Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Prüfung zu Grundbegriffe der Topologie

Sommerersemester 2015, Roland Steinbauer

1. Termin, 3.7.2015

1. Topologische Räume

- (a) Definiere den Begriff eines topologischen Raumes sowie die Begriffe Basis und Subbasis eines topologischen Raumes. (3 Punkte)
- (b) Auf einer beliebigen nichtleeren Menge ist die kofinite Topologie definiert durch

$$\mathcal{O}_{\text{CO}} := \{ O \subseteq X | O^c \text{ ist endlich } \} \cup \{\emptyset\}.$$

Zeige, dass \mathcal{O}_{CO} diesen Namen auch verdient, d.h. dass es sich tatsächlich um eine Topologie handelt. (3 Punkte)

- (c) Was bedeutet es für zwei Topologien \mathcal{O}_1 und \mathcal{O}_2 auf einer Menge X, dass \mathcal{O}_1 feiner als \mathcal{O}_2 ist? Sind je 2 Topologien auf X (in diesem Sinne) immer vergleichbar? (2 Punkte)
- (d) Gib eine Basis und eine Subbasis für die natürliche Topologie auf \mathbb{R}^2 an. (2 Punkte)
- 2. Inneres, Äußeres, Rand und Abschluss.

Sei A eine Teilmenge eines topologischen Raumes (X, \mathcal{O}) .

- (a) Definiere, was man unter dem Inneren, dem Äußeren, dem Rand und dem Abschluss von A versteht. Fertige eine Skizze an. (4 Punkte)
- (b) Gib Inneres, Äußeres, Rand und Abschluss der folgenden Teilmengen von \mathbb{R} mit der natürlichen Topologie an: $A_1 = [a, b), A_2 = \mathbb{Q}$ (2 Punkte)
- (c) Wie lässt sich die Tatsache $x \in \overline{A}$ mittels Umgebungen von x ausdrücken? Was ist ein Häufungspunkt der Menge A? (2 Punkte)
- (d) Die Menge A' der Häufungspunkte von A kann in A enthalten sein, muss aber nicht. Illustriere an zwei einfachen Beispielen von Teilmengen von \mathbb{R} , dass tatsächlich beide Möglichkeiten auftreten können. (2 Punkte)

Bitte umblättern!

3. Vermischtes

- (a) T_2 und die Eindeutigkeit von Grenzwerten. Formuliere das Hausdorffsche Trennungsaxiom T_2 und zeige, dass T_2 gilt, falls die Grenzwerte von Netzen eindeutig bestimmt sind. (4 Punkte)
- (b) Kompaktheit. Definiere den Begriff eines kompakten topologischen Raums und zeige, dass stetige Bilder kompakter Räume wieder kompakt sind. (3 Punkte)
- (c) Fixpunktsatz von Banach. Erkläre den Begriff einer Kontraktion auf einem metrischen Raum und formuliere den Fixpunktsatz von Banach. (3 Punkte).

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib ein (möglichst explizites und einfaches) Gegenbeispiel an oder argumentiere für oder gegen die Richtigkeit der Aussage. (je 2 Punkte)

- (a) Kompakte Mengen sind abgeschlossen.
- (b) Jeder metrische Raum ist AA1.
- (c) Jede Verfeinerung einer Folge in einem topologischen Raum ist wieder eine Folge.
- (d) Stetige Bilder abgeschlossener Mengen sind abgeschlossen.
- (e) Jede mindestens zweipunktige Menge mit der diskreten Topologie ist *nicht* zusammenhängend.