XOR Count

November 21st, 2017

FluxFingers

Workgroup Symmetric Cryptography Ruhr University Bochum

Friedrich Wiemer

RUB

Joint Work - Its not me alone

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer

RUHR UNIVERSITÄT BOCHUM

Radboud University

Outline

- 1 Motivation
- 2 Preliminaries
- 3 State of the Art and Related Work
- 4 Future Work

What is the XOR count, and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹

¹Are they?

What is the XOR count, and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹
- What is the lightest implementable MDS matrix?
- What about additional features (Involutory)?

¹Are they?

What is the XOR count,

and why is it important?

Some facts

- Lightweight Block Ciphers
- Efficient Linear Layers
- MDS matrices are "optimal" (regarding security)¹
- What is the lightest implementable MDS matrix?
- What about additional features (Involutory)?

The XOR count

- Metric for needed hardware resources
- Smaller is better

¹Are they?

Definition: MDS

A matrix M of dimension k over the field \mathbb{F} is *maximum distance* separable (MDS), iff all possible submatrices of M are invertible (or nonsingular).

Definition: MDS

A matrix M of dimension k over the field \mathbb{F} is maximum distance separable (MDS), iff all possible submatrices of M are invertible (or nonsingular).

Example

The AES MIXCOLUMN matrix is defined over $\mathbb{F}_{2^8} \cong \mathbb{F}[x]/0x11b$:

$$\begin{pmatrix} 0 \times 02 & 0 \times 03 & 0 \times 01 & 0 \times 01 \\ 0 \times 01 & 0 \times 02 & 0 \times 03 & 0 \times 01 \\ 0 \times 01 & 0 \times 01 & 0 \times 02 & 0 \times 03 \\ 0 \times 03 & 0 \times 01 & 0 \times 01 & 0 \times 02 \end{pmatrix} = \begin{pmatrix} x & x+1 & 1 & 1 \\ 1 & x & x+1 & 1 \\ 1 & 1 & x & x+1 \\ x+1 & 1 & 1 & x \end{pmatrix}$$

This is a (right) *circulant* matrix: circ(x, x + 1, 1, 1).

Constructions

Constructions

Constructions

Representations

How to implement this in hardware?

- This is about hardware implementations
- How do we implement a field multiplication in hardware?
- How do we implement a matrix multiplication in hardware?

Representations

How to implement this in hardware?

- This is about hardware implementations
- How do we implement a field multiplication in hardware?
- How do we implement a matrix multiplication in hardware?

Example

$$\alpha \rightarrow \cdot 1 \rightarrow \beta$$

$$\alpha \longrightarrow x \longrightarrow f$$

Representations

How to implement this in hardware?

- This is about hardware implementations
- How do we implement a *field multiplication* in hardware?
- How do we implement a matrix multiplication in hardware?

Example

Field Multiplication in Hardware

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

OK, this one is easy \mathfrak{D} Example in $\mathbb{F}_2[x]/0x13$:

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

Implement $\alpha \rightarrow 1 \rightarrow \beta$

OK, this one is easy \odot Example in $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \alpha &= \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 \\ \beta &= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 \\ &= \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 \end{split}$$

RUB

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

Example in $\mathbb{F}_2[x]/0x13$:

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

Implement $\alpha \to x \to \beta$

Example in $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \alpha &= \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 \\ x^4 &\equiv x + 1 \text{ mod } 0x13 \\ \beta &= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 \\ &= x \cdot (\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) \\ &\equiv \alpha_3 + (\alpha_0 + \alpha_3) x + \alpha_1 x^2 + \alpha_2 x^3) \end{split}$$

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

In matrix notation for $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \beta &= 1 \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \\ \beta &= x \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \end{split}$$

From $\mathbb{F}_2[x]/p(x)$ to \mathbb{F}_2^n

In matrix notation for $\mathbb{F}_2[x]/0x13$:

$$\begin{split} \beta &= 1 \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \\ \beta &= x \cdot \alpha \Leftrightarrow \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \end{split}$$

Companion Matrix

We call $M_{p(x)} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ the *companion matrix* of the polynomial p(x) = 0x13. For any element $\gamma \in \mathbb{F}_2[x]/p(x)$, we denote by M_{γ} the matrix that implements the multiplication by this element in \mathbb{F}_2^n .

Counting XOR's

Example

We can rewrite the AES MIXCOLUMN matrix as:

$$\mathfrak{M}_{\text{AES}} = \text{circ}(x, x+1, 1, 1) \cong \text{circ}(M_x, M_{x+1}, M_1, M_1).$$

Starting in $(\mathbb{F}_2[x]/0x11b)^{4\times 4}$, we end up in $(\mathbb{F}_2^{8\times 8})^{4\times 4}\cong \mathbb{F}_2^{32\times 32}$.

