Analysis I, II

Contents

1	Log	ic, Sets, and Functions	2
	1.1	Mathematical Induction & The Naturals	2
	1.2	Extensions: Integers, Rationals, Reals	5
		1.2.1 The Insufficiency of the Rationals	5
	1.3	Sets & Set Operations	6
	1.4	Functions	7
		1.4.1 Properties of Functions	7
	1.5	Reals	10
	1.6	Density of Rationals in Reals	12
2	App	pendix	16
	2.1	Tutorials	16
		2.1.1 Tutorial I (Sept. 13)	16

1 Logic, Sets, and Functions

1.1 Mathematical Induction & The Naturals

The **natural numbers**, $\mathbb{N} = \{1, 2, 3, \dots\}$, are specified by the 5 **Peano Axioms**:

- (1) $1 \in \mathbb{N}^{1}$
- (2) every natural number has a successor in $\mathbb N$
- (3) 1 is not the successor of any natural number
- (4) if the successor of x is equal to the successor of y, then x is equal to y^2
- (5) the axiom of induction

The **Axiom of Induction** (AI), can be stated in a number of ways.

¹using 0 instead of 1 is also valid, but we will use 1 here.

²axioms (2)-(4) can be equivalently stated in terms of a successor function s(n) more rigorously, but won't here

Axiom 1.1 (AI.i). Let $S \subseteq \mathbb{N}$ with the properties:

- (a) $1 \in S$
- (b) if $n \in S$, then $n + 1 \in S^3$

then $S = \mathbb{N}$.

³(*a*) is called the **inductive base**; (*b*) the **inductive step**. All AI restatements are equivalent in having both of these, and only differentiate on their specific values.

Example 1.1. Prove that, for every $n \in \mathbb{N}$, $1 + 2 + \cdots + n = \frac{n(n+1)}{2} (\equiv (1))$

Proof (via AI.i). Let S be the subset of \mathbb{N} for which (1) holds; thus, our goal is to show $S = \mathbb{N}$, and we must prove (a) and (b) of AI.i.

- by inspection, $1 \in S$ since $1 = \frac{1(1+1)}{2} = 1$, proving (a)
- assume $n \in S$; then, $1+2+\cdots+n=\frac{n(n+1)}{2}$ by definition of S. Adding n+1 to both sides yields:

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$
 (1)

$$= (n+1)(\frac{n}{2}+1) \tag{2}$$

$$=\frac{(n+1)(n+2)}{2}$$
 (3)

$$=\frac{(n+1)((n+1)+1)}{2} \tag{4}$$

Line (4) is equivalent to statement (1) (substituting n for n+1), and thus if $n \in S$, then $n+1 \in S$ and (b) holds. Thus, by AI.i, $S = \mathbb{N}$ and $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ holds $\forall n \in \mathbb{N}$.

Example 1.2. Prove (by induction), that for every
$$n \in \mathbb{N}$$
, $1^3 + 2^3 + \cdots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$.

Proof. Follows a similar structure to the previous example. Let S be the subset of \mathbb{N} for which the statement holds. $1 \in S$ by inspection ((a) holds), and we prove (b) by assuming $n \in S$ and showing $n+1 \in S$ (algebraically). Thus, by AI.i, $S = \mathbb{N}$ and the statement holds $\forall n \in \mathbb{N}$.

This can also be proven directly (Gauss' method).

Proof (Gauss' method). Let $A(n) = 1 + 2 + 3 + \cdots + n$. We can write $2 \cdot A(n) = 1 + 2 + 3 + \cdots + n$. $\cdots + n + 1 + 2 + 3 + \cdots + n$. Rearranging terms (1 with n, 2 with n - 1, etc.), we can say $2 \cdot A(n) = (n+1) + (n+1) + \cdots$, where (n+1) is repeated n times; thus, $2 \cdot A(n) = n(n+1)$, and $A(n) = \frac{n(n+1)}{2}$.

Axiom 1.2 (AI.ii). Let $S \subseteq \mathbb{N}$ s.t.

(a)
$$m \in S$$

(a)
$$m \in S$$

(b) $n \in S \implies n+1 \in S$

Example 1.3. Using AI.ii, prove that for $n \ge 2$, $n^2 > n + 1$

Proof. Again, very similar to the previous induction examples. Take S to be the subset of $\mathbb N$ for which the statement holds. (a) of AI.ii holds by inspection (where m=2), and (b) holds by assuming $n\in S$ and showing that $n+1\in S$. Thus, $S=\{2,3,4,\dots\}$, and the statement holds $\forall n\geq 2$.

Axiom 1.3 (Principle of Complete Induction, AI.iii). *Let* $S \subseteq \mathbb{N}$ *s.t.*

- (a) $1 \in S$
- (b) if $1, 2, ..., n 1 \in S$, then $n \in S$

then $S = \mathbb{N}$.

Finally, combing AI.ii and AI.iii;

Axiom 1.4 (Al.iv). Let $S \subseteq \mathbb{N}$ s.t.:

- (a) $m \in S$
- (b) if $m, m + 1, ..., m + n \in S$, then $m + n + 1 \in S$

then $\{m, m+1, m+2, \dots\} \subseteq S$.

