二次型复习题

黄利兵

数学科学学院

2023年2月16日

本章总结

- 主要概念: 二次型, 二次型的矩阵, 可逆线性替换, 矩阵的合同, 规范形, 惯性指数, 正定矩阵.
- 基本结论: 二次型的总可经可逆线性替换化为标准形 (对称矩阵总合同于对 角矩阵); 复二次型的规范形; 实二次型的规范形 (惯性定理); 正定二次型的 判别.
- 常用算法: 化二次型为标准形 (初等变换法).

判断题

- (1) 反对称矩阵的秩总为偶数.
- (2) 秩相等的两个 n 阶实反对称矩阵一定合同.
- (3) 秩相等的两个 n 阶实对称矩阵一定合同.
- (4) 顺序主子式全为非负数的实对称矩阵是半正定的.

填空题

- (1) n 元二次型 $(x_1 + \cdots + x_n)^2 x_1^2 \cdots x_n^2$ 的秩是_____.
- (2) 考虑变量 x, y, z, w 的实二次型 $q = xw yz + s \cdot (x + w)^2$. 如果 q 的正惯性 指数为 2, 则实数 s 的取值范围是______.
- (3) 考虑变量 $a = (a_0, a_1, \dots, a_{n-1})^\mathsf{T}$ 的实二次型

$$Q = \Big(\sum_{i=0}^{n-1} a_i\Big)^2 + \Big(\sum_{i=0}^{n-1} 2^i a_i\Big)^2 + \Big(\sum_{i=0}^{n-1} 3^i a_i\Big)^2.$$

如果 Q 是正定的, 则 n 的最大值是_____

计算题

(1) 化实二次型 $2x^2 + 8xy - 6xz + y^2 - 4yz + 2z^2$ 为标准形, 并指出它的正惯性指数和负惯性指数.

(2)
$$\[\text{0}\] A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \[\text{id} \] M \[A \] \Rightarrow A^\mathsf{T} \[\text{$\text{$E$}$} \] A \[\text{$\text{$=$}$} \] A \[\text{$=$} \] A \[\text{$\text{$=$}$} \] A \[\text{$\text{$=$}$} \] A \[\text{$=$} \] A \[\text{$=$}$$

证明题 (一)

设 $k \in \mathbb{R}$. 如果把 n^2 个变量排成一个 $n \times n$ 矩阵 X, 则可定义如下的 n^2 元实二次型

$$f(X) = \operatorname{tr}(X^2) - k \cdot \operatorname{tr}(X)^2.$$

- (1) 当 k = 0 时, 证明 f 的秩是 n^2 ;
- (2) 当 k=1 时, 求 f 的正惯性指数和负惯性指数.

证明题 (二)

设 $A \in \mathbb{O}^{n \times n}$.

- (1) 若 $A^{\mathsf{T}} = -A$, 证明 $\det(A)$ 是有理数的平方.
- (2) 若 $A^{\mathsf{T}} = A$, $\det(A) \neq 0$, 且存在非零列向量 $y \in \mathbb{Q}^{n \times 1}$ 使得 $y^{\mathsf{T}} A y = 0$. 证明 对任意 $r \in \mathbb{Q}$, 存在 $x \in \mathbb{Q}^{n \times 1}$, 使得 $x^{\mathsf{T}} A x = r$.

证明题 (三)

设整数 $n \ge 3$. 若实数 x_1, x_2, \dots, x_n 满足

$$x_1 + x_2 + \dots + x_n = 0, \quad x_1^2 + x_2^2 + \dots + x_n^2 = 1,$$

求证: $x_1x_2 + x_2x_3 + \dots + x_nx_1 \le \cos \frac{2\pi}{n}$.