

CSC477 Introduction to Mobile Robotics

Florian Shkurti

Week #7: Least Squares Estimation and GraphSLAM

Today's agenda

- Least Squares Estimation
- Maximum Likelihood Estimation (MLE)
- Maximum a Posteriori Estimation (MAP)
- Bayesian Estimation
- GraphSLAM

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Estimating parameters of probability models

- In the occupancy grid mapping problem we wanted to compute $p(\mathbf{m}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})$ over all possible maps.
- We can see this problem as a specific instance within a category of problems where we are given data (observations) and we want to "explain" or fit the data using a parametric function.

Estimating parameters of probability models

- In the occupancy grid mapping problem we wanted to compute $p(\mathbf{m}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})$ over all possible maps.
- We can see this problem as a specific instance within a category of problems where we are given data (observations) and we want to "explain" or fit the data using a parametric function.
- There are typically three ways to work with this type of problems:
 - 1. Maximum Likelihood parameter estimation (MLE)
 - Least Squares
 - 2. Maximum A Posteriori (MAP) parameter estimation
 - 3. Bayesian parameter distribution estimation

We are given data points $(\mathbf{x}_1, \mathbf{z}_1), ..., (\mathbf{x}_N, \mathbf{z}_N)$

We **think** that the data was generated by a parametric function $\mathbf{z} = \mathbf{h}(\boldsymbol{\theta}, \mathbf{x})$

Example: we think that the 2D data was generated by a line $z=\theta_0+\theta_1x$ whose parameters we do not know, and was corrupted by noise.

We are given data points $(\mathbf{x}_1, \mathbf{z}_1), ..., (\mathbf{x}_N, \mathbf{z}_N)$

We **think** that the data was generated by a parametric function $\mathbf{z} = \mathbf{h}(\boldsymbol{\theta}, \mathbf{x})$

Example: we think that the 2D data was generated by a line $z=\theta_0+\theta_1x$ whose parameters we do not know.

We are given data points $(\mathbf{x}_1, \mathbf{z}_1), ..., (\mathbf{x}_N, \mathbf{z}_N)$

We **think** that the data was generated by a parametric function $\mathbf{z} = \mathbf{h}(\boldsymbol{\theta}, \mathbf{x})$

This parametric model will have a fitting error:

$$e(\boldsymbol{\theta}) = \sum_{i=1}^{N} ||\mathbf{z}_i - \mathbf{h}(\boldsymbol{\theta}, \mathbf{x}_i)||^2$$

The least-squares estimator is:

$$\boldsymbol{\theta}_{LS} = \operatorname*{argmin}_{\boldsymbol{\theta}} e(\boldsymbol{\theta})$$

Example: we think that the 2D data was generated by a line $z=\theta_0+\theta_1x$ whose parameters we do not know.

We are given data points $(\mathbf{x}_1, \mathbf{z}_1), ..., (\mathbf{x}_N, \mathbf{z}_N)$

We **think** that the data was generated by a linear parametric function $\mathbf{z} = \mathbf{h}(\boldsymbol{\theta}, \mathbf{x}) = \mathbf{H}_{\mathbf{x}}\boldsymbol{\theta}$ where $\mathbf{H}_{\mathbf{x}}$ is a matrix whose elements depend on

 \mathbf{X}

This parametric model will have a fitting error:

$$e(\boldsymbol{\theta}) = \sum_{i=1}^{N} ||\mathbf{z}_i - \mathbf{H}_{\mathbf{x}_i} \boldsymbol{\theta}||^2$$

The least-squares estimator is:

$$\boldsymbol{\theta}_{LS} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \ e(\boldsymbol{\theta})$$

Example: we think that the 2D data was generated by a line $z=\theta_0+\theta_1x$ whose parameters we do not know.

We are given data points $(\mathbf{x}_1, \mathbf{z}_1), ..., (\mathbf{x}_N, \mathbf{z}_N)$

We **think** that the data was generated by a linear parametric function $\mathbf{z} = \mathbf{h}(\boldsymbol{\theta}, \mathbf{x}) = \mathbf{H}_{\mathbf{x}} \boldsymbol{\theta}$

This parametric model will have a fitting error:

$$e(\boldsymbol{\theta}) = \sum_{i=1}^{N} ||\mathbf{z}_i - \mathbf{H}_{\mathbf{x}_i} \boldsymbol{\theta}||^2$$
$$= \sum_{i=1}^{N} \mathbf{z}_i^T \mathbf{z}_i - 2\boldsymbol{\theta}^T \mathbf{H}_{\mathbf{x}_i}^T \mathbf{z}_i + \boldsymbol{\theta}^T \mathbf{H}_{\mathbf{x}_i}^T \mathbf{H}_{\mathbf{x}_i} \boldsymbol{\theta}$$

Example: we think that the 2D data was generated by a line $z=\theta_0+\theta_1x$ whose parameters we do not know.

