Limites infinitos

Priscila Bemm

UEM

1/31

Objetivos

- Limites infinito;
- Limites no infinito;
- Limites infinito no Infinito
- Assíntotas.

2/31

Observe o comportamento da função $f(x)=\frac{1}{x}$ conforme os valores de x são tomados cada vez maiores.

Observe o comportamento da função $f(x)=\frac{1}{x}$ conforme os valores de x são tomados cada vez maiores.

۰		
	X	f(x)
	1	1
	2	0,5
	4	0,25
	5	0,2
	10	0,1
	20	0,05
	50	0,02
	100	0,01
	1000	0,001
	100000	0,00001
ĺ	200000	0,000005

Observe o comportamento da função $f(x)=\frac{1}{x}$ conforme os valores de x são tomados cada vez maiores.

×	f(x)
1	1
2	0,5
4	0,25
5	0,2
10	0,1
20	0,05
50	0,02
100	0,01
1000	0,001
100000	0,00001
200000	0,000005

• Vemos que quanto maior for o valor de x, mais próximo a função $f(x)=\dfrac{1}{x}$ estará de 0.

- O comportamento de uma variável x à medida que ela aumenta indefinidamente, ou seja, se afasta cada vez mais do zero em direção ao infinito positivo é representado matematicamente como $x \to \infty$.
- Dizemos "o limite da função quando x tende a ∞ é igual a 0". Notação:

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Calcule os limites a seguir:

$$\mathbf{0} \quad \lim_{x \to \infty} \frac{1}{x^2}$$

$$\lim_{x \to \infty} \frac{1}{x^5}$$

$$\lim_{x \to \infty} \frac{4}{x^2}$$

$$\lim_{x \to \infty} \frac{10}{x^5}$$

$$\lim_{x \to \infty} \frac{4 - x}{x^2}$$

$$\lim_{x \to \infty} \frac{10 + x^5}{x^5}$$

$$\lim_{x \to \infty} \frac{4x - x^2}{x^3}$$

$$\lim_{x \to \infty} \frac{2x^3 - x}{x^5}$$

Observe o comportamento da função $f(x)=\frac{1}{x}$ conforme os valores de x são tomados cada vez menores.

6/31

Observe o comportamento da função $f(x)=\frac{1}{x}$ conforme os valores de x são tomados cada vez menores.

Х	f(x)
-1	-1
-2	-0,5
-4	-0,25
-5	-0,2
-10	-0,1
-20	-0,05
-50	-0,02
-100	-0,01
-1000	-0,001
-100000	-0,00001
-200000	-0,000005

• Quanto menor for o valor de x, mais próximo a função $f(x)=\frac{1}{x}$ estará de 0.

Priscila Bemm (UEM)

• O comportamento de uma variável x à medida que ela diminui indefinidamente, ou seja, se afasta cada vez mais do zero em direção ao infinito negativo é representado matematicamente como $x \to -\infty$.

• Neste caso, dizemos "o limite da função quando x tende a $-\infty$ é igual a 0" e denotamos por:

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

$$\lim_{x\to -\infty}\frac{1}{x}=0 \qquad \qquad \mathrm{e} \qquad \qquad \lim_{x\to \infty}\frac{1}{x}=0$$

Mais limites no infinito

$$\bullet \lim_{x \to \infty} \frac{1}{x^2} = 0$$

$$\lim_{x \to \infty} \frac{1}{x^5} = 0$$

$$\lim_{x \to \infty} \frac{1}{x^{103}} = 0$$

$$\bullet \lim_{x \to \infty} \frac{2}{x^2} = 0$$

$$\bullet \lim_{x \to \infty} \frac{100}{x^2} = 0$$

$$\bullet \lim_{x \to -\infty} \frac{1}{x^2} = 0$$

$$\bullet \lim_{x \to -\infty} \frac{1}{x^5} = 0$$

$$\bullet \lim_{x \to -\infty} \frac{1}{x^{103}} = 0$$

$$\lim_{x \to -\infty} \frac{2}{x^2} = 0$$

$$\bullet \lim_{x \to -\infty} \frac{100}{x^2} = 0$$

Observação: De modo geral, para quaisquer números reais k e n, temos

$$\lim_{x\to -\infty}\frac{k}{x^n}=0 \text{ e } \lim_{x\to \infty}\frac{k}{x^n}=0$$

