R Workshop

Vanessa 2019-01-21

Creating Objects in R

```
Super basic, using R as a fancy calculator:
3+5
## [1] 8
12/7
## [1] 1.714286
5*5
## [1] 25
# assign value to object/variable
weight_kg <- 55</pre>
2.2*weight_kg
## [1] 121
weight_lb <- 2.2*weight_kg</pre>
sqrt(weight_kg)
## [1] 7.416198
round(pi)
## [1] 3
round(3.14159)
## [1] 3
round(3.14159, digits=2)
## [1] 3.14
round(pi, digits = 6)
## [1] 3.141593
round(pi, 10)
## [1] 3.141593
```

Vectors and Data Types

This section will describe some basic data types in R:

```
weight_g <- c(50, 60, 65, 82)
animals <- c("mouse", "rat", "dog")</pre>
```

Vector types in R:

- numeric
- character
- logical (TRUE or FALSE)
- factors (categorical data i.e. species)
- Dates

A vector is a data structure in R.

Other data structures:

- lists
- data frames
- matrices
- of course vectors

Often you want to convert lists and matrices to data frames or vectors.

Data Frames

Next we're going to look at the structure of Data Frames.

```
library(tidyverse)
download.file(url="https://ndownloader.figshare.com/files/2292169", destfile = "read_data/portal_data_j
library(here)
#this package makes working directories and file paths easy
surveys <- read_csv(here("read_data", "portal_data_joined.csv"))</pre>
# THIS PART IS NEW AND RELEVANT TO ME
str(surveys)
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                           34786 obs. of 13 variables:
## $ record_id
                  : int 1 72 224 266 349 363 435 506 588 661 ...
                  : int 7 8 9 10 11 11 12 1 2 3 ...
## $ month
## $ day
                  : int 16 19 13 16 12 12 10 8 18 11 ...
## $ year
                  ## $ plot_id
                  : int 2 2 2 2 2 2 2 2 2 2 ...
                  : chr "NL" "NL" "NL" "NL" ...
## $ species_id
## $ sex
                  : chr "M" "M" NA NA ...
## $ hindfoot_length: int 32 31 NA NA NA NA NA NA NA NA NA ...
                  : int NA NA NA NA NA NA NA 218 NA ...
## $ weight
                  : chr "Neotoma" "Neotoma" "Neotoma" "Neotoma" ...
## $ genus
## $ species
                 : chr "albigula" "albigula" "albigula" "albigula" ...
## $ taxa
                  : chr "Rodent" "Rodent" "Rodent" "Rodent" ...
                  : chr "Control" "Control" "Control" ...
## $ plot_type
## - attr(*, "spec")=List of 2
##
   ..$ cols :List of 13
    .. ..$ record_id : list()
##
```

```
##
     ..... attr(*, "class")= chr "collector_integer" "collector"
##
    .. ..$ month
                          : list()
    ..... attr(*, "class")= chr "collector_integer" "collector"
##
##
     .. ..$ day
                          : list()
     .. .. ..- attr(*, "class")= chr
##
                                    "collector_integer" "collector"
##
                          : list()
     .. ..$ year
     .. .. ..- attr(*, "class")= chr
                                     "collector_integer" "collector"
##
     .. ..$ plot_id
                          : list()
##
     .. .. ..- attr(*, "class")= chr
                                     "collector_integer" "collector"
##
     ....$ species_id : list()
     .. .. ..- attr(*, "class")= chr
                                     "collector_character" "collector"
##
                          : list()
     .. ..$ sex
##
    .. .. ..- attr(*, "class")= chr
                                     "collector_character" "collector"
##
     .. .. $ hindfoot_length: list()
##
     .. .. ..- attr(*, "class")= chr
                                     "collector_integer" "collector"
##
     .. ..$ weight
                          : list()
##
    .. .. ..- attr(*, "class")= chr
                                    "collector_integer" "collector"
##
    .. ..$ genus
                          : list()
     ..... attr(*, "class")= chr "collector_character" "collector"
##
##
    .. ..$ species
                          : list()
##
    ..... attr(*, "class")= chr "collector_character" "collector"
##
     .. ..$ taxa
                          : list()
     ..... attr(*, "class")= chr "collector_character" "collector"
##
##
    .. ..$ plot type
                          : list()
##
    .. .. - attr(*, "class")= chr "collector_character" "collector"
    ..$ default: list()
##
     ... - attr(*, "class")= chr "collector_guess" "collector"
     ..- attr(*, "class")= chr "col_spec"
dim(surveys)
## [1] 34786
               13
nrow(surveys)
## [1] 34786
ncol(surveys)
## [1] 13
summary(surveys)
##
     record_id
                       month
                                         day
                                                       year
                   Min. : 1.000
                                    Min. : 1.0
                                                   Min. :1977
   Min. : 1
   1st Qu.: 8964
                   1st Qu.: 4.000
                                    1st Qu.: 9.0
                                                   1st Qu.:1984
## Median :17762
                   Median : 6.000
                                    Median:16.0
                                                   Median:1990
         :17804
                   Mean : 6.474
  Mean
                                    Mean :16.1
                                                   Mean
                                                        :1990
   3rd Qu.:26655
                   3rd Qu.:10.000
                                    3rd Qu.:23.0
                                                   3rd Qu.:1997
##
   Max. :35548
                   Max. :12.000
                                    Max. :31.0
                                                        :2002
                                                  Max.
##
##
      plot_id
                    species_id
                                                         hindfoot_length
                                          sex
  Min. : 1.00
                   Length:34786
                                      Length: 34786
                                                        Min. : 2.00
##
   1st Qu.: 5.00
                   Class :character
                                                         1st Qu.:21.00
                                      Class :character
  Median :11.00
                   Mode :character
                                      Mode :character
                                                        Median :32.00
## Mean :11.34
                                                         Mean :29.29
```

