elevation.

Linear regression of the data provides calibration constants for each gauge.

Armor rock motion was observed through two underwater video cameras mounted below the water line. Figure 4.2 shows the various camera locations used during phase A and B. One other camera mounted on the control room roof recorded the water surface from above the

channel. Recordings were made of each run and had universal time code inserted on the VHS tapes for identification and synchronization with digitally recorded data.

4.3 Wave Conditions

Monochromatic waves are used to determine the wave height at which armor rock is unstable, also referred to as the "zero damage" wave height. Water depth and wave period are held constant while the wave generator displacement is increased to create larger waveheights in each consecutive test. Point Loma testing had a design prototype wave period of fourteen seconds. Prototype wave periods of 12, 16, 18, and 20 seconds were also examined in the experiment for completeness. All monochromatic runs were 200 seconds in length.

While monochromatic waves simulate well defined or narrow frequency band ocean swell, a more realistic approach to actual environmental conditions can be accomplished by a random wave spectrum. Because random waves include a full range of wave periods, the extreme waves caused by different wave frequency superposition can be modeled in the wave channel. The JONSWAP spectrum creates random sea conditions falling within the fully developed sea state equilibrium range. A peak enhancement factor allows the wave energy to be concentrated near the wave period of interest. All random waves during this testing used a peak enhancement factor of 3. The formulation of the JONSWAP spectrum follows: (Goda, 1985)

$$S(f) = \alpha H_{1/3}^2 T_p^{-4} f^{-5} \exp\left[-1.25 (T_p f)^{-4}\right] \gamma_p^{\exp\left[-(T_p f - 1)^2 / 2\sigma^2\right]}$$
(4.1)

where:

$$\alpha = \frac{0.0624}{0.230 + 0.0336\gamma_{p} - 0.185(1.9 + \gamma_{p})^{-1}},$$

$$\sigma = \begin{cases} \sigma_a : f \le f_p \\ \sigma_b : f > f_p \end{cases}, \quad \gamma_p = 1 \quad through \quad 7, \sigma_a = 0.07, \sigma_b = 0.09, \text{ and}$$

 f_p = the frequency at the spectral peak

 T_p = the inverse of f_p

 $H_{1/3}$ = significant wave height

 γ_p = peak enhancement factor.

The significant wave height and peak frequency for the Jonswap spectrum were based on Dr. Frederic Raichlen's (California Institute of Technology) analysis of historical wave records in the vicinity of Point Loma. Each random wave test was 600 seconds in length.

4.4 Summary of test runs

Testing consisted of 65 individual runs. These runs are identified in Table 4.1. All runs begin with either "A" or "B", signifying the two model designs. The seven digits following the letter indicate scale ratio, prototype wave period, and consecutive run number. The first two numbers identify the scale ratio rounded to the nearest integer, so that the 1:28.8 scale reads as "29". The second two numbers indicate the target prototype wave period, the final three numbers are the consecutive run numbers 001 through 065.

The comments in Table 4.1 are based upon this author's observation of recorded video tapes. Each test run was reviewed and notes taken on armor motion and movement. The term "minor rock motion" is used in cases when less than 20 armor stones were displaced on that particular model during the test. "Major rock motion" is used when more than 20 armor stones were displaced during the test run on model pipe. Additionally, when armor movement was limited to a specific area, an attempt was made to note the locations of movement.

The wave heights and periods for the random wave runs represent the significant wave height $(H_{1/3})$ and spectral peak periods. The wave heights for the monochromatic wave runs is the average of twenty waves.

of Tests
Data Log Summary of Tests
<u>ر</u> ک
$\tilde{\mathbb{C}}$
$\overline{}$
)ata
Data
Table 4.1 Data

			,		0					1	
KUN	DATE	Model Depth	<u> </u>	Prototype Deptn @ Station: (feet)	Jepin (@					Kandom	Comments and observations from the test runs:
	ૹ	@ Station:		oranion.	(1)	Model Wave	Wave	Prototype	type	Peak	
		(feet)						Wave	ve	En- hance-	
NUMBER	TIME	67+15	71+25	67+15	71+25	Input Period	Meas. Height	Period (sec)	Height (ft)	ment	
						(sec)	gauge 3	*[T _p for	*[H _{1/3}	(gamma)	
							(feet)	random waves]	random		
									waves]		
A2412001	Feb.14 1006	4.14	4.6	99.36	110.4	2.45	0.803	12	19.27		
A2412002	Feb.14 1020	4.14	4.6	99.36	110.4	2.45	1.573	12	37.75		shallow model had minor armor rock motion on leeward side
A2412003	Feb.14 1033	4.14	4.6	99.36	110.4	2.45	2.426	12	58.22		shallow model had major rock movement (both seaward and leeward) and waves were breaking over shallow model
A2412004	Feb.14 1104	4.14	4.6	99.36	110.4	2.45	1.67	12*	40.08*	3	
A2414005	Feb.14 1128	4.14	4.6	96.36	110.4	2.858	0.768	14	18.43		
A2414006	Feb.14 1136	4.14	4.6	96.36	110.4	2.858	1.699	14	40.06		
A2414007	Feb.14 1145	4.14	4.6	99.36	110.4	2.858	2.607	14	62.57		both models had minor armor rock movement on both the seaward and leeward faces
A2414008	Feb.14 1156	4.14	4.6	96.36	110.4	2.858	2.842	14	68.21		both models had minor armor rock movement on both faces and waves were breaking over both models
A2414009	Feb.14 1209	4.14	4.6	96.36	110.4	2.858	2.692	14	64.61		wave breaking over deep model with no rock motion on either model
A2414010	Feb.14 1357	4.14	4.6	96.36	110.4	2.858	2.50	14*	*00.09	es.	shallow model had some minor rock movement and waves were breaking over shallow model
A2914011	Feb.14 1511	3.42	3.92	98.5	112.9	2.609	0.692	14	19.93		
A2914012	Feb.14 1518	3.42	3.92	98.5	112.9	2.609	1.326	14	38.19		
A2914013	Feb.14 1526	3.42	3.92	98.5	112.9	2.609	2.007	14	57.80		

Ľ	
of)
Summary	
ь	Ų
Š	٥
-	ļ
Data I	j
4	3
$\tilde{\Box}$	١
	•
_	
4	٠
۷,	
Je 4	֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
Pahle 4	

DATE	Model Depth	4	Prototype Depth @	epth @					Random	Comments and observations from the test runs:
	@ Station:		Station: (f	eet)	Model	Model Wave	Prototype	type	Peak	
	(feet)						Wave	ive	En- hance-	
1	67+15	71+25	67+15	71+25	Input Period	Meas. Height	Period (sec)	Height (ft)	ment	
					(sec)	gauge 3	*[T _p for random	*[H _{1/3} for	(gamma)	
						(3021)	waves]	random		
	3.42	3.92	98.5	112.9	2.609	2.414	14	69.52		
-	3.42	3.92	5.86	112.9	3.727	2.437	20	70.19		
! 	3.42	3.92	98.5	112.9	3.727	2.902	20	83.58		
	3.42	3.92	98.5	112.9	3.354	1.374	18	39.57		
	3.42	3.92	98.5	112.9	3.354	2.048	18	58.98		shallow - minor rock movement on seaward facing slope
 	3.42	3.92	5.86	112.9	3,354	2.463	18	70.93		shallow - minor rock motion on seaward facing slope. deep - between 5 to 10 armor stones moved away from leeward toe
 	3.42	3.92	5'86	112.9	3.354	2.083	18*	*00:09	3	shallow - when a breaking wave occurred then sporadic minor rock motion was observed
 	3.42	3.92	98.5	112.9	2.981	1.226	16	35.31		
 	3.42	3.92	98.5	112.9	2.981	2.033	16	58.55		shallow - minor rock motion from leeward toe
 	3.42	3.92	98.5	112.9	2.981	2.775	16	79.92		shallow - major rock motion with 20 or more stones moving from seaward to leeward side of pipe. deep - between 5 to 10 stones were swept from leeward toe waves were breaking directly on shallow model
<u> </u>	3.42	3.92	5.86	112.9	2.981	2.430	16*	*86'69	3	shallow - when a breaking wave occurred then sporadic minor
										rock motion was observed

Table 4.1 Data Log Summary of Tests

	1 au 1 4. 1	L	200	mar is finiting for mar									
Prototype Prot		DATE	Model Dep	th	Prototype D.	epth @					Random	Comments and observations from the test runs:	
TTMHE Cite		ઋ	@ Station:	. •	Station: (1		Model	Wave	Protot	type	Peak Fn.		
TIME G7+15 T1+25 G7+15 T1+25 Input Height (sec.) (ft) He			(feet)						War	ve	hance-		
Feb.15 2.93 3.43 98.45 115.3 2.415 2.002 14 67.27 67.27 Feb.16 2.93 3.43 98.45 115.3 2.415 2.002 14 67.27 67.27 Feb.16 2.93 3.43 98.45 115.3 2.415 2.002 14 67.27 67.27 Feb.16 2.93 3.43 98.45 115.3 2.415 2.083 14* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 2.760 2.229 16 74.89 3.41 Feb.16 2.93 3.43 98.45 115.3 2.760 2.229 16 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 2.760 2.229 16* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 2.760 2.229 16* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 2.070 1.876 12* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 2.070 1.876 2.083 18* Feb.16 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3.41 Feb.16 2.93 3.43 98.45 115.3 3.450 1.876 2.083 18* Feb.16 2.93 3.43 98.45 115.3 3.450 1.876 2.083 18* Feb.16 2.93 3.43 98.45 115.3 3.450 1.876 2.083 18* Feb.16 2.93 3.43 98.45 115.3 3.450 1.876 2.083 18* Feb.16 2.93 3.43 98.45 115.3 3.450 1.876 2.084 3.45 115.3 3.450 1.876 2.084 3.45 115.3 3.450 1.876 2.084 3.45 115.3 3.450 3	SER	TIME	67+15	71+25	67+15	71+25	Input Period	Meas. Height		Height (ft)	ment		
Feb.15 2.93 3.43 98.45 115.3 2.415 2.002 14 67.27 and om life and of the l							(sec)	gauge 3			(gamma)		
Feb.15 2.93 3.43 98.45 115.3 2.415 2.002 14 67.27								(feet)	random waves]	ror random			
Feb.15 2.93 3.43 98.45 115.3 2.415 1.70 14 67.27 Feb.15 2.93 3.43 98.45 115.3 2.415 1.770 14 59.47 72.17 Feb.15 2.93 3.43 98.45 115.3 2.415 2.083 14* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 2.760 1.617 16 54.33 9 Feb.16 2.93 3.43 98.45 115.3 2.760 2.229 16* 54.89 3 Feb.16 2.93 3.43 98.45 115.3 2.760 2.229 16* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.105 2.298 18* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.105 2.298 18* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3									ı	waves]			
Feb.15 2.93 3.43 98.45 115.3 2.415 1.770 14 59.47 72.17 Feb.15 2.93 3.43 98.45 115.3 2.415 2.148 14* 59.47 72.17 Feb.16 2.93 3.43 98.45 115.3 2.415 2.083 14* 60.99* 3 Feb.16 2.93 3.43 98.45 115.3 2.760 1.617 16 74.89 3 Feb.16 2.93 3.43 98.45 115.3 2.760 2.029 16* 74.89 3 Feb.16 2.93 3.43 98.45 115.3 2.760 2.083 16* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.105 2.298 18* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.105 2.298 18* 69.99* 3 Feb.16 2.93 3.43 98.45 <td>25</td> <td>Feb.15 1439</td> <td>2.93</td> <td>3.43</td> <td>98.45</td> <td>115.3</td> <td>2.415</td> <td>2.002</td> <td>14</td> <td>67.27</td> <td></td> <td></td> <td></td>	25	Feb.15 1439	2.93	3.43	98.45	115.3	2.415	2.002	14	67.27			
Feb.15 2.93 3.43 98.45 115.3 2.415 2.148 14* 72.17 72.17 Feb.15 2.93 3.43 98.45 115.3 2.415 2.083 14* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 2.760 1.617 16 54.33 3 Feb.16 2.93 3.43 98.45 115.3 2.760 2.229 16 74.89 3 Feb.16 2.93 3.43 98.45 115.3 2.760 2.083 16* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.105 2.298 18* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 2.93 3.43 98.45	26	Feb.15 1639	2.93	3.43	98.45	115.3	2.415	1.770	14	59.47			
Feb.16 Goal 2.93 3.43 98.45 115.3 2.415 2.083 14* 69.99* 3 Feb.16 Goal 2.93 3.43 98.45 115.3 2.760 1.617 16 54.33 3 Feb.16 Goal 2.93 3.43 98.45 115.3 2.760 2.029 16* 74.89 3 Feb.16 Goal 2.93 3.43 98.45 115.3 2.760 2.083 16* 69.99* 3 Feb.16 Goal 2.93 3.43 98.45 115.3 3.105 2.298 18* 69.99* 3 Feb.16 Goal 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 Goal 2.93 3.43 98.45 115.3 2.070 1.876 12 63.03 3 Feb.16 Goal 2.93 3.43 98.45 115.3 2.070 1.876 6.099* 3 Feb.16 Goal 2.93 3.43	727	Feb.15 1650	2.93	3.43	98.45	115.3	2.415	2.148	14	72.17			
Feb.16 0846 2.93 3.43 98.45 115.3 2.760 1.617 16 54.33 Perchidation Size Feb.16 0856 2.93 3.43 98.45 115.3 2.760 2.229 16 74.89 77.89 Feb.16 0925 2.93 3.43 98.45 115.3 2.760 2.083 18 69.99* 3 Feb.16 0946 2.93 3.43 98.45 115.3 3.105 2.298 18 69.99* 3 Feb.16 0957 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 1011 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 1 Feb.16 2.93 3.43 98.45 115.3 3.450 2.566 20 53.89 1	28	Feb.15	2.93	3.43	98.45	115.3	2.415	2.083	14*	*66.69	3		
Feb.16 0836 2.93 3.43 98.45 115.3 2.760 2.229 16* 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.89 74.93 74.03 <	129	Feb.16 0846	2.93	3.43	98.45	115.3	2.760	1.617	16	54.33			
Feb.16 0925 2.93 3.43 98.45 115.3 2.760 2.083 16* 69.99* 3 Feb.16 0946 2.93 3.43 98.45 115.3 3.105 1.608 18 54.03 77.21 77.21 Feb.16 0957 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 1011 2.93 3.43 98.45 115.3 2.070 1.876 12 63.03 1 Feb.16 1033 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 1 Feb.16 1059 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 1 Feb.16 1059 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 1	30	Feb.16 0856	2.93	3.43	98.45	115.3	2.760	2.229	16	74.89		shallow model had rock movement on leeward face	
Feb.16 (0946) 2.93 3.43 98.45 115.3 3.105 1.608 18 54.03 A.03 Feb.16 (0957) 2.93 3.43 98.45 115.3 3.105 2.298 18* 69.99* 3 Feb.16 (1011) 2.93 3.43 98.45 115.3 2.070 1.876 12 63.03 3 Feb.16 (1033) 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 8 Feb.16 (1046) 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 8	31	Feb.16 0925	2.93	3.43	98.45	115.3	2.760	2.083	16*	*66.69	3		
Feb.16 D957 2.93 3.43 98.45 115.3 3.105 2.298 18 77.21 Feb.16 D011 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 D033 2.93 3.43 98.45 115.3 2.070 1.876 12 63.03 5 Feb.16 D034 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 5 Feb.16 D059 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 5	32	Feb. 16 0946	2.93	3.43	98.45	115.3	3.105	1.608	18	54.03			
Feb.16 Loll 2.93 3.43 98.45 115.3 3.105 2.083 18* 69.99* 3 Feb.16 Loll 2.93 3.43 98.45 115.3 2.070 1.876 12 63.03 53.89 Feb.16 Loll 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 53.89 Feb.16 Loll 2.93 3.43 98.45 115.3 3.450 2.566 20 86.22	33	Feb.16 0957	2.93	3.43	98.45	115.3	3.105	2.298	81	77.21			
Feb.16 1033 2.93 3.43 98.45 115.3 2.070 1.876 12 63.03 Feb.16 1034 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 Feb.16 1059 2.93 3.43 98.45 115.3 3.450 2.566 20 86.22)34	Feb.16 1011	2.93	3.43	98.45	115.3	3.105	2.083	18*	*66.69	3		
Feb.16 1046 2.93 3.43 98.45 115.3 3.450 1.604 20 53.89 Feb.16 1059 2.93 3.43 98.45 115.3 3.450 2.566 20 86.22	35	Feb.16 1033	2.93	3.43	98.45	115.3	2.070	1.876	12	63.03			
Feb.16 2.93 3.43 98.45 115.3 3.450 2.566 20 86.22	36	Feb.16 1046	2.93	3.43	98.45	115.3	3.450	1.604	20	53.89			
	37	Feb.16 1059	2.93	3.43	98.45	115.3	3.450	2.566	20	86.22		shallow model had minor rock motion on leeward face near camera mount	

9		
*	-	
	•	į
_(l	ì
E		į
L		
٠		
7	_	
,	_	
	_	
į.	-	۰
•	_	į
- (7	١
ė	-	
- (_	
- 7	=	
•	-	١
		١
7	-	ì
7	•	١
•	-	
	_	ı
,	٠	
- (Ì
	₹	ì
۳	-	ı
(7	١
4	_	ì
- 6	τ	١
-		
4		١
_	-	
~	+	
`	1	
,	1	١
_	_	
7	_	١
7		į
(Z.	١
$\Gamma_0 L_1$	_	

							uo									el,	
Comments and observations from the test runs:						shallow model had monor rock motion on leeward face	armor rock that had been previously displaced was moving on channel bottom near both models				shallow - minor rock motion from leeward toe and up on leeward slope					When a breaking wave occurred directly over shallow model, minor rock motion observed	same as run above
Random	Peak _	En- hance-	ment	(gamma)	u			-								3	3
	Prototype	Wave	Height (ft)	*[H _{1/3} for random	waves]	42.47	45.29	40.76	36.96	37.67	63.81	76.10	62.16	57.36	56.55	*66'69	*66.69
	Prote	W	Period (sec)	*[Tp tor random	waves	12	14	16	18	20	12	14	16	18	20	18*	16*
	Model Wave		Meas. Height at wave	gauge 3 (feet)		1.264	1.348	1.213	1.100	1.121	1.899	2.265	1.850	1.707	1.683	2.083	2.083
	Model		Input Period	(325)		2.070	2.415	2.760	3.105	3.450	2.070	2.415	2.760	3.105	3.450	3.105	2.760
epth @	eet)		71+25			115.3	115.3	115.3	115.3	115.3	115.3	115.3	115.3	115.3	115.3	115.3	115.3
Prototype Depth @	Station: (1		67+15			98.45	98.45	98.45	98.45	98.45	98.45	98.45	98.45	98.45	98.45	98.45	98.45
h h			71+25	T		3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43
Model Depth	@ Station:	(feet)	67+15			2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93
DATE			TIME			Feb.21 1619	Feb.21 1635	Feb.21 1646	Feb.21 1656	Feb.22 0841	Feb.22 0854	Feb.22 0912	Feb.22 0927	Feb.22 0942	Feb.22 0953	Feb.22 1024	Feb.22 1059
RUN			NUMBER			B3412038	B3414039	B3416040	B3418041	B3420042	B3412043	B3414044	B3416045	B3418046	B3420047	B3418048	B3416049

ry of Tests
Summa
Data Log
Fable 4.1
Fab

				6	0					Dandom	Constitution from the continue of the continue
RUN	DATE	Model Depth		Prototype Deptn (#	eptn (#					i validolli	Comments and observations from the test runs.
	ઋ	@ Station:		Station.	(12)	Model Wave	Wave	Prototype	ype	Peak	
		(feet)						Wave	e/e	hance-	
NUMBER	TIME	67+15	71+25	67+15	71+25	Input Period (sec)	Meas. Height at wave gauge 3 (feet)	Period (sec) *[Tp for random waves]	Height (ft) *[H _{1/3} for random waves]	ment (gamma)	
B3414050	Feb.22 1121	2.93	3.43	98.45	115.3	2.415	2.083	14*	*66.69	3	When a breaking wave occurred directly over shallow model, minor rock motion observed
B3412051	Feb.22 1156	2.93	3.43	98.45	115.3	2.070	2.083	12*	*66.69	3	same as run above
B3420052	Feb.22 1209	2.93	3.43	98.45	115.3	3.45	2.083	*07	*66.69	3	same as run above
B3412053	Feb.22 1343	2.93	3.43	98.45	115.3	2.07	1.110	12	37.30		
B3414054	Feb.22 1353	2.93	3.43	98.45	115.3	2.415	2.087	14	70.12		shallow model had minor rock motion on leeward face
B3416055	Feb.22 1400	2.93	3.43	98.45	115.3	2.76	2.120	16	71.23		shallow model had minor rock motion on leeward face
B3418056	Feb.22 1419	2.93	3.43	98.45	115.3	3.105	2.016	18	67.74		
B3420057	Feb.22 1427	2.93	3.43	98.45	115.3	3.45	2.103	50	70.66		
B3412058	Feb.22 1452	2.93	3.43	98.45	115.3	2.07	1.020	12	34.27		
B3414059	Feb.22 1506	2.93	3.43	98.45	115.3	2.415	1.646	14	55.31		
B3416060	Feb.22 1518	2.93	3.43	98.45	115.3	2.76	2.252	91	75.67		shallow model had major armor rock motion on leeward face and waves were breaking over shallow model
B3418061	Feb.22 1526	2.93	3.43	98.45	115.3	3.105	2.369	18	09.62		
B3420062	Feb.22 1535	2.93	3.43	98.45	115.3	3.45	2.266	20	76.14		

5.0 Results

5.1 Overview

Descriptions of the hydrodynamic environment and armor stone consolidation and displacement are presented for the 65 individual tests of the Point Loma reballast design. Wave climate is quantified in terms of wave period, wave height and horizontal velocities at the outfall models. For all waves the peak period and zero moment wave heights are used. For monochromatic waves the onshore and offshore maximum velocities are determined from an average of twenty waves. Random wave runs are further described in terms of zero moment horizontal velocities. Changes in the model profile during testing are quantified.

5.2 Analysis Methods

The armored outfall causes a fraction of the incident wave energy to be reflected back toward the wave board. In this experiment the incident and reflected wave components are not resolved because of the relatively deep locations of the structure and thus a smaller portion of reflected energy. The methods for separating incident and reflected waves used in earlier reports (Ruggerio, Freeman) could be performed. The water depth and the shoaling bottom used in these tests would result in small values of reflected wave energy and the waves passing the deeper and shallow models were considered to be unreflected incident waves.

Two measurements of wave height commonly used in experimental tests are the significant wave height, $H_{1/3}$, and the zero moment wave height, H_{mo} . The significant wave height is defined as the average height of the highest 1/3 of the waves recorded. The zero moment wave height is the height of a single wave component which has two times the energy of a measured wave system. For deep water waves with low steepness (H/L < 0.0625) $H_{1/3}$ equals H_{mo} . With

the height expressed as $H_{1/3}$ or H_{mo} and using the peak wave period, monochromatic and random waves are described as a single wave component. H_{mo} is also related to the root-mean-square wave height, H_{rms} , by the following equation

$$H_{\text{mo}} = \sqrt{2}H_{rms} = H_{1/3}. \tag{5.1}$$

 H_{mo} is the wave height parameter chosen for quantifying the water surface profile in this experiment.

5.3 Summary of Results

The data for this report follows the summary of test runs nomenclature provided in Table 4.1. These include video logs, surveys of model cross-section elevation, and wave climate analysis. The video logs comprise groups of consecutive tests. The underwater surveys were taken between scale changes. The video logs shown in Table 5.1 list the tape number on which the particular view can be found for a specified test run.

Table 5.1 Video Logs.

	Table 5.1 video Logs.				
Video Tape No.	View of:	For Run Numbers:			
1	Deep Model	A2412001-A2916024			
2	Shallow Model	A2412001-A2916024			
3	Surface Waves*	A2412001-A2916024			
4	Deep Model	A3414025-B3416049			
5	Shallow Model	A3414025-B3416049			
6	Surface Waves*	A3414025-B3418048			
7	Shallow Model Shoreward Side	B3414050-B3412065			
8	Shallow Model Ocean Side	B3414050-B3412065			
9	Surface Waves*	B3416049-B3412065			

^{*} A camera was mounted above the two dimensional channel giving an angled view of the wave surface from above.

5.3.1 Profile Measurements

For the model surveys, cross-section measurements have been averaged across the three transects of each model to provide mean profiles. Each of these profiles consists of a series of eleven measurements referenced to the surrounding bottom elevation. Tables 5.2, 5.3, 5.4, and Figures 5.1, 5.2, 5.3 show the offshore direction from pipe centerline as negative distances and the onshore direction from pipe centerline as positive distances. The algebraic sum average is also listed for the profiles which gives a damage estimate of the armor rock layer.

Table 5.2 and Figure 5.1 summarize the model profile changes in the shallow model during Phase A testing. By taking the shallow model average of all points the Phase A design armor loss would be equivalent to 7.2 inches in the prototype. Figure 5.1 shows the most significant armor loss at the shoulder of the structure on the lee side of the pipe. Comparing the shoreward shoulder loss to seaward shoulder loss (the average of the \pm 2.75 and \pm 4.25 points) the seaward side lost 0.555 inches (13.3 inches prototype) while the shoreward side lost 0.95 inches (22 inches) prototype during the thirty-seven Phase A test runs.

Table 5.3 and Figure 5.2 summarize the transect surveys taken on the deep model. The deep model experienced armor stone movement (as far as detected by video monitoring) only twice in thirty-seven test runs. The video cameras were moved and aimed at the B model for runs B3412038 through B3412065. Figure 5.2 shows that very little profile change occurred on the deep model between runs A3420037 and B3412065, so it appears the armor was very stable on the deep model throughout Phase B testing.

The deeper model steadily lost armor on the seaward sloped portion of the structure until equilibrium was achieved near the end of Phase A testing. In contrast, the shoreward side initially

lost armor material during test runs 1-10 (when testing $D_{50} = 20$ inches) and then gained material in the following fifty-five test runs. By taking the deep model average of all points, the Phase A armor loss would be 17.3 inches in the prototype.

Table 5.2 Average Cross-Sections for Phase A Shallow Model (inches)

	Tiverage Cross-L		II BIRRIO II III GCC	(IIICITCS)
	Distance from	Initial Survey	After	After
	pipe centerline		A2414010	A3420037
Deep	-13.625	0.55	0.87	0.67
	-10.5	1.6	2.58	2.32
	-7.375	4.42	4.35	3.70
	-4.25	5.53	5.01	4.81
	-2.75	5.53	5.27	5.14
Pipe Centerline	0	7.37	7.04	7.17
	2.75	6.19	5.86	5.14
	4.25	5.79	5.73	5.01
	7.375	4.22	3.96	3.62
	10.5	1.86	2.45	2.45
Shallow	13.625	0.28	0.09	0.55
All Points	Average	3.94	3.92	3.64

Figure 5.1 Profile Changes for Shallow Model Phase A Testing

Table 5.3 Average Cross-Sections for Phase A and Phase B Deeper Model (inches)

			(IIICIICS)		
	Distance	Initial	After	After	After
	from pipe	Survey	A2419010	A3420037	B3412065
	centerline				
Deep	-13.625	0.74	0.94	0.35	0.28
	-10.5	3.04	2.97	1.99	1.98
	-7.375	4.69	4.61	4.02	3.76
	-4.25	5.93	5.27	4.74	4.74
	-2.75	6.12	5.60	5.07	5.01
Pipe	0	7.37	7.37	7.37	7.11
Centerline					
	2.75	5.60	4.81	4.74	4.81
	4.25	5.14	4.35	4.48	4.29
	7.375	3.70	2.71	3.17	3.04
	10.5	1.79	0.94	1.40	1.33
Shallow	13.625	0.09	0.00	0.00	0.00
All Points	Average	4.02	3.60	3.39	3.30

Figure 5.2 Profile Changes for Deep Model Phase A and B Testing

 Table 5.4 Average Cross-Sections for Phase B Shallow Model (inches)

	Distance from pipe	Initial Survey	After B3412065
	centerline		
Deep	-10	0.0	0.53
	-8	1.58	1.31
	-6	2.43	2.43
	-4	3.54	3.22
	-2	4.07	3.68
Pipe Centerline	0	5.32	5.32
	2	4.06	3.87
	4	3.61	3.22
	6	2.76	2.17
	8	1.71	1.64
Shallow	10	0.33	0.33
All Points	Average	2.67	2.52

6 Height above channel floor 5 (inches) 3 2 0 2 6 8 -2 -10 -8 -4 10 Distance from pipe centerline (inches) ■— initial Survey —□— Survey after B3412065

Figure 5.3 Profile Changes for Phase B Shallow Model Testing.

Table 5.4 and Figure 5.3 give the B model profile changes from its initial profile survey to the end of testing following run B3412065, a total of 28 tests. It is clear from Figure 5.3 that the leeward side of structure experienced the greatest loss of armor.

