日本国特許庁 JAPAN PATENT OFFICE

REC'D 23 DEC 2004
WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 2月25日

出 願 番 号 Application Number:

人

特願2004-050270

[ST. 10/C]:

[JP2004-050270]

出 願 Applicant(s):

本田技研工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

.

2004年12月13日

1) 11

特許庁長官 Commissioner, Japan Patent Office

ページ: 1/E

【書類名】 特許願 【整理番号】 H1034560

 【提出日】
 平成16年 2月25日

 【あて先】
 特許庁長官 殿

 【国際特許分類】
 B21K 21/16

B21J 5/06 【発明者】

【住所又は居所】 埼玉県狭山市狭山1丁目10番地1 ホンダエンジニアリング株

式会社内

【氏名】 大沼 孝之

【発明者】

【住所又は居所】 埼玉県狭山市狭山1丁目10番地1 ホンダエンジニアリング株

式会社内

【氏名】 小林 崇

【発明者】

【住所又は居所】 埼玉県狭山市狭山1丁目10番地1 ホンダエンジニアリング株

式会社内

【氏名】 蛭間 英隆

【特許出願人】

【識別番号】 000005326

【氏名又は名称】 本田技研工業株式会社

【代理人】

【識別番号】 100085257

【弁理士】

【氏名又は名称】 小山 有

【選任した代理人】

【識別番号】 100103126

【弁理士】

【氏名又は名称】 片岡 修

【手数料の表示】

【予納台帳番号】 038807 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

9304817

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 9722915

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

部材の内周部よりも大径の凹部を素材に成形し、この凹部の内周にアンダーカット部を形成し、このアンダーカット部が形成された素材の凹部に目的とする部材の内周部の径と等しい径で先端部が円錐形状となったマンドレルを挿入し、このマンドレルを挿入した素材の外側からスウェージング加工することで、前記アンダーカット部を残した状態で素材の前記凹部の内径をマンドレル外径まで縮小せしめ、またこれと同時に前記マンドレルの先端部に倣って目的とする部材の内周部の先端形状を雌テーパ状に成形することを特徴とするアンダーカット部を有する部材の成形方法。

【請求項2】

請求項1に記載のアンダーカット部を有する部材の成形方法において、前記大径の凹部の中心にはマンドレル先端部を差し込む位置決め穴が形成され、この位置決め穴の深さはマンドレル先端部の長さと等しいかそれよりも浅く、また位置決め穴の開き角度はマンドレル先端部の角度と等しいかそれよりも大きいことを特徴とするアンダーカット部を有する部材の成形方法。

【請求項3】

請求項2に記載のアンダーカット部を有する部材の成形方法において、前記位置決め穴は 鍛造成形によって前記凹部を成形する際に同時に成形することを特徴とするアンダーカッ ト部を有する部材の成形方法。

【請求項4】

請求項1乃至請求項3に記載のアンダーカット部を有する部材の成形方法において、前記部材は燃料噴射ノズルであることを特徴とするアンダーカット部を有する部材の成形方法

【書類名】明細書

【発明の名称】アンダーカット部を有する部材の成形方法

【技術分野】

[0001]

本発明は、例えば燃料噴射ノズルのように内周部の一部にアンダーカット部を有する部材の成形方法に関する。

【背景技術】

[0002]

燃料噴射ノズルの一般的な形状を図7に示す。燃料噴射ノズルは軸方向に内径2~4mmの中空穴が形成され、この中空穴は先端が雌テーパ状に絞られ、その先に燃料噴出口が 形成され、また中空穴の奥部に燃料溜りとなるアンダーカット部が形成されている。

[0003]

部材の内側部にアンダーカット部を機械加工によって形成できるのは、せいぜい内周部の径が10mmまでであり、燃料噴射ノズルのように内径2~4mmの中空穴の内周部にアンダーカット部を形成するには従来から電解加工によって形成している。

[0004]

電解加工以外の方法としては、特許文献1~3に提案される方法がある。特許文献1には、素材をカップ状に成形し、更にこのカップ状素材の上端周縁を外側に膨出させ、外側からダイでしごき加工することで膨出した前記上端周縁を内側に張り出すようにし、結果的に素材内側にアンダーカット部が成形されることが開示されている。

