Mathematical modelling for determining COVID-19 incidence from testing data

Rasmus Kristoffer Pedersen

Postdoc, PandemiX Center, IMFUFA
Dept. Science and Environment,
Roskilde University, Denmark
Email: rakrpe@ruc.dk
Joint work with Christian Berrig and Viggo Andreasen

Contributed talk at "Data-driven mechanistic mathematical modelling for life-science applications" Göteborg, October 23rd, 2023

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamic Fixed final size

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplified

Introduction to the problem

throughout the world

▶ Different approaches to COVID-19 mitigation

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Data and

simulations

Relating to data

Discussion

ratio

Simplified

throughout the world

▶ Different approaches to COVID-19 mitigation

► To compare mitigation-strategies, the impact of differences in data-collection must be understood.

Introduction

The problematic

Our app

Model presentation

Analysis

Model dynar

Fixed final siz

7 DOCT LION TO LIO

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplified

xtension of results

The problematic

Model presentation

Analysis

Data and

simulations

Relating to data

Discussion

- ▶ Different approaches to COVID-19 mitigation throughout the world
- ► To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- ▶ The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?

The problematic

Model presentation

Analysis

Model dynamic Fixed final size

Assertion ratio

simulations The data

Relating to data

Discussion

Calculation of assertion ratio

Simplified Extension of result

- ▶ Different approaches to COVID-19 mitigation throughout the world
- ► To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- ► The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- ► How do we compare case-counts between periods and places where testing activity was different?

RK Pedersen

Introduction

The problematic

Model presentation

. . .

Analysis

Model dynamic Fixed final size

Assertion ratio

simulations The data

The data Relating to data

Discussion

Calculation of assertion ratio

Extension of resul

eneral discussion

▶ Different approaches to COVID-19 mitigation throughout the world

- ➤ To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- ► The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- ► How do we compare case-counts between periods and places where testing activity was different?
- ► In particular: For each reported case of COVID-19, how many unidentified cases?

The problematic

Model presentation

Analysis

Model dynamics Fixed final size

Assertion ratio

simulations The data

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified Extension of results

xtension of results

- ▶ Different approaches to COVID-19 mitigation throughout the world
- ► To compare mitigation-strategies, the impact of differences in data-collection must be understood.
- ► The role of testing: Confirmation of symptoms, required for various activities or entirely voluntary?
- ► How do we compare case-counts between periods and places where testing activity was different?
- ► In particular: For each reported case of COVID-19, how many unidentified cases?

Let's look at some data...

Determining COVID incidence

RK Pedersen

Introduction

The problematic

ош арргоасп

Model presentation

Analysis

Fixed final size

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified Extension of results

cases.

► We aim to determine the assertion ratio between observed cases and the total number of COVID-19

RK Pedersen

Introduction

Our approach

Model presentation

Analysis

Anaiysi

Fixed final size

Assertion ratio

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion

ratio Simplified

Extension of results

cases.

observed data.

We aim to determine the assertion ratio between observed cases and the total number of COVID-19

► This ratio can be used as a correction-factor for

Introduction

Our approach

Model presentation

Analysis

Model dynamic

Assertion ratio

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of results

eneral discussion

4/17

'h- ---bl-----

Our approach

Model presentation

Analysis

Model dynamic Fixed final size

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplified

ompinied

xtension of results

eral discussion

We aim to determine the assertion ratio between observed cases and the total number of COVID-19 cases.

- ► This ratio can be used as a correction-factor for observed data.
- ► We extend the classic SIR-model to include voluntary testing that identifies pre- and asymptomatic cases.

The conceptual idea

Determining COVID incidence

RK Pedersen

Introduction

The problemation

Model presentation

Analysis

Model dynamics Fixed final size

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion

Simplified

Extension of results

The model

Determining COVID incidence

RK Pedersen

Introduction

The problemation

Model presentation

Analysis

Model dynamic

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of results

The model

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamics Fixed final size

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Extension of resul

$$\dot{S} = -\beta S(P+A) \qquad \dot{A} = \gamma (1-\rho)P - (\nu+\tau)A$$

$$\dot{E}_1 = \beta S(P+A) - \gamma E_1 \qquad \dot{Q} = \tau (E_2+P+A) - \nu Q$$

$$\dot{E}_2 = \gamma E_1 - (\gamma+\tau)E_2 \qquad \dot{R}_p = \nu Q + \nu I$$

$$\dot{P} = \gamma E_2 - (\gamma+\tau)P \qquad \dot{R}_n = \nu A$$

$$\dot{I} = \gamma \rho P - \nu I$$

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamics

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

General discussion

General dynamics like classic SIR-model.

