

4004 SINGLE CHIP 4-BIT P-CHANNEL MICROPROCESSOR

- 4-Bit Parallel CPU With 46 Instructions
- Instruction Set Includes Conditional Branching, Jump to Subroutine and Indirect Fetching
- Binary and Decimal Arithmetic Modes
- 10.8 Microsecond Instruction Cycle

- CPU Directly Compatible With MCS-40 ROMs and RAMs
- Easy Expansion One CPU can Directly Drive up to 32,768 Bits of ROM and up to 5120 Bits of RAM
- Standard Operating Temperature Range of 0° to 70°C
- Also Available With -40°
 to +85°C Operating Range

The Intel® 4004 is a complete 4-bit parallel central processing unit (CPU). The 4004 easily interfaces with keyboards, switches, displays, A-D converters, printers and other peripheral equipment.

The CPU can directly address 4K 8-bit instruction words of program memory and 5120 bits of data storage RAM. Sixteen index registers are provided for temporary data storage. Up to 16 4-bit input ports and 16 4-bit output ports may also be directly addressed.

The 4004 is fabricated with P-channel silicon gate MOS technology.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel.

March 1987

Order Number: 231982

Pin Description

D₀-D₃

BIDIRECTIONAL DATA BUS. All address and data communication between the processor and the RAM and ROM chips occurs on these 4 lines.

RESET

RESET input. A logic "1" level at this input clears all flags and status registers and forces the program counter to zero. To completely clear all address and index registers, RESET must be applied for 64 clock cycles (8 machine cycles).

TEST

TEST input. The logical state of this signal may be tested with the JCN instruction.

SYNC

SYNC output. Synchronization signal generated by the processor and set to the ROM and RAM chips. It indicates the beginning of an instruction cycle.

CM-ROM

CM-ROM output. This is the ROM selection signal sent out by the processor when data is required from program memory.

CM-RAMO - CM-RAMO

CM-RAM outputs. These are the bank selection signals for the 4002 RAM chips in the system.

φ₁. φ₂

Two phase clock inputs.

Vee

Most positive voltage.

VDD

Vss -15 ±5% main supply voltage.

instruction Set Format

A. Machine Instructions

- 1 word instruction 8-bits requiring 8 clock periods (instruction cycle).
- 2 word instruction 16-bits requiring 16 clock periods (2 instruction cycles).

Each instruction is divided into two four-bit fields. The upper 4-bits is the OPR field containing the operation code. The lower 4-bits is the OPA field containing the modifier. For two word instructions, the second word contains address information or data.

The upper 4-bits (OPR) will always be fetched before the lower 4-bits (OPA) during M_1 and M_2 times respectively.

Table I. Machine Instruction Format

B. Input/Output and RAM Instructions and Accumulator Group Instructions

In these instructions (which are all single word) the OPR contains a 4-bit code which identifies either the I/O instruction or the accumulator group instruction and the OPA contains a 4-bit code which identifies the operation to be performed. Table II illustrates the contents of each 4-bit field.

