Alexa Summers, Santhoshini Sree Bolisetty, Gireesh Kumar Muppalla CS 5565 Dr. Song

10.

(a)

The plot does not show any linear relationship between predictors

(b)

The only variable which has low p value(<0.05) is lag2. Hence, it is the only predictor to be considered as statistically significant

```
attach(Weekly)
      a<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data = Weekly,family = binomial)
   8
  9
      summary(a)
 10
     (Top Level) $
 10:1
 Console ~/ A
    Direction, Lag1, Lag2, Lag3, Lag4, Lag5, Today, Volume, Year
> a<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data = Weekly,family = binomial)</pre>
> summary(a)
call:
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
    volume, family = binomial, data = weekly)
Deviance Residuals:
                  Median
             1Q
                                        Max
-1.6949 -1.2565
                           1.0849
                  0.9913
                                    1.4579
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                                          0.0019 **
(Intercept) 0.26686
                        0.08593
                                 3.106
            -0.04127
                        0.02641 -1.563
                                          0.1181
Lag2
            0.05844
                        0.02686
                                 2.175
                                          0.0296
                        0.02666 -0.602
            -0.01606
                                          0.5469
Lag3
            -0.02779
                        0.02646 -1.050
0.02638 -0.549
Lag4
                                          0.2937
Lag5
            -0.01447
                                          0.5833
volume
            -0.02274
                        0.03690 -0.616
                                         0.5377
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1496.2 on 1088 degrees of freedom
Residual deviance: 1486.4 on 1082 degrees of freedom
AIC: 1500.4
Number of Fisher Scoring iterations: 4
>
```

```
(c)
Total weekly trend:
(54+557)/(54+48+430+557)=0.5611
```

Up weekly trends: 557/(430+557)=0.9207

Down weekly trends: 54/(430+54)=0.1115

From the above information, we can conclude that the model predicted the up weekly trend 92.07% correctly.

```
attach(Weekly)
fit<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly,family=binomial)</pre>
    27
    28 summary(fit)
    29 prob= predict(Weekly.fit, type='response')
   30 pred =rep("Down", length(prob))
31 pred[prob > 0.5] = "Up"
32 table(pred, Direction)
    33
 32:23 (Top Level) $
 Console ~/ 🔅
Lag4 -0.02779 0.02646 -1.050 0.2937
Lag5 -0.01447 0.02638 -0.549 0.5833
Volume -0.02274 0.03690 -0.616 0.5377
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
     Null deviance: 1496.2 on 1088 degrees of freedom
Residual deviance: 1486.4 on 1082 degrees of freedom
AIC: 1500.4
Number of Fisher Scoring iterations: 4
> prob= predict(Weekly.fit, type='response')
> pred =rep("Down", length(prob))
> pred[prob > 0.5] = "up"
> table(pred, Direction)
Direction
pred Down Up
  Down 54 48
          430 557
   Up
```

(d)

From below, we can say that the model gave 62.5% accuracy rate. While the downward and upward trends gives 91.80% and 20.83% accuracy.

This means that the model is predicting downward trends way more correct than the upward trends

```
train = (Year<2009)
   35
        rows <-Weekly[!train,]
   36 model<-glm(Direction~Lag2, data=Weekly,family=binomial, subset=train)
   37 prob= predict(model, rows, type = "response")
  38 pred = rep("Down", length(prob))
39 pred[prob > 0.5] = "Up"
40 Direct = Direction[!train]
  41 table(pred, Direct)
  42
        mean(pred == Direct)
  43
 43:1 (Top Level) $
Console ~/ A
train = (Year<2009)</p>
rows <-Weekly[!train,]</p>
- model<-glm(Direction~Lag2, data=Weekly,family=binomial, subset=train)</p>
prob= predict(model, rows, type = "response")
pred = rep("Down", length(prob))
pred[prob > 0.5] = "Up"
Direct = Direction[!train]
table(pred, Direct)
      Direct
ored Down Up
 Down
          34 56
» mean(pred == Direct)
[1] 0.625
```

