

G7A. GASES

- 1) Calcular la masa de metano gaseoso contenida en un recipiente rígido de 6,0 dm³ de capacidad que ejerce una presión de 800 mmHg a 27 °C.
- 2) Un recipiente de tapa móvil contiene 1,0 dm³ de oxígeno gaseoso a 1520 mmHg y a 30,0 °C.
 - a) Calcular la presión que ejercerá esa cantidad de oxígeno si el volumen se reduce hasta 200 cm³ y la temperatura a 20,0 °C.
- 3) Calcular el volumen que ocupan cada uno de los siguientes sistemas a 20,0 °C y a 1,50 atm:
 - **a)** 2,00 mol de CH₄ (g)
 - **b)** 88,0 g de CO₂ (g)
 - c) $1,204 \times 10^{24}$ moléculas de ozono (O₃)
- 4) La densidad de una sustancia en estado gaseoso, a 25,0 °C y a 760 mm Hg, es de 1,80 g/dm3. Calcular
 - a) Calcular la masa molar de la sustancia;
 - **b)** Calcular la densidad del gas en CNPT.
- 5) En un recipiente rígido se colocan 2,50 mol de O_2 (g) y 3,50 mol de N_2 (g) que ejercen una presión de 1,50 atm a 25,0 °C.
 - a) Calcular la fracción molar del O₂ (g)
 - **b)** Calcular la presión parcial del N₂ (g)
 - c) Calcular el volumen del recipiente.
- A un recipiente rígido que contiene 4,20 mol de O_2 (g) en CNPT se le agrega cierta cantidad de O_3 (g). La presión que ejerce la mezcla es de 2,00 atm y la temperatura final de 400 K.
 - a) Calcular el gas que aporta mayor número de moles en la mezcla.
 - b) Calcular la fracción molar del O₃
 - c) Calcular el número de átomos de oxígeno en el recipiente.
- 7) Un recipiente rígido de 10.0 dm^3 contiene cierta masa de CO_2 (g) en CNPT. Se agrega CO (g) hasta que la masa de la mezcla de gases es de 60.0 g. Se produce una variación de la temperatura y un aumento en la presión de 2.5 atm.
 - a) Calcular la temperatura final que alcanza el sistema;
 - **b)** Determinar si la presión parcial del dióxido de carbono en la mezcla es mayor, igual o menor que la del monóxido de carbono;
 - c) Calcular el número de átomos de oxígeno que hay en la mezcla;
 - Si en lugar de CO (g) se hubiera agregado O_2 (g) hasta tener la misma masa final de 60,0 g y el aumento de presión hubiera sido el mismo
 - d) indicar si la temperatura final alcanzada será mayor, menor o no cambia, Justificar la respuesta.

G7A. GASES 1

- 8) Un recipiente flexible contiene una mezcla equimolecular de NO₂ (g) y N₂ (g). Indicar si los siguientes enunciados son Verdaderos o Falsos justificando las respuestas.
 - i) El número de átomos de nitrógeno es igual al número de átomos de oxígeno.
 - ii) Si se enfría el recipiente manteniendo la presión constante, la densidad de la mezcla gaseosa aumenta.
 - iii) La fracción molar de NO₂ es igual a la fracción molar de N₂.
 - iv) Si se aumenta la temperatura, la fracción molar de los gases no cambia.
- 9) Se tiene un volumen de un gas a 0 °C y 1 atm.
 - a) ¿A qué temperatura debe llevarse el gas, manteniendo la presión constante, para duplicar su volumen?
 - b) ¿A qué temperatura la presión será el doble de la inicial si se lo calienta a volumen constante?
- 10) Se dispone de una mezcla formada por 20,0 g de He y cierta cantidad de H₂ en un recipiente rígido y cerrado a 22,0 °C. Se sabe que la fracción molar del Helio es 0,40 y que la presión total es de 11,1 atm.
 - a) Calcular el volumen del recipiente.
 - **b)** Calcular la cantidad de hidrógeno (H₂), expresada en moles, en el recipiente.
- 11) Un tanque de hierro que contiene He a una presión de 136 atm y a una temperatura de 25 °C se encuentra en un edificio que se está incendiando. La presión máxima que puede soportar este tanque antes de explotar es de 500 atm y el punto de fusión del hierro es de 1535 °C.
 - a) Determinar si la presión del He puede hacer que el tanque explote antes de fundirse.
- 12) Un recipiente contiene una mezcla de los gases N_2 , O_2 y Ar que ejercen una presión total de 1,00 atm a 25 °C. También se sabe que en el recipiente hay 3,323 mol de N_2 y 0,043 mol de Ar, y que la presión parcial de O_2 es 159,6 mmHg.
 - a) Calcular el volumen total del recipiente.
 - b) Calcular las presiones parciales de N₂ y Ar.

G7A. GASES 2

Respuestas:

- **1)** 4,10 g
- **2)** a) P = 8,35 atm
- **3) a)** $V = 32.0 \text{ dm}^3$ **b)** $V = 32.0 \text{ dm}^3$ **c)** $V = 32.0 \text{ dm}^3$
- **4) a)** MM = 44,0 g/mol **b)** densidad = $1,97 \text{ g/dm}^3$
- **5) a)** $X O_2 = 417$ **b)** P = 0.875 atm **c)** V = 97.7 dm³
- **6) a)** O_2 **b)** $X O_3 = 0.268$ **c)** 7.84×10^{24} átomos O
- 7) a) T = 226 K b) Menor c) $1,40 \times 10^{24}$ átomos de O d) Mayor
- 8) a) Falso b) Verdadero c) Verdadero d) Verdadero
- **9) a)** T = 546 K **b)** T = 546 K
- **10)** a) $V = 27.2 \text{ dm}^3$ b) n H₂ = 7,50 moles
- **11)** a) Explotará antes de fundirse. Primer camino: a 1808 K, la presión es de 825 atm, mayor a 500 atm. Segundo camino: a 500 atm, la temperatura del He es 1096 K (aún no llegó a 1808 K).
- **12) a)** V = 104,24 L; **b)** $P_{Ar} = 7,7 \text{ mmHg}$, $P_{N2} = 592,7 \text{ mmHg}$

G7A. GASES 3