DTAPI

DVB-C2/T2 Multi-PLP Extensions

Table of Contents

Structures	3
Struct DtBigTsSplitPars	3
Struct DtComplexFloat	
Struct DtPlpInpPars	6
Struct DtTestPointOutPars	7
Struct DtVirtualOutData	8
Struct DtVirtualOutPars	10
DVB-C2 Data Structures	11
Struct DtDvbC2DSlicePars	11
Struct DtDvbC2L1UpdateDSlicePars	
Struct DtDvbC2L1UpdatePlpPars	14
Struct DtDvbC2L1UpdatePars	
Struct DtDvbC2ModStatus	
Struct DtDvbC2NotchPars	17
Struct DtDvbC2PaprPars	
Struct DtDvbC2ParamInfo	19
Struct DtDvbC2PlpPars	20
Struct DtDvbC2XFecFrameHeader	23
DVB-T2 Data Structures	24
Struct DtDvbT2AuxPars	24
Struct DtDvbT2MiPars	25
Struct DtDvbT2ModStatus	27
Struct DtDvbT2PaprPars	28
Struct DtDvbT2ParamInfo	30
Struct DtDvbT2PlpPars	31
Struct DtDvbT2RbmEvent	35
Struct DtDvhT2RhmValidation	39

Struct DtDvb121xSigPars	40
DtDvbC2Pars	41
Class DtDvbC2Pars	
DtDvbC2Pars::CheckValidity	
DtDvbC2Pars::GetParamInfo	45
DtDvbT2ComponentPars	46
DtDvbT2ComponentPars	46
DtDvbT2Pars	52
DtDvbT2Pars	52
DtDvbT2Pars::CheckValidity	
DtDvbT2Pars::GetParamInfo	
DtDvbT2Pars::OptimisePlpNumBlocks	55
Callback Functions	56
DtTpWriteDataFunc	56
Global Functions	58
::DtapiModPars2TsRate	58
DtMplpOutpChannel	59
DtMplpOutpChannel	59
DtMplpOutpChannel::AttachVirtual	60
DtMplpOutpChannel::GetMplpFifoFree	61
DtMplpOutpChannel::GetMplpFifoSize	
DtMplpOutpChannel::GetMplpModStatus	
DtMplpOutpChannel::SetMplpChannelModelling	
DtMplpOutpChannel::SetModControl	

Copyright © 2012 by DekTec Digital Video B.V.

DekTec Digital Video B.V. reserves the right to change products or specifications without notice. Information furnished in this document is believed to be accurate and reliable, but DekTec assumes no responsibility for any errors that may appear in this material.

Structures

Struct DtBigTsSplitPars

Structure for specifying the parameters for the "Big-TS splitting" operation. This operation splits one "big" Transport Stream into multiple SPTSes (Single Program Transport Streams), one for each data PLP in the group. Each SPTS will contain one service and adapted PSI/SI. The Transport Stream for the common PLP gets the common SI.

The parameters in this structure are used for the creation and modification of PAT, SDT and EIT tables for a single PLP. Furthermore it specifies the PIDs to be included in the Transport Stream. This structure is used in class DtPlpInPars.

```
struct DtBigTsSplitPars
                           // Enable "Big-TS splitting"
// Common PLP (yes/no)
  bool m Enabled;
  bool m IsCommonPlp;
                         // SDT is already split (yes/no)
  bool m SplitSdtIn;
  std::vector<int> m Pids; // Series of PIDs to include
  // Parameters below are not used in case m IsCommonPlp == true
  int m TsId;
                             // Transport Stream ID of the Big TS
                         // Transport Stream ID of the Big TS
// ID of the service to include in PLP
// PID of the PMT table of selected se:
// Transport Stream ID of the TS in the
  int m ServiceId;
  int m PmtPid;
                              // PID of the PMT table of selected service
  int m NewTsId;
                             // Transport Stream ID of the TS in the PLP
  // Parameters below are not used in case m SplitSdtIn == true
  int m SdtLoopDataLength;
                                        // SDT loop data length
  unsigned char m SdtLoopData[168]; // The SDT-actual loop data
```

Members

m Enabled

If true, "Big-TS splitting" is enabled, otherwise it is disabled and the remaining parameters are not used.

m IsCommonPlp

If true, the type of the associated PLP is a common PLP, otherwise the type is a data PLP.

m SplitSdtIn

If true, the "Big TS" is "MPLP-prepared" and already contains separated SDT subtables for each PLP.

m Pids

Series of PID values that specify the elementary streams to be included in Transport Stream for the associated PLP (e.g. for the data PLP: service components, ECM and PCR PIDs and for the common PLP: CAT, NIT, TOT, TDT-table PIDs).

The following parameters are not used if parameters are related to a common PLP $(m \ IsCommonPlp \ equals \ true)$.

```
m OnwId, m TsId, m ServiceId
```

Identifies a service from the "Big TS" to include in the Transport Stream for the PLP.

DTAPI – DVB-C2/T2 Multi-PLP Extensions Reference Manual

m PmtPid

The PID of the PMT-table of the selected service, needed for the creation of a new PAT-table.

m NewTsId

Specifies the Transport Stream ID of the newly created TS in the PLP.

The following parameters are not used if the "Big TS" already contains separated SDT subtables for each PLP ($m_SplitSdtIn$ equals true); otherwise, a new SDT-actual table is created for the selected service with the aid of the parameters below.

m SdtLoopDataLength

Length of the new SDT-loop data for the selected service. The valid range is 0, 5 ... 168.

m SdtLoopData

Specifies the new SDT-actual loop data for the selected service. The SDT-loop data starts with the service_id field and includes the SDT-loop descriptors. The maximum length of the SDT-loop data is 168 bytes.

Struct DtComplexFloat

Structure describing a complex floating-point number.

Members

m Re

The real part of the complex floating-point number.

m Im

The imaginary part of the complex floating-point number.

Struct DtPlpInpPars

Structure for specifying the input stream for a PLP. This structure is used in class DtDvbC2Pars and in class DtDvbT2ComponentPars, in an array of structs. The index in the array corresponds to the index of the related PLP.

Members

m FifoIdx

The index of the FIFO used by the associated PLP. PLPs in the same group that have "Big-TS" splitting enabled can share the same input FIFO.

The index will be used in several methods that operate on a specific FIFO (e.g. DtMplpOutpChannel::WriteMplp()).

The default value of $m_FifoIdx$ is equal to the index in the array of <code>DtPlpInpPars</code> structs. For writing data to the n^{th} PLP (which is specified at index n in the array of <code>DtPlpInpPars</code>) you have to use FIFO index n.

The valid range of m FifoIdx is 0 ... 255.

m DataType

Specifies the type of the input data.

Value	Meaning
TS188	188-byte TS packets
TS204	204-byte TS packets

m BigTsSplit

Specifies (for this PLP) the parameters for the "Big-TS" splitting operation.

Struct DtTestPointOutPars

Test-point data generation is specified by the Verification and Validation (V&V) group for DVB-C2 and DVB-T2 as a means for the verification and validation of the DVB specifications. Structure **DtTestPointOutPars** enables or disables test-point data generation, and – if enabled – specifies the associated handler.

This structure is used in class DtDvbC2Pars and in class DtDvbT2ComponentPars.

Members

m Enabled

If true, the generation of test point data is enabled. Whenever test point data is available, the callback function is called and the test point data is passed to the callback function. Note that test point data generation cannot be performed in real time.

m pTpWriteDataOpaque

Opaque pointer that is passed to the callback function.

m pTpWriteDataFunc

Pointer to the callback function of type DtTpWriteDataFunc that handles the generated test point data.

Struct DtVirtualOutData

Structure describing the type of output data generated by a virtual output.

```
struct DtVirtualOutData
OutDataType m DataType;
                                    // Output data type
union {
                                     // 16-bit int I/Q samples
  struct {
    const unsigned char** m_pBuffer; // Array of buffers
   int m NumBuffers;
                                     // #Buffers
    int m NumBytes;
                                     // #Bytes in each buffer
  } IqSamplesInt16;
                                    // 32-bit float I/Q samples
  struct {
    const unsigned char** m pBuffer; // Array of buffers
   int m NumBuffers;
                                     // #Buffers
    int m NumBytes;
                                     // #Bytes in each buffer
  } IqSamplesFloat32;
                                    // 188byte T2MI TS packets
  struct {
    const unsigned char* m pBuffer; // Pointer to TS packet(s)
                                     // #Bytes
    int m NumBytes;
     _int64  m_T2MiFrameNr;
                                    // T2MI frame counter
  } T2MiTs188;
  u;
```

Members

m_DataType

Type of output data.

Value	Meaning
IQ_INT16	Pairs of signed 16-bit integers in I, Q order, little Endian
IQ_FLOAT32	Pairs of 32-bit floats in I, Q order
T2MI_TS188	T2-MI packets encapsulated into DVB/MPEG Transport Stream packets

u. IqSamplesInt16

Structure used in case m DataType equals IQ INT16.

 $u. IqSamplesInt16.m_pBuffer$

Pointer to an array of $m_NumBuffers$ pointers to buffers of length $m_NumBytes$. The buffers contain pairs of signed 16-bit integers in I, Q order, little Endian.

u. IqSamplesInt16.m NumBuffers

The number of buffers. There is one output buffer for each output channel (e.g. 2 buffers in case of MISO).

u. IqSamplesInt16.m NumBytes

The number of bytes in each buffer.

u. IqSamplesFloat32

Structure used in case m DataType equals IQ Float32.

DTAPI – DVB-C2/T2 Multi-PLP Extensions Reference Manual

u. IqSamplesFloat32.m_pBuffer

Pointer to an array of $m_NumBuffers$ pointers to buffers of $m_NumBytes$ length. The buffers contain pairs of 32-bit floats in I, Q order.

