What is claimed is:

1. A tetrahedral compound having formula (I),

wherein TS is a tetrahedral junction unit; and R1, R2, R3 and R4 are each organic, inorganic or hybrid optoelectronic arms.

- 2. The tetrahedral compound of claim 1 wherein each optoelectronic arm is a semiconducting monomer, oligomer, polymer or copolymer.
- 3. The tetrahedral compound of claim 1, each optoelectronic arm comprising a stilbenoid chromophore.
- 4. The tetrahedral compound of claim 1 wherein R1, R2, R3 and R4 are optoelectronic arms corresponding to general formula II:

wherein R is hydrogen; R' is alkoxy alkyl, aryl, aryloxy, cyano, halide or amino; and n is an integer from 1 to 100.

5. The tetrahedral compound of claim 4 selected from the group consisting of tetrakis(4-(3',5'-di-*tert*-butylstyryl)stilbenyl)methane, tetrakis(4-(4'-(4"-tetrahedral)styryl)styryl)stilbenyl)methane, tetrakis(4-(4'-(3",5"-dioctyloxystyryl)styryl)stilbenyl)methane, tetrakis((4-(2'5'-dioctyloxystyryl)styryl)stilbenyl)methane, tetrakis((4-(2'5'-dioctyloxystyryl)styryl)stilbenyl)methane, tetrakis((4-(2'5'-dioctyloxystyryl)styryl

4'styryl)styryl)stilbenylmethane and tetrakis((4-(2',5'-dioctyloxy-4'-(4''-(2''',5'''-dioctyloxy-4''' styryl)styryl)styryl)styryl)stilbenyl)methane.

- 6. The tetrahedral compound of claim 1 wherein TS is selected from the group consisting of tetraphenylmethane, tetraphenylsilane, an sp³ hybridized carbon or silicon atom, tetraphenyladamantane, adamantane and cubane.
- 7. The tetrahedral compound of claim 6 selected from the group consisting of tetrastilbenyladamantane, tetrastilbenylsilane, tetrakis(4-tert-butylstyrylstilbenyl)adamantane and tetrakis(4-tert-butylstyrylstilbenyl)silane.
- 8. The tetrahedral compound of claim 1 wherein R1, R2, R3 and R4 are optoelectronic arms corresponding to general formula III:

Ш

wherein R is hydrogen; R' is alkoxy alkyl, aryl, aryloxy, cyano, halide or amino; and n is an integer from 1 to 100.

- 9. The tetrahedral compound of claim 8 selected from the group consisting of tetrakis(4,4'-(2,2-diphenyl-vinyl)-1,1'-biphenyl)-methane and tetrakis(4,4'-(3,3-diphenylacrylonitrile)-1,1'-biphenyl)methane.
- 10. The tetrahedral compound of claim 1 wherein R1, R2, R3, and R4 are each independently optoelectronic arms corresponding to formula (II) through formula (LXVIII):

- (a) providing a tetrahedral junction molecule having four reactive functionalities;
- (b) providing one or more optoelectronic chromophore units, each unit having a single complementary functionality capable of reacting with a reactive functionality; and
- (c) reacting one or more the reactive functionalities with one or more complementary functionalities, thereby linking one or more optoelectronic chromophore units to the tetrahedral junction site.
- 16. The method of claim 15 wherein the tetrahedral junction molecule is halogenated tetraphenylmethane, tetraphenylsilane, or tetraphenyladamantane.
- 17. The method of claim 16 wherein the tetrahedral junction group is tetrakis(4-bromophenyl)methane, tetrakis(4-iodophenyl)methane, tetrakis(4-iodophenyl)adamantane, or tetrakis(4-bromophenyl)silane
- 18. The method of claim 15 wherein the optoelectronic chromophore units are conjugated organic compounds selected from the group consisting of styrene, stilbenyl derivatives, and triphenylethylene derivatives.
- 19. The method of claim 15 wherein the reactive functionalities are selected from the group consisting of aryl halides, olefins, acetylenes, boronic esters, and carbonyls.
- 20. The method of claim 15 wherein the complementary functionalities are selected from the group consisting of aryl halides, olefins, acetylenes, boronic esters, and carbonyls.
- 21. The method of claim 15 wherein the optoelectronic chromophore unit is selected from the group consisting of styrene 4,4'-*tert*-butylvinylstilbene, 1-(4'-tert-butylstyryl)-4-(4'-vinylstyryl)benzene, 4-(3',5'-di-*tert*-butylstyryl)styrene, 1-(3'5'-di-*tert*-butylstyryl)-4-(4'-vinylstyryl)benzene, 2,5-dioctyloxy-1-styryl-4-(4'-vinylstyryl)benzene,

- A thin-film electronic device comprising the tetrahedral compound of claim 1.
 - 23. A thin film electronic device comprising the composition of claim 14.
- 24. The device of Claim 22 comprising at least two layers selected from the group consisting of an electroluminescent layer, an electron transport layer, and a hole transport layer, wherein at least one of said electroluminescent layer, said electron transport layer, or said hole transport layer comprises the tetrahedral compound.