Figures 5.4, 5.5 and 5.6 chart the average change in cross section measurements of all surveys. For all three models (phase A deep and shallow, and phase B shallow) the greatest average negative (loss or consolidation of stone) change was on the onshore side of the model at the shoulder of the slope. The shallow model experienced average accumulation at the offshore toe for both phase A and B testing, while the deeper model experienced a net loss at the offshore toe. It is important to note that the shallow model in phase A was subjected to 37 test runs, the shallow model in phase B was subjected to 27 test runs, while the deeper model experienced all 65 runs.

Distance from model pipe centerline (inches)

Figure 5.4 Average Change in Cross Section Elevation for All Deep Model Runs Phase A and B Testing

Figure 5.5 Average Change in Cross Section Elevation for Shallow Model Runs Phase A

Figure 5.6 Average Change in Cross Section Elevation for Shallow Model Runs Phase B

The average profile change of the A design are compared to average profile change of the B design in Table 5.5. Additionally, information from Table 4.1 is included to reveal how much rock instability was present. It would appear that the D_{50} = 20 inches was quite stable on the shallow model, but in fact the shallow model experienced significant rock motion once, and minor rock motion four times in ten tests at this median rock diameter. Since only three transects were taken on each model, these averaged profile changes are good indicators of what occurred on the model instead of indicating armor stone stability. The greater number of test runs also have a large impact on the profile changes. The B design did experience less profile loss of material in the shallow model than the A design, but more importantly, the B design structure experienced less observable rock motion throughout the testing than did the A design.

Table 5.5 "A" Design Profile Change Compared to "B" Design Profile Change

Design	D_{50}	No.	No. Runs	Average	Average	Prototype average loss
		Test	where rock	armor loss	armor loss	over
		Runs	motion	deep	shallow	entire length
			occurred	prototype	prototype	
A	20 in	10	5	10.1 in	0.5 in	5.3 in
A	24 &28 in	27	8	5.0 in	6.7 in	5.9 in
В	28 in	28	5	N/A	5.0 in	5.0 in

5.3.2 Tabular Results

The summary of model wave data shown in Table 5.6 includes wave profile measurements directly over the center of the deep and shallow models and currents just above the model pipes near the east wall of wave tank. Additional data obtained during the experiments are shown in the Appendix. Table 5.6 only lists the data from wave gauge 2, wave gauge 4, and the horizontal current measurements taken on channel 6 and 8 which are discussed in Section 4.2. The

horizontal currents shown are reported as average maximum onshore (+) and offshore (-) velocities at each current meter. For the monochromatic tests the values are obtained as the average computed over twenty waves. Random test runs list the zero moment velocity, or double amplitude velocity. Table 5.7 repeats the measurements for the prototype scale. Using Froude scaling as discussed in section two, wave height and water depth scale directly proportional to the length scale while wave period and velocity scale proportional to the square root of the length scale. Refer to Figure 4.2 (page 43) for locations of the measured wave heights and horizontal velocities.

Table 5.6 Summary of Hydrographic Data (model Scale)

	-1	1-1,	Umo					2.421						3.574							•			3.58			
								6						က်										က်			
del Hm, T	om wave	uge no. 4	ņ	(ft/sec)	-0.685	-1.295	-1.738	-1.211	-0.761	-1.355	-1.789	-1.903	-1.812	-1.787	-0.619	-1.189	-1.513	-1.662	-1.614	-1.666	-1.108	-1.614	-1.642	-1.79	-1.386	-1.665	-1.779
Shallow Model H, T corresponds to H _{mo} ,	respectfully for random wave	conditions at wave gauge no. 4	n	(ft/sec)	0.785	1.47	2.122	1.211	0.861	1.647	2.329	2.361	2.57	1.787	0.68	1.482	2.098	2.401	2.925	3.291	1.574	2.512	2.833	1.79	1.696	2.554	2.958
Sh H, T cor	respectfu	conditions	T	(sec)	2.451	2.453	2.453	2.528	2.856	2.861	2.86	2.589	2.856	2.952	2.616	2.611	2.609	2.607	3.723	3.73	3.354	3.351	3.346	3.392	2.981	2.981	2.988
			I	(tt)	0.777	1.566	2.336	1.484	0.865	1.707	2.592	2.714	2.308	1.968	0.652	1.325	2.001	2.214	2.524	3.015	1.254	2.036	2.254	1.72	1.423	2.161	2.635
			Umo					2.57						3.816										3.791			
el o H _m , T _p	om wave	auge no. 2	ŋ-	(tl/sec)	-0.799	-1.441	-1.995	-1.285	-0.87	-1.562	-2.023	-1.97	-2.254	-1.908	-0.725	-1.3	-1.879	-1.817	-1.7	-1.692	-1.257	-1.79	-1.639	-1.896	-1.148	-2.055	-2.142
Deep Model H, T corresponds to H _{mo} , T _p	respectfully for random wave	conditions at wave gauge no. 2)	(ft/sec)	0.827	1.554	2.334	1.285	0.905	1.75	2.577	2.537	3.02	1.908	0.767	1.445	2.301	2.535	2.967	3.286	1.615	2.599	3.071	1.896	1.727	2.624	3.155
H, T 80	respectfu	conditions	L	(sec)	2.451	2.453	2.447	2.406	2.856	2.853	2.86	2.584	2.86	2:952	2.609	2.609	2.609	2.611	3.726	3.726	3.353	3.356	3.356	3.31	2.982	5.975	2.984
			I	(tt)	0.959	1.944	2.847	1.539	0.926	1.846	2.846	3.121	3.374	2.078	0.818	1.58	2.311	2.836	2.453	2.759	1.285	1.998	2.805	1.747	1.413	2.096	2.838
Depth in feet At Midpoint of Model			shallow	model	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42	3.42
Deptit At M	5	·	deep	model	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	3.92	3.92	3.92	3.92	3.95	3.95	3.92	3.92	3.92	3.92	3.92	3.92	3.92
Run Number					A2412001	A2412002	A2412003	A2412004	A2414005	A2414006	A2414007	A2414008	A2414009	A2414010	A2914011	A2914012	A2914013	A2914014	A2920015	A2920016	A2918017	A2918018	A2918019	A2918020	A2916021	A2916022	A2916023

Table 5.6 Summary of Hydrographic Data (model Scale)

			 1	ı	ı	l	l	ı	I	ı	ı	i	ı	I	ı	1		I	1	l	ı	ı	1	ì		ı	:
			Umo		3.862				3.338			3.491			3.682												
del o H _m , T _p	om wave	auge no. 4	ļ	(ft/sec)	-1.931	-1.321	-1.321	-1.434	-1.669	-1.313	-1.424	-1.746	-1.484	-1.694	-1.841	-1.413	-1.357	-1.442	-1.171	-1.086	-1.023	-1.141	-1.04	-1.331	-1.299	-1.348	-1.49
Shallow Model H, T corresponds to H _m ,	respectfully for random wave	conditions at wave gauge no. 4	n	(tt/sec)	1.931	1.904	1.816	2.106	1.669	2.015	2.432	1.746	2.346	3.071	1.841	1.753	2.352	3.025	1.296	1.325	1.394	1.618	1.541	1.744	1.899	2.108	2.416
Sh H, T cor	respectfu	conditions	L	(sec)	3.017	2.412	2.43	2.416	2.344	2.76	2.761	2.664	3.102	3.107	3.051	2.07	3.447	3.447	2.07	2.416	2.758	3.102	3.449	2.068	2.407	2.76	3.103
			Н	(ft)	1.797	1.873	1.32	2.048	1.558	1.445	1.655	1.49	1.699	2.549	1.573	2.061	1.805	2.672	1.491	1.215	1.062	1.261	1.247	1.94	1.895	1.732	1.892
			Umo		4.222				3.625			3.84			3.99												•
el o H _m , T _p	om wave	auge no. 2	<u> </u>	(t/sec)	-2.111	-1.767	-1.844	-1.885	-1.813	-1.612	-1.78	-1.92	-1.572	-1.901	-1.995	-1.577	-1.436	-1.459	-1.157	-1.356	-1.236	-1.264	-1.164	-1.613	-1.834	-1.651	-1.656
Deep Model H, T corresponds to H _m , T _p	respectfully for random wave	conditions at wave gauge no. 2	n	(tl/sec)	2.111	2.094	2.433	2.419	1.813	2.226	2.766	1.92	2.314	3.016	1.995	1.832	2.493	3.041	1.304	1.502	1.512	1.638	1.661	1.929	2.21	2.355	2.466
H, T co	respectfu	conditions	⊢	(sec)	3.017	2.414	2.421	2.411	2.354	2.756	2.761	2.69	3.105	3.105	3.121	2.072	3.451	3.451	2.07	2.416	2.76	3.102	3.453	2.074	2.411	2.758	3.105
			I	(11)	1.884	2.114	2.406	2.296	1.518	1.833	2.61	1.646	1.684	2.345	1.643	1.873	1.836	2.665	1.205	1.47	1.258	1.159	1.285	1.98	2.156	1.92	1.754
Depth in feet At Midpoint	or Model		shallow	model	3.42	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93
Depth At M	io io		deeb	model	3.92	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43
Run Number					A2916024	A3414025	A3414026	A3414027	A3414028	A3416029	A3416030	A3416031	A3418032	A3418033	A3418034	A3412035	A3420036	A3420037	B3412038	B3414039	B3416040	B3418041	B3420042	B3412043	B3414044	B3416045	B3418046

Table 5.6 Summary of Hydrographic Data (model Scale)

			7						1	1			i		1 1	}		1 1	1				1
			Umo			3.631	3.366	3.119	2.909	3.543											2.795	3.105	2.684
del o H _m , T _p	om wave	auge no. 4	ņ	(ft/sec)	-1.29	-1.816	-1.683	-1.56	-1.455	-1.772	-1.039	-1.341	-1.341	-1.579	-1.364	-0.884	-1.229	-1.446	-1.592	-1.33	-1.398	-1.553	-1.342
Shallow Model H, T corresponds to H _m , T _p	respectfully for random wave	conditions at wave gauge no. 4	n	(ft/sec)	2.383	1.816	1.683	1.56	1.455	1.772	1.249	2.02	2.349	2.855	2.916	1.049	1.65	2.489	3.112	2.802	1.398	1.553	1.342
Sh H, T cor	respectfu	conditions	⊢	(sec)	3.446	3.068	2.874	2.304	2.167	3.413	2.074	2.412	2.765	3.105	3.449	2.067	2.426	2.768	3.107	3.449	2.395	2.859	2.193
			I	(H)	1.89	1.678	1.565	1.537	1.476	1.615	1.112	1.658	1.873	2.309	2.298	1.1	1.349	1.999	2.55	2.21	1.35	1.448	1.381
			Umo			4.23	3.948	3.613	3.266	4.109											3.281	3.576	2.996
el o H _m , T _p	om wave	auge no. 2	P	(ft/sec)	-1.44	-2.115	-1.974	-1.807	-1.633	-2.055	-1.66	-1.735	-1.723	-1.827	-1.539	-1.222	-1.747	-1.858	-1.935	-1.484	-1.641	-1.788	-1.498
Deep Model H, T corresponds to H _{mo} , T _p	respectfully for random wave	conditions at wave gauge no. 2	n	(ft/sec)	209.2	2.115	1.974	1.807	1.633	2.055	2.09	2.345	2.633	2.85	2.996	1.495	2.205	2.894	3.122	3.118	1.641	1.788	1.498
H, T co	respectfu	conditions	 	(sec)	3.451	3.068	2.772	2.395	2.167	3.413	2.075	2.411	2.761	3.107	3.451	2.061	2.416	2.76	3.105	3.451	2.471	2.717	2.193
			T	(#)	2.008	1.728	1.638	1.56	1.473	1.669	1.528	2.251	2.359	2.073	2.421	1.23	1.894	2.597	2.453	2.804	1.418	1.506	1.386
Depth in feet At Midpoint	NOO!		shallow	model	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	5.93	5.93	2.93	2.93	2.93	2.93
Depti At N	5		deep	model	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43	3.43
Run Number					B3420047	B3418048	B3416049	B3414050	B3412051	B3420052	B3412053	B3414054	B3416055	B3418056	B3420057	B3412058	B3414059	B3416060	B3418061	B3420062	B3414063	B3416064	B3412065

Table 5.7 Summary of Hydrographic Data (Prototype Scale)

-U Hmo Tp U (ft/sec)	Run	Depth (ft) at:	at:	H, T corre	Deep esponds to	Deep Outfall Section nds to H _{mo} , T _p respectfully	Deep Outfall Section H, T corresponds to H _m , T _p respectfully for random	andom	H, T corre	Shallor sponds to l	Shallow Outfall Section ands to H., Tprespectfully for	Shallow Outfall Section H, T corresponds to H _{mo} , T _p respectfully for random	andom
Station Station H T U -U Umo Hmo Tp U 67+15 71+25 (ft) (sec) (ft/sec)					ditions at s	tation 71+1	വ		wave con	ditions at s	tation 67+1	C)	
67+15 (11) (sec) (ft/sec) (ft/sec) (ft) (sec) (ft/sec) (ft/sec) <td>Number</td> <td>Station</td> <td>Station</td> <td>I</td> <td>L</td> <td>n</td> <td><u> </u></td> <td>Umo</td> <td>Hmo</td> <td>T_O</td> <td></td> <td>-</td> <td>Ilmo</td>	Number	Station	Station	I	L	n	<u> </u>	Umo	Hmo	T _O		-	Ilmo
110.4 99.36 23.016 12.007 4.051 -3.914 18.648 12.007 3.846 110.4 99.36 46.656 12.017 7.613 -7.059 37.584 12.017 7.201 110.4 99.36 68.328 11.988 11.434 -9.773 56.064 12.017 7.201 110.4 99.36 68.328 11.787 6.295 -6.295 12.59 35.616 12.017 10.396 110.4 99.36 22.224 13.997 8.573 -7.652 40.968 14.016 10.396 110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.016 11.41 110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.016 11.41 110.4 99.36 68.304 14.011 12.625 -9.941 62.308 11.41 110.4 99.36 44.987 14.429 12.429 55.32 13.93 11.41<		67+15	71+25	(ft)	(sec)	(ft/sec)	(ft/sec)	!	(#)	(sec)	(ft/sec)	(tt/sec)	2
110.4 99.36 46.656 12.017 7.613 -7.059 37.584 12.017 7.201 110.4 99.36 68.328 11.988 11.434 -9.773 56.064 12.017 10.396 110.4 99.36 36.936 11.787 6.295 -6.295 12.59 35.616 12.017 10.396 110.4 99.36 22.224 13.991 4.434 -4.262 20.76 13.991 4.218 110.4 99.36 44.304 13.977 8.573 -7.652 40.968 14.016 8.069 110.4 99.36 68.304 14.011 12.629 -9.911 62.208 14.016 8.269 110.4 99.36 68.304 14.011 14.795 -11.042 55.392 13.991 12.59 110.4 99.36 49.875 14.001 14.795 -11.042 55.392 13.991 12.59 112.896 98.496 65.5584 14.001 14.16 -3.891	A2412001	110.4	98.36	23.016	12.007	4.051	-3.914		18.648	12.007	3.846	-3.356	
110.4 99.36 68.328 11.988 11.434 -9.773 56.064 12.017 10.396 110.4 99.36 36.936 11.787 6.295 -6.295 12.59 12.391 4.218 110.4 99.36 22.224 13.991 4.434 -4.262 20.76 13.991 4.218 110.4 99.36 44.304 13.977 8.573 -7.652 40.968 14.011 11.44 110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.011 11.45 110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.011 11.475 -11.042 65.36 14.011 11.475 11.042 65.36 12.639 17.56 12.639 17.56 11.462 8.75 11.462 9.348 -9.348 18.695 14.021 11.462 9.348 14.001 4.116 4.166 11.042 11.042 18.793 14.001 11.042 18.793	A2412002	110.4	98.36	46.656	12.017	7.613	-7.059		37.584	12.017	7.201	-6.344	
110.4 99.36 36.936 11.787 6.295 -6.295 12.59 35.616 12.385 5.93 110.4 99.36 22.224 13.991 4.434 -4.262 20.76 13.991 4.218 110.4 99.36 44.304 13.977 8.573 -7.652 9.017 14.016 8.096 110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.016 11.41 110.4 99.36 80.976 14.011 14.795 -11.042 55.392 13.991 12.59 110.4 99.36 80.976 14.011 14.795 -11.042 55.392 13.991 12.59 110.4 99.36 80.976 14.001 4.116 -3.891 18.776 14.023 11.462 112.896 98.496 66.568 14.001 12.348 -10.084 14.012 12.429 -6.77 38.16 14.039 17.26 112.896 98.496 66.568 1	A2412003	110.4	98.36	68.328	11.988	11.434	-9.773		56.064	12.017	10.396	-8.514	
110.4 99.36 22.224 13.997 4.434 -4.262 20.76 13.991 4.434 -4.262 20.76 13.991 4.218 110.4 99.36 44.304 13.977 8.573 -7.652 40.968 14.016 8.069 110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.011 11.41 110.4 99.36 74.904 12.659 12.429 -9.651 65.136 12.683 11.566 110.4 99.36 49.872 14.011 14.795 -11.042 55.392 13.991 12.59 110.896 98.496 23.5584 14.001 7.755 -6.977 38.16 14.012 7.26 112.896 98.496 65.568 14.001 12.348 -10.084 47.232 14.462 8.756 112.896 98.496 65.568 14.001 12.348 -10.084 57.6288 14.001 17.635 112.896 98.496 70.4644	A2412004	110.4	98.36	36.936	11.787	6.295	-6.295	12.59	35.616	12.385	5.93	-5.93	11.86
110.4 99.36 44.304 13.977 8.573 -7.652 40.968 14.016 8.069 110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.011 11.41 110.4 99.36 74.904 12.659 12.429 -9.651 65.136 12.683 11.566 110.4 99.36 49.872 14.011 14.795 -11.042 55.392 13.991 12.59 110.4 99.36 49.872 14.001 4.116 -3.891 87.232 14.462 8.755 112.896 98.496 25.564 14.001 7.755 -6.977 38.16 14.012 7.26 112.896 98.496 14.001 12.348 -10.084 -9.751 14.021 7.26 112.896 98.496 14.012 13.948 -9.08 86.832 14.001 17.63 112.896 98.496 79.4592 19.996 17.635 -9.08 86.836 17.999 7.711 </td <td>A2414005</td> <td>110.4</td> <td>98.36</td> <td>22.224</td> <td>13.991</td> <td>4.434</td> <td>-4.262</td> <td></td> <td>20.76</td> <td>13.991</td> <td>4.218</td> <td>-3.728</td> <td></td>	A2414005	110.4	98.36	22.224	13.991	4.434	-4.262		20.76	13.991	4.218	-3.728	
110.4 99.36 68.304 14.011 12.625 -9.911 62.208 14.011 11.41 110.4 99.36 74.904 12.659 12.429 -9.651 65.136 12.683 11.566 110.4 99.36 80.976 14.011 14.795 -11.042 55.392 13.991 12.59 110.4 99.36 49.872 14.462 9.348 -9.348 18.695 47.232 14.462 8.755 112.896 98.496 25.584 14.001 7.755 -6.977 88.16 14.012 7.26 112.896 98.496 45.504 14.001 7.755 -6.977 87.6288 14.001 17.62 112.896 98.496 81.6768 14.001 17.635 -9.08 86.832 20.017 10.278 112.896 98.496 70.464 19.996 17.635 -9.08 86.832 20.017 10.123 112.896 98.496 80.784 18.01 17.934 10.462	A2414006	110.4	98.36	44.304	13.977	8.573	-7.652		40.968	14.016	8.069	-6.638	
110.4 99.36 74.904 12.659 12.429 -9.651 65.136 12.683 11.566 110.4 99.36 80.976 14.011 14.795 -11.042 55.392 13.991 12.59 110.4 99.36 49.872 14.462 9.348 -9.348 18.695 47.232 14.462 8.755 112.896 98.496 45.504 14.001 7.755 -6.977 38.16 14.012 7.26 112.896 98.496 66.5568 14.001 12.348 -10.084 57.6288 14.001 10.278 112.896 98.496 66.5568 14.012 13.604 -9.751 63.7632 13.991 11.762 112.896 98.496 70.6464 19.996 15.923 -9.123 72.6912 19.98 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 57.5424 18.01 13.948 -9.606 64.9152 17.993 17.793 112.896 <td< td=""><td>A2414007</td><td>110.4</td><td>98.36</td><td>68.304</td><td>14.011</td><td>12.625</td><td>-9.911</td><td></td><td>62.208</td><td>14.011</td><td>11.41</td><td>-8.764</td><td></td></td<>	A2414007	110.4	98.36	68.304	14.011	12.625	-9.911		62.208	14.011	11.41	-8.764	
110.4 99.36 80.976 14.011 14.795 -11.042 55.392 13.991 12.59 110.4 99.36 49.872 14.462 9.348 -9.348 18.695 47.232 14.462 8.755 112.896 98.496 23.5584 14.001 7.755 -6.977 38.16 14.039 3.331 112.896 98.496 66.5568 14.001 12.348 -10.084 57.6288 14.001 7.26 112.896 98.496 66.5568 14.001 12.348 -10.084 57.6288 14.001 10.278 112.896 98.496 70.6464 19.996 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 70.6464 18.096 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 57.5424 18.01 13.948 -9.606 58.6368 17.997 17.957 13.879 112.896 98.496 50.3136 17.763	A2414008	110.4	99.36	74.904	12.659	12.429	-9.651		65.136	12.683	11.566	-9.323	
110.4 99.36 49.872 14.462 9.348 -9.348 18.695 47.232 14.462 8.755 112.896 98.496 23.5584 14.001 4.116 -3.891 18.776 14.039 3.331 112.896 98.496 45.504 14.001 7.755 -6.977 38.16 14.012 7.26 112.896 98.496 66.5568 14.001 12.348 -10.084 57.6288 14.001 7.26 112.896 98.496 70.6464 19.996 15.923 -9.123 72.6912 19.98 14.33 112.896 98.496 70.6464 19.996 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 37.008 17.994 8.667 -6.746 36.1152 17.993 7.711 112.896 98.496 57.5424 18.01 16.481 -8.796 64.9152 17.957 13.879 112.896 98.496 50.3136 17.763 10.173 <t< td=""><td>A2414009</td><td>110.4</td><td>99.36</td><td>80.976</td><td>14.011</td><td>14.795</td><td>-11.042</td><td></td><td>55.392</td><td>13.991</td><td>12.59</td><td>-8.877</td><td>-</td></t<>	A2414009	110.4	99.36	80.976	14.011	14.795	-11.042		55.392	13.991	12.59	-8.877	-
112.896 98.496 23.5584 14.001 4.116 -3.891 18.7776 14.039 3.331 112.896 98.496 45.504 14.001 7.755 -6.977 38.16 14.012 7.26 112.896 98.496 66.5568 14.001 12.348 -10.084 57.6288 14.001 10.278 112.896 98.496 70.6464 19.996 15.923 -9.123 72.6912 19.98 14.33 112.896 98.496 79.4592 19.996 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 57.5424 18.01 13.948 -9.606 64.9152 17.957 13.879 112.896 98.496 50.3136 17.763 10.173 -10.173 20.345 49.536 17.957 13.879 112.896 98.496 60.348 16.003 9.268 -6.161 40.9824 15.998 8.309 112.896 98.496 60.3648 15.966 14.082	A2414010	110.4	99.36	49.872	14.462	9.348	-9.348	18.695	47.232	14.462	8.755	-8.755	17.509
112.896 98.496 45.504 14.001 7.755 -6.977 38.16 14.012 7.26 112.896 98.496 66.5568 14.001 12.348 -10.084 57.6288 14.001 10.278 112.896 98.496 81.6768 14.012 13.604 -9.751 63.7632 13.991 11.762 112.896 98.496 70.6464 19.996 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 77.5424 18.01 13.948 -6.746 36.1152 17.999 7.711 112.896 98.496 57.5424 18.01 16.481 -8.796 64.9152 17.957 13.879 112.896 98.496 50.3136 17.763 10.173 -10.173 20.345 49.536 17.957 13.879 112.896 98.496 60.3648 15.966 14.082 -6.161 40.9824 15.998 8.309 112.896 98.496 60.3648 15.966 14.082 </td <td>A2914011</td> <td>112.896</td> <td>98.496</td> <td>23.5584</td> <td>14.001</td> <td>4.116</td> <td>-3.891</td> <td></td> <td>18.7776</td> <td>14.039</td> <td>3.331</td> <td>-3.032</td> <td></td>	A2914011	112.896	98.496	23.5584	14.001	4.116	-3.891		18.7776	14.039	3.331	-3.032	
112.89698.49666.556814.00112.348-10.08457.628814.00110.278112.89698.49681.676814.01213.604-9.75163.763213.99111.762112.89698.49670.646419.99615.923-9.0886.83220.01716.123112.89698.49677.542418.0113.948-6.74636.115217.9997.711112.89698.49657.542418.0116.481-8.79664.915217.95713.879112.89698.49650.313617.76310.173-10.17320.34549.53618.2039.606112.89698.49660.364815.96614.082-6.16140.982415.9988.309112.89698.49660.364815.96614.082-6.16140.982415.99812.512	A2914012	112.896	98.496	45.504	14.001	7.755	-6.977		38.16	14.012	7.26	-5.825	
112.896 98.496 81.6768 14.012 13.604 -9.751 63.7632 13.991 11.762 112.896 98.496 70.6464 19.996 15.923 -9.123 72.6912 19.98 14.33 112.896 98.496 79.4592 19.996 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 57.5424 18.01 13.948 -9.606 64.9152 17.999 7.711 112.896 98.496 50.3136 17.763 10.173 -10.173 20.345 49.536 18.203 9.606 112.896 98.496 60.3648 15.966 14.082 -11.028 62.2368 15.998 8.309	A2914013	112.896	98.496	66.5568	14.001	12.348	-10.084		57.6288	14.001	10.278	-7.412	
112.896 98.496 70.6464 19.996 15.923 -9.123 72.6912 19.98 14.33 112.896 98.496 79.4592 19.996 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 37.008 17.994 8.667 -6.746 58.6368 17.999 7.711 112.896 98.496 57.5424 18.01 16.481 -8.796 64.9152 17.957 13.879 112.896 98.496 50.3136 17.763 10.173 -10.173 20.345 49.536 18.203 9.606 112.896 98.496 60.3648 15.966 14.082 -11.028 62.2368 15.998 12.512	A2914014	112.896	98.496	81.6768	14.012	13.604	-9.751		63.7632	13.991	11.762	-8.142	
112.896 98.496 79.4592 19.996 17.635 -9.08 86.832 20.017 16.123 112.896 98.496 37.008 17.994 8.667 -6.746 36.1152 17.999 7.711 112.896 98.496 57.5424 18.01 13.948 -9.606 64.9152 17.957 12.306 112.896 98.496 50.3136 17.763 10.173 -10.173 20.345 49.536 18.203 9.606 112.896 98.496 60.6944 16.003 9.268 -6.161 40.9824 15.998 8.309 112.896 98.496 60.3648 15.966 14.082 -11.028 62.2368 15.998 15.998 12.512	A2920015	112.896	98.496	70.6464	19.996	15.923	-9.123		72.6912	19.98	14.33	-7.907	
112.896 98.496 37.008 17.994 8.667 -6.746 36.1152 17.999 7.711 112.896 98.496 57.5424 18.01 13.948 -9.606 64.9152 17.983 12.306 112.896 98.496 50.3136 17.763 10.173 -10.173 20.345 49.536 18.203 9.606 112.896 98.496 60.3648 15.966 14.082 -11.028 62.2368 15.998 12.512	A2920016	112.896	98.496	79.4592	19.996	17.635	-9.08		86.832	20.017	16.123	-8.162	
112.89698.49657.542418.0113.948-9.60664.915217.98317.39612.306112.89698.49650.313617.76310.173-10.17320.34549.53618.2039.606112.89698.49660.364816.0039.268-6.16140.982415.9988.309112.89698.49660.364815.96614.082-11.02862.236815.99812.512	A2918017	112.896	98.496	37.008	17.994	8.667	-6.746		36.1152	17.999	7.711	-5.428	
112.89698.49680.78418.0116.481-8.79664.915217.95713.879112.89698.49650.313617.76310.173-10.17320.34549.53618.2039.606112.89698.49640.694416.0039.268-6.16140.982415.9988.309112.89698.49660.364815.96614.082-11.02815.99815.512	A2918018	112.896	98.496	57.5424	18.01	13.948	909.6-		58.6368	17.983	12.306	-7.907	
112.89698.49650.313617.76310.173-10.173-10.17320.34549.53618.2039.606112.89698.49640.694416.0039.268-6.16140.982415.9988.309112.89698.49660.364815.96614.082-11.02862.236815.99812.512	A2918019	112.896	98.496	80.784	18.01	16.481	-8.796		64.9152	17.957	13.879	-8.044	
112.896 98.496 40.6944 16.003 9.268 -6.161 40.9824 15.998 8.309 112.896 98.496 60.3648 15.966 14.082 -11.028 62.2368 15.998 12.512	A2918020	112.896	98.496	50.3136	17.763	10.173	-10.173	20.345	49.536	18.203	909.6	-9.606	19.212
112.896 98.496 60.3648 15.966 14.082 -11.028 62.2368 15.998 12.512	A2916021	112.896	98.496	40.6944	16.003	9.268	-6.161		40.9824	15.998	8.309	-6.79	
	A2916022	112.896	98.496	60.3648	15.966	14.082	-11.028		62.2368	15.998	12.512	-8.157	

