

AGENDA

Mission: Our mission is to lower electricity prices and improve reliability of the electrical grid by giving operators real time forecasts to more accurately predict demands of their customers.

Goal: Build a model that can accurately predict electric load for New York City using real time weather conditions with up to 98% accuracy in 5 minute intervals for a length of 90 minutes.

01 INTRODUCTION Problem Statement

02 DATA SETSData Description

03Data Insights

EDA

04 MODEL RESULTSModel Performance

05 OUR PRODUCT Product Demonstration

06 CONCLUSIONSNext Steps

TEXAS ELECTRICITY CRISIS

THE TV NEWS

LIVE

Severe winter storm leads to disruptive electricity generation failure in Texas. People are calling it the Great Texas Freeze.

FEB 2021

In February 2021, Texas suffered a major power crisis when three severe winter storms hit the United States, triggering the worst energy infrastructure failure in Texas state history.

45M

57

\$195B

homes loss power

deaths

property damages

ERCOT's demand forecasts for severe winter storms were too low.

01. Why Should We Care?

Impact of Better Forecasts

Electric Load Forecasting

Predicting electrical power required to meet customer demand

1. Reduce Liability

 Reduce major blackouts, saving billions in property damages

2. Decrease Price of Electricity

 Prevent waste and optimize for more cost saving for consumers

3. Increase Reliability

 Better planned capacity to ensure consumers are supplied with required energy

Target Audience

Independent System Operators

Transmission Owners

Existing solutions could be better

- ERCOT's underestimation of load for the Great Texas Freeze resulted in 57 deaths and billions in property damage
- NY ISO chains linear regression models together, which isn't the best model for this type of data

01. Project Overview

Our Goal

Build a model that can accurately predict electric load for New York City with up to 98% accuracy in 5 minute intervals for a length of 90 minutes

 Leverage historic electric load behavior and real time weather & solar data

How Are We Different

Existing programs primarily focus on forecasting hourly loads days in advance

Our focus is:

- 1. More Real-Time Predictions
 Give operators a better account for more sensitive real-time weather events, like sudden drops in wind or a large system of clouds rolling in
- Higher AccuracyAchieve a 2% error rate
- 3. Packaged into an Easy-to-Use Application

02. Dataset Description

Electric Load Weather Solar

Description

New York electric load [in MWh] for 11 zones

Source: New York ISO

Data Granularity: 5 min

Data Size:

13 columns x 631K rows

Additional Notes:

Key fields to keep is the time stamp and electric load values for zone = N.Y.C. Training on data from

2017-2021 and testing on 2022

Description

NYC weather data collected from JFK weather station

Source: National Oceanic & Atmospheric Administration (NOAA CDO)

Data Granularity: Hourly

Data Size:

125 columns x 80K rows

Additional Notes:

Used pandas interpolate function to get 5 minute increments for this data

Description

Provides forecast, live and historical solar irradiance data (GHI, DNI, Diffuse)

Source: Solcast

Data Granularity: 5 min

Data Size:

21 columns x 631K rows

Additional Notes

While Solcast also contains temperature data, its values are not as accurate for NY as the weather dataset

^{*} Full data join found in the Appendix

03. Key Data Insights

Key Insights

- Heavy seasonality with peak consumption during summers (July - Sept) and slightly rises again during winters (Dec - Mar)
 - Load lowest during spring & fall
- 2. Electric load is higher during weekdays
 - Daily load spikes during morning pick-up (6:30AM), hitting its peak at 6PM and begins declining as consumers sleep
- 3. **Extreme temperature** (heat waves or cold snaps) encourages individuals to use more load to power A/C or heating
- 4. Days with **high solar irradiance** corresponds with less load
 - Consumers can use behind-the-meter solar devices to offset electric load consumption

New York State Electric Load [MWh] - 2019 to 2021

New York State Electric Load [MWh] - Average Weekly Load in 2021

04. Modelling Framework | Overview

Prediction Aim: Forecasting electric load for the next 90 mins in 5 min intervals

Model Formation: A time series problem based on previous available loads & other indicators

