Aprendizagem de Máquina

Comitês (Ensembles) de Modelos

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

Sumário

Viés e Variância

Como reduzir a variância?

Stacking

Bagging

Boosting

Para Terminar

- Ao escolher \hat{f} nos deparamos com um balanço entre
 - Aproximar *f* usando o conjunto de treinamento
 - Generalizar nos novos dados

► *B* conjuntos de dados são usados para produzir *B* hipóteses

$$\hat{f}_1 = \operatorname{learn}(D1)$$
 $\hat{f}_2 = \operatorname{learn}(D2)$
 \dots
 $\hat{f}_B = \operatorname{learn}(D_B)$

lacktriangle Assim, podemos estimar uma função média ar f para qualquer x

$$\bar{f}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x)$$

O viés mede quanto o modelo diverge da função objetivo

$$\mathsf{vi\acute{e}s}(x) = \left(\overline{f}(x) - f(x)\right)^2$$

A variância indica a dispersão entre o modelo médio e cada modelo treinado com um dos *B* conjuntos de dados

variância
$$(x) = \mathbb{E}_D[\left(f^{(D)}(x) - \overline{f}(x)\right)^2]$$

A variância pode ser vista como uma medida de "instabilidade" no modelo de aprendizado, que se manifesta como uma reação a variações no conjunto de dados e resulta na geração das mais variadas hipóteses

$$\mathsf{vi\acute{e}s}(x) = \left(ar{f}(x) - f(x)
ight)^2$$
 $\mathsf{variancia}(x) = \mathbb{E}_D\left[\left(f^{(D)}(x) - ar{f}(x)
ight)^2
ight]$

Apenas uma hipótese

 $\bar{f}(x) = f^{(D)}(x)$ para qualquer x, logo variancia = 0

O viés dependerá apenas de quão próximo o modelo estará da f, logo, espera-se um viés alto.

Muitas hipóteses

f está no conjunto Viés \approx 0, pois \bar{f} deve estar perto de f Variância alta

Função seno $f(x) = \text{seno}(\pi x)$

- Treinar duas hipóteses
 - \vdash \mathcal{H}_0 : conjunto de todas as retas da forma $\hat{f}(x) = b$
 - $ightharpoonup \mathcal{H}_1$: conjunto de todas as retas da forma $\hat{f}(x) = ax + b$

Erros das hipóteses

$$E_{\mathcal{H}_0}=0.5$$

 $\overline{E}_{\mathcal{H}_1} = 0.2$

Treinar os modelos \mathcal{H}_0 e \mathcal{H}_1 usando duas instâncias: $(x_1, \overline{y_1}), (x_2, y_2)$

Para \mathcal{H}_0 , a hipótese que melhor se ajusta aos dois pontos é $b = (y_1 + y_2)/2$

Para \mathcal{H}_1 , a hipótese que melhor se ajusta é a reta que passa pelos dois pontos

Repetindo esse processo com muitos pares de dados, podemos estimar viés e variância

Analisando \mathcal{H}_o g(x) Viés ≈ 0,50 Variância ≈ 0,25 Analisando \mathcal{H}_1 Viés ≈ 0,21 Variância ≈ 1,70

- Modelos com muito viés e pouca variância:
 - Modelos que assumem uma forma funcional para os dados, como regressões paramétricas, por exemplo
- Modelos com pouco viés e muita variância:
 - Modelos não-paramétricos que dependem muito de inicializações e dos dados de treinamento, como redes neurais e árvores de decisão

Como reduzir a variância?

Como reduzir a variância?

