

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年11月27日

出 願 番 号 Application Number:

特願2002-343792

[ST. 10/C]:

[J P 2 0 0 2 - 3 4 3 7 9 2]

出 願 人
Applicant(s):

コニカミノルタホールディングス株式会社

2003年 8月20日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

DKT2524754

【あて先】

特許庁長官殿

【国際特許分類】

B41I 2/01

CO9D 11/00

【発明者】

【住所又は居所】

東京都日野市さくら町1番地コニカ株式会社内

【氏名】

岩本 京子

【発明者】

【住所又は居所】

東京都日野市さくら町1番地コニカ株式会社内

【氏名】

鈴木 隆嗣

【発明者】

【住所又は居所】

東京都日野市さくら町1番地コニカ株式会社内

【氏名】

▲高▼橋 真理

【発明者】

【住所又は居所】

東京都日野市さくら町1番地コニカ株式会社内

【氏名】

池洲 悟

【特許出願人】

【識別番号】

000001270

【氏名又は名称】 コニカ株式会社

【代表者】

岩居 文雄

【手数料の表示】

【予納台帳番号】

012265

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 色素およびインクジェット記録液

【特許請求の範囲】

【請求項1】 下記一般式1で表される色素。

【化1】

〔式中、Zは含窒素 6 員芳香環を形成する基を表し、 R_{11} は水素結合性基を表し、 R_{12} 、 R_{13} 、 R_{14} は水素原子または置換基を表し、n 1 2 は 1 \sim 3 の整数を表し、n 1 1 、n 1 3 は 1 \sim 4 の整数を表す。〕

【請求項2】 一般式1が、一般式2、3、4、5、6または7のいずれかで表されることを特徴とする請求項1に記載の色素。

【化2】

〔一般式 $2 \sim 7$ 中、 R_{21} , R_{31} , R_{41} , R_{51} , R_{61} , R_{71} は水素結合性基を表し、 R_{22} , R_{23} , R_{24} , R_{32} , R_{33} , R_{34} , R_{35} , R_{42} , R_{43} , R_{44} , R_{45} , R_{52} , R_{53} , R_{54} , R_{55} , R_{62} , R_{63} , R_{64} , R_{65} , R_{72} , R_{73} , R_{74} は水素原子ま

たは置換基を表し、n21, n23, n31, n33, n41, n43, n51, n53, n61, n63, n71, n73は1~4の整数を表し、n22, n32, n42, n52, n62, n72は1~3の整数を表す。〕

【請求項3】 一般式1が、一般式2または一般式3で表されることを特徴とする請求項1に記載の色素。

【請求項4】 前記請求項1、2または3に記載の色素を含有するインクジェット記録液。

【請求項5】 前記一般式1~7で表される色素が、スルホン酸基もしくはカルボキシル基を有することを特徴とする請求項4に記載のインクジェット記録液。

【請求項6】 前記一般式1~7で表される色素が、微粒子分散物として含有されることを特徴とする請求項4に記載のインクジェット記録液。

【請求項 7 】 前記一般式 $1 \sim 7$ で表される色素が、油溶性ポリマーとともに微粒子分散物として含有されることを特徴とする請求項 4 に記載のインクジェット記録液。

【発明の詳細な説明】

 $\{00001\}$

【発明の属する技術分野】

本発明は特定の色素およびそれを含有するインクジェット記録液に関するものであり、特に、色画像堅牢性に優れたインクジェット記録液に関するものである

[00002]

【従来の技術】

近年、画像記録材料としては、特にカラー画像を形成するための材料が主流であり、具体的には、インクジェット方式記録材料、感熱転写型画像記録材料、電子写真方式を用いる記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等が盛んに利用されている。また、ディスプレーではLCDやPDPにおいて、撮影機器ではCCDなどの電子部品において、カラーフィルターが使用されている。これらのカラー画像記録材料やカラーフィルターでは、フルカラー画像

を再現あるいは記録するために、いわゆる加法混色法や減法混色法の3原色(の 染料や顔料)が使用されているが、さまざまな使用条件に耐えうる堅牢な色素が ないのが実状であり、改善が強く望まれている。

[0003]

インクジェット用のインクにおいては、使用される記録方式に適合すること、 高い記録画像濃度を有し色調が良好であること、耐光性や耐熱性および耐水性と いった色画像堅牢性に優れること、被記録媒体に対して定着が速く記録後に、に じまないこと、インクとしての保存性に優れていること、毒性や引火性といった 安全性に問題がないこと、安価であること等が要求される。

[0004]

このような観点から、種々のインクジェット用の記録液が提案、検討されているが、要求の多くを同時に満足するような記録液はきわめて限られている。

[0005]

イエロー、マゼンタ、シアン、ブラックを用いたカラー画像記録においては、例えばC. I. インデックスに記載されている従来から公知のC. I. ナンバーを有する染料、顔料が広く検討されてきた。例えば水溶性染料を用いたマゼンタのインクにおいては、C. I. アシッドレッド52のようなキサンテン系、C. I. ダイレクトレッド20のようなアゾ系の水溶性染料を使用したものが知られているが、これらはプリンターでの目詰まりに対する高い信頼性を有しているが、その反面、耐光性のような堅牢性および耐水性に問題を有していた。一方、C. I. ピグメントレッド122のようなキナクリドン系の顔料を使用したものが知られているが、これらは比較的高い堅牢性を有するものの、印字濃度が上がらない、またはブロンジング等の色再現性の問題を起こしやすい。このように従来から良く知られている染料や顔料では、インクジェット用インクに要求される色相と堅牢性とを両立させることは難しい。

[0006]

この問題点を解決すべく、特許文献1中には色調と耐光性の両立を目的とした アントラピリドン化合物およびその水性インク組成物が示されているが、耐光性 のレベルは十分ではなく、さらなる改良が望まれていた。 [0007]

【特許文献1】

特開平10-306221号公報

[0008]

【発明が解決しようとする課題】

本発明の目的は、堅牢性に優れた色素、特に色画像の耐光性に優れたインクジェット記録液、特に主な対象としてはマゼンタ色のインクジェット記録液を提供することにある。またさらに本発明の目的は、高耐光性に加え、長期使用を保証できる水系インクジェット記録液を提供することにある。

[0009]

【課題を解決するための手段】

本発明の上記目的は、本発明者らが、鋭意研究を重ねた結果、以下の構成により達成された。

[0010]

- 1. 前記一般式(1)で表される色素。
- 2. 一般式1が、前記一般式2、3、4、5、6または7のいずれかで表されることを特徴とする前記1に記載の色素。

[0011]

3. 一般式1が、一般式2または一般式3で表されることを特徴とする前記1に記載の色素。

[0012]

- 4. 前記1、2または3に記載の色素を含有するインクジェット記録液。
- 5. 前記一般式1~7で表される色素が、スルホン酸基もしくはカルボキシル基を有することを特徴とする前記4に記載のインクジェット記録液。

[0013]

6. 前記一般式 1 ~ 7 で表される色素が、微粒子分散物として含有されることを特徴とする前記 4 に記載のインクジェット記録液。

 $[0\ 0\ 1\ 4]$

7. 前記一般式1~7で表される色素が、油溶性ポリマーとともに微粒子分散

物として含有されることを特徴とする前記4に記載のインクジェット記録液。

[0015]