Example

We can rewrite the AES MIXCOLUMN matrix as:

$$\mathfrak{M}_{\text{AES}} = \text{circ}(x, x+1, 1, 1) \cong \text{circ}(M_x, M_{x+1}, M_1, M_1).$$

Starting in $(\mathbb{F}_2[x]/0x11b)^{4\times 4}$, we end up in $(\mathbb{F}_2^{8\times 8})^{4\times 4}\cong \mathbb{F}_2^{32\times 32}$.

A first XOR-count

To implement multiplication by $\gamma,$ we need $\mathsf{hw}(M_\gamma) - \mathsf{dim}(M_\gamma)$ many xor's. Thus

$$\begin{split} \text{XOR-count}(\mathcal{M}_{\text{AES}}) &= 4 \cdot (\text{hw}(M_{x}) + \text{hw}(M_{x+1}) + 2 \cdot \text{hw}(M_{1})) - 32 \\ &= 4 \cdot (11 + 19 + 2 \cdot 8) - 32 = 152. \end{split}$$

The General Linear Group

Generalise a bit

Instead of choosing elements from $\mathbb{F}_{2^n} \cong \mathbb{F}_2[x]/p(x)$ we can extend our possible choices for "multiplication matrices" by exploiting the following.

The General Linear Group

Generalise a bit

Instead of choosing elements from $\mathbb{F}_{2^n} \cong \mathbb{F}_2[x]/p(x)$ we can extend our possible choices for "multiplication matrices" by exploiting the following.

Todo

Maybe remove this?

The Stupidity of recent XOR Count Papers

November 21st, 2017

FluxFingers

Workgroup Symmetric Cryptography Ruhr University Bochum

Friedrich Wiemer

RUB

State of the Art Before our Paper

- You saw how to count XORs
- This count is split in the "overhead" and the XORs needed for the field multiplication
- Thus for AES we get $56 + 8 \cdot 3 \cdot 4 = 56 + 96 = 152$
- Finding a good matrix reduces now to find the cheapest elements for field multiplication
- There is a lot of work following this line [BKL16; JPS17; LS16; LW16; LW17; Sim+15; SS16a; SS16b; SS17; ZWS17]

State of the Art Best known Results

4×4 matrices over $GL(8, \mathbb{F}_2)$				
Matrix	Naive	Literature		
AES (Circulant)	152	7+96		
[Sim+15] (Subfield)	136	40+96		
[LS16] (Circulant)	128	32+96		
[LW16]	106	10+96		
[BKL16] (Circulant)	136	24+96		
[SS16b] (Toeplitz)	123	27+96		
[JPS17] (Subfield)	122	20+96		

Optimized Arithmetic for Reed-Solomon Encoders

Christof Paar* ECE Department Worcester Polytechnic Institute Worcester, MA 01609 email: christof@ece.wpi.edu

1997 IEEE International Symposium on Information Theory, June 29 -- July 4, 1997, Ulm, Germany (extended version)

Abstract

Multiplication with constant elements from Galois fields of characteristic two is the major arithmetic operation in Reed-Solomon encoders. This contribution describes two optimization algorithms which yield low complexity constant multipliers for Ga-

Optimized Arithmetic for Reed-Solomon Encoders

Christof Paar*
ECE Department
Worcester Polytechnic Institute
Worcester, MA 01609
email: christof@ece.wpi.edu

1997 IEEE International Symposium on Information Theory, June 29 -- July 4, 1997, Ulm, Germany (extended version)

Abstract

Multiplication with constant elements from Galois fields of characteristic two is the major arithmetic operation in Reed-Solomon encoders. This contribution describes two ontimization algorithms which yield low complexity constant multipliers for Ga-

Related Work II

State of the Art

Best known Results (After our Paper)

4×4 matrices over $GL(8, \mathbb{F}_2)$			
Matrix	Naive	Literature	
AES (Circulant)	152	7+96	
[Sim+15] (Subfield)	136	40+96	
[LS16] (Circulant)	128	32+96	
[LW16]	106	10+96	
[BKL16] (Circulant)	136	24+96	
[SS16b] (Toeplitz)	123	27+96	
[JPS17] (Subfield)	122	20+96	

State of the Art

Best known Results (After our Paper)

4 $ imes$ 4 matrices over $GL(8,\mathbb{F}_2)$						
Matrix	Naive	Literature	Paar1	Paar2	BP	
AES (Circulant)	152	7+96	108	108	97	
[Sim+15] (Subfield)	136	40+96	100	98	100	
[LS16] (Circulant)	128	32+96	116	116	112	
[LW16]	106	10+96	102	102	102	
[BKL16] (Circulant)	136	24+96	116	112	110	
[SS16b] (Toeplitz)	123	27+96	110	108	107	
[JPS17] (Subfield)	122	20+96	96	95	86	

State of the Art

Finding better matrices?

