An Industrial Organization Perspective on Productivity

Total Factor Productivity

Mengxin LIU

Lingnan University

April 10, 2025

Outline

- 1. What is productivity?
- 1.1 Productivity Concepts
- 1.2 Estimating and Addressing Productivity Challenges
- 1.3 Operating Environment and Data Challenges
- 2. Estimation Methods
- 2.1 Estimation Methods: Perfect Competition(A)
 Factor Shares Approach(A.1)

Production Function Estimation(A.1/A.2)

- 2.2 Estimation Methods: Imperfect Competition(B)
 A serious approaches: Imperfect Competition (B.1/B.2)
- 2.3 Estimation Methods: Multi-product Production (A.2/B.2) Estimate Transformation Function (A.2)

Product Differentiation (B.2)

Product Differentiation (B.2)

- 3. Discussion
- 3.1 Cost versus Production Functions
- 3.2 Measurement and Specification Errors

Productivity Concepts

- Definition: Productivity measures input-output efficiency ($\Omega = \frac{Q}{F(K,L,M)}$) A higher value of Ω implies that the producer will obtain more output from a given set of inputs.
- Three perspectives:
 - Production function shifter (Hicks-neutral)
 - Output-input ratio $(\mathsf{TFP}(\frac{Q}{F(K,L,M)})$ vs. single-factor productivity $(\frac{Q}{(L)})$
 - Cost curve shifter(TFP↑, Overall cost curve ↓)
- Importance: Micro-level productivity differences affect market equilibrium and welfare

Estimating and Addressing Productivity Challenges

Estimating Total Factor Productivity (TFP)

$$\Omega_{it} = \frac{Q_{it}}{F(K_{it}, L_{it}, M_{it})} \tag{1}$$

Log-linearized Production Function

$$q_{it} = \underbrace{\beta_V x_{it}^V}_{\text{Variable}} + \underbrace{\beta_F x_{it}^F}_{\text{Fixed}} + \omega_{it} + \epsilon_{it}$$
 (2)

Key Challenges

- Endogeneity bias (input choices correlated with productivity)
- Selection bias (exit of low-productivity firms)

Operating Environment and Data Challenges

Table: 1 Market Structure and Unit of Analysis

	Producer Level (1)	Product Level (2)
Perfect Competition (A)	A.1 (Traditional)	A.2 (Transformation)
Imperfect Competition (B)	B.1 (Control function)	B.2 (Quality-adjusted)
Homogeneous Products	B.1.1	B.2.1
Differentiated Products	B.1.2	B.2.2

- Homogeneous Products (A/B.1.1/B.2.1):
- Differentiated Products (B.1.2/B.2.2):
 - Requires explicit quality adjustment.
- Multi-product Producers (Product Level):
 - Input allocation problem.

Core Problem: Missing Measurement Dimension

- Original classification (Table 1) does not distinguish:
 - Physical quantity data (directly observed input/output quantities)
 - Monetary value data (revenues/expenditures reflecting monetary values)

Research Premises

- Implicit assumption: Applied research predominantly uses deflated monetary variables
- Exception: Labor inputs typically observed directly as employment counts
- Key implications for scenarios:
 - A.1 (Perfect competition Producer level)
 - B.1.1 (Homogeneous goods Producer level)

Valid simplifications

- Price deflation can reconcile revenue vs quantity differences
- Homogeneous goods assumption within industries

Methodological Constraints

Differentiated products (B.1.2/B.2.2) require

- Quality heterogeneity from product attributes
- Price signals reflecting quality differences (Klette-Griliches paradox)
- Input allocation challenges in multi-product firms

Key breakthroughs (De Loecker et al., 2016)

- Quality-adjusted measurement methods
- Transformation function approach
- Persisting limitation: Cross-product input allocation

Empirical Implementation Guide

Method selection decision tree

- 1. Data type identification
- 2. Physical quantity observability test
- 3. Product homogeneity assessment
- 4. Demand system estimation (if needed)

Factor Shares Approach(A.1)

Theoretical Basis

Under cost minimization:

$$\beta_X^H = \frac{1}{N_t} \sum_{i} \frac{P_{it}^{X^H} X_{it}^H}{T C_{it}}$$

$$\beta_X^H = \frac{P_{it}^{X^H} X_{it}^H}{T C_{it}}$$

Applicability Conditions

- Perfect competition (A.1): Input's cost share equals its revenue share $\frac{P^XX}{PQ}$.
- Constant returns to scale.
- No adjustment costs.