以下、本発明の一般式1で表される化合物について詳細に説明する。

一般式1において、2は6員の芳香環を形成する含窒素原子群を表す。2が形成する環としては、ピリジン環、ピリミジン環、ピリダジン環が挙げられ、これらはさらに置換基を有していてもよい。

[0016]

 R_{11} は水素結合性基を表す。水素結合性基とは、前記Zで表される基が形成する含窒素 6 員芳香環中の窒素原子と水素結合する活性な水素原子を含有する基を表す。 R_{11} が表す好ましい水素結合性基の具体例は-OH, $-NHCOR_4$, $-NHCOR_4$, $-NHSO_2R_4$, $-NHSO_2NHR_4$ (R_4)は置換基を表し、好ましくはアルキル基、アリール基、ヘテロ環基などが挙げられる)等が挙げられ、好ましくは-OH, $-NHSO_2R_4$ である。

[0017]

R12, R13およびR14は水素原子または置換基を表す。これらの置換基としては特に制限はないが、代表的には、アルキル、アリール、アニリノ、アシルアミノ、スルホンアミド、アルキルチオ、アリールチオ、アルケニル、シクロアルキル等の各基が挙げられ、さらにこの他にハロゲン原子及びシクロアルケニル、アルキニル、複素環、スルホニル、スルフィニル、ホスホニル、アシル、カルバモイル、スルファモイル、シアノ、アルコキシ、アリールオキシ、複素環オキシ、シロキシ、アシルオキシ、スルホニルオキシ、カルバモイルオキシ、アミノ、アルキルアミノ、イミド、ウレイド、スルファモイルアミノ、アルコキシカルボニルアミノ、アリールオキシカルボニル、アリールオキシカルボニル、複素環チオ、チオウレイド、カルボキシ、ヒドロキシ、メルカプト、ニトロ、スルホ等の各基、ならびにスピロ化合物残基、有橋炭化水素化合物残基等も挙げられる。

[0018]

一般式1においてn11、n13は1~4の整数、n12は1~3の整数を表 す。n11、n12、n13が2以上のとき、それぞれ2以上のR₁₂、R₁₃、R $_{14}$ は、同じであっても異なっていても良く、また $_{14}$ は、同じであっても異なっていても良く、また $_{14}$ が互いに結合して環を形成していてもよい。

[0019]

一般式 2 において R_{21} は水素結合性基を表し、具体例としては、一般式 1 における R_{11} と同様の置換基をあげることができ、また好ましい置換基も同様である。

[0020]

 R_{22} 、 R_{23} 、 R_{24} および R_{25} は水素原子または置換基を表し、これらを表す置換基の例としては、一般式1における R_{12} 、 R_{13} 、 R_{14} と同様の置換基を挙げることができる。

[0021]

一般式 2 において n 2 1 、 n 2 3 は 1 ~ 4 の整数、 n 2 2 は 1 ~ 3 の整数を表す。 n 2 1 、 n 2 2 、 n 2 3 が 2 以上のとき、それぞれ 2 以上の R_{22} 、 R_{23} 、 R_{24} は、同じであっても異なっていても良く、また n 1 1 、 n 1 2 および n 1 3 が 2 以上のとき、 2 つの R_{22} 、 R_{23} あるいは R_{24} が互いに結合して環を形成していてもよい。

[0022]

一般式3において R_{31} は水素結合性基を表し、具体例としては、一般式1における R_{11} と同様の置換基をあげることができ、また好ましい置換基も同様である

[0023]

 R_{32} 、 R_{33} 、 R_{34} および R_{35} は水素原子または置換基を表し、これらを表す置換基の例としては、一般式1における R_{12} 、 R_{13} 、 R_{14} と同様の置換基を挙げることができる。

[0024]

一般式 3 において n 3 1 、 n 3 3 は 1 \sim 4 の整数、 n 3 2 は 1 \sim 3 の整数を表す。 n 3 1 、 n 3 2 、 n 2 3 が 2 以上のとき、それぞれ 2 以上の R_{32} 、 R_{34} 、 R_{35} は、同じであっても異なっていても良く、また n 3 1 、 n 3 2 および n 3 3 が

2以上のとき、2つの R_{32} 、 R_{34} あるいは R_{35} が互いに結合して環を形成していてもよい。

[0025]

一般式 4 において R_{41} は水素結合性基を表し、具体例としては、一般式 1 における R_{11} と同様の置換基をあげることができ、また好ましい置換基も同様である

[0026]

 R_{42} 、 R_{43} 、 R_{44} および R_{45} は水素原子または置換基を表し、これらを表す置換基の例としては、一般式1における R_{12} 、 R_{13} 、 R_{14} と同様の置換基を挙げることができる。

[0027]

一般式4においてn41、n43は $1\sim4$ の整数、n42は $1\sim3$ の整数を表す。n41、n42、n43が2以上のとき、それぞれ2以上の R_{42} 、 R_{44} 、 R_{45} は、同じであっても異なっていても良く、またn41、n42およびn43が2以上のとき、2つの R_{42} 、 R_{44} あるいは R_{45} が互いに結合して環を形成していてもよい。

[0028]

一般式 5 において R_{51} は水素結合性基を表し、具体例としては、一般式 1 における R_{11} と同様の置換基をあげることができ、また好ましい置換基も同様である。

[0029]

 R_{52} 、 R_{53} 、 R_{54} および R_{55} は水素原子または置換基を表し、これらを表す置換基の例としては、一般式1における R_{12} 、 R_{13} 、 R_{14} と同様の置換基を挙げることができる。

[0030]

一般式 5 において n 5 1 、 n 5 3 は 1 \sim 4 の整数、 n 5 2 は 1 \sim 3 の整数を表す。 n 5 1 、 n 5 2 、 n 5 3 が 2 以上のとき、それぞれ 2 以上の R_{52} 、 R_{54} 、 R_{55} は、同じであっても異なっていても良く、また n 5 1 、 n 5 2 および n 5 3 が 2 以上のとき、 2 つの R_{52} 、 R_{54} あるいは R_{55} が互いに結合して環を形成してい

てもよい。

[0031]

一般式6においてR₆₁は水素結合性基を表し、具体例としては、一般式1におけるR₁₁と同様の置換基をあげることができ、また好ましい置換基も同様である。

[0032]

 R_{62} 、 R_{63} 、 R_{64} および R_{65} は水素原子または置換基を表し、これらを表す置換基の例としては、一般式1における R_{12} 、 R_{13} 、 R_{14} と同様の置換基を挙げることができる。

[0033]

一般式 6 において n 6 1 、 n 6 3 は 1 \sim 4 の整数、 n 6 2 は 1 \sim 3 の整数を表す。 n 6 1 、 n 6 2 、 n 6 3 が 2 以上のとき、それぞれ 2 以上の R_{62} 、 R_{64} 、 R_{65} は、同じであっても異なっていても良く、また n 6 1 、 n 6 2 および n 6 3 が 2 以上のとき、 2 つの R_{62} 、 R_{64} あるいは R_{65} が互いに結合して環を形成していてもよい。

[0034]