Table 5.7 Summary of Hydrographic Data (Prototype Scale)

Table 5.7 Summary of Hydrographic Data (Prototype Scale)

Run	Depth (ft) at:	at:	H, T corre	Deep Outfall Section esponds to H _{mo} , T _p respectfully for random	Deep Outfall Section nds to H _m , T _p respectfully	ection ectfully for	random	H, T corres	Shallov sponds to h	Shallow Outfall Section	Shallow Outfall Section H, T corresponds to H _m , T _p respectfully for random	andom
			wave con	nditions at station 71+15	tation 71+1	വ		wave con	ditions at s	wave conditions at station 67+15	2	
7	30,1010	10.10	-	[-								
Indiliper	Station 67+15	Station 71+25	ı€	(Sec)	(#/sec)	0-l	Omo	Hmo	Tp (203)	(#/coo)- (#/	Umo
D041604E	445 040	00 440	7.7	(222)	(2007)	(10360)		(111)	(200)	(insec)	(INSEC)	
534 15045	115.248	98.448	64.512	15.987	13.651	-9.57		58.1952	15.998	12.219	-7.814	
B3418046	115.248	98.448	58.9344	17.998	14.294	-9.599		63.5712	17.987	14.004	-8.637	
B3420047	115.248	98.448	67.4688	20.004	15.083	-8.347		63.504	19.975	13.813	-7.478	
B3418048	115.248	98.448	58.0608	17.784	12.26	-12.26	24.519	56.3808	17.784	10.524	-10.524	21.047
B3416049	115.248	98.448	55.0368	16.068	11.443	-11.443	22.885	52.584	16.659	9.756	-9.756	19.511
B3414050	115.248	98.448	52.416	13.883	10.472	-10.472	20.943	51.6432	13.355	9.04	-9.04	18.079
B3412051	115.248	98.448	49.4928	12.561	9.466	-9.466	18.932	49.5936	12.561	8.431	-8.431	16.862
B3420052	115.248	98.448	56.0784	19.784	11.909	-11.909	23.818	54.264	19.784	10.269	-10.269	20.537
B3412053	115.248	98.448	51.3408	12.028	12.115	-9.622		37.3632	12.022	7.24	-6.023	
B3414054	115.248	98.448	75.6336	13.975	13.593	-10.057		55.7088	13.981	11.709	-7.773	
B3416055	115.248	98.448	79.2624	16.004	15.262	-9.987		62.9328	16.027	13.616	-7.773	
B3418056	115.248	98.448	69.6528	18.01	16.52	-10.59		77.5824	17.998	16.549	-9.153	
B3420057	115.248	98.448	81.3456	20.004	17.366	-8.921		77.2128	19.992	16.903	-7.906	
B3412058	115.248	98.448	41.328	11.947	999.8	-7.083		36.96	11.981	6.081	-5.124	
B3414059	115.248	98.448	63.6384	14.004	12.781	-10.127		45.3264	14.062	9.564	-7.124	
B3416060	115.248	98.448	87.2592	15.998	16.775	-10.77		67.1664	16.045	14.428	-8.382	-
B3418061	115.248	98.448	82.4208	17.998	18.097	-11.216		85.68	18.01	18.039	-9.228	
B3420062	115.248	98.448	94.2144	20.004	18.074	-8.602		74.256	19.992	16.242	-7.709	
B3414063	115.248	98.448	47.6448	14.323	9.509	-9.509	19.018	45.36	13.883	8.10	-8.10	16.201
B3416064	115.248	98.448	50.6016	15.749	10.364	-10.364	20.728	48.6528	16.572	8.999	-8.999	17.998
B3412065	115.248	98.448	46.5696	12.712	8.683	-8.683	17.366	46.4016	12.712	7.799	-7.779	15.558

5.3.3 Graphical Results

The graphs of wave heights and horizontal velocities present data measured from the deepest wave gauge, the current meter and wave gauge near the deep model center, and the current meter and wave gauge at the center of the shallow model. Both wave heights and horizontal velocities are presented in dimensionless form and compared to the theoretical limits obtained using Dean's stream function theory (Dean, 1974). The water depth is non-dimensionlized by the deep water wavelength, L_o. Linear wave theory determines this value according to the following equation

$$L_o = \frac{gT^2}{2\pi} \,, \tag{5.2}$$

where $L_o=$ linear wave theory deep water wavelength, g= gravitational constant, and T= wave period. The zero moment wave heights are non-dimensionalized in the same way as the water depth. Figures 5.7, 5.8 and 5.9 present these wave steepness versus wavelength measurements at the offshore wave gauge, the deep model center, and the shallow model center. The theoretical breaking limit by Dean Stream Function Theory (H/H_b = 1) is shown for comparison as is H/H_b = 0.75. For this experiment, the offshore wave gauge measurements agree with theory in that deepwater waves may attain 75% of the theoretical breaking height.

Graphical comparisons of the maximum horizontal velocities versus wavelength are shown for several of the test series in Figures 5.10 through 5.13. The velocities are non-dimensionalized by the ratio of the wave height divided by the wave period and the depth is again non-dimensionalized by the deep water wavelength. Dean (1974) theoretical dimensionless velocities are shown for comparison. The majority of the theoretical velocities were interpolated from

Stream Function tables for s/h values as shown in Table 5.8. The only dimensionless velocity that was not interpolated was for s/h = 0.3 which is listed directly in the tables.

Table 5.8 Values of s/h Used to Interpolate Dimensionless Velocities from Stream Function Tables

<u> </u>			in beream i u		,	
	wate	er depth	vertical dis	stance from	Corresponding	g s/h value
		h	false botton	n of channel	used to interpo	olate the
			to curre	nt meter	dimensionless	horizontal
				S	velocity from	tables
Run Numbers	over deep	over shallow	deep	shallow	Deep	Shallow
	current	current	current	current	Model	Model
	meter	meter	meter	meter		
	(feet)	(feet)	(feet)	(feet)		
A2412001 -	5.10	4.60	1.198	0.843	0.235	0.183
A2414010						
A2914011-	4.42	3.92	1.198	0.843	0.271	0.215
A2916024						3,210
A3414025-	3.93	3.43	1.198	0.843	0.30*	0.246
A3420037						3.210
B3412038-	3.93	3.43	1.198	0.735	0.30*	0.214
B3412065						0.211

^{*}No interpolation required for this value of s/h.

The lower limit shown in the graphs, Deans Case D, represents the theoretical maximum wave height, $H/H_b=1.0$. The upper limit, Deans Case A, represents the ratio of $H/H_b=0.25$. Points plotted are monochromatic wave runs (M) and random wave runs (R). The random wave zero moment (double amplitude) velocities shown in Table 5.6 are divided by two for the graphical data.

The random tests with significant wave heights up to 70 feet provide smaller H/ H_b values and $\frac{U_{max}}{H/T}$ values than the extreme monochromatic tests because the random results are statistical averages, not maximum observed conditions. For most runs the data conform well in comparison to the maximum velocity trends predicted by theory.

Figure 5.7 Wave Steepness Versus Relative Water Depth at the Offshore Wave Gauge

Figure 5.8 Wave Steepness Versus Relative Water Depth at the Deep Model Center

Figure 5.9 Wave Steepness Versus Relative Water Depth at the Shallow Model Center

Figure 5.10

Maximum Dimensionless Horizontal Velocities at Deeper Model with Dean's Theoretical Velocities Versus Relative Water Depth, S/h=0.235

Figure 5.11 Maximum Dimensionless Horizontal Velocities at Deep Model with Dean's Theoretical Velocities Versus Relative Water Depth, S/h=0.271

Figure 5.12 Maximum Dimensionless Horizontal Velocities at Shallow Model with Dean's Theoretical Velocities Versus Relative Water Depth, S/h=0.246

Figure 5.13
Maximum Dimensionless Horizontal Velocities at Shallow Model with Dean's Theoretical Velocites versus relative water depth, S/h=0.215.

6.0 Summary and Conclusions

6.1 Test Summary

This report summarizes the results of 65 laboratory tests conducted to determine the stability of an armor mound reballast design for Point Loma sewer outfall. Tests were conducted at Oregon State University's O.H. Hinsdale Wave Research Laboratory in Corvallis, Oregon between February 14 and February 22, 1996. Phase A of testing utilized a 1:24 scale model tested at three scale ratios simulating prototype armor stones from D_{50} =20 in. to D_{50} =28 in. Phase B of testing utilized a slightly different mound design with a 1:33.6 scale model. It was tested only at one scale ratio where D_{50} =28 in. and simulated only 692 feet of the prototype outfall length rather than the 960 feet of prototype outfall length tested in Phase A. Model rock was obtained from local quarries to reproduce the size distributions of the prototype outfall design. The model rock used in Phase A was also used in Phase B.

The false bottom of the wave channel was constructed to mimic the outfall slope at Point Loma. Model was placed in the channel such that station 67+15 was at the centerline of the shallow model at a prototype depth of 98 feet. Monochromatic tests were conducted with prototype wave periods of 12, 14, 16, 18 and 20 seconds and prototype wave heights ranging from 19 to 85 feet. For random tests spectral peak periods ranged from 12 to 20 seconds with significant wave heights varying between 35 feet to 56 feet.

Wave data were recorded via five resistive wave gauges and two acoustic current meters.

Underwater video cameras recorded armor rock motion during each test run. Test conditions were presented in tabular form at model and prototype scales. Waves at the model were

considered to be incident waves, with no reflection coefficient, and were quantified in terms of peak period, zero moment wave height, and horizontal current velocities at the pipe crown.

Surveys of the two model profiles were obtained periodically throughout the testing.

These measurements consisted of eleven elevations obtained at three transects on each model.

6.2 Results Summary

The original Point Loma reballast design (A Design) was found to be unstable in wave heights greater than 60 feet with periods of 14, 16, and 18 seconds unless the median rock diameter was 28 in. A revised design (B design) placed the armor material slightly lower on the pipe perimeter than the A design.

Twenty monochromatic wave conditions and eight random wave conditions were tested against the B design. Minor rock motion (less than 20 armor stones displaced) was observed with waves of 40 and 60 foot heights and periods of 12 and 14 seconds. However, these observations were early in the Phase B testing before the mound had experienced any appreciable consolidation. For random waves where $H_{1/3} = 70$ feet, (at spectral peak periods of 12, 14, 16, 18 & 20 seconds) the rock was observed to be stable unless a wave was breaking over the shallow model which caused singular rock motion events.

The maximum measured horizontal velocities (U_{max}) in a test series usually resulted in visual damage to the armor mound (as monitored by the underwater video cameras). Runs A2412001 through A2414010 experienced armor stone damage when $U_{max} > 2.0$ ft/sec but no armor motion was observed for runs with smaller measured velocities. Runs A2914011 through A2916024 had armor rock motion when $U_{max} > 2.5$ ft/sec except in the case where the prototype period was 20 seconds. Measured horizontal velocities up to 3.3 ft/sec. did not cause armor

motion for the 20 second prototype wave period for the 1:28.8 scale tests. Runs A3414025 through B3412065 experienced armor damage through a wide range of measured horizontal velocities. Values taken from Table 5.6 are shown in Table 6.1 for the measured U_{max} at the shallow model for runs during the 1:33.6 scale test series. It should be noted only monochromatic wave conditions and the corresponding unstable armor stone observations are included in Table 6.1.

Table 6.1 Observed Armor Damage Events and Measured Horizontal Velocities

run number	prototype wave period (seconds)	U _{max} at Shallow Model Pipe (ft/sec)
A3416030	16	2.432
A3420037	20	3.025
A3414038	14	1.296
B3412043	12	1.744
B3414054	14	2.02
B3416055	16	2.349
B3416060	16	2.489

In the 1:33.6 scale test series, several runs where the prototype wave period was either 18 or 20 seconds had greater measured U_{max} values than are shown in Table 6.1 but resulted in no observable armor motion.

The only significant armor motion (20 or more stones displaced) observed in the B Model testing was leeward side erosion near the structure's toe when 70 foot 16 second waves were breaking directly on the model. This occurred during a monochromatic test, a condition that would be an extremely rare event in the ocean.

References

Dean, R.G.(1974). <u>Evaluation and Development of Water Wave Theories for Engineering Application</u>. Volume 2. Coastal Engineering Research Center, U.S. Army Corps of Engineers, Fort Belvoir, VA.

Freeman, Paul.(1994). "South Bay Tunnel Outfall Stability Tests," Master of Science Project, Civil Engineering, Oregon State University, Corvallis, OR.

Goda, Y.(1985). <u>Random Seas and Design of Maritime Structures</u>. Tokyo: University of Tokyo Press.

Grace, R. A.(1978). <u>Marine Outfall Systems Planning, Design, and Construction</u>. Prentice-Hall Inc., Englewood Cliffs, NJ, pp 386-392; and 397, 398.

Kamphuis, J.W.(1975). "Friction Factor Under Oscillatory Waves," <u>Journal Waterways</u>, <u>Harbors, Coastal Engineering Division, ASCE</u>, Vol.101, pp135-144.

Ruggiero, Peter.(1993). "Point Loma Sewer Outfall Stability Tests," Master of Science Project, Civil Engineering, Oregon State University, Corvallis, OR.

Shore Protection Manual (1984) 4th Edition. Coastal Engineering Research Station, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS, Volume II, Chapter 7.

Sleath, J.F.A.(1984). Sea Bed Mechanics . Wiley & Sons, Inc., New York, NY, pp 256-260.

Sollitt, C.K. and Debok, D.H. (1976). "Large Scale Model Tests of Placed Stone Breakwaters," ASCE <u>Proceedings of the 15th Coastal Engineering Conference</u>, July 11-17, Honolulu, HI., Volume 3, pp. 2572 - 2588.

Vanoni, V.A., Ed. (1975). <u>Sedimentation Engineering</u>. ASCE-Manuals and Reports on Engineering Practice No. 54, New York, NY, pp 96.

Appendix - Record of all processed data for monochromatic waves

```
a2412001 T=12 H=20
                             WRL STAT ver 3.0
Starting point number ..... = 1280
Number of waves averaged ..... = 20
Water depth at test section .... = 4.14
                                        Feet
WaveMaker Period ..... = 2.4500
Wave height .. (Ch# 3) ..... = .803
                                         Feet
Wavelength ..... = 24.79
                                         Feet
  Transducer Period
                     Gage Avg
                                     Amplitudes
                                                    Phase Calibration
                              Positive Neg
.377 -.326
   Position
              (Sec)
                      Feet
                                               Mean
                                                      (Deg)
                                                               Slope
 1 Wave Ht 1 2.451
                       .000
                               .377
                                                .352 -330.98
                                                               5.9200
   Wave Ht 2
              2.451
                       .004
                               .535
                                                .480 -169.16
                                       -.424
                                                                3.7400
   Wave Ht 3 2.453
                      -.015
                               .438
                                       -.366
                                                .402
                                                        .00
                                                               3.7700
    Wave Ht 4
              2.451
                      -.030
                               .429
                                      -.348
                                                .388 -268.07
                                                               3.7300
                               .529
 5
   Wave Ht 5 2.453
                      -.038
                                      -.388
                                                .459 -178.83
                                                               6.5100
                               .827
    Vel 1x +N 2.449
 6
                      -.077
                                      -.799
                                                .813 -228.57
                                                               10.0000
    Vel 1y +Up 2.451
                               .200
                      -.040
                                      -.199
                                                .199 -289.61
                                                               10.0000
   Vel 2x +N 2.451
 8
                      -.058
                               .785
                                       -.685
                                                .735 - 342.49
                                                               10,0000
 9 Vel 2y +Up 2.439
                      .007
                               .072
                                       -.087
                                                .080 -368.33
                                                              10,0000
                             WRL_STAT ver 3.0
.. 4- 9-96 11:40:50
a2412002 T=12 H=40
Date processed .....
Data collection date ...... 14-FEB-1996 10:19:59.81
Starting point number ..... = 1280
Number of waves averaged ..... = 20
Water depth at test section .... = 4.14
                                        Feet
WaveMaker Period ..... = 2.4500
Wave height ..(Ch# 3)..... = 1.573
Wavelength .... = 24.84
                                        Feet
  Transducer Period
                    Gage Avg
                                     Amplitudes
                                                    Phase Calibration
                              Positive Neg
.763 -.565
   Position
              (Sec)
                      Feet
                                               Mean
                                                      (Dea)
                                                               Slope
   Wave Ht 1
              2.451
                      -.008
                                                .664 -332.45
                                                               5.9200
   Wave Ht 2
              2.453
                       .013
                              1.209
                                       -.735
                                                .972 -177.61
                                                                3.7400
                              .971
 3 Wave Ht 3 2.456
                      -.125
                                      -.602
                                                .786
                                                       .00
                                                               3.7700
                                                .783 -273.50
   Wave Ht 4
              2.453
                      -.043
                               .954
                                      -.612
                                                               3.7300
                      -.036
                                      -.674
 5
   Wave Ht 5 2.454
                              1.133
                                                .903 -197.77
                                                               6.5100
   Vel 1x +N 2.453
                                               1.497 -227.27
 6
                      -.240
                                     -1.441
                              1.554
                                                              10,0000
    Vel 1y +Up 2.447
                      -.053
                               .406
                                      -.354
                                                .380 -296.89
                                                              10.0000
   Vel 2x +N 2.453
                      -.193
                              1.470
                                      -1.295
                                               1.382
                                                      1.71
                                                              10.0000
 9
   Vel 2y +Up 2.468
                      -.042
                               .214
                                      -.162
                                               .188
                                                    -27.95
                                                              10.0000
a2412003 T=12 H=60
                              WRL_STAT ver 3.0
Date processed .....
                                  _4- 9-96 11:40:58
Data collection date ...... 14-FEB-1996 10:32:59.80
Starting point number ..... = 1280
Number of waves averaged ..... = 20
Water depth at test section .... = 4.14
WaveMaker Period ..... = 2.4500
Wave height .. (Ch# 3) ..... = 2.426 Feet
Wavelength ..... = 24.79 Feet
  Transducer Period
                    Gage Avg
                                     Amplitudes
                                                     Phase Calibration
                                                    (Deg)
   Position
              (Sec)
                      Feet
                              Positive Neg
                                               Mean
                                                               Slope
                              1.126 -.690
   Wave Ht 1
              2.451
                      -.182
                                                .908
                                                               5.9200
   Wave Ht 2
              2.447
                      -.050
                              1.804
                                      -1.043
                                               1.424 -161.56
                                                                3.7400
                                      -.806
 3
   Wave Ht 3 2.453
                      -.108
                              1.619
                                               1.213
                                                       .00
                                                               3.7700
   Wave Ht 4
              2.453
                      -.103
                              1.597
                                      -.739
                                                      83.18
                                               1.168
                                                               3.7300
 5
   Wave Ht 5 2.456
                      -.077
                              1.862
                                      -.849
                                               1.355 -192.99
                                                               6.5100
 6
   Vel 1x +N 2.453
                      -.208
                              2.334
                                     -1.995
                                               2.165 -207.94
                                                               10.0000
                                               .499 78.50
.499 12.74
   Vel 1y +Up 2.451
                      -.071
                               .532
                                      -.466
                                                              10.0000
   Vel 2x +N 2.449
                                      -1.738
 8
                      -.233
                              2.122
                                               1.930
                                                              10,0000
 9 Vel 2y +Up 2.468
                      -.019
                               .440
                                                .332 -31.60
                                      -,225
                                                              10,0000
```

```
a2414005 T=14 H=20
                             WRL_STAT ver 3.0
Date processed ..... 4-10-96 13:59:59
Data collection date ...... 14-FEB-1996 11:27:59.90
Starting point number ..... = 1280
Number of waves averaged ..... = 20
Water depth at test section \dots = 4.14
                                         Feet
WaveMaker Period ..... = 2.8580
Wave height ..(Ch# 3).... = .768
Wavelength ..... = 30.17
                                      Amplitudes
  Transducer Period
                      Gage Avg
                                                       Phase Calibration
                               Positive Neg
.411 -.342
              (Sec)
   Position
                       Feet
                                                 Mean
                                                        (Deg)
                                                                 Slope
 1 Wave Ht 1 2.860
                       .028
                                                 .377
                                                        81.62
                                                                 5.9200
   Wave Ht 2
             2.856
                        .004
                                .508
                                        -.418
                                                 .463
                                                       222.05
                                                                 3.7400
                       -.006
   Wave Ht 3 2.854
                                .430
                                        -.338
                                                 .384
                                                         .00
                                                                 3.7700
                       .005
    Wave Ht 4 2.856
                                .477
                                       -.388
                                                 .432
                                                        66.17
                                                                 3.7300
    Wave Ht 5 2.856
 5
                       .010
                                .424
                                       -.315
                                                 .369
                                                      138.44
                                                                 6.5100
    Vel 1x + N = 2.858
                       -.069
 6
                                .905
                                        -.870
                                                 .888
                                                       170.48
                                                                10.0000
    Vel 1y +Up 2.856
                       -.072
                                                      111.97
                                .160
                                        -.156
                                                 .158
                                                                10,0000
   Vel 2x +N 2.856
                       -.067
 8
                                .861
                                        -.761
                                                 .811
                                                                10,0000
                                                        5.46
   Vel 2y +Up 2.861
                       .002
                                .142
                                                        30.19
                                                                10,0000
                                        -.111
                                                 .126
a2414006 T=14 H=40
                             WRL_STAT ver 3.0
... 4- 9-96 11:41:12
Date processed .....
Data collection date ...... 14-FEB-1996 11:35:59.77
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 4.14
                                          Feet
WaveMaker Period ..... = 2.8580
Wave height ..(Ch# 3).... = 1.669
                                          Feet
Wavelength .... = 30.24
                                          Feet
  Transducer Period
                      Gage Avg
                                      Amplitudes
                                                       Phase Calibration
                              Positive Neg
.799 -.520
   Position
              (Sec)
                       Feet
                                                 Mean
                                                       (Deg)
                                                                 Slope
                       -.123
                                                 .659
   Wave Ht 1 2.856
                                .799
                                                        89.28
                                                                 5.9200
                                                 .923
   Wave Ht 2 2.853
                       .019
                               1.079
                                        -.767
                                                       220.22
                                                                 3.7400
    Wave Ht 3 2.860
                       -.015
                                                 .835
                                                        .00
75.70
                               1.062
                                       - .607
                                                                 3.7700
              2.861
    Wave Ht 4
                       -.005
                               1.065
                                       -.642
                                                 .853
                                                                 3.7300
    Wave Ht 5 2.860
                       -.032
                               1.017
                                       -.583
                                                 .800 143.93
                                                                 6.5100
    Vel 1x +N 2.858
                       -.175
                               1.750
                                       -1.562
                                                1.656
                                                       178.45
                                                                10,0000
    Vel 1y +Up 2.851
                       -.028
                                .347
                                        -.322
                                                 .335
                                                       107.97
                                                                10.0000
 8
   Vel 2x +N 2.860
                               1.647
                                       -1.355
                                                        6.08
                       -.167
                                                1.501
                                                                10.0000
 9 Vel 2y +Up 2.856
                       -.046
                               .242
                                       -.155
                                                .198
                                                       -29.62
                                                                10.0000
a2414007 T=14 H=60
                               WRL_STAT ver 3.0
Date processed .....
                                  4- 9-96
                                            11:41:20
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section \dots = 4.14
WaveMaker Period ..... = 2.8580
Wave height .. (Ch# 3) .... = 2.607
                                          Feet
Wavelength ..... = 30.26
                                          Feet
  Transducer Period Gage Avg
                                      Amplitudes
                                                       Phase Calibration
                               Positive Neg
1.432 -.733
   Position
              (Sec)
                       Feet
                                                 Mean
                                                       (Deg)
                                                                 Slope
   Wave Ht 1 2.860
                       -.142
                                                1.082
                                                        94.84
                                                                 5.9200
   Wave Ht 2 2.860
                       -.017
                               1.895
                                        -.951
                                                1.423
                                                       220.52
                                                                 3.7400
 3
   Wave Ht 3 2.861
                       -.050
                               1.790
                                       -.817
                                                1.303
                                                         .00
                                                                 3.7700
   Wave Ht 4 2.860
                      -.057
                               1.771
                                       -.821
                                                1.296
                                                        61.06
                                                                 3.7300
 5
    Wave Ht 5 2.863
                       -.095
                               1.830
                                       -.779
                                                1.305 131.81
                                                                 6.5100
   Vel 1x +N 2.860
 6
                       -.114
                               2.577
                                       -2.023
                                                2.300
                                                       181.28
                                                                10.0000
   Vel 1y +Up 2.854
                                .506
                                       -.399
                                                                10.0000
                       -.144
                                                 .452 116.66
 8 Vel 2x +N 2.865
                                       -1.789
                               2.329
                                                2.059
                                                        3.98
                                                                10.0000
                       -.211
```

