PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-003100

(43)Date of publication of application: 06.01.1995

(51)Int.CI.

CO8L 27/12 CO8K 3/22 C08K 5/04 **CO8K** CO8K 5/49

(21)Application number: 05-169537

(71)Applicant:

ASAHI GLASS CO LTD

(22)Date of filing:

16.06.1993

(72)Inventor:

KANEKO TAKEO

SUGITANI KAZUTOSHI

SAITO MASAYUKI

(54) PRODUCTION OF BOTH FLUORORUBBER COMPOSITION AND CURED MOLDED PRODUCT THEREOF

(57)Abstract:

PURPOSE: To obtain a fluororubber composition causing no malmolding thereof in its molding through polyol curing in a mold, also good in mechanical properties by incorporating a polyol curing composition for fluororubber with, as curing promoter, an organic quaternary phosphonium salt plus a specific compound.

CONSTITUTION: The objective composition comprising (A) 100 pts.wt. of a fluororubber produced by copolymerization between (1) vinylidene fluoride and (2) hexafluoropropylene, or between the components 1 and 2 and (3) tetrafluoroethylene, (B) 0.05-2 pts.wt. of an organic quaternary phosphonium salt (e.g. triphenylbenzylphosphonium chloride), (C) 0.05-2 pts.wt. of an organic quaternary ammonium hydrogensulfate (e.g. tetrabutylammonium hydrogensulfate) and/or a salt derived from 1,8-diazabicyclo [5.4.0]-7-undecene, (D) 0.1-10 pts.wt. of a polyhydroxy compound (pref. bisphenol AF) and (E) 0.5-30 pts.wt. of a metal oxide and/or metal hydroxide (e.g. magnesium oxide).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-3100

(43)公開日 平成7年(1995)1月6日

(51) Int.Cl. 6		識別記号	庁内整理番号	ΡI	技術表示箇所
C08L 2	27/12	КЈМ			2 0000 0 = 1-000
	3/22	КJG			
	5/04	КJJ			
	5/17	KJK			
	5/49				
			· a	審查請求	未請求 請求項の数2 FD (全 4 頁)
(21)出願番号		特顯平5-169537		(71)出願人	000000044
			•		旭硝子株式会社
(22)出顧日		平成5年(1993)6月16日			東京都千代田区丸の内2丁目1番2号
				(72)発明者	金子 武夫
					神奈川県川崎市幸区塚越3丁目474番地2
				(mo) should be	旭硝子株式会社玉川分室内
		-		(72)発明者	· -
					神奈川県川崎市幸区塚越3丁目474番地2
				(70) VV III-t	旭硝子株式会社玉川分室内
				(72)発明者	
					神奈川県横浜市神奈川区羽沢町1150番地
				(74) (D.T.)	旭硝子株式会社中央研究所内
				(74)代理人	弁理士 泉名 謙治

(54) 【発明の名称】 フッ素ゴム組成物およびその加硫成形品の製造法

(57)【要約】

【構成】(A) フッ化ビニリデンおよびヘキサフルオロプロピレンを共重合して得られるフッ素ゴム等、(B) 有機4級ホスホニウム塩、(C) 有機4級アンモニウム硫酸水素塩および/または1,8-ジアザビシクロ

(5.4.0) -7-ウンデセンから誘導される塩、

(D) ポリヒドロキシ化合物 (E) 金属酸化物および/ または金属水酸化物からなるフッ素ゴム組成物。

【効果】本発明は、フッ素ゴムを金型を用いてポリオール加硫により成形する際に成形不良のない良好な成形品が得られることから工業的価値が極めて高く、また、本発明により得られるフッ素ゴムの成形品は、自動車や航空機等の輸送機関のOーリング、オイルシール、ガスケット、シール材、ホース、チューブ、ダイヤフラム等に、また、化学プラントや食品プラント等の同様な部品や一般工業部品に幅広く使用される。

【特許請求の範囲】

【請求項1】(A)フッ化ビニリデンおよびヘキサフルオロプロピレンを共重合して得られるフッ素ゴム、またはフッ化ビニリデン、ヘキサフルオロプロピレンおよびテトラフルオロエチレンを共重合して得られるフッ素ゴム100重量部、

