殺

东南大学成贤学院考试卷(A卷)

课程名		概率论与		-			-				-	- •	经管高层次
考试	学期	21-22-1	考试开	肜 式	开名	卷□ FF卷	闭 [₩	考	试	时	间	120 分钟
学	号		姓	名						得		分	

题	号一一		=	=	四	五	
得	分						

备用数据: Φ (-1.645) = 0.05;

 $\Phi(1) = 0.8413$;

 $\Phi(1.5) = 0.9332$;

 $\Phi(1.96) = 0.975$;

 $\Phi(2) = 0.9772$;

 $\Phi(2.84) = 0.997;$

$$\chi_n^2 \sim \chi^2(n)$$
: $P(\chi_{25}^2 \ge 37.6) = 0.05$;

$$P(\chi_{25}^2 \ge 14.6) = 0.95$$
;

$$P(\chi_{24}^2 \ge 36.4) = 0.05;$$

$$P(\chi_{24}^2 \ge 13.8) = 0.95$$
;

$$T_n \sim t(n)$$
 $P(T_{24} \ge 1.71) = 0.05;$ $P(T_{24} \ge 2.06) = 0.025;$

$$P(T_{24} \ge 2.06) = 0.025$$
;

一、 选择题(共5小题,每小题3分,共15分)

1、设
$$P(A) = \frac{1}{4}$$
, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$, 则 $P(A \cup B) = \frac{1}{2}$

$$(A) \quad \frac{2}{3}$$

- (A) $\frac{2}{3}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$ [

2、设随机变量 X 的密度函数为

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 2 - x, & 1 \le x < 2 \\ 0, & 其他 \end{cases}$$

则 $P(X \leq \frac{2}{2}) =$

- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{4}{9}$ (D) $\frac{2}{9}$

- 3、 设随机变量 $X \times Y \times Z \times W$ 独立都服从标准正态分布N(0,1),则

$$\frac{(X-Y+Z-W)^2}{4}$$
服从_____分布.

- (A) $\chi^2(1)$ (B) $\chi^2(4)$ (C) N(0,1) (D) F(1,1)

第 1 页/共 6 页

4、设 X,Y 是两个相互独立的随机变量, X 服从泊松分布P(1), Y 服从 参数 $p = \frac{1}{4}$ 的二项分布 $B(10, \frac{1}{4})$,则 $P(X \le 1 | Y < 1) =$

(A)
$$e^{-1}$$
 (B) $2e^{-1}$ (C) $\frac{1}{2}(1-e^{-1})$ (D) $\frac{1}{2}$

- 5、设 (X_1, \dots, X_n) 是来自正态总体 $N(\mu, \sigma^2)$ 的容量 n 为的简单随机样本, σ^2 已知,对检验问题: H_0 : $\mu = \mu_0 \leftrightarrow H_1$: $\mu \neq \mu_0$,若在显著水平 $\alpha = 0.05$ 下接受 H_0 ,则在显著水平 $\alpha = 0.01$ 下,下列结论正确的是
 - (A) 可能接受, 也可能拒绝Ho; (B) 必拒绝Ho;
 - (C) 必接受H。;

(D) 不接受也不拒绝.

[]

- 二、填空题(本题共5小题,每小题3分,满分共15分)
- 1、三个人随机地走进编号分别为1、2、3、4的四个房间,则1人 走进一个房间的概率为 .
- 2、设 X,Y 是两个相互独立的随机变量, $X \sim N(1, 4)$, $Y \sim N(1, 1)$, 则 X-3Y 服从 分布 (写出参数).
- 3、设随机变量 X 与Y相互独立,且DX = 4,DY = 9,则 cov(2X+Y, X-Y) = .
- 4、设 X_1, X_2, \dots, X_n … 为独立同分布的随机变量序列, 其共同的分布列为

则 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ 依概率收敛于____。

5、设总体 X 服从区间[-2,3]上的均匀分布U[-2,3], $(X, ..., X_{37})$ 是来自 X 的容量为37 的简单随机样本,样本方差 $S^2 = \frac{1}{36} \sum_{i=1}^{37} (X_i - \overline{X})^2$,则

$$E[\sum_{i=1}^{37} (X_i - \overline{X})^2] = \underline{\qquad}.$$

三、(共2小题,每小题10分,共20分)

- 1、(10分)某工厂的两个车间生产同型号的家用电器.根据以往经验,第一车间的次品率为0.15,第二车间的次品率为0.12.两个车间生产的成品混合堆放在一个仓库里且无区分标志,假设第1、2车间生产的成品比例为2:3.
 - (1)、在仓库中随机地取一件成品,求它是次品的概率;
- (2)、在仓库中随机地取一件成品,若已知取出的是次品,问此次品是由第1车间生产的概率为多少?

2、(10分)设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{2x}{\pi^2}, & 0 < x < \pi \\ 0, & \text{其他} \end{cases}$$

(1)、求 Y = 3X + 1 的分布函数 $F_y(y)$;

 $(2) \cdot E(X).$

四、(共3小题,每小题5分,共15分)

设二维连续型随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} 2e^{-2x}e^{-y}, & x > 0, y > 0 \\ 0, & \text{ } \sharp \text{ } \boxminus$$

求: 1、X 的边缘分布密度; 2、条件分布密度 $f_{Y|X}(y|x)$;

 $3 \cdot P(\max(X, Y) < 1)$.

如考

效

五、(本题共 4 小题,满分共 35 分)

1、(8分)设随机向量(X,Y)的联合分布律为

<i>Y X</i>	1	2	3	4
1	0.05	0.1	0.2	0.05
3	0.1	0.05	0.1	0.05
5	0.15	0.1	0.05	0

求: (1)、关于Y的边缘分布律.

(2)、在X = 1发生条件下关于Y的条件分布律.

2、(10分)一复杂的系统由00个相互独立起作用的部件所组成,在运行期间每个部件未损坏的概率为0.9,为了使整个系统起作用,至少必须有87个部件正常工作,利用中心极限定理计算整个系统起作用的概率。

3、(10分)设总体 X 的概率密度函数为

$$f(x,\theta) = \begin{cases} \theta 2^{\theta} x^{\theta-1}, & 0 < x < \frac{1}{2} \\ 0, & \text{ #$\dot{\Xi}$} \end{cases}$$

其中 $\theta > 0$ 是未知参数, (X_1, \dots, X_n) 是来自总体X 的容量为n 的简单随机样本,求: (1)、 θ 的矩估计量 $\hat{\theta}$; (2)、 θ 的最大似然估计量 $\hat{\theta}_L$.

4、(7分)某工厂生产的固体燃料推进器的燃烧率服从正态分布 $N(\mu,\sigma^2)$,现从一批推进器中随机抽取25 只,测得燃烧率的样本均值 $\bar{x} = 41.25cm/s$,标准差S = 2cm/s. 求这批推进器的燃烧率 μ 的置信度为 95% 的置信区间.