 $u. IqSamples Float 32. m_NumBuffers$

The number of buffers. There is one output buffer for each output channel (e.g. 2 buffers in case of MISO).

u. IqSamplesFloat32.m_NumBytes

The number of bytes in each buffer.

u.T2MiTs188

Structure used in case m_DataType equals T2MI_TS188.

u.T2MiTs188.m pBuffer

Pointer to a buffer with 188-byte Transport Packets encapsulating T2-MI packets.

u.T2MiTs188.m NumBytes

The number of bytes in the buffer.

u.T2MiTs188.m T2MiFrameNr

DVB-T2 superframe counter. The counter is incremented each time the buffer contains a packet that contributes to a new DVB-T2 superframe. This parameter enables cutting of the output data stream at DVB-T2 superframe boundaries.

Struct DtVirtualOutPars

Structure for specifying the output data type in case the output data is generated for a virtual output.

Members

m Enabled

If true, the parameters in DtVirutalOutPars overrule the default values; otherwise, default output data type and gain will be used.

m DataType

Specifies the type of output data for the virtual output.

Value	Meaning
IQ_INT16	Pairs of signed 16-bit integers in I, Q order, little Endian
IQ_FLOAT32	Pairs of 32-bit floats in I, Q order
T2MI_TS188	T2-MI packets encapsulated into DVB/MPEG Transport Stream packets

m Gain

If the output data type is either IQ_INT16 or IQ_FLOAT32, this field specifies the Root Mean Square (RMS) of the complex samples. This value should be set as large as possible to have the largest SNR, but small enough to avoid saturation. When a DekTec card is used for playout of the I/Q samples, the value 5000 is an appropriate value.

DVB-C2 Data Structures

Struct DtDvbC2DSlicePars

Structure describing DVB-C2 parameters for one data slice. This structure is used in class DtDvbC2Pars, in an array of DTAPI DVBC2 NUM DSLICE MAX structs for the data slices.

```
struct DtDvbC2DSlicePars
  int m Id;
                                // Data slice ID
  int m_TunePosition;
int m_OffsetLeft;
                                // Tune position
                                // Data slice left offset (start position)
  int m_OffsetRight;
                                // Data slice right offset (end position)
  int m TiDepth;
                                // Time interleaving depth
  int m Type;
                                // Data slice type
                          // FEC header type
// Constant data slice configuration(yes/no)
// Left notch present (yes/no)
  int m FecHdrType;
  bool m ConstConfig;
  bool m LeftNotch;
  std::<vector<DtDvbC2PlpPar> m Plps; // PLPs
```

Members

m Id

Unique identification of the data slice within a C2-System. The valid range is 0 ... 255.

m TunePosition

Tune position of the associated data slice relative to the start frequency of the C2-System, in multiples of pilot carrier spacing.

The valid range is 0 ... 8191 if the guard interval is 1/128.

The valid range is 0 ... 16383 if the guard interval is 1/64.

m OffsetLeft

Start position of the associated data slice by means of the distance to the left from the tuning position, in multiples of the pilot carrier spacing.

The valid range is -128 ... 127 if the guard interval is 1/128.

The valid range is -256 ... 255 if the guard interval is 1/64.

m_OffsetRight

End position of the associated data slice by means of the distance to the right from the tuning position, in multiples of the pilot carrier spacing.

The valid range is -128 ... 127 if the guard interval is 1/128.

The valid range is -256 ... 255 if the guard interval is 1/64.

If $m_OffsetLeft$ equals $m_OffsetRight$, the data slice is empty and no input streams are created for the PLPs of the data slice.

$m_TiDepth$

Time interleaving depth within the associated data slice.

Value	Meaning
DTAPI_DVBC2_TIDEPTH_NONE	No time interleaving
DTAPI_DVBC2_TIDEPTH_4	4 OFDM symbols
DTAPI_DVBC2_TIDEPTH_8	8 OFDM symbols
DTAPI_DVBC2_TIDEPTH_16	16 OFDM symbols

m_Type

Data slice type.

Value	Meaning
DTAPI_DVBC2_DSLICE_TYPE_1	Data slice type 1
DTAPI_DVBC2_DSLICE_TYPE_2	Data slice type 2

m_FecHdrType

FEC frame header type.

Value	Meaning
DTAPI_DVBC2_FECHDR_TYPE_ROBUST	Robust mode
DTAPI_DVBC2_FECHDR_TYPE_HEM	High efficiency mode

m ConstConfig

If true, indicates that the configuration of the associated data slice shall not change; otherwise, the configuration is assumed to be variable.

m LeftNotch

If true, indicates the presence of a left neighboured notch band.

m Plps

A vector specifying the DVB-C2 modulation parameters for the physical layer pipes.

Struct DtDvbC2L1UpdateDSlicePars

Structure describing DVB-C2 parameter updates for one data slice. This structure is used in class DtDvbC2L1UpdatePars.

Members

m Enable

If true, the data slice is enabled, otherwise it is disabled and the remaining parameters are not used. Only enabled data slices will occur in the L1 signalling.

Note that only "empty" data slices can be disabled. An empty data slice is either a data slice where $m_OffsetLeft==m_OffsetRight$ in the global configuration, or a data slice where all PLPs have $m_NoData==true$.

m OffsetLeft

Updated start position of the associated data slice by means of the distance to the left from the tuning position, in multiples of the pilot carrier spacing.

The valid range is -128 ... 127 if the guard interval is 1/128.

The valid range is -256 ... 255 if the guard interval is 1/64.

m OffsetRight

Updated end position of the associated data slice by means of the distance to the right from the tuning position, in multiples of the pilot carrier spacing.

The valid range is -128 ... 127 if the guard interval is 1/128.

The valid range is -256 ... 255 if the guard interval is 1/64.

If the data slice is not empty then for type 1 data slices no change is accepted and for type 2 must hold that $m_OffsetLeft < m_OffsetRight$. It is up to the user to ensure that there is sufficient bandwidth and no bitrate overflow.

m Plps

A vector specifying the DVB-C2 parameters updates for the physical layer pipes. Note that the number of physical layer pipes and the order of physical layer pipes must be the same as in the global configuration.

Struct DtDvbC2L1UpdatePlpPars

Structure describing DVB-C2 parameter updates for one physical layer pipe. This structure is used in class DtDvbC2L1UpdateDSlicePars.

Members

m Enable

If true, the physical layer pipe is enabled, otherwise it is disabled. Only enabled physical layer pipes will occur in the L1 signalling.

Note that only physical layer pipes where m NoData==true can be disabled.

Struct DtDvbC2L1UpdatePars

Structure describing the updated DVB-C2 L1 signalling part2 parameters. This structure is used in class DtDvbC2Pars.

Members

m NumFrames

Number of C2 frames the updated data slice parameters are used.

m DSlices

A vector specifying for each data slice the updated data slice parameters.

Note that the number of data slices and the order of data slices must be the same as in DtDvbC2Pars.

Struct DtDvbC2ModStatus

Structure containing the status of the DVB-C2 modulator. This structure is an output parameter of DtMplpOutpChannel::GetMplpModStatus.

Members

 $m_MplpModFlags$

Multi-PLP-modulator flags. If the modulator stalls m MplpModFlags is set to a nonzero value.

m DjbOverflows

Total number De-Jitter Buffer overflows.

If such overflow occurs, the <code>DtDvbC2PlpPars::m_IssyOutputDelay</code> parameter must be decreased or <code>DtDvbC2PlpPars::m</code> <code>IssyBufs</code> must be increased.

m DjbUnderflows

Total number De-Jitter Buffer underflows.

If such underflow occurs, the <code>DtDvbC2PlpPars::m_IssyOutputDelay</code> parameter must be increased.

Struct DtDvbC2NotchPars

Structure specifying a DVB-C2 notch band. This structure is used in class DtDvbC2Pars, in an array of DTAPI DVBC2 NUM NOTCH MAX structs.

Members

m Start

Start position of the notch band relative to the start frequency of the C2-System. The start position is indicated in multiples of pilot carrier spacing.

The valid range is 0 ... 8191 if the guard interval is 1/128.

The valid range is 0 ... 16383 if the guard interval is 1/64.

m Width

Width of the notch band indicated in multiples of pilot carrier spacing.

The valid range is 0 ... 255 if the guard interval is 1/128.

The valid range is 0 ... 511 if the guard interval is 1/64.

Struct DtDvbC2PaprPars

Structure for specifying PAPR reduction parameters. This structure is used in class DtDvbC2Pars.

Members

```
m_TrEnabled
  If true, PAPR TR is active, otherwise PAPR TR is not active.

m_TrVclip
  PAPR TR clipping threshold. The valid range is 1 ... 4.32 (Volt).

m_TrMaxIter
```

Maximum number of iterations. Must be greater than or equal to 1. Note: PAPR TR processing time is proportional to this parameter.

Struct DtDvbC2ParamInfo

Structure containing the DVB-C2 "derived" parameters: the value of the members follows from the basic DVB-C2 modulation parameters.

This structure is an output parameter of DtDvbC2Pars::GetParamInfo.

Members

```
m_L1Part2Length
    Number of bits of the L1 part 2 data (including CRC).

m_NumL1Symbols
    Number of L1 symbols ( LP ).

m_NumSymbols
    Total number of symbols per frame ( LP + Ldata ).

m_PilotSpacing
    The number of carriers between pilots ( Dx ).

m_FftSize
    FFT size.

m_MinCarrierOffset
    The lowest used carrier offset.

m_CenterFrequency
    Center frequency, expressed as the distance from 0 Hz in multiples of the carrier spacing.
```


Struct DtDvbC2PlpPars

Structure specifying the DVB-C2 modulation parameters for one physical layer pipe. This structure is used in class DtDvbC2DSlicePars.

Members

 m_Hem

If true, the PLP uses High Efficiency Mode (HEM), otherwise Normal Mode (NM) is used.

m Npd

If true, null-packet deletion is active, otherwise it is not active.

m Issy

ISSY mode, according to the table below.

