

سررسید: ۲۱ مهرماه پاییز ۱۴۰۲

یادگیری ماشین

مدرس: مهدی جعفری تمرین صفر: مروری بر جبرخطی و آمار و احتمال

- سررسید پاسخ این تمرین ساعت ۵۹ : ۲۳ روز ۲۱ مهرماه است.
 - این تمرین نظری است و بخش عملی ندارد.
- مهلت ارسال بخش نظری تمرینها ۱۰ روز است و تاخیر مجاز ندارد.
- این تمرین به علت آن که پیش از ترمیم منتشر شده است، ۱۴ روز مهلت ارسال دارد.
- در صورت کشف تقلب، بار اول برای افراد درگیر تقلب، نمرهی همان سوال(های) خاص صفر در نظر گرفته میشوند. در صورت تکرار، نمره کل تمرین صفر در نظر گرفته میشود و در صورت تکرار، درس برای افراد حذف خواهد شد.
 - تمامی پاسخهای خود را در یک فایل با فرمت (HW0-[SID]-[Fullname].zip (pdf) روی کوئرا قرار دهید.

پرسشها

۱ آمار و احتمال

۱.۱ پرسش اول

با فرض آن که متغیرهای تصادفی $X_1,...,X_n$ توزیع یکنواخت $Uniform(\cdot,1)$ دارند، متغیر تصادفی Y_n را به صورت $max\{X_1,...,X_n\}$ تعریف میکنیم. امید ریاضی Y_n را به دست آورید.

۲.۱ پرسش دوم

متغیر تصادفی X دارای توزیع نمایی زیر است. مقدار a و واریانس و میانگین X را به دست آورید.

$$f_X(x) = \begin{cases} ae^{\frac{-x}{\gamma}} & x \ge \cdot \\ \cdot & o.w. \end{cases}$$

۳.۱ پرسش سوم

برای هر دو متغیر تصادفی دلخواه X و Y ثابت کنید:

. 1

$$\mathbb{E}_y[\mathbb{E}_x[X|Y]] = \mathbb{E}_x[X]$$

٠٢.

$$var[X] = \mathbb{E}[var[X|Y]] + var[\mathbb{E}[X|Y]]$$

۴.۱ پرسش چهارم

فرض کنید X و Y دو متغیر تصادفی مستقل با توزیع زیر باشند. نشان دهید X-Y و min(X,Y) متغیرهای تصادفی مستقل هستند.

$$P(X=k) = P(Y=k) = pq^k$$
 $k = \cdot, \cdot, \cdot, \dots, q = \cdot - p$

۵.۱ پرسش پنجم

فرض کنید وزن بستههای شن میتواند با توزیع نرمال با میانگین $77, \wedge kg$ و انحراف معیار $9, \wedge kg$ مدل شود.

- ۱. احتمال آن که یک بسته ی تصادفی انتخاب شده وزن کمتر از 74kg داشته باشد را به دست آورید.
- ۲. احتمال آن که یک بسته ی تصادفی انتخاب شده وزن بین 74kg و 75,0 داشته باشد را به دست آورید.
 - ٣. وزني كه ٧٥٪ بستهها از آن سنگينتر هستند را به دست آوريد(تا دو رقم اعشار).

۲ جبرخطی

۱.۲ پرسش اول

با فرض آنکه x و a بردارهای ستونی و A ماتریس مربعی باشد، موارد زیر را اثبات کنید:

$$\frac{da^Tx}{dx} = a .$$

$$\frac{dx^T Ax}{dx} = (A + A^T)x . \Upsilon$$

$$\frac{dx^T A}{dx} = A^T$$
 .

۲.۲ پرسش دوم

موارد زیر را اثبات کنید

- ۱. دترمینان ماتریس A برابر است با حاصل ضرب مقادیر ویژه ماتریس A
 - برابر است با حاصل جمع مقادیر ویژه ماتریس trace(A) . ۲
 - ۳. مقادیر ویژه ماتریس A و A^T برابرند
- ۴. اگر λ مقدار ویژهی ماتریس A باشد، λ^k مقدار ویژهی ماتریس $(k \in \mathbb{N})$ خواهد بود

۳.۲ پرسش سوم

فرض کنید ماتریس A یک ماتریس مربعی است و فرض کنید که λ_M تا λ_M مقادیر ویژه A و q_N تا q_M بردارهای ویژه متناظر با این مقادیر باشند.

- ۱. نشان دهید اگر k تا از مقادیر ویژه متمایز باشند، در شرایطی که $k \leq M$ ، آنگاه بردارهای ویژه متناظر مستقل خطی هستند.
- q_j بر q_i بر $\lambda_i \neq \lambda_j$ بر آنگاه برای $\lambda_i \neq \lambda_j$ ثابت کنید که بر α_i بردارهای ویژه متناظر با مقادیر ویژه ی α_i و α_i هستند).

۴.۲ پرسش چهارم

ماتریس
$$A = \begin{bmatrix} \cdot & 1 \\ 1/7 & 1/7 \end{bmatrix}$$
 ماتریس

- ۱. مقادیر ویژه و بردارهای ویژه متناظر با آن را بدست آوردید.
- ۲. تجزیه ی مقادیر ویژه ی ماتریس A را بدست آورید. یعنی A را به صورت $P\Lambda P^-$ بنویسید. بررسی کنید که P^- ا است P^- است
 - ۳. مقدار عبارت زیر را به دست آورید:

$$\lim_{k\to\infty}A^k$$

۵.۲ پرسش پنجم

ماتریس $A\in\mathbb{R}^{n imes m}$ در حالی که $n\leq m\leq m$ و $m\leq m$ و ست را در نظر بگیرید. میدانیم تجزیهی مقدار تکین به صورت $A\in\mathbb{R}^{n imes m}$ است. با داشتن این اطلاعات تجزیهی مقدار تکین ماتریسهای زیر را به دست آورید.

- $(A^TA)^{-1}$.
- $(A^TA)^{-1}A^T$.
 - $A(A^TA)^{-1}$.
- $A(A^TA)^{-1}A^T$.

موفق باشيد