Matrix Decompositions 2 of 2

Geometric Multiplicity

Geometric Multiplicity

Let λ_i be an eigenvalue of a square matrix **A**.

• Then the geometric multiplicity of λ_i is the number of linearly independent eigenvectors associated with λ_i

Said differently, it is the dimensionality of the eigenspace spanned by the eigenvectors associated with λ_i .

- A specific eigenvalue's geometric multiplicity must be at least one because every eigenvalue has at least one associated eigenvector.
- An eigenvalue's geometric multiplicity cannot exceed its algebraic multiplicity, but it may be lower.

Geometric Multiplicity: Example

Consider

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

Since this matrix is in upper triangle form it follows that its two repeated eigenvalue are $\lambda_1=\lambda_2=2$

• The eigenvalue 2 has an algebraic multiplicity of 2

But the only unit eigenvector is

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• The eigenvalue has geometric multiplicity of 1

In order to add a bit more of a tangible feel of the implications of determinants, eigenvectors, and eigenvalues we consider a couple of different linear mappings

Consider

$$\mathbf{A}_1 = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & 2 \end{bmatrix} \tag{1}$$

- It has eigenvalue $\lambda_1 = 2$ and $\lambda_2 = \frac{1}{2}$
- ▶ The corresponding eigenvector are the canonical basis vectors of \mathbb{R}^2
- $ightharpoonup \det(\mathbf{A}_1) = 1$

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Consider

$$\mathbf{A}_2 = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix} \tag{2}$$

corresponds to a shearing mapping.

- $ightharpoonup \det(\mathbf{A_2}) = 1$ so it is area preserving
- It has eigenvalues $\lambda_1=\lambda_2=1$ and are repeated and the eigenvectors are collinear
- This indicates that the mapping acts only along one direction (the horizontal axis).

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Consider

$$\mathbf{A}_{3} = \begin{bmatrix} \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \tag{3}$$

which is a rotation of $\pi/6$ rad (30° degrees) counter-clockwise and has only complex eigenvalues

 $ightharpoonup \det(\mathbf{A_3}) = 1$ so it is area/volume preserving (as are all rotations)

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Consider

$$\mathbf{A}_4 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \tag{4}$$

- ▶ The eigenvalues are $\lambda_1 = 0$, $\lambda_2 = 2$
- ▶ The corresponding eigenvector are $\mathbf{v}_1 = [1, 1]$, $\mathbf{v}_2 = [-1, 1]$
- $det(A_4) = 0$ so it is not area/volume preserving, and in fact collapses the area to 0.

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Consider

$$\mathbf{A}_4 = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \tag{5}$$

is a shear-and-stretch mapping

- ▶ Specifically, since $det(\mathbf{A_1}) = 0.75$ the area is scaled by 0.75.
- It stretches space along the (red) eigenvector of λ_2 by a factor 1.5 and compresses it along the orthogonal (blue) eigenvector by a factor 0.5.

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Linearly Independent Eigenvectors

Theorem 4.12

The eigenvectors $\mathbf{v}_1, \dots, \mathbf{x}_n$ of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues $\lambda_1, \dots, \lambda_n$ are are linearly independent.

This theorem means that that eigenvectors of a matrix with n distinct eigenvalues form a basis of \mathbb{R}^n .

Defective Matrices

Defective Matrix

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is *defective* if it possesses fewer than n linearly independent eigenvectors.

Note that

- A non-defective matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ does not necessarily require n distinct eigenvalues, but it does require that the eigenvectors form a basis of \mathbb{R}^n .
- If a matrix has geometric multiplicity less than the corresponding algebraic multiplicity for an eigenvalue λ_i then the matrix is defective.

Important remark:

• A defective matrix cannot have *n* distinct eigenvalues, follows from 4.12, as distinct eigenvalues have linearly independent eigenvectors.

Positive Semidefinite Matrix

Theorem 4.14.

Given a matrix $\mathbf{A}^{m \times n}$, we can always obtain a symmetric, positive semidefinite matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ by defining

$$S := A^T A \tag{6}$$

If $rk(\mathbf{A}) = n$, then $\mathbf{S} := \mathbf{A}^T \mathbf{A}$ is symmetric, positive definite.

