

Internet Security

- Network Layer Security
- Application Layer Security
- System Security

Network Layer Security

- Packets might be
 - Modified in transit
 - May be spoofed
 - May contain bad payload.
- Network layer security provides
 - Authentication and integrity
 - Confidentiality
 - Access control

Application Layer Security

- Safeguards built into a particular application.
- Becomes more important as trust in network layer security diminishes.
- Provides
 - Authentication
 - Access Control
 - Confidentiality
 - Data integrity
 - Non-repudiation

System Security

- Protection of a particular end system by
 - Removal of known vulnerabilities (patching)
 - Minimal penetration risk configuration
 - Limits ports on which it listens
 - Limits services that run.
 - Authentication of downloaded software
 - Proper audit mechanisms
 - Up-to-date administration
 - Password changes enforced.
 - Guessable passwords are disallowed.
 - User accounts reflect needs.

Firewalls

Border Router

 First / last router under control of system administration.

DMZ

- Demilitarized zone.
- Security is low, since not protected by firewall. Locate webservers and other services there that generate potentially unsafe traffic.

Firewall

 Filters packages based on a variety of rules.

Firewalls

IDS

- IDS
 - Intrusion Detection System.
 - NIDS: glean intrusion signatures from traffic.
 - HIDS: monitor activity at a host on which they are located.

- Configuration Management
 - Known vulnerabilities account for most of actually perpetrated exploits.
 - For most of them, patches were available, but not installed.
 - CM tries to enforce uniform security policies.
- Backdoors
 - An entrance into the system that avoids perimeter defenses.

- Configuration Management
 - Planning
 - Identifying and implementing
 - Controlling
 - Monitoring (automated)
 - Remediation

Firewall Packet Filtering

- Static Packet Filtering
 - Allow or deny access to packets based on internal characteristics.

```
access list 111 deny ip host 205.205.205.205.1 any access list 111 permit tcp host 205.205.205.205.1 any access list 111 deny icmp any any echo-request access list 111 permit icmp any any packet-to-big access list 111 deny icmp any any
```

Cisco extended ACL

Difficult to design efficient rules.

- Easy to get the rules tables wrong and allow bad traffic.
- Security risks
 - People can piggy-back bad messages in harmless ones.
 - http traffic is known to be used as a backdoor.

- Configuring a packet filter:
 - Security Policy: what is allowed, what is not allowed.
 - Allowable types of packets must be specified logically, in terms of logical expression on packet fields.
 - Expressions need to be rewritten in the firewall vendor's language.

Example

- Security Policy:
 - Allow inbound mail messages (SMTP, port 25), but only to gateway.
 - Block host faucet.

action	Our host	port	Their host	port	comment
block	*	*	faucet	*	We don't trust these people.
allow	OUR-GW	25	*	*	Connection to our SMTP server

Example

- If no rule applies, then the packet is dropped.
 - Without additional rules, our rule set would drop all non-mail packets. There would also be no replies.
- Beware of a rule like this (intended to allow acks)

action	Our host	port	Their host	port	comment
allow	*	*	*	25	Connection to their SMTP port

- Based solely on outside host's port number.
 - Port 25 is usually the mail port.
 - But there is no guarantee.

- Example
 - Expand rule set to allow connection with the outside:

action	Our host	port	Their host	port	Flag	comment
block	*	*	faucet	*		
allow	OUR-GW	25	*	*		
allow	(our host)	*	*	25		Our packets to their port
allow	*	25	*	*	ACK	Their replies

Specify the names of all machines allowed to send mail to the outside here.

- Address Spoofing
 - At a minimum:
 - Don't allow inside source addresses coming in.
 - Don't allow outside source addresses going out.
 - Block source routing at the border routers.

Routing Information

- If a node is unreachable from the outside then the node is almost (but not quite) as safe as a node disconnected from the net.
- Internal routers should not advertise paths to such nodes to the outside.
- Filter routes learned from the outside:
 - Subversion by route confusion.
 - Route squatting:
 - Use internal addresses that belong to a different domain.
 - The nodes are de facto unreachable from the outside.
 - Use non-announced addresses. (e.g. 10.x.x.x)
 - But beware, when companies merge, these addresses tend to be incompatible.
 - So pick addresses in unpopular address ranges.