一般式7において R_{71} は水素結合性基を表し、具体例としては、一般式1における R_{11} と同様の置換基をあげることができ、また好ましい置換基も同様である。

[0035]

 R_{72} 、 R_{73} および R_{74} は水素原子または置換基を表し、これらを表す置換基の例としては、一般式1における R_{12} 、 R_{13} 、 R_{14} と同様の置換基を挙げることができる。

[0036]

一般式 7 において n 7 1、 n 7 3 は 1 ~ 4 の整数、 n 7 2 は 1 ~ 3 の整数を表す。 n 7 1、 n 7 2、 n 7 3 が 2 以上のとき、それぞれ 2 以上の R_{72} 、 R_{73} 、 R_{74} は、同じであっても異なっていても良く、また n 7 1、 n 7 2 および n 7 3 が 2 以上のとき、 2 つの R_{72} 、 R_{73} あるいは R_{74} が互いに結合して環を形成していてもよい。

[0037]

以下に本発明の色素の具体的化合物例を示すが、本発明はこれらに限定されない。

[0038]

尚、構造式中のMは、ナトリウム塩、カリウム塩、1/2カルシウム塩、もしくは、アンモニウム塩などの、カチオンを表し、nは1から5までの自然数を表す。

[0039]

【化3】

[0040]

【化4】

[0041]

【化5】

[0042]

【化6】

$$(A-20)$$

$$(A-20)$$

$$(A-20)$$

$$(A-21)$$

$$(A-21)$$

$$(A-21)$$

$$(A-21)$$

$$(A-22)$$

$$(A-24)$$

$$($$

[0043]

【化7】

[0044]

【化8】

[0045]

【化9】

[0046]

【化10】

$$(A-36) \qquad OCH_3 \qquad OH \qquad OH \qquad OCH_3 \qquad (SO_3M)_n$$

[0047]

【化11】

$$(A-39)$$

$$NHSO_2CH_3$$

$$NHSO_2CH_3$$

$$CH_3$$

$$CH_3$$

$$(SO_3M)_n$$

[0048]

【化12】

$$(A-42) \qquad \begin{array}{c} OCH_3 \\ NHSO_2CH_3 \\ NN \\ OHN \\ OHN \\ OCH_3 \end{array} \qquad \begin{array}{c} (SO_3M)_n \\ (SO_3M)_n$$

[0049]

【化13】

[0050]

【化14】

[0051]

【化15】

[0052]

【化16】

[0053]

【化17】

[0054]

【化18】

[0055]

【化19】

[0056]

【化20】

[0057]

【化21】

[0058]

【化22】

[0059]

【化23】

[0060]

【化24】

[0061]

【化25】

$$(B-37)$$

$$NHSO_{2}$$

$$CH_{3}$$

$$O \quad NHCH_{2}CH_{2}OH$$

$$(SO_{3}M)_{n}$$

[0062]

【化26】

[0063]

(SO₃M)_n

【化27】

[0064]

【化28】

$$(C-5) \qquad (C-6) \\ NHCONHCH_3 \qquad NHCOOC_2H_6 \\ N_1 \qquad N_2 \qquad NHCOCC_2H_6 \\ N_1 \qquad N_3 \qquad N_4 \qquad NHCOCC_2H_3 \\ N_2 \qquad NHSO_2CH_3 \qquad NHSO_2CH_3 \\ N_3 \qquad NHSO_2CH_3 \qquad NHSO_2CH_3 \qquad NHSO_2CH_3 \qquad NHSO_2CH_3 \\ NHSO_2CH_3 \qquad NHSO_2C$$

[0065]

【化29】

[0066]

【化30】

$$(C-12) \begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1$$

$$(C-13) \qquad \qquad NHCOOC_2H_5 \\ N \\ O \qquad HN \qquad \qquad (SO_3M)_n$$

$$(C-14) \qquad \qquad \begin{array}{c} NHCOOC_2H_5 \\ \\ N\\ \\ O \qquad HN \end{array}$$

[0067]

【化31】

[0068]

【化32】

【化33】

$$(D-9)$$

$$HO \longrightarrow CH_3$$

$$O \longrightarrow CH_3$$

$$O \longrightarrow CH_2$$

$$CH_3$$

$$O \longrightarrow CH_2$$

$$CH_3$$

$$O \longrightarrow CH_3$$

$$O \longrightarrow CH_3$$

$$(D-11) \begin{picture}(10,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1$$

[0070]

【化34】

$$\begin{array}{c|c} \text{(D-14)} & \\ \hline \\ c_3H_7\text{HNOCHN} \\ \hline \\ o & \text{HN} \\ \end{array} \\ \begin{array}{c} \text{(SO}_3\text{M)}_n \\ \end{array}$$

[0071]

【化35】

$$\begin{array}{c|c} \text{(D-15)} & & \\ & \text{H}_3\text{CO}_2\text{SHN} \\ & \text{H}_3\text{C} & \text{CI} \\ & \text{O} & \text{HN} \\ & & \text{(SO}_3\text{M)}_n \\ \end{array}$$

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

[0072]

【化36】

$$(E-1) \\ C_{3}H_{7}HNO_{2}SHN \\ (E-2) \\ H_{3}C_{N}CH_{3} \\ OCH_{2}CH_{3} \\ (E-3) \\ HO \\ OHN \\ OCH_{2}CH_{3} \\ OHN \\ OCH_{2}CH_{3} \\ OCH_{2}CH_{3} \\ OCH_{2}CH_{3} \\ OCH_{3} \\ OCH_{2}CH_{3} \\ OCH_{2}CH_{3} \\ OCH_{3} \\ OCH_{2}CH_{3} \\ OCH_{3} \\ OCH$$

[0073]

【化37】

[0074]

【化38】

$$(E-10) \qquad \qquad H_3C \searrow CH_3 \qquad \qquad \\ H_3CO_2SHN \qquad \qquad OCH_2CH_3 \qquad \qquad \\ NH \qquad O \qquad \qquad OCH_2CH_3 \qquad \qquad \\ NH \qquad O \qquad \qquad OCH_2CH_3 \qquad \qquad \\ NH \qquad O \qquad OCH_2CH_3 \qquad \qquad \\ NH \qquad OCH_2CH_3 \qquad \qquad \\ NH \qquad OCH_2CH_3 \qquad \qquad \\ NH \qquad O \qquad OCH_2CH_3 \qquad \qquad \\ NH \qquad OCH_2CH_3$$

[0075]

【化39】

[0076]

【化40】

[0077]

【化41】

[0078]

【化42】

[0079]

【化43】

$$(F-12) \qquad \qquad \qquad \\ H_3C \longrightarrow O_2SHN \qquad \qquad \\ N \longrightarrow N \qquad \qquad \\ O \qquad NHCH_2CH_2OCH_3 \qquad \qquad \\ \qquad \qquad \qquad \\ (SO_3M)_n$$

$$(F-13)$$

$$O_2SHN$$

$$N$$

$$O$$

$$HN$$

$$O$$

$$HN$$

$$(SO_3M)_n$$

[0080]

【化44】

[0081]

【化45】

[0082]

