PROGRAMIRANJE 2

Milena Vujošević Janičić, Jelena Graovac, Nina Radojičić, Ana Spasić, Mirko Spasić, Anđelka Zečević

PROGRAMIRANJE 2 Zbirka zadataka sa rešenjima

Beograd 2016.

Autori:

dr Milena Vujošević Janičić, docent na Matematičkom fakultetu u Beogradu dr Jelena Graovac, docent na Matematičkom fakultetu u Beogradu Nina Radojičić, asistent na Matematičkom fakultetu u Beogradu Ana Spasić, asistent na Matematičkom fakultetu u Beogradu Mirko Spasić, asistent na Matematičkom fakultetu u Beogradu Anđelka Zečević, asistent na Matematičkom fakultetu u Beogradu

PROGRAMIRANJE 2

Zbirka zadataka sa rešenjima

Izdavač: Matematički fakultet Univerziteta u Beogradu. Studentski trg 16, Beograd. Za izdavača: prof. dr Zoran Rakić, dekan

Recenzenti:

dr Gordana Pavlović-Lažetić, redovni profesor na Matematičkom fakultetu u Beogradu dr Dragan Urošević, naučni savetnik na Matematičkom institutu SANU

Obrada teksta i crteži: autori. Dizajn korica: Anđelka Zečević

Štampa: Copy Centar, Beograd

СІР Каталогизација у публикацији Народна библиотека Србије, Београд

ISBN 978-86-7589-107-9

©2016. Milena Vujošević Janičić, Jelena Graovac, Nina Radojičić, Ana Spasić, Mirko Spasić, Andelka Zečević

62016. Milena Vujošević Janičić, Jelena Graovac, Nina Radojićić, Ana Spasić, Mirko Spasić, Andelka Zećević

Ovo delo zaštićeno je licencom Creative Commons CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives

4.0 International License). Detalji licence mogu se videti na veb-adresi http://creativecommons.org/licenses/by-nc-nd/4.0/.

Dozvoljeno je umnožavanje, distribucija i javno saopštavanje dela, pod uslovom da se navedu imena autora. Upotreba
dela u komercijalne svrhe nije dozvoljena. Prerada, preoblikovanje i upotreba dela u sklopu nekog drugog nije
dozvoljena.

Sadržaj

1	Uvo	odni zadaci	1
	1.1	Podela koda po datotekama	1
	1.2	Algoritmi za rad sa bitovima	5
	1.3	Rekurzija	10
	1.4	Rešenia	18

Predgovor

U okviru kursa *Programiranje 2* na Matematičkom fakultetu vežbaju se zadaci koji imaju za cilj da studente nauče rekurzivnom pristupu rešavanju problema, ispravnom radu sa pokazivačima i dinamički alociranom memorijom, osnovnim algoritmima pretraživanja i sortiranja, kao i radu sa dinamičkim strukturama podataka, poput listi i stabala. Zadaci koji se nalaze u ovoj zbirci predstavljaju objedinjen skup zadataka sa vežbi i praktikuma ovog kursa, kao i primere zadataka sa održanih ispita. Elektronska verzija zbirke i propratna rešenja u elektronskom formatu, dostupni su besplatno u okviru strane kursa www.programiranje2.matf.bg.ac.rs u skladu sa navedenom licencom.

U prvom poglavlju zbirke obrađene su uvodne teme koje obuhvataju osnovne tehnike koje se koriste u rešavanju svih ostalih zadataka u zbirci: podela koda po datotekama i rekurzivni pristup rešavanju problema. Takođe, u okviru ovog poglavlja dati su i osnovni algoritmi za rad sa bitovima. Drugo poglavlje je posvećeno pokazivačima: pokazivačkoj aritmetici, višedimenzionim nizovima, dinamičkoj alokaciji memorije i radu sa pokazivačima na funkcije. Treće poglavlje obrađuje algoritme pretrage i sortiranja, a četvrto dinamičke strukture podataka: liste i stabla. Dodatak sadrži najvažnije ispitne rokove iz jedne akademske godine. Većina zadataka je rešena, a teži zadaci su obeleženi zvezdicom.

Autori velikog broja zadataka ove zbirke su ujedno i autori same zbirke, ali postoje i zadaci za koje se ne može tačno utvrditi ko je originalni autor jer su zadacima davali svoje doprinose različiti asistenti koji su držali vežbe iz ovog kursa u prethodnih desetak godina. Zbog toga smatramo da je naš osnovni doprinos što smo objedinili, precizno formulisali, rešili i detaljno iskomentarisali sve najvažnije zadatke koji su potrebni za uspešno savlađivanje koncepata koji se obrađuju u okviru kursa.

Neizmerno zahvaljujemo recenzentima, Gordani Pavlović Lažetić i Draganu Uroševiću, na veoma pažljivom čitanju rukopisa i na brojnim korisnim sugestijama. Takođe, zahvaljujemo studentima koji su svojim aktivnim učešćem u nastavi pomogli i doprineli uobličavanju ovog materijala.

Svi komentari i sugestije na zadatke i rešenja zbirke su dobrodošli i osećajte se slobodno da ih pošaljete elektronskom poštom bilo kome od autora¹.

Autori

 $^{^1\}mathrm{Adrese}$ autora su: milena, j
graovac, nina, aspasic, mirko, andjelkaz, sa nastavkom
 $\mathtt{Cmatf.bg.ac.rs}$

1

Uvodni zadaci

1.1 Podela koda po datotekama

Zadatak 1.1 Napisati program za rad sa kompleksnim brojevima.

- (a) Definisati strukturu KompleksanBroj koja opisuje kompleksan broj zadat njegovim realnim i imaginarnim delom.
- (b) Napisati funkciju void ucitaj_kompleksan_broj(KompleksanBroj * z) koja učitava kompleksan broj z sa standardnog ulaza.
- (c) Napisati funkciju void ispisi_kompleksan_broj(KompleksanBroj z) koja ispisuje kompleksan broj z na standardni izlaz u odgovarajućem formatu.
- (d) Napisati funkciju float realan_deo(KompleksanBroj z) koja vraća vrednost realnog dela broja z.
- (e) Napisati funkciju float imaginaran_deo(KompleksanBroj z) koja vraća vrednost imaginarnog dela broja z.
- (f) Napisati funkciju float moduo (KompleksanBroj z) koja vraća moduo kompleksnog broja z.
- (g) Napisati funkciju KompleksanBroj konjugovan(KompleksanBroj z) koja vraća konjugovano-kompleksni broj broja z.
- (h) Napisati funkciju KompleksanBroj saberi (KompleksanBroj z1, KompleksanBroj z2) koja vraća zbir dva kompleksna broja z1 i z2.

- (i) Napisati funkciju KompleksanBroj oduzmi (KompleksanBroj z1, KompleksanBroj z2) koja vraća razliku dva kompleksna broja z1 i z2.
- (j) Napisati funkciju KompleksanBroj mnozi (KompleksanBroj z1, KompleksanBroj z2) koja vraća proizvod dva kompleksna broja z1 i z2.
- (k) Napisati funkciju float argument(KompleksanBroj z) koja vraća argument kompleksnog broja z.

Napisati program koji testira prethodno napisane funkcije. Sa standardnog ulaza uneti dva kompleksna broja z1 i z2, a zatim ispisati realni deo, imaginarni deo, moduo, konjugovano-kompleksan broj i argument broja koji se dobija kao zbir, razlika ili proizvod brojeva z1 i z2 u zavisnosti od znaka ('+', '-', '*') koji se unosi sa standardnog ulaza.

Primer 1

```
INTERAKCIJA SA PROGRAMOM:

Unesite realni i imaginarni deo kompleksnog broja: 1 -3
(1.00 - 3.00 i)

Unesite realni i imaginarni deo kompleksnog broja: -1 4
(-1.00 + 4.00 i)

Unesite znak (+,-,*): -
(1.00 - 3.00 i) - (-1.00 + 4.00 i) = (2.00 - 7.00 i)

Realni_deo: 2

Imaginarni_deo: -7.000000

Moduo: 7.280110

Konjugovano kompleksan broj: (2.00 + 7.00 i)

Argument kompleksnog broja: -1.292497
```

Zadatak 1.2 Uraditi prethodni zadatak tako da su sve napisane funkcije za rad sa kompleksnim brojevima zajedno sa definicijom strukture KompleksanBroj izdvojene u posebnu biblioteku. Napisati program koji testira ovu biblioteku. Sa standardnog ulaza uneti kompeksan broj, a zatim na standardni izlaz ispisati njegov polarni oblik.

Primer 1

```
| INTERAKCIJA SA PROGRAMOM:
| Unesite realni i imaginarni deo kompleksnog broja: -5 2
| Polarni oblik kompleksnog broja je 5.39 * e^i * 2.76
```

Zadatak 1.3 Napisati biblioteku za rad sa polinomima.

(a) Definisati strukturu Polinom koja opisuje polinom stepena najviše 20 koji je zadat nizom svojih koeficijenata tako da se na i-toj poziciji u nizu nalazi koeficijent uz i-ti stepen polinoma.

- (b) Napisati funkciju void ispisi(const Polinom * p) koja ispisuje polinom p na standardni izlaz, od najvišeg ka najnižem stepenu. Ipisati samo koeficijente koji su različiti od nule.
- (c) Napisati funkciju Polinom ucitaj() koja učitava polinom sa standardnog ulaza. Za polinom najpre uneti stepen, a zatim njegove koeficijente.
- (d) Napisati funkciju double izracunaj (const Polinom * p, double x) koja vraća vrednosti polinoma p u datoj tački x koristeći Hornerov algoritam.
- (e) Napisati funkciju Polinom saberi (const Polinom * p, const Polinom * q) koja vraća zbir dva polinoma p i q.
- (f) Napisati funkciju Polinom pomnozi(const Polinom * p, const Polinom * q) koja vraća proizvod dva polinoma p i q.
- (g) Napisati funkciju Polinom izvod(const Polinom * p) koja vraća izvod polinoma p.
- (h) Napisati funkciju Polinom n_izvod(const Polinom * p, int n) koja vraća n-ti izvod polinoma p.

Napisati program koji testira prethodno napisane funkcije. Sa standardnog ulaza učitati polinome p i q, a zatim ih ispisati na standardni izlaz u odgovarajućem formatu. Izračunati i ispisati zbir $\mathbf z$ i proizvod $\mathbf r$ unetih polinoma $\mathbf p$ i $\mathbf q$. Sa standardnog ulaza učitati realni broj $\mathbf x$, a zatim na standardni izlaz ispisati vrednost polinoma $\mathbf z$ u tački $\mathbf x$ zaokruženu na dve decimale. Na kraju, sa standardnog ulaza učitati broj $\mathbf n$ i na izlaz ispisati $\mathbf n$ -ti izvod polinoma $\mathbf r$.

```
INTERAKCIJA SA PROGRAMOM:
Unesite polinom p (prvo stepen, pa zatim koeficijente od najveceg stepena do nultog):
3 1.2 3.5 2.1 4.2
Unesite polinom q (prvo stepen, pa zatim koeficijente od najveceg stepena do nultog):
2 2.1 0 -3.9
Zbir polinoma je polinom z:
1.20x^3+5.60x^2+2.10x+0.30
Prozvod polinoma je polinom r:
2.52x^5+7.35x^4-0.27x^3-4.83x^2-8.19x-16.38
Unesite tacku u kojoj racunate vrednost polinoma z:
0
Vrednost polinoma z u tacki 0.00 je 0.30
Unesite izvod polinoma koji zelite:
3
3. izvod polinoma r je: 151.20x^2+176.40x-1.62
```

Zadatak 1.4 Napisati biblioteku za rad sa razlomcima.

- (a) Definisati strukturu Razlomak koja opisuje razlomak.
- (b) Napisati funkciju Razlomak ucitaj() za učitavanje razlomka.
- (c) Napisati funkciju void ispisi(const Razlomak * r) koja ispisuje razlomak r.
- (d) Napisati funkciju int brojilac(const Razlomak * r) koja vraćaja brojilac razlomka r.
- (e) Napisati funkciju int imenilac(const Razlomak * r) koja vraćaja imenilac razlomka r.
- (f) Napisati funkciju double realna_vrednost(const Razlomak * r) koja vraća odgovarajuću realnu vrednost razlomka r.
- (g) Napisati funkciju double reciprocna_vrednost(const Razlomak * r) koja vraća recipročnu vrednost razlomka r.
- (h) Napisati funkciju Razlomak skrati(const Razlomak * r) koja vraća skraćenu vrednost datog razlomka r.
- (i) Napisati funkciju Razlomak saberi(const Razlomak * r1, const Razlomak * r2) koja vraća zbir dva razlomka r1 i r2.
- (j) Napisati funkciju Razlomak oduzmi (const Razlomak * r1, const Razlomak * r2) koja vraća razliku dva razlomka r1 i r2.
- (k) Napisati funkciju Razlomak pomnozi (const Razlomak * r1, const Razlomak * r2) koja vraća proizvod dva razlomka r1 i r2.
- (l) Napisati funkciju Razlomak podeli(const Razlomak * r1, const Razlomak * r2) koja vraća količnik dva razlomka r1 i r2.

Napisati program koji testira prethodne funkcije. Sa standardnog ulaza učitati dva razlomka r1 i r2. Na standardni izlaz ispisati skraćene vrednosti zbira, razlike, proizvoda i količnika razlomaka r1 i recipročne vrednosti razlomka r2.

```
INTERAKCIJA SA PROGRAMOM:
Unesite imenilac i brojilac prvog razlomka: 1 2
Unesite imenilac i brojilac drugog razlomka: 2 3

1/2 + 3/2 = 2

1/2 - 3/2 = -1

1/2 * 3/2 = 3/4

1/2 / 3/2 = 1/3
```

1.2 Algoritmi za rad sa bitovima

Zadatak 1.5 Napisati biblioteku stampanje_bitova za rad sa bitovima. Biblioteka treba da sadrži funkcije stampanje_bitova, stampanje_bitova_short i stampanje_bitova_char za štampanje bitova u binarnom zapisu celog broja tipa int, short i char, koji se zadaje kao argument funkcije. Napisati program koji testira napisanu biblioteku. Sa standardnog ulaza učitati u heksadekadnom formatu cele brojeve tipa int, short i char i na standardni izlaz ispisati njihovu binarnu reprezentaciju.

Primer 1

```
INTERAKCIJA SA PROGRAMOM:

Unesite broj tipa int: Ox4f4f4f4f

Binarna reprezentacija: O1001111010011110100111101001111

Unesite broj tipa short: Ox4f4f

Binarna reprezentacija: O100111101001111

Unesite broj tipa char: Ox4f

Binarna reprezentacija: 01001111
```

Zadatak 1.6 Napisati funkcije _bitove_1 i prebroj_bitove_2 koje vraćaju broj jedinica u binarnom zapisu označenog celog broja x koji se zadaje kao argument funkcije. Prebrojavanje bitova ostvariti na dva načina:

- (a) formiranjem odgovarajuće maske i njenim pomeranjem (funkcija prebroj-_bitove_1)
- (b) formiranjem odgovarajuće maske i pomeranjem promenljive x (funkcija prebroj_bitove_2).

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati ceo broj u heksadekasnom formatu i redni broj funkcije koju treba primeniti (1 ili 2), a zatim na standardni izlaz ispisati broj jedinica u binarnom zapisu učitanog broja pozivom izabrane funkcije. Ukoliko korisnik ne unese ispravnu vrednost za redni broj funkcije, prekinuti izvršavanje programa i ispisati odgovarajuću poruku na standardni izlaz za greške.

