$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	- <u>i</u> kr5+2 k³ r5	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{kr_5+2k^3r_5}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
			$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_1^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$ au_1^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#_{1}} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

	$\omega_{0}^{\#1}$	$f_{0+}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0^{+}}^{#1}$ †	0	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
,,#1 +	Λ	Λ	Λ	+

	$\sigma_0^{\#1}$	$\tau_0^{\#1}$	$\tau_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

					_ 			
$f_{1}^{\#1}$ α	0	0	0	0	0	0	0	
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	€ 1 7	0	$-\frac{1}{3}i\sqrt{2}kt_1$	
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} k t_1	
$f_1^{\#1} + \alpha \beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#2}_{+}_{\alpha\beta} \ f_{1}^{\#1}_{+}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$a_1^{\#1} + \alpha \beta$	$r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	

 ikt_1

0

0

 $i\sqrt{2}kt_1$

 $2k^2t_1$

0

	$\sigma_{0^{+}}^{\#1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
ш1				1

? k^{μ}	Quadratic pole	<u>.</u>
\ '' \	Pole residue:	$-\frac{1}{r_5 t_1^2} >$
?	Polarisations:	2
?		

Unitarity conditions

 $\omega_1^{\#2} + ^{lphaeta}$

 $f_1^{\#1} +^{\alpha\beta}$

 $\omega_1^{\#_1} \dotplus^\alpha$

 $\omega_{1}^{\#2} +^{\alpha}$

 $f_{1^{\text{-}}}^{\#1} \dagger^{\alpha}$

 $r_5 < 0 \&\& t_1 < 0 \mid\mid t_1 > 0$

(No massive particles)

Source constraints	
SO(3) irreps	#
$\sigma_{0+}^{*1} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\tau_{0+}^{#2} == 0$	1
$t_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	3
$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0	5
Total #:	17

 $_{\lambda}^{\lambda}\partial^{\kappa}f^{\prime}_{\prime}+2\,t_{1}\,\,\omega_{\kappa\theta}\,\partial^{\kappa}f^{\prime\theta}-\frac{1}{3}\,t_{1}\,\,\omega_{\alpha}^{}\,\partial^{\kappa}f^{\prime}_{\kappa}-\frac{1}{3}\,t_{1}\,\,\omega_{\lambda}^{\lambda}\,\partial^{\kappa}f^{\prime}_{\kappa}$

 $_{1}^{\prime}+rac{2}{3}t_{1}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f_{1}^{\prime}$

 $^{\prime}_{\prime} + \frac{1}{3} t_1 \, \omega_{\kappa\lambda}^{\lambda} \, \partial^{\kappa} f^{\prime}_{\prime}$

 $\frac{1}{3}t_1 \omega_{\kappa\alpha}^{\quad \alpha} \partial^{\kappa} f'$

 $_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda}+$

 $a - \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa}$

θ

 $^{1}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta}$

 $_{\lambda}^{} \theta + \frac{1}{2} t_1 \, \partial_{\kappa} f^{\lambda}_{}$

 $_{\kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_{1}\partial_{\kappa}f_{\theta}^{\ \ \lambda}\partial^{\kappa}f_{\lambda}^{\ \ \xi}$

 $_{\kappa}^{\kappa}$ - $r_5 \partial_{\theta} \omega_{\lambda}^{\alpha} {}_{\alpha} \partial^{\lambda} \omega^{\theta \kappa}$

 $_{\alpha}^{}\partial^{\kappa}f_{\lambda\kappa} + r_5\,\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}$

 $\tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \, \, \sigma_{\alpha\beta\chi}$

Added source term: $|f^{lphaeta}$

 $\frac{1}{3}t_1\;\omega_{,}^{\alpha\prime}\;\omega_{\kappa\alpha}^{\quad \ \ \, \kappa_{-}}t_1\;\omega_{,}^{\ \ \, \kappa\lambda}\;\omega_{\kappa\lambda}^{\quad \ \, \prime}-r_5\;\partial_{\imath}\omega^{\kappa\lambda}_{\quad \ \, \kappa}^{\quad \ \, \lambda}\omega_{\lambda}^{\quad \ \, \alpha}_{\quad \ \, \kappa}^{\quad \ \, -}r_5\;\partial_{\alpha}\omega_{\lambda}^{\quad \ \, \alpha}_{\quad \ \, \theta}\partial_{\kappa}\omega^{\theta\kappa\lambda}_{\quad \ \, \tau}^{\quad \ \, +}$

Lagrangian density

 $r_5 \, \partial_\theta \omega_\lambda^{ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \, \partial_\alpha \omega_\lambda^{ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{ \alpha}$