Math 146 Week 1

Thaqib Mo.

 $January\ 15,\ 2021$

1 Fields and Vector Spaces

Definition 1.1: Fields

A ring \mathbb{F} is called a field if it is *commutative* and if every non zero element in F has a multiplicative inverse.

Example 1.0.1. R, Q, \mathbb{Z}/\mathbb{Z}_p is p is prime.

Definition 1.2: Vector Space

A vector space over a field \mathbb{F} is a set V with two operations

#1 Addition $+: V \times V \to V$

#2 Scalar multiplication, $F \times V \to V$, $(a, x) \to ax$

(V,+) is an Abelian group, and the following properties of scalar multiplication hold

 $\#1 \ 1x = x$

#2 (ab)x = a(bx)

#3 a(x+y) = ax + ay

#4 (a+b)x = ax + bx

The elements of \mathbb{F} are called scalars and elements of V are called vector.

Example 1.0.2. \mathbb{R}^2 , \mathbb{R}^3 are examples of vector spaces over \mathbb{R} .

Proposition 1.1

For any field \mathbb{F} the set \mathbb{F}^n the set of n-tuples with entries from \mathbb{F} form a vector space.

$$\mathbb{F}^n = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{F}\}\$$

Proof. The additive identity is the zero vector $\mathbf{0} = (0, 0, 0, \dots, 0)$ so we have $\mathbf{0} + a = a$ for any $a \in F^n$. Addition of components is commutative since they are commutative in \mathbb{F} , same logic would apply for Associativity. For inverse we have $-a = (-a_1, -a_2, \dots, -a_n)$. The properties for scalar multiplication is trivial.

Note 1.0.1. \mathbb{Q}^n is not a vector space over \mathbb{R} because scalar multiplication may not be closed. Similarly \mathbb{R}^n is not a vector space over \mathbb{C} . But \mathbb{R}^n is a vector space over \mathbb{Q} and \mathbb{C}^n is a vector space over \mathbb{R} .

Definition 1.3: Matrices

Let \mathbb{F} be a field and let $m, n \geq 1$, an $m \times n$ matrices with entries from \mathbb{F} is a array with n columns and m rows in the form:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Where $a_{ij} \in \mathbb{F}$. We can write (a_{ij}) where $1 \le i \le m$ and $1 \le j \le n$. So a_{ij} is the entry at i - th row and j - th column.

The space of $m \times n$ matrices denoted my $M_{m \times n}(\mathbb{F})$ forms a vector space, with component wise addition and scalar multiplication.

Definition 1.4: Polynomials over a Field

Let F be a field then we define F[x] to be the field of polynomials with coefficients in F to be

$$F[x] = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n : n \ge 0, a_i \in F \text{ for each } i\}$$

The degree of the polynomial $f \in F[x]$ is denoted by $\deg(f)$ is the largest index i such that $a_i \neq 0$. $P_n(\mathbb{F})$ is the set of all polynomials with $\deg(f) \leq n$. Addition and scalar multiplication is defined by:

$$f + g = \sum_{i=0}^{\max(m,n)} (a_i + b_i)x$$
$$af = \sum_{i=0}^{n} aa_i x^i$$

F[x] is a vector space over F.

1.1 Basic Properties

Theorem 1.2: Basic Properties

• Cancellation Law for Vector Addition

$$x + y = z + y \to x = z$$

- Additive Inverse and Identity $\mathbf{0}$ in (V, +) are unique.
- $0 \cdot x = \mathbf{0}$
- $\bullet \ a \cdot \mathbf{0} = \mathbf{0}$
- (-a)x = -(ax) = a(-x)((-a)x is the additive inverse of ax).

Proof. The first 2 are a consequence of (V, +) being a commutative group and the 3rd and 4th are trivial. For the last property consider

$$(-a)x + ax = (-a+a)x = \mathbf{0}$$

So (-a)x is the additive inverse of ax which is unique so (-a)x = -ax

2 Subspaces

Definition 2.1: Subspace

 $W\subseteq V$ with V being a vector space over a field $\mathbb F$ is called a subspace of V if

- (S 1) $W \neq \emptyset$
- (S 2) W is closed under addition.
- (S 3) W is closed under scalar multiplication.

Theorem 2.1: Subspace theorem

If W is a subspace of vector space V over \mathbb{F} then W is a vector field over \mathbb{F} .

Proof. All conditions trivially hold for any $W \subset V$ expect the zero vector and the additive inverse condition. So let $x, y, z \in W$.

Since $W \neq \emptyset$, let $x \in W$ and by definition of subspaces W is closed under scalar multiplication so $0 \cdot x = \mathbf{0} \in W$. So the additive identity property holds. Now W again we let $u = (-1)x \in W$ and we know that x + u = x + (-x) = 0. So W is a vector field over \mathbb{F} .