

		HOTV N.
		енсил
	6.1) 1) Italiar DVS Determinar bases ortonormales de fundamentales Determinar matricas de proyección.	sukaspiros
	A) $A = \begin{pmatrix} 3 & 5 \\ -1 & 1 \\ 5 & 3 \end{pmatrix}$ $\longrightarrow rg(A) = 2$	
	Autoploses de AT.A = $\begin{pmatrix} 35 & 29 \\ 29 & 35 \end{pmatrix}$	
•	$\begin{vmatrix} 35 - \times & 29 \\ 29 & 35 - \times \end{vmatrix} =_{5} (35 - \times) (35 - \times) - 29^{2} = 1255$	
	x² - 30× + 38 h =	0
		= 6 , x ₂ = 64
	Valores singulares: $\sigma_1 = 8$, $\sigma_2 = \sqrt{6}$	
	Autorspacios de AT. A	
	$\$_{\lambda} = 64$) $\left(\begin{array}{ccc} -29 & 29 \\ 29 & -29 \end{array} \right) \longrightarrow - \times 4 + \times 2 = 0 \longrightarrow \times 2$	E X1
	$\sharp_{\lambda=6} \left(\begin{array}{c} 29 & 29 \\ 29 & 29 \end{array} \right) \rightarrow \times_1 + \times_2 = 0 \longrightarrow -\times_1 =$	\times_2 ger $\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$
	1 29 29 /	
	(1)	-1+1 = 0 V
		z -1/5z z 1/5z
	Constructors U: $V_1 = A \cdot V_1 = \begin{pmatrix} 3 & 5 \\ -1 & 1 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 7/\sqrt{2} \end{pmatrix}$	= 155
		$\begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} = \sqrt{1}$
ĺ	NESTA	(1/52/

Bisson = Mero vs: $V_{3} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ A = U.S. V^{7} A = $\begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$ By the control of the second of the	υ ₂ - Δ. ν ₂ σ ₁		. (://	(5)			Code Code
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Busca =	maro	V3 :	U3 =	0 1 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Motorces projection. • P = V_{e} . $V_{e}^{T} = \begin{pmatrix} 1/G & -1/G & 1/G \\ 1/G & 1/G & 1/G \\ 0 & 1/G & 1/G & 1/G \\ 0 & 1/G & 1/G & 1/G \\ 1/G & 1/G & 1/G & 1/G \\ 0 & 1/G & 1/G & 1/G \\ 1/G & 1/G & 1$	A = U.S.			1752 -17	J3 0		1-11-1-3
Matrices projection . P = V_{e} . V_{e}^{T} = $\begin{pmatrix} -1/G_{1} & -1/S_{1} \\ -1/S_{2} & -1/S_{2} \end{pmatrix}$ $\begin{pmatrix} 1/F_{2} & 1/S_{2} \\ -1/F_{2} & 1/S_{2} \end{pmatrix}$ $\begin{pmatrix} 1/F_{2} & 1/S_{2} \\ -1/F_{2} & 1/S_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{1} & -1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} & 1/G_{2} \\ -1/G_{2} & 1/G_{2} \end{pmatrix}$ $\begin{pmatrix} 1/G_{2} &$		3 :	A = (1/5 1/5	(8 0) (1/52	- trivo
$P_{\text{Nol}(a)} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	Matrices pro	1			1	1 0 1	
$P_{Nul}(\rho) = I - P_{f,l}(\rho) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	· Pc. (a) =	Ur. U), =	1 52 -75	s \ 1/rs '		5 1
$P_{N,l}(x,y) = \frac{1}{2} - P_{\varepsilon,l}(x) = \begin{pmatrix} +1 & 2 & 1 \\ 1 & -1 & -2 \\ 1 & -2 & -1 \end{pmatrix} \stackrel{4}{6}$	· PNulces	= L -	P (A)	= (0 0			-4 2 /
	PNJCAT	- 1 -	Pc.(A)	= -1 2 -1 -2	1 -2 6 -4) 6		

