Applications of entailments: de Groot duality

Tatsuji Kawai

Japan Advanced Institute of Science and Technology

Workshop DOMAINS 8 July 2018, Oxford

De Groot duality

A topological space is **stably compact** if it is sober, locally compact, and finite intersections of compact saturated subsets are compact.

De Groot dual X^{d} of a stably compact space X is a set X equipped with the cocompact topology (i.e. the topology generated by the complements of compact saturated subsets). The space X^{d} is stably compact and $(X^{d})^{d} = X$.

Goubault-Larrecq (2010) showed that the de Groot duality induces a family of dualities on various powerdomain constructions:

- ▶ The dual of the Smyth powerdomain is the Hoare powerdomain of the dual, i.e. $P_U(X)^d \cong P_L(X^d)$, and *vice versa*.
- ▶ The Plotkin powerdomain construction commutes with duality, i.e. $P_V(X)^d \cong P_V(X^d)$.
- So does the probabilistic powerdomain construction.
- **.**..

We give a point-free (and constructive) account of de Groot duality.

A locale X is **stably compact** if the frame $\Omega(X)$ is a continuous lattice and the set

$$\uparrow x \stackrel{\mathsf{def}}{=} \left\{ x' \in X \mid x \ll x' \right\}$$

is a filter for each $x \in X$.

Stably compact locales are the Stone dual of stably compact spaces through the equivalence $SoberSpa \cong SpatialLoc$.

The de Groot dual X^{\triangle} of a stably compact locale X is the frame of Scott open filters on $\Omega(X)$ (cf. Escardó 2000).

3

I tried to reconstruct the dualities due to Goubault-Larrecq in the point-free setting, and got a couple of results, e.g. $P_U(X)^d \cong P_L(X^d)$. But I got stuck . . .

On the Duality of Compact vs. Open

ACHIM JUNG^{4,c} AND PHILIPP SÜNDERHAUF^{5,4,e}

^aSchool of Computer Science University of Birmingham Edgbaston Birmingham, B15 2TT, UK

^bDepartment of Computing Imperial College 180 Queens Gate London SW7 2BZ, UK

ABSTRACT: It is a pleasant fact that Stone-duality may be ABSTRACT: It is a picasam and other control of the category of compact spectral spaces: The Stopa division metic algebraic lattices, may be replaced by their sublattices and

Plan

1. Strong proximity lattices

2. De Groot duality

3. Applications

Stably compact locales

Proposition

A locale is stably compact if and only if it is a retract of a spectral locale (i.e. the frame of ideals of a distributive lattice).

Proof.

A stably compact locale X is a retract of the frame of ideals $\mathbf{Idl}(X)$. \square Since every idempotent splits in the category of locales:

Corollary

The category of stably compact locales is equivalent to the splitting of idempotents $\mathbf{Split}(\mathbf{Spec})$ of the category \mathbf{Spec} of spectral locales.

- ▶ An object of $\mathbf{Split}(\mathbf{Spec})$ is an idempotent (i.e. $f: X \to X$ s.t. $f \circ f = f$) in \mathbf{Spec} .
- ▶ A morphism $g: (f: X \to X) \to (f': X' \to X')$ in **Split**(**Spec**) is a continuous map $g: X \to X'$ in **Spec** such that $f' \circ g = g = g \circ f$.

Spectral locales

A relation $r \subseteq D \times D'$ between distributive lattices D and D' is approximable if

- **1.** $ra \stackrel{\text{def}}{=} \{b \in D' \mid a \ r \ b\}$ is a filter for each $a \in D$,
- **2.** $r^-b \stackrel{\text{def}}{=} \{a \in D \mid a \ r \ b\}$ is an ideal of D for each $b \in D'$,
- **3.** $a r 0' \implies a = 0$,
- **4.** $a \ r \ b \ \lor' \ c \implies (\exists b', c' \in D) \ a \le b' \ \lor \ c' \ \& \ b' \ r \ b \ \& \ c' \ r \ c.$

Distributive lattices and approximable relations form a category $\mathbf{DL_{AP}}$ with identities \leq_D and relational compositions.

Proposition

The category DL_{AP} is equivalent to the category of spectral locales.

