Benutzerendgeräte und Peripheriegeräte Hardwaresysteme

Kenntnisse über Standards von Speicherkarten (Flash)

Grundlegende Typen von Flash-Speicherkarten:

SD (Secure Digital):

- Der bekannteste Typ, weit verbreitet in Kameras und mobilen Geräten.
- Unterteilt in:
 - o SDSC (Standard Capacity) bis 2 GB, FAT16
 - o SDHC (High Capacity) 2-32 GB, FAT32
 - o SDXC (eXtended Capacity) 32 GB bis 2 TB, exFAT
 - o SDUC (Ultra Capacity) bis 128 TB, exFAT

microSD:

 Miniaturisierte Version von SD-Karten, sonst identische Standards (SDSC/microSDHC/microSDXC/microSDUC)

CF (CompactFlash):

- Älter, aber noch in Profi-Kameras genutzt.
- Unterstützt durch IDE/ATA-Protokolle

CFast:

• Nachfolger von CompactFlash, nutzt SATA-Schnittstelle.

XQD/CFexpress:

- Hochleistungsfähige Karten für 4K/8K-Video und professionelle Fotografie.
- XQD: proprietär (Sony), basiert auf PCIe 2.0
- CFexpress: Weiterentwicklung, basiert auf PCIe 3.0/4.0 und NVMe.

Technologische Grundlagen

NAND-Flash-Technologie:

- SLC (Single-Level Cell): teurer, langlebig, schnell
- MLC (Multi-Level Cell): günstig, mittlere Haltbarkeit
- TLC/QLC: günstiger, aber weniger Schreibzyklen

Wear Leveling & Fehlerkorrektur:

• Eingebaute Controller sorgen für gleichmäßige Abnutzung und Datenintegrität.

Kenntnisse über mobile Datenträger (magnetisch, optisch, elektronisch), deren Bauformen und Kapazitäten

Magnetische Datenträger:

Typen:

- Disketten (Floppy Disks): veraltet, 1,44MB (3,5"), sehr geringe Kapazität
- Magnetbänder (z.B. LTO, DAT): in Rechenzentren für Backups
- Festplatten (HDDs): moderne, große Kapazität (USB, eSATA oder SATA-Anschluss)

Bauformen:

- Festplatten: 3,5" (meist Desktop), 2,5" (meist mobil)
- LTO-Bänder als Kassette

Kapazität:

- Diskette: 1,44 MB, max. 2,88 MB (selten)
- Magnetband (LTO-9): bis zu 18 TB unkomprimiert / 45 TB komprimiert
- HDD: 500 GB 24 TB (typisch 2-8 TB im mobilen Einsatz)

Optische Datenträger:

Typen:

- CD (Compact Disk): 650-700 MB
- DVD (Digital Versatile Disc): 4,7 GB (Single Layer), 8,5 GB (Dual Layer)
- Blu-ray Disc (BD): 25 GB (SL), 50 GB (DL), BDXL bis 128 GB

Bauformen:

- 12cm Ø Standard
- 8 cm Ø Mini-Discs (Camcorder, Treiberdiscs)

Kapazität:

- CD-ROM/-R − 700 MB
- DVD-R 4,7-8,5 GB
- Blu-ray 25-128 GB

Elektronische Datenträger (Flash/EEPROM)

Typen:

- USB-Sticks: tragbar, steckbar, weit verbreitet
- SD/microSD-Karten: in Kameras, Smartphones, Embedded Systems
- SSDs (Solid State Drives): schnell, robust, ohne mechanische Teile

Bauformen:

- USB-A/-C Sticks in allen Formen
- SD/microSD
- SSDs: 2.5", M.2 in Gehäusen, rugged/Outdoor-Designs

Kapazität:

USB-Stick: 2 GB – 2 TB (gängig: 32-512 GB)

• SD/microSD: bis zu 1 TB (SDXC), theoretisch 128 TB (SDUC)

• SSDs: 250 GB – 4 TB (High-End: 8 TB+)

Vergleich nach Eigenschaften:

