Motivation

In case that σ^2 is unknown we can replace it with S_n^2 for large n

We know that for large n: $\frac{\overline{X}_n - \mu}{S_n / \sqrt{n}} \approx N(0, 1)$

In practice, already for $n \geq 30$ we can compute Z-score confidence intervals

But, what do we do for small n < 30?

If
$$X_1 \sim N(\mu, \sigma^2)$$
 then $\frac{X_n - \mu}{S_n / \sqrt{n}} \sim t(n-1)$

t distribution with n-1 degrees of freedom

For normal population and small n we can use $t_{lpha/2}$ instead of $z_{lpha/2}$

We obtain then $1-\alpha$ T-score confidence interval: $\overline{X}_n \pm t_{\alpha/2} \frac{S_n}{\sqrt{n}}$

Example

Suppose n=4 radar guns are set up along a stretch of road to catch people driving over the speed limit. Each radar gun is known to have a normal measurement error $N(0,\sigma^2)$ with σ^2 unknown. For a car passing at speed μ four readings are (45.71,47.41,40.95,50.65). Compute a random

interval that covers the true unknown car speed μ with probability of 0.95.

For our values, we get $\alpha=0.05$, $S_n=4.04$, $t_{\alpha/2}=3.18$, $\overline{X}_n=46.18$ and the 95% confidence interval is (39.74,52.62).