60

Determining COVID incidence

Introduction

 $\tau = 0.001$

B = 0.667

 $\tau = 0.100$

Model presentation

Analysis

Fixed final size

Data and simulations

Relating to data

Discussion

ratio

Simplified

80

140

120

100

RK Pedersen

Introduction

troduction

Model presentation

Analysis

Model dynamic

Fixed final size

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

extension of results

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Fixed final size

Data and simulations

Relating to data

Discussion

ratio

Simplified

(β chosen such that final size is fixed)

RK Pedersen

Introduction

Model presentation

Analysis

Fixed final size

Data and simulations

The data Relating to data

Discussion

ratio

Simplified

Determining COVID incidence

RK Pedersen

The problematic

Model presentation

Analysis

Model dynamics

Fixed final size
Assertion ratio

Data and simulations

Relating to data

Discussion

Calculation of assertion ratio

Simplified

Simplified

Extension of results

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamic

Fixed final size

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

identified:

We consider the assertion ratio as the fraction of cases

 $K = \frac{R_p(t)}{(R_n(t) + R_p(t))}$

Introduction

The problematic

Model presentation

Analysis

(1)

Model dynamics

Assertion ratio

simulations The data

Relating to data

Discussion

ratio
Simplified

ітріітіеа

The problematic

Model presentation

Analysis

Eived final circ

Assertion ratio

simulations The data

Relating to data

Discussion

ratio Simplified

тритеа

eneral discussion

We consider the assertion ratio as the fraction of cases identified:

$$K = \frac{R_p(t)}{(R_n(t) + R_p(t))} \tag{1}$$

The correction-factor is K^{-1} .

Model presentation

Analysis

Assertion ratio Data and

simulations

Relating to data

Discussion

We consider the assertion ratio as the fraction of cases identified:

$$K = \frac{R_p(t)}{(R_n(t) + R_p(t))} \tag{1}$$

The correction-factor is K^{-1} .

Inspired by previous work on epidemic final size (Andreasen, 2018),

$$K = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right) \tag{2}$$

Model presentation

Analysis

Assertion ratio Data and

simulations

Relating to data

Discussion

We consider the assertion ratio as the fraction of cases identified:

$$K = \frac{R_p(t)}{(R_n(t) + R_p(t))} \tag{1}$$

The correction-factor is K^{-1} .

Inspired by previous work on epidemic final size (Andreasen, 2018),

$$K = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right) \quad (2)$$

Note that K is independent of β .

The Danish data

Determining COVID incidence

RK Pedersen

Introduction

The problemat

Model presentation

Analysis

Model dynamics Fixed final size

Data and

simulations

The data

Relating to data

Discussion

Calculation of assertion ratio
Simplified

Extension of result

The Danish data

Determining COVID incidence

Introduction

he problematic

Model presentation

Analysis

Model dynamics Fixed final size

Assertion ratio

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion ratio

Simplified

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynam

Assertion rati

Data and simulations

The data

Relating to data

Discussion

Calculation of asser

Extension of res

Determining COVID incidence

Introduction

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

ratio Simplified

Determining COVID incidence

Introduction

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

ratio Simplified

The problematic

Model presentation

Analysis

Model dynamics

Assertion ratio

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion ratio

Simplified

As $t \to \infty$, the model system approaches a steady state without any active cases. In this section, we derive an analytic expression for the value that the fraction of cases identified, K(t), approaches as $t \to \infty$. To obtain an expression for K_F , we follow the methodology previously considered by 7. For notational numbers, we define for each variable x, the integral over the full endemic as $T_- = \int_{-\infty}^{\infty} x dt$. From the system of differential equations given in equations (1), we write up the following quantities:

S/S = -B(P + A)

As t approaches infinity, the stability of the systems implies that all variables apart from S, R_0 and R_n are

