Roadmap, Jan 20

SRTE Quote:

The course kind of felt like it was in disarray most of the time, but it worked out in the end.

What We've Done so Far

- Reading: Chaps 2-4 of Prince Book
- Review of probability theory
- MLE vs MAP
 - Frequentist vs Bayesian

Where we are Heading

- Bag of (Visual) Words Modeling
 - Scene recognition; Object recognition

Bag of Words Overview

- Extract features sparse or dense points in continuous vector space
- Learn "visual vocabulary" Training set. Clustering to get visual "words" e.g. K-means
- Quantize features using visual vocabulary 3.
- Represent images by frequencies of 4. MAP estimate of categorical distribution "visual words"

Where we are Heading

- MLE/MAP estimation of Categorical Distribution
 - Today: revisit Bernoulli with new notation that more easily generalizes to Categorical (Homework 1)
- Feature Extraction (Read 13.1-13.3 of Prince)
- Clustering
 - K-means derivation (most common)
 - Other alternatives: mean-shift, K-medoids, quickshift
- Bag of Words (Read 20.1-20.2 of Prince)
- Also, Readings and Critiques of BoW papers.

Where we are Heading

- MLE/MAP estimation of Categorical Distribution
 - Today: revisit Bernoulli with new notation that more easily generalizes to Categorical (Homework 1)
- Feature Extraction (Read 13.1-13.3 of Prince)
- Clustering
 - K-means derivation (most common)
 - Other alternatives: mean-shift, K-medoids, quickshift
- Bag of Words (Read 20.1-20.2 of Prince)
- Also, Readings and Critiques of BoW papers.

Conjugate Distributions

We need probability distributions over model parameters as well as over data and world state. Hence, some distributions describe the parameters of others:

Distribution	Domain	Parameters modeled by
Bernoulli	$x \in \{0, 1\}$	beta
categorical	$x \in \{1, 2, \dots, K\}$	Dirichlet
univariate normal	$x \in \mathbb{R}$	normal inverse gamma
multivariate normal	$\mathbf{x} \in \mathbb{R}^k$	normal inverse Wishart

Conjugate Distributions

We need probability distributions over model parameters as well as over data and world state. Hence, some distributions describe the parameters of others:

	Distribution	Domain	Parameters modeled by
П	Bernoulli	$x \in \{0, 1\}$	beta
	categorical	$x \in \{1, 2, \dots, K\}$	Dirichlet
	univariate normal	$x \in \mathbb{R}$	normal inverse gamma
	multivariate normal	$\mathbf{x} \in \mathbb{R}^k$	normal inverse Wishart

Bernoulli Distribution

$$Pr(x=0) = 1 - \lambda$$

$$Pr(x=1) = \lambda.$$

or

$$Pr(x) = \lambda^x (1 - \lambda)^{1 - x}$$

For short we write:

$$Pr(x) = \operatorname{Bern}_x[\lambda]$$

Bernoulli distribution describes situation where only two possible outcomes y=0/y=1 or failure/success

Takes a single parameter $\lambda \in [0,1]$

Beta Distribution

Defined over data $\lambda \in [0,1]$ (i.e. parameter of Bernoulli)

$$Pr(\lambda) = \frac{\Gamma[\alpha + \beta]}{\Gamma[\alpha]\Gamma[\beta]} \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1}$$

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$
$$\Gamma(z) = (z-1)!$$

- Two parameters α, β both > 0
- Mean depends on relative values $E[\lambda] = \alpha/(\alpha + \beta)$.
- Concentration depends on magnitude

For short we write:

$$Pr(\lambda) = \text{Beta}_{\lambda}[\alpha, \beta]$$

Categorical Distribution

$$Pr(x=k)=\lambda_k$$

or can think of data as vector with all elements zero except k^{th} e.g. e_4 = [0,0,0,1,0]

$$Pr(\mathbf{x} = \mathbf{e}_k) = \prod_{j=1}^K \lambda_j^{x_j} = \lambda_k$$

For short we write:

$$Pr(x) = \operatorname{Cat}_x [\boldsymbol{\lambda}]$$

Categorical distribution describes situation where K possible outcomes y=1...y=k.

Takes K parameters $\lambda_k \in [0,1]$ where $\sum_k \lambda_k = 1$

Dirichlet Distribution

$$Pr(\lambda_1 \dots \lambda_K) = \frac{\Gamma[\sum_{k=1}^K \alpha_k]}{\prod_{k=1}^K \Gamma[\alpha_k]} \prod_{k=1}^K \lambda_k^{\alpha_k - 1}$$

Or for short: $Pr(\lambda_1 \dots \lambda_K) = \operatorname{Dir}_{\lambda_1 \dots K} [\alpha_1, \alpha_2, \dots, \alpha_K]$

Has k parameters $\alpha_k > 0$

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince