

1001350: Desenvolvimento de algoritmos II

Jander Moreira*
3 de abril de 2019

2 Exercícios

Uma lista contém, em cada linha, três informações sobre um dado aluno: seu RA, sua turma $(A \ a \ Z)$ e sua nota $(0,0 \ a \ 10,0)$.

A lista possui as seguintes características:

- Todos os alunos de uma mesma turma se encontram juntos em um bloco (ou seja, terminada uma turma, não há mais alunos dela até o final da lista);
- Não há ordem entre as turmas (ou seja, a turma B não aparece necessariamente antes da turma C);
- Nem todas as letras de turmas são necessariamente usadas (pode haver turmas B, C e F, sem existirem as turmas A, D e E);
- Dentro de uma mesma turma, não há qualquer ordem relativa a RA ou nota;
- O número de turmas e as quantidades de alunos por turma é desconhecido *a priori*;
- Há pelo menos um aluno na lista.

 ${\cal O}$ Quadro 1 apresenta um exemplo de uma lista neste formato.

1 Apresentação

Esta atividade trabalha, em diversos níveis, exercícios que usam conceitos básicos voltados a algoritmos computacionais, como contagens, somatórios e produtórios, determinação de condição, determinação de mínimo e máximo.

1.1 Orientações

Determine, individualmente, em qual "nível" melhor se encaixa, relativamente ao desenvolvimento de algoritmos, escolhendo entre os três níveis seguintes.

O desenvolvimento pode ser feito em grupos, mas não monte um grupo com colegas que se incluam em níveis diferentes.

Cada exercício contém um ou mais símbolos \bigstar . Para cada diferente nível, faça o número mínino de exercícios indicado. Terminada essa quantidade mínima, os demais exercícios podem ser resolvidos se houver tempo hábil.

Nível 1: Tenho tido razoável dificuldade $\overline{\mathbb{Q}}$

Seção	Quantidade mínima
Básicos	$3 \times \bigstar + 1 \times \bigstar \bigstar + 1 \times \bigstar \bigstar$
Intermediários	1 × ★
Avançados	_

Nível 2: Não tenho tido dificuldade nem facilidade

Seção	Quantidade mínima		
Básicos	$2 \times \bigstar + 1 \times \bigstar \bigstar + 2 \times \bigstar \bigstar \bigstar$		
Intermediários	1 × ★ + 1 × ★ ★		
Avançados	$1 \times \bigstar $ (optional)		

Nível 3: Tenho tido razoável facilidade

Seção	Quantidade mínima		
Básicos	$1 \times \bigstar \bigstar + 2 \times \bigstar \bigstar \bigstar$		
Intermediários	$1 \times \bigstar + 2 \times \bigstar \bigstar$		
Avançados	2 × ★		

1.2 Objetivos

O objetivo é consolidar o ferramental básico para elaboração de algoritmos computacionais para futura implementação de programas.

*Jander Moreira – Universidade Federal de São Carlos – De	-6
partamento de Computação - Rodovia Washington Luis, km 23	5
- 13565-905 - São Carlos/SP - Brasil - jander@dc.ufscar.br	c

uadro 1 Exemplo de lista de notas.							
	76335	U	5.3				
	78628	U	3.2				
	75632	U	7.3				
	76035	U	3.3				
	76148	U	4.6				
	76671	U	5.9				
	78423	U	8.8				
	78676	U	6.4				
	75636	U	3.8				
	77390	Q	4.2				
	78942	Q	8.0				
	77748	Q	5.0				
	77800	Q	4.9				
	78822	Q	6.4				
	77017	Q	3.7				
	76011	Q	8.7				
	77467	Q	7.9				
	75988	Q	7.4				
	76065	Q	3.7				
	76334	В	6.9				
	76215	X	8.9				
	77464	X	7.9				
	78269	X	8.6				
	77098	X	5.8				
	77885	X	8.0				
	77878	X	8.6				

Para todos os exercícios, espera-se que a lista seja processada apenas uma vez, sequencialmente.

2.1 Exercícios básicos

Exercício 1.

Escreva um algoritmo completo e detalhado para determinar e apresentar a melhor nota dentre os alunos a partir dos dados da lista.

Exercício 2.

Escreva um algoritmo completo e detalhado para determinar e apresentar a melhor e a pior nota dentre os alunos a partir dos dados da lista.

Exercício 3.

Escreva um algoritmo completo e detalhado para, a partir dos dados da lista, determinar e apresentar quantos alunos tiveram nota igual ou superior a 6,0.

Exercício 4.

Escreva um algoritmo completo e detalhado para determinar e apresentar a média geral de todos os alunos.

Exercício 5.

Escreva um algoritmo completo e detalhado para determinar e apresentar, a partir dos dados da lista, a melhor nota e quantos alunos a obtiveram.

Exercício 6.

Escreva um algoritmo completo e detalhado para, dada uma turma e os dados da lista, determinar e apresentar quantos alunos tiveram nota igual ou superior a 6,0 apenas para a turma indicada. Não havendo nenhuma ocorrência da turma, a saída deve ser a mensagem "Inexistente".

Exercício 7.

Escreva um algoritmo completo e detalhado para determinar e apresentar o número total de alunos e se algum deles tirou nota 0,0. A verificação da nota 0,0 deve usar, necessariamente, uma variável lógica.

2.2 Exercícios intermediários

Exercício 8.

Escreva um algoritmo completo e detalhado para, a partir de uma turma informada e da lista, apresentar todos os dados dos alunos dessa turma.

Exercício 9.

Escreva um algoritmo completo e detalhado para determinar e apresentar a que turma pertence o aluno de maior nota e a turma do de pior nota a partir da lista.

Exercício 10.

Escreva um algoritmo completo e detalhado para determinar e apresentar o número de turmas diferentes presentes na lista.

Exercício 11.

Escreva um algoritmo completo e detalhado para determinar e apresentar se, em todas as turmas da lista, há pelo menos um aluno com nota acima de 6,0. Use variáveis lógicas e apresente **true** ou **false** como resultado.

Exercício 12.

Escreva um algoritmo completo e detalhado para determinar e apresentar se há algum aluno com nota menor que 1,0. Neste exercício, a partir do momento em que se souber o resultado final, os dados restantes da lista não devem mais ser processados. Por exemplo, se a nota do primeiro aluno da lista for igual a 0,5, todas linhas restantes devem ser descartadas.

2.3 Exercícios avançados

Exercício 13.

Escreva um algoritmo completo e detalhado para determinar e apresentar a amplitude de notas para cada turma. A amplitude é a diferença entre a maior nota e a menor. Note que os resultados podem ser apresentados à medida que a lista vai sendo processada, havendo intercalação de entradas e saídas.

Exercício 14.

Escreva um algoritmo completo e detalhado para processar uma sequência de dados como esta e apresentar, ao final, a turma com maior média.

3 Encerramento

Dúvidas e comentários devem ser postados no fórum de dúvidas do AVA. Retome os exercícios das seções 3.5 e 3.6 da lista de exercícios.

Revisão: 1 de abril de 2019