
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Wed Oct 24 12:54:29 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 10622220 Version No: 2.0

Input Set:

Output Set:

Started: 2007-10-05 10:38:12.131 **Finished:** 2007-10-05 10:38:13.684

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 553 ms

Total Warnings: 8
Total Errors: 0

No. of SeqIDs Defined: 20

Actual SeqID Count: 20

Err	or code	Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	402	Undefined organism found in <213> in SEQ ID (17)
W	402	Undefined organism found in <213> in SEQ ID (18)
W	213	Artificial or Unknown found in <213> in SEQ ID (19)
W	213	Artificial or Unknown found in <213> in SEQ ID (20)

SEQUENCE LISTING

```
<110> Nilles, Matthew L.
     Matson, Jyl S.
<120> YERSINIA SPECIES COMPOSITIONS
<130> 3128-6046US
<140> 10622220
<141> 2003-07-18
<150> US 60/444,076
<151> 2003-01-31
<160> 20
<170> PatentIn version 3.2
<210> 1
<211> 87
<212> PRT
<213> Yersinia pestis
<220>
<223> amino acid sequence of YscF
<220>
<223> sequence can be found at MedLine accession number NP_857921.1
<400> 1
Met Ser Asn Phe Ser Gly Phe Thr Lys Gly Thr Asp Ile Ala Asp Leu
                             10
Asp Ala Val Ala Gln Thr Leu Lys Lys Pro Ala Asp Asp Ala Asn Lys
          20
                25
Ala Val Asn Asp Ser Ile Ala Ala Leu Lys Asp Lys Pro Asp Asn Pro
      35
                        40
                                         45
Ala Leu Leu Ala Asp Leu Gln His Ser Ile Asn Lys Trp Ser Val Ile
   50 55 60
Tyr Asn Ile Asn Ser Thr Ile Val Arg Ser Met Lys Asp Leu Met Gln
               70
                                   75
65
Gly Ile Leu Gln Lys Phe Pro
             85
```

<210> 2 <211> 264

```
<212> DNA
<213> Yersinia pestis
<220>
<223> nucliec acids encoding YscF
<220>
<223> sequence can be found at MedLine accession number NL_004839
<400> 2
atgagtaact tetetggatt taegaaagga accgatateg cagaettaga tgeggtgget
                                                                     60
caaacgctca agaagccagc agacgatgca aacaaagcgg ttaatgactc gatagcagca
                                                                    120
ttqaaaqata aqcctqacaa cccqqcqcta cttqctqact tacaacattc aattaataaa
                                                                    180
                                                                    240
tggtcggtaa tttacaatat aaactcaacc atagttcgta gcatgaaaga cttaatgcaa
                                                                    264
ggcatcctac agaagttccc ataa
<210> 3
<211> 264
<212> DNA
<213> Yersinia enterocolitica
<220>
<223> nucleic acid encoding YscF from Y. enterocolitica
<220>
<223> sequence can be found at MedLine accession number NC_005017
<400> 3
atgagtaatt tctctgggtt tgcaaaagga accgatatca cagacttaga tgcggtggct
                                                                     60
caaacgctca agaagccagc agacggcgca aacaaagcgg ttaatgactc gatagcagcg
                                                                  120
ttgaaagaga cgcctgacaa cccggcgcta cttgctgact tacaacattc aattaataaa
                                                                  180
tggtcggtaa tttacaatat aagctcaacc atagttcgta gcatgaaaga cttaatgcaa
                                                                    240
ggcatcctac agaagttccc ataa
                                                                    264
<210> 4
<211> 87
<212> PRT
<213> Yersinia enterocolitica
<220>
<223> amino acid sequence of YscF from Y. enterocolitica
<220>
<223> sequence can be found at MedLine accession number NP_863538.1
```

