

£.

● 64Mbit時代の洗浄技術は……

UVオゾンによる炭素化合物の除去

㈱ケミトロニクス 本間 孝治

1. はじめに

マイクロデバイスの開発はめざましく、既に ULSIの分野では64Mビットクラスへと集積化が 進められる一方、半導体レーザなどの化合物半導 体、あるいはTFTを使用した高密度液晶ディスプ レイなどのデバイスにおいても、より高付加価値 を目指して微細化が進められている.

これらのマイクロファブリケーション工程で は、微細化技術とともに、洗浄プロセスを中心と した表面処理技術が、製品の品質および生産性に 最も影響を及ぼす基盤技術としてきわめて重要な 地位を占めてきている.

汚染物質を大別すると、炭素化合物を主とした 有機汚染とアルカリおよび重金属を主とした無機 汚染があるが、近年その洗浄工程で、紫外線(UV) の光エネルギーとオゾンの強力な酸化作用を利用 したUV-オゾン洗浄が定着し始めた.

この、紫外線とオゾンによる表面処理技術は、 真空を必要とせず、かつプラズマ処理のようにデ バイスに損傷を与えることがない、などの優れた 利点を有するために、多くの電子部品用素材の表 面洗浄あるいは表面処理に応用されている1,2)。 UVオゾン洗浄が対象とするのは主に有機物汚染 であり、炭素化合物が中心となる、無機物による 汚染,特に重金属汚染に関しては,UV-塩素ラジ カルによる洗浄8)の報告もあるが、紙数の都合上 改めて別の機会に取上げることとし、本稿では主 に炭素化合物の除去についてUVオゾン洗浄を中 心として述べる.

2. 除去の原理 - UVオゾン洗浄

紫外線とオゾンの組合わせによる炭素化合物の

除去は、1972年にD.A.Bolonのらが、酸素雰囲気中 で中圧水銀灯を照射し、数百nmのフォトレジスト を1時間以内で二酸化炭素と水に酸化分解できる ことを報告したことに始まる.

UVオゾン洗浄とは、紫外線の持つエネルギー と、オゾンの生成あるいは分解時に生じる原子状 活性酸素[O]の強力な酸化力を効率良く組合せる ことにより、対象とする有機物の汚れ、あるいはフ ォトレシストを構成する有機化合物の化学結合を 切断して低分子化し、さらにH2O、CO2、NOxな どの物質にまで酸化し、揮発除去する技術である。

UVオゾン洗浄に限らず、ドライ洗浄(液体を使 わない洗浄) では汚染物を最終的に気体状態で除 去する必要があり、無機汚染物、特に重金属汚染 に関しても、水素化合物あるいは塩素化合物など, 比較的低温で蒸気圧の高い物質に変えて揮発除去 することが基本となる.

さて、マイクロファブリケーションでの有機物 汚染とは、大気中に浮遊している油分あるいは人 体から発する脂質などに由来する炭素化合物が大 部分であるから、その成分は炭素、酸素、窒素、

表1 結合エネルギー

			単位はkJ/mol
結合	結合エネルギー	結合	結合エネルギー
C-C	347.7	0-0	138.9
C=C	607.	0=0	490.4
C-H	413.4	O-H	462.8
C-F	441.0	H-F	563.2
C-Cl	328.4	H-Cl	431.8
C-N	291.6	N-H	390.8
C-O	351.5	N≡N	941.8
C-O	724.	Si-O	369.0
C≢C	791.	Si-C	290.0

図1 酸素の吸収スペクトル

図2 オゾンのHartley吸収スペクトル

イオウなどである. これら基板上に付着あるいは 基板と化合結合した物質を除去するためには, 有 機分子内や分子間の結合を切断あるいは基板表面 と有機分子間の結合を切断しなければならない. 結合の切断には, その結合エネルギーより高いエ ネルギーを与える必要がある.

有機化合物の代表的な結合エネルギーを表1に示したがが、例えばC-C結合は347.7kJ/mol, C-H結合は413.4kJ/molの結合エネルギーを持つ。したがって、C-H結合を切断するには少なくとも413.4kJ/molのエネルギーが必要ということになる。

短波長紫外線の持つエネルギーは、これら有機 化合物を分解するのに都合の良い大きさである. すなわち, 電磁波の持つエネルギーEは, その波長 λと次式の関係があるから,

$$E=hc/\lambda$$
 (1)
ここで
hはプランクの定数で $6.626 \times 10^{-34} J \cdot s$
cは光速で $2.998 \times 10^{8} m \cdot s^{-1}$

例えば、波長253.7nmの紫外線の持つエネルギーは471.5kJ/molとなり、C-H結合やC-C結合を切断するには十分であることがわかる。

このように、253.7nmや184.9nmの紫外線を使えば炭素化合物を分解することができるが、分解によって生成した物質は化学的に活性であり、放置すればただちに化合物を作るので、ウエーハ表面から除去しにくくなる。

そこで、化学結合を切断すると同時にすみやかに揮発除去する工程が必要となる。すなわち、大気中の酸素は、図1に示したSchmann-Rungeの吸収スペクトルからわかるように200nm以下の極短波長光を吸収して、原子状活性酸素およびオゾン(O₄)を発生する。

である.

$$O_2 \longrightarrow 2[O]$$
 (2)

$$[O]+O_2 \longrightarrow O_3$$
 (3)

また、オゾンは図2に示したHartleyの吸収スペ

クトルからわかるように、255nm近傍の紫外線を吸収して分解し、原子状活性酸素および酸素を発生する (一部は再びオゾンとなり再分解する).

λ~250nm

$$O_3 \longrightarrow [O] + O_2 \qquad (4)$$

$$[O] + O_2 \longrightarrow O_3$$
 (5)

これらのオゾン生成あるいは分解時に生じる原子状活性酸素は、非常に強力な酸化剤として有機物の結合を切断し、さらに解離された元素を二酸化炭素と水などの揮発性物質に変える働きをする。このように、UVオゾン洗浄による炭素化合物の分解は、紫外線エネルギーと原子状活性酸素が主役になることがわかる.

実際には紫外線は、酸化揮発に用いる酸素およびオゾンによって、試料表面に到達する前にかなり吸収されるので、化学結合を直接に切断するよりも、原子状活性酸素の生成による間接的な切断が主要な働きであると考察される。

3. 技術の推移

UVオゾンによる表面処理技術は、78年頃水晶振動子の洗浄に採用され、その後、磁気ヘッド用フェライト、光および磁気ディスク基板、半導体ウエーハ、液晶基板へと着実に適用範囲が広がってきている。当初はフォトレジストの接着性向上に応用され、現在でも、この処理効果が特に液晶用ガラス基板の分野では必須なため、発展を続けている。このように接着性改善などの表面処理技術として導入された、UVオゾン処理技術であるが、完全ドライプロセスでありながら、プラズマ処理のように試料が荷電粒子に曝露されることがなく、さらに真空排気系を必要とせずに、クリーンな雰囲気中で有機汚染物質を分解除去できるという利点が認められて、高集積化したマイクロデバイス用洗浄装置としても最適と評価され始めた

さらに、外部で生成した高濃度オゾンを添加して、これを熱分解あるいは光分解する、またはN₂ O₅などのオゾンを分解するガスを混入する、などにより原子状活性酸素を増加させることで、大幅に有機物除去速度を向上させることが可能になった。これにより、本技術が従来のプラズマ・アッシャに代る、ダメージレス・ドライアッシャとし

て生産現場でも採用され始めている。

4. 表面炭素化合物の除去

各種素材に対するUV-オゾン処理効果を、表面 清浄判定の一方法である表面張力測定(一般には、 水の接触角から推定することが多い)により求め た結果を図3に示す。図から、2~3分の処理時間で急激に接触角が下がることがわかる。これは、 表面の有機物が除去されたことを示すものである

ただし一般には、UVオゾン洗浄は試料表面に O-H基を生成することもあり、これが水の接触 角を低下させる方向に作用するので、接触角が低 下しても必ずしも有機物が減少した効果だけでは ないことに注意を要する。

次に, UVオゾン処理温度を変えた場合の, ワックス (トリクロルエチレン溶液) で汚染したガラス基板表面上の, 水の接触角の変化を図4に示す. 図より, 実用的な処理速度を得るには試料表面温度を80℃以上とすることが望ましい.

接触角の改善は、通常、 $1 \sim 5 \, \text{nm}$ 程度の極薄膜を除去することにより達成され、これはUVオゾ

図3 オゾン処理による接触角の変化

図4 UV-O₃ 処理温度と接触角の変化

ン洗浄の得意とする領域である。これに対して、10nm~1μm程度の膜が対象となる一般洗浄、あるいはフォトレシストの除去に対してUV洗浄はどうであろうか。

あらかじめ汚染液(トリクロルエチレン1000mlにエレクトロンワックス0.1gを溶かしたもの)に浸漬したSiウエーハを、(a)有機洗浄(トリクロルエチレンーIPA超音波洗浄)、(b)アルカリ洗浄(5% KOH、60°C)、(c)酸洗浄(硫酸-過酸化水素、80°C)、(d)UVオゾン洗浄(80°C)、(e) 有機洗浄+UVオゾン洗浄(80°C)で洗浄した後、ESCAで分析した結果のC(IS)/Siのピークを図 5 に示す 50 。

これらの結果から、炭素化合物の除去にUVオゾン洗浄は非常に有効な手段であり、あらかじめ前洗浄により厚い汚れを除去することで、マイクロデバイスに適した、炭素化合物の極めて少ない清浄な表面が得られることがわかる。なお、(e)で有機前洗浄の代わりに、アルカリ洗浄または酸洗浄を行った場合にも、ほぼ同程度の炭素が除去されたという結果が得られている。これらの結果から、従来の洗浄システムにUVオゾン洗浄を組み合わせることによって、洗浄性能の飛躍的な向上

(a) 有機洗浄:トリクロルエチレン、IPA、超音波洗浄

(b) アルカリ洗浄: KOH (3 %) 60℃

(C) 酸 洗 净:硫酸、過酸化水素水 80℃

(d) UVオソン :80℃

(e) 有機洗+UV : (a) 洗浄 + (d) 洗浄

図5 洗浄方式とC量比較

が可能になると言える.

