Algorithms & Data Structures Solutions - SoSe 24

Igor Dimitrov

2024-04-22

Table of contents

Preface			
1 E	Blat	01	4
	1.1	Aufgabe 2	4
	1.2	Aufgabe 3	
		1.2.1 a)	5
		1.2.2 b)	6
		1.2.3 c) Falsch :	6
		1.2.4 d) Falsch :	6
		1.2.5 e) Falsch :	6
		1.2.6 f)	7
	1.3	Auafgabe 4	7
		1.3.1 a)	7
		1.3.2 b)	7
		1.3.3 c)	8
		1.3.4 d)	9

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 Blatt 01

1.1 Aufgabe 2

a)

$$\log(n!) = \log(\prod_{i=1}^{n} i)$$
 (Def $n!$)
$$= \sum_{i=1}^{n} \log(i)$$
 (Eig $\log(\bullet)$)
$$\leq \sum_{i=1}^{n} \log(n)$$
 (Eig $\log(\bullet)$)
$$= n \log(n)$$

Waehle nun $c_0 := 1$ und $n_0 := 1$. Es folgt somit:

$$\log(n!) \le 1 \cdot n \log(n), \quad \forall n \ge 1$$

$$\iff \log(n!) \in \mathcal{O}(n \log(n)) \tag{Def } \mathcal{O})$$

b)

Zuerst bemerken wir die folgende Eigenschaft

$$\begin{split} n\log(n) &\leq c\log(n!) \\ \iff c &\geq \frac{n\log(n)}{\log(n!)} \\ &= \frac{n\log(n)}{\sum_{i=1}^n\log(i)} \end{split}$$

Wir definieren die Folge:

$$c(n) := \frac{n \log(n)}{\sum_{i=1}^{n} \log(i)}$$

$$= \frac{\overbrace{\log(n) + \dots + \log(n)}^{\text{n-mal}}}{\log(1) + \dots + \log(n)}$$

Wir behaupten ohne Beweis, dass c(n) eine monoton fallende Folge ist. D.h. es gilt:

$$c(n) \le c(m), \quad \forall n \ge m$$

Setze nun $n_0 := 10, c_0 := c(10) = \frac{10 \log(10)}{\sum_{i=1}^{10} \log(i)}.$ Somit folgt:

$$\begin{split} n\log(n) &\leq \left(\frac{n\log(n)}{\sum_{i=1}^{n}\log(i)}\right)\log(n!) \\ &= c(n)\log(n!) \\ &\leq c_0\log(n!), \quad \forall n\geq n_0=10 \end{split} \tag{$c(n)$ monoton fallend)}$$

1.2 Aufgabe 3

1.2.1 a)

Da $f_1 \in \mathcal{O}(g_1)$ und $f_2 \in \mathcal{O}(g_2)$ existieren n_1, n_2, c_1, c_2 s.d:

$$\begin{split} f_1(n) &\leq c_1 g_1(n), \quad \forall n \geq n_1 \\ f_2(n) &\leq c_2 g_2(n), \quad \forall n \geq n_2 \end{split}$$

Setze $c_0:=\max\{c_1,c_2\}, n_0:=\max\{n_1,n_2\}.$ Dann gilt

$$\begin{split} (f_1+f_2)(n) &= f_1(n) + f_2(n) \\ &\leq c_1g_1(n) + c_2g_2(n), \quad \forall n \geq n_0 \\ &\leq c_0g_1(n) + c_0g_2(n), \quad \forall n \geq n_0 \\ &= c_0(g_1+g_2)(n) \quad \forall n \geq n_0 \\ \iff f_1+f_2 \in \mathcal{O}(g_1+g_2) \end{split} \tag{Def \mathcal{O}}$$

1.2.2 b)

mit $f_1 \in \Theta(g_1), f_2 \in \Theta(g_2)$ existieren $a_1, a_2, b_1, b_2, n_1, n_2,$ s.d.:

$$\begin{aligned} a_1 f_1(n) & \leq g_1(n) \leq a_2 f_1(n), \forall n \geq n_1 \\ b_1 f_2(n) & \leq g_2(n) \leq b_2 f_2(n), \forall n \geq n_2 \end{aligned}$$

Setze $n_0 := \max\{n_1, n_2\}, \, c_1 := a_1b_1, \, c_2 := a_2b_2.$ Dann gilt:

$$c_1(f_1f_2)(n) = a_1f_1(n)b_1f_2(n) \leq (g_1g_2)(n) \leq a_2f_1(n)b_2f_2(n) = c_2(f_1f_2)(n), \quad \forall n \geq n_0$$

Somit $f_1 f_2 \in \Theta(g_1 g_2)$.

