Robotic Arm

Project Proposal: Team A

ISE 학과	Ganiev Mukhammad Abdullokh	12190246
ISE 학과	Kunishev Ozodjon	12190259
ISE 학과	Ibragimov Jasurbek Yunus Ugli	12190263
ISE 학과	Isaeva Gulzhan	12194812
ISE 학과	Khalilov Asadbek Ismoiljon Ugli	12194882
ISE 학과	Yuldashev Mukhammadyusuf Kobuljon Ugli	12194916

Components

TurtleBot3 Burger

360° LiDAR for SLAM & Navigation

Scalable Structure

Single Board Computer (Raspberry Pi)

OpenCR (32-bit ARM Cortex®-M7)

> DYNAMIXEL x 2 for Wheels

> Sprocket Wheels for Tire and Caterpillar

> > Li-Po Battery

2. 1. 1. Hardware Specifications

Items	Burger		
Maximum translational velocity	0.22 m/s		
Maximum rotational velocity	2.84 rad/s (162.72 deg/s)		
Maximum payload	15kg		
Size (L x W x H)	138mm x 178mm x 192mm		
Weight (+ SBC + Battery + Sensors)	1kg		
Threshold of climbing	10 mm or lower		
Expected operating time	2h 30m		
Expected charging time	2h 30m		
SBC (Single Board Computers)	Raspberry Pi		
MCU	32-bit ARM Cortex®-M7 with FPU (216 MHz, 462 DMIPS)		
MCU Remote Controller	32-bit ARM Cortex®-M7 with FPU (216 MHz, 462 DMIPS) -		
Remote Controller	-		
Remote Controller Actuator	- XL430-W250		
Remote Controller Actuator LDS(Laser Distance Sensor)	- XL430-W250		
Remote Controller Actuator LDS(Laser Distance Sensor) Camera	- XL430-W250 360 Laser Distance Sensor LDS-01 or LDS-02 - Gyroscope 3 Axis		

Peripheral	UART x3, CAN x1, SPI x1, I2C x1, ADC x5, 5pin OLLO x4
DYNAMIXEL ports	RS485 x 3, TTL x 3
Audio	Several programmable beep sequences
Programmable LEDs	User LED x 4
Status LEDs	Board status LED x 1 Arduino LED x 1 Power LED x 1
Buttons and Switches	Push buttons x 2, Reset button x 1, Dip switch x 2
Battery	Lithium polymer 11.1V 1800mAh / 19.98Wh 5C
PC connection	USB
Firmware upgrade	via USB / via JTAG
Power adapter (SMPS)	Input : 100-240V, AC 50/60Hz, 1.5A @max Output : 12V DC, 5A

WEBCAM

BATTERY

AC ADAPTER

DIMENSION (WXDXH)

HD type (30fps@720p)

2x Type-A USB3.2 Gen2

1x (4K @ 60Hz) HDMI™

82 Battery (Whr) 4-Cell

240W adapter

357 x 247 x 19 mm

OS	Windows 10 Home (MSI recommends Windows 11 Pro for business.) FREE Upgrade to Windows 11*	KEYBOARD	RGB Backlight Keyboard
		COMMUNICATION	802.11 ax Wi-Fi 6E + Bluetooth v5.2
DISPLAY	15.6" FHD (1920x1080), 144Hz, IPS-Level 15.6" FHD (1920x1080), 240Hz, IPS-Level	AUDIO	2x 2W Speaker
		WEIGHT (W/ BATTERY)	1.9 kg
GRAPHICS	AMD Radeon™ RX 6700M with 10GB GDDR6	AUDIO JACK	1x Mic-in/Headphone-out Combo Jack
MEMORY	2 Slots DDR4-3200	I/O PORTS	1x Type-C (USB3.2 Gen2 / DP) 1x Type-C USB3.2 Gen2

Up to AMD Ryzen™ 9 5000 H-Processors

DDR4-3200

Max 64GB

2x M.2 SSD slot (NVMe PCle Gen3)

HD type (30fps@720p)

RGB Backlight Keyboard

CPU

STORAGE CAPABILITY

WEBCAM

KEYBOARD

Real-World Application: Greenhouse Tomato picker smart robot

Software Diagram

Flowchart Diagram

We will be doing object detection using...

For our project we need to detect box as our demo is with box.

- -Ready images
- -Already annotated
- -already YOLOv7format
- -Can be directly trained.
- -We do custom dataset training for YOLOv7

- -We use Google collab's free GPU to train.
- -We download YOLOv7 files from its git hub.
- -We use google drive as a storage.

-We use the best epoch weight for detection.

```
opt = {
    "weights": "/content/gdrive/MyDrive/yolov7/runs/train/exp/weights/best.pt" # Path to weights file default weights are for nano model
    "yyml" : "Box/data.yaml",
    "img-size": 640, # default image size
    "conf-thres": 0.25, # confidence threshold for inference.
    "iou-thres" : 0.45, # NMS IoU threshold for inference.
    "device" : '0', # device to run our model i.e. 0 or 0,1,2,3 or cpu
    "classes" : classes_to_filter # list of classes to filter or None
}
```

-We have some py files that can link our model to web camera..

Webcam Helper Functions

The camera detects it and send signal to turtle bar

4. Evaluation

. Note the checkpoints from training will be stored by default in runs/train/exp. Take the path of the latest checkpoint

We can evaluate the performance of our custom training using the provided evalution script.

Note we can adjust the below custom arguments. For details, see the arguments accepted by detect.py.

from IPython.display import Image display(Image("/content/gdrive/MyDrive/yolov7/runs/train/exp/F1_curve.png", width=400, height=400)) display(Image("/content/gdrive/MyDrive/yolov7/runs/train/exp/PR curve.png", width=400, height=400)) display(Image("/content/gdrive/MyDrive/yolov7/runs/train/exp/confusion matrix.png", width=500, height=500)) - cigarette - all classes 0.83 at 0.186 0.8 Confidence — cigarette 0.741 all classes 0.860 mAP@0.5

After training

5.1.2 Display Inference on Folder of Test Images

Note From the above output display copy the full path of folder where test images are stored

Simulated smart arm installation process:

1Step We installed Ubuntu and some other packages **2Step** Then we installed Noetic and world ROS packages.

Part 1 of 2

Building a Simulated Mobile Robot Base Using ROS

- Install ROS Packages
- Create a ROS Package
- Create Folders
- Build the Base of the Robot
- Launch the Base of the Robot

${\tt rosrun} \ {\tt rqt_robot_steering} \ {\tt rqt_robot_steering}$

Building a Simulated Robot Arm Using ROS

- Build the Robot Arm
- Test the Robot Arm
- Launch the Robot Arm

Moving a Simulated Robot Arm to a Goal Using ROS

- Prerequisites
- Create a ROS Package
- Write the Code
- Run the Code

rosrun arm_to_goal send_goal_to_arm.py

Working on Cartographer part

References:

https://www.semanticscholar.org/paper/Environmental-Measurement-in-Greenhouse-by-Mobile-Kumamoto-Iida/fa91b06d6027db3f58d7601c82047ba8c6570b4e

https://dmexco.com/stories/smart-farming/

https://www.mdpi.com/2073-4395/10/11/1751/htm

https://www.youtube.com/watch?v=BBwEF6WBUQs&ab_channel=WangZheng

https://automaticaddison.com/how-to-move-a-simulated-robot-arm-to-a-goal-using-ros/