Explicit construction of Ramanujan bigraphs

Kathrin Maurischat, RWTH Aachen University, on joint work with Cristina Ballantine, Shai Evra, Brooke Feigon, Ori Parzanchevski.

2020 November 25

Graph
$$X = (L_X \circ R_X, E_X)$$
 satisfying
$$L_X \circ R_X$$
bipartite: edges only between L_X - and R_X which binegular: # edges from each field varieties the same

We consider undirected graphs $X = (V_X, E_X)$ which are

- ▶ bipartite: $V_X = L_X \sqcup R_X$ such that if $(v_1, v_2) = (v_2, v_1) \in E_X$, then either $(v_1 \in L_X \text{ and } v_2 \in R_X)$ or $(v_1 \in R_X \text{ and } v_2 \in L_X)$.
- ▶ $(q_L + 1, q_R + 1)$ -biregular: $\forall v \in L_X$: $\#\{(v, v_2) \in E_X\} = q_L + 1$ and $\forall v \in R_X$: $\#\{(v_1, v) \in E_X\} = q_R + 1$.

We consider undirected graphs $X = (V_X, E_X)$ which are

- ▶ bipartite: $V_X = L_X \sqcup R_X$ such that if $(v_1, v_2) = (v_2, v_1) \in E_X$, then either $(v_1 \in L_X \text{ and } v_2 \in R_X)$ or $(v_1 \in R_X \text{ and } v_2 \in L_X)$.
- ▶ $(q_L + 1, q_R + 1)$ -biregular: $\forall v \in L_X$: $\#\{(v, v_2) \in E_X\} = q_L + 1$ and $\forall v \in R_X$: $\#\{(v_1, v) \in E_X\} = q_R + 1$.
- ▶ satisfying $q_L \ge q_R$, so $n_L = \#L_X \le n_R = \#R_X$.

The adjacency matrix has got shape $\begin{pmatrix} 0 & A \\ A^t & 0 \end{pmatrix}$ with $A \in M_{n_L,n_R}(\{0,1\})$.

Trivial eigenvalues: $\pm \sqrt{(q_L+1)(q_R+1)}$, 0 with multiplicity (n_R-n_L) .

We consider undirected graphs $X = (V_X, E_X)$ which are

- ▶ bipartite: $V_X = L_X \sqcup R_X$ such that if $(v_1, v_2) = (v_2, v_1) \in E_X$, then either $(v_1 \in L_X \text{ and } v_2 \in R_X)$ or $(v_1 \in R_X \text{ and } v_2 \in L_X)$.
- ▶ $(q_L + 1, q_R + 1)$ -biregular: $\forall v \in L_X$: $\#\{(v, v_2) \in E_X\} = q_L + 1$ and $\forall v \in R_X$: $\#\{(v_1, v) \in E_X\} = q_R + 1$.
- ▶ satisfying $q_L \ge q_R$, so $n_L = \#L_X \le n_R = \#R_X$.

The adjacency matrix has got shape $\begin{pmatrix} 0 & A \\ A^t & 0 \end{pmatrix}$ with $A \in M_{n_L,n_R}(\{0,1\})$.

Trivial eigenvalues: $\pm \sqrt{(q_L+1)(q_R+1)}$, 0 with multiplicity (n_R-n_L) .

Non-trival eigenvalues: $\pm \lambda_2, \ldots, \pm \lambda_n$, with $n \leq n_L$.

The Zeta function of a graph X is that of its fundamental group.

The Zeta function of a graph X is that of its fundamental group.

Proposition [Hashimoto 1989] For $(q_L + 1, q_R + 1)$ -biregular graphs,

$$Z_X(u)^{-1} = (1-u)^{\#E_X - n_L - n_R} (1+q_R u)^{n_L - n_R} \prod_{j=1}^n (1-(\lambda_j^2 - q_L - q_R)u + q_L q_R u^2),$$

with trival zeros 1, $(q_L q_R)^{-1}$, $-q_R^{-1}$.

The Zeta function of a graph X is that of its fundamental group.

Proposition [Hashimoto 1989] For $(q_L + 1, q_R + 1)$ -biregular graphs,

$$Z_X(u)^{-1} = (1-u)^{\#E_X - n_L - n_R} (1+q_R u)^{n_L - n_R} \prod_{j=1}^n (1-(\lambda_j^2 - q_L - q_R)u + q_L q_R u^2),$$

with trival zeros 1, $(q_L q_R)^{-1}$, $-q_R^{-1}$.

