In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings ("ignore")
pd.set_option("display.max_rows",1000)
sns.set_theme(style="whitegrid")
```

1.Reading application_data.csv

In [2]:

```
app=pd.read_csv("application_data.csv")
```

In [3]:

app.head(10)

Out[3]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_(
0	100002	1	Cash loans	М	N	
1	100003	0	Cash loans	F	N	
2	100004	0	Revolving loans	M	Υ	
3	100006	0	Cash loans	F	N	
4	100007	0	Cash loans	М	N	
5	100008	0	Cash loans	М	N	
6	100009	0	Cash loans	F	Υ	
7	100010	0	Cash loans	M	Υ	
8	100011	0	Cash loans	F	N	
9	100012	0	Revolving loans	М	N	

10 rows × 122 columns

In [4]:

app.shape

Out[4]:

(307511, 122)

In [5]:

```
app.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510
Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR
dtypes: float64(65), int64(41), object(16)
memory usage: 286.2+ MB
In [6]:
list(app.columns)
Out[6]:
['SK_ID_CURR',
 'TARGET',
 'NAME_CONTRACT_TYPE',
 'CODE_GENDER',
 'FLAG OWN CAR'
 'FLAG_OWN_REALTY',
 'CNT_CHILDREN',
 'AMT_INCOME_TOTAL',
 'AMT_CREDIT',
 'AMT_ANNUITY',
 'AMT_GOODS_PRICE',
 'NAME TYPE SUITE',
 'NAME_INCOME_TYPE',
 'NAME EDUCATION TYPE',
 'NAME_FAMILY_STATUS',
 'NAME_HOUSING_TYPE',
 'REGION_POPULATION_RELATIVE',
 'DAYS BIRTH'.
In [7]:
app.dtypes
Out[7]:
SK_ID_CURR
                                   int64
TARGET
                                   int64
NAME_CONTRACT_TYPE
                                   object
CODE GENDER
                                   object
FLAG OWN CAR
                                   object
FLAG OWN REALTY
                                   object
CNT CHILDREN
                                   int64
AMT_INCOME_TOTAL
                                 float64
AMT_CREDIT
                                 float64
                                 float64
AMT ANNUITY
AMT GOODS PRICE
                                 float64
NAME_TYPE_SUITE
                                   object
NAME INCOME TYPE
                                   object
NAME_EDUCATION_TYPE
                                   object
NAME FAMILY STATUS
                                   object
NAME HOUSING TYPE
                                   object
REGION POPULATION RELATIVE
                                 float64
DAYS BIRTH
                                    int64
```

In [8]:

app.describe()

Out[8]:

	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AM.
count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	307
mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	27
std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	14
min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	1
25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	16
50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	24
75%	367142.500000	0.000000	1.000000	2.025000e+05	8.086500e+05	34
max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	258
8 rows × 106 columns						
4						•

Comment on applicattion_data.csv

1.It has 122 columns, 307511 entries,

2. It has 65 coulmns with float datatype, 41 coulmns with integer data type, 16 coulmns with object datatype

2. Reading previous_application.csv

In [9]:

pre=pd.read_csv("previous_application.csv")

In [10]:

pre.head(10)

Out[10]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	ΑI
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	
5	1383531	199383	Cash loans	23703.930	315000.0	
6	2315218	175704	Cash loans	NaN	0.0	
7	1656711	296299	Cash loans	NaN	0.0	
8	2367563	342292	Cash loans	NaN	0.0	
9	2579447	334349	Cash loans	NaN	0.0	
10 rows × 37 columns						
$ \cdot $						•

In [11]:

pre.shape

Out[11]:

(1670214, 37)

In [12]:

```
list(pre.columns)
```

```
Out[12]:
```

```
['SK_ID_PREV',
 'SK_ID_CURR',
 'NAME CONTRACT TYPE',
 'AMT ANNUITY',
 'AMT_APPLICATION',
 'AMT_CREDIT',
 'AMT_DOWN_PAYMENT',
 'AMT_GOODS_PRICE',
 'WEEKDAY_APPR_PROCESS_START',
 'HOUR APPR PROCESS START',
 'FLAG_LAST_APPL_PER_CONTRACT',
 'NFLAG_LAST_APPL_IN_DAY',
 'RATE_DOWN_PAYMENT',
 'RATE INTEREST PRIMARY',
 'RATE_INTEREST_PRIVILEGED',
 'NAME CASH_LOAN_PURPOSE',
 'NAME_CONTRACT_STATUS',
 'DAYS_DECISION',
 'NAME_PAYMENT_TYPE',
 'CODE_REJECT_REASON',
 'NAME TYPE SUITE',
 'NAME_CLIENT_TYPE'
 'NAME GOODS_CATEGORY',
 'NAME_PORTFOLIO',
 'NAME_PRODUCT_TYPE',
 'CHANNEL_TYPE',
 'SELLERPLACE AREA',
 'NAME_SELLER_INDUSTRY',
 'CNT PAYMENT',
 'NAME_YIELD_GROUP',
 'PRODUCT_COMBINATION',
 'DAYS_FIRST_DRAWING',
 'DAYS_FIRST_DUE',
 'DAYS LAST DUE 1ST VERSION',
 'DAYS LAST DUE',
 'DAYS TERMINATION',
 'NFLAG_INSURED_ON_APPROVAL']
```

In [13]:

```
pre.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1670214 entries, 0 to 1670213
Data columns (total 37 columns):
    Column
                                  Non-Null Count
 #
                                                    Dtype
     _____
                                  -----
_ _ _
                                                    ----
    SK_ID_PREV
0
                                  1670214 non-null int64
 1
    SK_ID_CURR
                                  1670214 non-null int64
 2
    NAME_CONTRACT_TYPE
                                  1670214 non-null object
 3
    AMT ANNUITY
                                  1297979 non-null float64
                                  1670214 non-null float64
 4
    AMT_APPLICATION
 5
                                  1670213 non-null float64
    AMT CREDIT
 6
    AMT_DOWN_PAYMENT
                                  774370 non-null
                                                    float64
 7
    AMT_GOODS_PRICE
                                  1284699 non-null float64
 8
    WEEKDAY_APPR_PROCESS_START
                                  1670214 non-null object
 9
    HOUR_APPR_PROCESS_START
                                  1670214 non-null int64
 10
    FLAG_LAST_APPL_PER_CONTRACT 1670214 non-null object
    NFLAG_LAST_APPL_IN_DAY
                                  1670214 non-null int64
 11
    RATE_DOWN_PAYMENT
                                  774370 non-null
 12
                                                    float64
    RATE_INTEREST_PRIMARY
                                  5951 non-null
 13
                                                    float64
```

In [14]:

pre.describe()

Out[14]:

	SK_ID_PREV	SK_ID_CURR	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DO
count	1.670214e+06	1.670214e+06	1.297979e+06	1.670214e+06	1.670213e+06	
mean	1.923089e+06	2.783572e+05	1.595512e+04	1.752339e+05	1.961140e+05	
std	5.325980e+05	1.028148e+05	1.478214e+04	2.927798e+05	3.185746e+05	
min	1.000001e+06	1.000010e+05	0.000000e+00	0.000000e+00	0.000000e+00	
25%	1.461857e+06	1.893290e+05	6.321780e+03	1.872000e+04	2.416050e+04	
50%	1.923110e+06	2.787145e+05	1.125000e+04	7.104600e+04	8.054100e+04	
75%	2.384280e+06	3.675140e+05	2.065842e+04	1.803600e+05	2.164185e+05	
max	2.845382e+06	4.562550e+05	4.180581e+05	6.905160e+06	6.905160e+06	
8 rows × 21 columns						
4						•

In [14]:

pre.dtypes

Out[14]:

SK_ID_PREV SK_ID_CURR	int64 int64
NAME_CONTRACT_TYPE	object
AMT_ANNUITY	float64
AMT_APPLICATION	float64
AMT_CREDIT	float64
AMT_DOWN_PAYMENT	float64
AMT_GOODS_PRICE	float64
WEEKDAY_APPR_PROCESS_START	object
HOUR_APPR_PROCESS_START	int64
FLAG_LAST_APPL_PER_CONTRACT	object
NFLAG_LAST_APPL_IN_DAY	int64
RATE_DOWN_PAYMENT	float64
RATE_INTEREST_PRIMARY	float64
RATE_INTEREST_PRIVILEGED	float64
NAME_CASH_LOAN_PURPOSE	object
NAME_CONTRACT_STATUS	object
DAYS_DECISION	int64
NAME_PAYMENT_TYPE	object
CODE_REJECT_REASON	object
NAME_TYPE_SUITE	object
NAME_CLIENT_TYPE	object
NAME_GOODS_CATEGORY	object
NAME_PORTFOLIO	object
NAME_PRODUCT_TYPE	object
CHANNEL_TYPE	object
SELLERPLACE_AREA	int64
NAME_SELLER_INDUSTRY	object
CNT_PAYMENT	float64
NAME_YIELD_GROUP	object
PRODUCT_COMBINATION	object
DAYS_FIRST_DRAWING	float64
DAYS_FIRST_DUE	float64
DAYS_LAST_DUE_1ST_VERSION	float64
DAYS_LAST_DUE	float64
DAYS_TERMINATION	float64
NFLAG_INSURED_ON_APPROVAL	float64
dtype: object	

Comment on previous_application.csv

- 1. It is has 1670214 rows and 37 columns
- 2. It has 6 integer columns, 15 float columns, 16 string columns

3. Cleaning Data-Checking Missing Values(application_data.csv)

In [15]:

```
#checking missing values in application data.csv
app.isnull().sum()
Out[15]:
SK_ID_CURR
                                      0
TARGET
                                      0
                                      0
NAME_CONTRACT_TYPE
CODE GENDER
                                      0
FLAG_OWN_CAR
                                      0
FLAG_OWN_REALTY
                                      0
CNT_CHILDREN
                                      0
AMT_INCOME_TOTAL
                                      0
AMT_CREDIT
                                      0
AMT_ANNUITY
                                     12
AMT GOODS PRICE
                                    278
NAME_TYPE_SUITE
                                   1292
NAME_INCOME_TYPE
                                      0
                                      0
NAME_EDUCATION_TYPE
NAME_FAMILY_STATUS
                                      0
NAME_HOUSING_TYPE
                                      0
REGION_POPULATION_RELATIVE
                                      0
DAYS BIRTH
                                       a
In [16]:
#show percentage of null values in each column in application_data.csv
app_null=(100*app.isnull().sum()/len(app)).round(2)
app_null
Out[16]:
SK_ID_CURR
                                  0.00
                                  0.00
                                  0.00
                                  0.00
                                  0.00
```

```
TARGET
NAME CONTRACT TYPE
CODE_GENDER
FLAG_OWN_CAR
FLAG_OWN_REALTY
                                   0.00
CNT_CHILDREN
                                   0.00
AMT INCOME TOTAL
                                   0.00
AMT_CREDIT
                                   0.00
AMT ANNUITY
                                   0.00
AMT_GOODS_PRICE
                                   0.09
NAME_TYPE_SUITE
                                   0.42
NAME INCOME TYPE
                                   0.00
NAME EDUCATION TYPE
                                   0.00
NAME FAMILY STATUS
                                   0.00
NAME HOUSING TYPE
                                   0.00
REGION_POPULATION_RELATIVE
                                   0.00
```

DAYS BIRTH

0.00

```
In [17]:
```

```
#just show columns having null values is decreasing order
app_null=app_null[app_null.values>0].sort_values(ascending=False)
app_null
Out[17]:
COMMONAREA AVG
                                 69.87
COMMONAREA MODE
                                 69.87
                                 69.87
COMMONAREA MEDI
NONLIVINGAPARTMENTS_MODE
                                 69.43
NONLIVINGAPARTMENTS_AVG
                                 69.43
NONLIVINGAPARTMENTS_MEDI
                                 69.43
FONDKAPREMONT MODE
                                 68.39
LIVINGAPARTMENTS MODE
                                 68.35
LIVINGAPARTMENTS_MEDI
                                 68.35
LIVINGAPARTMENTS_AVG
                                 68.35
FLOORSMIN_MEDI
                                 67.85
FLOORSMIN AVG
                                 67.85
FLOORSMIN MODE
                                 67.85
YEARS_BUILD_AVG
                                 66.50
YEARS_BUILD_MEDI
                                 66.50
YEARS_BUILD_MODE
                                 66.50
OWN_CAR_AGE
                                 65.99
LANDAREA MEDI
                                 59.38
In [18]:
len(app_null)
Out[18]:
64
Dropping Missing Values >40%
In [19]:
# Dropping columns with missing value >40%
app null=app null[app null.values>=40]
len(app_null)
Out[19]:
49
In [20]:
# Hence, the dataset (df_null) is accordingly modified to exclude these values
app_null=list(app_null.index)
app.drop(labels=app_null,axis=1,inplace=True)
app.shape
Out[20]:
```

(307511, 73)

In [21]:

```
#Checking the data again as to the columns >40% null values are dropped or not
app_null=(app.isnull().sum()*100/len(app)).round(2)
app_null[app_null.values>0].sort_values(ascending=False)
```

Out[21]:

OCCUPATION_TYPE	31.35
EXT_SOURCE_3	19.83
AMT_REQ_CREDIT_BUREAU_HOUR	13.50
AMT_REQ_CREDIT_BUREAU_DAY	13.50
AMT_REQ_CREDIT_BUREAU_WEEK	13.50
AMT_REQ_CREDIT_BUREAU_MON	13.50
AMT_REQ_CREDIT_BUREAU_QRT	13.50
AMT_REQ_CREDIT_BUREAU_YEAR	13.50
NAME_TYPE_SUITE	0.42
OBS_30_CNT_SOCIAL_CIRCLE	0.33
DEF_30_CNT_SOCIAL_CIRCLE	0.33
OBS_60_CNT_SOCIAL_CIRCLE	0.33
DEF_60_CNT_SOCIAL_CIRCLE	0.33
EXT_SOURCE_2	0.21
AMT_GOODS_PRICE	0.09
dtype: float64	

Comments:

- 1. application_data.csv has missing values in 64 coulumns
- 2. Off which 49 coumns have more than 40 % missing values

Cleaning application_data.csv---Imputing missing values

In [22]:

```
#Checking for coulmns >13% null values
app_null=app_null[app_null.values>=13]
app_null
```

Out[22]:

OCCUPATION_TYPE	31.35
EXT_SOURCE_3	19.83
AMT_REQ_CREDIT_BUREAU_HOUR	13.50
AMT_REQ_CREDIT_BUREAU_DAY	13.50
AMT_REQ_CREDIT_BUREAU_WEEK	13.50
AMT_REQ_CREDIT_BUREAU_MON	13.50
AMT_REQ_CREDIT_BUREAU_QRT	13.50
AMT_REQ_CREDIT_BUREAU_YEAR	13.50
dtype: float64	

In [23]:

```
#most frequent occuring value in OCCUPATION_TYPE column
occu_mode=app.OCCUPATION_TYPE.mode()
print(f'Frequent value of OCCUPATION_TYPE column: ', occu_mode)
```

Frequent value of OCCUPATION_TYPE column: 0 Laborers dtype: object

In [24]:

```
sns.countplot(x='OCCUPATION_TYPE',data=app)
plt.xticks(rotation=90)
plt.show()
```


In [25]:

```
#imputimg missing value with mode() function
app['OCCUPATION_TYPE']=app['OCCUPATION_TYPE'].fillna(occu_mode[0])
```

In [26]:

```
#checking if missing values are sucessfully removed
app.OCCUPATION_TYPE.isnull().sum()
```

Out[26]:

0

In [27]:

```
#replotting to see the change in Ocuupation typye after imputing
sns.countplot(x='OCCUPATION_TYPE',data=app)
plt.xticks(rotation=90)
plt.show()
```


In [28]:

```
#dropping coulmn with missing values`13.50 %
app.drop(['AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY', 'AMT_REQ_CREDIT_BUREAU_app.shape
```

Out[28]:

(307511, 67)

In [29]:

```
#checking if coulmns are dropped
app_null=(100*app.isnull().sum()/len(app)).round(2)
```

In [30]:

```
app_null=app_null[app_null.values>0].sort_values(ascending=False)
app_null
```

Out[30]:

19.83
0.42
0.33
0.33
0.33
0.33
0.21
0.09

In [31]:

```
#finding most frequent value in NAME_TYPE_SUITE column
app['NAME_TYPE_SUITE'].describe()
```

Out[31]:

count 306219
unique 7
top Unaccompanied
freq 248526

Name: NAME_TYPE_SUITE, dtype: object

In [32]:

```
sns.set_theme(style="whitegrid")
sns.countplot(x="NAME_TYPE_SUITE", data=app)
plt.xticks(rotation=90)
plt.show()
```


In [33]:

```
app['NAME_TYPE_SUITE'].isnull().sum()
```

Out[33]:

1292

In [34]:

```
app['NAME_TYPE_SUITE'].isnull().sum()/len(app['NAME_TYPE_SUITE'])*100
```

Out[34]:

0.42014757195677555

```
In [35]:
```

```
#imputing NAME_TYPE_SUITE by mode
nts=app.NAME_TYPE_SUITE.mode()
nts
```

Out[35]:

0 Unaccompanied
dtype: object

In [36]:

```
app['NAME_TYPE_SUITE']=app['NAME_TYPE_SUITE'].fillna(app['NAME_TYPE_SUITE'].mode()[0])
```

In [37]:

```
#checking if imputing worked or not
(app.NAME_TYPE_SUITE.isnull().sum()*100/len(app))
```

Out[37]:

0.0

In [38]:

```
app['NAME_TYPE_SUITE'].describe()
```

Out[38]:

count 307511
unique 7
top Unaccompanied
freq 249818

Name: NAME_TYPE_SUITE, dtype: object

In [39]:

```
sns.countplot(x="NAME_TYPE_SUITE", data=app)
plt.xticks(rotation=90)
plt.show()
```


In [40]:

#Using multivariate analysis to check correlation between EXT_SOURCE_3, EXT_SOURCE_2 with T
sns.heatmap(app[["EXT_SOURCE_2","EXT_SOURCE_3","TARGET"]].corr(),annot=True,cmap="RdYlGn")

Out[40]:

<AxesSubplot:>


