Introdução à Estatística

Estatística

✓ É a ciência que se preocupa com:

(i) Organização;

(ii) Descrição;

(iii) Análises;

(iv) Interpretações.

Estatística Descritiva

Estatística Indutiva ou Estatística Inferencial

Alguns Conceitos

✓ População

- É o conjunto de elementos com pelo menos uma característica em comum.
- Esta característica comum deve delimitar claramente quais os elementos que pertencem à população e quais os elementos que não pertencem.

✓ Amostra

 É um subconjunto de uma população, onde todos os seus elementos serão examinados para efeito da realização do estudo estatístico desejado.

Alguns Conceitos

✓ OBJETIVO DA ESTATÍSTICA: "tirar conclusões sobre populações com base nos resultados observados em amostras extraídas dessas populações".

✓ Variável

- É a característica dos elementos da amostra que nos interessa averiguar estatisticamente.
- Ex.: variável <u>Idade</u> se houver "n" elementos fisicamente considerados no estudo, esses elementos fornecerão "n" valores da variável idade, os quais serão tratados convenientemente pela Estatística Descritiva e/ou pela Estatística Inferencial.

Tipos de Variáveis

As variáveis de interesse podem ser classificadas em:

- (i) Qualitativas => quando resultar de uma classificação por tipos ou atributos.
- (ii) Quantitativas => quando seus valores forem expressos em números. Podem ser subdivididas:
 - (a) Discretas;
 - (b) Continuas.

Tipos de Variáveis

(a) Variáveis Quantitativas Discretas

Assumem apenas valores pertencentes a um conjunto enumerável. São obtidos mediante alguma forma de contagem.

Exemplos de Discretas:

- População: Ovinos da raça Santa Inês da ASCCO;
 Variável: número de cordeiros ao parto (1, 2 ou 3).
- População: Bovinos Nelore da Agro-pecuária CFM Ltda.
 Variável: Escores de Musculosidade (1, 2, 3, 4 ou 5).
- População: Bovinos Nelore da Agro-pecuária CFM Ltda.
 Variável: Prenhez aos 14 meses de idade (0 ou 1).

Tipos de Variáveis

(b) Variáveis Quantitativas Contínuas

São aquelas, teoricamente, que podem assumir qualquer valor em um certo intervalo de variação. Resultam, em geral, de uma medição, sendo freqüentemente expressos em alguma unidade.

Exemplos de Contínuas:

- População: Bovinos Nelore da Agro-pecuária CFM Ltda.
 Variável: PN (28,0; 28,5; 30,2; 32,58)
- População: Bovinos Nelore da Agro-pecuária CFM Ltda.
 Variável: Peso aos 18 meses, em kg (250,0 até 415,0 kg)

Características Numéricas de uma Distribuição de Dados

Introdução

- As vezes é necessário resumir certas características das distribuições de dados (ou mesmo de freqüências dados) por meio de certas quantidades.
- ✓ Tais quantidades são usualmente denominadas de MEDIDAS, por quantificarem alguns aspectos de nosso interesse.
- ✓ Nosso objetivo é apresentar algumas das chamadas MEDIDAS DE POSIÇÃO, bem como, algumas MEDIDAS DE DISPERSÃO, consideradas mais importantes no campo da aplicabilidade prática do nosso dia a dia.
- ✓ Tais medidas servem para:
 - (a) Localizar uma distribuição;
 - (b) Caracterizar sua variabilidade.

- Servem para localizar a distribuição dos dados brutos (ou das freqüências) sobre o eixo de variação da variável em questão.
- ✓ Veremos os três tipos principais de medidas de posição:
 - (a) Média Aritmética;
 - (b) Mediana;
 - (c) Moda.

- ✓ Média (Aritmética)
- A notação internacional recomenda símbolos específicos para a Média:
 - (a) AMOSTRA:

Conjunto de Dados =>
$$\bar{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Tabelas de Frequência =>
$$\overline{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum\limits_{i=1}^k X_i f_i}{n} = \sum\limits_{i=1}^k X_i p_i$$

- ✓ Média (Aritmética)
 - (b) POPULAÇÃO:

Conjunto de Dados =>
$$\mu = m = \frac{\sum_{i=1}^{n} X_i}{n}$$

Tabela de Frequência =>
$$\mu = m = \frac{\sum\limits_{i=1}^{k} X_i f_i}{n} = \sum\limits_{i=1}^{k} X_i p_i$$

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

	Classes (limites reais)	f_i matrix	x_i	$x_i f_i$
encib	39,5 — 44,5	310113	42	126
	44,5 — 49,5	sasibe8i s m	47	376
	49,5 — 54,5	16	52 p 3	832
na tardo zor	54,5 — 59,5	12	57	684
	59,5 — 64,5	916917591135	62	434
	64,5 — 69,5	3	67	201
	69,5 — 74,5	11	72	72
	nulo reines 2794	50	NO PA 1	2.725

$$\overline{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum_{i=1}^{k} X_i f_i}{n} = \frac{2.725}{50} = 54,5$$

13

✓ Propriedades da Média

- (a) Multiplicando todos os valores de uma variável por uma constante, a média do conjunto fica multiplicada por essa constante.
- (b) Somando-se ou subtraindo-se uma constante a todos os valores da variável, a média do conjunto fica acrescida ou subtraída dessa constante.

- ✓ Mediana
- A mediana é uma quantidade que, como a média, também caracteriza o centro de uma distribuição pertencente a um conjunto de dados.
 - (a) AMOSTRA: md
 - (b) POPULAÇÃO: md

Conjunto de Dados:

Para obtenção da estimativa de mediana de um conjunto de dados são necessários os seguintes passos:

- 1º Passo: Ordenar de forma crescente os "n" valores da variável em questão;
- 2º Passo: (i) Sendo "n" ímpar, a mediana será igual ao valor $\frac{\text{de ordem }(n+1)}{};$
 - (ii) Sendo "n" par, a mediana será o valor médio entre os valores de ordem $\frac{n}{2}$ e $\frac{n}{2}+1$.

16

✓ Mediana

Tabelas de Frequência =>
$$\hat{m}d = L_1 + \frac{(n/2) - F_a}{f_{md}}h_{md}$$

 L_i = limite inferior da classe que contém a mediana;

n = números de elementos do conjunto da dados;

 F_a = soma das freqüências das classes anteriores que contém a mediana;

 f_{md} = freqüência da classe que contém a mediana;

 h_{md} = amplitude da classe que contém a mediana.

✓ Mediana

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

Classes (limites reais)	f_i	x_i	$x_i f_i$
39,5 — 44,5	erote 3 m se	42	126
44,5 — 49,5	8 6 11	47	376
49,5 — 54,5	16	52	832
54,5 — 59,5	12	57	684
59,5 — 64,5	21821712011	62	434
64,5 — 69,5	3	67	201
69,5 — 74,5	11	72	72
the Common 278 A	50	18 Ph 1	2.725

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

$$L_i = 49,5; \quad n = 50; \quad F_a = 11; \quad f_{md} = 16; \quad h_{md} = 5.$$

✓ Mediana

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

$$L_i = 49,5$$
; $n = 50$; $F_a = 11$; $f_{md} = 16$; $h_{md} = 5$.

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

$$\hat{m}d = 49,5 + \frac{(50/2) - 11}{16}.5 = 53,875$$

✓ Moda

- A moda (ou modas) de um conjunto de valores é definida como o valor (ou valores) de máxima freqüência.
- É uma quantidade que, como a média, também caracteriza o centro de uma distribuição, indicando a região das máximas freqüências.
 - (a) AMOSTRA: $\hat{\mathbf{m}}_{O}$
 - (b) POPULAÇÃO: m_O

✓ Moda

Tabelas de Frequência =>
$$\hat{m}_o = L_i + \frac{d_1}{d_1 + d_2} h$$

 L_i = limite inferior da classe modal;

 d_1 = diferença entre a classe modal e a da classe imediatamente anterior;

d₂ = diferença entre a classe modal e a da classe imediatamente seguinte;

h = amplitude das classes.

✓ Moda

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

Tabela 2.7 Cá	ilculo da média			
	Classes (limites reais)	f_i	x_i	$x_i f_i$
	39,5 — 44,5	310113	42	126
	44,5 — 49,5	8 6 11	47	376
	49,5 — 54,5	16	52	832
	54,5 — 59,5	12	57	684
	59,5 — 64,5	7	62	434
	64,5 — 69,5	3	67	201
	69,5 — 74,5	11-1	72	72
	In terms ATEA	50	-0 Pb 1	2.725

$$\hat{m}_o = L_i + \frac{d_1}{d_1 + d_2} h$$

$$L_i = 49.5$$
; $d_1 = 16 - 8 = 8$; $d_2 = 16 - 12 = 4$; $h = 5$.

✓ Moda

Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário

$$L_i = 49,5$$
; $d_1 = 16 - 8 = 8$; $d_2 = 16 - 12 = 4$; $h = 5$.

$$\hat{m}_o = L_i + \frac{d_1}{d_1 + d_2} h$$

$$\hat{m}_o = 49.5 + \frac{8}{8+4}.5 = 52.833$$

- A informação fornecida pelas Medidas de Posição em geral necessitam de ser complementas pelas Medidas de Dispersão.
- ✓ As Medidas de Dispersão servem para indicar o "quanto os dados se apresentam dispersos em torno da região central".
- ✓ Portanto caracterizam o grau de variação existente em um conjunto de valores.
- ✓ As Medidas de Dispersão que mais nos interessam são:
 - (a) Amplitude;
 - (b) Variância;
 - (c) Desvio Padrão;
 - (d) Coeficiente de Variação.

✓ Amplitude

- A amplitude, já mencionada, é definida como a diferença entre o maior e o menor valores do conjunto de dados.
 - (a) AMOSTRA: $\hat{R} = X_{MAX} X_{MIN}$
 - (b) POPULAÇÃO: $R = X_{MAX} X_{MIN}$
- Vantagem e Desvantagem.
- Salvo aplicações de Controle de Qualidade, a amplitude não é muito utilizada como Medida de Dispersão.

✓ Variância

- A variância é definida como a "média dos quadrados das diferenças entre os valores em relação a sua própria média".
 - (a) AMOSTRA: $S^2 = S_X^2 = S^2(X) = \hat{\sigma}^2 = \hat{\sigma}^2(X) = \hat{\sigma}_X^2$
 - (b) POPULAÇÃO: $\sigma^2 = \sigma^2(X) = \sigma_X^2$
- => Em se tratando de Amostra:

Conjunto de Dados =>
$$S^2(X) = S_X^2 = \frac{\sum\limits_{i=1}^{\infty}(X_i - \overline{X})^2}{N-1}$$

Tabela de Frequência =>
$$S^2(X) = S_X^2 = \frac{\sum\limits_{i=1}^k (X_i - \overline{X})^2 f_i}{N-1}$$

26

- ✓ Variância
- => Em se tratando de População:

Conjunto de Dados =>
$$\sigma^2 = \sigma^2(X) = \sigma_X^2 = \frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{N}$$

Tabela de Freqüência => $\sigma^2 = \sigma^2(X) = \sigma_X^2 = \frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{N}$

OBS:

(i) A variância calculada para dados agrupados deverá ser superestimada em relação à variância exata dos "N" dados originais.

✓ Variância

Exemplo: Executar o cálculo da variância de um conjunto pequeno de dados, formado pelos valores seguinte: {15, 12, 10, 17, 16}

É fácil ver que:
$$\bar{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum_{i=1}^{n} X_i}{N} = 14$$

Logo:
$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{N-1}$$

Poderemos montar a seguinte Tabela Auxiliar nos cálculos:

✓ Variância

Exemplo: Cálculo da variância de um conjunto pequeno de

dados: {15, 12, 10, 17, 16}

Tabela 2.8 Cálculo de $\sum (x_i - \bar{x})^2$					
	x_i	$x_i - \overline{x}$	$(x_i - \bar{x})^2$		
	15	1	1		
	12	-2	4		
	10	-4	16		
	17	3	9		
	16	2	4		
			34		

$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{N-1}$$

$$S^2(X) = S_X^2 = \frac{34}{4} = 8.5$$

Nota-se que as expressões apresentadas não são as mais apropriadas para o cálculo da variância, pois a média é quase sempre um valor fracionário, o que viria a dificultar o cálculo dos desvios $(X_i - \overline{X})^2$.

✓ Variância

Note que o numerador pode ser trabalhado: $S^2(X) = S_X^2 = \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$\begin{split} \Sigma(X_i - \overline{X})^2 &= \Sigma(X_i^2 - 2X_i \overline{X} + \overline{X}^2) \\ &= \Sigma X_i^2 - 2\overline{X}\Sigma X_i + N\overline{X}^2 \\ &= \Sigma X_i^2 - 2\frac{\Sigma X_i}{N}\Sigma X_i + N\left(\frac{\Sigma X_i}{N}\right)^2 \\ &= \Sigma X_i^2 - 2\frac{(\Sigma X_i)^2}{N} + \frac{(\Sigma X_i)^2}{N} \\ \\ \Sigma(X_i - \overline{X})^2 &= \Sigma X_i^2 - \frac{(\Sigma X_i)^2}{N} \end{split}$$

$$\frac{\sum (X_i - \overline{X})^2}{N} = \sum X_i^2 - \frac{(\sum X_i)^2}{N}$$

✓ Variância

Assim, para um conjunto com "N" dados:

$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{N - 1} = \frac{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{N}}{N - 1}$$

