The conductive cooling of planetesimals with temperature-dependent properties: tabulated results

M. Murphy Quinlan¹, A. M. Walker^{1,2}, C. J. Davies¹, J. E. Mound¹, J. Harvey¹, and T. Müller^{1,3}

¹School of Earth and Environment, University of Leeds, Leeds, UK
²Department of Earth Sciences, University of Oxford, Oxford, UK
³Geoscience Center, Georg-August-University Göttingen,
Göttingen, Germany

January 14, 2021

Table S1: $Input\ parameter\ variation$

Varied	Value	Core	Core	Duration	Esquel	Imilac
parameter		starts	ends		depth	depth
		Myr	Myr	Myr	km	km
$r_{ m p}$	600 km	1022	1201	179	31	22
$r_{ m p}$	150 km	61	86	25	52	51
$r_{ m c}$	200 km	95	157	62	27	25
$r_{ m c}$	50 km	199	240	41	93	69
d_{reg}	20 km	245	326	81	44	30
d_{reg}	0 km	159	230	70	64	57
$k_{ m m}$	$4 \text{ W m}^{-1} \text{ K}^{-1}$	132	185	53	77	67
$k_{ m m}$	$1.5~{ m W}~{ m m}^{-1}~{ m K}^{-1}$	330	400	70	42	36
$c_{ m m}$	$2000 \text{ J kg}^{-1} \text{ K}^{-1}$	293	383	90	37	32
$c_{ m m}$	$600 \text{ J kg}^{-1} \text{ K}^{-1}$	148	215	67	71	65
$ ho_{ m m}$	$3560 \text{ kg m}{-3}$	177	249	71	62	55
$ ho_{ m m}$	$2500 \text{ kg m}{-3}$	149	216	67	71	64
$c_{ m c}$	$850 \text{ J kg}^{-1} \text{ K}^{-1}$	172	242	71	64	57
$c_{\rm c}$	$780 \text{ J kg}^{-1} \text{ K}^{-1}$	166	237	71	65	58
$ ho_{ m c}$	$7800 \text{ kg m}{-3}$	172	242	71	64	57
$ ho_{ m c}$	$7011 \text{ kg m}{-3}$	164	229	65	65	58
$T_{ m init}$	1820 K	213	283	70	57	51
T_{init}	$1450 \; { m K}$	138	210	72	70	62
$T_{ m surf}$	300 K	176	250	74	58	52
$T_{ m surf}$	150 K	164	228	65	75	67
$l_{ m c}$	$2.56 \times 10^5 \text{ J K}^{-1} \text{ kg}^{-1}$	172	239	67	64	57
$T_{ m L}$	1213 K	168	238	70	64	57

 $Note: \mbox{ Model results with maximised and minimised constant values for parameters.} \\ \mbox{ References for parameter choices given in Table 1 in the main text.}$

Table S2: Sensitivity test of constant model

Varied	Value	Core	Core	Duration	Esquel	Imilac
parameter		starts	\mathbf{ends}		$\overline{\operatorname{depth}}$	depth
		Myr	Myr	Myr	km	km
$r_{\rm p} + 10\%$	275 km	210	296	86	64	56
$r_{\rm p} - 10\%$	$225~\mathrm{km}$	146	204	58	66	58
$r_{\rm c} + 10\%$	138 km	167	241	74	58	53
$r_{\rm c}~-10\%$	113 km	185	252	67	70	61
$d_{\rm reg} + 1 \ {\rm km^a}$	9 km	172	242	71	64	57
$d_{\rm reg} - 1 \; {\rm km^a}$	$7~\mathrm{km}$	165	236	70	64	57
$k_{\rm m} + 10\%$	$3.3~{ m W}~{ m m}^{-1}~{ m K}^{-1}$	157	221	64	68	60
$k_{\rm m}$ -10%	$2.7~{ m W}~{ m m}^{-1}~{ m K}^{-1}$	189	268	78	61	54
$C_{\rm m} + 10\%^{\rm b}$	$901 \text{ J kg}^{-1} \text{ K}^{-1}$	180	252	72	61	54
$C_{\rm m} - 10\%^{\rm b}$	$737 \text{ J kg}^{-1} \text{ K}^{-1}$	163	232	69	67	60
$\rho_{\rm m} + 10\%^{\rm b}$	3675 kg m^{-3}	180	252	72	61	54
$\rho_{\rm m} - 10\%^{\rm b}$	3007 kg m^{-3}	163	232	69	67	60
$C_{\rm c} + 10\%^{\rm c}$	$935 \text{ J kg}^{-1} \text{ K}^{-1}$	179	248	70	63	57
$C_{\rm c} -10\%^{\rm c}$	$765 \text{ J kg}^{-1} \text{ K}^{-1}$	164	236	71	65	58
$\rho_{\rm c} + 10\%^{\rm c}$	8580 kg m^{-3}	179	248	70	63	57
$\rho_{\rm c} - 10\%^{\rm c}$	7020 kg m^{-3}	164	236	71	65	58
$T_{\rm init}$ +10%	1760 K	202	272	70	59	53
$T_{\rm init}$ -10%	1440 K	135	208	72	70	63
$T_{\rm surf} + 10\%$	275 K	174	246	72	61	55
$T_{\rm surf} - 10\%$	$225~\mathrm{K}$	169	238	69	67	60
$l_{\rm c}$ +10%	$2.97 \times 10^5 \text{ J K}^{-1} \text{ kg}^{-1}$	172	249	77	64	57
$l_{\rm c}$ -10%	$2.43 \times 10^5 \text{ J K}^{-1} \text{ kg}^{-1}$	172	236	64	64	57
$T_{\rm L} + 10\%$	1320 K	137	202	65	64	57
$T_{\rm L} - 10\%$	1080 K	209	288	79	64	57

Note: Model results with parameters varied to $\pm 10~\%$ of the default value. References for parameter choices given in Table X in the main text. ^aRegolith thickness increased or decreased by 1 km as 10 % (0.8 km) is smaller than δr . ^bIncreasing or decreasing $C_{\rm m}$ or $\rho_{\rm m}$ by 10 % in effect results in a change in ρc by 10 %. ^c As for ^b with core properties.