### **Temario**

- 1. Introducción
- 2. Tecnología de Procesos CMOS
- 3. Teoría del Transistor MOS
- 4. Los inversores CMOS
- 5. Caracterización de circuitos
- 6. Lógica Combinacional estática
- 7. Lógica Combinacional dinámica
- 8. Diseño Secuencial
- 9. Diseño de Subsistemas de Memoria
- 10. Introducción al TEST de circuitos integrados

### Tema 3: Teoría del transistor MOS

El Transistor MOS
Transistor NMOS de Enriquecimiento
Transistor PMOS de Acumulación
Ecuaciones Básicas de los dispositivos MOS
Potencial Umbral
Efecto cuerpo

### Efectos de Segundo Orden

Variaciones del potencial umbral

Conducción Subumbral

Saturación de la velocidad de los portadores

Degradación de la movilidad

Túnel Fowler-Norheim

Perforación de Canal

Electrones Calientes, Ionización de Impacto

### POTENCIAL UMBRAL



ES FUNCIÓN DEL

MATERIAL CONDUCTOR DE LA PUERTA

MATERIAL AISLANTE DE LA PUERTA

**GROSOR DEL AISLANTE** 

POTENCIAL FUENTE SUSTRATO

TEMPERATURA, SU VALOR DISMINUYE

4 MV / °C EN SUSTRATOS MUY DOPADOS.

2 MV / °C EN SUSTRATOS POCO DOPADOS.



$$V_T = V_{TMOS} + V_{FB}$$

**V<sub>TMOS</sub>: POTENCIAL UMBRAL DEL CAPACITOR MOS.** 

**V<sub>FB</sub>: POTENCIAL DE FLAT-BAND** 

# Potencial umbral potencial de bulk

|f<sub>B</sub>=f<sub>S</sub> PARA ALCANZAR LA MÁXIMA PROFUNDIDAD DE DEPLEXIÓN



### **Potencial Umbral**

- La inversión fuerte del semiconductor se produce a un voltaje que es dos veces el Potencial de Fermi.
- $\Phi_F = -KT/q \ln[Na/ni]$
- Fermi à relaciona la concentración de portadores relativa y el nivel de Fermi.
- Recordemos: la ley de acción de masas: n x p=ni² à
  - $p= n_i^2/n$
  - n = Na Nd
  - ni =concentración intrínseca de portadores
- Y el potencial termal:  $\phi_T = \frac{kT}{q}$
- Un incremento en el voltaje ya no produce un aumento en la deplexión

- En la presencia de la inversión fuerte la estructura Metal-óxidosemiconductor se convierte en un condensador.
- El Voltaje del condensador à

$$V_{OX} = Q_B/C_{OX}$$

• La carga almacenada en el capa de inversión:

$$Q = \sqrt{2 qesi Na2|f_F|}$$

- Permitividad à capacidad del material a oponerse al influjo de un campo eléctrico.
- Na = concentración de átomos aceptores
- El condensador MOS no es perfecto porque está formado por materiales diferentes
  - fms à función de trabajo entre el polisilicio(puerta) y silicio (sustrato)

# Potencial umbral caida de potencial en el oxido



### Potencial umbral. Potencial de flat-band

$$V_T = V_{TMOS} + V_{FB}$$



$$V_{T} = 2|f_F| + |Q_B|/Cox + |Q_{OX}|/Cox + |Q_I|/Cox + |f_{MS}|$$

## Efecto cuerpo

- El impacto del potencial fuente-sustrato se calcula empíricamente y fundamentalmente depende del proceso de fabricación.
  - -VT0 à para Vsb = 0
- Para otros valores de VsB, se puede calcular VT:

$$V_T = V_{T0} + \gamma (\sqrt{-2\phi_F + V_{SB}} - \sqrt{-2\phi_F})$$

- En teoría de este modo se podría aumentar el voltaje umbral al valor que quisiésemos, pero en la práctica, valores de VsB inferiores a -0.6, provocan que el diodo fuente-sustrato se polarice en inversa à influencia en la zona de deplexión y por consiguiente degradación del comportamiento del transistor
- El potencial umbral es negativo para NMOS y positivo para PMOS

# Efecto Cuerpo



# Voltaje Umbral

$$V_T = \phi_{ms} - 2\phi_F - \frac{Q_B}{C_{ox}} - \frac{Q_{SS}}{C_{ox}} - \frac{Q_I}{C_{ox}}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Implantes à durante fabricación para ajuste del umbral Deplexion

