Поверхности второго порядка

Надзея Гришалевич

13 марта 2019 г.

Содержание

1	Эллипсоид										2						
2	Кон	ус второго порядка															2
	Гиперболоиды													3			
	3.1	Однополосный гиперболоид .															3
	3.2	Двухполосный гиперболоид .							•					•		•	3
4	Пар	Іараболоиды									4						
	4.1	Эллиптический параболоид															4
	4.2	Гиперболический параболоид							٠					٠			4

1 Эллипсоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Если a=b=c, то эллипсоид есть сфера, $a=b \neq c$ – эллипсоид вращения, a < b < c – трёхосный эллипсоид

Рис. 1: Эллипсоиды

2 Конус второго порядка

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Рис. 2: Конус второго порядка

3 Гиперболоиды

3.1 Однополосный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Рис. 3: Однополосный гиперболоид

3.2 Двухполосный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Рис. 4: Двухполосный гиперболоид

4 Параболоиды

4.1 Эллиптический параболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$

Рис. 5: Эллиптический параболоид

4.2 Гиперболический параболоид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$$

Рис. 6: Гиперболический параболоид