Big-Oh Notation

 To simplify the running time estimation, for a function f(n), we ignore the constants and lower order terms.

Example: $10n^3+4n^2-4n+5$ is $O(n^3)$.

Big-Oh Notation (Formal Definition)

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$\theta \le f(n) \le cg(n)$$
 for $n \ge n_0$

- Example: 2n + 10 is O(n)
 - -2n + 10 ≤ cn
 - (*c* − 2) $n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Example

- Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - $-n \leq c$
 - The above inequality cannot be satisfied since c must be a constant
 - n^2 is $O(n^2)$.

More Big-Oh Examples

• 7n-2

7n-2 is O(n) need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \bullet n$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$

• $3n^3 + 20n^2 + 5$

 $3n^3+20n^2+5$ is $O(n^3)$ need c>0 and $n_0\geq 1$ such that $3n^3+20n^2+5\leq cn^3$ for $n\geq n_0$ this is true for c=4 and $n_0=21$

• 3 log n + 5

3 log n + 5 is O(log n) need c > 0 and $n_0 \ge 1$ such that 3 log n + 5 \le c log n for n $\ge n_0$ this is true for c = 8 and n_0 = 2

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

Big-Oh Rules

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Growth Rate of Running Time

- Consider a program with time complexity O(n²).
 - for the input of size n, it takes 5 seconds.
 - If the input size is doubled (2n).
 - then it takes 20 seconds.
- Consider a program with time complexity O(n).
 - for the input of size n, it takes 5 seconds.
 - If the input size is doubled (2n).
 - then it takes 10 seconds.
- Consider a program with time complexity O(n³).
 - for the input of size n, it takes 5 seconds.
 - If the input size is doubled (2n).
 - then it takes 40 seconds.

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 6n 1 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can **disregard** them when counting primitive operations.

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first (i+1) elements of X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

• Computing the array \boldsymbol{A} of prefix averages of another array \boldsymbol{X} has applications to financial analysis

Prefix Averages (Quadratic)

 The following algorithm computes prefix averages in quadratic time by applying the definition.

```
Algorithm prefixAverages1(X, n)
    Input array X of n integers
    Output array A of prefix averages of X
                                                            #operations
     A \leftarrow new array of n integers
                                                                n
    for i \leftarrow 0 to n-1 do
                                                                n
       \{s \leftarrow X[0]
                                                            1 + 2 + ... + (n - 1)
            for j \leftarrow 1 to i do
                                                            1 + 2 + ... + (n - 1)
                        s \leftarrow s + X[i]
            A[i] \leftarrow s / (i+1)
                                                                n
    return A
                                                                1
```

Arithmetic Progression

- The running time of *prefixAverages1* is O(1 + 2 + ... + n)
- The sum of the first n integers is n(n+1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $T(n)=O(n^2)$ time

Prefix Averages (Linear)

 The following algorithm computes prefix averages in linear time by keeping a running

cum						
sum.	Algorithm prefixAverages2(X, n)					
	Input array X of n integers					
	Output array A of prefix averages of X	#operations				
	A ← new array of n integers	n				
	<i>s</i> ← 0	1				
	for $i \leftarrow 0$ to $n-1$ do	n				
	$\{s \leftarrow s + X[i]\}$	n				
	$A[i] \leftarrow s / (i+1) $	n				
	return A	1				

• Algorithm prefixAverages2 runs in T(n)=O(n) time

Exercise: Give a big-Oh characterization

```
Algorithm Ex1(A, n)
Input an array X of n integers
Output the sum of the elements in A

s \leftarrow A[0]
for i \leftarrow 0 to n - 1 do
s \leftarrow s + A[i]
return s
```

Exercise: Give a big-Oh characterization

```
Algorithm Ex2(A, n)
Input an array X of n integers
Output the sum of the elements at even cells in A

s \leftarrow A[0]
for i \leftarrow 2 to n - 1 by increments of 2 do
s \leftarrow s + A[i]
return s
```

Exercise: Give a big-Oh characterization

```
Algorithm Ex3(A, n)
Input an array X of n integers
Output the sum of the prefix sums A
s \leftarrow 0
for i \leftarrow 0 to n - 1 do
s \leftarrow s + A[0]
for j \leftarrow 1 to i do
s \leftarrow s + A[j]
return s
```

Asymptotic Notation

- Convenient for describing worst-case running time function T(n)
- Big-Oh
 - f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- big-Omega
 - f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)
- big-Theta
 - f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)
- little-oh
 - f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)
- little-omega
 - f(n) is $\omega(g(n))$ if is asymptotically strictly greater than g(n)

big-oh (O)-notation

big-Oh (O)-notation:

f(n) is O(g(n)) if there is a constant c > 0and an integer constant $n_0 >= 1$ such that 0 = < f(n) = < c g(n) for $n >= n_0$

• a upper bound that is asymptotically tight.

big-Theta (Θ) -notation

Θ-notation

```
o asymptotic tight bound
```

∘ $\Theta(g(n)) = \{ f(n) : \text{there exists positive constants } c_1, c_2,$

■ and n_0 ,s.t. $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

- $\Theta(g(n))$ is a set
- $\circ f(n) = \Theta(g(n))$
 - is an abuse of '='
 - really
 - f(n) is a member of $\Theta(g(n))$
 - $f(n) \in \Theta(g(n))$
- o asymptotically nonnegative
 - f(n) is nonnegative for large enough n

Example

Show that:

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

determine c1, c2 and n0 s.t.

