Principles of laboratory investigations in endocrine disorders

Dr Roshitha de Silva
Department of Pathology

• Endocrine disorders can result from

- Dysfunction originating in the peripheral endocrine gland (primary disorders) or
- Understimulation or overstimulation by the pituitary (secondary disorders)
- Hormone resistance (receptor/target organ)

Introduction

- Unique feature of the endocrine system is it's ability to regulate itself
- This is done by providing (-) ve and (+) ve feedback stimuli to each gland that produces a secretory hormone
- All hormone production comes under some form of feedback control

Commonly measured hormones

- FT₄, FT₃, TSH
- GH
- Insulin
- PTH, Calcitriol
- Prolactin
- Cortisol, ACTH
- · Renin, Aldosterone
- LH, FSH
- Oestrogen, Progesterone
- Testosterone
- hCG
- Gastrin

Hyperfunction

- · May result from
 - Hyperplasia of gland
 - Neoplasia of gland
 - Overstimulation by the pituitary
 - Ectopic hormone production
 - Exogenous hormone administration
 - Antibody stimulation of gland

Hypofunction

- · Destruction of gland
 - Autoimmune disorders
 - Tumors
 - Infections
- · Understimulation by the pituitary
- · Increased degradation
- · Genetic disorders
- Abnormalities of the receptor

Difficulties

- The main problem Small quantities 100 nmol/L (10⁻⁹ moles)
- · Two fractions
 - Free
 - bound
- The active form is free fraction even smaller levels 20 pmol/L (10⁻¹² moles)

Why are tests are important?

- Because symptoms can begin insidiously and may be nonspecific, clinical recognition is often delayed.
- For this reason, biochemical diagnosis is usually essential.
- It requires measuring levels of the peripheral endocrine hormone, the pituitary hormone, or both

Difficulties

- · Measured by immunoassays
- · Lab to lab differences

Which sample?

- Blood
 - direct assessment of circulating hormones
 - relatively accurate values
 - well-established reference ranges
- Urine
 - 24-hour urine sample
 - non-invasive
 - provides a stable indicator of output
 - not susceptible to the hour-to-hour fluctuations
- Saliva
 - Simple, non-invasive, economical and can be collected at home

Sampling

- Patient preparation
- · Correct sample collection
- Sample storage and transport

Indirect estimates

- GH may be assessed indirectly by measuring IGF-1 levels.
- Diabetes insipidus-urine and serum osmolality

What's wrong with a single measurement?

- Episodic and circadian output
- Normal level may differ during the menstrual cycle
- Abnormal function may fall into normal range

Abnormal function may fall into normal range cont.

Abnormal function may fall into normal range

Interpretation of hormone levels

- Interpretation of the results should always take into account three factors
 - the clinical features of the patient,
 - the concentration of the variable regulated by the hormone, and
 - the concentration of other hormones in the feedback loop.

Paired testing

• PTH, Serum calcium

	Serum Ca	PTH
Hyperparathyroidism	High	High
Vit D toxicity	High	Low
Hypoparathyroidism	Low	Low
Vit D deficiency	Low	High

- · Insulin, Blood glucose
- · ACTH, Cortisol
- TSH, T4

Dynamic function tests

- In some cases, a dynamic test is necessary to diagnose a hormonal disorder.
- Involve either stimulating or suppressing a particular hormonal axis, and observing the appropriate hormonal response.
- If a deficiency is suspected → a stimulation test
- If an excess is suspected →a suppression test

Stimulation tests

- Glucose tolerance test diabetes mellitus
- Insulin tolerance test growth hormone deficiency
- Short synacthen test adrenal insufficiency
- · Water deprivation test diabetes insipidus

Short synacthen test

- A synacthen test uses Synacthen to test how well the adrenal glands produce cortisol.
- It involves stimulating the adrenal glands and then checking to see if they respond.
- This is performed for the investigation of adrenal insufficiency.

CORTISOL

Short synacthen test

- Adrenal glucocorticoid secretion is controlled by adrenocorticotrophic hormone (ACTH) released by the anterior pituitary.
- This test evaluates the ability of the adrenal cortex to produce cortisol after stimulation by synthetic ACTH (Synacthen).
- The short test assesses the ability of the adrenal gland to respond to ACTH.

Short synacthen test

- At 0900
 - take blood for cortisol
- inject Synacthen iv or im
- At 0930
 - take further sample for cortisol

Suppression tests

- Dexamathasone suppression test- Cushing's
- · Glucose tolerance test Acromegaly

Overnight dexamathasone suppression test

- Dexamethasone is a cortisol look-alike.
- It suppress pituitary ACTH causing a fall in cortisol levels.

Thank you

Overnight dexamathasone suppression test

- The patient takes 1 mg dexamethasone orally at 2300h and the following morning at 0900h a blood sample is taken for plasma cortisol.
- A normal response is shown by suppression of 0900 h cortisol to < 50 nmol/L.