Time-Dependent Survival Analysis

Weisi Chen

2025-03-13

Table of contents

0 1602

0 1496 0 70

#> 2 1602 #> 3 1496

#> 4 1462

```
Organize the dataset structure for time-dependent survival analysis . . . . . . .
      Fit the time-dependent cox model
                               # Load the needed packages
library(ggplot2)
library(dplyr)
library(lubridate)
library(survival)
library(ggsurvfit)
library(gtsummary)
library(here)
library(survminer)
library(broom)
library(forestploter)
library(tidyr)
# Load the data
data(BMT, package="SemiCompRisks")
head(BMT[, c("T1", "delta1", "TA", "deltaA")])
     T1 delta1 TA deltaA
#> 1 2081 0 67
```

Time-dependent covariate approach

This is used when if the value of a covariate is changing over time.

About the sample data

The data comes from the pbc and pdcseq dataset, available from the survival package.

The pdc dataset contains baseline data and follow-up status for a set of subjects with primary biliary cirrhosis, while the pdcseq dataset contains repeated laboratory values for those subjects.

Some important variables: status: status at endpoint, 0/1/2 for censored, transplant, dead albumin: serum albumin (g/dl) ascites: presence of ascites bili: serum bilirunbin (mg/dl) protime: standardised blood clotting time stage: histologic stage of disease (needs biopsy)

```
# Load the data
pbc <- survival::pbc
pbcseq <- survival::pbcseq</pre>
```

Organize the dataset structure for time-dependent survival analysis

Characteristic	$\mathbf{H}\mathbf{R}^{1}$	95% CI ¹	p-value
log(bili)	3.46	2.86, 4.18	< 0.001
$\log(\text{protime})$	53.7	22.9, 126	< 0.001

¹HR = Hazard Ratio, CI = Confidence Interval

Fit the time-dependent cox model

```
tbl_regression(coxph(Surv(tstart, tstop, death == 2) ~ log(bili) + log(protime), data = pbc3
```

Interpretation: For one-unit increase in log(bili), the hazard of death increases by a factor of 3.46, holding other covariates constant.

 $-\!>$ A 2.718 times increases in serum bilir unbin level, hoding all other covariates constant, increases the hazard of death by a factor of 3.46