(e)

The logistic and Ida are giving the same accuracy rates.

```
31 library(MASS)
  32 fit<-lda(Direction~Lag2, data=Weekly,family=binomial, subset=train)
  33
      pred<-predict(fit, rows)</pre>
  34
      table(pred$class, Direct)
  35
      mean(pred$class==Direct)
  36
  37
  38
  39
 40
 41
 42
 36:1
      (Top Level) $
Console ~/ A
> model<-glm(Direction~Lag2, data=Weekly,family=binomial, subset=train)
> prob= predict(model, rows, type = "response")
> pred = rep("Down", length(prob))
> pred[prob > 0.5] = "Up"
> Direct = Direction[!train]
> table(pred, Direct)
       Direct
        Down Up
pred
  Down
           9 5
          34 56
> fit<-lda(Direction~Lag2, data=Weekly,family=binomial, subset=train)
Error in lda(Direction ~ Lag2, data = Weekly, family = binomial, subset = train) :
   could not find function "lda"
> library(MASS)
> fit<-1da(Direction~Lag2, data=Weekly,family=binomial, subset=train)
> pred<-predict(fit, rows)
> table(pred$class, Direct)
       Direct
        Down Up
           9 5
  Down
          34 56
 Up
> mean(pred$class==Direct)
[1] 0.625
```

(f)

The qda is giving the lower accuracy compared to logistic and lda models.

```
fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
  38
     rows <-Weekly[!train,]
 40 pred = predict(fit, rows)$class
41 Direct = Direction[!train]
  42 table(pred, Direct)
  43
     mean(pred == Direct)
  44
  45
 46
 47
 44:1
      (Top Level) $
Console ~/ A
> fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
> rows <-Weekly[!train,]</pre>
> pred = predict(fit, rows)$class
> Direct = Direction[!train]
> table(pred, Direct)
      Direct
pred
       Down Up
  Down
           0 0
         43 61
> mean(pred == Direct)
[1] 0.5865385
```

(g)

The knn model is giving a 50% accuracy.

```
library(class)
  66
      train = (Year<2009)
  67
  68 train1=as.matrix(Lag2[train])
  69 Direct = Direction[!train]
  70 test=as.matrix(Lag2[!train])
  71 Direct1 =Direction[train]
  72
      set.seed(1)
  73
      pred=knn(train1,test,Direct1,k=1)
  74
      table(pred,Direct)
  75
       mean(pred == Direct)
  76
 76:1
     (Top Level) $
Console ~/ A
> library(class)
> train = (Year<2009)
> train1=as.matrix(Lag2[train])
> Direct = Direction[!train]
> test=as.matrix(Lag2[!train])
> Direct1 =Direction[train]
> set.seed(1)
> pred=knn(train1,test,Direct1,k=1)
> table(pred,Direct)
      Direct
pred
       Down Up
  Down
         21 30
         22 31
> mean(pred == Direct)
[1] 0.5
```

(h)

From this we say that the logistic and Ida models are giving the better accuracy rates(62.5%)

(i)

The below shows the logistic model, which is giving a 54.06% accuracy

```
109 fit<-glm(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
  110 rows <-Weekly[!train,]</pre>
        prob= predict(fit, rows, type = "response")
  111
        pred = rep("Down", length(logweekly.prob))
pred[prob > 0.5] = "Up"
  112
  114
        Direct = Direction[!train]
  115 table(pred, Direct)
  116 mean(pred == Direct)
  117
  118
 117:1
       (Top Level) $
Console ~/ A
> fit<-glm(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
> rows <-Weekly[!train,]</pre>
> prob= predict(fit, rows, type = "response")
> pred = rep("Down", length(logWeekly.prob))
> pred[prob > 0.5] = "Up"
> Direct = Direction[!train]
> table(pred, Direct)
       Direct
pred Down Up
  Down
               18
         219 274
  Up
> mean(pred == Direct)
[1] 0.5406977
```