Coeficiente efecto cuerpo
$$V_T = V_{T0} + \gamma (\sqrt{|-2\phi_F|} + V_{SB}| - \sqrt{|-2\phi_F|})$$

$$V_{T0} = \phi_{ms} - 2\phi_F - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{SS}}{C_{ox}} - \frac{Q_I}{C_{ox}}$$

$$\gamma \; = \; \frac{\sqrt{2\,q\,\epsilon_{_{\!S}i}\,N_{_{\!A}}}}{C_{_{\!O\!\,X}}} \qquad \qquad \text{Coeficiente efecto cuerpo}$$

# Efecto Cuerpo

### INCREMENTO DEL POTENCIAL UMBRAL



VS2>VS1 VS2=VS1+K

**ADEMAS VS1=VB** 

**CONDICIÓN DE CONDUCCIÓN VGS = VT** 

**VG - VS2 = VT** 

VG= VT + VS2

### Efecto Cuerpo

### INCREMENTO DEL POTENCIAL UMBRAI



VS1 = VB1

LA CONDICIÓN DE CONDUCCIÓN VGS = VT

¿ VGB?

VG - VS = VT

COMO VS = VB VG - VB= VT

VGB= VT

ADEMAS VS I=VB

CONDICIÓN DE CONDUCCIÓN VGS = VT

VG - VS2 = VT

VG= VT + VS2

VG = VT + VS1 +K VT+ VB +K

VGB = VT + K

# Efectos de segundo orden

dispositivos de canal corto



### Efectos de segundo orden. Variación del potencial umbral

- 1. Variación del potencial umbral debido al efecto cuerpo
- 2. Variación debido a la existencia de las zonas de deplexión en las difusiones
- 3. Variación debido al V<sub>DS</sub>

# Variaciones de potencial umbral

efecto deplexión de las difusiones



# Variaciones de potencial umbral con vds drain induced barrier lowering (DIBL)



# Variaciones del potencial umbral à Resumen



Efecto cuerpo



En función de V<sub>DS</sub>

Antes del límite de longitud

## Efecto de la longitud de canal à velocidad saturación



I velocidad saturación la velocidad de los portadores se satura debido a los choques (scattering)

I Para un dispositivo NMOS con L = .25 $\mu$ m, tan solo una diferencia de un par de voltios entre D y S bastan para alcanzar la velocidad de saturación

### saturación de la velocidad de los portadores

#### LA VELOCIDAD DE LOS PORTADORES NO ES PROPORCIONAL AL CAMPO--> SE SATURA



#### · EN EL CANAL N

- \* CAMPO DE SATURACIÓN ES = 1.5·10<sup>4</sup> VOL/CM
- \* VELOCIDAD DE SATURACIÓN  $V_{SAT} = 10^7$  CM/SEG.

$$\mathbf{I}_{\mathbf{DSAT}} = \mathbf{V}_{\mathbf{SAT}} \cdot \mathbf{C}_{\mathbf{OX}} \cdot \mathbf{W} \left( \mathbf{V}_{\mathbf{GS}} - \mathbf{V}_{\mathbf{DSAT}} - \mathbf{V}_{\mathbf{T}} \right)$$

#### · CONSECUENCIAS:

- \* LAS VARIACIONES DE V<sub>GS</sub> NO AFECTAN TANTO A I<sub>DS</sub>.
- \*  $I_{DS} \ddagger F(L)$ .

EL DISPOSITIVO NO SE PUEDE MEJORAR REDUCIENDO EL CANAL.

### saturación de la velocidad de los portadores à efecto



 $V_{DSAT} < V_{GS} - V_{T}$  así que el transistor entra en saturación antes que  $V_{DS}$  supere a  $V_{GS} - V_{T}$ 

I I<sub>DSAT</sub> tiene una dependencia lineal respecto de V<sub>GS</sub> frente a la dependencia cuadrática que tiene en el caso de canal largo

# MOS I<sub>D</sub>-V<sub>GS</sub> (V<sub>DS</sub>=cte) à Dependencia lineal y cuadrática



(for  $V_{DS} = 2.5V$ , W/L = 1.5)

- Dependencia de I<sub>D</sub>
   respecto a V<sub>GS</sub> en saturación
- I Canal corto à lineal
- Canal largoà cuadrática
- La Velocidad de saturación causa que el transistor de canal corto se sature a valores de V<sub>DS</sub> mucho más pequeños lo que implica a su vez valores menores de corriente

