

1

ECOR1043: Circuits

Resistive Circuits

Ohm's Law and Kirchhoff's Laws

• Resistance R

- The resistance R of an element denotes its ability to resist the flow of electric current
- Resistance is measured in ohms Ω
- An element with this property is called a *resistor*
- Resistor could also be variable

Source: All about electronics

Ohm's Law and Kirchhoff's Laws

4

Ohm's Law

· Ohm's law

 The voltage across a resistance is directly proportional to the current flowing through it

$$v(t) = i(t)R$$
$$V = IR$$

Ohm's Law and Kirchhoff's Laws

5

• Special Cases of Resistance

• What about the current?

Ohm's Law and Kirchhoff's Laws

6

6

Ohm's Law

• Typical problems and how to solve them using Ohm's Law

$$v = iR$$

One equation and three variables. Given ANY two we solve for the third.

• Ex. 1: Given current and resistance, find the voltage across the resistor

Hint: Use PSC to determine voltage polarity

$$v = iR$$

$$v = iR = (2 A)(5 \Omega) = 10V$$

 $\begin{array}{c}
2A \\
5\Omega \\
\downarrow v
\end{array}$

Ohm's Law and Kirchhoff's Laws

7

• Ex. 2: Given the current and voltage, find the resistance of the resistor

20 V R

• Ex. 3: Given the voltage and resistance, find the current through the resistor

 $R = \frac{v}{i} = \frac{20 V}{4 A} = 5 \Omega$

$$i = \frac{v}{R} = \frac{12 V}{3 \Omega} = 4 A$$

Ohm's Law and Kirchhoff's Laws

8

Ohm's Law

- Resistors and electric power
 - Combining Ohm's law and the expressions for power we can derive several useful expressions

$$V = IR$$
 \longrightarrow A

$$P = VI$$
 \longrightarrow B

- Therefore, substituting V from eq. A into eq. B, we get

$$P = I^2 R$$

- And substituting I from eq. A into eq. B, we get

$$P = \frac{V^2}{R}$$

- So, we have three equations to compute power

$$P = VI$$

 $P = I^2 R$

 $P = \frac{V^2}{R}$

Ohm's Law and Kirchhoff's Laws

Q

• Ex. 4: Determine the current and the power associated with the resistor

P=? P=vi

P = (12 V)(6 mA) = 72 mW

Can you we use any other formula to compute P?

$$P = I^2 R$$

$$P = \frac{V^2}{R}$$

Ohm's Law and Kirchhoff's Laws

10

 $2\,\mathrm{k}\Omega$

 $12\,\mathrm{V}$

10

Ohm's Law

• Ex. 5: Find the resistance of the lamp and the current through the lamp. V = 12V P = 60W

R=? $P = VI \qquad P = I^2R \qquad P = V^2/R$ $V^2 \qquad V^2 \qquad (12 V)^2$

 $P = \frac{V^2}{R} \Rightarrow R = \frac{V^2}{P} = \frac{(12 \ V)^2}{60 \ W} = 2.4 \ \Omega$

I=? V = 12V P = 60W $R = 2.4\Omega$ V = IR P = VI $P = I^2R$

V = IR

 $I = \frac{V}{R} = \frac{12 V}{2.4 \Omega} = 5 A$

Equivalently, we could have used P=VI or $P=I^2R$ to find I

Ohm's Law and Kirchhoff's Laws

11

Circuit Concepts and Terms

- Branch b
 - A branch represents a single element such as a voltage source or a resistor. (e.g., component R4)
- Node *n*
 - A node is the point of connection between two or more branches (e.g., big node 1)

- A closed path that never goes twice over a node (e.g., the blue line)
- The red path is not a loop
- A loop is said to be *independent* if it contains at least one branch which is not a
 part of any other independent loop

$$l = b - n + 1$$

Where l is the maximum number of independent loops

Ohm's Law and Kirchhoff's Laws

12

12

Circuit Concepts and Terms

• Ex. 6: Determine number of branches (b), number of nodes (n) and maximum number of independent loops (l) for the following circuit:

$$l = b - n + 1$$

Branches?

b = 5

Nodes

n = 3

$$l = b - n + 1$$

= 5-3+1=3

Ohm's Law and Kirchhoff's Laws

13

Kirchhoff's Current Law (KCL)

• The algebraic sum of the currents entering (or leaving) any node is zero

$$\sum_{n=1}^{N} i_n = 0$$

- The sum of the currents entering a node is equal to the sum of the currents leaving the node
- Kirchhoff's current law is based on the principle of conservation of charge
- We assume signs of the currents and stay consistent

Ohm's Law and Kirchhoff's Laws

14

14

Kirchhoff's Current Law (KCL)

• Ex 7: Find the missing current i_x

Algebraic sum of currents into Node is zero
Assuming the currents exiting the node are +ve

$$i_x + 4A - (-3A) - 2A = 0$$

$$i_x + 4A + 3A - 2A = 0$$

$$i_x = -5A$$

Ohm's Law and Kirchhoff's Laws

i = -75mA

75 + i = 0

Ohm's Law and Kirchhoff's Laws

16

Kirchhoff's Voltage Law (KVL)

The algebraic sum of the voltages around any loop is zero

- To apply KVL, we must traverse any loop in the circuit and sum to zero the increases and decreases in energy level
- As we move around a loop, we encounter the plus sign first for a decrease in energy level and a negative sign first for an increase in energy level
- Kirchhoff's voltage law is based on the conservation of energy

