۵ جلسهی پنجم، مثالهایی از تایپها

پیش از آن که به هدف این جلسه، یعنی بررسی چند مثال از تایپها بپردازیم، نکتهی زیر را دربارهی توپولوژی استون متذکر میشویم.

 $a \leq b \Leftrightarrow a \wedge b = a$ نکته ۶۹: فرض کنید $\langle B, \wedge, \vee, \bullet, 1 \rangle$ یک جبر بولی باشد، که روی آن ترتیب $A \subseteq B$ اصول زیر تعریف شده است. زیرمجموعه $A \subseteq B$ را یک فیلتر، یا یک پالایه میخوانیم هرگاه اصول زیر درباره ی آن صادق باشند.

- $a \in A \rightarrow \forall b > a \quad b \in A \bullet$
 - $a, b \in A \rightarrow a \land b \in A \bullet$
 - $\cdot \cdot \not \in A \bullet$

مفهوم فیلتر، دوگان مفهوم ایدهآل است (یک جبر بولی را میتوان حلقهای با مشخصه ی صفر در نظر گرفت. ایدهآل در این بافتار معنا می یابد). فیلتر A را یک فرافیلتر میخوانیم هرگاه برای هر $b \in A$ نتجه شو د که $a \in A$ نتجه شو د که $a \in A$

برای جبر بولی B قرار میدهیم

$$\max(B) = \{A \subseteq B |$$
ست B یک فرافیلتر روی $A\}$

روی $\max(B)$ مجموعههای زیر تشکیل پایهای برای یک توپولوژی می دهند که آن را توپولوژی استون می خوانند:

$$[a] = \{A \in \max(B) | a \in A\}.$$

این توپولوژی، فشرده و تماماً ناهمبند است.

توپولوژی استون در فضای $S_n(T)$ نیز از توپولوژی استون جبری به دست می آید روی جبر لیندنبام $S_n(T)$ نیز از تعریف می شود:

$$B_n(T) = \{ [\phi(\bar{x})]_{\sim} | \phi(\bar{x}) \in Formul \}$$

که در آن منظور از $\phi(ar{x})$ کلاس فرمول ϕ تحت رابطه ی همارزی زیر است:

$$\phi(\bar{x}) \sim \psi(\bar{x}) \Leftrightarrow T \models \forall \bar{x} \quad \phi(\bar{x}) \leftrightarrow \psi(\bar{x})$$

و تعریف کردهایم

$$\begin{split} [\phi]_{\sim} \wedge [\psi]_{\sim} &= [\phi \wedge \psi]_{\sim} \\ [\phi]_{\sim} \vee [\psi]_{\sim} &= [\phi \vee \psi]_{\sim} \\ & \cdot = [x \neq x]_{\sim} \\ & \cdot = [x = x]_{\sim} \end{split}$$

تمرین ۷۰: نشان دهید که ابرفیلترها در $B_n(T)$ همان تاییهای کامل هستند.

مثال ۷۱ (تایپها در DLO): تئوری DLO، یا تئوری مجموعههای مرتب خطی بدون ابتدا و انتها، در زبان $L=\{\leq\}$ به صورت زیر اصلبندی می شود.

- $. \forall x \quad x < x \bullet$
- $\forall xy \quad x \le y \land y \le x \to x = y \bullet$
- $\forall xyz \quad x \leq y \land y \leq z \rightarrow x \leq z \bullet$
 - $\forall xy \quad x < y \lor y < z \bullet$
- $\forall xy \quad x \leq y \rightarrow \exists x \quad x < z < y \bullet$
 - $\forall x \quad \exists y_1 y_1 \quad y_1 < x < y_1 \bullet$

به عنوان مثال $\langle \mathbb{Q}, \leq \rangle$ و $\langle \mathbb{R}, \leq \rangle$ دو مدل از DLO هستند.

با استفاده از سامانههای رفت و برگشتی (به تمرینهای سری نخست و دوم مراجعه کنید) میتوان نشان داد که تئوریِ DLO سورها را حذف میکند و % _ جازم است؛ این دومی یعنی هر دو مدل شمارا از DLO با هم ایزومرفند. در ادامه برآنیم تا تایپها را در DLO بشناسانیم.

