

컴퓨터 구조

데이터표현

고려대학교 세종캠퍼스 인공지능사이버보안학과 구 자 훈

목차

❖ 학습 목표

- 수를 표현하는 원리를 이해한다.
- 10진수와 임의의 R진수 간 표현을 변환할 수 있다.
- 문자를 코드(code)로 표현하는 방법을 이해한다.

❖ Part 1.

- 디지털 시스템
- 수의 체계
- 진법 변환
- 코드

❖ Part 2.

- 퀴즈
- 요약

Part 1

2.1 디지털 시스템

2.2 수의 체계

2.3 진법 변환

2.4 코드

3

2.1 디지털 시스템

01 디지털시스템 디지털시스템

디지털 시스템

- digit + al
- 불연속 값(discrete value)을 취급 (처리, 계산)하는 시스템
- 컴퓨터는 디지털 시스템의 일종

아날로그

- 실세계(read-world)는 아날로그(analog)
- 연속적인 값(continuous value)
- 무게, 길이, 압력, 거리, 높이 등등

신호 변환 A/D 변환기 컴퓨터 (이날로그) D/A 변환기 (디지털)

01 디지털시스템 : 아날로그 & 디지털

디지털

Digital signal

- 불연속(discrete)
- 숫자로 표현
- 실세계의 값을 숫자로 변환

Digital System

- 온라인 상태로 저장 가능
- 정확하다

아날로그

Analog signal

- 연속(continuous)
- 실세계에 존재한다

Analog system

- 온라인 상태로 저장 불가
- 부정확하다

왜 디지털 신호로?

"디지털 신호는 보다 안정적(stable)이다."

- (= 값이 딱 나누어 떨어진다)
 - 숫자를 아날로그(사람의 필기) / 디지털로 처리한다면?

01 디지털시스템 : 아날로그 & 디지털

10진수

사람은 10진수를 사용한다.

- 디짓(digit): 자릿수, 손가락
- 아라비아 숫자: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2진수

기계는 2진수를 사용한다 : 안정된 상태가 2개

스위치: 열림(off)/닫힘(on).

OCR 카드: 표시가 없음/까만 색.

• 펀치 카드: 구멍을 뚫지 않음/구멍을 뚫음.

• 전기 신호: 전류가 흐르지 않음/흐름.

• 자기(자석): N국/S극.

7

2진 시스템 이란?

- 2진수로 표현된 데이터를 처리하는 시스템
 - ∘ 비트 (bit) = binary + digit: 2진수 한 자리, 0 또는 1
 - MSB (Most Significant Bit): 가장 왼쪽 자리의 비트
 - LSB (Least Significant Bit): 가장 오른쪽 자리의 비트

quiz

- (12345678)₁₀
 - MSD =
 - LSD = ____
- (00001111)₂
 - MSB =
 - LSB =

2진 데이터의 단위

(a) 비트(bit)

(b) 니블(nibble)

(c) 바이트(byte)

(d) MSB와 LSB

2.2 수의 체계

학습 내용

- 수를 표현하는 원리 (weighted number)
- 무게? 수에서의 무게는 무엇인가?
- R진법의 수(R진수)의 표현과 크기

9

01 ^{수의 체계} 수의 체계 : 10진수

무게 수 (weight number)

- 숫자가 가지고 있는 무게 (클수록 무거움)
- 로마자 10ⁿ / 별도의 기호 一, 十, 百, 千, 萬, 億, 兆

1234.56

- 기호(symbol): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- 자리에 따라 무게가 다름

• EX)
$$(1234.56)_{10} = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0 + 5 \times 10^{-1} + 6 \times 10^{-2}$$

= $1000 + 200 + 30 + 4 + 0.5 + 0.06$
= 1234.56

• 값 (value) : 수가 나타내는 값은 수식으로 표현 가능

$$V(N) = A_{n-1} \times 10^{n-1} + A_{n-2} \times 10^{n-2} + \dots + A_{-m} \times 10^{-m}$$
$$= \sum_{k=-m}^{n-1} A_k \times 10^k$$

10

02 ^{수의 체계} 수의 체계 : R진수

기수 (radix)

• 수를 나타내는데 기초가 되는 수 (10진수에서는 0,1,2,3,4,5,6,7,8,9)

R진법의 수

- 기호(symbol): {0, 1, 2, ..., R-1}
- 값 (value) :

$$\begin{split} V\left(N\right) &= A_{n-1} \times R^{n-1} + A_{n-2} \times R^{n-2} + \dots + A_{-m} \times R^{-m} \\ &= \sum_{k=-m}^{n-1} A_k \times R^k \end{split}$$

