Selected Topics in Engineering Mathematics Finals

(2 pages)

1. Solve the following nonlinear DE:

$$(7\%)$$

$$y^{-3}(x)y''(x) = 1,$$
 $y(1) = -\sqrt{2}, y'(1) = \sqrt{2}$

2. Solve the following PDEs:

(27%)

(a)
$$16 \frac{\partial^2}{\partial x^2} u(x,t) = \frac{\partial}{\partial t} u(x,t), \quad 0 < x < 2, \quad t > 0, \quad u(0,t) = u(2,t) = 0,$$

$$u(x,0) = \sin(\pi x)$$
 for $0 < x < 1$, $u(x,0) = 0$ for $1 < x < 2$

(b)
$$\frac{\partial}{\partial x}u(x,y) + y\frac{\partial}{\partial y}u(x,y) = \cos x + y$$

(c)
$$\frac{\partial}{\partial x}u(x,y,z) + \tan y \frac{\partial}{\partial y}u(x,y,z) + \cot z \frac{\partial}{\partial z}u(x,y,z) = 0$$

3. Suppose that

(6%)

$$\phi_0(x) = 1,$$
 $\phi_1(x) = x + c_0,$ $\phi_2(x) = x^2 + d_1x + d_0,$ $x \in [0, 10]$

Find c_0 , d_0 , and d_1 such that $\phi_0(x)$, $\phi_1(x)$, and $\phi_2(x)$ form an orthogonal set (unnecessary to be orthonormal) within $x \in [0, 10]$ and with respect to the weight function of w(x) = x(10-x).

4. Find the Fourier transforms of the following functions:

(15%)

(a)
$$g(x) = x$$
 for $10 < |x| < 20$, $g(x) = 0$ otherwise

(Please express the result in terms of the sinc function)

(b)
$$g(x) = \exp(-x^2 - 2x - 3) + \delta(4x)$$

(c)
$$g(x,y)=1$$
 if $1 \le \sqrt{(x/2)^2 + y^2} \le 2$, $g(x,y)=0$ otherwise.

(Please determine the two-dimensional FT of g(x, y))

5. Find the following convolutions:

(10%)

(a)
$$\operatorname{sinc}(3x) * \operatorname{sinc}(6x) * \operatorname{sinc}(12x) * (\cos(2\pi x) + \sin(4\pi x) + \cos(8\pi x))$$

(b)
$$\delta(x-1)*\delta''(x)*\delta(3x)*(x^3+x^2+x+1)$$

(Cont.)

6. Suppose that the PMF of *X* is

$$(10\%)$$

$$P_X(1) = P_X(5) = 0.1$$
, $P_X(2) = P_X(4) = 0.2$, $P_X(3) = 0.4$

Determine the variance, the skewness, the kurtosis, and the entropy of X. Please express the entropy in terms of $\ln 10$ and $\ln 2$.

7. The matrix \mathbf{A} and the vector \mathbf{b} are

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & -2 \\ 2 & -2 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} -17 \\ 9 \end{bmatrix}.$$

- (a) Find the singular values of **A**. (4 %)
- (b) Find the pseudo-inverse of **A**. (5 %)
- (c) Determine the LS solution \mathbf{x}_{LS} to $\mathbf{A}\mathbf{x} = \mathbf{b}$. (3 %)
- (d) Find ρ_{LS} , which is the size of the minimum residual associated with $\mathbf{A}\mathbf{x} = \mathbf{b}$. (2 %)
- 8. Write **True** or **False** for these statements. There is no need to justify your answer. (6 %)
 - (a) If J is a Jordan block, then J^{1000} is also a Jordan block.
 - (b) Let $\mathbf{A} \in \mathbb{C}^{3\times3}$. The matrix 2-norm $\|\mathbf{A}\|_2$ and the nuclear norm $\|\mathbf{A}\|_*$ satisfy $\|\mathbf{A}\|_2 = |\mathbf{A}\|_*$ if and only if rank $(\mathbf{A}) = 1$.
 - (c) Let $\mathbf{A} \in \mathbb{C}^{M \times N}$. If σ is a singular value of \mathbf{A} , then σ^2 is an eigenvalue of $\mathbf{A}\mathbf{A}^H$.

9. The matrix **A** is

$$\begin{bmatrix}
 4 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

The integer N satisfies $N \ge 1000$. Find the value of the entry-wise L_{∞} norm

$$\left\| \left(\mathbf{A} \otimes \left(\mathbf{A} - 3\mathbf{I}_5 \right) \right)^N \right\|_{\infty}.$$

Simplify and express your answer in terms of N.