

Monograph

https://doi.org/10.11646/zootaxa.4549.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A97BF119-20C4-4428-9A00-68DC9F2BE34F

ZOOTAXA

Chigger mites (Acariformes: Trombiculidae) of Iran

ALEXANDR A. STEKOLNIKOV^{1,3}, ALIREZA SABOORI², MOHSEN SHAMSI² & MASOUD HAKIMITABAR²

¹Zoological Institute of the Russian Academy of Sciences, Universitetskaya embankment 1, Saint Petersburg 199034, Russia.

²Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran.

³Corresponding author: Alexandr A. Stekolnikov. E-mail: Alexandr.Stekolnikov@zin.ru

Magnolia Press Auckland, New Zealand

ALEXANDR A. STEKOLNIKOV, ALIREZA SABOORI, MOHSEN SHAMSI & MASOUD HAKIMITABAR Chigger mites (Acariformes: Trombiculidae) of Iran (*Zootaxa* 4549) 66 pp.; 30 cm. 22 Jan. 2019 ISBN 978-1-77670-586-3 (paperback) ISBN 978-1-77670-587-0 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: magnolia@mapress.com https://www.mapress.com/j/zt © 2019 Magnolia Press

(Print edition)

(Online edition)

ISSN 1175-5326

ISSN 1175-5334

Table of contents

Abstract	
Introduction	4
Materials and methods	5
Key to species of Iranian trombiculid larvae	10
Systematics	15
Family Trombiculidae Ewing, 1944	
Subfamily Apoloniinae Wharton, 1947	
Womersia irani Vercammen-Grandjean, Rohde and Mesghali, 1970	
Subfamily Gahrliepiinae Womersley, 1952	
Schoengastiella irani Wen and Saboori, 2004	
Walchia cognata Schluger and Amanguliev, 1975	
Walchia irani Vercammen-Grandjean, Rohde and Mesghali, 1970	
Walchia montana Kudryashova, 1976.	
Walchia schelkovnikovi Kudryashova, 1976	
Subfamily Leeuwenhoekiinae Womersley, 1944	
Multisetosa persicus (Vercammen-Grandjean, Rohde and Mesghali, 1970)	
Odontacarus apricus Kudryashova, 1976	
Odontacarus dignus Kudryashova, 1976	
Odontacarus efferus Kudryashova, 1976	19
Odontacarus khanjanii Goff and Saboori, 1998	20
Subfamily Trombiculinae Ewing, 1929.	. 21
Tribe Schoengastiini Vercammen-Grandjean, 1960	. 21
Brunehaldia iranica (Kudryashova, Neronov and Farang-Azad, 1978)	
Brunehaldia schmuteri (Schluger, 1966)	
Brunehaldia silvatica (Kudryashova, Neronov and Farang-Azad, 1978)	
Cheladonta brevipalpis ghazvini Vercammen-Grandjean, Rohde and Mesghali, 1970	
Cheladonta firdousii Kudryashova, Neronov and Farang-Azad, 1978	
Cheladonta iraniensis Vercammen-Grandjean, Rohde and Mesghali, 1970	
Cheladonta serrata Kudryashova, Neronov and Farang-Azad, 1978	
Doloisia iranensis Goff, 1983	
Euschoengastia meshhedensis Kudryashova, Neronov and Farang-Azad, 1978	
Helenicula amicula Nadchatram and Traub, 1971	
Helenicula goodorziani Kudryashova, 1973	
Helenicula kohlsi (Philip and Woodward, 1946)	
Helenicula lukshumiae Nadchatram and Traub, 1971	
Helenicula sparsa (Schluger, 1955)	
Neoschoengastia apicosolenidia Vercammen-Grandjean, Rohde and Mesghali, 1970	
Neoschoengastia elegans Vercammen-Grandjean, Rohde and Mesghali, 1970	26
Neoschoengastia galerida Vercammen-Grandjean, Rohde and Mesghali, 1970	26
Neoschoengastia judysouthworthi Vercammen-Grandjean, Rohde and Mesghali, 1970	27
Neoschoengastia kaliophthalma Vercammen-Grandjean, Rohde and Mesghali, 1970	
Neoschoengastia mesghali Vercammen-Grandjean, Rohde and Mesghali, 1970	
Neoschoengastia meshedensis Vercammen-Grandjean, Rohde and Mesghali, 1970	
Neoschoengastia picata Vercammen-Grandjean, Rohde and Mesghali, 1970	
Ornithogastia merops (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov.	
Ornithogastia oenanthe (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov.	
Schoengastia persica Wen, Saboori and Akrami, 2012	
Schoutedenichia anatolica Kepka, 1962	
Schoutedenichia chilmirica Kudryashova, 1975	
Schoutedenichia montchadskyi Muljarskaja, 1971	
Schoutedenichia originalis Kudryashova, 1976	
Schoutedenichia rohdeae Vercammen-Grandjean, Rohde and Mesghali, 1970	
Schoutedenichia shirazica Kudryashova, 1976	
Schoutedenichia zarudnyi Kudryashova, 1976	
Susa kolebinovae (Kudryashova, Neronov and Farang-Azad, 1978)	
Susa vorax (Schluger and Amanguliev, 1975)	33
Tribe Trombiculini Vercammen-Grandjean, 1960	
Chiroptella vavilovi Kudryashova, 1975	
Ericotrombidium biconcavum (Kudryashova, 1976)	
Ericotrombidium iranicus (Kudryashova, 1976)	
Ericotrombidium jayewickremei (Womersley, 1952)	
Ericotrombidium kazeruni (Kudryashova, 1976)	
2. 100. Onothin maco with (Educational, 1770)	/

	Ericotrombiaium iimpiaum (Kuaryasnova, 19/6)	38
	Hirsutiella llogorensis (Daniel, 1960)	
	Kepkatrombicula blanfordi (Kudryashova, 1977)	. 40
	Kepkatrombicula horti (Kudryashova, 1977)	. 40
	Leptotrombidium silvaticum Hushcha and Schluger, 1967	41
	Leptotrombidium subsilvaticum Kudryashova, 1976	
	Microtrombicula azerbaidjanica Muljarskaja, Verdieva and Tchirkova, 1970	43
	Microtrombicula galerida (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov	. 43
	Microtrombicula media (Kudryashova, 1976)	. 44
	Microtrombicula meriones (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov	44
	Microtrombicula potamophila (Kudryashova, 1976)	44
	Microtrombicula similata Schluger and Amanguliev, 1972	45
	Microtrombicula subtilissima (Kudryashova, 1976)	45
	Microtrombicula tenera (Kudryashova, 1976)	
	Microtrombicula traubi (Muljarskaja and Verdieva, 1974)	46
	Miyatrombicula nikitini Kudryashova and Farang-Azad, 1976	46
	Neotrombicula delijani Kudryashova, 1977	
	Neotrombicula faghihi Kudryashova, 1973	. 47
	Neotrombicula heptneri Kudryashova, 1973	
	Neotrombicula heterotrichia Vercammen-Grandjean, Rohde and Mesghali, 1970	. 48
	Neotrombicula kermani Kudryashova, 1977	
	Neotrombicula mofidii Kudryashova, 1973	48
	Neotrombicula nivalis Kudryashova, 1977	. 50
	Neotrombicula rara Kudryashova, 1977	. 50
	Neotrombicula rostrata Muljarskaja, 1973	. 50
	Neotrombicula sabzavari Kudryashova, 1977	
	Neotrombicula talmiensis (Schluger, 1955)	. 53
	Neotrombicula valenti Kudryashova, 1973	
	Neotrombicula valeri Kudryashova, 1977	53
	Neotrombicula vulgaris (Schluger, 1955)	
	Otorhinophila deserta Kudryashova, Neronov and Mobedi, 1972	
	Otorhinophila farhangazadi Kudryashova, Neronov and Mobedi, 1972	
	Pentidionis agamae (Andr, 1929)	
	Willmannium aelleni (Vercammen-Grandjean, 1963)	
	Willmannium cavus iraniensis Kudryashova, 1992	
	between our and original measurements	
	ssion	
	owledgements	
Dafan	onacc	61

Abstract

Chigger mites of Iran have been revised based on examination of type materials in the collection of Zoological Museum of Moscow University and reference data. Hitherto, 85 species of trombiculids were recorded in Iran; synonymy, diagnoses, data on depositories of type specimens, lists of hosts and collection localities are given for each species. Original measurements of holotypes or paratypes are provided for 46 species. Four new combinations are proposed: *Ornithogastia merops* (Vercammen-Grandjean, Rohde and Mesghali, 1970) **comb. nov.**, transferred from *Guntherana*; *O. oenanthe* (Vercammen-Grandjean, Rohde and Mesghali, 1970), **comb. nov.**, transferred from *Eltonella*; and *M. meriones* (Vercammen-Grandjean, Rohde and Mesghali, 1970), **comb. nov.**, transferred from *Eltonella*. Comparison of our measurements of holotypes with those given in the original species descriptions published by Kudryashova was carried out using statistical methods to establish probable systematic bias between metric data obtained by different researchers. A key to species of Iranian trombiculid larvae is compiled. With the use of public geoinformation online resources, actual names and coordinates were established for all 48 sites of Iran where chigger mites were collected.

Key words: chiggers, Western Asia, taxonomy, distribution

Introduction

Trombiculids are a diverse group of temporary parasites attacking terrestrial and amphibious vertebrates. Their

parasitic larvae (chiggers) were recorded as usual causative agents of acute dermatitis of humans and domestic animals—from horses, sheep, and goats to poultry and small pets—in many parts of the world. They are known also as specific vectors of scrub typhus, the disease known mainly in Southeast and South Asia, but having much wider areal (Jiang & Richards 2018). As Iran borders with Pakistan, where scrub typhus has been recorded since the second half of 20th century (Traub *et al.* 1967; Wisseman *et al.* 1967), the comprehensive knowledge of chigger fauna and ecology in this country should be regarded as especially important.

Chigger mites of Iran were extensively studied by Kudryashova (1975, 1976a, b, c, d, etc.) on the base of materials collected in 1969–1970 within the frame of a joint project of the Institute of Public Health Research at University of Tehran and the World Health Organization. Collections of mammal hosts and their ectoparasites were carried out by V.M. Neronov (Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, USSR) and A. Farang-Azad (Institute of Public Health Research, Tehran, Iran); preparation and identification of chiggers were done by N.I. Kudryashova (Zoological Museum of Moscow University, USSR) (Kudryashova *et al.* 1978). All results of these investigations were published in Russian, sometimes in poorly accessible sources; therefore, their review is an indispensable base to continue studies of chiggers in Iran.

A noticeable contribution to the knowledge of Iranian chiggers was also provided by Vercammen-Grandjean *et al.* (1970), who described 19 new species and subspecies, mainly from birds, occasionally from reptiles and mammals, and made one new record. A few data on Iranian trombiculuds, mainly new species descriptions, were published by Nadchatram & Traub (1971), Goff (1983), Goff & Saboori (1998), Wen & Saboori (2004), and Wen *et al.* (2012).

A systematic bias between measurements of the holotype of *Neotrombicula heptneri* Kudryashova, 1973 in the original description (Kudryashova 1973) and those taken by Stekolnikov (Stekolnikov & Kar 2015) motivate us to perform a statistical analysis aimed to reveal if that bias is a persistent characteristic of metric data obtained by the two researchers and whether it is possible to remove it using a correction rate. Although metric traits play a significant role in the chigger taxonomy at the species level, we do not know works where such difference was a subject of study based on repeated measurements of the same specimens.

A special task was to identify collection localities mentioned in original sources. In Kudryashova's works, Iranian geographic names were given in Russian; later they were simply transliterated with Latin letters (Kudryashova 2004) that is far from correct spelling of toponyms. Thus, many collection sites were defined inexactly, e.g. "48 km from Fesa to Dzhekhrum" (actually 48 km from Fasa in the direction to Jahrom). Therefore, a geographic analysis was needed to establish at least approximate reference points and their coordinates corresponding to collection localities.

Materials and methods

Measurements of holotypes and paratypes (in micrometers, µm) were taken by A.A. Stekolnikov using a compound microscope MBI-3 (LOMO plc, Saint Petersburg, Russia) supplied with phase-contrast optics, which is his permanent device for measuring and drawing. We used the morphological terminology, abbreviations, and diagnostic formulas generally accepted in the taxonomy of trombiculids. The complete guide to this subject was published by Goff *et al.* (1982). The recent monograph on African chiggers (Stekolnikov 2018) includes a shorter compendium containing explanations for all terms used in the present work and equivalents of specific chaetotactic terms used in chigger studies to the common terminology of Prostigmata (Wohltmann *et al.* 2007). Morphological structures of gnathosoma are shown in Fig. 1; idiosoma and legs are presented in Fig. 2 (dorsal aspect) and Fig. 3 (ventral aspect); scutal measurements are given in Fig. 4. The terminology for gnathosomal structures follows Shatrov *et al.* (2016). The meaning of identification formulas used in diagnoses is as follows:

Synthetic identification formula (*e.g.* SIF = 7BS-N-3-2111.1000) includes the following characters, separated with hyphens and a point: 1) chaetome of palpal tarsus: number of branched setae (B) and presence of nude subterminala (S); 2) condition of galeal seta (B, branched; N, nude; b, bearing small cilium; f, forked); 3) number of prongs of palpal claw; 4) number of genualae I, number of genualae II, number of genualae III, number of mastitarsalae III, number of mastitibialae III, number of mastifemoralae III.

Palpal setal formula (e.g. fPp = B/B/NNB) describes the form of palpal femoral seta, palpal genual seta, and three palpal tibial setae (dorsal, lateral, and ventral, respectively).

Leg formula (e.g. fsp = 7.7.7) includes number of segments in legs I, II, and III (in six-segmented legs, basifemur and telofemur are fused to form undivided femur).

Sternal setal formula (e.g. fSt = 2.2) includes numbers of anterior and posterior sternal setae.

Coxal setation formula (e.g. fCx = 1.1.1) includes numbers of setae on leg coxae I, II, and III.

Scutal formula (e.g. fSc: $PL > AL \ge AM$) expresses the relative lengths of scutal setae.

Dorsal setal formula (*e.g.* fD = 2H-8-6-6-4-4-2) shows the number of humeral setae (H) and numbers of dorsal idiosomal setae in transverse rows. Humeral setae together with the dorsal idiosomal setae of the 1^{st} row correspond to the row C in the terminology for Prostigmata, while the rows from 2^{nd} to 5^{th} correspond to the rows D, E, F, and H, respectively (Wohltmann *et al.* 2007).

Indexes, measurements of legs, and numbers of idiosomal setae: SD = ASB + PSB; pa—length of leg I (including coxa and excluding claws); pm—length of leg II (including coxa and excluding claws); pp—length of leg III (including coxa and excluding claws); Ip = pa + pm + pp; TaIIIL—length of leg III tarsus (excluding claws); TaIIIW—width of leg III tarsus; DS—number of dorsal idiosomal and humeral setae (excluding scuto-ocular setae, which are situated between lateral scutal margins and eyes in some species); VS—number of preanal and postanal ventral idiosomal setae (sternal and coxal setae do not belong to VS); NDV = DS + VS + number of humeroventral setae (the setae situated between coxae I and II, by sides of idiosoma, in some species).

Diagnoses of species are given according to original descriptions or later revisions and supplied with our measurements of holotypes or paratypes — in cases they were examined. Type specimens from the Zoological Museum of Moscow University were examined by A.A. Stekolnikov; type specimens from Iranian depositories were revised by A. Saboori. Original figures of holotypes or paratypes prepared by A.A. Stekolnikov with the use of a drawing tube are provided for those *Neotrombicula* and *Kepkatrombicula* species which are difficult for identification.

To establish actual names and coordinates of collection localities, we used the database of geographic names supported by the US National Geospatial-Intelligence Agency (http://geonames.nga.mil/namesgaz/), program Google Earth (https://www.google.com/earth), and the Soviet military topographic map set of Iran downloaded from the website mapstor.com (https://mapstor.com). The list of collection localities is presented in Table 1. The column "Description" contains data on collection sites in the form they were given in the original description of species. Spelling of geographic names follows the recent standard according to the US National Geospatial-Intelligence Agency; texts from Kudryashova's papers were translated from Russian. The column "Reference point" includes names of exact or arbitrary geographic points being closest to the collection localities; in the case of two different localities connected to one reference point, its name is supplied with a number (e.g. Kerman and Kerman 2). The column "Coordinates" includes latitudes and longitudes of collection localities obtained with the use of Google Earth according to the data on the distance between a reference point and a collection site, description of the landscape at the collection site, and other details. In the paragraph "Distribution" for each species, Iranian localities correspond to reference points from the Table 1.

Host names were verified with the use of online databases Mammal Species of the World (https://www.departments.bucknell.edu/biology/resources/msw3), Zoonomen (Zoological Nomenclature Resource): Birds of the World (http://www.zoonomen.net/avtax/frame.html), and the Reptile Database (http://www.reptile-database.org). We provide all host records (not only Iranian) for each species.

We used the Sign test and the Wilcoxon Matched Pairs test to estimate the difference between the original measurements of holotypes and our measurements of the same specimens. The both tests are nonparametric alternatives to t-test for dependent samples. The Sign test computes the number of times when the values from the first sample are larger than the corresponding values in the second sample, while the Wilcoxon Matched Pairs test also takes into account the magnitude of the differences between dependent values. The latter test is therefore more sensitive than the former one. Twenty variables representing standard measurements of chigger mites were included separately into the analyses (AW, PW, SB, ASB, PSB, SD, AP, AM, AL, PL, S, H, D_{min}, D_{max}, V_{min}, V_{max}, pa, pm, pp, Ip). The sample size was 44 (i.e., holotypes of 44 species were included into the analyses), but it was reduced for each variable due to numerous missing values. The Wilcoxon test was performed twice—with raw and with log-transformed variables: the results of those analyses were generally similar. Computations were performed in the software package Statistica ver. 8.0 (StatSoft Inc., Tulsa, OK, USA).

TABLE 1. Collection localities.

Reference point	Description	Coordinates	Province
Abarkuh	Abarkuh	31° 07' 44" N, 053° 16' 57" E	Yazd
Abhar	4 km W Abhar, 1750 m a.s.l.	36° 08' 21" N, 049° 08' 45" E	Zanjan
Ahmadabad	10 km SE Kazerun	29° 34' 02" N, 051° 45' 00" E	Fars
Ahvaz	Ahvaz	31° 18' 45" N, 048° 40' 38" E	Khuzestan
Ajami	Vicinities of Ajami, 1430 m a.s.l.; 1780 m a.s.l.	37° 28′ 56″ N, 047° 12′ 54″ E	
Asadabad	Hamadan, Asadabad, 1800 m a.s.l.	34° 46′ 57" N, 048° 07′ 12" E	Hamadan
Bandar Abbas	Bandar Abbas	27° 11′ 11" N, 056° 16′ 51" E	Hormozgan
Behbahan	3 km from Behbahan, 320 m a.s.l., a tributary of the Marun river, slope near the river bank with single trees, tamarisk, and stones; gardens near the river	30° 39' 17" N, 050° 11' 59" E	Khuzestan
Borazjan	10 km N Borazjan, 770 m a.s.l., southern slope of a mountain	29° 19' 03" N, 051° 19' 12" E	Bushehr
Chabahar	4 km N Chabahar, 130 m a.s.l.	25° 20' 27" N, 060° 37' 48" E	
Chahar Taq	48 km from Fasa in the direction of Jahrom, 1130 m a.s.l., stony slope of a mountain and thickets of tamarisk along the river; 1130 m a.s.l., bush and stones; 1000-1500 m a.s.l., sandy terraces with bush of tamarisk and stones along the river, alfalfa fields	28° 34' 33" N, 053° 48' 37" E	Fars
Chalus	15 km E Chalus, deciduous forests along the Caspian Sea shore	36° 36' 31" N, 051° 36' 44" E	Mazandaran
Chamm ol Hamid	Khuzestan Province, 45 km N Ahvaz	31° 41' 04" N, 048° 51' 16" E	Khuzestan
Chehel Zar'i	40 km SE Abadeh, Chehel Zar'i, 1570 m a.s.l., stony slopes of mountains	30° 59' 56" N, 052° 54' 55" E	Fars
Chelmir	above a brook in the mountain gorge Chelmir, 27 km E Dargaz, 1000 m a.s.l.	37° 23' 39" N, 058° 52' 07" E	
Darabad	vicinities of Darabad, deciduous forest	37° 20' 14" N, 055° 34' 33" E	Golestan
Darkhovin	45 km N Abadan, Darkhovin, 190 m a.s.l.	30° 44' 40" N, 048° 25' 22" E	Khuzestan
Delijan	16 km N Delijan, Anarbar valley, 1600 m a.s.l., edge of a garden on mountain slope; mountain slope and river terrace; stony and rocky slopes of mountains with small gardens and mountain steppe on river terraces	34° 06' 41" N, 050° 35' 02" E	Markazi
Gorgan	20 km SE Gorgan, deciduous forest	36° 42' 42" N, 054° 35' 27" E	Golestan
Hajiabad	30 km SW Hamadan, 1900 m a.s.l.	34° 37' 17" N, 048° 15' 51" E	Hamadan
Isfahan	Isfahan	32° 39' 26" N, 051° 40' 39" E	Isfahan
Kabudan	137 km SE Sabzevar, 1200 m a.s.l.	35° 22' 36" N, 057° 58' 39" E	
Kabudarahang	Kabutarahang (=Kabudarahang)	35° 12' 33" N, 048° 43' 24" E	Hamadan

.....continued on the next page

TABLE 1. (Continued)

Reference point	Description	Coordinates	Province
Kazerun	Kazerun	29° 37' 10" N, 051° 39' 15" E	Fars
Kazerun 2	$20\ km$ E Kazerun, 770 m a.s.l., bush along the river and deposits on river terraces; old fields and gardens	29° 38' 56" N, 051° 47' 21" E	Fars
Kerman	5 km N and 20 km E Kerman, 2220 m a.s.l., stony slopes of mountains with single <i>Pistacia</i> trees and bush	30° 22' 38" N, 057° 14' 38" E	Kerman
Khorramabad	Khorramabad	33° 29' 16" N, 048° 21' 21" E	Lorestan
Kolol	10 km N Borazjan, 120 m a.s.l., bush and old fields on the valley with tributaries of the Helle river	29° 18' 57" N, 051° 05' 31" E	Bushehr
Lotfabad	Lotfabad village, 27 km W Dargaz, garret of old house	37° 31' 05" N, 059° 20' 27" E	
Mahdishahr	4 km S Shamirzad, 1850 m a.s.l.	35° 42' 39" N, 053° 21' 14" E	Semnan
Maku	2 km E Maku, 1000 m a.s.l.	39° 17' 42" N, 044° 29' 54" E	
Mashhad	Mashhad	36° 18' 56" N, 059° 34' 05" E	
Mashhad 2	20 km W Mashhad, 1100 m a.s.l.	36° 26' 11" N, 059° 25' 35" E	
Masjed Soleyman	Khuzestan Province, 18 km S Masjed Soleyman	31° 48′ 14″ N, 049° 19′ 10″ E	Khuzestan
Mehr	48 km W Sabzevar, 900 m a.s.l., stony slope of a mountain with scarce grass	36° 17' 32" N, 057° 08' 57" E	
Mozdooran cave	96 km E Mashhad, cave Mozdooran near Sarakhs, 1400 m a.s.l.	36° 09' 06" N, 060° 32' 60" E	
Qazvin	Qazvin	36° 16' 47" N, 050° 00' 18" E	Qazvin
Sar Bisheh	Khuzestan Province, 93 km ESE of Behbahan	30° 16′ 57" N, 050° 59′ 39" E	~ .
Sefidrud	valley of Sefidrud river between Lahijan and Rasht	37° 14' 59" N, 049° 49' 42" E	Gilan
Shiraz	20 km from Shiraz to Kazerun, 1640 m a.s.l., stony slopes of mountains	29° 37' 25" N, 052° 14' 17" E	Fars
Shurak Maleki	71 km E Mashhad, 900 m a.s.l., edge of a field in dry riverbed with dense thickets of <i>Agriophyllum</i> and sagebrush	36° 04' 12" N, 060° 13' 27" E	
Shushtar	3 km from Shushtar, Karun valley, 250 m a.s.l.	32° 02' 59" N, 048° 50' 54" E	Khuzestan
Takht Malek	40 km from Nikshahr, dry riverbed with bush, 720 m a.s.l.	26° 26' 44" N, 060° 02' 51" E	
Tehran	Tehran	35° 42′ 18″ N, 051° 25′ 18″ E	Tehran
Urmia	20 km S Urmia, 1000-1500 m a.s.l.; 1400 m a.s.l., scarce <i>Pistacia</i> forest on stony slopes of mountain; 1400 m a.s.l., fields along a mountain river with scarce trees		
Zahedan	14 km NE (in other text SE) Zahedan, 1525 m a.s.l.	29° 29' 47" N, 060° 51' 46" E	
Zarrin Shahr	30 km S Isfahan, 1400-1500 m a.s.l., forest edge along the river with bordering rice fields; 1440 m a.s.l., edge of a rice field and river terraces with stoned and trees along the river.	32° 21' 55" N, 051° 30' 42" E	Isfahan

Abbreviations of depositories: IUMS—Iran University of Medical Sciences, Tehran, Iran; USNM—National Museum of Natural History, Washington, DC, USA (formerly United States National Museum); ZMMU—Zoological Museum of Moscow University, Moscow, Russia.

