Circuit analysis with Nonlinear Elements And Review of Part2

Linear elements

Resistor

$$\frac{V}{R}$$

• Inductor $V = L - \frac{dL}{dt}$

Nonlinear elements may not have an analytical function

Load line

Graphical (Load-line) analysis

- Merge the load line onto the i-v curve of the nonlinear element
- The solution is at the intersection point

Solving circuits with one Nonlinear element

- Replace the circuit by its Thevenin's equivalent considering the nonlinear element as the load
- Use graphical analysis technique

Find the current through the NLD.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_{s} = 450V$$

$$R = 9\Omega$$

$$V_{s} = 450V$$

$$R = 9\Omega$$

$$V_{s} = 450V$$

$$V$$

Popular nonlinear devices

Diode

- BJT(Bipolar Junction Transistor)
- MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

We learn about their terminal characteristics without getting to know their physics

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 In a normal silicon diode at rated currents, the arbitrary "cut-in" voltage is defined as 0.6 to 0.7 volts - used in rectification

 Schottky diodes can be rated as low as 0.2 V

V_t: cut-in voltage

Red or blue diodes (LEDs of 1.4 V and

 Red or blue <u>light-emitting</u> <u>diodes</u>(LEDs) can have values of 1.4 V and 4.0 V respectively.

Some applications of diode

- Rectification (ac to dc)
- LED
- Over-voltage protection

BJT Symbol Bipolar Junction Transito

- 3-terminal device
 - Base B
 - Collector C
 - Emitter E
- Base current controls the behavior of the

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The operation of the BJT is defined in terms of two currents and two voltages: i_B , i_C , v_{CE} , and v_{BE} .

KCL: $i_E = i_B + i_C$

KVL: $v_{CE} = v_{CB} + v_{BE}$

BJT in Circuit

Vant = (-10x fc) DVin

 Separate i-v curve for each value of base current

• Two modes of $\Delta^{V_0} = -\Delta i_{\mathcal{L}} R_{\mathcal{L}}$ operation: $= -160 \times R_{\mathcal{L}} \times \Delta i_{\mathcal{B}}$

Amplifier

• Switch $\frac{V_{1N}-0.7}{R_{R}}$

MOSFET symbol

- 3-terminal device
 - Gate
 - Drain
 - Source
- Gate voltage controls the behavior of the MOSFET

11_07.jpg

- Separate i-v curve for each value of base current
- Two modes of operation:
 - Amplifier
 - Switch

Examinable Syllabus for part 2

- 1. DC transients analysis
- 2. AC steady-state analysis
- 3. Digital Logic ✓
- 4. Circuits with Nonlinear elements -

Mid-term question Q4

- The load requires 12KV to start with and it decays at time constant $\tau = 10 \mu s$
- Find the value of L and R in the circuit.

Mid-term question Q45

- $ullet i_c$ immediately after the switch is closed
- $i_2(t)$ after switch is closed

- Review of Complex numbers
- Phasors sinusoidal voltage and current?
- Impedance for the R,L and C
- Solve circuits using all the techniques for DC circuit analysis

AC steady-state review Qn

$$v_s(t) = 100 \sin(100t) V$$
 $i_s(t) = 10 \cos(100t) A.$

- Find the Thevenin equivalent between A and B
- Draw the Phasor diagram showing the voltage source, current source and the Thevenin voltage

$$0.111$$
 $j \times 100 \times 0.1 = j \cdot 10$ $-j \cdot \frac{1}{4} = -j \cdot \frac{1}{100} \times 10^{-3}$

B

$$V_{T} = |\omega| - 90 + i_{*}(0+j0)$$

$$= -j|\omega| + |0|0|_{*}(|0+j0|)$$

$$= -j|\omega| + |0|(0+j0|)$$

$$= -j|\omega| + |\omega| + j|\omega| = |0|$$

$$V_{T} = |\omega| = |0|$$

Digital Design

- Basic Boolean operation
- Logic gates AND,OR, NOT, NAND, NOR
- Truth table for a digital system
- SOP and POS expression from Truth table
- Minimization of logic expression using K-map
- Realization of logic expression using NAND/NOR gates only with 'alternate gate representation'

