- **Q.1.** If vector \mathbf{w} is of dimension 10×1 and matrix \mathbf{A} of dimension 20×10 , then what is the dimension of $\mathbf{w}^{\top} \mathbf{A}^{\top} \mathbf{A}$?
 - (A) 20 × 1
 - B 1 × 20
 - © 1×10
 - ① 10×1
 - 1 × 1

[2.5 marks]

- **Q.2.** Which of the following models with input x_1, x_2 , parameters w_1, w_2 and noise $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, are linear in the parameters and satisfy Least Squares assumptions (mark all suitable models):
 - (A) $y = w_1x_1 + \sin(w_1x_2 + w_2x_2 + 0.1) + \varepsilon$
 - (B) $y = w_1 x_1 + w_2 x_2 + 10 + \varepsilon$
 - © $y = \exp(x_1)(w_1 + w_2x_2^2) + \varepsilon$

[2.5 marks]

- **Q.3.** Which of the following models with input x_1, x_2 , parameters w_1, w_2 and noise $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, are linear in the parameters and satisfy Least Squares assumptions (mark all suitable models):

 - © $y = w_1 x_1 + w_2 x_2 + 3 + \varepsilon$

[2.5 marks]

- **Q.4.** We are trying to fit a 3rd degree polynomial to a dataset using Least Squares. We know that the underlying model is indeed a 3rd degree polynomial and we are trying to estimate the polynomial coefficients. However, we are having issues with overfitting. Which strategy/strategies will give us the best chance of finding the best estimate of the true polynomial coefficients?
 - (A) increasing the size of the training set
 - B increasing the size of the test set
 - © descreasing the size of the test set
 - (D) increasing the Tikhonov regularisation
 - © decreasing the size of the training set
 - F increasing the polynomial order model to 4

[2.5 marks]