Tuesday, January 14, 2025 5:39 PN

* Gaussian elimination me thod for solving linear equations Let's consider $A \times = b$

Step 0: Write the augmented form for the above system (A 16)

Step 1: Use row operations to transform the above maty in to the row-echelon form:

row-eche la matrix

Step 2: Use back-substitution to find $X_n, X_{n-1}, ..., X_l$ from (Elc)

ex: Solve
$$x_1 + 2x_2 + x_3 + x_4 = 4$$

 $3x_1 + 8x_2 + 7x_3 + 2x_4 = 20$
 $2x_1 + 7x_2 + 9x_3 + x_4 = 23$.

 $\begin{pmatrix}
1 & 2 & 1 & 1 & 4 \\
8 & 8 & 7 & 2 & 20 \\
7 & 9 & 1 & 25
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 2R_1}
\xrightarrow{R_3 \to R_3}
\xrightarrow{R_3$

* Back Substitution:

· Determine leading variables & free variables.

leading variables: X,, X2, X3.
Free variables: X4

. Set free variables as parameter:

set x = t

. Find other leading variables by back subs :

From R_3 : $x_3 + 6.7 = 3$ $x_4 + 0.7 t = 3$

x3 = 3 - 0.5 +

From R₂: X₂ + 3 S = 7

 $x_2 + 9 - 1.7t = 7$

= -2 + 1.5 +

Frm R₁: $x_1 + 2x_1 + x_2 + x_4 = 4$ $x_1 - 4 + 3t + 3 - 6.5t + t = 4$

 $x_1 + 3.5 + -1 = 4$

So $X = \begin{pmatrix} 5.3.5t \\ -2+1.5t \\ 3-0.5t \\ t \end{pmatrix}$ (Infinitely many solutions)

(ex) Solve $x_1 + x_2 + x_3 - x_4 = 2$

 $2x_1 - x_2 + x_3 + x_4 = 3$

 $3 \times_{1} - \times_{2} + 2 \times_{3} - \times_{4} = 3$

 $5 \times_{1} - 2 \times_{2} + 3 \times_{3} = 6$

Solution: /1 1 1 -1 2 R, -> R2-2R1 / 1 1-1 2

* Back subs

From R₁:
$$-x_3 + 6x_4 = 5$$

 $-x_3 + 6t = 5$
 $x_3 = 6t - 5$.

So
$$x = \begin{pmatrix} 5-4t \\ 2-t \\ 61-5 \end{pmatrix}$$
 (infinitely many solutions)

Here $\frac{1}{61-5}$ (infinitely many solutions)

We dear than

$$\begin{pmatrix} 1 & 2 \\ 0 & 3 & 7 \\ 0 & 0 & 1 \\ 2 \\ 0 & 0 & 6 \\ 5 \end{pmatrix}$$

Repare $\frac{1}{6}$ (a) $\frac{1}{6}$ (b) $\frac{1}{6}$ (column)

Repare $\frac{1}{6}$ (column)

Rep

New Section 1 Page 4

Quiz 1 covers 1.1 & 1.2