Predicting points in the NHL

Nathan Esau, Fernando Villasenor and Steve Kane

December 1, 2015

Outline

Introduction

Data

Web scraping Variables Summary statistics

Models

Goals for and goals against model Other models

Results

Background

- ► Trying to predict PTS scored by an NHL team at any time in the season using other variables
- ► Two points for a win, one point for overtime or shootout loss, no points for regulation loss
- ▶ 2007–2008 season to 2014–2015 season data
- ▶ 2012–2013 was a lockout season (48 of 82 games played)

Data

- Scraped from hockey-reference.com
 - Figure out which URLs to parse

```
http://www.hockey-reference.com/leagues/NHL_2014.html http://www.hockey-reference.com/leagues/NHL_2015.html :
```

- ▶ In R, can use XML::readHTMLTable(URL)
- Deal with data types (convert to numeric, factor, etc)
- Merge each data.frame and keep common columns
- ➤ 2007–2008 season to 2014–2015 season (advanced metrics not available before this, and earlier seasons had higher scoring)

Variables

	Variable	Description
AvAge	Average Age	Age weighted by time on ice
BLK	Blocks	Blocked shots
FF%	Fenwick for percentage	A measure of puck possession
GA	Goals against	Goals allowed
GF	Goals for	Goals scored
PK%	Penalty kill percentage	% other team scores on power play
PP%	Power play percentage	% team scores on power play
PTS	Points	A measure of a teams success
S	Shots	Shots on goal
SA	Shots against	Shots allowed on goal
SH	Short-handed goals	Goals scored on penalty kill
SHA	Short-handed goals allowed	Goals allowed on power play
SOS	Strength of schedule	Looks at whether team does well due
		to weak opponents
SRS	Simple rating system	Takes into account average goal dif-
		ferential

Summary statistics

- ► Some variables are a sum (i.e. GF, GA, BLK) whereas others are average (i.e. AvAge, PK%)
- When doing predictions, some coefficients needed to be scaled

	Mean	SD
AvAge	27.84	1.16
BLK	1119.59	151.79
GF, GA	228.88	23.5
PK%	81.86	2.87
PTS	91.83	13.26
S, SA	2456.1	94.89
SH, SHA	6.75	3.1

	Mean	SD
AvAge	27.64	1.08
BLK	686.57	83.63
GF, GA	50.04	3.09
PK%	81.75	3.43
PTS	53.4	9.64
S, SA	1398.8	94.89
SH, SHA	3.1	2.26

Table: 82 games played

Table: 48 games played

Goals for and goals against model

Figure: The model PTS = $\beta_0 + \beta_1 \text{GF} + \beta_2 \text{GA}$ has $R_{Adj}^2 = 0.85$

Other models

Mode											
(1)	β_0	GF	GA								
β	17.86	0.51	-0.2								
р	0	0	0								
(2)	β_0	GF	GA	5	5 5	SA .					
β	8.57	0.35	-0.32	0.02	0.	01					
р	2e-04	0	0	C)	0					
(3)	β_0	A	ge (GF	GA	SRS	S	SA			
β	-15.58	0.8	86 0.	21 -	0.17	11.43	0.02	0.01			
р	0.0749	0.00	51	0 8	e-04	0.004	0	0			
(4)	β_0	P	\ge	GF	GA	SA	FF%	BLK	SOS	PK%	
β	-116.11	0	.94 0	.37	0.3	0.02	1.39	0.01	18.89	0.33	
D	0	0.00)28	0	0	0	0	0.0041	0.0017	0.0189	

Model	R_{Adj}^2	RMSPE
(1)	0.8516	3.1385
(2)	0.9093	2.2702
(3)	0.9144	2.3054
(4)	0.9179	2.4144

► Selected model PTS =
$$\beta_0 + \beta_1$$
 GF + β_2 GA + β_3 S + β_4 SA

Residuals

- ▶ 2015–2016 season predictions produced right residual plot
- ► Largest residuals are Edmonton and Colorado (15 PTS)

Figure: Fitted residuals (left); Out of sample residuals (right)

Remarks

- Main findings
 - Shots and shots against also significant (along with goals for and goals against)
 - ▶ Points in hockey is relatively easy to predict (high R^2)
- ▶ Future work
 - Predicting end of season points
 - ► Time series model?