Architecture de la matière – chapitre 3

Solides cristallins

Différents types de cristaux

Les solides cristallins présentent des propriétés macroscopiques très diversifiées. Par exemple, mécaniquement on distingue :

- la **dureté** : résistance à la pénétration ;
- la **malléabilité** : capacité à se déformer (par choc ou pression) sans rompre;
- la **ductilité** : capacité à être étiré sans casser.

On trouve également des propriétés électriques et chimiques (solubilité, température de fusion).

On peut alors les regrouper par famille, selon leur structure microscopique dont émergent les propriétés macro : c'est l'objectif des paragraphes suivants.

Cristaux métalliques

IV.A.1

Description

On peut décrire un cristal métallique comme une structure dans laquelle les nœuds du réseau sont occupés par des **cations** (M^+ ou M^{2+} , perte d'un ou deux électrons de valence), et tous les électrons cédés sont **délocalisés** sur l'ensemble du cristal. Cette délocalisation assure la cohésion du cristal. Ainsi,

Liaison métallique -

La liaison métallique est **forte** ($E \approx 100 \, \mathrm{kJ \cdot mol^{-1}}$) et **isotrope** (égale dans toutes les directions).

Conventionnellement, la limite entre métaux et non-métaux est définie comme sur la figure ci-contre, mais elle est relativement floue. Entre les deux, on a les semi-conducteurs (ou métalloïdes, ou semi-métaux), qui ont des propriétés métalliques peu marquées. De leur position dans le tableau périodique, on en conclue :

Électronégativité

Un métal est un élément peu électronégatif.

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques; voir Tableau 3.1.

Tableau 3.1 – Propriétés des cristaux métalliques

Propriété microscopique		Propriété macroscopique	
Liaison métallique forte	donc	température de fusion élevée	
Liaison isotrope donc atomes déplaçables	donc	ductile et malléable	
Électrons libres	donc	conductivité électrique et thermique	
Électrons facilement arrachés	donc	métaux réducteurs	

IV.A.2 Alliages métalliques

Définition

Un alliage est un cristal combinant un métal (dit $de\ base$) avec un ou plusieurs autres éléments (dits d'alliage), métalliques ou non.

On dit aussi parfois qu'un alliage est une « solution solide » : la base serait le solvant, les autres les solutés. L'intérêt des alliages est de faire varier les propriétés du matériau de base, notamment mécaniques et anti-corrosives. On peut les réaliser de deux manières :

- 1) par substitution : un atome se substitue à un autre en certains points du réseau;
- 2) par insertion : des atomes s'insèrent dans les sites cristallographiques du réseau métallique.

Tableau 3.2 – Exemples d'alliages courants et utilisations

Nom de l'alliage	Élément principal	Éléments ajoutés	Propriétés et utilisations
Acier	Fer	Carbone 2%	Plus dur que le fer. Très répandu, notamment en construction ou dans l'industrie automo- bile.
Acier inoxydable	Fer	Carbone 2%, chrome et nickel	Plus résistant à la corrosion que l'acier simple.
Alliages d'aluminium	Aluminium	Cobalt, nickel, tantale	Alliages durs mais légers, utilisés notamment en aéronautique.
Bronze	$\mathrm{Cuivre} > 60\%$	Étain	Plus résistant que le cuivre à l'usure. Utilisé pour la décoration , la lutherie, la sculpture.
Laiton	$\mathrm{Cuivre} > 60\%$	Zinc	Plus dur et plus facile à usiner que le cuivre. Utilisé en horlogerie, serrurerie, robinetterie, lutherie.
Or rose	Or	Cuivre 20%, argent 5%	Utilisé en joaillerie.
Or blanc	Or	Argent	Utilisé en joaillerie, recouvert d'une couche de rhodium pour le rendre plus brillant.

Lycée Pothier 2/7 MPSI – 2022/2023

IV.B.1

Description

- Cristal ionique

Exercice

Déterminer la formule brute d'un cristal contenant les ions Fe₃⁺ et O₂⁻.

Pour avoir neutralité, pour chaque cation $\mathrm{Fe_3}^+$ on doit avoir un nombre d'anion $\mathrm{O_2}^-$ compensant la charge. En utilisant des nombres entiers, et les plus petits possibles, on trouve simplement

 Fe_2O_3

La cohésion est alors assurée par les forces coulombiennes **entre** les charges, à la fois d'attraction pour les charges opposées mais aussi de répulsion pour les charges de même signe. Ainsi,

Liaison ionique

La liaison des cristaux ioniques est forte $(E \gtrsim 100 \, \mathrm{kJ \cdot mol^{-1}})$, isotrope mais répulsive.

