# Bachelor of Science in Computer Science and Engineering CSE 306 (Spring 2025): Project Report

# IoT-Based Real-Time Earthquake Detection with Real-Time Telegram Notification and Smart Alert System

Submitted by: Rasheduzzaman Rakib CS-D-77-22-120080 Roll: 37

Md. Asraful Molla CS-D-77-22-120017 Roll: 27

Submitted to: Md. Nahid Hasan Lecturer



Department of Computer Science and Engineering
Dhaka International University
Dhaka, Bangladesh

April 2025

# **Table of Contents**

| 1.  | Abstract                    | 03 |
|-----|-----------------------------|----|
| 2.  | Objectives                  | 03 |
| 3.  | Components List             | 03 |
| 4.  | Diagram                     | 04 |
| 5.  | Working Principle           | 04 |
| 6.  | Code Summary                | 04 |
| 7.  | Key Features                | 04 |
| 8.  | Advantages                  | 05 |
| 9.  | Limitations and Future Work | 05 |
| 10. | Conclusion                  | 05 |
| 11. | Arduino Code                | 05 |
| 12. | References                  | 08 |
| 13. | User Manual                 | 08 |

# IoT-Based Real-Time Earthquake Detection with Real-Time Telegram Notification and Smart Alert System

#### 1. Abstract

This project presents an IoT-based earthquake detection system designed to provide **instant local alerts and remote notifications** during seismic activity. Utilizing a vibration sensor (SW-420), an ESP8266 microcontroller, a buzzer, and Telegram API, the system enables fast and cost-effective earthquake warning. When vibrations are detected, a buzzer and LED alert nearby individuals, while a real-time message is sent to users via Telegram. This system can serve as a prototype for smart city applications and community-level disaster preparedness solutions.

# 2. Objectives

- To detect ground vibrations using the SW-420 vibration sensor.
- To provide local alerts using a buzzer and LED.
- To send real-time earthquake notifications via Telegram using Wi-Fi (ESP8266).
- To develop a low-cost and efficient early warning system.

#### 3. Components List

| Component               | Quantity | Description                               |
|-------------------------|----------|-------------------------------------------|
| ESP8266 Wi-Fi Module    | 1        | Microcontroller with built-in Wi-Fi       |
| SW-420 Vibration Sensor | 1        | Used to detect vibration or shocks        |
| Buzzer                  | 1        | Audible alarm indicator                   |
| Red LED                 | 1        | Visual alert indicator                    |
| 330-ohm Resistor        | 1        | Current limiting resistor for LED         |
| Breadboard              | 1        | For prototyping circuit without soldering |
| Jumper Wires            | Several  | For electrical connections                |

# 4. Diagram



# 5. Working Principle

- The **SW-420 sensor** detects seismic vibrations and outputs a digital signal.
- The **ESP8266 microcontroller** constantly monitors the vibration sensor's output.
- If vibrations are detected, the **buzzer and LED** are activated for visual and audible alerts.
- Simultaneously, a **Telegram message** is sent using the Telegram Bot API via secure HTTPS communication.
- The system waits until the vibration ceases before rearming itself for the next event.

#### 6. Code Summary

The core of the system is programmed in Arduino IDE using the following key functions:

- WiFi Initialization:
  - Connects ESP8266 to the configured network.
- Telegram Notification:
  - Sends HTTP GET requests to the Telegram Bot API using WiFi Client Secure.
- Vibration Detection Loop:
  - Continuously checks for high state from SW-420 and triggers alerts accordingly.

# 7. Key Features

- Real-time remote notification using **Telegram Bot API**
- Onboard buzzer and LED alert system for local signaling
- Wi-Fi-based, no SIM card or GSM module required
- Efficient design with **2-second interval throttle** to avoid spamming
- Can be extended with GPS and data logging capabilities

# 8. Advantages

- Cost-effective: Uses affordable and readily available components.
- Real-time alerts: Telegram provides instant global message delivery.
- Scalable: Can be expanded for large networks of sensors.
- User-friendly: Easily programmable and deployable.