Riemann hypothesis The non-trival zeros satisfy the property: If $Re(s) \in (0,1)$ and $Z_X((q_Lq_R)^{-s})^{-1} = 0$, then Re(s) = 1/2.

The Zeta function of a graph X is that of its fundamental group.

Proposition [Hashimoto 1989] For $(q_L + 1, q_R + 1)$ -biregular graphs,

$$Z_X(u)^{-1} = (1-u)^{\#E_X - n_L - n_R} (1+q_R u)^{n_L - n_R} \prod_{j=1}^n (1-(\lambda_j^2 - q_L - q_R)u + q_L q_R u^2),$$

with trival zeros 1, $(q_L q_R)^{-1}$, $-q_R^{-1}$.

Riemann hypothesis The non-trival zeros satisfy the property: If $Re(s) \in (0,1)$ and $Z_X((q_Lq_R)^{-s})^{-1} = 0$, then Re(s) = 1/2.

Definition A $(q_L + 1, q_R + 1)$ -biregular graph is a *Ramanujan bigraph* if it satisfies the Riemann hypothesis.

Alternative characterization

Proposition A finite, connected (q_L+1,q_R+1) -bigregular bipartite graph is a Ramanujan bigraph, iff for all non-trival eigenvalues λ

$$|\lambda^2 - q_L - q_R| \le 2\sqrt{q_L q_R}.$$

Alternative characterization

Proposition A finite, connected (q_L+1,q_R+1) -bigregular bipartite graph is a Ramanujan bigraph, iff for all non-trival eigenvalues λ

$$|\lambda^2 - q_L - q_R| \le 2\sqrt{q_L q_R}.$$

Remarks

Interlacing families of Ramanujan bigraphs are known to satisfy extremly good expander properties. They are at the same time highly connected and sparse.

Alternative characterization

Proposition A finite, connected (q_L+1,q_R+1) -bigregular bipartite graph is a Ramanujan bigraph, iff for all non-trival eigenvalues λ

$$|\lambda^2 - q_L - q_R| \le 2\sqrt{q_L q_R}.$$

Remarks

- Interlacing families of Ramanujan bigraphs are known to satisfy extremly good expander properties. They are at the same time highly connected and sparse.
- Interlacing families of Ramanujan bigraphs exist for all $q_L, q_R \ge 2$ [Marcus, Spielman, Srivastava '14].

Let E_p/\mathbb{Q}_p be an unramified quadratic field extension, $\Phi = \begin{pmatrix} & -1 \end{pmatrix}$, $U_3 = U_3(E_p/\mathbb{Q}_p, \Phi)$ unitary group defined over \mathbb{Z}_p .

Let E_p/\mathbb{Q}_p be an unramified quadratic field extension, $\Phi = \binom{1}{1}^{-1}$, $U_3 = U_3(E_p/\mathbb{Q}_p, \Phi)$ unitary group defined over \mathbb{Z}_p . There are two conjugacy classes of maximal compact subgroups in $U_3(\mathbb{Q}_p)$,

$$K_L = U_3(\mathbb{Z}_p) \text{ and } K_R = U_3(\mathbb{Q}_p) \cap \begin{pmatrix} \mathfrak{o}_{E_p} & \mathfrak{o}_{E_p} & p^{-1}\mathfrak{o}_{E_p} \\ \mathfrak{o}_{E_p} & \mathfrak{o}_{E_p} & p^{-1}\mathfrak{o}_{E_p} \\ p\mathfrak{o}_{E_p} & p\mathfrak{o}_{E_p} & \mathfrak{o}_{E_p} \end{pmatrix}.$$

Iwahori subgroup $I = K_L \cap K_R$.

