Chapitre 4: Les relations

Soit A et B deux ensembles.

Soit A et B deux ensembles. On définit une relation binaire de A vers B en associant certains éléments de A à certains éléments de B.

Soit A et B deux ensembles. On définit une relation binaire de A vers B en associant certains éléments de A à certains éléments de B.

Exemple : A est l'ensemble des employés d'une entreprise

Soit A et B deux ensembles. On définit une relation binaire de A vers B en associant certains éléments de A à certains éléments de B.

Exemple : A est l'ensemble des employés d'une entreprise

B est l'ensemble des véhicules de service de cette entreprise

Soit A et B deux ensembles. On définit une relation binaire de A vers B en associant certains éléments de A à certains éléments de B.

Exemple : A est l'ensemble des employés d'une entreprise

B est l'ensemble des véhicules de service de cette entreprise

On définit une relation $\mathcal R$ grâce au lien verbal

"··· est autorisé à conduire le véhicule ···".

La personne a est autorisée à conduire les véhicules j et k.

La personne a est autorisée à conduire les véhicules j et k. On dit que les couples (a,j) et (a,k) vérifient la relation \mathcal{R} et on note, par exemple :

La personne a est autorisée à conduire les véhicules j et k. On dit que les couples (a,j) et (a,k) vérifient la relation $\mathcal R$ et on note, par exemple : $(a,j) \in \mathcal R$

Chapitre 4 : Les relations

La personne a est autorisée à conduire les véhicules j et k. On dit que les couples (a,j) et (a,k) vérifient la relation $\mathcal R$ et on note, par exemple : $(a,j) \in \mathcal R$ ou $\mathcal R(a,j)$

La personne a est autorisée à conduire les véhicules j et k. On dit que les couples (a,j) et (a,k) vérifient la relation $\mathcal R$ et on note, par exemple : $(a,j) \in \mathcal R$ ou $\mathcal R(a,j)$ ou encore $a\mathcal R j$.

La personne c n'est pas autorisée à conduire le véhicule k.

La personne c n'est pas autorisée à conduire le véhicule k.On dit que le couple (c,k) ne vérifie pas la relation $\mathcal R$ et on note: $(c,k) \notin \mathcal R$

La personne c n'est pas autorisée à conduire le véhicule k.On dit que le couple (c,k) ne vérifie pas la relation $\mathcal R$ et on note: $(c,k) \notin \mathcal R$ ou $\mathcal R(c,k)$

La personne c n'est pas autorisée à conduire le véhicule k.On dit que le couple (c,k) ne vérifie pas la relation $\mathcal R$ et on note: $(c,k) \notin \mathcal R$ ou $\mathcal R(c,k)$ ou encore $c\mathcal Rk$.

La personne c n'est pas autorisée à conduire le véhicule k.On dit que le couple (c,k) ne vérifie pas la relation $\mathcal R$ et on note: $(c,k) \notin \mathcal R$ ou $\mathcal R(c,k)$ ou encore $c\mathcal Rk$.

Représentation cartésienne de ${\mathcal R}$

A B	i	j	k
а		×	×
Ь			
С	×		
d			×

La personne c n'est pas autorisée à conduire le véhicule k.On dit que le couple (c, k) ne vérifie pas la relation \mathcal{R} et on note: $(c, k) \notin \mathcal{R}$ ou $\mathcal{R}(c, k)$ ou encore $c\mathcal{R}k$.

Représentation cartésienne de ${\mathcal R}$

A B	i	j	k
а		×	×
Ь			
С	×		
d			×

On place une croix dans les cases correspondant aux couples qui vérifient la relation \mathcal{R}_{\cdot}

La personne c n'est pas autorisée à conduire le véhicule k.On dit que le couple (c, k) ne vérifie pas la relation \mathcal{R} et on note: $(c, k) \notin \mathcal{R}$ ou $\mathcal{R}(c, k)$ ou encore $c\mathcal{R}k$.

Représentation cartésienne de ${\mathcal R}$

A B	i	j	k
а		×	×
Ь			
С	×		
d			×

On place une croix dans les cases correspondant aux couples qui vérifient la relation \mathcal{R} .

Cette relation est donc une partie du produit cartésien $A \times B$:

$$\mathcal{R} = \{(a,j), (a,k), (c,i), (d,k)\}$$

Définition 1 : Soit A et B deux ensembles. Une relation binaire de A vers B est une partie du produit cartésien $A \times B$.

Définition 1 : Soit A et B deux ensembles. Une relation binaire de A vers B est une partie du produit cartésien $A \times B$.

C'est donc un élément de $\mathcal{P}(A \times B)$.

Définition 1 : Soit A et B deux ensembles. Une relation binaire de A vers B est une partie du produit cartésien $A \times B$.