List of host names: MAMMALIA: Acomys dimidiatus (Cretzschmar), Allactaga williamsi Thomas, Alticola roylei (Gray), Apodemus agrarius (Pallas), A. flavicollis (Melchior), A. ponticus (Sviridenko), A. sylvaticus (L.), A. uralensis (Pallas), Asellia tridens (É. Geoffroy), Barbastella leucomelas Cretzschmar, Calomyscus bailwardi Thomas, Capra hircus L., Chionomys gud (Satunin), C. nivalis (Martins), Ch. roberti (Thomas), Spermophilus fulvus (Lichtenstein), Cricetulus migratorius (Pallas), Crocidura russula (Hermann), C. suaveolens (Pallas), Eptesicus bottae ognevi Bobrinskii, Gerbillus nanus Blanford, Lepus europaeus Pallas, Meriones crassus Sundevall, M. hurrianae Jordon, M. libycus Lichtenstein, M. meridianus (Pallas), M. persicus Blanford, M. tamariscinus (Pallas), M. tristrami Thomas, M. vinogradovi Heptner, Microtus agrestis (L.), M. arvalis (Pallas), M. daghestanicus (Shidlovsky), M. majori Thomas, M. schelkovnikovi (Satunin), M. socialis (Pallas), Mus musculus L., Mustela nivalis L., Myotis blythii Tomes, Nesokia indica (Gray), Ochotona rufescens (Gray), Pipistrellus pipistrellus (Schreber), Rattus pyctoris Hodgson (syn.: Rattus turkestanicus), R. rattus (L.), Rhinolophus ferrumequinum (Schreber), Rhinopoma hardwickii Gray, Rhombomys opimus (Lichtenstein), Sorex araneus L., Talpa caucasica Satunin, Tatera indica (Hardwicke); SQUAMATA: Stellagama stellio (L.); AVES: Charadrius alexandrinus L., Columba livia Gmelin, Coracias garrulus L., Corvus cornix L., Falco columbarius L., Galerida cristata (L.), Garrulus glandarius (L.), Merops apiaster L., Neophron percnopterus (L.), Oenanthe hispanica (L.), O. picata (Blyth), Passer hispaniolensis (Temminck).

FIGURE 1. Gnathosoma of trombiculid larva (left—dorsal aspect, right—ventral aspect). 1, cheliceral apodeme (or sigmoid piece); 2, capitular apodeme; 3, gnathocoxal seta; 4, gnathocoxa; 5, trochanter of palp; 6, femur of palp; 7, genu of palp; 8, sclerite ring; 9, tibia of palp; 10, ventral palpal tibial seta; 11, palpal tarsala; 12, tarsus of palp; 13, palpal subterminala; 14, palpal tarsal setae; 15, tricuspid cap of cheliceral blade; 16, cheliceral blade; 17, malapophysis; 18, galeal seta; 19, palpal claw; 20, dorsal palpal tibial seta; 21, lateral palpal tibial seta; 22, palpal genual seta; 23, palpal femoral seta; 24, cheliceral base.

FIGURE 2. General view of trombiculid larva, dorsal aspect. 1, idiosoma; 2, scutum; 3, sensillary base; 4, eyes; 5, sensillum (S); 6, humeral seta (H); 7, dorsal idiosomal setae (D); 8, posterolateral scutal seta (PL); 9, anteromedian scutal seta (AM); 10, anterolateral scutal seta (AL); 11, trochanter; 12, basifemur; 13, telofemur, 14, genu; 15, tibia; 16, microtibiala; 17, tarsus; 18, famulus I (f₁); 19, pretarsala I (PT'); 20, claw; 21, empodium; 22, subterminala (ST); 23, parasubterminala (pST); 24, tarsala I (S₁); 25, tibiala; 26, microgenuala; 27, genuala; 28, mastitarsala.

Key to species of Iranian trombiculid larvae

-	Scutum with posterior margin extending beyond level of PL scale to include one pair of dorsal idiosolital scale (PPL scale)
2	(genus Schoengastiella)
3.	Eyes absent, $fCx = 1.1.2$, palpal tarsus with 5 branched setae, genuala II and genuala III present, f_1 posterior to S_1 , NDV = 64.
	Walchia irani
-	Eyes $2 + 2$, $fCx = 1.1.1$, palpal tarsus with 4 branched setae, genuala II and genuala III absent, f_1 at level of S_1 , $NDV = 80-102$
	4
4.	Eight setae in 1^{st} row of dorsal idiosomal setae and 11 setae in 2^{nd} row, NDV = 93–102, lateral palpal tibial seta with 1 barb
-	Six setae in 1 st row of dorsal idiosomal setae and 8 setae in 2 nd row, NDV = 80–95, lateral palpal tibial seta nude
5.	$AL \ge PL$, $Ip = 542-614$
-	PL > AL, $Ip = 638-647$
6.	ALs and PLs situated close to each other (AP = 9–12); about 5 PPLs situated on posterior scutal margin within scutum and
	about 5 scuto-ocular setae situated between scutum and eyes (genus Multisetosa, Fig. 6) Multisetosa persicus
-	AP = 19–31, PPL and scuto-ocular setae absent (genus <i>Odontacarus</i> , Fig. 7)
7.	Two genualae I, mastitibiala absent
-	One genuala I, mastitibiala present
8.	Palpal claw 2-pronged, genuala II and genuala III present, mastitarsala absent, fPp = B/B/BBB, NDV = 128–141, two humeral
	setae, humeroventral setae absent
-	Palpal claw 4-pronged, genuala II and genuala III absent, mastitarsala present, fPp = B/B/BNB, NDV = 82, 4 humeral setae, 6
	humeroventral setae present between coxae I and II
9.	$AM \ge PL > AL$, 8–12 humeroventral setae between coxae I and II, $NDV = 141-161$, $Ip = 1016-1087$, f_1 at level or posterior to
	S_1 , f_2 anterior to S_2
-	$AM \ge AL > PL$, 12–15 humeroventral setae between coxae I and II, NDV = 191–220, Ip = 1145–1184, f_1 slightly anterior to S_1 ,
	f, at level or slightly posterior to S,
10.	Sensilla expanded, fusiform to globose (tribe Schoengastiini)
-	Sensilla flagelliform, usually branched (tribe Trombiculini)
11.	Tibiala III absent
-	Tibiala III present
12.	Palpal tarsus with 7 branched setae, scutum wide, band-shaped, more than twice wider than long (genus <i>Euschoengastia</i> , Fig.
	8) Euschoengastia meshhedensis
_	Palpal tarsus with 4 branched setae, scutum less than twice wider than long.
13.	ALs spiniform, nude (genus $Doloisia$), fCx = 1.3.10, three mastitarsalae and two mastitibialae present, PLs extrascutal
15.	Doloisia iranensis
_	ALs not spiniform, barbed, number of setae on coxa III not more than 5, mastisetae absent
14.	Sensillary bases situated closer to PLs than to each other (genus <i>Schoutedenichia</i> , Fig. 9)
-	Sensillary bases situated not closer to PLs than to each other (genus <i>Cheladonta</i> , Fig. 10)
15.	Galeala nude, fPp = B/B/NNB
-	Galeala branched
16.	PLs extrascutal
-	PLs inserted on scutum
17.	Genuala II and genuala III absent, 6 humeral setae
-	Genuala II and genuala III present, 4 humeral setae
18.	fCx = 1.1.3, AL > PL
10.	fCx = 1.1.1, PL > AL
19.	Palpal subterminala present, 4 humeral setae, NDV = 162, Ip = 1064, f_1 far anterior to S_1 ; f_2 far posterior to S_2
1).	Schoutedenichia chilmirica
_	Palpal subterminala absent, 2 humeral setae, NDV = 70, Ip = 684, f_1 slightly posterior to S_1 ; f_2 near S_2
-	
20	
20.	Genuala II and genuala III absent, fPp = B/B/NNB
-	Genuala II and genuala III present, fPp = B/B/BBB
21.	Galeala nude
-	Galeala branched
22.	Palpal claw 6-pronged, Ip = 625–654
-	Palpal claw 3-pronged, Ip > 680
23.	Genuala II and genuala III absent, palpal claw 3-pronged, NDV = 112–131, eyes 2 + 2
- 24	Genuala II and genuala III present, palpal claw 7-pronged, NDV = 74, eyes 1 + 1
24.	Scutum wide, crescent-shaped, with rounded or concave posterior margin, sensillary bases posterior to PL, AL and PL setae
	approximate to each other, eyes absent, two or more pairs of humeral setae, scutal and idiosomal setae covered with long thin
	barbs, galeal setae branched, fCx = 1.1.3 (genus <i>Brunehaldia</i> , Fig. 11)
25	Scutum not crescent-shaped, eyes 2 + 2
25.	Parasubterminala nude
26	Parasubterminala with 1–2 branches
26.	NDV = 152–176, Ip = 767–835, PW < 80

- 27.	NDV = 196–225, Ip = 851–914, PW > 80
	tia)
28.	Tarsala I in distal position (level of subterminala), sensillary bases situated close to each other (at distance equal to diameter of each base) (genus <i>Helenicula</i> , Fig. 12)
- 29.	Tarsala I clearly posterior to subterminala, distance between sensillary bases larger than diameter of each base
- 30.	Galeala nude, 2 genualae I
-	fCx = 1.1.1, fSt = 2.2, palpal tarsus with 4 branched setae
31.	fPp = B/B/BNB, fCx = 1.2.4(5), fSt = 2.4(5) $fPp = B/B/BBB, fCx = 1.1.2, fSt = 2.2.$ $fPp = B/B/BBB, fCx = 1.1.2, fSt = 2.2.$ $fPp = B/B/BBB, fCx = 1.1.2, fSt = 2.2.$
32.	NDV = 121–136, Ip = 921–982, 14–19 ventrohumeral setae between coxae II and III
33.	Palpal tarsus with 7 branched setae and usually subterminala, galeala branched, scutum with cuticular striations around sensil-
	lary bases, parasubterminala branched or absent, 1 mastitarsala rarely present, fCx = 1.1.3, 1.1.6 or 1.1.1 (genus <i>Neoschoengastia</i>)
-	Palpal tarsus with 5 branched setae, galeala nude, scutum with cuticular striations around sensillary bases, parasubterminala nude, 4 mastitarsalae and 3 mastitibialae present, fCx = 1.1.1 (genus <i>Ornithogastia</i>)
-	Palpal tarsus with 5 branched setae, galeala branched, scutum without cuticular striations, parasubterminala nude, mastisetae
34.	absent, fCx = 1.2.1 (genus $Susa$)
-	
35.	
-	fCx = 1.1.3, $fSt = 2.2$, $NDV = 60-80$ 36
36.	Two genualae I
37.	Three genualae I
<i>57.</i>	Six setae in 1 st row of dorsal idiosomal setae, NDV = 60–64.
38.	fPp = B/B/BNB, onychotriches absent
-	fPp = B/B/BBB, onychotriches present
39.	f_1 posterior to S_1 , NDV = 64, $Ip < 1300$
-	f_1 anterior to S_1 , NDV = 60, $Ip > 1300$
-	f_1 at level of S_1 , NDV = 60, $Ip < 1300$
40.	Ip = 894, PW = 72, AM = 49 Ornithogastia merops
-	Ip = 1070, PW = 90, AM = 58
41.	$fSt = 2.2, f_1$ anterior to S_1
-	$fSt = 2.4(5-6)$, f_1 at level or slightly posterior to S_1
42.	Palpal femoral and genual setae nude, 2 genualae I
- 43.	At least palpal femoral seta branched
-	Galeala branched, scutum rectangular, mastisetae absent
44.	fPp = N/N/NNN, palpal tarsus with 7 branched setae and subterminala (genus <i>Willmannium</i>)
45.	NDV = 90-104, $Ip = 966-1027$
46.	fD = 2H-8-6-6-6-4-2 Leptotrombidium silvaticum
-	${\rm fD=2H\text{-}8\text{-}8\text{-}8\text{-}6\text{-}2\text{-}2} \qquad \qquad Leptotrombidium\ subsilvaticum$
47.	Palpal tarsus with 5 branched setae, PLs off scutum, parasubterminala branched or absent, eyes $1 + 1$, $fSt = 2.(4-7)$, $fCx = 1.1.(4-8)$, f_1 slightly posterior to S_1 (genus <i>Otorhinophila</i> , Fig. 14)
-	Palpal tarsus with 6–7 branched setae and sometimes subterminala, PLs on scutum, parasubterminala nude, f_1 anterior to S_1 49
48.	Tibiala III present, 6 humeral setae, leg subterminala present
- 49.	Tibiala III absent, 4 humeral setae, leg subterminala absent
	of ALs (genus <i>Microtrombicula</i> , Fig. 15)
- 50.	Palpal tarsus with 7 branched setae and usually subterminala, scutum wider than long
-	Arrangement of dorsal idiosomal setae in first rows 8-6(8)-6
51.	fCx = 1.2.1
-	fCx = 1.1.1.

52.	Three genualae I	1 1
-	Two genualae I	
53.	Galeala branched, eyes 2 + 2	
-	Galeala nude, eyes 1 + 1	
54.	Galeala nude, 8 setae in 2^{nd} row of dorsal idiosomal setae, $fCx = 1.1.1$, $fSt = 2.2$, leg subto	
-	Galeala branched, 6 setae in 2^{nd} row of dorsal idiosomal setae, fCx = 1.2.1, fSt = 2.4, b	
	absent	
55.	Three genualae I	
-	Two genualae I	
56.	Eyes 1 + 1	
-	Eyes 2 + 2	
57.	One genuala I situated in proximal and one in distal part of genu, f_2 anterior to $S_2 \dots$	Microtrombicula subtilissima
-	Two genualae I situated in distal part of genu, f_2 slightly posterior to S_2	Microtrombicula tenera
58.	Three genualae I (2 basal and 1 distal), palpal subterminala absent (genus <i>Pentidionis</i>).	Pentidionis agamae
-	Two distal or 1 basal and 2 distal genualae I, palpal subterminala present	
59.	Scutum pentagonal, posterior scutal margin sharply angulate, PLs situated close to ALs	
	r r	
_	Scutum rectangular, galeala branched, 2 genualae I, mastisetae absent, fD = 2H-8-6-6	. (genus <i>Ericotrombidium</i> , Fig. 16) 60
_	Scutum hexagonal, PLs posterior to level of SB, sensilla with 1–3 branches or nude, g	
	genualae I, mastitarsala present (genus <i>Hirsutiella</i> , Fig. 17)	
	Scutum subpentagonal, with rounded posterior margin and anterolateral shoulders, 1st ro	
-	genualae I, mastitarsala present (genus <i>Kepkatrombicula</i> , Fig. 18)	
	Scutum subpentagonal, usually with rounded posterior margin (if posterior margin an	
-	ALs), without anterolateral shoulders, mastitarsala usually present (genus <i>Neotrombicul</i>	
60.	ALS), without affectorateral shoulders, mastiturisate usually present (genus <i>Neotromoteut</i> AM \geq SD	
00.	$AM \le SD$.	5 5
- 61.		
01. -	fPp = B/B/NNB. $fPp = D/D/MPD.$	
62.	fPp = B/B/NbB Posterior scutal margin slightly concave medially, Ip = 860–901	
62.		
-	Posterior scutal margin clearly bilobate, Ip = 784–843	
63.	PL > 40, Ip = 871–925	
-	PL < 40, Ip = 769–792	
64.	$\text{fPp} = \text{B/B/BBB}, \text{Ip} \le 900, \text{AM} = 25-29, \text{PL} = 41$	
-	fPp = B/B/NBB, Ip > 1000, AM = 40-45, PL = 62-73	
65.	Galeala and all palpal setae branched (sometimes dorsal palpal tibial seta nude)	
-	Galeala nude	
66.	Two genualae I, f ₁ at level of S ₁	
-	Three genualae I, f_1 anterior to S_1	
67.	fCx = 1.1.2, mastitarsala with 2–3 cilia in basal part	
-	fCx = 1.1.1, mastitarsala absent	
68.	fD = 2H-8-10-8(9)-6-6(4)-2(4), NDV = 91–92.	
-	fD = 2H-8-6-6-4-6-2, 2H-6-6-6-4-4-2, NDV = 59–70	
69.	Two genualae I	
-	Three genualae I	
70.	NDV = 52, fPp = B/B/NNB	
-	NDV > 70, fPp = B/B/NbB.	
71.	NDV = 71-81	Neotrombicula faghihi
-	NDV > 90	Neotrombicula valeri (part)
72.	fCx = 1.2.2.	Neotrombicula valenti
-	fCx = 1.1.1, rarely 1.1.2	
73.	Four humeral setae	Neotrombicula vulgaris
-	Two humeral setae	
74.	Six setae in first two rows of dorsal idiosomal setae, NDV < 70	
-	Eight or more setae in first two rows of dorsal idiosomal setae, NDV > 75	
75.	fPp = B/B/NNB, AM > AL.	
-	fPp = B/B/N(B)BB, AL > AM	_
76.	fPp = B/B/BBB, Ip > 1000	
-	fPp = B/B/NBB, Ip < 1000	
77.	$fPp = B/B/NNB$, $AM \ge PL > AL$, $NDV = 78$, mastitarsala absent	
-	1 fPp = B/B/BBB or B/B/NbB, PL > AL > AM, NDV > 90, mastitarsala present	
78.	fPp = B/B/BBB	
-	fPp = B/B/NbB	
		~ /

FIGURE 3. Body of trombiculid larva, ventral aspect. 1, coxa I; 2, Claparède's organ (urstigma); 3, coxa II; 4, coxal seta; 5, coxa III; 6, preanal ventral idiosomal setae; 7, excretory pore (anus); 8, postanal ventral idiosomal setae; 9, posterior sternal seta; 10, anterior sternal setae.

FIGURE 4. Measurements of scutum.

Systematics

Family Trombiculidae Ewing, 1944

Subfamily Apoloniinae Wharton, 1947

Womersia irani Vercammen-Grandjean, Rohde and Mesghali, 1970

Womersia irani Vercammen-Grandjean, Rohde and Mesghali, 1970: 776 (material), 784 (description), figs 20-21.

Diagnosis. SIF = 5B-N-3-1000.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2 (6.4); fSc: AM > PL ≥ AL; fD = 2H-18-12-10-10-12-10-14-14-14-14-12-14-12-10-8-6-4-2; DS = 226; VS = 266; NDV = 492; Ip = 602; eyes 2 + 2; scutum with apically tetralobate nasus, 1 AM seta and 2 AL setae; PLs off scutum; flagelliform sensilla ciliated in proximal half and branched in distal half; parasubterminala and pretarsala II absent; microgenuala I present. Measurements of holotype (Vercammen-Grandjean *et al.* 1970): AW 18, SB 12, ASB 20, PSB 16, SD 36, AM 26, AL 17, PL 18, S 59, H 33, D_{min} 16, D_{max} 21, V_{min} 15, V_{max} 23, pa 218, pm 190, pp 194, Ip 602.

Type material examined. Holotype larva (IUMS) from *Neophron percnopterus*, Bandar Abbas, 20 February 1967, coll. C.J. Rohde.

Host. Neophron percnopterus.

Distribution. Iran (Bandar Abbas).

Remarks. Described from a single specimen.

Subfamily Gahrliepiinae Womersley, 1952

Schoengastiella irani Wen and Saboori, 2004

Diagnosis. SIF = 5B-N-3-2110.0000; fPp = N/N/NNN; fsp = 7.6.6; fCx = 1.1.2; fSt = 2.2; fSc: AL = PL > PPL; fD = 2H-6-6-6-4-2-(3); DS = 28–31; VS = 45–47; NDV = 73–78; Ip = 639–672; eyes absent; sensilla lanceolate; f_1 posterior to S_1 ; f_2 near and slightly anterior to S_2 . Measurements of holotype and paratype (Wen & Saboori 2004): AW 50, 48, PW 74, 75, SB 47, 48, ASB 20, 20, PSB 84, 93, SD 104, 113, AP 38, 48, AL 34, 38, PL 33, 38, PPL 30, 33, S 43, 41, H 43, 40, D_{min} 24, 28, D_{max} 35, 38, V_{min} 17, 20, V_{max} 27, 28, pa 218, 230, pm 198, 213, pp 223, 228, Ip 639, 672.

Type material examined. Holotype larva (Jalal Afshar Zoological Museum, Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran) from *Rattus* sp., Ahvaz, 20 October 1998, coll. A. Nemati

Host. Rattus sp.

Distribution. Iran (Ahvaz).

Walchia cognata Schluger and Amanguliev, 1975 (Fig. 5)

Walchia cognata Schluger and Amanguliev, 1975: 463, figs. 1–4. *Walchia (Walchia) cognata*: Kudryashova 1998: 316, fig. 276; Stekolnikov & Daniel 2012: 94, fig. 66. *Walchia valskayae* Kudryashova, 1976b: 1100, figs. 1–7; Kudryashova *et al.* 1978: 167, fig. 27.

Diagnosis. SIF = 4B-N-3-2000.0000; fPp = N/N/NNN; fsp = 7.6.6; fCx = 1.1.1; fSt = 2.2; fSc: AL ≥ PL; fD = 2H-6-8-9(6)-6-4-4-2-2; DS = 40–50; VS = 37–51; NDV = 80–95; Ip = 542–614; cheliceral blade distally with small ventrolateral tooth and one large dorsal hook; eyes 2 + 2; f_1 at level of S_1 ; f_2 at level or slightly anterior to S_2 . Measurements of *Walchia valskayae* paratypes (Kudryashova 1998): AW 42–45, PW 53–59, SB 36–39, ASB 18–22, PSB 34–39, SD 53–59, AP 31–36, AL 22–28, PL 22–28, H 22–28, D_{min} 17, D_{max} 28, V_{min} 14, V_{max} 22, pa 190–204, pm 162–174, pp 190–207. Measurements of *Walchia valskayae* holotype: AW 50, PW 59, SB 41, ASB 20, PSB –, SD –, P-PL –, AP 32, AL 29, PL 25, H 27, D_{min} 22, D_{max} 25, pa 185, pm 158, pp 196, Ip 539, TaIIIL 50, TaIIIW 16.

Type material examined. Holotype of *Walchia cognata*, larva (ZMMU Tdt-2360, K-6 (884)) from *Cricetulus migratorius*, Turkmenistan, Western Kopetdagh, near Kara-Kala, Ay-Dere gorge (38° 29' N, 56° 26' E), 26 September 1965, coll. A.A. Amanguliev. Holotype of *Walchia valskayae*, larva (ZMMU Tdt-719, I-314-2946) from *Meriones persicus*, Ajami, 1780 m a.s.l., 14 August 1970, coll. V.M. Neronov.

Hosts. Apodemus sylvaticus, Cricetulus migratorius, Crocidura russula, Meriones persicus, Mus musculus, Microtus socialis.

Distribution. Turkmenistan, Turkey, Iran (Ajami, Abhar, Mahdishahr, Maku, Urmia).

Walchia irani Vercammen-Grandjean, Rohde and Mesghali, 1970

Walchia (Ripiaspichia) irani Vercammen-Grandjean, Rohde and Mesghali, 1970: 776 (material), 783 (description), fig. 18.

Diagnosis. SIF = 5B-N-3-2110.0000; fPp = N/N/NNN; fsp = 7.6.6; fCx = 1.1.2; fSt = 2.2; fSc: PL > AL; fD = 2H-6-6-6-6-2-2; DS = 30; VS = 34; NDV = 64; Ip = 670; eyes absent; f_1 posterior to S_1 ; f_2 posterior to S_2 . Measurements of holotype (Vercammen-Grandjean *et al.* 1970): AW 46, PW 57, SB 38, ASB 20, PSB 49, SD 69, AP 36, AL 32, PL 38, D_{min} 27, D_{max} 42, V_{min} 22, V_{max} 30, pa 230, pm 206, pp 234, Ip 670.

Type material examined. Holotype larva (IUMS) from *Meriones persicus*, Tehran, 3 October 1966, coll. C.J. Rohde.

Host. Meriones persicus.

Distribution. Iran (Tehran).

Remarks. Described from a single specimen.

FIGURE 5. Walchia cognata, scutum.

Walchia montana Kudryashova, 1976

Walchia montana Kudryashova, 1976b: 1100, fig. 8; Kudryashova et al. 1978: 169.

Diagnosis. SIF = 4B-N-3-2000.0000; fPp = N/N/NNN; fsp = 7.6.6; fCx = 1.1.1; fSt = 2.2; fSc: PL ≥ AL; fD = 2H-6-8-10-8-6-4; DS = 44–47; VS = 41–48; NDV = 88–92; Ip = 638–647; eyes 2 + 2; f_1 at level of S_1 ; f_2 at level or slightly anterior to S_2 . Measurements of holotype and paratype (Kudryashova *et al.* 1978): AW 45, 45, PW 59, 59, SB 35, 39, ASB 20, 21, PSB 45, 41, SD 65, 62, AP 36, 34, AL 28, 34, PL 31, 34, S 31x14, −, H 36, 34, D_{min} 25, 28, D_{max} 34, 31, V_{min} 14, 17, V_{max} 25, 28, pa 227, 221, pm 188, 190, pp 232, 227. Measurements of holotype: AW 43, PW 57, SB 33, ASB 20, PSB 41, SD 61, P-PL 23, AP 37, AL 25, PL 27, H 34, D_{min} 23, D_{max} 26, V_{min} 14, V_{max} 22, pa 203, pm 160, pp 196, Ip 559, TaIIIL 56, TaIIIW 16.

Type material examined. Holotype larva (ZMMU Tdt-714, I-325-3053) from *Meriones persicus*, Maku, 1000 m a.s.l., 20 August 1970, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Maku, Urmia).

Walchia schelkovnikovi Kudryashova, 1976

Walchia schelkovnikovi Kudryashova, 1976b: 1102, fig. 9; Kudryashova et al. 1978: 169.

Diagnosis. SIF = 4B-N-3-2000.0000; fPp = N/N/NbN; fsp = 7.6.6; fCx = 1.1.1; fSt = 2.2; fSc: AL \geq PL; fD = 2H-8-11-11-9-6-1-4-2; DS = 50–54; VS = 42–48; NDV = 93–102; Ip = 557–580; eyes 2 + 2; f_1 at level of S_1 ; f_2 at level of S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 48–53, PW 59–64, SB 39–42, ASB 20, PSB 36–

42, SD 56–62, AP 28, AL 25–28, PL 25–28, S 31x11, H 25–28, D_{\min} 20, D_{\max} 25–28, V_{\min} 14, V_{\max} 22, pa 193–204, pm 168–174, pp 193–202. Measurements of holotype: AW 49, PW 59, SB 38, ASB 18, PSB 42, SD 60, P-PL 31, AP 28, AL 24, PL 25, H 25, D_{\min} 26, D_{\max} 34, pa 193, pm 153, pp 189, Ip 535, TaIIIL 48, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-716, I-327-2821) from *Meriones persicus*, Abhar, 1750 m a.s.l., 8 August 1970, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Abhar).

