MATH 358 Notes: Honours Advanced Calculus

Samy Lahlou

These notes are based on lectures given by Professor John Toth at McGill University in Winter 2025. The subject of these lectures is **TODO**.

As a disclaimer, it is more than possible that I made some mistakes. Feel free to correct me or ask me anything about the content of this document at the following address: samy.lahloukamal@mcgill.ca

Contents

1 Integration over Surfaces in \mathbb{R}^3

2

1 Integration over Surfaces in \mathbb{R}^3

Definition (Surface Parametrization). Let $D \subset \mathbb{R}^2$ be a piecewise C^1 bounded domain and let $S = \phi(D)$ be the corresponding surface where $\phi: D \to S \subset \mathbb{R}^3$ is a C^1 mapping. We call D the parametrization domain.

Definition (Regular Surfaces). Given a parametrized surface S with parameter ϕ and parametrization domain D, we say that S is regular if $\phi_u(u_0, v_0) \times \phi_v(u_0, v_0) \neq 0$ for all $(u_0, v_0) \in D$.

Definition (Tangent Plane). Given a regular surface S with parameter ϕ and parametrization domain D, then for all $d \in D$, we can define the vector $n = \phi_u(d) \times \phi_v(d)$ which is normal to the surface at $\phi(d)$. From this, we define

$$T_{\phi(d)}S = \{X \in \mathbb{R}^3 : (X - \phi(d)) \cdot n = 0\}$$

as the tangent plane to S at $\phi(d)$.

Definition (Area of a Surface). Given a regular surface S with parameter ϕ and parametrization domain D, we can define the area of S as

$$area(S) = \iint_D \|\phi_u \times \phi_v\| dA.$$