

Outline

- I. General Project Background
- II. Objectives and Products to be Validated
- III. Data Collected and Results
- IV. Data Availability and Collaboration
- V. Scaling from Plots to MODIS Pixels to Flux Tower Footprints
- VI. Communication of Results
- VII. YR 2001 Plans

Chequamegon Ecosystem Atmosphere Study (CHEAS)

- ⇒ Multi-disciplinary, collaborative program to quantify carbon, water, and energy exchange between cold-temperate forest/wetland landscape and the atmosphere.
- ⇒ Located in northern Wisconsin, near Park Falls, WI.
- ⇒ Dominant ecosystems are: alder wetlands, early successional aspen forests, northern hardwoods, and upland pine forests.
- ⇒Funding sources are: NASA EOS-VAL, DOE, McIntire-Stennis, NOAA, NASA Hydrology, TECO.

CHEAS Cyclical Sampling Design

Dominant Vegetation Types

- -alder wetland
- -upland pine
- -aspen
- -northern hardwoods

II. Products to be measured and Validated

- Land surface temperature (LST) and emissivity at the scale of ASTER and MODIS pixels
- Leaf Area Index (LAI)
- Fraction Intercepted Photosynthetic Active Radiation (FIPAR)
- Aboveground and Total Net Primary Production (NPP_A and NPP_T)
- Net Ecosystem Production (NEP)

Validation of MODIS Products

GPP = Gross Primary Production R_H = Heterotrophic Respiration

NPP = **Net primary Production**

NEP = Net Ecosystem Production

 $R_A = Autotrophic Respiration$

Calibration of Differential Infrared Thermometer (DIT) to be used to Validate Aster Vegetation Temperature Product

Everest Interscience Infrared thermometer (model 4000) - measured in 8 - 14 μm wavelength bands ASTER surface temperature channels are 10.25-10.95 and 10.95-11.65 μm

* Atmospheric Emitted Radiation Interferometer (AERI) emissivity measurements to be compared to the five ASTER thermal bands

Leaf Area Index – Ecosystem Averages

Inter-annual variation in LAI

Leaf Area Index (Le) July 1999

Burrows et al., in prep.

Aboveground Net Primary Production (NPP_A)

Comparison of Measured (Eddy flux) vs Simulated (IBIS) Net Ecosystem Production

IV. Data Availability and Collaboration

- All 1999 and 2000 data have been submitted to Mercury
- All 1999 and 2000 data are available from the CHEAS webpage:www.cheas.umn.edu
- We are anxious to collaborate with MODLAND and other scientists. All that we ask is that users of the data contact appropriate PI for any revisions.

V. Scaling from plots to MODIS pixels to flux tower footprints

- Process-based ecosystem models driven by remotely sensed vegetation cover, LAI, and fIPAR Atlas, ETM+, MODIS
- Geostatistical models
 - avoids saturation problems
 - quantitative approach to estimate biomass

Semivariograms: Quantifying Spatial patterns of LAI and NPP

Comparison of MODIS LAI to Field Measurements

Measured vs Landsat TM5 LAI

VI. Communication of Results

- Global Change Biology special issue for the CHEAS project – manuscript deadline is Feb 1, 20001.
- There is interest within the NASA EOS-VAL science team to contribute to a special MODIS issue??

Field Plans for 2001

- 1. Measure LAI and fIPAR
 - 1 major field campaign during peak LAI
 - 2 minor field campaigns to capture phenology
- 2. Measure ANPP
- 3. Image Acquisitions
 - MODIS, ETM+, AVIRIS, ATLAS?
- 4. Comparison of NPP, GPP and NEP among MODIS products, IBIS ecosystem model, and eddy flux tower