Supplementary information to: J Biomol NMR

Cross-correlated relaxation measurements under adiabatic sweeps: determination of local order in proteins

Pavel Kadeřávek, Sarina Grutsch, Nicola Salvi, Martin Tollinger, Lukáš Žídek, Geoffrey Bodenhausen, Fabien Ferrage

Pavel Kadeřávek · Lukáš Žídek

National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic

Pavel Kadeřávek - Nicola Salvi - Geoffrey Bodenhausen

Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Sarina Grutsch · Martin Tollinger

Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria

Pavel Kadeřávek \cdot Geoffrey Bodenhausen \cdot Fabien Ferrage (\boxtimes)

Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, 75005 Paris, France

Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, 75005 Paris, France CNRS, UMR 7203 LBM, 75005 Paris, France, Tel.: +123-45-678910, Fax: +123-45-678910

e-mail: fabien.ferrage@ens.fr

Figure S1: Dependence of the relative error of J(0) on the correlation time τ of the motion (e.g. overall tumbling) in case of a non-isolated ¹⁵N-¹H spin pairs for a) scheme 1 (with an adiabatic pulse) and b) scheme 2 (without an adiabatic pulse). Two additional protons were placed at a distance 2.1 Å(red), 2.5 Å(green), and 2.9 Å(blue) from both the amide nitrogen and proton. The solid, dashed, and dotted lines correspond to the simulations with T_{adiab} a) or T_{xy} b) equal to 40, 60, and 80 ms, respectively. The Chirp pulse was used with the proportion of the ramps $T_r/T_{\text{adiab}} = 0.2$, the sweep width $SW = 10 \,\mathrm{kHz}$, and the maximum amplitude $B_1 = 2.3 \,\mathrm{kHz}$ in the all presented cases of the simulations with the adiabatic pulse. The simulations (it is also valid for the results shown in the figures Fig S2–S6) were performed with MATLAB R2015A [MATLAB] using Spinach 1.5.2440 [Hogben et al(2011)]. The full basis set was used with Redfield relaxation theory [Wangsness and Bloch (1953), Redfield (1965)] using the secular approximation. The internuclear distance $r_{\rm N-H}$ was set to 1.02 Å, the anisotropy of the nitrogen chemical shielding tensor to $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} = -170 \,\mathrm{ppm}$ and the angle between the unique axis of the CSA tensor and the N-H bond to 20.6°. The simulations were performed for a magnetic field $B_0 = 11.75 \,\mathrm{T}$.

Figure S2: Dependence of the relative error of J(0) value on the α parameter in case of a non-isolated $^{15}\text{N-}^{1}\text{H}$ spin pair. Two additional protons were placed at distance 2.1 Å from both the amide nitrogen and proton. The black circle represents a reference case of the simulation for an experiment using the Chirp adiabatic pulse of the total length $T_{\text{adiab}} = 80\,\text{ms}$, the proportion of ramps $T_{\text{r}}/T_{\text{adiab}} = 0.2$, the sweep width $SW = 10\,\text{kHz}$, and the maximum amplitude $B_1 = 2.3\,\text{kHz}$. The red, blue and green points represent an effect of the variation of B_1 , $T_{\text{r}}/T_{\text{adiab}}$, and SW, respectively, while the other parameters were unchanged. B_1 was linearly varied between 1.0 and 5.0 kHz, SW was tested with values 15 and 20 kHz, and the ratio $T_{\text{r}}/T_{\text{adiab}}$ with the values 0.1 and 0.05.

Figure S3: Dependence of the relative error of J(0) (red), η_{xy} (green), and $\eta^{xyz} = \alpha \eta_{xy} + (1-\alpha)\eta_z$ on the relaxation delay T in case of a non-isolated $^{15}\text{N-}^{1}\text{H}$ spin pair. Two additional protons were placed 2.1 Å from both the amide nitrogen and proton. In all cases the length of the adiabatic Chirp pulse was varied between 20 and 100 ms (other parameters were constant: the proportion of ramps $T_r/T_{\text{adiab}} = 0.2$, the sweep width $SW = 10\,\text{kHz}$, and the maximum amplitude $B_1 = 2.3\,\text{kHz}$).

Figure S4: Dependence of the relative error of J(0) on the proton exchange rate ζ . The simulations for various correlation time τ of the motion of an isolated $^{15}\text{N-}^{1}\text{H}$ amide spin pair are distinguished by colors. The 80 ms Chirp pulse was used with the proportion of the ramps $T_{\rm r}/T_{\rm adiab}=0.2$, the sweep width $SW=10\,\mathrm{kHz}$, and the maximum amplitude $B_1=2.3\,\mathrm{kHz}$.

Figure S5: Dependence of the relative error of J(0) value on the α parameter in case of a proton exchange rate $\zeta=10\,\mathrm{Hz}$. The black circle represents a reference case of the simulation for an experiment using the Chirp adiabatic pulse with the total length $T_{\mathrm{adiab}}=80\,\mathrm{ms}$, proportion of the ramps $T_{\mathrm{r}}/T_{\mathrm{adiab}}=0.2$, the sweep width $SW=10\,\mathrm{kHz}$, and the maximum amplitude $B_1=2.3\,\mathrm{kHz}$. The red, blue and green points represent an effect of the variation of B_1 , $T_{\mathrm{r}}/T_{\mathrm{adiab}}$, and SW, respectively, while the other parameters were unchanged. B_1 was linearly varied between 1.0 and 5.0 kHz, SW was tested with the values 15 and 20 kHz, and the ratio $T_{\mathrm{r}}/T_{\mathrm{adiab}}$ with the values 0.1 and 0.05.

Figure S6: Dependence of the relative error of J(0) (red), η_{xy} (green), and $\eta^{xyz} = \alpha \eta_{xy} + (1-\alpha)\eta_z$ on the relaxation delay T in case of a proton exchange rate $\zeta = 10\,\mathrm{Hz}$. In all cases the length of the adiabatic Chirp pulse was varied between 20 and 100 ms (other parameters were constant: the proportion of ramps $T_\mathrm{r}/T_\mathrm{adiab} = 0.2$, the sweep width $SW = 10\,\mathrm{kHz}$, and the maximum amplitude $B_1 = 2.3\,\mathrm{kHz}$).

Figure S7: Dependence of the relative change of the intensities on the residue number of KIX, where $r_{p,q} = (I_{p,q}' - I_{p,q})/I_{p,q}$, $I_{p,q}$ and $I_{p,q}'$ are the intensities in the spectra obtained by standard and adiabatic experiment, respectively. The subscripts p and q denote intensity in spectra derived from terms p and q selected at the beginning and end of the relaxation period T: $p = N_z$ and $q = 2N_zH_z$ (blue), $p = N_z$ and $q = N_z$ (magenta), $p = 2N_zH_z$ and $q = N_z$ (green), $p = 2N_zH_z$ and $q = 2N_zH_z$ (red).

Figure S8: Dependence of the calculated parameters α describing the proportion between η_{xy} and η_z contributions during chirp pulses on the maximum amplitude B_1 of the pulse. The red, blue, and green lines stand for chirp pulses with the sweep widths W=10, 15, and 20 kHz, respectively. The solid, dashed and dotted lines stand for the relative length of the amplitude ramps with respect to the total length of the pulse equal to $T_r/T_{\rm adiab}=0.05,\,0.1,\,{\rm and}\,0.2,\,{\rm respectively}.$

Table S1: Parameters α for selected adiabatic chirp pulses: Dependence of the calculated parameters α describing the relative contribution of η_{xy} and η_z as a function of the parameters of the chirp pulse. The lower and upper subscripts denote the parameter $T_{\rm r}/T_{\rm adiab}$ (the proportion of the length of the amplitude ramp with respect to the total length of the pulse) and the total sweep width W (kHz), respectively. For instance $\alpha_{0.1}^{10}$ corresponds to a 10 kHz sweep width and $T_{\rm r}=0.1T_{\rm adiab}$

$B_1/{ m Hz}$	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$lpha_{0.2}^{20}$
1000	0.2727	0.2704	0.2648	0.1908	0.1898	0.1872	0.1466	0.1460	0.1445
1010	0.2750	0.2727	0.2670	0.1926	0.1915	0.1889	0.1479	0.1473	0.1458
1020	0.2773	0.2749	0.2692	0.1943	0.1932	0.1905	0.1493	0.1487	0.1471
1030	0.2796	0.2772	0.2713	0.1960	0.1949	0.1921	0.1507	0.1500	0.1485
1040	0.2819	0.2794	0.2735	0.1977	0.1966	0.1938	0.1520	0.1514	0.1498
1050	0.2842	0.2817	0.2756	0.1994	0.1983	0.1954	0.1534	0.1527	0.1511
1060	0.2865	0.2839	0.2777	0.2011	0.2000	0.1971	0.1547	0.1541	0.1524
1070	0.2887	0.2862	0.2799	0.2028	0.2016	0.1987	0.1561	0.1554	0.1537
1080	0.2910	0.2884	0.2820	0.2045	0.2033	0.2003	0.1574	0.1567	0.1550
1090	0.2933	0.2906	0.2841	0.2062	0.2050	0.2019	0.1588	0.1581	0.1563
1100	0.2955	0.2928	0.2862	0.2079	0.2067	0.2035	0.1601	0.1594	0.1576
1110	0.2978	0.2950	0.2883	0.2096	0.2083	0.2052	0.1614	0.1607	0.1589
1120	0.3000	0.2972	0.2903	0.2113	0.2100	0.2068	0.1628	0.1620	0.1602
1130	0.3022	0.2994	0.2924	0.2130	0.2116	0.2084	0.1641	0.1634	0.1615
1140	0.3044	0.3015	0.2945	0.2146	0.2133	0.2100	0.1655	0.1647	0.1628
1150	0.3067	0.3037	0.2965	0.2163	0.2149	0.2116	0.1668	0.1660	0.1641
1160	0.3089	0.3059	0.2986	0.2180	0.2166	0.2131	0.1681	0.1673	0.1653
1170	0.3111	0.3080	0.3006	0.2197	0.2182	0.2147	0.1694	0.1686	0.1666
1180	0.3133	0.3102	0.3027	0.2213	0.2199	0.2163	0.1708	0.1699	0.1679
1190	0.3154	0.3123	0.3047	0.2230	0.2215	0.2179	0.1721	0.1713	0.1692
1200	0.3176	0.3144	0.3067	0.2246	0.2231	0.2195	0.1734	0.1726	0.1704
1210	0.3198	0.3166	0.3087	0.2263	0.2248	0.2210	0.1747	0.1739	0.1717
1220	0.3220	0.3187	0.3107	0.2279	0.2264	0.2226	0.1761	0.1752	0.1730
1230	0.3241	0.3208	0.3127	0.2296	0.2280	0.2242	0.1774	0.1765	0.1743
1240	0.3263	0.3229	0.3147	0.2312	0.2296	0.2257	0.1787	0.1778	0.1755
1250	0.3284	0.3250	0.3166	0.2329	0.2312	0.2273	0.1800	0.1791	0.1768
1260	0.3305	0.3270	0.3186	0.2345	0.2329	0.2288	0.1813	0.1804	0.1780
1270	0.3326	0.3291	0.3206	0.2361	0.2345	0.2304	0.1826	0.1817	0.1793
1280	0.3348	0.3312	0.3225	0.2377	0.2361	0.2319	0.1839	0.1829	0.1806
1290	0.3369	0.3332	0.3244	0.2394	0.2377	0.2334	0.1852	0.1842	0.1818
1300	0.3390	0.3353	0.3264	0.2410	0.2393	0.2350	0.1865	0.1855	0.1831
1310	0.3411	0.3373	0.3283	0.2426	0.2408	0.2365	0.1878	0.1868	0.1843
1320	0.3432	0.3394	0.3302	0.2442	0.2424	0.2380	0.1891	0.1881	0.1855
1330	0.3452	0.3414	0.3321	0.2458	0.2440	0.2396	0.1904	0.1894	0.1868
1340	0.3473	0.3434	0.3340	0.2474	0.2456	0.2411	0.1917	0.1906	0.1880

B_1/Hz	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
1350	0.3494	0.3454	0.3359	0.2490	0.2472	0.2426	0.1930	0.1919	0.1893
1360	0.3514	0.3474	0.3378	0.2506	0.2487	0.2441	0.1943	0.1932	0.1905
1370	0.3535	0.3494	0.3397	0.2522	0.2503	0.2456	0.1956	0.1945	0.1917
1380	0.3555	0.3514	0.3416	0.2538	0.2519	0.2471	0.1969	0.1957	0.1930
1390	0.3576	0.3534	0.3434	0.2554	0.2534	0.2486	0.1981	0.1970	0.1942
1400	0.3596	0.3554	0.3453	0.2570	0.2550	0.2501	0.1994	0.1983	0.1954
1410	0.3616	0.3574	0.3471	0.2586	0.2566	0.2516	0.2007	0.1995	0.1966
1420	0.3637	0.3593	0.3490	0.2602	0.2581	0.2531	0.2020	0.2008	0.1979
1430	0.3657	0.3613	0.3508	0.2617	0.2597	0.2546	0.2033	0.2021	0.1991
1440	0.3677	0.3632	0.3526	0.2633	0.2612	0.2560	0.2045	0.2033	0.2003
1450	0.3697	0.3652	0.3544	0.2649	0.2627	0.2575	0.2058	0.2046	0.2015
1460	0.3717	0.3671	0.3563	0.2664	0.2643	0.2590	0.2071	0.2058	0.2027
1470	0.3736	0.3690	0.3581	0.2680	0.2658	0.2604	0.2083	0.2071	0.2039
1480	0.3756	0.3710	0.3599	0.2696	0.2673	0.2619	0.2096	0.2083	0.2052
1490	0.3776	0.3729	0.3616	0.2711	0.2689	0.2634	0.2109	0.2096	0.2064
1500	0.3795	0.3748	0.3634	0.2727	0.2704	0.2648	0.2121	0.2108	0.2076
1510	0.3815	0.3767	0.3652	0.2742	0.2719	0.2663	0.2134	0.2121	0.2088
1520	0.3834	0.3786	0.3670	0.2758	0.2734	0.2677	0.2146	0.2133	0.2100
1530	0.3854	0.3805	0.3687	0.2773	0.2749	0.2692	0.2159	0.2145	0.2112
1540	0.3873	0.3823	0.3705	0.2788	0.2764	0.2706	0.2172	0.2158	0.2124
1550	0.3892	0.3842	0.3722	0.2804	0.2779	0.2720	0.2184	0.2170	0.2135
1560	0.3912	0.3861	0.3739	0.2819	0.2794	0.2735	0.2197	0.2182	0.2147
1570	0.3931	0.3879	0.3757	0.2834	0.2809	0.2749	0.2209	0.2195	0.2159
1580	0.3950	0.3898	0.3774	0.2849	0.2824	0.2763	0.2221	0.2207	0.2171
1590	0.3969	0.3916	0.3791	0.2865	0.2839	0.2777	0.2234	0.2219	0.2183
1600	0.3988	0.3935	0.3808	0.2880	0.2854	0.2792	0.2246	0.2231	0.2195
1610	0.4007	0.3953	0.3825	0.2895	0.2869	0.2806	0.2259	0.2244	0.2206
1620	0.4025	0.3971	0.3842	0.2910	0.2884	0.2820	0.2271	0.2256	0.2218
1630	0.4044	0.3989	0.3859	0.2925	0.2899	0.2834	0.2283	0.2268	0.2230
1640	0.4063	0.4007	0.3876	0.2940	0.2913	0.2848	0.2296	0.2280	0.2242
1650	0.4081	0.4025	0.3893	0.2955	0.2928	0.2862	0.2308	0.2292	0.2253
1660	0.4100	0.4043	0.3909	0.2970	0.2943	0.2876	0.2320	0.2304	0.2265
1670	0.4118	0.4061	0.3926	0.2985	0.2957	0.2890	0.2333	0.2316	0.2277
1680	0.4137	0.4079	0.3942	0.3000	0.2972	0.2903	0.2345	0.2329	0.2288
1690	0.4155	0.4097	0.3959	0.3015	0.2986	0.2917	0.2357	0.2341	0.2300
1700	0.4173	0.4114	0.3975	0.3030	0.3001	0.2931	0.2369	0.2353	0.2311
1710	0.4192	0.4132	0.3991	0.3044	0.3015	0.2945	0.2382	0.2365	0.2323
1720	0.4210	0.4150	0.4008	0.3059	0.3030	0.2959	0.2394	0.2377	0.2334
1730	0.4228	0.4167	0.4024	0.3074	0.3044	0.2972	0.2406	0.2389	0.2346
1740	0.4246	0.4185	0.4040	0.3089	0.3059	0.2986	0.2418	0.2400	0.2357
1750	0.4264	0.4202	0.4056	0.3103	0.3073	0.2999	0.2430	0.2412	0.2369
1760	0.4282	0.4219	0.4072	0.3118	0.3087	0.3013	0.2442	0.2424	0.2380

B_1/Hz	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
1770	0.4299	0.4236	0.4088	0.3133	0.3102	0.3027	0.2454	0.2436	0.2392
1780	0.4317	0.4254	0.4104	0.3147	0.3116	0.3040	0.2466	0.2448	0.2403
1790	0.4335	0.4271	0.4120	0.3162	0.3130	0.3053	0.2478	0.2460	0.2415
1800	0.4352	0.4288	0.4135	0.3176	0.3144	0.3067	0.2490	0.2472	0.2426
1810	0.4370	0.4305	0.4151	0.3191	0.3158	0.3080	0.2502	0.2484	0.2437
1820	0.4387	0.4322	0.4166	0.3205	0.3173	0.3094	0.2514	0.2495	0.2449
1830	0.4405	0.4338	0.4182	0.3220	0.3187	0.3107	0.2526	0.2507	0.2460
1840	0.4422	0.4355	0.4197	0.3234	0.3201	0.3120	0.2538	0.2519	0.2471
1850	0.4440	0.4372	0.4213	0.3248	0.3215	0.3133	0.2550	0.2531	0.2482
1860	0.4457	0.4388	0.4228	0.3263	0.3229	0.3147	0.2562	0.2542	0.2494
1870	0.4474	0.4405	0.4243	0.3277	0.3243	0.3160	0.2574	0.2554	0.2505
1880	0.4491	0.4422	0.4259	0.3291	0.3257	0.3173	0.2586	0.2566	0.2516
1890	0.4508	0.4438	0.4274	0.3305	0.3270	0.3186	0.2598	0.2577	0.2527
1900	0.4525	0.4454	0.4289	0.3319	0.3284	0.3199	0.2609	0.2589	0.2538
1910	0.4542	0.4471	0.4304	0.3334	0.3298	0.3212	0.2621	0.2600	0.2549
1920	0.4559	0.4487	0.4319	0.3348	0.3312	0.3225	0.2633	0.2612	0.2560
1930	0.4576	0.4503	0.4334	0.3362	0.3326	0.3238	0.2645	0.2624	0.2571
1940	0.4592	0.4519	0.4349	0.3376	0.3339	0.3251	0.2657	0.2635	0.2582
1950	0.4609	0.4535	0.4363	0.3390	0.3353	0.3264	0.2668	0.2647	0.2593
1960	0.4626	0.4551	0.4378	0.3404	0.3367	0.3277	0.2680	0.2658	0.2604
1970	0.4642	0.4567	0.4393	0.3418	0.3380	0.3289	0.2692	0.2670	0.2615
1980	0.4659	0.4583	0.4407	0.3432	0.3394	0.3302	0.2703	0.2681	0.2626
1990	0.4675	0.4599	0.4422	0.3446	0.3407	0.3315	0.2715	0.2692	0.2637
2000	0.4692	0.4615	0.4436	0.3459	0.3421	0.3328	0.2727	0.2704	0.2648
2010	0.4708	0.4631	0.4451	0.3473	0.3434	0.3340	0.2738	0.2715	0.2659
2020	0.4724	0.4646	0.4465	0.3487	0.3448	0.3353	0.2750	0.2727	0.2670
2030	0.4740	0.4662	0.4479	0.3501	0.3461	0.3366	0.2761	0.2738	0.2681
2040	0.4756	0.4677	0.4493	0.3514	0.3474	0.3378	0.2773	0.2749	0.2692
2050	0.4772	0.4693	0.4508	0.3528	0.3488	0.3391	0.2784	0.2761	0.2702
2060	0.4788	0.4708	0.4522	0.3542	0.3501	0.3403	0.2796	0.2772	0.2713
2070	0.4804	0.4724	0.4536	0.3555	0.3514	0.3416	0.2807	0.2783	0.2724
2080	0.4820	0.4739	0.4550	0.3569	0.3528	0.3428	0.2819	0.2794	0.2735
2090	0.4836	0.4754	0.4564	0.3583	0.3541	0.3440	0.2830	0.2806	0.2745
2100	0.4852	0.4769	0.4578	0.3596	0.3554	0.3453	0.2842	0.2817	0.2756
2110	0.4868	0.4784	0.4591	0.3610	0.3567	0.3465	0.2853	0.2828	0.2767
2120	0.4883	0.4799	0.4605	0.3623	0.3580	0.3477	0.2865	0.2839	0.2777
2130	0.4899	0.4814	0.4619	0.3637	0.3593	0.3490	0.2876	0.2850	0.2788
2140	0.4915	0.4829	0.4633	0.3650	0.3606	0.3502	0.2887	0.2862	0.2799
2150	0.4930	0.4844	0.4646	0.3663	0.3619	0.3514	0.2899	0.2873	0.2809
2160	0.4945	0.4859	0.4660	0.3677	0.3632	0.3526	0.2910	0.2884	0.2820
2170	0.4961	0.4874	0.4673	0.3690	0.3645	0.3538	0.2921	0.2895	0.2830
2180	0.4976	0.4889	0.4687	0.3703	0.3658	0.3550	0.2933	0.2906	0.2841