Value	Meaning
DTAPI_DVBC2_ISSY_NONE	No ISSY field is used
DTAPI_DVBC2_ISSY_SHORT	2 byte ISSY field is used
DTAPI_DVBC2_ISSY_LONG	3 byte ISSY field is used

```
m IssyBufs
```

ISSY 'BUFS' value. The valid range is 0 ... 2097151

m_IssyOutputDelay

Delay (in T units) between the incoming data and the output data in the receiver model. This value determines the minimum and maximum dejitter buffer usage and is used to compute the ISSY 'BUFSTAT' field.

m_{TSRate}

Transport-Stream rate in bps. If m_TsRate is set to '0', no ISSY is used and null-packet deletion is not active then the transport stream rate is computed from the PLP parameters.

m Ccm

ACM/CCM-field (Adaptive Coding and Modulation or Constant Coding and Modulation) in the BBFrame header 0 or 1.

m Id

Unique identification of the PLP within a C2-System. The valid range is 0 ... 255.

m Bundled

If true, the associated PLP is bundled with other PLP(s) within the current C2 System. All the bundled PLPs have the same PLP ID. An input stream is created only for the first PLP of the bundle.

m_Type

PLP type.

Value	Meaning
DTAPI_DVBC2_PLP_TYPE_COMMON	Common PLP
DTAPI_DVBC2_PLP_TYPE_GROUPED	Grouped data PLP
DTAPI_DVBC2_PLP_TYPE_NORMAL	Normal data PLP

m GroupId

Identifies the PLP group with which the PLP is associated. The valid range is 0 ... 255.

$m_FecType$

FEC type used by the PLP.

Value	Meaning
DTAPI_DVBC2_LDPC_16K	16K LDPC
DTAPI_DVBC2_LDPC_64K	64K LDPC

m CodeRate

Convolutional coding rate used by the PLP.

Value	Meaning
DTAPI_DVBC2_COD_2_3	2/3
DTAPI_DVBC2_COD_3_4	3/4
DTAPI_DVBC2_COD_4_5	4/5
DTAPI_DVBC2_COD_5_6	5/6
DTAPI_DVBC2_COD_8_9	8/9 (for 16K FEC)
DTAPI_DVBC2_COD_9_10	9/10 (for 64K FEC)

m Modulation

Modulation used by the PLP.

Value	Meaning
DTAPI_DVBC2_QAM16	16-QAM
DTAPI_DVBC2_QAM64	64-QAM
DTAPI_DVBC2_QAM256	256-QAM
DTAPI_DVBC2_QAM1024	1024-QAM
DTAPI_DVBC2_QAM4096	4096-QAM
DTAPI_DVBC2_QAM16384	16384-QAM
DTAPI_DVBC2_QAM65536	65536-QAM

m HdrCtr

Header counter field, number of FECFrames following the FECFrame header: 0=1 FECFrame; 1=2 FECFrames.

m AcmHeaders

A vector that holds the XFEC Frame modulation parameters for Adaptive Coding and Modulation (ACM) testing. If the number of ACM headers is greater than zero, then the successive XFEC frames of this PLP use the modulation and coding parameters from the m_AcmHeaders vector. After the last value is used, it loops again to the start of the vector. In this case the m_FecType, m_Modulation, m_CodeRate and m_HdrCntr parameters from the DtDvbC2PlpPars structure are ignored.

m PsiSiReproc

If true, indicates that PSI/SI has been reprocessed.

m_TsId , m_OnwId

If $m_PsiSiReproc$ is set to 'false', these members specify the Transport Stream ID and Original Network ID of the TS in the PLP. A receiver will use these fields if it can't rely on the PSI/SI.

m NoData

If true, no input data is provided for this PLP. It is implicitly true for all PLPs in a data slice where m OffsetLeft == m OffsetRight.

Struct DtDvbC2XFecFrameHeader

Structure describing the coding and modulation parameters for a series of XFEC frames for Adaptive Coding and Modulation (ACM) tests. This structure is used in class DtDvbC2PlpPars.

Members

```
m FecType
```

PLP FEC type. See DtDvbC2PlpPars for a list of applicable values.

m Modulation

PLP modulation. See DtDvbC2PlpPars for a list of applicable values.

m CodeRate

PLP code rate. See DtDvbC2PlpPars for a list of applicable values.

m HdrCntr

PLP header counter. See DtDvbC2PlpPars for a list of applicable values.

m_XFecFrameCount

Number of XFEC frames using the parameters. The valid range is 1 ... 256.

DVB-T2 Data Structures

Struct DtDvbT2AuxPars

Structure for specifying AUX stream parameters, which can be inserted for test purposes. This structure is used in class DtDvbT2ComponentPars.

```
struct DtDvbT2AuxPars
{
   int  m_NumDummyStreams; // Number of dummy AUX streams
};
```

Members

 $m_NumDummyStreams$

Number of dummy AUX streams added for test purposes.

If TX signature through AUX streams is enabled, the valid range is $0 \dots 14$; otherwise, the valid range is $0 \dots 15$.

Struct DtDvbT2MiPars

Structure for enabling T2-MI generation, and for specifying its parameters. This structure is used in class DtDvbT2Pars.

```
Struct DtDvbT2MiPars
 bool m Enabled;
                       // Enable T2-MI output
 int m Pid;
                       // (First) T2-MI data PID
 int m StreamId;
                       // Stream-id for the (first) T2-MI stream
                       // Second T2-MI data PID
 int m Pid2;
 int m_StreamId2;
                       // Stream-id for the second T2-MI stream
 int m_Subseconds; // Number of subseconds
 int m T2miUtco;
                      // Offset in seconds between UTC and Y2000
 bool m EncodeFef;
                       // Encode FEF (yes/no)
```

Members

m Enabled

If true, T2-MI generation is enabled. An MPEG-2 Transport Stream is generated containing Transport Packets that encapsulate the T2-MI packets.

m Pid

PID carrying the T2-MI packet data. The valid range is 0 ... 8190.

m StreamId

Stream-id for the generated T2-MI stream. The valid range is 0 ... 7.

m Pid2

A second PID carrying the T2-MI packet data, used in case of multi-profile stream generation. The valid range is 0 ... 8190.

m StreamId2

Stream-id for the second generated T2-MI stream, used in case of multi-profile stream generation. The valid range is 0 ... 7.

m PcrPid

PID carrying PCR values. If m_{PCrPid} equals -1, no PCRs are inserted in the Transport Stream; otherwise a PCR is inserted on the indicated PID once per 40ms. The valid range is -1 ... 8190.

m PmtPid

PID carrying the PMT-table. If m_PmtPid equals -1, no PAT and no PMT-table are inserted in the Transport Stream; otherwise, PAT and PMT are inserted on PID 0 once per 100ms. The valid range is -1 ... 8190.

m TsRate

T2-MI Transport-Stream rate in bits per second.

m TimeStamping

Type of DVB-T2 timestamps to insert.

Value	Meaning	
DTAPI_DVBT2MI_TIMESTAMP_NULL	Null timestamp	
DTAPI_DVBT2MI_TIMESTAMP_REL	Relative timestamps. Use m_Subseconds.	
DTAPI_DVBT2MI_TIMESTAMP_ABS	Absolute timestamps. Use m_SecSince2000, m_Subseconds and m_T2MiUtco.	

m SecSince2000

Number of seconds since 2000-01-01 00:00:00 UTC. This value is inserted in the first DVB-T2 timestamp that is generated. Subsequent timestamps are computed.

This field is used if m TimeStamping equals DTAPI DVBT2MI TIMESTAMP ABS.

m Subseconds

Number of subsecond units (T_{sub}) elapsed since the time expressed in the seconds field. This value is inserted in the first generated DVB-T2 timestamp. Subsequent timestamps are computed.

This field is used if $m_TimeStamping$ is either $\mathtt{DTAPI_DVBT2MI_TIMESTAMP_REL}$ or $\mathtt{TAPI_DVBT2MI_TIMESTAMP_ABS}$.

The T2 system bandwidth defines the units of the subseconds as shown in the table below.

Bandwidth	Subseconds units, T _{sub}
1.7 MHz	1/131 μs
5 MHz	1/40 μs
6 MHz	1/48 μs
7 MHz	1/56 μs
8 MHz	1/64 μs
10 MHz	1/80 μs

m T2MiUtco

Offset in seconds between UTC and $m_SecSince2000$. As of February 2009 the value shall be 2 and shall change as a result of each new leap second. This field is used if $m_TimeStamping$ equals <code>DTAPI_DVBT2MI_TIMESTAMP_ABS</code>.

m EncodeFef

If true, generates a FEF part composite packet with the required subpart. Otherwise, only generates a FEF part NULL packet when FEF is enabled.

Struct DtDvbT2ModStatus

Structure containing the status of the DVB-T2 modulator. This structure is an output parameter of DtMplpOutpChannel::GetMplpModStatus.

Members

m MplpModFlags

Multi-PLP-modulator flags. If the modulator stalls m MplpModFlags is set to a nonzero value.

m PlpNumBlocksOverflows

Total number of FEC frames for which the requested number of PLP blocks is greater than DtDvbT2PlpPars::m NumBlocks. An overflow results in an invalid stream.

m BitrateOverflows

Total number FEC frames for which too many bits were allocated. An overflow results in an invalid stream.

m TtoErrorCount

Number of times the generated TTO value was invalid. Typically this occurs if <code>DtDvbT2PlpPars::m IssyTDesign</code> is too small.

m T2MiOutputRateOverflows

Number of T2-MI bitrate overflows. The DtDvbT2MiPars::m_TsRate must be increased for reliable operation.

m T2MiOutputRate

Current T2-MI rate excluding null packets in bps.

Struct DtDvbT2PaprPars

Structure for specifying the PAPR reduction parameters. This structure is used in class DtDvbT2ComponentPars.

