

Martin Davis

FOSS4G-NA 2024

September 2024

Martin Davis

martin.davis@crunchydata.com

Geospatial Engineer at

- Developer on:
 - JTS Topology Suite
 - GEOS
 - PostGIS
 - o pg featureserv

Topological Relationships

- Fundamental concept in spatial analysis
- Specify the **spatial relationship** between two geometric objects
- OGC Simple Features has 8 named relationships:
 - equals, intersects, disjoint
 - contains, within
 - crosses, touches, overlaps

- Used in spatial filters and joins
 - SELECT fire.* FROM fire WHERE Intersects(fire.geom, area)
 - O SELECT fire.*, park.id FROM fire JOIN park ON
 Contains(park.geom, fire.geom)

Geometry and Point-Set Topology

- A geometry is a set of points embedded in the plane (or 2D manifold)
 - OGC Simple Features: Point, LineString, Polygon, and collections
- In Point-Set Topology, a geometry splits the plane into 3 sets:
 - Interior, Boundary and Exterior

Dimensionally Extended 9-Intersection Model

- Theoretical framework for topological relationships: Dimensionally
 Extended 9-Intersection Model (DE-9IM)
 - Egenhofer (1991), Clementini et al (1993)
- Relationship between 2 geometries determined by dimension of intersections between the sets Interior, Boundary and Exterior
 - \circ 3 x 3 = 9 possible intersections
 - Represent as a 3 x 3 matrix:
 - Or a 9-symbol string:
 - **212101212**

	Int	Bdy	Ext
Int	<i>dim</i> (I ∩ I)	dim(I∩B)	dim(I ∩ E)
Bdy	dim(B∩I)	dim(B∩B)	dim(B∩E)
Ext	dim(E∩I)	dim(E∩B)	dim(E ∩ E)

DE-9IM Named Predicates

- Predicate value determined by combinations of matrix entries, and (sometimes) geometry dimensions
- Examples:
 - Intersects(A, B) ⇔ II V IB V BI V BB
 - Contains(A, B) \Leftrightarrow II \land \sim EI \land \sim EB
 - Overlaps(A, B) \Leftrightarrow dim(A) = dim(B) \land II \land IE \land EI
- Other predicates possible (and useful!)
 - covers/coveredBy, interiorIntersects, adjacent

DE-9IM Patterns

- Express relationships by a DE-9IM pattern
- Pattern is a 9-symbol string corresponding to matrix entries
- Pattern symbols:
 - T some intersection
 - o **F** no intersection
 - 0, 1, 2 intersection dimension
 - * Don't Care
- Predicate: matches (A, B, pattern) = {T, F}

Adjacent(A,B)	F***1***	Т		F	
InteriorIntersects(A,B)	T*****	F		Т	

Implementation in JTS/GEOS - RelateOp

- RelateOp first algorithm implemented in JTS Topology Suite (2000)
 - OGC named predicates (intersects, contains, etc.)
 - DE-9IM calculation, pattern matching

- Ported to GEOS (2003)
- Later improvement: PreparedGeometry (2008)

- intersects, contains, covers
- Used in **many** spatial systems:
 - PostGIS, QGIS, GDAL, DuckDB, etc. etc.
 - Executed (probably) billions of times per day !!

RelateOp - Algorithm

- Build full topology of fully-noded input geometries
 - spatial index for efficient point-in-polygon, noding
- Evaluate topology at every node and update Intersection Matrix
- Compute result from fully-determined IM
 - named predicate: match IM against predicate definition

Evaluation Modes

- Two ways to compute a predicate:
 - Single-shot
 - Prepared
- Single-shot mode (RelateOp)
 - Simple API: intersects (A, B)
 - No state retained recompute info for every call
- Prepared mode (PreparedGeometry)
 - O More complex API: rel = Relate(A); rel.intersects(A, B)
 - Requires state to be maintained
 - Reuse information about A

RelateOp Issues

- Built on generalized GeometryGraph structure
 - Used by several algorithms: Relate, Overlay, Buffer
 - multiple uses => complex code
 - Hard to maintain and enhance
- Computes full topology graph of inputs
 - Probustness problems (TopologyException ugh)
 - Limits performance (no short-circuiting)
- GeometryCollection not supported
- Works only in single-shot mode
- Different code for RelateOp and PreparedGeometry
 - Requires effort to keep functionality in synch

GeometryCollection "Union Semantics"

- GeometryCollection elements may overlap
- Points in **Boundary** of elements may be in **Interior** of collection
- Compute topology using implicit union of the collection elements
 - Need more sophisticated PointOnGeometry algorithm
 - Different short-circuit heuristics

DE-9IM Topology - Key Observations

- Point-set topology is determined by local neighbourhoods of "significant nodes" (intersections and endpoints)
 - => Building full topology graph is not required
- Most predicates do not require full Intersection Matrix to be computed
 - => Short-circuiting is possible
- Intersection Matrix computation is additive only
 - => Short-circuiting is safe
- Some predicate cases are determined by dimensions or envelopes
 - => Fast to check

New! - RelateNG

- Released in JTS and GEOS in 2024 (soon in PostGIS)
- Key Features:
 - Support for GeometryCollection
 - Independent code base
 - Fully robust
 - Aggressive short-circuiting
 - Optimizes any DE-9IM pattern
 - Single-shot and Prepared mode for all predicates & patterns
 - Faster
 - for "single-shot" mode
 - most "prepared" predicates

RelateNG - Algorithm

- Predicate determines short-circuits for dimensions, envelopes, Intersection Matrix entries
 - Named hard-coded
 - Relate pattern dynamic analysis
- Check for dimension and envelope short-circuits
- Build spatial indexes for point-in-polygon and noding
 - Only when needed (lazily)
 - Cache indexes for prepared mode
- For each "significant point":
 - Evaluate partial topology at point
 - Update Intersection Matrix
 - Exit if predicate value is known (true or false)

Performance

- Performance varies depending on:
 - geometry type, size
 - spatial relationship
 - predicate used
- Evaluate performance in two modes:
 - Single-shot
 - Prepared mode

Performance - Single-Shot

Example: Polygon (4,930 vertices) x Polygons (992 x 33 vertices)

	Intersects	Covers	Touches	T*****
RelateOp	469 ms	413 ms	473 ms	473 ms
RelateNG	43 ms	32 ms	40 ms	61 ms

Performance - Prepared Mode

Example: Polygon (4,930 vertices) x Polygons (10,000 x 33 vertices)

	Intersects	Covers	Touches	T*****
PreparedGeometry	23 ms	19 ms	N/A	N/A
RelateNG Prepared	18 ms	24 ms	25 ms	21 ms

Future Work

- Improve spatial indexing?
 - point-in-polygon, line noding
- More optimizations:
 - Additional short-circuit heuristics
 - Specific predicate / geometry cases
 - E.g. intersects, contains for Point / Polygon
- Extended DE-9IM pattern language?
 - Express all named predicates
 - Dimension constraints
 - AND / OR / NOT

```
Covers(A,B) =

T*****FF* | *T***FF* |

***T**FF* | ****T*FF*
```

```
Overlaps(A,B) = [02] T*T***T** | [1] 1*T***T**
```

Future Work - Distance Tolerance

Support distance tolerance for topological relationships

Future Work - Geodetic, Curves

- Support other geometry models:
 - Geodetic geometry (on the spheroid)
 - Curves (OGC circular arcs)

Wrap-up

Questions?
Comments?
Ideas?

martin.davis@crunchydata.com

