PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-034593

(43) Date of publication of application: 05.02.2002

(51)Int.Cl.

C12P 41/00

(21)Application number : 2000-225010

(71)Applicant: MITSUBISHI GAS CHEM CO INC

(22) Date of filing:

26.07.2000

(72)Inventor: DOTANI MASAHARU

TANAKA AKINOBU

IGARASHI HIDEO

(54) METHOD FOR PRODUCING OPTICALLY ACTIVE α -AMINO ACID

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent reduction in the enzyme activity of a hydrolase to be used in producing an optically active α-amino acid by a biochemical hydrolysis reaction by using an aqueous solution of an α-amino acid amide produced from an aldehyde, hydrogen cyanide and ammonium as a raw material.

SOLUTION: The aqueous solution of an α-amino acid amide produced from an aldehyde, hydrogen cyanide and ammonium is brought into contact with an organic solvent immiscible with water and used as a raw material for the biochemical hydrolysis reaction to produce the optically active α -amino acid.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号 特開2002-34593

(P2002-34593A)

(43)公開日 平成14年2月5日(2002.2.5)

(51) Int.CL?

織別配号

FΙ

ラーマニード(参考) A 4B064

C12P 41/00

C12P 41/00

審査請求 未請求 請求項の数1 OL (全 6 頁)

(21)出願番号	物廳2000-225010(P2000-225010)	(71)出顧人	000004468	
			三菱瓦斯化学株式会社	
(22)出版日	平成12年7月26日(2000.7.26)	東京都千代田区丸の内2丁目5番2・		
		(72) 発明者	氨谷 正明	
			新潟県新潟市太夫浜字新割182番地 三菱	
			瓦斯化学株式会社新潟研究所内	
		(72) 発明者	田中 昭宜	
			新視県新潟市太夫採字新割182番地 三菱	
			瓦斯化学株式会社新潟研究所内	
		(72) 発明者	五十嵐 秀謹	
			新观见新浪市太夫英字新割182番地 三菱	
			瓦斯化学株式会社新潟研究所內	

(54) 【発明の名称】 光学指性 αーアミノ酸の製造方法

(57)【要約】

【課題】 アルデヒドとシアン化水素およびアンモニア から製造されるα-アミノ酸アミドの水溶液を原料に生 化学的加水分解反応により光学活性 α-アミノ酸を製造 する際、そこで使用する側水分解酵素の酵素活性低下を 防ぐ。

【解決手段】 アルデヒドとシアン化水素およびアンモ ニアから製造されるαーアミノ酸アミドの水溶液を、水 と混和しない有機溶媒と接触させた後、生化学的加水分 解反応の原料として使用し、光学活性αーアミノ酸を製 造する。

1

【特許請求の範囲】

【請求項 1 】 アルデヒドとシアン化水素およびアンモ ニアから製造される一般式 (1) で表されるα-アミノ 酸アミドの水溶液を、水と混和しない有機溶媒と接触さ せた後、生化学的加水分解反応の原料として使用すると とを特徴とする。一般式(2)で表される光学活性α-アミノ酸の製造方法。

R' CH (NH,) CONH, (1)

(R) は低級アルキル基、置換低級アルキル基、シクロ フェニル基、ベンジル基、置換ベンジル基、複素環基ま たは置換複素環幕である)

R' CH (NH,) COOH (2)

(R、は低級アルキル基、置換低級アルキル基、シクロ ヘキシル基、置換シクロヘキシル基、フェニル基、置換 フェニル基、ベンジル基、置換ベンジル基、複素類基ま たは置換複素環基である)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光学活性 α – アミノ 酸の製造方法に関する。光学活性ペーアミノ酸は各種工 **業薬品などの中間体ならびに、農薬、化粧品、飼料添加** 物。食品添加物。および医薬品として極めて重要な物質 である。

[0002]

