Математическая статистика.

Андрей Тищенко @AndrewTGk 2024/2025

Семинар 10 января

Задача 1

$$x_1,\dots,\,x_n\sim F_\xi(x),$$
 найти функцию распределения для $X_{(n)},\,X_{(1)}$ $F_{X_{(n)}}(x)=P(X_{(n)}\leqslant x)=P(X_{(1)}\leqslant x,\dots,\,X_{(n)}\leqslant x)=P(X_1\leqslant x,\dots,\,X_n\leqslant x)=P(X_1\leqslant x)\dots P(X_n\leqslant x)=(F_\xi(x))^n$ $F_{X_{(1)}}(x)=P(X_{(1)}\leqslant x)=1-P(X_{(1)}>x)=1-P(X_{(1)}>x,\dots,\,X_{(n)}>x)=1-P(X_1>x,\dots,\,X_n>x)=1-P(X_1>x)\dots P(X_n>x)=1-(1-F_\xi(x))^n$

Задача 2

$$x_1,\dots,\,x_n\sim R(0,\,1).$$
 Найти $EX_{(n)},\,EX_{(1)}.$ $F_{X_{(n)}}(x)=\left(F_\xi(x)\right)^n$ $f_{X_{(n)}}(x)=\left(F_{X_{(n)}}(x)\right)'=n\big(F_\xi(x)\big)^{n-1}\cdot f_\xi(x)$ $F_\xi(x)=egin{cases} 0,\,x<0\ x,\,x\in[0,\,1]\ 1,\,x>1 \end{cases}$

Подставим в предыдущее уравнение:

$$f_{X_{(n)}} = \begin{cases} 0, \ x < 0 \\ nx^{n-1}, \ x \in [0, \ 1] \\ 0, \ x > 1 \end{cases}$$

$$EX_{(n)} = \int_{-\infty}^{+\infty} x f_{X_{(n)}}(x) \, dx = \int_{0}^{1} x n x^{n-1} \, dx = n \int_{0}^{1} x^{n} \, dx = \frac{n}{n+1}$$

Посчитаем лля $X_{(1)}$:

$$F_{X_{(1)}}(x) = 1 - (1 - F_{\xi}(x))^n$$

$$f_{X_{(1)}}(x) = \left(F_{X_{(1)}}(x)\right)' = n(1 - F_{\xi}(x))^{n-1} \left(F_{\xi}(x)\right)' = n(1 - F_{\xi}(x))^{n-1} f_{\xi}(x) = \begin{cases} 0, & x < 0 \\ n(1 - x)^{n-1}, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$$

$$EX_{(1)} = \int_{0}^{1} x n(1 - x)^{n-1} dx = n \int_{0}^{1} x(1 - x)^{n-1} dx = \left\langle \frac{t = 1 - x}{x = 1 - t} \right\rangle = -n \int_{1}^{0} (1 - t)t^{n-1} dt = n \int_{0}^{1} (1 - t)t^{n-1} dt = n \int_{0}^{1} t^{n-1} dt - n \int_{0}^{1} t^{n} dt = 1 - \frac{n}{n+1}$$

Задача 3

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$E\overline{x} = E\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = Ex_i$$

 $\mathcal{D}(\overline{x})=\mathcal{D}\left(\frac{1}{n}\sum_{i=1}^n x_i\right)=\frac{1}{n^2}\sum_{i=1}^n \mathcal{D}x_i=\frac{\mathcal{D}x_i}{n}$ Посчитаем выборочную дисперсию:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

 $ES^2 = E\left(\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2\right) = \frac{1}{n}\sum_{i=1}^nE(x_i-\overline{x})^2 = \mathcal{D}(x_1-\overline{x}) = \mathcal{D}(x_1) + \mathcal{D}(\overline{x}) - 2\operatorname{cov}(x_1, \overline{x}) = \frac{(n+1)\mathcal{D}(x_1)}{n} - 2\operatorname{cov}(x_1, \overline{x})$

 $cov(x_1, \overline{x}) = cov(x_1, \frac{1}{n} \sum_{i=1}^n x_i) = \frac{1}{n} cov(x_1, \sum_{i=1}^n x_i) = \frac{1}{n} cov(x_1, x_1) = \frac{\mathcal{D}(x_1)}{n}$ Тогда

$$ES^{2} = \frac{(n+1)\mathcal{D}(x_{1})}{n} - \frac{2\mathcal{D}(x_{1})}{n} = \mathcal{D}(x_{1})\left(1 - \frac{1}{n}\right)$$

Несмещённая выборачная дисперсия (её математическое ожидание равняется дисперсии x_1):

$$\tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Посчитаем дисперсию S^2 :

$$\mathcal{D}\left(x_{1} - \frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \mathcal{D}\left(\frac{(n-1)x_{1}}{n}\right) + \mathcal{D}\left(\frac{1}{n}\sum_{i=2}^{n}x_{i}\right) = \frac{(n-1)^{2}}{n^{2}}\mathcal{D}(x_{1}) + \frac{n-1}{n^{2}}\mathcal{D}(x_{1}) = \mathcal{D}(x_{1})\left(\frac{(n-1)(n-1+1)}{n^{2}}\right) = \mathcal{D}(x_{1})\frac{n-1}{n}$$

Семинар 17 января.

$$T(x_1,x_2,\dots,x_n) = \sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^n |x_i - m|, x_i \sim N(m,\theta^2)$$

$$ET(x_1,x_2,\dots,x_n) = \sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^n E|x_i - m| = \sqrt{\frac{\pi}{2}} E|x_1 - m| = \sqrt{\frac{\pi}{2}} \int_{-\infty}^{+\infty} |x - m| \frac{1}{\sqrt{2\pi}\theta} e^{-\frac{(x-m)^2}{2\theta^2}} dx$$
 Заменим $\frac{x-m}{\theta}$ на y
$$\frac{\theta}{2} \int_{-\infty}^{+\infty} |y| \cdot e^{\frac{-y^2}{2}} dy = \theta \int_{0}^{+\infty} y \cdot e^{\frac{-y^2}{2}} dy = \theta (1-0) = \theta$$

$$\frac{1}{n} \sum_{i=1}^n \sqrt{\frac{\pi}{2}} |x_i - m| \xrightarrow[n \to +\infty]{\text{II. II.}} E\sqrt{\frac{\pi}{2}} |x_i - m|$$

Задача

$$\hat{ heta} = X_{(n)}$$
, доказать $\lim_{n \to \infty} EX_{(n)} = \theta$ $F_{X_{(n)}}(x) = (F_{X_i}(x))^n = \left(\frac{x}{\theta}\right)^n$ $f_{X_{(n)}}(x) = \frac{dF_{X_{(n)}}}{dx} = \frac{nx^{n-1}}{\theta}$ $EX_{(n)} = \int \frac{nx^n}{\theta^n} dx = \frac{nx^{n+1}}{(n+1)\theta^n} \Big|_0^\theta = \frac{n}{n+1}\theta \xrightarrow[n \to \infty]{} \theta$. То есть смещённая, но асимптотически несмещённая.