C'est donc un élément de $\mathcal{P}(A \times B)$.

Notations : $\mathcal{R} \subset A \times B$ ou $\mathcal{R} \in \mathcal{P}(A \times B)$.

Définition 1: Soit A et B deux ensembles. Une relation binaire de A vers B est une partie du produit cartésien $A \times B$. C'est donc un élément de $\mathcal{P}(A \times B)$.

Notations: $\mathcal{R} \subset A \times B$ ou $\mathcal{R} \in \mathcal{P}(A \times B)$.

Lorsqu'un couple (x, y) vérifie la relation \mathcal{R} on note $(x, y) \in \mathcal{R}$ ou $\mathcal{R}(x, y)$ ou $x\mathcal{R}y$.

Définition 1: Soit A et B deux ensembles. Une relation binaire de A vers B est une partie du produit cartésien $A \times B$. C'est donc un élément de $\mathcal{P}(A \times B)$.

Notations: $\mathcal{R} \subset A \times B$ ou $\mathcal{R} \in \mathcal{P}(A \times B)$.

Lorsqu'un couple (x, y) vérifie la relation \mathcal{R} on note $(x, y) \in \mathcal{R}$ ou $\mathcal{R}(x, y)$ ou $x\mathcal{R}y$. \mathcal{R} est une relation **d'arité 2**.

Définition 1 : Soit A et B deux ensembles. Une relation binaire de A vers B est une partie du produit cartésien $A \times B$. C'est donc un élément de $\mathcal{P}(A \times B)$.

Notations: $\mathcal{R} \subset A \times B$ ou $\mathcal{R} \in \mathcal{P}(A \times B)$.

Lorsqu'un couple (x, y) vérifie la relation \mathcal{R} on note $(x, y) \in \mathcal{R}$ ou $\mathcal{R}(x, y)$ ou $x\mathcal{R}y$. \mathcal{R} est une relation **d'arité 2**.

Sinon on écrit $(x, y) \notin \mathcal{R}$ ou $\mathcal{R}(x, y)$ ou $x\mathcal{R}y$.

Définition 1: Soit A et B deux ensembles. Une relation binaire de A vers B est une partie du produit cartésien $A \times B$.

C'est donc un élément de $\mathcal{P}(A \times B)$.

Notations : $\mathcal{R} \subset A \times B$ ou $\mathcal{R} \in \mathcal{P}(A \times B)$.

Lorsqu'un couple (x, y) vérifie la relation \mathcal{R} on note $(x, y) \in \mathcal{R}$ ou $\mathcal{R}(x, y)$ ou $x\mathcal{R}y$. \mathcal{R} est une relation **d'arité 2**.

Sinon on écrit $(x, y) \notin \mathcal{R}$ ou $\mathcal{R}(x, y)$ ou $x\mathcal{R}y$.

Définition 2 : Si A = B on dit que \mathcal{R} est une relation binaire dans A.

Exemple 1: A est l'ensemble des habitants de la ville de Metz

Exemple 1 : A est l'ensemble des habitants de la ville de Metz

B est l'ensemble des livres d'une médiathèque

Exemple 1 : A est l'ensemble des habitants de la ville de Metz

B est l'ensemble des livres d'une médiathèque

 $\it C$ est l'ensemble des dates comprises entre le 01/01/2014 et le 31/12/2014

Exemple 1 : A est l'ensemble des habitants de la ville de Metz

B est l'ensemble des livres d'une médiathèque

 $\it C$ est l'ensemble des dates comprises entre le 01/01/2014 et le 31/12/2014

On définit une relation de la façon suivante : (a, b, c) vérifie la relation \mathcal{R} si la personne a a emprunté le livre b à la date c.

Exemple 1 : A est l'ensemble des habitants de la ville de Metz

B est l'ensemble des livres d'une médiathèque

 $\it C$ est l'ensemble des dates comprises entre le 01/01/2014 et le 31/12/2014

On définit une relation de la façon suivante : (a, b, c) vérifie la relation \mathcal{R} si la personne a a emprunté le livre b à la date c.

On note alors $(a, b, c) \in \mathcal{R}$ ou $\mathcal{R}(a, b, c)$. \mathcal{R} est une relation d'arité 3.

Définition 3 : Soit $n \in \mathbb{N}^*$, et A_1, A_2, \dots, A_n, n ensembles appelés domaines.

Définition 3 : Soit $n \in \mathbb{N}^*$, et A_1, A_2, \dots, A_n, n ensembles appelés domaines.

On appelle relation n-aire définie sur les domaines A_1 , A_2 , \cdots , A_n , toute partie du produit cartésien $A_1 \times A_2 \times \cdots \times A_n$.

Définition 3 : Soit $n \in \mathbb{N}^*$, et A_1, A_2, \dots, A_n, n ensembles appelés domaines.