Members

```
m AceEnabled
  If true, PAPR ACE is active, otherwise PAPR ACE is not active.
m AceVclip
  PAPR ACE clipping threshold. The valid range is 1 ... 4.32 (Volt).
m AceGain
  PAPR ACE gain. The valid range is 0 ... 31 (steps of 1).
  PAPR ACE limit. The valid range is 0.7 ... 1.4 (steps of 0.1).
m AceInterpFactor
  PAPR ACE interpolation factor. The valid range is 1 ... 4.
  Note: PAPR ACE processing time is proportional to this parameter.
m AcePlpIndex
  PLP used for the PAPR ACE.
m TrEnabled
  If true, PAPR TR is active, otherwise PAPR TR is not active.
m TrP2Only
  If true, PAPR TR is only applied on the P2 symbol, otherwise PAPR TR is applied on all symbols.
m TrVclip
  PAPR TR clipping threshold. The valid range is 1 ... 4.32 (Volt).
```

DTAPI – DVB-C2/T2 Multi-PLP Extensions Reference Manual

$m_{_}TrMaxIter$

Maximum number of iterations. Must be greater than or equal to 1. Note: PAPR TR processing time is proportional to this parameter.

m L1ExtLength

L1 extension field length. The valid rang is 0 ... 65535.

m L1AceEnabled

If true, L1 ACE is active, otherwise L1 ACE is not active. Only applicable when DVB-T2 V1.3.1 is selected.

m L1AceCMax

Maximum value added to extend the QAM constellation values of L1.

m L1Scrambling

If true, L1-Post scrambling is active.

${\it m_NumBiasBalCells}$

Number of dummy cells added to reduce the P2 PAPR.

The valid range is 0 ... DtDvbT2ParamInfo::m BiasBalCellsMax.

m BiasBalancing

L1 bias balancing.

Value	Meaning	
DTAPI_DVBT2_BIAS_BAL_OFF	No L1 bias compensation	
	Modify the L1 reserved fields and L1 extension field padd to compensate the L1 bias	

Struct DtDvbT2ParamInfo

Structure containing the DVB-T2 "derived" parameters: the value of the members follows from the basic DVB-T2 modulation parameters.

This structure is an output parameter of **DtDvbT2Pars::GetParamInfo** and **DtDvbT2Pars::OptimisePlpNumBlocks**.

Members

m TotalCellsPerFrame

Total number of cells per frame.

m L1CellsPerFrame

Total number of cells per frame used for L1 signalling.

m AuxCellsPerFrame

Total number of auxiliary stream cells per frame.

m BiasBalCellsPerFrame

Total number of L1 bias balancing cells per frame.

m BiasBalCellsMax

Maximum number of L1 bias balancing cells per P2.

m DummyCellsPerFrame

Total number of cells lost per frame; dummy cells overhead = $m_DummyCellsPerFrame$ / $m_TotalCellsPerFrame$. It is only computed for the first frame.

m SamplesPerFrame

Total number of samples per frame.

Struct DtDvbT2PlpPars

Structure specifying the DVB-T2 modulation parameters for one PLP (Physical Layer Pipe). This structure is used in class <code>DtDvbT2ComponentPars</code>, in an array of <code>DTAPI_DVBT2_NUM_PLP_MAX</code> structs for the physical layer pipes.

Members

 m_{μ}

If true, the PLP uses High Efficiency Mode (HEM); otherwise, Normal Mode (NM) is used.

m Npd

If true, null-packet deletion is active.

m Issy

ISSY mode.

Value	Meaning	
DTAPI_DVBT2_ISSY_NONE	No ISSY field is used	
DTAPI_DVBT2_ISSY_SHORT	2-byte ISSY field is used	
DTAPI_DVBT2_ISSY_LONG	3-byte ISSY field is used	

```
m IssyBufs
```

ISSY 'BUFS' value. The valid range is 0 ... 2097151

m IssyTDesign

T_design value for TTO generation. Set to '0' to have the modulator choose the value. T_design is defined as the delay (in samples) between the start of the first T2 frame in which the PLP is mapped and the first output bit of the Transport Stream.

m CompensatingDelay

Additional delay (in samples) before the TS data is sent. Set to '-1' to have the modulator choose the value.

m TsRate

Tranport stream rate in bps. If m_TsRate is set to '0' and no null-packet deletion is active then the transport stream rate is computed from the PLP parameters.

m Id

Unique identification of the PLP within a T2 system. The valid range is 0 ... 255.

m GroupId

Identifies the PLP group with which the PLP is associated. The valid range is 0 ... 255.

m Type

PLP type.

Value	Meaning
DTAPI_DVBT2_PLP_TYPE_COMM	Common PLP
DTAPI_DVBT2_PLP_TYPE_1	Data PLP type1
DTAPI_DVBT2_PLP_TYPE_2	Data PLP type2

m CodeRate

Convolutional coding rate used by the PLP.

Value	Meaning
DTAPI_DVBT2_COD_1_2	1/2
DTAPI_DVBT2_COD_3_5	3/5
DTAPI_DVBT2_COD_2_3	2/3
DTAPI_DVBT2_COD_3_4	3/4
DTAPI_DVBT2_COD_4_5	4/5 (not for T2-Lite)
DTAPI_DVBT2_COD_5_6	5/6 (not for T2-Lite)
DTAPI_DVBT2_COD_1_3	1/3 (only for T2-Lite)
DTAPI_DVBT2_COD_2_5	2/5 (only for T2-Lite)

m Modulation

Modulation used by the PLP.

Value	Meaning
DTAPI_DVBT2_BPSK	BPSK
DTAPI_DVBT2_QPSK	QPSK
DTAPI_DVBT2_QAM16	16-QAM
DTAPI_DVBT2_QAM64	64-QAM
DTAPI_DVBT2_QAM256	256-QAM

m Rotation

If true, constellation rotation is used.

m FecType

FEC type used by the PLP.

Value	Meaning
DTAPI_DVBT2_LDPC_16K	16K LDPC
DTAPI_DVBT2_LDPC_64K	64K LDPC

m FrameInterval

The T2-frame interval within the super-frame for this PLP. The valid range is 1 ... 255.

m FirstFrameIdx

The index of the first frame of the super-frame in which this PLP occurs. The valid range is 0 ... m FrameInterval-1.

$m_TimeIlLength$

Time interleaving length. The valid range is 0 ... 255.

If $m_TimeIlType$ is set to '0' (DTAPI_DVBT2_IL_ONETOONE), this parameter specifies the number of TI-blocks per interleaving frame.

If $m_TimeIlType$ is set to '1' (DTAPI_DVBT2_IL_MULTI), this parameter specifies the number of T2 frames to which each interleaving frame is mapped.

$m_TimeIlType$

Type of interleaving used by the PLP.

Value	Meaning	
DTAPI_DVBT2_IL_ONETOONE	One interleaving frame corresponds to one T2 frame	
DTAPI_DVBT2_IL_MULTI	One interleaving frame is carried in multiple T2 frames	

m InBandAFlag

If true, the in-band A flag is set and in-band A signalling information is inserted in this PLP.

m InBandBFlag

If true, the in-band B flag is set and in-band B signalling information is inserted in this PLP.

m NumBlocks

The maximum number of FEC blocks contained in one interleaving frame for this PLP. The valid range is 0 ... 2047.

DTAPI – DVB-C2/T2 Multi-PLP Extensions Reference Manual

m NumOtherPlpInBand

Specifies the number of other PLPs in the in-band signalling. The valid range is 0 ... DTAPI DVBT2 NUM PLP MAX-1.

m OtherPlpInBand

Array specifying the IDs of the other PLPs in the in-band signalling.

m FfFlag

If true, the PLP occurs on the same RF channel in each T2-frame; otherwise, inter-frame TFS is applied. This parameter is only meaningful for a type 1 PLP in a TFS system.

m FirstRfIdx

The RF channel where this PLP occurs on in the first frame of a super-frame in a TFS system. If, m_FfFlag is set to 'true' the field indicates the RF channel the PLP occurs on in every T2-frame. This parameter is only meaningful for a type 1 PLP in TFS system.

Struct DtDvbT2RbmEvent

Structure containing the Receiver Buffer Model (RBM) event data. If RBM-validation is enabled then on an RBM-event the **DtDvbT2RbmEvent** parameters are sampled and passed to the RBM-event handler.

```
struct DtDvbT2RbmEvent
 union {
  struct {
    // DTAPI DVBT2 RBM EVENT PLOT parameters
    int m DjbSize;
   } Plot;
  struct {
     // DTAPI DVBT2 RBM EVENT BUFS TOO SMALL parameters
     int m_Bufs; // BUFS value
  } BufsTooSmall;
  struct {
     // DTAPI_DVBT2_RBM_EVENT_TTO_IN_THE_PAST parameters
     int m_Tto; // TTO value
  } TtoInThePast;
  struct {
     // DTAPI DVBT2 RBM EVENT DJB OVERFLOW parameters
     } DjbOverflow;
  struct {
     // DTAPI DVBT2 RBM EVENT CRC8 ERROR HEADER parameters
                // CRC8 value
     int m Val;
   } Crc8ErrorHeader;
   struct {
     // DTAPI DVBT2 RBM EVENT DFL TOO LARGE parameters
     int m_SyncD; // SYNCD
  int m_Dfl;
} SyncDTooLarge;
                          // DFL
   struct {
     // DTAPI DVBT2 RBM EVENT INVALID SYNCD parameters
     int m_Left;
  } InvalidSyncD;
   struct {
     // DTAPI DVBT2 RBM EVENT TDI OVERFLOW parameters
     } TdiOverflow;
   struct {
     // DTAPI DVBT2 RBM EVENT INVALID PLP START parameters
     int m_PlpId1; // IDs of overlapping PLPs
```



```
int m PlpId2;
   } InvalidPlpStart;
   struct {
      // DTAPI DVBT2 RBM EVENT ISCR ERROR parameters
                                // Delta time in T units
      int m Delta;
   } IscrError;
   struct {
      // DTAPI DVBT2 RBM EVENT BUFS NOT CONSTANT parameters
      int m_CufBufs;
                               // Current and new BUFS values
      int m NewBufs;
   } BufsNotConstant;
   struct {
      // DTAPI DVBT2 RBM EVENT PLP NUM BLOCKS TOO SMALL parameters
      } PlpNumBlocksTooSmall;
 } u;
};
```

Members

m DataPlpId

Data PLP ID identifying the stream.

m DataPlpIndex

Data PLP index.

m Time

Time in T units.

m IsCommonPlp

Indicates whether the event refers to a common PLP.

