This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 231/10, 231/44, 231/38, C07C 317/48, 317/44, 255/65

A1

(11) International Publication Number:

WO 98/40358

(43) International Publication Date: 17 September 1998 (17.09.98)

(21) International Application Number:

PCT/EP98/01226

(22) International Filing Date:

5 March 1998 (05.03.98)

(30) Priority Data:

815,848

12 March 1997 (12.03.97)

US

(71) Applicant (for all designated States US): except RHONE-POULENC AGRO [FR/FR]; 14-20, rue Pierre Baizet, F-69009 Lyon (FR).

(72) Inventor; and

(75) Inventor/Applicant (for US only): NEWSOME, Peter, Wyatt [US/US]; 101 Creeks Edge, Chapel Hill, NC 27516 (US).

(74) Agent: BRACHOTTE, Charles; Rhône-Poulenc Agro - DPI, Boîte postale 9163, F-69263 Lyon Cedex 09 (FR).

CZ, EE, GE, GW, HU, ID, IL, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU,

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROCESS FOR PREPARING PYRAZOLE DERIVATIVES

$$Ar-N=N^{+}X^{-}+ \begin{pmatrix} R_{3} & R_{4} & R_{3} & R_{4} \\ R_{5} & R_{5} & R_{5} & R_{6} & N \\ R_{5} & (II) & (III) & (IIV) \end{pmatrix}$$

(57) Abstract

The invention relates to a process for preparing compounds having formula (IV), wherein R₃, R₄, R₆ and Ar are as defined in the description, by reaction of a compound of formula (I) with a compound of formula (II) according to reaction scheme. The compounds of formula (IV) are useful as pesticides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	—Congo	KE	—Kenya———	NL	Netherlands	YU	Yugoslavia————
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LÇ	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PROCESS FOR PREPARING PYRAZOLE DERIVATIVES

The instant invention is directed to a new process for manufacturing

pesticidally active materials as well as the intermediates thereof. More particularly, the instant invention is directed to a process for manufacturing 1-aryl substituted pyrazoles.

Many manufacturing processes have been described in the literature for preparing such derivatives, for example in International Patent Publication Nos. WO87/03781, WO93/06089 and WO94/21606; in European Patent Publication Nos. 0295117, 0403300, 0385809 and 0679650; US Patent Nos. 5232940 and 5236938; and German Published Patent Application No. 19511269.

The Japp-Klingemann reaction, reviewed in *Org. React.*, Vol. 10, pages 143-178 (1959), known in the literature since 1887, is a process by which phenyl azo compounds are formed from the reaction of diazonium salts with active methylene compounds. Typically the phenyl azo compound is not isolated, but is reacted *in situ* with base resulting in loss of a leaving group and formation of the corresponding hydrazone. When the phenyl azo intermediate is properly substituted, a spontaneous cyclization reaction occurs giving a 3,5-disubstituted-4-protio-pyrazole, that is, a 3,5-disubstituted-4-unsubstituted pyrazole. If a 3,4,5-trisubstituted pyrazole is desired, further manipulation is required in subsequent steps.

An object of the instant invention is to provide a new manufacturing process for preparing arylpyrazole derivatives.

Another object of the instant invention is to provide a simple manufacturing process, if possible, more simple than the existing process.

These objects are met in whole or in part by the instant invention.

This invention provides a new and more efficient process for the direct preparation of 3,4,5-trisubstituted-1-arylpyrazoles. Surprisingly, it has been found that the pyrazole ring cyclization of certain aryl azo intermediates proceeds such that the leaving group (normally lost in these type of reactions) is reincorporated into the pyrazole at C-4 thus giving immediate access to 3,4,5-trisubstituted-1-arylpyrazoles. This offers advantages in reducing the number of reaction steps required to produce the desired pesticidally active 3,4,5-trisubstituted-1-arylpyrazole derivatives, which in turn means less waste chemical may be generated when manufacturing such compounds; and less energy may be needed. This also helps to reduce the manufacturing cost of the pesticidally active 1-aryl pyrazole derivatives.

The present invention provides a process for preparing 1-arylpyrazoles wherein:

$$R_{4}$$
 R_{3}
 R_{6}
 N
 N
 Ar
 Ar
 (IV)

5

wherein:

Ar is optionally substituted phenyl or optionally substituted pyridyl;

 R_3 is -C(O)R₈, -CN, -CO₂H, -C(O)NHR₈, -CHO, -C(O)CO₂R₈, -S(O)_mR₈,

10 -C(O)CH₂Het, Het, -C(O)CH₂R₉, -C(O)(C₁-C₆ alkyl), -C(O)(C₁-C₆ haloalkyl),

-C(O)styryl, halogen, -C(O)OR₈, -P(O)(OR₈)₂, -P(S)(OR₈)₂, -NO₂, R₉ or -S(O)_mstyryl;

R₄ is as defined for R₃ excluding -CN and halogen;

m is 0, 1 or 2;

 R_6 is -NH₂, -OH or -CH₃;

15 R₈ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, R₉ or Het;

Het is a 5- or 6-membered heterocyclic ring, said ring having from one to three ring heteroatoms which are the same or different selected from the group consisting of nitrogen, sulfur and oxygen, each carbon atom of said ring being unsubstituted or being substituted by halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆

haloalkoxy, cyano, nitro, amino, N-(C₁-C₆ alkyl)amino, N,N-di(C₁-C₆ alkyl)amino, OH, -S(O)_m(C₁-C₆ alkyl) or -S(O)_m(C₁-C₆ haloalkyl); and

