Programming Assignment 1 CS 747

Aditya Jadhav

2nd September, 2019

Implementation details of algorithms

Round Robin -

```
def roundRobin(self,horizon):
    k = 0
    cumulativeReward = 0
    for turn in range(horizon):
        # Pull an arm and update the cumulative reward
        outcome = self.pullArm(k)
        cumulativeReward = cumulativeReward + outcome
        k = (k + 1) % self.variants

maxReward = max(self.payouts) * horizon
    regret = maxReward - cumulativeReward
    return regret
```

The algorithm iterates over all the arms for the given time **horizon**. In each turn the current arm is pulled and the **cumulative reward** is updated based on the outcome of the arm.

& Greedy -

```
def epsilonGreedy(self,epsilon,horizon):
    cumulativeReward = 0
    empericalPayouts = [0] * self.variants
    rewards = [0] * self.variants
    pulls = [0] * self.variants

# Estimating emperical payouts for n learning trials
k = 0
n = min(self.variants,horizon)
for turn in range(n):
    # Pull kth arm and update the cumulative reward
    outcome = self.pullArm(k)
    cumulativeReward = cumulativeReward + outcome
    k = (k + 1) * self.variants

# Update kth arms reward and pull count
    rewards[k] = rewards[k] + outcome
    pulls[k] = pulls[k] + 1
    empericalPayouts[k] = rewards[k]/pulls[k]

# Explore / exploit with coresponding probabilites, for remaining turns
for turn in range(n,horizon):
    # Explore in the complete or exploit
    r = np.random.uniform(0,1)
    if (r < epsilon):
        # Explore : Choose and arm at random
        k = int(np.random.uniform(0,1) * (self.variants - 1))
    else:
        # Explore : Choose the arm with maximum emperical payout
        k = empericalPayouts.index(max(empericalPayouts))

# Pull kth arm and update the cumulative reward
    outcome = self.pullArm(k)
    cumulativeReward = cumulativeReward + outcome

# Update kth arms reward and pull count
    rewards[k] = rewards[k] + outcome

pulls[k] = pulls[k] + 1
    empericalPayouts[k] = rewards[k]/pulls[k]

maxReward = max(self.payouts) * horizon
    regret = maxReward - cumulativeReward
    return regret</pre>
```

In this algorithm we first estimate the empirical payouts for **n learning trials**.

Here **n** is an algorithm specific parameter and is chosen to be equal to the number of arms.

For the remaining turns, i.e (horizon - n) we try the exploration / exploitation approach. We choose to explore / exploit with probability & and (1 - &) respectively.

Once we have decided which arm to pull, we update the **cumulative reward** and also the **empirical payout** of pulled arm based on the outcome.

NOTE: The choice of n learning trials is programmer specific. Algorithm description from some sources may choose to omit these n learning trials. We have chosen implemented this here

UCB -

```
def ucb(self,horizon):
    cumulativeReward = 0
    empericalPayouts = [0] * self.variants
rewards = [0] * self.variants
pulls = [0] * self.variants
    n = min(self.variants, horizon)
     for turn in range(n):
         # Pull kth arm and update the cumulative reward
outcome = self.pullArm(k)
         cumulativeReward = cumulativeReward + outcome k = (k + 1) % self.variants
         # Update kth arms reward and pull count
rewards[k] = rewards[k] + outcome
          pulls[k] = pulls[k] + 1
          empericalPayouts[k] = rewards[k]/pulls[k]
    ucbValues = [0] * self.variants
     for turn in range(n,horizon):
         for i in range(self.variants):
    term = math.sqrt(2 * math.log(turn) / pulls[i])
         ucbValues[i] = empericalPayouts[i] + term
# Choose the arm with maximum ucb value and pull it
         k = ucbValues.index(max(ucbValues))
         outcome = self.pullArm(k)
          cumulativeReward = cumulativeReward + outcome
          rewards[k] = rewards[k] + outcome
          pulls[k] = pulls[k] + 1
          empericalPayouts[k] = rewards[k]/pulls[k]
    maxReward = max(self.payouts) * horizon
    regret = maxReward - cumulativeReward
     return regret
```

In this algorithm we first estimate the empirical payouts for **n learning trials**.

