0.0.1 Note

Exercise: Subspace topology

$$A\subseteq B\subseteq X$$

The subspace topology on A coming from X = the subspace topology on A coming from the subspace topology on B coming from X.

0.0.2 Product Topology

Let (X, \mathcal{O}_x) and (Y, \mathcal{O}_y) be topological spaces. Then we give the product topology on the set $X \times Y$ as follows:

The basis $B_{x\times y} = \mathcal{O}_x \times to_y$ and $\mathcal{O}_x \times to_y = \text{all possible unions of sets in } B_{x\times y}$

Example 0.1 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ w/ product top.

$$\triangle \subseteq \mathbb{R}^2; \triangle = \{(x, x) | x \in \mathbb{R}\}$$

Prop: $(\mathbb{R}^2 \setminus \triangle)$ is open in \mathbb{R}^2 , but cannot be written as $U \times V$ for U, V open in \mathbb{R}

E.g. Cylinder $\subset \mathbb{R}^3$ is homeomorphic to Annulus $\subset \mathbb{R}^2$ is homeomorphic to $S^1 \times [0,1]$.

Definition 0.2 Connectedness: Defn: A topological space X is called connected if it cannot be written as a union of two non-empty and disjoint open sets.

Example 0.3 $X = [0,1] \cup (3,4) \subset \mathbb{R}$ is disconnected because [0,1], (3,4) both open and disjoint.

0.0.3 Equivalent Properties

- 1. X is connected iff it cannot be written as the union of two non-empty disjoint closed subsets. If X disconnected, $X = A \cup B$, $A.b \neq \emptyset$, $A \cap B = \emptyset$, $A, B \implies A, B$ are both closed. A, B are clopen.
- 2. X is connected if and only if the only clopen subsets of X are \emptyset and X. If $\emptyset \subsetneq A \subsetneq X$ is clopen, then $(X \setminus A)$ is clopen also. $X = A \cup (X \setminus A)$

Example 0.4
$$\mathbb{Q} = (\mathbb{Q} \cap (-\infty, \sqrt{2})) \cup (\mathbb{Q} \cap (\sqrt{2}, \infty))$$

Any interval in $\mathbb{R}_{\text{metric}}$ is connected.

Proof: (Proving closed intervals for now)

Let X = [a, b]. If a = b, $x = \{a\}$ is connected.

Now let $a \neq b$; so a < b.

Suppose X is disconnected. $X = A \cup B$, where A and B are clopen, and A is non-empty.

Suppose WLOG that $a \in A$.

A is open in X, so $A = [a, b] \cap U$, where U open in \mathbb{R} .

 $a \subset U$, so $\exists \varepsilon > 0$, such that $(a - \varepsilon, a + \varepsilon) \subseteq U$.

$$(a - \varepsilon, a + \varepsilon) \cap [a, b] \subset A = [a, a + \varepsilon) \subseteq A.$$

So $\left[a, \frac{\varepsilon}{2}\right] \subset A$.

Let
$$C := \{c \in [a, b] | [a, c] \subseteq A\}$$

C has an upper bound, namely b.

C has a least-upper bound, $L \leq B$

L is a limit point of A.

 $L \in X$ because $a < L \le B$.

A is clopen in X, so A is closed in X.

$$\implies L \in A$$

$$\implies [a, L] \subset A$$

We'd like to show that L = b.

 $L \in A$

 \implies A being open, $\exists \varepsilon > 0$, s.t. $[L, L + \varepsilon) \subseteq A$.

$$\implies [L, L + \frac{\varepsilon}{2}] \subseteq A.$$

Bad, because it implies that $[a, L + \frac{\varepsilon}{2}] \subseteq A$, which is a contradiction. $\implies L = B$.

Proof $\implies A = X \implies B$ is empty \implies any closed interval is connected in $\mathbb{R}_{\text{metric}}$.

Definition 0.5 Connected Component: Let X be a space.

 $x \in X$. The connected component of $x \in X$ is the union of all connected $Y \subseteq X$ of X, s.t. $x \in Y$.

Remark: The connected component of any $x \in X$ is a connected space. (needs proof)

Definition 0.6 Path Connectedness

A space X is path connected if $\forall a, b \in X$, there is a continuous function $f : [0,1] \in R_m \to X$ with f(0) = a, f(1) = b.

[0,1] is homeomorphic to [p,q] if $p \neq q$

Proposition 0.7 If X is path connected, then it is connected.

Proof: If not then $X = A \cup B$, disjoint union on non-empty clopen sets.

Take $a \in A$, $b \in B$.

There exists some $f:[0,1] \to X$, f(0)=a, f(1)=b. $[0,1]=f^{-1}(A) \cup f^{-1}(B)$ disjoint union, contradiction [0,1] is connected.