- EX) (1A4C)₁₆
 - 기호: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
 - \Box \Box : $1 \times 16^3 + 10 \times 16^2 + 4 \times 16^1 + 12 \times 16^0 = 4,096 + 2,560 + 64 + 12 = 6,732$

03 ^{수의 체계} 수의 표현 범위

수의 종류

- 부호 없는 수(unsigned number): 0을 포함한 양수
- 정수(signed number): ..., -1, 0, 1, ... (음수, 0, 양수)
- 실수(real number): 소수점을 포함하는 수

수의 표현 범위

- 10진수 n자리: 0 ~ 10ⁿ-1 = 0 ~ 9...9 (9가 n개)
- R진수 n자리: 0 ~ Rⁿ − 1
 - 예) 4자리 십진수 (10⁴-1) = 9999 표현 범위 0~9999
 8자리 2진수 (2⁸-1) = 255 표현 범위 0~255

사람은 필요에 따라 숫자를 무한정 늘려서 쓸 수 있음 하지만 컴퓨터는 주어진 비트 수에 따라 제한을 받게 됨 따라서 한정된 자리수로 표현할 수 밖에 없는 수의 표현을 배움

12

2.3 진법 변환

13

01 ^{진법 변환} 진법 변환

진법 변환

• R진수 -> 10진수

$$V(N) = A_{n-1} \times R^{n-1} + A_{n-2} \times R^{n-2} + \dots + A_{-m} \times R^{-m}$$
$$= \sum_{k=-m}^{n-1} A_k \times R^k$$

• 10진수 -> R진수

구성

- 10진수를 R진수로 변환
- 2진수, 8진수, 16진수

01 진법 변환 : 10진수를 R진수로 변환

절대 수는 불변, 진법에 따라 표현이 다르다

01 진법 변환의 원리

$$\begin{split} V(N) &= A_{n-1} \times 10^{n-1} + A_{n-2} \times 10^{n-2} + \cdots + A_0 \times 10^0 \\ &= X_{k-1} \times R^{n-1} + X_{k-2} \times R^{n-2} + \cdots + X_0 \times R^0 \\ V(N)/R &= X_{k-1} \times R^{n-2} + X_{k-2} \times R^{n-3} + \cdots + X_1 \times R^0 \quad remains \quad X_0 \end{split}$$

R개씩 묶으면

• 묶음의 수가 몫이고, 나머지가 1의 자리 숫자이다.

10진수를 R로 나누고

◦ 몫은 묶음의 수이고, 나머지가 R⁰ 자리의 숫자이다.

01 R진수로 변환

2진수로 몇 개?

_____기

527₁₀ → 8진수

02 ^{진법 변환} 2진수, 8진수, 16진수

컴퓨터는 2진수를 사용하지만, 사람이 보기 불편하기 때문에 8, 16진수로 표현한다.

예시

- $^{\circ}$ 1100010110010001 1_100_010_110_010_001 \leftrightarrow (142621)₈
- 1100010110010001 1100_0101_1001_0001 \leftrightarrow (C591)₁₆ = C591h

02 ^{진법 변환} 2진수, 8진수, 16진수

2진수를 배우는 이유

컴퓨터는 2진수를 사용하기 때문에 사람도 2진수에 익숙해져야 한다.

10 진수	2 진수	8 진수	16 진수
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

02 ^{진법 변환} 2진수 ↔ 8진수, 16진수

2진수 ↔ 8진수: 2³ = 8

 $0100111101111011 \leftrightarrow \underline{\hspace{1cm}}$

2진수 ↔ 16진수: 2⁴ = 16

02 ^{진법 변환} 2진수 ↔ 8진수, 16진수

2진수 ↔ 8진수: 2³ = 8

$1100010110010001 \leftrightarrow $	 \leftrightarrow (142621) ₈
$0000110110000010 \leftrightarrow$	 \leftrightarrow (006602) ₈
$0110111000111010 \leftrightarrow _$	\leftrightarrow (067072) ₈
$0100111101111011 \leftrightarrow _$	\leftrightarrow (047573) ₈

2진수 ↔ 16진수: 2⁴ = 16

1100010110010001 ↔	\longleftrightarrow (C591) ₁₆
$0000110110000010 \leftrightarrow$	\leftrightarrow (0D82) ₁₆
$0110111000111010 \leftrightarrow _$	\leftrightarrow (6E3A) ₁₆
$0100111101111011 \leftrightarrow _$	$\longleftrightarrow (4F7B)_{16}$