Докажем состоятельность, хотим:

 $X = (X_1, \ldots, X_n), X_i \sim R(0, \theta)$

$$\forall \varepsilon > 0 \quad P(|\hat{\theta} - \theta| < \varepsilon) \xrightarrow[n \to \infty]{} 1$$

$$P(-\varepsilon < X_{(n)} - \theta < \varepsilon) = F_{X_{(n)}}(\varepsilon + \theta) - F_{X_{(n)}}(\theta - \varepsilon) = 1 - \left(\frac{\theta - \varepsilon}{\theta}\right)^n \xrightarrow[n \to \infty]{} 1$$

$$I_{n}(\theta) = E\left(\frac{\delta \ln f(x,\theta)}{\delta \theta}\right)^{2}, \ I_{n}(\theta) = nI_{1}(\theta), \ x_{1}, \dots, \ x_{n} \sim N(\theta, \ \sigma^{2}).$$

$$f(x,\theta) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\theta)^{2}}{2\sigma^{2}}}$$

$$\ln f(x,\theta) = \ln\left(\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\theta)^{2}}{2\sigma^{2}}}\right) = -\frac{(x-\theta)^{2}}{2\sigma^{2}} + \ln\frac{1}{\sqrt{2\pi\sigma}}$$

$$\frac{\delta \ln f(x,\theta)}{\delta \theta} = -\frac{2(x-\theta)}{2\sigma^{2}} \cdot (-1) = \frac{x-\theta}{\sigma^{2}}$$

$$E\left(\frac{x-\theta}{\sigma^{2}}\right)^{2} = \frac{1}{\sigma^{4}}E(x-\theta)^{2} = \frac{1}{\sigma^{4}}\sigma^{2} = I_{1}(\theta)$$

$$\mathcal{D}\hat{\theta} \geqslant \frac{1}{nI_{1}(\theta)} = \frac{\sigma^{2}}{n} = \mathcal{D}\overline{x}$$

Семинар 24 января

Задача 4 ДЗ

$$\hat{K}_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X} + Ex_1 - Ex_1)(y_i - \overline{Y} + Ey_1 - Ey_1)$$

$$E\hat{K}_{xy} = E \frac{1}{n} \sum_{i=1}^{n} \left((x_i - Ex_1) - (\overline{X} - Ex_1) \right) \left((y_1 - Ey_1) - (\overline{Y} - Ey_1) \right) =$$

$$= E \left((x_i - Ex_1) - (\overline{X} - Ex_1) \right) \cdot \left((y_1 - Ey_1) - (\overline{Y} - Ey_1) \right) = E \left((x_1 - Ex_1)(y_1 - Ey_1) + (x_1 - Ex_1)(\overline{Y} - Ey_1) + (x_1 - Ex_1)(\overline{Y} - Ey_1) \right)$$

$$= \text{cov}(x, y) - \frac{1}{n} \text{cov}(x, y) - \frac{1}{n} \text{cov}(x, y) + \frac{1}{n} \text{cov}(x, y)$$

Задача 5 ДЗ

Решал у доски, всем gl.

Задача 1

 $X_1,\dots,\,X_n\sim\Pi(\theta)$. Проверить, что оценка $\hat{\theta}=\overline{X}$ является R-эффективной. $E\hat{\theta}=E\frac{1}{n}\sum_{i=1}^n x_i=Ex_1=\theta$ $\mathcal{D}\frac{1}{n}\sum_{i=1}^n x_i=\frac{1}{n}\theta$ $P(\xi=x_1)=\frac{e^{-\theta}\theta^{x_1}}{x_1!}$. Логарифмируем:

$$E\theta = E \frac{1}{n} \sum_{i=1}^{n} x_i = Ex_1 = \theta$$

$$\mathcal{D}_{n}^{1} \sum_{i=1}^{n} x_{i} = \frac{1}{n} \theta$$

$$\ln \frac{e^{-\theta}\theta^{x_1}}{x_1!} = -\theta + x_1 \ln \theta - \ln x_1!$$

Возьмём частную производную:

$$\frac{\delta(-\theta + x_1 \ln \theta - \ln x_1!)}{\delta \theta} = -1 + \frac{x_1}{\theta}$$

Возьмём матожидание квадрата этой величины:

$$E(-1 + \frac{x_1}{\theta})^2 = \frac{1}{\theta^2}E(x_1 - \theta)^2 = \frac{\mathcal{D}x_1}{\theta^2} = \frac{1}{\theta} \Rightarrow I_n(\theta) = \frac{n}{\theta}$$

Попробуем самостоятельно подогнать оценку:

$$U(x, \theta) = \sum_{i=1}^{n} -1 + \frac{x_1}{\theta} = \frac{1}{\theta} \sum_{i=1}^{n} (x_i - \theta) = \frac{1}{\theta} \left(-n\theta + \sum_{i=1}^{n} \frac{x_i}{n} \right) = \frac{n}{\theta} \left(\sum_{i=1}^{n} \left(\frac{x_i}{n} \right) - \theta \right)$$

$$\hat{\theta} - \theta = a(\theta)U(x, \theta) \Rightarrow a(\theta) = \frac{\theta}{n}, \ \hat{\theta} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Д3

Задача 1

$$X_{1}, \dots, X_{n} \sim N(\theta, \sigma^{2}) \Rightarrow \forall i = \overline{1, n} \quad f(x_{i}, \theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\theta)^{2}}{2\sigma^{2}}}$$

$$\ln f(x_{i}, \theta) = \ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{(x-\theta)^{2}}{2\sigma^{2}} = \ln \frac{1}{\sqrt{2\pi}\theta} - \frac{x^{2}}{2\sigma^{2}} + \frac{\theta x}{\sigma^{2}} - \frac{\theta^{2}}{2\sigma^{2}} \Rightarrow \frac{\delta}{\delta\theta} f(x_{i}, \theta) = \frac{x}{\sigma} - \frac{\theta}{\sigma^{2}}$$

$$U(x, \theta) = \sum_{i=1}^{n} \left(\frac{x_{i}}{\sigma} - \frac{\theta}{\sigma^{2}}\right)$$

По критерию эффективности хотим:

$$\hat{\theta} - \theta = \alpha(x)U(x, \ \theta)$$

Преобразуем:
$$U(x, \theta) = \left(\sum_{i=1}^n \frac{x_i}{\sigma}\right) - \frac{n\theta}{\sigma^2} \Rightarrow \underbrace{\frac{\sigma^2}{n}}_{\alpha(\sigma)} U(x, \theta) = \underbrace{\left(\frac{1}{n}\sum_{i=1}^n \sigma x_i\right)}_{\hat{\theta}} - \theta$$

Задача 2

$$X_1, \ldots, X_n \sim N(m, \theta) \Rightarrow f(x_i, \theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x-m)^2}{2\theta}}$$

$$\ln f(x,\;\theta) = \ln \frac{1}{\sqrt{2\pi}} - \frac{1}{2} \ln \theta - \frac{(x-m)^2}{2\theta} \Rightarrow \frac{\delta}{\delta \theta} f(x,\;\theta) = -\frac{1}{2\theta} + \frac{(x-m)^2}{2\theta^2}$$

Применим критерий эффективности:

$$U(x, \theta) = \sum_{i=1}^{n} \left(\frac{(x-m)^2}{2\theta^2} - \frac{1}{2\theta} \right) = \sum_{i=1}^{n} \left(\frac{(x-m)^2 - \theta}{2\theta^2} \right) = \frac{1}{2\theta^2} \sum_{i=1}^{n} \left((x-m)^2 - \theta \right) = \frac{1}{2\theta^2} \left(\sum_{i=1}^{n} \left((x-m)^2 \right) - n\theta \right) = \frac{n}{2\theta^2} \left(\frac{1}{n} \sum_{i=1}^{n} \left((x-m)^2 \right) - \theta \right) \Rightarrow \underbrace{\frac{2\theta^2}{n}}_{\alpha(\theta)} U(x, \theta) = \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} (x-m)^2 \right) - \theta}_{\hat{\theta}} \right)$$

Задача 3

 $X_1,\dots,\ X_n \sim G(heta) \Rightarrow Ex = rac{1}{ heta}.$ Проверить оценку $\hat{ heta} = rac{1}{X}$ на несмещённость.

