Ch 8: Model diagnostics

- ▶ How to check if the model "fits the data well"?
- Use residual analysis!
- Material:
 - Ch. 8 (we skip 8.2 for now (analysis of over-parametrized models), but will discuss it later when discussing model selection more formally).
 - ▶ You may want to review Ch 3.6 (residual analysis) as well.

Residual analysis

▶ Remember (e.g., from ST3131) that for a linear regression model:

$$Y_i = \beta_0 + X_{i1}\beta_1 + X_{i2}\beta_2 + \ldots + X_{ip}\beta_p + \varepsilon_i,$$

residuals were defined as $\hat{\varepsilon}_i = Y_i - \hat{Y}_i$, with

$$\hat{Y}_i = \hat{\beta}_0 + X_{1i}\hat{\beta}_1 + X_{2i}\hat{\beta}_2 + \ldots + X_p\hat{\beta}_{pi}.$$

- Same idea in time series analysis:
 - ▶ In an AR(p) model

$$Y_t = \theta_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + e_t$$

for $t=1,\ldots,n$, the residuals $\hat{e}_1,\hat{e}_2,\ldots,\hat{e}_n$ are defined as:

$$\hat{e}_t = Y_t - \hat{\theta}_0 - \hat{\phi}_1 Y_{t-1} - \hat{\phi}_2 Y_{t-2} - \ldots - \hat{\phi}_p Y_{t-p},$$

- ▶ In other words: residual \hat{e}_t = observed Y_t predicted Y_t . More precisely: observed Y_t - one-step-ahead forecast for Y_t (Ch. 9!).
- ▶ If the model was correctly specified, and the parameter estimates are reasonably close to the true values, then the residuals \hat{e}_t should have nearly the properties of the unobserved white noise $e_t \sim WN(0, \sigma_e^2)$.

One issue with this definition of residuals

▶ In an AR(p) model, for t = 1, ..., n, the residuals $\hat{e}_1, \hat{e}_2, ..., \hat{e}_n$ are defined as:

$$\hat{\mathbf{e}}_t = Y_t - \hat{\theta}_0 - \hat{\phi}_1 Y_{t-1} - \hat{\phi}_2 Y_{t-2} - \dots - \hat{\phi}_p Y_{t-p}.$$

But what about $\hat{e}_1, \ldots, \hat{e}_p$?

- ▶ Set $Y_t = E(Y_t)$ for $t \le 0$ and rescale the resulting residuals such that their variance is still approximately σ_e^2 .
- ▶ Example AR(1) with mean zero, $Y_t = \phi Y_{t-1} + e_t$:
 - ▶ For t > 1: $\hat{e}_t = Y_t \hat{\phi}_1 Y_{t-1}$ with $Var(\hat{e}_t) \approx \sigma_e^2$.
 - ► Set $Y_0 = 0$, then $\hat{e}_1^* = Y_1$, with $Var(\hat{e}_1^*) = Var(Y_1) = \gamma_0 = \sigma_e^2/(1 \phi^2)$.
 - ▶ Define the rescaled residual $\hat{\mathbf{e}}_1 = \hat{\mathbf{e}}_t^* \cdot \sqrt{(1 \hat{\phi}^2)}$ with approximate variance σ_e^2 .
- ▶ Often, standardized residuals are used (for all t) with common variance 1: $\hat{s}_t = \hat{e}_t / \sqrt{\widehat{Var}(\hat{e}_t)}$.

Example: Color data (tut)

Exhibit 1.3 Time Series Plot of Color Property from a Chemical Process

Exhibit 8.1 Standardized Residuals from AR(1) Model of Color

Standardized residuals for an ARMA(p, q) model

- ▶ What about ARMA(p, q) processes with q > 0?
- ▶ Same idea: observed Y_t one-step-ahead forecast for Y_t .
- ► For a general (invertible) zero-mean ARMA(p, q) model, remember that we can write $Y_t = e_t + \sum_{i=1}^{\infty} \pi_i Y_{t-i}$. Using this definition, we can construct the residuals as

$$\hat{e}_t = Y_t - \hat{\pi}_1 Y_{t-1} - \hat{\pi}_2 Y_{t-2} - \dots,$$

where the $\hat{\pi}$'s are functions of the $\hat{\phi}$'s and $\hat{\theta}$'s (that decay to zero as i increases).

- ▶ Again, set $Y_t = E(Y_t)$ for $t \le 0$ and rescale the \hat{e}_t 's such that their variance is still approximately σ_e^2 .
- What if Y_t is transformed and/or modeled by an ARIMA-model? Examine the residuals after fitting an ARMA model to the transformed and/or differenced series.

