BINUS University

Academic Career:				Class Program:			
Undergraduate / Master / Doctoral *)			International/Regular/Smart Program/Global Class*)				
☑ Mid Exam □ Short Term Exam		☐ Final Exam ☐ Others Exam :		Term : Odd/ Even / Short *)			
☑ Kemanggisan		☑ Alam Sutera	☑ Bekasi	Academic	Year :		
☐ Senayan		☐ Bandung	☐ Malang	2022 / 20)23		
Faculty / Dept.	:	School of Computer Sci	ience	Deadline	Day / Date	:	
					Time	:	
Code - Course	:	COMP6226001-Competitive Programming		Class		:	All Classes
Lecturer	:	Lie, Maximilianus Maria Kolbe, S.Kom., M.T.I.		Exam Type	е	:	Onsite
*) Strikethrough the un	ınec	essary items					
The penalty for CHEATING is DROP OUT!!!							

Learning Outcomes:

LO1: (C3) Application: apply algorithm techniques and methods

LO2: (C4) Analysis: calculate processing time and memory space of algorithms. **LO3**: (C5) Synthesis: Create good and correct algorithm for problem solving.

This exam is closed book. However, you are **allowed to bring a reference document** (cheatsheet) into the exam. The document consists of at most 25 A4 pages.

Please use the given online judge to submit and verify the correctness of your answer. However, **do not forget to submit your answer to exam apps** website as well.

Verified by,

[Lecturer Name] (Lecturer ID) and sent to Program on MMM DD, YYYY

[40 points] Jojo and GCD

Jojo has an array A of size N, indexed from 1 to N. It is guaranteed that all elements of A is between 1 and M (inclusive).

Jojo can change at most K elements from A into any number between 1 and M, such that the GCD of all elements in A is maximized.

Find the maximum GCD!

Subtask

No	Constraints	Points
1	$1 \le K \le N \le 3$	10
	$1 \le M \le 100$	
	$1 \le A_i \le M$, for $1 \le i \le N$	
2	$1 \le K \le N \le 1000$	15
	$1 \le M \le 1000$	
	$1 \le A_i \le M$, for $1 \le i \le N$	
3	$1 \le K \le N \le 100000$	15
	$1 \le M \le 10^6$	
	$1 \le A_i \le M$, for $1 \le i \le N$	

Format Input

Input begins with three integers N M K. The next line contains N integers A_i .

Format Output

Output an integer in a single line representing the maximum GCD by changing at most K elements of A into any integer between 1 and M.

Sample Input	Sample Output
3 10 1	2
2 4 7	
3 10 2	7
2 4 7	
3 10 3	10
2 4 7	

Explanation

In sample 1, Jojo can change ${\cal A}_3$ to any even number to get the maximum GCD.

In sample 2, Jojo can change A_1 and A_2 to 7 to get the maximum GCD.

In sample 3, Jojo can change all numbers to 10 to get the maximum GCD.

Verified by,

[Lecturer Name] (Lecturer ID) and sent to Program on MMM DD, YYYY

[20 points] Lili and Subarray

Lili has an array A, which elements are permutation of 1 to N.

A subarray (l,r) of A, such that $l \leq r$, is $[A_l, A_{l+1}, ..., A_r]$. By definition, a subarray is never empty.

A subarray $\langle l,r \rangle$ of A is called *strictly increasing* if $A_l < A_{l+1} < A_{l+2} < \cdots < A_r$.

Determine how many strictly increasing subarray of A.

Subtask

No	Constraints	Points
1	$1 \le N \le 100$	5
	A is a permutation of $[1,2,,N]$	
2	$1 \le N \le 1000$	5
	A is a permutation of $[1,2,,N]$	
3	$1 \le N \le 100000$	10
	A is a permutation of $[1,2,,N]$	

Format Input

Input begins with an integer N. The next line contains N integers A_i , which is a permutation of 1 to N.

Format Output

Output an integer in a single line representing the number of strictly increasing subarray of A.

Sample Input	Sample Output
3	6
1 2 3	
3	3
3 2 1	
4	6
1 4 2 3	

Explanation

In sample 1, there are 6 subarrays of A: [1], [2], [3], [1,2], [2,3], and [1,2,3]. All of them are strictly increasing.

In sample 2, there are 3 strictly increasing subarrays: [3], [2], and [1].

In sample 3, there are 6 strictly increasing subarrays: [1], [4], [2], [3], [1,4] and [2,3].

Verified by,

[Lecturer Name] (Lecturer ID) and sent to Program on MMM DD, YYYY

[40 points] Bibi and Increment

Bibi has an array A of size N, indexed from 1 to N.

Bibi can perform the following operation **exactly** K times. In each operation, Bibi can choose an integer from A and increase its value by X. Bibi wants the minimum value of array A to be maximized.

Determine the maximum value of the smallest element in A after exactly K operations.

Subtask

No	Constraints	Points
1	N=2	10
	$1 \le K \le 10^9$	
	$1 \le X \le 10^9$	
	$1 \le A_i \le 10^9$, for $1 \le i \le N$	
2	$1 \le N \le 100\ 000$	15
	$1 \le K \le 100\ 000$	
	$1 \le X \le 10^9$	
	$1 \le A_i \le 10^9$, for $1 \le i \le N$	
3	$1 \le N \le 100\ 000$	15
	$1 \le K \le 10^9$	
	$1 \le X \le 10^9$	
	$1 \le A_i \le 10^9$, for $1 \le i \le N$	

Format Input

Input begins with three integers N K X. The next line contains N integers A_i .

Format Output

Output an integer in a single line representing the maximum value of the smallest element in A after exactly K operations.

Sample Input	Sample Output
2 5 1	6
4 3	
3 1 10	22
12 23 34	
4 3 2	8
4 7 9 11	

Explanation

In sample 1, Bibi can choose A_1 two times and A_2 three times. At the end of all operations, the value of A is [6,6].

In sample 2, Bibi can choose A_1 . At the end of all operations, the value of A is [22, 23, 34].

In sample 3, Bibi can choose A_1 two times and A_2 one time. At the end of all operations, the value of A is [8, 9, 9, 11].

Verified by,

[Lecturer Name] (Lecturer ID) and sent to Program on MMM DD, YYYY