Primer 1

```
INTERAKCIJA SA PROGRAMOM:
Unesite broj: Ox7F
Unesite redni broj funkcije: 1
Poziva se funkcija prebroj_bitove_1
Broj jedinica u zapisu je 7
```

Primer 3

```
INTERAKCIJA SA PROGRAMOM:
Unesite broj: OxOOFFOOFF
Unesite redni broj funkcije: 2
Poziva se funkcija prebroj_bitove_2
Broj jedinica u zapisu je 16
```

Primer 2

```
| INTERAKCIJA SA PROGRAMOM:
Unesite broj: -0x7F
Unesite redni broj funkcije: 2
Poziva se funkcija prebroj_bitove_2
Broj jedinica u zapisu je 26
```

```
| INTERAKCIJA SA PROGRAMOM:
Unesite broj: OxOOFFOOFF
Unesite redni broj funkcije: 3
| IZLAZ ZA GREŠKE:
Greska: Neodgovarajuci redni broj funkcije.
```

Zadatak 1.7 Napisati funkcije unsigned najveci (unsigned x) i unsigned najmanji (unsigned x) koje vraćaju najveći, odnosno najmanji neoznačen ceo broj koji se može zapisati istim binarnim ciframa kao broj x.

Napisati program koji testira prethodno napisane funkcije. Sa standardnog ulaza učitati neoznačen ceo broj u heksadekadnom formatu, a zatim ispisati binarnu reprezentaciju najvećeg i najmanjeg broja koji se može zapisati istim binarnim ciframa kao učitani broj.

```
Test 1
                                      Test 2
ULAZ:
                                    ULAZ:
 0x7F
                                      0x80
IZLAZ:
                                    IZLAZ:
Naiveci:
                                      Naiveci:
 00000000000000000000000000111111
                                      Test 3
                                      Test 4
ULAZ:
                                    ULAZ:
 Ox00FF00FF
                                      OxFFFFFFFF
IZLAZ:
 Naiveci:
                                      Naiveci:
 1111111111111111111111111111111111111
 Najmanji:
                                      Najmanji:
 00000000000000011111111111111111
                                      1111111111111111111111111111111111111
```

Zadatak 1.8 Napisati funkcije za rad sa bitovima.

- (a) Napisati funkciju unsigned postavi_0(unsigned x, unsigned n, unsigned p) koja vraća broj koji se dobija kada se n bitova datog broja x, počevši od pozicije p, postave na 0.
- (b) Napisati funkciju unsigned postavi_1(unsigned x, unsigned n, unsigned p) koja vraća broj koji se dobija kada se n bitova datog broja x, počevši od pozicije p, postave na 1.
- (c) Napisati funkciju unsigned vrati_bitove(unsigned x, unsigned n, unsigned p) koja vraća broj u kome se n bitova najmanje težine poklapa sa n bitova broja x počevši od pozicije p, dok su mu ostali bitovi postavljeni na 0.
- (d) Napisati funkciju unsigned postavi_1_n_bitova(unsigned x, unsigned n, unsigned p, unsigned y) koja vraća broj koji se dobija upisivanjem poslednjih n bitova najmanje težine broja y u broj x, počevši od pozicije p.
- (e) Napisati funkciju unsigned invertuj (unsigned x, unsigned n, unsigned p) koja vraća broj koji se dobija invertovanjem n bitova broja x počevši

od pozicije p.

Napisati program koji testira prethodno napisane funkcije za neoznačene cele brojeve x, n, p, y koji se unose sa standardnog ulaza. Na standardni izlaz ispisati binarne reprezenatacije brojeva x i y, a zatim i binarne reprezentacije brojeva koji se dobijaju pozivanjem prethodno napisanih funkcija. Napomena: Bit najmanje težine je krajnji desni bit i njegova pozicija se označava nultom dok se pozicije ostalih bitova uvećavaju za jedan, sa desna na levo.

Primer 1

```
INTERAKCIJA SA PROGRAMOM:
 Unesite neoznacen ceo broi x: 235
 Unesite neoznacen ceo broj n: 9
 Unesite neoznacen ceo broj p: 24
 Unesite neoznacen ceo broj y: 127
 x = 235
                                              = 00000000000000000000000011101011
 postavi_0(
            235,
                                              = 00000000000000000000000011101011
     235
                                             = 00000000000000000000000011101011
 postavi_1( 235, 9,
                          24)
                                              = 000000011111111111000000011101011
       235
                                              = 0000000000000000000000011101011
 vrati_bitove( 235, 9,
                             24)
                                             = 00000000000000000000000011101011
       235
 у =
      127
                                             = 00000000000000000000000001111111
 postavi_1_n_bitove( 235, 9, 24, 127)
                                             = 000000000111111110000000011101011
                                             = 00000000000000000000000011101011
      235
 invertuj(
           235,
                       24)
                                              = 0000000111111111110000000011101011
```

```
INTERAKCIJA SA PROGRAMOM:
 Unesite neoznacen ceo broj x: 2882398951
 Unesite neoznacen ceo broj n: 5
 Unesite neoznacen ceo broj p: 10
 Unesite neoznacen ceo broj y: 35156526
 x = 2882398951
                                                = 101010111100110111101010111100111
 postavi_0(2882398951,
                              10)
                                                = 101010111100110111110100000100111
 x = 2882398951
                                                = 1010101111100110111101010111100111
 postavi_1(2882398951,
                        5. 10)
                                                = 10101011111001101111101111111100111
 x = 2882398951
                                                = 101010111100110111101010111100111
 vrati_bitove(2882398951, 5, 10)
                                                = 0000000000000000000000000000000111
 x = 2882398951
                                                = 10101011111001101111101010111100111
                                                = 00000010000110000111001000101110
 y = 35156526
 postavi_1_n_bitove(2882398951, 5, 10, 35156526) = 101010111110011011110101111
 x = 2882398951
                                                = 101010111100110111101010111100111
 invertuj(2882398951, 5, 10)
                                                = 10101011110011011110110100100111
```

Zadatak 1.9 Pod rotiranjem bitova ulevo podrazumeva se pomeranje svih bitova za jednu poziciju ulevo, s tim što se bit sa pozicije najveće težine pomera na poziciju najmanje težine. Analogno, rotiranje bitova udesno podrazumeva pomeranje svih bitova za jednu poziciju udesno, s tim što se bit sa pozicije najmanje težine pomera na poziciju najveće težine.

- (a) Napisati funkciju unsigned rotiraj_ulevo(unsigned x, unsigned n) koja vraća broj koji se dobija rotiranjem n puta ulevo datog celog neoznačenog broja x.
- (b) Napisati funkciju unsigned rotiraj_udesno(unsigned x, unsigned n) koja vraća broj koji se dobija rotiranjem n puta udesno datog celog neoznačenog broja x.
- (c) Napisati funkciju int rotiraj_udesno_oznaceni(int x, unsigned n) koja vraća broj koji se dobija rotiranjem n puta udesno datog celog broja x.

Napisati program koji sa standardnog ulaza učitava neoznačene cele brojeve \mathbf{x} i \mathbf{n} koji se unose u heksadekasnom formatu, tatim ispisuje binarnu reprezentaciju vrednosti dobijene pozivanjem tri prethodno napisane funkcije sa argumentima \mathbf{x} i \mathbf{n} , a na kraju ispisuje binarnu reprezentaciju vrednosti dobijene pozivanjem funkcije $\mathbf{rotiraj}$ _udesno_oznaceni za argumente $-\mathbf{x}$ i \mathbf{n} .

Primer 1

Zadatak 1.10 Napisati funkciju unsigned ogledalo(unsigned x) koja vraća ceo broj čiji binarni zapis predstavlja sliku u ogledalu binarnog zapisa broja x. Napisati program koji testira datu funkciju za broj koji se sa standardnog ulaza zadaje u heksadekadnom formatu. Najpre ispisati binarnu reprezentaciju unetog broja, a zatim i binarnu reprezentaciju broja dobijenog kao njegova slika u ogledalu.

Zadatak 1.11 Napisati funkciju int broj_01(unsigned int n) koja za dati broj n vraća 1 ako u njegovom binarnom zapisu ima više jednica nego nula, a inače vraća 0. Napisati program koji tu funkciju testira za broj koji se zadaje sa standardnog ulaza.

Test 1	Test 2	Test 3
ULAZ:	ULAZ: 2147377146	ULAZ:
IzLAZ:	IZLAZ:	IZLAZ:

Zadatak 1.12 Napisati funkciju int broj_parova(unsigned int x) koja vraća broj pojava dve uzastopne jedinice u binarnom zapisu celog neoznačenog broja x. Napisati program koji tu funkciju testira za broj koji se zadaje sa standardnog ulaza. Napomena: *Tri uzastopne jedinice sadrže dve uzastopne jedinice dva puta*.

Test 1	Test 2	Test 3
ULAZ:	ULAZ: 1024	ULAZ: 2147377146
IZLAZ:	IZLAZ:	IZLAZ:

* Zadatak 1.13 Napisati program koji sa standardnog ulaza učitava pozitivan ceo broj, a na standardni izlaz ispisuje vrednost tog broja sa razmenjenim vrednostima bitova na pozicijama i i j. Pozicije i i j učitati kao parametre komandne linije. Pri rešavanju nije dozvoljeno koristiti ni pomoćni niz ni aritmetičke operatore +, -, /, *, %.

Primer 1	Primer 2	Primer 2
POKRETANJE: ./a.out 1 2	POKRETANJE: ./a.out 1 2	POKRETANJE: ./a.out 12 12
INTERAKCIJA SA PROGRAMOM: ULAZ: 11 IZLAZ: 13	INTERAKCIJA SA PROGRAMOM: ULAZ: 1024 IZLAZ: 1024	INTERAKCIJA SA PROGRAMOM: ULAZ: 12345 IZLAZ: 12345

* Zadatak 1.14 Napisati funkciju void prevod(unsigned int x, char s[]) koja na osnovu neoznačenog broja x formira nisku s koja sadrži heksadekadni zapis broja x koristeći algoritam za brzo prevođenje binarnog u heksadekadni zapis (svake 4 binarne cifre se zamenjuju jednom odgovarajućom heksade

kadnom cifrom). Napisati program koji tu funkciju testira za broj koji se zadaje sa standardnog ulaza.

Test 1	Test 2	Test 3
ULAZ:	ULAZ: 1024	ULAZ: 12345
IzLAZ: 0000000B	IZLAZ: 00000400	IzLAZ: 00003039

* Zadatak 1.15 Napisati funkciju koja za data dva neoznačena broja x i y invertuje one bitove u broju x koji se poklapaju sa odgovarajućim bitovima u broju y. Ostali bitovi treba da ostanu nepromenjeni. Napisati program koji testira tu funkciju za brojeve koji se zadaju sa standardnog ulaza.

Test 1	Test 2	Test 3
ULAZ:	ULAZ:	ULAZ:
123 10	3251 0	12541 1024
IzLAZ:	IZLAZ:	IzLAZ:
4294967285	4294967295	4294966271

Zadatak 1.16 Napisati funkciju koja vraća broj petica u oktalnom zapisu neoznačenog celog broja x. Napisati program koji testira tu funkciju za broj koji se zadaje sa standardnog ulaza. Napomena: Zadatak rešiti isključivo korišćenjem bitskih operatora.

Test 1	Test 2	Test 3
ULAZ: 123	ULAZ: 3245	ULAZ: 100328
IzLAZ:	IZLAZ:	IzLAZ:
0	2	1

1.3 Rekurzija

 ${\bf Zadatak~1.17~}$ Napisati rekurzivnu funkciju koja izračunava $x^k,$ za dati ceo broj xi prirodan broj k

- (a) tako da rešenje bude linearne složenosti,
- (b) tako da rešenje bude logaritamske složenosti.

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati redni broj funkcije koju treba primeniti ('1' ili '2'), ceo broj x i prirodan broj k,

a zatim na standarni izlaz ispisati rezultat primene izabrane funkcije na unete brojeve. Ukoliko se na ulazu unese pogrešan redni broj funkcije, ispisati odgovarajuću poruku o grešci na standardni izlaz i prekinuti izvršavanje programa.

Zadatak 1.18 Koristeći uzajamnu (posrednu) rekurziju napisati:

- (a) funkciju unsigned paran(unsigned n) koja proverava da li je broj cifara broja x paran i vraća 1 ako jeste, a 0 inače;
- (b) i funkciju unsigned neparan(unsigned n) koja proverava da li je broj cifara broja x neparan i vraća 1 ako jeste, a 0 inače.

Napisati program koji testira napisane funkcije tako što za heksadekadni broj koji se unosi sa standardnog ulaza ispisuje da li je broj njegovih cifara paran ili neparan.

Zadatak 1.19 Napisati repno-rekurzivnu funkciju koja izračunava faktorijel broja n. Napisati program koji testira napisanu funkciju za proizvoljan broj n ($n \leq 12$) unet sa standardnog ulaza. Napomena: Gornja vrednost za n je postavljena na 12 zbog ograničenja veličine broja koji može da stane u promenljivu tipa int i činjenice da niz faktorijela brzo raste.

```
        Primer 1
        Primer 2

        Interakcija sa programom:
        Interakcija sa programom:

        Unesite n (<= 12): 5</td>
        Unesite n (<= 12): 0</td>

        5! = 120
        0! = 1
```

Zadatak 1.20 Napisati funkciju koja vraća n-ti element u nizu Fibonačijevih brojeva. Elementi niza Fibonačijevih brojeva F izračunavaju se na osnovu

sledećih rekurentnih relacija:

$$F(0) = 0$$

 $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$

Napisati program koji testira napisanu funkciju. Sa standardnog ulaza učitati prirodan broj n i na standardni izlaz ispisati rezultat primene napisane funkcije na prirodan broj n.

```
Primer 1

| Interakcija sa programom:
| Unesite koji clan niza se racuna: 5
| F(5) = 5
| F(8) = 21
| Primer 2
| Interakcija sa programom:
| Unesite koji clan niza se racuna: 8
| F(8) = 21
```

Zadatak 1.21 Elementi niza F izračunavaju se na osnovu sledećih rekurentnih relacija:

$$F(0) = 0$$

 $F(1) = 1$
 $F(n) = a \cdot F(n-1) + b \cdot F(n-2)$

Napisati funkciju koja računa n-ti element u nizu F

- (a) iterativno,
- (b) tako da funkcija bude rekurzivna i da koristi navedene rekurentne relacije,
- (c) tako da funkcija bude rekurzivna ali da se problemi manje dimenzije rešavaju samo jedan put.

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati redni broj funkcije koju treba primeniti ('1','2','3'), vrednosti koeficijenata a i b i prirodan broj n. Na standardni izlaz ispisati rezultat primene odabrane funkcije nad učitanim podacima, a u slučaju unosa pogrešnog rednog broja funkcije ispisati odgovarajuću poruku i prekinuti izvršavanje pograma. Napomena: Niz F definisan na ovaj način predstavlja uopštenje Fibonačijevih brojeva.

```
Primer 1
                                                  Primer 2
INTERAKCIJA SA PROGRAMOM:
                                                 INTERAKCIJA SA PROGRAMOM:
 Unesite redni broj funkcije:
                                                  Unesite redni broj funkcije:
 1 - iterativna
                                                  1 - iterativna
 2 - rekurzivna
                                                  2 - rekurzivna
 3 - rekurzivna napredna
                                                  3 - rekurzivna napredna
 Unesite koeficijente: 23
                                                  Unesite koeficijente: 4 2
 Unesite koji clan niza se racuna:
                                                  Unesite koji clan niza se racuna: 8
F(5) = 61
                                                  F(8) = 31360
```

Zadatak 1.22 Napisati rekurzivnu funkciju koja sabira dekadne cifre datog celog broja x. Napisati program koji testira ovu funkciju za broj koji se unosi sa standardnog ulaza.