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

- for an n≥n0.
- dividing all by n²:

$$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$$

- this holds for
 - $c2 \ge 1/2$, so choose c2 = 1/2
 - $n \ge 7$, so choose n0 = 7
 - $c1 \le 1/14$, so choose c1 = 1/14
 - i.e., some choice exists.

big-Omega (Ω) -notation

big-Omega (Ω) -notation:

f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 >= 1$ such that f(n) >= c g(n) >= 0 for $n >= n_0$

• a lower bound and that is asymptotically tight.

Little-oh & Little-omeha

little-oh (o)-notation

- f(n) is o(g(n)) if, for any constan c > 0, there is an integer constant $n_0 >= 0$ such that $0 = < f(n) < c g(n) \text{ for } n > = n_0$
- a upper bound that is not asymptotically tight.

- o similar to O() but
 - $2n^2 = O(n^2)$ is tight
 - $2n = O(n^2)$ is not tight
- o main difference
 - O() some constant c
 - o() for all constants c
- o note
 - $-2n = o(n^2)$
 - $-2n^2 \neq o(n^2)$

little-omega (ω)-notation

- f(n) is $\omega(g(n))$ if, for any constant \circ similar to $\Omega()$ but c > 0, there is an integer constant $n_0 >= 0$ such that f(n) > $c g(n) >= 0 \text{ for } n >= n_0$
- a lower bound that is not asymptotically tight.

- \circ f(n) $\in \omega(g(n))$ iff $g(n) \in o(f(n))$ note
 - $n^2/2 = \omega(n)$
 - $n^2/2 \neq \omega(n^2)$

The family of Bachmann–Landau notations

Notation	Name	Intuition	As $n o \infty$, eventually	Definition
$f(n) \in O(g(n))$	Big Omicron; Big O; Big Oh	f is bounded above by g (up to constant factor) asymptotically	$ f(n) \leq g(n) \cdot k$ for some k	$\begin{array}{l} \exists k>0, n_0 \ \forall n>n_0 \ f(n) \leq g(n)\cdot k \ \text{or} \\ \exists k>0, n_0 \ \forall n>n_0 \ f(n)\leq g(n)\cdot k \end{array}$
$f(n) \in \Omega(g(n))$ (Older math papers sometimes use this in the weaker sense that f=o(g) is false)	Big Omega	f is bounded below by g (up to constant factor) asymptotically	$ f(n) \geq g(n) \cdot k$ for some k	$\exists k > 0, n_0 \forall n > n_0 g(n) \cdot k \leq f(n) $
$f(n) \in \Theta(g(n))$	Big Theta	f is bounded both above and below by g asymptotically	$ g(n) \cdot k_1 \leq f(n) \leq g(n) \cdot k_2$ for some k_1, k_2	$\exists k_1, k_2 > 0, n_0 \ \forall n > n_0 \ g(n) \cdot k_1 < f(n) < g(n) \cdot k_2 $
$f(n) \in o(g(n))$	Small Omicron; Small O; Small Oh	f is dominated by g asymptotically	$ f(n) \leq g(n) \cdot arepsilon$ for every $arepsilon$	$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ f(n) \le g(n) \cdot \varepsilon $
$f(n) \in \omega(g(n))$	Small Omega	f dominates g asymptotically	$ f(n) \geq g(n) \cdot k$ for every κ	$\forall k > 0 \ \exists n_0 \ \forall n > n_0 \ g(n) \cdot k \le f(n) $
$f(n) \sim g(n)$	on the order of; "twiddles"	f is equal to g asymptotically	f(n)/g(n)-1 <arepsilon< math=""> for every $arepsilon$</arepsilon<>	$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ f(n)/g(n) - 1 < \varepsilon$

Comparison of Functions

```
• Transitivity: f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) imply f(n) = \Theta(h(n))

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n))

f(n) = \Omega(g(n)) and g(n) = \Omega(h(n)) imply f(n) = \Omega(h(n))

f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n))

f(n) = \omega(g(n)) and g(n) = \omega(h(n)) imply f(n) = \omega(h(n))
```

- Reflexivity: $f(n) = \Theta(f(n))$ f(n) = O(f(n)) $f(n) = \Omega(f(n))$
- Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose Symmetry:

```
f(n) = O(g(n)) if and only if g(n) = \Omega(f(n))
f(n) = o(g(n)) if and only if g(n) = \omega(f(n))
```