Medium	Geschwindigkeit	Kapazität	Haltbarkeit	Mobilität	Preis/GB
HDD	Mittel	Sehr hoch	Mittel	Hoch	Günstig
SSD	Hoch	Hoch	Hoch	Hoch	Mittel
USB-Stick	Mittel	Mittel	Mittel	Sehr hoch	Mittel
SD-Karte	Mittel	Mittel	Mittel	Sehr hoch	Mittel
Blu-ray	Niedrig	Mittel	Hoch	Mittel	Günstig
Magnetband	Sehr niedrig	Extrem hoch	Hoch	Niedrig	Sehr günstig

Fachbegriff SATA-Schnittstelle

Der Fachbegriff SATA steht für Serial Advanced Technology Attachment, dabei handelt es sich um eine weit verbreitete Schnittstelle zur Anbindung von Speichergeräten wie Festplatten (HDD), SSDs und optischen Laufwerken an das Mainboard eines Computers. SATA unterstützt Hot-Plugging, d.h. Laufwerke können im laufenden Betrieb entfernt/eingesteckt werden (sofern vom Betriebssystem/Controller unterstützt).

Technische Merkmale der SATA-Schnittstelle:

Serielle Datenübertragung:

• Im Gegensatz zum älteren Parallel-ATA (PATA) nutzt SATA serielle Kommunikation, was höhere Taktraten und weniger Leitungen ermöglicht.

Standardisierte Stecker & Kabel:

- 7-poliges Datenkabel (flach, schmal)
- 15-poliger Stromanschluss (separat)

SATA-Versionen & Geschwindigkeiten:

SATA-Version	Max. Transferrate (theoretisch)	Einführung
SATA I	1,5 Gbit/s (~150MB/s)	Ca. 2003
SATA II	3,0 Gbit/s (~300 MB/s)	Ca. 2004
SATA III	6,0 Gbit/s (~600 MB/s)	Ca. 2009

Funktion und Aufbau der seriellen Schnittstelle

Die serielle Schnittstelle (auch bekannt als RS-232, COM-Port oder V.24) ist eine historische, aber in vielen Bereichen (z. B. Industrie, Mess- und Steuertechnik) noch verbreitete Kommunikationsschnittstelle zur datenbitweisen Übertragung zwischen zwei Geräten – z. B. PC und Modem, Steuerungssystem oder Messgerät.

Funktion:

MERKMAL	BESCHREIBUNG
BITWEISE DATENÜBERTRAGUNG	Übertragung erfolgt nacheinander (seriell), ein Bit pro Takt
ASYNCHRONE KOMMUNIKATION	Keine gemeinsame Taktleitung – Sender und Empfänger müssen sich "synchronisieren"
PUNKT-ZU-PUNKT-VERBINDUNG	Direkte Verbindung zwischen genau zwei Kommunikationspartnern
SIMPLEX, HALBDUPLEX, DUPLEX	Datenflussrichtung: einseitig oder wechselweise (nicht gleichzeitig)

Aufbau:

Anschlussarten:

STECKERFORM	BESCHREIBUNG
DE-9 (SUB-D 9-POLIG)	Am weitesten verbreitet bei PCs
DB-25 (25-POLIG)	Früher in industriellen Geräten

Wichtige Pins beim DE-9-Stecker:

PIN	NAME	FUNKTION
2	RXD (Receive Data)	Datenempfang vom Partner
3	TXD (Transmit Data)	Datensendung zum Partner
5	GND (Ground)	Bezugspotenzial
7	RTS (Request to Send)	Steuerleitung zur Übertragungskontrolle
8	CTS (Clear to Send)	Antwortleitung zur Übertragungskontrolle

Weitere Pins dienen zur Flusskontrolle, Steuerung und Signalisierung.

