

Eigenwerte, Teil 2

Fragen?

* Spiegelung an x_2 - x_3 -Ebene im \mathbb{R}^3 . Bestimmen Sie Eigenwerte und Eigenvektoren von folgender Matrix:

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Lösung.

Eigener Lösungsversuch.

Eigenwert- und Eigenvektorberechnung. Bestimmen Sie Eigenwerte und Eigenvektoren von folgenden Matrizen.

Hinweis: Bei der Determinantenberechnung $\det(A - \lambda E_n)$ ist es von Vorteil, wenn Sie mit Zeilen- bzw. Spaltenumformungen Nullen erzeugen. Sie bekommen somit gleich Linearfaktoren im Polynom.

a)
$$A = \begin{pmatrix} 2 & 1 \\ 6 & 1 \end{pmatrix}$$
 b) $B = \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix}$

Lösung.

a)
$$A = \begin{pmatrix} 2 & 1 \\ 6 & 1 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

Eigener Lösungsversuch.

c)
$$C = \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$

d)
$$D = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Lösung.

c)
$$C = \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$

d)
$$D = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Eigener Lösungsversuch.