 R_9 is phenyl optionally substituted by one or more members selected from the group consisting of halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, cyano, nitro, amino, N- $(C_1$ - C_6 alkyl)amino, N,N-di $(C_1$ - C_6 alkyl)amino,

25 -OH, $-S(O)_m(C_1-C_6 \text{ alkyl})$ and $-S(O)_m(C_1-C_6 \text{ haloalkyl})$;

said process comprising:

(a) reacting a compound having the formula:

 $Ar - N \equiv N^+ X^-$

30

wherein Ar is as defined above and X is a compatible anion, with a compound having the formula:

5

wherein R_3 and R_4 are as defined above and R_5 is -CN, -C(O)OR₈ or -C(O)(C₁-C₆ alkyl), to afford the corresponding compound having the formula:

$$R_3$$
 R_4 $N=N-Ar$ R_5 (III)

10

20

wherein R₃, R₄, R₅ and Ar are as defined above; and

(b) subjecting the compound of formula (III) thus obtained to rearrangement to afford the corresponding compound of formula (IV).

In the specification the following terms have the general meanings given below:

"alkyl" is branched or straight chain alkyl having from 1 to 6 carbon atoms;

"haloalkyl" is branched or straight chain alkyl having from 1 to 6 carbon atoms, bearing one or more halogen which are the same or different:

"alkoxy" is branched or straight chain alkoxy having from 1 to 6 carbon atoms;

"haloalkoxy" is branched or straight chain alkoxy having from 1 to 6 carbon atoms, bearing one or more halogen which are the same or different;

"halogen" means fluorine, chlorine, bromine or iodine.

In the definition above it will be understood that R₄ cannot represent -CN or halogen because in formula (III) above, -CN or halogen cannot migrate to the adjacent carbon atom in the rearrangement step to give the compound of formula (IV) above.

X can be any anion compatible with the reaction conditions prevailing.

Examples of suitable groups include (HSO₄), halogen, (BF₄), (ZnCl₃) and (CoCl₃).

Preferably X is halogen or (HSO₄).

When Ar is phenyl, it has from 0 to 5 substituents. When Ar is pyridyl, it has from 0 to 4 substituents. Preferably, Ar has from 1 to 3 substituents. In any event, the

optional Ar substituents are preferably selected from the group consisting of halogen, CN, NO_2 , haloalkyl, haloalkoxy, $S(O)_mCF_3$, SF_5 and R_{10} wherein m is as defined above and R_{10} is as defined below.

Preferably Ar is a group having the formula

5

$$R_1$$
 R_2

wherein:

Z represents a trivalent nitrogen atom or a C-R₇ radical, the other three valences of the carbon atom forming part of the aromatic ring;

R₁ and R₇ represent, independently of each other, a hydrogen or halogen atom, or CN or NO₂;

R₂ represents halogen, haloalkyl, haloalkoxy, S(O)_mCF₃, SF₅ or R₁₀; and R₁₀ is phenyl optionally having from one to five substituents selected from the group consisting of halogen; alkyl; haloalkyl; cyanoalkyl; cyano; nitro; amino; hydrazino; alkoxy; haloalkoxy; haloalkylcarbonyl; formyl; alkylcarbonyl; thiocarbamoyl; carbamoyl; alkoxycarbonyl; SF₅; and R₈S(O)_m (preferably the 4-position substituent being halogen, haloalkyl or haloalkoxy); two adjacent phenyl substituents being optionally joined together form a 1,3-butadienylene

(-CH=CH-CH=CH-), methylenedioxy (-O-CH₂-O-) or halomethylenedioxy (e.g.,

-O-CF₂-O-) group so as to form a cyclic ring vicinal to the phenyl ring.

The following are also preferred embodiments of the invention, especially

The following are also preferred embodiments of the invention, especially when Ar is one of the preferred groups depicted above:

R₃ is -CN or -COR₈; and/or

R₄ is $-S(O)_mR_9$, $-S(O)_m$ alkyl or $-S(O)_m$ haloalkyl; and/or

R₅ is -CN; and/or

 R_6 is -NH₂.

The following value of the various substituents provide representative compounds of formulae (I) to (IV) above. In the Table that follows "Ph" means phenyl; "Pyr" means pyridyl; "Et" means ethyl.

Аг	X	R ₃	R ₄	R ₅	R ₆
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	COCH ₃	SO ₂ (4-Cl Ph)	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	CN	SO ₂ (4-Cl Ph)	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	CN	CO₂Et	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	CN	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	CN	SOCH ₃	CN	NH ₂
2,6-Cl ₂ -4-OCF ₃ Ph	Cl	Cl	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	CN	SOEt	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO₄	CN	P(O)(OEt) ₂	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	Cl	CN	SO ₂ CF ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	SO(4-Cl Ph)	COCH ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	CN	COCF ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO₄	CN	NO ₂	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO₄	NO ₂	COCH ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	SO ₂ (2-thienyl)	COCH ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	COCH ₃	SO ₂ (2-thienyl)	CN	NH ₂
2,6-Cl ₂ -4-(4-Cl Ph) Ph	HSO₄	CN	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO₄	Br	COCH ₃	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO ₄	Br	COPh	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO₄	CN	CO(2-furyl)	CN	NH ₂
2,6-Cl ₂ -4-CF ₃ Ph	HSO₄	CN	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	HSO ₄	COCH ₃	SO ₂ (4-Cl Ph)	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	HSO₄	CN	SO ₂ (4-Cl Ph)	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	HSO ₄	CN	CO ₂ Et	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	HSO ₄	CN	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	HSO ₄	CN	SOCH ₃	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	Cl	Cl	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	HSO ₄	CN	SOEt	CN	NH ₂
2,6-Cl ₂ -4-SF ₅ Ph	HSO ₄	CN	P(O)(OEt) ₂	CN	NH ₂
2,6-Cl ₂ -4-(4CF ₃ Ph) Ph	HSO ₄	CN	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-(4-OCF ₃ Ph) Ph	HSO ₄	CN	SOCF ₃	CN	NH ₂

