

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 831 148 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

- (43) Date of publication: 25.03.1998 Bulletin 1998/13
- (21) Application number: 97905440.0
- (22) Date of filing: 05.03.1997

- (51) Int. Cl.6: C12N 15/12, C12N 15/63, C07K 14/435, C12N 1/21, C12P 21/02, C12Q 1/68, C07K 16/18, C12P 21/08, A61K 38/17, G01N 33/53 // C12N1:21
- (86) International application number: PCT/JP97/00665
- (87) International publication number: WO 97/32982 (12.09.1997 Gazatte 1997/39)
- (84) Designated Contracting States: DE FR GB IT
- (30) Priority: 07.03.1996 JP 49880/96 12.12.1996 JP 331944/96
- (71) Applicant: Elsai Co., Ltd. Tokyo 112-88 (JP)

- (72) Inventor: TSUKITA, Sholchiro Nakagyo-ku, Kyoto-shi, Kyoto 604 (JP)
- (74) Representative: Hansen, Bernd, Dr. Dipl.-Chein. et al Hoffmann Eitle, Patent- und Rechteanwälte. Arabellastrasse 4 81925 München (DE)

(54)**HUMAN ADHESION MOLECULE OCCLUDIN**

Whole structures of mammalian analogues of occludin, a constituent protein of the tight junction (TJ), are provided.

Genes for human, canine and mouse occludins were analyzed with the PCR technique on the basis of the coding sequence seen around the gene for neuronal apoptosis inhibitory protein. With antibodies prepared, the occludins have been confirmed to be constituent proteins of the TJ by immunofluorescent cell staining.

Printed by Xerox (UK) Business Services 2.15.12/3.4

Description

Technical Field

The present invention relates to an amino acid sequence of membrane protein occludin in a tight junction (hereinafter referred to as "the TJ") of a human, a dog and a mouse, and a DNA for encoding the amino acid sequence.

Background Art:

10

In multicellular animals, the information on cellular adhesion between adjacent cells is deeply concerned with the regulation and maintenance of vital phenomena such as cellular proliferation and differentiation, inflar mation and cancer metastasis, intercellular adhesion molecules which take part in the adhesion of the cells frequently assemble together on the surfaces of these cells to form a specifically differentiated membrane region for the utilination. Particularly, intercellular adhesion molecules such as cadherins are known to be firmly bound to cytoskeleton in the cytoplasmic domain of epithelial cells. Such membrane regions are called intercellular adhesion apparatus and chiefly classified into the following four structures: gap junction (GJ), adherens junction (AJ), desmosome and tight junction (TJ).

These adhesion apparatus has first been identified under an electron microscope, and as a result of the investigation and research of constituent proteins, the importance of their physiological and pathological significance has become the focus of increased interest. The proteins that are called the so-called adhesion molecules specifically exist in these adhesion apparatus, and the adhesion molecules of the AJ are cadherins and various kinds of cadherins such as N-cadherin and P-cadherin have been identified so far [Takeichi, M. et al., "Science", Vol. 251, p. 1451-1455, (1991)]. As adhesion molecules of the desmosome, desmoglein and desmocollin are known, and according to recent studies, it has been elucidated that their structures are similar to those of the cadherins [Buxton, R. S. et al., "J. Cell Biol." Vol. 121, p. 481-484, (1993)]. The adhesion molecules of the GJ are called connexin, and it is known that connexin holds transmembrane domains at four different sites and both of its N-terminal and C-terminal protrude on the cytoplasmic side of the membrane.

The TJ is an intercellular adhesion apparatus peculiar to epithelial cells and endothelial cells, where the cell membranes of contiguous cells are seen completely tightly apposed. The TJ surrounds individual cells and functions as a barrier to block or regulate permeation of water-soluble molecules between the luminal and basement membrane sides of a cell layer. It has also been described to act as a fence partitioning the cell membrane into apical and basolateral sides in order to maintain the polar distribution of such membrane proteins as ion channels and pumps as well as lipids on the cell membrane [Schneeberger, E. E. et al., "Am. J. Physiol."; Vol. 262, P. L647-L661, (1992). Owing to these functions of the TJ, milieus consisting of different fluid compositions are formed on the opposite sides of a cell layer; so that the polarity of the cell layer is maintained; hence the TJ can be said to be a fundamental structure of vital importance to multicellular organisms.

However, analysis of the molecular structure of the TJ has been less progressing, compared to other adhesion apparatus. In fact, it has constituted a serious drawback to the pursuit of molecular biological research on the TJ that the TJ adhesion molecule itself has not been identified yet.

The present inventors have established a method for isolation of AJ from rat liver, and have identified many proteins such as radixin and ZO-1 from this isolated AJ [Tsukita, Sh. et al., "Curr. Opin. Gell Biol.", Vol. 4, P. 18:14-839, (1992)]. From researches on ZO-1 and histologic findings for the AJ and the TJ; it can be presumed that the proteins in the AJ also contain protein of the TJ. In view of this, the present inventors have isolated AJ from chick liver, prepared a monoclonal antibody against the AJ as the antigen, and carried out structural analysis of the TJ-constituting protein using the antibody specifically reacting with the TJ. As a result, the present inventor has been successful in the sructural analysis of a novel constituent protein dissimilar to known proteins, and designated the protein as occludin [Furuse, M. et al., "J. Cell Biol.", Vol. 123, p. 1777-1788, (1993)].

This chick occludin is a 56KDa protein composed of 504 amino acids, characterized conspicuously by transmembrane domains at four sites in the half of its N-terminus, with both the N- and C-terminals facing the cyliplasm and with two extracelluar loops.

From subsequent studies, occludin was inferred to be an important factor in the analysis of physiological function of the TJ at the cellular level as well as at the whole body level, and drew much attention of investigators.

No further study has progressed, nevertheless, since the said protein has its origin in the chicken species greatly remote from humans. Thus, structural analysis of occludin of human origin has been expected for the sake of elucidation of the physiological function and medical analysis of the TJ. There is as yet no report of success in the elucidation of human occludin despite worldwide competition in research for this purpose in this field.

SUMMARY OF THE INVENTION

It is accordingly an object of the present invention to provide amino acid sequences of human, canine and mouse occluding and the DNAs encoding them.

In their report on the gene for human neuronal apoptosis inhibitory protein (NAIP), Roy et al. documented occurrence of a DNA fragment possessing a base sequence analogous to the C-terminal region of chick occludin in NAIP gene deletion mutants [Roy, N. et al., "Celi", Vol. 80, p. 167-178, (1995)]. To ascertain whether the said sequence actually encoded a part of human analogue of occludin or not, the present inventor selected printers out of the base sequence analogous to that of chick occludin and made a scrupulous screening with a cDNA library of human intestinal epithelial cell strain TB4 as a template for PCR. The present inventor has thus succeeded in the trialysis of the whole structure of human occludin. Further, the inventor has completed analyses of mouse and canine occludins, prepared anti-occludin monoclonal antibodies, and verified with histologic staining that the occludins were transmembrane type TJ proteins.

15 Best Mode for Carrying out the Invention:

The present invention is concerned with amino acid sequences of a human, a canine and a mouse occludin, DNAs for encoding them, anti-occludin antibodies, and a gonotic analysis method utilizing them. More specifically, the present invention is directed to the following aspects.

20

25

35

40

45

- (1) A DNA for encoding a human occludin having an amino acid sequence described in Sequence No. 1.
- (2) A DNA for encoding a human occludin as described in Sequence No. 4.
- (3) A DNA described in Sequence No. 5 for encoding a carrine occludin having an amino acid sequence described in Sequence No. 2.
- (4) A DNA described in Sequence No. 6 for encoding a mouse occludin having an amino acid sequence described in Sequence No. 3.
- (5) A human, a canine and a mouse occludin having the amino acid sequences described in Sequence Nos. 1, 2 and 3, respectively.
- (6) An occludin variant having an amino acid sequence in which one or plural amino acids in the amino acid sequence of each occludin are added, deleted or substituted, and a DNA for encoding the variant.
- (7) A vector which comprises any of DNAs for encoding a human, a canine or a mouse occludin or for encoding their variants.
- (8) A transformant which holds the vector.
- (9) A method for manufacturing an occludin protein which comprises the steps of cultivating the transformant, and collecting an expressed product.
- (11) A DNA primer comprising containing part of the base sequence as defined in Sequence No. 4, 5 or 6.
- (12) A polyclonal antibody or a monoclonal antibody specifically binding to a human, a canine or a mouse occludin protein.
- (13) An assay method and an assay reagant for occludin in a biological specimen, wherein an anti-occludin antibody is used.
- (14) An analysis method of an occludin gene in a biological specimen, wherein said DNA prime or said DNA probe is used.
- (15) A screening method of a drug affecting the expression of occludin, wherein occludin-expressing cells and an analyte are allowed to coexist, and an expression quantity of an occludin gene of said cells is then determined by the use of a DNA primer or a DNA probe.
- (16) An antisense DNA derived from a human occludin DNA.
- (17) A laboratory animal whose occludin DNA is knocked out.

Detailed Description of the Invention:

With the success of the present inventor in identifying occludin analogues of mammals, it is now possible to structurally and functionally test the constitution and function of the TJ at the molecular level. The barrier and fencing functions of the TJ and the related regulatory mechanisms can be analyzed through experiments involving control of expression of the gene for occludin or inhibition of the occludin function with either an antisense probe or an antibody, using various types of cultured human, mouse and canine (MDCK) cells. For example, it is now possible to determine whether or not overexpression of occludin cDNA gives rise to an increase in number of TJ strands seen in freeze-frac-

tured replicas and incidentally to an augmentation of the barrier function. Furthermore, the present invention has made it possible to establish a simple screening method for drugs affecting TJ function. For example, drugs affecting TJ function can be screened using various types of cells expressing occludin, by allowing the cell to react with a test article and subsequently by measuring the amount of cellular occludin gene or occludin protein expression. The gene analysis can be carried out by using a DNA probe or primer or other devices. It may be conducted by known methods, e.g. the Northern blot technique or Southern blot technique wherein RNA or DNA extracted from a test sample in the usual manner is pretreated when necessary, then electrophoresed on a membrane or gel, and hybridized with a labeled DNA probe, and the polymerase chain reaction (PCR) technique wherein the objective DNA is amplified using primers of about 20 bases corresponding to the relevant site and with a genomic DNA or cDNA as the template. The occludin protein can be quantitated, for example, by the use of an antibody.

Moreover, it is also made possible to ascertain how the TJ formation is involved in the morphogenesis of various organs and whether functional fallure of the TJ has any relation to various pathologic states such as inflammation and turnor metastasis, by preparing various types of mutant mice and occludin gene-knocked out mice. The possibility of controlling a TJ function, especially its barrier function, is also of interest in connection with drug permeability. Thus, it would be feasible to control the blood-brain barrier via up- or down-regulation of occludin synthesis in epithelial cells of the brain. Control of the TJ function in the enteric epithelial cells is necessary to regulate drug absorption from the intestine. It will thus become possible to control drug absorption, particularly distribution to the brain tissue, by administering an effective substance screened out of drugs affecting the TJ function. Hence, the present invention is highly article pated for elucidation of the physiological mechanisms primarily of the blood-brain barrier, as well as for analysis; diagnosis and treatment of disease states.

The DNA provided by the present invention can be utilized in the analysis of genes for occludin proteins and of gene expression thereof by using a part of it as a primer or a probe. The term a part here denotes that the oligonic decide to be used as a primer or probe comprises containing at least a 10-relevant-base sequence; or preferably at least a 15-base sequence, or more preferably a corresponding polynucleotide comprising containing approximately 20- to 30-base sequence based on the DNA sequence of the present invention. As the probe, a higher macromolecular or even the whole DNA may be used.

There is a method utilizing antisense DNA or antisense RNA as a means to control the function of occludin. The method is intended to block the flow of gene expression by interfering with the reading of genetic information at any of the stages of gene expression such as DNA replication, transcription and translation, and the anticense technique employs nucleic acid or its analogue for the blockage (Wickstrome, E. ed., Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS. Wiley-Liss, New York, 1991). The elucidation of the occludin DNA according to the present invention has made possible the means for inhibiting occludin functions by the antisense method. The length of DNA all-gomer has bearing on the double strand-forming capacity, membrane permeability and base sequence specificity; (%) and at least 6 nucleotides, or preferably at least 10 mers; usually 15 to 30 mers, may be used. Appropriate sequences may be selected on the basis of the DNA sequence of the present invention, and verified by experimentation. Usually, the oligomer is chemically modified at its phosphate group, sugar molety, and 3' and 5' tails in order to sugment its stability (Gook, P.D., Anticancer Drig. Des., 5,585, 1991). Representative analogues are oligophosphorotricate where one of the oxygen atoms of the internucleoside phosphodiester group is replaced by a sulfur atom, and oligomethylsulfonate. where the said oxygen is replaced by a methyl group; all such analogues are remarkably stable to nucleases. Besides, such oligomers as those with acridine or polylysine bonded to them and those containing N-methilythymidylate, to increase stability of the hybrid double strand, are also used. These oligomers can be synthesized by known chemical. synthetic procedures. Antisense RNA derived from the DNA of the present invention may also be utilized.

