深层神经网络的传播算法

前向传播

1. 初始化

输入层:
$$A^{[0]} = X$$
 (大小为 $n^{[0]} \times m$)

2. 从第1层到第L-1层(隐藏层)

对于每一层
$$l = 1$$
 到 $L - 1$:

权重矩阵:
$$W^{[l]}$$
 (大小为 $n^{[l]} \times n^{[l-1]}$) 偏置向量: $b^{[l]}$ (大小为 $n^{[l]} \times 1$) 线性部分: $Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$ (大小为 $n^{[l]} \times m$) 激活函数: $A^{[l]} = g^{[l]}(Z^{[l]})$ (大小为 $n^{[l]} \times m$)

3. **输出层 (第***L*层)

权重矩阵:
$$W^{[L]}$$
 (大小为 $n^{[L]} \times n^{[L-1]}$) 偏置向量: $b^{[L]}$ (大小为 $n^{[L]} \times 1$) 线性部分: $Z^{[L]} = W^{[L]}A^{[L-1]} + b^{[L]}$ (大小为 $n^{[L]} \times m$) 激活函数: $A^{[L]} = g^{[L]}(Z^{[L]})$ (大小为 $n^{[L]} \times m$)

4. 损失函数

$$J(A^{[L]}, Y)$$
 (标量,大小为 1)

反向传播

1. 初始化梯度

输出层梯度:
$$dA^{[L]}=rac{\partial J(A^{[L]},Y)}{\partial A^{[L]}}$$
 (大小为 $n^{[L]} imes m$)

2. 从第L层到第2层

对于每一层 l=L 到 2:

激活函数的导数:
$$dZ^{[l]}=dA^{[l]}\odot g'^{[l]}(Z^{[l]})$$
 (大小为 $n^{[l]}\times m$) 权重梯度: $dW^{[l]}=\frac{1}{m}dZ^{[l]}(A^{[l-1]})^T$ (大小为 $n^{[l]}\times n^{[l-1]}$) (大小为 $n^{[l]}\times n^{[l-1]}$) (大小为 $n^{[l]}\times n^{[l-1]}$) 上一层梯度: $dA^{[l-1]}=(W^{[l]})^TdZ^{[l]}$ (大小为 $n^{[l-1]}\times m$)

3. 第1层

激活函数的导数:
$$dZ^{[1]}=dA^{[1]}\odot g'^{[1]}(Z^{[1]})$$
 (大小为 $n^{[1]}\times m$) 权重梯度: $dW^{[1]}=\frac{1}{m}dZ^{[1]}(A^{[0]})^T$ (大小为 $n^{[1]}\times n^{[0]}$) 偏置梯度: $db^{[1]}=\frac{1}{m}np.\ sum(dZ^{[1]},axis=1,keepdims=True)$ (大小为 $n^{[1]}\times 1$)

参数更新

对于每一层
$$l=1$$
 到 L : $W^{[l]}:=W^{[l]}-lpha\cdot dW^{[l]}$ $b^{[l]}:=b^{[l]}-lpha\cdot db^{[l]}$

这里, α 是学习率。