We have replaced the nation of cot gary, a simplicial set X 1.t

 $\times_n \cong Hum(\Lambda_k^n, \times)$, ocken by the mation of ∞ -category: a simplicial set \times s.t $\times_n \longrightarrow Hum(\Lambda_k^n, \times)$, ocken. Sug.

We can determine existence and uniqueness "through a collection of existena problems.

pt = any set with one element

(for instance pt = {x})

Pt Upt = set with exactly too element.

Muon exactly that \times = pt.

A map of set $J: X \rightarrow Y$ is a bijection iff $\forall y \in Y$ $f^{-1}(y) \cong pt$.

$$(=) \begin{array}{c} & & & \\$$

In topology, if X is a topological space.

To (x) = set of path-connected components

10 {0 { ∪ { √ (0 , b) } } ×

To (x) has at most one element (=)

5 = 1 = [[0, 1]

 $\pi_{o}(I) = pt$

In a space, there are several ways to compare mays to compare a point.

Afm X ni who was the X come of the year of X come and bone and bone

$$S' = ()$$

$$S' = ()$$

$$S' = ()$$

$$S' = ()$$

$$B^{2} \cup B^{2} = S^{2} \longrightarrow X$$

$$S^{3} \cup S^{3} = S^{2} \longrightarrow X$$

for instance I' = pt in this sum.

Any constructible space X is equivalent to the point in this sense...

Factorization systems

C is a fixed catigory.

Definition

Let i: A - B and p: X - Y be two morphisms in C.

We say that i has the left lifting property (LLP) with respect to p

(P " right " (RLP) , " " ')

if , for any commutative square

there exists a lift (i.e a map l s.t. pl=band li=a)

If Fis a class of maps in C a morphism has LLP (RLP)
with respect to Fig it has LLP (RLP) with respect to any element

Definition:

An object $X ext{ of } C$ is a retract of an object $Y ext{ of } C$ if there exists maps $X ext{ is } Y ext{ P} ext{ is } X$ with $ps = 1_X$.

A morphism f: X -, Y in C is a retract of a morphism
g: U -> V in C if it is so in the Category of
arrows of C

 $(=) J \subset \text{min.diny.} \qquad \begin{cases} X \xrightarrow{S} & U \xrightarrow{P} & X \\ J & J \\ Y \xrightarrow{Q} & V \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad \begin{cases} J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad J & q \\ J & q \end{cases} \qquad$

A class of maps Fin Cir stable unous retracts if the any setract of g is in F.

Example: the class of isomorphisms is stable under retracts.

the class of all marphisms " " " ".

Definition: A class of morphisms F in C is stable ander purhants if

A class of mosphisms is stock under sums if

for any small family of chants of F

(d: X: -) 4: lift in F

A class of mosphisms is stock under countable composition if

for any diagram in C of the form

Xo - X, + X - - - X, + X

ne W

with each dn ef, the induced map

1 x - - - X is in F.

Definition

A class of morphisms is saturated if it is stable under retrocts, pudants, small man, countable compositions.

Proposition.

Let C be a category. F, F' two classes of morphisms in C.

a) F C r(F') \(\infty \) F' \(C \) \((F') \)

b) F C F' \(\Rightarrow \) \((F') \) \(C \) \(F') \)

c) F C F' \(\Rightarrow \) \((F') \) \(C \) \(F') \)

a) \((F) = \forall \left(r(\forall (F)) \right) \)

a) \((F) = \forall \left(r(\forall (F)) \right) \)

If further more C has small limits and colimits:

f) \((F) \) is saturated

g) \(r(F) \) is co-saturated (= saturated or a class of maps in Cost)

```
Proof: a) - e): extremely easy exercise
                                                                                                                                                                                                                                                                                                      f) i: A -, B' \( \( \( \) \( \) \) i' A -, B retroot of i'
                                                                                                                                                                              A \xrightarrow{S} A' \xrightarrow{P} A \xrightarrow{W} X
\downarrow i' \qquad i \qquad j \qquad l \qquad \downarrow \uparrow \qquad \downarrow \downarrow \qquad \downarrow \downarrow \qquad \downarrow \uparrow \qquad \downarrow \downarrow \qquad \downarrow \uparrow \qquad \downarrow \downarrow \qquad \downarrow
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 i' < e(f)
                                                                                                                                                                                                                                                                                                             (P,6) determines a unique map 3 -> × such that
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ti= u and lb= l.

ti= u and pl=v | pxi=vi
pxb=vb
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (easy).
                                                                                                                                                                            for sum.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 X = is X = is in F
                                                                            Ar 8" (6 (E)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           u_n: \times_n \longrightarrow Z = composition of us and the canonical map <math>\times_n \to \times_\infty.
```

We construct $\times_n \stackrel{e_n}{\longrightarrow} Y$ by induction on $n \cdot l_0 = u_0$. $X_{\circ} \longrightarrow Y$ The Collection of all Pr determine a Cocone guti 7 Guti (h: Xn - y) NE N Can. I hence a unique map Lo: Xx -> Y map- X & Communition. Proposition (Retract Luma) Assume that a morphism f: X - Y can be factored into f=pi with i: X -T and p: T -> Y $X \xrightarrow{f} Y$ q I i . It amingrem i b /p Then, il i 1 } fire retract of 12 (1 +) (of i , rup.) $\begin{array}{ccc}
\times & \xrightarrow{1_{\times}} & \times \\
\downarrow & & \downarrow \\
\top & \xrightarrow{p} & \gamma
\end{array}$ Proof: Assume i I of ki = 1 x . **f** . J. J.P. J. 8 14 14 = 14

