

GBI Tutorium Nr. 41

Foliensatz 7

Vincent Hahn - vincent.hahn@student.kit.edu | 6. Dezember 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Übungsblatt 6

Graphen

Aufgaben

Wiederholung

3 Graphen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

① Übungsblatt 6

Graphen

Wiederholung

Aufgaben

Graphen

Allgemeine Fehler, Fragen

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Allgemeines

- Bei der vollständige Induktion können noch viele Punkte geholt werden
- Beweis zu Injektiv und Surjektiv mittels Definitionen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Aufgaben

Wiederholung

Graphen Wiederholung

Aufgaben

5/21

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Die Huffman-Codierung ist präfixfrei.
- Was macht $Num_b(w)$?
- Gilt für einen Homomorphismus $h(xy) = h(x) \circ h(y)$?
- $(y,x) \in R$ kann als yRx geschrieben werden.

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Die Huffman-Codierung ist präfixfrei. Wahr
- Was macht $Num_b(w)$?
- Gilt für einen Homomorphismus $h(xy) = h(x) \circ h(y)$?
- $(y,x) \in R$ kann als yRx geschrieben werden.

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Die Huffman-Codierung ist präfixfrei. Wahr
- Was macht $Num_b(w)$?
- Gilt für einen Homomorphismus $h(xy) = h(x) \circ h(y)$? Wahr
- $(y,x) \in R$ kann als yRx geschrieben werden.

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Die Huffman-Codierung ist präfixfrei. Wahr
- Was macht $Num_b(w)$?
- Gilt für einen Homomorphismus $h(xy) = h(x) \circ h(y)$? Wahr
- $(y,x) \in R$ kann als yRx geschrieben werden. Wahr.

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung 1 Übungsblatt 6

Graphen

Wiederholung

Aufgaben

Graphen

Graphen: Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Gerichteter Graph

Ein Tupel G = (V, E) mit

- der nichtleeren Knotenmenge V und
- der Kantenmenge $E \subseteq \{V \times V\}$

nennen wir gerichteten Graph.

Graphen: Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Gerichteter Graph

Ein Tupel G = (V, E) mit

- der nichtleeren Knotenmenge V und
- der Kantenmenge $E \subseteq \{V \times V\}$

nennen wir gerichteten Graph.

Ungerichteter Graph

Ein Tupel G = (V, E) mit

- der nichtleeren Knotenmenge V und
- der Kantenmenge $E \subseteq \{\{x,y\} | x \in V, y \in V\}$

nennen wir ungerichteten Graph.

Wo ist der Unterschied?

Graphen: Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Gerichteter Graph

Ein Tupel G = (V, E) mit

- der nichtleeren Knotenmenge V und
- der Kantenmenge $E \subseteq \{V \times V\}$

nennen wir gerichteten Graph.

Ungerichteter Graph

Ein Tupel G = (V, E) mit

- der nichtleeren Knotenmenge V und
- der Kantenmenge $E \subseteq \{\{x,y\} \mid x \in V, y \in V\}$

nennen wir ungerichteten Graph.

Wo ist der Unterschied?

Schlingen

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Definition

Eine Kante mit identischem Start- und Endpunkt nennt man Schlinge.

Ein Graph ohne Schlinge ist schlingenfrei.

Teilgraph

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Definition

Ein Teilgraph T von G ist ein Graph T = (V', E'), bei dem

- Knoten- und Kantenmenge Teilmengen des Graphen G sind und
- deren Kanten nicht aus dem Teilgraph hinausführen.

Formell (hier für gerichtete Graphen):

$$V' \subseteq V$$
$$E' \subseteq E \cap V' \times V'$$

Teilgraph

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Definition

Ein Teilgraph T von G ist ein Graph T = (V', E'), bei dem

- Knoten- und Kantenmenge Teilmengen des Graphen G sind und
- deren Kanten nicht aus dem Teilgraph hinausführen.

Formell (hier für gerichtete Graphen):

$$V' \subseteq V$$
$$E' \subseteq E \cap V' \times V'$$

Grad

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Definition

Der Eingangsgrad eines Knoten k ist die Anzahl der Knoten x, di emit der Kante zum Knoten k verbunden sind. Also

$$d^{+}(k) = |\{x | (x,k) \in E\}|$$

Der Ausgangsgrad wird analog definiert.

Analog für Ausgangsgraphen. Als "Grad" wird die Summe von Eingangsund Ausgangsknoten bezeichnet.

Pfad

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Definition

Ein *Pfad* ist ein möglicher Weg über Knoten und Kanten im Graphen. Formal: eine nichtleere Liste

$$P = (v_0, v_1, \dots, v_n)$$
$$\forall v_i \in P : (v_i, v_{i+1}) \in E$$

Der Pfad hat als Länge die Anzahl seiner Kanten.

Eigenschaften von Pfaden

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Geschlossen: Wenn $v_0 = v_n$ gilt (auch "Zyklus")
- Wiederholungsfrei: Wenn alle Knoten paarweise verschieden sind (außer erster und letzter Knoten)
- Einfacher Zyklus: Wenn er geschlossen und wiederholungsfrei ist.

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Wieviel Kanten kann ein gerichteter Graph maximal haben, wenn Schlingen erlaubt sind?
- Wieviele kanten kann ein gerichteter Graph maximal haben, wenn er schlingenfrei ist?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Wieviel Kanten kann ein gerichteter Graph maximal haben, wenn Schlingen erlaubt sind?n²
- Wieviele kanten kann ein gerichteter Graph maximal haben, wenn er schlingenfrei ist?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Wieviel Kanten kann ein gerichteter Graph maximal haben, wenn Schlingen erlaubt sind?n²
- Wieviele kanten kann ein gerichteter Graph maximal haben, wenn er schlingenfrei istn(n-1)

Eigenschaften von Graphen

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Isomorphie

Ein Graph $G_1 = (V_1, e_1)$ heißt *isomorph* zu einem Graphen $G_2 = (V_2, E_s)$, wenn es eine bijektive Abbildung $f: V_1 \to V_2$ gibt mit der Eigenschaft:

$$\forall x \in V_1 : \forall y \in V_1 : (x, y) \in E_1 \iff (f(x), f(y)) \in E_2$$

Und was heißt das?

