数据科学基础 (With Python)

关联规则

频繁模式

- 频繁模式: 在数据集中频繁出现的模式
- 动机:找出数据中的规律
 - 哪些产品经常被一起购买?
 - **▲ Beer and diapers?!**
 - 购买了PC之后下一个会买什么?
- 应用
 - 购物篮分析
 - 购物网站推荐
 - Web日志分析,...

基本概念

- 项目(物品)集合 $I = \{i_1, ..., i_m\}$
 - I的子集称为项集
- 交易集**D** = {**T**_i | **T**_i ⊆ **I**}
 - 每个交易有唯一TID
- 目的:找出在D中频繁出现的项集X
 - 支持度supp(X):包含X的交易数(频数) →也可以用占总交易数的比例(即频率)
 - 预先指定最小支持度min_sup,则支持度大于min_sup的项集称为频繁的

基本概念

- 关联规则:X⇒Y,其中X和Y是不相交项集
 - 支持度supp(X⇒Y) = supp(X∪Y)
 - ▲也可说是X∪Y在D中出现的概率
 - 置信度conf(X⇒Y) = supp(X∪Y)/supp(X)→也可说是条件概率P(Y|X)
- · 强关联规则:支持度超过预定的min_sup 且置信度超过预定的min_conf
 - 即X∪Y是频繁的
 - 因此:为找强关联规则,可先找频繁项集

例:基本概念

- \Rightarrow sup_min = 50%, min_conf = 50%
- · 频繁项集{A,D}:支持度=3/5≥50%)
- (强)关联规则:
 - $-A \Rightarrow D (60\%, 100\%)$
 - $-\mathbf{D} \Rightarrow \mathbf{A} \ (60\%, 75\%)$

Transaction-id	Itemset
1	A , B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

如何找出关联规则

- 第一步:找出所有频繁项集
- 第二步:从频繁项集生成强关联规则
 - 这一步很容易
 - 例:如果X是频繁的且至少含有2个项,则将X 分成任意两个不相交子集A和B,即可构造关 联规则A⇒B和B⇒A
 - ▲这两条关联规则的支持度即X的支持度,显然≥ min_sup,只需要验证置信度是否≥min_conf

如何找频繁项集

- 似乎也很容易?
- 蛮力算法:
 - 考虑I的所有可能子集:
 - $\{i_1\},\{i_2\},...,\{i_m\},\{i_1,i_2\},...,\{i_1,i_m\},...,\{i_1,...,i_m\}$
 - 扫描D,对每个交易检查是否包含上述子集, 是则给该子集计数+1
 - 扫描完毕,则所有子集的支持度已知,超过 min_sup的项集即为频繁项集
- · 问题是I的子集有2m个,而m可能成百上千

频繁项集的一个性质

- 频繁项集的任何非空子集必是频繁的
 - $若{A,B,C}$ 是频繁的,则 ${A}$, ${B}$, ${C}$, ${A,B}$, ${A,C}$, ${B,C}$ 也是频繁的.
 - ▲因为任何包含{A,B,C}的交易也包含它的任意子集,即:子集的支持度≥超集的支持度

• 启示:

- 首先找频繁1-项集(全体记为L₁),
- -然后利用 L_1 构造频繁2-项集(全体记为 L_2)
- -利用 L_2 构造频繁3-项集(全体记为 L_3) ...

从 L_k 构造 L_{k+1}

- 连接:L_k join L_k得到k+1项集的集合C_{k+1}
 - 约定:所有项按字母顺序排序
 - 设 X_1 和 X_2 是 L_k 中的两个频繁k项集,且前k-1 个项是相同的,仅第k个项不同.则 X_1 和 X_2 连接得到一个k+1项集:

 ${X_1[1], X_1[2],..., X_1[k-1], X_1[k], X_2[k]}$

- 检测 C_{k+1} 中频繁k+1项集,构成 L_{k+1}
 - 扫描一遍D即可
 - 优化:某元素若有k子集不在L_k中则可删除

Apriori算法

 $L_1 = \{ 频繁1-项集 \};$ for $(k = 1; L_k != \varnothing; k++)$ do $C_{k+1} = L_k$ 自连接生成的候选项集 删除C_{k+1}中有非频繁k-项集的项集 for $t \in D$ do 将被t 包含的C_{k+1}中项集的计数加1 $L_{k+1} = C_{k+1}$ 中至少具有min_sup的项集 return $\bigcup_{k} L_{k}$;

例:Apriori算法

 $min_sup = 2$

Tid	Items
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

扫描D

7	Itemset	sup
	{A}	2
	{B}	3
	{C}	3
	{D}	1
	{E}	3

L_1	Itemset	sup
	{A}	2
	{B}	3
	{C}	3
	{E}	3

 L_2

连接

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

 C_2

,	Itemset	sup
'	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

扫描D

Itemset	
{A, B}	
{A, C}	
{A, E}	
{B, C}	
{B, E}	
{C, E}	

 C_3 Itemset {B, C, E}

扫描D

 L_3

Itemset	sup
{B, C, E}	2

Lu Chaojun, SJTU

例:自连接与剪枝

- 候选生成中的优化
 - $-L_3 = \{abc, abd, acd, ace, bcd\}$
 - 自连接:
 - ▲abc和abd连接:abcd
 - ▲acd和ace连接:acde
 - ▲为什么不abd和bcd连接?
 - 剪枝
 - ▲因为acde的子集ade不在L3中,故删除acde
 - 最终C₄={abcd}

例:生成关联规则

- {A,C}是频繁2-项集,可生成
 - $-A \Rightarrow C$
 - ▲置信度:supp({A,C})/supp({A})=2/2=100%
 - $C \Rightarrow A$
 - ▲置信度:supp({A,C})/supp({C})=2/3=67%
- {B,C,E}是频繁3-项集,可生成
 - $-BC \Rightarrow E$
 - $-\mathbf{BE} \Rightarrow \mathbf{C}$
 - **B⇒CE,...**

Apriori评价

- 挑战
 - 多次扫描D
 - 大量的候选项集
 - 对候选项集支持度的计数负担重
- 改进
 - 减少扫描D的遍数
 - 减少候选的个数
 - 使候选支持度计数便利

变种:多层关联规则

- 项层次
 - 例如:电脑-台式和笔记本-各品牌;软件-办公和杀毒-...
- 交易:低抽象级
 - 强关联规则较罕见,因为较低层项具有较低的支持度
- 解决方法:支持不同抽象级上的关联规则
 - 联想笔记本⇒360杀毒软件:可能支持度不够
 - 笔记本→杀毒软件:可能支持度够高

变种:多维关联规则

- 前述关联规则可认为是一维(单一谓词)的
 - 例如: buy(A)⇒buy(C)
- 对多维数据集可挖掘多维关联规则
 - 例如: age(''20..30'') ∧ major(''CS'')⇒buy(''laptop'')

变种:定量关联规则

- 多维关联规则中,数值型特征在挖掘过程 中动态地离散化,以满足某种条件(如嘉华 置信度)
- 例如: 关联规则聚类

```
age(34) \land income(31K..40K) \Rightarrow buy("laptop")
age(35) \land income(31K..40K) \Rightarrow buy("laptop")
age(34) \land income(41K..50K) \Rightarrow buy("laptop")
age(35) \land income(41K..50K) \Rightarrow buy("laptop")
可聚类为
age(34..35) \land income(31K..50K) \Rightarrow buy("laptop")
```

Lu Chaojun, SJTU

关联与相关性

- 关联规则基于支持度-置信度框架
 - 不一定有相关性
 - ▲例如:啤酒和尿布
 - min_sup阈值尽管能排除无意义的关联规则, 但即使是强关联规则也可能没有意义
- 解决方法:将支持度-置信度框架与相关性 分析等统计方法相结合

例:关联vs相关性

- 在10000个学生中
 - 6000人晨练

Lu Chaojun, SJTU

- 7500人早餐吃肉包子
- 4000既晨练又吃肉包子
- 则:晨练⇒吃肉包子[40%,66.7%]
 - 看似有意义,其实是误导.因为吃肉包子的学生本身就有75%,高于66.7%.说明晨练与吃肉包子具有负相关,即晨练→不吃肉包子[20%,33.3%]更有意义,尽管具有较低支持度和置信度

End