

Hausdorff Distance

- A means of determining the resemblance of one point set to another
- Examines the fraction of points in one set that lie near points in the other set

$$H\left(A,B\right) = \max\left\{h\left(A,B\right), h\left(B,A\right)\right\}$$
$$h\left(A,B\right) = \max_{a \in A} \left\{\min_{b \in B} \left\{d\left(a,b\right)\right\}\right\}$$

Given two sets of points A and B, find h(A,B)

 b_3

Example

Compute the distance between a₁ and each b_i

Keep the shortest

Do the same for a₂

Find the largest of these two distances

This is h(A,B)

This is h(B,A)

Example

H(A,B) = max(h(A,B),h(B,A))

This is H(A,B)