30

Ar	X	R ₃	R ₄	R ₅	R ₆
2,6-Cl ₂ -4-O Ph	HSO ₄	CN	SOCF ₃	CN	NH ₂
2,6-Cl ₂ -4-(4-SCF ₃ Ph) Ph	HSO ₄	CN	SOCF ₃	CN	NH ₂

The process of the invention is generally conducted in two steps, although it may be carried out as a continuous process including the *in-situ* rearrangement of the compound of formula (III) to give a compound of formula (IV). This *in-situ* process may be preferred when the process forms part of a manufacturing process, as it may avoid the need for isolation of the intermediate of formula (II).

In the first step the diazonium salt (I) is reacted with a compound (II) in a solvent, with protic solvents such as methanol, ethanol and acetic acid being preferred. The reaction is performed, optionally in the presence of a base, at a temperature between about 0° and about 120°C, preferably between about 0 and about 25°C, to give the azo product (III). When base is used in this step, it can be organic such as pyridine or triethylamine, or inorganic such as potassium carbonate or sodium hydroxide. When used, the amount of base is generally from about 1 to about 25 equivalents [based on the mole equivalents of the compound of formula (I)], with about 1 to 5 equivalents being preferred.

In the second step of the reaction sequence, the azo compound (III) is dissolved in a suitable solvent and optionally subjected to up to about 20 equivalents of a base, preferably up to about 5 equivalents, to give the rearranged pyrazole of formula (IV). The reaction temperature for this step is from about 0 to about 120°C, preferably from about 0 to about 25°C. The solvent can be protic such as methanol, ethanol or acetic acid, or preferably the solvent can be aprotic, such as dichloromethane, tetrahydrofuran, or toluene. Suitable bases may be organic (such as pyridine, triethylamine, or piperidine), inorganic (such as sodium hydroxide, potassium carbonate, sodium hydride) or organometallic (such as potassium t-butoxide, sodium methoxide, lithium diisopropylamide), with organic or organometallic bases being preferred.

The compound of formula (III) above is generally present in a molar excess.

Preferably from about 1 to about 2 moles of the compound of formula (III) are present,
more-preferably-from-about-1.05-to-about-1.1-moles.

Compounds of formula (III) in which Ar, R_3 , R_4 and R_5 are as defined above, provided that when R_3 and R_5 are both cyano R_4 is not -C(O)OR₈, are novel and thus constitute a feature of the present invention.

Compounds of formula (II) may be prepared by the reaction of a compound of

-7-

formula (V):

 R_3 — CH_2R_4 (V)

5 wherein R₃ and R₄ are as defined above with a compound of the formula R₅CH₂L wherein R₅ is as defined above and L is a leaving group, in the presence of a base. Examples of suitable leaving groups include halogen and tosylate (preferably halogen). The base is generally a strong base (e.g. sodium hydride or n-butyl lithium) and the reaction is generally performed in an aprotic solvent (e.g. tetrahydrofuran) at a 10 temperature from about -78°C to about 0°C. Compounds of formula (II), in which R₅ is cyano and R₃ and R₄ are as defined above, provided that when R₃ is -CN then R₄ is not -C(O)OR₈, are also novel and thus constitute a further feature of the present invention.

The following non-limiting examples illustrate the invention.

15

Example 1

Preparation of 3-(4-chlorophenylsulfonyl)-4-cyanobutan-2-one

To a 300 mL reaction flask was added 2.4 g (59.3 mmole) sodium hydride (60% dispersion in oil) and 10 mL hexanes. The hexanes were removed by pipette 20 and replaced by 60 mL dry tetrahydrofuran (THF). The suspension was cooled to -15°C and a solution of 12.0 g (51.6 mmole) 4-chlorophenylsulfonyl acetone in 50 mL THF was added via addition funnel over 20 minutes maintaining the reaction temperature below -12°C. The resulting yellow solution was removed from the cold bath and stirred at room temperature for 30 min. The solution was recooled to -5°C 25 and 3.8 mL (54.1 mmole) bromoacetonitrile was added dropwise via addition funnel. After 5 min, the reaction mixture was removed from the cold bath and stirred at room temperature overnight. The reaction was quenched with 1 mL of saturated ammonium chloride and transferred with 100 mL of dichloromethane to a separatory funnel containing 100 mL brine. The organic layer was separated and the aqueous layer was 30 back extracted once with 50 mL more dichloromethane. The combined organics were then dried with sodium sulfate, filtered, concentrated, and chromatographed through a bed of silica gel using 1:1 hexane: dichloromethane. Isolation gave 8.2 g (59% yield) of 3-(4-chlorophenylsulfonyl)-4-cyanobutan-2-one, a yellow oil that was 90% pure by HPLC. ¹H NMR (CDCl₃) indicated desired product as the major component: d 7.6 35 (m, 4H), 4.42 (dd, 1H), 2.78 (m, 2H), 2.48 (s, 3H).

