Определения из дифуров

Лектор: В. В. Басов Записал: taxus

26 февраля 2017 г.

Глава 1: Дифуры, разрешённые относительно производной

§ 1 Основные определения

Определение 1 (Дифференциальное уравнение). Пусть $f \in C(G)$, $G \subset \mathbb{R}^2$. Тогда диффур — вот такая штука:

$$y' = f(x, y)$$

Определение 2. Решение — функция $y = \varphi(x)$, определённая на $\langle a, b \rangle$:

- 1. $\varphi(x)$ дифференцируема
- 2. $(x, \varphi(x)) \in G$
- 3. $\varphi'(x) = f(x, \varphi(x))$

Определение 3 (Задача Коши и вокруг неё). Основные понятия тут:

- 1. (x_0, y_0) начальные данные
- 2. Решение задачи Коши частное решение дифура + выполнение начальных условий
- 3. Решение задачи Коши существует, если $\exists (a, b) \ni x_0, y = \varphi(x) \colon y_0 = \varphi(x_0)$
- 4. Решение задачи Коши единственно, если любые 2 решения совпадают в окрестности x_0

Определение 4. $(x_0, y_0) \in G$ — тоска единственности, если решение задачи Коши в ней единственно.

Определение 5. $\widetilde{G} \in G$ — область единственности, если каждая её точка — точка единственности.

Определение 6. Пусть $f \in C(G)$, $G \subset \mathbb{R}^2$, $(x_0, y_0) \in G$, $x_0, x \in \langle a, b \rangle$ Тогда интегральным уравнением называется

$$y = y_0 + \int_{x_0}^{x} f(u, y) \, \mathrm{d}s$$

Определение 7. Решение — функция $y=\varphi(x)$, определённая на $\langle a,b \rangle$:

- 1. $\varphi(x)$ непрерывна
- 2. $(x, \varphi(x)) \in G$
- 3. $y = y_0 + \int_{x_0}^{x} f(u, y) ds$

Теорема 1. Пусть $f \in C(G)$. Тогда $y = \varphi(x)$ — решение 1.1.1 \Leftrightarrow решение 1.1.6.

Определение 8 (Отрезок Пеано).

$$P_{h}(x_{0}, y_{0}) = \{x : |x - x_{0}| \leq h\}$$

$$h = \min\{a, b/M\}, \ M = \max_{(x,y) \in \overline{R}} |f(x,y)|$$

$$\overline{R} = \{(x,y) : |x - x_{0}| \leq a, |y - y_{0}| \leq b\} \subset G$$

Определение 9. Решение — частное, если всякая его точка — точка единственности.

Определение 10. Решение — особое, если всякая его точка — точка неединственности.

Определение 11 (Общее решение). Пусть G — область единственности. Тогда непрерывная по обеим аргументам функция $y = \varphi(x, C)$ — общее решение дифференциального уравнения в $A \subset G$, если $\forall (x_0, y_0) \in A$:

- 1. уравнение $y_0 = \varphi(x_0, C)$ однозначно разрешимо относительно C /Наверное, локальная монотонность нужна/
- 2. $y = \varphi(x, C_0) (C_0 \text{корень } y_0 = \varphi(x_0, C))$ решение задачи Коши с начальными данными x_0, y_0

Тут кстати в самом конспекте что-то странное. Почему-то требуется, чтобы $\varphi(x, C_0)$ была решением в окрестности C_0 .

Определение 12. Решение дифура, определённое на $\langle a, b \rangle$ продолжимо за точку b, если

$$\exists \widetilde{\varphi}(x) \colon \widetilde{\varphi}|_{\langle a,b\rangle} = \varphi \wedge \widetilde{\varphi}'(x) \stackrel{\langle a,\widetilde{b}\rangle}{\equiv} f(x,\widetilde{\varphi}(x))$$

§ 2 Существование решения задачи Коши

Определение 1 (Ломаная Эйлера).

$$\begin{cases} \forall x \in (x_j, x_{j+1}], j \in 0 .. N - 1 \\ \forall x \in [x_{j-1}, x_j), j \in 1 - N .. 0 \end{cases} \psi(x) = \psi(x_j) + f(x_j, \psi(x_j))(x - x_j)$$

Теорема 1 (Теорема Пеано). Пусть $f \in C(G)$. Тогда

$$\forall (x_0, y_0), P_h(x) \exists y = \varphi(x) \colon \begin{cases} \varphi'(x) \stackrel{P_h}{\equiv} f(x, \varphi(x)) \\ y_0 = \varphi(x_0) \end{cases}$$
 (решение 1.1.3)

Глава 2: Нормальные и не очень системы диффуров

§ 3 Условия Липшица

Лемма 1 (Лемма Адамара). Пусть $f(x,y) \colon \mathbb{R}^I \times \mathbb{R}^m \to \mathbb{R}^n$, G = Oбласть, выпуклая по y. Пусть также f(x,y), $\frac{\partial f}{\partial v^i} \in C(G)$. Тогда

$$\exists h(x, y_1, y_2) \colon \mathbb{R}^{I} \times \mathbb{R}^{m} \times \mathbb{R}^{m} \to \mathbb{R}^{m} \times \mathbb{R}^{n} \ f(x, y_2) - f(x, y_1) = h(x, y_1, y_2)^{T} (y_2 - y_1)^{T} (y_2 -$$

где
$$h(x,y_1,y_2)=\int\limits_0^1 \frac{\partial f(x,u(s))}{\partial y}\,\mathrm{d} s,\;\; a\;u(s)=y_1+s(y_2-y_1)$$

Лемма 2. Пусть $f(x,y) \in \operatorname{Lip}_y^{\operatorname{loc}}(G)$, G - область. Тогда $\forall \overline{H} \subset G \ f \in \operatorname{Lip}_y^{\operatorname{gl}}$.