Récapitulatif sur les plus courts chemins

- ► NP-difficile dans le cas général
- Polynomial dans plusieurs cas particuliers
 - 1. Pas de fonction de coût (c=1): parcours en largeur
 - 2. Acyclique :
 - Orienté : ordre topologique
 - Non orienté (forêt) : au plus un o-d chemin élémentaire
 - 3. Sans cycle absorbants:
 - Orienté : programmation dynamique
 - Non orienté : T-joints
 - 4. Poids positifs: algorithme de Dijkstra

min
$$\sum_{k=0}^{T-1} C_{k}(S_{k}, M_{k}) + C_{T}(S_{T})$$

S. t. $S_{0} = S_{ini} S'$
 $S_{k+1} = \int_{I} (S_{k}, M_{k}), \forall k \in [0, T-1]$
 $M_{k} \in \mathcal{U}_{k}(S_{k}), \forall k$

$$V_{k}(S_{k}) = C_{T}(S) \quad \forall S \quad \forall S$$

5.16
$$x_k$$
: inventaire an temph k $x_1 = 21$
 $x_{k+1} = x_k - d_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k - d_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k - d_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k+1}{dk} = x_k + u_k = f_k (x_k, u_k)$
 $\frac{k$

3. Flots et coupes

12 Octobre 2022

- $oxed{1}$ s-t flot maximum, s-t coupe minimum
- 2 Flot de coût minimum
- PLNE pour les flots

Definitions. Soit D=(V,A) un graphe orienté, s et t deux sommets dans V, et $u:A\to\mathbb{R}_+$ une fonction de capacité.

Un s-t flot est une fonction $f:A \to \mathbb{R}_+$ telle que : $f(\alpha)$, $f(\alpha)$

$$\forall v \in V \setminus \{s, t\}, \sum_{\alpha \in S^+(v)} f(\alpha) - \sum_{\alpha \in S^-(n)} f(\alpha) = 0$$

C'est un s-t flot sous u si :

$$ral(g) = \sum_{\alpha \in S^{+}(s)} J(\alpha) - \sum_{\alpha \in S^{-}(s)} J(\alpha)$$

Qu'est-ce qu'un flot?

Definitions. Soit D=(V,A) un graphe orienté, s et t deux sommets dans V, et $u:A\to\mathbb{R}_+$ une fonction de capacité.

Un s-t flot est une fonction $f:A\to\mathbb{R}_+$ telle que :

$$\forall v \in V \setminus \{s, t\}, \sum_{a \in \delta^-(v)} f(a) = \sum_{a \in \delta^+(v)} f(a)$$

C'est un s-t flot sous u si :

Qu'est-ce qu'un flot?

Definitions. Soit D=(V,A) un graphe orienté, s et t deux sommets dans V, et $u:A\to\mathbb{R}_+$ une fonction de capacité.

Un s-t flot est une fonction $f:A\to\mathbb{R}_+$ telle que :

$$\forall v \in V \setminus \{s, t\}, \sum_{a \in \delta^-(v)} f(a) = \sum_{a \in \delta^+(v)} f(a)$$

C'est un s-t flot sous u si :

$$\forall a \in A, f(a) \le u(a)$$

Qu'est-ce qu'un flot?

Definitions. Soit D=(V,A) un graphe orienté, s et t deux sommets dans V, et $u:A\to\mathbb{R}_+$ une fonction de capacité.

Un s-t flot est une fonction $f:A \to \mathbb{R}_+$ telle que :

$$\forall v \in V \backslash \{s, t\}, \sum_{a \in \delta^-(v)} f(a) = \sum_{a \in \delta^+(v)} f(a)$$

C'est un s-t flot sous u si :

$$\forall a \in A, f(a) \le u(a)$$

$$\operatorname{val}(f) = \sum_{a \in \delta^{+}(s)} f(a) - \sum_{a \in \delta^{-}(s)} f(a)$$

$$= \sum_{a \in S^{-}(k)} \left\{ (a) - \sum_{a \in S^{+}(k)} \left\{ (a) \right\} \right\}$$

Problème de **s-t** flot maximum

Maximum s-t flow

- Instance. Un graphe orienté D=(V,A), deux sommets distincts s et t dans V, et une fonction de capacité $u:A\to\mathbb{R}_+$.
- **Question**. Un s-t flot sous u de valeur maximum.

