Géométrie

Sarah S. Sawyer

Table des matières

1	Espace affine			
	1.1	Définitions		
	1.2	Propriétés		
2 Ap	App	lication affine		
	2.1	Définitions		
	2.2	Caractérisation des applications affines		

Introduction

Ce cours de géométrie repose les éléments de géométrie introduits dans les petites classes.

Attention. Ce cours est rédigé de sorte à ce qu'il soit vivement accessible aux étudiants n'ayant aucunes bases mathématiques sur ce thème. Cependant, ceux-ci se doivent disposer d'un niveau basique des éléments suivants :

— algèbre linéaire sur le corps des réels.

Chapitre 1

Espace affine

Dans ce chapitre, \vec{E} désigne un \mathbb{K} -espace vectoriel de dimension finie.

1.1 Définitions

Définition (Espace affine). On appelle espace affine tout ensemble E muni de l'application $\Psi: \vec{E} \times E \to E$ définie par

$$\forall (\overrightarrow{u}, x) \in \overrightarrow{E} \times E, \Psi(\overrightarrow{u}, x) = \overrightarrow{u} + x$$

qui vérifie

1.
$$\forall x \in E, \Psi(0_{\vec{E}}, x) = x$$
 (identité)

2.
$$\forall (\vec{u}, \vec{v}, x) \in \vec{E}^2 \times E, \Psi(\vec{u}, \Psi(\vec{v}, x)) = \Psi(\Psi(\vec{u}, \vec{v}), x)$$
 (compatibilité)

3.
$$\forall (x, y) \in E^2, \exists \vec{u} \in \vec{E}, \Psi(\vec{u}, x) = y$$
 (transitive)

Si tel est le cas, on dit que E est la direction de cet espace affine et on note (\vec{E}, E) cet espace affine muni de E.

Les éléments de E sont appelés « point » et ceux de \vec{E} sont appelés « ve \mathcal{E} teur ».

Complément. Les points 1 et 2 définisse (\vec{E}, E) comme une action de groupe pour le groupe $(E, +, 0_{\vec{E}})$ où $0_{\vec{E}}$ désigne l'élément neutre de E pour la loi additive. Si le point 3 est, de surcroît, vérifié, on dit que cette action de groupe est transitive.

Notation. Afin d'entrer dans un concept plus géométrique, nous noterons par des lettres capitales, telles que A, B, C etc..., les éléments de E. Puis les éléments de \vec{E} par la notation vectorielle de deux points : $\vec{u} = y - x \Rightarrow \vec{u} := \vec{x} \vec{y}$.

Définition (dimension). On appelle dimension de l'espace affine \vec{E} la dimension de E.

Définition (repère affine). On appelle repère affine de l'espace affine \vec{E} le couple $(0_{\vec{E}}, \mathcal{B})$ où $0_{\vec{E}}$ l'élément neutre (origine du repère)

— $\mathscr{B} = \{e_1, ..., e_n\}$, avec $n = \dim \vec{E}$, une base de \vec{E} .

Si tel est le cas, les scalaires sur lesquelles tout vecteur $\overrightarrow{u} \in \overrightarrow{E}$ se décompose s'appelle les coordonnées affines de \overrightarrow{u} .

Exemple. Dans l'espace affine \mathbb{R}^3 , le vecteur $\overrightarrow{u} = (2,4,5)$ a pour coordonnée affine 2,4,5 dans la base canonique.

1.2 Propriétés

Proposition (propriétés élémentaires des espaces affines).

1.
$$\forall P, Q \in E, \overrightarrow{PQ} = 0_{\vec{F}} \iff P = Q$$

2.
$$\forall P, Q \in E, \overrightarrow{PQ} = -\overrightarrow{QP}$$

Proposition (caractérisation dimensionnelle).

1. $\dim E = 0 \Rightarrow E$ est l'ensemble d'un point.

2. $\dim E = 1 \Rightarrow E$ est une droite. (droite affine)

3. $\dim E = 2 \Rightarrow E$ est un plan. (plan affine)

Chapitre 2

Application affine

2.1 Définitions

Définition (application affine). On appelle application affine toute application $f: \vec{E} \to \vec{E'}$ où \vec{E} et $\vec{E'}$ disposent d'une structure d'un espace affine.

2.2 Caractérisation des applications affines