.325 306.10

10,0000

9 Vel 2y +Up 2.858

-.026

.445

-.205

```
a2414008 T=14 H=70
                           WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 4.14
                                       Feet
WaveMaker Period ..... = 2.8580
Wave height ..(Ch# 3)..... = 2.842
Wavelength ..... = 26.60
  Transducer Period Gage Avg
                                   Amplitudes
                                                   Phase Calibration
   Position
             (Sec)
                      Feet
                             Positive Neg
                                              Mean
                                                    (Deg)
                                                             Slope
    Wave Ht 1 2.584
                     -.154
                             1.624
                                             1.200
                                                    72.44
                                                             5.9200
   Wave Ht 2 2.584
                     -.092
                             2.237
                                     -.884
                                             1.560
                                                   212.68
                                                             3.7400
    Wave Ht 3 2.586
                     -.111
                             2.060
                                     -.782
                                             1.421
                                                      .00
                                                             3.7700
    Wave Ht 4 2.589
                                                    68.12
                                                             3.7300
                     -.121
                             1.866
                                     -.848
                                             1.357
    Wave Ht 5 2.584
                     -.095
                             1.970
                                             1.392
                                     -.814
                                                   139.54
                                                             6.5100
    Vel 1x +N 2.588
                     -.241
                             2.537
                                    -1.970
                                             2.253
                                                   172.04
                                                            10,0000
    Vel 1y +Up 2.586
                     -.035
                              .622
                                     -.523
                                              .572
                                                   107.43
                                                            10.0000
    Vel 2x +N 2.593
                     -.326
                             2.361
                                    -1.903
                                             2.132
                                                   11.57
                                                            10.0000
 9 Vel 2y +Up 2.584
                     -.020
                             .477
                                     -.239
                                              .358
                                                   -43.19
                                                            10.0000
a2414009 T=14 H=80
                            WRL_STAT ver 3.0
Starting point number .... = 1024
Number of waves averaged ..... = 20
Water depth at test section \dots = 4.14
WaveMaker Period ..... = 2.8580
Wave height .. (Ch# 3) ..... = 2.692 Feet
Wavelength ..... = 30.31 Feet
  Transducer Period
                    Gage Avg
                                   Amplitudes
                                                   Phase Calibration
   Position
                             Positive Neg
             (Sec)
                                              Mean
                     Feet
                                                   (Deg)
                                                             Slope
 1 Wave Ht 1 2.861
                     -.167
                             1.949
                                    -.808
                                             1.379 -236.95
                                                             5.9200
                     -.055
 2 Wave Ht 2 2.860
                             2.395
                                     -.979
                                             1.687 -124.21
                                                             3.7400
 3
   Wave Ht 3 2.865
                     -.082
                             1.935
                                     -.757
                                             1.346
                                                    .00
                                                             3,7700
    Wave Ht. 4 2.856
                                             1.154 -304.82
                     -.103
                             1.641
                                     -.667
                                                             3.7300
              2.875
    Wave Ht 5
                     -.091
                                             1,075 -246.22
                             1.431
                                     -.718
                                                             6.5100
                                             2.637 -153.03
    Vel 1x +N 2.854
                      -.248
                             3.020
                                    -2.254
                                                            10,0000
    Vel 1y +Up 2.858
                     -.040
                                     -.473
                                              .514 -211.62
                              .556
                                                            10,0000
 8
    Vel 2x +N 2.863
                      -.493
                             2.570
                                    -1.812
                                             2.191
                                                             10.0000
 9 Vel 2y +Up 2.865
                     -.048
                             .620
                                     -.376
                                              .498 -29.53
                                                            10.0000
a2914011 T=14 H=20
                             WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42 Feet
WaveMaker Period ..... = 2.6090
Wave height .. (Ch# 3) .... = .692
Wavelength ..... = 25.17
                     Gage Avg
                                    Amplitudes
  Transducer Period
                                                    Phase Calibration
                             Positive Neg
.333 -.282
   Position
             (Sec)
                      Feet
                                                    (Deg)
                                                             Slope
                     -.009
    Wave Ht 1
             2.611
                                              .307 -325.91
                                                             5.9200
    Wave Ht 2
              2.609
                      .003
                              .450
                                     -.368
                                              .409 -168.82
                                                             3.7400
                                              .346
                                              .346 .00
.326 -262.64
    Wave Ht 3
                              .391
             2.605
                     -.005
                                     -.301
                                                             3.7700
              2.616
    Wave Ht 4
                     -.008
                              .366
                                     -.286
                                                             3,7300
                                              .384 -186.61
    Wave Ht. 5
              2.614
                      -.001
                              .431
                                     -.336
                                                             6.5100
    Vel 1x +N 2.609
                     -.057
                              .767
                                     -.725
                                              .746 -227.00
                                                            10.0000
    Vel 1y +Up 2.607
                     -.027
                              .197
                                              .200 -282.39
                                     -.202
                                                            10.0000
    Vel 2x +N 2.611
                                              .650 16.78
                     -.047
                              .680
                                     -.619
                                                            10.0000
                                              .079 -31.95
    Vel 2y +Up 2.611
                              .075
                     -.010
                                     -.082
                                                            10.0000
```

```
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42
                                       Feet
WaveMaker Period ..... = 2.6090
Wave height ..(Ch# 3)..... = 1.326
Wavelength ..... = 25.23
                                       Feet
  Transducer Period
                    Gage Avg
                                   Amplitudes
                                                   Phase Calibration
                             Positive Neg
   Position
              (Sec)
                     Feet
                                              Mean (Deg)
                                                             Slope
                                              .585
                             .666
 1 Wave Ht 1 2.609
                     -.050
                                                    40.48
                                                             5.9200
   Wave Ht. 2
             2.609
                     -.015
                              . 958
                                     -.622
                                              .790 -170.20
                                                             3.7400
 3 Wave Ht 3
             2.611
                                              .663 .00
.662 -271.21
                     -.039
                              .845
                                     -.481
                                                             3.7700
 4 Wave Ht 4
             2.611
                     -.038
                              .825
                                     -.500
                                                             3.7300
    Wave Ht 5 2.612
                     -.031
                                               .760 -195.69
                              .948
                                     -.572
                                                             6.5100
    Vel 1x +N 2.611
                                     -1.300
                      -.168
                             1.445
                                             1.373 -220.65
                                                            10,0000
    Vel 1y +Up 2.607
                      -.050
                              .392
                                     -.339
                                              .366 -288.38
                                                            10.0000
 8
   Vel 2x +N 2.614
                      -.127
                             1.482
                                     -1.189
                                             1.336 10.79
                                                            10,0000
 9 Vel 2y +Up 2.603
                     -.038
                              .198
                                     -.140
                                              .169 -46.09
                                                            10.0000
a2914013 T=14 H=60
                             WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section \dots = 3.42
WaveMaker Period ..... = 2.6090
Wave height .. (Ch# 3).... = 2.007 Feet
Wavelength ..... = 25.25 Feet
  Transducer Period
                    Gage Avg
                                    Amplitudes
                                                   Phase Calibration
                             Positive Neg
   Position
             (Sec)
                     Feet
                                              Mean (Deg)
                                                             Slope
                                                             5.9200
 1 Wave Ht 1
             2,611
                     -.103
                             1.071
                                     -.698
                                              .885
                                                     56.08
                     -.032
 2 Wave Ht 2 2.609
                             1.470
                                     -.841
                                             1.155 -158.93
                                                             3.7400
 3 Wave Ht 3
                     -.064
             2.612
                             1.426
                                     -.581
                                             1.003
                                                    .00
                                                             3.7700
             2.609
                                             1.001 -278.29
   Wave Ht. 4
                     -.086
                             1.418
                                     -.583
                                                             3.7300
   Wave Ht 5
             2.609
                                             1.155 -197.33
                     -.068
                             1.625
                                     -.685
                                                             6.5100
    Vel 1x +N
             2.611
                      -.202
                             2.301
                                     -1.879
                                             2.090 -209.38
                                                            10,0000
    Vel 1y +Up 2.612
                      -.100
                              .513
                                     -.453
                                              .483 -275.85
                                                            10.0000
 8
    Vel 2x +N
             2.607
                      -.094
                             2.098
                                             1.806 16.57
.289 -45.37
                                     -1.513
                                                             10.0000
                     -.020
 9 Vel 2y +Up 2.605
                              .375
                                     -.203
                                                            10.0000
a2914014 T=14 H=70
                             WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42 Feet
WaveMaker Period ..... = 2.6090
Wave height .. (Ch# 3) ..... = 2.414
                                       Feet
Wavelength ..... = 25.23
                                    Amplitudes
  Transducer Period
                    Gage Avg
                                                   Phase Calibration
                             Positive Neg
1.489 -.666
   Position
             (Sec)
                      Feet
                                              Mean
                                                    (Deg)
                                                             Slope
   Wave Ht 1
             2.611
                     -.142
                                             1.078
                                                    65.04
                                                             5.9200
   Wave Ht 2 2.611
                     -.058
                             2.038
                                     -.798
                                             1.418 -147.56
                                                             3.7400
   Wave Ht 3 2.611
                     -.088
                             1.793
                                     -.621
                                             1.207
                                                      .00
                                                             3.7700
   Wave Ht 4 2.607
                             1.503
                                     -.711
-.774
                                             1.107
                                                    76.41
                     -.118
                                                             3,7300
   Wave Ht 5 2.616
                             1.807
                                             1.290 -210.34
                     -.085
                                                             6.5100
   Vel 1x +N 2.612
                     -.121
                             2.535
                                    -1.817
                                             2.176 -198.22
                                                            10.0000
    Vel 1y +Up 2.609
                      .047
                              .547
                                             .506
2.031
                                     -.465
                                                    99.59
                                                            10.0000
   Vel 2x +N 2.612
                      -.148
                             2.401
                                    -1.662
                                                    13.32
                                                            10.0000
   Vel 2y +Up 2.605
                                              .330 -38.69
                     -.016
                             .440
                                     -.219
                                                            10.0000
```

WRL STAT ver 3.0

a2914012 T=14 H=40

```
a2920015 T=20 H=70
                            WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged \dots = 20
Water depth at test section .... = 3.42
WaveMaker Period ..... = 3.7200
Wave height ... (Ch# 3) .... = 2.437
Wavelength ..... = 38.09 Feet
  Transducer Period
                     Gage Avg
                                   Amplitudes
                                                   Phase Calibration
                             Positive Neg
1.247 -.519
   Position
             (Sec)
                      Feet
                                              Mean
                                                     (Deal)
                                                             Slope
   Wave Ht 1 3.725
                                              .883 158.68
                      -.113
                                                             5.9200
    Wave Ht 2
             3.726
                              1.770
                      -.047
                                     -.683
                                              1.226 -102.57
                                                             3.7400
   Wave Ht 3 3.726
                      -.047
                              1.713
                                     -.724
                                             1.218
                                                             3.7700
                                                      .00
    Wave Ht 4
             3.723
                      -.049
                              1.862
                                     -.662
                                              1.262
                                                     46.74
                                                             3.7300
 5
    Wave Ht 5 3.726
                      -.074
                             1.700
                                     -.613
                                              1.157 100.31
                                                             6.5100
 6
    Vel 1x +N 3.726
                      -.162
                             2.967
                                    -1.700
                                              2.333 -131.87
                                                            10.0000
    Vel 1y +Up 3.721
                      -.071
                              .489
                                     -.344
                                              .416 -187.85
                                                             10.0000
 8
    Vel 2x +N 3.726
                      -.129
                             2.925
                                    -1.614
                                             2.269
                                                    7.73
                                                             10.0000
 9 Vel 2y +Up 3.723
                     -.008
                              .490
                                    -.200
                                              .345 -43.84
                                                            10.0000
                            WRL_STAT ver 3.0
a2920016 T=20 H=80
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42
                                       Feet
WaveMaker Period ..... = 3.7200
Wave height ...(Ch# 3)..... = 2.902
Wavelength ..... = 38.09
                                       Feet
  Transducer Period
                    Gage Avg
                                   Amplitudes
                                                   Phase Calibration
                             Positive Neg
   Position
             (Sec)
                     Feet
                                              Mean
                                                    (Dea)
                                                           Slope
                     -.150
    Wave Ht 1
             3.723
                             1.416
                                     -.594
                                             1.005 162.94
                                                             5.9200
    Wave Ht 2
             3.726
                      -.059
                              2.071
                                     -.688
                                             1.379 -100.96
                                                             3.7400
 3
    Wave Ht 3 3.726
                      -.057
                             2.106
                                     -.796
                                             1.451
 4
    Wave Ht 4
             3.730
                      -.051
                             2,296
                                     -.719
                                             1.507
                                                     49.22
                                                             3.7300
 5
    Wave Ht 5
             3.730
                      -.085
                             2,022
                                     -.650
                                             1.336
                                                    98.77
                                                             6.5100
 6
    Vel 1x + N = 3.723
                      -.160
                             3.286
                                    -1.692
                                             2.489 -128.77
                                                            10.0000
    Vel 1y +Up 3.725
                                              .468 -183.97
                     -.074
                              .522
                                     -.415
                                                            10.0000
 8
    Vel 2x +N 3.728
                      -.116
                             3.291
                                     -1.666
                                             2.478
                                                     5.79
                                                             10.0000
 9 Vel 2y +Up 3.721
                      -.026
                              .545
                                     -.231
                                                   -42.73
                                              .388
                                                            10,0000
a2918017 T=18 H=40
                             WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... =
Water depth at test section .... = 3.42
WaveMaker Period ..... = 3.3540
Wave height ..(Ch# 3).... = 1.347
                                        Feet
Wavelength ..... = 33.96
                                        Feet
                    Gage Avg
  Transducer Period
                                   Amplitudes
                                                   Phase Calibration
                             Positive Neg
.657 -.442
   Position
             (Sec)
                      Feet
                                              Mean
                                                    (Deg)
                                                             Slope
   Wave Ht 1
             3.349
                      .007
                                              .549 125.05
   Wave Ht 2
             3.353
                       .021
                              .817
                                     -.468
                                              .643
                                                   236.59
                                                             3.7400
    Wave Ht 3 3.356
                              .893
                                                      .00
                       .012
                                     -.454
                                              .674
                                                             3.7700
    Wave Ht 4
             3.354
                              .863
                                     -.391
                                                    59.38
                      .033
                                              .627
                                                             3.7300
    Wave Ht 5
             3.354
                      .013
                               .944
                                              .699 124.49
                                     -.453
                                                             6.5100
    Vel 1x +N 3.358
                      -.108
                             1.615
                                    -1.257
                                             1.436 203.52
                                                            10,0000
    Vel 1y +Up 3.353
                     -.035
                              .302
                                     -.261
                                              .282 132.79
                                                            10,0000
   Vel 2x +N 3.353
                      -.104
                             1.574
                                    -1.108
                                             1.341
                                                     3.22
                                                            10.0000
   Vel 2y +Up 3.353
                     -.027
                                              .188 311.58
                             .250
                                     -.126
                                                            10.0000
```

```
WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42
                                       Feet
WaveMaker Period ..... = 3.3540
Wave height .. (Ch# 3) ..... = 2.048
Wavelength ..... = 33.92 Feet
  Transducer Period
                    Gage Avg
                                   Amplitudes
                                                   Phase Calibration
                             Positive Neg
                     Feet
   Position
             (Sec)
                                             Mean
                                                    (Deg)
                                                             Slope
 1 Wave Ht 1 3.354
                                             .837 136.12
                     -.065
                             1.108
                                    -.565
                                                             5.9200
   Wave Ht 2 3.356
                     -.026
                             1.370
                                     -.628
                                              .999 251.72
                                                             3.7400
   Wave Ht 3 3.353
                     -.028
                             1.420
                                     -.628
                                             1.024
                                                             3.7700
                                                     .00
    Wave Ht 4 3.351
                     -.063
                             1.461
                                    -.575
                                             1.018
                                                    58.37
                                                             3.7300
   Wave Ht 5 3.354
                     -.050
                             1.570
                                    -.601
                                             1.085 117.88
                                                             6.5100
                                    -1.790
 6
    Vel 1x +N 3.356
                     -.081
                             2.599
                                             2.195
                                                  216.14
                                                            10.0000
   Vel 1y +Up 3.347
                     -.051
                              .436
                                     -.391
                                              .414 150.75
                                                            10.0000
 8
   Vel 2x +N 3.349
                     -.081
                             2.512
                                    -1.614
                                             2.063
                                                    11.47
                                                            10,0000
                             .417
 9 Vel 2y +Up 3.354
                     -.024
                                     -.184
                                             .301 314.63
                                                            10.0000
                            WRL_STAT ver 3.0
a2918019 T=18 H=80
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42
                                       Feet
WaveMaker Period ..... = 3.3540
Wave height .. (Ch# 3) ..... = 2.463 Feet
Wavelength ..... = 33.94 Feet
  Transducer Period Gage Avg
                                   Amplitudes
                                                  Phase Calibration
                             Positive Neg
1.754 -.502
   Position
             (Sec)
                     Feet
                                             Mean (Deg)
                                                          Slope
   Wave Ht 1
             3.354
                     -.141
                                             1.128 -207.49
                                                             5.9200
   Wave Ht 2 3.356
                     -.055
                             2.143
                                     -.662
                                             1.402 -104.23
                                                             3,7400
   Wave Ht 3 3.354
                     -.053
                             1.787
                                    -.676
                                             1.231
                                                      .00
                                                             3.7700
   Wave Ht 4 3.346
                     -.082
                             1.613
                                     -.641
                                             1.127 -307.39
                                                             3.7300
   Wave Ht 5 3.349
                     -.071
                             1.405
                                     -.700
                                             1.052 -255.47
                                                             6.5100
    Vel 1x +N 3.358
                     -.299
                             3.071
                                   -1.639
                                             2.355 -129.37
.505 -179.67
                                                            10.0000
    Vel 1y +Up 3.356
                     -.121
                              .561
                                    -.450
                                                            10.0000
                                             2.237 -347.19
    Vel 2x +N 3.353
                             2.833
                                    -1.642
                     -.346
                                                            10,0000
   Vel 2y +Up 3.353
                     .001
                                    -.257
                                              .423 -25.05
                             .588
                                                            10,0000
a2916021 T=16 H=40
                            WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42
WaveMaker Period ..... = 2.9810
Wave height ..(Ch# 3).... = 1.226
                                        Feet
Wavelength ..... = 29.63
                                       Feet
                                   Amplitudes
  Transducer Period
                    Gage Avg
                                                  Phase Calibration
                             Positive Neg .792 -.543
   Position
             (Sec)
                     Feet
                                             Mean (Deg)
                                                            Slope
   Wave Ht 1 2.979
                     -.023
                                             .668
                                                    83.39
                                                             5.9200
   Wave Ht 2 2.982
                     -.008
                              .900
                                     -.513
                                              .707 -136.80
                                                             3.7400
                                             .613
   Wave Ht 3 2.981
                     -.025
                              .813
                                     -.412
                                                     .00
                                                            3.7700
                             .879
   Wave Ht. 4
             2.981
                     -.014
                                    -.544
                                             .712
                                                    69.65
                                                             3.7300
   Wave Ht 5 2.981
                     -.023
                              .850
                                    -.456
                                              .653 138.09
                                                            6.5100
   Vel 1x +N 2.986
                     -.126
                             1.727
                                    -1.418
                                             1.572 178.84
                                                            10,0000
   Vel 1y +Up 2.979
                     -.072
                              .301
                                    -.247
                                             .274 116.01
                                                           10.0000
   Vel 2x +N 2.984
                     -.137
                                   -1.386
                             1.696
                                             1.541
                                                   10.86
                                                           10.0000
                             .299
                                             .226 -50.79
   Vel 2y +Up 2.977
                     -.020
                                    -.152
                                                           10.0000
```

a2918018 T=18 H=60

```
WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42
                                         Feet
WaveMaker Period ..... = 2.9810
Wave height .. (Ch# 3) ..... = 2.033
Wavelength ..... = 29.61
                                     Amplitudes
  Transducer Period
                     Gage Avg
                                                      Phase Calibration
                              Positive Neg
1.216 -.678
   Position
              (Sec)
                      Feet
                                                Mean
                                                       (Deg)
   Wave Ht 1
             2.982
                      -.074
                                                .947
                                                      94.96
    Wave Ht 2
             2.975
                      -.034
                              1.373
                                       -.723
                                               1.048 -138.94
                                                                3.7400
    Wave Ht 3 2.979
                      -.056
                              1.486
                                       -.547
                                               1.016
                                                      .00
62.40
                                                                3.7700
    Wave Ht 4 2.981
                      -.048
                              1.557
                                      -.604
                                               1.081
                                                                3.7300
    Wave Ht 5 2.984
                      -.059
                               1.671
                                       -.567
                                               1.119 135.11
                                                                6.5100
    Vel 1x +N 2.981
                      -.140
                                      -2,055
                               2.624
                                               2.340 184.39
                                                               10.0000
    Vel 1y +Up 2.982
                      -.118
                                .492
                                      -.385
                                                .438 118.90
                                                               10.0000
                      -.079
    Vel 2x +N 2.981
                               2.554
                                      -1.665
                                               2,109
                                                      8.25
                                                               10,0000
 9
    Vel 2y +Up 2.981
                      -.056
                               .402
                                      -.184
                                                .293 -46.90
                                                               10,0000
a2916023 T=16 H=80
                              WRL STAT ver 3.0
Date processed .....
                                   4- 9-96
                                           11:43: 8
Data collection date ...... 15-FEB-1996 11:47:00.01
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 3.42
WaveMaker Period ..... = 2.9810
Wave height ..(Ch# 3).... = 2.775
                                          Feet
Wavelength ..... = 29.69
                                         Feet
                                     Amplitudes
  Transducer Period
                     Gage Avg
                                                     Phase Calibration
                              Positive Neg
1.729 -.739
   Position
              (Sec)
                      Feet
                                                Mean
                                                       (Dea)
                                                                Slope
   Wave Ht 1 2.981
                                               1.234 115.74
                      -.146
                                                                5.9200
   Wave Ht 2
              2.984
                      -.070
                               2.041
                                       -.797
                                               1.419
                                                     236.24
                                                                3.7400
    Wave Ht 3 2.986
                      -.077
                              2.137
                                       -.638
                                               1.388
                                                        .00
                                                                3.7700
    Wave Ht 4 2.988
                      -.080
                              1.964
                                       -.671
                                               1.317
                                                       59.84
                                                                3.7300
    Wave Ht 5 2.982
                      -.090
                               1.673
                                       -.598
                                               1.136 121.51
                                                                6.5100
    Vel 1x +N 2.984
                      -.164
                               3.155
                                      -2.142
                                               2.648
                                                     200.46
                                                               10.0000
    Vel 1y +Up 2.982
                      -.045
                                .534
                                      -.467
                                                .501 140.02
                                                               10.0000
    Vel 2x +N 2.977
                               2.958
                                      -1.779
                      -.188
                                               2.369
                                                               10.0000
                                                      11.08
 9
    Vel 2y +Up 2.982
                      -.024
                               .440
                                      -.249
                                                .345 -40.03
                                                               10.0000
a3414025 T=14 H=60
                              WRL_STAT ver 3.0
                                  4- 9-96
Date processed .....
                                           11:43:16
Data collection date ...... 15-FEB-1996 14:38:59.94
Starting point number ..... = 1280
Number of waves averaged ..... = 20
Water depth at test section .... = 2.93
WaveMaker Period ..... = 2.4150
Wave height .. (Ch# 3) .... = 2.002
                                          Feet
Wavelength .... = 21.62
                                          Feet
                                     Amplitudes
  Transducer Period
                     Gage Avg
                                                      Phase Calibration
   Position
              (Sec)
                       Feet
                              Positive Neg
                                                Mean
                                                      (Dea)
                                                                Slope
   Wave Ht 1 2.412
                                .879
                                       -.457
                                                                5.9200
    Wave Ht 2 2.414
                      -.042
                              1.365
                                       -.749
                                               1.057 174.23
                                                                3.7400
    Wave Ht 3 2.409
                      -.069
                              1.412
                                       -.590
                                               1.001
                                                        .00
                                                                3.7700
                                               .937
    Wave Ht 4 2.412
                      -.070
                              1.358
                                       -.515
                                                      92.28
                                                                3.7300
    Wave Ht 5 2.407
                      -.074
                                                .831
                              1.152
                                      -.509
                                                     185.21
                                                                6.5100
    Vel 1x +N 2.419
                      -.136
                              2.094
                                      -1.767
                                               1.931
                                                     126.23
                                                               10.0000
    Vel 1y +Up 2.418
                      -.043
                               .579
                                      -.475
                                                .527
                                                      49.64
                                                               10.0000
    Vel 2x +N 2.411
                              1.904
                                      -1.321
                       .046
                                               1.612
                                                      12.94
                                                               10,0000
    Vel 2y +Up 2.411
                      -.024
                               .356
                                                .295 304.91
                                      -.233
                                                               10.0000
```

a2916022 T=16 H=60

```
WRL_STAT ver 3.0
 a3414026 T=14 H=80
 Date processed .....
                                    4- 9-96
                                             11:43:23
 Data collection date ...... 15-FEB-1996 16:38:59.76
 Starting point number ..... = 1280
 Number of waves averaged ..... = 20
 Water depth at test section .... = 2.93
                                         Feet
 WaveMaker Period ..... = 2.4150
 Wave height ..(Ch# 3).... = 1.770
                                           Feet
 Wavelength ..... = 21.86
                                          Feet
   Transducer Period
                                      Amplitudes
                      Gage Avg
                                                       Phase Calibration
    Position
                                Positive Neg
               (Sec)
                       Feet
                                                 Mean
                                                       (Deg)
                                                                 Slope
    Wave Ht 1 2.416
                        -.161
                                1.180
                                       -.596
                                                  .888
                                                        35.76
                                                                  5.9200
    Wave Ht 2
              2.421
                       -.054
                                1.702
                                        -.704
                                                 1.203 -158.86
                                                                  3,7400
    Wave Ht 3 2.430
                       -.084
                                1.198
                                        -.572
                                                 .885
                                                         .00
    Wave Ht 4 2.430
                       -.081
                                .879
                                                 .660
                                        -.441
                                                        86.92
                                                                 3.7300
    Wave Ht 5 2.425
                       -.069
                                 .731
                                        -.434
                                                  .583 -189.31
                                                                  6.5100
     Vel 1x +N 2.419
                       -.168
                                2.433
                                      -1.844
                                                2.138 -201.88
                                                                10.0000
    Vel 1y +Up 2.411
Vel 2x +N 2.425
                       -.041
                                 .666
                                        -.467
                                                 .566 -265.09
                                                                 10,0000
                       -.223
                                1.816
                                       -1.317
                                                1.567
                                                        23.76
                                                                 10,0000
  9
     Vel 2y +Up 2.539
                        .026
                                .408
                                       -.328
                                                 .368
                                                        55.54
                                                                 10.0000
a3414027 T=14 H=70
                                WRL STAT ver 3.0
 Date processed .....
                                    4- 9-96
                                            11:43:31
 Data collection date ........... 15-FEB-1996 16:49:59.87
 Starting point number ..... = 1280
 Number of waves averaged ..... = 20
 Water depth at test section \dots = 2.93
                                         Feet
 WaveMaker Period ..... = 2.4150
 Wave height ..(Ch# 3).... = 2.148
 Wavelength ..... = 21.66
  Transducer Period
                      Gage Avg
                                      Amplitudes
                                                      Phase Calibration
                               Positive Neg
1.083 -.544
   Position
              (Sec)
                       Feet
                                                 Mean (Deg)
                                                                 Slope
    Wave Ht 1 2.416
                       -.124
                                                 .814
                                                        10.68
                                                                 5.9200
              2.411
    Wave Ht 2
                       -.038
                               1.521
                                        -.775
                                                1.148 -177.22
                                                                 3.7400
    Wave Ht 3
              2.412
                       -.076
                               1.494
                                        -.654
                                                1.074
                                                         .00
                                                                 3,7700
    Wave Ht 4 2.416
                       -.084
                               1.524
                                       -.524
                                                1.024 -272.46
                                                                 3.7300
    Wave Ht 5
              2.418
                       -.082
                               1.416
                                       -.473
                                                 .944 -182.42
                                                                 6.5100
    Vel 1x +N 2.416
                       -.133
                               2.419
                                      -1.885
                                                2.152 -228.00
                                                                10.0000
    Vel 1y +Up 2.411
                       -.043
                                .606
                                       -.523
                                                 .564 -299.19
                                                                10.0000
    Vel 2x +N 2.421
                       -.104
                               2.106
                                       -1.434
                                                1.770
                                                      13.38
                                                                10.0000
   Vel 2y +Up 2.409
                       -.014
                                .379
                                       -,262
                                                 .320 -53.80
                                                                10,0000
A3416029 T=16 H=60
                               WRL_STAT ver 3.0
Date processed .....
                                   4- 9-96
                                            11:43:38
Data collection date ............ 16-FEB-1996 08:46:00.77
Starting point number \dots = 1024
Number of waves averaged ..... = 20
Water depth at test section \dots = 2.93
                                         Feet
WaveMaker Period ..... = 2.7600
Wave height ..(Ch# 3)..... = 1.617
Wavelength ..... = 25.47
  Transducer Period
                     Gage Avg
                                     Amplitudes
                                                      Phase Calibration
   Position
              (Sec)
                               Positive Neg
                       Feet
                                                Mean
                                                       (Deg)
                                                                Slope
 1 Wave Ht 1 2.760
                      -.083
                                .923
                                       -.448
                                                 .686
                                                       61.75
                                                                 5.9200
   Wave Ht. 2 2.756
                      -.023
                               1.216
                                       -.617
                                                 .916 205.29
                                                                 3.7400
    Wave Ht 3 2.756
                                       -.470
                      -.052
                               1.147
                                                .808
                                                                 3.7700
                                                         .00
   Wave Ht 4
              2.760
                      -: 072
                               1.027
                                       -.418
                                                       83.71
                                                .723
                                                                 3.7300
   Wave Ht 5
              2.761
                      -.064
                                                 .924 163.18
                               1.309
                                      -.538
                                                                 6.5100
   Vel 1x +N 2.758
                      -.038
                               2.226
                                      -1.612
                                               1.919
                                                      157.95
                                                                10.0000
   Vel 1y +Up 2.756
                      -.055
                                .510
                                                .467
                                       -.424
                                                       93.39
                                                                10.0000
 8
   Vel 2x + N = 2.754
                      -.024
                               2.015
                                      -1.313
                                               1.664
                                                       11.33
                                                                10.0000
   Vel 2y +Up 2.754
                      -.016
                               .341
                                       -.178
                                                .259 -39.43
                                                                10.0000
```

```
a3416030 T=16 H=80
                            WRL_STAT ver 3.0
Starting point number ..... = 1024
 Number of waves averaged \dots = 20
 Water depth at test section .... = 2.93
                                       Feet
 WaveMaker Period ..... = 2.7600
 Wave height ..(Ch# 3).... = 2.229
                                        Feet
Wavelength ..... = 25.53
  Transducer Period Gage Avg
                                    Amplitudes
                                                   Phase Calibration
                             Positive Neg
1.264 -.554
   Position
              (Sec)
                      Feet
                                              Mean
                                                    (Deg)
                                                             Slope
    Wave Ht 1 2.761
                     -.149
                                              .909
                                                    80.18
                                                             5.9200
   Wave Ht 2
             2.761
                     -.047
                             1.930
                                     -.680
                                             1.305 213.15
                                                             3.7400
   Wave Ht 3 2.761
                                                     .00
                     -.071
                             1.658
                                     -.571
                                             1.115
                                                             3.7700
    Wave Ht 4
             2.761
                     -.104
                                              .827
                                                    72.79
                             1.203
                                     -.452
                                                             3.7300
    Wave Ht 5
             2.767
                     -.073
                             1.487
                                     -.560
                                             1.024 144.00
                                                             6.5100
    Vel 1x +N 2.758
                      -.146
                             2.766
                                    -1.780
                                             2.273 172.09
                                                            10,0000
    Vel 1y +Up 2.754
                      -.021
                              .653
                                     -.491
                                              .572 113.06
                                                            10.0000
 8 Vel 2x +N 2.761
                      -.018
                             2.432
                                     -1.424
                                             1.928
                                                    18.69
                                                            10,0000
 9 Vel 2y +Up 2.754
                      .010
                              .407
                                     -.219
                                              .313 -30.93
                                                            10,0000
a3418032 T=18 H=60
                            WRL_STAT ver 3.0 .. 4- 9-96 11:43:54
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 2.93
WaveMaker Period ..... = 3.1050
Wave height ..(Ch# 3).... = 1.608 Feet
Wavelength ..... = 29.21 Feet
  Transducer Period Gage Avg
                                   Amplitudes
                                                   Phase Calibration
                     Feet
   Position
             (Sec)
                             Positive Neg
                                              Mean
                                                             Slope
                                                    (Deg)
   Wave Ht 1
             3.105
                                              .771 -263.17
                     -.069
                              .982 -.559
    Wave Ht 2 3.105
                     -.033
                             1,148
                                     -.536
                                              .842 -135.45
                                                             3.7400
   Wave Ht 3 3.103
                     -.046
                                              .804
                             1.190
                                     -.419
                                                     .00
                                                             3.7700
   Wave Ht 4
             3.102
                     -.052
                             1.198
                                    -.501
                                              .849 -292.87
                                                             3.7300
 5
   Wave Ht 5 3.102
                     -.044
                                    -.489
                             1.392
                                              .940 -224.39
                                                             6.5100
 6
   Vel 1x +N 3.100
                     -.077
                             2.341
                                    -1.572
                                             1.956 -172.84
                                                            10,0000
   Vel 1y +Up 3.102
                     -.069
                              .443
                                     -.363
                                              .403 -235.03
                                                            10.0000
    Vel 2x + N 3.098
                     -.049
                             2.346
                                    -1.484
                                             1.915
                                                   11.62
    Vel 2y +Up 3.102
                     -.019
                             .365
                                    -.144
                                              .254 -42.75
                                                            10.0000
a3418033 T=18 H=80
                            WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 2.93
                                       Feet.
WaveMaker Period ..... = 3.1050
Wave height .. (Ch# 3) ..... = 2.298
Wavelength ..... = 29.25
                    Gage Avg
  Transducer Period
                                   Amplitudes
                                                  Phase Calibration
                             Positive Neg
1.404 -.641
   Position
             (Sec)
                     Feet.
                                             Mean
                                                   (Deg)
                                                           Slope
  Wave Ht 1
                             1.404
             3.102
                     -.122
                                             1.022 - 250.31
                                                             5.9200
  Wave Ht 2 3.105
                             1.703
                     -.058
                                     -.642
                                             1.173 -125.01
                                                             3.7400
                                     -.477
   Wave Ht 3 3.107
                     -.074
                             1.821
                                             1.149
                                                             3.7700
                                                      .00
   Wave Ht 4
             3.107
                     -.079
                             1.958
                                    -.591
                                             1.274
                                                    61.02
                                                             3,7300
   Wave Ht 5
             3,107
                     -.066
                             2.012
                                    -.515
                                             1.264 -236.56
                                                             6.5100
   Vel 1x +N 3.102
                     -.143
                             3.016
                                   -1.901
                                             2.458 -162.30
                                                            10.0000
   Vel 1y +Up 3.105
                     -.028
                              .553
                                     -.473
                                              .513 -222.01
                                                            10.0000
   Vel 2x +N 3.098
 8
                                             2.382 12.01
.314 -40.06
                     .045
                             3.071
                                   -1.694
   Vel 2y +Up 3.100
                     -.014
                             .436
                                    -.193
                                                            10,0000
```

