Indian Institute of Technology Jodhpur

Machine Learning I: Minor-2 Exam

Date: May 1, 2021, Max Marks: 20 Max Time: 60 min (extra 10 min for submission) Attempt all questions. Best of luck ©

- 1. (a) Consider two unit norm vectors **x** and **y**. Find the distance between **x** and **y** if the angle between these two vectors is 45°. [3 Marks]
 - (b) Let $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ be a matrix such that $\mathbf{A}(i,j) = ij$ for all i,j = 1,2,3. Let \mathbf{v}_1 be the eigenvector of \mathbf{A} corresponding to the largest eigenvalue and let \mathbf{v}_3 be the eigenvector of \mathbf{A} corresponding to the smallest eigenvalue. Find the value of the quantity $16\mathbf{v}_1^{\top}\mathbf{v}_3$. [2 Marks]
- 2. Consider a coin with unknown probability of head. Let X be a random variable taking value 1 if head appears and 0 if tail appears. Let us assume that we are given a set of 10 independent samples $\{1,1,0,0,0,1,1,1,0,1\}$. Assume that the probability mass function of X is parameterized by θ and is defined as $p_{\theta}(x) = \theta^{x}(1-\theta)^{1-x}$. Find the maximum likelihood estimator value of θ . [5 Marks]
- 3. The principal component analysis algorithm can be used to find the direction of maximum variance for a given set of points. For example, consider the data points given in below figure. We can use the PCA algorithm to find the direction (shown as a red colored vector) of maximum variance \mathbf{v} . Now, let us formally consider a set $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ of n mean centered points in \mathbb{R}^2 . Let $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix} \in \mathbb{R}^{2 \times n}$ be a matrix containing these points. Assume that \mathbf{v} is a unit norm vector. Complete the following steps.

(a) Show that
$$\mathbf{e}_i = (\mathbf{I} - \mathbf{v}\mathbf{v}^\top)\mathbf{x}_i$$
. [1.5 Marks]

(b) Show that
$$\underset{\mathbf{v} \in \mathbb{R}^2, \mathbf{v}^\top \mathbf{v} = 1}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{e}_i\|_2^2 = \underset{\mathbf{v} \in \mathbb{R}^2, \mathbf{v}^\top \mathbf{v} = 1}{\operatorname{argmax}} \frac{1}{n} \mathbf{v}^\top \mathbf{X} \mathbf{X}^\top \mathbf{v}.$$
 [2.5 Marks]

(c) Show that best v is the eigenvector corresponding to the largest eigenvalue of $\frac{1}{n}XX^{\top}$. [1 Mark]

4. Consider a set $S = \{1, 2, 9, 10\}$ of four independent samples drawn from a mixture of two Gaussian distributions $\mathcal{N}(\mu_1, \sigma_1^2)$ and $\mathcal{N}(\mu_2, \sigma_2^2)$ with mixture weights π_1 and π_2 . Consider the initial values of these parameters as $\mu_1 = 0$, $\mu_2 = 7$, $\sigma_1^2 = \sigma_2^2 = 1$ and $\pi_1 = \pi_2 = \frac{1}{2}$. Use the expectation maximization algorithm to estimate the parameters of the first Gaussian distributions. First find the responsibilities $\gamma(jt)$ given these initial parameters, here, j = 1, 2, 3, 4 and t = 1. Then, update the parameters μ_1, σ_1^2 , and π_1 using the calculated responsibilities. [5 Marks]