NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to He Jinxin

MA2202 Algebra I

AY 2007/2008 Sem 2

Question 1

(a) Firstly, note that since $Z/(19^2) \times Z/(17^2)$ is cyclic, it has unique subgroups of each order dividing $17^2 \times 19^2$.

Let H be a subgroup of $Z/(17^2) \times Z/(19^2)$, Hence |H| = 1 or 17 or 19 or 17² or 19² or 17×19 or 17×19^2 or $17^2 \times 19$ or $17^2 \times 19^2$.

So the subgroups of $Z/(17^2) \times Z/(19^2)$ are:

 $\{0\} \times \{0\},\$

 $H_{17} \times \{0\}, \{0\} \times H_{19},$

 $H_{17} \times H_{19}$, $Z/(17^2) \times \{0\}$, $\{0\} \times Z/(19^2)$,

 $Z/(17^2) \times H_{19}, H_{17} \times Z/(19^2)$ and

 $Z/(17^2) \times Z/(19^2)$.

(b) Let $a, b \in \mathbb{Z}/(3)$ such that $\mathbb{Z}/(3) \times \mathbb{Z}/(3) = \langle a \rangle \times \langle b \rangle$. Then the subgroups of $\mathbb{Z}/(3) \times \mathbb{Z}/(3)$ are $\{0\} \times \{0\}$,

 $\langle a \rangle \times \{0\}, \{0\} \times \langle b \rangle, \langle (a,b) \rangle, \langle (2a,b) \rangle,$

 $\langle a \rangle \times \langle b \rangle$.

Question 2

(i) Let the order of g^{14} be n, then $(g^{14})^n = 1$. Hence $14n \equiv 0 \mod 30$, which means 14n = 30k for some integer k. So 7n = 15k, since $3 \mid 15k$ and $5 \mid 15k$ but $3 \nmid 7$ and $5 \nmid 7$, we have $15 \mid n$. Then since $(g^{14})^{15} = g^{210} = (g^{30})^7 = 1$, we have $n \mid 15$. Hence we have n = 15. i.e. $o(g^{14}) = 15$.

(ii) \forall m such that $o(g^m) = o(g^{14}) = 15$, then $(g^m)^{15} = 1$ and $(g^m)^k \neq 1$ for k = 1, 2, ... 14.

So we have $15m \equiv 0 \mod 30$, then $m \equiv 0 \mod 2$, we set m = 2l.

And $km \not\equiv 0 \mod 30$, then $2lk \not\equiv 0 \mod 30$, $lk \not\equiv 0 \mod 15$ for all k = 1, 2, ..., 14. Therefore, l is not divisible by 3 and 5.

Hence l = 1 or 2 or 4 or 6 or 7 or 8 or 11 or 13 or 14. Hence the set of elements of G whose order is equal to $o(g^{14})$ is $\{2, 4, 8, 14, 16, 22, 26, 28\}$.

Alternative solution:

Since $\langle g \rangle$ is cyclic it has exactly 1 subgroup of order 15. Hence all elements of order 15 in $\langle g \rangle$ lie in this subgroup and are exactly the generator of this subgroup. Hence there are $\phi(15)=8$ such element. Let $h=g^{14}$ then $\langle h \rangle$ is the unique subgroup of order 15 and the generators of this subgroup are precisely elements of the form h^m such that $m \in \{0,...,14\}$ and $\gcd(m,15)=1$. Hence set of elements of order 15 is $\{(g^{14})^m \mid \gcd(m,15)=1 \text{ and } m \in \{0,1,...,14\}\}$.

Page: 1 of 6

Question 3

- (a) Since $\langle (12)(34), (13)(24) \rangle = \{1, (12)(34), (13)(24), (14)(23)\}$ is the subgroup of **all** 2, 2 cycles and conjugation preserves cycle structure. $\langle (12)(34), (13)(24) \rangle \triangleleft S_4$.
- (b) No. $(15)(12)(34)(15) = (15)(34) \notin \langle (12)(34), (13)(24) \rangle$.
- (c) Claim: For any $\sigma \in S_3V$ there exist unique $p \in S_3$, $q \in V$ such that $pq = \sigma$. Proof:

Existence:

Since $S_3 \subseteq S_4$, for every $\alpha \in V$ we have $\alpha S_3 = S_3 \alpha$. Therefore we have $S_3 V = V S_3$ as groups. Hence for all $\sigma \in S_3 V$ there exist a finite sequence of $p_1 p_2, p_3, ..., p_n \in S_3$ and $q_1, q_2, q_3, ..., q_n \in V$ such that $p_1 q_1 p_2 q_2 ... p_n q_n = \sigma$.