Pour assurer leur stabilité, il est favorable qu'un maximum d'anions entoure de manière compacte chaque cation. Ainsi, un cristal ionique est souvent décrit comme un réseau d'anions où les cations occupent les sites cristallographiques (ou inversement). Avec le modèle des sphères dures, on décrit le rayon des entités par leur **rayon ionique**, et on considère le rayon des anions plus grand que celui des cations (plus d'électrons en périphérie). On a donc

Stabilité d'un cristal ionique de sphères dures

Dans un cristal ionique, il y a contact cation/anion, mais pas anion/anion ou cation/cation, à la fois par répulsivité et par non-contact.

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques :

Tableau 3.3 – Propriétés des cristaux ioniques

Propriété microscopique		Propriété macroscopique
Liaison ionique forte	donc	température de fusion élevée
Liaison isotrope mais répulsive, ions fixes	donc	indéformable
Électrons dans les liaisons	donc	faible conductivité
Ions attirés par solvants polaires	donc	forte solubilité avec solvants polaires

Lycée Pothier 3/7 MPSI – 2022/2023

Exercice

IV.B.2 Exemples de cristaux ioniques

La structure CsCl (chlorure de césium) est une structure cubique centrée. En prenant le césium au centre et le chlore sur les sommets, on a la géométrie suivante :

- ♦ Formule chimique : on a $8 \times 1/8 = 1$ ion chlorure, et 1 ion césium dans la maille \Rightarrow CsCl
- ♦ Coordinence: un cation a 8 anions plus proches voisins (contact) et 8 cations, et inversement (on parle de structure 8-8).
- ♦ Condition géométrique : contact anion/cation sur la grande diagonale, soit $a\sqrt{3} = 2r_+ + 2r_-$, et non-contact sur une face soit $a > 2r_-$:

$$\frac{2}{\sqrt{3}}r_{+} + \frac{2}{\sqrt{3}}r_{-} > 2r_{-}$$

$$\Leftrightarrow r_{+} + r_{-} > r_{-}\sqrt{3}$$

$$\Leftrightarrow \frac{r_{+}}{r_{-}} > \sqrt{3} - 1 = 0,732$$

La structure NaCl (chlorure de sodium) est une structure cubique faces centrées. Les ions chlorure sont sur les nœuds, les ions sodium sur les sites octaédriques (forme également un réseau CFC).

- 1) Dénombrer les anions et cations dans la maille. En déduire la formule brute dans la maille.
- 2) Déterminer la coordinence anions/cations.
- 3) Montrer que la structure est stable : il y a contact entre ions de charges opposées mais pas entre ions de même charge. On donne $r_+=95\,\mathrm{pm}$ et $r_-=181\,\mathrm{pm}$.
- 1) Formule chimique: $8 \times 1/8 + 6 \times 1/12 = 4$ ions chlorure, et $12 \times 1/4 = 4$ ions sodium dans la maille $\Rightarrow \boxed{\text{NaCl}}$.
- 2) Coordinence: un cation a 6 anions plus proches voisins (avec qui il est en contact), et 12 cations (et inversement) (on parle de structure 6-6).
- 3) Condition géométrique : contact entre ions de charges opposées donne $a = 2r_+ + 2r_-$. La condition de non-contact entre deux anions d'une face est $a\sqrt{2} > 4r_-$. Ainsi,

$$2r_{+}\sqrt{2} + 2r_{-}\sqrt{2} > 4r_{-}$$

$$\Leftrightarrow r_{+} + r_{-} > r_{-}\sqrt{2}$$

$$\Leftrightarrow \boxed{\frac{r_{+}}{r_{-}} > \sqrt{2} - 1 = 0,414}$$

Or, $r_+/r_- \approx 0.52$: la condition est bien respectée.

La structure ZnS (sulfure de zinc) est une structure cubique faces centrées. Les ions sulfure sont sur les nœuds, les ions zinc sur un site tétraédrique sur deux.

- ♦ Formule chimique : on a $8 \times 1/8 + 6 \times 1/2 = 4$ ions sulfure, et 4 ions zinc dans la maille ⇒ Zn_4S_4 ou \overline{CsCl} .
- ♦ Coordinence: un cation a 4 anions plus proches voisins (contact) et 12 cations, et inversement (on parle de structure 4-4).
- \diamond Condition géométrique : contact anion/cation sur la grande diagonale d'un petit cube, soit $a\sqrt{3}/2 = 2r_+ + 2r_-$, et non-contact sur une face soit $a\sqrt{2} > 4r_-$:

$$a\sqrt{2} = 4\sqrt{\frac{2}{3}}r_{+} + 4\sqrt{\frac{2}{3}}r_{-}$$

$$\Rightarrow r_{-} < r_{+}\sqrt{\frac{2}{3}} + r_{-}\sqrt{\frac{2}{3}}$$

$$\Leftrightarrow \frac{r_{+}}{r_{-}} > \sqrt{\frac{3}{2}} - 1 = 0.225$$

C Cristaux covalents ou macrovalents

Cristal covalent

Dans un cristal macrovalent, **tous** les atomes du cristal sont liés entre eux pas des liaisons covalentes.

