Honor code: I pledge on my honor that: I have completed all steps in the below quiz on my own, I have not used any unauthorized materials while completing this quiz, and I have not given anyone else access to my quiz.

Name and Signature

Name: TODO, Roll No: TODO

- 1. The associative law of matrix multiplication says that (AB)C = A(BC). If A is a 1×2 matrix, B is a 2×5 matrix and C is a 5×12 matrix then from the point of view of computational efficiency which one would you prefer:
 - A. A(BC)
 - B. (AB)C
 - C. doesn't matter
- 2. Which of the following statements are true? (select all statements that are true)
 - A. If A is a $m \times p$ matrix and B is a $p \times n$ matrix then $rank(A) \leq p$ (always) and $rank(B) \leq p$ (always) but the rank of AB can be greater than p.
 - B. If A and B are two rank-1 matrices then the rank of their product AB can **never** be greater than 1.
 - C. Any rank-1 matrix $A(m \times n)$ can always be written as $\mathbf{u}\mathbf{v}^{\top}$ where $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$.
 - D. If A and B are two rank-1 matrices then the rank of their sum A + B can **never** be greater than 1.
- 3. The columns of this matrix are always independent if $c \neq 0$ $\begin{bmatrix} c & c & c \\ 2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix}$
 - A. True
 - B. False
- 4. Which of the following statements is/are True (select all that are true)
 - A. If A is a non-zero matrix (i.e. at least one of its elements in non-zero) then $A^{\top}A$ is always non-zero
 - B. If A is not symmetric then A^{-1} can **never** be symmetric
 - C. If A is a non-zero matrix (i.e. at least one of its elements in non-zero) then A^2 is always non-zero
 - D. If LDU factorisation of a square symmetric matrix A exists then $U = L^{\top}$ (always).

- 5. What multiple of $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ should be subtracted from the vector $\mathbf{b} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}$ so that the resulting vector is orthogonal to \mathbf{a} .
- 6. Let $\mathbf{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be a linear combination of the vectors $\mathbf{q_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \mathbf{q_2} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ such that among all linear combinations of $\mathbf{q_1}$ and $\mathbf{q_2}$, \mathbf{p} is closest to the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Then
 - $\begin{array}{cccc}
 x = & & \\
 y = & & \\
 z = & & \\
 \end{array}$
- 7. Consider a subspace in \mathbb{R}^3 such that for all elements in this subspace the first element is equal to the third element. The number of vectors in the basis of this subspace is
- 8. If A is a $m \times m$ lower triangular matrix such that all its diagonal entries are 1. If you do LU factorisation of A then which of the following statements is/are true?
 - a L = A (always)
 - b U = I (always)
 - A. Only a is true.
 - B. Only b is true.
 - C. Both a and b are true.
 - D. Both a and b are false.
- 9. What values of c and r will lead to this system of equations having infinite solutions?

$$1x + 4y + 3z = 5$$
$$2x + cy + z = 7$$
$$y - 5z = r$$

10. The determinant of the matrix $\begin{bmatrix} 13 & 23 & 53 \\ 12 & 22 & 52 \\ 11 & 21 & 51 \end{bmatrix}$ is ______

- 11. Consider a $m \times n$ matrix with rank r. If there exists a b such that $A\mathbf{x} = \mathbf{b}$ has infinite solutions then which of the following statements **cannot** be True.
 - A. r = n and n < m
 - B. r = m and m < n
 - C. r < n and m = n
 - D. r < m and r < n
- 12. Consider the vectors $\mathbf{u} = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 0 \\ 3 \\ -3 \end{bmatrix}$. The sum of the elements of any linear combination of \mathbf{u} and \mathbf{v} will be ______
- 13. Consider the planes x + 2y 2z = 4 and x + y + z = 2. These two planes intersect in a line. Consider a point on this line whose z-coordinate is 0. Find the x and y coordinate of this point.

$$x = \underline{\hspace{1cm}}$$

$$y = \underline{\hspace{1cm}}$$

- 14. If AB = B and BA = B then A = I
 - A. False
 - B. True
- 15. Which of the following statements are True
 - A. If A is a 3×3 matrix such that $A_{ij} = ij$ then determinant of A is 1.
 - B. If A is a 3×3 matrix such that $A_{ij} = i + j$ then determinant of A is 0.
- 16. Fill in the values of a, b, c, d so that the matrix A will be a rank-1 matrix. A =

