

PATENT COOPERATION TREATY

PCT

From the INTERNATIONAL BUREAU

NOTIFICATION OF THE RECORDING
OF A CHANGE(PCT Rule 92bis.1 and
Administrative Instructions, Section 422)

Date of mailing (day/month/year) 12 mars 2002 (12.03.02)
Applicant's or agent's file reference A031-29PCT
International application No. PCT/JP01/04731

To:

HIROTA, Masanori
Room 502, Akasakaaoi Bldg. No.11,
8-11, Akasaka 2-chome
Minato-ku, Tokyo 107-0052
JAPON

IMPORTANT NOTIFICATION

International filing date (day/month/year)
05 juin 2001 (05.06.01)

1. The following indications appeared on record concerning:

the applicant the inventor the agent the common representative

Name and Address 1) HIROTA, Masanori 2)OZAWA, Seiji Room 502, Akasakaaoi Bldg. No.11 8-11, Akasaka 2-chome Minato-ku, Tokyo 107-0052 Japan	State of Nationality	State of Residence
	Telephone No.	
	Facsimile No.	
	Teleprinter No.	

2. The International Bureau hereby notifies the applicant that the following change has been recorded concerning:

the person the name the address the nationality the residence

Name and Address 1) HIROTA, Masanori 2)OZAWA, Seiji 3F, Wakabayashi Bldg. 8-5, Akasaka 2-chome Minato-ku, Tokyo 107-0052 Japan	State of Nationality	State of Residence
	Telephone No.	
	Facsimile No.	
	Teleprinter No.	

3. Further observations, if necessary:

4. A copy of this notification has been sent to:

<input checked="" type="checkbox"/> the receiving Office	<input checked="" type="checkbox"/> the designated Offices concerned
<input type="checkbox"/> the International Searching Authority	<input type="checkbox"/> the elected Offices concerned
<input type="checkbox"/> the International Preliminary Examining Authority	<input type="checkbox"/> other:

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No.: (41-22) 740.14.35	Authorized officer Yukari NAKAMURA Telephone No.: (41-22) 338.83.38
---	---

国際調査報告

(法8条、法施行規則第40、41条)
(PCT18条、PCT規則43、44)

出願人又は代理人 の書類記号 A031-29PCT	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220)及び下記5を参照すること。	
国際出願番号 PCT/JP01/04731	国際出願日 (日.月.年) 05.06.01	優先日 (日.月.年) 19.07.00
出願人(氏名又は名称) 科学技術振興事業団		

国際調査機関が作成したこの国際調査報告を法施行規則第41条(PCT18条)の規定に従い出願人に送付する。
この写しは国際事務局にも送付される。

この国際調査報告は、全部で 6 ページである。

この調査報告に引用された先行技術文献の写しも添付されている。

1. 国際調査報告の基礎

a. 言語は、下記に示す場合を除くほか、この国際出願がされたものに基づき国際調査を行った。
 この国際調査機関に提出された国際出願の翻訳文に基づき国際調査を行った。

b. この国際出願は、ヌクレオチド又はアミノ酸配列を含んでおり、次の配列表に基づき国際調査を行った。
 この国際出願に含まれる書面による配列表
 この国際出願と共に提出されたフレキシブルディスクによる配列表
 出願後に、この国際調査機関に提出された書面による配列表
 出願後に、この国際調査機関に提出されたフレキシブルディスクによる配列表
 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった。
 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。

2. 請求の範囲の一部の調査ができない(第I欄参照)。

3. 発明の單一性が欠如している(第II欄参照)。

4. 発明の名称は 出願人が提出したものを承認する。

次に示すように国際調査機関が作成した。

5. 要約は 出願人が提出したものを承認する。

第III欄に示されているように、法施行規則第47条(PCT規則38.2(b))の規定により国際調査機関が作成した。出願人は、この国際調査報告の発送の日から1カ月以内にこの国際調査機関に意見を提出することができる。

6. 要約書とともに公表される図は、
第 1 図とする。 出願人が示したとおりである. なし

出願人は図を示さなかった。

本図は発明の特徴を一層よく表している。

第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT 17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 _____ は、この国際調査機関が調査をすることを要しない対象に係るものである。
つまり、
2. 請求の範囲 27, 29 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
別紙（特別ページ）参照。
3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかつた。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかつたので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかつたので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあつた。
- 追加調査手数料の納付と共に出願人から異議申立てがなかつた。

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C12N 15/12, 5/10, C07K 14/705, 16/28, C12Q 1/68, C12P 21/02, A61K 38/00, 45/00, A61P 31/04, 35/00, 37/08, G01N 33/15, 33/50, 33/566, 33/577//C12P 21/08, (C12N 15/12, C12R 1:91) (C12N 5/10, C12R 1:91)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12N 15/00-15/90, C07K 14/00-14/825

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

MEDLINE(STN), WPI(DIALOG), BIOSIS(DIALOG)
GenBank/EMBL/DDBJ/GeneSeq, SwissProt/PIR/GeneSeq

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, X	HEMMI H. et al. A Toll-like receptor recognizes bacterial DNA. Nature Dec. 2000, Vol. 408, p. 740-745	1-26, 28, 30
P, X	DU X. et al. Three novel mammalian toll-like receptors: gene structure, expression and evolution. Eur. Cytoline Netw. Sept. 2000, Vol. 11, No. 3, p. 362-371	1-26, 28, 30

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

10. 08. 01

国際調査報告の発送日

21.08.01

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

本間 夏子

4 N 2937

電話番号 03-3581-1101 内線 3488

C(続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, A	HACKER H. et al. Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF) 6. J. Exp. Med. Aug. 2000, Vol. 192, No. 4, p. 595-600	1-26, 28, 30
A	WO 98/50547 A2 (SCHERING CORP.) 12. 11月. 1998 (12. 11. 98) & AU 9871754 A & EP 980429 A2	1-26, 28, 30
A	KOPP E. B. et al. The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol. 1999, Vol. 11, No. 1, p. 13-18	1-26, 28, 30
A	TAKEUCHI O. et al. TLR6: A novel member of an expanding Toll-like receptor family. Gene 1999, Vol. 231, p. 59-65	1-26, 28, 30
A	CHAUDHARY P. M. et al. Cloning and characterization of Two Toll/Interleukin-1 Receptor-Like Genes TIL3 and TIL4: Evidence for a Multi-Gene Receptor Family in Humans. Blood 1998, Vol. 91, No. 11, p. 4020-4027	1-26, 28, 30
A	ROCK F. L. et al. A family of human receptors structurally related to <i>Drosophila</i> Toll. Proc. Natl. Acad. Sci. USA 1998, Vol. 95, p. 588-593	1-26, 28, 30
A	FEARON D. T. et al. Seeking wisdom in innate immunity. Nature 1998, Vol. 388, p. 323-324, 394-397	1-26, 28, 30
A	WO 99/51259 A2 (UNIV. IOWA RES. FOUND.) 14. 10月. 1999 (14. 10. 99) & AU 9934678 A & EP 1067956 A2 & US 6218371 B1	1-26, 28, 30
A	Krieg A. M. The role of CpG motifs in innate immunity. Curr. Opin. Immunol. Feb. 2000, Vol. 12, No. 1, p. 35-43	1-26, 28, 30

C (続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	TAKEUCHI O. et al. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol. Jan. 2000, Vol. 12, No. 1, p. 113-117	1-26, 28, 30

第一欄2.について

請求の範囲27に記載のアゴニスト又はアンタゴニスト、請求の範囲29に記載の医薬組成物は、請求の範囲23～26に記載のスクリーニング方法によって特定されており、当該スクリーニング方法によって得られるあらゆるアゴニスト又はアンタゴニスト及び医薬組成物を包含するものである。

しかしながら、明細書には、当該スクリーニング方法で得られるアゴニスト又はアンタゴニスト及び医薬組成物としての具体的なものが一切記載されていないから、請求の範囲27、29は明細書による裏付けを欠いており、開示も欠いている。また、出願時の技術常識を勘案しても具体的にどのような化合物が包含され、どのような化合物が包含されないのかが全く不明であって、前記請求の範囲の記載は著しく不明確である。

したがって、前記請求の範囲に記載された発明について有意義な調査をすることができない。

PATENT COOPERATION TREATY

PCT

NOTICE INFORMING THE APPLICANT OF THE
COMMUNICATION OF THE INTERNATIONAL
APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

HIROTA, Masanori
Room 502, Akasakaaoi Bldg. No.11,
8-11, Akasaka 2-chome
Minato-ku, Tokyo 107-0052
JAPON

Date of mailing (day/month/year)
24 January 2002 (24.01.02)

Applicant's or agent's file reference
A031-29PCT

IMPORTANT NOTICE

International application No. PCT/JP01/04731	International filing date (day/month/year) 05 June 2001 (05.06.01)	Priority date (day/month/year) 19 July 2000 (19.07.00)
---	---	---

Applicant

JAPAN SCIENCE AND TECHNOLOGY CORPORATION et al

1. Notice is hereby given that the International Bureau has **communicated**, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this notice:
US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:
CA,EP

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this notice is a copy of the international application as published by the International Bureau on 24 January 2002 (24.01.02) under No. WO 02/06482

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a **demand for international preliminary examination** must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination (at present, all PCT Contracting States are bound by Chapter II).

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the **national phase**, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and the PCT Applicant's Guide, Volume II.

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No. (41-22) 740.14.35

Authorized officer

J. Zahra

Telephone No. (41-22) 338.91.11

PATENT COOPERATION TREATY

PCT

**NOTIFICATION CONCERNING
SUBMISSION OR TRANSMITTAL
OF PRIORITY DOCUMENT**

(PCT Administrative Instructions, Section 411)

From the INTERNATIONAL BUREAU

To:

HIROTA, Masanori
Room 502, Akasakaaoi Bldg. No.11,
8-11, Akasaka 2-chome
Minato-ku, Tokyo 107-0052
JAPON

Date of mailing (day/month/year)
04 September 2001 (04.09.01)

Applicant's or agent's file reference
A031-29PCT

International application No.
PCT/JP01/04731

International publication date (day/month/year)
Not yet published

IMPORTANT NOTIFICATION

International filing date (day/month/year)
05 June 2001 (05.06.01)

Priority date (day/month/year)
19 July 2000 (19.07.00)

Applicant
JAPAN SCIENCE AND TECHNOLOGY CORPORATION et al

1. The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, **the attention of the applicant is directed** to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, **the attention of the applicant is directed** to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

<u>Priority date</u>	<u>Priority application No.</u>	<u>Country or regional Office or PCT receiving Office</u>	<u>Date of receipt of priority document</u>
19 July 2000 (19.07.00)	2000-219652	JP	20 July 2001 (20.07.01)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer S. Mandallaz
Facsimile No. (41-22) 740.14.35	Telephone No. (41-22) 338.83.38

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2002年1月24日 (24.01.2002)

PCT

(10)国際公開番号
WO 02/06482 A1

- (51) 国際特許分類⁷: C12N 15/12, 5/10, C07K 14/705, 16/28, C12Q 1/68, C12P 21/02, A61K 38/00, 45/00, A61P 31/04, 35/00, 37/08, G01N 33/15, 33/50, 33/566, 33/577 // C12P 21/08, (C12N 15/12, C12R 1:91) (C12N 5/10, C12R 1:91)
- (21) 国際出願番号: PCT/JP01/04731
- (22) 国際出願日: 2001年6月5日 (05.06.2001)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2000-219652 2000年7月19日 (19.07.2000) JP
- (71) 出願人(米国を除く全ての指定国について): 科学技術振興事業団 (JAPAN SCIENCE AND TECHNOLOGY CORPORATION) [JP/JP]; 〒332-0012 埼玉県川口市本町四丁目1番8号 Saitama (JP).
- (72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 審良静男 (AKIRA, Shizuo) [JP/JP]; 〒569-0036 大阪府高槻市辻子一丁目7番16号 Osaka (JP). 辺見弘明 (HEMMI, Hiroaki) [JP/JP]; 〒567-0048 大阪府茨木市北春日丘四丁目11番47号 112号室 Osaka (JP).
- (74) 代理人: 廣田雅紀 (HIROTA, Masanori); 〒107-0052 東京都港区赤坂二丁目8番11号 第11赤坂葵ビル502 Tokyo (JP).
- (81) 指定国(国内): CA, US.
- (84) 指定国(広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).
- 添付公開書類:
— 國際調査報告書
- 2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: RECEPTOR PROTEIN SPECIFICALLY RECOGNIZING BACTERIAL DNA

(54) 発明の名称: 細菌DNAを特異的に認識する受容体タンパク質

(57) Abstract: A receptor protein specifically recognizing a bacterial DNA having an unmethylated CpG sequence; a gene DNA encoding the same; and model animals useful in studying immune responses of immunocytes to bacterial infectious diseases. A DNA encoding a receptor protein specifically recognizing a bacterial DNA having an unmethylated CpG sequence is screened by the BLAST search method. Next, a number of EST clones highly analogous to various TLRs are screened. By using these clones as probes, a full-length cDNA is isolated from a mouse macrophage cDNA library. After analysing the base sequence of the cDNA and confirming that it is TLR9 having conserved domains such as LRR and TIR domains, a knockout mouse is constructed. Thus it is confirmed that TLR9 is a receptor protein of an oligonucleotide containing the unmethylated CpG sequence of a bacterial DNA.

