

The Status of Clean Energy in the United States

Tribal Energy Program Review May 6, 2015

Travis Lowder, NREL

Lazard's Levelized Cost of Energy (LCOE) Estimates

Source: Lazard 2013

Lazard's Capital Cost Estimates

Technology (number of values)

Source: Lazard 2013

EIA Estimates (2012 data)

Plant type	Capacity factor (%)	Levelized capital cost	Fixed O&M	Variable O&M (including fuel)	Transmission investment	Total system LCOE	Subsidy ¹	Total LCOE including Subsidy
Dispatchable Technologies								
Conventional Coal	85	60.0	4.2	30.3	1.2	95.6		
Integrated Coal- Gasification Combined Cycle (IGCC)	85	76.1	6.9	31.7	1.2	115.9		
IGCC with CCS	85	97.8	9.8	38.6	1.2	147.4		
Natural Gas-fired								
Conventional Combined Cycle	87	14.3	1.7	49.1	1.2	66.3		
Advanced Combined Cycle	87	15.7	2.0	45.5	1.2	64.4		
Advanced CC with CCS	87	30.3	4.2	55.6	1.2	91.3		
Conventional Combustion Turbine	30	40.2	2.8	82.0	3.4	128.4		
Advanced Combustion Turbine	30	27.3	2.7	70.3	3.4	103.8		
Advanced Nuclear	90	71.4	11.8	11.8	1.1	96.1	-10.0	86.1
Geothermal	92	34.2	12.2	0.0	1.4	47.9	-3.4	44.5
Biomass	83	47.4	14.5	39.5	1.2	102.6		
Non-Dispatchable Technolog	gies							
Wind	35	64.1	13.0	0.0	3.2	80.3		
Wind-Offshore	37	175.4	22.8	0.0	5.8	204.1		
Solar PV2	25	114.5	11.4	0.0	4.1	130.0	-11.5	118.6
Solar Thermal	20	195.0	42.1	0.0	6.0	243.1	- 19.5	223.6
₭vdro ³	53	72.0	4.1	6.4	2.0	84.5		W 10

Solar PV

Solar PV Installed Capacity and Weighted Average System Cost

Source: GTM/SEIA 2015

U.S. Installation Breakdown

- U.S. Installed 6.2 GW of PV in 2014 (4.8 GW in '13)
- Cumulative PV 18.3 GW (20 GW including CSP)

U.S. Solar PV Resource

World Leader in Installed PV

Recent Legislative Action for Net-Metering / Rate Design Effecting PV

U.S. Generation Capacity Additions by Source

- U.S. has installed ~19 GW of new capacity per year in past decade
 - Natural gas and wind have been largest contributors but solar is becoming a significant portion of new generation
 - Would take 50-60 years to change entire U.S. fleet
- In 2014, solar was responsible for approximately 1/3 of all new generation capacity in the U.S.
 - Wind and solar combined for 55% of new generation

Sources: 2004-2010 (except solar): EIA.U.S installed capacity, Form 860. 2011-2013: FERC: "Office of Energy Projects Energy Infrastructure Update for December 2012/2013/2014." Solar, GTM/SEIA, U.S. Solar Market Insight Q4 2014. **Note**: PV converted to AC using .8333 derate factor.

Capacity Factor of Solar Projects

- - Single Axis PV: 30%
- Fixed Tilt PV: 29%
- CSP Trough: 22%
- CSP Tower: 13% (Ivanpah)
- CSP Trough + Storage: 28% (Solana)
- CPV: 24% (Alamosa)
- PV systems in southwestern states have significantly higher capacity factors
 - PV systems on East Coast: 21%; others 30%

Solar CSP

Technologies

Tower

Parabolic Trough

CSP Installations

Source: GTM/SEIA 2015

U.S. Wind Resource

Wind Market Update

- 5.1GW of annual installations in 2014
- 65.9 GW of cumulative installations at beginning of 2015

261

Top Five States with Wind Power Capacity

Additions during the Fourth Quarter 2014StateCapacity, MWTexas1,122Oklahoma648Iowa511Washington267

Colorado

Best Uses for Technology (size, installed cost)

On-Site Power (\$6-\$12/W)

- Remote (<10 kW)
 - Water pumping, electrification
 - Water pump = 1 kW, House = 5 kW, Farm = 10 kW

Grid Connected (\$3.50 - \$7/W)

- Small (1 kW 50 kW)
 - Residence, business, farm/ranch
- Mid-Size (100 kW 1 megawatt [MW])
 - Facility, community, industrial
 - Convenience store = 50 kW, school = 250 kW

Energy for Sale (\$2-\$3.50/W)

- Utility (>1MW)
 - Wind farm

Biomass

Biomass Resources

Bioenergy Pathways

Biomass Costs - Electric

- Installed costs \$1,900 \$5,500/kilowatt (kW)
- Larger systems (>5 megawatt [MW]) have better economics
- LCOE = \$0.08 \$0.20/kilowatt-hour (kWh)
- A typical biopower scale for a tribal or community application would probably be about 10-MW, and cost ~\$40 M
- LCOE could be \$0.10 0.12/kWh
 - this strongly depends on feedstock cost

Biomass Costs - Thermal

- Heating plants: average \$350,000 per MMBtu/hr (*), with smaller plants having a higher cost intensity than larger ones
- Operation and maintenance costs include:
 - Fuel
 - Labor (2-5 hours per week, including fuel ordering and a daily walk-through)
 - Repair and replacement of mechanical parts
 - Ash disposal

(*) MMBtu is one million British thermal units

Biomass Performance Characteristics

 Typical biomass boiler operating on fuel with a moisture content of 40% has a net efficiency of about 60-65%.

Efficiency influenced by:

- Moisture content of the biomass
- Combustion air distribution and amounts (excess air)
- Operating temperature and pressure
- Flue gas (exhaust) temperature

Geothermal (non-electric)

Community Scale

Direct Use

Uses low-temperature resources:

- District Heating
- Process Heat
- Agriculture
- Aquaculture

Residential Geothermal Heat Pumps

- Highly efficient method of providing <u>heating and cooling</u>
- Work by using ground temperature as a renewable resource for pumping heat in winter and rejecting heat in summer
- Cost effective
- Economic and environmental benefits

Hot Water Facility-Scale Geothermal

- Can provide all or part of a facility's hot water
- An auxiliary heat exchanger uses waste heat from the geothermal compressor (superheated gases) to heat water
- Uses excess heat that would otherwise be expelled to the loop

Cost of Geothermal

Residential (single family)

- New Construction \$15,000 to \$20,000 for heating and cooling
- Remodel \$15,000 to \$30,000 for heating and cooling

Community

- 107,000 ft₂ Middle School (600 students) GSHP built in 2011 \$1.3 million
- Community College: \$860,000 GSHP
- Geothermal Power Plant in Nevada: \$4.4 million
- Note that hybrid systems (coupled with a cooling tower or boiler) can make geothermal more cost effective

Thank you!

Travis Lowder – 303-275-3182 travis.lowder@nrel.gov