```
In [41]:
```

```
#since there is not much correlation between the TARGET column and EXT SOURCE 2, EXT SOURCE
app.drop(['EXT_SOURCE_2','EXT_SOURCE_3'],axis=1,inplace=True)
app.shape
Out[41]:
(307511, 65)
In [42]:
#checking missing values after dropping columns
app_null=(100*app.isnull().sum()/len(app)).round(2)
app_null=app_null[app_null.values>0].sort_values(ascending=False)
app_null
Out[42]:
OBS_30_CNT_SOCIAL_CIRCLE
                            0.33
DEF_30_CNT_SOCIAL_CIRCLE
                            0.33
OBS_60_CNT_SOCIAL_CIRCLE
                            0.33
DEF_60_CNT_SOCIAL_CIRCLE
                            0.33
AMT_GOODS_PRICE
                            0.09
dtype: float64
```

Summary:

1.Imputed Null values to 0 for following columns: (AMT_REQ_CREDIT_BUREAU_HOUR, AMT_REQ_CREDIT_BUREAU_DAY,

AMT_REQ_CREDIT_BUREAU_WEEK,AMT_REQ_CREDIT_BUREAU_MON,AMT_REQ_CREDIT_BUREAU_()

- 2. Imputed OCCUPATION_TYPE and NAME_TYPE_SUITE columns with mode() as they are categorical columns
- 3. Dropped EXT_SOURCE_2,EXT_SOURCE_3 columns as they do not have much significance.
- 4. After treatment of missing values, 73 columns are left in application_data.csv dataset

4. Converting datatypes

In [43]:

```
# Checking the number of unique values is a column; if number of unique values <=40 --> Cat
#number of unique values> 50--> Continuous Column
app.nunique().sort_values()
```

```
Out[43]:
FLAG_DOCUMENT_21
                                      2
FLAG_WORK_PHONE
                                      2
FLAG_DOCUMENT_5
                                      2
FLAG_PHONE
                                      2
FLAG_EMAIL
                                      2
FLAG_DOCUMENT_20
                                      2
                                      2
REG REGION NOT LIVE REGION
REG_REGION_NOT_WORK_REGION
                                      2
                                      2
LIVE_REGION_NOT_WORK_REGION
FLAG_EMP_PHONE
                                      2
REG_CITY_NOT_LIVE_CITY
                                      2
LIVE_CITY_NOT_WORK_CITY
                                      2
FLAG DOCUMENT 10
                                      2
                                      2
FLAG_DOCUMENT_9
                                      2
FLAG_DOCUMENT_8
                                      2
FLAG_DOCUMENT_7
FLAG_DOCUMENT_2
                                      2
FLAG DOCUMENT 3
                                      2
```

In [44]:

```
app.nunique().sort_values()<=40</pre>
```

Out[44]:

FLAG DOCUMENT 21 True FLAG_WORK_PHONE True FLAG_DOCUMENT_5 True FLAG_PHONE True FLAG_EMAIL True FLAG DOCUMENT 20 True REG REGION NOT LIVE REGION True REG REGION NOT WORK REGION True LIVE_REGION_NOT_WORK_REGION True FLAG_EMP_PHONE True REG CITY NOT LIVE CITY True LIVE CITY NOT WORK CITY True FLAG DOCUMENT 10 True FLAG DOCUMENT 9 True FLAG DOCUMENT 8 True FLAG_DOCUMENT_7 True FLAG DOCUMENT 2 True FLAG DOCUMENT 3 True

In [44]:

app.dtypes

Out[44]:

SK_ID_CURR	int64
TARGET	int64
NAME_CONTRACT_TYPE	object
CODE_GENDER	object
FLAG_OWN_CAR	object
FLAG_OWN_REALTY	object
CNT_CHILDREN	int64
AMT_INCOME_TOTAL	float64
AMT_CREDIT	float64
AMT_ANNUITY	float64
AMT_GOODS_PRICE	float64
NAME_TYPE_SUITE	object
NAME_INCOME_TYPE	object
NAME_EDUCATION_TYPE	object
NAME_FAMILY_STATUS	object
NAME_HOUSING_TYPE	object
REGION_POPULATION_RELATIVE	float64
DAYS_BIRTH	int64
DAYS_EMPLOYED	int64
DAYS_REGISTRATION	float64
DAYS_ID_PUBLISH	int64
FLAG_MOBIL	int64
FLAG_EMP_PHONE	int64
FLAG_WORK_PHONE	int64
FLAG_CONT_MOBILE	int64
FLAG_PHONE	int64
FLAG_EMAIL	int64
OCCUPATION_TYPE	object
CNT_FAM_MEMBERS	float64
REGION_RATING_CLIENT	int64
REGION_RATING_CLIENT_W_CITY	int64
WEEKDAY_APPR_PROCESS_START	object
HOUR_APPR_PROCESS_START	int64
REG_REGION_NOT_LIVE_REGION	int64
REG_REGION_NOT_WORK_REGION	int64
LIVE_REGION_NOT_WORK_REGION	int64
REG_CITY_NOT_LIVE_CITY	int64
REG_CITY_NOT_WORK_CITY	int64
LIVE_CITY_NOT_WORK_CITY	int64
ORGANIZATION_TYPE	object
OBS_30_CNT_SOCIAL_CIRCLE	float64
DEF_30_CNT_SOCIAL_CIRCLE	float64
OBS_60_CNT_SOCIAL_CIRCLE	float64
DEF_60_CNT_SOCIAL_CIRCLE	float64
DAYS_LAST_PHONE_CHANGE	float64
FLAG_DOCUMENT_2	int64
FLAG_DOCUMENT_3	int64
FLAG_DOCUMENT_4	int64
FLAG_DOCUMENT_5	int64
FLAG_DOCUMENT_6	int64
FLAG_DOCUMENT_7	int64
FLAG_DOCUMENT_8	int64
FLAG_DOCUMENT_9	int64
FLAG_DOCUMENT_10	int64
FLAG_DOCUMENT_11	int64
-	

```
FLAG_DOCUMENT_12
                                  int64
FLAG DOCUMENT 13
                                  int64
FLAG DOCUMENT 14
                                  int64
FLAG_DOCUMENT_15
                                  int64
FLAG DOCUMENT 16
                                  int64
FLAG_DOCUMENT_17
                                  int64
FLAG_DOCUMENT_18
                                  int64
FLAG_DOCUMENT_19
                                  int64
FLAG DOCUMENT 20
                                  int64
FLAG_DOCUMENT_21
                                  int64
dtype: object
```

In [45]:

```
#converting from object to bool
app[['REG_REGION_NOT_LIVE_REGION','REG_REGION_NOT_WORK_REGION','LIVE_REGION_NOT_WORK_REGION

| |
```

In [46]:

```
#converting object to bool
app[['FLAG_OWN_CAR','FLAG_OWN_REALTY','FLAG_MOBIL','FLAG_EMP_PHONE']] = app[['FLAG_OWN_CAR']
```

In [47]:

app.dtypes

Out[47]:

ouc[47].	
SK_ID_CURR	int64
TARGET	int64
NAME_CONTRACT_TYPE	object
CODE_GENDER	object
FLAG_OWN_CAR	bool
FLAG_OWN_REALTY	bool
CNT_CHILDREN	int64
AMT_INCOME_TOTAL	float64
AMT CREDIT	float64
AMT_ANNUITY	float64
AMT_GOODS_PRICE	float64
NAME_TYPE_SUITE	object
NAME_INCOME_TYPE	object
NAME_EDUCATION_TYPE	object
NAME_FAMILY_STATUS	object
	_
NAME_HOUSING_TYPE	object
REGION_POPULATION_RELATIVE	float64
DAYS_BIRTH	int64
DAYS_EMPLOYED	int64
DAYS_REGISTRATION	float64
DAYS_ID_PUBLISH	int64
FLAG_MOBIL	bool
FLAG_EMP_PHONE	bool
FLAG_WORK_PHONE	int64
FLAG_CONT_MOBILE	int64
FLAG_PHONE	int64
FLAG_EMAIL	int64
OCCUPATION_TYPE	object
CNT_FAM_MEMBERS	float64
REGION_RATING_CLIENT	int64
REGION_RATING_CLIENT_W_CITY	int64
WEEKDAY_APPR_PROCESS_START	object
HOUR_APPR_PROCESS_START	int64
REG_REGION_NOT_LIVE_REGION	bool
REG REGION NOT WORK REGION	bool
LIVE_REGION_NOT_WORK_REGION	bool
	bool
REG_CITY_NOT_LIVE_CITY	
REG_CITY_NOT_WORK_CITY	bool
LIVE_CITY_NOT_WORK_CITY	bool
ORGANIZATION_TYPE	object
OBS_30_CNT_SOCIAL_CIRCLE	float64
DEF_30_CNT_SOCIAL_CIRCLE	float64
ODC CO CNT COCTAL CTDCLE	
OBS_60_CNT_SOCIAL_CIRCLE	float64
DEF_60_CNT_SOCIAL_CIRCLE	float64
DEF_60_CNT_SOCIAL_CIRCLE	float64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE	float64 float64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2	float64 float64 int64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2 FLAG_DOCUMENT_3	float64 float64 int64 int64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2 FLAG_DOCUMENT_3 FLAG_DOCUMENT_4 FLAG_DOCUMENT_5	float64 float64 int64 int64 int64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2 FLAG_DOCUMENT_3 FLAG_DOCUMENT_4 FLAG_DOCUMENT_5 FLAG_DOCUMENT_6	float64 float64 int64 int64 int64 int64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2 FLAG_DOCUMENT_3 FLAG_DOCUMENT_4 FLAG_DOCUMENT_5 FLAG_DOCUMENT_6 FLAG_DOCUMENT_7	float64 float64 int64 int64 int64 int64 int64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2 FLAG_DOCUMENT_3 FLAG_DOCUMENT_4 FLAG_DOCUMENT_5 FLAG_DOCUMENT_6 FLAG_DOCUMENT_7 FLAG_DOCUMENT_7 FLAG_DOCUMENT_8	float64 float64 int64 int64 int64 int64 int64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2 FLAG_DOCUMENT_3 FLAG_DOCUMENT_4 FLAG_DOCUMENT_5 FLAG_DOCUMENT_6 FLAG_DOCUMENT_7 FLAG_DOCUMENT_7 FLAG_DOCUMENT_8 FLAG_DOCUMENT_9	float64 float64 int64 int64 int64 int64 int64 int64
DEF_60_CNT_SOCIAL_CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2 FLAG_DOCUMENT_3 FLAG_DOCUMENT_4 FLAG_DOCUMENT_5 FLAG_DOCUMENT_6 FLAG_DOCUMENT_7 FLAG_DOCUMENT_7 FLAG_DOCUMENT_8	float64 float64 int64 int64 int64 int64 int64