The occludin protein of the present invention may be utilized for preparation of an antibody using the whole or a part of it as an epitope, and for use the antibody thus prepared as research and diagnostic reagents. The term epitope denotes an antigen determinant of polypeptide; epitope is usually comprised of at least 6 amino acids, and it is known that a polypeptide consisting of 6 amino acids combines with an antibody (JP-A-60-500684). The antigenic peptide of the subject protein signifies a polypeptide comprising a series of at least 6 amino acids, preferably a series of at least 15 amino acids, or further preferably a series of at least 20 amino acids, based on the amino acid sequence of the present invention. Occludin provided by the present invention is a protein which, as inferred from its amino acid sequence in analogy with chick occludin, possesses transmembrane domains at four sites in a half of its N-terminal region, with the N- and C-terminus facing the cytoplasm, and which has two extracellular loops. In the case of human occludin of which amino acid 89-135 and 196-243 regions are presumed to be extracellularly apposed, various antibodies may be prepared by selecting antigenic sites appropriate for purposes and utilized as a means to elucidate the TJ function and as a means to suppression by the antibody of the TJ function. It is also possible to utilize the partial peptides as a means to screen compounds for those capable of binding to these peptides.

Proteins having an amino acid sequence of occludin of the present invention to which one or a plurality of amino acids are added or of which one or a plurality of amino acids are deleted or substituted are also encompassed by the

present invention.

(1) Preparation of cDNA library and structural analysis of occludin

Preparation of RNA may be carried out using human or animal cells (cell strains) as the raw riviterial, by for example extraction with a mixed solution of guanidine thiocyanate, a surfactant, a chelating agent and a reductant, followed by phenol extraction, fractionation in organic solvents (Chamezynski et al., Anal. Biochem., 162, 156, 1987) and subsequently density gradient ultracentrifugation procedure. Using the RNA thus obtained as a template, a double strand DNA is prepared in the usual manner such as by the cDNA synthesis technique (Gubler, U. et al., Gene, 25, 263,1983) with the use of random primers, reverse transcriptase, DNA polymerase, etc. A DNA library can ke prepared by insertion of the double strand DNA obtained into a bacteriophage such as λ zap or λ gt 11 in the usual manner. Commercial cDNA libraries may also be used.

According to the report of Roy et al., it is possible to obtain a DNA fragment presumed to be of occludin DNA origin by properly selecting a primer region based on the base sequence analogous to the C-terminus of chick occludin; by amplification of the DNA with the PCR technique, and by its subclonation. Subsequent screening of the cDNA library with this DNA fragment as a probe and analysis of the base sequence of the clone loolated may yield a whole-length cDNA for occludin. The structure of the base sequence is determined by the Maxam-Gilbert method (Maxam, A. M. and Gilbert, W., Proc. Natl. Acad. Sci. USA, 74, 560, 1977) or by the dideoxynucleotide chain termination method (Sanger, F., Proc. Natl. Acad. Sci. USA, 74, 5483, 1977). The amino acid sequence is thus deduced on the basis of the base sequence. These gene manipulations can be performed by the known usual methods, for example in accordance with those described in Molecular Cloning. A Laboratory Manual. T. Maniatis et al. eds. (1989), Cold Spring Harbor Laboratory.

(2) Preparation of antibodies

The second second

25

To prepare the monoclonal antibody according to the present invention, human; canine or mouse occludin is used as the antigen, its complex with a carrier protein is prepared if deemed necessary, and appropriate animals are immunized by inoculation with the antigen. Antibody-forming cells obtained from the spleen or lymphnodes of the above immunized animals are fused with myeloma cells, whereby hybridomas producing an antibody strongly specific to occludin are selected to prepare the monoclonal antibody. The preparation procedure may be in accordance with the known prior method.

As the immunogen, any of such products as purified natural products and products prepared by genetic recombination technique or chemical synthesis may be used. For preparation of occludin by the recombinant DNA technique, the cDNA encoding occludin can be religated to the promoter downstream of a vector appropriate for expression of occludin by the known method using restriction enzymes and DNA ligase to obtain a recombinant expression vector. The said vector is nonlimitative insofar as it can be replicated and amplified in a host. With regard kethe promoter and terminator, there is also no particular limitation as long as they are concordant with the host used for expression of the base sequence encoding occludin; and appropriate combinations suited to the host may also lost practicable. The recombinant expression vector thus obtained is introduced into the host by the competent cell technique (J. Mol. Biol., 53, 154, 1970) or the calcium phosphate procedure (Science, 221, 551, 1983) to prepare a transformant. Such organisms as *Escherichia coli* and animals are used as the host, and the transformant obtained is cultured in an appropriate medium suited to the host. The culture incubation is carried out usually at a temperature between 20°C and 45°C and at pH between 5 and 8, with aeration and/or stirring where required. Isolation and purification of occludin from the cultured microorganisms or cells may be performed by an appropriate combination of known methods of isolation and purification. These known methods include salting out, organic solvent method, dialysis, gel filtration, electrophoresis, ion exchange chromatography, affinity chromatography, and reverse-phase high performance liquid chrematography.

The immunogen, occludin, is preferably to retain its whole structure but may be in the form of a fragment or peptide having its partial structure; it may be appropriately selected from the whole amino acid sequence of occludin. For preparation of the fragment or peptide, a method such as chemical synthesis, the above mentioned gene recombination procedure or degradation of a naturally occurring article is employed.

Various condensing agents may be used for preparation of the immunogen-carrier protein complex; such reagents as glutaraldehyde, carbodiimide, and maleimide activated ester may be used.

The carrier protein may be any of those commonly used such as bovine serum albumin, thyroglobulin and hemocyanin, and usually the method wherein a 1- to 5-fold quantity of a carrier protein is coupled to antique is used.

Animals employed for immunization include the mouse, rat, rabbit, and guinea pigs, and inoculation is made by subcutaneous, intramuscular or intraperitoneal injection. The administration of immunogen may be carried out in the form of a mixture with complete Freund adjuvant or with incomplete adjuvant, and is usually made once every 2 to 5 weeks. Antibody-producing cells obtained from the spleen or lymphnodes of the immunized animals are fused with myeloma

cells and isolated as hybrydomas. The myeloma cells used are those of mouse, rat or human origin, preferably allogeneic to the antigen-producing cells used but, in some instances, can be xenogeneic.

The manipulation of cell fusion can be conducted in accordance, for example, with the method of Milstein and Köhter (Nature, 256,495, 1975). Fusogens used include such agents as polyethylene glycol and Sencial virus, and the cell fusion can be made by incubating antibody-producing cells with myeloma cells in an approximate copulation ratio of 1:1" to 10:1 at a temperature between 20 and 40°C, preferably between 30 and 37°C, for about 1 to 10 minutes, using polyethylene glycol (mean molecular weight: 1,000 to 4,000) usually at a concentration of about 20 to 50%.

Various immunochemical methods can be used for screening hybridomas producing an anti-ox:ludin antibody. The methods include enzyme-linked immunosorbent assay (ELISA) using microplates coated with occludin, enzyme immuneassay (EIA) using micoplates coated with an anti-immunoglobulin antibody, and Western blotting technique in which samples containing occludin are electrophoresed with the subsequent use of nitrocellulose transfer membranes.

Clones are obtained from these wells further by, for example, limiting dilution. Screening and breeding of hybridomas are performed in a culture medium for animal cells (e.g. RPMI 1640) containing 10-20% fetal Lxivine serum usually with added HAT (hypoxanthine, aminopterin and thymidine). The clone thus obtained is intraperitoneally transplanted into BALB/c mice previously dosed with bristan, and ascites containing a high concentration of a monoclonal antibody is collected 10-14 days later so that the ascites can be used as a source for purification of the antibody. Furthermore, the cloned hybridoma cells are cultured so that the cultured cells can be used as the source for purification of the antibody. Known methods for purification of immunoglobulin may be used for recovering the moncolonal antibody; the recovery can be readily accomplished for example by such means as ammonium sulfate fractionation, PEG fractionation, ethanol fractionation, utilization of anion exchangers, and affinity chromatography. Model of

With immunological methods using the anti-occludin monoclonal antibody obtained in accordance with the present and accordance with the present invention, it is possible to make qualitative and quantitative determination of occludin in biological specimens. As the immunological methods, conventional methods such as immunohistologic staining, enzyme immunoassay, agglutination test, competitive assay, and sandwich technique may be applied to samples from biological specimens that have been appropriately processed, where required, e.g. isolation of cells and extraction. The immunohistologic staining can be performed for example by the direct method using a labeled antibody or the indirect method using a labeled antibody directed to the antibody bound to target antigen: Any of such known labeling substances as fluorescent agents, radioactive substances, enzymes, metals and dyes may be used as labeling agents.

The monoclonal antibody of the present invention may be used in the form of Fab' or Fab fragment after removal of its Fc' or Fc region, or in the form of polymer of either fragment. Furthermore, it may also be in the form of a chimeric antibody, a humanized antibody, or a human antibody.

APLE CONTRACTOR CONTRA EXAMPLE

The second secon The present invention will now be illustrated in detail with specific embodiments by the following examples. Of we course, the present invention shall not be limited to the following examples: The first and the second of the seco gle 1 Structural analysis of human-occludings and the state of the sta

Example 1 Structural analysis of human occludin The control of the control of the control of the control of the

17.0

Based on a base sequence of a part of human NAIP-deficient gene analogous to the C-terminus of chick occludin, PCR was performed using as primars the oligonucleotides of Sequence Nos:/7 and 8. Agt11 cDNA library was prepared (- 1 - 1 by purifying poly(A)+RNA from a source consisting of human intestinal epithelial cell strain (T84 and by using TimeSaver cDNA Synthesis Kit (trade name; Pharmacia LKB Biotechnology Inc.)and GIGAPACK II Packaginki Extract (Stratagene Inc.). The PCR was carried out with this library as the template and with said two primers yielded a cDNA fragment of 🦠 🗄 10.0 Control of the Control 363 base pairs.

This DNA fragment was DIG-labeled using DIG Labeling Kit (trade name; Boehringer Mannheim), and said fibrary was screened with it used as the probe. As a result, three cDNA clones were isolated, their insertion sites were cut, and they were subcloned to pBluescript SK(·). Of these, the two clones phOc6 and phOc16 were presumed to contain a total ORF, and these two cloned strands were analyzed for their base sequences, with the results demonstrating that said base sequences encoded the whole structure of human occludin. The coding sequence was determined using a 7-deaza Sequenase Version Deoxy Terminator Cycle Sequencing Kit (trade name; Applied Bicsystems). The base sequence is shown in Sequence No. 4, and the amino acid sequence deduced therefrom in Sequence No. 1.

Structure of canine and mouse occludins were determined in the same manner as described above using \(\alpha gt11 \) and Agt10 cDNA libraries, respectively, prepared from dog kidney (MDCK) cells and mouse lung cells. The base sequence and amino acid sequence of canine occludin are shown in Sequence Nos. 5 and 2, and the base sequence and amino acid sequence of mouse occludin in Sequence Nos. 6 and 3. Escherichia coli JM 109 containing the human occludin cDNA has been deposited (Deposition No. FERM BP-5477) with the National Institute of Bioscience and Human Technology, Ministry of International Trad and Industry, Japan (address: 1-1-3, Higashi, Tsukuba, Ibaraki, 305

Japan) as of March 15, 1996.

Example 2 Preparation of an anti-human occludin monoclonal antibody

The cDNA fragment encoding the cytoplasmic region on the C-terminal side of human occlustin was obtained by cutting the pBluescript SK(-) vector containing Sequence No. 4 described in Example 1 with restriction enzymes Ssp I and EcoR I (both being products of Takara Shuzo Co., Ltd.). This fragment was introduced into p3EX-3X vector, and Escherichia coli transformed with this vector was cultured to prepare a GST fused protein. Rats were immunized with this fused protein as an antigen, so that a monoclonal antibody was prepared.

The rat immunization was performed by injecting the antigen in doses of 300 µg/injection into the hindlimb paw, first as an emulsion with complete Freund adjuvant and the antigen alone twice thereafter (days 3 and 7 after the first). On the day following the last injection, inguinal lymphnodes were excised from the immunized animals and used for cellular fusion.

The rat lymphocytes and mouse myeloma P3 cells were combined in a ratio of 2.5:1, and the mixture was incubated in RPMI medium containing 1 g of polyethylene glycol (mean MW 4,000) dissolved in it, for 2 minutes according
to a modified method of Köhler et al., to permit fusion of the cells. Fused cells were seeded in 24-vell plates with HAT
medium containing 10% HCF (Bokusur-Braun) for 9 days, followed by incubation in HT medium and subsequently in
flasks with RPMI medium. Hybridomas were cloned by assaying supernatants of wells showing cell ular growth for antibody titer using immunoblot technique and fluorescent antibody staining in cultures of human intestinal epithelial cell
strain T84, and by limiting dilution from proper wells. The hybridoma cells were seeded at calculatix concentration of 7
cells/well in microtiter plates, and screened by immunoblotting technique to verify and Isolate clonal hybridoma cell
strains. Antibodies were purified from culture supernatants of said hybridoma.