On appelle relation n-aire définie sur les domaines A_1 , A_2 , \cdots , A_n , toute partie du produit cartésien $A_1 \times A_2 \times \cdots \times A_n$.

Si $(x_1, x_2, \dots, x_n) \in \mathcal{R}$ on note $\mathcal{R}(x_1, x_2, \dots, x_n)$.

Définition 3 : Soit $n \in \mathbb{N}^*$, et A_1, A_2, \dots, A_n, n ensembles appelés domaines.

On appelle relation n-aire définie sur les domaines A_1 , A_2 , \cdots , A_n , toute partie du produit cartésien $A_1 \times A_2 \times \cdots \times A_n$.

Si
$$(x_1, x_2, \dots, x_n) \in \mathcal{R}$$
 on note $\mathcal{R}(x_1, x_2, \dots, x_n)$.

 \mathcal{R} est une relation d'arité n.

Remarques:

Remarques:

• Le mot "arité" représente le nombre de places de variables dans le lien verbal.

Remarques:

- Le mot "arité" représente le nombre de places de variables dans le lien verbal.
- ② Dans le cas particulier n = 2 on retrouve la notion de relation binaire.

Remarques:

- Le mot "arité" représente le nombre de places de variables dans le lien verbal.
- ② Dans le cas particulier n = 2 on retrouve la notion de relation binaire.
- **3** Cas particulier n = 1: on parle de relation unaire ou d'arité 1.

Remarques:

- Le mot "arité" représente le nombre de places de variables dans le lien verbal.
- ② Dans le cas particulier n = 2 on retrouve la notion de relation binaire.
- **3** Cas particulier n = 1: on parle de relation unaire ou d'arité 1.
 - Exemple: "être pair" dans IN.

Remarques:

- Le mot "arité" représente le nombre de places de variables dans le lien verbal.
- ② Dans le cas particulier n=2 on retrouve la notion de relation binaire.
- **3** Cas particulier n = 1: on parle de relation unaire ou d'arité 1.

Exemple : "être pair" dans \mathbb{N} . On a $\mathcal{R}(8)$ mais $\mathcal{R}(11)$.

Exemple 2: On considère la table ADHERENT (<u>nom-adh</u>, prenom-adh, tel-ad ad-adh, iban-adh, date-adh, date-fin, cereale) dont un extrait est donné ciaprès.

no	nom_adh	prenom_adh	tel_adh	ad_adh	iban	date_adh	date_fin	cereale
1	ANDRE	Marc	0301090807	Grand Pre 57222 Saint-Pierre	FR101000000106729450762	01/02/2022	01/02/2023	mais
2	BARNABE	Hippolyte	0301020304	Grand Champ 57111 Saint-Jean	FR101000000108138423562	05/01/2022	05/01/2023	ble
3	BARNABE	Lucien	0301020304	Grand Champ 57111 Saint-Jean	FR101000000108639178074	07/01/2022	07/01/2023	orge
4	CHRISTIAN	Andre	0301181917	Rue de la Fontaine 57333 Saint-Michel	FR102000000292348721501	03/01/2022	03/01/2023	ble
5	DUMONT	Jacques	0301171819	Grand Fosse 57111 Saint-Jean	FR102000000465198627014	05/01/2022	05/01/2023	ble
6	EUDES	Pascal	0301102030	Grand Pre 57222 Saint-Pierre	FR102000000479284361820	03/02/2022	03/02/2023	orge
7	EUDES	Pascal	0301112131	Les Etangs 57444 Saint-Germain	FR102000000412816348279	03/03/2022	03/03/2023	orge
8	FAYARD	Jules	0301203040	Grand Rue 57111 Saint-Jean	FR102000000893762459241	04/01/2022	04/01/2023	mais
9	GEORGES	Aime	0301191817	Place du Marche 57444 Saint-Germain	FR102000000281627496821	15/02/2022	15/02/2023	epeautre
10	GRAND	Laurent	0301304050	Rue Longue 57333 Saint-Michel	FR101000000107652497831	02/01/2022	02/01/2023	mais
11	HUGUES	Michel	0301405060	Grand Pre 57222 Saint-Pierre	FR101000000105289673109	01/03/2022	01/03/2023	epeautre
12	IVAN	Sophie	0301181917	Rue de la Fontaine 57333 Saint-Michel	FR102000000274592830182	03/01/2022	03/01/2023	ble
13	JACQUES	Jean	0301403020	Rue Haute 57444 Saint-Germain	FR101000000105267831042	08/04/2022	08/04/2023	orge
14	LUCIEN	Vincent	0301718191	La Chaume 57111 Saint-Jean	FR101000000104286913572	10/01/2022	10/01/2023	epeautre
15	PIERRE	Andre	0301202122	Grand Fosse 57111 Saint-Jean	FR102000000192837465823	08/03/2022	08/03/2023	ble

Cette table ADHERENT est une relation 8-aire définie sur les domaines : A_1 l'ensemble des noms des adhérents, A_2 l'ensemble de leurs prénoms, \cdots A_8 l'ensemble des noms de céréales qu'ils commercialisent.

