Inferences in Bayesian Networks Variable Elimination Algorithm

Alice Gao Lecture 13

Readings: RN 14.4. PM 8.4.

Outline

Learning Goals

Why Use the Variable Elimination Algorithm

The Variable Elimination Algorithm

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- ► Explain how we can perform probabilistic inference more efficiently using the variable elimination algorithm.
- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

Learning Goals

Why Use the Variable Elimination Algorithm

The Variable Elimination Algorithm

Revisiting the Learning goals

A Bayesian Network for the Holmes Scenario

Answering a Question

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$P(B = b | W = t \land G = t), b \in \{t, f\}$$

Shorthand notation:

B can be true or false

 $P(B|w \wedge g)$ b: B is true. $\neg b$: B is false.

- Query variables: B
- Evidence variables: W and G
- ► Hidden variables: A, E, and R.

Answering the query

$$\frac{P(B \land w \land g)}{P(w \land g)}$$

$$\frac{P(B | w \land g)}{P(b \land w \land g)} + \frac{P(\neg b \land w \land g)}{P(b \land w \land g)}$$

$$P(B \land w \land g)$$

$$= \sum_{a} \sum_{r} \sum_{r} P(B \land e \land a \land w \land g \land r)$$

$$= \sum_{a} \sum_{r} \sum_{r} P(B) P(e) P(r|e) P(a|B \land e) P(w|a) P(g|a)$$

$$= \sum_{a} \sum_{r}$$

$$= P(B) \sum_{r}$$

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$P(B \land w \land g) \qquad \text{8 times}$$

$$= \sum_{a} \sum_{e} \sum_{r} P(B)P(e)P(r|e)P(a|B \land e)P(w|a)P(g|a)$$

$$(A) \leq 10 \qquad \text{7 additions}.$$

$$(B) 11-20 \qquad \text{5 * 8 = 40 multiplications}.$$

$$(C) 21-40$$

$$(D) 41-60 \qquad \text{47 operations}.$$

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$P(B \land w \land g)$$

$$= P(B) \sum_{a} P(w|a)P(g|a) \sum_{e} P(e)P(a|B \land e)$$

$$I \text{ multiplications}$$

$$(A) \leq 10$$

$$(B) 11-20$$

$$(C) 21-40$$

$$(D) 41-60$$

$$(E) > 61$$

$$I \text{ operations}.$$

Learning Goals

Why Use the Variable Elimination Algorithm

The Variable Elimination Algorithm

Revisiting the Learning goals

Introducing the Variable Elimination Algorithm

 Performing probabilistic inference is challenging.
 Calculating the posterior distribution of one or more query variables given some evidence is #NP.

no general efficient implementation available.

Exact and approximate inferences.

naive approach for exact inference: enumerate all the

worlds consistent w/ evidence.

· can do better w/ >

► The variable elimination algorithm uses dynamic programming and exploits the conditional independence.

do the calculations once and save the results for later.

VEA = factors + operations on factors (restrict, sum out, multiply, normalize.)

Factors

- ► A function from some random variables to a number.
- $f(X_1, ..., X_j)$: a factor f on variables $X_1, ..., X_j$.
- A factor can represent a joint or a conditional distribution. For example, $f(X_1, X_2)$ can represent $P(X_1 \wedge X_2)$, $P(X_1|X_2)$ or $P(X_1 \wedge X_3 = v_3|X_2)$.
- Define a factor for every conditional probability distribution in the Bayes net.

$$P(B \land w \land g) = P(B) \sum_{a} P(w|a) P(g|a) \sum_{e} P(e) P(a|B \land e)$$

$$P(B), P(E), P(A|B \land E), P(R|E), P(W|A), P(G|A)$$

$$f_{1}(B), f_{2}(E), f_{3}(A,B,E), f_{4}(R,E), f_{5}(W,A), f_{6}(G,A).$$

Restrict a factor

Restrict a factor by assigning a value to the variable in the factor.

- For each observed variable,
 restrict the factor to the observed value.
- Restricting $f(X_1, X_2, ..., X_j)$ to $X_1 = v_1$, $f'(X_2, ..., X_j)$. produces a new factor $f(X_1 = v_1, X_2, ..., X_j)$ on $X_2, ..., X_j$.

