Fiche méthode: Droites

Différentes droites

Application 1:

Déterminer l'équation réduite de chacune des droites suivantes, préciser si la droite a une particularité (horizontale ? verticale? passe par l'origine?).

En déduire, si possible, la valeur du coefficient directeur m et de l'ordonnée à l'origine p.

$D_1: 2x + y - 3 = 0$	$D_2: 5y - 10 = 0$
y = -2x + 3	5y = 10
Aucune particularité	y = 2
m = -2 et $p = 3$	Droite horizontale
•	m=0 et $p=2$
$D_3:9x+3y=0$	$D_4: x - 5 = 0$
3y = -9x	x = 5
y = -3x	Droite verticale
Droite passant par l'origine	Aucun coefficient directeur
m = -3 et $p = 0$	Aucune ordonnée à l'origine
$D_5: 2x - 4y + 8 = 0$	$D_6: x + 3y = 0$
-4y = -2x - 8	3y = -x
$y = \frac{1}{2}x + 2$	$y = -\frac{1}{3}x$

Droite passant par l'origine

 $m = -\frac{1}{2}$ et p = 0

Différentes	droites
-------------	---------

- Soient $m, p \in \mathbb{R}$, l'ensemble des points M(x; y) tels que y = mx + p est une droite non parallèle à l'axe des ordonnées
- Si une droite a pour équation, une équation de la forme $\mathbf{v} = \mathbf{k}$ (avec $\mathbf{k} \in \mathbb{R}$), alors c'est une droite parallèle à l'axe des abscisses.
- Si une droite a pour équation une équation de la forme x = k (avec $k \in \mathbb{R}$), alors c'est une droite parallèle à l'axe des ordonnées.

II. Trouver par le calcul une équation de droite

Application 2:

 $y = \frac{1}{2}x + 2$ Aucune particularité

 $m = \frac{1}{2}$ et p = 2

1. Soit A(2; -1) et B(4; 3). Déterminer l'équation de la droite (AB)

 $x_A \neq x_B$ (les abscisses des point A et B sont différentes) (et $y_A \neq y_B$) ainsi (AB): y = mx + p. $m = \frac{y_B - y_A}{x_B - x_A} = \frac{3 - (-1)}{4 - 2} = \frac{4}{2} = 2$ Donc (AB): y = 2x + p.

$$A(2; -1) \in (AB)$$
 ainsi $y_A = 2x_A + p$
 $2x_A + p = y_A$
 $2 \times 2 + p = -1$
 $4 + p = -1$
 $p = -1 - 4$
 $p = -5$

Conclusion : (AB) a pour équation : y = 2x - 5.

2. Soit C(2;5), déterminer l'équation de la droite (AC)

$$A(2;-1)$$
 et $C(2;5)$
 $x_A = x_C = 2$ donc (AC) a pour équation : $x = 2$ (droite parallèle à l'axe des ordonnées).

3. Soit D(-1;3), déterminer l'équation de la droite (BD)

$$B(4;3)$$
 et $D(-1;3)$
 $y_B = y_D = 3$ donc (BD) a pour équation : $y = 3$ (droite parallèle à l'axe des abscisses).

Coefficient directeur :

Dans un repère (0; I; I), la droite d non parallèle à l'axe des ordonnées passant par $A(x_A; y_A)$ et $B(x_B; y_B)$ (A et B distincts) a pour coefficient directeur ·

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}$$

Si la droite d est horizontale, alors m = 0(d horizontale signifie que A et B ont même ordonnée, d'où $y_R - y_A = 0$, et donc m= 0).

• Si la droite d est verticale alors m n'existe pas !

III. Point appartenant à une droite

Application 3:

Soit (d) la droite d'équation v = 2x - 3. Les points A(2:1) et B(-1;-2) sont-ils sur (d)?

$2x_A - 3 = 2 \times 2 - 3$	$2x_B - 3 = 2 \times (-1) - 3$
= 1	= -5
$= y_A$	$\neq y_B$
Donc $A \in (d)$	$DoncB\notin(d)$

Point appartenant à une droite :

Pour vérifier qu'un point $M(x_M; v_M)$ appartient à une droite :

- Si l'équation est du type v = mx + p: Il suffit de vérifier si $mx_M + p = y_M$.
- Si l'équation est du type y = k: il suffit de vérifier si $v_M = k$.
- Si l'équation est du type x = k: il suffit de vérifier si $x_M = k$.