$B_1/{ m Hz}$	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
2190	0.4991	0.4903	0.4700	0.3717	0.3671	0.3563	0.2944	0.2917	0.2851
2200	0.5007	0.4918	0.4713	0.3730	0.3684	0.3575	0.2955	0.2928	0.2862
2210	0.5022	0.4932	0.4727	0.3743	0.3697	0.3587	0.2966	0.2939	0.2872
2220	0.5037	0.4947	0.4740	0.3756	0.3710	0.3599	0.2978	0.2950	0.2883
2230	0.5052	0.4961	0.4753	0.3769	0.3722	0.3610	0.2989	0.2961	0.2893
2240	0.5067	0.4976	0.4766	0.3782	0.3735	0.3622	0.3000	0.2972	0.2903
2250	0.5082	0.4990	0.4779	0.3795	0.3748	0.3634	0.3011	0.2983	0.2914
2260	0.5097	0.5004	0.4792	0.3808	0.3761	0.3646	0.3022	0.2994	0.2924
2270	0.5111	0.5018	0.4805	0.3821	0.3773	0.3658	0.3033	0.3005	0.2934
2280	0.5126	0.5033	0.4818	0.3834	0.3786	0.3670	0.3044	0.3015	0.2945
2290	0.5141	0.5047	0.4831	0.3847	0.3798	0.3681	0.3056	0.3026	0.2955
2300	0.5156	0.5061	0.4843	0.3860	0.3811	0.3693	0.3067	0.3037	0.2965
2310	0.5170	0.5075	0.4856	0.3873	0.3823	0.3705	0.3078	0.3048	0.2976
2320	0.5185	0.5089	0.4869	0.3886	0.3836	0.3716	0.3089	0.3059	0.2986
2330	0.5199	0.5103	0.4881	0.3899	0.3848	0.3728	0.3100	0.3069	0.2996
2340	0.5214	0.5116	0.4894	0.3912	0.3861	0.3739	0.3111	0.3080	0.3006
2350	0.5228	0.5130	0.4907	0.3924	0.3873	0.3751	0.3122	0.3091	0.3016
2360	0.5242	0.5144	0.4919	0.3937	0.3886	0.3762	0.3133	0.3102	0.3027
2370	0.5257	0.5158	0.4931	0.3950	0.3898	0.3774	0.3144	0.3112	0.3037
2380	0.5271	0.5171	0.4944	0.3963	0.3910	0.3785	0.3154	0.3123	0.3047
2390	0.5285	0.5185	0.4956	0.3975	0.3922	0.3797	0.3165	0.3134	0.3057
2400	0.5299	0.5198	0.4968	0.3988	0.3935	0.3808	0.3176	0.3144	0.3067
2410	0.5313	0.5212	0.4981	0.4000	0.3947	0.3820	0.3187	0.3155	0.3077
2420	0.5327	0.5225	0.4993	0.4013	0.3959	0.3831	0.3198	0.3166	0.3087
2430	0.5341	0.5238	0.5005	0.4025	0.3971	0.3842	0.3209	0.3176	0.3097
2440	0.5355	0.5252	0.5017	0.4038	0.3983	0.3853	0.3220	0.3187	0.3107
2450	0.5369	0.5265	0.5029	0.4050	0.3995	0.3865	0.3230	0.3197	0.3117
2460	0.5383	0.5278	0.5041	0.4063	0.4007	0.3876	0.3241	0.3208	0.3127
2470	0.5396	0.5291	0.5053	0.4075	0.4019	0.3887	0.3252	0.3218	0.3137
2480	0.5410	0.5304	0.5065	0.4088	0.4031	0.3898	0.3263	0.3229	0.3147
2490	0.5424	0.5317	0.5077	0.4100	0.4043	0.3909	0.3273	0.3239	0.3156
2500	0.5437	0.5330	0.5088	0.4112	0.4055	0.3920	0.3284	0.3250	0.3166
2510	0.5451	0.5343	0.5100	0.4125	0.4067	0.3931	0.3295	0.3260	0.3176
2520	0.5464	0.5356	0.5112	0.4137	0.4079	0.3942	0.3305	0.3270	0.3186
2530	0.5478	0.5369	0.5123	0.4149	0.4091	0.3953	0.3316	0.3281	0.3196
2540	0.5491	0.5382	0.5135	0.4161	0.4103	0.3964	0.3326	0.3291	0.3206
2550	0.5505	0.5395	0.5147	0.4173	0.4114	0.3975	0.3337	0.3301	0.3215
2560	0.5518	0.5407	0.5158	0.4186	0.4126	0.3986	0.3348	0.3312	0.3225
2570	0.5531	0.5420	0.5170	0.4198	0.4138	0.3997	0.3358	0.3322	0.3235
2580	0.5544	0.5433	0.5181	0.4210	0.4150	0.4008	0.3369	0.3332	0.3244
2590	0.5557	0.5445	0.5192	0.4222	0.4161	0.4018	0.3379	0.3343	0.3254
2600	0.5571	0.5458	0.5204	0.4234	0.4173	0.4029	0.3390	0.3353	0.3264

$B_1/{ m Hz}$	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
2610	0.5584	0.5470	0.5215	0.4246	0.4185	0.4040	0.3400	0.3363	0.3273
2620	0.5597	0.5483	0.5226	0.4258	0.4196	0.4051	0.3411	0.3373	0.3283
2630	0.5609	0.5495	0.5237	0.4270	0.4208	0.4061	0.3421	0.3384	0.3293
2640	0.5622	0.5507	0.5248	0.4282	0.4219	0.4072	0.3432	0.3394	0.3302
2650	0.5635	0.5520	0.5260	0.4293	0.4231	0.4083	0.3442	0.3404	0.3312
2660	0.5648	0.5532	0.5271	0.4305	0.4242	0.4093	0.3452	0.3414	0.3321
2670	0.5661	0.5544	0.5282	0.4317	0.4254	0.4104	0.3463	0.3424	0.3331
2680	0.5673	0.5556	0.5293	0.4329	0.4265	0.4114	0.3473	0.3434	0.3340
2690	0.5686	0.5568	0.5303	0.4341	0.4276	0.4125	0.3484	0.3444	0.3350
2700	0.5699	0.5580	0.5314	0.4352	0.4288	0.4135	0.3494	0.3454	0.3359
2710	0.5711	0.5592	0.5325	0.4364	0.4299	0.4146	0.3504	0.3464	0.3369
2720	0.5724	0.5604	0.5336	0.4376	0.4310	0.4156	0.3514	0.3474	0.3378
2730	0.5736	0.5616	0.5347	0.4387	0.4322	0.4166	0.3525	0.3484	0.3388
2740	0.5749	0.5628	0.5357	0.4399	0.4333	0.4177	0.3535	0.3494	0.3397
2750	0.5761	0.5640	0.5368	0.4411	0.4344	0.4187	0.3545	0.3504	0.3406
2760	0.5773	0.5651	0.5379	0.4422	0.4355	0.4197	0.3555	0.3514	0.3416
2770	0.5786	0.5663	0.5389	0.4434	0.4366	0.4208	0.3566	0.3524	0.3425
2780	0.5798	0.5675	0.5400	0.4445	0.4377	0.4218	0.3576	0.3534	0.3434
2790	0.5810	0.5686	0.5410	0.4457	0.4388	0.4228	0.3586	0.3544	0.3444
2800	0.5822	0.5698	0.5421	0.4468	0.4400	0.4238	0.3596	0.3554	0.3453
2810	0.5834	0.5709	0.5431	0.4480	0.4411	0.4249	0.3606	0.3564	0.3462
2820	0.5846	0.5721	0.5442	0.4491	0.4422	0.4259	0.3616	0.3574	0.3471
2830	0.5858	0.5732	0.5452	0.4502	0.4433	0.4269	0.3626	0.3584	0.3481
2840	0.5870	0.5744	0.5462	0.4514	0.4443	0.4279	0.3637	0.3593	0.3490
2850	0.5882	0.5755	0.5472	0.4525	0.4454	0.4289	0.3647	0.3603	0.3499
2860	0.5894	0.5766	0.5483	0.4536	0.4465	0.4299	0.3657	0.3613	0.3508
2870	0.5906	0.5778	0.5493	0.4548	0.4476	0.4309	0.3667	0.3623	0.3517
2880	0.5918	0.5789	0.5503	0.4559	0.4487	0.4319	0.3677	0.3632	0.3526
2890	0.5929	0.5800	0.5513	0.4570	0.4498	0.4329	0.3687	0.3642	0.3535
2900	0.5941	0.5811	0.5523	0.4581	0.4509	0.4339	0.3697	0.3652	0.3544
2910	0.5953	0.5822	0.5533	0.4592	0.4519	0.4349	0.3707	0.3662	0.3553
2920	0.5964	0.5833	0.5543	0.4604	0.4530	0.4358	0.3717	0.3671	0.3563
2930	0.5976	0.5844	0.5553	0.4615	0.4541	0.4368	0.3726	0.3681	0.3572
2940	0.5988	0.5855	0.5563	0.4626	0.4551	0.4378	0.3736	0.3690	0.3581
2950	0.5999	0.5866	0.5573	0.4637	0.4562	0.4388	0.3746	0.3700	0.3590
2960	0.6010	0.5877	0.5583	0.4648	0.4573	0.4398	0.3756	0.3710	0.3599
2970	0.6022	0.5888	0.5592	0.4659	0.4583	0.4407	0.3766	0.3719	0.3607
2980	0.6033	0.5899	0.5602	0.4670	0.4594	0.4417	0.3776	0.3729	0.3616
2990	0.6044	0.5910	0.5612	0.4681	0.4604	0.4427	0.3786	0.3738	0.3625
3000	0.6056	0.5920	0.5621	0.4692	0.4615	0.4436	0.3795	0.3748	0.3634
3010	0.6067	0.5931	0.5631	0.4702	0.4625	0.4446	0.3805	0.3757	0.3643
3020	0.6078	0.5942	0.5641	0.4713	0.4636	0.4455	0.3815	0.3767	0.3652

$B_1/{ m Hz}$	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
3030	0.6089	0.5952	0.5650	0.4724	0.4646	0.4465	0.3825	0.3776	0.3661
3040	0.6100	0.5963	0.5660	0.4735	0.4657	0.4475	0.3834	0.3786	0.3670
3050	0.6111	0.5973	0.5669	0.4746	0.4667	0.4484	0.3844	0.3795	0.3678
3060	0.6122	0.5984	0.5679	0.4756	0.4677	0.4493	0.3854	0.3805	0.3687
3070	0.6133	0.5994	0.5688	0.4767	0.4688	0.4503	0.3864	0.3814	0.3696
3080	0.6144	0.6005	0.5697	0.4778	0.4698	0.4512	0.3873	0.3823	0.3705
3090	0.6155	0.6015	0.5707	0.4788	0.4708	0.4522	0.3883	0.3833	0.3713
3100	0.6166	0.6025	0.5716	0.4799	0.4718	0.4531	0.3892	0.3842	0.3722
3110	0.6177	0.6035	0.5725	0.4810	0.4729	0.4540	0.3902	0.3851	0.3731
3120	0.6188	0.6046	0.5734	0.4820	0.4739	0.4550	0.3912	0.3861	0.3739
3130	0.6198	0.6056	0.5744	0.4831	0.4749	0.4559	0.3921	0.3870	0.3748
3140	0.6209	0.6066	0.5753	0.4841	0.4759	0.4568	0.3931	0.3879	0.3757
3150	0.6220	0.6076	0.5762	0.4852	0.4769	0.4578	0.3940	0.3889	0.3765
3160	0.6230	0.6086	0.5771	0.4862	0.4779	0.4587	0.3950	0.3898	0.3774
3170	0.6241	0.6096	0.5780	0.4873	0.4789	0.4596	0.3959	0.3907	0.3783
3180	0.6251	0.6106	0.5789	0.4883	0.4799	0.4605	0.3969	0.3916	0.3791
3190	0.6262	0.6116	0.5798	0.4894	0.4809	0.4614	0.3978	0.3925	0.3800
3200	0.6272	0.6126	0.5807	0.4904	0.4819	0.4623	0.3988	0.3935	0.3808
3210	0.6283	0.6136	0.5816	0.4915	0.4829	0.4633	0.3997	0.3944	0.3817
3220	0.6293	0.6146	0.5825	0.4925	0.4839	0.4642	0.4007	0.3953	0.3825
3230	0.6303	0.6156	0.5834	0.4935	0.4849	0.4651	0.4016	0.3962	0.3834
3240	0.6314	0.6165	0.5842	0.4945	0.4859	0.4660	0.4025	0.3971	0.3842
3250	0.6324	0.6175	0.5851	0.4956	0.4869	0.4669	0.4035	0.3980	0.3851
3260	0.6334	0.6185	0.5860	0.4966	0.4879	0.4678	0.4044	0.3989	0.3859
3270	0.6344	0.6195	0.5869	0.4976	0.4889	0.4687	0.4053	0.3998	0.3867
3280	0.6354	0.6204	0.5877	0.4986	0.4898	0.4696	0.4063	0.4007	0.3876
3290	0.6365	0.6214	0.5886	0.4996	0.4908	0.4704	0.4072	0.4016	0.3884
3300	0.6375	0.6223	0.5895	0.5007	0.4918	0.4713	0.4081	0.4025	0.3893
3310	0.6385	0.6233	0.5903	0.5017	0.4927	0.4722	0.4091	0.4034	0.3901
3320	0.6395	0.6242	0.5912	0.5027	0.4937	0.4731	0.4100	0.4043	0.3909
3330	0.6405	0.6252	0.5920	0.5037	0.4947	0.4740	0.4109	0.4052	0.3917
3340	0.6414	0.6261	0.5929	0.5047	0.4956	0.4749	0.4118	0.4061	0.3926
3350	0.6424	0.6271	0.5937	0.5057	0.4966	0.4757	0.4128	0.4070	0.3934
3360	0.6434	0.6280	0.5946	0.5067	0.4976	0.4766	0.4137	0.4079	0.3942
3370	0.6444	0.6289	0.5954	0.5077	0.4985	0.4775	0.4146	0.4088	0.3951
3380	0.6454	0.6299	0.5962	0.5087	0.4995	0.4783	0.4155	0.4097	0.3959
3390	0.6463	0.6308	0.5971	0.5097	0.5004	0.4792	0.4164	0.4106	0.3967
3400	0.6473	0.6317	0.5979	0.5107	0.5014	0.4801	0.4173	0.4114	0.3975
3410	0.6483	0.6326	0.5987	0.5116	0.5023	0.4809	0.4182	0.4123	0.3983
3420	0.6492	0.6335	0.5996	0.5126	0.5033	0.4818	0.4192	0.4132	0.3991
3430	0.6502	0.6344	0.6004	0.5136	0.5042	0.4826	0.4201	0.4141	0.4000
3440	0.6512	0.6353	0.6012	0.5146	0.5051	0.4835	0.4210	0.4150	0.4008

$B_1/{ m Hz}$	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
3450	0.6521	0.6362	0.6020	0.5156	0.5061	0.4843	0.4219	0.4158	0.4016
3460	0.6531	0.6371	0.6028	0.5165	0.5070	0.4852	0.4228	0.4167	0.4024
3470	0.6540	0.6380	0.6036	0.5175	0.5079	0.4860	0.4237	0.4176	0.4032
3480	0.6549	0.6389	0.6044	0.5185	0.5089	0.4869	0.4246	0.4185	0.4040
3490	0.6559	0.6398	0.6052	0.5194	0.5098	0.4877	0.4255	0.4193	0.4048
3500	0.6568	0.6407	0.6060	0.5204	0.5107	0.4886	0.4264	0.4202	0.4056
3510	0.6577	0.6416	0.6068	0.5214	0.5116	0.4894	0.4273	0.4211	0.4064
3520	0.6587	0.6425	0.6076	0.5223	0.5126	0.4902	0.4282	0.4219	0.4072
3530	0.6596	0.6433	0.6084	0.5233	0.5135	0.4911	0.4290	0.4228	0.4080
3540	0.6605	0.6442	0.6092	0.5242	0.5144	0.4919	0.4299	0.4236	0.4088
3550	0.6614	0.6451	0.6100	0.5252	0.5153	0.4927	0.4308	0.4245	0.4096
3560	0.6623	0.6460	0.6108	0.5261	0.5162	0.4936	0.4317	0.4254	0.4104
3570	0.6633	0.6468	0.6116	0.5271	0.5171	0.4944	0.4326	0.4262	0.4112
3580	0.6642	0.6477	0.6123	0.5280	0.5180	0.4952	0.4335	0.4271	0.4120
3590	0.6651	0.6485	0.6131	0.5290	0.5189	0.4960	0.4344	0.4279	0.4127
3600	0.6660	0.6494	0.6139	0.5299	0.5198	0.4968	0.4352	0.4288	0.4135
3610	0.6669	0.6502	0.6147	0.5308	0.5207	0.4977	0.4361	0.4296	0.4143
3620	0.6677	0.6511	0.6154	0.5318	0.5216	0.4985	0.4370	0.4305	0.4151
3630	0.6686	0.6519	0.6162	0.5327	0.5225	0.4993	0.4379	0.4313	0.4159
3640	0.6695	0.6528	0.6169	0.5336	0.5234	0.5001	0.4387	0.4322	0.4166
3650	0.6704	0.6536	0.6177	0.5346	0.5243	0.5009	0.4396	0.4330	0.4174
3660	0.6713	0.6544	0.6185	0.5355	0.5252	0.5017	0.4405	0.4338	0.4182
3670	0.6722	0.6553	0.6192	0.5364	0.5261	0.5025	0.4414	0.4347	0.4190
3680	0.6730	0.6561	0.6200	0.5373	0.5269	0.5033	0.4422	0.4355	0.4197
3690	0.6739	0.6569	0.6207	0.5383	0.5278	0.5041	0.4431	0.4363	0.4205
3700	0.6748	0.6578	0.6214	0.5392	0.5287	0.5049	0.4440	0.4372	0.4213
3710	0.6756	0.6586	0.6222	0.5401	0.5296	0.5057	0.4448	0.4380	0.4221
3720	0.6765	0.6594	0.6229	0.5410	0.5304	0.5065	0.4457	0.4388	0.4228
3730	0.6774	0.6602	0.6237	0.5419	0.5313	0.5073	0.4465	0.4397	0.4236
3740	0.6782	0.6610	0.6244	0.5428	0.5322	0.5081	0.4474	0.4405	0.4243
3750	0.6791	0.6618	0.6251	0.5437	0.5330	0.5088	0.4482	0.4413	0.4251
3760	0.6799	0.6626		0.5446	0.5339	0.5096	0.4491	0.4422	0.4259
3770	0.6807	0.6634	0.6266	0.5455	0.5348	0.5104	0.4500	0.4430	0.4266
3780	0.6816	0.6642	0.6273	0.5464	0.5356	0.5112	0.4508	0.4438	0.4274
3790	0.6824	0.6650	0.6280	0.5473	0.5365	0.5120	0.4517	0.4446	0.4281
3800	0.6833	0.6658	0.6287	0.5482	0.5373	0.5127	0.4525	0.4454	0.4289
3810	0.6841	0.6666	0.6294	0.5491	0.5382	0.5135	0.4534	0.4463	0.4296
3820	0.6849	0.6674	0.6302	0.5500	0.5390	0.5143	0.4542	0.4471	0.4304
3830	0.6858	0.6682	0.6309	0.5509	0.5399	0.5150	0.4550	0.4479	0.4311
3840	0.6866	0.6690	0.6316	0.5518	0.5407	0.5158	0.4559	0.4487	0.4319
3850	0.6874	0.6697	0.6323	0.5527	0.5416	0.5166	0.4567	0.4495	0.4326
3860	0.6882	0.6705	0.6330	0.5535	0.5424	0.5173	0.4576 Contin	0.4503	0.4334