Qu'est-ce qu'une coupe?

Definitions. Soit D=(V,A) un graphe orienté, s et t deux sommets dans V, et $u:A\to\mathbb{R}_+$ une fonction de capacité.

- Une s-t coupe est un ensemble d'arcs $B = \delta^+(U)$ pour $U \subseteq V$ qui contient s mais pas t.
- La capacité u(B) de la coupe vaut :

$$u(B) = \sum_{a \in B} u(a)$$

Problème de **s-t** coupe minimum

Minimum s-t cut

- ▶ Instance. Un graphe orienté D=(V,A), deux sommets distincts s et t dans V, et une fonction de capacité $u:A\to\mathbb{R}_+$.
- **Question**. Une s-t coupe B de valeur minimum u(B).

Flot maximum et coupe minimum

Proposition. Soit f un s-t flot sous u et $B=\delta^+(U)$ une s-t coupe. On a d'une part :

D'autre part :

Flot maximum et coupe minimum

Proposition. Soit f un s-t flot sous u et $B=\delta^+(U)$ une s-t coupe. On a d'une part :

$$\operatorname{val}(f) = \sum_{a \in \delta^+(U)} f(a) - \sum_{a \in \delta^-(U)} f(a)$$

D'autre part :

Flot maximum et coupe minimum

Proposition. Soit f un s-t flot sous u et $B=\delta^+(U)$ une s-t coupe. On a d'une part :

$$val(f) = \sum_{a \in \delta^{+}(U)} f(a) - \sum_{a \in \delta^{-}(U)} f(a)$$

D'autre part :

$$val(f) \le u(B)$$

Preuve

Preuve
and
$$(g) = \sum_{\alpha \in S^{+}(s)} f(\alpha) - \sum_{\alpha \in S^{-}(s)} f(\alpha)$$

 $+ \sum_{\alpha \in S^{+}(n)} \sum_{\alpha \in S^{+}(n)} f(\alpha) - \sum_{\alpha \in S^{-}(n)} f(\alpha)$
 $= \sum_{\alpha \in S^{+}(u)} f(\alpha) - \sum_{\alpha \in S^{-}(u)} f(\alpha)$
 $= \sum_{\alpha \in S^{+}(u)} f(\alpha) - \sum_{\alpha \in S^{-}(u)} f(\alpha)$
 $\leq \sum_{\alpha \in S^{+}(u)} f(\alpha) = \sum_{\alpha \in S^{-}(u)} f(\alpha)$
 $\leq \sum_{\alpha \in S^{+}(u)} f(\alpha) = \sum_{\alpha \in S^{-}(u)} f(\alpha)$

Graphe résiduel

Définitions. Soit $(D=(V,A),\,s,\,t,\,u)$ une instance du problème de s-t flot maximum, on définit de nouveaux arcs \overleftarrow{a} :

On définit les capacités résiduelles $u_f: \overleftrightarrow{A} \to \mathbb{R}_+$:

On définit le graphe résiduel par $\overleftrightarrow{D_f} = (V, A_f)$ où :

Graphe résiduel

Définitions. Soit $(D=(V,A),\,s,\,t,\,u)$ une instance du problème de s-t flot maximum, on définit de nouveaux arcs \overleftarrow{a} :

- $ightharpoonup \forall a = (u, v) \in A, \ \overleftarrow{a} = (v, u)$
- $\stackrel{\longleftarrow}{A} = A \cup \{\overleftarrow{a} : a \in A\}$

On définit les capacités résiduelles $u_f: \overleftrightarrow{A} \to \mathbb{R}_+$:

On définit le graphe résiduel par $\overleftrightarrow{D_f} = (V, A_f)$ où :

Graphe résiduel

Définitions. Soit (D = (V, A), s, t, u) une instance du problème de s-t flot maximum, on définit de nouveaux arcs \overleftarrow{a} :

