Docket No.: KCC-15,171

At page 18, lines 3-13:

the The flap elastic members 53, the waist elastic members 54 and 56, and the leg elastic members 58 can be formed of any suitable elastic material. As is well known to those skilled in the art, suitable elastic materials include sheets, strands or ribbons of natural rubber, synthetic rubber, or thermoplastic elastomeric polymers. The elastic materials can be stretched and adhered to a substrate, adhered to a gathered substrate, or adhered to a substrate and then elasticized or shrunk, for example with the application of heat; such that elastic constrictive forces are imparted to the substrate. In one particular embodiment, for example, the leg elastic members 58 include a plurality of dry-spun coalesced multifilament spandex elastomeric threads sold under the trade name LYCRA and available from E.I. DuPont de Nemours and Company, Wilmington, Delaware, U.S.A.

At page 20, line 18 – page 21, line 10:

The outer cover 40 can, alternatively, include breathable microporous films and laminates made out of biodegradable polymers, made using techniques known in the art. Biodegradable films may also possess properties required in flushable materials. Examples of suitable film-forming biodegradable matrix polymers include, without limitation, polylactic acid polymers (especially homopolymers); polyesters of butanediol, adipic acid, succinic acid and/or terephthalic acid; polycaprolactone polymers; and combinations thereof. An especially suitable polymer is a terpolymer of terephthalic acid, adipic acid and 1,4-butanediol, sold by BASF Corporation under the name ECOFLEX. Filler particles used to make breathable, microporous, biodegradable films may desirably be biodegradable filler particles. Suitable biodegradable filler particles include cyclodextrin. The term "cyclodextrin" includes cyclodextrin compounds and their derivatives which retain the cyclodextrin ring-like structure in all or part of their molecular configurations. M

BZ

KCC-2080 2 JAM/S

Docket No.: KCC-15,171

Me The bodyside liner 42 can be manufactured from a wide selection of web materials, such as synthetic fibers (for example, polyester or polypropylene fibers), natural fibers (for example, wood or cotton fibers), a combination of natural and synthetic fibers, porous foams, reticulated foams, apertured plastic films, or the like. Various woven and nonwoven fabrics can be used for the bodyside liner 42. For example, the bodyside liner can be composed of a meltblown or spunbonded web of polyolefin fibers. The bodyside liner can also be a bonded-carded web composed of natural and/or synthetic fibers. The bodyside liner can be composed of a substantially hydrophobic material, and the hydrophobic material can, optionally, be treated with a surfactant or otherwise processed to impart a desired level of wettability and For example, the material can be surface treated with about hydrophilicity. 0.45 weight percent of a surfactant mixture including AHCOVEL N-62 surfactant from Uniqema, Inc., a division of ICI of New Castle, Delaware, and GLUCOPON 220UP surfactant from Cognis Corp. of Ambler, Pennsylvania, in an active ratio of 3:1. The surfactant can be applied by any conventional means, such as spraying, printing, brush coating or the like. The surfactant can be applied to the entire bodyside liner 42 or can be selectively applied to particular sections of the bodyside liner, such as the medial section along the longitudinal centerline.

A suitable liquid permeable bodyside liner 42 is a nonwoven bicomponent web having a basis weight of about 27 gsm. The nonwoven bicomponent can be a spunbond bicomponent web, or a bonded carded bicomponent web. Suitable bicomponent staple fibers include a polyethylene/polypropylene bicomponent fiber available from Chisso Corporation, Osaka, Japan. In this particular bicomponent fiber, the polypropylene forms the core and the polyethylene forms the sheath of the fiber. Other fiber orientations are possible, such as multi-lobe, side-by-side, end-to-end, or the like. While the outer cover 40 and bodyside liner 42 can include elastomeric materials, it can be desirable in some embodiments for the composite structure to be generally inelastic, where the outer cover, the bodyside liner and the absorbent assembly include materials that are generally not elastomeric.

Alternatively, the body side liner 42 can include a urine-insoluble, water-soluble material, thereby rendering the body side liner 42 flushable. One

B3

Serial No. 09/784,292

example of such a material is a temperature-dependent, urine-insoluble, water-soluble material as described in U.S. Patent No. 5,509,913 issued to Richard Yeo, incorporated herein by reference. The material can suitably include any of the following polymers: polyvinyl methyl ether, polyethyl oxazoline, polyvinyl pyrrolidone, hydroxypropyl cellulose, and polyvinyl alcohol having a percent hydrolysis of less than about 75%. A preferred polymer is polyvinyl alcohol, available under the trade name GOHSENOL from Nippon Synthetic Chemical Industry Co., Ltd., of Osaka, Japan, with suitable grades including KZ-06, LL-02, and KH-17. Any of these polymers can be used in combination with a sulfate, citrate, phosphate, or chromate salt anion to make the polymer insoluble in body fluids above 25 degrees Celsius but soluble in tap water below 25 degrees Celsius. Thus, when the garment 20 is worn the garment remains intact, but when the chassis 32 is flushed down a toilet, the urine-insoluble, water-soluble material dissipates. This solubility temperature can be adjusted chemically.

Docket No.: KCC-15,171

At page 27, lines 10-17:

For In the case of a discontinuous coating of the barrier material, the spaces between the coating spots must be close enough that water is precluded by capillary forces from flowing between the spots out of the underlying substrate. Desirably, the barrier coating is a polyalphaolefin having a melt viscosity of about 400 to about 10,000 cps at 190 degrees Celsius. Suitable polymers include, but are not limited to, low molecular weight, amorphous ethylene-propylene copolymers. Particularly suitable polymers are manufactured by the U.S. Rexene Company under the tradename REXTAC.

At page 31, lines 6 - 13:

All an alternative embodiment of the invention, the side panels 34 can include a wipe material, or material that renders the side panels 34 suitable for use as wipes. Thus, when a care giver changes a wearer's disposable absorbent garment, the side panels 34 can be used as wipes rather than requiring a separate package of wipes. In yet another alternative embodiment of the invention, shown in Fig. 8, the side panels 34 can each include at least one tearable, non-refastenable seam 100 running

B3

B5