The Cross Product

• Given two nonzero vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$, it is very useful to be able to find a nonzero vector \mathbf{c} that is perpendicular to both \mathbf{a} and \mathbf{b} .

• If $\mathbf{c} = \langle c_1, c_2, c_3 \rangle$ is such a vector, then $\mathbf{a} \cdot \mathbf{c} = 0$ and $\mathbf{b} \cdot \mathbf{c} = 0$.

$c = a \times b$

The **cross product** $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} , unlike the dot product, is a vector \mathbf{c} .

The vector **c** is perpendicular to both **a** and **b**.

Example 1

• If $a = \langle 1, 3, 4 \rangle$ and $b = \langle 2, 7, -5 \rangle$, then

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$$

=
$$(-15 - 28)i - (-5 - 8)j + (7 - 6)k$$

= $-43i + 13j + k$

The Cross Product

 We can also represent the cross product of two vectors in matrix-vector multiplication:

•
$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = [a_{\times}]b$$