DL1 du Module AP31 : "Algèbre Quadratique" à rendre avant 10février 2021 à 23h59 envoyé dans l'adresse Mail m.addam@uae.ac.ma

N.B.: Je demande tous les étudiants de rédiger leurs compte-rendus sur des feuilles blanche de type A4, ceci pour la bonne visibilité de vos rédactions respectives

Exercice 1

On désigne par $\mathbb{B} = \{e_1, e_2, e_3, e_4\}$ une base d'un espace vectoriel E sur \mathbb{R} et par f l'endomorphisme de E définie par

$$\begin{cases} f(e_1) = -e_1 \\ f(e_2) = e_2 + e_3 \\ f(e_3) = -5e_2 - e_3 + e_4 \\ f(e_4) = 12e_2 + e_3 - 3e_4 \end{cases}$$

- 1. Pour $v = xe_1 + ye_2 + ze_3 + te_4$, calculer f(v).
- 2. Calculer les valeurs propres et les sous-espaces propres de f.
- 3. Calculer l'inverse de f si elle existe.
- 4. Déterminer une base de E telle que la matrice de f dans cette base soit une matrice de Jordan que l'on pricisera.

Exercice 2

Soit E un espace vectoriel de dimension 2n sur \mathbb{R} et $\{v_1, v_2, \dots, v_{2n}\}$ une base de E. On définit une application linéaire de E dans E par :

$$f(v_k) = v_{k+1}$$
 si k est impair et $f(v_k) = v_{k-1}$ si k est pair.

- 1. Déterminer le polynôme minimal de f et en déduire que f est inversible.
- 2. Décomposer E en une somme directe de sous-espaces vectoriels de E de dimension 2.
- 3. Soient E_1, E_2, \ldots, E_n ces sous-espaces propres tels que le polynôme minimal de la restriction de f à E_i reste égale à celui de f. Déterminer le polynôme caractéristique de f ainsi qu'une base de vecteurs propres de f.

Exercice 3

Soit K un corps commutatif, $n \in \mathbb{N}^*$ fixé. Pour $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$, on pose

$$\widetilde{P}_A(X) = \det(A + XI_n)$$

où I_n est la matrice identité de $\mathcal{M}_n(\mathbb{K})$. On écrit

$$\widetilde{P}_A(X) = P_0(A)X^n + P_1(A)X^{n-1} + \ldots + P_{n-1}(A)X + P_n(A)$$

et on rappelle que
$$P_0(A) = 1$$
, $P_1(A) = \sum_{i=1}^n a_{ii} = \operatorname{Tr}(A)$ et $P_n(A) = \det(A)$.

- 1. Montrer que l'application $\operatorname{tr}: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}, A \mapsto \operatorname{tr}(A) = P_1(A)$ est linéaire.
- 2. Dans la suite, on pose $\mathbb{K}' = \mathbb{Q}(\mathbb{K}[X])$ le corps des fractions de $\mathbb{K}[X]$. Pour $R \in \mathbb{K}'$ et $P(X) = \sum_{i=0}^{n} a_i X^i \in \mathbb{K}[X]$, on note naturellement $P(R) = \sum_{i=0}^{n} a_i R^i$.
 - (a) Montrer que si A est inversible et $B = A^{-1}$, alors on a

$$\widetilde{P}_B(X) = \frac{1}{\det(A)} X^n \widetilde{P}_A\left(\frac{1}{X}\right).$$

(b) En déduire que lorsque A est inversible on a

$$\operatorname{tr}(A^{-1}) \times \det(A) = P_{n-1}(A).$$

- 3. Pour A fixée, on écrit $A' = I_n XA \in \mathcal{M}_n(\mathbb{K}')$.
 - (a) Montrer que A' est inversible.
 - (b) Montrer que $(I_n XA)(I_n + XA + X^2A^2 + ... + X^mA^m) = I_n X^{m+1}A^{m+1}$.
 - (c) Montrer que pour tout entier $m \in \mathbb{N}$, on a

$$\operatorname{tr}((A')^{-1}) = n + X \operatorname{tr}(A) + X^2 \operatorname{tr}(A^2) + \dots + X^m \operatorname{tr}(A^m) + R$$

où $R = X^{m+1} \frac{P(X)}{Q(X)}$ avec P et Q sont dans $\mathbb{K}[X]$ et $Q(0) \neq 0$.

