Relazione di laboratorio

Lisa Merlo Marco Militello Nicolò Negro Pet

25/03/22

1 Strumenti di laboratorio

- 1. Breadboard
- 2. Generatore di corrente
- 3. Voltmetro da banco e palmare
- 4. Amperometro
- 5. Resistenze
- 6. Diodo

2 Introduzione e obiettivi

L'obiettivo dell'esperienza è la verifica della legge di Ohm (V= RI) e la caratterizzazione tensione-corrente di un conduttore Ohmico (resistore) e di uno non Ohmico (diodo), entrambi alimentati da una corrente continua. Il circuito viene costruito tramite l'utilizzo di una breadboard, nella quale vengono collegate le resistenze, il generatore di corrente, il voltmetro e l'amperometro. Questi ultimi servono per misurare la differenza di potenziale in Volt e la tensione di corrente nel circuito in Ampere. Inoltre, nel caso del diodo, il circuito è stato riprodotto e analizzato tramite Multisim.

3 Metodo

L'esperimento si divide in tre diverse sezioni. La prima parte prevede la verifica in modo quantitativo delle legge di Ohm attraverso l'uso di resistenze, con valori compresi tra le decine e le migliaia di Ohm, poste in parallelo e in serie. Per contrastare l'effetto delle resistenze interne degli strumenti di misura sono stati sfruttati due circuiti differenti. Il primo (Figura 1) è stato utilizzato per resistenze piccole rispetto a quelle del voltmetro, mentre il secondo (Figura 2) per resistenze grandi rispetto a quelle interne dell'amperometro. Per confermare che le resistenze interne degli strumenti fossero compatibili con gli errori considerati, abbiamo utilizzato gli stessi circuiti ma invertendo le resistenze utilizzate¹.

Figura 1: Primo circuito

Figura 2: Secondo circuito

Una volta costruiti i circuiti opportuni, i dati sono stati acquisiti tramite il Voltmetro e l'Amperometro in dotazione. Nella seconda parte dell'esperimento si è valutato il circuito in figura

 $^{^1}$ Abbiamo ottenuto, tramite interpolazione, $R_A=3.1\pm0.12~\Omega,~R_V=10.4\pm0.7~M\Omega,$ in accordo con le nostre ipotesi.

Figura 3: Circuito usato per la seconda parte

e si è ricavato il valore delle resistenze R_1 e R_2 necessarie per ottenere una tensione in uscita V_{out} della metà di V_{in} (Tensione in entrata). Tramite la legge di Kirchhoff si ricava che le due resistenze devono avere lo stesso valore. In particolare, abbiamo ipotizzato che, affinché R_{load} non influisse sul valore di V_{out} , essa dovesse essere molto grande rispetto a R_1 ed R_2 , idealmente infinita. E' stato quindi campionato il valore della tensione in uscita al variare della resistenza R_{load} per verificare che il risultato fosse in accordo con quanto aspettato.

La terza e ultima parte riguarda la verifica della legge di Shockley, $I = I_0(e^{\frac{Vq}{gkT}} - 1)$ tramite due circuiti, identici a quelli in Figura 1 e Figura 2, sostituendo un diodo alla resistenza. Il diodo, infatti, ha resistenza variabile: essa risulta essere grande per basse tensioni e piccola per quelle alte.

Figura 4: Circuito con diodo per alte tensioni

Figura 5: Circuito con diodo per basse tensioni

4 Dati

Gli errori utilizzati per le misure dirette (Tensione - Corrente) corrispondono alla sensibilità degli strumenti. Per quanto riguarda le misure indirette, gli errori sono stati ricavati tramite le formule dei minimi quadrati e confrontati con quelli ottenuti tramite l'opzione fit di ROOT. Anche i test del Chi-quadro e le probabilità ad essi associate sono state calcolate tramite le funzioni di ROOT.

4.1 Prima parte - Verifica della legge di Ohm

Sono qui riportate alcune tabelle di esempio, riguardanti la prima resistenza e il caso in serie e in parallelo. Gli altri dati si trovano in Appendice 7.1.

