Linal moment

(Все пожелания, угрозы писать сюда):

Оглавление

- 1. Билет № 1.
- 2. Билет № 2.
- 3. Билет № 3.
- 4. Билет № 4.
- 5. Билет № 5.
- 6. Билет № 6.
- 7. Билет № 7.
- 8. Билет № 8.

Билет № 1. Ранг матрицы. Теорема о ранге матрицы. Теорема о базисном миноре.

Определение [ранг матрицы]. Пусть в матрице $A \exists$ линейно независимая (ЛНЗ) система из r строк, и нет линейно независимой системы из бо́льшего числа строк. Тогда мы будем говорить, что строчный ранг A равен r.

Определение [базисная подматрица]. Подматрица B матрицы A ($B=B_{j_1,\ j_2,\ ...,\ j_r}^{i_1,\ i_2,\ ...,\ i_r}$) называется базисной подматрицей, если её определитель не равен нулю $\det(B)=M_{j_1,\ j_2,\ ...,\ j_r}^{i_1,\ i_2,\ ...,\ i_r}\neq 0$, а \forall минор матрицы A порядка r+1 равен нулю.

Определение [базисный минор]. Матрицу $M_{j_1,\ j_2,\ ...,\ j_r}^{i_1,\ i_2,\ ...,\ i_r}$ будем называть базисным минором.

Теорема о ранге матрицы. Ранг матрицы A является наибольшим таким числом r, что в матрице A имеется r строк (r столбцов), образующих линейно независимую систему. (Из этой теоремы, в частности, следует, что максимальное число линейно независимых строк матрицы равно максимальному числу её линейно независимых столбцов.)

Доказательство:

 \square Пусть ранг матрицы A равен r. Требуется доказать, что в матрице A имеется r столбцов (строк), образующих линейно независимую систему, и что всякие r+1 столбцов (строк) образуют линейно зависимую систему. Доказательство для строк и столбцов одно и то же, проведем его для столбцов.

Раз ранг матрицы равен r, то в ней имеется минор P с отличным от нуля детерминантом. Не ограничивая общности рассуждений, можно предположить, что этот минор P является угловым (ведь если если он не угловой, то угловым мы его сделаем :D):

$$\begin{pmatrix} a_{1, 1} & \dots & a_{1, r} & a_{1, r+1} & \dots & a_{1, n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{r, 1} & \dots & a_{r, r} & a_{r, r+1} & \dots & a_{r, n} \\ a_{r+1, 1} & \dots & a_{r+1, r} & a_{r+1, r+1} & \dots & a_{r+1, n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m, 1} & \dots & a_{m, r} & a_{m, r+1} & \dots & a_{m, n} \end{pmatrix}, \det(P) = \begin{vmatrix} a_{1, 1} & \dots & a_{1, r} \\ \vdots & \ddots & \vdots \\ a_{r, 1} & \dots & a_{r, r} \end{vmatrix} \neq 0.$$

Так как $\det(P) \neq 0$, то векторы $w_1 = \{a_{11}, \ldots, a_{r1}\}, \ldots, w_r = \{a_{1r}, \ldots, a_{rr}\}$ линейно независимы, а тогда тем более линейно независимы векторы $v_1 = \{a_{11}, \ldots, a_{r1}, \ldots, a_{m1}\}, \ldots, v_r = \{a_{1r}, \ldots, a_{rr}, \ldots, a_{mr}\}.$

Итак, в матрице A ранга r имеется линейно независимая система, состоящая из r столбцов. Докажем тогда, что всякие r+1 столбцов матрицы A (ранга r) линейно зависимы. Предполагаем снова, что отличен от нуля детерминант углового минора порядка r матрицы A.

Вспомним, что среди векторов, являющихся линейными комбинациями данных r векторов, нельзя найти более r линейно независимых; поэтому достаточно доказать, что каждый столбец $v_h = \{a_{1h}, a_{2h}, \ldots, a_{mh}\}$ матрицы A является линейной комбинацией первых r столбцов: Предполагаем, что h > r. Взяв любое $i \leq m$, построим детерминант

$$D_{i} = \begin{vmatrix} a_{1, 1} & \dots & a_{1, r} & a_{1, h} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r, 1} & \dots & a_{r, r} & a_{r, h} \\ a_{i, 1} & \dots & a_{i, r} & a_{i, h} \end{vmatrix}$$

При любом i этот детерминант равен 0. В самом деле, если $i\leqslant r$, то этот детерминант имеет две одинаковые строки — на i-м и (r+1)-м местах — поэтому равен нулю. Если же $i\geqslant r$, то D_i есть детерминант некоторого минора r+1 порядка матрицы A, и он равен нулю, так как ранг матрицы A по предположению есть r. Итак, $D_i=0$ при $i\leqslant m$.

Разложим детерминант D_i по элементам последней строки:

$$A_{1} = (-1)^{(r+1)+1} \begin{vmatrix} a_{1, 2} & \dots & a_{1, r} & a_{1, h} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r, 2} & \dots & a_{r, r} & a_{r, h} \end{vmatrix}$$

и так далее ...

$$A_{k} = (-1)^{(r+1)+k} \begin{vmatrix} a_{1, 1} & \dots & a_{1, k-1} & a_{1, k+1} & \dots & a_{1, r} & a_{1, h} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{r, 1} & \dots & a_{r, k-1} & a_{r, k+1} & \dots & a_{r, r} & a_{r, h} \end{vmatrix}$$

и, наконец,

$$A_{r+1} = \begin{vmatrix} a_{1, 1} & \dots & a_{1, r} \\ \vdots & \ddots & \vdots \\ a_{r, 1} & \dots & a_{r, r} \end{vmatrix} = \det(P) \neq 0.$$

Имеем $0 = D_i = A_1 a_{i1} + A_2 a_{i2} + \ldots + A_r a_{ir} + A_{r+1} a_{ih}$, где $i = 1, 2, \ldots, m$.

Эти соотношения выражают равенство $A_1v_1+A_2v_2+\ldots+A_rv_r+A_{r+1}v_h$, в котором заведомо коэффициент $A_{r+1}=\det(P)$ отличен от нуля и которое поэтому можно разрешить относительно $v_h:v_h=\lambda v_1+\ldots+\lambda_r v_r$ при $\lambda_1=-\frac{A_1}{A_{r+1}},\;\ldots,\;\lambda_r=-\frac{A_r}{A_{r+1}}.$

Итак, мы представили произвольный столбец v_h матрицы в виде линейной комбинации первых r столбцов этой матрицы. Этим и закончили доказательство теоремы.

Теорема о базисном миноре. Если $M^{i_1,\ i_2,\ ...,\ i_r}_{j_1,\ j_2,\ ...,\ j_r}$ — базисный минор матрицы A, то строки $\overrightarrow{a_{i1}},\ \dots,\ \overrightarrow{a_{ir}}$ и столбцы $a^{\uparrow}_{j_1},\ \dots,\ a^{\uparrow}_{j_r}$ являются базисными в матрице A.

Доказательство:

 \square Без ограничения общности будем считать, что матрица A имеет следующий вид (базисная матрица в левом верхнем углу):

$$\begin{pmatrix} a_{11} & \dots & a_{1r} & \dots & a_{1j} & \dots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\ a_{r1} & \dots & a_{rr} & \dots & a_{rj} & \dots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\ a_{i1} & \dots & a_{ir} & \dots & a_{rij} & \dots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

Докажем, что $\overrightarrow{a_i} = \lambda_1 \overrightarrow{a_1} + \ldots + \lambda_r \overrightarrow{a_r}$

Рассмотрим дереминант матрицы, состоящей из базисной матрицы и добавленными к ней i-той строки и j-того столбца. Рассмотрим следующий минор, и разложим его по j-тому столбцу:

$$\begin{vmatrix} a_{11} & \dots & a_{1r} & a_{1j} \\ \vdots & \ddots & \vdots & \vdots \\ a_{r1} & \dots & a_{rr} & a_{rj} \\ a_{i1} & \dots & a_{ir} & a_{ij} \end{vmatrix} = a_{1j}(-1)^{1+r+1}M_1^j + \dots + a_{rj}(-1)^{2r+1}M_r^j + a_{ij}(-1)^{1+r+1+r}M_{1, \dots, r}^{1, \dots, r} = 0$$
Значит, $a_{ij} = -\frac{1}{M}(\sum_{k=1}^r a_{kj}A_k^j)$, где $A_{ij} = (-1)^{i+j}M_{ij}$ — алгебраическое дополнение элемента

Значит, $a_{ij} = -\frac{1}{M}(\sum_{k=1}^r a_{kj}A_k^j)$, где $A_{ij} = (-1)^{i+j}M_{ij}$ — алгебраическое дополнение элемента a_{ij} , и $M = M_{1, \dots, r}^{1, \dots, r}$ — базисный минор. Причём, A_k^j от ј не зависит, то есть $a_{i*} = -\frac{1}{M}(\sum_{k=1}^r a_{k*}A_k^*)$. А ведь это как раз и означает, что i-тая строка — линейная комбинация $\overrightarrow{a_1}, \dots, \overrightarrow{a_r}$.

Билет № 2. Системы линейных уравнений. Общее решение системы линейных уравнений. Фундаментальная система решений. Теорема Кронекера—Капелли. Теорема Фредгольма.

Определение [СЛУ]. Систему уравнений вида

$$\begin{cases} a_1^1 x_1 + a_2^1 x_2 + \dots + a_n^1 x_n = b^1 \\ a_1^2 x_1 + a_2^2 x_2 + \dots + a_n^2 x_n = b^2 \\ \dots \\ a_1^m x_1 + a_2^m x_2 + \dots + a_n^m x_n = b^m \end{cases}$$

будем называть системой линейных уравнений (СЛУ) с n неизвестными. Коэффициенты при (x_1, \ldots, x_n) будем записывать в виде матрицы, называемой матрицей системы:

$$\begin{pmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^m & a_2^m & \dots & a_n^m \end{pmatrix}$$

Числа, стоящие в правых частях уравнений системы, образуют столбец b^{\uparrow} , называемый столбцом свободных членов. Если все элементы столбца свободных членов равны нулю, то система называется однородной (ОСЛУ). Причём, однородная система всегда совместна (то есть имеет хотя бы одно решение), так как, очевидно, всегда есть как минимум тривиальное решение.

Определение [Φ CP]. Фундаментальная система решений — базис в линейном пространстве решений однородного уравнения.

Определение [фундаментальная матрица]. Фундаментальная матрица — матрица, столбцами которой является ФСР.

Лемма о вычислении общего решения СЛУ. Пусть AX = b и AY = 0 – соответствующая ОСЛУ, тогда $\forall X$ решение системы AX = b представляется в виде $X = X_{\mathbf{q}} + Y$, где $X_{\mathbf{q}}$ – частное решение, и Y – произвольное решение ОСЛУ.

Доказательство [Необходимость \Rightarrow]:

 \square Раз $X_{\bf q}$ – частное решение AX=b, то из $AX=b\Rightarrow AX_{\bf q}=b.$ Тогда $A(X-X_{\bf q})=0\Rightarrow Y=X-X_{\bf q}$ – решение системы AY=0, или $X=X_{\bf q}+Y$

Доказательство [Достаточность \Leftarrow]:

Пусть Y – решение системы AY=0: $X=X_{\tt q}+Y$ – есть решение AX=b, т.к. $A(X_{\tt q}+Y)=AX_{\tt q}+AY=AX_{\tt q}=b$.

Итого:
$$X_{\text{обш}} = X_{\text{ч}} + Y_{\text{олн}}$$

Общий вид ФСР.

Возьмём $\widetilde{A}=(A\mid b)$. Сведём матрицу \widetilde{A} элементарными преобразованиями и перестановкой столбцов к следующему виду:

$$\left(\begin{array}{c|c|c} E_r & c & b' \\ \hline 0 & 0 & 0 \end{array}\right)$$
, где b' — столбец $(b_1, \ \dots, \ b_r)^T$.

В матрице \widetilde{A} после преобразований $\operatorname{rg}(\widetilde{A})=\operatorname{rg}(A)=r$ ненулевых строк. Тогда запишем уравнения в следующем виде:

$$x_i + \sum_{j=r+1}^{n} c_{ij} x_j = b_i, \ i = \overline{1, r}.$$

Переменные x_1, \ldots, x_r будем называть главными неизвестными, а остальные — параметрическими.

$$\begin{cases} x_1 = b_1 - \sum_{j=r+1}^n c_{1j} x_j \\ \dots \\ x_r = b_r - \sum_{j=r+1}^n c_{rj} x_j \end{cases}$$

Тогда распишем X:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 - \sum_{j=r+1}^n c_{1j} x_j \\ \vdots \\ b_r - \sum_{j=r+1}^n c_{rj} x_j \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_r \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \sum_{j=r+1}^n x_j \begin{pmatrix} -c_{1j} \\ \vdots \\ -c_{rj} \\ E_{n-r} \end{pmatrix}$$

Матрицу

$$\Phi = \begin{pmatrix} -c_{1j} \\ \vdots \\ -c_{rj} \\ E_{n-r} \end{pmatrix}$$

называют фундаментальной системой решений. Будем обозначать такую матрицу следующим образом:

$$\Phi = \begin{pmatrix} -c_{1, r+1} & \dots & -c_{1n} \\ \vdots & \ddots & \vdots \\ -c_{r, r+1} & \dots & -c_{rn} \\ \hline 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} -C \\ \overline{E_{n-r}} \end{pmatrix}$$

А теперь возьмём ФСР и домножим её на $(E_r \mid C)$:

$$(E_r \mid C) \cdot \Phi = (E_r \mid C) \cdot \left(\frac{-C}{E_{n-r}}\right) = -C + C = 0$$

Вот и получается, что Φ CP однородной системы — базис пространства решений этой системы.

Теорема Кронекера—**Капелли.** СЛУ Ax = b совместна $\Leftrightarrow rg(A) = rg(A \mid b)$. Доказательство [Необходимость \Rightarrow]:

 \square Пусть существует решение x, тогда $x_1a_1^{\uparrow} + x_2a_2^{\uparrow} + \ldots + x_na_n^{\uparrow} = b^{\uparrow}$. То есть столбец b^{\uparrow} есть линейная комбинация a_1, \ldots, a_n , а значит, дописывание b^{\uparrow} к матрице A не увеличит ее ранг.

Доказательство [Достаточность \Leftarrow]:

Имеем $rg(A)=rg(A\mid b)$. Значит у них один и тот же базисный минор. Значит b^{\uparrow} — линейная комбинация столбцов базисного минора, и система Ax=b разрешима.

Теорема Фредгольма. СЛУ Ax = b совместна $\Leftrightarrow \forall Y$, где Y - решение системы $A^TY = 0$, выполняется $b^TY = 0$.

Доказательство [Необходимость \Rightarrow]:

 \square Пусть $\exists x_0 : Ax_0^{\uparrow} = b^{\uparrow}$ и Y — некоторое решение системы $A^TY = 0 \Leftrightarrow Y^TA = 0$. Домножим $[Ax_0 = b]$ слева на $Y^T : (Y^TA)x_0 = Y^Tb = 0 = b^TY$.

Доказательство [Достаточность \Leftarrow]:

Предположим теперь, что система Ax=b несовместна. Это равносильно тому, что в упрощенном виде ее расширенной матрицы $(A\mid b)$ есть строка $(0\,\ldots\,0\mid 1)$. Так как упрощенный вид получается из исходной матрицы элементарными преобразованиями строк, строка $(0\,\ldots\,0\mid 1)$ является линейной комбинацией строк матрицы $(A\mid b)$. То есть существует такой столбец y_0 , что $y_0^T=(0\ldots 0\mid 1)$. Последнее равенство равносильно системе $y_0^TA=0,\,y_0^Tb=1$. То есть, предположив несовместность системы Ax=b, мы нашли такое решение y_0 сопряженной однородной системы, что $y_0^Tb\neq 0$.

Билет № 3. Аксиоматика линейного пространства. Линейная зависимость и линейная независимость систем элементов в линейном пространстве. Размерность и базис.

Полагаем, что L — произвольное множество, \mathbb{F} — некоторое поле (например, поле \mathbb{R}). На L определна бинарная операция, которую мы будем называть сложением и обозначать «+», а также $\forall \lambda$ определена унарная операция, которую мы будем называть умножением на λ и обозначать $\lambda \cdot \boldsymbol{a}$ или $\lambda \boldsymbol{a}$, где $\boldsymbol{a} \in L$.

Определение [векторное (линейное) пространство]. L называется векторным (или линейным) пространством над полем \mathbb{F} , если выполнены следующие 8 свойств (аксиом векторного пространства):

```
1. (a + b) + c = a + (b + c) \quad (\forall a, b, c \in L);
```

- 2. $\exists \ \mathbf{0} \in L \ \forall \ \mathbf{a} \in L : \mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a} = \mathbf{a};$
- 3. $\forall \ a \in L \ \exists \ x \in L : x + a = a + x = 0;$
- 4. $a + b = b + a \quad (\forall \ a, b \in L);$
- 5. $\lambda(\boldsymbol{a} + \boldsymbol{b}) = \lambda \boldsymbol{a} + \lambda \boldsymbol{b} \quad (\forall \ \boldsymbol{a}, \boldsymbol{b} \in L, \ \forall \ \lambda \in \mathbb{F});$
- 6. $(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a} \quad (\forall \mathbf{a} \in L, \forall \lambda, \mu \in \mathbb{F});$
- 7. $1 \cdot \boldsymbol{a} = \boldsymbol{a} \quad (\forall \ \boldsymbol{a} \in L);$
- 8. $(\lambda \mu) \boldsymbol{a} = \lambda(\mu \boldsymbol{a}) \quad (\forall \ \boldsymbol{a} \in L, \ \forall \ \lambda, \ \mu \in \mathbb{F});$

Определение [линейная комбинация]. Пусть ${m a}_1,\,\ldots,\,{m a}_{m k}\in L,\,\lambda_1,\,\ldots,\lambda_k\in~\mathbb{F}.$

Сумма $\sum_{i=1}^k \lambda_i \boldsymbol{a}_i$ называется линейной комбинацией векторов $\boldsymbol{a}_1, \dots, \boldsymbol{a}_k$ с коэффициентами $\lambda_1, \dots, \lambda_k$.

Причём, линейная комбинация $\sum_{i=1}^k \lambda_i a_i$ называется тривиальной, если все её коэффициенты равны 0 (очевидно, что тогда сама линейная комбинация будет равна **0**).

Определение [линейная независимость]. L,.

Определение [линейная зависимость].,,.

Некоторые свойства векторов в системе.

- $1.k > 1 \Leftrightarrow$ хотя бы один вектор этой системы линейная комбинация остальных.
- 2. Если в системе есть $\mathbf{0}$, то она является ЛЗ.
- 3. Если подсистема некоторой системы векторов ЛЗ, то и вся система ЛЗ.
- 4. Всякая подсистема ЛНЗ системы является ЛНЗ системой.
- 5. Разложение любого вектора по ЛНЗ система однозначно.

Определение [ранг системы векторов]. Целое неотрицательное число r называется рангом непустой системы $\mathbb A$ векторов из L, если в системе $\mathbb A$ найдётся линейно независимая подсистема из r векторов, а любая подсистема из r+1 векторов является линейно зависимой.

Определение [бесконечный ранг]. Будем говорить, что система \mathbb{A} имеет бесконечный ранг, если $\forall r \in \mathbb{N}$ в \mathbb{A} найдётся линейно независимая подсистема из r векторов.

В том случае, когда $\mathbb A$ является подпространством в L, более употребительное название для ранга — размерность. Обозначают размерность как dim $\mathbb A$. Пространство размерности $\mathbb A$ называют k-мерным. Если dim $V < \infty$, то V называют конечномерным, иначе — бесконечномерным.

Определение [базис]. Базисом в L называется конечная упорядоченная ЛНЗ система векторов такая, что каждый вектор из L по ней раскладывается.

Билет № 4. Разложение по базису в линейном пространстве. Координатное представление элементов линейного пространства и операций с ними. Матрица перехода. Изменение координат при изменении базиса в линейном пространстве. Теорема об изоморфизме.

Пусть в линейном пространстве L выбраны базисы $e = \|e_1, \ldots, e_n\|$, и $e' = \|e'_1, \ldots, e'_n\|$. Тогда $\forall X \in L$ можем записать его координатные представления:

$$X = \sum_{i=1}^{n} x_{i} e_{i} = e X_{e}^{\uparrow} \text{ M } X' = \sum_{i=1}^{n} x'_{i} e'_{i} = e' X_{e'}^{\uparrow}$$

Операции сложения векторов и умножения на скаляр.

1. Координатный столбец суммы векторов равен сумме координатных столбцов:

$$\square X + Y = \sum_{i=1}^{n} x_i e_i + \sum_{j=1}^{n} y_j e_j = \sum_{i=1}^{n} (x_i + y_i) e_i = e(X^{\uparrow} + Y^{\uparrow})$$

2. Координатный столбец произведения вектора на скаляр равен произведению координатного столбца вектора на это число:

$$\square \quad \alpha X = \alpha \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} (\alpha x_i) e_i = e(\alpha X^{\uparrow}) \quad \blacksquare$$

Матрица перехода.

Рассмотрим на примере трёхмерного пространства. Пусть есть два базиса в пространстве: "старый" e и "новый" e'. Пусть $e=(e_1,\,e_2,\,e_3)$ и $e'=(e'_1,\,e'_2,\,e'_3)$. Координаты вектора $\vec{\vartheta}$ запишем в виде столбцов: $\boldsymbol{x}=(\mathbf{x}_1,\,x_2,\,x_3)$ в базисе e и $\boldsymbol{x}'=(\mathbf{x}'_1,\,x'_2,\,x'_3)$ в базисе e'.

Нам известно представление некоторого вектора $\vec{\vartheta}$ в базисе e':

$$\vec{\vartheta} = x_1'e_1' + x_2'e_2' + x_3'e_3'$$

Также нам известно представление базиса e' в базисе e:

$$\begin{cases} e'_1 = a_{11} \cdot e_1 + a_{12} \cdot e_2 + a_{13} \cdot e_3 \\ e'_2 = a_{21} \cdot e_1 + a_{22} \cdot e_2 + a_{23} \cdot e_3 \\ e'_3 = a_{31} \cdot e_1 + a_{32} \cdot e_2 + a_{33} \cdot e_3 \end{cases}$$

Найдем, как выглядит $\vec{\vartheta}$ в базисе e:

$$\vec{\vartheta} = x_1 e_1 + x_2 e_2 + x_3 e_3$$

Разложение $\vec{\vartheta}$ по базису e' и разложение e' по e можно записать так:

$$\begin{cases} \vec{\vartheta} = e' \mathbf{x}' \\ e' = eS \end{cases}$$

где S — матрица перехода от базиса e к базису e':

$$S = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Теперь разложим вектор $\vec{\vartheta}$ по базису e:

$$\vec{\vartheta} = e\boldsymbol{x}$$

Получается, что один и тот же вектор можно представить по-разному:

$$\vec{\vartheta} = e\boldsymbol{x} = e'\boldsymbol{x}'$$

Тогда, выразив e' через e, получим:

$$e\boldsymbol{x} = (eS)\boldsymbol{x}' = e(S\boldsymbol{x}')$$

Итак, в двух базисах компоненты векторов связаны следующим образом:

$$\begin{cases} e' = eS \\ \boldsymbol{x} = S\boldsymbol{x}' \end{cases}$$

Отметим ещё одно свойство:

С одной стороны справедливо, что $e' = eS_{e \to e'}$, отсюда $e = e'(S_{e \to e'})^{-1}$. А с другой стороны $e = e'S_{e' \to e}$. Тогда в силу единственности разложения e по e' получаем:

$$S_{e'\to e} = (S_{e\to e'})^{-1}$$

Капля в море изоморфизма.

Анекдот [про изоморфизм].

70-е годы. Группа студентов матмеха Ленинградского универа стоит в очереди в кафе "Белочка" (возле метро "Василеостровская", не знаю, есть ли сейчас это кафе) и спорят между собой о некой математической функции. В воздухе мелькают слова: "Это изоморфизм!", "Да, нет же, это гомоморфизм!" и проч. Дама бальзаковского возраста делает замечание: "Молодые люди, здесь порядочные женщины стоят, а вы выражаетесь!".

Говорят, что между элементами двух множеств U и V установлено взаимно однозначное соответствие, если указано правило, которое каждому элементу $u \in U$ сопоставляет единственный элемент $v \in V$, причём каждый элемент $v \in V$ оказывается сопоставленным единственному элементу $u \in U$. Взаимно однозначное соответствие будем обозначать $U \leftrightarrow V$.

Два линейных пространства U и V называются изоморфными, если между их элементами можно установить такое взаимно однозначное соответствие, что выполняются условия:

- 1. Сумме векторов пространства U соответствует сумма соответствующих векторов пространства V.
- 2. Произведению числа на вектор пространства U соответствует произведение того же числа на соответствующий вектор пространства V.

Другими словами, изоморфизм — это взаимно однозначное соответствие, сохраняющее линейные операции.

Некоторые свойства изоморфизма:

- 1. При изоморфизме линейных пространств U и V их нулевые элементы соответствуют друг другу $(0_U \leftrightarrow 0_V)$, и их противоположные элементы соответствуют друг другу.
- 2. Линейной комбинации векторов пространства U соответствует линейная комбинация соответствующих векторов пространства V.
- 3. Линейно независимой (линейно зависимой) системе векторов пространства U соответствует линейно независимая (линейно зависимая) система векторов пространства V.
- 4. Если пространство U изоморфно пространству V, а V изоморфно пространству W, то пространства U и W также изоморфны.
- 5. Любое n-мерное линейное вещественное пространство V изоморфно n-мерному арифметическому пространству \mathbb{R}^n , а n-мерное комплексное пространство изоморфно \mathbb{C}^n .

Теорема об изоморфизме. Два конечномерных линейных пространства (над одним и тем же числовым полем) изоморфны тогда и только тогда, когда они имеют одну и ту же размерность.

Доказательство [Необходимость \Rightarrow]:

 \square Если пространства изоморфны $(U \leftrightarrow V)$, то базису (u_1, u_2, \ldots, u_n) пространства U соответствует линейно независимая система векторов (v_1, v_2, \ldots, v_n) пространства V, которую в случае необходимости можно дополнить до базиса пространства V. Следовательно, $\dim U \leqslant \dim V$. Аналогично получаем противоположное неравенство $\dim V \leqslant \dim U$. Таким образом, $\dim U = \dim V$.

Доказательство [Достаточность \Leftarrow]:

Пусть пространства U и V определены над полем $\mathbb R$ и $\dim U = \dim V = n$. Тогда, выбрав любые базисы в пространствах U и V, установим изоморфизмы $U \leftrightarrow \mathbb R^n$ и $V \leftrightarrow \mathbb R^n$, если U и V — вещественные пространства. А если пространства U и V определены над полем $\mathbb C$ комплексных чисел, то $U \leftrightarrow \mathbb C^n$ и $V \leftrightarrow \mathbb C^n$. В итоге пространства U и V изоморфны. \blacksquare

Билет № 5. Подпространства в линейном пространстве. Способы задания подпространств. Сумма и пересечение подпространств. Формула размерности суммы двух подпространств. Прямая сумма.

Определение [подпространство в L]. Непустое подмножество L' векторов линейного простравнства L называется линейным подпространством, если:

- 1. сумма любых двух векторов из L' принадлежит L';
- 2. произведение каждого вектора из L' на любое число также принадлежит L'.

В силу этого определения любая линейная комбинация векторов из $L' \in L'$. Также нулевой вектор должен принадлежать L' как произведение $0 \cdot \vec{x}$, где $\vec{x} \in L'$.

Например, множество многочленов степени не выше 3 является подпространством пространства всех многочленов.

Справедливость аксиом линейного пространства для L' прямо вытекает из их справедливости для L. Таким образом, подпространство L' является линейным пространством.

Способы задания подпространств:

1. С помощью линейной оболочки.

Определение [линейная оболочка]. Рассмотрим некоторое множество векторов P линейного пространства L. Множество U, состоящее из всевозможных линейных комбинаций векторов из P, мы будем называть линейной оболочкой множества P.

То есть если $a_1, \ldots, a_m \in L$, то линейная оболочка $U = \langle a_1, \ldots, a_m \rangle = \{\sum_{i=1}^m \lambda_i a_i : \lambda_i \in K\}$. И в этом есть принципиальное различие между базисом и линейной оболочкой. Базис в \mathbb{R}^n состоит из n векторов, а вот линейная оболочка в \mathbb{R}^n — из всех векторов в \mathbb{R}^n (то есть из несчётного количества векторов при n > 1).

Предложение 1. Линейная оболочка U является подпространством.

1.
$$\sum_{i=1}^{m} \lambda_i a_i + \sum_{i=1}^{m} \lambda'_i a_i = \sum_{i=1}^{m} (\lambda_i + \lambda'_i) a_i \in U$$
.

2.
$$\alpha \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\lambda_i \cdot \alpha) a_i = \sum_{i=1}^{m} \lambda_i' a_i \in U$$
.

Предложение 2. Пусть L' — подпространство n-мерного простравнства L. Тогда $\dim L' \leq n$. Если $\dim L' = n$, то L' совпадает с L.

Предложение 3. Размерность линейной оболочки множества из m-векторов не больше m.

2. С помощью однородной системы линейных уравнений (ОСЛУ).

Пусть дано n-мерное линейное пространство L, и пусть в нём зафиксирован базис $e = \{e_1, e_2, \ldots, e_n\}; M$ — линейное подпространство в L.

Будем говорить, что система линейных уравнений задаёт подпространство M, если этой системе удовлетворяют координаты всех векторов из M и не удовлетворяют координаты никаких других векторов.

Из свойств решений однородной системы линейных уравнений следует, что любая однородная линейная система уравнений ранга r с n переменными задаёт в n-мерном пространстве L (если в нём зафиксирован базис) (n-r)-мерное линейное подпространство.

Теорема. Если в линейном n-мерном пространстве L зафиксирован базис, то любое его k-мерное линейное подпространство можно задать системой линейных однородных уравнений с n неизвестными ранга (n-k).

Доказательство:

 \square Пусть $\{c_1, \ldots, c_m\} \in L$ и нам известны их координаты в e. Наша задача — выяснить, при каких x_i вектор $x = \sum\limits_{i=1}^m x_i e_i \in \langle c_1, \ldots, c_m \rangle$. Пусть $\{c_1, \ldots, c_m\}$ линейно независимы $\Rightarrow x \in \langle c_1, \ldots, c_m \rangle \Leftrightarrow \exists \lambda_1, \ldots, \lambda_m \in K$:

Пусть $\{c_1, \ldots, c_m\}$ линейно независимы $\Rightarrow x \in \langle c_1, \ldots, c_m \rangle \Leftrightarrow \exists \lambda_1, \ldots, \lambda_m \in K : x = \sum_{i=1}^m \lambda_j c_j$ (2). Это равносильно совместности СЛУ с расширенной матрицей.

$$\hat{B} = \begin{pmatrix} c_{11} & \dots & c_{1m} & x_1 \\ \vdots & \ddots & \vdots & \vdots \\ c_{n1} & \dots & c_{nm} & x_n \end{pmatrix} \sim \begin{pmatrix} c_{1j_1} & \dots & 0 & x_1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & c_{mj_m} & x_n \\ \hline 0 & & a_{r+1,1} \cdot x_1 + \dots + a_{r+1,n} \cdot x_n \\ \vdots & & \vdots & & \vdots \\ 0 & & a_{n,1} \cdot x_1 + \dots + a_{n,n} \cdot x_n \end{pmatrix}$$

Итак, нам нужна совместность \hat{B} . Тогда для получения ОСЛУ, описывающую оболочку, получаем простое условие:

$$\begin{cases} a_{r+1,1} \cdot x_1 + \ldots + a_{r+1,n} \cdot x_n = 0, \\ \ldots & \Rightarrow AX^{\uparrow} = 0. \\ a_{n,1} \cdot x_1 + \ldots + a_{n,n} \cdot x_n = 0. \end{cases}$$

Отметим, что dim $(< c_1, \ldots, c_m >) = m$ и dim $M = n - \operatorname{rg} A = n - (n - m) = m$. В итоге получили ОСЛУ $AX^{\uparrow} = 0$, описывающую оболочку $< c_1, \ldots, c_m >$.

На этой прекрасной ноте мы закончим описывать способы задания подпространств.

Сумма и пересечение подпространств.

Определение [сумма подпространств]. Суммой подпространств L' и L'' будем называть линейную оболочку их объединения $L' \cup L''$. Обозначение: L' + L''.

Подробнее определение означает, что вектор из L'+L'' (и только такой) представим в виде $x=\sum_i \alpha_i p_i + \sum_i \beta_j q_j$, где векторы p_i лежат в L', а q_j — в L''.

Достаточно очевидно, что $\dim(L'+L'') \leq \dim(L') + \dim(L'')$. Если $L' \subseteq L''$, то L'+L'' = L''. В частности, для любого подпространства L'+L'=L'.

Определение [пересечение подпространств]. Пересечением подпространств L' и L'' будем называть множество векторов, которые принадлежат обоим подпространствам. Обозначение: $L' \cap L''$.

Пересечение есть подпространство. Действительно, нулевой вектор лежит во всех подпространствах и, следовательно, пересечение — непустое множество. Если векторы x и y лежат в $L' \cap L''$, то они лежат как в L', так и в L''. Поэтому вектор x + y и при любом α вектор $\alpha \cdot x$ также лежат и в L', и в L'', а значит, и в $L' \cap L''$.

Если в конечномерном пространстве подпространтсва заданы СЛУ, то их пересечение задаётся системой уравнений, получаемой объединением систем, задающих подпространства.

В более общем случае суммой подпространств L^1, \ldots, L^s называется линейная оболочка их объединения. Аналогично сумме двух подпространств можем получить сумму s подпространств: $\dim(L^1 + \ldots + L^s) \leq \dim(L^1) + \ldots + \dim(L^s)$.

Формула Грассмана. Пусть V_1, V_2 — подпространства в L. $\dim(L) < \infty$, $\dim(V_1) < \infty$, $\dim(V_2) < \infty$. Тогда выполняется $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$. Доказательство:

 \square Пусть $\dim(V_1\cap V_2)=s\geqslant 0,\ \dim(V_1)=k_1\geqslant s,\ \dim(V_2)=k_2\geqslant s.$ Пусть $e=\{e_1,\ \dots,e_n\}$ — базис в $V_1\cap V_2.$

Дополним базис e до базиса V_1 векторами f_1, \ldots, f_{k_1-s} и до базиса V_2 векторами g_1, \ldots, g_{k_2-s} . Тогда $\{e_1, \ldots, e_s, f_1, \ldots, f_{k_1-s}\}$ — базис в V_1 , и $\{e_1, \ldots, e_s, g_1, \ldots, g_{k_2-s}\}$ — базис в V_2 . Базис в (V_1+V_2) : $\{e_1, \ldots, e_s, f_1, \ldots, f_{k_1-s}, g_1, \ldots, g_{k_2-s}\}$.

А значит, что $\dim(V_1 + V_2) = s + k_1 - s + k_2 - s = k_1 + k_2 - s$.

Определение [прямая сумма]. Сумма подпространств L^1, \ldots, L^s называется прямой суммой, если ее размерность равна сумме размерностей этих подпространств, то есть имеет максимальное из возможных значений. Обозначение: чаще используется '+', но если требуется подчеркнуть, что сумма прямая, — то \oplus .

Теорема. Для того, чтобы сумма M подпространств L^1, \ldots, L^s была прямой суммой, необходимо и достаточно выполнение любого из следующих четырёх свойств:

- 1. Любая система из $m \leq s$ ненулевых векторов, принадлежащих различным подпространствам L^i $(i=1,\ldots,s)$, линейно независима.
- 2. Каждый вектор $x \in M$ раскладывается в сумму x_1, \ldots, x_s , где $x_i \in L^i$ $(i=1, \ldots, s)$ однозначно.
- 3. Пересечение каждого из подпространств L^i с суммой остальных есть нулевое подпространство.
- 4. Объединение базисов подпространств L^{i} (i = 1, ..., s) является базисом в M.

Доказательство этой теоремы в силу простоты представляется как упражнение. Если есть необходимость прочитать доказательство, то оно описано в книге Б. В. Беклемишева "Курс аналитической геометрии и линейной алгебры" в 13 издании на 239 (НК) странице.

Предложение 4. Для любого подпространства L' пространства L найдётся такое подпространство L'', что $L = L' \oplus L''$.

 \square Выберем базис e_1, \ldots, e_k подпространства L' и дополним его до базиса пространства L векторами e_{k+1}, \ldots, e_n . Тогда обозначим линейную оболочку e_{k+1}, \ldots, e_n через L''. В таком случае $L' \oplus L''$.

Билет № 6. Линейные отображения и линейные преобразования линейного пространства. Ядро и множество значений. Ранг линейного отображения. Условия инъективности, сюръективности и биективности. Операции над линейными преобразованиями.

Небольшое уточнение: обратные преобразования описаны в 7 билете. Я подумал, что лучше эту тему расписать после матриц линейного отображения.

Пусть L_1 и L_2 — линейные пространства.

Определение [отображение]. Отображение $\varphi: L_1 \to L_2$ — закон, по которому каждому вектору из L_1 ставится в соответствие единственный вектор из L_2 . Если отображение φ переводит элемент $\boldsymbol{x} \in X$ в элемент $\boldsymbol{y} \in Y$, то можно записать $\varphi(\boldsymbol{x}) = \boldsymbol{y}$. При этом \boldsymbol{y} называется образом отображения, а \boldsymbol{x} — прообразом \boldsymbol{y} .

Рис. 1: пример отображения. Каждому элементу из X соответствует один элемент из Y. Источник: Wikipedia.

Определение [лин. отобр.]. Отображение $\varphi: L_1 \to L_2$ линейно, если $\forall \ x, \ y \in L$ и $\forall \alpha \in \mathbb{R} \to 1$. $\varphi(x + y) = \varphi(x) + \varphi(y)$; 2. $\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x)$.

Определение [лин. преобразование]. Линейное отображение называется линейным преобразованием, если пространства L_1 и L_2 совпадают.

Отметим свойства, которыми могут обладать произвольные отображения.

Определение [инъекция]. Отображение φ называется инъективным, если разные элементы отображаются в разные: $x_1, x_2 \in X, x_1 \neq x_2 \Rightarrow \varphi(x_1) \neq \varphi(x_2)$.

Определение [сюръекция]. Отображение φ называется сюръективным, если у любого элемента из Y есть прообраз: $\forall y \in Y \; \exists \; x \in X : \varphi(x) = y$.

Определение [биекция]. Отображение φ называется биективным, если у любого элемента из Y есть единственный прообраз: $\forall \boldsymbol{y} \in Y \; \exists ! \; \boldsymbol{x} \in X : \varphi(\boldsymbol{x}) = \boldsymbol{y}$.

Рис. 2: пример отображений (слева инъекция, справа сюръекция). Источник: методичка моего семинариста.

Определение [множество значений]. Множество, связанное с отображением φ — множество значений отображения $\operatorname{Im}(\varphi) \subseteq Y$, определяемое как совокупность всех элементов $\boldsymbol{y} \in Y$, в которые можно попасть под действием отображения: $\operatorname{Im}(\varphi) = \{\boldsymbol{y} \in Y \mid \exists \ \boldsymbol{x} \in X : \varphi(\boldsymbol{x}) = \boldsymbol{y}\}$. То есть сюръективность означает, что $\operatorname{Im}(\varphi) = Y$.

Определение [ядро]. Ядром отображения φ называется подмножество элементов $\mathrm{Ker}(\varphi) \subseteq X$, которые в результате действия φ отображаются в нулевой элемент пространства Y: $\mathrm{Ker}(\varphi) = \{ \boldsymbol{x} \in X \mid \varphi(\boldsymbol{x}) = \mathbf{0}_Y \}$. Под $\mathbf{0}_Y$ подразумевается нулевой элемент из Y.

Лемма. $\operatorname{Ker}(\varphi)$ является линейным пространством в X.

Доказательство:

 \square Пусть $\boldsymbol{x}_1,\,\boldsymbol{x}_2\in\mathrm{Ker}(\varphi)$. Значит $\varphi(\boldsymbol{x}_1)=\boldsymbol{0}$ и $\varphi(\boldsymbol{x}_2)=\boldsymbol{0}$. В силу линейности φ имеем:

1.
$$\varphi(\boldsymbol{x}_1 + \boldsymbol{x}_2) = \varphi(\boldsymbol{x}_1) + \varphi(\boldsymbol{x}_2) = \boldsymbol{0} + \boldsymbol{0} = \boldsymbol{0} \Rightarrow \boldsymbol{x}_1 + \boldsymbol{x}_2 \in \operatorname{Ker}(\varphi).$$

Аналогично возьмём $\boldsymbol{x} \in \mathrm{Ker}(\varphi)$ и $\alpha \in \mathbb{R}$:

2.
$$\varphi(\alpha \cdot \boldsymbol{x}) = \alpha \cdot \varphi(x) = \alpha \cdot \boldsymbol{0} = \boldsymbol{0} \Rightarrow \alpha \boldsymbol{x} \in \text{Ker}(\varphi)$$
.

Так как ядро φ является подпространством X, то в нём всегда как минимум есть нулевой вектор $\mathbf{0}_X$ пространства X.

Лемма [критерий инъективности].

Отображение $\varphi: L_1 \to L_2$ инъективно $\Leftrightarrow \operatorname{Ker}(\varphi) = \{\mathbf{0}\}.$

Доказательство [Необходимость \Rightarrow]:

 \square Пусть отображение инъективно. Докажем, что ядро нулевое от противного. То есть $\exists \ x' \in \mathrm{Ker}(\varphi)$, и при этом $x' \neq \mathbf{0}$. Пусть $x \in X$. В силу линейности φ имеем: $\varphi(x + x') = \varphi(x) + \varphi(x') = \varphi(x)$.

Что мы получили: образы векторов x+x' и x совпадают, а прообразы — нет, так как $x' \neq \mathbf{0}_{L_1}$. Это противоречит инъективности, а значит и нашему предположению о том, что $x' \neq \mathbf{0}_{L_1}$.

Доказательство [Достаточность \Leftarrow]:

Пусть ядро нулевое. Докажем, что отображение инъективно от противного. То есть $\exists \ \boldsymbol{x}_1, \ \boldsymbol{x}_2 \in L_1 : \varphi(\boldsymbol{x}_1) = \varphi(\boldsymbol{x}_2)$ и $\boldsymbol{x}_1 \neq \boldsymbol{x}_2$. В силу линейности $\varphi : \varphi(\boldsymbol{x}_1) - \varphi(\boldsymbol{x}_2) = \varphi(\boldsymbol{x}_1 - \boldsymbol{x}_2) = \mathbf{0}_{L_2}$. Значит $(\boldsymbol{x}_1 - \boldsymbol{x}_2) \in \operatorname{Ker}(\varphi)$. Так как $\boldsymbol{x}_1, \ \boldsymbol{x}_2 \neq \mathbf{0}_{L_1}$, то в ядре нашёлся ненулевой элемент. Пришли к противоречию, а значит, что отображение инъективно. \blacksquare

 $\mathbf{Лемма.}\ \mathrm{Im}(\varphi)$ является линейным пространством в Y.

Доказательство:

 \square Пусть $\mathbf{y}_1, \mathbf{y}_2 \in Y$. У каждого из них есть хотя бы один прообраз, то есть $\exists \mathbf{x}_1, \mathbf{x}_2 \in X$ такие, что $\varphi(\mathbf{x}_1) = \mathbf{y}_1, \varphi(\mathbf{x}_2) = \mathbf{y}_2$. Покажем замкнутость множества значений в Y относительно сложения и умножения на скаляр ($\alpha \in \mathbb{R}$):

1.
$$\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2) = y_1 + y_2 \Rightarrow y_1 + y_2 \in Y;$$

2.
$$\varphi(\alpha \cdot \boldsymbol{x}) = \alpha \cdot \varphi(\boldsymbol{x}) = a \cdot \boldsymbol{y} \Rightarrow \alpha \cdot \boldsymbol{y} \in \operatorname{Im}(\varphi)$$
, где $\boldsymbol{x} \in X$, $\boldsymbol{y} \in Y$, $\varphi(\boldsymbol{x}) = \boldsymbol{y}$.

Так как множество значений является подпространством Y, то получим критерий сюръективности.

Лемма [критерий сюръективности].

Отображение $\varphi: L_1 \to L_2$ сюръективно $\Leftrightarrow \dim(\operatorname{Im}(\varphi)) = \dim(Y)$.

Без доказательства в силу очевидности критерия.

