

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN ESTRUCTURA DE DATOS Y ALGORITMOS II

Definiciones

Notación asintótica

Cuando analizamos algoritmos para instancias grandes de su entrada, de manera que sólo el orden de crecimiento sea relevante, decimos que hacemos un **análisis asintótico** de su eficiencia.

Para comparar la eficiencia de los algoritmos utilizamos una notación que permita capturar la noción intuitiva de orden de crecimiento.

Hay varias clases de funciones que capturan distintas propiedades. A continuación veremos las definiciones de las notaciones O, Ω y Θ , que utilizaremos.

Definición 1 (O)

Sean $f, g : \mathbb{N} \to \mathbb{R}$. Decimos que f tiene orden de crecimiento O(g) (g escribimos $f \in O(g)$), si existen constantes $g \in \mathbb{R}$, $g \in \mathbb{N}$, tales que:

$$\forall n \ge n_0 \quad \cdot \quad 0 \le f(n) \le c \cdot g(n)$$

Definición 2 (Ω)

Sean $f, g : \mathbb{N} \to \mathbb{R}$. Decimos que f tiene orden de crecimiento $\Omega(g)$ (g escribimos $f \in \Omega(g)$), si existen constantes $g \in \mathbb{R}$, $g \in \mathbb{N}$, tales que:

$$\forall n \geq n_0 \quad \cdot \quad 0 \leq c \cdot g(n) \leq f(n)$$

Definición 3 (Θ)

Sean $f, g : \mathbb{N} \to \mathbb{R}$. Decimos que f tiene orden de crecimiento $\Theta(g)$ (g escribimos $f \in \Theta(g)$), si $f \in O(g)$ $g \in O(f)$.

Pisos y techos

DEFINICIÓN 4 (Piso de x)

$$Sea \ x \in \mathbb{R}, \quad [x] = max \ \{n \mid n \le x, n \in \mathbb{Z}\}$$

DEFINICIÓN 5 (Techo de x)

Sea
$$x \in \mathbb{R}$$
, $[x] = min \{n \mid n > x, n \in \mathbb{Z}\}$

Para cualquier $x \in \mathbb{R}$ se cumple que:

$$x - 1 < |x| < x < \lceil x \rceil < x + 1$$

Logaritmo

Utilizaremos la siguiente notación:

$$\lg n = \log_2 n$$
 (logaritmo en base 2)
 $\ln n = \log_e n$ (logaritmo natural)

Propiedades de logaritmo: Sean $a, b, x, y \in \mathbb{R}^+$,

$$\log_a (x.y) = \log_a x + \log_a y$$

$$\log_a x^n = n \cdot \log_a x$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$x^{\log_a y} = y^{\log_a x}$$

$$\log_a (1/x) = -\log_a x$$

$$\log_a x = \frac{1}{\log_x a}$$

Exponenciales

Sea $a \in \mathbb{R}^+$,

$$a^{-1} = 1/a$$
$$(a^m)^n = a^{m.n}$$
$$a^m.a^n = a^{m+n}$$

Series

$$\sum_{k=0}^{n} a + b \cdot k = (n+1) \cdot (a + \frac{1}{2} \cdot b \cdot n)$$

$$\sum_{k=0}^{n} a \cdot x^{k} = \frac{a - a \cdot x^{n+1}}{1 - x} \quad \text{para } x \neq 1$$

$$\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6}$$