## EC999: Part of Speech Tagging

Thiemo Fetzer

University of Chicago & University of Warwick

November 19, 2016

## Part of Speech Tagging

Classical *Part's of speech* are: nouns, verbs, pronouns, preopositions, adverbs, conjunctions, participles and articles.

Part of spech (POS) tagging is an essential step in language processing that is very useful for a range of auxiliary tasks.

- dimensionality reduction (removing words)
- word sense disambiguation
- Named Entity Recognition
- information extraction
- $\Rightarrow$  we will introduce the formalization of common tools for POS tagging and introduce use pipelines in R.

## Part of Speech Tagging

Classical *Part's of speech* are: nouns, verbs, pronouns, preopositions, adverbs, conjunctions, participles and articles.

Part of spech (POS) tagging is an essential step in language processing that is very useful for a range of auxiliary tasks.

- dimensionality reduction (removing words)
- word sense disambiguation
- Named Entity Recognition
- information extraction
- $\Rightarrow$  we will introduce the formalization of common tools for POS tagging and introduce use pipelines in R.

## Part of Speech Tagging



#### Open Versus Closed Class

#### Typically two types of high level groups are defined

- ► Closed class: considered as closed as the set of closed class words hardly changes over time.
  - determiners: a, an, the
  - pronouns: I, he, she, they
  - prepositions: over, under, near
- Open class: New entries into classes of all types, think of proper nouns becoming verbs - such as "Google" and "to google".

# Word Class Ambiguity makes this a challenging task

Part of speech tagging is challenging as words can be members of multiple classes, depending on the *context* of use.

- get/VB off/IN my/PRP\$ back/NN
- win/VB the/DT voters/NNS back/RB
- ▶ I/PRP promise/VBP to/TO back/VB the/DT bill/NN ./.

Part of speech tagging task is a relatively *easy* task. For every word that has ambiguity, there is a constrained set of ambiguous tags to chose from. Most POS implementation work off the information contained by the word itself and on information contained by small *windows* around the word.

#### The Penn Treebank Part-of-Speech Tagset

There are many lists of parts-of-speech, most modern language processing on English uses the 45-tag Penn Treebank tagset.

| Tag   | Description          | Example        | Tag  | Description          | Example     |
|-------|----------------------|----------------|------|----------------------|-------------|
| CC    | coordin. conjunction | and, but, or   | SYM  | symbol               | +,%, &      |
| CD    | cardinal number      | one, two       | TO   | "to"                 | to          |
| DT    | determiner           | a, the         | UH   | interjection         | ah, oops    |
| EX    | existential 'there'  | there          | VB   | verb base form       | eat         |
| FW    | foreign word         | mea culpa      | VBD  | verb past tense      | ate         |
| IN    | preposition/sub-conj | of, in, by     | VBG  | verb gerund          | eating      |
| IJ    | adjective            | yellow         | VBN  | verb past participle | eaten       |
| JJR   | adj., comparative    | bigger         | VBP  | verb non-3sg pres    | eat         |
| JJS   | adj., superlative    | wildest        | VBZ  | verb 3sg pres        | eats        |
| LS    | list item marker     | 1, 2, One      | WDT  | wh-determiner        | which, that |
| MD    | modal                | can, should    | WP   | wh-pronoun           | what, who   |
| NN    | noun, sing. or mass  | llama          | WP\$ | possessive wh-       | whose       |
| NNS   | noun, plural         | llamas         | WRB  | wh-adverb            | how, where  |
| NNP   | proper noun, sing.   | IBM            | \$   | dollar sign          | \$          |
| NNPS  | proper noun, plural  | Carolinas      | #    | pound sign           | #           |
| PDT   | predeterminer        | all, both      | "    | left quote           | ' or "      |
| POS   | possessive ending    | 's             | "    | right quote          | ' or "      |
| PRP   | personal pronoun     | I, you, he     | (    | left parenthesis     | [, (, {, <  |
| PRP\$ | possessive pronoun   | your, one's    | )    | right parenthesis    | ], ), }, >  |
| RB    | adverb               | quickly, never | ,    | comma                | ,           |
| RBR   | adverb, comparative  | faster         |      | sentence-final punc  | .!?         |
| RBS   | adverb, superlative  | fastest        | :    | mid-sentence punc    | :;          |
| RP    | particle             | up, off        |      | •                    |             |