Zadatak 1.23 Napisati rekurzivnu funkciju koja sumira elemente niza celih brojeva

- (a) sabirajući elemente počev od početka niza ka kraju niza,
- (b) sabirajući elemente počev od kraja niza ka početku niza.

Napisati program koji testira napisane funkcije. Sa standardnog ulaza učitati redni broj funkcije ('1' ili '2'), zatim dimenziju $n \ (0 < n \le 100)$ celobrojnog niza, a potom i elemente niza. Na standardni izlaz ispisati rezultat primene odabrane funkcije nad učitanim nizom, a u slučaju unosa pogrešnog rednog broja funkcije ispisati odgovarajuću poruku i prekinuti izvršavanje pograma.

Zadatak 1.24 Napisati rekurzivnu funkciju koja određuje maksimum niza celih brojeva. Napisati program koji testira ovu funkciju za niz koji se unosi sa standardnog ulaza. Elementi niza se unose sve do kraja ulaza (EOF). Pretpostaviti da niz neće imati više od 256 elemenata.

```
Test 1 Test 2 Test 3

| ULAZ: | ULAZ: | ULAZ: | ULAZ: | ULAZ: | 111 3 5 8 1
| IZLAZ: | IZLAZ: | IZLAZ: | 11
```

Zadatak 1.25 Napisati rekurzivnu funkciju koja izračunava skalarni proizvod dva vektora celih brojeva. Napisati program koji testira ovu funkciju za
nizove (vektore) koji se unose sa standardnog ulaza. Prvo treba uneti dimenziju
nizova, a zatim i njihove elemente. Na standardni izlaz ispisati skalarni proizvod
unetih nizova. Pretpostaviti da nizovi neće imati više od 256 elemenata.

```
Primer 1
                                                  Primer 2
                                                 INTERAKCIJA SA PROGRAMOM:
INTERAKCIJA SA PROGRAMOM:
 Unesite dimenziju nizova: 3
                                                  Unesite dimenziju nizova: 2
 Unesite elemente prvog niza:
                                                  Unesite elemente prvog niza:
 123
                                                  3 5
 Unesite elemente drugog niza:
                                                  Unesite elemente drugog niza:
 123
                                                  26
 Skalarni proizvod je 14
                                                  Skalarni proizvod je 36
```

Zadatak 1.26 Napisati rekurzivnu funkciju koja vraća broj pojavljivanja elementa x u nizu a dužine n. Napisati program koji testira ovu funkciju za broj x i niz a koji se unose sa standardnog ulaza. Prvo se unosi x, a zatim elementi niza sve do kraja ulaza. Pretpostaviti da nizovi neće imati više od 256 elemenata.

```
Primer 1
                                                   Primer 2
INTERAKCIJA SA PROGRAMOM:
                                                 INTERAKCIJA SA PROGRAMOM:
 Unesite ceo broj:
                                                   Unesite ceo broj:
                                                   11
  Unesite elemente niza:
                                                   Unesite elemente niza:
  1234
                                                   3 2 11 14 11 43 1
 Broj pojavljivanja je 1
                                                   Broj pojavljivanja je 2
 Primer 3
INTERAKCIJA SA PROGRAMOM:
 Unesite ceo broj:
 Unesite elemente niza:
  3 21 5 6
 Broj pojavljivanja je 0
```

Zadatak 1.27 Napisati rekurzivnu funkciju kojom se proverava da li su tri data cela broja uzastopni članovi datog celobrojnog niza. Sa standardnog ulaza

učitati tri broja, a zatim elemente niza sve do kraja ulaza. Na standardni izlaz ispisati rezultat primene funkcije nad učitanim podacima. Pretpostaviti da neće biti uneto više od 256 brojeva.

Zadatak 1.28 Napisati rekurzivnu funkciju int prebroj(int x) koja vraća broj bitova postavljenih na 1 u binarnoj reprezentaciji broja x. Napisati program koji testira napisanu funkciju za broj koji se učitava sa standardnog ulaza u heksadekadnom formatu.

Test 1	Test 2	Test 3
ULAZ: 0x7F IZLAZ:	ULAZ: 0x00FF00FF IZLAZ:	ULAZ: OxFFFFFFF IZLAZ:
7	16	32

Zadatak 1.29 Napisati rekurzivnu funkciju koja štampa bitovsku reprezentaciju neoznačenog celog broja, i program koji je testira za vrednost koja se zadaje sa standardnog ulaza.

Zadatak 1.30 Napisati rekurzivnu funkciju za određivanje najveće cifre u oktalnom zapisu neoznačenog celog broja korišćenjem bitskih operatora. UPUT-STVO: Binarne cifre grupisati u podgrupe od po tri cifre, počev od bitova najmanje težine.

Test 1	Test 2	Test 3
ULAZ:	ULAZ: 125	ULAZ:
IZLAZ:	IZLAZ:	IZLAZ:
5	7	1

Zadatak 1.31 Napisati rekurzivnu funkciju za određivanje (dekadne vrednosti) najveće cifre u heksadekadnom zapisu neoznačenog celog broja korišćenjem bitskih operatora. UPUTSTVO: Binarne cifre grupisati u podgrupe od po četiri cifre, počev od bitova najmanje težine.

Test 1	Test 2	Test 3
ULAZ:	ULAZ: 16	ULAZ:
IzLAZ:	IZLAZ:	IZLAZ:
5	1	2

Zadatak 1.32 Napisati rekurzivnu funkciju int palindrom(char s[], int n) koja ispituje da li je data niska s palindrom. Napisati program koji testira ovu funkciju za nisku koja se zadaje sa standardnog ulaza. Pretpostaviti da niska neće imati više od 31 karaktera.

* Zadatak 1.33 Napisati rekurzivnu funkciju koja prikazuje sve permutacije skupa $\{1,2,...,n\}$. Napisati program koji testira napisanu funkciju za proizvoljan prirodan broj $n\ (n\leq 15)$ unet sa standardnog ulaza.

Test 1	Test 2	Test 3
ULAZ:	ULAZ:	ULAZ:
2 Izlaz:	3 1 2 3	-5 Duzina
1 2	1 3 2	permutacije
2 1	2 1 3	mora biti broj iz
	3 1 2 3 2 1	intervala [0, 15]!

- * Zadatak 1.34 Paskalov trougao sadrži brojeve čije se vrednosti računaju tako što svako polje ima vrednost zbira dve vrednosti koje su u susedna dva polja iznad. Izuzetak su jedinice na krajevima. Vrednosti brojeva Paskalovog trougla odgovaraju binomnim koeficijentima tj. vrednost polja (n, k), gde je n redni broj hipotenuze, a k redni broj elementa u tom redu (na toj hipotenuzi) odgovara binomnom koeficijentu $\binom{n}{k}$, pri čemu brojanje počinje od nule. Na primer, vrednost polja (4, 2) je 6.
 - (a) Napisati rekurzivnu funkciju koja izračunava vrednost binomnog koeficijenta $\binom{n}{k}$ koristeći osobine Paskalovog trougla.
 - (b) Napisati rekurzivnu funkciju koja izračunava d_n kao sumu elemenata n-te hipotenuze Paskalovog trougla.

Napisati program koji za unetu veličinu Paskalovog trougla i redni broj hipotenuze najpre iscrtava Paskalov trougao, a zatim štampa sumu elemenata hipotenuze.

* Zadatak 1.35 Napisati rekurzivnu funkciju koja prikazuje sve varijacije sa ponavljanjem dužine n skupa $\{a,b\}$, i program koji je testira, za n koje se unosi sa standardnog ulaza.

Test 1	Test 2
ULAZ:	ULAZ:
2	3
IZLAZ:	Izlaz:
a a	aaa
a b	aab
b a	aba
b b	a b b
	baa
	bab
	bba
	b b b

* Zadatak 1.36 Hanojske kule: Data su tri vertikalna štapa. Na jednom od njih se nalazi n diskova poluprečnika 1, 2, 3,... do n, tako da se najveći nalazi na dnu, a najmanji na vrhu. Ostala dva štapa su prazna. Potrebno je premestiti diskove sa jednog na drugi štap tako da budu u istom redosledu, pri čemu se ni u jednom trenutku ne sme staviti veći disk preko manjeg. Preostali štap koristiti kao pomoćni štap prilikom premeštanja.

Napisati program koji za proizvoljnu vrednost n, koja se unosi sa standardnog ulaza, prikazuje proces premeštanja diskova.

* Zadatak 1.37 Modifikacija Hanojskih kula: Data su četiri vertikalna štapa. Na jednom se nalazi n diskova poluprečnika 1, 2, 3,... do n, tako da se najveći nalazi na dnu, a najmanji na vrhu. Ostala tri štapa su prazna. Potrebno je premestiti diskove na drugi štap tako da budu u istom redosledu, premestajući jedan po jedan disk, pri čemu se ni u jednom trenutku ne sme staviti veći disk preko manjeg. Preostala dva štapa koristiti kao pomoćne štapove prilikom premeštanja.

Napisati program koji za proizvoljnu vrednost n, koja se unosi sa standardnog ulaza, prikazuje proces premeštanja diskova.

1.4 Rešenja

Rešenje 1.1

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Struktura kojom je predstavljan kompleksan broj sadrzi realan i
imaginaran deo kompleksnog broja */
typedef struct {
```

```
float real;
    float imag;
10 } KompleksanBroj;
12 /* Funkcija ucitava sa standardnog ulaza realan i imaginara deo
     kompleksnog broja i smesta ih u strukturu cija je adresa argument
     funkcije */
14
  void ucitaj_kompleksan_broj(KompleksanBroj * z)
  {
    /* Ucitavanje vrednosti sa standardnog ulaza */
    printf("Unesite realni i imaginarni deo kompleksnog broja: ");
18
    scanf("%f", &z->real);
    scanf("%f", &z->imag);
20
  }
  /* Funkcija ispisuje na standardan izlaz zadati kompleksni broj u
     obliku (x + i y). Ovoj funkciji se argument prenosi po vrednosti
24
     jer se u samoj funkciji ne menja njegova vrednost */
  void ispisi_kompleksan_broj(KompleksanBroj z)
26
    /* Zapocinje se sa ispisom */
28
    printf("(");
30
    /* Razlikuju se dva slucaja: 1) realni deo kompleksnog broja
       razlicit od nule: tada se realni deo ispisuje na standardni
       izlaz, nakon cega se ispisuje znak + ili - u zavisnosti da li je
       imaginarni deo pozitivan ili negativan, a potom i apsolutna
34
       vrednost imaginarnog dela kompleksnog broja 2) realni deo
       kompleksnog broja je nula: tada se samo ispisuje imaginaran deo,
36
       s tim sto se ukoliko su oba dela nula ispisuje samo 0, bez
       decimalnih mesta */
38
    if (z.real != 0) {
40
      printf("%.2f", z.real);
42
      if (z.imag > 0)
        printf(" + %.2f i", z.imag);
44
      else if (z.imag < 0)
        printf(" - %.2f i", -z.imag);
46
    } else {
      if (z.imag == 0)
48
        printf("0");
      else
        printf("%.2f i", z.imag);
    /* Zavrsava se sa ispisom */
    printf(")");
56
  /* Funkcija vraca vrednosti realnog dela kompleksnog broja */
```

```
60 | float realan_deo(KompleksanBroj z)
     return z.real;
64
   /* Funkcija vraca vrednosti imaginarnog dela kompleksnog broja */
66 float imaginaran_deo(KompleksanBroj z)
    return z.imag;
   }
   /* Funkcija vraca vrednost modula zadatog kompleksnog broja */
72 float moduo(KompleksanBroj z)
    return sqrt(z.real * z.real + z.imag * z.imag);
74
   /* Funkcija vraca vrednost konjugovano kompleksnog broja koji
     odgovara kompleksnom broju argumentu */
78
   KompleksanBroj konjugovan(KompleksanBroj z)
80
     /* Konjugovano kompleksan broj z se dobija tako sto se promeni znak
        imaginarnom delu kompleksnog broja */
82
    KompleksanBroj z1 = z;
84
    z1.imag *= -1;
86
     return z1;
88
90
   /* Funkcija vraca kompleksan broj cija vrednost je jednaka zbiru
     argumenata funkcije */
   KompleksanBroj saberi(KompleksanBroj z1, KompleksanBroj z2)
94
     /* Rezultat sabiranja dva kompleksna broja z1 i z2 je kompleksan
        broj ciji je realan deo zbir realnih delova kompleksnih brojeva
96
        z1 i z2, a imaginaran deo zbir imaginarnih delova kompleksnih
        brojeva z1 i z2 */
98
    KompleksanBroj z = z1;
    z.real += z2.real;
    z.imag += z2.imag;
104
     return z;
  1
106
108 /* Funkcija vraca kompleksan broj cija vrednost je jednaka razlici
      argumenata funkcije */
KompleksanBroj oduzmi (KompleksanBroj z1, KompleksanBroj z2)
```

```
/* Rezultat oduzimanja dva kompleksna broja z1 i z2 je kompleksan
        broj ciji je realan deo razlika realnih delova kompleksnih
        brojeva z1 i z2, a imaginaran deo razlika imaginarnih delova
114
        kompleksnih brojeva z1 i z2 */
     KompleksanBroj z = z1;
118
     z.real -= z2.real:
     z.imag -= z2.imag;
     return z;
   }
124
   /* Funkcija vraca kompleksan broj cija vrednost je jednaka proizvodu
      argumenata funkcije */
126
   KompleksanBroj mnozi(KompleksanBroj z1, KompleksanBroj z2)
128
     /* Rezultat mnozenja dva kompleksna broja z1 i z2 je kompleksan
        broj ciji se realan i imaginaran deo racunaju po formuli za
130
        mnozenje kompleksnih brojeva z1 i z2 */
     KompleksanBroj z;
134
     z.real = z1.real * z2.real - z1.imag * z2.imag;
     z.imag = z1.real * z2.imag + z1.imag * z2.real;
136
138
     return z;
140
   /* Funkcija vraca argument zadatog kompleksnog broja */
  float argument(KompleksanBroj z)
142
     /* Argument kompleksnog broja z se racuna pozivanjem funkcije atan2
144
        iz biblioteke math.h */
146
     return atan2(z.imag, z.real);
   }
148
   int main()
     char c;
     /* Deklaracija 3 promenljive tipa KompleksanBroj */
     KompleksanBroj z1, z2, z;
     /* Ucitavanje prvog kompleksnog broja, a potom i njegovo
        ispisivanje na standardni izlaz */
158
     ucitaj_kompleksan_broj(&z1);
     ispisi_kompleksan_broj(z1);
     printf("\n");
162
     /* Ucitavanje drugog kompleksnog broja, a potom njegovo ispisivanje
```

```
164
        na standardni izlaz */
     ucitaj_kompleksan_broj(&z2);
     ispisi_kompleksan_broj(z2);
     printf("\n");
168
     /* Ucitavanje i provera znaka na osnovu koga korisnik bira
        aritmeticku operaciju koja ce se izvrsiti nad kompleksnim
        brojevima */
     getchar();
     printf("Unesite znak (+,-,*): ");
     scanf("%c", &c);
174
     if (c != '+' && c != '-' && c != '*') {
       printf("Greska: nedozvoljena vrednost operatora!\n");
       exit(EXIT_FAILURE);
178
     /* Analizira se uneti operator */
180
     if (c == '+') {
       /* Racuna se zbir */
182
       z = saberi(z1, z2);
     } else if (c == '-') {
184
       /* Racuna se razlika */
       z = oduzmi(z1, z2);
186
     } else {
       /* Racuna se proizvod */
188
       z = mnozi(z1, z2);
190
     /* Ispisuje se rezultat */
     ispisi_kompleksan_broj(z1);
     printf(" %c ", c);
194
     ispisi_kompleksan_broj(z2);
     printf(" = ");
196
     ispisi_kompleksan_broj(z);
198
     /* Ispisuje se realan, imaginaran deo i moduo prvog kompleksnog
200
        broja */
     printf("\nRealni_deo: %.f\nImaginarni_deo: %f\nModuo: %f\n",
            realan_deo(z), imaginaran_deo(z), moduo(z));
202
     /* Izracunava se i ispisuje konjugovano kompleksan broj drugog
204
        kompleksnog broja */
     printf("Konjugovano kompleksan broj: ");
206
     ispisi_kompleksan_broj(konjugovan(z));
     printf("\n");
208
     /* Testira se funkcija koja racuna argument kompleksnog broja */
210
     printf("Argument kompleksnog broja: %f\n", argument(z));
212
     exit(EXIT_SUCCESS);
214 }
```

Rešenje 1.2

kompleksan_broj.h

