EXAMES DE SELEÇÃO MESTRADO & DOUTORADO MATEMÁTICA APLICADA

1995 — 2002

Álgebra Linear - 1995 (1)

- A1. Dê exemplos de matrizes A para as quais o número de soluções do sistema linear Ax = b é :
 - (a) Zero ou um, dependendo de b.
 - (b) Infinito para qualquer b.
 - (c) Zero ou infinito, dependendo de b.
 - (d) Um para todo b.
- A2. (a) Seja $0 \neq u \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}_*$. Mostre que $\alpha u u^T$ é uma matriz simétrica de posto 1.
 - (b) Seja $A \in \mathbb{R}^{n \times n}$ semi-definida positiva, isto é, $x^T A x \geq 0$ para todo $x \in \mathbb{R}^n$. Suponha que $a_{ii} = 0$ para todo $i = 1, \ldots, n$. Mostre que $a_{ij} + a_{ji} = 0$ para todo $i, j = 1, \ldots, n$.
- A3. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz nilpotente, isto é, $A^n = 0$ para algum inteiro positivo n. Mostre que:

(a)
$$\sum_{i=1}^{n} a_{ii} = 0$$
. (b) $\det(I + A) = 1$. (c) Se A é simétrica então $A = 0$.

- A4. Seja $A \in \mathbb{R}^{m \times n}$, $1 \le m \le n$, posto(A) = m, $b \in \mathbb{R}^m$ e $\mathcal{L} = \{x \in \mathbb{R}^n \mid Ax = b\}$.
 - (a) Mostre que AA^T é não singular.
 - (b) Seja $A^+ = A^T (AA^T)^{-1}$ e $y = A^+b$. Mostre que $y \in \mathcal{L}$.
 - (c) Mostre que para qualquer $x \in \mathcal{L}$, x y é ortogonal a y.
 - (d) Interprete geometricamente no caso em que n=2 e m=1.
- A5. Seja $A \in I\!\!R^{n \times n}$ com autovalores $\lambda_1, \lambda_2, \dots, \lambda_n$, e polinômio característico

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda) , \quad (*)$$

- e denotemos por tr(A) o traço de A, isto é, a soma dos elementos da diagonal principal.
- (a) Escolha λ em (*) para concluir que $\det(A)$ é o produto dos autovalores.
- (b) Iguale os coeficientes de $(-\lambda)^{n-1}$ em cada lado de (*) para concluir que ${\rm tr}(A)$ é a soma dos autovalores.
- (c) Para um escalar t, mostre que os autovalores de I+tA são $1+t\lambda_1, 1+t\lambda_2, \ldots, 1+t\lambda_n$.
- (d) Use (a), (b) e (c) para mostrar que

$$\left. \frac{d}{dt} \det(I + tA) \right|_{t=0} = \operatorname{tr}(A) .$$

Cálculo Diferencial e Integral - 1995 (1)

C1. Considere o problema de valor inicial:

$$\begin{cases} \frac{d}{dt}x(t) = 0.25x(t)(x(t) - 50) \\ x(0) = 2 \end{cases}$$

 $\underline{\operatorname{Sem}}$ resolver a equação diferencial, comente características da solução e esboçe o seu gráfico.

- C2. Mostre que $\frac{79}{48}$ é uma aproximação de \sqrt{e} (e=2.71828...) com erro absoluto inferior a 0.01 (Sugestão: utilize a série de Taylor de e^x em torno de x=0).
- C3 Considere f uma função real, $\{a_n\}$ uma sequência de números reais e $\sum a_n$ a série correspondente. Para cada uma das afirmações abaixo, demonstre as verdadeiras e encontre um contra-exemplo para as falsas:
 - (a) Se f é diferenciável então f é contínua.
 - (b) Se f é contínua então f é diferenciável.
 - (c) Se $\{a_n\}$ converge para 0 então $\sum a_n$ converge.
 - (d) Se $\sum a_n^2$ converge então $\sum a_n$ converge.
 - (e) Se $\{a_n\}$ converge e $\{b_n\}$ é limitada então $\{a_n+b_n\}$ converge.
 - (f) Se $\{a_n\}$ converge para 0 e $\{b_n\}$ é limitada então $\{a_nb_n\}$ converge para 0.
- C4. Seja $f: \mathbb{R} \to \mathbb{R}$, $f \in C^2$ com f''(x) > 0 para todo $x \in \mathbb{R}$. Seja [a, b] um intervalo em \mathbb{R} e seja r a reta tangente a f num ponto $x = c \in [a, b]$. Seja A(c) a área da região compreendida entre a função f e a reta r no intervalo [a, b], isto é,

$$A(c) = \int_a^b [f(x) - f(c) - f'(c)(x - c)] dx.$$

Mostre que $c^* = \frac{a+b}{2}$ é um minimizador absoluto de A(c), independentemente de f.

- C5. (a) Seja T o triângulo limitado por (0,0), (1,8) e (4,2). Calcular a integral dupla $\int_T \int x^2 dx dy$.
 - (b) Seja $L = \{(x,y) \mid y = 2x, 0 \le x \le 1\}$ e $ds = \sqrt{(dx)^2 + (dy)^2}$. Calcular a integral de linha $\int_L xy \ ds$.

Álgebra Linear - 1995 (2)

- A1. (a) Um conjunto não vazio $B \subset \mathbb{R}^n$ é casualmente independente se existe algum subconjunto de B que seja linearmente independente. Caracterize os conjuntos casualmente independentes da maneira mais sintética e econômica possível.
 - (b) Seja V um espaço vetorial e A um subespaço vetorial de V diferente de $\{0\}$ e V. Seja B o complemento de A. Mostre que $B \cup \{0\}$ não é um subespaço vetorial.
- A2. Exiba uma matriz A e um vetor b tais que as três condições seguintes se cumpram simultaneamente:
 - (i) Todos os elementos de A são não nulos.
 - (ii) O sistema linear Ax = b tem infinitas soluções.
 - (iii) Todas as soluções do sistema linear Ax = b satisfazem $x_1 = 5$.
- A3. Sejam $A, B \in \mathbb{R}^{n \times n}$ e $x \in \mathbb{R}^n$. Mostre ou dê um contra-exemplo para as afirmações abaixo:
 - (a) $\det(A + B) = \det(A) + \det(B)$.
 - (b) $(A + B)^2 (A B)^2 = 4AB$.
 - (c) Ax = 0 implica x = 0 se e somente se A é singular.
 - (d) Se A e B são não singulares então AB é não singular.
 - (e) Se A e B são singulares então A+B é singular.
 - (f) Se $x \neq 0$ e $x^T A x = 0$ então A é singular.
- A4. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz auto-reflexiva, isto é, $A^2 = I$.
 - (a) Para todo inteiro positivo k calcule A^k .
 - (b) Mostre que os autovalores de Asão -1e 1.
 - (c) Verifique que para qualquer $0 \neq x \in \mathbb{R}^n$, (I A)x e (I + A)x são os autovetores correspondentes a -1 e 1, respectivamente.
 - (d) Mostre que $|\det(A)| = 1$ e $\det(I \pm A) = 0$ ou 2^n .
- A5. Seja $A = I + \sigma x y^T$ onde $x, y \in \mathbb{R}^n$, $\sigma \in \mathbb{R}$ e I é a matriz identidade de ordem n.
 - (a) Compute os autovalores e autovetores de A.
 - (b) Sob que condição A é singular?
 - (c) Compute det(A).