Train Test Split: Training on 2017 - 2021 and testing on 2022

Goal: Achieve 98% accuracy or 2% error rate

04. Modelling Framework | Evaluation Metrics

<u>Performance Measurement Plan</u>

- Relative Root Mean Square Error (RRMSE)
- Forecasting Error Distribution
- Max Error = Largest error [MWh] between forecasted and actual value
 - NYISO procures 2620 MWs of Reserves for NYS (1000 MWs for NYC) each day ¹
 - Reserves are MWs NYISO buys on top of the forecasted load to cover contingencies,
 like generator tripping offline or lines unexpectedly coming out of service
 - Using reserves to accommodate forecasting error is something NYISO tries to avoid

<u>Additional Considerations</u>

- While we want our forecasts to be as accurate as possible, ramifications for under-predicting is worse than over-forecasting
 - Too much load = more expensive electric load
 - Too little load = BLACKOUTS

04. Modelling Approach | Feature Engineering

04. Model Fitting & Hyperparameter Tuning | LSTM

Illustration of Fold Splitting During Cross Validation

Best LSTM model: Recurrent size of 500 with recurrent dropout 0.1 and drop out 0.05

Different LSTM Model Architecture

Experimenting w/ Different Iterations

^{*} More on Cross Validation found in Appendix

04. Error Analysis

Average Error Plot of a Week | LSTM

Average Error Plot of a Day | LSTM

Create additional feature indicators for large error timeframes

^{*} Addition error plots found in the Appendix

04. Model Evaluation | Scorecard

Benchmark	LSTM	XGBRegressor	Neural Prophet	TFT
2.87 RRMSE	RRMSE 48% improvement over baseline	1.87 RRMSE	1.68 RRMSE	3.61 RRMSE
Features Used: Previous Load	Features Used: Previous Load Holiday/Weekend Temperature & Solar Forecasted Weather Large Error Indicator	Features Used: Previous Load Temperature & Solar Forecasted Weather	Features Used: Previous Load Holiday/ Weekend Temperature & Solar Forecast Weather Large Error Indicator	Features Used: Previous Load Temperature & Solar
argest Overestimation: 00 MW argest Underestimation: 758 MW	Time to Train: 30 Min Normally distributed error centered at 2 +/- 97 MWs Largest Overestimation: 801 MW Largest Underestimation: -760 (Lower than reserve)	Time to Train: 2 Hour Normally distributed error centered at 12 +/- 108 MW	Time to Train: 20 Min Normally distributed error	Time to Train: 2.5+ Hour

05. Our Product

We used FastAPI & Streamlit to deploy our model and create an easy-to-use application.

Home Page

Get real-time electric load forecasts for NYC

Data Page

Explore the data used to build our model

About Us Page

Learn more about the importance load forecasting

06. Conclusions & Next Steps

Highlights

- LSTM was our best performing model with the lowest RRMSE of 1.4%.
- While our model struggled with morning pickup and evening drop-off predictions, introducing a flag for those time frames improved its accuracy.
- Our model only used half of the reserved amount to accommodate underestimations for 4 days in an entire year.

Given More Time & Resources

- Get access to more accurate forecasted weather data
 - Challenging to find, merge and clean these datasets
 - Would consider paying for a private dataset that has more accurate information
- Expand to all of New York State

Next Steps

Plan on deploying this model in NYISO's control center

Questions?

Our mission is to lower electricity prices and improve reliability of the electrical grid by giving operators real time forecasts to more accurately predict demands of their customers.

Appendix

01. The Team and Acknowledgements

Emily Fernandes Senior Grid Operations Engineer

Shuhan Yu Financial Analyst

Sean FurutaData Scientist

Melinda Leung Senior Data Analyst

Dunny Semwayo Project Manager

Our team would like to thank the support from our professors (Puya Vahabi & Alberto Todeschini) in guiding the project. We also acknowledge the contributions to the W231 team that reviewed our project through the lens of several privacy frameworks and provided a model card on managing data privacy.

02. Data Join

44 columns x 631,008 rows

02. Interpolation Analysis

Because the weather dataset lacks 5 minute granularity, we used the pandas interpolate function to generate data. The interpolated data is accurate & representative of true data