Table II. I/O and Accumulator Group Instruction Formats

4004 Instruction Set BASIC INSTRUCTIONS (* = 2 Word Instructions)

Hez Code	MNEMONIC	OPA '0, 0, 0, 0,	0 PA 0, 0, 0, 0,	DESCRIPTION OF OPERATION
00	NOP	0000	0000	No operation.
1 ·	*JCN	0 0 0 1 A, A, A, A,	C, C, C, C. A, A, A, A,	Jump to ROM address A_2 A_2 A_3 , A_4 , A_4 , A_5 , A_6 , (within the same ROM that contains this JCN instruction) if condition C_1 , C_2 , C_3 , is true, otherwise go to the next instruction in sequence.
2 ·	* FIM	0 0 1 0	R R R O 0, 0, 0, 0,	Fetch immediate (direct) from ROM Data D ₂ D ₃ D ₃ D ₃ D ₃ D ₄ D ₅
3 ·	FIN	0011	RRRO	Fetch indirect from ROM. Send contents of index register pair location 0 out as an address. Data fetched is placed into register pair location RRR.
3 ·	JIN	0011	RRR1	Jump indirect. Send contents of register pair RRR out as an address at A_τ and A_z time in the instruction cycle.
4 ·	*JUN	0100	A, A, A, A, A, A, A, A,	Jump unconditional to ROM address A ₂ A ₃ A ₃ A ₃ A ₂ A ₂ A ₃ A ₃ A ₄ A ₅ A ₅ A ₆
5 ·	*JMS	0101	A, A, A, A, A, A, A, A,	Jump to subroutine ROM address A ₂ A ₃ A ₃ A ₃ A ₄ A ₇ A ₇ A ₇ A ₇ A ₈
6 .	INC	0 1 1 0	ARRA	Increment contents of register ARRR
7 .	*152	0 1 1 1 A, A, A, A,	R R R R A, A, A, A,	Increment contents of register RRRR. Go to ROM address A, (within the same ROM that contains this ISZ instruction) if result ≠ 0, otherwise go to the next instruction in sequence
1.	A00	1000	ARRR	Add contents of register RRRR to accumulator with carry
9.	SUB	1001	ARRA	Subtract contents of register RRRR to accumulator with borrow
A.	LD	1010	RARA	Load contents of register RRRR to accumulator.
1	XCH	1 0 1 1	RRRR	Exchange cuntents of index register RRRR and accumulator
c.	88L	1 1 0 0	0000	Branch back (down 1 level in stack) and load data 0000 to accumulator.
D.	LDM	1 1 0 1	0000	Load data 0000 to accumulator
FO	CLB	1111	0000	Clear both (Accumulator and carry)
F1	CLC	1111	0001	Clear carry.
F2	IAC	1111	0010	Increment accumulator.
F3	CMC	1111	0011	Complement carry.
F5	RAL	1111	0 1 0 1	Rotate left (Accumulator and carry)
FS	RAR	1111	0110	Rotate right. (Accumulator and carry)
-77	TCC	1111	0 1 1 1	Transmit carry to accumulator and clear carry.
Ä	DAC	1111	1000	Decrement accumulator
FB	TCS	1111	1001	Transfer carry subtract and clear carry
FA	STC	1111	1010	Set carry
FB	DAA	1111	1 0 1 1	Decimal adjust accumulator.
FC		1111	1100	Keyboard process. Converts the contents of the accumulator from a one out of four code to a binary code.
FD	DCL	1111	1 1 0 1	Designate command line.
_				

4001/4002/4008/4009/4289 INPUT/OUTPUT AND RAM INSTRUCTIONS

Hez MNEMONIC DPR Cods MNEMONIC D, D, D, D, E					٥,	_	PA D.	٥.	DESCRIPTION OF OPERATION					
2 ·	SRC				0	R	A	R	1	Send register control. Send the address (contents of index register pair RRR) to ROM and RAM at X, and X, time in the instruction cycle.				
ΕO	WRM	1	1	1	0	0	0	0	0	Write the contents of the accumulator into the previously selected RAM main memory character				
E1	WMP	1	1	1	0	0	0	0	1	Write the contents of the accumulator into the previously selected RAM output port. (Output Lines)				
E2	WRR	1	1	1	0	0	0	1	0	Write the contents of the accumulator into the previously selected ROM output port. (I/O Lines)				
E3	WPM	1	1	,	0	0	0	1	1	Write the contents of the accumulator into the previously selected half byte of read/write program memory (used with 4008/4009 or 4289 only)				
E4	WRO	1	1	1	0	0	1	0	0	Write the contents of the accumulator into the previously selected RAM status character 0.				
E5	WR1	1	1	1	0	0	1	0	1	Write the contents of the accumulator into the previously selected RAM status character 1				
E6	WR2	1	1	1	0	0	1	1	0	Write the contents of the accumulator into the previously selected RAM status character 2				
E7	WR3	1	1	1	0	0	1	1	1	Write the contents of the accumulator into the previously selected RAM status character 3				
E8	SBM	1	1	1	0	1	0	0	0	Subtract the previously selected RAM main memory character from accumulator with borrow				
E9	ROM	1	1	1	0	1	0	0	1	Read the previously selected RAM main memory character into the accumulator				
EA	ROR	1	1	1	0	1	0	1	0	Read the contents of the previously selected ROM input port into the accumulator (I/O Lines)				
EB	ADM	1	1	1	0	1	0	1	1	Add the previously selected RAM main memory character to accumulator with carry				
EC	RD0	1	ı	1	0	1	1	0	0	Read the previously selected RAM status character 0 into accumulator.				
ED	RD1	1	1	1	0	1	1	0	1	Read the previously selected RAM status character 1 into accumulator				
EE	RD2	1	1	1	0	1	1	1	0	Read the previously selected RAM status character 2 into accumulator				
EF	RO3	1	1	1	0	1	1	1	1	Read the previously selected RAM status character 3 into accumulator				

.

