

Robert M. Freund February, 2004

2004 Massachusetts Institute of Technology.

1 Quadratic Optimization

A quadratic optimization problem is an optimization problem of the form:

(QP): minimize
$$f(x) := \frac{1}{2}x^TQx + c^Tx$$

s.t. $x \in \Re^n$.

Problems of the form QP are natural models that arise in a variety of settings. For example, consider the problem of approximately solving an over-determined linear system Ax = b, where A has more rows than columns. We might want to solve:

$$(\mathbf{P}_1):$$
 minimize $\|Ax-b\|$ s.t.
$$x\in\Re^n.$$

Now notice that $||Ax-b||^2 = x^TA^TAx - 2b^TAx + b^Tb$, and so this problem is equivalent to:

$$(\mathbf{P}_1):$$
 minimize $x^TA^TAx-2b^TAx+b^Tb$ s.t.
$$x\in\Re^n,$$

which is in the format of QP.

A symmetric matrix is a square matrix $Q \in \Re^{n \times n}$ with the property that

$$Q_{ij} = Q_{ji}$$
 for all $i, j = 1, \dots, n$.

We can alternatively define a matrix Q to be symmetric if

$$Q^T = Q$$
.

We denote the *identity* matrix (i.e., a matrix with all 1's on the diagonal and 0's everywhere else) by I, that is,

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix},$$

and note that I is a symmetric matrix.

The gradient vector of a smooth function $f(x): \Re^n \to \Re$ is the vector of first partial derivatives of f(x):

$$\nabla f(x) := \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix} .$$

The *Hessian* matrix of a smooth function $f(x): \Re^n \to \Re$ is the matrix of second partial derivatives. Suppose that $f(x): \Re^n \to \Re$ is twice differentiable, and let

$$[H(x)]_{ij} := \frac{\partial^2 f(x)}{\partial x_i \ \partial x_j} \ .$$

Then the matrix H(x) is a symmetric matrix, reflecting the fact that

$$\frac{\partial^2 f(x)}{\partial x_i \, \partial x_j} = \frac{\partial^2 f(x)}{\partial x_i \, \partial x_i} \; .$$

A very general optimization problem is:

(GP): minimize f(x)

s.t.
$$x \in \mathbb{R}^n$$
,

where $f(x): \Re^n \to \Re$ is a function. We often design algorithms for GP by building a local quadratic model of $f(\cdot)$ at a given point $x = \bar{x}$. We form the gradient $\nabla f(\bar{x})$ (the vector of partial derivatives) and the Hessian $H(\bar{x})$ (the matrix of second partial derivatives), and approximate GP by the following problem which uses the Taylor expansion of f(x) at $x = \bar{x}$ up to the quadratic term.

$$(\mathbf{P}_2): \quad \text{minimize} \quad \tilde{f}(x) := f(\bar{x}) + \nabla f(\bar{x})^T (x - \bar{x}) + \frac{1}{2} (x - \bar{x})^T H(\bar{x}) (x - \bar{x})$$

s.t.
$$x \in \Re^n$$
.

This problem is also in the format of QP.

Notice in the general model QP that we can always presume that Q is a symmetric matrix, because:

$$x^T Q x = \frac{1}{2} x^T (Q + Q^T) x$$

and so we could replace Q by the symmetric matrix $\bar{Q} := \frac{1}{2}(Q + Q^T)$.

Now suppose that

$$f(x) := \frac{1}{2}x^TQx + c^Tx$$

where Q is symmetric. Then it is easy to see that:

$$\nabla f(x) = Qx + c$$

and

$$H(x) = Q$$
.

Before we try to solve QP, we first review some very basic properties of symmetric matrices.

2 Convexity, Definiteness of a Symmetric Matrix, and Optimality Conditions

- A function $f(x): \mathbb{R}^n \to \mathbb{R}$ is a convex function if $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) \text{ for all } x, y \in \mathbb{R}^n, \text{ for all } \lambda \in [0,1].$
- A function f(x) as above is called a *strictly convex* function if the inequality above is strict for all $x \neq y$ and $\lambda \in (0,1)$.
- A function $f(x): \Re^n \to \Re$ is a *concave* function if $f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y) \text{ for all } x, y \in \Re^n, \text{ for all } \lambda \in [0,1].$
- A function f(x) as above is called a *strictly concave* function if the inequality above is strict for all $x \neq y$ and $\lambda \in (0,1)$.