The Ida model is giving 55.2% accuracy

```
118 fit<-lda(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
 119
       pred<-predict(fit, rows)
 120
       table(pred$class, Direct)
 121
       mean(pred$class==Direct)
 122
 122:1
      (Top Level) $
> fit<-lda(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)</p>
> pred<-predict(fit, rows)
> table(pred$class, Direct)
      Direct
       Down Up
  Down
             12
       219 280
 Up
> mean(pred$class==Direct)
[1] 0.5523256
```

When k=1 and k=2, the knn model is giving accuracy rates 49.4% and 52.1%

```
123
        Week.train=as.matrix(Lag2[train])
  124
        Week.test=as.matrix(Lag2[!train])
  125 train.Direction =Direction[train]
 126 set.seed(1)
127 Direct = Direction[!train]
128 Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=1)
129 table(Weekknn.pred,Direct)
130 mean(Weekknn.pred == Direct)
131 Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=2)
  132
        mean(Weekknn.pred1 == Direct)
  133
 132:30 (Top Level) $
Console ~/ A
> Week.train=as.matrix(Lag2[train])
> Week.test=as.matrix(Lag2[!train])
> train.Direction =Direction[train]
> set.seed(1)
> Direct = Direction[!train]
> Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=1)
> table(Weekknn.pred,Direct)
               Direct
Weekknn.pred Down Up
                   90 127
          Down
          Up
                 134 165
> mean(Weekknn.pred == Direct)
[1] 0.494186
> Weekknn.pred1=knn(Week.train,Week.test,train.Direction,k=2)
> mean(Weekknn.pred1 == Direct)
[1] 0.5213178
```

From this we can conclude that the Ida and logistic models are giving a better accuracy rates for this data.

11.

(a)

```
library(ISLR)
attach(Auto)
summary(Auto)
   56
   58
       mpg01 <- rep(0, length(mpg))
view(mpg01)</pre>
   61
        mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
Auto <- data.frame(Auto, mpg01)</pre>
                                                                                                                                                             R Scrip
 Min.
         : 9.00 Min.
                               :3.000 Min.
                                                   : 68.0 Min.
                                                                        : 46.0 Min.
                                                                                              :1613
                                                                                                        Min.
                                                                                                                 : 8.00 Min.
                                                                                                                                       :70.00
                                                                                                                                                  Min.
                                                                                                                                                            :1.00
 1st Qu.:17.00
                      1st Qu.:4.000
                                           1st Qu.:105.0
                                                                1st Qu.: 75.0 1st Qu.:2225
                                                                                                         1st Qu.:13.78 1st Qu.:73.00
                                                                                                                                                  1st Qu.:1.00
 Median :22.75
                      Median :4.000
                                           Median :151.0
                                                                Median: 93.5 Median:2804
                                                                                                         Median :15.50
                                                                                                                             Median :76.00
 Mean :23.45
                      Mean :5.472
                                           Mean
                                                    :194.4
                                                                Mean
                                                                          :104.5 Mean
                                                                                               :2978
                                                                                                         Mean
                                                                                                                  :15.54
                                                                                                                             Mean
                                                                                                                                       :75.98
                                                                                                                                                   Mean
                                                                                                                                                            :1.57
 3rd Qu.:29.00
                      3rd Qu.:8.000
                                           3rd Ou.:275.8
                                                                3rd Ou.:126.0 3rd Ou.:3615
                                                                                                         3rd Ou.:17.02
                                                                                                                             3rd ou.:79.00
                                                                                                                                                   3rd Ou.:2.00
                               :8.000 Max.
                                                    :455.0
                                                                         :230.0 Max.
                                                                                                                  :24.80 Max.
 Max.
          :46.60
                     Max.
                                                                Max.
                                                                                              :5140
                                                                                                         Max.
                                                                                                                                       :82.00
                                                                                                                                                   Max.
                                                                                                                                                            :3.00
                                 mpg01
Min. :0.0
1st Qu.:0.0
Median :0.5
 amc matador
 ford pinto
toyota corolla
 amc gremlin : amc hornet : chevrolet chevette:
                                  Mean
                                           :0.5
                                  3rd Qu.:1.0
cnevrolet cnevette: 4 Max.
(other) :365
> mpg01 <- rep(0, length(mpg))
> mpg01 <- rep(0, length(mpg))
> mpg01[mpg > median(mpg)] <- 1
> Auto <- data.frame(Auto, mpg01)</pre>
```