Priscila Bemm (UEM)

Exercícios

Calcule os limites a seguir:

$$\lim_{x \to \infty} \frac{10}{x^7}$$

$$\lim_{x \to \infty} 2 + \frac{17}{x^4}$$

$$\lim_{x \to \infty} \frac{3}{5 + x^5}$$

$$\lim_{x \to \infty} \frac{78}{x^6 - 2}$$

$$\lim_{x \to \infty} \frac{2x^2 - 3}{x^2 + 9}$$

$$\lim_{x \to \infty} \frac{x^5 + 13}{2 + 10x^5}$$

Priscila Bemm (UEM)

Assíntota Horizontal

Definição (Assíntota horizontal)

Seja $f:D\subset\mathbb{R}\to\mathbb{R}.$ Dizemos que a reta y=L é uma assíntota horizontal do gráfico de f se

$$\lim_{x\to +\infty} f(x) = L \quad \text{ou} \quad \lim_{x\to -\infty} f(x) = L.$$

11/31

 $\operatorname{Como}\,\lim_{x\to\infty}\frac{1}{x}=0 \text{ então }y=0 \text{ \'e uma assíntota horizontal da função }f(x)=\frac{1}{x}.$

Exemplos de Assíntotas Horizontais

Exemplos de Assíntotas Horizontais

Determine as assíntotas horizontais da curva definida por $f(x) = \frac{x^2 - 1}{x^2 + 1}$.

x	f(x)
0	-1
±1	0
±2	0,600000
±3	0,800000
±4	0,882353
±5	0,923077
±10	0,980198
±50	0,999200
±100	0,999800
±1000	0,999998

15 / 31

Determine as assíntotas horizontais da curva definida por $f(x) = \frac{x^2 - 1}{x^2 + 1}$.

х	f(x)
0	-1
±1	0
±2	0,600000
±3	0,800000
±4	0,882353
±5	0,923077
±10	0,980198
±50	0,999200
±100	0,999800
±1000	0,999998

Quanto maior o x, mais próximos de 1 ficam os valores de f(x). Essa situação é representada simbolicamente por

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

$$\lim_{x \to -\infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

Portanto, y=1 é assíntota horizontal da curva definida por f.

Mais exemplos

$$\bullet \lim_{x \to \infty} \frac{2x^2 + 3}{x^2 - 1} = 2, \text{ isto \'e}, \ f(x) = \frac{2x^2 + 3}{x^2 - 1} \text{ tem uma assíntota horizontal em } y = 2.$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸Q€

Mais exemplos

$$\bullet \lim_{x \to \infty} \frac{2x^2 + 3}{x^2 - 1} = 2 \text{, isto \'e, } f(x) = \frac{2x^2 + 3}{x^2 - 1} \text{ tem uma assíntota horizontal em } y = 2.$$

• $\lim_{x\to -\infty}e^{-x}=0$, isto é, $f(x)=e^{-x}$ tem uma assíntota horizontal em y=0.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 □ 9 0 0

Mais exemplos

$$\bullet \lim_{x \to \infty} \frac{2x^2 + 3}{x^2 - 1} = 2 \text{, isto \'e, } f(x) = \frac{2x^2 + 3}{x^2 - 1} \text{ tem uma assíntota horizontal em } y = 2.$$

• $\lim_{x\to -\infty}e^{-x}=0$, isto é, $f(x)=e^{-x}$ tem uma assíntota horizontal em y=0.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 □ 9 0 0

Observe o comportamento da função $f(x)=\frac{1}{x^2}$ conforme os valores de x são tomados cada vez mais próximos de 0.

17 / 31

Observe o comportamento da função $f(x)=\frac{1}{x^2}$ conforme os valores de x são tomados cada vez mais próximos de 0.

