HEINRICH HEINE
UNIVERSITÄT DÜSSELDORF

Assembly of MHC with hybrid data

Dr. Torsten Houwaart

group of Dr. Alexander Dilthey joint project with Prof. Dr. Birgit Henrich

Group Seminar 22.05.2019

MHC (Major Histocompatibility Complex)

Human genome: chromosome 6

Length: 171 Mbp

MHC locus: $\sim 28.7 - 33.4 \text{ Mbp}$

=> Get a better assembly of the haplotype of the MHC (Major Histocompatibility Complex) region for different cell lines

cell line	origin
QBL	dutch, blood (EBV-transformed lymphoblastoid)
SSTO	amish, blood
MANN/MOU	danish, blood
DBB	amish, blood
APD	not specified
MCF7	caucasian, breast adenocarcinoma
COX	south african, unknown
PGF	english, blood

=> Get a better assembly of the haplotype of the MHC (Major Histocompatibility Complex) region for different cell lines

cell line

QBL

SSTO

MANN/MOU

DBB

APD

MCF7

COX

Already assembled

PGF

=> Get a better assembly of the haplotype of the MHC (Major Histocompatibility Complex) region for different cell lines

cell line

QBL

SSTO

MANN/MOU

DBB

APD

MCF7

COX

PGF

Human genome: chromosome 6

Length: 171 Mbp

MHC locus: $\sim 28.7 - 33.4 \text{ Mbp}$

"... were selected on the basis of conferring either protection against or susceptibility to two autoimmune diseases, type 1 diabetes and multiple sclerosis, and that represented common haplotypes in European populations"

"Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project" doi: 10.1007/s00251-007-0262-2

2008

Short Read data

contig 1 ATGGAATCGTGTTGCTCTCTCTCTCTCTCTTTAGGTCGCTCCAGTAG contig 2

The contig length distribution of the APD cell line

APD 2219 contigs

base pairs

Contig Arrangement Problem

- How are the contigs arranged (direction)?

Contig Arrangement Problem

- How are the contigs arranged (direction)?

- Distances between the contigs?
- What is the sequence between the contigs?

Short Read data

 \rightarrow distance between 487QBL and 744QBL : $162-166 \ bp$

Short Read data

distances between all pairs of contigs summary

→ up to 600 bp

Long Read data

Data from 3rd generation sequencing **Nanopore**→ - high error rate (15%), - expensive, + long

long read – contig signature

The Idea – Aligning Signatures

Code Improvements

Modularized Scaffolds

Pseudolongreads

- consist of pieced together real longreads

Pseudoalignments

- diminishes problem of paralogs greatly
- automatize assembly (in principle)

Colors

Modularized Scaffolds

automatized assembly

alignment2SVG

clusters reads and draws them

class Longreads

- initialize with *.paf, *.erate fileS(!)
 - track origin of each longread
- alternative constructor from dictionary
 - allows merging of longreads
- pseudoalign_all
 - N^2 alignments between all N longreads

Assembly Strategy

Automatic Assembly

- always yields a result
- but problems can arise caused by "wrong" longreads: dsDNA, unexplainable long/short regions regions with high variability and/or low coverage

Semi-Automatic Curated Assembly

- takes a little longer
- guarantees there are no long range mistakes

Problematic Reads

"Fake Hairpins" - dsDNA that is seperated at the pore and sequenced in the same read?

~1% of data

Problem Regions DRB

DRB region of cell line DBB

with genes DRB4 and DRB1

- paraloges
- → very similar sequence
- → very similar contig structure

=> difficult to assemble, a strong case for manually curated assembly

Assembly Strategy

Semi-Automatic Curated Assembly

- 1. Collect good representatives (good long reads) of a section of the MHC
- 2. Connect them via contigs

Assembly of MHC with hybrid data

Semi-Automatic Curated Assembly

- 1. Collect good representatives of a section of the MHC
- 2. Connect them via contigs

error rate of longreads, ~ 15%

- → the more colorful, the more alignment errors
- → where there are no errors: these are the representatives for the reference

- Ref. built from contigs
- Ref. built from longread-representatives
- → less errors → sequencing errors
- → more errors → sequencing errors, errors in the reference

Taking a representative → Multiple sequence alignment; Polish with Illumina WGS data

Nanopolish Seqan Samtools Pileup

Summary and Outlook

- Assembly with hybrid data successful

- Finish Missing Cell Lines
 - SSTO, longreads quite short makes assembly tedious, in progress
 - MANN, cells at BMFZ
 - MCF7, cell line with cooperation partner
 - QBL, does not grow, extracted DNA available
- Enhance Sequence Between Contigs
 - 1. multiple sequence alignment with Seqan
 - 2. nanopolish (default coverage: 20x, heuristics suitable for lower coverage?)
 - 3. samtools pileup consensus
- Graph Based Reference Project

Acknowledgments

Microbiology Institute

Dr. Alexander Dilthey

Alona Tyshaieva

Dana Belick

Prof. Dr. Birgit Henrich

all others ...

UC Denver

Dr. Paul Norman

University of Cambridge

Dr. James Traherne

BMFZ

Dr. Tobias Lautwein

HHU Algorithmische Bioinformatik

Prof. Dr. Gunnar Klau

Cost Estimation

simulate_read_distribution.py

 $N = 39,000 \text{ reads} \rightarrow MHC \text{ covered completely 0 times}$

N ~ 1.5 flowcells 4N ~ 6 flowcells ~ 3600 - 6000€

https://github.com/DiltheyLab/ContigAnalysisScripts/

Quantity Improvements of Nanopore at BMFZ

Quality Improvements of Nanopore at BMFZ

weighted histogram

