数模微信公众号(数模资源分享交流)数模小编总结及心得体会

小编目前在微信公众号(数模自愿分享交流)上整理了40左右个算法案例,现对其总结下适用范围,都是个人经验总结,不一定是和大家想得一样哈。

算法		 适用范围	备注
-	/ / / / / / / / / / / / / / / / / / /	某对象有4个以上指	
	支持向量机	标效果较好	机器学习
		你双木权别	 所说的模糊集就是矩阵,模糊运算也
	模糊聚类	指标个数越多越好	就是矩阵运算
			指标个数较少时,训练偏差太大,过
	BP 神经网络	某对象 3-6 个指标最 好	多时,易产生错误训练,如果遇到用
分类			作样本数据较少情况下,可通过等距
			取样扩充训练样本,等距取样也就是
			整体将数据改变个 0.01 之类的
			与 BP 相似,区别就是训练时数据特征
	Pnn, grnn		提取的方式不同,在建模时难以抉择
			的情况下,可根据不同分类算法的结
			果来判断哪种适合
	灰色预测 (GM)	预测波动较小的数据	由于是数据的累加累减,所以整个程
			序是对之前数据的变化进行分析,对
			于未来的数据只会按照之前数据的变
灰色系统			化趋势,因次最好单个预测
	灰色分析		如果在关联分析后得到的结果不是很
			好,可以在通过优势分析来修正下结
			果
	蒙特卡洛	任何寻优	蒙特卡洛不是种算法,而是一种方法。
 计算机模			简单来说就是多次运算,选出最好的,
拟			但是循环次数较多,运算时间长,但
130			寻优精度高,不过可以通过矩阵并行
			计算提高运算速度
	BP 网络评价	某对象 3-6 个指标最	和分类是差不多的,只是数据录入的
		好	格式不同而已
	单/多因素方差	用于分析某些指标的	简单来说就是控制变量法,网上有很
	分析	影响程度	多教程,用 Excel 分析最简单
	商权法	5 个指标以上	以研究对象的数据作为标准,分析其
\			指标的权重大小,简单来说就是通过
评价			公式计算
			所说的主成分就是因子分析中找主要
	因子分析评价	5 个指标以上	指标的步骤,因子分析是在主成分权
			值基础上乘以相关系数得到的目标的
			评价值,相关系数也是算出来的,和
			指标对应,因子分析可以用 spss 解决,
			网上有教程,用 spss 的话的注意下,

数模微信公众号(数模资源分享交流)数模小编总结及心得体会

			要定义变量才行,组数至少3组
	主观评价层次 分析	能充分说明问题情况 下的个数,不宜太多 也不宜太少	如果确实找不了数据,可以勉强用主 观方法,但最好结合综合评价来做
	投影寻踪	3 个以上	对于多指标数据来说,尤其是针对指标权重相差无几的情况下,可将多维指标数据投影至低维进行评价值计算,相当与因子分析,区别在于计算数据方式不同,与因子分析相比,投影寻踪的应用范围更加广泛,比如根据城市的历年指标对其发展的总体情况与其他城市进行比较。
	秩和比	3 个以上	同理,该方法不降维,与其他评价方 法区别在于计算方式,是通过计算指 标矩阵数据的秩来对研究对象进行评 价
偏最小二乘		数据组尽可能多,多 指标数据拟合,数据 波动不大,尽可能是 单增单减	简单说和多元线性拟合相似,区别就 在于最小二乘,使得拟合效果更好
图像处理			灰度化就不说了,和颜色深浅有关,所有识别、分割等都离不开像素点值的计算,简单来说就是矩阵运算,在编辑程序是,得注意像素点的位置。一般对图像处理都离不开去噪,比较常规的就是基于形态学去噪,一般并联去噪效果更佳。如果涉及到识别方面,可以用傅里叶变换和小波分析解决,但程序比较复杂。此外对于网上一些看似高大上的程序,程序很多,上百行,只是拿来装逼用的,可根据自己的模型来编辑程序,编辑程序从矩阵运算角度编写,这样更容易些。
优化算法		最好是 1-2 个变量	优化算法没有绝对的最好,也不是什么高大上的,绝大多数算法命名是以动物命名的,主要思想就是参照动物的运动、捕食的习性。因此针对什么问题得从问题的本身出发,别什么都用遗传算法,一般来讲,影响结果的精度,一是算法计算方式,二是参数设置,如果得不到满意的结果可以改参数也可以换算法,对于一些特殊的问题,可以自创算法来解决,编程思路均可参考蒙特卡洛

	时间序列	周期性变化的数据	一直数据量较少的情况下,如数据呈 周期性变化,可通过一般的时间序列 算法来解决,对于大周期性变化的数 据来说,可采用混沌时间序列来预测, 混沌时间在运算过程中主要受到时延 和嵌入维的影响,这两个参数是根据 已知数据变化特征得到的,因此使用 该算法前,确定数据时延和嵌入维是 首要的。
预测	神经网络	不同的神经网络算 法,能得到较好结果 的已知数据个数不同	神经网络算法的类别,和优化类算法一样,都是对样本数据提取特征的提取方式不同,也就是计算方式不同。可以这么说同一程序预测数据,在 0-1 之间求得的结果比 0-100 的看起来效果要好,偏差不会很大,这就是好的神经网络算法程序中都有mapminmax或者其他归一化函数的原因。因为对波动不大的数据进行预测,其预测值的偏差较小。也不是说好的神经网络效果就比 bp 好,每个神经网络调用的函数不同,设置的计算方式不同,对与一些数据的预测,可能效果甚佳,因此在对某个数据组进行与预测时,可比较几者之间运算结果的差别再来选用合适的神经网络算法
	其他		此外,拟合,差值,微分方程均可用 于预测,这些方法虽然简单,但在以 写数据的预测上要好于高大上的算 法,在建模过程中建议根据程序结果 来选用算法。

算法并不难学,对于同类算法,简单来说就是计算方式不同,对于优化算法,并不存在哪一种好的说法,如果肯花时间等,蒙特卡洛可以设置运算一亿次,得到的结果自然是最好的,同样的优化算法的种群个数增加到一百万、一千万个,得到的结果也是最精确的。总之不要只看算法的表面,学算法建议结合程序来学,程序能帮你解释算法步骤,有利于对算法的深刻理解以及有助于进一步研究和改进。同样的,算法也可以进行组合,当然得在可行的前提下,比如众所周知的深度学习,CNN 算法图像识别,听着很高大上,但其原理就是基于多项式的系数以及一些简单的图像处理的函数(算法)结合而成的,将一个图片分割成若干个小图片,通过卷积函数(基于多项式)对每个小图片的区域赋值,最终将一个图片化为一个向量,然后将与之相应的编号类别进行训练,然后就可以对未知类别的图片进行识别了。

小编学习数模的方式就是从程序研究算法,再从算法改善程序。开始的时候很恼火,学习效率低,但是坚持下来,学习效率会快速增长,久之后仅看程序就可以了解算法的大致思路了。