[続葉有]

WO 02/06482 A1

(57) 要約:

非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質や、それをコードする遺伝子DNAや、細菌性伝染病に対する宿主免疫細胞の応答性を調べる上で有用な実験モデル動物を提供するものである。非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNAを、BLASTサーチによりスクリーニングし、各種TLRと高い相似性を有する多くのESTクローンをスクリーニングし、これらをプローブにして、マウス・マクロファージcDNAライブラリーから完全長cDNAを単離し、cDNAの塩基配列を解析してLRR及びTIR領域などの保存領域が存在するTLR9であることを確認した後、ノックアウトマウスを作製し、TLR9が細菌DNAの非メチル化C p G配列を含むオリゴヌクレオチドの受容体タンパク質であることを確認した。

明細書

細菌DNAを特異的に認識する受容体タンパク質

5 技術分野

本発明は、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質、該受容体タンパク質の遺伝子及びそれらの利用に関する。

10 背景技術

トール（T o 1 1）遺伝子は、ショウジョウバエの胚発生中の背腹軸の決定（Cell 52, 269-279, 1988、Annu. Rev. Cell Dev. Biol. 12, 393-416, 1996）、また成体における抗真菌性免疫応答に必要であることが知られている（Cell 86, 973-983, 1996）。かかるT o 1 1は、細胞外領域にロイシンリッチリピート（L R R）を有するI型膜貫通受容体であり、この細胞質内領域は、哺乳類インターロイキン-1受容体（I L - 1 R）の細胞質内領域と相同意識度が高いことが明らかとなっている（Nature 351, 355-356, 1991、Annu. Rev. Cell Dev. Biol. 12, 393-416, 1996、J. Leukoc. Biol. 63, 650-657, 1998）。

20 近年、T o 1 1様受容体（T L R）と呼ばれるT o 1 1の哺乳類のホモログが同定され、T L R 2やT L R 4など現在までに6つのファミリーが報告されている（Nature 388, 394-397, 1997、Proc. Natl. Acad. Sci. USA 95, 588-593, 1998、Blood 91, 4020-4027, 1998、Gene 231, 59-65, 1999）。このT L Rファミリーは、上記I L - 1 Rと同様にアダプタータンパク質であるM y D 8 8を介し、I L - 1 R結合キナーゼ（I R A K）をリクルートし、T R A F 6を活性化し、下流のN F - κ Bを活性

化することが知られている (J. Exp. Med. 187, 2097-2101, 1998、Mol. Cell 2, 253-258, 1998、Immunity 11, 115-122, 1999)。また、哺乳類におけるT L R ファミリーの役割は、細菌の共通構造を認識するパターン認識受容体 (P R R : pattern recognition receptor) として、先天的な免疫認識に関わっているとも考えられている (Cell 91, 295-298, 1997)。

上記P R R により認識される病原体会合分子パターン (P A M P : pathogen-associated molecular pattern) の一つは、グラム陰性菌の外膜の主成分であるリポ多糖 (L P S) であって (Cell 91, 295-298, 1997)、かかるL P S が宿主細胞を刺激して宿主細胞にT N F α 、I L - 1 及びI L - 6 等の各種炎症性サイトカインを産生させること (Adv. Immunol. 28, 293-450, 1979、Annu. Rev. Immunol. 13, 437-457, 1995) や、L P S 結合タンパク質 (L B P : LPS-binding protein) により捕獲されたL P S が細胞表面上のC D 1 4 に引き渡されることが知られている (Science 249, 1431-1433, 1990、Annu. Rev. Immunol. 13, 437-457, 1995)。本発明者らは、T L R 4 のノックアウトマウスを作製し、T L R 4 ノックアウトマウスが上記グラム陰性菌の外膜の主成分であるL P S に不応答性であること (J. Immunol. 162, 3749-3752, 1999) や、T L R 2 ノックアウトマウスを作製し、T L R 2 ノックアウトマウスのマクロファージがグラム陽性菌細胞壁やその構成成分であるペプチドグリカンに対する反応性が低下すること (Immunity, 11, 443-451, 1999) を報告している。

他方、細菌D N A (バクテリア由来D N A) や非メチル化C p G配列を含むオリゴヌクレオチドが、マウス及びヒトの免疫細胞を刺激すること (Trends Microbiol. 4, 73-76, 1996、Trends Microbiol. 6, 496-500, 1998) や、I L - 1 2 及びI F N γ の放出に支配されるTヘルパー1細胞 (T h 1) 様炎症性応答を刺激すること (EMBO J. 18, 6973-6982, 1999,

J. Immunol. 161, 3042-3049, 1998, Proc. Natl. Acad. Sci. USA 96, 9305-9310, 1999)から、C p G配列を含むオリゴヌクレオチドは、癌、アレルギー及び伝染病のワクチンを含むワクチン戦略のアジュバントとしての使用可能性が提唱されている(Adv. Immunol. 73, 329-368, 1999, 5 Curr. Opin. Immunol. 12, 35-43, 2000, Immunity 11, 123-129, 1999)。このように臨床実用において効果が期待されるにも関わらず、非メチル化C p G配列を含む細菌D N Aが免疫細胞を活性化する分子メカニズムはよくわかつていない。

上記のように、メチル化されていないC p Gモチーフを含有するバクテリア由来D N Aは免疫細胞を非常に活性化し、T h 1の応答を誘導するが、その分子レベルでの活動はあまり理解されていない。本発明の課題は、細菌D N Aの非メチル化C p G配列を含むオリゴヌクレオチドの分子レベルでの作用を明らかにすることができる、非メチル化C p G配列を有する細菌D N Aを特異的に認識するT L Rファミリーのメンバー受容体タンパク質T L R 9や、それをコードするD N Aや、細菌性伝染病に対する宿主免疫細胞の応答性を調べる上で有用な実験モデル動物を提供することにある。

細菌の共通構造を認識するパターン認識受容体として、先天的な免疫認識に関わっている哺乳類におけるT L Rファミリーは、現在までに6つのメンバー(T L R 1 - 6)が公表されており(Nature 388, 394-397, 20 1997, Proc. Natl. Acad. Sci. USA, 95, 588-593, 1998, Gene 231, 59-65, 1999), T L R 7及びT L R 8の新たな2つのメンバーがGenBankに登録されている(登録番号A F 2 4 0 4 6 7及びA F 2 4 6 9 7 1)。また、T L R 9についても完全長c D N Aが見い出されGenBankに登録されている(登録番号A F 2 4 5 7 0 4)が、その機能については知られていないかった。

本発明者らは、非メチル化C p G配列を有する細菌DNAを特異的に認識するTLRファミリーのメンバー受容体タンパク質をコードするDNAを、BLASTサーチによりスクリーニングし、既に同定されている各種TLRと高い相似性を有する多くのシークエンス・タグ(EST)5クローンをスクリーニングし、これらの遺伝子フラグメントをプローブにして、マウス・マクロファージcDNAライブラリーから完全な長さを有するcDNAを単離し、これを用いてヒトcDNAも単離した。次に、これらcDNAの塩基配列を解析し、このTLRファミリーにLRR及びTIR領域などの保存領域が存在するTLR9であることを確認した。10そこで、このTLR9ノックアウトマウスを作製し、TLR9が細菌DNAの非メチル化C p G配列を含むオリゴヌクレオチドの受容体タンパク質であることを明らかにし、本発明を完成するに至った。

発明の開示

すなわち本発明は、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA(請求項1)や、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質が、以下の(a)又は(b)のタンパク質であることを特徴とする請求項1記載のDNA(a)配列番号2に示されるアミノ酸配列からなるタンパク質(b)配列番号2に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質(請求項2)や、配列番号1に示される塩基配列又はその相補的配列並びにこれらの配列の一部または全部を含むことを特徴とする請求項1記載のDNA(請求項3)や、請求項3記載の遺伝子を構成するDNAとストリンジエントな条件下でハイブリダイズすることを特徴2025

とする請求項 1 記載のDNA（請求項4）や、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質が、以下の(a)又は(b)のタンパク質であることを特徴とする請求項1記載のDNA
5 (a)配列番号4に示されるアミノ酸配列からなるタンパク質(b)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質（請求項5）や、配列番号3に示される塩基配列又はその相補的配列並びにこれらの配列の一部または全部を含むことを特徴とする請求項1記載のDNA
10 （請求項6）や、請求項6記載の遺伝子を構成するDNAとストリージェントな条件下でハイブリダイズすることを特徴とする請求項1記載のDNA（請求項7）に関する。

また本発明は、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質（請求項8）や、配列番号2に示されるアミノ酸配列からなることを特徴とする請求項8記載のタンパク質（請求項9）や、配列番号2に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなることを特徴とする請求項8記載のタンパク質（請求項10）や、配列番号4に示されるアミノ酸配列からなることを特徴とする請求項8記載のタンパク質（請求項11）や、配列番号4に示されるアミノ酸配列において、
20 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなることを特徴とする請求項8記載のタンパク質（請求項12）に関する。

また本発明は、請求項8～12のいずれか記載のタンパク質と、マーカータンパク質及び／又はペプチドタグとを結合させた融合タンパク質（請求項13）や、請求項8～12のいずれか記載のタンパク質と特異

的に合する抗体（請求項14）や、抗体がモノクローナル抗体であることを特徴とする請求項14記載の抗体（請求項15）や、請求項8～12のいずれか記載のタンパク質を発現することができる発現系を含んでなる宿主細胞（請求項16）に関する。

5 また本発明は、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子が過剰発現することを特徴とする非ヒト動物（請求項17）や、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損したことを特徴とする非ヒト動物（請求項18）や、
10 非メチル化CpG配列を有する細菌DNAに対して不反応性であることを特徴とする請求項18記載の非ヒト動物（請求項19）や、齧歯目動物が、マウスであることを特徴とする請求項17～19のいずれか記載の非ヒト動物（請求項20）に関する。

また本発明は、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した細胞に、請求項1～7のいずれか記載のDNAを導入することを特徴とする非メチル化CpG配列を有する細菌DNAに対して反応性を有するタンパク質を発現する細胞の調製方法（請求項21）や、請求項21記載の非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞の調製方法により得られることを特徴とする非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞（請求項22）に関する。

また本発明は、被検物質の存在下、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現している細胞をインビトロで培養し、TLR9活性を測定・評価することを特徴とする非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タン

パク質のアゴニスト又はアンタゴニストのスクリーニング方法（請求項 23）や、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物に被検物質を投与し、該非ヒト動物から得られるマクロファージ又は脾臓細胞の T L R 9 活性を測定・評価することを特徴とする非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法（請求項 24）や、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質をコードする遺伝子が過剰発現した非ヒト動物に被検物質を投与し、該非ヒト動物から得られるマクロファージ又は脾臓細胞の T L R 9 活性を測定・評価することを特徴とする非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法（請求項 25）や、非ヒト動物が、マウスであることを特徴とする請求項 24 又は 25 記載の非メチル化 C p G 配列を有する細菌 D N A に対して反応性を有するタンパク質のアゴニスト又はアンタゴニストのスクリーニング方法（請求項 26）に関する。

また本発明は、請求項 23～26 のいずれか記載の非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法により得られる非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニスト（請求項 27）や、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質の全部又はその一部を有効成分として含有する医薬組成物（請求項 28）や、請求項 27 記載のアゴニスト又はアンタゴニストを有効成分として含有する医薬組成物（請求項 29）や、検体中の非メチル化 C p G 配列を有す

る細菌DNAを特異的に認識する受容体タンパク質をコードするDNAと、請求項3記載のDNAとの塩基配列を比較することができる、請求項3記載のDNAを含むことを特徴とする非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA配列の欠失、置換及び／又は付加に関連する疾病的診断キット（請求項30）に関する。

図面の簡単な説明

第1図は、本発明のTLR9ノックアウトマウスと野生型マウスの遺伝子地図を示す図である。

第2図は、本発明のTLR9ノックアウトマウスのサザンプロット分析の結果を示す図である。

第3図は、本発明のTLR9ノックアウトマウスの脾臓細胞におけるノーザンプロット分析の結果を示す図である。

第4図は、本発明のTLR9ノックアウトマウスと野生型マウスのアミノ酸配列の比較結果を示す図である。

第5図は、本発明のTLR9ノックアウトマウス及び野生型マウスにおけるCpG ODN、PGN又はLPS誘導によるTNF α 、IL-6又はIL-12の産生量の結果を示す図である。

第6図は、本発明のTLR9ノックアウトマウス及び野生型マウスにおけるCpG ODN又はLPS誘導による細胞増殖応答の結果を示す図である。

第7図は、本発明のTLR9ノックアウトマウス及び野生型マウスにおけるCpG ODN又はLPS誘導によるIL-12の産生量の結果を示す図である。

第8図は、本発明のTLR9ノックアウトマウス及び野生型マウスに

におけるC p G ODN又はLPS誘導によるCD40、CD80、CD86及びMHCクラスIIの発現量の結果を示す図である。

第9図は、本発明のTLR9ノックアウトマウス及び野生型マウスにおけるC p G ODN又はLPS誘導によるNF- κ Bの活性化の結果を示す図である。
5

第10図は、本発明のTLR9ノックアウトマウス及び野生型マウスにおけるC p G ODN又はLPS誘導によるJNKの活性化の結果を示す図である。

第11図は、本発明のTLR9ノックアウトマウス及び野生型マウスにおけるC p G ODN又はLPS誘導によるIRAKの活性化の結果を示す図である。
10
15

発明を実施するための最良の形態

本発明における非メチル化C p G配列を有する細菌DNAとしては、
15 T細胞、B細胞、抗原提示細胞等の免疫細胞を活性化し、免疫応答を誘導することができる、メチル化されていないC p Gモチーフを有するオリゴデオキシヌクレオチド(ODN)等のバクテリアに由来するDNAであればどのようなものでもよく、エセリシア・コリ、クレブシェラ・ニューモニエ、シュードモナス・アエルギノサ、サルモネラ・チフィム
20 リウム、セラチア・マルセッセンス、フレクスナー赤痢菌、ビブリオ・コレレエ、サルモネラ・ミネソタ、ポルフィロモナス・ジンジバリス、スタフィロコッカス・アウレウス、コリネバクテリウム・ジフテリア、ノカルジア・コエリアカ、ストレプトコッカス・ニューモニアなどのバクテリア由来のDNAを具体的に挙げることができる。

