

## Triangles Ex 4.3 Q2

## Answer:

It is given that AE is the bisector of the exterior  $\angle CAD$ . Meeting BC produced E and  $AB = 10 \, \mathrm{cm}$ ,  $AC = 6 \, \mathrm{cm}$  and  $BC = 12 \, \mathrm{cm}$ . Since AE is the bisector of the exterior  $\angle CAD$ .

So 
$$\frac{BE}{CE} = \frac{AB}{AC}$$

$$\frac{12+x}{x} = \frac{10}{6}$$

$$72+6x = 10x$$

$$4x = 72$$

$$x = 18$$
Hence  $CE = 18$ cm

Triangles Ex 4.3 Q3

## Answer:

It is given that in 
$$\triangle ABC$$
,  $\frac{AB}{AC} = \frac{BD}{DC}$ ,  $\angle B = 70^{\circ}$  and  $\angle C = 50^{\circ}$ .

We have to find  $\angle BAD$ .

$$\angle A = 180^{\circ} - (70^{\circ} + 50^{\circ})$$
  
=  $180^{\circ} - 120^{\circ}$   
=  $60^{\circ}$ 

Since  $\frac{AB}{AC} = \frac{BD}{DC}$ , therefore, AD is the bisector of  $\angle A$ .

Hence, 
$$\angle BAD = \frac{60^{\circ}}{2} = 30^{\circ}$$

Triangles Ex 4.3 Q4

## Answer:

We have to prove that 
$$\frac{AB}{AC} = \frac{BD}{DC}$$
.

In AABC,

$$\angle 1 = \angle 2$$
 (Given)

So, AD is the bisector of  $\angle A$ .

Therefore, 
$$\frac{AB}{AC} = \frac{BD}{DC}$$

\*\*\*\*\*\*\* END \*\*\*\*\*\*