What is claimed is:

1.	A computer	implemented	l method f	for function	nally abst	racting a r	nemory
----	------------	-------------	------------	--------------	------------	-------------	--------

- 2 column, comprising:
- 3 identifying, in a description of a circuit, at least one column of n memory cells,
- 4 where n is an integer greater than 1;
- 5 representing said column of n memory cells as a single-memory-cell column
- 6 comprising a single representative memory cell;
- 7 abstracting at least a portion of said single-memory-cell column to derive a logic-
- 8 level representation for said representative memory cell; and
- generating one or more additional instances of said logic-level representation to
- derive an abstracted memory column comprising a plurality of instances of said logic-
- 11 level representation.
 - 1 2. The method of claim 1, wherein said logic-level representation comprises
 - 2 a latch.
 - 1 3. The method of claim 2, wherein generating one or more additional
 - 2 instances comprises:
 - 3 generating n-1 additional instances of said logic-level representation to derive an
 - 4 abstracted memory column comprising n instances of said logic-level representation.
 - 1 4. The method of claim 1, wherein abstracting comprises:
 - deriving a gate-level representation for said representative memory cell; and

- 3 abstracting a latch from at least a portion of said gate-level representation.
- The method of claim 4, wherein deriving a gate-level representation
- 2 comprises:
- 3 applying symbolic analysis to a transistor level description of said representative
- 4 memory cell.
- 1 6. The method of claim 1, wherein identifying a column of n memory cells
- 2 comprises:
- werifying that all of said n memory cells are substantially identical in structure
- 4 relative to each other.
- The method of claim 6, further comprising:
- 2 selecting one of said n memory cells to be said representative memory cell.
- 1 8. The method of claim 7, wherein representing said column of n memory
- 2 cells as a single-memory-cell column comprises:
- 3 removing all of said n memory cells except for said representative memory cell
- 4 from said column.
- 1 9. The method of claim 1, wherein said representative memory cell is
- 2 initially coupled to a particular select line, and wherein representing said column of n
- 3 memory cells as a single-memory-cell column comprises:

- decoupling said representative memory cell from said particular select line.
- 1 10. The method of claim 9, wherein abstracting said single-memory-cell
- 3 coupling said logic-level representation of said representative memory cell to said
- 4 particular select line.

column comprises:

- 1 11. The method of claim 1, wherein generating additional instances of said
- 2 logic-level representation comprises:
- generating one or more additional instances of said logic-level representation; and
- for each additional instance generated, coupling that instance to a distinct select
- 5 line.

- 1 12. The method of claim 11, wherein generating additional instances of said
- 2 logic-level representation further comprises:
- making an explicit assumption that selection of each select line is mutually
- 4 exclusive relative to all other select lines.
- 1 13. The method of claim 1, wherein said abstracted memory column is cycle
- 2 ready.
- 1 14. An apparatus for functionally abstracting a memory column, comprising:

memory cell; and

2	a mechanism for identifying, in a description of a circuit, at least one column of n
3	memory cells, where n is an integer greater than 1;
4	a mechanism for representing said column of n memory cells as a single-memory-
5	cell column comprising a single representative memory cell;
6	a mechanism for abstracting at least a portion of said single-memory-cell column
7	to derive a logic-level representation for said representative memory cell; and
8	a mechanism for generating one or more additional instances of said logic-level
9	representation to derive an abstracted memory column comprising a plurality of instances
10	of said logic-level representation.
1	15. The apparatus of claim 14, wherein said logic-level representation
2	comprises a latch.
1	16. The apparatus of claim 15, wherein the mechanism for generating one or
2	more additional instances comprises:
3	a mechanism for generating n-1 additional instances of said logic-level
4	representation to derive an abstracted memory column comprising n instances of said
5	logic-level representation.
1	17. The apparatus of claim 14, wherein the mechanism for abstracting
2	comprises:
3	a mechanism for deriving a gate-level representation for said representative

5	a mechanism for abstracting a latch from at least a portion of said gate-level
6	representation.

- 1 18. The apparatus of claim 17, wherein the mechanism for deriving a gate-2 level representation comprises:
- a mechanism for applying symbolic analysis to a transistor level description of
 said representative memory cell.
- 1 19. The apparatus of claim 14, wherein the mechanism for identifying a column of n memory cells comprises:
- a mechanism for verifying that all of said n memory cells are substantially
 identical in structure relative to each other.
- 1 20. The apparatus of claim 19, further comprising:
- a mechanism for selecting one of said n memory cells to be said representative
 memory cell.
- 1 21. The apparatus of claim 20, wherein the mechanism for representing said 2 column of n memory cells as a single-memory-cell column comprises:
- a mechanism for removing all of said n memory cells except for said
- 4 representative memory cell from said column.