Хотим $E\hat{\theta} = \theta$. Попробуем по определению:

$$E\hat{\theta} = E \frac{n}{\sum_{i=1}^{n} x_i} = nE \frac{1}{\sum_{i=1}^{n} x_i}?$$

Для k=1 Попробуем решить через функцию правдоподобия:

$$L(x_1, ..., x_n, \theta) = \prod_{i=1}^n P(\xi = x_i, \theta) = \prod_{i=1}^n (1 - \theta)^{x_i - 1} \theta \approx f(x, \theta)$$

$$\ln f(x_i, \theta) = \ln \left((1 - \theta)^{x_i - 1} \theta \right) = (x_i - 1) \ln(1 - \theta) + \ln \theta$$

$$\frac{\delta}{\delta \theta} \ln f(x, \theta) = \frac{1}{\theta} - \frac{x_i - 1}{1 - \theta} = \frac{1 - \theta - \theta x_i + \theta}{\theta - \theta^2} = \frac{1 - \theta x_i}{\theta - \theta^2}$$

Применим критерий эффективности:

$$U(x, \theta) = \sum_{i=1}^{n} \frac{1 - \theta x_i}{\theta - \theta^2} = \frac{1}{\theta - \theta^2} \left(n - \theta \sum_{i=1}^{n} x_i \right) = \frac{n}{\theta - \theta^2} \left(1 - \frac{\theta}{n} \sum_{i=1}^{n} \right) = \frac{n\overline{X}}{\theta - \theta^2} \left(\frac{1}{\overline{X}} - \theta \right)$$

Значит $\frac{1}{\overline{X}}$ является R-эффективной, то есть несмещённой.

Задача 4

 $X_1,\dots,\,X_n\sim Bi(k,\,\theta)$. Показать, что $\hat{\theta}=\frac{\overline{X}}{k}$ R-эффективная. Посчитаем функцию правдоподобия:

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n P(\xi = x_i, \theta) = \prod_{i=1}^n C_n^k \theta^{x_i} \cdot (1 - \theta)^{k - x_i} \approx f(x, \theta)$$
$$\ln f(x_i, \theta) = \ln \frac{n!}{k!(n - k)!} + x_i \ln \theta + (k - x_i) \ln(1 - \theta)$$

$$\frac{\delta}{\delta\theta} \ln f(x_i, \theta) = \frac{x_i}{\theta} + \frac{x_i - k}{1 - \theta} = \frac{x_i - \theta x_i + \theta x_i - \theta k}{\theta - \theta^2} = \frac{x_i - \theta k}{\theta - \theta^2}$$
$$I_1(\theta) = E\left(\frac{x_i - \theta k}{\theta - \theta^2}\right)^2 = \int_{-\infty}^{+\infty} \frac{(x - \theta k)^2}{(\theta - \theta^2)^2} C_n^k \theta^x (1 - \theta)^{k - x} dx$$

$$U(x, \theta) = \sum_{i=1}^{n} \frac{x_i - \theta k}{\theta - \theta^2} = \frac{1}{\theta - \theta^2} \left(-n\theta k + \sum_{i=1}^{n} x_i \right) = \frac{nk}{\theta - \theta^2} \left(\frac{1}{nk} \sum_{i=1}^{n} (x_i) - \theta \right) = \frac{nk}{\theta - \theta^2} \left(\frac{\overline{X}}{k} - \theta \right)$$

Получается, что $\frac{\overline{X}}{k}$ является R-эффективной

Семинар 31 января

Задача 1

$$X_1, \dots, X_n \sim f(x, \theta)$$

$$f(x, \theta) = \begin{cases} \frac{2}{\theta} x e^{-\frac{x^2}{\theta}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Решал у доски

Залача 2

$$X_1,\dots,\ X_n \sim R(\theta_1,\ \theta_2)$$
, найти оценку максимального правдоподобия.
$$f(x,\ \theta_1,\ \theta_2) = \begin{cases} \frac{1}{\theta_2-\theta_1},\ x\in(\theta_1,\ \theta_2)\\ 0,\ \text{иначе} \end{cases}$$

$$L(x,\; heta_1,\; heta_2) = \prod_{i=1}^n f(x_i,\; heta) = egin{cases} \left(rac{1}{ heta_2 - heta_1}
ight)^n,\; x_i \in (heta_1,\; heta_2) \\ 0,\; ext{иначе} \end{cases}$$

Тогда $\hat{\theta}_1 = X_{(1)}, \ \hat{\theta}_2 = X_{(n)}.$

Попробуем по методу моментов:

$$\begin{cases} \hat{\mu}_1 = \mu_1 \\ \hat{\mu}_2 = \mu_2 = \frac{(\theta_2 - \theta_1)^2}{12} + (\mu_1)^2 \end{cases}$$

Распишем эту систему:

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{n} x_{i} = \frac{\theta_{1} + \theta_{2}}{2} \\ \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} = \frac{(\theta_{2} - \theta_{1})^{2}}{12} + (\frac{\theta_{1} + \theta_{2}}{2})^{2} \end{cases} \Rightarrow \begin{cases} \frac{1}{n} \sum_{i=1}^{N} X_{i}^{2} = \frac{\theta_{2}^{2} + \theta_{1}^{2} - 2\theta_{1}\theta_{2}}{12} + \frac{\theta_{1}^{2} + \theta_{2}^{2} + 2\theta_{1}\theta_{2}}{4} = \frac{1}{3}(\theta_{1}^{2} + \theta_{2}^{2} + \theta_{1}\theta_{2}) \end{cases}$$
$$\begin{cases} 2\hat{\mu}_{1} = \theta_{1} + \theta_{2} \\ 3\hat{\mu}_{2} = \theta_{1}^{2} + \theta_{2}^{2} + \theta_{1}\theta_{2} \end{cases}$$

Если решать эту систему до конца, можно получить

$$\begin{cases} \hat{\theta_1} = \overline{X} - \sqrt{3}S \\ \hat{\theta_2} = \overline{X} + \sqrt{3}S \end{cases}$$

Залача 3

 $X_1, \ldots, X_n \sim G(\theta)$. Найдём оценку по методу моментов и по методу максимального правдоподобия: Сначала по методу моментов:

$$\hat{\mu}_1 = \mu_1 = \frac{1}{\theta} \Rightarrow \hat{\theta} = \frac{1}{\overline{X}}$$

Теперь по методу максимального правдоподобия:

$$L(x, \theta) = \prod_{i=1}^{n} P(\xi = x_i, \theta) = \prod_{i=1}^{n} \theta (1 - \theta)^{x_i - 1} = \theta^n (1 - \theta)^{\sum_{i=1}^{n} (x_i) - n}$$

$$\ln L(x, \theta) = n \ln \theta + \left(\sum_{i=1}^{n} (x_i) - n\right) \ln(1 - \theta)$$

$$\frac{\delta}{\delta \theta} L(x, \hat{\theta}) = \frac{n}{\hat{\theta}} - \frac{\sum_{i=1}^{n} (x_i) - n}{1 - \hat{\theta}} = 0 \Rightarrow \frac{n - n\hat{\theta} - \hat{\theta} \sum_{i=1}^{n} + n\hat{\theta}}{\hat{\theta} - \hat{\theta}^2} = 0 \Rightarrow$$

$$\Rightarrow n - \hat{\theta} \sum_{i=1}^{n} = 0 \Rightarrow \hat{\theta} = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{X}$$

