ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

► From previous lecture we recall notions of limit point, limit superior and limit inferior.

- ► From previous lecture we recall notions of limit point, limit superior and limit inferior.
- ▶ Definition 18.5: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be limit point of $\{a_n\}_{n\in\mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ converging to y.

- ► From previous lecture we recall notions of limit point, limit superior and limit inferior.
- ▶ Definition 18.5: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be limit point of $\{a_n\}_{n\in\mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ converging to y.
- ▶ Theorem 20.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y\in\mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n\in\mathbb{N}}$ if and only if the set

$$\{m: a_m \in (y-\epsilon, y+\epsilon)\}$$

is infinite for every $\epsilon > 0$.

- From previous lecture we recall notions of limit point, limit superior and limit inferior.
- ▶ Definition 18.5: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be limit point of $\{a_n\}_{n\in\mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ converging to y.
- ▶ Theorem 20.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y\in\mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n\in\mathbb{N}}$ if and only if the set

$$\{m: a_m \in (y-\epsilon, y+\epsilon)\}$$

is infinite for every $\epsilon > 0$.

▶ In other words, there are infinitely many terms of the sequence in $(y - \epsilon, y + \epsilon)$ for every $\epsilon > 0$.

Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \ge b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \le M$ for every n, as $|a_m| \le M$ for every m.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \ge b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \le M$ for every n, as $|a_m| \le M$ for every m.
- ▶ In conclusion, $\{b_n\}$ is a bounded decreasing sequence. Hence $\lim_{n\to\infty} b_n$ exists.

▶ Definition 20.2: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} b_n$ defined as above is known as the limit superior or limsup of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} b_n.$$

▶ Definition 20.2: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} b_n$ defined as above is known as the limit superior or limsup of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} b_n.$$

▶ In other words, the 'limsup' is the limit of supremums of tails of the sequence.

Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \le c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \le M$ for every n, as $|a_m| \le M$ for every m.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \le c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \le M$ for every n, as $|a_m| \le M$ for every m.
- ▶ In conclusion, $\{c_n\}$ is a bounded increasing sequence. Hence $\lim_{n\to\infty} c_n$ exists.

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty}c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty}c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty}c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- Observe that for every n,

$$-M \le c_n \le a_n \le b_n \le M$$
.

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- Observe that for every n,

$$-M \le c_n \le a_n \le b_n \le M$$
.

Consequently,

$$-M \leq \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \leq M.$$

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- Observe that for every n,

$$-M \le c_n \le a_n \le b_n \le M$$
.

Consequently,

$$-M \leq \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \leq M.$$

A bounded sequence may not be convergent and so it may not have a limit. But it always has liminf and limsup.

A Characterization

▶ Theorem 20.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $z=\limsup_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$S_+(z,\epsilon) = \{n : a_n > z + \epsilon\}$$
 is finite. (*)

and the set

$$S_{-}(z,\epsilon) = \{n : a_n > z - \epsilon\}$$
 is infinite. (**)

A Characterization

▶ Theorem 20.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $z=\limsup_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$S_+(z,\epsilon) = \{n : a_n > z + \epsilon\}$$
 is finite. (*)

and the set

$$S_{-}(z,\epsilon) = \{n : a_n > z - \epsilon\}$$
 is infinite. (**)

▶ Conversely if $v \in \mathbb{R}$ satisfies (*),(**) for every $\epsilon > 0$, with z replaced by v, then v = z.

▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- Proof: Take $z = \limsup_{n \to \infty} a_n$.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ Proof: Take $z = \limsup_{n\to\infty} a_n$.
- ▶ By the previous characterization, $\{m: z \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- Proof: Take $z = \limsup_{n \to \infty} a_n$.
- ▶ By the previous characterization, $\{m: z \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n\in\mathbb{N}}$.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ Proof: Take $z = \limsup_{n \to \infty} a_n$.
- ▶ By the previous characterization, $\{m: z \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n\in\mathbb{N}}$.
- ▶ The fact that z is the largest limit point is also clear from the characterization for if z < v, then taking $\epsilon = \frac{v z}{2}$, $(v \epsilon, v + \epsilon) \subseteq S_+(z, \epsilon)$ has finitely many terms of the sequence.