Positive Semidefinite Matrix

Motivation for theorem 4.14

• Symmetry: Recall that **S** is symmetric when $\mathbf{S} = \mathbf{S}^T$. Obverse that

$$S = \mathbf{A}^T \mathbf{A} \tag{7}$$

$$= \mathbf{A}^T (\mathbf{A}^T)^T \tag{8}$$

$$(\beta \mathcal{L})^{\mathsf{T}} = \mathcal{L}^{\mathsf{T}} \mathcal{L}^{\mathsf{T}} = (((\mathbf{A}^{\mathsf{T}})^{\mathsf{T}})^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}})^{\mathsf{T}})^{\mathsf{T}}$$
(9)

$$= (\mathbf{A}^T \mathbf{A})^T \tag{10}$$

$$= \mathbf{S}^{T} \tag{11}$$

Positive Semidefinite Matrix

Motivation for theorem 4.14

• Positive semidefiniteness: let $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ then observe that

$$\mathbf{x}^{T}\mathbf{S}\mathbf{x} = \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} \tag{12}$$

$$= (\mathbf{x}^T \mathbf{A}^T)(\mathbf{A}\mathbf{x}) \tag{13}$$

$$= (\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x}) \tag{14}$$

$$\geq 0 \tag{15}$$

Since $(\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x})$ is the dot product.

• Think about why we get > 0 if $rk(\mathbf{A}) = n$.

Spectral Theorem

Spectral Theorem

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric,

• there exists an orthonormal basis of the corresponding vector space *V* consisting of eigenvectors of **A**, and each eigenvalue is real.

A direct implication of the spectral theorem is that the *eigendecomposition* of a symmetric matrix **A** exists (with real eigenvalues),

• and that we can find an ONB of eigenvectors so that $\mathbf{A} = \mathbf{PDP}^T$, where \mathbf{D} is diagonal and the columns of \mathbf{P} contain the eigenvectors.

Consider

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

The characteristic polynomial of **A**, after factoring, is

$$p_{\mathbf{A}}(\lambda) = -(\lambda - 1)^2(\lambda - 7)$$

• So the eigenvalues are $\lambda_1 = 1$ with algebraic multiplicity of 2 and $\lambda_2 = 7$ with algebraic multiplicity of 1.

 Following our standard procedure for computing eigenvectors, we obtain the eigenspaces (see additional video for workings)

$$E_1 = span \left[\underbrace{\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}}_{\mathbf{x}_1}, \underbrace{\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}}_{\mathbf{x}_2} \right], \quad E_7 = span \left[\underbrace{\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}_{\mathbf{x}_3} \right]$$

• Now x_3 is orthogonal to x_1 and x_2 since

$$\mathbf{x}_3^T \mathbf{x}_1 = 0 \text{ and } \mathbf{x}_3^T \mathbf{x}_2 = 0 \tag{16}$$

but \mathbf{x}_1 and \mathbf{x}_2 are not

$$\mathbf{x}_1^T \mathbf{x}_2 = 1 \neq 0 \tag{17}$$

We now need to form an orthonormal basis form x_1, x_2, x_3 while the new basis vectors must still valid eigenvectors.

• Observe that since \mathbf{x}_1 and \mathbf{x}_2 are eigenvectors associated with the same eigenvalue λ , it follows that $\forall \alpha, \beta \in \mathbb{R}$ it holds that

$$\mathbf{A}\left(\alpha\mathbf{x}_{1} + \beta\mathbf{x}_{2}\right) = \mathbf{A}\mathbf{x}_{1}\alpha + \mathbf{A}\mathbf{x}_{2}\beta \tag{18}$$

$$\bigvee = \lambda \mathbf{x}_1 \alpha + \lambda \mathbf{x}_2 \beta \tag{19}$$

$$=\lambda(\alpha\mathbf{x}_1+\beta\mathbf{x}_2)\tag{20}$$

so any linear combination of them is also a eigenvector.