Hex	Mnem	naic .	Hex	Mnem	onic	He		Maemoni	•	Hex	Mnemo	nic	
00	-		40	JUN	٦	86	0	– –	0	CO	BBL	0	
01	-		41	JUN		8	1		1	C1	88L	1	
02	-		42	JUN		8:	2	ADD	2	CZ	BBL	2	
03	-		43	JUN		8:	3	ADD :	3	C3	88 L	3	
04	-		44	JUN		8	4	ADD	4	C4	BBL	4	
05	-		45	JUN		8	5	ADD !	5	C5	BBL	5	
06	-		46	JUN		8	6	ADD	6	CS	BBL	6	
07	-		47	JUN		8	-		7	C7	BBL	7	
80	_		48	JUN		8	8		8	C8	BBL	8	
09	_		49	JUN		8:	-		9	C9	BBL	9	
0A	_		4A	JUN		8.	_	ADD 1	a l	CA	BBL	10	
08	_		48	JUN		8		ADD 1	-	CB	BBL	11	
OC	_		4C	JUN		8	_	A00 1		CC	BBL	12	
00	_		4D	JUN		8	-	ADD 1	_	CD	BBL	13	
0E	_		4E	JUN	Sec	and hex 8	_	ADD 1	-	CE	BBL	14	
0F	_		4F	JUN		it is part 8	_	ADD 1	-	CF	88 L	15	
10	JCN	CN=0	50	JMS		ump 9			0	00	LDM	0	
11	JCN	CN= 1 also JNT	51	JMS		iress. 9	-		1	01	LDM	•	
12	JCN	CN=2 also JC	52	JMS		9			2	02	LOM	2	
13	JCN	CN=3	53	JMS		9	_	-	3	02	LOM	3	
14	JCN	CN=4 also JZ	54	JMS		9	_	SUB	_	D4	LOM	J A	
15	JCN	CN=5	55	2ML		9	-	SUB	T .	05	LDM	5	
16	JEN	CN=6	56	JMS		9	-	SUB	J g	D6		5 6	
17	JCN	CN=7	57	JMS	1 1	9	-		7	D7	LOM	7	
18	JCN	CN=8	58	JMS ZML		9	-		8	1	LDM	8	
19	JCN	CN=9 also JT	59	JMS			_		Ψ ,	08	LOM	-	
	JCN	CN=10 also JNC				9	_		9	09	LOM	9	
1A			5A	JMS		* * * * * * * * * * * * * * * * * * *	A		0	DA	LDM	10	
18	JCN	CN=11 CN=12 also JNZ	5B	JMS		9	_	SUB 1	-	08	LDM	11	
10	JCN		5C	JMS			C		2	DC	LDM	12	
10	JCN	CN=13	50	JMS			0		3	00	LDM	13	
16	JCN	CN=14	5E	JMS			E	• • • •	4	DE	LDM	14	
1F	JCN	CN=15	5F	JMS	Ť	9			5	OF	LDM	15	
20	FIM	0	60	INC	0		0		0	EO	WRM		
21	SRC	0	61	INC	1		1		1	E1	WMP		
22	FIM	2	62	INC	2		2		2	E2	WRR		
23	SRC	2	63	INC	3	and the second second	3	-	3	£3	WPM		
24	FIM	4	64	INC	4		4	LD	4	E4	WRO		
25	SRC	4	65	INC	5		5	rD	5	E5	WR 1		
26	FIM	6	66	INC	6		8	LD	<u> </u>	£6	WR 2		
27	SRC	6	67	INC	7		.7	LD	7	E7	WR3		
28	FIM	8	68	INC	8		8	LD	8	E8	SBM		
29	SRC	8	69	INC	9		19		9	E9	RDM		
2A	FIM	10	6A	INC	10		A	LD 1		EA	RDR		
28	SRC	10	68	INC	11		18	LD 1		EB	ADM		
2C	FIM	12	6C	INC	12		C	LD 1		EC	RDO		
20	SRC	12	6D	INC	13		D	LD 1		€D	RD1		
2E	FIM	14	6E	INC	14		E	LD 1		EE	RD2		
2F	SRC	14	GF	INC	15	A	F	LD 1	5	EF	RD3		
30	FIN	0	70	ISZ	0		10		0	FO	CFB		
31	JIN	0	71	ISZ	1	8	1		1	F1	CFC		
32	FIN	2	72	ISZ	2		12		2	FZ	IAC		
33	JIN	2	73	ISZ	3		13		3	F3	CMC		
34	FIN	4	74	ISZ	4		14		4	F4	CMA		
35	JIN	4	75	ISZ	5	8	5		5	F5	RAL		
36	FIN	6	76	ISZ	6	1	16		6	F6	RAR		
37	JIN	i	177	ISZ	7		17		i	F7	TCC		
38	FIN	i	78	ISZ			18			FB	DAC		
39	JIN	i	79	ISZ	9				•	F9	TCS		
34	FIN	10	7A	ISZ	10		A	XCH 1	-	FA	STC		
	JIN	10	78	ISZ	11		18	XCH 1		FB	DAA		
, 4		12	7C	ISZ	12		C		ż	FC	KBP		
3C	- 1				• •				-		***		
3C	FIN												
	JIN FIN	12 14	7D 7E	ISZ	13 14		ID IE		3	FD FE	OCL		

Absolute Maximum Ratings*

Ambient Temperature Under Bias Storage Temperature Input Voltages and Supply Voltage with respect to Vss Power Dissipation

.... 0°C to 70°C

"COMMENT:

-55°C to + 125°C Stresses above those listed under "Absolute Meximum Retings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other +0.5V to -20V conditions above those indicated in the operational sections of this 1.0 Watt specification is not implied.