【従来の技術】 α-アミノ酸アミドを生化学的に加水分 解して、光学活性αーアミノ酸を製造する方法は公知で ある。例えば、D、L-α-アミノ酸アミドにシゾサッ カロミセス属。ロドスポリジウム層。キャンデイダ層、 クリプトコッカス属、ピチロスポラム魔、ロドトルラ 属」トルロプシス属、トリコスポロン魔またはトレメタ 属に関しL-α-アミノ酸アミド加水分解活性を有する 微生物の培養液、生菌体あるいは菌体処理物を作用さ せ、対応するし-α-アミノ酸を製造する方法(特開昭 59-159789)、D. L-α-アミノ酸アミドに ロドスピリラム魔、ロドシュードモナス層、スピリラム 扈」ミクロシクラス扈、シュードモナス扈、グルコノバ クター層、アグロバクテリウム層、アルカリゲネス層、 アクロモバクター層、アセトバクター層、エッシエリヒ ア魔」エントロバクター魔」セラチア魔、アエロモナス 40 **眉」フラボバクテリウム魔」パラコッカス層、チオバチ** ラス魔、ストレプトコッカス層、コリネバクテリウム 属。アルスロバクター属。ミクロバクテリウム区。ノカ ルジア層、ムコール層、リゾプス層、アスペルギラス 層、ベニシリウム層、フサリウム層、ナドソニア魔、ハ ンセニアスポラ隣、ウイケルハミア隣、サッカロマイセ ス魔、ロッデロマイセス魔、ピチア魔、ハンセヌラ層、 パチソレン層、シテロマイセス層、デバリオマイセス 扈、デッケラ魔、サッカロマイコプシス層、リポマイセ ス属。ロイコスポリジウム属、スポロポロマイセス層、

スポリジオボラス層、オオスポリジウム層、ステリグマ トマイセス層またはトリコノブシス膜に層しL-α-ア ミノ酸アミド加水分解活性を有する微生物の培養液、生 菌体あるいは菌体処理物を作用させ、対応するL-α-ア ミノ酸を製造する方法 (特開館60-36446)、 D、L-α-アミノ酸アミドにミコブラナ層またはプロ タミノバクター厩に属ししーαーアミノ酸アミド加水分 解活性を有する微生物の菌体あるいは菌体処理物を作用 させ、対応するL-α-アミノ酸を製造する方法(特開平 ヘキシル基、置換シクロヘキシル基。フェニル基、置線 10 01-277499)、D. Lーα-アミノ酸アミドに ミコバクテリウム・メタノリカ属に関しL-a-アミノ 酸アミド加水分解活性を有する微生物の菌体あるいは菌 体処理物を作用させ、対応するL-α-アミノ酸を製造す る方法 (特闘平01-215297) . D-α-アミノ 酸アミドにアクロモバクター層、アルカリゲネス属また はクルチア属に関しDーαーアミノ酸アミド加水分解活 性を有する微生物の結構液、生菌体あるいは菌体処理物 を作用させ、対応するD-α-アミノ酸を製造する方法 {特開昭60-184392}、D-α-アミノ酸アミ 下にシュードモナス層、ロドコッカス属またはセラチア 属に関しDーαーアミノ酸アミド加水分解活性を有する 微生物の培養液、生菌体あるいは菌体処理物を作用さ せ 対応するD-α-アミノ酸を製造する方法(特別語 61-274690)、D. L-α-アミノ酸アミドに ロドコッカス魔に属しD-α-アミノ酸アミドを選択的 に加水分解活性を有する微生物の培養液、生園体あるい は菌体処理物を作用させ、対応するDーαーアミノ酸を 製造する方法 (特開昭63-087998) 、などが知 ちれている。この反応で使用される。原料のα-アミノ 30 酸アミドは、通常、アルデヒドとシアン化水素よりシア ンヒドリンを得、次いで液体アンモニアあるいはアンモ ニア水にてアミノ化を行いα-アミノニトリルとした 後、カルボニル化合物の存在下α-アミノニトリルの部 分加水分解反応後、アンモニアおよびケトン類を除去す ることにより製造される。従来、生化学的加水分解反応 で使用される原料のαーアミノ酸アミドは、上記αーア ミノニトリルの部分加水分解反応で得られるα-アミノ 酸アミド含有水溶液を、そのまま、あるいは濃縮脱水後 再結晶精製を行い、使用される。