Resistenza 1		
Corrente [mA]	Voltaggio [V]	
0.85 ± 0.01	0.019 ± 0.001	
1.75 ± 0.01	0.038 ± 0.001	
2.49 ± 0.01	0.055 ± 0.001	
3.30 ± 0.01	0.071 ± 0.001	
4.08 ± 0.01	0.089 ± 0.001	
4.99 ± 0.01	0.108 ± 0.001	
28.06 ± 0.01	0.606 ± 0.001	
31.86 ± 0.01	0.689 ± 0.001	
35.57 ± 0.01	0.769 ± 0.001	
39.43 ± 0.01	0.852 ± 0.001	
43.88 ± 0.01	0.949 ± 0.001	
47.23 ± 0.01	1.021 ± 0.001	
53.24 ± 0.01	1.151 ± 0.001	
57.60 ± 0.01	1.246 ± 0.001	
61.84 ± 0.01	1.337 ± 0.001	
65.38 ± 0.01	1.414 ± 0.001	
69.85 ± 0.01	1.551 ± 0.001	
74.43 ± 0.01	1.611 ± 0.001	

Tabella 1: Dati R = 22.1 \pm 0.1 Ω

Resistenze	e in serie	Resistenze	in parallelo	
$R_{\rm eq} = 32.40 \pm 0.02 \ \Omega$				
Corrente [mA]	Corrente [mA] Voltaggio [V]		$R_{\rm eq} = 7.03 \pm 0.01 \ \Omega$	
0.79 ± 0.01	0.025 ± 0.001	Corrente [mA]	Voltaggio [V]	
1.56 ± 0.01	0.050 ± 0.001	8.66 ± 0.01	0.059 ± 0.001	
2.26 ± 0.01	0.072 ± 0.001	18.46 ± 0.01	0.125 ± 0.001	
3.01 ± 0.01	0.095 ± 0.001	27.37 ± 0.01	0.185 ± 0.001	
3.77 ± 0.01	0.118 ± 0.001	37.84 ± 0.01	0.242 ± 0.001	
4.52 ± 0.01	0.141 ± 0.001	46.60 ± 0.01	0.318 ± 0.001	
6.45 ± 0.01	0.203 ± 0.001	53.81 ± 0.01	0.364 ± 0.001	
10.03 ± 0.01	0.315 ± 0.001	72.11 ± 0.01	0.487 ± 0.001	
13.37 ± 0.01	0.421 ± 0.001	82.48 ± 0.01	0.557 ± 0.001	
16.52 ± 0.01	0.519 ± 0.001	93.10 ± 0.01	0.629 ± 0.001	
18.31 ± 0.01	0.575 ± 0.001	103.74 ± 0.01	0.700 ± 0.001	
20.60 ± 0.01	0.647 ± 0.001			

4.2 Seconda parte

Utilizzando il circuito della Figura 3, abbiamo campionato il valore di $V_{\rm out}$ al variare della resistenza $R_{\rm load}$, mantenendo $V_{\rm in}$ pari a $0.97 \pm 0.01 \, V$, R_1 e R_2 dal valore di $10.3 \pm 0.1 \, \Omega$ invariati (vedi Tabella 3).

4.3 Terza parte - Verifica della legge di Shockley

Partendo dal circuito raffigurato (Figura 4) è stata campionata la tensione (fino ad un massimo di 1V) al variare della corrente; la procedura è stata ripetuta anche tramite Multisim (Figura 11).

Diodo		
Corrente [mA]	Voltaggio [V]	
0.00003 ± 0.00001	0.110 ± 0.001	
0.0002 ± 0.0001	0.230 ± 0.001	
0.007 ± 0.001	0.370 ± 0.001	
0.06 ± 0.01	0.460 ± 0.001	
0.3 ± 0.1	0.560 ± 0.001	
18 ± 1	0.718 ± 0.001	
48 ± 1	0.760 ± 0.001	
79 ± 1	0.779 ± 0.001	
115 ± 1	0.790 ± 0.001	
156 ± 1	0.801 ± 0.001	
202 ± 1	0.809 ± 0.001	
235 ± 1	0.813 ± 0.001	
266 ± 1	0.818 ± 0.001	
345 ± 1	0.823 ± 0.001	
413 ± 1	0.828 ± 0.001	
486 ± 1	0.831 ± 0.001	

Tabella 2: Dati Diodo

5 Analisi dati

5.1 Prima parte - Verifica della legge di Ohm

Raccolti i dati necessari, è stata effettuata l'interpolazione tramite ROOT, di seguito è riportato il grafico della prima resistenza. Il suo valore è stato ricavato tramite l'interpolazione con una retta di un'equazione y=Rx (dove R corrisponde ai parametri liberi). Otteniamo un valore di $21.71 \pm 0.24 \Omega$

Figura 6: Interpolazione R = $22.1 \pm 0.1 \Omega$

Il modello scelto sembra descrivere accuratamente i dati, ma per confermare questa tesi è stato utilizzato il test del chi-quadro. Inizialmente abbiamo notato che in tutti i casi la procedura dava un risultato statisticamente inaspettato: la probabilità che la curva si adattasse ai dati sperimentali era del 100% circa. Per ovviare a questo problema, ci siamo focalizzati sugli errori delle misure dirette. Infatti, poiché abbiamo usato come errori la sensibilità degli strumenti, la loro distribuzione non è gaussiana, ma uniforme. Abbiamo quindi associato alle

misure un errore pari a $\frac{S}{\sqrt{12}}$ (con S sensibilità). In questo modo, abbiamo ottenuto dei valori del chi-quadro più plausibili.

