SDNist: Benchmark Data and Evaluation Tools for Data Synthesizers

Standards and Technology U.S. Department of Commerce

Grégoire Lothe,² Christine Task,³ Isaac Slavitt,⁴ Nicolas Grislain,² Karan Bhagat,³ Gary S Howarth (gary.howarth@nist.gov),¹ 1 National Institute of Standards and Technology, Public Safety Communications Research Division, 2 Sarus Technologies, 3 Knexus Research Corporation, 4 DrivenData, Inc.

The Challenge

NIST, PSCR hosted the Differential Privacy Temporal Map and Synthetic Data Challenges. inviting contestants to train DP algorithms on public data and scoring them with novel metrics on private data. Many solutions were open sourced. We introduce generic benchmarks using those data and scoring functions.

Temporal Map Challenge Results

	(a) ACS dataset, k—marginal score						
		$\epsilon = 0.1$		$\epsilon = 1$		$\epsilon = 10$	
	Dataset	(1)	(2)	(1)	(2)	(1)	(2)
		781±2			865±1	893	901
	Duke Privacy	796±1	816±3	832	852	881	890
	Minutemen	822±1	788 ± 1	825±1	834	873	881
	DPSyn	805±3	822 ± 1	818±1	844±1	822	848 ± 1
	Iim King	782+2	803+2	790	814	840	846

(b) Taxi dataset, k-marginal score

	ϵ :	= 1	$\epsilon = 10$		
Dataset	2016	2020			
Minutemen	464±3	455±15	556±5	491±3	
N - CRiPT	340±7	455±15 437±18	456±2	700 ± 2	
DPSyn	344±1	433±3	416±1	464 ± 2	
GooseDP-PSA	251±2	382 ± 1	251±1	382 ± 1	

(c) Taxi dataset, HOC score

	$\epsilon =$: 1	$\epsilon = 10$		
Dataset	2016	2020	2016	2020	
DPSyn	922	942	917	945±1	
N-CRiPT	924	872 ± 1	924	880	
DP Duke	857±22	982±7	900±27	898±15	
Minutemen	931	918	929	817	
Jim King	828	845±1	839	885 ± 2	
GooseDP-PSA	865	827	864	827	

On each table and for each value of ϵ , the left and right column indicate the score on the public and the private leaderboard respectively. (1)=NY-PA, (2)=GA-NC-SC

Table 3: Subsampling baseline, k-marginal score

	Cer	isus	l Ta	xi
Fraction	(1)	(2)	2016	2020
1%	572±1	590±1	547±1	472±1
10%	831	839	721	703
E O.C.	040	044	000	007

The Benchmark Problems

American Community Survey (ACS)

Motivation: This data set captures a realistic, challenging use case de-identifying diverse, complex. heterogenous survey/tabular data Size: 35 features, 7 years, 185 map segments (PUMA)

Query Sensitivity: 7 records/individual Challenges: Edit constraints/variable dependencies, large categorical variables **Evaluation:** 3-marginal density distribution comparison, averaged across

map/time segments to ensure fair modeling accuracy for diverse population subgroups

Chicago Taxi Problem

Motivation: This data set requires de-identifying location sequences of real individuals while preserving both global and individual properties

Size: 13 features, 21 shifts, 78 map

segments (neighborhoods) Query Sensitivity: 200 records/individual

Challenges: Mixed sparse/dense areas **Evaluation:** Higher Order Conjunction comparison of individual sequences, network edges, and 3-marginal density averaged across map/time segments

Fig. 1: Scoring synthetic data with 3-marginal density distribution comparison.

Fig. 2: Trends within individual taxi drivers

Fig. 3: Taxi trends between map segments.

The SDNist Python Library

Usage: Install from pypi or Github

- \$ pip install sdnist
- >>> import sdnist
- # fetch public data
- >>> dataset, schema = sdnist.census()
- # synthesize data or similar
 - >>> sub = dataset.sample(n=20000)
- # test on private data
- >>> score = sdnist.score(dataset, sub, schema, challenge="census")
 - >>> score
- CensusKMarginalScore (847)
- # visualize on map
 - >>> score.html()
- # launches visualization in browser:

visualization tool provided for ACS census data. Hovering over map areas with mouse provides detailed information per PUMA