•
$$f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$$
 is a number. $f^*(y)$

$$\frac{P(B \land w \land g)}{\uparrow \uparrow} = P(B) \sum_{\alpha} P(w|\alpha) P(g|\alpha) \sum_{e} P(e) P(\alpha|B \land e).$$

Restrict
$$f_5(W,A)$$
 to $W=W.\Rightarrow f_7(A)$

Restrict
$$f_6(G,A)$$
 to $G=g \Rightarrow f_8(A)$

Restrict a factor

	X	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
$f_1(X, Y, Z)$:	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

• What is
$$f_2(Y, Z) = f_1(x, Y, Z)$$
?

$$f_4(): 0.8$$

▶ What is
$$f_3(Y) = f_2(Y, \neg z)$$
?

$$\blacktriangleright \text{ What is } f_4() = f_3(\neg y)?$$

$$VVIIat 15 14() = 13(\neg y)$$

Sum out a variable

Sum out a variable.

Summing out X_1 with domain $\{v_1, \ldots, v_k\}$ from factor $f(X_1, \ldots, X_j)$, produces a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j) = f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$$

$$P(B \land w \land g) = P(B) \sum_{a} P(w|a) P(g|a) \sum_{e} P(e) P(a|B \land e)$$

Sum out e first, and a next.

Sum out a variable

	X	Y	Z	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1(X, Y, Z)$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

What is $f_2(X, Z) = \sum_{Y} f_1(X, Y, Z)$?

Multiplying factors

3 coses: fi and fi have same variables. fi and fi have a subset of variables in common. fi and fi have no variable in common.

Multiply two factors together.

The **product** of factors $f_1(X, V)$ and $f_2(V, Z)$, where Y are the variables in common, is the factor $(f_1 \times f_2)(X, Y, Z)$ defined by:

element—wise multiplication
$$(f_1 \times f_2)(X, Y, Z) = f_1(X, Y) * f_2(Y, Z).$$

$$P(B \land W \land g) = P(B) \sum_{\alpha} P(W|\alpha) P(g|\alpha) \sum_{\gamma \in A} P(e) P(\alpha|B \land e)$$

Multiplying factors

	X	Y	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

$$\{Y, Z\}$$
 Y Z val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

What is $f_1(X, Y) \times f_2(Y, Z)$?

Normalize a factor

- Convert it to a probability distribution.
- Divide each value by the sum of all the values.

	Y	val
f_1 :	t	0.2
	f	0.6

Variable elimination algorithm

To compute
$$P(X_q | X_{o_1} = v_1 \wedge \ldots \wedge X_{o_j} = v_j)$$
:

- Construct a factor for each conditional probability distribution.
- ▶ **Restrict** the observed variables to their observed values.
- ► Eliminate each hidden variable X_h, based on some order.
 - ▶ Multiply all the factors that contain X_{h_i} to get new factor g_i .
 - ▶ **Sum out** the variable X_{h_i} from the factor g_i .
- Multiply the remaining factors.
- Normalize the resulting factor.

Example of VEA

Given a portion of the Holmes network below, calculate $P(B|\neg A)$ using the variable elimination algorithm.

Given a portion of the Holmes network below, calculate $P(B|\neg A)$ using the variable elimination algorithm.

$$P(B|\neg a) = \sum_{e} \sum_{w} P(B) P(e) P(\neg a|B \land e) P(w|\neg a)$$

$$= P(B) \sum_{e} P(e) P(\neg a|B \land e) \sum_{w} P(w|\neg a)$$
query variable: B

evidence variable: A hidden variables: E, W

O define factors

$$P(B)$$
 $P(E)$ $P(A|BAE)$ $P(W|A)$ $f_1(B)$ $f_2(E)$ $f_3(A,B,E)$ $f_4(W,A)$

restrict $f_3(A,B,E)$ to $A = \neg a$ to get $f_5(B,E)$ restrict $f_4(W,A)$ to $A = \neg a$ to get $f_6(W)$. new factor list : $f_1(B)$, $f_2(E)$, $f_5(B,E)$, $f_6(W)$.

- 3 Get rid of hidden variables E and W. sum out W first and then E.
 - (1) multiply all the factors containing $W: f_6(W)$.

 Sum out W from $f_6(W)$ to get $f_7()$.
 - (2) multiply all the factors containing E: $f_2(E) \times f_3(B, E) = f_4(B, E)$ sum out E from $f_4(B, E)$ to get $f_8(B)$.

 New factor list: $f_1(B)$, $f_8(B)$, $f_4()$.

UED

- 4) multiply all remaining factors. $f_1(B) \times f_8(B) \times f_7() = f_9(B)$.

 B | Value | The sector list | f_9(B) | The sector list
- 3 normalize fg(B) to get fio(B)

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- ► Explain how we can perform probabilistic inference more efficiently using the variable elimination algorithm.
- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.