Example 3 Cell staining

Human intestinal epithelial cells were fixed in 3% formalin in phosphate buffered saline (PBS) at room temperature for 15 minutes, and further treated with 0.2% Triton X-100 in PBS at room temperature for 15 minutes. After blocking the cells with 1% bovine serum albumin (BSA), the test substance was added and incubated for 30 minutes at room temperature. After subsequent washing, FTTC-labeled anti-rat immunoglobulin antibody was added and incubated for 30 minutes at room temperature, followed by washing off unreacted antibody and examination with a fluorescent microscope.

Results of double immunofluorescent staining with monoclonal antibody to the TJ-related protein ZO-1 and the anti-human occludin monoclonal antibody of the present invention are shown in the figure. As totally the same staining pattern as that of ZO-1 (reported in the literature) was observed, the human protein of the present invention has proven to be a human homologue of the TJ adhesion molecule occludin.

Example 4 Expression of occludin in cerebrovascular cells

Since cerebral vascular endothelial cells are thought to have a high electroresistant TJ, which form the brain-blood barrier unlike peripheral vascular endothelial cells, I examined the distribution and expression of occludin in cultured porcine brain vascular endothelial cells (PBEC) possessing the high electroresistant TJ and cultured porcine aortic endothelial cells (PAEC).

As porcine occludin cDNA fragment, a 363 base fragment was prepared by amplification with PCR technique using as primers 1359-1391 sense strand (Sequence No. 7) and 1692-1721 antisense strand (Sequence No. 8) from the human occludin DNA sequence (Sequence No. 4). The amino acid sequence based on analysis of the coding base sequence of sald fragment showed a high degree of homology with amino acid sequences of human, mouse and canine occludins, thus verifying the fragment to be a cDNA for porcine occludin. ³²P-labeled said fragment was used as a probe.

To prepare mRNA from the cultured cells, an agarose gel electrophoresed sample was transferred onto nitrocellulose membrane and hybridized with the c DNA probe under highly stringent conditions, using an RNA isolation kit (Stratagene). As a result, the occludin mRNA showed a strong band at about 2.4 kb in PBEC, whereas in PAEC, only a very weak band was noted at that position.

Expression of occludin in these cells was compared using anti-mouse occludin antibody as a monoclonal antibody specifically recognizing mammalian occludins and an antibody against the TJ-related protein ZO-1.

Anti-mouse occludin rat antibody was prepared using mouse occludin:glutathione-S-transferasis used protein as a antigen, and FITC-labeled anti-rat IgG sheep antibody was used for detection of said antibody. When equal protein quantities of extracts from disrupted cultured cells were analyzed by immunoblotting after one-dimensional gel electrophoresis, a strong band of occludin was detected at about 58KD in PBEC while a considerably weaker band was noted

at that position in PAEC. On the other hand, there was no appreciable difference in expression of ZO-1 between the two types of cells. With immunostaining, PBEC exhibited a marked occludin expression with the same continuous intercellular localization as ZO-1, as seen in the immunoblotting study. In PAEC, in contrast, occludin was scarcely detected and ZO-1 showed a discontinuous intercellular localization. These results suggest that the relatively marked expression of occludin in PBEC is required for the formation of the highly electroresistant TJ, and provide evidence that occludin is the constituent protein of the TJ.

SEQUENCE

SEQ ID NO: 1 SEQUENCE LENGTH: 522 SEQUENCE TYPE: amino acid 10 TOPOLOGY: linear MOLECULE TYPE: protein ORIGINAL SOURCE ORGANISM: human (intestinal epithelial cell strain [84) SEQUENCE DESCRIPTION 20 Met Ser Ser Arg Pro Leu Glu Ser Pro Pro Pro Tyr Arg Pro Asp Glu 1 10 Phe Lys Pro Asn His Tyr Ala Pro Ser Asn Asp Ile Tyr Gly Gly Glu 20 25 Met His Val Arg Pro Met Leu Ser Gln Pro Ala Tyr Ser Phe Tyr Pro 30 35 40 Glu Asp Glu Ile Leu His Phe Tyr Lys Trp Thr Ser Pro Pro Gly Val 55 60 The Arg Ile Leu Ser Met Leu Ile Ile Val Met Cys Ile Ala Ile Phe ego gov · 70 75 Ala Cys Val Ala Ser Thr Leu Ala Trp Asp Arg Gly Tyr Gly Thr Ser 90 95 Leu Leu Gly Gly Ser Val Gly Tyr Pro Tyr Gly Gly Ser Gly Phe Gly 100 105 Ser Tyr Gly Ser Gly Tyr Gly Tyr Gly Tyr Gly Tyr Gly Tyr 115 120 125 Gly Gly Tyr Thr Asp Pro Arg Ala Ala Lys Gly Phe Met Leu Ala Met

Ala Ala Phe Cys Phe lle Ala Ala Leu Val Ile Phe Val Thr Ser Val lle Arg Ser Glu Met Ser Arg Thr Arg Arg Tyr Tyr Leu Ser Val Ile lle Val Ser Ala Ile Leu Gly Ile Met Val Phe Ile Ala Thr Ile Val Tyr lle Met Gly Val Asn Pro Thr Ala Gln Ser Ser Gly Ser Leu Tyr Gly Ser Gln Ile Tyr Ala Leu Cys Asn Gln Phe Tyr Thr Pro Ala Ala Thr Gly Leu Tyr Val Asp Gln Tyr Leu Tyr His Tyr Cys Val Val Asp Pro Gln Glu Ala Ile Ala Ile Val Leu Gly Phe Met Ile Ile Val Ala Phe Ala Leu IIe Ile Phe Phe Ala Val Lys Thr Arg Arg Lys Met Asp Arg Tyr Asp Lys Ser Asn He Leu Trp Asp Lys Glu His He Tyr Asp 👫 🖼 Glu Gln Pro Pro Asn Val Glu Glu Trp Val Lys Asn Val Ser Ala Gly 200 800 Thr Gln Asp Val Pro Ser Pro Pro Ser Asp Tyr Val Glu Arg Val Asp Ser Pro Met Ala Tyr Ser Ser Asn Gly Lys Val Asn Asp Lys Arg Phe Tyr Pro Glu Ser Ser Tyr Lys Ser Thr Pro Val Pro Glu Val Val Gln

				340					34	15				38	50	
5	Glu	Leu	Pro	Leu	Thr	Ser	Pro	Val	Asp	Asp	Phe	Arg	Gln	Pro	Arg;	Туг
			355					36	i0				36	55		
	Ser	Ser	Gly	Gly	Asn	Phe	Glu	Thr	Pro	Ser	Lys	Arg	Ala	Pro	Ala	Lys
10		370					37	5				38	10		٠.	
	Gly	Arg	Ala	Gly	Arg	Ser	Lys	Arg	Thr	Glu	Gln	Asp	His	Tyr	Glu	Thr
15	385				;	39	0				39	5				400
,	Asp	Tyr	Thr	Thr	Gly	Gly	Glu	Ser	Cys	Asp	Glu	Leu	Glu	Glu	Asp	Trp
					405					41	0	.	:		4 l	ā
20	He	Arg	Glu	Tyr	Pro	Pro	He	Thr	Ser	Asp	Gln	Gln	Arg	Gln	Leu	ſyr
				420				i	42	5			,	43	10	
25	Lys	Arg	Asn	Phe	Asp	Thr	Gly	Leu	Gln	Glu	Tyr	Lys	Ser	Leu	Gln	Ser
			435					44	0 .				44	5		
	Glu	Leu	Asp	Glu	Ile	Asn	Lys	Glu	Leu	Ser	Arg	Leu	Asp	Lys	Glu	l.eu
30		450					45	5				46	0 -			
	Asp	Asp.	Туг	Arg	Glu	Glu	Ser	Glu	Glu	Туг	Met	Ala	Ala	Ala	Asp	Glu
35	465		v	î		47	Q,	; : ·	7.	٠,	47	5	.,		t	480
	Tyr	Asn	Arg	Leu	Lys	Gln	Val	Lys,	Gly	Ser	Ala	Asp	Tyr:	Lys	Ser	I.ys
•			:		485					49	0 .				49	5
40	Lys	Asn	His	Cys	Lys	Gln	Leu	Lys	Ser	Lys	Leu	Ser	His	Ile	Lys	Lys
				500				• •	50	5		ŧ		. 51	0.	
45	Met	Val-	Gly	Asp	Туг	Asp	Arg	Gln	Lys	Thr						
,	•		515	; .	, .	<i>:</i> .		, 52	0.		6. '		·	·i		ł

SEQUENCE ID NO: 2

SEQUENCE LENGTH: 521

SEQ TYPE: amino acid TOPOLOGY: linear MOLECULE TYPE: protein ORIGINAL SOURCE 10 ORGANISM: canine (kidney cell MDCK) SEQUENCE DESCRIPTION Met Ser Ser Arg Pro Phe Glu Ser Pro Pro Pro Tyr Arg Pro Asp Gli 1 5 5 10 Phe Lys Pro Asn His Tyr Ala Pro Ser Asn Asp Val Tyr Gly Gly Asp 20 25 30 Met His Val Arg Pro Met Leu Ser Gln Pro Ala Tyr Ser Phe Tyr Pro 40 Glu Asp Glu Ile Lew His Phe Tyr Lys Trp Thr Ser Pro Pro Gly Val 50 55 Ile Arg Ile Leu Ser Met Leu Val Ile Val Met Cys Ile Ala Ile Phe 75 Cly Cys Val Ala Ser Thr Leu Ala Trp Asp Arg Gly Tyr Gly Thr Gly Leu Met Gly Gly Ser Ile Gly Tyr Pro Tyr Gly Ser Gly Phe Gly Ser 100 Tyr Gly Thr Gly Tyr Gly Tyr Gly Phe Gly Tyr Gly Tyr Gly Tyr Gly 120 125 Gly Tyr Thr Asp Pro Arg Ala Ala Lys Gly Phe Leu Leu Ala Met Val 130 135 Ala Phe Cys Phe Ile Ala Ala Leu Val Ile Phe Val Thr Ser Val Ile 145 150 155 160

	Árg	Ser	Asp	Ile	Ser	Arg	Thr	Arg	Arg	Tyr	Туг	Leu	Thr	Val	Ile	He	:	
5					165	,		3		17	70				. 1	75		
				180)				18	35				1	90			
	lle	Met	Gly	Val	Asn	Pro	Thr	Ala	Gŀn	Ala	Ser	Gly	Ser	Leu	Tyr	Seŕ		
10			195					20	00 :				20	05				
	Ser	GIn	I _l le	Tyr	Ala	Met	Cys	Asn	Gln	Phe	Tyr	Ala	Ser	Thr	Ala	Tar		
15		210					21	5				22	20					
	Gly	Leu	Tyr	Met	Asp	Gln	Tyr	Leu	Tyr	His	Tyr	Cys	Val	Val	Asp	Paro	.,	
	225					. 23	0				. 23	5				24	10	
20	Gln	Glu	Ala	He	Ala	He	Val	Leu	Gly	Phe	Met	Val	He	Va i-	Ala	I'he		1
					245				·	25	0				25	55	,	
25	Ala	Leu	I:I,e	He	Phe	Phe	Ala	Val	Lys	Thr	Arg	Arg.	Lys	Met	Asp	g 1.4		
			√ '	260					26	5				27	70			-:
	Tyr	Asp	Lys	Ser	Asn	lle	Leu	Trp	Asp	Lys	Glu	His	lle	Tyr	Asp	Glu		
30			275	:				28	0 -				28	5				
	Gln	Pro	Pro	Asn	Val	Glu	Glu	Trp	Ya I,	Lys	Asn	Val-	Ser	Ala	Gly:	Thr	, .:	
35		290					29	5		٠٠.		30	0		1			
•	Gln	Asp	Me t	Pro	Pro	Pro	Pro	Ser	Asp	Tyr	Val	Glu	Arg.	Val	Asp	Ser	14.1	167
	305					310	0			;	· 31	5				32	!5	
40	Pro	Met	Ala	Tyr	Ser	Ser	Asn	Gly	Lys	Val	Asn	Asp	Lys	Arg	Leu	Tyr		
					325					33	0				33	5	' .	7 27
45	Pro	Glu	Ser	Ser	Tyr	Lys	Ser	Thr	Pro	Val	Рго	Glu	Val	Yal	Gln	Glu		71.
				340					34	5		¥!		±35	0 -	Sec. (r tyth	`.*
50	Leu	Pro	Ala	Thr	Ser	Pro	Ala	Asp	Asp	Phe	Arg	Gln	Pro	Arg	Tyr	Ser		٠.
50			355					360	0				36	5				
	Ser	Ser	Gly	His	Leu	Glu	Pro	Pro	Ser	Lys	Arg	Ala	Pro	Ser	Lys	Gly		•