Here **n** is an algorithm specific parameter and is chosen to be equal to the number

For the remaining turns, i.e **(horizon - n)** we define upper confidence bound for all the arms as follows -

$$ucb_a^t = \widehat{p_a^t} + \sqrt{\frac{2 \ln t}{u_a^t}}$$

of arms.

We then pull the arm with maximum upper confidence bound. We then update the cumulative reward and the empirical payout of pulled arm based on the outcome of the arm.

KL UCB -

```
def solve(self, pHat ,upperBound):
    # Define maxIter and precision
    maxIter = 25
    precision = le-6

# Use binary search to find the optimum solution
    l = pHat
    r = 1
    for i in range(maxIter):
        m = (l + r) / 2
        kl = self.klbivergence(pHat,m)
        if (abs(kl - upperBound) < precision): break
        if (kl <= upperBound): l = m
        else: r = m
    return m

def generateKlUcbValues(self, empericalPayouts, turn, pulls):
    klUcbValues = [0] * self.variants
    for i in range(self.variants):
        # Get value using the below formula
        upperBound = (math.log(turn) + 3 * math.log(math.log(turn))) / pulls[i]
        klUcbValues[i] = self.solve(empericalPayouts[i],upperBound)
    return klUcbValues</pre>
```

Implementation is same as above. Only the formula for UCB changes -

$$ucb_a^t = max(q), \ q \in [\hat{p_a^t}, 1] \&$$

$$KL(\widehat{p_a^t},q) \leq \frac{\ln t + 3 \ln (\ln t)}{u_a^t}$$

To solve this we use binary search. We fix algorithm specific parameters maxIter = 25 and precision = 10^{-6} for the solve function.

Thompson Sampling -

In this algorithm, we keep track of number of successes and failures of each arm. In each turn we calculate $\mathbf{x_a}^t$ as follows -

$$x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$$

We then select the arm with maximum $\mathbf{x_a}^t$ value. Once we have selected the arm, we pull it and update **cumulative reward**, **successes** and **failures** of that arm based on the outcome.

Performance analysis

Details -

• Number of variants: 2

• Payouts of variants : [0.4, 0.8]

Observations -

- From (a), round robin performs worst out of all the algorithms considered above.
- From (b), e-greedy 0.2 performs worse out of the three as it does a lot of unnecessary exploration.
- From (c), **not much conclusion** can be made about the performance of ucb, kl-ucb and thompson

Details -

Number of variants: 5

• Payouts of variants : [0.1, 0.2, 0.3, 0.4, 0.5]

Observations -

- From (a), round robin performs worst out of all the algorithms considered above.
- From (b), e-greedy 0.2 performs worse out of the three as it does a lot of unnecessary exploration.
- From (b), e-greedy 0.02 performs **best out of the three** as 5 variants need to be explored in this case.
- From (b), e-greedy 0.002 performs worse than 0.02 as it does very less exploration.
- From (c), we can somewhat say that regret for **ucb is growing faster** than kl-ucb and thompson.

Details -

Number of variants: 25

Payouts of variants: [0.15, 0.23, 0.37, 0.44, 0.50, 0.32, 0.78, 0.21, 0.82, 0.56, 0.34, 0.56, 0.84, 0.76, 0.43, 0.65, 0.73, 0.92, 0.10, 0.89, 0.48. 0.96, 0.60, 0.54, 0.49]

Observations -

- From (a), round robin performs worst out of all the algorithms considered above.
- From (b), e-greedy 0.2 performs worse out of the three as it does a lot of unnecessary exploration.
- From (b), e-greedy 0.02 performs **best out of the three** as 25 variants need to be explored in this case.
- From (b), e-greedy 0.002 performs worse than 0.02 as it does very less exploration.
- From (c), regret for ucb seems to grow exponentially and hence should be proportional to horizon.
- From (c), regret for kl-ucb/thompson seems to **grow linearly** with horizon and hence should be **proportional to log(horizon)** as the scale on the x-axis is logarithmic.