Possible values:

-1: Event doesn't refer to a specific PLP

0 : Data PLP

1: Common PLP

 $m_EventType$

Type of Receiver Buffer Model event

Value	Meaning
DTAPI_DVBT2_RBM_EVENT_PLOT	Plot event
DTAPI_DVBT2_RBM_EVENT_DJB_UNDERFLOW	De-jitter buffer underflow
DTAPI_DVBT2_RBM_EVENT_BUFS_TOO_SMALL	BUFS gives too small dejitter buffer
DTAPI_DVBT2_RBM_EVENT_TTO_IN_THE_PAST	TTO gives time in the past
DTAPI_DVBT2_RBM_EVENT_DJB_OVERFLOW	De-jitter buffer overflow
DTAPI_DVBT2_RBM_EVENT_CRC8_ERROR_HEADER	CRC8 error in BBFrame
DTAPI_DVBT2_RBM_EVENT_DFL_TOO_LARGE	DFL too large in BBFrame
DTAPI_DVBT2_RBM_EVENT_SYNCD_TOO_LARGE	SYNCD too large in BBFrame
DTAPI_DVBT2_RBM_EVENT_INVALID_UPL	Invalid UPL in BBFrame

DTAPI_DVBT2_RBM_EVENT_INVALID_SYNCD	Invalid SYNCD in BBFrame
DTAPI_DVBT2_RBM_EVENT_TDI_OVERFLOW	TDI overflow
DTAPI_DVBT2_RBM_EVENT_TOO_MANY_TI_BLOCKS	Too many TI blocks queued
DTAPI_DVBT2_RBM_EVENT_INVALID_PLP_START	PLP-start values gives overlap
DTAPI_DVBT2_RBM_EVENT_FDI_OVERFLOW	Frequency/L1 de-interleaver overflow
DTAPI_DVBT2_RBM_EVENT_NO_TS_RATE	Not enough ISCR data to estimate TS rate
DTAPI_DVBT2_RBM_EVENT_ISCR_ERROR	ISCR error
DTAPI_DVBT2_RBM_EVENT_BUFS_NOT_CONSTANT	BUFS not constant
DTAPI_DVBT2_RBM_EVENT_ISSYI_NOT_CONSTANT	ISSYI not constant
DTAPI_DVBT2_RBM_EVENT_HEM_NOT_CONSTANT	HEM not constant
DTAPI_DVBT2_RBM_EVENT_PLP_NUM_BLOCKS_TOO _SMALL	PLP numblocks for this interleaving frame is too small

u.Plot

Structure used for event type DTAPI DVBT2 RBM EVENT PLOT.

u.Plot.m TdiWriteIndex

Write index in time de-interleaver buffer.

u.Plot.m TdiReadIndex

Read index in time de-interleaver buffer.

u.Plot.m TdiReadAvailable

Number of available cells in the time de-interleaver read buffer.

u.Plot.m DjbSize

De-jitter buffer size in number of bits.

u.BufsTooSmall

Structure used for event type DTAPI_DVBT2_RBM_EVENT_BUFS_TOO_SMALL.

u.BufsTooSmall.m Bufs

BUFS value.

u. TtoInThePast

Structure used for event type DTAPI DVBT2 RBM EVENT TTO IN THE PAST.

u.TtoInThePast.m Tto

TTO value from the ISSY-field

u.DjbOverflow

Structure used for event type **DTAPI_DVBT2_RBM_EVENT_DJB_OVERFLOW**.

u.DjbOverflow.m DjbSize

De-jitter buffer size in bits.

u.DjbOverflow.m DjbMaxSize

Maximum de-jitter buffer size in bits.

u.Crc8ErrorHeader

Structure used for event type DTAPI DVBT2 RBM EVENT CRC8 ERROR HEADER.

u.Crc8ErrorHeader.m Val

CRC-8 value from the baseband header.

u.SyncDTooLarge

Structure used for event type DTAPI DVBT2 RBM EVENT DFL TOO LARGE.

u.SyncDTooLarge.m SyncD

SYNCD value from the baseband header.

u.SyncDTooLarge.m Dfl

DFL value from the baseband header.

u. InvalidSyncD

Structure used for event type DTAPI DVBT2 RBM EVENT INVALID SYNCD.

u.InvalidSyncD.m SyncD

SYNCD value from the baseband header.

u.InvalidSyncD.m Left

Number of bits remaining from the last baseband frame.

u. TdiOverflow

Structure used for event type DTAPI DVBT2 RBM EVENT TDI OVERFLOW.

u.TdiOverflow.m TdiWriteIndex

Write index in time de-interleaver buffer.

u.TdiOverflow.m TdiReadIndex

Read index in time de-interleaver buffer.

u.InvalidPlpStart

Structure used for event type DTAPI_DVBT2_RBM_EVENT_TDI_OVERFLOW.

u.InvalidPlpStart.m_Plp1, u.InvalidPlpStart.m_Plp2

IDs of the overlapping PLPs.

u. IscrError

Structure used for event type DTAPI DVBT2 RBM EVENT ISCR ERROR.

u. IscrError.m Delta

Delta time in T-units.

u.BufsNotConstant

Structure used for event type DTAPI DVBT2 RBM EVENT TDI OVERFLOW.

u.BufsNotConstant.m_CurBufs, u.BufsNotConstant.m_NewBufs

Current and new BUFS values

u.PlpNumBlocksTooSmall

Structure used for event type DTAPI DVBT2 RBM EVENT PLP NUM BLOCKS TOO SMALL.

u.PlpNumBlocksTooSmall.m PlpNumBlocks

NUM BLOCKS value for this PLP.

Struct DtDvbT2RbmValidation

Structure for enabling Receiver Buffer Model (RBM) validation, and specifying its parameters. This structure is used in class DtDvbT2ComponentPars.

Members

m Enabled

If true, Receiver Buffer Model (RBM) validation is enabled. When a RBM-violation occurs, the callback function (*m pCallbackFunc) is called and an RBM-event is passed.

Note that RBM-validation consumes a substantial amount of CPU cycles and therefore cannot always be performed in real time.

m PlotEnabled

If true, Receiver Buffer Model (RBM) plotting is enabled. Periodically, the callback function will be called passing a **DTAPI DVBT2 RBM EVENT PLOT** event.

```
m_PlotPeriod
```

Plot period time in T-units.

```
m pCallbackOpaque
```

Opaque pointer that is passed to the callback function.

```
m pCallbackFunc
```

Pointer to the callback function that handles the RBM-events.

Struct DtDvbT2TxSigPars

Structure for enabling and specifying the DVB-T2 transmitter signature. This structure is used in class DtDvbT2ComponentPars.

```
Struct DtDvbT2TxSigPars
  bool m TxSigAuxEnabled;
                            // Enable TX signature through AUX streams
  int m_TxSigAuxId;
                            // Transmitter ID
                            // P-value
  int m TxSigAuxP;
                            // Q-value
  int m TxSigAuxQ;
  int m TxSigAuxR;
                            // R-value
 bool m TxSigFefEnabled;
                            // Enable TX signature through FEF
  int m TxSigFefId1;
                            // Transmitter ID for 1st period
  int m TxSigFefId2;
                            // Transmitter ID for 2<sup>nd</sup> period
```

Members

```
m TxSigAuxEnabled
```

If true, transmitter signature transmission through AUX streams is enabled.

m TxSigAuxId

Transmitter ID. The valid range is 0 ... 3071.

m TxSigAuxP

The total number of possible transmitter IDs (M) is derived from $m_TxSigAuxP$ (P). M = 3 * (P+1). The valid range for $m_TxSigAuxP$ is $0 \dots 1023$.

m TxSigAuxQ

The number of cells used per transmitter (N) is derived from $m_TxSigAuxQ$ (Q).

 $N = 2^Q$. The valid range for m TxSigAuxQ is 0 ... 15.

$m_TxSigAuxR$

The number of T2-frames used per transmitter signature (L) is derived from $m_TxSigAuxR$ (R). L = R+1. The valid range for $m_TxSigAuxR$ is 0 ... 255.

m TxSigFefEnabled

If true, transmitter signature transmission through FEF is enabled. To use this, FEF generation must be enabled and the FEF length must be greater than or equal to <code>DTAPI_TXSIG_FEF_LEN_MIN</code>.

m TxSiaFefId1

Transmitter ID for the first signature period. The valid range is 0 ... 7.

m TxSigFefId2

Transmitter ID for the second signature period. The valid range is 0 ... 7.

DtDvbC2Pars

Class DtDvbC2Pars

Class specifying parameters for DVB-C2 modulation.

```
class DtDvbC2Pars
 // Data-slice parameters
 DtDvbC2DSlicePars  m DSlices[DTAPI DVBC2 NUM DSLICE MAX];
 // Notches
 int m NumNotches;  // Number of notches
 DtDvbC2NotchPars  m Notches[DTAPI DVBC2 NUM NOTCH MAX];
 // Parameters specifying the source for each PLP
 int m NumPlpInputs;  // Number of PLP input streams
 DtPlpInpPars  m PlpInputs[DTAPI DVBC2 NUM PLP MAX];
 // Miscellaneous: PAPR, Virtual output, Test-point output
 DtDvbC2PaprPars m PaprPars;
 DtVirtualOutPars m VirtOutput;
 DtTestPointOutPars m TpOutput;
 // Parameters specifying the generated carriers of one C2-system
 // L1 updates
 std::vector<DtDvbC2L1UpdatePars> m L1Updates;
```

Public members

m Bandwidth

Channel raster of the network.