Cálculo Diferencial e Integral - 1995 (2)

C1. (a) Seja $f:[0,1] \to I\!\!R$ uma função contínua. Mostre que se para todo $x \in [0,1]$

$$\int_0^x f(t) dt = \int_x^1 f(t) dt$$

então f é identicamente zero.

(b) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável tal que para todo $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| \le |x - y|^2$$
.

Mostre que f é constante.

C2. Seja $\{x_k\}$ uma seqüência de números reais tal que $\lim_{k\to\infty}|x_{k+1}-x_k|=0$. Mostre ou dê um contra-exemplo:

(a) $\{x_k\}$ é limitada.

(b) $\{x_k\}$ é convergente.

(c) Se $\{x_k\}$ é limitada então $\{x_k\}$ é convergente.

C3. Seja A a região do plano limitada pelas curvas $y=x^2$ e $x=y^2$.

(a) Calcule a área de A.

(b) Expresse o perímetro de A em termos de uma integral definida.

C4. Mostre que

$$\left| \ln 2 - 1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{(-1)^n}{n} \right| < \frac{1}{n+1} ,$$

onde la denota o logaritmo natural (ou Neperiano) .

C5. (a) Seja $y \equiv y(x), x \in \mathbb{R}$, a solução da equação diferencial $\frac{dy}{dx} = \sqrt{x^2 + y^2}$, com y(0) = 1. Mostre que y(5) > 0.

(b) Considere a equação diferencial ordinária, $P' = \lambda P \ln(K/P)$, $P \equiv P(t) > 0$ e λ e K são constantes positivas. Com a ajuda da substituição $Q = \ln(K/P)$, mostre que a solução é dada por $P(t) = K(P(0)/K)^{e^{-\lambda t}}$. Esboçe o gráfico de P(t) para $t \geq 0$.

4

Álgebra Linear - 1995 (3)

A1. (a) Caracterize o seguinte subconjunto de \mathbb{R}^n :

$$S = \{v \in \mathbb{R}^n \mid \exists \{v_2, \dots, v_n\} \subset \mathbb{R}^n \text{ com } \{v, v_1, \dots, v_n\} \text{ base de } \mathbb{R}^n\}.$$

- (b) Mostre que um sistema linear Ax = b não pode ter exatamente 7 soluções.
- A2. Seja $A \in \mathbb{R}^{n \times n}$ e considere o conjunto $S = \{X \in \mathbb{R}^{n \times n} \mid AX + XA \text{ \'e sim\'etrica}\}$. Mostre que S é um subespaço vetorial de $\mathbb{R}^{n \times n}$.

A3. Calcule os zeros da função
$$f(x) = \det \begin{pmatrix} x & 1 & 0 & 0 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & 1 & x \end{pmatrix}$$
.

- A4. Seja $A \in \mathbb{R}^{n \times n}$ e $p(\lambda) = \det(A \lambda I) = (-1)^n \lambda^n + b_{n-1} \lambda^{n-1} + \dots + b_1 \lambda + b_0$. Sabe-se que A satisfaz a equação matricial $p(A) = (-1)^n A^n + b_{n-1} A^{n-1} + \dots + b_1 A + b_0 I = 0$.
 - (a) Qual a condição sobre os coeficientes $\{b_i\}$ para que A seja inversível?
 - (b) Supondo A inversível e baseado na equação p(A)=0, descreva um processo para calcular A^{-1} usando apenas soma e multiplicação de matrizes.
 - (c) Ilustre o seu processo para a matriz $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
- A5. (a) Seja $A \in \mathbb{R}^{n \times n}$ uma matriz idempotente, isto é, $A^2 = A$. Mostre que I A é singular e que I + A é não singular.
 - (b) Seja $A \in \mathbb{R}^{n \times n}$ uma matriz anti-simétrica, isto é, $A^T = -A$. Mostre que I + A é não singular e que se n é impar então A é singular.

Cálculo Diferencial e Integral - 1995 (3)

- C1. (a) Mostre que $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$.
 - (b) Sejam a e b números reais tais que 0 < a < b. Mostre que

$$a < \sqrt{ab} < \frac{a+b}{2} < \sqrt{\frac{a^2+b^2}{2}} < b$$
.

- C2. Seja $p: \mathbb{R} \to \mathbb{R}$ um polinômio com coeficientes reais e seja r_k o número de raízes reais da equação $\frac{d^k}{dx^k}p(x)=0$, para k=0,1,2. Mostre ou dê um contra-exemplo:
 - (a) $r_1 \leq r_0$.
 - (b) $r_1 \geq r_0$.
 - (c) $r_1 \ge r_0 1$.
 - (d) $r_2 \le r_0 + 1$.
- C3. (a) A soma $S = \sum_{n=1}^{\infty} \frac{1}{n^3} < \infty$ não é conhecida. Mostre que:

$$\frac{1}{1^3} + \frac{1}{3^3} + \frac{1}{5^3} + \frac{1}{7^3} + \dots = \frac{7}{8}S \quad e \quad \frac{1}{1^3} - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} \dots = \frac{3}{4}S.$$

- (b) Considere $f,g: \mathbb{R} \to \mathbb{R}$ funções de classe C^{∞} com $f^{(i)}(a) = g^{(i)}(a) = 0$ para $i = 0, 1, \ldots, n-1$ e $g^{(n)}(a) \neq 0$, onde $h^{(i)}$ denota a derivada de ordem i de h. Mostre que $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}$.
- C4. Seja $f: \mathbb{R} \to \mathbb{R}$ convexa, isto é, para quaisquer $x, y \in \mathbb{R}$ e para todo $\lambda \in [0, 1]$ temos que $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y)$.
 - (a) Interprete geometricamente a desigualdade acima.
 - (b) Mostre que se f é diferenciável então $f(y) \le f(x) + f'(x)(y-x)$.
 - (c) Interprete (b) geometricamente.
- C5. Considere a sequência de números reais definida por $x_{k+1} = \frac{x_k}{2} + \frac{2}{x_k}$ para $k \ge 0$ com $x_0 > 2$. Mostre que:
 - (a) $2 < x_{n+1} < x_n$ para todo $n \ge 0$.
 - (b) $\lim_{k \to \infty} x_k = 2$.
 - (c) $|x_{k+1} 2| \le \frac{1}{4}|x_k 2|^2$.

