$$f_0(1710)$$

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See our mini-review in the 2004 edition of this *Review*, Physics Letters **B592** 1 (2004). See also the mini-review on scalar mesons under $f_0(500)$ (see the index for the page number).

f₀(1710) MASS

,							
VALUE (MeV)		EVTS	DOCUMENT I	ID	TECN	COMMENT	
1723 ⁺ 6 5	OUR	AVERAG	E Error include	s scale fa	ctor of	1.6. See the ideogram below.	
1759± 6	$^{+14}_{-25}$	5.5k	¹ ABLIKIM	13N	BES3	$e^+e^- o J/\psi o \gamma\eta\eta$	
1750^{+}_{-} $^{6}_{7}$	$^{+29}_{-18}$		UEHARA	13	BELL	$\gamma\gamma ightarrow \ \kappa_S^0 \kappa_S^0$	
1701± 5	+ 9 - 2	4k	² CHEKANO	V 08	ZEUS	$ep \rightarrow K_S^0 K_S^0 X$	
$1765 + 4 \\ - 3$	± 13		ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$	
1760 ± 15	$^{+15}_{-10}$		³ ABLIKIM	05Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$	
1738 ± 30			ABLIKIM	04E	BES2	$J/\psi \rightarrow \omega K^+ K^-$	
1740± 4	$^{+10}_{-25}$		⁴ BAI	03 G	BES	$J/\psi \rightarrow \gamma K \overline{K}$	
1740^{+30}_{-25}			⁴ BAI	00A	BES	$J/\psi \to \gamma (\pi^+\pi^-\pi^+\pi^-)$	
1698 ± 18			⁵ BARBERIS	00E		450 $pp \rightarrow p_f \eta \eta p_s$	
1710 ± 12	± 11		⁶ BARBERIS	99 D	OMEG	450 $pp \rightarrow K^+K^-, \pi^+\pi^-$	
1710 ± 25			⁷ FRENCH	99		300 $pp \to p_f(K^+K^-)p_s$	
1707 ± 10			⁸ AUGUSTIN	88	DM2	$J/\psi \rightarrow \gamma K^{+} K^{-}, K_{S}^{0} K_{S}^{0}$	
1698 ± 15			⁸ AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$	
1720 ± 10	± 10		⁹ BALTRUSA	IT87	MRK3	$J/\psi \rightarrow \gamma K^+ K^-$	
1742 ± 15			⁸ WILLIAMS	84	MPSF		
1670 ± 50			BLOOM	83	CBAL	$J/\psi ightarrow \ \gamma 2\eta$	
• • • We	do not	use the fo	ollowing data for	averages		• •	
1744± 7	± 5	381 1	0,11 DOBBS	15		$J/\psi \rightarrow \gamma \pi^+ \pi^-$	
1705 ± 11	\pm 5		0,11 DOBBS	15		$\psi(2S) \rightarrow \gamma \pi^+ \pi^-$	
1706± 4	\pm 5		0,11 DOBBS	15		$J/\psi \rightarrow \gamma K^+ K^-$	
1690± 8	± 3		0,11 DOBBS	15		$\psi(2S) \rightarrow \gamma K^+ K^-$	
1750 ± 13	_ •	0.0	AMSLER	06	CBAR		
1747± 5		80k 1	2,13 UMAN	06	E835		
1776 ± 15			VLADIMIRS		SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$	
1790^{+40}_{-30}			³ ABLIKIM	05	BES2	$J/\psi \rightarrow \phi \pi^+ \pi^-$	
1670 ± 20			¹² BINON	05	GAMS	33 $\pi^- p \rightarrow \eta \eta n$	
1726 ± 7		74	13 CHEKANO		ZEUS	$ep \rightarrow K_S^0 K_S^0 X$	
1732+15			¹⁴ ANISOVICH		RVUE	3 3	
1682 ± 16			TIKHOMIR		SPEC	40.0 $\pi^- C \rightarrow K_S^0 K_S^0 K_I^0 X$	
1670 ± 26		3.6k	^{4,15} NICHITIU	02	OBLX	5 5 L	
1770 ± 12			6,17 ANISOVICE		SPEC	0.6–1.2 $p\overline{p} \rightarrow \eta \eta \pi^0$	