Here are some more definitions:

• Q is symmetric and positive semidefinite (abbreviated SPSD and denoted by $Q\succeq 0$) if

$$x^TQx \ge 0$$
 for all $x \in \Re^n$.

• Q is symmetric and positive definite (abbreviated SPD and denoted by $Q \succ 0$) if $x^T Q x > 0$ for all $x \in \Re^n, \ x \neq 0$.

Theorem 1 The function $f(x) := \frac{1}{2}x^TQx + c^Tx$ is a convex function if and only if Q is SPSD.

Proof: First, suppose that Q is not SPSD. Then there exists r such that $r^TQr < 0$. Let $x = \theta r$. Then $f(x) = f(\theta r) = \frac{1}{2}\theta^2 r^TQr + \theta c^T r$ is strictly concave on the subset $\{x \mid x = \theta r\}$, since $r^TQr < 0$. Thus $f(\cdot)$ is not a convex function.

Next, suppose that Q is SPSD. For all $\lambda \in [0,1]$, and for all x, y,

$$f(\lambda x + (1 - \lambda)y) = f(y + \lambda(x - y))$$

$$= \frac{1}{2}(y + \lambda(x - y))^{T}Q(y + \lambda(x - y)) + c^{T}(y + \lambda(x - y))$$

$$= \frac{1}{2}y^{T}Qy + \lambda(x - y)^{T}Qy + \frac{1}{2}\lambda^{2}(x - y)^{T}Q(x - y) + \lambda c^{T}x + (1 - \lambda)c^{T}y$$

$$\leq \frac{1}{2}y^{T}Qy + \lambda(x - y)^{T}Qy + \frac{1}{2}\lambda(x - y)^{T}Q(x - y) + \lambda c^{T}x + (1 - \lambda)c^{T}y$$

$$= \frac{1}{2}\lambda x^{T}Qx + \frac{1}{2}(1 - \lambda)y^{T}Qy + \lambda c^{T}x + (1 - \lambda)c^{T}y$$

$$= \lambda f(x) + (1 - \lambda)f(y) ,$$

thus showing that f(x) is a convex function.

Corollary 2 f(x) is strictly convex if and only if $Q \succ 0$.

- f(x) is concave if and only if $Q \leq 0$.
- f(x) is strictly concave if and only if $Q \prec 0$.
- f(x) is neither convex nor concave if and only if Q is indefinite.

Theorem 3 Suppose that Q is SPSD. The function $f(x) := \frac{1}{2}x^TQx + c^Tx$ attains its minimum at x^* if and only if x^* solves the equation system:

$$\nabla f(x) = Qx + c = 0 .$$

Proof: Suppose that x^* satisfies $Qx^* + c = 0$. Then for any x, we have:

$$f(x) = f(x^* + (x - x^*))$$

$$= \frac{1}{2}(x^* + (x - x^*))^T Q(x^* + (x - x^*)) + c^T (x^* + (x - x^*))$$

$$= \frac{1}{2}(x^*)^T Q x^* + (x - x^*)^T Q x^* + \frac{1}{2}(x - x^*)^T Q(x - x^*) + c^T x^* + c^T (x - x^*)$$

$$= \frac{1}{2}(x^*)^T Q x^* + (x - x^*)^T (Q x^* + c) + \frac{1}{2}(x - x^*)^T Q(x - x^*) + c^T x^*$$

$$= \frac{1}{2}(x^*)^T Q x^* + c^T x^* + \frac{1}{2}(x - x^*)^T Q(x - x^*)$$

$$= f(x^*) + \frac{1}{2}(x - x^*)^T Q(x - x^*)$$

$$\geq f(x^*),$$

thus showing that x^* is a minimizer of f(x).

Next, suppose that x^* is a minimizer of f(x), but that $d := Qx^* + c \neq 0$. Then:

$$f(x^* + \alpha d) = \frac{1}{2}(x^* + \alpha d)^T Q(x^* + \alpha d) + c^T (x^* + \alpha d)$$

$$= \frac{1}{2}(x^*)^T Q x^* + \alpha d^T Q x^* + \frac{1}{2}\alpha^2 d^T Q d + c^T x^* + \alpha c^T d$$

$$= f(x^*) + \alpha d^T (Q x^* + c) + \frac{1}{2}\alpha^2 d^T Q d$$

$$= f(x^*) + \alpha d^T d + \frac{1}{2}\alpha^2 d^T Q d.$$

But notice that for $\alpha < 0$ and sufficiently small, that the last expression will be strictly less than $f(x^*)$, and so $f(x^* + \alpha d) < f(x^*)$. This contradicts the supposition that x^* is a minimizer of f(x), and so it must be true that $d = Qx^* + c = 0$.

Here are some examples of convex quadratic forms:

$$\bullet \ f(x) = x^T x$$

- $f(x) = (x-a)^T (x-a)$
- $f(x) = (x a)^T D(x a)$, where

$$D = \begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix}$$

is a diagonal matrix with $d_i > 0$, j = 1, ..., n.

• $f(x) = (x-a)^T M^T DM(x-a)$, where M is a non-singular matrix and D is as above.

3 Characteristics of Symmetric Matrices

A matrix M is an orthonormal matrix if $M^T = M^{-1}$. Note that if M is orthonormal and y = Mx, then

$$||y||^2 = y^T y = x^T M^T M x = x^T M^{-1} M x = x^T x = ||x||^2,$$

and so ||y|| = ||x||.

A number $\gamma \in \Re$ is an eigenvalue of M if there exists a vector $\bar{x} \neq 0$ such that $M\bar{x} = \gamma \bar{x}$. \bar{x} is called an eigenvector of M (and is called an eigenvector corresponding to γ). Note that γ is an eigenvalue of M if and only if $(M - \gamma I)\bar{x} = 0$, $\bar{x} \neq 0$ or, equivalently, if and only if $\det(M - \gamma I) = 0$.

Let $g(\gamma) = \det(M - \gamma I)$. Then $g(\gamma)$ is a polynomial of degree n, and so will have n roots that will solve the equation

$$g(\gamma) = \det(M - \gamma I) = 0$$
,

including multiplicities. These roots are the eigenvalues of M.

Proposition 4 If Q is a real symmetric matrix, all of its eigenvalues are real numbers.

Proof: If s = a + bi is a complex number, let $\bar{s} = a - bi$. Then $\bar{s} \cdot \bar{t} = \bar{s} \cdot \bar{t}$, s is real if and only if $s = \bar{s}$, and $s \cdot \bar{s} = a^2 + b^2$. If γ is an eigenvalue of Q, for some $x \neq 0$, we have the following chains of equations:

$$\begin{aligned} \frac{Qx = \gamma x}{\overline{Qx} = \overline{\gamma x}} \\ \bar{Q} \cdot \bar{x} &= \bar{\gamma} \cdot \bar{x} \\ x^T Q \bar{x} &= x^T \bar{Q} \bar{x} = x^T (\bar{\gamma} \bar{x}) = \bar{\gamma} x^T \bar{x} \end{aligned}$$

as well as the following chains of equations:

$$Qx = \gamma x$$
$$\bar{x}^T Qx = \bar{x}^T (\gamma x) = \gamma \bar{x}^T x$$
$$x^T Q \bar{x} = x^T Q^T \bar{x} = \bar{x}^T Q x = \gamma \bar{x}^T x = \gamma x^T \bar{x} .$$

Thus $\bar{\gamma}x^T\bar{x}=\gamma x^T\bar{x}$, and since $x\neq 0$ implies $x^T\bar{x}\neq 0,\ \bar{\gamma}=\gamma,$ and so γ is real. \blacksquare

Proposition 5 If Q is a real symmetric matrix, its eigenvectors corresponding to different eigenvalues are orthogonal.

Proof: Suppose

$$Qx_1 = \gamma_1 x_1$$
 and $Qx_2 = \gamma_2 x_2$, $\gamma_1 \neq \gamma_2$.

Then

$$\gamma_1 x_1^T x_2 = (\gamma_1 x_1)^T x_2 = (Q x_1)^T x_2 = x_1^T Q x_2 = x_1^T (\gamma_2 x_2) = \gamma_2 x_1^T x_2.$$

Since $\gamma_1 \neq \gamma_2$, the above equality implies that $x_1^T x_2 = 0$.

