KCS 14 20 11 : 2024

철근공사

2024년 12월 30일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 콘크리트 설계기준에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
콘크리트 표준시방서	• 콘크리트 표준시방서 제정	제정 (1962.5)
콘크리트 표준시방서	 무근, 철근, 포장, 댐 콘크리트 시방서 통합 기존 국토건설청 규준, 제료규격 및 시험방법을 한국공업규격(KS)으로 개정 	개정 (1968.12)
콘크리트 표준시방서	• 건설기술의 대형화, 다양화, 새로운 공법 및 자재개발에 따른 시방서 일부개정	개정 (1977.12)
콘크리트 표준시방서	• 강도설계법에 따라 시방서 개정	개정 (1985.1)
콘크리트 표준시방서	• 국내외 시방서 및 지침서등의 연관성 검토 • 구조물의 설계, 시공, 공사품질관리 전반에 대한 시방이 되도록 개정	개정 (1988.12)
콘크리트 표준시방서	• 콘크리트 내구성 향성과 안전성 확보를 위한 기준안 마련 • 유동화 콘크리트, 구조물 유지관리에 관한 규정 신설	개정 (1996.6)
콘크리트 표준시방서	• 현행 설계편과 시공편으로 구성된 표준시방서를 시공기준으로 작성	개정 (1998.12)
콘크리트 표준시방서	• 콘크리트 허용균열폭, 피복두께, 인장철근 정착길 이 수정 • 벽체의 부재 적용범위 구체화	개정 (2003.4)
콘크리트 표준시방서	• 순환골재 재활용 등 친환경 콘크리트 품질확보방 안 신설 • 고유동, 폴리머, 섬유보강 콘크리트 신설	개정 (2009.9)
KCS 14 20 11 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비	제정 (2016.6)

건설기준	주요내용	제정 또는 개정 (년.월)
KCS 14 20 11 : 2016	• 한국산업표준과 건설기준 부합화에 따라 수정함	수정 (2018.7)
KCS 14 20 11 : 2021	• 콘크리트 건설기준에 대한 최신 기술 반영 • 콘크리트 건설기준의 적합성 검토 및 정비	개정 (2021.2)
KCS 14 20 11 : 2022	• 오류사항 수정	개정 (2022.1)
KCS 14 20 11 : 2024	• 기계적이음 관련 기준 개정	개정 (2024.12)

제 정 : 2016년 6월 30일 개 정 : 2024년 12월 30일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 기술혁신과

관련단체 : 한국콘크리트학회 작성기관 : 한국콘크리트학회, 국가건설기준센터

• 국토교통부장관은 이 고시에 대하여 「훈령·예규 등의 발령 및 관리에 관한 규정」에 따라 2025년 7월 1일을 기준으로 매 3년이 되는 시점(매 3년째의 6월 30일까지를 말한다)마다 그 타당성을 검토하여 개선 등의 조치를 하여야 한다.

목 차

1.	일반사항	·· 1
	1.1 적용범위	·· 1
	1.2 참고 기준	·· 1
	1.3 용어의 정의	·· 1
	1.4 철근공사 일반	2
	1.5 제출물	2
2.	자재	2
	2.1 철근 및 용접철망	2
	2.2 철근 고임재 및 간격재	3
	2.3 철근 및 용접철망의 저장	3
	2.4 에폭시 도막철근의 저장	4
	2.5 자재 품질관리	4
3.	시공	5
	3.1 철근	5
	3.2 에폭시 도막철근	10
	3.3 용접철망	11
	3.4 현장 품질관리	11
부	록 I . 콘크리트용 앵커	13
1.	일반사항	13
	1.1 적용범위	13
	1.2 참고 기준	13
	1.3 용어의 정의	13
	1.4 콘크리트용 앵커 일반	13
	1.5 제출물	13
2.	재료	13
	2.1 구성재료	13

	2.2 앵커 볼트의 형태	· 14
3.	시공	· 14
	3.1 앵커 볼트의 배치 및 설치	· 14
	3.2 그라우트에 관한 요구 사항	· 14
	3.3 앵커 복트의 공사 중 보호	. 14

1. 일반사항

1.1 적용범위

- (1) 이 기준은 철근의 운반, 저장, 가공, 조립, 이음, 품질관리에 필요한 기본사항을 규정한다.
- (2) 이 기준은 D51 이하의 이형철근, 에폭시 도막철근, 지름 18 mm 이하의 용접철망에 적용하여야 한다.