5. 内部炭素化合物の除去

ドライ洗浄のもう一つの優れた効果として、細 密構造への浸透性があげられる。これは被洗浄物 が微細化するほど効果が期待できる。そのような 細密構造における炭素化合物の除去例として、単 結晶フェライトおよび焼結フェライトを前記のワ ックス汚染液に浸漬し、従来の有機洗浄方式(超 音波併用) あるいはUVオゾン洗浄を適用したと きの洗浄効果、および両者を併用して洗浄したと きの洗浄効果を、図6に示すっ、データは、表面か ら深さ方向にスパッタエッチしながら、ESCAス ペクトルのC(1S)ピークの値を比較分析したもの である. 図から、焼結フェライトは単結晶フェラ イトに比べて、表面から3nm以内に炭素濃度が高 い、これは、かなりの炭化鉄が含まれているか、 焼結体特有の微結晶粒界の炭素が表面に析出して くるためと考えられる.

これらの炭素汚染は磁気ヘッド組み立て時の接着を阻害し、製品歩留りの低下の原因となる。分

図 6 フェライト中の洗浄効果 (ESCAによるC(Is) 量測定)

析結果を見ると、有機洗浄だけでは内部の炭素は 取り切れず、UVオゾン洗浄も低温では効果が低 いが,有機洗浄+150℃UVオゾン洗浄を行うとか なり炭素濃度が減少することが認められる. した がって、炭素化合物汚染の除去には、有機洗浄な どの前処理洗浄とUVオゾン洗浄の併用が最適で あることが、この結果からもわかるのである。

6 オゾン濃度と除去速度

精密洗浄用のシステムは、オゾンの発生に石英 ガラス製の紫外光源のみを使用している。これは, 高清浄度の原子状活性酸素を得ることを目的とし ているからである。ただし、低圧水銀灯の発光ス ペクトルおよび吸収スペクトルなどの関係から. 高濃度のオゾンの発生はむずかしい。精密洗浄シ ステムにおける200°Cでのオゾン濃度とネガレジ ストの除去速度の関係を図1に示したが、低濃度 であるために活性酸素の発生量が少ないので、著 しく高い除去速度は期待できない。

それでも、従来のUVオゾン洗浄における有機 物除去速度は、材質や処理条件にもよるが、数nm から数十nm/分の範囲であり、精密洗浄の目的に は十分と言える。しかし、さらに効率を上げて実 用的なダメージレス・アッシャシステムとするに、

(紫外線によるオゾン発生時)

は,酸化分解速度を上げることが必要になる.酸 化分解速度を上げるには,反応に寄与する活性酸 素のもとになる高濃度オゾンを無声放電などによ り外部から追加するのがよい.さらに分解効率を 高めるためには、オゾンによる吸収領域での発光 効率を上げた光源を用いることや,紫外線照射と 同時に加熱することも有効である.

図 8 に, 外部から高濃度オゾンを導入し, 253.7 nmの低圧水銀灯を使用し,ウエーハ温度を250℃ とした場合のオゾン濃度とフォトレジストの除去

図8 オゾン濃度と除去速度 (オゾン発生器による)

図10 UVランプの有無とエッチング速度比

速度を示す、図から、アッシャとして使用するためには最低1~2%以上のオゾン濃度が必要となると考えられる。

7. 処理温度と除去速度

高濃度オゾンの分解には、紫外線を用いるだけでなく、熱も利用することが重要である。プロセス側の立場としては、処理温度はできるだけ低いことが望ましいが、例えば図9に示すように、除去速度は処理温度に依存して上昇し、200℃付近からさらに増加する傾向が見られる。これは、オゾンの熱分解が150℃程度から始まって、温度とともに高まる結果、活性酸素が増加して酸化分解反応を盛んにしていることを示すものである。

この、オゾンの熱分解を利用した(紫外線無し)

図9 処理温度とアッシャー速度

図11 UV強度とアッシャー速度

アッシャも有機物除去用に製品化されている。これに関連して、紫外線の有無とアッシャ速度の関係を図10に示す。光源の波長分布により分岐点に差が生じるが、この図からは、250℃以下の低温度領域では紫外線による活性酸素が有効で、250℃より高温では熱分解による活性酸素の寄与が大きいことが認められる。条件によっては紫外線が除去速度を減じる場合もあり得る。

8. 紫外線強度と除去速度

次に,紫外線強度とアッシャ速度の時間推移を

図12 アッシャー速度の時間推移

図11に示す. 図よりアッシャ速度が紫外線強度に 比例して増加することがわかる. このデータ⁸¹はア ッシャ開始後の時間を定めて測定したものである が, これとは別にアッシャ速度の時間変化を測定 すると, 図12に示すように, 紫外線強度が高いほ と, 時間とともにアッシャ速度が低下する.

これは、紫外線強度が高いほど原子状活性酸素の生成が多く、有機物の分解速度も速いが、同時にレジスト表面の光架橋が進むために逆効果も生じることによる、すなわち図13に示すように、ポ

図13 UV露光量と膜厚

ジレジストにおいては感光剤の分解とポリマーの 架橋が競争的に起こり、露光量の増加とともに架 橋反応が優勢になるためである。したがって、レジストの吸収波長を考慮して、光源の波長分布特性を始めとする反応処理系を改善したり、適切な 処理条件を選択することにより、UVハードニング現象9を回避する必要がある。

光源の理想としては、前述したオゾンの生成お よび分解の領域でできるだけ高出力であることが

望ましいが、50mW/cm²以上の強度では光架橋の 問題が生じ、さらに100mW/cm²以上では、極微少 ではあるが、紫外光によるダメージが気になって

9. 装置構成

UVオゾン処理システムは、使用目的により2 種類に大別される。すなわち、炭素化合物の除去 速度は2~10nm/分程度でよいが高い清浄度が要 求される精密洗浄システム系と, 100~1000nm/分 の高速度が必要となるフォトレジストアッシャ系 である. 前者は原子状活性酸素の全てを紫外線に よって得る方法であり、量産用にはトンネル型が 適している。写真1に㈱ケミトロニクス製カセッ トtoカセット式ウエーハ用精密洗浄機CUS-1600 型を, 写真 2 に液晶ガラス用精密洗浄機CUS-260 型を示す。

フォトレジストアッシャ系は、前者にオゾン発 生器やオゾン分解装置を追加した形となる。その 場合、高濃度オゾンを使用するので密閉型になる ことが多い。写真3にウエーハ用アッシャCUS-910型を示す。

10. おわりに

半導体ウエーハ、液晶ガラス基板、その他マイ

クロファブリケーション用の表面洗浄は、極めて 高い清浄度が要求される。特に炭素化合物は重金 属と同様できるだけ低濃度でなければならない。 本稿では、UVオゾン洗浄の効果を中心に述べた が、本来の効果を期待するには前洗浄との組み合 わせが重要になる、これらの技術開発が進めば、 UVオゾン洗浄はますます炭素化合物の除去に不 可欠の技術となるであろう.

参考文献

- 1) 大場洋一, ガラスの表面設計, 近代編集社, p.226, 1984.
- 2) 大場洋一, 本間孝治, 江原泰蔵, "UV/O₃クリーニ ング", 洗浄設計, No.11, 1981年秋季号, p.37.
- 3) 伊藤隆司, 杉野林志, "光ドライ洗浄によるウエー ハの清浄化", 月刊 Semiconductor Wold 1989.3, p.120.
- 4) D. A. Bolon, and C. O. Kunz, "Ultraviolet Depolymerization of Photoresists," Polymer Eng. Sci., vol.12, p.109, 1972.
- 5) 日本化学会編, 化学便覧基礎編 II 改訂2版, 丸 善, 昭和50年.
- 6) 本間孝治, "半導体工業におけるUV/O₃洗浄", 「メ ガビット時代における半導体工業の洗浄技術」講習 会予稿集, p.3-1, 昭和61年9月.
- 7) ㈱ケミトロニクス, UVオゾン技術資料.
- 8) Kouji Homma, "Photochemical (UV-OZONE) Ashing" SEMICON OSAKA Technology Seminar'86 E-6-1
- 9) 本間孝治, "UVハードニング装置", ULSI 1985 年7月号, p.33,

高分子表面改質

三熒レイヨン(株)・工博 井 手 文 雄 著

A 5 判/340頁/定価 7,600 円 主な項目

- ●改質手法と表面機能性 ●改質技術の基本
- ●ぬれと接着性
- ●華飾性
- ●撥水性、撥油性
- 選択分離性
- ●金属吸着性
- ●耐摩耗性
- ●医用機能性
- 界面機能性

●繊維の表面改質と機能

近代編集社 (613) 0265

Surface Control®洗浄設計

目次

No.45 1990年 春号

UVオゾンによる炭素化合物の除去…ケミトロニクス 本間 孝治・45

フロンの回収

三菱フロン回収装置"FRシリーズ"……三菱爪川 二 瓶 武・53

◆表面の観察◆ 全反射蛍光X線法の原理・特長・応用例

アルバック・ファイ 木村市朗・大岩 烈・田中彰博・61

続・洗浄夜話=雪隠へ落ちた猫………………洗濯科協 横山鹿之亮・67

《講座》英語による表面技術コミュニケーション=そのハウツー②

英語でカタログや広告を作る…テクノディシブリナリーオフィス 村川 享男・71

本誌への広告掲載のお申込は●(株)共栄通信社へ

本 社 東京都中央区銀座8-2-1 電話 (03)572-3381 (代)

大 阪 大阪市北区西天満3-6-8 電話 (06)362-6515 (代) 発行所 (株) 近代 編集 社 東京都江戸川区平井5丁目23-5-501 (〒132) *TEL(03)613-0265*

