Chapitre 4 : Circuits asynchrones

Calculs

- Dans ce chaître, nous allons étudier comment un ordinateur est capable d'effectuer des calculs.
- Etape 1 : fonctionnement du transistor
- Etape 2 : conception de portes logiques
- Etape 3 : assemblage de portes logiques
- Etape 4 : estimation des performances

La transistor CMOS

- 3 points importants : la source, le drain et la grille
- En fonction de la tension de la grille, il peut y avoir conductipon électrique entre la source et le drain ou au contraire les 2 points peuvent être électriquement isoles.

Transistor N

- Si G=0 V ,S et D sont électriquement isolés
- Si G=1 V, il y a conduction électrique entre S et D

Transistor P

Si G=0 V , il y a conduction électrique entre S et D

Si G=1 V, S et D sont électriquement isolés

Porte logique

Si E=0 alors S=1

• Si E=1 alors S=0

Assemblage de transistors

Si E=0 alors S=1

• Si E=1 alors S=0

Porte logique NON

- Table de vérité
 - A B
 - 0 1
 - 1 0

Trouvez la table de vérité

Solution

C'est une porte NON -ET

Le ET logique

Le ET logique

Table de vérité

AB S
0 0 0
0 1 0
1 0 0
1 1 1

Trouvez la table de vérité

Solution

Table de vérité

AB	S	
00	1	
0 1	0	
10	0	
1 1	0	

NON OU logique

OU logique

OU logique

Table de vérité

Assemblage de portes logiques

- En assemblant des portes logiques, on peut construire des circuits plus complexes
- La méthode de karnaugh permet de construire des circuits à partir de n'importe quelle table de vérité à base de portes ET, OU ET NON

Karnaugh

 Proposez un circuit le plus simple possible ayant comme table de vérité

```
ABC S
000
001
010
011
100
101
110
111
```

Etape 1 AB

-		00	01	11	10
0		1	0	1	0
1		1	0	1	1
	0	0 1	0 1	0 1 0	00 01 11 0 1 0 1 1 1 0 1

Etape 2 AB

• Etape 3 S=AB+AB+AC

Etape 4

Proposez des circuits synthétisant ces tables de vérité

ABC S	ABC S
000 1	000 1
001 1	001 1
010 0	010 0
011 1	011 0
100 0	100 0
101 1	101 1
110 0	110 1
111 1	111 1

Assemblage de portes logiques

- Proposer un assemblage de portes logiques permettant de créer un ET logique à 8 entrées.
- Le circuit aura 8 entrées A7 A6 A5 A4 A3 A2 A1 A0
- On utilisera un ET logique à 2 entrées comme porte logique de base.

Solution

• ET logique à 8 entrées

Estimation du temps de calcul par la méthode du chemin critique

- On cherche le plus long chemin qui mèbe d'une entrées à une sortie.
- Dans notre dernier circuit, le chemin critique traverse 3 ET logique ==> temps=3 temps(ET)

La porte logique FA (Full Adder)

- 3 entrées A B et C et é sortie D et E
- Table de vérité

```
ABCED
```


Additionneur

- On veut réaliser un additionneur à 2 entrées A et B sur 8 bits et à une sortie S sur 8 bits et un bit V.
- Si V=1, il y a dépassement de capacité.
 Si V=0, S=A+B

Solution

Addionneur 8 bits

Multiplexeur

 3 entrées A B et C sur 1 bit et une sortie S sur 1 bit

Si C=0, S=A sinon S=B

Table de vérité

Décaleur 8 bits

- On veut un criruit avec une entrée A sur 8 bits A7 A6 A5 A4 A3 A2 A1 A0 et une autre d sur 1 bit et une sortie S sur 8 bits S7 S6 S5 S4 S3 S2 S1 S0.
- On utilisera un multiplexeur comme porte logique de base.

Solution

Décaleur 8 bits

Temps = 1 temps(MUX)

Multiplexeur à 8 entrées

- On veut créer un circuit à 8 entrées A0 A1 A2 A3 A4 A5 A6 A7 et une entrée i sur 3 bits i2i1i0 et une sortie S sur 1 bit
- S est égal à une des 8 entrées A S=Ai
- On utilisera un multiplexeur 1 bit

Solution

Mutiplexeur 8 entrées

Temps=8 temps(MUX)

Conclusion

- Vous devez être capable de calculer la table de vérité d'un assemblage de transistors quelconques
- Vous devez connaître l'assemblage de transitors des portes logiques NON NON-ET NON-OU OU et ET.

 Vous devez connaître la méthode de Karnaugh pour synthétiser n'importe quelle porte logique à partir des portes ET à 2 entrées OU à 2 entrées et NON