1.2 참고 기준

1.2.1 관련 법규

내용 없음

1.2.2 관련 기준

- KS B 0554 철근 콘크리트용 봉강의 가스 압접 이음 기술 검정에 대한 시험방법 및 판정 기준
- KS B 0802 금속 재료 인장 시험 방법
- KS B 0816 침투 탐상 시험 방법 및 침투 지시 모양의 분류
- KS B 0839 철근 콘크리트용 이형 봉강 가스 압접부의 초음파 탐상 시험 방법 및 판정 기준
- KS B 0845 강 용접 이음부의 방사선 투과 시험 방법
- KS B 0896 강 용접부의 초음파 탐상 시험방법
- KS B ISO 17660-1 용접 철근 용접 제1부 -하중을 받는 용접 이음
- KS D 0213 강자성 재료의 자분탐상검사 방법 및 자분 모양의 분류
- KS D 3504 철근 콘크리트용 봉강
- KS D 3527 철근 콘크리트용 재생 봉강
- KS D 3613 철근 콘크리트용 아연 도금 봉강
- KS D 3629 에폭시 피복 철근
- KS D 7017 용접 철망 및 철근 격자
- KS M 6070 분체 도료
- KCI-ST103 철근 기계적이음 평가 방법

1.3 용어의 정의

- 가스 압접 이음(gas press welding) : 철근의 단면을 산소-아세틸렌 불꽃 등을 사용하여 가열하고 기계적 압력을 가하여 용접한 맞댐이음
- 강재(steel) : 철을 주성분으로 하는 구조용 탄소강의 총칭으로서, 철근콘크리트용 봉강, 프리스트레스용 강재, 형강, 강판 등을 포함한다.

- 고임재(chair) : 수평으로 배치된 철근 혹은 프리스트레스용 강재, 쉬스 등을 정확한 위 치에 고정하기 위하여 쓰이는 콘크리트제, 모르타르제, 금속제, 플라스틱제 등의 부품
- <u>기계적이음</u>(mechanical splice) : 나사를 가지는 슬리브 또는 커플러, 에폭시나 모르타르 또는 용융 금속 등을 충전한 슬리브, 클립이나 편체 등의 보조장치 등을 이용한 이음으로 1등급(잔류변형량 0.3mm이하)과 2등급(잔류변형량 0.3mm초과 0.6mm이하), 3등급(잔류변형량 0.6mm초과 1.0mm이하)으로 구분함.
- 용접철망(welded steel wire fabric) : 콘크리트 보강용 용접망으로서 철근이나 철선을 직각으로 교차시켜 각 교차점을 전기저항 용접한 철선망
- 이형철근(deformed reinforcement) : 표면에 리브와 마디 등의 돌기가 있는 봉강으로서 KS D 3504에 규정되어 있는 이형철근 또는 이와 동등한 품질과 형상을 가지는 철근
- 조립용 철근(erection bar) : 철근을 조립할 때 철근의 위치를 확보하기 위하여 쓰는 보 조적인 철근
- 철근(reinforcement, bar, rebar) : 콘크리트를 보강하기 위해 콘크리트 속에 배치되는 봉 형상의 강재

1.4 철근공사 일반

- (1) 철근은 설계에 정해진 원칙에 의해 그려진 철근상세도에 따라 재질을 해치지 않는 적절한 방법으로 정확한 치수 및 형상을 갖도록 가공하고, 이것을 소정의 위치에 정확하고 견고하게 조립하여야 한다.
- (2) 심한 부식 환경 지역에 설치되는 주요 구조물에 철근의 부식 문제가 예상되는 경우에 는 책임기술자의 승인을 받아 에폭시수지 등으로 도막 처리된 철근을 사용할 수 있다.
- (3) 철근의 가공, 배치, 피복두께에 관한 세부 사항은 KDS 14 20 50에 따른다.
- (4) 설계도면에 따라 철근상세도를 작성하여 책임기술자의 승인을 받은 후 철근을 가공 및 조립하여야 한다.

1.5 제출물

- (1) 검사 및 시험계획서
- (2) 시공계획서 및 도면
- (3) 제품 자료
- (4) 품질 자료 확인서
- (5) 철근상세도

2. 자재

2.1 철근 및 용접철망

(1) 철근은 KS D 3504에 적합한 것이어야 한다.

- (2) 철근콘크리트용 재생 봉강은 KS D 3527에 적합한 것이어야 하며, 시험을 하여 품질을 확인하고 그 사용 여부를 결정하여야 한다.
- (3) KS D 3504 및 KS D 3527에 적합하지 않은 철근을 사용하는 경우에는 시험을 실시하여 설계기준항복강도 및 사용 방법을 결정하여야 한다.
- (4) 용접철망은 KS D 7017에 적합한 것이어야 한다.
- (5) 에폭시를 도막할 철근은 KS D 3504에 적합하여야 하고, 분체도료 및 에폭시 도막철 근의 품질 검사는 각각 KS M 6070 및 KS D 3629에 따른다.