かかる非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質としては、非メチル化C p G配列を有する細菌DNA

を特異的に認識することができるタンパク質であれば特に制限されるものではなく、例えば、配列表の配列番号2で示されるヒト由来のTLR9や、配列番号2で示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ上記非メチル化CpG配列を有する細菌DNAを特異的に認識することができるタンパク質や、これらの組換えタンパク質を具体的に挙げることができる。かかる非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質は、そのDNA配列情報等に基づき公知の方法で調製することができる。

また、本発明の非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNAとしては、配列表の配列番号2で示されるヒト由来のTLR9をコードするDNA、例えば配列番号1で示されるものや、配列番号2で示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ上記非メチル化CpG配列を有する細菌DNAを特異的に認識することができるタンパク質をコードするDNAや、これらDNAとストリンジェントな条件下でハイブリダイズし、かつ上記非メチル化CpG配列を有する細菌DNAを特異的に認識することができるタンパク質をコードするDNAも含まれ、これらはそのDNA配列情報等に基づき、例えばマウス由来のTLR9においてはマウスRAW264.7cDNAライブラリーや129/SvJマウス遺伝子ライブラリーなどから公知の方法により調製することができる。

また、配列番号1に示される塩基配列又はその相補的配列並びにこれらの配列の一部又は全部をプローブとして、マウス由来のDNAライブラリーに対してストリンジェントな条件下でハイブリダイゼーションを行ない、該プローブにハイブリダイズするDNAを単離することにより、

受容体タンパク質 T L R 9 と同効な目的とする免疫誘導非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質をコードする D N A を得ることもできる。かかる D N A を取得するためのハイブリダイゼーションの条件としては、例えば、42℃でのハイブリダイゼーション、及び 1×S S C、0.1% の S D S を含む緩衝液による 42℃での洗浄処理を挙げることができ、65℃でのハイブリダイゼーション、及び 0.1×S S C、0.1% の S D S を含む緩衝液による 65℃での洗浄処理をより好ましく挙げることができる。なお、ハイブリダイゼーションのストリンジエンシーに影響を与える要素としては、上記温度条件以外に種々の要素があり、当業者であれば、種々の要素を適宜組み合わせて、上記例示したハイブリダイゼーションのストリンジエンシーと同等のストリンジエンシーを実現することが可能である。

本発明の融合タンパク質とは、マウス、ヒト等の非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質に、マーカータンパク質及び／又はペプチドタグを結合させたものをいい、マーカータンパク質としては、従来知られているマーカータンパク質であればどのようなものでもよく、例えば、アルカリリフォスファターゼ、抗体の F c 領域、H R P、G F P などを具体的に挙げることができ、また本発明におけるペプチドタグとしては、M y c タグ、H i s タグ、F L A G タグ、G S T タグなどの従来知られているペプチドタグを具体的に例示することができる。かかる融合タンパク質は、常法により作製することができ、N i - N T A と H i s タグの親和性を利用した非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質の精製や、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質の検出や、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質に対する抗体の定量や、その他当該分

野の研究用試薬としても有用である。

本発明の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質に特異的に結合する抗体としては、モノクローナル抗体、ポリクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体等の免疫特異的な抗体を具体的に挙げることができ、これらは上記非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を抗原として用いて常法により作製することができるが、その中でもモノクローナル抗体がその特異性の点でより好ましい。かかるモノクローナル抗体等の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質に特異的に結合する抗体は、例えば、TLR9の変異又は欠失に起因する疾病の診断やTLR9の制御分子機構を明らかにする上で有用である。

非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質に対する抗体は、慣用のプロトコールを用いて、動物（好ましくはヒト以外）に該非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質若しくはエピトープを含む断片、又は該タンパク質を膜表面に発現した細胞を投与することにより產生され、例えばモノクローナル抗体の調製には、連続細胞系の培養物により产生される抗体をもたらす、ハイブリドーマ法（Nature 256, 495-497, 1975）、トリオーマ法、ヒトB細胞ハイブリドーマ法（Immunology Today 4, 72, 1983）及びEBV-ハイブリドーマ法（MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77-96, Alan R.Liss, Inc., 1985）など任意の方法を用いることができる。以下に非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質として、マウス由来のTLR9を例に挙げてマウス由来のTLR9に対して特異的に結合するモノクローナル抗体、すなわち抗mTLR9モノクローナル抗体の作製

方法を説明する。

上記抗m T L R 9モノクローナル抗体は、抗m T L R 9モノクローナル抗体産生ハイブリドーマをインビボ又はインビトロで常法により培養することにより生産することができる。例えば、インビボ系においては、
5 齧歯動物、好ましくはマウス又はラットの腹腔内で培養することにより、またインビトロ系においては、動物細胞培養用培地で培養することにより得ることができる。インビトロ系でハイブリドーマを培養するための培地としては、ストレプトマイシンやペニシリン等の抗生物質を含むR
P M I 1 6 4 0又はM E M等の細胞培養培地を例示することができる。

10 抗m T L R 9モノクローナル抗体産生ハイブリドーマは、例えば、マ
ウス等から得られた受容体タンパク質T L R 9を用いてB A L B / cマ
ウスを免役し、免疫されたマウスの脾臓細胞とマウスN S - 1細胞（A
T C C T I B - 1 8）とを、常法により細胞融合させ、免疫蛍光染色
15 パターンによりスクリーニングすることにより、抗m T L R 9モノクロ
ーナル抗体産生ハイブリドーマを作出することができる。また、かかる
モノクローナル抗体の分離・精製方法としては、タンパク質の精製に一
般的に用いられる方法であればどのような方法でもよく、アフィニティ
ークロマトグラフィー等の液体クロマトグラフィーを具体的に例示する
ことができる。

20 また、本発明の上記非メチル化C p G配列を有する細菌D N Aを特異
的に認識する受容体タンパク質に対する一本鎖抗体をつくるためには、
一本鎖抗体の調製法（米国特許第4,946,778号）を適用することができる。
また、ヒト化抗体を発現させるために、トランスジェニックマウス
又は他の哺乳動物等を利用したり、上記抗体を用いて、その非メチル化
25 C p G配列を有する細菌D N Aを特異的に認識する受容体タンパク質を
発現するクローンを単離・同定したり、アフィニティーコロマトグラフ

イーでそのポリペプチドを精製することもできる。非メチル化C p G配列を有する細菌D N Aを特異的に認識する受容体タンパク質に対する抗体は、非メチル化C p G配列を有する細菌D N Aを特異的に認識する受容体タンパク質の分子機構を明らかにする上で有用である。

5 また上記抗m T L R 9モノクローナル抗体等の抗体に、例えば、F I
T C（フルオレセインイソシアネート）又はテトラメチルローダミンイ
ソシアネート等の蛍光物質や、¹²⁵I、³²P、³⁵S又は³H等のラジオ
アイソトープや、アルカリホスファターゼ、ペルオキシダーゼ、 β -ガ
ラクトシダーゼ又はフィコエリトリン等の酵素で標識したものや、グリ
10 ーン蛍光タンパク質（G F P）等の蛍光発光タンパク質などを融合させ
た融合タンパク質を用いることによって、上記非メチル化C p G配列を
有する細菌D N Aを特異的に認識する受容体タンパク質の機能解析を行
うことができる。また免疫学的測定方法としては、R I A法、E L I S
A法、蛍光抗体法、プランク法、スポット法、血球凝集反応法、オクタ
15 ロニ法等の方法を挙げることができる。

本発明はまた、上記非メチル化C p G配列を有する細菌D N Aを特異
的に認識する受容体タンパク質を発現することができる発現系を含んで
なる宿主細胞に関する。かかる非メチル化C p G配列を有する細菌D N
Aを特異的に認識する受容体タンパク質をコードする遺伝子の宿主細胞
20 への導入は、Davis ら (BASIC METHODS IN MOLECULAR BIOLOGY,
1986) 及び Sambrook ら (MOLECULAR CLONING: A LABORATORY
MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, N.Y., 1989) などの多くの標準的な実験室マニュアルに
記載される方法、例えば、リン酸カルシウムトランスフェクション、D
25 E A E - デキストラン媒介トランスフェクション、トランスベクション
(transvection)、マイクロインジェクション、カチオン性脂質媒介トラン

スフェクション、エレクトロポレーション、形質導入、スクレーピング (scrape loading)、弾丸導入(ballistic introduction)、感染等により行うことができる。そして、宿主細胞としては、大腸菌、ストレプトミセス、枯草菌、ストレプトコッカス、スタフィロコッカス等の細菌

5 原核細胞や、酵母、アスペルギルス等の真菌細胞や、ドロソフィラ S 2、
10 スポドプテラ S f 9 等の昆虫細胞や、L 細胞、CHO 細胞、COS 細胞、
HeLa 細胞、C 127 細胞、BALB/c 3T3 細胞（ジヒドロ葉酸
レダクターゼやチミジンキナーゼなどを欠損した変異株を含む）、BHK
21 細胞、HEK 293 細胞、Bowes メラノーマ細胞、卵母細胞等
の動植物細胞などを挙げることができる。

また、発現系としては、上記非メチル化 CpG 配列を有する細菌 DNA を特異的に認識する受容体タンパク質を宿主細胞内で発現させることができるものであればどのようなものでもよく、染色体、エピソーム及びウイルスに由来する発現系、例えば、細菌プラスミド由来、酵母

15 プラスミド由来、SV 40 のようなパポバウイルス、ワクシニアウイルス、アデノウイルス、鶏痘ウイルス、仮性狂犬病ウイルス、レトロウイルス由来のベクター、バクテリオファージ由来、トランスポゾン由来及びこれらの組合せに由来するベクター、例えば、コスミドやファージミドのようなプラスミドとバクテリオファージの遺伝的要素に由来するものを挙げができる。これら発現系は、発現を起こさせるだけでなく、

20 発現を調節する制御配列を含んでいてもよい。

上記発現系を含んでなる宿主細胞やかかる細胞の細胞膜、またかかる細胞を培養して得られる非メチル化 CpG 配列を有する細菌 DNA を特異的に認識する受容体タンパク質は、後述するように本発明のスクリー

25 ニング方法に用いることができる。例えば、細胞膜を得る方法としては、F. Pietri-Rouxel (Eur. J. Biochem., 247, 1174-1179, 1997) らの方法な

どを用いることができ、また、かかる非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質を細胞培養物から回収し精製するには、硫酸アンモニウムまたはエタノール沈殿、酸抽出、アニオンまたはカチオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティークロマトグラフィー、ハイドロキシアパタイトクロマトグラフィーおよびレクチンクロマトグラフィーを含めた公知の方法、好ましくは、高速液体クロマトグラフィーが用いられる。特に、アフィニティークロマトグラフィーに用いるカラムとしては、例えば、抗 T L R 9 モノクローナル抗体等の抗非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質抗体を結合させたカラムや、上記 T L R 9 等の非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質に通常のペプチドタグを附加した場合は、このペプチドタグに親和性のある物質を結合したカラムを用いることにより、これらの非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質を得ることができる。

本発明において、上記非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質をコードする遺伝子が過剰発現する非ヒト動物とは、野生型非ヒト動物に比べてかかる非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質を大量に產生する非ヒト動物をいい、また、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物とは、染色体上の非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質をコードする遺伝子の一部若しくは全部が破壊・欠損・置換等の遺伝子変異により不活性化され、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する

受容体タンパク質を発現する機能を失なった非ヒト動物をいう。そして、本発明における非ヒト動物としては、ウサギや、マウス、ラット等の齧歯目動物などの非ヒト動物を具体的に挙げることができるが、これらに限定されるものではない。

5 また、本発明において非メチル化C p G配列を有する細菌DNAに対して不反応性とは、細菌DNAによる刺激に対する生体又は生体を構成する細胞、組織若しくは器官の反応性が低下しているか、あるいはほぼ失われていることを意味する。したがって、本発明において非メチル化C p G配列を有する細菌DNAに対して不反応性の非ヒト動物とは、細菌DNAによる刺激に対して、生体又は生体を構成する細胞、組織若しくは器官の反応性が低下しているか、あるいはほぼ失われているマウス、ラット、ウサギ等のヒト以外の動物をいう。また、細菌DNAによる刺激としては、細菌DNAを生体に投与するインビポでの刺激や、生体から分離された細胞に細菌DNAを接触させるインビトロでの刺激等を挙げることができ、具体的には、TLR9ノックアウトマウス等のTLR9遺伝子機能が染色体上で欠損した非ヒト動物を挙げができる。

ところで、メンデルの法則に従い出生してくるホモ接合体非ヒト動物には、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質欠損型又は過剰発現型とその同腹の野生型とが含まれ、これらホモ接合体非ヒト動物における欠損型又は過剰発現型とその同腹の野生型を同時に用いることによって個体レベルで正確な比較実験をすることができることから、野生型の非ヒト動物、すなわち非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損又は過剰発現する非ヒト動物と同種の動物、さらには同腹の動物を、例えば下記に記載する本発明のスクリーニングに際して併用することが好ましい。かかる非メチル化C p G

