Un Marco de trabajo para la generación automática de esquemas de aprendizaje en el contexto de predicción de fallos de software mediante el uso de algoritmos genéticos

Dr. Juan Murillo-Morera

21 de mayo de 2022

Agenda

- Introducción
- Marco teórico
- Objetivos
- Antecedentes
- Metodología
- Marco de trabajo
- Análisis de resultados
- Publicaciones
- Conclusiones y trabajo futuro

Motivación (1/2)

- Un Fallo es introducido en el software como el resultado de un error que puede causar una conducta incorrecta y no acorde a su especificacin. (Glosario-IEEE, 1990).
- Los fallos (Singh et al., 2015):
 - Disminuyen la confiabilidad y la calidad del software.
 - Aumenta los costos de operación e insatisfacción en los usuarios finales.
- Los modelos de predicción, buscan evaluar esquemas de aprendizaje. (Menzies et al., 2007)(Song et al., 2011).

Motivación (2/2)

- Un esquema de aprendizaje esta compuesto por: técnicas de preprocesamiento, selección de atributos y algoritmos de aprendizaje (Menzies et al., 2007) (Song et al., 2011).
- La generación de esquemas de aprendizaje se puede hacer mediante un marco de trabajo.
- Un marco de trabajo es plataforma conceptual y concreta donde existe un código común con una funcionalidad clara. (Gao et al., 2009).

Problema (1/2)

- Los métodos de aprendizaje máquina han jugado un papel transcendental en la construcción de modelos de predicción (Singh et al., 2010).
- Existen tres líneas de investigación en el área de fallos (Song et al., 2011):
 - Densidad de fallos.
 - Asociación de fallos.
 - Propensidad a fallos.
- En el contexto de predicción de fallos los módulos son las unidades mas pequeña con funcionalidad (Menzies et al., 2007).

Problema (2/2)

- No existe una única solución a nivel de esquemas de aprendizaje para todos los repositorios de datos históricos (Murillo et al., 2016).
- Diferentes configuraciones de parámetros dan diferentes resultados, según el dominio en estudio (Murillo et al., 2016).
- Nuevas técnicas y algoritmos de aprendizaje surgen producto de la combinación de las existentes (Whitley et al., 1994).

Justificación (1/2)

- El **incremento** del **tamaño** y de la **complejidad** de los proyectos de software es cada vez **mayor** (*Schroter et al., 2015*).
- Predecir fallos permite ubicar y asignar recursos de forma inteligente (Moser et al., 2008).
- Aumentar el desempeño en los modelos de predicción de fallos ayuda a mantener la calidad del software. (Khoshgoftaar et al., 2010).

Justificación (2/2)

- Es necesario **enfocarse** en la **exactitud predictiva** de los **algoritmos evolutivos** en predicción de fallos de software (*Malhotra*, 2015).
- Un enfoque de los algoritmos evolutivos, son los algoritmos genéticos (Cervigon, 2009).
- Automatizar los esquemas de aprendizaje puede ayudar a obtener mejor desempeño (Murillo et al., 2016).

Pregunta de investigación

¿Cómo se puede generar de forma automática el mejor esquema de aprendizaje posible, acorde a su desempeño, tomando en cuenta las características específicas de un repositorio de datos histórico de defectos de software?

Métricas

Repositorios históricos

Cuadro: Estructura de un repositorio de datos histórico

	Met_1	Met ₂	Met ₃	Met_m	Etiq
Mod_1	39	3	2	3	Т
Mod_2	113	9	1	6	F
Mod ₃	21	3	1	2	F
Mod_n	16	3	1	3	Т

Esquemas de aprendizaje

SELECTOR DE **PROCESAMIENTO** ALGORITMOS DE **ATRIBUTOS APRENDIZAJE DATOS** SELECCIÓN HACIA NONE ADELANTE REDES BAYESIANAS ELIMINACIÓN HACIA LOGARITMO ÁRBOLES DE DECISIÓN ATRAS MÁQUINAS DE SOPORTE COXBOX MEJOR PRIMERO VECTORIAL

Modelos de predicción

Evaluación de los modelos de predicción

Algoritmos genéticos

General

Proponer un marco de trabajo que genere de forma automática esquemas de aprendizaje por medio de algoritmos genéticos en el contexto de predicción de fallos de software.

Específicos

- Caracterizar, acorde a la literatura, los modelos predictivos de fallos de software enfatizando en los esquemas de aprendizaje (técnicas de preprocesamiento, selección de atributos y algoritmos de aprendizaje).
- Diseñar e implementar el componente generador, evaluador y predictor del marco de trabajo mediante un prototipo funcional que utilice algoritmos genéticos.
- Evaluar el desempeño del marco de trabajo planteado mediante la ejecución de casos empíricos.

