Exercice 1 (Oral Centrale 22): Soit $n \in \mathbb{N}$.

- 1) Montrer que l'équation $e^{-x} \left(\sum_{k=0}^{n} \frac{x^k}{k!} \right) = \frac{1}{2}$ possède une unique solution $a_n \in \mathbb{R}_+$
- 2) Montrer que la suite (a_n) est croissante.
- 3) Montrer que $a_n \xrightarrow[n \to +\infty]{} + \infty$
- 4) Tracer sur une même figure $a_n, n, n+1$ pour $0 \le n \le 50$. Que peut-on conjecturer?
- 5) Tracer $3(a_n n)$ pour $0 \le n \le 50$. Que peut-on conjecturer?
- 6) Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$ on pose $f_n(x) = e^{-x} \left(\sum_{k=0}^n \frac{x^k}{k!} \right)$. Montrer que $f_n(x) = 1 \int_0^x \frac{t^n}{n!} e^{-t} dt$. En déduire que $f_n(x) = \int_0^{+\infty} \frac{t^n}{n!} e^{-t} dt$

Exercice 2 (Centrale 22): soit $n \ge 2$. On note U_n l'ensemble des éléments de $M_n(\mathbb{R})$ dont les coefficients sont dans $\{0,1\}$ et V_n l'ensemble des éléments de $M_n(\mathbb{R})$ dont les coefficients sont dans [0,1].

- 1) Montrer que V_n est convexe et borné. On admet qu'il est fermé.
- 2) Soit $M \in V_n$ et λ une valeur propre complexe de M. Montrer que $|\lambda| \le n$.
- 3) Montrer que $M \mapsto \det(M)$ possède un maximum sur U_n , noté u_n et un maximum sur V_n , noté v_n .
- 4) Ecrire une fonction U(n) qui génère 1000 matrices de U_n et renvoie le maximum des déterminants de ces matrices. Ecrire de même une fonction V(n).
 - Observer les valeurs renvoyées pour *n* compris entre 0 et 10 et émettre une conjecture.
- 5) Soit M∈ V_n. Soit x∈ [0,1]. On note M_{i₀,j₀}(x) la matrice dont les coefficients sont les mêmes que ceux de M, sauf celui situé à la i₀ ème ligne et j₀ ème colonne qui a été remplacé par x.
 Montrer que det(M_{i₀,j₀}(x)) ≤ max (det(M_{i₀,j₀}(0)), det(M_{i₀,j₀}(1))).
- 6) Montrer le résultat conjecturé en 4).
- 7) Soit $p \in [0,1]$. Soient $X_1,...,X_n$ des variables aléatoires indépendantes suivant toutes une loi de Bernoulli de paramètre p. On pose $M = (X_i \mid X_j)_{1 \le i,j \le n}$. Ecrire une fonction M(n,p) qui permet de renvoyer une matrice M
- 8) Calculer la probabilité de l'événement $(tr(M) \le 1)$.

Exercice 3 (Oral Centrale 22) : Pour $a,b \in \mathbb{C}$, on pose $D_1(a,b) = a$ et, pour tout $n \ge 2$:

$$D_n(a,b) = \begin{vmatrix} a & 2b & 0 & (0) \\ 1 & a & b & \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & 1 & a \end{vmatrix} \text{ et } A_n(b) = \begin{pmatrix} 0 & -2b & 0 & (0) \\ -1 & 0 & -b & \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & b & \\ (0) & 0 & 1 & a \end{vmatrix}.$$

- 1) Calculer $D_n(a,b)$ pour $n \le 3$.
- 2) Donner une relation de récurrence linéaire reliant $D_{n+2}(a,b)$, $D_{n+1}(a,b)$ et $D_n(a,b)$.
- 3) Coder en Python une fonction D1(n,a,b) renvoyant $D_n(a,b)$.
- 4) Soit $n \in \mathbb{N}^*$ et $b \in \mathbb{R}$. Montrer que $a \mapsto D_n(a,b)$ est polynomiale à coefficients réels, et donner son degré.
- 5) Pour $b \in [1, n]$ et $n \in [3, 5]$, donner une représentation graphique de $a \mapsto D_n(a, b)$ sur $-2\sqrt{b}$, $2\sqrt{b}$. Conjecturer le nombre et la localisation des zéros de $a \mapsto D_n(a,b)$.
- 6) Supposant vraie la conjecture de la question précédente, que peut-on dire de la réduction de la matrice $A_{\mu}(b)$?
- 7) Soit $(T_n)_{n\in\mathbb{N}}$, la suite de polynômes définie par $T_0=1$, $T_1=X$ et $\forall n\in\mathbb{N}, T_{n+2}=2XT_{n+1}-T_n$ Pour $\theta \in \mathbb{R}$, donner une expression simple des termes de la suite $(T_n(\cos \theta))_{n\in\mathbb{N}}$
- 8) Calculer les racines du polynôme T_n pour tout $n \in \mathbb{N}$.
- 9) Déterminer alors les zéros de $a \mapsto D_n(a,b)$ en fonction du nombre complexe b.

Exercice 4 (Oral Centrale 22): Soient $n \ge 2$ et $A = (a_{i,j})_{1 \le i,j \le n} \in M_n(\mathbb{R})$ telle que $|a_{i,j}| = 1$ si |i-j| = 1, les autres coefficients étant nuls.

$$\text{Pour } j \in \llbracket 1, n \rrbracket \text{, on pose } X_j = \left(\sin \left(\frac{j\pi}{n+1} \right) - \sin \left(\frac{2j\pi}{n+1} \right) ... \sin \left(\frac{nj\pi}{n+1} \right) \right)^T.$$

On note $P \in M_n(\mathbb{R})$ la matrice dont les colonnes sont $X_1,...,X_n$ et, pour $(p,q) \in [1,n]^2$, on

$$pose S_{p,q} = \sum_{k=1}^{n} \sin\left(\frac{kp\pi}{n+1}\right) \sin\left(\frac{kq\pi}{n+1}\right).$$

- 1) Que vaut $\sum_{k=1}^{n} \cos\left(\frac{k\pi}{n+1}\right)$?
- 2) Montrer que A est diagonalisable. Que dire de ses sous-espaces propres ?
- 3) Écrire une fonction A(n) (resp. P(n)) qui renvoie la matrice A (resp. P).
- 4) Écrire une fonction B(n) qui renvoie la matrice $P^{-1}AP$. Calculer B(n) pour différentes valeurs de n. Émettre une conjecture sur le spectre de A et sur la famille $(X_1,...,X_n)$. On admet la validité de ces conjectures.
- 5) En déduire la valeur de $S_{p,q}$ pour $p \neq q$.
- 6) Calculer $\sum_{k=1}^{n} \cos\left(\frac{kp\pi}{n+1}\right)$ pour tout $p \in \mathbb{Z}$. On discutera selon la valeur de p.
- 7) Montrer les conjectures du 5) et du 4)