

LECTURE 46

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

- Equivalent of linear regression for categorical outcome variable
 - Predictors can be categorical or continuous
- Applied in following tasks
 - Classification task
 - Predicting the class of a new observation
 - Profiling
 - Understanding similarities and differences among groups

- Steps for logistic regression
 - Estimate probabilities of class memberships
 - Classify observations using probabilities values
 - Most probable class method: assign the observation to the class with highest probability value
 - Equivalently, for a two-class case, cutoff value of 0.5 can be used
 - Class of interest: user specified cutoff value
 - For a two-class case, typically a value greater than average probability value for class of interest, but less than 0.5 can be used

- Logistic Regression Model
 - Used typically in cases when structured model is preferred over datadriven models for classification tasks
 - Categorical outcome variable cannot be directly modeled as a linear function of predictors
 - Inability to apply various mathematical operators
 - Variable type mismatches
 - Range reasonability issues
 - LHS range={0, ..., m-1}
 - RHS range=(-∞, ∞)

- Logistic Regression Model
 - Instead of using outcome variable (Y) in the model, a function of Y,
 called *logit* is used
- Logit
 - Think about modeling probability value as a linear function of predictors, specifically in a two-class case

If P is the probability of class 1 membership

$$P = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Where p is the no. of predictors

Logit

- LHS range improves from {0, 1} to [0, 1], however still cannot match
 RHS
- Can we bring RHS range to [0,1]?
 - Nonlinear approach
- Typically, a nonlinear function of the following form is used to perform the required transformation

$$P = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}}$$

This function is called *logistic response function*

- Logit
 - Rearrange the previous equation as below:

$$\frac{P}{1-P} = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

LHS is expression for *odds*, another measure of class membership

$$odds = \frac{P}{1 - P}$$

- Odds of belonging to a class is defined as ratio of probability of class 1 membership to probability of class 0 membership
 - This metric is popular in sports, horse racing, gambling, and many other areas

- Logit
 - Previous equation can be rewritten as

$$odds = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

- Range is now (0, ∞)
- Take log on both sides of previous equation

$$\log(odds) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- Standard logistic model
- Now, LHS and RHS both have same range (-∞, ∞)
- Log(odds) is called logit
 - Logit is used as the outcome variable in the model instead of categorical Y

- Odds and logit can be written as a function of probability of class 1 membership
 - Open RStudio

- In logistic regression model, we predict the logit values and therefore corresponding probability of a categorical outcome
 - Predicted probabilities values become the basis for classification
 - A prediction model for classification task

Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

Thanks...