```
/* Zaglavlje kompleksan_broj.h sadrzi definiciju tipa KompleksanBroj
     i deklaracije funkcija za rad sa kompleksnim brojevima. Zaglavlje
     nikada ne treba da sadrzi definicije funckija. Da bi neki program
     mogao da koristi ove brojeve i funkcije iz ove biblioteke,
     neophodno je da ukljuci ovo zaglavlje. */
  /* Ovim pretprocesorskim direktivama se zakljucava zaglavlje i
     onemogucava se da se sadrzaj zaglavlja vise puta ukljuci. Niska
     posle kljucne reci ifndef je proizvoljna, ali treba da se ponovi u
     narednoj pretrocesorskoj define direktivi. */
11 #ifndef _KOMPLEKSAN_BROJ_H
  #define _KOMPLEKSAN_BROJ_H
  /* Zaglavlja standardne biblioteke koje sadrze deklaracije funkcija
     koje se koriste u definicijama funkcija navedenim u
      kompleksan_broj.c */
  #include <stdio.h>
17 #include <math.h>
19 /* Struktura KompleksanBroj */
  typedef struct {
    float real;
    float imag;
23 } KompleksanBroj;
  /* Deklaracije funkcija za rad sa kompleksnim brojevima. Sve one su
     definisane u kompleksan_broj.c */
  /* Funkcija ucitava sa standardnog ulaza realan i imaginara deo
     kompleksnog broja i smesta ih u strukturu cija je adresa argument
     funkcije */
void ucitaj_kompleksan_broj(KompleksanBroj * z);
33 /* Funkcija ispisuje na standardan izlaz zadati kompleksni broj u
     obliku (x + i y) */
void ispisi_kompleksan_broj(KompleksanBroj z);
37 /* Funkcija vraca vrednosti realnog dela kompleksnog broja */
  float realan_deo(KompleksanBroj z);
  /* Funkcija vraca vrednosti imaginarnog dela kompleksnog broja */
41 float imaginaran_deo(KompleksanBroj z);
43 /* Funkcija vraca vrednost modula zadatog kompleksnog broja */
  float moduo(KompleksanBroj z);
45
  /* Funkcija vraca vrednost konjugovano kompleksnog broja koji
```

```
odgovara kompleksnom broju argumentu */
  KompleksanBroj konjugovan(KompleksanBroj z);
49
  /* Funkcija vraca kompleksan broj cija vrednost je jednaka zbiru
    argumenata funkcije */
  KompleksanBroj saberi(KompleksanBroj z1, KompleksanBroj z2);
53
  /* Funkcija vraca kompleksan broj cija vrednost je jednaka razlici
    argumenata funkcije */
  KompleksanBroj oduzmi(KompleksanBroj z1, KompleksanBroj z2);
  /* Funkcija vraca kompleksan broj cija vrednost je jednaka proizvodu
    argumenata funkcije */
  KompleksanBroj mnozi(KompleksanBroj z1, KompleksanBroj z2);
  /* Funkcija vraca argument zadatog kompleksnog broja */
63 float argument(KompleksanBroj z);
65 /* Kraj zakljucanog dela */
  #endif
```

kompleksan_broj.c

```
/* Ukljucuje se zaglavlje za rad sa kompleksnim brojevima, jer je
     neophodno da bude poznata definicija tipa KompleksanBroj. Takodje,
     time su ukljucena zaglavlja standardne biblioteke koja su navedena
     u kompleksan_broj.h */
  #include "kompleksan_broj.h"
  void ucitaj_kompleksan_broj(KompleksanBroj * z)
    /* Ucitavanje vrednosti sa standardnog ulaza */
   printf("Unesite realan i imaginaran deo kompleksnog broja: ");
   scanf("%f", &z->real);
12
    scanf("%f", &z->imag);
14 }
void ispisi_kompleksan_broj(KompleksanBroj z)
18
    /* Zapocinje se sa ispisom */
    printf("(");
20
    /* Razlikuju se dva slucaja: 1) realni deo kompleksnog broja
       razlicit od nule: tada se realni deo ispisuje na standardni
       izlaz, nakon cega se ispisuje znak + ili - u zavisnosti da li je
       imaginarni deo pozitivan ili negativan, a potom i apsolutna
24
       vrednost imaginarnog dela kompleksnog broja 2) realni deo
       kompleksnog broja je nula: tada se samo ispisuje imaginaran deo,
26
       s tim sto se ukoliko su oba dela nula ispisuje samo 0, bez
       decimalnih mesta */
28
```

```
if (z.real != 0) {
30
      printf("%.2f", z.real);
      if (z.imag > 0)
        printf(" + %.2f i", z.imag);
34
      else if (z.imag < 0)
        printf(" - %.2f i", -z.imag);
36
    } else {
      if (z.imag == 0)
38
        printf("0");
      else
40
        printf("%.2f i", z.imag);
42
    /* Zavrsava se sa ispisom */
    printf(")");
46
  float realan_deo(KompleksanBroj z)
    /* Vraca se vrednost realnog dela kompleksnog broja */
    return z.real;
  }
54 float imaginaran_deo(KompleksanBroj z)
    /* Vraca se vrednost imaginarnog dela kompleksnog broja */
    return z.imag;
  }
58
60 float moduo(KompleksanBroj z)
    /* Koriscenjem funkcije sqrt racuna se moduo kompleksnog broja */
    return sqrt(z.real * z.real + z.imag * z.imag);
  }
64
  KompleksanBroj konjugovan(KompleksanBroj z)
66
    /* Konjugovano kompleksan broj se dobija od datog broja z tako sto
68
       se promeni znak imaginarnom delu kompleksnog broja */
    KompleksanBroj z1 = z;
    z1.imag *= -1;
    return z1;
72
74
  KompleksanBroj saberi(KompleksanBroj z1, KompleksanBroj z2)
76
    /* Rezultat sabiranja dva kompleksna broja z1 i z2 je kompleksan
       broj ciji je realan deo zbir realnih delova kompleksnih brojeva
78
       z1 i z2, a imaginaran deo zbir imaginarnih delova kompleksnih
       brojeva z1 i z2 */
```

```
KompleksanBroj z = z1;
82
     z.real += z2.real:
     z.imag += z2.imag;
84
     return z;
86
88
   KompleksanBroj oduzmi(KompleksanBroj z1, KompleksanBroj z2)
90
     /* Rezultat oduzimanja dva kompleksna broja z1 i z2 je kompleksan
        broj ciji je realan deo razlika realnih delova kompleksnih
92
        brojeva z1 i z2, a imaginaran deo razlika imaginarnih delova
        kompleksnih brojeva z1 i z2 */
94
     KompleksanBroj z = z1;
    z.real -= z2.real;
96
    z.imag -= z2.imag;
     return z;
98
100
   KompleksanBroj mnozi(KompleksanBroj z1, KompleksanBroj z2)
102 {
     /* Rezultat mnozenja dva kompleksna broja z1 i z2 je kompleksan
        broj ciji se realan i imaginaran deo racunaju po formuli za
104
        mnozenje kompleksnih brojeva z1 i z2 */
     KompleksanBroj z;
106
     z.real = z1.real * z2.real - z1.imag * z2.imag;
108
     z.imag = z1.real * z2.imag + z1.imag * z2.real;
     return z;
112 }
114 float argument (KompleksanBroj z)
     /* Argument kompleksnog broja z se racuna pozivanjem funkcije atan2
        iz biblioteke math.h */
    return atan2(z.imag, z.real);
```

main.c

```
| Kompilacija se moze uraditi i na sledeci nacin:
gcc -Wall -c -o kompleksan_broj.o kompleksan_broj.c
  gcc -Wall -c -o main.o main.c
13 gcc -lm -o kompleksan_broj kompleksan_broj.o main.o
Napomena: Prethodne komande se koriste kada se sva tri navedena
  dokumenta nalaze u istom direktorijumu. Ukoliko se biblioteka (npr.
17 kompleksan_broj.c kompleksan_broj.h) nalazi u direktorijumu sa imenom
  header_dir prevodjenje se vrsi dodavanjem opcije opcije -I header_dir
19 gcc -I header_dir -Wall -lm -o kompleksan_broj kompleksan_broj.c
       main.c
  #include <stdio.h>
25 /* Ukljucuje se zaglavlje neophodno za rad sa kompleksnim brojevima
  #include "kompleksan_broj.h"
27
  /* U glavnoj funkciji se za uneti kompleksan broj ispisuje njegov
    polarni oblik */
  int main()
    KompleksanBroj z;
33
    /* Ucitavamo kompleksan broj */
    ucitaj_kompleksan_broj(&z);
35
    /* Ispisivanje polarnog oblika kompleksnog broja */
    printf("Polarni oblik kompleksnog broja je %.2f * e^i * %.2f\n",
          moduo(z), argument(z));
39
41
    return 0;
```

Rešenje 1.3

polinom.h

```
#ifndef _POLINOM_H
#define _POLINOM_H

#include <stdio.h>
#include <stdlib.h>

/* Maksimalni stepen polinoma */
#define MAKS_STEPEN 20

/* Polinomi se predstavljaju strukturom koja cuva koeficijente
```

```
(koef[i] je koeficijent uz clan x^i) i stepen polinoma */
13 typedef struct {
    double koef[MAKS_STEPEN + 1];
   int stepen;
  } Polinom:
  /* Funkcija koja ispisuje polinom na standardni izlaz u citljivom
    obliku. Polinom se prenosi po adresi da bi se ustedela memorija:
    ne kopira se cela struktura, vec se samo prenosi adresa na kojoj
     se nalazi polinom koji ispisujemo */
  void ispisi(const Polinom * p);
23
  /* Funkcija koja ucitava polinom sa tastature */
25 Polinom ucitaj();
27 /* Funkcija racuna i vraca vrednost polinoma p u tacki x Hornerovim
     algoritmom */
29 double izracunaj(const Polinom * p, double x);
31 /* Funkcija koja sabira dva polinoma */
  Polinom saberi(const Polinom * p, const Polinom * q);
33
  /* Funkcija koja mnozi dva polinoma p i q */
Polinom pomnozi(const Polinom * p, const Polinom * q);
/* Funkcija koja racuna izvod polinoma p */
  Polinom izvod(const Polinom * p);
39
  /* Funkcija koja racuna n-ti izvod polinoma p */
41 Polinom n_izvod(const Polinom * p, int n);
  #endif
```

polinom.c

```
#include <stdio.h>
2 #include <stdlib.h>
  #include "polinom.h"
  void ispisi(const Polinom * p)
6
    int nulaPolinom = 1;
    int i;
    /* Ispisivanje polinoma pocinje od najviseg stepena ka najnizem da
       bi polinom bio ispisan na prirodan nacin. Ipisisuju se samo oni
       koeficijenti koji su razliciti od nule. Ispred pozitivnih
       koeficijenata je potrebno ispisati znak + (osim u slucaju
12
       koeficijenta uz najvisi stepen). */
    for (i = p->stepen; i >= 0; i--) {
14
      if (p->koef[i]) {
        /* Polinom nije nula polinom, cim je neki od koeficijenata
```

```
razlicit od nule */
18
        nulaPolinom = 0;
         if (p->koef[i] >= 0 && i != p->stepen)
20
          putchar('+');
         if (i > 1)
          printf("%.2fx^%d", p->koef[i], i);
         else if (i == 1)
24
          printf("%.2fx", p->koef[i]);
         else
26
          printf("%.2f", p->koef[i]);
28
    }
    /* U slucaju nula polinoma indikator ce imati vrednost 1 i tada se
30
       ispisuje nula. */
    if (nulaPolinom)
      printf("0");
    putchar('\n');
34
36
  Polinom ucitaj()
38
    int i;
    Polinom p;
40
    /* Ucitava se stepena polinoma */
42
    scanf("%d", &p.stepen);
44
    /* Ponavlja se ucitavanje stepena sve dok se ne unese stepen iz
       dozvoljenog opsega */
46
    while (p.stepen > MAKS_STEPEN || p.stepen < 0) {
      printf("Stepen polinoma pogresno unet, pokusajte ponovo: ");
48
      scanf("%d", &p.stepen);
    /* Unose se koeficijenti polinoma */
    for (i = p.stepen; i >= 0; i--)
      scanf("%lf", &p.koef[i]);
54
    /* Vraca se procitani polinom */
    return p;
  }
58
  double izracunaj(const Polinom * p, double x)
    /* Rezultat se na pocetku inicijalizuje na nulu, a potom se u
       svakoj iteraciji najpre mnozi sa x, a potom i uvecava za
       vrednost odgovarajuceg koeficijenta */
64
    /* Primer: Hornerov algoritam za polinom x^4+2x^3+3x^2+2x+1:
       x^4+2x^3+3x^2+2x+1 = (((x+2)*x + 3)*x + 2)*x + 1 */
    double rezultat = 0;
```

```
70
     int i = p->stepen;
     for (; i >= 0; i--)
      rezultat = rezultat * x + p->koef[i];
     return rezultat;
74 }
76 Polinom saberi(const Polinom * p, const Polinom * q)
     Polinom rez;
78
     int i:
80
     /* Stepen rezultata ce odgovarati stepenu polinoma sa vecim
        stepenom */
82
     rez.stepen = p->stepen > q->stepen ? p->stepen : q->stepen;
84
     /* Racunaju se svi koeficijenti rezultujuceg polinoma tako sto se
        sabiraju koeficijenti na odgovarajucim pozicijama polinoma koje
86
        sabiramo. Ukoliko je pozicija za koju se racuna koeficijent veca
        od stepena nekog od polaznih polinoma podrazumeva se da je
88
        koeficijent jednak koeficijentu uz odgovarajuci stepen iz drugog
        polinoma */
90
     for (i = 0; i <= rez.stepen; i++)
       rez.koef[i] =
92
           (i > p->stepen ? 0 : p->koef[i]) +
           (i > q->stepen ? 0 : q->koef[i]);
94
     /* Vraca se dobijeni polinom */
96
     return rez;
98
   Polinom pomnozi(const Polinom * p, const Polinom * q)
102 {
     int i, j;
104
     Polinom r;
     /* Stepen rezultata ce odgovarati zbiru stepena polaznih polinoma
106
     r.stepen = p->stepen + q->stepen;
     if (r.stepen > MAKS_STEPEN) {
       fprintf(stderr, "Stepen proizvoda polinoma izlazi iz opsega\n");
       exit(EXIT_FAILURE);
     }
112
     /* Svi koeficijenti rezultujuceg polinoma se inicijalizuju na nulu
     for (i = 0; i <= r.stepen; i++)
114
       r.koef[i] = 0;
116
     /* U svakoj iteraciji odgovarajuci koeficijent rezultata se uvecava
       za proizvod odgovarajucih koeficijenata iz polaznih polinoma */
118
     for (i = 0; i <= p->stepen; i++)
```