- $\blacktriangleright \forall a = (u, v) \in A, \overleftarrow{a} = (v, u)$
- $\stackrel{\longleftarrow}{A} = A \cup \{\overleftarrow{a} : a \in A\}$

On définit les capacités résiduelles $u_f: \overleftrightarrow{A} \to \mathbb{R}_+$:

- $u_f(a) = u(a) f(a)$
- $u_f(\overleftarrow{a}) = f(a)$

On définit le graphe résiduel par $\overleftrightarrow{D_f} = (V, A_f)$ où :

s-t flot maximum, s-t coupe minimum

Définitions. Soit (D = (V, A), s, t, u) une instance du problème de s-t flot maximum, on définit de nouveaux arcs \overleftarrow{a} :

$$\forall a = (u, v) \in A, \overleftarrow{a} = (v, u)$$

$$\overrightarrow{A} = A \cup \{\overleftarrow{a} : a \in A\}$$

On définit les capacités résiduelles $u_f: \overleftrightarrow{A} \to \mathbb{R}_+$:

On définit les capacités résiduelles
$$u_f: A \to \mathbb{R}_+$$

 \Rightarrow $u_f(a)=u(a)-f(a)=$ de combiner on peut augme flot rur a evant d'atte $u_f(\overleftarrow{a}) = f(a) =$ On définit le graphe résiduel par $\overrightarrow{D_f} = (V, A_f)$ où :

 $A_f = \{a \in \overleftrightarrow{A} : u_f(a) > 0\}$

Chemin f-augmentant

Définitions. Un chemin f-augmentant est un s-t chemin dans le graphe résiduel.

Augmenter le flot f d'une valeur γ le long d'un s-t chemin P consiste à :

- $f(a) \leftarrow f(a) + \gamma \text{ si } a \in P$
- $f(a) \leftarrow f(a) \gamma \text{ si } \overleftarrow{a} \in P$

Proposition. Un s-t flot f est maximum s'il n'existe pas de chemin f-augmentant.

Preuve

Si pas de chemin f-augmentant

5000

0 F

$$\forall a \in S^{+}(u)$$
, $g(a) = u(a)$
 $val(g) = u(B)$

Théorème flot maximum coupe minimum

Théorème. La valeur maximum d'un s-t flot est égale à la valeur minimum d'une s-t coupe.

Preuve

Algorithme d'Edmonds-Karp / Fond - Fulkerson

- 1. Instance : (D = (V, A), s, t, u)
- 2. Initialisation : Pour tout arc $a \in A$, $f(a) \leftarrow 0$
- 3. Tant qu'il existe un chemin f-augmentant
 - $ightharpoonup \underline{P} \leftarrow \text{chemin } f\text{-augmentant } \underline{\text{avec un nombre minimum d'arcs}}$
 - Augmenter f de $\min_{a \in P} u_f(a)$

Proposition. L'algorithme trouve un flot maximum en $\mathcal{O}(|A|^2|V|)$

Proposition. Si la capacité u est entière, alors il existe un flot maximum entier, et l'algorithme d'Edmonds-Karp le trouve.

- 1 s-t flot maximum, s-t coupe minimum
- Plot de coût minimum
- PLNE pour les flots

Définition : b-flot

Definition. Soit D=(V,A) un graphe orienté, $\underline{\ell}:A\to\mathbb{R}_+$ et $u:A\to\mathbb{R}_+$ des capacités telles que $\underline{\ell}\le u$, et $b:V\to\mathbb{R}$ une fonction telle que $\sum_{v\in V}b(v)=0$.

Un b-flot est une application $f:A\to\mathbb{R}_+$ telle que :

Et pour tout $a \in A$:

Une **circulation** est un b-flot avec b = 0.

Définition : b-flot

Definition. Soit D=(V,A) un graphe orienté, $\ell:A\to\mathbb{R}_+$ et $u:A\to\mathbb{R}_+$ des capacités telles que $\ell\le u$, et $b:V\to\mathbb{R}$ une fonction telle que $\sum_{v\in V}b(v)=0$.