[0003]

【発明が解決しようとする課題】従来、アルデヒドとシ アン化水素およびアンモニアから製造されるα-アミノ 酸アミド含有水溶液を、そのまま生化学的加水分解反応 に用いた場合には酵素の活性低下が著しく、また、酵素 活性の低下を避けるためにαーアミノ酸アミドの再結晶 精製を行った場合には、精製収率が低く、実用上問題が あった。本発明の目的は、これらの問題点を解決し、生 化学的加水分解反応において酵素活性の低下が少ない。 光学活性αーアミノ酸の製造方法を提供することにあ

50 る。

3

[0004]

【課題を解決するための手段】本発明者は上記の如き課 題を有する光学活性αーアミノ酸の製造方法について鏡 意検討を行った結果、上述のようにして製造した4-7 ミノ酸アミド含有水溶液を水と混和しない有機溶媒と接 触させた後、生化学的加水分解反応の原料として使用す るととにより、αーアミノ酸アミドの錯製収率が高く、 且つ生化学的加水分解反応において酵素活性の低下少な く、光学活性α-アミノ酸を製造出来ることを見出し、 本発明に到達した。

【()()()5】即ち本発明は、アルデヒドとシアン化水素 およびアンモニアから製造される一般式(1)で表され るα-アミノ酸アミド含有水溶液を、水と混和しない有 機溶媒と接触させた後、生化学的加水分解反応の原料と して使用することを特徴とする、一般式(2)で表され る光学活性α-アミノ酸の製造方法である。

R' CH (NH₂) CONH₂ (1)

{R1 は低級アルキル基。置換低級アルキル基。シクロ ヘキシル基、置換シクロヘキシル基。フェニル基。置換 フェニル基、ベンジル基、置換ベンジル基、複素環基ま 20 たは置換復素環基である)

R' CH (NH2) COOH (2)

(R^x は低級アルキル基、置換低級アルキル基、シクロ ヘキシル基、置換シクロヘキシル基。フェニル基。置換 フェニル基、ベンジル基、置換ベンジル基、複素環基ま たは置換複素環基である)

[0006]

【発明の実施の形態】本発明の方法は通常、α-アミノ 酸アミド含有水溶液に水と混和しない有機溶媒を添加。 し、α-アミノ酸アミド含有水溶液と接触させ、酵素活 30 性阻害物質を有機溶媒中へ抽出分離し、次いで、α-ア ミノ酸アミドを生化学的加水分解反応に供することによ

【①①①7】本発明の一般式(1)で示されるα-アミ ン酸アミドのR¹の低級アルキル基には特に制限はない が、倒えばメチル、エチル、プロピル、イソプロビル、 プチル、イソプチル、sec-ブチルおよびτ-ブチルなどの C、~C。の直鎖または分岐した低級アルキル墓であ り、複素躁基としては、プリル基、ピリジル基、チアゾ た。置換低級アルキル基、置換シクロヘキシル基、置換 フェニル基、置換ベンジル基ねよび置換複素環基のそれ ぞれに含まれる置換基は、例えばヒドロキシ、メトキ シ」メルカプト、メチルメルカプト、アセタール、カル ボキシル、カルボクサミド、ハロゲン、イミダゾリルお よびインドリルなどである。一般式(1)で表されるα アミノ酸アミドの代表例としては、グリシンアミド、 アラニンアミド、バリンアミド、ロイシンアミド、イソ ロイシンアミド、モロイシンアミド、セリンアミド、ス レオニンアミド、システインアミド、シスチンアミド、

