CSC 4020 Fundamentals of Machine Learning: Principal Component Analysis I

Baoyuan Wu

May 8/10

Overview

Today we'll cover the first unsupervised learning algorithm for this course: principal component analysis (PCA)

Dimensionality reduction: map the data to a lower dimensional space

Save computation/memory

Reduce overfitting

Visualize in 2 dimensions

PCA is a linear model, with a closed-form solution. It's useful for understanding lots of other algorithms.

Autoencoders

Matrix factorizations (next lecture)

Projection onto a subspace

Set-up: given a dataset $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\} \subset \mathbb{R}^D$

Set μ to the mean of the data, $\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$

Goal: find a K-dimensional subspace $S \subset \mathbb{R}^D$ such that $\mathbf{x}^{(n)} - \mu$ is "well-represented" by its projection onto S

"well-represented" by its projection onto ${\mathcal S}$

Recall: The projection of a point ${\bf x}$ onto ${\cal S}$ is the point in ${\cal S}$ closest to ${\bf x}$.

Projection onto a subspace

Let $\{\mathbf{u}_k\}_{k=1}^K$ be an orthonormal basis of the subspace \mathcal{S} Approximate each data point \mathbf{x} as:

$$ilde{\mathbf{x}} = oldsymbol{\mu} + \mathsf{Proj}_{\mathcal{S}}(\mathbf{x} - oldsymbol{\mu}) \ = oldsymbol{\mu} + \sum_{k=1}^{K} z_k \mathbf{u}_k$$

From linear algebra: $z_k = \mathbf{u}_k^T(\mathbf{x} - \boldsymbol{\mu})$ Let \mathbf{U} be a matrix with columns $\{\mathbf{u}_k\}_{k=1}^K$ then $\mathbf{z} = \mathbf{U}^T(\mathbf{x} - \boldsymbol{\mu})$ Also: $\tilde{\mathbf{x}} = \boldsymbol{\mu} + \mathbf{U}\mathbf{z}$

Projection onto a Subspace

In machine learning, $\tilde{\mathbf{x}}$ is also called the reconstruction of \mathbf{x} . \mathbf{z} is its representation, or code.

Projection onto a Subspace

If we have a K-dimensional subspace in a D-dimensional input space, then $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{z} \in \mathbb{R}^K$.

If the data points \mathbf{x} all lie close to their reconstructions, then we can approximate distances, etc. in terms of these same operations on the code vectors \mathbf{z} .

If $K \ll D$, then it's much cheaper to work with **z** than **x**.

A mapping to a space that's easier to manipulate or visualize is called a representation, and learning such a mapping is representation learning.

Mapping data to a low-dimensional space is called dimensionality reduction.

Learning a Subspace

How to choose a good subspace S?

Need to choose $D \times K$ matrix **U** with orthonormal columns.

Two criteria:

Minimize the reconstruction error

$$\min \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - \tilde{\mathbf{x}}^{(i)}\|^2$$

Maximize the variance of the code vectors

$$\max \sum_{j} \operatorname{Var}(z_{j}) = \frac{1}{N} \sum_{j} \sum_{i} (z_{j}^{(i)} - \bar{z}_{j})^{2}$$
$$= \frac{1}{N} \sum_{i} \|\mathbf{z}^{(i)} - \bar{\mathbf{z}}\|^{2}$$
$$= \frac{1}{N} \sum_{i} \|\mathbf{z}^{(i)}\|^{2}$$

Exercise: show $\bar{z} = 0$

Note: here, \bar{z} denotes the mean, not a derivative.

