4.3 Linearly Independent Sets; Bases

Definition

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in a vector space V is said to be **linearly independent** if the vector equation

$$c_1\mathbf{V}_1 + c_2\mathbf{V}_2 + \dots + c_p\mathbf{V}_p = \mathbf{0}$$

has only the trivial solution $c_1 = 0, ..., c_p = 0$.

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists weights c_1, \dots, c_p , not all 0, such that

$$c_1\mathbf{V}_1+c_2\mathbf{V}_2+\cdots+c_p\mathbf{V}_p=\mathbf{0}.$$

The following results from Section 1.7 are still true for more general vectors spaces.

A set containing the zero vector is linearly dependent.

A set of two vectors is linearly dependent if and only if one is a multiple of the other.

A set containing the zero vector is linearly independent.

EXAMPLE:
$$\left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 3 & 0 \end{bmatrix} \right\}$$
 is a

linearly _____ set.

EXAMPLE:
$$\left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 6 \\ 9 & 11 \end{bmatrix} \right\}$$
 is a linearly

_____ set since
$$\begin{bmatrix} 3 & 6 \\ 9 & 11 \end{bmatrix}$$
 is not a

multiple of
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

Theorem 4

An indexed set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some vector \mathbf{v}_j (j > 1) is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

EXAMPLE: Let $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ be a set of vectors in \mathbf{P}_2 where $\mathbf{p}_1(t) = t$, $\mathbf{p}_2(t) = t^2$, and $\mathbf{p}_3(t) = 4t + 2t^2$. Is this a linearly dependent set?

Solution: Since $\mathbf{p}_3 = \underline{} \mathbf{p}_1 + \underline{} \mathbf{p}_2$, $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly $\underline{}$ set.

A Basis Set

Let *H* be the plane illustrated below. Which of the following are valid descriptions of *H*?

(a)
$$H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$$
 (b) $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_3\}$

(b)
$$H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_3\}$$

(c)
$$H = \text{Span}\{\mathbf{v}_2, \mathbf{v}_3\}$$

(c)
$$H = \operatorname{Span}\{\mathbf{v}_2, \mathbf{v}_3\}$$
 (d) $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$

A basis set is an "efficient" spanning set containing no unnecessary vectors. In this case, we would consider the linearly independent sets $\{\mathbf{v}_1,\mathbf{v}_2\}$ and $\{\mathbf{v}_1,\mathbf{v}_3\}$ to both be examples of basis sets or bases (plural for basis) for H.

DEFINITION

Let H be a subspace of a vector space V. An indexed set of vectors $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for H if

- (i) β is a linearly independent set, and
- (ii) $H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}.$

EXAMPLE: Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Show that $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis for \mathbb{R}^3 . The set called a **standard basis** for **R**³.

Solutions: (Review the IMT, page 129) Let

$$A = \left[\begin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$
. Since A has 3 pivots, the columns of A are linearly _______ by

the IMT and the columns of A ______

by IMT. Therefore, $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis for \mathbb{R}^3 .

EXAMPLE: Let $S = \{1, t, t^2, ..., t^n\}$. Show that S is a basis for P_n .

Solution: Any polynomial in \mathbf{P}_n is in span of S. To show that S is linearly independent, assume $c_0 \cdot 1 + c_1 \cdot t + \cdots + c_n \cdot t^n = \mathbf{0}$

Then $c_0 = c_1 = \cdots = c_n = 0$. Hence *S* is a basis for \mathbf{P}_n .

EXAMPLE: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$.

Is $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ a basis for \mathbb{R}^3 ?

Solution: Again, let
$$A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
. Using row reduction,

$$\left[\begin{array}{cccc}
1 & 0 & 1 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{array}\right] \sim \left[\begin{array}{cccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 1 & 3
\end{array}\right] \sim \left[\begin{array}{cccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 5
\end{array}\right]$$

and since there are 3 pivots, the columns of A are linearly independent and they span R³ by the IMT. Therefore $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is a **basis** for \mathbf{R}^3 .

EXAMPLE: Explain why each of the following sets is **not** a basis for **R**³.

(a)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\7 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \right\}$$

Bases for Nul A

EXAMPLE: Find a basis for Nul A where

$$A = \left[\begin{array}{rrrrr} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{array} \right].$$

Solution: Row reduce | A 0 :

$$\begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 & -6 & -15 & 0 \end{bmatrix} \qquad \begin{aligned} x_1 &= -2x_2 - 13x \\ x_3 &= 6x_4 + 15x_5 \\ x_2, x_4 \text{ and } x_5 \text{ ar} \end{aligned}$$

$$x_1 = -2x_2 - 13x_4 - 33x_5$$

 $x_3 = 6x_4 + 15x_5$
 x_2 , x_4 and x_5 are free

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_1 \\ -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for Nul A. In the last section we observed that this set is linearly independent. Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for Nul A. The technique used here always provides a linearly independent set.

The Spanning Set Theorem

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

EXAMPLE: Suppose
$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$.

Solution: If \mathbf{x} is in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, then

$$\mathbf{X} = c_1 \mathbf{V}_1 + c_2 \mathbf{V}_2 + c_3 \mathbf{V}_3 = c_1 \mathbf{V}_1 + c_2 \mathbf{V}_2 + c_3 (\underline{} \mathbf{V}_1 + \underline{} \mathbf{V}_2)$$

$$= \underline{} \mathbf{V}_1 + \underline{} \mathbf{V}_2$$

Therefore,

$$\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} = \mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2\}.$$

THEOREM 5 The Spanning Set Theorem

Let
$$S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$$
 be a set in V and let $H = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- a. If one of the vectors in S say \mathbf{v}_k is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{\mathbf{0}\}$, some subset of *S* is a basis for *H*.

Bases for Col A

EXAMPLE: Find a basis for Col A, where

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}.$$

Solution: Row reduce:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{b}_4 \end{bmatrix}$$

Note that

$${f b}_2 = _{f b}_1 \qquad {
m and} \qquad {f a}_2 = _{f a}_1$$
 ${f b}_4 = 4{f b}_1 + 5{f b}_3 \qquad {
m and} \qquad {f a}_4 = 4{f a}_1 + 5{f a}_3$

b₁ and b₃ are not multiples of each othera₁ and a₃ are not multiples of each other

Elementary row operations on a matrix do not affect the linear dependence relations among the columns of the matrix.

Therefore Span $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$ =Span $\{\mathbf{a}_1, \mathbf{a}_3\}$ and $\{\mathbf{a}_1, \mathbf{a}_3\}$ is a basis for Col A.

THEOREM 6

The pivot columns of a matrix A form a basis for Col A.

EXAMPLE: Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ -4 \\ 6 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$.

Find a basis for Span $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$

Solution: Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ -3 & 6 & 9 \end{bmatrix}$ and note that

 $Col A = Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$

By row reduction, $A \sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Therefore a basis

for Span $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is $\left\{ \left[\begin{array}{c} \\\\\\\\\end{array}\right], \left[\begin{array}{c}\\\\\end{array}\right] \right\}$.

Review:

- 1. To find a basis for Nul A, use elementary row operations to transform $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ to an equivalent reduced row echelon form $\begin{bmatrix} B & \mathbf{0} \end{bmatrix}$. Use the reduced row echelon form to find parametric form of the general solution to $A\mathbf{x} = \mathbf{0}$. The vectors found in this parametric form of the general solution form a basis for Nul A.
- 2. A basis for Col A is formed from the pivot columns of A. Warning: Use the pivot columns of A, not the pivot columns of B, where B is in reduced echelon form and is row equivalent to A.