Subfamily Leeuwenhoekiinae Womersley, 1944

Multisetosa persicus (Vercammen-Grandjean, Rohde and Mesghali, 1970) (Fig. 6)

Sasacarus (Multisetosa) persicus Vercammen-Grandjean, Rohde and Mesghali, 1970: 776 (material), 783 (description), fig. 19; Kudryashova et al. 1976: 62, fig. 5.

Multisetosa persicus: Kudryashova 1990: 60.

Diagnosis. SIF = 7B-B-3-2111.0000; fPp = B/B/BBB; fsp = 6.6.6; fCx = 2.1.1; fSt = 0.2; fSc: AM > PL > AL; fD = 6H-26-24-18-14-14-12-12-12-10-8-6-4-2; DS = 156; VS = 76; NDV = 244; about 5 PPL and 5 scuto-ocular setae; Ip = 840–874; cheliceral blade with 3 dorsal and 6 ventral teeth; eyes 2 + 2; tracheae and stigmata present; scutum with nasus; flagelliform sensilla with small cilia in proximal half and branches in distal half; parasubterminala branched; f_1 anterior to S_1 ; f_2 near S_2 ; onychotriches present. Measurements of 4 type specimens (Vercammen-Grandjean *et al.* 1970): AW 60–66, PW 68–76, SB 24–25, ASB 30–33, PSB 20–22, SD 52–54, AP 9–12, AM 44–47, AL 30–34, PL 36–39, S 94–102, H 41–44, D_{min} 35–41, D_{max} 48–50, V_{min} 31–35, V_{max} 45–46, pa 290–303, pm 256–268, pp 294–307, Ip 840–874, AA 7, NL 16, NW 7.

Type material examined. Holotype larva (IUMS) from *Meriones persicus*, Tehran, 3 October 1966, coll. C.J. Rohde.

Hosts. Spermophilus fulvus, Cricetulus migratorius, Meriones persicus.

Distribution. Iran (Abhar, Delijan, Kerman, Maku, Mashhad, Tehran).

Odontacarus apricus Kudryashova, 1976

Odontacarus apricus Kudryashova, 1976 in: Kudryashova et al. 1976: 55, figs. 1, 3 (1–3); Kudryashova 1994: 37, fig. 13; 1998: 51, fig. 18.

Diagnosis. SIF = 7B-B-3-1001.1100; fPp = B/B/BBB; fsp = 6.6.6; fCx = 2.1.l; fSt = 0.2; fSc: AM ≥ PL > AL; fD = 2H-9(10)-11(12)-13-13(14)-10-4-2-2; DS = 75–95; VS = 66–77; 8–12 humeroventral setae between coxae I and II; NDV = 141–161; Ip = 1016–1087; eyes 2 + 2; tracheae and stigmata present; scutum with nasus; cheliceral blade with rows of dorsal and ventral teeth; onychotriches present; parasubterminala branched; f_1 at level or posterior to S_1 ; f_2 anterior to S_2 . Measurements of type series (Kudryashova 1998): AW 60–67, PW 78–87, SB 27–31, ASB 32–36, PSB 24–28, SD 56–62, AP 28–31, AM 39–48, AL 34–36, PL 39–42, S 76–87, H 48–56, D_{min} 28, D_{max} 48, V_{min} 28, V_{max} 42, pa 347–384, pm 308–322, pp 358–384, AA 10–11. Measurements of holotype: AW 62, PW 79, SB 31, ASB 32, PSB 27, SD 59, P-PL 22, AP 31, AM 45, AL 32, PL 39, H 50, D_{min} 28, D_{max} 43, V_{min} 25, V_{max} 40, pa 376, pm 308, pp 365, Ip 1049, TaIIIL 95, TaIIIW 20.

Type material examined. Holotype larva (ZMMU Tdt-430, I-440-4489-90) from *Meriones persicus*, Kerman, 2220 m a.s.l., 7 December 1970, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Kerman).

FIGURE 6. Multisetosa persicus, scutum.

Odontacarus dignus Kudryashova, 1976

Odontacarus dignus Kudryashova, 1976 in: Kudryashova *et al.* 1976: 57, figs. 2, 3 (4–6); Kudryashova 1994: 34, fig. 12; 1998: 52, fig. 19.

Diagnosis. SIF = 7B-B-3-1001.1100; fPp = B/B/BBB; fsp = 6.6.6; fCx = 2.1.l; fSt = 0.2; fSc: AM ≥ AL > PL; fD = 2H-[12-10-8]-14-2-14-14-10-9-6-11; DS = 108–128; VS = 80–96; 12–15 humeroventral setae between coxae I and II; NDV = 191–220; Ip = 1145–1184; eyes 2 + 2; tracheae and stigmata present; scutum with nasus; cheliceral blade with rows of dorsal and ventral teeth; onychotriches present; parasubterminala branched; f_1 slightly anterior to S_1 ; f_2 at level or slightly posterior to S_2 . Measurements of type series (Kudryashova 1998): AW 62–70, PW 78–84, SB 25–28, ASB 34–38, PSB 25–28, SD 62–64, AP 28–34, AM 50–56, AL 45–50, PL 36–45, S 98, H 42–62, D_{min} 28, D_{max} 50, V_{min} 22, V_{max} 45, pa 384–406, pm 342–358, pp 412–423, AA 10–11. Measurements of holotype: AW 65, PW 79, SB 25, ASB 39, PSB 31, SD 70, P-PL 27, AP 27, AM 53, AL 45, PL 38, H 57, D_{min} 27, D_{max} 49, V_{max} 38, pa 407, pm 346, pp 412, Ip 1165, TaIIIL 119, TaIIIW 23, NL 22, NW 9, AA 12.

Type material examined. Holotype larva (ZMMU Tdt-445, I-451-1777) from *Meriones persicus*, Delijan, 1600 m a.s.l., 14 October 1969, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Delijan, Zarrin Shahr).

Odontacarus efferus Kudryashova, 1976

(Fig. 7)

Odontacarus efferus Kudryashova, 1976 in: Kudryashova et al. 1976: 60, fig. 4; Kudryashova 1994: 16, fig. 5; 1998: 44, fig. 11.

Diagnosis. SIF = 7B-B-2-2111.0000; fPp = B/B/BBB; fsp = 6.6.6; fCx = 2.1.1; fSt = 0.2; fSc: PL > AM > AL; fD = 2H-(8–12)-(10–13)-(10–14)-(12–15)-(10–14)-(8–11)-6(8)-4(2)-4-(3–5); DS = 74–85; VS = 54–64; NDV = 128–141; Ip = 812–882; eyes 2 + 2; tracheae and stigmata present; scutum with nasus; cheliceral blade with rows of dorsal and ventral teeth; parasubterminala branched; f_1 anterior to S_1 ; f_2 at level of S_2 . Measurements of type series (Kudryashova *et al.* 1976): AW 70–76, PW 87–92, SB 34–36, ASB 28–36, PSB 20–22, SD 50–59, AP 22–25, AM 42–48, AL 34–39, PL 50–56, S 84–90, H 56–59, D_{min} 28, D_{max} 45, V_{min} 20, V_{max} 42, pa 277–302, pm 249–274, pp 286–308, AA 11. Measurements of holotype: AW 74, PW 87, SB 34, ASB 29, PSB 20, SD 49, P-PL 25, AP 22, AM 45, AL 34, PL 54, H 52, D_{min} 27, D_{max} 43, V_{min} 23, V_{max} 34, pa 292, pm 245, pp 275, Ip 812, TaIIIL 72, TaIIIW 20, NL 13, NW 7, AA 13.

Type material examined. Holotype larva (ZMMU Tdt-289, I-462-3318) from *Nesokia indica*, Shushtar, 250 m a.s.l., 9 September 1970, coll. V.M. Neronov.

Hosts. Nesokia indica, Tatera indica.

Distribution. Iran (Chahar Taq, Shushtar).

FIGURE 7. Odontacarus efferus, scutum.

Odontacarus khanjanii Goff and Saboori, 1998

Odontacarus khanjanii Goff and Saboori, 1998: 857, fig. 1.

Diagnosis. SIF = 7B-B-4-2001.1000; fPp = B/B/BNB; fsp = 6.6.6; fCx = 2.1.1; fSt = 0.2; fSc: AM \geq AL > PL; fD = 4H-12-10-8-16; DS = 50; VS = 26; 6 humeroventral setae between coxae I and II; NDV = 82; Ip = 792; eyes 2 + 2; tracheae and stigmata present; scutum with nasus; cheliceral blade with row of 7 dorsal teeth; onychotriches present; parasubterminala branched; f_1 posterior to S_1 ; f_2 at level of S_2 . Measurements of holotype (Goff & Saboori 1998): AA 7, AW 50, PW 65, SB 25, ASB 24, PSB 17, AP 19, AM 27, AL 27, PL 35, S 62, H 34–40, D_{min} 23, D_{max} 27, V_{min} 17, V_{max} 28, pa 280, pm 248, pp 264.

Type data. Holotype larva (USNM), collected free on *Medicago sativa*, Asadabad, 1800 m a.s.l., 15 July 1992, coll. M. Khanjani.

FIGURE 8. Euschoengastia meshhedensis, scutum (sensilla lost).

Subfamily Trombiculinae Ewing, 1929

Tribe Schoengastiini Vercammen-Grandjean, 1960

Brunehaldia iranica (Kudryashova, Neronov and Farang-Azad, 1978)

Euschoengastia (Brunehaldia) iranica Kudryashova, Neronov and Farang-Azad, 1978: 142, figs. 17 (2–5), 18 (7–8). *Brunehaldia iranica*: Kudryashova 1998: 292, fig. 252; Stekolnikov & Daniel 2012: 77.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL > AL > AM; DS = 89–106; VS = 60–83; NDV = 152–176; Ip = 767–835; eyes absent; pST with 1–2 branches; f_1 anterior to S_1 ; f_2 near or slightly posterior to S_2 . Measurements of type series (Kudryashova 1998): AW 62–70, PW 70–81, SB 25–28, ASB 25–31, PSB 14–20, SD 42–48, AP 14, AM 31–34, AL 42–48, PL 56–67, D_{min} 34–39, D_{max} 45–53, V_{min} 20–28, V_{max} 36–42, pa 263–288, pm 238–255, pp 266–297. Measurements of holotype: AW 65, PW 71, SB 23, ASB 30, PSB 18, SD 48, P-PL 30, AP 15, AM 31, AL 36, PL 52, H 41, D_{min} 32, D_{max} 41, V_{min} 22, V_{max} 37, pa 254, pm 230, pp 254, Ip 738, TalIIL 61, TalIIW 16.

Type material examined. Holotype larva (ZMMU Tdt-613, I-296-3044) from *Meriones persicus*, Maku, 1000 m a.s.l., 20 August 1970, coll. V.M. Neronov.

Hosts. Allactaga williamsi, Apodemus agrarius, Apodemus sylvaticus, Cricetulus migratorius, Meriones persicus.

Distribution. Iran (Abhar, Delijan, Maku), Russia (south of Stavropolsky Krai, North Ossetia).

FIGURE 9. Schoutedenichia anatolica, scutum.

Brunehaldia schmuteri (Schluger, 1966)

Euschoengastia (Brunehaldia) schmuteri Schluger, 1966: 212, fig. 4.
Brunehaldia schmuteri, Kudryashova 1998: 295, fig. 255.
Euschoengastia (Brunehaldia) zahedanica Kudryashova et al., 1978: 146, figs. 17 (1), 18 (5, 6), 19 (4–6).

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.3(4); fSt = 2.2; fSc: PL > AL > AM; DS = 100–115; VS = 70–92; NDV = 179–205; Ip = 807–898; eyes absent; pST nude; f_1 anterior to S_1 ; f_2 near S_2 . Measurements of two paratypes of *Euschoengastia (Brunehaldia) zahedanica*: AW 71, 69, PW 77, 78, SB 20, 29, ASB 32, 27, PSB 20, 18, SD 52, 45, P-PL 32, 30, AP 16, 14, AM 35, 28, AL 43, 37, PL 62, 57, H 46, 45, D_{min} 34, 33, D_{max} 47, 43, V_{min} 25, 23, V_{max} 43, 38, pa 261, 247, pm 236, 221, pp 274, 256, Ip 771, 724, TaIIIL 72, 63, TaIIIW 17, 20.

Type material examined. Holotype of *Euschoengastia (Brunehaldia) zahedanica* larva (ZMMU Tdt-634, I-293-4149; crystallized, not suitable for measuring) from *Meriones libycus*, Zahedan, 1525 m a.s.l., 6 November 1970, coll. V.M. Neronov; two paratype larvae (ZMMU Tdt-636, I-295-4149; Tdt-635, I-294-4149) with the same data as holotype.

Hosts. Cricetulus migratorius, Meriones libycus, M. meridianus, M. tamariscinus, Rhombomys opimus. **Distribution.** Uzbekistan, Turkmenistan, Kazakhstan, Azerbaijan, Russia (Samara Region), Iran (Zahedan).

Brunehaldia silvatica (Kudryashova, Neronov and Farang-Azad, 1978) (Fig. 11)

Euschoengastia (Brunehaldia) silvatica Kudryashova, Neronov and Farang-Azad, 1978: 145, figs. 18 (1–4), 19 (1–3). *Brunehaldia silvatica*: Kudryashova 1998: 294, fig. 254.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL > AL > AM; DS = 108–129; VS = 80–104; NDV = 196–225; Ip = 851–914; eyes absent; pST with 1 branch; f_1 anterior to S_1 ; f_2 slightly anterior to S_2 . Measurements of type series (Kudryashova 1998): AW 70–81, PW 81–90, SB 31–34, ASB 31–33, PSB 15–19, SD 48–50, AP 14–17, AM 39–42, AL 42–50, PL 56–62, D_{min} 36, D_{max} 59, V_{min} 22, V_{max} 42, pa 291–314, pm 263–286, pp 288–314. Measurements of holotype: AW 77, PW 86, SB 36, ASB 30, PSB 20, SD 50,

P-PL 32, AP 17, AM 38, AL 45, PL 58, H 53, D_{min} 43, D_{max} 58, V_{min} 25, V_{max} 43, pa 292, pm 268, pp 290, Ip 850, Tallil 74, Tallil 20.

Type material examined. Holotype larva (ZMMU Tdt-645, I-282-3850) from *Apodemus sylvaticus*, Mashhad 2, 1100 m a.s.l., 15 October 1970, coll. V.M. Neronov.

Host. Apodemus sylvaticus.

Distribution. Iran (Mashhad 2).

Cheladonta brevipalpis ghazvini Vercammen-Grandjean, Rohde and Mesghali, 1970

Cheladonta brevipalpis ghazvini Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 782 (description), fig. 15.

Diagnosis. SIF = 4B-N-6-2110.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 4H-10-8-8-2-6-2-2; DS = 42; VS = 34; NDV = 76; Ip = 645; eyes 1 + 1; f_1 posterior to S_1 ; f_2 near S_2 . Measurements of 13 type specimens (Vercammen-Grandjean *et al.* 1970): AW 46–53, PW 59–65, SB 18–20, ASB 20–23, PSB 13–15, SD 33–38, AP 22–26, AM 26–28, AL 21–24, PL 37–41, H 39–42, D_{min} 29–33, D_{max} 36–42, V_{min} 22–26, V_{max} 33–36, pa 230–248, pm 186–194, pp 202–216, Ip 625–654.

Type material examined. Holotype larva (IUMS) from *Meriones persicus*, Qazvin, 1 May 1967, coll. C.J. Rohde.

Hosts. Meriones persicus, Rhombomys opimus.

Distribution. Iran (Qazvin, Isfahan).

Cheladonta firdousii Kudryashova, Neronov and Farang-Azad, 1978 (Fig. 10)

Cheladonta (Cheladonta) firdousii Kudryashova, Neronov and Farang-Azad, 1978: 154, fig. 22.

Diagnosis. SIF = 4B-N-3-2110.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 4H-10-8-9-2-4-4; DS = 41; VS = 35; NDV = 76; Ip = 734; eyes 1 + 1; f_1 posterior to S_1 ; f_2 near S_2 . Measurements of holotype: AW 60, PW 70, SB 23, ASB 23, PSB 21, SD 44, P-PL 14, AP 29, AM 24, AL 18, PL 35, H 36, D_{min} 29, D_{max} 38, V_{min} 20, V_{max} 35, pa 252, pm 200, pp 232, Ip 684, TaIIIL 63, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-268, I-16-1809) from *Meriones persicus*, Delijan, 1600 m a.s.l., stony slopes of mountains, 14 October 1969, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Delijan).

Remarks. Described from a single specimen.

Cheladonta iraniensis Vercammen-Grandjean, Rohde and Mesghali, 1970

Cheladonta iraniensis Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 782 (description), fig. 16.

Diagnosis. SIF = 4B-B-7-2110.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 4H-10-8-8-2-4-4; DS = 40; VS = 34; NDV = 74; Ip = 644; eyes 1 + 1; f_1 at level of S_1 ; f_2 at level of S_2 . Measurements of holotype (Vercammen-Grandjean *et al.* 1970): AW 52, PW 72, SB 22, ASB 21, PSB 14, SD 35, AP 21, AM 29, AL 26, PL 43, H 46, D_{min} 36, D_{max} 38, V_{min} 20, V_{max} 40, pa 228, pm 192, pp 222, Ip 642.

Type material examined. Holotype larva (IUMS) from *Meriones persicus*, Qazvin, 3 October 1966, coll. C.J. Rohde.

Host. Meriones persicus.

Distribution. Iran (Qazvin).

FIGURE 10. Cheladonta firdousii, scutum.

FIGURE 11. Brunehaldia silvatica, scutum.

Cheladonta serrata Kudryashova, Neronov and Farang-Azad, 1978

Cheladonta (Susa) serrata Kudryashova, Neronov and Farang-Azad, 1978: 156, fig. 23.

Diagnosis. SIF = 4B-B-3-2000.0000; fPp = B/B/bbB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 4H-6-4-8-6-8-4-7-2-8-3-4-6; DS = 58–74; VS = 50–62; NDV = 112–131; Ip = 663–698; eyes 2 + 2; f_1 anterior to S_1 ; f_2 anterior to S_2 ; $S_2 > S_1$. Measurements of type series (Kudryashova *et al.* 1978): AW 42–46, PW 56–64, SB

17–21, ASB 17–20, PSB 14–18, SD 34–37, AP 28–31, AM 22–28, AL 20–22, PL 34–36, H 31–36, D_{min} 17, D_{max} 34, V_{min} 14, V_{max} 28, pa 246–260, pm 190–207, pp 221–238. Measurements of holotype: AW 42, PW 61, SB 18, ASB 18, PSB 16, SD 34, P-PL 5, AP 30, AM 25, AL 20, PL 32, S 30, H 31, D_{min} 19, D_{max} 30, V_{min} 17, V_{max} 26, pa 232, pm 187, pp 212, Ip 631, TaIIIL 58, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-251, I-13-2446) from *Meriones persicus*, Chahar Taq, 1130 m a.s.l., stony slopes of mountains and thickets of tamarisk along the river, 27 November 1969, coll. V.M. Neronov.

Hosts. Meriones persicus and Nesokia indica.

Distribution. Iran (Chahar Taq, Kerman, Zahedan).

Doloisia iranensis Goff, 1983

Doloisia iranensis Goff, 1983: 670, fig. 1.

Diagnosis. SIF = 4B-N-3-2110.3200; fPp = B/B/NN(f)B; fsp = 7.7.7; fCx = 1.3.10; fSt = 2.2; fSc: PL > AM > AL; fD = 4H-6-4-10-6-6-2-2; DS = 40; VS = 34; NDV = 74; Ip = 572; cheliceral blade with accessory dorsal subapical tooth; eyes 1 + 1; PLs extrascutal, ALs spiniform, nude; sensilla capitate; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of holotype (Goff 1983): AW 15, SB 22, ASB 19, PSB 12, SD 31, AM 29, AL 16, PL 33, H 33–52, D_{min} 21, D_{max} 27, V_{min} 21, V_{max} 28, pa 192, pm 169, pp 211, Ip 572, TaIIIL 53, TaIIIW 14.

Type data. Holotype larva (USNM) from *Cricetulus migratorius*, Khorramabad, 1 May 1964, coll. R.G. Tuck. **Host.** *Cricetulus migratorius*.

Distribution. Iran (Khorramabad).

Remarks. Described from a single specimen.

Euschoengastia meshhedensis Kudryashova, Neronov and Farang-Azad, 1978 (Fig. 8)

Euschoengastia (Euschoengastia) meshhedensis Kudryashova, Neronov and Farang-Azad, 1978: 140, fig. 16. *Euschoengastia meshhedensis*: Daniel *et al.*, 2010: 1229, fig. 12.

Diagnosis. SIF = 7B-B-7-2110.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 2H-12-13-10-4-4-3; DS = 48–59; VS = 44–52; NDV = 92–104; Ip = 868–898; eyes 2 + 2; f_1 anterior to S_1 ; f_2 near S_2 ; $S_2 > S_1$. Measurements of type series (Kudryashova *et al.* 1978): AW 64–76, PW 98–109, SB 34–38, ASB 28–31, PSB 11, SD 39–42, AP 20–22, AM 31–34, AL 31–34, PL 64–70, S 39–42x14, H 76–84, D_{min} 42, D_{max} 73, V_{min} 31, V_{max} 62, pa 300–308, pm 266–274, pp 300–316. Measurements of holotype: AW 73, PW 101, SB 34, ASB 26, PSB 12, SD 38, P-PL 22, AP 20, AM 32, AL 32, PL 67, H 76, D_{min} 53, D_{max} 72, V_{min} 36, V_{max} 61, pa 288, pm 261, pp 295, Ip 844, TaIIIL 77, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-637, I-307-3891-92) from *Meriones persicus*, Mashhad 2, 1100 m a.s.l., 15 October 1970, coll. V.M. Neronov.

 $\textbf{Hosts.}\ A podemus\ \text{sp.}, Mus\ musculus,\ Meriones\ persicus,\ Alticola\ roylei,\ Cricetulus\ migratorius.$

Distribution. Iran (Mashhad), Afghanistan.

Helenicula amicula Nadchatram and Traub, 1971 (Fig. 12)

Helenicula amicula Nadchatram and Traub, 1971: 587, figs. 86–93; Kudryashova et al. 1978: 161.

Diagnosis. SIF = 5B-N-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.2; fSt = 2.2; fSc: AL > PL > AM; DS = 67–74; VS = 50–62; NDV = 121–136; 14–19 ventrohumeral setae between coxae II and III; Ip = 921–982; eyes

2 + 2; S_1 apical, at level of ST; f_1 posterior to S_1 ; tibialae I apical; f_2 anterior to S_2 . Measurements of 10 type specimens (Nadchatram & Traub 1971): AW 54–62, PW 74–80, SB 10–13, ASB 30–31, PSB 19–22, SD 49–53, AP 34–38, AM 37–45, AL 60–70, PL 50–58, S 34, H 40–45, D_{min} 28, D_{max} 55, V_{min} 25, V_{max} 42, pa 300–330, pm 260, pp 305–325, Ip 865–910, TaIIIL 78–86, TaIIIW 15–18.

Type data. Holotype larva (USNM 9498, B 72289-5) from *Hystrix* sp., Sar Bisheh, 11 November 1964, coll. R.G. Tuck.

Hosts. Hystrix sp., Meriones sp., Calomyscus sp.

Distribution. Iran (Delijan, Masjed Soleyman, Sar Bisheh).

FIGURE 12. Helenicula amicula, scutum.

Helenicula goodorziani Kudryashova, 1973

Helenicula goodorziani Kudryashova, 1973 in: Kudryashova et al. 1973b: 1725, fig.; Kudryashova et al. 1978: 158; Kudryashova 1998: 276.

Diagnosis. SIF = 5B-B-3-1111.0000; fPp = B/B/BNB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.4; fSc: AL > PL > AM; fD = 4H-8-8-4-8-4-6-6-8-4-12-6; DS = 72–95; VS = 55–71; NDV = 134–163; Ip = 793–862; eyes 2 + 2; S₁ apical, at level of ST; f₁ posterior to S₁; tibialae I apical; f₂ anterior to S₂; S₂ > S₁. Measurements of type series (Kudryashova *et al.* 1978): AW 56–61, PW 69–78, SB 8–11, ASB 28–31, PSB 14–17, SD 42–45, AP 19–25, AM 30–36, AL 42–50, PL 39–45, S 25, H 36–45, D_{min} 19, D_{max} 36, V_{min} 17, V_{max} 33, pa 281–308, pm 231–258, pp 281–300. Measurements of holotype: AW 58, PW 72, SB 10, ASB 29, PSB 18, SD 47, P-PL 23, AP 23, AM 34, AL 42, PL 41, H 42, D_{min} 25, D_{max} 38, V_{min} 19, V_{max} 32, pa 288, pm 254, pp 288, Ip 830, TalIIL 76, TalIIW 18.

Type material examined. Holotype larva (ZMMU Tdt-205, I-108-1865) from *Meriones persicus*, Delijan, Anarbar valley, 1600 m a.s.l., 14 October 1969, coll. V.M. Neronov.

Hosts. Meriones persicus, Chionomys sp.

Distribution. Iran (Delijan, Kerman, Mashhad 2).

Helenicula kohlsi (Philip and Woodward, 1946)

Neoschoengastia kohlsi Philip and Woodward, 1946: 159.

Helenicula kohlsi, Nadchatram and Traub 1971: 573, figs 32-39; Fernandes & Kulkarni 2003: 356, fig. 117.

Diagnosis. SIF = 4B-B-3-1111.0000; fPp = B/B/b(N)b(N)B; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: AL > PL > AM; DS = 62–90; NDV= 110–160; Ip = 580–640; eyes 2 + 2; S₁ apical, at level of ST; f₁ posterior to S₁; tibialae I apical; f₂ posterior to S₂. Measurements (Nadchatram & Traub 1971): AW 48–56, PW 63–73, SB 9–12, ASB 24–30, PSB 9–16, SD 46, AP 19–24, AM 23–32, AL 45–60, PL 34–42, H 35–38, D_{min} 26, D_{max} 31, V_{min} 20, V_{max} 26, pa 220–230, pm 190, pp 220, Ip 580–640, TaIIIL 60, TaIIIW 16.