Proposition 6 If Q is a symmetric matrix, then Q has n (distinct) eigenvectors that form an orthonormal basis for \Re^n .

Proof: If all of the eigenvalues of Q are distinct, then we are done, as the previous proposition provides the proof. If not, we construct eigenvectors

iteratively, as follows. Let u_1 be a normalized (i.e., re-scaled so that its norm is 1) eigenvector of Q with corresponding eigenvalue γ_1 . Suppose we have k mutually orthogonal normalized eigenvectors u_1, \ldots, u_k , with corresponding eigenvalues $\gamma_1, \ldots, \gamma_k$. We will now show how to construct a new eigenvector u_{k+1} with eigenvalue γ_{k+1} , such that u_{k+1} is orthogonal to each of the vectors u_1, \ldots, u_k .

Let
$$U = [u_1, \dots, u_k] \in \Re^{n \times k}$$
. Then $QU = [\gamma_1 u_1, \dots, \gamma_k u_k]$.

Let $V = [v_{k+1}, \ldots, v_n] \in \Re^{n \times (n-k)}$ be a matrix composed of any n-k mutually orthogonal vectors such that the n vectors $u_1, \ldots, u_k, v_{k+1}, \ldots, v_n$ constitute an orthonormal basis for \Re^n . Then note that

$$U^TV = 0$$

and

$$V^T Q U = V^T [\gamma_1 u_1, \dots, \gamma_k u_k] = 0.$$

Let w be an eigenvector of $V^TQV \in \Re^{(n-k)\times(n-k)}$ for some eigenvalue γ , so that $V^TQVw = \gamma w$, and $u_{k+1} = Vw$ (assume w is normalized so that u_{k+1} has norm 1). We now claim the following two statements are true:

- (a) $U^T u_{k+1} = 0$, so that u_{k+1} is orthogonal to all of the columns of U, and
- (b) u_{k+1} is an eigenvector of Q, and γ is the corresponding eigenvalue of Q.

Note that if (a) and (b) are true, we can keep adding orthogonal vectors until k = n, completing the proof of the proposition.

To prove (a), simply note that $U^T u_{k+1} = U^T V w = 0w = 0$. To prove (b), let $d = Q u_{k+1} - \gamma u_{k+1}$. We need to show that d = 0. Note that $d = QVw - \gamma Vw$, and so $V^T d = V^T QVw - \gamma V^T Vw = V^T QVw - \gamma w = 0$. Therefore, d = Ur for some $r \in \Re^k$, and so

$$r = U^T U \\ r = U^T \\ d = U^T \\ Q \\ V \\ w - \gamma \\ U^T \\ V \\ w = 0 - 0 = 0.$$

Therefore, d = 0, which completes the proof.

Proposition 7 If Q is SPSD, the eigenvalues of Q are nonnegative.

Proof: If γ is an eigenvalue of Q, $Qx = \gamma x$ for some $x \neq 0$. Then $0 \leq x^T Q x = x^T (\gamma x) = \gamma x^T x$, whereby $\gamma \geq 0$.

Proposition 8 If Q is symmetric, then $Q = RDR^T$, where R is an orthonormal matrix, the columns of R are an orthonormal basis of eigenvectors of Q, and D is a diagonal matrix of the corresponding eigenvalues of Q.

Proof: Let $R = [u_1, \ldots, u_n]$, where u_1, \ldots, u_n are the *n* orthonormal eigenvectors of Q, and let

$$D = \begin{pmatrix} \gamma_1 & & 0 \\ & \ddots & \\ 0 & & \gamma_n \end{pmatrix},$$

where $\gamma_1, \ldots, \gamma_n$ are the corresponding eigenvalues. Then

$$(R^T R)_{ij} = u_i^T u_j = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$

so $R^T R = I$, i.e., $R^T = R^{-1}$.

