General Topology and Fundamental Groups - Homework 1

Philip Warton

January 15, 2021

Problem 1

Let $f: X \to Y$ be a function. Let $A \subset X$ and $B \subset Y$. Let $U_{\alpha} \subset X, \alpha \in \mathcal{A}$ and $V_{\beta} \subset Y, \beta \in \mathcal{B}$.

(a)

$$f(\bigcup_{\alpha \in \mathcal{A}} U_{\alpha}) = \bigcup_{\alpha \in \mathcal{A}} f(U_{\alpha})$$

(b)

$$f(\bigcap_{\alpha \in \mathcal{A}} U_{\alpha}) \subset \bigcap_{\alpha \in \mathcal{A}} f(U_{\alpha})$$

Proof. Let $x \in f(\bigcap_{\alpha \in \mathcal{A}} U_{\alpha}) \Longrightarrow \exists x' \in \bigcap_{\alpha \in \mathcal{A}} U_{\alpha} : f(x') = x \Longrightarrow \forall \alpha \in \mathcal{A}, x' \in U_{\alpha} \Longrightarrow \forall \alpha \in \mathcal{A}, x \in f(U_{\alpha}) \Longrightarrow x \in \bigcap_{\alpha \in \mathcal{A}} f(U_{\alpha})$

(c)

$$f^{-1}(\bigcup_{\beta\in\mathcal{B}}V_{\beta})=\bigcup_{\beta\in\mathcal{B}}f^{-1}(V_{\beta})$$

Proof. \subseteq Let $x \in f^{-1}(\bigcup_{\beta \in \mathcal{B}} V_{\beta})$. Then $f(x) \in \bigcup_{\beta \in \mathcal{B}} V_{\beta}$. Thus $\exists \beta \in \mathcal{B} : f(x) \in V_{\beta}$. Therefore $x \in f^{-1}(V_{\beta}) \subset \bigcup_{\beta \in \mathcal{B}} f^{-1}(V_{\beta})$.

(d)

$$f^{-1}(\bigcap_{\beta\in\mathcal{B}}V_{\beta})=\bigcap_{\beta\in\mathcal{B}}f^{-1}(V_{\beta})$$

Proof. \subseteq Let $x \in f^{-1}(\bigcap_{\beta \in \mathcal{B}} V_{\beta})$. Then $f(x) \in \bigcap_{\beta \in \mathcal{B}} V_{\beta}$, which means $f(x) \in V_{\beta}$ for every $\beta \in \mathcal{B}$. Thus $x \in f^{-1}(V_{\beta})$ for every $\beta \in \mathcal{B}$, and the desired inclusion follows.

Problem 2

Let $f: X \to Y$ be a function. Prove that the following are equivalent.

$$\begin{split} &(i) \ f \ \text{is injective} \\ &(ii) \ \forall A \subset X, f^{-1}(f(A)) = A \\ &(iii) \ \forall A, B \subset X, f(A \cap B) = f(A) \cap f(B) \\ &(iv) \ \forall A, B \subset X, A \cap B = \emptyset \Rightarrow f(A) \cap f(B) = \emptyset \\ &(v) \ \forall A, B \subset X | B \subset A, \quad f(A \setminus B) = f(A) \setminus f(B) \end{split}$$

Proof. $(i) \Rightarrow (ii)$ Assume that f is injective. Let $A \subset X$ be arbitrary. We know that $f(x) = f(y) \Longrightarrow x = y$. First let us show the claim that $x \in A \Leftrightarrow f(x) \in f(A)$. Clearly $x \in A$ implies $f(x) \in f(A)$. For the other direction, suppose that this was not the case. Then it could be the case that $f(x) \in f(A)$ but $x \notin A$. This would mean $\exists x_0 \in A$ such that $f(x) = f(x_0)$. However since f is injective $x = x_0$, so it is the case $x \in A$. Given this, we have $f^{-1}(f(A)) = \{x \in X | f(x) \in f(A)\} = \{x \in X | x \in A\} = A$.

 $(ii) \Rightarrow (iii)$ Assume that for every subset of X, the pre-image of the image is equal to the set. Then let A and B be two subsets of X. We want to show $f(A \cap B) = f(A) \cap f(B)$. Let $x \in f(A \cap B)$. Then $f^{-1}(x) \in A \cap B$. Thus $f^{-1}(x) \in A$ and $f^{-1}(x) \in B$ therefore $x \in f(A)$ and $x \in f(B)$, so $x \in f(A) \cap f(B)$.