【化46】

$$(G-8)$$

$$OH$$

$$N_{2}N$$

$$(SO_{3}M)_{n}$$

$$(G-10) \begin{picture}(6-10) \put(100){H_3co} \put(100){N_1} \put(100){N_2} \put(100){N_2} \put($$

[0083]

【化47】

$$(G-12)$$

$$H_3C$$

$$N$$

$$N$$

$$O$$

$$HN$$

$$O$$

$$HN$$

$$(SO_3M)_n$$

[0084]

【化48】

[0085]

本発明の色素を含有するインクジェット記録液は、本発明の色素を1種類のみ 使用したものであっても、2種類以上の色素を併用したものであってもよく、ま た本発明外の色素と併用したものであってもよい。

[0086]

本発明の色素を含有するインクジェット記録液は水系溶媒、油系溶媒、固体(相変化)溶媒等の種々の溶媒系を用いることができ、特に水系溶媒を用いたとき本発明の効果を発揮する。

[0087]

水系溶媒は、水(例えばイオン交換水が好ましい)と水溶性有機溶媒を一般に

使用する。

[0088]

水溶性有機溶媒の例としては、アルコール類(例えば、メタノール、エタノー ル、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダ リーブタノール、ターシャリーブタノール、ベンジルアルコール等)、多価アル コール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレン グリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレング リコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール 、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等) 、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル 、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエー テル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメ チルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコー ルモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレング リコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエ ーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノ フェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類 (例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N ーメチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N ーエチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテ トラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエ チレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、 ホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド 等)、複素環類(例えば、2-ピロリドン、N-メチル-2-ピロリドン、シク ロヘキシルピロリドン、2ーオキサゾリドン、1,3ージメチルー2ーイミダゾ リジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン 類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられる

[0089]

上記のような水系溶媒は、本発明の色素がその溶媒系に可溶であればそのまま溶解して用いることができる。この場合、本発明の色素の水系溶媒への溶解性が重要であり、本発明の化合物が、スルホン酸基もしくはカルボキシル基を少なくとも1つ以上有することが好ましく、スルホン酸基もしくはカルボキシル基を少なくとも2つ以上有することがさらに好ましい。

[0090]

一方、本発明の色素が、その溶媒系にそのままでは不溶の固体である場合、色素を種々の分散機(例えば、ボールミル、サンドミル、アトライター、ロールミル、アジテーターミル、ヘンシェルミキサー、コロイドミル、超音波ホモジナイザー、パールミル、ジェットミル、オングミル等)を用いて微粒子化するか、あるいは可溶である有機溶媒に色素を溶解した後に、高分子分散剤や界面活性剤とともにその溶媒系に分散させることができる。さらに、そのままでは不溶の液体または半溶融状物である場合、そのままかあるいは可溶である有機溶媒に溶解して、高分子分散剤や界面活性剤とともにその溶媒系に分散させることができる。

[0091]

本発明の色素が、その溶媒系に不溶である場合には、微粒子化させてその溶媒系に分散させることが好ましく、150 nm以下の微粒子に分散されていることがさらに好ましい。

[0092]

また、本発明の色素が可溶である有機溶媒に色素を溶解した後に、油溶性ポリマーとともに微粒子分散物として水系溶媒に分散させることが、好ましい。

[0093]

このようなインクジェット記録液用に使用される水系溶媒の具体的調製法については、例えば特開平5-148436号、同5-295312号、同7-97541号、同7-82515号、同7-118584号公報等に記載の方法を参照することができる。

[0094]

次に油溶性ポリマーについて説明する。

前記油溶性ポリマーとしては、特に制限はなく、目的に応じて適宜選択するこ

とができるが、ビニルポリマーが好適に挙げられる。前記ビニルポリマーとして は、従来公知のものが挙げられ、水不溶性型、水分散(自己乳化)型、水溶性型 の何れもものであってもよいが、着色微粒子の製造容易性、分散安定性等の点で 水分散型のものが好ましい。

[0095]

前記水分散型のビニルポリマーとしては、イオン解離型のもの、非イオン性分散性基含有型のもの、あるいはこれらの混合型のもののいずれであってもよい。

[0096]

前記イオン解離型のビニルポリマーとしては、三級アミノ基などのカチオン性の解離性基を含有するビニルポリマーや、カルボン酸、スルホン酸などのアニオン性の解離性基を含有するビニルポリマーが挙げられる。前記非イオン性分散性基含有型のビニルポリマーとしては、ポリエチレンオキシ鎖などの非イオン性分散性基を含有するビニルポリマーが挙げられる。これらの中でも、着色微粒子の分散安定性の点で、アニオン性の解離性基を含有するイオン解離型のビニルポリマー、非イオン性分散性基含有型のビニルポリマー、混合型のビニルポリマーが好ましい。

[0097]

前記ビニルポリマーを形成するモノマーとしては、例えば、以下のものが挙げられる。即ち、アクリル酸エステル類、具体的には、メチルアクリレート、エチルアクリレート、ロープロピルアクリレート、イソプロピルアクリレート、nーブチルアクリレート、イソブチルアクリレート、secーブチルアクリレート、 nーブチルアクリレート、イソブチルアクリレート、secーブチルアクリレート、 tertーブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、2ーエチルへキシルアクリレート、オクチルアクリレート、tertーオクチルアクリレート、2ークロロエチルアクリレート、2ープロモエチルアクリレート、4ークロロブチルアクリレート、シアノエチルアクリレート、2ーアセトキシエチルアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、フルフリルアクリレート、デトラヒドロフルフリルアクリレート、フェニルアクリレート、5ーヒドロキシペンチルアクリレート、2、2ージメチルー3ーヒドロキシ

プロピルアクリレート、2-メトキシエチルアクリレート、3-メトキシブチルアクリレート、2-エトキシエチルアクリレート、2-ブトキシエチルアクリレート、2- (2-ブトキシエトキシ) エチルアクリレート、2- (2-ブトキシエトキシ) エチルアクリレート、3- (2-

[0098]

メタクリル酸エステル類、具体的には、メチルメタクリレート、エチルメタク リレート、nープロピルメタクリレート、イソプロピルメタクリレート、nーブ チルメタクリレート、イソブチルメタクリレート、 s e c - ブチルメタクリレー ト、tertーブチルメタクリレート、アミルメタクリレート、ヘキシルメタク リレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、クロロベ ンジルメタクリレート、オクチルメタクリレート、ステアリルメタクリレート、 2-(3-フェニルプロピルオキシ)エチルメタクリレート、フルフリルメタク リレート、テトラヒドロフルフリルメタクリレート、フェニルメタクリレート、 クレジルメタクリレート、ナフチルメタクリレート、2-ヒドロキシエチルメタ クリレート、4-ヒドロキシブチルメタクリレート、トリエチレングリコールモ ノメタクリレート、ジプロピレングリコールモノメタクリレート、2-メトキシ エチルメタクリレート、3-メトキシブチルメタクリレート、2-エトキシエチ ルメタクリレート、2-iso-プロポキシエチルメタクリレート、2-ブトキ シエチルメタクリレート、2-(2-メトキシエトキシ)エチルメタクリレート 、2-(2-エトキシエトキシ)エチルメタクリレート、2-(2-ブトキシエ トキシ) エチルメタクリレート、2-アセトキシエチルメタクリレート、2-ア セトアセトキシエチルメタクリレート、アリルメタクリレート、グリシジルメタ クリレート、2,2,2-テトラフルオロエチルメタクリレート、1H.1H. 2 H. 2 Hーパーフルオロデシルメタクリレートなどが挙げられる。