C'est une partie du produit cartésien $A_1 \times A_2 \times \cdots \times A_8$.

Soit \mathcal{R} une relation binaire dans un ensemble E, donnée par sa représentation sagittale :

On préférera la représentation suivante :

Exemples mathématiques:

1 L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x = y$.

- **1** L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x = y$.
- **2** La relation \leq dans \mathbb{R} .

- **1** L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x = y$.
- **2** La relation \leq dans \mathbb{R} .
- **3** La relation < dans \mathbb{R} .

- **1** L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x = y$.
- **2** La relation \leq dans \mathbb{R} .
- **3** La relation < dans \mathbb{R} .
- lacktriangle La divisibilité dans \mathbb{Z} , notée |.

- **1** L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x = y$.
- **2** La relation \leq dans \mathbb{R} .
- **3** La relation < dans \mathbb{R} .
- **4** La divisibilité dans \mathbb{Z} , notée |. "a divise b" se note a|b.

- **1** L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x = y$.
- **2** La relation \leq dans \mathbb{R} .
- **3** La relation < dans \mathbb{R} .
- La divisibilité dans \mathbb{Z} , notée |. "a divise b" se note a|b.
- Soit X un ensemble.

- **1** L'égalité dans un ensemble $E: x\mathcal{R}y \Leftrightarrow x = y$.
- **2** La relation \leq dans \mathbb{R} .
- **3** La relation < dans \mathbb{R} .
- 4 La divisibilité dans \mathbb{Z} , notée |. "a divise b" se note a|b.
- **5** Soit X un ensemble.L'inclusion \subset dans $\mathcal{P}(X)$ est une relation binaire.

\mathcal{R}	xRy	хЖу
égalité		

\mathcal{R}	xRy	хЖу
égalité	2=2	

\mathcal{R}	xRy	$x\mathcal{R}y$
égalité	2=2	$2 \neq 3$
€		

\mathcal{R}	$x\mathcal{R}y$	хЖу
égalité	2=2	$2 \neq 3$
€	3 ≤ 10	

\mathcal{R}	xRy	хЖу
égalité	2=2	$2 \neq 3$
\leq	3 ≤ 10	5 ≰ 3

\mathcal{R}	xRy	хЖу
égalité	2=2	$2 \neq 3$
€	3 ≤ 10	5 ≰ 3
	4 12	

\mathcal{R}	$x\mathcal{R}y$	хЖу
égalité	2=2	2 ≠ 3
€	3 ≤ 10	5 ≰ 3
	4 12	3/10
\subset		

$\mathcal R$	$x\mathcal{R}y$	$x\mathcal{R}y$
égalité	2=2	2 ≠ 3
€	3 ≤ 10	5 ≰ 3
	4 12	3/10
\subset	$\{a\} \subset \{a,b\}$	·

\mathcal{R}	xRy	хЖу
égalité	2=2	$2 \neq 3$
€	3 ≤ 10	5 ≰ 3
	4 12	3/10
\subset	$\{a\} \subset \{a,b\}$	$\{b,c\}$ $\mathbb{Z}\{a,b\}$

Définition 4 : Une relation $\mathcal R$ dans un ensemble E est dite **réflexive** si

$$\forall x \in E, xRx.$$

Définition 4 : Une relation $\mathcal R$ dans un ensemble E est dite **réflexive** si

$$\forall x \in E, xRx.$$

Définition 4 : Une relation \mathcal{R} dans un ensemble E est dite **réflexive** si

$$\forall x \in E, xRx.$$

Exemples:

1 L'égalité dans un ensemble $E: \forall x \in E, x = x$.

Définition 4 : Une relation \mathcal{R} dans un ensemble E est dite **réflexive** si

$$\forall x \in E, xRx.$$

- **1** L'égalité dans un ensemble $E : \forall x \in E, x = x$.
- **2** La relation \leq dans \mathbb{R} : $\forall x \in \mathbb{R}$, $x \leq x$.

Définition 4 : Une relation \mathcal{R} dans un ensemble E est dite **réflexive** si

$$\forall x \in E, xRx.$$

- **1** L'égalité dans un ensemble $E : \forall x \in E, x = x$.
- **2** La relation \leq dans \mathbb{R} : $\forall x \in \mathbb{R}$, $x \leq x$.
- **3** La divisibilité dans \mathbb{Z} : $\forall a \in \mathbb{Z}$, a|a.

Définition 4 : Une relation \mathcal{R} dans un ensemble E est dite **réflexive** si

$$\forall x \in E, xRx.$$

- **1** L'égalité dans un ensemble $E: \forall x \in E, x = x$.
- **2** La relation \leq dans \mathbb{R} : $\forall x \in \mathbb{R}$, $x \leq x$.
- **3** La divisibilité dans \mathbb{Z} : $\forall a \in \mathbb{Z}, a | a$.
- **1** L'inclusion \subset dans $\mathcal{P}(X)$: $\forall A \in \mathcal{P}(X), A \subset A$.

Illustration

La réflexivité se traduit par une flèche qui boucle sur chaque élément de $\it E$.

La symétrie

Définition 5 : Une relation ${\mathcal R}$ dans un ensemble E est dite ${\bf sym\acute{e}trique}$ si

$$\forall (x, y) \in E^2, \ x \mathcal{R} y \Rightarrow y \mathcal{R} x.$$

Exemple : l'égalité dans un ensemble E :

$$\forall (x, y) \in E^2$$
, si $x = y$ alors $y = x$

.

La symétrie

Illustration : la symétrie se traduit par le fait que s'il y a une flèche de x vers y alors il y a une flèche "retour" de y vers x.

La symétrie

Illustration : la symétrie se traduit par le fait que s'il y a une flèche de x vers y alors il y a une flèche "retour" de y vers x.

Remarque : les relations \subset , \mid , et \leqslant ne sont pas symétriques. En effet, $\{1,2\}\subset\{1,2,3\}$ mais $\{1,2,3\}$ $\not\subset\{1,2\}$, $3\mid 6$ mais $6\not\mid 3$, $2\leqslant 5$ mais $5\nleq 2$.

La transitivité

Définition 6 : Une relation $\mathcal R$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3$$
, $(xRy \text{ et } yRz) \Rightarrow xRz$.

La transitivité

Définition 6 : Une relation $\mathcal R$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

Définition 6 : Une relation ${\mathcal R}$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

Exemples:

L'égalité dans un ensemble E :

Définition 6 : Une relation $\mathcal R$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

Exemples:

lacksquare L'égalité dans un ensemble E:

$$\forall (x, y, z) \in E^3$$
, si $x = y$ et $y = z$, alors $x = z$.

Définition 6 : Une relation \mathcal{R} dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

- L'égalité dans un ensemble E: $\forall (x,y,z) \in E^3$, si x=y et y=z, alors x=z.
- **2** La relation \leq dans \mathbb{R} :

Définition 6 : Une relation $\mathcal R$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

- L'égalité dans un ensemble E: $\forall (x, y, z) \in E^3$, si x = y et y = z, alors x = z.
- ② La relation \leqslant dans \mathbb{R} : $\forall (x, y, z) \in \mathbb{R}^3$, si $x \leqslant y$ et $y \leqslant z$, alors $x \leqslant z$.

Définition 6 : Une relation $\mathcal R$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

- L'égalité dans un ensemble E: $\forall (x, y, z) \in E^3$, si x = y et y = z, alors x = z.
- ② La relation \leqslant dans \mathbb{R} : $\forall (x,y,z) \in \mathbb{R}^3$, si $x \leqslant y$ et $y \leqslant z$, alors $x \leqslant z$.
- lacksquare La divisibilité dans $\mathbb Z$:

Définition 6 : Une relation \mathcal{R} dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

- L'égalité dans un ensemble E: $\forall (x, y, z) \in E^3$, si x = y et y = z, alors x = z.
- ② La relation \leqslant dans \mathbb{R} : $\forall (x,y,z) \in \mathbb{R}^3$, si $x \leqslant y$ et $y \leqslant z$, alors $x \leqslant z$.
- **3** La divisibilité dans \mathbb{Z} : $\forall (x, y, z) \in \mathbb{Z}^3$, si x|y et y|z alors x|z.

Définition 6 : Une relation \mathcal{R} dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

- L'égalité dans un ensemble E: $\forall (x, y, z) \in E^3$, si x = y et y = z, alors x = z.
- ② La relation \leqslant dans \mathbb{R} : $\forall (x,y,z) \in \mathbb{R}^3$, si $x \leqslant y$ et $y \leqslant z$, alors $x \leqslant z$.
- **3** La divisibilité dans \mathbb{Z} : $\forall (x,y,z) \in \mathbb{Z}^3$, si x|y et y|z alors x|z.
- **4** L'inclusion \subset dans $\mathcal{P}(X)$:

Définition 6 : Une relation $\mathcal R$ dans un ensemble E est dite transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \Rightarrow xRz.$$

- L'égalité dans un ensemble E: $\forall (x, y, z) \in E^3$, si x = y et y = z, alors x = z.
- ② La relation \leqslant dans \mathbb{R} : $\forall (x,y,z) \in \mathbb{R}^3$, si $x \leqslant y$ et $y \leqslant z$, alors $x \leqslant z$.
- **3** La divisibilité dans \mathbb{Z} : $\forall (x, y, z) \in \mathbb{Z}^3$, si x|y et y|z alors x|z.
- **1** L'inclusion \subset dans $\mathcal{P}(X)$: $\forall (A, B, C) \in \mathcal{P}(X)^3$, si $A \subset B$ et $B \subset C$ alors $A \subset C$.