Операции над линейными отображениями. Рассмотрим множество всех линейных отображений из X в Y:

$$\mathfrak{F} = \{ \varphi : X \to Y \mid \varphi$$
 – линейное $\}$

На \mathfrak{F} введём операции сложения отображений и умножения отображения на число. Суммой $\varphi_1 + \varphi_2$ двух линейных отображений φ_1 и φ_2 будем считать отображение $X \to Y$, которое на произвольный $\boldsymbol{x} \in X$ действует как

$$(\varphi_1 + \varphi_2)(\boldsymbol{x}) \equiv \varphi_1(\boldsymbol{x}) + \varphi_2(\boldsymbol{x})$$

А за отображение $\alpha \varphi$, где $\alpha \in \mathbb{R}$ и $\in \mathfrak{F}$, будем считать отображение $X \to Y$, действующее на произвольный $x \in X$ по правилу:

$$(\alpha\varphi)(\boldsymbol{x}) \equiv \alpha\varphi(\boldsymbol{x})$$

Достаточно легко убедиться в том, что линейные операции над линейными отображениями из \mathfrak{F} дают линейные отображения из \mathfrak{F} :

1. Сумма линейных отображений:

$$(\varphi_1 + \varphi_2)(\mathbf{x}_1 + \mathbf{x}_2) = \varphi_1(\mathbf{x}_1 + \mathbf{x}_2) + \varphi_2(\mathbf{x}_1 + \mathbf{x}_2) = \varphi_1(\mathbf{x}_1) + \varphi_1(\mathbf{x}_2) + \varphi_2(\mathbf{x}_1) + \varphi_2(\mathbf{x}_2)$$

$$= (\varphi_1(\mathbf{x}_1) + \varphi_2(\mathbf{x}_1)) + (\varphi_1(\mathbf{x}_2) + \varphi_2(\mathbf{x}_2)) = (\varphi_1 + \varphi_2)(\mathbf{x}_1) + (\varphi_1 + \varphi_2)(\mathbf{x}_2)$$

2. Умножение отображения на число:

$$(\varphi_1 + \varphi_2)(\alpha \boldsymbol{x}) = \varphi_1(\alpha \boldsymbol{x}) + \varphi_2(\alpha \boldsymbol{x}) = \alpha \varphi_1(\boldsymbol{x}) + \alpha \varphi_2(\boldsymbol{x}) = \alpha(\varphi_1(\boldsymbol{x}) + \varphi_2(\boldsymbol{x})) = \alpha(\varphi_1 + \varphi_2)(\boldsymbol{x})$$

Более того, множество \mathfrak{F} с введёнными операциями суммы и умножения на число образует линейное пространство, в чём можно убедиться, проверив выполнение 8 свойств.

Определение. Произведением линейных преобразований φ и ψ называется преобразование (обозначаемое через $\varphi\psi$), состоящее в последовательном выполнении сначала преобразования ψ , а затем преобразования φ .

По этому определению

$$(\varphi\psi)(\boldsymbol{x}) = \varphi(\psi(\boldsymbol{x})),$$

то есть сначала на вектор \boldsymbol{x} действуют преобразованием ψ , а затем на полученный вектор $\psi(\boldsymbol{x})$ действуют преобразованием φ .

Преобразование $\varphi \psi$ линейно, так как:

$$(\varphi\psi)(\lambda_1\boldsymbol{x}_1 + \lambda_2\boldsymbol{x}_2) = \varphi(\psi(\lambda_1\boldsymbol{x}_1 + \lambda_2\boldsymbol{x}_2)) = \varphi(\lambda_1\psi(\boldsymbol{x}_1) + \lambda_2\psi(\boldsymbol{x}_2))) = \lambda_1\varphi(\psi(\boldsymbol{x}_1) + \lambda_2\varphi(\psi(\boldsymbol{x}_2)))$$
$$= \lambda_1(\varphi\psi)(\boldsymbol{x}_1) + \lambda_2(\varphi\psi)(\boldsymbol{x}_2)$$

И, вообще говоря, $\varphi \psi \neq \psi \varphi$!

Билет № 7. Матрицы линейного отображения и линейного преобразования для конечномерных пространств. Изменение матрицы линейного отображения (преобразования) при замене базисов. Операции над линейными преобразованиями в координатной (матричной) форме. Обратное преобразование.

Матрица линейного отображения.

Выберем базисы в пространствах X и Y: строки из базисных векторов $e = \{e_1, \ldots, e_n\} \subset X$ и $f = \{f_1, \ldots, f_m\} \subset Y$. Рассмотрим действие линейного отображения φ на $x \in X$, столбец компонент которого в базисе e есть столбец $\xi = \{x_1, \ldots, x_n\}^T$:

$$\varphi(\boldsymbol{x}) = \varphi(x_1\boldsymbol{e}_1 + \ldots + x_n\boldsymbol{e}_n) = x_1\varphi(\boldsymbol{e}_1) + \ldots + x_n\varphi(\boldsymbol{e}_n) = \underbrace{\left(\varphi(\boldsymbol{e}_1), \ldots, \varphi(\boldsymbol{e}_n)\right)}_{\substack{\text{CTDOKA} \\ \text{BEKTOPOB}}} \underbrace{\left(x_1 \atop \vdots \atop x_n\right)}_{\substack{\text{CTODIGEIJ} \\ \text{KOODJUHBS}}}$$

Векторы $\varphi(e_i) \in Y$ можно разложить по базису f (например для $\varphi(e_1)$):

$$\varphi(\boldsymbol{e}_1) = a_{11}\boldsymbol{f}_1 + \ldots + a_{m1}\boldsymbol{f}_m = (\boldsymbol{f}_1, \ldots, \boldsymbol{f}_m) \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}$$

Обозначим через $a_i \in \mathbb{R}$ вектор-столбец $(a_{1i}, \ldots, a_{mi})^T$ координат вектора $\varphi(\boldsymbol{e}_i)$ в базисе \boldsymbol{f} . Тогда для образа вектора \boldsymbol{x} имеем:

$$\varphi(\boldsymbol{x}) = (\varphi(\boldsymbol{e}_1), \dots, \varphi(\boldsymbol{e}_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (\boldsymbol{f}_1, \dots, \boldsymbol{f}_m) \underbrace{(a_1, \dots, a_n)}_{A \in \mathbb{R}^{m \times n}} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = fA\xi$$

С другой стороны вектор $\varphi(\boldsymbol{x}) \in Y$ раскладывается по базису \boldsymbol{f} с некоторыми коэффициентами $\eta = (y_1, \ldots, y_m)^T$:

$$arphi(oldsymbol{x}) = (oldsymbol{f}_1,\; \ldots,\; oldsymbol{f}_m) egin{pmatrix} y_1 \ dots \ y_m \end{pmatrix} = f \eta$$

Получили два представления для вектора $\varphi(x)$:

$$f\eta = fA\xi \Rightarrow \boxed{\eta = A\xi}$$

Матрицу A называют матрицей линейного отображения в паре базисов e и f.

Изменение матрицы линейного отображения.

Наша задача — понять, как изменится матрица линейного отображения φ , когда мы перейдем к новой паре базисов e' и f' пространств X и Y.

Выберем в пространстве X новый базис $e' = \{e'_1, \ldots, e'_n\}$. Нам известна матрица перехода $S \in \mathbb{R}^{n \times n}$ от старого базиса e к новому e': e' = eS. Также в пространстве Y выбран новый базис f' = fP, где $P \in \mathbb{R}^{m \times m}$ — матрица перехода от f к f'

При паре базисов e и f в прошлом разделе для произвольного $x \in X$ получили:

$$\varphi(\boldsymbol{x}) = f\eta = fA\xi$$

Аналогично в паре базисов e' и f' можем получить для того же x:

$$\varphi(\boldsymbol{x}) = f'\eta' = f'A'\xi'$$

Приравняем два представления одного и того же вектора:

$$fA\xi = f'A'\xi'$$

Учитывая, что f'=fP и $e'=eS\Rightarrow \xi=S\xi'\Rightarrow \xi'=S^{-1}\xi$, получим:

$$fA\xi = (fP)A'(S^{-1}\xi) \to A\xi = PA'S^{-1}\xi \xrightarrow{\forall x \in X} A = PA'S^{-1} \Rightarrow A' = P^{-1}AS$$

В случае преобразования $\varphi: X \to X$:

$$A' = S^{-1}AS$$

Итак, теперь нам интересно выяснить, как описываются оперции над линейными преобразованиями в матричной форме. Пусть преобразования φ и ψ в некотором базисе $\{e_1, \ldots, e_n\}$ заданы матрицами A и B. Каковы матрицы преобразований $\varphi + \psi$, $\varphi \psi$, $\lambda \varphi$?

Пусть
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ Y, - \end{pmatrix}$$
 и $B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$

Значит,

Чтобы найти матрицу преобразования $\varphi + \psi$, надо найти разложения векторов $(\varphi + \psi)(\mathbf{e}_1), \ldots, (\varphi + \psi)(\mathbf{e}_n)$ в базисе е:

Чутким взором понимаем, что матрицей преобразования $\varphi + \psi$ в том же базисе е является матрица A + B, то есть сумме преобразований соответствует сумма их матриц.