30

Example 2

Preparation of 3-(4-chlorophenylsulfonyl)-3-[(2,6-dichloro-4-trifluoromethylphenyl)azo]-4-cyanobutan-2-one

To a 250 mL reaction flask was added 2.0 g (35.7 mmole) potassium 5 hydroxide pellets followed by 30 mL water and 30 mL methanol. To this solution was added 6.9 g (25.5 mmole) of compound 3-(4-chlorophenylsulfonyl)-4-cyanobutan-2one. Once homogeneous, 23.2 mmole of the hydrogensulfate diazonium salt of 2,6-dichloro-4-trifluoromethylaniline was added in one portion to the reaction medium. After stirring for 45 minutes at room temperature the reaction mixture was 10 worked-up by adding water and dichloromethane. The layers were separated and the organic layer back extracted once with dichloromethane (50 mL). The combined organics were dried (Na₂SO₄), filtered, concentrated and chromatographed through silica gel using hexane:ethyl acetate mixture. Isolation gave 5.1 g (43%) the title compound as a glassy semi-solid which HPLC indicated was 98% pure and 'HNMR 15 indicated as desired product: d 7.6 (m, 4H), 7.65 (s, 2H), 3.3 (dd, 2H), 2.42 (s, 3H).

Example 3

Preparation of 3-acetyl-5-amino-4-(4-chlorophenyl)sulfonyl-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole

20 Two drops of triethylamine were added to 0.51 g (1.0 mmole) 3-(4chlorophenylsulfonyl)-3-(2,6-dichloro-4-trifluoromethylphenylazo)-4-cyanobutan-2one dissolved in 10 mL dichloromethane. After stirring overnight at room temperature, the reaction was worked-up by adding additional dichloromethane and washing with water. The organic layer was separated, dried (Na₂SO₄), filtered and 25 concentrated to give 0.55 g of the title compound that was 94% pure by HPLC, m.p. 158°C.

Example 4

Preparation of 2-(4-chlorophenylsulfonyl)succinonitrile

To a 500 mL reaction flask was added 2.0 g (51.0 mmole) sodium hydride (60% dispersion in oil) and 20 mL hexanes. The hexanes were removed by pipette and replaced by 90 mL dry tetrahydrofuran (THF). The suspension was cooled to 0°C and a solution of 10.0 g (46.4 mmole) 4-chlorophenylsulfonyl acetonitrile in 90 mL THF was added via addition funnel over 10 minutes maintaining the reaction 35 temperature below 12°C. The resulting solution was removed from the cold bath and stirred at room temperature for 40 min. The solution was recooled to 0°C and 3.4 mL (48.7 mmole) bromoacetonitrile in 5 mL THF was added dropwise via addition

funnel. After 5 minutes, the reaction was removed from the cold bath and stirred at room temperature for two hours. The reaction was quenched with 1 mL of saturated ammonium chloride and concentrated to an oil which was transferred with 150 mL of dichloromethane to a separatory funnel containing 120 mL water. The organic layer was separated and washed once more with 120 mL water and once with 120 mL brine. The organic layer was then dried (Na₂SO₄), filtered, concentrated, and chromatographed through a bed of silica gel using 85:15 hexane:ethyl acetate. Isolation gave 1.4 g (12% yield) of the title compound as a yellow powder that was 96% pure by HPLC, m.p. 130-137°C.

10

Example 5

Preparation of 2-(4-chlorophenylsulfonyl)-

2-(2,6-dichloro-4-trifluoromethyl)phenylazo succinonitrile

To a 50 mL reaction flask was added 0.45 g (1.77 mmole) of 2-(415 chlorophenylsulfonyl)succinonitrile in 15 mL methanol. Once homogeneous, 1.61 mmole of the hydrogensulfate diazonium salt of 2,6-dichloro-4-trifluoromethylaniline was added in one portion to the reaction medium. After stirring 45 min at room temperature the reaction mixture was worked-up by adding brine and dichloromethane. The layers were separated and the organic layer was dried
20 (Na₂SO₄), filtered, concentrated and chromatographed through silica gel using 90:10 hexane:ethyl acetate. Isolation gave 0.33 g (42%) of the title compound, a red crystalline solid which ¹⁹F NMR indicated was over 95% pure, m.p. 45-50°C.

Example 6

25

<u>Preparation of 5-amino-3-cyano-4-(4-chlorophenylsulfonyl)-1-(2.6-dichloro-4-trifluoromethylphenyl)pyrazole</u>

Three drops of triethylamine were added to 0.3 g (0.61 mmole) of 2-(4-chlorophenylsulfonyl)-2-(2,6-dichloro-4-trifluoromethyl)phenylazo succinonitrile in 20 mL dichloromethane. After stirring two hours at room temperature the reaction was worked-up by diluting with dichloromethane and partitioning from water. The layers were separated and the aqueous layer was back-extracted once with dichloromethane. The combined organics were dried (Na₂SO₄) filtered, concentrated and chromatographed through silica gel eluting with 90:10 hexane:ethyl acetate.

Isolation gave 0.14 g (47% yield) of the title compound, 100% pure by HPLC as an orange foam, m.p. 90-95°C.