Key Challenges

It requires accurate measurement of input cost shares.

Production Function Estimation(A.1/A.2)

Core Specification

$$q_{it} = \underbrace{eta_{V} x_{it}^{V}}_{ ext{Variable}} + \underbrace{eta_{F} x_{it}^{F}}_{ ext{Fixed}} + \omega_{it} + \epsilon_{it}$$

Input Classification

Variable Inputs (x^V)

- Labor (L_{it})
- Materials (M_{it})

Fixed Inputs (x^F)

• Capital (K_{it})

Key Parameters

• Output Elasticities:

$$\beta_V = \frac{\partial \ln Q}{\partial \ln x^V}, \quad \beta_F = \frac{\partial \ln Q}{\partial \ln x^F}$$

TFP Decomposition:

$$\omega_{it} = \ln\left(\frac{Q_{it}}{F(\cdot)}\right)$$

Error Term:

$$\epsilon_{it} \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

Production Function Estimation(A.1/A.2)

Key Challenges

- Endogeneity bias (input choices correlated with productivity)
- Selection bias (exit of low-productivity firms)

Approaches to Address Challenges:

- Instrument Variables
 - Input price (usually not available to the econometrician)
 - Demand-side shifters (affect the validity of the approach)
- Control Function Approach (Perfect Competition)
 - Olley-Pakes (1996): Investment policy function inversion
 - Levinsohn-Petrin (2003): Intermediate inputs as proxy
 - Ackerberg-Caves-Frazer (2015): Unified framework
- Dynamic Panel Approach (Arellano-Bond 1991)
 - AR(1) process: $\omega_{it} = \rho \omega_{it-1} + \xi_{it}$
 - Capital coefficients are often low or even negative when estimated.

• Key Equations:

Production function
$$q_{it} = \beta_V x_{it}^V + \beta_F x_{it}^F + \omega_{it} + \epsilon_{it}$$
Input demand $d_{it} = d_t(\omega_{it}, x_{it}^V, x_{it}^F)$
Inverted Input demand $\omega_{it} = d_t^{-1}(d_{it}, x_{it}^V, x_{it}^F)$
Productivity dynamics $\omega_{it} = g(\omega_{it-1}) + \xi_{it}$
Capital accumulation equation $K_{it} = (1 - \delta)K_{it-1} + I_{it-1}$

• Key Assumptions:

- Monotonicity condition: d_{it} strictly monotonic in ω_{it} . Unobserved productivity shock can be controlled and obviate the simultaneity problem.
- Productivity follows a first-order Markov process $\omega_{it} = g(\omega_{it-1}) + \xi_{it}$, which is a core time assumption and deals with selection bias.

Estimation Procedure: two-steps

- First Step: Output Prediction
 - Replace unobserved productivity ω_{it} with inverted input (investment or intermediate input) demand equation:

$$\omega_{it} = d_t^{-1}(d_{it}, x_{it}^V, x_{it}^F)$$

• Construct predicted output equation:

$$q_{it} = \phi_t(d_{it}, x_{it}^V, x_{it}^F) + \epsilon_{it}$$

where $\phi_t(\cdot)$ captures predicted output:

$$\phi_t(\cdot) = \beta_V x_{it}^V + \beta_F x_{it}^F + \omega_{it}$$

- Key purposes:
 - ightharpoonup Remove measurement error ϵ_{it}
 - ightharpoonup Capture market-specific price variation through $\phi_t(\cdot)$

Second Stage: Productivity Dynamics

• Assume Markov productivity process:

$$\omega_{it} = g(\omega_{it-1}) + \xi_{it}$$

• Compute productivity for parameter guess β :

$$\omega_{it} = \hat{\phi}_{it} - \beta_V x_{it}^V - \beta_F x_{it}^F$$

• Form moment conditions:

$$E\left[\xi_{it}(\beta)\begin{pmatrix} x_{it-s}^V\\ x_{it}^F \end{pmatrix}\right] = 0$$