3rd Qu.:36.00

3rd Qu.:17.00

```
:70.00
##
    Max.
           :24.00
                                                             Max.
##
                                                             NA's
                                                                     :3348
##
        weight
                         genus
                                            species
                                                                  taxa
           : 4.00
                      Length: 34786
                                          Length: 34786
                                                              Length: 34786
##
   Min.
    1st Qu.: 20.00
##
                      Class : character
                                          Class : character
                                                              Class : character
##
    Median : 37.00
                      Mode :character
                                          Mode :character
                                                              Mode :character
##
    Mean
           : 42.67
    3rd Qu.: 48.00
##
##
    Max.
           :280.00
##
   NA's
           :2503
##
    plot_type
##
  Length: 34786
   Class : character
##
##
   Mode :character
##
##
##
##
```

Indexing and Subsetting Data Frames

First let's use square bracket subsetting.

Square brackets are great for defining coordinates to extract data from. But what happens when the structure of the data frame changes.

```
#first define the row coordinate and then the column
#also write row and then column
surveys[1, 1]
## # A tibble: 1 x 1
##
     record_id
##
         <int>
## 1
surveys[1, 6]
## # A tibble: 1 x 1
##
     species_id
##
     <chr>>
## 1 NL
#defining only which element we want will return a data frame
surveys[1]
## # A tibble: 34,786 x 1
##
      record_id
##
          <int>
##
   1
              1
##
    2
             72
   3
            224
##
##
   4
            266
##
   5
            349
##
    6
            363
   7
            435
##
##
            506
```

```
588
## 9
## 10
            661
## # ... with 34,776 more rows
surveys[1:3, 7]
## # A tibble: 3 x 1
##
     sex
##
     <chr>
## 1 M
## 2 M
## 3 <NA>
#give us all the rows and columns except column 7
surveys[, -7]
## # A tibble: 34,786 x 12
                              year plot_id species_id hindfoot_length weight
##
      record_id month
                         day
##
                                      <int> <chr>
          <int> <int> <int> <int>
                                                                    <int>
                                                                           <int>
##
   1
                     7
                           16
                              1977
                                           2 NL
                                                                       32
                                                                              NA
##
    2
             72
                     8
                          19
                               1977
                                           2 NL
                                                                       31
                                                                              NA
##
    3
            224
                     9
                          13
                               1977
                                           2 NL
                                                                       NA
                                                                              NA
##
    4
            266
                    10
                          16
                               1977
                                          2 NL
                                                                       NA
                                                                              NA
##
    5
            349
                    11
                          12
                              1977
                                           2 NL
                                                                       NA
                                                                              NA
                          12
##
    6
            363
                              1977
                                          2 NL
                                                                       NA
                                                                              NA
                    11
##
    7
            435
                    12
                          10
                               1977
                                           2 NL
                                                                       NA
                                                                              NA
            506
                                          2 NL
                                                                       NΑ
##
   8
                     1
                           8
                              1978
                                                                              NA
    9
            588
                     2
                               1978
##
                          18
                                          2 NL
                                                                       NA
                                                                             218
                     3
                                           2 NL
            661
                               1978
## 10
                          11
                                                                       NA
                                                                              NA
## # ... with 34,776 more rows, and 4 more variables: genus <chr>,
       species <chr>, taxa <chr>, plot type <chr>
surveys[, -c(1:3)]
## # A tibble: 34,786 x 10
                                       hindfoot_length weight genus
##
       year plot_id species_id sex
                                                                         species
```

```
<int> <chr>
                                                 <int>
##
                                                         <int> <chr>
                                                                        <chr>
      <int>
                                <chr>>
##
    1 1977
                  2 NL
                                                    32
                                М
                                                            NA Neotoma albigula
##
    2 1977
                  2 NL
                                М
                                                    31
                                                            NA Neotoma albigula
       1977
                  2 NL
##
    3
                                <NA>
                                                    NA
                                                            NA Neotoma albigula
##
    4
      1977
                  2 NL
                                                    NA
                                <NA>
                                                            NA Neotoma albigula
##
    5 1977
                  2 NL
                                <NA>
                                                    NA
                                                            NA Neotoma albigula
##
    6
       1977
                  2 NL
                                <NA>
                                                    NA
                                                            NA Neotoma albigula
##
    7
       1977
                  2 NL
                                <NA>
                                                    NA
                                                            NA Neotoma albigula
##
    8
      1978
                  2 NL
                                <NA>
                                                    NA
                                                            NA Neotoma albigula
##
   9 1978
                  2 NL
                                М
                                                    NA
                                                           218 Neotoma albigula
                  2 NL
## 10 1978
                                <NA>
                                                    NA
                                                            NA Neotoma albigula
## # ... with 34,776 more rows, and 2 more variables: taxa <chr>,
       plot_type <chr>
```

