3.5. BUSCA COM INFORMAÇÃO PARCIAL:

Até o momento, assumiu-se que o ambiente era completamente acessível e determinístico e que o agente conhece os efeitos de cada ação. Sendo assim, o agente pode calcular exatamente qual estado resulta de uma sequência de ações e sempre sabe em qual estado ele está.

Mas o que acontece quando o conhecimento dos estados ou das ações é incompleto?

Dependendo do conhecimento do agente o problema pode ser de um único estado (quando é possível calcular exatamente quais os estados serão alcançados a partir de uma seqüência de ações), ou :

Sensorless Problems (problema de múltiplos estados): se o agente não tem sensores, ele pode estar em qualquer um dos possíveis estados iniciais, e cada ação pode levá-lo a qualquer um dos vários estados sucessores possíveis.

Contingency Problems (problema de contingência): se o ambiente é parcialmente observável ou se as ações são incertos, assim os estímulos do agente fornecem novas informações após cada ação. Cada estímulo possível, define uma contingência que deve ser planejada.

Exploration Problems (problema de exploração): quando os estados e as ações do ambientes são desconhecidos, o agente deve agir para descobri-los. Exemplo: estar perdido em uma cidade desconhecida sem mapa.

Considere o exemplo do aspirador de pó discutido anteriormente. O espaço de estados é descrito na figura abaixo, e existem três ações possíveis: *Left, Right* e *Suck*. O objetivo é limpar todos as posições. Se o ambiente é acessível, determinístico e completamente conhecido, o problema é facilmente resolvido utilizando qualquer um dos algoritmos de busca descritos anteriormente.

Figura – Estados possíveis para o agente aspirador de pó.

Figura – Espaço de estados para o aspirador de pó simplificado.

SENSORLESS PROBLEMS:

Quando o mundo não é completamente acessível, o agente deve agir sobre um conjunto de estados que ele pode atuar ao invés de um único estado. Cada conjunto de estados é chamado de *belief state*, representando a possibilidade do agente estar em um dos estados possíveis. Em um ambiente acessível, cada *belief state* contém um único estado.

Para resolver um problema desse tipo, a busca é executada sobre o espaço de *belief states* e não sobre estados. O estado inicial é um *belief state* e cada ação mapeia um *belief state* em um outro *belief state*. A ação é aplicada a um *belief state* a partir da união dos resultados da aplicação da ação a cada estado (interno). Agora um caminho conecta vários *belief states* e uma solução é um caminho que leva a um *belief state*, o qual todos os seus membros são estados finais.

Considerando um aspirador de pó determinístico mas sensorless, existem somente 12 belief states alcançáveis (como pode ser observado na figura a seguir), mas o espaço completo de belief states contém todos os conjuntos possíveis. Em geral, se o espaço de estados tem S estados, o espaço de belief states tem 2^s belief states.

Até o momento, a discussão sobre *sensorless problems* está considerando que as ações são determinísticas, mas a análise se altera se o ambiente não for determinístico, ou seja, se as ações puderem ter vários resultados.

Por exemplo, suponha um ambiente para o aspirador de pó que obedece a *lei de Murphy*: a ação de sugar *Suck*, ás vezes deposita sujeira mas somente se não existir sujeira no local. Assim se *Suck* for aplicado ao estado 4, dois resultados são possíveis: os estados 2 e 4. Se aplicarmos *Suck* ao *belief state* inicial contendo todos os 8 estados, o resultado será o mesmo *belief state* com os 8 estados. E neste caso, o problema não tem solução, por que para esse

aspirador de pó que obedece a *lei de Murphy*, a ação de sugar não provoca mudança no *belied state*.

Figura – Espaço de estados para o aspirador de pó que não conhece o seu estado.

CONTINGENCY PROBLEMS:

Quando o ambiente permite que o agente possa obter novas informações após agir, o agente está diante de um problema de contingência.

Por exemplo, suponha que o agente aspirador de pó com a *lei de Murphy* tenha um sensor de posição e de presença de sujeira, mas o sensor não é capaz de detectar sujeira em outros locais. Assim, o estímulo [L, Dirty] significa que o agente está em um dos estados: 1 ou 3. O agente então formula a seguinte seqüência de ações [Suck, Right, Suck]. Sugando mudará para os estados 5 ou 7 e movendo para a direita, mudará para os estados 6 ou 8. Mas executando finalmente a ação de sugar, no estado 6 o agente atingirá o objetivo, mas se executarmos a ação de sugar a partir do estado 8, é possível que o sensor deposite sujeira (*lei de Murphy*) e neste caso o planejamento falharia.

É fácil concluir que nenhuma seqüência fixa de ações garante uma solução para esse problema. No entanto, existe uma solução, se a seqüência puder ser alterada:

[Suck, Right, if [R, Dirty] then Suck]

Assim, incluiu-se a possibilidade de selecionar uma ação baseada na contingência criada durante o processo de execução. É como se o agente precisasse intercalar busca e execução. A técnica a ser utilizada é de planejamento onde o agente constrói uma árvore de ações onde cada ramo lida com uma possível contingência.

EXPLORATION PROBLEMS:

O agente deve explorar seu ambiente, descobrindo gradualmente o resultado de suas ações e os estados existentes. Se o agente "sobreviver", terá aprendido um mapa do ambiente, que poderá ser reutilizado em problemas subseqüentes. Pode ser considerado um processo perigoso pois o agente age no mundo e não num modelo. A técnica a ser aplicada: **Aprendizagem.**