Page 1

```
<sup>4</sup> BARBERIS
                                                                                OMEG 450 pp \rightarrow p_S p_f K^+ K^-
1730\pm15
                                             <sup>4</sup> BARBERIS
                                                                       99B OMEG 450 pp \to p_s p_f \pi^+ \pi^-
1750 \pm 20
                                            <sup>18</sup> ANISOVICH
                                                                       98B RVUE Compilation
1750 \pm 30
                                                                                            J/\psi \rightarrow \gamma \pi^0 \pi^0
                                                BAI
                                                                       98H BES
1720 \pm 39
                                                                       98 \pi^- p \rightarrow K_S^0 K_S^0 n
96C DLPH Z^0 \rightarrow K^+ K^- + X
                                           <sup>19</sup> BARKOV
                                 57
1775 \pm 1.5
                                            <sup>20</sup> ABREU
1690\pm11
                                             9 BAI
                                                                                            J/\psi \rightarrow \gamma K^+ K^-
1696\pm~5
                                                                       96c BES
                                                                       96C BES J/\psi \rightarrow \gamma K^+ K^-
                                             <sup>4</sup> BAI
1781 \pm 8
                                                                               SPEC 40 \pi^- C \rightarrow K_S^0 K_S^0 X MRK3 J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-
1768 \pm 14
                                                BALOSHIN
                                            <sup>21</sup> BUGG
1750\pm15
                                             ^9 BUGG 95 MRK3 J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^- 8 ARMSTRONG 93C E760 \overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma
1620\pm16
1748 \pm 10
                                                                                SFM pp \rightarrow pp\pi^{+}\pi^{-}\pi^{+}\pi^{-}
\sim 1750
                                                BREAKSTONE 93
                                           <sup>22</sup> ALDE
                                                                       92D GAM2 38 \pi^- p \rightarrow \eta \eta n
1744 \pm 15
                                           ^{23} ARMSTRONG 89D OMEG 300 pp 
ightarrow ppK^+K^-
1713 \pm 10
                                           ^{23} armstrong 89D omeg 300 pp 
ightarrow pp ^0_S ^0_S
1706\pm10
                                                                               SPEC 40 \pi^- p \rightarrow K_S^0 K_S^0 n

SPEC 40 \pi^- p \rightarrow K_S^0 K_S^0 n

DM2 J/\psi \rightarrow \phi K^+ K^-, K_S^0 K_S^0

DM2 J/\psi \rightarrow \phi K^+ K^-, K_S^0 K_S^0
                                             <sup>9</sup> BOLONKIN
1700 \pm 15
                                             <sup>4</sup> BOLONKIN
1720 \pm 60
                                           <sup>24</sup> FALVARD
1638 \pm 10
                                           <sup>25</sup> FALVARD
1690 \pm 4
                                                                       86C GAM2 38 \pi^- p \rightarrow n2\eta
                                           <sup>26</sup> ALDE
1755 \pm 8
                                                                                RVUE 22 \pi^- p \rightarrow n2K_S^0
1730^{+}_{-10}
                                           <sup>27</sup> LONGACRE
                                                                       86
                                                                                MRK2 J/\psi \rightarrow \gamma 2\rho
1650 \pm 50
                                                BURKE
                                       ^{28,29} EDWARDS
                                                                       82D CBAL J/\psi \rightarrow \gamma 2\eta
82C MPS 23 \pi^- p \rightarrow n2 K_S^0
1640 \pm 50
                                           30 ETKIN
1730\pm 10 \pm 20
   <sup>1</sup> From partial wave analysis including all possible combinations of 0^{++}, 2^{++}, and 4^{++}
   In the SU(3) based model with a specific interference pattern of the f_2(1270), a_2^0(1320),
      and f_2'(1525) mesons incoherently added to the f_0(1710) and non-resonant background.
   <sup>3</sup> This state may be different from f_0(1710), see CLOSE 05.
   {}_{-}^{4}J^{P}=0^{+}.
   <sup>5</sup> T-matrix pole.
   <sup>6</sup>Supersedes BARBERIS 99 and BARBERIS 99B.
   ^7J^P=0^+, supersedes by ARMSTRONG 89D.
   ^{8} No J^{PC} determination.
   {}^{9}_{2}J^{P}=2^{+}_{2}
  ^{
m 10} Using CLEO-c data but not authored by the CLEO Collaboration.
  ^{11} From a fit to a Breit-Wigner line shape with fixed \Gamma=135 MeV.
  <sup>12</sup> Breit-Wigner mass.
  ^{13}Systematic errors not estimated.
 14 K-matrix pole, assuming J^P=0^+, from combined analysis of \pi^-p\to\pi^0\pi^0 n,\pi^-p\to K\overline{K}n,\pi^+\pi^-\to\pi^+\pi^-, \overline{p}p\to\pi^0\pi^0\pi^0,\pi^0\eta\eta,\pi^0\pi^0\eta,\pi^+\pi^-\pi^0, K^0_SK^0_S\pi^0, K^+K^0_S\pi^- at rest, \overline{p}n\to\pi^-\pi^-\pi^+, K^0_SK^-\pi^0, K^0_SK^0_S\pi^- at rest.
```

