

Обучение без учителя. Понижение размерности. Алгоритмы понижения размерности.

Урок 9

На этой лекции вы найдете ответы на такие вопросы как:

- -Что такое обучение без учителя
- Понижение размерности как метод обучения без учителя
- Линейное понижение размерности
- Нелинейное понижение размерности
- Случайное понижение размерности

Булгакова Татьяна

Преподаватель в GeekBrains, Нетология, Skillfactory

С 2010 года занимаюсь DataScience и NN. Фрилансер

- Участвовала в разработке программы по настройке оборудования для исследования пространственного слуха китообразных НИИ ИПЭЭ РАН
- Участвую в разработке рекомендательных систем по настройке нейростимуляторов для медицинских центров
- Работаю над курсом по нейронным сетям

План курса

Первичный и визуальный анализ данных

> Описательные статистики в контексте EDA. Корреляция и корреляционный анализ

Регрессия и использование библиотеки Scikit-learn в задачах обучения с учителем

Классификация и использование логистической регрессии в задачах классификации

Функционалы ошибки и поиск оптимальных параметров в задачах машинного обучения

Проблема переобучения и недообучения модели. Кросс-валидация и регуляризация.

Ансамблирование и использование деревьев решений в задачах машинного обучения

8 Генерация признаков. Методы отбора признаков. Подбор гиперпараметров. Обучение без учителя. Понижение размерности. Алгоритмы понижения размерности

Кластеризация и решение задачи группировки данных в машинном обучении

10

Что будет на уроке сегодня

- ? Что такое обучение без учителя
- ? Понижение размерности как метод обучения без учителя
- ? Линейное понижение размерности
- ? Нелинейное понижение размерности
- ? Случайное понижение размерности

Определение обучения без учителя.

Определение обучения без учителя.

Обучение без учителя – это метод машинного обучения, который позволяет модели самостоятельно находить закономерности и структуры в данных без явного присутствия учителя

позволяет работать с неразмеченными данными

отсутствие явной целевой переменной

выявления скрытых структур и зависимостей в данных

невозможность оценить качество модели

позволяет сократить количество признаков, несущих информацию в данных

неоднозначность интерпретации результатов

требуется больше вычислительных ресурсов

можно использовать для генерации новых данных на основе имеющихся

лимитированный контроль над процессом обучения

Определение обучения без учителя.

Понижение размерности как метод обучения без учителя

Проклятие размерности — это явление в машинном обучении, когда количество признаков (размерность) в данных намного больше, чем количество наблюдений (количество примеров), что может привести к переобучению модели.

Понижение размерности как метод обучения без учителя

Выбор наилучшего метода понижения размерности зависит от множества факторов, включая специфику данных, вычислительные ресурсы и цели анализа.

- 1. Структура данных
- 2. Размерность и объём
- 3. Интерпретируемость
- 4. Необходимость визуализации
- 5. Устойчивость к шуму

Метод главных компонент (PCA) – это статистическая процедура, которая использует ортогональное преобразование для перевода набора возможно коррелированных переменных в набор значений линейно некоррелированных переменных, называемых главными компонентами

Алгоритмическая реализация РСА включает следующие шаги:

- 1. Центрирование данных путем вычитания среднего каждого признака
- 2. Вычисление ковариационной матрицы

$$C = \frac{1}{n-1} (X - \mu)^T (X - \mu)$$

где X — центрированная матрица данных, u - вектор средних значений признаков. n — количество наблюдений. C - ковариационная матрица.

Алгоритмическая реализация РСА включает следующие шаги:

- 3. Нахождение собственных значений и собственных векторов ковариационной матрицы.
- 4. Сортировка собственных векторов по убыванию соответствующих собственных значений
- 5. Проекция данных на первые k главных компонент для понижения размерности


```
# Процент объясненной дисперсии для каждой компоненты explained_variance_ratio = np.cumsum(explained_variance)

# Находим количество компонент, объясняющих не менее 95% дисперсии num_components = np.argmax(explained_variance_ratio >= 0.95) + 1
```


Уменьшение избыточности данных

Чувствительность к масштабированию

Улучшение визуализации

Потеря интерпретируемости

Оптимизация вычислений

Предположение линейности

t-SNE (t-distributed Stochastic Neighbor Embedding) – это метод снижения размерности и визуализации данных, который позволяет сохранить локальные структуры данных и обнаруживать нелинейные зависимости.

Один из ключевых параметров - это perplexity, который регулирует баланс между сохранением локальной и глобальной структуры данных.

Сохранение глобальной структуры

Вычислительная сложность

Учет сложной нелинейной зависимости

Стохастические результаты

Компактные и удобочитаемые визуализации

Не учитывает другие признаки

Гибкие параметры

Неприменимость для временных данных

Случайное понижение размерности (Random Projection)

Случайное понижение размерности (Random Projection) – это метод снижения размерности данных, который основывается на идее проецирования исходных данных на случайно выбранные подпространства.

Случайное понижение размерности (Random Projection)

Случайное понижение размерности (Random Projection)

Простота и эффективность

Потеря точности

Сохранение структуры данных

Невозможность восстановления исходных данных

Универсальность

Зависимость от параметров

Влияние шума

LLE(Locally Linear Embedding)

LLE(Locally Linear Embedding) - это неконтролируемый подход, предназначенный для преобразования данных из исходного многомерного пространства в представление с меньшей размерностью, при этом стремясь сохранить основные геометрические характеристики лежащей в основе нелинейной структуры объектов

LLE(Locally Linear Embedding)

Вот поэтапный алгоритм LLE:

- 1. Шаг 1: Вычисление соседей
- Задается параметр k количество ближайших соседей для каждого объекта.
- Для каждого объекта находятся его k ближайших соседей с помощью метода поиска ближайших соседей
- 2. Шаг 2: Восстановление локальных весов
- Для каждого объекта находится наилучшее линейное приближение соседей.
- Для этого строится матрица весов W размером k x k, где каждый столбец содержит координаты наилучшего линейного приближения для соответствующего соседа.
- 3. Шаг 3: Вычисление глобальных представлений
- Для каждого объекта находится его глобальное представление в низкоразмерном пространстве.
- 4. Шаг 4: Визуализация и анализ данных
- Полученные глобальные представления могут быть использованы для визуализации данных в низкоразмерном пространстве или для выполнения других анализов, таких как классификация или кластеризация.

LLE(Locally Linear Embedding)

Сохраняет локальную структуру данных

Требует достаточно большую выборку данных

Сохраняет нелинейных отношений между данными

Неустойчив к шуму в данных

Работает хорошо на данных со сложной топологией

Подбор параметра k - может быть нетривиальной задачей

Оценка качества методов понижения размерности

- 1. Объяснимая дисперсия (explained variance):
- Для метода PCA (Principal Component Analysis) можно использовать атрибут explained variance ratio _ после подгонки модели.
 - Для метода t-SNE, может быть оценена сравнением дисперсии исходных данных и дисперсии данных после понижения размерности.
- 2. Сохранение информации восстановленных данных:
 - Использование апроксимационного обратного преобразования
 - Доступ к исходным данным
 - Контекстная информация

Итоги

Тема понижения размерности имеет практическую значимость в контексте машинного обучения по нескольким причинам:

- Сокращение вычислительной сложности
- 🔽 Увеличение производительности алгоритмов машинного обучения
- Визуализация данных
- Избавление от шума и избыточности
- Улучшение интерпретируемости

Спасибо за внимание