Álgebra Linear - 1996

A1. Considere os espaços

$$S = \{ A \in \mathbb{R}^{n \times n} \mid A - A^T = 0 \} \text{ e } T = \{ A \in \mathbb{R}^{n \times n} \mid A + A^T = 0 \}.$$

- (a) Mostre que S e T são subespaços vetoriais de $\mathbb{R}^{n\times n}$.
- (b) Quais as dimensões de S e T?
- (c) Encontre uma base para S e uma base para T no caso em que n=2.
- (d) Mostre que toda matriz $A \in \mathbb{R}^{n \times n}$ pode ser escrita como a soma A = S + T com $S \in \mathcal{S}$ e $T \in \mathcal{T}$.
- A2. (a) Mostre que **não** existem matrizes A e B tais que AB BA = I, onde I é a matriz identidade.
 - (b) Mostre que uma matriz $A \in \mathbb{R}^{m \times n}$ tem posto 1 se e somente se $A = uv^T$ com $0 \neq u \in \mathbb{R}^m$ e $0 \neq v \in \mathbb{R}^n$.
- A3. Seja $A \in \mathbb{R}^{n \times n}$ tal que $A^2 + I = 0$, onde I é a matriz identidade de ordem n. Mostre que:
 - (a) A é não singular.
 - (b) $n \in par$.
 - (c) A não tem autovalores reais.
 - (d) $\det(A) = 1$.
 - (e) I + A e I A são não singulares.
- A4. Dados $A \in \mathbb{R}^{m \times n}$ e $b \in \mathbb{R}^m$ definimos os espaços

$$\mathcal{R}(A) = \{ Ax \mid x \in \mathbb{R}^n \},$$

$$\mathcal{R}(A^T) = \{ A^Ty \mid y \in \mathbb{R}^m \} \in$$

$$\mathcal{N}(A, b) = \{ x \in \mathbb{R}^n \mid Ax = b \}.$$

- (a) Mostre que $\mathcal{R}(A^T)$ é ortogonal a $\mathcal{N}(A,0)$.
- (b) Mostre que $\mathcal{N}(A, b) \neq \emptyset$ se e somente se $b \in \mathcal{R}(A)$.
- (c) Seja $u \in \mathcal{N}(A, b)$. Mostre que $x \in \mathcal{N}(A, b)$ se e somente se x = u + v para algum $v \in \mathcal{N}(A, 0)$.
- (d) Interprete geometricamente o ítem (c) para m=1 e n=2.
- (e) Mostre que o número de elementos de $\mathcal{N}(A,b)$ só pode ser 0, 1 ou infinito.
- A5. Sejam $a, b, c, d \in \mathbb{R}$. Mostre que existe um polinômio $p : \mathbb{R} \to \mathbb{R}$ de grau menor ou igual a dois tal que p(-1) = a, p(0) = b, p(1) = c e p(2) = d se e somente se a 3b + 3c d = 0.

Cálculo Diferencial e Integral – 1996

C1. Mostre que:

(a)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$
.

(b)
$$\sum_{i=1}^{\infty} \frac{1}{i(i+1)} = 1.$$

- C2. (a) Seja $f(x) = \begin{cases} x^2 \operatorname{sen} \frac{1}{x} &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$. Analise a continuidade e a diferenciabilidade de f em x=0.
 - (b) Seja $f: \mathbb{R} \to \mathbb{R}$ contínua tal que $\lim_{x \to +\infty} f(x) = L$. O que acontece com o valor de $\frac{1}{b-a} \int_a^b f(x) dx$ para algum a fixo e $b \to +\infty$?
- C3. Seja $f(x) = x \ln x$, definida para todo x > 0.
 - (a) Mostre que a aproximação de Taylor de segunda ordem de f em torno de x=0é dada por $t_2(x) = \frac{x^2 - 1}{2}$
 - (b) Encontre $\lim_{x\to 0^+} f(x)$ e $\int_0^1 f(x) dx$. (c) Esboçe o gráfico de f.
- C4. Considere a equação diferencial $y''(x) = \ln(2+y(x)^2)$, $x \in (0,1)$, sujeita as condições de contorno y(0) = y(1) = 0. Suponha que exista uma solução ψ pelo menos duas vezes continuamente diferenciável.
 - (a) Mostre que ψ possui um único ponto crítico no intervalo (0,1).
 - (b) Classifique esse ponto crítico.
 - (c) Esboçe o gráfico da solução ψ .
- C5. As funções definidas para $x \in \mathbb{R}^n$, $||x||_1 = \sum_{i=1}^n |x_i|$, $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$ e $||x||_{\infty} = \max_{i=1,\dots,n} \{|x_i|\}$,

são **normas** em \mathbb{R}^n , ou seja, satisfazem as condições:

- (i) Se $||x|| \neq 0$ então ||x|| > 0.
- (ii) Para todo $x, y \in \mathbb{R}^n$, $||x + y|| \le ||x|| + ||y||$.
- (iii) Para todo $\alpha \in \mathbb{R}$, $\|\alpha x\| = |\alpha| \cdot \|x\|$.
- (a) Mostre que $||x|| \ge 0$ para todo $x \in \mathbb{R}^n$, onde $||\cdot||$ é uma função qualquer satisfazendo (i)-(iii).
- (b) Faça o desenho das regiões $\mathcal{R}_p = \{ x \in I\!\!R^2 \mid \|x\|_p \leq 1 \}$, para $p = 1, 2, \infty$.
- (c) Encontre as soluções do problema de minimizar $||x||_p \operatorname{com} x \in \mathbb{R}^2$ restrito à reta $x_1 + x_2 = 2$, para $p = 1, 2, \infty$. Exiba o valor da norma das soluções em cada caso.