On trouvera ainsi principalement des éléments qui ne font peu d'ions, mais qui font beaucoup de liaisons : ceux avec une couche de valence environ à moitié pleine, donc bloc d et la gauche du bloc p (carbone, silicium...).

Liaison covalente

La liaison des cristaux covalents est très forte $(E \gtrsim 300 \,\mathrm{kJ \cdot mol^{-1}})$ et directionnelle.

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques; voir Tableau 3.4.

Le cas du carbone diamant est un cristal covalent, qui forme un réseau CFC avec la moitié des sites tétraédriques également occupés par des atomes de carbone.

- 1) Déterminer sa compacité.
- 2) Déterminer sa masse volumique. On donne $a = 356.7 \,\mathrm{pm}$.

Exercice

1) Contact sur la grande diagonale d'un petit cube : $a\sqrt{3}/2 = 4r$. Or, on compte $4+6\times 1/2 + 8\times 1/8 = 8$ atomes par maille. Ainsi,

$$C = \frac{NV_{\rm sph}}{V_{\rm m}}$$

$$\Leftrightarrow = \frac{8 \times \frac{4}{3}\pi r^3}{a^3}$$

$$\Leftrightarrow = \frac{\frac{32}{3}\pi r^3}{\frac{512}{3\sqrt{3}}r^3}$$

$$\Leftrightarrow C = \frac{\pi\sqrt{3}}{16} \approx 0.34$$

2) La masse volumique, avec $M_{\rm C} = 12\,{\rm g\cdot mol^{-1}}$, est

$$\rho = \frac{NM}{\mathcal{N}_A a^3} \approx 3500 \,\mathrm{kg \cdot m^{-1}}$$

Tableau 3.4 – Propriétés des cristaux covalents

Propriété microscopique		Propriété macroscopique	
Liaison covalente très forte	donc	température de fusion très élevée	
Liaison directionnelle donc atomes fixes	donc	indéformable	
Électrons dans les liaisons	donc	isolant électrique	

D Cristaux moléculaires

Cristal moléculaire

Un cristal moléculaire est fait de **molécules** liées entre elles par des **liaisons de VdW** ou **liaisons hydrogènes**.

Le modèle des sphères dures n'est pas toujours adapté dans ce cas, puisque leur géométrie est souvent anisotrope : les motifs sont **orientés** dans la maille, de telle sorte qu'ils maximisent l'énergie de liaison.

Liaison moléculaire

La liaison des cristaux moléculaires est **faible** ($E \lesssim 10\,\mathrm{kJ}\cdot\mathrm{mol^{-1}}$ pour VdW, $\approx 30\,\mathrm{kJ}\cdot\mathrm{mol^{-1}}$ pour les LH) et **directionnelle**.

V. Bilan 7

À partir de ces propriétés macroscopiques, on peut expliquer les propriétés macroscopiques; voir Tableau 3.5.

Tableau 3.5 – Propriétés des cristaux moléculaires

Propriété microscopique	Propriété macroscopique	
Liaisons VdW et LH faibles	donc	température de fusion faible
Liaison directionnelle mais faible donc déplaçable	donc	faible dureté
Électrons localisés dans les molécules	donc	isolant électrique
Interactions intérieures similaires aux solvants	donc	forte solubilité si solvant adapté

Tableau 3.6 – Bilan des différents types de cristaux.

	Cristaux métalliques	Cristaux ioniques	Cristaux covalents	Cristaux moléculaires
Exemples	Fe, Ca, Zn	NaCl, KOH	Diamant, Si, Ge	$\mathrm{H_2O},\mathrm{I_2},\mathrm{CO_2}$
Type de liai- sons	Métallique (é. délocalisés)	Ionique (entre + et -)	Covalente	VdW, LH
Température de fusion	Élevée ($\approx 10^3 ^{\circ}\text{C}$)	Assez élevée $(\approx 10^2 ^{\circ}\text{C})$	Élevée ($\approx 10^3 ^{\circ}\text{C}$)	Faible ($\lesssim 100^{\circ}\text{C}$)
Propriétés mécaniques	Dur, malléable, ductile	Dur mais cassant	Dur et peu malléable	Fragile
Propriétés électriques	Conducteur	Isolant	Le plus souvent isolant	Isolant
Propriétés de solubilisation	Insoluble	Très solubles dans polaires	Insoluble	Très solubles si adéquat