 $\log \sigma = -\beta (T_P - T_A)$ $\sigma - S_0 - E_{1,0} - E_{2,0} = -(\gamma + \tau)T_{E_1}$

 $\dot{S} + \dot{E_1} + \dot{E_2} = -(\gamma + \tau)E_1$

 $\dot{S} + \dot{E_1} + \dot{E_2} + \dot{P} = -(\gamma + \tau)P - \tau E_2$ $S + E_1 + E_2 + P + A = -(\nu + \tau)A - (\gamma \rho + \tau)P - \tau E_2$

 $\sigma - S_0 - E_{1,0} - E_{2,0} - P_0 = -(\gamma + \tau)T_P - \tau T_{E_1}$

 $r_n - R_{n,0} = \nu T_A$

 $\sigma = S_0 - F_1 \circ - F_2 \circ - P_2 - P_3 = -(\nu \pm \tau)T_4 - (\gamma \sigma \pm \tau)T_9 - \tau T_9$

Furthermore, observe that the equations for \hat{R}_0 and \hat{R}_0 , equations (1) and (1h) respectively, when integrated

A.3 Final Size Calculations

Integrating equations (3) from t=0 to $t=\infty$ yields:

Where X_0 denote the initial condition for variable X.

Analysis

(7b)

(7d)

(85)

Data and

simulations

Discussion

Calculation of assertion ratio

In general, we consider initial conditions such that the vast majority of the population is initially susceptible, $S_1 \approx 1$, and the initial number of cases is low, $0 < E_{1:n} \ll 1$. In the limit where $S_1 \to 1$, with $E_{1:n} \to 0$, $E_{2:n} \to 0$. $P_0 \rightarrow 0$ and $A_0 \rightarrow 0$, equations (4) become:

 $\log \sigma = -\beta (T_P - T_A)$ $\sigma = 1 - (\gamma + \tau)T\nu$ $\sigma = 1 - (\gamma + \tau)T_{\theta} - \tau T_{\theta}$. $\sigma = 1 - (\nu + \tau)T_{\delta} - (\gamma \rho + \tau)T_{\theta} - \tau T \nu.$ Assuming $T_0 + T_+ \neq 0$, this can be written as:

 $T_P = \frac{1}{\sigma + \sigma} \left(1 - \sigma - \tau T_{E_2}\right)$ $T_A = \frac{1}{\nu + \tau} \left(1 - \sigma - (\gamma \rho + \tau)T_P - \tau T_{E_2}\right)$

We define $K_F = \frac{r_p}{r_0 + r_0}$ and note that at steady state $\sigma = 1 - r_p - r_n$ must hold. This implies that $K_F = \frac{r_F}{1}$. Combining equations (8) with equations (5) and (6) under the assumptions $R_{p,0} = 0$ and $R_{\alpha,0} = 0$ and simplifying yields:

 $K_F = \frac{r_p}{r_p + r_n} = \frac{r_p + r_n - r_n}{r_p + r_n} = 1 - \frac{r_n}{r_p + r_n} = 1 - \frac{r_n}{1 - \sigma} = 1 - \frac{\nu}{1 - \sigma} T_A$ $K_F = 1 - \left(\frac{\nu}{\nu + \tau}\right) \left(1 - \frac{\tau}{\nu + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\nu + \tau}\right)$

For initial conditions sufficiently close to the case where $S_n = 1$ and all other variables are zero, K_F is an approximation of the final size of K(t) as $t \to \infty$

Note that the expression for K_F , equation (10) is independent of σ and β . Furthermore, in the absence of tests, i.e. for $\tau = 0$, we have $K_F = 1 - 1(1 - 0)(1 - \rho) = \rho$. This is expected, as only the symptomatic cases, I, are found in the situation where $\tau = 0$, and the symptomatic cases make up exactly o of all cases. In the situation where all cases are symptomatic, $\rho = 1$, we obtain $K_F = 1$, that is, all cases are identified We note that equation (8a) describes a relation between β and σ . Since T_P and T_A are described in terms

(4b)

(40)

$$r_1 = R_{0,0} = rT_0 + rT_0$$
(5)
We note that where all cases are oppositions; $r_1 = 1$, that $r_2 = 1$, that $r_3 = 1$ can be distingtuishing the softening to the state of $r_1 = R_{0,0} = rT_0$.