#### 9. Limitations and Future Work

| Current Limitation                             | Future Enhancement Proposal                                                                                 |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| False triggers from environmental vibration    | Implement software-based noise filtering or integrate multi-sensor logic (e.g., accelerometer + gyroscope). |  |  |
| No location data                               | Integrate a GPS module to include real-time latitude and longitude in notifications.                        |  |  |
| No data storage                                | Connect to cloud platforms (e.g., Firebase, ThingsBoard, or AWS IoT) for logging and historical analysis.   |  |  |
| Manual Telegram setup                          | Develop a user-friendly mobile/web dashboard to manage bot tokens and chat IDs.                             |  |  |
| Limited to basic alerts (buzzer, LED, message) | Expand to integrate with smart home systems for automated emergency response.                               |  |  |
| No auto shutdown in critical systems           | Add relays or IoT smart switches to automatically                                                           |  |  |

### 10. Conclusion

The developed system successfully demonstrates a **smart, connected, and low-cost solution** for earthquake detection and alerting. Through IoT integration, it enables **real-time responses** to potentially dangerous seismic activity, enhancing safety and awareness. With further refinement, this prototype can be deployed in schools, homes, or public buildings as part of a broader disaster response network.

#### 11. Arduino Code

```
#include <ESP8266WiFi.h>
#include <WiFiClientSecure.h>

// WiFi credentials
const char *ssid = "###";
const char *password = "###"
```

```
// Telegram bot details
const char *botToken = "###";
const char *chatID = "###";
// Define pins
const int vibrationPin = D0; // SW-420 sensor digital output
const int buzzerPin = D8; // Buzzer pin
const int ledPin = D4;
                         // LED pin
WiFiClientSecure client;
unsigned long lastAlertTime = 0;
const int alertInterval = 2000;
void setup()
 pinMode(vibrationPin, INPUT); // Set vibration sensor as input
 pinMode(buzzerPin, OUTPUT); // Set buzzer as output
 pinMode(ledPin, OUTPUT);
                                 // Set LED as output
 digitalWrite(buzzerPin, LOW); // Start with buzzer off
 digitalWrite(ledPin, LOW); // Start with LED off
 Serial.begin(115200);
 // Connect to WiFi
 WiFi.begin(ssid, password);
 Serial.print("Connecting to WiFi...");
 while (WiFi.status() != WL CONNECTED)
 {
  delay(1000);
  Serial.print(".");
 Serial.println("\nConnected to WiFi!");
}
void sendTelegramMessage(String message)
 client.setInsecure(); // Bypass SSL certificate
 if (client.connect("api.telegram.org", 443))
  String url = "/bot" + String(botToken) + "/sendMessage?chat id=" + String(chatID) +
"&text=" + message;
  client.print(String("GET") + url + "HTTP/1.1\r\n" +
          "Host: api.telegram.org\r\n" +
```

```
"User-Agent: ESP8266\r\n" +
          "Accept: */*\r\n" +
          "Connection: close\r\n\r\n");
  delay(100);
  while (client.available())
   String response = client.readString();
   Serial.println(response);
  client.stop();
 else
  Serial.println("Failed to connect to Telegram API");
void loop()
 int vibrationState = digitalRead(vibrationPin);
 unsigned long currentTime = millis();
 if (vibrationState == HIGH)
  Serial.println("Earthquake Detected!");
  // Turn on buzzer and LED for 2 seconds
  for (int i = 0; i < 2; i++)
   digitalWrite(buzzerPin, HIGH);
   digitalWrite(ledPin, HIGH);
   delay(2000);
   // Turn off buzzer and LED
   digitalWrite(buzzerPin, LOW);
   digitalWrite(ledPin, LOW);
   delay(250);
  // Send Telegram alert with interval
  if (currentTime - lastAlertTime >= alertInterval)
   sendTelegramMessage("ভূমিকম্প! ভূমিকম্প! অতি দ্রুত বাসা ত্যাগ করুন!");
```

```
lastAlertTime = currentTime;
}

// Wait until vibration stops before detecting again
while (digitalRead(vibrationPin) == HIGH)
{
  delay(5); // Prevents multiple detections from same vibration event
}

delay(5); // Small delay for faster response
}
```

