

Álgebra Linear Numérica

Notas de Aula

Ricardo Fabbri

28 de Agosto de 2018

O que é uma matriz?

Objetivos

- Aula introdutória informal dando visão geral e uma contextualização do curso
- Motivar alunos de engenharia da computação da importância da disciplina ao final do curso, no contexto de modelagem computacional do IPRJ/UERJ.
- O que é álgebra linear numérica: explicar termos "álgebra", "linear", e "numérica". Por quê são importantes.
- Matrizes como representação numérica de transformações lineares
- Critério de avaliação

O que é uma matriz?

- Uma tabela retangular de números, porém não só.
- Associados à tabela há uma "álgebra": operações algébricas usuais de multiplicação matriz-vetor e matriz-matriz vistas no ensino médio, que parecem arbitrárias.
- Quando falamos de matrizes em engenharia e ciência, sempre incluimos, portanto, tais operações.

- O curso se chama Álgebra Linear Numérica. Até agora, então, falamos algo de "numérico" (matrizes são um monte de números) e de "algébra" (operações). E o "linear"?
- Matrizes são representações numéricas de transformações lineares.

O que é "Linear"?

- Ao ouvir a palavra "linear", a maioria das pessoas tem em mente uma reta ou um plano.
- "Linearidade" em matemática é uma forma de "simplicidade".
- Esta simplicidade se manifesta em diversos níveis: o geométrico, o simbólico, e o numérico:

Simbólico: No plano simbólico ou algébrico, explica-se os fenômenos de forma operacional e abstrata, sem muita intuição conceitual sobre o significado dos símbolos ou operações.

Definição 1. (Simbolicamente Linear) Muitos matemáticos irão definir "linear" como a qualidade de uma função ou transformação L tal que

$$\begin{cases}
L(u+v) = L(u) + L(v) \\
L(\alpha v) = \alpha L(v),
\end{cases}$$
(1.0.1)

para todos vetores u e v, e escalares α .

- Tal definição, apesar de suscinta e formalmente elegante, tem pouca concretude imediata.
- "Linear" aqui significa apenas uma simplicidade formal, ou seja, as manipulações algébricas são simples.

Geométrico: No plano que aqui chamamos de "geométrico", "conceitual", ou "visual", os fenômenos são explicados de maneira concreta, mais próxima do objetivo ou de aplicações reais.

No mundo real, o que observamos a princípio não é numérico nem simbólico: uma bola girando, um flúido em movimento, ou um feixe de nêutrons. Muitas

vezes, conceitos próximos da realidade, independentes das convenções de símbolos ou números, são difíceis de formalizar e, portanto, não são enfatizados na maioria dos cursos de álgebra linear.

Definição 2. (Geometricamente Linear) Chama-se "Linear" qualquer operação geométrica que combina quaisquer das seguintes operações simples: girar, esticar e refletir.

- Tais operações são globais e realizadas sobre um mesmo ponto central (origem)
- O esticamento pode ser realizado por fatores diferentes ao longo de eixos arbitrários, e inclui achatamentos
- Geralmente, esta definição é um teorema na teoria da álgebra linear, visto apenas no final de um primeiro curso. Trata-se do teorema do SVD Singular Value Decompositon, ou decomposição em valores singulares. Trata-se de um análogo de autovalores e autovetores, e é o teorema mais importante a ser explorado neste curso.
- Como exemplo, temos a seguinte figura:

A mão à esquerda sofre transformações lineares na linha acima, e não-lineares na linha abaixo. As transformações acima são lineares pois consistem em girar ou esticar cada ponto da mão globalmente pelo mesmo ângulo ou fatores de esticamento. Já as transformações na linha abaixo são não-lineares pois os pontos ou sofrem deformações locais (diferentes para cada ponto da mão), ou não são meramente girados e esticados.

Numérico: Já definimos no início da aula que uma matriz é a representação numérica de uma transformação linear, seja esta pensada pela definição geométrica ou simbólica.

- Para maior compreensão do significado dos números e operações de uma matriz, na próxima aula revisaremos o conceito de *coordenadas*.
- Também revisaremos como encontrar os números em uma matriz para uma dada transformação linear

O teorema do SVD pode ser descrito numéricamente em termos de matrizes:

Teorema 1. (SVD numerico - informal) Toda matriz A de tamanho $m \times n$ pode ser escrita da forma:

Ou seja, toda matriz é uma matriz diagonal junto com matrizes ortogonais. A matriz diagonal realiza esticamento em cada eixo, e as matrizes ortogonais realizam rotações e reflexões.