1

- (B) 有機4級ホスホニウム塩 O. 05~2重量部、
- (C) 有機4級アンモニウム硫酸水素塩、および/または1,8-ジアザビシクロ [5.4.0]-7-ウンデセンから誘導される塩から選ばれる少なくとも1種0.05~2重量部、
- (D) ポリヒドロキシ化合物 0.1~10重量部、
- (E) 金属酸化物および/または金属水酸化物もしくは それらの混合物 0.5~30重量部、からなる金型を 用いて成形する際に成形不良のないフッ素ゴム組成物。

【請求項2】フッ素ゴムをポリオール加硫により金型を 用いて圧縮成形、射出成形またはトランスファー成形を 行う際に請求項1記載のフッ素ゴム組成物を用いるフッ 素ゴム加硫成形品の製造法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はフッ素ゴム組成物に関し、さらに詳しくは加硫性の改善された新規なフッ素ゴム組成物、およびその加硫成形品の製造法に関するものである。

[0002]

【従来の技術】フッ素ゴムは優れた耐熱性、耐油性、耐薬品性等を有することから、自動車部品等を中心に各種の工業分野で広く用いられている。しかしながら、金型を用いてポリオール加硫により成形する際に加硫促進剤として有機4級ホスホニウム塩を用いると、成形品のウェルド部分等に加硫不足や発泡等が生じ、成形不良を起こすことがあった。また、加硫促進剤として有機4級アンモニウム塩を用いた場合には、成形不良は起こさないが、硬さやモジュラスが高くなり、伸びが低下するという問題があった。

[0003]

【発明が解決しようとする課題】本発明の目的は、金型を用いてポリオール加硫により成形する際に、成形不良がなく、機械的特性の良好なフッ素ゴム組成物、およびその加硫成形品の製造法を提供することにある。

[0004]

【課題を解決するための手段】本発明者らは、前記の問題点を解決するために鋭意検討を重ねた結果、加硫促進剤として有機4級ホスホニウム塩、および有機4級アンモニウム硫酸水素塩または1,8-ジアザビシクロ

[5.4.0] - 7 - ウンデセンから誘導される塩とを 併用することが有効であることを見いだし、この知見に 基づいて本発明を完成するに至った。

【0005】すなわち、本発明は、(A)フッ化ビニリ

デンおよびへキサフルオロプロピレンを共重合して得られるフッ素ゴム、またはフッ化ビニリデン、ヘキサフルオロプロピレンおよびテトラフルオロエチレンを共重合して得られるフッ素ゴム 100重量部、(B) 有機4級ホスホニウム塩 0.05~2重量部、(C) 有機4級アンモニウム硫酸水素塩および/または1,8ージアザビシクロ[5.4.0]-7ーウンデセンから誘導される塩 0.05~2重量部、(D)ポリヒドロキシ化合物 0.1~10重量部、(E)金属酸化物および/またけ金属水酸化物 0.5~30重量部、からなるフ

合物 0.1~10重量部、(E)金属酸化物および/または金属水酸化物 0.5~30重量部、からなるフッ素ゴム組成物、およびフッ素ゴムをポリオール加硫により金型を用いて圧縮成形、射出成形またはトランスファー成形を行う際に請求項1記載のフッ素ゴム組成物を用いるフッ素ゴム加硫成形品の製造方法を提供する。

【0006】本発明において(A)成分として用いられるフッ素ゴムは、フッ化ビニリデンおよびヘキサフルオロプロピレンを重量比40/60~80/20の割合で共重合して得られるフッ素ゴム、または前記割合のフッ化ビニリデンおよびヘキサフルオロプロピレンに、さらにテトラフルオロエチレンをフッ化ビニリデン、ヘキサフルオロプロピレンおよびテトラフルオロエチレンの合計重量に基づき35重量%以下の割合で共重合して得られるフッ素ゴムが好ましく、これらは単独で、または2種以上の混合物として用いられる。