Let E_p/\mathbb{Q}_p be an unramified quadratic field extension, $\Phi = \binom{1}{1}^{-1}$, $U_3 = U_3(E_p/\mathbb{Q}_p, \Phi)$ unitary group defined over \mathbb{Z}_p . There are two conjugacy classes of maximal compact subgroups in $U_3(\mathbb{Q}_p)$,

$$K_L = U_3(\mathbb{Z}_p) \text{ and } K_R = U_3(\mathbb{Q}_p) \cap \begin{pmatrix} \mathfrak{o}_{E_p} & \mathfrak{o}_{E_p} & p^{-1}\mathfrak{o}_{E_p} \\ \mathfrak{o}_{E_p} & \mathfrak{o}_{E_p} & p^{-1}\mathfrak{o}_{E_p} \\ \mathfrak{po}_{E_p} & \mathfrak{po}_{E_p} & \mathfrak{o}_{E_p} \end{pmatrix}.$$

Iwahori subgroup $I = K_L \cap K_R$.

$$L_{\mathcal{T}} = \{ conjugates \ of \ K_L \},$$

 $R_{\mathcal{T}} = \{ conjugates \ of \ K_R \}, \ and$
 $E_{\mathcal{T}} = \{ (V_L, V_R) \mid V_L \cap V_R \ is \ conjugate \ to \ I \}.$

Let E_p/\mathbb{Q}_p be an unramified quadratic field extension, $\Phi = \binom{1}{1}^{-1}$, $U_3 = U_3(E_p/\mathbb{Q}_p, \Phi)$ unitary group defined over \mathbb{Z}_p . There are two conjugacy classes of maximal compact subgroups in $U_3(\mathbb{Q}_p)$,

$$K_L = U_3(\mathbb{Z}_p) \text{ and } K_R = U_3(\mathbb{Q}_p) \cap \begin{pmatrix} \mathfrak{o}_{E_p} & \mathfrak{o}_{E_p} & p^{-1}\mathfrak{o}_{E_p} \\ \mathfrak{o}_{E_p} & \mathfrak{o}_{E_p} & p^{-1}\mathfrak{o}_{E_p} \\ \mathfrak{po}_{E_p} & \mathfrak{po}_{E_p} & \mathfrak{o}_{E_p} \end{pmatrix}.$$

Iwahori subgroup $I = K_L \cap K_R$.

$$\begin{split} L_{\mathcal{T}} &= \{ \text{conjugates of } K_L \}, \\ R_{\mathcal{T}} &= \{ \text{conjugates of } K_R \}, \text{ and } \\ E_{\mathcal{T}} &= \{ (V_L, V_R) \mid V_L \cap V_R \text{ is conjugate to } I \}. \end{split}$$

The graph $\mathcal{T} = \mathcal{T}_p$ is the Bruhat-Tits building (tree) of $U_3(\mathbb{Q}_p)$. It is $(p^3 + 1, p + 1)$ -biregular.

Theorem [Ballantine, Ciubotaru '11] Let Γ be a discrete, cocompact subgroup of $U_3(\mathbb{Q}_p)$ acting on \mathcal{T}_p without fixed points. Then the quotient \mathcal{T}_p/Γ is a Ramanujan bigraph **iff** $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ satisfies the *Ramanujan hypothesis*,

Theorem [Ballantine, Ciubotaru '11] Let Γ be a discrete, cocompact subgroup of $U_3(\mathbb{Q}_p)$ acting on \mathcal{T}_p without fixed points. Then the quotient \mathcal{T}_p/Γ is a Ramanujan bigraph **iff** $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ satisfies the *Ramanujan hypothesis*, i.e.

iff every irreducible unitary representation occurring non-trivially in $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ is tempered.

Theorem [Ballantine, Ciubotaru '11] Let Γ be a discrete, cocompact subgroup of $U_3(\mathbb{Q}_p)$ acting on \mathcal{T}_p without fixed points. Then the quotient \mathcal{T}_p/Γ is a Ramanujan bigraph **iff** $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ satisfies the *Ramanujan hypothesis*, i.e.

iff every irreducible unitary representation occuring non-trivially in $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ is tempered.

Idea of proof: Identify the Zeta-function of \mathcal{T}_p/Γ with the characteristic polynomial of $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ as module of the Iwahori-Hecke algebra.

Theorem [Ballantine, Ciubotaru '11] Let Γ be a discrete, cocompact subgroup of $U_3(\mathbb{Q}_p)$ acting on \mathcal{T}_p without fixed points. Then the quotient \mathcal{T}_p/Γ is a Ramanujan bigraph **iff** $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ satisfies the *Ramanujan hypothesis*, i.e.

iff every irreducible unitary representation occurring non-trivially in $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ is tempered.