Theorem 1.1 (Fundamental Theorem of Arithmetic). Every natural number n can be written as a product of one or more primes. 4

⁴1 is not a prime number

Proof of Theorem 1.1. Let S be the set of all natural numbers that can be written as a product of one or more primes. We will use AI.iv to show $S = \{2, 3, \dots\}$.

- (a) holds; 2 is prime and thus $2 \in S$
- suppose that $2, 3, \ldots, 2+n \in S$. Consider 2+(n+1):
 - if 2 + (n+1) is *prime*, then $2 + (n+1) \in S$, as all primes are products of 1 and themselves and are thus in S by definition.
 - if 2+(n+1) is *not prime*, then it can be written as $2+(n+1)=a\cdot b$ where $a,b\in\mathbb{N}$, and 1< a< 2+(n+1) and 1< b< 2+(n+1). By the definition of $S,a,b\in S$, and can thus be written as the product of primes. Let $a=p_1\cdot\dots\cdot p_l$ and $b=q_1\cdot\dots\cdot q_j$, where the p's and q's are prime and $l,j\geq 1$. Then, $a\cdot b$ is a product of primes, and thus so is 2+(n+1). Thus, $2+(n+1)\in S$, and by AI.iv, $S=\{2,3,4,\dots\}$

1.2 Extensions: Integers, Rationals, Reals

Consider the set of naturals $\mathbb{N} = \{1, 2, 3, \dots\}$. Adding 0 to \mathbb{N} defines $\mathbb{N}_0 = \{0, 1, 2, \dots\}$. We define the **integers** as the set $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$, or the set of all positive and negative whole numbers.

Within \mathbb{Z} , we can define multiplication, addition and subtraction, with the neturals of 1 and 0, respectively. However, we cannot define division, as we are not guaranteed a quotient in \mathbb{Z} . This necessitates the **rationals**, \mathbb{Q} . We define

$$\mathbb{Q} = \{ \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}.$$

On \mathbb{Q} , we have the familiar operations of multiplication, addition, subtraction and properties of associativity, distributivity, etc. We can also define division, as $\frac{\frac{p}{q}}{\frac{p'}{p'}} = \frac{pq'}{qp'}$.

We can also define a relation < between fractions, such that

- x < y and $y < z \implies x < z$
- $x < y \implies x + z < y + z$

Q, together with its operations and relations above, is called an **ordered field**.

1.2.1 The Insufficiency of the Rationals

We can consider historical reasoning for the extension of \mathbb{Q} to \mathbb{R} . Consider a right triangle of legs a, b and hypotenuse c. By the Pythagorean Theorem, $a^2 + b^2 = c^2$. Consider further the case there a = b = 1, and thus $c^2 = 2$. Does c exist in \mathbb{Q} ?

Proposition 1.1. $c^2 = 2$, $c \notin \mathbb{Q}$.

Proof of Proposition 1.1. Suppose $c \in \mathbb{Q}$. We can thus write $c = \frac{p}{q}$, where $p, q \in \mathbb{N}$, and p, q share no common divisors, ie they are in "simplest form". Notably, p and q cannot both be even (under our initial assumption), as they would then share a divisor of 2. We write

$$c = \frac{p}{q}$$
$$c^2 = 2 = \frac{p^2}{q^2}$$
$$2q^2 = p^2$$

 $p\in\mathbb{N}\implies p^2\in\mathbb{N}$, and thus p^2 , and therefore p^6 , must be divisible by 2 ($\implies p$ even). Therefore, we can write $p=2p_1,p_1\in\mathbb{N}$, and thus $2q^2=(2p_1^2)^2\implies q^2=2p_1^2$. By the same reasoning, q must now be even as well, contradicting our initial assumption that p and q share no common divisors. Thus, $c\notin\mathbb{Q}$.

⁵Note that in the definition of \mathbb{Q} , p, q are defined to be in \mathbb{Z} ; however, as we are using a

p. 5

1.3 Sets & Set Operations

• $A \cup B = \{x : x \in A \text{ or } x \in B\}$

• $A \cap B = \{x : x \in A \text{ and } x \in B\}$

• $\bigcup_{i=1}^{\infty} A_n = \bigcup_{n \in \mathbb{N}} A_n = \{x : x \in A_n \text{ for some } n \in \mathbb{N}\}$

• $\bigcap_{i=1}^{\infty} A_n = \bigcap_{n \in \mathbb{N}} A_n = \{x : x \in A_n \forall n \in \mathbb{N}\}$

• $A^C = \{x : x \in X \text{ and } x \notin A\}^7$

 ^{7}X is often omitted if it is clear from context.

Theorem 1.2 (De Morgan's Theorem(s)). Let A, B be sets. Then,

$$(a) \qquad (A \cap B)^C = A^C \cup B^C$$

and

$$(b) \qquad (A \cup B)^C = A^C \cap B^C.$$

Proof of Theorem 1.2. (b) (A similar argument follows...)

