

Chapitre 2 : modèles géométriques et cinématiques

Salih ABDELAZIZ

Maître de Conférences à l'UM2

LIRMM, Département robotique

Montpellier, France

abdelaziz@lirmm.fr

NOTATIONS ET DÉFINITION

- Pose = position + orientation
- n : nombre d'articulation
- m : nombre de degré de liberté
- MGD : Modèle Géométrique Direct
- MGI : Modèle Géométrique inverse
- MCD : Modèle Cinématique Direct
- MCI : Modèle Cinématique Inverse

DESCRIPTION D'UN BRAS MANIPULATEUR

Chaine cinématique d'une structure ouverte simple

DESCRIPTION D'UN BRAS MANIPULATEUR

Liaison (ou articulation) rotoïde (R)

Liaison prismatique (P)

Pour une liaison j, on définit le paramètre géométrique :

$$\sigma_{\rm j} = egin{cases} 0 & {
m pour \ une \ liaison \ roto\"ide} \ {
m pour \ une \ liaison \ prismatique} \end{cases}$$

DESCRIPTION D'UN BRAS MANIPULATEUR

Bras manipulateur de type anthropomorphe 6R

6R: 6 liaisons rotoïdes

Robot Stäubli RX-90

Bras manipulateur de type SCARA RRRP

Robot SCARA (Toshiba)

Modélisation géométrique d'un bras manipulateur

Objectif : établir une relation entre les repères \mathcal{R}_i afin de déterminer la pose (position et orientation) de l'organe terminal par rapport au repère de référence \mathcal{R}_0

Méthode : convention de Denavit-Hartenberg modifiée

Placement des repères \mathcal{R}_0 et \mathcal{R}_n :

- \mathcal{R}_0 est choisi librement
- O_{n+1} est associé à l'organe terminal
- * \mathcal{R}_n est choisi de sorte à ce que $:O_{n+1} \in (O_n, \mathbf{x}_n, \mathbf{z}_n)$

Placement des repères $\mathcal{R}_1, \dots, \mathcal{R}_{n-1}$

Le repère \mathcal{R}_i , fixé sur le corps \mathcal{C}_i , est défini de manière à ce que :

- L'axe z_i est porté par l'axe de la liaison j
- \diamond L'axe \mathbf{x}_j est porté par la perpendiculaire commune aux axes \mathbf{z}_j et \mathbf{z}_{j+1}

 \diamond Si les axes \mathbf{z}_j et \mathbf{z}_{j+1} sont parallèles ou colinéaires $extstyle \rightarrow$ le choix de \mathbf{x}_j n'est pas

unique

Paramètres DH:

- \bullet α_{j-1} : angle entre \mathbf{z}_{j-1} et \mathbf{z}_{j} (rotation autour de \mathbf{x}_{j-1})
- * a_{j-1} : distance entre \mathbf{z}_{j-1} et \mathbf{z}_{j} le long de \mathbf{x}_{j-1}
- \bullet θ_j : angle entre \mathbf{x}_{j-1} et \mathbf{x}_j (rotation autour de \mathbf{z}_j)
- * r_j : distance entre \mathbf{x}_{j-1} et \mathbf{x}_j le long de \mathbf{z}_j

Matrice de passage $\mathcal{R}_{i-1} \longrightarrow \mathcal{R}_i$:

$$^{j-1}T_j = Rot(x, \alpha_{j-1})Trans(x, a_{j-1})Rot(z, \theta_j)Trans(z, r_j)$$

$$=\begin{pmatrix}1&0&0&0\\0&C\alpha_{j-1}&-S\alpha_{j-1}&0\\0&S\alpha_{j-1}&C\alpha_{j-1}&0\\0&0&0&1\end{pmatrix}\begin{pmatrix}1&0&0&a_{j-1}\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}\begin{pmatrix}C\theta_{j}&-S\theta_{j}&0&0\\S\theta_{j}&C\theta_{j}&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&1&r_{j}\\0&0&0&1\end{pmatrix}$$

$$\mathbf{T}_{j} = \begin{pmatrix} C\theta_{j} & -S\theta_{j} & 0 & a_{j-1} \\ C\alpha_{j-1}S\theta_{j} & C\alpha_{j-1}C\theta_{j} & -S\alpha_{j-1} & -r_{j}S\alpha_{j-1} \\ S\alpha_{j-1}S\theta_{j} & S\alpha_{j-1}C\theta_{j} & C\alpha_{j-1} & r_{j}C\alpha_{j-1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

