RAČUNALNIŠKE KOMUNIKACIJE 2018/19

Ime in priimek:

3. izpit, 3. 9. 2019

Vpisna številka:	

Dovoljen je 1 A4 list z lastnimi zapiski. Druga literatura (npr. prosojnice, knjige) in elektronski pripomočki niso dovoljeni.

Nalogo rešujte v za to predviden prostor. Podpišite se na vse liste, ki jih oddate. Na vprašanja odgovarjajte kratko (največ 2 povedi), daljši odgovori štejejo 0 točk. Čas pisanja je 70 minut.

izpolni ocenjevalec	
1	
2	
3	
4	
SKUPAJ	

1. NALOGA (5t):

opoln	ni naslednje izjave:			
1.	Algoritem 3DES je in kriptografska metoda (podaj klasifikacijo metode			
	v skupine kriptografskih metod, ki smo jih obravnavali) .			
2.	Velikost paketa pri tuneliranju je <i>enako velika / večja / manjša</i> (obkroži) od velikosti paketa p			
	dvojnem skladu, ker			
3.	Pri IPv6 več ne uporabljamo fragmentacije, iz dveh poglavitnih razlogov, ki sta:			
	in			
4.	IP naslov je v relaciji s protokolom ARP enako kot jev relaciji s protokolom DNS.			
5.	in sta protokola za dostop do skupinskega medija, ki			
	potrebujeta dodatno režijo (angl. overhead) za usklajevanje, kdo lahko pošilja.			
6.	. Če 56-bitna zaporedja bitov shranjujemo v matriko velikosti 7x8, jo pri uporabi lihe 2D paritetne sheme moramo opremiti s/z dodatnimi biti, pri uporabi sode 2D paritetne sheme pa s/z			
	dodatnimi biti.			
7.				
	sistemov.			
8.	Protokol bittorrent vzpodbuja P2P odjemalce k sodelovanju tako, da			
	·			
9.	Prenos po vztrajni HTTP povezavi dela hitreje kot po nevztrajni, ker udeleženca izvedeta samo eno			
	in ker transportni protokol pri kontroli pretoka			
	-			
10.	. Različne tehnologije protokola Ethernet označimo z opisnimi kraticami oblike xxxBASE-yy, pri čemer			
	xxx označuje, yy pa			

2. NALOGA (5t):

Podan je sistem 6 terminalov, katerih medsebojno dosegljivost prikazuje slika:

Odgovori na spodnja vprašanja in odgovor na kratko utemelji:

a.) Medtem ko A izvaja pošiljanje okvirja vozlišču C, komu vse lahko uspešno pošilja vozlišče D?

b.) Medtem ko C izvaja pošiljanje okvirja vozlišču A, katere ostale komunikacije so še možne?

c.) Medtem ko A izvaja pošiljanje okvirja vozlišču B, katere ostale komunikacije so še možne?

d.) Zapiši vsa zaporedja 3 terminalov, v katerih nastopa A kot eden od skritih terminalov.

e.) Zapiši vsa zaporedja 4 terminalov, v katerih nastopa B kot eden od izpostavljenih terminalov, prvi in zadnji terminal v verigi pa si ne bosta v dosegu.

3. NALOGA (5t):

Pošiljatelj uporablja potrjevanje samo izbranih paketov (angl. *selective repeat*). Nariši shemo komunikacije med pošiljateljem in prejemnikom, če pošiljatelj uporablja okno velikosti 4, poslati pa želi 6 segmentov. Od teh se 2. segment izgubi pri njegovem prvem pošiljanju, 3. pa pri njegovem prvem in drugem pošiljanju (torej naj prispe uspešno šele v 3. poskusu).

Shemo komunikacije jasno opremi z zapisi, kako se spreminja vsebina prejemnikovega medpomnilnika.

4. NALOGA (5t):

Uporabljamo lokalni DNS strežnik in računalnik, ki tudi lahko predpomni rezultate DNS poizvedb. Za vsako poizvedbo za končno simbolično ime preda računalnik (če odgovor ni v predpomnilniku) zahtevo lokalnemu DNS strežniku, ki izvede rekurzivno poizvedbo.

Na začetku so vsi predpomnilniki prazni, nato pa izvedemo 100 DNS poizvedb po zapisih tipa A/AAAA za nek končni sistem z naslovom oblike xx.yy.zz (3 nivoji hierarhije DNS). Analiziraj naslednje scenarije in za vsakega zapiši, koliko poizvedb bo izvedel <u>lokalni DNS strežnik</u>.

Vsak odgovor argumentiraj (številčno):

 a.) lokalni strežnik ne izvaja predpomnjenja naš računalnik ne izvaja predpomnjenja Število poizvedb: Utemeljitev: 	 b.) lokalni strežnik predpomni samo imena TLD strežnikov, verjetnost uporabnosti zapisa v predpomnilniku je 50% naš računalnik ne izvaja predpomnjenja Število poizvedb: Utemeljitev:
 c.) lokalni strežnik predpomni imena TLD strežnikov, verjetnost uporabnosti zapisa v predpomnilniku je 50% lokalni strežnik predpomni tudi imena avtoritativnih strežnikov, verjetnost uporabnosti zapisa (zadetka) v predpomnilniku je 10% naš računalnik ne izvaja predpomnjenja Število poizvedb:	d.) • lokalni strežnik predpomni samo imena TLD strežnikov, verjetnost uporabnosti zapisa v predpomnilniku je 50% • naš računalnik izvaja predpomnjenje, verjetnost zadetka zapisa je 60% Število poizvedb: Utemeljitev:
 e.) lokalni strežnik predpomni imena TLD strežnikov, verjetnost uporabnosti zapisa v predpomnilniku je 50% lokalni strežnik predpomni tudi imena avtoritativnih strežnikov, verjetnost uporabnosti zapisa (zadetka) v predpomnilniku je 10% naš računalnik izvaja predpomnjenje, verjetnost zadetka zapisa je 60% Število poizvedb:	