X, -- Yz ARE 110 GAUSSIAN. unknown mean 0 know vou ance -2 0 ~ N(M, V2), so be a single observation, monoboluity is, $P(3i|0)^{2} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(3i-0)}{2\sigma^{2}}}$ or x, x2 - xn ove independent, For polsewotions, in a dotast D: -P(010) = 11, P(x:10) $P(\theta) = \frac{1}{\sqrt{2\pi}} = \frac{(x_1 - \theta)^2}{2\pi}$ $P(\theta) = \frac{1}{\sqrt{2\pi}} = \frac{(y - \mu)^2}{2\pi}$

Scanned by CamScanner

Maximum postevien,

Omap = argmax of P (DID) P(D)

= argmax (TT P(210) 1 = (0-M)

$$\sqrt{2\pi\sigma}$$
 = $\sqrt{2\pi\sigma}$

= argmax ($\sqrt{2\pi\sigma}$ = $\sqrt{2\sigma}$)

Idwing log (to smoth) & log is monoticely invusing.

log (P(DID) P(D)) = log ($\sqrt{2\sigma}$)

- $\sqrt{2\sigma}$

Scanned by CamScanner

Maximizing: by derivation.

$$\frac{1}{160} \left[\log \left(P(D \mid \theta), P(\theta) \right) \right] = \frac{1}{160} \left[\log \left(\frac{1}{20} \right)^{n44} - \frac{1}{160} \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right)^{n} - \left(\frac{1}{20} \right)^{n} \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right)^{n} - \left(\frac{1}{20} \right)^{n} \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left(\frac{1}{20} \right) \right] \\
- \frac{1}{160} \left[\left(\frac{1}{20} \right) - \left$$

Scanned by CamScanner

$$\theta = \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} (x_i)}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} + \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u + \sqrt{2} \sum_{i=1}^{n} x_i}{\sqrt{2} - \sqrt{2} n}$$

$$= \frac{\sqrt{2} u +$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) - no}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i \neq n} 0) \cdot c^{2}} = no}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i \neq n} 0) \cdot c^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i \neq n} 1) \cdot c^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i \neq n} 0) \cdot c^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i \neq n} 1) \cdot c^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) - no}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i \neq n} 1) \cdot c^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) - no}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}{\sum_{i=1}^{\infty} (x_{i}) + (\sum_{i=1}^{\infty} 1)^{2}}$$

$$\frac{\sum_{i=1}^{$$

So, now apply derivative and cquate (it to zero; -

$$\frac{1}{100} \left(\frac{1}{12} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100} \left(\frac{1}{2} \left(x - \theta \right) \right) = 0$$

$$\frac{1}{100}$$

Since
$$\Sigma_0' = \Sigma_0^{-1}$$

$$-2 \Sigma_0' X = + 2\Sigma_0' \theta - \frac{2\theta}{\sqrt{2}}$$

$$-2 \Sigma_0' X = \left(2\Sigma_0' \cdot \frac{2}{\sqrt{2}}\right) \theta$$

$$+ \theta = \Sigma_0' X$$

$$= \left(\frac{2}{\sqrt{2}}\right) \left(\frac{2}{\sqrt{2}}\right) \theta$$