La variable articulaire q_i de l'articulation j est définie par :

$$q_j = \sigma_j r_j + \overline{\sigma}_j \theta_j$$

Avec:

$$\sigma_j = \begin{cases} 0 & \text{pour une liaison roto\"ide} \\ 1 & \text{pour une liaison prismatique} \end{cases}$$

• $^{j-1}\mathbf{T}_{j}$ dépond de la variable articulaire q_{j} :

$$^{j-1}\mathbf{T}_{j}=^{j-1}\mathbf{T}_{j}\left(q_{j}\right)$$

MGD: consiste à calculer, à partir des positions articulaires, la pose (position + orientation) de l'organe terminal.

Espace articulaire:

Vecteur de positions articulaires : $\mathbf{q} = [\mathbf{q_1} \quad \mathbf{q_2} \quad \mathbf{q_n}]^T$

Espace opérationnel:

Pose de l'OT \equiv $\begin{cases} \text{position de } O_{n+1} \text{ dans le repère } \mathcal{R}_0(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0) \\ \text{orientation du repère } \mathcal{R}_n \text{ par rapport à } \mathcal{R}_0 \end{cases}$

Méthodologie de calcul (1)

lacktriangle Déterminer la matrice de passage, du repère \mathcal{R}_0 vers le repère \mathcal{R}_n :

$${}^{0}\mathbf{T}_{n}(\mathbf{q}) = {}^{0}\mathbf{T}_{1}(q_{1}) \cdot {}^{1}\mathbf{T}_{2}(q_{2}) \cdot ... \cdot {}^{n-1}\mathbf{T}_{n}(q_{n})$$

ullet Calculer la position de l'organe terminal dans le repère \mathcal{R}_0 :

$$\begin{pmatrix} {}^{0}\mathbf{O}_{n+1} \\ 1 \end{pmatrix} = {}^{0}\mathbf{T}_{n} \begin{pmatrix} {}^{n}\mathbf{O}_{n+1} \\ 1 \end{pmatrix}$$

lacktriangle Déterminer la matrice ${}^0\mathbf{R}_{\mathrm{n}}$, qui correspond à l'orientation de l'OT :

$${}^{0}\mathbf{R}_{n} = {}^{0}\mathbf{T}_{n}(1:3,1:3)$$

Méthodologie de calcul (2)

On note par x la pose de l'organe terminal :

$$x = (x \quad y \quad z \quad \gamma \quad \beta \quad \alpha)^T$$

Les 3 premières composantes de x correspondent à la position de l'OT :

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = {}^{0}\mathbf{O}_{n+1}$$

 γ , β et α sont soit les angles de roulis, tangage et lacet, soit les angles d'Euler. Ils représentent l'orientation de l'OT. Ils sont calculés à partir de la matrice de rotation ${}^{0}\mathbf{R}_{n}$ (voir chapitre 1)

Exemple1: modélisation géométrique d'un robot plan à 3 ddl

Robot plan à 2 ddls

Cinématique équivalente

Exemple2 : modélisation géométrique du robot SCARA

Robot SCARA (Toshiba)

Exemple3: modélisation géométrique du robot antropomorphe

Robot Stäubli RX-90

Cinématique équivalente

Modèle géométrique inverse

MGI: consiste à calculer, à partir de la pose x de l'organe terminal, les positions articulaires q. Ce modèle permet de passer de l'espace opérationnel vers l'espace articulaire

Modèle géométrique inverse

<u>Problématique</u>: résoudre m système d'équation non-linéaires. Cet ensemble d'équation est souvent complexe à résoudre. Il est donc nécessaire de s'intéresser avant d'entamer la résolution à :

- L'existence d'une solution
- Au nombre de solution
- Méthode de résolution

Existence d'une solution

- Si n < m : pas de solutions
- Si n = m: nombre fini de solutions
- Si n > m : infinité de solutions

Modèle géométrique inverse

Remarque

Un robot sériel à chaine cinématique ouverte peut posséder jusqu'à **16 solutions** aux m systèmes d'équation non-linéaires, et donc 16 expressions différentes du MGI.

