

Circle :- A circle is a collection of all points in a plane which are at a constant distance from a fixed point. The constant distance is <u>called</u> the <u>radius</u> and the fixed point is called the centre of the circle.

(Constant Distanc)

Ly 3(m-) radius of
(1) rdc

Relationship between a Circle and a line

Theorem 1

The tangent at any point of a circle is perpendicular to the radius through the point

of contact

The tangent at any point of a circle is perpendicular to the radius through the point of contact

GIVEN:-

A circle with centre O and a tangent AB at a point P of the circle.

TO PROVE :- OP ⊥ AB.

CONSTRUCTION: Take a point Q, other than P, on AB. Join OQ.

PROOF: Q is a point on the tangent AB, other than the point of contact P.

Let OQ intersect the circle at R.

Then, OR < OQ [a part is less than the whole]. ...(i)

But, OP = OR [radii of the same circle] ...(ii)

 $\therefore OP < OQ [from (i) and (ii)].$

But, the shortest distance between a point and a line is the perpendicular distance. OP ⊥ AB

A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre 0 at a point Q so that OQ = 12 cm. Length PQ is:

- A 12 cm
- B 13 cm
- © 8.5 cm
- \bigcirc $\sqrt{119}$ cm

Theorem 2

The lengths of tangents drawn from an external point to a circle are equal.

Giren:>

Construction:> Join OPSOA and oB

QUESTION

In given fig., if TP and TQ are the two tangents to a circle with centre 0 so that $\angle POQ = 110^{\circ}$, then $(\angle PTQ)$ s equal to

Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

AB=
$$9$$

OP $1 \cap 18 = 10 \cdot 13$
 $1 \cap 10 \cap 13$
 1

QUESTION

A quadrilateral ABCD is drawn to circumscribe a circle (see in given Fig.). Prove that AB + CD = AD + BC

AB= 10cm

(0= s(m

B(=)

AD= 9cm