$$\begin{bmatrix} a & 9 & b \\ 2 & c & d \\ 2 & 6 & -3 \end{bmatrix}$$

$$a = \underline{\hspace{1cm}}$$

$$b = \underline{\hspace{1cm}}$$

$$c = \underline{\qquad}$$

17. If ${\bf u}$ and ${\bf v}$ are orthonormal vectors then (select all options that are correct)

$$A. ||\mathbf{u} + \mathbf{v}|| = 1$$

$$B. ||\mathbf{u} - \mathbf{v}|| = 0$$

$$C. ||\mathbf{u} + \mathbf{v}|| = \sqrt{2}$$

D.
$$||{\bf u} - {\bf v}|| = \sqrt{2}$$

- 18. Consider a 5×5 matrix, such that $a_{55} = 23$ (i.e., the last entry or the last diagonal element is 23). Suppose A is invertible (i.e., it has 5 pivots) and the last pivot of A is 16. If you were asked to make A not invertible by changing a_{55} what value would you set a_{55} to? In other words, what should a_{55} be so that A is not invertible (all other entries in the matrix will remain the same)
- 19. Which of the following is true? (Note that $|\mathbf{v}^{\top}\mathbf{w}|$ is the absolute value of the dot product of the two vectors and $||\mathbf{v}||$ is the L_2 norm of \mathbf{v} .)
 - A. $||\mathbf{v}|| \cdot ||\mathbf{w}|| \ge |\mathbf{v}^{\top}\mathbf{w}|$
 - B. $||\mathbf{v}|| \cdot ||\mathbf{w}|| < |\mathbf{v}^{\top}\mathbf{w}|$
- 20. Let A be any $m \times n$ matrix. Let U be the matrix obtained in its LU factorisation and let R be the reduced row echelon form of U. Which of the following statements is/are true (select all that are true)?
 - A. The nullspace of A is always the same as the nullspace of R
 - B. The nullspace of U is always the same as the nullspace of R
 - C. The column space of U is always the same as the column space of R
 - D. The column space of A is always the same as the column space of U
- 21. Which of the following subsets of \mathbb{R}^3 is/are subspaces? (select all that are correct)

 - A. All vectors $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that $b_3 = b_1/b_2 + b_1$ B. All vectors $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that $b_1 = 0$ and $b_1 + b_2 = 5$ C. All vectors $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that $b_1 + b_2 b_3 = 0$ D. All vectors $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that $b_1 + b_2 \geq b_2 + b_3$
- 22. How many free variables does this matrix have? $\begin{bmatrix} 4 & 8 & 2 & 8 & 2 \\ 2 & 4 & 1 & 4 & 2 \\ 0 & 0 & 3 & 12 & 3 \end{bmatrix}$ _____
- 23. If B is obtained by exchanging the second and third rows of a 4×4 invertible matrix A then B is always invertible.
 - A. True
 - B. False

- 24. Which of the following statements is/are True (select all that are true)
 - A. The intersection of two n-2 dimensional planes passing through the origin in \mathbb{R}^n can be a n-4 dimensional plane (n>4)
 - B. If S and T are subspaces then $S \cup T$ is also a subspace
 - C. If S is a two dimensional plane passing through the origin and T is a line passing through the origin then the smallest subspace containing both S and T will **always** be a 3 dimensional plane
 - D. If S and T are subspaces then $S \cap T$ is also a subspace
- 25. Consider a square invertible matrix $A = \begin{bmatrix} w & x \\ z & y \end{bmatrix}$ ($w \neq 0$. The first pivot of this matrix is of course w. The second pivot would be $\frac{----}{w}$ (Fill in the numerator).
- 26. If three corners of a parallelogram are (1,1), (4,2) and (1,3), how many options do you have for choosing the fourth corner?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 27. If $||\mathbf{u}|| = 8$ and $||\mathbf{v}|| = 9$, then the smallest possible value for $||\mathbf{u} \mathbf{v}||$ is ______
- 28. Consider a 1×3 system of linear equations (one equation, 3 variables). There exists a b such that all solutions to $A\mathbf{x} = \mathbf{b}$ have $x_{particular} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $x_{nullspace} = c \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$.
 - A. True
 - B. False
- 29. Consider a matrix A. The intersection of the null space and the column space of A. (Select all statements that are true.)
 - A. will always only contain the 0 vector
 - B. can contain more vectors other than the $\mathbf{0}$ vector only if A is a square matrix
 - C. can contain more vectors other than the $\mathbf{0}$ vector only if A is a square symmetric matrix
 - D. will always contain more vectors other than the **0** vector

- 30. If A and B are square symmetric matrices then $(A+B)^2$ is always equal to $A^2+2AB+B^2$ if
 - A. both A and B are symmetric as well as orthogonal matrices
 - B. both A and B are symmetric matrices
 - C. both A and B are orthogonal matrices
 - D. None of the above.