1. Train a linear neuron to learng the mapping from input $x \in \mathbb{R}^3$ to output y from the following examples:

$\boldsymbol{x} = (x_1, x_2, x_2)$			у
(0.09	-0.44	-0.15)	-2.57
(0.69	-0.99	-0.76)	-2.97
(0.34	0.65	-0.73)	0.96
(0.15	0.78	-0.58)	1.04
(-0.63)	-0.78	-0.56)	-3.21
(0.96	0.62	-0.66)	1.05
(0.63	-0.45	-0.14)	-2.39
(0.88	0.64	-0.33)	0.66

- (a) Show one iteration of learning of the neuron with
 - i. Stochastic gradient descent learning
 - ii. Gradient descent learning

Initialize the weights as $\begin{pmatrix} 0.77 \\ 0.02 \\ 0.63 \end{pmatrix}$ and biases to 0.0, and use a leaning factor $\alpha = 0.01$.

- (b) Plot the learning curves (mean square error vs. epochs) until convergence. Determine the learned weights and biases.
- (c) Find the predicted values y of training inputs after the training.
- 2. Two-dimensional training patterns (inputs) to design a dichotomizer are given as:

$$\mathbf{X}_{1} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}; \quad \mathbf{X}_{2} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}; \quad \mathbf{X}_{3} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}; \quad \mathbf{X}_{4} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}; \qquad Class 1$$

$$\mathbf{X}_{5} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; \quad \mathbf{X}_{6} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}; \quad \mathbf{X}_{7} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}; \quad \mathbf{X}_{8} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}; \qquad Class 2$$

- (a) Determine whether the two classes of patterns are linearly separable.
- (b) Find the center of gravity of patterns in each class. Show that a linear decision boundary passing perpendicularly through the middle point of the line joining the two centroids is given by:

$$6.5x_1 + 2.5x_2 - 14.5 = 0$$

- (c) Design a discrete perceptron having the decision boundary as in part (b) for the classification and show that the perceptron separates the points perfectly.
- (d) Determine the classes identified by the neuron for following input patterns:

$$\binom{4}{2}$$
, $\binom{0}{5}$, $\binom{36}{13}$

3. Use 'make blobs' function from sklearn.datasets to create 100 samples of two Gaussian distributed classes for 3-dimensional inputs:

from **sklearn**.datasets import make blobs

Assume each class has a standard deviation = 5.0.

Use torch.nn.BCELoss() and torch.autograd() functions to train a logistic neuron to separate the two classes.

Find the classification error at convergence and plot the decision boundary.

4. Train a perceptron to learn the following function ϕ :

$$\phi(x,y) = 1.5 + 3.3x - 2.5y + 1.2xy$$
 for $0 \le x, y \le 1$.

- (a) Sample 100 data points randomly from the input space to create a training dataset.
- (b) Use the gradient descent algorithm to train the perceptron
- (c) Compute the training error and plot the function approximated by the perceptron.
- (d) Show how a linear neuron can be used to predict the above function
- (e) Compare the results of approximations above by the linear neuron and the perceptron