2.2 철근 고임재 및 간격재

- (1) 철근 고임재 및 간격재의 수량 및 배치의 표준은 표 2.2-1에 따른다.
- (2) 보, 기둥, 지중보, 슬래브, 벽 및 지하 외벽의 간격재는 사전에 책임기술자의 승인을 받은 경우 플라스틱 제품을 측면에 사용할 수 있다.
- (3) 노출콘크리트 면에서 거푸집 면에 접하는 고임재 또는 간격재는 모르타르, 콘크리트, 스테인리스, 플라스틱 등 부식되지 않는 제품을 사용하여야 한다.
- (4) 에폭시 도막철근의 고임재 및 간격재는 에폭시 도막에 손상을 주지 않는 재료를 사용하여야 하다.

표 2.2-1 철근 고임재 및 간격재의 수량 및 배치 표준

부위	종류	수량 또는 배치간격
기초	강재, 콘크리트	8 개/4 m ² 20 개/16 m ²
지중보	강재, 콘크리트	간격은 1.5 m 단부는 1.5 m 이내
벽, 지하외벽	강재, 콘크리트	상단 보 밑에서 0.5 m 중단은 상단에서1.5 m 이내 횡간격은 1.5 m 단부는 1.5 m 이내
기둥	강재, 콘크리트	상단은 보밑 0.5 m 이내 중단은 주각과 상단의 중간 기둥 폭방향은 1 m 미만 2개 1 m 이상 3개
보	강재, 콘크리트	간격은 1.5 m 단부는 1.5 m 이내
슬래브	강재, 콘크리트	간격은 상·하부 철근 각각 가로 세로 1 m

주) 수량 및 배치간격은 5^{\sim} 6층 이내의 철근콘크리트 구조물을 대상으로 한 것으로서, 구조물의 종류, 크기, 형태 등에 따라 달라질 수 있음.

2.3 철근 및 용접철망의 저장

- (1) 철근 및 용접철망은 직접 땅에 닿지 않도록 하고, 변형이 발생하지 않도록 적당한 간 격으로 지지하여 창고 내에 저장하여야 한다. 옥외에 적치할 경우에는 방수기능이 있는 씌우개로 덮어서 저장하여야 한다.
- (2) 취급 및 검사에 편리하도록 가공 또는 조립된 철근 및 용접철망은 종류별, 지름별, 사용부위별로 저장하여야 한다.
- (3) 연강과 고강의 철근은 반드시 구분하여 저장하여야 한다.

2.4 에폭시 도막철근의 저장

- (1) 에폭시 도막철근은 운반 및 저장시 에폭시 도막이 손상되지 않도록 취급하여야 한다. 특히, 철근과 철근 또는 묶음과 묶음 간의 충돌과 와이어로프 또는 받침대 등의 접촉으로 인한 에폭시 도막 손상에 주의하여야 한다.
- (2) 에폭시 도막철근은 이동을 최소화하기 위하여 도막철근이 위치해야할 곳에 최대한 가까이 하역하여야 한다.
- (3) 에폭시 도막철근은 떨어뜨리거나 끌지 않도록 하여야 한다.
- (4) 에폭시 도막철근은 에폭시 도막이 손상되지 않는 받침대에 올려서 운반 및 저장하고 철근 묶음을 쌓아 올릴 경우 묶음 사이에 나무 또는 고무 등의 완충재를 두어야 한다.
- (5) 에폭시 도막철근을 실외에 저장할 경우 외기환경에 의해 에폭시 도막철근에 손상이 발생되지 않도록 불투명 폴리에틸렌 시트 또는 보호재로 덮어야 한다. 에폭시 도막철 근을 묶음단위로 쌓아 올릴 경우, 쌓아올린 무더기의 경계를 보호재로 잘 덮어야 하고, 보호덮개 내부에 습기가 차지 않게 통풍이 잘 되도록 저장하여야 한다.

2.5 자재 품질관리

- (1) 현장에 반입된 철근은 요구되는 품질의 만족 여부를 시공하기 전에 검사하여야 한다.
- (2) 철근의 품질 검사는 입하 시에 실시하며, 품질 검사 항목, 시험 및 검사 방법, 판정 기준 등은 철근의 종류별로 KS의 항목에 따라 표 2.5-1과 같이 실시한다.

표 2.5-1 철근의 품질 검사

종류	항목	시험 및 검사 방법	시기 및 횟수	판정기준
철근콘크리트용	KS D 3504의	제조회사의 시험성적서에 의한 확인		KS D 3504에
봉강	품질 항목	또는 KS D 3504의 방법		적합할 것
철근콘크리트용	KS D 3527의	제조회사 시험성적서에 의한 확인	입하 시	KS D 3527에
재생강	품질 항목	또는 KS D 3527의 방법		적합할 것
에폭시	KS D 3629의	제조회사 시험성적서에 의한 확인		KS D 3629에
도막철근	품질 항목	또는 KS D 3629의 방법		적합할 것
철근콘크리트용	KS D 3613의	제조회사 시험성적서에 의한 확인		KS D 3613에
아연도금봉강	품질 항목	또는 KS D 3613의 방법		적합할 것

3. 시공

3.1 철근

3.1.1 철근의 가공

- (1) 철근의 가공은 철근상세도에 표시된 형상과 치수가 일치하고 재질을 해치지 않는 방법으로 이루어져야 한다.
- (2) 철근상세도에 철근의 구부리는 내면 반지름이 표시되어 있지 않은 때에는 KDS 14 20 50에 규정된 구부림의 최소 내면 반지름 이상으로 철근을 구부려야 한다.
- (3) 철근은 상온에서 가공하는 것을 원칙으로 한다.
- (4) 철근가공의 허용오차는 표 3.1-1에 따른다.

丑	3.1-1	가공치수의	허용오차
---	-------	-------	------

철 급	근의 종류	부호 (오른쪽 그림)	허용오차 (mm)
	럽, 띠철근, ŀ선철근	a, b	±5
ュ	D25 이하의 이형철근	a, b	±15
밖의 철근	D29 이상 D32 이하의 이형철근	a, b	±20
가공 후의 전 길이		L	±20

3.1.2 철근의 조립

- (1) 철근의 표면에는 부착을 저해하는 흙, 기름 또는 이물질이 없어야 한다. 경미한 황갈 색의 녹이 발생한 철근은 일반적으로 콘크리트와의 부착을 해치지 않으므로 사용할 수 있다.
- (2) 철근은 바른 위치에 배치하고, 콘크리트를 타설할 때 움직이지 않도록 충분히 견고하 게 조립하여야 한다. 이를 위하여 필요에 따라서 조립용 강재를 사용할 수 있다. 또한 철근이 바른 위치를 확보할 수 있도록 결속선으로 결속하여야 한다.
- (3) 철근의 피복두께를 정확하게 확보하기 위해 적절한 간격으로 고임재 및 간격재를 배 치하여야 한다. 고임재와 간격재를 선정하고 배치할 때에는 사용개소의 조건, 이들의 고정 방법 및 철근의 중량, 작업하중 등을 고려할 필요가 있다.
- (4) 일반적으로 널리 사용되는 고임재 및 간격재에는 모르타르 제품, 콘크리트 제품, 강제품, 플라스틱 제품, 세라믹 제품 등이 있으며, 사용되는 장소, 환경에 따라 적절한 것을 선정할 수 있다.
- (5) 거푸집에 접하는 고임재 및 간격재는 콘크리트 제품 또는 모르타르 제품을 사용하여 야 한다.
- (6) 플라스틱 제품은 콘크리트와의 열팽창률의 차이, 부착 및 강도 부족 등의 문제가 있으며, 스테인리스 등의 내식성 금속으로 만든 고임재 및 간격재는 서로 다른 종류의 금속간의 접촉부식 문제 등 불명확한 점이 있으므로 이들을 사용할 경우에는 책임기술자의 승인을 얻어야 한다.
- (7) 철근은 조립이 끝난 후 철근상세도에 맞게 조립되어 있는지를 검사하여야 한다.
- (8) 철근은 조립한 다음 장기간 경과한 경우에는 콘크리트를 타설 전에 다시 조립 검사를

하고 청소하여야 한다.

3.1.3 철근의 이음

3.1.3.1 철근이음 일반

- (1) 철근상세도에 표시되어 있지 않은 곳에 철근의 이음을 둘 경우에는, 그 이음의 위치와 방법은 KDS 14 20 00의 각 하위 코드에 따라 정하여야 한다.
- (2) D35를 초과하는 철근은 겹칩이음을 할 수 없다. 다만, 서로 다른 크기의 철근을 압축 부에서 겹침이음하는 경우 D35 이하의 철근과 D35를 초과하는 철근은 겹침이음을 할 수 있다.
- (3) 철근이음에 가스압접이음, **기계적이음**, 용접 이음, 슬리브이음 등을 적용할 경우에는 각각 사전에 준비된 이음지침에 따라야 한다. 그러나 이와 같은 것이 구비되지 않은 경우에는 가스압접이음은 3.1.3.2, **기계적이음**은 3.1.3.3, 용접 이음은 3.1.3.4에 따르고 그 성능을 사전에 시험 등에 의한 방법으로 확인한 다음 철근의 종류, 지름 및 시공 장소에 따라 가장 적당한 이음방법을 선택하여야 한다.
- (4) 장래의 이음에 대비하여 구조물로부터 노출시켜 놓은 철근은 손상이나 부식을 받지 않도록 보호하여야 한다.