FAX(03)611-1479 郵便振替口座・東京2-29153 89年度 購読料 10,000円 (送料共)

(春号Na45より冬号Na48まで4脚)

Surface Control &

洗净設計

1990年 探季号

◎ 1990年4月1日発行

発行月 4月,7月,10月,1月

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A) 平2-199036

®Int. Cl. 5

庁内整理番号 識別記号

❸公開 平成2年(1990)8月7日

C 03 B 11/00

6359-4G M

審査請求 未請求 請求項の数 2 (全8頁)

ガラスプレス成形型の製造方法 会発明の名称

> 顧 平1-20545 ②特

願 平1(1989)1月30日 22出

賢 70発 明 者 野 男 拓 野 ⑫発 明 者 藤

秀 樹 枩 老

個発 明

ホーヤ株式会社 の出願人 プロメトロンテクニク 顋 人 の出

弁理士 中村 静男 個代 理 人

ス株式会社

東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内 東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内 東京都千代田区麴町4丁目1番地 プロメトロンテクニク ス株式会社内

東京都新宿区中落合2丁目7番5号 東京都千代田区麹町 4 丁目 1 番地

明細書

1. 発明の名称

ガラスプレス成形型の製造方法

- 2. 特許請求の範囲
- (1) 製造されるべきガラスプレス成形型の基盤上 にイオンプレーティング法によりi-カーボン 膜を被覆する工程を含み、

アノード電極と、第1のカソード電極と、前 記ガラスプレス成形型基盤を保持する基盤ホル ダーとを有し、さらに前記2つの電極を取り囲 む形で前記基盤ホルダーの近くまで伸びている リフレクターを有するイオンプレーティング装 置を用い、前記アノード電極と前記第1のカソ ード電極との間に低電圧を印加して、炭素原子 数と水素原子数の比率(C/H)が1/3以上 である炭化水素のイオンのプラズマを発生させ、 更に前記アノード電極に対して前記基盤ホルダ ーが第2のカソード電極となるように前記基盤 ホルダーと前記アノード電極との間に0.5~ 2. 5KVの電圧を印加するとともに、前記り

フレクターを前記第1のカソード電極と同電位 として、炭化水素イオンを、温度200~40 ○℃に保持された基盤の方向に集中的に加速す ることにより、前記イオンプレーティング法を 実施することを特徴とするガラスプレス成形型 の製造方法。

- (2) 前記イオンプレーティング法を実施するに先 立ち、イオンボンバード処理を行なう、請求項 (1) に記載の方法。
- 3. 発明の詳細な説明

[産業上の利用分野]

本発明は、ガラスプレス成形型の製造方法に係 り、詳しくはガラスレンズ等の製造に用いられる ガラスプレス成形型の製造方法に関する。

[従来の技術及びその問題点]

プレス成形によるガラスレンズの製造において は、ガラスレンズ面は高温下において成形型の表 面がそのまま転写されることから、成形型表面で ガラスレンズ面の面精度ならびに面粗度が確保さ れなければならず、このためプレス成形型は高温

下においてガラスと化学的な反応を起こさないこと、耐酸化性及び耐熱性に優れていること、硬度が高くプレス成形時に組織変化又は塑性変形しないこと、さらに型形状の加工性が良く型表面の摩擦抵抗が極力小さいことなどが必要とされる。

従来、アレス成形型としてはタングステンカーバイド(WC)、シリコン(Si)、シリコンナイトライド(Si $_3$ N $_4$)等が用いられているが、これらはいずれも型表面にガラスの融着が起こるため、これを防止する手段として型表面に各種カーボン離型膜を設けることが提案されている。

例えば特開昭61-281030号公報ではマイクロ波プラズマCVD法により原料ガスをメタン(CH₄)及び水素(H₂)の混合ガスとしてダイヤモンド状膜を型表面に高温で形成してプレス成形型とする方法が開示されている。

この高温形成のマイクロ波プラズマCVD法により得られたダイヤモンド状膜は、耐熱性及び耐酸化性に優れ、高硬度のため型表面に傷などが生じ難い利点があるが、この膜はダイヤモンド結晶

これらも耐熱性又は耐酸化性に劣るという問題を有している。

従って本発明の目的は、マイクロ波プラズマC VD法やイオンビームスパッタ法などにより設け られたダイヤモンド状カーボン離型膜等のカーボ ン離型膜を有するガラス成形型の欠点を解消した ガラス成形型を提供することにある。

[問題点を解決するための手段]

本発明は上述の目的を達成するためになされた ものであり、本発明のガラスプレス成形型の製造 方法は、

製造されるべきガラスプレス成形型の基盤上に イオンプレーティング法によりi-カーボン膜を 被覆する工程を含み、

アノード電極と、第1のカソード電極と、前記 プレス成形型基盤を保持する基盤ホルダーとを有 し、さらに前記2つの電極を取り囲む形で前記基 盤ホルダーの近くまで伸びているリフレクターを 有するイオンプレーティング装置を用い、前記ア ノード電極と前記第1のカソード電極との間に低 が集合した多結晶膜であるため表面の凹凸が激しく、型表面の良好な面粗度を得るために研磨工程を必要とする。またマイクロ波プラズマCVD法は再現性が悪く、かつ大面積化が困難であるという問題を有している。さらにプレス成形時に型表面が汚れたり膜の一部が剥離した場合の再生が困難であるという問題を有している。

また特開昭61-242922号公報ではイオンビームスパッタ法によりダイヤモンド状カーボン膜を型表面に低温で形成する方法が開示されている。

この低温形成のイオンビームスパッタ法により 得られたダイヤモンド状カーボン膜は、ダイヤモ ンドに近似した性質を示す非晶質膜であり、室温 では高硬度で良好な潤滑性を有するが、プレス成 形温度領域に相当する例えば500℃以上の高温 では構造がグラファイト化し硬度、耐熱性が劣化 するという欠点がある。

この他にもカーボン離型膜としては、グラッシ ーカーボン膜やグラファイト膜が挙げられるが、

電圧を印加して、炭素原子数と水素原子数の比率 (C/H)が1/3以上である炭化水素のイオン のプラズマを発生させ、更に前記アノード電極に 対して前記基盤ホルダーが第2のカソード電極と なるように前記基盤ホルダーと前記アノード電極 との間に0.5~2.5KVの電圧を印加すると ともに、前記リフレクターを前記第1のカソード 電極と同電位として、炭化水素イオンを、温度20~400℃に保持された基盤の方向に集中的 に加速することにより、前記イオンプレーティン グ法を実施する

ことを特徴とする。

本発明の好ましい態様によれば、前記イオンプ レーティング法を実施するに先立ち、イオンボン バード処理を行なうのが好ましい。

以下、本発明を詳細に説明する。

本発明のガラスプレス成形型の製造方法は、製造されるべきガラスプレス成形型の形状とほぼ同一形状に研削、研磨されたガラスプレス成形型基盤上にイオンプレーティング法により1-カーボ

ン膜(非晶質の硬質カーボン膜)を被覆する工程 を含むものである。

基盤材料としては、シリコン(Si)、シリコンナイトライド(Si₃ N₄)、タングステンカーバイド(WC)や、アルミナ(Al₂ O₃)とチタンカーバイト(TiC)のサーメット等も用いられるが、炭化珪素(SiC)焼結体を用いるのが好ましい。この炭化珪素焼結体は、プレス成形の際、ガラスと接する面にCVD法による炭化珪素膜を有するものが特に好ましい。

イオンプレーティング法は、アノード電極と、第1のカソード電極と、ガラスプレス成形型基盤を保持する基盤ホルダーとを有し、さらに前記2つの電極を取り囲む形で前記基盤ホルダーの近くまで伸びているレフレクターを有するイオンプレーティング装置を用いて実施される。このイオンプレーティング装置において、前記アノード電極と前記第1のカソード電極との間に低電圧を印加して炭化水素のイオンのプラズマを発生させる。両電極間に印加される低電圧としては50~15

ール類 (メタノール、エタノール、プロパノール 等)、ジオキサン、アニリン、ピリジン等の酸素 や窒素を含む炭化水素化合物は、離型膜の成膜性 及びプレス成形時のプレス成形品離型性の少なく ともいずれか一方が不十分であり、使用すること が不適当であることが判明している。

本発明においては、前記アノード電極に対して前記基盤ホルダーが第2のカソード電極となるように前記基盤ホルダーと前記アノード電極との間に0.5~2.5KVの電圧を印加する。この電圧を0.5~2.5KVに限定した理由は、0.5KV未満では、炭化水素イオンの加速が不十分でガラスプレス成形型基盤とiーカーボン膜との密着性が弱くなり、得られた成形型を用いてプレス成形すると、少ないプレス成形回数でガラスとの融着を生じ、一方2.5KVを超えると、異常な電が生じやすく、得られた成形型の型表面が荒れやすくなるからである。

又本発明においてイオンプレーティング処理時 の基盤の温度は200~400℃に限定される。

0 Vが好ましい。50 V未満ではイオン化率が低 く非能率であり、150Vを超えるとプラズマが 不安定になるからである。また用いられる炭化水 素としては、炭素原子数と水素原子数の比率(C /H)が1/3以上であるものに限定され、その 例としては、ベンゼン(C/H=6/6)、トル エン(C/H=7/8)、キシレン(C/H= 8/10)等の芳香族炭化水素、アセチレン(C /4)、ブチン類 (C/H=4/6) 等の三重結 合含有不飽和炭化水素、エチレン (C/H=2/ 4)、プロピレン(C/H=3/7)、プテン (C/H=4/8)等の二重結合含有不飽和炭化 水素、エタン (C/H=2/6)、プロパン (C /H = 3/8), $7/9 \times (C/H = 4/10)$, ペンタン (C/H=5/12) 等の飽和炭化水素 が挙げられる。これらの炭化水素は、単独で用い ても良く、2種以上を混合して用いても良い。 これに対して、C/Hが1/3未満のメタン (C/H=1/4)や、アセトン、酢酸、アルコ

