МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

Отчет по лабораторной работе №1 по дисциплине «Адаптивное и робастное управление»

по теме:

«ПРИНЦИП ПОСТРОЕНИЯ СИСТЕМ АДАПТИВНОГО УПРАВЛЕНИЯ НЕВОЗМУЩЕННЫМИ ОБЪЕКТАМИ»

Вариант №13

Студенты:

Нгуен Тоан

Буй Динь Кхай Нгуен

Хюинь Тан Куонг

Научный руководитель:

Козачёк Ольга Андреевна

ИТМО

Санкт-Петербург – 2024

Содержание

Глава 1. Введение	2
1.1. Цель работы	2
1.2. Методические рекомендации.	2
1.3. Теоретические сведения	2
Глава 2. Порядок выполнения работы	6
2.1. Построение неадаптивной системы управления	6
2.2. Построение адаптивной СУ	8
Выводы	12
Список рисунков	13
Список таблиц	14

Глава 1. Введение

Работа №1. Принцип построения систем адаптивного Управления невозмущенными объектами

1.1. Цель работы

Освоение принципов построения систем адаптивного управления на примере задачи слежения выхода скалярного объекта за эталонным сигналом.

1.2. Методические рекомендации.

До начала работы студенты должны ознакомиться с анализом устойчивости нелинейных систем методом функций Ляпунова.

1.3. Теоретические сведения

Рассмотрим решение задачи адаптивного слежения, начиная с постановки и заканчивая анализом свойств замкнутой системы

Постановка задачи. Дан объект

$$\dot{x} = \theta x + u \tag{1.1}$$

где x выход объекта (совпадает с переменной состояния), u сигнал управления, θ неизвестный постоянный параметр.

Цель управления заключается в компенсации неопределенности θ и обеспечении следующего целевого равенства:

$$\lim_{t \to \infty} \left(x_{m(t)} - x(t) \right) = \lim_{t \to \infty} \varepsilon(t) = 0 \tag{1.2}$$

где $\varepsilon = x_m - x$ — ошибка управления, x_m — эталонный сигнал, являющийся выходом динамической модели (эталонной модели)

$$\dot{x}_m = -\lambda x_m + \lambda g \tag{1.3}$$

где g — кусочно-непрерывный ограниченный сигнал задания, $\lambda > 0$ — параметр, задающий время переходного процесса. Эталонная модель (1.3) определяет желаемое качество слежения объекта (1.1) за сигналом задания g.

Решение задачи. Временно предположим, что параметр θ известен. Тогда, вычисляя производную ошибки слежения ε по времени с учетом (1.1) и (1.3), получим:

$$\dot{\varepsilon} = \dot{x}_m - \dot{x} = -\lambda x_m + \lambda g - \theta x - u \tag{1.4}$$

Ошибка слежения будет экспоненциально стремиться к нулю, если будет выполняться равенство

$$\dot{\varepsilon} = -\lambda \varepsilon$$

Приравнивая правые части последнего уравнения и модели (1.4), находим искомый закон управления:

$$-\lambda x_m + \lambda g - \theta x - u = -\lambda \varepsilon = -\lambda x_m + \lambda x$$

$$u = -\theta x - \lambda x + \lambda g \tag{1.5}$$

Таким образом, в случае известного значения параметра θ закон управления (1.5) обеспечивает для объекта (1.1) выполнение целевого равенства (1.2).

Пусть теперь, как в исходной постановке задачи, параметр θ неизвестен. Тогда для реализуемости закона управления (1.5) заменим величину θ на ее оценку $\hat{\theta}$:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{1.6}$$

Дальнейшее решение задачи сводится к задаче нахождения функции $\hat{\theta}(t)$, которая обеспечит устойчивость замкнутой системы и цель управления (1.2). Для нахождения $\hat{\theta}(t)$ проведем ряд алгебраических преобразований и воспользуемся методом функций Ляпунова. Подставим последнее выражение в модель (1.1) и получим:

$$\dot{x} = \theta x - \hat{\theta} x - \lambda x + \lambda g = \tilde{\theta} x - \lambda x + \lambda g$$