配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損又は過剰発現する非ヒト動物の作製方法を、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質のノックアウトマウスやトランスジェニックマウスを例にとつて以下説明する。

例えば、TLR9等の非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損したマウス、すなわち非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質ノックアウトマウスは、マウス遺伝子ライブラリーからPCR等の方法により得られた遺伝子断片を用いて、上記非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子をスクリーニングし、スクリーニングされた非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子をウイルスベクター等を用いてサブクローンし、DNAシーケンシングにより特定する。このクローンの非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子の全部又は一部をpMC1ネオ遺伝子カセット等に置換し、3'末端側にジフテリアトキシンAフラグメント(DT-A)遺伝子や単純ヘルペスウイルスのチミジンキナーゼ(HSV-tk)遺伝子等の遺伝子を導入することによって、ターゲットベクターを作製する。

この作製されたターゲティングベクターを線状化し、エレクトロポレーション(電気穿孔)法等によってES細胞に導入し、相同的組換えを行い、その相同的組換え体の中から、G418やガンシクロビア(GANC)等の抗生物質により相同的組換えを起こしたES細胞を選択する。また、この選択されたES細胞が目的とする組換え体かどうかをサザン

プロット法等により確認することが好ましい。その確認された E S 細胞のクローンをマウスの胚盤胞中にマイクロインジェクションし、かかる胚盤胞を仮親のマウスに戻し、キメラマウスを作製する。このキメラマウスを野生型のマウスとインタークロスさせると、ヘテロ接合体マウスを得ることができ、また、このヘテロ接合体マウスをインタークロスさせることによって、本発明の非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質ノックアウトマウスを作製することができる。また、非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質ノックアウトマウスが生起しているかどうかを確認する方法としては、例えば、上記の方法により得られたマウスから R N A を単離してノーザンプロット法等により調べたり、またこのマウスの発現をウエスタンプロット法等により調べる方法がある。

また、作出された T L R 9 ノックアウトマウスが非メチル化 C p G 配列を有する細菌 D N A に対して不応答性であることは、例えば、C p G O D N を T L R 9 ノックアウトマウスのマクロファージ、単核細胞、樹状細胞などの免疫細胞にインビトロ又はインビボで接触せしめ、かかる細胞における T N F - α 、I L - 6、I L - 1 2、I F N - γ 等の産生量や、脾臓 B 細胞の増殖応答や、脾臓 B 細胞表面での C D 4 0、C D 8 0、C D 8 6、M H C クラス II 等の抗原の発現量や、N F - κ B、J N K、I R A K 等の T L R 9 のシグナル伝達経路における分子の活性化を測定することにより確認することができる。そして、本発明の T L R 9 ノックアウトマウスは、非メチル化 C p G 配列を有する細菌 D N A 等の作用機序の解明や細菌感染に対するワクチン開発に有用なモデルとすることができる。

非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質のトランスジェニックマウスは、T L R 9 等の非メチル化 C

p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするc DNAにチキンβ-アクチン、マウスニューロフィラメント、SV40等のプロモーター、及びラビットβ-グロビン、SV40等のポリA又はイントロンを融合させて導入遺伝子を構築し、該導入遺伝子をマウス受精卵の前核にマイクロインジェクションし、得られた卵細胞を培養した後、仮親のマウスの輸卵管に移植し、その後被移植動物を飼育し、産まれた仔マウスから前記c DNAを有する仔マウスを選択することによりかかるトランスジェニックマウスを創製することができる。また、c DNAを有する仔マウスの選択は、マウスの尻尾等より粗DNAを抽出し、導入した非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子をプローブとするドットハイブリダイゼーション法や、特異的プライマーを用いたPCR法等により行うことができる。

また、本発明の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNAの全部あるいは一部を用いると、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質の欠失又は異常に起因する疾病等の遺伝子治療に有効な細胞を調製することができる。本発明におけるこれら細胞の調製方法としては、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した細胞に、上記本発明のDNAの全部あるいは一部をトランスフェクション等により導入し、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞を得る方法を挙げることができ、特に、かかる非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞としては、上記DNA等が染色体にインテグレイトされ、ステイブルにTLR9活性を示す細胞を用いる

ことが好ましい。

そしてまた、上記非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質とマーカー5 タンパク質及び／又はペプチドタグとを結合させた融合非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質に対する抗体、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現することができる発現系を含んでなる宿主細胞、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体10 タンパク質をコードする遺伝子が過剰発現する非ヒト動物、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞等を用いると、本発明の非メチル化C p G配列を有する細菌DNA15 を特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストや、非メチル化C p G配列を有する細菌DNAに対する反応性の抑制物質又は促進物質をスクリーニングすることができる。これらのスクリーニングにより得られたものは、細菌感染症に対する抑制物質又は促進物質や、アレルギー性疾患若しくは癌に対する抑制剤、予防剤又は治療薬や、遺伝子治療等において副作用を抑制剤又は阻害剤や、TLR9活性の欠失又は異常に起因する疾病等の診断・治療に有用な物質である可能性がある。

上記TLR9活性とは、非メチル化C p G配列を有する細菌DNAと特異的に反応し、細胞内にシグナルを伝達する機能をいい、シグナル伝達機能としては、TNF- α 、IL-6、IL-12、IFN- γ 等の25 サイトカインを産生する機能や、亜硝酸イオンを産生する機能や、細胞

を増殖する機能や、細胞表面においてCD40、CD80、CD86、MHCクラスII等の抗原を発現する機能や、NF- κ B、JNK、IRAK等のTLR9のシグナル伝達経路における分子を活性化させる機能などを具体的に例示することができるが、これらに限定されるものではない。

本発明の非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法としては、被検物質の存在下、マクロファージ、脾臓細胞又は樹状細胞などの免疫細胞、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現している細胞、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞等の非メチル化CpG配列を有する細菌DNAに対して反応性を有するタンパク質を発現している細胞をインビトロで培養し、TLR9活性を測定・評価する方法や、野生型非ヒト動物、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物、又は、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子が過剰発現した非ヒト動物に被検物質を投与し、該非ヒト動物から得られるマクロファージ、脾臓細胞、又は樹状細胞などの免疫細胞のTLR9活性を測定・評価する方法等を具体的に挙げることができる。

また、マクロファージ活性又は脾臓細胞活性の程度を測定・評価するに際し、対照として野生型非ヒト動物、特に同腹の野生型非ヒト動物の測定値と比較・評価することが個体差によるバラツキをなくすことができるので好ましい。このことは、以下に示す非メチル化CpG配列を有する細菌DNAに対する反応性の抑制物質又は促進物質のスクリーニ

ングにおいても同様である。

また、非メチル化C p G配列を有する細菌DNAに対する反応性の抑制物質又は促進物質のスクリーニング方法としては、被検物質と非メチル化C p G配列を有する細菌DNAとの存在下、非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質、又は該タンパク質を発現している細胞膜をインビトロでインキュベーションし、該タンパク質との反応性を測定・評価する方法や、非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物から得られるマクロファージ又は脾臓細胞と被検物質とをあらかじめインビトロで接触せしめた後、該マクロファージ又は脾臓細胞を非メチル化C p G配列を有する細菌DNAの存在下で培養し、該マクロファージ若しくは脾臓細胞のマクロファージ活性又は脾臓細胞活性の程度を測定・評価する方法や、非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物から得られるマクロファージ又は脾臓細胞と非メチル化C p G配列を有する細菌DNAとをあらかじめインビトロで接触せしめた後、該マクロファージ又は脾臓細胞を被検物質の存在下で培養し、該マクロファージ若しくは脾臓細胞のマクロファージ活性又は脾臓細胞活性の程度を測定・評価する方法や、
20 非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物にあらかじめ被検物質を投与した後、該非ヒト動物から得られるマクロファージ又は脾臓細胞を非メチル化C p G配列を有する細菌DNAの存在下で培養し、該マクロファージ若しくは脾臓細胞のマクロファージ活性又は
25 脾臓細胞活性の程度を測定・評価する方法や、非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質をコードする遺伝

子機能が染色体上で欠損した非ヒト動物にあらかじめ被検物質を投与した後、該非ヒト動物を細菌により感染させ、該非ヒト動物から得られるマクロファージ若しくは脾臓細胞のマクロファージ活性又は脾臓細胞活性の程度を測定・評価する方法や、非メチル化 C p G 配列を有する細菌 DNA に対して反応性を有するタンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物をあらかじめ細菌により感染させた後、該非ヒト動物から得られるマクロファージ又は脾臓細胞を被検物質の存在下で培養し、該マクロファージ若しくは脾臓細胞のマクロファージ活性又は脾臓細胞活性の程度を測定・評価する方法や、非メチル化 C p G 配列を有する細菌 DNA に対して反応性を有するタンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物をあらかじめ細菌により感染させた後、該非ヒト動物に被検物質を投与し、該非ヒト動物から得られるマクロファージ若しくは脾臓細胞のマクロファージ活性又は脾臓細胞活性の程度を測定・評価する方法や、非メチル化 C p G 配列を有する細菌 DNA に対して反応性を有するタンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物にあらかじめ被検物質を投与した後、該非ヒト動物を細菌により感染させ、該非ヒト動物におけるマクロファージ活性又は脾臓細胞活性の程度を測定・評価する方法や、非メチル化 C p G 配列を有する細菌 DNA に対して反応性を有するタンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物をあらかじめ細菌により感染させた後、該非ヒト動物に被検物質を投与し、該非ヒト動物におけるマクロファージ活性又は脾臓細胞活性の程度を測定・評価する方法などを具体的に挙げができる。また、これらのスクリーニング方法に用いる非メチル化 C p G 配列を有する細菌 DNA としては、C p G ODN (T C C - A T G - A C G - T T C - C T G - A T G - C T : 配列番号 5) を用いることが好ましいが、これに限定されるのもで

はない。

本発明はまた、検体中の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA配列を、本発明の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA配列と比較することからなる、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質の活性又は発現と関連する疾病の診断に用いられる診断キットに関する。
5 非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA配列の変異型の検出は、遺伝子に変異がある個体をDNAレベルで見い出すことにより行うことができ、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質の過少発現、過剰発現又は変異発現により生ずる疾病の診断に有効である。
かかる検出に用いられる検体としては、被験者の細胞、例えば血液、尿、
10 唾液、組織等の生検から得ることができるゲノムDNAや、RNA又はcDNAを具体的に挙げができるがこれらに限定されるものではなく、かかる検体を使用する場合、PCR等により増幅したものを用いることもできる。そして、塩基配列の欠失や挿入変異は、正常な遺伝子型と比較したときの増幅産物のサイズの変化により検出でき、また点突然変異は増幅DNAを標識非メチル化C p G配列を有する細菌DNAを
15 特異的に認識する受容体タンパク質をコードする遺伝子とハイブリダイズさせることで同定することができる。このように、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子の変異を検出することで、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質の活性又は発現と関連する
20 疾病の診断又は判定をすることができる。
25 本発明はまた、非メチル化C p G配列を有する細菌DNAを特異的に

認識する受容体タンパク質をコードするDNA又はRNAのアンチセンス鎖の全部又は一部からなる非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質の活性又は発現と関連する疾患の診断用プローブ、及び当該プローブ及び／又は本発明の非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質に特異的に結合する抗体を含有してなる非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質の活性又は発現と関連する疾患の診断キットに関する。前記診断用プローブとしては、非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA(cDNA)又はRNA(cRNA)のアンチセンス鎖の全部又は一部であり、プローブとして成立する程度の長さ(少なくとも20ベース以上)を有するものであれば特に制限されるものではない。かかるプローブ及び／又は本発明の非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質に特異的に結合する抗体を細菌感染症等のような症状の疾患の診断薬の有効成分とするためには、プローブが分解されないような適当なバッファー類や滅菌水に溶解することが好ましい。また、これらの診断薬を用いた、免疫染色法(Dev. Biol. 170, 207-222, 1995、J. Neurobiol. 29, 1-17, 1996)や、In situハイブリダイゼーション法(J. Neurobiol. 29, 1-17, 1996)や、in situ PCR法等の方法により細菌感染症等のような症状の疾患を診断することもできる。

本発明の医薬組成物としては、TLR9等の非メチル化CpG配列を有する細菌DNAを特異的に認識する受容体タンパク質の全部又はその一部や、上記受容体タンパク質のアゴニストやアンタゴニストを含むものであれば、どのようなものでもよい。具体的には、細菌感染症に対するワクチンや、癌に対するワクチンや、気管支喘息をはじめとするアレ

ルギー疾患の治療薬や、アンチセンスオリゴヌクレオチドを用いた治療や遺伝子治療において障害となるC p Gモチーフの存在による副作用の克服剤・抑制剤・阻害剤などを挙げることができる。

前記のように、本発明の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA配列の欠失、置換及び／又は付加に関連する疾病的診断キットとしては、TLR9をコードするDNAを含むものであればどのようなものでもよく、かかるTLR9をコードするDNAと検体中の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNAとの塩基配列を比較することにより、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA配列の欠失、置換及び／又は付加に関連する疾病、例えば、癌、アレルギー、伝染病等の診断が可能となる。

