

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010

INSTITUTE OF OPEN LEARNING EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 305: CHEMICAL KINETICS

DATE: Tuesday 16th February, 2010 **TIME**: 11.00 a.m. – 1.00 p.m.

INSTRUCTIONS

Answer all questions Some constants R= 8.314 Jk⁻¹mol⁻¹

1. Explain briefly what is meant by the following: -

i.	Rate constant of a chemical reaction	[3 marks]
ii.	Mechanism of a reaction	[3 marks]
iii.	Molecularity of a reaction	[3 marks]
iv.	Transition state	[3 marks]

2. The rate of formation of a product P was studied and the following data was obtained at 25°C.

Concentration of P formed/	0	34.3	56.8	71.6	81.7	88.0	92.1
μ Mole dm ⁻³							
Time/ Min	0	2.5	5.0	7.5	10.0	12.5	15.0

Determine the order of reaction and evaluate the rate constant

[12 marks]

3. The decomposition of N_2O_5 proceeds according to the equation

$$2\;N_2O_{5\;(g)}\implies 4\;NO_{2\;(g)}+O_{2\;(g)}$$

- i. Using stochiometric coefficient, write down the rate expression for the equation. [3 marks]
- Determine the rate of appearance of both NO_2 and O_2 if the rate of disappearance of N_2O_5 at that instant is 4.2×10^{-7} in that reaction vessel [6 marks]
- 4. (a) Explain on the basis of collision theory why rise in temperature speed up the rate of a chemical reaction. [5 marks]
 - (b) A reaction for the rearrangement of methyl isonitrile was studied at various temperatures and the following data obtained.

Rate of reaction / S ⁻¹	2.5×10^{-5}	5.25×10^{-5}	6.3 x 10 ⁻⁴	3.16×10^{-3}
Temperature / K	462.7	471.9	503.3	524.3

Using the Arrhenius equation, $\ln K = \frac{E_a}{RT}$

i. Calculate the activation energy

[5 marks]

ii. What will be the rate constant at 157° C

[5 marks]

5. The following mechanism has been proposed for the gas phase reaction of chloroform and chlorine.

Step I
$$Cl_{2(g)}$$
 $\xrightarrow{K_1}$ $2 Cl^*_{(g)}$ FAST

Step II
$$Cl'(g) + CHCl_3(g) \xrightarrow{k_2} HCl + CCl'_3(g)$$
 SLOW

- i. Which of the three is the rate determining step [2 marks]
- ii. Write down the overall reaction [4 marks]
- iii. Write down the rate expression for the reaction [4 marks]
- 6. State and briefly explain three methods of determining or measuring the rate of a given reaction. Use appropriate reaction examples in each method of your choice

[12 marks]

•••••