メチオニンアミド、アリシンエチレンアセタールアミ ド、アスパラギンアミド、グルタミンアミド、フェニル グリシンアミド、フェニルアラニンアミド、チロシンア ミド、トリプトファンアミドおよびヒスチジンアミドな どが挙けられる。

【0008】また、本発明の一般式(2)で示される光 学活性α-アミノ酸は、上記α-アミノ酸アミドに対応 した光学活性α-アミノ酸である。使用原料であるα-アミノ酸アミド含有水溶液中のαーアミノ酸アミド濃度 19 は、特に限定されるものではないが、通常は10~50 重量%である。

【①①09】本発明で使用される水と混和しない有機溶 媒は、限定されるものではないが、脂肪族ハロゲン化炭 化水素類、脂肪族エーテル類、脂肪族エステル類、芳香 族炭化水素類。置換芳香族炭化水素類等が特に好まし く、具体的には、例えば塩化メチレン、クロロホルム、 四塩化炭素、エチルエーテル、プロビルエーテル。イソ プロビルエーテル、メチル-τ- ブチルエーテル、酢酸エ チル、酢酸プロビル、酢酸ブチル、ベンゼン、トルエ ン、キシレン、クロルベンゼンおよびアニソールなどが 挙げられる。有機溶媒の使用置および抽出処理回敷は、 使用原料であるαーアミノ酸アミドの種類および製造 法、使用する溶媒種等により異なり一概には言えない。 が 通常は経済性を考慮して、原料のα-アミノ酸アミ 下含有水溶液に対して()、1~3倍量および1~5回の 範囲である。有機溶媒を接触させる時の接触温度。圧力 および接触時間は、特に限定されるものではなく、通常 は常温、鴬圧、1時間程度である。水と泥和しない有機 恣媒で接触させた後に有機溶媒は分離除去される。有機 密媒を分離除去されて得られるαーアミノ酸アミド含有 水溶液は、そのまま、あるいは溶解している少量の有機 溶媒を減圧図去した後、生化学的加水分解反応の原料に 使用する。

【0010】D、L-α-アミノ酸アミドの生化学的加 水分解に使用される微生物は、特に限定されるものでは ない。微生物の培養は、使用微生物が通常資化し得る炭 素源、窒素源、各級生物に必須の無機塩、栄養等を含有 させた培地を用いて行われるが、高い酵素活性を得るた めに培地へ予めD、Lーαーアミノ酸アミドを添加する リル蟇、イミダゾリル基およびインドリル基であり、ま 40 ことも効果的である。この際に使用されるD,L-α-アミノ酸アミドは、目的とする光学活性αーアミノ酸に 対応するD、L-α-アミノ酸アミドであることが好き しいが、他のα-アミノ酸アミドでも良い。培養時のP 日は4~10の範囲であり、温度は20~50°Cであ る。培養は1日~1週間好気的に行われる。このように して培養した微生物は、培養液、分離菌体、乾燥菌体、 菌体破砕物さらには精製した酵素などの菌体処理物とし て反応に使用される。勿論、常法に従って菌体または酵 素を固定化して使用することもできる。

-50 【 0 0 1 1 】 D、L - α - アミノ酸アミドの生化学的加

水分解反応の条件は、D、L-α-アミノ酸アミドの反 応波中の濃度1~4 0 mc%。D、L - α - アミノ酸アミ Fに対する微生物の使用量は特に制限はないが、通常は 乾燥菌体基準で重置比()。()()5~1()、反応温度2() ~7.0℃およびPH5~1.3の範囲である。D. L-α - アミノ酸アミドの生化学的加水分解反応で生成したし -またはD-α-アミノ酸は、反応生成液から、例えば 遠心分離あるいは濾過膜などの通常の固液分離手段によ り微生物菌体を除いた後、イオン交換電気透析により分 離後晶出あるいは減圧滤縮後エタノールを加えてL-ま 10 -たはD-α-アミノ酸を折出させ濾取する、などの方法 により容易に分離することができる。