Dans le cadre de ce cours, on se limite au calcul du MGI des robots manipulateurs ayant au plus 4 ddl.

À faire en TD:

Exemple1 : robot plan à 2 ddl

Exemple2: robot SCARA à 4 ddl

Modèles cinématiques : direct et inverse

MCD: permet d'exprimer la vitesse opérationnelle de l'OT en fonction des vitesses articulaires par la relation :

$$\mathbb{V} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$$

J(q): matrice jacobienne de dimension m \times n

 $\dot{\mathbf{q}} = [\dot{\mathbf{q}}_1 \quad \dot{\mathbf{q}}_2 \quad \dot{\mathbf{q}}_n]^T$: vecteur des vitesses articulaires

 $\mathbb{V} = \begin{pmatrix} \mathbf{V} \\ \mathbf{w} \end{pmatrix}$: vecteur des vitesses opérationnelles

Avec $\mathbf{V} = (\dot{x} \ \dot{y} \ \dot{z})^T$: vitesse de translation de l'organe terminal $\boldsymbol{\omega} = (\omega_x \ \omega_y \ \omega_z)^T$: vitesse de rotation de l'organe terminal

Modèles cinématiques : direct et inverse

MCI : permet d'exprimer les vitesses articulaires en fonction de la vitesse opérationnelle de l'OT par :

$$\dot{\mathbf{q}} = \mathbf{J}^{\#}(\mathbf{q}) \mathbb{V}$$

Si n = m:
$$J^{\#} = J^{-1}$$

si non (matrice non carrée) : $J^{\#} = J^{+}$ (inverse généralisée)

Le **MCI** peut être obtenu en **inversant** le **MCD**. La mise en œuvre peut être faite de manière **analytique** ou **numérique**. Les méthodes analytiques ne sont pas exposées dans ce cours.

Note : pour le TP, on se contentera d'employer l'approche numérique en utilisant l'inverse généralisée (commande sous MATLAB : pinv)

Méthodologie de calcul

- Dérivation du MGD pour les structures simples
- Procédure en deux étapes pour les structures complexes :

 $1^{\text{ère}}$ étape : Calculer la vitesse du repère \mathcal{R}_n :

$$\mathbb{V}_{n} = \begin{pmatrix} \mathbf{V}_{n} \\ \boldsymbol{\omega}_{n} \end{pmatrix}$$

 \mathbf{V}_n : vitesse de translation de O_n (origine du repère \mathcal{R}_n)

 $\mathbf{\omega_n}$: vitesse de rotation du repère \mathcal{R}_n

Il est à noté que la vitesse de chaque articulation du robot contribue à la vitesse de l'organe terminal. Cette contribution dépend de la nature de l'articulation

• Si l'articulation j est prismatique : $\sigma_{\rm j}=1$

Contribution de l'articulation j à la vitesse de translation de \mathcal{R}_n :

$$\boldsymbol{V}_{j,\,n} = \dot{q}_j\;\boldsymbol{z}_j$$

Contribution de l'articulation j à la vitesse de rotation de \mathcal{R}_n :

$$\omega_{j,n}=0$$

axe de l'articulation j

• Si l'articulation j est rotoïde : $\sigma_{\rm j}=0$

Contribution de l'articulation j à la vitesse de de translation de \mathcal{R}_n :

$$\mathbf{V}_{j, n} = \dot{q}_{j}(\mathbf{z}_{j} \wedge \mathbf{p}_{j, n})$$

Contribution de l'articulation j à la vitesse de rotation de \mathcal{R}_n :

$$\mathbf{\omega}_{j, n} = \dot{q}_j \mathbf{z}_j$$

En résumé:

lacktriangle Contribution de l'articulation j sur la vitesse de translation de $\mathcal{R}_{
m n}$:

$$\mathbf{V}_{j,n} = \left(\sigma_{j}\mathbf{z}_{j} + \overline{\sigma}_{j}(\mathbf{z}_{j} \wedge \mathbf{p}_{j,n})\right)\dot{q}_{j}$$

lacktriangle Contribution de l'articulation j sur le vitesse de rotation de \mathcal{R}_n :

$$\mathbf{\omega}_{j, n} = \overline{\sigma}_{j} \dot{q}_{j} \mathbf{z}_{j}$$

Vitesse de translation de \mathcal{R}_n :

$$\mathbf{V}_{n} = \sum_{j=1}^{n} \left(\sigma_{j} \mathbf{z}_{j} + \overline{\sigma}_{j} (\mathbf{z}_{j} \wedge \mathbf{p}_{j,n}) \right) \dot{\mathbf{q}}_{j}$$