We are given data points $(\mathbf{x}_1, \mathbf{z}_1), ..., (\mathbf{x}_N, \mathbf{z}_N)$

We **think** that the data was generated by a linear parametric function $\mathbf{z} = \mathbf{h}(\boldsymbol{\theta}, \mathbf{x}) = \mathbf{H}_{\mathbf{x}} \boldsymbol{\theta}$

This parametric model will have a fitting error:

$$e(\boldsymbol{\theta}) = \sum_{i=1}^{N} ||\mathbf{z}_i - \mathbf{H}_{\mathbf{x}_i} \boldsymbol{\theta}||^2$$
$$= \sum_{i=1}^{N} \mathbf{z}_i^T \mathbf{z}_i - 2\boldsymbol{\theta}^T \mathbf{H}_{\mathbf{x}_i}^T \mathbf{z}_i + \boldsymbol{\theta}^T \mathbf{H}_{\mathbf{x}_i}^T \mathbf{H}_{\mathbf{x}_i} \boldsymbol{\theta}$$

The least-squares estimator minimizes the error:

$$\frac{\partial e(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0} \Leftrightarrow -2\sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{z}_{i} + 2\mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{H}_{\mathbf{x}_{i}} \boldsymbol{\theta} = \mathbf{0} \Leftrightarrow \left[\sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{H}_{\mathbf{x}_{i}}\right] \boldsymbol{\theta} = \sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{z}_{i}$$

Example: we think that the 2D data was generated by a line $z=\theta_0+\theta_1x$ whose parameters we do not know.

We are given data points $(\mathbf{x}_1, \mathbf{z}_1), ..., (\mathbf{x}_N, \mathbf{z}_N)$

We **think** that the data was generated by a linear parametric function $\mathbf{z} = \mathbf{h}(\boldsymbol{\theta}, \mathbf{x}) = \mathbf{H}_{\mathbf{x}} \boldsymbol{\theta}$

This parametric model will have a fitting error:

$$egin{array}{lll} e(oldsymbol{ heta}) &=& \sum_{i=1}^N ||\mathbf{z}_i - \mathbf{H}_{\mathbf{x}_i} oldsymbol{ heta}||^2 \ &=& \sum_{i=1}^N \mathbf{z}_i^T \mathbf{z}_i - 2oldsymbol{ heta}^T \mathbf{H}_{\mathbf{x}_i}^T \mathbf{z}_i + oldsymbol{ heta}^T \mathbf{H}_{\mathbf{x}_i}^T \mathbf{H}_{\mathbf{x}_i} oldsymbol{ heta} \end{array}$$

The least-squares estimator minimizes the error:

$$\frac{\partial e(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0} \Leftrightarrow -2\sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{z}_{i} + 2\mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{H}_{\mathbf{x}_{i}} \boldsymbol{\theta} = \mathbf{0} \Leftrightarrow \left[\sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{H}_{\mathbf{x}_{i}}\right] \boldsymbol{\theta} = \sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{z}_{i}$$
$$\boldsymbol{\theta}_{LS} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} e(\boldsymbol{\theta}) \Leftrightarrow \left[\sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{H}_{\mathbf{x}_{i}}\right] \boldsymbol{\theta}_{LS} = \sum_{i=1}^{N} \mathbf{H}_{\mathbf{x}_{i}}^{T} \mathbf{z}_{i}$$

Example #1: Linear Least Squares

Example: we think that the 2D data was generated by a line $z=\theta_0+\theta_1x$ whose parameters we do not know.

We are given 2D data points $(x_1, z_1), ..., (x_N, z_N)$

We **think** that the data was generated by a linear parametric function $z=h(\pmb{\theta},x)=[1 \quad x]\pmb{\theta}=\theta_0+\theta_1x$

This parametric model will have a fitting error:

$$e(\theta_0, \theta_1) = \sum_{i=1}^{N} (z_i - \theta_0 - \theta_1 x_i)^2$$

The least-squares estimator minimizes the error:

$$\boldsymbol{\theta}_{LS} = \underset{\theta_0, \theta_1}{\operatorname{argmin}} \ e(\theta_0, \theta_1) \Leftrightarrow \left[\sum_{i=1}^{N} \begin{bmatrix} 1 \\ x_i \end{bmatrix} \begin{bmatrix} 1 & x_i \end{bmatrix} \right] \boldsymbol{\theta}_{LS} = \sum_{i=1}^{N} \begin{bmatrix} 1 \\ x_i \end{bmatrix} z_i$$

Which is a linear system of 2 equations. If we have at least two data points we can solve for θ_{LS} to define the line.

Example #2: Linear Least Squares

Example: we think that the 2D data was generated by a quadratic $z=\theta_0+\theta_1x+\theta_2x^2$ whose parameters we do not know.

