2006-2007 Eğitim- Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 2

1)
$$(1+x^2)\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 + 1 = 0$$
 diferansiyel denklemini çözünüz

2)
$$x \frac{d^2 y}{dx^2} = \sqrt{1 + (\frac{dy}{dx})^2}$$
 diferansiyel denklemini çözünüz.

- 3) y'' + 6y = 0 diferansiyel denkleminin genel çözümünü bulunuz ve diferansiyel denklemin çözümlerinin temel cümlesi olup olmadığını araştırınız.
- 4) y'' + 3y' + 2y = 0 y(0) = 2 y'(0) = 1 başlangıç değer problemini çözünüz.
- 5) $y'' 7y' + 10y = 6t + 8e^{2t}$ diferansiyel denkleminin genel çözümünü bulunuz.
- 6) $y'' + 7y' + 12y = \sin 2x + e^{-3x} + 4$ diferansiyel denklemini çözünüz.
- 7) $y'' 5y' + 4y = -4(x^2 + 1)e^{3x}$ diferansiyel denklemini çözünüz.
- 8) $y'' + y = \sin x$ diferansiyel denklemini parametrelerin değişimi metodunu kullnarak çözünüz
- **9)** $(2-t)y^{"} + (2t-3)y^{"} ty + y = 0$ diferansiyel denkleminin bir çözümü $y_1(t) = e^t$ olduğuna göre, mertebe düşürme metodunu kullanarak $y_2(t)$ yi hesaplayınız.
- **10)** $y''' + y' = \frac{1}{\sin x}$ **0<x<T** diferansiyel denklemini parametrelerin değişimi metodunu kullanarak çözünüz
- 11) $y''' 4y'' + y' + 6y = \sin 4x$ diferansiyel denkleminin genel çözümünü belirsiz katsayılar metodunu kullanarak bulunuz.
- **12)** $y''' 2y'' + 17 = 8 + e^{2x} \cos 5x + x^2 e^x \sin 4x + (x+1)$ diferansiyel denkleminin homojen kısmın çözümünü elde ediniz. Sağ taraf için belirsiz katsayılar yöntemiyle özel çözümünü katsayıları hesaplamadan çözünüz

SORU) $(1+x^2)\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 + 1 = 0$ diferansiyel denklemini çözünüz.

Çözüm:

$$\frac{d^2y}{dx^2} = -\frac{1}{(1+x^2)}((\frac{dy}{dx})^2) + 1)$$
 $y'' = f(x, y')$ tipi

$$\frac{dy}{dx} = y' = p$$
 $y'' = \frac{dp}{dx}$ ifadeleri dif. denklemde yerlerine konulursa

$$\frac{dp}{dx} = -\frac{1}{(1+x^2)}(p^2+1) \qquad \qquad \frac{dp}{(p^2+1)} = -\frac{1}{(1+x^2)}dx$$

Arctanp=-Arctanx/arctanc p=-x/c

$$\frac{dy}{dx} = y' = p \qquad \text{idi.} \qquad \frac{dy}{dx} = -\frac{x}{c} \qquad \qquad y = -\frac{x^2}{2c} + c_1$$

Soru2) $x \frac{d^2y}{dx^2} = \sqrt{1 + (\frac{dy}{dx})^2}$ diferansiyel denklemini çözünüz.

Çözüm:

$$\frac{d^2y}{dx^2} = \frac{\sqrt{1 + (\frac{dy}{dx})^2}}{x}$$
 $y'' = f(x, y')$ tipi

$$\frac{dy}{dx} = y' = p$$
 $y'' = \frac{dp}{dx}$ ifadeleri dif. denklemde yerlerine konulursa

$$\frac{dp}{dx} = \frac{\sqrt{1+p^2}}{x} \qquad \frac{dx}{x} = \frac{dp}{\sqrt{1+p^2}}$$

Hatırlatma:
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left[\left(x + \sqrt{a^2 + x^2} \right) \right]$$