B_1/Hz	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
3870	0.6890	0.6713	0.6337	0.5544	0.5433	0.5181	0.4584	0.4511	0.4341
3880	0.6898	0.6721	0.6344	0.5553	0.5441	0.5189	0.4592	0.4519	0.4349
3890	0.6906	0.6728	0.6351	0.5562	0.5449	0.5196	0.4601	0.4527	0.4356
3900	0.6915	0.6736	0.6358	0.5571	0.5458	0.5204	0.4609	0.4535	0.4363
3910	0.6923	0.6743	0.6365	0.5579	0.5466	0.5211	0.4617	0.4543	0.4371
3920	0.6931	0.6751	0.6371	0.5588	0.5474	0.5219	0.4626	0.4551	0.4378
3930	0.6938	0.6759	0.6378	0.5597	0.5483	0.5226	0.4634	0.4559	0.4385
3940	0.6946	0.6766	0.6385	0.5605	0.5491	0.5234	0.4642	0.4567	0.4393
3950	0.6954	0.6774	0.6392	0.5614	0.5499	0.5241	0.4650	0.4575	0.4400
3960	0.6962	0.6781	0.6399	0.5622	0.5507	0.5248	0.4659	0.4583	0.4407
3970	0.6970	0.6789	0.6406	0.5631	0.5515	0.5256	0.4667	0.4591	0.4415
3980	0.6978	0.6796	0.6412	0.5639	0.5524	0.5263	0.4675	0.4599	0.4422
3990	0.6986	0.6803	0.6419	0.5648	0.5532	0.5271	0.4683	0.4607	0.4429
4000	0.6993	0.6811	0.6426	0.5657	0.5540	0.5278	0.4692	0.4615	0.4436
4010	0.7001	0.6818	0.6432	0.5665	0.5548	0.5285	0.4700	0.4623	0.4443
4020	0.7009	0.6825	0.6439	0.5673	0.5556	0.5293	0.4708	0.4631	0.4451
4030	0.7017	0.6833	0.6446	0.5682	0.5564	0.5300	0.4716	0.4638	0.4458
4040	0.7024	0.6840	0.6452	0.5690	0.5572	0.5307	0.4724	0.4646	0.4465
4050	0.7032	0.6847	0.6459	0.5699	0.5580	0.5314	0.4732	0.4654	0.4472
4060	0.7039	0.6854	0.6465	0.5707	0.5588	0.5322	0.4740	0.4662	0.4479
4070	0.7047	0.6862	0.6472	0.5715	0.5596	0.5329	0.4748	0.4670	0.4486
4080	0.7054	0.6869	0.6478	0.5724	0.5604	0.5336	0.4756	0.4677	0.4493
4090	0.7062	0.6876	0.6485	0.5732	0.5612	0.5343	0.4764	0.4685	0.4501
4100	0.7069	0.6883	0.6491	0.5740	0.5620	0.5350	0.4772	0.4693	0.4508
4110	0.7077	0.6890	0.6498	0.5749	0.5628	0.5357	0.4780	0.4700	0.4515
4120	0.7084	0.6897	0.6504	0.5757	0.5636	0.5365	0.4788	0.4708	0.4522
4130	0.7092	0.6904	0.6511	0.5765	0.5644	0.5372	0.4796	0.4716	0.4529
4140	0.7099	0.6911	0.6517	0.5773	0.5651	0.5379	0.4804	0.4724	0.4536
4150	0.7106	0.6918	0.6523	0.5782	0.5659	0.5386	0.4812	0.4731	0.4543
4160	0.7114	0.6925	0.6530	0.5790	0.5667	0.5393	0.4820	0.4739	0.4550
4170	0.7121	0.6932	0.6536	0.5798	0.5675	0.5400	0.4828	0.4746	0.4557
4180	0.7128	0.6939	0.6542	0.5806	0.5682	0.5407	0.4836	0.4754	0.4564
4190	0.7136	0.6946	0.6548	0.5814	0.5690	0.5414	0.4844	0.4762	0.4571
4200	0.7143	0.6953	0.6555	0.5822	0.5698	0.5421	0.4852	0.4769	0.4578
4210	0.7150	0.6959	0.6561	0.5830	0.5706	0.5428	0.4860	0.4777	0.4585
4220	0.7157	0.6966	0.6567	0.5838	0.5713	0.5435	0.4868	0.4784	0.4591
4230	0.7164	0.6973	0.6573	0.5846	0.5721	0.5442	0.4876	0.4792	0.4598
4240	0.7171	0.6980	0.6579	0.5854	0.5729	0.5448	0.4883	0.4799	0.4605
4250	0.7179	0.6987	0.6586	0.5862	0.5736	0.5455	0.4891	0.4807	0.4612
4260	0.7186	0.6993	0.6592	0.5870	0.5744	0.5462	0.4899	0.4814	0.4619
4270	0.7193	0.7000	0.6598	0.5878	0.5751	0.5469	0.4907	0.4822	0.4626
4280	0.7200	0.7007	0.6604	0.5886	0.5759	0.5476	0.4915	0.4829	0.4633

$B_1/{ m Hz}$	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$lpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
4290	0.7207	0.7013	0.6610	0.5894	0.5766	0.5483	0.4922	0.4837	0.4639
4300	0.7214	0.7020	0.6616	0.5902	0.5774	0.5489	0.4930	0.4844	0.4646
4310	0.7221	0.7026	0.6622	0.5910	0.5781	0.5496	0.4938	0.4852	0.4653
4320	0.7227	0.7033	0.6628	0.5918	0.5789	0.5503	0.4945	0.4859	0.4660
4330	0.7234	0.7040	0.6634	0.5926	0.5796	0.5510	0.4953	0.4866	0.4666
4340	0.7241	0.7046	0.6640	0.5933	0.5804	0.5516	0.4961	0.4874	0.4673
4350	0.7248	0.7053	0.6646	0.5941	0.5811	0.5523	0.4968	0.4881	0.4680
4360	0.7255	0.7059	0.6652	0.5949	0.5819	0.5530	0.4976	0.4889	0.4687
4370	0.7262	0.7065	0.6658	0.5957	0.5826	0.5536	0.4984	0.4896	0.4693
4380	0.7268	0.7072	0.6664	0.5964	0.5833	0.5543	0.4991	0.4903	0.4700
4390	0.7275	0.7078	0.6669	0.5972	0.5841	0.5550	0.4999	0.4910	0.4707
4400	0.7282	0.7085	0.6675	0.5980	0.5848	0.5556	0.5007	0.4918	0.4713
4410	0.7289	0.7091	0.6681	0.5988	0.5855	0.5563	0.5014	0.4925	0.4720
4420	0.7295	0.7097	0.6687	0.5995	0.5863	0.5569	0.5022	0.4932	0.4727
4430	0.7302	0.7104	0.6693	0.6003	0.5870	0.5576	0.5029	0.4940	0.4733
4440	0.7308	0.7110	0.6698	0.6010	0.5877	0.5583	0.5037	0.4947	0.4740
4450	0.7315	0.7116	0.6704	0.6018	0.5884	0.5589	0.5044	0.4954	0.4746
4460	0.7322	0.7123	0.6710	0.6026	0.5892	0.5596	0.5052	0.4961	0.4753
4470	0.7328	0.7129	0.6716	0.6033	0.5899	0.5602	0.5059	0.4968	0.4759
4480	0.7335	0.7135	0.6721	0.6041	0.5906	0.5608	0.5067	0.4976	0.4766
4490	0.7341	0.7141	0.6727	0.6048	0.5913	0.5615	0.5074	0.4983	0.4773
4500	0.7348	0.7147	0.6733	0.6056	0.5920	0.5621	0.5082	0.4990	0.4779
4510	0.7354	0.7153	0.6738	0.6063	0.5927	0.5628	0.5089	0.4997	0.4786
4520	0.7361	0.7160	0.6744	0.6071	0.5934	0.5634	0.5097	0.5004	0.4792
4530	0.7367	0.7166	0.6749	0.6078	0.5942	0.5641	0.5104	0.5011	0.4798
4540	0.7373	0.7172	0.6755	0.6086	0.5949	0.5647	0.5111	0.5018	0.4805
4550	0.7380	0.7178	0.6761	0.6093	0.5956	0.5653	0.5119	0.5025	0.4811
4560	0.7386	0.7184	0.6766	0.6100	0.5963	0.5660	0.5126	0.5033	0.4818
4570	0.7392	0.7190	0.6772	0.6108	0.5970	0.5666	0.5134	0.5040	0.4824
4580	0.7399	0.7196	0.6777	0.6115	0.5977	0.5672	0.5141	0.5047	0.4831
4590	0.7405	0.7202	0.6783	0.6122	0.5984	0.5679	0.5148	0.5054	0.4837
4600	0.7411	0.7208	0.6788	0.6130	0.5991	0.5685	0.5156	0.5061	0.4843
4610	0.7417	0.7214	0.6794	0.6137	0.5998	0.5691	0.5163	0.5068	0.4850
4620	0.7424	0.7220	0.6799	0.6144	0.6005	0.5697	0.5170	0.5075	0.4856
4630	0.7430	0.7226	0.6804	0.6152	0.6011	0.5704	0.5177	0.5082	0.4863
4640	0.7436	0.7231	0.6810	0.6159	0.6018	0.5710	0.5185	0.5089	0.4869
4650	0.7442	0.7237	0.6815	0.6166	0.6025	0.5716	0.5192	0.5096	0.4875
4660	0.7448	0.7243	0.6821	0.6173	0.6032	0.5722	0.5199	0.5103	0.4881
4670	0.7454	0.7249	0.6826	0.6180	0.6039	0.5728	0.5206	0.5109	0.4888
4680	0.7460	0.7255	0.6831	0.6188	0.6046	0.5734	0.5214	0.5116	0.4894
4690	0.7467	0.7260	0.6836	0.6195	0.6052	0.5741	0.5221	0.5123	0.4900
4700	0.7473	0.7266	0.6842	0.6202	0.6059	0.5747	0.5228	0.5130	0.4907

$B_1/{ m Hz}$	$\alpha_{0.05}^{10}$	$\alpha_{0.1}^{10}$	$\alpha_{0.2}^{10}$	$\alpha_{0.05}^{15}$	$\alpha_{0.1}^{15}$	$\alpha_{0.2}^{15}$	$\alpha_{0.05}^{20}$	$\alpha_{0.1}^{20}$	$\alpha_{0.2}^{20}$
4710	0.7479	0.7272	0.6847	0.6209	0.6066	0.5753	0.5235	0.5137	0.4913
4720	0.7485	0.7278	0.6852	0.6216	0.6073	0.5759	0.5242	0.5144	0.4919
4730	0.7491	0.7283	0.6858	0.6223	0.6080	0.5765	0.5249	0.5151	0.4925
4740	0.7497	0.7289	0.6863	0.6230	0.6086	0.5771	0.5257	0.5158	0.4931
4750	0.7502	0.7295	0.6868	0.6237	0.6093	0.5777	0.5264	0.5164	0.4938
4760	0.7508	0.7300	0.6873	0.6244	0.6100	0.5783	0.5271	0.5171	0.4944
4770	0.7514	0.7306	0.6878	0.6251	0.6106	0.5789	0.5278	0.5178	0.4950
4780	0.7520	0.7312	0.6884	0.6258	0.6113	0.5795	0.5285	0.5185	0.4956
4790	0.7526	0.7317	0.6889	0.6265	0.6120	0.5801	0.5292	0.5191	0.4962
4800	0.7532	0.7323	0.6894	0.6272	0.6126	0.5807	0.5299	0.5198	0.4968
4810	0.7538	0.7328	0.6899	0.6279	0.6133	0.5813	0.5306	0.5205	0.4975
4820	0.7543	0.7334	0.6904	0.6286	0.6139	0.5819	0.5313	0.5212	0.4981
4830	0.7549	0.7339	0.6909	0.6293	0.6146	0.5825	0.5320	0.5218	0.4987
4840	0.7555	0.7345	0.6914	0.6300	0.6152	0.5831	0.5327	0.5225	0.4993
4850	0.7561	0.7350	0.6919	0.6307	0.6159	0.5837	0.5334	0.5232	0.4999
4860	0.7566	0.7356	0.6924	0.6314	0.6165	0.5842	0.5341	0.5238	0.5005
4870	0.7572	0.7361	0.6929	0.6321	0.6172	0.5848	0.5348	0.5245	0.5011
4880	0.7578	0.7366	0.6934	0.6327	0.6178	0.5854	0.5355	0.5252	0.5017
4890	0.7583	0.7372	0.6939	0.6334	0.6185	0.5860	0.5362	0.5258	0.5023
4900	0.7589	0.7377	0.6944	0.6341	0.6191	0.5866	0.5369	0.5265	0.5029
4910	0.7595	0.7383	0.6949	0.6348	0.6198	0.5872	0.5376	0.5272	0.5035
4920	0.7600	0.7388	0.6954	0.6354	0.6204	0.5877	0.5383	0.5278	0.5041
4930	0.7606	0.7393	0.6959	0.6361	0.6211	0.5883	0.5390	0.5285	0.5047
4940	0.7611	0.7399	0.6964	0.6368	0.6217	0.5889	0.5396	0.5291	0.5053
4950	0.7617	0.7404	0.6969	0.6375	0.6223	0.5895	0.5403	0.5298	0.5059
4960	0.7622	0.7409	0.6974	0.6381	0.6230	0.5900	0.5410	0.5304	0.5065
4970	0.7628	0.7414	0.6979	0.6388	0.6236	0.5906	0.5417	0.5311	0.5071
4980	0.7633	0.7420	0.6984	0.6395	0.6242	0.5912	0.5424	0.5317	0.5077
4990	0.7639	0.7425	0.6988	0.6401	0.6249	0.5917	0.5431	0.5324	0.5083
5000	0.7644	0.7430	0.6993	0.6408	0.6255	0.5923	0.5437	0.5330	0.5088

Table S2: Ubiquitin R_1 , R_2 , and steady-state nuclear Overhauser effect (NOE) ratios measured at 800 MHz and 30°C. Residue numbers, longitudinal relaxation rates (R_1), transverse relaxation rates (R_2), and NOE ratios ($\sigma\{^1H\}$) are shown in the first, second, third, and fourth column, respectively.

