Домашняя работа №1

по Теоретическим моделям вычислений

Задание 1

Построить конечные автоматы

1.
$$L_1 = \{\omega \in \{a, b, c\}^* : |\omega|_c = 1\}$$

2. $L_2 = \{\omega \in \{a,b\}^* : |\omega|_a \leqslant 2, |\omega|_b \geqslant 2\}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a \leqslant 2\}$ и $B = \{\omega \in \{a,b\}^* : |\omega|_B \geqslant 2\}$

и
$$B = \{\omega \in \{a,b\}^* : |\omega|_B \geqslant 2\}$$

Так как $L_2 = A \cup B = A \times B$

	a	b
(q_1, q_4)	(q_2, q_4)	(q_1, q_5)
(q_1, q_5)	(q_2, q_5)	(q_1, q_6)
(q_1, q_6)	(q_2, q_6)	(q_1, q_6)
(q_2, q_4)	(q_3, q_4)	(q_2, q_5)
(q_2, q_5)	(q_3, q_5)	(q_2, q_6)
(q_2, q_6)	(q_3, q_6)	(q_2, q_6)
(q_3, q_4)	(Ø)	(q_3, q_5)
(q_3, q_5)	(Ø)	(q_3, q_6)
(q_3, q_6)	(∅)	(q_3, q_6)

И окончательный ответ

- 3. $L_3 = \{\omega \in \{a,b\}^* : |\omega|_a \neq |\omega|_b\}$ Для описания языка необходо запоминать количество символов одного типа, что нельзя сделать с помощью ДКА
- 4. $L_4 = \{\omega \in \{a,b\}^* : \omega\omega = \omega\omega\omega\}$ Язык описывает только пустые слова

Задание 2

Построить конечные автоматы, распознающие слудеющие языки, используя прямое произведение:

1. $L_1 = \{ \omega \in \{a, b\}^* : |\omega|_a \ge 2 \land |\omega|_b \ge 2 \}$

Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a \geqslant 2\}$

и $B=\{\omega\in\{a,b\}^*:|\omega|_B\geqslant 2\}$

$$L_1 = A \cup B = A \times B$$

Построим таблицу переходов

	a	b
(q_1, q_4)	(q_2, q_4)	(q_1,q_5)
(q_1, q_5)	(q_2, q_5)	(q_1, q_6)
(q_1, q_6)	(q_2, q_6)	(q_1, q_6)
(q_2, q_4)	(q_3, q_4)	(q_2, q_5)
(q_2, q_5)	(q_3, q_5)	(q_2, q_6)
(q_2, q_6)	(q_3, q_6)	(q_2, q_6)
(q_3, q_4)	(q_3, q_4)	(q_3, q_5)
(q_3, q_5)	(q_3, q_5)	(q_3, q_6)
(q_3, q_6)	(q_3, q_6)	(q_3, q_6)

Финальный результат

2. $L_2 = \{\omega \in \{a,b\}^* : |\omega| \geqslant 3 \land |\omega|$ нечётное $\}$

Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega| \geqslant 3\}$

и $B=\{\omega\in\{a,b\}^*: |\omega|$ нечётное $\}$

 $L_2 = A \cup B = A \times B$ Построим таблицу переходов

	a	b
(q_1,q_5)	(q_2, q_6)	(q_2, q_6)
(q_1, q_6)	(q_2,q_5)	(q_1,q_5)
(q_2,q_5)	(q_3, q_6)	(q_3, q_6)
(q_2, q_6)	(q_3, q_5)	(q_3, q_5)
(q_3, q_5)	(q_4, q_6)	(q_4, q_6)
(q_3, q_6)	(q_4, q_5)	(q_4, q_5)
(q_4, q_5)	(q_4, q_6)	(q_4, q_6)
(q_4, q_6)	(q_4, q_5)	(q_4, q_5)

Так как узлы $(q_1,q_6),\,(q_2,q_5)$ и (q_3,q_6) недостижимы, то их можно убрать

3. $L_3=\{\omega\in\{a,b\}^*: |\omega|_a$ чётно $\wedge |\omega|_b$ кратно $3\}$ Рассмотрим автоматы $A=\{\omega\in\{a,b\}^*: |\omega|_a$ чётно $\}$

и $B=\{\omega\in\{a,b\}^*:|\omega|_B$ кратно $3\}$

$$L_3 = A \cup B = A \times B$$

	a	b
(q_1, q_3)	(q_2, q_3)	(q_1,q_4)
(q_1,q_4)	(Ø)	(q_1,q_5)
(q_1, q_5)	(Ø)	(q_1, q_6)
(q_1, q_6)	(q_2, q_3)	(∅)
(q_2, q_3)	(q_1, q_3)	(q_2, q_4)
(q_2, q_4)	(Ø)	(q_2, q_5)
(q_2, q_5)	(∅)	(q_2, q_6)
(q_2, q_6)	(q_1,q_3)	(∅)

