Foglio 8

15 maggio 2023

E8.1 Calcola l'entropia H e la quantità di informazione grezza H_0 della variabile casuale X che assume valori $\{a,b,c,d,e,f\}$ con probabilità $p(a)=3/8,\ p(b)=1/4,\ p(c)=1/4,\ p(d)=1/8.$ Calcola la lunghezza media e discuti la decifrabilità univoca e l'istantaneità di ciascuna delle seguenti codifiche.

Codifica 1: $C_1(a) = 1$, $C_1(b) = 10$, $C_1(c) = 100$, $C_1(d) = 0$

Codifica 2: $C_2(a) = 1$, $C_2(b) = 01$, $C_2(c) = 001$, $C_2(d) = 000$

Codifica 3: $C_3(a) = 00$, $C_3(b) = 01$, $C_3(c) = 10$, $C_3(d) = 11$

- E8.2 Calcolare lo stimatore di massima verosimiglianza della media di n cam- pioni i.i.d. da una distribuzione esponenziale.
- E8.3 Sia data una sequenza di campioni indipendenti $(x_1, ..., x_n)$, estratti dalla stessa distribuzione p_X , con media $E[X] = \mu$ e varianza $Var[X] = \sigma^2$. Dato lo stimatore $\hat{\sigma}^2(x_1, ..., x_n) = \frac{1}{n}(\sum_{i=1}^n x_i)^2 x_2x_3$, calcolarne la distorsione. Se risulta distorto, modificarlo in modo da ottenere uno stimatore corretto.
- E8.4 Siano date le coppie $(x_1, y_1) = (5, -2), (x_2, y_2) = (-3, -2), (x_3, y_3) = (-2, -1), (x_4, y_4) = (0, 1)$ ottenute da un modello lineare con rumore Gaussiano (con media $\mu = 0$ e varianza σ^2) indipendente su ciascun campione. Utilizzando il principio di massima verosimiglianza, calcolare una funzione lineare $y = a_*x + b_*$ che descriva tali punti. Si calcoli, inoltre, il valore dello stimatore nei punti x = 19, x = -19 e x = 38.