

R, T are derived equivalent but not Monta cquivalent Projectives in T: eiiT=Pi P3= (004) C>P2-(0*x) C>P, (*xx) M = P. DP. DP./B., Check Dr.(M,M) = R, M is dilting complexe R, T are not morita equivalent. Check the indecomposables For more examples look at Brane's Conjecture. Th. For R,T $\mathcal{S}(R) \cong_{\mathfrak{a}} \mathcal{D}(T)$ if and only if $\mathcal{C}(R) \cong_{\mathfrak{a}} \mathcal{C}(R) = \mathfrak{guillen}$ equivalent. Special wase for wings. Not true for sepectra. Differential chroded Algebras: Q: For true DGA's A,B were the following equivalent? 1) & (A) = 2 & (B) 2) dg mod-A = Q d.g. mod-B 9) I compact generator M in d.g. mod A such that hom M, M, M) ≥ B g-iso of DGA's. $A: 3) \Rightarrow 2$ some froof as before 2) → 1) always i) \$\Rightarrow\$ 2) rounter oramples exist 2) #> 3) instead need equivalence of spectra FACT: DGA = R HZ- algebra ounter example: HZ -> HZ \ HZ/2 < R HZ Claim: 1) L ≠ R vas HZ-algebras 2) L ≈ R vas 3- valgebras Morita theory for Ring Spectra: TFAE) Ring spectra RT come Morita equivalent if mod-R = mod-T come Quillen equivalent 2) I compact generator M couch that $\underline{hom}_{T}(M,M) \cong \mathbb{R}$ 3) 3 R-T himsolule N which that -1 N: mod-R ~~ > mod-T Also wan do for spechal categories (ring spechum with many objects.)

Related	Results :																		
	., ,	Morita eg	uivalences																
T	hii: Tura	DGA's	uivalences A,B (or	DG-cate	ories)		νna	l d	(A	.B)	길	J	A-6	. Sii	mode	les			
		2011/2	1,10 (0)	uurg	رعام	,	,,,,	r dga	s	(11)	_ '		fee o	, on	g one	rator	as a		
TL*	⁷ . 7. (`C 63)	onoidal m	11/24			••••		/	β			Sayre			,, (o 1401	AC.		
,,,	Q T	سر ر _{ان} م	r C	care	1 h (0-1	~ ~ 1	\ \	0	r /:	//								
	Ν, Ι	monovas au	ι (ma	P	к, ()			K- ,) ,/щ	moon	es							
2)	Spectral	vcalegories	upto Mo	rita egi	uivalen	ce.													
3) F	raver y	. m.k .																	
			is Azum	aug alaa	/	./	ع ھ		l 1l	1	ଧର	2 2	<i>J</i>	ය <i>න</i> 6	م. د	м	′·L		alau t
Je	to R		w warre	aya ,arye	via	y	36	Jane	n ynd	er.	R	<i>ى</i> ن ك		~	· ue	,	оита	egui	nu jevo i
			M. 1	11		. ,	, l												
	Diane		Moritu eg	· of Au	mayo	c vary	jevras												
7 -	. 1	R.																	
			ver espectri	um.															
Jn	Prai	ur (\$)=0																	