Technische Eigenschaften:

EIGENSCHAFT	BESCHREIBUNG
SPANNUNGSPEGEL	±3 V bis ±15 V (TTL ist nicht direkt kompatibel)
BAUDRATE (BITRATE)	Häufige Werte: 9600, 19200, 115200 Baud
ZEICHENCODIERUNG	Standard: 8N1 → 8 Datenbits, kein Paritätsbit, 1 Stoppbit
KABELLÄNGE	Typisch < 15 Meter bei 9600 Baud; länger nur mit Spezialtechnik möglich

Signalstruktur eines Datenpakets:

- Startbit signalisiert Beginn der Übertragung
- Datenbits werden gesendet
- Paritätsbit (optional): Fehlererkennung
- Stoppbit signalisiert Ende des Zeichens

Funktionsweise einer Tastatur, optischen Maus

Tastaturen und Mäuse sind essenzielle Eingabegeräte, mit denen Benutzer Daten und Befehle an den Computer übermitteln. Während die Tastatur auf mechanischen Schaltern basiert, nutzt die optische Maus ein optisches Abtastsystem zur Bewegungserkennung.

Funktionsweise einer Tastatur:

Grundprinzip:

Eine Tastatur besteht aus einem Raster von Schaltern (Tastenmatrix). Jede Taste ist einer Matrixposition zugeordnet. Beim Drücken einer Taste wird ein Kontaktpunkt geschlossen – der Controller erkennt, welche Zeile und Spalte aktiviert wurde.

Aufbau:

KOMPONENTE	FUNKTION
TASTENFELD	Mechanische oder kapazitive Schalter
MATRIXSCHALTUNG	Zeilen- und Spaltenverschaltung zur Tastenidentifikation
CONTROLLER-CHIP	Erkennt Tastendrücke und sendet Scancodes an den PC
ANSCHLUSS (USB/PS2)	Schnittstelle zur Datenübertragung

Signalverarbeitung:

- 1. Taste wird gedrückt → elektrischer Kontakt
- 2. Controller berechnet den zugehörigen Scancode
- 3. Scancode wird über USB/PS2 an den Computer gesendet
- 4. Betriebssystem interpretiert den Code als Zeichen oder Befehl

Typen von Tastaturen:

TYP	EIGENSCHAFTEN
MECHANISCH	Einzelne Tasten mit physischem Schalter
MEMBRAN	Flach, günstiger, nutzt leitende Gummimatte
KAPAZITIV	Berührungsbasiert, ohne mechanischen Druckpunkt

Funktionsweise einer optischen Maus:

Grundprinzip:

Die optische Maus nutzt eine LED (meist rot) und einen optischen Sensor, um die Bewegung über eine Oberfläche zu erkennen. Dabei wird in Echtzeit eine große Anzahl von Bildern pro Sekunde aufgenommen.

Aufbau:

KOMPONENTE	FUNKTION
LED	Beleuchtet die Oberfläche
CMOS-SENSOR	Nimmt Bildfolgen der Oberfläche auf
DSP (SIGNALPROZESSOR)	Vergleicht Bilder und berechnet
	Bewegungsrichtung und -geschwindigkeit
MAUSRAD & TASTEN	Erfassen Klicks und Scrollbewegungen
USB-SCHNITTSTELLE	Datenübertragung an den PC

<u>Signalverarbeitung – Bewegungserkennung:</u>

- 1. Oberfläche wird beleuchtet
- 2. Sensor macht mehrere Tausend Bilder pro Sekunde
- 3. Bewegungsmuster (z. B. Kanten, Texturänderung) werden erkannt
- 4. DSP berechnet die Verschiebung in X/Y-Richtung
- 5. Bewegungssignale werden an Betriebssystem übermittelt

Vor- und Nachteile von Funk-Tastaturen, Funk-Mäusen

Vorteile:

VORTEIL	ERKLÄRUNG
KABELLOS, MEHR BEWEGUNGSFREIHEIT	Kein Kabelsalat auf dem Schreibtisch, mehr Flexibilität
EINFACHERE PLATZIERUNG	Geräte können freier positioniert werden – z. B. bei Präsentationen oder im Wohnzimmer
ÄSTHETIK & ERGONOMIE	Schlankeres Design möglich, keine störenden Kabel
GEMEINSAMER USB-DONGLE MÖGLICH	Viele Sets nutzen einen kombinierten Empfänger für Maus + Tastatur
IDEAL FÜR MOBILE ANWENDUNGEN	Gut für Tablets, Smart-TVs, Notebooks mit wenigen Ports

