# Relatório AED – Projeto 1 TAD imageBW

Dinis Oliveira, 119193 André Silva, 119480

Turma P9

# Considerações gerais

Este trabalho explora a manipulação de imagens comprimidas atravez do formato RLE, destacando duas funções principais: *ImageCreateChessboard* e *ImageAND*. A primeira função gera imagens com padrões de xadrez eficientes, já a segunda realiza operações and lógicas entre duas imagens comprimidas. Com o objetivo de analisar o impacto das diferentes formas de concretizar estas funções, e tendo por objetivo a sua otimização seja em termos de espaço ocupado, seja em termos de tempo, essas funções ilustram a aplicação prática de algoritmos eficientes.

# Função ImageCreateChessboard()

## Argumentos fornecidos e variáveis internas relevantes

- Width(n) largura da imagem (pixéis);
- Height(m) altura da imagem (pixéis);
- Square\_edge(s) comprimento de cada quadrado (pixéis)
- First\_value(f) primeiro valor do pixel (BLACK/WHITE)
- NsquaresX  $\left(\frac{n}{s}\right)$  número de quadrados por linha;

# Espaço Ocupado Pela Imagem

# Cabeçalho da Imagem

Armazenamento dos dados raiz: width, height e o proprio array. Esta parte ocupa sempre um espaço constante, ou seja  $O_1$ . Sendo width e height int32, o seu tamanho vai ser 4 logo 4+4=8+8 (por causa do array) = 16.

## Linhas Codificadas (RLE)

Cada linha (i) tem um *array* RLE para os NsquaresX quadrados da linha. Cada quadrado é representado por dois elementos, Valor do pixel (1/0) e comprimento da sequência(s). Ainda no final existe sempre o marcador EOR( End of Row).

## Espaço por linhas

Para uma linha n:

- O número de quadrados Nsquares $X(\frac{n}{s})$ ;
- Valores adicionais na sequência = 1valor do pixel + 1 valor final (EOR) = 2
- Sizeof(uint32) = 4

Logo o total de espaço por linha vai ser:

Espaço por linha = 
$$\left(\frac{n}{s} + 2\right) \times 4$$

Sendo assim, a equação que nos dá o espaço ocupado na memória é a seguinte:

$$E(m, n, s) = m \times \left( \left( \frac{n}{s} + 2 \right) \times 4 \right) + 16$$

De acordo com a equação, estes são os dados após alguns testes realizados:

| WIDTH   HEIGHT   S_EDGE |     |    | TOTAL RUNS | MEMORY USED (bytes) +<br>16 (header) |
|-------------------------|-----|----|------------|--------------------------------------|
| 4                       | 4   | 1  | 16         | 112                                  |
| 4                       | 4   | 2  | 8          | 80                                   |
| 4                       | 4   | 4  | 4          | 64                                   |
| 8                       | 8   | 1  | 64         | 336                                  |
| 8                       | 8   | 2  | 32         | 208                                  |
| 8                       | 8   | 4  | 16         | 144                                  |
| 8                       | 8   | 8  | 8          | 1012                                 |
| 16                      | 16  | 4  | 64         | 400                                  |
| 20                      | 20  | 5  | 80         | 496                                  |
| 32                      | 32  | 1  | 1024       | 4368                                 |
| 32                      | 32  | 4  | 256        | 1296                                 |
| 32                      | 32  | 8  | 128        | 784                                  |
| 128                     | 128 | 16 | 1024       | 5136                                 |
| 256                     | 256 | 32 | 2048       | 10256                                |

# Análise Formal de Complexidade

Tendo em conta a equação do espaço total e os dados da tabela, verificamos que o espaço cresce linearmente em relação ao número de linhas e quadrados por linha, mas é inversamente proporcional ao comprimento da aresta(s). Quanto maior o valor (s) menos espaço ocupa.

## Melhor Caso (B(n))

- Condição: s = n, ou seja quanto maior o comprimento das arestas, menos espaço vai ser necessário para criar a imagem pedida.
- Comportamento: O loop interno realiza apenas uma iteração.
- $\triangleright$   $B(n) = 12 \times m$
- $\triangleright$  Complexidade: T(n) = O(m)

## Pior Caso (W(n))

- Condição: s = 1, alternância entre pixéis, a cada linha (Linha RLE: [X,1,1,...,1]).
- Comportamento: O loop interno vai correr n vezes.
- $\triangleright$   $W(n) = 4 \times m(n+2)$
- ightharpoonup Complexidade:  $T(n) = (m \times n)$

# Função ImageAnd()

A função realiza a operação lógica **AND** entre duas imagens de mesmas dimensões, com duas versões: uma que usa compressão/descompressão em RLE e outra que opera diretamente no formato comprimido, retornando a imagem resultante.

# Descrição do Algoritmo

#### Estrutura geral:

- 1. Alocação de memória para o cabeçalho da imagem de saída.
- 2. Processamento linha a linha das imagens de entrada.
- 3. Combinação de intensidades e comprimentos de execução (RLE).
- 4. Alocação e ajuste dinâmico do array resultante.

# Dados experimentais

Tabela e Gráfico com todas as combinações possiveís entre 6 imagens 4096x4096, Imagem toda preta/branca, *chessboard* com lado 2 e 4, e 2 imagens geradas aleatoriamente com (rand() %2, pixel a ). E os respetivos tempos execução da função AND com e sem utilização (des)compressão (comp And e RLE AND, respetivamente), com cpu\_time(). E respetivo gráfico.

| Test Pair     | RLE AND | Comp And | Test Pair      | RLE And | Comp And |
|---------------|---------|----------|----------------|---------|----------|
| Black, Black  | 0.257   | 34.931   | Chess1, Chess1 | 35.546  | 53.989   |
| Black, White  | 0.234   | 34.205   | Chess1, Chess2 | 25.305  | 46.598   |
| Black, Chess1 | 30.364  | 52.880   | Chess1, Rand1  | 120.919 | 174.811  |
| Black, Chess2 | 14.641  | 42.147   | Chess1, Rand2  | 120.182 | 175.357  |
| Black, Rand1  | 29.156  | 203.150  | Chess2, Chess2 | 15.919  | 42.987   |
| Black, Rand2  | 29.164  | 202.994  | Chess2, Rand1  | 78.408  | 172.431  |
| White, White  | 0.209   | 33.943   | Chess2, Rand2  | 79.235  | 174.240  |
| White, Chess1 | 22.600  | 38.813   | Rand1, Rand1   | 32.814  | 263.998  |
| White, Chess2 | 10.870  | 35.805   | Rand1, Rand2   | 125.959 | 266.588  |
| White, Rand1  | 22.045  | 116.271  | Rand2, Rand2   | 32.547  | 261.955  |
| White, Rand2  | 21.951  | 114.281  |                |         |          |



Através desta análise, permite concluir que a aplicação do AND diretamente do formato RLE, aumenta em muito a eficiência, especialmente com maiores segmentos RLE e mais regulares (ou seja, menor número de segmentos).

# Análise Formal da Complexidade Computacional

Iteração sempre sobre a altura e realiza sempre um conjunto de operações e comparações a cada linha com tempo e complexidade computacional constante O(1).

Altura: H; Largura: W; Número de Runs: k

## Melhor Caso (B(n))

- Condição: As linhas são uniformes, ou seja, apenas possuem apenas uma cor ou um segmento RLE.
- Comportamento: O loop interno realiza apenas realiza uma iteração.
- $\triangleright$  B(n) = H.
- $\triangleright$  Complexidade: T(n) = O(H), onde  $n = H \cdot W$ .

## Pior Caso (W(n))

- $\triangleright$  Condição: Alternância pixel a pixel da cor, a cada linha, (Linha RLE: [X, 1, 1, ..., 1]).
- Comportamento: O número de runs/elementos RLE é igual à largura das imagens, o loop interno percorre W elementos por linha
- $\triangleright$  W(n) = H.W
- ightharpoonup Complexidade: T(n) = O(H.W), onde  $n = H \times W$ .

## Caso Médio (A(n))

- ightharpoonup Condição: Cada linha tem n segmentos RLE, e k é o maior número, entre as imagens recebidas nos argumentos, de segmentos por linha RLE.
- $\triangleright$  Comportamento: O *loop* interno percorre k segmentos por linha.
- ightharpoonup Como há 2 possibilidades na cor do pixel, no caso médio,  $k \approx \frac{W}{2}$ , K < W
- ightharpoonup A(n) = H.k,  $\log A(n) = \frac{H.W}{2}$
- ightharpoonup Complexidade: T(n) = O(H.W), onde  $n = H \times W$ .

# Espaço em memória

A cada iteração aloca um array com W+2 elementos, e depois através de nova alocação fica a ocupar k+2 .

Cada linha da imagem resultante do algoritmo contem um array proporcional ao número de segmentos RLE. No pior caso são W+2 elementos (O(W)).

Elementos são inteiros (de 4 bytes).

# Análise Comparativa: Algoritmo Básico/Algoritmo Melhorado

Um algoritmo mais básico e fácil de implementar, é através do uso de descompressão, operação lógica pixel a pixel e nova compressão.

## Estrutura e Complexidade (T(n)) do Algoritmo Básico

- 1. Iteração linha a linha O(H)
- 2. Descompressão das duas imagens (dependente do número e tamanho de cada run RLE) O(W)
- 3. Iteração pixel a pixel (operação de AND) O(W)
- 4. Compressão (iteração a cada pixel da linha) O(W)

#### **Complexidade Temporal:**

$$T(n) = H.(4.W)$$

$$T(n) = O(H.W)$$

### Comparação

Ambos os algoritmos têm a mesma ordem de complexidade (O(W, H)). A sua complexidade temporal varia apenas na constante pelo qual são multiplicados.

$$A(n) = \frac{H.W}{2}$$
$$T(n) = H.(4.W)$$

$$T(n) = H.(4.W)$$

$$8 \cdot A(n) = T(n)$$

Do ponto de vista ocupação de espaço em memória são algoritmos idênticos, ocupando temporariamente um array com W+2 elementos e guardando na nova imagem um array proporcional ao número de segmentos RLE.

# Conclusão Final

Este trabalho permitiu o desenvolvimento de competências importantes na implementação, análise e aperfeiçoamento de algoritmos. Para tal foram feitos vários testes experimentais e análises de complexidade de modo a avaliar e aprimorar o desempenho das diferentes soluções algorítmicas. Este projeto demonstrou a importância de fazer escolhas fundamentadas no design de algoritmos e considerar diversos cenários de uso. A capacidade de comparar diferentes abordagens proporcionou o desenvolvimento de um pensamento crítico sobre as vantagens, desvantagens e limitações de cada solução, uma competência valiosa para futuros projetos desenvolvidos.