אינפי 3 - תרגיל בית 1

שאלה 1:

 $\|\cdot\|^{(2)}$ ין $\|\cdot\|^{(1)}$, פי: הראו עבור שתי נורמות כלליות ב-

- $\|\cdot\|^{(2)}$ א. כל כדור פתוח בנורמה בנורמה $(B(p,r)=\{q\in\mathbb{R}^n\mid \|p-q\|< r\})$ $\|\cdot\|^{(1)}$ פתוח בנורמה כדור פתוח בנורמה $\|\cdot\|^{(2)}$
- ב. סדרה נתונה $\|\cdot\|^{(1)}$ אם לגבול p ביחס לגבול ב- \mathbb{R}^d ב- $\|\cdot\|^{(2)}$ אם ורק אם היא מתכנסת ל-p ביחס לנורמה $\|\cdot\|^{(2)}$
- ג. קבוצה נתונה $U\subset\mathbb{R}^d$ היא פתוחה ביחס לנורמה $\|\cdot\|^{(1)}$ אם ורק אם היא פתוחה ביחס לנורמה $U\subset\mathbb{R}^d$.
- ד. קבוצה נתונה $U\subset\mathbb{R}^d$ אם היא סגורה ביחס לנורמה של סגורה ביחס לנורמה $U\subset\mathbb{R}^d$ היא סגורה ביחס לנורמה $\|\cdot\|^{(2)}$

שאלה 2:

ב- $\|x\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$ כדור היחידה (הווקטורים בעלי נורמה קטנה מ-1) בנורמה היחידה הווקטורים בעלי נורמה הקבוצה

$$B_2(0,1) = \{(x,y) \mid x^2 + y^2 < 1\}$$

כתבו באופן דומה את כדורי היחידה בשתי הנורמות הבאות:

$$||x||_1 = |x_1| + \cdots + |x_n|$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

וציירו אותם.

שאלה 3:

הוכיחו כי לכל $x \in \mathbb{R}^d$ מתקיים

$$||x||_2 \le ||x||_1 \le \sqrt{d} \cdot ||x||_2$$

שאלה 4:

- א. הוכיחו כי פונקציה בין שתי קבוצות פתוחות היא רציפה אם ורק אם המקור של כל תת-קבוצה פתוחה הוא פתוח.
 - ב. הראו בעזרת האפיון מסעיף א' כי ההטלה $\pi:\mathbb{R}^{m+d} \to \mathbb{R}^m$ ב. הראו בעזרת האפיון מסעיף א' כי ההטלה $\pi\:(x)=(x_1,\dots,x_m)$

שאלה 5:

- אם לכל $0 \in \mathbb{R}^n$ אם לכל (במ"ש) א. פונקציה $f:\mathbb{R}^n \to \mathbb{R}^k$ אם לכל $f:\mathbb{R}^n \to \mathbb{R}^k$ א. פונקציה א. $|f(x)-f(y)||<\epsilon$ אז א $|x-y||<\delta$ מקיימים א. $y\in D$ מקיימים $\delta>0$ הוכיחו כי אם f רציפה על f קומפקטית, אזי f רציפה במידה שווה על
- ב. קבוצה $D\subseteq\mathbb{R}^n$ נקראת קשירה אם לכל $U,V\subseteq\mathbb{R}^n$ פתוחות, זרות ולא ריקות המקיימות ב. קבוצה $D\subseteq U$ או $D\subseteq U$ מתקיים $D\subseteq U\cup V$ הוכיחו כי אם D רציפה על D קשירה, אזי גם D קשירה.
 - ג. קבוצה $D\subseteq\mathbb{R}^n$ קיימת פונקציה רציפה ג. קבוצה $D\subseteq\mathbb{R}^n$ קיימת פונקציה רציפה x,y כד ש- $f:[0,1]\to D$ כזו נקראת מסילה רציפה בין $f:[0,1]\to D$ הוכיחו כי אם D פתוחה, אז D קשירה אם ורק אם D קשירה מסילתית.

שאלה 6:

 $.f:[0,1] o\mathbb{R}$ תהי

- א. הראו $(x,f\left(x\right))\mid x\in\left[0,1\right]\}$ אם הגרף שלה רציפה אם רציפה אז ל רציפה אז הראו לי חסומה אזי ל רציפה אם הגרף שלה f חסומה אזי ל הצובה ביינו הביצה סגורה ב- \mathbb{R}^2
 - ב. האם סעיף (א) נכון ללא ההנחה על חסימות fי ענו עבור כל כיוון בנפרד.

שאלה 7:

הוכיחו שאיחוד של קבוצות פתוחות הינו קבוצה פתוחה, ושחיתוך סופי של קבוצות פתוחות הינו קבוצה פתוחה.

שאלה 8:

 $A \subset \mathbb{R}^n$ תהא

- א. הקבוצה הסגורה קטנה ביותר המכילה את A, נקראת הסגור של A, ומסומנת \overline{A} . הקבוצה הפתוחה הגדולה ביותר המוכלת ב-A, נקראת הפנים של A, ומסומנת \overline{A} . ומלוח הפרוח הפתוחה הגדולה ביותר המוכלת ב-A, נקראת המכילות את \overline{A} , וכי \overline{A} שווה לאיחוד כל הקבוצות הסגורות המכילות את \overline{A} , וכי \overline{A} שווה לאיחוד כל הקבוצות הפתוחות המוכלות ב-A.

שאלה 9:

השפה של A היא אוסף כל הנקודות x המקיימות שלכל r>0, הכדור נקודה A מכיל לפחות נקודה אחת מ-A ולפחות נקודה אחת מהמשלים של A. השפה של A תסומן A

א. מצאו את השפה של הדוגמאות הבאות: כדור פתוח, כדור סגור, הרציונליים במישור (כלומר, \mathbb{Q}^2), גרף של פונקציה רציפה במישור.

ב. הוכיחו או הפריכו:

- 1. הסגור שווה לאיחוד הקבוצה ושפתה.
- 2. קבוצה הינה פתוחה אם ורק אם היא לא חותכת את שפתה.
- $f(\partial f(A) \supseteq f(\partial A)$ כלומר, וכלומר, שפות שפות שפות נ-3.
- 4. המקור של שפה של קבוצה על-ידי פונקציה רציפה, מוכלת בשפה של המקור של אותה ל. המקור של $(\partial f^{-1}(A) \supseteq f^{-1}(\partial A))$.