3.1.3.2 가스압접이음

- (1) 압접공은 작업 대상과 압접 장치에 관하여 충분한 경험과 지식을 가진 자로 책임기술 자 승인을 받아야 한다.
- (2) 철근의 압접은 철근상세도 및 시공계획서에 위치를 표기하여 책임기술자 승인을 받아 야 한다. 압접단면의 처리는 재축에 직각으로 절단하고 압접 작업 당일에 유해한 부 착물을 완전히 연마하여 제거하여야 한다.
- (3) 압접 완료시 검사는 표 3.1-2에 따르고, 검사 성적서를 책임기술자에게 제출하여 승인을 받아야 한다.

표 3.1-2 철근이음의 검사

종류	항목	시험·검사 방법	시기·횟수	판정기준
 겹침	위치	육안 관찰 및	가공 및 조립	철근상세도와
이음	이음길이	자에 의한 측정	때	일치할 것
	위치			철근상세도와 일치할 것
가스 압접 이음	외관 검사	외관 관찰, 필요에 따라 자, 버니어켈리퍼스 등에 의한 측정	전체 개소	사용목적을 달성하기 위해 정한 별도의 것

	초음파탐사 검사	KS B 0839	1검사 로트 ¹⁾ 마다 30개	사용목적을 달성하기 위해 정한 별도의 것
	인장시험	KS B 0554	1검사 로트 ¹⁾ 마다 3개	설계기준항복 강도의 125 %
	위치	육안 관찰, 필요에 따라 자, 버니어켈리퍼스 등에 의한 측정		철근상세도와 일치할 것
	외관 검사	(커플러 이음의 헐거움 여부를 중심으로 커플러 내·외경 및 길이, 철근 가공 치수 등이 이상 없을 것)	전체 개소	제조회사의 시험 성적서에 사용된 시편과 일치할 것
기계적	인장시험	제조회사의 시험 성적서에 의한 확인 또는 별도 인장시험	설계도서에 의함	설계기준항복 강도의 125 %
이음	잔류 변형량	KCI-ST103	제품규격별 1회 ¹⁾ , 잔류변형량에 영향을 주는 형상, 재료, 생산방법에 변화가 있을 때 마다 1회	<u>철근상세도에</u> 표시된 등급 ²⁾ 과 일치할 것
용접 이음	외관 검사	육안 관찰 및 자에 의한 측정	모든 이음부위마다	 용접치수와 용접길이를 포함하여 철근상세도와 일치할 것 용접표면 결함이 없을 것
	용접부의 결함	KS B 0816 또는 KS B 0845 또는 KS B 0896 또는 KS D 0213	1검사 로트 <mark>3</mark> 마 다 30개	해당 KS 또는 강 구조공사표준시 방서 (KCS 14 31 20) 4.11에 따를 것
	인장시험	KS B 0802 KS B ISO 17660-1	1검사 로트 ³⁾ 마 다 3개	설계기준항복 강도의 125 %

주1) 1회시험값은시험체 3개이상시험값의 평균값임.

<u>주2</u>) 등급별 잔류변형량: 1등급0.3mm이하,2등급0.6m이하,3등급1.0mm이하(KDS142052(4.5.2(4)))

<u>**주3**</u>) 1검사 로트는 원칙적으로 동일 작업반이 동일한 날에 시공한 압접 또는 용접 개소로서 그 크기는 200개소 정도 를 표준으로 함.

3.1.3.3 기계적이음

- (1) **기계적이음**을 시공하는 작업자는 **기계적이음**에 대하여 충분한 경험과 지식을 가진 자로 책임기술자의 승인을 받아야 한다.
- (2) **기계적이음**을 하는 철근은 재축에 직각으로 가공하고 기계적 이음장치에 유해한 부착 물을 완전히 제거하여야 한다.
- (3) <u>기계적이음</u>의 검사는 표 3.1-2에 의하며 검사성적서를 책임기술자에게 제출하여 승인을 받아야 한다. <u>검사성적서에는 기계적이음의 재료와 생산방법, 시공방법을 포함한</u> 제조사 특기시방서가 첨부되어야 한다.

3.1.3.4 용접 이음

- (1) 철근을 용접할 때에는 용접시공에 앞서 용접작업계획서를 제출하여야 한다. 용접작업 계획서에 포함되어야 하는 사항은 KCS 14 31 20 (1.2.2)에 따른다.
- (2) 용접이음은 철근의 용접이음에 대하여 충분한 경험과 지식을 가진 용접사가 수행하여 야 하며, 책임기술자 승인을 받아야 한다.
- (3) 용접 이음은 철근에 묻은 기름, 먼지 및 기타 이물질을 청소하고 화염으로 건조시킨 후에 실시하고, 용접 후에 손상된 아연도금은 보수하여야 한다.
- (4) 이음길이를 확보하기 위하여 콘크리트를 파쇄할 때는 철근의 손상을 최소화하고 직선 상태를 유지할 수 있는 방법으로 작업해야한다.
- (5) 철근의 용접부에 순간최대풍속 2.7 m/s 이상의 바람이 불 때는 철근을 용접할 수 없으며, 풍속을 2.7 m/s 이하로 저감시킬 수 있는 방풍시설을 설치하는 경우에만 용접할 수 있다.
- (6) 대기의 온도가 영하 18 °C 이하일 때에는 철근을 용접할 수 없으며, 대기의 온도가 영하 18°C보다는 높지만 0 °C 이하일 때는 용접을 시작할 때 철근의 온도가 21°C 이상이 되도록 철근을 예열하는 경우에만 용접할 수 있다.
- (7) 예열이 필요한 경우 용접구간 끝에서 150 mm 씩 연장된 부위를 예열하여야 한다.
- (8) 용접 겹침이음되는 철근 사이 간격은 일정하게 유지되어야하며, 용접 루트간격의 상한값은 용접작업계획서에 따른다.
- (9) 콘크리트에 매립된 철근을 용접할 때는 용접열에 의해 콘크리트에 유해한 균열이나 손상이 발생되지 않도록 용접열을 차단하는 조치를 하여야 한다.
- (10) 피복아크용접(SMAW)용 용접봉은 KS D 7006, 플릭스코어드아크용접(FCAW)용 용접 봉은 KS D 7104에 적합해야 하며 용접되는 철근 강종에 적합한 강도를 가져야 한다. 용접재료의 품질관리는 KCS 14 31 20 (2.3, 3.3.1, 3.3.4(1))에 따른다.
- (11) 용접은 아래보기자세나 수평자세 또는 수직자세로 실시하여야 하며 위보기자세로 용접해서는 안 된다. 수직자세로 용접할 때에는 상향으로 용접을 진행하여야 한다.
- (12) 용접작업의 일반사항은 KCS 14 31 20 (3.1.1)에 따르며, 피복아크용접(SMAW)은 KCS 14 31 20 (3.5), 플럭스코어드아크용접(FCAW)은 KCS 14 31 20 (3.7)에 따라 실시한다.

- (13) 용접이 완료된 후 용접부는 공기 중에서 자연 냉각시켜야한다.
- (14) 철근의 용접이음 검사는 표 3.1-2에 의하며 검사 성적서를 책임기술자에게 제출하여 승인을 받아야 한다.
- (15) 용접 결함부의 보수는 KCS 14 31 20 (3.12)에 따른다.

3.1.4 사전에 조립된 철근

(1) 사전에 조립된 철근은 현장 치수에 맞는지 확인하고, 소정의 위치에 안전하고 정확하 게 설치하여야 한다.

3.2 에폭시 도막철근

3.2.1 에폭시 도막철근의 가공

- (1) 에폭시 도막철근은 에폭시 도막이 손상되지 않도록 가공하여야 하며 에폭시 도막철근 의 휨 가공은 5 °C 이상에서 작업하여야 한다.
- (2) 에폭시 도막철근은 가급적 현장 가공하지 않는다. 만약 현장 가공이 꼭 필요하다면 에 폭시 도막철근 현장 가공시 책임기술자의 승인을 받아야 한다.
- (3) 에폭시 도막철근은 가스 절단을 하지 않아야 한다. 에폭시 도막철근을 커터 절단할 경우 가급적 절단 충격이 도막철근에 전달되지 않도록 한다.

3.2.2 에폭시 도막철근의 조립

- (1) 에폭시 도막철근은 조립시 충격을 주지 않아야 하며 철근 상호간의 충돌 및 접촉에 의한 손상을 방지하여야 한다.
- (2) 에폭시 도막철근의 결속재료는 에폭시 도막에 손상을 주지 않는 재료를 사용하여야 한다.

3.2.3 손상된 에폭시 도막 보수

- (1) 손상된 에폭시 도막철근은 콘크리트 타설 전 모두 보수하여야 한다.
- (2) 에폭시 도막이 손상된 경우, 300 mm 길이 당 보수해야 할 표면적이 2 %를 넘지 않아 야 한다.
- (3) 300 mm 길이 당 보수해야 할 표면적이 2 %를 초과하는 에폭시 도막철근은 사용할 수 없다.
- (4) 손상된 에폭시 도막에 덧댄 보수재의 면적은 300 mm 길이 당 5 %를 넘지 않아야 한다.
- (5) 손상된 에폭시 도막의 보수는 보수재 제조사가 권장하는 방법으로 수행되어야 한다.

