

DelftX: OT.1x Observation theory: Estimating the Unknown

Help

Bookmarks

- 0. Getting Started
- 1. Introduction to Observation Theory
- 2. Mathematical model
- 3. Least Squares Estimation (LSE)
- 4. Best Linear Unbiased Estimation (BLUE)
- 5. How precise is the estimate?

Warming up

- 5.1. Error Propagation
- 5.2. Confidence Intervals

Assessment

5. How precise is the estimate? > Assessment > Module 5 Assessment - Part 2 (incl. Matlab)

Module 5 Assessment - Part 2 (incl. Matlab)

☐ Bookmark this page

In the following Matlab assignment, you should fit a quadratic polynomial to a synthetic (accelerating) sea level rise dataset. The dataset is given in the 'W6_syntheticdata2.txt' file, and it contains yearly sea level measurements over 20 years (in total 20 observations). The time of observations are given in years as $[1,\ 2,\ 3,\ \ldots,\ 20]$. The observations are assumed to be normally distributed and have a precision of σ =5 cm. The sea level at time zero is unknown and should also be estimated together with the annual rate x_1 and the acceleration component x_2 . So in total, we have three unknown parameters as indicated in the following functional model for an observation y_i

$$\mathrm{E}\{\underline{y}_{t_i}\}=x_0+x_1t_i+x_2t_i^2.$$

In this assignment, you should

- 1. Import the data, create the design matrix A, and the covariance matrix Qy
- 2. Compute the BLUE of parameters, as well as the BLUE of adjusted observations and residuals (xhat, yhat, and ehat)
- 3. Compute the corresponding covariance matrices of xhat, yhat, and ehat
- 4. For vectors xhat, yhat, and ehat, compute the lower and upper bounds of the **97%** confidence interval

Graded Assignment due Feb 8, 5. Plot the original and adjusted observations, together with the 97% confidence interval of yhat and 2017 17:30 IST ehat **Q&A Forum** Feedback ACCELERATING SEA LEVEL RISE (MATLAB EXERCISE) (EXTERNAL RESOURCE)

- ▶ 6. Does the estimate make sense?
- Pre-knowledge Mathematics
- MATLAB Learning Content

BLUE and the confidence intervals (sea level rise problem)

6/6 points (graded)

Insert the requested values...

The lower bound of the 97% confidence interval of the initial value $m{x_0}$ in cm (upto 2 decimal places, note the correct sign of the value!)

The lower bound of the 97% confidence interval of the linear rate x_1 in cm/year (upto 2 decimal places, note the correct sign of the value!)

The upper bound of the 97% confidence interval of the acceleration parameter x_2 in cm/year 2 (upto 2 decimal places)

0.22	✓ Answer: 0.219
0.22	
The upper bound of the 97% confidence interval of 10th adjusted observation \hat{y}_{10} in cm (upto 2 decimal places)	
12.93	✓ Answer: 12.929
12.93	
The lower bound of the 97% confidence interval of 12th residual \hat{e}_{12} in cm (upto 2 decimal places)	
-14.40	✓ Answer: -14.403
-14.40	
Correlation coefficient between BLUE estimators of the annual rate x_1 and the acceleration parameter x_2 (upto 2 decimal places, note that the Correlation coefficient should be between -1 and 1. use the correct sign!)	
-0.97	✓ Answer: -0.97
-0.97	

© All Rights Reserved

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

