

definição e exemplos

Definição. Um grupo G diz-se cíclico se

$$(\exists a \in G) \quad G = \langle a \rangle,$$

i.e., se existe $a \in G$ tal que

$$(\forall x \in G) (\exists n \in \mathbb{Z}) \quad x = a^n.$$

Exemplo 32. O grupo $(\mathbb{Z},+)$ é cíclico, já que $\mathbb{Z}=\langle 1 \rangle$, pois para todo $n \in \mathbb{Z}$, temos que $n=n \cdot 1$.

Exemplo 33. O grupo $(\mathbb{R},+)$ não é cíclico. Não existe nenhum real x tal que $\forall a \in \mathbb{R}, \ \exists n \in \mathbb{Z}: \ a=nx.$

Exemplo 34. O grupo $(\mathbb{Z}_4,+)$ é cíclico, já que $\mathbb{Z}_4=\left\langle [1]_4\right\rangle =\left\langle [3]_4\right\rangle$. De facto,

$$[0]_4 = 0 [1]_4 = 0 [3]_4$$
 $[1]_4 = 1 [1]_4 = 3 [3]_4$ $[2]_4 = 2 [1]_4 = 2 [3]_4$ $[3]_4 = 3 [1]_4 = 1 [3]_4$

Exemplo 35. Para qualquer $n \in \mathbb{N}$, temos que $(\mathbb{Z}_n, +)$ é cíclico, já que $\mathbb{Z}_n = \langle [1]_n \rangle$.

Exemplo 36. O conjunto $G=\{i,-i,1,-1\}$, quando algebrizado pela multiplicação usual de complexos, é um grupo cíclico. De facto, $G=\langle i \rangle$.

Exemplo 37. O grupo trivial $G=\{1_G\}$ é um grupo cíclico. De facto, $\langle 1_G \rangle = \{1_G\}.$

propriedades elementares

Proposição. Todo o grupo cíclico é abeliano.

Observação. Observe-se que o recíproco do teorema anterior não é verdadeiro.

Exemplo 38. O grupo 4-Klein é um grupo abeliano. No entanto, não é cíclico, pois $\langle 1_G \rangle = \{1_G\} \neq G$, $\langle a \rangle = \{1_G, a\} \neq G$, $\langle b \rangle = \{1_G, b\} \neq G$ e $\langle c \rangle = \{1_G, c\} \neq G$. Assim, podemos concluir que não existe $x \in G$ tal que $G = \langle x \rangle$.

Teorema. Qualquer subgrupo de um grupo cíclico é cíclico.

Demonstração. Sejam $G = \langle a \rangle$, para algum $a \in G$, e H < G.

Se $H=\{1_G\}$, então $H=\langle 1_G \rangle$ e, portanto, H é cíclico.

Se $H \neq \{1_G\}$, então, existe $x = a^n \in G$ $(n \neq 0)$ tal que $x \in H$. Então, H tem pelo menos uma potência positiva de a. Seja d o menor inteiro positivo tal que $a^d \in H$. Vamos provar que $H = \left\langle a^d \right\rangle$:

- (i) Por um lado $a^d \in H$, logo $\langle a^d \rangle \subseteq H$;
- (ii) Reciprocamente, seja $y \in \dot{H}$. Ćomo $y \in G$, $y = a^m$ para algum $m \in \mathbb{Z} \setminus \{0\}$. Então, existem $q, r \in \mathbb{Z}$ com $0 \le r < d$, tais que

$$y = a^m = a^{dq+r} = a^{qd}a^r.$$

Assim,
$$a^r = \left(a^d\right)^{-q} a^m \in H$$
, pelo que $r = 0$. Logo, $a^m = a^{qd} \in \left\langle a^d \right\rangle$, pelo que $H \subseteq \left\langle a^d \right\rangle$. \square

Observação. Se o grupo G é cíclico e tem ordem n, isto é, se existe $a \in G$ tal que $G = \langle a \rangle = \{1_G, a, a^2, ..., a^{n-1}\}$, então, para qualquer divisor positivo k de n, $\langle a^{\frac{n}{k}} \rangle$ é um subgrupo de G com ordem k. Mais ainda, um grupo cíclico G de ordem finita n tem um e um só subgrupo de ordem k, para cada k divisor de n.

Exemplo 39. Os subgrupos do grupo cíclico \mathbb{Z} são todos do tipo $n\mathbb{Z}$. De facto, para todo $n \in \mathbb{Z}$, $\langle n \rangle = n\mathbb{Z}$.