a3412035 T=12 H=60 Date processed Data collection date		4-	AT ver 3. 9-96 11 EB-1996 10	:44: 6	34	
Starting point number		= 153	6			
Number of waves average	ged	= 2	0			
Water depth at test se	ection	= 2.	93 Feet			
WaveMaker Period		. = 2.0	700			
Wave height (Ch# 3).		. = 1.	876 Feet			
Wavelength		. = 17	.80 Feet			
Transducer Period Position (Sec) Wave Ht 1 2.072 Wave Ht 2 2.072 Wave Ht 3 2.074 Wave Ht 4 2.070 Wave Ht 5 2.067 Vel 1x +N 2.070 Vel 1y +Up 2.063 Vel 2x +N 2.072 Vel 2y +Up 2.072	Feet123037058047064025045022	Positi .993 1.263 1.279 1.338 1.357 1.832 .618 1.753	623 610 597 723 619 -1.577	Mean .808 .936 .938 1.031 .988 1.704 .572	(Deg) -85.14 124.81 .00 101.73 -153.00 50.43 -16.58	5.9200 3.7400 3.7700 3.7300 6.5100 10.0000 10.0000
a3420036 T=20 H=60 Date processed Data collection date .		WRL_ST	AT ver 3.0	14.14		10.0000
Starting point number						
Number of waves averag	red	. = 20	0			
Water depth at test se	ection	. = 2.	93 Feet			
WaveMaker Period		. = 3.4	500			
Wave height(Ch# 3).		. = 1.6	504 Feet			
Wavelength		. = 32	.79 Feet			
4 Wave Ht 4 3.447	Feet 065 017 038 036 051 044	Positiv .972 1.294 1.130 1.273 1.212 2.493 .435	395 542 474 532 485 -1.436 303 -1.357	Mean .684 .918 .802 .903	(Deg) 127.34 244.63 .00 58.83 120.79 205.83 154.19 9.57	5.9200 3.7400 3.7700 3.7300 6.5100 10.0000
a3420037 T=20 H=80		WRL_STA	AT ver 3.0			
Date processed Data collection date .			9-96 11: 3B-1996 10:	44:22 59:00.4	7	
Starting point number	• • • • • • • • • • • • • • • • • • • •					
Number of waves averag	ed	. = 20)			
Water depth at test se			3 Feet			
WaveMaker Period		. = 3.45	00			
Wave height(Ch# 3).		. = 2.5	66 Feet			

```
WRL_STAT ver 3.0
                                 Date processed .....
Data collection date ...... 21-FEB-1996 16:19:00.14
Starting point number ..... = 1536
Number of waves averaged ..... = 20
Water depth at test section .... = 2.93
WaveMaker Period ..... = 2.0700
Wave height .. (Ch# 3) ..... = 1.264
Wavelength ..... = 17.78
                                       Feet
                                                   Phase Calibration
  Transducer Period
                    Gage Avg
                                    Amplitudes
                             Positive Neg
                     Feet
                                              Mean (Deg)
.642 -90.21
   Position
             (Sec)
                                                              Slope
                              .752
                                                              4.4500
 1 Wave Ht 1 2.068
                     -.012
                                     -.533
                              .773
                                              .602 -226.65
                                                              4.2600
   Wave Ht 2 2.070
                     -.034
                                     -.432
   Wave Ht. 3 2.072
                              .757
                                      -.507
                                              .632
                                                      .00
                                                              4.1300
                     -.035
   Wave Ht 4 2.070
                                     -.525
                                              .746 -248.09
                                                              4.0800
                     -.005
                              .966
   Wave Ht 5 2.072
                      -.096
                              1.070
                                     -.429
                                              .749 -126.84
                                                              8.3100
    Vel 1x +N 2.072
                     -.092
                             1.304
                                     -1.157
                                              1.231
    Vel 1y +Up 2.068
                      -.010
                              .472
                                     -.391
                                              .432 -19.44
                                                             10.0000
    Vel 2x +N 2.070
 8
                     -.081
                             1.296
                                     -1.171
                                              1.234 26.08
                                                             10.0000
                                              .206 -43.73
   Vel 2y +Up 2.072
                     -.031
                              .211
                                      -.200
                                                             10.0000
                             WRL_STAT ver 3.0
b3414039 T=14 H=40
                                 Starting point number ..... = 1280
Number of waves averaged ..... = 20
Water depth at test section .... = 2.93
WaveMaker Period ..... = 2.4150
Wave height ..(Ch# 3).... = 1.348
                                        Feet
Wavelength ..... = 21.70
                                        Feet
  Transducer Period
                                                    Phase Calibration
                     Gage Avg
                                    Amplitudes
                                                    (Deg)
   Position
             (Sec)
                     Feet
                              Positive Neg
                                              Mean
                                                              Slope
                              .641
   Wave Ht 1
             2.414
                      -.021
                                     -.442
                                              .542
                                                     -6.71
                                                              4.4500
                                               .735 160.69
   Wave Ht 2 2.416
                      -.020
                               . 922
                                     -.548
                                                              4.2600
                                      -.479
                                              .674
   Wave Ht 3
              2.416
                      -.020
                               .869
                                                      .00
                                                              4.1300
                                                     88.67
    Wave Ht 4 2.416
                      -.028
                              .755
                                     -.460
                                              .607
                                                              4.0800
                                                              8.3100
    Wave Ht 5
              2.416
                      -.037
                               .781
                                     -.455
                                              .618
                                                    179.32
                                     -1.356
    Vel 1x +N 2.414
                      -.146
                             1.502
                                              1.429
                                                   106.88
                                                             10.0000
    Vel 1y +Up 2.418
                      -.046
                              .424
                                     -.338
                                              .381
                                                     33.01
                                                             10.0000
 8
    Vel 2x +N 2.412
                      -.064
                              1.325
                                     -1.086
                                              1.205
                                                     10.94
                                                             10,0000
                              .201
                                                             10.0000
 9 Vel 2y +Up 2.414
                      -.038
                                     -.191
                                              .196 300.49
b3416040 T=16 H=40
                             WRL STAT ver 3.0
4- 9-96 11:44:42
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section \dots = 2.93
                                      Feet
WaveMaker Period ..... = 2.7600
Wave height .. (Ch# 3) .... = 1.213
                                        Feet
Wavelength ..... = 25.51
                     Gage Avg
  Transducer Period
                                    Amplitudes
                                                    Phase Calibration
                              Positive Neg
   Position
              (Sec)
                      Feet
                                              Mean
                                                     (Deg)
                                                              Slope
   Wave Ht 1
              2.761
                      -.014
                              .699
                                               .559
                                                     49.11
                                                              4.4500
    Wave Ht 2
              2.760
                      -.012
                               .790
                                      -.468
                                               .629
                                                   197.63
                                                              4.2600
                               .783
    Wave Ht. 3
              2.760
                                      -.429
                                               .606
                                                       .00
                                                              4.1300
                      -.014
    Wave Ht 4
              2.758
                      -.026
                               .692
                                      -.370
                                               .531
                                                     85.94
                                                              4.0800
    Wave Ht 5
              2.758
                      -.017
                               .841
                                      -.505
                                               .673
                                                   165.34
                                                              8.3100
              2.758
                                     -1.236
                                              1.374
                                                   147.07
                                                             10.0000
  6
    Vel 1x +N
                      -.092
                              1.512
    Vel 1y +Up 2.758
                      -.053
                               .382
                                      -.311
                                               .346
                                                     83.32
                                                             10,0000
    Vel 2x + N^{2} 2.760
                                     -1.023
                                                     18.92
                                                             10.0000
                      -.076
                              1.394
                                              1.209
   Vel 2y +Up 2.758
                      -.037
                              .186
                                      -.133
                                              .159
                                                    -33.50
                                                             10.0000
```

b3412038 T=12 H=40

```
b3418041 T=18 H=40
                             WRL_STAT ver 3.0
Starting point number ..... = 1024
Number of waves averaged \dots = 20
Water depth at test section .... = 2.93
                                        Feet
WaveMaker Period ..... = 3.1050
Wave height ..(Ch# 3)..... = 1.100
                                         Feet
Wavelength ..... = 29.21
                                     Amplitudes
  Transducer Period Gage Avg
                                                     Phase Calibration
   Position
              (Sec)
                       Feet
                              Positive Neg
                                                Mean (Deg)
 1 Wave Ht 1 3.103
                                                               4.4500
                      -.005
                               .702
                                      -.468
                                                .585 -269.50
    Wave Ht 2 3.102
                               .736
                      -.012
                                       -.423
                                                .580 -140.63
                                                               4.2600
    Wave Ht 3
             3.103
                      -.014
                               .756
                                                .550 .00
.630 -287.26
                                      -.344
                                                               4.1300
    Wave Ht 4
              3.102
                      -.008
                               .847
                                      -.414
                                                               4.0800
    Wave Ht 5 3.103
                      -.021
                                       -.375
                               .836
                                                .605 -216.72
                                                               8.3100
    Vel 1x +N 3.105
 6
                      -.114
                              1.638
                                      -1.264
                                               1.451 -177.76
                                                              10,0000
    Vel 1y +Up 3.102
                      -.074
                               .313
                                      -.246
                                                .279 -242.77
                                                              10.0000
 R
    Vel 2x +N 3.103
                      -.087
                                               1.379 11.79
                              1.618
                                      -1.141
                                                              10.0000
                                               .152 -39.65
 9 Vel 2y +Up 3.102
                      -.040
                               .190
                                      -.115
                                                              10.0000
b3420042 T=20 H=40
                              WRL_STAT ver 3.0
Date processed .....
                                  4- 9-96
                                           11:44:58
 Data collection date ...... 22-FEB-1996 08:40:59.92
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section .... = 2.93
WaveMaker Period ..... = 3.4500
Wave height .. (Ch# 3) ..... = 1.121
Wavelength ..... = 32.79
  Transducer Period Gage Avg
                                     Amplitudes
                                                     Phase Calibration
                              Positive Neg
   Position
              (Sec)
                      Feet
                                               Mean
                                                      (Deg)
                                                               Slope
                                      -.398
    Wave Ht 1
              3.451
                      -.025
                               .678
                                                .538 120.49
                                                               4.4500
    Wave Ht 2
              3.453
                      -.012
                               .828
                                       -.457
                                                     238.77
                                                .642
                                                               4.2600
 3
   Wave Ht 3
              3.447
                      -.019
                               .718
                                       -.403
                                                .561
                                                        .00
                                                               4.1300
                               .791
    Wave Ht 4 3.449
                      -.015
                                       -.456
                                                      61.06
                                                .624
    Wave Ht 5 3.447
                      -.026
                                .742
                                       -.372
                                                .557 122.01
                                                               8.3100
    Vel 1x +N 3.447
                      -.065
                              1.661
                                      -1.164
                                               1.412 197.72
                                                              10.0000
    Vel 1y +Up 3.447
                                                .256
                      -.062
                               .292
                                      -.220
                                                     140.63
                                                              10,0000
    Vel 2x +N 3.446
                      -.071
                              1.541
                                      -1.040
                                               1.290
                                                       7.66
                                                               10.0000
   Vel 2y +Up 3.444
                      -.037
                               .176
                                                    -46.87
                                      -.140
                                                .158
                                                              10.0000
b3412043 T=12 H=60
                              WRL_STAT ver 3.0
Date processed .....
                                  4- 9-96
Data collection date ...... 22-FEB-1996 08:54:00.04
Starting point number ..... = 1536
Number of waves averaged ..... = 20
Water depth at test section .... = 2.93
                                        Feet
WaveMaker Period ..... = 2.0700
Wave height ...(Ch# 3)..... = 1.899
Wavelength ..... = 17.76
                                        Feet
  Transducer Period
                     Gage Avg
                                     Amplitudes
                                                     Phase Calibration
   Position
              (Sec)
                       Feet
                              Positive
                                        Neg
                                               Mean
                                                      (Deg)
                                                               Slope
                      -.091
 1 Wave Ht 1 2.074
                              1.437
                                       -.697
                                               1.067
                                                     -61.05
                                                               4.4500
   Wave Ht 2 2.074
                      -.075
                              1.410
                                       -.570
                                               .990 144.96
                                                               4.2600
 3
    Wave Ht 3 2.070
                      -.076
                              1.310
                                       -.589
                                                .949
                                                        .00
                                                               4.1300
              2.068
    Wave Ht 4
                      -.085
                              1.268
                                       -.672
                                                .970 109.07
                                                               4.0800
    Wave Ht 5
              2.072
                      -.091
                              1.277
                                       -.582
                                                .930 -145.66
                                                               8.3100
    Vel 1x +N 2.075
                              1.929
                      -.146
                                      -1.613
                                               1.771
                                                      77.48
                                                              10,0000
    Vel 1y +Up 2.067
                      -.039
                               .632
                                      -.508
                                               .570
                                                      13.65
                                                              10.0000
 8 Vel 2x +N 2.072
                      -.011
                              1.744
                                      -1.331
                                               1.537
                                                      27.51
                                                              10.0000
   Vel 2y +Up 2.072
                      -.042
                               .329
                                       -.223
                                                .276 -30.41
                                                              10.0000
```

```
b3414044 T=14 H=60
                             WRL_STAT ver 3.0
 Starting point number ..... = 1280
 Number of waves averaged ..... = 20
 Water depth at test section .... = 2.93
                                         Feet
 WaveMaker Period ..... = 2.4150
 Wave height ..(Ch# 3).... = 2.265
 Wavelength ..... = 21.64
  Transducer Period
                     Gage Avg
                                      Amplitudes
                                                      Phase Calibration
                               Positive Neg
1.065 -.508
   Position
              (Sec)
                      Feet
                                                Mean
                                                       (Deg)
                                                                Slope
    Wave Ht 1
              2.411
                       -.066
                                                 .787 ~345.98
                                                                 4.4500
    Wave Ht 2 2.411
                       -.061
                               1.388
                                       -.768
                                                1.078 -181.70
                                                                 4.2600
    Wave Ht 3
              2.411
                       -.051
                                       -.685
                                                         .00
                               1.580
                                                1.132
                                                                4.1300
    Wave Ht 4 2.407
                       -.076
                               1.350
                                       -.545
                                                .948 -268.71
                                                                4 0800
    Wave Ht 5 2.407
                       -.061
                               1.321
                                       -.551
                                                 .936 -176.48
                                                                8.3100
    Vel 1x +N 2.409
                       -.145
                               2.210
                                       -1.834
                                                2.022 -226.42
                                                               10.0000
    Vel 1y +Up 2.412
                       -.091
                                .607
                                       -.519
                                                 .563 -303.45
                                                               10.0000
    Vel 2x +N 2.419
                       .015
                               1.899
                                       -1.299
                                                1.599
                                                      18.85
                                                               10.0000
   Vel 2y +Up 2.409
                       -.045
                                .320
                                       -.240
                                                 .280
                                                     -48.82
                                                               10.0000
b3416045 T=16 H=60
                               WRL_STAT ver 3.0
 Date processed .....
                                   4- 9-96
                                           11:45:20
 Data collection date ...... 22-FEB-1996 09:27:00.22
 Starting point number ..... = 1024
 Number of waves averaged ..... = 20
 Water depth at test section .... = 2.93
                                         Feet
WaveMaker Period ..... = 2.7600
Wave height ...(Ch# 3)..... = 1.850
Wavelength ..... = 25.47
  Transducer Period
                     Gage Avg
                                     Amplitudes
                                                      Phase Calibration
                               Positive Neg
1.219 -.499
   Position
              (Sec)
                      Feet
                                                Mean
                                                      (Dea)
                                                               Slope
   Wave Ht 1
              2.761
                      -.046
                                                 .859
                                                                4.4500
                                                       64.75
   Wave Ht 2
             2,758
                       -.054
                               1.314
                                       -.606
                                                 .960
                                                     207.33
                                                                4.2600
    Wave Ht 3 2.756
                      -.053
                               1.295
                                       -.555
                                                 .925
                                                         .00
                                                                4.1300
    Wave Ht 4
              2.760
                      -.071
                               1.239
                                       -.493
                                                 .866
                                                       80.23
                                                                4.0800
    Wave Ht 5
              2.760
                      -.040
                               1.518
                                       -.617
                                                1.068
                                                      158.06
                                                                8.3100
    Vel 1x +N 2.763
                      -.051
                               2.355
                                      -1.651
                                                2.003
                                                      159.60
                                                               10.0000
    Vel 1y +Up 2.753
                      -.059
                                .544
                                       →.455
                                                 .499
                                                       95.69
                                                               10.0000
 8
    Vel 2x +N 2.756
                       -.013
                               2.108
                                      -1.348
                                                1.728
                                                       18.29
                                                               10,0000
 9
   Vel 2y +Up 2.758
                      -.032
                               .317
                                       -.179
                                                .248
                                                      -37.85
                                                               10.0000
b3418046 T=18 H=60
                               WRL_STAT ver 3.0
Date processed .....
                                   4- 9-96 11:45:28
Data collection date ...... 22-FEB-1996 09:42:00.12
Starting point number ..... = 1024
Number of waves averaged \dots = 20
Water depth at test section \dots = 2.93
WaveMaker Period ..... = 3.1050
Wave height ...(Ch# 3)..... = 1.707
                                          Feet
Wavelength ..... = 29,19 Feet
  Transducer Period
                      Gage Avg
                                     Amplitudes
                                                      Phase Calibration
                              Positive Neg
1.176 -.591
   Position
              (Sec)
                      Feet
                                                Mean
                                                       (Dea)
                                                                Slope
   Wave Ht 1
              3.107
                      -.047
                                                .884 -259.93
                                                                4.4500
   Wave Ht 2
              3.105
                      -.047
                                       -.528
                               1.226
                                                 .877 -134.87
                                                                4.2600
                                       -.465
    Wave Ht 3 3.102
                      -.053
                               1.242
                                                .853
                                                         .00
                                                                4.1300
    Wave Ht 4 3,103
                      -.047
                               1.329
                                       -.563
                                                .946 -291.54
                                                                4.0800
    Wave Ht 5 3.102
                      -.046
                               1.428
                                       -.507
                                                 .967 -229.81
                                                                8.3100
    Vel 1x +N 3.107
                      -.010
                               2.466
                                      -1.656
                                                2.061 -173.03
                                                               10.0000
    Vel 1y +Up 3.102
                      -.073
                                . 457
                                       -.389
                                                .423 -235.61
                                                               10.0000
    Vel 2x +N 3.102
                      -.040
                              2.416
                                      -1.490
                                               1.953 10.06
                                                               10,0000
    Vel 2y +Up 3.105
                      -.023
                               .273
                                                .218 -44.63
                                       -.162
                                                               10.0000
```

```
WRL_STAT ver 3.0
. 4- 9-96 11:4
b3416055 T=16 H=70
 Date processed .....
 Data collection date ...... 22-FEB-1996 13:59:59.80
 Starting point number ..... = 1024
 Number of waves averaged ..... = 20
 Water depth at test section \dots = 2.93
 WaveMaker Period ..... = 2.7600
 Wave height ...(Ch# 3) ..... = 2.120
                                            Feet
 Wavelength ..... = 25.53
                                          Feet
   Transducer Period
                       Gage Avg
                                       Amplitudes
                                                        Phase Calibration
                                Positive Neg
1.356 -.548
    Position
               (Sec)
                        Feet
                                                  Mean
                                                         (Deg)
                                                                   Slope
    Wave Ht 1 2.758
  1
                        -.043
                                                  .952
                                                         68.97
                                                                   4.4500
    Wave Ht 2
               2.761
                        -.060
                                1.719
                                         -.640
                                                 1.180
                                                        211.20
                                                                   4,2600
    Wave Ht 3 2.761
                        -.066
                                1.515
                                         +.605
                                                 1.060
                                                           .00
                                                                   4.1300
    Wave Ht 4 2.765
                                                         76.39
                        -.087
                                1.356
                                         -.517
                                                  .936
                                                                   4.0800
    Wave Ht 5 2.763
                        -.055
                                1.594
                                        -.627
                                                 1.110
                                                        149.39
                                                                   8.3100
    Vel 1x +N 2.758
                        -.112
                                2.633
                                       -1.723
                                                 2.178
                                                        164.69
                                                                  10.0000
    Vel 1y +Up 2.756
                        -.091
                                 .631
                                        -.482
                                                  .556
                                                        107.11
                                                                  10.0000
  8
    Vel 2x +N 2.758
                        -.030
                                2.349
                                        -1.380
                                                 1.864
                                                        17.19
                                                                  10.0000
  9
    Vel 2y +Up 2.753
                        -.046
                                 .373
                                        -.229
                                                  .301 -34.88
                                                                  10,0000
b3418056 T=18 H=70
                                WRL_STAT
                                         ver 3.0
 Date processed .....
                                    4- 9-96 11:46: 7
 Data collection date ...... 22-FEB-1996 14:18:59.92
 Starting point number ..... = 1024
 Number of waves averaged ..... = 20
 Water depth at test section .... = 2.93
 WaveMaker Period ..... = 3.1050
 Wave height .. (Ch# 3) .... = 2.016
 Wavelength ..... = 29.25
                                          Feet
  Transducer Period
                      Gage Avg
                                       Amplitudes
                                                        Phase Calibration
                                Positive Neg
1.434 -.613
   Position
               (Sec)
                       Feet
                                                  Mean
                                                        (Deg)
                                                                  Slope
    Wave Ht 1
              3.102
                       -.064
                                                 1.023 -255.34
    Wave Ht 2
              3.107
                       -.070
                                1.519
                                        - . 554
                                                 1.036 -130.35
                                                                   4.2600
    Wave Ht 3 3.107
                       -.068
                                1.566
                                                          .00
                                        -.450
                                                 1.008
                                                                  4.1300
    Wave Ht 4
              3.105
                       -.060
                                1.740
                                        →.569
                                                         65.89
                                                 1.155
                                                                  4.0800
    Wave Ht 5 3.109
                       -.066
                                1.792
                                        -.495
                                                 1.143 -229.09
                                                                  8.3100
 6
    Vel 1x +N 3.103
                       -.065
                                2.850
                                       -1.827
                                                 2.338 -165.49
                                                                 10,0000
    Vel 1y +Up 3.105
                       -.035
                                 .514
                                        -.460
                                                  .487 -226.84
                                                                 10.0000
    Vel 2x +N 3.102
                                2.855
                        .087
                                       -1.579
                                                 2.217
                                                        11.61
                                                                  10.0000
 9
    Vel 2y +Up 3.102
                       -.036
                                 .345
                                        -.185
                                                  .265 -38.30
                                                                 10.0000
b3420057 T=20 H=70
                                WRL_STAT ver 3.0
Date processed .....
                                    4- 9-96
                                             11:46:15
 Data collection date ...... 22-FEB-1996 14:39:01.01
Starting point number ..... = 1024
Number of waves averaged ..... = 20
Water depth at test section \dots = 2.93
                                          Feet
WaveMaker Period ..... = 3.4500
Wave height ..(Ch# 3).... = 2.103
                                           Feet
Wavelength ..... = 32.83 Feet
  Transducer Period
                      Gage Avg
                                      Amplitudes
                                                        Phase Calibration
   Position
               (Sec)
                                Positive Neg
                       Feet
                                                  Mean
                                                        (Deg)
                                                                  Slope
                                       -.425
    Wave Ht 1 3.451
 1
                       -.064
                                1.442
                                                  .934
                                                        131.10
                                                                  4.4500
    Wave Ht 2
              3.451
                       -.038
                                1.850
                                        -.571
                                                 1.210
                                                        240.81
                                                                  4,2600
    Wave Ht 3
              3.451
                       -.066
                                1.543
                                        -.561
                                                 1.052
                                                          .00
                                                                  4.1300
    Wave Ht. 4
              3.449
                       → .055
                                1.675
                                        -.623
                                                 1.149
                                                        55.67
                                                                  4.0800
    Wave Ht 5
              3.447
                       -.079
                                1.553
                                        -.492
                                                 1.023
                                                       112.61
                                                                  8.3100
    Vel 1x +N 3.449
                       -.025
                                2,996
                                       -1.539
                                                 2.268
                                                       205.97
                                                                 10.0000
    Vel 1y +Up 3.449
                                 .554
                       -.065
                                        -,402
                                                  .478 158.82
                                                                 10.0000
    Vel 2x +N 3.447
 8
                       -.011
                                2.916
                                       -1.364
                                                 2.140
                                                        6.61
                                                                 10.0000
                       -.031
    Vel 2y +Up 3.446
                                 .345
                                        -.196
                                                       -44.75
                                                  .270
                                                                 10.0000
```

b3418061 T=18 H=80	'•
Date processed	WRL_STAT ver 3.0
Starting point number	= 1024
Number of waves averag	ged = 20
Water depth at test se	ection = 2.93 Feet
WaveMaker Period	= 3.1050
Wave height(Ch# 3).	= 2.369 Feet .
Wavelength	= 29.23 Feet
Transducer Period Position (Sec) 1 Wave Ht 1 3.102 2 Wave Ht 2 3.105 3 Wave Ht 3 3.105 4 Wave Ht 4 3.107 5 Wave Ht 5 3.107 6 Vel 1x +N 3.109 7 Vel 1y +Up 3.102 8 Vel 2x +N 3.107 9 Vel 2v +Up 3.102	Gage Avg Amplitudes Phase (Deg) Calibration Feet Positive Neg Mean (Deg) Slope 164 1.465 576 1.021 -245.09 4.4500 085 1.848 605 1.226 -121.15 4.2600 084 1.863 506 1.184 .00 4.1300 068 1.930 620 1.275 61.80 4.0800 095 1.664 500 1.082 -233.86 8.3100 113 3.122 -1.935 2.528 -157.30 10.0000 015 .589 466 .528 -214.14 10.0000 .107 3.112 -1.592 2.352 17.96 10.0000 050 .401 207 .304 -31.27 10.0000
2 401 24 105 2:103	030 .401207 .304 -31.27 10.0000
b3420062 T=20 H=80	WRL STAT ver 3.0
b3420062 T=20 H=80 Date processed	WRL_STAT ver 3.0
b3420062 T=20 H=80 Date processed Data collection date .	WRL_STAT ver 3.0 4- 9-96 11:46:52 22-FEB-1996 15:35:00.03
b3420062 T=20 H=80 Date processed Data collection date . Starting point number	WRL_STAT ver 3.0
b3420062 T=20 H=80 Date processed Data collection date . Starting point number Number of waves averag	WRL_STAT ver 3.0
b3420062 T=20 H=80 Date processed Data collection date . Starting point number Number of waves averag Water depth at test se	WRL_STAT ver 3.0 4- 9-96 11:46:52 22-FEB-1996 15:35:00.03 = 1024 ection = 2.93 Feet
b3420062 T=20 H=80 Date processed Data collection date . Starting point number Number of waves averag Water depth at test se WaveMaker Period	WRL_STAT ver 3.0
b3420062 T=20 H=80 Date processed Data collection date . Starting point number Number of waves averag Water depth at test se WaveMaker Period Wave height(Ch# 3).	WRL_STAT ver 3.0
b3420062 T=20 H=80 Date processed Data collection date . Starting point number Number of waves averag Water depth at test se WaveMaker Period Wave height(Ch# 3).	WRL_STAT ver 3.0

