Sensors & Actuators

BACKGROUND

- Sensors have been in existence since beginning of civilization in one form or the other
- Sensors became more popular and standardized with the advent of Industrial revolution
- New age sensors have really started doing what sensor should do "Sense" like human sense organs —
 Multipurpose, sensitive and Reliable.

WHAT IS SENSOR?

- Device that detects and responds to some type of input from the physical environment.
- Output is generally a signal that is converted to humanreadable display at the sensor location or transmitted electronically over a network for reading or further processing.

WHAT IS AN ACTUATOR?

- Type of motor that is responsible for moving or controlling a mechanism or system.
- Mechanism by which a control system acts upon an environment.

Types of Actuators

- Hydraulic
- Pneumatic
- Electric
- Mechanical

WHAT IS GOOD SENSOR?

- Is sensitive to the measured property only
- Is insensitive to any other property likely to be encountered in its application
- Does not influence the measured property
- Is sturdy and compact

SENSOR PROPERTIES

- Sensor Range: range of the output signal of a sensor is generally limited, The full scale range defines the maximum and minimum values of the measured property.
- Bias: If the output signal is not zero when the measured property is zero, the sensor has an offset This is defined as the output of the sensor at zero input.
- Non linearity: Usually this is defined by the amount the output differs from ideal behavior over the full range of the sensor, often noted as a percentage of the full range.
- Dynamic error: Deviation in reading caused by a rapid change of the measured property over time.

SENSOR PROPERTIES:

- Drift: If the output signal slowly changes independent of the measured property. Seen in most sensors.
 - Long term drift: indicates a slow degradation of sensor properties over a long period of time.
- Noise: is a random deviation of the signal that varies in time
- Digitization error: If the sensor has a digital output, the output is essentially an approximation of the measured property

Types of Sensor

- Acoustic, Sound, Vibration
- Automotive, Transportation
- Chemical
- Environment, weather, moisture, humidity
- Flow, fluid velocity
- Navigation instruments
- Optical, light, imaging, photo.
- Proximity, presence
- Electric current, electric potential, magnetic, radio

Passive vs. Active

- Passive detectors react to signals, such as sound waves or heat spikes.
- Active detectors emit signals that are reflected back to the sensor.

Passive Infrared (PIR)

- Passive Infrared Detectors use a sensor that detects infrared radiation.
- The PIR considers a temperature range as "normal" and anything else as reason to raise the alarm.
- This range is usually between 59-68°F.
- Sudden changes in temperature trip the detector.

Ultrasonic Detectors

- These are active sensors that emit ultrasonic waves that reflect off objects.
- An object in motion will reflect faster because the distance between the detector and the object is shorter.

Dual-Technology

- More effective than a single-type motion sensor
- False alarms are less likely to happen
- Usually a combination of PIR and Microwave
- Both must be activated to trip the alarm.

Mems sensor

What is MEMS?

- MEMS or Micro-Electro Mechanical System is a technique of combining Electrical and Mechanical components together on a chip, to produce a system of miniature dimensions.
- MEMS is the integration of a number of micro-components on a single chip which allows the micro system to both sense and control the environment.

• The components are integrated on a single chip using micro fabrication technologies.

Mechanical Electrical

BUT WHY MEMS FOR SENSORS?

- Smaller in size
 - Typically .1-100um feature size
- Have lower power consumption
- More sensitive to input variations
- Cheaper due to mass production
- Less invasive than larger devices

WHO DEVELOPED IT

- Two groups
 - Delco Electronics Group(General Motors)
 - Used piezoresistive sensing.
 - Ford
 - Used capacitive sensing.

APPLICATIONS

• <u>Biocavity Laser</u>: This device distinguishes cancerous from non cancerous cells thus aiding the surgeons in operations.

