Revised Scaffolded Questions for Algebra 2 Assessment (Questions 17-20)

This document provides revised scaffolded questions to help students prepare for questions 17 through 20 of the enVision Algebra 2 Progress Monitoring Assessment Form C. Each question includes four scaffolded steps to build understanding from basic concepts to the level required by the assessment, with clear guidance for concept-naive students.

Question 17: Factoring Quadratics and Finding Zeros

The original question asks to factor $x^2 - 33x + 32$ to find the zeros of $f(x) = x^2 - 33x + 32$. The following questions build understanding of factoring quadratics.

- 17.1 **Basic Factoring**: Factor by finding two numbers that multiply to the constant term and add to the middle coefficient:
 - a) $x^2 + 7x + 10$: Numbers multiply to 10, add to 7: 2, 5. Factored: (x + 2)(x + 5)
 - b) $x^2 9x + 20$: Numbers multiply to 20, add to -9: -4, -5. Factored: (x-4)(x-5)
 - c) Why does factoring find zeros?
- 17.2 Finding Zeros: Find zeros by setting factors to zero:
 - a) f(x) = (x-3)(x+6): Zeros: x = 3, x = -6
 - b) f(x) = (x-2)(x-8): Zeros: $x = ___, x = ____$
 - c) Verify one zero: For x = 2, compute $f(2) = (2-2)(2-8) = ____.$
- 17.3 **Larger Coefficients**: Factor $x^2 14x + 45$:
 - a) Factors of 45: 1×45 , 3×15 , 5×9 . Add to -14: -5, -9. Factored: (x-5)(x-9)
 - b) Zeros: x = 5, x = 9
 - c) Practice: Factor $x^2 16x + 60$: Numbers: _____, ____. Factored: _____. Zeros: _____, ____.
- 17.4 Applying to the Original Problem: Factor $x^2 33x + 32$:
 - a) Factors of 32: 1×32 , 2×16 , 4×8 . Add to -33: ______, _____.

 - c) Zeros: $x = ___, x = ___$

Question 18: Arithmetic Sequences

The original question involves determining if the sequence (Monday: 240, Tuesday: 290, Friday: 440) is arithmetic and predicting Saturday's attendance. The following questions build understanding of arithmetic sequences.

- 18.1 **Identifying Arithmetic Sequences**: A sequence is arithmetic if differences between consecutive terms are constant:
 - a) $4,7,10,13,\ldots$: Differences: $7-4=3,\ 10-7=3$. Arithmetic? Yes. Common difference: d=3.
 - b) $8, 6, 4, 2, \ldots$: Differences: $6 8 = \underline{\hspace{1cm}}, 4 6 = \underline{\hspace{1cm}}$. Arithmetic? _____. Common difference: _____.
 - c) Why constant differences?
- 18.2 Finding Common Differences: Given festival attendance:
 - a) Monday = 200, Tuesday = 250: d = 250 200 =_____
 - b) Monday = 240, Tuesday = 290: $d = ____$
 - c) If Wednesday = 340, check: 340 290 =_____. Isitconsistent?____.
- 18.3 **Recursive Formulas**: For an arithmetic sequence, $a_n = a_{n-1} + d$:
 - a) Sequence: $5, 9, 13, 17, \ldots$: $a_1 = 5, d = 4$. Formula: $a_1 = 5, a_n = a_{n-1} + 4$
 - b) Sequence: 240, 290, 340, ...: $a_1 = \underline{\hspace{1cm}}, d = \underline{\hspace{1cm}}.$ Formula: _____.
- 18.4 Applying to the Original Problem: Monday = 240, Tuesday = 290, Friday = 440:
 - a) Common difference: d = 290 240 =____.
 - b) Recursive formula: $a_1 = \underline{\hspace{1cm}}, a_n = \underline{\hspace{1cm}}$.
 - c) Predict terms: Wednesday = _____, Thursday = ____, Friday = ____. Check Friday: Matches 440? ____.
 - d) Saturday: _____ people.

