딥러닝 논문 요약 및 구현 스터디

GPT-1

Improving Language Understanding by Generative Pre-Training

Abstract

- 기존 NLP 태스크 모델

- Supervised learning 위해서, 많은 라벨링 된 데이터 필요
- 데이터 양 부족 -> discriminatie learning 수행 어려움

- GPT-1 제안

- 라벨링 없는 데이터는 확보 쉬움 -> Generative Pretrained LM
- 이후, 많은 구조 변화 없이 특정 태스크를 수행하도록 fine-tuning
- 상식 추론, 질의 응답, 텍스트 유추 등 많은 태스크에서 성능 향상 달성

I. Introduction

기존 모델: unlabeled data로 사전 학습하더라도 word-level보다 많은 정보 이용하기 어려움 모델 아키텍쳐를 이후 태스크에 맞게 변경하거나, 복잡한 학습 방식 사용, 보조 학습 추가하는 방법으로 해결했었음

GPT-1: Unsupervised Pre-training & supervised fine-tuning -> semi-supervised 접근

대량의 unlabeled data -> 언어 모델링(신경망 초기 파라미터 학습) -> supervised 데이터로 뒤에 특정 태스크 활용

Transformer를 차용하여 사용. Pretrained model을 최소한으로 변경하여 fine tuning

각 작업에 맞게 모델을 개발한 경우보다 성능을 능가.

II. Related Work

Word-level 이상의 정보를 사전 훈련에서 담을 수 있도록, 구절 수준, 문장 수준 임베딩 사용

사전 훈련 후 fine-tuning 할 때, 최소한의 변경만을 적용

보조 비지도 학습을 추가하는 방식으로 의미론적 역할 라벨링 수행

Unsupervised pretraining 만으로도 특정 태스크의 언어적 측면을 이미 학습

- 1. 큰 텍스트 말뭉치에서 언어 모델 사전 학습
- 2. Labeled data로 fine tuning -> discriminative task 수행

$$\mathcal{U} = \{u_1, \dots, u_n\}$$
, ਪ-> ছਣ ਕਸ਼ਨ

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k},\dots,u_{i-1};\Theta)$$
 K개 윈도우
그 다음 단어가 나올 확률 최대화
하도록 하는 목적 함수 L1(u)

$$\begin{aligned} h_0 &= UW_e + W_p \\ h_l &= \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n] \\ P(u) &= \texttt{softmax}(h_n W_e^T) \end{aligned}$$

h = Context vector U 를 We 와 곱해서 토큰 임베딩, Wp 로 포지셔널 임베딩 추가

transformer_block을 거치고 나온 h를 토큰 임베딩하여 softmax를 취한 게 P(u) (토큰 u가 나올 확률)

$$P(y|x^1,\ldots,x^m) = \operatorname{softmax}(h_l^m W_y).$$

Fine-tuning

x : input token

y : label

위의 pretraining에서 나온 h를 Wy와 선형 결합하여 softmax를 취한 게 input이 들어왔을 때, 정답이 y일 확률

 $L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\dots,x^m).$

C(fine-tunin할 태스크의 코퍼스) 목적함수 L2(C)는 다음과 같이 input이 들어왔을 때 정답(y)일 확률. 이를 최적화

최종 목적 함수 L3(C)

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

L1(C)로 fine-tuning 태스크의 코퍼스를 사전훈련 목적함수에 업데이트 하는 과정을 더하니,

- 1. 일반화 성능 향상
- 2. 학습 가속화(빠른 convergence)

Transformer의 Decoder에서 encoder-decoder attention만 떼고 사용 각 태스크에 맞게 input 텍스트 조정해서 넣어줌

1) Pretraining

BooksCorpus 데이터셋(7000개 이상의 책)

Transformer 6 layers -> 12 layers

BPE encoding 사용

활성화 함수: GELU

포지셔널 임베딩: 기존의 사인파 버전 대신 학습 가능한 위치 임베딩 사용

2) Fine-tuning details

Pretraining의 하이퍼파라미터 사용

위의 목적함수에서 람다 값 0.5 설정

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	_
CAFE [58] (5x)	80.2	79.0	<u>89.3</u>	-	-	-
Stochastic Answer Network [35] (3x)	80.6	80.1	-	-	-	-
CAFE [58]	78.7	77.9	88.5	<u>83.3</u>		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

NLI – 문장 쌍을 읽고, 그들의 관계를 이해하는 방식

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	_
Hidden Coherence Model [7]	<u>77.6</u>	-	-	_
Dynamic Fusion Net [67] (9x)	_	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

질의 응답, 상식 추론 – Long-term context에 대해서 좋은 성능

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-	-	-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	81.0	-	-
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

의미론적 유사성 – 두 문장이 의미적으로 동일한 지 여부를 예측 분류 – 텍스트가 특정 클래스에 더 부합하는지 판단

V. Analysis

- 1) layer 수를 늘렸을 때, 정확도 향상
- 2) Zero-shot(훈련 시 본 적 없는 새로운 범주나 작업에 대해 수행하는 능력) 높음 LSTM(RNN 기반) 보다 더 구조화된 attentional memory로 transfer 용이

V. Analysis

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

- 1) 작은 데이터셋에 대해서는 supervised learnin의 corpus 까지 업데이트(L1(C)를 더하는 과정) 없이 하는 것이 유리
- 2) 하지만 큰 데이터셋에 대해서는 위 과정을 포함하는 것이 유리

VI. Conclusion

Generative pretraining + finetuning 으로 단일 과제에 구애받지 않는 모델

Long-term dependency 확보, 많은 데이터 학습 가능 및 여러 태스크에 효과적으로 transfer