МФТИ ФРКТ

ВПВ по оптике

Духи Лаймана.

Добровольская Ксения Б01-101

1 Аннотация

В данной работе наблюдались духи Лаймана - эффект, связанный с неточностью дифракционной решетки (под неточностью подразумевается смещение каждого n - ного штриха решетки на x, относительно своего правильного положения), были измерены длины волн и положения духов, в зависимости от числа n и периода решеток d.

В работе использовались: лазерная указка, бумажная линейка, неточные дифракционные решетки, расчерченные лазером на металлической линейке, со следующими параметрами:

N	d,мм	n, шт	x, MM
1	0.1	5	0.02
2	0.2	5	0.02
3	0.2	3	0.02
4	0.1	5	0.01
5	0.2	5	0.01
6	0.2	3	0.01

Рис. 1: Схема экспериментальной установки

2 Теоретическое введение.

В идеальной дифракционной решетке все штрихи должны быть идентичны по глубине и форме и расстояния между ними должны быть одинаковы с точностью до малых долей этого расстояния. Так как для изготовления такой решетки требуется точность, значительно превосходящая точность винторезных станков, то у всех решеток, нарезанных этим способом, обнаруживаются заметные дефекты, в некоторых случаях очень существенные. К основным дефектам решетки относятся следующие:

- 1. Духи Роуланда ложные слабые линии, появляющиеся в спектре на небольших расстояниях от интенсивных линий. Возникновение линий связано с периодической нерегулярностью в расположении штрихов с большим периодом.
- 2.Духи Лаймана ложные линии, появляющиеся из-за периодической нерегулярности в расположении штрихов с малым периодом (например, если каждый пятый штрих решетки слегка смещен относительно своего идеального положения, то это соответствует появлению периодичности, в пять раз превышающей периодичность решетки, что в свою очередь приводит к появлению «духа», кажущаяся длина волны которого равна $\frac{\lambda}{5}$). Такой недостаток решетки может быть связан с регулярной вибрацией делительной машины, нарезающей решетки. Духи Лаймана могут создавать значительные трудности при наблюдении спектров, в особенности сложных.

В связи с возможностью изготавливать решетки только с большим периодом (порядка десяти штрихов на миллиметр), в данной работе исследуется влияние только духов Лаймана.

Дадим математическое объяснение происходящему:

Решетку с N = mn штрихами можно разбить на m групп, по n штрихов в каждой. Интенсивность в любой точке P на экране складывается от вкладов m групп, каждая из которых дает вклад

$$I_n = I_0 \frac{\sin^2 na}{\sin^2 a}$$

, где $a = kdsin^2\theta/2, \theta$ — угол, под которым видна точка Р.

Тогда для вклада от каждой группы имеем:

$$I = I_n \frac{\sin^2 m a_1}{\sin^2 a_1}$$

, где $a_1 = na$.

В этой суммарной интенсивности имеем ввиду, что при $a=\frac{\pi}{n},\frac{2\pi}{n},....\frac{(n-1)\pi}{n}$ интенсивность отдельной группы $I_n=0$.

Предположим, что в расположении п последовательных линий есть такая неравномерность, что решетка из п линий, которую мы считаем повторяющейся m раз, сама по себе является несовершенной решеткой.

Тогда I_n не занулится во всех местах где $\mathbf{a}=\frac{\pi}{n},\frac{2\pi}{n},....\frac{(n-1)\pi}{n}$ и эти порядки решетки для каждой из m групп будут видны.

Далее предположим, что решетка из n линий имеет периодическую ошибку. Для определенности примем, что эта ошибка встречается в каждой третьей строке. То есть каждая третья строка немного смещена, а остальные строки остаются на своих местах. Тогда I_n будет иметь некоторое заметное значение при а $=\frac{\pi}{3},\frac{2\pi}{3}$.

некоторое заметное значение при $a=\frac{\pi}{3},\frac{2\pi}{3}$. Интенсивность света, заданная всем спектром для длины волны, будет заметна для тех значений $a=\frac{\pi}{n},\frac{2\pi}{n},....\frac{(n-1)\pi}{n}$, которые приближаются к значениям $a=\frac{\pi}{3},\frac{2\pi}{3}$. Таким образом, будут видны скачки интенсивности в промежутках между главными максимумами дифракционной решетки, что будет создавать впечателение, как будто в исходном свете присутствует компонента с длиной волны $\frac{\lambda}{3}$, а в общем случае $\frac{\lambda}{n}$. Из-за возникновения этой ложной компоненты данный эффект связывают с возникновением духа.

3 Экспериментальная установка.

Дифракционные решётки, которые обычно используются для анализа спектров, имеют порядка 10^3-10^4 штрихов на сантиметр, т. е. имеют период d, сравнимый с длиной волны света видимого диапазона. На грубых решётках $(d>>\lambda)$ из-за малых углов дифракции обнаружить и, тем более, исследовать дифракционную картину крайне сложно. В этом случае эффективным оказывается использование скользящих лучей, когда угол падения близок к $\frac{\pi}{2}$.

