Naive Bayes Classifier

Sungjoo Ha

October 30th, 2013

Sungjoo Ha 1/12

Prediction

- Key quantity is p(y|x)
- ► Two approaches to model this
 - Discriminative
 - Generative

Sungjoo Ha 2/12

Generative Method

- ▶ Estimate p(x,y) using D
- $p(y|x) = \frac{p(x,y)}{p(x)}$

Sungjoo Ha 3/12

Generative Method

Spam Filtering

- ► Think of a model "generating" the samples
 - 1. Choose spam/ham
 - 2. Given the decision (spam), choose the features (words)
- ► More formally, p(x,y) = p(x|y)p(y)
 - 1. p(y) is the probability of spam/ham
 - 2. p(x|y) is the probability of words given spam/ham

Sungjoo Ha 4/12

Naive Bayes

Setup

- ▶ Given $D = ((x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}))$ $x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)}) \in \mathbb{R}^d$ $y^{(i)} \in \mathscr{Y}, \mathscr{Y} = \{1, \dots, m\}$
- ▶ Assume a family of distribution p_{θ} s.t. for $x \in \mathbb{R}^d, y \in \mathcal{Y}$,

$$p_{\theta}(x,y) = p_{\theta}(x|y)p_{\theta}(y)$$

$$= p_{\theta}(x_1|y)p_{\theta}(x_2|y,x_1)p_{\theta}(x_3|y,x_1,x_2)\cdots$$

$$= p_{\theta}(x_1|y)\cdots p_{\theta}(x_d|y)p_{\theta}(y)$$

- ► Naive conditional independence assumption
- ▶ If $(X,Y) \sim p_{\theta}$, then X_1, \ldots, X_d are conditionally independent given Y

Sungjoo Ha 5/12

Naive Bayes

Goal & Algorithm For new $x \in \mathbb{R}^d$, predict it's y

- ► Estimate $\hat{\theta}$ from D
- $\blacktriangleright \ \ \text{Compute} \ \hat{y} \in \operatorname*{argmax}_{y \in \mathscr{Y}} p_{\hat{\theta}}(y|x)$

$$\hat{y} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} p_{\hat{\theta}}(y|x)$$

$$= \underset{y}{\operatorname{argmax}} \frac{p_{\hat{\theta}}(x|y)p_{\hat{\theta}}(y)}{p_{\hat{\theta}}(x)}$$

$$= \underset{y}{\operatorname{argmax}} p_{\hat{\theta}}(x|y)p_{\hat{\theta}}(y)$$

$$= \underset{y}{\operatorname{argmax}} p_{\hat{\theta}}(x_1|y) \cdots p_{\hat{\theta}}(x_d|y)p_{\hat{\theta}}(y)$$

- ▶ "Bayes
- ► "Naive"

Sungjoo Ha 6/12

Choosing p_{θ}

- ▶ Define the marginal distribution $p_{\theta}(y)$
- ▶ Define the conditional distribution $p_{\theta}(x|y)$
- $p_{\theta}(y) = p_{\theta}(Y = y) = \pi_y$ $\pi = (\pi_1, \dots, \pi_m)$
- $p_{\theta}(x_i|y) = p_{\theta}(X_i = x_i|Y = y)$
 - If X_i is finite, e.g. $p_{\theta} = q(x_i, y)$
 - If X_i is countably infinite, e.g. Poisson, Geometric, etc.
 - If X_i is uncountably infinite, e.g. Gaussian, Gamma, etc.
- $\theta = (\text{all params of the distribution}, \pi)$

Sungjoo Ha 7/12

Estimating θ

- ► MLE
- ► MAP
- ▶ "Bayesian" integrate out θ

Sungjoo Ha 8/12

Conditional Independence

$$p_{\theta}(x|y) = p_{\theta}(x_1|y) \cdots p_{\theta}(x_d|y)$$

- \blacktriangleright Can estimate θ more accurately with less data
 - Assuming x, y being binary
 - Joint probability requires $O(2^d)$ parameters
 - Conditional independence assumption leads to only ${\cal O}(2d)$ parameters
- Wrong but simple model can work better than correct but complicated model

Sungjoo Ha 9/12

Spam Filter

Setup

- Given emails with label ham/spam
 - $D, (x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$
 - Label is binary decision
 - An email is described by binary word vector
 - x ="Is this a spam mail?" = [0, 1, 0, 0, 1, ...]
 - $\cdot \ p(Y=1|X=x) \text{ vs. } p(Y=0|X=x)$

Sungjoo Ha 10/12

Spam Filter

Algorithm

- ► Estimate $\hat{\theta}$ from D
 - · Need to estimate

$$\hat{\theta} = (p(Y=1), p(X_i=1|Y=1), p(X_i=1|Y=0))$$

Use maximum likelihood estimate

For PMF on a finite set,
$$\theta_{MLE} = (\frac{n_1}{n}, \dots, \frac{n_m}{n})$$

- $p(Y = 1) = \frac{\#\{\text{Spams}\}}{\#\{\text{All mails}\}}$
- $p(X_i = 1|Y = 1) = \frac{\#\{\text{Occurrence of word } X_i \text{ in spam}\}}{\#\{\text{Spams}\}}$
- $p(X_i=1|Y=0)=\frac{\#\{\text{Occurrence of word }X_i \text{ in ham}\}}{\#\{\text{Hams}\}}$

Sungjoo Ha 11/12

Spam Filter

Goal

- ► For new *x*, predict it's *y*
 - x = "Is this a spam mail?" = [0, 1, 0, 0, 1, ...]

•
$$p(Y = 1|X = x) \text{ vs. } p(Y = 0|X = x)$$

$$p(1|x) \propto p(X_1 = 0|Y = 1)p(X_2 = 1|Y = 1) \cdots p(Y = 1)$$

 $p(0|x) \propto p(X_1 = 0|Y = 0)p(X_2 = 1|Y = 0) \cdots p(Y = 0)$

Sungjoo Ha 12/12