Appendix - Record of all processed data for Random waves

a2412004 T=12 H=40 Jonswap	
	Channel 1
Raw data time series statistics Mean = 2.4766E-01	
Mean = 2.4766E-01 Variance = 9.3865E-02 Energy = 9.3862E-02	
	9.31019E-02 8.22441E-01 4.16532E-02
Maximum smoothed value = First moment = Second moment =	4.16532E-02 2.08893E-02
mo =	1.221
Max density = 1.24790 at X = .42481 Hz. YMAX = 1.50000 Delta-Y = .30000	
	Channel 2
Raw data time series statistics Mean = 1.8008E-01	
Variance = 1.4838E-01 Energy = 2.4838E-01	
Total smoothed energy = Maximum smoothed value = First moment = Socond moment	1.48053E-01 1.44358E+00
First moment = Second moment =	6.65828E-02 3.33062E-02
Hmo	1.539
Max density = 1.44358 at X = .41565 Hz. YMAX = 1.50000 Delta-Y = .30000	2.4058 sec.
Raw data time series statistics	
Mean = 1.1914E-01 Variance = 1.3000E-01	
Energy = 1.3000E-01	1.29676E-01
Total smoothed energy = Maximum smoothed value = First moment =	1.14332E+00 5.88188E-02
First moment == Second moment == Hmc ==	3.01364E-02 1.440
•	
Max density = 1.24790 at X = .42481 Hz. YMAX = 1.50000 Delta-Y = .30000	2.3540 sec.
	Channel 4
Raw data time series statistics Mean = 1.1398E-01	,
Mean = 1.1398E-01 Variance = 1.3776E-01 Energy = 1.3776E-01	
Total smoothed energy = Maximum smoothed value = #	1.37563E-01
first moment =	6.23387E-02
Second moment = Hmo =	3.20018E-02 1.484
Max density = 1.24790 at X = .39551 Hz. YMAX = 1.50000 Delta-Y = .30000	2.5284 sec.
1.30000 Delta-1 = .30000	
a2414010 T=14 H=60 Jonswap	 Channel 1
Raw data time series statistics	Channel 1
Raw data time series statistics	Channel 1
Raw data time series statistics Mean = 3.9982E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy =	Channel 1
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = 9.84848484848484848484848484848484848484	1.95902E-01 1.79111E+00
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = 9 Maximum smoothed value = First moment = 5 Second moment = 5	1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = Maximum smoothed value = First moment = Second moment = Hmo =	1.95982E-01 1.78111E+00 7.82906E-02
Raw data time series statistics Mean	1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec.
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = 9 Maximum smoothed value = First moment = 8 Second moment = 8 Hmo = 3.26260 at X = .35523 Hz. YMAX = 4.00000 Delta-Y = .80000	1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec.
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = 9 Maximum smoothed value = First moment = 8 Second moment = 8 Hmo = 3.26260 at X = .35523 Hz. YMAX = 4.00000 Delta-Y = .80000	1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec.
Raw data time series statistics Mean = 3.9982E-01 Variance . = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy	1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec
Raw data time series statistics Mean = 3.9982E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = 1.9635E-01 Total smoothed value = First moment = 58cond moment = 8cond moment = = =	1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = 9 Maximum smoothed value = First moment = 8 Example = 8 Max density = 3.26260 at X = .35523 Hz. YMAX = 4.00000 Delta-Y = .80000 Raw data time series statistics Mean = 2.8550E-01 Variance = 2.7004E-01 Energy = 2.7004E-01 Energy = 2.7004E-01 Total smoothed energy = 8 Maximum smoothed value = 1 First moment = 1	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec
Raw data time series statistics Mean = 3.9982E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = Maximum smoothed value = First moment = Second moment = Himo = 3.26260 at X = .35523 Hz. YMAX = 4.00000 Delta-Y = .80000 Raw data time series statistics Mean = 2.8550E-01 Variance = 2.7004E-01 Variance = 2.7004E-01 Total smoothed energy = Maximum smoothed value = First moment = Second moment = Second moment = Second moment = Second moment =	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec. Channel 2 2.69900E-01 2.47944E+00 1.99174E-01 5.20168E-02 2.078
Raw data time series statistics Mean = 3.9982E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = Maximum smoothed value = First moment = Second moment = Himo = 3.26260 at X = .35523 Hz. YMAX = 4.00000 Delta-Y = .80000 Raw data time series statistics Mean = 2.8550E-01 Variance = 2.7004E-01 Variance = 2.7004E-01 Total smoothed energy = Maximum smoothed value = First moment = Second moment = Second moment = Second moment = Second moment =	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec. Channel 2 2.69900E-01 2.47944E+00 1.99174E-01 5.20168E-02 2.078
Raw data time series statistics	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec. Channel 2 2.69900E-01 2.47944E+00 1.99174E-01 5.20168E-02 2.078
Raw data time series statistics Mean	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec. Channel 2 2.69900E-01 2.47944E+00 1.09174E-01 5.20168E-02 2.078 2.9520 sec.
Raw data time series statistics Mean	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec. Channel 2 2.69900E-01 2.47944E+00 1.09174E-01 5.20168E-02 2.078 2.9520 sec.
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Total smoothed energy = 9.635E-01 Max density = 3.26260 at X = .35523 Hz. Wax data time series statistics Mean = 2.8550E-01 Variance = 2.7004E-01 Energy = 2.7003E-01 Wax density = 3.26260 at X = .33875 Hz. Wax density = 3.26260 at X = .33875 Hz. Wax density = 3.26260 at X = .33875 Hz. Wax density = 3.26260 at X = .33875 Hz. Wax density = 3.26260 at X = .33875 Hz. Wax density = 3.26260 at X = .33875 Hz. Wax data time series statistics Mean = 2.3415E-01 Variance = 2.3415E-01 Energy = 2.4278E-01 Energy = 2.427	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec. Channel 2 2.69900E-01 2.47944E+00 1.9174E-01 5.20168E-02 2.078 2.9520 sec. Channel 3
Raw data time series statistics Mean	Channel 1 1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec
Raw data time series statistics Mean = 3.9962E-01 Variance = 1.9636E-01 Energy = 1.9635E-01 Max mum smoothed energy = Hind = Second moment = Hind = 3.26260 at X = .35523 Hz. YMAX = 4.00000 Delta-Y = .80000 Raw data time series statistics Mean = 2.8550E-01 Variance = 2.7004E-01 Energy = 2.7004E-01 Total smoothed energy = Second moment = Hind = Second moment = Se	1.95982E-01 1.79111E+00 7.82906E-02 3.64421E-02 1.771 2.8151 sec

Max density = 3.26260 at X = .33875 Hz. 2.9520 sec. YMAX = 4.0000 Delta-Y = .80000

Max density = 3.26260 at X = .33875 Hz. YMAX = 4.00000 Delta-Y = .80000

----- Channel 4

2,9520 sec.

a2412004 T=12 H=40 Jonswap			
***************************************		Channel	5
Raw data time series statistics			
Mean = 9.6861E-02			
Variance = 1.3342E-01			
Energy = 1.3341E-01			
Total smoothed energy	= 1.33331E-01		
Maximum smoothed value	= 1.16909E+00		
First moment	= 6.05146E-02		
Second moment	= 3.13980E-02		
Hmo	= 1.461		
Manu alamatan — 1 04700 at v = 2001			
Max density = 1.24790 at X = .39917 YMAX = 1.50000 Delta-Y = .30000	Hz. 2.5052 se	c.	
IMAX = 1.50000 Delta-Y = .30000			
		Channel	6
		Chamier	۰
Raw data time series statistics			
Mean = -1.9246E-02			
Variance = 4.1418E-01			
Energy = 4.1417E-01			
Total smoothed energy	= 4.12775E-01		
Total smoothed energy	= 3.94451E±00		
First moment	= 1.60316F-03		
First moment	- 6 621735-02		
Hmo			
	- 2.570		
Max density = 3.84451 at X = .41565	Hz. 2.4058 see	c.	
YMAX = 5.00000 Delta-Y = 1.00000			
	-	Channel	8
Box disciplination of the second			
Raw data time series statistics Mean = 7.0683E-03			
mean = 7.0683E-03			
Variance = 3.6806E-01 Energy = 3.6805E-01			
Energy = 3.6805E-01			
Total smoothed energy	= 3.66423E-01		
Maximum smoothed value	= 3.36034E+00		
rirst moment	= 1.43028E-01		
Second moment	= 5.99061E-02		
Hmo	= 2.421		
Man danaitu - 2 26024 -t V - 20561	0 5004	_	
Max density = 3.36034 at X = .39551 YMAX = 5.00000 Delta-Y = 1.00000	nz. 2.5284 se	c.	
iraa - 5.00000 pelta-1 = 1.00000			

```
----- a2918020 T=18 H=60 Jonswap ----- Channel 1
     Raw data time series statistics
  Max density = 2.65680 at X = .30030 Hz. 3.3300 sec.
YMAX = 3.00000 Delta-Y = .60000
           ______ Channel 2
  Max density = 2.65600 at X = .30213 Hz. 3.3099 sec. YMAX = 3.00000 Delta-Y = .60000
               Channel 3
    Raw data time series statistics
  Max density = 2.65680 at X = .30213 Hz.
YMAX = 3.00000 Delta-Y = .60000
 Raw data time series statistics
Mean ... = -4.6413E-02
Variance = 1.8469E-01
Total smoothed energy = 1.46688E+00
Maximum smoothed value = 1.46688E+00
First moment = 6.97763E-02
Second moment = 3.30440E-02
Hmo = 1.720
 Max density = 2.65680 at X = .29480 Hz.
YMAX = 3.00000 Delta-Y = .60000
     ------ a2916024 T=16 H=70 Jonswap ----- Channel 1
Max density = 3.22030 at X = .33142 Hz. 3.0173 sec. YMAX = 4.00000 Delta-Y = .80000
                    Channel 2
  Raw data time series statistics
3.0173 sec.
 Channel 3
Raw data time series statistics

Mean ... = -7.0049E-02
Variance = 1.9692E-01
Date gy = 1.9691E-01

Total smoothed energy = 1.75586E+00
Maximum smoothed value = 1.75586E+00
First moment = 6.00573E-02
Second moment = 4.19987E-02
Hmo = 1.774
Max density = 3.22030 at X = .33142 Hz.
YMAX = 4.00000 Delta-Y = .80000
                                           3.0173 sec.
                                    ----- Channel 4
```

Max density = 3.22030 at X = .33142 Hz. YMAX = 4.00000 Delta-Y = .80000

	a29:	18020 T=1	9 H=60	Jonswan				
							Channel	
Raw data	time se	eries stat	tistics					
	Mean		-3.189	99E-02				
	Varia	ince	1.752	21E-01				
Total smoo	thed ene	rgy	. 1./3	:15-01	_	1 751125-01		
Maximum sm	oothed v	alue			. =	1.75112E-01 1.44419E+00 6.75978E-02 3.36490E-02		
Second mome	ent			· · · · · · · · · ·	=	6.75978E-02 3.36490E-02		
Hmo	• • • • • • •				=	1.674		
Max density	y =	2.65680	at X =	.29480	Hz.	3.3921 se		
Max density YMAX =						***************************************		
							Channel	
Raw data	time se	ries stat	istics					
	Mean Varia	nce =	7.933	1E-03				
	Energ	nce =	8.998	3E-01				
Total smoot	hed ene	rgy			=	8.98000E-01		
maximum smo First momen	othed v	alue	• • • • • • • •	• • • • • • •	=	8.98000E-01 8.69098E+00 2.83155E-01		
						2.83155E-01 9.90964E-02		
Hmo					=	9.90964E-02 3.791		
Max density YMAX ≃ 10	7 =	8.69098	at X =	.30030	Hz.	3.3300 se	c.	
		Delta-1						
							Channel	
Raw data	Mean .	ries stat.	1stics -2.328	35-03				
	Varia	nce =	8.037	9E-01				
Total smoot	Energy	y =	8.037	6E-01				
rotal smoot Maximum smo	othed va	alue			=	8.00961E-01		
irst momen	t				=	2.54984E-01		
mo	nt	• • • • • • • •	• • • • • • • •		=	8.00961E-01 7.80625E+00 2.54984E-01 9.15063E-02 3.580		
	, , , , ,				-	3.580		
Max density MAX = 10	. 00000	7.80625	at X =	.29480	Hz.	3.3921 se	c.	
		Derra-1	- 2.0	10000				
	- a2916	024 T =16	Н=70 Ј	onswap				
Sau des A				onswap			Channel	5
Raw data t	ime seri	ies stati					Channel	5
	ime seri	ies stati					Channel	5
Raw data t	ime seri Mean Variand Energy	ies stati:	stics -4.4323 1.9203	E-02 E-01			Channel	5
Raw data t	ime seri Mean Variand Energy	les stati:	stics -4.4323 1.9203	E-02 E-01 E-01		1.91827E-01	Channel	5
Raw data t	ime seri Mean Variand Energy ed energ thed val	ies stati: 	stics -4.4323 1.9203 1.92021	E-02 E-01 E-01	= :	1.91827E-01	Channel	5
Raw data t	ime seri Mean Variand Energy ed energe thed val	les stati: ce = = Jy	stics -4.4323 1.9203 1.9202	E-02 E-01 E-01	= ;	1.91827E-01	Channel	5

Max density = 3.22030 at X = .33142 Hz. 3.0173 sec. YMAX = 4.00000 Delta-Y = .80000

Max density = 13.83456 at X = .33142 Hz. YMAX = 15.00000 Delta-Y = 3.00000

Max density = 11.34242 at X = .33142 Hz. YMAX = 15.00000 Delta-Y = 3.00000

Channel 6

1.11394E+00 1.38346E+01 3.63993E-01 1.33087E-01 4.222

Channel 8

9.32162E-01 1.13424E+01 3.10893E-01 1.18525E-01 3.862

3.0173 sec.

A3414028 T=14 H=70 Jonswap	nnel
Mean = 6.0294E-02 Variance = 1.2760E-01 Energy = 1.2767E-01 Total smoothed energy = 9.35069E-01 Maximum smoothed value = 9.35069E-01 First moment = 5.71841E-02 Second moment = 2.91787E-02 Immo = 1.428 Max density = 1.91730 at X = .39917 Hz 2.5052 sec. YMAX = 2.50000 Delta-Y = .50000 .50000	
1.27407E-01	
1.27407E-01	
mo = 2.51767E-02 mo = 1.428 Max density = 1.91730 at X = .39917 Hz. 2.5052 sec. YMAX = 2.50000 Delta-Y = .50000	
mo = 2.51767E-02 mo = 1.428 Max density = 1.91730 at X = .39917 Hz. 2.5052 sec. YMAX = 2.50000 Delta-Y = .50000	
Max density = 1.91730 at X = .39917 Hz. 2.5052 sec. YMAX = 2.50000 Delta-Y = .50000	
Char	nnel
Raw data time series statistics	
Mean = 4.8839E-02	
France - 1 60000 01	
Total smoothed energy = 1.60834E-01 Maximum smoothed value = 1.42161E+00 First moment = 7.50600E-02 Second moment = 4.13994E-02 Hmo = 1.00	
Second moment	
1.009	
Max density = 1.91730 at X = .42481 Hz. 2.3540 sec. MMAX = 2.50000 Delta-Y = .50000	
Char	nne1
Raw data time series statistics	mer
Mean = 3.0536E-02 Variance = 1.4416E-01 Energy = 1.4415E-01	
Energy = 1.4415E-01	
focal shoothed energy = 1.44037E-01 faximum smoothed value = 1.31949E+00	
Total smoothed energy	
1.518	
Max density = 1.91730 at X = .42481 Hz. 2.3540 sec. $MAX = 2.50000$ Delta-Y = .50000	
Raw data time series statistics	inei
Mean = 5.0167E-02	
Mean = 5.0167E-02 Variance = 1.5187E-01 Energy = 1.5186E-01	
1.51783E-01	
rirst moment = 7.06108E-02	
fax density = 1.91730 at X = .42664 Hz. 2.3439 sec. MAX = 2.50000 Delta-Y = .50000	
a3416031 T=16 H=70 Jonswap Chan	nel
Raw data time series statistics	
Mean = 6.1460E-03 Variance = 1.3136E-01 Energy = 1.3136E-01	
Energy = 1 3136F_01	
otal smoothed energy = 1.31020E-01 aximum smoothed value = 1.00294E+00 irst moment = 5.50835E-02	
odal smoothed energy = 1.31020E-01 aximum smoothed value = 1.00294E+00 irst moment = 5.50835E-02	
Otal smoothed energy = 1.31020E-01 aximum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mo = 1.448	
Otal smoothed energy = 1.31020E-01 aximum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mo = 1.448	
Otal smoothed energy = 1.31020E-01 aximum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mo = 1.448	nel
1.31020E-01	nel
Odal smoothed energy = 1.31020E-01 Maximum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mo = 1.448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics	nel
Odal smoothed energy = 1,31020E-01 axinum smoothed value = 1.00294E+00 isst moment = 5,50835E-02 econd moment = 2,69051E-02 mo = 1,448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.7359E-03 Variance = 1.6943E-01	nel
Odal smoothed energy = 1,31020E-01 axinum smoothed value = 1.00294E+00 isst moment = 5,50835E-02 econd moment = 2,69051E-02 mo = 1,448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.7359E-03 Variance = 1.6943E-01	nel
Naximum smoothed value 1.31020E-01 xximum smoothed value 1.00294E+00 irst moment 5.50835E-02 econd moment 2.69051E-02 max density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw dat time series statistics	nel
Naximum smoothed value 1.31020E-01 Aximum smoothed value 1.00294E+00 Irist moment 5.50835E-02 Conditionment 2.69051E-02 Aximum smoothed value 1.448 Aximum smoothed value 2.50000 Aximum smoothed value 1.6943E-01 Ehergy 1.6942E-01 Aximum smoothed energy 1.48291E+00 Aximum smoothed energy 1.48291E+00 Aximum smoothed value 1.6462E-01 Aximum smoothed value 1.48291E+00 Aximum smoothed value 1.6462E-01 Aximum smoothed val	nel
Naximum smoothed value 1.31020E-01 Aximum smoothed value 1.00294E+00 Irist moment 5.50835E-02 Conditionment 2.69051E-02 Aximum smoothed value 1.448 Aximum smoothed value 2.50000 Aximum smoothed value 1.6943E-01 Ehergy 1.6942E-01 Aximum smoothed energy 1.48291E+00 Aximum smoothed energy 1.48291E+00 Aximum smoothed value 1.6462E-01 Aximum smoothed value 1.48291E+00 Aximum smoothed value 1.6462E-01 Aximum smoothed val	nel
Naximum smoothed value 1.31020E-01 Aximum smoothed value 1.00294E+00 Irist moment 5.50835E-02 Conditionment 2.69051E-02 Aximum smoothed value 1.448 Aximum smoothed value 2.50000 Aximum smoothed value 1.6943E-01 Ehergy 1.6942E-01 Aximum smoothed energy 1.48291E+00 Aximum smoothed energy 1.48291E+00 Aximum smoothed value 1.6462E-01 Aximum smoothed value 1.48291E+00 Aximum smoothed value 1.6462E-01 Aximum smoothed val	
1,31020E-01	
1,31020E-01	
aximum smoothed value 1.3020E-01 irst moment 5.50835E-02 econd moment 2.69051E-02 maximum smoothed value 1.00294E+00 irst moment 5.50835E-02 econd moment 2.69051E-02 max density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean -2.7359E-03 Variance 1.6943E-01 Energy 1.6942E-01 aximum smoothed value 1.48291E+00 irst moment 7.37574E-02 econd moment 3.90142E-02 max density = 2.19000 at X = .37171 Hz. 2.6903 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean -2.2776E-02 Variance 1.3959E-01 Energy = 1.3959E-01	
aximum smoothed value 1.31020E-01 irst moment 5.50835E-02 econd moment 2.69051E-02 m	
1,31020E-01	
aximum smoothed value 1.3020E-01 irst moment 5.50835E-02 econd moment 2.69051E-02 m	
aximum smoothed value 1.3020E-01 irst moment 5.50835E-02 econd moment 2.69051E-02 m	
Stall smoothed energy = 1.31020E-01 saxinum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mo = 1.448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAXX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics	nel
Stall smoothed energy = 1.31020E-01 saxinum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mb = 1.448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. AXX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.7359E-03 Variance = 1.6943E-01 Energy = 1.6942E-01 tall smoothed value = 1.48291E+00 irst moment = 7.37574E-02 econd moment = 3.90142E-02 ax density = 2.19000 at X = .37171 Hz. 2.6903 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.2776E-02 Variance = 1.3959E-01 Energy = 1.3959E-01 tall smoothed energy = 1.3959E-01 example = 1.4848 example = 1.48291E+00 example = 1.6942E-01 example = 1.48291E+00 example = 1.6942E-01 example = 1.6	nel
Stall smoothed energy = 1.31020E-01 saxinum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mo = 1.448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAXX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.7359E-03 Variance = 1.6943E-01 Energy = 1.6942E-01 otal smoothed energy = 1.6942E-01 aximum smoothed value = 1.48291E+00 irst moment = 7.37574E-02 econd moment = 3.90142E-02 mo = 1.6646 ax density = 2.19000 at X = .37171 Hz. 2.6903 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.2776E-02 Variance = 1.3959E-01 Energy = 1.3959E-01 Energy = 1.3959E-01 stal smoothed energy = 1.3959E-01 irst moment = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed energy = 1.494 ax density = 2.19000 at X = .37337 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.2776E-02 Variance = 1.3959E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue	nel
aximum smoothed value 1.3020E-01 irst moment 5.50835E-02 econd moment 2.69051E-02 mb 1.448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics	nel
aximum smoothed value 1.3020E-01 irst moment 5.50835E-02 econd moment 2.69051E-02 mb 1.448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics	nel
Stall smoothed energy = 1.31020E-01 saxinum smoothed value = 1.00294E+00 irst moment = 5.50835E-02 econd moment = 2.69051E-02 mo = 1.448 ax density = 2.19000 at X = .37537 Hz. 2.6640 sec. MAXX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.7359E-03 Variance = 1.6943E-01 Energy = 1.6942E-01 otal smoothed energy = 1.6942E-01 aximum smoothed value = 1.48291E+00 irst moment = 7.37574E-02 econd moment = 3.90142E-02 mo = 1.6646 ax density = 2.19000 at X = .37171 Hz. 2.6903 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.2776E-02 Variance = 1.3959E-01 Energy = 1.3959E-01 Energy = 1.3959E-01 stal smoothed energy = 1.3959E-01 irst moment = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed energy = 1.494 ax density = 2.19000 at X = .37337 Hz. 2.6640 sec. MAX = 2.50000 Delta-Y = .50000 Chan Raw data time series statistics Mean = -2.2776E-02 Variance = 1.3959E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed value = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue = 9.94139E-01 irst moment = 6.18006E-02 examum smoothed salue	nel

Max density = 2.19000 at X = .37537 Hz. 2.6640 sec. YMAX = 2.50000 Delta-Y = .50000