本発明者らは基盤を200~400℃に加熱し てiーカーボン膜を形成する根拠として、レーザ ーラマン分光分析より膜形成温度が膜構造と密接 に関係していることを明らかにした。iーカーボ ンとはレーザーラマン分光分析で1550cm⁻¹に 幅広いピークを示すものと定義付けられ、非晶質 のカーボンと考えられている。そして1550 cm^{-1} のピークが $1600cm^{-1}$ 側にシフトすると共 に、結晶格子の乱れを示す1360cm⁻¹のピーク が成長した場合にはグラファイト化したものと考 えられる。第3図はディスク状の炭化珪素膜上に 室温、300、400、450、550℃の各温 度で膜を形成した場合のラマン特性図であり、膜 形成温度が室温及び300℃のものに関してはi -カーボン構造と同定できるが、400℃及び4 50℃のものでは1360cm⁻¹のピーク強度が大 きくなると同時に1600cm⁻¹側に波長がシフト する傾向があり、550℃のものはその傾向が--層顕著となりグラファイト構造となっていること が認められた。更にこうして得られたi-カーボ

ン膜とグラファイト膜との差異を明らかにするた め、島津製作所製微小硬度計DUH-50を用い て名膜の硬度測定を行ない、それをビッカース硬 度に換算した結果、膜形成温度が室温から300 CCH3000~3400, 400CCH240 0,500℃以上では1500であった。またス クラッチ試験後の痕跡観察において、膜形成温度 が室温から200℃未満では痕跡の両端に貝殻状 の剝離を伴うような脆弱な膜質であるのに対して、 200℃以上ではこのような剥離を伴なわない靭 性に富んだ膜質であることが認められた。また、 耐熱性を調べるための窒素雰囲気中における65 ○℃のアニーリングテストにおいて、膜形成温度 が400℃以上では1時間の保持で炭化珪素膜表 面との剝離を生じ、室温から200℃未満では昇 温直後にカーボン膜がフィルム状に基盤表面から 浮き上り耐熱性に劣ることが認められた。これら に対して膜形成温度が200℃以上では30時間 保持後も何ら劣化を示さなかった。

以上が基盤の温度を200~400℃に限定し

形で基盤ホルダー12の近傍まで円筒形のリフレクター16が設けてあり、これは第1のカソード電極14と同電位とし、プラズマが真空槽側壁に流れず基盤13に集中することを目的としている。また図中、17はアルゴン及びベンゼンガス導入口、18は真空排気のための排気口である。

排気口18より真空槽11内の真空度を5.0
×10⁻⁶Torrに排気した後、ガス導入口17よりアルゴンガスを導入することによって真空度を8.0×10⁻⁴Torrに保持し、第1のカソード電極14とアノード電極15間に70Vの電圧を印加し、この間にプラズマを発生させ、第1のカソード電極14からの熱電子によりアルゴンガスをイオン化する。更に基盤ホルダー12とアノード電極15間に1.0KVの電圧を印加してアルゴンイオンの加速を促進し、成形型基盤13の表面をイオンボンバードすることにより清浄化する。すなわちイオンの全体的な動きから見ればアノード電極15に対して基盤ホルダー12をカソード電極と見なすこともでき、既に述べたよう

た理由であるが、後記の実施例及び比較例によってもこのことは十分に実証される。

以下に本発明の実施例について説明する。

[実施例1]

ガラスプレス成形型の基盤材料として炭化珪素 (SiC) 焼結体を用い、研削によりプレス成形 型形状に加工後、プレス成形の際、ガラスと接す る面はCVD法により炭化珪素膜を形成し、更に 研削及び研磨して鏡面に仕上げて成形型基盤とす る。 次に上記成形型基盤の炭化珪素膜上に i -カーポン膜をイオンプレーティング法により被覆 する。第1図に示されたイオンプレーティング装 置20において、真空槽11の上部にヒーター1 9を内蔵した基盤ホルダー12が設けられ、これ に炭化珪素膜を有する成形型基盤13が保持され ている。基盤ホルダー12と対向した下部にはタ ンタル (Ta) フィラメントから成る第1のカソ ード電極14とタングステン(W)ワイヤーが格 子状に張られたグリッドとしてのアノード電極1 5が設置され、この両電極14.15を取り囲む

に第2のカソード電極と称する。この基盤ホルダー12つまり第2のカソード電極は作業の安全性を考慮してグラウンド電位としてある。以上は装置の原理をわかり易く説明するために述べたものであり、基盤ホルダーがグラウンド電位であるということは実際にはアノード電極15に1.0K Vの電位を印加することになり、この電位は、第1のカソード電極14でもあるフィラメントを加熱してプラズマを発生させる以前に印加しておく方が好ましい。このイオンボンバード工程において成形型基盤13の加熱は必ずしも必要ではないが、型面の清浄効果の促進及び次に続く成膜工程における加熱のことを考えればここで加熱しておくことが好ましい。

次に、再び真空槽11の真空排気を行ない、ガス導入口17よりベンゼンガスを導入することによって真空度を9.0×10⁻⁴Torrに保持し、基本的にはイオンボンバード工程と同操作によりイオンプレーティング工程を行なう。すなわち、第1のカーソード電極14とアノード電極15間

に70Vの電圧を印加してベンゼンイオンのプラズマを発生させ、更に第2のカーソード電極である基盤ホルダー12とアノード電極15間に1. 0KVの電圧を印加するとともに、リフレクター 16を第1のカソード電極14と同電位に保持することにより、ベンゼンイオンを成形型基盤13 の方向に集中的に加速し、あらかじめ300℃に加熱しておいた成形型基盤13の表面に膜厚60 0Åのi-カーボン膜を形成する。

このようにして、第2図に示すように、所定形状の炭化珪素焼結体1上のプレス成形面に、CV D法により形成された炭化珪素膜2を有し、さらにこの炭化珪素膜2上に、イオンプレーティング法により形成されたiーカーボン膜3を有する本実施例のガラスプレス成形型4が得られた。

次に本実施例で得られたガラスプレス成形型を 用いて行なったプレス成形結果について説明する。 第2図の如く、一対のガラスプレス成形型4,4 と案内型5との間にガラスA(ランタン系光学ガ ラス)からなるガラス6を配置した後、窒素雰囲

液による融着ガラスの除去後再びプレス成形の統行が可能であった。また残りの1種の型試料については1000回のプレス成形後も融着は認められなかった(表-1の実施例1における型試料No.104~107についてのガラスBの離型状態の記載参照)。

また、このプレス成形に関連して、ディスク状に加工したCVD法による炭化珪素膜又はこの炭化珪素膜上に本実施例の方法に従ってiーカーボン膜を形成したものについて、球状の被成形ガラスとの間の摩擦係数の測定を行なった結果、炭化珪素膜では0.40であるのに対して、炭化珪素膜上にiーカーボン膜を形成したものでは0.10であり、iーカーボン膜が被成形ガラスに対して良好な潤滑性を示していることが認められた。比較例1a

実施例1と同様にベンゼンガスを用い、基盤温度を300℃としたが、基盤ホルダーとアノード電極間の電圧を本発明の範囲(0.5~2.5KV)に含まれない0.4KVとしてイオンプレー

気中でガラス6を温度560℃(ガラス粘度 109 ボアズに相当)にて30kgf/cdのプレス圧で30秒間のプレス成形を行ない、室温まで急冷する操作を繰り返した結果、炭化珪素膜上にi-カーボン膜を600歳の膜厚で形成した本実施別の成形型では1000回のプレス成形でもガラスの融着は認められず、i-カーボン膜3の表面も付る型試料No.4~7についてのガラスAの離型状態の記載参照)。これに対して炭化珪素膜を有するが、i-カーボン膜を有しない参考例の成形型では5~9回でガラスの融着が認められた(表-1の参考例における型試料No.1~3についてのガラスAの離型状態の記載参照)。

また上記ガラスAとは異なるガラスB(バリウム系光学ガラス)を温度720℃(ガラス粘度10⁹ ボアズに相当)で上記と同条件でプレス成形を行なったところ、本実施例の成形型では、4種の型試料のうち3種は625~891回目にガラスの融着が認められたが、弗化水素アンモニウム

ティング法によりi-カーボン膜を成膜した。

得られたi-カーボン膜付き成形型を用いて実施例1と同様にガラスプレス成形を行なったが、ガラスAの場合、24~29回で融着が認められ、一方ガラスBの場合も20~26回で融着が認められた(表-1の比較例1aにおける型試料No.8~9及びNo.108~109の結果参照)。

比較例1b

実施例1と間様にベンゼンガスを用い、基盤ホルダーとアノード電極間の電圧を1.0KVとしたが、基盤温度を本発明の範囲(200~400°C)に含まれない80°Cとしてイオンプレーティング法によりi-カーボン膜を成膜した。

得られたiーカーボン膜付き成形型を用いて実施例1と同様にガラスプレス成形を行なったが、ガラスAの場合、7~9回で融着が認められ、一方ガラスBの場合も2~4回で融着が認められた(表-1の比較例1bにおける型試料No.10~11及びNo.110~111の結果参照)。

比較例1 c

実施例1と同様にベンゼンガスを用い、基盤ホルダーとアノード電極間の電圧を1.0KVとしたが、基盤温度を本発明の範囲(200~400℃)に含まれない450℃としてイオンプレーティング法により1-カーボン膜を成膜した。

得られたiーカーボン膜付き成形型を用いて実施例1と同様にガラスプレス成形を行なったが、ガラスAの場合、87~93回で融着が認められ、一方ガラスBの場合も41~45回で融着が認められた(表-1の比較例1cにおける型試料No.12~13及びNo.112~113の結果を参照)。

実施例2

原料ガスのベンゼンをアセチレンに変えた以外 は実施例1と同様の実験を行なった。すなわち、 アセチレンガスにより真空度を1.0×10⁻³ Torrとし、基盤温度300℃、基盤ホルダー とアノード電極間の電圧1.0KV、アノード電 極と第1のカソード電極間の電圧90Vとして成