Since $S_3V = VS_3$ for each p_i, q_j such that $i, j \in \{1, 2, ..., n\}$. There exists $p_i' \in S_3$ and $q_j' \in V$ such that $p_iq_j = q_j'p_i'$.

Therefore we may rearrange and rewrite $p_1q_1p_2q_2...p_nq_n$ to $p'_1p'_2...p'_nq'_1q'_2...q'_n$ such that $p'_i \in S_3$ and $q'_i \in V$ with $i, j \in \{1, 2, ..., n\}$ and $\sigma = p_1q_1p_2q_2...p_nq_n = (p'_1p'_2...p'_n)(q'_1q'_2...q'_n)$.

Uniqueness:

Suppose $p, p' \in S_3$ and $q, q' \in V$ such that pq = p'q'. Hence we have $p'^{-1}p = q'q^{-1}$. Hence $q'q^{-1} \in S_3 \cap V$. Hence we have $q'q^{-1}(4) = 4$ and $q'q^{-1} = (1)$. Therefore q = q' and p = p'.

Hence we may define the map

$$f: S_3V \longrightarrow S_3$$
$$pq \mapsto p$$

where $p \in S_3$, $q \in V$ such that $pq = \sigma$ is the unique decomposition of σ . This is a well defined function by the previous claim.

Claim: This map is a well-defined homomorphism.

Proof:

For any $p_1q_1, p_2q_2 \in S_3V$, we have

$$f(p_1q_1p_2q_2) = f(p_1p_2(p_2^{-1}q_1p_2)q_2)$$

= p_1p_2 since $V \triangleleft S_3V$
= $= f(p_1q_1)f(p_2q_2)$

Also, since f is surjective and $\ker(f) = V$. By First Isomorphism Theorem, we have $S_3 \cong S_3 V/V$.

(d) Since $S_3 \cong S_3 V/V$, we have $|S_3||V| = |S_3 V|$. Hence $|S_3 V| = 24$. Since $S_3 V \subseteq S_4$ and $|S_3 V| = |S_4|$, we have $S_3 V = S_4$.

Page: 2 of 6

Question 4

(a) For all $A \in C_G(P)$, let $A = \begin{pmatrix} d & e \\ f & g \end{pmatrix}$. If AP = PA, then $\begin{pmatrix} d & e \\ f & g \end{pmatrix} \begin{pmatrix} \epsilon & 0 \\ 0 & \delta \end{pmatrix} = \begin{pmatrix} \epsilon & 0 \\ 0 & \delta \end{pmatrix} \begin{pmatrix} d & e \\ f & g \end{pmatrix}$

Hence we have,

$$e\delta = \epsilon e$$

$$f\epsilon = \delta f$$

$$\epsilon \neq \delta$$

which derives e = f = 0. Then $C_G(P) = D_2(R) = \left\{ \begin{pmatrix} d & 0 \\ 0 & g \end{pmatrix} | d, g \in R \right\}$.

(b) Obviously $Z(G) \supset C_G(P)$. That is the center Z(G) has the form

$$\left(\begin{array}{cc} d & 0 \\ 0 & g \end{array}\right)$$

If $d \neq g$, then

$$\left(\begin{array}{cc} 1 & 3 \\ 4 & 2 \end{array}\right) \left(\begin{array}{cc} d & 0 \\ 0 & g \end{array}\right) \neq \left(\begin{array}{cc} d & 0 \\ 0 & g \end{array}\right) \left(\begin{array}{cc} 1 & 3 \\ 4 & 2 \end{array}\right)$$

If d = g, we have

$$\left(\begin{array}{cc} d & 0 \\ 0 & d \end{array}\right) \left(\begin{array}{cc} x & y \\ w & z \end{array}\right) = \left(\begin{array}{cc} x & y \\ w & z \end{array}\right) \left(\begin{array}{cc} d & 0 \\ 0 & d \end{array}\right) = \left(\begin{array}{cc} dx & dy \\ dw & dz \end{array}\right)$$

for all $\begin{pmatrix} x & y \\ w & z \end{pmatrix} \in G$.

Therefore

$$Z(G) = \left\{ \left(\begin{array}{cc} r & 0 \\ 0 & r \end{array} \right) | r \neq 0 \in R \right\}$$

Question 5

(a) (i) Because G_2 is abelian, then for all $g, g' \in G_1$

$$\begin{array}{lcl} f((g^{-1}g'^{-1}gg')) & = & (f(g^{-1})f(g'^{-1})f(g)f(g')) \\ & = & (f(g^{-1})f(g')f(g'^{-1})f(g)) \\ & = & (f(g^{-1}g)f(g'^{-1}g')) = 1 \end{array}$$

Therefore $[g, g'] \in \ker(f)$ for all $g, g' \in G_1$. Since $[G_1, G_1]$ is generated by $\{[g, g'] | g, g' \in G_1\}$, hence we have $[G_1, G_1] \subset \ker(f)$.

(ii) If $[G_i, G_i'] \subset \ker(f)$, since f is surjective, for any $b_1, b_2 \in G_2$, there exists g_1, g_2 such that

$$f(g_1) = b_1, f(g_2) = b_2.$$

Then

$$1 = f(g_1^{-1}g_1g_2^{-1}g_2)$$

= $f(g_1^{-1})f(g_1)f(g_2^{-1})f(g_2)$
= $(f(g_2)f(g_1))^{-1}f(g_1)f(g_2)$

.

Hence $f(g_1)f(g_2)=f(g_2)f(g_1)$. Then $b_1b_2=b_2b_1$, i.e. G_2 is abelian.

(b) Let $\phi_{N_1}: G \to G/N_1$ and $\phi_{N_2}: G \to G/N_2$ be the canonical quotient maps,hence $\ker(\phi_{N_1}) = N_1$ and $\ker(\phi_{N_2}) = N_2$. They are both surjective and since both G/N_1 and G/N_2 are abelian, by 5(i) we have $[G, G] \le N_1$ and $[G, G] \le N_2$. Hence we have $[G, G] \le N_1 \cap N_2$. Since $N_1 \lhd G$ and $N_2 \lhd G$, we have $N_1 \cap N_2 \lhd G$. Let $\phi_{N_1 \cap N_2}: G \to G/N_1 \cap N_2$ be the canonical quotient map, hence $\ker(\phi_{N_1 \cap N_2}) = N_1 \cap N_2$. Since $[G, G] \le N_1 \cap N_2$, by 5(ii) we have $G/N_1 \cap N_2$ is abelian.

Question 6

(a) Since |G| = 6, let $g \in G \setminus \{1\}$. Then order of g divides 6. Hence o(g) = 2,3 or 6.

Also, note that any group of order 3 must be cyclic since 3 is prime.

If G only has elements of order dividing 2 then for all $g \in G$, $g = g^{-1}$. Hence $g_1g_2 = (g_1g_2)^{-1} = g_2^{-1}g_1^{-1} = g_2g_1$. Then G is abelian and any subgroup is normal. Hence $|G/\langle g\rangle| = 3$ for any $g \in G\backslash\{1\}$. Hence $G/\langle g\rangle$ is generated by $h\langle g\rangle$ for some $h \notin \langle g\rangle$.

Hence we have $h^3 \in \langle q \rangle$ but $h^3 = h \in \langle q \rangle$ which is a contradiction!!

Hence G must contain elements of order 3 or 6.

If o(g) = 6, then $G \cong \mathbb{Z}_6$. Hence $\{0, 2, 4\}$ would be a cyclic normal subgroup of order 3 since \mathbb{Z}_6 is abelian.

If o(g) = 3, then $\langle g \rangle$ is a cyclic normal subgroup of order 3 since it is of index 2.

- (b) $\langle h \rangle \triangleleft G$, then $g \langle h \rangle g^{-1} = \langle h \rangle$ for any $g \in G$. Hence $\langle ghg^{-1} \rangle = \langle H \rangle$.
- (c) Since G contains a normal subgroup H of order 3. Hence |G/H|=2. Therefore $G/H=\langle aH\rangle$ for some $a\notin H$ and $a^2\in H$.

Let $H = \langle b \rangle$. Hence $a^2 = b^k$ where $k \in \{0, 1, 2\}$.

Case 1) k = 1 or 2.

Then $a^2 \neq 1$ and $o(a^2) = 3$ since $a^2 \in \langle b \rangle$. Hence $a^6 = 1$ and $a^2 \neq 1$. If $a^3 = 1$ then we have $a \in H$ since $ab^k = 1$ which is a contradiction!!

Since o(a)|6 and $a^2 \neq 1$ and $a^3 \neq 1$, we have o(a) = 6. Hence $G = \langle a \rangle \cong \mathbb{Z}/(6)$.

Case 2) k = 0.

Then $a^2 = 1$ and $b^3 = 1$ and there exist a $m \in \{0, 1, 2\}$ such that

$$aba^{-1} = b^{m}$$

$$a^{2}ba^{-2} = ab^{m}a^{-1}$$

$$b = ab^{m}a^{-1}$$

$$b = (aba^{-1})^{m}$$

Page: 4 of 6

Hence we have $(b^m)^m = b$ hence $3|m^2 - 1$. Hence m = 1 or 2. If m = 1 then ab = ba. Then o(ab) = lcm(o(a), o(b)) = 6 and $G = \langle ab \rangle \cong Z/(6)$.