▶ This allows use to use The Gram-Schmidt algorithm safely to find eigenvectors associated with $\lambda_1 = 1$ that are orthogonal to each other (and to \mathbf{x}_3).

Specifically, we set

$$\textbf{x}_1'=\textbf{x}_1$$

and use the standard formula

$$\begin{split} \mathbf{x}_2' &= \mathbf{x}_2 - \pi_{span\left[\mathbf{x}_1'\right]}(\mathbf{x}_2) \\ &= \mathbf{x}_2 - \frac{\mathbf{x}_1'\mathbf{x}_1'^T}{\|\mathbf{x}_1'\|^2}\mathbf{x}_2 \\ &= \begin{bmatrix} -1\\0\\1 \end{bmatrix} - \frac{1}{2}\begin{bmatrix} 1 & -1 & 0\\-1 & 1 & 0\\0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1\\0\\1 \end{bmatrix} \\ &= \frac{1}{2}\begin{bmatrix} -1\\-1\\2 \end{bmatrix} \end{split}$$

• Why is x_3 still orthogonal to x'_1 and x'_2 ?

Determinant and Eigenvalues

Theorem 4.16

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ then

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_{i},\tag{21}$$

where $\lambda_i \in \mathbb{C}$ are (possibly repeated) eigenvalues of **A**.

Trace and Eigenvalues

Theorem 4.17

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ then

$$tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i, \tag{22}$$

where $\lambda_i \in \mathbb{C}$ are (possibly repeated) eigenvalues of **A**.

Cholesky Decomposition

Cholesky Decomposition

A symmetric, positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factorized into a product

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T,\tag{23}$$

where **L** is a lower triangular matrix with positive diagonal elements:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} I_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ I_{n1} & \dots & I_{nn} \end{bmatrix} \begin{bmatrix} I_{11} & \dots & I_{n1} \\ \vdots & \ddots & \vdots \\ 0 & \dots & I_{nn} \end{bmatrix}$$

L is called the Cholesky factor of **A**, and **L** is unique.

Cholesky Decomposition

We can derive the formula needed to build L. Let use consider a 3x3 case.

- Let $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ be symmetric, positive definite matrix.
- Note that

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \mathbf{L}\mathbf{L}^T = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

if we multiple out the right hand side we end up with

$$\mathbf{A} = \begin{bmatrix} l_{11}^2 & l_{21}l_{11} & l_{31}l_{11} \\ l_{21}l_{11} & l_{21}^2 + l_{22}^2 & l_{31}l_{21} + l_{32}l_{22} \\ l_{31}l_{11} & l_{31}l_{21} + l_{32}l_{22} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$$
(24)

Cholesky Decomposition

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11}^2 & l_{21}l_{11} & l_{31}l_{11} \\ l_{21}l_{11} & l_{21}^2 + l_{22}^2 & l_{31}l_{21} + l_{32}l_{22} \\ l_{31}l_{11} & l_{31}l_{21} + l_{32}l_{22} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$$
(25)

There are a couple of patterns present that can be used to calculate the entries of ${\bf L}$

• In terms of the diagonals we can see that

$$I_{11} = \sqrt{a_{11}}, \ I_{22} = \sqrt{a_{22} - I_{21}^2}, \ I_{33} = \sqrt{a_{33} - (I_{31}^2 + I_{32}^2)}$$
 (26)

 Similarly for the elements below the diagonal there is also a repeating pattern:

$$l_{21} = \frac{1}{l_{11}} a_{21}, \quad l_{31} = \frac{1}{l_{11}} a_{31}, \quad l_{32} = \frac{1}{l_{22}} (a_{32} - l_{31} l_{21})$$
 (27)

Thus, we constructed the *Cholesky decomposition* for any symmetric, positive definite 3×3 matrix.

