		X0>0-	O'IR MIMR 1/	ML
		8/88 / 1/NE	2) 9/8 R 1/ML (5 8/	BI
	n=1 m=2	//	tound Dy Found	-
		BIBR	W Hart	
	1 1 8 1 1 1			
	21		11R H/NR	
	11811	MM2 VIR	B/1 Hall	
	NIBIII	(a) (b)		
	92	18/0 Hall	n <m< td=""><td></td></m<>	
	NIBIII	1.0 11014		
	9 2	(8) n=m		
	NIBILIB			
	23	n=0, m=0	n=1, m=0	
	NIBMIIB	B1818	B11B1B	
	24	20	%	
	NIBMIIB	B 1 B 1 B	BIIBIB	
	24	2,	21	
	HIBMIIB	BNBIB	BNIBIB	
	24	9,2	92	
	NIBMIIB	BNBIB	BNIBIR	
	7,	23	92	
	NNBMIIB	BNBMB		
	92		BN 1 B 1 B	
	NNBMIIB	BNBNB		
	9-2	24	BNIBMB	
	92		94	-
	NNBMIIB	BNBMB	BNIBIMB	
		2,	2y	
	NNBMMIB	BNBMB	BNIBMB	-
	24	25	ry *	
	NNBMMIB	BNBMB	BNIBMB	
	94	BNBMO	21	
	NNBMMIB	BMBMD	BNNBMB	
	94	Halt	92	
	NNBMMIR		BNNBMB	
	9,	n=m	23	
	NNBMMIB		BNNBMB	
	25			
	NNBMMIB		BNNBMOHAL	
	25		n>m	
	NNBMMIB			
	25			
	NNBMMIB		h. 1 y	T
7	90		(6	
	NNBMMIC			
	Hall			
	2 2 2 2 2 2 3			

2. Design a machine that computes gt (n, m) = { 1 if n>m 0 otherwise

gt(n,m)= It(m,n); using It defined in 1b)

Config Machine BnBmB CP1,,1 BIBBBBBBB

BABA BAB MR, BnBIt(m,n)3 LT

ML, BR BITTMINB E, B...BIH(m,n)B T BIL (MIN)B

3. Trace the actions of the machine MULT for computations with input:

- (3) N=0, M=4
- (b) h=1 , m= 0
- (c) n=2, m=2

-	States	0	-	#	*	6
\$1000 market	90	90,0,L	9,0,R	95, halt	20,4,2	
	2,	91,0,R	9,0,R	9/2, #, L	2,5,2	
	92	23,1,R	92,1,6			
	23		95,1,2	23,#,R		タムリケレ
	24	93,1,R	94,1,1	24, #, L	20,*, -	

EXAMPLE Z

Winter

nondeterministic

The machine M then is represented by the string

Ideterministic

4. Let F. be 2 TM that computes a total unary number-theoretic franction f. Design a machine that computes the function

g(n) = Ef(i) The summation of function application TM

8. Explain the fundamental difference between the "Holts on the n'th transition problem" from example 11.5.2 and the "Holting Problem" that makes the former decidable and the 12ther undecidable

thelts on non transition problems decidable because there is an algorithmic solution that solves this particular example, described in 11.5.2, whereas the Harting problem refers to the superset of all possible program-input pairs and a general algorithm that would solve the Halting Problem - which doesn't exist, and so it is not decidable.

9.

R(M)W > R R(M)W NO, OW

NO, OW