Х	f(x)
1	1
0,5	4
0,25	16
0,1	100
0,001	1000000
0,0001	100000000
0,0000001	1000000000000000

Х	f(x)
-1	1
-0,5	4
-0,25	16
-0,1	100
-0,001	1000000
-0,0001	100000000
-0,0000001	100000000000000

Priscila Bemm (UEM)

Observe o comportamento da função $f(x)=\frac{1}{x^2}$ conforme os valores de x são tomados cada vez mais próximos de 0.

х	f(x)
1	1
0,5	4
0,25	16
0,1	100
0,001	1000000
0,0001	100000000
0,0000001	100000000000000

Х	f(x)
-1	1
-0,5	4
-0,25	16
-0,1	100
-0,001	1000000
-0,0001	100000000
-0,0000001	100000000000000

Vemos que quanto mais próximo de 0 está o x, maior será o valor da função $f(x)=\frac{1}{x}$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕久で

• O comportamento de uma função f(x) à medida que ela aumenta indefinidamente é representado matematicamente como $f(x) \to \infty$.

• Neste caso, dizemos "o limite da função quando x tende a 0 é igual a ∞ ".

Notação:

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Limites infinitos

Observação

Isso não significa que consideramos ∞ como um número. E também não significa que o limite existe. Este limite representa que f(x) pode ser tão grande quando quisermos se tomarmos x suficientemente próximo de a.

11/m f/s

Assíntota Vertical

Definição (Assíntota vertical)

Seja $f:D\subset\mathbb{R}\to\mathbb{R}$. Dizemos que a reta x=a é uma assíntota vertical do gráfico de f se uma das coisas acontecer:

$$\bullet \lim_{x \to a^+} f(x) = \infty$$

•
$$\lim_{x \to a} f(x) = \infty$$

 $x \rightarrow a^-$

$$\bullet \lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

$$\bullet \lim_{x \to a^{-}} f(x) = -\infty$$

•
$$\lim_{x \to a} f(x) = -\infty$$

(a)
$$\lim_{x \to a^{-}} f(x) = \infty$$

(c)
$$\lim_{x \to a^{-}} f(x) = -\infty$$

(d)
$$\lim_{x \to a^+} f(x) = -\infty$$

Como
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
, segue que a reta $x = 0$ é uma assíntota vertical da função $\frac{1}{x^2}$

22 / 31

Como
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
, segue que a reta $x = 0$ é uma assíntota vertical da função $\frac{1}{x^2}$

22 / 31

Observação

- Para encontrar as assíntotas verticais de uma função, calculamos o limite da função quando x tende aos valores que causam indeterminação no denominador da função.
- Quando x tende a um número a e a função tende a ∞ ou $-\infty$ então x=a é uma assíntota vertical.
- Quando x tende a ∞ ou $-\infty$ e a função f(x) tende a um número a então y=a é uma assíntota horizontal.

Exemplo

Encontre as assíntotas verticais da curva determinada pela função $f(x) = \frac{2x}{x-3}$.

Como $3 \notin Dom(f)$, então vamos estudar o comportamento da função conforme x se aproxima de 3.

Exemplo

Encontre as assíntotas verticais da curva determinada pela função $f(x) = \frac{2x}{x-3}$.

Se x está próximo a 3 mas é maior que 3, então

- o denominador é um número positivo pequeno
- ullet 2x está próximo a 6
- Pelos itens anteriores, o quociente é um número positivo grande.

Portanto, intuitivamente, temos que $\lim_{x\to 3^+} \frac{2x}{x-3} = \infty.$

Exemplo

Encontre as assíntotas verticais da curva determinada pela função $f(x) = \frac{2x}{x-3}$.

Se x está próximo a 3 mas é menor que 3, então

- o denominador é um número negativo pequeno;
- 2x está próximo a 6;
- Pelos itens anteriores, o quociente é um número negativo grande.

Portanto, intuitivamente, temos que $\lim_{x \to 3^-} \frac{2x}{x-3} = -\infty$.

Exemplo

Encontre as assíntotas verticais da curva determinada pela função $f(x) = \frac{2x}{x-3}$.

Como $\lim_{x\to 3^+}\frac{2x}{x-3}=\infty$ e $\lim_{x\to 3^-}\frac{2x}{x-3}=-\infty$, temos que x=3 é uma assíntota vertical.