Un b-flot est une application $f:A\to\mathbb{R}_+$ telle que :

$$\forall v \in V, \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b(v)$$

Et pour tout $a \in A$:

Une **circulation** est un b-flot avec b = 0.

Definition. Soit D = (V, A) un graphe orienté, $\ell : A \to \mathbb{R}_+$ et $u:A\to\mathbb{R}_+$ des capacités telles que $\ell\leq u$, et $b:V\to\mathbb{R}$ une fonction telle que $\sum_{v \in V} b(v) = 0$.

Un b-flot est une application $f:A\to\mathbb{R}_+$ telle que :

$$\forall v \in V, \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b(v)$$

Et pour tout $a \in A$:

$$\ell(a) \le f(a) \le u(a)$$

Une **circulation** est un b-flot avec b = 0.

b-flot de coût minimum

Soit une fonction de coût $c:A\to\mathbb{R}$, le **coût d'un** b-flot f est :

$$\sum_{a \in A} c(a) f(a)$$

Minimum cost flow

- Instance. Un graphe orienté D=(V,A), $\ell:A\to\mathbb{R}_+$ et $u:A\to\mathbb{R}_+$ des capacités telles que $\ell\le u$, $b:V\to\mathbb{R}$ une fonction telle que $\sum_v b(v)=0$, et une fonction de coût $c:A\to\mathbb{R}$.
- ▶ Question. Un *b*-flot de coût minimum.

Cycle f-augmentant

Soit f un b-flot, on définit le graphe résiduel $D_f = (V, A_f)$ où :

$$A_f = \{a \in A : u(a) > f(a)\} \cup \{\overleftarrow{a} : a \in A \text{ et } f(a) > \ell(a)\}$$

On définit la capacité résiduelle u_f comme :

- $u_f(a) = u(a) f(a) \text{ si } a \in A$
- $u_f(a) = f(a) \ell(a) \text{ si } \overleftarrow{a} \in A$

On étend $c(\overleftarrow{a}) = -c(a)$ pour $\overleftarrow{a} \in \overleftarrow{A}$.

Un cycle f-augmentant C est un cycle dans D_f . On définit son coût par :

$$c(C) = \sum_{a \in C} c(a)$$

Critère d'optimalité

Théorème. Un b-flot f est de coût minimum s'il n'existe pas de cycle f-augmentant C tel que c(C) < 0.

Algorithme de suppression de cycle

 $\begin{tabular}{ll} \textbf{Definition} Le coût moyen d'un cycle C dans le graphe résiduel est définit par : \\ \end{tabular}$

$$\bar{c}(C) = \frac{c(C)}{|C|}$$

Algorithme de suppression de cycle de coût moyen minimum (Algorithme 6 poly.).

- 1 s-t flot maximum, s-t coupe minimum
- 2 Flot de coût minimum
- PLNE pour les flots

PLNE pour le <u>s-t</u> flot maximum

$$N_a = J(a)$$

$$\max_{x} \sum_{a \in \delta^{+}(s)} x_{a} - \sum_{a \in \delta^{-}(s)} x_{a} = \text{vol}(f)$$

$$\text{S.t. } x_{a} > \text{O}$$

$$\sum_{a \in \delta^{+}(w)} \sum_{a \in \delta^{+}(w)} x_{a} = \text{OV} \text{v} \neq \text{S, t}$$

$$\text{vol}(x) = \text{Vol}(x) \text{vol}(x)$$

PLNE pour le s-t flot maximum

$$\max_{x} \sum_{a \in \delta^{+}(s)} x_{a} - \sum_{a \in \delta^{-}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{+}(v)} x_{a} - \sum_{a \in \delta^{-}(v)} x_{a} = 0, \quad \forall v \notin \{s, t\}$$

$$x_{a} \leq u_{a}, \qquad \forall a \in A$$

$$0 < x_{a}, \qquad \forall a \in A$$

Propriétés

Proposition. La matrice de flot est totalement unimodulaire.

Proposition. Le problème de s-t capacité minimum est le dual Lagrangien du problème de s-t flot maximum.