```
for (j = 0; j \le q->stepen; j++)
120
         r.koef[i + j] += p->koef[i] * q->koef[j];
     /* Vraca se dobijeni polinom */
     return r;
124
126
   Polinom izvod(const Polinom * p)
   {
128
     int i;
     Polinom r;
130
     /* Izvod polinoma ce imati stepen za jedan stepen manji od stepena
        polaznog polinoma. Ukoliko je stepen polinoma p vec nula, onda
        je rezultujuci polinom nula (izvod od konstante je nula). */
134
     if (p->stepen > 0) {
       r.stepen = p->stepen - 1;
136
       /* Racunanje koeficijenata rezultata na osnovu koeficijenata
138
          polaznog polinoma */
       for (i = 0; i <= r.stepen; i++)
140
         r.koef[i] = (i + 1) * p->koef[i + 1];
     } else
142
       r.koef[0] = r.stepen = 0;
144
     /* Vraca se dobijeni polinom */
146
     return r;
148
   Polinom n_izvod(const Polinom * p, int n)
     int i:
     Polinom r;
154
     /* Provera da li je n nenegativna vrednost */
     if (n < 0) {
       fprintf(stderr, "U n-tom izvodu polinoma, n mora biti >=0 \n");
156
       exit(EXIT_FAILURE);
158
     /* Nulti izvod je bas taj polinom */
160
     if (n == 0)
       return *p;
162
     /* Za n>=1, n-ti izvod se racuna tako sto se n puta pozove funkcija
164
        za racunanje prvog izvoda polinoma */
     r = izvod(p);
     for (i = 1; i < n; i++)
       r = izvod(&r);
168
     /* Vraca se dobijeni polinom */
     return r;
```

```
172 }
```

main.c

```
#include <stdio.h>
2 #include "polinom.h"
4 int main(int argc, char **argv)
    Polinom p, q, z, r;
    double x;
    int n;
    /* Unos polinoma p */
    printf
        ("Unesite polinom p (prvo stepen, pa zatim koeficijente od
12
      najveceg stepena do nultog):\n");
    p = ucitaj();
14
    /* Ispis polinoma p */
16
    ispisi(&p);
    /* Unos polinoma q */
18
    printf
        ("Unesite drugi polinom q (prvo stepen, pa zatim koeficijente
20
      od najveceg stepena do nultog):\n");
    q = ucitaj();
    /* Polinomi se sabiraju i ispisuje se izracunati zbir */
    z = saberi(&p, &q);
24
    printf("Zbir polinoma je polinom z:\n");
    ispisi(&z);
26
    /* Polinomi se mnoze i ispisuje se izracunati prozivod */
28
    r = pomnozi(&p, &q);
30
    printf("Prozvod polinoma je polinom r:\n");
    ispisi(&r);
    /* Ispisuje se vrednost polinoma u unetoj tacki */
34
    printf("Unesite tacku u kojoj racunate vrednost polinoma z:\n");
    scanf("%lf", &x);
    printf("Vrednost polinoma z u tacki %.2f je %.2f\n", x, izracunaj(&
36
      z, x));
38
    /* Racuna se n-ti izvoda polinoma i ispisuje se dobijeni polinoma
    printf("Unesite izvod polinoma koji zelite:\n");
40
    scanf("%d", &n);
    r = n izvod(&r, n);
42
    printf("%d. izvod polinoma r je: ", n);
```

```
ispisi(&r);

exit(EXIT_SUCCESS);
}
```

stampanje_bitova.h

```
_STAMPANJE_BITOVA_H
  #ifndef
  #define _STAMPANJE_BITOVA_H
  #include <stdio.h>
5
  /* Funkcija prikazuje na standardni izlaz binarnu reprezentaciju
     celog broja u memoriji. Bitove koji predstavljaju binarnu
     reprezentaciju broja treba ispisati sa leva na desno, tj. od bita
     najvece tezine ka bitu najmanje tezine */
  void stampaj_bitove(unsigned x);
  /* Funkcija prikazuje na standardni izlaz binarnu reprezentaciju
     celog broja tipa 'short' u memoriji. */
13
  void stampaj_bitove_short(short x);
  /* Funkcija prikazuje na standardni izlaz binarnu reprezentaciju
     karaktera u memoriji. */
17
  void stampaj_bitove_char(char x);
19
  #endif
```

 $stampanje_bitova.c$

```
#include <stdio.h>
#include "stampanje_bitova.h"

void stampaj_bitove(unsigned x)
{
   /* Broj bitova celog broja */
   unsigned velicina = sizeof(unsigned) * 8;

/* Maska koja se koristi za "ocitavanje" bitova celog broja */
   unsigned maska;

/* Pocetna vrednost maske se postavlja na broj ciji binarni zapis
   na mestu bita najvece tezine sadrzi jedinicu, a na svim ostalim
   mestima sadrzi nulu. U svakoj iteraciji maska se menja tako sto
   se jedini bit jedinica pomera udesno, kako bi se odredio naredni
   bit broja x koji je argument funkcije. Zatim se odgovarajuca
```

```
cifra, ('0' ili '1'), ispisuje na standardnom izlazu. Neophodno
       je da promenljiva maska bude deklarisana kao neoznacen ceo broj
       kako bi se pomeranjem u desno vrsilo logicko pomeranje
       (popunjavanje nulama), a ne aritmeticko pomeranje (popunjavanje
20
       znakom broja). */
    for (maska = 1 << (velicina - 1); maska != 0; maska >>= 1)
      putchar(x & maska ? '1' : '0');
24
    putchar('\n');
  }
26
  void stampaj_bitove_short(short x)
28
    /* Broj bitova celog broja tipa short */
30
    unsigned velicina = sizeof(short) * 8;
    /* Maska koja se koristi za "ocitavanje" bitova broja tipa short */
    unsigned short maska;
34
    for (maska = 1 << (velicina - 1); maska != 0; maska >>= 1)
36
      putchar(x & maska ? '1' : '0');
38
    putchar('\n');
40
  void stampaj_bitove_char(char x)
42
    /* Broj bitova karaktera */
44
    unsigned velicina = sizeof(char) * 8;
46
    /* Maska koja se koristi za "ocitavanje" bitova jednog karaktera */
    unsigned char maska;
48
    for (maska = 1 << (velicina - 1); maska != 0; maska >>= 1)
      putchar(x & maska ? '1' : '0');
    putchar('\n');
54 }
```

main.c

```
#include <stdio.h>
#include "stampanje_bitova.h"

int main()
{
   int broj_int;
   short broj_short;
   char broj_char;

/* Ucitavanje broja tipa int */
```

```
printf("Unesite broj tipa int: ");
    scanf("%x", &broj_int);
12
    /* Ispisivanje binarne reprezentacije unetog broja */
14
    printf("Binarna reprezentacija: ");
    stampaj_bitove(broj_int);
    /* Ucitavanje broja tipa short */
    printf("Unesite broj tipa short: ");
    scanf("%hx", &broj_short);
20
    /* Ispisivanje binarne reprezentacije unetog broja */
    printf("Binarna reprezentacija: ");
    stampaj_bitove_short(broj_short);
    /* Ucitavanje broja tipa char */
    printf("Unesite broj tipa char: ");
    scanf("%hhx", &broj_char);
28
    /* Ispisivanje binarne reprezentacije unetog broja */
    printf("Binarna reprezentacija: ");
    stampaj_bitove_char(broj_char);
    return 0;
34
```

```
#include <stdio.h>
  #include <stdlib.h>
  /* Funkcija vraca broj jedinica u binarnoj reprezentaciji broja x
     kreiranjem odgovarajuce maske i njenim pomeranjem */
  int prebroj_bitove_1(int x)
    int br = 0;
    unsigned broj_pomeranja = sizeof(unsigned) * 8 - 1;
    /* Formiranje se maska cija binarna reprezentacija izgleda
       100000...0000000, koja sluzi za ocitavanje bita najvece tezine.
13
       U svakoj iteraciji maska se pomera u desno za 1 mesto, i
       ocitavamo sledeci bit. Petlja se zavrsava kada vise nema
       jedinica tj. kada maska postane nula. */
    unsigned maska = 1 << broj_pomeranja;
    for (; maska != 0; maska >>= 1)
      x & maska ? br++ : 1;
    return br;
21 }
23 /* Funkcija vraca broj jedinica u binarnoj reprezentaciji broja x
```

```
formiranjem odgovarajuce maske i pomeranjem promenljive x */
25 int prebroj_bitove_2(int x)
    int br = 0;
27
    unsigned broj_pomeranja = sizeof(int) * 8 - 1;
    /* Kako je argument funkcije oznacen ceo broj x naredba x>>=1 bi
       vrsila aritmeticko pomeranje u desno, tj. popunjavanje bita
       najvece tezine bitom znaka. U tom slucaju nikad ne bi bio
       ispunjen uslov x!=0 i program bi bio zarobljen u beskonacnoj
33
       petlji. Zbog toga se koristi pomeranje broja x ulevo i maska
       koja ocitava bit najvece tezine. */
35
    unsigned maska = 1 << broj_pomeranja;
    for (; x != 0; x <<= 1)
      x & maska ? br++ : 1;
    return br;
41
43
  int main()
45 {
    int x, i;
47
    /* Ucitava se broj sa ulaza */
    printf("Unesite broj:\n");
49
    scanf("%x", &x);
    /* Dozvoljava se korisniku da bira na koji nacin ce biti izracunat
       broj jedinica u zapisu broja */
53
    printf("Unesite redni broj funkcije:\n");
    scanf("%d", &i);
    /* Ispisivanje rezultata */
    if (i == 1){
      printf("Poziva se funkcija prebroj_bitove_1\n");
59
      printf("Broj jedinica u zapisu je %d\n", prebroj_bitove_1(x));
    }else if (i == 2){
      printf("Poziva se funkcija prebroj_bitove_2\n");
      printf("Broj jedinica u zapisu je %d\n", prebroj_bitove_2(x));
    }else {
      fprintf(stderr, "Greska: Neodgovarajuci redni broj funkcije.\n");
      exit(EXIT_FAILURE);
    exit(EXIT_SUCCESS);
```

```
#include <stdio.h>
  #include "stampanje_bitova.h"
  /* Funkcija vraca najveci neoznaceni broj sastavljen od istih bitova
     koji se nalaze u binarnoj reprezentaciji vrednosti promenjive x */
  unsigned najveci(unsigned x)
    unsigned velicina = sizeof(unsigned) * 8;
9
    /* Formira se maska 100000...0000000 */
    unsigned maska = 1 << (velicina - 1);
    /* Rezultat se inicijalizuje vrednoscu 0 */
13
    unsigned rezultat = 0;
    /* Promenljiva x se pomera u levo sve dok postoje jedinice u njenoj
       binarnoj reprezentaciji (tj. sve dok je promenljiva x razlicita
17
       od nule). */
    for (; x != 0; x <<= 1) {
19
      /* Za svaku jedinicu koja se koriscenjem maske detektuje na
         poziciji najvece tezine u binarnoj reprezentaciji promenjive
         x, potiskuje se jedna nova jedinicu sa leva u rezultat */
      if (x & maska) {
        rezultat >>= 1:
        rezultat |= maska;
    /* Vraca se dobijena vrednost */
    return rezultat;
  }
  /* Funkcija vraca najmanji neoznaceni broj sastavljen od istih bitova
     koji se nalaze u binarnoj reprezentaciji vrednosti promenjive x */
  unsigned najmanji (unsigned x)
    /* Rezultat se inicijalizuje vrednoscu 0 */
    unsigned rezultat = 0;
39
    /* Promenljiva x se pomera u desno sve dok postoje jedinice u
       njenoj binarnoj reprezentaciji (tj. sve dok je promenljiva x
41
       razlicita od nule). */
    for (; x != 0; x >>= 1) {
43
      /* Za svaku jedinicu koja se koriscenjem vrednosti 1 za masku
         detektuje na poziciji najmanje tezine u binarnoj
45
         reprezentaciji promenjive x, potiskuje se jedna nova jedinicu
         sa desna u rezultat */
47
      if (x & 1) {
        rezultat <<= 1;
49
        rezultat |= 1;
```

```
}
53
    /* Vraca se dobijena vrednost */
    return rezultat;
  int main()
59 \
    int broj;
    /* Ucitava se broj sa ulaza */
    scanf("%x", &broj);
    /* Ispisuju se, redom, najveci i najmanji broj formirani od bitova
       unetog broja */
    printf("Najveci:\n");
    stampaj_bitove(najveci(broj));
    printf("Najmanji:\n");
    stampaj_bitove(najmanji(broj));
    return 0;
73
```

```
#include <stdio.h>
#include "stampanje_bitova.h"
4 /* Funckija postavlja na nulu n bitova pocev od pozicije p. */
  unsigned postavi_0(unsigned x, unsigned n, unsigned p)
6
 {
    Formira se maska cija binarna reprezentacija ima n bitova
    postavljenih na O pocev od pozicije p, dok su svi ostali
    postavljeni na 1. Na primer, za n=5 i p=10 formira se maska oblika
    1111 1111 1111 1111 1111 1000 0011 1111
12
    To se postize na sledeci nacin:
    ~0
                                1111 1111 1111 1111 1111 1111 1111 1111
    (~0 << n)
                                1111 1111 1111 1111 1111 1111 1110 0000
14
    \sim (\sim 0 << n)
                                0000 0000 0000 0000 0000 0000 0001 1111
    (~(~0 << n) << (p-n+1)) 0000 0000 0000 0000 0000 0111 1100 0000
16
    \sim (\sim (\sim 0 << n) << (p-n+1))
                               1111 1111 1111 1111 1111 1000 0011 1111
18
    unsigned maska =  ( ( 0 << n) << (p - n + 1) ); 
20
    return x & maska;
22 }
```

```
24 /* Funckija postavlja na jedinicu n bitova pocev od pozicije p. */
  unsigned postavi_1(unsigned x, unsigned n, unsigned p)
26
    28
     Formira se maska kod koje je samo n bitova pocev od pocev od
     pozicije p jednako 1, a ostali su 0.
30
     Na primer, za n=5 i p=10 formira se maska oblika
     0000 0000 0000 0000 0000 0111 1100 0000
    unsigned maska = \sim(\sim 0 << n) << (p - n + 1);
34
   return x | maska;
36
  }
38
  /* Funkcija vraca celobrojno polje bitova, desno poravnato, koje
    predstavlja n bitova pocev od pozicije p u binarnoj
40
    reprezentaciji broja x. */
 unsigned vrati_bitove(unsigned x, unsigned n, unsigned p)
42
44
    Kreira se maska kod koje su poslednjih n bitova 1, a ostali su 0.
46
     Na primer, za n=5
     0000 0000 0000 0000 0000 0000 0001 1111
48
    unsigned maska = \sim(\sim 0 << n);
50
    /* Najpre se vrednost promenljive x pomera u desno tako da trazeno
      polje bude uz desni kraj. Zatim se maskiraju ostali bitovi, sem
      zeljenih n i funkcija vraca tako dobijenu vrednost */
54
   return maska & (x >> (p - n + 1));
 }
56
  /* Funkcija vraca broj x kome su n bitova pocev od pozicije p
    postavljeni na vrednosti n bitova najmanje tezine binarne
    reprezentacije broja y */
  unsigned postavi_1_n_bitova(unsigned x, unsigned n, unsigned p,
     unsigned y)
62
    /* Kreira se maska kod kod koje su poslednjih n bitova 1, a
      ostali su 0. */
64
    unsigned poslednjih_n_1 = ~(~0 << n);
66
    /* Kao i kod funkcije postavi_0, i ovde se kreira maska koja ima n
      bitova postavljenih na O pocevsi od pozicije p, dok su
68
      ostali bitovi 1. */
    unsigned srednjih_n_0 = ((0 << n) << (p - n + 1));
    /* U promenljivu x_postavi_0 se smesta vrednost dobijena kada se u
72
      binarnoj reprezentaciji vrednosti promenljive x postavi na 0 n
74
      bitova na pozicijama pocev od p */
```