Interpolated Temperature vs Load

Actual Temperature vs Load

02. Merged Dataset

Sample data in our 44 feature dataset

			Temperature					Solar Irradiance				Precipitation, Wind, Weather Conditions				
Time Stamp	NYC Electric Load	AirTemp	DewpointTemp	HourlyDryBulbTemp	HourlyRelativeHumidity	Zenith	DHI	DNI	ЕВН	GHI	CloudOpacity	Precipitable\	SurfacePress V	VindDirection	WindSpeed	
1/1/17 8:05	4576.6	5.6	-1.4	43.7	49.83333333	84	30	450	47	76	0	7.4	1017.6	276	4.6	
1/1/17 8:10	4588.3	5.6	-1.3	43.95	49.41666667	83	32	480	56	87	0	7.3	1017.7	277	4.6	
1/1/17 8:15	4601	5.6	-1.2	44.2	49	83	34	513	67	101	0	7.3	1017.8	277	4.6	
1/1/17 8:20	4624.7	5.6	-1.1	44.45	48.58333333	82	36	538	76	112	0	7.3	1017.9	278	4.6	
1/1/17 8:25	4610.8	5.7	-1	44.7	48.16666667	81	39	566	88	126	0	7.2	1018	279	4.7	
1/1/17 8:30	4648.1	5.7	-0.9	44.95	47.75	80	40	587	97	138	0	7.2	1018.1	279	4.7	
1/1/17 8:35	4643.7	5.7	-0.8	45.2	47.33333333	80	42	611	109	152	0	7.2	1018.2	280	4.7	
1/1/17 8:40	4649.1	5.8	-0.7	45.45	46.91666667	79	44	629	119	163	0	7.2	1018.3	280	4.7	
1/1/17 8:45	4673.5	5.8	-0.6	45.7	46.5	78	45	650	132	177	0	7.1	1018.5	281	4.7	
1/1/17 8:50	4699.6	5.8	-0.5	45.95	46.08333333	78	47	666	142	188	0	7.1	1018.6	281	4.8	
1/1/17 8:55	4699.3	5.9	-0.4	46.13333333	45.33333333	77	48	684	154	202	0	7.1	1018.7	282	4.8	
1/1/17 9:00	4700.1	5.9	-0.3	46.3	44.5	76	49	698	164	213	0	7.1	1018.8	282	4.8	
1/1/17 9:05	4681.2	5.9	-0.2	46.4666667	43.66666667	76	50	714	176	226	0	7	1018.9	283	4.8	
1/1/17 9:10	4746.5	5.9	-0.1	46.63333333	42.83333333	75	51	726	186	237	0	7	1019	283	4.9	
1/1/17 9:15	4744.2	6	0	46.8	42	75	52	740	198	250	0	7	1019.1	284	4.9	
1/1/17 9:20	4726.5	6	0	46.96666667	41.16666667	74	53	751	207	260	0	6.9	1019.2	284	4.9	
1/1/17 9:25	4790.4	6	0.1	47.13333333	40.33333333	73	54	763	219	273	0	6.9	1019.4	285	4.9	
1/1/17 9:30	4782	6.1	0.2	47.3	39.5	73	55	773	228	283	0	6.9	1019.5	285	4.9	
1/1/17 9:35	4773	6.1	0.3	47.46666667	38.66666667	72	55	784	239	295	0	6.9	1019.6	286	5	
1/1/17 9:40	4812.3	6.1	0.4	47.63333333	37.83333333	72	56	793	248	304	0	6.8	1019.7	286	5	

^{*} Highlighted columns of interest based on correlation matrix

03. Correlation Matrix

Electric load

- Shows correlation to temperature & solar
- Weakly correlated to wind, precipitation, humidity and other weather conditions

Solar metrics have strong correlation to each other

- DHI, DNI, EBH, GHI, GTI, Zenith
- Choosing one will be sufficient

- -0.2

03. Annual New York State Load

New York State Electric Load [MWh] between 2018 - 2021

- Heavy seasonality with peak load during summer (July Sept)
 - Load lowest during spring & fall, but slightly rises again during winter (Dec Mar)
- Trend relatively stable YoY

03. Weekly Consumer Behavior of New York Electric Load

New York State Electric Load [MWh] - Average Weekly Load in 2021

- Load is higher during the weekday vs. weekend
- Daily load begins to quickly rise around 6:30AM (morning pick-up), hitting its peak at 6PM and begins declining as consumers sleep

03. Weather Impacts on Electric Load

Extreme weather, like heat waves or cold snaps, encourages individuals to use more load to power A/C or heating. If there's just 1 hot day, people might hold out and not turn on the A/C yet. However, if there's consecutive hot days, individuals may cave and turn on the A/C on day 2 or 3. [same with heating]

03. Solar Impacts on Electric Load

Days with high solar radiation (GHI) corresponds with less load. Consumes are able to use behind the meter solar devices, which reduces need for electric load.