Nachteile:

NACHTEIL	ERKLÄRUNG
BATTERIE-/AKKUBETRIEB	Geräte müssen regelmäßig geladen oder mit
	neuen Batterien versorgt werden
SIGNALSTÖRUNGEN MÖGLICH	Funkübertragungen können durch andere
	Geräte (z. B. WLAN, Bluetooth) gestört werden
EINGESCHRÄNKTE REICHWEITE	Typisch 5–10 m, außerhalb dessen kein
	zuverlässiger Betrieb
HÖHERE LATENZ (BEI GÜNSTIGEN MODELLEN)	Verzögerte Eingaben spürbar bei Gaming oder schneller Eingabe
SICHERHEITSRISIKEN (BEI UNVERSCHLÜSSELTER VERBINDUNG)	Angreifer könnten unverschlüsselte Funksignale abfangen ("Keylogging")
DONGLE KANN VERLOREN GEHEN	Ohne USB-Empfänger ist Nutzung oft nicht mehr möglich

Funktionsprinzip eines Laser-Druckers

Ein Laserdrucker ist ein elektrofotografisches Drucksystem, das mit Licht, statischer Aufladung und Toner arbeitet. Er eignet sich besonders für schnelles und präzises Drucken großer Textmengen, oft im Büro- und Geschäftsumfeld eingesetzt.

Grundprinzip:

Der Laserdrucker nutzt eine lichtempfindliche Trommel (Fotoleitertrommel), die elektrisch geladen wird. Ein Laserstrahl schreibt das Druckbild, indem er bestimmte Stellen der Trommel entlädt. Diese Stellen ziehen anschließend Tonerpartikel an, die dann auf das Papier übertragen und fixiert werden.

Ablauf des Druckvorgangs:

Laden (Charging)

• Die Fotoleitertrommel wird durch eine Ladekorona oder eine Ladewalze gleichmäßig negativ aufgeladen (z. B. mit –600 V).

Belichten (Writing)

- Ein Laserstrahl (gesteuert durch den Druckertreiber) entlädt gezielt bestimmte Stellen der Trommel (auf ca. –100 V).
- So entsteht ein unsichtbares Bild (Ladungsbild) auf der Trommeloberfläche.

Entwickeln (Developing)

- Der negativ geladene Toner (feines Kunststoffpulver) wird durch eine positivere Entwicklerwalze auf die entladenen Trommelstellen aufgebracht.
- Nur dort bleibt der Toner haften das Bild wird sichtbar (Entwicklung).

Übertragen (Transferring)

- Das Papier wird elektrisch positiv aufgeladen und läuft an der Trommel vorbei.
- Die Tonerpartikel springen vom Bild auf das Papier.

Fixieren (Fusing)

- Das Papier durchläuft eine Heiz- und Druckwalze (Fuser Unit), wo der Toner aufgeschmolzen und in das Papier eingebrannt wird.
- Ergebnis: dauerhaft haltbares Druckbild.

Reinigung (Cleaning)

- Übrig gebliebener Toner wird von der Trommel entfernt.
- Eine Löschungseinheit (Discharge Lamp) entfernt Restladung die Trommel ist bereit für den nächsten Zyklus.

Komponenten im Überblick:

BAUTEIL	FUNKTION
FOTOLEITERTROMMEL	Trägt das Ladungsbild, überträgt Toner auf das Papier
LASER-SCAN-EINHEIT	Belichtet gezielt die Trommel (Laser + Spiegelmotor)
TONER-/ENTWICKLEREINHEIT	Lagert und überträgt das Tonerpulver
TRANSFERWALZE	Überträgt Tonerbild von der Trommel auf das Papier
FIXIEREINHEIT	Fixiert Toner durch Hitze und Druck auf dem Papier
REINIGUNGSEINHEIT	Entfernt überschüssigen Toner von der Trommel

Besonderheiten und Vorteile:

VORTEIL	ERKLÄRUNG
SCHNELL	Druckt mehrere Seiten pro Minute (ppm)
HOHE DRUCKQUALITÄT	Scharfer Text, exakte Linien, hohe Auflösung (bis zu 1200 dpi)
WISCHFEST	Toner wird eingebrannt – kein Verlaufen wie bei Tintenstrahldruckern
NIEDRIGE DRUCKKOSTEN/SEITE	Besonders bei hohem Druckvolumen wirtschaftlich

Funktionsprinzip eines Tintenstrahldruckers

Ein Tintenstrahldrucker (engl. Inkjet Printer) ist ein weit verbreitetes Drucksystem, das Bilder und Texte erzeugt, indem es winzige Tintentröpfchen gezielt auf das Papier spritzt. Er eignet sich besonders gut für Farbdrucke, Fotos und den Heimgebrauch.

Grundprinzip:

Tintenstrahldrucker arbeiten nach dem Prinzip der direkten Tintenübertragung ohne mechanischen Kontakt. Die Tinte wird durch Düsen auf das Papier gespritzt – je nach Technik durch Wärme (Bubble Jet) oder elektrischen Impuls (Piezo).

Technologien im Vergleich:

VERFAHREN	BESCHREIBUNG	
THERMISCHES VERFAHREN (BUBBLE-JET)	Heizplatte erzeugt Dampfblase → Tinte wird	
	durch Druck herausgeschleudert	
PIEZOELEKTRISCHES VERFAHREN (PIEZO-JET)	Kristalle verformen sich → Tinte wird	
	mechanisch ausgestoßen	

Herstellerbeispiele:

- Canon, HP → Bubble Jet
- Epson → Piezo-Technik

Ablauf des Druckvorgangs:

<u>Datenverarbeitung</u>

• Der Druckauftrag wird vom Computer an den Drucker gesendet und vom Druckercontroller in Steuersignale für die Druckdüsen umgesetzt.

Tintenabgabe

• Tintenpatronen geben Tröpfchen über winzige Düsen auf das Papier ab – je nach Farbwert in Cyan, Magenta, Gelb, Schwarz (CMYK).

Druckkopfansteuerung

 Der Druckkopf bewegt sich zeilenweise über das Papier, während der Papiervorschub synchron arbeitet.

Trocknung

• Die Tinte trocknet durch Absorption ins Papier oder durch gezielte Erwärmung (je nach Druckertyp).

Aufbau eines Tintenstrahldruckers:

KOMPONENTE	FUNKTION
DRUCKKOPF	Beinhaltet mehrere Düsen, steuert Tintenausstoß
TINTENPATRONEN / TANKS	Farbtinte in Cyan, Magenta, Gelb, Schwarz (CMYK)
PAPIEREINZUG / VORSCHUB	Führt Papier exakt unter den Druckkopf
STEUERPLATINE	Wandelt Daten in elektrische Signale für den Druckprozess
WARTUNGSEINHEIT	Reinigt Düsen, verhindert Eintrocknen der Tinte

Druckqualität und Auflösung:

- Typische Auflösung: 600–4800 dpi
- Je höher die Dichte der Tintentröpfchen, desto besser die Bildqualität
- Tintenstrahldrucker sind ideal für Fotodrucke aufgrund der feinen Farbabstufungen

Vorteile und Nachteile:

VORTEILE	NACHTEILE
GÜNSTIG IN DER ANSCHAFFUNG	Hohe Seitenkosten durch Tintenverbrauch
SEHR GUTE FOTODRUCKQUALITÄT	Tinte trocknet bei seltener Nutzung ein
KOMPAKT, LEICHT UND LEISE	Langsamer als Laserdrucker
BEDRUCKT AUCH SPEZIALMEDIEN (FOTOPAPIER,	Ausdrucke sind nicht sofort wischfest (abhängig
FOLIEN)	von Tinte/Papier)

Funktionsprinzip eines Scanners, Kenntnisse über verschiedene Arten von Scannern

Ein Scanner ist ein Eingabegerät, das analoge Vorlagen (z. B. Dokumente, Fotos) in digitale Bilddaten umwandelt. Die erzeugten Daten können gespeichert, bearbeitet oder weiterverarbeitet werden (z. B. OCR, Archivierung).

