FIG. 1

FIG. 2

2/24

Application No.: 09/675,778
Filed: September 29, 2000
Attorney Docket No.: 801939-000101
Attorney: Peter J. Prommer
Telephone No.: (312) 425-3900

3/24 2 Convect. heat transf. coeff. Coeff. of heat conduction User defined constant External temperature Ambient temperature Apply Equation: p· C· T·V·(kVT) = Q + h(T_{ext} · T)+ C_{trans} (T $^4_{ambtrans}$ · T 4). T = temperature Heat capacity Heat source Description Density Cancel 웅 +alpha* On top 8930 Coefficient Value 64a 340 PDE coefficients 384 \square Ctrans i ^h trans Text Active in the subdomain □ PDE Specification/ht - Subdomain selection -Name 62 8 99 62a -

FIG. 4

7 Problem-dependent constant Apply Heat transfer coefficient External temperature Ambient temperature Insulation/symmetry Zero temperature Temperature Description Cancel Heat flux 중 - 74a On tob 300 FIG. 5 O n·(k·gradT)=0 Quantity Tamb 746 O TE <u>-</u> Boundary Conditions/ht Boundary selection Enable borders Equation: $T = T_0$ 764597

72a

72b

2

4/24

6/24

FIG. 6A

7/24

FIG. 7

8/24

FIG. 8

$$140 \begin{cases} d_{a} \frac{\partial u_{k}}{\partial t} - \frac{\partial}{\partial x_{j}} \left(c_{lk} j i \frac{\partial u_{k}}{\partial x i} + \alpha_{lk} j u_{k} - \gamma_{lj} \right) + \beta_{lk} i \frac{\partial u_{k}}{\partial x i} + a_{lk} u_{k} = f_{l} \end{cases}$$

$$\alpha_{lk} \frac{\partial u_{k}}{\partial x_{l}} + \alpha_{lk} j u_{k} - \gamma_{lj} + q_{lk} u_{k} = g_{l} - h_{ml} \lambda_{ml}$$

$$\alpha_{lk} \frac{\partial u_{k}}{\partial x_{l}} + \alpha_{lk} j u_{k} - \gamma_{lj} + q_{lk} u_{k} = g_{l} - h_{ml} \lambda_{ml}$$

$$\alpha_{lk} \frac{\partial u_{k}}{\partial x_{l}} + \alpha_{lk} j u_{k} - \gamma_{lj} + q_{lk} u_{k} = g_{l} - h_{ml} \lambda_{ml}$$

$$\alpha_{lk} \frac{\partial u_{k}}{\partial x_{l}} + \alpha_{lk} j u_{k} - \gamma_{lj} + q_{lk} u_{k} = g_{l} - h_{ml} \lambda_{ml}$$

$$\alpha_{lk} \frac{\partial u_{k}}{\partial x_{l}} + \alpha_{lk} j u_{k} - \gamma_{lj} + q_{lk} u_{k} = g_{l} - h_{ml} \lambda_{ml}$$

150
$$\begin{cases} d_{a} I_{k} \frac{\partial u_{k}}{\partial t} + \frac{\partial \Gamma I_{j}}{\partial x_{j}} = F_{l} & \Omega \end{cases}$$

$$\begin{cases} d_{a} I_{k} \frac{\partial u_{k}}{\partial t} + \frac{\partial \Gamma I_{j}}{\partial x_{j}} = F_{l} & \Omega \end{cases}$$

$$\begin{cases} -n_{j} \Gamma_{lj} = GI + \frac{\partial R}{\partial u_{l}} \lambda_{m} & \partial \Omega \end{cases}$$

$$0 = R_{m}$$
154

9/24

FIG. 10

$$324 \begin{cases} \gamma_{lj} = \Gamma_{lj} & f_l = F_l \\ c_{lkji} = -\frac{\partial \Gamma_{lj}}{\partial \left(\frac{\partial u_k}{\partial x_i}\right)} & \alpha_{lkj} = -\frac{\partial \Gamma_{lj}}{\partial u_k} \\ \beta_{lki} & -\frac{\partial F_l}{\partial \left(\frac{\partial u_k}{\partial x_i}\right)} & a_{lk} = -\frac{\partial F_l}{\partial u_k} \\ g_l = G_l & r_l = R_l \\ q_{lk} & = -\frac{\partial G_l}{\partial u_k} & h_{lk} & = -\frac{\partial R_l}{\partial u_k} \end{cases}$$

