Stream Reasoning in DatalogMTL via Finite Materialisation

Przemysław (Przemek) Wałęga, Michał Zawidzki, and Bernardo Cuenca Grau

Stream Reasoning Workshop, 2022

Motivations

▶ DatalogMTL is a powerful extension of Datalog with metric temporal operators.

► DatalogMTL programs allow for recursive propagation of information (towards future and past) which is problematic for stream reasoning.

Question:

▶ How to *guarantee* that a DatalogMTL program has *no infinite recursion via time*?

Contributions

- ► We define data dependent and data independent notions of 'no infinite recursion via time'.
- We show algorithms for checking if a DatalogMTL program satisfies above properties.
- ▶ We show *tight complexity bounds* for these problems.
- ▶ We show *sufficient conditions* which are easy to check.
- We show tight complexity bounds for reasoning in programs without recursion via time.

DatalogMTL

Dataset

A dataset consists of facts over rational intervals, e.g.:

Fraud detection example:

Program

Programs use MTL operators, e.g.,

$$\bigoplus_{(0,100]} A$$
 at t \Leftrightarrow A is true at some moment in $(t+0,t+100]$ $\boxplus_{(0,100]} A$ at t \Leftrightarrow A is true at every moment in $(t+0,t+100]$

A *program* is a set of rules $B \leftarrow A_1 \wedge \cdots \wedge A_n$ where:

$$A := \top \mid \bot \mid P(\mathbf{c}) \mid \Leftrightarrow_{\varrho} A \mid \bigoplus_{\varrho} A \mid \bigoplus_{\varrho} A \mid \bigoplus_{\varrho} A \mid A\mathcal{S}_{\varrho} A \mid A\mathcal{U}_{\varrho} A$$
$$B := \top \mid \bot \mid P(\mathbf{c}) \mid \qquad \qquad \boxminus_{\varrho} B \mid \boxplus_{\varrho} B$$

Fraud detection example:

$$\begin{aligned} TransactionChain(x,y) \leftarrow Transaction(x,y) \wedge RedList(x) \\ TransactionChain(x,z) \leftarrow \Leftrightarrow_{[0,24]} TransactionChain(x,y) \wedge Transaction(y,z) \\ \boxplus_{[0,100)} Suspect(y) \leftarrow TransactionChain(x,y) \wedge HighRisk(y) \end{aligned}$$

Reasoning

Main reasoning tasks (we consider the rational timeline):

- ► Fact entailment: do a program Π and a dataset \mathcal{D} entail a fact, e.g., Suspect(adam)@100?
- ▶ Consistency checking: do Π and \mathcal{D} have a model?

Theorem. Reasoning in DatalogMTL is:

- ExpSpace-complete for combined complexity,
- ► PSpace-complete for data complexity.

RECURSION VIA TIME

Unlike in Datalog:

materialisation in DatalogMTL can require infinitely many steps of rule application.

Unlike in Datalog:

materialisation in DatalogMTL can require infinitely many steps of rule application.

$$\begin{split} \mathcal{D} &= \{\mathsf{Even}@0\} \\ \Pi &= \{\boxplus_{[1,1]}\mathsf{Odd} \leftarrow \mathsf{Even}, \quad \boxplus_{[1,1]}\mathsf{Even} \leftarrow \mathsf{Odd}\} \end{split}$$

Unlike in Datalog:

materialisation in DatalogMTL can require infinitely many steps of rule application.

$$\begin{split} \mathcal{D} &= \{\mathsf{Even}@0\} \\ \Pi &= \{\boxplus_{[1,1]}\mathsf{Odd} \leftarrow \mathsf{Even}, \quad \boxplus_{[1,1]}\mathsf{Even} \leftarrow \mathsf{Odd}\} \end{split}$$

Unlike in Datalog:

materialisation in DatalogMTL can require infinitely many steps of rule application.

$$\begin{split} \mathcal{D} &= \{\mathsf{Even}@0\} \\ \Pi &= \{\boxplus_{[1,1]}\mathsf{Odd} \leftarrow \mathsf{Even}, \quad \boxplus_{[1,1]}\mathsf{Even} \leftarrow \mathsf{Odd}\} \end{split}$$

Unlike in Datalog:

materialisation in DatalogMTL can require infinitely many steps of rule application.

$$\begin{split} \mathcal{D} &= \{\mathsf{Even}@0\} \\ \Pi &= \{\boxplus_{[1,1]}\mathsf{Odd} \leftarrow \mathsf{Even}, \quad \boxplus_{[1,1]}\mathsf{Even} \leftarrow \mathsf{Odd}\} \end{split}$$

Finitely Materialisable Programs

▶ How can we guarantee that no infinite materialisation occurs?