3.2.4 에폭시 도막철근 조립 후 유의사항

(1) 에폭시 도막철근은 조립이 끝난 후 에폭시 도막 손상에 대하여 검사하고 책임기술자

의 승인을 받아야 한다.

- (2) 에폭시 도막철근 배치 후, 도막 철근 위에 걷는 것을 최소화하고 가동 장비는 도막철 근에 손상이 가지 않도록 배치하여야 한다.
- (3) 콘크리트의 밀실화를 위해 사용되는 내부 진동기는 에폭시 도막철근의 손상을 방지하기 위해 비금속 헤드를 장착하여야 한다.

3.3 용접철망

3.3.1 용접철망의 가공

- (1) 용접철망은 설비를 갖춘 공장에서 생산하여야 한다.
- (2) 유해한 굽은 철선이나 손상이 있는 철선은 사용할 수 없다.
- (3) 용접철망은 철근상세도에 제시된 치수와 형상에 맞추어 절단하여야 한다. 절단은 정착 방법과 이음의 종류 등에 따르며, 절단기, 진동톱 및 쉬어커터 등의 기계적 방법에 의하여야 한다.
- (4) 용접철망의 가공은 책임기술자의 특별한 지시가 없는 한 상온에서 냉간 가공하여야 한다.

3.3.2 용접철망의 조립

- (1) 용접철망은 철근상세도에 따라 정확하게 배근하고, 콘크리트 타설이 완료될 때까지 이동되지 않도록 견고하게 조립하여야 한다.
- (2) 용접철망 고임재 및 간격재 등은 시공 상세도에 따라 배치하고, 용접철망과 거푸집판 과의 소요 간격 및 용접철망 간격 등을 정확히 유지하여야 한다.

3.3.3 용접철망의 이음

- (1) 용접철망의 이음 위치 및 방법은 철근상세도에 따른다.
- (2) 용접철망의 이음은 서로 엇갈리게 하여 일직선상에서 모두 이어지지 않도록 하며, 이음은 최소 한 칸 이상 겹치도록 하고 겹쳐지는 부분은 결속선으로 묶어야 한다.

3.4 현장 품질관리

3.4.1 철근이음의 검사

- (1) 철근이음의 검사는 표 3.1-2에 따른다.
- (2) 검사 결과, 철근이음이 적당하지 않다고 판정된 경우에는 철근의 이음을 철근상세도 에 적합하도록 수정하여야 한다.

3.4.2 철근가공의 검사

(1) 철근가공의 품질 검사는 표 3.4-1에 따른다.

(2) 검사 결과, 가공이 적당하지 않다고 판정된 경우에는 철근의 가공을 철근상세도의 치수에 맞게 수정하여야 한다.

표 3.4-1 철근 가공 및 조립에 대한 품질 검사

	항목	시험·검사 방법	시기·횟수	판정기준
철근의	l 가공치수	자 등에 의한 측정		표 3.1-1의 허용오차 이내
	재의 종류, 치, 수량	육안 관찰		철근의 피복이 바르게 확보되도록 적절히 배치되어 있을 것
철근의	고정방법	육안 관찰	조립 후 및	콘크리트를 타설할 때 변형, 이동의 우려가 없을 것
	이음 및 정착 위치	자 등에 의한 측정 및 육안 관찰	육안	철근가공 조립도와 일치할 것
조립된 철근의 배치	콘크리트 최소피복 두께			허용오차: d ≤ 200 mm인 경우 -10 mm, d > 200 mm인 경우 -13 mm
	유효깊이			허용오차: d ≤ 200 mm인 경우 ±10 mm, d > 200 mm인 경우 ±13 mm

주 1) 다만, 하단 거푸집까지의 순거리에 대한 허용오차는 -7 mm이며, 피복두께의 허용오차는 도면 또는 설계기준에서 요구하는 최소 피복두께의 -1/3으로 하여야 한다.

부록 콘크리트용 앵커

1. 일반사항

1.1 적용범위

(1) 이 기준은 강재 부재와 철근콘크리트와의 접합부에 사용하는 콘크리트용 선설치 앵커에 대한 일반적이고 기본적인 사항을 규정한다.

1.2 참고 기준

1.2.1 관련 법규

내용 없음.

1.2.2 관련 기준

- · KS B 1016 기초 볼트
- · KS B ISO 898-1 탄소강과 합금강으로 제작한 나사 부품의 기계적 성질 제1부 : 볼 트, 스크루 및 스터드

1.3 용어의 정의

- 선설치 앵커(cast-in-place anchor) : 콘크리트 치기 이전에 설치되는 헤드 볼트, 스터드 볼트 또는 갈고리 볼트 등의 앵커
- 앵커, 앵커 볼트(anchor, anchor bolt): 일부분이 콘크리트에 매입 정착되어 있으면서 나머지 부분은 콘크리트 마감면에 접합되는 강재 부재에 체결되어 강재 부재에 생기는 부재력을 콘크리트에 전달하는 역할을 하는 철물

1.4 콘크리트용 앵커 일반

(1) 콘크리트용 앵커의 구조설계에 관한 사항은 콘크리트 구조설계기준 KDS 14 20 54의 규정을 따른다.