```
FLAG DOCUMENT 12
                                   int64
FLAG DOCUMENT 13
                                   int64
FLAG_DOCUMENT_14
                                   int64
FLAG DOCUMENT 15
                                   int64
FLAG DOCUMENT 16
                                   int64
FLAG_DOCUMENT_17
                                   int64
FLAG_DOCUMENT_18
                                   int64
                                   int64
FLAG_DOCUMENT_19
FLAG DOCUMENT 20
                                   int64
FLAG_DOCUMENT_21
                                   int64
dtype: object
```

5. Converting columns with negative values to positive

```
In [48]:
```

```
app['DAYS_BIRTH']=app['DAYS_BIRTH'].abs()
app['DAYS_EMPLOYED']=app['DAYS_EMPLOYED'].abs()
app['DAYS_REGISTRATION']=app['DAYS_REGISTRATION'].abs()
app['DAYS_ID_PUBLISH']=app['DAYS_ID_PUBLISH'].abs()
app['DAYS_LAST_PHONE_CHANGE']=app['DAYS_LAST_PHONE_CHANGE'].abs()
app.head()
```

Out[48]:

SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_(0 100002 1 Cash loans True M F 1 100003 Cash loans True 2 100004 Revolving loans True F 3 100006 Cash loans True

5 rows × 65 columns

100007

```
4
```

Cash loans

In [49]:

```
app['DAYS_EMPLOYED']=app['DAYS_EMPLOYED'].astype("int64")
```

True

In [50]:

```
app['DAYS_BIRTH'].describe()
```

Out[50]:

```
307511.000000
count
          16036.995067
mean
           4363.988632
std
           7489.000000
min
25%
          12413.000000
50%
          15750.000000
75%
          19682.000000
          25229.000000
max
```

Name: DAYS_BIRTH, dtype: float64

5. Checking columns with FLAGS and their relation with TARGET column inorder to remove irrelevant ones

```
In [51]:
```

```
# adding all flags coloumns in variable "flag_columns"

flag_cols = [col for col in app.columns if "FLAG" in col]
flag_cols

Out[51]:
```

```
['FLAG_OWN_CAR',
 'FLAG_OWN_REALTY',
 'FLAG_MOBIL',
 'FLAG EMP PHONE',
 'FLAG_WORK_PHONE',
 'FLAG CONT MOBILE',
 'FLAG_PHONE',
 'FLAG_EMAIL',
 'FLAG_DOCUMENT_2',
 'FLAG_DOCUMENT_3',
 'FLAG_DOCUMENT_4',
 'FLAG_DOCUMENT_5',
 'FLAG_DOCUMENT_6',
 'FLAG_DOCUMENT_7
 'FLAG_DOCUMENT_8'
 'FLAG_DOCUMENT_9',
 'FLAG DOCUMENT 10',
 'FLAG_DOCUMENT_11',
 'FLAG_DOCUMENT_12',
 'FLAG_DOCUMENT_13',
 'FLAG_DOCUMENT_14',
 'FLAG_DOCUMENT_15',
 'FLAG DOCUMENT 16',
 'FLAG DOCUMENT 17',
 'FLAG_DOCUMENT_18',
 'FLAG_DOCUMENT_19',
 'FLAG DOCUMENT 20',
 'FLAG DOCUMENT 21']
```

In [52]:

```
import itertools
# Plotting all the graphs to find the relation
app_flag = app[flag_cols+["TARGET"]]
app_flag["TARGET"] = app_flag["TARGET"].replace({1:"Defaulter",0:"Non-defaulter"})
plt.figure(figsize = [20,24])

for l,m in itertools.zip_longest(flag_cols,range(len(flag_cols))):
    plt.subplot(6,5,m+1)
    bx = sns.countplot(app_flag[1], hue = app_flag["TARGET"], palette = ["y","r"])
    plt.xlabel("")
    plt.ylabel("")
    plt.title(1)
```


Cumclusion:Columns (FLAG_OWN_REALTY, FLAG_MOBIL ,FLAG_CONT_MOBILE,FLAG_EMP_PHONE,, FLAG_DOCUMENT_3) have more nondefaulters than defaulter. Hence keeping these columns, along with FLAG_OWN_CAR and deleting rest of the fLAG columns for analysis.

```
In [53]:
```

```
#removing required columns from app_flag list
app_flag.drop(['FLAG_DOCUMENT_3','FLAG_OWN_REALTY', 'FLAG_MOBIL' ,'FLAG_EMP_PHONE', 'FLAG_C
```

In [54]:

```
#dropping the unwanted Flag columns
app.drop(app_flag.columns, axis=1, inplace= True)
```

In [55]:

```
#checking shape of application_data.csv after dropping Flag columns
app.shape
```

Out[55]:

(307511, 43)

In [56]:

```
app.FLAG_OWN_CAR.describe()
```

Out[56]:

count 307511
unique 1
top True
freq 307511

Name: FLAG_OWN_CAR, dtype: object

```
In [57]:
```

```
app.FLAG_OWN_REALTY.describe()
Out[57]:
count
          307511
unique
               1
            True
top
          307511
freq
Name: FLAG_OWN_REALTY, dtype: object
Further dropping columns not important for analysis
In [58]:
app.drop(['DAYS_REGISTRATION','DAYS_ID_PUBLISH', 'CNT_CHILDREN','OBS_30_CNT_SOCIAL_CIRCLE',
app.shape
                                                                                              •
Out[58]:
(307511, 34)
In [59]:
app.drop([],axis=1,inplace=True)
app.shape
```

Out[59]:

(307511, 34)

In [60]:

```
app.drop(['REGION_RATING_CLIENT', 'REGION_RATING_CLIENT_W_CITY', 'HOUR_APPR_PROCESS_START', 'W
app.shape
◀ |
```

Out[60]:

(307511, 24)

In [61]:

```
app.columns
```

```
Out[61]:
```

Conclusion: After deleting the unnecessary columns we are left with 24 Columns in application_data.csv dataset

6. Checking for outliers

In [62]:

```
sns.boxplot(app.AMT_INCOME_TOTAL)
plt.title('Distribution of Income of the client')
plt.xscale('log')
plt.show()
```


In [63]:

```
sns.boxplot(app.AMT_ANNUITY)
plt.title('Distribution of Amount Annuity')
plt.show()
```


In [64]:

```
sns.boxplot(app.AMT_CREDIT)
plt.title('Distribution of Credit amount of the loan')
plt.show()
```


In [65]:

```
sns.boxplot(app.AMT_GOODS_PRICE)
plt.title('Distribution of Amount Goods Price')
plt.show()
```


In [65]:

```
sns.boxplot(app.DAYS_BIRTH)
plt.title('Distribution of Age of Client')
plt.show()
```


In [66]:

```
sns.boxplot(app.DAYS_EMPLOYED)
plt.title('Distribution of Current employment')
plt.show()
```


Conclusion:

- 1. AMT_ANNUITY, AMT_CREDIT, AMT_GOODS_PRICE, and AMT_INCOME_TOTAL have high number of outliers which indicating few loan applicants have high income in comparison the others.
- 2. DAYS_BIRTH has no outliers meaning available data is reliable.
- 3. DAYS_EMPLOYED has outlier value above 350000(days) which is impossible and hence this must to be incorrect entry.

7.Binning

7.1 Binning age of clients

In [67]:

```
app["DAYS_BIRTH"].describe()
Out[67]:
count
         307511.000000
          16036.995067
mean
std
           4363.988632
           7489.000000
min
25%
          12413.000000
50%
          15750.000000
75%
          19682.000000
          25229.000000
Name: DAYS_BIRTH, dtype: float64
In [68]:
app["AGE_YEARS"] = app["DAYS_BIRTH"]//365
app["AGE_YEARS"]
Out[68]:
0
          25
1
          45
2
          52
3
          52
4
          54
307506
          25
307507
          56
307508
          41
307509
          32
307510
          46
Name: AGE_YEARS, Length: 307511, dtype: int64
In [69]:
bins = [0,20,25,30,35,40,45,50,55,60,100]
```

```
label = ["0-20","20-25","25-30","30-35","35-40","40-45","45-50","50-55","55-60","60 Above"]
app["AGE_GROUP"] = pd.cut(app["AGE_YEARS"], bins=bins, labels=label)
```

In [70]:

```
sns.boxplot(app['AGE_YEARS'])
plt.title('Distribution of Age of Client')
plt.xlabel("Age in Years")
plt.show()
```


In [71]:

```
round(app.AGE_GROUP.value_counts(normalize=True)*100,2)
```

Out[71]:

```
35-40
             14.20
40-45
             13.01
30-35
             12.82
             11.87
25-30
50-55
             11.41
45-50
             11.19
55-60
             10.64
              9.55
60 Above
20-25
              5.31
0-20
              0.00
```

Name: AGE_GROUP, dtype: float64

7.2 Binning Employement years

In [72]:

```
app["EMPLOYEMENT_YEARS"] = app["DAYS_EMPLOYED"]//365
bins = [0,5,10,15,20,25,30,50]
label = ["0-5","5-10","10-15","15-20","20-25","25-30","30 Above"]
app["EMPLOYEMENT_YEARS_GROUP"] = pd.cut(app["EMPLOYEMENT_YEARS"], bins=bins, labels=label)
```

In [73]:

```
sns.boxplot(app['EMPLOYEMENT_YEARS'])
plt.title('Distribution of Employment of Client')
plt.xlabel("Duration of Employment in Years")
plt.show()
```


Duration of Employment in Years

In [74]:

```
round(app.EMPLOYEMENT_YEARS_GROUP.value_counts(normalize=True)*100,2)
```

Out[74]:

0-5	55.58
5-10	24.97
10-15	10.23
15-20	4.34
20-25	2.44
25-30	1.31
30 Above	1.14

Name: EMPLOYEMENT_YEARS_GROUP, dtype: float64

7.3 Binning Income

```
In [75]:
```

```
app["AMT_INCOME_TOTAL"].describe()
Out[75]:
count
         3.075110e+05
         1.687979e+05
mean
         2.371231e+05
std
         2.565000e+04
min
         1.125000e+05
25%
         1.471500e+05
50%
75%
         2.025000e+05
         1.170000e+08
Name: AMT_INCOME_TOTAL, dtype: float64
In [76]:
bins = [0,20000,50000,90000,100000]
label = ['Low', 'Medium', 'High', 'Very_high']
app["INCOME_RANGE"] = pd.cut(app["AMT_INCOME_TOTAL"], bins=bins, labels=label)
In [77]:
round(app.INCOME_RANGE.value_counts(normalize=True)*100,2)
Out[77]:
High
             83.84
              9.07
Very_high
Medium
              7.09
Low
              0.00
Name: INCOME_RANGE, dtype: float64
7.4 Bining Credit amount
In [78]:
bins = [0,350000,700000,1000000000]
label= ['Low', 'Medium', 'High']
app['CREDIT_RANGE']=pd.cut(app['AMT_CREDIT'],bins=bins,labels=label)
In [79]:
round(app.CREDIT RANGE.value counts(normalize=True)*100,2)
Out[79]:
          34.85
Low
Medium
          32.67
```

8 Calculating imbalance %

Name: CREDIT_RANGE, dtype: float64

32.49

In [80]:

```
app.TARGET.value_counts()
```

Out[80]:

0 2826861 24825

Name: TARGET, dtype: int64

In [81]:

```
app.TARGET.value_counts(normalize=True)*100
```

Out[81]:

91.9271188.072882

Name: TARGET, dtype: float64

In [82]:

```
px=app.TARGET.value_counts(normalize=True).plot.pie(colors=sns.color_palette('pastel')[2:8]
px.axis('equal')
plt.title('DEFAULTER Vs NONDEFAULTER')
plt.show()
```


Dividing dataset based on imbalance

In [82]:

```
defaulters=app[app['TARGET']==1]
non_defaulters=app[app["TARGET"]==0]
```

```
In [88]:
defaulters.head()
Out[88]:
    SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_
          100002
                                        Cash loans
                                                                             True
26
          100031
                        1
                                        Cash loans
                                                               F
                                                                             True
40
          100047
                                        Cash loans
                                                               Μ
                                                                             True
                                                               F
42
          100049
                                        Cash loans
                                                                             True
                                                               F
          100096
                                        Cash loans
                                                                             True
81
5 rows × 30 columns
In [83]:
defaulters.shape
Out[83]:
(24825, 30)
In [84]:
non_defaulters.head()
Out[84]:
   SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_(
1
                                                              F
         100003
                       0
                                      Cash loans
                                                                            True
2
         100004
                       0
                                   Revolving loans
                                                             М
                                                                            True
3
                                                              F
         100006
                       0
                                      Cash loans
                                                                            True
4
         100007
                       0
                                      Cash loans
                                                             Μ
                                                                            True
         100008
5
                       0
                                      Cash loans
                                                                            True
                                                             M
5 rows × 30 columns
In [86]:
non_defaulters.shape
Out[86]:
(282686, 30)
```

UNIVARIATE ANALYSIS

CATEGORICAL VARIABLES

In [85]:

```
ax=sns.countplot(app['CODE_GENDER'], hue=app["TARGET"])
plt.legend(labels=["Non-deafulters", "Defaulters"], title = "TARGET")
total = float(len(app))
for p in ax.patches:
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax.annotate('{:.1f}%'.format(100 * p.get_height()/total),(x,y))
plt.show()
```


In [86]:

defaulters.CODE_GENDER.value_counts(normalize=True)*100

Out[86]:

F 57.079557 M 42.920443

Name: CODE_GENDER, dtype: float64

In [87]:

non_defaulters.CODE_GENDER.value_counts(normalize=True)*100

Out[87]:

F 66.603228 M 33.395357 XNA 0.001415

Name: CODE_GENDER, dtype: float64

In [88]:

```
ax=sns.countplot("NAME_CONTRACT_TYPE",data=app)
total = float(len(app))
for p in ax.patches:
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax.annotate('{:.1f}%'.format(100 * p.get_height()/total),(x,y))
plt.title("Contract Type for overall applicants")
plt.show()
```


In [89]:

```
ax=sns.countplot(app['NAME_CONTRACT_TYPE'], hue=app["TARGET"])
plt.legend(labels=["Non-deafulters", "Defaulters"], title = "TARGET")
total = float(len(app))
for p in ax.patches:
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax.annotate('{:.1f}%'.format(100 * p.get_height()/total),(x,y))
plt.show()
```


Comments:

1.Bank offers two kinds of loans, viz., Cash loans and Revolving loans. 2. Cash loans have much higher % than Revolving loans

Comments:

1. More % of loans are provided to non-defaulters

In [90]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.ylim(0,45000)
plt.title('Non_defaulters: Age-No Payment issues')
sns.countplot(non_defaulters['AGE_GROUP'])

# subplot 2
plt.subplot(2, 2, 2)
plt.title('Defaulters : Age-Payment issues')
plt.ylim(0,45000)
sns.countplot(defaulters['AGE_GROUP'])
plt.show()
```


comments: Customers from age 35-45 most likely to make payment.