Limit inferior

Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n\to\infty} a_n = -\limsup_{n\to\infty} (-a_n).$$

Limit inferior

Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n\to\infty} a_n = -\limsup_{n\to\infty} (-a_n).$$

▶ Theorem 21.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $w=\liminf_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$T_{-}(w, \epsilon) = \{n : a_n < w - \epsilon\}$$
 is finite. (*)

and the set

$$T_{+}(w,\epsilon) = \{n : a_n < w + \epsilon\}$$
 is infinite. (**)

Limit inferior

Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n\to\infty} a_n = -\limsup_{n\to\infty} (-a_n).$$

▶ Theorem 21.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $w=\liminf_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$T_{-}(w,\epsilon) = \{n : a_n < w - \epsilon\}$$
 is finite. (*)

and the set

$$T_{+}(w,\epsilon) = \{n : a_n < w + \epsilon\}$$
 is infinite. (**)

▶ Conversely if $v \in \mathbb{R}$ satisfies (*), (**) for every $\epsilon > 0$, with w replaced by v, then $v = w = \liminf_{n \to \infty} a_n$.

Limit inferior

Results similar to that of limsup hold for liminf. These can be proved by similar methods or by observing that

$$\liminf_{n\to\infty}a_n=-\limsup_{n\to\infty}(-a_n).$$

▶ Theorem 21.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $w=\liminf_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$T_{-}(w,\epsilon) = \{n : a_n < w - \epsilon\}$$
 is finite. (*)

and the set

$$T_{+}(w,\epsilon) = \{n : a_n < w + \epsilon\}$$
 is infinite. (**)

- ▶ Conversely if $v \in \mathbb{R}$ satisfies (*), (**) for every $\epsilon > 0$, with w replaced by v, then $v = w = \liminf_{n \to \infty} a_n$.
- Similarly liminf is the smallest limit point of a bounded sequence.

Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n\in\mathbb{N}}$ is a subset of [w,z] where $w=\liminf_{n\to\infty}a_n$ and $z=\limsup_{n\to\infty}a_n$.

- Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n\in\mathbb{N}}$ is a subset of [w,z] where $w=\liminf_{n\to\infty}a_n$ and $z=\limsup_{n\to\infty}a_n$.
- ▶ Theorem 21.2: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n.$$

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n\in\mathbb{N}}$ is a subset of [w,z] where $w=\liminf_{n\to\infty}a_n$ and $z=\limsup_{n\to\infty}a_n$.
- ▶ Theorem 21.2: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n.$$

▶ Proof. If the sequence is convergent then the set of limit points is a singleton. Now as liminf and limsup are limit points they have to be equal.

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n\in\mathbb{N}}$ is a subset of [w,z] where $w=\liminf_{n\to\infty}a_n$ and $z=\limsup_{n\to\infty}a_n$.
- ▶ Theorem 21.2: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n.$$

- ▶ Proof. If the sequence is convergent then the set of limit points is a singleton. Now as liminf and limsup are limit points they have to be equal.
- ▶ If liminf and limsup are equal. Then as we have

$$c_n \leq a_n \leq b_n, \ \forall n \in \mathbb{N}$$

the result follows by the squeeze theorem.

- ▶ Consequently, the set of limit points of a bounded sequence $\{a_n\}_{n\in\mathbb{N}}$ is a subset of [w,z] where $w=\liminf_{n\to\infty}a_n$ and $z=\limsup_{n\to\infty}a_n$.
- ▶ Theorem 21.2: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers. Then it is convergent if and only if

$$\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n.$$

- Proof. If the sequence is convergent then the set of limit points is a singleton. Now as liminf and limsup are limit points they have to be equal.
- If liminf and limsup are equal. Then as we have

$$c_n \leq a_n \leq b_n, \ \forall n \in \mathbb{N}$$

the result follows by the squeeze theorem.

This shows that when we do not know whether a sequence is convergent or not, we may try to compute its liminf and limsup and see whether they are equal or not.

▶ Definition 21.3: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then it is said to properly diverge to $+\infty$ if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that

$$a_n \geq M, \forall n \geq K.$$

This is written as:

$$\lim_{n\to\infty}a_n=+\infty.$$

or as

$$\lim_{n\to\infty}a_n=\infty.$$

▶ Definition 21.3: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then it is said to properly diverge to $+\infty$ if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that

$$a_n \geq M, \quad \forall n \geq K.$$

This is written as:

$$\lim_{n\to\infty}a_n=+\infty.$$

or as

$$\lim_{n\to\infty}a_n=\infty.$$

▶ A sequence $\{a_n\}_{n\in\mathbb{N}}$ is said to properly diverge to $-\infty$, if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that $a_n < M$ for all $n \ge K$. This is expressed as: $\lim_{n\to\infty} a_n = -\infty$.

▶ Definition 21.3: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then it is said to properly diverge to $+\infty$ if for every $M\in\mathbb{R}$ there exists $K\in\mathbb{N}$ such that

$$a_n \geq M, \ \forall n \geq K.$$

This is written as:

$$\lim_{n\to\infty}a_n=+\infty.$$

or as

$$\lim_{n\to\infty}a_n=\infty.$$

- ▶ A sequence $\{a_n\}_{n\in\mathbb{N}}$ is said to properly diverge to $-\infty$, if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that $a_n < M$ for all $n \ge K$. This is expressed as: $\lim_{n\to\infty} a_n = -\infty$.
- A sequence is said to properly diverge if it properly diverges to $+\infty$ or $-\infty$.