Observação. Resulta da definição de grupo cíclico que qualquer elemento que tenha ordem igual à ordem do grupo é um seu gerador e que qualquer gerador de um grupo cíclico finito tem ordem igual à ordem do grupo.

Exemplo 40. Em
$$\mathbb{Z}_4$$
 tem-se que: $o(\overline{3}) = 4$ e $\mathbb{Z}_4 = \langle \overline{3} \rangle$. Em geral, para $n \geq 2$, como $o([x]_n) = \frac{n}{\text{m.d.c.}(x,n)}$, temos que $\mathbb{Z}_n = \langle [x]_n \rangle \iff \text{m.d.c.}(x,n) = 1$.

Observação. O número de geradores distintos de um grupo cíclico de ordem n é igual à imagem de n pela função phi de Euler, que nos dá o número de números naturais menores do que n e primos com n (recordar que se $n=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$ é a fatorização em primos de n, então $\varphi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\cdots (1-\frac{1}{p_k}))$.

Para um grupo $G = \langle a \rangle$, G é abeliano e se H < G, $H = \langle a^d \rangle$, para algum $d \in \mathbb{N}$. Assim, $H \lhd G$, pelo que podemos falar no grupo G/H. Vejamos de seguida como são os elementos deste grupo:

Proposição. Seja $G=\langle a\rangle$ um grupo infinito e $H=\langle a^d\rangle \lhd G$. Então, $H,aH,a^2H,...,a^{d-1}H$ é a lista completa de elementos de G/H.

morfismos entre grupos cíclicos

Proposição. Dois grupos cíclicos finitos são isomorfos se e só se tiverem a mesma ordem.

Demonstração. Sejam G e T dois grupos cíclicos e finitos. Então, existem $a \in G$ e $b \in T$ tais que $G = \langle a \rangle$ e $T = \langle b \rangle$.

Se $G \cong T$, então obviamente G e T têm a mesma ordem.

Se G e T têm a mesma ordem n, então, o(a) = o(b) = n e

$$G = \left\{1_G, a, a^2, ..., a^{n-1}\right\}, \qquad T = \left\{1_T, b, b^2, ..., b^{n-1}\right\}.$$

Logo, a aplicação $\psi: \textit{G}
ightarrow \textit{T}$ definida por

$$\psi = \left(\begin{array}{cccc} 1_G & a & a^2 & \cdots & a^{n-1} \\ 1_T & b & b^2 & \cdots & b^{n-1} \end{array}\right)$$

é obviamente um isomorfismo.

Corolário. Sejam $n \in \mathbb{N}$ e G um grupo cíclico de ordem n. Então, $G \cong \mathbb{Z}_n$.

Observação. Vimos já que se G é um grupo e $a \in G$ é tal que $o(a) = \infty$, então, para $m, n \in \mathbb{Z}$

$$m \neq n \Longrightarrow a^m \neq a^n$$
.

Assim, se G é infinito e cíclico, temos que $G=\langle a \rangle$ para algum $a \in G$ tal que $o\left(a\right)=\infty$, pelo que

$$G = \left\{..., a^{-2}, a^{-1}, 1_G, a, a^2, a^3, ...\right\}.$$

Proposição. Se G é um grupo cíclico infinito, então, $G \cong \mathbb{Z}$.

permutações

Definição. Seja A um conjunto. Uma permutação de A é uma aplicação bijetiva de A em A.

Observação. Se A é um conjunto finito com n elementos $(n \in \mathbb{N})$, podemos estabelecer uma bijeção entre A e o conjunto $\{1,2,...,n\}$, pelo que aqui iremos adoptar esta última notação para qualquer conjunto com n elementos. Assim, dizemos, por exemplo, que

$$\phi = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array}\right)$$

é uma permutação de um conjunto com 4 elementos.

Observação. Se A é um conjunto finito com n elementos ($n \in \mathbb{N}$), sabemos que podemos definir n! permutações de A distintas. Mais ainda, se algebrizarmos este conjunto de n! elementos com a composição de aplicações obtemos, obviamente, um grupo.

- (i) A composta de duas permutações é uma permutação;
- (ii) A composição de aplicações, em particular de permutações, é associativa;
- (iii) A função identidade é uma permutação e é o elemento neutro para a composição de aplicações;
 - (iv) A aplicação inversa de uma permutação é uma permutação.

Definição. Chama-se grupo simétrico de um conjunto com n elementos, e representa-se por S_n , ao grupo das permutações desse conjunto.

