CS/DSC/AI 391L: Machine Learning

Homework 4 - Theory

Lecture: Prof. Qiang Liu

1. Assume X is a discrete random variable that takes values in $\{1, 2, 3\}$, with probability defined by

$$Pr(X=1)=\theta_1$$

$$\Pr(X=2) = 2\theta_1$$

$$\Pr(X=3) = \theta_2,$$

where $\theta = [\theta_1, \theta_2]$ is an unknown parameter to be estimated.

Now assume we observe a sequence $D := \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$ that is independent and identically distributed (i.i.d.) from the distribution. We assume the number of observations of the values: 1,2,3 in D are s_1 , s_2 , s_3 , respectively.

- (a) [5 points] To ensure that Pr(X = i) is a valid probability mass function, what constraint should we put on $\theta = [\theta_1, \theta_2]$? Write your answers quantitatively as expressions that include θ_1 and θ_2 .
- (b) [5 points] Write down the joint probability of the data sequence

$$\Pr(D \mid \theta) = \Pr\left(\left\{x^{(1)}, \dots, x^{(n)}\right\} \mid \theta\right),$$

and the log probability $\log \Pr(D \mid \theta)$.

- (c) [5 points] Calculate the maximum likelihood estimation $\hat{\theta}$ of θ based on the sequence D.
- 2. [10 points] Let $\{x^{(1)}, \ldots, x^{(n)}\}$ be an i.i.d. sample from an exponential distribution, whose the density function is defined as

$$f(x \mid \beta) = \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right), \quad \text{for } 0 \le x < \infty.$$

Please find the maximum likelihood estimator (MLE) of the parameter β . Show your work.

- 3. (a) [10 points] Assume that you want to investigate the proportion (θ) of defective items manufactured at a production line. You take a random sample of 30 items and found 5 of them were defective. Assume the prior of θ is a uniform distribution on [0, 1]. Please compute the posterior of θ . It is sufficient to write down the posterior density function upto a normalization constant that does not depend on θ .
 - (b) [10 points] Assume an observation $D := \{x^{(1)}, \dots, x^{(n)}\}$ is *i.i.d.* drawn from a Gaussian distribution $\mathcal{N}(\mu, 1)$, with an unknown mean μ and a variance of 1. Assume the prior distribution of μ is $\mathcal{N}(0, 1)$. Please derive the posterior distribution $p(\mu \mid D)$ of μ given data D.

1