• Smart Pill:

- Implanted in the body
- Automatic drug delivery (on demand)
- <u>Sight for the blind</u>: MEMS based array that may be inserted in the retina of a blind person to provide partial sight

Applications

smart belt conveyer

GYROSCOPE SENSOR

WHAT IS A GYROSCOPE

- Sensor that measures the angle or maintain the rate of rotation.
- MEMS gyros are small, inexpensive sensors that measure angular velocity.
- The units of angular velocity are measured in degrees per second (°/s) or revolutions per second (RPS).
- Angular velocity is simply a measurement of speed of rotation.

HOW TO CONNECT TO GYRO

• The primary hardware connections to use a gyro are power and a communication interface.

Communication Interface

Gyros can have either a digital or analog communication interface.

- Gyros with a *digital* interface usually use either the SPI or I2C communication protocols.
- Gyros with an *analog* interface represent rotational velocity by a varying voltage, usually between ground and the supply voltage.

APPLICATIONS OF MEMS GYROSCOPES

Industrial: Robustness

Antenna stabilization

Consumer: Size & Cost

1245, 45

Optical Image Stabilization

Pedestrian Navigation

Health and fitness

ACCELEROMETER

What is an Accelerometer?

- Accelerometers are devices that measure acceleration, which is the rate of change of the velocity of an object.
- They measure in meters per second squared (m/s²) or in G-forces (g).
- Accelerometers are useful for sensing vibrations in systems or for orientation applications.

HOW AN ACCELEROMETER WORKS?

- Accelerometers are electromechanical devices that sense either static or dynamic forces of acceleration.
- Static forces include gravity, while dynamic forces can include vibrations and movement.

HOW TO CONNECT TO AN ACCELEROMETER

For most accelerometers, the basic connections required for operation are power and the communication lines. As always, read the datasheet to ensure proper connections are made.

Communication Interface

- Accelerometers will communicate over an analog, digital, or pulse-width modulated connection interface.
- Accelerometers with an analog interface show accelerations through varying voltage levels. These values generally fluctuate between ground and the supply voltage level.
- These are generally less expensive than digital accelerometers.
- Accelerometers with a digital interface can either communicate over SPI or I2C communication protocols. These tend to have more functionality and be less susceptible to noise than analog accelerometers.

APPLICATIONS OF MEMS ACCELEROMETERS

Automotive

- Airbag deployment
- Rollover, anti-skid control

Consumer

- Interactive gaming
- · Free-fall detection
- · Camera stabilization
- Indoor navigation

Military

- Aircraft flight control
- Dead-reckoning

Magnetic Sensor

- The Sensors, transducers which uses the changes in magnetic field for their operations.
- Used to measure the currents, speed, position and Displacement.
- As the conventional sensors, Magnetic sensor does not give output parameters directly.
- Signal processing is required for desired output.

Difference between Conventional and Magnetic Sensors:

Conventional vs. Magnetic Sensing

Radio Frequency Sensor

- Operate upto 1 GHz
- \circ Operate from -170° to >1,000°C
- Have low power consumption making them ideal for wireless applications

RF technology works with

- Ferrous metals
- Non ferrous metals
- Composites
- Glasses
- Plastics
- Liquids

Applications:

- Sensors to measure rotational speed and position at high temperature for automotive and aerospace applications.
- Remote Sensors to measure temperatures to >1,000°C
- Sensors to detect lateral drift of rubber conveyor belts
- Sensors to discriminate opaque plastics for recycling, including ABS with and without FR
- Sensors to detect water in oil down to 1 ppm
- Sensors to detect particulates in fluids
- Sensors to detect chemical change in fluids

ACOUSTIC, SOUND, VIBRATION SENSOR

Sensor Name	Description	Application
Hydrophone	• For recording or listening to underwater sound	Under water Exploration, Deep Ocean Operation
Seismometer	 Measure motions of the ground, including those of seismic waves generated by earthquakes, volcanic eruptions. 	EarthQuake Detection, Detection earth quakes in oceans, volcanic Eruptions
Microphone	• Acoustic-to- electric transducer or sens or that converts sound in air into an electrical signal	Telephones, Tape Recorders, Hearing aids, motion picture production

AUTOMOTIVE, TRANSPORTATION SENSOR

Sensor Name	Description	Application
A blind spot monitor	Sensor that detects other vehicles located to the driver's side and rear	In large vehicles like Trucks, cars, air crafts, motor boats
Curb feeler	Used to warn driver of curbs	They are fixed on the lower side of a vehicle body, close to the wheels.
Defect detector	 Used on railroads to detect axle and signal problems in passing trains 	Railway tracks
Engine coolant temperature sensor, or ECT sensor	Used to measure the engine temperature	Sensor that is screwed into the engine's block or cylinder head
Hall effect sensor	 Used for proximity switching, positioning, speed detection, and current sensing applications. 	automotive Fuel Level Indicators, brushless DC motor, aviation aerospace

AUTOMOTIVE, TRANSPORTATION SENSOR

Sensor Name	Description	Application
Parking sensors PD1 Rear or PD1 Vision Rear Option	 used to alert the driver of unseen obstacles during parking maneuvers 	Automobiles like car, trucks, bus, aircrafts
water-in-fuel sensor	 Used to indicate the presence of water in fuel 	Common Rail engines
Wheel speed sensor	 Used for reading the speed of a vehicle's wheel rotation 	Anti lock breaking systems, motor vehicles
Speed sensor	 Used to detect the speed of an object 	Automotive, aviation aero space, rail road, power generation
Oxygen sensor	 Used to monitor the amount of oxygen in the exhaust 	Soil respiration, Medical, Food packaging industry, waste management.

CHEMICAL SENSORS

Sensor Name	Description	Application
Breathalyzer	 Estimating blood alcohol content (BAC) from a breath sample. 	Medical, pubs, bars, Restaurant, Highways, criminal prosecution
Carbon dioxide sensor	 Measurement of carbon dioxide gas 	Indoor air quality , Industrial processes
Chemical field-effect transistor	To detect atoms, molecules, and ions in liquids and gases	Aqueous environments, sea water
Electronic nose Peratech's electronic nose sensor	Is a device intended to detect odors or flavors.	R & D Laboratories. Quality control Laboratories, process & Production Departments, health & Security, Environmental monitoring
Holographic sensor	 That comprises a hologram embedded in a smart material that detects certain molecules or metabolites 	Clinical trials, medical diagnostic applications.

CHEMICAL SENSORS

Sensor Name	Description	Application
Hydrogen sensor	 detects the presence of hydrogen. They contain micro-fabricated point- contact hydrogen sensors and are used to locate leaks 	Diesel engines, monitoring hydrogen windage in power plants, fossil fuel oil refining, UPS power systems,
Infrared sensor	 a device that forms an image using infrared radiation, similar to a common camera that forms an image using visible light 	Industrial, scientific, medical, night vision devices, tracking, smart phones
Smoke detector	 also called a smoke alarm is a device that detects smoke, typically as an indicator of fire 	Commercial, industrial, and mass residential devices

ENVIRONMENT, WEATHER, MOISTURE, HUMIDITY SENSOR

Sensor Name	Description	Application
Ceilometers	 device that uses a laser or other light source to determine the height of a cloud base 	Weather stations, monitoring of dust and volcanic ash clouds, estimation of particulate matter concentration.
Dew warning	 is an error indication on VCRs and camcorders if the VCR/camcorder develops dew inside the unit from being exposed to extreme temperature and/or humidity changes 	VCRs, Cam recorder
Fish counter	 for measuring the number of fish passing along a particular river in a particular period of time 	Counting of fish in river, sea and oceans