[0099]

ビニルエステル類、具体的には、ビニルアセテート、ビニルプロピオネート、

ビニルブチレート、ビニルイソブチレート、ビニルカプロエート、ビニルクロロアセテート、ビニルメトキシアセテート、ビニルフェニルアセテート、安息香酸ビニル、サリチル酸ビニルなどが挙げられる。

[0100]

[0101]

オレフィン類、具体的には、ジシクロペンタジエン、エチレン、プロピレン、 1ーブテン、1ーペンテン、塩化ビニル、塩化ビニリデン、イソプレン、クロロ プレン、ブタジエン、2,3ージメチルブタジエン等、スチレン類、例えば、ス チレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチ レン、イソプロピルスチレン、クロルメチルスチレン、メトキシスチレン、アセ トキシスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、ビニル 安息香酸メチルエステルなどが挙げられる。

[0102]

ビニルエーテル類、具体的には、メチルビニルエーテル、ブチルビニルエーテ

ル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。

[0103]

その他のモノマーとして、クロトン酸ブチル、クロトン酸ヘキシル、イタコン酸ジメチル、イタコン酸ジブチル、マレイン酸ジエチル、マレイン酸ジメチル、マレイン酸ジブチル、フマル酸ジエチル、フマル酸ジブチル、スチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトン、Nービニルオキサゾリドン、Nービニルピロリドン、ビニリデンクロライド、メチレンマロンニトリル、ビニリデン、ジフェニルー2ーアクリロイルオキシエチルホスフェート、ジフェニルー2ーメタクリロイルオキシエチルホスフェート、ジブチルー2ーアクリロイルオキシエチルホスフェート、ジオクチルー2ーメタクリロイルオキシエチルホスフェート、ジオクチルー2ーメタクリロイルオキシエチルホスフェート、ジオクチルー2ーメタクリロイルオキシエチルホスフェートなどが挙げられる。

[0104]

また、解離性基を有するモノマーとしては、アニオン性の解離性基を有するモノマー、カチオン性の解離性基を有するモノマーが挙げられる。

前記アニオン性の解離性基を有するモノマーとしては、例えば、カルボン酸モノマー、スルホン酸モノマー、リン酸モノマー等が挙げられる。

[0105]

前記カルボン酸モノマーとしては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、クロトン酸、イタコン酸モノアルキルエステル(例えば、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチルなど)、マレイン酸モノアルキルエステル(例えば、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチルなど)などが挙げられる。

[0106]

前記スルホン酸モノマーとしては、例えば、スチレンスルホン酸、ビニルスルホン酸、アクリロイルオキシアルキルスルホン酸(例えば、アクリロイルオキシメチルスルホン酸、アクリロイルオキシエチルスルホン酸、アクリロイルオキシプロピルスルホン酸など)、メタクリロイルオキシアルキルスルホン酸(例えば

、メタクリロイルオキシメチルスルホン酸、メタクリロイルオキシエチルスルホン酸、メタクリロイルオキシプロピルスルホン酸など)、アクリルアミドアルキルスルホン酸(例えば、2ーアクリルアミドー2ーメチルエタンスルホン酸、2ーアクリルアミドー2ーメチルブタンスルホン酸など)、メタクリルアミドアルキルスルホン酸(例えば、2ーメタクルリアミドー2ーメチルエタンスルホン酸、2ーメタクリルアミドー2ーメチルプロパンスルホン酸、2ーメタクリルアミドー2ーメチルブタンスルホン酸など)などが挙げられる。

[0107]

前記リン酸モノマーとしては、例えば、ビニルホスホン酸、メタクリロイルオキシエチルホスホン酸などが挙げられる。

[0108]

これらの中でも、アクリル酸、メタクリル酸、スチレンスルホン酸、ビニルスルホン酸、アクリルアミドアルキルスルホン酸、メタクリルアミドアルキルスルホン酸が好ましく、アクリル酸、メタクリル酸、スチレンスルホン酸、2ーアクリルアミドー2ーメチルプレスルホン酸がより好ましい。

[0109]

前記カチオン性の解離性基を有するモノマーとしては、例えば、ジアルキルア ミノエチルメタクリレート、ジアルキルアミノエチルアタクリレートなどの3級 アミノ基を有するモノマーが挙げられる。

[0110]

また、非イオン性分散性基を含有するモノマーとしては、例えば、ポリエチレングリコールモノアルキルエーテルとカルボン酸モノマーとのエステル、ポリエチレングリコールモノアルキルエーテルとスルホン酸モノマーとのエステル、ポリエチレングリコールモノアルキルエーテルとリン酸モノマーとのエステル、ポリエチレングリコールモノアルキルエーテルとイソシアネート基含有モノマーから形成されるビニル基含有ウレタン、ポリビニルアルコール構造を含有するマクロモノマーなどが挙げられる。前記ポリエチレングリコールモノアルキルエーテ

ルのエチレンオキシ部の繰り返し数としては、 $8\sim50$ が好ましく、 $10\sim30$ がより好ましい。前記ポリエチレングリコールモノアルキルエーテルのアルキル基の炭素原子数としては、 $1\sim20$ が好ましく、 $1\sim12$ がより好ましい。これらのモノマーは、1種単独で使用されてビニルポリマーが形成されていてもよいし、2種以上が併用されてビニルポリマーが形成されていてもよく、前記ビニルポリマーの目的(Tg調節、溶解性改良、分散物安定性等)に応じて適宜選択することができる。

(0 1 1 1 X

本発明に使用される油系溶媒は、有機溶媒を使用する。

油系溶媒の溶媒の例としては、アルコール類(例えば、ペンタノール、ヘプタノ ール、オクタノール、フェニルエチルアルコール、フェニルプロピルアルコール 、フルフリルアルコール、アニスアルコール等)、エステル類(エチレングリコ ールジアセテート、エチレングリコールモノメチルエーテルアセテート、ジエチ レングリコールモノメチルエーテルアセテート、プロピレングリコールジアセテ ート、酢酸エチル、酢酸アミル、酢酸ベンジル、酢酸フェニルエチル、酢酸フェ ノキシエチル、フェニル酢酸エチル、プロピオン酸ベンジル、安息香酸エチル、 安息香酸ブチル、ラウリン酸ブチル、ミリスチン酸イソプロピル、リン酸トリエ チル、リン酸トリブチル、フタル酸ジエチル、フタル酸ジブチル、マロン酸ジエ チル、マロン酸ジプロピル、ジエチルマロン酸ジエチル、コハク酸ジエチル、コ ハク酸ジブチル、グルタル酸ジエチル、アジピン酸ジエチル、アジピン酸ジプロ ピル、アジピン酸ジブチル、アジピン酸ジ(2-メトキシエチル)、セバシン酸 ジエチル、マレイン酸ジエチル、マレイン酸ジブチル、マレイン酸ジオクチル、 フマル酸ジエチル、フマル酸ジオクチル、ケイ皮酸-3-ヘキセニル等)、エー テル類(例えば、ブチルフェニルエーテル、ベンジルエチルエーテル、ヘキシル エーテル等)、ケトン類(例えば、ベンジルメチルケトン、ベンジルアセトン、 ジアセトンアルコール、シクロヘキサノン等)、炭化水素類(例えば、石油エー テル、石油ベンジル、テトラリン、デカリン、ターシャリーアミルベンゼン、ジ メチルナフタリン等)、アミド類(例えば、N.N-ジエチルドデカンアミド等)が挙げられる。