Аналогично для получения матрицы преобразования $\varphi \psi$ находим разложения векторов $(\varphi \psi)(\mathbf{e}_1), \ldots, (\varphi \psi)(\mathbf{e}_n)$ в базисе е:

$$(\varphi\psi)(\mathbf{e}_{1}) = \varphi(\psi(\mathbf{e}_{1})) = \varphi(b_{11}\mathbf{e}_{1} + \dots + b_{n1}\mathbf{e}_{n}) = b_{11}\varphi\mathbf{e}_{1} + \dots + b_{n1}\varphi\mathbf{e}_{n}$$

$$= (a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1})\mathbf{e}_{1} + \dots + (a_{n1}b_{11} + a_{n2}b_{21} + \dots + a_{nn}b_{n1})\mathbf{e}_{n}$$

$$(\varphi\psi)(\mathbf{e}_{2}) = \varphi(\psi(\mathbf{e}_{2})) = \varphi(b_{12}\mathbf{e}_{1} + \dots + b_{n2}\mathbf{e}_{n}) = b_{12}\varphi\mathbf{e}_{1} + \dots + b_{n2}\varphi\mathbf{e}_{n}$$

$$= (a_{11}b_{12} + a_{12}b_{22} + \dots + a_{1n}b_{n2})\mathbf{e}_{1} + \dots + (a_{n1}b_{12} + a_{n2}b_{22} + \dots + a_{nn}b_{n2})\mathbf{e}_{n}$$

$$\vdots$$

$$(\varphi\psi)(\mathbf{e}_{n}) = \varphi(\psi(\mathbf{e}_{n})) = \varphi(b_{1n}\mathbf{e}_{1} + \dots + b_{nn}\mathbf{e}_{n}) = b_{1n}\varphi\mathbf{e}_{1} + \dots + b_{nn}\varphi\mathbf{e}_{n}$$

$$= (a_{11}b_{1n} + a_{12}b_{2n} + \dots + a_{1n}b_{nn})\mathbf{e}_{1} + \dots + (a_{n1}b_{1n} + a_{n2}b_{2n} + \dots + a_{nn}b_{nn})\mathbf{e}_{n}$$

Замечаем, что элемент c_{ij} матрицы преобразования $\varphi\psi$ построен по закону:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}.$$

А это значит, что матрица преобразования $\varphi \psi$ равна произведению матриц A и B, то есть произведению преобразований соответствует произведение их матриц.

Таким образом, множество линейных преобразований пространства \mathbb{R}^n над полем \mathbb{F} относительно операций сложения и умножения изоморфно множеству квадратных матриц порядка n с элементами из поля \mathbb{F} . А так как указанное множество матриц образует кольцо, то это же можно сказать и о множестве линейных преобразований.

Обратное преобразование.

Teopema. Линейное преобразование φ пространства \mathbb{R}^n взаимно однозначно тогда и только тогда, когда его матрица в каком-нибудь базисе невырожденна.

Доказательство:

 \square Пусть в некотором базисе преобразование φ имеет матрицу

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}.$$

Тогда координаты вектора $\varphi(\boldsymbol{x}) = (\eta_1, \ldots, \eta_n)$ следующим образом выражаются через координаты вектора $\boldsymbol{x} = (\zeta_1, \ldots, \zeta_n)$:

$$\begin{cases}
\eta_1 = a_{11}\zeta_1 + \ldots + a_{1n}\zeta_n, \\
\ldots \\
\eta_n = a_{n1}\zeta_1 + \ldots + a_{nn}\zeta_n.
\end{cases}$$
(1)

Взаимная однозначность преобразования φ означает, что для любого набора чисел η_1, \ldots, η_n найдется ровно один набор чисел ζ_1, \ldots, ζ_n , удовлетворяющих системе уравнений (1). Но система уравнений (1) имеет единственное решение относительно неизвестных ζ_1, \ldots, ζ_n тогда и только тогда, когда ее определитель отличен от нуля, то есть матрица A невырожденна.

Определение. Линейное преобразование φ пространства \mathbb{R}^n называется обратимым (или невырожденным), если существует такое линейное преобразование ψ , что

$$\psi\varphi = \varphi\psi = \varepsilon,\tag{2}$$

где ε — тождественное преобразование.

Очевидно, что если какое-либо преобразование ψ удовлетворяет равенствам (2), то оно единственно, линейно и невырожденно. Такое преобразование называется обратным для φ и обозначается через φ^{-1} , так что

$$\varphi^{-1}\varphi = \varphi\varphi^{-1} = \varepsilon \tag{3}$$

Ясно, что φ обратимо тогда и только тогда, когда оно взаимно однозначно. При этом, поскольку кольцо линейных преобразований изоморфно кольцу матриц, то равенствам (3) будут соответствовать матричные равенства

$$BA = AB = E$$

где B — матрица линейного преобразования φ^{-1} в том же базисе, что и A для φ . Отсюда как раз видно, что $B=A^{-1}$.

Утверждение [размерности образа и ядра линейного пространства]: $\dim(\operatorname{Im}(\varphi)) + \dim(\operatorname{Ker}(\varphi)) = \dim(L).$

 \square Пусть $\varphi: L \to L$, причём $\dim(L) = n$. Выберем в линейном пространстве L произвольный базис $\{e_1, \ldots, e_n\}$. Поскольку по определению $\operatorname{Im}(\varphi) = \{y \mid y = \varphi(x), x \in L\}$, то можно записать, что $\operatorname{Im}(\varphi) = L\{\varphi(e_1), \ldots, \varphi(e_n)\}$ — линейная оболочка, порождаемая совокупностью образов базисных векторов $\varphi(e_1), \ldots, \varphi(e_n)$, причем

$$\dim(\operatorname{Im}(\varphi)) = \operatorname{rg}(\varphi(e_1), \ldots, \varphi(e_n)) = \operatorname{rg}(A_{\varphi}) = r.$$

Рассмотрим ядро φ : $\mathrm{Ker}(\varphi) = \{ \boldsymbol{x} \mid \varphi(\boldsymbol{x}) = \boldsymbol{0}, \boldsymbol{x} \in L \}$. В выбранном базисе равенству $A_{\varphi}\boldsymbol{x} = \boldsymbol{0}$ соответствует однородная СЛУ: $A_{\varphi}\boldsymbol{\xi} = \boldsymbol{0}$, которая, как известно, имеет $n - \mathrm{rg}(A_{\varphi}) = n - r$ ЛНЗ решений, образующих ФСР. Поскольку неизвестными данной системы являются координаты векторов, составляющих $\mathrm{Ker}(\varphi)$, то отсюда заключаем, что $\mathrm{dim}(\mathrm{Ker}(\varphi)) = n - r$. В результате получаем, что $\mathrm{dim}(\mathrm{Im}(\varphi)) + \mathrm{dim}(\mathrm{Ker}(\varphi)) = r + (n - r) = n = \mathrm{dim}(L)$.

Билет № 8. Собственные векторы и собственные значения. Линейная независимость собственных векторов, принадлежащих различным собственным значениям. Инвариантные подпространства линейных преобразований. Ограничение преобразования на инвариантное подпространство. Собственные подпространства.

Пусть $\varphi(x): X \to Y$ — линейное отображение, где X и Y — линейные пространства размерностей n и m соответственно. В пространствах X и Y выберем базисы: $e = \{e_1, \ldots, e_n\}$ в пространстве X и $f = \{f_1, \ldots, f_n\}$ в пространстве Y. В паре базисов e и f линейному отображению φ соответсвует матрица $A \in \mathbb{R}^{n \times m}$. При выборе другой пары базисов $e' = \{e'_1, \ldots, e'_n\}$ и $f' = \{f'_1, \ldots, f'_n\}$ матрица A', соответствующая линейному отображению φ , будет отличаться от матрицы A (за исключением возможных специальных совпадений). В наших интересах выбрать базисы e' и f' так, чтобы матрица A' была "хорошего" для нас вида.

Дальше билеты на затеханы.

Определитель и след матрицы через корни характеристического многочлена.

Утверждение: пусть $\lambda_1, \ldots, \lambda_n$ — корни характеристического многочлена $P(\lambda) = \det(A_{\varphi} - \lambda E)$. Тогда $\operatorname{tr}(A_{\varphi}) = \lambda_1 + \ldots + \lambda_n$ и $\det(A_{\varphi}) = \lambda_1 \cdot \ldots \cdot \lambda_n$.

Доказательство:

Понятно, что $\operatorname{tr}(A) = a_{11} + \ldots + a_{nn} - \operatorname{след}$ матрицы A_{φ} . Имеем $P(\lambda) = (\lambda_1 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda) = (-\lambda)^n + \left(\sum_{i=1}^n \lambda_i\right) \cdot (-\lambda)^{n-1} + \ldots + \prod_{i=1}^n (\lambda_i)$. А также $\det(A_{\varphi} - \lambda E) = (a_{11} - \lambda) \cdot \ldots \cdot (a_{nn} - \lambda) + \sigma$, где под σ подразумевается сумма всех членов со степенью меньшей либо равной n-2.

Перепишем в другом виде последнее равенство $(-\lambda)^n + (a_{11} + \ldots + a_{nn}) \cdot (-\lambda)^{n-1} + \sigma + \det(A_{\varphi})$. Применяем всё могущество своей внимательности. Получаем:

$$\begin{cases} \operatorname{tr}(A_{\varphi}) = a_{11} + \ldots + a_{nn} = \lambda_1 + \ldots + \lambda_n \\ \det(A_{\varphi}) = a_{11} \cdot \ldots \cdot a_{nn} = \lambda_1 \cdot \ldots \cdot \lambda_n \end{cases}$$

Теорема Гамильтона—**Кэли:** если f(t) — характеристический многочлен матрицы A, то f(A) — нулевая матрица. Или иначе - всякая матрица является корнем своего характеристического многочлена.

Доказательство:

Обращу внимание на НЕправильное доказательство! Сразу же хочется сказать, что $f(A) = \det(A - A \cdot E) = \det(A - A) = 0$. Круто, доказали теорему в одну строчку. (Хотя мы доказали то, что к теореме вообще не относится — детерминант нулевой матрицы есть число 0). Но замечу, что в формулировке теоремы f(A) — нулевая матрица (именно матрица). В этот момент становится грустно, потому что вас отправляют на пересдачу. А еще грустнее от следующего доказательства.

