ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2010

Overview

- lattices: logically Cartesian grids
 - flow, lattice dynamics, wave propagation, image processing
- suitable when it is possible to find an invertible map ϕ from the problem domain Ω to \mathbb{Z}^d
- ▶ data representation: multi-dimensional arrays
 - ϕ maps points in Ω to loop indices
 - with guard cells for enforcing boundary conditions

Advantages

- advantages: logically rectangular
 - indexing: easy traversal using loops
 - fixed stride: predictable memory layout
 - topology: finding neighbors is trivial
- disadvantages: many problems don't fit in simple boxes...
 - non-trivial geometries are hard to model
 - the representational simplicity disappears quickly as modeling complexity increases
 - domain feature resolution
 - complex initial and boundary conditions
 - adaptive refinement: allowing the properties of the solution to direct where computational resources are spent

Data layout and performance

- ▶ in multi-tier memory architectures
 - good data locality enables efficient cache use
- ▶ multi-dimensional arrays: naïve implementations do not perform well
 - for large problem sizes
 - for complex physics updates that require keeping track of multiple fields
- representing scalar, vector and tensor fields
 - optimal layout is problem dependent
 - goal is to minimize cache misses while updating the fields
- the conventional mapping to arrays lays out the data in matrix form
 - not necessarily the most convenient convention
- take ownership of the indexing function

Updating the grid

- two broad categories of problems
 - steady state problems: iterates represent progress towards enforcing a spatial relationship dictated by the differential equation
 - time dependent problems: iterates represent the time evolution of the solution to the spatial problem
- two broad strategies:
 - implicit solvers cast the constraints among iterates as a large system of simultaneous equations
 - explicit solvers keep track of only a small number of the iterates and use them to advance the solution one step at a time
- ▶ the complexity of the update determines the *stencil*

Computing derivatives

- there are three different first order approximations
 - forward difference:

$$\partial \square = \frac{1}{\delta} \left(\square - \square \right) \tag{1}$$

backward difference:

$$\partial \square = \frac{1}{\delta} \left(\square - \square \right) \tag{2}$$

central difference:

$$\partial \square = \frac{1}{2\delta} \left(\square - \square \right) \tag{3}$$

where δ is the uniform grid spacing

- forward and backward differences are most often used for explicit time integration
- central differences are used to compute spatial derivatives
- the second order central difference is given by

$$\partial \square \square = \frac{1}{12\delta} \left(- \square \square + 8 \square \square - 8 \square \square + \square \square \right) \tag{4}$$

Partial derivatives in two dimensions

- ▶ let δ_x and δ_y be the uniform grid spacing along each dimension
- ▶ then, the first order central difference approximations to the spatial derivatives are given by

$$\partial_x = \frac{1}{2\delta_x} \left(- \right)$$
 (5)

$$\partial_{y} = \frac{1}{2\delta_{y}} \left(- \frac{1}{2\delta_{y}} \right)$$
 (6)

and the second order derivatives are given by

$$\partial_{xx} = \frac{1}{\delta_x^2} \left(-2 + 1 \right)$$
 (7)

$$\partial_{yy} = \frac{1}{\delta_y^2} \left(-2 + 1 \right)$$
 (8)

Solving a simple PDE on a uniform structured grid

Laplace equation over some domain $\Omega \in \mathbb{R}^d$, subject to Dirichlet boundary conditions

$$\nabla^2 \phi = 0 \quad \text{with} \quad \phi(\partial \Omega) = f \tag{10}$$

- let the grid be uniform: $\delta_x = \delta_y$
- ▶ in two dimensions, using first order central differences, Eq. 10 becomes

$$(\partial_{xx} + \partial_{yy}) = 0 (11)$$

and translates into the following constraint among grid elements

$$= \frac{1}{4} \tag{13}$$

using a shorthand for the sum of the neighboring cells

An example

- specifically,
 - \blacktriangleright let Ω be the unit box in two dimensions
 - ightharpoonup and let ϕ satisfy the following boundary conditions

▶ the exact solution is given by

$$\phi(x,y) = e^{-\pi y} \sin(\pi x) \tag{15}$$

- ▶ we will solve this equation using the Jacobi iterative scheme:
 - make an initial guess for ϕ over a discretization of Ω
 - apply the boundary conditions
 - ▶ interpret Eq. 13 as an update step to compute the next iteration

$$\underbrace{\qquad}_{t+1} = \frac{1}{4} \underbrace{\qquad}_{t} \tag{16}$$

stop when a convergence criterion is met

Implementation strategy

- grid resolution:
 - ideally determined by analyzing the boundary conditions, since discrete sampling may wash out sharp features
 - ▶ for our simple example, this can be done as part of the solver initialization
 - we will use an N × N grid and let N be user specified so we can control the problem size

$$\delta_{x} = \delta_{y} = \frac{1}{N - 1} \tag{17}$$

- data layout
 - investigate the effect of data locality by trying out various layouts
- setting up the update
 - we only need to keep track of two iterants
 - can be done in place; do you see how?
- convergence criterion
 - we will stop iterating when

$$\max_{\Omega} (\phi_{t+1} - \phi_t)) < \epsilon \tag{18}$$

and let the user specify ϵ

Parallelization

- the finest grain of work is clearly the cell update based on the value of its four nearest neighbors
- the shared memory implementation requires
 - a scheme so that threads can update cells without the need for locks
 - while maximizing locality of data access
 - even the computation of the convergence criterion can be parallelized
- ▶ with MPI
 - must partition the mesh among processes
 - each process work on its own subgrid
 - communication is required every iteration
 - parallel convergence testing involves a collective operation

Sequential implementation - user interface

```
77 // main program
  int main(int argc, char* argv[]) {
79
      // default values for our user configurable settings
      size t N = 10:
80
      double tolerance = 1.0e-6:
81
      const char* filename = "laplace.csv";
82
83
      // read the command line
84
      int command:
85
      while ((command = getopt(argc, argv, "N:e:o:")) != -1) {
86
         switch (command) {
         // get the convergence tolerance
88
         case 'e':
89
            tolerance = atof(optarg);
90
            break:
91
         // get the grid size
         case 'N':
93
            N = (size_t) atof(optarg);
95
            break;
         // get the name of the output file
96
         case 'o':
            filename = optarg;
98
99
100
```

Sequential implementation - driving the solver

```
102
      // allocate space for the solution
      Grid potential (N);
      // initialize and apply our boundary conditions
      initialize (potential) ;
106
      // call the solver
108
      laplace(potential, tolerance);
109
110
      // open a stream to hold the answer
      std::fstream output(filename, std::ios base::out);
      // build a visualizer and render the solution in our chosen format
114
      Visualizer visualizer;
      visualizer.csv(potential, output);
116
118
      // all done
      return 0:
119
120 }
```