Examen de Aprendizaje Automático

ETSINF, Universitat Politècnica de València, 11 de enero de 2016

nbre: Grupo:	
ľ	ibic. Giupo.

Cuestiones (2 puntos; tiempo estimado: 30 minutos)

Marca cada recuadro con una única opción de entre las dadas. Cada acierto suma 1/2 puntos y cada fallo resta 1/6 puntos.

- 1 D Se ha evaluado un sistema de Aprendizaje Automático mediante la técnica de Exclusión individual ("Leaving One Out") y utilizando un conjunto de datos que contiene 200 muestras. Se han obtenido un total de 10 errores. Indicar cuál de las afirmaciones siguientes es razonable:
 - A) La talla de entrenamiento efectiva es 190 muestras, la del test es de 10 muestras y el error estimado es $5.0\,\%\pm0.3\,\%$
 - B) La talla de entrenamiento efectiva es de 199 muestras, la del test es de 1 muestra y el error estimado es $5.0 \pm 3.0 \%$
 - C) La talla de entrenamiento efectiva es de 200 muestras, la del test es de 10 muestras y el error estimado es $5.0\pm0.3\,\%$
 - D) La talla de entrenamiento efectiva es de 199 muestras, la del test es de 200 muestras y el error estimado es $5.0\pm3.0\,\%$
- 2 D En el problema de optimización con restricciones

$$\begin{aligned} & \text{minimizar} & & q(\mathbf{\Theta}), & & \mathbf{\Theta} \in \mathbb{R}^D \\ & \text{sujecto a} & & v_i(\mathbf{\Theta}) \leq 0, & 1 \leq i \leq k \end{aligned}$$

se cumplen las condiciones complementarias de Karush-Kuhn-Tucker $\alpha_i^{\star}v_i(\Theta^{\star})=0$ para $1\leq i\leq k$. Indicar cuál de las siguientes afirmaciones se deduce de ellas:

- A) Si para un i, $\alpha_i^{\star} = 0$, entonces $v_i(\mathbf{\Theta}^{\star}) > 0$
- B) Si para un i, $\alpha_i^{\star} = 0$, entonces $v_i(\mathbf{\Theta}^{\star}) = 0$,
- C) Si para un i, $v_i(\boldsymbol{\Theta}^*) = 0$, entonces $\alpha_i^* = 0$ D) Si para un i, $\alpha_i^* > 0$, entonces $v_i(\boldsymbol{\Theta}^*) = 0$
- 3|C| En la estimación por máxima verosimilitud de los parámetros de una mezcla de K gaussianas de matriz de covarianza común y conocida a partir de N vectores de entrenamiento, los parámetros a estimar son: el vector-media μ_k y el peso π_k de cada gaussiana, $k, 1 \le k \le K$. Identificar cuál de las siguientes afirmaciones es correcta:
 - A) Se puede usar descenso por gradiente, ya que los valores de μ_k no están sujetos a ninguna restricción, lo que hace innecesario recurrir a la técnica de los multiplicadores de Lagrange.
 - B) La solución se obtiene en un paso, utilizando directamente la optimización lagrangiana de la verosimilitud de los N vectores de entrenamiento. En este caso, hay un único multiplicador de Lagrange, β , asociado a la restricción de igualdad. $\sum_{k=1}^{K} \pi_k = 1$.
 - C) El método más adecuado es el de esperanza-maximización (EM), el cual garantiza que que se cumple la restricción $\sum_{k=1}^{K} \pi_k = 1$. Esto es así gracias a que, en cada iteración de EM, los valores de $\pi_k, 1 \leq k \leq K$, se obtienen como medias de valores de variables latentes, usando una expresión que se deriva analíticamente mediante la técnica de los multiplicadores de Lagrange con la restricción indicada.
 - D) El método más adecuado sería el de esperanza-maximización (EM), pero no es posible utilizarlo ya que EM es un método iterativo que no garantiza el cumplimiento de la restricción de igualdad: $\sum_{k=1}^{K} \pi_k = 1$.
- 4 B En la red bayesiana lineal

¿cuál de las relaciones siguientes es falsa en general?