Exemplos de assíntotas verticais

Considere

$$\lim_{x \to 2} \frac{56}{x - 2}$$

$$\lim_{x \to -4} -(x+4)^{-1}$$

Exercícios

Para a função R, cujo gráfico é mostrado a seguir, diga quem são:

(a) $\lim_{x\to 2} R(x)$

(b) $\lim_{x\to 5} R(x)$

(c) $\lim_{x \to -3^{-}} R(x)$

(d) $\lim_{x \to -3^+} R(x)$

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to \infty} f(x) = \infty$$

27 / 31

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to \infty} f(x) = \infty$$

•
$$\lim_{x \to \infty} f(x) = \infty$$
 Ex: $\lim_{x \to \infty} x^2 = \infty$

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to \infty} f(x) = \infty \qquad \qquad \text{Ex: } \lim_{x \to \infty} x^2 = \infty$$

Isto é, que quanto maior for o valor de x, maior será o resultado de x^2 .

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to \infty} f(x) = \infty \qquad \qquad \text{Ex: } \lim_{x \to \infty} x^2 = \infty$$

Isto é, que quanto maior for o valor de x, maior será o resultado de x^2 .

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to \infty} f(x) = -\infty$$

28 / 31

Além dos conceitos passados até aqui existem também

•
$$\lim_{x \to \infty} f(x) = -\infty$$

•
$$\lim_{x \to \infty} f(x) = -\infty$$
 Ex: $\lim_{x \to \infty} -3x = -\infty$

Além dos conceitos passados até aqui existem também

$$\lim_{x\to\infty} f(x) = -\infty \qquad \text{Ex: } \lim_{x\to\infty} -3x = -\infty$$
 Isto é, que quanto maior for o valor de x , menor será o resultado de $-3x$.

28 / 31

Além dos conceitos passados até aqui existem também

$$\lim_{x\to\infty} f(x) = -\infty \qquad \text{Ex: } \lim_{x\to\infty} -3x = -\infty$$
 Isto é, que quanto maior for o valor de x , menor será o resultado de $-3x$.

28 / 31

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to -\infty} f(x) = \infty$$

29 / 31

Além dos conceitos passados até aqui existem também

•
$$\lim_{x \to \infty} f(x) = \infty$$

$$\bullet \lim_{x \to -\infty} f(x) = \infty \qquad \qquad \text{Ex: } \lim_{x \to -\infty} x^2 = \infty$$

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to -\infty} f(x) = \infty \qquad \qquad \text{Ex: } \lim_{x \to -\infty} x^2 = \infty$$

Isto é, que quanto menor for o valor de x, maior será o resultado de x^2 .

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to -\infty} f(x) = \infty \qquad \qquad \text{Ex: } \lim_{x \to -\infty} x^2 = \infty$$

Isto é, que quanto menor for o valor de x, maior será o resultado de x^2 .

Além dos conceitos passados até aqui existem também

$$\bullet \lim_{x \to -\infty} f(x) = -\infty$$

30/31

Além dos conceitos passados até aqui existem também

•
$$\lim_{x \to \infty} f(x) = -\infty$$

$$\bullet \lim_{x \to -\infty} f(x) = -\infty \qquad \qquad \text{Ex: } \lim_{x \to -\infty} 4x = -\infty$$

Priscila Bemm (UEM)

Além dos conceitos passados até aqui existem também

Exercícios

Determine se as funções a seguir possuem assíntotas. Em caso afirmativo, determine quais são as assíntotas.

•
$$f(x) = \frac{3x+1}{x}$$

• $f(x) = 5x^3 + 2x^2$

$$f(x) = 5x^3 + 2x^2$$

$$f(x) = \frac{2x}{x+1}$$

$$f(x) = 5x^{3} + 2x$$

$$f(x) = \frac{2x}{x+1}$$

$$f(x) = \frac{x^{3}+1}{x}$$

$$f(x) = \frac{3}{x+1}$$

$$f(x) = e^{-x}$$

5
$$f(x) = \frac{3}{x+1}$$

6
$$f(x) = e^{-x}$$

31 / 31