# Evaluation of Human Steering Performance of Powered Wheelchairs

Holger Dieterich (holger.dieterich@ziti.uni-heidelberg.de)

November 9, 2020

# 1 Kinematics

Following chapter 2 in [1] robot pose  $(x_R, y_R, \varphi_R)$  and goal pose  $(x_G, y_G, \varphi_G)$  can be transformed to egocentric polar coordinates (see Figure 2).



Figure 1: egocentric polar coordinate system (here,  $\theta$  and  $\delta$  have negative values)

The kinematics can be written as:

$$\begin{pmatrix} \dot{r} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} -v\cos\delta \\ \frac{v}{r}\sin\delta \end{pmatrix} \tag{1}$$

$$\dot{\delta} = -\frac{v}{r}\sin\delta + \omega \tag{2}$$

This is a two time-scale decomposition:

- Eq. (1) describes the vehicle dynamics in position subspace (slow subsystem).
- Eq. (2) describes the dynamics of the heading (steering) subspace (fast subsystem)

Note: The heading  $\delta$  is a (virtual) control for eq. (1). The idea [2] is to find

- 1. virtual control  $\delta$  (vehicle heading) which steers the subsystem (1) (vehicle position) to the origin, and
- 2. real control  $\omega$  which render the dynamics of the subsystem (2) sufficiently faster than the subsystem (1) and stabilizes  $\delta$  quickly to a desired virtual control, such that (1) becomes a slow subsystem and (2) becomes a fast subsystem in a singularly perturbed form.

Note that this process is analogous to a human driver controlling the steering wheel (fast subsystem) to drive the vehicle (slow subsystem) to a desired pose in space [2].

#### 2 Non-Holonomic Distance Measure

In position subspace, the following weighted norm [3] is used to measure how far a point  $(r, \phi)^T$  in polar coordinates is to the origin (the target pose):

$$l(r,\phi) = \sqrt{r^2 + k_\phi^2 \phi^2} \tag{3}$$

Note: The orientation of the target pose is incorporated in  $\phi$ .

# 3 Feedback Control

# 3.1 Slow Subsystem

The origin is Lyapunov-stable under the following feedback examples: (Proof in [1], assuming non-zero positive velocity v)

$$\delta_s^*(\phi) = \operatorname{atan}(-k_\phi \phi) \tag{4}$$

$$\delta_g^*(r,\phi) = \operatorname{atan}(-k_\phi^2 \phi/r^2) \tag{5}$$

Eq. (4) is the heading that reduces r and  $\phi$  very smoothly at ratio  $\dot{\phi}/\phi = k_{\phi}\dot{r}/r$  [3] Eq. (5) is the gradient of (3) along (1)., generating curves that quickly approach the target pose and then align to the target orientation [1]

#### 3.2 Fast Subsystem

Derivation of  $\omega$  for  $\delta$  (see [3]):

$$\omega = -\frac{v}{r} [k_2(\delta - \arctan(-k_1\phi)) + (1 + \frac{k_1}{1 + (k_1\phi)^2})\sin(\delta)]$$
 (6)

# 4 Vector Field

Each of these feedback control laws for the heading, eq. (4) and eq. (5), specifies a heading vector at every point in the position space by construction. Each control law (eq. (4) and eq. (4)) describes a stabilizing vector field.



Figure 2: vector field defined by  $\delta = atan(-k_1 * \phi)$  [3]

# 5 Evaluation

Assumptions:

- The described vector field defines a motion the human user would like to follow.
- The human wants to align the wheelchair orientation with the vector field.

If the wheelchair trajectory does not follow the vector field, the user tries to correct the heading.

# 5.1 Solution-Approach

Eq. (4) and eq. (5) are defining  $\delta_{ref}$  as a function of  $\phi$  or r and  $\phi$ . For every sample-time, the current heading  $\delta$  can be computed and then compared to the reference value from the vector field:

$$e = \delta - \delta_{ref} \tag{7}$$

The evaluation is done on slow (heading) subsystem. Note: The reference vector field is a geometrical definition of the heading reference to some goal pose.

# References

- [1] J. J. Park and B. Kuipers, "Feedback motion planning via non-holonomic RRT\* for mobile robots," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, Sep. 2015, pp. 4035–4040.
- [2] J. J. Park, "Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments," p. 110.
- [3] J. J. Park and B. Kuipers, "A smooth control law for graceful motion of differential wheeled mobile robots in 2D environment," in 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, May 2011, pp. 4896–4902.