Performance

- Packet filtering is done at the border.
 - No degradation for the internal network.
- Typically, connection to ISP is the bottleneck.
- However:
 - Degradation depends on the number of rules applied.
 - Can be mitigated by careful ordering of rules.

Firewall Application Level Filtering

- Packet filters only look at
 - The source address
 - The destination address
 - TCP / UDP port numbers
 - TCP / UDP flags.
- Application filters deals with the details of the service they are checking.
 - E.g. a mail application filter looks at
 - RFC 822 headers.
 - MIME attachments.
 - Might identify virus infected attachments.

Firewall Application Level Filtering

Snort:

 Allows to set up rules that pass a packet on to another service.

Commercial firewalls

- Include application level filters for many products.
- Use non-disclosure agreement to obtain proprietary protocols

Firewall Dynamic Packet Filtering

- Stateful Firewall
- Still look at each packet.
- Maintains a state of each connection.
 - Implements connection filtering.
 - Dynamically adjust a filtering table of current connections.
 - Implementation
 - Adjust the filtering rules dynamically.
 - E.g.: We started an HTTP connection to a given host.
 - Now HTTP packages from that host are allowed.
 - OR: Terminate the connection at the firewall and then have the firewall call the ultimate destination (proxying).

Proxy Firewalls

- Proxies act on behalf of a client.
- Proxy firewall
 - Reverse Proxy
 - Receives packages on one card.
 - Processes requests.
 - Translates them into internal requests on other card.
 - Receives answers from inside and translates to the outside.

Proxy Firewalls

Proxy firewall

- Forward Proxy
 - Receives requests from the inside.
 - Processes requests.
 - Translates them into requests to the outside on other card.
 - Receives answers from outside and translates to the inside.
- Acts on behalf of inside machine that is protected from the vagaries of the internet.

Proxy Firewalls

- Application level proxies work at the level of application.
- Circuit-level proxies
 - does not understand the application
 - makes filtering decisions by validating and monitoring sessions.

VPN

- VPN uses connections over an existing public network
- Connection secured with encryption
 - Host to Host
 - Host to Gateway
 - Gateway to Gateway

- Encryption can be done at
 - Application level.
 - Transport level.
 - Network level.
 - Data link level.

- Application Level
 - Pretty Good Privacy
 - Secure Shell (SSH)
- Transport Level
 - Secure Socket Layer
 - Does not protect the package, but its content.
 - Typically runs at the application level of the OS, so OS does not need to be changed.
- Network Level
 - IPSec
 - Encrypts package itself.
 - Encrypted package receives a new package header.
 - IPSec protects port address, but not destination address.
 - OS need to be changed (but only once: Win2000, WinXP)
- Data Link
 - Layer 2 Tunneling Protocol addition to Point-to-Point protocol (PPP)
 - Encrypts packets on the data layer.

- Alternatives are dedicated point-to-point connections such as a private T1 line.
 - Most secure.
 - Most expensive.
 - Takes time to set-up.

IPSec Overview

- Changes the IP layer to provide security.
 - Transport mode
 - Protects the upper-layer protocol (TCP) data in each packet and provides end-to-end protection
 - Tunnel mode
 - Protects an entire IP packet by enveloping it in a new packet with its own plaintext IP header.

IPSec

- Implemented below the transport layer.
- No application needs to be rewritten.
- Is part of the OS.

Applications

TCP

IPsec

IP

lower layers

- An IPSec packet in tunnel mode completely encapsulates the payload.
- IP Header is either an
 - Authentication Header
 - ESP Encapsulating Security Payload that tells the user which Security Association to use.

IP Header

IPSec header

Secure IP Payload

IPSec

- Security Association
 - Cryptographically protected connection.
 - Paradigm to manage authentication and confidentiality between sender and receiver.
 - Unidirectional.
 - IPSec header contains SPI (Security Parameter Index) that identifies the security association.
 - Allows partner to look up the necessary data such as the key in SA database.