$\{0112\}$

上記のような油系溶媒は、本発明の色素をそのまま溶解させて用いることができ、また樹脂状分散剤や結合剤を併用して分散または溶解させて用いることもできる。

[0113]

このようなインクジェット記録液に使用される油系溶媒の具体的調製法については、特開= 2319755、特表= 5088835に記載の方法を参照することができる。

[0114]

本発明に使用される固体(相変化)溶媒は、溶媒として室温で固体であり、かつインクジェット記録液の加熱噴射時には溶融した液体状である相変化溶媒を使用する。

[0115]

このような相変化溶媒としては、天然ワックス(例えば、密ロウ、カルナウバ ワックス、ライスワックス、木ロウ、ホホバ油、鯨ロウ、カンデリラワックス、 ラノリン、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、 マイクロクリスタリンワックス、ペトロラクタム等)、ポリエチレンワックス誘 導体、塩素化炭化水素、有機酸(例えば、パルミチン酸、ステアリン酸、ベヘン 酸、チグリン酸、2-アセトナフトンベヘン酸、12-ヒドロキシステアリン酸 、ジヒドロキシステアリン酸等)、有機酸エステル(例えば、上記した有機酸の グリセリン、ジエチレングリコール、エチレングリコール等のアルコールとのエ ステル等)、アルコール(例えば、ドデカノール、テトラデカノール、ヘキサデ カノール、エイコサノール、ドコサノール、テトラコサノール、ヘキサコサノー ル、オクタコサノール、ドデセノール、ミリシルアルコール、テトラセノール、 ヘキサデセノール、エイコセノール、ドコセノール、ピネングリコール、ヒノキ オール、ブチンジオール、ノナンジオール、イソフタリルアルコール、メシセリ ン、テレアフタリルアルコール、ヘキサンジオール、デカンジオール、ドデカン ジオール、テトラデカンジオール、ヘキサデカンジオール、ドコサンジオール、 テトラコサンジオール、テレビネオール、フェニルグリセリン、エイコサンジオ

ール、オクタンジオール、フェニルプロピレングリコール、ビスフェノールA、 パラアルファクミルフェノール等)、ケトン(例えば、ベンゾイルアセトン、ジ アセトベンゼン、ベンゾフェノン、トリコサノン、ヘプタコサノン、ヘプタトリ アコンタノン、ヘントリアコンタノン、ヘプタトリアコンタノン、ステアロン、 ラウロン、ジアニソール等)、アミド(例えば、オレイン酸アミド、ラウリル酸 アミド、ステアリン酸アミド、リシノール酸アミド、パルミチン酸アミド、テト ラヒドロフラン酸アミド、エルカ酸アミド、ミリスチン酸アミド、12-ヒドロ キシステアリン酸アミド、N-ステアリルエルカ酸アミド、N-オレイルステア リン酸アミド、N、N′ーエチレンビスラウリン酸アミド、N、N′ーエチレン ビスステアリン酸アミド、N, N'-エチレンビスオレイン酸アミド、N, N' ーメチレンビスステアリン酸アミド、N. N´ ーエチレンビスベヘン酸アミド、 N, N´ーキシリレンビスステアリン酸アミド、N, N´ーブチレンビスステア リン酸アミド、N. N´ージオレイルアジピン酸アミド、N. N´ージステアリ ルアジピン酸アミド、N, N´ージオレイルセバシン酸アミド、N, N´ーシス テアリルセバシン酸アミド、N, N' - iジステアリルテレフタル酸アミド、N, iN´ージステアリルイソフタル酸アミド、フェナセチン、トルアミド、アセトア ミド、オレイン酸2量体/エチレンジアミン/ステアリン酸(1:2:2のモル 比)のような 2 量体酸とジアミンと脂肪酸の反応生成物テトラアミド等)、スル ホンアミド(例えば、パラトルエンスルホンアミド、エチルベンゼンスルホンア ミド、ブチルベンゼンスルホンアミド等)、シリコーン類(例えば、シリコーン SH6018 (東レシリコーン)、シリコーンKR215、216、220 (信 越シリコーン)等)、クマロン類(例えば、エスクロンG-90(新日鐵化学) 等)、コレステロール脂肪酸エステル(例えば、ステアリン酸コレステロール、 パルミチン酸コレステロール、ミリスチン酸コレステロール、ベヘン酸コレステ ロール、ラウリン酸コレステロール、メリシン酸コレステロール等)、糖類脂肪 酸エステル(ステアリン酸サッカロース、パルミチン酸サッカロース、ベヘン酸 サッカロース、ラウリン酸サッカロース、メリシン酸サッカロース、ステアリン 酸ラクトース、パルミチン酸ラクトース、ミリスチン酸ラクトース、ベヘン酸ラ クトース、ラウリン酸ラクトース、メリシン酸ラクトース等)が挙げられる。

固体(相変化)溶媒の固体-液体相変化における相変化温度は、60℃~200 ℃であることが好ましく、80~150℃であることがより好ましい。

[0116]

上記のような固体(相変化)溶媒は、加熱した溶融状態の溶媒に本発明の色素 をそのまま溶解させて用いることができ、また樹脂状分散剤や結合剤を併用して 分散または溶解させて用いることもできる。

[0117]

このような相変化溶媒の具体的調製法については、特開平5-186723号 、同7-70490号に記載の方法を参照することができる。

[0118]

上記したような水系、油系、固体(相変化)溶媒を使用し本発明の色素を溶解或いは分散した本発明のインクジェット記録液は、その飛翔時の粘度として40 cps以下が好ましく、30cps以下であることがより好ましい。

[0119]

また、上記本発明のインクジェット記録液は、その飛翔時の表面張力として $2 \times 10^{-4} \, \text{N/cm} \sim 10^{-3} \, \text{N/cm}$ が好ましく、 $3 \times 10^{-4} \, \text{N/cm} \sim 8 \times 10^{-4} \, \text{N/cm}$ であることがより好ましい。

[0120]

本発明の色素は、インクジェット記録液の $0.1\sim25$ 質量%の範囲で使用されることが好ましく、 $0.5\sim10$ 質量%の範囲であることがより好ましい。

[0121]

本発明に使用される樹脂型分散剤としては、分子量1,000~1,000,000の高分子化合物が好ましく、これらは使用される場合にはインクジェット記録液中に0.1~50質量%含有されることが好ましい。

[0122]

本発明のインクジェット記録液には、吐出安定性、プリントヘッドやインクカートリッジ適合性、保存安定性、画像保存性、その他の諸性能向上の目的に応じて、粘度調整剤、表面張力調整剤、比抵抗調整剤、皮膜形成剤、分散剤、界面活性剤、紫外線吸収剤、酸化防止剤、退色防止剤、防ばい剤、防錆剤等を添加する

