Main Results of CAST-10 Airfoil Tested in T2 Cryogenic Wind Tunnel

A. Blanchard, A. Seraudie, and J. F. Breil ONERA/CERT DERAT Toulouse-France

INTRODUCTION

The aims of the cooperation NASA/DFVLR/ONERA

- * Examine Re, M, and Transition effects on a very sensitive airfoil, systematically tested previously.
- * Evaluation of the airfoil characteristic prediction
 - comparison experimental/theoretical results
 - comparison adaptive walls/conventional wind tunnel results
- * Mutual help for T2, 0.3m TCT, TWB (Braunschweig)
 - Gives us more experience for airfoil tests under cryogenic operation (second cryogenic airfoil tests)
 - lots of experience with adaptive wall techniques

2 Series of Tests in T2

-1St in November 1984 -2nd in April 1985

Model

- * Designed by Dornier
- * Manufactured by ONERA
- * Chord= 180mm , Width= 560mm
- * 103 pressure tapes (L.E. Ø 0.1mm)
 21 thermocouples (15 in the skin region)

Measurement Accuracy

* Model: good quality (shape, surface roughness,...)

(very important for Natural Transition, some problems at High Reynolds Number)

* Steady flow accuracy

P _t =3 bars	Instrumentation	Control	Aerodynamic Field	
T _t =120 K M = 0.8 C _L = 0.5	* Calibration	* Computer process * Mechanical limits	*Adaptive walls	Gradients
Pressure	0.001 bar	0.004 bar		
Temperature	0.3 K	0.4 K		< 0.5 K (wall: 10 K)
Mach number	0.002	0.001	0.002	
Angle of attack	0.02°		0.02°	

Control / Adaptive walls : $\Delta M = 0.005$ Model temperature $T_w/T_{aw} = 1.015$ Flexible wall shape : ∆y= + 0.1 mm

* Flow quality (important for Natural Transition)

- Pressure fluctuations (low levels)
- Velocity fluctuations (due to pressure fluctuations)
- Temperature fluctuations (seem reasonable)
- Uniformity in the test section (good enough)
- Purity of the fluid (moisture is the most important problem for flow quality in a cryogenic wind tunnel)

* Side wall boundary layers

seems a real problem ($\Delta \alpha = 0.1 \text{ to } 0.2^{\circ}$)

CAST 10 Tests in T2

Transition Detection in a Transonic Cryogenic Tunnel

Measure

used for CAST 10 tests
not exploited - - - - '

Identification

Estimation

- Aerodynamic coefficients
- $C_D(Re)$, $C_L(Re)$
- T.N. / T.D. comparisons
- Experiment / calculation comparisons

Aerodynamic Coefficient Evolutions with the Reynolds Number

- * Comparison of (T.N. / T.1/2D. / T.D.)
 - precises the transition motion in T.N.,
 - precises the CD and CL evolutions,
 - partly dissociates what is due to upper and lower surfaces
 - gives confidence in the results
- * The CAST 10 airfoil is still laminar at Rc= 8.10⁶ this must be considered as a success for T2 performances
- * At Rc \geqslant 20 .10⁶ , transition is near the L.E.

- * High airfoil performances in laminar flow
- * Inverse evolutions with the Reynolds number in T.N. and T.D
- * Same results at Rc= 20 .10⁶

Conclusions

- Good model quality

(necessary for T.N. measurements)

*T2 tests

- General characteristics of the CAST 10 airfoil

(M, α , Rc, Free/Fixed transition)

- Fundamental studies on Reynolds number effects
 - The T.N. and T.D. evolutions are very different
 - Comprehension of phenomenon in T.N.
 - Interest of the laminar airfoil
- Analysis of some special points
 - Tw / Taw effects
 - Thermal equilibrium
 - Estimation of the transition location under cryogenic operation
 - Cross control for Rc (P,T)
- Good T2 cryogenic operation
 - Adaptive wall functioning = T.amb.
 - Laminar studies : O.K. for Rc ≤ 8.10⁶

pbs at higher Reynolds Number

Improvements must be done

for moisture elimination for side wall boundary layer effects

* Comparison with prediction methods

---> ONERA results (J. Thibert)

* Comparison with others tunnel results

---> (J. Thibert) and (workshop)

TEST DATA ANALYSIS AND THEORY - EXPERIMENT COMPARISONS

J. J. THIBERT TRANSPORT AIRCRAFT DIVISION AERODYNAMICS DEPARTMENT ONERA (FRANCE)

ONERA / DFVLR / NASA COOPERATION
ON CRYOGENIC AND ADAPTIVE WALLS
TECHNOLOGIES FOR AIRFOIL TESTING

- OBJECTIVES

EXPERIMENTAL TEST ON THE CAST 10 AIRFOIL IN THE ONERA T2 TUNNEL IN ORDER TO PROVIDE DATA AT FLIGHT EQUIVALENT REYNOLDS NUMBER ON A SUPERCRITICAL AIRFOIL

