

PID-Comm:

Fast and Flexible Collective Communication Framework for Commodity Processing-in-DIMM Devices

Si Ung Noh¹, Junguk Hong¹, Chaemin Lim², Seongyeon Park¹, Jeehyun Kim², Hanjun Kim³, Youngsok Kim² and Jinho Lee¹

- 1: Department of Electrical and Computer Engineering, Seoul National University
- ²: Department of Computer Science, Yonsei University
- ³: School of Electrical and Electronic Engineering, Yonsei University

The Memory Wall

- Processor performance is outpacing memory interconnect bandwidth
- Al applications require high memory bandwidth
- Memory is becoming the dominant bottleneck

Processing-in-Memory (PIM)

- PIM is a promising solution to the memory bottleneck
- Achieves higher memory bandwidth by offloading computation to memory

PIM-enabled Systems (e.g., UPMEM DIMMs)

Inter-PE Communications

(e.g., UPMEM DIMMs)

- Workload is distributed to each PEs (nodes) for computation
- For efficient sharing of intermediate results, collective communications are essential

Inter-PE Communications

- No direct path between each DRAM processing elements (PEs)
- Host processor becomes the medium for inter-PE communication
- Inter-PE communications are becoming the bottleneck of major applications

- Refers to PIM implemented on dual in-line memory modules (UPMEM DIMMs)
- Shares the same hierarchy as DDR4 DRAMs

- 8-bit bus per chip to form 64-bit channel bus
- The same bank of each chip in a rank are accessed at once
- We name the group of banks accessed together as "Entangled Group"

- 8-bit bus per chip to form 64-bit channel bus
- The same bank of each chip in a rank are accessed at once
- We name the group of banks accessed together as "Entangled Group"

- 8-bit bus per chip to form 64-bit channel bus
- The same bank of each chip in a rank are accessed at once
- We name the group of banks accessed together as "Entangled Group"

- 8-bit bus per chip to form 64-bit channel bus
- The same bank of each chip in a rank are accessed at once
- We name the group of banks accessed together as "Entangled Group"

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

- Data domain-transferred in the vector register and saved in host memory
- Data sent back to bank after modulation in the host processor

Overview

- Conventional inter-PE communication is slow, but there is room for enhancement
- We aim to make them fast, and make them support flexible use

Flexible communication between PEs

Overview

- Conventional inter-PE communication is slow, but there is room for enhancement
- We aim to make them fast, and make them support flexible use

Optimization of inter-PE communication

Flexible communication between PEs

1. PE-assisted Reordering

• Reorder data inside PEs to enhance data locality

1. PE-assisted Reordering

• Reorder data inside PEs to enhance data locality

Modulate data within the vector register

Remove host memory access

Modulate data within the vector register

Modulate data within the vector register

Modulate data within the vector register

PID-Comm's Optimization

- Three optimization techniques reduce their target bottleneck
- PE-assisted Reordering (PR) targets data modulation
- In-register Modulation (IM) targets host memory access
- Cross-domain Modulation (CM) targets domain transfer

- PID-Comm is fast but for practical use we need a model that supports
 - Diverse Communication Groups
 - Multi-instance invocation

4. The Hypercube Model

- Maintaining both optimal performance and high flexibility
- Mapping virtual hypercube to physical banks
 - Follow the DRAM hierarchy in the order of chip-bank-rank-channel

4. The Hypercube Model

- Allows multiple communication invocations
- Support diverse communication groups

Hypercube (4, 4, 2)

Communication group configuration.

4. The Hypercube Model

- Allows multiple communication invocations
- Support diverse communication groups

Communication group configuration.

Environment

Experimental Setup

- Intel Xeon Gold 5125 CPU (Double socket, 10 cores each)
- 4 Channels of UPMEM DIMMs (1024 PEs)

Benchmark Applications

Baseline

- SimplePIM (for AllGather, AllReduce, Scatter, Gather, Broadcast)
- UPMEM SDK based implementation (for AlltoAll, ReduceScatter, Reduce)

Арр.	Hyper. Dim.	Communication Primitives							
		AlltoAll	Reduce Scatter	All Reduce	All Gather	Scatter	Gather	Reduce	Broad cast
DLRM	3	/	/			/	/		/
GNN	2			/	/	/	/		
BFS	1			/		/		/	
CC	1			/		/		/	
MLP	1		/			/			

Performance of Primitives

- Up to <u>5.19x</u> higher throughput compared to PIM baseline
- Geomean Speedup of <u>2.83X</u>

Ablation Study & Breakdown

Average speedup of <u>1.48x</u>, <u>2.03x</u>, and <u>1.42x</u> for +PR, +IM, and +CM

Benchmark Applications

- Evaluated on different datasets / embedding dimensions / feature sizes
- Up to 3.99x speedup compared to conventional communication schemes
- Geo-mean speedup of <u>1.99x</u>

Benchmark Applications

- Evaluated on different datasets / embedding dimensions / feature sizes
- Up to 3.99x speedup compared to conventional communication schemes
- Geo-mean speedup of <u>1.99x</u>

6. Conclusion

PID-Comm is...

- 1. The 1st full-fledged collective communication library for PIM-enabled DIMMs
 - Supports 8 types of communication primitives (sharing the scope of NCCL)

2. Provides

- Micro-level optimizations to accelerate inter-PE communications
- A hypercube communication model for flexible communications
- 3. Primitives outperform PIM baseline by 2.83x in geomean
- 4. Open source: https://github.com/AIS-SNU/PID-Comm

Thank you.

Si Ung Noh @ Seoul National University

Email: siung98@snu.ac.kr

Junguk Hong @ Seoul National University

Email: junguk16@snu.ac.kr