Week 5 Homework

Bryan SebaRaj

Professor Hong Tang

EENG 203 - Circuits and System Design

February 18, 2025

Homework for February 11, 2025

14.61

(a) Note that in this active filter,

$$V_o = V_-$$
 and $V_+ = V_i \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}$

Recall that $V_+ = V_-$. As such,

$$V_i \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = V_o$$

Thus,

$$H(\omega) = \frac{V_o}{V_i} = \frac{j\omega C}{j\omega C} \cdot \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{j\omega RC + 1}$$

(b) Note that in this active filter,

$$V_o = V_-$$
 and $V_+ = V_i \frac{R}{R + \frac{1}{i\omega C}}$

Recall that $V_+ = V_-$. As such,

$$V_i \frac{R}{R + \frac{1}{i\omega C}} = V_o$$

Thus,

$$H(\omega) = \frac{V_o}{V_i} = \frac{j\omega C}{j\omega C} \cdot \frac{R}{R + \frac{1}{j\omega C}} = \frac{j\omega RC}{j\omega RC + 1}$$

14.66

- **14.66** A "general" first-order filter is shown in Fig. 14.93.
 - (a) Show that the transfer function is

$$\mathbf{H}(s) = \frac{R_4}{R_3 + R_4} \times \frac{s + (1/R_1C)[R_1/R_2 - R_3/R_4]}{s + 1/R_2C},$$

$$s = j\omega$$

- (b) What condition must be satisfied for the circuit to operate as a highpass filter?
- (c) What condition must be satisfied for the circuit to operate as a lowpass filter?

Figure 14.93

For Prob. 14.66.

- (a) Let the node between R_3 and R_4 be denoted with a voltage v_a , the non-inverting input as v_+ and the inverting input as v_- . Trivially, $v_+ = v_a$
- (b) Note that in order to operate as a high pass filter, H(s) must take the form with some constant K,

$$H(s) = K \cdot \frac{sR_fC}{sR_iC + 1}$$

Rewriting H(s),

$$H(s) = \frac{R_4}{R_3 + R_4} \times \frac{R_2C}{R_2C} \times \frac{s + (1/R_1C)[R_1/R_2 - R_3/R_4]}{s + 1/R_2C} = \frac{R_4}{R_3 + R_4} \times \frac{sR_2C + (R_2/R_1)[R_1/R_2 - R_3/R_4]}{sR_2C + 1}$$

When $\frac{R_1}{R_2} = \frac{R_4}{R_4}$, H(s) takes the form,

$$H(s) = \frac{R_4}{R_3 + R_4} \times \frac{sR_2C + 0}{sR_2C + 1} = \frac{R_4}{R_3 + R_4} \times \frac{sR_2C}{sR_2C + 1}$$

Thus, in order for this circuit to act as a high pass filter, $\frac{R_1}{R_2} = \frac{R_3}{R_4}$. This can be confirmed as H(0) = 0 and $H(\infty) = 1$.

(c) Using the previous intermerdiate form,

$$H(s) = \frac{R_4}{R_3 + R_4} \times \frac{sR_2C + (R_2/R_1)[R_1/R_2 - R_3/R_4]}{sR_2C + 1}$$

At s = 0,

$$H(0) = \frac{R_4}{R_3 + R_4} \times \frac{0 + (R_2/R_1)[R_1/R_2 - R_3/R_4]}{0 + 1} = \frac{R_4}{R_3 + R_4}(R_2/R_1)(R_1/R_2 - R_3/R_4)$$

Therefore in order to yield a nonzero DC gain at at s = 0.

$$\frac{R_1}{R_2} \neq \frac{R_3}{R_4}$$

In order for $H(\infty) = 0$, see that $R_3 \to \infty$, which would yield,

$$H(\infty) = 0$$

Thus, the circuit will act as a low pass filter.

Homework for February 13, 2025

14.95

(a) Recall that a circuit with a variable capacitor and antenna coil uses the formula,

$$f=\frac{1}{2\pi\sqrt{LC}}$$
 At $C=40$ pF,
$$f=\frac{1}{2\pi\sqrt{240\mu H\cdot 40pF}}=1.6244~{\rm MHz}$$
 At $C=360$ pF,
$$f=\frac{1}{2\pi\sqrt{240\mu H\cdot 360pF}}=0.5415~{\rm MHz}$$

Thus, the circuit can tune for any frequency between 0.5415 MHz and 1.6244 MHz.

(b) In order to calculate Q, recall that the formula for Q is,

$$Q=\frac{2\pi fL}{R}$$
 At $f_1=0.5415$ MHz,
$$Q=\frac{2\pi\cdot0.5415}{12\Omega}\frac{\text{MHz}\cdot240\mu H}{12\Omega}=68.047$$
 At $f_2=1.6244$ MHz,
$$Q=\frac{2\pi\cdot1.6244}{12\Omega}\frac{\text{MHz}\cdot240\mu H}{12\Omega}=204.128$$

14.96

14.96 The crossover circuit in Fig. 14.108 is a lowpass filter that is connected to a woofer. Find the transfer function $\mathbf{H}(\omega) = \mathbf{V}_o(\omega)/\mathbf{V}_i(\omega)$.

Figure 14.108 For Prob. 14.96.