AI1103-Assignment 3

Shambhu Prasad Kavir CS20BTECH11045

Download all python codes from

https://github.com/Shambu-K/Assignment-3/blob/ main/Assignment-3.py

and latex-tikz codes from

https://github.com/Shambu-K/Assignment-3/blob/ main/Assignment-3.tex

QUESTION

(GATE 2010 MA Q-26)

Let X have a binomial distribution with parameters, n and p, n=3. For testing the hypothesis H_0 : p = $\frac{2}{3}$ against H_1 : p = $\frac{1}{3}$, let a test be: "Reject H_0 if $X \ge 2$ and accept H_0 if $X \leq 1$."

Then the probabilities of Type-1 and Type-2 errors respectively are

1)
$$\frac{20}{27}$$
 and $\frac{20}{27}$

1)
$$\frac{20}{27}$$
 and $\frac{20}{27}$ 3) $\frac{20}{27}$ and $\frac{7}{27}$

2)
$$\frac{7}{27}$$
 and $\frac{20}{27}$ 4) $\frac{7}{27}$ and $\frac{7}{27}$

4)
$$\frac{7}{27}$$
 and $\frac{7}{27}$

SOLUTION

Clearly, H_0 and H_1 are mutually exclusive hypoth-

For Type-1 error: Occurs when one rejects the null hypothesis(H_0) when it is true

$$P(X \ge 2) = P(X = 2) + P(X = 3)$$

$$= {}^{3}C_{2} \times \left(\frac{2}{3}\right)^{2} \times \left(\frac{1}{3}\right)^{1} + {}^{3}C_{3} \times \left(\frac{2}{3}\right)^{3} \times \left(\frac{1}{3}\right)^{0}$$

$$= \frac{12}{27} + \frac{8}{27}$$

$$= \frac{20}{27}$$

$$(0.0.4)$$

For Type-2 error: Occurs when one rejects the alternate hypothesis(H_1) when it is true

$$P(X \le 1) = P(X = 1) + P(X = 0)$$

$$= {}^{3}C_{1} \times \left(\frac{1}{3}\right)^{1} \times \left(\frac{2}{3}\right)^{2} + {}^{3}C_{0} \times \left(\frac{1}{3}\right)^{0} \times \left(\frac{2}{3}\right)^{3}$$

$$= \frac{12}{27} + \frac{8}{27}$$

$$= \frac{20}{27}$$

$$(0.0.8)$$

∴ Option-1 is correct