370 375 380 Arg Thr Gly Arg Pro Lys Arg Leu Glu Gln Asp His Tyr Glu Thr Asp 385 390 395 Tyr Thr Thr Gly Gly Glu Ser Cys Asp Glu Leu Glu Glu Asp Trp Ile 10 405 410 Arg Glu Tyr Pro Pro Ile Thr Ser Asp Gln Gln Arg Gln Leu Tyr Lys 420 . 425 Arg Asn Phe Asp Thr Gly Leu Gln Glu Tyr Lys Ser Leu Gln Ala Glu 435 440 Leu Asp Glu Ile Asn Lys Glu Leu Ser Arg Leu Asp Lys Glu Leu Asp 450 455 460 Asp Tyr Arg Glu Glu Ser Glu Glu Tyr Met Ala Ala Ala Asp Glu Tyr 465 470 475 Asn Arg Leu Lys Gln Val Lys Gly Ser Pro Asp Tyr Lys Asn Lys Arg: 485 490 495 Asn Tyr Cys Lys Gln Leu Lys Ser Lys Leu Ser His He Lys Eys Met 500 505 510 Val Gly Asp Tyr Asp Arg Gln Lys Through the and analyguest reflect as a 520 All participations of the second SEQ ID NO: 3 SEQUENCE LENGTH: 521 SEQUENCE TYPE: amino acid TOPOLOGY: linear MOLECULE TYPE: protein

ORIGINAL SOURCE

ORGANISM: mouse (lung cell)

SEQUENCE DESCRIPTION Met Ser Val Arg Pro Phe Glu Ser Pro Pro Pro Tyr Arg Pro Asp Glu 10 10 Phe Lys Pro Asn His Tyr Ala Pro Ser Asn Asp Met Tyr Gly Gly Glu 25 Met His Val Arg Pro Met Leu Ser Gln Pro Ala Tyr Ser Phe Tyr Pro 15 40 Glu Asp Glu Ile Leu His Phe Tyr Lys Trp Thr Ser Pro Pro Gly Val lie Arg lie Leu Ser Met Leu lie lie Val Met Cys lie Ala lie Phe 65 70 Ala Cys Val Ala Ser Thr Leu Ala Trp Asp Arg Gly Tyr Gly Thr Gly 85 90 Leu Phe Gly Gly Ser Leu Asn Tyr Pro Tyr Ser Gly Phe Gly Tyr Gly 100 105 . 110 Gly Gly Tyr Gly Gly Tyr Gly Gly Tyr Gly Tyr Gly Gly Gly 1**25** 120 Tyr Thr Asp Pro Arg Ala Ala Lys Gly Phe Leu Leu Ala Met Ala Ala . 135 140 Phe Cys Phe Ile Ala Ser Leu Val Ile Phe Val Thr Ser Val Ile Arg 145 150 155 Ser Gly Met Ser Arg Thr Arg Arg Tyr Tyr Leu lle Val lle Ile Val 170 Ser Ala Ile Leu Gly Ile Met Val Phe Ile Ala Thr Ile Val Tyr Ila 180 185 190

	Met	Gly	Val	Asn	Pro	Thr	Ala	Gln	A l.a	Ser	Gly	Ser	Met	Tyr	Gly	Ser
5			195					20	00				20)5		
	Gln	Ile	Туг	Mel	lle	Cys	Asn	Gln	Phe	Tyr	Thr	Pro	Gly	Ġly	Thr	Gly
		210					21	5				22	20			
10	Leu	Tyr	Val	Asp	Gln	Туг	Leu	Туг	His	Tyr	Cys	Val	Val	Asp	Pro	ĠIn
	225					23	0				23	5				240
15	Glu	Ala	Ilė	Ala	He	Val	Leu	Ġly	Phe	Met	He	He	Val	Ala	Phe	Ala
					245					25	0				25	55
	Leu	Ile	Ile	Phe	Phe	Ala	Va l'	Lys	Thr	Arg	Arg	Lys	Met	Asp	Arg	Tyr
20				260			•		26	5				27	0	
	Asp	Lys	Ser	Àsn	Ile	Leu	Trp	Asp	Lys	Glu	His	Ιlė	Туг	Asp	Glu	Gin
25			275					28	0				28	15		
	Pro	Pro	Asn	Val	Glu	Glu	Trp	Val	Lys	Asn	Val	Ser	Ala	Gly	Thr	Gln
		290					29	5				30	0			
30 .	Asp		Рго	Pro	Рro	Pro			Tyr	Ala	Glu			Asp	Ser	Pro
30 .	Asp 305		Pro	Pro	Pro	Pro 31	Ser		Tyr	Ala	Glu 31	Arg		Asp	Ser	Pro 320
30 . 35	305	Met				31	Ser 0	Asp			31	Arg 5	Val		i .	
	305	Met			Ser	31	Ser O Gly	Asp Lys		Asn	31	Arg 5 Lys	Val		Tyr	320
35	305 Met	Met	Tyr	Ser	Ser 325	31 Asn	Ser O Gly	Asp Lys	Val	Asn 33	31 Gly 0	Arg 5 Lys	Va I Arg	Ser	Туг 33	320 Pro
	305 Met	Met	Tyr	Ser	Ser 325	31 Asn	Ser O Gly	Asp Lys	Val	Asn 33 Val	31 Gly 0	Arg 5 Lys	Va I Arg	Ser	Tyr 33 Gln	320 Pro 35
35	305 Met Glu	Met Ala Ser	Tyr Phe	Ser Tyr 340	Ser 325 Lys	31 Asn Ser	Ser O Gly Thr	Asp Lys Pro	Val Leu 34	Asn 33 Val 5	31 Gly O Pro	Arg 5 Lys Glu	Val Arg Val	Ser Ala 35	Tyr 33 Gln 0	320 Pro 35
35	305 Met Glu	Met Ala Ser	Tyr Phe	Ser Tyr 340	Ser 325 Lys	31 Asn Ser	Ser O Gly Thr	Asp Lys Pro	Val Leu 34 Asp	Asn 33 Val 5	31 Gly O Pro	Arg 5 Lys Glu	Val Arg Val	Ser Ala 35 Arg	Tyr 33 Gln 0	320 Pro 35 Glu
35 40	305 Met Glu Ile	Met Ala Ser Pro	Tyr Phe Leu 355	Ser Tyr 340 Thr	Ser 325 Lys Leu	31 Asn Ser	Ser O Gly Thr Val	Asp Lys Pro Asp 36	Val Leu 34 Asp 0	Asn 33 Val 5 Phe	31 Gly O Pro	Arg 5 Lys Glu Gln	Val Val Pro	Ser Ala 35 Arg 5	Tyr 33 Gln 0 Tyr	320 Pro 35 Glu
35 40 45	305 Met Glu Ile	Met Ala Ser Pro	Tyr Phe Leu 355	Ser Tyr 340 Thr	Ser 325 Lys Leu	31 Asn Ser	Ser O Gly Thr Val	Asp Pro Asp 36	Val Leu 34 Asp 0	Asn 33 Val 5 Phe	31 Gly O Pro	Arg 5 Lys Glu Gln	Val Val Pro 36	Ser Ala 35 Arg 5	Tyr 33 Gln 0 Tyr	320 Pro 35 Glu Ser
35 40	305 Met Glu Ile Ser	Met Ala Ser Pro Asn 370	Tyr Phe Leu 355 Gly	Ser Tyr 340 Thr	Ser 325 Lys Leu Leu	31 Asn Ser Ser	Ser O Gly Thr Val	Asp Pro Asp 36 Pro	Val Leu 34 Asp 0 Ser	Asn 33 Val 5 Phe Lys	31 Gly 0 Pro Arg	Arg 5 Lys Glu Gln Ala 38	Val Pro 36 Pro	Ser Ala 35 Arg 5	Tyr 33 Gln 0 Tyr	320 Pro 35 Glu Ser
35 40 45	305 Met Glu Ile Ser	Met Ala Ser Pro Asn 370	Tyr Phe Leu 355 Gly	Ser Tyr 340 Thr	Ser 325 Lys Leu Leu	31 Asn Ser Ser	Ser O Gly Thr Val	Asp Pro Asp 36 Pro	Val Leu 34 Asp 0 Ser	Asn 33 Val 5 Phe Lys	31 Gly 0 Pro Arg	Arg 5 Lys Glu Gln Ala 38	Val Pro 36 Pro	Ser Ala 35 Arg 5	Tyr 33 Gln 0 Tyr	320 Pro 55 Glu Ser

	Tyr Thr	Thr	Gly	Gly	Glu	Ser	Cys	Glu	Glu	Leu	Glu	Glu	Asp	Trp	Val		
5				405					- 41	0 - :				4.	15		
	Arg Glu	Tyr	Pro	Pro	He	Thr	Ser	Asp	Gln	Gln	Arg	Gln	Leu	Туг	Lys		
			420					42	5		•		43	30	i		
10	Arg Asn	Phe	Asp	Ala	Gly	Leu	Gln	Glu	Tyr	Lys	Ser	Leu	Gln	Ala	Glu		:
		435				•	44	0				44	16				
15	Leu Asp	Asp	Val	Asn	Lys	Glu	Leu	Ser	Arg	Leu	Asp	Lys	Glu	Leu	Asp		
	450	٠.				45	5	· :			∙46	60					
20	Asp Tyr																i
	465															30-	
	Asn Arg	Leu								Asp	Tyr	Lys	Ser	Lys	Arg		•
26			•		•								· 1	•	•		
	Asn Tyr	Cys		Gln.	Leu	Lys	Ser			Ser	His	Lle	Lys	Arg	llet	• •	٠ 1
			500					50	5				51	0			
30																	
30	Val. Gly							Pro					Δŧ				
30	:*	515		240			52	Pro 0				'	-,	.00	:	••	
36	 	515	n \$ ^				52	Pro 0				'		. e*			
0	SEQ: ID N	515 10: 4	n B. S.				52	Pro	a de la composição de l				Di Line in Galerinia	. 16 1 <u>1</u>	i. 8		 Kor
0	SEQ. ID N	515 10: 4	GTH:	237			52	Pro 0				. 1741 - 1741 - 1741	on Service Service	. in 	i		。 (1.4.) (1.5) (1.5)
35	SEQ ID N SEQUENCE SEQUENCE	515 10: 4 E LEN	GTH:	237 auc l e	79 eic a	nçid	52	Pro 0						or Series Series Series			(1) (可分的 (可) (1)
35	SEQ ID N SEQUENCE SEQUENCE STRANDED	515 IO: 4 E LEN E TYP ONESS	GTH: E: n	237 aucle	79 eic a	nçid.	52	Pro 0									
35	SEQ ID N SEQUENCE SEQUENCE STRANDED TOPOLOGY	515 10: 4 E LEN E TYP ONESS	GTH: E: n	237 aucle auble	79 eic a	nçid	52	Pro 0									
35	SEQ ID N SEQUENCE SEQUENCE STRANDED TOPOLOGY MOLECULE	515 IO: 4 LEN TYP ONESS T: li	GTH: E: do	237 aucle auble DNA	79 eic a	açid.	52	Pro						1996年 1997年			
35	SEQ ID N SEQUENCE SEQUENCE STRANDED TOPOLOGY	515 LENE TYP DNESS TYP TYP SOU	GTH: E: n : do near	237 aucle uble DNA	9	and Company	52	Pro									
35 40 46	SEQ ID N SEQUENCE SEQUENCE STRANDED TOPOLOGY MOLECULE	515 LENE TYP DNESS TYP TYP SOU	GTH: E: n : do near	237 aucle uble DNA	9	and Company	52	Pro									

