Departamento de Matemática Aplicada

IMECC - UNICAMP

Exame de Admissão 2012

Programa de Pós-Graduação em Matemática Aplicada

011.	7	T 1 ~	
Códrao	de	<i>Identificação:</i>	
0 0 00 0,90	000	- 000,000,000,000.	

$Quest\~oe$	Pontos	
Questão	1	
Questão	2	
Questão	3	
Questão	4	
Questão	5	
Questão	6	
Questão	7	
Questão	8	
Questão	9	
Questão		
T o t a	l	

Inicialmente, faça uma leitura com muita atenção do enunciado de todas as questões. Apresente a resolução de somente oito questões, dentre as cinco questões de Álgebra Linear e as cinco questões de Cálculo Diferencial e Integral. Todas as questões têm a mesma pontuação. A prova tem duração de quatro horas. Justifique todos os argumentos. Respostas sem justificativas **não** serão consideradas.

Boa Prova!

Álgebra Linear

Questão 1. (20 Pontos)

Considere que a matriz A dada por:

$$A = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 9 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

é a matriz de um produto interno $\langle\,\cdot\,,\,\cdot\,\rangle$ no espaço vetorial real $I\!\!R^3$ com relação à base ordenada

$$\Gamma = \{ w_1 = (-1, 1, 1), w_2 = (0, 1, -1), w_3 = (2, 1, 1) \}.$$

- (a) Determine uma base para o complemento ortogonal do subespaço S, gerado pelo elemento v = (5, 6, 2), com relação ao produto interno definido pela matriz A.
- (b) Determine a matriz que representa o produto interno usual de $I\!\!R^3$ com relação à base ordenada Γ .

Questão 2. (20 Pontos)

Considere V um espaço vetorial real de dimensão finita munido do produto interno $\langle \cdot, \cdot \rangle$, $\beta = \{v_1, \dots, v_n\}$ uma base para V e T um operador linear sobre V.

(a) Mostre que a matriz $A = [a_{ij}]$ onde

$$a_{ij} = \langle v_i, v_j \rangle$$
 para $i, j = 1, 2, \dots, n,$

é uma matriz positiva-definida.

(b) Dados n números reais arbitrários c_1, \dots, c_n , prove que existe um único elemento $v \in V$ de modo que

$$\langle v, v_1 \rangle = c_1, \cdots, \langle v, v_n \rangle = c_n.$$

(c) Mostre que dim(Im(T)) = 1 se, e somente se, existem elementos $u, w \in V$ tais que $T(v) = \langle v, u \rangle w$ para todo $v \in V$, com $u, w \neq 0_V$.

Questão 3. (20 Pontos)

Considere o espaço vetorial complexo \mathbb{C}^2 munido do produto interno usual $\langle \cdot, \cdot \rangle$, e o operador linear $T: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ definido da seguinte forma: T(z, w) = (z + iw, iz + w).

- (a) Mostre que conjunto $\gamma = \{(i, 1), (1, i)\}$ é uma base ordenada para \mathbb{C}^2 .
- (b) Determine a matriz do operador linear T com relação a base ordenada γ , isto é, determine a matriz $[T]^{\gamma}_{\gamma}$.
- (c) Verifique se T é um operador linear diagonalizável. Em caso afirmativo, determine uma base ordenada β para \mathbb{C}^2 de modo que $[T]^{\beta}_{\beta}$ seja uma matriz diagonal.

Questão 4. (20 Pontos)

(a) Considere o espaço vetorial real \mathbb{R}^3 munido de um produto interno e $U \subsetneq \mathbb{R}^3$ um subespaço não nulo. Mostre que não existe um operador linear T sobre \mathbb{R}^3 de modo que

$$T(U) = U^{\perp}$$
 e $T(U^{\perp}) = U$.