Lnx+lnc=ln(p+
$$\sqrt{1+p^2}$$
) \rightarrow cx=p+ $\sqrt{1+p^2}$ \rightarrow cx-p= $\sqrt{1+p^2}$ 2 tarafin karesi alınırsa

$$c^2x^2 - 2cxp + p^2 = 1 + p^2$$
 $\rightarrow c^2x^2 - 1 = 2cxp \rightarrow p = \frac{c^2x^2 - 1}{2cx} = \frac{cx}{2} - \frac{1}{2cx}$

$$p = \frac{dy}{dx}$$
 idi. $\rightarrow \frac{dy}{dx} = \frac{cx}{2} - \frac{1}{2cx} \rightarrow dy = \frac{cx}{2} - \frac{1}{2cx}dx$

$$\rightarrow y = \frac{cx^2}{4} - \frac{\ln x}{2c} + c_1$$

SORU3) y'' + 6y = 0 diferansiyel denkleminin genel çözümünü bulunuz ve diferansiyel denklemin çözümlerinin temel cümlesi olup olmadığını araştırınız.

$$y'' = r^2$$

 $y' = r$ yazılarak $r^2 + 6 = 0$ karakteristik denklemden kompleks kök
 $y = 1$ $\alpha = -\frac{b}{2a} = 0$ $\beta = \frac{\sqrt{4ac - b^2}}{2a} = \sqrt{6}$

$$r_1 = 0 + i\sqrt{6}$$
 $r_2 = 0 - i\sqrt{6}$

$$y_h = e^{\alpha x} (c_2 \cos \beta x + c_3 \sin \beta x)$$

$$\mathbf{y_h} = (c_1 \mathbf{Cos} \sqrt{6} \mathbf{x} + c_2 \mathbf{Sin} \sqrt{6} \mathbf{x})$$

$$W = \begin{pmatrix} \cos\sqrt{6x} & \sin\sqrt{6x} \\ -\sqrt{6}\sin\sqrt{6x} & \sqrt{6}\cos\sqrt{6x} \end{pmatrix} = \sqrt{6} \neq 0$$
 çözümlerin temel cümlesidir.

4)
$$y'' + 3y' + 2y = 0$$
 $y(0) = 2$ $y'(0) = 1$ başlangıç değer problemini çözünüz.

$$y'' + 3y' + 2y = 0$$
 ile homojen çözüm yapılarak

$$y'' = r^2$$

 $y' = r$ yazılarak $r^2 + 3r + 2 = 0$ karakteristik denklemden
 $y = 1$

$$r^2 + 3r + 2 = 0$$
 $r_1 = -1$ $r_2 = -2$ **2 farklı reel kök** $y_{\text{hom ojen}} = c_1 e^{-x} + c_2 e^{-2x}$ $y' = -c_1 e^{-x} - 2c_2 e^{-2x}$ $y(0) = 2$ için $c_1 + c_2 = 2$ $c_1 = 5$ $c_2 = -3$ $c_1 = 6$ $c_2 = 7$ $c_3 = 7$ $c_4 = 7$ $c_5 = 7$ $c_5 = 7$ $c_7 = 7$ c

Soru5) $y''-7y'+10y=6t+8e^{2t}$ diferansiyel denkleminin genel çözümünü bulunuz.

Çözüm:

önce denklem 0 a eşitlenerek homojen kısmın çözümü bulunur.

$$r^2$$
-7r+10=0 karakteristik denklem
(r-2)(r-5)=0 r_1 =2, r_2 =5
 $y_{homogen}$ = c_1e^{2t} + c_2e^{5t}

Eşitliğin sağ tarafı doğru denklemi ve üstel fonksiyonun toplamı olduğundan özel çözüm olarak doğru denklemi ve üstel fonksiyon için ayrı özel çözümler seçilir.