We are given 2D data points $(x_1, z_1), ..., (x_N, z_N)$

We **think** that the data was generated by a linear parametric function $z = h(\theta, x) = \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \theta = \theta_0 + \theta_1 x + \theta_2 x^2$

This parametric model will have a fitting error:

$$e(\theta_0, \theta_1, \theta_2) = \sum_{i=1}^{N} (z_i - \theta_0 - \theta_1 x_i - \theta_2 x_i^2)^2$$

The least-squares estimator minimizes the error:

$$\boldsymbol{\theta}_{LS} = \underset{\theta_0, \theta_1, \theta_2}{\operatorname{argmin}} \ e(\theta_0, \theta_1, \theta_2) \Leftrightarrow \left[\sum_{i=1}^{N} \begin{bmatrix} 1 \\ x_i \\ x_i^2 \end{bmatrix} \begin{bmatrix} 1 & x_i & x_i^2 \end{bmatrix} \right] \boldsymbol{\theta}_{LS} = \sum_{i=1}^{N} \begin{bmatrix} 1 \\ x_i \\ x_i^2 \end{bmatrix} z_i$$

Which is a linear system of 3 equations. If we have at least three data points we can solve for θ_{LS} to define the quadratic.

Today's agenda

- Least Squares Estimation
- Maximum Likelihood Estimation (MLE)
- Maximum a Posteriori Estimation (MAP)
- Bayesian Estimation
- GraphSLAM

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Estimating parameters of probability models

- In the occupancy grid mapping problem we wanted to compute $p(\mathbf{m}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})$ over all possible maps.
- We can see this problem as a specific instance within a category of problems where we are given data (observations) and we want to "explain" or fit the data using a parametric function.
- There are typically three ways to work with this type of problems:
 - 1. Maximum Likelihood parameter estimation (MLE)
 - Least Squares
 - 2. Maximum A Posteriori (MAP) parameter estimation
 - 3. Bayesian parameter distribution estimation

We are given data points $\mathbf{d}_{1:N} = \mathbf{d}_1,...,\mathbf{d}_N$

We **think** the data has been generated from a probability distribution $p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$

We want to find the parameter of the model that maximizes the likelihood function of the data

$$L(\boldsymbol{\theta}) = p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

which is a function of theta, **not** a probability distribution.

$$\boldsymbol{\theta}_{MLE} = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

$$oldsymbol{ heta}_{MLE} = rgmax \ p(\mathbf{d}_{1:N} | oldsymbol{ heta})$$

Find the parameters of the model that maximize the likelihood function of the data

$$L(\boldsymbol{\theta}) = p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

which is a function of theta, **not** a probability distribution.

Example: assume we know that 1D data points were generated independently from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, but we don't know the mean and variance. The likelihood function of the data is

$$oldsymbol{ heta}_{MLE} = rgmax_{oldsymbol{ heta}} p(\mathbf{d}_{1:N} | oldsymbol{ heta})$$

Find the parameters of the model that maximize the likelihood function of the data

$$L(\boldsymbol{\theta}) = p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

which is a function of theta, **not** a probability distribution.

Example: assume we know that 1D data points were generated independently from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, but we don't know the mean and variance. The likelihood function of the data is

$$L(\mu, \sigma) = p(\mathbf{d}_{1:N} | \mu, \sigma) = \prod_{i=1}^{N} p(d_i | \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp(-0.5(d_i - \mu)^2 / \sigma^2)$$

$$oldsymbol{ heta}_{MLE} = rgmax_{oldsymbol{ heta}} p(\mathbf{d}_{1:N} | oldsymbol{ heta})$$

Find the parameters of the model that maximize the likelihood function of the data

$$L(\boldsymbol{\theta}) = p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

which is a function of theta, **not** a probability distribution.

Example: assume we know that 1D data points were generated independently from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, but we don't know the mean and variance. The likelihood function of the data is

of the data is
$$L(\mu,\sigma)=p(\mathbf{d}_{1:N}|\mu,\sigma)=\prod_{i=1}^N p(d_i|\mu,\sigma)=\prod_{i=1}^N \frac{1}{\sqrt{2\pi}\sigma} \exp(-0.5(d_i-\mu)^2/\sigma^2)$$
 extended as

And the maximum-likelihood parameter estimates are

$$(\mu, \sigma)_{MLE} = \underset{\mu, \sigma}{\operatorname{argmax}} \ p(\mathbf{d}_{1:N} | \mu, \sigma) = \underset{\mu, \sigma}{\operatorname{argmax}} \ \log p(\mathbf{d}_{1:N} | \mu, \sigma) = \underset{\mu, \sigma}{\operatorname{argmax}} \ \sum_{i=1}^{N} \log p(d_i | \mu, \sigma)$$

$$oldsymbol{ heta}_{MLE} = rgmax_{oldsymbol{ heta}} p(\mathbf{d}_{1:N} | oldsymbol{ heta})$$

Find the parameters of the model that maximize the likelihood function of the data

$$L(\boldsymbol{\theta}) = p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

which is a function of theta, **not** a probability distribution.

