SPRINTEINS

MLOPS VON DER IDEE ZUM DEPLOYMENT

KI Summer Summit 2025 Hands-on Workshop Kaywan Barzani / Ahmad Salah DevOps / MLOps Engineer @ SprintEins

WORKSHOP-ÜBERBLICK

Ziel & Zielgruppe

WAS DU LERNEN WIRST:

- ML-Lebenszyklus verstehen und strukturieren
- MLflow sicher in eigene Projekte integrieren
- Unterschiede zu klassischer Softwareentwicklung erkennen

FÜR WEN:

- DevOps- & Data-Teams
- Data Scientists
- ML-Neugierige & Einsteiger im MLOps-Umfeld

Ablauf (2 Stunden)

15 MIN	EINFÜHRUNG MLOPS Warum MLOps? Typische Stolpersteine
30 MIN	MIFLOW BASICS Tracking, Model Registry, Hands-on
45 MIN	Training, Logging, Auswertung, Deployment
30 MIN	und, wie sieht's вегеисн aus? Fakten statt Ausreden: Was hält euch wirklich von MLOps ab?

Was ihr braucht

mit Internet

Jupyter Notebooks

PAKET-INSTALLATION via pip

роскек резктор optional für Deployment

WER SIND WIR?

Kaywan Barzani

Lorem ipsum sit dolor

Ahmad Salah

Lorem ipsum sit dolor

WAS IST MLOPS?

MLOps ist die Brücke zwischen ML-Entwicklung und Produktion

Machine Learning Operations kombiniert bewährte Methoden aus DevOps, DataOps und Machine Learning, um den gesamten ML-Lebenszyklus zu optimieren.

MLOPS = DEVOPS + DATAOPS + MODELOPS

CI/CD + Continuous Training + Continuous Monitoring

- Continuous Integration
- Continuous Deployment
- Automatisierung
- Versionskontrolle

DATAOPS

- Datenqualität
- Daten-Pipelines
- Datenversionierung
- Datenvalidierung

MODELOPS

- Modell-Training
- Modell-Deployment
- Modell-Monitoring
- Modell-Governance

WAS IST MLOPS?

HAUPTZIELE

- Schnellere Time-to-Market
- Höhere Modellqualität
- Bessere Skalierbarkeit
- Reduzierte Risiken

KERNIDEE

Struktur und Automatisierung in den ML-Lebenszyklus bringen – von der Entwicklung bis zur kontinuierlichen Überwachung in Produktion.

WARUM MLOPS?

TYPISCHE STOLPERSTEINE VON ML-PROJEKTEN

- Chaotische Notebooks
 Unstrukturierter Code, keine Versionierung
- Verlorene Experimente "Welche Parameter waren das nochmal?"
- Deployment-Probleme"Auf meinem Laptop funktioniert es!"
- Keine ReproduzierbarkeitErgebnisse nicht nachvollziehbar
- Modell-Versionierung Welches Modell läuft in Produktion?

MLOPS ALS LÖSUNG

- Strukturierte Workflows
 Klare Prozesse und Standards
- Experiment Tracking
 Alle Parameter und Metriken dokumentiert
- Automatisiertes Deployment Konsistente Umgebungen
- Reproduzierbarkeit
 Jedes Experiment nachvollziehbar
- Model Registry
 Zentrale Modellverwaltung

WARUM MLOPS?

Der Unterschied zu klassischer Softwareentwicklung

DATENABHÄNGIGKEIT

Code + Daten + Parameter = Model

EXPERIMENTELLER CHARAKTER

- Trial & Error
- Hyperparameter-Tuning

PERFORMANCE-DRIFT

Modelle verschlechtern sich über die Zeit

MLOPS tOOL-LANDSCHAFT

Die richtige Auswahl für jeden Anwendungsfall

VENDOR END-TO-END

- AWS SageMaker
 Vollständige ML-Plattform
 von Amazon
- Azure ML
 Microsoft's Cloud ML-Service
- Google Vertex AI
 Google's einheitliche
 ML-Plattform

OPEN SOURCE END-TO-END

- Kubeflow
 ML-Workflows auf
 Kubernetes
- ClearML
 Experiment Management & AutoML
- ZenML
 Portable ML-Pipeline
 Framework

SPEZIALISIERTE TOOLS

- Mlflow Experiment Tracking & Model Registry
- DVC
 Data Version Control
- Weights & Biases
 Experiment Tracking & Visualization

√ Vollständig integriert

√ Flexibel & kostenlos

√ Best-of-Breed

WIE WÄHLE ICH DIE RICHTIGEN TOOLS?

TEAMGRÖSSE & EXPERTISE

- Kleine Teams → spezialisierte Tools
- Große Teams → Plattformen

KOMPLEXITÄT

• Einfache Projekte vs. Enterprise-Anforderungen

RUDGET

 Open Source vs. kommerzielle Lösungen

COMPLIANCE

Datenschutz und Sicherheitsanforderungen

MLFLOW ALS PRAKTISCHE LÖSUNG

Open-Source-Plattform für den gesamten ML-Lebenszyklus

MLFLOW

Das Toolkit für reproduzierbare, skalierbare und kollaborative ML-Projekte

TRACKING

- Parameter loggen
- Metriken verfolgen
- Artefakte speichern
- Experimente vergleichen

MODELS

- Einheitliches Format
- Multi-Framework
- Deployment-ready
- Reproduzierbar

REGISTRY

- Zentrale Verwaltung
- Versionierung
- Staging/Production
- Governance

DEPLOYMENT

- REST APIs
- Docker Container
- Cloud Platforms
- Batch Inference

MLFLOW ALS PRAKTISCHE LÖSUNG

VORTEILE

- Open Source:
 Kostenlos und erweiterbar
- Framework-agnostisch:
 Funktioniert mit allem
- Einfache Integration: Wenige Zeilen Code
- Skalierbar:
 Von Prototyp bis Enterprise

MLflow löst genau die Probleme, die wir in unserem Hands-on erleben werden: Experimente nachverfolgen, Modelle verwalten und bereitstellen.

WIR WERDEN
ALLE VIER
KOMPONENTEN
PRAKTISCH
KENNENLERNEN!

HANDS-ON: WAS WIR GEMEINSAM BAUEN

Unser Praxisbeispiel: Iris-Datensatz

Iris Flower Classification
150 Datenpunkte • 4 Features • 3 Klassen

Warum Iris?

- Klassischer ML-Datensatz jeder kennt ihn
- Klein und überschaubar
- Perfekt f
 ür MLOps-Konzepte
- Schnelle Trainingszeiten

Unser Workflow

- Datenexploration
 Iris-Datensatz laden und verstehen
- MLflow Setup
 Tracking-Server starten, erste Runs
- Modelltraining
 Random Forest mit verschiedenen Parametern
- Experiment Tracking
 Parameter, Metriken, Plots loggen
- Model Registry
 Bestes Modell registrieren und versionieren
- Deployment
 REST-API erstellen und testen

WAS WIR AM ENDE HABEN WERDEN

Los geht's!

Zeit für praktische Übungen

SCHNELLE CHECKLISTE

- ✓ Laptop bereit & Internet verbunden
- ✓ Python-Umgebung funktioniert
- ✓ Jupyter Notebook kann gestartet werden
- ✓ pip install bereit für MLflow & Co.

UNSER WEG

- Jupyter Notebook öffnen
- MLflow installieren & starten
- Iris-Datensatz erkunden
- Erstes Modell trainieren

Fragen? Probleme? Einfach melden!