Álgebra Linear - 1997

- A1. (a) Encontre uma transformação linear $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$ tal que Núcleo $(\mathcal{T}) = \operatorname{Imagem}(\mathcal{T})$.
 - (b) Seja $\mathcal{T}: \mathbb{R}^{2\times 3} \to \mathbb{R}^{2\times 3}$ definida por $\mathcal{T}(A) = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} A$. Encontre o Núcleo e a Imagem de \mathcal{T} .
- A2. Seja V um espaço vetorial de dimensão 50 e sejam U e W subespaços vetoriais de V com dimensões 15 e 25, respectivamente. Mostre que:
 - (a) Dimensão($\mathbf{U} + \mathbf{W}$) ≥ 25 .
 - (b) $10 \leq \text{Dimensão}(\mathbf{U} \cap \mathbf{W}) \leq 15$.
- A3. (a) Para que valores de $a \in \mathbb{R}$ o conjunto $\{(a, 1, 0), (1, a, 1), (0, 1, a)\}$ é uma base de \mathbb{R}^3 ?
 - (b) Seja $\{u_1,u_2,u_3,\ldots,u_p\}$ uma base de um espaço vetorial. Mostre que o conjunto $\{u_1,u_1+u_2,u_1+u_2+u_3,\ldots,u_1+u_2+\cdots+u_p\}$ também é uma base desse mesmo espaço.
- A4. Seja $A \in \mathbb{R}^{n \times n}$ e considere as seguintes definições:
 - (i) $A \notin \underline{\text{anti-sim\'etrica}} \text{ se } A^T = -A.$
 - (ii) A é <u>auto-reflexiva</u> se $A^2 = I$.
 - (iii) A é idempotente se $A^2 = A$.
 - (iv) $A \notin \overline{\text{nilpotente se}}$ se $A^k = 0$ para algum inteiro positivo k.

Para cada uma das definições acima encontre os possíveis valores para:

- (a) O determinante de A.
- (b) Os autovalores de A.
- A5. Seja $0 \neq a \in \mathbb{R}^2$ e considere o operador $P : \mathbb{R}^2 \to \mathbb{R}^2$ definido por $P(x) = x \frac{\langle a, x \rangle}{\langle a, a \rangle} a$, onde $\langle \cdot, \cdot \rangle$ denota o produto interno canônico em \mathbb{R}^2 .

9

- (a) P é um operador linear? Justifique!
- (b) Mostre que $\langle a, P(x) \rangle = 0$ para todo $x \in \mathbb{R}^2$.
- (c) Encontre todas as soluções de P(x) = 0.
- (d) Interprete P geometricamente.

Cálculo Diferencial e Integral - 1997

- C1. Mostre que:
 - (a) Para todo natural $n, 1 + 3 + 5 + \cdots + (2n 1) = n^2$.

(b)
$$\lim_{N \to \infty} \left[\frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N} \right] = \ln 2.$$

Sugestão: Lembre-se que $\int_1^x \frac{1}{t} dt = \ln x$.

- C2. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \int_1^x \frac{dt}{t^4 t^2 + 1}$.
 - (a) Esboçe o gráfico de f, identificando seus pontos críticos.
 - (b) Mostre que para todo $a \in I\!\!R$, a equação f(x) = a tem no máximo uma solução real.
- C3. Uma seqüência de números reais (a_n) é chamada de Cauchy se e somente se para todo $\epsilon > 0$ existe $M \in IN$ tal que se $m, n \geq M$ então $|a_m a_n| < \epsilon$.
 - (a) Mostre um exemplo de uma seqüência de Cauchy.
 - (b) Mostre um exemplo de uma seqüência que não é de Cauchy.
 - (c) Prove que toda seqüência convergente é de Cauchy.
 - (d) Prove que toda seqüência de Cauchy é limitada.
- C4. Para cada $x \in [0,1]$ definimos $f(x) = \begin{cases} x & , & x \text{ \'e racional} \\ 1-x & , & x \text{ \'e irracional} \end{cases}$

Mostre que:

- (a) f é contínua somente no ponto x = 1/2.
- (b) f assume todos os valores compreendidos entre 0 e 1.
- C5. Considere a equação diferencial $\frac{dy}{dx}=xe^{-xy^2}$, definida para x>0, com a condição y(1)=0. Suponha que exista uma solução φ pelo menos duas vezes continuamente diferenciável. Mostre que:
 - (a) Para $x \approx 1$ temos que $\varphi(x) \approx \frac{x^2 1}{2}$.

Sugestão: Utilize a série de Taylor.

(b) x = 1 é o único zero de φ no semi-eixo positivo.

Álgebra Linear – 1998 (1)

A1. (a) Seja a matriz $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$. Quais das opções abaixo são válidas para descrever o conjunto formado pelas soluções de Ax = 0? Justifique cada opção assinalada.

(a) Um ponto.

(b) Uma reta.

(c) Um plano.

(d) Um subespaço de \mathbb{R}^3 . (e) O espaço nulo de A. (f) O espaço coluna de A.

A2. Encontre **todas** as matrizes $A \in \mathbb{R}^{3\times 3}$ tais que as condições abaixo se cumpram simultaneamente:

(i) A é simétrica e singular;

(ii) a(1,1) + a(3,3) = 2a(1,3);

(iii) (0, 1, 0) é um autovetor associado ao autovalor 1.

A3. Considere um conjunto de quatro vetores em \mathbb{R}^3 . Para cada uma das afirmações abaixo, sublinhe qual a opção correta e justifique a sua escolha através de um exemplo:

(a) Esses vetores são / não são / podem ser linearmente independentes.

(b) Esses vetores geram / $n\tilde{a}o$ geram / podem gerar \mathbb{R}^3 .

(c) Se esses vetores formam as colunas de uma matriz A então o sistema linear $Ax = b, b \in \mathbb{R}^3, tem / n\tilde{a}o tem / pode n\tilde{a}o ter solução.$

A4. Para cada uma das afirmações abaixo, provar as verdadeiras e dar um contraexemplo para as falsas:

(a) Se A é uma matriz inversível tal que $A^2 = A$ então $A^{-1} = A = I$.

(b) Se A é uma matriz e x e y são vetores tais que Ax = Ay então x = y.

(c) Se A e B são matrizes simétricas então AB é simétrica.

(d) Se A e B são matrizes inversíveis então AB é inversível.

(e) Se r vetores geram um subespaço então a dimensão desse subespaço é r.

(f) A intersecção de dois subespaços de um mesmo espaço vetoral não pode ser vazia.

A5. Sejam U e V espaços vetoriais, $\mathcal{T}:U\to V$ uma $transformação\ linear$ e considere o subconjunto de U, $N = \{x \in U \mid \mathcal{T}(x) = 0\}$. Dizemos que \mathcal{T} é injetora se para quaisquer $x, y \in U$ temos que $\mathcal{T}(x) = \mathcal{T}(y)$ implica em x = y. Mostre que:

(a) N é um subespaço vetorial de U.

(b) \mathcal{T} é injetora se e somente se $N = \{0\}$.