• O tamanho das matrizes é

$$A_{m \times n} = V_{m \times m} \Lambda_{m \times n} U_{n \times n}^{\top}$$
(1.0.3)

- Portanto toda matriz é, de certa forma, equivalente a uma matriz diagonal de mesmo tamanho.
- Matrizes diagonais são matrizes da seguinte forma (exemplo 3×3):

$$\Lambda = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix},$$
(1.0.4)

as quais transformam pontos (x, y, z) da seguinte forma:

$$\Lambda = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax \\ by \\ cz \end{bmatrix}, \tag{1.0.5}$$

ou seja, esticam cada ponto ao longo de eixos por fatores a, b e c.

ullet Cada fator de esticamento a, b ou c pode ser zero, o que faz com que a matriz achate completamente uma das dimensões

Observações

- A translação é não-linear. Pode-se mostrar que, mesmo sendo uma operação geométrica simples, a translação não tem as propriedades de simplicidade algébrica como na definiçao simbólica acima, e também não pode ser expressa numericamente como uma multiplicação de matrizes.
- Com alguns artifícios, é possível realizar translação com multiplicação de matrizes, porém é preciso operações não-lineares (projeção).

Para quê servem as transformações lineares, se elas são tão limitadas?

- O mundo real é não-linear
- O "Linear" foi inventado como uma simplificação do não-linear, mas em si não tem aplicação prática.
- O linear não faz sentido sem o não-linear.
- O linear só existe como artefato para modelar o não-linear.
- O paradigma é tomar um fenomeno real (e não-linear) e linearizá-lo, para usar as ferramentas deste curso.
- Em Cálculo 1, estudamos funções não-lineares de uma variável usando a derivada como linearização local (reta tangente). A reta tangente é uma transformação linear de uma variável.
- Daí a importância de se estudar cursos como análise no \mathbb{R}^n , onde fenômenos não-lineares são modelados tendo como ferramenta básica a álgebra linear.

- Álgebra linear também é o primeiro contato do aluno com n dimensões, para n > 3, e tem importância direta na prática, por exemplo em inteligência artificial, $machine\ learning$.
- Por exemplo, o paradigma de cálculo e análise no \mathbb{R}^n é estudar o não-linear realizando linearizações locais (diferenciação). Dessa forma, para se deformar a mão de forma mais geral, como na figura abaixo, pode-se usar várias transformações lineares com fatores de esticamento e rotação diferentes para cada ponto:

- Em cada quadrado verde, temos uma deformação próxima de uma rotação e um esticamento.
- Curiosidade: a deformação não-linear da mão é uma função de $\mathbb{R}^2 \to \mathbb{R}^2$ estudada em Análise no \mathbb{R}^n . A aproximação da deformação de cada quadrado verde é chamada de diferencial da função não-linear, e sua forma numérica (matricial) é estudada em álgebra linear numérica.

Tarefas

- Site: http://wiki.nosdigitais.teia.org.br/ALN
- Realizar tarefa 0 e tarefa 1 (datas no site).

Exercícios

1. Explique como uma função $f:\mathbb{R}\to\mathbb{R},\ y=f(x),$ seria considerada linear, tanto em termos símbólicos e geométricos. Qual seria a fórmula dessa função?

Revisão de Álgebra Linear

Objetivos

- Relebrar representação numérica de vetores
- Revisar álgebra linear não-numérica ("simbólica")
- Estilo: revisão aprofundada para alunos que ja viram a disciplina. Notação solta adequada a uma revisão.

Observações Iniciais

- A álgebra liner numérica começa com o conceito de escalares e coordenadas.
- Para haver coordenadas, é necessária a escolha da escolha de uma base
- O conceito de espaço vetorial (simbólico) permite isolar as operações que não dependem da escolha de uma base, daquelas que dependem.

Definição 3. (Espaço Vetorial Simbólico) Um espaço vetorial \mathcal{V} sobre um corpo K é uma tupla ordenada $\mathcal{V} = (V, K, +, \cdot)$ de quatro elementos:

 $\mathcal{V} \quad \begin{cases} V \colon \text{conjunto cujos elementos são chamados "vetores"} \\ K \colon \text{conjunto cujos elementos são chamados "escalares"} \\ + \colon \text{soma de vetores} \\ \cdot \colon \text{multiplicação vetor-escalar}, \end{cases}$

onde "+" satisfaz:

$$+: V \times V \to V \tag{2.0.1}$$

$$(v, w) \mapsto v + w, \tag{2.0.2}$$

$$v + w = w + v \tag{2.0.3}$$

$$v + (u + w) = (v + u) + w (2.0.4)$$

$$\exists ! \ 0 \in V \ tal \ que \ 0 + v = v, \ \forall v \in V$$
 (2.0.5)

$$\forall v \in V, \exists! \ w \in V \ tal \ que \ v + w = 0, simbolizado \ por - v$$
 (2.0.6)

e onde ":" satisfaz:

$$\cdot: K \times V \to V \tag{2.0.7}$$

$$(\alpha, w) \mapsto v + w, \tag{2.0.8}$$

$$v + w = w + v \tag{2.0.9}$$

$$v + (u + w) = (v + u) + w (2.0.10)$$

$$\exists ! \ 0 \in V \ tal \ que \ 0 + v = v, \ \forall v \in V$$
 (2.0.11)

$$\forall v \in V, \exists ! \ w \in V \ tal \ que \ v + w = 0, simbolizado \ por \ -v \tag{2.0.12}$$

e K satisfaz as propriedades de uma estrutura algébrida chamada "corpo", que abstrai as operações de multiplicação, soma, subtração e divisão possíveis com números, geralmente \mathbb{R} ou \mathbb{C} .

- Aos programadores em C++: a definição de espaço vetorial simbólico é como uma *classe*, que define as partes e as operações permitidas.
- Na definição simbólica um vetor é apenas caracterizado pelas operações que se pode realizar com ele, e as propriedades de tais operações.
- Até o momento, a única coisa "numérica" nesta definição é o corpo de escalares K. Os vetores ainda são entidades simbólicas que podem ser somadas e multiplicadas por escalar.
- A teoria simbólica parece artificialmente trivial todos já sabemos as propriedades convencionais de soma de vetores e multiplicação por escalar.

- No entanto, a teoria simbólica está mais próxima do conceitual que a teoria numérica, pois isola os fatores que não dependem da escolha de um sistema de coordenada.
- A conexão com o mundo numérico consiste em associar números a vetores. Para tanto, é importante definir base e, para isso, dependência linear.
- Iremos assumir que V e W são espaços vetoriais.

Definição 4. Uma combinação linear de $v_1, \ldots, v_n, v_i \in V$, é uma expressão da forma

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \sum \alpha_i v_i. \tag{2.0.13}$$

• Notação: quando não há ambuguidade, iremos omitir os índices dos somatórios \sum .

Definição 5. Os vetores v_1, \ldots, v_n são ditos linearmente indepententes (L.I.) se

$$\sum \alpha_i v_i \quad \Longleftrightarrow \quad \alpha_i = 0 \ i = 1, \dots, n \tag{2.0.14}$$

Proposição 2. v_1, \ldots, v_n são L.I. se, e somente se, cada v_i não é o vetor nulo (isto é, $v_i \neq 0$) e nenhum é combinação linear dos demais

Definição 6. $\{v_1, \ldots, v_n\} \subset V \ \acute{e} \ base \ de \ V \ se$

$$\begin{cases} v_1, \dots, v_n \ s\tilde{a}o \ L.I. \ e \\ todo \ v \in V \ \acute{e} \ combinaç\~{a}o \ linear \ dos \ v_i \ 's \end{cases} \tag{2.0.15}$$

Finalmente, chegamos ao conceito de coordenadas (numéricas) de um vetor:

Definição 7. (Coordenadas) Dada uma base $B = \{v_1, \ldots, v_n\}$ de V, então os números $\alpha_1, \ldots, \alpha_n$ tal que

$$v = \sum \alpha_i v_i \tag{2.0.17}$$

são chamados de coordenadas de v em V (na base B). Quando necessário, utilizase a notação explícita:

$$\mathcal{X}_B(v) = \begin{bmatrix} \alpha_1 \\ \alpha_n \end{bmatrix}, \tag{2.0.18}$$

onde o símbolo "chi" \mathcal{X} dever ser lido como "coordenada de".

- Se pensarmos no vetor simbólico $v \in V$ visualmente como uma seta desenhada no plano, suas coordenadas são um vetor numérico 2 números, sendo necessário definir a base (posição dos eixos $x \in y$).
- Fixada uma base, existe uma relação 1-1 entre vetores simbólicos v e vetores de n números.

Teorema 3. Dada uma base de n vetores, tem-se que:

- As n coordenadas de um vetor são únicas
- Qualquer outra base de V tem o mesmo número de elementos n, que usaremos como a definição da dimensão de V.

Demonstração Ambos decorrem de propriedades de sistemas lineares. Os detalhes já foram vistos pelo aluno no primeiro curso de álgebra linear.

• Concluímos que, ao escolher uma base, V pode ser tratado como o espaço numérico K^n (por exemplo, \mathbb{R}^n) com as operações numéricas usuais de soma de vetores numéricos e multiplicação de vetor numérico por escalar.