Задача 4

 $X_1 \sim Bi(12, p), \ X_2 \sim Bi(12, p), \ X_3 \sim Bi(15, p).$ По методу максимального правдоподобия построим оценку p:

$$L(x_1, x_2, x_3, p) = \prod_{i=1}^{n} P(X_i = x_i) = P(X_1 = 5)P(X_2 = 4)P(X_3 = 4) =$$

$$= C_{12}^5 p^5 (1 - p)^7 \cdot C_{12}^4 p^4 (1 - p)^8 C_{15}^4 p^4 (1 - p)^{11} = C_{12}^5 \cdot C_{12}^4 \cdot C_{15}^4 \cdot p^{13} \cdot (1 - p)^{26}$$

$$\ln L(x_1, x_2, x_3, p) = \ln(C_{12}^5 \cdot C_{12}^4 \cdot C_{15}^4) + 13 \ln p + 26 \ln(1 - p)$$

$$\frac{\delta}{\delta p} L(x_1, x_2, x_3, p) = \frac{13}{p} - \frac{26}{1 - p} \Rightarrow \frac{13}{\hat{p}} - \frac{26}{1 - \hat{p}} = 0 \Rightarrow \hat{p} = \frac{1}{3}$$

ДЗ к семинару 7 января

Задача из учебника №14 стр. 203

Пусть $Z_n = (X_1, \ldots, X_n)$ — выборка, соответствующая биномиальному распределению $Bi(10, \theta)$. Оценить неизвестный параметр θ методом максимального правдоподобия.

Построим функцию правдоподобия для вектора (X_1, \ldots, X_n) :

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n C_n^{x_i} \cdot \theta^{x_i} (1 - \theta)^{n - x_i}$$

Логарифмируем и дифференцируем по θ полученное произведение:

$$\frac{\delta}{\delta\theta} \ln L(x_1, \dots, x_n, \theta) = \frac{\delta}{\delta\theta} \ln \left(\prod_{i=1}^n C_n^{x_i} \cdot \theta^{x_i} (1-\theta)^{n-x_i} \right) = \frac{\delta}{\delta\theta} \sum_{i=1}^n \left(\ln \left(C_n^{x_i} \cdot \theta^{x_i} (1-\theta)^{n-x_i} \right) \right) =$$

$$= \frac{\delta}{\delta\theta} \sum_{i=1}^n \left(\ln C_n^{x_i} \right) + \frac{\delta}{\delta\theta} \sum_{i=1}^n (x_i \ln \theta) + \frac{\delta}{\delta\theta} \sum_{i=1}^n \left((n-x_i) \ln(1-\theta) \right) =$$

$$= 0 + \frac{\delta}{\delta\theta} \ln \theta \sum_{i=1}^n x_i + \frac{\delta}{\delta\theta} \ln(1-\theta) \sum_{i=1}^n (n-x_i) = \frac{1}{\theta} \sum_{i=1}^n x_i - \frac{1}{1-\theta} \sum_{i=1}^n (n-x_i) =$$

$$= \frac{1}{\theta} \sum_{i=1}^n x_i - \frac{n^2}{1-\theta} + \frac{1}{1-\theta} \sum_{i=1}^n x_i = \frac{(1-\theta)n\overline{x} - \theta n^2 + \theta n\overline{x}}{\theta - \theta^2} =$$

$$= \frac{n\overline{x} - \theta n\overline{x} - \theta n^2 + \theta n\overline{x}}{\theta - \theta^2} = \frac{n\overline{x} - \theta n}{\theta - \theta^2} = n\frac{\overline{x} - \theta n}{\theta - \theta^2}$$

Полученную производную стоит приравнять к 0 для поиска точки экстремума. Стоит заметить, что случаи $\theta=0$ или $\theta=1$ интереса не представляют и количество испытаний ненулевое, иначе оценивание параметра бессмысленно, поэтому достаточно приравнять к нулю только числитель:

$$n\frac{\overline{x} - \theta n}{\hat{\theta} - \hat{\theta}^2} = 0 \Rightarrow \overline{x} - \hat{\theta}n = 0 \Rightarrow \hat{\theta}n = \overline{x} \Rightarrow \hat{\theta} = \frac{\overline{x}}{n}$$

Ответ: ОМП для θ является $\frac{\overline{x}}{n}$.

Выборка X_1, \ldots, X_n порождена случайной величиной ξ с плотностью распределения

$$f_{\xi}(x, \theta) = \frac{1}{2} \exp(-|x - \theta|)$$

Построим оценки параметра θ по методу максимального правдоподобия и по методу моментов.

Метод максимального правдоподобия

Построим функцию правдоподобия:

$$L(x_1, \dots, x_n, \theta) = \prod_{i=1}^n f_{\xi}(x_i, \theta) = \prod_{i=1}^n \frac{1}{2} \exp\left(-|x_i - \theta|\right) = \frac{1}{2^n} \exp\left(-\sum_{i=1}^n |x_i - \theta|\right)$$

Логарифмируем и продифференцируем по θ :

$$\frac{\delta}{\delta\theta} \ln L(x_1, \dots, x_n, \theta) = \frac{\delta}{\delta\theta} \ln \frac{1}{2^n} \exp\left(-\sum_{i=1}^n |x_i - \theta|\right) = \frac{\delta}{\delta\theta} \ln \frac{1}{2^n} - \frac{\delta}{\delta\theta} \sum_{i=1}^n |x_i - \theta| = -\frac{\delta}{\delta\theta} \sum_{i=1}^n |x_i - \theta| = -\sum_{i=1}^n \frac{\delta}{\delta\theta} |x_i - \theta| = -\sum_{i=1}^n g(x_i, \theta)$$

Где
$$g(x,\; \theta)= egin{cases} -1, & x>\theta \\ 0, & x=\theta \text{, (производная модуля).} \\ 1, & x<\theta \end{cases}$$

Приравняем производную к нулю:

$$-\sum_{i=1}^{n} g(x_i, \theta) = 0 \Rightarrow \sum_{i=1}^{n} g(x_i, \theta) = 0$$

Пусть
$$\begin{cases} G_{\theta} = \{x \mid x \in (x_1, \ldots, \ x_n) \land x > \theta\} \\ E_{\theta} = \{x \mid x \in (x_1, \ldots, \ x_n) \land x = \theta\} \\ L_{\theta} = \{x \mid x \in (x_1, \ldots, \ x_n) \land x < \theta\} \end{cases}$$
, тогда

$$\begin{cases} \forall x \in G_{\theta} & g(x, \theta) = -1 \\ \forall x \in E_{\theta} & g(x, \theta) = 0 \\ \forall x \in L_{\theta} & g(x, \theta) = 1 \end{cases} \Rightarrow \sum_{i=1}^{n} g(x_{i}, \theta) = (-1) \cdot |G_{\theta}| + 0 \cdot |E_{\theta}| + 1 \cdot |L_{\theta}|$$

Преобразуем:

$$-|G_{\theta}| + 0|E_{\theta}| + |L_{\theta}| = 0 \Rightarrow |G_{\theta}| = |L_{\theta}|$$

То есть количество элементов больше параметра θ в выборке должно совпадать с количеством элементов меньше параметра θ .

