5 - combinational circuits - decoders, encoders, multiplexers

decoders

- used to implement arbitrary functions
- by orbstraction and modularity, as building blocks
- you can implement arbitrary functions with decoders

enable input used to activate or deactivate the device $EN=1 \Rightarrow decoder$ is active, behaves as specified $EN=0 \Rightarrow decoder$ is deactive, all outputs are O.

blocks and abstraction encapsulated decoders

- ↔ decodor blocks provide abstraction
- simpler diagrams and hardware reuse
- > like functions in programming

3 to 8 decoder

*sur-combined	inelate disease three	LOUIS DE LA CONTRACTOR DE	and	^	_	_	_			
5,	ى	So	<u> 040</u>	<u>01,</u>	<u>012</u>	012	Qu	Q _{IS}	<u>0,6</u>	Q ₁₃
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	O	Ð	Ð	0
0	1	0	0	0	1	0	0	0	0	٥
0	1	1	900 1 0 0	0	0	1	0	0	0	0
1	0	0	٥	0	0	0	1	0	0	จ
1	0	1	0	٥	0	0	0	1	0	0
1	\perp	0	٥	0	0	0	0	0	1	O
1	_	7	0000	0	0	0	0	0	0	1

or two 2 to 4 decodes

when $S_2 = 0$ outputs: $Q_{10} - Q_{3}$ $S_1 = 1$ outputs: $Q_{14} - Q_{12}$

Description of the Party of the				CONTRACTOR OF THE PARTY OF THE
× y 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1	2010101 0101	000000000000000000000000000000000000000	<u>8</u> 01001011	x+y+2)
		_		

or using one decoder

Variation of the standard decoder

active-high decoder (normal one)

		ĒΝ	<u>ۍ</u> ر	<u>S</u>	ها	<u>Q, (</u>	0,2	<u>O1</u> 3
EN	٦.,	0	X	Х	0	0	0	0
1514	a . [1	0	0	ı	0	0	0
١,.	ã.L	1	0	1	0	1	0	0
-3%	Q0-	1	1	0	0	0	1	0
		- 1	-	4	0	0	0	1

$$Q_3 = S_1.S_0$$
 $Q_2 = S_1.S_0$ $Q_1 = S_1.S_0$ $Q_0 = S_1.S_0$

generate minterms

active-low decoder

O'z=Si+So O'z=Si+So O'=S,+So O'o=S,+So generate maxterns

multiplexers / demultiplexers / muxes

sed to choose between devices also used to implement arbitrary functions

:1 8=0 -> +he output is No

i Wili

4 to 1 multiplex

functions with multiplexers

0	selectors				
ex: func	×	<u>ح</u> ا2	<u>2</u> \$0		
0	0	0	0		
1	0	0	1		
1	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	٥	1		
1	1	1	0		
1	1	1	1		

A 2 to 1 multiple xer routes one of 2 input lines to a single output line

More efficient way

when
$$xy=00$$
 $f=2$ (function(output)
 $xy=01$ $f=2$
 $xy=10$ $f=0$
 $xy=11$ $f=1$

encoders

the inverse operation of a decoder

