Model Predictive Control of Active Suspension System on a Quarter Car Model

Dario Fiore Giovanni Catapano

Introduction to suspension system

Suspension is the term given to the system of springs, shock absorbers and linkages that connects a vehicle to its wheels.

Two most important features are expected to be improved:

- Disturbance absorbing (i.e. passenger comfort).
- Attenuation of the disturbance transfer to the road (i.e. car handling).

Two type of suspension system

Passive suspensions:

simple and cost-effective.

 They consist of a spring (KS) and a damper (CS) which is fixed parameters defined during the design phase.

Two type of suspension system

Active suspension:

- Is an automotive technology that controls the vertical movement of the wheels with an onboard system.
- Two main functionalities:
 - isolate the vehicle body from external disturbance inputs.
 - maintain a firm contact between the road and the tyres.

Quarter Car Model:

Applying Newton's second law, the dynamic equations that govern the two-mass system are [1]:

$$\begin{cases} m_S \, \ddot{z}_S + c_S (\dot{z}_S - \dot{z}_{uS}) + k_S (z_S - z_{uS}) = -f_A \\ m_{uS} \ddot{z}_{uS} + c_S (\dot{z}_{uS} - \dot{z}_S) + k_S (z_{uS} - z_S) + c_{uS} (\dot{z}_{uS} - \dot{z}_0) + k_{uS} (z_{uS} - z_0) = f_A \end{cases}$$

Fig. 1. Model of 2-DOF quarter car.

[1]: Yu, Shuyou, et al. "Model predictive control of magneto-rheological damper semi-active suspension with preview." 2020 Chinese Automation Congress (CAC). IEEE, 2020.

the input:
$$u = \begin{bmatrix} f_A \\ \dot{z}_0 \end{bmatrix}$$

the output:
$$y = \begin{bmatrix} \ddot{z}_s \\ z_s - z_{us} \\ z_{us} - z_0 \end{bmatrix}$$

the linear state-space representation were derived as follows [1]:

$$A = \begin{bmatrix} 0 & 1 & 0 & -1 \\ -\frac{k_s}{m_s} & -\frac{c_s}{m_s} & 0 & \frac{c_s}{m_s} \\ 0 & 0 & 0 & 1 \\ \frac{k_s}{m_u} & \frac{c_s}{m_u} & -\frac{k_{us}}{m_u} & -\frac{c_s}{m_u} \end{bmatrix}; \quad B = \begin{bmatrix} 0 & 0 \\ \frac{1}{m_s} & 0 \\ 0 & -1 \\ -\frac{1}{m_u} & 0 \end{bmatrix}; \quad C = \begin{bmatrix} -\frac{k_s}{m_s} & -\frac{c_s}{m_s} & 0 & \frac{c_s}{m_s} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \quad D = \begin{bmatrix} -\frac{1}{m_s} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix};$$

[1]:Yu, Shuyou, et al. "Model predictive control of magneto-rheological damper semi-active suspension with preview." 2020 Chinese Automation Congress (CAC). IEEE, 2020.

The discretization of the continuous state space matrices was set at a sampling time of 0.01s. The discretization method used was zero-order hold:

Road preview disturbance model is described as [1]:

$$\dot{z}_{bump}(t) = \frac{A}{2} \left(1 - \cos\left(\frac{2\pi V(t - t_0)}{L}\right)\right); \qquad t_0 \le$$

 $t \leq \frac{L}{2}$

A: bump height;

L : bump length;

V: speed of the car;

 t_0 : starting time of the bump;

t: simulation time length;

[1]:Yu, Shuyou, et al. "Model predictive control of magneto-rheological damper semi-active suspension with preview." 2020 Chinese Automation Congress (CAC). IEEE, 2020.

Here the parameters for the model considered, based on data for the BMW 530i car presented in [2]:

Symbol	Variable name	Value	Unit
$m_{\scriptscriptstyle S}$	Sprung mass	395.3	kg
m_{us}	Unsprung mass	48.3	kg
k_s	Spring stiffness	30.01e3 N/m	N/m
c_s	Spring damping	1450	Ns/m
k_{us}	Tyre Stiffness	3.4e5	N/m
c_{us}	Tyre Damping	0	Ns/m
$f_{A,max}$	Maximum actuator force	±2500	N
$(z_{us}-z_0)_{max}$	Maximum tyre deflection	±0.0128	m
$(z_s - z_{us})_{max}$	Maximum suspension stroke	+0.09, -0.08	m

[2]: Van der Sande, T. P. J., et al. "Robust control of an electromagnetic active suspension system: Simulations and measurements." *Mechatronics* 23.2 (2013): 204-212.

As it can be seen in this table, no discomfort is caused when \ddot{z}_s is less 0.315 m/s2.[3]

RMS of vertical acceleration \ddot{z}_s (m/s2)	comment	
< 0.315	Not uncomfortable	
0.315-0.63	A little uncomfortable	
0.5-1	Fairly uncomfortable	
0.8-1.6	Uncomfortable	
1.25-2.5 Very uncomfortable		
>2	Extremely uncomfortable	

[3] Standard, I., Mechanical vibration and shock - Evaluation of human exposure to whole body vibration - Part one *Journal of Magnetism and Magnetic Materials*, 1997.

MODEL PREDICTIVE CONTROL DESIGN

Control goal:

- The goal is to stabilize the discretized linear system as described in the equation (1).
- The equilibrium at origin represents that the car is moving with zero body vibration and zero tyre deflection.

MODEL PREDICTIVE CONTROL DESIGN

Cost function:

$$J(x_0, u_N) = x_{k+T_p}^T Q_F x_{k+T_p} \sum_{i=k}^{k+T_c} u_i^T R u_i + \sum_{i=k}^{k+T_p-1} x_i^T Q x_i$$

The choices of T_c , Q and R were obtained following a tuning procedure which could ensure a balance between control action and settling-time.

$$T_c = 6;$$
 $Q = \begin{bmatrix} 0.1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix};$ $R = 1e^{-7};$ $Q_f = 0.5 \begin{bmatrix} 0.1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$

MODEL PREDICTIVE CONTROL DESIGN

Constrains:

•
$$x(i) = A x(i-1) + B u(i-1)$$

•
$$-2500N \le u(i) \le +2500N$$

$$\begin{array}{c|c}
 & -0.08 \\
 & -0.163 \\
 & -0.0128 \\
 & -1.965
\end{array} \le \begin{bmatrix}
 z_s - z_{us} \\
 \dot{z}_s \\
 z_{us} - z_0 \\
 \dot{z}_{us}
\end{bmatrix} (i) \le \begin{bmatrix}
 0.09 \\
 0.14 \\
 0.0128 \\
 2.78
\end{bmatrix}$$

Comfort and safety analysis:

MPC controller performance has been analysed based on how well the comfort and safety objectives for the passengers are achieved at two speed scenarios:

- V = 30 km/h;
- V = 60 km/h;

0.315-0.63	A little uncomfortable
0.8-1.6	Uncomfortable

V = 30 km/h

V = 30 km/h

V = 60 km/h

V = 60 km/h

CONCLUSION

- At lower speeds, the MPC controller performs better;
- This is due to the fact that the controller has more freedom to act at lower speeds;
- The higher controller freedom is probably a consequence of the constraint on the state vector components;

THANKS!