Das ist eine Relation. Welche Eigenschaften hat sie?

Eigenschaften von Graphen

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Isomorphie

Ein Graph $G_1 = (V_1, e_1)$ heißt *isomorph* zu einem Graphen $G_2 = (V_2, E_s)$, wenn es eine bijektive Abbildung $f: V_1 \to V_2$ gibt mit der Eigenschaft:

$$\forall x \in V_1 : \forall y \in V_1 : (x, y) \in E_1 \iff (f(x), f(y)) \in E_2$$

Und was heißt das? Durch Umbenenung der Knoten. Das ist eine Relation. Welche Eigenschaften hat sie?

Eigenschaften von Graphen

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Isomorphie

Ein Graph $G_1 = (V_1, e_1)$ heißt *isomorph* zu einem Graphen $G_2 = (V_2, E_s)$, wenn es eine bijektive Abbildung $f: V_1 \to V_2$ gibt mit der Eigenschaft:

$$\forall x \in V_1 : \forall y \in V_1 : (x,y) \in E_1 \iff (f(x),f(y)) \in E_2$$

Und was heißt das? Durch Umbenenung der Knoten. Das ist eine Relation. Welche Eigenschaften hat sie?

- Isomorphie ist reflexiv
- Isomorphie ist transitiv
- Isomorphie ist symmetrisch

Produkt von Kanten

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

E sei die Kantenmenge eines Graphen G = (V, E). Was ist $E \circ E$?

$$E^2 = E \circ E = \{(x, z) \in V \times V | \exists y \in V : (x, y) \in E \land (y, z) \in E\}$$

16/21

Produkt von Kanten

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

E sei die Kantenmenge eines Graphen G = (V, E). Was ist $E \circ E$?

$$E^2 = E \circ E = \big\{ (x,z) \in V \times V \big| \exists y \in V : (x,y) \in E \land (y,z) \in E \big\}$$

In der Menge E^2 sind also alle Pfade der Länge 2. Sonderfall E^0 - dort sind alle Schleifen. Es gilt:

Produkt von Kanten

Ein Paar von Knoten (x, y) ist genau dann in der Relation E^i , wenn x und yin G durch einen Pfad der Länge i miteinander verbunden sind.

Produkt von Kanten

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

E sei die Kantenmenge eines Graphen G = (V, E). Was ist $E \circ E$?

$$E^2 = E \circ E = \{(x,z) \in V \times V \big| \exists y \in V : (x,y) \in E \land (y,z) \in E \}$$

In der Menge E^2 sind also alle Pfade der Länge 2. Sonderfall E^0 - dort sind alle Schleifen. Es gilt:

Produkt von Kanten

Ein Paar von Knoten (x, y) ist genau dann in der Relation E^i , wenn x und y in G durch einen Pfad der Länge i miteinander verbunden sind.

Was ist E^* ?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Wieviele Kanten kann ein ungerichteter Graph maximal haben, wenn er schlingenfrei ist?
- Wieviele Kanten kann ein ungerichteter Graph maximal haben, wenn er Schlingen haben darf?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Wieviele Kanten kann ein ungerichteter Graph maximal haben, wenn er schlingenfrei ist? $\frac{n(n-1)}{2}$
- Wieviele Kanten kann ein ungerichteter Graph maximal haben, wenn er Schlingen haben darf?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Wieviele Kanten kann ein ungerichteter Graph maximal haben, wenn er schlingenfrei ist? $\frac{n(n-1)}{2}$
- Wieviele Kanten kann ein ungerichteter Graph maximal haben, wenn er Schlingen haben darf? $\frac{n(n+1)}{2}$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

① Übungsblatt 6

Graphen

Wiederholung

Aufgaben

3 Graphen

Winter 08/09

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

- Zeichnen Sie alle möglichen gerichteten Bäume mit genau vier Knoten, von denen keine zwei isomorph sind.
- Zeichnen Sie alle möglichen ungerichteten Bäume mit genau fünf Knoten, von denen keine zwei Isomorph sind.

Winter 08/09

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Gegeben sei der Graph G = (V, E) mit $V = \{0, 1\}^3$ und $E = \{(xw, wy) \mid x, y \in \{0, 1\} \land w \in \{0, 1\}^2\}.$

- Zeichnen Sie den Graphen
- Geben Sie einen Zyklus in G an, der außer dem Anfangs- und Endknoten jeden Knoten von G genau einmal enthält.
- Geben Sie einen geschlossenen Pfad in G an, der jede Kante von G genau einmal enthält.

Winter 10/11

Vincent Hahn - vincent.hahn@student.kit.edu

Übungsblatt 6

Wiederholung

Graphen

Aufgaben

Sei $T_1=(V_1,E_1)$ ein gerichteter Baum mit Wurzel r_1 , $T_2=(V_2,E_2)$ ein gerichteter Baum mit Wurzel r_2 und es gelte $V_1\cap V_2=\{\}$. Sei $r\notin V_1\cup V_2$. Zeigen Sie:

$$T_1 \circ_r T_2 = (V_1 \cup V_2 \cup r, E_1 \cup E_2 \cup \{(r, r_1), (r, r_2)\})$$

ist ein gerichteter Baum mit Wurzel r.