

(12) United States Patent Sehn

US 9,225,897 B1 (10) Patent No.: (45) Date of Patent: Dec. 29, 2015

APPARATUS AND METHOD FOR SUPPLYING CONTENT AWARE PHOTO **FILTERS**

- (71) Applicant: Snapchat, Inc., Venice, CA (US)
- Timothy Sehn, Marina Del Ray, CA

- Assignee: Snapchat, Inc., Venice, CA (US)
- (*) Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- Appl. No.: 14/325,270 (21)
- (22)Filed: Jul. 7, 2014
- (51) Int. Cl. H04N 5/232 (2006.01)
- (52) U.S. Cl.

CPC H04N 5/23222 (2013.01); H04N 5/23229 (2013.01); H04N 5/23293 (2013.01); H04N *5/23216* (2013.01); *H04N 2201/3253* (2013.01)

(58)Field of Classification Search None

See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

5,999,932	A	12/1999	Paul
6,154,764	A	11/2000	Nitta et al.
6,167,435	A	12/2000	Druckenmiller et al.
6,204,840	B1	3/2001	Petelycky et al.
6,216,141	B1	4/2001	Straub et al.
6,310,694	B1	10/2001	Okimoto et al.
6,484,196	B1	11/2002	Maurille
6,665,531	B1	12/2003	Soderbacka et al.
6,724,403	B1	4/2004	Santoro et al.
6,757,713	B1	6/2004	Ogilvie et al.
6,898,626	B2	5/2005	Ohashi

7,124,164	В1	10/2006	Chemtob	
7,149,893		12/2006	Leonard et al.	
7,203,380	B2	4/2007	Chiu et al.	
7,356,564	B2	4/2008	Hartselle et al.	
7,519,670	B2	4/2009	Hagale et al.	
8,001,204	B2	8/2011	Burtner et al.	
8,098,904	B2	1/2012	Ioffe et al.	
8,112,716	B2	2/2012	Kobayashi	
8,276,092	B1	9/2012	Narayanan et al.	
8,279,319	B2 *	10/2012	Date 348/333.02	
8,312,086	B2	11/2012	Velusamy et al.	
8,312,097	B1	11/2012	Siegel et al.	
8,379,130	B2 *	2/2013	Forutanpour et al 348/333.01	
8,405,773	B2	3/2013	Hayashi et al.	
8,418,067	B2	4/2013	Cheng et al.	
8,471,914	B2 *	6/2013	Sakiyama et al 348/207.2	
8,560,612	B2	10/2013	Kilmer et al.	
8,744,523	B2	6/2014	Fan et al.	
8,775,972		7/2014	Spiegel	
8,788,680	B1	7/2014	Naik	
8,797,415	B2 *	8/2014	Arnold 348/211.99	
8,856,349		10/2014	Jain et al.	
2002/0047868	A1	4/2002	Miyazawa	
2002/0122659	A1*	9/2002	McGrath et al 386/117	
2002/0144154	A1	10/2002	Tomkow	
2003/0016247	A1	1/2003	Lai et al.	
(G .: 1)				

(Continued)

OTHER PUBLICATIONS

iVISIT, "iVisit Mobile Getting Started", Dec. 4, 2013, iVisit, pp. 1-16.

(Continued)

Primary Examiner — Michael Osinski (74) Attorney, Agent, or Firm — Cooley LLP

(57)**ABSTRACT**

A server includes a photo filter module with instructions executed by a processor to identify when a client device captures a photograph. Photograph filters are selected based upon attributes of the client device and attributes of the photograph. The photograph filters are supplied to the client device.