¹⁵ Decaying to $f_0(1370) \pi \pi$.

¹⁷Not seen by AMSLER 02.

 18 T-matrix pole, assuming $J^P=0^+$

 $^{16}J^P = 0^+$.

- ¹⁹ No J^{PC} determination. ²⁰ No J^{PC} determination, width not determined. ²¹ From a fit to the 0^+ partial wave. ²² ALDE 92D combines all the GAMS-2000 data. ²³ $J^P = 2^+$, superseded by FRENCH 99. ²⁴ From an analysis ignoring interference with f_2' (1525).
- ²⁵ From an analysis including interference with $\bar{f}_2'(1525)$.
- 26 Superseded by ALDE 92D.
- 27 Uses MRK3 data. From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but assuming spin 2. Fit with constrained inelasticity. $28 J^P = 2^+$ preferred. $29 \text{ From fit neglecting nearby } f_2'(1525)$. Replaced by BLOOM 83.

- ³⁰ Superseded by LONGACRE 86.

$f_0(1710)$ WIDTH

						DOCUMENT ID			
139	±	8	OUR	AVERAG	E	Error includes	scale	factor o	f 1.1.
172	\pm	10	$^{+32}_{-16}$	5.5k	1	ABLIKIM	13N	BES3	$e^+e^- o J/\psi o \gamma\eta\eta$
139	+	11 12	$^{+96}_{-50}$			UEHARA	13	BELL	$\gamma\gamma ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
100	\pm	24	$^{+}_{-22}$	4k	2	CHEKANOV			$e p \rightarrow K_S^0 K_S^0 X$
145	\pm	8	± 69			ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
125	\pm	25	$^{+10}_{-15}$		3	ABLIKIM	05Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$
125	\pm	20				ABLIKIM	04E	BES2	$J/\psi \rightarrow \omega K^+ K^-$
HTTP://PDG.LBL.GOV				,	Page	3	(Created: 5/30/2017 17:21	

