Teoría de los números II - semestre 2020-2

La clase pasada vimos el siguiente resultado

Teorema

$$\sigma(n) \ll n \ln(n)$$
.

Como uno de los objetivos de la matemática es simplificar los procesos así como sus expresiones (fórmulas), entonces cabe preguntarnos si es posible mejorar la cota anterior de $\sigma(n)$, para obtener una más simple. A continuación veremos la posibilidad de establecer que $\sigma(n) \ll n$.

Que $\sigma(n)$ sea $\ll n$ significaría que existen constantes C y Ntales que $\sigma(n) \leq Cn$ para toda n > N. Pero si $\sigma(n)$ no es $\ll n$, entonces veamos qué pasa con C y N.

Si no existen C y N tales que $\sigma(n) \le Cn$ para toda n > N, implica que para cualquiera C existen una infinidad de enteros n tales $\sigma(n) > Cn$.

Así, dada una constante C necesitamos examinar si es posible generar una infinidad de valores para n tales que $\sigma(n) > Cn$, y si es así, entonces terminamos la demostración de la imposibilidad de que $\sigma(n) \ll n$.

Para adentrarnos en lo mencionado, elegimos cualquier $N \in \mathbb{Z}$ tal que $N > e^c$, y de esto se obtiene $\ln(N) > C$. Ahora como $\ln(N)$ es una función creciente, entonces sin problema podemos considerar a n = N!.

Ya sabemos por lo de antes que $\frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d}$, donde d corre en los divisores de n, pero los divisores de n = N! son más que si sólo consideramos a los divisores 1,2,3, ..., N.

Entonces $\sum_{d|n} \frac{1}{d}$ tiene más o igual cantidad de sumandos que $\sum_{d=1}^{N} \frac{1}{d}$, por lo que

$$\frac{\sigma(n)}{n} = \sum_{d \mid n} \frac{1}{d} \ge \sum_{d=1}^{N} \frac{1}{d}$$

Nuevamente podemos ver como al trabajar con los divisores de n llegamos a una desigualdad con números armónicos, y entonces podemos utilizar las desigualdades de los primeros teoremas, y de esas desigualdades tenemos que $H_{N-1} < H_N$, y como $\ln(N) < H_{N-1} < H_N$, entonces $\ln(N) < H_N$. De aquí concluimos que $\sum_{d=1}^N \frac{1}{d} = H_N > \ln(N)$.

Y por la elección de N sabemos que ln(N) > C, así

$$\frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d} \ge \sum_{d=1}^{N} \frac{1}{d} = H_N > \ln(N) > C$$

por lo tanto $\frac{\sigma(n)}{n} > C$, finalmente $\sigma(n) > Cn$, para cualquiera n.

Finalmente se llega a que existen una infinidad de valores den para cada C tales que $\sigma(n) > Cn$, y con esto se concluye que no es posible que $\sigma(n) \ll n$.

En resumen, hemos presentado diversas cotas y aproximaciones para H_n y mostramos algunos resultados que involucran a otras funciones aritméticas, pero lo principal es que las demostraciones de dichos resultados requieren de los números armónicos y de sus propiedades previamente presentadas.

CDMX 17 de abril de 2020