Example: assume we know that 1D data points were generated independently from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, but we don't know the mean and variance. The likelihood function of the data is

$$L(\mu, \sigma) = p(\mathbf{d}_{1:N} | \mu, \sigma) = \prod_{i=1}^{N} p(d_i | \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp(-0.5(d_i - \mu)^2 / \sigma^2)$$

And the maximum-likelihood parameter estimates are

$$(\mu, \sigma)_{MLE} = \underset{\mu, \sigma}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(d_i | \mu, \sigma) = \underset{\mu, \sigma}{\operatorname{argmax}} \left[-N \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (d_i - \mu)^2 \right]$$

$$oldsymbol{ heta}_{MLE} = rgmax_{oldsymbol{ heta}} p(\mathbf{d}_{1:N} | oldsymbol{ heta})$$

Find the parameters of the model that maximize the likelihood function of the data

$$L(\boldsymbol{\theta}) = p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

which is a function of theta, **not** a probability distribution.

Example: assume we know that 1D data points were generated independently from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, but we don't know the mean and variance. The likelihood function of the data is

of the data is
$$L(\mu,\sigma)=p(\mathbf{d}_{1:N}|\mu,\sigma)=\prod_{i=1}^N p(d_i|\mu,\sigma)=\prod_{i=1}^N \frac{1}{\sqrt{2\pi}\sigma} \exp(-0.5(d_i-\mu)^2/\sigma^2)$$

And the maximum-likelihood parameter estimates are

And the maximum-likelihood parameter estimates are
$$(\mu,\sigma)_{MLE} = \operatorname*{argmax}_{\mu,\sigma} \sum_{i=1}^{N} \log p(d_i|\mu,\sigma) = \operatorname*{argmax}_{\mu,\sigma} \left[-N \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (d_i - \mu)^2 \right] \overset{\text{Set partial derivatives}}{\longleftarrow}$$

Set partial derivatives w.r.t.
$$\mu$$
 and σ to zero

$$\mu_{MLE} = \sum_{i=1}^{N} d_i / N$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (d_i - \mu_{MLE})^2$$

Least Squares as Maximum Likelihood

$$\boldsymbol{\theta}_{MLE} = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\mathbf{d}_{1:N} | \boldsymbol{\theta})$$

Find the parameters of the model that maximize the likelihood function of the data

$$L(\boldsymbol{\theta}) = p(\mathbf{d}_{1:N}|\boldsymbol{\theta})$$

which is a function of theta, **not** a probability distribution.

Example: assume we know that 1D data points were generated independently from a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, but we don't know the mean and variance. The likelihood function of the data is

of the data is
$$L(\mu,\sigma) = p(\mathbf{d}_{1:N}|\mu,\sigma) = \prod_{i=1}^{N} p(d_i|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp(-0.5(d_i-\mu)^2/\sigma^2)$$

And the maximum-likelihood parameter estimates are

$$(\mu, \sigma)_{MLE} = \underset{\mu, \sigma}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(d_i | \mu, \sigma) = \underset{\mu, \sigma}{\operatorname{argmax}} \left[-N \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (d_i - \mu)^2 \right]$$

Least squares estimation occurs from maximum likelihood with Gaussian models of data

Estimating parameters of probability models

- In the occupancy grid mapping problem we wanted to compute $p(\mathbf{m}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})$ over all possible maps.
- We can see this problem as a specific instance within a category of problems where we are given data (observations) and we want to "explain" or fit the data using a parametric function.
- There are typically three ways to work with this type of problems:
 - 1. Maximum Likelihood parameter estimation (MLE)
 - Least Squares
 - 2. Maximum A Posteriori (MAP) parameter estimation
 - 3. Bayesian parameter distribution estimation

Maximum A Posteriori Parameter Estimation

$$\theta_{MAP} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(\boldsymbol{\theta}|\mathbf{d}_{1:N})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left[\frac{p(\mathbf{d}_{1:N}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{d}_{1:N})} \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left[p(\mathbf{d}_{1:N}|\boldsymbol{\theta})p(\boldsymbol{\theta}) \right]$$

Almost the same as MLE, but with a prior distribution on the parameters

Estimating parameters of probability models

- In the occupancy grid mapping problem we wanted to compute $p(\mathbf{m}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})$ over all possible maps.
- We can see this problem as a specific instance within a category of problems where we are given data (observations) and we want to "explain" or fit the data using a parametric function.
- There are typically three ways to work with this type of problems:
 - 1. Maximum Likelihood parameter estimation (MLE)
 - Least Squares
 - 2. Maximum A Posteriori (MAP) parameter estimation
 - 3. Bayesian parameter distribution estimation

Bayesian parameter estimation

- Both MLE and MAP estimators give you a single **point estimate**.
- But there might be many parameters that are compatible with the data.
- Instead of point estimates, compute a **distribution of estimates** that explain the data

Bayesian parameter estimation:

$$p(\boldsymbol{\theta}|\mathbf{d}_{1:N}) = \frac{p(\mathbf{d}_{1:N}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{d}_{1:N})}$$

The probability of the data is usually hard to compute. But it does not depend on the parameter theta, so it is treated as a normalizing factor, and we can still compute how the posterior varies with theta.