用いイオンプレーティング法によりiーカーボン 膜を成膜した。

得られたi-カーボン膜付き成形型を用いて実施例2と同様にガラスプレス成形を行なったが、ガラスAの場合、87~114回で融着が認められ、一方ガラスBの場合も63~91回で融着が認められた(表-1の比較例2aにおける型試料No.18~19及びNo.118~119の結果参照)比較例2b

実施例2と同様に基盤温度を300℃、基盤ホルダーとアノード電極間の電圧を1.0KVとしたが、アセチレンガスの代りに本発明外のメタンガスを用いイオンプレーティング法によりi-カーボン膜を成膜した。

得られたiーカーボン膜付き成形型を用いて実施例2と同様にガラスプレス成形を行なったが、ガラスAの場合、96~105回で融着が認められ、一方ガラスBの場合も53~72回で融着が認められた(表-1の比較例2bにおける型試料No.20~21及びNo.120~121の結

形型基盤13の表面に600Åのi-カーボン膜 を形成した。次に本実施例で得られたガラスプレ ス成形型を用い実施例1におけると同様にプレス 成形を行なった結果、ガラスAでは1000回の プレス成形後もガラスの融着は認められず、i-カーボン膜表面も何ら劣化を示さなかった(表-1の実施例2における型試料No. 14~17に ついてのガラスAの離型状態の記載参照).また ガラスAとは別種のガラスBでは、4種の型試料 について438~518回目にガラスの融着が認 められたため弗化水素アンモニウム液による融着 ガラスの除去を行なったところ、融着跡のi-カ ーポン膜表面に若干の肌荒れが生じたが、その後 のプレス成形には支障のない程度であった(表-1の実施例2における型試料No. 114~11 7についてのガラスBの離型状態の記載参照). 比較例2a

実施例2と同様に基盤温度を300℃、基盤ホルダーとアノード電極間の電圧を1.0KVとしたが、アセチレンの代りに本発明外のアセトンを

果を参照).

比較例2c

実施例2と同様に基盤温度を300℃、基盤ホルダーとアノード電極間の電圧を1.0KVとしたが、アセチレンガスの代りに本発明外のピリジンガスを用い、イオンプレーティング法によりi-カーボン膜を成膜した。

得られたiーカーボン膜付き成形型を用いて実施例2と同様にガラスプレス成形を行なったが、ガラスAの場合、128~142回で融着が認められ、一方ガラスBの場合も105~110回で融着が認められた(表-1の比較例2cにおける型試料No.22~23及びNo.122~123の結果参照)。

実施例3~4

原料ガスのベンゼンをトルエン(実施例3)及びキシレン(実施例4)に変えた以外は実施例1と同様に実施し、プレス成形型を得た。

得られたプレス成形型を用いてガラスのプレス 成形を行なったが、実施例1の場合よりもやや劣 るが、実施例3の場合、ガラスAで586回以上まで融着せず、ガラスBで403回以上まで融着せず良好な結果が得られた(表-1の実施例3における型試料No.24~27及びNo.124~127の離型状態の記載参照)。

また実施例4の場合も、ガラスAで582回以上まで融着せず、ガラスBで430回以上まで融着せず、皮好な結果が得られた(表-1の実施例4における型試料No.28~31及びNo.128~131の離型状態の記載参照)。

実施例5

原料ガスのベンゼンをペンタンに変えた以外は 実施例1と同様に実施し、アレス成形型を得た。

得られたプレス成形型を用いてガラスのプレス成形を行なったが、実施例1の場合よりもやや劣るが、ガラスAで631回以上まで融着せず、ガラスBで491回以上まで融着せず良好な結果が得られた(表-1の実施例5における型試料No.32~35及びNo.132~135の離型状態の記載参照)。

表 1

例No.	成形型	i-カーボン膜の成膜条件	離型状態					
י סיון ויש		1-カーホン族の成族祭刊	型試料No.	ガラスA	型試料NO.	ガラスB		
参考例	Sic 焼結体にCVD 法に よりSic 膜を設けただけ		2	7回目に融着 5 //	101 102 103	2 回目に融着 5 " 3 "		
	の成形型		 	1,000 回で設備せず	103			
実施例1	参考例の成形型に iーカーボン膜を設けた	ベンゼンガス,300 ℃, 電圧1.0KV ,膜厚600 Å	5	1,000 m Cagare 9	104 105 106	625 回目に融着 891 <i>ル</i> 719 ル		
	成形型		Ž	l ",	1 107	1,000 回で酸着せず		
比較例la	"	ベンゼンガス、300 ℃、	8 9	24回目に融権 29 n	108 109	20回目に融着		
		0.4KV , 600 Å ベンゼンガス, 80°C	10	29 n 7回目に配着	110	26 <i>n</i> 2回目に融着		
比較例lb	"	1.0KV . 600 Å	11	9 //	111	2 四日に配着		
比較例1c	ļ	ベンゼンガス,450℃.	12	87回目に融着	112	41回目に融着		
207XI/11 C		1.0KV , 600 Å	13	93 "	113	45 "		
## ## ## A		アセチレンガス、300 ℃.	14 15	1,000 回で脱着せず	114 115	518 回目に融着 438 "		
実施例2	,,	1.0KV , 600 Å	16 17	"	116	482 "		
			18	07531510844	117	495 //		
比較例2 a	n	アセトンガス, 300 ℃, 1.0KV_, 600 人	18	87回目に 融着 114 ル	119	63回目に融着 91 "		
比較例2b	,,	メタンガス, 300 ℃,	20 21	105 回目に融着 96 "	120 121	53回目に融着 72 ル		
II short o		1.0KV , 600 Å ピリジンガス, 300 ℃.	22	142 回目に融着	122	105 回目に融着		
比較例2 c	<i>"</i>	1.0KV . 600 Å	23	128 <i>n</i>	123	110 "		
		トルエンガス、300 ℃、	24	652 回目に融着	124	403 回目に配着		
実施例3	l "	1.0KV . 600 Å	25	586 "	125	451 "		
24 20 27 2	1	1	26	723 <i>n</i> 594 <i>n</i>	126	491 <i>u</i> 485 <i>u</i>		
		··	27	594 ル 669 回目に融着	127 128	485 <i>"</i> 487 回目に融着		
		キシレンガス、300 ℃、	29	631 <i>#</i>	129	430 "		
実施例4	"	1.0KV , 600 Å	30	582 "	130	515 "		
	1	1	31	625 "	131	493 "		
		ペンタンガス、300 ℃、	32	788 回目に融着	132	518 回目に融着		
実施例5) <i>"</i>	1.0KV . 600 A	. 33	716 "	133	503 "		
7 10 17 3			34	631 "	134	491 "		
		l	35	692 "	135	520 <i>n</i>		

特開平2-199036 (8)

[発明の効果]

以上説明した通り本発明のガラスプレス成形型の製造方法によれば、イオンプレーティング法によるi-カーボン膜の形成に際して、所定の炭化水素、所定の電圧条件、所定の温度条件等を採用することにより、ガラスプレス成形型基盤との密着性、硬度、潤滑性等にすぐれたi-カーボン膜を有するガラスプレス成形型を得ることができた。このようにして得られたガラスプレス成形型は、ガラスプレス成形を多数回繰り返してもi-カーボン膜が剥離しにくく、かつガラス離型性もよいので、長期間にわたってガラスプレス成形のために使用することができる。

4. 図面の簡単な説明

第1図は本発明の方法を実施するのに好適なイオンプレーティング装置の概略図、第2図は本発明の方法で得られたガラスプレス成形型を用いるガラスプレス成形例を示す概略図、第3図は膜形成温度が膜構造と密接に関係していることを示すレーザーラマン分光分析図である。

1…炭化珪素焼結体、2…炭化珪素膜、3…iーカーボン膜、4…ガラス成形型、5…案内型、6 …被成形ガラス、11…真空槽、12…基盤ホルダー、13…ガラス成形型基盤、14…カソード電極、15…アノード電極、16…リフレクター、17…ガス導入口、18…排気口、19…ヒーター、20…イオンプレーティング装置。

> 出願人 ホ ー ヤ 株 式 会 社 プロメトロンテクニクス株式会社 代理人 弁理士 中 村 静 男

United States Patent [19]

Uno et al.

[11] Patent Number:

5,008,002

[45] Date of Patent:

Apr. 16, 1991

[54]	PROCESS FOR PRODUCING MOLD USED
	FOR OBTAINING PRESS MOLDED GLASS
	ARTICLE

[75] Inventors: Ken Uno, Fussa; Takuo Fujino,

Akishima; Hideki Nakamori,

Kashiwa, all of Japan

[73] Assignees: Hoya Corporation; Prometron

Technics Corporation, both of Tokyo,

Japan

[21] Appl. No.: 467,248

[22] Filed: Jan. 19, 1990

[30] Foreign Application Priority Data

Jan. 30, 1989 [JP] Japan 1-20545

[51] Int. Cl.⁵ B05D 3/06; C23C 14/00

[52] U.S. Cl. 204/192.31; 204/298.05; 264/338; 427/38; 427/133; 427/249

264/337, 338

[56] References Cited U.S. PATENT DOCUMENTS

H 566	1/1989	Nyaiesh et al 427/38
3,604,970	9/1971	Culbertson et al 427/39 X
		Aisenberg 427/39

Primary Examiner—Nam X. Nguyen Attorney, Agent, or Firm—Nixon & Vanderhye

[57] ABSTRACT

The present invention relates to a process for producing a mold for glass press molding which comprises adopting, in the ion plating method to form an i-carbon film, a given hydrocarbon, given voltages, given temperature conditions, etc. According to the process, there could be obtained a mold for glass press molding, having an i-carbon film superior in adhesion to mold base, hardness, lubricity, etc. In this mold for glass press molding, the i-carbon film is less susceptible to peeling and glass releasability is good even after many times of press molding. Therefore, the mold can be used for glass press molding over a long period of time.

