Full model

- Solid and liquid phase densities are equal and constant.
- Solid and liquid phase thermal conductivity and heat capacity are equal and constant.
- 14 non dimensional parameters.

Thermally ideal model

- Neglect gas fraction in heat equation $\phi_g \ll 1$ and $\nu_g = 1$.
- 13 non dimensional parameters

Incompressible model

- Neglect variations in gas density driven by thermal expansion, dynamic pressure variations, hydrostatic pressure variations, and Laplace pressure jump.
- $\frac{\theta}{\theta_K}$, $\frac{p_H}{p_0}$, $\mathcal{H}z$, La $\ll 1$.
- 10 non dimensional parameters.

Reduced model

- Incompressible and thermally ideal.
- Assume space occupied by gas is negligible $\omega_{\infty}\chi\ll 1$.
- Neglect terms of $O(\phi_g) = O(\chi)$.
- This implies $W_l=0$, $p_H=0$, and $\phi_s+\phi_l=1$.
- 9 non dimensional parameters.

Instant nucleation model

- Additionally assume that nucleation timescale is much faster than solidification and flow Da $\rightarrow \infty$.
- System is either subsaturated with dissolved gas and $\phi_q=0$, or $\omega=1$.
- 8 non dimensional parameters.