03G BES

 $J/\psi \rightarrow \gamma K \overline{K}$

⁴ BAI

166

```
50
                                                                                     J/\psi \rightarrow \gamma (\pi^+\pi^-\pi^+\pi^-)
                                          <sup>4</sup> BAI
                                                                  00A
                                                                          BES
120
                                          <sup>5</sup> BARBERIS
                                                                  00E
120\ \pm\ 26
                                                                                     450 pp \rightarrow p_f \eta \eta p_s
                                                                  99D OMEG 450 pp \rightarrow \dot{K} + K - , \pi + \pi -
                                          <sup>6</sup> BARBERIS
126\ \pm\ 16
                  \pm 18
                                                                                     300 pp \rightarrow p_f(K^+K^-)p_S

J/\psi \rightarrow \gamma K^+K^-, K_S^0 K_S^0
                                          <sup>7</sup> FRENCH
                                                                  99
105 \pm 34
                                          <sup>8</sup> AUGUSTIN
166.4 \pm 33.2
                                                                  88
                                                                          DM2
                                                                                     J/\psi \rightarrow \gamma \pi^+ \pi^-
                                          <sup>8</sup> AUGUSTIN
136
       \pm 28
                                                                  87
                                                                          DM2
                                          9 BALTRUSAIT...87
                                                                          MRK3 J/\psi \rightarrow \gamma K^+ K^-
130
      \pm
           20
                                                                          MPSF 200 \pi^- N \rightarrow 2K_S^0 X
                                        <sup>10</sup> WILLIAMS
 57 \pm 38
                                                                  84
                                                                  83
                                                                          CBAL J/\psi \rightarrow \gamma 2\eta
160 \pm 80
                                            BLOOM
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                          CBAR 1.64 \overline{p}p \rightarrow K^+K^-\pi^0
                                            AMSLER
                                                                  06
            30
                                                                          E835 5.2 \overline{p}p \rightarrow \eta \eta \pi^0
                                     3,11 UMAN
188 \pm 13
                             80k
                                                                  06
                                                                          SPEC 40 \pi^- p \rightarrow K_S^0 K_S^0 n
250 \pm 30
                                            VLADIMIRSK...06
       + 60
- 30
                                        <sup>12</sup> ABLIKIM
                                                                          BES2 J/\psi \rightarrow \phi \pi^+ \pi^-
270
                                                                  05
                                          3 BINON
                                                                          GAMS 33 \pi^- p \rightarrow \eta \eta n
       \pm 50
260
                                                                          ZEUS ep \rightarrow K^0_S K^0_S X
                                        <sup>11</sup> CHEKANOV
 38
                                                                  04
                                    13,14 ANISOVICH
144 \pm 30
                                                                          RVUE
                                                                  03
                                    <sup>14,15</sup> ANISOVICH
                                                                          RVUE
320
                                                                  03
                                                                          SPEC 40.0 \pi^- C \rightarrow K_S^0 K_S^0 K_I^0 X
102 \pm
                                            TIKHOMIROV 03
           26
                                     4,16 NICHITIU
267
       \pm 44
                                                                  02
                                                                          OBLX
                                    17,18 ANISOVICH