▶ Definition 21.3: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then it is said to properly diverge to $+\infty$ if for every $M\in\mathbb{R}$ there exists $K\in\mathbb{N}$ such that

$$a_n \geq M, \quad \forall n \geq K.$$

This is written as:

$$\lim_{n\to\infty}a_n=+\infty.$$

or as

$$\lim_{n\to\infty}a_n=\infty.$$

- ▶ A sequence $\{a_n\}_{n\in\mathbb{N}}$ is said to properly diverge to $-\infty$, if for every $M \in \mathbb{R}$ there exists $K \in \mathbb{N}$ such that $a_n < M$ for all $n \ge K$. This is expressed as: $\lim_{n\to\infty} a_n = -\infty$.
- A sequence is said to properly diverge if it properly diverges to $+\infty$ or $-\infty$.
- ▶ Here $+\infty$ and $-\infty$ are not real numbers. It is just convenient notation.

lt is clear that a properly divergent sequence is unbounded.

- It is clear that a properly divergent sequence is unbounded.
- Some textbooks may write " $\{a_n\}_{n\in\mathbb{N}}$ converges to ∞ " to mean that $\{a_n\}_{n\in\mathbb{N}}$ properly diverges to $+\infty$ (Similarly, for $-\infty$).

- It is clear that a properly divergent sequence is unbounded.
- Some textbooks may write " $\{a_n\}_{n\in\mathbb{N}}$ converges to ∞ " to mean that $\{a_n\}_{n\in\mathbb{N}}$ properly diverges to $+\infty$ (Similarly, for $-\infty$).
- ▶ However, it should be kept in mind that such sequences are not convergent sequences in a proper sense as $+\infty$ and $-\infty$ are not real numbers.

- ▶ It is clear that a properly divergent sequence is unbounded.
- Some textbooks may write " $\{a_n\}_{n\in\mathbb{N}}$ converges to ∞ " to mean that $\{a_n\}_{n\in\mathbb{N}}$ properly diverges to $+\infty$ (Similarly, for $-\infty$).
- ▶ However, it should be kept in mind that such sequences are not convergent sequences in a proper sense as $+\infty$ and $-\infty$ are not real numbers.
- Example 21.4: Define:

$$a_n = n^2, \quad \forall n \in \mathbb{N}.$$
 $b_n = \begin{cases} 5 & \text{if } n \text{ is odd.} \\ n & \text{if } n \text{ is even.} \end{cases}$
 $c_n = \begin{cases} 5 & \text{if } n \text{ is odd.} \\ 6 & \text{if } n \text{ is even.} \end{cases}$

Here $\{a_n\}_{n\in\mathbb{N}}$ is properly divergent to $+\infty$, $\{b_n\}_{n\in\mathbb{N}}$ is unbounded and divergent but it is not properly divergent, $\{c_n\}_{n\in\mathbb{N}}$ is bounded and divergent but not properly divergent.

▶ Theorem 21.5: Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.

- ▶ Theorem 21.5: Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if c > 0, properly diverges to $-\infty$ if c < 0 and converges to 0 if c = 0.

- ▶ Theorem 21.5: Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if c > 0, properly diverges to $-\infty$ if c < 0 and converges to 0 if c = 0.
- ▶ ${a_n + b_n}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.

- ▶ Theorem 21.5: Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if c > 0, properly diverges to $-\infty$ if c < 0 and converges to 0 if c = 0.
- ▶ ${a_n + b_n}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ ${a_n b_n}_{n \in \mathbb{N}}$ may or maynot diverge.

- ▶ Theorem 21.5: Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be sequences of real numbers properly diverging to $+\infty$.
- ▶ For $c \in \mathbb{R}$, $\{ca_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$ if c > 0, properly diverges to $-\infty$ if c < 0 and converges to 0 if c = 0.
- ▶ ${a_n + b_n}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ ${a_n b_n}_{n \in \mathbb{N}}$ may or maynot diverge.
- ▶ $\{a_nb_n\}_{n\in\mathbb{N}}$ properly diverges to $+\infty$.

▶ Proof: Without loss of generality, take M > 0. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.

- ▶ Proof: Without loss of generality, take M > 0. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \geq 1$ for for $n \geq K_2$.

- ▶ Proof: Without loss of generality, take M > 0. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \geq 1$ for for $n \geq K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \ge K$,

$$a_n+b_n\geq M+1>M.$$

- ▶ Proof: Without loss of generality, take M > 0. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \ge 1$ for for $n \ge K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \ge K$,

$$a_n+b_n\geq M+1>M.$$

▶ Hence $\{a_n + b_n\}$ properly diverges to $+\infty$.