Type data. Holotype larva (USNM) from *Rattus mindanensis mindanensis*, Philippines, Mindoro, San Jose, 2 April 1945.

Hosts. Many species of rodents, occasionally birds (Nadchatram & Traub 1971).

Distribution. Philippines, Vietnam, Thailand, China, Nepal, India, Iran (Chamm ol Hamid).

Helenicula lukshumiae Nadchatram and Traub, 1971

Helenicula lukshumiae Nadchatram and Traub, 1971: 581, figs. 63–70; Kudryashova et al. 1978: 162; Kudryashova 1998: 273, fig. 233.

Helenicula lanius caspica Muljarskaja, 1971: 1188, fig. 4.

Diagnosis. SIF = 5B-N-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.2; fSt = 2.2; fSc: AL > PL > AM; DS = 55–60; VS = 41–50; NDV= 98–109; Ip = 795–848; eyes 2 + 2; S_1 apical, at level of ST; f_1 posterior to S_1 ; tibialae I apical; f_2 anterior to S_2 . Measurements of *H. lukshumiae* holotype (Nadchatram & Traub 1971): AW 52, PW 67, SB 11, ASB 26, PSB 13, SD 39, AP 22, AM –, AL 53, PL 50, S 28, H 30–35, D_{min} 20, D_{max} 30, V_{min} 20, V_{max} 30, pa 300, pm 240, pp 300, Ip 840, TaIIIL 85, TaIIIW 13.

Type data. Holotype of *Helenicula lukshumiae*, larva (USNM 9496, B59547-1) from *Calomyscus* sp., Ahmadabad, 18 November 1963, coll. H.W. Setzer.

Type material examined. Paratype of *Helenicula lanius caspica*, larva (ZMMU Tdt-2772, 676) from *Microtus arvalis*, Azerbaijan, Nagorno-Karabakh Autonomous Region, Shushinsky District, Bolshoy Kirs, 13 August 1966, coll. L.V. Muljarskaja.

Hosts. Calomyscus sp., Microtus arvalis, Meriones persicus, Meriones tristrami, Mus musculus.

Distribution. Azerbaijan, Iran (Abhar, Ahmadabad, Ajami, Behbahan, Chahar Taq, Mahdishahr).

Helenicula sparsa (Schluger, 1955)

Neoschoengastia sparsa Schluger, 1955: 204, figs. 228–330.

Helenicula sparsa: Nadchatram & Traub 1971: 589; Kudryashova *et al.* 1978: 159, fig. 24; Kudryashova 1998: 277, fig. 237. **Diagnosis.** SIF = 5B-N-3-2111.0000; fPp = B/B/BNB; fsp = 7.7.7; fCx = 1.2.4(5); fSt = 2.4(5); fSc: AL > PL > AM; DS = 108−115; VS = 72−85; NDV = 180−200; Ip = 947−987; eyes 2 + 2; S₁ apical, at level of ST; f₁ posterior to S₁; tibialae I apical; f₂ anterior to S₂. Measurements of specimens from Iran and Tadjikistan (Kudryashova 1998): AW 56−62, PW 69−75, SB 11−14, ASB 33−39, PSB 17−20, SD 50−56, AP 33−42, AM 33−39, AL 53−64, PL 45−56, H 40−53, D_{min} 20−25, D_{max} 36−45, V_{min} 20−25, V_{max} 31−45, pa 300−350, pm 258−295, pp 297−342. Measurements of one syntype (Nadchatram & Traub 1971): AW 57, PW 74, SB 14, ASB 37, PSB 19, SD 56, AP 34, AM 37, AL 70, PL 54, S 30, H 55, D_{min} 30, D_{max} 50, V_{min} 28, V_{max} 45, pa 340, pm 240, pp 305, Ip 885, TaIIIL 80, TaIIIW 15.

Type data. Syntypes (ZMMU), Tadjikistan, Kondara Gorge (38° 48' 52" N, 068° 47' 03" E).

Hosts. Apodemus sylvaticus, Cricetulus migratorius, Meriones persicus, M. libycus, Mus musculus, Rattus pyctoris, Rhombomys opimus. Type host is unknown.

Distribution. Tadjikistan, Kyrgyzstan, Turkmenistan, Iran (Chahar Taq, Delijan).

Neoschoengastia apicosolenidia Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Neoschoengastia) apicosolenidia Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 778 (description), fig. 6.

Diagnosis. SIF = 7BS-B-3-3111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-6-4-6-4-2; DS = 34; VS = 30; NDV = 64; Ip = 1186-1210; eyes 2 + 2; parasubterminala branched or absent; f_1 posterior to S_1 ; f_2 at level of apilcally slightly inflated S_2 ; onychotriches present. Measurements of holotype and paratype (Vercammen-Grandjean *et al.* 1970): AW 43, 42, PW 64, 63, SB 30, 30, ASB 18, 17, PSB 28, 26, SD 46, 43, AP 29, 31, AM 38, 42, AL 43, 46, PL 57, 57, H 48, 49, D_{min} 30, 30, D_{max} 42, 46, V_{min} 25, 32, V_{max} 33, 42, pa 436, 424, pm 332, 354, pp 418, 432, Ip 1186, 1210.

Type material examined. Holotype larva (IUMS) from *Passer hispaniolensis*, Kazerun, 1 November 1966, coll. C.J. Rohde.

Hosts. Oenanthe picata, Passer hispaniolensis.

Distribution. Iran (Kazerun).

Neoschoengastia elegans Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Neoschoengastia) elegans Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 778 (description), fig. 7.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-6-4-6-4-2; DS = 34; VS = 36; NDV = 70; Ip = 1478–1530; eyes 2 + 2; parasubterminala branched; f_1 anterior to S_1 ; f_2 posterior to apilcally slightly inflated S_2 . Measurements of 4 type specimens (Vercammen-Grandjean *et al.* 1970): AW 53–58, PW 72–78, SB 32–34, ASB 19–21, PSB 27–31, SD 47–50, AP 32–35, AM 42–50, AL 50–59, PL 70–84, S 32–33, H 60–68, D_{min} 39–41, D_{max} 60–66, V_{min} 33–37, V_{max} 45–46, pa 502–536, pm 448–454, pp 522–546, Ip 1478–1530.

Type material examined. Holotype larva (IUMS) from *Asellia tridens*, Kazerun, 30 October 1966, coll. C.J. Rohde.

Hosts. Asellia tridens, Oenanthe picata.

Distribution. Iran (Kazerun).

Neoschoengastia galerida Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Neoschoengastia) galerida Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 779 (description), fig. 8.

Diagnosis. SIF = 7BS-B-3-3111.0000; fPp = B/B/BNB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL ≥ AL > AM; fD = 2H-6-6-4-6-4-2; DS = 30; VS = 30; NDV = 60; Ip = 1286–1335; eyes 2 + 2; parasubterminala branched; f_1 anterior to S_1 ; f_2 posterior to apically slightly inflated S_2 . Measurements of 7 type specimens (Vercammen-Grandjean *et al.* 1970): AW 49–56, PW 73–81, SB 33–37, ASB 18–22, PSB 24–27, SD 42–49, AP 33–35, AM 40–45, AL 57–64, PL 60–62, S 32–34, H 53–59, D_{min} 33–39, D_{max} 47–56, V_{min} 30–34, V_{max} 39–44, pa 444–464, pm 382–395, pp 456–476, Ip 1286–1335.

Type material examined. Holotype larva (IUMS) from *Galerida cristata*, Kazerun, 27 October 1966, coll. C.J. Rohde.

Hosts. Coracias garrulus, Corvus cornix, Galerida cristata.

Distribution. Iran (Kazerun).

Neoschoengastia judysouthworthi Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Neoschoengastia) judysouthworthi Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 779 (description), fig. 9.

Diagnosis. SIF = 7BS-B-3-3111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL ≥ AL > AM; fD = 2H-6-6-4-6-4-2; DS = 30; VS = 30; NDV = 60; Ip = 1365; eyes 2 + 2; parasubterminala branched; f_1 anterior to S_1 ; f_2 posterior to apilcally slightly inflated S_2 ; onychotriches present Measurements of holotype (Vercammen-Grandjean *et al.* 1970): AW 51, PW 71, SB 35, ASB 21, PSB 28, SD 49, AP 33, AM 46, AL 54, PL 58, S 32, H 58, D_{min} 37, D_{max} 54, V_{min} 33, V_{max} 44, pa 480, pm 415, pp 470, Ip 1365.

Type material examined. Holotype larva (IUMS) from *Oenanthe picata*, Kazerun, 30 October 1966, coll. C.J. Rohde.

Host. *Oenanthe picata*.

Distribution. Iran (Kazerun).

Remarks. Described from a single specimen.

Neoschoengastia kaliophthalma Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Neoschoengastia) kaliophthalma Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 780 (description), fig. 10.

Diagnosis. SIF = 7BS-B-3-3111.0000; fPp = B/B/BbB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-8-6-6-8-4-4-2; DS = 40; VS = 40; NDV = 80; Ip = 1425; eyes 2 + 2; parasubterminal branched; f_1 anterior to S_1 ; f_2 at level of S_2 . Measurements of holotype and paratype (Vercammen-Grandjean *et al.* 1970): AW 57, 56, PW 82, 85, SB 38, 36, ASB 22, 23, PSB 28, 28, SD 50, 51, AP 36, 35, AM 54, 60, AL 64, 63, PL 76, 76, S 36, 36, H 66, 70, D_{min} 40, 36, D_{max} 66, 68, V_{min} 36, 37, V_{max} 54, 56, pa 508, 500, pm 432, 423, pp 500, 486, Ip 1440, 1409.

Type material examined. Holotype larva (IUMS) from *Oenanthe picata*, Mashhad, 10 May 1967, coll. C.J. Rohde.

Host. Oenanthe picata.

Distribution. Iran (Mashhad).

Neoschoengastia mesghali Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Megaschoengastia) mesghali Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 778 (description), fig. 5.

Diagnosis. SIF = 7BS-B-3-3111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.6; fSt = 2.4; fSc: PL ≥ AL > AM; fD = 10H-16-18-14-16-16-16-16-16-16-14-12-10-8-6-4; DS = 206; VS = 126; NDV = 332; Ip = 1208–1332; eyes 2 + 2; parasubterminala branched or absent; f_1 anterior to very long S_1 (51 μm); f_2 posterior to apilcally slightly inflated S_2 (25 μm). Measurements of 10 type specimens (Vercammen-Grandjean *et al.* 1970): AW 53–61, PW 74–83, SB 37–42, ASB 25–31, PSB 30–32, SD 55–62, AP 40–43, AM 38–45, AL 71–76, PL 73–81, H 49–53, D_{min} 38–43, D_{max} 44–50, V_{min} 36–39, V_{max} 52–58, pa 418–457, pm 388–408, pp 452–472, Ip 1208–1332.

Type material examined. Holotype larva (IUMS) from *Charadrius alexandrinus*, Bandar Abbas, 14 February 1967, coll. C.J. Rohde.

Host. Charadrius alexandrinus.

Distribution. Iran (Bandar Abbas).

Neoschoengastia meshedensis Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Hypogastia) meshedensis Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 780 (description) fig. 12; Kudryashova 1998: 305, fig. 265.

Diagnosis. SIF = 7B-B-3-3111.1000; fPp = B/B/NBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: AL > PL > AM; fD = 2H-10-8-6-6-6-4-2; DS = 44; VS = 34; NDV = 78; Ip = 774–780; eyes 2 + 2; parasubterminala branched; f_1 at level or slightly posterior to S_1 ; tibialae I apical; f_2 anterior to S_2 ; $S_2 > S_1$. Measurements of holotype and paratype (Vercammen-Grandjean *et al.* 1970): AW 52, 52, PW 64, 65, SB 40, 42, ASB 20, 21, PSB 29, 29, SD 49, 50, AP 32, 32, AM 42, 44, AL 52, 51, PL 46, 49, H 54, 52, D_{min} 26, 28, D_{max} 52, 52, V_{min} 28, 30, V_{max} 35, 35, pa 278, 272, pm 232, 232, pp 270, 270, Ip 780, 774.

Type material examined. Holotype larva (IUMS) from *Oenanthe hispanica*, Mashhad, 9 May 1967, coll. C.J. Rohde.

Host. Oenanthe hispanica.

Distribution. Iran (Mashhad).

Neoschoengastia picata Vercammen-Grandjean, Rohde and Mesghali, 1970

Neoschoengastia (Neoschoengastia) picata Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 780 (description), fig. 11.

Diagnosis. SIF = 7BS-B-3-3111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-6-4-6-4-4; DS = 32; VS = 28; NDV = 60; Ip = 1153–1205; eyes 2 + 2; parasubterminala branched; f_1 at level of S_1 ; f_2 near and slightly posterior to S_2 ; onychotriches present. Measurements of 6 type specimens (Vercammen-Grandjean *et al.* 1970): AW 42–50, PW 65–68, SB 26–31, ASB 15–17, PSB 23–26, SD 38–43, AP 27–32, AM 37–41, AL 45–51, PL 58–64, S 30–32, H 40–48, D_{min} 29–32, D_{max} 40–46, V_{min} 27–32, V_{max} 33–40, pa 404–426, pm 334–358, pp 408–428, Ip 1153–1205.

Type material examined. Holotype larva (IUMS) from *Oenanthe picata*, Kazerun, 25 October 1966, coll. C.J. Rohde.

Hosts. Falco columbarius, Oenanthe picata.

Distribution. Iran (Kazerun).

Ornithogastia merops (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov.

Guntherana (Ornithogastia) merops Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 781 (description), fig. 13.

Diagnosis. SIF = 5B-N-3-2111.4300; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.4; fSc: AL > PL > AM; fD = 2H-[4-4-2]-8-8-10-2-4-2; DS = 46; VS = 48; NDV = 94; Ip = 894; eyes 2 + 2; f_1 anterior to S_1 ; f_2 at level of apically slightly inflated S_2 ; 4 basally ciliated mastitarsalae and 3 basally ciliated mastitibialae. Measurements of holotype (Vercammen-Grandjean *et al.* 1970): AW 49, PW 72, SB 20, ASB 25, PSB 24, SD 49, AP 36, AM 49, AL 64, PL 54, S 34, H 54, D_{min} 30, D_{max} 50, V_{min} 26, V_{max} 38, pa 304, pm 274, pp 316, Ip 894.

Type material examined. Holotype larva (IUMS) from *Merops apiaster*, Mashhad, 12 May 1967, coll. C.J. Robde

Host. Merops apiaster.

Distribution. Iran (Mashhad).

Remarks. Described from a single specimen. Following Kudryashova (1998), we regard *Ornithogastia* Vercammen-Grandjean, 1960 as a separate genus and thus exclude *Ornithogastia merops* from the genus *Guntherana* Womersley, 1939.

FIGURE 13. Leptotrombidium silvaticum, scutum.

Ornithogastia oenanthe (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov.

Guntherana (Ornithogastia) oenanthe Vercammen-Grandjean, Rohde and Mesghali, 1970: 775 (material), 781 (description), fig. 14.

Diagnosis. SIF = 5B-N-3-2111.4300; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.4; fSc: AL > PL > AM; fD = 2H-[4-4-2]-8-8-10-6-4-4-2; DS = 54; VS = 48; NDV = 102; Ip = 1070; eyes 2 + 2; f_1 anterior to S_1 ; f_2 near and slightly posterior to apically slightly inflated S_2 ; 4 basally ciliated mastitarsalae and 3 basally ciliated mastitibialae. Measurements of holotype (Vercammen-Grandjean *et al.* 1970): AW 57, PW 90, SB 26, ASB 28, PSB 24, SD 52, AP 41, AM 58, AL 72, PL 64, S 34, H 74, D_{min} 37, D_{max} 62, V_{min} 31, V_{max} 42, pa 374, pm 318, pp 378, Ip 1070.

Type material examined. Holotype larva (IUMS) from *Oenanthe picata*, Mashhad, 10 May 1967, coll. C.J. Rohde.

Host. Oenanthe picata.

Distribution. Iran (Mashhad).

Remarks. Described from a single specimen. Following Kudryashova (1998), we regard *Ornithogastia* Vercammen-Grandjean, 1960 as a separate genus and thus exclude *Ornithogastia oenanthe* from the genus *Guntherana* Womersley, 1939.

Schoengastia persica Wen, Saboori and Akrami, 2012

Schoengastia (Priomesochela) persica Wen, Saboori and Akrami, 2012: 2, figs 1–12.

Diagnosis. SIF = 7BS-N-3-3111.2000; fPp = N/N(b)/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: AL > PL >> AM; fD = 2H-8-[6-2]-6-4-2; DS = 30; VS = 23; NDV = 53; Ip = 753; cheliceral blade with 6–7 recurved dorsal teeth and 1 long ventral tooth; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 ; 2 ciliated mastitarsalae. Measurements

of holotype (Wen *et al.* 2012): AW 54, PW 73, SB 21, ASB 26, PSB 23, SD 49, AP 25, AM 22, AL 46, PL 40, S 35, H 39, D_{min} 31, D_{max} 37, V_{min} 25, V_{max} 32, pa 263, pm 236, pp 254, Ip 753.

Type material examined. Holotype larva (Jalal Afshar Zoological Museum ARS-20110305-1, Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran) from the soil under shrub, Abarkuh, 9 September 1999, coll. M.A. Akrami.

Host. Unknown.

Distribution. Iran (Abarkuh).

Remarks. Described from a single specimen.

FIGURE 14. Otorhinophila deserta, scutum.

Schoutedenichia anatolica Kepka, 1962 (Fig. 9)

Schoutedenichia (Schoutedenichia) anatolica Kepka, 1962: 279, Abb. 4-7; Kudryashova 1998: 254, fig. 215.

Schoutedenichia anatolica: Stekolnikov & Daniel 2012: 88, fig. 61.

Kayella vercammeni Kolebinova, 1966: 675, figs. 1-6.

Schoutedenichia pallidula Schluger, 1967: 43, fig. 2.

Schoutedenichia abharica Kudryashova, 1976d: 278, fig. 4; Kudryashova et al., 1978: 151.

Diagnosis. SIF = 4B-B-3-2000.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 2H-(8–9)-(8–12)-(7–11)-(7–13)-...; DS = 48–58; VS = 44–64; NDV = 95–122; Ip = 580–679; eyes 2 + 2; f_1 at level or slightly posterior to S_1 ; f_2 slightly anterior to S_2 . Measurements of *Schoutedenichia abharica* type series (Kudryashova *et al.* 1978): AW 50–53, PW 70–76, SB 34–36, ASB 22–25, PSB 14–17, SD 36–42, AP 34, AM 25–34, AL 22–31, PL 36–39, H 31–36, D_{min} 22, D_{max} 31–34, V_{min} 17–20, V_{max} 25–31, pa 210–221, pm 193–199, pp 230–232. Measurements of *Schoutedenichia abharica* holotype: AW 52, PW 72, SB 36, ASB 23, PSB 16, SD 39,

P-PL 7, AP 33, AM 29, AL 22, PL 37, H 36, D_{min} 22, D_{max} 31, V_{min} 22, V_{max} 26, pa 218, pm 187, pp 223, Ip 628, TallIL 56, TallIW 9.

Type material examined. Holotype of *Schoutedenichia abharica*, larva (ZMMU Tdt-661, I-382-2946) from *Meriones persicus*, Ajami, 1780 m a.s.l., 14 August 1970, coll. V.M. Neronov.

Hosts. Meriones persicus and Mus musculus.

Distribution. Switzerland, Bulgaria, Romania, Ukraine, Russia (Krasnodarskiy Krai), Turkey, Iran (Abhar, Ajami).

Schoutedenichia chilmirica Kudryashova, 1975

Schoutedenichia chilmirica Kudryashova, 1975: 1564, fig. 3; Kudryashova et al., 1978: 150.

Diagnosis. SIF = 4BS-N-3-2110.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL; fD = 4H-8-6-8-9-8-7-9-9-4-8-4-4; DS = 88; VS = 74; NDV = 162; Ip = 1064; eyes 2 + 2; f_1 far anterior to S_1 ; f_2 far posterior to S_2 ; S_1 >> S_2 . Measurements of holotype: AW 66, PW 86, SB 49, ASB 34, PSB 18, SD 52, AP 44, AL 31, PL 42, H 46, D_{min} 27, D_{max} 43, V_{min} 22, V_{max} 30, pa 340, pm 310, pp 360, Ip 1010, TalIIL 101, TalIIW 16.

Type material examined. Holotype larva (ZMMU Tdt-665, I-14-596-600) from *Pipistrellus pipistrellus*, Lotfabad, garret of old house, 13 July 1969, coll. V.M. Neronov.

Host. Pipistrellus pipistrellus.

Distribution. Iran (Lotfabad).

Remarks. Described from a single specimen.

Schoutedenichia montchadskyi Muljarskaja, 1971

Schoutedenichia montchadskyi Muljarskaja, 1971: 1182, fig. 1. Schoutedenichia (Brennanichia) montchadskyi: Kudryashova et al. 1978: 152, fig. 21. Schoutedenichia (Ornithochia) montchadskyi: Kudryashova 1998: 260, fig. 220.

Diagnosis. SIF = 4B-N-3-2110.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.3; fSt = 2.2; fSc: AL > PL > AM; fD = 2H-6-6-6-6-4-2-2, 2H-6-6-6-8-2-4-2; DS = 34–36; VS = 26–29; NDV = 62–68; Ip = 596–661; eyes 2 + 2; f_1 at level or slightly anterior to S_1 ; f_2 slightly posterior to S_2 . Measurements of 10 specimens from Iran (Kudryashova 1998): AW 39–42, PW 45–50, SB 14–20, ASB 20, PSB 18–22, SD 38–42, AP 25–31, AM 14–20, AL 42–56, PL 22, H 25, D_{min} 20, D_{max} 28, V_{min} 14, V_{max} 25, pa 213–235, pm 176–196, pp 207–238, Ip 596–661.

Type material examined. Paratype larva (ZMMU Tdt-3036, 4605(6), not suitable for examination) from *Meriones vinogradovi*, Azerbaijan, Nakhichevansky District, Syugram, 7 September 1965, coll. L.F. Shchirova.

Hosts. Meriones vinogradovi, Meriones persicus, Mus musculus.

Distribution. Azerbaijan, Iran (Ajami).

Schoutedenichia originalis Kudryashova, 1976

Schoutedenichia originale Kudryashova, 1976d: 275, fig. 2; Kudryashova *et al.*, 1978: 148, fig. 20. *Schoutedenichia (Schoutedenichia) originalis*: Kudryashova 1998: 251, fig. 212.

Diagnosis. SIF = 4B-N-3-2000.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; PLs extrascutal; fD = 6H-4-4-10-8-4-(4)-2; DS = 38–42; VS = 30–32; NDV = 70–72; Ip = 655–664; eyes 2 + 2; f_1 slightly anterior to S_1 ; f_2 near or slightly anterior to S_2 . Measurements of type series (Kudryashova 1998): AW 48–49, SB 34–39, ASB 17–20, PSB 8–11, SD 28, AM 17–20, AL 14–20, PL 28, H 28–31, D_{min} 14, D_{max} 22, V_{min} 14–17, V_{max} 20–22, pa 235–246, pm 196–202, pp 218–221. Measurements of holotype: AW 47, SB 39, ASB 19, AP 28, AM 18, AL 16, PL 26, H 31, D_{min} 16, D_{max} 23, pa 243, pm 202, pp 216, Ip 661, TaIIIL 54, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-667, I-386-3318) from *Nesokia indica*, Shushtar, 250 m a.s.l., 9–13 September 1970, coll. V.M. Neronov.

Hosts. Nesokia indica, Meriones hurrianae.

Distribution. Iran (Chabahar, Shushtar).

Schoutedenichia rohdeae Vercammen-Grandjean, Rohde and Mesghali, 1970

Schoutedenichia (Brennanichia) rohdeae Vercammen-Grandjean, Rohde and Mesghali, 1970: 776 (material), 782 (description), fig. 17.

Diagnosis. SIF = 4B-B-3-2110.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: AM ≥ AL ≥ PL; fD = 2H-[4-10]-[10-4]-10-6-6-8-6-4-2; DS = 72; VS = 48; NDV = 120; Ip = 644–678; eyes 2 + 2; AM far posterior to level of ALs; f_1 posterior to S_1 ; f_2 near and slightly posterior to apically slightly inflated S_2 . Measurements of 9 type specimens (Vercammen-Grandjean *et al.* 1970): AW 39–44, PW 57–66, SB 22–28, ASB 25–29, PSB 10–15, SD 37–42, AP 26–31, AM 33–37, AL 30–37, PL 30–36, S 31–36, H 32–37, D_{min} 20–25, D_{max} 29–33, V_{min} 17–19, V_{max} 23–28, pa 226–239, pm 181–197, pp 230–244, Ip 644–678.

Type material examined. Holotype larva (IUMS) from *Meriones persicus*, Qazvin, 1 May 1967, coll. C.J. Rohde.

Host. *Meriones persicus.*

Distribution. Iran (Qazvin).

Schoutedenichia shirazica Kudryashova, 1976

Schoutedenichia shirazica Kudryashova, 1976d: 276, fig. 3; Kudryashova *et al.* 1978: 150. *Schoutedenichia (Schoutedenichia) shirazica*: Kudryashova 1998: 253, fig. 214.

Diagnosis. SIF = 4B-N-3-2110.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL = AM; fD = 2H-8-2-10-8-6-2-2; DS = 40; VS = 30; NDV = 70; Ip = 784; eyes 2 + 2; f_1 slightly posterior to S_1 ; f_2 near S_2 . Measurements of holotype: AW 58, PW 78, SB 45, ASB 24, PSB 16, SD 40, AP 37, AM 18, AL 17, PL 25, S 30, H 30, D_{min} 20, D_{max} 29, V_{min} 19, V_{max} 25, pa 238, pm 207, pp 239, Ip 684, TaIIIL 64, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-666) from *Meriones persicus*, Shiraz, 1640 m a.s.l., stony slopes of mountains, 29 October 1969, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Shiraz).

Remarks. Described from a single specimen.