02 ^{진법 변환} 진법 변환 : 2^k

2 ⁰	1	24	16	28	256	2 ³⁰	1Giga
2 ¹	2	2 ⁵	32	2 ⁹	512	2 ⁴⁰	1 Tera
2 ²	4	2 ⁶	64	2 ¹⁰	1024 =1K		
2 ³	8	2 ⁷	128	2 ²⁰	1Mega		

2.4 코드

코드

숫자 이외의 데이터를 2진수로 표현하는 방법

- 문자 코드
- 신호, 음성, 영상
 - Analog-to-Digital (A/D): 영상/음성같은 아날로그데이터는 샘플링(sampling)
 과 양자화(quantization) 과정을 거쳐 숫자로 변환되는 과정

23

01 인코드와 디코드

코드

- 유한개의 원소로 구성된 집합에 대하여
- 각 원소를 서로 구별할 수 있도록 각 원소에 부여하는 숫자

코드의 종류

- 고정 길이 코드: 원소에 부여된 2진수의 길이가 같다.
- ∘ 가변 길이 코드: 원소에 부여된 2진수의 길이가 다르다.

동작

인코드 (encode)

• 원소 기호 → 코드

디코드 (decode)

○ 코드 → 원소 기호

01 코드 예제

{♠, ♦, ♡, ♣}에 대한 코드

	가변	코드	고정코드			
집합의 원소	코드 1 코드 2		코드 3	코드 4		
•	0 1		00	101		
\Diamond	10	11	01	111		
\Diamond	110	111	10	110		
*	1110	1111	11	000		

```
· 코드 1: ♣♡♠♦♡ → 1110_110_0_10_110 → ♣♡♠♦♡
```

• 코드 2: ♣♡♠♦♡ → 1111_111_1_111 → ???

· 코드 3: ♣♡♠♦♡ → 11_10_00_01_10 → ♣♡♠♦♡

• 코드 4: ♣♡♠♦♡ → 000_110_101_111_110 → ♣♡♠♦♡♡

◦ 집합의 원소 수가 N일 때, 고정 길이 코드의 비트 수는?

N을 2^k로 표현하려면 2^k 표현할 수 있는 수가 N보다는 커야 함

2^k으로 표현할 수 있는 수의 개수 ≥ N log₂ 2^k ≥ log₂N k ≥ log₂N 최종적으로 k는 log₂N보다 커야 한다.

 $\lceil \log_2 N \rceil$

02 이진화 십진 코드

BCD

- Binary Coded Decimal
- BCD코드는 2진수로 10진수를 표현하는 코드
- 8421 BCD코드가 가장 보편적으로 사용됨
- 각 자리에 무게를 부여하고 만든 코드

3초과 BCD 코드

- 코드 값에 3₁₀ / (0011)₂을 더해서 만든 코드
- 각 자리의 무게는 의미가 없음
- 임의의 수에 1의 보수를 취하면 결과로 10진수로 해석한 9의 보수 반환
 - 보수: 각 자리의 숫자의 합이 어느 일정한 수가 되게 하는 수.
 예를 들어 10의 7에 대한 보수는 3
 ex) X + y = 9 이면 x, y는 서로 9에 대한 보수
 - 3초과 코드에서 3을 해당하는 0110의 보수인 1001은 6에 해당하는 초과 코드

02 이진화 십진 코드

자보수 특성

- 자보수 : self-complementary
- 3초과 코드처럼 보수를 취했을 때 / 보수가 나오는 경우

10 진수 기호	0	1	2	3	4	5	6	7	8	9
8421 BCD 코드	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
3초과 BCD 코드	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100

03 문자 코드

ASCII(American Standard Code for Information Interchange)

ANSI (American National Standards Institute) 제정

가장 널리 쓰이는 문자 code의 표준 영어 권 이외의 언어는 표현 불가능

원래 7 bit 체계. 지금은 8 bit로 확장

- byte 크기의 memory cell에 맞춤
- 한 문자의 시작은 0으로, 나머지는 코드 값으로 구성

03 문자 코드 : 예제

hhhh	$b_6b_5b_4$								
b ₃ b ₂ b ₁ b ₀ 00	000	001	010	011	100	101	110	111	
0000	NUL	DLE	SP	0	@	Р	*	р	
0001	SOH	DC1	!	1	Α	Q	a	q	
0010	STX	DC2	a	2	В	R	b	r	
0011	ETX	DC3	#	3	С	S	С	s	
0100	EOT	DC4	\$	4	D	Т	d	t	
0101	ENQ	NAK	%	5	Е	U	е	u	
0110	ACK	SYN	&	6	F	V	f	V	
0111	BEL	ETB	6	7	G	W	g	w	
1000	BS	CAN	(8	Н	X	h	x	
1001	HT	EM)	9	1	Y	i	у	
1010	LF	SUB	*	:	J	Z	j	Z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	(L	\	I	1	
1101	CR	GS	_	=	М]	m	}	
1110	SO	RS		>	N	۸	n	~	
1111	SI	US	/	?	0	_	0	DEL	

"Good Morning!"