نخست به بررسی $S_1(DLO)$ میپردازیم. بنا به حذف سور، هر فرمول معادل است با فصلی متناهی از عطفهای متناهی فرمولهای اتمی. فرمولهای اتمی و نقیض اتمی با تک متغیر x (و بدون پارامتر) تنها به یکی از صُور زیرند:

- $x < x \bullet$
- $x = x \bullet$
- $\neg(x \leq x) \bullet$
- $\neg(x=x) \bullet$

توجه کنید که اگر p_1, p_7 دو تایپ متفاوت باشند، از آنجا که تایپ کامل، مجموعهای ماکزیمال از فرمولهاست، باید فرمولی چون $\phi(x)$ موجود باشد که ایندو را از هم متمایز کند؛ یعنی $\phi(x)$ موجود باشد که ایندو را از هم متمایز کند؛ یعنی باشد چون $\neg \phi \in p_7$. سه نوع فرمول بالا با هم سازگارند (و فرمول آخر نمی تواند در هیچ تایپی باشد چون ناسازگار است)؛ پس $|S_1(DLO)| = |[x=x]| = |[x\leq x]|$.

حال به $S_n(DLO)$ میپردازیم. گیریم $\mathfrak{M}\models DLO$ حال به میپردازیم.

$$\mathrm{Diag}(x_1,\ldots,x_n)_{a_1,\ldots,a_n}:=\mathrm{qftp}(a_1,\ldots,a_n)=\{\phi(x_1,\ldots,x_n)|M\models\phi(a_1,\ldots,a_n),$$
 اتمی یا نقیض اتمی ϕ }

بنا به حذف سور، $\operatorname{tp}(a_1,\ldots,a_n)$ را $\operatorname{tp}(a_1,\ldots,a_n)$ به طور کامل مشخص میکند؛ یعنی

$$\{\operatorname{tp}(a_1,\ldots,a_n)\} = \left[\bigwedge_{\phi \in \operatorname{Diag}(x_1,\ldots,x_n)_{a_1,\ldots,a_n}} \phi\right]$$

بنابراین برای هر $n \in \mathbb{N}$ مجموعهی $S_n(DLO)$ متناهی است.

در جلسات آینده قضیه ی ریل نار دو سکی * را ثابت خواهیم کرد که بنا به آن، هر تئوری کامل، \mathbb{R} عاد ماست اگروتنها اگر تعداد n تایپها در آن متناهی باشد.

حال به بررسی تایپهای دارای پارامتر می پردازیم. مدل $\mathbb{Q},\leq\rangle\models T$ را در نظر گرفته قرار دهید حال به بررسی تایپهای دارای پارامتر می پردازیم. مدل $\{c_r\}_{r\in\mathbb{Q}}$ و از این رو هر مدل $T_{\mathbb{Q}}=\mathrm{Th}(\langle\mathbb{Q},\leq,r\rangle_{r\in\mathbb{Q}})$ و از این رو هر مدل از تئوری یادشده، توسیعی مقدماتی از $\mathbb{Q},\leq\rangle$ است. به آسانی می توان تحقیق کرد که $T_{\mathbb{Q}}$ سورها را حذف می کند (از آنجا که DLO چنین است). فرمولهای اتمی و نقیض اتمی تکمتغیره در این حالت، به یکی از صُور زیرند:

 $x < x \bullet$

^{*·}Ryll-Nardewski

- $x = x \bullet$
- $x < c_r \bullet$
- $x \ge c_r \bullet$
- $x = c_r \bullet$

برای تایپ p(x) در $S_{\mathrm{N}}(T_{\mathbb{Q}})$ حالات زیر متصور است.

اگر $x=c_r$ ، آنگاه واضح است که $r\in\mathbb{Q}$ موجود باشد، به طوری که واضح

$$[x=r] = \{p(x)\}.$$

اگر برای هر \mathbb{Q} داشته باشیم $r \in \mathbb{Q}$ نظر بگیرید: $x \neq c_r$ " و در نظر بگیرید:

$$U_p = \{ s \in \mathbb{Q} | \text{``}x < s\text{''} \in p \}$$

$$L_p = \{ s \in \mathbb{Q} | \text{``}x > s\text{''} \in p \}$$

توجه کنید که $(L_p \cap U_p) = 0$ نیز اگر $(L_p \cap U_p) = 0$ نیز اگر توجه کنید که $(L_p \cap U_p) = 0$ نیز اگر در بنابراین $(L_p \cup U_p) = 0$ نیز اگر در بنابراین نیز اگر مین در بنابراین در بنابراین نیز اگر در بنابراین در بنابرای

اگر 0 این تایپ 0 این تایپ $T_{\mathbb{Q}}\cup\{x>c_t\}_{t\in\mathbb{Q}}$ این تایپ 0 این تایپ 0 است. 0 است.