Bayesian parameter estimation

- Both MLE and MAP estimators give you a single **point estimate**.
- But there might be many parameters that are compatible with the data.
- Instead of point estimates, compute a **distribution of estimates** that explain the data

• Bayesian parameter estimation:

$$p(\boldsymbol{\theta}|\mathbf{d}_{1:N}) = \frac{p(\mathbf{d}_{1:N}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{d}_{1:N})}$$

• This is what we used in occupancy grid mapping, when we approximated

$$p(\mathbf{m}|\mathbf{z}_{1:t},\mathbf{x}_{1:t})$$

Today's agenda

- Least Squares Estimation
- Maximum Likelihood Estimation (MLE)
- Maximum a Posteriori Estimation (MAP)
- Bayesian Estimation
- GraphSLAM

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Goal

- Enable a robot to simultaneously build a map of its environment and estimate where it is in that map.
- This is called SLAM (Simultaneous Localization And Mapping)
- Today we are going to look at the batch version, i.e. collect all measurements and controls, and later form an estimate of the states and the map.
- We are going to solve SLAM using least squares

MORESLAM system, McGill, 2016

MORESLAM system, McGill, 2016

Laser-based SLAM with a Ground Robot

Erik Nelson, Nathan Michael

Carnegie Mellon University

Source Code: https://github.com/erik-nelson/blam

Google
Cartographer:
2D and 3D laser
SLAM

Code: https://github.com/googlecartographer/cartographer

SLAM: possible problem definitions

• Smoothing/Batch/Full SLAM $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ Sequence of sensor sensor measurements Sequence of commands

SLAM: possible problem definitions

Initial state

• Smoothing/Batch/Full SLAM

Filtering SLAM

$$p(\mathbf{x}_t, \mathbf{m}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}, \mathbf{x}_0)$$

SLAM: possible problem definitions

Filtering SLAM

$$p(\mathbf{x}_t, \mathbf{m}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}, \mathbf{x}_0)$$

From "Computer Vision: Models, Learning, and Inference" Simon Prince

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^{2})$$

Shortcut notation: $||\mathbf{x}||_{\Sigma}^2 = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}$

Note: The shapes of these covariances are important, you should know them well. In particular, when are x1 and x2 correlated?

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \text{det}(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^2)$$

Shortcut notation: $||\mathbf{x}||_{\Sigma}^2 = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}$

x1 and x2 are correlated when the shape of the ellipse is rotated, i.e. when there are nonzero off-diagonal terms in the covariance matrix. In this example, (e) and (f)

Confidence regions

• To quantify confidence and uncertainty define a confidence region R about a point x (e.g. the mode) such that at a confidence level $c \le 1$

$$p(x \in R) = c$$

- we can then say (for example) there is a 99% probability that the true value is in R
- e.g. for a univariate normal distribution $N(\mu,\sigma^2)$

$$p(|x - \mu| < \sigma) \approx 0.67$$

 $p(|x - \mu| < 2\sigma) \approx 0.95$
 $p(|x - \mu| < 3\sigma) \approx 0.997$

Expectation

• Expected value of a random variable X:

$$\mathbb{E}_{x \sim p(X)}[X] = \int_{x} x p(X = x) dx$$

• E is linear: $\mathbb{E}_{x \sim p(X)}[X+c] = \mathbb{E}_{x \sim p(X)}[X] + c$

$$\mathbb{E}_{x \sim p(X)}[AX + b] = A\mathbb{E}_{x \sim p(X)}[X] + b$$

• If X,Y are independent then [Note: inverse does not hold]

$$\mathbb{E}_{x,y \sim p(X,Y)}[XY] = \mathbb{E}_{x \sim p(X)}[X] \ \mathbb{E}_{x \sim p(Y)}[Y]$$

Covariance Matrix

• Measures linear dependence between random variables X, Y. Does **not** measure independence.

$$Cov[X, Y] = E[XY] - E[X]E[Y]$$

Variance of X

$$Var[X] = Cov[X] = Cov[X, X] = E[X^2] - E[X]^2$$

$$Cov[AX + b] = ACov[X]A^{T}$$

$$Cov[X + Y] = Cov[X] + Cov[Y] - 2Cov[X, Y]$$

Covariance Matrix

• Measures linear dependence between random variables X, Y. Does **not** measure independence.

$$Cov[X, Y] = E[XY] - E[X]E[Y]$$

• Entry (i,j) of the covariance matrix measures whether changes in variable X_i co-occur with changes in variable Y_j

• It does not measure whether one causes the other.