Feature Key: mat peptide

Feature Table Definition: 168.. 1733

CEVIENCE	DESCRIPTION	
SEVUENCE	DESCRIPTION	

	CTCCCGCGTC	CACCTCTCCC	TCCCTGCTTC	CTCTGGCGGA	GGCGGCAGGA	ACCGAGAGCC	60
o	AGGTCCAGAG	CGCCGAGGAG	CCGGTCTAGG	ACGCAGCAGA	TTGGTTTATC	TTGGAAGC17A	120
	AAGGGCATTG	CTCATCCTGA	AGATCAGCTG	ACCATTGACA	ATCAGCCATG	TCATCCAGCC	180
15	CTCTTGAAAG.	TCCACCTCCT	TACAGGCCTG	ATGAATTCAA	ACCGAATCAT	TATGCACCAA	240
-	GCAATGACAT	ATATGGTGGA	GAGATGCATG	TTCGACCAAT	GCTCTCTCAG	CCAGCCTACT	300
	CTTTTTACCC	AGAAGATGAA	ATTCTTCACT	TCTACAAATG	GACCTCTCCT	CCAGGAGTGA	360
20	TTCGGATCCT	GTCTATGCTC	ATTATTGTGA	TGTGCATTGC	CATCTTTGCC	TGTGTGGCCT	420
	CCACGCTTGC	CTGGGACAGA	GGCTATGGAA	CTTCCCTTTT	AGGAGGTAGT	GTAGGCTACC	480°
25	CTTATGGAGG	AAGTGGCTTT	GGTAGCTACG	GAAGTGGCTA	TGGCTATGGC	TATGGTTATG	540
	GCTATGGCTA	CGGAGGCTAT	ACAGACCCAA	GAGCAGCAAA	GGGCTTCATG	TTGGCCATGG	600
	CTGCCTTTTG	TTTCATTGCC	GCGTTGGTGA	TCTTTGTTAC	CAGTGTTATA	AGATCTGAA/\	660
90	TGTCCAGAAC	AAGAAGATAC	TACTTAAGTG	TGATAATAGT	GAGTGCTATC	CTGGGCATCA	720
	TGGTGTTTAT	TGCCACAATT	GTCTATATAA	TGGGAGTGAA	CCCAACTGCT	CAGTETTETE	780
35	GATCTCTATA	TGGTTCACAA	ATATATGCCC	TCTGCAACCA	ATTTTATACA	CCTGCAGCTA.	840
	CTGGACTCTA	CGTGGATCAG	TATTTGTATC	ACTACTGTGT	TGTGGATCCC	CAGGAGGCCA	900
	TTGCCATTGT	ACTGGGGTTC	ATGATTATTG	TGGCTTTTGC	TTTAATAATŤ	TTCTTTGCTG	960
40	TGAAAACTCĞ	AAGAAAGATG	GACAGGTATG	ACAAGTCCAA	TATTTTGTGG	GACAAGGAAC	1020
	ACATTTATGA	TGAGCAGCCC	CCCAATGTCG	AGGAGTGGGT	TAAAAATGTG	TCTGCAGGCA	1080
45	CACAGGACGT	GCCTTCACCC	CCATCTGACT	ATGTGGAAAG	AGTTGACAGT	CCCATGGCAT	(140
	ACTCTTCCAA	TGGCAAAGTG	AATGACAAGC	GGTTTTATCC	AGAGTCTTCC	TATAAATCCA	1200
	CGCCGGTTCC	TGAAGTGGTT	CAGGAGCTTC	CATTAACTTC	GCCTGTGGAT	GACTTCAGGC	1260
60	AGCCTCGTTA	CAGCAGCGGT	GGTAACTTTG	AGACACCTTC	AAAAAGAGCA	CCTGCAAAGG	1320
	GAAGAGCAGG	AAGGTCAAAG	AGAACAGAGC	AAGATCACTA	TGAGACAGAC	TACACAACTG	1380

10

15

20

25

EP 0 831 148 A1

GCGGCGAGTC CTGTGATGAG CTGGAGGAGG ACTGGATCAG GGAATATCCA CCTATCACTT 1440 CAGATCAACA AAGACAACTG TACAAGAGGA ATTTTGACAC TGGCCTAGAG GAATACAAGA 1500 GCTTACAATC AGAACTTGAT GAGATCAATA AAGAACTCTC CCGTTTGGAT AAAGAATTGG 1560 ATGACTATAG AGAAGAAGT GAAGAGTACA TGGCTGCTGC TGATGAATAC AATAGACT(A 1620 AGCAAGTGAA GGGATCTGCA GATTACAAAA GTAAGAAGAA TCATTGCAAG CAGTTAAACA 1680 GCAAATTGTC ACACATCAAG AAGATGGTTG GAGACTATGA TAGACAGAAA ACATAGAAGG 1740. CTGATGCCAA GTTGTTTGAG AAATTAAGTA TCTGACATCT CTGCAATCTT CTCAGAAGGC 1800 AAATGACTTT GGACCATAAC CCCGGAAGCC AAACCTCTGT GAGCATCACA AAGTTTTGGT 1860 TGCTTTAACA TCATCAGTAT TGAAGCATTT TATAAATCGC TTTTGATAAT CAACTGGGCT 1920, GAACACTCCA ATTAAGGATT TTATGCTTTA AACATTGGTT CTTGTATTAA GAATGAAATA 1980 CTGTTTGAGG TTTTTAAGCC TTAAAGGAAG GTTCTGGTGT GAACTAAACT TTCACACCCC 2040 AGACGATGTC TTCATACCTA CATGTATTTG TTTGCATAGG TGATCTCATT TAATCCTCTC 2100. AACCACCTIT CAGATAACTG TTATTTATAA TCACTTTTTT CCACATAAGG AAACTGGGTT 2160 CCTGCAATGA AGTCTCTGAA GTGAAACTGC TTGTTTCCTA GCACACACTT TTGGTTAAGT 2220 CTGTTTTATG ACTTCATTAA TAATAAATTC CCTGGCCTTT CATATTTTAG CTACTATATA 2280 TGTGATGATC TACCAGCCTC CCTATTTTT TTCTGTTATA TAAATGGTTA AAAGAGGT.... 2340 2379 TTCTTAAATA ATAAAGATCA TGTAAAAGTA AAAAAAAA

SEQ ID NO: 5

SEQUENCE LENGTH: 1961

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: canine (kidney cell strain MDCK)

FEATURE

Feature	Kev:	ma t	pent	ide
	, -	111 CA C	PUPL	i u u

Feature Table Definition: 72. 1624

SEQUENCE DESCRIPTION

0	CAGGTTGGCT TATTTTGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT	60
	TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT	120
5	TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC	180
•	CCATGCTCTC TCAGCCGGCG TATTCTTTCT ACCCAGAAGA TGAAATTCTT CACTTCTACA	240
	AATGGACCTC TCCTCCAGGA GTAATTCGGA TTCTGTCCAT GCTTGTCATT GTGATGTGCA	300
o	TCGCCATATT TGGCTGTGTC GCGTCCACGC TCGCCTGGGA TAGAGGCTAT GGAACTGGCT	360
	TAATGGGTGG TAGCATAGGC TACCCTTACG GAAGTGGCTT CGGGAGCTAC GGGACTGGCT	420
-	ACGGCTACGG GTTTGGCTAC GGCTACGGCT ACGGCGGCTA CACGGATCCC AGAGCAGCAA	480
,	AGGGCTTCCT CCTGGCCATG GTGGCCTTTT GTTTTATCGC TGCATTGGTG ATATTTGTTA	540
	CCAGCGTTAT AAGGTCTGAC ATATCCAGAA CCAGAAGGTA CTACTTGACT GTAATAATAC	600
o P	TGAGTGCCTT CCTGGGCGTC ATGATGTTCA TTGCTACAAT TGTCTATATA ATGGGAGTCA	660
	ATCCAACTGC CCAGGCTTCT GGGTCTTTAT ACAGTTCACA GATATATGCC ATGTGCAACC	720
=	AGTTCTATGC ATCTACAGCT ACCGGACTCT ACATGGATCA GTATTTGTAT CACTACTGTG	780
	TGGTGGATCC CCAAGAGGCA ATTGCCATTG TCCTGGGATT CATGGTGATT GTGGCTTTTG	840
	CTTTAATAAT TTTCTTTGCT GTGAAAACTC GAAGAAAGAT GGACCGGTAT GACAAGTCGA	900
,	ATATATTGTG GGACAAGGAA CATATTTATG ATGAACAACC CCCCAATGTT GAAGAGTGGG	960
	TTAAAAACGT TTCTGCAGGC ACACAAGACA TGCCTCCTCC CCCTTCTGAC TATGTGGAGA	
	GAGTGGACAG TCCCATGGCG TACTCTTCCA ATGGTAAAGT GAATGACAAG CGGTTGTATC	,
•	CAGAGTETTE CTATAAATCA ACACCGGTCC CCGAAGTGGT GCAGGAGCTG CCCGCCACCT	
	CCCCTGCGGA TGACTTCAGG CAGCCTCGCT ACAGCAGCAG CGGGCACTTG GAGCCACCTT	
ı	CGAAGAGGGC CCCCTCGAAA GGAAGAACGG GAAGGCCCAA GAGGCTGGAG CAGGACCACT	
	ATGAGACAGA CTACACGACG GGCGGCGAGT CGTGTGACGA GCTGGAGGAG GACTGGATCA	

	GGGAATATEC ACCTATCACT TCAGATCAAC AAAGACAACT CTACAAGAGA AATTTTGACA	1380
5	CTGGCCTGCA GGAATACAAG AGCTTACAAG CAGAACTTGA TGAGATCAAT AAAGAACTCT	1440
	CTCGCCTGGA TAAAGAATTG GATGACTATA GAGAAGAAAG TGAAGAGTAC ATGGCTGCTG	1500
	CTGATGAGTA CAATAGACTG AAGCAAGTTA AGGGATCTCC AGATTACAAA AATAAGAGGA	1560
10	ATTATTGCAA GCAGTTGAAG AGCAAATTGT CCCACATCAA GAAGATGGTT GGAGACTATG	1620
	ATAGACAGAA AACATAGAAG GCAGATGCCA CACAGTTTGA GAGATTGTGA AGTATTTGAC	1680
15	ATATCTGCAA CGTTGTCAGA AGGCAGAATG ACTTTGGATT TCGAACCCAG GAGGCCAGAT	1740
	CTTTGTGATC ATTACAAAGT TTTGGTAGCT TTAATATCAT CAGTATTGAA GCATTTTACA	1800
	CATAGCTTTT GATAATCAAC TGGGCTGAAC ACTCCCGATT AAGGATTCTG TGCTTTAGAC	1,860;
20	TTTGGCTGTT GTGCTAAAGG ACTGAGTATA GGTGGAGGTT, TTCAGACCTT GGAAGAAGGI	1920
	CCCACGGTGA ACTTGTGCTG TGAACTTGCA CACTTGGGGC A	1961
26	SEQ ID NO; 6 The state of the s	
	SEQUENCE LENGTH: 2839	
30	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: double	·
35	TOPOLOGY: linear	
	MOLECULE TYPE: CDNA () *	. Q
	ORIGINAL SOURCE CASE CONTROL OF THE STATE OF	
40	ORGANISM: mouse (lung cell)	1 A. T.
	FEATURE TO A TANK THE PROPERTY OF THE PROPERTY	
45	Feature Key: mat peptide	San San
	Feature Table Definition: 223./ 1785	
	SEQUENCE DESCRIPTION	
50	GGAGTTTCAG GTGAATGGGT CACCGAGGGA GGAGGCTGGC CACGCCACAC CTCGTCGCTA	60
	GTGCCCACCT CCCGGCCCCT CTTTCCTTAG GCGACAGCGG TGGAGTTGCG GGAGAGCGGT	120

5

	CCAGCGCACG (GAGCAACCGG	CTAGGGGCTC	GGCAGGTTCG	CTTATCTTGG	GAGCCTGGAC	180
5	ATTTTGCTCA	TCATAAAGAT	TAGGTGACCA	GTGACATCAG	CCATGTCCGT	GAGGCCTTT1	240
	GAAAGTCCAC (CTCCTTACAG	ACCTGATGAA	TTCAAACCCA	ATCATTATGC	ACCAAGCAAT	300
	GACATGTATG (GCGGAGAGAT	GCATGTCCGG	CCGATGCTCT	CTCAGCCAGC	GTACTCTTT1	360
10	TATCCGGAAG	ATGAAATTCT	TCACTTCTAC	AAATGGACGT	CGCCCCCAGG	GGTGATCCGG	420
	ATCCTGTCTA :	IGCTCATTAT	TGTGATGTGC	ATCGCCATAT	TTGCCTGTGT	GGCTTCCACA	480
15	CTTGCTTGGG A	ACAGAGGCTA	TGGGACAGGG	CTCTTTGGAG	GAAGCCTAAA	CTACCCTTAT	540
	AGTGGCTTTG (GCTACGGAGG	TGGCTATGGA	GGCGGCTATG	GAGGCTATGG	CTATGGCTAT	600
	GGCGGATATA	CAGACCCAAG	AGCAGCCAAA	GGCTTCCTGT	TGGCCATGGC	AGCCTTCTGC	660'
20	TTCATCGCTT	CCTTAGTAAT	ATTTGTGACC	AGTGTTATAA	GATCTGGAAT	GTCCAGGACA	720
	AGAAGATATT	ACTTGATCGT	GATCATAGTC	AGCGCTATCC	TGGGCATCAT	GGTGTTTATT	780
25	GCCACGATCG	TGTACATAAT	GGGAGTGAAC	CCGACGGCCC	AGGCTTCTGG	ATCTATGTAC	840
	GGCTCACAGA '	TATATATGAT	CTGCAACCAG	T T TTATACTC	CTGGAGGTAC	TGGTCTCTAC	900
•	GTGGATCAAT	ATTTGTATCA	CTACTGTGTG	GTTGATCCCC	AGGAGGCTAT	AGCCATTGTC	960
<i>30</i>	CTGGGGTTCA .	TGATTATCGT	GGCTTTTGCT	TTAATCATCT	TTTTTGCTGT	GAAAACCCGA	1020
	AGAAAGATGG	ATCGGTATGA	TAAGTCCAAT	ATTTTGTGGG	ATAAGGAACA	CATTTATGAT	1080
35	GAACAGCCCC	CCAATGTTGA	AGAGTGGGTT	AAAAATGTGT	CTGCAGGCAC	ACAGGACATG	1140
	CCTCCACCCC	CATCTGACTA	TGCGGAAAGA	GTTGACAGTC	CAATGGCCTA	CTCCTCCAAT	
	GGCAAAGTGA	ATGGCAAGCG	ATCATACCCA	GAGTCTTTCT	ATAAGTCAAC	ACCTCTGGTG	1260
40	CCTGAAGTGG	CCCAGGAGAT	TCCTCTGACC	TTGAGTGTGG	ATGAETTCAG	GCAGCCTCGG	1320
	TACAGCAGCA	ATGGTAACCT	AGAGACACCT	TCTAAAAGGG	CTCCCACGAA	GGGGAAAGCA	1380
45 ·	GGAAAGGGCA	AGAGGACGGA	CCCTGACCAC	TATGAAACAG	ACTÀCACGAC	AGGTGGGGAG	1440
	TCCTGCGAGG	AGCTGGAGGA	GGACTGGGTC	AGGGAATAŤĆ	CACCTATCAC	TTCAGATCAA	1500
	CAAAGACAAC	TCTACAAGAG	AAATTTTGAT	GCAGGTCTGC	AGGAGTATAA	GAGCTTACAG	1560
50	GCAGAACTAG	ACGACGTCAA	TAAAGAGCTC	TCTCGTCTAG	ATAAAGAGCT	GGATGACTAC	1 520
	AGAGAGGAGA	GTGAAGAGTA	CATGGCTGCT	GCTGATGAAT	ATAATAGACT	AAAGCAAGTT	1380

