Ubungsblatt 7

(geometrische Summenformel, Folgen)

Aufgabe 1

Bestimmen Sie mit Hilfe der geometrischen Summenformel (siehe Kapitel II.1) folgende Sum-

- (a) $\sum_{k=0}^{5} \left(\frac{1}{2}\right)^k$, (b) $\sum_{k=1}^{5} \left(\frac{1}{2}\right)^k$, (c) $\sum_{k=2}^{5} \left(\frac{1}{2}\right)^k$,
- (d) $\sum_{k=0}^{10} (-1)^k$, (e) $\sum_{k=0}^{11} (-1)^k$, (f) $\sum_{k=0}^{2} 3^k$.

Aufgabe 2

- (a) Geben Sie zu nachstehenden Folgen jeweils die Abbildungsvorschrift $\mathbb{N} \to \mathbb{R}, n \mapsto x_n$ an:
 - - $(x_n) = (0, 3, 6, 9, 12, \ldots),$ (ii) $(x_n) = (-4, -1, 2, 5, 8, \ldots),$
 - (iii) $(x_n) = (0, -1, 2, -3, 4, \ldots),$ (iv) $(x_n) = (0, 1, -2, 3, -4, \ldots),$
 - (v) $(x_n) = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots),$ (vi) $(x_n) = (1, \frac{1}{2}, \frac{1}{7}, \frac{1}{15}, \frac{1}{31}, \ldots).$
- (b) Die Folge (a_n) sei rekursiv definiert durch

$$a_0 := 2, \quad a_{n+1} := \frac{2a_n}{2 + a_n}$$

Bestimmen Sie a_1, a_2 und a_3 .

Aufgabe 3

Finden Sie jeweils Folgen $(x_n) \subseteq \mathbb{R}$ und $(y_n) \subseteq \mathbb{R}$, so dass nachfolgende Eigenschaften erfüllt

- (a) Mindestens eine der Folgen (x_n) bzw. (y_n) divergiert, aber die Folge (x_n+y_n) konvergiert.
- (b) Mindestens eine der Folgen (x_n) bzw. (y_n) divergiert, aber die Folge $(x_n \cdot y_n)$ konvergiert.
- (c) Die Folgen (x_n) und (y_n) konvergieren, und es ist $x_n < y_n$ für alle n, aber es gilt nicht $\lim_{n\to\infty} x_n < \lim_{n\to\infty} y_n.$
- (d) Die Folge (x_n) divergiert, aber die Folge $(|x_n|)$ konvergiert.

Aufgabe 4

Berechnen Sie den Grenzwert der Folge $(x_n) \subseteq \mathbb{R}$, falls

(a)
$$x_n = \frac{3n^2 + 4n + 20}{4n^3 + 1000}$$

(a)
$$x_n = \frac{3n^2 + 4n + 20}{4n^3 + 1000}$$
 (b) $x_n = \frac{2n^3 + 7n^2 + 12}{5n^3 - n + 3}$ (c) $x_n = \left(2 + \frac{3}{n}\right)^5$

$$(c) \quad x_n = \left(2 + \frac{3}{n}\right)^{5}$$

 $\bf Aufgabe~5~(Teil~(b)$ wenn noch Zeit ist ...)

Für $n \in \mathbb{N}^*$ sei $x_n = \frac{1}{\sqrt{n}}$.

- (a) Geben Sie zu $\varepsilon=10,\, \varepsilon=1,\, \varepsilon=\frac{1}{10}$ und $\varepsilon=\frac{1}{10^6}$ jeweils ein $N\in\mathbb{N}$ an, so dass $|x_n-0|<\varepsilon$ für alle $n\geq N$ erfüllt ist.
- (b) Zeigen Sie direkt mit der Definition von "Konvergenz gegen x", dass

$$\lim_{n \to \infty} x_n = 0$$

gilt.

Hinweis: Sie dürfen ohne Beweis verwenden, dass die Wurzelfunktion monoton ist, das heißt, für $x,y\in[0,\infty)$ mit $x\leq y$ gilt auch $\sqrt{x}\leq\sqrt{y}$.