- A) $P(x_1, x_4 \mid x_2) = P(x_1 \mid x_2) P(x_4 \mid x_2)$
- B) $P(x_1, x_4 \mid x_2) = P(x_1) P(x_4)$
- C) $P(x_1, x_4 \mid x_2) = P(x_1 \mid x_2) P(x_4 \mid x_1, x_2)$
- D) $P(x_1, x_4 \mid x_2) = P(x_4 \mid x_2) P(x_1 \mid x_4, x_2)$

Problema 1 (3 puntos; tiempo estimado: 30 minutos)

En la siguiente tabla se presenta una muestra de entrenamiento no linealmente separable y los correspondientes multiplicadores de Lagrange óptimos obtenidos al entrenar una máquina de vectores soporte con esta muestra (y C=10):

i	1	2	3	4	5
x_{i1}	1	1	1	1	1
x_{i2}	1	2	3	4	5
Clase	+1	+1	-1	+1	-1
α_i^{\star}	0	3.56	10	10	3.56

- a) Obtener la función discriminante lineal correspondiente
- b) Representar gráficamente la frontera lineal de separación entre clases y las muestras de entrenamiento, indicando cuáles son vectores soporte.
- c) Clasificar la muestra $(1, 4.5)^t$.
- a) Pesos de la función discriminante:

$$\theta^* = c_2 \ \alpha_1^* \ \mathbf{x_2} + c_3 \ \alpha_4^* \ \mathbf{x_3} + c_4 \ \alpha_5^* \ \mathbf{x_4} + c_5 \ \alpha_7^* \ \mathbf{x_5}$$

 $\theta_1^* = 0.0$

$$\theta_2^* \approx -0.67$$

Usando el vector soporte $\mathbf{x_5}$ (que verifica la condición : $0 < \alpha_5^* < C)$

$$\theta_0^{\star} = c_5 - \boldsymbol{\theta^{\star}}^t \mathbf{x_5} \approx 2.33$$

b) Frontera de separación y representación gráfica:

Ecuación de la frontera lineal de separación: $2.33-0.67~x_2~=~0$

Los vectores de entrenamiento son todos los de la tabla. De ellos, los vectores soporte son: $(1,2)^t$, $(1,3)^t$, $(1,4)^t$, $(1,5)^t$. Representación gráfica:

c) Clasificación de la muestra $(1, 4.5)^t$:

El valor de la función discriminante para este vector es: $2.33-0.67~x_2~\approx~-0.67<0~\Rightarrow~{\rm clase}$ -1.

Problema 2 (3 puntos; tiempo estimado: 30 minutos)

El perceptrón multicapa de la figura se utiliza para resolver un problema de regresión, con función de activación de los nodos de la capa de salida y de la capa oculta de tipo $tangente\ hiperbólica$, y factor de aprendizaje $\rho = 0.5$.

Dado un vector de entrada x = 1 y su valor deseado de salida t = +1, Calcular:

- a) las salidas de todas las unidades
- b) los correspondientes errores en el nodo de la capa de salida y en los dos nodos de la capa oculta.
- c) Los nuevos valores de los pesos de las conexiones θ_{21}^1 , que va del nodo 1 de entrada al nodo 2 de la capa oculta, y θ_{12}^2 , que va del nodo 2 de la capa oculta al nodo de la capa de salida.
- a) Las salidas de todas las unidades

$$\begin{split} \phi_1^1 &= \theta_{11}^1 \ x_1 + \theta_{10}^1 \ = 0.0 \,; \\ \phi_2^1 &= \theta_{21}^1 \ x_1 + \theta_{10}^1 \ = \ 0.0 \,; \\ \phi_1^2 &= \theta_{21}^1 \ x_1 + \theta_{10}^1 \ = \ 0.0 \,; \\ s_1^1 &= \frac{\exp(\phi_1^1) - \exp(-\phi_1^1)}{\exp(\phi_1^1) + \exp(-\phi_1^1)} \ = \ 0.0 \\ s_2^1 &= \frac{\exp(\phi_2^1) - \exp(-\phi_2^1)}{\exp(\phi_2^1) + \exp(-\phi_2^1)} \ = \ 0.0 \\ \phi_1^2 &= \theta_{11}^2 \ s_1^1 + \theta_{12}^2 \ s_2^1 + \theta_{10}^2 \ = \ 1.0 \,; \\ s_1^2 &= \frac{\exp(\phi_1^1) - \exp(-\phi_1^2)}{\exp(\phi_1^2) + \exp(-\phi_1^2)} \ = \ 0.76159 \end{split}$$