Learning a Subspace

These two criteria are equivalent! I.e., we'll show

$$\frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - \tilde{\mathbf{x}}^{(i)}\|^2 = \text{const} - \frac{1}{N} \sum_{i} \|\mathbf{z}^{(i)}\|^2$$

Observation: by unitarity,

$$\|\mathbf{\tilde{x}}^{(i)} - \boldsymbol{\mu}\| = \|\mathbf{U}\mathbf{z}^{(i)}\| = \|\mathbf{z}^{(i)}\|$$

By the Pythagorean Theorem,

$$\underbrace{\frac{1}{N} \sum_{i=1}^{N} \|\tilde{\mathbf{x}}^{(i)} - \boldsymbol{\mu}\|^{2}}_{\text{projected variance}} + \underbrace{\frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - \tilde{\mathbf{x}}^{(i)}\|^{2}}_{\text{reconstruction error}}$$

$$= \underbrace{\frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}\|^{2}}_{\text{constant}}$$

Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the reconstruction error, is called principal component analysis (PCA).

Recall:

Spectral Decomposition: a symmetric matrix **A** has a full set of eigenvectors, which can be chosen to be orthogonal. This gives a decomposition

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}},$$

where ${\bf Q}$ is orthogonal and ${\bf \Lambda}$ is diagonal. The columns of ${\bf Q}$ are eigenvectors, and the diagonal entries λ_j of ${\bf \Lambda}$ are the corresponding eigenvalues.

I.e., symmetric matrices are diagonal in some basis.

A symmetric matrix **A** is positive semidefinite iff each $\lambda_j \geq 0$.

Principal Component Analysis

Consider the empirical covariance matrix:

$$\mathbf{\Sigma} = rac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{ op}$$

Recall: Covariance matrices are symmetric and positive semidefinite.

The optimal PCA subspace is spanned by the top K eigenvectors of Σ .

More precisely, choose the first K of any orthonormal eigenbasis for Σ . The general case is tricky, but we'll show this for K = 1.

These eigenvectors are called principal components, analogous to the principal axes of an ellipse.

Deriving PCA

For K = 1, we are fitting a unit vector \mathbf{u} , and the code is a scalar $z = \mathbf{u}^{\top}(\mathbf{x} - \boldsymbol{\mu})$.

$$\frac{1}{N} \sum_{i} [\mathbf{z}^{(i)}]^{2} = \frac{1}{N} \sum_{i} (\mathbf{u}^{\top} (\mathbf{x}^{(i)} - \boldsymbol{\mu}))^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{u}^{\top} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{\top} \mathbf{u}$$

$$= \mathbf{u}^{\top} \left[\frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{\top} \right] \mathbf{u}$$

$$= \mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u}$$

$$= \mathbf{u}^{\top} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top} \mathbf{u} \qquad \text{Spectral Decomposition}$$

$$= \mathbf{a}^{\top} \mathbf{\Lambda} \mathbf{a} \qquad \text{for } \mathbf{a} = \mathbf{Q}^{\top} \mathbf{u}$$

$$= \sum_{i=1}^{D} \lambda_{i} \mathbf{a}_{i}^{2}$$

Deriving PCA

Maximize $\mathbf{a}^{\top} \mathbf{\Lambda} \mathbf{a} = \sum_{j=1}^{D} \lambda_{j} a_{j}^{2}$ for $\mathbf{a} = \mathbf{Q}^{\top} \mathbf{u}$.

This is a change-of-basis to the eigenbasis of Σ .

Assume the λ_i are in sorted order. For simplicity, assume they are all distinct.

Observation: since ${\bf u}$ is a unit vector, then by unitarity, ${\bf a}$ is also a unit vector. I.e., $\sum_i a_i^2 = 1$.

By inspection, set $a_1 = \pm 1$ and $a_j = 0$ for $j \neq 1$.

Hence, $\mathbf{u} = \mathbf{Q}\mathbf{a} = \mathbf{q}_1$ (the top eigenvector).

A similar argument shows that the kth principal component is the kth eigenvector of Σ . If you're interested, look up the Courant-Fischer Theorem.

