$11n_{107} (K11n_{107})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^9 - u^8 - u^7 + 3u^6 - u^5 - 2u^4 + 3u^3 + u^2 + b - 2u + 1, \\ &- u^{10} + u^9 + 2u^8 - 5u^7 + 6u^5 - 4u^4 - 4u^3 + 4u^2 + 2a - 2, \\ &u^{11} - 3u^{10} + 2u^9 + 5u^8 - 10u^7 + 4u^6 + 8u^5 - 10u^4 + 8u^2 - 6u + 2 \rangle \\ I_2^u &= \langle u^3 + u^2 + b - 2u - 1, \ -u^3 + 2a + 2u, \ u^4 - 2u^2 + 2 \rangle \\ I_3^u &= \langle -u^2 + b + a - u, \ a^2 - au + u^2 - u - 1, \ u^3 + u^2 - 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^9 - u^8 + \dots + b + 1, \ -u^{10} + u^9 + \dots + 2a - 2, \ u^{11} - 3u^{10} + \dots - 6u + 2 \rangle$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} + 2u^{5} - 2u^{3} \\ u^{9} - u^{7} + u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{10} - \frac{1}{2}u^{10} - \frac{1}{2}u^{9} + \dots - 2u^{2} + 1 \\ -u^{9} + u^{8} + u^{7} - 3u^{6} + u^{5} + 2u^{4} - 3u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{7} + 2u^{5} - 2u^{3} \\ u^{9} - u^{7} + u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 2u^{10} - 3u^{9} + u^{8} + 6u^{7} - 9u^{6} + 10u^{4} - 7u^{3} - 5u^{2} + 7u - 3 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 2u^{10} - 3u^{9} + u^{8} - 6u^{7} - 9u^{6} + 10u^{4} - 7u^{3} - 5u^{2} + 7u - 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 2u^{10} - 3u^{9} + u^{8} - 5u^{7} + 3u^{6} + 3u^{5} - 5u^{4} + u^{3} + 3u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 2u^{10} - 3u^{9} + u^{8} - u^{7} + 3u^{6} - u^{5} - 2u^{4} + 3u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-2u^{10} + 6u^8 - 6u^7 - 8u^6 + 12u^5 - 4u^4 - 14u^3 + 8u^2 + 2u - 12u^4 - 14u^4 - 1$$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}	$u^{11} + u^{10} - 10u^9 - 9u^8 + 32u^7 + 20u^6 - 30u^5 + 8u^4 + 7u^3 - 5u^2 + 1$
c_2	$u^{11} + 21u^{10} + \dots + 10u + 1$
<i>c</i> ₃	$u^{11} - 3u^{10} + \dots - 38u - 26$
c_4, c_9	$u^{11} + 3u^{10} + 2u^9 - 5u^8 - 10u^7 - 4u^6 + 8u^5 + 10u^4 - 8u^2 - 6u - 2$
c ₈	$u^{11} - 5u^{10} + \dots + 4u - 4$
c_{10}	$u^{11} + 9u^{10} + \dots + 82u + 22$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}	$y^{11} - 21y^{10} + \dots + 10y - 1$
c_2	$y^{11} - 77y^{10} + \dots + 18y - 1$
c_3	$y^{11} - 53y^{10} + \dots - 6252y - 676$
c_4, c_9	$y^{11} - 5y^{10} + \dots + 4y - 4$
<i>c</i> ₈	$y^{11} + 3y^{10} + \dots - 176y - 16$
c_{10}	$y^{11} - y^{10} + \dots + 740y - 484$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.953935 + 0.430200I		
a = 0.444004 - 0.346368I	1.43107 - 1.62893I	-1.305997 + 0.384907I
b = -0.227630 + 0.840526I		
u = -0.953935 - 0.430200I		
a = 0.444004 + 0.346368I	1.43107 + 1.62893I	-1.305997 - 0.384907I
b = -0.227630 - 0.840526I		
u = 0.503404 + 1.011810I		
a = -1.04436 + 1.58062I	19.6194 - 2.9792I	-10.19163 + 0.32130I
b = 0.182852 + 0.486960I		
u = 0.503404 - 1.011810I		
a = -1.04436 - 1.58062I	19.6194 + 2.9792I	-10.19163 - 0.32130I
b = 0.182852 - 0.486960I		
u = 1.058610 + 0.489604I		
a = -0.342079 + 0.374312I	0.85115 + 4.56323I	-3.37160 - 8.19390I
b = 0.360191 - 1.128510I		
u = 1.058610 - 0.489604I		
a = -0.342079 - 0.374312I	0.85115 - 4.56323I	-3.37160 + 8.19390I
b = 0.360191 + 1.128510I		
u = -1.34731		
a = -1.44877	-12.7233	-6.15860
b = 3.46146		
u = 0.391067 + 0.508377I		
a = 0.568725 - 0.454716I	-1.063060 - 0.421255I	-8.79110 + 2.32258I
b = 0.228216 + 0.200046I		
u = 0.391067 - 0.508377I		
a = 0.568725 + 0.454716I	-1.063060 + 0.421255I	-8.79110 - 2.32258I
