Rank-74055 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1498834281

General information

Number of lines	10
Number of points	33
Number of singular points	1
Number of Eckardt points	2
Number of double points	9
Number of single points	21
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{10}
Type of lines on points	$5, 3^2, 2^9, 1^{21}$

Singular Points

The surface has 1 singular points:

$$0: P_{42} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1)$$

The 10 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,0,1,0,0)_{9}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \mathbf{Pl}(1,0,0,1,0,0)_{10}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega^{2} \\ 0 & 1 & 1 & 1 \end{bmatrix}_{320} = \begin{bmatrix} 1 & 0 & 3 & 3 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{320} = \mathbf{Pl}(1,0,1,1,2,1)_{259}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & \omega & \omega \\ 0 & 1 & 1 & 1 \end{bmatrix}_{215} = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{215} = \mathbf{Pl}(1,0,1,1,3,1)_{319}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0,1,0,1,0,0)_{13}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 1 & \omega \\ 0 & 1 & 0 & 1 \end{bmatrix}_{193} = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{193} = \mathbf{Pl}(1,1,0,2,1,1)_{192}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega \\ 0 & 1 & 1 & 1 \end{bmatrix}_{236} = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{236} = \mathbf{Pl}(3,2,2,3,2,1)_{290}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & \omega^{2} \\ 0 & 1 & 0 & 1 \end{bmatrix}_{277} = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{277} = \mathbf{Pl}(1,1,0,3,1,1)_{195}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & \omega & \omega^{2} \\ 0 & 1 & 1 & 1 \end{bmatrix}_{299} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{299} = \mathbf{Pl}(2,3,3,2,3,1)_{352}$$

Rank of lines: (0, 340, 84, 320, 215, 345, 193, 236, 277, 299) Rank of points on Klein quadric: (0, 9, 10, 259, 319, 13, 192, 290, 195, 352)

Eckardt Points

The surface has 2 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$ $1: P_{26} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1).$

Double Points

The surface has 9 Double points: The double points on the surface are:

$$P_{6} = (2, 1, 0, 0) = \ell_{0} \cap \ell_{3}$$

$$P_{7} = (3, 1, 0, 0) = \ell_{0} \cap \ell_{4}$$

$$P_{3} = (0, 0, 0, 1) = \ell_{1} \cap \ell_{5}$$

$$P_{35} = (1, 3, 0, 1) = \ell_{2} \cap \ell_{7}$$

$$P_{31} = (1, 2, 0, 1) = \ell_{2} \cap \ell_{9}$$

$$P_{46} = (1, 2, 1, 1) = \ell_{4} \cap \ell_{6}$$

$$P_{16} = (1, 2, 1, 0) = \ell_{6} \cap \ell_{7}$$

$$P_{20} = (1, 3, 1, 0) = \ell_{8} \cap \ell_{9}$$

Single Points

The surface has 21 single points: The single points on the surface are:

```
0: P_0 = (1, 0, 0, 0) lies on line \ell_0
                                                                      11: P_{55} = (2, 0, 2, 1) lies on line \ell_8
1: P_5 = (1, 1, 0, 0) lies on line \ell_0
                                                                      12: P_{56} = (3,0,2,1) lies on line \ell_7
                                                                      13: P_{61} = (0, 2, 2, 1) lies on line \ell_5
2: P_{11} = (0, 1, 1, 0) lies on line \ell_5
3: P_{23} = (1,0,0,1) lies on line \ell_2
                                                                      14: P_{63} = (2, 2, 2, 1) lies on line \ell_6
                                                                      15: P_{68} = (3, 3, 2, 1) lies on line \ell_9
4: P_{27} = (1, 1, 0, 1) lies on line \ell_2
5: P_{30} = (0, 2, 0, 1) lies on line \ell_1
                                                                      16: P_{71} = (2,0,3,1) lies on line \ell_9
6: P_{34} = (0, 3, 0, 1) lies on line \ell_1
                                                                      17: P_{72} = (3,0,3,1) lies on line \ell_6
7: P_{40} = (2, 0, 1, 1) lies on line \ell_3
                                                                      18: P_{79} = (2, 2, 3, 1) lies on line \ell_7
8: P_{41} = (3, 0, 1, 1) lies on line \ell_4
                                                                      19: P_{81} = (0, 3, 3, 1) lies on line \ell_5
9 : P_{47} = (2, 2, 1, 1) lies on line \ell_4
                                                                      20 : P_{84} = (3,3,3,1) lies on line \ell_8
10: P_{52} = (3, 3, 1, 1) lies on line \ell_3
```

