Robotics Dojo: To drive robotics research in Kenya

Dr. Shohei Aoki

Jomo Kenyatta University of Agriculture and Technology (JKUAT)

Nakuja Project (nakujaproject.com)

Jibebe (jibebe-jkuat.github.io)

Robotics Dojo (<u>roboticsdojo.github.io</u>)

Drone group(<u>drone.jkuat.ac.ke</u>)

Nakuja project

Solid propulsion team

- Develop solid rocket motor
 - Grain, casing, nozzle, bulkhead
- Static test
 - Fire the motor on the ground
 - Measure the thrust curve

Recovery team

- Flight computer (sensor)
- Ejection mechanism
- Telemetry
- Payload (camera)

Airframe team

- Design and fabrication
 - Nose cone
 - Body tube
 - Fin
 - Launchpad
- Simulation
 - OpenRocket
 - CFD
- Material testing
 - Tensile test

Liquid propulsion team

2022 Final projects

2023 2024 Attachment + Final projects Attachment + Final project

- · Water test
- Integration of subsystems injector, ignitor, chamber, test stand

Combustion Chamber

Pintle injector

Ignitor

Movie

Jibebe

Development of Electric Vehicle (EV)

E-tricycle (Collaboration with **APDK**)

E-tractor

Robotics Dojo

- Encourage robotics research in JKUAT
- Train students on robotics
- Organize robotics competition

Competition 2022

First trainees in 2022 (JKUAT/PAUSTI)

Competition 2023

Let's design Robotics Competition in JKUAT

- Start from scratch
 - No experience to organize competition
- Criteria
 - Feasibility (cost and complexity)
 - Gameplay (= Fun to watch)
 - Educational aspect (learn robotics skills)
- Benchmarked several robotics competitions

ASABE Robotics Student Design Competition

ASABE: American Society of Agricultural and Biological Engineers

- Agricultural robot can be sales point of JKUAT
- Majority of the feedback: Not fun
 - Gameplay is important to attract audience

Kosen ROBOCON since 1988

- Most popular in Japan (nationwide TV broadcast)
- Too much complicated for beginners
 - Cost and team capacity are beyond the scope

ET Robocon

- Focuses on **software** programming
 - Ordinary competition focuses on hardware
 - No time to refine software

Preliminary design of Dojo competition

Referring to ET Robocon, incorporate multiple tasks

Tasks proposed by students

- Line tracer
- Computer vision (e.g., segmentation)
- Manipulation by robotic arm
- Obstacle avoidance

- Hybrid control of manual/autonomous?
 - Manual: movement between challenges
 - Autonomous: each challenge

The first idea of Gamefield

The control is fully autonomous

OpenCV implementation

Use computer vision to detect the object color (e.g. OpenCV)

Typical hardware architecture

Reference implementation

- 1. Detect the location of the targets {r: 1, g: 5, b: 7, y: 3}
- 2. Detect the carrying path $\{r: \swarrow, g: \nwarrow, b: \nwarrow, y: \rightarrow \searrow\}$
- 3. Generate the path between neighbors $\{[0,1], '\rightarrow'\}, \{[0,3], '\downarrow'\}$ $\{[1,2], '\rightarrow'\}, \{[1,4], '\downarrow'\}, \{[1,0], '\leftarrow'\}$

$$\{[2,5], '\downarrow'\}, \{[2,1], '\leftarrow'\}$$

 $\{[3,4], '\rightarrow'\}, \{[3,6], '\downarrow'\}, \{[3,0], '\uparrow'\}$

$$\{[4,5], '\rightarrow'\}, \{[4,7], '\downarrow'\}, \{[4,1], '\uparrow'\}, \{[4,3], '\leftarrow'\} \Rightarrow [0, \mathbf{1}, \checkmark + back, 2, \mathbf{5}, \nwarrow + back, \{[5,2], '\uparrow'\}, \{[5,4], '\leftarrow'\}, \{[5,8], '\downarrow'\}$$

$$\{[6,7], \rightarrow'\}, \{[6,3], \uparrow\uparrow'\},\$$

$$\{[7,8], '\rightarrow'\}, \{[7,4], '\uparrow'\}, \{[7,6], '\leftarrow'\}$$

- 4. Decide the order to carry the targets $\{r \rightarrow q \rightarrow b \rightarrow y\}$
- 5. Generate the paths to pass the targets [0, r, g, b, y, 0] ⇒ [0, **1, 5, 7, 3,** 0]
- \Rightarrow [0, **1**, 2, **5**, 8, **7**, 6, **3**, 0]

6. Generate path by expanding the path between neighbors

$$[0, 1, \checkmark b, 2, 5, \checkmark b, 8, 7, \checkmark b, 6, 3, \rightarrow \checkmark b, 0]$$

$$\Rightarrow [0,\rightarrow, \checkmark b,\rightarrow,\downarrow,\nwarrow b,\downarrow,\leftarrow,\nwarrow b,\leftarrow,\uparrow,\rightarrow \searrow b,\uparrow,0]$$

7. Complete the movement

$$[0(\downarrow), \rightarrow, \swarrow b, \rightarrow, \downarrow, \nwarrow b, \downarrow, \leftarrow, \nwarrow b, \leftarrow, \uparrow, \rightarrow \searrow b, \uparrow, 0]$$

