Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1-\frac{1}{2}\right)\left(1+0,5\right) = \frac{1}{2}\cdot\left(1+\frac{5}{10}\right) =$	3p
	$=\frac{1}{2}\cdot\frac{3}{2}=\frac{3}{4}$	2p
2.	3x - 5 = 1 - 3x $x = 1$	3p 2p
3.	x+5=9 x=4, care convine	3p 2p
4.	$x - \frac{30}{100} \cdot x = 700$, unde x este prețul obiectului înainte de ieftinire	3p
	x = 1000 de lei	2p
5.	Triunghiul AOB este dreptunghic în O , $AB = 10$	2p
	Lungimea medianei din O este egală cu $\frac{AB}{2} = \frac{10}{2} = 5$	3 p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\sin 30^\circ = \frac{1}{2}$, $\cos 60^\circ = \frac{1}{2}$	3p
	$\sqrt{2} \cdot \sin 45^{\circ} - (\sin 30^{\circ} + \cos 60^{\circ}) = \sqrt{2} \cdot \frac{\sqrt{2}}{2} - (\frac{1}{2} + \frac{1}{2}) = \frac{2}{2} - 1 = 0$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ -1 & 2 \end{vmatrix} = 1 \cdot 2 - (-1) \cdot 3 =$	3 p
	=2+3=5	2p
b)	$\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & x \\ 1 & 1 \end{pmatrix} = 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 & 3+x \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \Leftrightarrow x = -3$	3p
	$A \cdot B(-3) = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = 5I_2$	2p
c)	$B(x) \cdot B(x) - I_2 = \begin{pmatrix} 4+x & 3x \\ 3 & x+1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3+x & 3x \\ 3 & x \end{pmatrix}$	2p
	$\begin{vmatrix} 3+x & 3x \\ 3 & x \end{vmatrix} = 0 \Leftrightarrow x^2 - 6x = 0 \Leftrightarrow x = 0 \text{ sau } x = 6$	3p
2.a)	$10 \circ 8 = 10 \cdot 8 - 9(10 + 8) + 90 =$	3p
	=80-162+90=8	2p
b)	$x \circ y = xy - 9x - 9y + 81 + 9 =$	2p
	= x(y-9)-9(y-9)+9=(x-9)(y-9)+9, pentru orice numere reale x şi y	3p

c)	$(n-9)^2 + 9 \le 10 \Leftrightarrow (n-10)(n-8) \le 0$	2p
	Cum n este număr natural, obținem $n = 8$, $n = 9$ sau $n = 10$	3р

SUBIECTUL al III-lea (30 de puncte)

SUDI	ECTUL al III-lea (30 de pui	icte)
1.a)	$f'(x) = \frac{1 \cdot (x^2 + 3) - (x - 1) \cdot 2x}{(x^2 + 3)^2} =$	3 p
	$= \frac{-x^2 + 2x + 3}{\left(x^2 + 3\right)^2} = \frac{(3 - x)(x + 1)}{\left(x^2 + 3\right)^2}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x-1}{x^2 + 3} = \lim_{x \to +\infty} \frac{1 - \frac{1}{x}}{x \left(1 + \frac{3}{x^2}\right)} = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) \le 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este descrescătoare pe $(-\infty, -1]$, $f'(x) \ge 0$, pentru orice $x \in [-1, 3] \Rightarrow f$ este crescătoare pe $[-1, 3]$ și $f'(x) \le 0$, pentru orice $x \in [3, +\infty) \Rightarrow f$ este descrescătoare pe $[3, +\infty)$	2 p
	$\lim_{x \to -\infty} f(x) = 0, \ f(-1) = -\frac{1}{2}, \ f(3) = \frac{1}{6} \text{ si } \lim_{x \to +\infty} f(x) = 0, \ \text{deci } -\frac{1}{2} \le f(x) \le \frac{1}{6} \text{ si } -\frac{1}{2} \le f(y) \le \frac{1}{6},$ $\text{de unde obținem } -1 \le f(x) + f(y) \le \frac{1}{3}, \text{ pentru orice numere reale } x \text{ si } y$	3 p
2.a)	$\int_{-1}^{1} \left(f(x) - \frac{1}{e^x} \right) dx = \int_{-1}^{1} x dx = \frac{x^2}{2} \Big _{-1}^{1} =$	3p
	$=\frac{1}{2}-\frac{1}{2}=0$	2 p
b)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a lui $f \Rightarrow F'(x) = f(x)$, $F''(x) = -\frac{1}{e^x} + 1$, $x \in \mathbb{R}$	2p
	$F''(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci funcția F este concavă pe intervalul $(-\infty, 0]$	3 p
c)	$\left \int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} (1 + xe^{x}) dx = (x + (x - 1)e^{x}) \right _{0}^{1} =$	3 p
	$=1+0-0-(-1)\cdot e^0=2$	2p