# Efectos de segundo orden. Electrón caliente

Ù Cuando la longitud del canal es muy reducida, los electrones al llegar al drenador tienen suficiente energía para chocar con otros electrones y generar huecos à ionización por impacto

Ù Los huecos son repelidos por el potencial positivo del drenador y atraídos por el potencial negativo de la fuente

ÙSe produce una corriente de huecos drenador à sustrato à fuente

## Efectos de segundo orden. Electrón caliente



**ÙTiempos de refresco pobres en las memorias dinámicas.** 

**ÙRuidos en los sistemas de señales** mixtas.

**ÙPosible generación de Latchup (veremos posteriormente).** 

### Efectos secundarios. Efecto túnel fowler-norheim

Cuando el grosor del óxido (h) es muy pequeño puede aparecer un flujo de corriente entre puerta- fuente o puerta-drenador



- $I_{FN} = C_1 WL C_{OX}^2 E^{[-EO/EOX]}$
- E<sub>OX</sub>; CAMPO ELÉCTRICO A TRAVÉS DEL OXIDO.
- $E_{OX}=V_{GS}/T_{OX}$ .

LIMITA LA ANCHURA MÍNIMA DEL OXIDO

### Efectos de segundo orden. Perforación de canal. Punch-Through

Cuando el potencial VDS es lo suficientemente elevado aparece una IDS independiente de VG



La IDS aumenta linealmente con la densidad de dopaje y cuadráticamente con la inversa de L

El máximo potencial puede variar entre 40 y 100V

# Efectos de segundo orden. Perforación de canal

Este efecto se usa para la protección de circuitos.



Se colocan transistores de Punch-through sin puerta que rompen a conducir con potenciales próximos a 50 V

# Efectos de segundo orden

conducción subumbral (cuando VGS < VT)



TRANSISTOR PARÁSITO QUE CONDUCE EN INVERSA

$$V_{BE} = V_B - V_E = 0 - V_D$$

LA  $I_{DS}$  INCREMENTA EXPONENCIALMENTE CON  $V_{DS}$  Y  $V_{GS}$ .

DISEÑO DE BAJA POTENCIA

MAL FUNCIONAMIENTO EN DISPOSITIVOS DINÁMICOS

### Modelo Capacidad para MOS – Comportamiento dinámico



# Capacidad de la puerta



$$C_{gate} = \frac{\varepsilon_{ox}}{t_{ox}} WL$$



### Modelo Capacidad para MOS y superposición



Capacidad de superposición (overlap)

$$C_{GSO} = C_{GDO} = C_{ox} x_d W = C_o W$$

# Modelo Capacidad para MOS







| Región de operación | $C_GC$                  |
|---------------------|-------------------------|
| corte               | 0                       |
| lineal              | $C_{ox}WL$              |
| Saturacion          | (2/3)C <sub>ox</sub> WL |

# Modelo Capacidad para MOS con canal y superposición

| Región de operación | C <sub>GCB</sub>   | C <sub>GCS</sub>        | C <sub>GCD</sub>     | $C_{GC}$                   | $C_{G}$                                     |
|---------------------|--------------------|-------------------------|----------------------|----------------------------|---------------------------------------------|
| corte               | C <sub>ox</sub> WL | 0                       | 0                    | 0                          | $C_{ox}WL + 2C_{o}W$                        |
| lineal              | 0                  | C <sub>ox</sub> WL/2    | C <sub>ox</sub> WL/2 | C <sub>ox</sub> WL         | $C_{ox}WL + 2C_{o}W$                        |
| Saturacion          | 0                  | (2/3)C <sub>ox</sub> WL | 0                    | (2/3)C <sub>ox</sub><br>WL | (2/3)C <sub>ox</sub> WL + 2C <sub>o</sub> W |

# Modelo Capacidad para MOS



### Modelo Capacidad para MOS, difusiones

 La capacidad de las difusiones se produce por las uniones pn fuentesubstrato y drenador-substrato



### Modelo Capacidad para MOS, difusiones



$$C_{diff} = C_{bp} + C_{sw} = C_{j} AREA + C_{jsw} PERIMETRO$$

$$= C_{j} L_{S} W + C_{jsw} (2L_{S} + W)$$
El muro solo tiene tres componentes ( no se cuenta la cara del canal)

### Resistencias Parásitas







Rs/D=Resistencia en fuente o drenador

Ls/D=longitud de la región fuente o drenador RC=Resistencia del contacto

Rsheet=Resistencia de la difusiónà área

silicidation à reducir
Rsheet cubriendo fuente y
drenador con un metal de
baja resistividad