Attachment 2 (10/2) Arrlage

Maschinenelemente

Entwerfen, Berechnen und Gestalten im Maschinenbau

Ein Lehr- und Arbeitsbuch

Van

Dr.-Ing. G. Niemann

Professor an der Technischen Hochschule München

Erster Band Grundlagen, Verbindungen, Lager Wellen und Zubehör

Mit 795 Abbildungen

2. berichtigter Neudruck

Springer-Verlag Berlin/Göttingen/Heidelberg 1955

From Annual 2 (20f2)

90

07-FEB-2003

11:39

5. Werkstoffe, Profil- und Maßtafeln.

8. Vergütungsstähle.

Vergütungstemperatur angelassen (s. S. S5), sondern auch randgehärtet (brenn-, induktions- oder metallbadgehärtet) und in manchen Fällen auch ungehärtet (geglüht). Wir nehmen vorwiegend die Vergütungsstähle nach Tafel 5/11 und zwar die unlegierten C-Stähle durchweg bis zu einer Vergütungsfestigkeit $\sigma_B = 80 \text{ kg/mm}^2$ (für geringere Zähigkeit auch erheblich höher); die legierten Stähle für σ_B über 70 kg/mm² (für geringere Zähigkeit bis $\sigma_B = 175$), besonders wenn der Härteverzug gering sein soll (Öl- oder Warmbadhärtung); die chromhaltigen Stähle (50 Cr V 4) für σ_B über 150 und bei dickeren Teilen (Vergütungstiefe!) auch schon für geringeres σ_B . Der noch hinzugefügte Wälzlagerstahl mit seinem hohen C- und Cr-Gehalt wird mit Vorteil auch für solche Zwecke verwendet, wo es auf große Oberflächenhärte ($H_B \approx 650$), Verschleißfestigkeit und trotzdem gute Zähigkeit ankommt.

Zu Chromnickel und Chrom-Molybdan-Einsatzstählen nach Tafel 5/12 greifen wir heute erst, wenn auch bei größeren Abmessungen die höchsten Ansprüche an Oberflächenhärte und vor allem an Durchvergütung und Zähigkeit (Kerbschlagfestigkeit und Kerbdauerfestigkeit) gestellt werden und ihre einfachere Wärmebehandlung genügend Vorteile bringt.

Taiel 5/11. Gebrauchliche Vergütungsstähle nuch DIN 17200 (Dez. 1951).

Bezeichnung		6	ichait in % (1	(ittelwerte)		Festigkeitswerte Gegiüht				
j	i	_				max	Vergütet für 18-40 mm Dicke			
17008	bisher	c	Şi	Mn	Cı	H B	σB1	o _F	ð.	
						kg/mm²	kg/mm ^s	kg/mm²	%	
C 22	StC 25.61	0,22	0.25	0,45	_	155	Б0…60	30	22	
C 35	StC 35.61	0,35	0.25	0,55	 	172	6072	37	18	
C 45	StC 45.61	0,45	0,25	0,65		206	6580	40	16	
C 60	StC 60.61	0,60	0,25	0,65	_	243	75…90	49	14	
40 Mn 4		0.40	0,4	0,95		217	80…95	55	14	
30 Mn 5	VM 125	0,31	0,25	1,35		217	8095	55	14	
37 Mn Si 5	VMS 135	0,37	1,25	1.25		217	90105	85	12	
42 Mn V 7	_	0.42	0,25	1,75		217	100120	80	11	
34 Cr 4	_	0,34	0,25	0,65	1,1	217	90105	85	12	
50 Cr V 4	50 Cr V 4	0.52	0,25	0,93	1,1	235	110…130	90	10	
Wālzlagerstahl		1,0	bis 0,35	0,3	1,5	200	205	H_B	= 65	

¹ Gilt für Stangen; für Fertigteile häufig erheblich höher vergütet (bis $\sigma_B = 175$).

Hinzugefügt!

Talel 5/12. Chromnickel- und Chrommolybdan-Vergütungselahle nach DIN 17200 (Dez. 1951).

рги	Bezeichnung nach DIN 17008	Gehalt in % (Mittelworte)					geglüht max	messer			
		С	Ni	Cr	Жn	Жо	Hg kg/mm³	a B kg/mm²	σ _F kg/mm ^t	8. %	
17200	25 Cr Mo 4 34 Cr Mo 4 42 Cr Mo 4 50 Cr Mo 4 30 Cr Mo V 9 36 Cr Ni Mo 4 34 Cr Ni Mo 6 30 Cr Ni Mo 8			1,1 1,1 1,1 1,1 2,5 1,1 1,6 2,0	0,65 0,65 0,65 0,65 0,55 0,65 0,55	0,20 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3	217 217 217 235 248 217 235 248	80···95 90···105 100···120 110···130 125···145 100···120 110···130 125···145	55 65 80 90 105 80 90 105	14 12 11 10 9 11 10	

^{*} Ölgehärtet bei 820 bis 850°.