- Critical timing assumptions:
 - ▶ Variable inputs (x^V) react contemporaneously to productivity shock (ξ_{it})
 - Fixed inputs (x^F) follow dynamic accumulation:

$$K_{it} = (1 - \delta)K_{it-1} + I_{it-1}$$

Key Implementation Features

- Input Differentiation:
 - Variable inputs (x^V) : Intra-period adjustment (e.g., labor)
 - Fixed inputs (x^{F}) : Inter-temporal accumulation (e.g., capital)
- Identification Strategy:
 - · Leverage differential timing of input adjustments
 - Use lagged flexible inputs as instruments
 - · Exploit exogenous variation in fixed input accumulation
- Computational Procedure:
 - 1. Nonparametric estimation of $\phi_t(\cdot)$ (typically polynomial approximation)
 - 2. Nonlinear GMM estimation using moment conditions
 - 3. Bootstrap standard errors to account for generated regressors

Production Function Estimation: Imperfect Competition (B)

Core Challenges

- Output-Input Comparability:
 - Differentiated products create non-comparable physical units(B.2)
 - Revenue/expenditure data introduce price heterogeneity (Price Deflation Approaches)
 - Example: Luxury vs economy cars cannot be directly compared
- Price Heterogeneity Bias:
 - Unobserved price variations contaminate productivity measures (Demand System Integration)
 - High prices may reflect quality/market power rather than efficiency (Quality-Adjusted)
 - TFPR (Revenue-based TFP) vs TFPQ (Quantity-based TFP) distinction (Demand System Integration)

Price Deflation Approaches

Converts observed revenue to output data using additional price data

• Industry-level Deflation:

$$Q_{it} = \frac{R_{it}}{P_t}$$
 (Standard practice but insufficient)

- Removes common price trends from revenue data
- Fails to address cross-producer price differences
- Producer-level Deflation:

$$Q_{it} = \frac{R_{it}}{P_{it}}$$
 (Requires product-specific price data)

- Enables quality-adjusted quantity comparison
- Implementation challenges in multi-product firms

Demand System Integration

- Motivation:
 - Traditional approaches ignore price measurement error, leading to:
 - ► Downward bias in returns-to-scale estimates
 - Confounded demand shocks and productivity effects
- Nested CES demand system (De Loecker, 2011):

$$Q_{it} = Q_t \left(rac{P_{it}}{P_t}
ight)^\psi \exp(
u_{it})$$

- ψ : Demand elasticity
- ν_{it} : Idiosyncratic demand shock
- Revenue production function with price correction::

$$r_{it} - p_t = \alpha_V x_{it}^V + \frac{1}{|\psi|} q_t + \tilde{\omega}_{it} + \tilde{\epsilon}_{it}$$

• Joint identification of: Production elasticity $(\alpha_V = (\frac{\psi+1}{\psi})\beta_V)$

Quality-Adjusted Production Functions (Product Differentiation)

• Assumption:

- products where higher-quality version (whose producers can sell for higher prices)
 require higher-quality inputs (whose producers must pay more to obtain)
- Vertical Differentiation Model:

$$Q(\nu) = F(X^{V}(\nu))\Omega$$

- ν : Product quality (inferred from prices)
- Price-quality mapping: $\nu = v(p_{it})$
- Empirical Implementation:

$$q_{it} = \beta_V x_{it}^V + \omega_{it} + v(p_{it}) + \epsilon_{it}$$

• Identification via: uses lagged prices as instruments for quality shocks and price quality mapping $\nu = \nu(p_{it})$

Method Comparison

Table: 2 Method Comparison

Approach	Data Requirements	Key Limitation
Industry Deflation	Aggregate price indices	Ignores firm-level price variation
Demand System	Product-level quantities	Requires demand shifters
Quality Adjustment	Firm-specific prices	Assumes vertical differentiation

Estimation Methods: Multi-product Production (A.2/B.2)

Basic Framework: Given a multi-product producer, we start with the product-level production function:

$$Q_{j} = \left(X_{j}^{V}\right)^{\beta_{V}} \left(X_{j}^{F}\right)^{\beta_{F}} \Omega$$

where:

- Q_j: Output of product j
- X_i^V, X_i^F : Variable and fixed inputs allocated to product j
- β_V, β_F : Output elasticities of inputs

Under two critical assumptions:

- 1. **Common Productivity**: Productivity ω_{it} is identical across all products within a firm
- 2. **Neutral Input Allocation**: Inputs allocated proportionally to products via shares a_j :

$$X_j^H = a_j X^H \quad \forall H \in \{V, F\}$$

Aggregation Procedure

1. Data Inputs:

- Product-level outputs (Q_j): Typically revenue data
 Firm-level inputs (X^V, X^F): No product breakdown

