Fluxo Máximo (2)

Zenilton Patrocínio

Método de Ford-Fulkerson – Análise

No máximo *f* Complexidade do método de Ford-Fulkerson repetições para toda aresta $e \in E(G)$ faça $f(e) \leftarrow 0$; // Inicializar fluxo $\rightarrow 0(m)$ Construir a rede residual G'(f) // Construir rede residual inicial $\rightarrow 0(m)$ enquanto existir algum caminho aumentante P em G'(f) efetuar $\rightarrow 0(m)$ a. $\Delta = \min \{ u_r(e) \mid e \in P \};$ // Determinar "gargalo" de P b. para cada aresta $(v, w) \in P$ faça i. se (v, w) for aresta direta então 0(1) 0(1)0(mf) $f(v, w) \leftarrow f(v, w) + \Delta$ // Aumentar fluxo ii. senão $f(w, v) \leftarrow f(w, v) - \Delta$ $\rightarrow 0(1)$ // Reduzir fluxo c. Atualizar a rede residual G'(f) // Construir nova rede residual

Método de Ford-Fulkerson – Análise

Rede de Fluxo

Fluxo Viável

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Caminho Aumentante

Rede Residual

Fluxo Viável

Caminho Aumentante

Fluxo Viável

Fluxo Viável

Rede Residual

Método de Edmonds-Karp

Método de Edmonds-Karp

Esse método foi publicado independentemente por Dinitz (ou Dinic), em 1970, e por Edmonds e Karp, em 1972.

Na verdade, pode ser visto como uma implementação eficiente do método de Ford-Fulkerson.

A cada iteração, seleciona-se o caminho de aumento de fluxo na rede residual que seja mais curto (utilizando menor número de arestas).

O caminho mais curto pode encontrado utilizando uma busca em largura.

Método de Edmonds-Karp – Algoritmo

para toda aresta $e \in E(G)$ faça $f(e) \leftarrow 0$; // Inicializar fluxo Construir a rede residual G'(f) // Construir rede residual inicial enquanto existir algum caminho aumentante P em G'(f) efetuar Seja P o caminho aumentante em G'(f) com menor número de arestas b. $\Delta = \min \{ u_r(e) \mid e \in P \};$ para cada aresta $(v, w) \in P$ faça <u>se</u> (v, w) for aresta direta <u>então</u> $f(v, w) \leftarrow f(v, w) + \Delta$ ii. senão $f(w, v) \leftarrow f(w, v) - \Delta$ d. Atualizar a rede residual G'(f) // Construir nova rede residual

Rede de Fluxo

Fluxo Viável

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Fluxo Viável

Rede Residual

Rede Residual

Caminho Aumentante

Fluxo Viável

Rede Residual

Caminho Aumentante

Fluxo Viável

Fluxo Viável

Rede Residual

Método de Dinic

Rede de Níveis

Dada uma rede residual G'(f), uma rede em níveis G_L é um grafo direcionado ponderado que:

- Possui os mesmos vértices que G'(f), isto é, V(G₁) = V(G');
- Para toda aresta $e = (v, w) \in E(G')$ com capacidade igual a $u_r(e)$, G_L contém a aresta (v, w) com a mesma capacidade se dist(w) = dist(v) + 1, em que dist(v) representa a menor distância geodésica entre a fonte e o vértice v (em número de arestas).

Um fluxo de bloqueio (ou blocante) f_b representa um fluxo em G_L que se mantidas apenas as arestas que possuem capacidade maior que f_b não exista mais um caminho aumentante em G_L .

Método de Dinic

Esse método foi publicado independentemente por Dinitz (ou Dinic), em 1970.

Semelhante ao método de Edmonds-Karp, se o caminho aumentante escolhido for o mais curto, então os tamanho de caminhos são não decrescentes e o método termina mesmo que as capacidades não sejam inteiras.

A cada iteração, determina-se o fluxo de bloqueio na rede de níveis.

Pode-se mostrar que o número de níveis de um fluxo de bloqueio aumenta de pelo menos uma unidade a cada iteração (logo existem |V| - 1 fluxos de bloqueio, no máximo).

Um fluxo de bloqueio pode ser encontrado em $O(|V| \times |E|)$.

Método de Dinic – Algoritmo

```
1. \underline{\text{para}} toda aresta e \in E(G) \underline{\text{faça}} f(e) \leftarrow 0; // Inicializar fluxo

2. Construir a rede residual G'(f) // Construir rede residual inicial

3. Construir a rede em níveis G_L a partir de G'(f) // Construir rede em níveis inicial

4. \underline{\text{enquanto}} \underline{\text{dist}}(t) < \infty \underline{\text{efetuar}}
a. Determinar um fluxo de bloqueio f_b em G_L
b. Atualizar o fluxo f usando f_b
c. Atualizar a rede residual G'(f) // Construir nova rede residual
```

Construir a rede em níveis G_1 a partir de G'(f) // Construir nova rede em níveis

Rede de Fluxo

Fluxo Viável

Fluxo Viável

Rede Residual

Fluxo Viável

Rede Residual

Rede em Níveis

Fluxo Viável

Rede Residual

Rede em Níveis

Fluxo Viável

Rede Residual

Rede em Níveis

Fluxo Viável

Rede em Níveis

Fluxo Viável

Rede em Níveis

Fluxo de Bloqueio

Fluxo Viável

Rede em Níveis

Fluxo de Bloqueio

Fluxo Viável

Rede em Níveis

Fluxo de Bloqueio

Fluxo Viável

Rede em Níveis

Fluxo de Bloqueio

Fluxo Viável

Rede em Níveis

Fluxo de Bloqueio

Fluxo Viável

Rede em Níveis

A partir desse momento, não há caminho aumentante

Fluxo de Bloqueio

Fluxo Viável

Fluxo Máximo - Comparação

MétodoTempoFord-FulkersonO(m f)

Algoritmo pseudopolinomial

m = # de arestas f = fluxo máximo

Fluxo Máximo - Comparação

Método	Tempo
Ford-Fulkerson	O(<i>m f</i>)
Edmonds-Karp	$O(n m^2)$

Algoritmo pseudopolinomial

Número máximo de caminhos aumentante é O(n m) e cada caminho pode ser encontrado em O(m)

m = # de arestas f = fluxo máximon = # de vértices

Fluxo Máximo - Comparação

Método	Tempo
Ford-Fulkerson	O(<i>m f</i>)
Edmonds-Karp	$O(n m^2)$
Dinic	$O(n^2 m)$

m = # de arestas
f = fluxo máximo
n = # de vértices

Algoritmo pseudopolinomial

Número máximo de caminhos aumentante é O(n m) e cada caminho pode ser encontrado em O(m)

Número máximo de fluxos de bloqueio é n-1 e cada fluxo de bloqueio pode ser encontrado em O(n m)