ページ: 68/

こともできる。

[0123]

本発明のインクジェット記録液は、その使用する記録方式に関して特に制約はないが、特にオンデマンド方式のインクジェットプリンタ用のインクジェット記録液として好ましく使用することができる。オンデマンド型方式としては、電気一機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気ー熱変換方式(例えば、サーマルインクジェット型、バブルジェット(R)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)、放電方式(例えば、スパークジェット型等)などを具体的な例として挙げることができる。

[0124]

【実施例】

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。

[0125]

実施例1 (例示化合物の合成)

(i) 例示化合物 A-26の合成

[0126]

【化49】

[0127]

ニトロベンゼン $75\,\text{ml}$ に、 $9.5\,\text{g}$ ($21.2\,\text{mmol}$)の(1a)を加え、 $90\,\text{C}$ に加熱して溶解させる。これに、 $3.6\,\text{g}$ ($23.6\,\text{mmol}$)のオキシ塩化リンをゆっくり加え、そのまま 2 時間攪拌する。その後、 $10\,\text{g}$ ($19.3\,\text{mmol}$)の(1b)を加え、 $180\,\text{C}$ に昇温してさらに 2 時間攪拌する。反応終了後、ニトロベンゼンを減圧留去し、得られた油状物をカラムクロマトグラフィーにかけることにより、赤色結晶が $3.4\,\text{g}$ (収率 $23.3\,$ %)得られる。

[0128]

構造はH-NMR、MASSスペクトルにより決定した。

1 H-NMR (CDC 1₃), δ値TMS基準: 0.67 (9 H, s); 1.2 9 (6 H, s); 1.72 (2 H, s); 2.87 (3 H, s); 3.96 (3 H, s); 4.03 (3 H, s); 6.92 (1 H, s); 7.17~7.41 (10 H, m); 7.82~7.88 (2 H, m); 8.37 (1 H, s); 8 .59 (1 H, d); 8.98 (1 H, d)

(ii) 例示化合物A-51の合成

氷冷下、濃硫酸 4.5 g と発煙硫酸 4.5 g を混合し、これに上記合成した例示化合物 A-26、1.5 g を加え、2.5 時間反応させる。反応終了後、25 g の氷水にゆっくりとあけ、これに食塩 1.5 g を加えて 30 分攪拌する。析出してきた沈殿を濾取し、濾取した粉末を水 30 m 1 に溶解させる。再び濾過して、不溶物を除去した後、濾液に食塩 2.4 g を入れて 1 時間攪拌し、得られる沈殿を濾取することにより例示化合物 A-51 のナトリウム塩が 1.3 g 得られる。 H-NMR より、得られたナトリウム塩は、スルホン酸基数の異なる化合物の混合物であった。

[0129]

(iii) 例示化合物B-1の合成

[0130]

【化50】

[0131]

水酸化カリウムを30mlのエタノールに溶解させ、これに10g(24.0 mmol)の(2a)を加える。さらに5.7g(25.2mmol)の(2b)を加え、2時間還流させる。反応終了後、放冷し、析出した沈殿を濾取する。

[0132]

これをTHF300m1に溶解させ、濾過することにより不溶物を取り除き、THFを減圧留去した後、トルエンで懸濁洗浄することにより中間体2cが4.3g(収率32.7%)得られる。

[0133]

上記中間体2c を 4. 3g、 THF 300 m 1 に溶解し、パラジウムー炭素を加えて常圧水素添加を行った。規定量の水素を吸収し、TLCにて反応液中の 2c が消失したのを確認した後、触媒を濾別し、溶媒を減圧下で留去した。得られた残渣をトルエンで懸濁洗浄することにより、赤色結晶が 3.2g(収率 89.8%)得られる。構造はH-NMR,MASSスペクトルにより決定した。

$\{0134\}$

(iv) 例示化合物 B-21の合成

氷冷下、濃硫酸 4.5gと発煙硫酸 4.5gを混合し、これに上記合成した例示化合物 B-1、1.5gを加え、2.5時間反応させる。反応終了後、25gの氷水にゆっくりとあけ、これに食塩 1.5gを加えて30分攪拌する。析出してきた沈殿を濾取し、濾取した粉末を水30m1に溶解させる。再び濾過して、不溶物を除去した後、濾液に食塩 2.4gを入れて1時間攪拌し、得られる沈殿を濾取することにより例示化合物 B-21のナトリウム塩が 1.1g得られる。H-NMRより、得られたナトリウム塩は、スルホン酸基数の異なる化合物の混合物であった。

[0135]

尚、以下の実施例2~4で比較用インクを調製するのに用いた比較用化合物について以下に示す。

[0136]

【化51】

比較化合物1

比較化合物2

比較化合物3

比較化合物4

比較化合物5

[0137]

【化52】

比較化合物6

比較化合物7

比較化合物8

比較化合物9

[0138]

【化53】

比較化合物10

比較化合物11

比較化合物12

比較化合物13

【化54】

比較化合物16 CH₃ HN N

比較化合物17

比較化合物18

比較化合物19

[0140]

実施例2 (水系インクの作製)

表 1 に記載の色素を色素の含有量が仕上がりインクとして、 2 質量%になる量を秤量し、エチレングリコール 1 5%、グリセリン 1 5%、サーフィノール 4 6 5 (日信化学工業社製) 0. 3 %、残りが純水になるように溶解、調製し、更に 2 μ mのメンブランフィルターによって濾過し、ゴミ及び粗大粒子を除去してイ

ンクジェット用インク1~22を得た。

[0141]

(サンプル作製および評価)

更に、各インクを市販のエプソン社製インクジェットプリンター(PM-800)を用いてコニカフォトジェットペーパー Photolike QP 光沢紙(コニカ株式会社製)にプリントし、得られた画像の耐光性の評価を行った結果を表1に併せて示す。

[0142]

耐光性:キセノンフェードメーターにて48時間爆射した後のサンプルの未爆射サンプルからの可視領域極大吸収波長における反射スペクトル濃度の低下率、耐光性(%)=(曝射試料極大吸収波長濃度/未曝射試料極大吸収波長濃度)×100 を算出した。

[0143]

【表1】

インク No.	色素	耐光性	備	考
1	比較化合物 1	10	比	較
2	比較化合物 2	41	出	較
3	比較化合物 3	55	出	較
4	比較化合物 6	66	出	較
5	比較化合物 7	68	比	較
6	比較化合物 8	64	出	較
7	比較化合物 9	66	出	較
8	比較化合物 10	75	比	較
9	比較化合物 11	67	比	較
10	比較化合物 12	77	比	較
11	例示 A-29	91	本発	明
12	例示 A-30	92	本発	朔
13	例示 A-34	86	本発	明
14	例示 A-51	91	本発	明
15	例示 B-21	88	本発	明
16	例示 B-28	88	本発	明
17	例示 B-38	85	本発	明
18	例示 C-10	82	本発	明
19	例示 D-10	81	本発	明
20	例示 E-10	83	本発	明
21	例示 F-8	83	本発	明
22	例示 G-11	80	本発	明

[0144]