COMPARISON OF DATA ON THE SAME MODEL IN SEVERAL WIND TUNNELS

CAST 10 AIRFOIL WORKSHOP SUMMARY OF THE PRESENTATION

T2 TEST ANALYSIS

T2 - TCT DATA COMPARISONS

COMPUTER CODES DESCRIPTION

THEORY - EXPERIMENT COMPARISONS

CONCLUSION

T2 TEST ANALYSIS

-- TRANSITION EFFECT

M = 0.765 Re = 4 X 10^6

-- REYNOLDS NUMBER EFFECT

M = 0.765 Q = 0.25

-- TRANSITION EFFECT

M = 0.765 Re = 20 X 10^6

-- MACH NUMBER EFFECT

fixed transition

 $Re = 25 \times 10^6$ Q = 0.25

-- REYNOLDS NUMBER EFFECT

M = 0.73 Q = 0.25

CAST 10 AIRFOIL MODEL

TRANSITION EFFECT

TRANSITION EFFECT

T2 TESTS

EVOLUTION OF THE LIFT COEFFICIENT WITH THE REYNOLDS NUMBER

T2 TESTS

EVOLUTION OF THE DRAG WITH THE REYNOLDS NUMBER

SHOCK LOCATION TRANSITION EFFECT

REYNOLDS NUMBER EFFECT

M = 0.765

FREE TRANSITION

T2 T.N. M=0.765 RE=21.106

NUM. MACH ALPHA RE CZ CX CM
121 764 -2.00 21.3 110 .00870 - .07500
777 762 .25 21.2 .497 .00930 - .07500

T2 T.D. M=0.765 RE=21.106

NUM. MACH ALPHA RE CZ CX CM
315 .765 -2.00 20.9 108 .00910 - .07500
311 .764 1.00 21.2 .597 .01360 - .07800
320 .767 2.00 21.0 .692 .03500 - .07600

T2 T.N.-T.D. M=.765 RE=21.106 AL=+2

T2 EFFECT MACH EN T.D. RE=25.106 AL=0.25

NUM. MACH ALPHA RE CZ CX CM
336 729 .25 24.5 .450 .00870 -.06700
296 .760 .25 25.2 .478 .00940 -.07000
332 .766 .25 25.0 .485 .00970 -.07200
333 .777 .25 25.3 .508 .01130 -.08100
335 .790 .25 25.7 .478 .01660 -.08200

LIFT EVOLUTION WITH REYNOLDS NUMBER

$$M_0 = 0.73$$
 $\alpha = -0.25$

DRAG EVOLUTION WITH REYNOLDS NUMBER $M_o = 0.73$ $\alpha = -0.25$

T2 - TCT DATA COMPARISON

- M = 0.765 Re = 4x10⁶
 fixed and free transition
 Total forces
 Pressure
- REYNOLDS NUMBER EFFECT M = 0.76 $\sim = -0.25^{\circ}$

CAST 10 MODEL AND WIND TUNNEL CHARACTERISTICS

- MODEL

CRYOGENIC TECHNOLOGY

CHORD: 180 mm

POSSIBILITY OF MOUNTING IN THE T2, TWB, TCT TUNNELS EQUIPMENT: 103 PRESSURE HOLES (Ø 0.1 mm AND 0.3 mm)

19 THERMOCOUPLES

- WIND TUNNEL CHARACTERISTICS

TUNNEL	WALLS	TEST SECTION	Re x 10 ⁻⁶
T2	ADAPTIVE	$0.4 \times 0.4 \text{ m}^2$	4 - 30
TWB	SLOTTED	0.34 x 0.6 m ²	4 - 12
TCT	ADAPTIVE	$0.2 \times 0.6 \text{ m}^2$	4 - 45

LIFT COEFFICIENT
TRANSITION EFFECT
M = 0.765
Re = 4 x 10⁶

T2-TCT T.N. M=.765 RE=4.106 AL=-1.

NIM. MACH ALPHA RE C2 ... CX ... CM ... CX ... CX

T2-TCT T.N. M=.765 RE=4.106 AL=+1.

MAM. MACH ALPHA RE C2 CX CM CM 29 768 1.00 4.1 691 .01570 - 10300 CM 27572 786 .055 4.0 6875 .02453 - 03748

T2-TCT T.D. M=.765 RE=4.106 AL=-1.0

Num. MACH ALPHA RE C2 CX CM
272 270 .765 -1.00 40.0 199 .01080 .05800 .05800 .05952

EVOLUTION OF THE LIFT COEFFICIENT WITH THE REYNOLDS NUMBER TRANSITION EFFECT

EVOLUTION OF THE DRAG WITH THE REYNOLDS NUMBER

$$M = 0.76$$
 $a = 0.25$

COMPUTER CODES DESCRIPTION

- POTENTIAL CODES (finite difference)
- AP 27

Inviscid flow: Garabedian and Korn method (nonconservative) Boundary layer: Michel method Weak coupling No wake computation