(iii) \Rightarrow (iv) Assume (iii) to be true. Then let A and B be disjoint subsets of X. It follows that $f(A) \cap f(B) = f(A \cap B) = f(\emptyset) = \emptyset$.

 $(iii) \Rightarrow (v)$ Assume (iii) to be true. Then Let $B \subset A \subset X$. First note that $f(A) \subset f(X)$, clearly. Then we can write

$$f(A \setminus B) = f(A \cap B^c) = f(A) \cap f(B^c) = f(A) \setminus f(B^c)^c = f(A) \setminus (f(B^c)^c \cap f(X)) = f(A) \setminus f(B)$$

(v) \Rightarrow (i) Assume that for any two subsets of X, the image of their difference is the difference of their images. Then let f(x) = f(y) for $x, y \in X$. Assuming that the function is well defined, we can say.

$$f(\lbrace x \rbrace) = f(\lbrace y \rbrace) \tag{1}$$

$$\Rightarrow f(\{x\}) \setminus f(\{y\}) = \emptyset \tag{2}$$

$$\Rightarrow f(\{x\} \setminus \{x\}) = \emptyset \tag{3}$$

$$\Rightarrow \{x\} \setminus \{y\} = \emptyset \tag{4}$$

$$\Rightarrow x = y \tag{5}$$

Problem 3

(a)

Let $\tau_{\alpha}: \alpha \in \mathcal{A}$ be a collection of topologies on X. Show that $\bigcap_{\alpha \in \mathcal{A}} \tau_{\alpha} = \{\mathcal{O} \subset X | \mathcal{O} \in \tau_{\alpha} \ \forall \alpha \in \mathcal{A}\}$ is a topology on X.

Proof. Since \emptyset , $X \in \tau_{\alpha}$ by the axioms of topological spaces for every $\alpha \in \mathcal{A}$ it follows that both belong also to their intersection. Let $\bigcup_{i \in I} \mathcal{O}_i$ be an arbitrary union of sets belonging to our intersect topology (which we will denote simply as τ). Then for every $i \in I$ and for every $\alpha \in \mathcal{A}$, we have $\mathcal{O}_i \in \tau_{\alpha}$. Therefore we must have $\bigcup_{i \in I} \mathcal{O}_i \in \tau_{\alpha}$ for every α , and finally it follows that this union must also belong to τ . Now let $\bigcap_{f \in F} \mathcal{O}_f$ be a finite intersection of open sets in τ . By the same logic as our arbitrary union, each open set belongs to each τ_{α} and it follows that since each τ_{α} is a proper topology, it will also contain $\bigcap_{f \in F} \mathcal{O}_f$. Since this is true for each $\alpha \in \mathcal{A}$, we have $\bigcap_{f \in F} \mathcal{O}_f \in \tau$. Thus the axioms of a topology are satisfied by our intersection of topologies.

(b)

Let \mathcal{F} be any family of subsets of a space X. Show that there is a smallest topology $\tau_{\mathcal{F}}$ on X containing \mathcal{F} .

Proof. Firstly note that there must be at least one topology containing $\tau_{\mathcal{F}}$, namely the discrete topology is guaranteed for any space. Thus it follows that the intersection of all topologies containing \mathcal{F} will be non-empty. Suppose that there is some topology that is smaller than this intersection, call it τ_0 . Then τ_0 should belong to the collection of all topologies containing \mathcal{F} and it follows that τ_0 contains this intersection, and cannot be smaller than it. So a smallest topology $\tau_{\mathcal{F}}$ containing \mathcal{F} exists and can be constructed by taking this intersection of all containing topologies.

(c)

We can construct this topology by taking two collection

 $A = \{$ collection of all arbitrary unions of sets in $\mathcal{F}\}, B = \{$ collection of all finite intersections of sets in $\mathcal{F}\}$

Then simply take $\tau_{\mathcal{F}} = \mathcal{F} \cup A \cup B \cup X \cup \emptyset$.

Problem 4

(a)

Show by example that if A is a dense subset of a space X and $Y \subset X$, then $Y \cap A$ need not be dense in Y in the subspace topology.

Choose $X = \mathbb{R}, \ Y = \mathbb{R} \setminus \mathbb{Q}, \ A = \mathbb{Q}$. Then we have $A \cap Y = \emptyset$ which is not dense in Y.