Schoutedenichia zarudnyi Kudryashova, 1976

Schoutedenichia zarudnyi Kudryashova, 1976d: 274, fig. 1; Kudryashova et al. 1978: 147. Schoutedenichia (Schoutedenichia) zarudnyi: Kudryashova 1998: 252, fig. 213.

Diagnosis. SIF = 4B-N-3-2110.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM = AL; PLs extrascutal; fD = 4H-4-4-10-8-(8)-6-2-2(1)-4-(4); DS = 46–52; VS = 30–37; NDV = 78–86; Ip = 658–688; eyes 2 + 2; f_1 near or slightly anterior to S_1 ; f_2 near or slightly anterior to S_2 . Measurements of type series (Kudryashova 1998): AW 45–48, SB 31–35, ASB 23–27, PSB 10–14, SD 34–39, AM 17–22, AL 17–20, PL 28, H 28–34, D_{min} 17, D_{max} 25, V_{min} 14, V_{max} 22, pa 238–249, pm 196–210, pp 221–232. Measurements of holotype: AW 46, PW 61, SB 31, ASB 24, PSB 9, SD 33, AP 33, AM 18, AL 16, PL 29, H 32, D_{min} 19, D_{max} 25, V_{min} 20, V_{max} 23, pa 225, pm 191, pp 229, Ip 645, TaIIIL 61, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-670, I-131-2357) from *Meriones persicus*, Borazjan, 770 m a.s.l., southern slope of a mountain, 13 November 1969, coll. V.M. Neronov and A. Farang-Azad.

Hosts. *Meriones persicus, Tatera indica.*

Distribution. Iran (Borazjan, Kazerun 2).

Susa kolebinovae (Kudryashova, Neronov and Farang-Azad, 1978)

Derrickiella kolebinovae Kudryashova, Neronov & Farang-Azad, 1978: 163, fig. 25. Susa kolebinovae: Kudryashova 1998: 267.

Diagnosis. SIF = 5B-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.2.1; fSt = 2.2; fSc: PL ≥ AM > AL; fD = 4H-6(4)-2(4)-10(8)-10-2(3)-10-(2)-4-6-2(4); DS = 61-68; VS = 44-50; NDV = 109-118; Ip = 756-771; eyes 2 + 2; f_1 anterior to S_1 ; tibialae I apical; f_2 anterior to S_2 ; $S_2 > S_1$. Measurements of type series (Kudryashova *et al.* 1978): AW 56-62, PW 76-90, SB 21-28, ASB 22-24, PSB 17-20, SD 41-45, AP 25-31, AM 31-36, AL 28, PL 34-39, H 34-42, D_{min} 22, D_{max} 42, V_{min} 17, V_{max} 31, pa 266-283, pm 227-235, pp 255-263. Measurements of holotype: AW 63, PW 80, SB 28, ASB 29, PSB 15, SD 44, P-PL 10, AP 27, AM 36, AL 25, PL 34, S 34, H 40, D_{min} 23, D_{max} 36, V_{min} 23, V_{max} 30, pa 266, pm 230, pp 257, Ip 753, TaIIIL 63, TaIIIW 20.

Type material examined. Holotype larva (ZMMU Tdt-269, I-3-1782) from *Calomyscus bailwardi*, Delijan, 1600 m a.s.l., mountain slope, 14 October 1969, coll. V.M. Neronov.

Host. Calomyscus bailwardi.

Distribution. Iran (Delijan).

Susa vorax (Schluger and Amanguliev, 1975)

Guntherana vorax Schluger and Amanguliev, 1975: 468, figs. 20–26. *Susa vorax*: Kudryashova 1998: 267, fig. 227. *Derrickiella danieli* Kudryashova *et al.*, 1978: 165, fig. 26.

Diagnosis. SIF = 5B-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx= 1.2.1; fSt = 2.4(5–6); fSc: PL > AM > AL; fD = 4H-6-6-10-10-2-2-6-4-2-2; DS = 54–64; VS = 45–55; NDV = 112; Ip = 730–778; eyes 2 + 2; f_1 at level or slightly posterior to S_1 ; tibialae I apical; f_2 anterior to S_2 ; $S_2 > S_1$. Measurements of *Derrickiella danieli* type series (Kudryashova et al. 1978): AW 53–62, PW 73–84, SB 25–31, ASB 19–22, PSB 17–20, SD 36–39, AP 25–28, AM 28–34, AL 22–28, PL 34–39, H 36–42, D_{min} 22, D_{max} 42, V_{min} 17, V_{max} 31, pa 263–280, pm 213–238, pp 246–263. Measurements of *Derrickiella danieli* holotype: AW 54, PW 76, SB 25, ASB 22, PSB 18, SD 40, P-PL 13, AP 26, AM 31, AL 24, PL 35, S 37, H 40, D_{min} 23, D_{max} 38, V_{min} 20, V_{max} 31, pa 256, pm 207, pp 232, Ip 695, TaIIIL 59, TaIIIW 18.

Type material examined. Holotype of *Guntherana vorax*, larva (ZMMU Tdt-2561, K-10) from *Ochotona rufescens*, Turkmenistan, Firyuza, 17 February 1967, coll. A.A. Amanguliev.

Type material examined. Holotype of *Derrickiella danieli*, larva (ZMMU Tdt-277, I-254-3887) from *Meriones libycus*, Mashhad 2, 1100 m a.s.l., 15 October 1970, coll. V.M. Neronov.

Hosts. Ochotona rufescens, Meriones libycus, Calomyscus bailwardi.

Distribution. Turkmenistan, Iran (Mashhad 2).

Tribe Trombiculini Vercammen-Grandjean, 1960

Chiroptella vavilovi Kudryashova, 1975

Chiroptella (Chiroptella) vavilovi Kudryashova, 1975: 1562, fig. 1; Kudryashova et al. 1978: 120, fig. 11.

Diagnosis. SIF = 7BS-N-3-2100.1121; fPp = N/N/NNN; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 2H-8-8-9-6-2-4-4; DS = 41–43; VS = 29–38; NDV = 70–81; Ip = 1058–1067; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of holotype and paratype (Kudryashova *et al.* 1978): AW 45, 45, PW 78, 78, SB 24, 24, ASB 42, PSB 14, SD 56, AP 42, AM 50, 56, AL 28, 31, PL 67, 62, H 50, 53, D_{min} 31, 34, D_{max} 50, 50, pa 372, 378, pm 322, 322, pp 364, 367. Measurements of holotype: AW 40, PW 66, SB 22, ASB 31, PSB 18, SD 49, P-PL 9, AP 37, AM 50, AL 27, PL 65, H 50, D_{min} 32, D_{max} 47, V_{min} 30, V_{max} 45, pa 299, pm 292, pp 342, Ip 933, TaIIIL 108, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-708, I-330-3333) from *Rhinopoma hardwickii*, Shushtar, 250 m a.s.l., 9 September 1970, coll. V.M. Neronov.

Host. Rhinopoma hardwickii.

Distribution. Iran (Shushtar).

FIGURE 15. Microtrombicula azerbaidjanica, scutum.

Ericotrombidium biconcavum (Kudryashova, 1976)

Leptotrombidium (Ericotrombidium) biconcavum Kudryashova, 1976a: 39, fig. 4; Kudryashova et al. 1978: 118. Ericotrombidium biconcavum: Kudryashova 2004: 15.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx= 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-8-6-6-4-2-4; DS = 32–34; VS = 20–29; NDV = 53–61; Ip = 784–843; eyes 2 + 2; f_1 anterior to S_1 ; f_2 anterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 64–70, PW 76–81, SB 25–28, ASB 25–31, PSB 11–14, SD 36–42, AP 25–28, AM 25–28, AL 31–36, PL 36–42, S 59–62, H 31–39, D_{min} 28, D_{max} 45, V_{min} 22, V_{max} 42, pa 263–286, pm 249–260, pp 272–297. Measurements of holotype: AW 66, PW 72, SB 23, ASB 28, PSB 13, SD 41, P-PL 9, AP 30, AM 25, AL 31, PL 35, H 33, D_{min} 27, D_{max} 43, V_{min} 26, V_{max} 41, pa 236, pm 221, pp 254, Ip 711, TaIIIL 70, TaIIIW 16.

Type material examined. Holotype larva (ZMMU Tdt-518, I-194-2761) from *Meriones persicus*, Abhar, 1750 m a.s.l., 8 August 1970, coll. V.M. Neronov.

Hosts. Meriones persicus, Cricetulus migratorius.

Distribution. Iran (Abhar, Delijan, Urmia).

Ericotrombidium iranicus (Kudryashova, 1976) (Fig. 16)

Leptotrombidium (Ericotrombidium) iranicus Kudryashova, 1976a: 36, fig. 2; Kudryashova et al. 1978: 116.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/NbB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc = PL > AL > AM; fD = 2H-8-6-6-4-2-2-4; DS = 32–34; VS = 24–30; NDV = 57–62; Ip = 871–925; eyes 2 + 2; f_1 anterior to S_1 ; f_2

Ericotrombidium iranicus: Kudryashova 2004: 22.

anterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 62–67, PW 76–78, SB 25, ASB 25–28, PSB 11–14, SD 39–42, AP 25–28, AM 28–34, AL 34–36, PL 42–45, S 64–70, H 36–42, D_{\min} 31, D_{\max} 45, V_{\min} 28, V_{\max} 39, pa 300–316, pm 266–286, pp 302–325. Measurements of holotype: AW 69, PW 79, SB 25, ASB 29, PSB 13, SD 42, P-PL 12, AP 25, AM 29, AL 36, PL 44, H 43, D_{\min} 35, D_{\max} 43, V_{\min} 29, V_{\max} 38, pa 322, pm 283, pp 324, Ip 929, TaIIIL 94, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-578, I-205-1052) from *Mus musculus*, Shurak Maleki, 30 July 1969, coll. V.M. Neronov.

Host. Mus musculus.

Distribution. Iran (Maku, Mehr, Shurak Maleki).

FIGURE 16. Ericotrombidium iranicus, scutum.

Ericotrombidium jayewickremei (Womersley, 1952)

Trombicula (Neotrombicula) jayewickremei Womersley, 1952: 138, PI. 26, figs. F–J. Leptotrombidium (Hypotrombidium) jayewickremei: Vercammen-Grandjean & Langston 1976: 729, Pl. 215. Leptotrombidium (Ericotrombidium) jayewickremei: Kudryashova et al. 1978: 114, fig. 10. Ericotrombidium jayewickremei: Kudryashova 1998: 134, fig. 94.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx= 1.1.1; fSt = 2.2; fSc: PL > AM ≥ AL; fD = 2H-8-6-6-4-2-2; DS = 29–34; VS = 23–32; NDV = 59; Ip = 804–882; eyes 2 + 2; f_1 anterior to S_1 ; f_2 slightly anterior to S_2 . Measurements (Vercammen-Grandjean & Langston 1976): AW 64–67, PW 73–81, SB 24–28, ASB 25–28, PSB 11–13, SD 36–41, AP 25–27, AM 33–50, AL 40–45, PL 44–50, S 56–70, H 42–43, D_{min} 34–38, D_{max} 41–50, V_{min} 28–30, V_{max} 39–42, pa 310–319, pm 261–266, pp 312–314, Ip 883–899.

Type data. Syntypes (South Australian Museum, Adelaide, South Australia, Australia) from *Rattus rattus kandiyanus*, Sri Lanka, September–November 1944, coll. S.H. Jayewickreme.

Hosts. Cricetulus migratorius, Crocidura suaveolens, Crocidura sp., Mus sp., Nesokia indica, Rattus pyctoris, R. rattus, Suncus sp., Tatera indica (Kudryashova 1998).

Distribution. Sri Lanka, India, Pakistan, Tadjikistan, Iran (Zahedan).

Ericotrombidium kazeruni (Kudryashova, 1976)

Leptotrombidium (Ericotrombidium) kazeruni Kudryashova, 1976a: 39, fig. 5; Kudryashova et al. 1978: 119. Ericotrombidium kazeruni: Kudryashova 2004: 22.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL ≥ AM; fD = 2H-8-6-6-4-2-2-5; DS = 30–35; VS = 22–27; NDV = 54–60; Ip = 860–901; eyes 2 + 2; f_1 anterior to S_1 ; f_2 slightly anterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 59–64, PW 64–70, SB 22–25, ASB 25–28, PSB 8–11, SD 36–39, AP 25–28, AM 25–31, AL 31–34, PL 39–42, S 56–62, H 34–36, D_{min} 28, D_{max} 39, V_{min} 25, V_{max} 39, pa 300–308, pm 260–274, pp 300–319.

Type material examined. Holotype larva (ZMMU Tdt-568, I-216-2276, not suitable for examination) from *Tatera indica*, Kazerun 2, 770 m a.s.l., bush along the river and deposits on river terraces, 6 November 1969, coll. V.M. Neronov.

Host. Tatera indica.

Distribution. Iran (Kazerun 2).

Ericotrombidium limpidum (Kudryashova, 1976)

Leptotrombidium (Ericotrombidium) limpidum Kudryashova, 1976a: 36, fig. 3; Kudryashova *et al.* 1978: 117. *Ericotrombidium limpidum*: Kudryashova 2004: 24.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/NbB; fsp = 7.7.7; fCx= 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-8-6-6-4-2-4; DS = 30–36; VS = 24–33; NDV = 56–65; Ip = 769–792; eyes 2 + 2; f_1 anterior to S_1 ; f_2 far anterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 56–62, PW 64–73, SB 22–25, ASB 25, PSB 11–14, SD 36–39, AP 25, AM 25–28, AL 28–31, PL 31–34, S 56, H 28–34, D_{min} 25, D_{max} 34, V_{min} 20, V_{max} 34, pa 263–277, pm 227–244, pp 266–277.

Type material examined. Holotype larva (ZMMU Tdt-539, I-187-2946, not suitable for examination) from *Meriones persicus*, Ajami, 1780 m a.s.l., 14 August 1970, coll. V.M. Neronov.

Hosts. Meriones persicus, Mus musculus.

Distribution. Iran (Abhar, Ajami, Urmia).

Hirsutiella llogorensis (Daniel, 1960)

(Fig. 17)

Trombicula (Neotrombicula) llogorensis Daniel, 1960: 25, figs. 3-5.

Hirsutiella llogorensis: Kudryashova et al. 1978: 139; Kudryashova 1998: 242, fig. 203; Stekolnikov 2001c: 228, fig. 4; Stekolnikov & Daniel 2012: 24, fig. 15.

Diagnosis. SIF = 7BS-B-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; DS = 70–104; VS = 53–93; NDV = 143–186; Ip = 842–1026; eyes 2 + 2; f_1 anterior to S_1 ; f_2 far posterior to S_2 . Measurements (Stekolnikov 2001c): AW 62–77, PW 72–90, SB 29–37, ASB 35–43, PSB 14–20, SD 50–60, AP 23–31, AM 35–50, AL 38–58, PL 50–65, S 61–88, H 49–68, D_{min} 34–47, D_{max} 58–70, V_{min} 22–32, V_{max} 49–60, pa 281–353, pm 256–320, pp 293–355, Ip 842–1026.

Type data. Holotype larva (Institute of Parasitology, Biology Centre of ASCR, Česke Budejovice, Czech Republic) from *Apodemus flavicollis*, Albania, Llogora pass, 1050 m a.s.l., 12 May 1958, coll. M. Daniel.

Hosts. Chionomys gud, Ch. roberti, Cricetulus migratorius, Microtus agrestis, M. daghestanicus, M. majori, Apodemus agrarius, A. flavicollis, A. ponticus, A. uralensis, Garrulus glandarius (Stekolnikov & Daniel 2012).

Distribution. France, Albania, Kosovo, Bulgaria, Russia (Krasnodarskiy Krai, Stavropolskiy Krai, Kabardino-Balkaria, North Ossetia, Dagestan), Turkey, Georgia, Azerbaijan, Armenia, Iran (Chalus).

FIGURE 17. Hirsutiella llogorensis, scutum.

Kepkatrombicula blanfordi (Kudryashova, 1977) (Fig. 18)

Neotrombicula blanfordi Kudryashova, 1977: 47, fig. 2; Kudryashova et al. 1978: 128. Eutonella blanfordi: Kudryashova 1998: 156; Stekolnikov 2001b: 100. Kepkatrombicula blanfordi: Kudryashova & Stekolnikov 2010: 79. Neotrombicula iranensis Goff and Saboori, 1998: 859, fig. 2.

Diagnosis. SIF = 7BS-N-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-11-7-6-6-30; DS = 62; VS = 38; NDV = 100; Ip = 885; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of holotype: AW 72, PW 83, SB 29, ASB 29, PSB 32, SD 61, P-PL 26, AP 26, AM 29, AL 35, PL 41, S 59, H 44, D_{min} 41, D_{max} 45, V_{min} 27, V_{max} 42, pa 301, pm 259, pp 297, Ip 857, TaIIIL 83, TaIIIW 18. Measurements of *Neotrombicula iranensis* type series (Goff & Saboori 1998): AW 67–70, PW 81–83, SB 29–31, ASB 29–31, PSB 33–34, AP 26–28, AM 25–28, AL 38–40, PL 41, S 64–70, H 44–46, D_{min} 33, D_{max} 42, V_{min} 29, V_{max} 42, pa 294–302, pm 258–268, pp 304–322, Ip 857–892, TaIIIL 87, TaIIIW 16.

Type material examined. Holotype larva of *Neotrombicula blanfordi* (ZMMU Tdt-65, I-142-1787) from *Meriones persicus*, Delijan, 1600 m a.s.l., 14 October 1969, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Delijan, Kabudarahang).

Remarks. Described from a single specimen.

FIGURE 18. *Kepkatrombicula blanfordi*, holotype. 1, scutum and eyes; 2, dorsal idiosomal seta of 1^{st} row; 3, arrangement of dorsal idiosomal setae; 4, arrangement of ventral idiosomal setae. Scale bars: 50 μ m (1), 20 μ m (2), 100 μ m (3, 4).

Kepkatrombicula horti (Kudryashova, 1977)

(Fig. 20)

Neotrombicula horti Kudryashova, 1977: 55, fig. 7; Kudryashova et al. 1978: 133.

Eutonella horti: Stekolnikov 2001b: 102.

Kepkatrombicula horti: Kudryashova & Stekolnikov 2010: 80.

Diagnosis. SIF = 7BS-N-3-2111.1000; fPp = B/B/NBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-[8-7]-[7-6]-10-8-6-4; DS = 51-61; VS = 40-43; NDV = 94-101; Ip = 1078-1109; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 81-84, PW 92-95, SB 35-36, ASB 34-36, PSB 28-31, SD 64-67, AP 22-28, AM 42-45, AL 50-56, PL 62-73, S 76-78, H 67-73, D_{min} 48-53, D_{max} 67-73, V_{min} 39-42, V_{max} 56-62, pa 378-381, pm 316-336, pp 384-398. Measurements of holotype: AW 83, PW 90, SB 32, ASB 34, PSB 33, SD 67, P-PL 36, AP 23, AM 40, AL 54, PL 72, S 83, H 75, D_{min} 52, D_{max} 69, V_{min} 41, V_{max} 67, pa 349, pm 310, pp 358, Ip 1017, TaIIIL 112, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-51, I-157-3852) from *Chionomys nivalis*, Mashhad 2, 1100 m a.s.l., 15–19 October 1970, coll. V.M. Neronov.

Host. Chionomys nivalis.

Distribution. Iran (Mashhad 2).

Leptotrombidium silvaticum Hushcha and Schluger, 1967

(Fig. 13)

Leptotrombidium silvaticum Hushcha and Schluger, 1967: 71, figs. 1, 2; Kudryashova et al. 1978: 111; Kudryashova 1998: 111, fig. 71; Stekolnikov 2013: 61.

Leptotrombidium (Leptotrombidium) pakistanum Vercammen-Grandjean and Langston, 1976: 397, pl. 89.

Diagnosis. SIF = 7B-B-3-2111.0000; fPp = N/N/BNN; fsp = 7.7.7; fCx= 1.1.1; fSt=2.2; fSc: PL ≥ AM > AL; fD = 2H-8-6-6-6-4-2; DS = 34; VS = 29; NDV = 63; Ip = 773–842; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements (Stekolnikov 2013): AW 67–79, PW 81–92, SB 32–38, ASB 25–32, PSB 16–18, SD 39–49, AP 20–30, AM 53–65, AL 36–45, PL 56–67, S 63–84, H 54–66, D_{min} 34–48, D_{max} 50–64, V_{min} 22–25, V_{max} 45–54, pa 254–292, pm 236–268, pp 263–290.

Type data. Type series in the Schmalhausen Institute of Zoology NAS of Ukraine (Kyiv, Ukraine).

Hosts. Fourteen species of rodents and insectivores (Kudryashova, 1998).

Distribution. Moldova, Ukraine, Azerbaijan, Iran (Chalus, Sefidrud).

Leptotrombidium subsilvaticum Kudryashova, 1976

Leptotrombidium subsilvaticum Kudryashova, 1976a: 33, fig. 1; Kudryashova et al. 1978: 112, fig. 9.

Diagnosis. SIF = 7B-B-3-2111.0000; fPp = N/N/BNN; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 2H-8-8-6-2-2; DS = 34–38; VS = 28–36; NDV = 64–73; Ip = 773–826; eyes 2 + 2; f_1 anterior to S_1 ; f_2 at level or slightly posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 70–81, PW 81–92, SB 31–39, ASB 28–32, PSB 17–20, SD 45–49, AP 24–28, AM 50–62, AL 39–42, PL 62–70, S 56–76, H 59–70, D_{min} 42, D_{max} 67, V_{min} 28, V_{max} 59, pa 272–283, pm 235–258, pp 266–288. Measurements of holotype: AW 71, PW 83, SB 33, ASB 27, PSB 18, SD 45, P-PL 18, AP 23, AM 52, AL 41, PL 65, H 60, D_{min} 43, D_{max} 61, V_{min} 32, V_{max} 50, pa 241, pm 223, pp 254, Ip 718, TaIIIL 65, TaIIIW 20.

Type material examined. Holotype larva (ZMMU Tdt-491, I-334-181) from *Apodemus sylvaticus*, Gorgan, deciduous forest, 22 June 1969, coll. V.M. Neronov.

Host. Apodemus sylvaticus.

Distribution. Iran (Darabad, Gorgan).

FIGURE 19. Neotrombicula delijani, scutum.

Microtrombicula azerbaidjanica Muljarskaja, Verdieva and Tchirkova, 1970 (Fig. 15)

Microtrombicula azerbaidjanica Muljarskaja, Verdieva and Tchirkova, 1970: 930, fig.; Kudryashova 1998: 83, fig. 46. *Eltonella azerbaidjanica*: Kudryashova *et al.* 1978: 102, fig. 5.

Diagnosis. SIF = 6B-B-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx= 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-6-6-6-4(5)-(4)-(2); DS = 31–36; VS = 30–45; NDV = 66–75; Ip = 680–748; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of 11 Iranian specimens (Kudryashova 1998): AW 50–59, PW 64–70, SB 20–22, ASB 28, PSB 22–28, SD 50–56, AP 22–25, AM 28–31, AL 28–36, PL 42–48, S 56–64, H 42–48, D_{min} 28, D_{max} 42, V_{min} 20, V_{max} 34, pa 241–260, pm 210–230, pp 232–260.

Type data. Holotype larva (ZMMU Tdt-2777, 5911v) from *Mustela nivalis*, Azerbaijan, Lenkoranskiy District, Gilyakeran Village, 100–150 m a.s.l., 7 October 1963, coll. N.V. Chirkova.

Hosts. Mustela nivalis, Sorex araneus and 18 species of rodents (Kudryashova, 1998).

Distribution. Azerbaijan, Armenia, Iran (Abhar, Ajami, Delijan, Hajiabad, Kazerun 2, Maku, Zarrin Shahr).

Microtrombicula galerida (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov.

Eltonella (Eltonella) galerida Vercammen-Grandjean, Rohde and Mesghali, 1970: 774 (material), 777 (description), fig. 3.

Diagnosis. SIF = 6B-N-3-3111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx= 1.1.1; fSt=2.2; fSc: PL > AM > AL; fD = 2H-8-8-6-4-4-2; DS = 34; VS = 34; NDV = 68; Ip = 754–788; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of holotype and paratype (Vercammen-Grandjean *et al.* 1970): AW 60, 59, PW 66, 69, SB 23, 21, ASB 25, 24, PSB 26, 27, SD 51, 51, AP 24, 26, AM 36, 40, AL 31, 32, PL 44, 47, S 82, 80, H 43, 44, D_{min} 30, 31, D_{max} 38, 39, V_{min} 28, 27, V_{max} 35, 36, pa 282, 268, pm 232, 222, pp 274, 264, Ip 788, 754.

Type material examined. Holotype larva (IUMS) from *Galerida cristata*, Bandar Abbas, 16 February 1967, coll. C.J. Rohde.

Hosts. Columba livia, Galerida cristata.

Distribution. Iran (Bandar Abbas).

Remarks. Following Kudryashova (1998), we regard *Eltonella* Audy, 1956 as a synonym of *Microtrombicula* Ewing, 1950 and thus propose here the new combination *Microtrombicula galerida*.

Microtrombicula media (Kudryashova, 1976)

Eltonella media Kudryashova, 1976c: 303, figs. 2, 3; Kudryashova *et al.* 1978: 108. *Microtrombicula media*: Kudryashova 2004: 25.

Diagnosis. SIF = 6B-B-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx= 1.2.1; fSt=2.4; fSc: PL > AM > AL; fD = 2H-8-6-6-2(3)-4-2-4; DS = 34–35; VS = 33–40; NDV = 67–74; Ip = 655–694; eyes 1 + 1; ST and pST absent; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 34–36, PW 42, SB 18–20, ASB 24, PSB 21, SD 45, AP 20–22, AM 28, AL 20–22, PL 34–36, S 45–48, H 34–36, D_{min} 28, D_{max} 34, V_{min} 20, V_{max} 28, pa 232–249, pm 199–207, pp 224–238. Measurements of holotype: AW 36, PW 39, SB 18, ASB 27, PSB 20, SD 47, P-PL 15, AP 22, AM 24, AL 20, PL 32, H 32, D_{min} 27, D_{max} 33, V_{min} 17, V_{max} 24, pa 216, pm 187, pp 218, Ip 621, TaIIIL 63, TaIIIW 12.