Idea of proof: Identify the Zeta-function of \mathcal{T}_p/Γ with the characteristic polynomial of $L^2(U_3(\mathbb{Q}_p)/\Gamma)^I$ as module of the Iwahori-Hecke algebra.

For $U_3(\mathbb{Q}_p)$, the inspection of [Rogawski 1990]'s A-packets provides a tool to prove/disprove temperedness.

Theorem [BC'11] Let E/\mathbb{Q} be an imaginary quadratic extension. Let G be the unitary group associated to a division algebra D of degree three over its center E with involution of the second kind (i.e. reducing to the Galois-automorphism on E). Assume $G(\mathbb{R})$ is compact. Let P be a prime inert in E, and (n,p)=1. Let

$$\Gamma_p(n) = ker(G(\mathbb{Z}[p^{-1}]) \to G(\mathbb{Z}[p^{-1}]/n\mathbb{Z}[p^{-1}])) \subset G(\mathbb{Q}).$$

Then, the quotient $\mathcal{T}_p/\Gamma_p(n)$ is a Ramanujan bigraph.

Ramanujan property for unitary groups

Let E/\mathbb{Q} be an imaginary quadratic extension, $\Phi \in M_3(E)$ a definite hermitian matrix, $G = U_3(E/\mathbb{Q}, \Phi)$.

Ramanujan property for unitary groups

Let E/\mathbb{Q} be an imaginary quadratic extension, $\Phi \in M_3(E)$ a definite hermitian matrix, $G = U_3(E/\mathbb{Q}, \Phi)$.

Let $K = \otimes_{\nu} K_{\nu} \subset G(\mathbb{A})$ be a compact open subgroup with $K_{\infty} = G_{\infty}$, $K_{\rho} \leq K_{L,\rho} = G(\mathbb{Z}_{\rho})$ of finite index and $K_{\rho} = K_{L,\rho}$ almost everywhere. Let $Ram(K) = \{ p \mid K_{\rho} \neq K_{L,\rho} \}$.

Definition K is said to satisfy the *Ramanujan property* if every irreducible subrepresentations of $L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))^K$ is tempered at all local places.

Ramanujan property for unitary groups

Let E/\mathbb{Q} be an imaginary quadratic extension, $\Phi \in M_3(E)$ a definite hermitian matrix, $G = U_3(E/\mathbb{Q}, \Phi)$.

Let $K = \bigotimes_{\nu} K_{\nu} \subset G(\mathbb{A})$ be a compact open subgroup with $K_{\infty} = G_{\infty}$, $K_{p} \leq K_{L,p} = G(\mathbb{Z}_{p})$ of finite index and $K_{p} = K_{L,p}$ almost everywhere. Let $Ram(K) = \{p \mid K_{p} \neq K_{L,p}\}$.

Definition K is said to satisfy the *Ramanujan property* if every irreducible subrepresentations of $L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))^K$ is tempered at all local places.

Theorem [BEFMP'20] The Ramanujan property is satisfied by K when one of the following holds.

- (1) [EP'18/20] There exists a prime $p \in Ram(E)$ such that $p \notin Ram(K)$.
- (2) $K' \subset K$ for a compact open subgroup K' satisfying the Ramanujan property.
- (3) $K \subset K'$ for a compact open subgroup K' satisfying the Ramanujan property, and for all p such that $K_p \neq K'_p$, the group K_p is a parahoric subgroup.

Specialize to $E=\mathbb{Q}(\sqrt{-3})$ and $\Phi=\mathbf{1}_3.$

Specialize to $E = \mathbb{Q}(\sqrt{-3})$ and $\Phi = \mathbf{1}_3$. Let $K_3(H) = \{g \in K_{L,3} \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & 1 \end{pmatrix} \pmod{3} \}$.

Specialize to $E = \mathbb{Q}(\sqrt{-3})$ and $\Phi = \mathbf{1}_3$.

Let
$$K_3(H) = \{ g \in K_{L,3} \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & 1 \end{pmatrix} \pmod{3} \}.$$

Theorem A [BEFMP'20] K satisfies the Ramanujan property in each of the following cases.

- (1) $3 \notin Ram(K)$.
- (2) $Ram(K) = \{3\}, K_3 = K_3(H).$
- (3) $3 \in Ram(K)$, $K_3 = K_3(H)$, and for all $3 \neq p \in Ram(K)$ there is a parahoric subgroup contained in K_p .

