Recherche Opérationnelle

Deuxième session juin 2019

Durée : 2h - Aucun document ni appareil électronique, notamment téléphone portable, n'est autorisé. Toute réponse à une question doit être rigoureusement justifiée.

Modélisation

Une entreprise a la faculté de fabriquer, sur une machine donnée, travaillant 45 heures par semaine, trois produits différents P_1 , P_2 et P_3 . L'article P_1 laisse un profit net de 4 euros, l'article P_2 , de 12 euros, et enfin, l'article P_3 , de 3 euros. Les rendements de la machine sont, respectivement pour les trois produits, et dans le même ordre : 50, 25 et 75 articles par heure. On sait, d'autre part, grâce à une étude de marché que les possibilités de vente ne dépassent pas : 1000 objets P_1 , 500 objets P_2 et 1500 objets P_3 , par semaine. On se pose le problème de repartir la capacité de production entre le trois produits, de manière à maximiser le profit.

- 1. Modéliser le problème.
- 2. Résoudre le problème
- 3. Formuler son dual et donner la solution du dual sans le résoudre.
- 4. Dans quel intervalle la solution du primal reste-t-elle optimale si on fait varier le coefficient $c_2 = 12$?

Problème de sac-à-dos

Résoudre le problème de sac-à-dos suivant par l'algorithme de séparation et évaluation vu en cours. La capacité de ce sac est 30.

Programmation linéaire en nombres entiers

On cherche à résoudre le programme linéaire en nombres entiers suivant :

$$(P_0) : \max\{4x_1 + 3x_2\}$$

$$sc. \begin{cases} 2x_1 + 3x_2 \le 17 \\ 6x_1 + 2x_2 \le 23 \\ x_1, x_2 \in \mathbb{N} \end{cases}$$

- 1. Résolvez la relaxation continue de (P_0) .
- 2. On effectue la séparation selon la variable x_1 . (P_1) désigne le sous-problème obtenu en ajoutant une contrainte $x_1 \leq 2$. Ecrivez le premier tableau de simplexe de la relaxation continue de (P_1) (on ne demande pas de résoudre ce problème!)
- 3. (P_2) désigne le sous-problème obtenu en ajoutant à (P_0) la contrainte $x_1 \geq 3$. Réécrivez (P_2) pour remplacer cette contrainte par la contrainte $x_1' \geq 0$. La solution optimale de la relaxation de ce nouveau problème est $(0, \frac{5}{2})$, de valeur $\frac{15}{2}$.
- 4. Le dernier tableau de simplexe obtenu pour (P_1) est le suivant :

	x_1	x_2	y_1	y_2	y_3	
$\overline{x_2}$	0	1	$\frac{1}{3}$	0	$\frac{-2}{3}$	$\frac{13}{3}$
y_2	0	0	$\frac{-2}{3}$	1	$\frac{-14}{3}$	$\frac{7}{3}$
x_1	1	0	Ŏ	0	Ĭ	$\tilde{2}$
	0	0	-1	0	-2	-21

Donnez les problèmes (P_3) et (P_4) , et dessinez l'arbre d'exploration des solutions (en indiquant sur chaque branche les choix faits).

5. Résolvez (P_3) et (P_4) , et concluez.