Proportions et évolutions en pourcentage

Définition. La proportion d'une population P_B dans une population P_A est $p = \frac{P_B}{P_A}$

Propriété. Proportions d'ensembles emboîtés.

On considère trois ensembles A, B et C emboîtés tels que $C \subset B \subset A$.

On note p la proportion de la population de B dans la population de A.

On note p' la proportion de la population de C dans la population de B.

Alors la proportion de la population de C dans la population de A est $p \times p'$. ($Car \frac{P_C}{P_A} = \frac{P_C}{P_B} \times \frac{P_B}{P_A}$)

Exemple. La moitié des pages d'un magazine est constitué de publicités. Parmi celles-ci, 25 % sont consacrées à la mode. La proportion de pages de publicité de mode est donc $\frac{1}{2} \times \frac{25}{100} = 0,125$ soit 12,5 %.

Rappel. $25 \% = \frac{25}{100} = \frac{1}{4} = 0.25$

Hypothèse. On suppose qu'une quantité passe d'une valeur initiale V_i à une valeur finale V_f .

Définition. La variation absolue est $\Delta V = V_f - V_i$.

Définition. La variation relative ou taux d'évolution est $t = \frac{V_f - V_i}{V_i} = \frac{\Delta V}{V_i}$.

Ainsi la variation relative indique la proportion de la variation absolue par rapport à la valeur de départ.

Exemple. La population d'une ville passe de 55 000 à 74 250 habitants.

La variation absolue de cette population est 74250 - 55000 = 19250 habitants.

La variation relative de cette population est $\frac{74\ 250-55\ 000}{55\ 000} = \frac{19\ 250}{55\ 000} = 0,35 = 35\ \%.$

On dit que « la population de la ville a augmenté de 35 % ».

Propriété. $V_f = (1+t)V_i$

(Preuve: $(1+t)V_i = \left(1+\frac{\Delta V}{V_i}\right)V_i = \frac{V_i + \Delta V}{V_i}V_i = V_i + \Delta V = V_f$)

Définition. $c=1+t=\frac{V_f}{V_i}$ est appelé **coefficient multiplicateur**. **Propriété**. On a $V_f=c~V_i$

Exemple. Un salarié touchant 2000 € par mois est augmenté de 17 %. Quel est son nouveau salaire?

Le taux d'évolution de son salaire est $t = \frac{17}{100} = 0.17$. Son nouveau salaire est $(1 + 0.17) \times 2000 = 2340$ €.

Le coefficient multiplicateur est c = 1,17.

Propriété et définitions. Evolutions successives.

Lorsque l'on a une évolution d'une valeur V_1 à une valeur V_2 suivie d'une autre évolution de la valeur V_2 à V_3 :

Le coefficient multiplicateur global est le coefficient multiplicateur entre V_1 et V_3 . Il vaut $c_{global} = c \times c'$. ($\operatorname{Car} \frac{V_3}{V_1} = \frac{V_3}{V_2} \times \frac{V_2}{V_1}$). **Le taux d'évolution global** vaut alors $t_{global} = c_{global} - 1$

Exemple. Le nombre d'abonnés d'un journal en ligne augmente de 30 % avant de baisser de 10 %. Il est donc multiplié par 1,3 puis par 0,9. Alors $c_{global}=1,3\times0,9=1,17$. Cela correspond à un taux de 1,17 -1=0,17. Le taux d'évolution global est donc $t_{global}=1,17-1=0,17=17$ %

Propriété et définition. Evolution réciproque.

Lorsqu'on a une évolution d'une valeur V_i à une valeur V_f , le coefficient réciproque est le coefficient permettant de revenir de V_f à V_i .

Le coefficient multiplicateur réciproque est égal à $\frac{1}{c}$ où c est le coefficient multiplicateur de l'évolution de départ. Le taux d'évolution réciproque est $\frac{1}{c}-1$

Exemple. Un prix augmente de 25 % : il a donc été multiplié par

 $1 + \frac{25}{100} = 1,25$. Le coefficient multiplicateur réciproque qui permettrait de revenir

au prix de départ est de $\frac{1}{1.25} = 0.8$. Or 0.8 - 1 = -0.2 ce qui correspond donc à une baisse de 20 %.