Example 7

Preparation of ethyl 2,3-dicyano-2-(2,6-dichloro-

4-trifluoromethyl)phenylazo propionate

22.1 Mmole of ethyl dicyanopropionate in 20 mL absolute ethanol was cooled
to 0°C, and 20.9 mmole of the hydrogensulfate diazonium salt of 2,6-dichloro-4-trifluoromethylaniline was added via addition funnel over 15 minutes. The reaction was warmed to room temperature and stirred overnight. The reaction was worked-up by adding water and dichloromethane. The layers were separated and the aqueous layer was back extracted once with dichloromethane. The combined organics were
washed once with brine and the organic layer was dried (Na₂SO₄), filtered, concentrated and chromatographed through silica gel using 90:10 hexane:ethyl acetate. Isolation gave 2.7 g (33%) of the title compound as a red viscous oil which contained 82% desired azo product and 13% of the corresponding hydrazone. How NMR (CDCl₃) indicated desired product as the major component: d 7.70 (s, 2H), 4.44
(m, 2H), 3.58 (q, 2H), 1.39 (t, 3H).

Example 8

<u>Preparation of 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-carboethoxypyrazole</u>

To a 100 mL reaction flask was added 0.51 g (1.30 mmole) ethyl 2,3-dicyano-2-(2,6-dichloro-4-trifluoromethyl)phenylazo propionate in 20 mL tetrahydrofuran. The reaction was cooled to -78°C and 0.52 g (1.30 mmole) sodium hydride (60% dispersion in oil) was added in one portion. The reaction mixture warmed to room temperature overnight. Two grams of silica gel and 40 mL ethyl acetate were added to the reaction mixture and the slurry was concentrated and chromatographed through silica gel eluting with 90:10 hexane:ethyl acetate (1 L) and 80:20 (2 L). Isolation gave 0.16 g (38% yield based on 82% pure starting material), a solid that was 99% pure by HPLC, m.p. 201.5-202.5°C.

30

Example 9

Preparation of hydrogensulfate diazonium

salt of 2,6-dichloro-4-trifluoromethylaniline

To a 100 mL reaction flask was added 5.3 g (23.2 mmole) 2,6-dichloro-4-35 trifluoromethylaniline dissolved in 45 mL glacial acetic acid. The solution was cooled in an ice water bath and 3.8 g (30.1 mmole) nitrosylsulfuric acid was added in one portion. The reaction was removed from the ice bath and stirred at room temperature 5

for two hours. The resulting diazonium salt was used without purification.

The compounds of formula (IV) prepared by the process of the present invention are useful as pesticides.

While the invention has been described in terms of various preferred embodiments, the skilled artisan will appreciate that various modifications, substitutions, omissions and changes may be made without departing from the spirit thereof. Accordingly, it is intended that the scope of the present invention be limited solely by the scope of the following claims, including equivalents thereof.

WHAT IS CLAIMED IS:

1. A process for preparing a compound having the formula:

$$R_{4}$$
 R_{5}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{8}

wherein:

5

Ar is optionally substituted phenyl or optionally substituted pyridyl;

10 R_3 is -C(O)R₈, -CN, -CO₂H, -C(O)NHR₈, -CHO, -C(O)CO₂R₈, -S(O)_mR₈,

-C(O)CH₂Het, Het, -C(O)CH₂R₉, -C(O)(C₁-C₆ alkyl), -C(O)(C₁-C₆ haloalkyl),

-C(O)styryl, halogen, -C(O)OR₈, -P(O)(OR₈)₂, -P(S)(OR₈)₂, -NO₂, R₉ or -S(O)_mstyryl;

R₄ is as defined for R₃ excluding -CN and halogen;

m is 0, 1 or 2;

R₆ is -NH₂, -OH or -CH₃;

R₈ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, R₉ or Het;

Het is a 5- or 6-membered heterocyclic ring, said ring having from one to three ring heteroatoms which are the same or different selected from the group consisting of nitrogen, sulfur and oxygen, each carbon atom of said ring being unsubstituted or

being substituted by halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, cyano, nitro, amino, N-(C₁-C₆ alkyl)amino, N,N-di(C₁-C₆ alkyl)amino, OH, -S(O)_m(C₁-C₆ alkyl) or -S(O)_m(C₁-C₆ haloalkyl); and

 R_9 is phenyl optionally substituted by one or more members selected from the group consisting of halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6

haloalkoxy, cyano, nitro, amino, N-(C₁-C₆ alkyl)amino, N,N-di(C₁-C₆ alkyl)amino,
 OH, -S(O)_m(C₁-C₆ alkyl) and -S(O)_m(C₁-C₆ haloalkyl);

said process comprising:

(a) reacting a compound having the formula:

$$Ar-N\equiv N^+X^-$$

30

wherein Ar is as defined above and X is a compatible anion, with a compound having the formula:

5

wherein R_3 and R_4 are as defined above and R_5 is -CN, -C(O)OR₈ or -C(O)(C₁-C₆ alkyl), to afford the corresponding compound having the formula:

$$R_3$$
 R_4
 $N=N-Ar$
 R_5
(III)

10

wherein R₃, R₄, R₅ and Ar are as defined above; and

- (b) subjecting the compound of formula (III) thus obtained to rearrangement to afford the corresponding compound of formula (IV).
- The process according to Claim 1, wherein Ar is phenyl having from 0 to 5 substituents or pyridyl having from 0 or 4 substituents, each substituent when present being selected from the group consisting of halogen, CN, NO₂, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, S(O)_mCF₃, SF₅ and R₁₀; and R₁₀ is phenyl optionally having from one to five substituents selected from the group consisting of halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, cyano(C₁-C₆ alkyl), cyano, nitro, amino, hydrazino, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, (C₁-C₆ haloalkyl)carbonyl, formyl, (C₁-C₆ alkyl)carbonyl, thiocarbamoyl, carbamoyl, (C₁-C₆ alkoxy)carbonyl, SF₅ and R₈S(O)_m, two adjacent phenyl substituents being optionally joined together to form a 1,3-butadienylene, methylenedioxy or halomethylenedioxy group.

