not a root extension of F . (Hint: Look at $K = \mathbb{Q}(\zeta)$ where ζ is the primitive 7th root of unity).
Proof.
Problem 2. Let $F = \mathbb{Q}$, $E = \mathbb{Q}(\sqrt{3})$, $K = \mathbb{Q}(\sqrt{\sqrt{3}+1})$. Show that E/F and K/E are Galois extensions, but that K/F is not Galois. Find the minimal polynomial of $\sqrt{\sqrt{3}+1}$ and find its Galois group.
Proof.
Problem 3. Find a root extension of \mathbb{Q} containing the splitting fields of each of the following polynomials.
(a) $x^4 + 1$
(b) $x^4 + 3x^2 + 1$
(c) $x^5 + 4x^3 + x$
(d) $(x^3-2)(x^7-5)$
Proof.
Problem 4. Give an example of a polynomial $\mathbb{Q}[x]$ which is solvable by radicals, but whose splitting field is not a root extension of \mathbb{Q} .
Proof.
Problem 5. For r a positive integer, define $f_r(x) \in \mathbb{Q}[x]$ by
$f_r(x) = (x^2 + 4)x(x^2 - 4)(x^2 - 16)\cdots(x^2 - 4r^2)$
(a) Give a (rough) sketch of the graph of $f_r(x)$
(b) Show that if k is an odd integer, then $ f_r(k) \ge 5$.
(c) Show that $g_r(x) = f_r(x) - 2$ is irreducible over \mathbb{Q} and determine its Galois group when $2r + 3 = p$ is prime.
Proof.

Problem 1. Give an example of fields $F \subset E \subset K$ such that K is a root extension of F but E is