Advanced Machine Learning

Outline

- 1. Vector Spaces
- 2. Metrics (distances)
- 3. Norms

Matrices, Vectors and All That

- The language of machine learning is mathematics
- Sometimes we draw pretty pictures to explain the mathematics
- Much of the mathematics we will use involves vectors, matrices and functions
- You need to master the language of mathematics, otherwise you won't understand the algorithms
- I'm going to spend this lecture and the next revising the mathematics you need to know (but I'm going use a slightly posher language than you are probably used to)

Scalars (Fields)

- These are quantities we can add together (a + b) and multiply together $(a \times b)$
- Formally they form an Abelian group under addition with an identity 0 and excluding 0 an Abelian group under multiplication and they are distributive

$$a \times (b+c) = a \times b + a \times c$$

• Although this sounds rather daunting don't panic. They behave like numbers. The field might be integers, rational numbers, reals, complex numbers or something a bit more exotic—but we will almost always consider reals.

Vectors

- We often work with objects with many components (features)
- To help handle this we will use vector notation

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \bullet \text{ All our vectors are column vectors by default}$$

$$\bullet \text{ We treat them as } n \times 1 \text{ matrix}.$$

- We represent vectors by bold symbols

- We write row vectors as transposes of column vectors

$$\boldsymbol{y}^{\mathsf{T}} = (y_1, y_2, \dots, y_n)$$

Basic Vector Operations

The basic vector operations are adding

multiplying by a scalar (a number)

Vector Space

ullet A vector space, \mathcal{V} , is a set of vectors which satisfies

```
1. if \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V} then a\boldsymbol{v} \in \mathcal{V} and \boldsymbol{v} + \boldsymbol{w} \in \mathcal{V}
                                                                         (closure)
2. v + w = w + v
                                                (commutativity of addition)
3. (u+v)+w=u+(v+w) (associativity of addition)
4. v + 0 = v
                                           (existence of additive identity 0)
5. 1v = v
                                    (existence of multiplicative identity 1)
6. a(bv) = (ab)v
                                                      (distributive properties)
7. a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}
8. (a+b)v = av + bv
 (You don't need to remember these)
```

Just from these properties we can deduce other properties

- When we first learn about vectors we think of them arrows in 3-D space
- If we centre them all at the origin then there is a oneto-one correspondence between vectors and points in space

- We call this vector space \mathbb{R}^3
- Any set of quantities $\boldsymbol{x}=(x_1,x_2,\ldots,x_n)^\mathsf{T}$ which satisfy the axioms above form a vector space \mathbb{R}^n

Other Vector Spaces

- Vectors (i.e. \mathbb{R}^n) are not the only object that form vector spaces
- Matrices satisfy all the conditions of a vector space
- Infinite sequences form a vector space
- Functions form a vector space
 - \star Let C(a,b) be the set of functions defined on the interval [a,b]
 - \star Note that if $f(x),g(x)\in C(a,b)$ then $af(x)\in C(a,b)$ and $f(x)+g(x)\in C(a,b)$
- Bounded vectors don't form a vector space

Outline

- 1. Vector Spaces
- 2. Metrics (distances)
- 3. Norms

Metrics

- Vector spaces become more interesting if we have a notion of distance
- We say $d(\boldsymbol{x},\boldsymbol{y})$ is a **proper distance** or **metric** if

```
1. d(\boldsymbol{x}, \boldsymbol{y}) \geq 0 (non-negativity)
2. d(\boldsymbol{x}, \boldsymbol{y}) = 0 iff \boldsymbol{x} = \boldsymbol{y} (identity of indiscernibles)
3. d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x}) (symmetry)
4. d(\boldsymbol{x}, \boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{z}) + d(\boldsymbol{z}, \boldsymbol{y}) (triangular inequality)
```

- There are typically many possible distances (e.g. Euclidean distance, Manhattan distance, etc.)
- Often one or more condition isn't satisfied then we have a pseudo-metric

Mappings and Functions

• A function defines a mapping from one vector space to another (although the spaces might be the same), e.g.

$$f: \mathbb{R} \to \mathbb{R}$$

(f maps the reals onto reals, i.e. f(x) takes a real x and gives you a new real number y = f(x))

- We are often interested in functions that behave nicely
- E.g. They are continuous

Lipschitz Function

• One way to characterise well behaved function, f(x) is if there exists a number $K<\infty$ such that for all x and y

$$d(f(x), f(y)) \le Kd(x, y)$$

- This is known a Lipschitz condition and the function is said to be K-Lipschitz
- Note that such functions cannot have any jumps (i.e. they are continuous)
- The size of K measures the limit on the amplifying effect of the function

Contractive Mappings

- ullet An interesting class of function are those for which K < 1
- These are said to be contractive mappings
- A famous theorem that applies to contractive mappings is the Banach fixed-point theorem which says there exists a unique fixed point such that f(x) = x
- This is used for example in showing that various algorithms will converge!

