

Урок 5

Динамика движения материальной точки, тела и системы тел

Курс подготовки к вузовским олимпиадам 11 класса №1. К концам нити, перекинутой через невесомый блок, привязаны бруски с массами m и 4m, находящиеся на гладкой наклонной плоскости с углом наклона к горизонту $\alpha = 30^{\circ}$. При каком минимальном значении коэффициента трения скольжения между брусками они будут покоиться относительно земли? Нить считать невесомой и нерастяжимой.

№2. Два небольших шарика связаны нитью и прикреплены к оси OO_1 другой нитью в $\sqrt{3}$ раз меньшей длины. Система вращается с постоянной угловой скоростью вокруг вертикальной оси OO_1 . Найдите отношение масс m_2/m_1 шариков, если нити составляют углы $\alpha = 30^\circ$ и $\beta = 60^\circ$ с вертикалью.

№3. На гладком горизонтальном столе лежит призма массой М с углом наклона α , а на ней призма массой т. На меньшую призму действует горизонтальная сила F, при этом обе призмы движутся вдоль стола как одно целое. Определите силу трения между призмами.

№4. На гладком столе находится клин массой 2m. Он прижат к гладкой стене посредством съезжающей с него шайбы массой m. Известно, что sin $\alpha = 0.6$, а коэффициент трения между шайбой и клином $\mu = 0.5$.

- 1. Чему равно ускорение шайбы? Ответ выразить в единицах д.
- 2. С какой силой давит клин на стенку? Ответ выразить в единицах mg.
- 3. С какой силой давит клин на стол? Ответ выразить в единицах mg.

№5. В сосуде с водой закреплён клин. На гладкой поверхности клина, наклонённой к горизонту под углом α (tg $\alpha = 1/4$), удерживается стеклянный шар с помощью горизонтально натянутой нити. Объём шара V , плотность воды ρ , плотность стекла 3ρ .

Шар находится полностью в воде. Найдите силу натяжения нити при движении сосуда с горизонтальным ускорением a = g/8.

№6. Спутник Фобос вращается вокруг Марса по орбите радиуса R с периодом T. Радиус Марса R_0 . Найти ускорение свободного падения и первую космическую скорость у поверхности Марса, если известно, что R = 9400 км, T = 7 ч. 39 мин. и $R_0 = 3400$ км.

№7. На невесомой нерастяжимой нити висит шарик. Какую минимальную горизонтальную скорость ему необходимо сообщить, чтобы он совершил полный оборот в вертикальной плоскости? Длина нити равна L. Как изменился бы ответ, если бы вместо нити был стержень такой же длины?

№8. Небольшая шайба массой m соскальзывает без начальной скорости с вершины гладкого закреплённого полушара. С какой силой действует шайба на полушар в момент, когда касательная составляющая ускорения шайбы равна 0,6g?

№9. Небольшой шарик без начальной скорости соскальзывает с высоты 2R, двигаясь по гладкому жёлобу, расположенному в вертикальной плоскости. Горизонтальный участок жёлоба плавно переходит в полуокружность радиусом R = 81 см.

Какой максимальной высоты Н достигнет шарик после отрыва от жёлоба?

mapenkin.ru

ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛ

Михаил Александрович ПЕНКИН

- w /penkin
- /mapenkin
- fmicky@gmail.com