Correlation does not imply causation

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

tylervigen.com

Correlation does not imply causation

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^{2})$$

For multivariate Gaussians:

$$E[\mathbf{x}] = \boldsymbol{\mu}$$

$$\operatorname{Cov}[\mathbf{x}] = \mathbf{\Sigma}$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}))$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \det(\mathbf{\Sigma})^{1/2}} \exp(-0.5||\mathbf{x} - \boldsymbol{\mu}||_{\mathbf{\Sigma}}^{2})$$

Since we have 2D examples here:

$$\operatorname{Cov}[\mathbf{x}] = \mathbf{\Sigma} = \begin{bmatrix} \operatorname{Cov}[x_1, x_1] & \operatorname{Cov}[x_1, x_2] \\ \operatorname{Cov}[x_2, x_1] & \operatorname{Cov}[x_2, x_2] \end{bmatrix}^{x_2}$$
$$= \begin{bmatrix} \operatorname{Var}[x_1] & \operatorname{Cov}[x_1, x_2] \\ \operatorname{Cov}[x_2, x_1] & \operatorname{Var}[x_2] \end{bmatrix}^{-5}$$

SLAM: graph representation

Map $\mathbf{m} = \{\mathbf{m}_0, \mathbf{m}_1\}$ consists of landmarks that are easily identifiable and cannot be mistaken for one another.

i.e. we are avoiding the data association problem here.

SLAM: graph representation

Map $\mathbf{m} = \{\mathbf{m}_0, \mathbf{m}_1\}$ consists of landmarks that are easily identifiable and cannot be mistaken for one another.

SLAM: graph representation

 m_1

Notice that the graph is mostly sparse as long as not many states observe the same landmark.

That implies that there are many symbolic dependencies between random variables in

$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

that are not necessary and can be dropped.

Instead of computing the posterior

$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$
 we are going to compute its max

See least squares lecture

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \ p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

Instead of computing the posterior
$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$
 we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

by definition of conditional distribution

Instead of computing the posterior
$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$
 we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$$

denominator does not depend on optimization variables

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

Observation of landmark k at time

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{1:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$$

 $\operatorname{argmax} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$ $\mathbf{x}_{1:T},\mathbf{m}$

See Appendix 1 for the derivation of this step

$$\left| \prod_{t=1}^{T} p(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \right|_{t}$$

$$\underset{\mathbf{x}_{1:T},\mathbf{m}}{\operatorname{argmax}} \left[\prod_{t=1}^{T} p(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \prod_{t=0}^{T} \prod_{\mathbf{z}_{t}^{(k)} \in \mathbf{z}_{t}} p(\mathbf{z}_{t}^{(k)} | \mathbf{x}_{t}, \mathbf{m}_{k}) \right]$$

Set of observations

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$\mathbf{x}_{1:T}^{*}, \mathbf{m}^{*} = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_{0})$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_{0})}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_{0})} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_{0})$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\prod_{t=1}^{T} p(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \prod_{t=0}^{T} \prod_{\mathbf{z}_{t}^{(k)} \in \mathbf{z}_{t}} p(\mathbf{z}_{t}^{(k)} | \mathbf{x}_{t}, \mathbf{m}_{k}) \right]$$

Probabilistic dynamics model

Instead of computing the posterior $p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$ we are going to compute its max

$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\frac{p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)}{p(\mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)} \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} p(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1} | \mathbf{x}_0)$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\prod_{t=1}^{T} p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) \prod_{t=0}^{T} \prod_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^{T} \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^{T} \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

Instead of computing the posterior

$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$
 we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^{T} \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^{T} \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

Main GraphSLAM assumptions:

1. Uncertainty in the dynamics model is Gaussian

$$egin{aligned} \mathbf{x}_t &= \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \mathbf{w}_t \ &\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t) \ &\mathbf{so} \ &\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1} \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}), \mathbf{R}_t) \end{aligned}$$

2. Uncertainty in the sensor model is Gaussian

$$egin{aligned} \mathbf{z}_t^{(k)} &= \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k) + \mathbf{v}_t \ \mathbf{v}_t &\sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t) \ \mathbf{so} \ \mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k &\sim \mathcal{N}(\mathbf{h}(\mathbf{x}_t, \mathbf{m}_k), \mathbf{Q}_t) \end{aligned}$$

SLAM: noise/errors

$$\mathbf{x}_1|\mathbf{x}_0,\mathbf{u}_0 \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_0,\mathbf{u}_0),\mathbf{R}_0)$$

Expected to end up at $\mathbf{x}_1 = \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)$ from \mathbf{x}_0

SLAM: noise/errors

$$\mathbf{x}_1|\mathbf{x}_0,\mathbf{u}_0 \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_0,\mathbf{u}_0),\mathbf{R}_0)$$