5 Claims, 2 Drawing Sheets

FIG. I

FIG. 2

FIG.3

1

PROCESS FOR PRODUCING MOLD USED FOR **OBTAINING PRESS MOLDED GLASS ARTICLE**

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a process for producing a mold used for obtaining a press molded glass article and more particularly to a process for producing a 10 mold used for obtaining a press molded glass article such as glass lens or the like.

2. Description of the Prior Art

In production of glass lens by press molding, the surface pattern of a mold used is transferred as such 15 onto the surface of a glass lens to be produced; therefore, the surface of the mold must have the same precision and roughness as required for the surface of glass lens. Accordingly, the mold used for press molding of glass are required to, for example, (a) cause no chemical 20 reaction to glass at high temperatures, (b) have excellent oxidation resistance and heat resistance, (c) have such a sufficiently high hardness as to cause no structural change or no plastic deformation at the time of production and have a very small frictional resistance at

As the mold used for press molding, there have conventionally been used molds made of WC, Si, Si₃N₄, etc. These molds, however, invite adhesion of glass to 30 the surfaces. To prevent such glass adhesion, it was proposed to form a releasable carbon film on the mold surface.

For example, Japanese Patent Publication Kokai (Laid-Open) No. 281030/1986 discloses a process for 35 forming, on the surface of a mold for press molding, a diamond-like carbon film at a high temperature according to a microwave plasma CVD method using, as a material gas, a mixture of CH₄ and H₂.

This diamond-like carbon film formed at a high temperature according to a microwave plasma CVD method has excellent heat resistance and oxidation resistance and a high hardness, so that the formation of flaw, etc. can be prevented on the mold surface. However, 45 being a polycrystalline film consisting of diamond crystallites, the carbon film has large projections and depressions on the surface and requires a polishing step in order to obtain a mold having a good surface roughness. Further, the microwave plasma CVD method has poor 50 reproducibility and moreover is unsuitable for obtaining a diamond-like carbon film of large surface area. Furthermore, when the mold surface has been stained or part of the film has been peeled during press molding, it is difficult to regenerate the mold surface or film.

Also, Japanese Patent Application Kokai (Laid-Open) No. 242922/1986 discloses a process for forming a diamond-like carbon film on the surface of mold for press molding, at a low temperature according to an ion beam sputtering method.

This diamond-like carbon film formed at a low temperature according to an ion beam sputtering method is amorphous, has properties close to those of diamond, and is very hard and has good lubricity at room temperature. However at high temperatures of 500° C. or more 65 which are the temperature range of press molding, the carbon film changes to a graphite structure and comes to have reduced hardness and reduced heat resistance.

As another releasable carbon film, there are a glassy carbon film and a graphite film. However, these films have poor heat resistance and poor oxidation resistance.

SUMMARY OF THE INVENTION

Hence, the object of the present invention is to provide a mold for obtaining a press molded glass article, which mold is free from the drawbacks of conventional molds having a releasable carbon film such as diamondlike carbon film formed according to a microwave plasma CVD method or an ion beam sputtering method.

According to the present invention, there is provided a process for producing a mold used for obtaining a press molded glass article, which comprises a step of forming an i-carbon film on a base of a mold for obtaining a press molded glass article (the base is hereinafter referred to as "mold base"), according to an ion plating method, wherein said ion plating method is effected by, in an ion plating apparatus comprising an anode electrode, a first cathode electrode, a holder for holding said mold base and a reflector extending as far as the vicinity of the mold base holder in such a shape that it surrounds the two electrodes, applying a low voltage between the anode electrode and the first cathode elecpress molding and (d) exhibit good machinability at its 25 trode to generate a plasma of ions of a hydrocarbon having a C/H ratio (a ratio of carbon atoms to hydrogen atoms) of ½ or more, and further applying a voltage of 0.5-2.5 KV between the mold base holder and the anode electrode so that the mold base holder becomes a second cathode electrode relative to the anode electrode while keeping the reflector at the same potential as the first cathode electrode, to accelerate the hydrocarbon ions to the direction of the mold base being kept at 200°-400° C.

In a preferred embodiment of the present invention, it is preferable to effect an ion bombardment treatment prior to the ion plating method.

BRIEF EXPLANATION OF THE DRAWINGS

FIG. 1 is a schematic illustration of an ion plating apparatus suitable for effecting the process of the present invention.

FIG. 2 is a schematic illustration showing an example of press molding of glass using a mold according to the process of the present invention.

FIG. 3 is Raman specta obtained by laser Raman spectroscopy, showing that the temperature employed for the formation of a film on a mold base has a close connection with the structure of the film formed.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is described in detail below.

The process of the present invention for producing a 55 mold used for obtaining a press molded glass article comprises a step of forming, according to an ion plating method, an i-carbon film (an amorphous hard carbon film) on a mold base which is cut and polished so as to have the same shape as a mold to be produced.

As the material for mold base, there may be used silicon (Si), silicon nitride (Si₃N₄), tungsten carbide (WC), a cermet of alumina (Al₂O₃) and titanium carbide (TiC), etc. However, sintered silicon carbide (SiC) is preferred. This sintered SiC preferably has a SiC film formed by a CVD method, on the surface which is to contact with glass during press molding.

The ion plating method is effected using an ion plating apparatus comprising an anode electrode, a first 3

cathode electrode, a holder for holding a mold base, and a reflector extending as far as the vicinity of the mold base holder in such a shape that the reflector surrounds the two electrodes. In this ion plating apparatus, a low voltage is applied between the anode electrode and the 5 first cathode electrode to generate a plasma of hydrocarbon ions. The low voltage applied between the two electrodes is preferably 50-150 V. When the voltage is less than 50 V, the ionization of hydrocarbon is low and the degree of the resulting ion plating is insufficient. 10 When the voltage is more than 150 V, the resulting plasma is unstable. The hydrocarbon used is restricted to those having a C/H ratio (a ratio of carbon atoms to hydrogen atoms) of \(\frac{1}{2} \) or more. Examples of the hydrocarbon include aromatic hydrocarbons such as benzene 15 (C/H=6/6), toluene $(C/H=\frac{7}{8})$, xylene (C/H=8/10)and the like; unsaturated hydrocarbons containing a triple bond, such as acetylene (C/H=2/2), methylacetylene $(C/H=\frac{3}{4})$, butyne (C/H=4/6) and the like; unsaturated hydrocarbons containing a double bond, such as 20 ethylene (C/H=2/4), propylene (C/H=3/7), butene (C/H=4/8) and the like; and saturated hydrocarbons such as ethane (C/H=2/6), propane $(C/H=\frac{2}{3})$, butane (C/H=4/10) and the like. These hydrocarbons can be used alone or in admixture of two or more.

It is found that methane having a C/H ratio of less than $\frac{1}{3}$ (C/H= $\frac{1}{4}$) and oxygen- or nitrogen-containing hydrocarbon compounds (e.g. acetone, acetic acid, alcohols (methanol, ethanol, propanol, etc.), dioxane, aniline, pyridine) are insufficient in at least either of 30 formability of releasable film and releasability of press molded article and accordingly unsuited for practical use.

In the present invention, a voltage of 0.5-2.5 KV is applied between the mold base holder and the anode 35 electrode so that the mold base holder becomes a second cathode electrode relative to the anode electrode. The reason for restricting the voltage between 0.5 KV and 2.5 KV is as follows. When the voltage is less than 0.5 KV, the acceleration of hydrocarbon ions is insufficient; the adhesion of i-carbon film to mold base is weak; accordingly, when the resulting mold is used for press molding of glass, there occurs adhesion of glass to mold at low press molding times. When the voltage is more than 2.5 KV, abnormal discharge tends to occur 45 and the resulting mold has a rough surface.

In the present invention, the mold base must be kept at 200°-400° C. during the ion plating treatment.

The mold base is heated to 200°-400° C. to form an i-carbon film thereon, because the present inventors 50 found by laser Raman spectroscopy that the temperature at which a film is formed on the mold base has a close connection with the structure of the film formed. i-Carbon is defined as a carbon showing a wide peak at 1,550 cm-1 in laser Raman spectroscopy and is re- 55 garded to be an amorphous carbon. When the peak at 1,550 cm⁻¹ shifts to a 1,600 cm⁻¹ side and there grows a peak at 1,360 cm-1 showing the disoder of crystal lattices, it is believed that graphitization has occurred. FIG. 3 shows Raman spectra of films formed on a disc- 60 shaped SiC at room temperature, 300° C., 400° C., 450° C. and 550° C., respectively. The films formed at room temperature and 300° C. can be identified to be those having an i-carbon structure; in the films formed at 400° C. and 450° C., there is a tendency that the peak inten- 65 sity at 1,360 cm⁻¹ is larger and the main peak is shifted to a 1,600 cm⁻¹ side; the tendency is more striking in the film formed at 550° C., and this film is regarded to

Q,

have a graphite structure. In order to make clear the difference of the thus formed i-carbon film and graphite film, these films were measured for hardness using Dynamic Ultra Micro Hardness Tester DUH-50 manufactured by Shimadzu Corp. and the resulting hardnesses were converted to corresponding Vickers hardnesses. As a result, the films formed at room temperature to 300° C. had a Vickers hardness of 3,000-3,400; the film formed at 400° C. had a Vickers hardness of 2,400; and the films formed at 500° C. or above had a Vickers hardness of 1,500. Further when the formed films were subjected to a scratch test, the films formed at room temperature to less than 200° C. caused shell-shaped peeling at the both ends of the scratch and were weak, while the films formed at 200° C. or more caused no such peeling and were tough. Furthermore when the formed films were subjected to a 650° C. annealing test in a nitrogen atmosphere in order to examine their heat resistances, the films formed at more than 400° C. caused peeling from the SiC film surface in one hour, and the films formed at room temperature to less than 200° C. caused overall lifting of carbon film from the mold base surface, right after the start of heating and were inferior in heat resistance. In contrast, the films 25 formed at 200° C. to 400° C. showed no deterioration after 30 hours.