2 Allocation Rules:

$$a_j = egin{cases} rac{1}{J} & ext{(Equal share, number of products)} \ rac{Q_j}{Q} & ext{(Output share, Revenue/Physical output)} \end{cases}$$

3. **Aggregation Formula** (CRS):

$$Q = \sum_{j} Q_{j} = \sum_{j} \alpha_{j}^{\beta_{V} + \beta_{F}} (X^{V})^{\beta_{V}} (X^{F})^{\beta_{F}} \Omega \quad \text{if } \beta_{V} + \beta_{F} = 1$$

Non-CRS Case: Requires additional terms (e.g., log number of products ln *J*) and addresses endogeneity of product count J

Estimate Transformation Function (A.2)

Study Reference: Dhyne et al. (2014)

- Focus: Production in Belgian bakeries producing bread and pastries.
- Assumption: Both products (bread and pastries) are homogeneous.

$$q_{1} = \gamma_{1}q_{2} + \beta_{V}^{1}x^{V} + \beta_{F}^{1}x^{F} + \omega_{1}$$

$$q_{2} = \gamma_{2}q_{1} + \beta_{V}^{2}x^{V} + \beta_{F}^{2}x^{F} + \omega_{2}$$

Parameter	Meaning
γ_j	Inter-product interaction effect:
	$\gamma_j <$ 0: Resource competition (e.g., $\gamma_1 <$ 0 implies 1 output decreases with 2 production)
	$\gamma_j > 0$: Synergy effect (e.g., $\gamma_2 > 0$ suggests 2 efficiency gains from 1 production)
$eta_{f V}^{m j}$	Variable input elasticity for product j
$eta_{m{F}}^{\dot{m{J}}}$	Fixed input elasticity for product <i>j</i>
ω_j	Product-specific productivity shock

Fundamental Issues

Multiple Unobservables:

- *J* productivity terms: $\omega_{i1t}, \omega_{i2t}, \dots, \omega_{iJt}$
- Traditional single-product models only handle ω_{it}
- Total parameters must be estimated: J (products) + 2J (input elasticities) = 3J (Example: 6 parameters when J = 2)

• Endogeneity Problems:

- Simultaneity: $q_{-i,t}$ as endogenous regressor
- High-dimensional instrumentation: Requires (J-1) valid instruments

Key Complexity

Model complexity grows exponentially with product count J

Control Function Extension

Data Description:

- Quantities produced for each product are reported.
- Total input use is reported, distinguishing between:
 - Variable factors of production.
 - Fixed factors of production.

Dhyne et al. (2014) Solution:

• Combines OP (investment) and LP (materials) proxies:

$$\begin{pmatrix} \omega_{i1t} \\ \omega_{i2t} \end{pmatrix} = h_t(k_{it}, m_{it}, i_{it})$$

- Requires bijective mapping $h_t(\cdot)$
- Limited to J = 2 case (bread & pastries)

This further highlights the additional restrictions required of the control function approach in this scenario.

Product Differentiation (B.2)

Product Differentiation Bias:

- Traditional deflation methods fail under quality heterogeneity
- Unobserved input price variations confound elasticity estimates
- Example: Premium flour inputs correlate with bread quality

Identification Complexity:

- Requires separating demand shocks from productivity effects
- Needs product-level price/quality adjustments

Methodological Framework

- Key Assumptions:
 - 1. Product-specific production functions:

$$Q_1 = F_1(X_1)\Omega_1, \ Q_2 = F_2(X_2)\Omega_2$$

2. Firm-level productivity (ω), no physical synergies

$$q_{1} = \beta_{V_{1}} x_{1}^{V} + \beta_{F_{1}} x_{1}^{F} + \omega$$
$$q_{2} = \beta_{V_{2}} x_{2}^{V} + \beta_{F_{2}} x_{2}^{F} + \omega$$

Scope Restriction

Excludes equipment sharing efficiencies but allows:

- Shared fixed costs:
- Bulk purchase discounts:

$$C(Q_1,Q_2) \leq C(Q_1) + C(Q_2)$$

Estimation Procedure

1. **Input Allocation**: Define allocation shares (ρ_i) based on expenditure:

$$\exp(\rho_j) = \frac{P_j^H X_j^H}{\sum_j P_j^H X_j^H}, \quad H \in \{V, F\}$$

This ensures full input allocation:

$$\sum_{j} \exp(
ho_{j}) = 1$$

2. **System of Equations**: Solve the following system of equations:

$$\begin{cases} q_1 - \beta_{V_1} x^V - \beta_{F_1} x^F = \rho_1 + \omega \\ q_2 - \beta_{V_1} x^V - \beta_{F_2} x^F = \rho_2 + \omega \end{cases}$$

Unknowns: ρ_1, ρ_2, ω .

