	进程名	A	В	С	D	Е	平均时间
	到达时间	0	1	2	3	4	
	服务时间	4	3	5	2	4	
FCFS	完成时间	4	7	12	14	18	
	周转时间	4	6	10	11	14	9
	带权周转时间	1	2	2	5. 5	3. 5	2. 2
SJF	完成时间	4	9	18	6	13	
	周转时间	4	8	16	3	9	8
	带权周转时间	1	2. 7	3. 2	1.5	2. 25	2. 13
HRRN	完成时间	4	7	14	9	18	
	周转时间	4	6	12	6	14	8. 4
	带权周转时间	1	2	2. 4	3	3. 5	2. 38

分析:

针对 ABCDE 五项作业,采用 SJF 算法的效率最高。

FCFS 算法下,属于短作业的 D 却有很长的周转时间。显然 FCFS 有利于长作业,对于后来的短作业效率不高。

HRRN 算法下考虑到各个作业的等待时间和服务时间, 短作业 D 的带权周转时间也有所减少, 但 SJF 算法减少的幅度更大, 进而影响了平均带权周转时间。

在三个算法中, D 的带权周转时间相差较多, 可见针对这个样例优先处理短作业会提高效率, 因此采用 SJF 算法的效率最高。