13 Claims, 7 Drawing Sheets

US 9,225,897 B1

Page 2

(56)	Referen	nces Cited	2012/0110096 A1		Smarr et al.
U.S.	PATENT	DOCUMENTS	2012/0113272 A1* 2012/0131507 A1	5/2012	T
	_,		2012/0131512 A1		Takeuchi et al.
2003/0052925 A1		Daimon et al. Udell et al.	2012/0143760 A1		Abulafia et al.
2003/0126215 A1 2003/0164856 A1		Prager et al.	2012/0150978 A1 2012/0166971 A1		Monaco et al. Sachson et al.
2004/0027371 A1		Jaeger	2012/0169855 A1*		Oh 348/61
2004/0111467 A1	6/2004	Willis	2012/0173991 A1		Roberts et al.
2004/0203959 A1		Coombes	2012/0176401 A1*	7/2012	Hayward et al 345/619
2004/0243531 A1 2005/0078804 A1	12/2004	Dean Yomoda	2012/0184248 A1	7/2012	
2005/0078804 A1 2005/0097176 A1		Schatz et al.	2012/0200743 A1*		Blanchflower et al 348/239
2005/0104976 A1*		Currans 348/231.5	2012/0210244 A1 2012/0212632 A1*		de Francisco Lopez et al. Mate et al
2005/0114783 A1	5/2005		2012/0220264 A1		Kawabata
2005/0122405 A1* 2005/0193340 A1		Voss et al 348/211.2 Amburgey et al.	2012/0233000 A1	9/2012	Fisher et al.
2005/0193345 A1		Klassen et al.	2012/0236162 A1*		Imamura 348/207.99
2005/0198128 A1		Anderson et al.	2012/0239761 A1		Linner et al.
2005/0223066 A1 2006/0114338 A1*		Buchheit et al. Rothschild 348/231.99	2012/0250951 A1 2012/0278387 A1	10/2012	Garcia et al.
2006/0114338 A1 · 2006/0270419 A1		Crowley et al. 348/231.99	2012/0278692 A1	11/2012	
2007/0040931 A1		Nishizawa	2012/0299954 A1		Wada et al.
2007/0073823 A1		Cohen et al.	2012/0304080 A1		Wormald et al.
2007/0082707 A1		Flynt et al. Celestini			Ford et al
2007/0192128 A1 2007/0214216 A1		Carrer et al.			Kunishige et al 348/239 He et al.
2007/0233801 A1		Eren et al.	2012/0323933 A1 2013/0050260 A1	2/2012	
2007/0243887 A1	10/2007	Bandhole et al.	2013/0057587 A1		Leonard et al.
2007/0255456 A1* 2008/0025701 A1	11/2007	Funayama 700/266	2013/0059607 A1	3/2013	Herz et al.
2008/0023701 A1 2008/0033930 A1		Warren	2013/0060690 A1		Oskolkov et al.
2008/0104503 A1	5/2008	Beall et al.	2013/0063369 A1		Malhotra et al.
2008/0207176 A1		Brackbill et al.	2013/0067027 A1 2013/0071093 A1		Song et al. Hanks et al.
2008/0222545 A1 2008/0256446 A1		Lemay et al. Yamamoto	2013/0085790 A1		Palmer et al.
		Takahata et al 348/231.5	2013/0128059 A1*	5/2013	Kristensson 348/207.1
2008/0270938 A1		Carlson	2013/0145286 A1		Feng et al.
2008/0313346 A1		Kujawa et al.	2013/0169822 A1*		Zhu et al 348/180
2009/0006565 A1 2009/0015703 A1		Velusamy et al. Kim et al.	2013/0173729 A1 2013/0182133 A1*	7/2013 7/2013	Starenky et al. Tanabe
2009/0024956 A1	1/2009	Kobayashi	2013/0182133 A1 2013/0185131 A1	7/2013	Sinha et al.
2009/0040324 A1*		Nonaka 348/220.1	2013/0194301 A1		Robbins et al.
2009/0042588 A1 2009/0058822 A1		Lottin et al. Chaundhri	2013/0222323 A1	8/2013	McKenzie
2009/0079846 A1*		Chou	2013/0227476 A1	8/2013	•
2009/0132453 A1		Hangartner et al.	2013/0232194 A1		Knapp et al.
2009/0132665 A1 2009/0160970 A1*		Thomsen et al. Fredlund et al 348/229.1	2013/0263031 A1 2013/0265450 A1*		Oshiro et al. Barnes, Jr
2009/0160970 A1 2009/0265647 A1		Martin et al.	2013/0290443 A1		Collins et al.
2010/0082693 A1	4/2010	Hugg et al.	2013/0344896 A1		Kirmse et al.
2010/0131880 A1		Lee et al.	2013/0346877 A1	12/2013	Borovoy et al.
2010/0131895 A1 2010/0159944 A1		Wohlert Pascal et al.	2014/0011538 A1	1/2014	Mulcahy et al.
2010/0161831 A1		Haas et al.	2014/0032682 A1		Prado et al.
2010/0185665 A1		Horn et al.	2014/0047045 A1		Baldwin et al.
2010/0214436 A1* 2010/0223128 A1		Kim et al 348/223.1 Dukellis et al.	2014/0047335 A1		Lewis et al
2010/0223128 A1 2010/0223343 A1		Bosan et al.	2014/0049652 A1* 2014/0052485 A1		Shidfar 348/207.1
2010/0257196 A1		Waters et al.	2014/0052633 A1		Gandhi
2010/0281045 A1	11/2010		2014/0057660 A1	2/2014	
2010/0306669 A1 2011/0004071 A1		Della Pasqua Faiola et al.	2014/0122658 A1		Haeger et al.
2011/0040783 A1		Uemichi et al.	2014/0122787 A1		Shalvi et al.
2011/0040804 A1		Peirce et al.	2014/0129953 A1		Spiegel
2011/0050909 A1*		Ellenby et al	2014/0143143 A1		Fasoli et al.
2011/0050915 A1* 2011/0102630 A1*		Wang et al	2014/0149519 A1 2014/0155102 A1		Redfern et al. Cooper et al.
2011/0145564 A1		Moshir et al.	2014/0173457 A1		Wang et al.
2011/0197194 A1		D'Angelo et al.	2014/0189592 A1		Benchenaa et al.
2011/0202968 A1		Nurmi Schmidt et al.	2014/0207679 A1	7/2014	
2011/0211534 A1 2011/0213845 A1		Logan et al.	2014/0214471 A1		Schreiner, III
2011/0273575 A1*		Lee 348/222.1	2014/0279436 A1		Dorsey et al.
2011/0283188 A1	11/2011	Farrenkopf et al.	2014/0280537 A1		Pridmore et al.
2011/0320373 A1		Lee et al.	2014/0282096 A1 2014/0317302 A1	9/2014	Rubinstein et al.
2012/0028659 A1 2012/0062805 A1		Whitney et al. Candelore	2014/031/302 A1 2014/0325383 A1		Brown et al.
2012/0002803 A1 2012/0108293 A1		Law et al.	2015/0046278 A1		Pei et al.

(56) References Cited

U.S. PATENT DOCUMENTS

2015/0116529 A1	* 4/2015	Wu et al 348/222.1
2015/0172534 A1	* 6/2015	Miyakawa et al 348/333.01
2015/0222814 A1	* 8/2015	Li et al H04N 5/23216

OTHER PUBLICATIONS

Melanson, Mike, "This text message will self destruct in 60 seconds", available on Feb. 11, 2011, retrieved from readwrite.com on Feb. 18, 2015, link: http://readwrite.com/2011/02/11/this_text_message_

will_self_destruct_in_60_seconds, referred to hereinafter as Read-Write.

Sawers, Paul, "Snapchat for iOS Lets You Send Photos to Friends and Set How long They're Visible for", May 7, 2012, , pp. 1-5. International Search Report and Written Opinion issued to International Patent Application No. PCT/US2014/040346, Mar. 23, 2015, 9

pgs. Shein, "Ephemeral Data", Communications of the ACM, vol. 56, No. 9, pp. 20-22, Sep. 2013.

Snapchat, "How Snaps Are Stored and Deleted", May 9, 2013, 3 pgs.

^{*} cited by examiner

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

1

APPARATUS AND METHOD FOR SUPPLYING CONTENT AWARE PHOTO FILTERS

FIELD OF THE INVENTION

This invention relates generally to photographs taken by a mobile device operative in a networked environment. More particularly, this invention relates to supplying such a mobile device with content aware photo filters.

BACKGROUND OF THE INVENTION

The number of digital photographs taken with mobile wireless devices is increasingly outnumbering photographs taken with dedicated digital and film based cameras. Thus, there are growing needs to improve the experience associated with mobile wireless digital photography.

SUMMARY OF THE INVENTION

A server includes a photo filter module with instructions executed by a processor to identify when a client device captures a photograph. Photograph filters are selected based upon attributes of the client device and attributes of the photograph. The photograph filters are supplied to the client device.