Note that $\gamma_i R^T u_i = \gamma_i e_i$, i = 1, ..., n (here, e_i is the *i*th unit vector). Therefore,

$$R^{T}QR = R^{T}Q[u_{1}, \dots, u_{n}] = R^{T}[\gamma_{1}u_{1}, \dots, \gamma_{n}u_{n}]$$

$$= [\gamma_{1}e_{1}, \dots, \gamma_{n}e_{n}]$$

$$= \begin{pmatrix} \gamma_{1} & 0 \\ & \ddots \\ 0 & & \gamma_{n} \end{pmatrix} = D.$$

Thus $Q = (R^T)^{-1}DR^{-1} = RDR^T$.

Proposition 9 If Q is SPSD, then $Q = M^T M$ for some matrix M.

Proof:
$$Q = RDR^T = RD^{\frac{1}{2}}D^{\frac{1}{2}}R^T = M^TM$$
, where $M = D^{\frac{1}{2}}R^T$.

Proposition 10 If Q is SPSD, then $x^TQx = 0$ implies Qx = 0.

Proof:

$$0 = x^T Q x = x^T M^T M x = (Mx)^T (Mx) = ||Mx||^2 \Rightarrow Mx = 0 \Rightarrow Qx = M^T M x = 0.$$

Proposition 11 Suppose Q is symmetric. Then $Q \succeq 0$ and nonsingular if and only if $Q \succ 0$.

Proof:

- (\Rightarrow) Suppose $x \neq 0$. Then $x^TQx \geq 0$. If $x^TQx = 0$, then Qx = 0, which is a contradiction since Q is nonsingular. Thus $x^TQx > 0$, and so Q is positive definite.
- (⇐) Clearly, if $Q \succ 0$, then $Q \succeq 0$. If Q is singular, then $Qx = 0, x \neq 0$ has a solution, whereby $x^TQx = 0, x \neq 0$, and so Q is not positive definite, which is a contradiction.

4 Additional Properties of SPD Matrices

Proposition 12 If $Q \succ 0$ ($Q \succeq 0$), then any principal submatrix of Q is positive definite (positive semidefinite).

Proof: Follows directly.

Proposition 13 Suppose Q is symmetric. If $Q \succ 0$ and

$$M = \left[\begin{array}{cc} Q & c \\ c^T & b \end{array} \right],$$

then $M \succ 0$ if and only if $b > c^T Q^{-1} c$.

Proof: Suppose $b \le c^T Q^{-1}c$. Let $x = (-c^T Q^{-1}, 1)^T$. Then $x^T M x = c^T Q^{-1}c - 2c^T Q^{-1}c + b \le 0$.

Thus M is not positive definite.

Conversely, suppose $b>c^TQ^{-1}c$. Let x=(y,z). Then $x^TMx=y^TQy+2zc^Ty+bz^2$. If $x\neq 0$ and z=0, then $x^TMx=y^TQy>0$, since $Q\succ 0$. If $z\neq 0$, we can assume without loss of generality that z=1, and so $x^TMx=y^TQy+2c^Ty+b$. The value of y that minimizes this form is $y=-Q^{-1}c$, and at this point, $y^TQy+2c^Ty+b=-c^TQ^{-1}c+b>0$, and so M is positive definite. \blacksquare

The kth leading principal minor of a matrix M is the determinant of the submatrix of M corresponding to the first k indices of columns and rows.

Proposition 14 Suppose Q is a symmetric matrix. Then Q is positive definite if and only if all leading principal minors of Q are positive.

Proof: If $Q \succ 0$, then any leading principal submatrix of Q is a matrix M, where

$$Q = \left[\begin{array}{cc} M & N \\ N^T & P \end{array} \right],$$

and M must be SPD. Therefore $M = RDR^T = RDR^{-1}$ (where R is orthonormal and D is diagonal), and $\det(M) = \det(D) > 0$.