b = 0.228216 - 0.200046I		
u = 1.174510 + 0.719102I		
a = 1.09810 - 1.00915I	-17.7667 + 9.2729I	-8.26036 - 4.31721I
b = -2.77436 + 1.78824I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.174510 - 0.719102I		
a =	1.09810 + 1.00915I	-17.7667 - 9.2729I	-8.26036 + 4.31721I
b =	-2.77436 - 1.78824I		

II.
$$I_2^u = \langle u^3 + u^2 + b - 2u - 1, -u^3 + 2a + 2u, u^4 - 2u^2 + 2 \rangle$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ 2u^{2} - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} - u \\ -u^{3} - u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} - u \\ -u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{3} - u \\ -u^{3} - u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{3} - u^{2} - u + 1 \\ -u^{3} + u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} - 1 \\ -2u^{2} + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} - 1 \\ -2u^{2} + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -4u^2 4$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_7	$(u+1)^4$
c_3, c_{10}	$u^4 + 2u^2 + 2$
c_4, c_9	$u^4 - 2u^2 + 2$
c_5,c_{11}	$(u-1)^4$
c ₈	$(u^2 + 2u + 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7, c_{11}	$(y-1)^4$
c_3, c_{10}	$(y^2 + 2y + 2)^2$
c_4, c_9	$(y^2 - 2y + 2)^2$
C ₈	$(y^2+4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.098680 + 0.455090I		
a = -0.776887 + 0.321797I	-0.82247 + 3.66386I	-8.00000 - 4.00000I
b = 1.55377 - 1.64359I		
u = 1.098680 - 0.455090I		
a = -0.776887 - 0.321797I	-0.82247 - 3.66386I	-8.00000 + 4.00000I
b = 1.55377 + 1.64359I		
u = -1.098680 + 0.455090I		
a = 0.776887 + 0.321797I	-0.82247 - 3.66386I	-8.00000 + 4.00000I
b = -1.55377 + 0.35641I		
u = -1.098680 - 0.455090I		
a = 0.776887 - 0.321797I	-0.82247 + 3.66386I	-8.00000 - 4.00000I
b = -1.55377 - 0.35641I		

III.
$$I_3^u = \langle -u^2 + b + a - u, \ a^2 - au + u^2 - u - 1, \ u^3 + u^2 - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a \\ u^{2} - a + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u + 1 \\ -u^{2} + 2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ u^{2}a + u^{2} - a + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2}a - 2u^{2} - u + 1 \\ -au + 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{2} + a - u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u 6

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}	$u^6 + u^5 - 4u^4 - 2u^3 + 10u^2 + 4u - 5$
c_2	$u^6 + 9u^5 + 40u^4 + 102u^3 + 156u^2 + 116u + 25$
c_3	$(u^3 + u^2 + 2u + 1)^2$
c_4, c_9	$(u^3 - u^2 + 1)^2$
c ₈	$(u^3 - u^2 + 2u - 1)^2$
c_{10}	$(u^3 - 3u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}	$y^6 - 9y^5 + 40y^4 - 102y^3 + 156y^2 - 116y + 25$
c_2	$y^6 - y^5 + 76y^4 + 38y^3 + 2672y^2 - 5656y + 625$
c_3,c_8	$(y^3 + 3y^2 + 2y - 1)^2$
c_4, c_9	$(y^3 - y^2 + 2y - 1)^2$
c_{10}	$(y^3 - 5y^2 + 10y - 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0.479677 + 1.311690I	-6.31400 - 2.82812I	-9.50976 + 2.97945I
b = -1.14204 - 1.87397I		
u = -0.877439 + 0.744862I		
a = -1.35712 - 0.56682I	-6.31400 - 2.82812I	-9.50976 + 2.97945I
b = 0.694757 + 0.004545I		
u = -0.877439 - 0.744862I		
a = 0.479677 - 1.311690I	-6.31400 + 2.82812I	-9.50976 - 2.97945I
b = -1.14204 + 1.87397I		
u = -0.877439 - 0.744862I		
a = -1.35712 + 0.56682I	-6.31400 + 2.82812I	-9.50976 - 2.97945I
b = 0.694757 - 0.004545I		
u = 0.754878		
a = -0.774732	-2.17641	-2.98050
b = 2.09945		
u = 0.754878		
a = 1.52961	-2.17641	-2.98050
b = -0.204892		

IV.