$\begin{array}{c} 2 1.711\pm0.017 6.73\pm0.07 0.775\pm0.011 \\ 3 1.823\pm0.036 6.59\pm0.13 0.802\pm0.011 \\ 4 1.829\pm0.036 6.39\pm0.13 0.802\pm0.011 \\ 5 1.715\pm0.035 5.84\pm0.13 0.791\pm0.011 \\ 6 1.794\pm0.031 6.47\pm0.13 0.791\pm0.010 \\ 7 1.775\pm0.022 6.43\pm0.08 0.770\pm0.010 \\ 8 1.827\pm0.022 5.87\pm0.06 0.703\pm0.011 \\ 9 1.742\pm0.024 6.06\pm0.07 0.664\pm0.010 \\ 10 1.711\pm0.019 5.54\pm0.06 0.670\pm0.008 \\ 11 1.646\pm0.017 5.57\pm0.05 0.650\pm0.008 \\ 12 1.658\pm0.015 5.80\pm0.05 0.722\pm0.009 \\ 13 1.788\pm0.031 6.25\pm0.13 0.781\pm0.012 \\ 14 1.701\pm0.019 6.46\pm0.07 0.792\pm0.010 \\ 15 1.821\pm0.032 6.08\pm0.13 0.799\pm0.010 \\ 16 1.601\pm0.014 5.85\pm0.06 0.761\pm0.009 \\ 17 1.811\pm0.019 6.34\pm0.06 0.782\pm0.009 \\ 18 1.662\pm0.026 6.53\pm0.11 0.773\pm0.012 \\ 20 1.738\pm0.029 6.24\pm0.11 0.772\pm0.011 \\ 21 1.937\pm0.028 6.89\pm0.10 0.812\pm0.010 \\ 22 1.799\pm0.028 6.14\pm0.09 0.780\pm0.012 \\ 23 1.881\pm0.042 7.75\pm0.16 0.813\pm0.014 \\ 25 1.850\pm0.033 9.96\pm0.13 0.812\pm0.010 \\ 27 1.858\pm0.041 6.89\pm0.15 0.814\pm0.014 \\ 28 1.903\pm0.032 6.97\pm0.12 0.806\pm0.011 \\ 29 1.817\pm0.034 6.49\pm0.13 0.802\pm0.010 \\ 22 1.828\pm0.030 6.46\pm0.11 0.802\pm0.010 \\ 23 1.828\pm0.034 6.49\pm0.13 0.808\pm0.011 \\ 33 1.758\pm0.026 6.33\pm0.11 0.776\pm0.011 \\ 34 1.712\pm0.029 6.24\pm0.12 0.776\pm0.011 \\ 35 1.738\pm0.034 6.49\pm0.15 0.804\pm0.011 \\ 36 1.512\pm0.022 6.05\pm0.09 0.798\pm0.008 \\ 39 1.846\pm0.025 6.31\pm0.09 0.786\pm0.012 \\ 40 1.784\pm0.030 6.32\pm0.11 0.799\pm0.011 \\ 41 1.802\pm0.030 6.99\pm0.11 0.800\pm0.011 \\ 43 1.718\pm0.028 6.37\pm0.10 0.786\pm0.012 \\ 40 1.784\pm0.030 6.99\pm0.11 0.799\pm0.011 \\ 41 1.802\pm0.030 6.99\pm0.11 0.799\pm0.011 \\ 43 1.718\pm0.028 6.37\pm0.10 0.786\pm0.012 \\ 40 1.784\pm0.030 6.99\pm0.11 0.799\pm0.011 \\ 41 1.802\pm0.030 6.99\pm0.11 0.796\pm0.012 \\ 40 1.784\pm0.030 6.99\pm0.11 0.796\pm0.012 \\ 40 1.784\pm0.030 6.99\pm0.11 0.799\pm0.011 \\ 41 1.781\pm0.028 6.37\pm0.10 0.786\pm0.012 \\ 40 1.784\pm0.030 6.99\pm0.11 0.796\pm0.012 \\ 40 1.784\pm0.030 6.99\pm0.11 0.796\pm0.012 \\ 40 1.784\pm0.030 6.9$	res.	$R_1/{\rm s}^{-1}$	$R_2/{\rm s}^{-1}$	$\sigma\{^1\mathrm{H}\}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1.711 ± 0.017	6.73 ± 0.07	0.775 ± 0.011	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1.823 ± 0.036	6.59 ± 0.13	0.802 ± 0.011	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.829 ± 0.036	6.39 ± 0.13	0.812 ± 0.011	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1.715 ± 0.035	5.84 ± 0.13	0.791 ± 0.011	
$\begin{array}{c} 8 1.827 \pm 0.022 5.87 \pm 0.06 0.703 \pm 0.011 \\ 9 1.742 \pm 0.024 6.06 \pm 0.07 0.664 \pm 0.010 \\ 10 1.711 \pm 0.019 5.54 \pm 0.06 0.670 \pm 0.008 \\ 11 1.646 \pm 0.017 5.57 \pm 0.05 0.650 \pm 0.008 \\ 12 1.658 \pm 0.015 5.80 \pm 0.05 0.722 \pm 0.009 \\ 13 1.788 \pm 0.031 6.25 \pm 0.13 0.781 \pm 0.012 \\ 14 1.701 \pm 0.019 6.46 \pm 0.07 0.792 \pm 0.010 \\ 15 1.821 \pm 0.032 6.08 \pm 0.13 0.799 \pm 0.010 \\ 16 1.601 \pm 0.014 5.85 \pm 0.06 0.761 \pm 0.009 \\ 17 1.811 \pm 0.019 6.34 \pm 0.06 0.782 \pm 0.009 \\ 18 1.662 \pm 0.026 6.53 \pm 0.11 0.773 \pm 0.012 \\ 20 1.738 \pm 0.029 6.24 \pm 0.11 0.772 \pm 0.011 \\ 21 1.937 \pm 0.028 6.89 \pm 0.10 0.812 \pm 0.010 \\ 22 1.799 \pm 0.028 6.14 \pm 0.09 0.780 \pm 0.012 \\ 23 1.881 \pm 0.042 7.75 \pm 0.16 0.813 \pm 0.014 \\ 25 1.850 \pm 0.033 9.96 \pm 0.13 0.812 \pm 0.012 \\ 26 1.838 \pm 0.029 6.46 \pm 0.10 0.802 \pm 0.010 \\ 27 1.858 \pm 0.041 6.89 \pm 0.15 0.814 \pm 0.014 \\ 28 1.903 \pm 0.032 6.97 \pm 0.12 0.806 \pm 0.011 \\ 29 1.817 \pm 0.034 6.45 \pm 0.13 0.808 \pm 0.011 \\ 30 1.825 \pm 0.034 6.49 \pm 0.13 0.808 \pm 0.011 \\ 31 1.758 \pm 0.026 6.33 \pm 0.11 0.776 \pm 0.011 \\ 32 1.828 \pm 0.030 6.46 \pm 0.11 0.804 \pm 0.011 \\ 33 1.758 \pm 0.026 6.33 \pm 0.11 0.776 \pm 0.011 \\ 34 1.712 \pm 0.029 6.24 \pm 0.12 0.776 \pm 0.011 \\ 35 1.738 \pm 0.036 6.05 \pm 0.09 0.798 \pm 0.008 \\ 39 1.846 \pm 0.025 6.31 \pm 0.09 0.786 \pm 0.012 \\ 40 1.784 \pm 0.030 6.32 \pm 0.11 0.799 \pm 0.011 \\ 41 1.802 \pm 0.030 6.07 \pm 0.11 0.799 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011 \\ 4$	6	1.794 ± 0.031	6.47 ± 0.13	0.791 ± 0.010	
$\begin{array}{c} 9 & 1.742 \pm 0.024 & 6.06 \pm 0.07 & 0.664 \pm 0.010 \\ 10 & 1.711 \pm 0.019 & 5.54 \pm 0.06 & 0.670 \pm 0.008 \\ 11 & 1.646 \pm 0.017 & 5.57 \pm 0.05 & 0.650 \pm 0.008 \\ 12 & 1.658 \pm 0.015 & 5.80 \pm 0.05 & 0.722 \pm 0.009 \\ 13 & 1.788 \pm 0.031 & 6.25 \pm 0.13 & 0.781 \pm 0.012 \\ 14 & 1.701 \pm 0.019 & 6.46 \pm 0.07 & 0.792 \pm 0.010 \\ 15 & 1.821 \pm 0.032 & 6.08 \pm 0.13 & 0.799 \pm 0.010 \\ 16 & 1.601 \pm 0.014 & 5.85 \pm 0.06 & 0.761 \pm 0.009 \\ 17 & 1.811 \pm 0.019 & 6.34 \pm 0.06 & 0.782 \pm 0.009 \\ 18 & 1.662 \pm 0.026 & 6.53 \pm 0.11 & 0.773 \pm 0.012 \\ 20 & 1.738 \pm 0.029 & 6.24 \pm 0.11 & 0.772 \pm 0.011 \\ 21 & 1.937 \pm 0.028 & 6.89 \pm 0.10 & 0.812 \pm 0.010 \\ 22 & 1.799 \pm 0.028 & 6.14 \pm 0.09 & 0.780 \pm 0.012 \\ 23 & 1.881 \pm 0.042 & 7.75 \pm 0.16 & 0.813 \pm 0.014 \\ 25 & 1.850 \pm 0.033 & 9.96 \pm 0.13 & 0.812 \pm 0.012 \\ 26 & 1.838 \pm 0.029 & 6.46 \pm 0.10 & 0.802 \pm 0.010 \\ 27 & 1.858 \pm 0.041 & 6.89 \pm 0.15 & 0.814 \pm 0.014 \\ 28 & 1.903 \pm 0.032 & 6.97 \pm 0.12 & 0.806 \pm 0.011 \\ 29 & 1.817 \pm 0.034 & 6.45 \pm 0.13 & 0.808 \pm 0.011 \\ 30 & 1.825 \pm 0.034 & 6.49 \pm 0.13 & 0.806 \pm 0.011 \\ 31 & 1.738 \pm 0.026 & 6.33 \pm 0.11 & 0.776 \pm 0.011 \\ 32 & 1.828 \pm 0.030 & 6.46 \pm 0.11 & 0.804 \pm 0.011 \\ 33 & 1.758 \pm 0.026 & 6.33 \pm 0.11 & 0.776 \pm 0.011 \\ 34 & 1.712 \pm 0.029 & 6.24 \pm 0.12 & 0.776 \pm 0.011 \\ 35 & 1.738 \pm 0.034 & 6.47 \pm 0.15 & 0.801 \pm 0.012 \\ 36 & 1.512 \pm 0.022 & 6.05 \pm 0.09 & 0.798 \pm 0.008 \\ 39 & 1.846 \pm 0.025 & 6.31 \pm 0.09 & 0.786 \pm 0.012 \\ 40 & 1.784 \pm 0.030 & 6.32 \pm 0.11 & 0.799 \pm 0.011 \\ 41 & 1.802 \pm 0.030 & 6.07 \pm 0.11 & 0.799 \pm 0.011 \\ 42 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 42 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 42 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 43 & 1.752 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 44 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 45 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 45 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 45 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 45 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 45 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ 45 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \\ $	7	1.775 ± 0.022	6.43 ± 0.08	0.770 ± 0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1.827 ± 0.022	5.87 ± 0.06	0.703 ± 0.011	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1.742 ± 0.024	6.06 ± 0.07	0.664 ± 0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1.711 ± 0.019	5.54 ± 0.06	0.670 ± 0.008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1.646 ± 0.017	5.57 ± 0.05	0.650 ± 0.008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1.658 ± 0.015	5.80 ± 0.05	0.722 ± 0.009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1.788 ± 0.031	6.25 ± 0.13	0.781 ± 0.012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1.701 ± 0.019	6.46 ± 0.07	0.792 ± 0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1.821 ± 0.032	6.08 ± 0.13	0.799 ± 0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1.601 ± 0.014	5.85 ± 0.06	0.761 ± 0.009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	1.811 ± 0.019	6.34 ± 0.06	0.782 ± 0.009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1.662 ± 0.026	6.53 ± 0.11	0.773 ± 0.012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1.738 ± 0.029	6.24 ± 0.11		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.937 ± 0.028	6.89 ± 0.10	0.812 ± 0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.799 ± 0.028	6.14 ± 0.09	0.780 ± 0.012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.881 ± 0.042	7.75 ± 0.16	0.813 ± 0.014	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.817 ± 0.034	6.45 ± 0.13	0.808 ± 0.011	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$\begin{array}{lllll} 36 & 1.512 \pm 0.022 & 6.05 \pm 0.09 & 0.798 \pm 0.008 \\ 39 & 1.846 \pm 0.025 & 6.31 \pm 0.09 & 0.786 \pm 0.012 \\ 40 & 1.784 \pm 0.030 & 6.32 \pm 0.11 & 0.799 \pm 0.011 \\ 41 & 1.802 \pm 0.030 & 6.07 \pm 0.11 & 0.779 \pm 0.011 \\ 42 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \end{array}$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{llll} 40 & 1.784 \pm 0.030 & 6.32 \pm 0.11 & 0.799 \pm 0.011 \\ 41 & 1.802 \pm 0.030 & 6.07 \pm 0.11 & 0.779 \pm 0.011 \\ 42 & 1.753 \pm 0.030 & 5.99 \pm 0.11 & 0.800 \pm 0.011 \end{array}$					
$41 1.802 \pm 0.030 6.07 \pm 0.11 0.779 \pm 0.011$ $42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011$					
$42 1.753 \pm 0.030 5.99 \pm 0.11 0.800 \pm 0.011$					
$43 1.718 \pm 0.028 6.37 \pm 0.10 0.786 \pm 0.012$					
Continued on next page	43	1.718 ± 0.028	6.37 ± 0.10	0.786 ± 0.012	

res.	R_1/s^{-1}	R_2/s^{-1}	$\sigma\{^1\mathrm{H}\}$	
44	1.741 ± 0.032	6.17 ± 0.13	0.800 ± 0.011	
45	1.797 ± 0.034	6.68 ± 0.15	0.804 ± 0.012	
46	1.846 ± 0.030	6.34 ± 0.11	0.773 ± 0.012	
47	1.739 ± 0.024	5.74 ± 0.10	0.784 ± 0.011	
48	1.749 ± 0.022	6.58 ± 0.09	0.788 ± 0.009	
49	1.652 ± 0.015	5.73 ± 0.06	0.740 ± 0.009	
50	1.789 ± 0.033	6.36 ± 0.12	0.780 ± 0.012	
51	1.659 ± 0.034	6.35 ± 0.10	0.778 ± 0.014	
52	1.572 ± 0.020	6.08 ± 0.08	0.783 ± 0.011	
54	1.715 ± 0.028	6.83 ± 0.11	0.802 ± 0.011	
55	1.783 ± 0.037	6.92 ± 0.13	0.777 ± 0.014	
56	1.896 ± 0.032	6.41 ± 0.10	0.811 ± 0.011	
57	1.857 ± 0.029	6.27 ± 0.09	0.793 ± 0.013	
58	1.910 ± 0.032	7.10 ± 0.10	0.799 ± 0.012	
59	1.774 ± 0.029	6.04 ± 0.10	0.796 ± 0.012	
60	1.830 ± 0.033	6.43 ± 0.11	0.787 ± 0.012	
61	1.806 ± 0.030	6.12 ± 0.11	0.796 ± 0.012	
62	1.576 ± 0.021	5.71 ± 0.07	0.664 ± 0.011	
63	1.678 ± 0.017	6.39 ± 0.07	0.778 ± 0.010	
64	1.845 ± 0.031	6.18 ± 0.10	0.788 ± 0.011	
65	1.836 ± 0.036	6.42 ± 0.10	0.813 ± 0.015	
66	1.713 ± 0.019	6.16 ± 0.07	0.792 ± 0.010	
67	1.799 ± 0.035	6.42 ± 0.14	0.804 ± 0.012	
68	1.722 ± 0.039	6.09 ± 0.13	0.794 ± 0.012	
69	1.758 ± 0.025	6.17 ± 0.10	0.805 ± 0.010	
70	1.806 ± 0.037	7.54 ± 0.16	0.797 ± 0.012	
71	1.730 ± 0.015	5.86 ± 0.06	0.771 ± 0.010	
73	1.630 ± 0.013	3.94 ± 0.05	0.491 ± 0.007	
74	1.467 ± 0.012	2.88 ± 0.03	0.286 ± 0.006	
75	1.203 ± 0.010	1.66 ± 0.03	-0.052 ± 0.005	
76	0.784 ± 0.006	1.20 ± 0.02	-0.544 ± 0.005	

Table S3: Ubiquitin cross-correlated cross-relaxation (CCCR) rates measured at 800 MHz and 30°C. Residue numbers, longitudinal CCCR rates (η_z) measured by standard experiment, transverse CCCR rates (η_{xy}) measured by standard experiment, transverse CCCR rates ($\eta_{\text{ave}}^{xy}(\alpha-2)/\alpha$), and a linear combination of longitudinal and transverse CCCR rates (η_{ave}^{xyz}) measured by adiabatic experiment are shown in the first, second, third, fourth, and fifth column, respectively.

res	η_z/s^{-1}	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha - 2}{\alpha} / {\rm s}^{-1}$	$\eta_{\mathrm{ave}}^{xyz}/\mathrm{s}^{-1}$
2	1.310 ± 0.025	5.22 ± 0.05	5.23 ± 0.03	3.19 ± 0.02
3	1.397 ± 0.055	4.90 ± 0.09	4.83 ± 0.07	3.09 ± 0.05
4	1.357 ± 0.053	4.84 ± 0.09	4.79 ± 0.07	3.06 ± 0.06
5	1.309 ± 0.053	4.65 ± 0.08	4.73 ± 0.07	2.93 ± 0.05
6	1.466 ± 0.046	5.14 ± 0.07	5.13 ± 0.06	3.23 ± 0.05
7	1.346 ± 0.034	4.86 ± 0.06	4.84 ± 0.04	3.04 ± 0.03
8	1.278 ± 0.038	4.09 ± 0.05	4.15 ± 0.04	2.65 ± 0.03
9	1.190 ± 0.040	3.96 ± 0.05	3.84 ± 0.04	2.50 ± 0.03
10	1.291 ± 0.029	4.26 ± 0.04	4.16 ± 0.03	2.72 ± 0.02
11	1.294 ± 0.027	4.54 ± 0.04	4.56 ± 0.03	2.90 ± 0.03
12	1.242 ± 0.024	4.29 ± 0.04	4.30 ± 0.03	2.71 ± 0.02
13	1.388 ± 0.049	4.76 ± 0.07	4.83 ± 0.06	3.03 ± 0.04
14	1.318 ± 0.029	4.73 ± 0.05	4.78 ± 0.04	2.98 ± 0.02
15	1.411 ± 0.049	4.88 ± 0.08	4.83 ± 0.06	3.09 ± 0.07
16	1.250 ± 0.020	4.71 ± 0.03	4.70 ± 0.03	2.95 ± 0.03
17	1.348 ± 0.029	4.94 ± 0.05	4.98 ± 0.04	3.12 ± 0.03
18	1.179 ± 0.038	4.79 ± 0.07	4.76 ± 0.05	2.94 ± 0.03
20	1.272 ± 0.040	4.86 ± 0.07	4.77 ± 0.05	2.94 ± 0.04
21	1.514 ± 0.042	5.63 ± 0.07	5.67 ± 0.06	3.47 ± 0.05
22	1.331 ± 0.041	4.62 ± 0.06	4.57 ± 0.05	2.92 ± 0.05
23	1.467 ± 0.063	5.28 ± 0.10	5.26 ± 0.08	3.32 ± 0.10
25	1.411 ± 0.059	5.05 ± 0.10	5.07 ± 0.07	3.15 ± 0.04
26	1.454 ± 0.048	5.10 ± 0.07	5.07 ± 0.06	3.26 ± 0.04
27	1.445 ± 0.069	5.19 ± 0.10	5.17 ± 0.08	3.24 ± 0.05
28	1.472 ± 0.052	5.35 ± 0.08	5.45 ± 0.07	3.36 ± 0.04
29	1.398 ± 0.051	5.00 ± 0.08	4.97 ± 0.06	3.16 ± 0.04
30	1.422 ± 0.060	4.99 ± 0.08	5.05 ± 0.07	3.17 ± 0.06
32	1.384 ± 0.047	4.98 ± 0.07	4.94 ± 0.05	3.12 ± 0.04
33	1.329 ± 0.044	4.70 ± 0.07	4.67 ± 0.05	2.94 ± 0.05
34	1.250 ± 0.049	4.39 ± 0.07	4.36 ± 0.05	2.77 ± 0.05
35	1.259 ± 0.053	5.16 ± 0.09	5.03 ± 0.07	3.10 ± 0.05
36	1.246 ± 0.032	5.09 ± 0.06	5.13 ± 0.05	3.09 ± 0.03
39	1.350 ± 0.038	4.59 ± 0.06	4.53 ± 0.04	2.93 ± 0.04
40	1.327 ± 0.048	4.88 ± 0.07	4.92 ± 0.06	3.05 ± 0.04
41	1.407 ± 0.049	4.81 ± 0.07	4.83 ± 0.06	3.04 ± 0.03

res	η_z/s^{-1}	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha - 2}{\alpha} / {\rm s}^{-1}$	$\eta_{\mathrm{ave}}^{xyz}/\mathrm{s}^{-1}$
42	1.307 ± 0.043	4.62 ± 0.07	4.64 ± 0.06	2.94 ± 0.04
43	1.329 ± 0.041	4.78 ± 0.07	4.76 ± 0.05	2.98 ± 0.04
44	1.344 ± 0.047	4.70 ± 0.08	4.70 ± 0.06	2.97 ± 0.05
45	1.437 ± 0.052	5.31 ± 0.09	5.41 ± 0.07	3.33 ± 0.04
46	1.450 ± 0.053	5.07 ± 0.07	5.02 ± 0.05	3.15 ± 0.06
47	1.166 ± 0.031	4.02 ± 0.05	3.91 ± 0.04	2.50 ± 0.03
48	1.377 ± 0.034	5.37 ± 0.06	5.36 ± 0.04	3.34 ± 0.03
49	1.288 ± 0.021	4.44 ± 0.04	4.45 ± 0.03	2.83 ± 0.02
50	1.410 ± 0.051	5.04 ± 0.08	5.13 ± 0.06	3.16 ± 0.03
51	1.237 ± 0.054	4.80 ± 0.09	4.85 ± 0.07	2.98 ± 0.04
52	1.148 ± 0.028	4.66 ± 0.05	4.62 ± 0.04	2.82 ± 0.02
54	1.347 ± 0.042	5.32 ± 0.08	5.25 ± 0.05	3.25 ± 0.04
55	1.307 ± 0.054	4.57 ± 0.09	4.49 ± 0.07	2.83 ± 0.06
56	1.481 ± 0.047	5.05 ± 0.07	5.04 ± 0.06	3.22 ± 0.06
57	1.368 ± 0.050	4.69 ± 0.07	4.61 ± 0.05	2.96 ± 0.04
58	1.476 ± 0.056	5.14 ± 0.08	5.10 ± 0.06	3.25 ± 0.04
59	1.298 ± 0.048	4.57 ± 0.06	4.48 ± 0.06	2.90 ± 0.04
60	1.487 ± 0.058	5.14 ± 0.08	5.18 ± 0.06	3.27 ± 0.06
61	1.357 ± 0.044	4.74 ± 0.07	4.73 ± 0.06	3.01 ± 0.03
62	1.165 ± 0.028	4.17 ± 0.05	4.19 ± 0.04	2.60 ± 0.03
63	1.189 ± 0.023	4.67 ± 0.04	4.70 ± 0.03	2.88 ± 0.03
64	1.357 ± 0.046	4.66 ± 0.07	4.64 ± 0.05	2.92 ± 0.04
65	1.391 ± 0.069	5.04 ± 0.10	5.03 ± 0.08	3.17 ± 0.07
66	1.299 ± 0.031	4.63 ± 0.05	4.63 ± 0.04	2.94 ± 0.04
67	1.391 ± 0.052	4.84 ± 0.08	4.88 ± 0.06	3.05 ± 0.05
68	1.297 ± 0.057	4.62 ± 0.09	4.61 ± 0.07	2.88 ± 0.05
69	1.418 ± 0.037	5.02 ± 0.06	5.04 ± 0.05	3.15 ± 0.04
70	1.435 ± 0.053	5.16 ± 0.09	5.16 ± 0.07	3.23 ± 0.06
71	1.325 ± 0.022	4.50 ± 0.04	4.55 ± 0.03	2.87 ± 0.02
73	1.179 ± 0.018	2.77 ± 0.02	2.75 ± 0.02	1.93 ± 0.01
74	0.977 ± 0.015	2.00 ± 0.02	2.00 ± 0.02	1.48 ± 0.01
75	0.661 ± 0.011	1.09 ± 0.02	1.03 ± 0.01	0.85 ± 0.01
76	0.426 ± 0.006	0.68 ± 0.01	0.65 ± 0.01	0.54 ± 0.01