• Vitesse de rotation de \mathcal{R}_n :

$$\mathbf{\omega}_{\mathrm{n}} = \sum_{\mathrm{j=1}}^{\mathrm{n}} \overline{\sigma}_{\mathrm{j}} \dot{\mathbf{q}}_{\mathrm{j}} \; \mathbf{z}_{\mathrm{j}}$$

Ecriture sous forme vectorielle :

$$\begin{pmatrix} \mathbf{V}_{\mathrm{n}} \\ \mathbf{\omega}_{\mathrm{n}} \end{pmatrix} = \mathbf{J}_{\mathrm{n}}\dot{\mathbf{q}}$$

Avec:

$$\mathbf{J}_{n} = \begin{pmatrix} \sigma_{1}\mathbf{z}_{1} + \overline{\sigma}_{1}(\mathbf{z}_{1} \wedge \mathbf{p}_{1,n}) & \sigma_{2}\mathbf{z}_{2} + \overline{\sigma}_{2}(\mathbf{z}_{2} \wedge \mathbf{p}_{2,n}) & . & \sigma_{n}\mathbf{z}_{n} + \overline{\sigma}_{n}(\mathbf{z}_{n} \wedge \mathbf{p}_{n,n}) \\ \overline{\sigma}_{1}\mathbf{z}_{1} & \overline{\sigma}_{2}\mathbf{z}_{2} & . & \overline{\sigma}_{n}\mathbf{z}_{n} \end{pmatrix}$$

Les vitesses ${f V}_n$ et ${f \omega}_n$ sont souvent exprimées dans le repère ${\cal R}_0$ ou dans le repère ${\cal R}_n$. Les matrices jacobiennes correspondantes sont notées ${}^0{f J}_n$ et ${}^n{f J}_n$

2^{ème} **étape** : Calcul de la vitesse (translation + rotation) de l'organe terminal :

$$\mathbb{V} = \begin{pmatrix} \mathbf{V} \\ \mathbf{\omega} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \\ \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{3 \times 3} & \mathbf{D} \\ \mathbf{0}_{3 \times 3} & \mathbf{C} \end{pmatrix} \mathbf{J}_{n} \dot{\mathbf{q}}$$
$$= \mathbf{J} \dot{\mathbf{q}}$$

Avec

$$\mathbf{J} = \begin{pmatrix} \mathbf{I}_{3 \times 3} & \mathbf{D} \\ \mathbf{0}_{3 \times 3} & \mathbf{C} \end{pmatrix} \mathbf{J}_{n}$$
 la matrice jacobienne du robot

$$\mathbf{D} = \begin{pmatrix} 0 & a_{n}x_{z} + r_{n+1}z_{z} & -a_{n}x_{y} - r_{n+1}z_{y} \\ -a_{n}x_{z} - r_{n+1}z_{z} & 0 & a_{n}x_{x} + r_{n+1}z_{x} \\ a_{n}x_{y} + r_{n+1}z_{y} & -a_{n}x_{x} - r_{n+1}z_{x} & 0 \end{pmatrix}$$

Les valeurs : x_x , x_y , x_z , z_x , z_y et z_z sont déterminées à partir de la matrice de rotation ${}^0\mathbf{R}_{\mathrm{n}}$ (déjà calculée dans le MGD) :

$${}^{0}\mathbf{R}_{n} = \begin{pmatrix} x_{\chi} & y_{\chi} & z_{\chi} \\ x_{y} & y_{y} & z_{y} \\ x_{z} & y_{z} & z_{z} \end{pmatrix}$$

À faire en TD:

Exemple 1 : calculer la matrice jacobienne du robot à 2 ddl (par les 2 approches)

Exemple 2 : calculer la matrice jacobienne du robot à 4 ddl

Fin du chapitre 2