The above are the reasons for restricting the temperature of mold base to 200°-400° C. during ion plating. These matters are thoroughly shown in Examples and Comparative examples which are given below.

The present invention is described more specifically by way of Examples and Comparative Examples. EX-AMPLE 1

Sintered SiC was used as a material for a base of a mold for glass press molding. The sintered SiC was cut into a shape of said mold. Then, on the very surface of the shaped sintered SiC which was to contact with glass during glass press molding was formed a Sic film according to a CVD method. Further, cutting and polishing were effected to allow the SiC film to have a mirror surface to obtain a mold base. Thereafter, an i-carbon film was formed on the SiC film of the mold base according to an ion plating method using an ion plating apparatus shown in FIG. 1. In the ion plating apparatus 20 shown in FIG. 1, a mold base holder 12 accommodating a heater 19 is provided at the upper portion of a vacuum chamber 11; a mold base 13 having a SiC film is held by the holder 12; at the lower portion of the vacuum chamber 11 facing the mold base holder 12 are provided a first cathode electrode 14 consisting of a Ta filament and an anode electrode 15 which is a grid of W wire; a cylindrical reflector 16 is provided so as to extend as far as the vicinity of the mold base holder 12 in such a shape that the reflector 16 surrounds the two electrodes 14 and 15. The purpose of providing the reflector 16 is to direct the plasma generated between the two electrodes 14 and 15, to the mold base 13 and not to the side wall of the vacuum chamber 11 when the reflector 16 is kept at the same potential as the first cathode electrode 14. In FIG. 1, the numeral 17 is inelts for argon gas and benzene gas, and the numeral 18 is an exhaust port for making vacuum the inside of the vacuum chamber 11.

The vacuum chamber 11 was exhausted via the exhaust port 18 to a vacuum of 5.0×10^{-6} Torr. The vacuum chamber 11 was kept at 8.0×10^{-4} Torr by introducing argon gas through the gas inlet 17, and a voltage of 70 V was applied between the first cathode electrode

14 and the anode electrode 15 to generate a plasma and ionize the argon gas with the thermoelectrons emitted from the first cathode electrode 14. Further, a voltage of 1.0 KV was applied between the mold base holder 12 and the anode electrode 15 to accelerate the argon ions 5 and ion-bombard the surface of the mold base 13 to clean the surface. In view of the overall movement of the ions, the mold base holder 12 can be regarded as a cathode electrode relative to the anode electrode 15 and, as described previously, is referred to as a second 10 cathode electrode. The mold base holder 12, i.e. the second cathode electrode is kept at a ground potential for safe operation.

5

The above explanation has been given for easy understanding of the principle of the ion plating apparatus. 15 Actually, to keep the mold base holder 12 at a ground potential, a potential of 1.0 KV is applied to the anode electrode 15. This potential (1.0 KV) is preferably applied before the filament of the first cathode electrode 14 is heated to generate a plasma. In this ion bombardment step, it is not necessary to heat the mold base 13; however, its heating in the ion bombardment step is desirable in view of (a) better cleaning effect for mold base surface and (b) heating required in the subsequent 25 glass to be press molded. film formation step.

Then, the vacuum chamber 11 was again exhausted to a vacuum, and benzene gas was introduced thereinto through the gas inlet 17 to keep the vacuum inside the vacuum chamber 11 at 9.0×10-4 Torr. Then, an ion 30 plating step was effected in accordance with the basically same procedure as in the ion bombardment step. That is, a voltage of 70 V was applied between the first cathode electrode 14 and the anode electrode 15 to generate a plasma of benzene ions; further, a voltage of 35 1.0 KV was applied between the mold base holder 12 (which is the second cathode electrode) and the anode electrode 15, and the reflector 16 was kept at the same potential as the first cathode electrode 14 to accelerate the benzene ions to the direction of the mold base 13 to 40 form an i-carbon film of 600 Å in thickness on the surface of the mold base 13 being previously heated at 300°

Thus, there was formed a mold 4 for glass press moldhaving a given shape, a SiC film 2 formed on the press molding surface of the sintered SiC 1 according to a CVD method, and an i-carbon film 3 formed on the SiC film 2 according to an ion plating method, as show in

Next, press molding of glass was effected using the mold obtained in this Example. As shown in FIG. 2, glass 6 consisting of glass A (lanthanum-based optical glass) was placed between a pair of molds 4 and 4 and a guide mold 5; the glass 6 was pressed at a 30 kgf/cm² at 55 560° C. (the glass had a viscosity of 109 poises at this temperature) for 30 seconds in a nitrogen atmosphere to effect press molding, followed by rapid cooling to room temperature; the above procedure was repeated. As a result, the mold of this Example obtained by forming an 60 i-carbon film of 600 Å in thickness on a SiC film showed no adhesion of glass even after 1,000 times of press molding; and the surface of the i-carbon film 3 showed no deterioration (see the description on releasability of mold sample Nos. 4-7 for glass A, in Example 1 of 65 Table 1). In contrast, the mold of Reference Example having a SiC film but no i-carbon film showed adhesion of glass at the 5th to 9th press molding (see the descrip-

tion on releasability of mold sample Nos. 1-3 for glass A, in Reference Example of Table 1).

Also, glass B (barium-based optical glass) was subjected to press molding under the same conditions as above at 720° C. (the glass had a viscosity of 109 poises at this temperature). In the case of the mold of this Example, three of the four mold samples tested showed adhesion of glass at the 625th to 891st press molding but, after removal of adhering glass with an ammonium hydrofluoride solution, enabled continued press molding; the remaining one mold sample showed no adhesion of glass even after 1,000 times of press molding (see the description on releasability of mold sample Nos. 104-107 for glass B, in Example 1 of Table 1).

In connection with the above press molding, there was measured a friction coefficient between (a) a SiC film formed on a mold base of dis shape according to a CVD method, or an i-carbon film formed on the SiC film according to the procedure of this Example and (b) glass of spherical shape to be press molded. The friction coefficient was 0.40 in the case of the SiC film and 0.10 in the case of the i-carbon film formed on the SiC film. Thus, the i-carbon film showed good lubricity for the

COMPARATIVE EXAMPLE 1a

An i-carbon film was formed on the same mold base as in Example 1 according to an ion plating method using the same benzene gas and mold base temperature (300° C.) as in Example 1 but applying, between the mold base holder and the anode electrode, a voltage of 0.4 KV which was outside the range (0.5-2.5 KV) specified by the present invention.

Using the resulting mold with an i-carbon film, press molding of glass was effected in the same manner as in Example 1. In the case of glass A, the mold showed adhesion of glass at the 24th to 29th molding; in the case of glass B, the mold showed adhesion at the 20th to 26th molding (see the results of mold sample Nos. 8-9 and Nos. 108-109, in Comparative Example 1a of Table 1).

COMPARATIVE EXAMPLE 1b

An i-carbon film was formed on the same mold base ing of this Example which consisted of sintered SiC 1 45 as in Example 1 according to an ion plating method, using the same benzene gas as in Example 1 and applying the same voltage (1.0 KV) between the mold base holder and the anode electrode as in Example 1 but applying a mold base temperature of 80° C. which was outside the range (200°-400° C.) specified by the present invention.

> Using the resulting mold with an i-carbon film, press molding of glass was effected in the same manner as in Example 1. In the case of glass A, the mold showed adhesion of glass at the 7th to 9th molding; in the case of glass B, the mold showed adhesion at the 2nd to 4th molding (see the results of mold sample Nos. 10-11 and Nos. 110-111, in Comparative Example 1b of Table 1).

COMPARATIVE EXAMPLE 1c

An i-carbon film was formed on the same mold base as in Example 1 according to an ion plating method, using the same benzene gas as in Example 1 and applying the same voltage (1.0 KV) between the mold base holder and the anode electrode as in Example 1 but applying a mold base temperature of 450° C. which was outside the range (200°-400° C.) specified by the present invention.

8

Using the resulting mold with an i-carbon film, press molding of glass was effected in the same manner as in Example 1. In the case of glass A, the mold showed adhesion of glass at the 87th to 93rd molding; in the case of glass B, the mold showed adhesion at the 41st to 45th 5 molding (see the results of mold sample Nos. 12-13 and Nos. 112-113, in Comparative Example 1c of Table 1).

EXAMPLE 2

A test was conducted in the same manner as in Exam- 10 ple 1 except that acetylene was used as a material gas in place of benzene. That is, the vacuum inside the vacuum chamber 11 was kept at 1.0×10⁻³ Torr using acetylene gas, and then an i-carbon film of 600 Å in thickness was formed on the mold base 13 keeping the mold base 15 temperature at 300° C. and applying a voltage of 1.0 KV between the mold base holder and the anode electrode and a voltage of 90 V between the anode electrode and the first cathode electrode. Next, using the resulting mold, press molding of glass was effected in the same 20 manner as in Example 1. In the case of glass A, the mold showed no adhesion of glass and the i-carbon film showed no deterioration, even after 1,000 times of press molding (see the description on releasability of mold sample Nos. 14-17 for glass A, in Example 2 of Table 1). 25 Table 1). In the case of glass B, all of the four mold samples tested showed adhesion of glass at the 438th to 518th molding; the adhering glass was removed with an ammonium hydrofluoride solution. This caused slight surface roughening of i-carbon film at the portions where glass 30 had adhered, but the continued press moldings gave no practical problem (see the description on releasability of mold sample Nos. 114-117 for glass B, in Example 2 of Table 1).

COMPARATIVE EXAMPLE 2a

An i-carbon film was formed on the same mold base as in Example 2 in accordance with an ion plating method using the same mold base temperature (300° C.) as in Example 2 and the same voltage (1.0 KV) between 40 the mold base holder and the anode electrode as in Example 2 but using, in place of acetylene, acetone which was not specified by the present invention.