Proposition 1.2.

$$(a) \left(\bigcap_{n=1}^{\infty} A_n\right)^C = \bigcup_{n=1}^{\infty} A_n^C$$

$$(b) \left(\bigcup_{n=1}^{\infty} A_n\right)^C = \bigcap_{n=1}^{\infty} A_n^C$$

Proof of Proposition 1.2. Consider Proposition (b). Working from the left-hand side, we have

$$\left(\bigcup_{n=1}^{\infty} A_n\right)^C = \{x : x \notin \bigcup A_n\}$$

$$= \{x : x \notin A_n \forall n \in \mathbb{N}\}$$

$$= \bigcap \{x : x \notin A_n\}$$

$$= \bigcap A_n^C$$

(a) can be logically deduced from this result. Consider the RHS, $\bigcup A_n^C$. Taking the complement:

$$\left(\bigcup A_n^C\right)^C \stackrel{\text{via (b)}}{=} \bigcap A_n^{C^C}$$
$$= \bigcap A_n$$

Taking the complement of both sides, we have $\bigcup A_n^C = (\bigcap A_n)^C$, proving (a).

1.4 Functions

Definition 1.1. Let A, B be sets. A function f is a rule assigned to each $x \in A$ a corresponding unique element $f(x) \in B$. We denote

$$f:A\to B$$
.

Definition 1.2. The domain of a function $f: A \to B$, denoted Dom(f) = A. The range of f, denoted $Ran(f) = \{f(x) : x \in A\}$. Clearly, $Ran(f) \subseteq B$, though equality is not necessary.

Example 1.4. The function $f(x) = \sin x$, $f : \mathbb{R} \to [-1, 1]$. Here, $Dom(f) = \mathbb{R}$, and Ran(f) = [-1, 1].

Example 1.5 (Dirichlet Function). ${}^8f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$. Despite not having a

true "explicit" formula, so to speak, this is still a valid function (under modern definitions).

⁸Look up a graph of this function. Its beautiful. It's also interesting to note that its integral is simply 0.

1.4.1 Properties of Functions

Proposition 1.3. Let $f: A \to B$, $C \subseteq A$, $f(C) = \{f(x) : x \in C\}$. We claim $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$.

Proof. We will prove this by showing $(1) \subseteq \text{and } (2) \supseteq$.

- (1) $y \in f(C_1 \cup C_2) \implies$ for some $x \in C_1 \cup C_2$, y = f(x). This means that either for some $x \in C_1$, y = f(x), or for some $x \in C_2$, y = f(x). This implies that either $y \in f(C_1)$, or $y \in f(C_2)$, and thus y must be in their union, ie $y \in C_1 \cup C_2$.
- (2) $y \in f(C_1) \cup f(C_2) \implies y \in f(C_1)$ or $y \in f(C_2)$. This means that for some $x \in C_1, y = f(x)$, or for some $x \in C_2, y = f(x)$. Thus, x must be in $C_1 \cup C_2$, and for some $x \in C_1 \cup C_2, y = f(x) \implies y \in f(C_1 \cup C_2)$.
- (1) and (2) together imply that $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$.

Example 1.6. Let $A_n = 1, 2, ...$ be a sequence of sets. Prove that $f(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} f(A_n)$.

Proof. Let $y \in f(\bigcup_{n=1}^{\infty} A_n)$. This implies that $\exists x \in \bigcup_{n=1}^{\infty} A_n$ s.t. f(x) = y. This implies that $x \in A_n$ for some n, and $y \in f(A_n)$ for that same "some" n, and thus y must be in the union of all possible $f(A_n)$, ie $y \in \bigcup f(A_n)$. This shows \subseteq , use similar logic for the reverse.

Proposition 1.4. $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$

Proof. $y \in f(C_1 \cap C_2) \implies$ for some $x \in C_1 \cap C_2, y = f(x)$. This implies that for some $x \in C_1, y = f(x)$ and for some $x \in C_2, y = f(x)$. Note that this does *not* imply that these x's are the same, ie this reasoning is not reversible as in the previous union case. This implies that $y \in f(C_1)$ and $y \in f(C_2) \implies y \in f(C_1) \cap f(C_2)$.

⁹NB: the reverse is not always true, ie these sets are not always equal; "lack" of equality is more "common" than not.

Example 1.7. Prove that if $A_n, n = 1, 2, ..., f(\bigcap_{n=1}^{\infty} A_n) \subseteq \bigcap_{n=1}^{\infty} f(A_n)$.

Proof (Sketch). Use the same idea as in Example 1.6, but, naturally, with intersections.

Example 1.8. Take $f(x) = \sin x$, $A = \mathbb{R}$, $B = \mathbb{R}$, and take $C_1 = [0, 2\pi]$, $C_2 = [2\pi, 4\pi]$. Then, $f(C_1) = [-1, 1]$, and $f(C_2) = [-1, 1]$. But $C_1 \cap C_2 = \{2\pi\}$; $f(\{2\pi\}) = \{\sin 2\pi\} = \{0\}$, and thus $f(C_1 \cap C_2) = \{0\}$, while $f(C_1) \cap f(C_2) = [-1, 1]$, as shown in Proposition 1.4.

