Network Stuff

Justin Chiu Cornell Tech jtc257@cornell.edu

September 2, 2021

Abstract

None

1

2

3

Network Traffic Problem

In this section, we consider the problem of optimizing network traffic. A network is a graph G=(V,E) with vertices $v_i\in V$ and edges $e_{ij}\in E=V\times V$. We would like to maximize the total traffic through a series of K paths across the network. A path is a sequence of edges $p_{st}^k = (e_{sv_1}, e_{v_1v_2}, \dots, e_{v_mt})$ from source vertex s to target vertex t. A path contributes a constant amount of traffic x_p to each included edge $e \in p$. We denote the set of paths that pass through a particular edge by $\pi(e) = \{p \mid e \in p\}$. We additionally have the following constraints: traffic must be nonnegative $x_p \geq 0$, and each edge has a capacity constraint that the total traffic on that edge 13 cannot exceed $\sum_{p \in \pi(e)} x_p \le c_e$. This yields the following optimization problem:

maximize
$$\sum_{p} x_{p} \text{ or } \sum_{e} \sum_{p \in \pi(e)} x_{p}$$
 subject to
$$\sum_{p \in \pi(e)} x_{p} \leq c_{e}, \forall e$$

$$x_{p} \geq 0, \forall p.$$
 (1)

The first objective assigns equal weight to each path, while the second objective weights paths based on length. 16

While this form is compact, we would like to apply the ADMM algorithm, which applies to problems of the form

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = c$. (2)

To massage the problem in Eqn. 1 into the correct form, we will assume the first (second) objective, which assigns (un)equal weight to each path. We will introduce two sets of new variables, 18 slack variables s_e for each edge and path¹ and edge weights z_{pe} for each edge and path.

The new problem is given by

minimize
$$f(x) + g(z) + h(s)$$
 subject to
$$c_e - \sum_{p \in \pi(e)} z_{pe} - s_{pe} = 0, \forall e$$

$$x_p - z_{pe} = 0, \forall e, \forall p \in \pi(e)$$

$$x, s, z \succeq 0,$$
 (3)

where $f(x) = -\sum_p x_p^2$, $g(z) = \sum_{pe} \bar{\delta}(z_{pe} \ge 0)$, $h(s) = \sum_{pe} \bar{\delta}(s_{pe} \ge 0)$. We use the delta notation to indicate a function

$$\bar{\delta}(b) = \begin{cases} \infty & \text{if condition } b \text{ does not hold,} \\ 0 & \text{o.w.} \end{cases}$$

This problem is decomposable along each path as follows:

minimize
$$-\sum_{p} x_{p} + \sum_{e \in p} \bar{\delta}(z_{pe}) + \bar{\delta}(s_{pe})$$
subject to
$$c_{e} - \sum_{p \in \pi(e)} z_{pe} - s_{pe} = 0, \forall e$$

$$x_{p} - z_{pe} = 0, \forall e, \forall p \in \pi(e)$$

$$x, s, z \succeq 0,$$

$$(4)$$

where the summation in the objective is nested.

The augmented Lagrangian for this problem is

$$\mathcal{L}_{\phi}(x, z, s, \lambda) = -\sum_{p} x_{p} + \sum_{e \in p} \bar{\delta}(z_{pe}) + \bar{\delta}(s_{pe}) + \lambda^{\top} F(x, z, s) + (\rho/2) \|F(x, z, s)\|_{2}^{2},$$
 (5)

¹ The slack variable replace the inequality constraints. One variable is introduced for each edge and path, rather than just each edge, so that the problem decomposes over paths. 2 or $-\sum_e\sum_{p\in\pi(e)}x_p$

where

$$F(x, z, s) = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \end{bmatrix}$$

$$[F_1]_e = c_e - \sum_{p \in \pi(e)} z_{pe} - s_{pe}$$

$$[F_2]_{pe} = x_p - z_{pe}$$

$$[F_3]_p = x_p$$

$$[F_4]_{pe} = s_{pe}$$

$$[F_5]_{pe} = z_{pe}.$$

The ADMM updates are as follows:

$$x^{k+1} := \underset{x}{\operatorname{argmin}} \mathcal{L}_{p}(x, z^{k}, y^{k})$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \mathcal{L}_{p}(x^{k+1}, z, y^{k})$$

$$\lambda^{k+1} := \lambda^{k} + \rho(F(x, z, s))$$

$$(6)$$