Marcos de trabajo existentes

Esquema

Caracterizar los modelos predictivos de fallos de software

Diseño e implementación de un prototipo funcional

Evaluación del marco de trabajo (casos empíricos)

Componente generador (1/2)

Componente generador (2/2)

Componente evaluador (1/2)

Componente evaluador (2/2)

(Song et al., 2011)

Componente predictor (1/2)

Componente predictor (2/2)

Caracterización: Revisión sistemática

- Se ejecutó una revisión sistemática de literatura siguiendo la metodología de Kitchenham. Los estudios analizados estuvieron entre el 2002-2017. Se seleccionaron 120 estudios y de estos se analizaron 100.
- Dentro de los autores más destacados están: Khofhgoftaar, Jang, Catal, Malhotra, Menzies y Song que representan el 60 % de los más frecuentes.
- La combinación de métricas con mayor frecuencia fueron Halstead,
 McCabe y LOC con 68,57 %.
- Las técnicas y modelos de minería más comunes fueron las de aprendizaje máquina con 47,14 %.

Diseño e implementación del marco de trabajo

Evaluación: genético vrs (Song & Menzies)

¿El desempeño de la aproximación genética propuesta fue similar a las de otros marcos de trabajos?

12 combinaciones - **Resultados similares a la literatura** 864 combinaciones - **Mejores resultados que la literatura**

Evaluación: genético vrs exhaustivo

¿El desempeño de la aproximación genética se comportó de forma similar a la de una aproximación exhaustiva?

864 combinaciones - Resultados similares al exhaustivo

¿El tiempo de ejecución de la aproximación genética fue similar a la de una aproximación exhaustiva?

864 combinaciones - Mejores resultados que el exhaustivo

Evaluación: configuraciones genéticas (1/3)

Se empleó un análisis de sensibilidad considerando los siguientes factores y sus niveles (Srinivas, 2014):

- Población y generaciones (10, 20 y 40)
- Mutación (0.01, 0.033 y 0.1)
- Cruce (**0.6**, 0.7 y 0.9)

Evaluación: Caso de la industria

- La aproximación genética presentó un desempeño mayor a un random guessing (0.5 AUC) con 7 módulos que reportaron al menos un fallo -AUC de 0.7586).
- La correlación entre la cantidad mínima de módulos que fallaron y el desempeño fue positiva para ambos escenarios.
- Experiencia de aplicar el marco de trabajo en la industria.

Período: 2015-2017

Cuadro: Publicaciones

Publicación	Tipo	BD
Software fault prediction: A Systematic Mapping Study	CibSE-	Scopus-Elsevier
	Conferencia (2015)	
A software defect-proneness prediction framework: A new ap-	SEKE-	CORE B
proach using genetic algorithms to generate learning schemes.	Conferencia (2015)	
An Empirical Validation of an Automated Genetic Software Effort	CibSE-	Scopus-Elsevier
Prediction Framework using ISBSG Dataset. XIX Ibero-American	Conferencia (2016)	
Conference on Software Engineering		
An Empirical Validation of Learning Schemes using an Automa-	Iberamia-	Springer-Verlag
ted Genetic Defect Prediction Framework	Conferencia (2016)	
An Empirical Validation of Learning Schemes using an An Au-	Iberamia-	Scopus-Elsevier
tomated Defect Prediction Framework using Genetic Algorithms:	Journal(2016)	
A Validation of Empirical Studies		
An Empirical Evaluation of NASA-MDP Data sets using a Gene-	CONCAPAN-	IEEE-Xplore
tic Defect-Proneness Prediction Framework	Conferencia (2016)	
A genetic algorithm based framework for software effort predic-	JSERD-	Springer-OpenAccess
tion	Journal(2017)	

Conclusiones (1/2)

- Los algoritmos genéticos permiten construir esquemas de aprendizaje de forma automática, explorando un espacio de búsqueda mayor al de la literatura en un tiempo razonable.
- La generación automática de esquemas de aprendizaje requiere de considerable experimentación para lograr un alto desempeño.
- Entre más se incremente el espacio de búsqueda hay más opción de encontrar una mejor solución.

Conclusiones (2/2)

- La comparación con una aproximación exhaustiva dio como resultados un desempeño similar y mejores tiempos de respuesta.
- El estudio de sensibilidad es importante para la obtención de esquemas de aprendizaje con mejor desempeño.
- El caso de estudio en Intel, sección CR, ratifica que es indispensable seguir probando el marco de trabajo en entornos privados.

Trabajo futuro

- Estudiar una estrategía de automatización de los parámetros de cada técnica y algoritmo utilizado en el esquema de aprendizaje.
- Incorporar más técnicas y algoritmos para los esquemas de aprendizaje. Es decir ampliar el espacio de búsqueda.
- Calcular la densidad de defectos en lugar de la propensidad de defectos.
- Adaptar el método para predecir en otros dominios, por ejemplo estimación de esfuerzo.

Agradecimientos:

