FPGA LAB-Challenge Problem 1

ANNU-EE21RESCH01010

Download all latex-tikz codes from

https://github.com/annu100/FPGA-LAB

1 Problem Statement

Obtain and implement an algorithm to convert any truth table to NAND logic.

2 Solution

2.1 Algorithm

- 1. Take the min terms for which the output in truth table will be 1.
- 2. Write SOP form of each minterms.
- 3. Take complement of each SOPs.
- 4. Multiply all the obtained complemented minterm SOPs.
- 5. Take the complement of above multiplication of SOP result.
- 6. THIS IS OUR OBTAINED NAND LOGIC.

2.2 Explanation using one example

For example the given truth table is as below

From truth table, the min terms for which F = 1 are 0,1,3,7.

A		В	С	F(A,B,C)	SOP(Minterm)
0		0	0	1	$ar{A} \ ar{B} \ ar{C}$
0		0	1	1	$\bar{A} \; \bar{B} \; C$
0		1	0	0	-
0		1	1	1	\bar{A} BC
1	İ	0	0	0	-
1		0	1	0	-
1		1	0	0	-
1		1	1	1	ABC

Table 1: Given Truth table

STEP:1

Take complement of each SOPs.

Complemented SOPs are

$$(\bar{A}\bar{B}\bar{C})',$$
 (2.2.1)
 $(\bar{A}\bar{B}C)',$ (2.2.2)
 $(\bar{A}BC)',$ (2.2.3)
 $(ABC)'$ (2.2.4)

STEP 2:Multiply all the obtained COMPLEMENTED minterm SOPs

$$K = (\bar{A}\bar{B}\bar{C})' \times (\bar{A}\bar{B}C)' \times (\bar{A}BC)' \times (ABC)' \tag{2.2.5}$$

STEP 3: Take the complement of above multiplication of SOP result.

$$Result = K' \qquad = ((\bar{A}\bar{B}\bar{C})' \times (\bar{A}\bar{B}C)' \times (\bar{A}BC)' \times (ABC)')' \qquad (2.2.6)$$

Now we can draw the logic circuit using NAND gates as below.

3 Conclusion

Following the above given steps, we can get nand logic very easily for any given truth table problems.

Figure 1: Logic Circuit using NAND gates