We say that a program Π is *finitely materialisable* for a dataset \mathcal{D} if materialisation of Π and \mathcal{D} takes a finite number of steps.

We say that Π is *finitely materialisable* for all datasets if materialisation of Π and any dataset \mathcal{D} takes a finite number of steps.

ALGORITHMS AND COMPLEXITY

Theorem. If Π is finitely materialisable for \mathcal{D} , then all the facts they entail are inside $[t_{\mathcal{D}}^{\min} - \text{offset}(\Pi, \mathcal{D}), t_{\mathcal{D}}^{\max} + \text{offset}(\Pi, \mathcal{D})].$

Algorithm 1: Checking finite materialisability for a single dataset

```
Input: A program \Pi and a dataset \mathcal{D}
```

Output: A Boolean value

- 1 $\mathcal{D}_{\mathsf{new}} \coloneqq \mathcal{D}$;
- 2 $\varrho := [t_{\mathcal{D}}^{\min} \mathsf{offset}(\Pi, \mathcal{D}), t_{\mathcal{D}}^{\max} + \mathsf{offset}(\Pi, \mathcal{D})];$
- 3 repeat
- 4 $\mathcal{D}_{\mathsf{old}} \coloneqq \mathcal{D}_{\mathsf{new}};$
- $\mathcal{D}_{\mathsf{new}} \coloneqq \mathsf{ApplyRules}(\Pi, \mathcal{D}_{\mathsf{old}});$
- **if** there is $M@\varrho' \in \mathcal{D}_{\mathsf{new}}$ with $\varrho' \not\subseteq \varrho$ then Return false;
- 7 until $\mathfrak{I}_{\mathcal{D}_{\mathsf{old}}} = \mathfrak{I}_{\mathcal{D}_{\mathsf{new}}}$;
- 8 return true:

Theorem. Algorithm 1 returns 'true' iff Π is finitely materialisable for \mathcal{D} .

Theorem. Algorithm 1 works in doubly exponential time in the size of Π and \mathcal{D} .

Theorem. Algorithm 1 returns 'true' iff Π is finitely materialisable for \mathcal{D} .

Theorem. Algorithm 1 works in doubly exponential time in the size of Π and \mathcal{D} .

The algorithm is practically efficient, but it is not worst-case optimal:

Theorem. Checking finite materialisability for a given dataset is ExpSpace-complete for combined and PSpace-complete for data complexity.

► Checking data-independent finite-materialisability *reduces to checking the data-dependent variant* for a **critical dataset** defined as follows:

Definition. Critical dataset \mathcal{D}_{Π} for Π contains all facts $P(\mathbf{s})@[0, \mathsf{depth}(\Pi)]$, where:

- ightharpoonup P occurs in Π ,
- ightharpoonup s mentions constants from Π and a single fresh constant.

► Checking data-independent finite-materialisability *reduces to checking the data-dependent variant* for a **critical dataset** defined as follows:

Definition. Critical dataset \mathcal{D}_{Π} for Π contains all facts $P(\mathbf{s})@[0, \mathsf{depth}(\Pi)]$, where:

- ightharpoonup P occurs in Π ,
- ightharpoonup s mentions constants from Π and a single fresh constant.

Theorem. Π is finitely materialisable for all datasets iff it is for \mathcal{D}_{Π} .

▶ If materialisation of Π and some \mathcal{D} takes infinitely many steps, then the same holds for Π and \mathcal{D}_{Π} . This is guaranteed by the definition of \mathcal{D}_{Π} , in particular, by choosing the sufficiently long interval $[0, \operatorname{depth}(\Pi)]$.

Theorem. If Π is finitely materialisable for all datasets, facts entailed by Π and any \mathcal{D} are in $[t_{\mathcal{D}}^{\min} - \text{offset}(\Pi), t_{\mathcal{D}}^{\max} + \text{offset}(\Pi)]$.