```
unsigned x_postavi_0 = x & srednjih_n_0;
     /* U promenlijvu y_pomeri_srednje se smesta vrednost dobijena od
        binarne reprezentacije vrednosti promenljive y cijih je n bitova
78
        najnize tezine pomera tako da stoje pocev od pozicije p. Ostali
        bitovi su nule. Sa (y & poslednjih_n_1) postave na O svi bitovi
80
        osim najnizih n */
    unsigned y_pomeri_srednje = (y & poslednjih_n_1) << (p - n + 1);
82
     return x_postavi_0 ^ y_pomeri_srednje;
84
86
   /* Funkcija invertuje bitove u zapisu broja x pocevsi od pozicije p
     njih n */
   unsigned invertuj (unsigned x, unsigned n, unsigned p)
90
     /* Formira se maska sa n jedinica pocev od pozicije p. */
    unsigned maska = \sim(\sim 0 << n) << (p - n + 1);
92
     /* Operator ekskluzivno ili invertuje sve bitove gde je
94
        odgovarajuci bit maske 1. Ostali bitovi ostaju nepromenjeni. */
     return maska ^ x;
96
98
   int main()
100 {
     unsigned x, p, n, y;
     /* Ucitavaju se vrednosti sa standardnog ulaza */
     printf("Unesite neoznacen ceo broj x:\n");
104
     scanf("%u", &x);
     printf("Unesite neoznacen ceo broj n:\n");
106
     scanf("%u", &n);
     printf("Unesite neoznacen ceo broj p:\n");
108
     scanf("%u", &p);
     printf("Unesite neoznacen ceo broj y:\n");
     scanf("%u", &y);
     /* Ispisuju se binarne reprezentacije broja x i broja koji se
        dobije kada se primeni funkcija postavi_0 za x, n i p*/
114
     printf("x = %10u %36s = ", x, "");
     stampaj_bitove(x);
     printf("postavi_0(%10u,%6u,%6u)%16s = ", x, n, p, "");
     stampaj_bitove( postavi_0(x, n, p));
118
     printf("\n");
     /* Ispisuju se binarne reprezentacije broja x i broja koji se
        dobije kada se primeni funkcija postavi_1 za x, n i p*/
     printf("x = %10u %36s = ", x, "");
     stampaj_bitove(x);
124
     printf("postavi_1(%10u,%6u,%6u)%16s = ", x, n, p, "");
126
     stampaj_bitove( postavi_1(x, n, p));
```

```
printf("\n");
128
     /* Ispisuju se binarne reprezentacije broja x i broja koji se
        dobije kada se primeni funkcija vrati_bitove za x, n i p*/
130
     printf("x = 10u 36s = ", x, "");
     stampaj_bitove(x);
     printf("vrati_bitove(%10u,%6u,%6u)%13s = ", x, n, p, "");
     stampaj_bitove( vrati_bitove(x, n, p));
134
     printf("\n");
136
     /* Ispisuju se binarne reprezentacije brojeva x, y i broja koji se
        dobije kada se primeni funkcija postavi_1_n_bitova za x, n i p*/
138
     printf("x = 10u 36s = ", x, "");
     stampaj_bitove(x);
140
     printf("y = %10u %36s = ", y, "");
     stampaj_bitove(y);
142
     printf("postavi_1_n_bitova(%10u,%4u,%4u,%10u) = ", x, n, p, y);
     stampaj_bitove( postavi_1_n_bitova(x, n, p, y));
144
     printf("\n");
146
     /* Ispisuju se binarne reprezentacije broja x i broja koji se
        dobije kada se primeni funkcija invertuj za x, n i p*/
148
     printf("x = 10u \ 36s = ", x, "");
     stampaj_bitove(x);
     printf("invertuj(%10u,%6u,%6u)%17s = ", x, n, p, "");
     stampaj_bitove( invertuj(x, n, p));
     return 0;
154
```

```
#include <stdio.h>
#include "stampanje_bitova.h"

/* Funkcija ceo broj x rotira u levo za n mesta. */
unsigned rotiraj_ulevo(int x, unsigned n)
{
    unsigned bit_najvece_tezine;

/* Maska koja ima samo bit na poziciji najvece tezine postavljen na
    1 je neophodna da bi pre pomeranja u levo za 1 bit na poziciji
    najvece tezine bio sacuvan */
unsigned bit_najvece_tezine_maska = 1 << (sizeof(unsigned) * 8 - 1)
    ;
int i;

/* n puta se vrsi rotaciju za jedan bit u levo. U svakoj iteraciji
    se odredi bit na poziciji najvece tezine, a potom se pomera</pre>
```

```
binarna reprezentacija trenutne vrednosti promenljive x u levo
       za 1. Nakon toga, bit na poziciji najmanje tezine se postavlja
18
       na vrednost koju je imao bit na poziciji najvece tezine koji je
       istisnut pomeranjem */
20
    for (i = 0; i < n; i++) {
      bit_najvece_tezine = x & bit_najvece_tezine_maska;
      x = x << 1 | (bit_najvece_tezine ? 1 : 0);</pre>
24
    /* Vraca se dobijena vrednost */
    return x;
  }
28
30 /* Funkcija neoznacen broj x rotira u desno za n mesta. */
  unsigned rotiraj_udesno(unsigned x, unsigned n)
32 | {
    unsigned bit_najmanje_tezine;
    int i:
34
    /* n puta se ponavlja rotacija u desno za jedan bit. U svakoj
36
       iteraciji se odredjuje bit na poziciji najmanje tezine broja x,
       zatim tako odredjeni bit se pomera u levo tako da bit na
38
       poziciji najmanje tezine dodje do pozicije najvece tezine.
       Zatim, nakon pomeranja binarne reprezentacije trenutne vrednosti
40
       promenljive x za 1 u desno, bit na poziciji najvece tezine se
       postaljva na vrednost vec zapamcenog bita koji je bio na
42
       poziciji najmanje tezine. */
    for (i = 0; i < n; i++) {
44
      bit_najmanje_tezine = x & 1;
      x = x >> 1 | bit_najmanje_tezine << (sizeof(unsigned) * 8 - 1);</pre>
46
48
    /* Vraca se dobijena vrednost */
    return x;
  /* Verzija funkcije koja broj x rotira u desno za n mesta, gde je
     argument funkcije x oznaceni ceo broj */
  int rotiraj_udesno_oznaceni(int x, unsigned n)
56
    unsigned bit_najmanje_tezine;
    int i:
58
    /* U svakoj iteraciji se odredjuje bit na poziciji najmanje tezine
       i smesta u promenljivu bit_najmanje_tezine. Kako je x oznacen
       ceo broj, tada se prilikom pomeranja u desno vrsi aritmeticko
       pomeranje i cuva se znak broja. Dakle, razlikuju se dva slucaja
       u zavisnosti od znaka broja x. Nije dovoljno da se ova provera
       izvrsi pre petlje, s obzirom da rotiranjem u desno na poziciju
       nejvece tezine moze doci i 0 i 1, nezavisno od pocetnog znaka
66
       broja smestenog u promenljivu x. */
    for (i = 0; i < n; i++) {
```

```
bit_najmanje_tezine = x & 1;
      if (x < 0)
     /************************
      Siftovanjem u desno broja koji je negativan dobija se 1 kao bit
      na poziciji najvece tezine. Na primer ako je x
74
      1010 1011 1100 1101 1110 0001 0010 001b
        (sa b je oznacen ili 1 ili 0 na poziciji najmanje tezine)
76
      Onda je sadrzaj promenljive bit_najmanje_tezine:
      0000 0000 0000 0000 0000 0000 0000 000ь
78
      Nakon siftovanja sadrzaja promenljive x za 1 u desno
      1101 0101 1110 0110 1111 0000 1001 0001
80
      Kako bi umesto 1 na poziciji najvece tezine u trenutnoj binarnoj
      reprezentaciji x bilo postavljeno b nije dovoljno da se pomeri na
82
      poziciju najvece tezine jer bi se time dobile 0, a u ovom slucaju
      su potrebne jedinice zbog bitovskog & zato se prvo vrsi
84
      komplementiranje, a zatim pomeranje
      ~bit_najmanje_tezine << (sizeof(int)*8 -1)
86
      gde B oznacava ~b.
88
      Potom se ponovo vrsi komplementiranje kako bi se b nalazilo na
      poziciji najvece tezine i sve jedinice na ostalim pozicijama
90
      ~(~bit_najmanje_tezine << (sizeof(int)*8 -1))
      92
     *************************************
        x = (x >> 1) & \sim (\sim bit_najmanje_tezine << (sizeof(int) * 8 - 1))
94
      else
        x = (x >> 1) | bit_najmanje_tezine << (sizeof(int) * 8 - 1);</pre>
96
     /* Vraca se dobijena vrednost */
    return x;
   int main()
104
    unsigned x, n;
106
     /* Ucitavanje vrednosti sa standardnog ulaza */
    printf("Unesite neoznacen ceo broj x:");
108
     scanf("%x", &x);
    printf("Unesite neoznacen ceo broj n:");
     scanf("%x", &n);
112
     /* Ispisivanje binarne reprezentacije broja x */
    printf("x\t\t\t= ");
114
     stampaj_bitove(x);
116
     /* Testiranje rada napisanih funkcija */
    printf("rotiraj_ulevo(%x,%u)\t\t= ", x, n);
     stampaj_bitove(rotiraj_ulevo(x, n));
```

```
printf("rotiraj_udesno(%x,%u)\t\t= ", x, n);
stampaj_bitove(rotiraj_udesno(x, n));

printf("rotiraj_udesno_oznaceni(%x,%u)\t= ", x, n);
stampaj_bitove(rotiraj_udesno_oznaceni(x, n));

printf("rotiraj_udesno_oznaceni(-%x,%u)\t= ", x, n);
stampaj_bitove(rotiraj_udesno_oznaceni(-x, n));

return 0;
}
```

```
#include <stdio.h>
  #include "stampanje_bitova.h"
  /* Funkcija vraca vrednost cija je binarna reprezentacija slika u
     ogledalu binarne reprezentacije broja x. */
  unsigned ogledalo(unsigned x)
    unsigned najnizi_bit;
9
    unsigned rezultat = 0;
    /* U svakoj iteraciji najnizi bit u binarnoj reprezentaciji tekuce
       vrednosti broja x se odredjuje i pamti u promenljivoj
13
       najnizi_bit, nakon cega se na promenljivu x primeni pomeranje u
       desno */
    for (i = 0; i < sizeof(x) * 8; i++) {
      najnizi_bit = x & 1;
17
      x >>= 1;
19
      /* Potiskivanjem trenutnog rezultata ka levom kraju svi prethodno
         postavljeni bitovi dobijaju vecu poziciju. Novi bit se
         postavlja na najnizu poziciju */
      rezultat <<= 1;
      rezultat |= najnizi_bit;
    /* Vraca se dobijena vrednost */
    return rezultat;
27
  }
29
  int main()
31
    int broj;
    /* Ucitava se broj sa ulaza */
```

```
scanf("%x", &broj);

/* Ispisuje se njegova binarna reprezentacija */
stampaj_bitove(broj);

/* Ispisuje se i binarna reprezentacija broja dobijenog pozivom
funkcije ogledalo */
stampaj_bitove(ogledalo(broj));

return 0;
}
```

```
#include <stdio.h>
  /* Funkcija vraca 1 ukoliko je u binarnoj reprezentaciji broja n broj
     jedinica veci od broja nula. U suprotnom funkcija vraca 0 */
  int broj_01(unsigned int n)
    int broj_nula, broj_jedinica;
    unsigned int maska;
    broj_nula = 0;
    broj_jedinica = 0;
12
    /* Maska je inicijalizovana tako da moze da analizira bit najvece
       tezine */
14
    maska = 1 << (sizeof(unsigned int) * 8 - 1);</pre>
    /* Cilj je proci kroz sve bitove broja x, zato se maska u svakoj
       iteraciji pomera u desno pa ce jedini bit koji je postavljen na
18
       1 biti na svim pozicijama u binarnoj reprezentaciji maske */
    while (maska != 0) {
20
      /* Provera da li se na poziciji koju odredjuje maska nalazi 0 ili
         1 i uveca se odgovarajuci brojac */
      if (n & maska) {
        broj_jedinica++;
      } else {
        broj_nula++;
28
      /* Pomera se maska u desnu stranu */
      maska = maska >> 1;
    }
32
    /* Ako je broj jedinica veci od broja nula funkcija vraca 1, u
       suprotnom vraca 0 */
    return (broj_jedinica > broj_nula) ? 1 : 0;
```

```
int main()
{
    unsigned int n;

/* Ucitavanje broja */
    scanf("%u", &n);

/* Ispisivanje rezultata */
    printf("%d\n", broj_01(n));

return 0;
}
```

```
#include <stdio.h>
  /* Funkcija broji koliko se puta dve uzastopne jedinice pojavljuju u
    binarnom zapisu celog čneoznaenog broja x */
  int broj_parova(unsigned int x)
    int broj_parova;
    unsigned int maska;
10
    /* Vrednost promenljive koja predstavlja broj parova se
       inicijalizuje na 0 */
    broj_parova = 0;
    /* Postavlja se maska tako da moze da procitamo da li su dva
       najmanja bita u zapisu broja x 11 */
    /* Binarna reprezentacija broja 3 je 000....00011 */
16
    maska = 3;
18
    while (x != 0) {
20
     /* Provera da li se na najmanjim pozicijama broj x nalazi 11 par
      if ((x & maska) == maska) {
        broj_parova++;
24
      /* Pomera se broj u desnu stranu da bi se u narednoj iteraciji
         proveravao sledeci par bitova. Pomeranjem u desno bit najvece
26
         tezine se popunjava nulom jer je x neoznacen broj */
      x = x \gg 1;
28
30
    /* Vraca se dobijena vrednost */
    return broj_parova;
32
  }
34
```

```
int main()
{
    unsigned int x;

/* Ucitavanje broja */
    scanf("%u", &x);

/* Ispisivanje rezultata */
    printf("%d\n", broj_parova(x));

return 0;
}
```

```
#include <stdio.h>
  /* Niska koja se formira je duzine (sizeof(unsigned int)*8)/4 +1 jer
     su za svaku heksadekadnu cifru potrebne 4 binarne cifre i jedna
     dodatna pozicija za terminirajucu nulu.
     Prethodni izraz se moze zapisati kao sizeof(unsigned int)*2+1. */
  #define MAKS_DUZINA sizeof(unsigned int)*2 +1
  /* Funkcija za neoznacen broj x formira nisku s koja sadrzi njegov
    heksadekadni zapis */
  void prevod(unsigned int x, char s[])
12 {
    int i;
    unsigned int maska;
    int vrednost;
16
    /* Heksadekadni zapis broja 15 je 000...0001111 - odgovarajuca
       maska za citanje 4 uzastopne cifre */
18
    maska = 15;
20
      Broj se posmatra od pozicije najmanje tezine ka poziciji najvece
      tezine. Na primer za broj cija je binarna reprezentacija
      0000000001101000100001111010101
24
      u prvom koraku se citaju bitovi izdvojeni sa <...>:
26
      000000000110100010000111101<0101>
      u drugom koraku:
      00000000011010001000011<1101>0101
      u trecem koraku:
      0000000001101000100<0011>11010101 i tako redom...
      Indeks i oznacava poziciju na koju se smesta vrednost.
32
    for (i = MAKS_DUZINA - 2; i >= 0; i--) {
34
      /* Vrednost izdvojene cifre */
      vrednost = x & maska;
```

