Inventée à la fin du XVIIIe siècle par les frères Montgolfier, la montgolfière est la première machine ayant permis à l'Homme de voler.

Données

- masses molaires atomiques : $M(O) = 16 \times 10^{-3} \text{ kg} \cdot \text{mol}^{-1}$, $M(N) = 14 \times 10^{-3} \text{ kg} \cdot \text{mol}^{-1}$
- constante des gaz parfaits : $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$;
- conversion d'une température θ exprimée en degré Celsius en une température T en Kelvin : $T(K) = \theta(^{\circ}C) + 273 ^{\circ}C$;
- la poussée d'Archimède $\overrightarrow{\pi_A}$ est une force, verticale et dirigée vers le haut, que subit tout objet plongé dans un fluide. Pour un objet de volume V totalement immergé dans un fluide de masse volumique ρ , la valeur π_A de la poussée d'Archimède a pour expression :

$$\pi_A = \rho \cdot V \cdot g$$

- caractéristiques de l'air extérieur au niveau du sol :
 - masse volumique : $\rho_{ext} = 1.2 \text{ kg} \cdot \text{m}^{-3}$;
 - température : $\theta_{ext} = 21 \, ^{\circ}\text{C}$;
 - Pression atmosphérique : $p_{atm} = 1.0 \times 10^5 \, \mathrm{Pa}$;
- la montgolfière étudiée est constituée d'une enveloppe de volume V invariable égal à 2.5×10^3 m³ et d'une nacelle de volume négligeable par rapport à celui de l'enveloppe.
- la masse m_{ens} de l'ensemble comprenant la nacelle, l'enveloppe, le système de chauffage et les passagers est égale à 500 kg.

1	Montrer que la valeur de l	a massa molaira M de	a l'air est voisine de 20 × 1	$10^{-3} \text{kg} \cdot \text{mol}^{-1}$
١.	Montrei que la valeur de i	a iliasse ilioiaile M _{air} de	ti ali est voisille de 49 A i	LU KY'IIIUI .

2. En exploitant l'équation d'état des gaz parfaits, exprimer littéralement la masse m_{int} de l'air contenu à l'intérieur de l'enveloppe en fonction de la pression p_{int} de l'air à l'intérieur, du volume V de l'enveloppe, de la masse molaire M_{air} de l'air, de la constante R des gaz parfaits et de la température T_{int} de l'air situé à l'intérieur de l'enveloppe.

- 3. Exprimer le poids total du système {montgolfière + air intérieur), noté P_{total} , en fonction des masses m_{ens} et m_{int} .
- 4. Calculer la valeur de la poussée d'Archimède π_A qui s'exerce sur le système {montgolfière + air intérieur}, au niveau du sol.
- 5. Montrer que l'expression de la valeur de la température minimale T_{min} de l'air à l'intérieur de l'enveloppe pour que la montgolfière puisse décoller est :

$$T_{min} = \frac{p_{int} \cdot V \cdot M_{air}}{R \cdot \left(\frac{\pi_A}{g} - m_{ens}\right)}$$

6. Calculer la valeur de T_{min} . On admet que la pression p_{int} de l'air à l'intérieur de l'enveloppe est égale à la pression atmosphérique $p_{atm}=1.0\times 10^5$ Pa.