Получается
$$\hat{\theta} = \begin{cases} x_{(\lfloor n/2 \rfloor)}, & n \equiv 1 \\ \frac{x_{(n/2)} + x_{(n/2+1)}}{2}, & n \equiv 0 \end{cases}$$

Метод моментов

Напишем систему уравнений для моментов (поскольку неизвестный параметр θ единственный, должно хватить одного уравнения):

$$\hat{\mu}_1 = \mu_1(\theta) \Rightarrow \frac{1}{n} \sum_{i=1}^n x_i = E\xi$$

Посчитаем математическое ожидание случайной величины ξ :

$$E\xi = \int_{-\infty}^{+\infty} x f_{\xi}(x, \theta) \, dx = \int_{-\infty}^{+\infty} x \frac{1}{2} \exp\left(-|x - \theta|\right) \, dx = \left\langle \frac{a = x - \theta}{da = dx} \right\rangle =$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} (a + \theta) \exp(-|a|) \, da = \frac{1}{2} \int_{-\infty}^{+\infty} a \exp(-|a|) \, da + \frac{\theta}{2} \int_{-\infty}^{+\infty} e^{-|a|} \, da =$$

$$= \theta \int_{0}^{+\infty} e^{-a} \, da = -\theta \int_{0}^{+\infty} e^{-a} \, d(-a) = -\theta e^{-a} \Big|_{0}^{+\infty} = -\theta (0 - 1) = \theta$$

Итак, получаем уравнение:

$$\overline{X} = \theta$$

Его даже решать не надо, получаем $\hat{\theta} = \overline{X}$.

Ответ:

По методу максимального правдоподобия: $\hat{\theta} = \begin{cases} x_{(\lfloor n/2 \rfloor)}, & n \equiv 1 \\ \frac{x_{(n/2)} + x_{(n/2+1)}}{2}, & n \equiv 0 \end{cases}$

По методу моментов: $\hat{\theta} = \overline{X}$

Задача 3

Выборка $X_1,\dots,\ X_n\sim\Pi(\theta)\Rightarrow \forall i\quad egin{cases} P(X_i=k)=rac{e^{-\theta}\theta^k}{k!} \\ EX_i=\theta \end{cases}$. Построим оценки ММ и МП для θ

Метод моментов

Снова неизвестный параметр только один, поэтому достаточно одного уравнения:

$$\frac{1}{n} \sum_{i=1}^{n} x_i = \theta \Rightarrow \hat{\theta} = \overline{X}$$

Метод максимального правдоподобия

Функция правдоподобия:

$$L(x_1, ..., x_n, \theta) = \prod_{i=1}^n \frac{e^{-\theta} \theta^{x_i}}{x_i!} = e^{-n\theta} \prod_{i=1}^n \frac{\theta^{x_i}}{x_i!}$$

Логарифм:

$$\ln L(x_1, \dots, x_n, \theta) = -n\theta + \sum_{i=1}^n (x_i \ln \theta - \ln x_i!) = -n\theta + n\overline{X} \ln \theta - \sum_{i=1}^n \ln x_i!$$

Производная по θ

$$\frac{\delta}{\delta\theta}L(x_1,\ldots,x_n,\,\theta) = -n + \frac{n\overline{X}}{\theta}$$

Приравняем к нулю:

$$-n + \frac{n\overline{X}}{\hat{\theta}} = 0 \Rightarrow \hat{\theta} = \overline{X}$$

Ответ: оценки МП и ММ равны \overline{X}

Ученик и тренер стреляют в цель до первого попадания (геометрическое распределение). Известно, что тренер попадает в цель с вероятностью в два раза большей, чем ученик. В ходе соревнования тренер попал в цель при втором выстреле, а ученик — при пятом. Построить ОМП для вероятности попадания учеником в цель при единичном выстреле.

Пусть ξ — количество выстрелов, необходимых тренеру для попадания. Знаем $\xi \sim G(\theta_1)$. Пусть η — количество выстрелов, необходимых ученику для попадания. Знаем $\eta \sim G(\theta_2)$. Также знаем, что $\theta_1 = 2\theta_2$.

(Неоднородная выборка???) (ξ, η) получила реализацию $(x_1, x_2) = (2, 5)$. Нужно построить оценку максимального правдоподобия для параметра θ_2 .

Функция правдоподобия:

$$L(x_1, x_2, \theta_1, \theta_2) = P(\xi = 2) \cdot P(\eta = 5) = (1 - \theta_1) \cdot \theta_1 \cdot (1 - \theta_2)^4 \cdot \theta_2 = 2(1 - 2\theta_2) \cdot (1 - \theta_2)^4 \cdot \theta_2^2$$

Логарифмируем:

$$\ln L(x_1, x_2, \theta_1, \theta_2) = \ln 2 + \ln(1 - 2\theta_2) + 4\ln(1 - \theta_2) + 2\ln\theta_2$$

Продифференцируем:

$$\begin{split} \frac{\delta}{\delta\theta_2} \ln L(x_1, \ x_2, \ \theta_1, \ \theta_2) &= -\frac{2}{1-2\theta_2} - \frac{4}{1-\theta_2} + \frac{2}{\theta_2} = \frac{2(1-2\theta_2)(1-\theta_2) - 4\theta_2 \cdot (1-2\theta_2) - 2\theta_2 \cdot (1-\theta_2)}{(\theta_2-2\theta_2^2)(1-\theta_2)} = \\ &= \frac{2(1-3\theta_2+2\theta_2^2) - 4(\theta_2-2\theta_2^2) - 2(\theta_2-\theta_2^2)}{\theta_2-3\theta_2^2+2\theta_2^3} = \frac{2-6\theta_2+4\theta_2^2-4\theta_2+8\theta_2^2-2\theta_2+2\theta_2^2}{\theta_2-3\theta_2^2+2\theta_2^3} = \\ &= \frac{14\theta_2^2-12\theta_2+2}{2\theta_2^3-3\theta_2^2+\theta_2} \end{split}$$

Приравняем к нулю:

$$\frac{14\hat{\theta}_2^2 - 12\hat{\theta}_2 + 2}{2\hat{\theta}_2^3 - 3\hat{\theta}_2^2 + \hat{\theta}_2} = 0 \Rightarrow 14\hat{\theta}_2^2 - 12\hat{\theta}_2 + 2 = 0 \Rightarrow 7\hat{\theta}_2^2 - 6\hat{\theta}_2 + 1 = 0 \Rightarrow \mathcal{D}' = 9 - 7 = 2 \Rightarrow \begin{bmatrix} \hat{\theta}_2 = \frac{3 + \sqrt{2}}{7} \Rightarrow \theta_1 > 1 \\ \hat{\theta}_2 = \frac{3 - \sqrt{2}}{7} \end{bmatrix}$$

Ответ: $\hat{\theta}_2 = \frac{3-\sqrt{2}}{7} \approx 0.22654$

Задача 5

Выборка X_1, \ldots, X_n порождена случаной величиной X с плотностью распределения:

$$f(x, \theta) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, & x \in (0, 1) \\ 0, & x \notin (0, 1) \end{cases}$$

Построим оценку максимального правдоподобия для параметра θ и исследуем его на несмещённость. Построим функцию правдоподобия:

$$L(x_1, ..., x_n, \theta) = \prod_{i=1}^n f(x_i, \theta) = \theta^{-n} \prod_{i=1}^n x_i^{\frac{1-\theta}{\theta}}$$

Логарифмируем функцию правдоподобия:

$$\ln L(x_1, \dots, x_n, \theta) = \sum_{i=1}^n \left(\frac{1-\theta}{\theta} \ln x_i \right) - n \ln \theta = \frac{1}{\theta} \sum_{i=1}^n (\ln x_i) - \sum_{i=1}^n (\ln x_i) - n \ln \theta$$

