دورة سنة 2009 العادية	امتحانات الشهادة الثانوية العامة الفرع: علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل : ست
الرقم:	المدة أربع ساعات	

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Écrire le numéro de chaque question et donner, *en justifiant*, la réponse qui lui correspond.

N°	Questions	Réponses			
		a	b	С	d
1	t et m sont deux réels; $(d):\begin{cases} x = -5t \\ y = t - 1 \end{cases} \text{ et (d')}:\begin{cases} x = 10m \\ y = 8m \\ z = t + 1 \end{cases}$ Les droites (d) et (d') sont:	confondues	concourantes	parallèles	non coplanaires
2	La solution de l'équation différentielle : $Y'' + 4Y' + 4Y = 0$ vérifiant $Y'(0) = Y(0) = 1$ est :	$(2x+1)e^{2x}$	$(-3x+1)e^{-2x}$	$(3x+1)e^{-2x}$	$(-x+1)e^{2x}$
3	Une solution de l'équation $\cos(\arcsin\frac{1}{x}) = \frac{\sqrt{3}}{2}$ est :	$\frac{-2}{\sqrt{3}}$	1	2	– 1
4	$h(x) = \frac{1}{\sqrt{1 - x^2}} \text{ avec } -1 < x < 1.$ Une primitive H de h est :	arccos (x −1)	arcsin (1 – x)	arcsin(1-x ²)	$\arctan \frac{x}{\sqrt{1-x^2}}$
5	La partie imaginaire de z tel que : $\left \frac{z-2i}{z+i} \right = 1$ est :	$\frac{1}{2}$	$-\frac{3}{2}$	0	-2

II- (2 points)

L'espace est rapporté à un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

On considère les points A(4; 3; 2), B(-8; -1; 6) et le plan (P) d'équation x - y - z + 4 = 0.

- 1) a- Déterminer un système d'équations paramétriques de la droite (AB).
 - b-Déterminer les coordonnées du point d'intersection I de (AB) avec (P).
 - c- Montrer que A et B sont situés de part et d'autre du plan (P).
- 2) Soit (d) l'ensemble des points de (P) qui sont équidistants de A et B.
 - a-Trouver une équation du plan médiateur (Q) de [AB].
 - b- Montrer que (d) est la droite définie par le système d'équations paramétriques :

$$x=m-\frac{3}{2}$$
 ; $y=-m-1$; $z=2m+\frac{7}{2}$. (m est un réel)

3) Soit J le projeté orthogonal de A sur (d).

Calculer les coordonnées de J et montrer que (d) est perpendiculaire au plan (ABJ).

III- (3 points)

Une équipe de football propose, à ses supporters, des abonnements saisonniers pour 6, 8 ou 10 matchs.

Parmi les supporters qui ont pris un abonnement, on constate que :

- 45 % ont choisi l'abonnement pour 6 matchs,
- 35 % ont choisi l'abonnement pour 8 matchs,
- le reste a choisi l'abonnement pour 10 matchs.

On interroge au hasard un supporter ayant pris un abonnement.

1) L'abonnement pour 6 matchs coûte n LL, celui pour 8 matchs coûte (n + 4 000) LL, et celui pour 10 matchs coûte (n + 6 000) LL.

On désigne par Y la variable aléatoire égale à la somme dépensée par le supporter interrogé.

- a- Calculer n pour que l'espérance mathématique de Y soit égale à 22 600.
- b-Pour la valeur trouvée de n, représenter graphiquement la fonction de répartition de Y.
- 2) On sait que 85% des supporters qui ont pris un abonnement sont des garçons, et parmi ces garçons 40 % ont choisi l'abonnement pour 6 matchs.

On considère les évènements suivants :

G : « Le supporter interrogé est un garçon».

A : « Le supporter interrogé a choisi l'abonnement pour 6 matchs».

a- Vérifier que la probabilité $P(G \cap A)$ est égale à 0 ,34 puis calculer la probabilité $P(G \cap \overline{A})$.

b- Calculer P(G/A).

IV- (3 points)

Dans le plan complexe rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$, on associe à tout point M d'affixe z, le point M' d'affixe z' tel que $z'=f(z)=z^2-(4+5i)z+7i-1$.