Algorithm 2: Checking finite materialisability for all datasets

```
Input: A program \Pi
     Output: A Boolean value
1 \mathcal{D}_{\text{new}} \coloneqq \mathcal{D}_{\Pi}:
2 \varrho \coloneqq [t_{\mathcal{D}_{\Pi}}^{\min} - \mathsf{offset}(\Pi), t_{\mathcal{D}_{\Pi}}^{\max} + \mathsf{offset}(\Pi)];
3 repeat
     \mathcal{D}_{\mathsf{old}} \coloneqq \mathcal{D}_{\mathsf{new}};
\mathcal{D}_{\mathsf{new}} := \mathsf{ApplyRules}(\Pi, \mathcal{D}_{\mathsf{old}});
         if there is M@\varrho' \in \mathcal{D}_{new} with \varrho' \not\subseteq \varrho then Return false:
7 until \mathfrak{I}_{\mathcal{D}_{\text{ald}}} = \mathfrak{I}_{\mathcal{D}_{\text{new}}};
8 return true:
```

Theorem. Algorithm 2 returns 'true' iff Π is finitely materialisable for all datasets.

Theorem. Algorithm 2 runs in exponential time in the size of Π .

Theorem. Algorithm 2 returns 'true' iff Π is finitely materialisable for all datasets.

Theorem. Algorithm 2 runs in exponential time in the size of Π .

Moreover, our algorithm is worst-case optimal:

Theorem. Checking finite materialisability (for all datasets) is EXPTIME-complete.

If materialisation of Π and $\mathcal D$ takes finitely many steps, then the number of these steps is exponential in the size of Π . Thus, it suffices to check if the number of steps in materialisation of Π and $\mathcal D_\Pi$ exceeds our exponential bound.

SUFFICIENT CONDITIONS

MTL-acyclicity

Consider the program:

$$\begin{aligned} \textit{Susc}(x) \leftarrow \boxminus_{[0,365]} \textit{NotVacc}(x) \land \boxminus_{[0,183]} \textit{NotInf}(x), \\ \textit{GetsInf}(x) \leftarrow \textit{ContInf}(x,y) \mathcal{S}_{\frac{1}{12}} \textit{NoMask}(x) \land \textit{Susc}(x), \\ \textit{FirstSympt}(x) \leftarrow \boxminus_{5} \textit{GetsInf}(x) \land \textit{Over65}(x), \\ \boxminus_{5} \textit{GetsInf}(x) \leftarrow \textit{FirstSympt}(x). \end{aligned}$$

It's metric dependency graph is:

There is no cycles with weight $\neq [0,0]$, so the program is *MTL-acyclic*.

MTL-acyclicity

Theorem. MTL-acyclic programs are finitely materialisable (for all datasets).

Theorem. Checking if a program is MTL-acyclic is NL-complete.

► Hence, MTL-acyclicity is an *easy to check sufficient condition* for finite materialisability.

COMPLEXITY OF REASONING

Reasoning in Finitely Materialisable Programs

Theorem. Fact entailment in finitely materialisable programs is EXPTIME-complete for combined and PSpace-complete for data complexity.

Observe that:

- DatalogMTL is ExpSpace-complete for combined and PSpace-complete for data complexity.
- Datalog is ExpTime-complete for combined and P-complete for data complexity.

Moreover:

- ► Finitely materialisable DatalogMTL programs *strictly contain Datalog* programs.
- ► However, reasoning in finitely materialisable DatalogMTL programs has the *same* combined complexity as Datalog.

Conclusions

We introduced a class of *finitely materialisable* DatalogMTL *programs*:

- that are naturally amenable to materialisation-based reasoning via scalable forward chaining techniques,
- for which we provided a membership check and an easy to verify sufficient condition,
- in which reasoning is no harder (for combined complexity) than in pure Datalog.

Thank you for your attention

Przemysław Wałęga | www.walega.pl | przemyslaw.walega@cs.ox.ac.uk

Our results on finitely materialisable DatalogMTL programs:

Theorem. Checking finite materialisability for a given dataset is ExpSpace-complete for combined and PSpace-complete for data complexity.

Theorem. Checking finite materialisability (for all datasets) is EXPTIME-complete.

Theorem. MTL-acyclic programs are finitely materialisable (for all datasets).

Theorem. Checking if a program is MTL-acyclic is NL-complete.

Theorem. Fact entailment in finitely materialisable programs is EXPTIME-complete for combined and PSpace-complete for data complexity.