The synchronous system

Name: Khalid Muzaffar

ld: 269553

Excerise: 5

Introduction:

A synchronous system is a system whose value depends on time. In the interpretation of this task, sometimes there is a clock speed (changes in the value on the set of logical values), which causes changes in the values on the outputs of the flip-flops. The second flip-flop in this task is a flip-flop of the JK type.

Tranformation Circuit(NAND GATES):

Table (JK flip flops included):

х	y_1	y_2	D_1	D_2	J_1	<i>K</i> ₁	J_2	K ₂
0	0	0	0	0	0	Х	0	Х
0	0	1	0	0	0	Х	Х	1
0	1	0	0	0	Х	1	0	Х
0	1	1	0	0	Х	1	Х	1
1	0	0	1	0	1	Х	0	Х
1	0	1	1	1	1	Х	Х	0
1	1	0	0	1	Х	1	1	Х
1	1	1	1	1	Х	0	Х	0

Now we are building a Karnaugh map for each of the JK Flip-Flops inputs:

J_I				
<i>y</i> ₁ <i>y</i> ₂	0	1		
00	0	1		
01	0	1		
11	×	×		
10	×	×		

$$J1 = x$$

K_I					
<i>y</i> ₁ <i>y</i> ₂	0	1			
00	×	×			
01	×	×			
11	1	0			
10	1	1			

$$K1 = \overline{x} + \overline{\overline{y}}_2$$

	J_2	
y_1y_2	0	1
00	0	0
01	×	×
11	×	×
10	0	1

$$J2 = \chi y_1$$

K ₂					
<i>x y</i> 1 <i>y</i> 2	0	1			
00	×	×			
01	1	0			
11	1	0			
10	×	×			

$$K_2 = \overline{X}$$

Final circuit:

The measurement results shown on circuit:

Step	to	t ₁	t ₂	tз	t ₄	t 5
х	1	1	1	1	0	0
y1, y2	10	01	11	11	00	00
Z	0	0	1	1	0	0

Summary:

After the transformation of The initial synchronous circuit and by performation correct state transformations using D flip flops and Jk flip flops we achived a circuit that gave us output 1 only when the input are 1 and y1y2 11 other then that it gave us 0 as result even when our y1y2 were 10 01.