(6)
We note that are spirit in Gaussian and the stream's shad $r_2 = 1$, that $r_3 = 1$ can chereful of $r_3 = 1$.

(7)
 $r_4 = R_{0,0} = rT_0$.

(8)
 $r_5 = R_{0,0} = rT_0$.

$$\frac{R_{p}}{R_{n}+R_{p}}=1-\left(1-\frac{\tau}{\gamma+\tau}\right)\left(1-\frac{\gamma\rho+\tau}{\gamma+\tau}\right)\left(\frac{\nu}{\nu+\tau}\right)$$

The seeklesses

Model presentation

Analysis

Model dynamics

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion ratio

Extension of result

Seneral discussion

$\frac{R_{p}}{R_{p} + R_{p}} = 1 - \left(1 - \frac{\tau}{\gamma + \tau}\right) \left(1 - \frac{\gamma \rho + \tau}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$

can be rewritten as:

$$\begin{split} 1 - \frac{R_{p}}{R_{n} + R_{p}} &= \\ \frac{R_{n}}{R_{n} + R_{p}} &= \left(\frac{\gamma}{\gamma + \tau}\right) \left(\frac{(1 - \rho)\gamma}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right) \end{split}$$

Simplified method, Flow-considerations

 $\beta(P+A)$

Determining COVID incidence

RK Pedersen

Introduction

The problemati

Our approach

Model presentation

Analysis

Model dynamics

Assertion ratio

 R_p

v

Data and simulations

Simulation The data

Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of result

Simplified method, Flow-considerations

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamic

Assertion ratio

Data and simulations

The data

Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of result

$$\left(\frac{\gamma}{\gamma}\right)$$

Simplified method, Flow-considerations

Determining COVID incidence

RK Pedersen

Introduction

The problemation

Model presentation

Analysis

Model dynamics

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of result

$$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)$$

Simplified method, Flow-considerations

Determining COVID incidence

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynamics

Assertion r

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of results

$$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)\left(\frac{(1-\rho)\gamma}{\gamma+\tau}\right)$$

Simplified method, Flow-considerations

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Data and simulations

The data Relating to data

Discussion

Simplified

$$\left(\frac{\gamma}{\gamma}\right)\left(\frac{\gamma}{\gamma+\tau}\right)\left(\frac{(1-\rho)\gamma}{\gamma+\tau}\right)\left(\frac{\nu}{\nu+\tau}\right)$$

Simplified method, Flow-considerations

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Data and simulations

The data Relating to data

Discussion

Simplified

$$\frac{R_n}{R_n + R_p} = \left(\frac{\gamma}{\gamma + \tau}\right) \left(\frac{\gamma(1 - \rho)}{\gamma + \tau}\right) \left(\frac{\nu}{\nu + \tau}\right)$$

Simplified method, Matrix-form

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Model dynami

Assertion ratio

Data and simulations

The data

Relating to data

Calculation of assertion

ratio ratio

Extension of results

eneral discussion

In the work of van den Drische and Watmough (2002), a matrix V is defined for a general family of SIR-type models, describing flows in the "infected sub-system".

Considering sub-system $x = (E_1, E_2, P, I, A)$ and determining the matrix V, we describe inputs $\alpha = (1, 0, 0, 0, 0)$ and outputs $\omega = (0, 0, 0, 0, \nu)$, and observe that:

$$\frac{R_n}{R_n + R_p} = \omega V^{-1} \alpha^T$$

 βSI

Positive test

RK Pedersen

Introduction

The problemation

Model presentation

Analysis

Model dynamic Fixed final size

Assertion ratio

simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of results

General discussion

Flow-considerations:

/17

RK Pedersen

Introduction

Model presentation

Analysis

Assertion ratio

Data and

simulations

The data Relating to data

Discussion

ratio

Simplified

Extension of results

Flow-considerations:
$$\frac{R_n}{R_n + R_p} = \frac{\nu}{\nu + \tau}$$

 τ_H

 τ_L

 τ_H

 $\beta(I_L + I_H)$

 $\beta(I_L + I_H)$

Determining COVID incidence

RK Pedersen

Introduction

The problemati

Model presentation

Analysis

Model dynai

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of results

Determining COVID incidence

RK Pedersen

Model presentation

Analysis

Data and simulations

Discussion

Extension of results

$x = (E_H, E_L, I_H, I_L), \quad V = \begin{pmatrix} \gamma + \tau_H & 0 & 0 & 0 \\ 0 & \gamma + \tau_L & 0 & 0 \\ \gamma & 0 & \nu + \tau_H & 0 \\ 0 & \gamma & 0 & \nu + \tau_L \end{pmatrix}$