- Security Association Database
 - When X transmits to Y in IPSec, X looks up Y in the SA database.
 - Provides key
 - Provides SPI
 - Provides algorithms to be used
 - Provides sequence number
 - When Y receives a transmission, Y uses the SPI and the destination address to find the SA.

- Security Policy Database
 - Specifies what to do with packets:
 - Dropping
 - Forwarded and accepted without IPSec protection
 - Forwarded and protected by IPSec
 - Decision based on fields in the IPsec packet.

- Two types of IPsec headers.
- AH
 - Authentication header.
 - Provides integrity protection only.
 - Allows firewalls to peek at TCP ports.
- ESP
 - Encapsulating Security Payload
 - Optional integrity protection
 - Optional encryption

Transport mode versus Tunnel mode

Original Packet	IPsec Package in Transport Mode	IPSec Package in Tunnel Mode
IP header rest	IP header IPsec header rest	new IP hdr IPSec IP header rest

IPsec in tunnel mode for a VPN:

IP: src=R1, dst=R2 | ESP | IP: src=A, dst=B | packet

- 1995: deployed in Netscape Navigator as SSLv2.
- 1995: Microsoft fixes SSLv2 and introduces a similar protocol
 - Private Communication Technology (PCT)
- 1996: Netscape introduces SSLv3
- 1999: IETF introduces Transport Layer Security.
- SSLv3 remains the most implemented protocol.

- SSL is built on top of TCP.
 - TCP provides reliable packet delivery.
 - Rogue packet problem:
 - Maliciously introduced TCP packet.
 - Easy to do, since it only needs to satisfy the noncryptographic TCP checksum.
 - SSL disregards the package.
 - TCP however will not accept the true packet, because it looks like a double to it.
 - SSL will have to start over.

- Various keys are formed from various random numbers exchanged during the protocol.
- Negotiate crypto-protocols.

- SSL sessions are long-lived.
- Many SSL connections can be derived from an SSL session.

Secure Socket Layer: Session Connection

S is a random number, the pre-master secret.

K is the master secret, calculated from R_{Alice} , R_{Bob} , S

Secure Socket Layer: Session Resumption

- If Bob wants to have multiple connections per session, he sends in Message 2 a session id.
- If Alice presents in Message 1 a session id, they skip the handshake.
- Alice can still negotiate ciphers with Bob who might have changed policies.

- SSL comes deployed with public keys of various trusted organizations.
- User can modify this list.
- User verifies public keys by sending certificate requests to the organizations in the list.

- SSLv3 upgrades:
 - Protects against the "downgrade attack"
 - Active attacker replaces the initial messages with ones containing weak crypto.
 - Protects against the "truncation attack"
 - Active attacker sends a TCP close (FIN) message.
 - TCP is not protected, so the connection is abnormally terminated without SSL being aware of it.

- SSH client and server are applications (running on top of OS).
- SSH consists of a bunch of applications.
- But SSH is not a UNIX shell.

- Client contacts server.
- Client and server disclose the SSH versions they support.
- Client and server switch to a packet based protocol.
 - Packet consists of
 - 4B length,
 - 1-8B of random padding,
 - one-byte packet type code,
 - packet payload data,
 - four-byte integrity check field.

- Server identifies itself by sending
 - Host key
 - Server key
 - 8 random bytes (use as cookie)
 - List of encryption, compression, authentication methods.
- Both sides compute a 128b session identifier.

- When the client receives the host key, the client looks into the known host database.
- If the host key matches the one in the database then the client proceeds.
- If the host is in the database but with a different key, then the client queries the user.
- Otherwise, the client warns the user and proposes to add host and key to the known host database.

- Client randomly generates a session key.
 - Clients sends the session key encrypted with the server key and then with the host's public key.
 - Together with the choice of crypto-suites.
- Both sides now use the session key for encryption.
 - Server sends confirmation message encrypted with the session key.
 - This proves the server's authenticity to the client.

WAP: Wireless Application Protocol

 Wireless information and telephony services on wireless phones