(d) Montrer que

$$\widetilde{P}_{A'}(Y) = (-X)^n \widetilde{P}_A\left(-\frac{1+Y}{X}\right).$$

- (e) En déduire la valeur de $P_{n-1}(A')$.
- (f) Montrer que pour k = 1, 2, ..., n, on a

$$\sum_{\ell=1}^{k} \operatorname{tr}(A^{\ell})(-1)^{\ell+1} P_{k-\ell}(A) = k P_k(A).$$

Exercice 4

1. Soient E l'espace vectoriel de dimension finie sur \mathbb{K} . On note par $\det_{\mathbb{B}}$ l'application déterminant relativement à une base \mathbb{B} de E. Soient c_1, c_2, \ldots, c_n, u des vecteurs dans E où $\dim(E) = n$.

Montrer qu'il existe a_0 et a_1 dans \mathbb{K} tel que pour tout $\lambda \in \mathbb{K}$, on a

$$\det_{\mathbb{B}}(c_1 + \lambda u, c_2 + \lambda u, \dots, c_n + \lambda u) = a_0 + a_1 \lambda.$$

2. Soient $r_1, r_2, \ldots, r_n, a, b$ des scalaires dans \mathbb{K} , on pose

$$A = \begin{bmatrix} r_1 & a & \dots & a \\ b & r_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ b & \dots & b & r_n \end{bmatrix} \quad \text{et} \quad U = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 1 \end{bmatrix}$$

soit $\phi : \mathbb{K} \to \mathbb{K}$, $\lambda \mapsto \phi(\lambda) = \det_{\mathbb{B}}(A + \lambda U)$ une application.

(a) Déduire de la question 1. qu'il existe α et β dans $\mathbb K$ tels que

$$\forall \lambda \in \mathbb{K}, \quad \phi(\lambda) = \alpha + \beta \lambda.$$

- (b) Calculer $\phi(-a)$ et $\phi(-b)$.
- (c) En déduire que si $a \neq b$, alors on a :

$$\det_{\mathbb{B}}(A) = \frac{bP(a) - aP(b)}{b - a} \quad \text{où} \quad P(X) = \prod_{i=1}^{n} (r_i - X).$$

- (d) On suppose que $a \neq b$, calculer le polynôme caractéristique de A.
- (e) Dans la suite, on suppose que $\mathbb{K} = \mathbb{R}$ et que $r_1 = r_2 = \cdots = r_n = a = b = 1$.
 - i. Dans ce cas, montrer que le polynôme caractéristique de A s'écrit sous la forme

$$P_A(X) = (-X)^{n-1}(n-X).$$

(Indication: on pourra prendre a=1 et b=1+h dans l'expression de la question 5., puis ensuite faire tendre h vers θ)

ii. Montrer que A est diagonalisable.

Exercice 5

Soient (x_1, x_2, \dots, x_n) et (a_1, a_2, \dots, a_n) deux éléments de \mathbb{C}^n . On pose

$$D_{n} = \begin{vmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n-1} \end{vmatrix} \quad \text{et} \quad A = \begin{bmatrix} a_{1} & a_{2} & a_{3} & \dots & a_{n} \\ a_{n} & a_{1} & a_{2} & \dots & a_{n-1} \\ \vdots & \ddots & \ddots & & \vdots \\ a_{3} & \ddots & \ddots & \ddots & \vdots \\ a_{3} & \ddots & \ddots & \ddots & a_{2} \\ a_{2} & a_{3} & \dots & a_{n} & a_{1} \end{bmatrix}$$

$$\alpha = e^{\frac{2i\pi}{n}}$$
 et $V_k = (1, \alpha^k, \alpha^{2k}, \dots, \alpha^{(n-1)k})$ $k \in \{0, 1, \dots, n-1\}$

- 1. Montrer que $D_n = \prod_{i < j} (x_j x_i)$.
- 2. Montrer que le système $\{V_0,V_1,\ldots,V_{n-1}\}$ est une base de \mathbb{C}^n .
- 3. Montrer que

(a)
$$\det(A) = \prod_{k=1}^{n} P(\alpha^{k})$$
 où $P(x) = a_0 + a_1 x + \dots + a_n x^n$.

- (b) A est diagonalisable.
- 4. Déterminer le polynôme caractéristique et le polynôme minimal de A.