ELEKTRONIK DEVRELER II

TEK BUTONLA ON OFF DEVRESI

(ON OFF CIRCUIT WITH ONE BUTTON)

EYÜP BURAK KARAMAN 1190501072

DEVRENİN TANIMI

Bu devre sayesinde DC kaynaktan beslenen cihazlarınıza tek düğme ile açma/kapama özelliği verebilirsiniz. Butona bir defa bastığınızda kısa devre yapar. Tekrar bastığınızda ise bu durum ortadan kalkar. Üzerinde bulunan N-Channel transistör sayesinde 2-55V arası gerilimler ve en fazla 110A akımla kullanılabilir. Anahtar iletimdeyken kart üzerinde bulunan sarı LED yanar.

Devrede Kullanılan Komponentler

DİRENÇ

Millian Managaran Ma

BUTON

KONDANSATÖR

BC557 TRANSISTÖR

IRF3205S MOSFET

DC GÜÇ KAYNAĞI

LED

Bir elektrik devresinde akım akışına karşı oluşan etkinin ölçümüdür.

Basit ve kısa bir anlatımla butonlar basılı olmadığı sürece devrede akım akışını engelleyen devre elemanıdır.

Elektronik devrelerde çeşitli amaçlar için kullanılır. Enerji depolama, sinyal işleme, zamanlama ve ayırma gibi işlevler sağlarlar

Yapısal bakımdan, yükselteç olarak çalışma özelliğine sahip bir devre elemanıdır. Daha yaygın kullanım amacı ise devrede anahtarlama yapmaktır.

Analog ve dijital devrelerde anahtarlama ve güç dengeleme amacıyla kullanılabilirler.

Bir cihaza güç sağlamak için doğru akım veren güç kaynağı türüdür.

Işık yakan diyot olarak tanımlanmaktadır. LED, yarı iletken bir devre elemanıdır.

Işık yakan diyot olarak tanımlanmaktadır. LED, yarı iletken bir devre elemanıdır.

DEVRE ŞEMASI

BC 557 Transistör

DEVRE ÜZERİNDE

- 1 nolu bacağı (emiter) 10K ohm dirence ve butona bağlı,
- 2 nolu bacağı (base) kondansatör ve 82k ohm dirence,
- 3 nolu bacağı (collector) güce bağlı.

PIN	DESCRIPTION		
1	emitter		
2	base		
3	collector		

Fig.1 Simplified outline (TO-92; SOT54) and symbol.

BC 557 TRANSISTÖR SINIR DEĞERLERİ

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V сво	collector-base voltage	open emitter			
	BC556		80		V
	BC557		50		V
V CEO	collector-emitter voltage	open base			
	BC556		65		V
	BC557		45		V
V ebo	emitter-base voltage	open collector	5 V		
I c	collector current (DC)		100		mA
I cm	peak collector current		200		mA
I вм	peak base current		200		mA
P _{tot}	total power dissipation	T _{amb} ≤25 °C	-	500	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	150	°C
T amb	operating ambient temperature		-65	+150	°C

CHARACTERISTICS

 T_j =25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Ісво	collector cut-off current	I _E =0; V _{CB} =-30 V	1		-15	nA
		I _E = 0; V _{CB} = -30 V; T _j = 150 °C	4			μА
І єво	emitter cut-off current	$I_C = 0$; $V_{EB} = -5V$	10) nA		
h fe	DC current gain BC556	$I_C = -2 \text{ mA}$; $V_{CE} = -5 \text{ V}$; see Figs 2, 3 and 4	125	_	475	
	BC557		125	-	800	
	BC556A		125	_	250	
	BC556B; BC557B		220	_	475	
	BC557C		420	-	800	
VCEsat	collector-emitter saturation voltage	$I_C = -10 \text{ mA}$; $I_B = -0.5 \text{ mA}$	60		-300 m	V
		$I_{\rm C} = -100 \text{ mA}; I_{\rm B} = -5 \text{mA}$		-650 m	7	
VBEsat	base-emitter saturation voltage	$I_C = -10 \text{ mA}$; $I_B = -0.5 \text{ mA}$; note 1	750	_		mV
		$I_C = -100 \text{ mA}$; $I_B = -5 \text{ mA}$; note 1	930			mV
V BE	base-emitter voltage	$I_C = -2 \text{ mA}$; $V_{CE} = -5 \text{ V}$; note 2		550 -750) mV	
		$I_C = -10 \text{ mA}$; $V_{CE} = -5 \text{ V}$; note 2	82	0 mV		
Cc	collector capacitance	$I_{\rm E} = i_{\rm e} = 0$; $V_{\rm CB} = -10$ V; $f = 1$ MHz	-	3	-	pF
Ce	emitter capacitance	$I_C = i_c = 0$; $V_{EB} = -0.5 \text{ V}$; $f = 1 \text{ MHz}$	1	10	_	pF
fr	transition frequency	$I_C = -10 \text{ mA}$; $V_{CE} = -5 \text{ V}$; $f = 100 \text{ MHz } 100$				MHz
F	noise figure	$I_C = -200 \mu A$; $V_{CE} = -5 V$; $R_S = 2k\Omega$; $f = 1 kHz$; $B = 200 Hz$	-	2 1 0		dB

IRF3205S MOSFET

DEVRE ÜZERİNDE

- Gate bacağı butona,
- Drain bacağı çalıştırmak istediğimiz yükün (led) «—» kısmına,
- Source bacağı ise güç kaynağının eksi kutbuna bağlı.

IRF3205S IRF3205L

HEXFET® Power MOSFET

$$V_{DSS} = 55V$$

$$R_{DS(on)} = 8.0 \text{m}\Omega$$

$$I_D = 110A^{\circ}$$

SINIR DEĞERLERİ

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	110 ^⑤	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	80	Α
I _{DM}	Pulsed Drain Current ①	390	7
P _D @T _C = 25°C	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
I _{AR}	Avalanche Current①	62	Α
E _{AR}	Repetitive Avalanche Energy①	20	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		_ °C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			8.0	mΩ	V _{GS} = 10V, I _D = 62A
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
g fs	Forward Transconductance	44			S	V _{DS} = 25V, I _D = 62A [®]
I _{DSS}	Drain-to-Source Leakage Current			25	μА	$V_{DS} = 55V, V_{GS} = 0V$
บรร				250		$V_{DS} = 44V$, $V_{GS} = 0V$, $T_{J} = 150$ °C
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
1655	Gate-to-Source Reverse Leakage			-100	110	$V_{GS} = -20V$
Q_g	Total Gate Charge	<u> </u>		146		$I_D = 62A$
Q_{gs}	Gate-to-Source Charge			35	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			54		V _{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 28V$
t _r	Rise Time		101		ns	$I_D = 62A$
t _{d(off)}	Turn-Off Delay Time		50		115	$R_G = 4.5\Omega$
t _f	Fall Time		65			V _{GS} = 10V, See Fig. 10 €
1	Internal Drain Inductance		4.5		nН	Between lead,
ЦD						6mm (0.25in.)
	Internal Source Inductance		7.5			from package
LS			7.5			and center of die contact
Ciss	Input Capacitance		3247			$V_{GS} = 0V$
Coss	Output Capacitance		781			$V_{DS} = 25V$
Crss	Reverse Transfer Capacitance		211		pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy®		1050©	2640	mJ	I _{AS} = 62A, L = 138μH