Example: C = Set i: \$ -> pt r (fif) = clus of sujective maps. Exercise: ((-((i))) = closs of injective maps. These identifications use the axion of choice: $\psi \longrightarrow \chi$ inject. [] injective A weak factorization system in a category C is a pair (A, B) which consists of two clases of maps A and B in C with following proporties: a) A and B are stable under retracts

6) A < P(B) (=> B < r(A)) c) any morphism f. X -> Y in C has a factorisation of the form f=pi with i. X -> 2 in A and a zrek Remark: it follows from the retact bound that A = l(B) and B = r(A). $A = \ell(r(\ell(A)))$ and $B = r(\ell(r(g)))$.

Example: C = Set $A = \{injective maps\}$ $B = \{injective maps\}.$

$$\begin{array}{c} \times \longmapsto (\times, f(x)) \\ \times \longleftrightarrow \times \times Y \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ Y \end{array}$$

XZX

$$X = \emptyset \longrightarrow Y$$

$$\frac{1}{4} \sqrt{1_{4}}$$

Proposition

Let C be a boally small category with small colimits. Let I be a small set of Morphilus in C. We assume that, for each element i: A -> B in I, the object A has the property that

How (A, -): C -> Set

commutes with filtred colimits. Then $\left(l(r(I)), r(I)\right)$ is a weak factorisation system on C. Furthermore, l(r(I)) is the smallest saturated class of major containing I.

Recall: a filtred catigory is a small catigory of such that:

1) there exists at bast an object in of there

2) for any pair of objects x and y in of there
exists an object 2 in of as mell as morphisms

x -1 2 and y -1 2

3) Just any maps u, v: x -> y in J there wists a map w: y -> z in J such that wu = wv.

Example: 1)) has a terminal object, then it is filtered.

e) E partially ordered set. Eir filtered as a catigory iff it is fillered as a partially ordered sets:

E \$ \$ and for any x,y et with

 $x \le 2$ and $y \le 2$.

filtered colimitare colimit indexed by filtered categories.

Example: X set] = { non empty finite substo of X }

F: J -> Sut lim F =>

lim F = X Jang way to day that

X is the union of its Mm. empty

finite subject.

The importance of filtered colimits is due to the Jack that, in the category of sets, filtered whits commute with finite limits.

J filtered small

B finite catigory 406 (B) < 00 and # Arr (B) < 00

f: BxJ - Set.

Very good exercise!

Wint: filtered colomation sets one explicit:

) filtered
$$\Phi: J \rightarrow SL \rightarrow Innetor$$

lim $\Phi = \left(\coprod \Phi(J) \right) / \left(J \in A(J) \right) / \left(J$

fodonsation (4) tem. $[0,1]^{n-1} \times |0| \longrightarrow \times$ $[n] = \frac{\pi}{2}$ $[0,1]^{n} \longrightarrow \times$

5 = - (} in | n ENSO }

Reference for literature (optional): Model structures : Examples:

Weak humstry equivalence in top: $J: X \to Y$ S.t. $| \pi_o(X) \stackrel{=}{\to} \pi_o(Y) \text{ and } for any <math>X \in X$ $| \pi_n(X,X) = \pi_o(C.(S^n,X)) \stackrel{=}{\to} \pi_n(Y,dX) , \forall n > 0.$

Thm. 1) i: A -y B - L Serre fibrations

=) i weak. howotopy again.

2) i) p: X -y y Ferre fib.

then p weak. htpy. equin (=) 5^-1 -y 8^- - p

+n>0

as this part of proving that top form a quillen model structure:

Whiteheads theorem, and many fundamental results of a g. top. can be deduced from such properties.

Another example: C = Ohain Complexes of R. Module. B = unjective Morphours of Chain Conglexes $A = l(B) \sim (A, B)$ Wech. Lect. Lystem.

quasi-isomorphisms C - D st Hr (C) = Nr (D)

$$S^{n}(R) = (--0 \rightarrow 0 \rightarrow R \rightarrow 0 \rightarrow 0 - 20)$$

$$S^{n}(R) \rightarrow C (=) R \rightarrow C_{n}$$

$$S^{n}(R) = (--0 \rightarrow 0 \rightarrow R \rightarrow R \rightarrow C_{n})$$

$$S^{n}(R) = (--0 \rightarrow 0 \rightarrow R \rightarrow R \rightarrow C_{n})$$

$$S^{n}(R) = (--0 \rightarrow 0 \rightarrow R \rightarrow R \rightarrow C_{n})$$

$$S^{n}(R) = (--0 \rightarrow 0 \rightarrow R \rightarrow R \rightarrow C_{n})$$

$$S^{n}(R) = (--0 \rightarrow 0 \rightarrow R \rightarrow R \rightarrow C_{n})$$

$$S^{n}(R) = (--0 \rightarrow 0 \rightarrow R \rightarrow R \rightarrow C_{n})$$

$$B^{n}(R) = (-0 \rightarrow 0 \rightarrow R \stackrel{\wedge}{\rightarrow} R \rightarrow 0 \rightarrow 0)$$

$$B^{n}(R) \rightarrow C (=) \text{ element } J \geq_{n}(C)$$