- Não há uma forma clara de escolher um bom método de aprendizagem
- Selecionar o melhor modelo de acordo com os dados de treinamento pode resultar no pior modelo para dados futuros
- Não há almoço grátis: não existe modelo que seja dominante para todas as distribuições de dados e a distribuição dos dados de treinamento é geralmente desconhecida

Resposta: combinar modelos

- Consiste em combinar as "opiniões" de modelos em um comitê na esperança de que a opinião combinada será melhor do que cada resposta individual
- Existem três justificativas para combinar modelos: Estatística, Computacional e Representacional

Justificativa estatística (pior caso)

- Dado um conjunto de modelos no espaço de modelos possíveis, podemos:
 - Escolher um modelo qualquer: risco de fazer uma má escolha
 - Obter o modelo médio:
 - não há garantia de ter desempenho melhor do que o melhor de todos os modelos D*
 - evita a possibilidade de escolher os piores modelos

Justificativa computacional

- Algoritmos e inicializações diferentes levam a mínimos locais diferentes
- Modelos tendem a terminar o treinamento mais próximos do modelo ótimo D*
- A agregação pode levar a um modelo que é uma melhor aproximação do que qualquer D_i

Justificativa representacional (melhor caso)

- D* pode nem estar no espaço de modelos possíveis
 - Por exemplo, o espaço de modelos pode conter apenas modelos lineares
- Dessa forma, um ensemble de modelos lineares pode funções não lineares

Exemplo

- d_i é um classificador e cada coluna representa um padrão que pode ter sido classificado corretamente (1) ou não (0)
- ► A acurácia de cada classificador é 70%

d1	1	1	1	1	1	1	1	0	0	0
d2	1	1	1	1	1	1	1	0	0	0
d3	1	1	1	1	1	1	1	0	0	0

Exemplo

► E agora?

d1	1	1	1	1	1	1	1	0	0	0
d2	1	1	1	1	0	0	0	1	1	1
d3	1	0	1	1	0	1	1	0	1	1

Definições

- ▶ Dado um conjunto com B modelos $\{\hat{t}_1, \dots, \hat{t}_B\}$
- O erro do *b*-ésimo modelo é dado por $\epsilon_b = f(x) \hat{f}_b(x)$
- lacksquare O erro médio quadrado é dado por: $extit{ extit{MSE}(\hat{ extit{f}}_b) = \mathbb{E}[\epsilon_b^2]}$
- lacksquare O MSE médio é dado por $\overline{\mathit{MSE}} = rac{1}{B} \sum_{i=b}^B \mathbb{E}[\epsilon_b^2]$

Definições

- Seja $\hat{f}_{comb}(x)$ o modelo combinado: $\hat{f}_{comb}(x) = \frac{1}{B} \sum_{i=b}^{B} \hat{f}_{b}(x)$
- Então: $MSE(\hat{f}_{comb}) = \mathbb{E}[(\frac{1}{B}\sum_{i=b}^{B} \epsilon_b)^2]$
- Assumindo que os ϵ_b são independentes:
 - $\qquad \mathbb{E}[\epsilon_b \epsilon_j] = \mathbb{E}[\epsilon_b] \mathbb{E}[\epsilon_j]$
 - $ightharpoonup Cov(\epsilon_b,\epsilon_j)=0$

Redução do MSE

$$\begin{split} \textit{MSE}(\hat{\textit{f}}_{\textit{comb}}) &= \mathbb{E}[(\frac{1}{B}\sum_{i=b}^{B}\epsilon_b)^2] \\ &= \frac{1}{B^2}\sum_{i=b}^{B}\mathbb{E}[\epsilon_b^2] + \frac{1}{B^2}\sum_{j\neq b}\mathbb{E}[\epsilon_b\epsilon_j] \\ &= \frac{1}{B}\overline{\textit{MSE}} + \frac{1}{B^2}\sum_{j\neq b}\mathbb{E}[\epsilon_b]\mathbb{E}[\epsilon_j] \\ \textit{MSE}(\hat{\textit{f}}_{\textit{comb}}) &= \frac{1}{B}\overline{\textit{MSE}} \end{split}$$

Redução do MSE

- Na prática, essa redução não é obtida porque a suposição $Cov(\epsilon_b, \epsilon_j) = 0$ não é satisfeita
- Portanto, precisamos encontrar os modelos mais diferentes possíveis