There are other tagsets  ${\cal T}$  with anything between 8 to 1,200, but this is the most commonly used



### A naive POS tagger

The baseline POS tagger uses a simple tag-allocation rule: assign a tag  $t^* \in T$  to a word  $w_j$  if

$$t^* = argmaxP(t_i|w_j)$$

This tag allocation rule assigns the tag t to a word  $w_j$  that has the highest likelihood for that word. These conditional likelihoods can be estimated from some tagged *training* data.

It achieves surprising accuracy of around 90%.

Reason for surprising high accuracy is due to fact that a lot of *stopwords* that make up the bulk of the quantity of tokens of text have mostly unambigous tags.

## Accuracy of Naive POS

For example for the word well:

- ▶ Get/VB well/RB soon/RB !/.
- ▶ This/DT oil/NN well/NN is/VBZ profitable/JJ ./.

For the word well, a training corpus suggests

| Part-of-Speech | Total       | (over Absolute<br>Total) | Probability |  |
|----------------|-------------|--------------------------|-------------|--|
| adv            | 237,644,762 | 337,697,034              | 81.03%      |  |
| adj            | 38,018,925  |                          | 11.26%      |  |
| x              | 20,818,507  |                          | 6.16%       |  |
| noun           | 4,839,300   |                          | 1.43%       |  |
| verb           | 296,019     |                          | 0.09%       |  |
| pron           | 42,918      |                          | 0.01%       |  |
|                | 17,877      |                          | 0.01%       |  |
| det            | 12,313      |                          | 0           |  |
| num            | 3,822       |                          | 0           |  |
| prt            | 2,270       |                          | 0           |  |
| adp            | 31          |                          | 0           |  |
| Totals         | 337,697,034 |                          | 100%        |  |

This suggests that the naive model would suggest that the most likely class for the word is RB - adverb form.

## A (shallow) deep dive: Hidden Markov Models

One direction to improve on baseline POS tagger is to use information contained in structure around a word. So suppose you have a word sequence  $w_1, ..., w_n$  (like a sentence), then the optimization problem that you want to solve is to assign a sequence of tags  $t_1, ..., t_n$  to these words, that maximizes the probability

$$(t_1,...,t_n)* = argmaxP((t_1,...,t_n)|(w_1,...,w_n))$$

The underlying (hidden) true states of the world is the correct tag sequence  $t_1, ..., t_n$ .

It is impractical (impossible) to estimate  $P((t_1,...,t_n)|(w_1,...,w_n))$  directly from training data due to the sparsity. So we employ a simplifying assumption.

## A (shallow) deep dive: Hidden Markov Models

We can apply Bayes Rule, so the optimization problem becomes

$$(t_1,...,t_n)^* = argmax \frac{P((w_1,...,w_n)|(t_1,...,t_n))P(t_1,...,t_n)}{P((w_1,...,w_n))}$$

This optimization problem is equivalent to solving [why?]

$$(t_1,...,t_n)^* = argmaxP((w_1,...,w_n)|(t_1,...,t_n))P(t_1,...,t_n)$$

### A (shallow) deep dive: Hidden Markov Models

For Hidden Markov POS models, we make two additional assumptions

$$P((w_1,...,w_n)) = \prod_{i=1}^n P(w_i|t_i)$$

and

$$P((t_1,...,t_n)) = \prod_{i=1}^n P(t_i|t_{i-1})$$

This allows us to rewrite the optimization problem as

$$(t_1,...,t_n)^* = argmax \prod_{i=1}^n P(w_i|t_i)P(t_i|t_{i-1})$$

#### An example: Hidden Markov Models

Consider the sentence
Janet will back the bill

which is correctly tagged as

Janet/NNP will/MD back/VB the/DT bill/NN

We obtain the following information from a tagged training corpus.

