Tensors

a single value - order zero tensor

a vector of features - order one tensor

batched vectors - order two tensor

a time series - order two tensor

a time series - order two tensor

a time series - order two tensor

batched time series - order three tensor

an RGB image - order three tensor

batched images - order four tensor

Layers

linear layer

Linear Layer - Takeaways

 Matrix multiplication acts on a last tensor order (features, channels), possibly changing its dimension

 The order structure is preserved, but the dimensionality may be changed for the last (feature/channel) order

 a Pytorch convention to index things from the end with negative indices is sometimes convenient