ENVIRONMENT, WEATHER, MOISTURE, HUMIDITY SENSOR

Sensor Name	Description	Application
Frequency domain sensor	 Sensor is an instrument developed for measuring soil moisture content 	Agriculture, Coastal areas
Gas detector	 Is a device which detects the presence of various gases within an area, usually as part of a safety system and also detect leaks. 	Industries, Home, chemical, pharmaceutical, Food and Beverage Industries.
Hygrometer Soil Hygrometer	Is an instrument used for measuring the moisture content in the atmosphere	Weather stations, Green houses, Industrial spaces, Incubators, Wooden musical instruments like guitars and violins.
Leaf sensor	 Is a phytometric device that measures water loss or the water deficit stress (WDS) in plants 	Agri house, aerophonic growing

ENVIRONMENT, WEATHER, MOISTURE, HUMIDITY SENSOR

Sensor Name	Description	Application
Pyrgeometer	 that measures the atmospheric infra- red radiation spectrum 	Meteorology, Climatology
Rain gauge	 instrument used to gather and measure the amount of liquid precipitation over a set period of time 	Meteorology, Hydrology and in weather forecast
Rain sensor	 a switching device activated by rainfall 	Irrigation, Automobiles
Tide gauge	 for measuring the change in sea level relative to a datum. Sensors continuously record the height of the water level . 	satellite radar altimeters Improvement of the tide models, usually in complex coastal zones Evaluation of the spatial altimetry results Validation of the climate models

FLOW, FLUID VELOCITY SENSOR

Sensor Name	Description	Application
Air flow meter	 Measures air flow, i.e. how much air is flowing through a tube 	Industries, automobiles
Anemometer	Measuring wind speed	Weather station, Marines, Aviation, Power & Energy, Cranes, Disaster control
Flow sensor	 Sensing rate of fluid flow through a given area Acceleration, frequency, pressure and volume 	flow meter, or flow logger in industries.
Mass flow sensor	 Is used to find out the mass flow rate of air entering a fuel injected internal combustion engine. 	Automobiles, Industries, aircrafts

NAVIGATION INSTRUMENTS SENSOR

Sensor Nar	me	Description	Application
MHD sensor		 used for precision measurements of angular velocities in inertia navigation systems. 	surviving in harsh environments, Aerospace, Ship engines
Yaw rate sensor		 measures a vehicle's angular velocity around its vertical axis 	Automotive applications

OPTICAL, LIGHT, IMAGING, PHOTO SENSOR

Sensor Name	Description	Application
Flame detector	that uses optical sensors to detect flames	Gas fuelled cookers, Industrial heating and drying systems, Domestic heating systems, Industrial gas turbines
Optical position sensor	 measure a position of a light spot in one or two-dimensions on a sensor surface 	Cameras, Fly by wire Air craft systems, Bullet trains taking curve, Injection molding machines, Packaging machines, Medical Equipments
Photoelectric sensor	 device used to detect the distance, absence, or presence of an object by using a light transmitter, often infrared, and a photoelectric receiver 	industrial manufacturing, Through-beam sensors, Retro-reflective sensors, Diffuse reflection sensors

PROXIMITY, PRESENCE SENSOR

Sensor Name	Description	Application
Alarm sensor	That can sense an abnormal condition within the system and provide a signal indicating the presence or nature of the abnormality to either a local or remote alarm indicator	Telecommunication, Physical Security, Electronic Security
Motion detector	 Detects moving objects, particularly people 	Home, Security.
Occupancy sensor	 Is a lighting control device that detects occupancy of a space by people and turns the lights on or off automatically 	Home, Industries, Restrooms, Conference Training Rooms

PROXIMITY, PRESENCE SENSOR

Sensor Name	Description	Application
Proximity sensor	is a sensor able to detect the presence of nearby objects without any physical contact	Smart phones, Parking Sensors, Ground proximity warning system, Sheet breaking sensing
Triangulation sensor	 Are commonly used to provide door mounted safety detection on swinging automatic doors. 	Micro wave , Cameras, Automatic swinging doors,
Touch switch	 A type of switch that only has to be touched by an object to operate 	Lamps Wall Switches