Valori ottenuti			
	Resistenza attesa	Resistenza ottenuta	χ^2
Resistenza 1	$22.1\pm0.1~\Omega$	$21.71\pm0.24~\Omega$	65.29%
Resistenza 2	$9.88\pm0.01~\mathrm{K}\Omega$	$9.887\pm0.005~\mathrm{K}\Omega$	65.8%
Resistenza 3	$38.32 \pm 0.01 \; \mathrm{K}\Omega$	$38.870\pm0.047~\mathrm{K}\Omega$	91.57%

Tramite il t-test abbiamo confrontato i valori delle resistenze ottenute con quelle attese; i primi due valori sono in accordo con quanto ci aspettavamo, i risultati dei t-test sono rispettivamente:

- 100 p(entro 1.5σ) = 13.36 %
- 100 p(entro 0.6σ) = 54.85 %

Per quanto riguarda la terza resistenza, nonostante i due valori sembrino essere simili, il risultato del t-test smentisce questa tesi, poiché ci restituisce un valore uguale a: 100 - p(entro 11.44σ) < 1%. Per questo motivo rigettiamo il risultato della misura.

La procedura è stata poi ripetuta con le resistenze in parallelo e in serie, il cui valore equivalente è stato ricavato dalle seguenti relazioni:

$$R_{serie} = \sum_{k=1}^{N} R_k$$

$$\frac{1}{R_{parallelo}} = \sum_{k=1}^{N} \frac{1}{R_k}$$

V(I) [Resistenze in Serie]

Figura 7: Interpolazione $R_{\rm eq}$ = 32.4 \pm 0.02 Ω

V(I) [Resistenze in Parallelo]

Figura 8: Interpolazione $R_{\rm eq} = 7.03 \pm 0.01~\Omega$

Valori ottenuti			
	Resistenza attesa	Resistenza ottenuta	χ^2
Resistenza in serie	$32.40\pm0.02~\Omega$	$31.50\pm0.08\;\Omega$	93.25%
Resistenza in parallelo	$7.30\pm0.01\;\mathrm{K}\Omega$	$6.752\pm0.015~\mathrm{K}\Omega$	82.46%

Nei grafici riportati si può notare che il test del χ^2 restituisce una probabilità di 93.25% e 74.6%, rispettivamente per serie e parallelo. Anche in questo caso i risultati ottenuti sono stati analizzati con il t-test, il cui risultato per entrambe le misure è significativamente minore dell'uno percento, che ci porta a concludere che i due valori non sono compatibili.

5.2 Seconda Parte

$\mathbf{R_{load}} [\Omega]$	$ m V_{out} \ [V]$
1 ± 1	0.085 ± 0.001
4 ± 1	0.217 ± 0.001
20 ± 1	0.385 ± 0.001
60 ± 1	0.445 ± 0.001
1000 ± 1	0.482 ± 0.001
4000 ± 1	0.484 ± 0.001
10000 ± 1	0.485 ± 0.001
40000 ± 1	0.484 ± 0.001
100000 ± 1	0.484 ± 0.001
1000000000 ± 1	0.482 ± 0.001

Tabella 3: Dati ricavati con $V_{\rm in} = 0.97 \pm 0.01~V$

É possibile notare dalla tabella 3 che i risultati sono in accordo con il modello atteso: nel caso di resistenze con valore compreso tra le decine di Ω si nota una variazione significativa della tensione in uscita. V_{out} appare invece invariata e compatibile con il valore atteso di $0.485 \pm 0.005 \, V$, solo quando si raggiungono valori molto grandi rispetto alle resistenze R_1 ed R_2 (dal valore di $10.3 \pm 0.1 \, \Omega$), corrispondenti alle migliaia di Ω .