$$I_1^v = \langle a, b-1, v+1 \rangle$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	u-1
c_2, c_5, c_{11}	u+1
c_3, c_4, c_8 c_9, c_{10}	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{11}$	y-1
c_3, c_4, c_8 c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	$(u-1)(u+1)^{4}(u^{6}+u^{5}-4u^{4}-2u^{3}+10u^{2}+4u-5)$ $\cdot (u^{11}+u^{10}-10u^{9}-9u^{8}+32u^{7}+20u^{6}-30u^{5}+8u^{4}+7u^{3}-5u^{2}+1)$
c_2	$(u+1)^{5}(u^{6}+9u^{5}+40u^{4}+102u^{3}+156u^{2}+116u+25)$ $\cdot (u^{11}+21u^{10}+\cdots+10u+1)$
c_3	$u(u^{3} + u^{2} + 2u + 1)^{2}(u^{4} + 2u^{2} + 2)(u^{11} - 3u^{10} + \dots - 38u - 26)$
c_4, c_9	$u(u^{3} - u^{2} + 1)^{2}(u^{4} - 2u^{2} + 2)$ $\cdot (u^{11} + 3u^{10} + 2u^{9} - 5u^{8} - 10u^{7} - 4u^{6} + 8u^{5} + 10u^{4} - 8u^{2} - 6u - 2)$
c_5, c_{11}	$(u-1)^{4}(u+1)(u^{6}+u^{5}-4u^{4}-2u^{3}+10u^{2}+4u-5)$ $\cdot (u^{11}+u^{10}-10u^{9}-9u^{8}+32u^{7}+20u^{6}-30u^{5}+8u^{4}+7u^{3}-5u^{2}+1)$
c_8	$u(u^{2} + 2u + 2)^{2}(u^{3} - u^{2} + 2u - 1)^{2}(u^{11} - 5u^{10} + \dots + 4u - 4)$
c_{10}	$u(u^3 - 3u^2 + 2u + 1)^2(u^4 + 2u^2 + 2)(u^{11} + 9u^{10} + \dots + 82u + 22)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_{11}$	$(y-1)^{5}(y^{6} - 9y^{5} + 40y^{4} - 102y^{3} + 156y^{2} - 116y + 25)$ $\cdot (y^{11} - 21y^{10} + \dots + 10y - 1)$
c_2	$(y-1)^{5}(y^{6}-y^{5}+76y^{4}+38y^{3}+2672y^{2}-5656y+625)$ $\cdot (y^{11}-77y^{10}+\cdots+18y-1)$
c_3	$y(y^{2} + 2y + 2)^{2}(y^{3} + 3y^{2} + 2y - 1)^{2}$ $\cdot (y^{11} - 53y^{10} + \dots - 6252y - 676)$
c_4, c_9	$y(y^{2} - 2y + 2)^{2}(y^{3} - y^{2} + 2y - 1)^{2}(y^{11} - 5y^{10} + \dots + 4y - 4)$
c_8	$y(y^{2}+4)^{2}(y^{3}+3y^{2}+2y-1)^{2}(y^{11}+3y^{10}+\cdots-176y-16)$
c_{10}	$y(y^{2} + 2y + 2)^{2}(y^{3} - 5y^{2} + 10y - 1)^{2}(y^{11} - y^{10} + \dots + 740y - 484)$