[0005]

特許文献2には、上端部の内径が棒状素材よりも大径となったダイに棒状素材を入れ、 上方から棒状素材よりも小径のパンチによって棒状素材の上端を加圧し、素材の上端部を ダイ形状に倣って拡径するとともに、小径のパンチが棒状素材の上端に進入する際にアン ダーカット部が自動的に成形されることが開示されている。

[0006]

特許文献3には、肩部を有するダイに当該肩部に当接する段部を有する素材をセットし、また素材に形成した袋穴の途中までマンドレルを挿入し、この状態でパンチによって素材を据え込み成形することでダイ上半部内の材料を変形せしめ、同時にダイ下半部では材料の径方向内側への流れを作らずにアンダーカット部とすることが開示されている。

$[0\ 0\ 0\ 7\]$

【特許文献1】特開昭56-59552号公報

【特許文献2】特開平3-207545号公報

【特許文献3】特開平8-90140号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

電解加工による場合には、洗浄工程が必ず必要になるとともに、研磨などの廃液処理の問題が生じる。

一方、特許文献 $1 \sim 3$ にあっては、アンダーカット部を設ける箇所が限定されてしまう。つまり特許文献 1 では素材全体にアンダーカット部が形成され、特許文献 2 にあっては素材の上端部に限定され、特許文献 3 にあっては軸方向に形成した穴の奥部に限定される

また、特許文献1~3のいずれも素材自体を屈曲させることでアンダーカット部とするため、アンダーカット部の形状を一定にすることが困難で、製品歩留りも悪い。

[0009]

そこで、本発明者らは先に鍛造とスウェージング加工を応用した方法を提案(特願2003-424945号)している。この提案は、図8に示すように、鍛造(前方押出し又は後方押出し)によって素材に大径の凹部を形成し、この凹部の内周にアンダーカット部を形成した後、当該凹部に目的とする部材の内周部の径と等しい径のマンドレルを挿入し

て外側からスウェージング加工し、その後、外面に研削加工などを施してノズル形状にする方法である。

[0010]

この方法は、燃料噴射ノズルなどの成形には極めて有効であるが、スウェージング加工に用いる通常のマンドレルは先端部が平坦であるので、中空穴の雌テーパ状先端部の加工を後から行わなければならず、加工が面倒である。また後加工によって雌テーパ状先端部を形成しても当該雌テーパ状先端部の長さを正確に知ることができないので、最終的な外形寸法にする際の研削代を正確に知ることができず、このため先端の肉厚にばらつきが生じやすい。

[0011]

また、燃料噴射ノズルなどの成形には極めて細いマンドレルを用いる必要がある。極めて細いマンドレルを用いた場合に、図8に示すように、マンドレルの先端が凹部の中心からずれていると、ストッパに突き当てた際に素材が倒れ、大きな負荷がマンドレルにかかり座屈が生じることがある。また素材に倒れが生じると中空穴の深さ精度が得られないことにもなる。

【課題を解決するための手段】

[0012]

上記課題を解決するため本発明に係る成形方法は、部材の内周部よりも大径の凹部を素材に成形し、この凹部の内周にアンダーカット部を形成し、このアンダーカット部が形成された素材の凹部に目的とする部材の内周部の径と等しい径で先端部が円錐形状となったマンドレルを挿入し、このマンドレルを挿入した素材の外側からスウェージング加工することで、前記アンダーカット部を残した状態で素材の前記凹部の内径をマンドレル外径まで縮小せしめ、またこれと同時に前記マンドレルの先端部に倣って目的とする部材の内周部の先端形状を雌テーパ状に成形するようにした。

[0013]

上記構成とすることで、内周部にアンダーカット部と先端の雌テーパ状部とが同時に成形でき、また、雌テーパ状部の深さがマンドレル先端部の円錐状部の長さに等しいため、 後加工における研削代を決める際の長手証が得られる。

[0014]

また、前記大径の凹部の中心に、マンドレル先端部を差し込む深さはマンドレル先端部の長さと等しいかそれよりも浅く、また位置決め穴の開き角度はマンドレル先端部の角度と等しいかそれよりも大きい寸法の位置決め穴を形成しておくことが好ましい。

[0015]