Data Manipulation

Key functions for data manipulation:

- select(): subsetting columns
- filter(): subsets of rows based on conditions

- mutate(): create new columns, based on information from other columns
- group_by(): creates groups based on categorical data in a column
- summarize(): creates summary stats on grouped data
- arrange(): sort results
- count(): gives a count of discrete values

```
select(surveys, plot_id, species_id, weight)
```

```
## # A tibble: 34,786 x 3
##
      plot_id species_id weight
        <int> <chr>
##
                            <int>
##
    1
             2 NL
                               NΔ
##
    2
             2 NL
                               NA
    3
             2 NL
##
                               NA
##
    4
             2 NL
                               NA
##
    5
             2 NL
                               NA
##
    6
             2 NL
                               NA
##
    7
             2 NL
                               NA
##
    8
             2 NL
                               NA
   9
             2 NL
##
                              218
             2 NL
                               NA
## # ... with 34,776 more rows
```

#negative subsetting

select(surveys, -record_id)

```
## # A tibble: 34,786 x 12
               day year plot_id species_id sex
                                                    hindfoot_length weight genus
##
      month
                            <int> <chr>
##
      <int> <int> <int>
                                                               <int>
                                                                       <int> <chr>
                                              <chr>
                    1977
                                2 NL
                                                                          NA Neot~
##
    1
          7
                16
                                              Μ
                                                                   32
##
    2
          8
                19
                    1977
                                2 NL
                                              М
                                                                   31
                                                                          NA Neot~
##
    3
          9
                13 1977
                                2 NL
                                              <NA>
                                                                   NA
                                                                          NA Neot~
##
                    1977
                                2 NL
                                              <NA>
                                                                          NA Neot~
    4
         10
                16
                                                                   NA
##
    5
         11
                12
                    1977
                                2 NL
                                              <NA>
                                                                   NA
                                                                          NA Neot~
##
    6
         11
                12
                   1977
                                2 NL
                                              <NA>
                                                                   NA
                                                                          NA Neot~
##
    7
         12
                10
                    1977
                                2 NL
                                              <NA>
                                                                   ΝA
                                                                          NA Neot~
##
    8
          1
                 8
                    1978
                                2 NL
                                              <NA>
                                                                   NA
                                                                          NA Neot~
    9
          2
                                2 NL
                                              М
                                                                         218 Neot~
##
                18 1978
                                                                   NA
## 10
          3
                11 1978
                                2 NL
                                              <NA>
                                                                   NA
                                                                          NA Neot~
## # ... with 34,776 more rows, and 3 more variables: species <chr>,
       taxa <chr>, plot_type <chr>
```

filter(surveys, year==1995,
 species_id=="NL")

```
## # A tibble: 8 x 13
##
     record id month
                        day
                            year plot_id species_id sex
                                                              hindfoot length
##
         <int> <int> <int> <int>
                                     <int> <chr>
                                                        <chr>>
                                                                         <int>
## 1
         22314
                    6
                          7
                              1995
                                          2 NL
                                                       М
                                                                            34
## 2
         22728
                    9
                         23
                             1995
                                          2 NL
                                                       F
                                                                            32
## 3
         22899
                   10
                         28
                             1995
                                          2 NL
                                                       F
                                                                            32
                                         2 NL
## 4
         23032
                   12
                          2 1995
                                                       F
                                                                            33
## 5
         22847
                   10
                         28 1995
                                        12 NL
                                                       М
                                                                            34
                          2 1995
## 6
         22998
                   12
                                        12 NL
                                                       М
                                                                            33
## 7
         23124
                   12
                         21
                             1995
                                        12 NL
                                                       F
                                                                            32
## 8
         22476
                    7
                         20
                             1995
                                        24 NL
                                                       F
                                                                            31
```

```
## # ... with 5 more variables: weight <int>, genus <chr>, species <chr>,
## # taxa <chr>, plot_type <chr>
```

Pipes

Pipes allow you to chain together dplyr functions.

```
Pipe: \%>\% or cmd-shift-m
#write multiple arguments in a sentence using pipes
surveys %>%
  filter(weight<5) %>%
  select(species_id, sex, weight)
## # A tibble: 17 x 3
##
      species_id sex
                        weight
##
      <chr>
                 <chr> <int>
##
   1 PF
                 F
##
    2 PF
                 F
                             4
##
    3 PF
                 М
                             4
## 4 RM
                 F
                             4
## 5 RM
                 М
                             4
## 6 PF
                 <NA>
## 7 PP
                 М
                             4
## 8 RM
                             4
                 М
## 9 RM
                 Μ
                             4
## 10 RM
                 М
## 11 PF
                 М
                             4
                 F
## 12 PF
                             4
## 13 RM
                 Μ
                 М
                             4
## 14 RM
## 15 RM
                 F
                             4
## 16 RM
                             4
                 М
## 17 RM
                 М
surveys_sml <- surveys %>%
```

```
Challenge #1
```

filter(weight<5) %>%

select(species_id, sex, weight)

Using pipe, subset the surveys dataframe to include animals collected 1995 and retain only the columns year, sex and weight.

```
surveys %>%
 filter(year==1995) %>%
  select(year, sex, weight)
## # A tibble: 1,180 x 3
##
      year sex
                  weight
##
      <int> <chr> <int>
##
   1 1995 M
                      NA
##
   2 1995 F
                     165
##
   3 1995 F
                     171
                     NA
##
   4 1995 F
## 5 1995 M
                      41
```

```
##
      1995 F
                       45
##
   7
       1995 M
                       46
##
   8 1995 F
                       49
                       46
##
   9 1995 M
## 10 1995 M
                       48
## # ... with 1,170 more rows
surveys %>%
 mutate(weight kg=weight/1000,
         weight_kg2=weight_kg*2)
## # A tibble: 34,786 x 15
##
      record_id month
                         day year plot_id species_id sex
                                                              hindfoot_length
##
          <int> <int> <int> <int>
                                      <int> <chr>
                                                                        <int>
                                                        <chr>>
                                          2 NL
##
    1
              1
                     7
                          16 1977
                                                       М
                                                                            32
    2
             72
                          19
                             1977
                                          2 NL
                                                                            31
##
                     8
                                                       М
##
   3
            224
                     9
                          13
                             1977
                                          2 NL
                                                        <NA>
                                                                            NA
##
   4
            266
                    10
                          16
                              1977
                                          2 NL
                                                        <NA>
                                                                           NA
    5
            349
                              1977
                                          2 NL
                                                                            NA
##
                    11
                          12
                                                        <NA>
##
   6
            363
                          12 1977
                                          2 NL
                                                        <NA>
                                                                           NA
                    11
   7
            435
                    12
                          10 1977
                                          2 NL
                                                                           NA
##
                                                        <NA>
            506
                           8 1978
                                          2 NL
                                                        <NA>
                                                                           NA
##
   8
                    1
##
   9
            588
                     2
                          18
                              1978
                                          2 NL
                                                       М
                                                                           NA
## 10
            661
                     3
                          11 1978
                                          2 NL
                                                        <NA>
                                                                           NA
\#\# # ... with 34,776 more rows, and 7 more variables: weight <int>,
       genus <chr>, species <chr>, taxa <chr>, plot_type <chr>,
       weight_kg <dbl>, weight_kg2 <dbl>
surveys <- surveys %>%
  drop na(weight) %>%
  mutate(mean_weight=mean(weight))
```

Challenge #2

Using the surveys data from create a new data frame that contains only the species_id column, has a new column called hindfoot_half: contains values that are half the hindfoot_length values. Also, in the new hindfoot half column there are no NAs and values are all less than 30.

```
surveys_hindfoot_half <- surveys %>%
  drop_na(hindfoot_length) %>%
  mutate(hindfoot_half=hindfoot_length/2) %>%
  filter(hindfoot_half<30) %>%
  select(species_id, hindfoot_half, hindfoot_length)
surveys %>%
  group_by(sex) %>%
  summarize(mean_weight=mean(weight, na.rm = TRUE))
## # A tibble: 3 x 2
##
     sex
           mean_weight
##
     <chr>>
                 <dbl>
## 1 F
                  42.2
## 2 M
                  43.0
## 3 <NA>
                  64.7
surveys %>%
 group_by(sex, species_id) %>%
```

```
summarize(mean_weight=mean(weight, na.rm=TRUE),
            min_weight=min(weight, na.rm=TRUE)) %>%
  arrange(desc(min_weight))
## # A tibble: 64 x 4
## # Groups: sex [3]
##
          species_id mean_weight min_weight
##
      <chr> <chr>
                             <dbl>
                                        <dbl>
                                           130
##
  1 M
            SS
                             130
## 2 <NA> SH
                             130
                                           130
## 3 <NA> NL
                             168.
                                            83
## 4 <NA> DS
                             120
                                            78
## 5 F
            SS
                              57
                                            57
## 6 F
            SF
                              69
                                            46
## 7 F
            DS
                             118.
                                            45
## 8 <NA> DO
                              50.7
                                            44
## 9 <NA> SF
                              40.5
                                            36
## 10 M
            SO
                              55.7
                                            35
## # ... with 54 more rows
surveys %>%
 count(sex, sort = TRUE)
## # A tibble: 3 x 2
     sex
##
     <chr> <int>
## 1 M
           16879
## 2 F
           15303
## 3 <NA>
             101
#the above code is synonomous with
surveys %>%
 group_by(sex) %>%
summarise(count=n())
## # A tibble: 3 x 2
##
     sex
           count
##
     <chr> <int>
## 1 F
           15303
## 2 M
           16879
## 3 <NA>
             101
Challenge # 3
How many animals were caught in each plot_type surveyed.
surveys %>%
 count(plot_type)
## # A tibble: 5 x 2
##
     plot_type
                                   n
     <chr>>
##
                               <int>
                               14652
## 1 Control
## 2 Long-term Krat Exclosure
                                4692
## 3 Rodent Exclosure
                                3818
## 4 Short-term Krat Exclosure 5407
## 5 Spectab exclosure
                                3714
```