Da mesma forma, para dados agrupados em Tabela de frequência, teremos:

$$S^{2}(X) = S_{X}^{2} = \frac{\sum_{i=1}^{k} (X_{i} - \overline{X})^{2} f_{i}}{N - 1} = \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} X_{i} f_{i}\right)^{2}}{N}}{N - 1}$$

✓ Variância

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

Classes (limites reais)	f_i	x_i	$x_i f_i$	$x_i^2 f_i$
39,5 — 44,5	3	42	126	5.292
44,5 — 49,5	8	47	376	17.672
49,5 — 54,5	16	52	832	43.264
54,5 — 59,5	12	57	684	38.988
59,5 — 64,5	1900 7 S189	62	434	26.908
64,5 — 69,5	3	67	201	13.467
69,5 — 74,5	1	72	72	5.184
"asia	50	OBDIVE IS	2.725	150.775

$$S^{2}(X) = S_{X}^{2} \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} X_{i} f_{i}\right)^{2}}{N}}{N-1} = \frac{150.775 - \frac{\left(2.725\right)^{2}}{50}}{49} = 46,17$$

32

✓ Propriedades da Variância

- (a) Multiplicando-se todos os valores de uma variável por uma constante, a variância do conjunto fica multiplicada pelo quadrado dessa constante.
- (b) Somando-se ou subtraindo-se uma constante a todos os valores de uma variável, a variância não se altera.
- OBS:(i) A variância é uma medida de dispersão importante na teoria estatística;
 - (ii) Do ponto de vista prático, ela tem o inconveniente de se expressar em unidade quadrática em relação a variável em questão.

✓ Desvio Padrão

- Definimos desvio padrão como "a raiz quadrada positiva da variância".
- O cálculo do desvio padrão é feito por meio da variância.
 - (a) AMOSTRA: $S = S_x = S(X) = \hat{\sigma} = \hat{\sigma}(X) = \hat{\sigma}_X$
 - (b) POPULAÇÃO: $\sigma = \sigma(X) = \sigma_X$
- => Em se tratando de Amostra: $S(X) = S_X = +\sqrt{S_X^2}$

Desvio Padrão

- OBS: (i) O desvio padrão se expressa na mesma unidade da variável, sendo por isso, de maior interesse que a variância nas aplicações práticas;
 - (ii) É mais realístico para efeito de comparação de dispersões.

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$S^{2}(X) = S_{X}^{2} \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} X_{i} f_{i}\right)^{2}}{N}}{N-1} = \frac{150.775 - \frac{(2.725)^{2}}{50}}{49} = 46,17$$

$$S(X) = S_{X} = \sqrt{46,17} = 6,79$$

$$S(X) = S_X = \sqrt{46,17} = 6,79$$

- ✓ Coeficiente de Variação
- O coeficiente de variação é definido como "o quociente entre o desvio padrão e a média", sendo frequentemente expresso em porcentagem.
 - (a) AMOSTRA: $CV(X) = CV_X$
 - (b) POPULAÇÃO: $CV(X) = CV_X$
- => Em se tratando de Amostra:

$$CV(X) = CV_X = \frac{S_X}{\overline{X}}$$

Medidas de Dispersão (ou de Variabilidade)

✓ Coeficiente de Variação

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$\overrightarrow{CV}(X) = \overrightarrow{CV}_X = \frac{S_X}{\overline{X}}$$

$$\overrightarrow{CV}(X) = \overrightarrow{CV}_X = \frac{S_X}{\overline{X}} = \frac{6,79}{54,5} = 0,125 = 12,46\%$$

Medidas de Dispersão (ou de Variabilidade)

- ✓ Coeficiente de Variação
- OBS: (i) A vantagem é caracterizar a dispersão dos dados em termos relativos ao seu valor médio;
 - (ii) Pequena dispersão absoluta pode ser, na verdade considerável, quando comparada com a ordem de grandeza dos valores da variável. Quando consideramos o CV, enganos de interpretações desse tipo não ocorrem;
 - (iii) Além disso, por ser adimensional, o CV fornece uma maneira de se compararem as dispersões de variáveis cujas medidas são irredutíveis.

Momentos de uma Distribuição de Dados

Momentos de uma Distribuição

✓ Alguns conceitos

Definimos o momento de ordem "t" de um conjunto de dados como:

$$M_{t} = \frac{\sum_{i=1}^{n} X_{i}^{t}}{n}$$

Definimos o momento de ordem "t" centrado em relação a uma constante "a" como:

$$M_t^a = \frac{\sum_{i=1}^n (X_i - a)^t}{n}$$

Alguns conceitos

Já vimos que temos interesse no caso de "momento centrado em relação a média", o qual designaremos simplesmente por "momento centrado", dado por:

$$m_{t} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{t}}{n}$$

Também sabemos que, nos casos da média e da variância, as expressões podem ser reescritas levando-se em consideração Tabelas de freqüências dos diferentes valores existentes.

✓ Alguns conceitos

Assim, para dados agrupados em Tabela de Freqüência, teremos:

$$M_{t} = \frac{\sum_{i=1}^{k} X_{i}^{t} f_{i}}{n}$$

=> Para momento de ordem "t"

$$M_t^a = \frac{\sum_{i=1}^k (X_i - a)^t f_i}{n}$$

=> Para momento de ordem "t" centrado em relação a uma constante "a"

$$m_{t} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{t} f_{i}}{n}$$

=> Para momento de ordem "t" centrado em relação a uma constante "média"

Alguns conceitos

Nos interessa particularmente saber calcular os momentos centrados de terceira e quarta ordem.

$$m_t = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^t}{n}$$

$$m_3 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^3}{n} = \frac{\sum_{i=1}^{n} X_i^3}{n} - 3\overline{X} \frac{\sum_{i=1}^{n} X_i^2}{n} + 2\overline{X}^3$$

$$m_4 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^4}{n} = \frac{\sum_{i=1}^{n} X_i^4}{n} - 4\overline{X} \frac{\sum_{i=1}^{n} X_i^3}{n} + 6\overline{X}^2 \frac{\sum_{i=1}^{n} X_i^2}{n} - 3\overline{X}^4$$

✓ Alguns conceitos

Havendo Tabelas de Freqüências com "k" classes a considerar, as expressões equivalentes são:

$$m_{t} = \frac{\sum_{i=1}^{k} (X_{i} - \overline{X})^{t} f_{i}}{n}$$

$$m_3 = \frac{\sum_{i=1}^k X_i^3 f_i}{n} - 3\overline{X} \frac{\sum_{i=1}^k X_i^2 f_i}{n} + 2\overline{X}^3$$

$$m_4 = \frac{\sum_{i=1}^{n} X_i^4 f_i}{n} - 4\overline{X} = \frac{\sum_{i=1}^{n} X_i^3 f_i}{n} + 6\overline{X}^2 = \frac{\sum_{i=1}^{n} X_i^2 f_i}{n} - 3\overline{X}^4$$

Essas medidas procuram caracterizar como e quanto a distribuição dos Dados(ou freqüências) se afasta da condição de simetria.

Distribuições alongadas a direita são ditas Positivamente Assimétricas.

Distribuições alongadas a esquerda são ditas Negativamente Assimétricas.

O momento centrado de terceira ordem pode ser usado como medida de assimetria.

Entretanto é mais conveniente a utilização de uma medida adimensional, definida como Coeficiente de Assimetria, dado por: $m_{\rm s}$

a –	m_3		
a_3	_	$\overline{(S_{x})}$	$\left(\frac{1}{2}\right)^3$

Tabela 2.9 Cálculo da variá	incia	Harry Zeste		
Classes (limites reais)	f_i	χ_i	$x_i f_i$	$x_i^2 f_i$
39,5 — 44,5	3	42	126	5.292
44,5 — 49,5	8	47	376	17.672
49,5 — 54,5	16	52	832	43.264
54,5 — 59,5	12	57	684	38.988
59,5 — 64,5	. 7	62	434	26.908
64,5 — 69,5	3	67	201	13.467
69,5 — 74,5	1	72	72	5.184
	50		2.725	150.775

Assim basta criamos uma nova coluna com $X_i^3 f_i$.

E utilizarmos momento centrado de 3ª ordem:

$$m_3 = \frac{\sum_{i=1}^k X_i^3 f_i}{n} - 3\overline{X} \frac{\sum_{i=1}^k X_i^2 f_i}{n} + 2\overline{X}^3 46$$

Desta forma, poderemos classificar o Coeficiente de Assimetria (a_3) da seguinte forma:

- (i) Se $a_3 = 0 \rightarrow$ a distribuição é Simétrica;
- (ii) Se a₃ > 0 → a distribuição é Assimétrica à direita (Assimetria Positiva);
- (iii) Se a₃ < 0 → a distribuição é Assimétrica à Esquerda (Assimetria Negativa).

Fonte: Ferreira, D. F. Estatística Básica. Ed. UFLA, 2005. 664 p.

Outra medida de assimetria mais simples pode ser obtido pelo **Indice de Assimetria de Pearson**:

$$A = \frac{\overline{X} - \hat{m}_0}{S_X}$$

O Índice de Assimetria de *Pearson* também pode ser facilmente classificado:

$$|A| < 0.15$$
 => Distribuição praticamente Simétrica;

$$0,15 < |A| < 1,0$$
 => Distribuição moderadamente Assimétrica;

=> Distribuição fortemente Assimétrica.

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$\overline{\mathbf{x}} = \hat{\mu} = \hat{\mathbf{m}} = \frac{\sum_{i=1}^{k} X_i f_i}{n} = \frac{2.725}{50} = 54,5$$

$$\hat{m}_o = L_i + \frac{d_1}{d_1 + d_2} h$$

$$\hat{m}_o = 49.5 + \frac{8}{8+4} = 52,833$$

$$S_X^2 = \frac{\sum_{i=1}^k X_i^2 f_i - \frac{\left(\sum_{i=1}^k X_i f_i\right)^2}{N}}{N-1} = 46,17$$

$$S_X = \sqrt{46,17} = 6,79$$

Tabela 2.7 Cá	Iculo da média			
	Classes (limites reais)	ibeni fi moto rol sh sh cto	dass _i xiessi	$x_i f_i$
ediana da	39,5 — 44,5	orotio 3 na 254	42	126
Section 1	44,5 — 49,5	n a i8ediane	ano 47 p 👑	376
	49,5 — 54,5	16	52 p 9	832
obavisado gora	54,5 — 59,5	12	57	684
mpot careasione	59,5 — 64,5	esta en en en en en en en en	62	434
	64,5 — 69,5	3	67	201
	69,5 - 74,5	and it	72	72
	clo iernes 1888	50	ed Pk 1	2.725

$$A = \frac{\overline{X} - \hat{m}_0}{S_X} = \frac{54,5 - 52,833}{6,79} = 0,246$$

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$A = \frac{\overline{X} - \hat{m}_0}{S_X} = \frac{54.5 - 52.833}{6.79} = 0.246$$

Pelo Índice de Assimetria de *Pearson* essa distribuição seria classificada como "Moderadamente Assimétrica", pois

$$0.15 < |A| < 1.0$$
.

De fato isso ocorre, pois quando utilizados uma Técnica de Descrição Gráfica para Variáveis Quantitativas Contínuas, detectamos a Assimetria Moderada.

Essas medidas procuram caracterizar a forma da distribuição quanto ao seu achatamento.

O termo médio de comparação é dado pela Distribuição Normal, que é um modelo teórico de distribuição a ser estudado no capítulo relacionado à Probabilidades.

Quanto ao achatamento, podemos ter as seguintes situações: Platicúrticas, Mesocúrticas e Leptocúrticas.

A caracterização do achatamento de uma distribuição só tem sentido, em termos práticos, se a distribuição for aproximadamente Simétrica.

Entre as possíveis medidas de achatamento, destacamos o Coeficiente de Curtose.

O Coeficiente de Curtose é obtido pelo quociente do momento centrado de 4ª ordem pelo quadrado da variância, ou seja:

$$a_4 = \frac{m_4}{(S_X^2)^2} = \frac{m_4}{S_X^4}$$

Trata-se de coeficiente adimensional, permitindo a sua classificação:

$$a_4 < 3,0$$

=> Distribuição Platicúrtica;

$$a_4 = 3.0$$

=> Distribuição Mesocúrtica;

$$a_4 > 3.0$$

=> Distribuição Leptocúrtica.

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

Tabela 2	Tabela 2.9 Cálculo da variância					
sest en sest en	Classes (limites reais)	f_i .	x_i	$x_i f_i$	$x_i^2 f_i$	
	39,5 — 44,5	3	42	126	5.292	
	44,5 — 49,5	8	47	376	17.672	
	49,5 — 54,5	16	52	832	43.264	
	54,5 — 59,5	12	57	684	38.988	
acted gots	59,5 — 64,5	רפום 7 באפונ	62	434	26.908	
	64,5 — 69,5	3	67	201	13.467	
	69,5 — 74,5	1	72	72	5.184	
	* asio	50	obandanja	2.725	150.775	

Assim, basta criamos duas novas colunas com: $X_i^3 f_i$ e $X_i^4 f_i$.

E utilizarmos momento centrado de 4ª ordem:

$$m_{4} = \frac{\sum_{i=1}^{n} X_{i}^{4} f_{i}}{n} - 4\overline{X} \frac{\sum_{i=1}^{n} X_{i}^{3} f_{i}}{n} + 6\overline{X}^{2} \frac{\sum_{i=1}^{n} X_{i}^{2} f_{i}}{n} - 3\overline{X}^{4}$$

Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário

$$a_4 = \frac{m_4}{(S_X^2)^2} = \frac{m_4}{S_X^4} \cong 2,21$$

Distribuição ligeiramente Platicúrtica.