Definition 1.3 (Inverse Image of a Set). Let $f: A \to B$ and $D \subseteq B$. The inverse image of D by F is denoted $f^{-1}(D)^{10}$ and is defined as

$$f^{-1}(D) = \{ x \in A : f(x) \in D \}.$$

Example 1.9. $A = [0, 2\pi], B = \mathbb{R}, f(x) = \sin x, D = [0, 1].$ $f^{-1}(D) = \{x \in A : f(x) \in D\} = \{x \in [0, 2\pi] : \sin(x) \in [0, 1]\} = [0, \pi].$

¹⁰Note that this is **not** equivalent to the typical definition of an inverse *function*; f^{-1} may not exist

Proposition 1.5. Given function f and sets D_1, D_2 ,

(a)
$$f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$$

(b)
$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)^{11}$$

Proposition 1.6. *Let* $A_n, n = 1, 2, 3$ *Then,*

(a)
$$f^{-1}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} f(A_n)$$

(b)
$$f^{-1}(\bigcap_{n=1}^{\infty} A_n) = \bigcap_{n=1}^{\infty} f(A_n)$$

 $^{11} Just$ see next proposition; if you really need convincing, just use 2 rather than ∞ as the upper limit of the union-s/intersections and use the same proof.

Proof. 12

(a)

$$x \in f^{-1}(\bigcup_{n=1}^{\infty} A_n) \iff f(x) \in \bigcup_{n=1}^{\infty} A_n$$

$$\iff f(x) \in A_n \text{ for some } n \in \mathbb{N}$$

$$\iff x \in f^{-1}(A_n) \text{ for some } n \in \mathbb{N}$$

$$\iff x \in \bigcup_{n=1}^{\infty} f^{-1}(A_n)$$

(b)

$$x \in f^{-1}(\bigcap_{n=1}^{\infty} A_n) \iff f(x) \in \bigcap_{n=1}^{\infty} A_n$$

$$\iff f(x) \in A_n \text{ for all } n \in \mathbb{N}$$

$$\iff x \in f^{-1}(A_n) \text{ for all } n \in \mathbb{N}$$

$$\iff x \in \bigcap_{n=1}^{\infty} f^{-1}(A_n)^{13}$$

Remark 1.1. $f: A \to B$, $A_1 \subseteq A$. Given $f(A_1^C)$ and $f(A_1)^C$, there is **no general relation** between the two.

For instance, take $A = [0, 6\pi], B = [-1, 2], C = [0, 2\pi],$ and $f(x) = \sin x$. Then, f(C) = [-1, 1], and $f(C^C) = f([-1, 0)) = [-1, 1],$ but $f(C)^C = [-1, 1]^C = (1, 2],$ and $f(C^C) \neq f(C)^C$; in fact, these sets are disjoint.

Proposition 1.7. Let $f: A \to B$ and let $D \subseteq B$. Then $f^{-1}(D^C) = [f^{-1}(D)]^C$.

Proof.

$$f^{-1}(D^C) = \{x : f(x) \in D^C\} = \{x : f(x) \notin D\}$$
$$[f^{-1}(D)]^C = [\{x : f(x) \in D\}]^C = \{x : x \notin f^{-1}(D)\} = \{x : f(x) \notin D\}$$

 13 This is a "proof by definitions" as I like to call it.

¹³Similar proof can be used to prove Proposition 1.5, less generally.

1.5 Reals

Axiom 1.5 (Of Completeness). Any non-empty subset of \mathbb{R} that is bound from above has at least one upper bound (also called the supremum).

In other words; let $A \subseteq \mathbb{R}$ and suppose A is bounded from above (A has at a least upper bound). Then $\sup(A)$ exists.

Real numbers, algebraically have the same properties as the rationals; we have addition, multiplication, inverse of non-zero real numbers, and we have the relation <. All together, $\mathbb R$ is an ordered field.

Definition 1.4. Let $A \subseteq \mathbb{R}$. A number $b \in \mathbb{R}$ is called an **upper bound** for A if for any $x \in A$, x < B.

A number $l \in \mathbb{R}$ is called a **lower bound** for A if for any $x \in A$, $x \ge l$.

Definition 1.5 (The Least Upper Bound). Let $A \subseteq \mathbb{R}$. A real number s is called the **least upper** bound for A if the following holds:

- (a) s is an upper bound for A
- (b) if b is any other upper bound for A, then $s \leq b$.

The least upper bound of a set A is unique, if it exists; if s and s' are two least upper bounds, then by (a), s and s' are upper bound for A, and by (b), $s \le s'$ and $s' \le s$, and thus s = s'.

This least upper bound is called the supremum of A, denoted $\sup(A)$.

Definition 1.6 (The Greatest Lower Bound). Let $A \subset \mathbb{R}$. A number $i \in \mathbb{R}$ is called the **greatest** lower bound for A if the following holds:

- (a) i is a lower bound for A
- (b) if l is any other lower bound for A, then $i \geq l$.

If i exists, it is called the infimum of A and is denoted $i = \inf(A)$, and is unique by the same argument used for $\sup(A)$.

Proposition 1.8. Let $A \subseteq \mathbb{R}$ and let s be an upper bound for A. Then $s = \sup(A)$ iff for any $\varepsilon > 0$, there exists $x \in A$ s.t. $s - \varepsilon < x$.