⇒[L90F, R135F, B, L135F, R90F, R135F, B, L135F, R90F, R45F, B, L45F, R90F, R90F, R45F, B, L45B, L90F]

0: forward (F)

1: turn-right-45deg and forward (R45F)

2: turn-right-90deg and forward (R90F)

3: turn-right-135deg and forward (R135F)

4: turn-right-180deg and forward (R180F)

5: turn-left-135deg and forward (L135F)

6: turn-left-90deg and forward (L90F)

7: turn-left-45deg and forward (L45F)

previous	next	command
1	1	F
	/	R45F
	→	R90F
	`	R135F
	1	R180F
	4	L135F
	←	L90F
	7	L45F
,	1	L45F
	/	F
	\rightarrow	R45F
	`	R90F
	↓	R135F
	1	R180F
	←	L135F
	1	L90F

previous	next	command
→	1	L90F
	/	L45F
	→	F
	١.	R45F
	1	R90F
	1	R135F
	←	R180F
	7	L135F
`	1	L135F
	/	L90F
	→	L45F
	`	F
	↓	R45F
	4	R90F
	←	R135F
	7	R180F

previous	next	command
1	1	R180F
	/	L135F
	→	L90F
	١.	L45F
	↓	F
	4	R45F
	←	R90F
	7	R135F
~	1	R135F
	/	R180F
	\rightarrow	L135F
	`	L90F
	1	L45F
	1	F
	←	R45F
	7	R90F

previous	next	command
←	1	R90F
	/	R135F
	\rightarrow	R180F
	`	L135F
	1	L90F
	4	L45F
	←	F
	7	R45F
*	1	R45F
	/	R90F
	\rightarrow	R135F
	`	R180F
	1	L135F
	1	L90F
	←	L45F
	1	F

Implementation of the sequence on hardware

https://www.youtube.com/watch?v=REDNsu_Z2yo

There was a large motion error by slipping

Better to have a guide → line following

Line following version

https://github.com/shohei/line_follower
https://www.youtube.com/watch?v=hlZUGrfDYE8

Dojo simulator powered by Unity & ROS

https://roboticsdojo.github.io/simulator/
https://www.youtube.com/watch?v=XQmicl2z_go

What I learned...

- Pick and place task would be too difficult for students!
 - Probably no time to integrate manipulator
- Any alternatives?

Micromouse

- Technically interesting!
- Fun to watch!

Let's incorporate Maze

Final gamefield Dojo 2022 competition

Scoring rule

Checkpoint and points

Success of 1st competition in 2022

Plan for the next year 2023

- Alignment to ROBOKEN 2023
 - Line trace
 - Manipulator

The assembly of the parts (wheel, engine, cabin, trailer) seemed complex... Let's try.

Dojo interns

2023 May - July

Mission of the interns

- · Develop a model robot
- · Become a **mentor** of other students

Dojo competition 2023

Toward Robotics Dojo 2024

- Lesson learned from Dojo 2023
 - Time was not sufficient to complete
 - Use the **same rule** and perfect the tasks
- Encourage to use ROS
 - Leave software asset for future teams
 - Can utilize ROS packages (= library)

Combination of YOLO object detection, & joystick control on Robot car

By the way...

Making of the gamefield is always a lot of work

Future collaboration

Seek collaboration with other robotics competitions

Domestic

ROBOKEN

WRC2024
WORLD ROBOT CONTEST

African
Championship

Contact
Local Partner: Afribot Robotics
Tet: +254 701518100
Email: Info@afribot.africa
Important Dates
Participants Registration:
April 30th - July 19th
Training:
May/August 2024
Competition:
September 6th, 7th, 8th

WWW.AFRIBOT.AFRICA

WRC (Afribot)

International

RoboCup

RoboCup @Home

Pan-African robotics competition (PARC)

roboke

Past research on robotics

- Control of KUKA using ROS
 - Reverse engineering of communication protocol
 - Work by Lenny Ng'ang'a (JKUAT Physics)
- Disease detection using deep learning
 - Detect blight disease from leaf image
 - Work by Emmanuel Soumo (PAUSTI Mechatronics)
- Integration of Arduino and FPGA
 - Migrate Arduino code on PYNQ MicroBlaze CPU
 - Work by Aoki

Control of KUKA using ROS

- Can program KUKA robot arm with ROS
 - Reverse engineering of communication protocol

Potato disease detection

- Can classify the leaves into 3 categories using DNN
 - Early blight, Late blight, healthy

Integration of Arduino and FPGA

 Aimed to computer vision on FPGA and realtime control on Arduino (MicroBlaze CPU)

Necessary robotics research in Kenya

- Agriculture
- Manufacturing

Robotics for Agriculture

- JKUAT Potato value chain project since 2019
 - Test farm in Nyandarua county
 - Mechanization and ICT are included
- Remote sensing w/ satellite&drone
 - Soil map
 - Delineation of land parcel
- Production of "Smart Fertilizer"
 - Adsorb K/Ca/Zn on Clay particle

Robotics for manufacturing

"Karakuri" is a mechanism that uses gravity, springs and gears instead of external power sources to manipulate objects.

- Laser cladding with robotic arm
 - i.e. Metal 3D printing

Karakuri for factory

Thank you for your attention

- Contact
 - aoki@jkuat.ac.ke