【0007】また、これらのフッ素ゴムの分子量や分子量分布は特に制限されるものではなく、用途や成形条件等に応じ、適宜選定される。これらのフッ素ゴムの製造には、例えば乳化重合、懸濁重合、溶液重合、塊状重合等の従来公知の重合方法が好ましく採用される。

【0008】本発明において(B)成分として用いられる有機4級ホスホニウム塩は、フッ素ゴムのポリオール加硫において、従来公知の加硫促進剤はすべて使用可能である。

【0009】(B)成分の具体例としてはトリフェニルベンジルホスホニウムクロライド、トリフェニルベンジルホスホニウムブロマイド、メチルトリオクチルホスホニウムクロライド、テトラブチルホスホニウムジメチルホスフェート、メチルトリオクチルホスホニウムジメチルホスフェート、メチルトリオクチルホスホニウムアセテート、テトラブチルホスホニウムベンゾトリアゾール塩等が挙げられる。これらの化合物は単独で、または2種以上の混合物として用いられる。

【0010】(A)成分100重量部に対する(B)成分の使用量は0.05~2重量部、好ましくは0.1~ 1重量部、特に好ましくは0.1~0.6重量部の範囲である。

【0011】本発明に用いられる(C)成分の有機4級アンモニウム硫酸水素塩、または1,8ージアザビシクロ[5.4.0]ー7ーウンデセンから誘導される塩は、加硫促進剤であるとともに(B)成分と併用するこ

2

とにより、フッ素ゴムを金型を用いてポリオール加硫により成形する際に、機械的特性を低下させることなく成形品のウェルド部分等の成形不良を防止することが可能となる。

【0012】(C)成分の具体例としては、硫酸水素テトラブチルアンモニウム、硫酸水素トリオクチルメチルアンモニウム、硫酸水素ベンジルトリメチルアンモニウム、硫酸水素1,8ージアザビシクロ[5.4.0]ー7ーウンデセニウムクロライドまたはブロマイド、8ーベンジルー1,8ージアザビシクロ[5.4.0]ー7ーウンデセニウムクロライドまたはブロマイド、8ーメチルー1,8ージアザビシクロ[5.4.0]ー7ーウンデセニウムクロライドまたはブロマイド、1,8ージアザビシクロ[5.4.0]ー7ーウンデセンのpートルエンスルホン酸塩等が挙げられる。

【0013】これらの化合物は単独で、または2種以上の混合物として用いられる。(A)成分100重量部に対する(C)成分の使用量は0.05~2重量部、好ましくは0.1~1重量部、特に好ましくは0.1~0.6重量部の範囲である。また、(B)成分および(C)成分は、フッ素ゴムのポリオール加硫において従来公知の他の加硫促進剤と併用してもよい。

【0014】本発明に用いられる(D)成分のポリヒドロキシ化合物は、フッ素ゴムの加硫剤となるものであり、従来公知の化合物はすべて使用可能である。(D)成分としては、ビスフェノールAF、ビスフェノールA、ハイドロキノン、カテコール、含フッ素脂肪族ポリヒドロキシ化合物等が挙げられ、ビスフェノールAFが特に好ましく用いられる。(A)成分100重量部に対する(D)成分の使用量は0.1~10重量部、好ましくは0.5~5重量部の範囲である。

【0015】本発明に用いられる(E)成分の金属酸化物または金属水酸化物もしくはそれらの混合物はフッ素ゴムの加硫時に受酸剤として用いられるもので、ポリオール加硫において従来公知の化合物はすべて使用可能である。(E)成分の具体例としては酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化鉛、水酸化カルシウム、水酸化マグネシウム等が挙げられる。(A)成分100重量部に対する(E)成分の使用量は0.5~30重量部、好ましくは1~25重量部の範囲である。

【0016】本発明のフッ素ゴム組成物においては、必要に応じて、他の成分、例えばカーボンブラック、シリカ、クレー、ケイソウ土、炭酸カルシウム、フッ化カルシウム、硫酸バリウム等の充填剤や補強剤、加工助剤、内部離型剤、接着促進剤、可塑剤、着色剤等を配合することが可能である。また、天然ゴムや他の合成ゴム、熱可塑性樹脂や熱硬化性樹脂等とブレンドすることも可能である。