<400> 4

Met Ser Asn Phe Ser Gly Phe Ala Lys Gly Thr Asp Ile Thr Asp Leu Asp Ala Val Ala Gln Thr Leu Lys Lys Pro Ala Asp Asp Ala Asn Lys 20 25 30 Ala Val Asn Asp Ser Ile Ala Ala Leu Lys Asp Thr Pro Asp Asn Pro 35 40 45 Ala Leu Leu Ala Asp Leu Gln His Ser Ile Asn Lys Trp Ser Val Ile 55 60 Tyr Asn Met Ser Ser Thr Ile Val Arg Ser Met Lys Asp Leu Met Gln 75 Gly Ile Leu Gln Lys Phe Pro 85 <210> 5 <211> 80 <212> PRT <213> Salmonella enterica <220> <223> amino acid sequence of PrgI <220> <223> sequence can be found at MedLine accession number CAD05980.1 <400> 5 Met Pro Thr Ser Trp Ser Gly Tyr Leu Asp Glu Val Ser Ala Lys Phe 10 Asp Lys Gly Val Asp Asn Leu Gln Thr Gln Val Thr Glu Ala Leu Asp 20 25 30 Lys Leu Ala Ala Lys Pro Ser Asp Pro Ala Leu Leu Ala Ala Tyr Gln 40 35 Ser Lys Leu Ser Glu Tyr Asn Leu Tyr Arg Asn Ala Gln Ser Asn Thr 50 55 60 Val Lys Val Phe Lys Asp Ile Asp Ala Ala Ile Ile Gln Asn Phe Arg

65 70 75 80

```
<211> 243
<212> DNA
<213> Salmonella enterica
<220>
<223> sequence can be found at MedLine accession number AL627276
<220>
<223> nucleic acid encoding PrgI
<400> 6
atgccaacat cttggtcagg ctatctggat gaagtttcag caaaatttga taagggcgtt
gataatctac aaacgcaggt aacagaggcg ctggataaat tagcagcaaa accctccgat
                                                                   120
ccggcgctac tggcggcgta tcagagtaag ctctcggaat ataacttgta ccgtaacgcg
                                                                  180
caatcgaaca cggtaaaagt ctttaaggat attgatgctg ccattattca gaacttccgt
                                                                    240
                                                                    243
taa
<210> 7
<211> 83
<212> PRT
<213> Shigella flexneri
<220>
<223> amino acid sequence of MxiH
<220>
<223> sequence can be found at MedLine accession number NP_858270.1
<400> 7
Met Ser Val Thr Val Pro Asn Asp Asp Trp Thr Leu Ser Ser Leu Ser
              5
                                 10
Glu Thr Phe Asp Asp Gly Thr Gln Thr Leu Gln Gly Glu Leu Thr Leu
           20
                               25
Ala Leu Asp Lys Leu Ala Lys Asn Pro Ser Asn Pro Gln Leu Leu Ala
       35
                           40
                                               45
Glu Tyr Gln Ser Lys Leu Ser Glu Tyr Thr Leu Tyr Arg Asn Ala Gln
Ser Asn Thr Val Lys Val Ile Lys Asp Val Asp Ala Ala Ile Ile Gln
```

75

80

<210> 6

65

70

<210 <211	.>	8 252															
<212 <213		DNA Shige	ella	flex	kneri	-											
<220 <223		nucle	eic a	acid	enco	odino	g Mxi	LH									
<220 <223		seque	ence	can	be f	ound	d at	MedI	Line	acce	essio	n nu	ımbe:	r Nc_	_0048	51	
<400 atga		8 tta o	cagta	accga	aa to	gatga	attgo	g aca	attga	agtt	catt	atct	:ga a	aactt	ttga [.]	t	60
gato	ıgaa	ctc a	aaca	attac	ca aç	ggtga	aacta	a aca	attgo	gcac	taga	ıtaaa	ıtt a	agcta	ıaaaa	t	120
cctt	cga	atc d	cacaç	gttgo	ct go	gctga	aatao	c caa	aagta	aat	tato	tgaa	ıta t	cacat	tata	t	180
agga	acg	cgc a	atco	caata	ac aç	gtgaa	aagto	g att	aagg	gatg	ttga	ıtgct	gc a	aatta	ittca	a	240
aact	tca	gat a	aa														252
<210 <211	.>	9 73															
<212 <213		PRT Esche	erich	nia d	coli												
<220	1 <																
<223		amino	aci	id se	equer	nce o	of Es	scF									
<220 <223		seque	ence	can	be f	ounc	d at	MedI	Line	acce	essio	on nu	ımbe:	r NP_	_3125	79.1	
< 400)>	9															
Met 1	Asn	Leu	Ser	Glu 5	Ile	Thr	Gln	Gln	Met 10	Gly	Glu	Val	Gly	Lys 15	Thr		
Leu	Ser	Asp	Ser 20	Val	Pro	Glu	Leu	Leu 25	Asn	Ser	Thr	Asp	Leu 30	Val	Asn		
Asp	Pro	Glu 35	Lys	Met	Leu	Glu	Leu 40	Gln	Phe	Ala	Val	Gln 45	Gln	Tyr	Ser		
Ala	Tyr 50	Val	Asn	Val	Glu	Ser 55	Gly	Met	Leu	Lys	Thr	Ile	Lys	Asp	Leu		

65 70

<220>

```
<210> 10
<211> 222
<212> DNA
<213> Escherichia coli
<220>
<223> nucleic acid encoding EscF
<220>
<223> sequence can be found at MedLine accession number NC_002695
<400> 10
atgaatttat ctgaaattac tcaacaaatg ggtgaagtag gtaaaacgct gagcgattct
                                                                     60
gtgccagagt tacttaatag caccgatttg gttaatgacc ctgaaaaaat gttagagttg
                                                                    120
cagtttgcgg ttcagcaata ttctgcttat gttaacgtag aaagtggaat gttgaaaacg
                                                                    180
                                                                    222
ataaaagatc tggtctcaac catttctaac cgtagttttt aa
<210> 11
<211> 240
<212> DNA
<213> Yersinia pestis
<220>
<223> nucleic acid encoding HT-YscF; an example of a recombinant YscF
<220>
<221> misc_feature
<222> (214)..(237)
<223> His-tag sequence
<400> 11
atgagtaact tetetggatt tacgaaagga accgatgatg caaacaaage ggttaatgae
                                                                     60
tcgatagcag cattgaaaga taagcctgac aacccggcgc tacttgctga cttacaacat
                                                                    120
tcaattaata aatggtcggt aatttacaat ataaactcaa ccatagttcg tagcatgaaa
                                                                    180
                                                                    240
gacttaatgc aaggcatcct acagaagttc ccactcgagc accaccacca ccaccactga
<210> 12
<211> 95
<212> PRT
<213> Yersinia pestis
<220>
<223>
      amino acid sequence of HT-YscF; an example of a recombinant YscF
```

```
<221> misc_feature
<222> (88)..(95)
<223> His-tag
<400> 12
Met Ser Asn Phe Ser Gly Phe Thr Lys Gly Thr Asp Ile Ala Asp Leu
    5
                   10
Asp Ala Val Ala Gln Thr Leu Lys Lys Pro Ala Asp Asp Ala Asn Lys
                  25
          20
                                           30
Ala Val Asn Asp Ser Ile Ala Ala Leu Lys Asp Lys Pro Asp Asn Pro
      35
                40
Ala Leu Leu Ala Asp Leu Gln His Ser Ile Asn Lys Trp Ser Val Ile
       55
Tyr Asn Ile Asn Ser Thr Ile Val Arg Ser Met Lys Asp Leu Met Gln
65
           70
                                  75
Gly Ile Leu Gln Lys Phe Pro Leu Glu His His His His His
          85
                 90
<210> 13
<211> 5537
<212> DNA
<213> Artificial Sequence
<220>
<223> pMJ119
<220>
<221> misc_feature
<222> (563)..(1375)
<223> kan encoded on complementary strand
<220>
<221> misc_feature
<222> (3518)..(4597)
<223> LacI encoded on complementary strand
<220>
<221> promoter
<222> (4983)..(5000)
<223> T7 promoter
<220>
<221> misc_feature
<222> (5001)..(5001)
```

