Examples for 10/10/2011 (Chapter 4.2)

Covariance and Correlation Coefficient

Covariance of X and Y

$$\sigma_{XY} = \text{Cov}(X, Y) = \text{E}[(X - \mu_X)(Y - \mu_Y)] = \text{E}(XY) - \mu_X \mu_Y$$

- (a) Cov(X,X) = Var(X);
- (b) Cov(X,Y) = Cov(Y,X);
- (c) $\operatorname{Cov}(aX + b, Y) = a\operatorname{Cov}(X, Y);$
- (d) Cov(X+Y,W) = Cov(X,W) + Cov(Y,W).

$$Cov(aX + bY, cX + dY)$$

$$= a c \operatorname{Var}(X) + (a d + b c) \operatorname{Cov}(X, Y) + b d \operatorname{Var}(Y).$$

$$Var(aX + bY) = Cov(aX + bY, aX + bY)$$
$$= a^{2}Var(X) + 2abCov(X,Y) + b^{2}Var(Y).$$

- **0.** Find in terms of σ_X^2 , σ_Y^2 , and σ_{XY} :
- a) Cov(2X + 3Y, X 2Y),
- b) Var(2X + 3Y),
- c) Var(X-2Y).

Correlation coefficient of X and Y

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}} = \frac{\text{Cov}\left(X,Y\right)}{\sqrt{\text{Var}\left(X\right)} \cdot \sqrt{\text{Var}\left(Y\right)}} = E\left[\left(\frac{X - \mu_{X}}{\sigma_{X}}\right), \left(\frac{Y - \mu_{Y}}{\sigma_{Y}}\right)\right]$$

- (a) $-1 \le \rho_{XY} \le 1$;
- (b) ρ_{XY} is either +1 or -1 if and only if X and Y are linear functions of one another.

If random variables X and Y are independent, then

$$E(g(X) \cdot h(Y)) = E(g(X)) \cdot E(h(Y)).$$

$$\Rightarrow \quad Cov(X, Y) = \sigma_{XY} = 0, \quad Corr(X, Y) = \rho_{XY} = 0.$$

2. Consider the following joint probability distribution p(x, y) of two random variables X and Y:

		y			
х	0	1	2	$p_{X}(x)$	Recall:
1	0.15	0.10	0	0.25	E(X) = 1.75,
2	0.25	0.30	0.20	0.75	E(X) = 1.75, E(Y) = 0.8,
$p_{\mathrm{Y}}(y)$	0.40	0.40	0.20	1.00	E(XY) = 1.5.

Find $Cov(X,Y) = \sigma_{XY}$ and $Corr(X,Y) = \rho_{XY}$.

1. Let the joint probability density function for (X, Y) be

$$f(x,y) = \begin{cases} 60 x^2 y & 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find $Cov(X,Y) = \sigma_{XY}$ and $Corr(X,Y) = \rho_{XY}$.

Recall:
$$f_X(x) = 30x^2(1-x)^2$$
, $0 < x < 1$, $E(X) = \frac{1}{2}$, $f_Y(y) = 20y(1-y)^3$, $0 < y < 1$, $E(Y) = \frac{1}{3}$, $E(XY) = \frac{1}{7}$.

4. Let the joint probability density function for (X, Y) be

$$f(x,y) = \begin{cases} 12 x (1-x) e^{-2y} & 0 \le x \le 1, y \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Find $Cov(X,Y) = \sigma_{XY}$ and $Corr(X,Y) = \rho_{XY}$.

Recall:
$$f_X(x) = 6x(1-x), 0 < x < 1.$$
 $f_Y(y) = 2e^{-2y}, y > 0.$

3. Let the joint probability density function for (X, Y) be

$$f(x,y) = \begin{cases} x+y & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Find $Cov(X,Y) = \sigma_{XY}$ and $Corr(X,Y) = \rho_{XY}$.

Recall:
$$f_X(x) = x + \frac{1}{2}, \quad 0 < x < 1.$$
 $f_Y(y) = y + \frac{1}{2}, \quad 0 < y < 1.$

Review exercises on (ch4.1)

5. Suppose the probability density functions of T_1 and T_2 are

$$f_{T_1}(x) = \alpha e^{-\alpha x}, \quad x > 0, \qquad f_{T_2}(y) = \beta e^{-\beta y}, \quad y > 0,$$

respectively. Suppose T_1 and T_2 are independent. Find $P(2T_1 > T_2)$.

6. Let X and Y be two independent random variables, X has a Geometric distribution with the probability of "success" $p = \frac{1}{3}$, Y has a Poisson distribution with mean 3. That is,

$$p_X(x) = \left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right)^{x-1}, \quad x = 1, 2, 3, \dots,$$

$$p_{Y}(y) = \frac{3^{y}e^{-3}}{y!}, \quad y = 0, 1, 2, 3, \dots$$

a) Find P(X = Y).

b) Find P(X = 2Y).