МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего

еральное государственное автономное образовательное у грементое образования "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ"

КАФЕДРА № 6

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

доцент, канд. техн. наук

должность, уч. степень, звание

подпись, дата

А.Ю. Туманов

инициалы, фамилия

ОТЧЁТ О ЛАБОРАТОРНОЙ РАБОТЕ № 3

«ИССЛЕДОВАНИЕ ШУМОВЫХ ХАРАКТЕРИСТИК ИСТОЧНИКОВ ПРОИЗВОДСТЕННОГО ШУМА»

по курсу: «БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ»

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №

1842

AZ -57.10.21

9. А. Вишневский инициалы, фамилия

Оглавление

1.	Цель работы	. 3
2.	Описание лабораторной установки	. 4
3.	Исходные данные	. 6
4.	Формулы для расчета	. 7
5.	Результаты измерений и вычислений	. 8
6.	График предельного спектра шума, ПДШХ и шумовой характеристики	9

1. Цель работы

Ознакомление с основными понятиями о производственном шуме, методами его санитарно-гигиенического нормирования, средствами измерения шумовых характеристик машин и снижения шума на рабочих местах.

2. Описание лабораторной установки

Лабораторная установка для исследования шумовых характеристик источников шума представлена на рисунке 1.

Установка состоит из компьютера с выносной акустической системой из двух колонок и измерителя шума $B \coprod B - 003$ -M3.

Компьютер используется для воспроизведения шумов и комментария. Канал шума предназначен для записи исследуемого шума, другой канал используется для записи комментария к измерению исследуемого шума.

Рисунок 1 — Лабораторная установка для исследования шумовых характеристик источников шума

Измеритель шума ВШВ-003-М3 предназначен для измерения параметров шума:

- уровня звука с частотными характеристиками А, В, С;
- уровня звукового давления в октавных и третьоктавных полосах в диапазоне частот от 2 Гц до 16 кГц.

В ВШВ-003-М3 используется принцип преобразования звуковых колебаний в пропорциональные им электрические сигналы, которые затем

усиливаются, преобразуются и измеряется измерительным трактом (прибором измерительным).

В качестве преобразователя звуковых колебаний в электрические сигналы используется капсюль М101.

Конструктивно ВШВ-003-М3 состоит из:

- 1) Капсюля;
- 2) Эквивалента капсюля микрофонного;
- 3) Предусилителя микрофонного (предусилитель ВПМ-101);
- 4) Прибора измерительного;
- 5) Источника питания;
- 6) Экрана;
- 7) Заглушки;
- 8) Кабеля соединительного.

3. Исходные данные

3.1. Параметры помещения и условия измерения

Таблица 1 – Вариант №1

ПС, дБ	Δу, дБ	S, м ²	<i>R</i> , м	Метод измерения
45	0	6,28	1	ориентировочный

Таблица 2 – Исходные данные

Номер точки	L_i , Дб при ${f}_i$, Гц			L_a , д $БA$	
измерения	125	500	100	"A"	
i = 1	68	62	59	65	
i = 2	76	70	67	73	
i = 3	83	78	75	80	
i = 4	92	85	82	89	
i = 5	82	76	72	79	
i = 6	74	68	65	70	
i = 7	68	60	58	65	
i = 8	88	82	79	85	
i = 9	76	80	78	85	

4. Формулы для расчета

Формула уровня звукового давления:

$$L_{jcp} = 10 \log \sum_{i=1}^{n} 10^{0.1L_i} - 10 \log n,$$

где j — номер октавной полосы частот; i =1, 2, ..., n, где n — число точек измерения уровней звукового давления в полосе частот и уровня звука на характеристике «А» шумомере; $10\log\sum_{i=1}^n 10^{0,1L_{\mathrm{A}i}}$ суммарный уровень звука; $10\log\sum_{i=1}^n 10^{0,1L_i}$ суммарный (октавный или третьоктавный) уровень звукового давления.

Значения уровня звуковой мощности L_{pj} :

$$L_{pj} = L_{jcp} + 10 \log \frac{s}{s_0};$$

Предельно допустимая шумовая характеристика машины (ПДШХ) L_{PHj} :

$$L_{PHj} = L_{H_j} + 10\log\frac{s}{s_0} - \Delta_y,$$

где L_{H_j} — предельно допустимый уровень звука или уровень звукового давления в полосах частот. Значения предельно допустимого уровня звука соответствует значения из Приложения 1, «Допустимые уровни звукового давления на рабочих местах при широкополосном шуме», Пункт 1; $S=2\pi R^2$ — площадь измерительной поверхности в виде полусферы радиусом R, в центре которой находится источник шума; $S_0=I$ м²; Δ_y — поправка на групповую установку машин в типовых условиях экспуатации.

5. Результаты измерений и вычислений

Таблица 3 – Результаты измерений

Средне-	Средние значения	Шумовая	Предельный	Предельно
геометрические	уровней	характеристика	спектр (ПС)	допустимая
частоты октавных	звукового	машины (ШХ)	L_{Hj} , д $f E$	шумовая
полос f , Γ ц	давления в	L_{pj} , дБ		характеристика
	октавных полосах			машины (ПДШХ)
	частот Lj_{cp} , дБ			L_{PHj} , д ${ m F}$
31,5	_	_	86	94
63	_	_	71	79
125	85	93	61	69
250	_	_	54	62
500	78	86	49	57
1000	75	83	45	53
2000	_	_	42	50
4000	_	_	40	48
8000	_	_	39	47
«A»	91	99	50	58

6. График предельного спектра шума, ПДШХ и шумовой характеристики

Рисунок 2 — График предельного спектра шума, ПДШХ и шумовой характеристики

7. Выводы

Мы ознакомились с основным понятиями о производственном шуме, методами его санитарно-гигенического нормирования, методами измерения и нормирования шумовых характеристик машин, методами снижения шума на рабочих местах, изучение приборов и методик их применения.