Grundprinzip:

Der Scanner beleuchtet das Dokument mit einer Lichtquelle (LED, Xenon). Das reflektierte Licht wird über Spiegel und Linsen auf einen Sensor (CCD oder CIS) gelenkt, der die Lichtintensität in digitale Werte umwandelt.

Ablauf Schritt für Schritt:

<u>Beleuchtung</u>

• Die Lichtquelle leuchtet das Dokument zeilenweise aus.

Reflexion & Optik

Das reflektierte Licht wird über ein optisches System (Spiegel/Linse) zum Sensor geführt.

Licht-zu-Digital-Umwandlung

• Ein Sensor (CCD/CIS) misst die Lichtintensität für jede einzelne Bildzeile.

Digitalisierung

• Die analogen Signale werden über einen A/D-Wandler in digitale Werte (Pixel) umgewandelt.

Verarbeitung

• Die erzeugten Bilddaten werden an den Computer übertragen (via USB, Netzwerk o. ä.) und können dort als Bild (JPG, PNG, TIFF) oder PDF gespeichert werden.

Wichtige Begriffe zur Scanqualität:

BEGRIFF	BEDEUTUNG
AUFLÖSUNG (DPI)	Punkte pro Zoll – je höher, desto detailreicher (z. B. 300–1200 dpi)
FARBTIEFE	Anzahl der darstellbaren Farben pro Pixel (z. B. 24 Bit = 16,7 Mio. Farben)
SCANBEREICH	Maximaler erfasster Bereich (z. B. A4, A3)

Sensorarten: CCD vs. CIS

SENSOR	BESCHREIBUNG	EINSATZBEREICH
CCD (CHARGED COUPLED	Hohe Bildqualität, gute	Flachbettscanner, Grafik-Profis
DEVICE)	Farbwiedergabe, nutzt Spiegel	
CIS (CONTACT IMAGE SENSOR)	Kompakt, energieeffizient, aber	Mobile Geräte,
	geringere Qualität	Einsteigergeräte

Scanner Arten im Überblick:

SCANNERTYP	MERKMALE & EINSATZGEBIET
FLACHBETTSCANNER	Klassischer Scanner mit Glasplatte, hohe
	Qualität, ideal für Fotos, Dokumente
DOKUMENTENSCANNER	Automatischer Einzug (ADF), schnelles Scannen
	mehrseitiger Vorlagen
HANDSCANNER	Tragbar, wird manuell über das Dokument
	gezogen
EINZUGSSCANNER	Dokumente werden automatisch eingezogen –
	kompakt und schnell
DIASCANNER / FILMSCANNER	Speziell für Negative, Dias – sehr hohe
	Auflösung notwendig
3D-SCANNER	Erfasst Form & Oberfläche physischer Objekte
	(Laser, Lichtprojektion)
BARCODESCANNER	Spezieller Typ zur Erkennung von 1D-/2D-
	Barcodes, z. B. im Handel
MOBILER SCANNER	Kompakte Bauform, über Akku oder USB
	betrieben – für unterwegs
NETZWERKSCANNER	In Multifunktionsgeräten eingebaut – scannen
	direkt an Mail, Server oder Cloud

Ausgabeformate & Weiterverarbeitung:

DATEIFOMAT	ZWECK
PDF	Mehrseitige Dokumente, OCR möglich
TIFF	Archivierungsqualität, verlustfrei
JPEG / PNG	Fotos, Grafiken
OCR-TEXTDATEIEN	Durch Texterkennung in bearbeitbare Dateien umgewandelt

Funktion und Spezifikation der USB-Schnittstellen (2.0, 3.0, 3.1, 3.2, ...)

USB (Universal Serial Bus) ist ein standardisiertes Schnittstellenformat für den Anschluss und Datenaustausch von Peripheriegeräten (z. B. Maus, Tastatur, Speicherstick, Drucker) an den Computer. Seit seiner Einführung 1996 hat USB sich stetig weiterentwickelt – insbesondere in Bezug auf Datenrate, Stromversorgung und Steckertypen.

