Adversarial Weakness Recognition for Efficient Black-Box Validation

Efficiently select candidate failures to avoid exhaustive validation

Robert J. Moss

Computer Science Stanford University mossr@cs.stanford.edu

Motivation: Black-box validation

- 1. Validate a black-box system without exhaustively iterating the entire validation set
 - Want to focus on failure cases.
- 2. Automate the process of selecting failures
 - Do not want to hand pick failures, or randomly sample candidate inputs to test
- 3. Intended for systems that are computationally expensive to call
 - Also intended for very large datasets that may be computationally intractable to exhaustively evaluate

Method: Validation Framework

Black-Box System Under Test: MNIST classifier

- MNIST classifier trained on 60,000 28x28 gray-scale images
 - Used the Julia machine learning package Flux.jl for modelling and training
 - Two dense layers with a ReLU activation
 - Trained using the logit cross-entropy loss function: $\mathcal{L}_{\mathcal{S}}(\operatorname{softmax}(\hat{\mathbf{y}}), \mathbf{y}) = -\frac{1}{m} \sum_{i=1}^{m} y_i \log(\hat{y}_i)$
- Treated as a "black-box" system
 - We only care about passing inputs and parsing outputs
- Achieves about 93.2% accuracy, so known failures exist
 - Failure is defined as a *misclassification*
 - Example: misclassified this 7 incorrectly as a 1

Dataset Autoencoder: Low-dimensional representation

- Represent dataset inputs x as a low-dimensional vector (trained on MNIST test dataset)
 - 1. Reduces the input size
 - 2. We can learn low-dimensional feature representations that led to failures
- Trained as a unsupervised autoencoder network, using LeakyReLU activations
 - We use the mean squared error loss:

$$\mathcal{L}_{\mathcal{E}}(\mathbf{x}', \mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} (x_i' - x_i)^2$$

Adversarial Failure Classifier: Select failures

- Adversary is framed as a failure classifier, trained on the portion of low-dimensional samples
 - Trained using the binary cross-entropy loss function
- Failure prediction is output after being passed through a sigmoid layer to turn it into a probability

$$\mathcal{L}_{\mathcal{A}}(\hat{\mathbf{y}}, \mathbf{y}) = -\frac{1}{m} \sum_{i=1}^{m} y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$

Experiments: ROC and AUC

- To assess the false positive rate and true positive rate, ROC curves and their AUC were calculated
 - We also swept the prediction threshold to balance the trade-off between *precision* and *recall*

Experiments: Confusion matrices

- ullet Confusion matrices for the classification system under test ${\mathscr S}$ and adversarial failure classifier ${\mathscr A}$
 - System under test predicts well, which makes it tough for the adversary to predict rare failures

Results and Analysis: Evaluation metrics

- Metrics of *precision* and *recall* were used to evaluate the adversary against a random selector
 - During the sampled validation iteration loop (i.e. the framework loop), the adversary will select failures at a rate 3 times more likely than random
 - The system has a true failure rate of about 0.0677, which roughly matches the precision of *random*
 - Precision for the adversary is much higher, given that the rate of true failures is so low
 - The balance of precision and recall is also good for the adversary

Table 1: Evaluation Metrics

Failure Selector	Precision*	Recall*	Sampled Precision [†]	Sampled Recall [†]
Adversary A	0.2441	0.2260	0.2374 ± 0.11	0.3244 ± 0.17
Random	0.0647	0.4712	0.0618 ± 0.04	0.0910 ± 0.07

^{*} Run over $\mathcal{D}_{\text{test}}$ only calculated for the "failure" class.

[†] Calculated from T = 10 iterations of the sampled validation loop.

Results and Analysis: Failure feature space

- We took 64 one-hot vectors, each of size 64, and "activated" each individual index then decoded
 - **Left**: this shows a mapping of the low-dimensional (64) encoded space back to images (28x28)
 - **Right**: we then use the adversary to generate a likelihood value given each of these one-hot vectors
 - This indicates the areas of the features that are likely to cause failures

Results and Analysis: Analyzing predictions

- ullet Each function takes a custom simulation object S as input, and may modify it in place
 - We show *true positives* and *false negatives*, noticing similar feature representations (middle row)
 - We also show the highest likely predicted failures (with indications whether they're true failures or not)

true positives

false negatives

likely failures

Visualizations: Failure likelihood per pixel

• To see which element of the low-dimensional feature vector contributed the most to a likely failure as predicted by the adversary, we encode a one-hot vector over $\mathbb{R}^{28\times28}$ and plot the likelihood per pixel

Conclusions: Discussion and future work

- We propose a validation framework for iteratively selecting candidate failures
 - With the intention to reduce computational load on the system under test
- Use an autoencoder to get a low-dimensional representation on the inputs
 - Learn which low-dimensional features are likely to result in a failure
- A supervised adversarial failure classifier selects candidate inputs that are likely to be system failure
 - Selects failures 3 times more likely than random—especially important for a system with rare failures
- Future work would extend this framework into a continual learning domain
 - How can we learn from these failures to improve the system under test?
 - Then, can we use past known failures to look for failures in the updated system?