

Signaux et Systèmes MT

Chapitre 1 Introduction

Michael Unser, LIB/STI

LEÇON D'INTRODUCTION

- But du cours
- Tour d'horizon rapide
 - 1.1 Notions de signal et de système
 - 1.2 Systèmes de communication
 - 1.3 Exemples de traitement du signal
 - 1.4 Exemples de micro-systèmes
- Contenu du cours
- Exercices et travaux pratiques

But du cours

- Caractérisation des différents types de signaux, continus et discrets, analogiques et numériques
- Modélisation des systèmes de traitement du signal, utilisés en instrumentation et pour les télécommunications
- Acquisition des bases pour consulter la littérature spécialisée
- Connaissances de base pour concevoir et réaliser de nouveaux micro-systèmes
- Préparation à l'imagerie et au traitement d'images

Outils de base

Théorie des systèmes linéaires

- Opérateurs linéaires, produit scalaire (rudiments d'analyse fonctionnelle et Hilbertienne)
- Opérateurs de convolution (filtres)
- Equations différentielles ordinaires

Transformation de Fourier

- Représentation des signaux; modélisation/caractérisation des systèmes linéaires invariant dans le temps (e.g. réponse fréquentielle)
- Techniques de calcul et de résolution dans le domaine de Fourier
- Utilisation rationnelle et efficace; représentation graphique
- Implémentation numérique

Transformation en z

Signaux et systèmes discrets

TOUR D'HORIZON RAPIDE

- 1.1 Notions de signal et de système
- 1.2 Systèmes de communication
- 1.3 Exemples de traitement du signal
- 1.4 Exemples de micro-systèmes

Notion de signal

- Signal: support de l'information
- Représentation mathématique: fonction du temps

- Exemple: Signaux acoustiques
 - Voix, musique, bruit

Support physique: ondes de pression

Classification des signaux

Notion de spectre

Somme de signaux sinusoïdaux

Spectre discret (raies)

Signal à durée finie

Densité spectrale

Signal de la parole

« Les splines sont des fonctions polynomiales par morceaux »

Son non-voisé: « sss »

Son voisé: « iii »

Notion de système

- Canal de transmission (analogique)
 - Equations différentielles à constantes localisées
 - Phénomènes d'atténuation et de dispersion
- Système de traitement
 - Filtre analogique (circuit RLC)
 - Filtre numérique (algorithme Matlab ou DSP)
 - Système hybride

Modélisation du conduit vocal

Signaux multidimensionnels

Signaux visuels (photo, film, vidéo)

Support physique: ondes électromagnétiques modulées en intensité

1.2 SYSTÈMES DE COMMUNICATION

Canal de transmission

- Air, vide, eau
- Ligne ou câble téléphonique
- Fibre optique

Types de distorsions

- Bruit
- Atténuation
- Dispersion

Système de communications numériques

Source discrète — séquence de caractères

Système de communications numériques

Source continue — Voix

1.3 EXEMPLES DE TRAITEMENT DU SIGNAL

- Conversion A/N: modulation PCM
- Modulation impulsionnelle d'amplitude
- Modulation fréquentielle d'amplitude
- Prothèse auditive
- Compression d'images

Exemple de traitement du signal

Conversion A/N: modulation PCM (pulse-coded modulation)

Filtrage

Echantillonnage

Numérisation

Exemple de traitement du signal analogique

Modulation impulsionnelle d'amplitude « Sample-and-hold »

$x_{\mathrm{SH}}(t) = \sum_{n \in \mathbb{Z}} x(nT)p(t - nT)$

Multiplexage temporel

Exemple de traitement du signal analogique

Modulation continue d'amplitude avec double bande latérale

Largeur de bande:

Prothèse auditive digitale

Prothèses auditives "derrière l'oreille"

Prothèses auditives "dans le canal"

Exemples de corrections

Traitement d'images: compression

Transformation d'images

JPEG 8×8 DCT

JPEG2000: Ondelettes

Compression JPEG

Image originale: 256*256 pixels, 8 bits Taille du fichier (TIFF): 85604 bytes

Facteur de qualité JPEG: 20 Taux de compression: 10

Facteur de qualité JPEG: 5 Taux de compression: 22

Facteur de qualité JPEG: 0 Taux de compression: 27

1.4 EXEMPLES DE MICRO-SYSTEMES

- Traitement du signal audio
- Communications
- Instrumentation et mesure
- Electronique médicale
- Traitement d'images

- Traitement du signal audio
 - Filtrage
 - Compression
 - Effets spéciaux
 - ■Son « surround »

Guitar processor

Baladeurs mp3

Logiciels pour l'écoute et l'enregistrement

Communications

- Modulation, démodulation
- Détection, égalisation
- Compression
- Cryptographie

Téléphones portables

Montres GPS et caméra

- Instrumentation et mesure
 - Filtrage
 - Analyse spectrale (FFT)
 - Synthèse de signaux

Séismographe

- Electronique médicale
 - Filtrage
 - Analyse spectrale (FFT)
 - Détection

Echographie fœtale

Prothèse auditive

- Traitement d'images; photographie numérique
 - Filtrage
 - Compression
 - Reconnaissance des formes
 - Analyse et traitement de l'information

Caméras numériques

Image originale

Image traitée

Contenu du cours: semestre d'hiver

- Systèmes analogiques linéaires
- Analyse de Fourier appliquée à la représentation des signaux et aux opérations fondamentales de traitement
- Echantillonnage des signaux analogiques
- Techniques de modulation
- Analyse et synthèse des filtres analogiques

Contenu du cours: semestre d'été

- Signaux discrets et numériques; transformée en z
- Systèmes discrets linéaires; filtres numériques
- Transformée de Fourier discrète; algorithmes rapides (FFT et convolution)
- Compression du signal; codage de source
- Notions de codage de canal
- Processus stationnaires; détection de signaux dans du bruit

1.5 BIBLIOGRAPHIE

- Ouvrage conseillé
 - B.P. Lathi, Signal Processing and Linear Systems, Oxford University Press, UK, 1998.
- Autres
 - E.W. Kamen, B.S. Heck, *Fundamentals of Signals and Systems*, Prentice-Hall, 1999.
 - B.P. Lathi, Modern Digital and Analog Communication Systems, 3rd Edition, Oxford University Press, 1998.

Signaux & Systèmes: travail personnel

- Exercices
 - But des exercices
 - Organisation
 - Corrigés
- Illustrations Matlab / SysQuake
 - But des illustrations
 - Organisation
- Travaux pratiques
 - Projets de semestres (7e ou 8e semestre)
 - Travail de diplôme