$$240 \begin{cases} \Gamma_{Ij} = c_{Ikji} \frac{\partial u_k}{\partial x_I} \alpha_{Ikj}^{u}_{k}^{u} + \gamma_{lj}^{u} \\ F_{I} = f_{I} - \beta_{Iki} i^{a}_{Ik}^{u}_{k} \\ G_{I} = g_{I} - q_{Ik}^{u}_{k} \\ R_{m} = r_{m} - h_{ml}^{u}_{l} \end{cases}$$

10/24

FIG. 12

$$300 \left\{ \begin{array}{l} \int_{\Omega} \left(\left(c_{lkj} i \frac{\partial u_k}{\partial x_j} + \alpha_{lkj} u_k \right) \frac{\partial v}{\partial x_j} + \left(d_{a \ lk} \frac{\partial u_k}{\partial t} + \beta_{lki} \frac{\partial u_k}{\partial x_i} + {}^{a} l_k u_k \right) v \right) dx + \\ \int_{\partial \Omega} q_{lk} u_k \ v ds = \int_{\Omega} \left(Y_{lj} \frac{\partial v}{\partial x_j} + f_l v \right) dx + \int_{\partial \Omega} \left(g_l - h_{m \ l} \lambda_m \right) v \, ds \\ \int_{\partial \Omega} \mu h_{m \ k} u_k \, ds = \int_{\partial \Omega} \mu r_m \, ds \end{array} \right.$$

FIG. 13

302
$$\int_{\Omega} \left(\Gamma I j \frac{\partial v}{\partial x_{j}} + F_{I} v - d_{a} \frac{\partial u_{k}}{I k \partial t} v \right) dx + \int_{\partial \Omega} \left(G_{I} + \frac{\partial R_{m}}{\partial u_{I}^{T}} \lambda_{m} \right) v ds = 0$$

$$\int_{\partial \Omega} R_{m} \mu ds = 0$$

$$\underbrace{U_{k}(x) = \sum_{I=1}^{N_{p}} U_{I, k} \Phi_{I}(x), \quad \Lambda_{m}(x) = \sum_{K=1}^{N} \sum_{L=1}^{\Lambda} \Lambda_{K, L, m} \Psi_{K, L}(x)}_{K = 1 L = 1}$$

11/24

FIG. 15

$$306 \begin{cases} \int_{\tau} \left(c_{lk} j_{i} U_{l,k} \frac{\partial \phi_{I}}{\partial x_{i}} + \alpha_{lk} j_{l} U_{l,k} \phi_{I} \right) \frac{\partial \phi_{J}}{\partial x_{j}} dx + \\ \int_{\tau} \left(d_{a} l_{k} \frac{\partial U}{\partial I} I_{,k} \phi_{i} + \beta_{lk} j_{l} U_{i,k} \frac{\partial \phi_{I}}{\partial x_{I}} + \alpha_{lk} U_{i,k} \phi_{i} \right) \phi_{J} dx + \\ \int_{\partial \tau} q_{lk} U_{l,k} \phi_{I} \phi_{J} ds = \int_{\tau} \left(\gamma_{Ij} \frac{\partial \phi_{J}}{\partial x_{j}} + f_{I} \phi_{J} \right) dx + \\ \int_{\partial \tau} \left(g_{I} \cdot h_{m} I^{\Lambda} K_{,L,m} \Psi_{K,L,l} \right) \phi_{J} ds \end{cases}$$

FIG. 16

$$308 \left\{ \int_{\partial_{\tau}}^{h} h_{m\,k} \ U_{J,k} \ \phi_{I} \ \Psi_{K,L} \ ^{d\,s} = \int_{\partial_{\tau}}^{r} r_{m} \Psi_{K,L} \ ^{d\,s} \right.$$