Illustration:

S'il y a une flèche de x vers y et une flèche de y vers z alors il y a une flèche de x vers z.

Si $\ensuremath{\mathcal{R}}$ est transitive alors la configuration ci-dessous n'est pas possible :

Définition 7 : Une relation ${\mathcal R}$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (xRy \text{ et } yRx) \Rightarrow x = y.$$

Définition 7 : Une relation ${\mathcal R}$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (xRy \text{ et } yRx) \Rightarrow x = y.$$

Définition 7 : Une relation $\mathcal R$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (xRy \text{ et } yRx) \Rightarrow x = y.$$

Exemples:

1 L'égalité dans un ensemble E :

Définition 7 : Une relation $\mathcal R$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (x\mathcal{R}y \text{ et } y\mathcal{R}x) \Rightarrow x = y.$$

Exemples:

• L'égalité dans un ensemble E: $\forall (x,y) \in E^2$, si x=y et y=x, alors x=y.

Définition 7 : Une relation $\mathcal R$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (x\mathcal{R}y \text{ et } y\mathcal{R}x) \Rightarrow x = y.$$

- **1** L'égalité dans un ensemble $E: \forall (x,y) \in E^2$, si x=y et y=x, alors x=y.
- **2** La relation \leq dans \mathbb{R} :

Définition 7 : Une relation $\mathcal R$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (xRy \text{ et } yRx) \Rightarrow x = y.$$

- L'égalité dans un ensemble E: $\forall (x,y) \in E^2$, si x=y et y=x, alors x=y.
- ② La relation \leqslant dans \mathbb{R} : $\forall (x,y) \in \mathbb{R}^2$, si $x \leqslant y$ et $y \leqslant x$, alors x = y.

Définition 7 : Une relation $\mathcal R$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (xRy \text{ et } yRx) \Rightarrow x = y.$$

- L'égalité dans un ensemble $E: \forall (x,y) \in E^2$, si x=y et y=x, alors x=y.
- **2** La relation \leq dans \mathbb{R} : $\forall (x, y) \in \mathbb{R}^2$, si $x \leq y$ et $y \leq x$, alors x = y.
- **3** L'inclusion \subset dans $\mathcal{P}(X)$:

Définition 7 : Une relation $\mathcal R$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (x\mathcal{R}y \text{ et } y\mathcal{R}x) \Rightarrow x = y.$$

- L'égalité dans un ensemble $E: \forall (x,y) \in E^2$, si x=y et y=x, alors x=y.
- **2** La relation \leq dans \mathbb{R} : $\forall (x,y) \in \mathbb{R}^2$, si $x \leq y$ et $y \leq x$, alors x = y.
- **3** L'inclusion \subset dans $\mathcal{P}(X)$: $\forall (A, B) \in \mathcal{P}(X)^2$, si $A \subset B$ et $B \subset A$ alors A = B

Définition 7 : Une relation $\mathcal R$ dans un ensemble E est dite antisymétrique si

$$\forall (x,y) \in E^2, (xRy \text{ et } yRx) \Rightarrow x = y.$$

- L'égalité dans un ensemble E: $\forall (x,y) \in E^2$, si x=y et y=x, alors x=y.
- **2** La relation \leq dans \mathbb{R} : $\forall (x, y) \in \mathbb{R}^2$, si $x \leq y$ et $y \leq x$, alors x = y.
- **③** L'inclusion \subset dans $\mathcal{P}(X)$: $\forall (A, B) \in \mathcal{P}(X)^2$, si $A \subset B$ et $B \subset A$ alors A = B (c'est le théorème de la double inclusion).

Illustration: Le seul cas où il y a une flèche de x vers y et une flèche de y vers x est celui où x=y. Il y a alors une boucle sur x.

Si $\ensuremath{\mathcal{R}}$ est antisymétrique alors la configuration ci-dessous n'est pas possible .

Définition 8: Une relation \mathcal{R} dans un ensemble E est une relation d'équivalence si elle est à la fois

- réflexive
- symétrique
- transitive.

Définition 8: Une relation \mathcal{R} dans un ensemble E est une relation d'équivalence si elle est à la fois

- réflexive
- symétrique
- transitive.