(b) Cylinder, displacement and weight are correlating strongly with mpg01. horsepower and origin also correlate with mpg01.


```
(c)
   69
        train <- (year %% 2 == 0)
   70
        train.auto <- Auto[train,]
   71
        test.auto <- Auto[-train,]
   72
                                                                   >
       (Top Level) $
                                                               R Script $
   72:1
  Console ~/ A
                                                                 -
  > train <- (year %% 2 == 0)
  > train.auto <- Auto[train,]
  > test.auto <- Auto[-train,]
```

(d)

Ida model is giving an error rate of 8.44%

```
autolda.fit <- lda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
       autolda.pred <- predict(autolda.fit, test.auto)</pre>
  75
       table(autolda.pred$class, test.auto$mpg01)
       mean(autolda.pred$class != test.auto$mpg01)
  76
  77
78
 77:1
       (Top Level) $
                                                                                                                            R Script $
Console ~/ A
                                                                                                                               \neg
> autolda.fit <- lda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
> autolda.pred <- predict(autolda.fit, test.auto)
> table(autolda.pred$class, test.auto$mpg01)
       0
  0 169
  1 26 189
  mean(autolda.pred$class != test.auto$mpg01)
[1] 0.08439898
```

(e)

Qda is giving an error rate of 9.97%

```
autoqda.fit <- qda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
  79
       autoqda.pred <- predict(autoqda.fit, test.auto)</pre>
       table(autoqda.pred$class, test.auto$mpg01)
mean(autoqda.pred$class != test.auto$mpg01)
  80
  81
 81:44
       (Top Level) $
                                                                                                                          R Script ‡
                                                                                                                            \Box
> autoqda.fit <- qda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
> autoqda.pred <- predict(autoqda.fit, test.auto)
> table(autoqda.pred$class, test.auto$mpg01)
  0 1
0 176 20
  1 19 176
  mean(autoqda.pred$class != test.auto$mpg01)
[1] 0.09974425
```

(f)

The logistic regression method is giving an error rate of 8.44%

(g)

K=1 is giving a lower error rate compared to k=2 and k=3. This can concluded as the error rate keeps increasing with an increasing value of k.

```
train.K= cbind(displacement,horsepower,weight,cylinders,year, origin)[train,]
      test.K=cbind(displacement,horsepower,weight,cylinders, year, origin)[-train,]
  93
      set.seed(1
  94
      autok.pred=knn(train.K,test.K,train.auto$mpg01,k=1)
  95
      mean(autok.pred != test.auto$mpg01)
      autok.pred=knn(train.K,test.K,train.auto$mpg01,k=2)
       mean(autok.pred != test.auto$mpg01)
      autok.pred=knn(train.K,test.K,train.auto$mpg01,k=3)
      mean(autok.pred != test.auto$mpg01)
 99:36 (Top Level) $
> train.K= cbind(displacement,horsepower,weight,cylinders,year, origin)[train,]
> test.K=cbind(displacement,horsepower,weight,cylinders, year, origin)[-train,]
> autok.pred=knn(train.K,test.K,train.auto$mpg01,k=1)
> mean(autok.pred != test.auto$mpg01)
[1] 0.07161125
> autok.pred=knn(train.K,test.K,train.auto$mpg01,k=2)
> mean(autok.pred != test.auto$mpg01)
[1] 0.09974425
> autok.pred=knn(train.K,test.K,train.auto$mpg01,k=3)
> mean(autok.pred != test.auto$mpg01)
[1] 0.09462916
>
```