```
/* Ako je vrednost iz opsega od 0 do 9 odgovarajuci karakter se
38
         dobija dodavanjem ASCII koda '0'. Ako je vrednost iz opsega od
         10 do 15 odgovarajuci karakter se dobija tako sto se prvo
40
         oduzme 10 (time se dobiju vrednosti od 0 do 5) pa se na tako
         dobijenu vrednost doda ASCII kod 'A' (time se dobija
42
         odgovarajuce slovo 'A', 'B', ... 'F') */
      if (vrednost < 10) {
44
        s[i] = vrednost + '0';
      } else {
46
        s[i] = vrednost - 10 + 'A';
48
      /* Primenljiva x se pomera za 4 bita u desnu stranu i time se u
         narednoj iteraciji posmatraju sledeca 4 bita */
      x = x >> 4;
54
    /* Upisuje se terminirajuca nula */
    s[MAKS_DUZINA - 1] = '\0';
56
58
  int main()
60 {
    unsigned int x;
    char s[MAKS_DUZINA];
    /* Ucitava se broj sa ulaza */
64
    scanf("%u", &x);
    /* Poziva se funkcija za prevodjenje */
    prevod(x, s);
68
    /* I stampa se dobijena niska */
    printf("%s\n", s);
    return 0;
74 }
```

```
if (k == 0)
      return 1;
12
    return x * stepen(x, k - 1);
14
    /* kraci zapis: return k == 0 ? 1 : x * stepen(x,k-1); */
  }
     Resenje logaritamske slozenosti:
20
     x^0 = 1;
     x^k = x * (x^2)^(k/2), za neparno k
     x^k = (x^2)^(k/2), za parno k
     Ovom resenju ce biti potrebno manje rekurzivnih poziva da bi
     se doslo do rezultata, i stoga je efikasnije.
  int stepen_2(int x, int k)
26
    if (k == 0)
28
      return 1;
30
    /* Ako je stepen paran */
    if ((k \% 2) == 0)
     return stepen_2(x * x, k / 2);
34
    /* Inace (ukoliko je stepen neparan) */
    return x * stepen_2(x * x, k / 2);
36
38
  int main()
  {
40
    int x, k, ind;
42
    /* Ucitavanje rednog broja funkcije koja ce se primeniti */
    printf("Unesite redni broj funkcije (1/2):\n");
44
    scanf("%d", &ind);
46
    /* Ucitavanje vrednosti za x i k */
    printf("Unesite broj x:\n");
48
    scanf("%d", &x);
    printf("Unesite broj k:\n");
50
    scanf("%d", &k);
    /* Ispisuje se vrednost koju vraca odgovarajuca funkcija */
    if (x == 1)
      printf("%d\n", stepen(x, k));
    else if (x == 2)
56
      printf("%d\n", stepen_2(x, k));
    else {
      fprintf(stderr, "Greska: Neodgovarajuci redni broj funkcije.\n");
      exit(EXIT_FAILURE);
60
62
```

```
exit(EXIT_SUCCESS);
64
}
```

```
#include <stdio.h>
  /* NAPOMENA: Ovaj problem je iskoriscen da ilustruje uzajamnu
     (posrednu) rekurziju */
  /* Deklaracija funkcije neparan mora da bude navedena jer se ta
6
     funkcija koristi u telu funkcije paran, tj. koristi se pre svoje
     definicije. Funkcija je mogla biti deklarisana i u telu funkcije
     paran. */
unsigned neparan(unsigned n);
  /* Funkcija vraca 1 ako broj n ima paran broj cifara, inace vraca 0
  unsigned paran(unsigned n)
14 {
    if (n <= 9)
     return 0;
    else
      return neparan(n / 10);
18
20
   /* Funkcija vraca 1 ako broj n ima neparan broj cifara, inace vraca
     0 */
  unsigned neparan(unsigned n)
24 {
   if (n <= 9)
     return 1;
26
    else
      return paran(n / 10);
28
30
  int main()
32 {
    int n;
34
   /* Ucitava se ceo broj */
    scanf("%d", &n);
36
    /* Ispisuje se rezultat */
38
    printf("Uneti broj ima %sparan broj cifara.\n",
           (paran(n) == 1 ? "" : "ne"));
40
    return 0;
42
```

```
#include <stdio.h>
  #include <stdlib.h>
  /* Pomocna funkcija koja izracunava n! * result. Koristi repnu
     rekurziju. Result je argument u kome se akumulira do tada
     izracunatu vrednost faktorijela. Kada dodje do izlaza iz rekurzije
     iz rekurzije potrebno je da vratimo result. */
  int faktorijel_repna(int n, int result)
    if (n == 0)
      return result;
    return faktorijel_repna(n - 1, n * result);
  /* U sledecim funkcijama je prikazan postupak oslobadjanja od
     repne rekurzije koja postoji u funkciji faktorijel_repna. */
  /* Funkcija se transformise tako sto se rekurzivni poziv zemeni sa
     naredbama kojima se vrednost argumenta funkcije postavlja na
     vrednost koja bi se prosledjivala rekurzivnom pozivu i navodjenjem
     goto naredbe za vracanje na pocetak tela funkcije. */
23 int faktorijel_repna_v1(int n, int result)
  pocetak:
    if (n == 0)
      return result;
    result = n * result;
    n = n - 1;
    goto pocetak;
33
  /* Pisanje bezuslovnih skokova (goto naredbi) nije dobra programerska
     praksa i prethodna funkcija se koristi samo kao medjukorak. Sledi
     iterativno resenje bez bezuslovnih skokova */
37 int faktorijel_repna_v2(int n, int result)
    while (n != 0) {
      result = n * result;
      n = n - 1;
41
43
    return result;
45
  }
  /* Prilikom poziva prethodnih funkcija pored prvog argumenta celog
     broja n, mora da se salje i 1 za vrednost drugog argumenta u kome
     ce se akumulirati rezultat. Funkcija faktorijel(n) je ovde radi
49
     udobnosti korisnika, jer je sasvim prirodno da za faktorijel
```

```
51
     zahteva samo 1 parametar. Funkcija faktorijel izracunava n!, tako
     sto odgovarajucoj gore navedenoj funkciji koja zaista racuna
     faktorijel, salje ispravne argumente i vraca rezultat koju joj ta
     funkcija vrati. Za testiranje, zameniti u telu funkcije faktorijel
     poziv faktorijel_repna sa pozivom faktorijel_repna_v1, a zatim sa
     pozivom funkcije faktorijel_repna_v2. */
57 int faktorijel(int n)
    return faktorijel_repna(n, 1);
59
  int main()
63 {
    int n;
65
    /* Ucitava se ceo broj */
    printf("Unesite n (<= 12): ");</pre>
    scanf("%d", &n);
    if (n > 12) {
     fprintf(stderr, "Greska: nedozvoljena vrednost za n!\n");
      exit(EXIT_FAILURE);
73
    /* Ispisuje se rezultat */
    printf("%d! = %d\n", n, faktorijel(n));
    exit(EXIT_SUCCESS);
```

```
1 #include <stdio.h>
3 /* a) Funkcija racuna n-ti element u nizu F - iterativna verzija */
  int f_iterativna(int n, int a, int b)
5 {
    int i;
   int f_0 = 0;
    int f_1 = 1;
9
    int tmp;
    if (n == 0)
      return 0;
13
    for (i = 2; i <= n; i++) {
     tmp = a * f_1 + b * f_0;
      f_0 = f_1;
      f_1 = tmp;
17
19
    return f_1;
```

```
21 }
  /* b) Funkcija racuna n-ti element u nizu F - rekurzivna verzija */
  int f_rekurzivna(int n, int a, int b)
25
    /* Izlaz iz rekurzije */
    if (n == 0 || n == 1)
      return n:
    /* Rekurzivni pozivi */
    return a * f_rekurzivna(n - 1, a, b) +
31
        b * f_rekurzivna(n - 2, a, b);
  }
33
  /* NAPOMENA: U slucaju da se rekurzijom problem svodi na vise manjih
35
     podproblema koji se mogu preklapati, postoji opasnost da se
     pojedini podproblemi manjih dimenzija resavaju veci broj puta.
37
     Npr. F(20) = a*F(19) + b*F(18), a F(19) = a*F(18) + b*F(17), tj.
     problem F(18) se resava dva puta! Problemi manjih
39
     dimenzija ce se resavati jos veci broj puta. Resenje za ovaj
     problem je kombinacija rekurzije sa dinamickim programiranjem.
41
     Podproblemi se resavaju samo jednom, a njihova resenja se pamte u
     memoriji (obicno u nizovima ili matricama), odakle se koriste ako
43
     tokom resavanja ponovo budu potrebni.
45
     U narednoj funkciji vec izracunati clanovi niza se cuvaju u
     statickom nizu celih brojeva, jer se staticki niz ne smesta
47
     na stek, kao sto je to slucaj sa lokalnim promenljivama, vec na
     segment podataka, odakle je dostupan svim pozivima
49
     rekurzivne funkcije. */
51
  /* c) Funkcija racuna n-ti broj niza F - napredna rekurzivna
     verzija */
  int f_napredna(int n, int a, int b)
    /* Niz koji cuva resenja podproblema. Kompajler inicijalizuje
       staticke promenljive na podrazumevane vrednosti. Stoga, elemente
       celobrojnog niza inicijalizuje na 0 */
    static int f[20];
59
    /* Ako je podproblem vec ranije resen, koristi se resenje koje je
       vec izracunato i */
    if (f[n] != 0)
      return f[n];
    /* Izlaz iz rekurzije */
    if (n == 0 || n == 1)
      return f[n] = n;
69
    /* Rekurzivni pozivi */
    return f[n] =
        a * f_napredna(n - 1, a, b) + b * f_napredna(n - 2, a, b);
```

```
73 }
75 int main()
    int n, a, b, ind;
77
    /* Unosi se redni broj funkcije koja ce se primeniti */
79
    printf("Unesite redni broj funkcije:\n");
    printf("1 - iterativna\n");
81
    printf("2 - rekurzivna\n");
    printf("3 - rekurzivna napredna\n");
83
    scanf("%d", &ind);
85
    /* Ucitavaju se koeficijenti a i b */
    printf("Unesite koeficijente:\n");
87
    scanf("%d%d", &a, &b);
89
    /* Ucitava se broj n */
    printf("Unesite koji clan niza se racuna:\n");
91
    scanf("%d", &n);
93
    /* Na osnovu vrednosti promenljive ind ispisuje se rezultat poziva
       funkcije f_iterativna, f_rekurzivna ili f_napredna */
95
    if (ind == 0)
      printf("F(%d) = %d\n", n, f_iterativna(n, a, b));
97
    else if (ind == 1)
      printf("F(%d) = %d\n", n, f_rekurzivna(n, a, b));
99
    else
      printf("F(%d) = %d n", n, f_napredna(n, a, b));
    return 0;
```

```
#include <stdio.h>

/* Funkcija odredjuje zbir cifara zadatog broja x */
int zbir_cifara(unsigned int x)
{
    /* Izlazak iz rekurzije: ako je broj jednocifren */
    if (x < 10)
        return x;

/* Zbir cifara broja jednak je zbiru svih njegovih cifara osim
        poslednje cifre + poslednja cifra tog broja */
    return zbir_cifara(x / 10) + x % 10;
}

int main()
{</pre>
```

```
unsigned int x;

/* Ucitava se ceo broj */
scanf("%u", &x);

/* Ispisivanje zbira cifara ucitanog broja */
printf("%d\n", zbir_cifara(x));

return 0;
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #define MAKS_DIM 100
  /* Ako je n<=0, onda je suma niza jednaka nuli. Ako je n>0, onda je
     suma niza jednaka sumi prvih n-1 elementa uvecenoj za poslednji
     element niza. */
  int suma_niza_1(int *a, int n)
    if (n <= 0)
      return 0;
    return suma_niza_1(a, n - 1) + a[n - 1];
14 }
  /* Funkcija napisana na drugi nacin: Ako je n<=0, onda je suma niza
     jednaka nuli. Ako je n>0, suma niza je jednaka zbiru prvog
     elementa niza i sume preostalih n-1 elementa. */
  int suma_niza_2(int *a, int n)
    if (n <= 0)
      return 0;
    return a[0] + suma_niza_2(a + 1, n - 1);
26
  int main()
    int a[MAKS_DIM];
    int n, i = 0, ind;
30
    /* Ucitava se redni broj funkcije */
    printf("Unesite redni broj funkcije (1 ili 2):\n");
    scanf("%d", &ind);
34
    /* Ucitava se broj elemenata niza */
36
    printf("Unesite dimenziju niza:\n");
    scanf("%d", &n);
```

```
/* Ucitava se n elemenata niza. */
40
    printf("Unesite elemente niza:\n");
    for (i = 0; i < n; i++)
      scanf("%d", &a[i]);
44
    /* Na osnovu vrednosti promenljive ind ispisuje se rezultat poziva
       funkcije suma_niza_1, ondosno suma_niza_2 */
46
    if (ind == 1)
      printf("Suma elemenata je %d\n", suma_niza_1(a, n));
48
    else if (ind == 2)
     printf("Suma elemenata je %d\n", suma_niza_2(a, n));
      fprintf(stderr, "Greska: Neodgovarajuci redni broj funkcije.\n");
      exit(EXIT_FAILURE);
54
    exit(EXIT_SUCCESS);
56
```

```
#include <stdio.h>
2 #define MAKS_DIM 256
4 /* Rekurzivna funkcija koja odredjuje maksimum celobrojnog niza niz
     dimenzije n */
6 int maksimum_niza(int niz[], int n)
    /* Izlazak iz rekurzije: ako je niz dimenzije jedan, najveci je
       ujedno i jedini element niza */
    if (n == 1)
      return niz[0];
12
    /* Resavanje problema manje dimenzije */
14
    int max = maksimum_niza(niz, n - 1);
16
    /* Na osnovu poznatog resenja problema dimenzije n-1, resava se
       problem dimenzije n */
    return niz[n-1] > max ? niz[n-1] : max;
18
  }
20
  int main()
22 | {
   int brojevi[MAKS_DIM];
   int n;
24
    /* Sve dok se ne stigne do kraja ulaza, brojeve se ucitavaju u niz.
26
       Promenljiva i predstavlja indeks tekuceg broja. U niz se ne moze
       ucitati vise od MAKS_DIM brojeva, pa se u slucaju da promenljiva
28
       i dostigne vrednost MAKS_DIM prekida unos novih brojeva. */
```

```
int i = 0;
while (scanf("%d", &brojevi[i]) != EOF) {
    i++;
    if (i == MAKS_DIM)
        break;
}
n = i;

/* Stampa se maksimum unetog niza brojeva */
printf("%d\n", maksimum_niza(brojevi, n));

return 0;
}
```

```
#include <stdio.h>
  #include <stdlib.h>
  #define MAKS_DIM 256
  /* Funkcija koja izracunava skalarni proizvod dva data vektora */
  int skalarno(int a[], int b[], int n)
    /* Izlazak iz rekurzije: vektori su duzine 0 */
    if (n == 0)
      return 0;
    /* Na osnovu resenja problema dimenzije n-1, resava se problem
       dimenzije n primenom definicije skalarnog proizvoda
       a*b = a[0]*b[0] + a[1]*b[1] + ... + a[n-2]*a[n-2] + a[n-1]*a[n-1]
       Dakle, skalarni proizvod dva vektora duzine n se dobija kada se
       na skalarni proizvod dva vektora duzine n-1 koji se dobiju od
       polazna dva vektora otklanjanjem poslednjih elemenata, doda
17
       proizvod poslednja dva elementa polaznih vektora. */
    else
      return skalarno(a, b, n - 1) + a[n - 1] * b[n - 1];
21 }
  int main()
    int i, a[MAKS_DIM], b[MAKS_DIM], n;
    /* Unosi se dimenzija nizova */
    printf("Unesite dimenziju nizova:");
    scanf("%d", &n);
    /* Provera da li je dimenzija niza odgovarajuca */
    if (n < 0 \mid \mid n > MAKS_DIM) {
      printf("Dimenzija mora biti prirodan broj <= %d!\n", MAKS_DIM);</pre>
      exit(EXIT_FAILURE);
```

