Joint Probability distribution

A probability distribution associated with two random Valiables is reffered as joint probability distribution.

ie If X & Y are two discrete random variables, we define the joint probability function of X & Y by

P(X=x, Y=y) = f(x,y).

where f(x,y) satisfies the conditions,

 $f(n,y) \ge 0$ g $\sum_{x} \sum_{y} f(n,y) = 1$ (ie sum of overall the values of $x \in y$ is equal to 1)

Suppose X= { 74, x2, 73, ... xm} & Y= {4, y2, y3, -- 9n} -then $P(X=x;, Y=Y;) = f(x_i, y_i)$ is denoted by T_{ij}

Also $\chi \times \gamma = \{ (x_1, y_1), (x_2, y_2), -- (x_m, y_n) \}.$

I is also repered as joint probability density function of X & 7 in the Respective order. The set of values of this function f(n;, y;) = Jij for i=1,2,-m, j=1,2,-n is called the joint popobability distribution of X&Y. These values are presented in the form of two way table called joint probability table:

20	,				
K V	4,	1 42		yn	Sum
1	31			Jin	+(74)
24	J.,	J ₁₂	'		f (7/2)
712	J ₂₁	J ₂₂		T _{2n}	
	,			Jmn	f(xm)
76m	Jmi	T _{m2}			1.
sum	9(4,)	9(4)		g(yh)	
12001					

Here (f(x1), f(x2), -- + (xm) & { g(y1), g(y2), -- g(ym) } are called marginal probability distributions of X 47 respectively.

ic f(14)+f(1/2)+--++(1/m)=1 9(41) + 9(41)+ - + 9(41) = 1 This is equivalently to lo $\sum_{i=1}^{\infty} \int_{j=1}^{\infty} f(M_i, Y_i) = \int_{i=1}^{\infty} \int_{j=1}^{\infty} \int_{j=1}^{\infty} \int_{ij}^{\infty} = 1.$ It means that the total of all the entires in the joint

probability & table is equal to 1.

Independent random valiable :-

The discrete random variables X & Y are said to be independent random variables y P(X=x;, Y=y) = P(X=x), P(Y=y). & conversely.

ie equivalent to $f(r_i)g(y_j) = J_{ij}$ in the joint probability table That is to say that X & Y are independent is each entity in Jij in the table negual to the product of its marginal entries. Otherwise X & Youre said to be dependent.

Expectation, Variance and Covariance

If X & Y are two discrete random variables having the joint probability function of (n.y) then

(i) Expedient of X & Y are defined as $\mathcal{L}_{n} = E(x) = \sum x f(x).$

 $\mathcal{H}_{y} = \mathbf{E}(Y) = \mathbf{\Sigma} \mathbf{y} \mathbf{g}(\mathbf{y}).$

Also May = E(XY) = \(\tilde{\

- (ii) The valiance of X & Y are defined as $V(\chi) = \sigma_{\chi}^2 = E(\chi^2) - H_{\chi}^2 \quad \text{ishur} \quad E(\chi^2) = \sum \chi^2 f(\chi) \quad \text{if } \chi = E(\chi)$ V(Y)= Oy2 = E(Y2) - Hy2 when E(Y2) = Ey2+(y) + Yy = E(y).
- (iii) Covaliance is defined as $COV(X,Y) = E(XY) - H_x H_y$
- (iv) The correlation of X & Y is defred as $f(X,Y) = \frac{cov(X,Y)}{\sigma_x \sigma_y}.$

Note: If X & Y are independent random variable then

- (i) E(XY) = E(X). E(Y) (or) E(XY) = Hn. Hy.
- (ii) COV(X,Y)=0 and hence P(X,Y)=0.

Problem:

) The joint probability distribution of two random variables X & Y in as follows

3.5				1 ,
Y	- 4	2	7	tra)
X	1/0	74	1/8	= 1
	1/6	1/8	78	
(Sala)	3/2	3/8	1/4	5 411

compute @ E(x) & E(x) ((xy) @ 5x & 5y

@ cov(x,y) @ g(x,y)

Est: The marginal distribution of X & Y is as follows.

[This distribution is obtained by adding all the suspendice rowentings & also the respective column entires].

Distribution of X:

		0
x:	1	5
+(a;)	1/2	1/2

Distribution of Y:

Y;	-4	2	7
g (4;)	3/8	3/8	1/4

(i)
$$E(x) = \sum x_i f(x_i) = I(1/2) + 5(1/2) = \frac{1}{2} + \frac{5}{2} = \frac{3}{2} = 3$$