Métodos para criar modelos diversos e acurados

- Manipulação dos dados de treinamento:
 - Bagging, boosting, etc
- Aleatorização
 - Modelos treinados usando instâncias aleatórias diferentes
 - Inicializações diferentes dos pesos das redes neurais
- Variação de hiperparâmetros de modelos
- Variação de classificadores

Stacking

Stacking

- Às vezes chamado de stacked generalization
- Envolve treinar um modelo que combina as predições de vários outros modelos
- Primeiro, os outros modelos são treinados usando o conjunto de treinamento como entrada
- Depois, um modelo combinador é treinado tendo as saídas dos primeiros modelos como entradas

Stacking

- Contração de Bootstrap Aggregating
- Dado um conjunto de treinamento D de tamanho N, bagging gera B novos conjuntos de treinamento D_b selecionando N' observações de D uniformemente e com reposição (por isso o bootstrap no nome)
- Algumas observações podem ser repetidas em cada D_b
- Para cada conjunto de treinamento D_b , um modelo \hat{f}_b é treinado
- Por fim suas saídas são combinadas:
 - Para regressão: fazemos a média das saídas de cada modelo
 - Para classificação: fazemos uma votação para cada classe ou calculamos a média das probabilidades estimadas por cada modelo para cada classe

- Bagging reduz a variância, gerando melhores resultados para modelos instáveis, como redes neurais e árvores de decisão
- Mas pode piorar a performance de modelos estáveis como k-vizinhos mais próximos

Boosting

Boosting

- Boosting foi proposto como uma resposta a uma pergunta de Kearns e Valiant (1988, 1989): "É possível que um conjunto de modelos fracos crie um único modelo forte?"
 - Um modelo é fraco quando suas respostas são apenas minimamente correlacionadas com a resposta verdadeira (pelo menos o suficiente para ser melhor que respostas aleatórias)
 - Um modelo forte produz respostas que são próximas às respostas esperadas
- A resposta afirmativa a essa pergunta veio em um paper de 1990 de Robert
 Schapire e levou ao desenvolvimento de algoritmos de boosting

Boosting

AdaBoost

- Algoritmo mais conhecido que implementa ensembles usando boosting
- Definições:
 - Na iteração t, temos um conjunto de classificadores

$$C_{(t-1)}(x_i) = \alpha_1 \hat{f}_1(x_i) + \ldots + \alpha_{(t-1)} \hat{f}_{(t-1)}(x_i)$$

- A classificação é dada pelo sinal de $C_{(t-1)}(x_i)$
- ightharpoonup O peso de cada instância é dado por $w_i^{(1)}=1$ ou $w_i^{(t)}=e^{-y_iC_{(t-1)}(x_i)}$

AdaBoost - Passos

1. A cada iteração, escolha o modelo que minimiza o erro ponderado

$$\sum_{y_i \neq \hat{t}_t(x_i)} w_i^{(t)}$$

2. Use esse classificador para calcular a razão de erro

$$\epsilon_t = \frac{\sum_{y_i \neq \hat{f}_t(x_i)} w_i^{(t)}}{\sum_{i=1}^N w_i^{(t)}}$$

3. Calcule o peso do classificador

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

4. Adicione o classificador ao ensemble $C_t = C_{(t-1)}(x_i) + \alpha_t \hat{f}_t(x_i)$

Para Terminar

- Uma visão do boosting como uma minimização de uma função objetivo levou ao desenvolvimento do Gradient Boosting
- Implementações do Gradient Boosting, como XGBoost são hoje considerados alguns dos melhores modelos generalistas com valores-padrão de hiperparâmetros, sendo usados em várias aplicações práticas e vencendo competições no Kaggle
- Boosting não é um bom estimador de probabilidades (os modelos resultantes tendem a superestimar probabilidades)

Sugestão de Atividade

► Trabalhe no projeto :D

Aprendizagem de Máquina

Comitês (Ensembles) de Modelos

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

