Summary of Inference

Starting Point:

- 1. What are the observational units?
- 2. What are the variables?
- 3. Is each variable quantitative or categorical?

What Did You Measure?	Conditions for Inference	Population Parameter	Sample Statistic	R function	CI	Hypothesis Test
A Categorical Variable (or a count of how many in sample were in a cer- tain category)	 Representative sample Independent observational units Count of how many in sample were in a certain category 	p: proportion of population in a certain category	\hat{p} : proportion of sample in a certain category	binom.test	from R	from R
A Quantitative Variable	 Representative sample Independent observational units Quantitative variable Mean is a good summary of the center (distribution is approximately unimodal and symmetric, no serious outliers) 	μ : population mean	\bar{x} : sample mean	t.test	$\bar{x} \pm t_{n-1}^* s / \sqrt{n}$	test statistic: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$ If the null hypothesis is true, then $t \sim t_{n-1}$
2 Quantitative Variables (possibly also other variables)	Think of Robert the leprechaun: R. O'LINE Representative sample No Outliers Linear relationship Independent observational units Normally distributed residuals Equal variance of residuals	$ \beta_0 $: Intercept of line describing population $ \beta_1 $: Slope of line describing population (possibly also other coefficients)	b_0 : Intercept of line describing sample b_1 : Slope of line describing sample (possibly also other coefficients)	lm	$b_0 \pm t_{n-k-1}^* SE(b_0)$ $b_1 \pm t_{n-k-1}^* SE(b_1)$ $k = \text{number of explanatory variables}$ (1 for simple linear regression)	test statistic: $t = \frac{b_0 - \beta_0^{null}}{SE(b_0)} \text{ or }$ $t = \frac{b_1 - \beta_1^{null}}{SE(b_1)}$ If the null hypothesis is true, then $t \sim t_{n-k-1}$

1