Outra medida de achatamento mais simples pode ser obtido pelo Grau de Curtose, dado pelo coeficiente:

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

em que,

$$Q_3 = \text{\'e o } 3^{\text{o}} \text{ Quartil};$$

$$Q_1 = \acute{e} o 1^{\circ} Quartil;$$

$$P_{90} = \acute{e} \circ 90^{\circ}$$
 Percentil;

$$P_{90} = \acute{e} \circ 10^{\circ} Percentil.$$

Quartis => dividem um conjunto de dados em quatro partes iguais.

em que,

 $Q_1 = 0.1^{\circ}$ Quartil deixa 25% dos elementos;

 Q_2 = 0.2° Quartil deixa 50% dos elementos e coincide com a Mediana;

 $Q_3 = 0.3^{\circ}$ Quartil deixa 75% dos elementos.

- ✓ Fórmulas para cálculo de Q_1 e Q_3 para o caso de variáveis quantitativas contínuas
- (a) Determinação de Q_1 :
 - (i) Calcula-se: $\frac{N}{4}$;
 - (iii) Identifica-se a classe de Q_I pela F_i (freq. acumulada);
 - (iii) Aplica-se a fórmula:

$$Q_1 = L_{Q_1} + \frac{(n/4) - F_a}{f_{Q_1}} h$$

- ✓ Fórmulas para cálculo de Q_1 e Q_3 para o caso de variáveis quantitativas contínuas (continuação)
- (b) Determinação de Q_3 :
 - (i) Calcula-se: $\frac{3N}{4}$
 - (ii) Identifica-se a classe de Q_3 pela F_i (freq. acumulada);
 - (iii) Aplica-se a fórmula:

$$Q_3 = L_{Q_3} + \frac{(3n/4) - F_a}{f_{Q_3}} h$$

Exemplo: Dada a distribuição, determinar os Quartis (Q, e Q₃) e a mediana.

Classes	f_{i}	$\boldsymbol{F_i}$	_
7 – 17	6	6	
17 – 27	15	21	\longrightarrow Classe Q_1
27 – 37	20	41	──Classe $\hat{m}d$
37 – 47	10	51	\longrightarrow Classe Q_3
47 – 57	5	56	

$$Q_1 = L_{Q_1} + \frac{(n/4) - F_a}{f_{Q_1}} h$$

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md} \qquad Q_3 = L_{Q_3} + \frac{(3n/4) - F_a}{f_{Q_3}} h$$

$$Q_3 = L_{Q_3} + \frac{(3n/4) - F_a}{f_{Q_3}}h$$

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.

Classes	f_{i}	F_{i}	n = 56;
7 – 17	6	6	n 56
17 – 27	15	21	$Q_1 = \frac{n}{4} = \frac{56}{4} = 14$ elemento
27 - 37	20	41	
37 - 47	10	51	$Q_3 = \frac{3n}{4} = \frac{3.56}{4} = 42$ ° elemento
47 - 57	5	56	4 4

$$\hat{m}d = \frac{\left(\frac{n}{2}\right) + \left(\frac{n}{2} + 1\right)}{2} = \frac{\left(\frac{56}{2}\right) + \left(\frac{56}{2} + 1\right)}{2} = 28 \circ e \quad 29 \circ elementos$$

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_2) e a mediana.

Classes	f_{i}	$\overline{F_i}$
7 – 17	6	6
17 – 27	15	21
27 - 37	20	41
37 - 47	10	51
47 - 57	5	56

$$Q_1 = L_{Q_1} + \frac{(n/4) - F_a}{f_{Q_1}} h$$

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md}$$

$$Q_3 = L_{Q_3} + \frac{(3n/4) - F_a}{f_{Q_3}} h$$

Para Q_1 temos:

$$L_{Q_1} = 17$$
; $n = 56$; $F_a = 6$; $h = 10$; $f_{Q_1} = 15$

Para $\hat{m}d$ temos:

$$L_{Q_1} = 17$$
; $n = 56$; $F_a = 6$; $L_i = 27$; $n = 56$; $F_a = 21$; $L_{Q_3} = 37$; $n = 56$; $F_a = 41$; $h = 10$; $f_{\hat{m}\hat{d}} = 20$ $h = 10$; $f_{Q_3} = 10$