Day daka s											
Raw data t	time se Mean		=	ısı	6.5	282E-0	12		1.32053E-01 8.84094E-01 6.34542E-02 3.81656E-02		
	Varia	nce .	=		1.3	296E-0	1				
Total smooth	Energ	y	=		1.3	296E-0	1	_	1 220525 01		
Maximum smoo	othed v	alue				 		. =	8.84094E-01		
First moment	t _.			٠				=	6.34542E-02		
Second momer	nt	• • • • •	• • • •	٠	• • •		• • • •	. =	3.81656E-02 1.458		
Max density	=	1.91	730	at	Х :	= .4	2483	Hz.	2.3540 se	c.	
YMAX = 2.	.50000	Del	ta-Y	=		.5000	10				
						-				Channel	
										Chamici	
Raw data t	time se	ries	stat:	ist.	ics						
	Varia	nce .	=		8.25	690E-0 514E-0 512E-0	1				
	Energ	у	=		0.25	512E-0	1				
Total smooth	hed ene	rgy .	• • • •	• • •	• • • •		• • • •	=	0.21212E-01		
First moment	t				• • • • •	<i></i> .		=	3.14978E-01		
Second momen	nt	• • • • •						=	8.21212E-01 6.91119E+00 3.14978E-01 1.33861E-01		
		• • • • •		• • •				_	3.623		
Max density	=	6.91	119	at	Х =	4	2481	Hz.	2.3540 se	c.	
YMAX = 7.	.50000	Del	ta~Y	=	1	1.5000	0				
		-				- -				Channel	
										Channel	
Raw data t	ime se	ries	stati	ist:	cs		_				
	Mean Varia	nce .	=	- 1	1 - 12 5 - 94	260E-0 317F-0	2				
	Energ	y	=		5.99	914E-0	ī				
Total smooth	ned ene.	rgy .	• • • •	• • • •		·		=	6.96553E-01		
maxımum smoo First moment	otned v	alue	• • • • •	• • • •	• • • •	• • • • •	• • • •	=	6.19359E+00		
Second momen	nt							=	1.17662E-01		
Hmo		• • • • •	· · · · ·	• • • •				=	6.96553E-01 6.19359E+00 2.69993E-01 1.17662E-01 3.338		
								Hz.		_	
Max density YMAX = 7.	50000	Del	ta-Y	a t	^ =	4 5000	0 5481	nz.	2.3540 se	c.	
	· a3416			H=7	'0					Charre	
										Channel	!
Raw data t	ime se	ries s	tati	sti	cs					Channel	
	ime se	ries s	tati	sti	cs					Channel	
Raw data t	ime ser Mean . Variar	ries s	tati	.sti 1	.cs .27	92E-01	2 1		·•	Channel	
Raw data t	ime ser Mean . Variar	ries s	tati	.sti 1	.cs .27	92E-01	2 1		·•	Channel	
Raw data t	ime ser Mean . Variar	ries s	tati	.sti 1	.cs .27	92E-01	2 1		·•	Channel	
Raw data t	ime ser Mean . Variar	ries s	tati	.sti 1	.cs .27	92E-01	2 1		·•	Channel .	
Raw data t	ime ser Mean . Variar	ries s	tati	.sti 1	.cs .27	92E-01	2 1		·•	Channel	
Raw data t. Otal smooth daximum smoo' irst moment econd momen' mo	ime ser Mean . Variar Energy ed ener thed va	ries s	tati	sti 1 1	.cs .27 .41 .41	92E-00 02E-00 01E-00	2 1 1 1		1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501		
Raw data t. otal smooth laximum smooth irst moment econd moment mo	ime ser Mean Variar Energy ed ener thed va	ries s	tati . = . = . =	.sti 1 1 	.cs 27 41 41	92E-0: 02E-0: 01E-0:	5523	= = = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data t. otal smooth laximum smooth irst moment econd moment mo	ime ser Mean Variar Energy ed ener thed va	ries s	tati . = . = . =	.sti 1 1 	.cs 27 41 41	92E-0: 02E-0: 01E-0:	5523	= = = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501	·.	
Raw data t. Cotal smooth faximum smooty first moment fecond momen fax fax density: MAX = 2.1	ime ser Mean Variar Energy ed ener thed va	ries s	tati	sti 1 1 		92E-0: 02E-0: 01E-0:	5523	= = = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data to the control of the contr	ime ser	ries s	tati	sti 1 1 at =	cs2741 X =	92E-00 02E-01 01E-01	5523	= = = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data t. Cotal smooth faximum smooty first moment fecond momen fax fax density: MAX = 2.1	ime ser	ries s	tati	sti 1 1 at =	cs2741 X =	92E-00 02E-01 01E-01	5523	= = = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data t. Cotal smooth faximum smooth faximum smooth faximum smooth fax density: MAX = 2. Raw data t:	ime ser Mean Variar Energy ed ener thed va t = 50000 ime ser Mean Variar Energy	ries s	tati	sti 1 1 1 1 at =	Cs2741 X == Cs X ==	92E-00 02E-01 01E-01 	22 11 11 55523	= = = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data t. Cotal smooth faximum smoor First moment faximum smooth fax density: MAX = 2.: Raw data t: Cotal smooth faximum smooth	ime ser Mean Variar Energy ed ener thed va t 50000 ime ser Mean Variar Energy ed ener	ries s cries s cries s cries s cries s	stati	sti 1 1 1 at = sti 2 9	CS .277 .411 X == CS .077 .277 .27	92E-0: 02E-0: 01E-0: 	22 11 11 55523 0	= = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data t. Cotal smooth faximum smoor First moment faximum smooth fax density: MAX = 2.: Raw data t: Cotal smooth faximum smooth	ime ser Mean Variar Energy ed ener thed va t 50000 ime ser Mean Variar Energy ed ener	ries s cries s cries s cries s cries s	stati	sti 1 1 1 at = sti 2 9	CS .277 .411 X == CS .077 .277 .27	92E-0: 02E-0: 01E-0: 	22 11 11 55523 0	= = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data t. cotal smooth (aximum smooth irst moment econd momen. MAX = 2 Raw data t. otal smooth aximum smoot irst moment	ime ser Mean Variar Energy ed ener thed va t = 50000 	cies s	stati . = . =	sti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CS2741 X == CS	92E-02 02E-03 01E-03 01E-03 33 .50000 11E-02 05E-01 03E-03	22 11 11 55523 0	= = = Hz.	1.40893E-01 1.14066EP-00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	·.	
Raw data t. cotal smooth (aximum smooth irst moment decond moment (ax density: AAX = 2 Raw data t: cotal smooth aximum smooth	ime ser Mean variar Energy Led energy Led energy Source services that variar Energy Led energy Led energy Led energy Led energy	ries s rgy lue 2.199 Delt	tati	stii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CS27	92E-03 02E-03 01E-03 01E-03 .50000 11E-02 05E-01 03E-03	22 11 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	c. Channel	
Raw data t. cotal smooth (aximum smooth irst moment decond moment (ax density: AAX = 2 Raw data t: cotal smooth aximum smooth	ime ser Mean variar Energy Led energy Led energy Source services that variar Energy Led energy Led energy Led energy Led energy	ries s rgy lue 2.199 Delt	tati	stii 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CS27	92E-03 02E-03 01E-03 01E-03 .50000 11E-02 05E-01 03E-03	22 11 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	c. Channel	
Raw data t. cotal smooth (aximum smooth irst moment decond moment (ax density: AAX = 2 Raw data t: cotal smooth aximum smooth	ime ser Mean . Variar Energy ed ener thed va	ries: y gy. Long Delt ries: gy. Since y. Long Belt B	000 a-Y	sti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CS27 X == X ==	92E-00 02E-0 01E-00 3.50000	2 1 1 55523 0	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	Channel	•
Raw data t. Cotal smooth faximum smoo' first moment fax density MAX = 2. Raw data t. Cotal smooth faximum smooth faximum smooth faximum smooth first moment econd moment mo	ime ser Mean Variar Energy ed ener 50000 ime ser Wariar Energy ed ener thed va	ries :	tati	stil 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cs27 X = Cs	92E-0: 02E-0: 01E-0: 	2 1 1 1 55523 2 1 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	Channel	•
Raw data t Notal smooth daximum smooth daximum smooth dax density: MAX = 2. Raw data t: Notal smooth daximum	ime ser Mean Variar Energy ed ener 50000 ime ser Wariar Energy ed ener thed va	ries :	tati	stil 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cs27 X = Cs	92E-0: 02E-0: 01E-0: 	2 1 1 1 55523 2 1 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	Channel	•
Raw data t. Potal smooth faximum smoo' First moment fax density: MAX = 2. Raw data t. Potal smooth faximum s	ime sei Mean . Variari Energy sed ener the de variation sed ener the de variation sed energia de	Z.190 Delt cee 8.042 Delt Belt Cee	tati	still 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cs .27 .41	92E-0: 02E-0: 01E-0: 	2 2 1 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	Channel	•
Raw data t. Total smooth faximum smooth faximum smooth fax density: MAX = 2. Raw data t: Total smooth faximum smooth faximu	ime sei sei sei sei sei sei sei sei sei se	cies s	tati	sti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cs .27 .41	92E-0: 02E-0: 01E-0: 	22 2 1 1 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068P400 6.27103E-02 3.59485E-02 1.501 2.8151 sec	Channel	•
Raw data to the state of the st	ime sei Mean . Variar Energy ed ener Energy . Soooo	ries :	tati	sti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CS .27 .41	92E-0: 02E-0: 01E-0: .33: .50000 	22 11 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec	Channel	•
Raw data t. Total smooth faximum smoor First moment fax density: MAX = 2. Raw data t: Total smooth faximum smooth fax density: MAX = 10. Raw data t: Total smooth fax density: MAX = 10. Raw data t: Total smooth fax density: MAX = 10. Raw data t: Total smooth fax density: Total smooth fax density	ime sei me ser mean mean mean mean mean mean mean mean	cce 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042 3.042	tati . =	stil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CS .277 X = 2 X = 2 X = 2 X = 2 X X X	92E-0: 02E-0: 01E-0: 	22 11 1 1 55523 2 2 1 1 1 68889 2 2 1 1 1 1 68889 2 2 1 1 1 1 68889 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14068E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec 9.21712E-01 8.04228E+00 3.30265E-01 3.840 2.7864 sec	Channel	•
Raw data to the state of the st	ime sei Mean . Variar Energy ed ener . S 50000	ries :	tati	sti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cs .27 .41 X = X = X =	92E-0: 02E-0: 01E-0: .33: .500000 .500000 .500000 .500000 .500000 .500000 .500000	22 11 11 11 15 55523 22 11 11 11 11 11 11 11 11 11 11 11 11	= = = = Hz.	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec 9.21712E-01 8.04228E+00 3.30265E-01 3.840 2.7864 sec 7.61784E-01 6.09090E+00 2.7715IE-01 1.14228E-01	Channel	•
Raw data t. Potal smooth faximum smoo' First moment fax density: MAX = 2. Raw data t. Potal smooth faximum smooth faximum smooth fax density: MAX = 10.6 Raw data t. Cotal smooth faximum smooth faximum smooth fax density: MAX = 10.6 Raw data t.	ime sei Mean . Variar Energy ed ener Energy ed ener	cies : coce 2.199 Delt cies s coce 8.0422 Belt cies s coce 97 Grant coce	tati	sti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cs .27.411 X = 2 27 X = 2 27 27 27 27 28 28 29 27 27 28 28 29	92E-0: 02E-0: 01E-0: 	2211111	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec 9.21712E-01 8.04228E+00 3.30265E-01 1.30736E-01 3.840 2.7864 sec	Channel	•
Raw data t. Potal smooth faximum smoo' First moment fax density: MAX = 2. Raw data t. Potal smooth faximum smooth faximum smooth fax density: MAX = 10.6 Raw data t. Cotal smooth faximum smooth faximum smooth fax density: MAX = 10.6 Raw data t.	ime sei Mean . Variar Energy ed ener Energy ed ener	cies : coce 2.199 Delt cies s coce 8.0422 Belt cies s coce 97 Grant coce	tati	sti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cs .27.411 X = 2 27 X = 2 27 27 27 27 28 28 29 27 27 28 28 29	92E-0: 02E-0: 01E-0: 	2211111	= = = = = = = = = = = = = = = = = = =	1.40893E-01 1.14066E+00 6.27103E-02 3.59485E-02 1.501 2.8151 sec 9.21712E-01 8.04228E+00 3.30265E-01 3.840 2.7864 sec 7.61784E-01 6.09090E+00 2.7715IE-01 1.14228E-01	Channel	•

------ a3414028 T=14 H=70 Jonswap ----- Channel 5

a34		H=70	Jonswap			
					Channel	1
Raw data time s	eries stat:	istics				
mean Vari	ance =	1.309	5E-01			
				1 306035-01		
Total smoothed en Maximum smoothed First moment Becond moment	value			1.30003E+00		
First moment Second moment			=	5.09955E-02 2.37816E-02		
mo			=	1.446		
					c.	
MAX = 3.00000	Delta-Y	= .	60000			
					Channel	2
Raw data time s Mean	eries stat:	1.513	6E-02			
Vari	ance =	1.687	8E-01			
Fotal smoothed en	ergy	1.00	9E-01	1.68705E-01		
Fotal smoothed en Maximum smoothed First moment	value		=	1.68705E-01 1.43009E+00 6.85757E-02		
Second moment				3.45634E-02		
imo			=	1.643		
fax density = MAX = 3.00000	2.45650	at X =	.32044 Hz	. 3.1207 se	c.	
MAX = 3.00000	Delta-Y		60000			
					Channel	3
Raw data time s	eries stat	ietice				
Mean	ance =	-2.653	3E-03			
Vari Ener	ance =	1.497	9E-01			
otal smoothed en aximum smoothed	ergy		=	1.49657E-01		
Maximum smoothed Tirst moment	value	· · · · · · · ·		1.08129E+00 6.33674E-02		
econd moment				3.46765E-02		
lmo				1.547		
Max density = MAX = 3.00000	2.45650	at X =	.32776 Hz	. 3.0510 se	c.	
					Channel	4
Raw data time s	eries stat	istice				
Mean	1 =	1.252	9E-02			
Vari	iance =	1.546	31E-01			
otal smoothed en	:gy =	1.540	31E-01	1.54666E-01		
Maximum smoothed	value		· · · · · · · · =	1.20647E+00		
otal smoothed en aximum smoothed first moment econd moment				6.47448E-02 3.51966E-02		
Imo				1.573		
Max density = YMAX = 3.00000	2.45650 Delta-Y				c.	
Max density = MAX = 3.00000	2.45650 Delta-Y				c.	
		at X =	.32776 Hz	z. 3.0510 se		1
) b34	118048 T =18	at X =	.32776 Hz			1
b34	118048 T=18 series stat	#=70	.32776 Hz	z. 3.0510 se		1
Raw data time s Mear Vari	118048 T=18 	H=70 istics 2.05:	.32776 Hz .60000 Jonswap	. 3.0510 se		1
Raw data time s Mear Vari	118048 T=18 	H=70 istics 2.05:	.32776 Hz .60000 Jonswap	. 3.0510 se		1
Raw data time s Mear Vari	118048 T=18 	H=70 istics 2.05:	.32776 Hz .60000 Jonswap	. 3.0510 se		1
Raw data time s Mear Vari	118048 T=18 	H=70 istics 2.05:	.32776 Hz .60000 Jonswap	. 3.0510 se		1
Raw data time s Mear Vari	118048 T=18 	H=70 istics 2.05:	.32776 Hz .60000 Jonswap	. 3.0510 se		1
Raw data time s Mear Vari Ener otal smoothed er aximum smoothed irst moment mo	i18048 T=18 	H=70	.32776 Hz .60000 Jonswap33E-01 .22E-01 .11E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02	Channel	1
Raw data time s Mear Vari Ener otal smoothed er aximum smoothed irst moment econd moment	i18048 T=18 	H=70	.32776 Hz .60000 Jonswap33E-01 .22E-01 .11E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02	Channel	1
Raw data time s Mear Vari Ener Otal smoothed er laximum smoothed irst moment meon moment	i18048 T=18 	H=70	.32776 Hz .60000 Jonswap32E-01 .2E-01 .1E-01 = = = = = = =	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02	Channel	
Raw data time s Mear Vari Vari Otal smoothed irst moment mo Max density = MAX = 3.00000 Raw data time s	series stat :	#=70 istics 2.05: 1.58:	.32776 Hz .60000 Jonswap32E-01 .2E-01 .1E-01	1.56713E-01 1.4430E+00 6.20073E-02 3.00307E-02 1.583	Channel	
Raw data time s Mear Vari Vari Cotal smoothed er laximum smoothed irst moment incond moment fax density = MAX = 3.00000	118048 T=18 series stat 1= 1= 1= 2.45650 Delta-Y Series stat 1=	##70 	.32776 Hz .60000 Jonswap332-01 .22E-01 .21E-01 = .32593 Hz .60000	1.56713E-01 1.4430E+00 6.20073E-02 3.00307E-02 1.583	Channel	
Raw data time s Mear Vari Cotal smoothed er dirst moment econd moment mo Raw density = MAX = 3.00000 Raw data time s Mear Vari	118048 T=18 series stat lance = ergy = ergy = one = 0.1	#=70 istics 2.05: 1.58: 1.58:	.32776 Hz .60000 Jonswap32E-01 .1E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel	
Raw data time s Mear Vari Cotal smoothed er dirst moment second moment mo Rax density = MAX = 3.00000 Raw data time s Mear Vari	118048 T=18 series stat lance = ergy = ergy = one = 0.1	#=70 istics 2.05: 1.58: 1.58:	.32776 Hz .60000 Jonswap32E-01 .1E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel	
Raw data time s Mear Vari Cotal smoothed er dirst moment second moment mo Rax density = MAX = 3.00000 Raw data time s Mear Vari	118048 T=18 series stat lance = ergy = ergy = one = 0.1	#=70 istics 2.05: 1.58: 1.58:	.32776 Hz .60000 Jonswap32E-01 .1E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel	
Raw data time s Mear Vari Cotal smoothed er dirst moment econd moment mo Raw density = MAX = 3.00000 Raw data time s Mear Vari	118048 T=18 series stat lance = ergy = ergy = one = 0.1	#=70 istics 2.05: 1.58: 1.58:	.32776 Hz .60000 Jonswap32E-01 .1E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel	
Raw data time s Mear Vari Cotal smoothed er dirst moment second moment mo Rax density = MAX = 3.00000 Raw data time s Mear Vari	118048 T=18 series stat lance = ergy = ergy = one = 0.1	#=70 istics 2.05: 1.58: 1.58:	.32776 Hz .60000 Jonswap32E-01 .1E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel	
Raw data time s Mear Vari Vari Vari Vari Vari Vari Vari Va	### 18048 T=18 ####################################	#=70 istics 2.05: 1.58: 1.58: 1.58: 1.58: 1.58: 1.58: 1.58: 1.86:	.32776 Hz .60000 Jonswap33E-01 .22E-01 .12E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel Cc.	
Raw data time s Mear Vari Vari otal smoothed er aximum smoothed irst moment econd moment ax density = MAX = 3.00000 Raw data time s Mear Vari Ener otal smoothed er aximum smoothed irst moment econd moment	### 18048 T=18 ####################################	#=70 istics 2.05: 1.58: 1.58: 1.58: 1.58: 1.58: 1.58: 1.58: 1.86:	.32776 Hz .60000 Jonswap33E-01 .22E-01 .12E-01	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel Cc.	
Raw data time s Mear Vari Vari Vatal smoothed er laximum smoothed irst moment Max density = MAX = 3.00000 Raw data time s Mear Vari Cotal smoothed er laximum smoothed irst moment Mear Vari Cotal smoothed irst moment Mear Vari Cotal smoothed irst moment Mear Mear Vari Cotal smoothed irst moment Mear Mear Vari Cotal smoothed irst moment Mear Mear Mear Mear Mear Mear Mear Mea	### 18048 T=18 ####################################	#=70 istics 2.05: 1.58: 1.58: 1.58: 1.58: 1.58: 1.58: 1.58: 1.86:	.32776 Hz .60000 Jonswap32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 se	Channel Channel	2
Raw data time s Mear Vari Vari Cotal smoothed er dirst moment Mear Mear Max = 3.00000 Raw data time s Mear Vari Cotal smoothed er Max = 3.00000 Raw data time s Mear Vari Cotal smoothed er daximum smoothed dirst moment Mear Mear Mear Mear Mear Mear Mear Mear	118048 T=18 series stat 1	at X = = = = = = = = = = = = = = = = = =	.32776 Hz .60000 Jonswap32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 sc	Channel Channel	2
Raw data time s Mear Vari Vari Cotal smoothed er daximum smoothed irst moment Meax decond moment Max density = Max = 3.0000 Raw data time s Mear Vari Cotal smoothed drist moment Missended er daximum smoothed drist moment Meax density = Max	### 18048 T=18 ### 2.45650 ### 18048 T=18 #	#=70 istics 2.05: 1.58: 1.58: 1.58: 1.58: 1.58: 1.86:	.32776 Hz .60000 Jonswap328-01 .228-01 .128-01	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 se	Channel Channel	2
Raw data time s Mear Vari Vari Cotal smoothed er leximum smoothed irst moment econd moment MAX = 3.00000 Raw data time s Mear Vari Cotal smoothed er laximum smoothed dirst moment econd moment cotal smoothed er laximum smoothed dirst moment mo Ax density = MAX = 3.00000 Raw data time s	### 18048 T=18 ### 2.45650 ### 18048 T=18 #	#=70 istics 2.05: 1.58: 1.58: 1.58: 1.58: 1.58: 1.86:	.32776 Hz .60000 Jonswap328-01 .228-01 .128-01	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 se	Channel Channel	2
Raw data time s Mear Vari Vari Vari Vari Vari Vari Vari Va	### 18048 T=18 ###################################	#=70 istics 2.05: 1.58:	.32776 Hz .60000 Jonswap33E-01 .22E-01 .12E-01 = .32593 Hz .60000 = .32593 Hz = .32593 Hz = .32593 Hz	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 se	Channel Channel	2
Raw data time s Mear Vari Vari Vari Vari Vari Vari Vari Va	### 18048 T=18 ###################################	#=70 istics 2.05: 1.58:	.32776 Hz .60000 Jonswap33E-01 .22E-01 .12E-01 = .32593 Hz .60000 = .32593 Hz = .32593 Hz = .32593 Hz	1.56713E-01 1.44430E+00 6.20073E-02 3.00307E-02 1.583 2. 3.0681 se	Channel Channel	2
Raw data time s Mear Vari Cotal smoothed er laximum smoothed irst moment MAX = 3.0000 Raw data time s Mear Vari Cotal smoothed er laximum smoothed irst moment MAX = 3.0000 Raw data time s Mear Vari Lax density = MAX = 3.0000 Raw data time s Mear Vari Cotal smoothed er Laximum smoothed Irst moment Cotal smoothed Irst moment Cotal smoothed Irst smoo	# 18048 T=18 #	at X = = = = = = = = = = = = = = = = = =	.32776 Hz .60000 Jonswap33E-01 .22E-01 .12E-01	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E+00 7.55150E-02 3.85488E-02 1.728 2. 3.0681 sc	Channel Channel	2
Raw data time s Mear Vari Vari Vari Vari Vari Vari Vari Va	118048 T=18 series stat 1	at X = = = 1.58:	.32776 Hz .60000 Jonswap32593 Hz .60000 .32593 Hz .60000	1.56713E-01 1.44430E-01 1.44430R-00 6.20073E-02 1.583 2. 3.0681 se 1.86527E-01 1.520375E-02 3.85488E-02 1.728 2. 3.0681 se	Channel Channel	2
Raw data time s Mear Vari Vari Vari Vari Vari Cond Smoothed er aximum smoothed dirst moment econd moment econd moment MAX = 3.00000 Raw data time s Mear Vari otal smoothed er aximum smoothed dirst moment econd mome	118048 T=18 series stat 1	at X = = = 1.58	.32776 Hz .60000 Jonswap33E-01 .2E-01 .1E-01	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 se 1.86527E-01 1.52037E+00 7.55150E-02 3.85488E-02 1.728 2. 3.0681 se	Channel Channel Channel	2
Raw data time s Mear Vari Vari Vari Vari Vari Cond Smoothed er aximum smoothed dirst moment econd moment econd moment MAX = 3.00000 Raw data time s Mear Vari otal smoothed er aximum smoothed dirst moment econd mome	118048 T=18 series stat 1	at X = = = 1.58	.32776 Hz .60000 Jonswap33E-01 .2E-01 .1E-01	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 se 1.86527E-01 1.52037E+00 7.55150E-02 3.85488E-02 1.728 2. 3.0681 se	Channel Channel Channel	2
Raw data time s Mear Vari Vari Otal smoothed er aximum smoothed irst moment Ax density = MAX = 3.0000 Raw data time s Mear Vari Otal smoothed er aximum smoothed irst moment Ax density = MAX = 3.0000 Raw data time s Mear Vari Otal smoothed irst moment Ax density = MAX = 3.0000 Raw data time s Mear Vari data density = MAX = 3.0000 Raw data time s Mear Vari otal smoothed irst moment Clay Clay Clay Clay Clay Clay Clay Cla	# 18048 T=18 #	at X = = H=70	.32776 Hz .60000 Jonswap33E-01 .2E-01 .1E-01 = .32593 Hz .60000 D6E-02 .6E-01	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E-00 7.55150E-02 3.85488E-02 1.728 2. 3.0681 sc	Channel Channel Channel	2
Raw data time s Mear Vari Cotal smoothed er laximum smoothed irst moment Max density = Max = 3.0000 Raw data time s Mear Vari Cotal smoothed irst moment Max = 3.0000 Raw data time s Mear Vari Cotal smoothed irst moment Max density = Max = 3.0000 Raw data time s Mear Vari Cotal smoothed irst moment Cotal smoothed irst moment Max density = Max density = Max data time s Mear Vari Cotal smoothed irst moment Max density = Max data time s Mear Mear Max density =	### ##################################	at X = = = = = = = = = = = = = = = = = =	.32776 Hz .60000 Jonswap33E-01 .2E-01 .1E-01 = .32593 Hz .60000 D6E-02 .6E-01	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 se 1.86527E-01 1.52037E+00 7.55150E-02 3.85488E-02 1.728 2. 3.0681 se	Channel Channel Channel	2
Raw data time s Mear Vari Vari Vari Vari Vari Vari Vari Va	### 18048 T=18 ### 18048 T=18	at X = = = = = = = = = = = = = = = = = =	.32776 Hz .60000 Jonswap32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E+00 7.55150E-02 1.728 2. 3.0681 sc 1.58308E-01 1.16135E+00 6.57434E-02 3.50213E-02 1.592 2. 3.0681 sc	Channel Channel Channel	2
Raw data time s Mear Vari Vari Vari Vari Vari Vari Vari Va	### 18048 T=18 ### 18048 T=18	at X = = = = = = = = = = = = = = = = = =	.32776 Hz .60000 Jonswap32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E+00 7.55150E-02 1.728 2. 3.0681 sc 1.58308E-01 1.16135E+00 6.57434E-02 3.50213E-02 1.592 2. 3.0681 sc	Channel Channel Channel	2
Raw data time s Mear Vari Vari Potal smoothed er Maximum smoothed First moment Max density = MAX = 3.0000 Raw data time s Mear Vari Second moment Max = 3.0000 Raw data time s Mear Vari Hotal smoothed er Maximum smoothed First moment Max density = MAX = 3.0000 Raw data time s Mear Vari Second moment Max density = MAX = 3.0000 Raw data time s Mear Maximum smoothed Max density = MAX = 3.0000 Raw data time s Mear Maximum smoothed Max density = MAX = 3.0000 Max density = MAX = 3.0000 Max density = MAX = 3.00000	### 18048 T=18 ### 18048 T=18	at X = = = = = = = = = = = = = = = = = =	.32776 Hz .60000 Jonswap32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E+00 7.55150E-02 1.728 2. 3.0681 sc 1.58308E-01 1.16135E+00 6.57434E-02 3.50213E-02 1.592 2. 3.0681 sc	Channel Channel Channel	2
Raw data time s Mear Vari Total smoothed er Haximum smoothed First moment Max density = MAX = 3.0000 Raw data time s Mear Vari Total smoothed er Haximum smoothed First moment Max density = MAX = 3.0000 Raw data time s Mear Vari Hax = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 MAX density = MAX	### ##################################	at X = =	.32776 Hz .60000 Jonswap32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E-00 7.5515E-02 3.85488E-02 1.728 2. 3.0681 sc 1.58308E-01 1.16135E-02 3.50213E-02 1.592 2. 3.0681 sc	Channel Channel Channel	2
Raw data time s Mear Vari Total smoothed er Haximum smoothed First moment Max density = MAX = 3.0000 Raw data time s Mear Vari Total smoothed er Haximum smoothed First moment Max density = MAX = 3.0000 Raw data time s Mear Vari Hax = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 Raw data time s Mear Max density = MAX = 3.0000 MAX density = MAX	### ##################################	at X = =	.32776 Hz .60000 Jonswap32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E-00 7.5515E-02 3.85488E-02 1.728 2. 3.0681 sc 1.58308E-01 1.16135E-02 3.50213E-02 1.592 2. 3.0681 sc	Channel Channel Channel	2
Raw data time s Mear Total smoothed er Mear Max density =	### ##################################	at X = =	.32776 Hz .60000 Jonswap32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000 .32593 Hz .60000	1.56713E-01 1.44430E+00 6.20073E-02 1.583 2. 3.0681 sc 1.86527E-01 1.52037E-00 7.55150E-02 3.85488E-02 1.728 2. 3.0681 sc 1.58308E-01 1.16135E+00 6.5743B-02 3.50213E-02 1.592 2. 3.0681 sc	Channel Channel Channel	2

Max density = 2.45650 at X = .32593 Hz. YMAX = 3.00000 Delta-Y = .60000

----- a3418034 T=18 H=70 Jonswap -----

044004 5 40 11 70 5			
a3418034 T=18 H=70 Jonswap	Ch	annel !	5
Second moment = Hmo = Max density = 2.45650 at X = .32776 Hz.	1.27421E+00 6.49645E-02 3.70283E-02 1.559		
YMAX = 3.00000 Delta-Y = .60000			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ch	annel	6
Raw data time series statistics  Mean = 2.2652E-02  Variance = 9.9789E-01  Energy = 9.9787E-01  Total smoothed energy =  Maximum smoothed value =  First moment =  Hmo =  Hmo	3.27707E-01 1.20712E-01 3.990		
	Ch	annel	8
Raw data time series statistics    Mean	8.47138E-01 8.91927E+00 2.88065E-01 1.12502E-01 3.682		•

b3416049 T=16 H=70 Jonswap	Chanr	nel 1
Book data and the second second		
Mean		
Energy = 1.4441E-01 Total smoothed energy =	1 438525-01	
Maximum smoothed value	1.19421E+00	
Second moment =	3.20948E-02	
mo =	1.517	
Max density = 2.19000 at X = .36072 Hz. YMAX = 2.50000 Delta-Y = .50000	. 2.7722 sec.	
	Chanr	1
Raw data time series statistics	Cilaiii	iei z
Mean = -4.5625E-02		
Mean = -4.5625E-02 Variance = 1.6786E-01 Energy = 1.6786E-01		
Total smoothed energy = Maximum smoothed value = First moment = Second moment = Mno	1.67753E-01 1.61787E+00	
First moment	7.25665E-02	
Hmo	1.638	
Max density = 2.19000 at X = .36072 Hz. YMAX = 2.50000 Delta-Y = .50000	. 2.7722 sec.	
	Chann	el 3
Raw data time series statistics		
Mean = -5.7856E-02 Variance = 1.5173E-01 Energy = 1.5173E-01		
Energy = 1.51/3E-01  Total smoothed energy =  Maximum smoothed value =	1.51636E-01	
rirst moment	6.63166E-02	
Second moment =	3.61630E-02	
Max density = 2.19000 at X = .36072 Hz. YMAX = 2.50000 Delta-Y = .50000	. 2.7722 sec.	
·		el 4
Raw data time series statistics	Cham	
Mean = -4.1765E-02		
Mean = -4.1765E-02 Variance = 1.5321E-01 Energy = 1.5321E-01		
Maximum smoothed value	1.53113E-01 1.21973E+00	
First moment =		
Imo	3.52055E-02 1.565	
MAX = 2.50000 Delta-Y = .50000 Hz.	2.8744 sec.	
b3414050 T=14 H=70 Jonswap		
b3414050 T=14 H=70 Jonswap		el 1
Raw data time series statistics		el 1
Raw data time series statistics Mean = 2.0021E-01 Variance = 1.3008E-01	Chann	el 1
Raw data time series statistics Mean = 2.0021E-01 Variance = 1.3008E-01	Chann	el 1
Raw data time series statistics Mean = 2.0021E-01 Variance = 1.3008E-01	Chann	el 1
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02	el 1
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02	el 1
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02	el 1
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec.	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec.	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec.	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec.	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec.	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec. Channe 1.52113E-01 1.23702E+00 7.21210E-02 4.12223E-02 1.560	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec. Channe 1.52113E-01 1.23702E+00 7.21210E-02 4.12223E-02 1.560	
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics    Mean	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics    Mean	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics    Mean	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics    Mean	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec. Channe 1.52113E-01 1.23702E+00 7.21210E-02 4.1223E-02 1.560 2.3953 sec. Channe 1.52296E-01 1.37097E+00 7.10510E-02 3.97694E-02 1.561	el 2
Raw data time series statistics    Mean	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec. Channe 1.52113E-01 1.23702E+00 7.21210E-02 4.1223E-02 1.560 2.3953 sec. Channe 1.52296E-01 1.37097E+00 7.10510E-02 3.97694E-02 1.561 2.4058 sec. Channe	el 2
Raw data time series statistics	1.29750E-01 8.86817E-01 5.97956E-02 3.19512E-02 1.441 2.3953 sec. Channe 1.52113E-01 1.23702E+00 7.21210E-02 4.1223E-02 1.560 2.3953 sec. Channe 1.52296E-01 1.37097E+00 7.10510E-02 3.97694E-02 1.561 2.4058 sec. Channe	el 2

Max density = 1.91730 at X = .43396 Hz. 2.3043 sec. YMAX = 2.50000 Delta-Y = .50000