#### 12. References

- 1. ESP8266 Official Documentation
- 2. Telegram Bot API Documentation
- 3. SW-420 Vibration Sensor Datasheet
- 4. Arduino.cc Official Tutorials and Examples
- 5. NodeMCU (ESP8266) with Arduino IDE Guide
- 6. Secure HTTPS Communication with ESP8266
- 7. Telegram Setup with ESP8266

#### 13. User Manual

#### Version: 1.0

This section provides end-users with instructions for setting up, operating, and maintaining the earthquake detection system.

#### 13.1 Introduction

This system detects ground vibrations using a vibration sensor and sends emergency alerts through Telegram and a local buzzer/LED system. Designed to be simple, real-time, and affordable, it can be deployed in homes, schools, or community centers.

#### 13.2 Package Contents

| Item                    | Quantity | Description                      |
|-------------------------|----------|----------------------------------|
| ESP8266 Wi-Fi Module    | 1        | Microcontroller with Wi-Fi       |
| SW-420 Vibration Sensor | 1        | Detects vibration or shock       |
| Buzzer                  | 1        | Local audible alarm              |
| Red LED                 | 1        | Visual indicator                 |
| 330-ohm Resistor        | 1        | Limits LED current               |
| Breadboard              | 1        | For assembling without soldering |
| Jumper Wires            | Several  | For making circuit connections   |
| Micro USB Cable         | 1        | For power and programming        |

#### 13.3 Safety Precautions

• Do not expose the system to moisture or physical damage.

- Handle wiring with care to avoid short circuits.
- Only use 5V regulated power sources.
- Mount the sensor on a solid, non-vibrating base.

#### 13.4 System Overview

- Monitors seismic vibrations using the SW-420 sensor.
- Activates local alerts via LED and buzzer.
- Sends emergency notification to Telegram through Wi-Fi.

# 13.5 Assembly & Setup

## **Hardware Setup**

- Connect the vibration sensor to pin D0 of ESP8266.
- Connect the buzzer to D8 and LED (via resistor) to D4.
- Power the ESP8266 via USB or regulated 5V adapter.
- Use a breadboard and jumper wires for prototyping.

#### **Software Setup**

- 1. Install Arduino IDE and the ESP8266 board package.
- 2. Open the provided Arduino code.
- 3. Replace:
  - o ssid and password with your Wi-Fi credentials
  - o botToken and chatID with your Telegram bot details
- 4. Upload the code to ESP8266 using a USB cable.

#### 13.6 Telegram Bot Setup

- 1. Open Telegram  $\rightarrow$  search **BotFather**  $\rightarrow$  create a bot  $\rightarrow$  get **token**.
- 2. Start a chat with your bot → visit this URL to find chat ID: https://api.telegram.org/bot<YOUR TOKEN>/getUpdates
- 3. Copy the bot token and chat ID into the Arduino code.

#### 13.7 How to Use

- Power the system via USB/adapter.
- Wait for Wi-Fi connection (check Serial Monitor).
- When vibration is detected:
  - o LED and buzzer activate for 2 seconds
  - Telegram message is sent instantly
- After the vibration ends, the system auto resets.

# 13.8 Troubleshooting

**Issue** Solution

Wi-Fi not connecting Recheck SSID/password or router settings

No Telegram alert Check bot token and chat ID

False vibration triggers Use solid mounting, adjust code sensitivity

Buzzer/LED not working Confirm wiring and pin assignments

# **10.3 Maintenance Tips**

• Secure the sensor properly to avoid false readings.

- Regularly test the system for reliability.
- Keep firmware up to date.
- Store in a dry, stable environment.

# **13.10 Support**

For assistance, contact the developer team:

Email: asraful@students.diu.ac rased@students.diu.ac

GitHub: <a href="https://github.com/asrafulmolla/Earthquake-Detector-Alarm-and-Send-Notification">https://github.com/asrafulmolla/Earthquake-Detector-Alarm-and-Send-Notification</a>