このように、予め位置決め穴を形成しておくことで、マンドレルの位置がずれることがなくなる。尚、位置決め穴は鍛造成形によって前記凹部を成形する際に同時に成形しておけば効率がよい。

【発明の効果】

[0016]

本発明によれば、電解加工と比較して廃液が生じることがなく環境衛生上有利で、またアンダーカット部の形状も予め機械加工によって形成できるため正確で、また、最終形状として機械加工が困難な内径10mm以下の袋穴などの内周部にもアンダーカット部と雌テーパ部同時に形成することができる。特にマンドレル先端が挿入される位置決め穴を予め形成しておくことで、スウェージング加工する際の素材の倒れを防止でき長手証を得ることができる。

【発明を実施するための最良の形態】

[0017]

以下に本発明の実施例を添付図面に基づいて説明する。図1は本発明に係る成形工程を 説明したブロック図、図2は本発明に係る成形工程のうちスウェージング加工に用いる装 置の正面図、図3は本発明に係る成形工程のうちスウェージング加工の内容を更に詳細に 説明した図である。

[0018]

先ず、ビレットを切断して図1(a)に示す棒状素材1を用意する。この棒状素材としてはSCM415等が適当である。この後、図1(b)に示すように、冷間鍛造(前方押出し又は後方押出し)にて前記棒状素材1に凹部2を形成する。この凹部2は後に製品の内周部になる部分であるが、その径は製品の内周部よりも大きく、十分に機械加工が可能な大きさ(10mm以上)とする。

[0019]

棒状素材 1 を冷間鍛造したならば、図 1 (c) に示すように、凹部 2 にアンダーカット部 3 を形成し、続いて冷間でのスウェージング加工によって、図 1 (d) に示すように、前記凹部 2 を内径 $2\sim4$ mmの袋穴 4 に成形し、更に旋削加工にて外周面を加工して図 1 (e) に示す製品(燃料噴射ノズル)を得る。

[0020]

尚、素材の加工方法としては図示するような半径方向に工具を移動するプランジ加工に限らず、素材を軸方向に移動させるインフィード加工でもよい。またスウェージング金型の先端形状を所定の形状にしておくことで、旋削加工を省略することもできる。

[0021]

前記スウェージング加工装置は図2に示すように、内側回転体5と外側回転体6とを備え、内側回転体5には90°離間して径方向に貫通穴7が形成され、各貫通穴7内には内側から順にスウェージング金型8とストライカー9が摺動自在に嵌合している。一方、外側回転体6には周方向に等間隔で12本のピン10が回転自在に保持されている。

[0022]

以上のスウェージング加工装置において、内側回転体5を時計廻りに、外側回転体6を反時計廻りに回転せしめると、遠心力によって内側回転体5に保持されているスウェージング金型8とストライカー9は径方向外側に付勢されるが、外側には外側回転体6が回転しており、この外側回転体6にはピン10が保持されており、このピン10は外側回転体6よりもその一部が内側に突出しているので、ピン10がストライカー9の外端部を通過する度にストライカー9を径方向内方に押し込み、これに連動してスウェージング金型8も径方向内方に押し込まれ、4つのスウェージング金型8の中心にセットされた素材の表面を数千回/分の速度で叩きスウェージング加工を行う。

[0023]

上記のスウェージング加工装置を用いて凹部 2 とアンダーカット部 3 を形成した素材 1 を成形するには、先ず図 3 (a)に示すように、クランパ 1 1 で素材 1 を把持するとともに、素材 1 の凹部 2 内にマンドレル 1 2 を挿入する。このマンドレル 1 2 の外径は目的とする製品(燃料噴射ノズル)の袋穴 4 の内径と等しく、またマンドレル 1 2 の先端部 1 2 a は目的とする製品の袋穴 4 の先端の雌テーパ状部 4 a を形成するために円錐状をなしている。

[0024]

そして、図3(b)に示すように、マンドレル12で素材1をストッパ13に当接する位置まで押し込み、前記したようにスウェージング金型8によって素材1の外面を叩いてスウェージング加工を施す。このスウェージング加工により凹部2の内径はマンドレル12の外径まで縮径されるが、アンダーカット部3は残る。この縮径に伴って素材1の底部の材料も矢印で示すように内側に移動し、マンドレルの先端部12aを包むように移動し、図3(c)に示すように、雌テーパ状部4aが形成される。