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Data and simulations

Discussion Calculation of assertion

$$x = (E_H, E_L, I_H, I_L), \quad V = \begin{pmatrix} \gamma + \tau_H & 0 & 0 & 0 \\ 0 & \gamma + \tau_L & 0 & 0 \\ \gamma & 0 & \nu + \tau_H & 0 \\ 0 & \gamma & 0 & \nu + \tau_L \end{pmatrix}$$

$$\alpha = \left(\frac{S_H}{S_H + S_L}, \frac{S_L}{S_H + S_L}, 0, 0\right)$$
 and $\omega = (0, 0, \nu, \nu)$

Determining COVID incidence

RK Pedersen

Introduction

Model presentation

Analysis

Data and simulations

Discussion Calculation of assertion

$$\alpha = \left(\frac{S_H}{S_H + S_I}, \frac{S_L}{S_H + S_I}, 0, 0\right) \text{ and } \omega = (0, 0, \nu, \nu)$$

Hence:
$$\omega V^{-1} \alpha^T = \frac{\nu \gamma}{S_H + S_L} \left(\frac{S_H}{(\nu + \tau_H)(\gamma + \tau_H)} + \frac{S_L}{(\nu + \tau_L)(\gamma + \tau_L)} \right)$$

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

Introduction

The problematic

Model presentation

Analysis

Model dynamic Fixed final size

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of results

countries.

▶ We determine a relation between observed COVID-19

► This relation may help us compare incidence between

cases and total new cases, as a function of testing-rate.

RK Pedersen

Introduction

he problematic

Model presentation

Analysis

Model dynami

Assertion ratio

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified

xtension of results

countries.

► We determine a relation between observed COVID-19

► This relation may help us compare incidence between

► Our initial analysis was model-specific and based on

calculations of final-size of variables.

cases and total new cases, as a function of testing-rate.

RK Pedersen

Introduction

The problematic

Model presentation

Analysis

Fixed final size

Data and

simulations The data

Relating to data

Discussion

Calculation of assertion ratio

Simplified

Extension of results

General discussion

17/17

Introduction

The problematic

Model presentation

Analysis

Model dynamic Fixed final size

Assertion ratio

Data and simulations

Relating to data

Discussion

Calculation of assertion

ratio

xtension of result

General discussion

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix

Introduction

Model presentation

Analysis

Data and

simulations

Relating to data

Discussion

General discussion

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix...

Introduction

Model presentation

Analysis

Data and simulations

Relating to data

Discussion

General discussion

▶ We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.

Introduction

The problematic

Model presentation

Analysis

Model dynamic Fixed final size

Assertion ratio

Data and simulations

Relating to data

Discussion

Calculation of assertion

Simplified

Extension of results

General discussion

► We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.
- ► What I learned: When considering the dynamic flow in SIR-type models, a number of results may follow trivially from the model-formulation...

Introduction

Model presentation

Analysis

Data and

simulations

Discussion

General discussion

▶ We determine a relation between observed COVID-19 cases and total new cases, as a function of testing-rate.

- ► This relation may help us compare incidence between countries.
- ► Our initial analysis was model-specific and based on calculations of final-size of variables.
- Our new method follows from well-known results from the litterature, and requires only observing the model diagram or inverting a matrix, but also extends to a wider family of SIR-type models.
- ▶ What I learned: When considering the dynamic flow in SIR-type models, a number of results may follow trivially from the model-formulation...
- ▶ and that some time-consuming calculations may be replaced by a more careful description of the problem you're trying to solve.

Thank you for your attention.

Feel free to also contact me with questions or comments

Website: rasmuspedersen.com Email: rakrpe@ruc.dk

Determining COVID incidence

RK Pedersen

Introduction

he problematic

Model presentation

Analysis

Model dynamics Fixed final size

Data and simulations

The data Relating to data

Discussion

Calculation of assertion ratio

Simplified