1.5 제출물

- (1) 앵커 시공 상세도면
- (2) 앵커 시험 성적서

2 재료

2.1 구성재료

(1) 앵커용 강재는 KS B 1016 및 KS B ISO 898-1에 적합한 것이어야 한다.

2.2 앵커 볼트의 형태

(1) 앵커 볼트는 봉강에 나사산을 가공한 후 단부에 정착을 위한 너트를 체결한 형태나 헤드 볼트 또는 갈고리 볼트의 형태라야 한다.

3 시공

3.1 앵커 볼트의 배치 및 설치

- (1) 앵커 볼트 배치는 양방향으로 대칭 형태를 이루어야 하며 충격 등에 움직임이 없도록 설치하여야 한다.
- (2) 앵커 볼트는 인접한 벽체 등으로 인해 너트 체결에 방해를 받지 않도록 충분한 간격을 갖도록 배치하여야 한다. 또한, 앵커 볼트는 하부 철근과 간섭되지 않아야 한다.
- (3) 앵커 볼트의 설치는 강재 부재와 콘크리트 부재의 연결이 원활하도록 하여야 한다.
- (4) 앵커 볼트의 조임 방법은 너트의 밀착을 확인한 후에 직경 36 mm 이하 앵커 볼트의 경우 60°, 직경 36 mm를 초과하는 앵커 볼트의 경우 30° 회전시킨다.

3.2 그라우트에 관한 요구 사항

- (1) 그라우트의 강도는 접합되는 콘크리트 강도의 2배 이상인 무수축 재료를 선택하여야 한다.
- (2) 그라우트의 두께는 40mm ~ 50mm로 하여야 한다.

3.3 앵커 볼트의 공사 중 보호

(1) 앵커 볼트 설치 후 앵커 볼트의 위치가 통행 차량에서 식별할 수 있도록 표시하여 손 상이 발생하지 않도록 하여야 한다.

집필위원

성 명	소 속	성 명	소 속
김길희	공주대학교	장승엽	한국교통대학교
김상구	스틸센트럴	천성철	인천대학교
이득행	충북대학교	최정욱	한국콘크리트학회
이재훈	영남대학교	하상수	강남대학교
이종한	인하대학교	황현종	건국대학교

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이영호	한국건설기술연구원	김상철	한서대학교
김기현	한국건설기술연구원	김영진	한국콘크리트학회
김나은	한국건설기술연구원	김지상	서경대학교
김민관	한국건설기술연구원	김춘호	중부대학교
김재훈	한국건설기술연구원	노병철	상지대학교
김태송	한국건설기술연구원	박민용	㈜삼표산업
김희석	한국건설기술연구원	박철우	강원대학교
류상훈	한국건설기술연구원	오홍섭	경상국립대학교
안준혁	한국건설기술연구원	윤인석	인덕대학교
원훈일	한국건설기술연구원	이도형	배재대학교
이상규	한국건설기술연구원	이지훈	㈜케이씨아이
이소정	한국건설기술연구원	이창홍	㈜포스코이앤씨
이승재	한국건설기술연구원	이채규	㈜한국구조물안전연구원
이승환	한국건설기술연구원	장봉석	한국수자원공사
이용수	한국건설기술연구원	장승엽	한국교통대학교
이원종	한국건설기술연구원	최정욱	한국콘크리트학회
주영경	한국건설기술연구원		
최봉혁	한국건설기술연구원		
허원호	한국건설기술연구원		

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김선백	대우건설	임남기	동명대학교
김성훈	국토안전관리원	임명종	GS건설
이도형	배재대학교	장봉석	한국수자원공사
이용택	국립한밭대학교		

국토교통부

성 명	소 속	성 명	소 속
권미정	국토교통부 기술혁신과	배규민	국토교통부 기술혁신과
양성모	국토교통부 기술혁신과		

KCS 14 20 11 : 2024

철근공사

2024년 12월 30일 개정

소관부서 국토교통부 기술혁신과

관련단체 한국콘크리트학회

06130 서울특별시 강남구 테헤란로7길 22 한국과학기술회관 신관 1009호

http://www.kci.or.kr

작성기관 한국콘크리트학회

06130 서울특별시 강남구 테헤란로7길 22 한국과학기술회관 신관 1009호

http://www.kci.or.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

http://www.kcsc.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

http://www.kcsc.re.kr