ELECTRIC CURRENT, ELECTRIC POTENTIAL, MAGNETIC, RADIO SENSOR

Sensor Name	Description	Application
Current sensor	 detects electrical current (AC or DC) in a wire, and generates a signal proportional to it. 	Industries, Solar, Motor Monitoring, Heaters.
Hall effect sensor	 is a transducer that varies its output voltage in response to a magnetic field 	Industries, Solar, Motor Monitoring, Heaters.
Metal detector	detects the presence of metal nearby	Air port Security, Building security, Event security, Item Recovery, Archeological, Geological Research
Radio direction finder	 for finding the direction to a radio source 	Sea navigation, Aircraft Navigation.

TOP SENSOR MANUFACTURERS

Company	Manufacture	Country / URL
STMicro Electronics Life.augmented	 Accelerometers Automotive Sensors Gyroscopes, Humidity Sensors, MEMS Microphones Pressure Sensors Proximity Sensors Smart Sensors and Sensor Hubs, Temperature Sensors 	Almost all over the World / http://www.st.com/ India: Pune, Bangalore, Mumbai,Noida
BOSCH Invented for life	 Acceleration Sensor Gyroscope Sensor Geomagnetic Sensor eCompass Absolute orientation Sensor. Environmental Sensor 	Almost all over the World / http://www.bosch- sensortec.com/en/
TEXAS INSTRUMENTS	TemperatureCurrentHall EffectPressure	Texas, USA / http://www.ti.com/

Company	Manufacture	Country / URL
	 Gyroscopes, Humidity Sensors, MEMS Microphones Proximity Sensors Smart Sensors and Sensor Hubs, Temperature Sensors 	www.hp.com
Panasonic	Light SensorMotion SensorPressure SensorAcceleration Sensor	Almost all over the World / www.panasonic.com
KNOWLES	AccelerometerUltrasonic Sensor	Santa Clara, CA/ http://www.knowles.com /

Company	Manufacture	Country / URL
	Rain Sensor	Italy / http://www.deltaohm.com /
FUTEK ARVANET I BEASON TEGRADLEGA, ME	 Force, torque , pressure sensors, signal conditioners, digital displays, custom-tailored transducers 	Irvine, CA / http://www.futek.com/
ALL SENSORS.	Pressure Sensors,pressure transducers	Morgan Hill, CA / http://www.allsensors.com /
OMRON	• High-Resolution Digital Proximity Sensor	Singapore, Europe, Austria, Japan Korea, Spain and more / http://www.omron-ap.com/

Company	Manufacture	Country / URL
SOLUTIONS	 Machine vision sensors, proximity sensors, fiber optic sensors, photoelectric sensors, pressure sensors & shock resistant sensors. 	Stone Mountain, GA / http://4tsi.com/
OXIGRAF	Fast Laser Diode OxygenAnalyzersOxygen Sensors	Mountain View, CA / http://www.oxigraf.com/
ESIS	• A wide range of smart sensors, weather stations, water quality sensors from Monitor Sensors	Australia / http://www.esis.com. au/
THOMAS PRODUCTS (11).	• specializing in the design & development of standard flow switches & level switches, gauges, floats & water & liquid level or flow controls.	Southington, CT, US / http://www.thomasp rod.com/

Company	Manufacture	Country / URL		
Central States Group	 Gas & flow sensors. Types include gas steam & liquid Vortex flow meters & fluid & gas sensors. 	Omaha, NE / http://www.centralstatesgrou p.com/		
EZ METER	 Bi-directional meters for wind, solar, and other alternative energy applications. 			
Senix((@) Distance Measurement	Ultrasonic Sensor	Hinesburg, VT / http://www.senix.com/		
Industrial Supply Co.	switch proximity,motor protector,photoelectric & proximity,Humidity	Melville, NY / http://www.mscdirect.com/		