Définition 8: Une relation \mathcal{R} dans un ensemble E est une relation d'équivalence si elle est à la fois

- réflexive
- symétrique
- transitive.

Exemples:

1 L'égalité dans un ensemble E

Définition 8: Une relation \mathcal{R} dans un ensemble E est une relation d'équivalence si elle est à la fois

- réflexive
- symétrique
- transitive.

- L'égalité dans un ensemble E
- 2 La relation "avoir même parité que" dans IN

Définition 8: Une relation \mathcal{R} dans un ensemble E est une relation d'équivalence si elle est à la fois

- réflexive
- symétrique
- transitive.

- 1 L'égalité dans un ensemble E
- 2 La relation "avoir même parité que" dans IN
- Plus généralement, une relation définie par un lien verbal de la forme "avoir même · · · · que"

Illustration:

On distingue clairement 3 parties de E disjointes 2 à 2.

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$.

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $\mathcal{C}\ell(x)$.

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $\mathcal{C}\ell(x)$. Ainsi $\mathcal{C}\ell(x) = \{y \in E/x\mathcal{R}y\}$.

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $\mathcal{C}\ell(x)$. Ainsi $\mathcal{C}\ell(x) = \{y \in E/x\mathcal{R}y\}$.

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $C\ell(x)$. Ainsi $C\ell(x) = \{y \in E/xRy\}$.

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $\mathcal{C}\ell(x)$. Ainsi $\mathcal{C}\ell(x) = \{y \in E/x\mathcal{R}y\}$.

$$C\ell(a) = \{a, b, f\} = C\ell(b) = C\ell(f)$$

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $\mathcal{C}\ell(x)$. Ainsi $\mathcal{C}\ell(x) = \{y \in E/x\mathcal{R}y\}$.

$$C\ell(a) = \{a, b, f\} = C\ell(b) = C\ell(f)$$

$$\mathcal{C}\ell(c) = \{c, d\} = \mathcal{C}\ell(d)$$

Définition 9 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E, et $x \in E$. On appelle classe d'équivalence de x l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

On la note $\mathcal{C}\ell(x)$. Ainsi $\mathcal{C}\ell(x) = \{y \in E/x\mathcal{R}y\}$.

$$C\ell(a) = \{a, b, f\} = C\ell(b) = C\ell(f)$$

$$\mathcal{C}\ell(c) = \{c, d\} = \mathcal{C}\ell(d)$$

$$\mathcal{C}\ell(e) = \{e\}$$

Théorème 6.1 : Les classes d'équivalence d'une relation d'équivalence $\mathcal R$ dans un ensemble E forment une partition de E :

• $\forall x \in E, \ \mathcal{C}\ell(x) \neq \emptyset$ (une classe d'équivalence est toujours non vide)

Théorème 6.1 : Les classes d'équivalence d'une relation d'équivalence $\mathcal R$ dans un ensemble E forment une partition de E :

- $\forall x \in E, \ \mathcal{C}\ell(x) \neq \emptyset$ (une classe d'équivalence est toujours non vide)
- $\forall (x,x') \in E^2, \ \mathcal{C}\ell(x) \neq \mathcal{C}\ell(x') \Leftrightarrow \mathcal{C}\ell(x) \cap \mathcal{C}\ell(x') = \emptyset$

Théorème 6.1 : Les classes d'équivalence d'une relation d'équivalence $\mathcal R$ dans un ensemble E forment une partition de E :

- $\forall x \in E, \ \mathcal{C}\ell(x) \neq \emptyset$ (une classe d'équivalence est toujours non vide)
- $② \ \forall (x,x') \in E^2, \ \mathcal{C}\ell(x) \neq \mathcal{C}\ell(x') \Leftrightarrow \mathcal{C}\ell(x) \cap \mathcal{C}\ell(x') = \emptyset$

(2 classes d'équivalence distinctes sont disjointes et réciproquement)

Théorème 6.1 : Les classes d'équivalence d'une relation d'équivalence $\mathcal R$ dans un ensemble E forment une partition de E :

- $\forall x \in E, \ \mathcal{C}\ell(x) \neq \emptyset$ (une classe d'équivalence est toujours non vide)
- ② $\forall (x, x') \in E^2$, $\mathcal{C}\ell(x) \neq \mathcal{C}\ell(x') \Leftrightarrow \mathcal{C}\ell(x) \cap \mathcal{C}\ell(x') = \emptyset$ (2 classes d'équivalence distinctes sont disjointes et réciproquement)
- $\bigcup_{x \in F} \mathcal{C}\ell(x) = E$

Définition 10 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E.

Définition 10: Soit \mathcal{R} une relation d'équivalence dans un ensemble E.L'ensem des classes d'équivalence de \mathcal{R} s'appelle ensemble quotient de E par \mathcal{R} .