Cálculo Diferencial e Integral - 1998 (1)

C1. Mostre que:

(a)
$$\lim_{n \to 0} \left(\frac{1 + a^n}{2} \right)^{1/n} = \sqrt{a}, \quad \forall a > 0.$$

(b)
$$1^2 - 2^2 + 3^2 - 4^2 + \dots + (2n-1)^2 = n(2n-1), \forall n \in \mathbb{N}.$$

Observação: $IN = \{1, 2, 3, ...\}.$

- C2. Seja (a_n) uma seqüência em IR definida por $a_1 = 1$ e $a_{n+1} = a_n(2 a_n/2), \forall n \in IN$.
 - (a) Mostre que $1 \le a_n \le 2, \forall n \in \mathbb{N}$.
 - (b) Mostre que $a_{n+1} \geq a_n$, $\forall n \in \mathbb{N}$.
 - (c) Usando (a) e (b) mostre que (a_n) converge para 2.
- C3. Uma função $f: \mathbb{R} \to \mathbb{R}$ é par se f(-x) = f(x) para todo $x \in \mathbb{R}$ e é *impar* se f(-x) = -f(x) para todo $x \in \mathbb{R}$. Seja $f'(x) = \frac{d}{dx}f(x)$ e $F(x) = \int_0^x f(t)dt$. Mostre que:
 - (a) Se f é par então f' é impar.
 - (b) Se f é impar então F é par.
- C4. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \int_0^{g(x)} h(t) dt$, onde $h: \mathbb{R} \to \mathbb{R}$ é uma função diferenciável estritamente positiva e $g(x) = 3x x^3$. Encontre todos os zeros e pontos críticos da função f, classificando-os.
- C5. A equação do movimento de um pêndulo simples é dada pela solução do problema de valor inicial

$$\theta''(t) + 2\sin\theta(t) = 0, \quad \theta(0) = \pi/2, \quad \theta'(0) = 0,$$

onde θ é o ângulo que o pêndulo faz com a vertical e $t \geq 0$ é a variável temporal. Utilizando a aproximação de Taylor, mostre que para t suficientemente pequeno,

$$\theta(t) \approx \frac{\pi}{2} - t^2 - \frac{t^5}{15} .$$

Álgebra Linear - 1998 (2)

- A1. Prove que a intersecção de dois planos em \mathbb{R}^3 não pode estar formada por um único ponto. Que acontece em \mathbb{R}^4 ? Comente todas as formas em que dois planos em \mathbb{R}^4 podem se intersecar.
- A2. Considere o espaço vetorial das funções de $I\!\!R$ em $I\!\!R$. Nesse espaço, considere o subconjunto formado pelas funções afins, isto é, pelas funções cujo gráfico é uma reta. Prove que esse conjunto é um subespaço, determine sua dimensão, exiba uma base e justifique tudo rigorosamente.
- A3. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz não singular. Suponha que A = LU, onde L e U são também matrizes quadradas de dimensão n, L é triangular inferior com a diagonal formada por 1's e U é triangular superior. Qual o determinante de U? Prove sua resposta por indução sobre n. Qual o determinante de A? Justifique rigorosamente.
- A4. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica e definida positiva $(x^T A x > 0 \forall x \neq 0)$. Sejam $s, y \in \mathbb{R}^n$ tais que $s^T y > 0$. Defina

$$B = A + \frac{ss^T}{s^Ty} - \frac{Ayy^TA}{y^TAs} .$$

Prove que B é definida positiva. (Notação: os vetores são colunas e T significa "transposto".)

A5. Uma matriz $Q \in I\!\!R^{n \times n}$ tem a propriedade de que o comprimento (euclidiano) de Qx é igual ao comprimento de x, para todo $x \in I\!\!R^n$. Sejam u e v dois vetores de $I\!\!R^n$. Qual é a relação do ângulo que formam Qu e Qv com o ângulo que formam u e v? Justifique rigorosamente.

Cálculo Diferencial e Integral - 1998 (2)

- C1. A função $f: I\!\!R \to I\!\!R$ tem derivada contínua nula para todo $x \in I\!\!R$. Prove que f é constante.
- C2. A função $f: \mathbb{R} \to \mathbb{R}$ é contínua para todo $x \in \mathbb{R}$ e satisfaz $f(x) \geq 0$ para todo $x \in \mathbb{R}$. Sabe-se que $\int_{-\infty}^{\infty} f(x) dx = 0$. O que você pode afirmar sobre os valores de f(x) para $x \in \mathbb{R}$? Prove sua afirmação.
- C3. Usando o Teorema de Green, $\int_C P dx + Q dy = \int \int_R \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dx dy$, descreva uma maneira de calcular aproximadamente a área de uma figura plana delimitada por uma curva fechada C.
- C4. Quantas soluções tem a equação $2^x+2^{-x}=3$? Justifique rigorosamente sua resposta.
- C5. Uma corda vibra de acordo com a equação da onda $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$ para $x \in [0,1], t \geq 0$. Sua posição u(x,t) em cada instante do tempo t vem dada por u(x,t) = f(t-x), onde $f: \mathbb{R} \to \mathbb{R}$. Para $t \geq 10$ o extremo esquerdo da corda (x=0) está fixo. A partir de que instante a corda inteira está em repouso? Justifique.

Álgebra Linear - 1999

- A1. Seja $\Gamma = \{v_1, v_2, v_3\}$ uma base para um espaço vetorial $(E, +, \cdot)$.
 - (a) Mostre que $\beta = \{v_1, v_1 + v_2, -v_+v_2 + v_3\}$ é também uma base para E.
 - (b) Se o elemento $v \in E$ tem coordenadas $[v]_{\Gamma} = (2, -1, 1)$ em relação à base Γ , quais são as suas coordenadas em relação à base β ?
- A2. Considere os seguintes subconjuntos do espaço vetorial das matrizes reais $n \times n$, $(M_n(I\!\!R),+,\cdot)$:

$$S = \{A \in M_n(\mathbb{R}) \mid A^T = A\}$$
 e $W = \{A \in M_n(\mathbb{R}) \mid A^T = -A\}$.

- (a) Mostre que S e W são subespaços vetoriais de $(M_n(\mathbb{R}), +, \cdot)$.
- (b) Encontre uma base para os subespaços S e W para o caso em que n=3.
- (c) Mostre que $M_n(\mathbb{R}) = S \oplus W$.
- A3. Sejam $(E, +, \cdot)$ um espaço vetorial real e $T: E \to E$ uma transformação linear.
 - (a) Se $\lambda = 0$ é um autovalor de T, mostre que T não é injetora.
 - (b) A recíproca do item (a) é verdadeira? Justifique.
- A4. Considere a seguinte transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(x, y, z) = (y + z, x + z, x + y + 2z)$$
,

e as seguintes bases para o espaço \mathbb{R}^3 :

$$\beta = \{(1,0,0), (0,1,0), (0,0,1)\} \quad \text{e} \quad \Gamma\{(1,0,1), (0,1,1), (0,0,1)\} \ .$$