Table S4: Spectral density at zero frequency J(0) measured at 800 MHz and 30°C in ubiquitin. Residue numbers, J(0) values determined by adiabatic experiment $\eta_{\rm ave}^J(\alpha-4)/(16C_{cd}\alpha)$ and single echo experiment $(-3\eta_{\rm ave}^J)/(16C_{cd})$ are shown in the first, second, and third column, respectively. $C_{cd}=(3\cos^2\varphi-1)\gamma_{\rm N}^2\gamma_{\rm H}B_0\Delta\sigma\mu\hbar r_{\rm N-H}^{-3}/16$, $\gamma_{\rm H}$ and $\gamma_{\rm N}$ are the magnetogyric ratios of ¹H and ¹⁵N, respectively, $r_{\rm N-H}=1.02$ Åis the H-N internuclear distance, μ_0 is the permeability of vacuum, \hbar is Planck's constant divided by 2π , $\Delta\sigma=-170$ ppm is the anisotropy of the ¹⁵N chemical shielding tensor, $\varphi=20.6^\circ$ is the angle between the H-N bond and the symmetry axis of the ¹⁵N chemical shielding tensor, and B_0 is the external magnetic field.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	res.	$\eta_{\rm ave}^{J} \frac{\alpha - 4}{16c\alpha} / {\rm s}^{-1}$	$\eta_{\rm ave}^{J} \frac{-3}{16c} / {\rm s}^{-1}$	
$\begin{array}{c} 4 & 1.219 \pm 0.012 & 1.192 \pm 0.009 \\ 5 & 1.192 \pm 0.012 & 1.166 \pm 0.009 \\ 6 & 1.297 \pm 0.011 & 1.301 \pm 0.009 \\ 7 & 1.226 \pm 0.008 & 1.214 \pm 0.006 \\ 8 & 1.021 \pm 0.008 & 1.017 \pm 0.006 \\ 9 & 0.958 \pm 0.008 & 1.044 \pm 0.006 \\ 10 & 1.030 \pm 0.006 & 1.072 \pm 0.005 \\ 11 & 1.147 \pm 0.006 & 1.153 \pm 0.005 \\ 12 & 1.082 \pm 0.006 & 1.074 \pm 0.004 \\ 13 & 1.216 \pm 0.011 & 1.198 \pm 0.008 \\ 14 & 1.208 \pm 0.007 & 1.187 \pm 0.005 \\ 15 & 1.221 \pm 0.011 & 1.217 \pm 0.008 \\ 16 & 1.194 \pm 0.005 & 1.198 \pm 0.004 \\ 17 & 1.264 \pm 0.007 & 1.216 \pm 0.005 \\ 18 & 1.248 \pm 0.010 & 1.234 \pm 0.008 \\ 20 & 1.216 \pm 0.009 & 1.224 \pm 0.007 \\ 21 & 1.431 \pm 0.010 & 1.457 \pm 0.008 \\ 22 & 1.149 \pm 0.009 & 1.179 \pm 0.007 \\ 23 & 1.345 \pm 0.015 & 1.365 \pm 0.012 \\ 25 & 1.287 \pm 0.014 & 1.271 \pm 0.011 \\ 26 & 1.284 \pm 0.010 & 1.266 \pm 0.007 \\ 27 & 1.313 \pm 0.015 & 1.305 \pm 0.012 \\ 28 & 1.371 \pm 0.012 & 1.389 \pm 0.009 \\ 29 & 1.256 \pm 0.012 & 1.263 \pm 0.009 \\ 30 & 1.278 \pm 0.013 & 1.292 \pm 0.010 \\ 32 & 1.243 \pm 0.010 & 1.258 \pm 0.008 \\ 33 & 1.179 \pm 0.010 & 1.093 \pm 0.008 \\ 35 & 1.306 \pm 0.012 & 1.344 \pm 0.010 \\ \end{array}$	2	1.349 ± 0.006	1.325 ± 0.005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1.223 ± 0.013	1.222 ± 0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.219 ± 0.012	1.192 ± 0.009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1.192 ± 0.012	1.166 ± 0.009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1.297 ± 0.011	1.301 ± 0.009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1.226 ± 0.008	1.214 ± 0.006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1.021 ± 0.008	1.017 ± 0.006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0.958 ± 0.008	1.044 ± 0.006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1.030 ± 0.006	1.072 ± 0.005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1.147 ± 0.006	1.153 ± 0.005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1.082 ± 0.006	1.074 ± 0.004	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1.216 ± 0.011	1.198 ± 0.008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1.208 ± 0.007	1.187 ± 0.005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1.221 ± 0.011	1.217 ± 0.008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1.194 ± 0.005	1.198 ± 0.004	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	1.264 ± 0.007	1.216 ± 0.005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1.248 ± 0.010	1.234 ± 0.008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1.216 ± 0.009	1.224 ± 0.007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1.431 ± 0.010	1.457 ± 0.008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1.149 ± 0.009	1.179 ± 0.007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1.345 ± 0.015	1.365 ± 0.012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1.287 ± 0.014	1.271 ± 0.011	
$\begin{array}{lll} 28 & 1.371 \pm 0.012 & 1.389 \pm 0.009 \\ 29 & 1.256 \pm 0.012 & 1.263 \pm 0.009 \\ 30 & 1.278 \pm 0.013 & 1.292 \pm 0.010 \\ 32 & 1.243 \pm 0.010 & 1.258 \pm 0.008 \\ 33 & 1.179 \pm 0.010 & 1.167 \pm 0.007 \\ 34 & 1.090 \pm 0.010 & 1.093 \pm 0.008 \\ 35 & 1.306 \pm 0.012 & 1.344 \pm 0.010 \end{array}$	26	1.284 ± 0.010	1.266 ± 0.007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1.313 ± 0.015	1.305 ± 0.012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1.371 ± 0.012	1.389 ± 0.009	
$32 1.243 \pm 0.010 1.258 \pm 0.008$ $33 1.179 \pm 0.010 1.167 \pm 0.007$ $34 1.090 \pm 0.010 1.093 \pm 0.008$ $35 1.306 \pm 0.012 1.344 \pm 0.010$	29	1.256 ± 0.012	1.263 ± 0.009	
$33 1.179 \pm 0.010 1.167 \pm 0.007$ $34 1.090 \pm 0.010 1.093 \pm 0.008$ $35 1.306 \pm 0.012 1.344 \pm 0.010$	30	1.278 ± 0.013	1.292 ± 0.010	
$34 1.090 \pm 0.010 1.093 \pm 0.008$ $35 1.306 \pm 0.012 1.344 \pm 0.010$	32	1.243 ± 0.010	1.258 ± 0.008	
$35 1.306 \pm 0.012 1.344 \pm 0.010$	33	1.179 ± 0.010	1.167 ± 0.007	
	34	1.090 ± 0.010	1.093 ± 0.008	
$36 1.315 \pm 0.009 1.308 \pm 0.007$	35	1.306 ± 0.012	1.344 ± 0.010	
	36	1.315 ± 0.009	1.308 ± 0.007	

res.	$\eta_{\rm ave}^{J} \frac{\alpha - 4}{16c\alpha} / {\rm s}^{-1}$	$\eta_{\rm ave}^{J} \frac{-3}{16c} / {\rm s}^{-1}$	
39	1.128 ± 0.008	1.137 ± 0.006	
40	1.237 ± 0.010	1.235 ± 0.008	
41	1.185 ± 0.011	1.195 ± 0.008	
42	1.163 ± 0.010	1.192 ± 0.008	
43	1.217 ± 0.010	1.208 ± 0.008	
44	1.177 ± 0.011	1.218 ± 0.009	
45	1.368 ± 0.012	1.337 ± 0.010	
46	1.276 ± 0.011	1.291 ± 0.008	
47	0.972 ± 0.007	0.994 ± 0.005	
48	1.384 ± 0.008	1.365 ± 0.006	
49	1.122 ± 0.005	1.111 ± 0.004	
50	1.287 ± 0.011	1.260 ± 0.009	
51	1.235 ± 0.013	1.250 ± 0.010	
52	1.197 ± 0.007	1.232 ± 0.006	
54	1.357 ± 0.010	1.380 ± 0.008	
55	1.142 ± 0.013	1.152 ± 0.010	
56	1.257 ± 0.011	1.261 ± 0.008	
57	1.152 ± 0.010	1.143 ± 0.007	
58	1.290 ± 0.012	1.284 ± 0.009	
59	1.149 ± 0.011	1.156 ± 0.008	
60	1.302 ± 0.012	1.285 ± 0.009	
61	1.195 ± 0.010	1.232 ± 0.008	
62	1.052 ± 0.007	1.045 ± 0.005	
63	1.209 ± 0.006	1.190 ± 0.005	
64	1.154 ± 0.010	1.178 ± 0.008	
65	1.266 ± 0.014	1.292 ± 0.011	
66	1.183 ± 0.007	1.171 ± 0.005	
67	1.210 ± 0.012	1.259 ± 0.009	
68	1.165 ± 0.013	1.177 ± 0.010	
69	1.273 ± 0.009	1.245 ± 0.007	
70	1.300 ± 0.013	1.298 ± 0.010	
71	1.145 ± 0.005	1.162 ± 0.004	
73	0.639 ± 0.004	0.621 ± 0.003	
74	0.453 ± 0.003	0.461 ± 0.002	
75	0.206 ± 0.003	0.207 ± 0.002	
76	0.128 ± 0.002	0.137 ± 0.001	

Table S5: Ubiquitin cross-correlated cross-relaxation (CCCR) rates measured at 500 MHz and 30°C. Residue numbers, longitudinal CCCR rates (η_z) measured by standard experiment, transverse CCCR rates (η_{xy}) measured by standard experiment, transverse CCCR rates ($\eta_{\text{ave}}^{xy}(\alpha-2)/\alpha$), and a linear combination of longitudinal and transverse CCCR rates (η_{ave}^{xyz}) measured by adiabatic experiment are shown in the first, second, third, fourth, and fifth column, respectively.

res	η_z/s^{-1}	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha - 2}{\alpha} / {\rm s}^{-1}$	$\eta_{ m ave}^{xyz}/{ m s}^{-1}$
2	1.573 ± 0.005	3.622 ± 0.021	3.706 ± 0.022	2.623 ± 0.011
3	1.602 ± 0.008	3.401 ± 0.033	3.456 ± 0.035	2.511 ± 0.018
4	1.572 ± 0.008	3.425 ± 0.032	3.429 ± 0.036	2.424 ± 0.017
5	1.513 ± 0.008	3.190 ± 0.031	3.356 ± 0.036	2.366 ± 0.018
6	1.720 ± 0.008	3.588 ± 0.030	3.621 ± 0.031	2.652 ± 0.015
7	1.533 ± 0.007	3.377 ± 0.025	3.479 ± 0.028	2.447 ± 0.013
8	1.417 ± 0.007	2.944 ± 0.025	2.912 ± 0.027	2.126 ± 0.013
9	1.332 ± 0.007	2.757 ± 0.025	2.761 ± 0.030	2.003 ± 0.014
10	1.436 ± 0.005	2.936 ± 0.018	2.969 ± 0.020	2.183 ± 0.011
11	1.467 ± 0.005	3.150 ± 0.020	3.174 ± 0.022	2.321 ± 0.011
12	1.424 ± 0.005	2.995 ± 0.019	3.057 ± 0.021	2.180 ± 0.010
13	1.598 ± 0.007	3.301 ± 0.030	3.429 ± 0.032	2.444 ± 0.016
14	1.543 ± 0.006	3.410 ± 0.023	3.351 ± 0.024	2.415 ± 0.012
15	1.642 ± 0.007	3.349 ± 0.030	3.503 ± 0.031	2.500 ± 0.015
16	1.453 ± 0.003	3.270 ± 0.017	3.311 ± 0.018	2.399 ± 0.009
17	1.572 ± 0.005	3.449 ± 0.022	3.460 ± 0.024	2.525 ± 0.011
18	1.433 ± 0.006	3.473 ± 0.029	3.377 ± 0.029	2.399 ± 0.014
20	1.535 ± 0.007	3.453 ± 0.028	3.382 ± 0.030	2.424 ± 0.015
21	1.783 ± 0.008	3.821 ± 0.031	4.017 ± 0.034	2.850 ± 0.017
22	1.526 ± 0.007	3.255 ± 0.028	3.222 ± 0.029	2.398 ± 0.015
23	1.733 ± 0.010	3.684 ± 0.042	3.736 ± 0.042	2.702 ± 0.021
25	1.678 ± 0.010	3.587 ± 0.040	3.514 ± 0.042	2.624 ± 0.021
26	1.670 ± 0.008	3.562 ± 0.030	3.621 ± 0.031	2.632 ± 0.016
27	1.688 ± 0.010	3.590 ± 0.038	3.647 ± 0.039	2.655 ± 0.020
28	1.735 ± 0.009	3.708 ± 0.034	3.905 ± 0.037	2.712 ± 0.018
29	1.657 ± 0.009	3.434 ± 0.033	3.430 ± 0.036	2.571 ± 0.017
30	1.662 ± 0.009	3.555 ± 0.033	3.538 ± 0.037	2.569 ± 0.018
32	1.640 ± 0.007	3.380 ± 0.028	3.477 ± 0.031	2.551 ± 0.016
33	1.543 ± 0.007	3.222 ± 0.026	3.247 ± 0.029	2.401 ± 0.014
34	1.452 ± 0.008	3.109 ± 0.028	3.085 ± 0.031	2.252 ± 0.015
35	1.540 ± 0.008	3.570 ± 0.030	3.570 ± 0.033	2.526 ± 0.017
36	1.521 ± 0.006	3.476 ± 0.030	3.526 ± 0.031	2.485 ± 0.015
39	1.548 ± 0.006	3.170 ± 0.023	3.233 ± 0.025	2.371 ± 0.012
40	1.566 ± 0.008	3.401 ± 0.029	3.404 ± 0.032	2.520 ± 0.016
41	1.615 ± 0.008	3.340 ± 0.030	3.352 ± 0.033	2.499 ± 0.015

res	η_z/s^{-1}	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha - 2}{\alpha} / {\rm s}^{-1}$	$\eta_{ m ave}^{xyz}/{ m s}^{-1}$
42	1.521 ± 0.007	3.245 ± 0.027	3.346 ± 0.031	2.385 ± 0.015
43	1.559 ± 0.007	3.288 ± 0.029	3.392 ± 0.031	2.463 ± 0.015
44	1.520 ± 0.008	3.315 ± 0.030	3.415 ± 0.033	2.387 ± 0.017
45	1.709 ± 0.009	3.613 ± 0.035	3.717 ± 0.037	2.691 ± 0.018
46	1.671 ± 0.011	3.512 ± 0.037	3.570 ± 0.041	2.608 ± 0.020
47	1.339 ± 0.006	2.827 ± 0.021	2.851 ± 0.025	2.043 ± 0.012
48	1.657 ± 0.006	3.727 ± 0.024	3.768 ± 0.026	2.726 ± 0.013
49	1.446 ± 0.004	3.108 ± 0.017	3.208 ± 0.019	2.280 ± 0.009
50	1.654 ± 0.007	3.561 ± 0.030	3.541 ± 0.031	2.580 ± 0.015
51	1.459 ± 0.010	3.340 ± 0.037	3.420 ± 0.041	2.413 ± 0.020
52	1.405 ± 0.005	3.183 ± 0.025	3.190 ± 0.026	2.310 ± 0.013
54	1.623 ± 0.007	3.675 ± 0.031	3.654 ± 0.032	2.672 ± 0.016
55	1.509 ± 0.008	3.207 ± 0.034	3.268 ± 0.037	2.339 ± 0.018
56	1.698 ± 0.008	3.547 ± 0.031	3.496 ± 0.034	2.629 ± 0.017
57	1.568 ± 0.009	3.238 ± 0.031	3.291 ± 0.033	2.406 ± 0.016
58	1.722 ± 0.011	3.570 ± 0.036	3.508 ± 0.041	2.676 ± 0.019
59	1.495 ± 0.009	3.165 ± 0.032	3.104 ± 0.037	2.362 ± 0.018
60	1.725 ± 0.010	3.588 ± 0.035	3.601 ± 0.038	2.656 ± 0.019
61	1.585 ± 0.007	3.258 ± 0.029	3.328 ± 0.032	2.475 ± 0.015
62	1.356 ± 0.006	2.835 ± 0.022	2.924 ± 0.025	2.123 ± 0.012
63	1.442 ± 0.004	3.222 ± 0.019	3.244 ± 0.019	2.336 ± 0.010
64	1.565 ± 0.007	3.234 ± 0.028	3.285 ± 0.031	2.389 ± 0.015
65	1.617 ± 0.011	3.507 ± 0.040	3.525 ± 0.046	2.580 ± 0.022
66	1.519 ± 0.006	3.201 ± 0.022	3.288 ± 0.025	2.394 ± 0.012
67	1.624 ± 0.007	3.275 ± 0.029	3.422 ± 0.031	2.502 ± 0.015
68	1.506 ± 0.008	3.240 ± 0.032	3.280 ± 0.035	2.358 ± 0.017
69	1.656 ± 0.006	3.574 ± 0.025	3.557 ± 0.027	2.606 ± 0.013
70	1.685 ± 0.008	3.508 ± 0.033	3.621 ± 0.036	2.663 ± 0.018
71	1.505 ± 0.004	3.094 ± 0.017	3.215 ± 0.019	2.359 ± 0.009
73	1.119 ± 0.001	1.860 ± 0.012	1.902 ± 0.013	1.542 ± 0.006
74	0.860 ± 0.002	1.352 ± 0.009	1.434 ± 0.011	1.116 ± 0.006
75	0.510 ± 0.002	0.759 ± 0.008	0.696 ± 0.010	0.605 ± 0.005
_76	0.304 ± 0.001	0.447 ± 0.005	0.423 ± 0.007	0.381 ± 0.003

Table S6: Spectral density at zero frequency J(0) measured at 500 MHz and 30°C in ubiquitin. Residue numbers, J(0) values determined by adiabatic experiment $\eta_{\rm ave}^J(\alpha-4)/(16C_{cd}\alpha)$ and single echo experiment $(-3\eta_{\rm ave}^J)/(16C_{cd})$ are shown in the first, second, and third column, respectively. $C_{cd}=(3\cos^2\varphi-1)\gamma_{\rm N}^2\gamma_{\rm H}B_0\Delta\sigma\mu\hbar r_{\rm N-H}^{-3}/16$, $\gamma_{\rm H}$ and $\gamma_{\rm N}$ are the magnetogyric ratios of ¹H and ¹⁵N, respectively, $r_{\rm N-H}=1.02$ Åis the H-N internuclear distance, μ_0 is the permeability of vacuum, \hbar is Planck's constant divided by 2π , $\Delta\sigma=-170$ ppm is the anisotropy of the ¹⁵N chemical shielding tensor, $\varphi=20.6^\circ$ is the angle between the H-N bond and the symmetry axis of the ¹⁵N chemical shielding tensor, and B_0 is the external magnetic field.

res.	$\eta_{\rm ave}^{J} \frac{\alpha - 4}{16C_{cd}\alpha} / {\rm s}^{-1}$	$\frac{-3\eta_{\rm ave}^{J}}{16C_{cd}}/{\rm s}^{-1}$	
2	1.360 ± 0.012	1.440 ± 0.007	
3	1.237 ± 0.019	1.200 ± 0.011	
4	1.248 ± 0.019	1.179 ± 0.012	
5	1.201 ± 0.019	1.248 ± 0.012	
6	1.282 ± 0.016	1.316 ± 0.011	
7	1.260 ± 0.014	1.190 ± 0.009	
8	1.024 ± 0.015	1.020 ± 0.009	
9	0.988 ± 0.016	0.954 ± 0.009	
10	1.036 ± 0.011	1.099 ± 0.006	
11	1.154 ± 0.012	1.155 ± 0.007	
12	1.104 ± 0.011	1.108 ± 0.007	
13	1.215 ± 0.017	1.025 ± 0.011	
14	1.207 ± 0.013	1.238 ± 0.008	
15	1.253 ± 0.017	1.139 ± 0.010	
16	1.214 ± 0.010	1.321 ± 0.006	
17	1.259 ± 0.013	1.287 ± 0.008	
18	1.253 ± 0.015	1.300 ± 0.010	
20	1.225 ± 0.016	1.185 ± 0.010	
21	1.467 ± 0.018	1.472 ± 0.011	
22	1.161 ± 0.016	1.190 ± 0.010	
23	1.336 ± 0.022	1.230 ± 0.014	
25	1.272 ± 0.024	1.247 ± 0.014	
26	1.295 ± 0.017	1.282 ± 0.010	
27	1.301 ± 0.021	1.241 ± 0.013	
28	1.393 ± 0.020	1.321 ± 0.012	
29	1.212 ± 0.019	1.165 ± 0.011	
30	1.271 ± 0.019	1.180 ± 0.011	
32	1.226 ± 0.017	1.274 ± 0.010	
33	1.151 ± 0.016	1.181 ± 0.009	
34	1.118 ± 0.017	1.184 ± 0.011	
35	1.313 ± 0.018	1.342 ± 0.011	

res.	$\eta_{\rm ave}^{J} \frac{\alpha - 4}{16C_{cd}\alpha} / {\rm s}^{-1}$	$\frac{-3\eta_{\rm ave}^J}{16C_{cd}}/{\rm s}^{-1}$	
36	1.309 ± 0.016	1.193 ± 0.010	
39	1.157 ± 0.013	1.164 ± 0.008	
40	1.220 ± 0.017	1.194 ± 0.010	
41	1.195 ± 0.017	1.179 ± 0.010	
42	1.190 ± 0.016	1.155 ± 0.010	
43	1.191 ± 0.016	1.091 ± 0.009	
44	1.215 ± 0.017	1.106 ± 0.010	
45	1.370 ± 0.019	1.307 ± 0.012	
46	1.256 ± 0.022	1.340 ± 0.014	
47	1.010 ± 0.013	0.869 ± 0.007	
48	1.373 ± 0.014	1.349 ± 0.008	
49	1.151 ± 0.010	1.153 ± 0.006	
50	1.278 ± 0.017	1.320 ± 0.011	
51	1.242 ± 0.022	1.311 ± 0.013	
52	1.176 ± 0.014	1.135 ± 0.009	
54	1.346 ± 0.017	1.222 ± 0.011	
55	1.172 ± 0.020	1.107 ± 0.012	
56	1.248 ± 0.018	1.309 ± 0.011	
57	1.165 ± 0.018	1.151 ± 0.011	
58	1.292 ± 0.023	1.211 ± 0.013	
59	1.137 ± 0.020	1.116 ± 0.012	
60	1.315 ± 0.020	1.247 ± 0.012	
61	1.227 ± 0.017	1.226 ± 0.010	
62	1.043 ± 0.013	1.051 ± 0.008	
63	1.200 ± 0.010	1.097 ± 0.006	
64	1.185 ± 0.016	1.181 ± 0.010	
65	1.304 ± 0.024	1.285 ± 0.015	
66	1.196 ± 0.013	1.207 ± 0.008	
67	1.243 ± 0.017	1.085 ± 0.010	
68	1.179 ± 0.019	1.090 ± 0.011	
69	1.279 ± 0.014	1.206 ± 0.008	
70	1.331 ± 0.019	1.405 ± 0.013	
71	1.160 ± 0.010	1.001 ± 0.006	
73	0.627 ± 0.006	0.492 ± 0.004	
74	0.456 ± 0.006	0.445 ± 0.003	
75	0.208 ± 0.005	0.206 ± 0.003	
76	0.148 ± 0.003	0.174 ± 0.002	