(b)

Let A be dense in X and let $\mathcal{O} \subset X$ be open. Show that $\overline{A \cap \mathcal{O}} = \overline{\mathcal{O}}$.

Let $x \in \overline{\mathcal{O}}$. Then every neighborhood U(x) intersects \mathcal{O} . Let U be an arbitrary neighborhood of x. We know that it has a non-empty intersection with \mathcal{O} (since $x \in \overline{\mathcal{O}}$) and with A (since A is dense in X). Then we know that $A \cap \mathcal{O}$ is non-empty since A is dense. So it follows that $U \cap A \cap \mathcal{O}$ is non-empty. Since this is true for any arbitrary neighborhood of x, we say that $x \in \overline{A} \cap \overline{\mathcal{O}}$.

(c)

Show that $\operatorname{Ext}(A \cup B) = \operatorname{Ext}(A) \cap \operatorname{Ext}(B)$

Proof.

$$Ext(A \cup B) = Int((A \cup B)^c)$$

$$= Int(A^c \cap B^c)$$

$$= Int(A^c) \cap Int(B^c)$$

$$= Ext(A) \cap Ext(B)$$

Show that $X \setminus \overline{A} = \text{Ext}(A)$.

Proof. Let $x \in (\overline{A})^c$. Then $x \notin \overline{A}$. This means that there exists some nieghborhood U(x) such that U and A are disjoint. This means there is a neighborhood of x contained entirely in A^c , so we say that $x \in Int(A^c)$. Let $x \notin (\overline{A})^c$. Then it is the case that every neighborhood of x intersects A, and therefore $x \notin Int(A^c)$. Finally we say

$$(\overline{A})^c = Int(A^c) = Ext(A)$$

Problem 5

(a)

Show that $x \in \overline{S} \subset \mathbb{R}_{\ell} \iff \exists \{x_n\}_{n \in \mathbb{N}} \subset S : x_n \geqslant x \text{ and } \lim_{n \to \infty} x_n = x \text{ in } \mathbb{R}.$

Proof. \implies Let $x \in \overline{S} \subset \mathbb{R}_{\ell}$. Then every neighborhood of x intersects S. By construction $[x, x + \frac{1}{n})$ is a neighborhood of x in \mathbb{R}_{ℓ} for any natural number n. Since each of these neighborhoods intersects S choose a sequence where x_n is some element of $[x, x + \frac{1}{n}) \cap S$ for each n (which we know such an element will always exist). Since x is a lower bound $[x, x + \frac{1}{n}) \cap S$, it follows that $x_n \geqslant x$ for every n. To show that the limit of the sequence converges to x, choose $\epsilon > 0$ arbitrarily. Then choose $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Then for every $n \geqslant N$, clearly $x_n \in V_{\epsilon}(x)$ in \mathbb{R} .

 \sqsubseteq Assume that there exists some sequence in S that is bounded below by x such that $(x_n) \to x$. Then for every $\epsilon > 0$ there exists a point in $[x, \epsilon) \cap S$. Then for every neighborhood of x, there is some ϵ such that $[x, x + \epsilon)$ is a subset of that neighborhood. Thus for every neighborhood of x, within it there lies some element of S, therefore $x \in \overline{A} \subset \mathbb{R}_{\ell}$.

(b)

Show that $f: \mathbb{R}_{\ell} \to \mathbb{R}$ is continuous if and only if $\lim_{x \to a^+} f(x)$ exists for all $a \in \mathbb{R}$.

Proof. \implies Let $x' \in \mathbb{R}$. Assume that f is continuous. Then every open set in \mathbb{R} has an open pre-image in \mathbb{R}_{ℓ} . Then there is some interval $[a,b) \subset f^{-1}(U)$. Then at least we know that there exists a sequence approaching x' from above that lies in $f^{-1}(U)$. If we take the positive limit of such a sequence, it follows that its image must approach f(x').

 \sqsubseteq Assume that $\lim_{x\to x'} f(x)$ exists and approaches f(x'). It follows that every neighborhood of x' in \mathbb{R}_{ℓ} will contain some element of the sequence approaching x' from above. Thus it must be the case that $f^{-1}(U)$ is open in \mathbb{R}_{ℓ} .

Problem 6

(a)

Show that all intervals on \mathbb{R} in combination with neighborhoods of p form a basis for a topology on X.