Raw data t					<del>-</del> -			Channel	
	ime ser Mean .	ies st	atis	tics				onanne.	
	Mean . Varian Energy	ce	=	1.56	40E-01				
Total smooth	Energy	· · · · · ·	. =	1.56	39E-01	_	1 562045 01		
Maximum smoo	thed va	gy lue				=	1.56304E-01		
First moment						=	6.86051E-02		
Total smooth Maximum smooth First moment Second moment	t				• • • • • • • • • • • • • • • • • • •	=	3.85542E-02 1.581		
Max density : YMAX = 2.									
								Channel	•
Raw data t	Mean .				35E-02				
	Varian	ce	_=	9.80	77E-01				
Total smooth	Energy ed ener	av	=	9.80	76E-01	-	9 740355-01		
Total smoothe Maximum smoot First moment	thed va	lue				=	9.72835E+00		
First moment Second moment	t			• • • • •	• • • • • • • • •	=	3.37674E-01 1.32646E-01		
Hmo						=	3.948		
Max density :	=	9.7283	5 at	- Y =	36072	на	2.7722 sec		
Max density : YMAX ≈ 15.0									
Raw data ti								Channel	-
	Mean .		= -	-3.05	22E-02				
	Mean . Varian Energy	ce	=	7.10	71E-01				
Total smoothe	ed ener	gy		,.10		=	7.07966E-01		
Maximum smoot	thed va	lue	• • • • •			=	6.86901E+00		
Total smoothed Maximum smoot First moment Second moment Hmo	t	 				=	2.51008E-01 1.02349E-01		
Hmo					• • • • • • • • • •	-	3.366		
								:.	
YMAX = 15.0	00000	Delta	-Y =	3.	.00000		2.8744 sec	.,	
	· b34140	050 T=	14 H	i=70	Jonswap -			gh	
Raw data ti	ime seri	es st	atist	ics		•••		Channel	5
Raw data ti	ime seri Mean	es st	atist	ics	0E-01			Channel	5
Raw data ti	ime seri Mean Variand	es st	atist = - = -	ics 2.578	80E-01 52E-01			Channel	5
Raw data ti Fotal smoothe	ime seri Mean Variand Energy ed energ	les st	atist = - = =	ics 2.578 1.446	00E-01 52E-01 51E-01	=		Channel	5
Raw data ti  Fotal smoothe  Maximum smoot  First moment	ime seri Mean Variand Energy ed energ	ies st	atist	ics 2.578 1.446	80E-01 52E-01 51E-01	= = =	1.44492E-01 9.99468E-01 6.89720E-02	Channel	5
Raw data ti Fotal smoothe	ime seri Mean Variand Energy ed energ	es st	atist	ics 2.578 1.446 1.446	80E-01 52E-01 51E-01	= = = =	1.44492E-01 9.99468E-01	Channel	5
Raw data ti Total smoothe daximum smoot first moment Second moment	ime seri Mean Variand Energy ed energ	les st	atist	ics 2.578 1.446 1.446	80E-01 52E-01 51E-01	= = = =	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02		5
Raw data ti Total smoothe Maximum smoot First moment Second moment	ime seri Mean Variand Energy ed energe thed val	les st	atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.446 1.446		= = = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02		
Raw data ti  Fotal smoothe fotal smoothe for the first moment second moment fino for MAX = 2.5  Raw data ti	ime seri Mean Varianc Energy de energ thed val	es st	atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.446 1.446  X =		= = = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec		
Raw data ti  Fotal smoothe fotal smoothe for the first moment second moment fino for MAX = 2.5  Raw data ti	ime seri Mean Varianc Energy de energ thed val	es st	atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.446 1.446  X =		= = = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec		
Raw data ti  Potal smoothe Maximum smoot Pirst moment Gecond moment fino  Max density =  MAX = 2.5	ime seri Mean Variand Energy d enerce ched val	es st	atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.446  X =	.43396 50000	= = = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec		
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Jecond moment Jecond moment Aax density = TMAX = 2.5  Raw data ti	ime seri Mean Variann Energy de enerched val	es st.	atist = = = 0 at -Y = atist	ics 2.578 1.446 1.446  X =  ics 6.943 8.205 8.205	00E-01 52E-01 51E-01 	= = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec		
Raw data ti  Fotal smoothe Maximum smoot First moment Max density = MAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot First moment	me seri Mean Variand Energy ed enerc ched val	es st	atist = = = 0 at -Y = =	ics 2.578 1.446 1.446  X = ics 6.943 8.205 8.205	.43396 50000 .43396 .43396 .43396 .43396	= = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 1.3043 sec 2.3043 sec 8.15979E-01 6.47513E+00		
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Jecond moment Jecond moment Aax density = TMAX = 2.5  Raw data ti	me seri Mean Varianc Energy ed energy ched val	es st	atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.446 1.446  X =	.43396 50000	= = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec		
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Second moment Aax density = TMAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Tmo	me seri Mean Varianc Energy ed energy ched val	es st.	atist =	ics 2.578 1.446 1.446	.43396 50000 .43396 .50000	Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec 2.3043 sec 6.47513E+00 3.08706E-01	Channel	
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Max density = MMAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Mino	me seri Mean Variand Energy de energ hed val		atist =	ics 2.578	.43396 50000	= = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 4.13065E-02 2.3043 sec 2.3043 sec 6.47513E+00 3.08706E-01 3.2651E-01 3.613	Channel	6
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Max density = CMAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot First moment Max density = Max data ti  Fotal smoothe Maximum smoot Fotal smoothe Maximum smoot Fotal smoothe Max density = Max densi	me seri Mean Variance Energy denerce Mean Variance Energy denerce Mean Variance Energy denerce Mean Variance Energy denerge hed val	ues st	atist = = = = = = = = = = = = = = = = = = =	ics X =	.43396 50000	= = = Hz.	1.44492E-01 9.9946BE-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec 2.3043 sec 6.47513E+00 1.32551E-01 3.613 2.3953 sec	Channel	6
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Max density = CMAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot First moment Max density = Max data ti  Fotal smoothe Maximum smoot Fotal smoothe Maximum smoot Fotal smoothe Max density = Max densi	me seri Mean Variance Energy denerce Mean Variance Energy denerce Mean Variance Energy denerce Mean Variance Energy denerge hed val	ues st	atist = = = = = = = = = = = = = = = = = = =	ics X =	.43396 50000	= = = Hz.	1.44492E-01 9.9946BE-01 6.89720E-02 4.13065E-02 1.520 2.3043 sec 2.3043 sec 6.47513E+00 1.32551E-01 3.613 2.3953 sec	Channel	6
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Max density = MMAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Max density = MAX = 7.5  Raw data ti	me seri Mean Varianc Energy de energi ched val	es st	atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.448 1.446	.43396 50000 .43396 50000 .43748 50000 .41748 50000	= = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 1.13065E-02 1.520 2.3043 sec 2.3043 sec 6.47513E+00 1.32551E-01 3.613 2.3953 sec	Channel	6
Raw data ti  Fotal smoothe Maximum smoot First moment Second moment Max density = CMAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot First moment Max density = MAX = 7.5  Raw data ti  Raw data ti	ime seri Mean Varianne Energy Energy 100000 Mean Varianne Mean Varianne Mean warianne Mean warianne		atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.446 1.446 X = ics 6.943 8.205 8.205 X = 1.543 6.116 6.11543 66.116	.43396 50000 .43396 50000 .99E-03 .99E-01 	= = = = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 1.520 2.3043 sec 2.3043 sec 8.15979E-01 6.47513E+00 3.08706E-01 3.613 2.3953 sec	Channel	6
Raw data ti  Fotal smoothe  Maximum smoot  First moment  Max density =  MAX = 2.5  Raw data ti  Fotal smoothe  Maximum smoot  Fiecond moment  Max density =  MAX = 7.5  Raw data ti  Fotal smoothe  Maximum smoot  Fiecond moment  Max density =  MAX = 7.5	ime seri Mean Varianne Energy Energy 100000 Varianne Mean Varianne Energy Mean Warianne Mean Warianne Energy Warianne Mean de de energe Mean de de energe Mean de de energe Mean de energe Mean de energe Mean de energe Mean de energe Mean de energe Mean de energe		atist = = = = = = = = = = = = = = = = = = =	ics 2.578 1.446 1.446		= = = Hz.	1.44492E-01 9.9946BE-01 6.89720E-02 1.520 2.3043 sec 2.3043 sec 8.15979E-01 6.47513E+00 3.08706E-01 3.613 2.3953 sec	Channel	6
Raw data ti  Fotal smoothe Maximum smoot First moment Max density = MAX = 2.5  Raw data ti  Fotal smoothe Maximum smoot Max density = MAX = 7.5  Raw data ti  Fotal smoothe Maximum smoothe Ma	ime seri Mean Varian with Mean Varian et al. 18 Varian et al		atist = = = = = = = = = = = = = = = = = = =	ics 1.446 1.446		= = = Hz.	1.44492E-01 9.99468E-01 6.89720E-02 1.520 2.3043 sec 2.3043 sec 6.47513E+00 1.32551E-01 3.613 2.3953 sec	Channel	6
Raw data ti  Total smoothe Maximum smoot Pirst moment Second moment Max density = MAX = 2.5  Raw data ti  Total smoothe Maximum smoot Max density = MAX = 7.5  Raw data ti  Total smoothe Maximum smoothe Maxi	ime seri Mean Variann ime Energy de energe 00000 me seri Mean Varian Energy me seri Mean Varian de energe me seri Mean Varian de energe me seri Mean		atist =	ics 1.446 1.446		= = = Hz.	1.44492E-01 9.9946BE-01 6.89720E-02 1.520 2.3043 sec 2.3043 sec 8.15979E-01 6.47513E+00 3.08706E-01 3.613 2.3953 sec	Channel Channel	6

	Channel	
Raw data time series statistics  Mean = 1.5893E-01  Variance = 1.0915E-01		
Maximum smoothed value	1.08576E-01 1.12943E+00	
Total smoothed energy = Maximum smoothed value = First moment = Second moment = mo	5.29863E-02 2.97180E+02	
	1.310	
Max density = 1.64250 at X = .46143 Hz YMAX = 2.00000 Delta-Y = .40000	. 2.1672 sec.	
	Channel	
Raw data time series statistics		
Mean = -2.7680E-02 Variance = 1.3580E-01 Energy = 1.3580E-01		
rocar amounted energy =	1.35698E-01	
Maximum smoothed value = First moment =	1.20915E+00 6.81604E-02	
Second moment = Hmo = =	4.05195E-02 1.473	
Max density = 1.64250 at X = .46143 Hz. YMAX = 2.00000 Delta-Y = .40000	. 2.1672 sec.	
Raw data time series statistics	Channel	
Mean = -4.044E-02 Variance = 1.3919E-01 Energy = 1.3919E-01		
Energy = 1.3919E-01		
Maximum smoothed value	1.39088E-01 1.24606E+00	
Second moment	6.79234E-02 3.90660E-02	
Hmo =	1.492	
Max density = 1.64250 at X = .46143 Hz. YMAX = 2.00000 Delta-Y = .40000	2.1672 sec.	
	Channel	
Raw data time series statistics		
Mean = -2.5518E-02 Variance = 1.4425E-01 Energy = 1.4424E-01		
	1.44147E~01 1.41104E+00	
Maximum smoothed value	1.41104E+00 7.07092E-02	
Second moment =	4.10354E-02 1.519	
Max density = 1.64250 at X = .46143 Hz. YMAX = 2.00000 Delta-Y = .40000		
b3420052 T=20 H=70 Jonswap		
Raw data time series statistics	Channel	
Raw data time series statistics	Channel	
Raw data time series statistics Mean = 1.5273E-01 Variance = 1.2198E-01 Energy = 1.2198E-01	Channel	
Raw data time series statistics Mean = 1.5273E-01 Variance = 1.2198E-01 Energy = 1.2198E-01	1.17841E-01 1.07107E+00	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30935E-02 2.03168E-02	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec.	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec.	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec.	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03166E-02 1.373 3.4133 sec.	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03166E-02 1.373 3.4133 sec.	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec.  Channel	
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.0316BE-02 1.373 3.4133 sec	:
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.0316BE-02 1.373 3.4133 sec	:
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.0316BE-02 1.373 3.4133 sec	:
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	:
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	:
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	:
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.0316BE-02 1.373 3.4133 sec.  Channel  1.74020E-01 1.86172E+00 6.48862E-02 3.08517E-02 1.669 3.4133 sec.  Channel	:
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	3
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	3
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	3
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.0316BE-02 1.373 3.4133 sec	3
Raw data time series statistics    Mean	1.17841E-01 1.07107E+00 4.30985E-02 2.0316BE-02 1.373 3.4133 sec	3
Raw data time series statistics	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec.  Channel  1.74020E-01 1.86172E+00 6.48862E-02 3.08517E-02 1.669 3.4133 sec.  Channel  1.48203E-01 1.34556E+00 5.73288E-02 2.94567E-02 1.540 3.4133 sec.  Channel	3
Raw data time series statistics	1.17841E-01 1.07107E+00 4.30985E-02 2.03168E-02 1.373 3.4133 sec	3

man data	Mean Mean	ries sta	tisti = -2	cs .4835E-01			
	Varia Enero	ince	= 1	.4835E-01 .3628E-01 .3628E-01			
Total smoot	hed ene	rgy			=	1.36187E-01	
First momen	t				=	1.17473E+00 6.99095E-02	
Hmo	nt				= =	1.36187E-01 1.17473E+00 6.99095E-02 4.47272E-02 1.476	
Max density YMAX = 2							
							Channel
Raw data	time se	ries sta	tisti	cs			
	Mean Varia	nce	= -2 = 6	.1020E-04 .6926E-01 .6924E-01			
Total smooth	Energ hed ene	y rgy	= 6	.6924E-01	=	6.66826F-01	
Maximum smoo	othed v	alue	• • • • •	• • • • • • • • •	=	6.66826E-01 6.30702E+00 2.70848E-01	
pecond momen					=	1.23484E-01	
Hmo						3.266	
Max density YMAX = 7.	= .50000	6.30702 Delta-	at: Y≖	X = .461 1.50000	143 Hz.	2.1672 s€	ec.
							Channel
Paw data t	rimo co						
Total smooth	Mean Varia:	nce	= 1 = 5	.1803E-02			
Total emocath	Energ	у	= 5	.3224E-01		F 000	
Maximum smoot	thed v	alue			=	5.32451E+00	
rist moment Second momen	t	 			·· =	2.18736E-01 1.00852E-01	
Нто			• • • • •		=	5.28785E-01 5.32451E+00 2.18736E-01 1.00852E-01 2.909	
Max density MAX = 7.	= 50000	5.32451 Del+a-	at 1	461	43 Hz.	2.1672 se	ec.
		Derea		1.30000			
	b342005	52 <b>T</b> =20	H=70	Jonswap ·			
Raw data t	ime ser	ies stat	istic	s			Channel
	ime ser	ies stat	istic	s			<b>Channel</b>
Raw data t	ime ser Mean . Varian	ies stat	istic -2.	5792E-01 4215E-01			Channel
Raw data t	ime ser Mean . Varian Energy ed ener	ies stat	istic -2. 1.	s 5792E-01 4215E-01 4214E-01	<del></del>	1.42005E-01 1.12780E+00	Channel
Raw data t Cotal smooth Taximum smooth Tirst moment Tecond momen	ime ser Mean . Varian Energy ed ener thed va	ries stat	:istic	5792E-01 4215E-01 4214E-01	,, = ,, = ,, =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02	Channel
Raw data t	ime ser Mean . Varian Energy ed ener thed va	ies stat	:istic	5792E-01 4215E-01 4214E-01	,, = ., = ., =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507	
Raw data t	ime ser Mean . Varian Energy ed ener thed va	ies stat	:istic	5792E-01 4215E-01 4214E-01	,, = ., = ., =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02	
Raw data t  otal smooth laximum smooth irst moment econd momen mo ax density: MAX = 3.	ime ser Mean . Varian Energy ed ener thed va	ies stat= ce= gy lue 2.73650 Delta-Y	at X	5792E-01 4215E-01 4214E-01 	= = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507	c.
Raw data t  otal smooth laximum smooth irst moment econd momen mo ax density: MAX = 3.	ime ser Mean . Varian Energy ed ener thed va	gy	istic = -2. = 1. = 1. = 1. = 1.	5792E-01 4215E-01 4214E-01 	= = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c.
Raw data t  Cotal smooth laximum smoo irst moment econd momen mo	ime ser Mean . Varian Energy ed ener thed va	gy	istic = -2. = 1. = 1. = 1. = 1.	5792E-01 4215E-01 4214E-01 	= = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c.
Raw data t	ime ser Mean . Varian Energy ed ener thed va  = 000000 ime ser Mean . Varian Energy ed ed ener	ies stat	at X =	5 5792E-01 4215E-01 4214E-01 4214E-01	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c.
Raw data t  otal smooth laximum smoot irst moment econd momen; ax density: AXX = 3.1  Raw data t:	ime ser Mean . Varian Energy ed ener thed va  = 000000 ime ser Mean . Varian Energy ed ener thed va	ies stat=======	at X =	\$ 5792E-01 4215E-01 4215E-01 4214E-01	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 set	c.
Raw data t  otal smooth laximum smoo irst moment econd momen mo  Ax density: MAX = 3.1  Raw data t:  otal smooth aximum smoot irst moment econd moment	ime ser Mean . Varian Energy ed ener thed va   e 000000  ime ser Mean . Varian Energy ed ener	ies stat. = ce . = gy = ce = gy = ce = ce = ce = gy	at X = 1	5792E-01 4215E-01 4214E-01 4214E-01 = .292 .60000	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 set	c.
Raw data t  otal smooth laximum smoot irst moment econd momen mo	ime ser Mean . Varian Energy ed ener thed va  t  = 00000  ime ser Mean . Varian Energy ed ener thed va	ies stat	at X = istic	5792E-01 4215E-01 4214E-01 4214E-01 = .292 .60000	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c.
Raw data t  otal smooth laximum smoot irst moment econd momen mo	ime ser Mean . Varian Energy ed ener thed va t  = 00000  ime ser Mean . Varian Energy ed ener thed va	ies stat	at X = istic	5792E-01 4215E-01 4214E-01 4214E-01 = .292 .60000	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 set	c. Channel
Raw data t  otal smooth laximum smooth record moment mo  Raw data t:  otal smooth aximum smoot rist moment econd moment mo  ax density:  ax density:	ime ser Mean . Varian Energy ed ener thed va	ies stat	istic = -2.  at X = -2.  at X = -2.	5792E-01 4215E-01 4215E-01 4214E-01 	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec 1.05530E+00 1.16949E+01 3.16725E-01 1.09806E-01 4.109	c. Channel
Raw data t  Otal smooth laximum smooth laximum smooth laximum smooth lax density:  MAX = 3.  Raw data t:  Otal smooth aximum smooth laximum smooth laximum smooth aximum s	ime ser Mean	ies statece = gylueed	at X =	5792E-01 4215E-01 4215E-01 4214E-01 	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c. Channel
Raw data t  Otal smooth laximum smooth laximum smooth laximum smooth lax density:  MAX = 3.  Raw data t:  Otal smooth aximum smooth laximum smooth laximum smooth aximum s	ime ser Mean	ies statece = gylueed	at X =	5792E-01 4215E-01 4215E-01 4214E-01 	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c. Channel
Raw data t  Otal smooth laximum smooth laximum smooth laximum smooth lax density:  MAX = 3.  Raw data t:  Otal smooth aximum smooth laximum smooth laximum smooth aximum s	ime ser Mean	ies statece = gylueed	at X =	5792E-01 4215E-01 4215E-01 4214E-01 	= = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c. Channel
Raw data t	ime ser mean    Solution   Solution   Solution	ies stat 2.73650 Delta-Y ies stat 2.73650 Delta-Y ies stat	at X =   istic  at X =   istic  7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	5792E-01 4215E-01 4215E-01 4214E-01 	= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec	c. Channel
Raw data t	ime ser mean    Solution   Solution   Solution	ies stat 2.73650 Delta-Y ies stat 2.73650 Delta-Y ies stat	at X =   istic  at X =   istic  7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	5792E-01 4215E-01 4215E-01 4214E-01 	= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec 1.05530E+00 1.16949E+01 3.16725E-01 4.109 3.4133 sec	c. Channel
Raw data t  Otal smooth laximum smooth laximum smooth laximum smooth lax density:  MAX = 3.  Raw data t:  Otal smooth aximum smooth laximum smooth laximum smooth aximum s	ime ser mean    Solution   Solution   Solution	ies stat 2.73650 Delta-Y ies stat 2.73650 Delta-Y ies stat	at X =   istic  at X =   istic  7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	5792E-01 4215E-01 4215E-01 4214E-01 	= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =	1.42005E-01 1.12780E+00 5.56765E-02 3.03905E-02 1.507 3.4133 sec 1.05530E+00 1.16949E+01 1.0949E+01 1.09406E-01 4.109 3.4133 sec	c. Channel

b3414063 T=14 H=60 Jonswap Ch	annel 1
Raw data time series statistics    Mean	
Ch	annel 2
Raw data time series statistics   Mean	
Max density = 1.40950 at X = .40467 Hz. 2.4712 sec. YMAX = 2.00000 Delta-Y = .40000	
Ch  Raw data time series statistics  Mean = -1.1724E-01  Variance = 1.2138E-01  Energy = 1.2137E-01  Total smoothed energy = 1.2137E-01  Maximum smoothed value = 1.04719E+00  First moment = 5.67808E-02  Second moment = 3.21695E-02  Hmm = 1.393	annei 3
Hmo = 1.393  Max density = 1.40950 at X = .40467 Hz. 2.4712 sec.  YMAX = 2.00000 Delta-Y = .40000	
Ch  Raw data time series statistics  Mean = -1.0292E-01  Variance = 1.1397E-01 Energy = 1.1397E-01  Total smoothed energy = 1.1397E-01  Maximum smoothed value = 7.58103E-01  First moment = 5.37363E-02  Second moment = 3.14083E-02  Hmo = 1.350	annel 4
Max density = $1.40950$ at X = $.41740$ Hz. 2.3953 sec. YMAX = $2.00000$ Delta-Y = $.40000$	
	annel :
Maximum smoothed value     = 7.32196E-01       First moment     = 3.81204E-02       Second moment     = 1.91084E-02       Hmo     = 1.200	

b3416064 T=16 H=60 Jonswap	
	Channel 1
Raw data time series statistics	
Mean = 7.8713E-02	
Variance = 9.1088E-02	
Mean = 7.8713E-02 Variance = 9.1088E-02 Energy = 9.1085E-02	
Energy = 9.1085E-02  Total smoothed energy =  Maximum smoothed value =  First moment =	9 006225-02
Maximum emeethed uplus	7 721065-01
First	7.321905-01
FIISt moment	3.81204E-02
Second moment	1.91084E-02
Second moment =	1.200
Max density = 1.61000 at X = .37903 Hz.	2.6383 sec.
YMAX = 2.00000 Delta-Y = .40000	
***************************************	Channel 2
Raw data time series statistics	
Mean = -8.7127E-02	
Variance = 1.4180E-01	
Variance = 1.4180E-01 Energy = 1.4180E-01	
Total smoothed energy = Maximum smoothed value = First moment = Second moment = Hmo	1 41659E-01
Maximum emosthed value	1 200305+00
First memort	6 10161P 02
first moment	0.10101E-02
Second moment	3.2828/E-U2
mmo =	1.506
Max density = $1.61000$ at X = $.36805$ Hz.	2.7171 sec.
Max density = 1.61000 at X = .36805 Hz. YMAX = 2.00000 Delta-Y = .40000	2.7171 sec.
YMAX = 2.00000 Delta-Y = .40000	
Max density = 1.61000 at X = .36805 Hz. YMAX = 2.00000 Delta-Y = .40000	
YMAX = 2.00000 Delta-Y = .40000	
YMAX = 2.00000 Delta-Y = .40000	
YMAX = 2.00000 Delta-Y = .40000	
YMAX = 2.00000 Delta-Y = .40000	
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	Channel 3  1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	Channel 3  1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics Mean = -9.8918E-02 Variance = 1.3287E-01	Channel 3  1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457
YMAX = 2.00000     Delta-Y = .40000       Raw data time series statistics     Mean = -9.8318E-02       Variance . = 1.3287E-01     Energy = 1.3287E-01       Total smoothed energy = Maximum smoothed value = First moment = Second moment	1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457 2.6383 sec.
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457 2.6383 sec.
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457 2.6383 sec.
YMAX = 2.00000     Delta-Y = .40000       Raw data time series statistics     Mean = -9.8318E-02       Variance . = 1.3287E-01     Energy = 1.3287E-01       Total smoothed energy = Maximum smoothed value = First moment = Second moment	1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457 2.6383 sec.
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457 2.6383 sec.
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457 2.6383 sec.
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E-00 5.79963E-02 3.07037E-02 1.457 2.6383 sec
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E-00 5.79963E-02 3.07037E-02 1.457 2.6383 sec
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E-00 5.79963E-02 3.07037E-02 1.457 2.6383 sec
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E-00 5.79963E-02 3.07037E-02 1.457 2.6383 sec
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	1.32729E-01 1.11979E+00 5.79963E-02 3.07037E-02 1.457 2.6383 sec
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	
YMAX = 2.00000 belta-Y = .40000  Raw data time series statistics	

b3414063 T=14 H=60 Jonswap	 Channel 5
Raw data time series statistics       Mean = -3.2237E-01         Variance = 1.1304E-01       Energy = 1.1384E-01         Total smoothed energy = Maximum smoothed value = First moment = Second moment = Hmo = Hmo = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =	7.56411E-01 5.42539E-02 3.28485E-02
Max density = 1.40950 at X = .40467 Hz YMAX = 2.00000 Delta-Y = .40000	
Raw data time series statistics  Mean = 4.0185E-02 Variance = 6.7676E-01 Energy = 6.7675E-01 Total smoothed energy = Maximum smoothed value = First moment = Second moment = Second moment = Max density = 5.93586 at X = .40467 Hz YMAX = 7.50000 Delta-Y = 1.50000	2.59907E-01 1.12050E-01 3.281
Raw data time series statistics  Mean = 2.5802E-02  Variance = 4.9291E-01  Energy = 4.9290E-01  Total smoothed energy	3.79410E+00 1.90723E-01 8.42197E-02 2.795

b3416064 T=16 H=60 Jonswap	 Channel 5
Raw data time series statistics   Mean = -3.1182E-01   Variance = 1.3427E-01   Energy = 1.3426E-01	1.18948E+00 5.95581E-02 3.39688E-02 1.465
Max density = 1.61000 at X = .36255 Hz. YMAX = 2.00000 Delta-Y = .40000	2.7582 sec.
Raw data time series statistics  Mean = 3.6745E-02  Variance = 8.0394E-01  Energy = 8.0392E-01  Total smoothed energy = Maximum smoothed value = First moment = Second moment = Hmo = 7.57297 at X = .36908 Hz.  YMAX = 10.00000 Delta-Y = 2.00000	7.99149E-01 7.57297E+00 2.86416E-01 1.13158E-01 3.576
Raw data time series statistics    Mean	6.02655E-01 5.40855E+00 2.19881E-01 8.95741E-02 3.105

b3412065 T=12 H=60 Jonswap		
	Channel	1
Raw data time series statistics         Mean = 6.1847E-02         Variance = 8.1261E-02         Energy = 8.1258E-02         Total smoothed energy = Maximum smoothed value = First moment = Second moment = second moment = mmo =	6.29903E-01 3.88268E-02 2.15099E-02 1.128	
Max density = $1.20750$ at X = $.46875$ Hz. YMAX = $1.50000$ Delta-Y = $.30000$	2.1333 sec.	
	Channel	2
Raw data time series statistics   Mean = -8.5990E-02   Variance = 1.2022E-01   Energy = 1.2022E-01   Total smoothed energy = Maximum smoothed value = First moment = Second moment = Hmo = Hmo =	1.20119E-01 8.52053E-01 6.17594E-02 3.70765E-02	
Max density = 1.20750 at X = .45594 Hz. YMAX = 1.50000 Delta-Y = .30000	2.1933 sec.	
	Channel	3
Raw data time series statistics	1.17416E-01 9.47581E-01 5.79501E-02 3.31964E-02 1.371 2.1933 sec.	
	Channel	4
Raw data time series statistics  Mean = -8.4586E-02 Varlance = 1.1928E-01 Energy = 1.1927E-01  Total smoothed energy = Maximum smoothed value = First moment = Second moment = Hmo = Max density = 1.20750 at X = .45594 Hz.  YMAX = 1.50000 Delta-Y = .30000	3.44822E-02 1.381	

b3412065 T=12 H=60 Jonswap		
	Channel	5
Raw data time series statistics       Mean = -3.1477E-01         Variance = 1.0746E-01       Energy = 1.0746E-01         Total smoothed energy = Maximum smoothed value = First moment = Second moment = Hmo =	8.53929E-01 5.58159E-02 3.61035E-02	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.1933 sec.	
	Channal	۵
	Channel	0
	2.34313E-01 1.09209E-01 2.996	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.1933 sec.	
	Channel	8
Raw data time series statistics         Mean	4.27547E+00 1.90301E-01	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.1933 sec.	