Лекция 17 от 06.02.2017 Замкнутые и полные ОГС. Тригонометрическая система

Замкнутые и полные ортогональные системы

Пусть H — пространство со скалярным произведением, $\{e_n\}_{n=1}^{\infty}$ — счетная ортогональная система в H. Тогда для вектора $x \in H$ можно ввести коэффициенты Фурье: $\hat{x}_n = \frac{(x,e_n)}{(e_n,e_n)}$ и, соответственно, ряд Фурье: $\sum_{n=1}^{\infty} \hat{x}_n e_n$. Отметим, что этот ряд не является ни числовым, ни функциональным.

Продолжим обсуждение замкнутых ортогональных систем. Повторим определение (на этот раз сформулируем его немного иначе).

Определение 1. Ортогональная cистема $\{e_n\}_{n=1}^{\infty}$ называемся замкнутой, если

$$\forall x \in H \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \exists c_1, \dots, c_n \colon ||x - \sum_{n=1}^N c_n e_n|| < \varepsilon.$$

Теорема 1. Следующие утверждения эквивалентны:

1. ортогональная система $\{e_n\}_{n=1}^{\infty}$ замкнута;

2.
$$\forall x \in H \sum_{n=1}^{\infty} \hat{x}_n e_n = x;$$

3.
$$\forall x \in H \sum_{n=1}^{\infty} \hat{x}_n^2 ||e_n||^2 = ||x||^2;$$

4.
$$\forall x, y \in H (x, y) = \sum_{n=1}^{\infty} \hat{x}_n \hat{y}_n ||e_n||^2$$
.

Доказательство. Фактически это просто суммирование предыдущих результатов. Действительно, $(1) \Rightarrow (2)$ и $(2) \Leftrightarrow (3)$ было доказано на прошлой лекции, $(2) \Rightarrow (1)$ следует очевидным образом. Из нового: $(4) \Rightarrow (3)$ получается сразу при y = x, и только $(3) \Rightarrow (4)$ требует какого-то доказательства.

Заметим, что $\widehat{(x+y)}_n = \hat{x}_n + \hat{y}_n$. Тогда:

$$(x,y) = \frac{(x+y,x+y) - (x,x) - (y,y)}{2} = \frac{1}{2} \left(\sum_{n=1}^{\infty} (\hat{x}_n + \hat{y}_n)^2 ||e_n||^2 - \sum_{n=1}^{\infty} \hat{x}_n^2 ||e_n||^2 - \sum_{n=1}^{\infty} \hat{y}^2 ||e_n||^2 \right) = \sum_{n=1}^{\infty} \hat{x}_n \hat{y}_n ||e_n||^2.$$

Собственно, утверждение (4) тоже иногда называют равенством Парсеваля.

Определение 2. Ортогональная система $\{e_n\}_{n=1}^{\infty}$ называется полной, если из того, что $\forall n \in \mathbb{N} \ (x, e_n) = 0$ следует, что x = 0, то есть существует только один вектор, ортогональный всей системе.

Понятия *замкнутости* и *полноты* в разной литературе используются абы как и часто меняются местами. Это связано с тем, что данные термины *почти* взаимозаменяемы.

Утверждение 1. Если ортогональная система замкнута, то она полна.

Доказательство. Если $\{e_n\}_{n=1}^{\infty}$ — замкнутая ортогональная система, то $\forall x \in H \ x = \sum_{n=1}^{\infty} \hat{x}_n e_n$.

Но если
$$\forall n \in N \ (x, e_n) = 0$$
, то $\hat{x}_n = 0$ и, следовательно, $x = \sum_{n=1}^{\infty} 0 = 0$.

Утверждение 2. Если ортогональная система $\{e_n\}_{n=1}^{\infty}$ полна в полном пространстве H, то она замкнута.

Доказательство. Пусть x — произвольный элемент из H. Рассмотрим соответствующий ряд Фурье, который в силу полноты пространства обязан куда-то сходиться: $y:=\sum_{n=1}^{\infty}\hat{x}_ne_n$. Из теоремы о единственности разложения следует, что $\forall n\in\mathbb{N}$ $\hat{x}_n=\hat{y}_n$, а значит, $(x,e_n)=(y,e_n)$. Итого, $\forall n\in\mathbb{N}$ $(x-y,e_n)=0$, что верно только если x-y=0, то есть x=y.

Упражнение 1 (Бонусная задача). Наше доказательство не пройдет в любом пространстве, но это не означает, что полнота пространства является необходимым требованием. Итак, верно ли, что если ортогональная система полна, то она замкнута?

Пара слов о практическом применении

Допустим, мы имеем дело с черно-белой изображения (с цветными все аналогично). Фактически это функция, заданная на пространстве-прямоугольнике P, где f(p) — интенсивность пикселя. Можно ввести скалярное произведение: $(f,g) = \int\limits_P fg \mathrm{d}x \mathrm{d}y$. Однако так как мы работаем с дискретным пиксельным пространством, интеграл можно заменить на сумму: $\sum i, j = 1$ " $a_{ij}b_{ij}$, где a и b это значения пикселей.

Выберем конечную ортогональную систему $x_{n=1}^N$. Для удобства пусть она будет нормированной, то есть $||e_n||=1$. Тогда $x=\sum_{n=1}^\infty \hat{x}_n e_n$. Известно, что $||x-\sum_{n=1}^N ||\hat{x}_n e_n||^2=||x||^2-\sum_{n=1}^N \hat{x}_n^2$.

