

Outline

- What are transposable elements (TEs)? Why are they important?
- Analysis of existing libraries, and methods of discovery
- Diversity of transposon content across green plants
- Comparison of *Arabidopsis thaliana* individuals
- Conclusions
- Future Research

What are transposons?

Transposons are:

- Mobile genetic elements
- Often able to replicate during transposition
- Able to affect the genetic make-up of the host

Where did they come from?

Figure 1. Bacteriaphage (http://cronodon.com, 2008)

How abundant are they?

Figure 2. Non-coding DNA content species (Gregory, 2008)

What is their structure?

Figure 3. Structure of the different types of plant transposable elements (Casacuberta & Santiago, 2013).

Comparison of TE Libraries

- REdat (Plant Genome and System Biology Group, Germany)
 - Combination of TREP, TIGR repeats, PlantSat and Genbank libraries
 - 450 Mbp, 61K sequences
- Repbase (Genetic Information Resource Institute, USA)
 - 36 Mbp, 12k sequences
- TAIR (The Arabidopsis Information Resource, USA)
 - 23 Mbp, 31k sequences
- Merged Library
 - Contains all above sequences

Comparison of TE Libraries

Comparison of TE Libraries

Discovery of Novel TEs

RepeatModeler

- Red (REpeat Detector)
 - Uses a machine learning algorithm to find repeats

Discovery of Novel TEs

Table 1. Run-time for RepeatModeler with Embryophyte genomes

Species	Genome	Run-time
	Size (Mbp)	(HHH:MM)
A.thaliana	117	198:16
A.thaliana	38	154:52
O.sativa	374	306:32
U.gibba	68	76:38
S.italica	407	314:28

Figure 3. Arabidopsis thaliana (Roepers, 2004)

Kimura Distance:

$$K = -\frac{1}{2}\ln(1 - 2p - q)\sqrt{1 - 2q}$$

Figure 3. Transitions-transversions (Petulda, 2008)

Conclusions

Repbase has the widest library of TE subfamilies

- 23 found in A.thaliana, < 15 found in others

REdat has strong LTR content

- By copy number, REdat LTR > All Repbase

High amount of overlap is existing TE libraries

- 22% on merged; 19%, 15%, 14% on others

Conclusions

Correlation between genome size and TE content

- Pearson's Test (t = 10.389, P << 0.005)

Correlation between genome size and LTR content

- Pearson's Test (t = 5.18, P < 0.005)

Evidence for TE transfer

DNA/Kolobok in M. polymorpha, DNA/Merlin in C. quinoa

Evidence for TE extinction

- LINE/Cassandra in S. tuberosum, S. lycopersicum

TE content is not reflective of phylogeny

G.max, R.communis removed from other Fabids

Conclusions

Map distances may not reflect genomic differences

Japan and Libya show minimal separation

Arabidopsis has recent common ancestor

Equal genome sizes, minimal divergence for TEs

Cited mutation rates may be incorrect

- 10⁴ -10⁶ rate not reflected in Arabidopsis

Future Work

Develop TE discovery pipeline with Red

Use existing libraries as training data

Analyze RepeatModeler TEs

Compare against known sequences (TE, coding, ncDNA)

Create a tool to generate non-overlapping libraries

Combine and cluster sequences to maximize efficiency

Future Work

Expand search for TE transfer mechanisms

Search for individual subfamilies across unrelated species

Investigate TE contribution to speciation

Detect bursts of transposons

Analyze extremely large genomes for trends

Paris japonica (130 Gbp)

Future Work

Expand Arabidopsis data

Find relict individuals (pre-1700's)

Compare other equations for evolutionary change

Include for insertions and deletions

Detect transposon activity

Search parent/offspring for increased copy numbers