Value	Meaning
DTAPI_DVBC2_6MHZ	6 MHz
DTAPI_DVBC2_8MHZ	8 MHz

m NetworkId

Network ID. Unique identification of the DVB-C2 network. The valid range is 0 ... 0xFFFF.

m C2SystemId

C2-System ID. Unique identification of a C2-System. The valid range is 0 ... 0xFFFF.

m StartFrequency

Start frequency of the C2-System by means of the distance from 0Hz in multiples of the carrier spacing. The valid range is 0 ... 0xFFFFFF and multiples of D_X . ($D_X=24$ for guard interval 1/128 and $D_X=12$ for guard interval 1/64).

m C2Bandwidth

Bandwidth of the generated signal in multiples of pilot carrier spacing. The valid range is 0 ... 65535.

m GuardInterval

The guard interval between OFDM symbols.

Value	Meaning
DTAPI_DVBC2_GI_1_128	1/128
DTAPI_DVBC2_GI_1_64	1/64

m ReservedTone

If true, indicates one or more reserved tones (carriers) are used. When carriers are reserved (e.g PAPR TR is enabled) it shall be set to true.

m L1TiMode

L1 time interleaving mode.

Value	Meaning
DTAPI_DVBC2_L1TIMODE_NONE	No time interleaving
DTAPI_DVBC2_L1TIMODE_BEST	Best fit
DTAPI_DVBC2_L1TIMODE_4	4 OFDM symbols
DTAPI_DVBC2_L1TIMODE_8	8 OFDM symbols

m NumDSlices

Specifies the number of data slices in the C2-System. The valid range is 1 ... DTAPI DVBC2 NUM DSLICE MAX.

m DSlices

Array specifying the DVB-C2 parameters for the data slices.

m NumNotches

Specifies the number of notch bands in the C2-System. The valid range is 0 ... DTAPI DVBC2 NUM NOTCH MAX.

m Notches

Array specifying the notch bands in the C2-System.

m NumPlpInputs

Specifies the number of PLP inputs in the C2-System. The valid range is 1 ... DTAPI DVBC2 NUM PLP MAX.

m PlpInputs

Array specifying the PLP input streams. The index in the array is related to the index of a PLP in the C2 System (i.e. the first DtPlpInpPars in the array is related to the first PLP in the C2 System, which is the first PLP in the first data slice).

Note that PLPs in empty data slices are not taken into account and in case of bundled PLPs only the first PLP occurrence is taken into account.

- m PaprPars
 - Specifies the PAPR reduction parameters.
- m VirtOutput

In case of a virtual output m VirtOutput specifies the virtual output data parameters.

m TpOutput

In case of a virtual output m VirtOutput specifies the virtual output data parameters.

 ${\it m}$ OutpFreqOffset

Output frequency offset from $m_StartFrequency$ (in carriers) of the generated spectrum. Must be a multiple of the carrier spacing ($D_X=24$ for guard interval 1/128 and $D_X=12$ for guard interval 1/64). $m_OutpFreqOffset$ in combination with $m_OutpBandwidth$ can be used to output a part of carriers of one C2-system.

m OutpBandwidth

Output bandwidth (in carriers). 0 selects the default output bandwidth. Must be a multiple of the carrier spacing ($D_x=24$ for guard interval 1/128 and $D_x=12$ for guard interval 1/64).

m L1Updates

A series of L1 signalling part2 parameters updates. The first update is applied immediately. After the last update is applied, it loops to the first one.

Remarks

This class is used both for the initialization of the multi-PLP modulator and the traditional single-PLP DVB-C2 modulator. The DtOutpChannel::SetModControl() method sets the parameters for the single-PLP DVB-C2 modulator. Thereafter DtOutpChannel::Write method is used to write the data to the output channel.

The DtmplpOutpChannel::SetModControl() method sets the parameters for the multi-PLP DVB-C2 modulator. The multi-PLP modulator can be used for both single-PLP and multi-PLP parameter sets. The DtmplpOutpChannel::WriteMplp method is used to write data to the output channel.

DtDvbC2Pars::CheckValidity

Check DVB-C2 parameters for validity.

DTAPI_RESULT DtDvbC2Pars::CheckValidity(void);

Parameters

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Parameters are valid
DTAPI_E_BROADBAND_NOTCH	Broadband notch cannot be inside a data slice
DTAPI_E_DSLICE_OFFSETS	Invalid data slice offset
DTAPI_E_DSLICE_OVERLAP	Data slices cannot overlap
DTAPI_E_DSLICE_T1_NDP	Null-packet deletion not allowed for type1 data slices
DTAPI_E_DSLICE_T1_TSRATE	TS-rate/ISSY combination not possible for type1 data slice
DTAPI_E_DSLICE_TUNE_POS	Invalid data slice tune position
DTAPI_E_INVALID_PARS	Invalid parameter value (generic error)
DTAPI_E_INVALID_RATE	PLP TS-rate is too high
DTAPI_E_INVALID_START_FREQ	Invalid start frequency
DTAPI_E_NO_TSRATE	PLP TS-rate is not specified
DTAPI_E_NOTCH_OFFSETS	Invalid notch
DTAPI_E_L1_PART2_TOO_LONG	L1 part 2 data is too long
DTAPI_E_PLP_BUNDLED	Inconsistent PLP bundled parameters
DTAPI_E_PLP_ID	Duplicate PLP IDs

DtDvbC2Pars::GetParamInfo

Get the DVB-C2 "derived" parameters.

```
DTAPI_RESULT DtDvbC2Pars::GetParamInfo(
  [out] DtDvbC2ParamInfo& ParamInfo // DVB-C2 derived information
);
```

Parameters

ParamInfo

Output parameter that receives the DVB-C2 "derived" parameters.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Parameters are valid
	Error in modulation parameters, please refer to DtDvbC2Pars::CheckValidity

DtDvbT2ComponentPars

DtDvbT2ComponentPars

Class describing the modulation parameters for one DVB-T2 component (e.g. base or lite).

```
class DtDvbT2ComponentPars
int m ComponentStartTime; // Offset (T) at which the component starts
 int m_RfChanFreqs[DTAPI_DVBT2_NUM_RF_MAX];
 // Array of RF channel frequencies
int m_StartRfIdx; // First used RF channel
int m_NumPlps; // Number of PLPs
 DtDvbT2PlpPars  m Plps[DTAPI DVBT2 NUM PLP MAX];
                       // Array of PLP parameters
 DtPlpInpPars m PlpInputs[DTAPI_DVBT2_NUM_PLP_MAX];
 DtDvbT2PaprPars  m PaprPars;// PAPR reduction parameters
 DtDvbT2TxSigPars m TxSignature;
                        // Transmitter signature parameters
 DtDvbT2RbmValidation m RbmValidation;
                        // Receiver Buffer Model validation
 DtTestPointOutPars m TpOutput;
                       // Test point data output parameters
```


Public members

$m_{T2Version}$

DVB-T2 specification version.

Value	Meaning
DTAPI_DVBT2_VERSION_1_1_1	Version 1.1.1
DTAPI_DVBT2_VERSION_1_2_1	Version 1.2.1
DTAPI_DVBT2_VERSION_1_3_1	Version 1.3.1

$m_T2Profile$

DVB-T2 profile.

Value	Meaning
DTAPI_DVBT2_PROFILE_BASE	Base profile
DTAPI_DVBT2_PROFILE_LITE	Lite profile (Requires DVB-T2 version 1.3.1)

m T2BaseLite

If true, T2 lite is used in a base profile component.

m Bandwidth

The bandwidth of the channel.

Value	Meaning
DTAPI_DVBT2_1_7MHZ	1.7 MHz
DTAPI_DVBT2_5MHZ	5 MHz
DTAPI_DVBT2_6MHZ	6 MHz
DTAPI_DVBT2_7MHZ	7 MHz
DTAPI_DVBT2_8MHZ	8 MHz
DTAPI_DVBT2_10MHZ	10 MHz

m FftMode

The FFT size used for computing OFDM symbols.

Value	Meaning
DTAPI_DVBT2_FFT_1K	1K FFT
DTAPI_DVBT2_FFT_2K	2K FFT
DTAPI_DVBT2_FFT_4K	4K FFT
DTAPI_DVBT2_FFT_8K	8K FFT
DTAPI_DVBT2_FFT_16K	16K FFT
DTAPI_DVBT2_FFT_32K	32K FFT

m Miso

MISO mode. This mode can be used to simulate antenna 1 (TX1), antenna 2 (TX2) or the average of antenna 1 and antenna 2 (TX1+TX2) to simulate reception halfway between the antennas.

Value	Meaning
DTAPI_DVBT2_MISO_OFF	No MISO
DTAPI_DVBT2_MISO_TX1	TX1 only
DTAPI_DVBT2_MISO_TX2	TX2 only
DTAPI_DVBT2_MISO_SUM	TX1+ TX2 through one output channel
DTAPI_DVBT2_MISO_BOTH	Both TX1 and TX2 through two output channels

$m_GuardInterval$

The guard interval between OFDM symbols.

Value	Meaning
DTAPI_DVBT2_GI_1_128	1/128
DTAPI_DVBT2_GI_1_32	1/32
DTAPI_DVBT2_GI_1_16	1/16
DTAPI_DVBT2_GI_19_256	19/256
DTAPI_DVBT2_GI_1_8	1/8
DTAPI_DVBT2_GI_19_128	19/128
DTAPI_DVBT2_GI_1_4	1/4

m Papr

The peak to average power reduction method. This is used to fill PAPR field in the L1-post signalling block.