- (a) Determine $[T]^{\beta}_{\beta}$ e $[T]^{\Gamma}_{\beta}$.
- (b) Determine Im(T) e dim(Im(T)).
- (c) Encontre os autovalores e autovetores da transformação T.
- (d) Encontre uma base α para o \mathbb{R}^3 de modo que $[T]^{\alpha}_{\alpha}$ seja uma matriz diagonal.
- A5. Determine todos os valores dos parâmetros a e b de modo que a matriz A dada abaixo seja diagonalizável. Para esses valores de a e b, determine uma matriz inversível P e a matriz diagonal D tais que $P^{-1}AP = D$.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ a & 2 & 0 \\ 0 & b & 2 \end{pmatrix} .$$

Cálculo Diferencial e Integral - 1999

- C1. Determine os pontos de máximo e de mínimo no intervalo [-2,2] da função f(x) = |3x| + |2x 1|.
- C2. Determine o polinômio de Taylor de segunda ordem em torno de x=0 para a função y(x) dada implicitamente por

$$xy + \sin y = 0 \quad \text{com} \quad y(0) = \pi \ .$$

- C3. Considere a série de potências $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$.
 - (a) Determine o raio de convergência da série.
 - (b) Determine o domínio da função f(x) definida pela série acima.
- C4. Considere que a função $T(x,y) = 9x^2 y^2$ represente uma distribuição de temperatura em \mathbb{R}^2 . Considere o domínio de T os pontos $(x,y) \in \mathbb{R}^2$ tais que $T(x,y) \geq 0$.
 - (a) Esboce o gráfico da função T.
 - (b) Dê a equação dos pontos $(x, y) \in \mathbb{R}^2$ cuja temperatura seja sempre 5.
 - (c) A partir do ponto $(1,2) \in \mathbb{R}^2$ dê a direção e sentido para os quais a temperatura tem maior taxa de variação. Em seguida dê o valor desta taxa.
 - (d) Obtenha os pontos de maior e menor temperatura sobre a reta y x + 1 = 0.
- C5. Determine os limites abaixo justificando os argumentos utilizados:

(a)
$$\lim_{x \to 0} \frac{\int_0^x \sin t^3 dt}{x^4}$$
.

(b)
$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$$
.

Álgebra Linear - 2000 (1)

- A1. Escreva V (para verdadeira) o F (para falsa) relativamente às afirmações abaixo, provando o que afirmar.
 - (a) As soluções de um sistema linear homogêneo (Ax = 0) formam um subespaço vetorial.
 - (b) Os vetores de \mathbb{R}^6 que têm algum elemento nulo formam um subespaço vetorial.
 - (c) Qualquer conjunto $S \subset \mathbb{R}^n$ que verifique

Se
$$v \in S$$
 então $\lambda v \in S \ \forall \lambda \in IR$

forma um subespaço vetorial.

- A2. Exiba um sistema linear de equações que tenha exatamente 5 soluções, ou prove que tal coisa é impossível.
- A3. Sejam L_1 e L_2 duas retas de \mathbb{R}^3 . Sejam $P \in L_1$, $Q \in L_2$ os pontos que realizam a distância entre L_1 e L_2 . Em outras palavras, a distância entre P e Q é igual a distância entre L_1 e L_2 . Qual é a relação entre o vetor Q P e os vetores geradores de L_1 e L_2 ? Justifique.
- A4. O que significam os autovalores e os correspondentes autovetores de uma matriz real de dimensão 3×3 ?

Cálculo Diferencial e Integral - 2000 (1)

C1. Seja
$$F(x) = \int_0^{x^2} \cos t \, dt$$
.

- (a) Mostre que F é crescente no intervalo $[0, \sqrt{\pi/2}]$.
- (b) Determine a equação da reta tangente ao gráfico de F no ponto de abscissa $x = \sqrt{\pi/2}$.
- C2. (a) Represente a região do plano cartesiano limitada pelos gráficos de $y_1=x,\,y_2=x^2$ e $y_3=\frac{4}{x-1}$.
 - (b) Calcule o valor da área da região representada no ítem (a).
- C3. Seja S a superfície de nível da função $f: \mathbb{R}^3 \to \mathbb{R}$ associada à constante c=10. Sabemos que f(1,3,5)=10 e $\nabla f(1,3,5)=(2,4,9)$. Escreva e explique a equação do plano tangente a S que passa por (1,3,5).
- C4. Considere a curva $\gamma(t)=(t, \text{sen }t), t\in [0,\pi]$ e o campo vetorial $F(x,y)=(x^2,x-y)$.
 - (a) Represente o traço (imagem) da curva $\gamma.$
 - (b) Calcule $\int_{\gamma} F \cdot d\gamma$.
 - (c) Interprete fisicamente o valor obtido no item (b) supondo que F representa uma força atuando numa partícula ao longo de γ .

Álgebra Linear - 2000 (2)

A1. Considere o sistema linear

$$\begin{cases} 2x + y = b \\ x + ay = 1 \end{cases}.$$

Para cada um dos itens abaixo, pede-se a e b de modo que: (a) O sistema tenha infinitas soluções.

- (b) O sistema não tenha solução.
- (c) O sistema tenha apenas uma solução.
- A2. O conjunto de vetores $\{v_1,\ldots,v_m\}$ de \mathbb{R}^n se diz qualificado se

$$\sum_{i=1}^{m} \lambda_i v_i = 0 \text{ e } \lambda_1 \geq 0, \dots, \lambda_m \geq 0$$

implica que

$$\lambda_1 = 0, \ldots, \lambda_m = 0$$
.

Que relação existe entre conjuntos linearmente independentes e conjuntos qualificados? Se os conceitos não são equivalentes, exiba um conjunto de vetores que satisfaça uma definição e não a outra.

A3. Seja M uma matriz simétrica com todos seus autovalores diferentes e positivos. Uma idéia para obter aproximadamente um autovetor associado ao maior dos autovalores é partir de um vetor v e fazer

$$w_1 = Mv, \ w_2 = Mw_1, \ w_3 = Mw_2$$

e assim sucessivamente. Acha que isto "funciona"? Que pode acontecer com a seqüência de vetores w_k ? Por que?

A4. Prove que se A é uma matriz real de n linhas e n colunas e seu determinante é diferente de zero, então

$$\det(A^{-1}) = \frac{1}{\det(A)} .$$

Cálculo Diferencial e Integral - 2000 (2)

- C1. Seja R a região do plano limitado pelas curvas $y = x^3$ e $x = y^3$. Calcule a área de R. Expresse o perimetro de R em termos de uma integral definida.
- C2. A equação da velocidade de queda v(t) de um para-quedista é dada por

$$\frac{dv}{dt} = g - K(v/v_m)^n, \ t \ge 0, v(0) = 0,$$

onde $g, K, v_m > 0$ e n > 0 são constantes.