Simplified CRS Illustration

Common Technology Assumption:

$$\beta_V^1 = \beta_V^2, \quad \beta_F^1 = \beta_F^2$$

• Input Allocation Rule:

$$\exp(\rho_j) = \frac{Q_j}{\sum_j Q_j}$$

Productivity Metric:

$$\Omega = \frac{\sum_{j} Q_{j}}{X}, \quad \ln X = \beta_{V} x^{V} + \beta_{F} x^{F}$$

Generalized Framework Features

Extended Capabilities:

- Product-specific technologies $(\beta_V^j \neq \beta_V^k)$
- Variable returns to scale $(\beta_V^j + \beta_F^j \neq 1)$
- Quality-adjusted differentiation $(Q_j = \nu_j F_j(X_j))$

Key Requirements:

- 1. Single-product producer samples for baseline estimation
- 2. Cost traceability to products
- 3. Product-specific (not factor-specific) allocation

Critical Insight

Quality differentiation requires price-quality mapping:

$$\nu_j = v(p_j)$$

Deriving the Cost Function

Starting from the production function and solving a static cost minimization problem (equating the marginal rate of technical substitution to input price ratios), we derive the log-linear cost function:

$$\ln C_{it} = c_0 + \frac{1}{\beta_V + \beta_F} q_{it} + \frac{\beta_V}{\beta_V + \beta_F} p_{it}^V + \frac{\beta_F}{\beta_V + \beta_F} p_{it}^F + \frac{1}{\beta_V + \beta_F} \omega_{it} + \epsilon_{it}^*$$

where:

- C_{it}: Total cost of firm i at time t
- q_{it}: Output quantity
- p_{it}^V, p_{it}^F : Prices of variable and fixed inputs
- ω_{it} : Unobserved productivity shocks
- ϵ_{it}^* : Measurement error

Methodological Comparison

• Data Requirements:

- Observability of factor prices (p_{it}^V, p_{it}^F)
- Accurate measurement of economic costs (C_{it})

Table: 3 Cost Function vs. Production Function Approaches

Cost Function Approach	Production Function Approach
Requires cost data and input prices	Requires input quantities and output data
Easily handles scale/scope economies	Requires explicit modeling of multi- product production
Assumes cost minimization Sensitive to input price measurement	Assumes exogenous productivity Sensitive to input quantity measurement

Capital Measurement

Sources:

- Asset heterogeneity (varying equipment lifespans)
- Depreciation rate misspecification
- Unadjusted capital price fluctuations

• Impact:

- Biased capital elasticity (β_F)
- Distorted productivity estimates

Solutions:

- Instrumental Variables (lagged investment)
- Nonparametric methods (Kim et al., 2016)

Specification Errors

• **Problem**: Omitting drivers (e.g., R&D A_{it}):

$$\omega_{it} = g(\omega_{it-1}) + \xi_{it}$$
 (Missing A_{it-s})

• Solution: Enhanced dynamic equation

$$\omega_{it} = g(\omega_{it-1}, A_{it-s}) + \xi_{it}$$

- Cobb-Douglas Limitation: Fixed substitution elasticity ($\sigma = 1$)
- Alternatives:
 - Translog: Flexible elasticities (De Loecker & Warzynski, 2012)
 - CES: Free substitution parameter
 - Nonparametric: Gandhi et al. (2020)

Empirical Implications & Solutions

Table: 4 Error Types & Remedies

Error Type	Impact	Solution
Capital Measure- ment	$eta_{\it F}$ attenuation	IVs, Nonparametric CF
Output Measure- ment	ω_{it} volatility	Two-stage CF, GMM
Process Misspeci- fication	R&D effect bias	Enriched dynamics
Technological Heterogeneity	Diffusion misjudgment	Multi-technology models
Functional Form	Scale/elasticity bias	Translog/CES

Decision Tree Visualization

Thank You!