1	22. The apparatus of claim 14, wherein said representative memory cell is
2	initially coupled to a particular select line, and wherein the mechanism for representing
3	said column of n memory cells as a single-memory-cell column comprises:
4	a mechanism for decoupling said representative memory cell from said particular
5	select line.
1	23. The apparatus of claim 22, wherein the mechanism for abstracting said
2	single-memory-cell column comprises:
3	a mechanism for coupling said logic-level representation of said representative
4	memory cell to said particular select line.
1	24. The apparatus of claim 14, wherein the mechanism for generating
2	additional instances of said logic-level representation comprises:
3	a mechanism for generating one or more additional instances of said logic-level
4	representation; and
5	a mechanism for coupling, for each additional instance generated, that instance to
6	a distinct select line.
1	25. The apparatus of claim 24, wherein the mechanism for generating

- additional instances of said logic-level representation further comprises: 2
- a mechanism for making an explicit assumption that selection of each select line 3
- is mutually exclusive relative to all other select lines. 4

8

9

10

11

1	26.	The apparatus of claim 14, wherein said abstracted memory column is
2	cycle ready.	

1	27.	A computer readable	medium,	comprising
_	<i></i> / ·	11 COMPANDE PERSONNEL	,	1 0

- 2 instructions for causing one or more processors to identify, in a description of a
- 3 circuit, at least one column of n memory cells, where n is an integer greater than 1;
- instructions for causing one or more processors to represent said column of n
 memory cells as a single-memory-cell column comprising a single representative
 memory cell;
 - instructions for causing one or more processors to abstract at least a portion of said single-memory-cell column to derive a logic-level representation for said representative memory cell; and
 - instructions for causing one or more processors to generate one or more additional instances of said logic-level representation to derive an abstracted memory column comprising a plurality of instances of said logic-level representation.
- 1 28. The computer readable medium of claim 27, wherein said logic-level representation comprises a latch.
- 1 29. The computer readable medium of claim 28, wherein the instructions for causing one or more processors to generate one or more additional instances comprises:

3	instructions for causing one or more processors to generate n-1 additional
4	instances of said logic-level representation to derive an abstracted memory column
5	comprising n instances of said logic-level representation.

- 1 30. The computer readable medium of claim 27, wherein the instructions for causing one or more processors to abstract comprises:
- instructions for causing one or more processors to derive a gate-level representation for said representative memory cell; and
- instructions for causing one or more processors to abstract a latch from at least a portion of said gate-level representation.
 - 31. The computer readable medium of claim 30, wherein the instructions for causing one or more processors to derive a gate-level representation comprises:
- instructions for causing one or more processors to apply symbolic analysis to a transistor level description of said representative memory cell.
- 1 32. The computer readable medium of claim 27, wherein the instructions for causing one or more processors to identify a column of n memory cells comprises:
- instructions for causing one or more processors to verify that all of said n memory
 cells are substantially identical in structure relative to each other.
- 1 33. The computer readable medium of claim 32, further comprising:

2

3

- 2 instructions for causing one or more processors to select one of said n memory cells to be said representative memory cell.
- 1 34. The computer readable medium of claim 33, wherein the instructions for causing one or more processors to represent said column of n memory cells as a single-memory-cell column comprises:
- instructions for causing one or more processors to remove all of said n memory cells except for said representative memory cell from said column.
 - 35. The computer readable medium of claim 27, wherein said representative memory cell is initially coupled to a particular select line, and wherein the instructions for causing one or more processors to represent said column of n memory cells as a single-memory-cell column comprises:
- instructions for causing one or more processors to decouple said representative memory cell from said particular select line.
- 1 36. The computer readable medium of claim 35, wherein the instructions for causing one or more processors to abstract said single-memory-cell column comprises:

 instructions for causing one or more processors to couple said logic-level
- 4 representation of said representative memory cell to said particular select line.

memory column is cycle ready.

1	37. The computer readable medium of claim 27, wherein the instructions for
2	causing one or more processors to generate additional instances of said logic-level
3	representation comprises:
4	instructions for causing one or more processors to generate one or more additional
5	instances of said logic-level representation; and
6	instructions for causing one or more processors to couple, for each additional
7	instance generated, that instance to a distinct select line.
1	38. The computer readable medium of claim 37, wherein the instructions for
2	causing one or more processors to generate additional instances of said logic-level
3	representation further comprises:
4	instructions for causing one or more processors to make an explicit assumption
5	that selection of each select line is mutually exclusive relative to all other select lines.
1	39. The computer readable medium of claim 27, wherein said abstracted