Proof. We have two statements:

I. $s = \sup(A)$;

II. For any $\epsilon > 0$, $\exists x \in A \text{ s.t. } s - \epsilon < x$;

and we desire to show that $I \iff II$.

- I \Longrightarrow II: Let $\epsilon > 0$. Then, since $s = \sup(A)$, $s \epsilon$ cannot be an upper bound for A (as s is the least upper bound, and thus $s \epsilon < s$ cannot be an upper bound at all). Thus, there exists $x \in A$ such that $s \epsilon < x$, and thus if I holds, II must hold.
- II \implies I: suppose that this does not hold, ie II holds for an upper bound s for A, but $s \neq \sup(A)$. Then, there exists some upper bound b of A s.t. b < s. Take $\epsilon = s b$. $\epsilon > 0$, and since II holds, there exists $x \in A$ such that $s \epsilon < x$. But since $s \epsilon = b$ and thus b < x, then b cannot be an upper bound for A, contradicting our initial condition. So, if II \implies I does *not* hold, we have a "impossibility", ie a value b which is an upper bound for A which cannot be an upper bound, and thus II \implies I.

Proposition 1.9. Let $A \subseteq \mathbb{R}$ and let i be a lower bound for A. Then $i = \inf(A) \iff$ for every $\epsilon > 0$ there exists $x \in A$ s.t. $x < i + \epsilon$. 14

Remark 1.2. Axiom 1.5 can also be expressed in terms of infimum. Define $-A = \{-x : x \in A\}$. Then, if b is an upper bound for A, then $b \ge x \forall x \in A$, then $-b \le -x \forall x \in A$, ie -b is a lower bound of -A. Similarly, if l is a lower bound for A, -l is an upper bound for -A.

Thus, if A is bounded from above, then

$$-\sup(A) = \inf(-A),$$

and if A is bounded from below,

$$-\inf(A) = \sup(-A).$$

Axiom 1.6 (AC (infimum)). Let $A \subseteq \mathbb{R}$; if A bounded from below, $\inf(A)$ exists.

Definition 1.7 (max, min). Let $A \subseteq \mathbb{R}$. An $M \in A$ is called a maximum of A if for any $x \in A$, $x \leq M$. M is an upper bound for A, but also $M \in A$.

If M exists, then $M = \sup(A)$; M is an upper bound, and if b any other upper bound, then $b \ge M$, because $M \in A$, and thus $M = \sup(A)$.

 NB : $M = \max(A)$ need not exist, while $\sup(A)$ must exist. Consider A = [0,1); $\sup(A) = 1$, but there exists no $\max(A)$.

The same logic exists for the existence of minimum vs infimum (consider (0,1), with no maximum nor minimum).

¹⁴Use similar argument to proof of previous proposition.

Theorem 1.3 (Nested interval property of \mathbb{R}). Let $I_n = [a_n, b_n] = \{x : a_n \leq x \leq b_n\}, n = 1, 2, 3 \dots$ be an infinite sequence of bounded, closed intervals s.t.

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots I_n \supseteq I_{n+1} \supseteq \dots$$

Then, $\bigcap_{n=1}^{\infty}I_n
eqarnothing$ (note that this does not hold in $\mathbb Q$).

Proof. ¹⁵ We have $I_n = [a_n, b_n], I_{n+1} = [a_{n+1}, b_{n+1}], \ldots$ And the inclusion $I_n \supseteq I_{n+1}$. $a_n \le a_{n+1} \le b_{n+1} \le b_n, \forall n \ge 1$. So, the sequence a_n (left-end) is increasing, and the sequence b_n (right-end) is decreasing.

We also have that for any $n, k \ge 1$, $a_n \le b_k$. We see this by considering two cases:

- Case 1: $n \le k$, then $a_n \le a_k$ (as a_n is increasing), and thus $a_n \le a_k \le b_k$.
- Case 2: n > k, then $a_n \le b_n \le b_k$ (again, as b_n is decreasing).

Let $A = \{a_n : n \in \mathbb{N}\}$. Then, A is bounded from above by any b_k (as in our inequality we showed above). Let $x = \sup(A)$, which must exist by Axiom 1.5.

Note that as a result, $x \ge a_n$ for all n, and for all k, $x \le b_k$, as x is the lowest upper bound and must be \le all other upper bounds, and so for all $n \ge 1$, $a_n \le x \le b_n$, ie $x \in I_n \forall n \ge 1$, and thus $x \in \bigcap_{n=1}^{\infty} I_n$ and so $\bigcap_{n=1}^{\infty} \neq \emptyset$.

Remark 1.3. The proof above emphasized the left-end points; it can equivalently be proven via the right-end points, and using $y = \inf(\{b_n : n \in \mathbb{N}\}) = \inf(B)$, rather than $\sup(A)$, and showing that $y \in \bigcap I_n$.

Remark 1.4. Note too that, if $x = \sup(A)$ and $y = \inf(B)$, then $x, y \in \bigcap_{n=1}^{\infty} I_n$; in fact, $\bigcap_{n=1}^{\infty} I_n = [x, y]$.