0 karakteristik denklemin kökü olmadığından

 $y_{\ddot{o}zell}=At+B$ seçilerek türevler(y' ve y'') alınır, verilen denklemde yerlerine konularak katsayılar hesaplanır. y=A y''=0

$$-7 A+10(At+B)=6t10At+10 B--7 A=6t$$

$$y_{\ddot{o}zel1} = 3/5t + 21/50$$

Verilen Üstel fonksiyonda $(8e^{2t})$ t nin katsayısı 2 karakteristik denklemin basit bir kökü olduğundan

$$y_{\ddot{o}zel2}=tDe^{2t}$$

$$y'=2tDe^{2t}+De^{2t}$$
$$y''=2De^{2t}+4tDe^{2t}+2De^{2t}$$

$$2De^{2t}+4tDe^{2t}+2De^{2t}-7(2tDe^{2t}+De^{2t})+10tDe^{2t}=8e^{2t}$$

$$4De^{2t}==8e^{2t}$$

$$D=2$$

$$y_{\ddot{o}zel2}=tDe^{2t}=2te^{2t}$$

genel çözüm;

$$y_{genel} = y_{homogen} + y_{\ddot{o}zel}$$

 $y_{genel} = c_1 e^{2t} + c_2 e^{5t} + 2t e^{2t} + 3/5t + 21/50$

Soru 6) $y'' + 7y' + 12y = \sin 2x + e^{-3x} + 4$ diferansiyel denklemini çözünüz.

Çözüm:

$$y'' + 7y' + 12y = 0$$
 ile homojen çözüm yapılarak

$$y'' = r^2$$

 $y' = r$ yazılarak $r^2 + 7r + 12 = 0$ karakteristik denklemden
 $y = 1$

$$r^2 + 7r + 12 = 0$$
 $r_1 = -3$ $r_2 = -4$ 2 farklı reel kök

$$y_{\text{hom ojen}} = c_1 e^{-3x} + c_2 e^{-4x}$$

bulunur.

Özel çözümler Sin2x için

i2 karakteristik denklemin kökü olmadığından

$$y_{ozel1} = A\cos 2x + B\sin 2x$$

seçilerek

$$y_{\ddot{o}zel1} = A\cos 2x + B\sin 2x$$
$$y_{\ddot{o}zel1} = -2A\sin 2x + 2B\cos 2x$$
$$y_{\ddot{o}zel1} = -4A\cos 2x - 4B\sin 2x$$

ile
$$\sin 2x(-14A + 8B) + \cos 2x(8A + 14B) = \sin 2x$$

$$-14A + 8B = 1$$

 $8A + 14B = 0$

$$A = -7/30$$
 , $B = 4/30$

$$y_{\bar{o}zel1} = -\frac{7}{30}\cos 2x + \frac{4}{30}\sin 2x$$

e^{-3x} için özel çözüm

üstel fonksiyonda x'in katsayısı (-3), karakteristik denklemin kökü olduğundan

Ae^{-3x} seçilerek

$$y_{\ddot{o}zel2} = Axe^{-3x}$$

$$y_{\ddot{o}zel2} = Ae^{-3x} - 3Axe^{-3x}$$

$$y_{\ddot{o}zel2} = -6Ae^{-3x} + 9Axe^{-3x}$$
 diferansiyel denklemde yerlerine konularak

$$Ae^{-3x}=e^{-3x}$$
 den $A=1$ ve

$$y_{\ddot{o}zel2} = xe^{-3x}$$

bulunur.

Sabit sayı (4) için,

y ' ifade olduğundan sabit sayı y nin katsayısına oranlanır. $y_{ozel3} = 4/12 = 1/3$

$$y_{genel} = y_h + y_{\ddot{o}zel1} + y_{\ddot{o}zel2} + y_{\ddot{o}zel3}$$

$$y_{genel} = c_1 e^{-3x} + c_2 e^{-4x} - \frac{7}{30} \cos 2x + \frac{4}{30} \sin 2x + x e^{-3x} + 1/3$$

elde edilir.

7)
$$y'' - 5y' + 4y = -4(x^2 + 1)e^{3x}$$
 diferansiyel denklemini çözünüz.

$$y'' = r^2$$

 $y' = r$ yazılarak $r^2 - 5r + 4 = 0$ karakteristik denklemden
 $y = 1$

$$r^2 - 5r + 4 = 0$$
 $r_1 = 1$ $r_2 = 4$ 2 farklı reel kök

$$y_{\text{hom ojen}} = c_1 e^x + c_2 e^{4x}$$

üstel fonksiyonnda x in katsayısı olan 3 değeri karakteristik denklemin <u>kökü</u> olmadığından