Продифференцируем логарифм по θ :

$$\frac{\delta}{\delta\theta}L(x_1,\ldots,x_n,\theta) = -\frac{n}{\theta} - \frac{1}{\theta_2} \sum_{i=1}^n \ln x_i = \frac{-n\theta - \sum_{i=1}^n \ln x_i}{\theta^2}$$

Приравняем к нулю:

$$-n\hat{\theta} - \sum_{i=1}^{n} \ln x_i = 0 \Rightarrow \hat{\theta} = -\frac{1}{n} \sum_{i=1}^{n} \ln x_i$$

Проверим на несмещённость:

$$E\hat{\theta} = -E \ln x_{1} = -\int_{0}^{1} \ln(x) \cdot \frac{1}{\theta} x^{\frac{1-\theta}{\theta}} dx = \left\langle \frac{a = x^{\frac{1}{\theta}}, \frac{d}{dx} x^{\frac{1}{\theta}} = \frac{1}{\theta} x^{\frac{1}{\theta}-1}}{da = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}} dx, \ x = a^{\theta}} \right\rangle = -\int_{0^{\frac{1}{\theta}}}^{1} \ln(a^{\theta}) da = -\theta \left(a \ln a - a \right) \Big|_{0}^{1} = \theta$$

Несмещённая.

Семинар 7 февраля

 $X_1, \ldots, X_n \sim F(x, \theta)$. Считается, что $(T_1(x_1, \ldots, x_n), T_2(x_1, \ldots, x_n))$ является доверительным интервалом уровня $1 - \alpha$, если

$$P(T_1(x_1, ..., x_n) < \theta < T_2(x_1, ..., x_n)) = 1 - \alpha$$

Например, для $X_1,\dots,\,X_n\sim N(m,\,\sigma^2),\,\sigma$ известна. $\hat{m}=\overline{X},\,\,\mathcal{D}\overline{X}=\frac{\sigma^2}{n}\Rightarrow \frac{\sqrt{n}(\overline{X}-m)}{\sigma}\sim N(0,\,1).$ Для построения доверительного интервала нужно оценить вероятность попадания опорной статистики на интервал:

$$P\left(Z_{\alpha/2} < \frac{\sqrt{n}(\overline{X} - m)}{\sigma} < Z_{1-\alpha/2}\right) = 1 - \alpha$$

$$P\left(\overline{X} - \frac{\sigma Z_{1-\alpha/2}}{\sqrt{n}} < m < \overline{X} + \frac{\sigma Z_{1-\alpha/2}}{\sqrt{n}}\right) = 1 - \alpha$$

Если σ тоже неизвестна, то подставляем её оценку $\tilde{S}=\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{X})^2$ и получаем распределение Стьюдента, значит стоит брать его квантили.

$$\frac{\sqrt{n}(\overline{X} - m)}{\tilde{S}} = \frac{\sqrt{n}(\frac{\overline{X} - m}{\sigma})}{\frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{X}}{\sigma}\right)^2}$$

То есть стандартное гауссовское делим на корень из χ^2 .

Итого:

$$P\left(\overline{X} - \frac{\tilde{S}t_{1-\alpha/2, n-1}}{\sqrt{n}} < m < \overline{X} + \frac{\tilde{S}t_{1-\alpha/2, n-1}}{\sqrt{n}}\right) = 1 - \alpha$$

Если математическое ожидание известно, но мы хотим интервал для дисперсии:

$$\sum_{i=1}^{n} \frac{(x_i - m)^2}{\sigma^2} \sim \chi^2(n)$$

$$P\left(\chi_{n, 1-\alpha/2}^2 < \frac{\sum (x_i - m)^2}{\sigma^2} < \chi_{n, 1-\alpha/2}^2\right) = 1 - \alpha$$

$$P\left(\frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, 1-\alpha/2}^2} < \sigma^2 < \frac{\sum_{i=1}^{n} (x_i - m)^2}{\chi_{n, 1-\alpha/2}^2}\right) = 1 - \alpha$$

Если неизвестны оба:

$$\sum_{i=1}^{n} \frac{(x_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\left(\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{\chi_{n-1, 1-\alpha/2}^2} < \sigma^2 < \frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{\chi_{n-1, 1-\alpha/2}^2}\right) = 1 - \alpha$$

Импортёр упаковывает чай в пакеты с номинальным весом 125 грамм. Известно, что упаковочная машина работает с известным среднеквадратическим отклонением 10 грамм. Выбрали 50 пакетов чая, выборочное среднее их веса оказалось равно 125, 8.

To есть
$$n = 50$$
, $\overline{X} = 125, 8, X_1, \dots, X_n \sim N(m, 100)$. $\overline{X} \sim N\left(m, \frac{\sigma^2}{n}\right) \Rightarrow \frac{\sqrt{n}(\overline{X} - m)}{\sigma} \sim N(0, 1) \Rightarrow$

$$P\left(Z_{0,025} < \frac{\sqrt{n}(\overline{X} - m)}{\sigma} < Z_{0,95}\right) = 0,95$$

$$P\left(\overline{X} - \frac{\sigma Z_{0,95}}{\sqrt{n}} < m < \overline{X} + \frac{\sigma Z_{0,95}}{\sqrt{n}}\right) = 0,95$$

$$P(123,028 < m < 128,571) = 0,95$$

125 лежит в этом интервале, поэтому всё хорошо. Длина интервала получается $\frac{2\sigma Z_{0,95}}{\sqrt{n}}$, хотим, чтбы это равнялось 2

$$\sqrt{n} = \sigma Z_{0.95} \Rightarrow n \approx 384$$

ДЗ 14 февраля

Задача 1

10 изделий сделано за 79, 74, 112, 95, 83, 96, 77, 84, 70, 90 минут. Построить ДИ уровня 0.95 для среднего времени сборки.

Получаем $X_i \sim N(m, \sigma)$, просят доверительный интервал для m. С прошлого семинара:

$$P\left(\overline{X} - \frac{\tilde{S}t_{1-\alpha/2, n-1}}{\sqrt{n}} < m < \overline{X} + \frac{\tilde{S}t_{1-\alpha/2, n-1}}{\sqrt{n}}\right) = 1 - \alpha$$

Здесь:

$$n = 10$$

$$\alpha = 0.05$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})^2$$

 $t_{1-\alpha/2,\;n-1}=$ так и не понял где посмотреть (квантиль распределения Стьюдента)

Задача 2

Теперь ДИ для дисперсии уровня 0.9, опять воспользуемся записями семинара:

$$P\left(\frac{\sum_{i=1}^{n}(x_i - \overline{X})^2}{\chi_{n-1, 1-\alpha/2}^2} < \sigma^2 < \frac{\sum_{i=1}^{n}(x_i - \overline{X})^2}{\chi_{n-1, 1-\alpha/2}^2}\right) = 1 - \alpha$$

Задача 3

Тоже построить ДИ для матожидания и дисперсии гауссовской величины, только с другими значениями. Из сложностей только $\tilde{S}^2 = \frac{n}{n-1} S^2$

Показать, что
$$S^2 = \hat{\mu}_2 - (\hat{\mu}_1)^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \frac{1}{n^2} \sum_{i=1}^n x_i^2 - \frac{2}{n^2} \sum_{i=1}^n x_i \sum_{j=1}^n x_j$$

$$S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \frac{2\overline{X}}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n \overline{X}^2$$

