Modelo Relacional

ivm(serial_number, manuf)

point_of_retail(address, name)

retailer(tin, name)

unique(name)

category(name)

- IC-1: name must exist in super_category and/or simple_category
- IC-2: name cannot exist in super_category and simple_category

simple_category(name)

• name: FK(category.name)

super_category(name)

- name: FK(category.name)
- IC-3: In order to super_category exist, name must participate in the relation has other

shelve(nr, serial number, manuf, height, name)

- serial_number, manuf: FK(ivm)
- name: FK(category)
- IC-4: nr, serial_number and manuf must exist in ambient_temp_shelf and/or warm_shelf and/or cold_shelf
- IC-5: nr, serial_number and manuf cannot exist in ambient_temp_shelf and warm_shelf
- IC-6: nr, serial_number and manuf cannot exist in ambient_temp_shelf and cold shelf
- IC-7: nr, serial_number and manuf cannot exist in warm_shelf and cold_shelf
- IC-8: nr, serial_number and manuf cannot exist in ambient_temp_shelf and warm_shelf and cold_shelf

ambient_temp_shelf(nr,serial_number, manuf)

name:FK(shelve.nr, shelve.serial_number, shelve.manuf)

warm_shelf(nr,serial_number, manuf)

name:FK(shelve.nr, shelve.serial_number, shelve.manuf)

cold_shelf(nr,serial_number, manuf)

• name:FK(shelve.nr, shelve.serial_number, shelve.manuf)

product(ean,descr)

• IC-9:every prouduct (ean) must participate in the 'has' association

planogram(nr, serial number, manuf, ean, faces, units, loc)

- nr, serial_number, manuf: FK(shelve)
- ean: FK(product)

replenishment_event(instant, ean, nr, serial_number, manuf, units, tin)

- ean, nr, serial_number, manuf: FK(planogram)
- tin: FK(retailer)
- IC-10: units <= planogram.units
- IC-11:a product can only be replenished if its category equals shelve.name
- IC-12:a product can onnly be replenished by a retailer of its category

installed_at(serial_number, manuf, address, nr)

- serial_number, manuf: FK(ivm)
- address:FK(point of retail)

responsible_for(name, tin, serial_number, manuf)

- name: FK(category)
- tin: FK(retailer)
- serial_number, manuf: FK(ivm)

has(ean, name)

- ean: FK(product)
- name: FK(category)

has_other(category, super_category)

- category: FK(category)
- super_category: FK(super_category)
- IC-13: There cannot be cycles in categories hierarchies
- IC-14: category != super_category

Álgebra Relacional

- 1. $\pi_{ean, descr}$ ($\sigma_{Categoria = Barras Energéticas \land units > 10 \land instant > 31/12/2021}$ (product \bowtie shelve \bowtie replenishment event))
- **2.** $\pi_{\text{serial_number}}$ ($\sigma_{\text{ean} = 9001490100070}$ (planogram \bowtie shelve))
- 3. GCOUNT()($\sigma_{\text{super_category}} = \text{Sopas Take-Away}$ (has_other))
- **4.** sums <- ean, descr G_{SUM(units)} -> c (replenishment_event)

 $\pi_{ean, descr}(G_{MAX(C)} (sums) \bowtie sums)$

SQL

```
SELECT ean, descr
       FROM product
       NATURAL JOIN shelve
       NATURAL JOIN replenishment event
       WHERE instante > 31/12/2021 AND units > 10
       AND name = 'Barras Energéticas';
2.
       SELECT serial_number
       FROM shelve
       NATURAL JOIN planogram
       WHERE ean = 9002490100070;
3.
       SELECT COUNT(*)
       FROM has_other
       WHERE super_category = 'Sopas Take-Away';
4.
       SELECT ean, descr
       FROM replenishment_event
       GROUP BY ean, descr
       HAVING SUM(units) >= ALL(
              SELECT SUM(units)
              FROM replenishment_event
              GROUP BY ean, descr);
```