9

Strong proximity lattices (Jung & Sünderhauf)

A strong proximity lattice is an object of $Split(DL_{AP})$, i.e. a distributive lattice D equipped with an idempotent relation \prec such that

- **1.** $\downarrow a \stackrel{\mathsf{def}}{=} \{b \in D \mid b \prec a\}$ is an ideal
- **2.** $\uparrow a \stackrel{\text{def}}{=} \{b \in D \mid b \succ a\}$ is a filter
- **3.** $a < 0 \implies a = 0$
- **4.** $a \prec b \lor c \implies (\exists b' \prec b) (\exists c' \prec c) a \leq b' \lor c'$
- **5.** $1 < a \implies a = 1$
- **6.** $a \wedge b \prec c \implies (\exists a' \succ a) (\exists b' \succ b) a' \wedge b' \leq c$.

Morphisms of strong proximity lattices are **approximable** relations.

Remark A strong proximity lattice (D, \prec) represents a stably compact locale X such that

$$\Omega(X) \cong \text{Rounded ideals of } (D, \prec).$$

An ideal $I \subseteq D$ is **rounded** if $a \in I \iff (\exists b \succ a) \ b \in I$.

Continuous entailment relations (Coquand & Zhang)

An **entailment relation** on a set S is a binary relation \vdash on the finite subsets of S such that

$$\frac{a \in S}{a \vdash a} \qquad \frac{A \vdash B}{A', A \vdash B, B'} \qquad \frac{A \vdash B, a \quad a, A \vdash B}{A \vdash B}$$

where "," denotes a union.

Remark An entailment relation (S, \vdash) presents a distributive lattice generated with generators S and relations $\bigwedge A \leq \bigvee B$ for $A \vdash B$.

An entailment relation (S,\vdash) is **continuous** if it is equipped with an idempotent relation \prec on S such that

$$(\exists C) A \prec_U C \vdash B \iff (\exists D) A \vdash D \prec_L B$$

where

$$\begin{array}{ccc} A \prec_U B & \stackrel{\mathsf{def}}{\Longleftrightarrow} & (\forall b \in B) \ (\exists a \in A) \ a \prec b \\ \\ A \prec_L B & \stackrel{\mathsf{def}}{\Longleftrightarrow} & (\forall a \in A) \ (\exists b \in B) \ a \prec b. \end{array}$$

Continuous entailment relations

Proposition

The category of continuous entailment relations is equivalent to that of strong proximity lattices.

Proof.

▶ If (D, \prec) is a strong proximity lattice, then (D, \vdash_D) defined by

$$A \vdash_D B \stackrel{\mathsf{def}}{\iff} \bigwedge A \leq_D \bigvee B$$

together with \prec is a continuous entailment relation.

▶ If (S, \vdash, \prec) is a continuous entailment relation, then the lattice D_S generated by (S, \vdash) together with the relation \ll on D_S defined by

$$\bigvee_{i < N} \bigwedge A_i \ll \bigwedge_{j < M} \bigvee B_j \stackrel{\mathsf{def}}{\Longleftrightarrow} \ \forall i < N \\ \forall j < M \\ \exists C \left[A_i \prec_U C \vdash B_j \right]$$

is a strong proximity lattice.

Generated continuous entailment relations

Let R be a set of pairs of finite subsets of a set S (called R a set of **axioms**). An entailment relation (S,\vdash) is **generated** by R if it is the smallest entailment relation on S that contains R, i.e. \vdash is generated by the following rules:

$$\frac{(A,B) \in R}{A \vdash B} \qquad \frac{a \in S}{a \vdash a} \qquad \frac{A \vdash B}{A',A \vdash B,B'} \qquad \frac{A \vdash B,a \quad a,A \vdash B}{A \vdash B}$$

Lemma

Let (S,\vdash) be the entailment relation generated by a set R of axioms. Then the dual \dashv is generated by $R^{\sf op} \stackrel{\sf def}{=} \{(B,A) \mid (A,B) \in R\}$.