به طور مشابه تایپ $p=-\infty$ در حالتی که $L_p=\emptyset$ تعریف می شود.

 r^+ را با p را با $max L_p = r$ ناتهی باشند و L_p ناتهی باشند و L_p ناتهی باشند و L_p ناتهی بانگر نزدیکی بودن x از طرف راست به عدد گویای r است.

به طور مشابه تایپ r^- در صورتی که U_p دارای عنصر کمینه باشد تعریف می شود.

در صورتی که نه U_p مینیموم داشته باشد و L_p ماکزیموم، تایپ p را تایپ اصم میخوانیم. تعداد اینگونه تاییها \mathbf{Y}^{\aleph} است.

مطالب بالا را به صورت زیر جمعبندی میکنیم:

$$S_1(\mathbb{Q}) = S_1(T_{\mathbb{Q}}) = \{-\infty\} \cup \{+\infty\} \cup \{x = r\}_{r \in \mathbb{Q}} \cup \{r^-\}_{r \in \mathbb{Q}} \cup \{r^+\}_{r \in \mathbb{Q}}.$$

بنابراین Y^{\aleph} بنابراین $|S_1(T_{\mathbb{Q}})| = \mathsf{Y}^{\aleph}$ ؛ یعنی در این تئوری تعداد تایپهای تکمتغیره حداکثرممکن است.

 $T_{\mathbb{N}} := \operatorname{Th}(\mathbb{N}, \{n\}_{n \in \mathbb{N}})$ مثال ۷۲ (تایپها در حساب پئانو): هدفمان بررسی تایپهای تکمتغیره در $\theta(x,y)$ را در نظر بگیرید که

$$(\alpha, \beta) \models \theta \Leftrightarrow \alpha | \beta.$$

برای یک زیرمجموعه ی دلخواه A از اعداد اول، مجموعه ی زیر از فرمولها را در نظر بگیرید:

$$\pi_A = \{ p \mid x : p \in A \} \cup \{ p \mid x : p \notin A \}.$$

واضح است که $T_{\mathbb{N}} \cup \pi_A$ سازگار است، پس مجموعه ییادشده یک تایپ جزئی است. توجه کنید که اگر $T_{\mathbb{N}} \cup \pi_A$ دو زیرمجموعه از اعداد اول باشند آنگاه $\pi_{A_1} \cup \pi_{A_7} \cup T_{\mathbb{N}}$ ناسازگار است. بنابراین تایپهای کامل $\mathbb{P}_{A_1}, \mathbb{P}_{A_7}$ که از تکمیل تایپهای جزئی یادشده حاصل می آیند، با هم متفاوتند؛ یعنی به اندازه ی تعداد زیرمجموعه های اعداد اول می توان تایپ کامل پیدا کرد. پس

$$S_1(T_{\mathbb{N}}) = \mathbf{Y}^{\aleph}.$$

در جلسات آینده علاوه بر آوردن مثالهای دیگری از تایپها، به تحلیل تئوریها با کمک توپولوژی استون روی فضای تایپهایشان خواهیم پرداخت.

تعریف ۷۳ (تایپهای ایزوله): تایپ $p(\bar{x}) \in S_n(T)$ را یک تایپ ایزوله ۴ میخوانیم هرگاه به عنوان عنصری از $S_n(T)$ در توپولوژی استون ایزوله باشد؛ یعنی $S_n(T)$ مجموعهای باز باشد. بنابراین اگر $S_n(T)$ اگر $S_n(T)$ ایزوله باشد، آنگاه فرمول $S_n(T)$ چنان موجود است که $S_n(T)$.

وقتی تایپ p توسط فرمول ϕ ایزوله شود (یعنی هرگاه که $[\phi]=[\phi]$) فرمول یادشده تکلیف تایپ را به طور کامل مشخص میکند؛ به بیان دیگر برای هر فرمول $\psi(\bar x)\in \psi(\bar x)$ داریم

$$T \models \forall x \quad (\phi(\bar{x}) \to \psi(\bar{x})).$$

در DLO همه ی تاپیها ایزولهاند، زیرا تعداد تایپها متناهی است و از این رو همه ی نقاط به لحاظ توپولوژیک ایزولهاند. اگر $S_n(T)$ نامتناهی باشد، حتماً دارای یک نقطه ی غیرایزوله است (زیرا توپولوژی استون فشرده است و اگر قرار باشد همه ی تایپها ایزوله باشند، پوششی نامتناهی از متشکل از مجموعه های باز تک نقطه ای برای $S_n(T)$ یافت می شود که دارای هیچ زیرپوشش متناهی ای نباشد).

^{*\}isolated type