

Internetul Lucrurilor

Introducere Generalități IoT

Profesor – lect. univ. Andrei Bragarenco 2003 - prezent

Cursuri Universitare

- Programare in Electronică
- Microprocesoare şi Interfeţe
- Sisteme Electronice Incorporate
- Embedded Systems (en)
- Internet of Things (pbl)
- Internetul Lucrurilor
- Limbaje de Descriere Hardware
- Sisteme Electronice Programabile
- Dezvoltare personala si management proiecte Embedded
- Master: Sisteme Incorporate
- Master: Design/Verificare sisteme digitale

Industrie

- Asic ART (ro) Digital Design
- SiliconService(ro) Digital Design & Verifiction
- Micrologic Design Automation EDA Tool Visual DRC
- AROBS Software
 - Hybrid Electrical Vehicle
 - ADAS

Voluntariat - Clubul Ingineresc Micro Lab

- Dezvoltare comunitate de ingineri
 - Engineering Talks
 - Practice session
- Suport Educational Extracuricular
 - Autonomous Driving Bootcamp
 - Robot Factory Bootcamp
 - PCB Design Bootcamp
 - Internet of Things Bootcamp
- Dezvoltare proiecte
 - Competitii
 - Licenta
 - Proiecte cu impact

Studii

- Scoală: Căușeni, Școala Medie Ruso-Româna nr.4
- · Licență: UTM, FCIM, Microelectronica

Master

- UTM, FCIM Sisteme Informaționale Software și Management
- UT "Gh. Asachi" lasi Convertoare Electronice de Putere / Inginerie Biomedicala

Doctorat

- UTM, FCIM Electronica Solidului, Microelectronica Nanoelectronica.
- UTM, FCIM Modelare, metode matematice și inginerie Software, Sisteme electronice distribuite cu o evolutie atonoma a configurației

Internetul Lucrurilor- IoT

Internet of Things – IoT (Internetul Lucrurilor) sau Internet of Everything definește o rețea de obiecte ce încorporează circuite electronice care permit comunicarea prin infrastructura existentă (rețeaua INTERNET) wireless sau cablu, în scopul monitorizării sau controlului de la distanță. https://www.agir.ro/buletine/2673.pdf

Evoluția rețelei Internet

NSFNET T3 Network 1992

Aplicații monitorizare Mediu

Aplicații Agricultura Inteligenta

Aplicații Casa Inteligenta – Smart Home

Aplicații Smart City

SMART CITY USE CASES

SURVEILLANCE

SIGNAGE

VEHICLE CHARGING

INVERTERS

MANAGEMENT

SENSORS

CONTROLS

Aplicații Automotive

Aplicații Automotive - IoV

Industrial Internet of Things - IIoT

Industrial Internet of Things - IIoT

Connected Intelligent Factories Offer New Value Chain Models

IoT – în calitate de system

Internetul Lucrurilor reprezinta o retea de dispozitive, sisteme incorporate care participa împreună la rezolvarea unei probleme.

IoT Device

Un Sistem Incorporat reprezinta un dispozitiv sau echipament realizat prin inginerie din diferite domenii cu ar fi *Inginerie Mecanica* (ME), *Inginerie Electrica* (EE), si *Inginerie Software* (SWE).

IoT Device - Interacțiunea cu Utilizatorul

Interfața cu utilizatorul reprezintă totalitatea componentelor ce facilitează interacțiunea cu utilizatorul sistemului. ca regulă reprezintă o colecție de senzori și dispozitive de acționare specializați. În acest modul se vor analiza interfețe de la cele mai simple pana la cele complexe, urmând a elucida modul de funcționare a interfețelor din categoriile cum ar fi :

- Interfețe binare,
- Interfețe tablouri uni si bi-dimensionale,
- Interfața standard de intrare/ieșire STDIO
- Interfețe complexe de interacțiune.

Sisteme de Operare

Sisteme de operare reprezintă mecanismul de gestionare a resurselor unui sistem de calcul cum ar fi memoria, periferiile și timpul de procesare. În acest modul vom analiza modalitatea de operare de diferite tipuri cum ar fi:

- operarea în bucla Infinită,
- sistemelor secvenţiale
- sistemelor de operare preemptive.
- sisteme de operare în timp real FreeRTOS.

Senzori

Senzorii reprezinta totalitatea de componente realizate prin inginerie software (SW), inginerie electrică (EE) și inginerie mecanica (ME) care participa la transformarea unui semnal din mediul exterior, reprezentat de o mărime fizică (PHY) într-un semnal intern al sistemului.

- clasificare a senzorilor,
- *achiziție* a semnalelor
- condiționare semnalului.
- prelucrare semnalului.

Diagnoze

Diagnoza reprezinta mecanismul de monitorizare a funcționalităților sistemului și generare de reacții la anumite situații.

- Detectare Simptome
- Calificare diagnoze
- Gestionare Erori

Actuatori

Actuatorii reprezinta totalitatea de componente realizate prin inginerie software (SW), inginerie electrică (EE) și inginerie mecanica (ME) care participa la transformarea unui semnal interiorul sistemului într-o acțiune asuprea mediul exterior, reprezentat de o mărime fizică (PHY).

- Clasificare Actuatori
- Metode de Actionare
- Conditionare semnal de actiune si control
- Convertoare de putere

Protecții

Protecțiile reprezintă mecanismele de limitare a funcționalităților in dependent de anumite simptome pentru a proteja sistemul sau mediul

- Informare
- Limitare
- Derating
- Blocare

Control

Control reprezinta o abstracție ce definește funcționalitatea sistemului pentru a rezolva o problemă specifică sistemului. În acest modul se vor analiza diverse modalități de control

- Control in buclă deschisă
- Control On/Off
- Control PID
- Control cu Automate Finite
- Control cu Interpretare Program
- Control Fuzzy

Comunicare

Comunicarea reprezintă modalitatea de schimb de informație intre interlocutori.

- Noţiune de comunicare
- Rețele de comunicare
- Protocoale fizice
- Protocoale logice
- comunicare intre componente
- comunicare intre dispozitive
- Comunicații Internet & Cloud

Securitate Cibernetica

Securitatea cibernetica reprezintă totalitatea mecanismelor de protecție a datelor din sistem.

- Securitate acces
- Securitate stocare
- Securitate comunicare
- Securitate operare

Lucrări de laborator

- Lab 1. Interacţiunea cu utilizatorul
- Lab 2. Sisteme de Operare
- Lab 3. Senszori
- Lab 4. Actuatori
- Lab 5. Control
- Lab 6. Automate Finite
- Lab 7. Comunicare

Formatul Raportului

- Foaia de Titlu conform standardelor de la universitate
- Enunțul problemei prezentat de profesor
- Obiective evidențierea a trei obiective principale ale lucrării
- 1. Introducere descrierea domeniului relelevant la problema rezolvata, probleme actuale studiu de caz. Cu referinte catre sursele studiate
- Materiale si metode descrierea metodologiei si a materialelor utilizate in realizarea proiectului
- Rezultate descrierea clara si concisa a rezultatelor obtinute, scheme si schite cheie ale HW-uiui cu descrieri, Scheme bloc structurale si comportamentale cheie cu descrieri, secvente de cod importante/cheie comentate si explicate (a nu se incude intreg listingul programului).
- 4. Discutii relevante la rezultatele obtinute, comparatii cu alte solutii. A nu se copia direct rezultatele
- 5. Concluzii sumarizare a concluziilor in urma realizarii lucrarii, nu copie a provlemei
- Referinte bibliografice mentionate in lucrare
- Anexe scheme electrice totale, listingul cod sursa

Referinte

- Moodle:
 - https://else.fcim.utm.md/course/view.php?id=343
- EDX:
 - Introduction to the Internet of Things (IoT)
 https://www.edx.org/course/introduction-to-the-internet-of-things-iot
 - A Subjective Introduction to the IoT
 https://courses.edx.org/courses/course-v1:ITMOx+IOTOPEN1x+3T2019/course/