[0012]

【実能例】以下に本発明を実施例によりさらに具体的に 説明するが、本発明はこの実施例により限定されるもの ではない。

実施例1

の D. Lーバリンアミド合成

(イ) イソブチルアルデヒドシアンヒドリン合成 □フラスコにイソブチルアルデヒド?2.1gおよびト リエチルアミン(). 3gを加え、冷却撹拌下、20℃を 越えないようにしてシアン化水素27.8gを滴下し、 シアン化水素の滴下終了後そのまま30分間類成反応を 行いイソブチルアルデヒドシアンヒドリンを得た。反応 液組成をガスクロマトグラフィーで分析したところイン ブチルアルデヒドシアンヒドリン98.1gが生成して いた。この結果は、仕込イソブチルアルデヒドに対する イソブチルアルデヒドシアンヒドリンの収率99%であ る。

(ロ)α-アミノイソバレロニトリル合成

鎖鉢機、温度計および適下ロートを付した500m三ツ □プラスコに25%アンモニア水204gを加え、5~ 1.0 C鎖控下。(イ)で得られたイソブチルアルデヒド シアンヒドリン合成液の全量100.2gを添加し、次 いで25℃で3時間瀕成反応を行いα-アミノイソバレ ロニトリル含有液を得た。反応液組成を液体クロマトグ※

本培地組成: グルコース

ペプトン 酵母エキス KH, PO.

MgSO, -7H, O FeSO, -7H, O

 $MnC_{12} \cdot 4H_2O$ D. Lーバリンアミド

次いで、培養液から遠心分離により生菌体44gを得 た。この生菌体の水分含量は83%であった。

【0015】@ D. L-バリンアミドの生化学的加水。 分解反応

* ラフィーで分折したところαーアミノイソバレロニトリ ル91.0gが生成していた。この結果は、最初の仕込 イソブチルアルデヒドに対するセーアミノイソバレロニ トリルの収率92.8%である。

(ハ) D. L-バリンアミド合成

(ロ)で得られたα-アミノイソバレロニトリル含有液 中へアセトン29gを添加し、0℃へ冷却、次いで鎖撑 下20%苛性ソーダ水溶液4gを加え6時間反応した。 反応終了後、塩化アンモニウム1.1gを溶解した水溶 - 液150gを加え苛性ソーダを中和した後、減圧下少量 の水と共にアンモニアおよびアセトンを留去し、D、L - バリンアミド含有水溶液295.2gを得た。反応液 組成を液体クロマトグラフィーで分析したところD、L -バリンアミド106、6gが生成していた。この結果 は、最初の仕込インブチルアルデヒドに対するD、Lin バリンアミドの収率91.7%である。

【0013】② D, L-バリンアミド含有水溶液中の 不純物の抽出処理

①で得られたD、Lーバリンアミド含有水溶液147. 鎖絆機、温度計および適下ロートを付した200m三ツ 20 6g中へ塩化メチレン50gを加え、室温で30分間鎖 控後分液し、次いで上層のD, L-バリンアミド含有水 相へ溶解している少量の塩化メチレンを減圧図去し、不 減物補出処理D. Lーバリンアミド含有水溶液143. 5gを得た。反応液組成を液体クロマトグラフィーで分 析したところDL-バリンアミド52.5gを含有して いた。この結果は、不絶物の抽出処理工程でのD.L-パリンアミド回収率は98、4%であり、最初の仕込イ ソプチルアルデヒドに対するD、L-バリンアミドの収 率90.3%である。

39 【0014】② 使用菌の培養

グルコース 1. ①wt%、ペプトン 1. ①wt%および酵母 エキス!. () wt%を含有する種培地を調製し、この種培 地3 0mlを100ml三角プラスコに入れ、滅菌後、種菌 としてミコプラナ・ブラタ (NCIB 9440)を接 種し、30℃で48時間振とう培養を行い種培養液を得 た。この種培養液を次の組成の本培地11に移植し、3 ①*Cで48時間通気鎖控培養を行った。