312
$$\int_{\tau} \left(\Gamma_{I,j} \frac{\partial \phi_{J}}{\partial x_{j}} + F_{I} \phi_{J-d} \frac{\partial u_{k}}{\partial I} \phi_{J} \right) dx + \int_{\partial t} \left(G_{I} + \frac{\partial R_{m}}{\partial u_{I}} \Lambda_{K,L,m} \psi_{K,L} \right) \phi_{J} ds = 0$$

$$\int_{\partial \tau} R_{m} \psi_{K,L} ds = 0$$

12/24

FIG. 18

$$DA_{(J,l),(I,k)} = \int_{\tau} d_{alk} \phi_{I} \phi_{J} dx$$

$$C_{(J,l),(I,k)} = \int_{\tau} c_{lk} j i \frac{\partial \phi_{I}}{\partial x_{i}} ? \frac{\partial \phi_{J}}{\partial x_{j}} dx$$

$$AL_{(J,l),(I,k)} = \int_{\tau} c_{lk} j i \frac{\partial \phi_{I}}{\partial x_{i}} ? \frac{\partial \phi_{J}}{\partial x_{j}} dx$$

$$BE_{(J,l),(I,k)} = \int_{\tau} \beta_{lk} i \frac{\partial \phi_{I}}{\partial x_{i}} \phi_{j} dx$$

$$A_{(J,l),(I,k)} = \int_{\tau} a_{lk} \phi_{I} \phi_{J} dx$$

$$Q_{(J,l),(I,k)} = \int_{\tau} q_{lk} \phi_{I} \phi_{J} dx$$

$$GA_{(J,l)} = \int_{\tau} \gamma_{lj} \frac{\partial \phi_{J}}{\partial x_{j}} dx$$

$$F_{(J,l)} = \int_{\tau} f_{I} \phi_{J} dx$$

$$G_{(J,l)} = \int_{\partial \tau} g_{I} \phi_{J} dx$$

$$H_{(K,L,m),(I,k)} = \int_{\partial \tau} h_{mk} \phi_{I} \psi_{K,L} ds$$

$$R_{(K,L,m)} = \int_{\partial \tau} r_{m} \psi_{K,L} ds$$

320
$$\begin{cases} DA \frac{\partial U}{\partial t} + C + AL + BE + A + Q) U + H^{T} \Lambda = GA + F + G \\ H U = R \end{cases}$$

13/24

FIG. 20

$$322 \begin{cases} DA \frac{\partial U}{\partial t} + H^{T} \Lambda = GA + F + G \\ R = 0 \end{cases}$$

$$3 \ \, \mathbf{2} \left\{ \begin{array}{l} J(U^{(k)}) \Delta \quad U^{(k)} p_{-}(U^{-}(k)) \\ U^{(k+-1)} \quad U^{-} + {}^{(k)} k \lambda \Delta \quad U^{-}(k) \end{array} \right.$$

14/24

FIG. 23

FIG. 24

17/24

FIG. 25

1-D Physics Application Modes

			\
Application mode	Class name	Parent class	
Diffusion	flpdedf1d	flpdedf	−
Heat Transfer	flpdeht1d	flpdeht	
			—/

1-D PDE Application Modes

Application mode	Class name	Parent class	/
Coefficient PDE model, n variables	flpdec1d (n)	flpdec (n)	
General PDE model, n variables	flpdeg1d (n)	flpdeg (n)	/

8

Application No.: 09/675,778 Filed; September 29, 2000 Attomey Docket No.: 801939-000101 Attomey; Peter J. Prommer Telephone No.: (312) 425-3900

18/24

9

Application Mode	Class name	Parent class	
AC Power Electromagnetics	flpdeac	flpdec2d	
Conductive Media DC	flpdedc2d	fipdedc	
Diffusion	flpdedf2d	flpdedf	
Electrostatics	flpdees2d	flpdees	人
Magnetostatics	flpdems2d	flpdems	
Heat Transfer	flpdeht2d	flpdeht	
Incompressible Navier-Stokes	flpdens2d	flpdens	
Structural Mechanics, Plane Stress	flpdeps	flpdec2d	
Structural Mechanics, Plane Strain	flpdepn	flpdec2d	
PDE Application Modes			~~
Application Mode	Class name	Parent class	
Coefficient PDE model, n variables General PDE model, n variables	flpdec2d (n) flpdeq2d (n)	fipdec (n)	

Application No.: 09/675,778 Filed: September 29, 2000 Attorney Docket No.: 801939-000101 Attorney: Peter J. Prommer