Example: Oil data

• We defined the transformed series $W_t = \nabla(\log(Y_t))$

Exhibit 8.3 Standardized Residuals from Log Oil Price IMA(1,1) Model

Residual analysis

- ▶ If the model was correctly specified, and the parameter estimates are reasonably close to the true values, then the residuals \hat{e}_t should have nearly the properties of white noise e_t .
- ► Things to check:
 - Zero mean
 - Constant variance
 - Outliers
 - Normality (we assume normality of the e_t 's by default for MLE)
 - Autocorrelation
- ► How?
 - ► Time series plot
 - Normality: QQ-plot and Shapiro-Wilk test
 - Autocorrelation: ACF and Ljung-Box test

Example of residual plot: color time series (tut)

Exhibit 8.1 Standardized Residuals from AR(1) Model of Color

Zero mean, constant variance, any outliers?

Example of residual plot: oil

Exhibit 8.3 Standardized Residuals from Log Oil Price IMA(1,1) Model

Zero mean, constant variance, any outliers?

▶ There are some outlying residuals (with magnitudes exceeding the Bonferroni critical value $z_{1-\alpha/2\cdot 1/n}=3.71$ for n=241 and $\alpha=0.05$) that are worth investigating further.

Normality

QQ-plot:

- ▶ Plot the ordered residuals $\hat{e}_{(1)}, \hat{e}_{(2)}, \dots, \hat{e}_{(n)}$ against their expected values if they were the order statistics from a normal distribution.
- ▶ If the residuals are approximately normally distributed, we expect that the points lie on a straight line.
- Shapiro-Wilk normality test:
 - ► Calculate the squared correlation R² between the ordered residuals and their expected values based on normality.
 - ▶ Reject normality if the value found for R^2 is smaller than expected (use critical values to do so, e.g. for $n = 200 \text{ Prob}(R^2 < 0.987) = 0.05$).

Checking normality for color data

Exhibit 8.4 Quantile-Quantile Plot: Residuals from AR(1) Color Model

► P-value for Shapiro-Wilk normality test around 0.6: We don't have evidence to reject the normality assumption.

Checking normality for oil data

Exhibit 8.6 Quantile-Quantile Plot: Residuals from IMA(1,1) Model for Oil

► P-value for Shapiro-Wilk normality test around 10⁻⁵: We reject the normality assumption.

Autocorrelation of the residuals

- ▶ How to examine the autocorrelation of the residuals?
- ▶ Denote the ACF for the residuals \hat{e}_t with \hat{r}_k .
- ▶ The asymptotic distributions for the \hat{r}_k 's are similar to those for white noise for larger k:

$$\hat{r}_k \sim N(0, 1/n)$$
, approximately, and independent

but tend to differ for small k:

- $E(\hat{r}_k) \approx 0$ still holds true,
- **b** but generally the variance of \hat{r}_k is smaller and the \hat{r}_k are correlated.
- ▶ (Book gives some expression for asymptotic variance of \hat{r}_k for AR(1) and AR(2) processes).
- In practice:
 - We first still plot the ACF with the critical bounds at $\pm 1.96 \cdot \sqrt{1/n}$.
 - ▶ Critical value is appropriate for higher lags, and we don't expect to see (many) \hat{r}_k 's to be outside at lower lags (because their variance is smaller).
 - We then use a test...

Ljung-Box test

- ► Test to check if the fitted ARMA model captured the autocorrelation structure accurately.
- ▶ The test statistic is based on checking if a set of autocorrelation terms $\hat{r}_1, \ldots, \hat{r}_K$ is "unusual".
- ▶ The test statistic is given by

$$Q_* = n(n+2)\left(\frac{\hat{r}_1^2}{n-1} + \frac{\hat{r}_2^2}{n-2} + \ldots + \frac{\hat{r}_K^2}{n-K}\right),$$

which approximately follows a χ^2_{K-p-q} distribution under H_0 .

▶ We reject the ARMA model if Q_* is larger than expected (if the p-value of the test is less than α).

Example of checking autocorrelation: Color data

▶ P-values in plot are those for the Ljung-Box test for K = 5, 6, ..., 15 (no problems detected).

Summary of model diagnostics

- ▶ Residuals \hat{e}_t = observed Y_t one-step-ahead forecast for Y_t .
- ▶ We use residuals to check whether the model adequately represents the data:
 - If the model was correctly specified, and the parameter estimates are reasonably close to the true values, then the residuals should have *nearly* the properties of normally distributed white noise.
- ▶ Things to check: Zero mean; Constant variance; Normality; Outliers; Autocorrelation.
- ▶ Tools for checking: Time series plot; QQ-plot and Shapiro-Wilk test; ACF and Ljung-Box test.
- If a model seems appropriate for the data, we can use it for forecasting, which we'll discuss next!