Exemplo 41. Se considerarmos um conjunto com dois elementos,

$$S_2 = \left\{ \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array} \right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) \right\};$$

Exemplo 42. Se considerarmos um conjunto com 3 elementos,

$$\begin{split} S_3 &= \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right), \\ & \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right) \right\}. \end{split}$$

Exemplo 43. Se considerarmos um conjunto com 4 elementos, temos que

Proposição. O grupo simétrico S_n é não comutativo, para todo $n \ge 3$.

Demonstração. Se f e g são as permutações de S_n definidas por

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$, $f(k) = k$, $\forall 4 \le k \le n$,
 $g(1) = 2$, $g(2) = 1$, $g(k) = k$, $\forall 3 \le k \le n$,

temos que

$$(f \circ g)(1) = 3 \neq 1 = (g \circ f)(1).$$

grupo diedral

Definição. Chama-se grupo diedral ao grupo das simetrias e rotações de uma linha poligonal.

Representamos por D_n o grupo diedral de um polígono regular com n lados.

Exemplo 44. Recordar $D_3 = S_3$

Representando as simetrias e rotações pelas permutações em $\{1,2,3\}$, temos:

Rotações de 0°, 120° e 240°:

$$\rho_1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \quad \rho_2 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right) \text{ e } \rho_3 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right);$$

simetrias em relação às bissetrizes dos ângulos 1, 2 e 3:

$$\theta_1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right), \quad \theta_2 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right) \ e \ \theta_3 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right).$$

80

Exemplo 45. D_4 é um subgrupo próprio de S_4

Rotações de 0°, 90°, 180° e 270°:

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \ \rho_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix},$$

$$\rho_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} e \rho_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix};$$

Simetrias em relação às bissectrizes [1, 3] e [2, 4]:

$$\theta_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$
 e $\theta_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$;

Simetrias em relação às mediatrizes do lado [1, 2] e do lado [2, 3]:

$$\theta_3 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right) \ {\rm e} \ \theta_2 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{array}\right).$$

Assim, D_4 tem 8 elementos enquanto que S_4 tem 24 elementos.

Considerando a composição de funções, obtemos a tabela

ρ_1	ρ_1	ρ_2	ρ_3	ρ_{4}	$ heta_1$	θ_2	θ_3	θ_4
ρ_1	ρ_1	ρ_2	$ ho_3$	$ ho_{4}$	θ_1	θ_2	θ_3	θ_4
ρ_2	ρ_2	$ ho_3$	ρ_{4}	ρ_1	θ_2	θ_3	θ_4	θ_1
ρ_3	ρ_3	ρ_4	ρ_1	ρ_2	θ_3	$ heta_4$	θ_1	θ_2
ρ_4	ρ_4	ρ_1	ρ_2 θ_3 θ_4 θ_1	$ ho_3$	$ heta_4$	$ heta_1$	θ_2	θ_3
$ heta_1$	θ_1	$ heta_4$	θ_3	θ_2	ρ_1	$ ho_4$	ρ_3	ρ_2
θ_2	θ_2	$ heta_1$	$ heta_4$	θ_3	ρ_2	$ ho_1$	ρ_{4}	ρ_3
θ_3	θ_3	θ_2	$ heta_1$	θ_4	ρ_3	ρ_2	ρ_1	ρ_4
$ heta_4$	θ_4	θ_3	θ_2	$ heta_1$	$ ho_{4}$	$ ho_3$	ρ_2	ρ_1

Os subgrupos de D_4 são

$$\{\rho_1\}, \{\rho_1, \theta_1\}, \{\rho_1, \theta_2\}, \{\rho_1, \theta_3\}, \{\rho_1, \theta_4\}, \{\rho_1, \rho_3\},$$

$$\{\rho_1, \rho_2, \rho_3, \rho_4\}, \{\rho_1, \rho_3, \theta_1, \theta_3\}, \{\rho_1, \rho_3, \theta_2, \theta_4\}, D_4\}.$$

Destes, quais são normais?

Exemplo 46. Relativamente à figura

o grupo diedral é composto pelas aplicações

$$\phi_1 = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array}\right), \ \phi_2 = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array}\right),$$

$$\phi_3 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right) \ {\rm e} \ \phi_4 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right).$$

Definição. Diz-se que uma permutação σ de um conjunto finito A é um ciclo de comprimento n se existirem $a_1, a_2, \ldots, a_n \in A$ tais que

$$\sigma\left(a_{1}\right)=a_{2},\quad\sigma\left(a_{2}\right)=a_{3},\ldots,\quad\sigma\left(a_{n-1}\right)=a_{n},\quad\sigma\left(a_{n}\right)=a_{1}$$

e se

$$\sigma(x) = x, \quad \forall x \in A \setminus \{a_1, a_2, ..., a_n\}.$$

Neste caso, representa-se este facto por

$$\sigma = \left(\begin{array}{ccccc} a_1 & a_2 & \dots & a_{n-1} & a_n \end{array} \right).$$