Table S7: Ubiquitin R_1 , R_2 , and steady-state nuclear Overhauser effect (NOE) ratios measured at 500 MHz and 5°C. Residue numbers, longitudinal relaxation rates (R_1), transverse relaxation rates (R_2), and NOE ratios ($\sigma\{^1H\}$) are shown in the first, second, third, and fourth column, respectively.

res.	R_1/s^{-1}	R_2/s^{-1}	$\sigma\{^1\mathrm{H}\}$	
2	1.745 ± 0.020	9.50 ± 0.08	0.737 ± 0.010	
3	1.893 ± 0.032	9.23 ± 0.11	0.782 ± 0.011	
4	1.908 ± 0.033	9.30 ± 0.11	0.791 ± 0.011	
5	1.819 ± 0.034	8.95 ± 0.12	0.781 ± 0.012	
6	1.885 ± 0.031	9.39 ± 0.12	0.784 ± 0.010	
7	1.848 ± 0.024	9.18 ± 0.08	0.746 ± 0.011	
8	1.886 ± 0.024	8.44 ± 0.08	0.659 ± 0.012	
9	1.766 ± 0.025	8.27 ± 0.09	0.582 ± 0.012	
10	1.818 ± 0.019	7.87 ± 0.06	0.607 ± 0.009	
11	1.705 ± 0.020	8.08 ± 0.06	0.564 ± 0.009	
12	1.758 ± 0.016	8.25 ± 0.05	0.670 ± 0.008	
13	1.852 ± 0.035	9.82 ± 0.15	0.748 ± 0.013	
14	1.802 ± 0.021	9.68 ± 0.08	0.765 ± 0.011	
15	1.904 ± 0.032	9.14 ± 0.11	0.787 ± 0.010	
16	1.699 ± 0.016	8.78 ± 0.06	0.725 ± 0.008	
17	1.843 ± 0.020	9.31 ± 0.06	0.759 ± 0.009	
18	1.709 ± 0.028	9.47 ± 0.10	0.769 ± 0.013	
20	1.792 ± 0.027	9.18 ± 0.11	0.757 ± 0.013	
22	1.884 ± 0.026	9.08 ± 0.09	0.777 ± 0.014	
23	1.936 ± 0.048	12.03 ± 0.20	0.788 ± 0.016	
25	1.889 ± 0.042	16.08 ± 0.27	0.805 ± 0.018	
26	1.915 ± 0.031	9.35 ± 0.10	0.789 ± 0.012	
27	1.920 ± 0.043	9.87 ± 0.15	0.777 ± 0.014	
29	1.893 ± 0.040	9.63 ± 0.15	0.818 ± 0.015	
30	1.919 ± 0.039	9.59 ± 0.15	0.781 ± 0.013	
31	1.914 ± 0.041	9.80 ± 0.16	0.793 ± 0.014	
32	1.864 ± 0.031	9.60 ± 0.12	0.790 ± 0.012	
33	1.837 ± 0.032	9.65 ± 0.14	0.776 ± 0.013	
34	1.829 ± 0.035	9.20 ± 0.14	0.767 ± 0.014	
35	1.780 ± 0.036	9.87 ± 0.17	0.808 ± 0.015	
36	1.539 ± 0.060	8.86 ± 0.14	0.779 ± 0.014	
39	1.878 ± 0.023	9.27 ± 0.09	0.786 ± 0.011	
40	1.862 ± 0.033	9.27 ± 0.13	0.776 ± 0.015	
41	1.872 ± 0.033	9.09 ± 0.12	0.761 ± 0.013	
43	1.816 ± 0.035	9.67 ± 0.12	0.771 ± 0.015	
44	1.858 ± 0.029	9.15 ± 0.10	0.786 ± 0.009	
_45	1.845 ± 0.035	10.00 ± 0.15	0.783 ± 0.013	

res.	R_1/s^{-1}	R_2/s^{-1}	$\sigma\{^1\mathrm{H}\}$	
46	1.831 ± 0.028	9.18 ± 0.12	0.736 ± 0.012	
47	1.781 ± 0.022	8.68 ± 0.10	0.725 ± 0.011	
48	1.763 ± 0.022	9.66 ± 0.10	0.740 ± 0.010	
49	1.732 ± 0.015	8.59 ± 0.06	0.680 ± 0.009	
50	1.870 ± 0.030	9.27 ± 0.11	0.753 ± 0.012	
52	1.599 ± 0.020	9.24 ± 0.08	0.736 ± 0.011	
54	1.746 ± 0.026	9.65 ± 0.10	0.770 ± 0.011	
55	1.830 ± 0.033	10.08 ± 0.13	0.766 ± 0.015	
56	1.946 ± 0.031	9.15 ± 0.09	0.797 ± 0.012	
57	1.908 ± 0.030	9.09 ± 0.10	0.776 ± 0.014	
58	1.934 ± 0.037	9.70 ± 0.12	0.773 ± 0.016	
59	1.851 ± 0.033	8.87 ± 0.11	0.789 ± 0.014	
60	1.899 ± 0.034	9.24 ± 0.12	0.763 ± 0.013	
61	1.884 ± 0.036	9.13 ± 0.12	0.783 ± 0.013	
62	1.691 ± 0.023	7.91 ± 0.07	0.562 ± 0.011	
63	1.717 ± 0.018	9.38 ± 0.07	0.772 ± 0.010	
64	1.927 ± 0.029	9.11 ± 0.10	0.774 ± 0.012	
65	1.864 ± 0.039	9.25 ± 0.13	0.790 ± 0.018	
66	1.798 ± 0.021	8.79 ± 0.07	0.780 ± 0.011	
67	1.854 ± 0.030	9.29 ± 0.12	0.777 ± 0.011	
68	1.816 ± 0.036	8.99 ± 0.13	0.794 ± 0.012	
69	1.853 ± 0.027	9.30 ± 0.10	0.780 ± 0.010	
70	1.886 ± 0.041	13.26 ± 0.22	0.774 ± 0.016	
71	1.847 ± 0.017	8.90 ± 0.06	0.722 ± 0.009	
72	1.893 ± 0.021	8.13 ± 0.07	0.696 ± 0.010	
73	1.934 ± 0.014	5.99 ± 0.04	0.478 ± 0.007	
74	1.772 ± 0.011	4.65 ± 0.03	0.210 ± 0.005	
75	1.587 ± 0.008	2.95 ± 0.02	-0.128 ± 0.004	
76	1.177 ± 0.005	2.09 ± 0.01	-0.569 ± 0.004	

Table S8: Ubiquitin cross-correlated cross-relaxation (CCCR) rates measured at 500 MHz and 5°C. Residue numbers, longitudinal CCCR rates (η_z) measured by standard experiment, transverse CCCR rates (η_{xy}) measured by standard experiment, transverse CCCR rates ($\eta_{\text{ave}}^{xy}(\alpha-2)/\alpha$), and a linear combination of longitudinal and transverse CCCR rates (η_{ave}^{xyz}) measured by adiabatic experiment are shown in the first, second, third, fourth, and fifth column, respectively.

res.	η_z/s^{-1}	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha - 2}{\alpha} / {\rm s}^{-1}$	$\eta_{\rm ave}^{xyz}/{\rm s}^{-1}$	
2	1.117 ± 0.007	6.58 ± 0.06	6.63 ± 0.05	3.84 ± 0.03	
3	1.189 ± 0.012	6.08 ± 0.10	5.98 ± 0.07	3.58 ± 0.05	
4	1.159 ± 0.012	5.92 ± 0.10	6.02 ± 0.08	3.54 ± 0.05	
5	1.125 ± 0.012	5.76 ± 0.10	5.82 ± 0.08	3.39 ± 0.05	
6	1.277 ± 0.011	6.62 ± 0.09	6.32 ± 0.07	3.83 ± 0.04	
7	1.148 ± 0.009	6.09 ± 0.07	6.07 ± 0.06	3.55 ± 0.04	
8	1.132 ± 0.010	5.31 ± 0.07	5.24 ± 0.05	3.17 ± 0.03	
9	1.082 ± 0.011	5.09 ± 0.07	4.84 ± 0.06	2.97 ± 0.04	
10	1.151 ± 0.008	5.36 ± 0.05	5.39 ± 0.04	3.23 ± 0.03	
11	1.149 ± 0.008	5.86 ± 0.05	5.96 ± 0.05	3.48 ± 0.03	
12	1.108 ± 0.006	5.42 ± 0.04	5.41 ± 0.03	3.23 ± 0.02	
13	1.192 ± 0.014	5.92 ± 0.11	6.08 ± 0.08	3.57 ± 0.05	
14	1.126 ± 0.008	5.89 ± 0.07	5.95 ± 0.05	3.48 ± 0.03	
15	1.227 ± 0.011	6.13 ± 0.09	6.10 ± 0.07	3.62 ± 0.04	
16	1.063 ± 0.005	5.97 ± 0.04	5.91 ± 0.03	3.48 ± 0.02	
17	1.152 ± 0.008	6.19 ± 0.06	6.27 ± 0.05	3.65 ± 0.03	
18	0.991 ± 0.009	6.09 ± 0.09	6.07 ± 0.07	3.49 ± 0.04	
20	1.121 ± 0.011	6.04 ± 0.08	5.99 ± 0.07	3.51 ± 0.04	
22	1.131 ± 0.010	5.77 ± 0.07	5.77 ± 0.06	3.43 ± 0.04	
23	1.286 ± 0.019	6.53 ± 0.18	6.56 ± 0.12	3.80 ± 0.08	
25	1.227 ± 0.022	6.27 ± 0.23	6.14 ± 0.14	3.72 ± 0.09	
26	1.257 ± 0.015	6.39 ± 0.10	6.38 ± 0.08	3.80 ± 0.05	
27	1.245 ± 0.019	6.45 ± 0.14	6.29 ± 0.11	3.75 ± 0.07	
29	1.218 ± 0.017	6.17 ± 0.13	6.05 ± 0.09	3.65 ± 0.06	
30	1.233 ± 0.017	6.39 ± 0.13	6.18 ± 0.09	3.73 ± 0.06	
31	1.244 ± 0.019	6.75 ± 0.13	6.66 ± 0.11	3.90 ± 0.07	
32	1.201 ± 0.013	6.17 ± 0.10	6.08 ± 0.08	3.66 ± 0.05	
33	1.134 ± 0.014	5.80 ± 0.10	5.77 ± 0.08	3.49 ± 0.05	
34	1.086 ± 0.016	5.51 ± 0.12	5.36 ± 0.09	3.26 ± 0.06	
35	1.082 ± 0.016	6.51 ± 0.13	6.34 ± 0.10	3.65 ± 0.06	
36	1.079 ± 0.022	6.54 ± 0.22	6.38 ± 0.16	3.71 ± 0.10	
39	1.174 ± 0.009	5.71 ± 0.07	5.69 ± 0.05	3.41 ± 0.03	
40	1.145 ± 0.014	6.07 ± 0.11	6.07 ± 0.09	3.60 ± 0.05	
41	1.227 ± 0.013	6.09 ± 0.10	6.03 ± 0.08	3.59 ± 0.05	
43	1.148 ± 0.013	5.93 ± 0.10	5.95 ± 0.08	3.57 ± 0.05	

res.	η_z/s^{-1}	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha - 2}{\alpha} / {\rm s}^{-1}$	$\eta_{ m ave}^{xyz}/{ m s}^{-1}$	
44	1.136 ± 0.010	6.01 ± 0.09	5.91 ± 0.07	3.46 ± 0.04	
45	1.236 ± 0.014	6.61 ± 0.11	6.65 ± 0.09	3.88 ± 0.05	
46	1.258 ± 0.010	6.47 ± 0.08	6.33 ± 0.06	3.78 ± 0.04	
47	1.014 ± 0.007	5.08 ± 0.05	4.89 ± 0.05	2.95 ± 0.03	
48	1.174 ± 0.009	6.77 ± 0.08	6.79 ± 0.06	3.94 ± 0.04	
49	1.118 ± 0.005	5.61 ± 0.04	5.58 ± 0.03	3.38 ± 0.02	
50	1.233 ± 0.011	6.27 ± 0.09	6.40 ± 0.07	3.72 ± 0.05	
52	0.984 ± 0.007	5.85 ± 0.07	5.81 ± 0.05	3.34 ± 0.03	
54	1.159 ± 0.010	6.63 ± 0.09	6.60 ± 0.07	3.89 ± 0.04	
55	1.113 ± 0.012	5.68 ± 0.10	5.64 ± 0.08	3.37 ± 0.05	
56	1.280 ± 0.012	6.27 ± 0.09	6.25 ± 0.07	3.73 ± 0.04	
57	1.180 ± 0.015	5.85 ± 0.10	5.73 ± 0.08	3.42 ± 0.05	
58	1.296 ± 0.019	6.37 ± 0.12	6.39 ± 0.10	3.87 ± 0.06	
59	1.109 ± 0.016	5.67 ± 0.10	5.54 ± 0.08	3.37 ± 0.05	
60	1.303 ± 0.016	6.42 ± 0.11	6.35 ± 0.09	3.80 ± 0.06	
61	1.167 ± 0.013	5.90 ± 0.10	6.05 ± 0.08	3.52 ± 0.05	
62	1.032 ± 0.008	5.22 ± 0.06	5.16 ± 0.05	3.09 ± 0.03	
63	1.020 ± 0.006	5.91 ± 0.06	5.83 ± 0.04	3.37 ± 0.03	
64	1.168 ± 0.011	5.89 ± 0.09	5.83 ± 0.07	3.41 ± 0.04	
65	1.180 ± 0.020	6.31 ± 0.14	6.30 ± 0.11	3.70 ± 0.07	
66	1.119 ± 0.009	5.82 ± 0.06	5.85 ± 0.05	3.42 ± 0.03	
67	1.194 ± 0.011	6.04 ± 0.09	6.16 ± 0.07	3.56 ± 0.04	
68	1.108 ± 0.013	5.71 ± 0.10	5.77 ± 0.08	3.40 ± 0.05	
69	1.214 ± 0.006	6.20 ± 0.08	6.23 ± 0.06	3.70 ± 0.04	
70	1.225 ± 0.015	6.45 ± 0.17	6.61 ± 0.11	3.76 ± 0.07	
71	1.179 ± 0.006	5.69 ± 0.05	5.75 ± 0.04	3.41 ± 0.02	
72	1.192 ± 0.006	5.45 ± 0.05	5.41 ± 0.04	3.28 ± 0.03	
73	1.189 ± 0.005	3.84 ± 0.02	3.89 ± 0.02	2.49 ± 0.01	
74	1.013 ± 0.003	2.95 ± 0.02	2.93 ± 0.02	1.95 ± 0.01	
75	0.806 ± 0.002	1.68 ± 0.01	1.67 ± 0.01	1.24 ± 0.01	
76	0.612 ± 0.001	1.14 ± 0.01	1.20 ± 0.01	0.88 ± 0.01	

Table S9: Spectral density at zero frequency J(0) measured at 500 MHz and 5°C in ubiquitin. Residue numbers, J(0) values determined by adiabatic experiment $\eta_{\rm ave}^J(\alpha-4)/(16C_{cd}\alpha)$ and single echo experiment $(-3\eta_{\rm ave}^J)/(16C_{cd})$ are shown in the first, second, and third column, respectively. $C_{cd}=(3\cos^2\varphi-1)\gamma_{\rm N}^2\gamma_{\rm H}B_0\Delta\sigma\mu\hbar r_{\rm N-H}^{-3}/16$, $\gamma_{\rm H}$ and $\gamma_{\rm N}$ are the magnetogyric ratios of ¹H and ¹⁵N, respectively, $r_{\rm N-H}=1.02$ Åis the H-N internuclear distance, μ_0 is the permeability of vacuum, \hbar is Planck's constant divided by 2π , $\Delta\sigma=-170$ ppm is the anisotropy of the ¹⁵N chemical shielding tensor, $\varphi=20.6^\circ$ is the angle between the H-N bond and the symmetry axis of the ¹⁵N chemical shielding tensor, and B_0 is the external magnetic field.

res.	$\eta_{\rm ave}^{J} \frac{\alpha - 4}{16C_{cd}\alpha} / {\rm s}^{-1}$	$\frac{-3\eta_{\rm ave}^J}{16C_{cd}}/{\rm s}^{-1}$
2	2.862 ± 0.025	2.865 ± 0.021
3	2.637 ± 0.039	2.486 ± 0.029
4	2.522 ± 0.038	2.505 ± 0.032
5	2.499 ± 0.039	2.574 ± 0.033
6	2.741 ± 0.036	2.927 ± 0.031
7	2.626 ± 0.030	2.684 ± 0.025
8	2.238 ± 0.028	2.136 ± 0.021
9	2.018 ± 0.031	2.210 ± 0.022
10	2.246 ± 0.023	2.290 ± 0.017
11	2.511 ± 0.024	2.489 ± 0.018
12	2.299 ± 0.017	2.315 ± 0.014
13	2.597 ± 0.043	2.377 ± 0.036
14	2.539 ± 0.026	2.376 ± 0.021
15	2.565 ± 0.035	2.684 ± 0.028
16	2.544 ± 0.018	2.599 ± 0.014
17	2.690 ± 0.025	2.745 ± 0.020
18	2.608 ± 0.033	2.500 ± 0.029
20	2.510 ± 0.036	2.635 ± 0.029
22	2.411 ± 0.031	2.480 ± 0.025
23	2.804 ± 0.065	2.749 ± 0.059
25	2.695 ± 0.074	2.791 ± 0.080
26	2.672 ± 0.043	2.640 ± 0.032
27	2.699 ± 0.055	2.712 ± 0.047
29	2.498 ± 0.050	2.545 ± 0.043
30	2.647 ± 0.052	2.780 ± 0.042
31	2.769 ± 0.057	2.892 ± 0.045
32	2.626 ± 0.040	2.728 ± 0.035
33	2.452 ± 0.043	2.503 ± 0.035
34	2.282 ± 0.048	2.312 ± 0.037
35	2.749 ± 0.054	2.769 ± 0.044
36	2.781 ± 0.083	3.013 ± 0.078

res.	$\eta_{\rm ave}^{J} \frac{\alpha - 4}{16C_{cd}\alpha} / {\rm s}^{-1}$	$\frac{-3\eta_{\rm ave}^J}{16C_{cd}}/{\rm s}^{-1}$	
39	2.416 ± 0.028	2.491 ± 0.023	
40	2.563 ± 0.044	2.583 ± 0.035	
41	2.550 ± 0.040	2.600 ± 0.034	
43	2.534 ± 0.042	2.580 ± 0.035	
44	2.504 ± 0.033	2.606 ± 0.027	
45	2.841 ± 0.044	2.757 ± 0.037	
46	2.693 ± 0.030	2.609 ± 0.025	
47	2.089 ± 0.024	1.942 ± 0.018	
48	2.936 ± 0.029	2.908 ± 0.024	
49	2.357 ± 0.017	2.370 ± 0.014	
50	2.745 ± 0.037	2.653 ± 0.029	
52	2.499 ± 0.025	2.598 ± 0.022	
54	2.880 ± 0.035	2.983 ± 0.031	
55	2.453 ± 0.041	2.420 ± 0.033	
56	2.640 ± 0.037	2.602 ± 0.028	
57	2.412 ± 0.040	2.368 ± 0.032	
58	2.625 ± 0.052	2.830 ± 0.042	
59	2.374 ± 0.045	2.407 ± 0.033	
60	2.699 ± 0.046	2.809 ± 0.035	
61	2.557 ± 0.042	2.540 ± 0.035	
62	2.203 ± 0.025	2.179 ± 0.020	
63	2.501 ± 0.020	2.623 ± 0.018	
64	2.442 ± 0.035	2.405 ± 0.028	
65	2.718 ± 0.057	2.705 ± 0.047	
66	2.467 ± 0.028	2.359 ± 0.020	
67	2.614 ± 0.036	2.482 ± 0.029	
68	2.482 ± 0.043	2.436 ± 0.034	
69	2.673 ± 0.031	2.605 ± 0.024	
70	2.824 ± 0.057	2.628 ± 0.054	
71	2.449 ± 0.019	2.571 ± 0.015	
72	2.285 ± 0.021	2.170 ± 0.016	
73	1.533 ± 0.011	1.490 ± 0.008	
74	1.139 ± 0.008	1.215 ± 0.005	
75	0.594 ± 0.006	0.555 ± 0.003	
76	0.421 ± 0.004	0.394 ± 0.002	