Expected to end up at $\mathbf{x}_1 = \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)$ from \mathbf{x}_0 but we might end up around it, within the ellipse defined by the covariance matrix \mathbf{R}_0

SLAM: noise/errors

$$\mathbf{z}_1^{(0)}|\mathbf{x}_1,\mathbf{m}_0 \sim \mathcal{N}(\mathbf{h}(\mathbf{x}_1,\mathbf{m}_0),\mathbf{Q}_1)$$

Expected to get measurement $\mathbf{h}(\mathbf{x}_1,\mathbf{m}_0)$ at state \mathbf{X}_1 but it might be somewhere within the ellipse defined by the covariance matrix \mathbf{Q}_1

GraphSLAM: SLAM as a least squares problem

Instead of computing the posterior
$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$
 we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^T \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^T \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

Notation:

$$\mathbf{x}^T \mathbf{Q}^{-1} \mathbf{x} = ||\mathbf{x}||_{\mathbf{Q}}^2$$

$$= \underset{\mathbf{x}_{1:T},\mathbf{m}}{\operatorname{argmax}} \left[-\sum_{t=1}^{T} ||\mathbf{x}_t - \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})||_{\mathbf{R}_t}^2 - \sum_{t=0}^{T} \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} ||\mathbf{z}_t^{(k)} - \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k)||_{\mathbf{Q}_t}^2 \right]$$

$$\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1} \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}), \mathbf{R}_t)$$

$$\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k \sim \mathcal{N}(\mathbf{h}(\mathbf{x}_t, \mathbf{m}_k), \mathbf{Q}_t)$$

GraphSLAM: SLAM as a least squares problem

Instead of computing the posterior
$$p(\mathbf{x}_{1:T}, \mathbf{m} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_0)$$
 we are going to compute its max

$$\mathbf{x}_{1:T}^*, \mathbf{m}^* = \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[\sum_{t=1}^T \log p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \sum_{t=0}^T \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} \log p(\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k) \right]$$

Notation:

$$\mathbf{x}^T \mathbf{Q}^{-1} \mathbf{x} = ||\mathbf{x}||_{\mathbf{Q}}^2$$

$$= \underset{\mathbf{x}_{1:T}, \mathbf{m}}{\operatorname{argmax}} \left[-\sum_{t=1}^{T} ||\mathbf{x}_{t} - \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})||_{\mathbf{R}_{t}}^{2} - \sum_{t=0}^{T} \sum_{\mathbf{z}_{t}^{(k)} \in \mathbf{z}_{t}} ||\mathbf{z}_{t}^{(k)} - \mathbf{h}(\mathbf{x}_{t}, \mathbf{m}_{k})||_{\mathbf{Q}_{t}}^{2} \right]$$

$$= \underset{\mathbf{x}_{1:T},\mathbf{m}}{\operatorname{argmin}} \left[\sum_{t=1}^{T} ||\mathbf{x}_t - \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})||_{\mathbf{R}_t}^2 + \sum_{t=0}^{T} \sum_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} ||\mathbf{z}_t^{(k)} - \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k)||_{\mathbf{Q}_t}^2 \right]$$

$$\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1} \sim \mathcal{N}(\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}), \mathbf{R}_t)$$

$$\mathbf{z}_t^{(k)} | \mathbf{x}_t, \mathbf{m}_k \sim \mathcal{N}(\mathbf{h}(\mathbf{x}_t, \mathbf{m}_k), \mathbf{Q}_t)$$

GraphSLAM: example

Need to minimize the sum of the following quadratic terms:

$$egin{aligned} ||\mathbf{x}_1 - \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)||^2_{\mathbf{R}_1} \ ||\mathbf{x}_2 - \mathbf{f}(\mathbf{x}_1, \mathbf{u}_1)||^2_{\mathbf{R}_2} \ ||\mathbf{x}_3 - \mathbf{f}(\mathbf{x}_2, \mathbf{u}_2)||^2_{\mathbf{R}_3} \ ||\mathbf{z}_0^{(0)} - \mathbf{h}(\mathbf{x}_0, \mathbf{m}_0)||^2_{\mathbf{Q}_0} \ ||\mathbf{z}_1^{(0)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_0)||^2_{\mathbf{Q}_1} \ ||\mathbf{z}_1^{(1)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_1)||^2_{\mathbf{Q}_1} \ ||\mathbf{z}_2^{(1)} - \mathbf{h}(\mathbf{x}_2, \mathbf{m}_1)||^2_{\mathbf{Q}_2} \end{aligned}$$

with respect to variables: $\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{m}_0 \ \mathbf{m}_1$ initial state $\ \mathbf{x}_0$ is given

