Section 7.5 Stochastic Matrices

Stochastic Matrices are used to model transitions in sequences of states. For example, Markov chains.

These systems are "memoryless" - moving from one state to the next is only governed by probabilities.

We will often be concerned with the long term behaviour of such a system, in which case we will need to

understand how to take limits.

Definitions: A probability vector is a column of non-negative entries which add up to 1.

A stochastic matrix M is a real square matrix whose columns are probability vectors.

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$B = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}$$

$$= \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}$$

Note: Some people require rows to also add to 1. However, we'd like to be able to distinguish between the two types. So:

More Defintions: A doubly stochastic matrix has both rows and columns adding to 1.

For example:

Let's convert the problem into matrix arithmetic.

At any given time, put

x = the proportion of the market held by \mathcal{C}_{+} and

y = the proportion of the market held by $\mathcal{G}_{\mathcal{L}}$.

Then x+y=1 since there are no other companies in the system.

Put $B = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}$.

Then the proportions of the market share after one season are

$$B\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.9x + 0.2y \\ 0.1x + 0.8y \end{bmatrix}$$

After two seasons the proportions would be given by $B^2 \begin{bmatrix} x \\ y \end{bmatrix}$

Then
$$P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & \frac{7}{10} \end{bmatrix}$$

and then
$$P^{-1} = \frac{1}{2+1} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}.$$

So we can conjugate $B = PDP^{-1}$

which we can use to find
$$B^n = (PDP^{-1})^n = PD^nP^{-1}$$

$$= \begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & 1 & 0 & 2 \\ 2 & -1 & 2 \\ 3 & 1 & -1 & 2 \\ 2 & 1 & -1 & 2 \\ 3 & 1 & -1 & 2 \\ 2 & 1 & -1 & 2 \\ 3 & 1 & -1 & 2 \\ 2 & 1 & -1 & 2 \\ 3 & 1 & -1 & 2 \\ 3 & 1 & -1 & 2 \\ 4 & 2 & -1 & 2 \\ 3 & 1 & -1 & 2 \\ 4 & 2 & -1 & 2$$

Hence
$$\lim_{n \to \infty} B^n = \frac{1}{3} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$

So the long term effect on the initial proportions \Im is

So, regardless of the initial proportions, in the long term

- C_1 captures 2/3 of the market, and
- د captures 1/3 of the market.

Note that since
$$B\begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix},$$

equilibrium has been reached and $\begin{bmatrix} \frac{2}{3} \\ 1 \\ \hline 3 \end{bmatrix}$ is a steady-state vector.

Theorems: Let A be a stochastic matrix.	
1. 1 is an eigenvalue of A, and so A has at least one steady-state probability vector, Υ , which is fixed	d
2. All eigenvalues of A are less than or equal to 1 in magnitude.	
3. If A is regular (some power of A has all positive entries), then:	
A. V is unique There is only 1 steady state vector	•
A. V is unique There is only 1 steady state vector B. No AN = [Y U V] Scalar myly	d
C. For any probability vector, \underline{x} , $\underset{n\to\infty}{\lim} A^n \underline{x} = \underline{y}$	_
D. 1 is the dominant eigenvalue.	
Better At There is only one probability steady state vector	
Proof: We only prove Theorem 1.	_
First note that any square matrix has the Same eigenvalues as its transpose.	
Let A = [aij] be a nxn stochastic matrix.	
Let $A = [aij]$ be a nxn stochastic mortrix. Then $[111]A = [\frac{n}{i}ai_1 \stackrel{n}{\geq} ai_2 \stackrel{n}{\sim} \stackrel{n}{\geq} ai_1$	<u>-</u> .νη