Decorrelation

Interesting fact: the dimensions of ${\bf z}$ are decorrelated. For now, let Cov denote the empirical covariance.

$$\begin{aligned} \mathsf{Cov}(\mathbf{z}) &= \mathsf{Cov}(\mathbf{U}^{\top}(\mathbf{x} - \boldsymbol{\mu})) \\ &= \mathbf{U}^{\top} \mathsf{Cov}(\mathbf{x}) \mathbf{U} \\ &= \mathbf{U}^{\top} \mathbf{\Sigma} \mathbf{U} \\ &= \mathbf{U}^{\top} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top} \mathbf{U} \\ &= (\mathbf{I} \quad \mathbf{0}) \mathbf{\Lambda} \begin{pmatrix} \mathbf{I} \\ \mathbf{0} \end{pmatrix} \qquad \text{by orthogonality} \\ &= \text{top left } K \times K \text{ block of } \mathbf{\Lambda} \end{aligned}$$

If the covariance matrix is diagonal, this means the features are uncorrelated.

This is why PCA was originally invented (in 1901!).

Recap

Recap:

Dimensionality reduction aims to find a low-dimensional representation of the data.

PCA projects the data onto a subspace which maximizes the projected variance, or equivalently, minimizes the reconstruction error.

The optimal subspace is given by the top eigenvectors of the empirical covariance matrix.

PCA gives a set of decorrelated features.

Applying PCA to faces

Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

PCA for pre-processing: can apply classifier to latent representation

For face recognition PCA with 3 components obtains 79% accuracy on face/non-face discrimination on test data vs. 76.8% for a Gaussian mixture model (GMM) with 84 states. (We'll cover GMMs later in the course.)

Can also be good for visualization

Applying PCA to faces: Learned basis

Principal components of face images ("eigenfaces")

Applying PCA to digits

reconstructed with 2 bases

reconstructed with 10 bases

Next

Next: two more interpretations of PCA, which have interesting generalizations.

Autoencoders

Matrix factorization (later lecture)

Autoencoders

An autoencoder is a feed-forward neural net whose job it is to take an input ${\bf x}$ and predict ${\bf x}$.

To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input.

Linear Autoencoders

Why autoencoders?

Map high-dimensional data to two dimensions for visualization Learn abstract features in an unsupervised way so you can apply them to a supervised task

Unlabled data can be much more plentiful than labeled data

Linear Autoencoders

The simplest kind of autoencoder has one hidden layer, linear activations, and squared error loss.

$$\mathcal{L}(\mathbf{x}, \tilde{\mathbf{x}}) = \|\mathbf{x} - \tilde{\mathbf{x}}\|^2$$

This network computes $\tilde{\mathbf{x}} = \mathbf{W}_2 \mathbf{W}_1 \mathbf{x}$, which is a linear function.

If $K \geq D$, we can choose \mathbf{W}_2 and \mathbf{W}_1 such that $\mathbf{W}_2\mathbf{W}_1$ is the identity matrix. This isn't very interesting.

But suppose K < D:

 \mathbf{W}_1 maps \mathbf{x} to a \mathcal{K} -dimensional space, so it's doing dimensionality reduction.

Linear Autoencoders

Observe that the output of the autoencoder must lie in a K-dimensional subspace spanned by the columns of \mathbf{W}_2 .

We saw that the best possible K-dimensional subspace in terms of reconstruction error is the PCA subspace.

The autoencoder can achieve this by setting $\mathbf{W}_1 = \mathbf{U}^{\top}$ and $\mathbf{W}_2 = \mathbf{U}$.

Therefore, the optimal weights for a linear autoencoder are just the principal components!

Nonlinear Autoencoders

Deep nonlinear autoencoders learn to project the data, not onto a subspace, but onto a nonlinear manifold

This manifold is the image of the decoder.

This is a kind of nonlinear dimensionality reduction.

Nonlinear Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with linear autoencoders (PCA)

Nonlinear Autoencoders

Here's a 2-dimensional autoencoder representation of newsgroup articles. They're color-coded by topic, but the algorithm wasn't given the labels.