Value	Meaning
DTAPI_DVBT2_PAPR_NONE	None
DTAPI_DVBT2_PAPR_ACE	ACE - Active Constellation Extension
DTAPI_DVBT2_PAPR_TR	TR - Power reduction with reserved carriers
DTAPI_DVBT2_PAPR_ACE_TR	ACE and TR

m BwtExt

If true, the extended carrier mode is used.

m PilotPattern

The Pilot Pattern used.

Value	Meaning
DTAPI_DVBT2_PP_1	PP1
DTAPI_DVBT2_PP_2	PP2
DTAPI_DVBT2_PP_3	PP3
DTAPI_DVBT2_PP_4	PP4
DTAPI_DVBT2_PP_5	PP5

DTAPI_DVBT2_PP_6	PP6
DTAPI_DVBT2_PP_7	PP7
DTAPI_DVBT2_PP_8	PP8

m L1Modulation

The modulation type used for the L1-post signalling block.

Value	Meaning
DTAPI_DVBT2_BPSK	BPSK
DTAPI_DVBT2_QPSK	QPSK
DTAPI_DVBT2_QAM16	16-QAM
DTAPI_DVBT2_QAM64	64-QAM

m CellId

Cell ID. Unique identification of a geographic cell in a DVB-T2 network. The valid range is 0 ... 0xFFFF.

m NetworkId

Network ID. Unique identification of the DVB-T2 network. The valid range is 0 ... 0xFFFF.

m T2SystemId

T2 system ID. Unique identification of the T2 system. The valid range is 0 ... 0xFFFF.

m L1Repetition

If true, L1 signalling is provided for the next frame.

m NumT2Frames

The number of T2 frames in a super frame. The valid range is 1 ... 255.

m NumDataSyms

The number of data OFDM symbols per T2 frame, excluding P1 and P2.

m NumSubslices

The number of subslices per T2-frame for type-2 PLPs.

m ComponentStartTime

Specifies the offset in number of T-units at which the T2 component starts. Note: it should be set to 0 for the first component.

m FefEnable

If true, FEFs (Future Extension Frames) are inserted.

m FefType

Specifies the FEF type. The valid range is 0 ... 15.

m FefS1

The S1-field value in the P1 signalling data. Valid values: 2, 3, 4, 5, 6 and 7.

m FefS2

The S2-field value in the P1 signalling data. Valid values: 1, 3, 5, 7, 9, 11, 13 and 15.

m FefLength

The length of a FEF-part in number of T-units (= samples). For the base profile the valid range is 0 ... 0x3FFFFF, for the lite profile the valid range is 0 ... 0xFFFFFF.

m FefInterval

The number of T2 frames between two FEF parts. The valid range is 1 ... 255 and m NumT2Frames shall be divisible by m FefInterval.

m FefSignal

The type of signal generated during the FEF period.

Value	Meaning
DTAPI_DVBT2_FEF_ZERO	Zero I/Q samples
DTAPI_DVBT2_FEF_1K_OFDM	1K OFDM symbols with 852 active carriers containing BPSK symbols
DTAPI_DVBT2_FEF_1K_OFDM_384	1K OFDM symbols with 384 active carriers containing BPSK symbols

m NumRfChans

The number of frequencies in the T2 system. The valid range is 1 ... DTAPI DVBT2 NUM RF MAX.

m RfChanFreqs

Array specifying the center frequencies of the RF channels. This is only used to fill the L1-post FREQUENCY fields. The valid range is 1 ... 0xFFFFFFF.

m NumPlps

Specifies the number of physical layer pipes in the T2 system. The valid range is 1 ... **DTAPI_DVBT2_NUM_PLP_MAX**. Must be set to '1' in case not using the Multi-PLP modulator

m Plps

Array specifying the DVB-T2 modulation parameters for the PLPs.

m PlpInputs

Array specifying the PLP input streams. This is only used in case of using the Multi-PLP modulator. Default the FIFO index and PLP index maps 1:1 and "Big-TS splitting" is disabled.

m Aux

Specifies the AUX stream parameters.

By default, the generation of AUX streams is disabled.

m PaprPars

Specifies the PAPR reduction parameters.

By default, PAPR reduction is disabled.

m TxSignature

Specifies the transmission of the DVB-T2 transmitter signature.

By default, the transmission of a transmitter signature is disabled.

m RbmValidation

Specifies the Receiver Buffer Model validation. This can only be used with the Multi-PLP modulator

By default, RBM-validation is disabled.

DTAPI – DVB-C2/T2 Multi-PLP Extensions Reference Manual

m_TpOutput

Specifies the generation of test point data.

DtDvbT2Pars

DtDvbT2Pars

Class describing parameters for DVB-T2 modulation, it describes the modulation parameters of a DVB-T2 component and optionally the parameters of a second component (e.g. base and a lite profile). The class DtDvbT2ComponentPars describes the component parameters.

Inherited Public members

The public members inherited from **DtDvbT2ComponentPars** describe the modulation parameters for the first DVB-T2 component; see description of **class DtDvbT2ComponentPars**.

Public members

m NumFefComponents

The number of DVB-T2 components transmitted in the FEF part of the first DVB-T2 component. The parameters for these DVB-T2 components are specified in $m_FefComponent$. The valid range is 0 ... 1.

m FefComponent

Array specifying the DVB-T2 modulation parameters for the DVB-T2 components transmitted in the FEF part of the first DVB-T2 component.

m VirtOutput

When the output channel has been attached to a virtual output, <u>m_VirtOutput</u> specifies the virtual output data parameters. This can only be used with the Multi-PLP modulator. By default, the virtual output parameters are disabled.

m T2Mi

Specifies the parameters for generation of T2-MI. This can only be used with the Multi-PLP modulator.

By default, the output of T2-MI is disabled.

Remarks

This class is used both for the initialization of the multi-PLP modulator and the traditional single-PLP DVB-T2 modulator. The <code>DtOutpChannel::SetModControl()</code> method sets the parameters for the single-PLP DVB-T2 modulator. Thereafter <code>DtOutpChannel::Write</code> method is used to write the data to the output channel.

The DtMplpOutpChannel::SetModControl() method sets the parameters for the multi-PLP DVB-T2 modulator. The multi-PLP modulator can be used for both single-PLP and multi-PLP parameter sets. The DtMplpOutpChannel::WriteMplp method is used to write data to the output channel.

DtDvbT2Pars::CheckValidity

Check DVB-T2 parameters for validity.

DTAPI RESULT DtDvbT2Pars::CheckValidity(void);

Parameters

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Parameters are valid
DTAPI_E_BIAS_BAL_CELLS	Invalid number of bias balancing cells
DTAPI_E_BUFS	Invalid BUFS values
DTAPI_E_COMMON_PLP_COUNT	More than one common PLP per group ID
DTAPI_E_COMP_OVERLAP	The fames of two components (lite and base profile) overlap.
DTAPI_E_FEF	Error in FEF parameters
DTAPI_E_FIXED_CELL_PARS	Invalid fixed cell parameters
DTAPI_E_FRAME_INTERVAL	Frame interval must divide number of T2 frames
DTAPI_E_INVALID_BWT_EXT	Invalid bandwidth extension
DTAPI_E_INVALID_FFTMODE	Invalid FFT mode
DTAPI_E_INVALID_GUARD	Invalid guard interval
DTAPI_E_INVALID_NUMDTSYM	Invalid number of data symbols
DTAPI_E_INVALID_NUMT2FRM	Invalid number of T2 frames
DTAPI_E_INVALID_PARS	Invalid parameter value (generic error)
DTAPI_E_INVALID_TIME_IL	Invalid time interleaver length
DTAPI_E_MULTI_COMPS	Invalid mix of parameters in multi component configuration
DTAPI_E_NO_TSRATE	PLP TS-rate is not specified
DTAPI_E_NUM_PLP	Too many PLPs (i.e. L1 data too large)
DTAPI_E_OTHER_PLP_IN_BAND	Invalid PLP ID in m_OtherPlpInBand array
DTAPI_E_PILOT_PATTERN	Pilot pattern not allowed in combination with other parameters
DTAPI_E_PLP_ID	Duplicate PLP IDs
DTAPI_E_PLP_NUM_BLOCKS	Invalid number of PLP blocks (not enough bandwidth)
DTAPI_E_SUBSLICES	Number of subslices and/or TIME_IL_LENGTH does not give an integer number of cells per subslice
DTAPI_E_T2_LITE	Invalid T2 lite profile parameters
DTAPI_E_TI_MEM_OVF	Too many cells in time interleaver

DtDvbT2Pars::GetParamInfo

Get the DVB-T2 "derived" parameters.

```
DTAPI_RESULT DtDvbT2Pars::GetParamInfo(
  [out] DtDvbT2ParamInfo& ParamInfo // (First) T2-component information
);
DTAPI_RESULT DtDvbT2Pars::GetParamInfo(
  [out] DtDvbT2ParamInfo& ParamInfo1, // First T2-component information
  [out] DtDvbT2ParamInfo& ParamInfo2 // Second T2-component information
);
```

Parameters

ParamInfo, ParamInfo1

Output parameter that receives the DVB-T2 "derived" parameters of the first component.

ParamInfo2

Output parameter that receives the DVB-T2 "derived" parameters of the second component.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Parameters are valid
Other result values	Error in modulation parameters, please refer to DtDvbT2Pars::CheckValidity

DtDvbT2Pars::OptimisePlpNumBlocks

Compute the optimum value of DVB-T2 parameters to maximise the DVB-T2 channel's bitrate and compute the achieved efficiency.

Parameters

ParamInfo

Output parameter that receives the DVB-T2 "derived" parameters based on the optimum parameter values.