BRIEF DESCRIPTION OF THE FIGURES

The invention is more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, in which:

- FIG. 1 illustrates an electronic device utilized in accordance with an embodiment of the invention.
- FIG. 2 illustrates a networked system utilized in accordance with an embodiment of the invention.
- FIG. 3 illustrates processing operations associated with an embodiment of the invention.
- FIG. 4 illustrates a photograph taken by a digital mobile 40 device.
- FIG. 5 illustrates a general filter applied to the photograph.
- FIG. 6 illustrates a feature specific filter applied to the photograph.
- FIG. 7 illustrates a different feature specific filter with a 45 branded element applied to the photograph.

Like reference numerals refer to corresponding parts throughout the several views of the drawings.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates an electronic device 100 utilized in accordance with an embodiment of the invention. In one embodiment, the electronic device 100 is a Smartphone with a processor 102 in communication with a memory 104. The 55 processor 102 may be a central processing unit and/or a graphics processing unit. The memory 104 is a combination of flash memory and random access memory. The memory 104 stores a photo controller 106. The photo controller 106 includes executable instructions to coordinate the capture, 60 display and archiving of digital photographs. The photo controller 106 may include photo filter processing disclosed herein, which augments or replaces such photo filter processing that is described below in connection with a server based photo filter module.

The processor 102 is also coupled to image sensors 115. The image sensors 115 may be known digital image sensors,

2

such as charge coupled devices. The image sensors capture visual media, which is presented on display 116, as coordinated by the photo controller 106.

A touch controller 118 is connected to the display 116 and the processor 102. The touch controller 118 is responsive to haptic signals applied to the display 116. In one embodiment, the photo controller 106 monitors signals from the touch controller 118 to coordinate the capture, display and archiving of digital photographs. The electronic device 100 may also include other components commonly associated with a Smartphone, such as a wireless signal processor 120 to support wireless communications, a power control circuit 122 and a global positioning system processor 124.

FIG. 2 illustrates a system 200 configured in accordance with an embodiment of the invention. The system 200 includes a set of client devices 100_1 through 100_N. The client devices 100 are connected to a network 206, which is any combination of wireless and wired network communication devices. A server 204 is also connected to the network 20 206. The server 204 includes standard components, such as a central processing unit 210 and input/output devices 212 connected via a bus 214. The input/output devices 212 may include a keyboard, mouse, display and the like. A network interface circuit 216 is also connected to the bus 214 to provide connectivity to network 206. A memory 220 is also connected to the bus 214. The memory 220 includes modules with executable instructions, such as a photo filter module 222. The photo filter module 222 implements photo evaluation and filter selection operations, as discussed below.

FIG. 3 illustrates processing operations associated with an embodiment of the invention. The operations are performed by the photo filter module 222 of server 204 in combination with one or more client devices 100. Initially, the photo filter module 222 serves a photo prompt 300. For example, the photo filter module 222 may form a segment of a network executed application that coordinates taking photographs and appending messages to such photographs for delivery from one user to another. In this context, client 100_1 accesses the photo filter module 222 over network 206 to activate the application, which serves the photo prompt to the client 100_1. A user at the client 100_1 takes a photo 302.

FIG. 4 illustrates client device 100_1 with a display 400 that presents a photo prompt 402. Activation of the photo prompt 402 results in a picture 404. The photo filter module 222 monitors the client device activity to determine if a photo is taken 304. If so, the attributes of the photograph and client device are evaluated 305. Photo filters are selected and supplied 306 based upon the evaluation.

By way of example, the attributes of the client device may include geolocation of the client device, which is collected from the GPS processor 124. The geolocation may be used to designate photo filters relevant to the geolocation. For example, if the geolocation is proximate to a beach, then photo filters to augment a beach setting (e.g., a color filter for water, sand and/or sky) may be supplied. The geolocation may be used to select a filter with a brand associated with an establishment proximate to the geolocation. For example, a restaurant or store may sponsor a photo filter that includes a brand associated with the restaurant or store. In this case, in addition to the brand, the photo filter may include other indicia associated with the restaurant (e.g., an image of a hamburger or taco) or store (e.g., an image of a surf board or sun glasses).

The attributes associated with the client device may include established preferences associated with the client device. The established preferences may be defined by explicitly stated preferences supplied by a user. Alternately, the

3

established preferences may be derived from prior use patterns. For example, explicitly stated or derived preferences may indicate that photo filters with a temperature overlay, date and/or time overlay be supplied.