[0025]

上記の雌テーパ状部 4 a の位置はマンドレルの先端部 1 2 a と一致する。またマンドレル 1 2 の長さ及び素材 1 の端部の位置はセンサなどにより測定することができる。したがって、素材 1 の底部の厚さ(t 0)を正確に知ることができ、この厚さ(t 0)から研削代(t 1)を決めることができる。即ち、マンドレルの先端部 1 2 a を長手方向の加工証として用いることができる。

[0026]

[0027]

前記位置決め穴21については、図4(b)に示すように、開き角がマンドレルの先端部12aの角度よりも小さいと、スウェージング加工後に欠肉となるおそれがあるので、位置決め穴21の深さはマンドレル先端部の長さと等しいかそれよりも浅く、また位置決め穴21の開き角度はマンドレル先端部の角度と等しいかそれよりも大きくする。

[0028]

また、前記位置決め穴21の形成は、図5に示すように鍛造(前方押出し)によって凹部2を成形する際に同時に成形することが工程上有利である。また前方押出しの代わりに後方押出しによって凹部2と位置決め穴21を同時に成形してもよい。

[0029]

図6(a)及び(b)は鍛造の際に、凹部2の底部から所定の範囲において、前記位置決め穴21の他に、素材1の外周部または凹部2の内周部に余肉部1a、1bを設けた例を示している。スウェージング加工の際に、素材1の材料は軸方向に沿って開口方向に移動するため凹部2の底部付近では材料が不足するが、余肉部1a、1bを設けることでその不足分を補うことができる。

【産業上の利用可能性】

[0030]

本発明に係るアンダーカット部を有する部材の成形方法は、例えば自動車用エンジンに組み込まれる燃料噴射ノズルの製造に適用できる。

【図面の簡単な説明】

[0031]

- 【図1】本発明に係る成形工程を説明したブロック図
- 【図2】本発明に係る成形工程のうちスウェージング加工に用いる装置の正面図
- 【図3】本発明に係る成形工程のうちスウェージング加工の内容を更に詳細に説明した図
- 【図4】(a)は位置決め穴を形成した素材の断面図、(b)は好ましくない位置決め穴について説明した図
 - 【図5】鍛造によって位置決め穴を形成する過程を説明した図
 - 【図6】(a)及び(b)は余肉部を形成した素材の断面図
 - 【図7】燃料噴射ノズルの断面図
 - 【図8】先に本発明者らが提案した方法を説明した図

【符号の説明】

[0032]

1…棒状素材、1 a、1 b…余肉部、2…凹部、3…アンダーカット部、4…袋穴、4 a…雌テーパ状部、5…内側回転体、6…外側回転体、7…貫通穴、8…スウェージング金型、9…ストライカー、10…ピン、11…クランパ、12…マンドレル、12 a…マンドレル先端の円錐状部、13…ストッパ、21…位置決め穴。

【書類名】図面 【図1】

棒状素材1

(c)

(d)

(e)

【図2】

【図3】

【図5】

【図6】

【図7】

【書類名】要約書

【要約】

【課題】 内周部にアンダーカット部と雌テーパ上部を有する部材を正確な寸法で成形できる方法を提供する。

【解決手段】 スウェージング加工で凹部2とアンダーカット部3を形成した素材1を成形するには、クランパ11で素材1を把持するとともに、凹部2内にマンドレル12を挿入する。このマンドレル12の外径は目的とする製品の袋穴の内径と等しいものを用いる。そして、マンドレル12で素材1をストッパ13に当接する位置まで押し込み、スウェージング金型8によって素材1の外面を叩いてスウェージング加工を施す。このスウェージング加工により凹部2の内径はマンドレル12の外径まで縮径されるが、アンダーカット部3は残る。この縮径に伴って素材1の底部の材料も矢印で示すように内側に移動し、マンドレルの先端部12aを包むように移動し、雌テーパ状部2aが形成される。

【選択図】 図3

特願2004-050270

出願人履歴情報

識別番号

[000005326]

1. 変更年月日 [変更理由]

1990年 9月 6日 新規登録

住所名

東京都港区南青山二丁目1番1号

本田技研工業株式会社