1 Basic Calculus [10 pts]

The following questions test your basic skills in computing the derivatives of univariate functions, as well as applying the concept of *convexity* to determine the properties of the functions.

(a) (3 pts) Find all extrema of the function $f(x) = ln(2-x^2)$. For each extremum, state if it is a maximum or a minimum.

$$f'(x) = \frac{2x}{x^2-2}$$
 $f''(x) = \frac{-2(x^2+2)}{(x^2-2)^2}$
 $f''(0) < 0$, so $f(x)$ at $x = 0$ is a maximum

(b) (3 pts) Show that $f(x) = \ln \frac{1}{1 + e^{-x}}$ is concave.

$$f'(x) = \frac{1}{e^{x}+1}$$

$$f''(x) = \frac{-e^{x}}{(e^{x}+1)^{2}}$$

$$f''(x) < 0, \text{ always hegative.}$$

$$f(x) = \frac{-e^{x}}{(e^{x}+1)^{2}}$$

(c) (4 pts) Show that $f(x) = e^{-x^2}$ is neither convex nor concave.

$$f'(x) = -2 \times e^{-x^2}$$

$$f''(x) = (4x^2 - 2)e^{-x^2}$$

$$f''(0) = -2 < 0$$

$$f''(1) = \frac{2}{e} > 0$$

$$f(x) \text{ is neither convex nor concave.}$$

2 Continuous Random Variables [10 pts]

(a) (2 pts) Given a continuous random variable X with probability density function f(X), what are the expressions for the mean and variance of this variable?

$$\mathcal{U}(x) = \int_{-\infty}^{\infty} x f(x) dx$$
 (mean)

$$G = E((X - E(x))^2) \cdot (yorance)$$

(b) (2 pts) Can the value of the probability density function (PDF) f(X) exceed 1? Why or why not?

(c) (2 pts) Consider a random variable X that follows the uniform distribution between a and b, i.e. its PDF is equal to a constant c on this interval, and 0 otherwise. Derive c in terms of a and b.

$$\int_{a}^{b} c dx = 1$$
, PDF integrate to 1
 $c = \frac{1}{b-a}$

(d) (2 pts) Derive the expected value of X in terms of a and b. Show all your steps.

$$\int_{a}^{b} \frac{2k}{b-a} dx$$

$$= \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b}$$

$$= \frac{1}{2} \frac{b^{2} a^{2}}{b-a}$$

$$= \frac{a+b}{2}$$

(e) (2 pts) Derive the cumulative distribution function F(X) on the interval $a \leq X \leq b$.

$$F(x) = \int_{a}^{x} f(x) dx$$

$$= \int_{a}^{x} \frac{1}{b-a} dx$$

$$= \frac{x}{b-a} - \frac{a}{b-a}$$

$$= \frac{x-a}{b-a} \quad \text{for } a \le x \le b$$

3 Discrete Random Variables [10 pts]

(a) (2 pts) Two students taking a Machine Learning class became project partners. They are trying to decide what operating system to use for the project. Suppose each student has a laptop, which could be one of three types: Mac OS, Windows, or Linux. If the distribution of laptops among students follows the PDF shown below, what is the probability that the two teammates have different laptops?

Mac OS	0.6
Windows	0.3
Linux	0.1

$$P = (0.6)^2 + (0.3)^2 + (0.1)^2 = 0.46$$

Suppose we have three discrete random variables x, y and z that take values 0 or 1 according to the distribution below.

(b) (2 pts) Find the joint distribution of y and z

By sum rule
$$\frac{z=0}{y=0} | \frac{z=1}{\frac{1}{4}} | \frac{1}{2}$$

(c) (2 pts) Find the marginal distributions of y and z

By sum rule
$$z=0$$
 $z=1$ $z=totu1$ $y=0$ $\frac{1}{12}$ $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{3$

(d) (2 pts) Find the conditional distribution of x given that y = 0.

$$y=0 \qquad \frac{x=0 \quad x=1}{\frac{1}{3} \quad \frac{2}{3}}$$

$$p(x,y=0) = p(x|y=0)p(y=0),$$

$$p(x|y=0) = p(x,y=0)/p(y=0)$$

$$p(x=0|y=0) = \frac{1}{3}$$

$$p(x=1|y=0) = \frac{2}{3}$$

(c) (2 pts) Are y and z independent? Explain.