При наклонном падении лучей на дифракционную решётку условие дифракционного максимума m-го порядка имеет вид:

$$d(\sin\varphi_0 - \sin\varphi_m) = m\lambda$$

В дальнейшем мы будем использовать не углы падения, а углы скольжения – $\theta = 90 - \varphi$. Тогда, условие максимума перепишется в виде:

$$d(\cos\theta_0 - \cos\theta_m) = m\lambda \approx (d\sin\theta_0)(\theta_m - \theta_0)$$

Угловое расстояние между максимумами дифракционной картины:

$$\Delta\theta = (\theta_m - \theta_0) = \frac{\lambda}{dsin\theta_0}$$

Видно, что роль эффективного периода решётки в этом случае играет величина $d_1 = dsin\theta_0$, которая может быть сделана очень малой. Скользящее падение лучей как бы уменьшает период решётки и увеличивает углы дифракции. Таким методом удаётся получать отчётливые дифракционные картины даже от очень грубых решёток.

Рассчитаем линейное расстояние между дифракционными максимумами в схеме на рис 2.

Координата максимума m-го порядка $x_m = Ltg\theta_m$, а (m + 1)-го порядка $x_{m+1} = Ltg\theta_{m+1}$. Считая углы дифракции мало отличающимся от угла θ_0 , соответствующего зеркальному отражению от решётки (m = 0), выразим линейный период дифракционной картины через его угловой размер:

$$\Lambda = x_{m+1} - x_m = L(tg\theta_{m+1} - tg\theta_m) \approx \frac{L}{\cos^2\theta_0} \Delta\theta = \frac{L\lambda}{d\cos^2\theta_0 \sin\theta_0}$$

Заметим, что расстояние между максимумами интенсивности прямо пропорционально длине волны света λ и обратно пропорционально периоду решетки d.

Рис. 2: Схема экспериментальной установки

4 Наблюдение и анализ дифракции на различных решетках.

Экспериментальная установка приведена на рис. 3.

На расстоянии $L=80~{\rm cm}$ от экрана расположена дифракционная решетка, а на ней приподнятая на малый угол с помощью бумажной подставки и включенная лазерная указка. На экране приклеена бумажная линейка, помогающая фиксировать расстояния между максимумами.

Рис. 3: Экспериментальная установка.

1. Рассчитаем линейные расстояния между главными максимумами дифракционной картины по формуле из теоретического введения:

$$\Lambda = \frac{L\lambda}{dcos^2\theta_0 sin\theta_0} = \frac{0.8*0.6*10^{-6}}{0.01*10^{-3}*1*0.1/0.8} \approx 2$$

CM,

для решетки с периодом 0.02 мм, соответственно в два раза меньше, то есть примерно 1 см.

- 2. Дифракционная решетка с десятью штрихами на миллиметр и смещением каждого пятого штриха на 0.02 мм дает дифракционную картину изображенную на рис.4. Видно, что расстояния между главными максимумами, как и было получено в теоретическом рассчете, около 2 см, но между каждыми соседними максимумами ярко выражены еще 4 максимума, то есть на один главный максимум приходится пять ложных, что свидетельствует о наблюдении духа Лаймана с длиной волны $\frac{\lambda}{5}$, что согласуется с теоретическим введением.
- 3. Дифракционная решетка с пятью штрихами на миллиметр и смещением каждого пятого штриха на 0.02 мм дает дифракционную картину изображенную на рис.5. Видно, что расстояния между главными максимумами, действительно в два раза меньше предыдущих и составляет отоко 1 см, причем здесь тоже между каждыми соседними максимумами ярко выражены еще 4 максимума, что опять свидетельствует о наблюдении духа Лаймана с длиной волны ^{\(\delta\)}/₅.

Рис. 4: Дифракционная картина решётки с $d=0.1~{\rm mm},\,n=5$

Рис. 5: Дифракционная картина решётки с $d=0.2~{\rm mm},\,n=5$

4. Дифракционная решетка с пятью штрихами на миллиметр и смещением каждого третьего штриха на 0.02 мм дает дифракционную картину изображенную на рис.6. Расстояния между главными максимумами не изменились, но между каждыми соседними максимумами теперь ярко выражены еще 2 максимума, что говорит о наблюдении духа Лаймана с длиной волны $\frac{\lambda}{3}$ и подтвержает теорию.

Рис. 6: Дифракционная картина решётки с d=0.2 мм, n=3

5. Дифракционные решетки со смещением x=0.01 мм не дали видимых результатов возникновения ярко выраженных ложных максимумов, что, вероятно, связано с большим периодом и слишком малым смещением. В этих наблюдениях дифракционная картина была смазанной.

5 Выводы

В данной работе мы объяснили причину возникновения ложных спектральных линий (духов Лаймана) при дифракции на неточных решетках. Для наблюдения этого эффекта были сделаны дифракционные решетки с периодически повторяющейся ошибкой и произведена дифракция лазерного излучения на них. В эксперименте для двух дифракционных решеток с различными периодами были обнаружены ложные спектральные линии с длиной волны $\frac{\lambda}{5}$ (для периодичности ошибки - n=5) и $\frac{\lambda}{3}$ (для n=3), что подтвердило теорию.