# An example: Hidden Markov Models

|     | Janet    | will     | back     | the      | bill     |
|-----|----------|----------|----------|----------|----------|
| NNP | 0.000032 | 0        | 0        | 0.000048 | 0        |
| MD  | 0        | 0.308431 | 0        | 0        | 0        |
| VB  | 0        | 0.000028 | 0.000672 | 0        | 0.000028 |
| JJ  | 0        | 0        | 0.000340 | 0.000097 | 0        |
| NN  | 0        | 0.000200 | 0.000223 | 0.000006 | 0.002337 |
| RB  | 0        | 0        | 0.010446 | 0        | 0        |
| DT  | 0        | 0        | 0        | 0.506099 | 0        |

Displaying  $P(w_i|t_i)$  and  $P(t_i|t_{i-1})$ .

# An example: Hidden Markov Models

|              | NNP    | MD     | VB     | JJ     | NN     | RB     | DT     |
|--------------|--------|--------|--------|--------|--------|--------|--------|
| < <i>s</i> > | 0.2767 | 0.0006 | 0.0031 | 0.0453 | 0.0449 | 0.0510 | 0.2026 |
| NNP          | 0.3777 | 0.0110 | 0.0009 | 0.0084 | 0.0584 | 0.0090 | 0.0025 |
| MD           | 0.0008 | 0.0002 | 0.7968 | 0.0005 | 0.0008 | 0.1698 | 0.0041 |
| VB           | 0.0322 | 0.0005 | 0.0050 | 0.0837 | 0.0615 | 0.0514 | 0.2231 |
| JJ           | 0.0366 | 0.0004 | 0.0001 | 0.0733 | 0.4509 | 0.0036 | 0.0036 |
| NN           | 0.0096 | 0.0176 | 0.0014 | 0.0086 | 0.1216 | 0.0177 | 0.0068 |
| RB           | 0.0068 | 0.0102 | 0.1011 | 0.1012 | 0.0120 | 0.0728 | 0.0479 |
| DT           | 0.1147 | 0.0021 | 0.0002 | 0.2157 | 0.4744 | 0.0102 | 0.0017 |

Displaying  $P(w_i|t_i)$  and  $P(t_i|t_{i-1})$ .

## An example: Finding optimal path

|     | Janet    | will     | back     | the      | bill     |
|-----|----------|----------|----------|----------|----------|
| NNP | 0.000032 | 0        | 0        | 0.000048 | 0        |
| MD  | 0        | 0.308431 | 0        | 0        | 0        |
| VB  | 0        | 0.000028 | 0.000672 | 0        | 0.000028 |
| JJ  | 0        | 0        | 0.000340 | 0.000097 | 0        |
| NN  | 0        | 0.000200 | 0.000223 | 0.000006 | 0.002337 |
| RB  | 0        | 0        | 0.010446 | 0        | 0        |
| DT  | 0        | 0        | 0        | 0.506099 | 0        |

- ▶ In the corpus, the word Janet only appears with tag NNP.
- ▶ the word will has three possible tags MD, VB, NN.
- ▶ The probability that a random word of type modal (MD) is the word will is 0.31 = P(will|MD)

# An example: Finding optimal path

|              | NNP    | MD     | VB     | JJ     | NN     | RB     | DT     |
|--------------|--------|--------|--------|--------|--------|--------|--------|
| < <i>s</i> > | 0.2767 | 0.0006 | 0.0031 | 0.0453 | 0.0449 | 0.0510 | 0.2026 |
| NNP          | 0.3777 | 0.0110 | 0.0009 | 0.0084 | 0.0584 | 0.0090 | 0.0025 |
| MD           | 0.0008 | 0.0002 | 0.7968 | 0.0005 | 0.0008 | 0.1698 | 0.0041 |
| VB           | 0.0322 | 0.0005 | 0.0050 | 0.0837 | 0.0615 | 0.0514 | 0.2231 |
| JJ           | 0.0366 | 0.0004 | 0.0001 | 0.0733 | 0.4509 | 0.0036 | 0.0036 |
| NN           | 0.0096 | 0.0176 | 0.0014 | 0.0086 | 0.1216 | 0.0177 | 0.0068 |
| RB           | 0.0068 | 0.0102 | 0.1011 | 0.1012 | 0.0120 | 0.0728 | 0.0479 |
| DT           | 0.1147 | 0.0021 | 0.0002 | 0.2157 | 0.4744 | 0.0102 | 0.0017 |