Using the resulting mold having an i-carbon film, press molding of glass was effected in the same manner 45 as in Example 2. In the case of glass A, the mold showed adhesion of glass at the 87th to 114th molding; in the case of glass B, the mold showed adhesion at the 63rd to 91st molding (see the results of mold sample Nos. 18-19 ad No. 118-119, in Comparative Example 2a of Table 50 1).

COMPARATIVE EXAMPLE 2b

An i-carbon film was formed on the same mold base as in Example 2 in accordance with an ion plating 55 method using the same mold base temperature (300° C.) as in Example 2 and the same voltage (1.0 KV) between the mold base holder and the cathode electrode as in Example 2 but using, in place of acetylene, methane gas which was not specified by the present invention.

Using the resulting mold having an i-carbon film, press molding of glass was effected in the same manner as in Example 2. In the case of glass A, the mold showed adhesion of glass at the 96th to 105th molding; in the case of glass B, the mold showed adhesion at the 53rd to 72nd molding (see the results of mold sample Nos. 20-21 and Nos. 120-121, in Comparative Example 2b of Table 1).

COMPARATIVE EXAMPLE 2c

An i-carbon film was formed on the same mold base as in Example 2 in accordance with an ion plating method using the same mold base temperature (300° C.) as in Example 2 and the same voltage (1.0 KV) between the mold base holder and the anode electrode as in Example 2 but using, in place of acetylene, pyridine which was not specified by the present invention.

Using the resulting mold having an i-carbon film, press molding of glass was effected in the same manner as in Example 2. In the case of glass A, the mold showed adhesion of glass at the 128th to 142nd molding; in the case of glass B, the mold showed adhesion at the 105th to 110th molding (see the results of mold sample Nos. 22–23 and Nos. 122–123, in Comparative Example 2c of Table 1).

EXAMPLES 3 and 4

A mold for glass press molding was obtained in the same manner as in Example 1 except that toluene (Example 3) or xylene (Example 4) was used as a material gas, in place of benzene.

Using the mold, press molding of glass was effected. Good results were obtained in Example 3 although they were slightly inferior to those of Example 1. That is, in 35 the case of glass A, the mold showed no adhesion of glass up to at least 585th molding and, in the case of glass B, the mold showed no adhesion up to at least 402nd molding (see the description on releasability of mold sample Nos. 24-27 and Nos. 124-127 for glass, in 40 Example 3 of Table 1).

Good results were obtained also in Example 4. In the case of glass A, the mold showed no adhesion of glass up to at least 581st molding and, in the case of glass B, the mold showed no adhesion up to at least 429th molding (see the description on releasability of mold sample Nos. 28-31 and Nos. 128-131 for glass, in Example 4 of Table 1).

EXAMPLE 5

A mold for glass press molding was obtained in the same manner as in Example 1 except that pentane was used as a material gas, in place of benzene.

Using the mold, press molding of glass was effected. Good results were obtained although they were slightly 55 inferior to those of Example 1. That is, in the case of glass A, the mold showed no adhesion of glass up to at least 630th molding and, in the case of glass B, the mold showed no adhesion up to at least 490th molding (see the description of mold sample Nos. 32-35 and Nos. 60 132-135 for glass, in Example 5 of Table 1).

TABLE 1

							
				Releasability			
	Mold obtained	Conditions for formation of i-carbon film	No. of mold sample	Glass A	No. of mold sample	Glass B	
Reference Example	A mold obtained by forming a SiC film on sintered SiC		1 2 3	Adhesion at 7th molding Adhesion at 5th molding Adhesion at 9th molding	101 102 103	Adhesion at 2nd molding Adhesion at 5th molding Adhesion at 3rd molding	

TABLE 1-continued

	•	Releasability				
		Conditions for	No. of		No. of	
		formation of	mold		mold	
	Mold obtained	i-carbon film	sample	Glass A	sample	Glass B
	according					•
Example 1	to a CVD method A mold obtained by forming an i-carbon	Benzene gas, 300° C., 1.0 KV,	4	No adhesion after 1,000 times of molding	104	Adhesion at 625th molding
	film on the mold of Reference Example	600 Å (film thick- ness)	5 .	No adhesion after 1,000 times of molding	105	Adhesion at 891st molding
	Reference Example	iica)	6	No adhesion after 1,000 times of molding	106	Adhesion at 719th molding
			7	No adhesion after 1,000 times of molding	107	No adhesion after 1,000 times of molding
Comparative	A mold obtained by	Benzene gas, 300° C.,	8	Adhesion at 24th molding	108	Adhesion at 20th molding
Example 1a	forming an i-carbon film on the mold of Reference Example	0.4 KV, 600 Å	9	Adhesion at 29th molding	109	Adhesion at 26th molding
Comparative .	A mold obtained by	Benzene gas, 80° C.,	10	Adhesion at 7th molding	110	Adhesion at 2nd molding
Example 1b	forming an i-carbon film on the mold of Reference Example	1.0 KV, 600 Å	11	Adhesion at 9th molding	111	Adhesion at 4th molding
Comparative	A mold obtained by	Benzene gas, 450° C.,	12	Adhesion at 87th molding	112	Adhesion at 41st molding
Example 1c	forming an i-carbon film on the mold of Reference Example	1.0 KV, 600 Å	13	Adhesion at 93rd molding	113	Adhesion at 45th molding
Example 2	A mold obtained by forming an i-carbon	Acetylene gas, 300° C., 1.0 KV, 600 Å	14	No adhesion after 1,000 times of molding	114	Adhesion at 518th molding
	film on the mold of Reference Example	, ,	15	No adhesion after 1,000 times of molding	115	Adhesion at 438th molding
	•		16	No adhesion after 1,000 times of molding	116	Adhesion at 482nd molding
			17	No adhesion after 1,000 times of molding	117	Adhesion at 495th molding
Comparative	A mold obtained by	Acetone gas, 300° C.,	18	Adhesion at 87th molding	118	Adhesion at 63rd molding
Example 2a	forming an i-carbon film on the mold of Reference Example	1.0 KV, 600 Å	19	Adhesion at 114th molding	119	Adhesion at 91st molding
Comparative	A mold obtained by	Methane gas, 300° C.,	20	Adhesion at 105th molding	120	Adhesion at 53rd molding
Example 2b	forming an i-carbon film on the mold of Reference Example	1.0 KV, 600 Å	21	Adhesion at 96th molding	121	Adhesion at 72nd molding
Comparative	A mold obtained by	Pyridine gas, 300° C.,	22	Adhesion at 142nd molding	122	Adhesion at 105th molding
Example 2c	forming an i-carbon film on the mold of Reference Example	1.0 KV, 600 Å	23	Adhesion at 128th molding	123	Adhesion at 110th molding
Example 3	A mold obtained by	Toluene gas, 300° C.,	24	Adhesion at 652nd molding	124	Adhesion at 403rd molding
. •	forming an i-carbon	1.0 KV, 600 Å	25	Adhesion at 586th molding	125	Adhesion at 451st molding
	film on the mold of		26	Adhesion at 723rd molding	126	Adhesion at 491st molding
	Reference Example		27	Adhesion at 594th molding	127	Adhesion at 485th molding
Example 4	A mold obtained by	Xylene gas, 300° C.,	28	Adhesion at 669th molding	128	Adhesion at 487th molding
	forming an i-carbon	1.0 KV, 600 Å	29	Adhesion at 631st molding	129	Adhesion at 430th molding
	film on the mold of		30	Adhesion at 582nd molding		Adhesion at 515th molding
	Reference Example	D 2001 C	31	Adhesion at 625th molding	131	Adhesion at 493rd molding
Example 5	A mold obtained by	Pentane gas, 300° C.,	32 33	Adhesion at 788th molding Adhesion at 716th molding	132 133	Adhesion at 518th molding Adhesion at 503rd molding
	forming an i-carbon film on the mold of	1.0 KV, 600 Å	33 34	Adhesion at 631st molding	133	Adhesion at 491st molding
	Reference Example		35	Adhesion at 692nd molding		Adhesion at 520th molding
	vereteure Examble		33	Auncsion at 072110 moluling	133	Advication of acoust indigning

As described above, according to the present process for producing a mold for glass press molding, there could be obtained a mold for glass press molding, having an i-carbon film superior in adhesion to mold base, hardness, lubricity, etc., by adopting, in the ion plating 55 method to form an i-carbon film, a given hydrocarbon, given voltages, given temperature conditions, etc. In this mold for glass press molding, the i-carbon film is less susceptible to peeling and glass releasability is good even after many times of press molding. Therefore, the 60 mold can be used for glass press molding over a long period of time.

What is claimed is:

1. A process for producing a mold used for obtaining a press molded glass article, which comprises a step of 65 forming an i-carbon film on a mold base for obtaining a press molded glass article, according to an ion plating method, wherein said ion plating method is effected by,

in an ion plating apparatus comprising an anode electrode, a first cathode electrode, a holder for holding said mold base and a reflector extending as far as the vicinity of the mold base holder in such a shape that it surrounds the two electrodes, applying a low voltage between the anode electrode and the first cathode electrode to generate a plasma of ions of a hydrocarbon having a C/H ratio of $\frac{1}{3}$ or more, and further applying a voltage of 0.5-2.5 KV between the mold base holder and the anode electrode so that the mold base holder and the anode electrode while keeping the reflector at the same potential as the first cathode electrode to accelerate the hydrocarbon ions to the direction of the mold base which is being kept at 200°-400° C.

2. A process according to claim 1, wherein an ion bombardment treatment is effected prior to the ion plating method.

3. A process according to claim 1, wherein the mold base has a SiC film formed according to a CVD 5 method.

4. A process according to claim 1, wherein the hydrocarbon is selected from the group consisting of aromatic

hydrocarbons, unsaturated hydrocarbons containing a triple bond, unsaturated hydrocarbons containing a double bond, and saturated hydrocarbons.

5. A process according to claim 1, wherein the low voltage applied between the anode electrode and the first cathode electrode is 50-150 V.