Company	Manufacture	Country / URL
MEML.	 Ultrasonic flow sensor, Water flow sensor, Gear flow sensor,G Gas flow sensor	Pune , India/ http://www.flowtechin.com/
Environmend LETS DO OUR PART	 Aviation lights, street lights, cables, Smoke detectors, road lights, marine lights, Fuel <i>sensors</i>, studio lighting 	Vadodara, Gujarath, India / http://www.environmend.in /
Arc Ventures	 Energy saving devices, passive infrared sensor, Twilight switch, Infraredsensor, occupancy sensor, photo sensor, pir switch 	Pune, India / http://www.arcventures.co.i n/
Tej Security	 Electric sensors, Beam sensor, Shutter sensor smoke sensor, wired door sensor, wired window sensor 	Gurgaon, India / http://www.tejsecuritysyste ms.co.in/

Company	Manufacture	Country / URL
kaylee Kaylee Controls	 water tank level sensors, Sump tank sensor, Over head tank sensor, Automatic water level controller 	Goa, India / http://www.kayleecontrols.com /
Kamboj	 Pir motion sensors, ipad control light, Energy saving sensors, Occupancy sensor, Human body sensor, Presence sensor 	New Delhi, India / http://www.kambojenterprises .net/
Kaizen Imperial Scientific Leaders	 Automatic weather station, open pan evaporimeter, sunshine recorder, Digital solar radiation recorder, Digital rainfall recorder, Ordinary rain gauge, Automatic wind monitor, Anemometer, Snow gauge, Thermo hygrograph, Digital psychrometer 	New Delhi, India / http://www.meteorologicalinst ruments.co.in/

Company	Manufacture	Country / URL
ASIATECH	 Electric fence digital voltmeter, Electric fence energizer, Electric fence lightning diverter, Electric fence sensor 	Kerala, India / http://www.asiatechsolar.com/
minilec	 Voltage scanners, voltage controllers, Motor protection relays, Current sensors, Winding protection relays 	Pune , India / http://www.minilecgroup.com/
NILA TEGH PRIVATE LIMITED	 Temperature sensors, Temperature compensator, Surge current protection Thermistors, sensors 	Kerala, India / http://www.nilatech.co.in/
HILTON Trading Co.	 sensors, Photoelectric sensors, proximity sensors, Rotary encoders, Sequence controller, Temperature controllers, 	New Delhi, India / http://www.hiltontrading.in/

TECHNICAL DATA SHEET

Precision Centigrade

Temperature Sensors

LM35/LM35A/LM35C/LM35CA/LM35D

LM35/LM35A/LM35C/LM35CA/LM35D **Precision Centigrade Temperature Sensors General Description**

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in ° Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±1/4°C at room temperature and ± 3/4°C over a full -55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C temperature range, while the LM35C is rated for a -40° to +110°C range (-10° with improved accuracy). The LM35 series is

available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-202 package.

Features

- Calibrated directly in ° Celsius (Centigrade)
- Linear + 10.0 mV/°C scale factor
- 0.5°C accuracy guaranteeable (at +25°C)
- Rated for full -55° to +150°C range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than 60 µA current drain
- Low self-heating, 0.08°C in still air
- Nonlinearity only ± 1/4°C typical
- Low impedance output, 0.1 Ω for 1 mA load

Connection Diagrams

TO-46 Metal Can Package

*Case is connected to negative pin (GND)

Order Number LM35H, LM35AH.