Tracer et lire graphiquement une équation de droite

Application 4: Méthode pour tracer une droite :

Avec la méthode 1 pour (d_2) : y = 3x - 2

- $y = 3 \times 0 2 = -2 \text{ donc } C(0; -2)$
- $y = 3 \times 2 2 = 6 2 = 4 \text{ donc } D(2;4)$

a) Tracer la droite (d_1) passant par les points A(-2; 5) et B(6;3)

Méthode: En connaissant deux points appartenant à la droite: on place les deux points connus et on trace la droite passant par ces deux points.

b) Tracer les droites d'équation $(d_2): y = 3x - 2$ et $(d_3):$

$$y = -\frac{3}{4}x + 3$$

Méthode 1 : En connaissant l'équation réduite de la droite y = mx + p: on donne deux valeurs particulières à x pour obtenir deux points appartenant à la droite.

Méthode 2 : On obtient le premier point grâce à l'ordonnée à l'origine puis on obtient un second point avec le coefficient directeur (en se déplacant de m unités verticalement et d'une unité (horizontalement) vers la droite).

c) Tracer la droite (d_4) passant par le point E(1; -3) de coefficient directeur 2

Méthode: En connaissant un point appartenant à la droite et le coefficient directeur de la droite m : on place le point connu, on obtient un second point avec le coefficient directeur (en se déplaçant de m unités verticalement et d'une unité (horizontalement) vers la droite).

Application 5 : Méthode pour obtenir l'équation réduite d'une droite :

Soit (d) la droite d'équation y = mx + p

Trouver l'équation de la droite ci-contre : y = -4x - 1

Méthode 1:

- p est l'ordonnée à l'origine, c'est donc l'ordonnée du point de la droite d'abscisse 0.
- m est le coefficient directeur de la droite, pour le trouver on place un point (si possible avec abscisse et ordonnée entières) sur la droite. Puis on remplace x et y par les coordonnées de ce point dans l'équation.

Méthode 2 : on peut trouver m par lecture graphique :

On part d'un point quelconque de la droite. On compte le déplacement vertical entier V (+ vers le haut et – vers le bas) de telle sorte que le déplacement horizontal vers la droite H soit un entier. On a alors $m=\frac{v}{r}$

V. Droites parallèles et alignement

Application 6:

Parmi les droites dont on donne l'équation, identifier celle qui sont parallèles.

$$(d_1): x = -3$$

$$(d_6): x = 15$$

$$(d_2): y = x + 7$$

 $(d_3): y = 1,2$

$$(d_7): y = 3x + 1$$

$$(d_3): y = 1,2$$

 $(d_4): y = -3x + 1$

$$(d_8): y = -23$$

 $(d_9): y = -3x - 3$

$$(d_5): y = x$$

- $(d_1) / (d_6)$: ce sont des droites parallèles à l'axe des ordonnées d'équation x = k.
- $(d_3) / (d_8)$: ce sont des droites parallèles à l'axe des abscisses d'équation y = k.
- $(d_2) / (d_5)$: ce sont des droites avec le même coefficient directeur m=1.
- $(d_4) / (d_9)$: ce sont des droites avec le même coefficient directeur m = -3.

Position relative de deux droites :

Soient d_1 une droite d'équation $v = m_1 x + p_1$ et d_2 une droite d'équation $v = m_2 x + p_2$ deux droites du plan non parallèles à l'axe des ordonnées.

- d_1 et d_2 sont **parallèles** si et seulement si **elles** ont le même coefficient directeur ($m_1 = m_2$).
- d_1 et d_2 sont **sécantes** si et seulement si **elles** n'ont pas le même coefficient directeur ($m_1 \neq$ m_2

Points alignés :

A, B et C sont des points deux à deux distincts. Les points A, B et C sont alignés si et seulement si, les droites (AB) et (AC) (ou (BC)) ont le même coefficient directeur.

Application 7 : Points et droites parallèles

Démontrer que les droites (AB) et (CD) sont ou ne sont pas parallèles :

1.
$$A(1;1), B(3;3), C(-5;12)$$
 et $D(10;27)$.

$$m_{1} = \frac{y_{B} - y_{A}}{x_{B} - x_{A}}$$

$$= \frac{3 - 1}{3 - 1}$$

$$= 1$$

$$m_{2} = \frac{y_{D} - y_{C}}{x_{D} - x_{C}}$$

$$= \frac{27 - 12}{10 - (-5)}$$

$$= \frac{15}{15}$$

$$= 1$$

 $m_1 = m_2$ ainsi (AB) // (CD)

2.
$$A(-2;6)$$
, $B(6;0)$, $C(10;-12)$ et $D(-10;-3)$.

$$m_1 = \frac{0-6}{6+2} \qquad m_2 = \frac{-3+12}{-10-10}$$

$$= \frac{-6}{8} \qquad = \frac{3}{4} \qquad \neq \frac{3}{4}$$

$$m_1 \neq m_2 \text{ ainsi } (AB) \text{ et } (CD) \text{ ne sont pas parallèles}$$

Application 8 : Points alignés

Les points A, B et C sont-ils, ou non, alignés ?

1.
$$A(-2;2)$$
, $B(1;1)$ et $C(4;0)$

$$m_{(AB)} = \frac{y_B - y_A}{x_B - x_A}$$

$$= \frac{1 - 2}{1 - (-2)}$$

$$= \frac{-1}{3}$$

$$= -\frac{1}{3}$$

$$m_{(AC)} = \frac{y_C - y_A}{x_C - x_A}$$

$$= \frac{0 - 2}{4 - (-2)}$$

$$= \frac{-2}{6}$$

$$= -\frac{1}{3}$$

(AB) et (AC) ont le même coefficient directeur ainsi les points A, B et C sont alignés.

2.
$$A(-2;6), B(6;0) \text{ et } C(10;-12)$$

$$m_{(AC)} = 0 - 6$$

$$m_{(AC)} = 0$$

$$m_{(AB)} = \frac{6 - 6}{6 + 2}$$

$$= \frac{-6}{8}$$

$$= -\frac{3}{4}$$

$$m_{(AC)} = \frac{-12 - 6}{10 + 2}$$

$$= \frac{-18}{12}$$

$$= -\frac{3}{2}$$

$$\neq -\frac{3}{2}$$

(AB) et (AC) n'ont pas le même coefficient directeur ainsi les points A, B et C ne sont pas alignés.

Système d'équations

Application 9 : Droites sécantes et système

Soit $d_1: v = -3x + 4$ et $d_2: v = 2x + 1$ deux droites sécantes.

Soit P le point d'intersection des droites d_1 et d_2 . Donner les coordonnées de ce point.

Méthode par substitution :

$$\begin{cases} y = -3x + 4 \\ y = 2x + 1 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 1 \\ -3x + 4 = 2x + 1 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 1 \\ -3x - 2x = 1 - 4 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 1 \\ -5x = -3 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 1 \\ x = \frac{3}{5} \end{cases} \Leftrightarrow \begin{cases} y = \frac{3}{5} + \frac{5}{5} \\ x = \frac{3}{5} \end{cases} \Leftrightarrow \begin{cases} y = \frac{3}{5} + \frac{11}{5} \\ x = \frac{3}{5} \end{cases} \end{cases}$$

Application 10: Méthode par substitution

Résoudre les systèmes d'équations proposés

$$\begin{cases} x - 3y = 11 \\ 2x + y = 1 \end{cases} \Leftrightarrow \begin{cases} x = 11 + 3y \\ 2(11 + 3y) + y = 1 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 11 + 3y \\ 22 + 6y + y = 1 \end{cases} \Leftrightarrow \begin{cases} x = 11 + 3y \\ 7y = -21 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 11 + 3 \times (-3) \\ y = -3 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = -3 \end{cases}$$

$$\begin{cases} x + 2y = 0 \\ 3x + 7y = 2 \end{cases} \Leftrightarrow \begin{cases} x = -2y \\ 3 \times (-2y) + 7y = 2 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = -2y \\ -6y + 7y = 2 \end{cases} \Leftrightarrow \begin{cases} x = -2 \times 2 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} x = -4 \\ y = 2 \end{cases}$$

