## 一些特殊的范畴

现在规定几种特殊的范畴。

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: **所有集合构成的范畴**, 为局部小范畴, 满足
  - Set 中对象为任意集合;
  - Set 中箭头为集合间映射。
- Cat: **所有范畴构成的范畴**, 满足
  - Cat 中任何对象都构成一个范畴;
  - Cat 中任何箭头都构成一个函子。

## 若 C, D 为 Cat 中对象,则:

- C<sup>op</sup>: **反范畴**,满足
  - C<sup>op</sup> 中对象皆形如 c,
    c 为任意 C 中的对象;
  - $C^{op}$  中箭头皆形如  $j^{op}$  :  $c_2 \xrightarrow{C^p} c_1$  , j :  $c_1 \xrightarrow{C} c_2$  可为任意 C 中的箭头 。
- C×D: **积范畴**,满足
  - C×D 中对象皆形如 c.d,
    c,d分别为任意 C,D 中的对象;
  - C×D 中箭头皆形如 j.k,
    j,k 分别为任意 C, D 中的箭头。
- C→Cat D : 所有 C 到 D 的函子的范畴 , 满足
  - C → D 中任何对象
    都是 C 到 D 的函子;
  - $C \xrightarrow{Cat}$  中任何箭头都是函子间自然变换。
- C/c: **俯范畴**, 这里 c 为任意 C 中对象; 满足
  - C/c<sub>2</sub> 中对象皆形如 c.1.j, 其中 c 和
    j: c→c<sub>2</sub> 分别为 C 中任意的对象和箭头;
  - c<sub>2</sub>/C 中箭头皆形如 f is id 且满足下述交换图, 其中
    c, c' 为 C 中任意对象且 f, j, j' 为 C 中任意箭头; TODO







- c<sub>1</sub>/C: **仰范畴**, 这里 c 为任意 C 中对象;满足
  - $c_1/C$  中对象皆形如  $1.\overline{c}.\overline{j}$ , 其中 c 和  $\overline{j}: c_1 \rightarrow c$  分别为 C 中任意的对象和箭头;
  - C/c<sub>1</sub> 中箭头皆形如 \_\_\_\_id. f 且满足下述交换图,其中
    c, c' 为 C 中任意对象且 f, j, j' 为 C 中任意箭头; TODO