b) El error en la capa de salida es:

$$\delta_1^2 = (t_1 - s_1^2) (1 - (s_1^2)^2) = +0.10012$$

Los errores en la capa de oculta son:

$$\delta_1^1 = \delta_1^2 \ \theta_{11}^2 \ (1 - (s_1^1)^2) = -0.10012; \quad \ \ \delta_2^1 = \delta_1^2 \ \theta_{12}^2 \ (1 - (s_2^1)^2) = +0.10012$$

c) El nuevo peso θ_{12}^2 es: $\theta_{12}^2 = \theta_{12}^2 + \rho \ \delta_1^2 \ s_2^1 = (+1.0) + (0.5) \ (+0.10012) \ (0.0) = 1.0$ El nuevo peso θ_{21}^1 es: $\theta_{21}^1 = \theta_{21}^1 + \rho \ \delta_2^1 \ x_1 = (+1.0) + (0.5) \ (+0.10012) \ (1.0) = 1.0501$

Problema 3 (2 puntos; tiempo estimado: 20 minutos)

Considerar la red bayesiana \mathcal{R} definida como $P(R, X, Y, Z) = P(R) P(X \mid R) P(Y \mid R) P(Z \mid R)$, cuya variable R toma valores en $\{1, 2, 3\}$ y las variables X, Y, Z, en el conjunto $\{"a", "b", "c"\}$. Las distribuciones de probabilidad asociadas son como sigue:

- P(R) es uniforme: P(R = 1) = P(R = 2) = P(R = 3)
- $P(X \mid R)$, $P(Y \mid R)$ y $P(Z \mid R)$ son idénticas y vienen dadas en la tabla T.

${ m T}$	"a"	"b"	"c"
1	1/3	0	2/3
2	1/4	1/2	1/4
3	0	3/5	2/5

- a) Representar gráficamente la red
- b) Obtener una expresión simplificada de $P(X,Y,Z\mid R)$ en función de las distribuciones que definen \mathcal{R} y calcular $P(X=\texttt{"a"},Y=\texttt{"a"},Z=\texttt{"a"}\mid R=1)$
- c) Calcular $P(R = 3 \mid X = "b", Y = "b", Z = "b")$
- a) Representación gráfica de la red:

b) Expresión simplificada de $P(X, Y, Z \mid R)$:

$$P(X,Y,Z\mid R) = \frac{P(R,X,Y,Z)}{P(R)} = P(X\mid R) \; P(Y\mid R) \; P(Z\mid R)$$

$$P(X=\text{"a"},Y=\text{"a"},Z=\text{"a"}\mid R=1) = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot = \frac{1}{27}$$

c)
$$P(R=3 \mid X="b",Y="b",Z="b") = \frac{P(R=3,X="b",Y="b",Z="b")}{P(X="b",Y="b",Z="b")}$$

$$= \frac{P(R=3) \ P(X="b" \mid R=3) \ P(Y="b" \mid R=3) \ P(Z="b" \mid R=3)}{\sum_{r\in\{1,2,3\}} P(R=r) \ P(X="b" \mid R=r) \ P(Y="b" \mid R=r) \ P(Z="b" \mid R=r)}$$

$$= \frac{\frac{1}{3} \frac{3}{5} \frac{3}{5} \frac{3}{5}}{\frac{1}{3} 0 \ 0 \ 0 + \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{3} \frac{3}{5} \frac{3}{5} \frac{3}{5}}{\frac{3}{5}}} \approx 0.633$$