Logika Tételkidolgozás

Aradi Patrik 2018. május 28.

1. Az ítéletkalkulus szintaxisa és szemantikája. Kielégíthetőség, logikai következmény, alap összefüggések.

Az ítéletlogikában a változók a 0, 1 halmazból kapnak értéket. A formulák változókból épülnek fel, melyeket össekötő jelek alkalmazásával kapunk. Pl.: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$

Szintaxis A logikában meghatározza, hogy hogy néz ki egy formula. Pl.: $(p \lor q)$

Szemantika Megmondja, hogy a leírt formulának mi a jelentése. Mi az adott formulának az értéke egy adott változó értékadás esetén

1.1. Szintaxis

Változók p, q, r -el jelöjük, melyek 0, 1 értéket vehetnek fel.

Logikai konstansjelek (0 aritású függvényjelek) az "igaz" ↑ és a "hamis" ↓ jelek

Konnektívák Velük tudjuk összekötni a formulákat, lehetséges értékeik: $\land, \lor, \neg, \rightarrow, \leftrightarrow$

Formulák Deffiníciója

- Minden változó és minden logikai konstans formula
- Ha F formula, akkor $(\neg F)$ is formula
- Ha F és G formulák, akkor $(F \wedge G), (F \vee G), (F \to G), (F \leftrightarrow G)$ is formulák
- Más forumla nincs

Műveleti sorrend A \land és \lor műveletek asszociatívak, pl.: $(F \lor G) \lor H$ helyett $F \lor G \lor H$ -t írhatunk. A \rightarrow művelet jobb-asszociatív, $F \to G \to H = F \to (G \to H)$ zárójelezést jelenti

1.2. Szemantika

Boole-függvény Hogy a konnektívák szemantikájáról tudjunk beszélni, mindhez rendelünk egy Boole-függvényt. A Bool-függvény bitvektort egy bitbe képző függvény: $f:\{0,1\}^n \to \{0,1\}$.

Az f|n jelyi, hogy f egy n-változós függvény. A ¬ unáris Boole függvény. A bináris konnektívákhoz rendelt Boole-függvényekhez készíthető igazságtábla. Egy n változós Boole-függvény 2^n soros

Értékadás Egy \mathcal{A} függvény, mely minden változóhoz egy igazságértéket (bitet: 0 vagy 1) rendel. Egy formula kiértékeléshez szükség van egy értékadásra.

Az A értékadás mellet az F formula értékét A(F) jelöli.

- Ha a formula a p változó, akkor értéke $\mathcal{A}(p)$
- $\mathcal{A}(\uparrow) = 1$
- $\mathcal{A}(\downarrow) = 0$
- $\mathcal{A}(\neg F) = \neg \mathcal{A}(F)$
- $\mathcal{A}(F \vee G) = \mathcal{A}() \vee \mathcal{A}(G)$
- $\mathcal{A}(F \wedge G) = \mathcal{A}(F) \wedge \mathcal{A}(G)$
- $\mathcal{A}(F \to G) = \mathcal{A}(F) \to \mathcal{A}(G)$
- $\mathcal{A}(F \leftrightarrow G) = \mathcal{A}(F) \leftrightarrow \mathcal{A}(G)$

Tehát rekurzívan kiértékeljük az "eggyel egyszerűbb" formulákat és a legkülső konnektívának megfelelően kombináljuk az értékeket.

Közvetlen részformula Egy formula közvetlen részformulái az "eggyel lentebbi szinten lévő részei".

- Változóknak és a logikai konstansoknak nincs közvetlen részforulája.
- \bullet A $(\neg F)$ alakú formulák közvetlen részformulája F
- Az $(F \vee G), (F \wedge G), (F \to G), (F \leftrightarrow G)$ alakú formulák közvetlen részformulái F és G

A formulák kiértékelését úgy végeztük el, hogy rekurzívan kiértékeljük a közvetlen részformulákat, majd az eredményekből és a külső konnektivitásból számítjuk az egész formula értékét. Az ilyen rendszerű definíciókat és bizonyításokat a formula felépítése szerinti teljes indukciónak nevezzük.

Felépítés szerinti indukció Deffiníciókban csak meg kell mondjuk, hogy aktuálisan a formulához rendelt objektumot hogyan számítjuk ki a részformuláihoz rendelt objektumokból, ügyelve arra, hogy minden esetet pontosan egyszer vegyünk sorra.

Bizonyításokban minden esetre meg kell mutatnunk, hogy ha az állítás igaz a formula összes közvetlen részformulájára, akkor miért igaz az egész formuára is. (teljes indukció is így működik)

Kielégíthetőség Ha az \mathcal{A} értékadásra és az F formuálra $\mathcal{A}(F)=1$, azt úgy is írjuk, hogy $A \models F$ és úgy is mondjuk, hogy A kielégíti F-et, vagy A egy modellje F-nek. Ha egy formulának van modellje, akkor azt mondjuk, kielégíthető, ha nincs, kielégíthetetlen. Ha az F formulának minden kiértékelés modellje, akkor tautológia, ennek jele pedig $\models F$.

Modellek halmaza Ha F egy formula, akkor Mod(F) az F összes modelljének halmaza. Tehát azt hogy $\mathcal{A}(F)=1$, vagy $\mathcal{A}\models F$, úgy is írhatjuk, hogy $\mathcal{A}\in Mod(F)$. F pontosan akkor kielégíthetetlen, ha $Mod(F)=\emptyset$. Ha Σ formulák egy halmaza és \mathcal{A} egy értékadás, akkor $\mathcal{A}\models\Sigma$ azt jelenti, hogy \mathcal{A} kielégíti Σ összes elemét. F formula pontosan akkor tautológia, ha Σ kielégíthetetlen. Logikai következmény Ha F és G formulák, akkor $F \models G$ ("F-nek következménye G") azt jelöli, hogy minden A-ra ha A(F) = 1, akkor A(G) = 1. Tehát, ha F igaz akkor G is igaz, és $Mod(F) \subseteq Mod(G)$ Ugyanígy használhatjuk a $\Sigma \models F, \Sigma \models \Gamma$ jelöléseket is, ahol Σ, Γ formulahalmazok. Pl.: $\Sigma \models F$ akkor áll fenn, ha Σ minden modellje, modellje F-nek is. $F \equiv G$ jelölés azt jelenti, hogy Mod(F) = Mod(G)

Tétel $Mod(\Sigma \cup \Gamma) = Mod(\Sigma) \cap Mod(\Gamma)$ Hiszen a bal oldalon szereplő halmazban azok az értékadások vannak, melyek kielégítik $\Sigma \cup \Gamma$ összes elemét, azaz Σ összes elemét is és Γ összes elemét is, azaz melyek benne vannak $Mod(\Sigma)$ -ban is és $Mod(\Gamma)$ -ban is, ez pedig épp a jobb oldal.

2. Boole-függvények. Shannon-expanzió. Boolefüggvények teljes rendszerei

Boole-függvény A Bool-függvény bitvektort egy bitbe képző függvény: $f:\{0,1\}^n \to \{0,1\}.$