Définition 10: Soit \mathcal{R} une relation d'équivalence dans un ensemble E.L'ensem des classes d'équivalence de \mathcal{R} s'appelle ensemble quotient de E par \mathcal{R} .

On le note $E/_{\mathcal{R}}$.

Définition 10 : Soit \mathcal{R} une relation d'équivalence dans un ensemble E. L'ensem des classes d'équivalence de \mathcal{R} s'appelle ensemble quotient de E par \mathcal{R} .

On le note E/R.

Dans l'exemple précédent, $E/R = \{C\ell(a), C\ell(c), C\ell(e)\}.$

Définition 11: Une relation \mathcal{R} dans un ensemble E est une relation d'ordre si elle est à la fois

- réflexive
- antisymétrique
- transitive.

Définition 11: Une relation \mathcal{R} dans un ensemble E est une relation d'ordre si elle est à la fois

- réflexive
- antisymétrique
- transitive.

Définition 11: Une relation \mathcal{R} dans un ensemble E est une relation d'ordre si elle est à la fois

- réflexive
- antisymétrique
- transitive.

Exemples:

1 L'égalité dans un ensemble E

Définition 11 : Une relation \mathcal{R} dans un ensemble E est une relation d'ordre si elle est à la fois

- réflexive
- antisymétrique
- transitive.

- 1 L'égalité dans un ensemble E
- 2 La relation " \leqslant " dans \mathbb{R}

Définition 11 : Une relation \mathcal{R} dans un ensemble E est une relation d'ordre si elle est à la fois

- réflexive
- antisymétrique
- transitive.

- 1 L'égalité dans un ensemble E
- 2 La relation " \leqslant " dans \mathbb{R}
- 3 L'inclusion dans $\mathcal{P}(X)$

Définition 12: Soit \mathcal{R} une relation d'ordre dans un ensemble E, et $(x, y) \in E^2$.

Définition 12: Soit \mathcal{R} une relation d'ordre dans un ensemble E, et $(x, y) \in E^2$.

On dit que x est comparable à y pour \mathcal{R} si $x\mathcal{R}y$ ou $y\mathcal{R}x$.

Définition 12 : Soit \mathcal{R} une relation d'ordre dans un ensemble E, et $(x, y) \in E^2$.

On dit que x est comparable à y pour \mathcal{R} si $x\mathcal{R}y$ ou $y\mathcal{R}x$.

Définition 13 : On dit qu'une relation d'ordre $\mathcal R$ dans un ensemble E est totale si

$$\forall (x, y) \in E^2$$
, x est comparable à y

Définition 12: Soit \mathcal{R} une relation d'ordre dans un ensemble E, et $(x, y) \in E^2$.

On dit que x est comparable à y pour \mathcal{R} si $x\mathcal{R}y$ ou $y\mathcal{R}x$.

Définition 13 : On dit qu'une relation d'ordre $\mathcal R$ dans un ensemble E est totale si

$$\forall (x,y) \in E^2$$
, x est comparable à y

Sinon on dit que la relation d'ordre est partielle.

Définition 12: Soit \mathcal{R} une relation d'ordre dans un ensemble E, et $(x, y) \in E^2$.

On dit que x est comparable à y pour \mathcal{R} si $x\mathcal{R}y$ ou $y\mathcal{R}x$.

Définition 13 : On dit qu'une relation d'ordre $\mathcal R$ dans un ensemble E est totale si

$$\forall (x,y) \in E^2$$
, x est comparable à y

Sinon on dit que la relation d'ordre est partielle. (On dit aussi relation d'ordre total (resp. partiel))

Exemples:

• L'égalité dans un ensemble *E* est une relation d'ordre partiel. (Par exemple 2 et 6 ne sont pas comparables)

- L'égalité dans un ensemble E est une relation d'ordre partiel.
 (Par exemple 2 et 6 ne sont pas comparables)
- **2** La relation " \leq " dans \mathbb{R} est une relation d'ordre total.

- L'égalité dans un ensemble E est une relation d'ordre partiel.
 (Par exemple 2 et 6 ne sont pas comparables)
- **2** La relation " \leq " dans \mathbb{R} est une relation d'ordre total.
- 3 L'inclusion dans $\mathcal{P}(X)$ est une relation d'ordre partiel.

- L'égalité dans un ensemble E est une relation d'ordre partiel.
 (Par exemple 2 et 6 ne sont pas comparables)
- **2** La relation " \leq " dans \mathbb{R} est une relation d'ordre total.
- **3** L'inclusion dans $\mathcal{P}(X)$ est une relation d'ordre partiel.

```
(Par exemple [0,2] \mathbb{Z}[1,3] et [1,3] \mathbb{Z}[0,2])
```