In [91]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.ylim(0,120000)
plt.title('Non_defaulters:Distribution based on Employement')
sns.countplot(non_defaulters['EMPLOYEMENT_YEARS_GROUP'])
plt.xticks(rotation=90)

# subplot 2
plt.subplot(2, 2, 2)
plt.title('Defaulters : Distribution based on Employment')
plt.ylim(0,120000)
sns.countplot(defaulters['EMPLOYEMENT_YEARS_GROUP'])
plt.xticks(rotation=90)
plt.show()
```


comments:

- 1. People employed from 0-5 years take more loans
- 2. People employed for 0-5 years are more likely to be defaulters

In [92]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.ylim(0,50000)
plt.title('Non_defaulters: Distribution of Income')
sns.countplot(non_defaulters['INCOME_RANGE'])
plt.xticks(rotation=90)

plt.subplot(2, 2, 2)
plt.title('Defaulters: Distribution of Income')
plt.ylim(0,50000)
sns.countplot(defaulters['INCOME_RANGE'])
plt.xticks(rotation=90)
plt.show()
```


Comment: Defaulters have significantly lesser income than non_defaulters

In [93]:

```
defaulters.INCOME_RANGE.value_counts(normalize=True)*100
```

Out[93]:

High 84.038278 Very_high 9.397129 Medium 6.564593 Low 0.000000

Name: INCOME_RANGE, dtype: float64

In [97]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.ylim(0,120000)
plt.title('Non defaulters: Credit amount Distribution')
ax=sns.countplot(non_defaulters['CREDIT_RANGE'])
total = float(len(app))
for p in ax.patches:
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax.annotate('{:.1f}%'.format(100 * p.get_height()/total),(x,y))
plt.xticks(rotation=90)
# subplot 2
plt.subplot(2, 2, 2)
plt.title('Defaulters : Credit-Credit amount Distribution')
plt.ylim(0,120000)
ax1=sns.countplot(defaulters['CREDIT_RANGE'])
plt.xticks(rotation=90)
total = float(len(app))
for p in ax.patches:
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax1.annotate('{:.1f}%'.format(100 * p.get_height()/total),(x,y))
plt.show()
```


Comment:

- 1.Low credit amount have high distribution in non-defaulters, followed by High credit amount and then Medium.
- 2. While in defaulters with medium credit amount showed more susceptibility towards defaulting.

In [94]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.title('Non_defaulters: Distribution Distribution based on Type of Income')
sns.countplot(non_defaulters['NAME_INCOME_TYPE'])
plt.xticks(rotation=90)

plt.subplot(2, 2, 2)
plt.title('Defaulters: Distribution based on Type of Income')
sns.countplot(defaulters['NAME_INCOME_TYPE'])
plt.xticks(rotation=90)
plt.show()
```


In [95]:

defaulters['NAME_INCOME_TYPE'].value_counts(normalize=True)*100

Out[95]:

Working 61.325277
Commercial associate 21.591138
Pensioner 12.012085
State servant 5.031219
Unemployed 0.032226
Maternity leave 0.008056
Name: NAME_INCOME_TYPE, dtype: float64

In [96]:

non_defaulters['NAME_INCOME_TYPE'].value_counts(normalize=True)*100

Out[96]:

Working	50.780725		
Commercial associate	23.438373		
Pensioner	18.529393		
State servant	7.235590		
Student	0.006367		
Unemployed	0.004952		
Businessman	0.003537		
Maternity leave	0.001061		
<pre>Name: NAME_INCOME_TYPE,</pre>	dtype: float64		

Comments:

- 1. Loans are mostly given to working class, then by Commercial associate and Pensioner
- 2. Highest percentage of defaulters and non-defaulters are working classes.
- 3. Students are non-defaulters: as may be they are not required to pay when they are students
- 4. Businessman are non-defaulters.
- 5. State servants are not likely to be defaulters

In [97]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.title('Non_defaulters: Distribution based on accomodation')
sns.countplot(non_defaulters['NAME_HOUSING_TYPE'])
plt.xticks(rotation=90)

plt.subplot(2, 2, 2)
plt.title('Defaulters: Distribution based on accomodationn')
sns.countplot(defaulters['NAME_HOUSING_TYPE'])
plt.xticks(rotation=90)
plt.show()
```


In [98]:

defaulters.NAME_HOUSING_TYPE.value_counts(normalize=True)*100

Out[98]:

House / apartment 85.687815
With parents 6.992951
Municipal apartment 3.846928
Rented apartment 2.420947
Office apartment 0.692850
Co-op apartment 0.358510

Name: NAME_HOUSING_TYPE, dtype: float64

In [99]:

```
non_defaulters.NAME_HOUSING_TYPE.value_counts(normalize=True)*100
```

Out[99]:

House / apartment 89.001931
With parents 4.635532
Municipal apartment 3.618149
Rented apartment 1.514047
Office apartment 0.864917
Co-op apartment 0.365423

Name: NAME_HOUSING_TYPE, dtype: float64

COMMENTS:

1.People with own apartments are given max loan, making them more prone to defaulter status 2.People in rented apartment are not likely to be defaulters 3.People living with parents have more chances of being defaulters

In [100]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.ylim(0,150000)
plt.title('Non_defaulters: Distribution based on OCCUPATION TYPE')
sns.countplot(non_defaulters['OCCUPATION_TYPE'])
plt.xticks(rotation=90)

# subplot 2
plt.subplot(2, 2, 2)
plt.title('Defaulters: Distribution based on OCCUPATION TYPE')
plt.ylim(0,150000)
sns.countplot(defaulters['OCCUPATION_TYPE'])
plt.xticks(rotation=90)
plt.show()
```


Comments:

- 1. Loans are mostly taken by Laborers, then by Sales staff and Core staff.
- 2. IT staff, HR staff and Realty staff are take less loan.
- 3. Category with highest percent of defaulters are laborer's followed by Drivers and Sales staff, Managers and Core staff.

```
In [101]:
```

```
plt.figure(figsize = (25, 8))
plt.title('Non defaulters: Distribution based on ORGANIZATION TYPE')
sns.countplot(non_defaulters['ORGANIZATION_TYPE'])
plt.xticks(rotation=90)
Out[101]:
(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
        34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
        51, 52, 53, 54, 55, 56, 57]),
 [Text(0, 0, 'School'),
  Text(1, 0, 'Government'),
 Text(2, 0, 'Business Entity Type 3'),
  Text(3, 0, 'Religion'),
 Text(4, 0, 'Other'),
 Text(5, 0, 'XNA'),
 Text(6, 0, 'Electricity'),
 Text(7, 0, 'Medicine'),
 Text(8, 0, 'Business Entity Type 2'),
 Text(9, 0, 'Self-employed'),
 Text(10, 0, 'Transport: type 2'),
  Text(11, 0, 'Construction'),
 Text(12, 0, 'Housing'),
 Text(13, 0, 'Kindergarten'),
 Text(14, 0, 'Trade: type 7'),
 Text(15, 0, 'Industry: type 11'),
 Text(16, 0, 'Military'),
  Text(17, 0, 'Services'),
  Text(18, 0, 'Security Ministries'),
 Text(19, 0, 'Transport: type 4'),
 Text(20, 0, 'Industry: type 1'),
 Text(21, 0, 'Emergency'),
 Text(22, 0, 'Security'),
 Text(23, 0, 'Trade: type 2'),
 Text(24, 0, 'University'),
  Text(25, 0, 'Transport: type 3'),
  Text(26, 0, 'Police'),
 Text(27, 0, 'Business Entity Type 1'),
 Text(28, 0, 'Postal'),
 Text(29, 0, 'Agriculture'),
 Text(30, 0, 'Restaurant'),
 Text(31, 0, 'Culture'),
  Text(32, 0, 'Hotel'),
  Text(33, 0, 'Industry: type 7'),
  Text(34, 0, 'Industry: type 3'),
 Text(35, 0, 'Trade: type 3'),
 Text(36, 0, 'Bank'),
  Text(37, 0, 'Industry: type 9'),
 Text(38, 0, 'Trade: type 6'),
 Text(39, 0, 'Industry: type 2'),
  Text(40, 0, 'Transport: type 1'),
 Text(41, 0, 'Industry: type 12'),
 Text(42, 0, 'Insurance'),
 Text(43, 0, 'Industry: type 4'),
  Text(44, 0, 'Mobile'),
  Text(45, 0, 'Trade: type 1'),
  Text(46, 0, 'Industry: type 5'),
  Text(47, 0, 'Industry: type 10'),
```

```
Text(48, 0, 'Legal Services'),
Text(49, 0, 'Trade: type 5'),
Text(50, 0, 'Cleaning'),
Text(51, 0, 'Industry: type 13'),
Text(52, 0, 'Trade: type 4'),
Text(53, 0, 'Telecom'),
Text(54, 0, 'Industry: type 8'),
Text(55, 0, 'Realtor'),
Text(56, 0, 'Advertising'),
Text(57, 0, 'Industry: type 6')])
```


In [102]:

```
plt.figure(figsize = (25, 10))
plt.title('Defaulters : Distribution based on ORGANIZATION TYPE')
sns.countplot(defaulters['ORGANIZATION_TYPE'])
plt.xticks(rotation=90)
plt.show()
```


Comments:

1. People from Bussiness Entity Type 3 are most likely to take loans, follwed by Business Entity Type 2 and then Self employed, increasing the risk of having more number of defaulters

2. Least number of defaulters being in Trade-Type 4 and 5 follwed by Industry 8

In [103]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.ylim(0,190000)
plt.title('Non_defaulters: Distribution based on STATUS')
sns.countplot(non_defaulters['NAME_FAMILY_STATUS'])
plt.xticks(rotation=90)

plt.subplot(2, 2, 2)
plt.title('Defaulters: Distribution based on STATUS')
plt.ylim(0,190000)
sns.countplot(defaulters['NAME_FAMILY_STATUS'])
plt.xticks(rotation=90)
plt.show()
```


Comments:

- 1. Married people are most likely to take loans
- 2. Married people are more likely to be defaulters followed by Single, Civil Marriage and separated
- 3. Windows are most reliable to give loans

In [104]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.yscale("log")
plt.title('Non_defaulters: Distribution based on No. of Family Members')
sns.countplot(non_defaulters['CNT_FAM_MEMBERS'])
plt.xticks(rotation=90)

plt.subplot(2, 2, 2)
plt.title('Defaulters: Distribution based on No. of Family Members')
plt.yscale("log")
sns.countplot(defaulters['CNT_FAM_MEMBERS'])
plt.xticks(rotation=90)
plt.show()
```