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0									
$\frac{\overline{0}}{1}$	0	1	1	1	1	0	0	0	0	0
1	1	0	1	0	0	1	1	0	1	0
2	1	1	0	0	0	0	0	1	0	1
3	1	0	0	0	1	1	0	1	1	1
4	1	0	0	1	0	1	1	1	0	1
5	0	1	0	1	1	0	0	1	0	1
6	0	1	0	0	1	0	0	1	1	0
7	0	0	1	1	1	1	1	0	0	1
8	0	1	0	1	0	0	1	0	0	1
9	0	0	1	1	1	1	0	1	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_1	P_1	P_6	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6	ℓ_8
in point	P_1	P_1	P_3	P_{26}	P_{26}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_7	ℓ_9
in point	P_1	P_1	P_{35}	P_{31}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_7	ℓ_8	ℓ_9
in point	P_6	P_{42}	P_{42}	P_{42}	P_{46}	P_{42}

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_5	ℓ_6	ℓ_7	ℓ_9
in point	P_7	P_{42}	P_{42}	P_{50}	P_{42}	P_{42}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_7	ℓ_9
in point	P_3	P_{42}	P_{42}	P_{42}	P_{42}

Line 6 intersects

Line	ℓ_1	ℓ_4	ℓ_7	ℓ_8
in point	P_{26}	P_{50}	P_{16}	P_{26}

Line 7 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_9
in point	P_{35}	P_{42}	P_{42}	P_{42}	P_{16}	P_{42}

Line 8 intersects

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_9
in point	P_{26}	P_{46}	P_{26}	P_{20}

Line 9 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_7	ℓ_8
in point	P_{31}	P_{42}	P_{42}	P_{42}	P_{42}	P_{20}

The surface has 33 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$12: P_{30} = (0, 2, 0, 1)$	$24: P_{56} = (3,0,2,1)$
$1: P_1 = (0, 1, 0, 0)$	13: $P_{31} = (1, 2, 0, 1)$	$25: P_{61} = (0, 2, 2, 1)$
$2: P_3 = (0,0,0,1)$	$14: P_{34} = (0,3,0,1)$	$26: P_{63} = (2, 2, 2, 1)$
$3: P_5 = (1, 1, 0, 0)$	$15: P_{35} = (1, 3, 0, 1)$	$27: P_{68} = (3, 3, 2, 1)$
$4: P_6 = (2, 1, 0, 0)$	$16: P_{40} = (2,0,1,1)$	$28: P_{71} = (2,0,3,1)$
$5: P_7 = (3, 1, 0, 0)$	$17: P_{41} = (3,0,1,1)$	$29: P_{72} = (3, 0, 3, 1)$
$6: P_{11} = (0, 1, 1, 0)$	$18: P_{42} = (0, 1, 1, 1)$	$30: P_{79} = (2, 2, 3, 1)$
$7: P_{16} = (1, 2, 1, 0)$	$19: P_{46} = (1, 2, 1, 1)$	$31: P_{81} = (0, 3, 3, 1)$
$8: P_{20} = (1,3,1,0)$	$20: P_{47} = (2, 2, 1, 1)$	$32: P_{84} = (3, 3, 3, 1)$
$9: P_{23} = (1,0,0,1)$	$21: P_{50} = (1, 3, 1, 1)$	
$10: P_{26} = (0, 1, 0, 1)$	$22: P_{52} = (3, 3, 1, 1)$	
$11: P_{27} = (1, 1, 0, 1)$	$23: P_{55} = (2,0,2,1)$	