

Введение в машинное обучение. Лекция 2

Отмечаемся и оставляем отзывы.

Спасибо!

Введение в машинное обучение. Лекция 2

Содержание лекции

- 1. Задача регрессии
 - 1. Линейная регрессия
 - 2. Регуляризация
- 2. Метрики
- 3. Пример

Обучение с учителем

Задачи классификации (classification)

- $F_i = \{true, false\}$ классификация на 2 класса
- $F_i = \{1, ..., M\}$ классификация на M непересекающихся классов
- $F_j = \{0,1\}^M$ классификация на M классов, которые могут пересекаться

Задача восстановления регрессии (regression)

• $F_j = \mathbb{R}$ или $F_j = \mathbb{R}^M$ (ответом является действительное число или числовой вектор)

Задача ранжирования (learning to rank)

• F_j - конечно упорядочено (ответы надо получить сразу на множестве объектов, после чего отсортировать их по значениям ответов)

Обучение с учителем

Этап обучения (train)

Необходимо учитывать представительность выборки

Этап применения (test)

Линейная регрессия

Модель:

$$\hat{y}(X_i) = \Theta_1 + x_i \Theta_2$$

Целевая функция (Objective function, Energy, Loss)

Величина ошибки алгоритма на обучающей выборке Пример для задачи регрессии:

$$J(\Theta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \Theta_1 - x_i \Theta_2)^2$$

Метод наименьших квадратов (Ordinary Least Squares)

Линейная регрессия

Пример задачи регрессии:

Целевая переменная

Предсказание стоимости жилья

Area	Bedroom	Kitchen	HouseStyle	Neighborhood	YearBuilt	Alley	SalePrice
8450	3	1	2Story	CollgCr	2003	NA	208500
9600	3	1	1Story	Veenker	1976	NA	181500
11250	3	1	2Story	CollgCr	2001	NA	223500
9550	3	1	2Story	Crawfor	1915	NA	140000
14260	4	1	2Story	NoRidge	2000	NA	250000
14115	1	1	1.5Fin	Mitchel	1993	Grvl	143000
10084	3	1	1Story	Somerst	2004	NA	307000
10382	3	1	2Story	NWAmes	1973	NA	200000
6120	2	2	1.5Fin	OldTown	1931	NA	129900
7420	2	2	1.5Unf	BrkSide	1939	Grvl	118000

Признаки

Линейная регрессия

Модель:

$$\hat{y}_i = \sum_{j=1}^d x_{ij} \Theta_j = 1 * \Theta_1 + x_{i2} \Theta_2 + x_{i3} \Theta_3 + \dots + x_{id} \Theta_d$$

В матричной форме:

$$\hat{y} = X\Theta$$

$$\begin{bmatrix} \hat{y}_1 \\ \dots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} x_{11} & \dots & x_{1d} \\ \dots & \dots & \dots \\ x_{n1} & \dots & x_{nd} \end{bmatrix} \begin{bmatrix} \Theta_1 \\ \dots \\ \Theta_d \end{bmatrix}$$

Линейная регрессия

Целевая функция:

$$J(\Theta) = (y - X\Theta)^T (y - X\Theta) = \sum_{i=1}^{n} (y_i - X_i^T \Theta)^2$$

Линейная регрессия

Целевая функция:

$$J(\Theta) = (y - X\Theta)^{T}(y - X\Theta) = \sum_{i=1}^{n} (y_{i} - X_{i}^{T}\Theta)^{2}$$

Поиск решения:

$$\frac{\partial J(\Theta)}{\partial \Theta} = \frac{\partial}{\partial \Theta} \left(y^T y - 2 y^T x \Theta + \Theta^T x^T x \Theta \right) = 0$$

$$\Theta = (x^T x)^{-1} x^T y$$

Оптимизация

Функция:

$$f(\theta_1, \theta_2) = \theta_1^2 + \theta_2^2$$

Частные производные:

$$\frac{\delta f(\theta_1,\theta_2)}{\delta \theta_1} = 2\theta_1, \frac{\delta f(\theta_1,\theta_2)}{\delta \theta_2} = 2\theta_2$$

$$\nabla f(\theta_1, \theta_2) = \begin{bmatrix} 2\theta_1 \\ 2\theta_2 \end{bmatrix}$$

Проблема переобучения

- 1)Обучающая выборка
- 2)Контрольная выборка

Пример

Модель: $h(X, \theta) = \theta_0 + \theta_1 \cdot x + \dots + \theta_n x^n$

Целевая функция: $J(X,\Theta)=\sum_{i=0}^n(\theta_0+\theta_1\cdot x_i+\cdots+\theta_nx_i^n-y_i)^2$

Что будет, если увеличить n?

Проблема переобучения

- 1)Обучающая выборка
- 2)Контрольная выборка

Обучающая выборка (Ошибка = 0)

Регуляризация

Целевая функция:

$$J(\Theta) = (y - X\Theta)^{T}(y - X\Theta) + \delta^{2}\Theta^{T}\Theta$$

Регуляризация

L1 регуляризация:

$$J(\Theta) = \sum_{j} (y_j - \sum_{i} (x_i^j * \Theta_i))^2 + \delta^2 \sum_{i} |\Theta_i|$$

L2 регуляризация или регуляризация Тихонова:

$$J(\Theta) = \sum_{i} (y_j - \sum_{i} (x_i^j * \Theta_i))^2 + \delta^2 \sum_{i} (\Theta_i)^2$$

Elastic Net

$$J(\Theta) = \sum_{i} (y_{j} - \sum_{i} (x_{i}^{j} * \Theta_{i}))^{2} + \alpha \rho \sum_{i} |\Theta_{i}| + \alpha \frac{(1 - \rho)}{2} \sum_{i} (\Theta_{i})^{2}$$

Регуляризация

Регрессия

- 1. MAE
- 2. MSE
- 3. RMSE
- 4. RMSLE
- 5. R2

Регрессия

MAE

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

Лучшее константное предсказание - медиана

Ŷ	Y
0.1	0
0.5	1
0.6	1
0.5	1
0.3	0

$$MAE = \frac{1}{5}(|0.1 - 0| + |0.5 - 1| + |0.6 - 1| + |0.5 - 1| + |0.3 - 0|)$$

Регрессия

MSE (Mean Squared Error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$

RMSE (Root Mean Squared Error)

$$RMSE = \sqrt[2]{\frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2}$$

Лучшее константное предсказание - среднее

Регрессия

$$R2 - score$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

$$SS_{tot} = \sum_{i=1}^{N} (y_i - \bar{y})^2 - variance$$

$$SS_{res} = \sum_{i=1}^{N} (y_i - f_i)^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Спасёнов Алексей

a.spasenov@corp.mail.ru