Regularization

Fraida Fund

Contents

Regularization	. 2
Penalty for model complexity	. 2
Regularization vs. standard LS	. 2
Common regularizers	. 2
Graphical representation	. 3
Common features: Ridge and LASSO	. 3
Differences: Ridge and LASSO (1)	. 3
Differences: LASSO (2)	. 3
Standardization (1)	. 4
Standardization (2)	. 4
Standardization (3)	
L1 and L2 norm with standardization (1)	
L1 and L2 norm with standardization (2)	. 4
Ridge regularization	. 5
Ridge term and derivative	. 5
Ridge closed-form solution	. 5
LASSO term and derivative	
Effect of regularization level	. 6
Selecting regularization level	. 6

Math prerequisites for this lecture: You should know about:

- derivatives and optimization (Appendix C in Boyd and Vandenberghe)
 norm of a vector (Section I, Chapter 3 in Boyd and Vandenberghe)

Regularization

Penalty for model complexity

With no bounds on complexity of model, we can always get a model with zero training error on finite training set - overfitting.

Basic idea: apply penalty in loss function to discourage more complex models

Regularization vs. standard LS

Least squares estimate:

$$\hat{w} = \operatorname*{argmin}_{w} MSE(w), \quad MSE(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

Regularized estimate w/ regularizing function $\phi(w)$:

$$\hat{w} = \operatorname*{argmin}_{w} J(w), \quad J(w) = MSE(w) + \phi(w)$$

Common regularizers

Ridge regression (L2):

$$\phi(w) = \alpha \sum_{j=1}^{d} |w_j|^2$$

LASSO regression (L1):

$$\phi(w) = \alpha \sum_{j=1}^d |w_j|$$

Graphical representation

Figure 1: LS solution (+), RSS contours. As we increase α , regularized solution moves from LS to 0.

Common features: Ridge and LASSO

- Both penalize large w_i
- Both have hyperparameter lpha that controls level of regularization
- Intercept w_0 not included in regularization sum (starts at 1!), this depends on mean of y and should not be constrained.

Differences: Ridge and LASSO (1)

Ridge (L2):

- minimizes $|w_i|^2$,
- minimal penalty for small non-zero coefficients
- · heavily penalizes large coefficients
- tends to make many "small" coefficients
- Not for feature selection

Differences: LASSO (2)

LASSO (L1)

- minimizes $|w_i|$
- tends to make coefficients either 0 or large (sparse!)
- does feature selection (setting w_i to zero is equivalent to un-selecting feature)

To understand why L1 regularization tends to make sparse coefficients but not L2 regularization - look at the graphical representation. Note that the contours of the L1 regularization "stick out" when one or both parameters is zero.

Standardization (1)

Before learning a model with regularization, we typically standardize each feature and target to have zero mean, unit variance:

•
$$x_{i,j} o \frac{x_{i,j} - \bar{x}_j}{s_{x_j}}$$

•
$$y_i o \frac{y_i - \bar{y}}{s_y}$$

Standardization (2)

Why?

- · Without scaling, regularization depends on data range
- \bullet With mean removal, no longer need w_0 , so regularization term is just L1 or L2 norm of coefficient vector

Standardization (3)

Important note:

- · Use mean, variance of training data to transform training data
- Also use mean, variance of training data to transform test data

L1 and L2 norm with standardization (1)

Assuming data standardized to zero mean, unit variance, the Ridge cost function is:

$$\begin{split} J(\mathbf{w}) &= \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \alpha \sum_{j=1}^d |w_j|^2 \\ &= ||\mathbf{A}\mathbf{w} - \mathbf{y}||^2 + \alpha ||\mathbf{w}||^2 \end{split}$$

L1 and L2 norm with standardization (2)

LASSO cost function ($||\mathbf{w}||_1$ is L1 norm):

$$J(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \alpha \sum_{j=1}^{d} |w_j|$$
$$= ||\mathbf{A}\mathbf{w} - \mathbf{y}||^2 + \alpha ||\mathbf{w}||_1$$

Ridge regularization

Why minimize $||\mathbf{w}||^2$?

Without regularization:

- · large coefficients lead to high variance
- large positive and negative coefficients cancel each other for correlated features (remember attractiveness ratings in linear regression case study...)

Ridge term and derivative

Figure 2: L2 term and its derivative for one parameter.

Ridge closed-form solution

$$J(\mathbf{w}) = ||\mathbf{A}\mathbf{w} - \mathbf{y}||^2 + \alpha ||\mathbf{w}||^2$$

Taking derivative:

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 2\mathbf{A}^T(\mathbf{y} - \mathbf{A}\mathbf{w}) + 2\alpha\mathbf{w}$$

Setting it to zero, we find

$$\mathbf{w}_{\text{ridge}} = (\mathbf{A}^T \mathbf{A} + \alpha \mathbf{I})^{-1} \mathbf{A}^T \mathbf{y}$$

LASSO term and derivative

Figure 3: L1 term and its derivative for one parameter.

- No closed-form solution: derivative of $\left|w_{i}\right|$ is not continuous
- But there is a unique minimum, because cost function is convex, can solve iteratively

Effect of regularization level

Greater α , less complex model.

- * Ridge: Greater α makes coefficients smaller. * LASSO: Greater α makes more weights zero.

Selecting regularization level

How to select α ? by CV!

- Outer loop: loop over CV folds
- Inner loop: loop over α