Proof. If we take the intervals (k, k+2) such that $k \in \mathbb{Z}$ and $(-1,0) \cup \{p\} \cup (0,1)$, together they form a cover on X. Let A, B be two sets from our collection. Let $x \in I = B_1 \cap B_2$. We want to show that $\exists C$ in our collection such that $x \in B_3 \subset I$. Write the endpoints for A and B as a_0, a_1, b_0, b_1 . Choose some $x \in I$. If x > 0, choose $C = (c_0, c_1)$ such that $0 < c_0 < c_1 < \min\{a_1, b_1\}$. Then $C \subset I$. If x < 0 choose $C = (c_0, c_1)$ such that $\max\{a_0, b_0\} < c_0 < c_1 < 0$ If x = 0 we can choose (c_0, c_1) such that $\min\{a_0, b_0\} < c_0 < 0 < c_1 < \max\{a_1, b_1\}$. Finally if x = p, we can choose $(c_0, 0) \cup \{p\} \cup (0, c_1)$ such that $\min\{a_0, b_0\} < c_0 < 0 < c_1 < \max\{a_1, b_1\}$. □

(b)

Show that if U and V are any open sets containing 0 and p, then $U \cap V \neq \emptyset$.

Proof. There exists some $\epsilon > 0$ such that $(-\epsilon, \epsilon) \subset U$ and $(-\epsilon, 0) \cup \{p\} \cup (0, \epsilon) \subset V$. This is the case because there must be some basis set that lies within U and V respectively, of which we can find ϵ such that it is less than the absolute value of each end point of these two basis sets. Then it is guaranteed that $\frac{\epsilon}{2} \in U \cap V$.

(c)

Show that $\mathbb{Q} \subset \mathbb{R}$ is dense in X.

Proof. We assume without proof that for any open set in \mathbb{R} intersects \mathbb{Q} . Now choose some open set containing p. Then there is some open set (-x,0) that is contained within this neighborhood of p. Then we know that this open set in \mathbb{R} must intersect \mathbb{Q} . Therefore any neighborhood of p must intersect \mathbb{Q} . Therefore \mathbb{Q} is dense in X.

(d)

Is the function $f: X \to \mathbb{R}, f(x) = x$ if $x \in \mathbb{R}, f(p) = 0$ continuous?

Choose $U \subset \mathbb{R}$. Then we claim $f^{-1}(U)$ is open in X. If $0 \notin U$ then clearly $f^{-1}(U) = U$ and is open in \mathbb{R} . If $0 \in U$ then we know $f^{-1}(U) = U \cup \{p\}$. Since $0 \in U$, there must also be some neighborhood of 0, which will also be in $f^{-1}(U)$. Then it follows that we have some neighborhood of $p \in U \cup \{p\}$. Simply modify the neighborhood of 0 to exclude 0 and include p. Thus for any point $p \in T^{-1}(U)$ we have a neighborhood around $p \in T^{-1}(U)$ that is contained in $p \in T^{-1}(U)$. So the set is open, and $p \in T^{-1}(U)$ is open in $p \in T^{-1}(U)$.

Problem 7

(a)

Proof. We wish to show $\{x \in X | f(x) < g(x) \text{ or } f(x) = g(x)\}$ is closed. Let us observe the that the complementary set is open,

$$\{x \in X | f(x) > g(x)\}$$

Choose some element x' in the set. Then we know that f(x') > g(x'). Choose some point $d \in Y$ such that f(x') > d > g(x'). Take the intersection

$$A = f^{-1}\{y \in Y | y > d\} \cap g^{-1}\{y \in Y | y < d\}$$

We know that it must be non-empty since x' belongs to both. Then since they are both the pre-images of open sets under continuous funcitons, both are open, and so too is their intersection. Then f(A) > d and g(A) < d, so the set must be contained in $\{x \in X | f(x) > g(x)\}$.

If such a point d does not exist, simply rewrite as $A = f^{-1}\{y \in Y | y > g(x')\} \cap g^{-1}\{y \in Y | y < f(x')\}$. Either f(A) > g(A) or either f or g is not continuous.

(b)

Show that $h: X \to Y, h(x) = \min\{f(x), g(x)\}\$ is continuous.

Proof. Let $U \subset Y$ be an open set. Choose $x \in h^{-1}(U)$. Then either h(x) = f(x) or h(x) = g(x). There must exist some neighborhood O(x) such that either f(O(x)) < g(O(x)) or f(O(x)) > g(O(x)). Then take the inverse under either f or g of the set G(U(x)) = g(U(x)) or G(U(x)). If some such neighborhood does not exist, then G(U(x)) = g(U(x)) is not open.