LM35CH, LM35CAH or LM35DH See NS Package Number H03H TO-202

Plastic Package 0

TI /H /5516-24 Order Number LM35DP

TO-92 Plastic Package

TL/H/5516-2

Order Number LM35CZ, LM35CAZ or LM35DZ See NS Package Number Z03A

SO-8 Small Outline Molded Package

Top View

N.C. - No Connection

Order Number LM35DM See NS Package Number M08A

Typical Applications

TL/H/5516-3 FIGURE 1. Basic Centigrade Temperature Sensor (+2°C to +150°C)

TL/H/5516-4

Choose R₁ = -V_S/50 μA

Vout = + 1,500 mV at +150°C = + 250 mV at + 25°C = -550 mV at -55°C

FIGURE 2. Full-Range Centigrade Temperature Sensor

See NS Package Number P03A

TRI-STATE * is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 Supply Voltage
 + 35V to -0.2V

 Output Voltage
 + 6V to -1.0V

 Output Current
 10 mA

 Storage Temp., TO-46 Package,
 -60°C to +180°C

 TO-92 Package,
 -60°C to +150°C

\$0-8 Package, −65°C to +150°C TO-202 Package, −65°C to +150°C

Lead Temp.:

 TO-46 Package, (Soldering, 10 seconds)
 300°C

 TO-92 Package, (Soldering, 10 seconds)
 260°C

 TO-202 Package, (Soldering, 10 seconds)
 + 230°C

SO Package (Note 12):

(Note 2)

 Vapor Phase (60 seconds)
 215°C

 Infrared (15 seconds)
 220°C

 ESD Susceptibility (Note 11)
 2500V

 Specified Operating Temperature Range: T_{MIN} to T_{MAX}

Electrical Characteristics (Note 1) (Note 6)

Parameter		LM35A		LM35CA				
	Conditions	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Units (Max.)
Accuracy	T _A = +25°C	±0.2	± 0.5		±0.2	±0.5		°C
(Note 7)	TA = -10°C	±0.3			±0.3		±1.0	°C
	$T_A = T_{MAX}$	±0.4	± 1.0		±0.4	±1.0		°C
	T _A =T _{MIN}	±0.4	± 1.0		±0.4		±1.5	°C
Nonlinearity (Note 8)	T _{MIN} ≤ T _A ≤ T _{MAX}	±0.18		±0.35	±0.15		± 0.3	°C
Sensor Gain (Average Slope)	T _{MIN} ≤ T _A ≤ T _{MAX}	+ 10.0	+ 9.9, + 10.1		+ 10.0		+ 9.9, + 10.1	mV/°C
Load Regulation (Note 3) 0≤ l _L ≤1 mA	$T_A = +25^{\circ}C$ $T_{MIN} \le T_A \le T_{MAX}$	±0.4 ±0.5	± 1.0	±3.0	±0.4 ±0.5	±1.0	± 3.0	mV/mA mV/mA
Line Regulation	T _A = +25°C	±0.01	±0.05		±0.01	±0.05		mV/V
(Note 3)	4V≤V _S ≤30V	±0.02		±0.1	±0.02		± 0.1	mV/V
Quiescent Current	V _S = +5V, +25°C	56	67		56	67		μА
(Note 9)	Vs= +5V	105		131	91		114	μА
	V _S = +30V, +25°C	56.2	68		56.2	68		μА
	VS=+30V	105.5	13.211	133	91.5	1333	116	μΑ
Change of	4V≤V _S ≤30V, +25°C	0.2	1.0		0.2	1.0		μΑ
Quiescent Current (Note 3)	4V≤V _S ≤30V	0.5		2.0	0.5		2.0	μΑ
Temperature Coefficient of Quiescent Current		+0.39		+0.5	+0.39		+0.5	μΑ/°C
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, I _L = 0	+1.5		+2.0	+1.5		+2.0	°C
Long Term Stability	T _J =T _{MAX} , for 1000 hours	±0.08			±0.08			°C

Note 1: Unless otherwise noted, these specifications apply: $-55^{\circ}\text{C} \le T_{\text{J}} \le +150^{\circ}\text{C}$ for the LM35 and LM35A; $-40^{\circ} \le T_{\text{J}} \le +110^{\circ}\text{C}$ for the LM35D. $V_S = +570$ and $V_{\text{LOAD}} = 50~\mu\text{A}$, in the circuit of Figure 2. These specifications also apply from $+2^{\circ}\text{C}$ to T_{MAX} in the circuit of Figure 1. Specifications in **boldface** apply over the full rated temperature range.