Туре	Previ	ously Best Known	XOR count
$GL(4,\mathbb{F}_2)^{4 imes 4}$	58	[JPS17; SS16b]	36
$GL(8, \mathbb{F}_2)^{4\times 4}$	106	[LW16]	72
$\left(\mathbb{F}_2[\mathbf{x}]/0\mathbf{x}13\right)^{8\times8}$	392	[Sim+15]	196
$GL(8, \mathbb{F}_2)^{8 \times 8}$	640	[LS16]	392
${\left(\mathbb{F}_{2}[x]/0\times13\right)^{4\times4}*}$	63	[JPS17]	42
$GL(8, \mathbb{F}_2)^{4\times 4}$	126	[JPS17]	84
$\left(\mathbb{F}_{2}[\mathbf{x}]/0\mathbf{x}13\right)^{8\times8}$	424	[Sim+15]	212
$GL(8, \mathbb{F}_2)^{8 \times 8}$	663	[JPS17]	424

Future Work

Questions?

Thank you for your attention!

Mainboard & Questionmark Images: flickr

- [BKL16] C. Beierle, T. Kranz, and G. Leander. "Lightweight Multiplication in GF(2th) with Applications to MDS Matrices". In: *CRYPTO 2016, Part I*. Ed. by M. Robshaw and J. Katz. Vol. 9814. LNCS. Springer, Heidelberg, Aug. 2016, pp. 625–653. DOI: 10.1007/978-3-662-53018-4 23.
- [JPS17] J. Jean, T. Peyrin, and S. M. Sim. Optimizing Implementations of Lightweight Building Blocks. Cryptology ePrint Archive, Report 2017/101. http://eprint.iacr.org/2017/101. 2017.
- [LS16] M. Liu and S. M. Sim. "Lightweight MDS Generalized Circulant Matrices". In: FSE 2016. Ed. by T. Peyrin. Vol. 9783. LNCS. Springer, Heidelberg, Mar. 2016, pp. 101–120. DOI: 10.1007/978-3-662-52993-5_6.
- [LW16] Y. Li and M. Wang. "On the Construction of Lightweight Circulant Involutory MDS Matrices". In: FSE 2016. Ed. by T. Peyrin. Vol. 9783. LNCS. Springer, Heidelberg, Mar. 2016, pp. 121–139. DOI: 10.1007/978-3-662-52993-5_7.
- [LW17] C. Li and Q. Wang. "Design of Lightweight Linear Diffusion Layers from Near-MDS Matrices". In: IACR Trans. Symm. Cryptol. 2017.1 (2017), pp. 129–155. ISSN: 2519-173X. DOI: 10.13154/tosc.v2017.i1.129-155.

References II

- [Sim+15] S. M. Sim, K. Khoo, F. E. Oggier, and T. Peyrin. "Lightweight MDS Involution Matrices". In: FSE 2015. Ed. by G. Leander. Vol. 9054. LNCS. Springer, Heidelberg, Mar. 2015, pp. 471–493. DOI: 10.1007/978-3-662-48116-5_23.
- [SS16a] S. Sarkar and S. M. Sim. "A Deeper Understanding of the XOR Count Distribution in the Context of Lightweight Cryptography". In: AFRICACRYPT 2016. Ed. by D. Pointcheval, A. Nitaj, and T. Rachidi. Vol. 9646. LNCS. Springer International Publishing, 2016, pp. 167–182.
- [SS16b] S. Sarkar and H. Syed. "Lightweight Diffusion Layer: Importance of Toeplitz Matrices". In: IACR Trans. Symm. Cryptol. 2016.1 (2016). http://tosc.iacr.org/index.php/ToSC/article/view/537, pp. 95–113. ISSN: 2519-173X. DOI: 10.13154/tosc.v2016.i1.95-113.
- [SS17] S. Sarkar and H. Syed. "Analysis of Toeplitz MDS Matrices". In: ACISP 17, Part II. Ed. by J. Pieprzyk and S. Suriadi. Vol. 10343. LNCS. Springer, Heidelberg, July 2017, pp. 3–18.
- [ZWS17] L. Zhou, L. Wang, and Y. Sun. On the Construction of Lightweight Orthogonal MDS Matrices. Cryptology ePrint Archive, Report 2017/371. http://eprint.iacr.org/2017/371.2017.