CSC373S: Algorithm Design, Analysis & Complexity

LECTURE 30

Wednesday March 22, 2017

based on notes by Denis Pankratov

NP Complete Problems (cont.)

Subset Sum

Input: $A = \{a_1, ..., a_n\} \subseteq \mathbb{Z}_{>0}$

 $t \in \mathbb{Z}_{>0}$ **Output:** 1 if $\exists S \subseteq [n], \sum_{i \in S} a_i = t$

0 otherwise

 $L_{SUB-SUM} = \{ \langle A = \{a_1, ..., a_n\}, t \rangle | \exists S \subseteq [n], \sum_{i \in S} a_1 = t \}$

Claim: $L_{SUB-SUM} \in NPC$

Proof:

1. $L_{SUB-SUM} \in NP$ Certificate - $S \subseteq [n]$. Verifier checks $\sum_{i \in S} a_i = t$ Clearly, certificate is of *polysize*, verifier runs in *polytime*

2. $L_{3-SAT} \leq_p L_{SUB-SUM}$ Given φ -3-CNF over variables $x_1, ..., x_n$ & has clauses $C_1, ..., C_m$, we want to construct in polytime $A \subseteq \mathbb{Z}_{>0}$, $t \in \mathbb{Z}_{>0}$ so that φ is satisfied $\Leftrightarrow < A, t > \in L_{SUB-SUM}$.

Construct integers of the form:

Figure 1: Visualization of variable and clause parts

Integers will be over base 10. For each variable x_i , introduce integer v_i - hast 1 at position x_i in the variable part & 1 at position C_i for each C_i that is satisfied by $x_i = T$ (it has 0s

everywhere else).

 v'_i - has 1 at position x_i in the variable part, and for each position C_i so that C_i is satisfied by $x_i = F$.

0s everywhere else.

For each clause, introduce ints:

 S_i - has 1 at position C_i & 0s everywhere else

 S_i' - has 2 at position C_i & 0s everywhere else

Example:

$$\overline{C_1 = x_1 \vee \neg x_2 \vee \neg x_3}$$

$$C_2 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

$$C_3 = \neg x_1 \lor \neg x_2 \lor x_3$$

	x_1	x_2	x_3	c_1	c_2	c_3
$\overline{v_1}$	1	0	0	1	0	0
v_1'	1	0	0	0	1	1
v_2	0	1	0	0	0	0
v_2'	0	1	0	1	1	1
v_3^-	0	0	1	0	0	1
v_3'	0	0	1	1	1	0

	x_1	x_2	x_3	c_1	c_2	c_3
s_1	0	0	0	1	0	0
s_1'	0	0	0	2	0	0
s_2	0	0	0	0	1	0
s_2'	0	0	0	0	2	0
s_3	0	0	0	0	0	1
s_3'	0	0	0	0	0	2

Target t - has 1s in the variable part, 4s in the clause part.

Can construct v_i, v'_i, s_i, s'_i, t in polytime.

NTS: φ is satisfied $\Leftrightarrow < v_1,..,v_n,v_1',..,v_n',s_1,..,s_m,s_1',..,s_m',t> \in L_{SUB-SUM}$

 $\Rightarrow \varphi$ is satisfied. Let x be a satisfied assignment. Select the following ints for the set:

if $x_i = T$, select v_i

if $x_i = F$, select v_i'

If C_i is satisfied by 1 literal, select $s_i \& s'_i$

If C_i is satisfied by 2 literals, select s'_i

If C_i is satisfied by 3 literal, select s_i

 \Rightarrow subset adds up to t

 \Leftarrow Let S be the subset of ints that add up to t.

Comment: assume that the same variable does not appear twice in the same clause.

No clauses like:

- $x_1 \lor x_1 \lor \neg x_3 \equiv x_1 \lor \neg x_3$ -2-CNF
- $x_1 \vee \neg x_1 \vee x_3 \equiv T$

Note: for every subset of integers, if you add up those integers, there are no carries (because max a digit can be is 6).

This implies that exactly one of v_i, v'_i belongs to S for each i.

 \Leftarrow Let x be the assignment:

if $v_i \in S$, set $x_i = T$

if $v_i' \in S$, set $x_i = F$

 $\Rightarrow x$ is a satisfied assignment (Exercise: check this)

Knapsack

Input: $v_1, ... v_n \in \mathbb{Z}_{>0}$ - values of n items

 $w_1, ... w_n \in \mathbb{Z}_{>0}$ - weights

W - capacity of knapsack

Output:
$$\max_{S\subseteq[n]} \sum_{i\in S} v_i$$
 so that $\sum_{i\in S} w_i \leq W$
 $L_{KNAPSACK} = \{ \langle v_1, ..., v_n, w_1, ..., w_n, W, k \rangle | \exists S \subseteq [n] : \sum_{i\in S} v_i \geq k \& \sum_{i\in S} w_i \geq W \}$

Claim: $L_{SUB-SUM} \leq_p L_{KNAPSACK}$

Proof: Given $A = \{a_1, ..., a_n\}, t \in \mathbb{Z}_{>0}$

Construct:

$$\exists S \subseteq [n] \sum_{i \in S} a_i = t$$

$$v_i = a_i, \ w_i = a_i \Leftrightarrow \sum_{i \in S} a_i \le t \land \sum_{i \in S} a_i \ge t$$

$$W = t, \ k = t \Leftrightarrow \sum_{i \in S} v_i \ge t \land \sum_{i \in S} w_i \le t$$

$$W = t, k = t \Leftrightarrow \sum_{i \in S} v_i \ge t \land \sum_{i \in S} w_i \le t$$

$$L_{PART} = \{ \langle A = \{a_1, ..., a_n\} \rangle | \exists S \subseteq [n] : \sum_{i \in S} a_i = \sum_{i \notin S} a_i \}$$

Special case of SS: $t = \frac{\sum_{i=1}^{n} a_i}{2}$

Exercise:

$$L_{SUB-SUM} \leq_p L_{PART}$$

$$LSUB-SUM \leq_p LPART$$

 $Hint:$ Introduce $a_{n+1} = \sum_{i=1}^n a_1 + t$
 $a_{n+2} = 2\sum_{i=1}^n a_1 - t$

$$a_{n+2} = 2\sum_{i=1}^{n} a_1 - t$$