- (a) Obtenha as soluções da equação para n = 1.
- (b) Mostre que a função v(t) é limitada superiormente no caso n=1.
- C3. A função positiva y é dada implicitamente pela equação

$$\ln\sqrt{x^2 + y^2} = 1 - y \ .$$

- (a) Determine, implicitamente, $\frac{dy}{dx}$.
- (b) Determine, implicitamente, $\frac{d^2y}{dx^2}$.
- (c) Mostre que y tem um ponto de máximo local em x = 0.
- C4. A função $f: \mathbb{R} \to \mathbb{R}$ se diz convexa se, para todo $\lambda \in [0,1]$, e para todo $x, y \in \mathbb{R}$,

$$f[\lambda x + (1 - \lambda)y] \le \lambda f(x) + (1 - \lambda)f(y) .$$

Sejam f e g funções convexas. Definimos, para todo $x \in \mathbb{R}$,

$$h(x) = \text{ máximo } \{f(x), g(x)\}$$

e

$$u(x) = \min\{f(x), g(x)\}$$
.

A função h é convexa? A função u é convexa? Prove ou forneça contra-exemplos.

Álgebra Linear – 2001 (1)

- A1. Seja A uma matriz quadrada tal que $A^2 2A + I = 0$ onde I denota a matriz identidade.
 - (a) Mostre que A é invertível e determine a sua inversa.
 - (b) Mostre que todos os autovalores de A são iguais a 1.
 - (c) Exiba um exemplo para A de ordem 2, diferente de I.
- A2. Encontre a matriz A com as seguintes características:
 - (i) é simétrica;
 - (ii) o sistema linear Ax = b pode ou não ter solução dependendo do vetor b;
 - (iii) (1, 1, 1) é um autovetor associado ao autovalor 3;
 - (iv) os elementos da diagonal principal são todos iguais.
- A3. Seja V um subespaço vetorial de \mathbb{R}^n munido da norma euclidiana $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$.

Uma transformação linear $T: V \to V$ com a propriedade ||T(x)|| = ||x||, para todo $x \in V$, é denominada uma isometria sobre V. Mostre que:

- (a) $\mathcal{N}(T) = \{0\}$ onde \mathcal{N} denota núcleo ou kernel.
- (b) Se T é uma isometria então T é sobrejetora.
- (c) Se T é uma isometria então a inversa T^{-1} é uma isometria.
- (d) Se T_1 e T_2 são isometrias então a composta $T_1 \circ T_2$ é uma isometria.
- A4. Seja $u \in \mathbb{R}^n$ tal que $\langle u, u \rangle = 1$, onde $\langle \cdot, \cdot \rangle$ denota o produto interno canônico em \mathbb{R}^n . Considere os seguintes conjuntos

$$S = \{ x \in \mathbb{R}^n \mid \langle u, x \rangle \le 1 \} \quad \text{e} \quad C = \{ x \in \mathbb{R}^n \mid 2\langle u, x \rangle \ge \sqrt{2\langle x, x \rangle} \} .$$

- (a) Descreva geometricamente os conjuntos $S \in C$.
- (b) Esboçe num gráfico os conjuntos $S \in C$ para n = 2 e $u = \left(\frac{3}{5}, \frac{4}{5}\right)$.
- (c) Encontre a área da região $S \cap C$ do item (b).
- A5. Considere o seguinte conjunto: $L = \{x \in \mathbb{R}^3 \mid x_1 + 2x_2 + 3x_3 = 4\}$. Dado $y \in \mathbb{R}^3$:
 - (a) Encontre a projeção ortogonal de y sobre L.
 - (b) Calcule a distância de y a L.
 - (c) Encontre o ponto simétrico a y em relação a L.

Cálculo Diferencial e Integral - 2001 (1)

C1. (a) Mostre por indução finita que para todo natural n

$$(1+1^{-1})(1+2^{-1})(1+3^{-1})\cdots(1+n^{-1})=n+1$$
.

- (b) Mostre que $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}$.
- C2. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua tal que $\lim_{x \to 0} \frac{f(x)}{r} = L < +\infty$.
 - (a) Mostre que f(0) = 0.
 - (b) Mostre que f é diferenciável em x = 0 e que f'(0) = L.
 - (c) Calcule $\lim_{x\to 0} \frac{f(x) + f(-x)}{x} e \lim_{x\to +\infty} e^x f(e^{-x}).$
- C3. (a) Suponha que em cada instante de tempo t a temperatura T(t) de um objeto satisfaz a equação diferencial

$$\frac{d}{dt}T(t) = T(t)[K - T(t)], \quad K > 0.$$

Para que valores de T a temperatura: (a1) permanece inalterada? (a2) aumenta?

(b) Mostre que se $0 < |a| \le 1$ o problema de valor inicial

$$\sqrt{f'(x)^2 + f(x)^2} = f'(x) f(x) , \quad f(0) = a ,$$

não admite solução.

C4. De acordo com o *Teorema de Green* a área da região $D \subset \mathbb{R}^2$ encerrada pela curva fechada C, orientada no sentido anti-horário, é dada por

$$A = \int \int_D dx dy = \frac{1}{2} \oint_C x \, dy - y \, dx \, .$$

- (a) Através da parametrização $x=a\cos\theta$ e $y=b\mathrm{sen}\theta$ encontre a área da elipse de semi-eixos a e b.
- (b) Encontre a área delimitada pelo polígono de vértices em (0,0), (4,1), (5,5), (2,2) e (1,5).
- C5. Considere a sequência $f_n(x) = nx^n$, n natural, definida para $x \in [0, 1]$. Calcule

$$I_1 = \int_0^1 \lim_{n \to \infty} f_n(x) dx$$
 e $I_2 = \lim_{n \to \infty} \int_0^1 f_n(x) dx$

e explique por que $I_1 \neq I_2$.

