Al Project Final Report

Hospital Readmission Prediction for Diabetic Patients

Submitted by:

Student Name	Student ID
محمد أحمد محمد عبد الغني	2023170477
نهی یوسف محمد موسی	2023170669
ملك رشاد محمود محمد	2023170624
ارسانيوس نبيل نيري عطية	2023170081
إيريني عادل إسحق سعيد	2023170114
سمية محمود حسنين ابراهيم	2023170276
يحيى أحمد يحيى فايز	2023170704

Supervised by:

Dr. Mohamed Magdy

Project Overview:

This project aims to build a predictive system that identifies whether a diabetic patient is likely to be **readmitted to the hospital within**30 days after discharge. The data used comes from a large, realworld medical dataset containing 101,766 patient records, each with 50 features related to demographics, lab results, diagnoses, medications, and prior hospital visits.

This is a **Supervised Machine Learning project** because:

- The data is labeled each patient record includes a readmitted value that tells us the outcome (0 if the patient was readmitted before 30 days, 1 if he was readmitted after 30 days, 2 if not).
- Our goal is to learn a pattern from these labeled examples and use it to predict the label (readmission status) for new patients.
- Prediction
 - o Predict one of three labels:
 - o "<30":0
 - 。">30":1
 - 。 "NO":2

1. Data Preprocessing:

1.1 Initial Inspection

- Decoded id columns using mapping file. (ID's mapping file).
- Detected both invalid and null values in several features.
- For (diag1,diag2,diag3) we first decoded them according to "ICD-9" https://en.wikipedia.org/wiki/List_of_ICD-9_codes.

1.2 Handling Missing & Invalid Values

- Invalid (non-null but wrong) values were also identified and replaced with the null.
- Null values were replaced using mode imputation (most frequent value).

race	2273
payer_code	40256
medical_specialty	49949
diag_1	21
diag_2	358
diag_3	1423
number_diagnoses	0
max_glu_serum	96420
A1Cresult	84748

 All missing values were filled by mode except (race and payer code) were dropped. The weight feature contained mostly nulls, so a predictive Random Forest model was trained using age and gender to estimate the missing values.

1.3 Encoding Categorical Features

- All categorical features were encoded using:
 - One-Hot Encoding (for nominal features).
 (Age, weight, diag1, diag2, diag3).
 - Label Encoding (for ordinal features or when applicable).

(Gender, admission_type_id, discharge_disposition_id admission_source_id, medical_specialty, insulin readmitted, metformin, max_glu_serum, A1Cresult, repaglinide, nateglinide, glimepiride, glipizide, glyburide, pioglitazone, rosiglitazone, glyburide-metformin change, diabetesMed).

 All mappings from this process were saved in a structured JSON file for reproducibility and future decoding.

1.4 Dropping Irrelevant Features

- Some features were dropped based on their distribution of value:
 - Extremely low variance.

Value counts for column: acetohexamide acetohexamide
No 101765
Steady 1
Name: count, dtype: int64

Value counts for column: citoglipton citoglipton

No 101766

Name: count, dtype: int64

Value counts for column: miglitol miglitol

 No
 101728

 Steady
 31

 Down
 5

 Up
 2

Name: count, dtype: int64

metformin-pioglitazone

No 101765 Steady 1

Name: count, dtype: int64

glipizide-metformin No 101753 Steady 13

Name: count, dtype: int64

Value counts for column: acarbose

acarbose

No 101458

Value counts for column: troglitazone

troglitazone Steady 3

Name: count, dtype: int64

Value counts for column: tolazamide

tolazamide

No 101727 Steady 38 Up 1

Name: count, dtype: int64

Value counts for column: examide

examide

No 101766

Name: count, dtype: int64

glimepiride-pioglitazone

No 101765 Steady 1

Name: count, dtype: int64

Value counts for column: metformin-rosiglitazone

metformin-rosiglitazone

No 101764 Steady 2

Name: count, dtype: int64

o Too many unique values.

Value counts for column: patient_nbr patient_nbr

88785891 40 43140906 28 88227540 23 1660293 23 23199021 23

174477542 1 38726739 1 77391171 1 89869032 1

63555939 1

Name: count, Length: 71518, dtype: int64

- We combined "number_outpatient" and "number_inpatient" and "number_emergency" into "Total_visits."
- We combined all the weights above 125 into one column "weight_>_125".