- ▶ Proof: Without loss of generality, take M > 0. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \ge 1$ for for $n \ge K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \ge K$,

$$a_n + b_n \ge M + 1 > M.$$

- ▶ Hence $\{a_n + b_n\}$ properly diverges to $+\infty$.
- ▶ Also for $n \ge K$, $a_n b_n \ge M.1 = M$. Therefore, $\{a_n b_n\}$ properly diverges to $+\infty$.

- ▶ Proof: Without loss of generality, take M > 0. There exists $K_1 \in \mathbb{N}$ such that $a_n \geq M$ for $n \geq K_1$.
- ▶ There exists $K_2 \in \mathbb{N}$ such that $b_n \ge 1$ for for $n \ge K_2$.
- ▶ Take $K = \max\{K_1, K_2\}$. For $n \ge K$,

$$a_n + b_n \ge M + 1 > M.$$

- ▶ Hence $\{a_n + b_n\}$ properly diverges to $+\infty$.
- Also for $n \ge K$, $a_n b_n \ge M.1 = M$. Therefore, $\{a_n b_n\}$ properly diverges to $+\infty$.
- Proofs of other claims are left out as exercises.

▶ Theorem 21.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n\in\mathbb{N}}$ be a sequence converging to some real number x.

- ▶ Theorem 21.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n\in\mathbb{N}}$ be a sequence converging to some real number x.
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.

- ▶ Theorem 21.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n\in\mathbb{N}}$ be a sequence converging to some real number x.
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ (ii) If x > 0, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$. If x < 0, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $-\infty$.

- ▶ Theorem 21.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n\in\mathbb{N}}$ be a sequence converging to some real number x.
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ (ii) If x > 0, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$. If x < 0, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $-\infty$.
- ▶ (iii) If x > 0 and $b_n \neq 0$ for every n, then $\{\frac{a_n}{b_n}\}$ properly diverges to ∞ . If x < 0 and $b_n \neq 0$ for every n, then $\{\frac{a_n}{b_n}\}$ properly diverges to $-\infty$.

- ▶ Theorem 21.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequences of real numbers properly diverging to $+\infty$ and let $\{b_n\}_{n\in\mathbb{N}}$ be a sequence converging to some real number x.
- ▶ (i) $\{a_n + b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$.
- ▶ (ii) If x > 0, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $+\infty$. If x < 0, $\{a_n b_n\}_{n \in \mathbb{N}}$ properly diverges to $-\infty$.
- ▶ (iii) If x > 0 and $b_n \neq 0$ for every n, then $\left\{\frac{a_n}{b_n}\right\}$ properly diverges to ∞ . If x < 0 and $b_n \neq 0$ for every n, then $\left\{\frac{a_n}{b_n}\right\}$ properly diverges to $-\infty$.
- ▶ (iv) If $a_n \neq 0$ for every n, then $\{\frac{b_n}{a_n}\}$ converges to 0.

▶ If $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ properly diverge to $+\infty$, $\{a_n-b_n\}_{n\to\infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n\in\mathbb{N}}$ need not converge.

- ▶ If $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ properly diverge to $+\infty$, $\{a_n-b_n\}_{n\to\infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n\in\mathbb{N}}$ need not converge.
- ▶ If $\{a_n\}_{n\in\mathbb{N}}$ properly diverges to ∞ and $\{b_n\}_{n\in\mathbb{N}}$ converges to 0, then $\{a_nb_n\}_{n\in\mathbb{N}}$ may not converge to 0 or to any other real number.

- ▶ If $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ properly diverge to $+\infty$, $\{a_n-b_n\}_{n\to\infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n\in\mathbb{N}}$ need not converge.
- ▶ If $\{a_n\}_{n\in\mathbb{N}}$ properly diverges to ∞ and $\{b_n\}_{n\in\mathbb{N}}$ converges to 0, then $\{a_nb_n\}_{n\in\mathbb{N}}$ may not converge to 0 or to any other real number.
- ► Give examples to illustrate such phenomenon.

- ▶ If $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ properly diverge to $+\infty$, $\{a_n-b_n\}_{n\to\infty}$ may not converge. Similarly $\{\frac{a_n}{b_n}\}_{n\in\mathbb{N}}$ need not converge.
- ▶ If $\{a_n\}_{n\in\mathbb{N}}$ properly diverges to ∞ and $\{b_n\}_{n\in\mathbb{N}}$ converges to 0, then $\{a_nb_n\}_{n\in\mathbb{N}}$ may not converge to 0 or to any other real number.
- ► Give examples to illustrate such phenomenon.
- ► END OF LECTURE 21