

Tutorial:

Building a machine learning model using Automated Machine Learning in Azure ML

Ognian Dantchev **ALSO Group, Al team**

Session goals

- · Gain an overview of Azure AutoML and how to get started
- Understand the scenarios when AutoML makes sense
- · Know the multiple approaches to use Azure AutoML
 - UI, Notebooks/SDK, Pipelines, local vs. remote compute and when to use each one of them.
- · Learn additional Azure ML related features:
 - AML Workspace, Datasets, compute
 - Hyperparameter Tuning vs. AutoML

Al and Machine Learning in Azure

Azure Machine Learning service

Bring AI to everyone with an end-to-end, scalable, trusted platform

Boost your data science **productivity**

Increase your rate of experimentation

Deploy and **manage** your models everywhere

Support for open source frameworks

Azure Machine Learning

Machine Learning Process

Data lake
Blob storage
SQL DB
Cosmos DB

Prepare Data

Build & Train

Deploy

Automated ML Data Requirements

A single source for training:

- Tabular and flat data
- Sources: local file upload, blob, datalake, Azure SQL Database, web source (ex. Dataset files at GitHub), or anything in a Pandas dataframe

Value props:

- Large data
- Azure Open Datasets
- Data Guardrails

Demo – Getting started with the Azure ML Workspace

Machine Learning Problem Example

Will a customer/driver file an insurance claim next year? ('Safe Driver' Prediction)

Model Creation Is Typically Time-Consuming

Model Creation Is Typically Time-Consuming

Which features?

Max Mileage Year

Driver Age

Engine Power

Car Color

Driver Address

. . .

Which algorithm?

Gradient Boosted

Nearest Neighbors

SVM

Bayesian Regression

LGBM

...

Which parameters?

30%

Iterate

Model Creation Is Typically Time-Consuming

30%

What if we can simplify machine learning?

Automated ML & Hyperparameter tuning Mission

Enable automated building of machine learning with the goal of accelerating, democratizing and scaling Al

Accelerate Al

Improve Productivity for Data Scientists, Citizen Data Scientists, App Developers & Analysts

Democratize Al

Enable developers and any data science practitioner to rapidly get started building Machine Learning based solutions

Scale Al

Build AI solutions at scale in the cloud out when using large data and multiple model training jobs, in an automated fashion

What is **Automated** Machine Learning?

Automated machine learning (automated ML) automates feature engineering, algorithm and hyperparameter selection to find the 'best model' for your data.

© Microsoft Corporation Azure

Automated ML – How it works

- ML Tasks supported:
 - Classification Regression and Time-Series Forecasting + DNN-based text featurization and algos (BERT).
- Based on Microsoft Research
- Brain trained with millions of experiments
- Privacy preserving: No need to "see" the data
- (*) Deep Learning Computer Vision

Supervised Learning

- List of supported algorithms in Azure AutoML
- List of Featurization areas
- FeaturizationConfig class (SDK doc) (Sample notebook)
- List of algorithms and hyperparameters used in AutoML-created model (Sample notebook)

Personas and skills using AutoML & HyperDrive

SAMPLING BIAS

"WE RECEIVED 500 RESPONSES AND FOUND THAT PEOPLE LOVE RESPONDING TO SURVEYS"

sketchplanations

Guardrails

Class imbalance

Train-Test split, CV, rolling CV

Missing value imputation

Detect high cardinality features

Detect leaky features

Detect overfitting

Model Interpretability / Feature Importance

Featurization

- [New] Deep Learning based (BERT) featurization
- [New] Custom Featurization
- Automatically engineer features
- Automated pre-processing of data

Demo – Using AutoML UI to create a model

Using AutoML code (AML SDK) in notebooks

AML SDK, packages, install, etc.

Demo – Using AutoML <u>local runs</u>, with SDK and notebooks, for training the *Safe Driver*

Prediction model

Demo – Using AutoML <u>remote runs</u>, with SDK and notebooks, for training the *Safe Driver Prediction model*

Azure ML Pipelines and "the path towards DevOps for ML"

Azure ML Pipelines within the e2e model lifecycle

- Azure Machine Learning pipelines allow you to create workflows in your ML projects.
- Those pipelines can later be triggered from external operationalization orchestrators such as Azure DevOps CI/CD

AutoMLStep within Azure ML Pipelines

AutoMLStep provides an easy way to encapsulate AutoML configuration and training code as an **AML Pipeline step**.

Typical code refactoring process:

- 1. Initial code: Explore/define your regular AutoML code in Jupyter notebooks
- **2. AML Pipelines**: Evolve/refactor code into decoupled pieces of code:
 - PythonScriptStep with .py script for each data transforms & AML SDK code
 - AutoMLStep for encapsulating AutoML as a pipeline step
- **3. CI/CD for ML**: Integrate with higher level model lifecycle in Azure DevOps

Demo – Using AutoML in AML Pipelines (Pipeline implementation with SDK/Code in Python)

Model Deployment and inferencing in QA/Production

Demo – Deploying AutoML models and inferencing in QA/Production

UI + SDK demo

Model Explainability in Azure AutoML

Demo – Model Explainability in Azure Automated ML

What is Hyper Parameter Tuning (HyperDrive) in Azure ML?

...And when to use it versus Azure AutoML.

Azure AutoML vs. HyperDrive

- Azure AutoML supports Regression, Classification and Time Series Forecasting using tabular data.
- What if I want to optimize a different ML problem/tasks such as based on deep learning (image classification), or any other problem where I also have my initial code to optimize? (Scikit-Learn, TensorFlow, PyTorch, etc.)
 - → Then, use AML Hyperparameter Tuning (HyperDrive)

Azure ML Hyperparameter Tuning Capabilities

1.

2.

3.

ŀ.

5.

6.

Automated Exploration

Automates the process of exploring the hyperparameter space, saving data scientists significant time and effort

Efficient Resource Usage

Intelligently early terminates poor performing configurations to save compute costs

User Controls

Users can specify a primary metric to optimize and a maximum budget in terms of number of jobs or duration

Deep Learning & Traditional ML

Applies to
different models
and learning
domains. Users
bring their own
training
algorithms and
use in different
scenarios

Framework agnostic

Use with
Tensorflow,
PyTorch, Scikit
Learn or any other
training
framework of your
choice

Easily find best performing config

Visualize all configs together and easily identify hyperparameter values that result in optimal performance.

Deploy model from this best config and infer using AML

How hyperparameter tuning in Azure ML works

Demo – Using **Azure ML Hyperparameter Tuning** to optimize a deep learning Tensorflow model code in a notebook

Next steps...

DevOps? MLOps? Operationalization?

MLOps with Azure Machine Learning

Additional topics not covered today in detail:

- AML designer (Visual designer UI)
- AML Dataset data-drift
- MLOps and Model Lifecycle (AML pipelines integration to Azure DevOps)
- NLP/DNN Featurization (Deep-Learning based featurization for Text)
- AML infrastructure (Workspace, Datasets, Environments, etc.)
- Other ML Tasks (Regression, Time-Series Forecast, Classification)
- Model interoperability with ONNX
- 'Many Models' (Hundreds of models trained in parallel)

Try it for free http://aka.ms/amlfree

Learn more: https://aka.ms/automatedmldocs

Notebook Samples : https://aka.ms/automatedmlsamples

Blog: https://aka.ms/AutomatedML The studio: https://ml.azure.com

Try Automated ML: https://aka.ms/tryautomatedml

Product Feedback : <u>AskAutomatedML@microsoft.com</u>

Appendix