Correction Bac 2021 Sujet 0

N. Sibert

6 février 2021

Exercice 1

- 1. b. C'est le théorème des gendarmes. Comme $0 < \frac{1}{4} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0$
- 2. c. $f'(x) = e^{x^2} + x \times 2xe^{x^2} = (1 + 2x^2)e^{x^2}$
- 3. c. $f(x) = \frac{1 \frac{1}{x^2}}{2 \frac{2}{x} + \frac{1}{x^2}}$
- 4. c. C'est le théorème des valeurs intermédiaires (cas général, on n'a pas d'information sur la monotonie de *h*)
- 5. c. g' est croissante sur [1;2] donc g convexe sur [1;2]

Exercice 2

- 1. a) $I(\frac{1}{2};0;1)$ et J(2;0;1)
 - b) D(0;1;1) donc $\overrightarrow{DJ}\begin{pmatrix} 2\\-1\\1 \end{pmatrix}$ B(1;0;0) $\overrightarrow{BI}\begin{pmatrix} -\frac{1}{2}\\0\\1 \end{pmatrix}$ et $\overrightarrow{BG}\begin{pmatrix} 0\\1\\1 \end{pmatrix}$
 - c) \overrightarrow{BI} et \overrightarrow{BG} sont deux vecteurs **non colinéaires** de (BGI) $\overrightarrow{DJ} \cdot \overrightarrow{BI} = 2 \times \left(-\frac{1}{2}\right) + (-1) \times 0 + 1 \times 1 = 0$ donc $\overrightarrow{DJ} \perp \overrightarrow{BI}$ $\overrightarrow{DJ} \cdot \overrightarrow{BG} = 2 \times 0 + (-1) \times 1 + 1 \times 1 = 0$ donc $\overrightarrow{DJ} \perp \overrightarrow{BG}$ donc, $\overrightarrow{DJ} \perp (BGI)$, \overrightarrow{DJ} vecteur normal à (BGI)
 - d) $\overrightarrow{\mathrm{DJ}}$ étant un vecteur normal de (BGI), tout point $\mathrm{M}(x;y;z) \in (\mathrm{BGI})$ vérifie $\overrightarrow{\mathrm{BM}} \cdot \overrightarrow{\mathrm{DJ}} = 0$ où $\overrightarrow{\mathrm{BM}} \binom{x-1}{y}$ donc 2(x-1)-y+z=0 (BGI): 2x-y+z-2=0
- 2. a) d passe par F(1;0;1) et admet \overrightarrow{DJ} comme vecteur directeur. Donc :

$$d: \begin{cases} x = 1 + 2t \\ y = -t \\ z = 1 + t \end{cases} \quad (t \in \mathbb{R})$$

b) On peut vérifier que $L \in d$ et $L \in (BGI)$, ou trouver L dont les coordonnées vérifient 1d) et 2a), on peut trouver t tel que :

$$2(1+2t) - (-t) + 1 + t - 2 = 0 \iff t = -\frac{1}{6}$$

et:
$$\begin{cases} x = 1 - \frac{2}{6} = \frac{2}{3} \\ y = \frac{1}{6} \\ z = 1 - \frac{1}{6} = \frac{5}{6} \end{cases}$$

On retrouve $L(\frac{2}{3}; \frac{1}{6}; \frac{5}{6})$, qui est bien $d \cap (BGI)$

3. a) On prend pour base FBG et pour hauteur FI.

$$V = \frac{1}{3} \times \frac{1 \times 1}{2} \times \frac{1}{2} = \frac{1}{12}$$

b) Si on prend pour base BGI, la hauteur est alors FL car L est le projeté orthogonal de F sur (BGI) et :

$$FL = \sqrt{\left(\frac{2}{3} - 1\right)^2 + \left(\frac{1}{6} - 0\right)^2 + \left(\frac{5}{6} - 1\right)^2} = \sqrt{\frac{1}{9} + \frac{1}{36} + \frac{1}{36}} = \frac{\sqrt{6}}{6}$$

Donc,
$$\frac{1}{12} = V = \frac{1}{3} \times \mathcal{A}_{BGI} \times \frac{\sqrt{6}}{6}$$
, d'où $\mathcal{A}_{BGI} = \frac{\sqrt{6}}{4}$

- Exercice 3
- **Exercice A**
- Exercice B