Matemática Discreta

 $09/05/2014~\surd$

Nome:			
1.01110.			

N.º mecanográfico: _____ Curso ____

Espaço reservado aos docentes

Espaçe) reser	vaao	aos a	иосени	es	
$E \setminus C$	0	1	2	3	4	5
0	00	16	32	48	64	80
1	-04	12	28	44	60	
2	-08	08	24	40		
3	-12	04	20			
4	-16	00				
5	-20					

Questões	Grupo I	Grupo II - 1	Grupo II - 2	Total
Classificação				

Grupo I

Este grupo é constituído por 5 questões de escolha múltipla. Cada questão tem uma só opção correta que deve assinalar com uma \times no \square correspondente.

Uma resposta correta é cotada com 16 pontos, uma resposta em branco com 0 pontos e uma resposta errada com -4 pontos.

- 1. Uma empresa vai distribuir 6 bolas de basquetebol iguais e 7 bolas de futebol diferentes por 5 clubes. De quantas maneiras é possível fazer esta distribuição?

 - $\ \, \square \, \left(\begin{array}{c} 13 \\ 6 \end{array} \right) \times 5^7;$
- 2. Numa turma de 45 alunos, 20 jogam futebol, 28 jogam basquetebol, 16 jogam andebol, 8 jogam futebol e basquetebol, 5 jogam futebol e andebol, 10 jogam basquetebol e andebol, e 2 jogam futebol, basquetebol e andebol. Quantos alunos desta turma não pratica nenhum destes desportos?
 - \square 43;
 - \square 2;
 - \square 7;
 - nenhuma das anteriores.

3.	As Olimpíadas de Matemática vão ser disputadas por 27 escolas de um certo distrito. Qual o número mínimo de concorrentes que tem de existir para que se garanta que pelo menos 11 alunos vêm de uma mesma escola?
	\square 271;
	\square 297;
	\square 298;
4.	Considere um sistema computacional onde se usam endereços de 16 dígitos binários (zeros e uns). O número de endereços que se podem formar com 11 zeros e 5 uns, que começam por 101 e que terminam em 0001 são:
5.	Numa repartição pública há 60 pessoas para serem atendidas e 3 balcões de atendimento. Sabendo que as pessoas se distribuem pelos 3 balcões de atendimento em número igual, de quantas maneiras diferentes se pode formar a fila do primeiro balcão de atendimento?
	\square 20!;
	\square $\overline{40!}$.

Grupo II

Justifique devidamente todas as respostas

(50 val.)1) (a) Prove, por indução sobre n, que $n^3 + (n+1)^3 + (n+2)^3$ é múltiplo de 9, para todo $n \in \mathbb{N}$.

(70 val.)2) (a) Determine o coeficiente de xy^3z no desenvolvimento de $(x^2 + \frac{y}{x} + 2z)^6$.

(b) Calcule o desenvolvimento de $(a+b)^4$ e e use-o para determinar $c_0, c_1, c_2, c_3, c_4 \in \mathbb{N}$ tais que

$$5^4 = c_0 4^0 + c_1 4^1 + c_2 4^2 + c_3 4^3 + c_4 4^4.$$

(c) Sabendo que $\sum_{k=0}^{n} \binom{n}{k} = 32$, determine o coeficiente de x^{10} no desenvolvimento de $(x^3 + \sqrt{x})^n$.