# CSC373 Worksheet 5 Solution

## August 7, 2020

### 1. Notes

#### • Maximum Flow Problem:

 Is about computing the greatest rate at which we can ship material from the source to the sink without violating any capacity constraints

#### • Flow Network:

- -G = (V, E) is a directed graph in which each edge  $(u, v) \in E$  has a nonnegative capacity  $c(u, v) \geq 0$ .
- Two vertices must exist: **source** s and **sink** t
- path from source s to vertax v to sink t is represented by  $s \rightsquigarrow v \rightsquigarrow t$



## • Capacity:

- Is a non-negative function  $f: V \times V \to \mathbb{R}_{\geq 0}$
- Has capacity constraint where for all  $u, v \in V$   $0 \le f(u, v) \le c(u, v)$ 
  - \* Means flow cannot be above capacity constraint

#### • Flow:

– Is a real valued function  $f: V \times V \to \mathbb{R}$  in G

- Satisfies capacity constraint (i.e for all  $u, v \in V, 0 \le f(u, v) \le c(u, v)$ )
- Satisfies flow conservation

For all  $u \in V - \{s, t\}$ , we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \tag{1}$$

Means total flow forward is the same as total flow backward