Ohm's Law and Kirchhoff's Laws

Kirchhoff's Voltage Law (KVL)

• Ex. 9: Given V_{R1} and V_{R2} , find V_{R3} using KVL and $P_{2k\Omega}$

$$V_{R1}=18\,V$$

$$V_{R2}=12\,V$$

For V_{R3}

$$V_{R1} - 5 V + V_{R2} - 15 V + V_{R3} - 30 V = 0$$

$$18 - 5 V + 12 - 15 V + V_{R3} - 30 V = 0$$

$$V_{R3} = 20 V$$

For power $P_{2k\Omega}$

$$P_{2k\Omega} = \frac{V_{R2}^2}{R_2} = \frac{(12)^2}{2k} = 72 \text{ mW}$$

18

0

18

Kirchhoff's Voltage Law (KVL)

• Ex. 10: Find the number of branches, nodes, maximum independent loops, and write the KVL equations for all loops.

b?

b=7

1?

l = b - n + 1 l = 7 - 6 + 1 = 2

Hence there are only 2 independent

 $V_{R1} + V_{R4} - 16V - 24V = 0$

 $V_{R2} + V_{R3} + 8V + 16V - V_{R4} = 0$

 $V_{R1} + V_{R2} + V_{R3} + 8V - 24V = 0$

The third equation is the sum of the Other two!!

Ohm's Law and Kirchhoff's Laws

19

Practice Problems

Ohm's Law and Kirchhoff's Laws

20

20

Ohm's Law

• Prob. 1: Determine i(t)

OHM'S LAW v(t) = Ri(t)

 $-4[V] = (2\Omega)i(t) \Rightarrow i(t) = -2[A]$

This problem could be given like this

OHM'S LAW v(t) = -Ri(t)

Ohm's Law and Kirchhoff's Laws

2

- Prob. 2
 - Determine current and voltage

- Ans: v = 6V, i = 0.6mA

Ohm's Law and Kirchhoff's Laws

22

22

Ohm's Law

- Prob. 3
 - Determine R and v_s

- Ans: R=5k Ω , v_s =20V

Ohm's Law and Kirchhoff's Laws

Kirchhoff's Current Law (KCL)

• Prob. 4: Find the missing current i_x

Sum of currents into Node is zero

Assuming the currents entering the node are +ve

$$5 A + i_x - 3 A = 0$$

$$i_x = -2 A$$

Do the same calculation, assuming current leaving the node are +ve, what happens?

Ohm's Law and Kirchhoff's Laws

2

24

Kirchhoff's Current Law (KCL)

- Prob. 5: Write KCL for node 3
 - Assuming currents entering the node are +

Ans:
$$i_2(t) + i_5(t) - i_7(t) - i_4(t) = 0$$

Ohm's Law and Kirchhoff's Laws

Kirchhoff's Current Law (KCL)

• Prob. 6: Find the missing currents, I_1 , I_4 , I_5 and I_6

Assuming the currents **exiting** the nodes are +ve, Write KCL for each node

$$(1) - I_1 + 60 \, mA + 20 mA = 0$$

$$(2) I_1 - I_4 + I_6 = 0$$

$$(3) - 60 \, mA + I_4 - I_5 + 40 \, mA = 0$$

$$(4) - 20 mA + I_5 - 30 mA = 0$$

Ohm's Law and Kirchhoff's Laws

26

26

Kirchhoff's Current Law (KCL)

• Prob. 6 (cont.): Find the missing currents, I_1 , I_4 , I_5 and I_6

For I_1 (1) $-I_1 + 60 \, mA + 20 mA = 0$

For I_5 (4) $-20 \, mA + I_5 - 30 \, mA = 0$

For I_4 (3) $-60 \, mA + I_4 - I_5 + 40 \, mA = 0$

For I_6 (2) $I_1 - I_4 + I_6 = 0$

I₁ 60 mA 20 mA

I₄ 3 I₅ 4

I₆ 40 mA 30 mA

 $I_1 = 80 \ mA$

 $I_5 = 50 \, mA$

 $I_4 = 70 \ mA$

Ohm's Law and Kirchhoff's Laws

 $I_6 = -10 \ mA$

27

28

Kirchhoff's Voltage Law (KVL)

• Prob. 11: Write the KVL equation

$$V_{R1} + V_{R2} + V_{R3} - V_S = 0$$

Ohm's Law and Kirchhoff's Laws

29

Kirchhoff's Voltage Law (KVL)

• Prob. 12: Given V_2 , find V_x , and $P_{2k\Omega}$

We need to find a closed path where only one voltage is unknown

To find V_x $V_2 = 4 V$

$$V_x + V_3 - V_1 + V_2 = 0$$

$$V_x + 4V - 12V + 4V = 0$$

$$V_x = 4 V$$

Ohm's Law and Kirchhoff's Laws

30

Kirchhoff's Voltage Law (KVL)

• Prob. 12 (cont.): Given V_2 , find V_x , and $P_{2k\Omega}$

To find $P_{2k\Omega}$ $V_2 = 4 V$

$$P_{2k\Omega} = \frac{V_2^2}{R_2}$$

$$P_{2k\Omega} = \frac{(4 \text{ V})^2}{2 k\Omega}$$

$$P_{2k\Omega} = 8 \, mW$$

Ohm's Law and Kirchhoff's Laws

White Board	
Ohm's Law and Kirchhoff's Laws	32