Remark 1.5. The intervals I_n must be closed; if not, eg $I_n = (0, \frac{1}{n})$, then $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

1.6 Density of Rationals in Reals

Proposition 1.10 (Archimedian Property). (a) For any $x \in \mathbb{R}$, there exists a natural number n s.t. n > x.

(b) For any $y \in \mathbb{R}$ satisfying y > 0, $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < y$.

Remark 1.6. (a) states that \mathbb{N} is not a bounded subset of \mathbb{R} .

Remark 1.7. (b) follows from (a) by taking $x = \frac{1}{y}$ in (a), then $\exists n \in \mathbb{N}$ s.t. $n > \frac{1}{y} \implies \frac{1}{n} < y$, and thus we need only prove (a).

Remark 1.8. Recall that \mathbb{Q} is an ordered field (operations +, \cdot and a relation <). \mathbb{Q} can be extended to a larger ordered field with extended definitions of these operations/relations, such that it contains elements that are larger than any natural numbers (ie, not bounded above). This is impossible in \mathbb{R} due to AC.

¹⁵Sketch: show that the left-end points are increasing and the rightend points are decreasing. Show either that all the left-end points are bounded from above or that all the right-end points are bounded from below. As a result, there exists a sup/inf (depending on which end you choose) of the set of all the right/left points. For the sup case, all upper bounds must be \geq sup, and thus the sup is in all I_n , and thus in their intersect, and thus the intersect is not empty.

Proof. Suppose (a) not true in \mathbb{R} , ie \mathbb{N} is bounded from above in \mathbb{R} . Let $\alpha = \sup \mathbb{N}$, which exists by AC.

Consider $\alpha - 1$; since $\alpha - 1 < \alpha$, $\alpha - 1$ is not an upper bound of \mathbb{N} . So, there exists some $n \in \mathbb{N}$ s.t. $\alpha - 1 < n$; then, $\alpha < n + 1$ where $n + 1 \in \mathbb{N}$, and thus α is also not an upper bound, as there exists a natural number that is greater than α . This contradicts the assumption that $\alpha = \sup \mathbb{N}$, so (a) must be true.

Theorem 1.4 (Density). Let $a, b \in \mathbb{R}$ s.t. a < b. Then, $\exists x \in \mathbb{Q}$ s.t. a < x < b.

Remark 1.9. If you take $a \in \mathbb{R}$ and $\epsilon > 0$, then by the theorem, $\exists x \in \mathbb{Q}$ where $x \in (a - \epsilon, a + \epsilon)$. So any real number can be approximated arbitrarily closely (via choose of ϵ) by a rational number.

Proof. Since b-a>0, by (b) of Proposition 1.10, $\exists n\in\mathbb{N}$ s.t. $\frac{1}{n}< b-a$, ie na+1< nb.

Let $m \in \mathbb{Z}$ s.t. $m-1 \le na < m$. Such an integer must exists since $\bigcup_{m \in \mathbb{Z}} [m-1,m) = \mathbb{R}$, the family $[m-1,m), m \in \mathbb{Z}$ makes partitions of \mathbb{R} . Then, na < m gives that $a < \frac{m}{n}$. On the other hand, $m-1 \le na$ gives $m \le na+1 < nb$. So $\frac{m}{n} < b$ and it follows that $\frac{m}{n}$ satisfies $a < \frac{m}{n} < b$.

In the proof, we used the claim:

Proposition 1.11. If $z \in \mathbb{R}$, then there exists $m \in \mathbb{Z}$ s.t. $m-1 \le z < m$.

Proof. Let S be a non-empty subset of \mathbb{N} . Then S has the least element; $\exists m \in S \text{ s.t. } m \leq n, \forall n \in S$.

We can assume $z \geq 0$; if $0 \leq z < 1$, then we are done (take m=1), and assume that $z \geq 1$. Let now $S = \{n \in \mathbb{N} : z < n\}, \neq \emptyset$ by Proposition 1.10, (a). Let m be the least element of S. It exists by Well-Ordering Property; then, since $m \in S$, z < m. But, we also have $m-1 \leq z$, otherwise, if z < m-1 then $m-1 \in S$ and then m is not the least element of S. Thus, we have $m-1 \leq z < m$, as required.

Theorem 1.5. The set J of irrationals is also dense in \mathbb{R} . That is, if $a, b \in \mathbb{R}$, a < b, \exists irrational y s.t. a < y < b (noting that $J = \mathbb{R} \setminus \mathbb{Q}$).

Proof. Fix $y_0 \in \mathbb{J}$. Consider $a - y_0$, $b - y_0$. $a - y_0 < b - y_0$, and by density of rationals, $\exists x \in \mathbb{Q}$ s.t. $a - y_0 < x < b - y_0$. Then, $a < y_0 + x < b$; let $y = x + y_0$, and we have a < y < b.

Note that y cannot be rational; if $y \in \mathbb{Q}$, $y = x + y_0 \implies y - x = y_0$, and since $x \in \mathbb{Q}$, $y - x \in \mathbb{Q} \implies y_0 \in \mathbb{Q}$, contradicting the original choice of $y_0 \notin \mathbb{Q}$. Thus, $y \in J$.