04. LSTM Cross Validation

- Tuning of recurrent layer size, recurrent drop out, drop out with additional alpine layer
- Mean and standard deviation inflated due to validation year 2019 where electricity load behaviour changed drastically

Cross Validation Result

			mean	std	mean	std
STM_i red	current_dropout	dropout				
100.0	0.00	0.00	108.909841	28.931939	1.863950	0.550840
		0.05	118.850023	44.453929	2.036579	0.826832
		0.10	111.134692	31.992846	1.902812	0.605616
	0.05	0.00	103.519922	24.161997	1.770703	0.464975
		0.05	109.029203	31.972625	1.864958	0.595833
		0.10	106.616379	26.656179	1.824024	0.507374
	0.10	0.00	108.443490	30.125519	1.855541	0.567753
		0.05	109.920792	35.192905	1.883692	0.665459
		0.10	113.599537	36.996335	1.949296	0.703961
250.0	0.00	0.00	109.974130	31.033092	1.884800	0.594352
		0.05	109.931454	30.332834	1.881732	0.574647
		0.10	109.029021	32.268934	1.868004	0.612887
	0.05	0.00	111.004959	35.774830	1.903864	0.680766
		0.05	109.938817	25.616306	1.877971	0.486175
		0.10	106.947182	30.114758	1.829450	0.563298
	0.10	0.00	109.996780	33.305872	1.879099	0.605609
		0.05	106.106126	28.353923	1.817280	0.544732
		0.10	113.466632	36.140353	1.941554	0.667348
500.0	0.00	0.00	109.741320	38.305240	1.883501	0.724677

Further table omitted

04. LSTM Cross Validation

 Recurrent size of 500 with recurrent dropout 0.1 and drop out 0.05 shows best performance but is not statistically significant

Cross Validation Result

Filtering out validation year 2019

			rmse		rrmse					rmse		rrmse	
			mean	std	mean	std				mean	std	mean	std
LSTM_i	recurrent_dropout	dropout					LSTM_i	recurrent_dropout	dropout				
100.0	0.00	0.00	96.661546	10.767448	1.624186	0.146017		0.10	0.00	97.459042	20.762362	1.633089	0.292480
		0.05	99.889926	15.436983	1.675550	0.206373		0.05	93.811659	8.014598	1.577555	0.111905	
		0.10	97.563655	11.700537	1.639171	0.160161			0.10	99.108592	19.161020	1.663107	0.277338
	0.05	0.00	93.205354	8.314689	1.566289	0.098498	500.0	0.00	0.00	92.980175	9.136848	1.564227	0.143661
		0.05	95.886747	14.543183	1.608926	0.190637			0.05	96.855403	16.714906	1.626216	0.242592
		0.10	95.477606	10.966046	1.604366	0.146874			0.10	96.316669	11.753922	1.620376	0.190949
	0.10	0.00	95.813321	12.107359	1.608932	0.156049		0.05	0.00	95.026492	8.112630	1.598284	0.122429
		0.05	94.563610	8.893841	1.588764	0.102783			0.05	93.644997	10.132130	1.574777	0.153575
		0.10	97.576498	10.648315	1.642423	0.181493			0.10	96.994972	6.474523	1.632330	0.105238
250.0	0.00	0.00	96.695899	10.424057	1.627079	0.167937		0.10	0.00	93.696526	7.287568	1.576800	0.119272
		0.05	97.177162	11.928732	1.632802	0.164872			0.05	89.504302	6.859846	1.505716	0.104191
		0.10	95.121693	9.947546	1.599060	0.136516			0.10	93.190466	11.368623	1.565900	0.158134
	0.05	0.00	95.244268	7.103196	1.601920	0.100604							
		0.05	98.499422	12.287663	1.648449	0.163646							
		0.10	94.584090	13.792194	1.587780	0.183612							

04. Model Evaluation | Error Plots

Histogram for the Error Plot | LSTM

- Errors are normally distributed without noticeable bias
- Largest Overestimation: 801.2 MW
- Largest Underestimation: -760.4 MW
 - Lower than capacity reserve

 Largest underestimation occurred between June and September

40000

20000

-600 -800

 Underestimated half of the reserve for only 4 days

60000

80000

100000