<223> T7 transcription start

```
<220>
<221> misc_feature
<222> (5072)..(5104)
<223> T7 Tag
<220>
<221> CDS
<222> (5114)..(5401)
<223> HT-YscF
<220>
<221> misc_feature
<222> (5381)..(5398)
<223> His-tag sequence
<220>
<221> terminator
<222> (5466)..(5512)
<223> T7 terminator
<400> 13
                                                                      60
tggcgaatgg gacgcgcct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc
                                                                     120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg
                                                                     180
                                                                     240
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt
                                                                     300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc
                                                                     360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta
                                                                     420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt
                                                                     480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta
                                                                     540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat
                                                                     600
                                                                     660
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa
actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc
                                                                     720
gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga
                                                                     780
                                                                     840
aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc
agacttqttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac
                                                                     900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac
                                                                     960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat
                                                                    1020
                                                                    1080
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag
```

tggtgagtaa	ccatgcatca	tcaggagtac	ggataaaatg	cttgatggtc	ggaagaggca	1140
taaattccgt	cagccagttt	agtctgacca	tctcatctgt	aacatcattg	gcaacgctac	1200
ctttgccatg	tttcagaaac	aactctggcg	catcgggctt	cccatacaat	cgatagattg	1260
tegeacetga	ttgcccgaca	ttatcgcgag	cccatttata	cccatataaa	tcagcatcca	1320
tgttggaatt	taatcgcggc	ctagagcaag	acgtttcccg	ttgaatatgg	ctcataacac	1380
cccttgtatt	actgtttatg	taagcagaca	gttttattgt	tcatgaccaa	aatcccttaa	1440
cgtgagtttt	cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	1500
gatccttttt	ttctgcgcgt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	1560
gtggtttgtt	tgccggatca	agagctacca	actcttttc	cgaaggtaac	tggcttcagc	1620
agagcgcaga	taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	1680
aactctgtag	caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	ggctgctgcc	1740
agtggcgata	agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	1800
cagcggtcgg	gctgaacggg	gggttcgtgc	acacagccca	gcttggagcg	aacgacctac	1860
accgaactga	gatacctaca	gcgtgagcta	tgagaaagcg	ccacgcttcc	cgaagggaga	1920
aaggcggaca	ggtateeggt	aagcggcagg	gtcggaacag	gagagcgcac	gagggagctt	1980
ccagggggaa	acgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	2040
cgtcgatttt	tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	2100
gcctttttac	ggtteetgge	cttttgctgg	ccttttgctc	acatgttctt	tcctgcgtta	2160
tecectgatt	ctgtggataa	ccgtattacc	gcctttgagt	gagctgatac	cgctcgccgc	2220
agccgaacga	ccgagcgcag	cgagtcagtg	agcgaggaag	cggaagagcg	cctgatgcgg	2280
tattttctcc	ttacgcatct	gtgcggtatt	tcacaccgca	tatatggtgc	actctcagta	2340
caatctgctc	tgatgccgca	tagttaagcc	agtatacact	ccgctatcgc	tacgtgactg	2400
ggtcatggct	gcgccccgac	acccgccaac	acccgctgac	gcgccctgac	gggcttgtct	2460
gctcccggca	tccgcttaca	gacaagctgt	gaccgtctcc	gggagctgca	tgtgtcagag	2520
gttttcaccg	tcatcaccga	aacgcgcgag	gcagctgcgg	taaagctcat	cagcgtggtc	2580
gtgaagcgat	tcacagatgt	ctgcctgttc	atccgcgtcc	agctcgttga	gtttctccag	2640
aagcgttaat	gtctggcttc	tgataaagcg	ggccatgtta	agggcggttt	tttcctgttt	2700
ggtcactgat	gcctccgtgt	aagggggatt	tctgttcatg	ggggtaatga	taccgatgaa	2760

