Enhancing 2D Patient Specific Electrophysiology with Physics-Informed Neural Networks

Adam Jakobsen, Vajira Thambawita, Thu Nguyen, Mary M Maleckar, Gabriel Balaban

University of Oslo Oslo, Norway

Background: Neural networks, once trained, can offer predictions for personalized cardiac electrophysiology (EP) within a very short timeframe. Physics-Informed Neural Networks (PINNs) can combine the theoretical knowledge of a physical system with data, presenting a promising method for personalized electrophysiology simulations.

Methods: We have developed a PINN model that utilizes spatial and temporal coordinates along with local conductivities as input parameters to predict the spatio-temporal evolution of action potentials. 2D magnetic resonance images were used to establish a computational domain and infer local conductivities, providing a proof of concept for more detailed personalized 3-D models.

Results: Our study illustrates the capability of PINNs to precisely recreate action potential dynamics from limited in-silico voltage data. Importantly,

Inference run-time			
		FEM	PINN
	CPU	$684 \pm 60 \text{ s}$	$3.62 \pm 0.09 \text{ s}$
(βPU	_	$0.22 \pm 0.01 \text{ s}$

we show that trained PINNs can accurately interpolate and extrapolate with local conductivity inputs beyond the range of training data and make predictions at a significantly reduced

time-frame.

Figure 1. Computational model created from MRI and PINN-predicted transmembrane potential, V_m , compared to the corresponding Finite Elements Method solution.