Proposition

Let (S,\vdash) be the entailment relation generated by a set R of axioms, and let \prec be an idempotent relation on S. Then (S,\vdash,\prec) is a continuous entailment if and only if for each A and B

1.
$$A \prec_U C \& (C,D) \in R \implies (\exists D')A \vdash D' \prec_L D$$

2.
$$(C,D) \in R \& D \prec_L B \implies (\exists C') C \prec_U C' \vdash B$$

Continuous entailment relation as the space its models

Definition

A model of a continuous entailment relation (S,\vdash,\prec) is a subset $\alpha\subseteq S$ such that

- **1.** $A \subseteq \alpha \implies (\exists b \in B) \ b \in \alpha \text{ for each } A \vdash B$,
- **2.** $a \in \alpha \implies (\exists b \prec a) \ b \in \alpha$.

Example

If X is a locale presented by a strong proximity lattice (D, \prec) , the **Scott topology** $\Sigma(X)$ can be defined as the space of its rounded ideals.

 $\Sigma(X)$ can be presented by an entailment relation on

$$\boxtimes D \stackrel{\mathsf{def}}{=} \{ \boxtimes a \mid a \in D \}$$
 generated by

$$\emptyset \vdash \boxtimes 0 \qquad \qquad \boxtimes a, \boxtimes b \vdash \boxtimes (a \lor b) \qquad \qquad \boxtimes a \vdash \boxtimes b \quad (a \ge b)$$

together with the idempotent relation $\boxtimes a \prec_{\boxtimes} \boxtimes b \stackrel{\mathsf{def}}{\iff} a \succ b$.

Plan

1. Strong proximity lattices

2. De Groot duality

3. Applications

Duality in strong proximity lattices

Definition

- ▶ The **dual** D^d of a strong proximity lattice (D, \prec) is (D^d, \succ) , where D^d is the dual lattice of D.
- ▶ The **dual** S^d of a continuous entailment relation (S, \vdash, \prec) is (S, \dashv, \succ) .

Proposition

The equivalence between continuous entailment relations and strong proximity relations commutes with the dualities.

Question

If X is the stably compact locale presented by (D, \prec) , does (D^{d}, \succ) present the de Groot dual of X?

De Groot duality

The de Groot dual X^{\triangle} of a stably compact locale X is the frame of Scott open filters on $\Omega(X)$.

Definition

Let X be a stably compact locale. The **upper powerlocale** $P_{\mathrm{U}}(X)$ is a locale whose points (i.e. models) are Scott open filters on $\Omega(X)$.

The de Groot dual of X can be characterized by $P_U(X) \cong \Sigma(X^d)$.

De Groot duality in strong proximity lattices

Proposition

Given a strong proximity lattice (D, \prec) , let X and Y be stably compact locales presented by (D, \prec) and (D^{d}, \succ) respectively. Then $\mathsf{P}_{\mathsf{U}}(X) \cong \Sigma(Y)$.

Proof. The upper powerlocale $P_U(X)$ is presented by an entailment relation on $\Box D \stackrel{\mathsf{def}}{=} \{\Box a \mid a \in D\}$ generated by

$$\emptyset \vdash \Box 1 \qquad \qquad \Box a, \Box b \vdash \Box (a \land b) \qquad \qquad \Box a \vdash \Box b \quad (a \le b)$$

together with the idempotent relation $\Box a \prec_{\Box} \Box b \stackrel{\text{def}}{\iff} a \prec b$.

The Scott topology $\Sigma(Y)$ is presented by an entailment relation on $\boxtimes D \stackrel{\mathsf{def}}{=} \{ \boxtimes a \mid a \in D \}$ generated by

$$\emptyset \vdash \boxtimes 1 \qquad \qquad \boxtimes a, \boxtimes b \vdash \boxtimes (a \land b) \qquad \qquad \boxtimes a \vdash \boxtimes b \quad (a \leq b)$$

together with the idempotent relation $\boxtimes a \prec_{\boxtimes} \boxtimes b \stackrel{\text{def}}{\Longleftrightarrow} a \prec b.$

Plan

1. Strong proximity lattices

2. De Groot duality

3. Applications

The lower and upper powerlocales

Let X be a stably compact locale presented by a strong proximity lattice (D, \prec) .

▶ The lower powerlocale $P_L(X)$ is presented by an entailment relation on $\Diamond D \stackrel{\mathsf{def}}{=} \{ \Diamond a \mid a \in D \}$ generated by

$$\Diamond 0 \vdash \emptyset \qquad \qquad \Diamond (a \lor b) \vdash \Diamond a, \Diamond b \qquad \qquad \Diamond a \vdash \Diamond b \quad (a \le b)$$

together with the idempotent relation $\Diamond a \prec_{\Diamond} \Diamond b \stackrel{\mathsf{def}}{\iff} a \prec b$.