Theorem 1.6. \exists a unique positive real number α s.t. $\alpha^2 = 2$.

Proof. We show both uniqueness, existence:

Uniqueness: if $\alpha^2 = 2$ and $\beta^2 = 2$, $\alpha \ge 0$, $\beta \ge 0$, then $0 = \alpha^2 - \beta^2 = (\alpha - \beta)(\alpha + \beta) > 0$, and so $\alpha - \beta = 0 \implies \alpha = \beta$.

- Existence: consider the set $A=\{x\in\mathbb{R}:x\geq 0 \text{ and } x^2<2\}$. A is not empty as $1\in A$. The set of A is bounded above by 2, since if $x\geq 2$, then $x^2\geq 4>2$, so $x\notin A$. So, by AC, $\sup A$ exists; let $\alpha=\sup A$. We will show that $\alpha^2=2$, by showing that both $\alpha^2<2$ and $\alpha^2>2$ are contradictions.
 - $\alpha^2 < 2$ For any $n \in \mathbb{N}$ we expand

$$\left(\alpha + \frac{1}{n}\right)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2} \le \alpha^2 + \frac{2\alpha + 1}{n},$$

noting that $\frac{1}{n^2} \leq \frac{1}{n}$ for $n \geq 1$.

Let $y = \frac{2-\alpha^2}{2\alpha+1}$, which is strictly positive. By Proposition 1.10, $\exists n_0 \in \mathbb{N}$ s.t.

$$\frac{1}{n_0} < \frac{2-\alpha^2}{2\alpha+1}$$
 or $\frac{2\alpha+1}{n_0} < 2-\alpha^2$.

Substituting this n_0 into our inequality, we have

$$\left(\alpha + \frac{1}{n_0}\right)^2 \le \alpha^2 + \frac{2\alpha + 1}{n_0} < \alpha^2 + 2 - \alpha^2 = 2.$$

Since $\alpha + \frac{1}{n_0}$ is positive, $\alpha + \frac{1}{n_0} \in A$. But, since $\alpha = \sup A$, $\alpha + \frac{1}{n_0} \le \alpha$, which is impossible, so $\alpha^2 < 2$ cannot be true.

 $\bullet \ \alpha^2 > 2$

Take $n \in \mathbb{N}$;

$$\left(\alpha - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} > \alpha^2 - \frac{2\alpha}{n}.$$

Now, let $y = \frac{\alpha^2 - 2}{2\alpha}$; y > 0, and by Proposition 1.10, $\exists n_0 \in \mathbb{N}$ s.t.

$$\frac{1}{n_0} < \frac{\alpha^2 - 2}{2\alpha}$$
, or $\frac{2\alpha}{n_0} < \alpha^2 - 2$.

Substituting this n_0 , we have

$$\left(\alpha - \frac{1}{n_0}\right)^2 > \alpha^2 - \frac{2\alpha}{n_0} > \alpha^2 + 2 - \alpha^2 = 2.$$

So for any $x \in A$, we have $\left(\alpha - \frac{1}{n_0}\right)^2 > 2 > x^2$. $\alpha - \frac{1}{n_0} > 0$, and x > 0, since $x \in A$. Then, $\left(\alpha - \frac{1}{n_0}\right)^2 > x^2$ gives that $\alpha - \frac{1}{n_0} > x$.

So, $\alpha - \frac{1}{n_0} > x$ for all $x \in A$. So $\alpha - \frac{1}{n_0}$ is an upper bound for A, but since $\alpha = \sup A$, $\alpha - \frac{1}{n_0} \ge \alpha$ ie $\alpha \ge \alpha + \frac{1}{n_0}$, which is impossible. So $\alpha^2 > 2$ cannot be true.

Thus, $\alpha^2 = 2$.

Remark 1.10. A similar argument gives that for any $x \in \mathbb{R}$, $x \ge 0$, $\exists! \alpha \in \mathbb{R}$, $\alpha \ge 0$ such that $\alpha^2 = x$. This x is called the square root of x, denoted $\alpha = \sqrt{x}$.

Remark 1.11. For any natural number $m \geq 2$ and $x \geq 0$, $\exists ! \alpha \in \mathbb{R}, \alpha \geq 0$ s.t. $\alpha^m = x$. The proof is similar, and we call α the m-th root of x.

Remark 1.12. Our last proof also gives that $\mathbb Q$ cannot satisfy AC. Suppose it does, ie any set in $\mathbb Q$ bounded from above has a supremum $\in \mathbb Q$. Then, consider $B=\{x\in \mathbb Q: x\geq 0 \text{ and } x^2<2\}$; set $\alpha=\sup B$. The exact same proof can be used, but we will not be able to find an upper bound in $\mathbb Q$.

2 Appendix

2.1 Tutorials

2.1.1 **Tutorial I (Sept 13)**

1. We say n odd if $\exists k, n = 2k + 1$. Prove that the product of two odds is odd.

Proof. Take two odd integers, $n_1=2k+1$ and $n_2=2j+1$. The product $n_1\times n_2=(2k+1)(2j+1)=4kj+2(k+j)+1$. We have, then

$$\underbrace{4kj+2(k+j)}_{\text{even}}+1.$$

Even + odd = odd, thus odd.