> ₩**τ**% 1. 0

0.5

0.5

0.1

0.04

0.001

0.001

0.5

前記ので得られた不純物抽出処理後のD,L=バリンア ミド含有水溶液57、4gおよび水42、6gを200 m三角フラスコに秤取し、さらに前記憶で得られた生菌 50 体1.24gを加え40℃で22時間撹拌し反応を行っ

た。反応終了後、反応生成液を18000 npm で10分 間遠心し、上澄波を得た。この上澄波を液体クロマトグ ラフィーで分析し、生成したL-バリンの収率を求めた ところ、仕込D、Lーバリンアミド含有水溶液中のLー バリンアミドに対して98.7%であった。この結果 は、最初の仕込イソブチルアルデヒドに対するレーバリ ンの収率4.4.6%である。

【0016】比較例1

寒艦側1のD、L-バリンアミド含有水溶液中の不絶物 D、L-バリンアミドの生化学的加水分解反応を行っ

の D. Lーバリンアミド合成

突旋例1と同様

② D. L-バリンアミド含有水溶液中の不純物の抽出 処理

この工程は省略

③ 使用菌の培養

実施例1と同様

の D、L - バリンアミドの生化学的加水分解反応。 実施例1のOで得られたD、L-バリンアミド含有水溶 液5.8、2gおよび水41、8gを200ml三角フラス。 コに秤取し、さらに実施例1の3で得られた生菌体1... 24gを加え40℃で22時間鎖掉し反応を行った。反 応終了後、反応生成液を18000 rpm で10分間遠心。 し、上澄液を得た。この上澄液を液体クロマトグラフィ ーで分析し、生成したL-バリンの収率を求めたとこ ろ、仕込D、しっパリンアミド含有水溶液中のしっパリ ンアミドに対して65.8%であった。この結果は、最 初の仕込イソプチルアルデヒドに対するL-バリンの収 30 【0018】実施例2~5 率30.2%である。

【0017】比較例2

実施例1のΦのD、L-バリンアミド含有水溶液中の不*。

*純物の抽出処理工程に換え、D、L-バリンアミド含有 水溶液を濃縮脱水後ベンゼンを用い再結晶精製を行い、 精製D、L-バリンアミドを得、これを生化学的別水分 解反応に使用した以外は実施例1と同様にして反応を行 った。

② D, L-バリンアミド合成 実施例1と同様

D, L-バリンアミドの再結晶精製

実施例1の①で得られたD、L=バリンアミド含有水溶 の抽出処理工程を省いた以外は、実施例1と同様にして 10 液73.8gを200mナス型フラスコに秤取し、含有 する水を完全に留去後、ベンゼン80mlを加え匍熱溶 解。不溶物を熱時濾過後冷却し、析出する結晶を濾取し た。乾燥後、18.1gのD、Lーバリンアミドを得 た。この結果は、再結晶精製収率は67.8%であり、 最初の仕込イソブチルアルデヒドに対するD、L-バリ ンアミドの収率62.2%である。

③ 使用菌の培養

寒態例1と同様

● D. Lーバリンアミドの生化学的加水分解反応

29 ②で得られたD、L-バリンアミド18、1gおよび水 68.1gを200ml三角プラスコに秤取し、さらに実 施例1の③で得られた生菌体1.06gを加え40℃で 22時間鎖掉し反応を行った。反応終了後、反応生成液 を18000rpm で10分間遠心し、上澄液を得た。こ の上澄液を液体クロマトグラフィーで分析し、生成した L-バリンの収率を求めたところ、住込D、L-バリン アミド中のL-バリンアミドに対して98.5%であっ た。この結果は、最初の住込イソブチルアルデヒドに対 するしーバリンの収率30、6%である。

