TD n°1

Valeran MAYTIE

1 Automata

Exercise 1.1 – Let \mathcal{A} an automata, give an automata \mathcal{A}_* such that $(L_{\mathcal{A}})^* = L_{\mathcal{A}_*}$

Correction 1.1

Let $\mathcal{A} = (Q, \Sigma, \delta, I, F)$, we want to construct \mathcal{A}_* :

- We add all initial states to the finite states for recognizing the empty word.
- And we define δ'

$$\delta' = \left\{ \begin{array}{ccc} q, a & \to & \delta(q, a) & a \in \Sigma, q \in Q \\ f, \varepsilon & \to & I & \forall f \in F \end{array} \right.$$

So at the end we have $\mathcal{A}_* = (Q, \Sigma, \delta', I, F \cup I)$

Exercise 1.2 – Show that $(a|b)^* = (a^*b^*)^*$

Correction 1.2

We will proceed by double inclusion:

 \subseteq : we will proof this inclusion by induction on the length of $w \in (a|b)^*$.

- If |w| = 0, so $w = \varepsilon \in (a^*b^*)^*$
- By induction hypothesis we know that all words w of the length n is in $(a^*b^*)^*$. We have two case for the words of length n+1:
 - * $w \cdot a$, $a \in (a|b)$ so by induction hypothesis we have $w \cdot a \in (a|b)^*(a|b) = (a|b)^*$.
 - * $w \cdot b$ same.

 \supseteq : We know that $(a|b)^* = \Sigma^*$ so all words $w \in (a^*b^*)^*$ is on $(a|b)^*$ because $w \in \Sigma^*$

Exercise 1.3 – Give a DFA on $\Sigma = \{a, b\}$ recognizing all words having no more than two consecutive occurrences of the same letter.

Exercise 1.4 – We define the duplication of a word by : $dd(\varepsilon) = \varepsilon$ and $\forall x \in \Sigma : dd(v \cdots x) = dd(v) \cdots xx$.

Example : on $\Sigma = \{a, b\}$, dd(aba) = aabbaa. We suppose that L is a rational language. Show that $dd(L) = \{dd(v)|v \in L\}$ is rational to.

Correction 1.4

Let $\mathcal{A}_L = \{Q, \Sigma, \delta, I, F\}$ an automaton who recognize L. We construct $\mathcal{A}_{dd(L)} = \{Q', \Sigma, \delta', I, F'\}$ the automaton who recognize dd(L):

- $Q' = Q \uplus Q = \{(i,q)|q \in Q, i \in \{0,1\}\}$
- $F' = \{(q,1)|q \in F\} \cup \{(q,0), |q \in I \cap F\}$

•

$$\delta' = \left\{ \begin{array}{ccc} (q,1), c & \to & \delta(q,c) & c \in \Sigma \\ (q,0), c & \to & (q,1) & c \in \Sigma \end{array} \right.$$

Exercise 1.5 – Given an automaton \mathcal{A} , give a (non-deterministic) automaton recognizing L^R the mirror language of $L_{\mathcal{A}}$.

Correction 1.5

Let $\mathcal{A} = \{Q, \Sigma, \delta, I, F\}$ an automaton who recognize L. So we have $\{Q, \Sigma, \delta', F, I\}$ with :

$$\delta'(q, x) = \{q' | q \in \delta(q', x)\}\$$

an automaton who recognize L^R .

Exercise 1.6 – Let $\Sigma = \{0, 1\}$ an alphabet.

- We consider a language L_2 the set of binary words representing a multiple of two. This language is recognizable?
- Same question for L_3 the set of binary words representing a multiple of three.
- What about the L_6 language for binary words representing a multiple of 6?

Correction 1.6

 \bullet For L_2 we just need to recognize the words which end in 0:

- For L_3 we have $3 \ (n \mod 3 \in \{0, 1, 2\})$. For each edge (k the number read):
 - If we read a zero, new result : 2k
 - If we read a zero, new result : 2k + 1

state	read	next
$\overline{q_0}$	0	$0 \times 2 \bmod 3 = 0$
	1	$0 \times 2 + 1 \bmod 3 = 1$
$\overline{q_1}$	0	$1 \times 2 \bmod 3 = 2$
	1	$1 \times 2 + 1 \bmod 3 = 0$
$\overline{q_2}$	0	$2 \times 2 \bmod 3 = 1$
	1	$2 \times 2 + 1 \bmod 3 = 2$

• For L_6 , we can use the same construction (7 states).

Exercise 1.7 – A Dyck language is the set D of well-parenthesized words on an alphabet $\{(,)\}$. For example, the word (()()()()()()) is well parenthesized.

This property can be formally defined:

- \bullet For any prefix u of w, the number of) in u is less than the number of (
- There are as many (as there are) in the word

Show that D is not a regular language.

Correction 1.7

Assume that D is regular.

We have the word $w = (p)^p$ with $p \le 1$. We pose $x = \varepsilon$, $y = (p)^p$ and $z = (p)^p$.

The conditions are well verified : $|xy| \le p$ and $|y| \ge 1$.

If we consider the word xy^2z . This word has 2p (and p). So xy^2z is not in D.

By the pumping lemma D is not regular.