Type material examined. Holotype larva (ZMMU Tdt-344, I-425-4228) from *Meriones persicus*, Takht Malek, dry riverbed with bush, 720 m a.s.l., 19 November 1970, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Takht Malek).

Microtrombicula meriones (Vercammen-Grandjean, Rohde and Mesghali, 1970), comb. nov.

Eltonella (Eltonella) meriones Vercammen-Grandjean, Rohde and Mesghali, 1970: 774 (material), 777 (description), fig. 4.

Diagnosis. SIF = 6B-N-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx= 1.1.1; fSt=2.2; fSc: AM ≥ PL > AL; fD = 2H-6-6-4-4-4-2; DS = 32; VS = 36; NDV = 68; Ip = 677; eyes 1 + 1; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of holotype (Vercammen-Grandjean *et al.* 1970): AW 57, PW 71, SB 22, ASB 28, PSB 27, SD 55, AP 27, AM 40, AL 27, PL 39, H 44, D_{min} 28, D_{max} 37, V_{min} 21, V_{max} 32, pa 236, pm 206, pp 235, Ip 677.

Type material examined. Holotype larva (IUMS) from *Meriones persicus*, Tehran, 3 October 1966, coll. C.J. Rohde.

Host. Meriones persicus.

Distribution. Iran (Tehran).

Remarks. Described from a single specimen. Following Kudryashova (1998), we regard *Eltonella* Audy, 1956 as a synonym of *Microtrombicula* Ewing, 1950 and thus propose here the new combination *Microtrombicula meriones*.

Microtrombicula potamophila (Kudryashova, 1976)

Eltonella potamophila Kudryashova, 1976c: 299, fig. 1; Kudryashova *et al.* 1978: 99, fig. 3. *Microtrombicula potamophila*: Kudryashova 2004: 30.

Diagnosis. SIF = 6B-B(N)-3-3111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL ≥ AM > AL; fD = 2H-6-6-4-4-2; DS = 27–29; VS = 30–44; NDV=58; Ip = 733–789; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 39–42, PW 45–48, SB 17–20, ASB 25, PSB 23–25, SD 48–50, AP 23–25, AM 31–36, AL 23–28, PL 34–36, S 50–59, H 39–42, D_{min} 28, D_{max} 36, V_{min} 20, V_{max} 28, pa 260–280, pm 218–235, pp 255–274. Measurements of holotype: AW 43, PW 45, SB 16, ASB 25, PSB 23, SD 48, P-PL 16, AP 23, AM 27, AL 27, PL 32, H 43, D_{min} 29, D_{max} 38, V_{min} 23, V_{max} 29, pa 261, pm 214, pp 254, Ip 729, TalIIL 78, TalIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-384, I-414-3594) from *Mus musculus*, Darkhovin, 190 m a.s.l., 13 September 1970, coll. V.M. Neronov.

Hosts. Mus musculus, Gerbillus nanus, Nesokia indica.

Distribution. Iran (Darkhovin).

Microtrombicula similata Schluger and Amanguliev, 1972

Microtrotrombicula similata Schluger and Amanguliev, 1972: 44, fig. 1B. Eltonella similata: Kudryashova et al. 1978: 101, fig. 4. Microtrotrombicula similata: Kudryashova 1998: 87, fig. 49.

Diagnosis. SIF = 6B-N-3-2(3)111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx= 1.2.1; fSt=2.2; fSc: PL > AM > AL; fD=2H-6-6-4-4-4-2; DS = 30–32; VS = 45–50; NDV = 78–82; Ip=719–780; eyes 1 + 1; f_1 anterior to S_1 ; f_2 posterior to S_2 ; S_2 longer than S_1 . Measurements of two Iranian specimens: AW 53, 54, PW 55, 52, SB 21, 23, ASB 31, 27, PSB 23, 23, SD 54, 50, P-PL 14, 13, AP 27, 27, AM 37, 31, AL 25, 25, PL 45, 43, H 48, 41, D_{min} 31, 30, D_{max} 39, 38, V_{min} 22, 21, V_{max} 34, 30, pa 263, 277, pm 216, 229, pp 257, 263, Ip 736, 769, TaIIIL 74, 72, TaIIIW 14, 16

Type data. Holotype larva (ZMMU Tdt-2469, K-13) from *Meriones persicus*, Turkmenistan, Western Kopetdagh, Syunt-Khasardag Reserve, Yol Dere valley, 10 May 1969, coll. A.A. Amanguliev.

Material examined. Two larvae (ZMMU Tdt-371, I-358-3702; Tdt-382, No. 3702) from *M. persicus*, Iran, Mahdishahr, 1850 m a.s.l., 6–8 October 1970.

Host. Meriones persicus.

Distribution. Turkmenistan, Iran (Mahdishahr, Mashhad 2).

Microtrombicula subtilissima (Kudryashova, 1976)

Eltonella subtilissima Kudryashova, 1976c: 301, figs. 2, 3; Kudryashova *et al.* 1978: 105, fig. 6. *Microtrombicula subtilissima*: Kudryashova 2004: 33.

Diagnosis. SIF = 6B-B-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.2.1; fSt = 2.4; fSc: PL > AM > AL; fD = 2H-8-6-6-6-4-2; DS = 34; VS = 43; NDV = 77; Ip = 594–604; eyes 2 + 2; ST and pST absent; f_1 anterior to S_1 ; f_2 anterior to S_2 ; S_2 longer than S_1 . Measurements of holotype: AW 34, PW 36, SB 17, ASB 20, PSB 22, SD 42, P-PL 16, AP 19, AM 27, AL 20, PL 33, H 40, D_{min} 25, D_{max} 31, V_{min} 16, V_{max} 25, pa 209, pm 169, pp 202, Ip 580, TaIIIL 54, TaIIIW 13.

Type material examined. Holotype larva (ZMMU Tdt-367, I-373-2024) from *Calomyscus bailwardi*, Zarrin Shahr, 1440 m a.s.l., stony river terrace, 21 October 1969, coll. V.M. Neronov.

Host. Calomyscus bailwardi.

Distribution. Iran (Zarrin Shahr).

Microtrombicula tenera (Kudryashova, 1976)

Eltonella tenera Kudryashova, 1976c: 303, figs. 2, 3; Kudryashova *et al.* 1978: 106, fig. 7. *Microtrombicula tenera*: Kudryashova 2004: 34.

Diagnosis. SIF = 6B-B-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx= 1.2.1; fSt=2.4; fSc: PL > AM > AL; fD = 2H-8-6-6-4-2-2(4); DS = 30–32; VS = 31–42; NDV = 61–75; Ip = 608–633; eyes 2 + 2; ST and pST absent; genualae I proximal; f_1 anterior to S_1 ; f_2 slightly posterior to S_2 ; S_2 longer than S_1 . Measurements of type series (Kudryashova *et al.* 1978): AW 34–36, PW 36–42, SB 17, ASB 22–24, PSB 21–23, SD 43–46, AP 20–22, AM 28, AL 17–20, PL 31–34, S 42, H 34–36, D_{min} 22, D_{max} 28, V_{min} 14, V_{max} 28, pa 216–227, pm 182–190, pp 207–218. Measurements of holotype: AW 35, PW 40, SB 16, ASB 22, PSB 21, SD 43, P-PL 14, AP 21, AM 27, AL 19, PL 32, H 40, D_{min} 22, D_{max} 31, V_{min} 16, V_{max} 22, pa 225, pm 185, pp 207, Ip 617, TaIIIL 56, TaIIIW 13.

FIGURE 20. *Kepkatrombicula horti*, holotype. 1, scutum and eyes; 2, arrangement of dorsal idiosomal setae; 3, arrangement of ventral idiosomal setae. Scale bars: 50 μm (1), 100 μm (2, 3).

Type material examined. Holotype larva (ZMMU Tdt-356, I-376-4303) from *Meriones hurrianae*, Chabahar, 130 m a.s.l., 21 November 1970, coll. V.M. Neronov.

Hosts. Meriones hurrianae, Acomys dimidiatus.

Distribution. Iran (Chabahar).

Microtrombicula traubi (Muljarskaja and Verdieva, 1974)

Microtrombidium traubi Muljarskaja and Verdieva, 1974: 77, figs. 1–4. *Microtrombicula traubi* Kudryashova 1998: 88, fig. 50 *Eltonella grossa*: Kudryashova 1976c: 301, figs. 2, 3; Kudryashova *et al.* 1978: 109, fig. 8.

Diagnosis. SIF = 6B-B-3-3111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.2.1; fSt = 2.4; fSc: PL > AM > AL; fD = 2H-8-6-6-4-2-2(4); DS = 30–32; VS = 34–46; NDV = 64–78; Ip = 669–696; eyes 1 + 1; ST and pST absent; f_1 anterior to S_1 ; f_2 slightly posterior to S_2 . Measurements of *Eltonella grossa* type series (Kudryashova 1998): AW 38–42, PW 45–50, SB 17–20, ASB 24–25, PSB 20–22, SD 45–47, AP 20–22, AM 28–31, AL 20, PL 31–36, S 42, H 34–36, D_{min} 25, D_{max} 34, V_{min} 17, V_{max} 28, pa 232–249, pm 204–210, pp 230–238. Measurements of *Eltonella grossa* holotype: AW 40, PW 44, SB 19, ASB 20, PSB 23, SD 43, P-PL 18, AP 19, AM 30, AL –, PL 32, H 32, D_{min} 25, D_{max} 31, V_{min} 17, V_{max} 25, pa 221, pm 193, pp 227, Ip 641, TaIIIL 65, TaIIIW 11.

Type material examined. Holotype larva of *Eltonella grossa* (ZMMU Tdt-349, I-367-1122-26) from *Meriones crassus*, Hajiabad, 1900 m a.s.l., 20 August 1969, coll. V.M. Neronov.

Hosts. Allactaga williamsi, Meriones crassus, M. persicus, Mus musculus.

Distribution. Azerbaijan, Iran (Ajami, Hajiabad).

Miyatrombicula nikitini Kudryashova and Farang-Azad, 1976

Miyatrombicula nikitini Kudryashova and Farang-Azad, 1976: 926, fig.; Kudryashova et al. 1978: 94, fig. 2; Kudryashova 1998: 168, fig. 130.

Diagnosis. SIF = 7BS-N-3-3111.0000; fPp = B/N/NNB; fsp = 7.7.7; fCx= 1.1.1; fSt = 2.2; fSc: PL > AL = AM; fD = 2H-9-12-9-4-2 = 47; DS = 47; VS = 43; NDV = 90; Ip = 829; eyes 2 + 2; PL, dorsal and postanal ventral idiosomal setae lanceolate, with short barbs; f_1 anterior to S_1 ; f_2 at level or slightly posterior to S_2 . Measurements of holotype: AW 70, PW 86, SB 31, ASB 31, PSB 32, SD 63, P-PL 34, AP 24, AM 31, AL 29, PL 32, H 33, D_{min} 25, D_{max} 31, V_{min} 19, V_{max} 27, pa 254, pm 229, pp 266, Ip 749, TalIIL 77, TalIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-429, I-333-3318) from *Nesokia indica*, Shushtar, 250 m a.s.l., 9 September 1970, coll. A. Farang-Azad.

Host. Nesokia indica.

Distribution. Iran (Shushtar).

Remarks. Described from a single specimen.

Neotrombicula delijani Kudryashova, 1977

(Fig. 19)

Neotrombicula delijani Kudryashova, 1977: 57, fig. 8; Kudryashova *et al.* 1978: 133; Stekolnikov 1997: 533, fig. 2; 1998: 229; Stekolnikov & Daniel 2012: 43, fig. 28.

Neotrombicula alexandrae Stekolnikov, 1993: 289, figs. 1, 2.

Diagnosis. SIF = 7BS-N-3-3111.1000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 2H-6-6-6-6(4)-2(4)-(4); DS = 30; VS = 32; NDV = 62; Ip = 840–843; eyes 2 + 2; f_1 anterior to S_1 ; f_2 slightly posterior to S_2 . Measurements of holotype: AW 72, PW 91, SB 31, ASB 27, PSB 27, SD 54, P-PL 25, AP 28, AM 34, AL 32, PL 45, S 65, H 45, D_{min} 37, D_{max} 45, V_{min} 27, V_{max} 41, pa 272, pm 236, pp 286, Ip 794, TaIIIL 80, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-58, I-158-1787) from *Meriones persicus*, Delijan, edge of a garden on mountain slope, 14 October 1969, coll. V.M. Neronov.

Hosts. Apodemus agrarius, A. ponticus, A. uralensis, Chionomys gud, Ch. nivalis, Cricetulus migratorius, Meriones persicus, Talpa caucasica.

Distribution. Russia (Volgograd Province, Krasnodarskiy Krai, Adygea, Stavropolskiy Krai, North Ossetia, Dagestan), Turkey, Armenia, Turkmenistan, Iran (Delijan).

Neotrombicula faghihi Kudryashova, 1973 (Fig. 21)

Neotrombicula faghihi Kudryashova, 1973 in: Kudryashova et al. 1973a: 130, fig. 1; Kudryashova et al. 1978: 129. Neotrombicula (Iranotrombicula) faghihi: Stekolnikov 2000: 411.

Diagnosis. SIF = 7BS-N-3-2111.1000; fPp = B/B/NbB; fsp = 7.7.7; fCx = 1.1.2; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-8(9)-8-6(5)-4-4-2-(2); DS = 34–36; VS = 37–47; NDV = 71–81; Ip = 869–891; eyes 2 + 2; f_1 at level of S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 62–70, PW 78–87, SB 28, ASB 22–25, PSB 31–36, SD 56–61, AP 28–31, AM 28–31, AL 31–36, PL 45–50, H 48–53, D_{min} 34, D_{max} 48, V_{min} 17, V_{max} 42, pa 314–322, pm 255–274, pp 300–305. Measurements of holotype: AW 61, PW 74, SB 29, ASB 24, PSB 35, SD 59, P-PL 24, AP 30, AM 31, AL 35, PL 48, H 48, D_{min} 36, D_{max} 47, V_{min} 23, V_{max} 43, pa 293, pm 243, pp 288, Ip 824, TalIIL 83, TalIIW 15.

Type material examined. Holotype larva (ZMMU Tdt-60, I-57-2455) from *Tatera indica*, Chahar Taq, fields of alfalfa, 28 November 1969, coll. V.M. Neronov.

Hosts. Cricetulus migratorius, Tatera indica.

Distribution. Iran (Chahar Taq).

FIGURE 21. *Neotrombicula faghihi*, holotype. 1, scutum and eyes; 2, sensillum; 3, dorsal idiosomal seta of 1^{st} row. Scale bars: $50 \mu m$ (1, 2), $20 \mu m$ (3).

Neotrombicula heptneri Kudryashova, 1973

Neotrombicula heptneri Kudryashova, 1973 in Kudryashova et al. 1973a: 134, fig. 3; Kudryashova et al. 1978: 135; Stekolnikov & Kar 2015: 355.

Diagnosis. SIF = 7BS-N-3-3111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-6-8-2-4-(4)-2-(2); DS = 32–36; VS = 26–37; NDV= 60–69; Ip = 1019–1131; eyes 2 + 2; f_1 at level of S_1 ; f_2 posterior to S_2 . Measurements of holotype and paratype: AW 79, 81, PW 89, 93, SB 31, 30, ASB 34, 36, PSB 34, 34, SD 68, 70, P-PL 31, 32, AP 33, 33, AM 43, 44, AL 47, 44, PL 72, 75, S 76, 74, H 69, 71, D_{min} 49, 53, D_{max} 64, 68, V_{min} 35, 34, V_{max} 50,52, pa 414, 409, pm 353, 346, pp 401, 401, Ip 1168, 1156, TaIIIL 104, 101, TaIIIW 19, 18.

Type material examined. Holotype larva (ZMMU Tdt-33, I-65-2159) from *Meriones persicus*, Chehel Zar'i, 1570 m a.s.l., stony slopes of mountains, 26 October 1969, coll. V.M. Neronov; one paratype larva (ZMMU Tdt-34, I-64-2524) from *Meriones lybicus*, Fesa, 1130 m a.s.l., 30 November 1969, coll. V.M. Neronov.

Hosts. Capra hircus, Meriones libycus, M. persicus, Tatera indica.

Distribution. Iran (Chahar Taq, Chehel Zar'i, Kerman, Mahdishahr), Turkey.

Remarks. Measurements in the original description of this species (Kudryashova *et al.* 1973a) are systematically smaller than our measurements of type specimens (Stekolnikov & Kar 2015). However, in her later work Kudryashova replaced the table of measurements for *N. heptneri* with other values (Kudryashova *et al.* 1978), which do not significantly differ from our results.

Neotrombicula heterotrichia Vercammen-Grandjean, Rohde and Mesghali, 1970

Neotrombicula (Neotrombicula) heterotrichia Vercammen-Grandjean, Rohde and Mesghali, 1970: 774 (synonymy), 776 (description), fig. 1.

Diagnosis. SIF = 7BS-N-3-2111.1000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-4-6-4-2-4-2; DS = 30; VS = 22; NDV= 52; Ip = 922–946; eyes 2 + 2; scutum with anterolateral shoulders and biconvex posterior margin; flagelliform sensilla with 8–11 branches in distal half; f_1 anterior to S_1 ; f_2 near and slightly posterior to S_2 . Measurements of 4 type specimens (Vercammen-Grandjean *et al.* 1970): AW 71–76, PW 82–89, SB 28–29, ASB 32, PSB 23–26, SD 55–58, AP 25–27, AM 33–41, AL 45–48, PL 52–59, S 86–89, H 54–59, D_{min} 38–39, D_{max} 50–54, V_{min} 36–38, V_{max} 40–42, pa 322–328, pm 276–282, pp 324–340, Ip 922–946.

Type material examined. Holotype larva (IUMS) from *Galerida cristata*, Isfahan, 10 April 1967, coll. C.J. Rohde.

Hosts. Galerida cristata, Lepus europaeus.

Distribution. Iran (Bandar Abbas, Isfahan).

Neotrombicula kermani Kudryashova, 1977

Neotrombicula kermani Kudryashova, 1977: 52, fig. 4; Kudryashova et al. 1978: 130.

Diagnosis. SIF = 7BS-B-3-3111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-8-10-8(9)-6-6(4)-2(4); DS = 42–43; VS = 47–49; NDV = 91–92; Ip = 969–1005; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 76–81, PW 95–104, SB 34–36, ASB 34–36, PSB 28–32, SD 62–67, AP 31–34, AM 39–42, AL 48, PL 62–73, S 81, H 64–73, D_{min} 42–50, D_{max} 56–62, V_{min} 31, V_{max} 50–53, pa 333–342, pm 294–305, pp 339–361. Measurements of holotype: AW 79, PW 99, SB 34, ASB 36, PSB 32, SD 68, P-PL 29, AP 33, AM 40, AL 46, PL 65, H 71, D_{min} 52, D_{max} 65, V_{min} 34, V_{max} 52, pa 297, pm 247, pp 315, Ip 859.

Type material examined. Holotype larva (ZMMU Tdt-54, I-146-4481) from *Meriones persicus*, Kerman, 2220 m a.s.l., 11 December 1970, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Kerman).

Neotrombicula mofidii Kudryashova, 1973 in Kudryashova *et al.* 1973a: 132, fig. 2; Kudryashova *et al.* 1978: 134. *Neotrombicula (Neotrombicula) mofidi* (sic): Kudryashova 1998: 210.

Neotrombicula (Iranotrombicula) mofidi (sic): Stekolnikov 2000: 411.

Neotrombicula mofidi (sic): Kudryashova 2004: 26.

FIGURE 22. *Neotrombicula mofidii*, holotype. 1, scutum and eyes; 2, arrangement of dorsal idiosomal setae; 3, arrangement of ventral idiosomal setae. Scale bars: 50 μm (1), 100 μm (2, 3).

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-6(7)-6-4(6)-4-2-(2); DS = 30–34; VS = 30–42; NDV = 60–73; Ip = 813–863; eyes 2 + 2; f_1 at level of S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 59–64, PW 78–84, SB 25–28, ASB 22–28, PSB 31–39, SD 56–62, AP 28–31, AM 20–28, AL 28–34, PL 42–48, S 56–62, H 39–45, D_{min} 31, D_{max} 42, V_{min} 20, V_{max} 36, pa 283–300, pm 244–258, pp 283–308. Measurements of holotype: AW 63, PW 79, SB 27, ASB 25, PSB 34, SD 59, P-PL 27, AP 31, AM 27, AL 31, PL 40, S 58, H 41, D_{min} 33, D_{max} 43, V_{min} 28, V_{max} 34, pa 290, pm 248, pp 284, Ip 822, TalIIL 85, TalIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-66, I-76-1786) from *Meriones persicus*, Delijan, 1600 m a.s.l., 14 October 1969, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Azerbaijan, Iran (Delijan).

Neotrombicula nivalis Kudryashova, 1977

Neotrombicula nivalis Kudryashova, 1977: 52, fig. 5; Kudryashova et al. 1978: 131; Stekolnikov 1997: 540.

Diagnosis. SIF = 7BS-N-3-3111.1000; fPp = B/B/NBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-6-6-4-6-4-2; DS = 30; VS = 31–36; NDV = 61–66; Ip = 938–991; eyes 2 + 2; f_1 slightly anterior to S_1 ; f_2 far posterior to S_2 . Measurements of two paratypes: AW 76, 74, PW 86, 86, SB 28, 29, ASB 31, 30, PSB 27, 29, SD 58, 59, P-PL 23, 20, AP 29, 32, AM 36, –, AL 41, 45, PL 61, 63, H 54, 59, D_{min} 45, 45, D_{max} 54, 54, V_{min} 32, 39, V_{max} 48, 54, pa 322, 310, pm 263, 265, pp 328, 320, Ip 913, 895, TaIIIL 92, 94, TaIIIW 20, 16.

Type material examined. Holotype larva (ZMMU Tdt-98, I-395-3842-43, not suitable for examination) from *Chionomys* sp., Mashhad 2, 1100 m a.s.l., 15–19 October 1970; two paratype larvae (ZMMU Tdt-100, I-397-3842-43; Tdt-99, I-396-3842-43) with same data.

Hosts. Chionomys sp., Cricetulus migratorius.

Distribution. Iran (Mashhad 2).

Neotrombicula rara Kudryashova, 1977

Neotrombicula rara Kudryashova, 1977: 54, fig. 6; Kudryashova et al. 1978: 132.

Diagnosis. SIF = 7BS-N-3-3111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-8(9)-8-8-8-6(4)-4(2)-2; DS = 43–46; VS = 46–50; NDV = 91–93; Ip = 969–999; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 73–81, PW 87–95, SB 31–34, ASB 28–31, PSB 25–28, SD 56–59, AP 28–31, AM 34–39, AL 36–42, PL 50–56, H 53–59, D_{min} 36–39, D_{max} 50–56, V_{min} 28, V_{max} 36–42, pa 339–347, pm 286–302, pp 342–350. Measurements of paratype: AW 76, PW 93, SB 34, ASB 31, PSB 28, SD 59, P-PL 25, AP 31, AM 34, AL 36, PL 52, H 52, D_{min} 43, D_{max} 52, V_{min} 29, V_{max} 43, pa 331, pm 284, pp 281, Ip 896, TaIIIL 94, TaIIIW 16.

Type material examined. Holotype larva (ZMMU Tdt-85, I-150-3678, not suitable for examination) from *Meriones persicus*, Mahdishahr, 1850 m a.s.l., 6–8 October 1970, coll. V.M. Neronov; paratype larva (ZMMU Tdt-86, I-152-3696) with same data.

Hosts. Meriones persicus, Calomyscus sp.

Distribution. Iran (Mahdishahr).

Neotrombicula rostrata Muljarskaja, 1973

(Fig. 23)

Neotrombicula rostrata Muljarskaja, 1973: 312, fig. 1; Kudryashova *et al.* 1978: 137, fig. 15. *Neotrombicula (Neotrombicula) rostrata*: Kudryashova 1998: 212, fig. 172.

Diagnosis. SIF = 7BS-N-3-3111.0000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: AM ≥ PL > AL; fD = 2H-8-8-2-8-6-4-2; DS = 38–44; VS = 37–44; NDV = 78; Ip = 767–841; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of 11 Iranian specimens (Kudryashova 1998): AW 73–84, PW 95–101, SB 34–39, ASB 28–34, PSB 25–31, SD 56–62, AP 28–31, AM 62–70, AL 42–50, PL 62–73, S 84–87, H 59–70, D_{min} 48, D_{max} 67, V_{min} 31, V_{max} 56, pa 249–274, pm 238–263, pp 280–305. Measurements of paratype: AW 75, PW 95, SB 33, ASB 30, PSB 29, SD 59, P-PL 31, AP 26, AM 63, AL 49, PL 65, H 65, D_{min} 48, D_{max} 56, V_{min} 35, V_{max} 49, pa 263, pm 247, pp 284, Ip 794, TaIIIL 70, TaIIIW 22.

Type material examined. Paratype larva (ZMMU Tdt-2773, N-55895) from *Crocidura russula*, Azerbaijan, Archivan village, 5 March 1965, coll. N.V. Chirkova.

Additional material examined. One larva (ZMMU Tdt-97) from *Apodemus sylvaticus*, Iran, 15 km E Chalus, deciduous forests along the Caspian Sea shore, 13 June 1969, coll. V.M. Neronov).

Hosts. Apodemus sylvaticus, A. uralensis, Crocidura russula, Microtus schelkovnikovi, M. socialis. **Distribution.** Azerbaijan, Iran (Chalus).

FIGURE 23. Neotrombicula rostrata. 1, scutum and eyes; 2, dorsal idiosomal seta of 1st row. Scale bars: 50 μm (1), 20 μm (2).

Neotrombicula sabzavari Kudryashova, 1977 (Fig. 24)

Neotrombicula sabzavari Kudryashova, 1977: 50, fig. 3; Kudryashova *et al.* 1978: 50, fig. 3. *Neotrombicula (Iranotrombicula) sabzavari*: Stekolnikov 2000: 411.