Use group_by and summarize to find the mean, min and max of hindfoot length (using species_id) for each species. Also, add the number of observations (hint: see ?n)

```
surveys %>%
  group by (species id) %>%
  summarise(mean_length=mean(hindfoot_length, na.rm = TRUE),
            min_length=min(hindfoot_length, na.rm = TRUE),
            max_length=max(hindfoot_length, na.rm = TRUE), n=n())
## # A tibble: 25 x 5
##
      species_id mean_length min_length max_length
                                                         n
##
      <chr>
                        <dbl>
                                   <dbl>
                                               <dbl> <int>
##
   1 BA
                         13
                                       6
                                                  16
                                                         45
##
    2 DM
                         36.0
                                       16
                                                  50 10262
##
    3 DO
                         35.6
                                       26
                                                  64
                                                      2904
##
   4 DS
                                                  58
                                                      2344
                         50.0
                                       39
##
   5 NL
                         32.3
                                       21
                                                  42
                                                      1152
##
   6 OL
                         20.5
                                       12
                                                  39
                                                       970
   7 OT
                         20.3
                                       13
                                                  50
                                                      2160
##
## 8 OX
                         20.4
                                       19
                                                  21
                                                         6
## 9 PB
                         26.1
                                       2
                                                  47
                                                      2810
## 10 PE
                         20.2
                                                      1260
                                       11
                                                  30
## # ... with 15 more rows
```

What was the heaviest animal measured in each year? Return the columns year, genus, species_id and weight.

```
## # A tibble: 26 x 4
##
       year genus
                      species_id max_weight
##
      <int> <chr>
                      <chr>
                                      <dbl>
##
   1 1977 Dipodomys DM
                                        149
##
   2 1978 Neotoma
                      NL
                                        232
   3 1979 Neotoma
                                        274
##
                      NL
##
   4 1980 Neotoma
                      NL
                                        243
##
   5 1981 Neotoma
                      NL
                                        264
   6 1982 Neotoma
                                        252
##
##
  7 1983 Neotoma
                      NL
                                        256
                                        259
##
   8 1984 Neotoma
                      NL
## 9 1985 Neotoma
                      NL
                                        225
## 10 1986 Neotoma
                                        240
## # ... with 16 more rows
```

```
#my version
#incorrect! grabbed the first name and filled in the relevant value
#all neotoma except 1977 where it displayed dipodomys because no neot.

max_weights <- surveys %>%
    drop_na(weight) %>%
    group_by(year) %>%
```

```
filter(weight==max(weight)) %>%
select(year, genus, species_id, weight) %>%
arrange(year) %>%
unique()
#brett's version - correct way to do it! wouldn't thought of filter
```

Export Our Data

```
write_csv(max_weights, here("write_data", "max_weights.csv"))
```

Git history is stored locally here. Hit diff/history for more details.

Day 2

Tidy Data in Spreadsheets

Today we are going to look at tidying data.

The functions we use for tidying data are:

- tidyr::spread()
- tidyr::gather()

Note: order of libraries being loaded matters for select, summarize, etc.

spread()

spread() takes three principle arguments:

- 1. the data
- 2. the key column variable will become the new column names
- 3. the value column variable which will fill the new column variables

We're going to use the surveys dataset

```
library(tidyverse)
library(here)

surveys <- read_csv(here("read_data", "surveys.csv"))

#create a wide data format of surveys using spread

surveys_gw <- surveys %>%
    drop_na(weight) %>%
    group_by(species_id) %>%
    summarise(mean_weight=mean(weight))

str(surveys_gw)
```

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 25 obs. of 2 variables:
## $ species_id : chr "BA" "DM" "DO" "DS" ...
## $ mean_weight: num 8.6 43.2 48.9 120.1 159.2 ...
```

```
#now we want to spread the dataset out into a wide format

wide_surveys_gw <- surveys_gw %>%
    spread(key=species_id, value=mean_weight)
#long format is usually better, group together species for analysis

#now we are going back to long from the wide dataset that we just created

gather()
gather()
takes four arugments:

1. data
2. key
3. value
```

long_surveys <- wide_surveys_gw %>% gather(key=species_id, value=mean_weight)

Sending Tidy Data

Changelog

• Update your changelog with changes you make to your raw data or other significant changes or additions to your projects!

Data Dictionary

• Create a data dictionary to define our variables

4. names of columns we use to fill the key variable (or drop)

```
tidy_gsi <- read_csv(here("write_data", "tidy_gsi.csv"))</pre>
```

```
## Parsed with column specification:
## cols(
##
     hakai_id = col_character(),
##
     stock_1 = col_character(),
##
    region_1 = col_integer(),
    prob_1 = col_double(),
##
##
    stock_2 = col_character(),
##
    region_2 = col_integer(),
##
    prob_2 = col_double(),
##
     stock_3 = col_character(),
##
    region_3 = col_integer(),
    prob_3 = col_double(),
##
     stock_4 = col_character(),
##
    region_4 = col_integer(),
##
     prob_4 = col_double(),
##
##
     stock_5 = col_character(),
##
    region_5 = col_integer(),
     prob_5 = col_double()
##
## )
```

```
#noticed an error because comment in column wasn't deleted and created NA's
```

To sync with GitHub: commit then pull then push (not pull then commit then push?)

Having trouble connecting github and local computer when project created locally...

But I think it's fixed now. Create Github project then upload local files there.

Analyzing Data

Importing from the Hakai Data Portal

before_acid = col_double(),

Switched to data_wrangling script to import data into our read_data file.

```
We have chla data, fish data, and sockeye stock id data. Let's start to analyze these datasets.
fish <- read_csv(here("read_data", "fish.csv"))</pre>
## Parsed with column specification:
## cols(
##
     .default = col_character(),
     date = col_date(format = ""),
##
     fork_length_field = col_integer(),
##
##
    height field = col integer(),
##
     date_processed = col_date(format = ""),
##
     weight = col double(),
##
     standard_length = col_integer(),
##
     fork_length = col_integer()
## )
## See spec(...) for full column specifications.
chla <- read csv(here("read data", "chla.csv"))</pre>
## Parsed with column specification:
## cols(
##
     .default = col_character(),
##
    no = col_integer(),
     event_pk = col_integer(),
##
##
    rn = col_integer(),
     date = col date(format = ""),
     sampling_bout = col_integer(),
##
     lat = col_double(),
##
##
     long = col_double(),
##
     line_out_depth = col_integer(),
     volume = col_integer(),
##
##
     collected = col_datetime(format = ""),
##
     preserved = col_datetime(format = ""),
##
     analyzed = col_datetime(format = ""),
##
     acetone_volume_ml = col_integer(),
##
     flurometer_serial_no = col_integer(),
     calibration = col_datetime(format = ""),
##
     acid_ratio_correction_factor = col_double(),
##
##
     acid_coefficient = col_double(),
##
     calibration_slope = col_double(),
```

```
after_acid = col_double()
##
   # ... with 4 more columns
## )
## See spec(...) for full column specifications.
## Warning in rbind(names(probs), probs_f): number of columns of result is not
## a multiple of vector length (arg 1)
## Warning: 157 parsing failures.
## row # A tibble: 5 x 5 col row col
                                                   expected
                                                                         actual file
## ... ......
## See problems(...) for more details.
tidy_gsi <- read_csv(here("write_data", "tidy_gsi.csv"))</pre>
## Parsed with column specification:
## cols(
##
    hakai_id = col_character(),
##
    stock_1 = col_character(),
    region_1 = col_integer(),
##
    prob_1 = col_double(),
    stock_2 = col_character(),
##
    region_2 = col_integer(),
##
    prob_2 = col_double(),
##
    stock_3 = col_character(),
    region_3 = col_integer(),
##
    prob_3 = col_double(),
##
   stock_4 = col_character(),
##
    region 4 = col integer(),
##
    prob_4 = col_double(),
##
    stock_5 = col_character(),
##
    region_5 = col_integer(),
##
    prob_5 = col_double()
## )
fish %>%
count(species)
## # A tibble: 6 x 2
    species
##
    <chr> <int>
## 1 CK
               12
## 2 CO
               98
## 3 CU
             1689
## 4 HE
              282
## 5 PI
              860
## 6 SO
             3497
fish %>%
  group_by(site_id) %>%
count(species)
## # A tibble: 95 x 3
## # Groups: site_id [20]
     site_id species
##
     <chr> <chr> <int>
## 1 DO1
             CO
```

```
##
    2 D01
               CU
                           10
    3 D01
               ΗE
                            2
##
##
   4 D01
               SO
                           30
               CU
  5 D02
                           30
##
##
    6 D02
               ΗE
                            1
  7 D02
               SO
                           68
##
   8 D03
##
               CO
                            1
               CU
## 9 D03
                           21
## 10 D03
               ΗE
## # ... with 85 more rows
fish d09 <- fish %>%
  filter(site_id=="D09") %>%
  select(hakai_id, jsp_survey_id, seine_id, date,
         species, site_id, fork_length, weight) %>%
  mutate(k=(10<sup>5</sup>*weight)/fork_length<sup>3</sup>) %>%
  drop_na(k)
#fulton's condition factor calculation
```

Factors

read_csv() reads words in as characters so you can determine what are factors read.csv() reads words in as factors as default, not ideal.

```
str(fish_d09)
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                832 obs. of 9 variables:
                          "U4802" "U4776" "U4728" "U4801" ...
   $ hakai_id
                  : chr
                          "DE112" "DE112" "DE112" "DE112" ...
##
   $ jsp_survey_id: chr
                          "DE112N1" "DE112N1" "DE112N1" "DE112N1" ...
## $ seine_id
                  : chr
                   : Date, format: "2015-05-20" "2015-05-20" ...
## $ date
                          "SO" "SO" "SO" "SO" ...
## $ species
                   : chr
                          "D09" "D09" "D09" "D09" ...
##
   $ site_id
                   : chr
## $ fork_length : int
                          106 106 97 102 102 97 96 95 128 101 ...
##
   $ weight
                   : num 10.1 11.3 8.8 9.9 8.7 8.4 7.9 8.1 19 9.8 ...
##
   $ k
                          0.848 0.949 0.964 0.933 0.82 ...
class(fish_d09$species)
## [1] "character"
#coerce a column to be a factor, do this:
fish_d09$species <- factor(fish_d09$species)</pre>
class(fish_d09$species)
## [1] "factor"
levels(fish_d09$species)
```

If you have factors that are numbers, don't try to do math with those factors. Under the hood R will be treating your factor levels as a different number. Gets messy.

Ask a question about most effectively/quickly releveling the order of factors?

[1] "CO" "CU" "HE" "PI" "SO"

Dates

read_csv() treats ISO date standards (yyyy-mm-dd) as a DATE object read.csv() treats them as characters: not ideal.

Lubridate is a package for dealing with dates.

```
library(lubridate)
##
## Attaching package: 'lubridate'
  The following object is masked from 'package:here':
##
##
       here
## The following object is masked from 'package:base':
##
##
       date
#extract date components
fish_d09 <- fish_d09 %>%
  mutate(year=year(date);
         month=month(date),
         week=week(date),
         yday=yday(date))
```

Lubridate: you can do math with dates

- periods
- intervals
- durations

Joining Data

Data we have:

- chla
- tidy_gsi
- fish d09

```
left_join(fish_d09, tidy_gsi, by="hakai_id")
```

#very helpful library! use yday when comparing dates between years

```
## # A tibble: 832 x 28
##
      hakai_id jsp_survey_id seine_id date
                                                 species site_id fork_length
##
      <chr>
               <chr>
                             <chr>
                                      <date>
                                                  <fct>
                                                         <chr>
                                                                        <int>
##
   1 U4802
               DE112
                             DE112N1 2015-05-20 SO
                                                         D09
                                                                          106
## 2 U4776
               DE112
                             DE112N1 2015-05-20 SO
                                                         D09
                                                                          106
## 3 U4728
               DE112
                             DE112N1 2015-05-20 SO
                                                         D09
                                                                           97
## 4 U4801
               DE112
                             DE112N1
                                      2015-05-20 SO
                                                         D09
                                                                          102
## 5 U4777
                                                         D09
                                                                          102
               DE112
                             DE112N1 2015-05-20 SO
## 6 U4779
               DE112
                             DE112N1 2015-05-20 SO
                                                         D09
                                                                           97
## 7 U4778
               DE112
                             DE112N1 2015-05-20 SO
                                                         D09
                                                                           96
## 8 U4800
               DE112
                             DE112N1 2015-05-20 SO
                                                         D09
                                                                           95
## 9 U4780
               DE112
                             DE112N1 2015-05-20 SO
                                                         D09
                                                                          128
## 10 U350
                             DE112N1 2015-05-20 SO
               DE112
                                                         D09
                                                                          101
```