Telephone No.: (312) 425-3900 19/24

FIG. 27

Application Object Properties

Property name	Description	Data type
dim	Names of the dependent variables	Cell array of strings
form	PDE form	String (coefficient/ general)
name	Application name	String
parent	Parent class names	String. cell array of strings. or the empty matrix
sdim	Names of the independent variables (space dimensions)	Cell array of stings
submode	Name of current submode	String (std/wave)
tdiff	Time differentiation flag	String (on/off)

```
function obj = myapp()
%MYAPP Constructor for a FEMLAB application object.
obj. name = 'My first FEMLAB application';
obj. parent = 'flpdeht2d';

% MYAPP is a subclass of FLPDEHT2D:
p1 = "flpdeht2d;
obj = class (obj, 'myapp', p1);
set (obj , 'dim' , default_dim (obj));
```

20/24

FIG. 29

Physics Modeling Methods

Function	Purpose
appspec	Return application specifications.
bnd_compute	Convert application-dependent boundary conditins to generic boundary coefficents.
default_bnd	Default boundary conditions.
default_dim	Default names of dependent variables
default_equ	Default PDE coefficients/Material parameters.
default_init	Default initial conditions.
default_sdim	Default space dimension variables.
default_var	Default application scalar variables.
dim_compute	Return dependent variables for an application.
equ_compute	Convert application-dependent material parameters to generic PDE coefficients.
form_compute	Return PDE form.
init_compute	Convert application-dependent initial conditions to generic initial conditions
posttable	Define assigned variable names and post-processing information.

514

FIG. 30

22/24

$$530 \begin{cases} \Delta E_{Z} + (2\pi i k)^{2} E_{Z} = 0 \end{cases}$$

$$532 \begin{cases} k = \frac{1}{\lambda} = \frac{f}{c} \end{cases}$$

$$534 \begin{cases} \overline{n} \cdot (\nabla E_{Z}) + 2\pi i k_{X} E_{Z} = 4\pi i k_{X} \sin\left(\frac{\pi}{d}(y - y_{0})\right) \end{cases}$$

$$536 \begin{cases} k^{2} = k_{X}^{2} + k_{Y}^{2} \end{cases}$$

$$538 \begin{cases} k_{X} = \sqrt{\frac{1}{\lambda 2}} \frac{1}{(2d)^{2}} \end{cases}$$

$$540 \begin{cases} n \cdot (\nabla E_{Z}) + 2\pi i k_{X} E_{Z} = 0 \end{cases}$$

$$542 \begin{cases} E_{Z} = 0 \end{cases}$$

$$544 \begin{cases} f_{C} \frac{c}{2d} \end{cases}$$

23/24

FIG. 32

function obj = flwaveguid (varargin)
%FLWAVEGUIDE Constructor for a waveguide application object.

obj. name = 'In-Plane Waveguide';
obj. parent = 'flpdeac';

% FLWAVEGUIDE is a subclass of FLPDEAC:
p1 = flpdeac;
obj = class (obj), 'flwaveguide' ,p1);
set (obj), 'dim' , default_dim(obj));

FIG. 33

fem.user fields	em.user fields		
Field	Description		
geomparam	1-by-2 structure of geometry parameters.		
entrybnd	Index to the entry boundary		
exitbnd	Index to the exit boundary		
freqs	Frequency vector		

552 🗸

24/24

FIG. 34

ſ	fem.user fields	
	Field	Description
554	startpt	Index of the lower left corner point of the waveguide.
	type	Type of waveguide. (<i>straight</i> or <i>elbow</i>)

FIG. 35 geomparam fields

	•		
Field	Description	Defaults for elbow	Defaults for straight
entrylength	Length of the entrance part of the waveguide.	0.1	0.1
exitlength	Length of the exit part of the waveguide.	0.1	Not used
radius	Outer radius of the waveguide bend.	0.05	Not used
width	Width of the waveguide.	0.025	0.025
cavityflag	Turn resonance cavity on or off	0	0
cavitywidth	Width of the resonance cavity	0.025	0.025
postwidth	Width of the protruding posts.	0.005	0.005
postdepth	Depth of the protruding posts.	0.005	0.005

556