▶ The **upper powerlocale** $P_U(X)$ is presented by an entailment relation on $\Box D \stackrel{\text{def}}{=} \{ \Box a \mid a \in D \}$ generated by

$$\emptyset \vdash \Box 1$$
 $\Box a, \Box b \vdash \Box (a \land b)$ $\Box a \vdash \Box b \quad (a \leq b)$

together with the idempotent relation $\Box a \prec_{\Box} \Box b \stackrel{\text{def}}{\iff} a \prec b$.

The lower and upper powerlocales

Proposition

If X is stably compact then $P_L(X)^{\mathsf{d}} \cong P_U(X^{\mathsf{d}})$ and $P_U(X)^{\mathsf{d}} \cong P_L(X^{\mathsf{d}}).$

Proof.

Suppose *X* is presented by a strong proximity lattice (D, \prec) .

 $ightharpoonup P_L(X)$ is presented by an entailment relation generated by

$$\Diamond 0 \vdash \emptyset \qquad \qquad \Diamond (a \lor b) \vdash \Diamond a, \Diamond b \qquad \qquad \Diamond a \vdash \Diamond b \quad (a \le b)$$

with the idempotent relation $\lozenge a \prec_{\lozenge} \lozenge b \stackrel{\mathsf{def}}{\iff} a \prec b$.

 $ightharpoonup P_L(X)^d$ is presented by an entailment relation generated by

$$\emptyset \vdash \Diamond 0$$
 $\Diamond a, \Diamond b \vdash \Diamond (a \lor b)$ $\Diamond b \vdash \Diamond a \ (a \le b)$

with the idempotent relation $\Diamond a \prec_{\Diamond} \Diamond b \stackrel{\mathsf{def}}{\iff} a \succ b$.

▶ This is just a presentation of $P_U(X^d)$.

The Vietoris powerlocales

Let X be a stably compact locale presented by a strong proximity lattice (D, \succ) .

The Vietoris powerlocale $P_V(X)$ is presented by an entailment relation on $\Diamond D \cup \Box D$ generated by

The idempotent relation associated with $P_V(X)$ is $\prec \diamond \cup \prec_{\square}$.

Proposition

If X is stably compact then $P_V(X)^d \cong P_V(X^d)$.

The space of valuations

A probability valuation on a locale X is a Scott continuous map $\mu\colon \Omega(X) \to [0,1]$ to the lower reals [0,1] satisfying $\mu(0)=0$, $\mu(1)=1$, and the modular law: $\mu(x)+\mu(y)=\mu(x\wedge y)+\mu(x\vee y)$. Let $\mathfrak{V}(X)$ be the locale whose points are valuations on X.

A **covaluation** on X is a Scott continuous map $\nu\colon\Omega(X)\to[0,1]$ to the upper reals [0,1] satisfying $\nu(1)=0$, $\nu(0)=1$, and the modular law. Let $\mathfrak{C}(X)$ be a locale whose points are covaluations on X.

The space of valuations

Proposition

If X is a locale presented by a strong proximity lattice (D, \prec) , then the space of valuations $\mathfrak{V}(X)$ is presented by an entailment relation on $\{\langle p,a\rangle\mid p\in\mathbb{Q}\ \&\ a\in D\}$ generated by the axioms

with an idempotent relation $\langle p,a \rangle \prec_{\mathfrak{V}} \langle q,b \rangle \stackrel{\mathsf{def}}{\Longleftrightarrow} p > q \ \& \ a \prec b.$

Note. Each generator $\langle p, a \rangle$ expresses $p < \mu(a)$.

Proposition

If *X* is a stably compact locale, then $\mathfrak{V}(X)^{\mathsf{d}} \cong \mathfrak{C}(X^{\mathsf{d}})$.

Summary and future work

Summary

By representing a stably compact locale by a continuous entailment relation, one may be able to read off what its de Groot dual is.

Future work

Can strong proximity lattices (or continuous entailment relations) handle combination of non-determinism and probability powerdomain constructions?