Exemplo 47. Se $A = \{1, 2, 3, 4, 5\}$, temos que

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix}
= \begin{pmatrix} 1 & 3 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 4 & 1 \end{pmatrix}
= \begin{pmatrix} 5 & 4 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 3 & 5 \end{pmatrix}.$$

Observação. Em S_n , o produto (composição) de dois ciclos pode ou não ser um ciclo, como o prova o seguinte exemplo: em S_6 ,

não é um ciclo. De facto, se representarmos este produto por σ , temos que $\sigma(2)=4,\ \sigma(4)=5,\ \sigma(5)=2$ e $\sigma(1)\neq 1$.

Por outro lado,

Definição. Dado um conjunto A finito, dizemos que dois ciclos são *disjuntos* se não existir nenhum elemento de A que apareça simultaneamente na notação desses ciclos, i.e., se nenhum elemento de A for transformado simultaneamente pelos dois ciclos.

Exemplo 48. Em S_6 ,

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{array}\right) = (1 \quad 6)(2 \quad 5 \quad 3),$$

i.e., a permutação σ é o produto de dois ciclos disjuntos.

Teorema. Toda a permutação σ de um conjunto finito é um produto (composição) de ciclos disjuntos.

Questão: Porque é que é importante escrever uma permutação como produto de ciclos disjuntos?

Resposta: Porque ciclos disjuntos comutam!

$$(1 \ 2 \ 3)(4 \ 5) = (4 \ 5)(1 \ 2 \ 3)$$

$$(1 \ 2 \ 3)(1 \ 2) = (1 \ 3) \neq (2 \ 3) = (1 \ 2)(1 \ 2 \ 3)$$

Observação. Relembrar que num grupo G, para $a, b \in G$,

$$ab = ba \Leftrightarrow \forall n \in \mathbb{Z}, \ (ab)^n = a^n b^n.$$

Questão: Dada uma permutação σ num conjunto com n elementos, i.e., dado o elemento $\sigma \in S_n$, qual será a sua ordem?

Resposta:

- 1. se σ é um ciclo, então $o(\sigma)$ é o comprimento do ciclo.
- 2. se σ é um produto de pelo menos dois ciclos **disjuntos**, então $o(\sigma)$ é o m.m.c. entre os comprimentos dos ciclos em questão.

Exemplo 49. Em S_8 , como

$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 4 & 1 & 7 & 8 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 7 \end{pmatrix} \begin{pmatrix} 6 & 8 \end{pmatrix}, \text{ temos que } o \begin{pmatrix} \phi \end{pmatrix} = 6 \text{ pois o mínimo múltiplo comum entre as ordens dos três ciclos disjuntos é } 6.$$

grupo alterno

Definição. Uma transposição é um ciclo de comprimento 2.

Proposição. Qualquer ciclo é produto de transposições.

Demonstração. Imediata, tendo em conta que

$$(a_1 \quad a_2 \quad a_3 \quad \cdots \quad a_n) = (a_1 \quad a_n) \begin{pmatrix} a_1 & a_{n-1} \end{pmatrix} \cdots \begin{pmatrix} a_1 & a_3 \end{pmatrix} \begin{pmatrix} a_1 & a_2 \end{pmatrix}.$$

Observação. Considerando o teorema e a proposição anteriores, temos que qualquer permutação se escreve como produto de transposições.

Exemplo 50. Em S_7 ,

$$\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 1 & 7 & 5 & 6 \end{array}\right) = (1 \quad 3 \quad 4) (5 \quad 7 \quad 6) = (1 \quad 4) (1 \quad 3) (5 \quad 6) (5 \quad 7) \, .$$

89

Teorema. Nenhuma permutação de um conjunto finito pode ser expressa simultaneamente como produto de um número par de transposições e como produto de um número ímpar de transposições.

Definição. Uma permutação diz-se *par* se se escreve como o produto de um número par de transposições. Uma permutação diz-se *ímpar* se se escreve como produto de um número ímpar de transposições.

Exemplo 51.

• Em $S_n(n \ge 2)$, a identidade é uma permutação par. De facto, se A tem n elementos

$$id = (a_i \quad a_j)(a_i \quad a_j),$$

para quaisquer $a_i, a_j \in A$.

