Modélisation et résolution pour l'optimisation Rapport

Par Manon Girard & Paul Peyssard & Victor Tancrez

Contents

1	Prol	plèmes d'optimisation sous contraintes	3
	1.1	Cas 1 : Minimisation du nombre de fréquence utilisées	3
	1.2	Cas 2 : Utilisation des fréquences les plus basses	3
	1.3	Cas 3 : Minimiser la largeur de la bande de fréquence utilisées	3

1 Problèmes d'optimisation sous contraintes

Les données $\forall i \in \{1, 2, ..., n\}$ et $\forall j \in \{1, 2, ..., n\}$

- n :=le nombre de stations
- k := le nombre de région
- $\Delta_{i,j} \coloneqq$ l'écart minimum entre les fréquence des stations i et j (possiblement nul)
- n_i := le nombre maximum de fréquences différentes utilisées pour la région i
- $\delta_i \coloneqq$ l'écart entre les deux fréquences de la sation i
- $r_i :=$ le numéro de région de la station i

Les variables : $\forall i \in \{1, 2, ..., n\}$

- $fe_i \coloneqq$ la fréquence pour l'émetteur de la station i
- $fr_i \coloneqq$ la fréquence pour le recepteur de la station i

Les contraintes $\forall i, j \in \{1, 2, ..., n\}$, et $\forall t \in \{1, 2, ..., k\}$

- L'écart entre les deux fréquences d'une même station doit être δ_i : $|fe_i fr_i| = \delta i$
- L'écart minimum à garantir entre les fréquences des stations i et j :

$$-|fe_i - fe_j| \ge \Delta_{i,j}$$

$$-|fe_i - fr_j| \ge \Delta_{i,j}$$

$$-|fr_i - fe_j| \ge \Delta_{i,j}$$

$$-|fr_i - fr_j| \ge \Delta_{i,j}$$

• Le nombre de fréquence différentes pour la région t est au maximum n_t : $nValues(\{fr_i, fe_i | \forall i \in \{1, 2, ..., n\}, r_i = t\}, \geq, n_t)$

1.1 Cas 1 : Minimisation du nombre de fréquence utilisées

Dans ce cas, la fonction objective est :

$$\min_{n \in \mathbb{N}} nValue(\{e_{i,j}, r_{i,j} | \forall i \in \{1, 2, ..., n\}, \forall j \in \{1, 2, ..., k\}, =, n)$$

- 1.2 Cas 2 : Utilisation des fréquences les plus basses
- 1.3 Cas 3 : Minimiser la largeur de la bande de fréquence utilisées