If m=2 then we have $aba^{-1}=b^{-1}$ and $a^2=1$ and $b^3=1$ which are the defining conditions for $D_6\cong S_3$. Hence $G\cong S_3$.

Question 7

- (a) For any $r \in H$ since $r \neq 0$ $\frac{1}{r}$ is well-defined, $r \cdot \frac{1}{r} = 1$, $r \cdot 1 = 1$. For any $r_1, r_2 \in H$, $r_1 \cdot r_2 \in H$ since the product of positive real numbers is positive. Therefore $H \leq G$.
- (b) Consider the homomorphism $f: G \to \{1, -1\}$ with

$$f(r) = \begin{cases} 1 & \text{if } r > 0 \\ -1 & \text{if } r < 0 \end{cases}$$

Then we conclude that ker(f) = H, so $G/H \simeq \{1, -1\}$. So [G:H] = 2.

- (c) φ is surjective. Since $\forall y \in H$, from Real Analysis we know that there exist a positive real solution x to the equation $x^m - y = 0$. Hence $\varphi(x) = x^m = y$.
- (d) Since G is abelian, any subgroup of normal. Hence let K be a subgroup of finite index in G. Then $H \cap K$ is also of finite index in G since $[G:H \cap K] = [G:H][H:H \cap K] = [G:H][G:K]$. In particular we have $[H:H \cap K] = m < \infty$ where $m \in \mathbb{N}$. Hence consider the homomorphism

$$\phi: H/H \cap K \quad \to \quad H/H \cap K$$

$$hH \cap K \quad \mapsto \quad (hH \cap K)^m = h^m H \cap K$$

Note that since $m = |H/H \cap K|$. This is the trivial map (i.e Im(ϕ) = {1}. But from part (c), this map is surjective. Hence $|H/H \cap K| = 1$. Therefore we have $H \cap K = H$. Hence H = K or there exist $a \in K$ such that $a \notin H$. Hence $G = aH \cup H \subset K$. Therefore either H = K or G = K.

Question 8

- (a) True. $(g_1 * g_2) * g_3 = 1$, then $g_1 * (g_2 * g_3) = 1 \Rightarrow (g_2 * g_3)^{-1} = g_1 \Rightarrow (g_2 * g_3) * g_1 = 1$.
- (b) False. (1) is not in T.
- (c) False. $Z/(2) \times Z/(4)$ is not cyclic even though Z/(2) and Z/(4) are both cyclic.
- (d) False. Consider (12) and (123). Then o((12)) = 2 and o((123)) = 3 and $o((12)(123)) = o((23)) = 2 \neq lcm(2,3)$.

Page: 5 of 6

(e) True.

We only need to show that for any $h \in H$, $h^{-1} \in H$. For $h \in H$, $\exists i$ such that $h_1^i = 1$. Otherwise $|H| = \infty$. Since $h^{i-1} = h^{-1}$ since $h^{i-1}h = 1$, we have $h^{-1} = h^{i-1} \in H$.

(f) True.

 $ker(f) = \{1\}$, so f is injective hence $|G_1| \leq Im(f)$ and since $|G_1| = |G_2| < \infty$, $Im(f) \geq G_2$. Hence f is surjective and hence an isomorphism.

(g) False.

 $o(A_5) = 60$ but A_5 doesn't have subgroup of order 30 since A_5 is simple. Or $G = Z/(2) \times Z/(2)$, so |G| = 4 but G has no elements of order 4 since G is not cyclic.

(h) False.

 $N \triangleleft G \Rightarrow \forall g \in G$, gN=Ng, but not necessarily $gn = ng \ \forall n \in N$. An example would be $G = S_3$ and $N = A_3$. Hence $(12)(123) = (32) \neq (13) = (123)(12)$

(i) True.

We have $H_1 \cap H_2 \leq H_1$ and $H_1 \cap H_2 \leq H_2$. Hence $|H_1 \cap H_2|$ divides $\gcd(|H_1|, |H_2|) = 1$. Hence $|H_1 \cap H_2| = 1$. Therefore $|H_1 H_2| = \frac{|H_1||H_2|}{|H_1 \cap H_2|} = |H_1| \times |H_2|$.

(j) True.

Since $N_1, N_2 \triangleleft G$ we have $N_1 N_2 \leq G$. Hence for any $g \in G$. we have $gN_1N_2 = (gN_1)N_2 = (N_1g)(N_2) = N_1(gN_2) = N_1(N_2g) = N_1N_2g$. Since $gN_1N_2 = N_1N_2g$ we have $N_1N_2 \triangleleft G$.

Page: 6 of 6