以上の結果から明らかなように、本発明が比較に比して耐光性が優れていることが分かる。

[0145]

実施例3 (微粒子分散物の作製)

表2記載の色素10g、メチルエチルケトン20g、グリセリン5g、スチレ

ン/アクリル酸/2-ヒドロキシエチルメタクリレート=80/5/15の中和 済み樹脂を6g、イオン交換水40gの混合液に平均粒子径が0.5mmのジル コニアビーズ250gを加え、メディア分散機(システムゼータ;(株)アシザ ワ製)を用いて4時間分散を行った。分散終了後、ジルコニアビーズを濾別して 顔料分散液を得た。この分散液に水40mlを加えて希釈した後、減圧留去によ りメチルエチルケトンを除去し顔料の着色微粒子を得た。

[0146]

(水系インクの作製)

色素の含有量がインクの仕上がり量に対して3質量%になる量を秤量し、エチレングリコール15質量%、グリセリン15質量%、トリエチレングリコールモノブチルエーテル3質量%、サーフィノール465を0.3質量%、残りが純水になるように調整・混合し、更に 2μ mのメンブランフィルターによって濾過し、ゴミ及び粗大粒子を除去して表2に示すようにインクジェット用インク23~35を得た。

[0147]

(サンプル作製および評価)

それぞれのインクを実施例1と同様にして、プリントサンプルの耐光性をみたほか、それぞれのインクを60℃で7日間保存した際の粒子径変化率、保存後のインクの濾過性を評価した。結果を表2に示す。

0 1 4 8

粒子径変化率:インクを60℃で7日間保管し、粒子径変化率が5%未満のものを◎、5%ないし10%未満のものを○(許容レベル)、10%以上のものを×(不可レベル)とした。

[0149]

濾過性:インクを60で7日間保管した後に、インクを5m1採取し 0.8μ mのセルロースアセテートメンブランフィルターで濾過を行い、全量濾過できたものを \bigcirc 、半量以上濾過できたものを \bigcirc (許容レベル)、半量以上濾過ができなかったものを \times (不可レベル)とした。

[0150]

【表2】

インク No.	色素	耐光性	粒子径変化率	濾過性	備	考
23	比較色素 4	59	0	0	比	較
24	比較色素 5	61	×	0	比	較
25	比較色素 17	71	0	0	比	較
26	比較色素 18	67	0	0	比	較
27	例示 A-26	83	0	0	本角	鲷
28	例示 B-1	81	0	0	本角	明
29	例示 C-2	78	0	0	本角	鲷
30	例示 D-5	77	0	0	本角	明
31	例示 E-7	75	0	0	本角	眀
32	例示 F-6	78	0	0	本角	明
33	例示 G-7	77	0	0	本角	明

[0151]

以上の結果から明らかなように、本発明が比較に比してインクの保存安定性の 面で優れていることが分かる。

[0152]

実施例4 (微粒子分散物の作製)

表3に示す色素5g、5gのポリビニルブチラール(積水化学社製BL-S、平均重合度350)及び50gの酢酸エチルをセパラブルフラスコに入れ、フラスコ内をN2置換後、攪拌して上記ポリマー及び染料を完全溶解させた。ラウリル硫酸ナトリウム2gを含む水溶液100gを滴下後、超音波分散機(UH-150型、株式会社エスエムテー製)を用いて、300秒間乳化した。その後、減圧下で酢酸エチルを除去し、染料を含浸する着色微粒子を得た。この分散液に0.15gの過硫酸カリウムを加えて溶解し、ヒーターを付して70℃に加温後、更に2gのスチレン及び1gの2ーヒドロキシエチルメタクリレートの混合液を滴下しながら7時間反応させてコアシェル型の着色微粒子を得た。

[0153]

(水系インクの作製)

色素の含有量がインクの仕上がり量に対して2質量%になる量を秤量し、エチレングリコール15質量%、グリセリン15質量%、トリエチレングリコールモノブチルエーテル3質量%、サーフィノール465を0.3質量%、残りが純水になるように調整・混合し、更に 2μ mのメンブランフィルターによって濾過し、ゴミ及び粗大粒子を除去して表3に示すようにインクジェット用インク34~53を得た。

[0154]

(サンプル作製および評価)

実施例3と同様にそれぞれのインクを60℃で7日間保存した際の粒子径変化率、保存後のインクの濾過性、更に、実施例1、2と同様に各インクを用いてプリントした画像についての耐光性を評価した。結果を表3に示す。

[0155]

【表3】

インク No.	色素	耐光性	粒子径変化率	濾過性	備	考
34	比較色素 5	62	×	0	比	較
35	比較色素 13	64	0	. 0	比	較
36	比較色素 14	69	0	0	坮	較
37	比較色素 15	66	0	0	坮	較
38	比較色素 16	68	0	0	出	較
39	比較色素 17	71	0	0	比	較
40	比較色素 18	69	0	0	比	較
41	比較色素 19	73	0	0	比	較
42	例示 A-2	89	0	0	本多	半明
43	例示 A-3	90	0	0	本多	卷明
44	例示 A-20	89	0	0	本多	半明
45	例示 A-26	85	0	0	本多	半明
46	例示 B-1	85	0	0	本多	後明
47	例示 B-2	87	0	0	本多	半明
48	例示 B-15	83	0	0	本多	卷明
49	例示 C-2	80	0	0	本多	半明
50	例示 D-5	80	0	0	本多	半明
51	例示 E-7	76	0	0	本多	半明
52	例示 F-6	78	0	0	本多	半明
53	例示 G-7	78	0	0	本多	半明

[0156]

以上の結果から明らかなように、本発明が比較に比してインクの保存安定性および耐光性の面で優れていることが分かる。

[0157]

【発明の効果】

本発明によるインクジェット記録液は、色画像の耐光性に非常に優れ、特に主な対象としてはマゼンタ色に適し、水系インクジェット記録液として、高耐光性に加え長期使用を保証することができる。

【書類名】

要約書

【要約】

【課題】 堅牢性に優れた色素、色画像の耐光性に優れた、特にマゼンタ色のインクジェット記録液を提供することにある。またさらに本発明の目的は、高耐光性に加え、長期使用を保証できる水系インクジェット記録液を提供することにある。

【解決手段】 下記一般式1で表される色素。

【化1】

〔式中、Zは含窒素 6 員芳香環を形成する基を表し、 R_{11} は水素結合性基を表し、 R_{12} 、 R_{13} 、 R_{14} は水素原子または置換基を表し、n 1 2 は 1 \sim 3 の整数を表し、n 1 1 、n 1 3 は 1 \sim 4 の整数を表す。〕

【選択図】

なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2002-343792

受付番号

5 0 2 0 1 7 9 3 0 5 8

書類名

特許願

担当官

第二担当上席 0091

作成日

平成14年11月28日

<認定情報・付加情報>

【提出日】

平成14年11月27日

特願2002-343792

出願人履歴情報

識別番号

[000001270]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

東京都新宿区西新宿1丁目26番2号

氏 名

コニカ株式会社

2. 変更年月日

2003年 8月 4日

[変更理由]

名称変更

住 所

東京都新宿区西新宿1丁目26番2号

氏 名

コニカミノルタホールディングス株式会社

•

<u>,</u> ಇ