                                                                  99B SPEC 0.6–1.2 p\overline{p} \rightarrow \eta \eta \pi^0
220 \pm 40
                                                                          OMEG 450 pp \rightarrow p_s p_f K^+ K^-
100 \pm 25
                                          <sup>4</sup> BARBERIS
                                                                        OMEG 450 pp \rightarrow p_s p_f \pi^+ \pi^-
                                          <sup>4</sup> BARBERIS
160 \pm 30
                                                                  99B
                                        <sup>19</sup> ANISOVICH
                                                                  98B RVUE Compilation
250 \pm 140
                                        <sup>20</sup> BARKOV
                                                                                     \pi^- p \rightarrow K_S^0 K_S^0 n
                               57
                                                                  98
 30
       \pm
                                          9 BAI
                                                                  96c BES
                                                                                     J/\psi \rightarrow \gamma K^+ K^-
103
       \pm 18
                                                                                     J/\psi \rightarrow \gamma K^+ K^-
                                          <sup>4</sup> BAI
                                                                  96c BES
       \pm 24
                                                                          SPEC 40 \pi^- C \rightarrow K_S^0 K_S^0 X
                                                                  95
      \pm 19
                                            BALOSHIN
 56
                                        <sup>21</sup> BUGG
                                                                          MRK3 J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-
       \pm 40
160
       + 60
                                                                          MRK3 J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-
                                          9 BUGG
160
                                                                  95
                                                                                     \overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma
                                          <sup>8</sup> ARMSTRONG 93C E760
264
       \pm 25
                                                                                     pp \rightarrow pp\pi^{+}\pi^{-}\pi^{+}\pi^{-}
200
       to 300
                                            BREAKSTONE 93
                                                                          SFM
                                        <sup>22</sup> ALDE
                                                                         GAM2 38 \pi^- p \rightarrow \eta \eta N^*
                                                                  92D
< 80 90% CL
                                        ^{23} ARMSTRONG 89D OMEG 300 pp 
ightarrow ppK^+K^\circ
181 \pm 30
                                        <sup>23</sup> ARMSTRONG 89D OMEG 300 pp \rightarrow ppK_S^0K_S^0
104
       \pm 30
                                                                         SPEC 40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n

SPEC 40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n

DM2 J/\psi \rightarrow \phi K^{+} K^{-}, K_{S}^{0} K_{S}^{0}

DM2 J/\psi \rightarrow \phi K^{+} K^{-}, K_{S}^{0} K_{S}^{0}
                                          <sup>9</sup> BOLONKIN
 30 \pm 20
                                          <sup>4</sup> BOLONKIN
350 \pm 150
148 \ \pm \ 17
                                        <sup>24</sup> FALVARD
                                                                  88
                                        <sup>25</sup> FALVARD
                                                                  88
184 \pm 6
      + 74
- 15
                                                                          RVUE 22 \pi^- p \rightarrow n2K_S^0
122
                                        <sup>26</sup> LONGACRE
                                                                  86
```

```
82 MRK2 J/\psi \rightarrow \gamma 2\rho
200 \pm 100
                                                      BURKE
220 \begin{array}{c} +100 \\ -70 \end{array}
                                           <sup>27,28</sup> EDWARDS
                                                                                82D CBAL J/\psi 
ightarrow \gamma 2\eta
200 \begin{array}{c} +156 \\ - \end{array}
                                                                                82B MPS 23 \pi^- p \rightarrow n2K_S^0
                                                <sup>29</sup> ETKIN
```

