TABLE 1 Set Identities.				
Identity	Name			
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws			
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws			
$A \cup A = A$ $A \cap A = A$	Idempotent laws			
$\overline{(\overline{A})} = A$	Complementation law			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws			
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws			
$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws			
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws			
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws			

Two's Complement Ranges

Range = $-2^{(n-1)}$ to $+(2^{(n-1)}-1)$

where n is the number of bits used to store the two-s complement signed integer.

Numbers with values GREATER than $+(2^{(n-1)}-1)$ and values LESS than -2(n-1) would require more bits. If you try to store too large/too small a value without using more bits, OVERFLOW will occur.

8-bit Two's Complement

I need to fix # of bits

Positive Integers (and zero) -> same as signed magnitude Example: (13)₁₀ -> (0000101)

Negative Integers ->

Example: (-13)₁₀

1. Compute binary representation of magnitude

> (1110011)

- 2. Flip all the bits (1's become 0's, 0's become 1's)
- 0000 1101 FUP 11110010

The ∃ symbol is used to represent "there exists"

The ∀ symbol is used to represent "for all"

$\exists x \text{ big}(x) \land \text{blue}(x)$

N - Natural Numbers {0,1,2,3,4,...} (

 \mathbb{Z} - Integers $\{...,-2,-1,0,1,2,...\}$

Ø - Empty Set {}

R - Real Numbers (pretty much any think of)

Number	0	1	2	3	4	5	ь	7
Binary	0000	0001	0010	0011	0100	0101	0110	0111
Hexadecimal	0	1	2	3	4	5	6	7
Number	8	9	10	11	12	13	14	15
Binary	1000	1001	1010	1011	1100	1101	1110	1111
Hexadecimal	8	9	А	В	С	D	Е	F

Permutation

Combination

- arrangement of items in which Order Matters
- Number of ways of **selection of items** in which Order does not Matters

Injection (One-to-One)

Surjection (Onto)

Bijection (One-to-One and Onto)

Associative Laws

 $(A \cup B) \cup C = A \cup (B \cup C)$ $A \cap B) \cap C = A \cap (B \cap C)$

 $(A^C)^C = A$

DeMorgan's Laws

 $(A \cup B)^C = A^C \cap B^C$ $(A \cap B)^C = A^C \cup B^C$

Distributive Laws

Absorption Laws

 $A \cap (A \cup B) = A$ $A \cup (A \cap B) = A$

Complement Laws

 $A \cup A^C = U$

 $A \cap A^C = \emptyset$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

The Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle: If *N* objects are placed into *k* boxes, then there is at least one box containing at least $\lfloor N/k \rfloor$ objects.

Proof: We use a proof by contraposition. Suppose that none of the boxes contains more than [N/k]. Then the total number of objects is at most

$$k\left(\left\lceil\frac{N}{k}\right\rceil-1\right) < k\left(\left(\frac{N}{k}+1\right)-1\right) = N,$$

where the inequality $\lfloor N/k \rfloor < \lfloor N/k \rfloor + 1$ has been used. This is a contradiction because there are a total of n objects.

Example: Among 100 people there are at least [100/12] = 9 who were born in the same month.

Balls into Bins Problem

- Placing n balls into m distinguishable bins
- Possible restrictions

AND

OR

- o If there are at most one ball per bin, then $m \ge n$
- o If the same number of balls must be placed in each bin, then m must evenly divide n

	No restrictions	At most one ball per bin	Same number of balls in each bin		
	(any positive m and n)	(m must be at least n)	(m must evenly divide n)		
Indistinguishable balls	C(n+m-1, m-1)	C(m, n)	1		
Distinguishable balls	m ⁿ	P(m, n)	$\frac{n!}{\left(\binom{n}{m}!\right)^m}$		

How many passwords can be made from lowercase letters if the length of the password is 6, 7, 8, 9, or 10?

$$\begin{vmatrix}
P_6 &= |LxLxLxLxLxL| = 36^6 \text{ (Product rate)} \\
a_{i,0} &|P_i| = 36^i
\end{vmatrix}$$

A: There are 10 different CS elective courses, and you need to take 3 of them. How many different combinations of electives are there?

E1, 2, 33 = E2, 3, 13

B: There are 10 different CS elective courses, and you need to take 3 of them. How many different sequences of electives are there? $[-3\lambda \rightarrow 3 \neq \lambda \rightarrow 3 \rightarrow 1]$

Counting Combinations "In chuse K"

If we want to count the number of ways, choose k unordered objects from a set of n total objects: