A Review of Lagrangian Time Series Models for Ocean Surface Drifter Trajectories (Sykulski et al. (2016)

Hannah Director

Department of Statistics, University of Washington Seattle, WA, 98195, USA

Abstract

Put your project summary here.

1 Introduction

1.1 Application

1.2 Data Description

Figure 1 included here

1.3 Oceanography background

- inertial oscillations
- turbulent background

1.4 Spectral analyses of time series

- wave equations
- Euler's formula
- Fourier transformation
- periodogram
- relationship between autocovariance and power spectral density
- complex-valued velocities

• include Figure 2

2 Methods

2.1 Model

2.1.1 Inertial oscillations

- Ornstein-Uhlenbeck process
- frequency as a free parameter
- include figure 3

2.1.2 Turbulent background

- Matérn model
- comparison to other integer order processes (e.g. fractional brownian motion)

2.1.3 Aggregate model

State that you can add two component models together

2.2 Model fitting

2.2.1 Whittle likelihood

- explanation of original Whittle likelihood and its problems (aliasing, leakage)
- description of tapering 'solution' to Whittle and discussion of its imperfections
- blurred whittle likelihood
- allows for uncertainty estimates via asymptotics (Fisher information)

2.2.2 Model misspecification

• semi-parametric approach in both time and frequency

2.2.3 Time-varying parameters for non-stationarity

2.2.4 Model selection/likelihood ratio tests

3 Results

3.1 Simulated results

Include Figure 5

3.2 Real drifter data (with time-varying parameters)

Include Figures 6-10

4 Discussion

- powerful technique overall
- more work needed on selecting windows

5 Appendix

5.1 Errata

• Typo in equation 13

5.2 Optimization technique

• My approach transforming parameters to an unconstrained space gives slightly better (higher maximum likelihood) estimates than their use of Matlab's built-in box constraint approach