5.3 Terza parte - Verifica della legge di Shockley

Anche in questo caso, per poter verificare la validità della legge di Shockley, è stata effettuata l'interpolazione dei dati tramite ROOT. E' stata utilizzata una curva esponenziale del tipo:

$$I = A(e^B - 1)$$
 con $A = I_0$ $B = \frac{qV}{qkT}$

con parametri liberi I_0 e $\frac{q}{gKT}$. Come è possibile vedere dal grafico 9, i dati sono disposti secondo un andamento esponenziale. Inoltre, per avvalorare questa tesi, abbiamo ripetuto l'esperimento in maniera virtuale su Multisim. Dopo aver caratterizzato il diodo "1N4007" messo a disposizione sul sito, abbiamo raccolto i dati che confermano quanto detto precedentemente: nonostante il diodo non fosse identico a quello usato in laboratorio, in entrambi i grafici è possibile notare l'andamento esponenziale che ci aspettavamo di riscontrare.

In entrambi i casi abbiamo usato la configurazione riportata nella Figura 4. In realtà, questa sarebbe corretta solo nel caso di tensioni alte, dove il diodo ha una resistenza bassa rispetto al voltmetro. Questo errore si nota nel grafico: le misure si distribuiscono esattamente sotto la funzione prima del valore di tensione di $0.809 \pm 0.001 \text{ V}$, e sopra per tensioni maggiori.

Figura 9: Interpolazione Diodo

Figura 10: Grafico con scala logaritmica

Figura 11: Diodo esperienza virtuale

6 Conclusione

Nonostante alcuni valori ottenuti non siano in accordo con quanto atteso, siamo riusciti a confermare la dipendenza di Corrente e Tensione dalla resistenza (Legge di Ohm). Nella seconda parte abbiamo confermato le nostre ipotesi:

- \bullet R₁ ed R₂ devono avere lo stesso valore;
- $\bullet~R_{\rm load}$ non influisce su $V_{\rm out}$ soltanto quando assume valori sulle migliaia di Ohm.

Nel caso della terza parte, nonostante l'errore di configurazione, siamo stati in grado di confermare la legge di Shockley. Inoltre abbiamo trovato un range di tensione nel quale il diodo è in grado di condurre. Si può infatti notare dalla Figura 9 che il diodo inizia a condurre valori apprezzabili di corrente a partire da una tensione applicata di 0.7 ± 0.1 V.

7 Appendice

7.1 Prima parte - Verifica legge di Ohm

Resistenza 2	
Corrente $[\mu A]$	Voltaggio [V]
11.82 ± 0.01	0.118 ± 0.001
20.48 ± 0.01	0.204 ± 0.001
31.06 ± 0.01	0.309 ± 0.001
40.07 ± 0.01	0.403 ± 0.001
50.35 ± 0.01	0.499 ± 0.001
60.60 ± 0.01	0.600 ± 0.001
70.88 ± 0.01	0.702 ± 0.001
81.37 ± 0.01	0.806 ± 0.001
90.35 ± 0.01	0.894 ± 0.001
100.82 ± 0.01	0.998 ± 0.001
110.49 ± 0.01	1.093 ± 0.001
120.68 ± 0.01	1.194 ± 0.001
130.06 ± 0.01	1.286 ± 0.001
142.78 ± 0.01	1.413 ± 0.001
150.81 ± 0.01	1.492 ± 0.001
159.58 ± 0.01	1.578 ± 0.001
169.68 ± 0.01	1.678 ± 0.001
179.90 ± 0.01	1.780 ± 0.001
190.39 ± 0.01	1.883 ± 0.001
200.29 ± 0.01	1.980 ± 0.001

Tabella 4: Dati R = 9.88 \pm 0.01 $K\Omega$

V(I) [9.88 KΩ]

Figura 12: Interpolazione R = 9.88 \pm 0.01 $K\Omega$

Resistenza 3		
Corrente $[\mu A]$	Voltaggio [V]	
1.87 ± 0.01	0.075 ± 0.001	
5.21 ± 0.01	0.205 ± 0.001	
8.33 ± 0.01	0.326 ± 0.001	
10.88 ± 0.01	0.425 ± 0.001	
15.53 ± 0.01	0.529 ± 0.001	
16.26 ± 0.01	0.635 ± 0.001	
20.16 ± 0.01	0.786 ± 0.001	
22.33 ± 0.01	0.872 ± 0.001	
25.02 ± 0.01	0.976 ± 0.001	
27.49 ± 0.01	1.072 ± 0.001	
30.99 ± 0.01	1.209 ± 0.001	
33.77 ± 0.01	1.316 ± 0.001	
36.69 ± 0.01	1.430 ± 0.001	
39.92 ± 0.01	1.556 ± 0.001	
44.70 ± 0.01	1.743 ± 0.001	
47.77 ± 0.01	1.862 ± 0.001	
51.31 ± 0.01	2.000 ± 0.001	

Tabella 5: Dati R = 38.32 \pm 0.01 $K\Omega$

Figura 13: Interpolazione R = 38.32 \pm 0.01 $K\Omega$