SOLUTIONS FOR THE 11^{TH} INTERNATIONAL TOURNAMENT OF YOUNG MATHEMATICIANS

Team Bulgaria

Graphs of Finite Groups

Author: Ivan Durev

Abstract

abstract-text

Graphs of Finite Groups

1. Firstly, we are going to prove that 1' = 0.

Solution. (m.1)' = m'.1 + m.1' = m' $\implies m.1' = 0$ for every $m \in \mathbb{Q}$ Therefore, 1' = 0.

2. Now we are going to find the value of (-1)'.

Solution. 1' = [(-1)(-1)]' = (-1)'(-1) + (-1)(-1)' = 0Therefore, (-1)' = 0

- 3. We are going to prove that for every $n \in \mathbb{Q}$: -n' = (-n)'Solution. ((-1)n)' = (-1)'n + (-1)n' = -n'
- 4. Lemma 1. Next, we are going to show that:

$$\left(\frac{m}{n}\right)' = \frac{m'n - n'm}{n^2}$$

Solution.

$$m' = \left(\frac{m}{n}n\right)' = \left(\frac{m}{n}\right)'n + \left(\frac{m}{n}\right)n'$$

$$\implies \left(\frac{m}{n}\right)' = \frac{m'n - n'm}{n^2}$$

5. **Lemma 2.** For every $\alpha \in \mathbb{Z}/\{0\}$ and p, which is prime the equation is held:

$$(p^{\alpha})' = \alpha . p^{\alpha - 1}$$

(1) $\alpha > 0$ Solution. We are going to use induction.

Base. $\alpha = 1$

$$(p^1)' = 1.p^0 = 1$$

Induction hypothesis. $(p^{\alpha})' = \alpha . p^{\alpha-1}$ Inductive step. We need to prove that $(p^{\alpha+1})' = (\alpha+1).p^{\alpha}$

$$(p^{\alpha}.p)' = (p^{\alpha})'p + (p^{\alpha})p' = \alpha p^{\alpha-1}p + p^{\alpha}.1 = (\alpha+1).p^{\alpha}$$

(2) $\alpha < 0$ Solution.

$$p^{\alpha} = \frac{1}{p^{|\alpha|}}$$

Using Lemma 1.:

$$(p^{\alpha})' = \left(\frac{1}{p^{|\alpha|}}\right)' = \frac{1'p^{|\alpha|} - 1.(p^{|\alpha|})'}{p^{2|\alpha|}} = \frac{\alpha.p^{|\alpha|-1}}{p^{-2\alpha}} = \alpha.p^{\alpha-1} \qquad \blacksquare$$

Problem 1a. Solution. Every rational number $n > 0, n \neq 1$ can be uniquely described as:

$$n=p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}p_{3}^{\alpha_{3}}...p_{k}^{\alpha_{k}}$$

where p_i are different primes and $\alpha_i \in \mathbb{Z}/\{0\}$

Lemma 3. We are going to prove by induction that

$$n' = n \sum_{i=1}^{k} \frac{\alpha_i}{p_i}$$

Base. $k = 1 : n' = n \frac{\alpha_1}{p_1} = \alpha_1 p^{\alpha_1 - 1}$

Induction hypothesis. We suppose that $n' = n \sum_{i=1}^{k} \frac{\alpha_i}{p_i}$ Inductive step. We need to prove that $n' = n \sum_{i=1}^{k+1} \frac{\alpha_i}{p_i}$

Let n be a natural number with k prime divisors and $m = np_{k+1}^{\alpha_{k+1}}$. Then:

$$\begin{split} m' &= (np_{k+1}^{\alpha_{k+1}})' = n'p_{k+1}^{\alpha_{k+1}} + \alpha_{k+1}p_{k+1}^{\alpha_{k+1}-1}n = \\ &= \left(n\sum_{i=1}^k \frac{\alpha_i}{p_i}\right)p_{k+1}^{\alpha_{k+1}} + \alpha_{k+1}p_{k+1}^{\alpha_{k+1}-1}n = \left(np_{k+1}^{\alpha_{k+1}}\right)\sum_{i=1}^{k+1} \frac{\alpha_i}{p_i} = m\sum_{i=1}^{k+1} \frac{\alpha_i}{p_i} \end{split}$$

Lemma 3. is proven by induction.