```
## # ... with 822 more rows, and 21 more variables: weight <dbl>, k <dbl>,
       year <dbl>, month <dbl>, week <dbl>, yday <dbl>, stock_1 <chr>,
       region 1 <int>, prob 1 <dbl>, stock 2 <chr>, region 2 <int>,
       prob_2 <dbl>, stock_3 <chr>, region_3 <int>, prob_3 <dbl>,
## #
## #
       stock_4 <chr>, region_4 <int>, prob_4 <dbl>, stock_5 <chr>,
## #
       region_5 <int>, prob_5 <dbl>
right_join(fish_d09, tidy_gsi, by="hakai_id")
## # A tibble: 1,187 x 28
##
      hakai_id jsp_survey_id seine_id date
                                                  species site id fork length
##
      <chr>
               <chr>>
                              <chr>>
                                       <date>
                                                   <fct>
                                                           <chr>
                                                                         <int>
##
   1 U10
               <NA>
                              <NA>
                                                   <NA>
                                                           <NA>
   2 U16
                                                           <NA>
##
               <NA>
                              <NA>
                                                   <NA>
                                                                            NA
                                       NA
## 3 U17
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
                                                                            NA
## 4 U21
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
                                                                            NA
## 5 U25
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
                                                                            NA
## 6 U31
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
                                                                            NA
   7 U35
##
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
                                                                            NA
## 8 U42
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
                                                                            NA
## 9 U43
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
                                                                            NA
## 10 U7
               <NA>
                              <NA>
                                       NA
                                                   <NA>
                                                           <NA>
## # ... with 1,177 more rows, and 21 more variables: weight <dbl>, k <dbl>,
       year <dbl>, month <dbl>, week <dbl>, yday <dbl>, stock_1 <chr>,
       region_1 <int>, prob_1 <dbl>, stock_2 <chr>, region_2 <int>,
       prob_2 <dbl>, stock_3 <chr>, region_3 <int>, prob_3 <dbl>,
## #
       stock_4 <chr>, region_4 <int>, prob_4 <dbl>, stock_5 <chr>,
       region_5 <int>, prob_5 <dbl>
anti join(fish d09, tidy gsi, by="hakai id")
## # A tibble: 685 x 13
##
      hakai_id jsp_survey_id seine_id date
                                                  species site_id fork_length
##
                                                   <fct>
      <chr>>
               <chr>
                              <chr>>
                                       <date>
                                                           <chr>>
                                                                         <int>
##
  1 U4802
               DE112
                              DE112N1 2015-05-20 SO
                                                           D09
                                                                           106
##
   2 U4776
               DE112
                             DE112N1 2015-05-20 SO
                                                           D09
                                                                           106
## 3 U4728
               DE112
                             DE112N1 2015-05-20 SO
                                                           D09
                                                                            97
## 4 U4801
               DE112
                             DE112N1 2015-05-20 SO
                                                           D09
                                                                           102
## 5 U4777
               DE112
                             DE112N1 2015-05-20 SO
                                                           D09
                                                                           102
                             DE112N1 2015-05-20 SO
## 6 U4779
               DE112
                                                           D09
                                                                            97
## 7 U4778
               DE112
                             DE112N1 2015-05-20 SO
                                                           D09
                                                                            96
## 8 U4800
               DE112
                             DE112N1 2015-05-20 SO
                                                           D09
                                                                            95
## 9 U4780
                             DE112N1 2015-05-20 SO
                                                           D09
               DE112
                                                                           128
## 10 U348
                             DE112N1 2015-05-20 SO
               DE112
                                                           D09
                                                                            94
## # ... with 675 more rows, and 6 more variables: weight <dbl>, k <dbl>,
      year <dbl>, month <dbl>, week <dbl>, yday <dbl>
so_gsi <- inner_join(fish_d09, tidy_gsi, by="hakai_id")</pre>
```

ggplot2

To build a ggplot:

ggplot(data=DATA, mapping=aes(MAPPINGS)) + GEOM_FUNCTION()

```
#example
ggplot(data=surveys, mapping = aes(species_id, weight))+
  geom_point()
ggplot(so_gsi, aes())+
  geom_point(aes(x=yday, y=fork_length))+
  geom_smooth(aes(x=yday, y=fork_length), method = lm)+
  theme classic()+
  facet_wrap(~stock_1)
            Birkenhead
                                Blackwater
                                                      Chilko
                                                                         Gates_Cr
                                                                                             Gluskie
    160
140
120
100
80
           Kitkiata_Lake
                                Kuzkwa_Cr
                                                                           Little
                                                                                             Mitchell
                                                     L_Adams
              Nadina
                                   Paula
                                                       Pitt
                                                                        Portage_Cr
                                                                                            Porter_Cr
fork_length
   160 -
140 -
120 -
100 -
80 -
                              Quesnel_Horsef
          Quesnel_Decept
                                                  Quesnel_Mitche
                                                                          Scotch
                                                                                             Seymour
                                                                                       140 150 160 170
              Stellako
                                                   Thompson_N
                                                                          Weaver
                                  Tachie
    160
140
120
                                                                   140 150 160 170
       140 150 160 170
                          140 150 160 170
                                              140 150 160 170
                                                      yday
```

Cookbook for R

How to adjust legends, make facets, adjust axes

http://cookbook-r.com/Graphs

Geom list:

https://ggplot2.tidyverse.org/reference/

```
ggplot(chla, aes())+
  geom_line(aes(x=yday, y=chla_final))+
  theme_classic()+
  facet_wrap(~year)
```

Warning: Removed 334 rows containing missing values (geom_path).

library(cowplot)

```
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggplot2':
##
##
       ggsave
min(so_gsi$yday)
## [1] 140
max(so_gsi$yday)
## [1] 178
a <- chla %>%
  filter(year==2015) %>%
  ggplot()+
  geom_point(aes(x=yday, y=chla_final))+
  theme classic()+
  scale_x_continuous(limits=c(140, 178))
```

```
b <- ggplot(so_gsi, aes())+
  geom_point(aes(x=yday, y=k))+
  theme_classic()

plot_grid(a, b, nrow=2)</pre>
```

Warning: Removed 5748 rows containing missing values (geom_point).

#comparing chlorophyll in 2015 to fish condition (2015)