以下に、実施例を挙げてこの発明を更に具体的に説明するが、この発明の技術的範囲はこれら実施例により限定されるものではない。

実施例1（TLR9のクローニング）

ヒトTLR4のDNA配列情報を用いて、GenBankをサーチした結果、相同性がきわめて高いマウスEST（登録番号AA273731；マウス）を見い出した。このマウスマウスESTのPCR增幅産物をプローブとして、マウスマウスRAW264.7cDNAライブラリーをスクリーニングし、完全なTLR9オープンリーディングフレームを含む配列番号3に示される完全長のcDNAクローンを単離した。このマウスマウスTLR9のDNA配列情報を用いてGenBankをサーチし、高い相同性を有するヒトゲノム配列を見い出した。このヒトゲノム配列に基づいて、cDNA端部を増幅し、U937細胞（J. Immunol. 163, 5039-5048, 1999）から、配列番号1に示される塩基配列を有する完全長のヒトTLR9のc

D N A を単離した。

実施例 2 (T L R 9 ノックアウトマウスの作製)

129 / S v J マウス遺伝子ライブラリー (ストラタジーン社製) から T L R 9 ゲノム D N A を単離し、pBluescript II SK(+)ベクター (ストラタジーン社製) 中でサブクローンし、制限酵素マッピング及び D N A 配列決定により特定した。ターゲッティングベクターは、L R R (ロイシンリッチリピート) 領域の一部分をコードする 1. 0 k b のフラグメントを、ネオマイシン耐性遺伝子カセット (pMC1-neo; ストラタジーン社製) に置換し、負の選択マーカーとして単純ヘルペスウィルスチミジンキナーゼ (H S V - T K) を挿入することにより構築した (図 1)。このターゲッティングベクターを線状化し、胎生 14. 1 日目の胚幹細胞 (E S 細胞) にエレクトポレーションし、G 418 及びガンシクロビアに抵抗性を示す 292 個のクローンを選択し、P C R 法及びサザンプロット法により 14 個のクローンをスクリーニングした。

突然変異 T L R 9 対立遺伝子を含有していた 3 個の標的 E S クローンを、C 57 B L / 6 マウスの胚盤胞中にマイクロインジェクションしキメラマウスを作製した。この雄のキメラマウスを C 57 B L / 6 雌マウスと交配させ、ヘテロ接合体 F 1 マウスを作製し、かかるヘテロ接合体 F 1 マウスをインタークロスすることによってホモ接合体マウス (T L R 9 ノックアウトマウス: T L R 9^{-/-}) を得た (図 2)。なお、ホモ接合体マウスの確認は、マウスの尾から抽出した各ゲノム D N A を S c a I でダイジェストし、図 1 に示すプローブを用いたサザンプロット法により行った。本発明の T L R 9 ノックアウトマウス (T L R 9^{-/-}) はメンデルの法則に従い作製することができ、12 週目までは顕著な異常を示さなかった。

突然変異により T L R 9 遺伝子の不活性化が生起していることを確認

するため、野生型マウス (+/+) 及び T L R 9 ノックアウトマウス (-/-) の脾臓細胞から抽出した全 R N A (10 μ g) を電気泳動にかけナイロン膜に移して、[³²P] で標識した T L R 9 の C - 末端フラグメント若しくは N - 末端フラグメント、又は β - アクチン (β - a c t i n) に特異的な c D N A を用いてノーザンプロット分析を行った (図 3)。これらの結果から、T L R 9 m R N A の N - 末端フラグメントは T L R 9 ノックアウトマウスの脾臓細胞からは検出されなかった。また、C - 末端フラグメントをプローブとした場合、変異マウス由来の T l r 9 の転写は野生型マウス由来のものとほぼ同じサイズのものが検出されたが、生産量においては少ないことがわかった。そこで、変異マウスから得られた脾臓細胞の m R N A を用いて R T - P C R 法を行い、得られた生成物の配列分析を行った。この結果、転写された T l r 9 遺伝子には n e o 遺伝子が含まれており、この n e o の挿入によって、T L R 9 の N - 末端部位にストップコドンが出現し、変異マウスにおいて機能的な T L R 9 タンパク質が発現しないことがわかった (図 4)。なお、T L R 9 ノックアウトマウスのリンパ細胞をフローサイトメトリーで測定した結果、異常成分は見られなかった。

実施例 3 (腹腔マクロファージの調製)

野生型マウス (w i l d - t y p e) 及び T L R 9 ノックアウトマウス (T L R 9 -/-) のそれぞれの腹腔内に 4 % のチオグリコール酸培地 (D I F C O 社製) を 2 m l ずつ注入し、3 日後に各マウスの腹腔内から腹膜滲出細胞を単離し、これらの細胞を 10 % のウシ胎仔血清 (G I B C O 社製) を添加した R P M I 1 6 4 0 培地 (G I B C O 社製) 中で 37 °C にて 2 時間培養し、氷温のハンクス緩衝液 (Hank's buffered salt solution : H B S S ; G I B C O 社製) で洗浄することにより非付着細胞を取り除き、付着細胞を腹膜マクロファージとして以下の実験に使用

した。

実施例4 (T L R 9ノックアウトマウスの非メチル化C p G配列を有する細菌D N Aに対する応答性)

最近、C p G O D N (oligodeoxynucleotide) の応答性は、T L R 5 を介するシグナル伝達経路の中のアダプタータンパク質であるM y D 8 8に依存していることが明らかになった。このM y D 8 8ノックアウトマウスはC p G O D Nに対して応答しないが、T L R 2ノックアウトマウスやT L R 4ノックアウトマウスは正常にC p G O D Nに対して応答する。これらのこととは、C p G O D NがT L R 2及びT L R 4以外10 のT L Rによって認識されることを示している。そこで、T L R 9ノックアウトマウスのC p G O D Nに対する応答性を調べてみた。まず、腹腔マクロファージにおける炎症性サイトカインの産生量を以下のように測定した。

実施例3により調製した各腹膜マクロファージをI N F γ (3 0 u n 15 i t / m l) の存在下又は非存在下において、図5に示された各種濃度のC p G O D N (0. 1又は1. 0 μ M; TIB MOLBIOL社製; T C C - A T G - A C G - T T C - C T G - A T G - C T)、P G N (1 0 μ g / m l; Sigma and Fluka社製; スタフィロコッカス・アウレウス由来)、L P S (1. 0 μ g / m l; Sigma社製; サルモネラ・ミネソタ20 R e - 5 9 5由来)といっしょに24時間培養した。培養後、培養上清中のT N F α 、I L - 6及びI L - 1 2 p 4 0の各濃度をE L I S A法により測定した。この結果を図5に示す。これらの結果から、野生型マウス (W i l d - t y p e) のマクロファージはC p G O D Nに応答してT N F α 、I L - 6及びI L - 1 2を産生し、さらにI F N γ 及びC p G O D Nで刺激すると、T N F α 、I L - 6及びI L - 1 2の25 産生量が増加することがわかった。しかし、T L R 9ノックアウトマウ

ス (T L R 9^{-/-}) 由来のマクロファージは、I F N γ の存在下でさえ、C p G O D Nに対する応答において検出可能なレベルの炎症性サイトカインを産生していなかった。また、野生型マウス及びT L R 9ノックアウトマウス由来のマクロファージは、L P S又はP G Nに対する応答によりT N F α 、I L - 6 及びI L - 1 2をほぼ同程度産生することがわかった(図5)。なお、それぞれの実験結果はn = 3の平均値を示す。図中のN. D. は検出できなかったことを示す。

また、C p G O D N又はL P Sに対する野生型マウス (W i l d - type) 及びT L R 9ノックアウトマウス (T L R 9^{-/-}) の脾臓細胞の応答性について調べてみた。それぞれのマウスの脾臓細胞 (1×10^5) を単離し、図6に示す各種濃度のC p G O D N又はL P Sにより96ウェルプレート内で培養して脾臓細胞を刺激した。培養から40時間後に1 μ C iの [³H] - チミジン(デュポン社製)を添加して更に8時間培養し、[³H] の摂取量を β シンチレーションカウンター(パッカード社製)で測定した(図6)。この結果から、野生型マウスの脾臓細胞では、C p G O D NやL P Sの投与量に依存して細胞増殖反応を促進していたが、T L R 9ノックアウトマウスの脾臓細胞では、いかなる濃度のC p G O D N刺激においてもC p G O D Nによる細胞増殖反応は見られなかった。また、C p G O D Nに応答して、野生型マウス由来のB細胞表面の主要組織適合遺伝子複合体(M H C) クラスIIの発現が増加した。しかし、T L R 9ノックアウトマウス由来のB細胞ではC p G O D Nに誘導されたM H CクラスIIの発現の増加は見られなかった。以上のことから、T L R 9ノックアウトマウスのマクロファージやB細胞は、C p G O D Nに対する応答性を特異的に欠如していることがわかった。

次に、C p G O D Nを含有するバクテリア由来D N Aは樹状細胞を

潜在的に刺激し、T h 1 細胞の発達をサポートすることが知られている（EMBO J. 18, 6973-6982, 1999、J. Immunol. 161, 3042-3049, 1998、Proc. Natl. Acad. Sci. USA 96, 9305-9310, 1999）。そこでC p G O D N誘導サイトカインの産生と、骨髓由来の樹状細胞の表面分子のアップレギュレーションを分析した。野生型マウス（W i l d - t y p e）又はT L R 9ノックアウトマウス（T L R 9^{-/-}）の骨髓細胞を、1 0 n g / m l のマウス顆粒球マクロファージーコロニー刺激因子（Peptech 社製）を含む1 0 %のウシ胎仔血清を添加したR P M I 1 6 4 0 培地で培養し（J. Exp. Med. 176, 1693-1702, 1992）、培養後6日目に未成熟の樹状細胞を回収し、0. 1 μ MのC p G O D N又は0. 1 μ g / m l のL P S の存在下若しくは非存在下において、1 0 %のウシ胎仔血清を添加したR P M I 1 6 4 0 培地中で2日間培養した。培養後、上清中のI L - 1 2 p 4 0 の濃度をE L I S A法で測定した（図7）。この結果から、野生型マウス由来の樹状細胞はC p G O D Nに応答してI L - 1 2 を産生したが、T L R 9ノックアウトマウス由来の樹状細胞においては、C p G O D NはI L - 1 2 の産生を誘導しなかった。

上記1 0 n g / m l のマウス顆粒球マクロファージーコロニー刺激因子（Peptech 社製）を含む1 0 %のウシ胎仔血清を添加したR P M I 1 6 4 0 培地で培養し、6日目に回収された樹状細胞を、C D 4 0 、C D 8 0 、C D 8 6 及びM H C クラス II に対する、それぞれのビオチン化抗体により染色し、フィコエリトリン（p h y c o e r y t h r i n : P E ; ファーミンジエン社製）で標識したストレプトアビジンで発展させ、これらの細胞をセルクエストソフトウェア（ベクトンディッキンソン社製）により蛍光活性化セルソーターキャリバー（FACS Calibur）で分析した（図8）。この結果から、C p G O D Nで刺激すると、野生型

マウス由来の樹状細胞表面においては、CD40、CD80、CD86及びMHCクラスIIの発現を促進していたが、TLR9ノックアウトマウス由来の樹状細胞表面では、CpG ODNに対する応答によりこれらの分子の発現を促進しなかった(図8)。LPSによる刺激では、野生型マウス由来の樹状細胞もTLR9ノックアウトマウス由来の樹状細胞も同様の応答がみられた。以上の結果から、TLR9はCpG ODNの細胞応答に不可欠な受容体であることがわかった。

実施例5 (TLR9ノックアウトマウス由来のマクロファージのCpG ODNに対する応答によるNF- κ B、JNK及びIRAKの活性化)

TLRのシグナルは、アダプター分子であるMyD88を介してセリン/トレオニンキナーゼであるIRAKを活性化し、次いでMAPキナーゼ及びNF- κ Bを活性化することが知られている(Immunity 11, 115-122, 1999)。そこでCpG ODNが、かかる細胞内シグナル伝達分子を活性化するかどうかを調べてみた。実施例3により調製した野生型マウス及びTLR9ノックアウトマウスの腹腔マクロファージ(1×10⁶ cells)を、1.0 μ MのCpG ODN又は1.0 μ g/m1のサルモネラ・ミネソタRe-595のLPSで図9に示された時間刺激し、各マウスのマクロファージから核蛋白質を抽出し、NF- κ BのDNA結合部位を含む特異的プローブといっしょにインキュベートし、電気泳動を行い、オートラジオグラフィーにより視覚化した(図9)。

この結果から、CpG ODNで刺激すると、野生型マウス由来のマクロファージではNF- κ BのDNA結合活性が増加するのに対し、TLR9ノックアウトマウス由来のマクロファージではNF- κ BのDNA結合活性は増加しなかった。TLR9ノックアウトマウス由来のマクロファージをLPSで刺激したものは、野生型マウス由来のマクロファージをLPSで刺激したものと同様のNF- κ Bの活性化が見られた。

以上の結果から、C p G O D Nの誘導によるN F - κ Bの活性がT L R 9ノックアウトマウス由来のマクロファージにおいて特異的に欠損していることがわかる。なお、図中の矢印はN F - κ Bと特異的プローブとの複合物の位置を示し、矢頭は特異的プローブのみの位置を示している。