Conversely, suppose all leading principal minors are positive. If n=1, then $Q \succ 0$. If n>1, by induction, suppose that the statement is true for k=n-1. Then for k=n,

$$Q = \left[\begin{array}{cc} M & c \\ c^T & b \end{array} \right] \ ,$$

where $M \in \Re^{(n-1)\times(n-1)}$ and M has all its principal minors positive, so $M \succ 0$. Therefore, $M = T^T T$ for some nonsingular T. Thus

$$Q = \left[\begin{array}{cc} T^T T & c \\ c^T & b \end{array} \right].$$

Let

$$F = \left[\begin{array}{cc} (T^T)^{-1} & 0 \\ -c^T (T^T T)^{-1} & 1 \end{array} \right].$$

Then

$$\begin{split} FQF^T &= \left[\begin{array}{cc} (T^T)^{-1} & 0 \\ -c^T(T^TT)^{-1} & 1 \end{array} \right] \cdot \left[\begin{array}{cc} T^TT & c \\ c^T & b \end{array} \right] \cdot \left[\begin{array}{cc} T^{-1} & -(T^TT)^{-1}c \\ 0 & 1 \end{array} \right] \\ &= \left[\begin{array}{cc} T & (T^T)^{-1}c \\ 0 & b - c^T(T^TT)^{-1}c \end{array} \right] \cdot \left[\begin{array}{cc} T^{-1} & -(T^TT)^{-1}c \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} I & 0 \\ 0 & b - c^T(T^TT)^{-1}c \end{array} \right]. \end{split}$$

Then det $Q = \frac{b-c^T(T^TT)^{-1}c}{\det(F)^2} > 0$ implies $b-c^T(T^TT)^{-1}c > 0$, and so Q > 0 from Proposition 13.

5 Quadratic Forms Exercises

- 1. Suppose that $M \succ 0$. Show that M^{-1} exists and that $M^{-1} \succ 0$.
- 2. Suppose that $M \succeq 0$. Show that there exists a matrix N satisfying $N \succeq 0$ and $N^2 := NN = M$. Such a matrix N is called a "square root" of M and is written as $M^{\frac{1}{2}}$.
- 3. Let ||v|| denote the usual Euclidian norm of a vector, namely $||v|| := \sqrt{v^T v}$. The operator norm of a matrix M is defined as follows:

$$||M|| := \max_{x} \{||Mx|| \mid ||x|| = 1\}$$
.

Prove the following two propositions:

Proposition 1: If M is $n \times n$ and symmetric, then

$$||M|| = \max_{\lambda} \{|\lambda| \mid \lambda \text{ is an eigenvalue of } M\}$$
.

Proposition 2: If M is $m \times n$ with m < n and M has rank m, then

$$||M|| = \sqrt{\lambda_{\max}(MM^T)} ,$$

where $\lambda_{\max}(A)$ denotes the largest eigenvalue of a matrix A.

4. Let ||v|| denote the usual Euclidian norm of a vector, namely $||v|| := \sqrt{v^T v}$. The operator norm of a matrix M is defined as follows:

$$\|M\| := \max_x \{ \|Mx\| \mid \|x\| = 1 \} \ .$$

Prove the following proposition:

Proposition: Suppose that M is a symmetric matrix. Then the following are equivalent:

- (a) h > 0 satisfies $||M^{-1}|| \le \frac{1}{h}$
- (b) h > 0 satisfies $||Mv|| \ge h \cdot ||v||$ for any vector v
- (c) h > 0 satisfies $|\lambda_i(M)| \ge h$ for every eigenvalue $\lambda_i(M)$ of M, i = 1, ..., m.

5. Let $Q \succeq 0$ and let $S := \{x \mid x^T Q x \leq 1\}$. Prove that S is a closed convex set

6. Let $Q \succeq 0$ and let $S := \{x \mid x^TQx \leq 1\}$. Let γ_i be a nonzero eigenvalue of Q and let u^i be a corresponding eigenvector normalized so that $\|u^i\|_2 = 1$. Let $a^i := \frac{u^i}{\sqrt{\gamma_i}}$. Prove that $a^i \in S$ and $-a^i \in S$.

7. Let $Q \succ 0$ and consider the problem:

(P):
$$z^* = \text{maximum}_x \quad c^T x$$
 s.t. $x^T Q x \leq 1$.

Prove that the unique optimal solution of (P) is:

$$x^* = \frac{Q^{-1}c}{\sqrt{c^T Q^{-1}c}}$$

with optimal objective function value

$$z^* = \sqrt{c^T Q^{-1} c} \ .$$

8. Let $Q \succ 0$ and consider the problem:

$$(P): \quad z^* = \text{maximum}_x \quad c^T x$$

s.t.
$$x^T Q x \leq 1$$
.

