RoHS-compliant Product

Advanced Power Electronics Corp.

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

▼ Low On-resistance

▼ Fast Switching Speed

▼ PDIP-8 Package

BV _{DSS}	60V	
R _{DS(ON)}	50m Ω	
I_{D}	5A	

Description

Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness.

Absolute Maximum Ratings

	<u> </u>		
Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	60	V
V_{GS}	Gate-Source Voltage	<u>+</u> 25	V
I _D @T _A =25°C	Continuous Drain Current ³ , V _{GS} @ 10V	5	Α
I _D @T _A =70°C	Continuous Drain Current ³ , V _{GS} @ 10V	3.2	Α
I _{DM}	Pulsed Drain Current ¹	20	Α
P _D @T _A =25°C	Total Power Dissipation	2	W
	Linear Derating Factor	0.016	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Unit	
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	62.5	°C/W	

Electrical Characteristics@T_i=25°C(unless otherwise specified)

	1			,		
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250uA	60	-	-	V
$\Delta \text{BV}_{\text{DSS}} / \Delta T_{\text{j}}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =1mA	-	0.06	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V_{GS} =10V, I_D =5A	-	-	50	mΩ
		V _{GS} =4.5V, I _D =2.5A	-	-	60	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1	-	3	V
g _{fs}	Forward Transconductance	V_{DS} =10V, I_{D} =5A	-	7	-	S
I _{DSS}	Drain-Source Leakage Current	V_{DS} =60V, V_{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _j =70°C)	V _{DS} =48V ,V _{GS} =0V	-	-	25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 25V	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge ²	I _D =5A	-	32.5	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =48V	-	4.9	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =10V	-	8.8	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =30V	-	9.6	-	ns
t _r	Rise Time	I _D =5A	-	10	-	ns
t _{d(off)}	Turn-off Delay Time	R_G =3.3 Ω , V_{GS} =10 V	-	30	-	ns
t _f	Fall Time	$R_D=6\Omega$	-	5.5	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	1560	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V	-	156	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	110	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =1.6A, V _{GS} =0V	-	-	1.2	V
trr	Reverse Recovery Time	I_S =5A, V_{GS} =0V,	-	29.2	-	ns
Qrr	Reverse Recovery Charge	dI/dt=100A/μs	-	48	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse width <300us, duty cycle <2%.
- 3. Mounted on 1 in² copper pad of FR4 board ;90°C/W when mounted on min. copper pad.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform

ADVANCED POWER ELECTRONICS CORP.

Package Outline: PDIP-8

Part Marking Information & Packing: PDIP-8