где $\tilde{\theta}=\theta-\hat{\theta}$ параметрическая ошибка. Сформируем модель ошибки управления:

$$\dot{\varepsilon} = \dot{x}_m - \dot{x} = -\lambda x_m + \lambda g - \tilde{\theta} x + \lambda x - \lambda g = -\lambda \varepsilon - \tilde{\theta} x$$

или

$$\dot{\varepsilon} = -\lambda \varepsilon - \tilde{\theta} x \tag{1.7}$$

Выберем функцию Ляпунова:

$$V = \frac{1}{2}\varepsilon^2 + \frac{1}{2}\tilde{\theta}^2 \tag{1.8}$$

где $\gamma>0$ — параметр. Вычислим производную по времени функции V с учетом (1.7):

$$\dot{V} = \frac{1}{2} 2\varepsilon \dot{\varepsilon} + \frac{1}{2} 2\tilde{\theta}\dot{\tilde{\theta}} = -\lambda \varepsilon^2 - \tilde{\theta}x\varepsilon - \tilde{\theta}\frac{1}{\gamma}\dot{\hat{\theta}}$$

В соответствии с методом функций Ляпунова выберем алгоритм формирования оценки $\hat{\theta}(t)$ (т.е. правило определения производной $\hat{\theta}(t)$) из условия отрицательности производной функции Ляпунова. Нетрудно видеть, что при выборе

$$\dot{\hat{\theta}} = -\gamma x \varepsilon \tag{1.9}$$

производная функции Ляпунова будет отрицательной:

$$\dot{V} = -\lambda \varepsilon^2 < 0, \forall \varepsilon \neq 0.$$

Алгоритм (1.9), формирующий оценку $\hat{\theta}$, называется алгоритмом адаптации, а параметр γ — коэффициентом адаптации.

Таким образом, алгоритм адаптивного управления, обеспечивающий цель (1.2), представляется настраиваемым регулятором (1.6) и алгоритмом адаптации (1.9). При любых начальных условиях x(0), $\hat{\theta}(0)$ и любом ограниченном сигнале g алгоритм управления наделяет замкнутую систему следующими свойствами:

- 1. ограниченность всех сигналов в замкнутой системе;
- 2. асимптотическое стремление ошибки слежения ε к нулю;
- 3. экспоненциальное стремление $\hat{\theta}$ к θ при выполнении условия

$$\int_{t}^{t+T} x^{2}(\tau)d\tau > \alpha I > 0$$

(частного случая условия $\int_t^{t+T} x(\tau) x^{T(\tau)} d\tau > \alpha I$, почти всегда выполняемого в задаче управления скалярным объектом при $g(t) \neq 0$), что следует из свойства 2 и выражения (1.7);

4. увеличение скорости сходимости параметрической ошибки $\tilde{\theta}$ к нулю при увеличении коэффициента γ до некоторого оптимального значения. Дальнейшее повышение γ приведет к снижению скорости сходимости ошибки и появлению колебаний в системе

Глава 2. Порядок выполнения работы

2.1. Построение неадаптивной системы управления

На основе заданных в Таблице 2.1 значений параметров объекта (1.1) и эталонной модели (1.3) построить неадаптивную систему управления на базе регулятора (1.5). Провести моделирование системы в условиях скачкообразного трехкратного увеличения параметра θ и построить два графика. На одном вывести x(t) и $x_{m(t)}$ (или $\varepsilon(t)$), на другом — u(t).

Пусть $\theta(t)$ — кусочно-заданная функци:

$$\theta(t) = \begin{cases} 6, & 0 < t < 5 \\ 18, & t \ge 5 \end{cases} \tag{2.1}$$

По заданию известны следующие параметры:

Таблица 2.1 – Вариант заданий

Bap.	Параметр объекта	Параметр эталонной	Сигнал
	heta	модели	задания
		λ	g(t)
13	6	4	$sign(\cos t) + 8$

Выражение (1.6) является описанием регулятора для объекта (1.1). Произведём синтез неадаптивной системы управления.

Рисунок 2.1 – Структурная схема моделирования системы.

Рисунок 2.2 — График изменения Рисунок 2.3 — График изменения выходной переменной x(t) и эталонной выходной переменной x(t) и эталонной модели $x_{m(t)}$ в $[0,5^+]$. модели $x_{m(t)}$ в 10s.

Рисунок 2.4 – График изменения ошибки $\varepsilon(t)$.

Рисунок 2.5 – График изменения управляющего воздействия u(t).

2.2. Построение адаптивной СУ

Синтезировать алгоритм адаптации (1.9) и подключить его к настраиваемому регулятору (1.6). Повторить эксперимент для адаптивной системы управления, замкнутой регулятором (1.6) с алгоритмом адаптации (1.9) с $\hat{\theta}(0)=0$. Коэффициент адаптации γ выбрать экспериментально. Дополнительно построить график параметрической ошибки $\tilde{\theta}=\theta-\hat{\theta}$.

Положим теперь, что параметр θ неизвестен. Алгоритм (1.9) называется алгоритмом адаптации. Используя данный алгоритм и закон (1.7) можем составить схему моделирования адаптивной системы с регулятором.

Как и ранее, исследуется скачкообразное изменение параметра θ . Ниже приведены графики результаты моделирования.

Рисунок 2.6 – Структурная схема моделирования системы.

1. При $\gamma = 3$:

Рисунок 2.7 — График изменения выходной переменной x(t) и эталонной модели $x_{m(t)}.$

Рисунок 2.8 — График изменения управляющего воздействия u(t).

Рисунок 2.9 — График изменения ошибки Рисунок 2.10 — График изменения ошибки $\varepsilon(t).$ $\tilde{\theta}(t).$

2. При $\gamma = 10$:

Рисунок 2.11 — График изменения выходной переменной x(t) и эталонной

Рисунок 2.12 — График изменения управляющего воздействия u(t).

 Рисунок 2.13 – График изменения ошибки Рисунок 2.14 – График изменения ошибки $\tilde{\theta}(t).$

3. При $\gamma=30$:

Рисунок 2.15 — График изменения выходной переменной x(t) и эталонной

Рисунок 2.16 — График изменения управляющего воздействия u(t).

 Рисунок 2.17 – График изменения ошибки Рисунок 2.18 – График изменения ошибки $\tilde{\theta}(t).$

Выводы

В ходе работы были смоделированы две системы управления: неадаптивная и адаптивная в условиях скачкообразного изменения некоторого параметра объекта управления. Полученные результаты показали, при выбранных регуляторах, ошибки слежения и параметрические ошибки стремляются к нули. Провели моделирование адаптивной системы управления при разных коэффициентах: $\gamma = 10$ и $\gamma = 30$. Видно что, чем меньше коэффициент γ , сигнал чем быстре сходит к нулю.

Список рисунков

Рисунок 2.1: Структурная схема моделирования системы	6
Рисунок 2.2: График изменения выходной переменной $x(t)$ и эталонной	модели
$x_{m(t)}$ в $[0,5^+]$	7
Рисунок 2.3: График изменения выходной переменной $x(t)$ и эталонной	модели
$x_{m(t)}$ в 10s	7
Рисунок 2.4: График изменения ошибки $\varepsilon(t)$	
Рисунок 2.5: График изменения управляющего воздействия $u(t)$	7
Рисунок 2.6: Структурная схема моделирования системы	8
Рисунок 2.7: График изменения выходной переменной $x(t)$ и эталонной	модели
$x_{m(t)}$	9
Рисунок 2.8: График изменения управляющего воздействия $u(t)$	
Рисунок 2.9: График изменения ошибки $\varepsilon(t)$	9
Рисунок 2.10: График изменения ошибки $ ilde{ heta}(t)$	9
Рисунок 2.11: График изменения выходной переменной $x(t)$ и эталонной	
$x_{m(t)}$	10
Рисунок 2.12: График изменения управляющего воздействия $u(t)$	
Рисунок 2.13: График изменения ошибки $\varepsilon(t)$	10
Рисунок 2.14: График изменения ошибки $ ilde{ heta}(t)$	10
Рисунок 2.15: График изменения выходной переменной $x(t)$ и эталонной	модели
$x_{m(t)}$	11
Рисунок 2.16: График изменения управляющего воздействия $u(t)$	
Рисунок 2.17: График изменения ошибки $arepsilon(t)$	11
Рисунок 2.18: График изменения ошибки $ ilde{ heta}(t)$	

Список таблиц

Таблица 2.1: Вариант заданий	6
------------------------------	---