 \square Пусть λ — не характеристичкое число \rightarrow матрица $A - \lambda \cdot E$ невырожденная $\rightarrow \exists$ матрица

$$(A - \lambda \cdot E)^{-1} = \frac{B(\lambda)}{\det(A - \lambda \cdot E)}$$

Элементы матрицы B — элементы вида $b_{ij}=(-1)^{i+j}d_{ji}$, где d_{ji} — дополнительный минор

(убираем j-тую строку и i-тый столбец, потом считаем детерминант такой матрицы).

$$A_{m,n} = \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

Допустим, мы выберем диагональный элемент $[a_{22} - \lambda]$. Тогда дополнительный минор d_{22} — многочлен степени n-1, где n — количество λ (так как убрали всего одну λ).

Если же выбрать недиагональный элемент, то как ни крути эту матрицу, будем убирать по две λ с диагонали. И дополнительный минор, например, d_{12} будет степени n-2. Тогда матрица $B(\lambda)$ представима в виде $B(\lambda) = B_0 + \lambda B_1 + \ldots + \lambda^{n-1} B_{n-1}$.

Пример, когда матрицу в таком виде имеет смысл представить:

$$\begin{pmatrix} \lambda^2 - 1 & \lambda + 1 & -\lambda \\ 1 & \lambda^2 + 2 & 3 \\ 0 & 0 & \lambda^2 + \lambda \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \lambda + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \lambda^2$$

Вернемся обратно к доказательству теоремы.

Для определённости пусть $p(\lambda) = a_0 + a_1 \lambda + \ldots + a_n \lambda^n$. Тогда имеем $(a_0 + a_1 \lambda + \ldots + a_n \lambda^n)E = (B_0 + \ldots + \lambda^{n-1} B_{n-1})(A - \lambda E)$.

Приравняем коэффициенты при одинаковых степенях λ с правой и левой частей. Потом домножим каждое равенство на A^i , где i - степень, соответствующая степени, рассматриваемого λ^i :

$$\lambda^{0}: \quad a_{0}E = B_{0}A \qquad | \cdot A^{0}$$

$$\lambda^{1}: \quad a_{1}E = -B_{0} + B_{1}A \qquad | \cdot A^{1}$$

$$\vdots$$

$$\lambda^{k}: \quad a_{k}E = -B_{k-1} + B_{k}A \qquad | \cdot A^{k}$$

$$\vdots$$

$$\lambda^{n}: \quad a_{n}E = -B_{n-1} \qquad | \cdot A^{n}$$

Сложим все левые и правые части равенств:

 $a_0E+a_1A+\ldots+a_kA^k+\ldots+a_nA^n=B_0A-B_0A+B_1A^2-\ldots-B_{k-1}A^k+B_kA^{k+1}-\ldots-B_{n-1}A^n$. Как можно заметить — всё сократится. Получили нулевую матрицу. То есть то, что мы и хотели получить. \blacksquare

Добавлю, что отсюда мы сразу получаем следующее следствие: Если $p(\lambda)$ — характеристический многочлен преобразования φ , то $p(\varphi) = \vec{0}$.

Teopema: любое линейное преобразование конечномерного действительного линейного пространства L обладает одномерным или двумерным инвариантным подпространством U.

Доказательство:

 \square По поводу одномерного подпространства, тут всё просто: если $\exists \lambda \in \mathbb{R}: \ \varphi(x) = \lambda x, \ x \neq 0.$ Тогда $U = \langle x \rangle.$

Дальше неприятнее. Если все характеристические корни мнимые, то пусть $\lambda = \alpha + i\beta$, $\beta \neq 0$. Тогда $\overline{\lambda} = \lambda - i\beta$ тоже является характеристическим корнем, так как $\det(A_{\varphi} - \lambda E)$ - многочлен с действительными коэффициентам.

Рассмотрим φ как линейное преобразование \mathbb{C}^n : $\varphi(z) = A_{\varphi}Z$, $\forall Z = (z_1, \ldots, z_n)^T \in \mathbb{C}^n \Rightarrow \exists Z' = X + iY \neq 0, (X, Y \in \mathbb{R}^n) \Rightarrow A_{\varphi}Z' = \lambda Z' \Leftrightarrow A_{\varphi}(X + iY) = (\alpha + i\beta)(X + iY) = (\alpha X - \beta Y) + i(\beta X + \alpha Y) \Leftrightarrow A_{\varphi}X = \alpha X - \beta Y$ и $A_{\varphi}Y = \beta X + \alpha Y \Rightarrow U = \langle X, Y \rangle$ — двумерное инвариантное подпространство. \blacksquare

Неравенство Коши-Буняковского и неравенство треугольника:

- 1. $\forall x,\,y\in\mathbb{E}\ \mapsto\ |(x,\,y)|\leqslant |x||y|$. Причём, $|(x,\,y)|=|x||y|$, если $x,\,y$ линейно зависимы.
- 2. $\forall x, y \in \mathbb{E} \mapsto |x+y| \leq |x| + |y|$.

Доказательство:

- \square 1. Введём функцию $f(t)=(tx+y,\,tx+y)=t^2(x,\,x)+2t(x,\,y)+(y,\,y)\geqslant 0.$ Тогда относительно t имеем: $D\leqslant 0 \Rightarrow \frac{D}{4}=(x,\,y)^2-(x,\,x)(y,\,y)\leqslant 0$, таким образом $|(x,\,y)|\leqslant |x||y|$.
- 2. $(x+y, x+y) = |x|^2 + 2(x, y) + |y|^2 \leqslant |x|^2 + 2|x||y| + |y|^2 = (|x|+|y|)^2$, тогда $|x+y| \leqslant |x|+|y|$.

Линейные функции. Биортогональный базис. Сопряжённые пространства.

Определение. Если на линейном пространстве L задано правило, по которому $\forall x \in L$ ставится в соответствие число ($\mathbb R$ или $\mathbb C$), то говорят, что на L задана функция f. На бесконечномерных пространствах их называют функционалами.

Определение. f на L — линейная, если $\forall x, y \in L \& \forall \alpha$:

- 1. f(x + y) = f(x) + f(y).
- 2. $f(\alpha x) = \alpha f(x)$.

Примеры линейных (или не совсем) функций:

- 1. Аддитивность массы (масса сложного объекта равна сумме масс составляющих его частей). То есть $f(m_1 + m_2) = f(m_1) + f(m_2)$.
- 2. Функция, которая сопоставляет всем векторам ненулевое число не линейная. Так как не выполняется f(0) = 0.
- 3. Функция, сопоставляющая каждому вектору его *i*-ю координату линейная.
- 4. Функция, сопоставляющая каждому вектору число 0 тоже линейная.

Определение. Линейное пространство L^* всех линейных функций на линейном пространстве L называется сопряжённым для L.

Предложение. $\dim(L^*) = \dim(L)$.

Доказательство.

$$\square \ \forall x \in L, x = \sum_{i=1}^{n} x_i e_i :$$

Рассмотрим n функций, которые дают значения i-той координаты аргумента:

$$f_1(x) = x_1, \ldots, f_i(x) = x_i, \ldots, f_n(x) = x_n.$$

То есть
$$f_i(e_j) = \delta_{ij} = \begin{bmatrix} 0, & i \neq j \\ 1, & i = j \end{bmatrix}$$
, где $(i, j = 1, \dots, n)$

Тогда докажем, что f_1, \ldots, f_n — базис в L^* . Пусть $f = f_1\lambda_1 + \ldots + f_n\lambda_n = 0$. Тогда: $f(e_1) = f_1(e_1)\lambda_1 + f_2(e_2)\lambda_2 + \ldots + f_n(e_n)\lambda_n = 1 \cdot \lambda_1 + 0 \cdot \lambda_2 + \ldots + 0 \cdot \lambda_n = \lambda_1 = 0$. Аналогично $f(e_2) = \lambda_2 = 0$. И так далее... $\Rightarrow f_1, \ldots, f_n$ — ЛНЗ.

Рассмотрим $\forall f: L \to K$ — линейную функцию:

$$f(x) = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i f_i(x) = \sum_{i=1}^{n} (a_i f_i)(x) = \left(\sum_{i=1}^{n} a_i f_i\right)(x) \Rightarrow \sum_{i=1}^{n} a_i f_i.$$

Можем переобозначить $f_i=e^i$. Тогда $\{e^i\}$ — базис в L^* . Причем базис $\{e^i\}$ — биортогональный к базису $\{e_j\}$ в L.

Из последнего предложения нужно осознать, что множество L^* всех линейных функций на n-мерном линейном пространстве L по отношению к введённым выше линейным операциям представляет собой n-мерное линейное пространство.

Определение. Пространство L^* — самое обычное линейное пространство (и вряд ли стоит искать сакральный смысл в этом определении). Оно тоже имеет сопряжённое пространство L^{**} , элементы которого — линейные функции на L^* .

Более того, последнее предложение позволяет нам утверждать, что если $\dim(L) = n$, то и $\dim(L^{**}) = n$.

Предложение. \exists изоморфизм $L^{**}\cong L$, не зависящий от выбора базиса.