ITYM 2021 - Problem 6: Binomial Coefficients and Prime Numbers.

Team France

Composed by :

De Ridder Achille, Harter Louis-Max, Fourcin Emile, Quille Maxime Varnet Philémon, Leroux Hubert

Supervised by :

Lenoir Théo et Béreau Antoine

June 2021

Contents

Introduction and notations		2	
Preliminaries			
Questi	ons		2
0.1	Intege	rs $n \ge 2$ which are	2
	0.1.1	S-compound for $S = \{p\}$ with $p \in \mathbb{P}$	2
		1-compound	
0.2	Aroun	d S-compoundness for infinitely many integers $n \ge 2$	3
	0.2.1	Infinitely many that are S-compound	3
	0.2.2	Infinitely many that are not S -compound	3
0.3	Around 2-compoundness when		4
	0.3.1	$n = p^{\alpha} + 1$ where $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$	4
	0.3.2	$n = p_1^{\alpha_1} \cdot \ldots \cdot p_s^{\alpha_s}$ with $p_1^{\alpha_1} < \ldots < p_s^{\alpha_s}$ and $n < q(n) + p_s^{\alpha_s} \cdot \ldots \cdot \ldots \cdot \ldots \cdot \ldots$	4

Introduction and notations

1. \mathbb{P} is the set of prime numbers.

Preliminaries

Proposition 1. Let $p \in \mathbb{P}$. For all $k \in \mathbb{N}$, we have the following polynomial congruence:

$$(X+1)^{p^k} \equiv X^{p^k} + 1 \mod p$$

Proof. We proceed by induction on k.

- Base case: for k=0, $(X+1)^{p^0} \equiv (X+1)^1 \equiv X+1 \mod p$ so it's proved.
- Inductive step : suppose the result true for $k \in \mathbb{N}$. By taking the identity exponent p, we have then

$$(X+1)^{p^{k+1}} \equiv (X^{p^k}+1)^p \equiv \sum_{i=0}^p {p \choose i} X^{ip^k} \equiv X^{p \cdot p^k} + X^{0 \cdot p^k} \equiv X^{p^{k+1}} + 1 \mod p$$

because a well-known result is $p \mid \binom{p}{i}$ for all $i \in [1, p-1]$. This is precisely the result for k+1, hence it's true for all $k \in \mathbb{N}$.

Theorem 2 (Lucas's Theorem). Let $0 \le k \le n$ whose representations in base $p \in \mathbb{P}$ are $n = \sum_{i=0}^{\ell} a_i p^i$

and
$$k = \sum_{i=0}^{\ell} b_i p^i$$
. Then $\binom{n}{k} \equiv \prod_{i=0}^{\ell} \binom{a_i}{b_i} \mod p$.

Proof. Modulo p, we have the following congruences:

$$\sum_{k=0}^{n} \binom{n}{k} X^{k} \equiv (1+X)^{n} \equiv (1+X)^{\sum_{i=0}^{\ell} a_{i} p^{i}} \equiv \prod_{i=0}^{\ell} (1+X)^{a_{i} p^{i}}$$

$$\equiv \prod_{i=0}^{\ell} \left((1+X)^{p^{i}} \right)^{a_{i}} \equiv \prod_{i=0}^{\ell} (1+X^{p^{i}})^{a_{i}} \equiv \prod_{i=0}^{\ell} \sum_{j=0}^{a_{i}} \binom{a_{i}}{j} X^{j p^{i}}$$

$$\equiv \sum_{r=0}^{n} \prod_{i=0}^{\ell} \binom{a_{i}}{b_{i}} X^{r} \mod p$$

where the second congruence of the second line comes from Theorem 1, and the last being true considering, for fixed $c \in [0, n]$, the sum of jp^i associated to c in the expansion of the product. By identification of the coefficients the result comes immediately.

Questions

- 0.1 Integers $n \ge 2$ which are...
- **0.1.1** S-compound for $S = \{p\}$ with $p \in \mathbb{P}$

Proposition 3. Let $S = \{p\}$ with p a prime number. n is S-compound if and only if $n = p^{\ell}$ for some integer $\ell \ge 1$.

