Pesquisa Digital

A pesquisa digital é baseada na representação das chaves como uma sequência de caracteres ou de dígitos. Grosso modo, o método de pesquisa digital é realizado da mesma forma que uma pesquisa em dicionários que possuem aqueles "índices de dedo". Com a primeira letra da palavra são determinadas todas as páginas que contêm as palavras iniciadas por aquela letra.

cadeias, trabalha-se com chaves semi-infinitas⁴, isto é, sem limitação explícita chaves são grandes e de tamanho variável. No problema de casamento de Os métodos de pesquisa digital são particularmente vantajosos quando as quanto ao tamanho. Um aspecto interessante quanto aos métodos de pesquisa digital é a possibilidade de localizar todas as ocorrências de determinada cadeia em um texto, com tempo de resposta logarítmico em relação ao tamanho do texto.

Uma trie é uma árvore M-ária cujos nós são vetores de M componentes com campos correspondentes aos dígitos ou caracteres que formam as chaves. Cada nó no nível i representa o conjunto de todas as chaves que começam com a mesma sequência de i dígitos ou caracteres. Esse nó especifica uma ramificação com Considerando as chaves como sequência de bits (isto é, M=2), o algoritmo de pesquisa digital é semelhante ao de pesquisa em árvore, exceto pelo fato de que, M caminhos dependendo do (i + 1)-ésimo dígito ou caractere de uma chave. em vez de se caminhar na árvore de acordo com o resultado de comparação entre chaves, se caminha de acordo com os bits de chave. A Figura 5.9 mostra uma trie construída a partir das seguintes chaves de 6 bits:

Para construir uma trie, faz-se uma pesquisa na árvore com a chave a ser inserida. Se o nó externo em que a pesquisa terminar for vazio, cria-se um nó = 110110 na Figura 5.10. Se o nó externo contiver uma chave, cria-se um ou mais externo nesse ponto contendo a nova chave, como ilustra a inserção da chave W nós internos cujos descendentes conterão a chave já existente e a nova chave. A

⁴Uma chave semi-infinita é uma sequência de caracteres em que somente a sua extremidade inicial é definida. Logo, cada posição no texto representa uma chave semi-infinita, constituída pela sequência que inicia naquela posição e se estende à direita tanto quanto for necessário ou até o final do texto. Por exemplo, um banco de dados constituído de n palavras (as posições de interces naces ninteresse nesse caso são os endereços de início das palavras) possui n chaves semi-infinitas.

Figura 5.9 Trie binária.

novo nó interno cuja subárvore esquerda é outro novo nó interno, cujos filhos são Figura 5.10 ilustra a inserção da chave K = 100010 que envolve repor J por um Je K, porque estas chaves possuem os mesmos bits até a quinta posição.

Figura 5.10 Inserção das chaves W e K.

meio da distribuição de seus bits. Uma grande desvantagem das tries é a formação de caminhos de uma só direção para chaves com um grande número de bits em marão um caminho cujo comprimento é igual ao tamanho delas, não importando O formato das tries, diferentemente das árvores binárias comuns, não depende da ordem em que as chaves são inseridas, e sim da estrutura das chaves por quantas chaves existem na árvore. Veja o caminho gerado pelas chaves B e C na comum. Por exemplo, se duas chaves diferirem somente no último bit, elas for-

Patricia

e de inserção baseados nos algoritmos propostos por Knuth (1973). Gonnet e um trabalho aplicado à recuperação de informação em arquivos de grande porte. Knuth (1973) deu um novo tratamento ao algoritmo, reapresentando-o de forma de árvore trie binária. Sedgewick (1988) apresentou novos algoritmos de pesquisa PATRICIA é a abreviatura de Practical Algorithm To Retrieve Information Coded In Alphanumeric (Algoritmo Prático para Recuperar Informação Codificada em Alfanumérico). Esse algoritmo foi originalmente criado por Morrison (1968) em mais clara como um caso particular de pesquisa digital, essencialmente um caso Baeza-Yates (1991) também propuseram outros algoritmos.