Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 6D B-Splines

B-spline Curves

- B-splines are another common class of spline curves
- 2 major advantages over Bezier curves
 - Allow local control over the shape of the curve or surface
 - Bezier curves: control points most heavily influence the part of the curve closest to it but they also have some effect on the rest of the curve
 - Degree of the polynomial can be set independently
 - Does not depend on the number of control points as in Bezier curves
 - Cannot use Bezier curve to approximate n points without either increasing the degree of the curve or using multiple curve segments
- Disadvantage: more complex than Bezier curves

B-spline Curves (cont.)

 Expression for calculating coordinate positions along a B-spline curve using blending function B:

$$p(t) = \sum_{i=0}^{n} B_{i,d}(t)p_i \qquad t_{\min} \le t \le t_{\max}, 2 \le d \le n+1$$

- p_i are the set of n+1 control points
- Blending functions Bi,d are polynomials of degree d
 - 2 <= d <= n+1 (number of control points)
- Local control is achieved by defining the blending functions over d subintervals of the total range of t
 - The selected set of endpoints t_i is referred to as the **knot vector**
 - Can choose any value for subinterval endpoints
 - Non decreasing: t_j <= t_{j+1}
 - t_{min} and t_{max} depend on number of control points, the value of d, and how we set up the knot vector

B-spline Curve Properties

- Polynomial curve has degree d-1 and exhibits C^{d-2} continuity over the range of t
- For n+1 control points the curve is described with n+1 blending functions
- Each blending function B_{i,d} is defined over d subintervals of the range of t, starting at knot value t_i
- Range of t is divided into n+d subintervals by the n+d+1 values of the knot vector
- With knot values $\{t_0, t_1, ..., t_{n+d}\}$ the B-spline curve is defined only in the interval from knot value t_{d-1} up to knot value t_{n+1}
- Each section of the spline curve between two successive knot values is influenced by d control points

B-spline Curve Properties (cont)

- One control point can affect the shape of at most d curve sections
 - Exhibits local control
- B-spline curves follow the shape of the control polygon and are constrained within the convex hull formed by the control points
 - Like Bezier curves
- This is derived from the fact that for any value of t in the interval t_{d-1} to t_{n+1} , the sum of all blending functions is 1

$$\sum B_{i,d}(t) = 1$$

 Curve is transformed by applying combination of linear transformations to its control point representation

Cox-deBoor Recursive Functions

- B-spline blending functions can be defined by the Cox-deBoor recursive formula
 - Able to generate uniform or non-uniform B-splines of any degree using a single recursive formula

$$B_{i,1}(t) = \begin{cases} 1 & t_i \le t < t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

$$B_{i,d}(t) = \frac{t - t_i}{t_{i+d-1} - t_i} B_{i,d-1}(t) + \frac{t_{i+d} - t}{t_{i+d} - t_{i+1}} B_{i+1,d-1}(t)$$

Uniform B-splines

- Uniform B-splines are formed by specifying a constant spacing between knot values
 - Often knot values are normalized to the range [0, 1]
 - { 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 }
 - Sometimes set uniform knot values starting at 0 with an interval of 1
 - { 0, 1, 2, 3, 4, 5, 6, 7 }
- Uniform B-splines have periodic blending functions
 - For given values of n and d all blending functions have the same shape
 - Each successive blending function is a shifted version of the previous:

$$B_{i,d}(t) = B_{i+1,d}(t + \Delta t) = B_{i+2,d}(t + 2\Delta t)$$

where Δt is the knot interval

Cubic, Uniform B-splines

- Cubic, uniform B-splines are commonly used in computer graphics
 - Useful for generating certain closed curves
- Cubics
 - d = 4: blending function is described over 4 subintervals
 - Each blending function spans four subintervals of the range of t
 - Polynomial degree is 3
 - Have C² curve continuity

•
$$p(t) = \sum_{k=0}^{3} B_{i-3+k}(t) p_{i-3+k}$$

- Blending functions for t normalized to the range 0 to 1:
 - $B_i = 1/6 t^3$
 - $B_{i-1} = 1/6(-3t^3 + 3t^2 + 3t + 1)$
 - $B_{i-2} = 1/6(3t^3 6t^2 + 4)$
 - $B_{i-3} = 1/6(1-t)^3$

Cubic B-splines (cont.)

- Cubic B-spline curve is a series of n-2 curve segments
 - Label Q₃, Q₄, ..., Q_n
 - Determined from a set of n+1 control points, p_0 , p_1 , ..., p_n where (n>= 3)
 - Q₃ is defined by p₀p₁p₂p₃ which are scaled by B₀B₁B₂B₃
 - Q₄ is defined by p₁p₂p₃p₄ which are scaled by B₁B₂B₃B₄
 - Q₅ is defined by p₂p₃p₄p₅ which are scaled by B₂B₃B₄B₅
 - Each curve segment is defined by 4 control points
 - Each control point influences 4 curve segments
- Curve does not interpolate (pass through) any of the control points
 - Can force the curve to interpolate control points by repeating control points
 - Increases the influence of the control point on the curve
 - Leads to loss of continuity (may not be serious at the end points)