For what values of c will it be true that the optimal solution of (P) will be equal to c? (Hint: think eigenvectors.)

9. Let $Q \succeq 0$ and let $S := \{x \mid x^TQx \leq 1\}$. Let the eigendecomposition of Q be $Q = RDR^T$ where R is orthonormal and D is diagonal with diagonal entries $\gamma_1, \ldots, \gamma_n$. Prove that $x \in S$ if and only if x = Rv for some vector v satisfying

$$\sum_{i=1}^{n} \gamma_i v_i^2 \le 1 .$$

10. Prove the following:

Diagonal Dominance Theorem: Suppose that M is symmetric and that for each i = 1, ..., n, we have:

$$M_{ii} \ge \sum_{j \ne i} |M_{ij}|$$
.

Then M is positive semidefinite. Furthermore, if the inequalities above are all strict, then M is positive definite.

- 11. A function $f(\cdot): \Re^n \to \Re$ is a *norm* if:
 - (i) $f(x) \ge 0$ for any x, and f(x) = 0 if and only if x = 0
 - (ii) $f(\alpha x) = |\alpha| f(x)$ for any x and any $\alpha \in \Re$, and
 - (iii) $f(x+y) \le f(x) + f(y)$.

Define $f_Q(x) = \sqrt{x^t Q x}$. Prove that $f_Q(x)$ is a norm if and only if Q is positive definite.

12. If Q is positive semi-definite, under what conditions (on Q and c) will $f(x) = \frac{1}{2}x^tQx + c^tx$ attain its minimum over all $x \in \Re^n$?, be unbounded over all $x \in \Re^n$?

- 13. Consider the problem to minimize $f(x) = \frac{1}{2}x^tQx + c^tx$ subject to Ax = b. When will this program have an optimal solution?, when not?
- 14. Prove that if Q is symmetric and all its eigenvalues are nonnegative, then Q is positive semi-definite.
- 15. Let $Q = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$. Note that $\gamma_1 = 1$ and $\gamma_2 = 2$ are the eigenvalues of Q, but that $x^tQx < 0$ for $x = (2, -3)^t$. Why does this not contradict the result of the previous exercise?
- 16. A quadratic form of the type $g(y) = \sum_{j=1}^p y_j^2 + \sum_{j=p+1}^n d_j y_j + d_{n+1}$ is a separable hybrid of a quadratic and linear form, as g(y) is quadratic in the first p components of y and linear (and separable) in the remaining n-p components. Show that if $f(x) = \frac{1}{2}x^tQx + c^tx$ where Q is positive semi-definite, then there is an invertible linear transformation y = T(x) = Fx + g such that f(x) = g(y) and g(y) is a separable hybrid, i.e., there is an index p, a nonsingular matrix F, a vector g and constants d_p, \ldots, d_{n+1} such that

$$g(y) = \sum_{j=1}^{p} (Fx + g)_j^2 + \sum_{j=p+1}^{n} d_j (Fx + g)_j + d_{n+1} = f(x).$$

- 17. An $n \times n$ matrix P is called a *projection* matrix if $P^T = P$ and PP = P. Prove that if P is a projection matrix, then
 - **a.** I P is a projection matrix.
 - **b.** P is positive semidefinite.
 - **c.** ||Px|| < ||x|| for any x, where || || is the Euclidian norm.
- 18. Let us denote the largest eigenvalue of a symmetric matrix M by " $\lambda_{\max}(M)$." Consider the program

$$(\mathbf{Q}): \quad z^* = \mathbf{maximum}_x \quad x^T M x$$

$$\text{s.t.} \qquad \|x\| = 1 \ ,$$

where M is a symmetric matrix. Prove that $z^* = \lambda_{\max}(M)$.

19. Let us denote the smallest eigenvalue of a symmetric matrix M by " $\lambda_{\min}(M)$." Consider the program

$$(P): \quad z_* = \text{minimum}_x \quad x^T M x$$

s.t.
$$||x|| = 1$$
,

where M is a symmetric matrix. Prove that $z_* = \lambda_{\min}(M)$.

20. Consider the matrix

$$M = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} ,$$

where A,B are symmetric matrices and A is nonsingular. Prove that M is positive semi-definite if and only if $C-B^TA^{-1}B$ is positive semi-definite.