Урок 15. Гільбертові простори і компактні оператори

Задача 15.1. Оператор $A \in \mathcal{L}(H,H)$ називається оператором скінченного рангу, якщо його область значень $\operatorname{Im} A$ ε скінченновимірною. Доведіть, що оператор скінченного рангу, заданий на гільбертовому просторі H, ε компактним.

Доведення. Нехай $\left\{ \varphi_{k} \right\}_{k=1}^{N}$ — ортонормований базис для $\operatorname{Im} A$, а $\left\{ x_{n} \right\}$ — послідовність в просторі H , така що $\left\| x_{n} \right\| \leq 1$. Тоді для кожного n

$$Ax_n = \sum_{k=1}^N (Ax_n, \varphi_k) \varphi_k.$$

Позначимо $a_n^{(k)} = \left(Ax_n, \mathbf{\varphi}_k\right)$. Тоді для кожного k послідовність $\left\{a_n^{(k)}\right\}_{n=1}^\infty$ обмеженою, тому що

$$|a_n^{(k)}| = |(Ax_n, \varphi_k)| \le ||Ax_n|| ||\varphi_k|| \le ||A|| ||x_n|| ||\varphi_k|| \le ||A||.$$

Оскільки кожна обмежена числова послідовність містить збіжну підпослідовність, знайдемо підпослідовність $\left\{x_k^{(1)}\right\}_{k=1}^\infty \subset \left\{x_m\right\}_{m=1}^\infty$, що задовольняє умові $\lim_{m\to\infty} a_m^{(1)} = a^{(1)}$. Потім виберемо підпослідовність $\left\{x_k^{(2)}\right\}_{k=1}^\infty \subset \left\{x_k^{(1)}\right\}_{m=1}^\infty$, що задовольняє умові $\lim_{m\to\infty} a_m^{(2)} = a^{(2)}$. Продовжуючи, отримаємо підпослідовність $\left\{x_k^{(N)}\right\}_{k=1}^\infty \subset \left\{x_k^{(N-1)}\right\}_{m=1}^\infty$, що задовольняє умові $\lim_{m\to\infty} a_m^{(N)} = a^{(N)}$ для всіх $1 \le k \le N$.

Покладемо $y = \sum_{k=1}^{N} a^{(k)} \mathbf{\phi}_k$. Тоді

$$\|Ax_m^{(m)} - y\|^2 = \sum_{k=1}^N |a_m^{(k)} - a^k|^2 \to 0$$
 при $m \to \infty$.

Таким чином, послідовність $\left\{Ax_n\right\}_{n=1}^{\infty}$ містить збіжну підпослідовність, тобто оператор A ϵ компактним.

Задача 15.2. Доведіть, що тотожній оператор I в нескінченновимірному гільбертовому просторі H не ϵ компактним.

Доведення. Нехай $\left\{ \phi_n \right\}_{n=1}^{\infty}$ — ортонормований базис в гільбертовому просторі H . Тоді якщо $n \neq m$, то $\left\| \phi_n - \phi_m \right\| = \sqrt{2}$. Отже, послідовність $\left\{ \phi_n \right\}_{n=1}^{\infty}$ не є фундаментальною, а значить, не збігається. Крім того, ортонормований базис є обмеженою множиною і власним образом при тотожному відображенні. Таким чином, обмежена множина $\left\{ \phi_n \right\}_{n=1}^{\infty}$ відображається тотожним оператором у послідовність $\left\{ I\phi_n \right\}_{n=1}^{\infty}$, яка не є збіжною, тому оператор I не є компактним.

Задача 15.3. Доведіть, що оператор $A:l_2\to l_2$, визначений формулою $A\left(x_1,x_2,x_3,\ldots\right)=\left(x_1,\frac{1}{2}\,x_2,\frac{1}{4}\,x_3,\ldots,2^{-n+1}\,x_n,\ldots\right)$ є компактним.

Доведення. Покажемо, що оператор A можна записати як границю рівномірно збіжної послідовності операторів скінченного рангу.

Для кожного N визначимо оператор $A_{_{\! \! N}}:l_{_2} \to l_{_2}$

$$A_N(x_1, x_2, x_3,...) = \left(x_1, \frac{1}{2}x_2, \frac{1}{4}x_3,..., 2^{-N+1}x_N, 0, 0,...\right).$$

Оператор A має скінченний ранг і для кожної послідовності $x = \{x_n\}_{n=1}^{\infty} \in l_2$

$$\left\| \left(A - A_N \right) x \right\|^2 = \left\| \left(0, \dots 0, 2^{-N} x_{N+1}, 2^{-N-1} x_{N+2}, \dots \right) \right\|^2 = \sum_{n=N+1}^{\infty} 2^{-2n+2} x_n^2 \le 2^{-2N} \sum_{n=N+1}^{\infty} x_n^2 \le 2^{-2N} \left\| x \right\|^2.$$

Отже,

$$||A - A_N|| \le 2^{-2N}$$
,

тому

$$\lim_{N\to\infty} ||A-A_N|| = 0.$$

Задача 15.4. Якщо A — лінійний компактний оператор, оператор B — лінійний обмежений, то оператори AB і BA ϵ компактними.

Доведення. Якщо множина $M \subset E$ ϵ обмеженою, то BM — обмежена множина, оскільки обмежений оператор переводить будь-яку обмежену множину в обмежену множину. Отже, множина ABM ϵ відносно компактною. Це означає, що оператор AB ϵ компактним. Аналогічно, якщо множина $M \subset E$ ϵ обмеженою, то AM — відносно компактна множина, оскільки компактний оператор переводить будь-яку обмежену множину у відносно компактну множину. Оператор B — неперервний, тому множина BAM ϵ відносно компактною. Це означає, що оператор BA ϵ компактним.

Задача 15.5. Нехай P — ортогональний проектор на замкнений підпростір M гільбертового простору H. Доведіть, що 1) $P^2 = P$; 2) I - P ϵ ортогональним проектором на M^\perp , 3) P — обмежене лінійне відображення на H, таке що $\|Px\| \le \|x\|$ і $\|P\| = 1$.

Доведення. В гільбертовому просторі H будь-який елемент $x \in H$ можна записати як суму x = u + v, де $u \in M$ і $v \in M^{\perp}$. Ортогональний проектор визначається формулою Px = u.

- 1) $P^2x = Pu = u = Px$
- 2) $v = x u = x Px = (I P)x \implies I P \in \text{ ортогональним проектором на } M^{\perp}.$

3)
$$u \perp v \implies ||x||^2 = ||u||^2 + ||v||^2 \implies ||Px||^2 = ||v||^2 \le ||x||^2 \implies ||P|| \le 1$$
.
 $Px = x \quad \forall x \in M \implies ||Px|| = ||x||$ для $||x|| \ne 0 \implies ||P|| = 1$.