上記と同様に図10又は図11で示された時間、C p G O D N又はL P Sで刺激した野生型マウス及びT L R 9ノックアウトマウスのマクロファージを、溶解緩衝液（最終濃度で1.0%のトリトンX-100、137 mMのNaCl、20 mMのトリス-HCl、5 mMのEDTA、10%のグリセロール、1 mMのPMSF、20 μ g/mlのアプロチニン、20 μ g/mlのロイペプチド、1 mMのNa₃VO₄及び10 mMの β -グリセロリン酸を含有する緩衝液；pH 8.0）中にて溶解し、この細胞溶解物を抗JNK抗体（サンタクルス社製）又は抗IRAK抗体（林原生化学研究所株式会社製）で免疫沈降して、文献（Immunity 11, 115-122, 1999）記載のように、インビトロキナーゼアッセイを行い、GST-c-Jun溶解蛋白質（GST-c-Jun）を基質としたJNK活性及びIRAKの活性を測定した（図10, 11における上段；GST-c-Jun, Auto）。

また、上記細胞溶解物を、SDS-ポリアクリルアミドゲル電気泳動により分離させ、ニトロセルロース膜に移し、この膜を抗JNK抗体（サンタクルス社製）又は抗IRAK抗体（Transduction Laboratories 社製）でプロットして、エンハンスド・ケミルミネッセンス装置（デュポン社製）を使用して視覚化した（図10, 11における下段；WB）。以上の結果から、C p G O D Nは野生型マウス由来のマクロファージのJNK及びIRAKを活性化するが、T L R 9ノックアウトマウス由来のマクロファージでは全く活性化しないことがわかった（図10, 11）。

1)。したがって、C p G O D Nを介する情報伝達はT L R 9に依存していることがわかった。

産業上の利用可能性

5 メチル化されていないC p Gモチーフを含有するバクテリア由来D N Aは免疫細胞を非常に活性化し、T h 1の応答を誘導するが、そのバクテリア由来D N Aを認識する受容体は知られていなかった。本発明により、細菌D N Aの非メチル化C p G配列を含むオリゴヌクレオチドの受容体が明らかとなったことから、非メチル化C p G配列を有する細菌D N Aを特異的に認識するT L Rファミリーのメンバー受容体タンパク質T L R 9や、それをコードする遺伝子D N A等は、細菌性疾病等の診断や、治療に用いることができ、またT L R 9ノックアウト動物を用いると、バクテリア由来D N Aの分子レベルにおける作用機作を明らかにすることが可能となる。

請 求 の 範 囲

1. 非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質をコードする D N A 。
- 5 2. 非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質が、以下の(a)又は(b)のタンパク質であることを特徴とする請求項 1 記載の D N A 。
 - (a)配列番号 2 に示されるアミノ酸配列からなるタンパク質
 - (b)配列番号 2 に示されるアミノ酸配列において、1 若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ非メチル化 C p G 配列を有する細菌 D N A に対して反応性を有するタンパク質
- 10 3. 配列番号 1 に示される塩基配列又はその相補的配列並びにこれらの配列の一部または全部を含むことを特徴とする請求項 1 記載の D N A 。
- 15 4. 請求項 3 記載の遺伝子を構成する D N A とストリンジエントな条件下ハイブリダイズすることを特徴とする請求項 1 記載の D N A 。
5. 非メチル化 C p G 配列を有する細菌 D N A を特異的に認識する受容体タンパク質が、以下の(a)又は(b)のタンパク質であることを特徴とする請求項 1 記載の D N A 。
- 20 (a)配列番号 4 に示されるアミノ酸配列からなるタンパク質
(b)配列番号 4 に示されるアミノ酸配列において、1 若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ非メチル化 C p G 配列を有する細菌 D N A に対して反応性を有するタンパク質
- 25 6. 配列番号 3 に示される塩基配列又はその相補的配列並びにこれらの配列の一部または全部を含むことを特徴とする請求項 1 記載の D N A 。

7. 請求項 6 記載の遺伝子を構成するD N Aとストリンジエントな条件下ハイブリダイズすることを特徴とする請求項 1 記載のD N A。
8. 非メチル化C p G配列を有する細菌D N Aを特異的に認識する受容体タンパク質。
- 5 9. 配列番号 2 に示されるアミノ酸配列からなることを特徴とする請求項 8 記載のタンパク質。
10. 配列番号 2 に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなることを特徴とする請求項 8 記載のタンパク質。
- 10 11. 配列番号 4 に示されるアミノ酸配列からなることを特徴とする請求項 8 記載のタンパク質。
12. 配列番号 4 に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなることを特徴とする請求項 8 記載のタンパク質。
- 15 13. 請求項 8 ~ 1 2 のいずれか記載のタンパク質と、マーカータンパク質及び／又はペプチドタグとを結合させた融合タンパク質。
14. 請求項 8 ~ 1 2 のいずれか記載のタンパク質と特異的に結合する抗体。
- 20 15. 抗体がモノクローナル抗体であることを特徴とする請求項 1 4 記載の抗体。
16. 請求項 8 ~ 1 2 のいずれか記載のタンパク質を発現することができる発現系を含んでなる宿主細胞。
- 25 17. 非メチル化C p G配列を有する細菌D N Aを特異的に認識する受容体タンパク質をコードする遺伝子が過剰発現することを特徴とする非ヒト動物。
18. 非メチル化C p G配列を有する細菌D N Aを特異的に認識する受

容体タンパク質をコードする遺伝子機能が染色体上で欠損したことを特徴とする非ヒト動物。

19. 非メチル化C p G配列を有する細菌DNAに対して不反応性であることを特徴とする請求項18記載の非ヒト動物。

5 20. 齧歯目動物が、マウスであることを特徴とする請求項17～19のいずれか記載の非ヒト動物。

21. 非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した細胞に、請求項1～7のいずれか記載のDNAを導入することを特徴とする非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質を発現する細胞の調製方法。

10 22. 請求項21記載の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞の調製方法により得られることを特徴とする非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現する細胞。

15 23. 被検物質の存在下、非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質を発現している細胞をインビトロで培養し、TLR9活性を測定・評価することを特徴とする非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法。

20 24. 非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子機能が染色体上で欠損した非ヒト動物に被検物質を投与し、該非ヒト動物から得られるマクロファージ又は脾臓細胞のTLR9活性を測定・評価することを特徴とする非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法。

25. 非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードする遺伝子が過剰発現した非ヒト動物に被検物質を投与し、該非ヒト動物から得られるマクロファージ又は脾臓細胞のTLR9活性を測定・評価することを特徴とする非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法。
- 5 26. 非ヒト動物が、マウスであることを特徴とする請求項24又は25記載の非メチル化C p G配列を有する細菌DNAに対して反応性を有するタンパク質のアゴニスト又はアンタゴニストのスクリーニング方法。
- 10 27. 請求項23～26のいずれか記載の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニストのスクリーニング方法により得られる非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質のアゴニスト又はアンタゴニスト。
- 15 28. 非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質の全部又はその一部を有効成分として含有する医薬組成物。
29. 請求項27記載のアゴニスト又はアンタゴニストを有効成分として含有する医薬組成物。
- 20 30. 検体中の非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNAと、請求項3記載のDNAとの塩基配列を比較することができる、請求項3記載のDNAを含むことを特徴とする非メチル化C p G配列を有する細菌DNAを特異的に認識する受容体タンパク質をコードするDNA配列の欠失、置換及び／又は付加に関連する疾病の診断キット。
- 25

第 1 図

第 2 図

第 3 図

第 4 図

+/- :	87	TCC	AAC	CTG	CGG	CAG	CTG	AAC	CTC	AAG	96	TGG	AAC	TGT	CCA	100	CCC	ACT	GGC	CTT	AGC	CCC	TTG	CAC	TTC	TCT	110	
		S	N	L	R	Q	L	N	L	K	W	N	C	P	T	G	L	S	P	L	H	F	T	S	C			
-/- :		S	N	L	R	Q	L	N	L	K	W	I	L	S	T	C	P	R	R	I	R	T	N	D	P			
		TCC	AAC	CTG	CGG	CAG	CTG	AAC	CTC	AAG	TGG	ATT	TTG	TCC	TGT	CCT	CGA	CGG	ATC	CGA	ACA	AAC	GAC	GAC	CCA			
+/- :	87										90																	
-/- :																												
+/- :																												
-/- :																												

第 5 図

第 6 図

第 7 図

第 8 図

野生型

第 9 図

第 10 図

第 11 図

SEQUENCE LISTING

<110> JAPAN SCIENCE AND TECHNOLOGY CORPORATION

<120> Specific receptor that recognizes bacterial DNA

<130> A031-29PCT

<140>

<141>

<150> 2000-219652

<151> 2000-07-19

<160> 5

<170> PatentIn Ver. 2.1

<210> 1

<211> 3257

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (107)..(3205)

<400> 1

ccgcgtcgcc cccgtggga agggaccctg agtgtaaagc atccatccc ttagctgtcg 60

tccagtcgtgc ccgcaggacc ctgtggagaa gccccgtccc cccagc atg ggt ttc 115
Met Gly Phe
1

tgc cgc agc gcc ctg cac ccg ctg tct ctc ctg gtg cag gcc atc atg 163
Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln Ala Ile Met
5 10 15

ctg gcc atg acc ctg gcc ctg ggt acc ttg cct gcc ttc cta ccc tgt 211
Leu Ala Met Thr Leu Ala Gly Thr Leu Pro Ala Phe Leu Pro Cys
20 25 30 35

gag ctc cag ccc cac ggc ctg gtg aac tgc aac tgg ctg ttc ctg aag 259
Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu Phe Leu Lys
40 45 50

tct	gtg	ccc	cac	ttc	icc	atg	gca	gca	ccc	cgt	ggc	aat	gtc	acc	agc	307
Ser	Val	Pro	His	Phe	Ser	Met	Ala	Ala	Pro	Arg	Gly	Asn	Val	Thr	Ser	
55							60						65			
ctt	tcc	ttg	tcc	tcc	aac	cgc	atc	cac	cac	ctc	cat	gat	tct	gac	ttt	355
Leu	Ser	Leu	Ser	Ser	Asn	Arg	Ile	His	His	Leu	His	Asp	Ser	Asp	Phe	
70							75						80			
gcc	cac	ctg	ccc	agg	ctg	cgg	cat	cic	aac	cic	aag	ttg	aac	tgc	ccg	403
Ala	His	Leu	Pro	Ser	Leu	Arg	His	Leu	Asn	Leu	Lys	Trp	Asn	Cys	Pro	
85							90						95			
ccg	gtt	ggc	ctc	agg	ccc	atg	cac	ttc	ccc	tgc	cac	atg	acc	atc	gag	451
Pro	Val	Gly	Leu	Ser	Pro	Met	His	Phe	Pro	Cys	His	Met	Thr	Ile	Glu	
100							105						110		115	
ccc	agg	acc	ttc	ttg	gtt	gtg	ccc	acc	ctg	gaa	gag	cta	aac	ctg	agg	499
Pro	Ser	Thr	Phe	Leu	Ala	Val	Pro	Thr	Leu	Glu	Glu	Leu	Asn	Leu	Ser	
120							125						130			
tac	aac	acc	atc	atg	act	gtg	cct	gct	ctg	ccc	aaa	ttc	ctc	ata	tcc	547
Tyr	Asn	Asn	Ile	Met	Thr	Val	Pro	Ala	Leu	Pro	Lys	Ser	Leu	Ile	Ser	
135							140						145			
ctg	icc	ctc	agg	cat	acc	aac	atc	ctg	atg	ctt	gac	tct	gcc	agg	ctc	595
Leu	Ser	Leu	Ser	His	Thr	Asn	Ile	Leu	Met	Leu	Asp	Ser	Ala	Ser	Leu	
150							155						160			
gcc	ggc	ctg	cat	gcc	ctg	cgc	ttc	ctt	atg	gac	ggc	aaa	tgt	tat	643	
Ala	Gly	Leu	His	Ala	Leu	Arg	Phe	Leu	Phe	Met	Asp	Gly	Asn	Cys	Tyr	
165							170						175			
tac	aag	acc	ccc	tgc	agg	cag	gca	ctg	gag	gtg	gcc	ccg	ggt	gcc	ctc	691
Tyr	Lys	Asn	Pro	Cys	Arg	Gln	Ala	Leu	Glu	Val	Ala	Pro	Gly	Ala	Leu	
180							185						190		195	
ctt	ggc	ctg	ggc	aac	ctc	acc	cac	ctg	tca	ctc	aag	tac	aac	acc	ctc	739
Leu	Gly	Leu	Gly	Asn	Leu	Thr	His	Leu	Ser	Leu	Lys	Tyr	Asn	Asn	Leu	
200							205						210			
act	gtg	gtg	ccc	cgc	aac	ctg	cct	ttc	atg	acc	ctg	gag	tat	ctg	ctg	787
Thr	Val	Val	Pro	Arg	Asn	Leu	Pro	Ser	Ser	Leu	Glu	Tyr	Leu	Leu	Leu	
215							220						225			
tcc	tac	aac	cgc	atc	gtc	aaa	ctg	gct	cct	gag	gac	ctg	gcc	aat	ctg	835
Ser	Tyr	Asn	Arg	Ile	Val	Lys	Leu	Ala	Pro	Glu	Asp	Leu	Ala	Asn	Leu	