Table S10: KIX transverse cross-correlated cross-relaxation (CCCR) rates measured at 500 MHz and 20°C. The KIX residue number, transverse CCCR rates (η_{xy}) measured by standard experiment, and transverse CCCR rates $(\eta_{ave}^{xy}(\alpha-2)/\alpha)$ measured with the adiabatic scheme are shown in the first, second, and third column, respectively.

res.	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha-2}{\alpha}/{\rm s}^{-1}$	
582	8.83 ± 0.42	8.14 ± 0.37	
585	1.15 ± 0.02	1.08 ± 0.03	
586	1.25 ± 0.02	1.22 ± 0.02	
587	2.81 ± 0.02	2.84 ± 0.01	
588	3.59 ± 0.04	3.62 ± 0.04	
589	4.82 ± 0.12	4.43 ± 0.09	
590	6.26 ± 0.24	5.81 ± 0.28	
593	7.87 ± 0.36	7.47 ± 0.28	
594	5.83 ± 0.39	5.96 ± 0.33	
595	8.13 ± 0.32	7.52 ± 0.25	
596	6.13 ± 0.23	5.93 ± 0.17	
597	8.50 ± 0.35	8.10 ± 0.28	
598	9.57 ± 0.35	8.96 ± 0.30	
599	9.69 ± 0.45	9.10 ± 0.46	
600	9.19 ± 0.56	9.02 ± 0.51	
601	9.64 ± 0.58	8.66 ± 0.52	
602	10.00 ± 0.52	9.86 ± 0.54	
603	9.99 ± 0.39	9.35 ± 0.37	
604	8.90 ± 0.44	8.81 ± 0.41	
605	9.20 ± 0.69	9.10 ± 0.59	
606	9.59 ± 0.45	9.21 ± 0.36	
607	9.41 ± 0.83	8.85 ± 0.66	
608	9.19 ± 0.49	8.91 ± 0.39	
609	9.37 ± 0.58	8.91 ± 0.45	
610	9.55 ± 0.65	9.09 ± 0.55	
611	8.27 ± 0.67	8.23 ± 0.54	
612	8.48 ± 0.43	7.79 ± 0.30	
614	5.17 ± 0.17	4.88 ± 0.11	
618	5.80 ± 0.11	5.68 ± 0.08	
619	6.11 ± 0.07	6.22 ± 0.07	
620	5.06 ± 0.15	5.07 ± 0.11	
621	5.22 ± 0.15	5.06 ± 0.11	
622	6.32 ± 0.09	6.51 ± 0.10	
623	5.92 ± 0.58	6.17 ± 0.41	
624	6.89 ± 0.26	7.44 ± 0.26	
626	8.58 ± 0.35	8.37 ± 0.31	
628	8.51 ± 0.41	8.55 ± 0.38	Continued on next page

res.	$\eta_{xy}/\mathrm{s}^{-1}$	$\eta_{\rm ave}^{xy} \frac{\alpha - 2}{\alpha} / {\rm s}^{-1}$
629	8.50 ± 0.25	8.96 ± 0.32
630	9.39 ± 0.45	9.64 ± 0.42
632	9.48 ± 0.60	8.94 ± 0.59
633	8.76 ± 0.54	8.94 ± 0.53
634	9.62 ± 0.40	9.85 ± 0.46
635	9.00 ± 0.36	8.70 ± 0.31
636	9.60 ± 0.48	9.41 ± 0.44
637	9.60 ± 0.44	8.98 ± 0.36
638	10.13 ± 0.49	9.70 ± 0.40
640	9.61 ± 0.64	9.28 ± 0.67
641	9.61 ± 0.53	9.34 ± 0.47
642	8.59 ± 0.51	8.48 ± 0.53
643	8.64 ± 0.34	8.51 ± 0.32
644	7.72 ± 0.25	7.50 ± 0.26
645	8.79 ± 0.53	7.66 ± 0.40
646	9.93 ± 0.47	10.05 ± 0.54
647	9.73 ± 0.38	9.86 ± 0.37
650	10.00 ± 0.86	9.83 ± 0.83
651	9.90 ± 0.41	10.48 ± 0.51
652	9.97 ± 0.45	10.33 ± 0.54
656	9.79 ± 0.34	9.93 ± 0.36
657	9.65 ± 0.36	9.71 ± 0.42
658	7.53 ± 0.25	7.40 ± 0.24
659	9.67 ± 0.36	10.09 ± 0.43
660	9.07 ± 0.46	9.47 ± 0.50
662	9.33 ± 0.29	10.02 ± 0.31
665	8.22 ± 0.23	8.96 ± 0.24
666	8.51 ± 0.17	8.75 ± 0.20
670	4.27 ± 0.07	4.23 ± 0.06
671	3.09 ± 0.03	3.09 ± 0.03
672	1.73 ± 0.01	1.72 ± 0.01

Bruker pulse program for the measurement of transverse CCCR rates (η_{xy}) under an adiabatically swept pulse (scheme 1 in Fig. 1):

```
#include <Avance.incl>
#include <Grad.incl>
"d13=p10*(0.5*(1-cnst1))-9u-p12-100u"
"d14=p10-p12-p13-12u"
"d16=300u"
"d15=5u"
"d2 = 1/(4*cnst4)"
"d4 = d2-p16-d16-d15"
"d5 = d2-p17-d16-d15-p11"
"d30 = 30m"
"d0 = 3u"
"d10 = p1 * 2 + d0 * 2"
"d22 = d2+p1+d0"
"d23 = d2-p1-d0-3u"
"in0=inf1/2"
"15=1"
1 ze
2 d30 do:f2
3 d1 pl1:f1 pl0:f2
(p9:sp9):f2
10u
10u pl2:f2
(p2 ph0):f2
d15 UNBLKGRAD
p16:gp0
1m
(p1 ph0):f1
d15
p16:gp1
d16
d4
(center (p1*2 ph2):f1 (p2*2 ph0):f2)
d4
d15
p16:gp1
```

```
d16
(p1 ph1):f1
d15
p20:gp2
2m
if "15 if "15 1u
(p2 ph10):f2
(center (p1*2 ph0):f1 (p2*2 ph0):f2)
d2
(p2 ph1):f2
d15
p16:gp5
d16
(p1 ph2):f1
1u
goto 30
20 d15
p16:gp5
d16
(p1 ph0):f1
(p1 ph10):f1
1u
;***** relaxation *****
30 3u
d13 pl0:f1 pl0:f2
100u fq=cnst12:f1
(p12:sp12 ph21:r):f1
3u
3u pl1:f1
(p1 ph0):f1
3u
(p1*2 ph1):f1
3u
(p1 ph0):f1
(center (p10:sp10):f2 (3u 3u pl0 p13:sp13 ph22:r d14 p12:sp12 ph21:r
3u 3u pl1):f1)
```

```
(p1 ph0):f1
3u
(p1*2 ph1):f1
3u
(p1 ph0):f1
3u
3u pl0:f1
(p13:sp13 ph22:r):f1
3u
d13 pl1:f1 pl2:f2
100u fq=0:f1
; ***** end relaxation ******
if "15 if "15
1u
(p1 ph0):f1
d15
p16:gp7
d16
(p2 ph5):f2
d22
(p2*2 ph24):f2
d0
(p1*2 ph1):f1
d23
d0
(p2 ph1):f2
3u
goto 50
40 1u
(p1 ph0):f1
(p1 ph14):f1
d15
p16:gp7
d16
(p2 ph5):f2
d0
(p1*2 ph0):f1
```

```
d0
(p2*2 ph0):f2
d10
(p2 ph0):f2
50 d15
p16:gp3
1m
(p1 ph0):f1
d15
p17:gp4
d16
d5
3u pl0:f1
3u
(p11:sp1 ph23:r):f1
3u
3u pl1:f1
(center (p1*2 ph1):f1 (p2*2 ph0):f2)
3u
3u pl0:f1
3u
(p11:sp1 ph23:r):f1
d15
p17:gp4
d16 BLKGRAD
d5 pl16:f2
go=2 ph31 cpds2:f2
d30 do:f2 mc #0 to 2
F1I(iu5, 4)
F1PH(ru5 & ip5, id0)
d30 do:f2
exit
ph0=0
ph1=1
ph21=1
ph22=1
ph2=2
ph3=3
ph23=3
ph5=0*1 2*1
```

```
ph10 = 0 * 4 2 * 4
ph11 = 0 * 8
ph12 = 1 * 8
ph14 = 0*2 2*2
ph15 = 2*2 0*2
ph20 = 2 * 4 0 * 4
ph24 = 0 * 2 1 * 2
ph31=0 2 2 0 2 0 0 2
;pl1 : f1 channel - power level for pulse (default)
;p1 : f1 channel - high power pulse
;p11 : sp11 watergate
;p12 : sp12 flip back z->x
;p13 : sp13 flip back x->z
;d1 : relaxation delay; 1-5 * T1
; cnst1 : x/z proportion coefitient of used Chirp pulse during relaxation
; cnst4 : JNH coupling
; \operatorname{cnst12} : offset [Hz] to the center of amide region
```

Acquisition parameters for the measurement of transverse CCCR rates (η_{xy}) using an adiabatically swept pulse (scheme 1 in Fig. 1) at 500 MHz and 30°C:

```
##TITLE= Parameter file, TOPSPIN Version 2.1
##JCAMPDX = 5.0
##DATATYPE= Parameter Values
##NPOINTS= 12 $$ modification sequence number
##ORIGIN= Bruker BioSpin GmbH
##OWNER= username
$$ 2014-12-07 01:47:40.265 +0100 username@nmrspectrometer
$$ /opt/data/username/nmrspectrometer/Ubiq/32/acqus
$$ process /opt/topspin/prog/mod/shimcntl
##$ACQT0= 1000000
##$AMP= (0..31)
100
##$ANAVPT= -1
##$AQSEQ= 0
```

```
##$AQ_mod= 3
##$AUNM= <au_zg>
##$AUTOPOS= <>
##$BF1= 500.125
##$BF2= 50.677226
##$BF3= 500.125
##$BF4= 500.125
##$BF5= 500.125
##$BF6= 500.125
##$BF7= 500.125
##$BF8= 500.125
##$BYTORDA= 1
##$CFDGTYP= 2
##$CFRGTYP= 5
##$CHEMSTR= <none>
##$CNST= (0..63)
1 1 1
##$CPDPRG= <>
##$CPDPRG1= <>
##$CPDPRG2= <garp>
##$CPDPRG3= <qarp>
##$CPDPRG4= <mlev>
##$CPDPRG5= <mlev>
##$CPDPRG6= <mlev>
##$CPDPRG7= <mlev>
##$CPDPRG8= <mlev>
##$CPDPRGB= <>
##$CPDPRGT= <>
##$D= (0..63)
3e-06 2 0.002717391 0 0.001412391 1.239134e-05 0 0 0 0.06 2.346e-05
0.018179 0.075508 5e-06 0.0003 0 0 0.05 0 0.002729121 0.002702661
0.00277778
0 0 0
0 0 0 0
##$DATE= 1417893593
##$DBL= (0..7)
120 120 120 120 120 120 120 120
##$DBP= (0..7)
150 150 150 150 150 150 150 150
```

```
##$DBP07= 0
##$DBPNAM0= <>
##$DBPNAM1= <>
##$DBPNAM2= <>
##$DBPNAM3= <>
##$DBPNAM4= <>
##$DBPNAM5= <>
##$DBPNAM6= <>
##$DBPNAM7= <>
##$DBPOAL= (0..7)
0.5 0.5 0.5 0.5 0.5 0.5 0.5
##$DBPOFFS=(0..7)
0 0 0 0 0 0 0 0
##$DE= 6.5
##$DECBNUC= <off>
##$DECIM= 24
##$DECNUC= <off>
##$DECSTAT= 4
##$DIGMOD= 1
##$DIGTYP= 8
##$DL= (0..7)
0 120 120 120 120 120 120 120
##$DP= (0..7)
150 150 150 150 150 150 150 150
##$DP07= 0
##$DPNAME0= <>
##$DPNAME1= <>
##$DPNAME2= <>
##$DPNAME3= <>
##$DPNAME4= <>
##$DPNAME5= <>
##$DPNAME6= <>
##$DPNAME7= <>
##$DPOAL= (0..7)
0.5 0.5 0.5 0.5 0.5 0.5 0.5
##$DPOFFS= (0..7)
0 0 0 0 0 0 0 0
##$DQDMODE= 0
##$DR= 18
##$DS= 256
##$DSLIST= <SSSSSSSSSSSSSSS>
##$DSPFIRM= 0
##$DSPFVS= 12
##$DTYPA= 0
```

```
##$EXP= <>
##$F1LIST= <111111111111111>
##$F2LIST= <2222222222222>
##$F3LIST= <33333333333333333
##$FCUCHAN= (0..9)
0 2 1 0 0 0 0 0 0 0
##$FL1= 90
##$FL2= 90
##$FL3= 90
##$FL4= 90
##$FOV= 20
##$FQ1LIST= <freqlist>
##$FQ2LIST= <freqlist>
##$FQ3LIST= <freqlist>
##$FQ4LIST= <freqlist>
##$FQ5LIST= <freqlist>
##$FQ6LIST= <freqlist>
##$FQ7LIST= <freqlist>
##$FQ8LIST= <freqlist>
##$FRQLO3= 1885504.20168067
##$FRQLO3N= 0
##$FS=(0..7)
83 83 83 83 83 83 83
##$FTLPGN= 0
##$FW= 125000
##$FnMODE= 0
##$FnTYPE= 0
##$GP031=0
##$GPNAM0= <SINE.100>
##$GPNAM1= <SINE.100>
##$GPNAM10= <sine.100>
##$GPNAM11= <sine.100>
##$GPNAM12= <sine.100>
##$GPNAM13= <sine.100>
##$GPNAM14= <sine.100>
##$GPNAM15= <sine.100>
##$GPNAM16= <sine.100>
##$GPNAM17= <sine.100>
##$GPNAM18= <sine.100>
##$GPNAM19= <sine.100>
##$GPNAM2= <SINE.100>
##$GPNAM20= <sine.100>
##$GPNAM21= <sine.100>
##$GPNAM22= <sine.100>
```

```
##$GPNAM23= <sine.100>
##$GPNAM24= <sine.100>
##$GPNAM25= <sine.100>
##$GPNAM26= <sine.100>
##$GPNAM27= <sine.100>
##$GPNAM28= <sine.100>
##$GPNAM29= <sine.100>
##$GPNAM3= <SINE.100>
##$GPNAM30= <sine.100>
##$GPNAM31= <sine.100>
##$GPNAM4= <SINE.100>
##$GPNAM5= <SINE.100>
##$GPNAM6= <SINE.100>
##$GPNAM7= <SINE.100>
##$GPNAM8= <SINE.100>
##$GPNAM9= <SINE.100>
##$GPX= (0..31)
##$GPY= (0..31)
##$GPZ= (0..31)
0 0
##$GRDPROG= <grad_out>
##$GRPDLY= -1
##$HDDUTY= 20
##$HDRATE= 20
##$HGAIN= (0..3)
0 0 0 0
##$HL1= 256
##$HL2= 35
##$HL3= 16
##$HL4= 17
##$HOLDER= 0
##$HPMOD= (0..7)
0 0 0 0 0 0 0
##$HPPRGN= 0
##$IN= (0..63)
0.0004484 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
```

```
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
0.001 0.001 0.001 0.001
##$INF= (0..7)
0 896.836251561966 0 0 0 0 0 0
##$INP= (0..63)
0 0 0
##$INSTRUM= <spect>
##$L= (0..31)
##$LFILTER= 57
##$LGAIN= -7.69999980926514
##$LINPSTP= 10
##$LOCKED= yes
##$LOCKFLD= 4357
##$LOCKGN= 108.5
##$LOCKPOW= -18
##$LOCKPPM= 4.69999980926514
##$LOCNUC= <2H>
##$LOCPHAS= 253.7
##$LOCSHFT= no
##$LOCSW= 0
##$LTIME= 0.419999986886978
##$MASR= 4200
##$MASRLST= <masrlst>
##$NBL= 1
##$NC= -2
##$NLOGCH= 4
##$NS= 8
##$NUC1= <1H>
##$NUC2= <15N>
##$NUC3= <off>
##$NUC4= <off>
##$NUC5= <off>
##$NUC6= <off>
##$NUC7= <off>
##$NUC8= <off>
##$NUCLEI= 0
##$NUCLEUS= <off>
##$O1= 2318.1
```

```
##$02= 5990
##$03= 59114.775
##$04= 0
##$O5= 2375.4762511885
##$06= 2375.4762511885
##$O7= 2375.4762511885
##$O8= 2375.4762511885
##$OBSCHAN= (0..9)
0 0 0 0 0 0 0 0 0
##$OVERFLW= 1
##$P= (0..63)
8.3 8.73 45 12.4 24.8 16.5 25 50 0 15000 80000 1400 2240 2240 500
200000
1000 1000 0 0 1400 54.5 70 0 0 100 0 8.3 0 0 0 0 0 0 0 0 0 0 0
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1500
##$PACOIL= (0..15)
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  
##$PAPS= 2
##$PARMODE= 1
##$PCPD= (0..9)
100 55 320 320 100 100 100 100 100 100
##$PHCOR= (0..31)
##$PHLIST= <>
##$PHP= 1
##$PH_ref= 0
##$PL= (0..63)
120 4.65 -1 -1 120 120 120 120 120 52.52 10.58 22.62 9.6 120 120
120 16.04
120 1 17.43 120 120 120 120 120 120 120 22.62 120 120 120 120 120
120 120
##$PLSTEP= 0.1
##$PLSTRT= -6
##$POWMOD= 0
##$PQPHASE= 0
##$POSCALE= 0
##$PR= 1
##$PRECHAN= (0..15)
##$PRGAIN= 0
```

```
##$PROBHD= <5 mm CPTCI 1H-13C/15N/D Z-GRD Z108549/0001
##$PROSOL= no
##$PULPROG= <fab_nnh_noSE>
##$PW= 0
##$PYNM= <acqu.py>
##$QNP= 1
##$RD= 0
##$RECCHAN= (0..15)
##$RECPH= 0
##$RECPRE= (0..15)
##$RECPRFX= (0..15)
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##$RECSEL= (0..15)
##$RG= 512
##$RO= 0
##$ROUTWD1= (0..23)
##$ROUTWD2= (0..23)
##$RSEL= (0..9)
0 3 2 0 0 0 0 0 0 0
##$S= (0..7)
83 4 83 83 83 83 83
##$SEOUT= 0
##$SFO1= 500.1273181
##$SFO2= 50.683216
##$SFO3= 500.184114775
##$SFO4= 500.125
##$SFO5= 500.127375476251
##$SF06= 500.127375476251
##$SFO7= 500.127375476251
##$SFO8= 500.127375476251
##$SOLVENT= <H2O+D2O>
##$SP= (0..31)
1 45.5 120 1 0 0 120 120 0 7.75 7.75 0 46 55 0 0 150 150 150 150
150 150
150 150 150 150 150 150 150 150 150 150
##$SP07= 0
##$SPECTR= 0
##$SPNAM0= <gauss>
```

```
##$SPNAM1= <Sinc1.1000>
##$SPNAM10= <SmoothedChirp_80ms_10kHz_20per_10000pt:>
##$SPNAM11= <gauss>
##$SPNAM12= <Sinc1.1000>
##$SPNAM13= <Sinc1.1000>
##$SPNAM14= <gauss>
##$SPNAM15= <qauss>
##$SPNAM16= <gauss>
##$SPNAM17= <gauss>
##$SPNAM18= <gauss>
##$SPNAM19= <gauss>
##$SPNAM2= <Gaus1.1000>
##$SPNAM20= <gauss>
##$SPNAM21= <gauss>
##$SPNAM22= <gauss>
##$SPNAM23= <gauss>
##$SPNAM24= <gauss>
##$SPNAM25= <gauss>
##$SPNAM26= <gauss>
##$SPNAM27= <gauss>
##$SPNAM28= <gauss>
##$SPNAM29= <gauss>
##$SPNAM3= <Crp60,0.5,20.1>
##$SPNAM30= <gauss>
##$SPNAM31= <gauss>
##$SPNAM4= <gauss>
##$SPNAM5= <gauss>
##$SPNAM6= <Gaus1.1000>
##$SPNAM7= <Gaus1.1000>
##$SPNAM8= <gauss>
##$SPNAM9= <SmoothedChirp_15ms_10kHz_20per_1000pt>
##$SPOAL= (0..31)
0.5
##$SPOFFS= (0..31)
0 0 0
0 0 0
##$SUBNAM0= <"">
##$SUBNAM1= <"">
##$SUBNAM2= <"">
##$SUBNAM3= <"">
##$SUBNAM4= <"">
```

```
##$SUBNAM5= <"">
##$SUBNAM6= <"">
##$SUBNAM7= <"">
##$SUBNAM8= <"">
##$SUBNAM9= <"">
##$SW= 14.0020368154494
##$SWIBOX= (0..15)
0 1 2 3 0 0 6 0 0 0 0 0 0 0 0 0
##$SW_h= 7002.80112044818
##$SWfinal= 0
##$TD= 2048
##$TD0= 1
##$TE= 307.6
##$TE2= 300
##$TE3= 300
##$TEG= 300
##$TL= (0..7)
0 120 120 120 120 120 120 120
##$TP= (0..7)
150 150 150 150 150 150 150 150
##$TP07= 0
##$TPNAME0= <>
##$TPNAME1= <>
##$TPNAME2= <>
##$TPNAME3= <>
##$TPNAME4= <>
##$TPNAME5= <>
##$TPNAME6= <>
##$TPNAME7= <>
##$TPOAL= (0..7)
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
##$TPOFFS= (0..7)
0 0 0 0 0 0 0 0
##$TUNHIN= 0
##$TUNHOUT= 0
##$TUNXOUT= 0
##$USERA1= <user>
##$USERA2= <user>
##$USERA3= <user>
##$USERA4= <user>
##$USERA5= <user>
##$V9= 5
##$VALIST= <valist>
##$VCLIST= <CCCCCCCCCCCCC
```

```
##$VD= 0
##$VDLIST= <DDDDDDDDDDDDDDD>
##$VPLIST= <PPPPPPPPPPPPPP>
##$VTLIST= <TTTTTTTTTTTTT>
##$WBST= 1024
##$WBSW= 0.6
##$XGAIN= (0..3)
0 0 0 0
##$XL= 0
##$YL= 0
##$YMAX_a= 55520
##$YMIN_a= -52830
##$ZGOPTNS= <>
##$ZL1= 120
##$ZL2= 120
##$ZL3= 120
##$ZL4= 120
##END=
```