GraphSLAM: example

 \mathbf{m}_1

Need to minimize the sum of the following quadratic terms:

$$egin{aligned} ||\mathbf{x}_1 - \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)||_{\mathbf{R}_1}^2 \ ||\mathbf{x}_2 - \mathbf{f}(\mathbf{x}_1, \mathbf{u}_1)||_{\mathbf{R}_2}^2 \ ||\mathbf{x}_3 - \mathbf{f}(\mathbf{x}_2, \mathbf{u}_2)||_{\mathbf{R}_3}^2 \ ||\mathbf{z}_0^{(0)} - \mathbf{h}(\mathbf{x}_0, \mathbf{m}_0)||_{\mathbf{Q}_0}^2 \ ||\mathbf{z}_1^{(0)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_0)||_{\mathbf{Q}_1}^2 \ ||\mathbf{z}_1^{(1)} - \mathbf{h}(\mathbf{x}_1, \mathbf{m}_1)||_{\mathbf{Q}_1}^2 \ ||\mathbf{z}_2^{(1)} - \mathbf{h}(\mathbf{x}_2, \mathbf{m}_1)||_{\mathbf{Q}_2}^2 \end{aligned}$$

with respect to variables: $\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{m}_0 \ \mathbf{m}_1$ initial state $\ \mathbf{x}_0$ is given

Examples of dynamics and sensor models

$$\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) + \mathbf{w}_t$$

Can be any of the dynamical systems we saw in Lecture 2.

$$\mathbf{z}_t^{(k)} = \mathbf{h}(\mathbf{x}_t, \mathbf{m}_k) + \mathbf{v}_t$$

- $\mathbf{z}_t^{(k)}$ can be any of the sensors we saw in Lecture 4:
 - Laser scan $\{(r_i, \theta_i)\}_{i=1:K}$ where \mathbf{m}_k is an occupancy grid
 - Range and bearing (r, θ) to the landmark $\mathbf{m}_k = (x_k, y_k, z_k)$
 - Bearing measurements from images
 - Altitude/Depth
 - Gyroscope
 - Accelerometer

Appendix 1

$$\begin{aligned} \text{Claim:} & & p\big(\mathbf{x}_{1:T}, \mathbf{m}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}, \mathbf{x}_{0}\big) = & p\big(\mathbf{x}_{0}\big) \prod_{t=1}^{T} p\big(\mathbf{x}_{t} \big| \mathbf{x}_{t-1}, \mathbf{u}_{t-1}\big) \prod_{t=0}^{T} \prod_{\mathbf{z}_{t}^{(k)} \in \mathbf{z}_{t}} p\big(\mathbf{z}_{t}^{(k)} \big| \mathbf{x}_{t}, \mathbf{m}_{k}\big) \\ \text{Proof:} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & &$$

Appendix 1

Claim:
$$p(\mathbf{z}_t|\mathbf{x}_t,\mathbf{m}) = \prod_{\mathbf{z}_t^{(k)} \in \mathbf{z}_t} p(\mathbf{z}_t^{(k)}|\mathbf{x}_t,\mathbf{m}_k)$$
 where $\mathbf{z}_t = \{\mathbf{z}_t^{(k)} \text{ iff landmark } \mathbf{m}_k \text{ was observed}\}$ $\mathbf{m} = \{\text{landmarks } \mathbf{m}_k\}$

Proof:

Suppose without loss of generality that $\mathbf{z}_t = \{\mathbf{z}_t^{(k)}, \ k = 1...K\}$ and $\mathbf{m} = \{\mathbf{m}_k, \ k = 1...K\}$ i.e. that all landmarks were observed from the state at time t. Then:

$$\begin{array}{lll} p(\mathbf{z}_{t}^{(1)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) & = & p(\mathbf{z}_{t}^{(1)}|\mathbf{z}_{t}^{(2)},...,\mathbf{z}_{t}^{(K)},\mathbf{x}_{t},\mathbf{m}) \; p(\mathbf{z}_{t}^{(2)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ & = & p(\mathbf{z}_{t}^{(1)}|\mathbf{x}_{t},\mathbf{m}_{1}) \; p(\mathbf{z}_{t}^{(2)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ & = & p(\mathbf{z}_{t}^{(1)}|\mathbf{x}_{t},\mathbf{m}_{1}) \; p(\mathbf{z}_{t}^{(2)}|\mathbf{z}_{t}^{(3)},...,\mathbf{z}_{t}^{(K)},\mathbf{x}_{t},\mathbf{m}) \; p(\mathbf{z}_{t}^{(3)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ & = & p(\mathbf{z}_{t}^{(1)}|\mathbf{x}_{t},\mathbf{m}_{1}) \; p(\mathbf{z}_{t}^{(2)}|\mathbf{x}_{t},\mathbf{m}_{2}) \; p(\mathbf{z}_{t}^{(3)},...,\mathbf{z}_{t}^{(K)}|\mathbf{x}_{t},\mathbf{m}) \\ & ... \\ & = & \prod_{k=1}^{K} \; p(\mathbf{z}_{t}^{(k)}|\mathbf{x}_{t},\mathbf{m}_{k}) \end{array}$$