Tarea 5: Divide y Vencerás Algoritmos y Complejidad

Fecha de publicación:	Martes 1 marzo 2022
Fecha de entrega:	Viernes 18 marzo 2022
Profesor:	Dr. José Ignacio Núñez Varela

DESCRIPCIÓN

NOTA: Deben hacer toda la tarea en su libreta, lo más limpio y clara posible. Después la escanean o le toman foto, con buena resolución, y generan un PDF.

- 1. ¿Cuántas multiplicaciones se realizarán si queremos encontrar el producto de dos matrices de tamaño 132 x 132 utilizando el algoritmo de multiplicación estándar? Desarrollen su resultado.
- 2. ¿Cuántas multiplicaciones se realizarán si queremos encontrar el producto de dos matrices de tamaño 132 x 132 utilizando el algoritmo de multiplicación de Strassen? Desarrollen su resultado.
- 3. Utilicen el método de Strassen para multiplicar las siguientes matrices. Muestren el desarrollo completo.

$$\begin{pmatrix} 1 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 4 & 2 \end{pmatrix}$$

- 4. Supongan que quieren desarrollar un método que sea asintóticamente más rápido que el de Strassen. Su método usa divide y vencerás, de tal forma que cada matriz se divide en piezas de $n/4 \times n/4$, y los pasos para dividir y combinar tienen un orden de $\Theta(n^2)$. Lo que les falta es determinar cuántos subproblemas necesitan crear para que su método sea mejor que el de Strassen. Si su algoritmo crea a subproblemas, entonces la recurrencia quedaría como:
- $\mathbb{T}(n) = a\mathbb{T}(n/4) + \Theta(n^2)$. ¿Cuál es el valor entero más grande de a para que su algoritmo sea asintóticamente más rápido que el de Strassen?
- 5. ¿Se puede utilizar el método maestro en la recurrencia: $\mathbb{T}(n) = 3\mathbb{T}(n/2) + n^2 \lg n$? Indique las razones de su respuesta, y de ser posible indique el orden de $\mathbb{T}(n)$.
- 6. Utilicen el método maestro para obtener el grado de complejidad de cada una de las siguientes funciones:

a.
$$T(n) = 2T(n/4) + 1$$
.

b.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

c.
$$T(n) = 2T(n/4) + n$$
.

d.
$$T(n) = 2T(n/4) + n^2$$
.

FORMATO

- Encabezado: No es necesaria una portada, basta con un encabezado pequeño con:
 - Nombre completo
 - Materia
 - o Fecha de entrega
 - o Título del trabajo
- Contenido: Escribir las respuestas a cada una de las preguntas de la sección anterior. De preferencia escriban la pregunta nuevamente o <u>indiquen claramente el número de</u> <u>pregunta</u>.

ENTREGA

- El documento deberá ser en PDF. Si no cuentan con convertidor de archivos, en Internet pueden encontrar convertidores (como www.ilovepdf.com). Además, si su archivo es muy grande, pueden usar la función de Compresión en esa misma página. Solamente asegúrense que se siga viendo bien su documento.
- Para poder clasificarlo correctamente, el nombre de su documento deberá tener el formato: T5_apellidopaterno_nombre.pdf
- Suban su tarea a **Didac-Tic**
- Solo en caso de que <u>no</u> puedan subirla a Moodle, pueden enviarla al correo: jose_nv@yahoo.com

poniendo en el asunto del correo: [Algoritmos] Tarea 5