D. L-バリンアミド含有水溶液中の不純物の抽出処理 密媒に、各種溶媒を使用した以外は、実施例1と同様に して反応を行った。結果を表1に示す。

表 <u>1</u>				
実能	网 溶媒種	D,L-バリンアミド	し-バリン収率	L=バリン収率
		回収率	(仕込みにバリ	(イソブチルア
			ンアミド基準)	ルデヒド基準)
2	メチル-τ- ブチ	98.8%	98.3%	44.5%
	ルエーテル			
3	酢酸イソプロビル	98.1%	98.9%	44.5%
4	アニソール	97.6%	95.1%	42.6%
5	トルエン	99.2%	94.0%	42.8%

【0019】実絡例6~10

出発原料に各種アルデヒドを使用した以外は、実施例1 および比較例1と同様にして反応を行い、アミド含有水※ ※ 恣波の塩化メチレン抽出処理効果について比較した。 結 果を表2に示す。

			表2		
実施例	恣媒種	D,L-7 %	錯製収率	L-アミノ酸収率(L-アミド基準)
		下収率	(アミド	有機溶媒との接触	(抽出処理)
			墓掌}	(有)	(魚)
6	3 - (メチルチ	91.8%	97.5%	98.9%	71.3%

		• •		
9				10
オ)プロピオン				
アルデヒド				
グルタルアルデ	91.3%	98.8%	95.7%	59.1 %
ヒドエチレンア				
セタール				
ベンズアルデヒ	90.9%	95.4%	92.4%	59.1%
F				
フェニルアセト	91.1%	97.2%	93.3%	60.2%
アルデヒド				
フルフラール	90.2%	98.3%	94.1%	51.8%
	オ) プロピオン アルデヒド グルタルアルデ ヒドエチレンア セタール ベンズアルデヒ ド フェニルアセト アルデヒド	オ) プロビオン アルデヒド グルタルアルデ 91.3% ヒドエチレンア セタール ベンズアルデヒ 92.9% ド フェニルアセト 91.1% アルデヒド	オ) プロビオン アルデヒド グルタルアルデ 91.3% 98.8% ヒドエチレンア セタール ベンズアルデヒ 90.9% 95.4% ド フェニルアセト 91.1% 97.2% アルデヒド	オ) プロピオン アルデヒド グルタルアルデ 91.3% 98.8% 95.7% ヒドエチレンア セタール ベンズアルデヒ 90.9% 96.4% 92.4% ド フェニルアセト 91.1% 97.2% 93.3% アルデヒド

【0020】実施例11~14

出発原料にグルタルアルデヒドエチレンアセタールを用いて得られたD、 L - α - アリシンエチレンアセタールアミド水溶液をα - アミノ酸アミド水溶液として用いたこと、及び生化学的加水分解反応に実施例1で用いた菌*

*株とは異なる各種菌様を用いた以外は、実施例1および 比較例1と同様にして反応を行い、アミド含有水溶液の 塩化メチレン抽出処理効果について比較した。結果を表 3に示す。

	_
- 35⇒	• 12

実能例	使用菌株	L-アミノ酸収率(L-アミド基準)	
		有機溶媒との接触(抽	出処理)
		(有) (魚)
11	シュードモナス ロゼア	99.2% 68.	7%
	(NCIS 10 5 05)		
12	クリプトコッカス ラウレンティ	94.8% 53.	1%
	(ATCC 18803)		
13	プロタミノバクター アルボフラ?	バス 97.7% 6 5.	4%
	(ATCC 8458)		
14	ミコバクテリウム メタノリカ	99.3% 70.	5 %
	(BT-84: FERMP-8823)		

[0021]

※解反応における酵素活性の低下が少ないので、光学活性

【発明の効果】本発明の方法によれば、生化学的風水分※ α-アミノ酸を効率的に製造できる。

フロントページの続き

Fターム(参考) 48064 AE03 AE05 AE16 AE45 CA02 CA06 CB01 CC03 CD04 CD05 CD27 DA01 DA10