AAGGGATCTG CAGATTATAA AAGTAAGAGG AATTACTGCA AGCAGTTGAA GAGCAAA1TA 1740 TCGCACATCA AGAGGATGGT GGGAGACTAT GACAGACGGA AACCTTAGAG AGATGCCAGT 1800 TGCGGGAGAA GGGAGAGGTG CATCTGCCTG CACGATGTCT CTGCAATTCT CTCCAGAGGC 1860 AAACTGACTT TGGACTCTAA TCTGGGAAGT TAAAACTTTG TGATCATTAC AAAGTTTCCA 1920 10 TGGCTTTAAT TCCATCAGTT TCCTATCTCC AGTATTGAAG CATTTTATAA ATGGCTTITG 1980 ATAATTGACT GGGCTGAACA CTCCAATTAA GGATTTTACA GTTTCAACAT TGATTCTTGT 2040 ATTAAGAATT AAAATGTTGC TTGAGGTTTT AAATGTCAAG AAAGGTCCTG GTGTGAGCTG 2100 15 TGATGTGTGT GAGCTGTGAT GTGAAGGTTC ACACGCCAGG CAGCGTGTTC CTCCAGGTAG 2160 ACCGTCTAAT CAATCTTTGC AGCAGCCCTC AGGTGACTGT TATTTAGAAT CAGGTTGTTT 2220 TTGGTTTTCC AGACAGGGTT TCTCTGTGTA GCCCTGGCTG ACCTAGAACT TACGCTGTAG 2280 ACCAGGCTGG CCTTGAACTC ACACAGCTCC TCTGAGTGCT GGTGCAGGAG TTAACGTCGT 2340 GGACCGGTAT CATCACTTTT CCTGCGGTGA CTTCTCCAAA CTGAAACTGC TAAGGCACTT 2400 TTGGCTAAGT CTGTTTTATG ACTGCAAATG ACAGCATTCC TGCCTTTGTA TTTCAGGGGA 2460 AATACGATAC ATTATATCGG CCATGTTCCC CACCACTGTT TTTCTTATAT TGACTTTIAA 2520 CAAATGAATA GGATTATTTT TGGCTTTACA TTTTTTCCTA ACACTTAAGA TCATATAAAA 2580 TTAACAAATA TGTGAAATTT AAGAATTGTA AATATATAT TACGTTTGAA AGATGATTTT 2640 AAATCCAGGG TTAAAGTGCT TTTTATCTTG TATAGTTTAC ATGCTTTTTT TTTTTTTTGA 2700 TAACCCACTA GACCTTTCCA TTGTATCAGA GTATCCAATT ACATTTACAA TTATGACTIG 2760 AATTGTATTT CACAGGAATG CTCAAGTTTT GTACATATTT TATAAGGTAT TAAACCTGAT 2820 GTTCTCTTTC TAAAAAAAA 2839

SEQ ID NO: 7

SEQUENCE LENGTH: 33

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid Synthesis DNA
SEQUENCE DESCRIPTION
TATGAGACAG ACTACACAAC TGGCGGCGAG TCC

SEQUENCE ID NO: 8

20

30

35

SEQUENCE LENGTH: 30

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: Other nucleic acid Synthesis DNA

(4) しない はいまた は、他の情報をしました。 ちゃく が装みの が装置機能

I THE REMAINS WELLOW THE SERVER WAS AND SERVED SERVER

TIME SHEET A COMME

SEQUENCE DESCRIPTION

ATCATAGTCT CCAACCATCT TCTTGATGTG

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: Eisai Co. Ltd. (B) STREET: 6-10, Koishikawa, 6-chome, Bunkyo-ku (C) CITY: Tokyo (E) COUNTRY: Japan (F) POSTAL CODE (ZIP): none
	(ii) TITLE OF INVENTION: Human adhesion molecule occludin
	(iii) NUMBER OF SEQUENCES: 8
15	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (BPO)
20	(v) CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 97 905 440.0 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 49 880/96 (B) FILING DATE: 07-MAR-1996
25	 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 331 944/96 (B) FILING DATE: 12-DEC-1996
	(2) INFORMATION FOR SEQ ID NO: 1:
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 522 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: Linear
35	 (ii) MOLECULE TYPE: protein (vi) ORIGINAL SCURCE: (A) ORGANISM: Homo sapiens (B) STRAIN: human intestinal epithelial cell
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
	Met Ser Ser Arg Pro Leu Glu Ser Pro Pro Pro Tyr Arg Pro Asp Glu 1 . 5 . 10 . 1.5
45	Phe Lys Pro Asn His Tyr Ala Pro Ser Asn Asp Ile Tyr Gly Gly Glu 20 25 30
	Met His Val Arg Pro Met Leu Ser Gln Pro Ala Tyr Ser Phe Syr Pro 35 40 45
50	Glu Asp Glu Ile Leu His Phe Tyr Lys Trp Thr Ser Pro Pro Gly Val 50 55 60
	Ile Arg Ile Leu Ser Met Leu Ile Ile Val Met Cys Ile Ala Ile Phe 65 70 80

	Ala	Суз	Val	Ala	Ser 85	Thr	Leu	Ala	Trp	Авр 90	Arg	Gly	Tyr	Gly	Thr 95	Ser
5	Leu	Leu	Gly	Gly 100	Ser	Val	Gly	Tyr	Pro 105	Tyr	Gly	Gly	Ser	Gly 110	Phe	Glγ
	Ser	Tyr	Gly 115	Ser	Gly	Tyr	Gly	Tyr 120	Gly	Tyr	.Gly	Туг	Gly 125	Тут	Gly	Tyr
10	Gly	Gly 130	Tyr	Thr	Asp	Pro	Arg 135	Ala	Ala	Lys	Gly ,	Phe 140	Met	Leu	Ala	Met
	Ala 145	Ala	Phe	Сув	Phe	11e 150	Ala	Ala	Leu	Val	Ile 155	Phe	Val	Thr	Ser	Val 160
15	Ile	Arg	Ser	Glu	Met 165	Ser	Arg	Thr	Arg	Arg 170	Tyr	Tyr	Leu	Ser	Val 175	Ile
			. 61	180				٠.	185	٠,	1 : **	41X 1444				
20			195					200		Gln	Ser	Ser 340	205			,
		210					215		Asn	Gln	Phe	Tyr 220,	Thr			
<i>2</i> 5	225					230				,	235	<i>,</i> .		Val	. ,	240
					245					250				Ile:	255	
30				260					265		, ,	٠.		Lys 270		
			275					280			į	٠,	285	Ile	Ē.	-
35		290					295				, ,	300		Ser	4	
	305					310			V.	1	315 ()	الإبلث	· . · .	Arg		-32(0
					325					330				Lys	335	
40				340				,	∘345		T. Pari	i"·	:	Val .350	•	'
			·355	•				360					365	Pro		
45		370					375		· *			380	•	Pro		_
	385					390					395					Tt.r •
50					405					410				Glu	415	
	116	Arg	G1u	Tyr 420	Pro	Ьio	Ile	Thr	Ser 425	Asp	Gln	Gln	Arg	Gln 430	Leu	Тут

		Lys	Arg	Asn 435	Phe	Asp	Thr	Gly	Leu 440	Gln	Glu	Туг	ГЛЯ	Ser 445	Leu	Gln	Ser
5		Glu	Leu 450	Asp	Glu	Ile	Asn	Lys 455	Glu	Leu	Ser	Arg	Leu 460	qaA ·	Lys	Gl 1	Leu
		Asp 465	Asp	Tyr	Arg	Glu	Glu 470	Ser	Glu	Glu	Туг	Met 475	Ala	Ala	Ala	Aøjo	Glu 480
10		Tyr	Asn	Arg	Leu	Lys 485	Gln	Vaļ	Lys	Gly	Ser 490	Ala ,	,Asp	Tyr	Lys	Sei; 495	Lys
		ГАа	Asn	His	Суз 500	Lys	Gln	Leu	Lys	Ser 505	Lys	Leu	Seŗ	His	11e 510	Lyn	Lys
15		Met	Val.	Gly 515	Asp	Tyr	Asp	Arg	Gln 520	Lys	Thr					-	
	(2)	INPO	RMAT:	CON I	FOR S	SEQ 1	ID N): 2	:								
20		(i)	(A) (B) (C)	LEI TYI	IGTH: PE: 4 RANDI	52: mino SDNES	reri lam bac ss: line	lno i id	3: acid	9		٠.					
		(ii)	MOLI	CUL	TY	PE: 1	prot	ein									*= .
25		(vi)	(A)	ORC	RINA	SM: c	: canin	ne kidi	iey (cell	MDC	۲ ,	': 		•		;
				•							,			•		· ·	
•		(xi)	SEQU	JENCI	B DES	CRI	PTIO	7: SI	3Q II	, йО :	2:						
30										•		Pro	Туг	Arg	Pro	Asr 15	Glu,
30		Met 1	Ser	Ser	Arg	Pro 5	Phe	Glu	Ser	Pro	Pro 10					15.	Glu,
30 35		Met 1 Phe	Ser Lys	Ser Pro Val	Arg Asn 20	Pro 5 His	Phe Tyr	Glu Ala Leu	Ser Pro	Pro Ser 25	Pro 10 Asn	Asp	Val	Туг	Gly	15. Gly:	Asp
		Met 1 Phe Met	Ser Lys His	Ser Pro Val	Arg Asn 20 Arg	Pro 5. His	Phe Tyr Met	Glu Ala Leu	Ser Pro Ser 40	Pro Ser 25 Gln	Pro 10 Asn Pro	Asp Ala	Val	Tyr Ser 45	Gly 30	15 Gly: Tyr	Asp Pro
		Met 1 Phe Met Glu	Ser Lys His. Asp	Ser Pro Val 35 Glu	Arg Asn 20 Arg	Pro 5. His Pro Leu	Phe Tyr Met	Glu Ala Leu Phe 55	Ser Pro Ser 40	Pro Ser 25 Cln Lys	Pro 10 Asn Pro	Asp Ala Thr	Val Tyr Ser 60	Tyr Ser 45 Pro	Gly 30	Gly: Tyr. Gly	Asp Pro Val
. 35		Met 1 Phe Met Glu Ile	Lys His Asp 50	Ser Pro Val 35 Glu	Arg Asn 20 Arg Ile Leu	Pro 5. His Pro Leu Ser	Phe Tyr Met His Met	Glu Ala Leu Phe 55	Ser Pro Ser 40 Tyr Val	Pro Ser 25 Gln Lys	Pro 10 Asn Pro Trp	Asp Ala Thr Met 75	Val Tyr Ser 60 Cys	Tyr Ser 45 Pro	Gly 30 Phe Pro	Gly: Tyr. Gly	Asp Pro Val
. 35		Met 1 Phe Met Glu 11e 65 Gly Leu	Lys His. Asp 50 Arg Cys	Ser Pro Val 35 Glu Ile Val Gly	Arg Asn 20 Arg Ile Leu Ala Gly	Pro 5. His Pro Leu Ser Ser 85.	Phe Tyr Met His Met 70 Thr	Glu Ala Leu Phe SS Leu Leu Cly	Ser Pro Ser 40 Tyr Val Ala	Pro Ser 25 Gln Lys Ile Trp Pro 105	Pro 10 Asn Pro Trp Val Asp 90	Asp Ala Thr Met 75 Arg	Val Tyr Ser 60 Cys Gly Ser	Tyr Ser 45 Pro Ile Tyr	Gly 30 Phe Pro Ala Gly Phe	Gly: Gly Thr 95	Asp Pro Val Phe 80 Gly Ser
. 35 40		Met 1 Phe Met Glu 11e 65 Gly Leu	Lys His. Asp 50 Arg Cys	Ser Pro Val 35 Glu Ile Val Gly	Arg Asn 20 Arg Ile Leu Ala Gly	Pro 5. His Pro Leu Ser Ser 85.	Phe Tyr Met His Met 70 Thr	Glu Ala Leu Phe SS Leu Leu Cly	Ser Pro Ser 40 Tyr Val Ala	Pro Ser 25 Gln Lys Ile Trp Pro 105	Pro 10 Asn Pro Trp Val Asp 90	Asp Ala Thr Met 75 Arg	Val Tyr Ser 60 Cys Gly Ser	Tyr Ser 45 Pro Ile Tyr	Gly 30 Phe Pro Ala Gly Phe	Gly: Gly Thr 95	Asp Pro Val Phe 80 Gly Ser
. 35 40		Met 1 Phe Met Glu Ile 65 Gly Leu Tyr	Ser Lys His. Asp 50 Arg Cys, Met. Gly	Ser Pro Val 35 Glu Ile Val Gly Thr	Arg Asn 20 Arg Ile Leu Ala Gly 100 Gly	Pro 5 His Pro Leu Ser 85 Ser Tyr	Phe Tyr Met His Met 70 Thr Ile Gly	Glu Ala Leu Phe 55 Leu Gly Tyr	Ser Pro Ser 40 Tyr Val Ala Tyr Gly 120	Pro Ser 25 Gln Lys Ile Trp Pro 105 Phe	Pro 10 Asn Pro Trp Val Asp 90 Tyr	Asp Ala Thr Met 75 Arg Gly	Val Tyr Ser 60 Cys Gly Ser Gly	Tyr Ser 45 Pro Ile Tyr Gly Tyr 125	Gly 30 Phe Pro Ala Gly Phe	Gly Tyr Gly Thr 95 Gly	Asp Pro Val Phe 80 Gly Ser