$$7 J^P = 0^+$$
, supersedes by ARMSTRONG 89D.

¹⁵ (Solution I)

$$^{17}J^P = 0^+$$
.

 $^{18}\,\mathrm{Not}$ seen by AMSLER 02.

20 No JPC determination.

$f_0(1710)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\overline{K}$	seen
Γ_2	$\eta\eta$	seen
_	$\pi\pi$	seen
Γ_4	$\gamma\gamma$	
Γ ₅	$\omega \omega$	seen

¹ From partial wave analysis including all possible combinations of 0^{++} , 2^{++} , and 4^{++}

² In the SU(3) based model with a specific interference pattern of the $f_2(1270)$, $a_2^0(1320)$. and $f_0'(1525)$ mesons incoherently added to the $f_0(1710)$ and non-resonant background.

³ Breit-Wigner width.

 $^{{}^{4}}J^{P}=0^{+}.$

⁵ T-matrix pole.

⁶Supersedes BARBERIS 99 and BARBERIS 99B.

¹¹ Systematic errors not estimated.

¹² This state may be different from $f_0(1710)$, see CLOSE 05.

¹⁴ K-matrix pole, assuming $J^P=0^+$, from combined analysis of $\pi^-p\to\pi^0\pi^0$ $n,\pi^-p\to K\overline{K}$ $n,\pi^+\pi^-\to\pi^+\pi^-$, $\overline{p}p\to\pi^0\pi^0\pi^0$, $\pi^0\eta\eta$, $\pi^0\pi^0\eta$, $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, $K^0_SK^0_S\pi^0$, $K^+K^0_S\pi^-$ at rest, $\overline{p}n\to\pi^-\pi^-\pi^+$, $K^0_SK^-\pi^0$, $K^0_SK^0_S\pi^-$ at rest.

¹⁶ Decaying to $f_0(1370) \pi \pi$.

 $^{^{19}}$ T-matrix pole, assuming $J^P=0^+$

 $^{^{21}}$ From a fit to the 0^+ partial wave.

 $^{^{22}}_{23}\,\mathrm{JP}$ excluded). ALDE 92D combines all the GAMS-2000 data.

²⁴ From an analysis ignoring interference with $f_2'(1525)$.

²⁵ From an analysis including interference with $f_2'(1525)$.

 $^{^{26}}$ Uses MRK3 data. From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but assuming spin 2. Fit with constrained inelasticity. $^{\rm 27}\,{\it J}^{\rm P}=2^+$ preferred.

 $^{^{28}}$ From fit neglecting nearby $f_2'(1525)$. Replaced by BLOOM 83.

 $^{^{29}}$ From an amplitude analysis of the $K_S^0 K_S^0$ system, superseded by LONGACRE 86.

$f_0(1710) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma$	total				$\Gamma_1\Gamma_4/\Gamma$
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
$12^{+3}_{-2}^{+227}_{-8}$		UEHARA	13	BELL	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$
• • • We do not use th	e following	g data for averages	s, fits,	limits,	etc. • • •
<480	95	ALBRECHT	90 G	ARG	$\gamma \gamma \rightarrow K^+ K^-$
<110	95	$^{ m 1}$ BEHREND	89 C	CELL	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$
<280	95	$^{ m 1}$ ALTHOFF	85 B	TASS	$\gamma \gamma \rightarrow K \overline{K} \pi$
¹ Assuming helicity 2.					
$\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\rm t}$	otal				$\Gamma_3\Gamma_4/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT
<0.82	05	1 βΔβΔΤΕ	OOE	ΔIFP	$\alpha \rightarrow \pi^{+}\pi^{-}$

f₀(1710) BRANCHING RATIOS

 $\Gamma(\overline{K})/\Gamma_{total}$ Γ_1/Γ

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use t	the followin	g data for averages, fi	s, limits,	etc. • • •
seen	1004	¹ DOBBS 15		$J/\psi \rightarrow \gamma K^+ K^-$
seen	349	¹ DOBBS 15		$\psi(2S) \rightarrow \gamma K^+ K^-$
0.36 ± 0.12		ALBALADEJO 08	RVUE	
$0.38^{+0.09}_{-0.19}$		² LONGACRE 86	MPS	$22 \pi^- p \rightarrow n2K_S^0$

 $^{^{}m 1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

 $\Gamma(\eta\eta)/\Gamma_{\text{total}}$ VALUE

• • • We do not use the following data for averages, fits, limits, etc. • • • 0.22 ± 0.12

ALBALADEJO 08 RVUE

 $\Gamma(\pi\pi)/\Gamma_{\text{total}}$ Γ_3/Γ DOCUMENT ID TECN COMMENT **EVTS** • • • We do not use the following data for averages, fits, limits, etc. • • $J/\psi \rightarrow \gamma \pi^+ \pi^-$ ¹ DOBBS 15 seen 381 $\psi(2S) \rightarrow \gamma \pi^{+} \pi^{-}$ CBAR $0.9 \overline{p}p \rightarrow \pi^{0} \eta \eta, \pi^{0} \pi^{0} \pi^{0}$ 237 ¹ DOBBS 15 seen **AMSLER** not seen $0.039 ^{\,+\, 0.002}_{\,-\, 0.024}$ ² LONGACRE

Created: 5/30/2017 17:21

HTTP://PDG.LBL.GOV

¹ Assuming spin 0.