Cholesky Decomposition:

One of the main upsides about the Cholesky decomposition is that

$$det(\mathbf{A}) = det(\mathbf{L}\mathbf{L}^T)$$

$$= det(\mathbf{L}) det(\mathbf{L}^T)$$

$$= det(\mathbf{L}) det(\mathbf{L})$$

$$= det(\mathbf{L})^2$$

Since ${\bf L}$ is a triangular matrix, the determinant is simply the product of its diagonal entries so that

$$\det(\mathbf{A}) = \prod_{i} I_{ii}^{2} \tag{28}$$

- The covariance matrix of a multivariate Gaussian variable is symmetric, positive definite.
- The Cholesky factorization of this covariance matrix allows us to generate samples from a Gaussian distribution.

Diagonal matrix

The matrix **D** is diagonal if it has value zero on all off-diagonal elements

For example

$$\mathbf{D} = \begin{bmatrix} c_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c_n \end{bmatrix}$$
 (29)

 Diagonal matrices are great because they allow fast computation of determinants, powers, and inverses.

Specifically, if **D** is diagonal

- det(D) is the product of its diagonal entries
- \mathbf{D}^k is given by each diagonal element raised to the power k
- $oldsymbol{\mathsf{D}}^{-1}$ is the reciprocal of its diagonal elements if all of them are nonzero.

We will discuss how to transform matrices into diagonal form.

Diagonalizable

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix.

• Specifically, if there exists an invertible $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} \tag{30}$$

We can actually get a constructive means of building **P** from $\mathbf{A} \in \mathbb{R}^{n \times n}$ by considering the following set up.

- Let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, and let $\mathbf{p}_1, \ldots, \mathbf{p}_n \in \mathbb{R}^n$.
- Define $\mathbf{P} := [\mathbf{p}_1, \dots, \mathbf{p}_n]$ and let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$.
- Then we can show that

$$\mathbf{AP} = \mathbf{PD} \tag{31}$$

if and only if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of **A** and $\mathbf{p}_1, \ldots, \mathbf{p}_n$ are corresponding eigenvectors.

We can see that this statement holds because

$$AP = A[p_1, \dots, p_n] = [Ap_1, \dots, Ap_n]$$
(32)

$$\mathbf{PD} = [\mathbf{p}_1, \dots, \mathbf{p}_n] \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} = [\lambda_1 \mathbf{p}_1, \dots, \lambda_n \mathbf{p}_n]$$
(33)

which implies that

$$\mathbf{A}\mathbf{p}_1 = \lambda_1 \mathbf{p}_1 \tag{34}$$

$$\mathbf{A}\mathbf{p}_n = \lambda_n \mathbf{p}_n \tag{35}$$

Therefore, the columns of **P** must be eigenvectors of **A**.

The definition of diagonalization used in this course requires that ${\bf P}$ is invertible

- $\implies rk(\mathbf{P}) = n$
- \Longrightarrow we have *n* linearly independent eigenvectors $\mathbf{p}_1, \dots, \mathbf{p}_n$ i.e., the \mathbf{p}_i form a basis of \mathbb{R}^n .

Theorem 4.20: Eigendecomposition

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factored into

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \tag{36}$$

where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and \mathbf{D} is a diagonal matrix whose diagonal entries are the eigenvalues of \mathbf{A}

• if and only if the eigenvectors of **A** form a basis of \mathbf{R}^n

In short only non-defective matrices can be diagonalized in this way.

Theorem 4.21

A symmetric matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ can always be diagonalized.

This follows from the spectral theorem:

- Specifically, the spectral theorem states that we can find an ONB of eigenvectors of \mathbb{R}^n .
- As such $P = [p_1, ..., p_n]$ is an orthogonal matrix so that

$$\mathbf{D} = \mathbf{P}^{\mathsf{T}} \mathbf{A} \mathbf{P} \tag{37}$$

Geometric Intuition for the Eigendecomposition $(\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1})$

We can interpret the eigendecomposition of a matrix as follows steps

- Let **A** be the transformation matrix of a linear mapping with respect to the standard basis.
- $oldsymbol{\mathsf{P}}^{-1}$ performs a basis change from the standard basis into the eigenbasis
 - ▶ This identifies the eigenvectors \mathbf{p}_i (blue and orange arrows in the figure) onto the standard basis vectors \mathbf{e}_i

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Geometric Intuition for the Eigendecomposition $(\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1})$

We can interpret the eigendecomposition of a matrix as follows steps

- ullet Then, the diagonal matrix ullet scales the vectors along these axes by the eigenvalues λ_i
- Finally, **P** transforms these scaled vectors back into the standard/canonical coordinates yielding $\lambda_i \mathbf{p}_i$.