Семинар 14 февраля

Даны две выборки:

$$\begin{cases} X_1, \dots, X_n \sim N(m_1, \sigma_1^2) \\ Y_1, \dots, Y_n \sim N(m_2, \sigma_2^2) \end{cases}$$

 $\sigma_1,\;\sigma_2$ известны, тогда для построения ДИ $\theta=m_1-m_2$:

$$\frac{\overline{X} - \overline{Y} - \theta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Если дисперсии неизвестны, но одинаковы:

$$\hat{\mathcal{D}}(\overline{X} - \overline{Y}) = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)$$

Дисперсию не знаем, поэтому подставим оценку:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2} + \sum_{i=1}^{n} (y_{i} - \overline{Y})^{2}}{n_{1} + n_{2} - 2}$$

Тогда можно сказать

$$\frac{\overline{X} - \overline{Y} - \theta}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

Задача

 $\overline{X}=-11.87,\ \overline{Y}=-13.75,\ \sigma_1^2=20,\ \sigma_2^2=22,\ n_1=n_2=13,\ \alpha=0.05$ $X\sim N(m_1,\ 20),\ Y\sim N(m_2,\ 22)$ Знаем матожидания и дисперсию, тогда ДИ для $\theta=m_2-m_1$

$$P\left((\overline{X} - \overline{Y}) - 1.96\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \theta \le (\overline{X} - \overline{Y}) + 1.96\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right) = 0.95$$

$$P(-1.64 \le \theta \le 5.4) = 0.95$$

Модифицирем задачу. σ теперь неизвестны, но мы считаем их одинаковыми, тогда

$$P\left((\overline{X}-\overline{Y})-2.06S\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\leqslant\theta\leqslant(\overline{X}-\overline{Y})+2.06S\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right)=0.95$$

Если у нас посчитано S_X^2 и S_Y^2 , то можем посчитать S:

$$S^2 = \frac{n_1 S_X^2 + n_2 S_Y^2}{n_1 + n_2 - 2}$$

Если посчитать, то получаем

$$P(-1.98 \le \theta \le 5.74) = 0.95$$

 $X_1,\ldots,\ X_n\sim\Pi(\theta)$. Построим асимптотический доверительный интервал. Для распределения Пуассона верно: $\hat{\theta}=\overline{X},\ \mathcal{D}\overline{X}=\frac{\sigma^2}{n}=\frac{\theta}{n}$ Тогда при больших n:

$$\frac{(\hat{\theta} - \theta)}{\sqrt{\frac{\hat{\theta}}{n}}} \sim N(0, 1)$$

$$P\left(Z_{1-\alpha/2} \leqslant \frac{(\overline{X} - \theta)}{\sqrt{\frac{\overline{X}}{n}}} \leqslant Z_{1-\alpha/2}\right) = 1 - \alpha$$

$$P\left(\sqrt{\frac{n}{\overline{X}}} Z_{1-\alpha/2} \leqslant (\overline{X} - \theta) \leqslant \sqrt{\frac{n}{\overline{X}}} Z_{1-\alpha/2}\right) = 1 - \alpha$$

$$P\left(\overline{X} - \sqrt{\frac{n}{\overline{X}}} Z_{1-\alpha/2} \leqslant \theta \leqslant \overline{X} + \sqrt{\frac{n}{\overline{X}}} Z_{1-\alpha/2}\right) = 1 - \alpha$$

ДЗ на 21 февраля

Задача 1

Имеются данные о доходах Центрального федерального округа:

10043; 9596; 10305; 8354; 9413; 19776; 9815; 11311; 11253; 10856; $11389 \Rightarrow n_x = 11$, $\overline{X} = 11101$

И Приволжского федерального округа:

14253; 7843; 9581; 8594; 16119; 10112; 10173; 9756
$$\Rightarrow n_y = 8$$
, $\overline{Y} = 10803.875$

Построить ДИ уровня 0.95 для разности значений среднедушевных доходов населения Центрального и Приволжского федеральных округов. Предполагается, что все наблюдения имеют гауссовское распределение и одинаковые дисперсии.

 $X \sim N(m_1, \ \sigma^2)$ (доход в ЦФО), $Y \sim N(m_2, \ \sigma^2)$ (доход в ПФО). Оценим величину $m = m_1 - m_2$ Для гауссовских величин хорошей оценкой m будет величина $\overline{X} - \overline{Y}$.

$$E\left(\overline{X}-\overline{Y}\right)=m$$

$$\hat{\mathcal{D}}\left(\overline{X}-\overline{Y}\right)=\sigma^2\left(\frac{1}{n_x}+\frac{1}{n_y}\right)$$
 σ не знаем, подставим оценку $S^2=\frac{\sum\limits_{i=1}^{n_x}(x_i-\overline{X})^2+\sum\limits_{i=1}^{n_y}(y_i-\overline{Y})^2}{n_x+n_y-2}$

Теперь мы можем составить хорошую случайную величину:

$$\frac{\left(\overline{X} - \overline{Y}\right) - m}{\sqrt{\hat{\mathcal{D}}\left(\overline{X} - \overline{Y}\right)}} = \frac{\overline{X} - \overline{Y} - m}{S\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \sim t(n_x + n_y - 2) = t(17)$$

Сейчас сделаю фокус, чтобы было понятнее, почему это Стьюдент:

$$\frac{\overline{X} - \overline{Y} - m}{S\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} = \frac{\frac{\overline{X} - \overline{Y} - m}{\sigma}}{\frac{S}{\sigma}\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}$$

Далее во избежание страшных дробей я распишу числитель и знаменатель отдельно. Начнём с числителя:

$$\frac{\overline{X} - \overline{Y} - m}{\sigma} : \begin{cases} E\left(\frac{\overline{X} - \overline{Y} - m}{\sigma}\right) = 0 \\ \mathcal{D}\left(\frac{\overline{X} - \overline{Y} - m}{\sigma}\right) = 1 \end{cases} \Rightarrow \frac{\overline{X} - \overline{Y} - m}{\sigma} \sim N(0, 1)$$

Теперь знаменатель:

$$\frac{S}{\sigma} \sqrt{\frac{1}{n_x} + \frac{1}{n_y}} = \frac{\sqrt{\sum_{i=1}^{n_x} (x_i - \overline{X})^2 + \sum_{i=1}^{n_y} (y_i - \overline{Y})^2}}{\sigma \sqrt{n_x + n_y - 2}} \sqrt{\frac{1}{n_x} + \frac{1}{n_y}} = \frac{\sqrt{\sum_{i=1}^{n_x} \frac{(x_i - \overline{X})^2}{\sigma^2} + \sum_{i=1}^{n_y} \frac{(y_i - \overline{Y})^2}{\sigma^2}}}{\sqrt{n_x + n_y - 2}} \sqrt{\frac{1}{n_x} + \frac{1}{n_y}} = \frac{\sqrt{\sum_{i=1}^{n_x} \left(\frac{x_i - \overline{X}}{\sigma^2}\right)^2 + \sum_{i=1}^{n_y} \left(\frac{y_i - \overline{Y}}{\sigma}\right)^2}}{\sqrt{n_x + n_y - 2}} \sqrt{\frac{1}{n_x} + \frac{1}{n_y}} = \frac{\sqrt{\sum_{i=1}^{n_x} \left(\frac{x_i - \overline{X}}{\sigma^2}\right)^2 + \sum_{i=1}^{n_y} \left(\frac{y_i - \overline{Y}}{\sigma^2}\right)^2}}{\sqrt{n_x + n_y - 2}} \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$$

Это сумма квадратов центрированных и нормированных гауссовских величин, то есть знаменатель распределён по χ^2 .

