Linear regression model

Content

- ☐ Linear regression model
- Ordinary least squares
- \square R^2
- ☐ F-ratio and p-values

Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni} + \varepsilon_i$$

- y is the target variable.
- x are the predictor variables.
- β are the coefficients.
- β_0 is the intercept.

Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni} + \varepsilon_i$$

- ϵ_i is the difference between the predicted and the observed value of y.
- ϵ is normally distributed and centred at 0.

Ordinary least squares (OLS)

OLS: method to find the line that best fits the data.

Ordinary least squares (OLS)

$$\beta = \min \sum (y - predictions)^2$$

$$\beta = \min \sum (y - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni}))^2$$

OLS → Find the coefficients that minimize the squared difference of the target and the predictions.

Ordinary least squares (OLS)

Residuals: difference between the target and the predictions (---).

$$residuals = y - predictions = \varepsilon$$

$$residuals = y - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni})$$

• Model assessment

How do we know that the line is a good fit?

Goodness of fit

$$SST = \sum (y - y_{mean})^2$$

$$SSR = \sum (y - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni}))^2$$

$$SSM = SST - SSR$$

Goodness of fit

SST: total sum of squares → total variability.

SSR: residual sum of squares → variability not explained by the model.

SSM: SST – SSR: variability explained by the model.

$$R^2 = \frac{SSM}{SST}$$

Goodness of fit

R²: fraction of variability that is explained by the model.

If SSM = SST, the model is a perfect fit.

Usually, SSM < SST.

$$R^2 = \frac{SSM}{SST}$$

Can I say it is a good fit with confidence?

Sums of squares

$$SST = \sum (y - y_{mean})^2$$

$$SSR = \sum (y - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni}))^2$$

$$SSM = SST - SSR$$

• F-test

SSM: variance explained by the model.

SSR: variance not explained by the model.

$$MS_M = \frac{SSM}{number\ of\ variables}$$

$$MS_R = \frac{SSR}{n \ obs - number \ of \ coefficients \ (\beta s)}$$

• F-test

SSM: variance explained by the model.

SSR: variance not explained by the model.

$$MS_M = \frac{SSM}{number\ of\ variables}$$

$$MS_R = \frac{SSR}{n \ obs - number \ of \ coefficients \ (\beta s)}$$

$$F = \frac{MS_M}{MS_R}$$

F-test

$$F = \frac{MS_M}{MS_R}$$

F follows a known probability
distribution for situations where a
model is not a good fit (null
hypothesis) → p-value

https://en.wikipedia.org/wiki/F-distribution#/media/File:F-distribution_pdf.svg

Summary

OLS

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni} + \varepsilon_i$$

The residuals are normally distributed and centred at 0.

The R² indicates the fraction of variability explained by the model.

The F-ratio indicates if the model has a significant fit.

OLS in Python

Sklearn

Statsmodels

THANK YOU

www.trainindata.com