GEORGIA INSTITUTE OF TECHNOLOGY

School of Civil & Environmental Engineering

CEE 2300 – Environmental Engineering Principles

Instructor: S. G. Pavlostathis Spring 2013

EXAM 1 – Closed Book & Notes

DATE: Wednesday, February 13, 2013

TIME: 1:35 to 2:55 PM

NAME:
Student ID #:

- 1. _____/25
- 2. _____/25
- 3. _____/25
- 4. _____/25

TOTAL: _____/100

	NAME:	
1.	. (25 points) Briefly explain/answer the following:	
	1-a) The meaning of "the tragedy of the commons"; provide an example related to environmental degradation/pollution.	
	1-b) What were/are the <u>environmental and socio-economic impacts</u> of the April 20, 2010 BP oil spill?	
	1-c) When was the US Environmental Protection Agency (US EPA) established, who was the US President at that time, and what was/were the purpose/reasons for the establishment of the US EPA?	

NAME:
1-d) Globally speaking, what are the <u>environmental and social consequences</u> of large-scale biofuel production? List at least four (4) such impacts.
1-e) Explain why in the last two decades the $\underline{CO_2}$ emissions due to consumption of goods and services in developed countries exceeded the CO_2 emissions due to production of goods and services.

2. (25 points) Methane (CH₄) can be produced by microorganisms by the reduction of CO₂ by molecular hydrogen (H₂) as follows:

$$H_2 + CO_2 \rightarrow CH_4 + product$$

- **A.** Balance the above equation and name the product on the right.
- **B.** If H_2 and CO_2 are supplied in a gas mixture of N_2 , H_2 , and CO_2 at a total pressure of 1 atm and in which the partial pressure of N_2 (i.e., pN_2) is 0.5, calculate the partial pressures of H_2 and CO_2 according to the balanced stoichiometric equation you completed in part A, above.

NAME:

3. (25 points) A wastewater with nitrogen in the form of dissolved ammonia (NH₃) and ammonium (NH₄⁺) has a total nitrogen (i.e., [NH₄⁺] + [NH₃]) concentration of 7.1 x 10⁻⁴ mol/L. The Henry's constant (K_H) at 25°C is 57 mol/L • atm. The equilibrium equation is:

$$NH_4^+ \leftrightarrow H^+ + NH_3$$
 $K_a = 10^{-9.26}$

The fraction of nitrogen in the ammonia form, which is strippable, as a function of pH is given by the following equation:

$$NH_3 fraction = \frac{[NH_3]}{[NH_3] + [NH_4^+]} = \frac{1}{1 + 10^{(9.26 - pH)}}$$

The wastewater pH is raised to 10 and the incoming air used for stripping of ammonia out of the wastewater has an ammonia partial pressure of 5×10^{-10} .

- **A.** What would be the equilibrium concentration of total nitrogen (i.e., $[NH_4^+] + [NH_3]$) in the wastewater after air stripping? Assume equilibrium between air and wastewater and total gas pressure equal to 1 atm.
- **B.** Under the above conditions, what percentage of the total wastewater nitrogen would be removed?

4. (25 points) Ozone (O₃) is a highly reactive oxidant used for the disinfection of drinking water. It is found that the ozone destruction in water follows fist-order kinetics with respect to the aqueous ozone concentration, such that its concentration decreases by 50% in 12 minutes (i.e., $t_{1/2} = 12$ minutes). Estimate the initial ozone concentration in mg/L necessary to treat water for 40 minutes and result in a residual ozone concentration of 1 mg/L.

NAME: ˌ	
---------	--

EMPTY PAGE

NAME: _____

APPENDIX - USEFULL EQUATIONS & DATA

Atomic weights: H =1, O = 16, C = 12, N = 14, S = 32, P = 31, Ca = 40, F = 19, AI = 27, Na = 23 Mg = 24.3

Oxidation states: H = +I, O = -II, C = -IV to +IV, N = -III to +V, S = -II to +VI

Ideal gas law: PV = nRT R = 0.082 06 atm • L/mol • K

Absolute temperature: $K = {}^{\circ}C + 273.15$

 ${}^{\circ}R = {}^{\circ}F + 459.67$

Water: $[H^{+}][OH^{-}] = K_{w} = 10^{-14} \text{ (mol/L)}^{2} @ 298 \text{ K}$

pH: $pH = -log[H^{+}]$ $[H^{+}]$ in units of mol/L

Acetic acid: $AcH \Leftrightarrow Ac^- + H^+ \quad pK_a = 4.7$

Carbonate system (@ 298 K): $[CO_2]_{aq} = K_H pCO_2 P_{total}$ $K_H = 0.0334 \text{ mol/L} \cdot \text{atm}$

 $CO_{2, aq} + H_2O \Leftrightarrow H^+ + HCO_3^ K_1 = 4.47 \times 10^{-7} \text{ mol/L}$

 $HCO_3^- \Leftrightarrow H^+ + CO_3^{2-}$ $K_2 = 4.68 \times 10^{-11} \text{ mol/L}$

Gibbsite (@ 298 K): $AI(OH)_{3 (s)} \Leftrightarrow AI^{3+} + 3 OH^{-}$ $K_{sp} = 1 \times 10^{-32} \text{ mol}^{4}/L^{4}$

Henry's law

Gas to Liquid transfer: $pA_{gas} = k_H [A]_{aq} 1/P_T$ $pA_{gas} = partial pressure of A gas, dimensionless$

 k_H = Henry's law constant, L • atm/mol

 $[A]_{aq}$ = aqueous-phase concentration of A, mol/L

 P_T = total pressure, atm

Liquid to Gas transfer: $[A]_{aq} = K_H p A_{qas} P_T$ $K_H = Henry's law constant, mol/L • atm$

Kinetics

Zero order: $dC/dt = \pm k$ $C_t = C_0 \pm k t$

First order: $dC/dt = \pm k C$ $C_t = C_o \exp(\pm k t)$

Second order: $dC/dt = \pm k C^2$ $C_t = C_0/(1 - t) + C_0 k t$