Regeneration Vehicle Partitioning

Jeroen van Riel

December 2023

1 Conjecture

Let's first spend some words on notation. We use t_j^0 to denote the arrival time of vehicle j. The *switch-over* time between vehicles approaching the intersection from different lanes is denoted by s. We use ϕ_W to denote a *partial schedule* on the set of vehicles W, which is a mapping $\phi: W \to [0, \infty)$. We write σ_W whenever this schedule is (part of) and optimal schedule.

Definition 1.1 (Regeneration Vehicle). Let V be a set of vehicles and ϕ_V some partial schedule. Vehicle j^* is a regeneration vehicle for ϕ_V whenever

$$\phi_V(l) \le t_{i^*}^0 - s \tag{1}$$

for all $l \in V$ with $t_l^0 \le t_{j^*}^0$.

Using this definition, the conjecture from [1] can be formulated as follows.

Proposition 1.1 (Regeneration Vehicle Partitioning). Let V be a set of vehicles. Let $W \subset V$ be a subset containing the k earliest arriving vehicles. Suppose that an optimal schedule σ_W contains a regeneration vehicle j^* , then we have

$$\sigma_V(l) = \sigma_W(l), \tag{2}$$

for all vehicles $l \in A = \{l \in W : t^0_l < t^0_{j^*}\}$ that arrived before j^* .

2 Counterexample

Suppose we two lanes with $F_1 = (1)$ and $F_2 = (2,3)$. Let $r = r_2 - r_1$ and consider the schedules in the next figure. The first schedule has $\sum C_j = 6p + 2s$

and the second schedule has $\sum C_j = 3r + 6p + s$. Therefore, the second schedule is optimal whenever

$$r < s/3. (3)$$

Now consider the situation in which we have an additional job 4 with release date $r_4=6p+2s$ at the second lane, so

$$F_2 = (2, 3, 4).$$

It is never optimal to schedule 4 before any of the other jobs, so the figure below shows the two schedules to consider. The first schedule has $\sum C_j = 10p + 4s$ and the second schedule has $\sum C_j = 10p + 3s + 4r$. Therefore, the first schedule is better assuming

$$r > s/4. \tag{4}$$

For $W = \{1, 2, 3, 4\}$, let this schedule be denoted by σ_W . Observe that vehicle 4 is a regeneration vehicle for σ_W .

Now assume that (3) and (4) hold. Consider two additional jobs 5 and 6 with release date $r_5 = r_6 = r_4 + r$ at the first lane, so we have

$$F_1 = (1, 5, 6).$$

Again, we see that vehicles 4, 5 and 6 should be ordered as 5,6,4 as long as (3) holds, so the two possible candidates are shown in the figure below. The first schedule has $\sum C_j = 21p + 8s + 6r$ and the second schedule has $\sum C_j = 21p + 9s + 3r$. Therefore, the first schedule is optimal whenever (3) holds. For $V = \{1, \ldots, 6\}$, this shows that $\sigma_V(l) \neq \sigma_W(l)$ for $l \in A = \{1, 2, 3\}$.

References

[1] M. Limpens, "Online Platoon Forming Algorithms for automated vehicles: A more efficient approach," Master's thesis, Eindhoven University of Technology, Sept. 2023.