25

3. The process according to Claim 1 or Claim 2 wherein Ar has the formula:

$$R_1$$
 R_2

wherein:

Z is a trivalent nitrogen atom or a C-R₇ radical, the other three valences of the carbon atom forming part of the aromatic ring;

 R_1 and R_7 are, independently of each other, hydrogen, halogen, CN or NO_2 ; and

R₂ is halogen, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, S(O)_mCF₃, SF₅ or R₁₀.

- 4. The process according to any one of the foregoing claims wherein R_3 is -CN or $-C(O)R_8$.
 - 5. The process according to any one of the foregoing claims wherein R_4 is $S(O)_mR_8$ wherein R_8 is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or R_9 .
- 6. A process according to any one of the foregoing claims wherein the molar ratio of (I):(II) is from about 1:1 to about 1:2.
 - 7. A process for preparing a compound having the formula:

$$R_3$$
 R_4 $N=N-Ar$ R_5

(III)

20

wherein:

Ar is optionally substituted phenyl or optionally substituted pyridyl; R₃ is -C(O)R₈, -CN, -CO₂H, -C(O)NHR₈, -CHO, -C(O)CO₂R₈, -S(O)_mR₈,

25 -C(O)CH₂Het, Het, -C(O)CH₂R₉, -C(O)(C₁-C₆ alkyl), -C(O)(C₁-C₆ haloalkyl),

-C(O)styryl, halogen, -C(O)OR₈, -P(O)(OR₈)₂, -P(S)(OR₈)₂, -NO₂, R₉ or -S(O)_mstyryl; R₄ is as defined for R₃ excluding -CN and halogen; m is 0, 1 or 2;

 R_5 is -CN, -C(O)OR₈ or -C(O)(C₁-C₆ alkyl);

R₈ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, R₉ or Het;

Het is a 5- or 6-membered heterocyclic ring, said ring having from one to three ring hetereoatoms which are the same or different selected from the group consisting of nitrogen, sulfur and oxygen, each carbon atom of said ring being unsubstituted or being substituted by halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl,

C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, cyano, nitro, amino, N-(C₁-C₆ alkyl)amino,

 $N, N-di(C_1-C_6 \ alkyl) \ amino, \ OH, \ -S(O)_m(C_1-C_6 \ alkyl) \ or \ -S(O)_m(C_1-C_6 \ haloalkyl); \ and$

R₉ is phenyl optionally substituted by one or more members selected from the group consisting of halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, cyano, nitro, amino, N-(C₁-C₆ alkyl)amino, N,N-di(C₁-C₆

alkyl)amino, -OH, -S(O)_m(C₁-C₆ alkyl) and -S(O)_m(C₁-C₆ haloalkyl); said process comprising reacting a compound having the formula:

$$A_I - N \equiv N^+ X^-$$

15

(I)

wherein Ar is as defined above and X is a compatible anion, with a compound having the formula:

20

(II)

wherein R₃, R₄ and R₅ are as defined above.

8. A compound having the formula:

25

$$R_3$$
 R_4 $N=N-Ar$ R_5 (III)

wherein:

Ar is optionally substituted phenyl or optionally substituted pyridyl;

 R_3 is -C(O)R₈, -CN, -CO₂H, -C(O)NHR₈, -CHO, -C(O)CO₂R₈, -S(O)_mR₈, -C(O)CH₂Het, Het, -C(O)CH₂R₉, -C(O)(C₁-C₆ alkyl), -C(O)(C₁-C₆ haloalkyl), -C(O)styryl, halogen, -C(O)OR₈, -P(O)(OR₈)₂, -P(S)(OR₈)₂, -NO₂, R₉ or -S(O)_mstyryl; R₄ is as defined for R₃ excluding -CN and halogen;

5 m is 0, 1 or 2;

 R_5 is -CN, -C(O)OR₈ or -C(O)(C₁-C₆ alkyl);

R₈ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, R₉ or Het;

Het is a 5- or 6-membered heterocyclic ring, said ring having from one to three ring hetereoatoms which are the same or different selected from the group consisting of nitrogen, sulfur and oxygen, each carbon atom of said ring being unsubstituted or being substituted by halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl,

 C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, cyano, nitro, amino, N- $(C_1$ - C_6 alkyl)amino, N,N-di $(C_1$ - C_6 alkyl)amino, OH, -S $(O)_m(C_1$ - C_6 alkyl) or -S $(O)_m(C_1$ - C_6 haloalkyl); and

R₉ is phenyl optionally substituted by one or more members selected from the group consisting of halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, cyano, nitro, amino, N-(C₁-C₆ alkyl)amino, N,N-di(C₁-C₆ alkyl)amino, -OH, -S(O)_m(C₁-C₆ alkyl) and -S(O)_m(C₁-C₆ haloalkyl);

with the proviso that when R_3 is -CN and R_5 is -CN, then R_4 cannot be -C(O)OR₈.