The attributes of the photograph may include the physical 5 environment captured in the photograph. For example, the photograph may be evaluated to identify an urban setting, a rural setting, a sunset a seascape and the like. Filters applicable to the physical environment may then be supplied.

The attributes of the photograph may include an object 10 depicted in the photograph. For example, the evaluation may identify a building, a building feature (e.g., door or roof), a flower, an individual, an animal and the like. Filters applicable to such objects may then be supplied.

The next operation of FIG. 3 is to apply the photo filters 15 308. For example, a swipe across the display of a client device 100_1 may cause a photo filter to slide across the original photo. FIG. 5 illustrates the result of a first swipe motion, which results in a darkening filter 500 being applied to the original photo. Another swipe motion may result in another 20 filter being presented. For example, FIG. 6 illustrates the result of a second swipe motion, which results in an object specific filter 600 being presented. In this case, the object specific filter 600 relates to the identification of a door in the photo. The identification of the door may result in the supply 25 of a variety of filters for different door colors. Another swipe of the display may result in still another filter, such as shown in FIG. 7. The filter of FIG. 7 includes an object specific filter 700, in this case for a roof of a building. The filter also includes a brand component 702. This filter also includes an 30 overlay of the temperature 704 when the photo was taken. A time overlay 706 and date overlay 708 are also supplied.

Returning to FIG. 3, the next operation is to select a photo filter 310. Selection of a photo filter may include selection of one or more available filters. The photo may then be saved 35 with the applicable filter or filters. The photo and filter may also be sent to another user 312. In this case, the server 204 routes 314 the photo to another client 100_2, which displays the photo with the filter 316.

Photograph filters may also be selected based upon popular 40 filters. Branded filters may be supplied based upon an auction mechanism. For example, vendors may bid on photo filters to be supplied based upon characteristics of a user, location of a user, content of a photograph and the like.

An embodiment of the present invention relates to a com- 45 puter storage product with a non-transitory computer readable storage medium having computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or 50 they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media, optical media, magneto-optical media and hardware devices that are specially configured to store and execute 55 program code, such as application-specific integrated circuits ("ASICs"), programmable logic devices ("PLDs") and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer 60 using an interpreter. For example, an embodiment of the invention may be implemented using JAVA®, C++, or other object-oriented programming language and development tools. Another embodiment of the invention may be implemented in hardwired circuitry in place of, or in combination 65 with, machine-executable software instructions.

4

The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following claims and their equivalents define the scope of the invention.

The invention claimed is:

- 1. A server, comprising: a photo filter module with instructions executed by a processor to: identify when a client device captures a photograph; select photograph filters based upon attributes of the client device and attributes of the photograph, wherein the attributes of the client device include geolocation of the client device; supply the selected photograph filters to the client device, wherein the supplied photograph filters are configured to be independently selectable by a user in response to a gesture applied to the photograph as presented on a display of the client device, wherein each supplied photograph filter is an overlay on top of the photograph to augment the photograph and is not presented on the display of the client device prior to being overlaid on top of the photograph in response to the gesture applied to the photograph presented on the display of the client device, and wherein at least one supplied photograph filter is configured for the geolocation; receive a selection of one or more of the supplied photograph filters; and route the one or more selected photograph filters and the photograph to another client device.
- 2. The server of claim 1, wherein the attributes of the client device include established preferences of the client device.
- 3. The server of claim 1, wherein the attributes of the photograph include the physical environment captured in the photograph.
- **4**. The server of claim **1**, wherein the attributes of the photograph include an object depicted in the photograph.
- 5. The server of claim 1, wherein the photograph filters include brand indicia.
- **6**. The server of claim **5**, wherein the brand indicia is supplied in response to an auction.
- 7. The server of claim 1, wherein the photograph filters include temperature indicia.
- 8. The server of claim 1, wherein the photograph filters include time indicia.
- 9. The server of claim 1, wherein the photograph filters include date indicia.
- 10. The server of claim 1, wherein the photograph filters include a brand associated with an establishment proximate to the geolocation of the client device.
- 11. The server of claim 2, wherein the established preferences are explicitly stated preferences supplied by a user.
- 12. The server of claim 2, wherein the established preferences are derived from prior use patterns.
- 13. The server of claim 1, wherein the photo filter module includes instructions executed by the processor to append a message to the photograph.

* * * * *