M525/P622 Quantum Information

Ninnat Dangniam

Homework Assignment 3

65 points

DUE: 6 August (Tuesday)

1. Pure-state density operator (10 points).

For both (a) and (b), assume that $\rho^{\dagger} = \rho$.

- (a) Show that the condition $Tr(\rho) = Tr(\rho^2) = 1$ is **not** sufficient to make ρ a density operator.
- **(b)** Show that the condition $\text{Tr}(\rho^2) = \text{Tr}(\rho^3) = 1$ suffices to make ρ a pure-state density operator.

2. Qubit ensemble decomposition (15 points).

Consider the qubit state

$$\rho = \frac{3}{4} |0\rangle\langle 0| + \frac{1}{4} |1\rangle\langle 1|. \tag{1}$$

- (a) Consider the set of all states with $\langle Z \rangle = 1/2$. Give ensemble decompositions for ρ comprises of (i) two states from the set; (ii) three states from the set; (ii) all states in the set.
- **(b)** Give an ensemble decomposition for ρ that includes all pure states, i.e., is an integral over the surface of the Bloch sphere

3. Schmidt decomposition for three qubits? (10 points).

Consider three qubits, *A*, *B*, and *C*.

(a) Show that an arbitrary pure state $|\psi\rangle$ of the three qubits can be transformed to the following Schmidt-like form using local unitary operators on A, B, and C:

$$\frac{\cos\theta|0\rangle\otimes\underbrace{(\cos\chi|0\rangle\otimes|0\rangle+\sin\chi|1\rangle\otimes|1\rangle)}{|\phi_{0}\rangle}+\\ \sin\theta|1\rangle\otimes\underbrace{\left[\cos\xi\left(\sin\chi|0\rangle\otimes|0\rangle-\cos\chi|1\rangle\otimes|1\rangle\right)+e^{i\delta}\sin\xi\left(\cos\eta|0\rangle\otimes|1\rangle+\sin\eta|1\rangle\otimes|0\rangle\right)}_{|\phi_{1}\rangle}.$$

The states $|\phi_0\rangle$ and $|\phi_1\rangle$ are orthonormal states of BC. Five parameters, θ , χ , ξ , η , and δ are necessary to specify an arbitrary three-qubit pure state; determine the range of these five parameters. [**Hint**: Schmidt decompose $|\psi\rangle$ with respect to the division A vs. BC. Then Schmidt decompose one of the resulting Schmidt states of BC with respect to the division B vs. C, writing the other BC Schmidt state in the resulting Schmidt bases of B and C.]

The presence of four terms in $|\phi_1\rangle$, instead of just the first two terms or the last two terms, prevents this from being a genuine three-qubit Schmidt decomposition. This illustrates why there is generally no three-particle Schmidt decomposition.

(b) Find all the marginal density operators of the three qubits, that is, ρ_{AB} , ρ_{BC} , ρ_{AC} , ρ_{A} , ρ_{B} , and ρ_{C} .

4. Quantum nonlocality without probabilities (10 points).

Consider the following state of three qubits:

$$|\psi
angle = rac{|+++
angle - |---
angle}{\sqrt{2}}.$$

This is, up to a sign flip, the *Greenberger-Horne-Zeilinger* (GHZ) state.

- (a) Show that $|\psi\rangle$ is a +1 eigenstate of $X \otimes Y \otimes Y$, $Y \otimes X \otimes Y$, and $Y \otimes Y \otimes X$.
- **(b)** Use the results of part **(a)** to argue that each qubit has well-defined values of X and Y. For qubit j, denote these values by x_j and y_j . We say that these values are *elements of reality*. What does local realism, i.e., the assumption of realistic values that are undisturbed by measurements on other spins, predict for the product of the outcomes of measurements of X on each qubit?
- **(c)** What does quantum mechanics predict for the product of the outcomes of *X* measurements on each qubit?

5. Maximal Bell-CHSH violation. (20 points).

Consider two qubits, X and Y. Let $A = \sigma_X \cdot \mathbf{a}$, $B = \sigma_Y \cdot \mathbf{b}$, $C = \sigma_X \cdot \mathbf{c}$, and $D = \sigma_Y \cdot \mathbf{d}$, where \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} are unit vectors in three dimensions. We omit the subscripts X and Y on the Pauli operators in the following because ordering in tensor products indicates which system the Pauli operators apply to. Now let

$$\mathcal{B} = A \otimes B + C \otimes B + C \otimes D - A \otimes D$$

= $\sigma \cdot \mathbf{a} \otimes \sigma \cdot (\mathbf{b} - \mathbf{d}) + \sigma \cdot \mathbf{c} \otimes \sigma \cdot (\mathbf{b} + \mathbf{d})$
= $|\mathbf{b} - \mathbf{d}| \sigma \cdot \mathbf{a} \otimes \sigma \cdot \mathbf{f} + |\mathbf{b} + \mathbf{d}| \sigma \cdot \mathbf{c} \otimes \sigma \cdot \mathbf{g}$

be the *Bell operator*, where **f** and **g** are unit vectors which lie along the directions of $\mathbf{b} - \mathbf{d}$ and $\mathbf{b} + \mathbf{d}$. The quantity we called *S* in our discussion of the CHSH inequality is the expectation value of the Bell operator, i.e., $S = \langle \mathcal{B} \rangle$.

- (a) Show the *Tsirelson's bound*: $|S| = |\langle \mathcal{B} \rangle| \le 2\sqrt{2}$, which gives the maximal violation of the Bell-CHSH inequality.
- **(b)** Find the conditions for equality in Tsirelson's bound.