На практике мы не можем все коэффициенты Фурье, а только несколько из них. А глядя на равенство выше понятно, что лучше взять большие коэффициенты, чтобы уменьшить погрешность. Именно эта идея и лежит в ключе всех алгоритмов сжатия с частичной потерей данных (но эт не вся идея).

Соответственно, встает вопрос: а как выбрать ортогональную систему так, чтобы как можно меньше коэффициентов Фурье были большими и как можно больше — маленькими? Тогда для такой системы большинство элементов пространства можно будет посчитать с небольшой погрешностью.

Тригонометрическая система

В математическом анализе есть два самых главных отрезка: [0,1] и $[-\pi,\pi]$. Будем работать со вторым.

Пусть $(f,g) = \int_{-\pi}^{\pi} f(x)g(x) dx$. Функции не обязательно должны быть непрырывными, потому что на практике разрывы I рода встречаются сплошь и всюду (например, граница фона и объекта на изображении). Поэтому будем рассматривать функции $f,g \in R[\pi,\pi]$.

Факторизуем пространство по следующему отношению эквивалентности: $f\equiv g\Leftrightarrow \int_0^\pi (f-g)^2\mathrm{d}x=0.$

Строго говоря, можно было рассматривать функции, интегрируемые по Риману в несобственном смысле, но тогда и интеграл $\int\limits_{-\pi}^{\pi}fg\mathrm{d}x$ будет несобственным, и чтобы он существовал, необходимо потребовать интегрируемость в несобственном смысле квадратов функций, так как $(f,g)\leqslant \frac{f^2+g^2}{2}$, что помогло бы нам ограничить интеграл. Но полученное пространство все еще не будем полным, поэтому мы не будем его рассматривать — это всего лишь полушаг к желаемому результату и оно того не стоит.

Итак, ортогональная система в таком пространстве: $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots$

Посчитаем длину каждого вектора (не забыв о четности косинуса):

$$(1,1) = \int_{-\pi}^{\pi} 1 \cdot 1 dx = 2\pi;$$

$$(\sin nx, \sin nx) = \int_{-\pi}^{\pi} \sin^2 dx = \int_{-\pi}^{\pi} \frac{1 - \cos 2x}{2} dx = \int_{-\pi}^{\pi} \frac{1}{2} = \pi;$$

$$(\cos nx, \cos nx) = \dots = \pi.$$

В силу традиций (а, к слову, тригонометрическая система старше интегралов), коэффициенты Фурье, связанные с $\cos nx$ и $\sin nx$ принято обозначать как a_n и b_n соответственно:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx;$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

А коэффициент Фурье при 1 очень похож на коэффициенты при $\cos nx$, поэтому его принято обозначать как $a_0/2$:

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cdot 1 \mathrm{d}x.$$

Итого, ряд Фурье для функции f выглядит следующим образом:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx.$$

Для аккуратности надо бы ставить скобки под суммой, но это и так воспринимается как единое целое.

Для тригонометрической системы есть дальше два вектора развития:

- 1. Доказать замкнутость или полноту. Вот только пространство неполное, так что незачем;
- 2. Заметить, что ряд Фурье в данном случае это обычный функциональный ряд, и для него осмыслениен вопрос, чему равно f(1) и так далее. Вот этим и займемся.

Комплексная система

Если внимательно посмотреть на ряд Фурье тригонометрической системы, то можно заметить, что он степенной — точнее, к нему можно свести, используя комплексную запись все той же тригонометрической системы: $\{e^{inx}\}_{-\infty}^{+\infty}$.

В комплексном случае $(x,y) = \overline{y}, \overline{x}$, поэтому $(f,g) = \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$. Тогда

$$(e^{inx}, e^{inx}) = \int_{-\pi}^{\pi} e^{inx} \overline{e^{inx}} dx = \int_{-\pi}^{\pi} e^{inx} e^{-inx} dx = \int_{-\pi}^{\pi} 1 dx = 2\pi.$$

По традиции, коэффициенты Фурье обозначают как c_n :

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

Итого, комплексный ряд Фурье выглядит следующим образом:

$$\sum_{n=-\infty}^{\infty} c_n e^{inx} = \lim_{N \to \infty} \sum_{n=-N}^{N} c_n e^{inx}.$$

Покажем, что это то же самое, что и ряд Фурье в обычной тригонометрической системе.

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)(\cos nx - i\sin nx) dx = \frac{a_{n}}{2} - i\frac{b_{n}}{2};$$

$$c_{-n} = \dots = \frac{a_{n}}{2} + i\frac{b_{n}}{2}.$$

Итого:

$$c_n e^{inx} + c_{-n} e^{-inx} = \left(\frac{a_n}{2} - i\frac{b_n}{2}\right) \left(\cos nx + i\sin nx\right) + \left(\frac{a_n}{2} + i\frac{b_n}{2}\right) \left(\cos nx - i\sin nx\right) =$$
$$= a_n \cos nx + b_n \sin nx.$$

Двумерные пространства, натянутые на $\langle \cos nx, \sin nx \rangle$ и $\langle e^{inx}, e^{-inx} \rangle$, будут совпадать, в них совпадают наилучшие приближения и частичные суммы.