Gold Price Prediction

Welcome to the **Gold Price Prediction** project! This project leverages machine learning to predict gold prices using historical data. Whether you're a data enthusiast, a finance professional, or just curious about gold prices, this project is for you! \mathscr{A}

Project Overview

Gold prices are influenced by various factors such as stock market indices, currency exchange rates, and commodity prices. This project uses a **Random Forest Regressor** to predict gold prices based on historical data. The dataset includes features like SPX, USO, SLV, and EUR/USD, making it a comprehensive tool for financial analysis.

X Tools and Libraries Used

- Pandas: For data manipulation and analysis.
- NumPy: For numerical operations.
- **Seaborn**: For stunning data visualizations.
- Matplotlib: For creating insightful graphs.
- Scikit-learn: For building and evaluating machine learning models.

1. Data Collection and Preprocessing

- Load the dataset using pandas.read_csv().
- Inspect the dataset using shape, describe(), head(), tail(), and info().
- Check for missing values with isnull().sum().

2. Data Analysis

- Create a **correlation heatmap** to visualize relationships between features.
- Plot the distribution of gold prices to understand the data better.

3. Splitting the Data

- Separate features (X) and target (Y) variables.
- Split the data into training and testing sets using train test split().

4. Model Training

• Train the **Random Forest Regressor** model on the training data.

5. Model Evaluation

- Predict gold prices on the test data.
- Calculate the **R Squared Error** to evaluate model performance.

Results

The **Random Forest Regressor** model achieved an **R Squared Error of 0.988**, showcasing its high accuracy in predicting gold prices. This makes it a reliable tool for financial forecasting.

- Clone the repository: git clone https://github.com/your-username/gold-price-prediction.git
 cd gold-price-prediction
- 2. Install the required libraries: pip install -r requirements.txt
- 3. Run the Jupyter Notebook: jupyter notebook main.ipynb
- 4. Follow the steps in the notebook to preprocess the data, train the model, and evaluate its performance.

Why This Project?

- **Educational**: Learn how to apply machine learning to real-world financial data.
- **Practical**: Use the model to make informed decisions about gold investments.
- Fun: Dive into the world of data science and see the magic of predictive analytics!

Solution Contributing

Contributions are welcome! Feel free to open issues or submit pull requests to improve the project. Let's make this project even better together! **

Happy predicting! 🞉