Fachbereich Informatik

Dr. Michael Haupt Visar Januzaj Johannes Kinder Sommersemester 2010

Grundlagen der Informatik 2

Praktikumsaufgabe 1

Abgabe: 24.05.2010, 12:00

Rucksackproblem. Gegeben sind n Objekte O_0, \ldots, O_{n-1} . Jedes Objekt O_i hat ein Gewicht $w(O_i)$ und einen Wert $v(O_i)$. Mit diesen Objekten soll ein Rucksack gefüllt werden. Der Rucksack hat die Kapazität C, d.h. die Summe der Gewichte der Objekte, die sich im Rucksack befinden, darf C nicht übersteigen.

Füllen Sie den Rucksack so, daß die Summe der Werte aller Objekte im Rucksack maximal ist. **Achtung:** Jedes Objekt darf höchstens einmal in den Rucksack gepackt werden.

Hinweise. Import der Quelltext-Vorgaben: Laden Sie die Quelltext-Vorgaben für Praktikumsaufgabe 1 aus dem moodle-Portal herunter (Project1.zip).

Importieren Sie das Projekt in Eclipse (File, Import, General, Existing Projects Into Workspace, Select Archive File, Browse, Project1.zip auswählen, Finish).

Zu implementieren. Wie immer sind die zu bearbeitenden Stellen im Code mit **TODO:** markiert. Im einzelnen:

- 1. Implementieren Sie für die Klasse Rucksack in Rucksack. java den Konstruktor, die verschiedenen Zugriffsmethoden für Kapazität, Gewicht und Wert, die Methoden putObject und removeObject, die ein Objekt vom Typ PackingObject (in der Vorgabe bereits implementiert) hinzufügen bzw. entfernen und ein entsprechendes contains.
 - Implementieren Sie außerdem die Methode copyFrom, die einen anderen Rucksack vollständig kopiert. Diese Methode können Sie nutzen, um sich in den Algorithmen den jeweils aktuell besten gefundenen Rucksack zu merken.
- 2. Implementieren Sie eine rekursive Tiefensuche solveRecursive in RucksackProblem. java um das Rucksackproblem zu lösen. Verwenden Sie keine Schleifen, nur rekursive Aufrufe.

- 3. Implementieren Sie eine iterative Variante des Algorithmus in solveIterative, die ohne rekursive Aufrufe auskommt und stattdessen eine Schleife und eine Stack-Datenstruktur verwendet.
- 4. Testen Sie Ihre Implementierungen mit den vorgegebenen Testfällen. *Hinweis:* Öffnen Sie RucksackProblemTest. java im Editor. Wählen Sie im Menü: *Run, Run As, JUnit Test.* Alle Tests die mit *rucksack* beginnen, testen die Klasse Rucksack, die anderen die Klasse RucksackProblem.
- 5. Beantworten Sie folgende Fragen im Kopf von RucksackProblem. java an den mit TODO: markierten Stellen:
 - a) Was sind die Laufzeitkomplexitäten T(n) der rekursiven und der iterativen Version des Algorithmus, wobei n die Anzahl der packbaren Objekte ist? Geben Sie die Komplexität in O-Notation an.
 - b) Verwenden Sie TPTP um RucksackProblem.main() zu profilen. Probieren Sie verschiedene Werte für die Variable numObjects in main() aus und messen Sie die Laufzeit von solveRecursive (int) und solve-Iterative sowie die Anzahl der rekursiven Aufrufe von solveRecursive (int). Bis zu welcher Größe können Sie auf Ihrem Rechner gehen? Tragen Sie mindestens 5 verschiedene, aussagekräftige Resultate in der Tabelle ein.

Abgabe. Reichen Sie Ihre beiden fertig bearbeiteten Dateien Rucksack. java und RucksackProblem. java bis zum Abgabetermin in moodle ein. Die Abgabe ist in Gruppen von bis zu drei Personen möglich. Ein Mitglied der Gruppe reicht die Lösung zusammen mit einem Kommentar der folgenden Form ein: Die Übung wurde bearbeitet von der Gruppe X, Y, Z; die Abgabe erfolgte durch X. Jedes andere Mitglied der Gruppe reicht anstelle der Lösung nur diesen (identischen) Kommentar ein.

Bitte stellen Sie sicher, dass Sie und ggf. Ihre Gruppenmitglieder diese Regeln befolgen; wird weder eine Lösung noch der obenstehende Kommentar eingereicht, so vergibt der Tutor auch keine Punkte!

Hinweis: Der Fachbereich Informatik misst der Einhaltung der Grundregeln der wissenschaftlichen Ethik großen Wert bei. Mit der Abgabe einer Programmieraufgabe bestätigen Sie, dass Sie bzw. Ihre Lerngruppe die alleinigen Autoren sind.