Page 6

² From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but assuming spin 2. Fit with constrained inelasticity.

¹ From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but assuming spin 2. Fit with constrained inelasticity.

¹ Using CLEO-c data but not authored by the CLEO Collaboration.

² From a partial-wave analysis of data using a K-matrix formalism with 5 poles, but assuming spin 2. Fit with constrained inelasticity.

	<u>CL%</u>	DOCUMENT ID	TE	<u> COI</u>	MMENT	Γ_3/Γ_1		
$0.41^{+0.11}_{-0.17}$		ABLIKIM	06v BE	S2 e ⁺	$e^- o J/\psi o$	$\gamma \pi^+ \pi^-$		
• • • We do not u	ıse the follow	ving data for av	erages, fit	s, limits,	etc. • • •			
0.32 ± 0.14 < 0.11	95	ALBALADEJO ABLIKIM		/UE ES2 J/y	$b \rightarrow \omega K^+ K^-$			
$5.8 \begin{array}{l} +9.1 \\ -5.5 \end{array}$	2	2 ANISOVICH	02D SF	PEC Cor	nbined fit			
$0.2 \pm 0.024 \pm 0.03$ 0.39 ± 0.14	6	BARBERIS ARMSTRONG			$\begin{array}{ccc} 0 \ pp \rightarrow & K^+ K^- \\ 0 \ pp \rightarrow & pp\pi\pi, \end{array}$			
1 Using data from 2 From a combi $\pi^{0}\pi^{0}\eta$), GAM	ned K-matri	x analysis of C			$p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \rightarrow K\overline{K} n)$ data			
$\frac{\Gamma(\eta\eta)/\Gamma(K\overline{K})}{\frac{VALUE}{0.48\pm0.15}}$	<u>CL%</u>	<u>DOCUMEN</u> BARBER			$\frac{COMMENT}{450 pp \rightarrow p_f}$	$\frac{\Gamma_2/\Gamma_1}{\eta\eta\rho_s}$		
• • • We do not ι	ise the follow	ing data for av	erages, fit	s, limits,	etc. • • •			
$0.46 ^{igoplus 0.70}_{-0.38}$		¹ ANISOVI	CH 021	SPEC	Combined fit			
< 0.02					300 $\pi^- p \rightarrow \tau$			
¹ From a combined K-matrix analysis of Crystal Barrel (0. $p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0$, $\pi^0 \eta \eta \pi^0 \pi^0 \eta$), GAMS ($\pi p \rightarrow \pi^0 \pi^0 n$, $\eta \eta n$, $\eta \eta' n$), and BNL ($\pi p \rightarrow K\overline{K} n$) data. ² Combining results of GAM4 with those of ARMSTRONG 89D.								
$\Gamma(\omega\omega)/\Gamma_{\text{total}}$	EVTS	DOCUMEN	IT ID	TECN	<u>COMMENT</u>	Γ ₅ /Γ		
seen	180	ABLIKIM			$J/\psi \rightarrow \gamma \omega \omega$			
	f ₀ (1710) REFERENCES							