(b) Considere o espaço vetorial real \mathbb{R}^3 munido do produto interno usual $\langle \,\cdot\,,\,\cdot\,\rangle$ e U o subespaço de \mathbb{R}^3 definido da seguinte forma:

$$U = \{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0\}.$$

Determine de forma explícita a expressão de um operador linear T sobre \mathbb{R}^3 , diferente do operador identidade, de modo que

$$T(U) = U$$
 e $T(U^{\perp}) = U^{\perp}$.

Questão 5. (20 Pontos)

Sejam V um espaço vetorial real munido do produto interno $\langle \,\cdot\,,\,\cdot\,\rangle\,,\,\,\,S$ um subespaço de dimensão finita de V e P o operador de projeção ortogonal sobre S.

- (a) Mostre que $V = Im(P) \oplus Ker(P)$, onde Ker(P) é o núcleo do operador P.
- (b) Considere que $\,V\,$ tem dimensão finita, mostre que $\,P\,$ é um operador diagonalizável.

Cálculo Diferencial e Integral

Questão 6. (20 Pontos)

Considere a equação diferencial ordinária de segunda ordem

$$y''(x) + ay'(x) + by(x) = 0$$
 , $x \in (0, 1)$.

com as condições de fronteira

$$y(0) = 0$$
 e $y(1) = 0$.

Determina a relação entre os parâmetros $\,a\,$ e $\,b\,$ de modo que o problema de valor de contorno acima tenha solução não trivial.

Questão 7. (20 Pontos)

Considere a equação diferencial parcial

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0 ,$$

denominada equação da onda, onde c é uma constante positiva, $x \in \mathbb{R}$ e t > 0.

(a) Mostre que a equação acima se transforma na equação diferencial parcial

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = 0 ,$$

pela mudança de coordenadas

$$\xi = x + ct$$
 e $\eta = x - ct$.

(b) Mostre que u(x,t) = f(x+ct) + f(x-ct) é solução da equação da onda para qualquer função real f duas vezes continuamente diferenciável.

Questão 8. (20 Pontos)

Considere o espaço vetorial real \mathbb{R}^4 munido do produto interno usual $\langle \cdot, \cdot \rangle$ e com a norma Euclidiana $\| \cdot \|_2$ proveniente desse produto interno. Determine a solução do sistema linear

$$\begin{cases} x + y + 2z + t = -15 \\ 2x - 2y + z + t = 11 \end{cases}$$

que está mais próxima do ponto $0_{\mathbb{R}^4} = (0,0,0,0)$.

Questão 9. (20 Pontos)

Considere a forma diferencial

$$2xydx + (x^2 - y^2)dy,$$

e Γ a curva simples fechada definida pela equação

$$4x^2 + y^2 = 4 \,,$$

com a orientação no sentido anti-horário.

(a) Determine a equação vetorial da curva Γ , isto é, determine uma função vetorial

$$\vec{\Gamma}(t) = x(t)\vec{i} + y(t)\vec{j},$$

especificando o intervalo do parâmetro t, e faça um esboço da curva orientada Γ .

(b) A forma diferencial é exata em alguma região simplesmente conexa? Em caso afirmativo, determine um campo escalar F de modo que

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 2xydx + (x^2 - y^2)dy.$$

(c) Determine o valor da integral de linha da forma diferencial ao longo da curva orientada Γ .

Questão 10. (20 Pontos)

Considere a integral imprópria

$$I \ = \ \int_0^1 \, \int_0^1 \, \frac{1}{1 \, - \, xy} \, dx dy \ = \ \lim_{t \to 1^-} \int_0^t \, \int_0^t \, \frac{1}{1 \, - \, xy} \, dx dy \ .$$

(a) Expandindo o integrando como uma série geométrica de razão r = xy, mostre que

$$I = \sum_{n=1}^{\infty} \frac{1}{n^2} .$$

(b) Utilizando a série geométrica obtida no item (a), mostre que I<2. Sugestão: Tome uma Soma de Riemann Inferior conveniente.