

Decision Trees

CS 229: Machine Learning Emily Fox Stanford University February 12, 2024

Slides include content developed by and co-developed with Carlos Guestrin

1

How do we make decisions?

https://www.holzer.org/coronavirus-covid-19-updates/

Personal information

Credit History

Income

| oan, marital status,...

Example: Home loan
| for a married couple

| Personal Info
| ****

| Credit History
| ****
| Income
| ****
| Personal Info
| ****
| CS 229. Machine Learning

Classifier review $\hat{y}_i = +1$ Classifier

MODEL

Risky

Output: \hat{y} Predicted

class $\hat{y}_i = -1$

Decision tree learning task

13

Decision tree learning problem

Training data: N observations (\mathbf{x}_i, y_i)

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe
			The second second

©2024 Emily Fox

CS 229: Machine Learning

Cost function: Classification error

Error measures fraction of mistakes

Error = # incorrect predictions # examples

Best possible value : 0.0Worst possible value: 1.0

@2024 Emily Fox

CS 229: Machine Learning

15

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard!

Learning the smallest decision tree is an NP-hard problem [Hyafil & Rivest '76]

CS 229: Machine Learning

Greedy decision tree learning

17

Our training data table

Assume N = 40, 3 features

©2024 Emily Fox

CS 229: Machine Learning

Compact visual notation: Root node

Loan status: Safe Risky

Root
22 18 # of Risky loans

of Safe loans

N = 40 examples

Making predictions with a decision stump Loan status: Safe Risky For each intermediate node, set \hat{y} = majority value

23

Selecting best feature to split on

How do we measure effectiveness of a split? Loan status: Root Safe Risky 22 18 Idea: Calculate classification error of this decision stump Credit? Error = # mistakes # data points excellent fair poor 9 4 4 14 9 27

Choice 1 vs Choice 2: Comparing split on Credit vs Term

Tree	Classification	
	error	
(root)	0.45	
split on credit	0.2	
split on loan term	0.25	

33

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error of split
- Chose feature h^{*}(x) with lowest classification error

©2024 Emily Fox

CS 229: Machine Learning

How do we use real values inputs?

Income	Credit	Term	у
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

@2024 Emily Fox

CS 229: Machine Learning

51

Only need to consider mid-points

55

Threshold split selection algorithm

- Step 1: Sort the values of a feature $h_j(\mathbf{x})$: Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, ... \mathbf{v_N}\}$ denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_i = (v_i + v_{i+1}) / 2$ \leftarrow midpoint
 - Compute classification error for treshold split $h_i(\mathbf{x}) >= t_i$
 - Chose the t* with the lowest classification error

CS 229: Machine Learning

Split on Age >= 38

Income age < 38 age >= 38

Predict Risky

Solve the state of th

-

Predicting probabilities with decision trees Root Loan status: Safe Risky 18 12 Credit? excellent fair $P(y = Safe \mid \mathbf{x})$ poor 9 6 3 = 0.753 + 1 Safe Risky Safe 68

--

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions

©2024 Emily Fox

CS 229: Machine Learning

73

CS 229: Machine Learning Emily Fox Stanford University February 12, 2024

Slides include content developed by and co-developed with Carlos Guestrin

©2024 Fmily Fox

Two approaches to picking simpler trees

1. Early Stopping:

Stop the learning algorithm **before** tree becomes too complex

2. Pruning:

Simplify the tree after the learning algorithm terminates

©2024 Emily For

CS 229: Machine Learning

77

Technique 1: Early stopping

- Stopping conditions (recap):
 - 1. All examples have the same target value
 - 2. No more features to split on
- Early stopping conditions:
 - 1. Limit tree depth (choose *max_depth* using validation set)
 - 2. Do not consider splits that do not cause a sufficient decrease in classification error
 - 3. Do not split an intermediate node which contains too few data points

©2024 Emily Fox

CS 229: Machine Learning

Early stopping condition 2: Pros and Cons

- Pros:
 - A reasonable heuristic for early stopping to avoid useless splits
- Cons:
 - Too short sighted: We may miss out on "good" splits may occur right after "useless" splits
 - Saw this with "xor" example

©2024 Emily Fox

CS 229: Machine Learning

Two approaches to picking simpler trees

1. Early Stopping:

Stop the learning algorithm **before** tree becomes too complex

2. Pruning:

Simplify the tree **after** the learning algorithm terminates

Complements early stopping

©2024 Emily Fox

CS 229: Machine Learning

81

Scoring trees: Desired total quality format

Want to balance:

- i. How well tree fits data
- ii. Complexity of tree

```
want to balance

Total cost =

measure of fit + measure of complexity

(classification error)
Large # = bad fit to
training data

want to balance

Large # = likely to overfit
```

CS 229: Machine Learning

Simple measure of complexity of tree L(T) = # of leaf nodes excellent poor Risky 85

Balance simplicity & predictive power Too complex, risk of overfitting L(T)=1 1(T)=6 excellent poor Too simple, high classification error fair Income? Term? high low 3 years 5 years Term? 5 years 3 years

Balancing fit and complexity

Total cost $C(T) = Error(T) + \lambda L(T)$ tuning parameter

If $\lambda=0$: standard decision tree learning

If $\lambda = \infty$: so penalty \rightarrow . Troot $\hat{y} = majority vote (of all training data)$

If λ in between: balance of fit + complexity

©2024 Fmily Fox CS 229: Machine Learnin

87

Tree pruning algorithm

024 Emily Fox CS 229: Machine Learnin

Step 2: Compute total cost C(T) of split Tree T $\lambda = 0.03$ excellent poor Credit? #Leaves Tree **Error Total** fair 0.25 0.43 Income? Term? high low $C(T) = Error(T) + \lambda L(T)$ 3 years 5 years 5 years 3 years Candidate for pruning

Prune if total cost is lower: $C(T_{smaller}) \leq C(T)$ Worse training error but Tree T_{smaller} lower overall cost $\lambda = 0.03$ excellent poor Credit? #Leaves Tree **Error Total** fair 0.25 6 0.43 Income? Term? 5 0.26 T_{smaller} 0.41 high 3 years 5 years $C(T) = Error(T) + \lambda L(T)$ Replace split YES! by leaf node?

93

How to choose hyperparameters?

(e.g., λ or max_depth) — tuning params

validation error on valid set

validations

Cross validations

Cross validations

Summary of overfitting in decision trees

©2024 Emily Fox

95

What you can do now...

- Identify when overfitting in decision trees
- Prevent overfitting with early stopping
 - Limit tree depth
 - Do not consider splits that do not reduce classification error
 - Do not split intermediate nodes with only few points
- Prevent overfitting by pruning complex trees
 - Use a total cost formula that balances classification error and tree complexity
 - Use total cost to merge potentially complex trees into simpler ones

©2024 Emily Fox

CS 229: Machine Learning