המכללה האקדמית אחוה אחזור מידע ומנועי חיפוש מטלה מספר 2

חלק ראשון: תיאורטי

.2 באיור Doc1, Doc2, Doc3 עיינו בטבלת של ($tf_{t,d}$) של עבור שלושת עיינו בטבלת השכיחות

	Doc1	Doc2	Doc3
car	27	4	24
auto	3	33	0
insurance	0	33	29
best	14	0	17

car, auto, insurance, עבור המלים tf-idf א. השלימו את הטבלה למטה. חשבו את משקלות את הטבלה למטה. חשבו את השלימו את הטבלה למסמך. או את השלימו בטבלת הבאה, כאשר $(idf_{t,d}=tf_{t,d}*idf_t)$

term	df _t
car	18,165
auto	6723
insurance	19,241
best	25,235

	Doc1	Doc2	Doc3
car			
auto			
insurance			
best			

עריך נפרדת בטבלה בטבלה נא קודם. אותם בטבלה נפרדת idf_t

- ב. השלימו את הטבלה עם נירמול של הערכים לפי האורך
- .car insurance עם הטבלאות מסעיפים 3, דרגו את המסמכים עבור השאילתא

:2 שאלה

להלן מבנה הדפים הבא

אם נוסיף קישור מצומת 2 לצומת 4, האם וכיצד יושפעו ערכי ה Authority ו- HUB, על פי אלגוריתם HITS על צומת 5, כלומר האם יהיו גבוהים יותר, נמוכים, ללא שינוי. ענו מבלי לחשב את הערכים

להלן מבנה של דפים:

- D, C,B מצביע על A בי 1.
 - E מצביע על B 2.
 - D -ו B מצביע על C דף .3
 - E מצביע על D אדף .4
 - C דף B מצביע על A ו- 5.
- hub על הגרף הנתון. הראו את ערכי authorities and hubs א. הריצו את אלגוריתם ה and authorities אחרי 2 איטרציות. לכל עמוד בכל שלב בחישוב. הציגו את התוצאות A, B, C, D, E עבור
 - של כל דף אחרי שתי איטרציות PageRank ב. עבור אותו הגרף, חשבו את ה

שאלה 3 להלן אוסף של ביקורות על סרטים יחיד עם הסיווג: ביקורת חיובית + או ביקורת שלילית –

Review	Class
Boring and Predictable	-
Excellent movie	+
Predictable Extremely mediocre	-
A pathetic attempt at a romcom	-
Good movie with great actors	+
Fantastic job	+

: חשבו את הסיווג של הביקורת הבאה, Naïve Bayes Classifier על ידי שימוש

It is a good job, but it's extremely predictable

אל תתחשבו ב stop words מומלץ לעשות קירוב עד ארבעה מספרים אחרי הספרה smoothing העשרונית. הראו את כל שלבי החישוב. השתמשו בנוסחה המתוקנת עם technique

שאלה 4: הערכה

נתון מנוע חיפוש שמחזיר תוצאות לא מודגות. למנוע החיפוש ניתנה השאילתה הבאה

Mountain Biking Adventures

התקבלו:

Mountain Biking: The Ultimate Guide Adventure Sports: Mountain Biking Edition The Best Hiking Trails - Outdoor Adventures Worldwide Mountain Biking Tours

לא התקבלו

Mountain Biking Basics and Techniques Extreme Mountain Biking: A Thrill Seeker's Guide Biking Gear for Road Biking Essential Mountain Biking Skills for Beginners

חשבו את Recall ואת חשבו את

חלק שני: מימוש אלגוריתם PageRank חלק שני: מימוש אלגוריתם

בחלק זה אתם תממשו אלגוריתם PageRank ב Python. המימוש יכולול שתי גרסאות: גרסה שלמדנו בכיתה וגרסה משופרת שתוסבר בהמשך.

Input:

Graph Representation: Your implementation should accept a representation of the website graph as an adjacency list.

Adjacency List: An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighboring edges.

```
graph = {
    'A': ['B'],
    'B': ['C'],
    'C': ['D'],
    'D': ['A'],
    'E': ['C', 'A']
}
```


Output:

PageRank Scores: a list of ranking values.

למטלה מצורף שני קבצים. קובץ pagerank.py שצריך להשלים קובץ util.py שמסופק במלואו.

הסבר על calc_pagerank_with_damping: עליכם להשלים לבד את המושג calc_pagerank_with. אבל להלן הסבר יחד עם הנסוחה

The damping factor in the PageRank algorithm is a probability value (usually set around **0.85**) that represents the likelihood of a user continuing to click on links versus jumping to a random page.

$$PR(p_i) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}$$

where p_1, p_2, \ldots, p_N are the pages under consideration, $M(p_i)$ is the set of pages that link to p_i , $L(p_j)$ is the number of outbound links on page p_j , and N is the total number of pages.

Running Exampels

```
graph = {
    'A': ['B'],
    'B': ['C'],
    'C': ['D'],
    'D': ['A'],
    'E': ['C', 'A']
}

pr = PageRank(iterations=10)
util.draw_graph(graph)

page_rank_scores = pr.calc_pagerank(graph)
site_scores = util.toString(page_rank_scores)
print(site_scores)

page_rank_scores = pr.calc_pagerank_with_damping(graph)
site_scores = util.toString(page_rank_scores)
print(site_scores)
```


{'Website A': 0.4, 'Website B': 0.2, 'Website C': 0.2, 'Website D': 0.2, 'Website E': 0}

{'Website A': 0.3228250000000001, 'Website B': 0.2, 'Website C': 0.2255, 'Website D': 0.221675, 'Website E': 0.03}