Task 2 Contd & Task3 Coding part

Data Cleaning Process

The cleaning process addressed several data quality issues across both datasets:

Work Order Data:

- Replaced '0' values in 'Model Year' with 'Unknown' to properly handle missing information
- Removed the 'Cause' column due to excessive missing values (>50%)
- Identified German text in the 'Correction' column (translation attempted but not completed due to technical constraints)

Repair Data:

- Removed the 'Coverage' column with 84% missing values
- Standardized numeric formats:
 - o Converted all quantities and revenues to absolute values
 - Cleaned monetary fields by removing '\$' symbols and rounding to 2 decimals
 - o Converted Excel serial dates to proper datetime format
- Ensured consistent decimal precision (2 places) across all numeric columns

Key challenges included handling mixed data types in monetary fields and managing technical issues with language translation.

2. Data Integration Approach

Primary Key Selection:

The integration used a composite key consisting of:

- 1. Primary Key (e.g., "SO0005588-1")
- 2. Order No
- 3. Segment Number

Rationale for Join Type (Inner Join):

- Ensures only complete records with matching entries in both datasets are included
- Appropriate for this analysis as we need repair details correlated with work order information
- Eliminates records that couldn't be matched, ensuring data consistency
- Preserves the one-to-many relationship where one work order may have multiple repair line items

The merged dataset contains 500 records with 23 columns combining information from both sources.

3. Key Trends and Findings

3.1 Failure Pattern Analysis:

1. Failure Frequency Heatmap revealed:

- o "Leak" failures are most common across equipment types
- o "APPL" category shows more "Oil Loss" failures
- o "SPRAYS" equipment has more "Error Code" issues
- o Implication: Different preventive maintenance strategies needed for different equipment types

2. Cost vs. Repair Time Analysis showed:

- o "Broken" components incur highest costs (\$4,000+ avg)
- o Undocumented failures ("Not Mentioned") consume disproportionate repair time
- o Implication: Improved failure documentation could reduce labor costs

3.2 Seasonal Trends:

- Clear peaks in service demand during spring (April-May) and late summer
- Cost spikes exceed order volume increases, indicating some months have particularly expensive repairs
- Recommendation: Schedule preventive maintenance before peak seasons and increase parts inventory

Profitability Insights:

- The average markup on parts is approximately 34% (Revenue vs. Cost)
- Labor costs show strong correlation with part costs (r=0.72)
- Highest-margin repairs involve electronic components (sensors, control units)

4. Recommended Actions

1. Preventive Maintenance:

- o Focus on leak prevention for all equipment
- o Specialized checks for "APPL" oil systems and "SPRAYS" electronics

2. Process Improvements:

- o Standardize failure documentation to reduce diagnostic time
- o Implement seasonal staffing adjustments

3. Inventory Management:

- Stock high-cost failure components before peak seasons
- o Increase inventory of commonly replaced electronic parts

Coding part

```
#1. Primary Key Identification and Data Cleaning
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load data
excel file = r"C:\Users\User\Downloads\Data for task 2.xlsx"
work_order_df = pd.read_excel(excel_file, sheet_name='Work Order Data')
repair_df = pd.read_excel(excel_file, sheet_name='Repair Data')
# Clean Work Order Data
work order df['Model Year'] = work order df['Model Year'].replace(0, 'Unknown')
work_order_df.drop(columns='Cause', inplace=True)
# Clean Repair Data
repair df.drop(columns='Coverage', inplace=True)
repair_df['Qty'] = repair_df['Qty'].abs()
repair_df['Revenue'] = repair_df['Revenue'].abs().round(2)
# Clean Cost column
repair_df['Cost'] = (
  repair_df['Cost']
  .replace(r'[\$]', '', regex=True)
  .astype(float)
```

Convert Invoice Date

repair_df.rename(columns={'Cost': 'Cost(\$)'}, inplace=True)

.abs()

.round(2)

```
repair_df['Invoice Date'] = pd.to_datetime('1899-12-30') + pd.to_timedelta(repair_df['Invoice Date'],
unit='D')
# Clean Segment Total
repair_df['Segment Total $'] = (
  repair_df['Segment Total $']
  .astype(str)
  .str.replace('$', '', regex=False)
  .astype(float)
  .round(2)
repair_df.rename(columns={'Segment Total $': 'Segment Total($)'}, inplace=True)
# Round numeric columns
repair_df['Actual Hours'] = repair_df['Actual Hours'].round(2)
# Save cleaned data
output file = "Cleaned dataset 2.xlsx"
with pd.ExcelWriter(output_file, engine='openpyxl') as writer:
  work order df.to excel(writer, sheet name="Work Order Cleaned", index=False)
  repair_df.to_excel(writer, sheet_name="Repair Cleaned", index=False)
# Merge datasets
merged df = pd.merge(work order df, repair df, on=('Primary Key', 'Order No', 'Segment Number'),
how='inner')
```

2. Exploratory Data Analysis

Visualization 1: Failure Component Frequency Heatmap

```
failure_components = merged_df['Failure Condition - Failure Component'].str.split(' - ').str[0].value_counts().head(10)

product_categories = merged_df['Product Category'].value_counts()

cross_tab = pd.crosstab(

merged_df['Failure Condition - Failure Component'].str.split(' - ').str[0],

merged_df['Product Category']

).loc[failure_components.index, product_categories.index]

plt.figure(figsize=(12, 8))

sns.heatmap(cross_tab, annot=True, fmt='d', cmap='YlOrRd')

plt.title('Frequency of Failure Components by Product Category')

plt.xlabel('Product Category')

plt.ylabel('Failure Condition')

plt.tight_layout()
```


Visualization 2: Cost vs Actual Hours by Failure Component

```
merged_df['Primary Failure'] = merged_df['Failure Condition - Failure Component'].str.split(' - ').str[0]

failure_stats = merged_df.groupby('Primary Failure').agg({
    'Cost($)': 'mean',
    'Actual Hours': 'mean'
}).sort_values('Cost($)', ascending=False).head(10)

fig, ax = plt.subplots(figsize=(12, 6))

failure_stats.plot(kind='bar', ax=ax, secondary_y='Actual Hours')

plt.title('Average Cost and Actual Hours by Failure Component')

plt.ylabel('Average Cost ($)')

ax.right_ax.set_ylabel('Average Actual Hours')

plt.xticks(rotation=45, ha='right')

plt.tight_layout()

plt.show()
```


Visualization 3: Monthly Trend of Service Orders and Costs

```
merged df['Order Date'] = pd.to datetime(merged df['Order Date'])
merged_df['Month-Year'] = merged_df['Order Date'].dt.to_period('M')
monthly trends = merged df.groupby('Month-Year').agg({
  'Primary Key': 'count',
  'Cost($)': 'sum',
  'Actual Hours': 'sum'
})
fig, ax1 = plt.subplots(figsize=(14, 7))
color = 'tab:blue'
ax1.set xlabel('Month-Year')
ax1.set ylabel('Number of Service Orders', color=color)
ax1.plot(monthly trends.index.astype(str), monthly trends['Primary Key'], color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx()
color = 'tab:red'
ax2.set_ylabel('Total Cost ($)', color=color)
ax2.plot(monthly_trends.index.astype(str), monthly_trends['Cost($)'], color=color)
ax2.tick_params(axis='y', labelcolor=color)
plt.title('Monthly Trend of Service Orders and Associated Costs')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```