 Em S_n, um ciclo de comprimento ímpar é uma permutação par e um ciclo de comprimento par é uma permutação ímpar

$$(1 \ 2 \ 3) = (1 \ 3)(1 \ 2)$$
 $(1 \ 2 \ 3 \ 4) = (1 \ 4)(1 \ 3)(1 \ 2)$.

Teorema. Seja A um conjunto com n elementos. Então, o conjunto das permutações pares em A é um subgrupo de S_n de ordem $\frac{n!}{2}$.

Demonstração. Seja

$$A_n = \{\sigma : \sigma \text{ \'e uma permutação par}\}$$
 .

Sabemos que $id \in A_n$, que a composição de duas permutações pares é ainda uma permutação par e que a inversa de uma permutação par é ainda uma permutação par. Logo, temos que A_n é um subgrupo do grupo S_n .

Para demonstrar que $|A_n|=\frac{n!}{2}$, basta considerar uma transposição $au\in S_n$ e a aplicação

$$\phi_{\tau}: A_n \longrightarrow B_n$$

$$\sigma \longmapsto \tau \sigma.$$

onde B_n é o conjunto das permutações ímpares.

Provando que ϕ_{τ} é bijetiva, temos que $\#(A_n) = \#(B_n)$ e, como $\#(A_n) + \#(B_n) = \#(S_n) = n!$, o resultado é imediato.

Definição. Seja A um conjunto com n elementos. Chama-se grupo alterno de A, e representa-se por A_n , ao subgrupo de S_n das permutações pares.

Exemplo 52.
$$A_2 = \{id\}$$

 $A_3 = \{id, (123), (132)\}$
 $A_4 = \{id, (123), (132), (124), (142), (134), (143),$
 $(234), (243), (12)(34), (13)(24), (14)(23)\}$

o teorema de representação de Cayley

Teorema de Representação de Cayley

Para finalizarmos este capítulo sobre grupos, vamos mostrar a importância do estudo do grupo simétrico na Teoria de Grupos. De facto, como se prova no próximo teorema, qualquer grupo é isomorfo a um subgrupo de um dado grupo simétrico.

Teorema. (Teorema de representação de Cayley) Todo o grupo é isomorfo a um grupo de permutações.

Demonstração. Para cada $x \in G$, a aplicação

$$\lambda_x : G \longrightarrow G$$
 $a \longmapsto \lambda_x (a) = xa,$

é uma permutação em G.

Assim, se S é o grupo das permutações de G, consideramos a função

$$\begin{array}{ccc} \theta: G & \longrightarrow & S \\ & x & \longmapsto & \lambda_x. \end{array}$$

Então, para $x, y, g \in G$,

$$(\lambda_x \circ \lambda_y)(g) = \lambda_x (\lambda_y (g)) = \lambda_x (yg) = x (yg) = (xy) g = \lambda_{xy} (g),$$

pelo que

$$\theta(x)\theta(y) = \theta(xy)$$
,

i.e., θ é um morfismo.

Mais ainda,

$$x \in \text{Nuc}\theta \Leftrightarrow \theta(x) = \text{id}_G \Leftrightarrow \lambda_x = \text{id}_G \Rightarrow x = \lambda_x(1_G) = \text{id}_G(1_G) = 1_G,$$

e, portanto,

$$Nuc\theta = \{1_G\}$$
.

Logo, θ é um monomorfismo, pelo que $G \cong \operatorname{Im} \theta < \mathcal{S}$.

Exemplo 53. Seja $G = \mathbb{Z}_4$. Então, como para todos $a, x \in \mathbb{Z}_4$, $\lambda_a(x) = a + x$, temos que

$$\lambda_{\bar{0}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{0} & \bar{1} & \bar{2} & \bar{3} \end{pmatrix} = id$$

$$\lambda_{\bar{1}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{1} & \bar{2} & \bar{3} & \bar{0} \end{pmatrix} = (\bar{0} & \bar{1} & \bar{2} & \bar{3})$$

$$\lambda_{\bar{2}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{2} & \bar{3} & \bar{0} & \bar{1} \end{pmatrix} = (\bar{0} & \bar{2}) (\bar{1} & \bar{3})$$

$$\lambda_{\bar{3}} = \begin{pmatrix} \bar{0} & \bar{1} & \bar{2} & \bar{3} \\ \bar{3} & \bar{0} & \bar{1} & \bar{2} \end{pmatrix} = (\bar{0} & \bar{3} & \bar{2} & \bar{1}).$$

Assim, $\mathbb{Z}_4 \cong \{\lambda_{\bar{0}}, \lambda_{\bar{1}}, \lambda_{\bar{2}}, \lambda_{\bar{3}}\}$.