In what follows "explain" means "give instructions on how to"; it doesn't mean "recite a definition". For example, a good answer to Explain how to decide if a collection of vectors v_1, \ldots, v_m spans \mathbb{R}^n would be: Check that every row of the matrix $[v_1, \ldots, v_m]$ is pivotal. A bad answer would be to recite the definition of the span, i.e., to say that we have to check that every vector in \mathbb{R}^n is a linear combination of v_1, \ldots, v_m without explaining how to do that.

Convention: Below A denotes a matrix, which is sometimes thought of as the linear transformation T(x) = Ax.

- 1. Explain how to find a basis in the kernel of A, also known as Nul A.
- **2**. Explain how to find a basis in the image of A, also known as $\operatorname{Col} A$.
- **3**. Explain how to decide if a collection of vectors v_1, \ldots, v_m spans \mathbb{R}^n .
- **4**. Explain how to find a basis in span $\{v_1, \ldots, v_m\}$.
- **5**. Explain how to complete a linearly independent collection of vectors v_1, \ldots, v_k to a basis of \mathbb{R}^n . (Hint: form the matrix $[v_1, \ldots, v_k, e_1, \ldots, e_n]$ and find pivotal columns. Why are the first k columns pivotal?)
- **6**. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map, and S is a subspace of \mathbb{R}^n , why is T(S) a subspace of \mathbb{R}^m ?
- 7. If a subspace S of \mathbb{R}^n has dimension k, explain how to decide whether vectors v_1, \ldots, v_k in S form a basis.
- **8**. Explain how to compute coordinates of a vector x in a given basis $B = \{v_1, \ldots, v_k\}$.
- **9**. Do the subpaces Col(A) and Nul(A) change when we do row operations on A? If you answer no, explain why. If you answer yes, give an example of A and a row operation which changes the subspace.
- 10. If S is a subspace of \mathbb{R}^n what is the relationship between n and the dimension of S? Explain.
- 11. What is the relationship between the rank of an $m \times n$ matrix A, and the dimensions of Nul(A), Col A, and the numbers m, n?

Practice how to estimate one in terms of the others (along the lines of #19-14 of sections 2.9).

- 12. Explain how to compute det(A) by cofactor expansion and by row operations. Which method is computationally better if A is $n \times n$ and n is large? (You have to know an estimate on how many arithmetic operations it takes in the worst case but you won't have to prove it).
- 13. Explain how to compute the determinant of a triangular matrix?
- 14. How does determinant change under row operations?
- **15**. Express $det(A^TB^{-1}A)$ in terms of det(A), det(B).
- **16**. How does one see from $det(A^{\top})$ whether A is invertible?
- 17. If A is an invertible $n \times n$ matrix, what is an explicit formula for A^{-1} in terms of enties of A? (Considering the case n = 2 is not enough). Why is the formula not an efficient way to compute A^{-1} ?
- **18**. If columns of A are linearly dependent, compute det(A).
- 19. How is the area of a region R in \mathbb{R}^2 related to the area of its image under the linear transformation A? Under A^2 ? Under A^{-3} ?
- **20**. Discuss computational efficiency of LU factorization (p.129) versus solving Ax = b directly (p.20). In what situation is the LU factorization useful?
- **21**. Recall that eigenvalues of A are defined as the real numbers λ such that $(A \lambda I_n)X = 0$ has a nonzero solution. Explain why eigenvalues are precisely the real roots of $\det(A \lambda I_n)$, the characteristic polynomial of A.
- **22**. If $Av = \lambda v$ with $v \neq 0$ and A is invertible, can you find an eigenvalue/eigenvector of A^{-1} ? Can A has a zero eigenvalue?
- **23**. If $Av = \lambda v$ and k is a positive integer, explain why v is an eigenvector for A^k , and what is the corresponding eigenvalue?
- **24**. If v_1 , v_2 are eigenvectors of A with the same eigenvalues λ . Is $7v_1 3v_2$ an eigenvector of A?
- **25**. If λ_1 , λ_2 are distinct eigenvalues of A explain why the corresponding eigenvectors v_1 , v_2 are linearly independent.

- **26**. Show that if a nonzero vector lies in two eigenspaces for A, then the eigenspaces coinside.
- **27**. Explain why BAB^{-1} and A^{\top} have the same eigenvalues.
- **28**. Explain why eigenvalues of an upper or lower triangular matrix (a_{ij}) are its entries on the main diagonal, that is, a_{11}, \ldots, a_{nn} .
- **29**. Let P be a stochastic matrix with positive entries. Give two different methods of finding the steady state solution, i.e., a probability vector q with Pq = q.
- **30**. Suppose A is a 4×4 matrix with eigenvalues 3, 1, -2, 2. Is A is diagonalizable?
- **31**. If A has a basic of eigenvectors v_1, \ldots, v_n , explain how to find a matrix Q such that the matrix $Q^{-1}AQ$ is diagonal. Is such Q uniquely determined by A?
- **32**. If A and Q are $n \times n$ matrices such that $Q^{-1}AQ$ is a diagonal matrix with diagonal entries d_1, \ldots, d_n . Explain how to find the eigenvalues and a basis of eigenvectors for A em without any computation.
- **33.** Explain how to compute A^{-1} via row operations.
- **34**. Give an example of a 2×2 matrix that is not diagonalizable even though all of its eigenvalues are real.
- **36**. Suppose A is a diagonalizable $n \times n$ matrix such that each of its eigenvalues satisfies $|\lambda_i| < 1$. Fix an arbitrary vector v in \mathbb{R}^n . Can you approximately compute $A^k v$ for large k?
- **37.** Explain how to write the result of a row operation as the product EA where E is an elementary matrix. See pp.108–109 of Lay. What is the conceptual reason for the fact that is E invertible?
- **38.** Suppose A, B are not square matrices, and AB is invertible (and thus AB is square). Why is the map T given by T(x) = Bx one-to-one? (Hint: multiply both sides of Bx = 0 by A and use invertibility of AB to conclude that x = 0). Why is the map S given by S(x) = Ax onto? (Hint: Ax = b is consistent because $x = B(AB)^{-1}b$ is a solution).
- **39.** Give an example of non-square matrices A, B with $AB = I_n$?