acgagagagg atgo	ctcacga tacgggtta	c tgatgatgaa	catgcccggt	tactggaacg	2820
ttgtgagggt aaac	caactgg cggtatgga	t geggegggae	cagagaaaaa	tcactcaggg	2880
tcaatgccag cgct	ttcgtta atacagatg	t aggtgttcca	cagggtagcc	agcagcatcc	2940
tgcgatgcag atco	cggaaca taatggtgc	a gggcgctgac	ttccgcgttt	ccagacttta	3000
cgaaacacgg aaac	ccgaaga ccattcatg	t tgttgctcag	gtcgcagacg	ttttgcagca	3060
gcagtcgctt cacc	gtteget egegtateg	g tgattcattc	tgctaaccag	taaggcaacc	3120
ccgccagcct agcc	cgggtcc tcaacgaca	g gagcacgatc	atgcgcaccc	gtggggccgc	3180
catgccggcg ataa	atggeet gettetege	c gaaacgtttg	gtggcgggac	cagtgacgaa	3240
ggcttgagcg aggo	gcgtgca agattccga	a taccgcaagc	gacaggccga	tcatcgtcgc	3300
gctccagcga aago	cggtcct cgccgaaaa	t gacccagagc	gctgccggca	cctgtcctac	3360
gagttgcatg ataa	aagaaga cagtcataa	g tgcggcgacg	atagtcatgc	cccgcgccca	3420
ccggaaggag ctga	actgggt tgaaggctc	t caagggcatc	ggtcgagatc	ccggtgccta	3480
atgagtgagc taac	cttacat taattgcgt	t gcgctcactg	cccgctttcc	agtcgggaaa	3540
cctgtcgtgc cago	ctgcatt aatgaatcg	g ccaacgcgcg	gggagaggcg	gtttgcgtat	3600
tgggcgccag ggtg	ggttttt cttttcacc	a gtgagacggg	caacagctga	ttgcccttca	3660
ccgcctggcc ctga	agagagt tgcagcaag	c ggtccacgct	ggtttgccc	agcaggcgaa	3720
aatcctgttt gato	ggtggtt aacggcggg	a tataacatga	gctgtcttcg	gtatcgtcgt	3780
ateceaetae egaç	gatatee geaceaaeg	c gcagcccgga	ctcggtaatg	gcgcgcattg	3840
cgcccagcgc cato	ctgatcg ttggcaacc	a gcatcgcagt	gggaacgatg	ccctcattca	3900
gcatttgcat ggtt	ttgttga aaaccggac	a tggcactcca	gtcgccttcc	cgttccgcta	3960
tcggctgaat ttga	attgcga gtgagatat	t tatgccagcc	agccagacgc	agacgcgccg	4020
agacagaact taat	tgggccc gctaacagc	g cgatttgctg	gtgacccaat	gcgaccagat	4080
gctccacgcc cagt	tcgcgta ccgtcttca	t gggagaaaat	aatactgttg	atgggtgtct	4140
ggtcagagac atca	aagaaat aacgccgga	a cattagtgca	ggcagcttcc	acagcaatgg	4200
catcctggtc atco	cagcgga tagttaatg	a tcagcccact	gacgcgttgc	gcgagaagat	4260
tgtgcaccgc cgct	tttacag gcttcgacg	c cgcttcgttc	taccatcgac	accaccacgc	4320
tggcacccag ttga	atcggcg cgagattta	a tcgccgcgac	aatttgcgac	ggcgcgtgca	4380
gggccagact ggac	ggtggca acgccaatc	a gcaacgactg	tttgcccgcc	agttgttgtg	4440
ccacgcggtt ggga	aatgtaa ttcagctcc	g ccatcgccgc	ttccactttt	tcccgcgttt	4500

tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg	4560
catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct	4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga	4680
tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg	4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc	4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg	4860
cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg	4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga	4980
aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa	5040
ttttgtttaa ctttaagaag gagatataca tatggctagc atgactggtg gacagcaaat	5100
gggtcgggat ccg atg agt aac ttc tct gga ttt acg aaa gga acc gat	5149
Met Ser Asn Phe Ser Gly Phe Thr Lys Gly Thr Asp 1 5 10	
atc gca gac tta gat gcg gtg gct caa acg ctc aag aag cca gca gac	5197
Ile Ala Asp Leu Asp Ala Val Ala Gln Thr Leu Lys Lys Pro Ala Asp	
15 20 25	
gat gca aac aaa gcg gtt aat gac tcg ata gca gca ttg aaa gat aag	5245
Asp Ala Asn Lys Ala Val Asn Asp Ser Ile Ala Ala Leu Lys Asp Lys	
30 35 40	
cct gac aac ccg gcg cta ctt gct gac tta caa cat tca att aat aaa	5293
Pro Asp Asn Pro Ala Leu Leu Ala Asp Leu Gln His Ser Ile Asn Lys	5275
45 50 55 60	
tgg tcg gta att tac aat ata aac tca acc ata gtt cgt agc atg aaa	5341
Trp Ser Val Ile Tyr Asn Ile Asn Ser Thr Ile Val Arg Ser Met Lys	
65 70 75	
gac tta atg caa ggc atc cta cag aag ttc cca ctc gag cac cac cac	5389