OptPlpNumBlocks

Output parameter that is set to the optimum value for the number of FEC blocks per IL frame for PLPO to maximise the DVB-T2 channel's bitrate.

OptNumDataSyms

Output parameter that is set to the optimum value for the number of data OFDM symbols per T2 frame to maximise the DVB-T2 channel's bitrate.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Parameters are valid
	Error in modulation parameters, please refer to DtDvbT2Pars::CheckValidity

Remarks

These methods can only be used in case of a single PLP (member variable m NumPlps equals 1).

Callback Functions

DtTpWriteDataFunc

User-supplied callback function used for the processing of test-point data. The data can be written to a file, or processed otherwise.

Parameters

p0paque

The opaque pointer that was specified in DtTestPointOutPars.

TpIndex

Specifies the test point.

For DVB-C2 the following test points are defined:

Value	Meaning
DTAPI_DVBC2_TPnn	DVB-C2 test point nn

Where nn is: 07, 08, 10, 13, 15, 18, 20, 22, 26, 27, 31, 32, 33, 37, 40, 41 and 42.

For DVB-T2 the following test points are defined:

Value	Meaning
DTAPI_DVBT2_TPnn	DVB-T2 test point nn

Where nn is: 03, 04, 06, 08, 09, 11, 12, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 50, 51 and 53.

StreamIndex

Identifies the stream. For DVB-C2 bits 0..7 specify the PLP-ID and bits 8..15 specify the data slice I. For DVB-T2 bits 0..7 specify the PLP-index and bit 8 is set when the PLP-type is a common PLP.

pBuffer

Pointer to a buffer containing the test point data.

Length

Number of test points data items available in buffer.

Format

The data format of the test-point data items.

Value	Meaning
DTAPI_TP_FORMAT_HEX	Byte data
DTAPI_TP_FORMAT_BIT	Bit data. Eight bits are packaged per byte, most significant bit first
DTAPI_TP_FORMAT_CFLOAT32	Complex 32-bit floating-point data of type DtComplexFloat
DTAPI_TP_FORMAT_INT64	64-bit integer data

Mult

Multiplication factor for the complex floating point data.

IsNewFrame

If true, the test point data relates to a new frame.

Global Functions

::DtapiModPars2TsRate

Compute Transport-Stream rate from modulation parameters. There are two new overloads one for DVB-C2 and one for DVB-T2 modulation type.

Parameters

TsRate

The Transport-Stream rate in bps computed from the modulation parameters.

C2Pars

DVB-C2 modulation parameters; see description of class DtDvbC2Pars.

T2Pars

DVB-T2 modulation parameters; see description of class DtDvbT2Pars.

PlpIdx

The index of the PLP for which the Transport-Stream rate is computed.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	The TS rate has been computed from the modulation parameters successfully
Other result values	Error in modulation parameters, please refer to DtDvbC2Pars::CheckValidity and DtDvbT2Pars::CheckValidity

DtMplpOutpChannel

DtMplpOutpChannel

Class representing a multi-PLP modulator for modulation of DVB-C2 and DVB-T2 signals. Class <code>DtMplpOutpChannel</code> is derived from <code>DtOutpChannel</code>. For the inherited methods, please refer to the <code>DTAPI</code> documentation.

class DtMplpOutpChannel : public DtOutpChannel;

DtMplpOutpChannel::AttachVirtual

Attach the output-channel object to a virtual output using the licenses of a particular device. A virtual output lets the user pass the output data to the specified callback function, instead of DTAPI writing the data to a physical output.

Parameters

pDtDvc

Pointer to the object that represents a DekTec device. The **DtDevice** object must be attached to the device hardware. The device is used only for reading licenses.

pFunc

Pointer to the callback function that will handle the generated output data. When the virtual-output calls this function the opaque pointer and a pointer to a <code>DtVirtualOutData</code> struct describing the output data are passed. To prevent hanging of the application, the callback function is not allowed to block. In case the callback function has to wait for a certain condition, it can return the Boolean value false. After a few milliseconds the virtual-output will call this function again with the same parameters and will repeat this until the callback function returns the Boolean value true.

p0paque

Opaque pointer that is passed to the callback function.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Channel object has been attached successfully
DTAPI_E_ATTACHED	The channel object is already attached a hardware function
DTAPI_E_DEVICE	The DtDevice pointer is not valid or the DtDevice object is not attached to the device hardware
DTAPI_E_INVALID_ARG	The value of one of the parameters is invalid

Remarks

The intended usage for this method is to allow the user to output the multi-PLP modulator result to file or to a specific device. The licenses are taken from the DekTec device.

DtMplpOutpChannel::GetMplpFifoFree

Get the number of free bytes in the specified multi-PLP modulator FIFO.

Parameters

FifoIndex

Specifies the FIFO index.

FifoFree

Free space in the specified multi-PLP modulator FIFO, in number of bytes.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	FIFO free has been retrieved successfully
DTAPI_E_NOT_ATTACHED	Channel object is not attached

Remarks

If a Data transfer is in progress and/or the transmit-control state is **DTAPI_TXCTRL_HOLD** or **DTAPI TXCTRL SEND**, then every call to **GetMplpFifoFree** may return a different value.

DtMplpOutpChannel::GetMplpFifoSize

Get the current size of the multi-PLP modulator FIFO.

Parameters

FifoIndex

Specifies the FIFO index.

FifoSize

Size of the multi-PLP modulator FIFO in number of bytes.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	FIFO size has been retrieved successfully
DTAPI_E_NOT_ATTACHED	Channel object is not attached to a hardware function

Remarks

The size of the multi-PLP modulator FIFOs is fixed, it cannot be changed.

DtMplpOutpChannel::GetMplpModStatus

Get the status of the multi-PLP modulator. There are overloads for DVB-C2 and for DVB-T2.

Parameters

pDvbC2ModStat

DVB-C2 modulator status; see description of struct DtDvbC2ModStatus.

pDvbT2ModStat, pDvbT2ModStat1

DVB-T2 modulator status for the first component; see description of struct DtDvbT2ModStatus.

pDvbT2ModStat2

DVB-T2 modulator status for the second component; see description of struct DtDvbT2ModStatus.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	The status of the MPLP modulator has been retrieved successfully
DTAPI_E_IDLE	Not allowed when in IDLE state
DTAPI_E_NOT_ATTACHED	Channel object is not attached to a hardware function
DTAPI_E_NOT_SUPPORTED	The currently active modulator does not support the request

Remarks

DtMplpOutpChannel::SetMplpChannelModelling

Set channel-modelling parameters. This function may only be called when using the multi-PLP modulator while the transmit-control state is **DTAPI_TXCTRL_IDLE**.

Parameters

CmEnable

Enable channel modelling. This parameter provides an easy way to turn off channel modelling entirely for the specified output channel.

CmPars

Channel-modelling parameters. See description of struct DtCmPars in "C++ API for DekTec Devices"

ChanneIdx

Index of the output channel (e.g. to specify the channel modelling parameters for the individual transmitters in case of MISO).

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Channel-modelling parameters have been applied successfully
DTAPI_E_CM_NUMPATHS	The number of paths specified in CmPars exceeds the maximum number of paths
DTAPI_E_NOT_ATTACHED	Channel object is not attached to a hardware function
DTAPI_E_NOT_SUPPORTED	The channel has no license for channel-modelling, or channel modelling is not supported for this type of channel

Remarks

DtMplpOutpChannel::SetModControl

Set modulation-control parameters for modulator channels. There are two overloads defined for the multi-PLP modulator output: one for DVB-C2 and one for DVB-T2.

Parameters

DvbC2Pars

DVB-C2 modulation parameters; see description of class DtDvbC2Pars.

DvbT2Pars

DVB-T2 modulation parameters; see description of class DtDvbT2Pars.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	The modulation parameters have been set successfully
DTAPI_E_DEV_DRIVER	Unclassified failure in device driver
DTAPI_E_IDLE	Transmit-control state is not DTAPI_TXCTRL_IDLE; The requested modulation parameters can only be set in idle state
DTAPI_E_NOT_ATTACHED	Channel object is not attached to a hardware function
DTAPI_E_NOT_SUPPORTED	The output channel does not support the specified modulation type

Remarks

DtMplpOutpChannel::WriteMplp

Write data to a multi-PLP modulator FIFO.

Parameters

FifoIndex

Specifies the FIFO index.

pBuffer

Pointer to the buffer containing the data to be written to the multi-PLP modulator FIFO. The pointer must be aligned to a 32-bit word boundary.

NumBytesToWrite

Number of bytes to be to be written to the multi-PLP modulator FIFO. The buffer size must be positive and a multiple of four.

Result

DTAPI_RESULT	Meaning
DTAPI_OK	Write operation has been completed successfully
DTAPI_E_INVALID_BUF	The buffer is not aligned to a 32-bit word boundary
DTAPI_E_INVALID_FIFO_IDX	Invalid FIFO index. FIFO index has not been specified in DtMplpOutpChannel::SetModControl parameters
DTAPI_E_INVALID_SIZE	The specified transfer size is negative or not a multiple of four
DTAPI_E_IDLE	Cannot write data because transmission-control state is DTAPI_TXCTRL_IDLE
DTAPI_E_NOT_ATTACHED	Channel object is not attached to a hardware function

Remarks

The data buffer can be any buffer in user space that is aligned to a 4-byte boundary. The data is only written when the transmit-control state is **DTAPI_TXCTRL_HOLD** or **DTAPI_TXCTRL_SEND** (see SetTxControl), and sufficient space is available in the FIFO. **WriteMplp** returns when all data has been transferred to the multi-PLP modulator FIFO.

The data from a multi-PLP modulator FIFO is only transferred to the modulator when all other multi-PLP modulator FIFOs have data to contribute. For this reason the thread executing **WriteMplp** will sleep forever if NumBytesToWrite is greater than the number of free bytes in the MPLP FIFO and one of the other MPLP FIFOs is empty.