- VISC 05

Inviscid flow: Chattot method
Boundary layer
Strong coupling {Le Balleur method
Wake computation
Nonconservative or conservative options
C type mesh

. NAVIER STOKES CODE (Veuillot-Cambier)

Compressible N.S equation with constant total enthalpy 3-possible turbulence models (Michel, Baldwin-Lomax, K-{}) Explicit finite difference scheme Local time step Multigrid acceleration technique Far field boundary conditions treatment using characteristics relations C type mesh

THEORY - EXPERIMENT COMPARISONS

- M = 0.765 Re = 21x106Total forces Pressure: free transition $C1 \sim 0.5$

Side wall B.L. effect simulation -M = 0.765 Re = 25x106

Pressure: fixed transition C1~0.5

- Mach number effect Re = 25x106
fixed transition
Pressure

Total forces

- M = 0.73 Cl \sim 0.35 fixed transition

THEORY EXPERIMENT COMPARISON

M = 0.765 Re = 21 x 10⁶

THEORY-EXPERIMENT COMPARISON

FREE TRANSITION

NUM. MACH ALPHA RE CZ CX CM 65 .765 -.64 21.0 .501 .00670 -.10711 77 .762 .25 21.2 .497 .00930 -.07500

TEST - THEORY COMPARISON

COMPUTER CODE COMPARISONS $Re = 15 \times 10^{6}$

LATERAL WALL B.L.EFFECT FIXED TRANSITION

THEORY - EXPERIMENT COMPARISON

FIXED TRANSITION

NUM. MRCH ALPHA RE C2 CX CM 1 .765 .25 25.0 .581 .0129 -.09774 332 .766 .25 25.0 .485 .00970 -.07200

THEORY-EXPERIMENT COMPARISON

FIXED TRANSITION

THEORY - EXPERIMENT COMPARISON

FIXED TRANSITION

N.S. CALCULATIONS

FIXED TRANSITION

NUM. MACH ALPHA RE CZ CX CM 102 -765 -25 25-0 -548 -01381 -00000 332 -766 -25 25-0 -485 -00970 --07200

N.S. CALCULATIONS

FIXED TRANSITION

MUM. HRCH RLPHR RE CZ CX CH 105 .750 .00 25.0 .498 .00987 .00000 . 332 .766 .25 25.0 .485 .00970 -.07200

N.S. CALCULATIONS

MACH NUMBER EFFECT

THEORY - EXPERIMENT COMPARISON

FIXED TRANSITION

"LE BALLEUR" CALCULATIONS

FIXED TRANSITION

"LE BALLEUR" CALCULATIONS

FIXED TRANSITION

(corrected Mach numbers)

N.S. CALCULATIONS

(corrected Mach numbers)

THEORY EXPERIMENT COMPARISON FIXED TRANSITION

THEORY-EXPERIMENT COMPARISON

FIXED TRANSITION

NUM. MACH ALPHA RE CZ CX CM 107 .761 .00 25.0 .513 .01115 .00000 69 .759 .00 24.9 .552 .00970 -.09453 . 333 .777 .25 25.3 .508 .01130 -.08100

THEORY-EXPERIMENT COMPARISON

FIXED TRANSITION

NUM. MACH ALPHR RE CZ CX CM 106 .774 .00 25.0 .499 .01461 .000000 70 .772 .00 25.1 .530 .01270 -.09727 335 .790 .25 25.7 .478 .01560 -.08200

THEORY - EXPERIMENT COMPARISON LE BALLEUR'S METHOD FIXED TRANSITION

THEORY - EXPERIMENT COMPARISON **WEAK COUPLING METHOD**

CONCLUSIONS

- 1) T2 DATA
 - . CAST 10 AIRFOIL VERY SENSITIVE TO:
 - TRANSITION LOCATION
 - MACH NUMBER REYNOLDS NUMBER
 - . T2 DATA VERY WELL DOCUMENTED AT LOW AND MEDIUM REYNOLDS NUMBERS
 - . T2 DATA SHOWS LARGE EXTENT OF LAMINAR FLOW UP TO Re 10
 - . TRANSITION LOCATION DISPLACEMENTS CONTROL
 - C1, CD EVOLUTIONS VERSUS ANGLE OF ATTACK C1, CD EVOLUTIONS VERSUS Re NUMBER
- 2) T2 TCT DATA COMPARISONS
 - . TCT DATA SHOW LESS LAMINAR FLOW THAN T2 AT THE SAME Re NUMBER
 - , FIXED TRANSITION DATA SEEMS TO CORRELATE CORRECTLY
 - . MORE COMPARISONS ARE NEEDED AT HIGH Re NUMBER
- 3) TEST THEORY COMPARISONS
 - . CORRELATIONS ARE POOR USING THE SAME MACH NUMBER
 - . SIDEWALL B-L CORRECTIONS IMPROVE COMPARISONS
 - . NS COMPUTATIONS (WITH CORRECTED MACH NUMBERS) GIVE GOOD CORRELATIONS FOR :
 - C1, CD VERSUS HACH NUMBER