1 Subshift e Matriz de Transição

Se $N \geq 1$, definimos o conjunto Σ_N formado sequências de números naturais limitados entre 1 e N. Precisamente,

$$\Sigma_N = \{ (x_n)_n \in \mathbb{N}^{\mathbb{N}} : 1 \le x_n \le N \}.$$

Definimos também a função $d_N: \Sigma_N \times \Sigma_N \to \mathbb{R}$ dada por

$$d_N(x,y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{N^i},$$

onde $x = (x_n)_n$ e $y = (y_n)_n$. Observe que

Proposição 1.1. (Σ_N, d_N) é um espaço métrico.

Demonstração.

Proposição 1.2. Sejam $x = (x_n)_n, y = (y_n)_n \in \Sigma_N$.

- 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então $d_N(x, y) \le \frac{1}{N^k}$.
- 2. Se $d_N(x,y) < \frac{1}{N^k}$, então $x_i = y_i$ para todo $0 \le i \le k$.

 \square

Definição 1.3. Seja $A = (a_{ij})_{1 \leq i,j \leq N}$ uma matriz quadrada de ordem N. Dizemos que A é uma matriz de transição de ordem N se $a_{ij} \in \{0,1\}$ para todo $1 \leq i,j \leq N$.

Seja A uma matriz de transição de ordem N. Definimos o conjunto Σ_A como

$$\Sigma_A = \{(x_n)_n \in \Sigma_N : a_{x_i x_{i+1}} = 1 \text{ para todo } i \ge 0\}.$$

Proposição 1.4. Σ_A é fechado em (Σ_N, d_N) .

Demonstração.

Proposição 1.5. Se $x \notin \{0, a_1, a_2, a_3\}$ é um ponto periódico de F, então $x \in I_1 \cup I_2$.

Demonstração.

Lema 1.6. Λ é um conjunto hiperbólico.

 \square Demonstração.

Teorema 1.7. $F|_{\Lambda}$ e σ_A são topologicamente conjugadas.

 \square Demonstração.

Proposição 1.8. Seja A uma matriz de transição de ordem N. Então σ_A possui $Tr(A^k)$ pontos periódicos de período k.

Demonstração.