Specialize to $E = \mathbb{Q}(\sqrt{-3})$ and $\Phi = \mathbf{1}_3$.

Let
$$K_3(H) = \{ g \in K_{L,3} \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & 1 \end{pmatrix} \pmod{3} \}.$$

Theorem A [BEFMP'20] K satisfies the Ramanujan property in each of the following cases.

- (1) $3 \notin Ram(K)$.
- (2) $Ram(K) = \{3\}, K_3 = K_3(H).$
- (3) $3 \in Ram(K)$, $K_3 = K_3(H)$, and for all $3 \neq p \in Ram(K)$ there is a parahoric subgroup contained in K_p .

Theorem B [BEFMP'20] *K* **doesn't** satisfy the Ramanujan property in each of the following cases.

- (1) $Ram(K) = \{3\}, K_3 \subset K_3(3)$ (principal congruence subgroup).
- (2) $Ram(K) = \{3, q\}, K_3 = K_3(H) \text{ and } K_q = K_q(q).$
- (3) $3 \in Ram(K)$, $K_3 = K_3(H)$, for some $3 \neq q \in Ram(K)$ it holds $K_q \subset K_q(q)$.

Recall: Cayley graphs

For a group G with set of generators S such that $k = \#S < \infty$, $S = S^{-1}$, $e \notin S$, define the **Cayley graph** $X(G, S) = (V_X, E_X)$ by $V_X = G$ and $E_X = \{(g, gs) \mid g \in G, s \in S\}$.

Recall: Cayley graphs

For a group G with set of generators S such that $k=\#S<\infty$, $S=S^{-1}$, $e\notin S$, define the **Cayley graph** $X(G,S)=(V_X,E_X)$ by

$$V_X = G$$
 and $E_X = \{(g,gs) \mid g \in G, s \in S\}.$

- \triangleright X(G,S) is k-regular, connected.
- Cycles correspond to relations in the group.
- ightharpoonup G acts on X(G,S) by multiplication from the left.

Recall: Cayley graphs

For a group G with set of generators S such that $k=\#S<\infty$, $S=S^{-1}$, $e\notin S$, define the **Cayley graph** $X(G,S)=(V_X,E_X)$ by

$$V_X = G$$
 and $E_X = \{(g,gs) \mid g \in G, s \in S\}.$

- \triangleright X(G,S) is k-regular, connected.
- Cycles correspond to relations in the group.
- ▶ G acts on X(G,S) by multiplication from the left.
- ▶ (Regular) Ramanujan graphs arising as quotients of SL₂-trees admit an explicit description by Cayley graphs [Lubotzky, Philips, Sarnak, Montenegro; Cartwright, Steger, Mantero, Zappa]

Definition In a group G let $S^1, \ldots S^L$ be pairwise disjoint finite subsets of equal size. The pair $(G, \sqcup_{i=1}^L S^j)$ satisfies the **bi-Cayley axioms** if:

- (1) $S = \sqcup_{j=1}^{L} S^{j}$ is a generating set for G, $S = S^{-1}$, and $e \notin S$.
- (2) For all $s, t \in S$, $s \neq t$, we have $s, t \in S^i$ for some $i \in \{1, \dots, L\} \iff s^{-1}t, s^{-1} \in S^j$ for some $j \in \{1, \dots, L\}$.

Definition In a group G let $S^1, \ldots S^L$ be pairwise disjoint finite subsets of equal size. The pair $(G, \sqcup_{i=1}^L S^j)$ satisfies the **bi-Cayley axioms** if:

- (1) $S = \sqcup_{j=1}^{L} S^{j}$ is a generating set for G, $S = S^{-1}$, and $e \notin S$.
- (2) For all $s, t \in S$, $s \neq t$, we have $s, t \in S^i$ for some $i \in \{1, \dots, L\} \iff s^{-1}t, s^{-1} \in S^j$ for some $j \in \{1, \dots, L\}$.

Def/Prop Let the pair $(G, \sqcup_{j=1}^{L} S^{j})$ satisfy the bi-Cayley axioms.

