Bolzano-Weierstrass

Professor David Barrett

Transcribed by Thomas Cohn

9/12/18

Thm: (Bolzano-Weierstrass) (X, d) compact $\leftrightarrow X$ sequentially compact – i.e. every sequence admits a convergent subsequence.

Proof: \Rightarrow Suppose to the contrary, we have (v_j) in X with no convergent subsequence. Then for every $y \in X$, $\exists U_y$ open with $y \in U_y$ such that U_y only contains finitely many v_j . So $X = \bigcup_{y \in X} U_y = \bigcup_{i < k} U_{y_i}$. But that only contains finitely many v_j . Oops!

 \Leftarrow Lemma: If X is a sequentially compact metric space, then $\forall \epsilon > 0$ we can cover X by finitely many ϵ -balls. We then call X "totally bounded".

Proof: suppose not. Pick $v_1 \in X$

$$v_2 \notin B_{\epsilon}(v_1)$$

 \vdots
 $v_n \notin B_{\epsilon}(v_{n-1}) \cup \cdots \cup B_{\epsilon}(v_1)$. Oops. \square

Suppose $X = \bigcup_{\alpha \in A} X_{\alpha}$ with each X_{α} open. Call $S \subset X$ "good" if S contained in a finite union of X_{α} . Otherwise, call S "bad". Note that the finite union of "good" sets is "good". Our goal is to show that X is good. Suppose, to the contrary, that X is bad. Lemma + note $\to \forall m \in \mathbb{N}$, $\exists v_m \in X \text{ s.t. } B_{1/m}(v_m)$ is bdd.

Choose $v_{m_k} \to v \in X$ by hypothesis. Choose α s.t. $v \in X_{\alpha}$. Then $\exists \epsilon > 0$ s.t. $B_{\epsilon}(v) \subset X_{\alpha}$. Pick $k \in \mathbb{N}$ s.t. $m_k > 2/\epsilon$ and $d(v, v_{m_k}) < \epsilon/2$. But then $B_{1/m_k}(v_{m_k})$ is good. Oops! \square

This proves the Bolzano-Weierstrass Theorem. \square

It is also true that (X, d) is compact if and only if (X, d) is totally bounded and complete. We will receive a handout on this.

Let $f: X \to Y$ with X, Y metric spaces with metrics d_X and d_Y , respectively.

Defn: We say f is Lipschitz if $\exists C \in \mathbb{R}_{>0}$ s.t. $d_Y(f(x_1), f(x_2)) \leq Cd_X(x_1, x_2)$, implying continuity.

Ex: The inf of Lipschitz constants of f is a Lipschitz constant of f.

f is uniformly continuous means we can choose δ independently of x_0 .

Prop: f is Lipschitz $\rightarrow f$ is uniformly continuous.

Defn: f is a contraction if f is a Lipschitz mapping with C < 1.

Defn: A bi-Lipschitz map $f: X \to Y$ is a bijection s.t. f, f^{-1} are Lipschitz.

Ex: $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x + \frac{\sin x}{37}$ is bi-Lipschitz.

Defn: f is said to be an isometry iff $d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$.

Defn: Suppose X is a vector space (over \mathbb{R} or \mathbb{C}) and is also a metric space with metric d. d is said to be $\underline{\text{translation invariant}} \leftrightarrow d(x_1, x_2) = d(x_1 + y, x_2 + y)$.

Ex: Show that d is translation-invariant iff $d(x_1, x_2) = d(0, x_2 - x_1)$.

Defn: d is homogenous $\leftrightarrow d(tx_1, tx_2) = |t| d(x_1, x_2)$.

Defn: If d is both translation-invariant and homogenous, then d defines a <u>norm</u>.