	Arg	Ser	Asp	Ile	Ser 165	Arg	Thr	Arg	Arg	Туг 170	Tyr	Leu	Thr	Val	Ile 175	Ile
5	Leu	Ser	Ala	Phe 180	Leu	Gly	Val	Meť.	Met 185	Phe	Ile	Ala	Thr	Ile 190	Val	Туг
	Ile	Met	Gly 195	Val	Asn	Pro	Thr	Ala 200	Gln	Ala	Ser	Gly	Ser 205	Leu	Tyr	Ser
10	Ser	Gln 210	Ile	Tyr	Ala	Met	Сув 215	Asn	Gln	Phe	Тут	Ala 220	Ser	Thr	Ala	Thr
	Gly 225	Leu	Tyr	Met	Asp	Gln 230	Tyż	Leu	Tyr	His	Ту̀т 235	Сув	Vál	Val	Asp	Pro 240
15	Gln	Glu	Ala	Ile	Ala 245	Ile	Val	Leu	Gly	Phe 250		Val	Ile	Val	Ala 255	Phe
	Ala	Leu	Ile	Ile 260	Phe	Phe	Ala	Val	Lys 265	Thr	Arg	Arg	Lys II	Met 270	Asp	Arg
20	Tyr	Asp	Lys 275	Ser	Asn	Ile	Leu	Trp 280	qeA	Lув	Glu		11e 285		qeA	Glı
	Gln	Pro 290	Pro	Asn	Val	Glu	Glu 295	Trp	Val	Lys	Asn	Val 300	Ser	Ala	Gly	Tac :: ,:
26	Gln 305	Asp	Met	Pro	Pro	Pro 310	Pro	Ser	Asp	Tyr	Val 315	Glu	Arg	Val	qeA	
20	Pro	Met	Ala	Тут	Ser 325	Ser	Asin	Gly	Lys	Val 330	Asn	Asp	Lys	Arg ⁵	Leu 335	Tyre
	Pro	Glu	Ser	Ser 340	Tyr	Lys	Ser	Thr	Pro 345	Val	Pro	Glu	Val	Val 350	Gln	G.lu
<i>30</i>	Leu	Pro	Ala 355	Thr	Ser	Pro	Ala	Asp 360	qaA	Phe	Arg	Gln	Pro 365	Arg	Туг	Ser
	Ser	Ser 370	Gly	His	Leы	Glu	Pro 375	Pro	Ser	Lys	Arg	Alá 380	Pro	Ser	Lys	Glly
35 .	Arg 305	Thr	Gly	Arg	Pro	Lys 390	Arg	Leù	Glu	Gln:	395	His	Tyr	Glu	Thr	Aspi: 400
	Tyr	Thr	Thr	Glý	Gly 405	Glu	Ser	Cys	Asp	Glu 410	Leu	Glu	Glu	Asp	Trp 415	Ii.e
40	Arg	G1u	Tyr	Pro 420	Pro	Ilė	Thr	Ser	Авр 425	Gln	Gln	Arg	Gln	Leu 430	Tyr	Lyni [†]
	Arg	Asn	Phe. 435	Asp	Thr	Glÿ	Leu	Gln 440	Glu	Tyr	Lys	Ser	Leu 445	Gln	Ala	G].u·
45	Leu	Asp 450	Glu	Ile	Asn	Lys	G1u 455	Leu	Ser	Arg	Leu	Asp 460	Lys	Glu	Leu-	Aeir
	Asp 465	Tyr	Arg	Glu	Gl u	Ser 470	Glu	Glu	Тух	Met	Al'a 475	Ala	Ala	Asp	Glü	Тут 48 (
50	Asn	Arg	Leu	Lys	Glñ 485	Val	Lys	Gly	Ser	Pro 490	Asp	Tyr	Lys	Agn	Lys 495	Αις:
	Asn	Tyr	Сув	Lув 500	Gln	Leu	Lys	Ser	Lys 505	Leu	Ser	His	Ile	Lys 510	Lys	Met

10

EP 0 831 148 A1

Val Gly Asp Tyr Asp Arg Gln Lys Thr 515 520

(2)	INFORMATION	FOR	SEQ	ID	NO:	3:
-----	-------------	-----	-----	----	-----	----

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 521 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: mouse
 - (B) STRAIN: mouse lung cell

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Phe Lys, Pro Asn His Tyr Ala Pro Ser Asn Asp Met Tyr Gly Gly Glu 25

Met His Val Arg Pro Met Leu Ser Gln Pro Ala Tyr Ser Phe Tyr Pro 35 40 45

Glu Asp Glu Ile Leu His Phe Tyr Lya Trp Thr Ser Pro Pro Gly Val 50 55:

Ile Arg Ile Leu Ser Met Leu Ile Ile Val Met Cys Ile Ala Ile Phe 65 75 80 80

Ala Cys Val Ala Ser Thr Leu Ala Trp Asp Arg Gly Tyr Gly Thr Gly 95

Leu Phe Gly Gly Ser Leu Asn Tyr Pro Tyr Ser Gly Phe Gly Tyr Gly. 100 105 110

Gly Gly Tyr Gly Gly Gly Tyr Gly Tyr Gly Tyr Gly Tyr Gly Gly 115 120

Tyr Thr Asp Pro Arg Ala Ala Lys Gly Phe Leu Leu Ala Met Ala Ala 130 140 1

Phe Cys Phe Ile Ala Ser Leu Val Ile Phe Val Thr Ser Val Ile Arg. 145 150 150 160

Ser Gly Met Ser Arg Thr Arg Arg Tyr Tyr Leu Ile Val Ile Ile Val 165 170 175

Ser Ala Ile Leu Gly Ile Met Val Phe Ile Ala Thr Ile Val Tyr Ile 180 185

Met Gly Val Asn Pro Thr Ala Gln Ala Ser Gly Ser Met Tyr Gly Ser 195 200 205

Gln Ile Tyr Met Ile Cys Asn Gln Phe Tyr Thr Pro Gly Gly Thr Gly 210 215 220

Leu Tyr Val Asp Gln Tyr Leu Tyr His Tyr Cys Val Val Asp Fro Gln 225 230 235 240

OFFICIAL COMMUNICATION

0	
SEED Intellectual Pr perty Law Group PLLC	701 F f:h Avenue, Suite 6300 Seattle WA 98104-7092 USA Facsimile: (206) 682-6031 Telephone: (206) 622-4900 www.seedlaw.com
May 1, 2002	Qing Lin, Ph.D. beckyl@seedlaw.com
Facsimile Transmission	270 + pages (including this page)
TO: U.S. Patent and Trademark Off Fax No.: 1-703-746-5040	fice – SPE Christopher Low
RE: Application serial no.: 09/450 Art unit: 1653 Filing date of application: No Examiner assigned to applicati Title of the invention: COMP THERA	vember 29, 1999 ion: Avis M. Davenport OUNDS AND METHODS FOR CANCER APY
Attorney docker named: 100	000.10002
☑ Urgent ☐ For Review ☑Ple	ase Confirm Receipt
PLEASE DELIV	ase Confirm Receipt
PLEASE DELIV EXAMINER: As discussed with Judi Breaks of my	Comments: ER IMMEDIATELY TO

CONFIDENTIALITY NOTICE: The information contained in this facsimile message is legally privileged and/or confidential information intended only for the use of the individual or entity named below. If you are not the intended recipient, you are hereby no ified that any use, dissemination, distribution, or copying of this facsimile or its content is suictly prohibited. If you have received this facsimile in error, please immediately notify us by telephone and return the original facsimile message to us by mail or destroy it without making a copy. Thank you.

		Glu	Ala	Ile	Ala	Ile 245	Val	Leu	Gly	Phe	Met 250	Ile	Ile	Val	Ala	Phe 255	.41a
5		Leu	Ile	Ile	Phe 260	Phe	Ala	Val	Lys	Thr 265	Arg	Arg	Lys	Met	Asp 270	Arg	Tyr
		Asp	Lys	Ser 275	Asn	Ile	Leu	Trp	Asp 280	Lys	Glu	His	Ile	Tyr 285	Asp	Glu	Gln
10		Pro	Pro 290	Asn	Val	Glu	Glu	Trp 295	Val	Lys	Asn	Val	Ser 300	Ala	Gly	Thr	Gln
		Asp 305	Met	Pro	Pro	Pro	Pro 310	Ser	Asp	Tyr	Ala	Glu 315	Arg	Val	Авр	Ser	Pro 320
15		Met	Ala	Tyr	Ser	Ser 325	Asn	Gly	Lys	Val.	Asn 330	Gly	Lys	Arg	Ser	Tyr 335	Pro
				Phe	340				- 13	345	1				350	•	
20				355					.360		:			365			Ser-
			370					375		;			380				Gly
25		355		Gly			390					395					4.00
						405					410	•				415	-
20				Туг	420					425					430		
30				Phe 435					440					445			
			450	Авр				455					460				
35		#05		Arg			470			. i.	į	475					480
				Leu ·		485	•				490					495	
40		,` .			500					505		Ser	His	Ile	Lys 510	Arg	Met
	(2)			Asp. 515					.520				: -		129		
45	(2)	INFOR	SEOU	IENCE	СНВ	NRA("I	פדקקי	יידר'?	:"	•							
			(c)	LEN TYP STR	ANDE	DNES	SS: d	loub]			۰, ۰		i- ·	- s	:		
50		(ii)		TOP			•	ır									
		(vi).	ORIG	IANI	sot	RCE:						•					

5

EP 0 831 148 A1

(A) ORGANISM: Homo sapiens
(B) STRAIN: human intestinal epithelial cell strain T84