20

9. The compound according to Claim 8, which is:

3-(4-chlorophenylsulfonyl)-3-(2,6-dichloro-4-trifluoromethylphenylazo)-4-cyanobutan-2-one;

2-(4-chlorophenylsulfonyl)-2-(2,6-dichloro-4-trifluoromethyl)phenylazo succinonitrile; or

ethyl 2,3-dicyano-2-(2,6-dichloro-4-trifluoromethyl)phenylazo propionate.

10. A compound having the formula:

30

(II)

wherein:

 R_3 is $-C(O)R_8$, -CN, $-CO_2H$, $-C(O)NHR_8$, -CHO, $-C(O)CO_2R_8$, $-S(O)_mR_8$, $-C(O)CH_2Het$, Het, $-C(O)CH_2R_9$, $-C(O)(C_1-C_6$ alkyl), $-C(O)(C_1-C_6$ haloalkyl), -C(O)styryl, halogen, $-C(O)OR_8$, $-P(O)(OR_8)_2$, $-P(S)(OR_8)_2$, $-NO_2$, R_9 or $-S(O)_m$ styryl; R_4 is as defined for R_3 excluding -CN and halogen;

5 m is 0, 1 or 2;

R₅ is -CN;

R₈ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, R₉ or Het;

Het is a 5- or 6-membered heterocyclic ring, said ring having from one to three ring hetereoatoms which are the same or different selected from the group consisting of nitrogen, sulfur and oxygen, each carbon atom of said ring being unsubstituted or being substituted by halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl,

 C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, cyano, nitro, amino, N- $(C_1$ - C_6 alkyl)amino, N,N-di $(C_1$ - C_6 alkyl)amino, OH, -S $(O)_m(C_1$ - C_6 alkyl) or -S $(O)_m(C_1$ - C_6 haloalkyl); and R_9 is phenyl optionally substituted by one or more members selected from the

group consisting of halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, cyano, nitro, amino, N-(C₁-C₆ alkyl)amino, N,N-di(C₁-C₆ alkyl)amino, -OH, -S(O)_m(C₁-C₆ alkyl) and -S(O)_m(C₁-C₆ haloalkyl);

with the proviso that when R₃ is -CN, then R₄ cannot be -C(O)OR₈.

20 11. The compound according to Claim 10, which is:

3-(4-chlorophenylsulfonyl)-4-cyanobutan-2-one; or

2-(4-chlorophenylsulfonyl)succinonitrile.

in: itional Application No PCT/EP 98/01226

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D231/10 C07D C07D231/38 C07C317/48 IPC 6 C07D231/44 C07C317/44 C07C255/65 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D CO7C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ⁴ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EASTMAN R H ET AL.: "The reaction of 1-11 2,5-dimethylfuran with p-nitrobenzenediazonium chloride" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 70, no. 3, 3 April 1948, pages 962-4, XP002073061 Washington DC, US see the whole document DE 29 28 136 A (BAYER AG) 29 January 1981 1-11 see the whole document, particularly pages 13, 14, bridging paragraph Patent family members are listed in annex. Further documents are listed in the continuation of box C. " Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docuother means ments, such combination being obvious to a person skilled in the art. "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of the actual completion of theinternational search Date of mailing of the international search report 12/08/1998 29 July 1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Allard, M Fax: (+31-70) 340-3016

Int Itional Application No
PCT/EP 98/01226

Citation of document, with indication, where appropriate, of the relevant passages PHILLIPS R R: "The Japp-Klingemann reaction" ORGANIC REACTIONS, vol. 10, 1959, pages 143-78, XP002073062 John Wiley & Sons, New York, US cited in the application see the whole document, particularly page 154 US 5 232 940 A (HATTON L R ET AL.) 3 August 1993 cited in the application see the whole document	1-11 1-11
PHILLIPS R R: "The Japp-Klingemann reaction" ORGANIC REACTIONS, vol. 10, 1959, pages 143-78, XP002073062 John Wiley & Sons, New York, US cited in the application see the whole document, particularly page 154 US 5 232 940 A (HATTON L R ET AL.) 3 August 1993 cited in the application	1-11
reaction" ORGANIC REACTIONS, vol. 10, 1959, pages 143-78, XP002073062 John Wiley & Sons, New York, US cited in the application see the whole document, particularly page 154 US 5 232 940 A (HATTON L R ET AL.) 3 August 1993 cited in the application	
August 1993 cited in the application	1-11
	