Para Q_3 temos:

$$L_{Q_3} = 37$$
; $n = 56$; $F_a = 41$; $h = 10$; $f_{Q_3} = 10$

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.

$$Q_1 = L_{Q_1} + \frac{(n/4) - F_a}{f_{Q_1}} h = 17 + \frac{\left(\frac{56}{2} - 6\right)}{15}.10 = 22,33$$

$$\hat{m}d = L_i + \frac{(n/2) - F_a}{f_{md}} h_{md} = 27 + \frac{\left(\frac{56}{2} - 21\right)}{15}.10 = 30,50$$

$$Q_3 = L_{Q_3} + \frac{(3n/4) - F_a}{f_{Q_3}} h = 37 + \frac{\left(\frac{3.56}{4} - 41\right)}{10}.10 = 38,00$$

Exemplo: Dada a distribuição, determinar os Quartis (Q_1 e Q_3) e a mediana.

Decis => são os valores que dividem um conjunto de dados em 10 partes iguais.

 $D_1 = 0.1^{\circ}$ Decil deixa 10% dos elementos;

 $D_2 = 0.2^{\circ} \text{ Decil}$ deixa 20% dos elementos;

 $D_9 = 0.9^{\circ}$ Decil deixa 90% dos elementos.

Determinação de um Decil D_i :

- (i) Calcula-se: $\frac{i.N}{10}$ em que i = 1, 2, ..., 9;
- (ii) Identifica-se a classe de D_i pela F_i (freq. acumulada);
- (iii) Aplica-se a fórmula:

$$D_i = L_i + \frac{(i.N/10) - F_a}{f_{Di}}h$$

em que,

 $L_i = limite i nferior da classe <math>D_i$;

n = tamanho da amostra;

 F_a = soma das frequências das classes anteriores a que D_i

 f_{Di} = freqüência da classe D_i ;

 $h = \text{amplitude} da classe D_i$.

Percentis => são os valores que dividem um conjunto de dados em 100 partes iguais.

 $P_1 = 0.1^{\circ}$ Percentil deixa 1% dos elementos;

 $P_2 = 0.2^{\circ}$ Percentil deixa 2% dos elementos;

 $P_{99} = 0.99^{\circ}$ Percentil deixa 99% dos elementos.

Determinação de um Percentil P_i:

- (i) Calcula-se: $\frac{i.N}{100}$ em que i = 1, 2, ..., 98, 99;
- (ii) Identifica-se a classe de P_i pela F_i (freq. acumulada);
- (iii) Aplica-se a fórmula:

$$P_{i} = L_{i} + \frac{(i.N/100) - F_{a}}{f_{P_{i}}}h$$

em que,

 $L_i = limite inferior da classe <math>P_i$;

n = tamanho da amostra;

 F_a = soma das freqüências das classes anteriores a que P_i ;

 f_{P_i} = freqüência da classe P_i ;

 $h = \text{amplitude da classe } D_i$.

Exemplo: Dada a distribuição, determinar o Grau de Curtose

(K).

Classes	f_{i}	F_{i}
7 – 17	6	6
17 – 27	15	21
27 - 37	20	41
37 - 47	10	51
47 - 57	5	56

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Já tínhamos obtidos:

$$Q_1 = 22,33 \text{ e } Q_3 = 38,00$$

$$P_{i} = L_{i} + \frac{(i.N/100) - F_{a}}{f_{P_{i}}}h$$

Para P_{10} temos:

$$L_{P_{10}} = 7$$
; $n = 56$; $F_a = 0$; $h = 10$; $f_{P_{10}} = 6$ $P_{10} = 16,33$

Para P_{90} temos:

$$L_{P_{90}} = 37$$
; $n = 56$; $F_a = 41$; $h = 10$; $f_{P_{90}} = 10$
$$P_{90} = 46,40$$

Exemplo: Dada a distribuição, determinar o Grau de Curtose (K).

Classes	f_{i}	$\boldsymbol{F_i}$
7 – 17	6	6
17 – 27	15	21
27 - 37	20	41
37 - 47	10	51
47 - 57	5	56

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Agora temos tudo:

$$Q_1 = 22,33$$
 e $Q_3 = 38,00$

$$P_{10} = 16,33$$
 e $P_{90} = 46,40$

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})} = \frac{38,00 - 22,33}{2(46,40 - 16,33)} = 0,2606$$

Assim o Grau de Curtose, de ser classificado da seguinte forma:

$$K = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

$$K = 0,263$$

K = 0.263 | => Distribuição de frequência Mesocúrtica;

=> Distribuição de frequência Platicúrtica;

=> Distribuição de freqüência Leptocúrtica.