【0017】本発明のフッ素ゴム組成物は、前述の各成分をロールやニーダー等の通常のゴムの混練装置により 50

均一に混合することにより得られる。こうして得られたフッ素ゴム組成物は、例えばプレス成形、射出成形やトランスファー成形等の金型を用いて成形する際に、通常の成形とまったく同様にして成形することが可能であり、しかも金型内での成形品のウェルド部分等の加硫不足や発泡等の成形不良の発生が防止され、良好な成形品が得られる。

【0018】また、本発明のフッ素ゴム組成物は、例えば押し出し成形、カレンダー成形、溶剤に溶かしてからのコーティングやディップ成形等の通常のゴムの成形方法により加硫、成形することも可能である。加硫条件は、成形しようとするものの形状や条件により適宜決められるものであるが、おおむね、100℃~400℃で数秒~24時間の範囲である。また、得られた加硫物の特性を安定化させるために2次加硫を行ってもよい。その場合の条件としては、おおむね、150℃~300℃で30分~48時間程度である。

[0019]

【実施例】次に、本発明を実施例によりさらに詳細に説明する。なお、実施例中、部とは重量部を示す。

【0020】実施例1

乳化重合法により、フッ化ビニリデン/へキサフルオロプロピレン=60/40(重量比)、固有粘度 [η] = 0.55のフッ素ゴムを得た。このフッ素ゴム100部に対してMTカーボン30部、ピスフェノールAF1.5部、トリフェニルベンジルホスホニウムクロライド0.2部、硫酸水素テトラプチルアンモニウム0.2部、キョーワマグ150(協和化学工業製、酸化マグネシウム)3部、およびカルビット(近江化学製、水酸化カルシウム)6部を2ロールにより均一に混合してフッ素ゴム組成物を得た。

【0021】得られたフッ素ゴム組成物を厚さ5mmにシートアウトし、幅2cm、長さ18cmに裁断してプレフォームを作成した。次に、得られたプレフォーム3個を内径38mm、太さ2mmのOーリング9個取りの金型に横3列にOーリングのキャビティ上に仕込み、170℃で20分プレス加硫した。同様にして、Oーリングを90個加硫成形した。

【0022】これらのOーリングはいずれも加硫不足や発泡のない良好な成形品であった。また、ここで得られたフッ素ゴム組成物を170℃で20分プレス加硫し、さらに230℃で24時間2次加硫し、厚さ2mmの加硫ゴムのシートを得た。これを、JIS K6301に従い、物性を測定したところ、硬さ73、100%モジュラス75kg/cm 2 、引っ張り強さ63kg/cm 2 伸び200%だった。

【0023】比較例1

実施例1で硫酸水素テトラブチルアンモニウムを用いず に、トリフェニルベンジルホスホニウムクロライドを 0.4部用いること以外は実施例1とまったく同様にし 5

てO-リングを90個加硫成形したところ、90個すべてにおいてウェルド部分が加硫不足により成形不良をおこした。

【0024】比較例2

実施例1で硫酸水素テトラブチルアンモニウムを用いるかわりにテトラブチルアンモニウムブロマイドを用いること以外は実施例1とまったく同様にしてOーリングを90個加硫成形したところ、これらは90個いずれも良好な成形品であった。また、実施例1と同様にして物性を測定したところ、硬さ79、100%モジュラス108kg/cm²、伸び140%だった。

【0025】実施例2

0%だった。

【0026】実施例3

[0027]

【発明の効果】本発明のフッ素ゴム組成物は、従来のフッ素ゴム同様に優れた特性を有し、かつ金型を用いて加硫成形する際に成形不良を防止できることから工業的価値の極めて高いものである。また、本発明により得られるフッ素ゴムの成形品は、その優れた特性に基づき、自動車や航空機等の輸送機関の〇ーリング、オイルシール、ガスケット、シール材、ホース、チューブ、ダイヤフラム等に、また、化学プラントや食品プラント等の同様な部品や一般工業部品に幅広く使用される。

30