 $y_{\bar{o}zel} = (Ax^2 + Bx + C)e^{3x}$ seçilerek türevler alınır ve verilen diferansiyel denklemde yerlerine konarak A, B ve C katsayıları belirlenir.

$$-2(Ax^2 + Bx + C) + 2Ax + B + 2A = -4(x^2 + 1)$$
 den

A=2, B=2 ve C=5 elde edilir. $y_{ozel} = (2x^2 + 2x + 5)e^{3x}$

$$y_{genel} = y_h + y_{ozel} = c_1 e^x + c_2 e^{4x} + (2x^2 + 2x + 5)e^{3x}$$

8) $y'' + y = \sin x$ diferansiyel denklemini parametrelerin değişimi metodunu kullanarak çözünüz

y'' + y = 0 denkleminin karakteristik denklemi $r^2 + 1 = 0$ ve kökleri $r = \pm i$ olup genel çözümü $y = e^{\alpha t} (c_1 \cos \beta x + c_2 \sin \beta x)$ den

$$y = c_1 Cosx + c_2 Sinx$$

 $W.u'=\varepsilon_n$ sistemini yazarsak

$$\begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ \sin x \end{pmatrix}$$

$$u_2$$
'= Sinx cosx u_2 =-(cos²x)/2+K₂
 u_1 = -Sin²x u_1 = -(x/2-(sin2x)/4)+K₁

Hatırlatma: $\int \sin^2 x dx = x/2 - (\sin 2x)/4$

u₁, u₂ (y= u₁Cosx+u₂Sinx) yerlerine konarak yani(Y=W.u) ile

$$y_{genel} = K_1 \cos x + K_2 \sin x - (x/2) \cos x - ((\cos^2 x)/2) \sin x - (\sin 2x \cos x)/4$$

9) $(2-t)y^{"} + (2t-3)y^{"} - ty + y = 0$ diferansiyel denkleminin bir çözümü $y_1(t) = e^t$ olduğuna göre, mertebe düşürme metodunu kullanarak $y_2(t)$ yi hesaplayınız.

10)
$$y''' + y' = \frac{1}{\sin x}$$

0<**x**<**π** diferansiyel denklemini çözünüz.

$$y'' = r^3$$

 $y'' = r^2$ yazılarak $r^3 + r = 0$ karakteristik denklemden
 $y' = r$ $r(r^2 + 1) = 0$ $r_1 = 0$ $r_{2,3} = 0 \pm i1$ **reel ve kompleks**

$$y_h=c_1e^{r_1x}+e^{\alpha x}(c_2Cos\beta x+c_3Sin\beta x)$$

$$y_h = c_1 + c_2 Cosx + c_3 Sinx$$

Parametrelerin değişimi yöntemine göre;

 $y_{ozel} = u_1 + u_2 Cosx + u_3 Sinx$ yazılarak

$$u_1' + u_2' \cos x + u_3' \sin x = 0$$
 (1)

$$-u_2'Sinx+u_3'Cosx=0 (2)$$

$$S'+u_2 \cdot Cosx+u_3 \cdot Sinx=0$$
 (1)
 $-u_2 \cdot Sinx+u_3 \cdot Cosx=0$ (2)
 $-u_2 \cdot Cosx-u_3 \cdot Sinx=1/sinx$ (3)

(1) ve (3) den
$$u_1 = \frac{1}{\sin x}$$
 $u_1 = -\ln(\csc x + \cot x)$

(2) ve (3) den
$$u_3 = -1$$
 $u_3 = -x$

(2) den
$$u_2 = u_3 \cot x = -\cot x = -\frac{\cos x}{\sin x}$$
 $u_2 = -\ln(\sin x)$

 $y_{ozel} = u_1 + u_2 Cosx + u_3 Sinx$ de yerlerine yazılarak

y_{özel}=-Ln(cscx+cotx)-CosxLnsinx-xSinx

 $y_{genel} = y_h + y_{\ddot{o}zel} = c_1 + c_2 Cosx + c_3 Sinx - Ln(cscx + cotx) - Cosx Lnsinx - x Sinx$