Diagnosis. SIF=7BS-B-3-2111.1000; fPp = B/B/BBB; fsp = 7.7.7; fCx = 1.1.2; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-7(8)-8-8(9)-6(8)-4(6)-2(6)-(4-6); DS = 44-52; VS = 40-54; NDV = 84-108; Ip = 873-907; eyes 2 + 2; f_1 at level of S_1 ; f_2 posterior to S_2 ; mastitarsala with 2-3 cilia in basal part. Measurements of type series (Kudryashova *et al.* 1978): AW 62-67, PW 81-84, SB 22-26, ASB 24-25, PSB 28-29, SD 53, AP 28, AM 28, AL 31-34, PL 48-50, S 64-70, H 45-48, D_{min} 31-34, D_{max} 42-45, V_{min} 25, V_{max} 34, pa 308-319, pm 260-272, pp 305-316. Measurements of holotype: AW 65, PW 81, SB 24, ASB 24, PSB 27, SD 51, P-PL 23, AP 27, AM 26, AL 27, PL 46, S 63, H 46, D_{min} 29, D_{max} 41, V_{min} 25, V_{max} 37, pa 279, pm 232, pp 279, Ip 790, TaIIIL 83.

FIGURE 24. *Neotrombicula sabzavari*, paratype. 1, scutum and eyes; 2, dorsal idiosomal seta of 1st row; 3, arrangement of dorsal idiosomal setae; 4, arrangement of ventral idiosomal setae. Scale bars: 50 μm (1), 20 μm (2), 100 μm (3, 4).

Type material examined. Holotype larva (ZMMU Tdt-91, I-391-3755) from *Meriones libycus*, Kabudan, 1200 m a.s.l., 9–14 October 1970, coll. V.M. Neronov; paratype larva (ZMMU I-389-3757) with same data.

Host. Meriones libycus.

Distribution. Iran (Kabudan).

Neotrombicula talmiensis (Schluger, 1955)

Trombicula talmiensis Schluger, 1955: 212, fig. 359. *Neotrombicula talmiensis*: Kudryashova *et al.* 1978: 139; Stekolnikov 1996: 380, fig. 1; 2001a: 506. *Neotrombicula (Neotrombicula) talmiensis*: Kudryashova 1998: 185, fig. 143.

Diagnosis. SIF = 7BS-B-3-3111.1000; fPp = B/B/N(B)BB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM ≥ AL; fD = 2H-8-6-6-4-6-2, 2H-6-6-6-4-4-2; DS = 30–36; VS = 27–36; NDV = 59–70; Ip = 835–929; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements of 14 Iranian specimens (Stekolnikov 2001a): AW 69–78, PW 84–92, SB 30–34, ASB 29–36, PSB 23–29, SD 52–63, P-PL 25–31, AP 23–29, AM 43–48, AL 40–47, PL 61–68, H 59–69, D_{min} 43–49, D_{max} 54–60, Ip 877–981, TaIIIL 79–90.

Type data. Syntypes larvae (ZMMU), Russia, Primorsky Krai, Talmi Lake.

Hosts. Rodents, soricomorphs, birds; occasionally on humans and dogs.

Distribution. Eurasia, from Italia to Korea. Localities in Iran: Behbahan, Kazerun 2, Urmia, Zarrin Shahr.

Neotrombicula valenti Kudryashova, 1973 (Fig. 25)

Neotrombicula valenti Kudryashova, 1973 in Kudryashova et al. 1973a: 134, fig. 4; Kudryashova et al. 1978: 136.

Diagnosis. SIF = 7BS-N-3-3111.1000; fPp = B/B/NBB; fsp = 7.7.7; fCx = 1.2.2; fSt = 2.2; fSc: PL > AL > AM; fD = 2H-14(11-13)-10(11-12)-12(10-14)...; DS = 47-61; VS = 40-58; NDV = 97-115; Ip = 1158-1241; eyes 2 + 2; f_1 slightly anterior to S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 79–83, PW 89–99, SB 30–33, ASB 39–43, PSB 30–36, SD 73–76, AP 30–36, AM 40–50, AL 50–56, PL 63–73, S 82–96, H 63–76, D_{min} 40, D_{max} 66, V_{min} 30, V_{max} 50, pa 403–436, pm 353–380, pp 403–432. Measurements of holotype: AW 80, PW 90, SB 32, ASB 38, PSB 32, SD 70, P-PL 31, AP 31, AM 44, AL 50, PL 67, S 95, H 68, D_{min} 44, D_{max} 58, V_{min} 34, V_{max} 53, pa 398, pm 344, pp 398, Ip 1140, TaIIIL 124, TaIIIW 22.

Type material examined. Holotype larva (ZMMU Tdt-104, I-47-2497) from *Meriones lybicus*, Chahar Taq, 1000–1500 m a.s.l., sandy terraces with bush of tamarisk and stones along the river; alfalfa fields, 30 November 1969, coll. V.M. Neronov; paratype larva (I-51-2524) with same data.

Hosts. Cricetulus migratorius, Gerbillus nanus, Meriones libycus, M. persicus, Mus musculus.

Distribution. Iran (Chahar Taq, Kerman).

Neotrombicula valeri Kudryashova, 1977 (Fig. 26)

Neotrombicula valeri Kudryashova, 1977: 47, fig. 1; Kudryashova et al. 1978: 125.

Diagnosis. SIF = 7BS-N-3-2(3)111.1000; fPp = B/B/NbB; fSp = 7.7.7; fCx = 1.1.1(2); fSt = 2.2; fSc: PL > AL > AM; fD = 2H-8-4-10-11-6-5; DS = 46–58; VS = 44–51; NDV = 93–110; Ip = 984–1042; eyes 2 + 2; f_1 at level or slightly anterior to S_1 ; f_2 posterior to S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 73–81, PW 95–105, SB 31–35, ASB 31–34, PSB 30–36, SD 62–67, AP 30–34, AM 36–39, AL 42, PL 56–62, S 84, H 56–59, D_{min} 36, D_{max} 56, V_{min} 28, V_{max} 48, pa 342–367, pm 291–316, pp 342–372. Measurements of holotype: AW 74, PW 95, SB 32, ASB 29, PSB 33, SD 62, P-PL 32, AP 30, AM 36, AL 40, PL 57, S 85, H 55, D_{min} 41, D_{max} 49, V_{min} 28, V_{max} 54, pa 315, pm 263, pp 310, Ip 888, TaIIIL 92, TaIIIW 16.

Type material examined. Holotype larva (ZMMU Tdt-129, I-160-3842-43) from *Chionomys nivalis*, Mashhad 2, 1100 m a.s.l., 15–19 October 1970, coll. V.M. Neronov.

Hosts. Apodemus sylvaticus, Chionomys nivalis, Cricetulus migratorius.

Distribution. Iran (Mashhad 2).

FIGURE 25. *Neotrombicula valenti*, paratype. 1, scutum and eyes; 2, arrangement of dorsal idiosomal setae; 3, arrangement of ventral idiosomal setae. Scale bars: 50 μm (1), 100 μm (2, 3).

FIGURE 26. *Neotrombicula valeri*, holotype. 1, scutum and eyes; 2, dorsal idiosomal seta of 1^{st} row. Scale bars: 50 μ m (1), 20 μ m (2).

Neotrombicula vulgaris (Schluger, 1955)

Trombicula vulgaris Schluger, 1955: 213, fig. 362.

Neotrombicula vulgaris: Kudryashova et al. 1978: 126, fig. 14; Stekolnikov 1999: 389.

Neotrombicula (Neotrombicula) vulgaris: Kudryashova 1998: 203, fig. 161.

Diagnosis. SIF = 7BS-N-3-3111.1000; fPp = B/B/NNB; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL > AM > AL; fD = 4H-8(10)-10(13)-8(9)-8(7)-4-6; DS = 43–63; VS = 24–37; NDV = 72–95; Ip = 725–916; eyes 2 + 2; f_1 anterior to S_1 ; f_2 posterior to S_2 . Measurements (Stekolnikov 1999): AW 72–86, PW 90–104, SB 31–40, ASB 26–32, PSB 25–32, SD 54–63, P-PL 21–31, AP 25–34, AM 40–57, AL 38–49, PL 47–68, S 68–90, H 47–67, D_{min} 37, D_{max} 63, V_{min} 25, V_{max} 61, pa 241–326, pm 220–281, pp 256–324, Ip 725–916, TaIIIL 58–83, TaIIIW 14–18.

Type data. Syntypes larvae (ZMMU Tdt-2356-2359), Russia, Stavropol Krai, Alexandrovskoe Village, coll. V.P. Petrov.

Hosts. Twelve species of rodents (Stekolnikov, 1999).

Distribution. Hungary, Bulgaria, Moldova, Ukraine, Poland, Russia (Stavropol Krai, Krasnodar Krai, North Ossetia), Georgia, Azerbaijan, Turkey, Iran (Mashhad 2), Turkmenistan, Israel, China (dubious record).

Otorhinophila deserta Kudryashova, Neronov and Mobedi, 1972 (Fig. 14)

Otorhinophila (Danielia) deserta Kudryashova, Neronov and Mobedi, 1972: 1078, fig. 1; Kudryashova et al. 1978: 96.

Diagnosis. SIF = 5B-B-3-2111.0000; fPp = B/B/BBB; fsp = 7.7.7; fSt = 2.6(5-7); fCx = 1.1.6(5-8); fSc: PL > AM

 \geq AL; fD = 6H-5-8-8-6-7-10-4-9-12-8-6-6; DS =94–112; VS = 62–84; NDV=169; Ip = 1003–1062; eyes 1 + 1; PLs extrascutal; pST absent; 2 tibialae I and microtibiala apical; f₁ slightly posterior to S₁; 2 tibialae II apical; f₂ at level of S₂. Measurements of type series (Kudryashova *et al.* 1978): AW 59–66, SB 36–40, ASB 33–36, PSB 13–20, SD 46–53, AM 30–36, AL 23–33, PL 36–43, S 56–76, H 35–40, D_{min} 23, D_{max} 33, V_{min} 20, V_{max} 33, pa 346–373, pm 304–327, pp 350–376. Measurements of holotype: AW 62, PW 90, SB 38, ASB 32, PSB 20, SD 52, P-PL 16, AP 33, AM 36, AL 26, PL 37, H 36, D_{min} 23, D_{max} 36, V_{min} 22, V_{max} 32, pa 351, pm 311, pp 356, Ip 1018, TaIIIL 101, TaIIIW 22.

Type material examined. Holotype larva (ZMMU Tdt-18, I-17-2134) from *Meriones persicus*, Chehel Zar'i, 1570 m a.s.l. (stony slopes of mountains), 26 October 1969, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Behbahan, Chehel Zar'i).

Otorhinophila farhangazadi Kudryashova, Neronov and Mobedi, 1972

Otorhinophila (Danielia) farhangazadi Kudryashova, Neronov and Mobedi, 1972: 1080, fig. 2; Kudryashova et al. 1978: 97.

Diagnosis. SIF = 5B-B-3-2110.0000; fPp = B/B/BBB; fsp = 7.7.7; fSt=2.4(5); fCx = 1.1.5(4–7); fSc: PL > AM > AL; fD = 4H-4-8-6-6-10-10-6-4-6; DS = 56–67; VS = 50–65; NDV=114; Ip = 911–977; eyes 1 + 1; PLs extrascutal; ST and pST absent; f_1 slightly posterior to S_1 ; f_2 at level of S_2 . Measurements of type series (Kudryashova *et al.* 1978): AW 46–56, SB 26–33, ASB 30–33, PSB 13–17, SD 43–46, AM 30–33, AL 23–26, PL 33–43, S 56–73, H 33–40, D_{min} 23, D_{max} 36, V_{min} 16, V_{max} 30, pa 310–347, pm 274–294, pp 310–337. Measurements of holotype: AW 49, PW 68, SB 28, ASB 29, PSB 15, SD 44, P-PL 11, AP 29, AM 29, AL 23, PL 34, H 38, D_{min} 29, D_{max} 38, V_{min} 19, V_{max} 42, pa 299, pm 257, pp 317, Ip 873, TaIIIL 97, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-1, I-28-2444) from *Meriones persicus*, Behbahan, 320 m a.s.l., slope near the river bank with single trees and stones, 20 November 1969, coll. V.M. Neronov.

Host. Meriones persicus.

Distribution. Iran (Behbahan, Borazjan, Chahar Taq).

Pentidionis agamae (Andr, 1929)

Thrombicula agamae André, 1929: 402, figs. 1-2.

Thrombicula (Eutrombicula) agamae, Thor & Willmann 1947: 286.

Trombicula (Trombicula) agamae, Wharton & Fuller 1952: 62.

Hexidionis (Pentidionis) agamae, Vercammen-Grandjean & Loomis 1967: 140; Vercammen-Grandjean et al. 1970: 774 (synonymy), fig. 2.

Pentidionis agamae, Lucas & Loomis 1968: 233.

Diagnosis. SIF = 7B-B-3-3111.1000; fPp = B/B/NBB; fsp = 7.7.7; fSt=2.4; fCx = 1.1.1; fSc: PL ≥ AM > AL; fD = 4H-8-6-6-4-4-4; DS = 34; VS = 32; NDV = 66; Ip = 900–958; eyes 2 + 2; scutum with prominent rounded posterior margin, flagelliform sensilla branched in distal half; pST nude or branched; 2 basal and 1 distal genualae I; f_1 anterior to S_1 ; f_2 anterior to apically inflated S_2 ; onychotriches present; mastitarsala ciliated. Measurements of Israeli and Iranian specimens (Vercammen-Grandjean *et al.* 1970): AW 55–57, PW 66–68, SB 19–21, ASB 21–23, PSB 19–23, SD 40–46, AP 14–17, AM 28–30, AL 19–24, PL 30–34, S 60–66, H 32–35, D_{min} 21–27, D_{max} 31–35, V_{min} 23–29, V_{max} 27–32, pa 306–324, pm 272–294, pp 322–340, Ip 900–958.

Type data. Holotype larva in Muséum national d'Histoire naturelle, Paris, France (Wharton & Fuller 1952). **Hosts.** *Agama stellio* (type host), *Agama* sp.

Distribution. Israel, Iran (Kazerun).

Willmannium aelleni (Vercammen-Grandjean, 1963)

Leptotrombidium (Cotrombidium) aelleni Vercammen-Grandjean, 1963: 585, Pl. 1.

Toritrombicula (Cotrombidium) aelleni: Vercammen-Grandjean & Langston 1971: 448.

Chiroptella (Willmannium) aelleni: Vercammen-Grandjean & Langston 1976: 906, Pl. 252.

Willmannium aelleni: Kudryashova 1992: 35, fig. 2; 1998: 141, fig. 101.

Chiroptella (Oudemansidium) mozdorani Kudryashova, 1975: 1563, fig. 2; Kudryashova et al. 1978: 123, fig. 13.

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = N/N/NNN; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL ≥ AM > AL; fD = 2H-10(9)-2-8(6)-2(3)-8(7)-7(4)-6(4)-2-2(4); DS = 44–55; VS = 46–51; NDV = 90–104; Ip = 966–1027; eyes 2 + 2; f_1 anterior to S_1 ; f_2 anterior or posterior to S_2 . Measurements of *Chiroptella mozdorani* type series (Kudryashova *et al.* 1978): AW 62–64, PW 70–73, SB 27–28, ASB 31–34, PSB 11, SD 42–45, AP 34, AM 45–48, AL 34–36, PL 45–50, S 70, H 42–48, D_{min} 31, D_{max} 50, V_{min} 20, V_{max} 42, pa 342–356, pm 311–319, pp 333–350. Measurements of *Chiroptella mozdorani* holotype: AW 63, PW 71, SB 26, ASB 34, PSB 13, SD 47, P-PL 6, AP 35, AM 49, AL 38, PL 54, H 49, D_{min} 31, D_{max} 50, V_{min} 25, V_{max} 45, pa 340, pm 311, pp 333, Ip 984, TaIIIL 97, TaIIIW 18.

Type data. Holotype larva of Leptotrombidium aelleni (Lund Museum of Zoology, Sweden).

Type material examined. Holotype larva of *Chiroptella (Oudemansidium) mozdorani* (ZMMU Tdt-703, I-42-1027-30) from *Rhinolophus ferrumequinum*, Mozsdooran cave, 1400 m a.s.l., 29 July 1969, coll. V.M. Neronov.

Hosts. Barbastella leucomelas, Myotis blythii, Rhinolophus ferrumequinum.

Distribution. Afghanistan, Iran (Mozdooran cave), Kyrgyzstan.

Willmannium cavus iraniensis Kudryashova, 1992

Willmannium cavus iraniensis Kudryashova, 1992: 43, fig. 6 (1–4); 1998: 146, fig. 106. Chiroptella (Oudemansidium) aelleni: Kudryashova et al. 1978: 122, fig. 12 (misidentification).

Diagnosis. SIF = 7BS-B-3-2111.0000; fPp = N/N/NNN; fsp = 7.7.7; fCx = 1.1.1; fSt = 2.2; fSc: PL ≥ AM > AL; fD = 2H-[8-3]-[7-1]-8-[6-1]-5-4, DS = 45; VS = 38; NDV = 83; Ip = 896–923; eyes 2 + 2; f_1 anterior to S_1 ; f_2 slightly anterior to S_2 . Measurements of holotype: AW 61, PW 76, SB 27, ASB 31, PSB 16, SD 47, P-PL 7, AP 35, AM 41, AL 33, PL 47, H 48, D_{min} 30, D_{max} 45, V_{min} 23, V_{max} 43, pa 292, pm 256, pp 295, Ip 843, TaIIIL 86, TaIIIW 14.

Type material examined. Holotype larva (ZMMU Tdt-713, I-40-704) from *Eptesicus bottae ognevi*, Chelmir, above a brook in the mountain gorge, 1000 m a.s.l., 16 July 1969, coll. V.M. Neronov.

Host. Eptesicus bottae ognevi.

Distribution. Iran (Chelmir).

Bias between our and original measurements

A direct comparison of our measurements of holotypes with those from original descriptions published by Kudryashova shows that usually the difference constitutes a few micrometres for all metric variables except the legs' lengths—the latter are significantly larger for Kudryashova's data in most cases (Supplement). The Sign test (Table 2) and the Wilcoxon Matched Pairs test (Table 3) statistically confirm that observation. While the difference between all measurements of legs (pa, pm, pp, Ip) is significant at high level of confidence according both tests, only a few other variables reveal a statistically significant (or at least close to the threshold value of confidence) dissimilarity. Therefore, the supposition of a systematic bias between our and Kudryashova's metric data (for example, due to an inappropriate calibration of the ocular micrometer) is not confirmed. Note that original measurements of *Neotrombicula heptneri* were systematically lesser as compared with the new ones (Stekolnikov & Kar 2015), probably, due to an accidental error, since they were corrected later (Kudryashova *et al.* 1978).

The statistically significant discrepancies in the values of some variables, including legs' lengths, can be explained by peculiar properties in the mode of measuring performed by two researchers (Kudryashova and Stekolnikov) for several morphological structures. In the case of legs' lengths, the difference could be caused by inclusion or exclusion of the proximal part of coxa, tip of tarsus, and claws, and by unequal way of the taking into account the leg's curvature (Fig. 27). Although that difference is rather big, statistically significant, and could be estimated as systematic, its range is highly variable—so that there are six cases when legs' lengths after

Stekolnikov are longer than those after Kudryashova (Fig. 28). Therefore, we cannot recommend using a correction coefficient to fix that bias. However, the fact of that discrepancy should be taken into account during chigger studies to estimate the taxonomic significance of the data on legs' lengths.

FIGURE 27. Mode of leg measuring. 1, after Kudryashova (1998, Fig. 4); 2, after Stekolnikov (2013, Fig. 2).

FIGURE 28. Histogram of the odds between sums of legs' lengths (Ip) for holotypes.

TABLE 2. Sign test for the difference between holotypes' measurements.

Variable	No. of Non-ties	Percent v < V	Z	p-value
AW	36	50.00	-0.1667	0.867632
PW	35	65.71	1.6903	0.090969
SB	32	75.00	2.6517	0.008010
ASB	35	65.71	1.6903	0.090969
PSB	39	38.46	1.2810	0.200185
SD	37	56.76	0.6576	0.510798
AP	32	37.50	1.2374	0.215925
AM	32	40.63	0.8839	0.376759
AL	36	61.11	1.1667	0.243345
PL	36	58.33	0.8333	0.404657
S	12	33.33	0.8660	0.386476
Н	33	45.45	0.3482	0.727724
D_{min}	36	33.33	1.8333	0.066753
D_{max}	37	35.14	1.6440	0.100178
V_{min}	35	34.29	1.6903	0.090969
V_{max}	38	36.84	1.4600	0.144292
pa	43	79.07	3.6600	0.000252
pm	41	87.80	4.6852	0.000003
pp	43	86.05	4.5750	0.000005
Ip	43	86.05	4.5750	0.000005

Note: Tests significant at p < 0.05 are marked in bold.

Discussion

Considering a large variety of natural conditions in Iran, we must note that 85 chigger species recorded hitherto cannot exhaust the Iranian fauna of these mites. Previous investigations were based mainly on the materials collected from rodents (Kudryashova *et al.* 1978). Only one work covered bird chiggers and also reported a single case of chigger association with a reptile host (Vercammen-Grandjean *et al.* 1970). Iranian bat chiggers are represented by two species of the bat-infesting genus *Willmannium (W. aelleni* and *W. cavus iraniensis)* and one species of the bat-infesting genus *Chiroptella (C. vavilovi)*. Moreover, *Schoutedenichia chilmirica* was described from a single specimen collected on the common pipistrelle and *Neoschoengastia elegans* was occasionally found on the trident leaf-nosed bat. Although coverage of the Iranian territory by collection localities is relatively good, it could not be regarded as comprehensive (Fig. 29). Moreover, some natural areas were omitted during collections, for example, high mountain territories. The maximal altitude, where chigger mites were found in Iran, was 2200 m a.s.l., while that country has enough number of peaks and mountain ranges higher than 3000 m. a.s.l. As regards the seasonal aspect of chigger fauna, the collections made by Neronov and Farang-Azad have been carried out from the end of May to December; thus, the spring peak of chigger abundance was missed out (Kudryashova *et al.* 1978).

The fauna of Iranian trombiculids includes representatives of all four subfamilies—Trombiculinae, Leeuwenhoekiinae, Gahrliepiinae, and Apoloniinae—though the last one is represented by a single species. The most speciose chigger genera in Iran are *Neotrombicula* (14 species) and *Microtrombicula* (9 species). According to observations of Kudryashova *et al.* (1978), the highest chigger species diversity in Iran was revealed in mountain steppes (44 species). Tropical deserts, extratropical deserts, and forests are inhabited, respectively, by 10, 3, and 4 trombiculid species, and only one species (*Microtrombicula potamophila*) was found in large river valleys covered by specific tugai vegetation.

FIGURE 29. Map of collection sites.

The above mentioned authors estimated the rate of Iranian endemics among chigger species as exceeded 80%; we suppose that this number will decrease significantly after more extensive faunistic studies. Our calculation gives 61 species, i.e. 72% of all Iranian chiggers, currently known exclusively in Iran. Among the rest 24 species, the largest group consists of 15 trombiculids with ranges extending in western direction—to Asia Minor, Levant, Caucasus, Transcaucasia, Southern and Eastern Europe. Six of them (*Helenicula lukshumiae, Schoutedenichia montchadskyi, Microtrombicula azerbaidjanica, M. traubi, Neotrombicula mofidii,* and *N. rostrata*) were recorded only in Iran and neighbouring Azerbaijan, sometimes also in Armenia, and nine (*Walchia cognata, Brunehaldia iranica, Schoutedenichia anatolica, Hirsutiella llogorensis, Leptotrombidium silvaticum, Neotrombicula delijani, N. heptneri, N. vulgaris,* and *Pentidionis agamae*) were found in more distant regions, sometimes in addition to bordering Azerbaijan or Turkmenistan. Taking into account that chigger fauna of Arabian Peninsula and Mesopotamia is almost unexplored at present, size of this group can increase due to possible finding of Iranian species there.

The group of species with ranges probably extending to Central Asia, i.e. east and north of Iran, includes *Brunehaldia schmuteri, Euschoengastia meshhedensis, Helenicula sparsa*, and *Willmannium aelleni*. Two species, *Susa vorax* and *Microtrombicula similata*, were found in Iran and neighbouring Turkmenistan only. The range of *Ericotrombidium jayewickremei* includes, in addition to Iran, South Asian countries, and *Helenicula kohlsi* was recorded in Southeastern and South Asia. One species, *Neotrombicula talmiensis*, has a very wide Eurasian areal.

TABLE 3. Wilcoxon Matched Pairs test for the difference between holotypes' measurements.

Variable	Valid N	T	Z	p-value
AW	36	284.00	0.7698	0.441408
PW	35	175.00	2.2931	0.021844
SB	32	142.50	2.2719	0.023092
ASB	35	251.50	1.0401	0.298306
PSB	39	237.50	2.1281	0.033326
SD	37	336.00	0.2338	0.815111
AP	32	191.50	1.3557	0.175204
AM	32	242.00	0.4114	0.680797
AL	36	210.00	1.9324	0.053311
PL	36	217.50	1.8146	0.069591
S	12	35.00	0.3138	0.753684
Н	33	247.00	0.5986	0.549459
D_{min}	36	162.00	2.6865	0.007221
D_{max}	37	230.00	1.8330	0.066806
V_{min}	35	158.00	2.5715	0.010126
V_{max}	38	258.50	1.6243	0.104322
pa	43	127.00	4.1779	0.000029
pm	41	56.00	4.8529	0.000001
pp	43	124.00	4.2142	0.000025
Ip	43	91.00	4.6126	0.000004

Note: Variables were log-transformed. Tests significant at p < 0.05 are marked in bold.

Acknowledgements

We express our gratitude to Drs O.V. Voltzit and N.I. Kudryashova (Zoological Museum of Moscow University, Russia) who organized our access to the Museum collection. We are grateful to Dr Joanna Mąkol (Wrocław University of Environmental and Life Sciences, Wrocław, Poland) for her careful review of our manuscript and valuable comments. This research was supported by a grant from the Russian Foundation for Basic Research No. 17-54-560013 Iran a and Iranian National Science Foundation (Grant No. 96003653).

