Universidade Federal de Santa Catarina

Engenharia da Computação

Microprocessadores e Microcontroladores DEC7511

Introdução aos Microprocessadores ARM

Prof. Roderval Marcelino, Dr.

ARM Introdução

ARM – originalmente Acorn RISC Machine... depois Advanced RISC Machine -ARM

Projetado por Arm Holdings, empresa britânica, desde 1990. Nvidia comprou em 2020

Não vende chip, vende IP, intellectual Property, licença de uso.

ARM Características

- Arquitetura RISC
- Processadores de baixo consumo
- Pipeline
- Custo menor
- Menor dissipação de calor
- Perfeito para portáteis

Ganhando espaço em capacidade de processamento, Apple M1.
 Será o fim da família x86?

Timeline ARM

https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures

ARM core timeline [edit]

The following table lists each core by the year it was announced. [91][92] Cores before ARM7 aren't included in this table.

Year	Classic cores					Cortex cores				Neoverse cores
	ARM7	ARM8	ARM9	ARM10	ARM11	Microcontroller	Real-time	Application (32-bit)	Application (64-bit)	Application (64-bit)
1993	ARM700									
1994	ARM710 ARM7DI ARM7TDMI									
1995	ARM710a									
1996		ARM810								

Instruction Set Architecture (ISA) 64-bit Armv8 - AArch64

arm

Armv8-A Instruction Set Architecture

Non-Confidential Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved. Issue 1.1 ARM062-948681440-3280

link para a ISA

Fabricantes e Produtos

Fabricantes:

Qualcomm Mediatek Nvidia Samsung Apple

Produtos:

Etc.

Smartphones

Smart TVs

Roteadores

Smart Watches

Nintendo DS

PSP

Nvidia Shield

Diversos outros aparelhos.

Sistemas operacionais para ARM

A

- · Android (operating system)
- · Arch Linux ARM
- Armbian
- · ARX (operating system)
- Azure Sphere

B

- BeRTOS
- BlackBerry 10
- BlackBerry OS
- BlackBerry Tablet OS

C

- ChibiOS/RT
- Chrome OS
- Chromium OS
- ColorOS

meginy (operating system)

J

JavaOS

K

- KaiOS
- Kali Linux
- Kali NetHunter

L

- LibreELEC
- LuneOS
- LynxOS

M

- MacOS
- MacOS Big Sur
- MacOS Monterey
- Maemo

• ruicus

C

QNX

R

- Raspberry Pi OS
- · REX OS
- RIOT (operating system)
- · RISC IX
- · RISC OS
- · Rodos (operating system)
- · RT-Thread
- RTEMS

S

- Sailfish OS
- Symbian
- TI-RTOS

Link para SOs: https://en.wikipedia.org/wiki/Category:ARM_operating_systems

Apple M1

Primeiro System-on-chip (SoC) baseado em ARM projetado pela Apple como uma (CPU)

Apple M1

Produtos com este processador: MacBook Air e Mac Mini Menor consumo de energia do que o "chip mais recente para um notebook"

Apple M1

A tecnologia de tradução binária dinâmica Rosetta 2 permite que produtos equipados com M1 executem software desenvolvido para CPUs Intel x86

Link vídeo: https://www.youtube.com/watch?v=j2NggQ22jMg