Финальный результат

4. $L_4 = \neg L_3$ Так как $T_4 = Q_3 \setminus T_3$ $T_4 = (q_1, q_3), (q_1, q_4), (q_2, q_3), (q_1, q_5), (q_2, q_4), (q_2, q_5)$

5. $L_5 = L_2 \setminus L_3$ $L_5 = L_2 \cup \neg L_3 = L_2 \times \neg L_3 = L_2 \times \neg L_3 = L_2 \times L_4$

Финальный результат

Задание 3

Построить минимальные ДКА по регулярным выражениям:

1. $(ab + aba)^*a$ Строим НКА по регулярному выражению

Преобразуем в ДКА

Построим минимальный ДКА по алгоритму Томсона

Q	a	b
q1	q2q3q4	-
q2q3q4	-	q1q5
q1q5	q1q2q3q4	-
q1q2q3q4	q2q3q4	q1q5

Ответ

2. $a(a(ab)^*b)^*(ab)^*$ Строим НКА по регулярному выражению

Преобразуем в ДКА

А теперь минимализируем

3. $(a + (a + b)(a + b)b)^*$ Строим НКА по регулярному выражению

Преобразуем в ДКА

А теперь минимализируем

4. $(b+c)((ab)^*c+(ba)^*)^*$ Строим НКА по регулярному выражению

Преобразуем в ДКА

А теперь минимализируем

Задание 4

Определить является ли язык регулярным или нет:

1. $L_1 = \{(aab)^n b (aba)^m \mid n \ge 0, m \ge 0\}$

Он регулярный, так как можно построить ДКА //

2. $L = \{uaav : u \in \{a,b\}^*, \ v \in \{a,b\}^*, \ |u|_b \geqslant |v|_a\}$ Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = b^n aaa^n, \ |\omega| = 2n + 2 \ge n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \ne 0, \ |xy| \le n$:

$$x = b^k, \ y = b^l, \ z = b^{n-k-l}aaa^n,$$

где
$$1 \le k+l \le n \ \land \ l > 0$$

Дргуих разбиенний, удовлетворяющих данным условиям, нет. Для любого из таких разбиений слово $xy^0z \notin L$. Лемма не выполняется, значит, L не регулярный язык.

3. $L = \{a^m w : w \in \{a,b\}^*, \ 1 \geqslant |w|_b \geqslant m\}$ Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = a^n b^n, \ |\omega| = 2n \geqslant n.$ Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x=a^l,\;y=a^m,\;z=a^{n-l-m}b^n,$$
где $l+k\leqslant n\;\wedge\;m\neq 0$

Дргуих разбиенний, удовлетворяющих данным условиям, нет. Теперь выполним накачку:

$$xy^iz=a^l(a^m)^ia^{n-l-m}b^n=a^{n-mi}b^n\notin L,\ i\geqslant 0\in\mathbb{N}$$

Лемма не выполняется, значит, L не регулярный язык.

4. $L = \{a^k b^m a^n : k = n \lor m > 0\}$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = a^n b a^n, \ |\omega| = 2n+1 \geqslant n.$ Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x = a^k, \ y = a^m, \ z = a^{n-k-m}ba^n,$$

где
$$k+m\leqslant n \ \land \ m\neq 0$$

Другуих разбиенний, удовлетворяющих данным условиям, нет. Теперь выполним накачку:

$$xy^iz = a^k(a^m)^ia^{n-k-m}ba^n = a^{n+m(i-1)}ba^n \notin L, \ i \geqslant 2 \in \mathbb{N}$$

Получили противоречие, лемма не выполняется, значит, L не регулярный язык.

5. $L = \{ucv : u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = (ab)^n c(ab)^n = \alpha_1 \alpha_2 ... \alpha_{4n+1}, \ |\omega| = 4n+1 \geqslant n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x = \alpha_1 \alpha_2 ... \alpha_k, \ y = \alpha_{k+1} ... \alpha_{k+m}, \ z = \alpha_{k+m+1} ... \alpha_{4n+1} c(ab)^n,$$

где
$$k+m \leqslant n \wedge m \neq 0$$

Дргуих разбиенний, удовлетворяющих данным условиям, нет. Теперь выполним накачку:

$$xy^{i}z = (\alpha_{1}\alpha_{2}...\alpha_{k})(\alpha_{k+1}...\alpha_{k+m})^{i}(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^{n})$$

При i=2 имеем:

$$xy^2z = (\alpha_1\alpha_2...\alpha_k)(\alpha_{k+1}...\alpha_{k+m})^2(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^n) \notin L$$

Лемма не выполняется, значит, L не регулярный язык.