Funktion der USB-Schnittstelle:

MERKMAL	BESCHREIBUNG		
PLUG & PLAY	Geräte werden automatisch erkannt und eingerichtet		
HOT-PLUG-FÄHIG	Anschließen im laufenden Betrieb ohne Neustart möglich		
STROMVERSORGUNG	Strom für Geräte (z. B. 5 V bei 500 mA/900 mA/3 A)		
DATENTRANSFER	Überträgt digitale Daten zwischen Host und Endgerät		
HOST/CLIENT-SYSTEM	Host (z. B. PC) steuert Kommunikation, Geräte sind passive Clients		

USB-Versionen im Vergleich:

VERSION	EINFÜHRUNG	MAX. DATENRATE	FARBE - ANSCHLUSS	STROMVERSORGUNG
USB 1.1	1998	12 Mbit/s	Weiß	100 mA
USB 2.0	2000	480 Mbit/s	Schwarz	500 mA @ 5 V
USB 3.0	2008	5 Gbit/s	Blau	900 mA @5 V
USB 3.1 GEN2	2013	10 Gbit/s	Türkis oder Teal	Bis 15 W (USB-PD)
USB 3.2 GEN 1X2 / 2X2	2017	Bis 20 Gbit/s	Unklar (abhängig von Gerät)	Bis 100 W (USB-PD)
USB 4	2019	Bis 40 Gbit/s (Thunderbolt- kompatibel)	-	Bis 100 W (USB-PD)

Begriffswirrwarr bei USB 3.x-Versionen:

ALTE BEZEICHNUNG	NEUE BEZEICHNUNG	GESCHWINDIGKEIT
USB 3.0	USB 3.2 Gen 1x1	5 Gbit/s
USB 3.1 GEN 2	USB 3.2 Gen 2x1	10 Gbit/s
USB 3.2 GEN 2X2	Bleibt gleich	20 Gbit/s

Achtung: Diese Umbenennungen sorgen oft für Verwirrung. Wichtig ist der Speed, nicht nur der Name!

Steckertypen und Kompatibilität:

TYP	BESCHREIBUNG	KOMPATIBEL MIT
USB-A	Klassischer rechteckiger Stecker	USB 1.1 bis USB 3.x
USB-B	Für Drucker, Scanner	USB 1.1 bis USB 3.x
MINI-USB	Ältere Digitalkameras	USB 2.0
MICRO-USB	Smartphones, ältere Geräte	USB 2.0, 3.0 (Micro-B)
USB-C	Neuer Standard – beidseitig steckbar	USB 2.0 bis USB4, Thunderbolt
LIGHTNING (APPLE)	Proprietär, kein USB-Standard	Nur Apple-Geräte

Stromversorgung über USB:

USB-VERSION	MAXIMALER STROM (OHNE PD)	MIT USB-PD (POWER DELIVERY)
USB 2.0	0,5 A (2,5 W)	-
USB 3.0 / 3.1	0,9 A (4,5 W)	Bis zu 15 W (5V / 3A)
USB-C	Bis zu 3 A (15 W)	Bis zu 100 W (20V / 5A)
USB 4 / USB-PD 3.1	-	Bis zu 240 W (48V / 5A)

Kompatibilität & Rückwärtsfähigkeit:

- USB ist in der Regel abwärtskompatibel, d. h. ein USB-3.0-Gerät funktioniert auch in einem USB-2.0-Port aber nur mit reduzierter Geschwindigkeit.
- Kabel & Stecker müssen jedoch zur Geschwindigkeit und Stromstärke passen (z. B. USB-C für USB4).

Typische Anwendungen pro Version:

ANWENDUNG	EMPFOHLENE USB-VERSION
MAUS, TASTATUR	USB 2.0
USB-STICK, DRUCKER	USB 2.0 oder 3.0
EXTERNE FESTPLATTEN (HDD/SSD)	USB 3.1 oder höher
DOCKINGSTATIONEN, MONITORE	USB-C, USB 3.2 oder USB 4
HOCHLEISTUNGSGERÄTE (Z.B. EGPU)	USB 4, Thunderbolt-kompatibel