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Useful Properties of the Eigendecomposition $(\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1})$

• We can find a matrix power for a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ via the eigenvalue decomposition (if it exists) so that

$$\mathbf{A}^k = (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})^k \tag{38}$$

$$= \mathsf{PDP}^{-1}\mathsf{PDP}^{-1}\dots\mathsf{PDP}^{-1} \tag{39}$$

$$= \mathbf{P} \mathbf{D}^k \mathbf{P}^{-1} \tag{40}$$

Computing \mathbf{D}^k is efficient because we apply this operation individually to any diagonal element.

Useful Properties of the Eigendecomposition $(\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1})$

• Assume that the eigendecomposition $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ exists. Then,

$$\det(\mathbf{A}) = \det(\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) \tag{41}$$

$$= \det(\mathbf{P}) \det(\mathbf{D}) \det(\mathbf{P}^{-1}) \tag{42}$$

$$= \det(\mathbf{D}) \tag{43}$$

$$=\prod_{i}d_{ii} \tag{44}$$

allows for an efficient computation of the determinant of A

Non-Square decomposition

The eigenvalue decomposition requires square matrices.

• We will move on to the more general matrix decomposition technique, the singular value decomposition.

Wednesday, April 13, 2022 11:24 AM

(I) Find Eigenvalues

$$= (-1)^{1+1} (1-1)^{44} \left[5-1 + 0 + 0 \right]$$

$$= (1-1)(5-1)(9-1)-48$$

$$= (1-x)(45-14x+x^2-44)$$

$$\left(1-\lambda\right)\left(\lambda^{2}-14\lambda-3\right)=0$$

$$(1-x)=0$$
 $(x^2-14x-3)=0$

$$\frac{1}{\lambda_1} = 1$$

$$\lambda_2 = 7 + 2\sqrt{3}$$
 $\lambda_3 = 7 - 2\sqrt{3}$

(2) Find Eigenvectors
$$(A - \lambda I)x = 0$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 4 & 6 \\ 7 & 8 \end{bmatrix} \times = 0$$

$$\chi_{1} = \begin{bmatrix} 4 \\ -2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix}
-6-2\sqrt{13} & 0 & 0 \\
4 & -2-2\sqrt{13} & 6 \\
7 & 8 & 2-2\sqrt{13}
\end{bmatrix}$$
 $x=0$

$$X_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
-6+2\sqrt{13} & 0 & 6 \\
4 & -2+2\sqrt{13} & 6 \\
7 & 8 & 2+2\sqrt{13}
\end{bmatrix} = 0$$

$$\begin{array}{c} \vdots \\ \mathbb{F}_3 = \begin{bmatrix} 0 \\ 1+\sqrt{13} \\ -1 \end{bmatrix} \end{array}$$

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

$$(-1)^{1+1}(3-1)[(3-1)^{2}-4]+(-1)^{1+2}(2)[2(3-1)-4]$$

$$+(-1)^{2+2}(2)[4-2[3-1]=0$$

$$=> -(1-1)^{2}(1-1)=0$$

$$\lambda_{1,2} = 1 \qquad AM = 2$$

$$\lambda_{3} = 7 \qquad AM = 1$$

$$(A - 7I) \sim = 0$$

$$\begin{bmatrix} -4 & 2 & 2 & D \\ -4 & -4 & D \\ 2 & -4 & D \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & D \\ 0 & 0 & D \end{bmatrix}$$

$$\begin{array}{c} \vdots \\ x_7 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \end{array}$$

$$(A - IT) = D$$

$$\begin{bmatrix} 2 & 7 & 7 & 7 \\ 2 & 2 & 7 \\ 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{1}{2} \times 1 = \begin{cases} 4 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{cases}$$

AM for
$$\lambda=1$$
 is 2
GM for $\lambda=1$ is 2