(1) Define the following equivalence relation on $G \times \{1, \dots L\}$: $(g_1, j_1) \sim (g_2, j_2) \Longleftrightarrow \begin{cases} & \text{either } g_1 = g_2 \text{ and } j_1 = j_2 \\ & \text{or } g_1^{-1} g_2 \in S^{j_1} \text{ and } g_2^{-1} g_1 \in S^{j_2}. \end{cases}$

Definition In a group G let $S^1, \ldots S^L$ be pairwise disjoint finite subsets of equal size. The pair $(G, \sqcup_{i=1}^L S^i)$ satisfies the **bi-Cayley axioms** if:

- (1) $S = \sqcup_{j=1}^{L} S^{j}$ is a generating set for G, $S = S^{-1}$, and $e \notin S$.
- (2) For all $s, t \in S$, $s \neq t$, we have $s, t \in S^i$ for some $i \in \{1, \dots, L\} \iff s^{-1}t, s^{-1} \in S^j$ for some $j \in \{1, \dots, L\}$.

Def/Prop Let the pair $(G, \sqcup_{j=1}^{L} S^{j})$ satisfy the bi-Cayley axioms.

- (1) Define the following equivalence relation on $G \times \{1, \dots L\}$: $(g_1, j_1) \sim (g_2, j_2) \iff \begin{cases} \text{ either } g_1 = g_2 \text{ and } j_1 = j_2 \\ \text{ or } g_1^{-1} g_2 \in S^{j_1} \text{ and } g_2^{-1} g_1 \in S^{j_2}. \end{cases}$
- (2) The associated **bi-Cayley graph** $X = BCay(G, \sqcup_{j=1}^{L} S^{j})$ is the (L, #[g, i])-biregular bigraph with vertices $L_X = G$, $R_X = G \times \{1, \ldots, L\}/\sim$ and edges $E_X = \{(g, [g, i]) \in L_X \times R_X \mid g \in G, i \in \{1, \ldots, L\}\}.$

Nice example

$$G_{1} = S_{3}$$

$$(112), 3)$$

$$(112), 4)$$

$$G_{2} = S_{1} \cup S_{2}$$

$$(112), 4)$$

$$G_{3} = S_{1} \cup S_{2}$$

$$(123), 4)$$

$$G_{4} = S_{1} \cup S_{2}$$

$$G_{4} = S_{1} \cup S_{2}$$

$$G_{5} = S_{1} \cup S_{2} \cup S_{3}$$

$$G_{6} = S_{1} \cup S_{2} \cup S_{3}$$

$$G_{7} = S_{1} \cup S_{2$$

▶ Let $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$.

- ▶ Let $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$.
- ► For $p \neq 3$ let $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}.$

- ▶ Let $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$.
- ► For $p \neq 3$ let $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}.$
- ▶ Let $H_p = \Lambda_p \pmod{3}$.

- ▶ Let $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$.
- ► For $p \neq 3$ let $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}.$
- Let $H_p = \Lambda_p \pmod{3}$. In particular for p = 2, denote for $j = 0, \dots, 5$,

$$A_{j} = -\frac{1}{2} \begin{pmatrix} 1 & 0 & \sqrt{-3}\zeta_{6}^{j} \\ 0 & -2 & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 0 & 1 \end{pmatrix}, B_{j} = -\frac{1}{2} \begin{pmatrix} 1 & \sqrt{-3}\zeta_{6}^{j} & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

$$C_{j} = -\frac{1}{2} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & \sqrt{-3}\zeta_{6}^{j} & 1 \\ 0 & \sqrt{-3}\zeta_{6}^{-j} & 1 \end{pmatrix}.$$

- ▶ Let $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$.
- ► For $p \neq 3$ let $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}.$
- Let $H_p = \Lambda_p \pmod{3}$. In particular for p = 2, denote for $j = 0, \dots, 5$,

$$A_{j} = -\frac{1}{2} \begin{pmatrix} 1 & 0 & \sqrt{-3}\zeta_{6}^{j} \\ 0 & -2 & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 0 & 1 \end{pmatrix}, B_{j} = -\frac{1}{2} \begin{pmatrix} 1 & \sqrt{-3}\zeta_{6}^{j} & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

$$C_{j} = -\frac{1}{2} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & \sqrt{-3}\zeta_{6}^{j} \\ 0 & \sqrt{-3}\zeta_{6}^{-j} & 1 \end{pmatrix}.$$

- ▶ Set Setting $S^1 = \{A_0, A_3\}, S^2 = \{A_1, A_4\}, S^3 = \{A_2, A_5\}, S^4 = \{B_0, B_3\}, S^5 = \{B_1, B_4\}, S^6 = \{B_2, B_5\}, S^7 \{C_0, C_3\}, S^8 = \{C_1, C_4\}, S^9 = \{C_2, C_5\}.$
- ▶ Then $(H_2, \sqcup S^j)$ satisfies the bi-Cayley axioms.

