

Lecture: Introduction to Neural Net Models

Dr. Goutam Chakraborty

1

Outline

- Artificial Neural Net (ANN)
 - Basics of ANN
 - Selecting useful inputs in ANN
 - Optimizing complexity in ANN
 - Applications of ANN

Artificial Neural Net (ANN)

• Developed with the intention to resemble how the human brain works (in particular its ability to learn from experience)!

- Inputs arriving through *dendrites* are first weighted by adaptable synapses before being summed.
- If the sum is greater than an adaptable *bias*, the neuron sends a signal down its axon to other neurons.

A Frog, a Fly and a Neural Net?

How does a frog catch a fly?

- •A neuron fires in visual system in response to fly-like movement
- •Another neuron fires in response to size of the fly
- •The signals pass on to another neuron downstream
- •When this neuron fires, it results in tongue-flicking behavior

Source: Data Mining techniques by Berry and Linoff

5

The Mathematical (Artificial) Neuron

The mathematical neuron has two parts:

- combination function (pre-activation)
- activation function

$$H = f\left(w_0 + \sum_{i=1}^d w_i x_i\right)$$

...

Feed Forward Neural Network

- Input data vales are passed through from input layer to hidden layer to the output layer
 - Usually all input values are massaged/transformed so that their ranges are restricted to either (0,1) or (-1,1)
 - The output value is also restricted to (0,1) but we can always convert it back to its original range
- Values for all weights start randomly and updated as each observation is fed through the ANN and the error sent back

Demo 1: Neural Net using JMP Pro

Dr. Goutam Chakraborty

15

Outline

- Add Random Seed Add-In and set seed to 12345
- Run ANN without any variable selection
- Explore results

(

Continue with Data Set Pva97nk_imputed

- Delete all predicted probabilities from running of earlier models
- Makes sure following variables are set to rejected (right-click on variable name under columns and select exclude):
 - DemAge, DemMedIncome, REP_DemMedIncome and GiftAvgCard36 (because we have imputed their missing values and will use the new variables such as M_DemAge and Imp_DemAge and so on)
 - TargetD

Model	# of Vars	Valid Misc	Valid Sens	Valid Spec
Auto Tree	4	43.01%	61.80%	52.17%
ANN	262	42.70%	62.10%	47.50%

Optional: Saving some details from this model (from red triangle)

- Save prediction formula
- Publish prediction formula

2

Demo 2: LR and Neural Net using JMP Pro

Dr. Goutam Chakraborty

Outline

- Use LR as a *predictive model* with **Minimum AICC** as variable selection criteria
 - Use validation to select least complex best performing model
 - To establish a baseline model for comparison with DT and ANN
 - To select variables for ANN
- Run ANN with the variables selected by the LR model
 - Compare results

29

Running LR Stepwise

- JMP, Analyze> Fit Model > Select TargetB as Y > Change Personality to Stepwise> All other variables as Add Construct Model Effects > Validation as Validation > Run
- Change Stepwise Regression Control as shown > GO
- After Forward selection with Minimum AICC runs, click
- Make Model > Change Target level to 1 > Run Model
- Explore results

A Summary of Models Built So Far

Model	# of Vars	Valid Misc	Valid Sens	Valid Spec	AUC
Auto Tree	4	43.01%	61.80%	52.17%	0.58
ANN	262	42.70%	62.10%	47.50%	0.6
LR (AICC)	10	42.33%	56.00%	59.36%	0.6