230	235	240	
acc gcc ctg cgt gtg ctc gat	gtg ggc gga aat tgc cgc cgc	tgc gac	883
Thr Ala Leu Arg Val Leu Asp	Val Gly Gly Asn Cys Arg Arg	Cys Asp	
245	250	255	
cac gct ccc aac ccc tgc atg gag	tgc cct cgt cac ttc ccc cag cta		931
His Ala Pro Asn Pro Cys Met	Glu Cys Pro Arg His Phe Pro Gln	Leu	
260	265	270	275
cat ccc gat acc ttc agc cac ctg agc	ctt gaa ggc ctg gtg ttg		979
His Pro Asp Thr Phe Ser His Leu	Ser Arg Leu Glu Gly Leu Val	Leu	
280	285	290	
aag gac agt tct ctc tcc tgg ctg aat	gcc agt tgg ttc cgt ggg ctg		1027
Lys Asp Ser Ser Leu Ser Trp Leu	Asn Ala Ser Trp Phe Arg Gly	Leu	
295	300	305	
gga aac ctc cga gtg ctg gac	ctg agt gag aac ttc ctc tac aaa tgc		1075
Gly Asn Leu Arg Val Leu Asp	Leu Ser Glu Asn Phe Leu Tyr Lys	Cys	
310	315	320	
atc act aaa acc aag gcc ttc cag	ggc cta aca cag ctg cgc aag ctt		1123
Ile Thr Lys Thr Lys Ala Phe	Gln Gly Leu Thr Gln Leu Arg Lys	Leu	
325	330	335	
aac ctg tcc ttc aat tac caa aag agg	gtg tcc ttt gcc cac ctg tct		1171
Asn Leu Ser Phe Asn Tyr Gln Lys	Arg Val Ser Phe Ala His Leu Ser		
340	345	350	355
ctg gcc cct tcc ttc ggg agc	ctg gtc gcc ctg aag gag ctg gac atg		1219
Leu Ala Pro Ser Phe Gly Ser Leu	Val Ala Leu Lys Glu Leu Asp Met		
360	365	370	
cac ggc atc ttc ttc cgc tca	ctc gat gag acc acg ctc cgg cca ctg		1267
His Gly Ile Phe Phe Arg Ser Leu	Asp Glu Thr Thr Leu Arg Pro Leu		
375	380	385	
gcc cgc ctg ccc atg ctc cag	act ctg cgt ctg cag atg aac ttc atc		1315
Ala Arg Leu Pro Met Leu Gln Thr	Leu Arg Leu Gln Met Asn Phe Ile		
390	395	400	
aac cag gcc cag ctc ggc atc	ttc agg gcc ttc cct ggc ctg cgc tac		1363
Asn Gln Ala Gln Leu Gly Ile	Phe Arg Ala Phe Pro Gly Leu Arg Tyr		
405	410	415	

gtg gac ctg tcg gac aac cgc atc agc gga gct tcg gag ctg aca gcc		1411
Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu Leu Thr Ala		
420	425	430
acc atg ggg gag gca gat gga ggg gag aag gtc tgg ctg cag cct ggg		1459
Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu Gln Pro Gly		
440	445	450
gac ctt gct ccg gcc cca gtg gac act ccc agc tct gaa gac ttc agg		1507
Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu Asp Phe Arg		
455	460	465
ccc aac tgc agc acc ctc aac ttc acc ttg gat ctg tca cgg aac aac		1555
Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn Asn		
470	475	480
ctg gtg acc gig cag ccg gag atg ttt gcc cag ctc tcg cac ctg cag		1603
Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser His Leu Gln		
485	490	495
tgc ctg cgc ctg agc cac aac tgc atc tcg cag gca gtc aat ggc tcc		1651
Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val Asn Gly Ser		
500	505	510
cag ttc ctg ccg ctg acc ggt ctg cag gtg cta gac ctg tcc cac aat		1699
Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu Ser His Asn		
520	525	530
aag ctg gac ctc tac cac gag cac tca ttc acg gag cta cca cga ctg		1747
Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu Pro Arg Leu		
535	540	545
gag gcc ctg gac ctc agc tac aac agc cag ccc ttt ggc atg cag ggc		1795
Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly Met Gln Gly		
550	555	560
gtg ggc cac aac ttc agc ttc gtg gct cac ctg cgc acc ctg cgc cac		1843
Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr Leu Arg His		
565	570	575
ctc agc ctg gcc cac aac aac atc cac agc caa gig tcc cag cag ctc		1891
Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser Gln Gln Leu		
580	585	590
tgt agt acg tcg ctg cgg gcc ctg gac ttc agc ggc aat gca ctg ggc		1939
Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ala Leu Gly		

600

605

610

cat atg tgg gcc gag gga gac ctc tat ctg cac ttc ttc caa ggc ctg 1987
 His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe Gln Gly Leu
 615 620 625

agc ggt ttg atc tgg ctg gac ttg tcc cag aac cgc ctg cac acc ctc 2035
 Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu His Thr Leu
 630 635 640

ctg ccc caa acc ctg cgc aac ctc ccc aag agc cta cag gtg ctg cgt 2083
 Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln Val Leu Arg
 645 650 655

ctc cgt gac aat tac ctg gcc ttc ttt aag tgg tgg agc ctc cac ttc 2131
 Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser Leu His Phe
 660 665 670 675

ctg ccc aaa ctg gaa gtc ctc gac ctg gca gga aac cag ctg aag gcc 2179
 Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala
 680 685 690

ctg acc aat ggc agc ctg cct gct ggc acc cgg ctc cgg agg ctg gat 2227
 Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg Arg Leu Asp
 695 700 705

gtc agc tgc aac agc atc agc ttc gtg gcc ccc ggc ttc ttt tcc aag 2275
 Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe Phe Ser Lys
 710 715 720

gcc aag gag ctg cga gag ctc aac ctt agc gcc aac gcc ctc aag aca 2323
 Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys Thr
 725 730 735

gtg gac cac tcc tgg ttt ggg ccc ctg gcg agt gcc ctg caa ata cta 2371
 Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu Gln Ile Leu
 740 745 750 755

gat gta agc gcc aac cct ctg cac tgc gcc tgi ggg gcg gcc ttt atg 2419
 Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe Met
 760 765 770

gac ttc ctg ctg gag gtg cag gct gcc gtg ccc ggt ctg ccc agc cgg 2467
 Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu Pro Ser Arg
 775 780 785

gtg aag tgt ggc agt ccg ggc cag ctc cag ggc ctc agc atc itt gca		2515
Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser Ile Phe Ala		
790	795	800
cag gac ctg cgc ctc tgc ctg gat gag gcc ctc tcc tgg gac tgt ttc		2563
Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp Asp Cys Phe		
805	810	815
gcc ctc tcg ctg ctg gct gtg gct ctg ggc ctg ggt gtg ccc atg ctg		2611
Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val Pro Met Leu		
820	825	830
cat cac ctc tgt ggc tgg gac ctc tgg tac tgc ttc cac ctg tgc ctg		2659
His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His Leu Cys Leu		
840	845	850
gcc tgg ctt ccc tgg cgg ggg cgg caa agt ggg cga gat gag gat gcc		2707
Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp Glu Asp Ala		
855	860	865
ctg ccc tac gat gcc ttc gtg gtc ttc gac aaa acg cag agc gca gtg		2755
Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln Ser Ala Val		
870	875	880
gca gac tgg gtg tac aac gag ctt cgg ggg cag ctg gag gag tgc cgt		2803
Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu Glu Cys Arg		
885	890	895
ggc cgc tgg gca ctc cgc ctg tgc ctg gag gaa cgc gac tgg ctg cct		2851
Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro		
900	905	910
ggc aaa acc ctc ttt gag aac ctg tgg gcc tgc tat ggc agc cgc		2899
Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr Gly Ser Arg		
920	925	930
aag acg ctg ttt gtg ctg gcc cac acg gac egg gtc agt ggt ctc ttg		2947
Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser Gly Leu Leu		
935	940	945
cgc gcc agc ttc ctg ctg gcc cag cag cgc ctg ctg gag gac cgc aag		2995
Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys		
950	955	960
gac gtc gtg gtg ctg gtg atc ctg agc cct gac ggc cgc cgc tcc cgc		3043
Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg Arg Ser Arg		

965

970

975

tac gtg cgg ctg cgc cag cgc ctc tgc cgc cag agt gtc cic ctc tgg 3091
 Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Leu Trp
 980 985 990 995

ccc cac cag ccc agt ggt cag cgc agc ttc tgg gcc cag ctg ggc atg 3139
 Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln Leu Gly Met
 1000 1005 1010

gcc ctg acc agg gac aac cac cac ttc tat aac cgg aac tic tgc cag 3187
 Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg Asn Phe Cys Gln
 1015 1020 1025

gga ccc acg gcc gaa tag ccgtgagccg gaatccctgca cggtgccacc 3235
 Gly Pro Thr Ala Glu
 1030

tccacactca cctcacctct gc 3257

<210> 2
 <211> 1032
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln
 1 5 10 15
 Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
 20 25 30
 Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu
 35 40 45
 Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn
 50 55 60
 Val Thr Ser Leu Ser Leu Ser Asn Arg Ile His His Leu His Asp
 65 70 75 80
 Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp
 85 90 95
 Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met
 100 105 110
 Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
 115 120 125
 Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser
 130 135 140
 Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser

145	150	155	160
Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly			
165	170	175	
Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro			
180	185	190	
Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr			
195	200	205	
Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr			
210	215	220	
Leu Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu			
225	230	235	240
Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg			
245	250	255	
Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe			
260	265	270	
Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly			
275	280	285	
Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe			
290	295	300	
Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu			
305	310	315	320
Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu			
325	330	335	
Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala			
340	345	350	
His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu			
355	360	365	
Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu			
370	375	380	
Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met			
385	390	395	400
Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly			
405	410	415	
Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu			
420	425	430	
Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu			
435	440	445	
Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu			
450	455	460	
Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser			
465	470	475	480
Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser			
485	490	495	
His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val			
500	505	510	
Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu			

515	520	525
Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu		
530	535	540
Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly		
545	550	555
Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr		
565	570	575
Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser		
580	585	590
Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn		
595	600	605
Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe		
610	615	620
Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu		
625	630	635
His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln		
645	650	655
Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser		
660	665	670
Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln		
675	680	685
Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg		
690	695	700
Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe		
705	710	715
720		
Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala		
725	730	735
Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu		
740	745	750
Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala		
755	760	765
Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu		
770	775	780
Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser		
785	790	795
800		
Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp		
805	810	815
Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val		
820	825	830
Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His		
835	840	845
Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp		
850	855	860
Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln		
865	870	875
880		
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu		

885	890	895
Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp		
900	905	910
Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr		
915	920	925
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser		
930	935	940
Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu		
945	950	955
Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg		
965	970	975
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val		
980	985	990
Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln		
995	1000	1005
Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg Asn		
1010	1015	1020
Phe Cys Gln Gly Pro Thr Ala Glu		
1025	1030	

<210> 3
 <211> 3471
 <212> DNA
 <213> Mus musculus

<220>
 <221> CDS
 <222> (107)..(3205)

<400> 3
 t g a a a g i g t c a c i t c c t c a a t t c i t g a g a g a c a c c c i g g t g t g g a a c a c a t c a t t c i t c i g c c g 60

c c c a g t t i g t c a g a g g g a g c c t c g g g a g a a t c c t c c a a c a t g g t t c t c 115
 Met Val Leu
 1

c g t c g a a g g a c t c t g c a c c c t t g t c c c t g g t a c a g g c t g g c a g t g 163
 Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln Ala Ala Val
 5 10 15

c t g g c t g a g a c t c t g g c c t g g g t a c c c t g c t g c c t a c c c t g t 211
 Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys
 20 25 30 35

gag ctg aag cct cat ggc ctg gtg gac tgc aat tgg ctg itc ctg aag	259		
Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu Phe Leu Lys			
40	45	50	
tct gta ccc cgt itc tct gcg gca gca tcc tgc tcc aac atc acc cgc	307		
Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn Ile Thr Arg			
55	60	65	
ctc tcc ttg atc tcc aac cgt atc cac cac ctg cac aac tcc gac ttc	355		
Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn Ser Asp Phe			
70	75	80	
gtc cac ctg tcc aac ctg cgg cag ctg aac ctc aag tgg aac tgt cca	403		
Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp Asn Cys Pro			
85	90	95	
ccc act ggc ctt agc ccc ttg cac itc tct tgc cac atg acc att gag	451		
Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met Thr Ile Glu			
100	105	110	115
ccc aga acc ttc ctg gct atg cgt aca ctg gag gag ctg aac ctg agc	499		
Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu Asn Leu Ser			
120	125	130	
tat aat ggt atc acc act gtg ccc cga ctg ccc agc tcc ctg gtg aat	547		
Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser Leu Val Asn			
135	140	145	
ctg agc ctg agc cac acc aac atc ctg gtt cta gat gct aac agc ctc	595		
Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala Asn Ser Leu			
150	155	160	
gcc ggc cta tac agc ctg cgc gtt ctc ttc atg gac ggg aac tgc tac	643		
Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly Asn Cys Tyr			
165	170	175	
tac aag aac ccc tgc aca gga gcg gtg aag gtg acc cca ggc gcc ctc	691		
Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro Gly Ala Leu			
180	185	190	195
ctg ggc ctg agc aat ctc acc cat ctg tct gtg aag tat aac aac ctc	739		
Leu Gly Leu Ser Asn Leu Thr His Leu Ser Val Lys Tyr Asn Asn Leu			
200	205	210	
aca aag gtg ccc cgc caa ctg ccc agc ctg gag tac ctc ctg gtg	787		
Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr Leu Leu Val			