If $n \in \mathbb{Q}^-$, then n' = -(-n)'(from 3.) So as a summary of what we have proven so far:

If
$$n \in \mathbb{Q}/\{-1,0,1\} \implies n' = n \sum_{i=1}^k \frac{\alpha_i}{p_i}$$
, where $n = \frac{|n|}{n} \prod_{i=1}^k p_i^{\alpha_i}$
If $n \in \{-1,0,1\} \implies n' = 0$

For every $n \in \mathbb{Q}$ there is a unique value of the function n'. Therefore, there is an unique function.

Problem 1b. Solution.

Lemma 4. If
$$n \in \mathbb{N}/\{1\} \implies n' > 0$$

Proof.
$$n' = n \sum_{i=1}^{k} \frac{\alpha_i}{p_i}$$
 (from **Lemma 3.**)
 $n \in \mathbb{N} \implies \alpha_i > 0$ for every $i \in \mathbb{N}$
 $\implies \sum_{i=1}^{k} \frac{\alpha_i}{p_i} > 0 \implies n' > 0$

Corollary. If $n \in \mathbb{Z}$ and $n \leq -2 \implies n' < 0$

Now, if L > 0:

$$(4\lceil L\rceil)' = 4'\lceil L\rceil + 4\lceil L\rceil' = 4(\lceil L\rceil' + \lceil L\rceil)$$

$$\implies \lceil L\rceil \ge 1 \implies \lceil L\rceil' \ge 0$$

$$\implies (4\lceil L\rceil)' = 4(\lceil L\rceil' + \lceil L\rceil) \ge 4\lceil L\rceil > \lceil L\rceil \ge L$$

$$(-p)' = -1 < L < (4\lceil L\rceil)', \text{ where } p \text{ is a prime.}$$

If L = 0

$$(-p)' = -1 < L < p' = 1$$

If L < 0

$$(4\lfloor L \rfloor)' = 4(\lfloor L \rfloor' + \lfloor L \rfloor) < \lfloor L \rfloor \le L$$

 $(4\lfloor L \rfloor)' < L < p' = 1$, where p is a prime.

The same is also held for x'':

If L > 0:

$$(4\lceil L\rceil)'' = [4(\lceil L\rceil + \lceil L\rceil')]'$$
Let $\lceil L\rceil + \lceil L\rceil' = m$

$$\implies (4\lceil L\rceil)'' = (4m)' = 4(m'+m) \ge 4m \ge (4\lceil L\rceil)'$$

$$\implies p'' = 0 < L < (4\lceil L\rceil)'', \text{ where } p \text{ is a prime.}$$

If L=0:

$$(pq)'' = (p+q)' > 0$$
, where p and q are primes. (from **Lemma 4.**) $\Longrightarrow (-pq)'' < L < (pq)''$

If L < 0 it can be analogically proved that:

$$(4|L|)'' < L < p'' = 0$$
, where p is a prime.

Problem 2a. Solution.

If a = 1:

$$p'=1$$
, for every prime \implies The equation $x'=1$ has infinitely many solutions. Also, solutions are the numbers $-\frac{5}{4}$ and $-\frac{58}{27}$

If a = -1:

$$p'=-1$$
, for every prime
 \Longrightarrow The equation $x'=-1$ has infinitely many solutions. Also, solutions are the numbers $\frac{5}{4}$ and $\frac{58}{27}$

If
$$a = 0$$
:

Let
$$n$$
 be such a number so that $n' = 0$

$$(-n)' = 0 \implies$$
 Without loss of generality $n > 0, n \neq 1$

$$n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} ... p_k^{\alpha_k}$$
 and $n' = n \sum_{i=1}^k \frac{\alpha_i}{p_i}$ (from **Lemma 3.**)

As
$$n > 0 \implies \sum_{i=1}^{k} \frac{\alpha_i}{p_i} = 0$$

If we multiply both sides by
$$P = \prod_{i=1}^{k} p_i$$
 we get $\prod_{i=1}^{k} p_i \sum_{i=1}^{k} \frac{\alpha_i}{p_i} = 0$

$$p_i \mid 0$$
 and $p_i \mid \alpha_j \frac{P}{p_j}$ for every i and j so that $i \neq j$

$$\Longrightarrow p_i \mid \alpha_i \frac{P}{p_i} \implies p_i \mid \alpha_i \text{ for every } i$$

Let
$$\alpha_i = a_i p_i$$

$$\implies \sum_{i=1}^{k} a_i = 0$$

$$\implies$$
 All solutions of $x' = 0$ are of the form:

$$n = \pm \prod_{i=1}^{k} p_i^{a_i p_i}$$
, where $\sum_{i=1}^{k} a_i = 0$ and $n \in \{-1, 0, 1\}$

Therefore, there are infinitely many solutions.