Proof. Let $n \ge 2$ be such S-compound integer, and $\overline{a_\ell a_{\ell-1} \dots a_0}^p$ its representation in base p. if there exists $i \in [0, \ell-1]$ such that $a_i > 0$, then by choosing $1 \le k < n$ with representation in base p $\overline{a_\ell \dots (a_i-1) \dots a_0}^p$, we have, by hypothesis and by Theorem 2:

$$0 \equiv \binom{n}{k} \equiv \prod_{j=0 \neq i}^{\ell} \binom{a_j}{a_j} \cdot \binom{a_i}{a_i - 1} = \binom{a_i}{a_i - 1} = a_i \not\equiv 0 \mod p$$

because $a_i < p$, absurd. So $a_i = 0$ for all $i \in [0, \ell - 1]$. In the same way, if $a_\ell > 1$, then with $1 \le k < n$ with representation in base p $(a_\ell - 1) 0 \dots 0^p$, we have

$$0 \equiv \binom{n}{k} \equiv \prod_{j=0}^{\ell-1} \binom{0}{0} \cdot \binom{a_{\ell}}{a_{\ell} - 1} = \binom{a_{\ell}}{a_{\ell} - 1} = a_{\ell} \not\equiv 0 \mod p$$

absurd again. So $n = \overline{10 \dots 0}^p$ which is equivalent to $n = p^{\ell}$. Reciprocally, if n is of this form, Theorem 2 ensures that it is well divisible by p for all $1 \leq k < n$, there exists $i \in [0, \ell - 1]$ such that

the *i*th digit b_i of k is greater than n's (which is zero), so that $\begin{pmatrix} 0 \\ b_i \end{pmatrix} = 0$ hence $0 = \prod_{j=0}^{\ell-1} \begin{pmatrix} 0 \\ b_j \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \equiv \begin{pmatrix} n \\ k \end{pmatrix}$ mod p.

0.1.2 1-compound

The following proposition is a direct corollary from the precedent one:

Proposition 4. An integer $n \ge 2$ is 1-compound if and only if n is a prime power, i.e. $n = p^{\ell}$ for some prime number p and integer $\ell \ge 1$.

0.2 Around S-compoundness for infinitely many integers $n \ge 2$

0.2.1 Infinitely many that are S-compound

Note that compoundness is conserved by inclusion, that is if n is S-compound and $S \subseteq S'$, then n is S'-compound. In the same way, if n is ℓ -compound and $\ell' > \ell$, then n is ℓ' -compound. A direct corollary of Theorem 3 is then:

Proposition 5. Let S be a set of $\ell \geqslant 1$ prime numbers. There exist infinitely many $n \in \mathbb{N}$ such that n is S-compound.

Proof. We can just choose $p \in S$, and it's sufficient to prove the result for $S' := \{p\} \subseteq S$. But this is obvious by Theorem 3, since we can take n to be an element of $\{p^k \mid k \in \mathbb{N}\}$ which is clearly infinite.

0.2.2 Infinitely many that are not S-compound

Proposition 6. Let S be a set of $\ell \geqslant 1$ prime numbers. There exist infinitely many $n \in \mathbb{N}$ such that n is not S-compound.

Proof. Let $A = \{n \in \mathbb{N} \mid \forall p \in S, p \nmid n\}$. This set is clearly infinite since it contains all natural numbers of the form $k \prod_{p \in S} p + 1$ where $k \in \mathbb{N}$ which are infinitely many. Take any $n \in A$: if n is S-compound,

then in particular there exists $p \in S$ such that $p \mid \binom{n}{1} = n$, contradiction. So any $n \in A$ is not S-compound, and they are infinitely many.

0.3 Around 2-compoundness when...

0.3.1 $n = p^{\alpha} + 1$ where $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$

Proposition 7. If $n = p^{\alpha} + 1$ where $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$, then n is 2-compound.

Proof. Let $n=p^{\alpha}+1$ where $p\in\mathbb{P}$ and $\alpha\in\mathbb{N}$. Let q be any prime divisor of n>1. We claim that n is $\{p,q\}$ -compound, so 2-compound. Indeed, for all 1 < k < n-1, we have, by Theorem 3, $p \mid \binom{p^{\alpha}}{k}$ and $p \mid \binom{p^{\alpha}}{k-1}, \text{ so } p \mid \binom{p^{\alpha}}{k} + \binom{p^{\alpha}}{k-1} = \binom{p^{\alpha}+1}{k}. \text{ For } k \in \{1, n-1\}, \text{ we have } q \mid \binom{n}{1} = \binom{n}{n-1} = n.$

 $\begin{array}{ll} \textbf{0.3.2} & n = p_1^{\alpha_1} \cdot \ldots \cdot p_s^{\alpha_s} \text{ with } p_1^{\alpha_1} < \ldots < p_s^{\alpha_s} \text{ and } n < q(n) + p_s^{\alpha_s} \\ \textbf{Proposition 8.} & \text{ If } n = p_1^{\alpha_1} \cdot \ldots \cdot p_s^{\alpha_s} \text{ with } p_1^{\alpha_1} < \ldots < p_s^{\alpha_s} \text{ and } n < q(n) + p_s^{\alpha_s}, \text{ then } n \text{ is 2-compound.} \end{array}$

The proof of this statement, as the others, can be found in https://math.mit.edu/research/highschool/rsi/documents/2017Puig.pdf.