(ii)
$$E(Y) = \sum y_{j} \theta(y_{j}) = -4(3/8) + 2(3/8) + 7(1/4) = -\frac{12}{8} + \frac{6}{8} + \frac{7}{4} = \frac{-12+6+14}{8}$$

$$= -\frac{1}{2} + \frac{1}{2} + \frac{7}{8} - 5 + \frac{5}{4} + \frac{35}{8}$$

$$\overline{\left(E(x4) = \frac{3}{2}\right)}$$

C)
$$\sigma_{\chi}^{2} = E(\chi^{2}) - y_{\chi}^{2}$$

$$E(\chi)^{2} = E(\chi^{2}) - y_{\chi}^{2}$$

$$= (\chi)^{2} + (\chi)$$

$$= (\chi) + (\chi) + (\chi) (y_{\chi})$$

$$E(\chi) = 13$$

$$\sqrt{3} = 13 - (3)^{2}$$

$$= 13 - 9$$

$$\sqrt{3} = 4$$

$$\sqrt{3} = 2$$

$$\begin{aligned}
&\sigma_{y}^{2} = E(y^{2}) - y^{2} \\
&E(y^{2}) = \left[\frac{y^{2}}{3} + \frac{y^{2}}{3} \right] \\
&= 16(3/3) + 4(3/3) + 49(1/4) \\
&E(y^{2}) = 79/4
\end{aligned}$$

$$\begin{aligned}
&\sigma_{y}^{2} = \left(\frac{79}{4} \right) - (1)^{2} \\
&\sigma_{y}^{2} = \left(\frac{79}{4} \right) - (1)^{2}
\end{aligned}$$

$$\begin{aligned}
&\sigma_{y}^{2} = \left(\frac{79}{4} \right) - (1)^{2} \\
&\sigma_{y}^{2} = \frac{75}{4} = 4.33
\end{aligned}$$

d)
$$CoV(X,Y) = E(XY) - y_{x}y_{y}$$

$$= 3/_{2} - (3)(*)$$

$$= \frac{3}{2} - 3$$

$$CoV(X,Y) = -\frac{3}{2}$$

e)
$$f(x,y) = \frac{\text{Cov}(x,y)}{\sigma_{x}\sigma_{y}}$$

 $= \frac{-3/2}{2}(\frac{\pi_{x}}{4})$
 $f(x,y) = -0.1732$

d) Find the covaliance & correlation of the random variable X & Y as:

	y	1	3	9	4(4)
	2	1/8	1/24	1/12	= 1/4
	4	1/4	74	0	- 1/2
T	6	1/8	1/24	1/12	= 1/4
	9(4;)	1/2	1/3	1/6	

Fol?: The marginal distribution for X & y is as follows:

Distribution for X:

λ;	2	4	6	1
f (xi)	1/4	1/2	1/4	

Distribution for y

			-1		7
	y;	1	3	9	
١	9(4)	1/2	1/3	1/6	,

Covariance of (X,Y) = CoV(X,Y) = E(XY) - E(X)E(Y)

$$E(4) = 3$$

$$E(4) = 5 \text{ N; Y; T; } = (2 \times 1 \times 1/3) + (2 \times 3 \times 1/24) + (2 \times 9 \times 1/2) + (4(1) \times 1/4)$$

$$+ (4 \times 3 \times 1/4) + (4 \times 9 \times 0) + (6 \times 1 \times 1/3) + (6 \times 3 \times 1/24) + (6 \times 9 \times 1/2)$$

$$Cov(x,y) = 12 - (4)(3)$$

If cov(x,y) =0 = s(xy)=0 then x + y are independent.

3) The joint probability distribution table for two random Variables X & Y is as follows.

		/ 3					+(21)
	Y	-2	-1	4	-	5	
-	X			0		0.3	0.6
)	0.1	0.2				0.4
	2	0.2	0,1	0.1		0	
Ĺ	2(4:)	0.3		0.1		013	
	0 -11/	0.7	0,0		۸		1

Determine the marginal probability distributions of X & Y.

Also compute @ Expectation of X,Y & XY (B) S.D's. of X,Y

(Correlation of x & Y e) purther verify that X & y are dependent random variables.

Pol? Distribution tol X

N ;	1	2	
+(2;)	0.6	0.4	,

					,	
1	y;	- 2	-1	4	5	
	ગુ(યુ:)	0.3	0.3	0.1	0.3	

(a)
$$\mathcal{H}_{x} = E(x) = E(x) = E(x) + 2(0.4)$$

= 1,4

$$= (1)(-2)(0.1) + (1)(-1)(0.2) + (1)(4)(0) + (1)(5)(0.3) + (2)(-2)(0.2)$$

$$+ (2)(-1)(0.1) + (2)(4)(0.1) + (2)(5)(0)$$

$$\int_{0}^{2} \int_{0}^{2} = 2.2 - (1.4)^{2} = 0.24$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{$$

$$G_y^2 = E(y^3) - y^2$$

$$E(y^2) = \sum y_1^2 + (y_1^2)$$

$$= 4(0.0) + 1(0.0) + (16)(0.1) + 25(0.0)$$

$$= 10.6$$

$$\sigma_y^2 = 10.6 - (1)^2$$
 $\sigma_y^2 = 9.6$
 $\sigma_y^2 = 9.6$

c)
$$Cov(x,y) = E(xy) - E(x)E(y)$$

$$= 0.9 - (1.4)(1)$$

$$Cov(x,y) = -0.5$$
d) worelation of $x + y = f(x,y) = \frac{cov(x,y)}{\sqrt{x}\sqrt{y}}$

$$= \frac{-0.5}{(0.49)(3.1)}$$

$$f(x,y) = -0.3$$

e) If x y y are independent random variables we must have f(x;) g(y;) = J; If can be seen that $f(x_i)g(x_i) = (0.6)(0.3) = 0.18$ but In = . D. 1

ie f(x1). g(y1) + J11

Similarly to others also the condition is not scatified. Hence we conclude that x & y are dependent random unixbles.