References

André, M. (1929) Nouvelle forme larvaire de *Thrombicula* parasite sur un Saurien de Palestine. *Bulletin du Muséum National d'Histoire Naturelle*, 2ème série, 1, 401–405.

Fernandes, S.J.S. & Kulkarni, S.M. (2003) Studies on the trombiculid mite fauna of India. *Records of the Zoological Survey of India*, Occasional Paper 212, 1–539.

Goff, M.L. (1983) A new species of *Doloisia* (Acari: Trombiculidae) from a migratory hamster taken in Iran. *Journal of Medical Entomology*, 20 (6), 670–672.

https://doi.org/10.1093/jmedent/20.6.670

Goff, M.L., Loomis, R.B., Welbourn, W.C. & Wrenn, W.J. (1982) A glossary of chigger terminology (Acari: Trombiculidae). *Journal of Medical Entomology*, 19, 221–238. https://doi.org/10.1093/jmedent/19.3.221

Goff, M.L. & Saboori, A. (1998) Two new species of chiggers (Acari: Trombiculidae and Leeuwenhoekiidae) from Iran. *Journal of Medical Entomology*, 35, 857–860. https://doi.org/10.1093/jmedent/35.5.857

Hushcha, G.I. & Schluger, E.G. (1967) A new species of leptotrombidia—Leptotrombidium silvaticum sp.n. (Acariformes,

- Trombiculidae). Vestnik Zoologii, 1, 71–75. [in Russian]
- Jiang, J. & Richards, A.L. (2018) Scrub typhus: no longer restricted to the Tsutsugamushi Triangle. *Tropical Medicine and Infectious Disease*, 3 (1), 11.
 - https://doi.org/10.3390/tropicalmed3010011
- Kudryashova, N.I. (1975) New species of chiggers (Acariformes, Trombiculidae) from bats in Iran. *Zoologicheskiy Zhurnal*, 54, 1562–1565. [in Russian]
- Kudryashova, N.I. (1976a) Chiggers of the genus *Leptotrombidium* (Acariformes, Trombiculidae) from Iran. *Vestnik Zoologii*, 6, 33–41. [in Russian]
- Kudryashova, N.I. (1976b) New species of chiggers from the subfamily Gahrliepiinae (Acariformes, Trombiculidae) from Iran. *Zoologicheskiy Zhurnal*, 55, 1100–1102. [in Russian]
- Kudryashova, N.I. (1976c) New species of the genus *Eltonella* (Acariformes, Trombiculidae) from Iran. *Zoologicheskiy Zhurnal*, 55, 299–304. [in Russian]
- Kudryashova, N.I. (1976d) New species of the genus *Schoutedenichia* (Acariformes, Trombiculidae) from Iran. Parazitologiya, 10, 274–279. [in Russian]
- Kudryashova, N.I. (1977) New species of the genus *Neotrombicula* (Acariformes, Trombiculidae) from Iran. *Bulleten' Moskovskogo Obshchestva Ispytatelei Prirody*, Otdel Biologicheskiy, 82, 46–59. [in Russian]
- Kudryashova, N.I. (1990) Revision of the genus *Multisetosa* (Trombiculidae: Leeuwenhoekiinae). *Bulleten' Moskovskogo Obshchestva Ispytatelei Prirody*, Otdel Biologicheskiy, 95, 55–71. [in Russian]
- Kudryashova, N.I. (1994) Revision of the subgenus *Odontacarus* (Acariformes, Trombiculidae) of the Palearctic. *Acarina*, 2, 3–46.
- Kudryashova, N.I. (1998) *Chigger mites (Acariformes, Trombiculidae) of East Palaearctics.* KMK Scientific Press, Moscow, 342 pp. [in Russian]
- Kudryashova, N.I. (2004) Types of chigger mites (Trombiculidae) in the Zoological Museum of Moscow University. *Zoologicheskie Issledovania*, 7, 52 pp.
- Kudryashova, N.I. & Farang-Azad, A. (1976) A new species of the genus *Miyatrombicula* (Acariformes, Trombiculidae) from Iran. *Zoologicheskiy Zhurnal*, 55, 926–927. [in Russian]
- Kudryashova, N.I., Neronov, V.M. & Farang-Azad, A. (1973a) Chiggers of the genus *Neotrombicula* (Acariformes, Trombiculidae) from Iran. *Zoologicheskiy Zhurnal*, 52, 130–136. [in Russian]
- Kudryashova, N.I., Neronov, V.M. & Farang-Azad, A. (1973b) New species and new findings of chiggers of *Helenicula* (Acariformes, Trombiculidae) from Iran. *Zoologicheskiy Zhurnal*, 52, 1725–1728. [in Russian]
- Kudryashova, N.I., Neronov, V.M. & Farang-Azad, A. (1976) Chiggers of the family Leeuwenhoekiidae Womersley, 1945 (Acariformes) from Iran. *Bulleten' Moskovskogo Obshchestva Ispytatelei Prirody*, Otdel Biologicheskiy, 81, 55–65. [in Russian]
- Kudryashova, N.I., Neronov, V.M. & Farang-Azad, A. (1978) Mites of the family Trombiculidae (Acariformes) from small mammals from Iran. *Sbornik Trudov Zoologicheskogo Muzeya MGU*, 16, 92–180. [in Russian]
- Kudryashova, N.I., Neronov, V.M. & Mobedi, I. (1972) New species of the genus *Otorhinophila* (Acariformes, Trombiculidae) from Iran. *Zoologicheskiy Zhurnal*, 51, 1077–1081. [in Russian]
- Kudryashova, N.I. & Stekolnikov, A.A. (2010) *Kepkatrombicula* nom. n., a new name for the chigger mite genus *Eutonella* Kudryashova, 1988 (Acari: Trombiculidae), with notes on its systematics. *Acarina*, 18, 79–80.
- Lucas, J.L. & Loomis, R.B. (1968) The genus *Hexidionis* (Acarina, Trombiculidae) with the description of a new species from Western Mexico. *Bulletin of the Southern California Academy of Sciences*, 67, 233–239.
- Muljarskaja, L.V. (1971) New species and subspecies of Trombiculidae (Acariformes) from Azerbaijan. *Zoologicheskiy Zhurnal*, 50, 1182-1190. [in Russian]
- Muljarskaja, L.V. (1973) Three new species of trombiculids (Acariformes, Trombiculidae) from Azerbaijan. *Parazitologiya*, 7, 312-319. [in Russian]
- Muljarskaja, L.V. & Verdieva, Z.F. (1974) A new species of trombiculid mites, *Microtrombicula traubi* (Acariformes, Trombiculidae) from Azerbaijan. *Doklady Akademii Nauk Azerbaijanskoy SSR*, 30, 77–80. [in Russian]
- Muljarskaja, L.V., Verdieva, Z.F. & Tchirkova, N.V. (1970) A new species of the genus *Microtrombicula* (Acariformes, Trombiculidae) from Azerbaijan. *Zoologicheskiy Zhurnal*, 49, 930–933. [in Russian]
- Nadchatram, M. & Traub, R. (1971) Chiggers of the genus *Helenicula* of the Old World including descriptions of 9 new species (Acarina: Prostigmata, Trombiculidae). *Journal of Medical Entomology*, 8, 562–597. https://doi.org/10.1093/jmedent/8.5.562
- Schluger, E.G. & Amanguliev, A. (1972) New species of subfamily Trombiculinae Ewing, 1929 (Acariformes, Trombiculidae). Izvestiya Akademii Nauk Turkmenskoy SSR. *Seriya Biologicheskikh Nauk*, 2, 42–50. [in Russian]
- Shatrov, A.B., Takahashi, M., Misumi, H. & Takahashi, Y. (2016). Mouthparts in *Leptotrombidium* larvae (Acariformes: Trombiculidae). *Journal of Morphology*, 277, 424–444. https://doi.org/10.1002/jmor.20508
- Stekolnikov, A.A. (1997b) New data on fauna and systematics of chiggers of the *autumnalis* group (Trombiculidae: *Neotrombicula*). *Parazitologiya*, 31, 527–542. [in Russian]
- Stekolnikov, A.A. (1998) Ecogeographical variability of the chigger species *Neotrombicula delijani* Kudryashova, 1977 (Acari, Trombiculidae). *Entomologicheskoe Obozrenie*, 77, 229–238. [in Russian]

- Stekolnikov, A.A. (1999) A revision of the chigger mite species group *vulgaris* (Trombiculidae: *Neotrombicula*). *Parazitologiya*, 33, 387–403. [in Russian]
- Stekolnikov, A.A. (2000) A new subgenus and species of the chigger mite genus *Neotrombicula* (Acari: Trombiculidae). *Acarologia*, 40, 407–412.
- Stekolnikov, A.A. (2001a) New species and sympatric relations of the chigger mite species group *talmiensis* (Trombiculidae, *Neotrombicula*). *Parazitologiya*, 35, 496–518. [in Russian]
- Stekolnikov, A.A. (2001b) On the systematics of the genus *Eutonella* Kudryashova, 1988 (Acari: Trombiculidae). *Acarina*, 9, 97–104.
- Stekolnikov, A.A. (2001c) Systematics of chigger mites of the genus *Hirsutiella* Schluger et Vysotzkaya, 1970 (Acari, Trombiculidae). *Entomologicheskoe Obozrenie*, 80, 219–242. [in Russian]
- Stekolnikov, A.A. 2013. *Leptotrombidium* (Acari: Trombiculidae) of the World. *Zootaxa*, 3728 (1), 1–173. https://doi.org/10.11646/zootaxa.3728.1.1
- Stekolnikov, A.A. (2018) Taxonomy and distribution of African chiggers (Acariformes, Trombiculidae). *European Journal of Taxonomy*, 395, 1–233.
 - https://doi.org/10.5852/ejt.2018.395
- Stekolnikov, A.A. & Daniel, M. 2012. Chigger mites (Acari: Trombiculidae) of Turkey. Zootaxa, 3216, 1–104.
- Stekolnikov, A.A. & Kar, S. (2015) A case of domestic goat parasitism by *Neotrombicula heptneri* (Acariformes: Trombiculidae) in Turkey. *Acarologia*, 55, 355–359. https://doi.org/10.1051/acarologia/20152176
- Thor, S. & Willmann, C. (1947) Acarina. *In*: Schulze, F.E., Kükenthal, W. & Heider, K. (Eds.), *Das Tierreich. Vol.* 71. Walter de Gruyter & Co., Berlin, pp. pp. 187–541.
- Traub, R., Wisseman, C.L. & Ahmad, N. (1967) The occurrence of scrub typhus infection in unusual habitats in West Pakistan. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 61, 23–53. https://doi.org/10.1016/0035-9203(67)90052-1
- Vercammen-Grandjean, P.H. & Loomis, R.B. (1967) Note on Hexidionis n. g. and Pentidionis n. sg. Acarologia, 9, 139–140.
- Vercammen-Grandjean, P.H., Rohde, C.J. & Mesghali, H. (1970) Twenty larval Trombiculidae (Acarina) from Iran. Journal of Parasitology, 56, 773–806. https://doi.org/10.2307/3277727
- Wen, T.H. & Saboori, A. (2004) A new species of sand-mite subgenus *Dureniella* from Iran (Acariformes: Walchiidae: Schoengastiellini). *Systematic & Applied Acarology*, 9, 191–194. https://doi.org/10.11158/saa.9.1.25
- Wen, T.H., Saboori, A. & Akrami, M.A. (2012) A new sand mite of *Schoengastia* (Acari: Trombiculidae) from the soil under camel's thorn in Iran. *Persian Journal of Acarology*, 1, 1–10.
- Wharton, G.W. & Fuller, H.S. (1952) A manual of the chiggers. *Memoirs of the Entomological Society of Washington*, 4, 1–185. Wisseman, C.L. Jr., Traub, R. & Ahmad, N. (1967) Scrub typhus in West Pakistan. *Acta Medica et Biologica, Niigata*, 15, 37–39.
- Wohltmann, A., du Preez, L., Rödel, M.-O., Köhler, J. & Vences, M. (2007) Endoparasitic mites of the genus Endotrombicula Ewing, 1931 (Acari: Prostigmata: Parasitengona: Trombiculidae) from African and Madagascan anurans, with description of a new species. *Folia Parasitologica*, 54, 225–235. https://doi.org/10.14411/fp.2007.031

SUPPLEMENT. Measurements of holotypes: S—original; K—after Kudryashova.

	_	-							-					
Species	AW_S	AW_K	PW_S	PW_K	SB_S	SB_K	ASB_S	ASB_K	PSB_S	PSB_K	SD_S	SD_K	AP_S	AP_K
Brunehaldia iranica	65	64	71	73	23	25	30	28	18	17	48	45	15	14
Brunehaldia silvatica	77	76	98	87	36	34	30	31	20	16	20	20	17	17
Rumohaldia zahodanica	7.	20	77	. 8	20	. ×	32	3.7	000	19	55	23	16	17
Of other dental designations	1 / 2	2 5		5 5	2 6	01 6	200	t 00	2 6	2 6	7 7	2	01.0	100
Cheidaonia jiraousii	00	70	0/	01	c7	C7	52	07	17	77	1 1	20	67	97
Cheladonta serrata	42	42	61	62	18	17	18	20	16	17	34	37	30	31
Chiroptella mozdorani	63	62	71	70	26	27	34	34	13	11	47	45	35	34
Chiroptella vavilovi	40	45	99	78	22	24	31	42	18	14	49	99	37	42
Derrickiella danieli	54	53	92	92	25	25	22	19	18	17	40	36	26	28
Derrickiella kolebinovae	63	62	80	78	28	25	29	24	15	8	44	42	27	28
Evicotus mbidiam biomomum	99	19	7.2	92	22	3 6	îc	. 1.2	13	: :	: -	; ç	30	0
Ericonombiatum biconcavum	90	† !	7	0/	2.5	57	07	31	C I	1 ;	į (7 0	000	97
Ericotrombidium iranicus	69	29	79	78	25	25	29	28	13	11	42	39	25	25
Euschoengastia meshhedensis	73	73	101	106	34	36	26	28	12	11	38	39	20	20
Helenicula goodorziani	×	86	7.2	72	10	=	29	28	~	17	47	45	23	22
Total Control of the state of t	2 5	0 0	. 0	- 0	,,) c	9 6	01		. 4	3 4	; ;	1 6
Leptotrombiatum substivaticum	/ 1	2 :	60	10	33	40	/7	07	10	1/	÷ ;	÷ ;	67	† 1,
Microtrombicula grossa	40	42	44	48	19	20	20	25	23	20	43	45	19	17
Microtrombicula media	36	36	39	42	18	18	27	24	20	21	47	45	22	20
Microtrombicula potamophila	43	42	45	45	16	8	25	25	23	23	48	48	23	25
Microtrombicula subtilissima	2. 2.	1 2	3.6	3.6	17	17	3 6	3 6	, c	30	72	42	10	3 6
Microtromoleula subtitussima	t :	t '	00	00	1 /	· I	0 7 0	7 0	7 7	0 7 0	7 (7 !	17	0 7 6
Microtrombicula tenera	35	36	40	39	16	17	22	23	21	22	43	45	21	20
Miyatrombicula nikitini	70	70	98	84	31	29	31	31	32	31	63	62	24	22
Neotrombicula blanfordi	72	73	83	8	29	29	29	31	32	31	61	29	96	25
Meeting district	1 - 1	3 .	9 5	5	j ;	, ;) t		1 6	. 6	10	100	3 6	9 6
Neotrombicula delijani	7/	/3	91	76	31	31	/7	87	17	87	40	90	87	87
Neotrombicula faghihi	61	09	74	72	29	25	24	22	35	32	59	55	30	28
Neotrombicula heptneri	79	78	68	87	31	31	34	34	34	36	89	70	33	34
Neotrombicula horti	83	84	06	92	32	35	34	36	33	31	29	29	23	22
Neotrombicula kermani	79	8	66	104	34	36	36	36	32	31	89	29	33	32
Nootnombionly mofilia	29	CS	70	72	7.0	3.0	30	, ,	2.7	33	05	2.2	3.1	000
Neotrombicuta mojtati	60	2 5	7 0	7 7	7 6	24 6	2 6	77 6	, c	7 6	23	5 (10	0 7 6
Neotrombicula sabzavari	co	/0	81	84	47	97	47	c7	17	87	21	55	/7	87
Neotrombicula valenti	80	83	06	92	32	33	38	39	32	33	70	73	31	30
Neotrombicula valeri	74	73	95	86	32	34	29	31	33	34	62	65	30	30
Odontacarus apricus	62	62	79	78	31	31	32	35	27	27	59	62	31	31
Odontacarus dignus	65	64	79	81	25	27	39	34	31	28	70	62	27	28
Odoutagamic offorie	77	7.3	8 7	8 2	37	2.7	20	80	0,0	22	10	05	CC	22
Otoubinoubile docute		5, 5	60	<u>.</u>	- 00	- 6) c	2 6	01 6	1 1 2	2 5	0, 7	2 6	1
Cionniophia deseria	20 6	5 6	2 9		2 6	2 6	7 6	0 6	07 -	2 5	1 5	5 5	2 6	
Otorhinophila Jarhangazadi	44	20	89		87	30	67	30	CI	13	7	43	67	
Schoutedenichia abharica	52	53	72	73	36	36	23	22	16	14	39	36	33	34
Schoutedenichia chilmirica	99	29	98	87	49	48	34	34	18	19	52	53	44	42
Schoutedenichia originale	47	48			39	39	19	17		11			28	
Schoutedenichia shirazica	28	62	78	87	45	50	24	25	16	17	40	42	37	39
Schoutedenichia zarudnyi	46	45	61		31	31	24	24	6	12	33	36	33	
Walchia montana	43	45	57	59	33	35	20	20	41	45	61	65	37	36
Walchia schelkovnikovi	49	50	59	62	38	39	18	20	42	42	09	62	28	28
Walchia valskavae	20	45	59	95	4	36	20	20		36		99	32	31
Willmannium come iraniensis	61	61	76	- - ×	27	20	31	32	16	13	47	45	35	3.4
	*		2	10	ì	j	10	1	24	2	-	Ci	od out tho	0000
											:	сонини	commued on me next page	iexi page

Species	AM_S	AM K	AL_S	AL_K	PL_S	PL_K	S	SK	H	H_K	D _{min} S	Dmin_K	D _{max} S	D _{max}
Brunehaldia iranica	31	31	36	42	25	99	56		41		32	31	41	
Brunehaldia silvatica	38	42	45	20	28	62	43	42	53		43	42	58	
Brunehaldia zahedanica	35	36	43	42	62	62		36	46		34	36	47	
Cheladonta fir-dousii	24	22	18	17	35	36			36	38	59	28	38	
Cheladonta serrata	25	28	20	22	32	34	30		31	33	19	17	30	
Chiroptella mozdorani	49	48	38	36	54	20		70	46	48	31	31	50	
Chiroptella vavilovi	50	50	27	28	9	29			50	50	32	31	47	
Derrickiella danieli	31	28	24	22	35	34	37		40	39	23	22	38	
Derrickiella kolebinovae	36	34	25	28	34	34	34		40	41	23	22	36	
Ericotrombidium biconcavum	25	25	31	34	35	34		62	33	31	27	28	43	
Ericotrombidium iranicus	29	31	36	34	44	45			43	42	35	34	43	
Euschoengastia meshhedensis	32	34	32	31	29	70	43	42	9/	92	53	48	72	
Helenicula goodorziani	34	33	42	42	41	42	22		42	42	25	19	38	
Leptotrombidium subsilvaticum	52	50	41	42	65	64		59	09	59	43	45	61	
Microtrombicula grossa	30	28		17	32	34		42	32	31	25	25	31	
Microtrombicula media	24	28	20	22	32	34		48	32	34	27	28	33	
Microtrombicula potamophila	27	31	27	28	32	34	47	99	43	42	29	28	38	
Microtrombicula subtilissima	27	25	20	20	33	31	36	42	40	36	25	22	31	
Microtrombicula tenera	27	28	19	20	32	34		42	40	36	22	22	31	
Miyatrombicula nikitini	31	29	29	29	32	34		70	33	34	25	25	31	
Neotrombicula blanfordi	29	28	39	36	41	42	59	64	4		41	31	45	
Neotrombicula delijani	34	34	32	31	45	45	65	64	45	45	37	36	45	
Neotrombicula faghihi	31	25	35	32	48	45		55	48	45	36	32	47	
Neotrombicula heptneri	43	42	47	48	72	9/	92	70	69	70	46	50	64	
Neotrombicula horti	40	42	54	99	72	73	83	9/	75	73	52	53	69	
Neotrombicula kermani	40	39	46	48	9	64			71	73	52	50	65	
Neotrombicula mofidii	27	25	31	28	40	40	58	55	41	38	33	30	43	
Neotrombicula sabzavari	26	28	27	31	46	48	63	64	46	48	29	31	41	
Neotrombicula valenti	4	43	50	20	29	99	95		89	99	44	43	28	
Neotrombicula valeri	36	36	40	42	57	99	85	84	55	99	41	42	49	
Odontacarus apricus	45	45	32	34	39	39		92	20	50	28	28	43	
Odontacarus dignus	53	53	45	48	38	36		86	57	99	27	28	49	
Odontacarus efferus	45	42	34	34	54	53	85	84	52	99	27	28	43	
Otorhinophila deserta	36	30	56	30	37	36		99	36	36	23	23	36	
Otorhinophila farhangazadi	29	30	23	23	34	33		39	38	35	56	26	38	
Schoutedenichia abharica	29	31	22	31	37	39	22		36	34	22	22	31	
Schoutedenichia chilmirica			31	28	42	42			46	42	27	22	43	
Schoutedenichia originale	18	17	16	14	26	28		_	31	28	16	14	23	
Schoutedenichia shirazica	18	17	17	17	25	25	30		30	31	20	20	59	
Schoutedenichia zarudnyi	18	22	16	20	29	28	32		32	34	19	17	25	
Walchia montana			25	28	27	31		31	34	36	23	25	26	
Walchia schelkovnikovi			24	28	25	28			25	28	26	20	34	
Walchia valskayae			29	28	25	25			27	28	22	20	25	
	_				_	_	_	_	_					_

Species	V _{min_} S	Vmin_K	Vmax_S	V _{max} K	pa_S	pa_K	pm_S	pm_K	S_dd	pp_K	Ip_S	Ip_K
Brunehaldia iranica	22	20	37	36	254	277	230	235	254	272	738	784
Brunehaldia silvatica	25	28	43	42	292	314	268	286	290	314	850	914
Brunehaldia zahedanica	25	28	43	42	261	308	236	274	274	316	771	868
Cheladonta firdousii	20	20	35	34	252	269	200	216	232	249	684	73
Cheladonta serrata	17	14	26	28	232	249	187	196	212	224	631	99
Chiroptella mozdorani	25	22	45	42	340	356	311	319	333	339	984	1014
Chiroptella vavilovi	30	31	45	50	299	372	292	322	342	364	933	10
Derrickiella danieli	20	17	31	28	256	277	207	227	232	255	695	7
Derrickiella kolebinovae	23	20	30	28	566	592	230	227	257	263	753	7
Ericotrombidium biconcavum	26	25	41	39	236	263	221	249	254	272	711	
Ericotrombidium iranicus	29	28	38	36	322	314	283	286	324	325	676	6
Euschoengastia meshhedensis	36	34	61	62	288	308	261	274	295	316	844	∞
Helenicula goodorziani	19	17	32	28	288	286	254		288		830	
Leptotrombidium subsilvaticum	32	28	50	48	241	277	223	255	254	274	718	∞
Microtrombicula grossa	17	17	25	25	221	246	193	210	227	238	641	694
Microtrombicula media	17	20	24	28	216	238	187	204	218	230	621	9
Microtrombicula potamophila	23	20	29	28	261	280	214	235	254	274	729	_
Microtrombicula subtilissima	16	17	25	22	209	216	169	185	202	193	580	5
Microtrombicula tenera	16	17	22	22	225	227	185	190	207	216	617	9
Miyatrombicula nikitini	19	20	27	28	254	286	229	255	266	288	749	
Neotrombicula blanfordi	27	25	42	42	301	305	259	266	297	314	857	
Neotrombicula delijani	27	28	41	39	272	286	236	260	286	297	794	
Neotrombicula faghihi	23	20	43	38	293	282	243	232	288	270	824	_
Neotrombicula heptneri	35	28	50	48	414	384	353	328	401	370	1168	
Neotrombicula horti	41	42	29	59	349	381	310	336	358	392	1017	=
Neotrombicula kermani	34	31	52	53	297	342	247	294	315	356	859	6
Neotrombicula mofidii	28	22	34	30	290	262	248	230	284	258	822	750
Neotrombicula sabzavari	25	25	37	34	279	308	232	260	279	305	790	∞
Neotrombicula valenti	34	33	53	36	398	429	344	366	398	429	1140	12
Neotrombicula valeri	28	28	54	45	315	342	263	300	310	342	888	6
Odontacarus apricus	25	28	40	42	376	350	308	308	365	361	1049	<u>=</u>
Odontacarus dignus	24	22	38	42	407	398	346	353	412	420	1165	
Odontacarus efferus	23	20	34	39	292	288	245	263	275	288	812	∞
Otorhinophila deserta	22	20	32	26	351	360	311	304	356	360	1018	1024
Otorhinophila farhangazadi	19	20	34	28	299	320	257	277	317	327	873	6
Schoutedenichia abharica	22	20	26	28	218	221	187	199	223	232	628	9
Schoutedenichia chilmirica	22	22	30	31	340	370	310	319	360	375	1010	
Schoutedenichia originale		14		20	243	235	202	202	216	218	661	655
Schoutedenichia shirazica	19	20	25	28	238	255	207	227	239	266	684	7
Schoutedenichia zarudnyi	20	17	23	22	225	246	191	210	229	230	645	989
Walchia montana	14	14	22	25	203	227	160	188	196	232	559	647
Walchia schelkovnikovi		14		22	193	196	153	174	189	193	535	563
Walchia valskayae		14		20	185	199	158	162	196	192	539	553
		,										