- ▶ Transition matrix presents estimated  $P(t_i|t_{i-1})$ .
- ▶ the row sums should add to 1 they dont since not the whole tagset is displayed.
- ▶ P(VB||MD) = 0.79, probability that MD is followed by tag VB.

## An example: Finding optimal path



- ► The optimization problem can be modelled as an optimization problem on a *directed path*.
- We want to find the path that has highest likelihood.
- ▶ Brute forcing the computation of all possible values for  $\prod_{i=1}^{n} P(w_i|t_i)P(t_i|t_{i-1})$  is computationally extremely inefficient, and becomes infeasible very fast.
- ► Viterbi algorithm is a dynamic programming algorithm that solves this program efficiently.

In R an easily accessible POS tagging tool that performs very well is accessible through the packages OpenNLP, which makes Apache's Open NLP platform accessible (https://opennlp.apache.org/).

It is a bit slow and the Apache NLP package is memory intensive (requests around)

Rather than working with a hidden markov model, its a maximum entropy classifier - which is just a fancy way of saying "logistic regression". We will introduce logistic regression for simple classification tasks.

We will work with a developmental extension called the tagger package. Speed is an issue with NLP pipelines, OpenNLP extension takes around 0.1 seconds per "sentence".

```
library(NLP)
library(openNLP)
# this is developmental, can be installed with the next two lines of code.
library(tagger)
## this installs 'pacman' which is a package to load developmental R extensions
if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh(c("trinker/termco", "trinker/tagger"))
temp <- tag_pos("Janet will back the bill")
temp[[1]]
                MD
                        VR
                                        NN
## "Janet" "will" "back" "the" "bill"
data.frame(tokens = temp[[1]], tags = names(temp[[1]]))
       tokens tags
##
## NNP
       Janet NNP
        will MD
## MD
       back VB
## VB
       the
                DT
## DT
## NN
        bill
                NN
```

```
data(presidential_debates_2012)
TAGGED <- tag_pos(presidential_debates_2012$dialogue)
head (TAGGED)
## [[1]]
##
          PRP
                      MD
                                               IN
                                                                      IN
                                  VB
          "We"
                    "'11"
                                "talk"
                                           "about" "specifically"
          NN
                      NN
                                  TN
                                              DT
                                              "a"
##
     "health"
                    "care"
                                 "in"
                                                      "moment"
##
## [[2]]
        CC
                WP
                         VRP
                                PRP
                                      VB DT
                                                           NN
                                "you" "support" "the" "voucher" "system"
      "But"
              "what"
                        "do"
                NNP
   "," "Governor"
## [[3]]
               PRP
                         VBP
                              VBZ
                                         DT NN
                                                          TN
        WP
     "What"
              "I" "support"
                              "is"
                                         "no" "change"
                                                          "for" "current"
       NNS
                CC
                        TN
                                NNS
                                        TO
                                                   NNP
            "and" "near" "retirees" "to" "Medicare"
                                                          11 11
## "retirees"
##
## [[4]]
##
       CC
                DT
                           NN
                                   VBZ
                                             VBG
               "the" "president" "supports" "taking" "dollar" "seven"
     "And"
         CD
                 CD
                            CD
                                  IN
                                             IN
##
                                                        DT
    "hundred"
             "sixteen" "billion" "out" "of" "that"
                                                            "program"
##
       11 11
## [[5]]
        CC
                 WP
                         TN
                                  DT
                                          NNS
##
      "And"
              "what"
                    "about" "the" "vouchers"
```

plot(TAGGED)



### Going forward

Part of Speech Tagging is an important and often neccesary task for NI P.

We will make use of POS tags in a range of applications, so a basic understanding is needed.