```
/* A zatim i elementi nizova */
printf("Unesite elemente prvog niza:");
for (i = 0; i < n; i++)
    scanf("%d", &a[i]);

printf("Unesite elemente drugog niza:");
for (i = 0; i < n; i++)
    scanf("%d", &b[i]);

/* Ispisivanje rezultata skalarnog proizvoda dva ucitana niza */
printf("Skalarni proizvod je %d\n", skalarno(a, b, n));

exit(EXIT_SUCCESS);
}</pre>
```

```
#include <stdio.h>
2 #define MAKS_DIM 256
 /* Funkcija koja racuna broj pojavljivanja elementa x u nizu a duzine
6 int br_pojave(int x, int a[], int n)
    /* Izlazak iz rekurzije: za niz duzine jedan broj pojava broja x u
      nizu je 1 ukoliko je jedini element a[0] bas x ili 0 inace */
    if (n == 1)
      return a[0] == x ? 1 : 0;
12
    /* U promenljivu bp se smesta broj pojave broja x u prvih n-1
       elemenata niza a. Ukupan broj pojavljivanja broja x u celom nizu
14
       a je jednak bp uvecanom za jedan ukoliko je se na poziciji n-1 u
      nizu a nalazi broj x */
    int bp = br_pojave(x, a, n - 1);
18
    return a[n - 1] == x ? 1 + bp : bp;
  }
20
  int main()
   int x, a[MAKS_DIM];
   int n, i = 0;
    /* Ucitava se ceo broj */
26
    printf("Unesite ceo broj:");
   scanf("%d", &x);
28
    /* Sve dok se ne stigne do kraja ulaza, ucitavaju se brojevi u niz.
30
       Promenljiva i predstavlja indeks tekuceg broja. U niz se ne moze
       ucitati vise od MAKS_DIM brojeva, pa se u slucaju da promenljiva
       i dostigne vrednost MAKS_DIM prekida unos novih brojeva. */
```

```
printf("Unesite elemente niza:");
    i = 0;
    while (scanf("%d", &a[i]) != EOF) {
36
      i++:
      if (i == MAKS_DIM)
38
        break;
40
    n = i:
    /* Ispisuje se broj pojavljivanja */
    printf("Broj pojavljivanja je %d\n", br_pojave(x, a, n));
44
    return 0:
46
  }
```

```
1 #include <stdio.h>
  #define MAKS_DIM 256
  /* Funkcija koja proverava da li su tri zadata broja uzastopni
     clanovi niza */
  int tri_uzastopna_clana(int x, int y, int z, int a[], int n)
    /* Ako niz ima manje od tri elementa izlazi se iz rekurzije i vraca
       se 0 jer nije ispunjeno da su x, y i z uzastopni clanovi niza */
    if (n < 3)
      return 0;
    /* Da bi bilo ispunjeno da su x, y i z uzastopni clanovi niza a
       dovoljno je da su oni poslednja tri clana niza ili da se oni
       rekuzivno tri uzastopna clana niza a bez poslednjeg elementa */
    return ((a[n-3] == x) && (a[n-2] == y) && (a[n-1] == z))
        || tri_uzastopna_clana(x, y, z, a, n - 1);
17
19
  int main()
    int x, y, z, a[MAKS_DIM];
23
    int n;
    /* Ucitavaju se tri cela broja za koje se ispituje da li su
25
       uzastopni clanovi niza */
    printf("Unesite tri cela broja:");
    scanf("%d%d%d", &x, &y, &z);
29
    /* Sve dok se ne stigne do kraja ulaza, brojeve se ucitavaju u niz.
       Promenljiva i predstavlja indeks tekuceg broja. U niz se ne moze
31
       ucitati vise od MAKS_DIM brojeva, pa se u slucaju da promenljiva
       i dostigne vrednost MAKS_DIM prekida unos novih brojeva. */
    printf("Unesite elemente niza:");
```

```
35
    int i = 0;
    while (scanf("%d", &a[i]) != EOF) {
      i++:
      if (i == MAKS_DIM)
        break:
    }
    n = i;
41
    /* Na osnovu rezultata poziva funkcije tri_uzastopna_clana ispisuje
       se odgovarajuca poruka */
    if (tri_uzastopna_clana(x, y, z, a, n))
45
      printf("Uneti brojevi jesu uzastopni clanovi niza.\n");
47
      printf("Uneti brojevi nisu uzastopni clanovi niza.\n");
49
    return 0;
51 }
```

```
#include <stdio.h>
  /* Funkcija koja broji bitove postavljene na 1. */
  int prebroj(int x)
6
    /* Izlaz iz rekurzije */
    if (x == 0)
     return 0;
    /* Ukoliko vrednost promenljive x nije 0, neki od bitova broja x je
       postavljen na 1. Koriscenjem odgovarajuce maske proverava se
       vrednost bita na poziciji najvece tezine i na osnovu toga se
12
       razlikuju dva slucaja. Ukoliko je na toj poziciji nula, onda je
       broj jedinica u zapisu x isti kao broj jedinica u zapisu broja
14
       x<<1, jer se pomeranjem u levo sa desne stane dopisuju 0. Ako je
       na poziciji najvece tezine jedinica, rezultat dobijen
       rekurzivnim pozivom funkcije za x<<1 treba uvecati za jedan.
18
       Za rekurzivni poziv se salje vrednost koja se dobija kada se x
       pomeri u levo. Napomena: argument funkcije x je oznacen ceo
       broj, usled cega se ne koristi pomeranje udesno, jer funkciji
20
       moze biti prosledjen i negativan broj. Iz tog razloga,
       odlucujemo se da proveramo najvisi, umesto najnizeg bita */
    if (x & (1 << (sizeof(x) * 8 - 1)))
      return 1 + prebroj(x << 1);
24
      return prebroj(x << 1);</pre>
26
28
      Krace zapisano
      return ((x\& (1<<(sizeof(x)*8-1))) ? 1 : 0) + prebroj(x<<1);
30
```

```
32
int main()
{
   int x;

/* Ucitava se ceo broj */
   scanf("%x", &x);

40
   /* Ispisivanje rezultata */
   printf("%d\n", prebroj(x));

42
   return 0;
}
```

```
#include <stdio.h>
  /* Rekurzivna funkcija za odredjivanje najvece oktalne cifre */
4 int maks_oktalna_cifra(unsigned x)
    /* Izlazak iz rekurzije: ako je vrednost broja 0, onda je i
       vrednost najvece oktalne cifre u broju 0 */
    if (x == 0)
     return 0;
    /* Odredjivanje poslednje oktalne cifre u broju */
    int poslednja_cifra = x & 7;
    /* Odredjivanje maksimalne oktalne cifre u broju kada se iz njega
14
       izbrise poslednja oktalna cifra */
    int maks_bez_poslednje_cifre = maks_oktalna_cifra(x >> 3);
    return poslednja_cifra > maks_bez_poslednje_cifre ? poslednja_cifra
        : maks_bez_poslednje_cifre;
  }
20
  int main()
22
    unsigned x;
    /* Ucitava se neoznacen ceo broj */
    scanf("%u", &x);
    /* Ispisuje se vrednost najvece oktalne cifre unetog broja */
    printf("%d\n", maks_oktalna_cifra(x));
30
    return 0;
32
```

```
#include <stdio.h>
  /* Rekurzivna funkcija za odredjivanje najvece heksadekadne cifre */
4 int maks_heksadekadna_cifra(unsigned x)
  {
    /* Izlazak iz rekurzije: ako je vrednost broja 0, onda je i
6
       vrednost najvece heksadekadne cifre u broju 0 */
    if (x == 0)
      return 0:
    /* Odredjivanje poslednje heksadekadne cifre u broju */
    int poslednja_cifra = x & 15;
    /* Odredjivanje maksimalne heksadekadne cifre broja kada se iz
14
       njega izbrise poslednja heksadekadna cifra */
    int maks_bez_poslednje_cifre = maks_heksadekadna_cifra(x >> 4);
    return poslednja_cifra > maks_bez_poslednje_cifre ? poslednja_cifra
18
        : maks_bez_poslednje_cifre;
20 }
22 int main()
    unsigned x;
24
   /* Ucitava se neoznacen ceo broj */
26
    scanf("%u", &x);
28
    /* Ispisivanje vrednosti najvece heksadekadne cifre unetog broja */
    printf("%d\n", maks_heksadekadna_cifra(x));
30
    return 0;
  }
```

```
#include <stdio.h>
#include <string.h>

/* Niska moze imati najvise 31 karaktera + 1 za terminalnu nulu */
#define MAKS_DIM 32

/* Funkcija ispituje da li je zadata niska duzine n palindrom */
int palindrom(char s[], int n)
{
    /* Izlaz iz rekurzije - trivijalno, niska duzine 0 ili 1 je
    palindrom */
if ((n == 1) || (n == 0))
```

```
return 1;
14
    /* Da bi niska bila palindrom potrebno je da se poklapaju prvi i
       poslednji karakter i da je palindrom niska koja nastaje kada se
       polaznoj nisci otklone prvi i poslednji karakter */
    return (s[n - 1] == s[0]) \&\& palindrom(s + 1, n - 2);
18
20
  int main()
22
    char s[MAKS_DIM];
    int n;
24
    /* Ucitavanje niske sa standardnog ulaza */
26
    scanf("%s", s);
2.8
    /* Odredjuje se duzina niske */
    n = strlen(s);
30
    /* Ispisivanje da li je niska palindrom ili nije */
    if (palindrom(s, n))
      printf("da\n");
34
    else
      printf("ne\n");
36
    return 0;
38
```

```
#include <stdio.h>
2 #include <stdlib.h>
  #define MAKS_DUZINA_PERMUTACIJE 15
  /* Funkcija koja ispisuje elemente niza a duzine n */
6 void ispisi_niz(int a[], int n)
    int i;
    for (i = 1; i <= n; i++)
      printf("%d ", a[i]);
    printf("\n");
14
  /* Funkcija koja vraca 1 ako se broj x nalazi u nizu a duzine n, a
    inace 0 */
  int koriscen(int a[], int n, int x)
    int i;
20
    /* Obilaze se svi elementi niza */
```

```
for (i = 1; i \le n; i++)
      /* Ukoliko se naidje na trazenu vrednost, pretraga se prekida */
      if (a[i] == x)
24
        return 1;
26
    /* Zakljucuje se da broj nije pronadjen */
    return 0;
28
30
  /* Funkcija koja ispisuje sve permutacije od skupa {1,2,...,n} dobija
     kao argument niz a[] u koji se smesta permutacija, broj m oznacava
     da se u okviru tog poziva funkcije na m-tu poziciju u permutaciji
     smesta jedan od preostalih celih brojeva, n je velicina skupa koji
34
     se permutuje. Funkciju se inicijalno poziva sa argumentom m = 1,
     jer formiranje permutacije pocinje od pozicije broj 1. Stoga, a[0]
36
     se ne koristi. */
  void permutacija(int a[], int m, int n)
38
    int i;
40
    /* Izlaz iz rekurzije: Ako je pozicija na koju treba smestiti broj
42
       premasila velicinu skupa, onda se svi brojevi vec nalaze u
       permutaciji i ispisuje se permutacija. */
44
    if (m > n) {
      ispisi_niz(a, n);
46
      return;
    }
48
    /* Ideja: pronalazi se prvi broj koji moze da se postavi na m-to
       mesto u nizu (broj koji se do sada nije pojavio u permutaciji).
       Zatim, rekurzivno se pronalaze one permutacije koje odgovaraju
       ovako postavljenom pocetku permutacije. Kada se to zavrsi, vrsi
       se provera da li postoji jos neki broj koji moze da se stavi na
54
       m-to mesto u nizu (to se radi u petlji). Ako ne postoji,
56
       funkcija zavrsava sa radom. Ukoliko takav broj postoji, onda se
       ponovo poziva rekurzivno pronalazenje odgovarajucih permutacija,
58
       ali sada sa drugacije postavljenim prefiksom. */
    for (i = 1; i <= n; i++) {
      /* Ako se broj i nije do sada pojavio u permutaciji od 1 do m-1
         pozicije, onda se on postavlja na poziciju m i poziva se
         ponovo funkcija da dopuni ostatak permutacije posle upisivanja
         i na poziciju m. Inace, nastavlja se dalje, trazeci broj koji
         se nije pojavio do sada u permutaciji. */
      if (!koriscen(a, m - 1, i)) {
        a[m] = i;
        permutacija(a, m + 1, n);
68
    }
  }
70
72 int main(void)
```

```
int n;
    int a[MAKS_DUZINA_PERMUTACIJE+1];
76
    /* Ucitava se broja n i provera se da li je u odgovarajucem opsegu
    scanf("%d", &n);
78
    if (n < 0 || n > MAKS_DUZINA_PERMUTACIJE) {
      fprintf(stderr,
80
               "Duzina permutacije mora biti broj iz intervala [0, %d]!\
               MAKS_DUZINA_PERMUTACIJE);
82
      exit(EXIT_FAILURE);
84
    /* Ispisuju se permutacije duzine n */
86
    permutacija(a, 1, n);
88
    exit(EXIT_SUCCESS);
  }
90
```

```
#include <stdio.h>
  #include <stdlib.h>
4 /* Rekurzivna funkcija za racunanje binomnog koeficijenta */
  int binomni_koeficijent(int n, int k)
    /* Ukoliko je k=0 ili k=n, onda je binomni koeficijent 0.
       Ukoliko je k strogo izmedju 0 i n, onda se koristi formula
       bk(n,k) = bk(n-1,k-1) + bk(n-1,k)
       koja se moze izvesti iz definicije binomnog koeficijenata */
    return (0 < k & k < n)?
        binomni_koeficijent(n - 1, k - 1) + binomni_koeficijent(n - 1,
14 }
    Iterativno izracunavanje datog binomnog koeficijenta
18
    int binomni_koeficijent (int n, int k) {
      int i, j, b;
20
      for (b=i=1, j=n; i<=k; b =b * j-- / i++);
      return b;
24
26
    Iterativno resenje je efikasnije i preporucuje se. Rekurzivno
    resenje je navedeno u cilju demonstracije rekurzivnih tehnika.
```

```
30
  /* Svaki element n-te hipotenuze (osim ivicnih jedinica) dobija kao
     zbir 2 elementa iz n-1 hipotenuze. Ukljucujuci i pomenute dve
    ivicne jedinice suma elemenata n-te hipotenuze je tacno 2 puta
     veca od sume elemenata prethodne hipotenuze. */
34
  int suma_elemenata_hipotenuze(int n)
36 {
    return n > 0 ? 2 * suma_elemenata_hipotenuze(n - 1) : 1;
38 }
40 int main()
    int n, k, i, d, r;
42
    /* Ucitavaju se brojevi d i r */
44
    scanf("%d %d", &d, &r);
46
    /* Ispisivanje Paskalovog trougla */
    putchar('\n');
48
    for (n = 0; n <= d; n++) {
     for (i = 0; i < d - n; i++)
       printf(" ");
     for (k = 0; k \le n; k++)
        printf("%4d", binomni_koeficijent(n, k));
      putchar('\n');
54
56
    /* Provera da li je r nenegativan */
    if (r < 0) {
58
     fprintf(stderr,
              "Redni broj hipotenuze mora biti veci ili jednak od 0!\n"
      exit(EXIT_FAILURE);
    /* Ispisivanje sume elemenata hipotenuze */
    printf("%d\n", suma_elemenata_hipotenuze(r));
    exit(EXIT_SUCCESS);
  }
68
```