Yes.
$$p(y,z) = p(y)p(z)$$
, for all y, z .
They are independent probabilities.

4 Basic Linear Algebra [10 pts]

(a) (3 pts) Let A be a 3x4 matrix, B be a 4x5 matrix, and C be a 4x4 matrix. Determine which of the following products are defined and find the size of those that are defined. Note, X^T refers to the transpose of X.

$$CA^T$$
 4×3

$$CB \qquad 4 \times 5$$

(b) (3 pts) Suppose we would like to predict the profits of "Sunny Coffee", a bakery chain with locations in three different cities. Given the price of flour x, price of sugar y and price of oil z, the profit can be modelled as a linear function of these variables. That is, for each of the locations i = 1, ..., 3, the profit is $p_i = a_i + b_i x + c_i y + d_i z$.

Write down the matrix-vector product that produces the 3-dimensional vector of profits for the three locations.

$$\begin{bmatrix} a_1 & b_1 & C_1 & d_1 \\ a_2 & b_2 & C_2 & d_2 \\ a_3 & b_3 & C_3 & d_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

(c) (4 pts) Let A and B be two $\mathbb{R}^{D\times D}$ symmetric matrices. Suppose A and B have the exact same set of eigenvectors u_1, u_2, \dots, u_D with the corresponding eigenvalues $\alpha_1, \alpha_2, \dots, \alpha_D$ for A, and $\beta_1, \beta_2, \dots, \beta_D$ for B. Write down the eigenvectors and their corresponding eigenvalues for the following matrices. (*Hint*. Represent A, B using the eigenvectors, e.g., $A = \sum_d \alpha_d u_d u_d^T$.)

•
$$D = A - B$$

 $C = \sum_{d} (d_{d} - \beta_{d}) V_{d} V_{d} T$
 C 's eigenvectors = V_{d}

$$C'$$
 regenualues = $(d_d - B_d)$

• $F = A^{-1}B$ (assume A is invertible)

5 Vector Calculus [10 pts]

Consider the quadratic function $f(x) = x^T A x$ where x is a column vector and A is an nxn constant matrix.

(a) (1 pts) Express f(x) as a sum of terms (hint: use Σ).

$$f(x) = \sum_{i=1}^{\infty} (\alpha_i \cdot x) X_i = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \alpha_{i,j} X_i X_j$$

(b) (4 pts) Compute the partial derivative of the function with respect to the kth element of x, i.e. $\frac{\partial f(x)}{\partial x_k}$, using the expression from (a). Express your answer as a sum of terms.

$$\frac{\partial f(x)}{\partial x_{k}} = \underbrace{\sum_{\hat{i} \neq k}}_{\hat{i} \neq k} \underbrace{\frac{\partial}{\partial x_{k}}}_{\hat{j} = 1} \underbrace{\left(\sum_{\hat{j} = 1}}_{\hat{a}_{\hat{i}\hat{j}}} X_{\hat{i}} X_{\hat{j}}\right) + \underbrace{\frac{\partial}{\partial x_{k}}}_{\hat{j} \neq k} \underbrace{\left(\sum_{\hat{j} = 1}}_{\hat{a}_{\hat{k}\hat{j}}} X_{k} X_{\hat{j}}\right)}_{\hat{j} = 1}$$

$$= \underbrace{\sum_{\hat{i} \neq k}}_{\hat{i} \neq k} \underbrace{a_{\hat{i}\hat{j}}}_{\hat{i} \neq k} X_{\hat{i}} + \underbrace{\sum_{\hat{j} = 1}}_{\hat{j} = 1} \underbrace{a_{\hat{j}\hat{k}}}_{\hat{k}} X_{\hat{j}}$$

(c) (2 pts) Now write down the gradient vector $\nabla_x f(x)$ in matrix/vector notation, using the answer from (b). What is its dimension and meaning?

(d) (3 pts) Compute the second derivative of f(x), $\nabla_x^2 f(x)$, in matrix form.

$$\nabla_{x}^{2}f(x) = \frac{\partial((A+A^{T})x)}{\partial x} = A+A^{T}$$