1.2.3 c) Falsch:

Betrachte f(n):=n und g(n):=10n. Offensichtlicht gilt $f\in\Omega(g)$ mit $c_0:=1/10, n_0:=1$. Aber $2^n\notin\Omega(2^{10n})$, da 2^n langsamer als 2^{10n} waechst. (Setze z.B. $2^n:=x$. Dann $2^{10n}=(2^n)^{10}=x^{10}$, und x^{10} ist offensichtlich schneller als x)

1.2.4 d) Falsch:

Sei $g(n) := 2^n$. Dann $f(n) = g(2n) = 2^{2n} = (2^n)^2$. $(2^n)^2$ ist offensichtlich schneller als 2^n

1.2.5 e) Falsch:

Seien $f(n) := n^2, f_1(n) := n^3, f_2(n) := n$. Es gilt:

$$f \in \mathcal{O}(f_1) \qquad (n^2 \in \mathcal{O}(n^3))$$

$$f_1 \in \Omega(f_2) \qquad (n^3 \in \Omega(n))$$

aber

$$f \notin \mathcal{O}(f_2) \hspace{1cm} (n^2 \notin \mathcal{O}(n))$$

1.2.6 f)

Es gilt:

```
\begin{split} \lim_{n \to \infty} \frac{f(n)}{f_2(n)} &= \lim_{n \to \infty} \left( \frac{f(n)}{f_1(n)} \cdot \frac{f_1(n)}{f_2(n)} \right) \\ &= \lim_{n \to \infty} \left( \frac{f(n)}{f_1(n)} \right) \cdot \lim_{n \to \infty} \left( \frac{f_1(n)}{f_2(n)} \right) \\ &= 0 \cdot c, \text{fuer ein} c \qquad (f \in o(f_1), f_1 \in \mathcal{O}(f_2)) \\ &= 0 \\ \iff f \in o(f_2) \end{split} \tag{Def $o$}
```

Wobei wir die alternativen Definitionen von $o(\bullet)$ und $\mathcal{O}(\bullet)$ benutzt haben.

1.3 Auafgabe 4

1.3.1 a)

```
\mathcal{O}(n^2 \log(n)):
```

```
read(n) //input
for i := 1 to n :
    for j := 1 to n:
        k := 1
        // O(log(n))
    while (k < n) :
        k := 2 * k</pre>
```

1.3.2 b)

```
\mathcal{O}((log(n))^2):
```

```
read(n) //input
i := 1
while (i < n) :
    j := 1
    while (j < n) :
    j := 2 * j</pre>
```

```
i := 2 * i
```

1.3.3 c)

Wir 'simulieren' Exponentiation durch einzelne Additionsoperationen. Somit ist n^n in n^n Additionen berechnet - Python Implementierung:

```
def add(n, m) :
    if m == 0 : return n
    return 1 + add(n, m - 1)

def mult(n, m) :
    if m == 0 : return 0
    return add(n, mult(n, m - 1))

def exp(n, m) :
    if m == 0 : return 1
    return mult(n, exp(n, m - 1))

def f(n) : return exp(n, n)
```

Wir testen diese Funktion fuer einige Werte:

```
for i in range(5) :
    print(f(i))

1
1
4
27
256
```

Alternativ betrachte folgende rekursive Funktionsdefinition:

```
function recursiveLoops(n : Nat, m : Nat) :
    if m > 0 then :
        for i = 1 ... n do :
            recursiveLoops(n, m - 1)
```

Dann erzeugt der Aufruf recursiveLoops(n, n)eine Anzahl von $\mathcal{O}(n^n)$ rekursiven Aufrufe.

1.3.4 d)

 $\Theta 2^n$ - Wir 'simulieren' binaeres Zaehlen:

```
read(n)
base := 0
count := 0
k := 1
// invariant: k == 2^b, count < k
while (base < n) :
    k := 2 * k
    base := base + 1
    while (count < k) :
        count := count + 1
    // post-condition: count == k
//post-condition b == n => count == 2^n
```

Python Implementierung:

```
def binary_count(n) :
    base = count = 0
    k = 1
    while (base < n) :
        k = 2 * k
        base = base + 1
        while (count < k) :
            count = count + 1
    return count</pre>
```

Wir testen diese Funktion fuer einige Werte. Das Ergebniss ist die Anzahl der Schritte fuer die jeweilige Eingabe:

```
for i in range(11) :
    print(binary_count(i))

0
2
4
8
16
32
64
```

```
128
256
512
1024
```

Alternativ:

```
function f(n) :
    if n == 0 : return 1
    return f(n - 1) + f(n - 1)
```

Diese rekursive Funktion ruft sich selbst zweimal fuer jeden Wert von n auf, was zu einer Laufzeit von 2^n fuehrt.