Bruker pulse program for the measurement of spectral density values at zero frequency J(0) using a single echo experiment (scheme 2 in Fig. 1):

```
#include <Avance.incl>
#include <Grad.incl>
"d16=300u"
"d15=5u"
"d2 = 1/(4*cnst4)"
"d4 = d2-p16-d16-d15"
"d5 = d2-p16-d16-d15-p11"
"d30 = 30m"
"d0 = 3u"
"d10 = p1 * 2 + d0 * 2"
"d22 = d2+p1+d0"
"d23 = d2-p1-d0-3u"
"d24 = d20 * 0.5 - p12 - 6u"
"d13 = d20 * 0.25 - p12 - 126u"
;"15=1"
"in0=inf1/2"
1 ze
2 d30 do:f2
3 d1
10u pl0:f2
(p10:sp10):f2
10u
10u pl1:f1 pl2:f2
(p2 ph0):f2
d15 UNBLKGRAD
p16:gp0
1m
(p1 ph0):f1
d15
p16:gp1
d16
(center (p1*2 ph2):f1 (p2*2 ph0):f2)
d4
```

```
d15
p16:gp1
d16
(p1 ph4):f1
d15
p20:gp2
if "15 if "15
(p2 ph10):f2
(center (p1*2 ph0):f1 (p2*2 ph0):f2)
d2
(p2 ph3):f2
d15
p16:gp5
d16
(p1 ph0):f1
1u
goto 30
20 d15
p16:gp5
d16
(p1 ph0):f1
3u
(p1 ph10):f1
1u
;***** relaxation *****
30 20u
d13 pl0:f1
100u fq=cnst12:f1
(p12:sp12 ph21):f1
3u
3u pl1:f1
(center (p1 ph0 3u p1*2 ph1 3u p1 ph0):f1 (p2 ph11):f2)
3u
3u pl0:f1
```

```
(p13:sp13 ph22):f1
d24
(p2*2 ph0):f2
d24
(p12:sp12 ph21):f1
3u
3u pl1:f1
(center (p1 ph0 3u p1*2 ph1 3u p1 ph0):f1 (p2 ph12):f2)
3u
3u pl0:f1
(p13:sp13 ph22):f1
20u
d13 pl1:f1 pl2:f2
100u fq=0:f1
; ***** end relaxation ******
if "15 if "15
1u
(p1 ph0):f1
d15
p16:gp7
d16
(p2 ph5):f2
d22
(p2*2 ph24):f2
(p1*2 ph1):f1
d23
d0
(p2 ph3):f2
3u
goto 50
40 1u
(p1 ph0):f1
3u
(p1 ph14):f1
d15
p16:gp7
d16
```

```
(p2 ph5):f2
d0
(p1*2 ph0):f1
d0
(p2*2 ph0):f2
d10
(p2 ph0):f2
50 d15
p16:gp3
d16
(p1 ph0):f1
d15
p16:gp4
d16
d5
3u pl0:f1
3u
(p11:sp1 ph23:r):f1
3u
3u pl1:f1
3u
(center (p1*2 ph1):f1 (p2*2 ph0):f2)
3u
3u pl0:f1
3u
(p11:sp1 ph23:r):f1
6u
d15
p16:gp4
d16 BLKGRAD
d5 pl16:f2
go=2 ph31 cpds2:f2
d30 do:f2 mc \#0 to 2
F1I(iu5, 4)
F1PH(ru5 & ip5, id0)
d30 do:f2
exit
ph0=0
ph1=1
ph2=2
ph3=3
ph21=1
```

```
ph22=1
ph23=3
ph4=1*8 3*8
ph5=0
ph10 = 0 * 4 2 * 4
ph11 = 0*1 2*1
ph12 = 0 * 16 2 * 16
ph14 = 0 *2 2 *2
ph15 = 2*2 0*2
ph20 = 2*4 0*4
ph24 = 0*2 1*2
ph31=0 2 2 0 2 0 0 2
2 0 0 2 0 2 2 0
2 0 0 2 0 2 2 0
0 2 2 0 2 0 0 2
;pl1 : f1 channel - power level for pulse (default)
;p1 : f1 channel - high power pulse
;d1 : relaxation delay; 1-5 * T1
```

Acquisition parameters for the measurement of spectral density values at zero frequency J(0) using a single echo experiment (scheme 2 in Fig. 1) at 500 MHz and 5°C:

```
##$AQSEQ= 0
##$AQ_mod= 3
##$AUNM= <au_zg>
##$AUTOPOS= <>
##$BF1= 500.125
##$BF2= 50.677226
##$BF3= 500.125
##$BF4= 500.125
##$BF5= 500.125
##$BF6= 500.125
##$BF7= 500.125
##$BF8= 500.125
##$BYTORDA= 1
##$CFDGTYP= 2
##$CFRGTYP= 5
##$CHEMSTR= <none>
##$CNST= (0..63)
1 1 145 1 92 1 1 1 1 1 1 1 1544.75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##$CPDPRG= <>
##$CPDPRG1= <>
##$CPDPRG2= <garp>
##$CPDPRG3= <qarp>
##$CPDPRG4= <mlev>
##$CPDPRG5= <mlev>
##$CPDPRG6= <mlev>
##$CPDPRG7= <mlev>
##$CPDPRG8= <mlev>
##$CPDPRGB= <>
##$CPDPRGT= <>
##$D= (0..63)
3e-06 2 0.002717391 0 0.001412391 1.239134e-05 0 0 0 0.06 2.302e-05
0.014694 \ 0 \ 5e-06 \ 0.0003 \ 0 \ 0 \ 0.07 \ 0 \ 0.002728901 \ 0.002702881 \ 0.032314
0 0 0
0 0 0 0
##$DATE= 1420875278
##$DBL= (0..7)
120 120 120 120 120 120 120 120
##$DBP= (0..7)
150 150 150 150 150 150 150 150
```

```
##$DBP07= 0
##$DBPNAM0= <>
##$DBPNAM1= <>
##$DBPNAM2= <>
##$DBPNAM3= <>
##$DBPNAM4= <>
##$DBPNAM5= <>
##$DBPNAM6= <>
##$DBPNAM7= <>
##$DBPOAL= (0..7)
0.5 0.5 0.5 0.5 0.5 0.5 0.5
##$DBPOFFS=(0..7)
0 0 0 0 0 0 0 0
##$DE= 6.5
##$DECBNUC= <off>
##$DECIM= 24
##$DECNUC= <off>
##$DECSTAT= 4
##$DIGMOD= 1
##$DIGTYP= 8
##$DL= (0..7)
0 120 120 120 120 120 120 120
##$DP= (0..7)
150 150 150 150 150 150 150 150
##$DP07= 0
##$DPNAME0= <>
##$DPNAME1= <>
##$DPNAME2= <>
##$DPNAME3= <>
##$DPNAME4= <>
##$DPNAME5= <>
##$DPNAME6= <>
##$DPNAME7= <>
##$DPOAL= (0..7)
0.5 0.5 0.5 0.5 0.5 0.5 0.5
##$DPOFFS= (0..7)
0 0 0 0 0 0 0 0
##$DQDMODE= 0
##$DR= 18
##$DS= 256
##$DSLIST= <SSSSSSSSSSSSSSS>
##$DSPFIRM= 0
##$DSPFVS= 12
##$DTYPA= 0
```

```
##$EXP= <>
##$F1LIST= <111111111111111>
##$F2LIST= <2222222222222>
##$F3LIST= <33333333333333333
##$FCUCHAN= (0..9)
0 2 1 0 0 0 0 0 0 0
##$FL1= 90
##$FL2= 90
##$FL3= 90
##$FL4= 90
##$FOV= 20
##$FQ1LIST= <freqlist>
##$FQ2LIST= <freqlist>
##$FQ3LIST= <freqlist>
##$FQ4LIST= <freqlist>
##$FQ5LIST= <freqlist>
##$FQ6LIST= <freqlist>
##$FQ7LIST= <freqlist>
##$FQ8LIST= <freqlist>
##$FRQLO3= 1885504.20168067
##$FRQLO3N= 0
##$FS=(0..7)
83 83 83 83 83 83 83
##$FTLPGN= 0
##$FW= 125000
##$FnMODE= 0
##$FnTYPE= 0
##$GP031=0
##$GPNAM0= <SINE.100>
##$GPNAM1= <SINE.100>
##$GPNAM10= <sine.100>
##$GPNAM11= <sine.100>
##$GPNAM12= <sine.100>
##$GPNAM13= <sine.100>
##$GPNAM14= <sine.100>
##$GPNAM15= <sine.100>
##$GPNAM16= <sine.100>
##$GPNAM17= <sine.100>
##$GPNAM18= <sine.100>
##$GPNAM19= <sine.100>
##$GPNAM2= <SINE.100>
##$GPNAM20= <sine.100>
##$GPNAM21= <sine.100>
##$GPNAM22= <sine.100>
```

```
##$GPNAM23= <sine.100>
##$GPNAM24= <sine.100>
##$GPNAM25= <sine.100>
##$GPNAM26= <sine.100>
##$GPNAM27= <sine.100>
##$GPNAM28= <sine.100>
##$GPNAM29= <sine.100>
##$GPNAM3= <SINE.100>
##$GPNAM30= <sine.100>
##$GPNAM31= <sine.100>
##$GPNAM4= <SINE.100>
##$GPNAM5= <SINE.100>
##$GPNAM6= <SINE.100>
##$GPNAM7= <SINE.100>
##$GPNAM8= <SINE.100>
##$GPNAM9= <SINE.100>
##$GPX= (0..31)
##$GPY= (0..31)
##$GPZ= (0..31)
0 0
##$GRDPROG= <grad_out>
##$GRPDLY= -1
##$HDDUTY= 20
##$HDRATE= 20
##$HGAIN= (0..3)
0 0 0 0
##$HL1= 256
##$HL2= 35
##$HL3= 16
##$HL4= 17
##$HOLDER= 0
##$HPMOD= (0..7)
0 0 0 0 0 0 0
##$HPPRGN= 0
##$IN= (0..63)
0.0004484 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
```

```
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001
0.001 0.001 0.001 0.001
##$INF= (0..7)
0 896.836251561966 0 0 0 0 0 0
##$INP= (0..63)
0 0 0
##$INSTRUM= <spect>
##$L= (0..31)
##$LFILTER= 40
##$LGAIN= -11
##$LINPSTP= 10
##$LOCKED= yes
##$LOCKFLD= 4374
##$LOCKGN= 112
##$LOCKPOW= -18
##$LOCKPPM= 4.69999980926514
##$LOCNUC= <2H>
##$LOCPHAS= 258.7
##$LOCSHFT= no
##$LOCSW= 0
##$LTIME= 0.503000020980835
##$MASR= 4200
##$MASRLST= <masrlst>
##$NBL= 1
##$NC= -2
##$NLOGCH= 4
##$NS= 32
##$NUC1= <1H>
##$NUC2= <15N>
##$NUC3= <off>
##$NUC4= <off>
##$NUC5= <off>
##$NUC6= <off>
##$NUC7= <off>
##$NUC8= <off>
##$NUCLEI= 0
##$NUCLEUS= <off>
##$O1= 2313.57825
```

```
##$02= 5990
##$O3= 59114.775
##$04= 0
##$O5= 2375.4762511885
##$O6= 2375.4762511885
##$O7= 2375.4762511885
##$O8= 2375.4762511885
##$OBSCHAN= (0..9)
0 0 0 0 0 0 0 0 0
##$OVERFLW= 1
##$P= (0..63)
8.3 8.51 44.5 12.4 24.8 16.5 25 50 0 0 80000 1400 2680 2680 500 200000
1000 0 0 0 1400 54.5 70 0 0 100 0 8.3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1500
##$PACOIL= (0..15)
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  
##$PAPS= 2
##$PARMODE= 1
##$PCPD= (0..9)
100 55 320 320 100 100 100 100 100 100
##$PHCOR= (0..31)
##$PHLIST= <>
##$PHP= 1
##$PH_ref= 0
##$PL= (0..63)
120 4.65 -1 -1 120 120 120 120 120 52.52 10.58 22.62 9.6 120 120
120 16.14
120 1 17.43 120 120 120 120 120 120 120 22.62 120 120 120 120 120
120 120
120
##$PLSTEP= 0.1
##$PLSTRT= -6
##$POWMOD= 0
##$PQPHASE= 0
##$PQSCALE= 0
##$PR= 1
##$PRECHAN= (0..15)
##$PRGAIN= 0
##$PROBHD= <5 mm CPTCI 1H-13C/15N/D Z-GRD Z108549/0001
```

```
##$PROSOL= no
##$PULPROG= <fab_nnh_noChirp_noSE>
##$PW= 0
##$PYNM= <acqu.py>
##$QNP= 1
##$RD= 0
##$RECCHAN= (0..15)
##$RECPH= 0
##$RECPRE= (0..15)
##$RECPRFX= (0..15)
##$RECSEL= (0..15)
##$RG= 128
##$RO= 0
##$ROUTWD1= (0..23)
0 1024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
##$ROUTWD2= (0..23)
##$RSEL= (0..9)
0 3 2 0 0 0 0 0 0 0
##$S= (0..7)
83 4 83 83 83 83 83
##$SEOUT= 0
##$SFO1= 500.12731357825
##$SFO2= 50.683216
##$SFO3= 500.184114775
##$SFO4= 500.125
##$SFO5= 500.127375476251
##$SFO6= 500.127375476251
##$SFO7= 500.127375476251
##$SFO8= 500.127375476251
##$SOLVENT= <H2O+D2O>
##$SP=(0..31)
1 45 120 1 0 0 120 120 0 0 7.75 0 47 58.4 0 0 150 150 150 150 150
150 150
150 150 150 150 150 150 150 150 150
##$SP07= 0
##$SPECTR= 0
##$SPNAM0= <gauss>
##$SPNAM1= <Sinc1.1000>
```

```
##$SPNAM10= <SmoothedChirp_80ms_10kHz_5per_10000pt>
##$SPNAM11= <gauss>
##$SPNAM12= <Sinc1.1000>
##$SPNAM13= <Sinc1.1000>
##$SPNAM14= <gauss>
##$SPNAM15= <gauss>
##$SPNAM16= <gauss>
##$SPNAM17= <gauss>
##$SPNAM18= <gauss>
##$SPNAM19= <gauss>
##$SPNAM2= <Gaus1.1000>
##$SPNAM20= <qauss>
##$SPNAM21= <gauss>
##$SPNAM22= <gauss>
##$SPNAM23= <gauss>
##$SPNAM24= <gauss>
##$SPNAM25= <gauss>
##$SPNAM26= <gauss>
##$SPNAM27= <qauss>
##$SPNAM28= <gauss>
##$SPNAM29= <gauss>
##$SPNAM3= <Crp60,0.5,20.1>
##$SPNAM30= <gauss>
##$SPNAM31= <gauss>
##$SPNAM4= <gauss>
##$SPNAM5= <gauss>
##$SPNAM6= <Gaus1.1000>
##$SPNAM7= <Gaus1.1000>
##$SPNAM8= <gauss>
##$SPNAM9= <gauss>
##$SPOAL= (0..31)
0.5
##$SPOFFS= (0..31)
0 0 0
0 0 0
##$SUBNAM0= <"">
##$SUBNAM1= <"">
##$SUBNAM2= <"">
##$SUBNAM3= <"">
##$SUBNAM4= <"">
##$SUBNAM5= <"">
```

```
##$SUBNAM6= <"">
##$SUBNAM7= <"">
##$SUBNAM8= <"">
##$SUBNAM9= <"">
##$SW= 14.0020369420446
##$SWIBOX= (0..15)
0 1 2 3 0 0 6 0 0 0 0 0 0 0 0
##$SW_h= 7002.80112044818
##$SWfinal= 0
##$TD= 2048
##$TD0= 1
##$TE= 283.3
##$TE2= 300
##$TE3= 300
##$TEG= 300
##$TL= (0..7)
0 120 120 120 120 120 120 120
##$TP= (0..7)
150 150 150 150 150 150 150 150
##$TP07= 0
##$TPNAME0= <>
##$TPNAME1= <>
##$TPNAME2= <>
##$TPNAME3= <>
##$TPNAME4= <>
##$TPNAME5= <>
##$TPNAME6= <>
##$TPNAME7= <>
##$TPOAL= (0..7)
0.5 0.5 0.5 0.5 0.5 0.5 0.5
##$TPOFFS= (0..7)
0 0 0 0 0 0 0 0
##$TUNHIN= 0
##$TUNHOUT= 0
##$TUNXOUT= 0
##$USERA1= <user>
##$USERA2= <user>
##$USERA3= <user>
##$USERA4= <user>
##$USERA5= <user>
##$V9= 5
##$VALIST= <valist>
##$VCLIST= <CCCCCCCCCCCCCC
##$VD= 0
```

```
##$VDLIST= <DDDDDDDDDDDDDDDD
##$VPLIST= <PPPPPPPPPPPPPP>
##$VTLIST= <TTTTTTTTTTTTT
##$WBST= 1024
##$WBSW= 0.6
##$XGAIN= (0..3)
0 0 0 0
##$XL= 0
##$YL= 0
##$YMAX_a= 57067
##$YMIN_a = -35787
##$ZGOPTNS= <>
##$ZL1= 120
##$ZL2= 120
##$ZL3= 120
##$ZL4= 120
##END=
```

References

- [Hogben et al(2011)] Hogben HJ, Krzystyniak M, Charnock GTP, Hore PJ, Kuprov I (2011) Spinach A software library for simulation of spin dynamics in large spin systems. J Magn Reson 208:179–194, DOI 10.1016/j.jmr.2010.11.008
- [MATLAB] MATLAB and Statistics Toolbox Release R2015a, The MathWorks, Inc, Natick, Massachusetts, United States
- $[{\rm Redfield}(1965)]\ {\rm Redfield}\ {\rm AG}\ (1965)$ The theory of relaxation processes. Adv Magn Reson 1:1-32
- [Wangsness and Bloch(1953)] Wangsness R, Bloch F (1953) The Dynamical Theory of Nuclear Induction. Phys Rev Lett 89:728–739, DOI 10.1103/PhysRev.89.728