Matrizes de Transformações

Objetivos

- Representação numérica de transformações lineares: matrizes.
- Conectar álgebra linear simbólica com a numérica, mas a fundo.
- Sem a conexão do numérico com o simbólico, as matrizes perdem significado.
- Como obter os números de uma matriz, a partir do que se deseja realizar na prática?
- Fixar e aprofundar o que já foi visto em outros cursos

Vimos

- revisar conceitos da aula passada
 - Vetores como meros símbolos com operações algébricas de soma, e multiplicação por escalar
 - ullet Vetores numéricos como coordenadas ${\mathcal X}$ dos vetores simbólicos em uma base.
 - ullet V e W irão representar espaços vetoriais

Vamos lembrar a definição simbólica de transformação linear introduzida na Aula 1:

Definição 8. (Simbolicamente Linear) Uma função $L: V \to W$ é dita linear se

$$\begin{cases}
L(u+v) = L(u) + L(v) \\
L(\alpha v) = \alpha L(v),
\end{cases}$$
(3.0.1)

para todos vetores u, v, e escalares α . Em vez de "função" (vetorial), usamos o termo "transformação" ou "mapa".

Definição 9. Dado um mapa $L: V \to W$ e duas bases $A = \{a_1, a_2, \ldots, a_n\}$ e $B = \{b_1, b_2, \ldots, b_m\}$, a matriz de L relativa às bases A e B é a única matriz $\mathcal{M}_B^A(L)$ tal que:

$$\mathcal{X}_B(L(v)) = \mathcal{M}_B^A(L) \cdot \mathcal{X}_A(v)$$
(3.0.3)

para qualquer vetor $v \in V$, onde "·" é a multiplicação usual de matriz-vetor. Tal matriz é, portanto, uma função entre espaços numéricos de coordenadas $K^n \to K^m$ (por exemplo, de $\mathbb{R}^n \to \mathbb{R}^m$), realizada por multiplicação de matriz usual.

A Equação 3.0.3 acima é uma das equações mais importantes conectando álgebra linear simbólica com a álgebra linear numérica. O engenheiro deve memorizá-la.

Teorema 4. As entradas numéricas da matriz $\mathcal{M}_B^A(L)$ são dadas por:

$$\mathcal{M}_{B}^{A}(L) = \begin{bmatrix} | & | & | & | \\ M_{B}^{A}(L)(\mathcal{X}_{A}(a_{1})) & M_{B}^{A}(L)(\mathcal{X}_{A}(a_{2})) & \cdots & M_{B}^{A}(L)(\mathcal{X}_{A}(a_{n})) \\ | & | & | & | \end{bmatrix}$$
(3.0.4)

$$= \begin{bmatrix} | & | & | & | \\ \mathcal{X}_B(L(a_1)) & X_B(L(a_2)) & \cdots & X_B(L(a_n)) \\ | & | & | & | \end{bmatrix}$$
(3.0.5)

Ou seja, escreva cada vetor a_i da base A, transformado por L, em termos da base B, e em seguida coloque-os na coluna i da matriz.

Demonstração Como $\mathcal{X}_A(a_i)$ é dado por $(0, \dots, 1, \dots, 0)^{\top}$, onde 1 ocorre na i-ésima entrada, então a equação 3.0.3 aplicada a esse vetor resulta na i-ésima coluna da matriz como sendo $\mathcal{X}_B(L(a_i))$.

- Implícita na definição de matriz está tanto uma tranformação linear (que tem interpretações geométricas), como a escolha de uma base
- É possível, portanto, ter diversas representações numéricas (matrizes) para uma mesma transformação linear.
- A transformação identidade L = id, tal que id(v) = v, pode ter diversas representações matriciais, além da representação usual com 1's na diagonal.

Definição 10. (Matriz de mudança de base). Dadas duas bases A e B de um mesmo espaço vetorial V, a matriz de mudança de base de A a B é a matriz do mapa identidade relativa às bases A e B, ou seja, $\mathcal{M}_{B}^{A}(id)$.

Observações

• A matriz de mudança de base leva vetores numéricos $\mathcal{X}_A(v)$ a vetores numéricos $\mathcal{X}_B(v)$ via multiplicação usual de matrizes:

$$\mathcal{X}_B(v) = \mathcal{M}_B^A(id)\mathcal{X}_A(v). \tag{3.0.6}$$

• Apesar da tranformação identidade id ser tal que id(v) = v, a matriz dessa transformação relativa a bases A e B tal que $A \neq B$ não é a matriz identidade. Em outras palavras, não é o mapa identidade no espaço numérico.

$$\mathcal{M}_{B}^{A}(id): \mathcal{K}^{n}(\text{coordenadas}) \to \mathcal{K}^{n}(\text{coordenadas})$$
 (3.0.7)

$$\mathcal{X}_A(v) \mapsto M_B^A(id)\mathcal{X}_A(v) = X_B(v) \tag{3.0.8}$$

To Do

- 1. Explicar melhor como retas e planos sao nao-lineares
- 2. Figura de transformações nao-lineares e nao-diferenciaveis (rasgar, formar bicos, etc)