Problem 2b. Solution.

Lemma 5.
$$n \in \mathbb{Q}$$
 and $\alpha \in \mathbb{Z} \implies (n^{\alpha})' = \alpha n^{\alpha - 1} n'$

If
$$\alpha = 0 \implies (n^0)' = 1' = 0$$

If $\alpha > 0$ we are going to use induction.

Base.
$$\alpha = 1 \implies (n^1)' = 1.n^0.n'$$

Induction hypothesis.
$$(n^{\alpha})' = \alpha n^{\alpha-1} n'$$

Inductive step.
$$(n^{\alpha+1})' = n'n^{\alpha} + (n^{\alpha})'n = n'n^{\alpha} + \alpha n^{\alpha-1}n'n = (\alpha+1)n^{\alpha}n'$$

If
$$\alpha < 0 \implies (n^{\alpha})' = (\frac{1}{n^{|\alpha|}})' = \frac{1'n^{|\alpha|} - (n^{|\alpha|})' \cdot 1}{n^{2|\alpha|}} = \frac{-|\alpha|n^{\alpha-1}}{n^{2|\alpha|}} =$$
$$= -|\alpha| \frac{1}{n^{|\alpha|+1}} n' = \alpha n^{\alpha-1} n'$$

Lemma 5. is now proven

Let $w(x) = \frac{x'}{x}$, defined for $x \in \mathbb{Q}/\{0\}$, be the logarithmic derivative $\implies w(1) = w(-1) = 0$

The function has the following properties:

Property (1). w(x) = w(-x), for every $n \in \mathbb{Q}/\{0\}$

Property (2).
$$w(mn) = \frac{(mn)'}{mn} = \frac{m'n + mn'}{mn} = \frac{m'}{m} + \frac{n'}{n} = w(m) + w(n)$$

Therefore, w(x) is an additive function:

$$w(mn) = w(m) + w(n)$$
, for every $m, n \in \mathbb{Q}/\{0\}$

For every $n \in \mathbb{Q}/\{0\}$:

$$n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k} \text{ and } w(n) = \sum_{i=1}^k \frac{\alpha_i}{p_i}$$
 (from **Lemma 3.**)

Let's start with b = 0 and solve x' = ax:

$$a = 0 \implies \forall x : x' = 0$$

 $a \neq 0 \text{ If } x = 0 \implies 0' = a.0$

If
$$x \neq 0 \implies \frac{x'}{x} = a \iff w(x) = a \iff \sum_{i=1}^{k} \frac{\alpha_i}{p_i} = a$$

Let's prove the following **statement**:

w(x) = a has a solution \iff The denominator of a, in lowest terms, is square-free.

Proof of the " \Longrightarrow " direction.

$$\sum_{i=1}^{k} \frac{\alpha_i}{p_i} = a \implies \text{In the denominator of } a$$

there is every prime number p_i to the power of 1 at most.

Proof of the " $\Leftarrow=$ " direction.

$$a = \frac{M}{p_1 p_2 ... p_k}, M \in \mathbb{Z} \text{ and } (M; p_1 p_2 ... p_k) = 1$$

Induction base.
$$k = 1: a = \frac{M}{p_1} = p_1^M$$

Induction hypothesis. w(x) = a has a solution when the denominator of a has k different prime divisors.

Inductive step.
$$a = \frac{M}{p_1 p_2 ... p_k p_{k+1}} \implies$$
 Using Bézout's identity,

there exist infinitely many integers u and v, such that:

Now, the **statement** is proven

As $(p^{\alpha}y)' = \alpha p^{\alpha-1}y$, for $\forall y : y' = 0$, and using **Problem 2a**:

- \Longrightarrow There exist infinitely many such numbers y.
- \implies The equation w(x)=a has infinitely many solutions, for a with square-free denominator, in its lowest terms, and has no solutions in other cases.

We have examined the case for b = 0

Now, if $b \neq 0$