03패리티 비트(parity bit)

(parity bit): parity (특히 보수·지위의) 동등함

패리티 비트

- 데이터가 올바른지 검사하기 위하여 추가하는 비트
 - 비트의 수가 잘 맞으면 제대로 데이터가 입력되었다는 증빙

짝수 패리티

- even parity
 - ◎ 1이 짝수가 되도록 추가하는 비트

홀수 패리티

- odd parity
 - 1이 홀수가 되도록 추가하는 비트

짝수와 홀수 패리티 구하기

- A = (아스키 코드) 100_0001 (짝수) 0100_0001 (홀수) 1100_0001
- T = (아스키 코드) 101_0100 (짝수) 1101_0100 (홀수) 0101_0100

03 유니코드(Unicode)

유니코드

- 세계 각국의 언어 표현
- 국제적으로 통용되는 16비트 문자 체계
- 1991년에 버전 1.0 현재 2025년 17.0

배치

- U+0000 ~ U+007F 영역에영문자 배치
- 이후 여러 나라 문자
- 한글은 U+AC00 부터 U+D7A3까지11,172 글자 정의
- 문서편집기의 문자표에서 유니코드확인 가능

예제

• 홍길동: D64D AE38 B3D9

03 유니코드(Unicode)

유니코드 (예제 / 한글)

Part 2

2.4 퀴즈

2.5 요약

01 문제

진법 변환

- (1) (10110001101011)₂를 8진수로
- (2) (10110001101011)₂를 16진수로
- (3) (523)₈을 2진수로
- (4) (D1AF)₁₆을 8진수로

10진수 구하기

(5) 01001100 = ____

(6) 10000011 = _____

01 문제

진법 변환

- (1) (10110001101011)₂를 8진수로
- (2) (10110001101011)₂를 16진수로
- (3) (523) 을 2진수로
- (4) (D1AF)₁₆을 8진수로

10진수 구하기

```
(5) 01001100 = _____
```

(6) 10000011 = _____

(d) 120 e27 (s) 76 (e) 131 (1) 26 153 (2) 2068 (3) 0001 0101 0011

02 요약

디지털 시스템

- 숫자를 처리하는 시스템
- A/D 변환기: 아날로그 신호를 숫자로 변환

2진 시스템

- 2진수 데이터를 처리하는 시스템
- 안정된 상태가 2개인 소자.
- ∘ 비트/니블/바이트
- MSB/LSB

03 ^{수의 체계} 요약

수의 표현 원리 = 무게 수 (weighted number)

기호

수의 크기

$$V(N) = A_{n-1} \times R^{n-1} + A_{n-2} \times R^{n-2} + \dots + A_{-m} \times R^{-m}$$
$$= \sum_{k=-m}^{n-1} A_k \times R^k$$

04 요약

10진수를 R진수로 변환

◦ 나누기 R: 몫과 나머지(Rʰ자리의 수)

2k 계산

 \circ 2¹⁰ = 1K, 2²⁰ = 1M, 2³⁰ = 1G

2진수, 8진수, 16진수

◦ 23 = 8: 2진수를 3자리씩 읽으면 8진수

◦ 24 = 16: 2진수를 4자리씩 읽으면 16진수

05 요약

코드

- 유한 개의 원소로 구성된 집합의 원소에
- 각 원소를 구별할 수 있도록 부여한 숫자

동작

- 인코드(encode): 원소에 대하여 숫자를 부여하는 과정
- 디코드(decode): 숫자를 보고 원래의 원소를 찾는 과정

자주 사용되는 코드

- BCD (Binary-Coded Decimal)
- 문자 코드: 아스키 코드, 유니코드

06 ^{데이터 표현} 요약

디지털 시스템

- A/D 변환기, D/A 변환기
- 이진 시스템: 비트(bit), 바이트(byte)

수의 체계

- 무게 수(weighted code)
- 진법 변환, 2진수, 8진수, 16진수

코드

- 인코드 / 디코드
- BCD, ASCII

다음 시간에 배울 내용: 논리회로 기초

- 논리 연산 규칙 (부울 대수)
- 논리회로 동작 표현(논리식, 논리 회로도, 진가표)
- 여러 가지 논리 게이트 소개