Outline

- 1. Vector Spaces
- 2. Metrics (distances)
- 3. Norms

Norms

- Vector spaces are even more interesting with a notion of length
- Norms provide some measure of the size of a vector
- ullet To formalise this we define the **norm** of an object $oldsymbol{v}$ as $\|oldsymbol{v}\|$ satisfying

```
1. \|v\| > 0 if v \neq 0 (non-negativity)

2. \|av\| = a\|v\| (linearity)

3. \|u+v\| \leq \|u\| + \|v\| (triangular inequality)
```

- When some criteria aren't satisfied we have a pseudo-norms
- Norms provide a metric $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$ (they are metric spaces)

Vector Norms

• The familiar vector norm is the (Euclidean) two norm

$$\|\boldsymbol{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

• Other norms exist, such as the p-norm ($p \ge 1$)

$$\|\boldsymbol{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$

• Special cases include the 1-norm and the infinite norm

$$\|\boldsymbol{v}\|_1 = \sum_{i=1}^n |v_i|$$
 $\|\boldsymbol{v}\|_{\infty} = \max_i |v_i|$

• The 0-norm is a pseudo-norm as it does not satisfy condition 2

 $\|oldsymbol{v}\|_0=$ number of non-zero components

Matrix Norms

- We can define norms for other objects
- The norm of a matrix encodes how large the mapping is
- The Frobenius norm is defined by

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2}$$

- Many other norms exist including 1-norm, max-norm, etc.
- For square matrices, some, but not all, norms satisfy the inequality

$$\|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \times \|\mathbf{B}\|$$

Compatible Norms

A vector and matrix norm are said to be compatible if

$$\|\mathbf{M}\boldsymbol{v}\|_b \leq \|\mathbf{M}\|_a \times \|\boldsymbol{v}\|_b$$

(Spectral and Euclidean norms are compatible)

- Norms provide quick ways to bound the maximum growth of a vector under a mapping induced by the matrix.
- We will see that a measure of the sensitivity of a mapping is in terms of the ratio of its maximum effect to its minimum effect on a vector
- This is known as the **conditioning**, given by $\|\mathbf{M}\| \times \|\mathbf{M}^{-1}\|$

Why Should You Care?

- ullet Deep learning involves multiply the input (which we can think of as a vector $oldsymbol{x}$) by many layers
- In CNNs we have convolutional layers and dense layers
- The effect of applying these layers can be represented by a matrix multiplication $m{x}_n = \mathbf{L}_n m{x}_{n-1}$
- ullet We also do other things like applying ReLU's or pooling that changes the magnitude, $oldsymbol{x}_n$, of our representation.
- If you are developing new architectures you want $\|m{x}_n\|$ neither to blow up or vanish.
- ullet This can be controlled by carefully choosing $\|\mathbf{L}_n\|$

Function Norms

• Functions can also have norms, for example, if f(x) is defined in some interval $\mathcal I$

$$||f||_{L_2} = \sqrt{\int_{x \in \mathcal{I}} f^2(x) \, \mathrm{d}x}$$

- The L_2 vector space is the set of function where $\|f\|_{L_2} < \infty$
- The L_1 -norm is given by $||f||_{L_1} = \int_{x \in \mathcal{I}} |f(x)| \, \mathrm{d}x$
- The infinite-norm is given by $||f||_{\infty} = \max_{x \in \mathcal{I}} |f(x)|$

Summary

- Vector spaces with a distance (metric spaces) and vector spaces
 with a norm (normed vector spaces) are interesting objects
- They allow you to define a topology (open/closed sets, etc.)
- You can build up ideas about connectedness, continuity, contractive maps, fixed-point theorems, . . .
- For the most part we are going to consider an even more powerful vector space that has an inner-product defined