In [105]:

non_defaulters.CNT_FAM_MEMBERS.value_counts(normalize=True)*100

Out[105]:

2.0 51.770882 21.993463 1.0 3.0 16.977615 7.980996 4.0 1.114672 5.0 0.124874 6.0 7.0 0.026531 0.004953 8.0 9.0 0.002123 10.0 0.000708 14.0 0.000708 12.0 0.000708 20.0 0.000708 16.0 0.000708 15.0 0.000354 Name: CNT_FAM_MEMBERS, dtype: float64

In [106]:

Out[106]:

```
defaulters.CNT_FAM_MEMBERS.value_counts(normalize=True)*100
```

```
2.0
        48.374622
        22.860020
1.0
3.0
        18.561934
4.0
         8.604230
5.0
         1.317221
6.0
         0.221551
         0.024169
7.0
         0.024169
8.0
10.0
         0.004028
         0.004028
13.0
11.0
         0.004028
```

Name: CNT_FAM_MEMBERS, dtype: float64

In [107]:

```
plt.figure(figsize = (15, 8))
plt.subplot(2, 2, 1)
plt.yscale("log")
plt.title('Non_defaulters: Distribution based on No. of Education')
sns.countplot(non_defaulters['NAME_EDUCATION_TYPE'])
plt.xticks(rotation=90)

plt.subplot(2, 2, 2)
plt.title('Defaulters: Distribution based on No. of Education')
plt.yscale("log")
sns.countplot(defaulters['NAME_EDUCATION_TYPE'])
plt.xticks(rotation=90)
plt.show()
```


BIVARIATE ANALYSIS

In [108]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
plt.title('Non-defaulters')
sns.boxplot(x='NAME_HOUSING_TYPE',y='AMT_CREDIT',data=non_defaulters)
plt.xticks(rotation=90)
plt.subplot(1,2,2)
plt.title('Defaulters')
sns.boxplot(x='NAME_HOUSING_TYPE',y='AMT_CREDIT',data=defaulters)
plt.xticks(rotation=90)
plt.show()
```


In [109]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
plt.title(' Non_Defaulters')
sns.boxplot(x='OCCUPATION_TYPE',y='AMT_CREDIT',data=non_defaulters)
plt.xticks(rotation=90)
plt.subplot(1,2,2)
sns.boxplot(x='OCCUPATION_TYPE',y='AMT_CREDIT',data=defaulters)
plt.title('Defaulters')
plt.xticks(rotation=90)
plt.show()
```


In [110]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
plt.title('Distribution of defaulters based on Education')
sns.boxplot(x='NAME_EDUCATION_TYPE',y='AMT_CREDIT',data=defaulters)
plt.xticks(rotation=90)
plt.subplot(1,2,2)
sns.boxplot(x='NAME_EDUCATION_TYPE',y='AMT_CREDIT',data=non_defaulters)
plt.title('Distribution of non_defaulters based on Education')
plt.xticks(rotation=90)
plt.show()
```


In [111]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
plt.title('Non-defaulter')
sns.barplot(x='NAME_INCOME_TYPE',y='AMT_INCOME_TOTAL',data=non_defaulters)
plt.xticks(rotation=90)

plt.subplot(1,2,2)
sns.barplot(x='NAME_INCOME_TYPE',y='AMT_INCOME_TOTAL',data=defaulters)
plt.title('Defaulter')
plt.xticks(rotation=90)
plt.show()
```


In [112]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
plt.title('Non-defaulter')
sns.barplot(x='NAME_INCOME_TYPE',y='AMT_INCOME_TOTAL',hue="CODE_GENDER",data=non_defaulters
plt.xticks(rotation=90)

plt.subplot(1,2,2)
sns.barplot(x='NAME_INCOME_TYPE',y='AMT_INCOME_TOTAL',hue="CODE_GENDER",data=defaulters)
plt.title('Defaulter')
plt.xticks(rotation=90)
plt.show()
```


In [121]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
plt.title('Non-defaulter')
sns.barplot(x='NAME_HOUSING_TYPE',y='AMT_INCOME_TOTAL',hue="CODE_GENDER",data=non_defaulter
plt.xticks(rotation=90)

plt.subplot(1,2,2)
sns.barplot(x='NAME_HOUSING_TYPE',y='AMT_INCOME_TOTAL',hue="CODE_GENDER",data=defaulters)
plt.title('Defaulter')
plt.xticks(rotation=90)
plt.show()
```


In [113]:

```
plt.figure(figsize=(15,6))
plt.subplot(1,2,1)
plt.title('Non-defaulter')
sns.barplot(x='NAME_EDUCATION_TYPE',y='AMT_INCOME_TOTAL',hue="CODE_GENDER",data=non_default
plt.xticks(rotation=90)

plt.subplot(1,2,2)
sns.barplot(x='NAME_EDUCATION_TYPE',y='AMT_INCOME_TOTAL',hue="CODE_GENDER",data=defaulters)
plt.title('Defaulter')
plt.xticks(rotation=90)
plt.show()
```


In [114]:

```
fig = plt.figure(figsize=(10,5))
ax0 = fig.add_subplot(1, 2, 1, title="Non-defaulter")
ax1 = fig.add_subplot(1, 2, 2, title="Defaulter")
sns.scatterplot(app[app["TARGET"] == 0]['AMT_GOODS_PRICE'], app[app["TARGET"] == 0]['AMT_CR
sns.scatterplot(app[app["TARGET"] == 1]['AMT_GOODS_PRICE'], app[app["TARGET"] == 1]['AMT_CR
plt.show()
```


In [115]:

```
fig = plt.figure(figsize=(10,5))
ax0 = fig.add_subplot(1, 2, 1, title="Non-defaulter")
ax1 = fig.add_subplot(1, 2, 2, title="Defaulter")
sns.scatterplot(app[app["TARGET"] == 0]['AMT_ANNUITY'], app[app["TARGET"] == 0]['AMT_CREDIT sns.scatterplot(app[app["TARGET"] == 1]['AMT_ANNUITY'], app[app["TARGET"] == 1]['AMT_CREDIT plt.show()
```


In [116]:

```
fig = plt.figure(figsize=(10,5))
ax0 = fig.add_subplot(1, 2, 1, title="Non-defaulter")
ax1 = fig.add_subplot(1, 2, 2, title="Defaulter")
sns.scatterplot(app[app["TARGET"] == 0]['AMT_ANNUITY'], app[app["TARGET"] == 0]['AMT_GOODS_sns.scatterplot(app[app["TARGET"] == 1]['AMT_ANNUITY'], app[app["TARGET"] == 1]['AMT_GOODS_plt.show()
```


In [117]:

In [118]:

```
fig = plt.figure(figsize=(10,5))
ax0 = fig.add_subplot(1, 2, 1, title="Non-defaulter")
ax1 = fig.add_subplot(1, 2, 2, title="Defaulter")
sns.scatterplot(app[app["TARGET"] == 0]['AMT_CREDIT'], app[app["TARGET"] == 0]['AMT_INCOME_sns.scatterplot(app[app["TARGET"] == 1]['AMT_CREDIT'], app[app["TARGET"] == 1]['AMT_INCOME_plt.show()
```


NUMERICAL ANALYSIS

In [119]:

Inferences: Important Correlating factors amongst non-defaulters

- 1.Credit amount is highly correlated with: Goods Price Amount (0.98), Loan Annuity (0.75), Income (0.34)
- 2.Income has high correlation with: Credit amount(0.34), Annuity amount(0.42) and Goods Price Amount(0.35)

In [120]:

```
##Getting correlation bewteen numerical data for Non_defaulters
plt.figure(figsize=(20,20))
plt.title("Defaulters")
corr_d= defaulters.corr()
sns.heatmap(corr_d, annot=True,cmap="YlGnBu")
```

Out[120]:

<AxesSubplot:title={'center':'Defaulters'}>

Inferences: Important Correlating factors amongst defaulters

1. Credit amount shows highly correlation with: Goods Price Amount(0.98) & Loan Annuity(0.75)

-	г .	٦.
ın		
TII		

Cleaning previous_application.csv

In [121]:

```
## Checking missing data in previous_application.csv
pre_null= (100*pre.isnull().sum()/len(pre)).round(2)
pre_null
```

Out[121]:

SK_ID_PREV	0.00
SK_ID_CURR	0.00
NAME_CONTRACT_TYPE	0.00
AMT_ANNUITY	22.29
AMT_APPLICATION	0.00
AMT_CREDIT	0.00
AMT_DOWN_PAYMENT	53.64
AMT_GOODS_PRICE	23.08
WEEKDAY_APPR_PROCESS_START	0.00
HOUR_APPR_PROCESS_START	0.00
FLAG_LAST_APPL_PER_CONTRACT	
NFLAG_LAST_APPL_IN_DAY	0.00
RATE_DOWN_PAYMENT	53.64
RATE_INTEREST_PRIMARY	99.64
RATE_INTEREST_PRIVILEGED	99.64
NAME_CASH_LOAN_PURPOSE	0.00
NAME_CONTRACT_STATUS	0.00
DAYS_DECISION	0.00
NAME_PAYMENT_TYPE	0.00
CODE_REJECT_REASON	0.00
NAME_TYPE_SUITE	49.12
NAME_CLIENT_TYPE	0.00
NAME_GOODS_CATEGORY	0.00
NAME_PORTFOLIO	0.00
NAME_PRODUCT_TYPE	0.00
CHANNEL_TYPE	0.00
SELLERPLACE_AREA	0.00
NAME_SELLER_INDUSTRY	0.00
CNT_PAYMENT	22.29
NAME_YIELD_GROUP	0.00
PRODUCT_COMBINATION	0.02
DAYS_FIRST_DRAWING	40.30
DAYS_FIRST_DUE	40.30
DAYS_LAST_DUE_1ST_VERSION	40.30
DAYS_LAST_DUE	40.30
DAYS_TERMINATION	40.30
NFLAG_INSURED_ON_APPROVAL	40.30
dtype: float64	

In [131]:

```
# Displaying missing columns with value >0 in descending order
pre_null=pre_null[pre_null.values>0].sort_values(ascending=False)
len(pre_null)
```

Out[131]:

15

Data Cleaning-Dropping & Imputing Missing Values

```
In [122]:
```

```
# Dropping columns with missing values >45 %
pre_null=pre_null[pre_null.values>45]
pre_null=list(pre_null.index)
pre.drop(labels=pre_null,axis=1,inplace=True)
pre.shape
Out[122]:
(1670214, 32)
In [123]:
pre_null=(100*pre.isnull().sum()/len(pre)).round(2)
pre_null[pre_null.values>0].sort_values(ascending=False)
Out[123]:
DAYS FIRST DRAWING
                               40.30
DAYS FIRST DUE
                               40.30
DAYS_LAST_DUE_1ST_VERSION
                               40.30
DAYS_LAST_DUE
                               40.30
DAYS_TERMINATION
                               40.30
NFLAG_INSURED_ON_APPROVAL
                               40.30
AMT GOODS PRICE
                               23.08
AMT_ANNUITY
                               22.29
CNT PAYMENT
                               22.29
PRODUCT_COMBINATION
                                0.02
dtype: float64
In [124]:
# converting Negative columns to positive columns
pre.drop(['DAYS_DECISION','SELLERPLACE_AREA','DAYS_FIRST_DUE','DAYS_LAST_DUE_1ST_VERSION',
pre.columns
Out[124]:
Index(['SK_ID_PREV', 'SK_ID_CURR', 'NAME_CONTRACT_TYPE', 'AMT_ANNUITY',
        'AMT_APPLICATION', 'AMT_CREDIT', 'AMT_GOODS_PRICE',
       'WEEKDAY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START', 'FLAG_LAST_APPL_PER_CONTRACT', 'NFLAG_LAST_APPL_IN_DAY',
        'NAME CASH LOAN PURPOSE', 'NAME CONTRACT STATUS', 'NAME PAYMENT TYP
Ε',
        'CODE_REJECT_REASON', 'NAME_CLIENT_TYPE', 'NAME_GOODS_CATEGORY',
        'NAME_PORTFOLIO', 'NAME_PRODUCT_TYPE', 'CNT_PAYMENT',
        'NAME_YIELD_GROUP', 'PRODUCT_COMBINATION'],
      dtype='object')
In [125]:
pre.shape
Out[125]:
(1670214, 22)
```

In [126]:

```
#Missing values in AMT_GOODS_PRICE could be imputed by mean value for this var since this i
agp_mean=pre['AMT_GOODS_PRICE'].mean()
pre['AMT_GOODS_PRICE'].fillna(agp_mean, inplace=True)
```

In [127]:

```
pre['AMT_GOODS_PRICE'].isnull().sum()
```

Out[127]:

0

In [128]:

```
ax=sns.countplot(pre.NAME_CONTRACT_STATUS)
plt.xlabel("Contract Status")
plt.ylabel("Count of Contract Status for defaulters")
plt.title("Distribution of Contract Status")
total = float(len(pre))
for p in ax.patches:
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax.annotate('{:.1f}%'.format(100 * p.get_height()/total),(x,y))
plt.show()
```


In [139]:

```
plt.figure(figsize=(20,20))
sns.heatmap(pre.corr(), annot=True,cmap="YlGnBu")
```

Out[139]:

<AxesSubplot:>

MERGING DATASETS TO CHECK DEFAULTER STATUS

In [129]:

#Merge the previous_application.csv with the defaulter data file
combined= pd.merge(non_defaulters, pre, how='left', on='SK_ID_CURR', suffixes=('_Cur', '_Pre
combined.head()

Out[129]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE_Cur	CODE_GENDER	FLAG_OWN_CAR	FL
0	100003	0	Cash loans	F	True	
1	100003	0	Cash loans	F	True	
2	100003	0	Cash loans	F	True	
3	100004	0	Revolving loans	М	True	
4	100006	0	Cash loans	F	True	

5 rows × 51 columns

In [141]:

combined.describe()

Out[141]:

	SK_ID_CURR	TARGET	AMT_INCOME_TOTAL	AMT_CREDIT_Cur	AMT_ANNUITY_Cur	!
count	1.306815e+06	1306815.0	1.306815e+06	1.306815e+06	1.306722e+06	
mean	2.785087e+05	0.0	1.737656e+05	5.922285e+05	2.707761e+04	
std	1.028074e+05	0.0	1.049183e+05	3.911268e+05	1.418544e+04	
min	1.000030e+05	0.0	2.565000e+04	4.500000e+04	1.615500e+03	
25%	1.893400e+05	0.0	1.125000e+05	2.700000e+05	1.666800e+04	
50%	2.790130e+05	0.0	1.575000e+05	5.094000e+05	2.488050e+04	
75%	3.676080e+05	0.0	2.115000e+05	8.086500e+05	3.459600e+04	
max	4.562550e+05	0.0	1.800009e+07	4.050000e+06	2.580255e+05	
8 rows	× 22 columns					
4					•	

In [130]:

combined.columns

Out[130]:

```
Index(['SK_ID_CURR', 'TARGET', 'NAME_CONTRACT_TYPE_Cur', 'CODE_GENDER',
       'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'AMT_INCOME_TOTAL', 'AMT_CREDIT_Cu
       'AMT_ANNUITY_Cur', 'AMT_GOODS_PRICE_Cur', 'NAME_TYPE_SUITE',
       'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS',
       'NAME_HOUSING_TYPE', 'REGION_POPULATION_RELATIVE', 'DAYS_BIRTH',
       'DAYS_EMPLOYED', 'FLAG_MOBIL', 'OCCUPATION_TYPE', 'CNT_FAM_MEMBERS',
       'ORGANIZATION_TYPE', 'DAYS_LAST_PHONE_CHANGE', 'FLAG_DOCUMENT_3',
       'AGE_YEARS', 'AGE_GROUP', 'EMPLOYEMENT_YEARS',
       'EMPLOYEMENT_YEARS_GROUP', 'INCOME_RANGE', 'CREDIT_RANGE', 'SK_ID_PRE
۷',
       'NAME_CONTRACT_TYPE_Pre', 'AMT_ANNUITY_Pre', 'AMT_APPLICATION',
       'AMT_CREDIT_Pre', 'AMT_GOODS_PRICE_Pre', 'WEEKDAY_APPR_PROCESS_STAR
Τ',
       'HOUR_APPR_PROCESS_START', 'FLAG_LAST_APPL_PER_CONTRACT',
       'NFLAG_LAST_APPL_IN_DAY', 'NAME_CASH_LOAN_PURPOSE',
'NAME_CONTRACT_STATUS', 'NAME_PAYMENT_TYPE', 'CODE_REJECT_REASON',
       'NAME_CLIENT_TYPE', 'NAME_GOODS_CATEGORY', 'NAME_PORTFOLIO',
       'NAME_PRODUCT_TYPE', 'CNT_PAYMENT', 'NAME_YIELD_GROUP',
       'PRODUCT_COMBINATION'],
      dtype='object')
```

In [131]:

```
ax=sns.countplot(combined.NAME_CONTRACT_STATUS)
total = float(len(combined))
for p in ax.patches:
    x = p.get_x() + p.get_width()
    y = p.get_height()
    ax.annotate('{:.1f}%'.format(100 * p.get_height()/total),(x,y))
plt.xlabel("Contract Status")
plt.ylabel("Count of Contract Status for defaulters")
plt.title("Distribution of Contract Status")
```

Out[131]:

Text(0.5, 1.0, 'Distribution of Contract Status')

In [132]:

```
combined['SK_ID_PREV'].notna().value_counts()
```

Out[132]:

True 1291341 False 15474

Name: SK_ID_PREV, dtype: int64

In [133]:

```
combined['SK_ID_PREV'].notna().value_counts().plot(kind='bar')
plt.title("Defaulters based on previous application")
plt.show()
```


Comments: 1291341 number were defaulters and 15474