- 1) a- Calculer les racines carrées du nombre complexe -5+12i. b- Résoudre l'équation f(z)=0.
- 2) On pose z = x + iy et z' = x' + iy'. Montrer que $x' = x^2 - y^2 - 4x + 5y - 1$ et y' = 2xy - 5x - 4y + 7.
- 3) Montrer que lorsque M varie sur la droite d'équation y = x, M' varie sur une parabole (P) dont on déterminera le paramètre, le foyer et la directrice.
- 4) a- Montrer que lorsque M' varie sur l'axe des ordonnées, le point M varie sur une hyperbole (H) dont on déterminera une équation, les asymptotes et les sommets. Tracer (H).
 b- Soit L(1;1) un point de (H). Ecrire une équation de la tangente en L à (H).

V- (3 points)

ABCD est un carré de côté 2 et de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}(2\pi)$. E et F sont les milieux respectifs de [AB] et [BC] et G est le milieu de [BF].

Soit S la similitude plane directe qui transforme A en B et D en E.

- 1) Calculer un angle et le rapport de S.
- 2) Vérifier que S(B) = F et déterminer S(E).
- 3) Soit h = SoS.
 - a- Montrer que h est une homothétie dont on précisera le rapport.
 - b-Démontrer que le centre I de S est le point d'intersection de (AF) et (DG).
 - c- Déterminer l'image par S du carré ABCD et en déduire la nature du triangle OIC.
- 4) Soit (A_n) la suite des points définie par : $A_0 = A$ et $A_{n+1} = S(A_n)$ pour tout entier naturel n.
 - a- On pose $L_n = A_n A_{n+1}$ pour tout n. Prouver que (L_n) est une suite géométrique dont on déterminera le premier terme et la raison.

Calculer
$$S_n = L_0 + L_1 + \dots + L_n$$
 et $\lim_{n \to +\infty} S_n$.

b-Calculer $(\overrightarrow{IA}, \overrightarrow{IA_n})$ en fonction de n et démontrer que si n est pair, alors les points I, A et A_n sont alignés.

3

VI- (7 points)

On considère la fonction h définie sur IR par : $h(x) = e^{2x} + 2e^x - 2$.

A –

- 1) a- Résoudre l'équation h(x) = 0.
 - b- Calculer $\lim_{x\to +\infty} h(x)$ et $\lim_{x\to -\infty} h(x)$.
- 2) a- Dresser le tableau de variations de h.
 - b- Tracer la courbe représentative (H) de h dans un repère orthonormé.
 - c- Calculer l'aire du domaine limité par la courbe (H), l'axe des abscisses et les deux droites d'équations x=0 et x=1.

B –

Soit g la fonction définie sur IR par $g(x) = \frac{e^{2x} + 2}{e^x + 1}$ et f la fonction donnée par $f(x) = \ln(g(x))$.

On désigne par (C) la courbe représentative de f dans le plan rapporté à un nouveau repère orthonormé $(O; \vec{i}, \vec{j})$. (unité graphique : 2 cm)

- 1) a-Montrer que f est définie pour tout réel x.
 - b- Calculer $\lim_{x\to -\infty} f(x)$ et en déduire une asymptote (d) à (C).
- 2) a- Montrer que $f(x) = x + \ln\left(\frac{1 + 2e^{-2x}}{1 + e^{-x}}\right)$.
 - b- Calculer $\lim_{x \to +\infty} f(x)$ et démontrer que la droite (d') d'équation y = x est asymptote à (C).
 - c- Etudier suivant les valeurs de x la position relative de (C) et (d').

3) a- Montrer que
$$g'(x) = \frac{e^x (h(x))}{(e^x + 1)^2}$$
.

- b- Montrer que f '(x) et h(x) ont même signe et dresser le tableau de variations de f.
- c-Trouver l'abscisse du point de la courbe (C) où la tangente à (C) est parallèle à (d').
- 4) Tracer (d), (d') et (C).

\mathbf{C} –

On désigne par f $^{-1}$ la fonction réciproque de f sur l'intervalle [0 ; $+\infty$ [;

- (C') est la courbe représentative de \hat{f}^{-1} .
- 1) Tracer (C') dans le repère $(O; \vec{i}, \vec{j})$.
- 2) Ecrire une équation de la tangente à (C') au point d'abscisse ln2.