HECKENDORN R: "Novel heterocycles by the malonic ester variation of the Japp-Klingemann reaction" BULLETIN DES SOCIÉTÉS CHIMIQUES BELGES, vol. 95, no. 11, November 1986, pages 921-43, XP002073063 Brussels, BE see the whole document, particularly page 929, compound 38, page 930, scheme 12, and page 931, compounds 41 and 47	1-11
WO 93 06089 A (IMPERIAL CHEMICAL INDUSTRIES PLC) 1 April 1993 cited in the application see the whole document, particularly example 1, stage 3	1-11
DE 36 02 524 A (BAYER AG) 30 July 1987 see the whole document, particularly example 4, second part	7,8
US 3 140 226 A (STEPHENS J A ET AL) 7 July 1964 see the whole document	10
US 2 978 480 A (LUCKENBAUGH R W ET AL.) 4 April 1961 see the whole document	10
REDMAN R P ET AL.: "Elimination and addition reactions. Part 35. Substituent effects on alkene-forming eliminations from carbanions" JOURNAL OF THE CHEMICAL SOCIETY, PERKINTRANSACTIONS II, 1978, pages 1135-44, XP002073064 London, GB see tables 3 and 6, substrates 21 and 22	10
	Japp-Klingemann reaction" BULLETIN DES SOCIÉTÉS CHIMIQUES BELGES, vol. 95, no. 11, November 1986, pages 921-43, XP002073063 Brussels, BE see the whole document, particularly page 929, compound 38, page 930, scheme 12, and page 931, compounds 41 and 47 WO 93 06089 A (IMPERIAL CHEMICAL INDUSTRIES PLC) 1 April 1993 cited in the application see the whole document, particularly example 1, stage 3 DE 36 02 524 A (BAYER AG) 30 July 1987 see the whole document, particularly example 4, second part US 3 140 226 A (STEPHENS J A ET AL) 7 July 1964 see the whole document US 2 978 480 A (LUCKENBAUGH R W ET AL.) 4 April 1961 see the whole document REDMAN R P ET AL.: "Elimination and addition reactions. Part 35. Substituent effects on alkene-forming eliminations from carbanions " JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS II, 1978, pages 1135-44, XP002073064 London, GB

...ernational application No.

PCT/EP 98/01226

Box I	Observations where c rtain claims were f und uns archable (Continuation of item 1 first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
,	
	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Concerning claim 10, the search revealed such a large number of particularly relevant documents, in particular with regard to novelty, that the drafting of a comprehensive Search Report is not feasible. The cited documents are considered as to form a representative sample of the revealed documents, duly taking into account their relevance with respect to the subject-matter as illustrated by the examples.	
•	
	·

Information on patent family members

Inte Ional Application No
PCT/EP 98/01226

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 2928136	A	29-01-1981	ΕP	0022512 A	21-01-1981
			JP	56015295 A	14-02-1981
US 5232940	A	03-08-1993	AT	110226 T	15-09-1994
	•		AT	134476 T	15-03-1996
			AU	587676 B	24-08-1989
			AU	6673386 A	25-06-1987
			BR	8607230 A	06-12-1988
			CA	1311242 A	08-12-1992
			CN	1025811 B	07-09-1994
			DE	3650042 D	29-09-1994
			DE	3650042 T	06-04-1995
			DE	3650490 D	04-04-1996
			DE	3650490 T	07-11-1996
			DK	613986 A	21-06-1987
			EP	0234119 A	02-09-1987
			EP	0579280 A	19-01-1994
			ES	2058063 T	01-11-1994
			ES	2084430 T	01-05-1996
			FI	865195 A,B,	21-06-1987
			WO	8703781 A	02-07-1987
			GR	3019366 T	30-06-1996
			HK	98697 A	08-08-1997
			IE	66829 B	07-02-1996
			JP	2042505 C	09-04-1996
			JP	7062000 B	05-07-1995
			JP	62228065 A	06-10-1987
			KR	9502156 B	14-03-1995
			LU	88663 A 8451 A	01-02-1996
			OA PT	83971 B	30-06-1988 31-07-1080
			RU	2080789 C	31-07-1989
			RU	2087470 C	10-06-1997
			US	5547974 A	20-08-1997 20-08-1996
			US	5714191 A	03-02-1998
			US	5608077 A	04-03-1997
			AU	618266 B	19-12-1991
			AU	1755488 A	15-12-1991
			CA	1330089 A	07-06-1994
			CN	1027341 B	11-01-1995

information on patent family members

Int tional Application No PCT/EP 98/01226

	itent document I in search repon	t	Publication date		Patent family member(s)	Publication date
US	5232940	A	<u> </u>	DD	281744 B	20-02-1997
				DK	314088 A	13-12-1988
				EG	19113 A	30-11-1994
				EP	0295117 A	14-12-1988
				FΙ	882735 A	13-12-1988
				FĪ	951839 A	18-04-1995
				HŪ	210668 B	28-06-1995
				HU	9500470 A	30-10-1995
				IL	105138 A	26-08-1994
				JP	2669538 B	29-10-1997
				ĴΡ	63316771 A	26-12-1988
				KR	9701475 B	06-02-1997
				MX	11842 A	01-12-1993
WO	9306089	Α	01-04-1993	AT	163180 T	15-02-1998
				AU	664199 B	09-11-1995
				AU	2541392 A	27-04-1993
				AU	692902 B	18-06-1998
				AU	3051295 A	23-11-1995
				BR	9206552 A	17-10-1995
				CA	2119385 A	01-04-1993
				CN	1071163 A,B	21-04-1993
				CN	111 5 205 A	24-01-1996
				CZ	9400712 A	13-07-1994
				DE	69224437 D	19-03-1998
				DE	69224437 T	04-06-1998
				EP	0605469 A	13-07-1994
				ES	2112913 T	16-04-1998
				HU	66735 A,B	28-12-1994
				JP	7500319 T	12-01-1995
			1	MX	9205468 A	01-03-1993
				NZ	244265 A	28-03-1995
				TR	26511 A	15-03-1995
				us	5451598 A	19-09-1995
			,	ZA	9206785 A	09-06-1993
DE	3602524	A	30-07-1987	DE	3778185 A	21-05-1992
- - '				EP	0235524 A	09-09-1987
				JΡ	62184062 A	12-08-1987
				ÜS	4933436 A	
				US	4933436 A	12-06-1990