3.
$$\begin{cases} 2x + 2y = 1 \\ 4x + 2y = 0 \end{cases} \Leftrightarrow \begin{cases} 2y = 1 - 2x \\ 4x + (1 - 2x) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} 2y = 1 - 2x \\ 2x = -1 \end{cases} \Leftrightarrow \begin{cases} 2y = 1 - (-1) \\ x = -\frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} x = -\frac{1}{2} \\ y = 1 \end{cases}$$

Application 11: Méthode par combinaison

Résoudre les systèmes d'équations proposés

$$\begin{cases} 8x - 6y = 3 \\ -4x + 4y = -3 \end{cases} \Leftrightarrow \begin{cases} 8x - 6y = 3 \\ 8x - 8y = 6 \ (\mathbf{L}_2 \leftarrow -2\mathbf{L}_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 8x - 6y = 3 \\ 2y = -3 \ (\mathbf{L}_2 \leftarrow \mathbf{L}_1 - \mathbf{L}_2) \end{cases} \Leftrightarrow \begin{cases} 8x - 6 \times \left(-\frac{3}{2}\right) = 3 \\ y = -\frac{3}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} 8x + 9 = 3 \\ y = -\frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} 8x = -6 \\ y = -\frac{3}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -\frac{6}{8} \Leftrightarrow \begin{cases} x = -\frac{3}{4} \\ y = -\frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} x = -\frac{3}{4} \end{cases}$$

$$\begin{cases} 3x + 4y = -2 \\ -6x + 2y = 9 \end{cases} \Leftrightarrow \begin{cases} 3x + 4y = -2 \\ -12x + 4y = 18 \ (\mathbf{L}_2 \leftarrow 2\mathbf{L}_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 4y = -2 \\ 15x = -20 \ (\mathbf{L}_2 \leftarrow \mathbf{L}_1 - \mathbf{L}_2) \end{cases} \Leftrightarrow \begin{cases} 3x + 4y = -2 \\ x = -\frac{20}{15} \end{cases}$$

$$\Leftrightarrow \begin{cases} 3 \times \left(-\frac{4}{3}\right) + 4y = -2 \\ x = -\frac{4}{3} \end{cases} \Leftrightarrow \begin{cases} 4y = -2 - 3 \times \left(-\frac{4}{3}\right) \\ x = -\frac{4}{3} \end{cases}$$

$$\Leftrightarrow \begin{cases} 4y = -2 + 4 \\ x = -\frac{4}{3} \end{cases} \Leftrightarrow \begin{cases} y = \frac{2}{4} \\ x = -\frac{4}{3} \end{cases} \Leftrightarrow \begin{cases} x = -\frac{4}{3} \\ y = \frac{1}{2} \end{cases}$$

Méthode par substitution :

1ère étape :

On exprime l'une des inconnues en fonction de l'autre dans une des équations.

2ème étape :

On remplace l'inconnue dans l'autre équation. Elle devient une équation du premier degré à une seule inconnue: on conserve l'écriture en svstème!

3ème étape :

On développe la nouvelle équation.

4^{ème} étape :

On résout la 2^{ème} équation.

5^{ème} étap<u>e :</u>

On remplace « l'inconnue connue » dans la première équation, puis on calcule.

Méthode par combinaison :

 1^{ere} étape : ÉLIMINER x (ou v)

- On multiplie chaque équation par un nombre afin que les coefficients de x soient les mêmes (on notera les changements comme dans els exemples): On obtient un nouveau système équivalent.
- On soustrait « terme à terme » les deux équations, pour éliminer x. On obtient une équation du premier degré à une inconnue et on garde l'une des deux équations du départ.

2ème étape : On résout la deuxième équation pour trouver y.

3ème étape : On remplace la valeur du y trouvée pour avoir la valeur de x.