AMSLER ANISOVICH	02 02D	EPJ C23 29 PAN 65 1545	C. Amsler <i>et al.</i> V.V. Anisovich <i>et al.</i>	
NICHITIU BAI BARATE	02 00A 00E	Translated from Y. PL B545 261 PL B472 207 PL B472 189	F. Nichitiu <i>et al.</i> J.Z. Bai <i>et al.</i> R. Barate <i>et al.</i>	(OBELIX Collab.) (BES Collab.) (ALEPH Collab.)
BARBERIS ANISOVICH	00E 99B	PL B479 59 PL B449 154	D. Barberis <i>et al.</i> A.V. Anisovich <i>et al.</i>	(WA 102 Collab.)
BARBERIS BARBERIS	99 99B	PL B453 305 PL B453 316	D. Barberis <i>et al.</i> D. Barberis <i>et al.</i>	(Omega Expt.) (Omega Expt.)
BARBERIS FRENCH	99D 99	PL B462 462 PL B460 213	D. Barberis <i>et al.</i> B. French <i>et al.</i>	(Omega Expt.) (WA76 Collab.)
ANISOVICH	98B	SPU 41 419 Translated from U		
BAI BARKOV	98H 98	PRL 81 1179 JETPL 68 764	J.Z. Bai <i>et al.</i> B.P. Barkov <i>et al.</i>	(BES Collab.)
ABREU BAI	96C 96C	PL B379 309 PRL 77 3959	P. Abreu <i>et al.</i> J.Z. Bai <i>et al.</i>	(DELPHI Collab.) (BES Collab.)
BALOSHIN	95	PAN 58 46 Translated from Y	O.N. Baloshin <i>et al.</i> 'AF 58 50.	` (ITEP)
BUGG ARMSTRONG BREAKSTONE	95 93C 93	PL B353 378 PL B307 394 ZPHY C58 251	D.V. Bugg <i>et al.</i> T.A. Armstrong <i>et al.</i> A.M. Breakstone <i>et al.</i>	(LOQM, PNPI, WASH) (FNAL, FERR, GENO+) (IOWA, CERN, DORT+)
ALDE Also	92D	PL B284 457 SJNP 54 451 Translated from Y	D.M. Alde <i>et al.</i> D.M. Alde <i>et al.</i>	(GAM2 Collab.) (GAM2 Collab.)
ARMSTRONG PROKOSHKIN	91 91	ZPHY C51 351 SPD 36 155 Translated from D	T.A. Armstrong <i>et al.</i> Y.D. Prokoshkin	(ATHU, BARI, BIRM+) (GAM2, GAM4 Collab.)
ALBRECHT ARMSTRONG BEHREND AUGUSTIN BOLONKIN	90G 89D 89C 88	ZPHY C48 183 PL B227 186 ZPHY C43 91 PRL 60 2238 NP B309 426	H. Albrecht <i>et al.</i> T.A. Armstrong, M. Benayo H.J. Behrend <i>et al.</i> J.E. Augustin <i>et al.</i> B.V. Bolonkin <i>et al.</i>	(ARGUS Collab.) un (ATHU, BARI, BIRM+) (CELLO Collab.) (DM2 Collab.) (ITEP, SERP)
FALVARD AUGUSTIN BALTRUSAIT ALDE LONGACRE	88 87 87 86C 86	PR D38 2706 ZPHY C36 369 PR D35 2077 PL B182 105 PL B177 223	A. Falvard <i>et al.</i> J.E. Augustin <i>et al.</i> R.M. Baltrusaitis <i>et al.</i> D.M. Alde <i>et al.</i> R.S. Longacre <i>et al.</i>	(CLER, FRAS, LALO+) (LALO, CLER, FRAS+) (Mark III Collab.) (SERP, BELG, LANL, LAPP) (BNL, BRAN, CUNY+)
ALTHOFF WILLIAMS BLOOM BURKE EDWARDS	85B 84 83 82 82D	ZPHY C29 189 PR D30 877 ARNS 33 143 PRL 49 632 PRL 48 458	M. Althoff <i>et al.</i> E.G.H. Williams <i>et al.</i> E.D. Bloom, C. Peck D.L. Burke <i>et al.</i> C. Edwards <i>et al.</i>	(TASSO Collab.) (VAND, NDAM, TUFTS+) (SLAC, CIT) (LBL, SLAC) (CIT, HARV, PRIN+)
ETKIN ETKIN	82B 82C	PR D25 1786 PR D25 2446	A. Etkin <i>et al.</i> (E	BNL, CUNY, TUFTS, VAND) BNL, CUNY, TUFTS, VAND)