Binary Representations of Numbers — a Proof

CSC165 Week 6 - Part 1

Proof by Induction — General Structure

We want to prove that the statement P(n) is true for all natural numbers n. In other words, we want to prove \forall n \in N, P(n).

Step 1: Base case

Prove P(0) (or any other case that should be verified first.

Step 2: Induction hypothesis

Since we want to show that $P(k) \Longrightarrow P(k+1)$, We assume P(k) is true. (let n = k)

Step 3: Let n = k+1 and Prove P(k+1)

This is where we use the induction hypothesis P(k) to prove P(k+1) must also be true.

Proof by Induction — Summary

We want to show that P(n) is true for all $x \in \mathbb{N}$ and $x \ge a$.

Strategy: Prove P(a) is true and then that $P(k) \Longrightarrow P(k+1)$.

Goal for this week

We want to prove: $\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \iff B(n,x)$

Strategy: Prove the ⇒ direction using _____

Then prove the ← direction using _____

Decimal (Base 10) Numbers

Possible digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

Where do we get the digits from?

107	10 ⁶	10 ⁵	104	10 ³	10 ²	10 ¹	10 ⁰

Binary (Base 2) Numbers

Example: $(46)_{10} = (101110)_2$

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰

Example: $(46)_{10} = (101110)_2$

 $= \sum b_i 2^i$

where $b_0 = 0$, $b_1 = 1$, $b_2 = 1$, $b_3 = 1$, $b_4 = 0$, $b_5 = 1$

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰
0	0	1	0	1	1	1	0

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰

A binary representation of $x \in \mathbb{N}$ can be written like this:

$$\exists \ k \in \mathbb{Z}_{+}, \ b_{0}, \ b_{1}, \ \dots, \ b_{k-1} \in \{0,1\} \ such \ that$$

$$x = \sum_{i=1}^{k} b_i 2^i = b_{k-1} 2^{k-1} + b_{k-2} 2^{k-2} + ... + b_1 2^1 + b_0 2^0$$

We can then write $x = (b_{k-1}b_{k-2}...b_1b_0)_2$

For example,
$$5 = (101)_2$$
 or $(5)_{10} = (101)_2$

Definition of Predicate B(n,x)

 \forall n \in N, \forall x \in N, B(n,x) is true if and only if

 $\exists b_0, b_1, ..., b_{n-1} \in \{0,1\} \text{ such that } x = (b_{n-1}b_{n-2}...b_1b_0)_2$

 $= \Sigma b_i 2^i$

In other words, B(n,x) is true when x can be written in binary using exactly n bits.

True or False?

$$B(3,5) =$$

$$B(4,5) =$$

$$B(2,5) =$$

B(n,x) is true when x can be written in binary using exactly n bits.

We want to prove that:

$$\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \iff B(n,x)$$

We want to prove that:

$$\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \Longrightarrow B(n,x)$$

Base Case: Let n =

We want to prove that:

$$\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \iff B(n,x)$$

Induction Step: Let $n = k \in \mathbb{N}$

Assume

Case of n = k+1:

Want to show that $\forall x \in \mathbb{N}, 0 \le x \le 2^{k+1}-1 \Longrightarrow B(k+1,x)$

Case of n = k+1:

Want to show that $\forall x \in \mathbb{N}, 0 \le x \le 2^{k+1}-1 \Longrightarrow B(k+1,x)$

B(k+1,x) is true when x can be written in binary using exactly k+1 bits.

Case 1: Assume $x \le 2^{k-1}$

By Induction Hypothesis, we know that B(k,x) is true. Therefore:

$$\exists\ b_0,\,b_1,\,...,\,b_{k\text{-}1}\in\{0,1\}\ such\ that\ x=(b_{k\text{-}1}b_{k\text{-}2}...b_1b_0)_2$$

$$= \Sigma b_i 2^i$$

We can append a 0 to the left side of the number without changing its value. So $x = (0b_{k-1}b_{k-2}...b_1b_0)_2$

=
$$(0) 2^k + \sum b_i 2^i$$

Thus B(k+1, x) is true.

Case 2: Assume $x > 2^{k}-1$

Then, $2^k \le x \le 2^{k+1} - 1$

Subtract 2k from all parts to get:

$$2^k - 2^k \le x - 2^k \le 2^{k+1} - 1 - 2^k$$

$$0 \le x - 2^k \le 2^k (2-1) - 1$$

By the Induction hypothesis, we know B(k, x-2k)

 $\exists \ b_0, \ b_1, \ \dots, \ b_{k-1} \in \{0,1\} \ such \ that$

$$x - 2^k = (b_{k-1}b_{k-2}...b_1b_0)_2 = \sum b_i 2^i$$

Therefore,

 $\exists \ b_0, \ b_1, \ \dots, \ b_{k-1} \in \{0,1\} \ such \ that$

$$x = (1b_{k-1}b_{k-2}...b_1b_0)_2 = (1)2^k + \sum b_i 2^i$$

B(k+1, x) is true.

Next time: $\forall x \in \mathbb{N}, 0 \le x \le 2^{k+1}-1 \iff B(k+1,x)$