Note 2: Thermal resistance of the TO-46 package is 400°C/W, junction to ambient, and 24°C/W junction to case. Thermal resistance of the TO-92 package is 180°C/W junction to ambient. Thermal resistance of the TO-202 package is 85°C/W junction to ambient. Thermal resistance of the TO-202 package is 85°C/W junction to ambient. For additional thermal resistance information see table in the Applications section.

Electrical Characteristics (Note 1) (Note 6) (Continued)

Parameter		LM35			LM35C, LM35D			
	Conditions	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Units (Max.)
Accuracy, LM35, LM35C (Note 7)	$T_A = +25^{\circ}C$ $T_A = -10^{\circ}C$ $T_A = T_{MAX}$ $T_A = T_{MIN}$	±0.4 ±0.5 ±0.8 ±0.8	±1.0 ±1.5	±1.5	±0.4 ±0.5 ±0.8 ±0.8	±1.0	± 1.5 ± 1.5 ± 2.0	° ° ° ° ° ° °
Accuracy, LM35D (Note 7)	$T_A = +25$ °C $T_A = T_{MAX}$ $T_A = T_{MIN}$				±0.6 ±0.9 ±0.9	±1.5	±2.0 ±2.0	င့ င
Nonlinearity (Note 8)	T _{MIN} ST _A ST _{MAX}	± 0.3		±0.5	±0.2		±0.5	°C
Sensor Gain (Average Slope)	$T_{MIN} \le T_A \le T_{MAX}$	+ 10.0	+9.8, +10.2		+ 10.0		+9.8, +10.2	mV/°C
Load Regulation (Note 3) 0≤I _L ≤1 mA	$T_A = +25^{\circ}C$ $T_{MIN} \le T_A \le T_{MAX}$	±0.4 ±0.5	±2.0	± 5.0	±0.4 ±0.5	±2.0	± 5.0	mV/mA mV/mA
Line Regulation (Note 3)	$T_A = +25^{\circ}C$ $4V \le V_S \le 30V$	±0.01 ±0.02	±0.1	±0.2	±0.01 ±0.02	±0.1	±0.2	mV/V mV/V
Quiescent Current (Note 9)	$V_S = +5V, +25^{\circ}C$ $V_S = +5V$ $V_S = +30V, +25^{\circ}C$ $V_S = +30V$	56 105 56.2 105.5	80 82	158 161	56 91 56.2 91.5	80 82	138	μΑ μΑ μΑ
Change of Quiescent Current (Note 3)	4V≤V _S ≤30V, +25°C 4V≤V _S ≤30V	0.2 0.5	2.0	3.0	0.2 0.5	2.0	3.0	μA μA
Temperature Coefficient of Quiescent Current		+0.39		+0.7	+0.39		+0.7	μA/°C
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, I _L =0	+1.5		+2.0	+1.5		+2.0	°C
Long Term Stability	T _J =T _{MAX} , for 1000 hours	±0.08			±0.08			°C

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

Note 4: Tested Limits are guaranteed and 100 % tested in production.

Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

Note 6: Specifications in boldface apply over the full rated temperature range.

Note 7: Accuracy is defined as the error between the output voltage and 10mv/°C times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in °C')

Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.

Note 9: Quiescent current is defined in the circuit of Figure 1.

Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.

Note 11: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

Note 12: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

WHERE TO BUY SENSORS

- http://www.rhydolabz.com/index.php
- http://www.electroncomponents.com/Mini-Components/Sensors_Transducer
- http://www.robomart.com/
- https://www.sparkfun.com/
- http://robokits.co.in/sensors
- http://potentiallabs.com/cart/sensors