Taxonomy of Network Analysis Indicators Macro, Meso, and Node-Level Measures

SMM638 Network Analytics

Three Levels of Analysis

Network indicators operate at different scales:

Level	Focus	Questions
Macro	Entire network	How big? How centralized?
		How connected?
Meso	Groups/CommunitieAre there clusters of	
		nodes? How modular?
Micro/Node	Individual	Who is central? Who
	positions	bridges groups?

Key Principle: Different levels reveal different insights

- ► Macro: Overall structure and properties
- ► Meso: Subgroup organization
- Micro: Individual advantages and constraints

Macro-Level Indicators

Whole Network Properties

Characterize the overall structure and global patterns

Key Measures:

- 1. **Network Size**: Number of nodes and edges
- 2. **Density**: Proportion of possible connections realized
- 3. Centralization: Concentration of connections
- 4. **Diameter**: Maximum distance between any two nodes
- 5. Average Path Length: Mean distance across all pairs
- 6. **Fragmentation**: Presence of disconnected components

Purpose: Understand network-wide characteristics and compare across networks

Example: Network Size and Density **Definition:** Basic structural properties

- Node count: Total number of
 - vertices (n)
 - **► Edge count**: Total number of connections (m)
- **Possible edges**: $\frac{n(n-1)}{2}$ for undirected networks

Business Example: LinkedIn Network

- ► Small startup network (50
 - employees)

 Possible connections: 1,225
 - Observed connections: 245
 Density: 20%
- Large corporation network
- (5,000 employees)
 - Possible connections: 12,497,500
 - Observed connections: 187,500
 Density: 1.5%

B

Network Metrics:

Nodes (n) 5

Edges (m)

6 Possible Edges

Density 60.0%

10

Example: Centralization

Definition: Extent to which connections concentrate around few nodes

- High centralization: Star-like, hierarchical structure
- **Low centralization**: Distributed, egalitarian structure

Business Example: Communication Patterns

Startup (Low Centralization = 0.25)

Flat structure with distributed

- communication

 Multiple people coordinate projects
- Information flows through many channels

Traditional Corporation (High Centralization = 0.78)

► Hub-and-spoke: most

Network Metrics:

Network Size Density

Higher centralization (top) 5 nodes, 4 edges

40.0%

Meso-Level Indicators

Community and Subgroup Structure

Identify cohesive groups and organizational patterns

Key Measures:

- 1. **Modularity**: Quality of network partitioning into groups
- 2. **Community Detection**: Algorithmic identification of clusters
- Core-Periphery: Distinction between dense core and sparse periphery
- 4. **Structural Holes**: Gaps between groups creating brokerage opportunities
- 5. k-cores: Subgraphs where all nodes have minimum degree k

Purpose: Reveal hidden organizational structure and group boundaries

Example: Network Modularity

Definition: Strength of division into communities

- Measures how well network separates into distinct groups
- Higher values indicate stronger community structure

Business Example: Corporate R&D

Network

Higher Modularity

- Clear separation: Chemistry, Biology, Engineering teams
- Limited cross-disciplinary collaboration
- Potential for siloed innovation

Lower Modularity

- Extensive cross-team connections
 - Interdisciplinary collaboration
- Potential for breakthrough

taran erre ett earrille og erre earrille ett er

Note

The top network seems to have two communities ({A,

B, C} and {D, E, F} triads)

Node-Level Indicators

Individual Position and Influence

Characterize actor positions within the network

Major Categories:

- 1. Centrality Measures: Various ways to measure importance
 - Degree, Closeness, Betweenness, Eigenvector
- 2. Structural Position: Role in network architecture
 - Bridges, Brokers, Isolates, Cliques
- 3. Local Clustering: Cohesion of immediate neighborhood
- 4. Embeddedness: Integration into network structure

Purpose: Identify influential actors, structural advantages, and vulnerabilities

i Note

Summary: Levels in Practice

Integrated Analysis Framework:

 $\textbf{Macro Level} \rightarrow \mathsf{Strategic organizational \ design}$

- ▶ Should we have a centralized or distributed structure?
- ► How connected is our organization overall?

Meso Level \rightarrow Team and department dynamics

- Are we too siloed or too integrated?
- ▶ Where are the boundaries between groups?

Micro Level → Individual talent management

- ▶ Who are our key connectors and influencers?
- Who has structural advantages or disadvantages?
 - Important

Best Practice: Analyze networks at multiple levels simultaneously for comprehensive insights