

Distribution & Hypothesis Testing Statistics Tutorial Day 5

Prabesh Dhakal 2020 April 30

WHAT ARE WE DOING TODAY?

We briefly revisit the contents from last week.

We talk about data distribution. We also talk about hypothesis testing.

EXERCISE

Assignment!

Statistics Tutorial Day 4 2020-04-30

Please ask if you have any questions now.

Otherwise, we can move on to the recap.

R BASICS

Basic ideas in R

- Variables/objects, vectors / lists
- Types of data (numbers, integers, Booleans, ...)
- Some good practices when writing code
- Some useful functions

mean(x)	var(x)	sd(x)	
<pre>boxplot(x)</pre>	hist(x)	quantile(x, .)
sort(x)	seq(start	t, end,)	

Statistics Tutorial Day 4 2020-04-30

Data Distribution

Discuss different types of data distribution

Talk about normal distribution and why it is important

Box plots and Outliers

DISTRIBUTION OF THE DATA

1. What?

 An arrangement of values of a variable showing their observed or theoretical frequency of occurrence

2. Why?

- Shows how frequent each value is in a given data set
- Enables us to get a better sense of the data than what just the numbers in the tables suggest

3. How?

Bar charts / histograms / density plots / box plots

PROBABILITY

Random Variable

A variable whose value is the outcome of a random event.

Probability

A statistical function that describes all the possible values and likelihoods that a random variable can take within a given range.

$$P(E) = \frac{\text{no.of favorable event } E}{\text{total no.of possible events}} = \frac{n(E)}{N}$$

$$P(E) = \frac{n(E)}{N}$$

PROBABILITY - II

Where

P(E) = probability of favorable event E occurring

n(E) = the no. of favorable events E

N = no. of possible events

PROBABILITY DISTRIBUTION

A statistical function that describes all the possible values and likelihoods that a random variable can take within a given range.

UNIFORM DISTRIBUTION

- Signify probability distribution with equally likely outcomes
- Looks (relatively) flat

POISSON DISTRIBUTION

 expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time, or space since the last event

Statistics Tutorial Day 4 2020-04-30

NORMAL DISTRIBUTION

- Most values lies close to the mean
- Variance governs the spread of the values
- Symmetric, but can also be skewed

NORMAL DISTRIBUTION

Parameters: mean and variance

STANDARD NORMAL DISTRIBUTION

The Normal Distribution

Z-Score, Standardization, Standard Normal Distribution

Reading:

Standard Normal Distribution

Statistics Tutorial Day 4 2020-04-30

SKEWED DISTRIBUTIONS

REVIEW: SKEW OF DISTRIBUTIONS

Left/Negative Skew

mean < median < mode

Symmetric

mean = median = mode

Right/Positive Skew

mode < median < mean

Hypothesis Testing

Process of Hypothesis Testing

Significance Level (α)

p – value

PROCESS FOR HYPOTHESIS TESTING

Step 1 Specify the hypotheses (H_0, H_1)

Step 2 Define a sample-based test statistic and the rejection region for the specified H_0

Step 3 Collect the sample data and calculate the test statistic

Step 4 Decide to either reject or fail to reject H_0

Step 5 Interpret the results/make recommendation for action

FORMULATING HYPOTHESES

- Null hypotheses are what you set out to prove wrong.
- Null and alternative hypotheses are mutually exclusive.
- You cannot accept a null hypothesis.
- You can either *reject a null* hypothesis or you can *fail to* reject it.
- Practice Exercise:
 Khan Academy Quiz

	Null Hypothesis H ₀ :		
Symbol	Clue words	Type of test	Symbol
<	Less than,	Left tailed Test	<u>></u>
	decreased, faster		
>	More than,	Right tailed Test	<u><</u>
	increased, slower		
≠	Not equal to, has	Two Tailed Test	=
	changed		

SIGNIFICANCE LEVEL (α)

- lpha is used to set the rejection region.
- It denotes the probability of making a Type I Error (rejecting true H_0)
- The significance level (α) should be low so that the risk of incorrectly rejecting H_0 is minimized.

(typically, $\alpha = 0.10 \ or \ 0.05 \ or \ 0.01$)

p-value

probability of you making the observations if H₀ were true

 $p - value = P(data | H_0 is true)$

Video source: https://www.youtube.com/watch?v=-MKT3yLDkqk

COMPARING (α) AND p - value

When $p - value \leq \alpha$, we reject H_0

- The result is statistically significant
 - We are reasonably sure that there is something besides chance that gave us an observed sample

When $p - value > \alpha$, we fail to reject the H_0

- The result is not statistically significant.
 - We are reasonably sure that our observed data can be observed by chance alone

Calculate variance and standard deviation.

Use R for simple data analysis.

Download the exercise from MyStudy.

You can work with your friends on the task.

Statistics Tutorial Day 4 2020-04-30

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

- Chi-squared Test,
- Test of Normality
- t-Test

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de