1.4 Outliers Handling

- Capping technique was applied to numerical features to limit the impact of extreme values.
- Number of outliers in the numerical features:

time_in_hospital: 2252 outliers
num_lab_procedures: 143 outliers
num_procedures: 4954 outliers
num_medications: 2557 outliers
number_emergency: 11383 outliers
number_diagnoses: 281 outliers
Total_visits: 4425 outliers

1.5 Standardization

- Standard normalization (z-score normalization) was applied to scale the data. This method is broadly applicable and helps ensure that all features contribute equally during model training, regardless of their original scales.
- The transformation is defined as:

$$z = \frac{\{x - \mu\}}{\{\sigma\}}$$

2. Exploratory Data Analysis (EDA):

To better understand the dataset, we categorized the features into five key groups:

- 1. Numerical Features
- 2. Categorical Features
- 3. Medical / Treatment Features
- 4. Diagnosis Features
- 5. Feature Correlation & Impact

This modular structure allowed us to **investigate patterns**, trends, and their relationship with hospital readmission in a focused and interpretable way.

2.1 Numerical Features:

Includes: time_in_hospital, num_lab_procedures, num_procedures, Total_visits, etc.

2.2Categorical Features:

- Analyzed distributions using count plots and grouped bar charts.
- Converted most of these to numeric using label or one-hot encoding.
- Categorical variables like admission_type_id and discharge_disposition_id showed some patterns with readmitted.

•

2.3 Medication Features:

- These columns indicate how diabetes-related medications were used (up, down, steady, no).
- Medication change status was encoded and analyzed across readmitted vs. non-readmitted patients.

2.4 Diagnosis Features:

We grouped diagnosis data into **three categories** based on the original diagnosis columns:(d1,d2 and d3):-

 These were binary features indicating the presence of each diagnosis category. We analyzed their frequencies in readmitted vs. notreadmitted patients.

2.5 Feature Correlation & Importance

To understand feature relationships and identify the most impactful ones, we:

- Computed correlation matrices for:
 - Numerical features
 - Medication usage
 - Diagnosis category flags
- Used tree-based models (e.g., Random Forest) to extract feature importance.

Summary:

By dividing the features into **Num / Cat / Med / Diag (1,2,3)** we performed a comprehensive and structured exploration. This allowed our team to isolate meaningful patterns and relationships critically for building a strong predictive model.

3. Model Development:

Before starting training, we prepared the data by:

1. Feature Selection:

• Use SelectKBest(f_classif) to select the top 15 features.

2. Handling Class Imbalance:

• Used RandomOverSampler to balance class distribution before training.

3. Dataset Splitting

 Split into training (80%) and testing (20%) sets using stratified sampling to preserve class proportions.

4. Model Training:

- Train the following models:
 - o Logistic Regression
 - SVM (Linear Kernel)
 - Random Forest (150 Trees)
 - o XGBoost with class weights ({0:3, 1:2, 2:2})

5. Model Evaluation:

- Predict and evaluate each model.
- Metrics used:

Classification Report (Precision, Recall, F1-Score):

Logistic Regression Report:

	precision	recall	f1-score	support
0	0.43	0.41	0.42	10973
1	0.38	0.21	0.27	10973
2	0.44	0.65	0.52	10973
accuracy			0.42	32919
macro avg	0.42	0.42	0.41	32919
weighted avg	0.42	0.42	0.41	32919

SVM Report:

		precision	recall	f1-score	support
	0	0.31	0.41	0.36	10973
	1	0.33	0.12	0.18	10973
	2	0.30	0.40	0.35	10973
accur	racy			0.31	32919
macro	avg	0.32	0.31	0.29	32919
weighted	avg	0.32	0.31	0.29	32919

Random Forest Report:

	precision	recall	f1-score	support
0	0.94	0.99	0.97	10973
1	0.74	0.90	0.81	10973
2	0.87	0.64	0.74	10973
accuracy			0.84	32919
macro avg	0.85	0.84	0.84	32919
weighted avg	0.85	0.84	0.84	32919

XGBoost Report:

	precision	recall	f1-score	support
0	0.49	0.85	0.62	10973
1	0.59	0.28	0.38	10973
2	0.58	0.46	0.51	10973
accuracy			0.53	32919
macro avg	0.55	0.53	0.50	32919
weighted avg	0.55	0.53	0.50	32919

• ROC-AUC Score (macro-averaged, multi-class):

ROC-AUC (XGB): 0.74

ROC-AUC (Logistic Regression): 0.61

ROC-AUC (Random Forest): 0.97

6.Confusion Matrix Visualization:

• Plots for all models to visualize performance across classes.

Summary:

- Random Forest significantly outperformed all other models, both in accuracy and ROC-AUC, making it the most reliable for readmission prediction.
- Its ensemble nature allowed it to capture complex interactions between patient features.
- Models like Logistic Regression and SVM were limited by their linear nature and lack of robustness to class imbalance.
- XGBoost performed reasonably well but required intensive tuning and still fell short of Random Forest's consistency.