215	220	225	
tcc tat aac ctc att gtc aag ctg ggg cct gaa gac ctg gcc aat ctg 835 Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu Ala Asn Leu			
230	235	240	
acc tcc ctt cga gta cti gat gtg ggt ggg aat tgc cgt cgc tgc gac 883 Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg Cys Asp			
245	250	255	
cat gcc ccc aat ccc tgt ata gaa tgt ggc caa aag tcc ctc cac ctg 931 His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser Leu His Leu			
260	265	270	275
cac cct gag acc ttc cat cac ctg agc cat ctg gaa ggc ctg gtg ctg 979 His Pro Glu Thr His His Leu Ser His Leu Glu Gly Leu Val Leu			
280	285	290	
aag gac agc tct ctc cat aca ctg aac tct tcc tgg ttc caa ggt ctg 1027 Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe Gln Gly Leu			
295	300	305	
gtc aac ctc tcg gtg ctg gac cta agc gag aac ttt ctc tat gaa agc 1075 Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr Glu Ser			
310	315	320	
atc aac cac acc aat gcc ttt cag aac cta acc cgc ctg cgc aag ctc 1123 Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu Arg Lys Leu			
325	330	335	
aac ctg tcc ttc aat tac cgc aag aag gta tcc ttt gcc cgc ctc cac 1171 Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala Arg Leu His			
340	345	350	355
ctg gca agt tcc ttc aag aac ctg gtg tca ctg cag gag ctg aac atg 1219 Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu Leu Asn Met			
360	365	370	
aac ggc atc ttc ttc cgc tcg ctc aac aag tac acg ctc aga tgg ctg 1267 Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu Arg Trp Leu			
375	380	385	
gcc gat ctg ccc aaa ctc cac act ctg cat ctt caa atg aac ttc atc 1315 Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met Asn Phe Ile			
390	395	400	

aac cag gca cag ctc agc atc ttt ggt acc itc cga gcc ctt cgc tit		1363
Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arg Phe		
405	410	415
gtg gac ttg tca gac aat cgc atc agt ggg cct tca acg ctg tca gaa		1411
Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr Leu Ser Glu		
420	425	430
gcc acc cct gaa gag gca gat gat gca gag cag gag gag ctg ttt tct		1459
Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu Leu Leu Ser		
440	445	450
gcg gat cct cac cca gct cca ctg agc acc cct gct tct aag aac ttc		1507
Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser Lys Asn Phe		
455	460	465
atg gac agg lgt aag aac ttc aag ttc acc atg gac ctg tct cgg aac		1555
Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu Ser Arg Asn		
470	475	480
aac ctg gig act atc aag cca gag atg ttt gtc aat ctc tca cgc ctc		1603
Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu Ser Arg Leu		
485	490	495
cag tgt ctt agc ctg agc cac aac tcc att gca cag gct gtc aat ggc		1651
Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala Val Asn Gly		
500	505	510
tct cag ttc ctg ccg ctg act aat ctg cag gig ctg gac ctg tcc cat		1699
Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp Leu Ser His		
520	525	530
aac aaa ctg gac ttg tac cac tgg aaa tcg ttc agt gag cta cca cag		1747
Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu Leu Pro Gln		
535	540	545
ttg cag gcc ctg gac ctg agc tac aac agc cag ccc ttt agc atg aag		1795
Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser Met Lys		
550	555	560
gtt ata ggc cac aat ttc agt ttt gtg gcc cat ctg tcc atg cta cac		1843
Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser Met Leu His		
565	570	575
agc ctt agc ctg gca cac aat gac att cat acc cgt gtg tcc tca cat		1891
Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val Ser Ser His		

580	585	590	595
ctc aac agc aac tca gtg agg ttt ctt gac ttc agc ggc aac ggt atg Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met	600	605	610
ggc cgc atg tgg gat gag ggg ggc ctt tat ctc cat ttc ttc caa ggc Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly	615	620	625
cgt agt ggc ctg ctg aag ctg gac ctg tct caa aat aac ctg cat alc Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile	630	635	640
ctc cgg ccc cag aac ctt gac aac ctc ccc aag agc ctg aag ctg ctg Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu Lys Leu Leu	645	650	655
agc ctc cga gac aac tac cta tct ttc ttt aac tgg acc agt ctg tcc Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr Ser Leu Ser	660	665	670
ttc ctg ccc aac ctg gaa gtc cta gac ctg gca ggc aac cag cta aag Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys	680	685	690
gcc ctg acc aat ggc acc ctg cct aat ggc acc ctc ctc cag aaa ctg Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu Gln Lys Leu	695	700	705
gat gtc agc agc aac agt atc gtc tct gtg gtc cca gcc ttc ttc gct Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala Phe Phe Ala	710	715	720
ctg gcg gtc gag ctg aaa gag gtc aac ctc agc cac aac att ctc aag Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn Ile Leu Lys	725	730	735
acg gtg gat cgc tcc tgg ttt ggg ccc att gtg atg aac ctg aca gtt Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn Leu Thr Val	740	745	750
cta gac gtg aga agc aac cct ctg cac tgt gcc tgt ggg gca gcc ttc Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe	760	765	770

gtt gac tta ctg ttt gag gtg cag acc aag gtg cct ggc ctg gct aat	2467		
Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly Leu Ala Asn			
775	780	785	
ggt gtg aag ttt ggc agc ccc ggc cag ctg cag ggc ctt agc atc ttc	2515		
Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe			
790	795	800	
gca cag gac ctg cgg ctg tgc ctg gat gag gtc ctc tct tgg gac tgc	2563		
Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser Trp Asp Cys			
805	810	815	
ttt ggc ctt tca ctc ttt gct gtg gcc gtg ggc atg gtg gtg cct ata	2611		
Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val Val Pro Ile			
820	825	830	835
cgt cac cat ctc tgc ggc tgg gac gtc tgg tac tgt ttt cat ctg tgc	2659		
Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe His Leu Cys			
840	845	850	
ctg gca tgg cta cct ttt ctg gcc cgc agc cga cgc agc gcc caa gct	2707		
Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser Ala Gln Ala			
855	860	865	
ctc ccc tat gat gcc ttc gtg gtg ttc gat aag gca cag agc gca gtt	2755		
Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala Val			
870	875	880	
gcg gac tgg gtg tat aac gag ctg cgg gtg cgg ctg gag gag cgg cgc	2803		
Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu Glu Arg Arg			
885	890	895	
ggt cgc cga gcc cta cgc ttt ttt ctg gag gac cga gat tgg ctg cct	2851		
Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp Trp Leu Pro			
900	905	910	915
ggc cag acg ctc ttc gag aac ctc tgg gct tcc atc tat ggg agc cgc	2899		
Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr Gly Ser Arg			
920	925	930	
aag act cta ttt gtg ctg gcc cac acg gac cgc gtc agt ggc ctc ctg	2947		
Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser Gly Leu Leu			
935	940	945	
cgcc acc agc ttc ctg ctg gct cag cag cgc ctg ttt gaa gac cgc aag	2995		
Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys			

950

955

960

gac gig gig gtg ttg atc ctg cgt ccg gat gcc cac cgc tcc cgc 3043
 Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His Arg Ser Arg
 965 970 975

tat gig cga ctc cgc cag cgt ctc tgc cgc cag agt gtg ctc ttc tgg 3091
 Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Phe Trp
 980 985 990 995

ccc cag cag ccc aac ggg cag ggg ggc ttc tgg gcc cag ctg agt aca 3139
 Pro Gln Gln Pro Asn Gly Gln Gly Phe Trp Ala Gln Leu Ser Thr
 1000 1005 1010

gcc ctg act agg gac aac cgc cac ttc tat aac cag aac ttc tgc cgg 3187
 Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln Asn Phe Cys Arg
 1015 1020 1025

gga cct aca gca gaa tag ctccatggcaa cagctggaaa cagctgcattc 3235
 Gly Pro Thr Ala Glu
 1030

ttcaigccig gttcccgagt tgctctgcct gccttgcctt gtcttaatac accgctatit 3295
 ggcaagtgcg caatataigc taccaagcca ccaggccccac ggagcaaagg ttggcagtaa 3355
 agggttagttt tcctccatg caatcttcag gagagtgaag atagacacca gacccacaca 3415
 gaacaggact ggagttcat tcttgtccctt ccacccactt tggctgtct ctttat 3471

<210> 4
 <211> 1032
 <212> PRT
 <213> Mus musculus

<400> 4
 Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
 1 5 10 15
 Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe
 20 25 30
 Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu
 35 40 45
 Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn
 50 55 60
 Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn

65	70	75	80													
Ser	Asp	Phe	Val	His	Leu	Ser	Asn	Leu	Arg	Gln	Leu	Asn	Leu	Lys	Trp	
85															95	
Asn	Cys	Pro	Pro	Thr	Gly	Leu	Ser	Pro	Leu	His	Phe	Ser	Cys	His	Met	
100															110	
Thr	Ile	Glu	Pro	Arg	Thr	Phe	Leu	Ala	Met	Arg	Thr	Leu	Glu	Glu	Leu	
115															125	
Asn	Leu	Ser	Tyr	Asn	Gly	Ile	Thr	Thr	Val	Pro	Arg	Leu	Pro	Ser	Ser	
130															140	
Leu	Val	Asn	Leu	Ser	Leu	Ser	His	Thr	Asn	Ile	Leu	Val	Leu	Asp	Ala	
145															160	
Asn	Ser	Leu	Ala	Gly	Leu	Tyr	Ser	Leu	Arg	Val	Val	Leu	Phe	Met	Asp	Gly
165															175	
Asn	Cys	Tyr	Tyr	Lys	Asn	Pro	Cys	Thr	Gly	Ala	Val	Lys	Val	Thr	Pro	
180															190	
Gly	Ala	Leu	Leu	Gly	Leu	Ser	Asn	Leu	Thr	His	Leu	Ser	Val	Lys	Tyr	
195															205	
Asn	Asn	Leu	Thr	Lys	Val	Pro	Arg	Gln	Leu	Pro	Pro	Ser	Leu	Glu	Tyr	
210															220	
Leu	Leu	Val	Ser	Tyr	Asn	Leu	Ile	Val	Lys	Leu	Gly	Pro	Glu	Asp	Leu	
225															240	
Ala	Asn	Leu	Thr	Ser	Leu	Arg	Val	Leu	Asp	Val	Gly	Gly	Asn	Cys	Arg	
245															255	
Arg	Cys	Asp	His	Ala	Pro	Asn	Pro	Cys	Ile	Glu	Cys	Gly	Gln	Lys	Ser	
260															270	
Leu	His	Leu	His	Pro	Glu	Thr	Phe	His	His	Leu	Ser	His	Leu	Glu	Gly	
275															285	
Leu	Val	Leu	Lys	Asp	Ser	Ser	Leu	His	Thr	Leu	Asn	Ser	Ser	Trp	Phe	
290															300	
Gln	Gly	Leu	Leu	Val	Asn	Leu	Ser	Val	Leu	Asp	Leu	Ser	Glu	Asn	Phe	Leu
305															320	
Tyr	Glu	Ser	Ile	Asn	His	Thr	Asn	Ala	Phe	Gln	Asn	Leu	Thr	Arg	Leu	
325															335	
Arg	Lys	Leu	Asn	Leu	Ser	Phe	Asn	Tyr	Arg	Lys	Lys	Val	Ser	Phe	Ala	
340															350	
Arg	Leu	His	Leu	Ala	Ser	Ser	Phe	Lys	Asn	Leu	Val	Ser	Leu	Gln	Glu	
355															365	
Leu	Asn	Met	Asn	Gly	Ile	Phe	Phe	Arg	Ser	Leu	Asn	Lys	Tyr	Thr	Leu	
370															380	
Arg	Trp	Leu	Ala	Asp	Leu	Pro	Lys	Leu	His	Thr	Leu	His	Leu	Gln	Met	
385															400	
Asn	Phe	Ile	Asn	Gln	Ala	Gln	Leu	Ser	Ile	Phe	Gly	Thr	Phe	Arg	Ala	
405															415	
Leu	Arg	Phe	Val	Asp	Leu	Ser	Asp	Asn	Arg	Ile	Ser	Gly	Pro	Ser	Thr	
420															430	
Leu	Ser	Glu	Ala	Thr	Pro	Glu	Glu	Ala	Asp	Asp	Ala	Glu	Gln	Glu	Glu	

435	440	445
Leu	Leu	Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser
450	455	460
Lys	Asn	Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu
465	470	475
Ser	Arg	Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu
485	490	495
Ser	Arg	Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala
500	505	510
Val	Asn	Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp
515	520	525
Leu	Ser	His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu
530	535	540
Leu	Pro	Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe
545	550	555
Ser	Met	Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser
565	570	575
Met	Leu	His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val
580	585	590
Ser	Ser	His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly
595	600	605
Asn	Gly	Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe
610	615	620
Phe	Gln	Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn
625	630	635
Leu	His	Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu
645	650	655
Lys	Leu	Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr
660	665	670
Ser	Leu	Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn
675	680	685
Gln	Leu	Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu
690	695	700
Gln	Lys	Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala
705	710	715
Phe	Phe	Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn
725	730	735
Ile	Leu	Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
740	745	750
Leu	Thr	Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly
755	760	765
Ala	Ala	Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly
770	775	780
Leu	Ala	Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
785	790	795
Ser	Ile	Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser
800		

805	810	815
Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val		
820	825	830
Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe		
835	840	845
His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser		
850	855	860
Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln		
865	870	880
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu		
885	890	895
Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp		
900	905	910
Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr		
915	920	925
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser		
930	935	940
Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu		
945	950	960
Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His		
965	970	975
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val		
980	985	990
Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln		
995	1000	1005
Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln Asn		
1010	1015	1020
Phe Cys Arg Gly Pro Thr Ala Glu		
1025	1030	

<210> 5

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:CpG ODN

<400> 5

tccatgacgt tccttgatgt

20