D.C. and Operating Characteristics

 $T_A = 0$ °C to 70°C; $V_{SS} = V_{DD} = 15V \pm 5\%$; $t_{dPW} = t_{dD1} = 400$ nsec; logic "0" is defined as the more positive voltage (VIH, VOH); logic "1" is defined as the more negative voltage (VIL, VOL); Unless Otherwise Specified.

SUPPLY CURRENT

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
lop	Average Supply Current		30	40	mA	T _A =25°C
NPUT CH	ARACTERISTICS					70.
ILI	Input Leakage Current			10	μА	VIL=VDD
VIH	Input High Voltage (Except Clocks)	V ₃₅ -1.5		V ₅₅ +.3	٧	
VIL	Input Low Voltage (Except Clocks)	VDD		V ₅₅ -5.5	V	
VILO	Input Low Voltage	VDO		V ₃₅ -4.2	V	4004 TEST Input
VIHC	Input High Voltage Clocks	V ₃₈ -1.5		V ₃₅ +.3	٧.	
VILC	Input Low Voltage Clocks	Voo		V _{SS} -13.4	٧	
OUTPUT	CHARACTERISTICS					
lro	Data Bus Output Leakage Current			10	μА	Vour=-12V
Voн	Output High Voltage	V _{SS} 5V	V ₃₈		V	Capacitance Load
ρr	Data Lines Sinking Current	8	15		mA	Vour=Vss
P	CM-ROM Sinking Current	6.5	12		mA	Vout=Vss
ρL	CM-RAM Sinking Current	2.5	6		mA	Vour=Vss
Vo∟	Output Low Voltage, Data Bus, CM, SYNC	V _{SS} -12		V ₈₅ -6.5	٧	loL=0.5mA
ROH	Output Resistance, Data Line "0" Level		150	250	Ω	Vour=Vss5V
ROH	CM-ROM Output Resistance, Data Line "0" Level		320	600	Ω	Vour=V355V
ROH	CM-RAM Output Resistance, Data Line "0" Level		1.1	1.8	kΩ	V _{OUT} =V _{SS} 5V
APACIT	ANCE					
C.	Clock Capacitance		14	20	ρF	VIN-VSS
COB	Deta Bus Capacitance		7	10	pF	Vin=Vss
CIN	Input Capacitance			10	ρF	V _{IN} =V _{SS}
Cout	Output Capacitance			10	pF	VIN=VSS

intel°

Typical D.C. Characteristics

A.C. Characteristics

TA = 0°C to 70°C, VSS-VDD = 15V ±5%

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
tcy	Clock Period	1.35		2.0	μsec	
₩ A	Clock Rise Time			50	ns	
U F	Clock Fall Times			50	ns	
	Clock Width	380		480	ns	
	Clock Delay ϕ_1 to ϕ_2	400		550	ns	
	Clock Delay ϕ_2 to ϕ_1	150			ns	
	Data-In, CM, SYNC Write Time	350	100		ns	
	Data-In, CM, SYNC Hold Time	40	20		ns	
	Data Bus Hold Time During M ₂ -X ₁ and and X ₂ -X ₃ Transition.	150			ns	
tos[2]	Set Time (Reference)	0			ns	
	Data-Out Access Time Data Lines Data Lines SYNC CM-ROM CM-RAM			930 700 930 930 930	ns ns ns ns	COUT = 500pF Data Lines 200pF Data Lines 4 500pF SYNC 180pF CM-ROM 50pF CM-RAM
[‡] ОН	Data-Out Hold Time	50	150		ns	C _{OUT} =20pF

Notes: 1. t_H measured with $t_{\phi R}$ = 10nssc.

2. TACC is Data Bus, SYNC and CM-line output access time referred to the \$\phi_2\$ trailing edge which clocks these lines dut. tog is the some output access time referred to the leading edge of the next ϕ_2 clock pulse.

3. All MCS-40 components which may transmit instruction or data to the 4004 at M2 and X2 always enter a float state until the 4004 takes over the data bus at X1 and X3 time. Therefore the tyl requirement is always insured since each component contributes 10µA of leekage current and 10pF of capacitance which guarantees that the data bus cannot change faster than 1 V/µs.

4. C_{DATA} BUS = 200pF if 4008 and 4009 or 4289 is used.

Figure 1. Timing Diagram.

Figure 2. Timing Detail.