Numerično reševanje parcialnih diferencialnih enačb, 2015/2016

2. domača naloga

Nalogo rešite v programu Matlab ali Octave. Datoteke, uporabljene pri reševanju, oddajte v datoteki ime_priimek_vpisnastevilka_dn2.zip v spletni učilnici najkasneje do 9. junija 2016.

1. Dana je navadna diferencialna enačba

$$-3u''(x) + 7u(x) = 1 - 4x, \quad x \in (0, 5),$$

z robnima pogojema $u(0)=-2,\ u(5)=3.$ Naj bodo $H_i,\ i=0,1,\ldots,n,$ odsekoma linearne funkcije nad zaporedjem ekvidistantnih stičnih točk (x_0,x_1,\ldots,x_n) na intervalu [0,5], ki so določene s pogoji $H_i(x_j)=\delta_{i,j},$ pri čemer $\delta_{i,j}$ označuje Kroneckerjevo delto. Z metodo končnih elementov poiščite aproksimacijo za šibko rešitev robnega problema v obliki

$$-2H_0 + 3H_n + \sum_{i=1}^{n-1} \alpha_i H_i, \quad \alpha_i \in \mathbb{R}.$$

Sistem, ki določa vrednosti parametrov α_i , sestavite s pomočjo togostnih matrik in vektorjev. Njihove elemente izračunajte eksaktno z upoštevanjem, da je skalarni produkt funkcij f in g podan s predpisom

$$\langle f, g \rangle = \int_0^5 f(x)g(x) \, \mathrm{d}x.$$

Narišite aproksimacije za $n \in \{10, 20, 30, 40, 50\}$ in njihove vrednosti v točki $x = \pi$ primerjajte z vrednostjo rešitve $u(\pi) \approx -1.33568$.

2. Dana je toplotna enačba

$$\frac{\partial u}{\partial t} = \frac{1}{4} \frac{\partial^2 u}{\partial x^2}, \quad (t, x) \in (0, 1) \times (0, 3),$$

z začetnim pogojem

$$u(0, x) = x \cos(\frac{\pi}{2}x), \quad x \in [0, 3],$$

in robnima pogojema

$$u(t,0) = t^2$$
, $u(t,3) = -t$, $t > 0$.

Naj bo diskretizacija območja $[0,1] \times [0,3]$ določena s korakom δt v časovni in δx v prostorski smeri ter naj u_j^n označuje približek za vrednost rešitve v točki $(n\delta t, j\delta x)$. Poiščite približke v vseh točkah diskretne mreže z uporabo metode

$$-\theta\lambda(u_{j-1}^{n+1}+u_{j+1}^{n+1})+(1+2\theta\lambda)u_{j}^{n+1}=(1-\theta)\lambda(u_{j-1}^{n}+u_{j+1}^{n})+(1-2(1-\theta)\lambda)u_{j}^{n}$$

za parametre $\theta=0$ (eksplicitna shema), $\theta=1$ (implicitna shema) in $\theta=\frac{1}{2}$ (Crank–Nicolsonova shema). Courantovo število λ naj bo enako $\frac{1}{2}$, korak diskretizacije δx v prostorski smeri pa $\frac{1}{10}$. Narišite rešitve pri t=1 in primerjajte njihove vrednosti z rešitvijo, ki jo da Crank–Nicolsonova shema pri $\lambda=\frac{1}{2}$ in $\delta x=\frac{1}{100}$.