Question 19: Solving Equations Graphically

The original question asks to solve $(x-2)^2 - 1 = (x-2)^3 + 1$ graphically. The following questions build understanding of graphical solutions.

- 19.1 Simple Graphical Solutions: Solve x + 2 = 5:
 - a) Graph: y = x + 2, y = 5.
 - b) Intersection: (3,5). Solution: x=3.

- c) Practice: Solve 3x = 9: Intersection: _____. Solution: _____.
- 19.2 Quadratic Equations: Solve $(x-1)^2 = 9$:
 - a) Graph: $y = (x 1)^2$, y = 9.
 - b) Intersections: (-2, 9), (4, 9). Solutions: x = -2, x = 4.
 - c) Practice: Solve $x^2 = 4$: Solutions: _____, ____.
- 19.3 Complex Functions: Solve $(x-1)^2 = x-1$:
 - a) Graph: $y = (x 1)^2$, y = x 1.
 - b) Move to one side: $(x-1)^2 (x-1) = 0$. Factor: (x-1)(x-2) = 0. Zeros: x = 1, x = 2.
 - c) Practice: Solve $(x-1)^2 = 2x 2$: Zeros: ______, _____.
- 19.4 **Applying to the Original Problem**: Solve $(x-2)^2 1 = (x-2)^3 + 1$:
 - a) Set: $(x-2)^2 1 (x-2)^3 1 = 0$.
 - b) Simplify: $(x-2)^2 (x-2)^3 2 = 0$.
 - c) Let u = x 2: $u^2 u^3 2 = 0$. Graph $y = u^2 - u^3 - 2$. Find zeros: Test u = 1: 1 - 1 - 2 = -2. Try numerically or graphically to find $u \approx -1.52$.
 - d) Solve: $x 2 \approx -1.52$, so $x \approx 0.48$.

Question 20: Completing the Square

The original question asks for the constant to add to both sides of $3x^2 + 4x = 5$ to complete the square. The following questions build understanding of completing the square.

- 20.1 **Perfect Square Trinomials**: Complete to form a perfect square:
 - a) $x^2 + 10x + \underline{\hspace{1cm}} = (x+5)^2$: Half of 10: 5, squared: 25.
 - b) $x^2 6x + \underline{\hspace{1cm}} = (x \underline{\hspace{1cm}})^2$: Half of -6: -3, squared: 9.
 - c) $x^2 + 12x + \underline{\qquad} = (x + \underline{\qquad})^2$: ______, ______
- 20.2 Completing the Square (a = 1): For $x^2 + 8x = 3$:
 - a) Half of 8: 4, squared: 16.
 - b) Add: $x^2 + 8x + 16 = 3 + 16$.
 - c) Factor: $(x+4)^2 = 19$.
 - d) Practice: For $x^2 + 10x = 6$: Constant: Result:
- 20.3 Completing the Square $(a \neq 1)$: For $2x^2 + 12x = 8$:

- a) Factor: $2(x^2 + 6x) = 8$.
- b) Complete inside: Half of 6: 3, squared: 9. $2(x^2 + 6x + 9) = 8 + 2 \cdot 9 = 26$.
- c) Simplify: $2(x+3)^2 = 26$.
- d) Constant added to right: $2 \cdot 9 = 18$.
- e) Practice: For $4x^2 + 8x = 12$: Constant: _____. Result: _____.

20.4 Applying to the Original Problem: For $3x^2 + 4x = 5$:

- a) Factor: $3(x^2 + \frac{4}{3}x) = 5$.
- b) Complete: Half of $\frac{4}{3}$: $\frac{2}{3}$, squared: $\frac{4}{9}$. $3\left(x^2 + \frac{4}{3}x + \frac{4}{9}\right) = 5 + 3 \cdot \frac{4}{9}$.
- c) Simplify: $3\left(x+\frac{2}{3}\right)^2 = 5 + \frac{12}{9} = 5 + \frac{4}{3} = \frac{19}{3}$.
- d) Constant added: $3 \cdot \frac{4}{9} = \frac{4}{3}$. Matches choice (B).