- ▶ Let $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$.
- ► For $p \neq 3$ let $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}.$
- Let $H_p = \Lambda_p \pmod{3}$. In particular for p = 2, denote for $j = 0, \dots, 5$,

$$A_{j} = -\frac{1}{2} \begin{pmatrix} 1 & 0 & \sqrt{-3}\zeta_{6}^{j} \\ 0 & -2 & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 0 & 1 \end{pmatrix}, B_{j} = -\frac{1}{2} \begin{pmatrix} 1 & \sqrt{-3}\zeta_{6}^{j} & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

$$C_{j} = -\frac{1}{2} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & \sqrt{-3}\zeta_{6}^{j} \\ 0 & \sqrt{-3}\zeta_{6}^{-j} & 1 \end{pmatrix}.$$

- ▶ Set Setting $S^1 = \{A_0, A_3\}, S^2 = \{A_1, A_4\}, S^3 = \{A_2, A_5\}, S^4 = \{B_0, B_3\}, S^5 = \{B_1, B_4\}, S^6 = \{B_2, B_5\}, S^7 \{C_0, C_3\}, S^8 = \{C_1, C_4\}, S^9 = \{C_2, C_5\}.$
- ► Then $(H_2, \sqcup S^j)$ satisfies the bi-Cayley axioms. The bi-Cayley graph $BCay(H_2, \sqcup S^j)$ is $(2^3 + 1, 2 + 1)$ -biregular with $\#L_X = 2016$ and $\#R_X = 6048$.

- ▶ Let $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$.
- ► For $p \neq 3$ let $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}.$
- Let $H_p = \Lambda_p \pmod{3}$. In particular for p = 2, denote for $j = 0, \dots, 5$,

$$A_{j} = -\frac{1}{2} \begin{pmatrix} 1 & 0 & \sqrt{-3}\zeta_{6}^{j} \\ 0 & -2 & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 0 & 1 \end{pmatrix}, B_{j} = -\frac{1}{2} \begin{pmatrix} 1 & \sqrt{-3}\zeta_{6}^{j} & 0 \\ \sqrt{-3}\zeta_{6}^{-j} & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

$$C_{j} = -\frac{1}{2} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & \sqrt{-3}\zeta_{6}^{j} \\ 0 & \sqrt{-3}\zeta_{6}^{-j} & 1 \end{pmatrix}.$$

- ▶ Set Setting $S^1 = \{A_0, A_3\}, S^2 = \{A_1, A_4\}, S^3 = \{A_2, A_5\}, S^4 = \{B_0, B_3\}, S^5 = \{B_1, B_4\}, S^6 = \{B_2, B_5\}, S^7 \{C_0, C_3\}, S^8 = \{C_1, C_4\}, S^9 = \{C_2, C_5\}.$
- Then $(H_2, \sqcup S^j)$ satisfies the bi-Cayley axioms. The bi-Cayley graph $BCay(H_2, \sqcup S^j)$ is $(2^3+1, 2+1)$ -biregular with $\#L_X=2016$ and $\#R_X=6048$.
- ▶ Works for each inert prime *p* like this.

Trees as bi-Cayley graphs

Proposition [BEFMP'20] For a (q_L+1,q_R+1) -biregular tree \mathcal{T} , $q_L \geq q_R$, let Λ be a group acting isometrically on \mathcal{T} , s. th. the action is **simply transitive** on $L_{\mathcal{T}}$.

Trees as bi-Cayley graphs

Proposition [BEFMP'20] For a (q_L+1,q_R+1) -biregular tree \mathcal{T} , $q_L \geq q_R$, let Λ be a group acting isometrically on \mathcal{T} , s. th. the action is **simply transitive** on $L_{\mathcal{T}}$.

