DM 8 : Dipôle Électrostatique Éléments de correction

1-8	Forces d'intéraction et formule de Derjaquin	
1-8	Approche qualitative	
1-5	Interaction entre deux dipôles	
1	Un dipôle peut être modélisé par 2 charges ponctuelles q et $-q$	
	placées respectivement en deux points P et N tel que $\vec{p} = q \overrightarrow{NP}$	
	et $OP = ON = \frac{a}{2}$. Le principe de superposition donne $V(M) = 0$	
	$V_P(M) + V_N(M)$ soit $V(M) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{PM} - \frac{1}{NM}\right)$.	
2	Dans l'approximation dipolaire $r \gg a$ donc $PM =$	
	$\sqrt{r^2 - ar\cos(\theta) + \frac{a^2}{4}} \simeq r\left(1 - \frac{a}{2r}\cos(\theta)\right)$ et donc $\frac{1}{PM} \simeq \frac{1}{r}(1 + \frac{a^2}{r}\cos(\theta))$	
	$\frac{a}{2r}\cos(\theta)$) de même $\frac{1}{NM} \simeq \frac{1}{r}(1 - \frac{a}{2r}\cos(\theta))$ donc $V \simeq \frac{qa\cos(\theta)}{4\pi\epsilon_0 r^2}$	
3	$\vec{E} = -\overrightarrow{grad}(V) = -\frac{\partial V}{\partial r}\vec{e}_r - \frac{1}{r}\frac{\partial V}{\partial \theta}\vec{e}_\theta \text{ donc } \vec{E} = \frac{qa\cos(\theta)}{2\pi\epsilon_0 r^3}\vec{e}_r + \frac{qa\sin(\theta)}{4\pi\epsilon_0 r^3}\vec{e}_\theta$	
4	L'énergie d'un dipôle \vec{p}' placé en M est donné par $U_{d-d} = \vec{p}' \cdot \vec{E} =$	
	$\alpha E^2 \operatorname{car} \vec{p}' = \alpha \vec{E} \operatorname{or} E \operatorname{est} \operatorname{en} \frac{1}{r^3} \operatorname{donc} U_{d-d} = -\frac{C}{r^6}$	
5	Oui car on effectue un produit scalaire entre un dipôle et le champ	
	de l'autre dipôle.	
6-8	Interaction dipôle-plan	
6	Faire un schéma d'un volume élémentaire en coordonnée sphérique	
7	Pour que le point M soit dans le demi-espace contenant les dipôles	
	il faut que $z > d$ soit $r\cos(\theta) > d$ d'où la borne supérieure.	
8	$ U_{d-e} = -\rho_0 \int_d^{+\infty} \frac{C}{r^e} r^2 \left(\int_0^{\theta_{max}} \sin(\theta) d\theta \left(\int_0^{2\pi} d\phi \right) \right) dr = 0 $	
	$-\rho_0 \int_d^{+\infty} \frac{C}{r^6} r^2 \left(\int_0^{\theta_{max}} \sin(\theta) d\theta \times 2\pi \right) dr = 0$	
	$ -\rho_0 \int_d^{+\infty} \frac{C}{r^5} r^2 \left(1 - \cos(\theta_{max})\right) \times 2\pi dr = -2\pi \rho_0 \int_d^{+\infty} \frac{C}{r^4} \left(1 - \frac{d}{r}\right) dr = -2\pi \rho_0 C \left(\frac{1}{3d^3} - \frac{d}{4d^4}\right) = -\frac{\pi \rho_0 C}{6d^3} $	
	$\int_{0}^{+\infty} \frac{C}{r^4} \left(1 - \frac{d}{r}\right) dr = -2\pi \rho_0 C \left(\frac{1}{3d^3} - \frac{d}{4d^4}\right) = -\frac{\pi \rho_0 C}{6d^3}$	