Álgebra Linear – 2001 (2)

- A1. Sejam $A \in B$ duas matrizes tais que $A \cdot B = 0$ e A + B = I, onde 0 é a matriz nula e I é a matriz identidade. Encontre, se possível, exemplos para $A \in B$ tais que:
 - (a) A e B são singulares.
 - (b) A e B são não singulares.
 - (c) A é não singular e B é singular.
- A2. Mostre que se os vetores $\{v_1, v_2, \dots, v_n\} \subset \mathbb{R}^n$ são linearmente independentes então também o são os vetores $\{v_1 + v_2, v_2 + v_3, \dots, v_n + v_1\} \subset \mathbb{R}^n$.
- A3. Seja $A \in I\!\!R^{n \times n}$ com todos os autovalores distintos e em módulo menores que 1. Mostre que:
 - (a) I A é não singular, onde I denota a matriz identidade.
 - (b) $I + A + A^2 + A^3 + \dots = (I A)^{-1}$.
- A4. Dados $0 \neq x \in \mathbb{R}^n$ e $y \in \mathbb{R}^n$ definimos o indicador

$$S(x,y) = \min_{\alpha \in \mathbb{R}} \frac{\|x - \alpha y\|}{\|x\|} ,$$

- onde $\|\cdot\|$ denota uma norma qualquer em \mathbb{R}^n .
- (a) Mostre que $0 \le S(x, y) \le 1$.
- (b) Quando S(x, y) atinge o seu valor mínimo?
- (c) Interprete S(x,y) geometricamente.
- (d) Mostre que no caso em que $\|\cdot\|$ é a norma euclidiana e $y \neq 0$, S(x, y) é o seno do menor ângulo formado pelos vetores $x \in y$.
- A5. Seja $T: I\!\!R^n \to I\!\!R^m$ uma transformação linear.
 - (a) Mostre que T é injetora se e somente se o núcleo de T contém apenas o vetor nulo.
 - (b) Enuncie uma condição necessária para que T seja sobrejetora.
 - (c) Para n=2 e m=3 exiba um exemplo de T injetora, provando a sua afirmação.
 - (d) Para n=3 e m=2 exiba um exemplo de T sobrejetora, provando a sua afirmação.

Cálculo Diferencial e Integral - 2001 (2)

C1. (a) Encontre todas as raízes da equação $x^2 - \cos x + 1 = 0$.

(b) Mostre que
$$\sum_{n=1}^{\infty} \left[\frac{1 - \cos 2x}{2} \right]^n = \tan^2 x.$$

- C2. Seja $f: [-1,1] \to \mathbb{R}$ uma função diferenciável. Para cada uma das sentenças abaixo, diga se é falsa ou verdadeira, justificando a sua afirmação:
 - (a) Existe $c_0 \in [-1, 1]$ tal que $f(c_0) = [f(1) + f(-1)] / 2$.
 - (b) Existe $c_1 \in [-1, 1]$ tal que $f'(c_1) = [f(1) f(-1)] / 2$.
 - (c) Existe $c_2 \in [-1, 1]$ tal que $f'(c_2) = 0$.
- C3. (a) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável tal que f(0) = 1 e f'(0) = 6 e considere $F(x) = \int_0^x \sqrt[3]{f(t)} dt$. Mostre que para |x| suficientemente pequeno $F(x) \approx x + x^2$.
 - (b) Determine a função $g:[0,1]\to I\!\!R$, contínua, tal que para todo $x\in[0,1]$,

$$\int_0^x g(t) \ dt = \int_x^1 g(t) \ dt \ .$$

- C4. Considere a equação diferencial ordinária de segunda ordem, $x^2y''(x) + xy'(x) + y(x) = 2$, com condições iniciais y(1) = y'(1) = 1, válida para $x \in [0, 1]$. Mostre que $\int_0^1 y(x) \ dx = 1$.
- C5. Considere as integrais de linha

$$I_1 = \oint_C 2x e^y dx + x^2 e^y dy e I_2 = \oint_C x e^y dx + x^2 e^y dy$$

onde C é uma curva contínua que une os pontos (0,0) e (1,1).

- (a) Qual dessas integrais pode ser calculada sem que seja dada nenhuma informação adicional sobre a curva C? Justifique.
- (b) Calcule a integral indicada em (a).

Álgebra Linear – 2002 (1)

- A1. Seja $A \in \mathbb{R}^{n \times n}$ a matriz definida por $a_{ij} = \begin{cases} 1 & , & i \geq j \\ 0 & , & i < j \end{cases}$, para todo $i, j = 1, \ldots, n$.
 - (a) Mostre que A é não singular.
 - (b) Encontre os autovalores de A.
 - (c) Resolva o sistema linear Ax = b para $b = (1, 2, 3, ..., n)^T$.
 - (d) Mostre que se $C = AA^T$ então $c_{ij} = \text{Mínimo } \{i, j\}.$
- A2. Seja $d \neq 0$ um vetor em $I\!\!R^n$ e denotemos por $\langle \cdot, \cdot \rangle$ o produto interno canônico em $I\!\!R^n$. Considere os conjuntos

$$H = \{x \in \mathbb{R}^n \mid \langle d, x \rangle = 0\}$$
 e $C = \{x \in \mathbb{R}^n \mid \langle x, x \rangle = 1\}$.

- (a) Mostre que H é um subespaço vetorial de \mathbb{R}^n .
- (b) Mostre que C não é um subespaço vetorial de \mathbb{R}^n .
- (c) Faça um gráfico para n=2 ilustrando os conjuntos H e C.
- A3. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por T(x, y) = (x y, x + y).
 - (a) Mostre que T é uma transformação linear.
 - (b) Encontre o núcleo e a imagem de T.
 - (c) T é injetora? Justifique.
- A4. Seja A uma matriz quadrada com elementos reais e (α, u) e (β, v) dois pares de autovalor-autovetor com $\alpha \neq \beta$. Mostre que:
 - (a) u e v são linearmente independentes.
 - (b) Se A é simétrica então u e v são ortogonais.
- A5. Considere a matriz $P = \frac{uu^T}{u^T u}$, onde $0 \neq u \in \mathbb{R}^n$.
 - (a) Compute P^k para $k = 1, 2, 3, \ldots$
 - (b) P é invertível? Justifique.
 - (c) Mostre que o traço de P é igual a 1.

Cálculo Diferencial e Integral - 2002 (1)

C1. Considere os Números de Fermat definidos por $F_n = 2^{2^n} + 1$ para todo natural n. Prove por indução finita que para todo natural n,

$$F_0F_1...F_{n-1} = F_n - 2$$
.

- C2. Prove que a equação $e^x + x = 1 + e^{-x}$ tem uma e apenas uma raiz real.
- C3. (a) Seja h uma função real diferenciável tal que h(2)=4 e h'(2)=-3, onde h' denota a derivada de h. Encontre

$$\frac{d}{dx} \left[\frac{h(x)}{x} \right]_{x=2} .$$

(b) Seja g uma função real contínua tal que para todo real x,

$$x\sin \pi x = \int_0^{x^2} g(t) \ dt \ .$$

Encontre g(4).

C4. Para α real, considere a expansão em Série de Taylor,

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} C_k x^k$$
.

- (a) Obtenha os coeficientes C_k .
- (b) Qual o valor de C_k quando α é natural?
- C5. Seja f uma função real continuamente diferenciável, satisfazendo a equação

$$xf'(x) = x^2 + f(x)^2 ,$$

para todo $x \in \mathbb{R}$, onde f' denota a derivada de f. Mostre que:

- (a) f(0) = 0.
- (b) f'(0) = 0.