Tableaux Combinatorics and Symmetric Functions

Sylvester W. Zhang[‡]

October 25, 2025

ABSTRACT. These are lecture notes for Math 206a (Algebraic combinatorics) at UCLA, Fall 2025.

CONTENTS

1.	Partitions	1
2.	Symmetric polynomials	3
3.	Symmetric Functions	4
4.	Robinson-Schensted Correspondence	4
5.	Greene-Kleitman Theory	4
Re	References	

Let R be a commutative ring, usually taken to be \mathbb{Q} or \mathbb{Z} .

Denote $\mathbf{x}_n = (x_1, \dots, x_n)$, and $\mathbf{x} = (x_1, x_2, \dots)$

1. Partitions

An integer partition of $n \in \mathbb{N}$ is a sequence of integers $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_k)$ such that $\sum_i \lambda_i = n$ and $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_k$. We denote $\lambda \vdash n$, and $\ell(\lambda) = k$. For convenience, we set $\lambda_i = 0$ for $i > \ell(\lambda)$.

We will represent an integer partition using a *Young diagram*, which is a stack of boxes so that the *i*-th row has λ_i boxes. For example, the following is the Young diagram corresponds to (4,3,1).

Denote \mathbf{Y}_n the set of all partitions of n, and denote $\mathbf{Y} = \bigoplus_{i \in \mathbb{N}} \mathbf{Y}_i$.

1

[‡]sylvesterzhang@math.ucla.edu UCLA.

There are two natural partial orders equipped with **Y**. The first one, called *Young's natural* order, is defined so that $\lambda \leq \mu$ when $\lambda_i \leq \mu_i$ for all i. In other words, the Young diagram of μ contains that of λ . In Young's order, λ is covered by μ precisely when μ has exactly one more box than λ . For example, (4,2,1) < (4,3,1).

This partial order turns out to be a distributive lattices, hence called the Young's lattice.

Let $\mathbb{Y} = \mathbb{Q}$ -span(\mathbf{Y}) be the vector space over \mathbb{Q} whose basis are Young diagrams. Define two natural operators on \mathbb{Y} as follows:

$$U(\lambda) = \sum_{\lambda \lessdot \mu} \mu \qquad D(\lambda) = \sum_{\mu \lessdot \lambda} \mu$$

(The actions are defined on the basis then extend by linearity.) For example,

$$U\left(\square\right) = \square \square + \square \square + \square$$

These operators satisfy the following identity.

Proposition 1.1. DU - UD = 1.

Proof. Exercise. Hint: given any partition λ , notice that there's always one more outer corner than inner corner.

The algebra of the up/down operators is the *Weyl algebra*, denoted W, which is the algebra of multiplication and differentiation on k[x] since $\left[\frac{d}{dx}, x\right] = 1$.

Remark 1.2. For any poset one can define the operators U and D, but not all satisfy the relation of the Weyl algebra. In [Sta88], Stanley defined *differential posets* to be those that affords a combinatorial representation of W, with Y being the canonical example.

Proposition 1.3. Consider D^nU^n as an element of W, one can rewrite so that all U's appear before D's. Then the identity coefficient is n!.

Example 1.4.
$$D^2U^2 = D(UD+1)U = DUDU + DU = (UD+1)(UD+1) + (UD+1) = UDUD + 3UD + 2 = U(UD+1)D + 3UD + 2 = U^2D^2 + 4UD + 2$$
.

The second partial order that we will introduce, is a partial order defined on \mathbf{Y}_n (although extendable to \mathbf{Y}_n , it is more natural to consider as an order on \mathbf{Y}_n for each n).

Definition 1.5. $\lambda \leq \mu$ if and only if $\lambda_1 + \cdots + \lambda_k \leq \mu_1 + \cdots + \mu_k$ for all k^1 . This is called the *dominance order*.

¹Recall that $\lambda_i = 0$ if $i > \ell(\lambda)$.

2. Symmetric polynomials

Let R be a commutative ring, usually taken to be \mathbb{Q} or \mathbb{Z} . We say a polynomial $f \in R[x_1, \dots, x_n]$ is *symmetric* to be all polynomials that are invariant under S_n , i.e.

$$f(x_1, \cdots, x_n) = f(x_{\sigma(1)}, \cdots, x_{\sigma(n)})$$

for all $\sigma \in S_n$.

Definition 2.1. Define $\Lambda_{R,n} := R[\mathbf{x}_n]^{S_n} \subset R[\mathbf{x}_n]$ the subring of all symmetric polynomials.

Given any monomial $\prod x_i^{\alpha_i}$, one can find the smallest symmetric polynomial that contains it. This is exactly the sum of all possible rearrangements of $\alpha = \{\alpha_1, \dots, \alpha_l\}$. All symmetric polynomials that arise in this way are called *monomial symmetric polynomials*, defined as follows.

Definition 2.2. For $\lambda \in \mathbf{Y}$ such that $\ell(\lambda) \leq n$. Define monomial symmetric polynomial m_{λ} to be

$$m_{\lambda} = \sum_{\alpha \text{ rearrangement of } \lambda} \mathbf{x}_{\mathrm{n}}^{\alpha}$$

It is clear that these form a basis of $\Lambda_{R,n}$. At the same time, there's another natural (but less obvious) basis for the ring symmetric polynomials — the *elementary symmetric polynomials*.

Definition 2.3 (elementary symmetric polynomials). For $k \in \mathbb{N}$, define

$$e_k(\mathbf{x}_n) = \sum_{1 \leq i_1 < i_2 < \dots < i_k} x_{i_1} \cdots x_{i_k}.$$

And for $\lambda \in \mathbf{Y}$, define $e_{\lambda}(\mathbf{x}_n) = e_{\lambda_1}(\mathbf{x}_n) \cdots e_{\lambda_t}(\mathbf{x}_n)$

That fact that e_{λ} 's also generate $\Lambda_{R,n}$, is called the *Fundamental theorem of symmetric polynomials*.

Theorem 2.4 (Fundamental Theorem of Symmetric Polynomials). There is an isomorphism between the ring of symmetric polynomials $\Lambda_{R,n}$ and the polynomials ring of n variables $R[t_1, \dots, t_n]$, via the map $e_n \mapsto t_n$.

$$\Box$$

Now consider the ring of symmetric polynomials of differently many variables. There is an obvious projection map from $\Lambda_{R,j}$ to $\Lambda_{R,i}$ when $i \leq j$:

$$\rho_{i,j}: \Lambda_{R,j} \to \Lambda_{R,i} \quad f(x_1, \cdots, x_i, x_{i+1}, \cdots, x_j) \mapsto f(x_1, \cdots, x_i, 0, \cdots, 0).$$

With the help of the fundamental theorem (Theorem 2.4), one can write down the maps $\phi_{i,j}$ of which $\rho_{i,j}$ are inverse to. For $i \leq j$, we define

$$\phi_{i,j}: \Lambda_{R,i} \to \Lambda_{R,i} \quad e_k(\mathbf{x}_n) \to e_k(\mathbf{x}_m)$$

It is easy to check that:

- 3. Symmetric Functions
- 4. Robinson-Schensted Correspondence
 - 5. Greene-Kleitman Theory

References

[Sta88] Richard P Stanley, Differential posets, Journal of the American Mathematical Society 1 (1988), no. 4, 919–961. 2