2. **Proof by Contrapositive:** $P \implies Q \equiv \neg Q \implies \neg P$. Let $q \in \mathbb{Q}$. Prove: If $x \in \mathbb{R} \setminus \mathbb{Q}$, then q + x is irrational.

Proof (contrapositive). Let q+x be rational. The sum of rationals is rational, and thus $q,x\in\mathbb{Q}$, and thus $x\notin\mathbb{R}\setminus\mathbb{Q}$.

3. Proofs by Induction

(a) Prove that $1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$.

. Let P_n be the statement that $1^3+\cdots=\left(\frac{n(n+1)}{2}\right)^2$. P_0 holds as $1=\frac{(1)(2)^2}{2}=1$. Let P_n hold:

$$1^{3} + 2^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Adding $(n+1)^3$ to both sides:

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3}$$

Focusing on the RHS:

$$\left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = (n+1)^2 \left(\frac{n^2}{4} + (n+1)\right)$$

$$= (n+1)^2 \left(\frac{n^2 + 4n + 4}{4}\right)$$

$$= (n+1)^2 \left(\frac{(n+2)^2}{4}\right)$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^2 \qquad \equiv P_{n+1}$$

Thus, by AI, P_n holds for all $n \in \mathbb{N}$.

(b) We have an 8×8 checker board. We remove the top-left and bottom-right squares. Prove that the remaining board cannot be covered by 2×1 dominoes.

Proof. Note that every domino must cover a black square and a white square. However, the board is missing 2 white squares (say). Thus, there are 62 squares (32 black, 30 white), and we would need *exactly* 31 dominos (62/2). Each requires 1 black, 1 white tile, and thus we will run out of white squares before we reach our 31 dominos, and thus we cannot cover the board.

(c) Take F_n to represent the nth Fibonacci number. Let $\varphi = \frac{1+\sqrt{5}}{2}$. Show that $F_n > \varphi^{n-2} \forall n \geq 3$.

Proof. Let P_n represent the "truth" of the given statement. $P_3: F_3 = F_2 + F_1 = 1 + 1 = 2$. $\varphi^1 = \varphi$; clearly $2 > \frac{1+\sqrt{5}}{2}$. Note that we should also prove P_4, P_5 for use in our induction.

$$P_4: (\frac{1+\sqrt{5}}{2})^2 = \frac{1+2\sqrt{5}+5}{4} = \frac{6+2\sqrt{5}}{4} < 3.$$

$$P_5: (\frac{1+\sqrt{5}2}{)}^3 \cdots < 5$$

Take P_{n-1}, P_n to hold, ie $F_{n-1} > \varphi^{n-3}$ and $F_n > \varphi^{n-2}$.

$$F_{n+1} = F_n + F_{n-1} > \varphi^{n-2} + \varphi^{n-3}$$

$$= \varphi^{n-3} (\underbrace{\varphi + 1}_{=\varphi^2})$$

$$= \varphi^{n-1},$$

as desired, Noting that $\varphi + 1 = \frac{1+\sqrt{5}}{2} + 1 = \frac{1+\sqrt{5}+2}{2} = \dots \varphi^2$.

(d) $a_1 = 1, a_2 = 8, a_n = a_{n-1} + 2a_{n-2}$. Prove $a_n = 3 \cdot 2^{n-1} + 2(-1)^n$.

Proof. $a_1 = 1 = 3 \cdot 2^0 + 2(-1)^1 = 3 - 2 = 1$ $a_2 = 8 = 3 \cdot 2^1 + 2(-1)^2 = 6 + 2 = 8$ So, P_1 , P_2 holds. Assume P_n , P_{n+1} holds. Then, we have $a_n = 3 \cdot 2^{n-1} + 2(-1)^n$ and so:

$$a_{n+1} = 3 \cdot 2^{n-1} + 2(-1)^n + 2 \cdot (3 \cdot 2^{n-2} + 2(-1)^{n-1})$$
$$= \dots = 3 \cdot 2^n + 2(-1)^{n+1}$$

Thus, proven.

4. Show $A \setminus (B \setminus A) = A$.

Proof. Let $x \in A \setminus (B \setminus A)$. x must be in A, but not $B \setminus A$. Thus, x is in A, but not in B. Thus, LHS \subseteq RHS.

Let $x \in A$. Thus, $x \notin B \setminus A$, and thus $x \in A \setminus (B \setminus A)$, and so $A \subseteq A \setminus (B \setminus A)$. Thus, LHS = RHS.

p. 17

§2.1 Appendix: **Tutorials**

5. $A_n = \{nk : k \in \mathbb{N}\}, n \ge 2$. Find $\bigcup_{n=2}^{\infty} A_n \bigcap_{n=2}^{\infty} A_n$.

.

$$\bigcup_{n=2}^{\infty}A_n=\bigcup\{2k,3k,4k,\dots\}=\{n:n\geq 2,n\in\mathbb{N}\}=\mathbb{N}\setminus\{1\}$$

$$\bigcap_{n=2}^{\infty}A_n=\varnothing\ \text{consider just }n=2,n=3\ \text{cases...}$$

§2.1 Appendix: Tutorials