Получается, что наша случайная величина получается в результате деления $N(0,\ 1)$ на χ^2 , то есть это по определению распределение Стьюдента.

Перед построением доверительного интервала введём обозначение $\tau=t_{17,\ 0.975}=-t_{17,\ 0.025}\approx 2.11.$

$$P\left(-\tau < \frac{\overline{X} - \overline{Y} - m}{S\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} < \tau\right) = 0.95$$

$$P\left(\left(\overline{X} - \overline{Y}\right) - \tau S\sqrt{\frac{1}{n_x} + \frac{1}{n_y}} < m < \left(\overline{X} - \overline{Y}\right) + \tau S\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}\right) = 0.95$$

$$P\left(-2446.617 < m < 3040.867\right) = 0.95$$

Задача 2

Для проверки качества деталей из большой партии выбрали 200 деталей. Среди них оказалось 12 бракованных. Построить асимптотический доверительный интервал уровня надёжности 0.95 для доли бракованных деталей. Полагаем, что количество бракованных деталей имеет распределение $Bi(200,\ p)$, где p и будет искомой долей бракованных деталей. Оценкой максимального правдободоия для p является $\hat{p} = \frac{\overline{X}}{n}$ (было в домашке за 7 января). 200 тяжело сосчитать на пальцах, поэтому считаем его достаточно большим, чтобы применить теорему Муавра-Лапласа:

$$\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim N(0, 1)$$

Теперь можно очень просто построить доверительный интервал ($z=Z_{0.975}=-Z_{0.025}=1.96$):

$$P\left(-z < \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} < z\right) = 0.95$$

$$P\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$P\left(0.027$$$$

Задача 3

 $X \sim Bi(n_1,\; p_1),\; Y \sim Bi(n_2,\; p_2).$ По условию $n_1,\; n_2$ большие. Построить асимптотический доверительный интервал для $p=p_1-p_2.$ (Показать, что статистика $\frac{\hat{p}_1-\hat{p}_2-(p_1-p_2)}{\sqrt{\hat{\mathcal{D}}(\hat{p}_1-\hat{p}_2)}},$ где $\hat{\mathcal{D}}\left(\hat{p}_1-\hat{p}_2\right)=\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2},$ имеет

асимптотически стандартное нормальное распределение).

Найдём оценку максимального правдоподобия для p:

$$\xi = X - Y \Rightarrow \begin{cases} P(\xi = 1) = P(X = 1) \cdot P(Y = 0) = p_1 q_2 \\ P(\xi = 0) = P(X = 1) \cdot P(Y = 1) + P(X = 0) \cdot P(Y = 0) = p_1 p_2 + q_1 q_2 \\ P(\xi = -1) = P(X = 0) \cdot P(Y = 1) = q_1 p_2 \end{cases}$$

Построим функцию правдоподобия для реализации вектора $(Z_1,\ldots,\,Z_n)$, порождённого случайной величиной ξ :

$$L(z_1, \ldots, z_n, p) = \prod_{i=1}^{n} P(\xi = z_i)$$

Дальше непонятно, значит всё-таки надо воспользоваться подсказкой. Обозначим $T(\hat{p}_1 - \hat{p}_2) = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{\mathcal{D}}(\hat{p}_1 - \hat{p}_2)}}$

Из предыдущей задачи:

$$\hat{p}_1 = \frac{\overline{X}}{n_1}, \ \hat{p}_2 = \frac{\overline{Y}}{n_2}$$

$$E(\hat{p}_1 - \hat{p}_2) = E\hat{p}_1 - E\hat{p}_2 = p_1 - p_2 \hat{D}(\hat{p}_1 - \hat{p}_2) = \hat{D}(\hat{p}_1) + \hat{D}(\hat{p}_2)$$

Тогда при больших n_1, n_2 (в нашем случае это так) должно выполняться:

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\hat{\mathcal{D}}(\hat{p}_1 - \hat{p}_2)}} \sim N(0, 1)$$

Что-то очень странное, надо будет уточнить на семинаре.

Если это верно, тогда доверительный интервал уровня $1-\alpha$ выглядит так:

$$P\left(\hat{p}_{1}-\hat{p}_{2}-Z_{1-\alpha/2}\sqrt{\hat{\mathcal{D}}\left(\hat{p}_{1}-\hat{p}_{2}\right)} < p_{1}-p_{2} < \hat{p}_{1}-\hat{p}_{2}+Z_{1-\alpha/2}\sqrt{\hat{\mathcal{D}}\left(\hat{p}_{1}-\hat{p}_{2}\right)}\right) = 1-\alpha$$

Задача 4

Два года назад у 252 студентов было 29 неудов. В прошлом году у 286 оказалось 42 неуда. Построить доверительный интервал уровня надёжности 0.95 для разности вероятностей неудов в этих двух выборках. Если пользоваться результатом задачи 3:

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\hat{\mathcal{D}}(\hat{p}_1 - \hat{p}_2)}} \sim N(0, 1)$$

Где $\hat{p}_1=\frac{29}{252},\;\hat{p}_2=\frac{42}{286},\;n_1=252,\;n_2=286,$ тогда:

$$P\left(-z < \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\hat{\mathcal{D}}(\hat{p}_1 - \hat{p}_2)}} < z\right) = 0.95$$

$$P\left(\hat{p}_1 - \hat{p}_2 - z\sqrt{\mathcal{D}(\hat{p}_1 - \hat{p}_2)} < p_1 - p_2 < \hat{p}_1 - \hat{p}_2 + z\sqrt{\mathcal{D}(\hat{p}_1 - \hat{p}_2)}\right) = 0.95$$

$$P\left(-0.087 < p_1 - p_2 < 0.025\right) = 0.95$$

Задача 5

Из 500 опрошенных клиентов магазина 100 человек довольны обслуживанием. Построить асимптотический доверительный интервал уровня надёжности 0.95 для доли покупателей, довольных обслуживанием. Полагаем, что количество довольных клиентов распределено как $Bi(500,\ p)$.

Считаем 500 ОГРОМНЫМ числом, поэтому:

$$\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim N(0, 1)$$

Здесь $\hat{p} = \frac{100}{500}$, получаем:

$$P\left(-z < \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} < z\right) = 0.95$$

$$P\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$P\left(0.165$$$$

Из 400 опрошенных клиентов другого магазина 70 человек довольны обслуживанием. Построить асимптотический доверительный интервал уровня надёжности 0.98 для разности долей довольных клиентов (в этой задаче и предыдущей).

Пользуясь результатом задачи 3 получаем:

$$P\left(\hat{p}_{1}-\hat{p}_{2}-Z_{0.99}\sqrt{\hat{\mathcal{D}}\left(\hat{p}_{1}-\hat{p}_{2}\right)} < p_{1}-p_{2} < \hat{p}_{1}-\hat{p}_{2}+Z_{0.99}\sqrt{\hat{\mathcal{D}}\left(\hat{p}_{1}-\hat{p}_{2}\right)}\right) = 0.98$$

Здесь
$$\hat{p}_1=\frac{100}{500},\;\hat{p}_2=\frac{70}{400},\;Z_{0.99}\approx 2.326,\;\sqrt{\hat{\mathcal{D}}\left(\hat{p}_1-\hat{p}_2\right)}\approx 0.026,$$
 подставим и получим:

$$P\left(-0.036 < p_1 - p_2 < 0.086\right) = 0.98$$