PH.D. QUALIFYING EXAM REAL VARIABLES, FALL 2004

You have three hours. Solve any five problems. Credit will be given for the best five questions. Show work.

- 1. A function f is said to satisfy Lipschitz condition on an interval [a,b], if there is a constant M>0 such that $|f(x)-f(y)|\leq M|x-y|$ for all $x,y\in [a,b]$.
 - (a) Show that a function satisfying a Lipschitz condition is absolutely continuous.
 - (b) Show that an absolutely continuous function f satisfies a Lipschitz condition if and only if |f'| is bounded.
- 2. (a) Prove that a function of bounded variation on a closed interval is Lebesgue measurable.
 - (b) Show that the product of two functions of bounded variation is a function of bounded variation.
- 3. Let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $L^p(X,\mathcal{B},\mu)$, $1 \leq p < \infty$, where (X,\mathcal{B},μ) is a σ -finite measure space.
 - (a) Show that $\{f_n\}_{n=1}^{\infty}$ converges in measure μ on X.
 - (b) Prove that $\{f_n\}_{n=1}^{\infty}$ contains a subsequence which converges almost everywhere in X.
- 4. State the Hahn-Banach theorem. Show that for any $x \in X$, where X is a Banach space, there exists a bounded linear functional f on X such that $f(x) = ||f|| \cdot ||x||$.
- 5. Let μ , ν and λ be σ -finite. Show that the Radon-Nikodym derivatives $\left[\frac{d\nu}{d\mu}\right]$ and $\left[\frac{d\mu}{d\lambda}\right]$ have the following properties:
 - (a) If $\nu \ll \mu$ and f is a nonnegative measurable function, then

$$\int f \, d\nu = \int f \left[\frac{d\nu}{d\mu} \right] \, d\,\mu.$$

(b) If $\nu \ll \mu \ll \lambda$, then

$$\left[\frac{d\nu}{d\lambda}\right] = \left[\frac{d\nu}{d\mu}\right] \left[\frac{d\mu}{d\lambda}\right].$$

6. Let $f \in L^1(0,1)$ and suppose that $\lim_{x\to 1^-} f(x) = A < \infty$. Prove that

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) \, dx = A.$$

- 7. (a) If f(x) is a real-valued Lebesgue-measurable function on \mathbb{R} , show that F(x,y)=f(x-y) is a measurable function on \mathbb{R}^2 .
 - (b) If f and g are real-valued integrable functions on \mathbb{R} , show that for (Lebesgue) almost-all x, the function $\phi_x(y) = f(x-y)g(y)$ is integrable with respect to $y \in \mathbb{R}$.
 - (c) Denote the Lebesgue integral of ϕ_x by h(x). Show that h is integrable, and $\int_{\mathbb{R}} |h| \leq \int_{\mathbb{R}} |f| \cdot \int_{\mathbb{R}} |g|$.