Fix $v_0 \in L_T$, let $v_1, \ldots, v_{q_L+1} \in R_T$ be its neighbors, define

$$S^i := \{g \in \Lambda \mid g \neq 1, dist(gv_0, v_i) = 1\}, \quad i = 1, \dots, q_L + 1.$$

Then $(\Lambda, \sqcup S^i)$ satisfies the bi-Cayley axioms, and the bi-Cayley graph $BCay(\Lambda, \sqcup S^i)$ is isomorphic to the tree \mathcal{T} .

(Simply) transitive actions

Lemma For a definite unitary group $G = U_3(E/\mathbb{Q}, \Phi)$ as before the following are equivalent.

- (a) $G(\mathbb{A}) = G(\mathbb{Q}) \cdot G(\mathbb{R}) \cdot \prod_p G(\mathbb{Z}_p)$ (class number one)
- (b) For each inert prime p,

$$G(\mathbb{Q}_p) = G(\mathbb{Z}[p^{-1}]) \cdot G(\mathbb{Z}_p).$$

(c) For every inert prime p the action of $G(\mathbb{Z}[p^{-1}])$ is transitive on the left vertices $L_{\mathcal{T}_p}$ of the BT-tree.

(Simply) transitive actions

Lemma For a definite unitary group $G = U_3(E/\mathbb{Q}, \Phi)$ as before the following are equivalent.

- (a) $G(\mathbb{A}) = G(\mathbb{Q}) \cdot G(\mathbb{R}) \cdot \prod_p G(\mathbb{Z}_p)$ (class number one)
- (b) For each inert prime p,

$$G(\mathbb{Q}_p) = G(\mathbb{Z}[p^{-1}]) \cdot G(\mathbb{Z}_p).$$

(c) For every inert prime p the action of $G(\mathbb{Z}[p^{-1}])$ is transitive on the left vertices $L_{\mathcal{T}_p}$ of the BT-tree.

The stabilizer of $K_{L,p} = G(\mathbb{Z}_p)$ in $G(\mathbb{Z}[p^{-1}])$ is

$$G(\mathbb{Z}) = G(\mathbb{Z}[p^{-1}]) \cap G(\mathbb{Z}_p).$$

Any subgroup Λ_p such that $G(\mathbb{Z}[p^{-1}]) = \Lambda_p \rtimes G(\mathbb{Z})$ then acts simply transitively.

▶ For $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$, we have class number one.

► For $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$, we have class number one. For $p \neq 3$ have $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}$.

- For $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$, we have class number one. For $p \neq 3$ have $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & * & * \end{pmatrix} \pmod{3} \}.$
- ▶ For each unramified prime p have $G(\mathbb{Z}[1/p]) = \Lambda_p \rtimes G(\mathbb{Z})$.

- For $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$, we have class number one. For $p \neq 3$ have $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \\ * & 1 & * \end{pmatrix} \pmod{3} \}$.
- ▶ For each unramified prime p have $G(\mathbb{Z}[1/p]) = \Lambda_p \rtimes G(\mathbb{Z})$.
- ▶ So Λ_p acts simply transitively on the left vertices $L_{\mathcal{T}_p}$ of the BT-tree.

- For $E = \mathbb{Q}(\sqrt{-3})$ and $G = U_3(E/\mathbb{Q}, \mathbf{1}_3)$, we have class number one. For $p \neq 3$ have $\Lambda_p = \{g \in G(\mathbb{Z}[1/p]) \mid g \equiv \begin{pmatrix} 1 & * & * \\ * & 1 & * \end{pmatrix} \pmod{3} \}$.
- ▶ For each unramified prime p have $G(\mathbb{Z}[1/p]) = \Lambda_p \rtimes G(\mathbb{Z})$.
- ▶ So Λ_p acts simply transitively on the left vertices $L_{\mathcal{T}_p}$ of the BT-tree.
- ► From the exact sequence (mod 3)

$$1 \to \Gamma_p \to \Lambda_p \to H_p \to 1$$

we find an explicit description of the quotient \mathcal{T}_p/Γ_p by the bi-Cayley graph $BCay(\mathcal{H}_p, \sqcup S^j)$.

Remarks

- ► This example isn't a Ramanujan bigraph, but it fits onto slides.
- We have more than this one example for realizing quotients of BT-trees for U_3 by bi-Cayley graphs.
- Nevertheless, these examples are rare: First, class number one for unitary groups is exeptional. Second, the definition of H_p (i.e a congruence condition) is not obvious, but rather by chance.

Thank you!