Hatırlatma: $\int (1/\sin ax) dx = 1/a \ln(\csc(ax) + \cot(ax))$

11) $y''' - 4y'' + y' + 6y = \sin 4x$ diferansiyel denkleminin genel çözümünü belirsiz katsayılar metodunu kullanarak bulunuz.

$$y'' = r^3$$

 $y'' = r^2$ yazılarak $r^3 - 4r^2 + r + 6 = 0$ karakteristik denklemden
 $y' = r$ ($r+1$)($r^2 - 5r + 6$) = 0 $r_1 = -1$, $r_2 = 2$, $r_3 = 3$ reel vefarklı 3 kök

$$y_{\text{hom}\,aien} = c_1 e^{-t} + c_2 e^{2t} + c_3 e^{3t}$$

$\sin 4x$ için ($\sin \beta x$ de i4 karakteristik denklemin kökü olmadığından)

y_{özel}=Acos4x+Bsin4x olarak seçilir.

$$y' = -4A\sin 4x + 4B\cos 4x$$

$$y'' = -16A\cos 4x - 16B\sin 4x$$

$$y''' = 64A\sin 4x - 64B\cos 4x$$

ifadeleri verilen diferansiyel denklemde yerlerine konursa

A=12/1565; B=13/1565

$$y_{ozel} = 12/1565 \cos 4x + 13/1565 \sin 4x$$

$$y_{genel} = y_{hom\,ojen} + y_{\ddot{o}zel}$$

$$\mathbf{y_{genel}} = c_1 e^{-t} + c_2 e^{2t} + c_3 e^{3t} + 12/1565 \cos 4x + 13/1565 \sin 4x$$

12) $y''' - 2y'' + 17y' = 8 + e^{2x}\cos 5x + x^2e^x\sin 4x + (x+1)$ diferansiyel denkleminin homojen kısmını çözümünü elde ediniz. Sağ taraf için belirsiz katsayılar yöntemiyle özel çözümünü katsayıları hesaplamadan çözünüz

$$y'' = r^3$$

 $y'' = r^2$ yazılarak $r^3 - 2r^2 + 17r = 0$ karakteristik denklemden
 $y' = r$ $r(r^2 - 2r + 17) = 0$ $r_1 = 0$ $r_{2,3} = 1 \pm i4$ **reel ve kompleks**

$$v_h = c_1 e^{r_1 x} + e^{\alpha x} (c_2 \cos \beta x + c_3 \sin \beta x)$$

$$y_h=c_1+e^x(c_2Cos4x+c_3Sin4x)$$

8 için özel çözüm:

(0 karakteristik denklemin **BASİT** kökü olduğu için)

$$y_{\ddot{o}zel1} = Ax$$

$e^{2x}\cos 5x$ için özel çözüm:

 $(e^{\alpha x}\cos\beta x \text{ de, } ((\alpha\pm i\beta); (2\pm i5)) \text{ karakteristik denklemin } \mathbf{K\ddot{O}K\ddot{U}} \mathbf{OLMADI\breve{G}I} \text{ için})$

 $y_{ozel2} = e^{ax} (B\cos\beta x + C\sin\beta x) = e^{2x} (B\cos5x + C\sin5x)$ olarak seçilir.

x²e^xsin4x için özel çözüm:

 $(x^n e^{\alpha x} \sin \beta x \ \mathbf{de}, ((\alpha \pm i\beta); (1 \pm i4))$ karakteristik denklemin basit **KÖKÜ olduğu** için için)

$$y_{\tilde{\alpha}zel3} = xe^{\alpha x}\cos\beta x(Dx^2 + Fx + G) + e^{\alpha x}\sin\beta x(Hx^2 + Ix + J)$$
 olarak seçilir.

$$y_{ozel3} = xe^x \cos 4x(Dx^2 + Fx + G) + e^x \sin 4x(Hx^2 + Ix + J)$$

x+1 için özel çözüm:

((0 karakteristik denklemin **BASİT** kökü olduğu için)

$$y_{\ddot{o}zel4} = x(Kx + L)$$

$$y_{genel} = y_h + y_{\ddot{o}zel1} + y_{\ddot{o}zel2} + y_{\ddot{o}zel3} + y_{\ddot{o}zel4}$$