Smart Traffic Light Control using Real-Time Density Analysis

Team Members:

- 1. Satyam Singh
- 2. Komal Dahiya
- 3. Sakshi Singh

The Problem: Inefficient Traffic Flow

Fixed-Time Lights

Cause unnecessary delays and congestion in traffic.

Resource Waste

Wasted time, fuel consumption, and increased pollution.

Need for Adaptation

Calls for intelligent, responsive traffic signal systems.

Our Solution: Adaptive Control

Vehicle Detection

Uses YOLOv8 to detect vehicles via webcam feed.

Real-Time Density

Calculates lane density using regions of interest (ROIs).

Dynamic Timing

Adjusts green light duration based on actual traffic.

Dashboard Monitoring

Live status available with a user-friendly web dashboard.

System Workflow

1

Camera Captures Video

2

Vehicles Detected (YOLOv8)

3

Density Calculated per Lane

Δ

Decision Logic Determines Signals

API Sends Signal States

6

Web Dashboard Displays Data

Technology Stack 🛠

Core Technologies

Python, OpenCV, Ultralytics YOLOv8 for detection

Backend

Flask to handle API and processing loop

Frontend

HTML, Tailwind CSS, JavaScript for dashboard UI

Libraries

NumPy for efficient data calculations

Finding Vehicles & Measuring Density 🚙

Detection

YOLOv8 identifies vehicles within the video stream.

Regions of Interest (ROIs)

Defined zones isolate lanes for focused analysis.

Density Calculation

Based on vehicle area within each ROI for accuracy.

Smart Decision Making

Input Data Real-time density values for all lanes.

Decision Logic Finds lanes with highest traffic; ignores empty lanes.

Timing Allocation Green light duration proportional to traffic density.

Stagnation Prevention Switches green signal if others accumulate traffic.

Web Dashboard Interface

Backend

Flask API runs traffic data processing and serves JSON endpoint.

Frontend

Fetches API data, displays live lane density and signals.

User Interface

Shows lane status visually with green/red lights and timers.

Demonstration / Results

Real-Time Monitoring

Dashboard updates lane densities and signal states live.

Adaptive Timing

Signal durations shift dynamically based on traffic flow.

Effective Control

Reduces wait times and manages lane congestion efficiently.

Conclusion & Future Steps

Prototype Success

Demonstrated adaptive control using real-time vision.

Future Enhancements

Integrate live video feeds on dashboard and improve logic.

Deployment

Increase robustness for real-world use and scale up.