(ix) FEATURE:
(A) NAME/KEY: mat_peptide
(B) LOCATION:168..1733

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

10	CTCCCGCGTC	CACCTCTCCC	TCCCTGCTTC	CTCTGGCGGA	GGCGGCAGGA	ACCGAGAGC'C'	. 60
	AGGTCCAGAG	CGCCGAGGAG	CCCGTCTAGG	ACGCAGCAGA	TTGGTTTATC	TTGGAAGCT7.	120
	AAGGGCATTG	CTCATCCTGA	AGATCAGCTG	ACCATTGACA	ATCAGCCATG	TCATCCAGGC	180
15	CTCTTGAAAG	TCCACCTCCT.	TACAGGCCTG	ATGAATTCAA	ACCGAATCAT	TATGCACCIJA	240
	GCAATGACAT	ATATGGTGGA	GAGATGCATG	TTCGACCAAT	GCTCTCTCAG	CCAGCCTACT	300
	CTTTTTACCC	agaagatgaa	ATTCTTCACT	TCTACAAATG.	GACCTCTCCT	CCAGGAGTUI	360
00	TTCGGATCCT	GTCTATGCTC	ATTATTGTGA	TGTGCATTGC	CATCTTTGCC	TGTGTGGCCCC	.420.
20	CCACGCTTGC	CTGGGACAGA	GGCTATGGAA	CTTCCCTTTT	aggaggtagt	GTAGGCTACC	480
	CTTATGGAGG	AAGTGGCTTT	GGTAGCTACG	GAAGTGGCTA	TGGCTATGGC	TATGGTTA'N3	540
	GCTATGGCTA	CGGAGGCTAT	ACAGACCCAA	GAGCAGCAAA	GGGCTTCATG	TTGGCCATGG	600
25	CTGCCTTTTG	TTTCATTGCC	GCGTTGGTGA	TCTTTGTTAC	CAGTGTTATA	AGATCTGA A A	660
	TGTCCAGAAC	AAGAAGATAC	TACTTAAGTG	TGATAATAGT	GAGTGCTATC	CTGGGCATCA	720
	TGGTGTTTAT	TGCCACAATT	GTCTATATAA	TGGGAGTGAA	CCCAACTGCT	CAGTCTTCI3	780
30	GATCTCTATA	TGGTTCACAA	ATATATGCCC	TCTGCAACCA	ATTTTATACA	CCTGCAGCTA	840
	CTGGACTCTA	CGTGGATCAG	TATTTGTATC	ACTACTGTGT	TGTGGATCCC	CAGGAGGCCA	900
	TTGCCATTGT	ACTGGGGTTC	ATGATTATTG	TGGCTTTTGC	TITAATAATT	TTCTTTGCTG	960
35	TGAAAACTCG	AAGAAAGATG	GACAGGTATG	ACAAGTCCAA		GACAAGGAAC	1020
	ACATTTATGA				TAAAAATGTG	TCTGCAGGCA	1080
	CACAGGACGT	CCCTTCACCC		ATGTGGAAAG		CCCATGGCAT	1140
40	ACTCTTCCAA	TGGCAAAGTG	AATGACAAGC	GGTTTTATCC	AGAGTCTTCC	TATAAATCCA	1200
	CGCCGGTTCC	TGAAGTGGTT	CAGGAGCTTC	CATTAACTTC	GCCTGTGGAT	GACTTCAGGC	1260
	AGCCTCGTTA	CAGCAGCGGT	GGTAACTTTG	AGACACCTTC	AAAAAGAGCA	CCTGCAAFEG	
45	GAAGAGCAGG	AAGGTCAAAG	AGAACAGAGC	AAGATCACTA	TGAGACAGAC	TACACAACTG	1380
70	GCGGCGAGTC	CTGTGATGAG		ACTGGATCAG		CCTATCACTT	1440
	CAGATCAACA			ATTTTGACAC	TGGCCTACAG	GAATACALGA	1500
	GCTTACAATC	AGAACTTGAT	GAGATCAATA	AAGAACTCTC	CCGTTTGGAT	AAAGAAT'XIG	1560
50	ATGACTATAG	AGAAGAAAGT	GAAGAGTACA	TGGCTGCTGC	TGATGAATAC	AATAGACTGA	1620
	AGCAAGTGAA	GGGATCTGCA	GATTACAAAA	GTAAGAAGAA	TCATTGCAAG	CAGTTAAMA	1680

	GCAAATTGTC ACACATCAAG AAGATGGTTG GAGACTATGA TAGACAGAAA ACATAGAAGG	1740
	CTGATGCCAA GTTGTTTGAG AAATTAAGTA TCTGACATCT CTGCAATCTT CTCAGAAGGC	1800
5	AAATGACTTT GGACCATAAC CCCGGAAGCC AAACCTCTGT GAGCATCACA AAGTTTTGGT	1860
	TGCTTTAACA TCATCAGTAT TGAAGCATTT TATAAATCGC TTTTGATAAT CAACTGGGCT	1920
	GAACACTCCA ATTAAGGATT TTATGCTTTA AACATTGGTT CTTGTATTAA GAATGAAATA	1980
10	CTGTTTGAGG TTTTTAAGCC TTAAAGGAAG GTTCTGGTGT GAACTAAACT TTCACACCCC	2040
	AGACGATGTC TTCATACCTA CATGTATTTG TTTGCATAGG TGATCTCATT TAATCCTCTC	2100
	AACCACCTIT CAGATAACTG TTATTTATAA TCACTITTIT CCACATAAGG AAACTGGGTT	2160 -
15	CCTGCAATGA AGTCTCTGAA GTGAAACTGC TTGTTTCCTA GCACACACTT TTGGTTAAGT	2220
15	CTGTTTTATG ACTTCATTAA TAATAAATTC CCTGGCCTTT CATATTTTAG CTACTATATA	2280
	TGTGATGATC TACCAGCCTC CCTATTITTT TTCTGTTATA TAAATGGTTA AAAGAGGTTT	2340
	TTCTTAAATA ATAAAGATCA TGTAAAAGTA AAAAAAAAA	: 237.9 (37.1)
20	(2) INFORMATION FOR SEQ ID NO: 5:	• • • •
	(1) SEQUENCE CHARACTERISTICS:	. · · · · · · · · · · · · · · · · · · ·
	(A) LENGTH: 1961 base pairs (B) TYPE: nucleic acid	* ·
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	*****
	(ii) MOLECULE TYPE: cDNA	*****
	(vi) ORIGINAL SOURCE:	. •
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK	. •
30	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE:	2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
30	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE:	e de la companya de l
<i>30</i>	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 721624	TO THE STATE OF TH
	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION:721624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	25 A 50 A
	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION:721624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTTTGGGG AGCTCTTGGAGATC CCTGAAGATC GGGTGATCAT TORGATCACC CATGTCATCG ACGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT	######################################
	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 72. 1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTITGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATCCA COGAGCAATG ATGTGTACGG TGGGGGACATG CACGTCCGAC	60. 120
35	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION:72.1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTITGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC	60. 120
35	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION:72.1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTTTGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC CCATGCTCTC TCAGCCGGCG TATTCTTTCT ACCCAGAAGA TGAAATTCTT CACTTCTACA	60 120 180 240
35	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 72. 1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGITGGCT TATTITGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC CCATGCTCTC TCAGCCGGCG TATTCTTTCT ACCCAGAAGA TGAAATTCTT CACTTCTACA AATGGACCTC TCCTCCAGGA GTAATTCGGA TTCTGTCCAT GCTTGTCATT GTGATGTGCA	60. 120 180 240 300 360
35	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/REY: mat_peptide (B) LOCATION: 72.1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTITGGGG AGCTCTTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATGAA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC CCATGCTCTC TCAGCCGGGG TATTCTTTCT ACCCAGAAGA TGAAAATTCTT CACTTCTACA AATGGACCTC TCCTCCAGGA GTAATTCGGA TTCTGTCCAT GCTTGTCATT GTGATGTGCA TCGCCATATT TGGCTGTGTC GCGTCCACGC TCGCCTGGGA TAGAGGCTAT GGAACTGGCT TAATGGGTGG TAGCATAGGC TACCCTTACG GAAGTGGCTT CGGGAGCTAC GGGACTGGCT	60 120 180 240 300 360
35	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 72.1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTITGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC CCATGCTCTC TCAGCCGGCG TATTCTTTCT ACCCAGAAGA TGAAATTCTT CACTTCTACA AATGGACCTC TCCTCCAGGA GTAATTCGGA TTCTGTCCAT GCTTGTCATT GTGATGTGCA TCGCCATATT TGGCTGTGTC GCGTCCACGC TCGCCTGGGA TAGAGGCTAT GGAACTGGCT TAATGGGTGG TAGCATAGGC TACCCTTACG GAAGTGGCTT CGGGAGCTAC GGGACTGGCT	60 120 180 240 300 360 420
35 40 45	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION:72.1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTTTGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC CCATGCTCTC TCAGCCGGCG TATTCTTTCT ACCCAGAAGA TGAAATTCTT CACTTCTACA AATGGACCTC TCCTCCAGGA GTAATTCGGA TTCTGTCCAT GCTTGTCATT GTGATGTGCA TCGCCATATT TGGCTGTGC GCGTCCACGC TCGCCTGGGA TAGAGGCTAT GGAACTGGCT TAATGGGTGG TAGCATAGGC TACCCTTACG GAAGTGGCTT CGGGAGCTAC GGGACTGGCT ACGGCTACGG GTTTGGCTAC GGCTACGGCT ACGGCGGCTA CACGGATCCC AGAGCAGCAA	60 120 180 240 300 360 420 480
35	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 72.1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTITGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC CCATGCTCTC TCAGCCGGCG TATTCTTTCT ACCCAGAAGA TGAAATTCTT CACTTCTACA AATGGACCTC TCCTCCAGGA GTAATTCGGA TTCTGTCCAT GCTTGTCATT GTGATGTGCA TCGCCATATT TGGCTGTGTC GCGTCCACGC TCGCCTGGGA TAGAGGCTAT GGAACTGGCT TAATGGGTGG TAGCATAGGC TACCCTTACG GAAGTGGCTT CGGGAGCTAC GGGACTGGCT ACGGCTACGG GTTTGGCTAC GGCTACGGCT ACGGCGGCTA CACGGATCCC AGAGCAGCAA AGGGCTTCCT CCTGGCCATG GTGGCCTTTT GTTTTATCGC TGCATTGGTG ATATTTGTTA	60 120 180 240 300 360 420 480
35 40 45	(A) ORGANISM: canine (B) STRAIN: canine kidney cell strain MDCK (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION:72.1624 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: CAGGTTGGCT TATTTTGGGG AGCTCTGGGA TCCTGCTCGT CCTGAAGATC GGGTGATCAT TGACATCAGC CATGTCATCG AGGCCTTTTG AGAGTCCACC TCCGTATAGA CCTGATGAAT TCAAACCCAA TCATTATGCA CCGAGCAATG ATGTGTACGG TGGGGACATG CACGTCCGAC CCATGCTCTC TCAGCCGGCG TATTCTTTCT ACCCAGAAGA TGAAATTCTT CACTTCTACA AATGGACCTC TCCTCCAGGA GTAATTCGGA TTCTGTCCAT GCTTGTCATT GTGATGTGCA TCGCCATATT TGGCTGTGC GCGTCCACGC TCGCCTGGGA TAGAGGCTAT GGAACTGGCT TAATGGGTGG TAGCATAGGC TACCCTTACG GAAGTGGCTT CGGGAGCTAC GGGACTGGCT ACGGCTACGG GTTTGGCTAC GGCTACGGCT ACGGCGGCTA CACGGATCCC AGAGCAGCAA	60. 120 180 240 300 360 420 480 540

	ATCCAACTGC CCAGGCTTCT GGGTCTTTAT ACAGTTCACA GATATATGCC ATGTGCAA(X)	720
	AGTTCTATGC ATCTACAGCT ACCGGACTCT ACATGGATCA GTATTTGTAT CACTACTGTA	780
5	TGGTGGATCC CCAAGAGGCA ATTGCCATTG TCCTGGGATT CATGGTGATT GTGGCTTT:X3	840
	CTTTAATAAT TITCTTTGCT GTGAAAACTC GAAGAAAGAT GGACCGGTAT GACAAGTCGA	900 -
	ATATATTGTG GGACAAGGAA CATATTTATG ATGAACAACC CCCCAATGTT GAAGAGTGK	960
10	TTAAAAACGT TTCTGCAGGC ACACAAGACA TGCCTCCTCC CCCTTCTGAC TATGTGGAGA	1020
	GAGTGGACAG TCCCATGGCG TACTCTTCCA ATGGTAAAGT GAATGACAAG CGGTTGTA'N	1080
	CAGAGTETTE CTATAAATCA ACACCGGTCC CCGAAGTGGT GCAGGAGCTG CCCGCCACCT	1140
15	CCCCTGCGGA TGACTTCAGG CAGCCTCGCT ACAGCAGCAG CGGGCACTTG GAGCCACCTT	1200
	CGAAGAGGGC CCCCTCGAAA GGAAGAACGG GAAGGCCCAA GAGGCTGGAG CAGGACCACT	1260
	ATGAGACAGA CTACACGACG GGCGGCGAGT CGTGTGACGA GCTGGAGGAG GACTGGATLA	1320.
20	GGGAATATCC ACCTATCACT TCAGATCAAC AAAGACAACT CTACAAGAGA AATTTTGACA	1380
20	CTGGCCTGCA GGAATACAAG AGCTTACAAG CAGAACTTGA TGAGATCAAT AAAGAACTCT	1440
	CTCGCCTGGA TAAAGAATTG GATGACTATA GAGAAGAAAG TGAAGAGTAC ATGGCTGCT3	1500
	CTGATGAGTA CAATAGACTG AAGCAAGTTA AGGGATCTCC AGATTACAAA AATAAGAGGA	1560
25	ATTATTGCAA GCAGTTGAAG AGCAAATTGT CCCACATCAA GAAGATGGTT GGAGACTAIG	1620
	ATAGACAGAA AACATAGAAG GCAGATGCCA CACAGTTTGA GAGATTGTGA AGTATTTGAC	1680
	ATATCTGCAA CGTTGTCAGA AGGCAGAATG ACTTTGGATT TCGAACCCAG GAGGCCAGAI	1740
30	CTTTGTGATC ATTACAAAGT TTTGGTAGCT TTAATATCAT CAGTATTGAA GCATTTTACA	180Ó
	CATAGCTITT GATAATCAAC TGGGCTGAAC ACTCCCGATT AAGGATTCTG TGCTTTAGAC	1860
	TTTGGCTGTT GTGCTAAAGG ACTGAGTATA GGTGGAGGTT TTCAGACCIT GGAAGAAGGT	1920
35	CCCACGGTGA ACTTGTGCTG TGAACTTGCA CACTTGGGGC A	ļ961 .,
	(2) INFORMATION FOR SEQ ID NO: 64 Page 10 Page	was single
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2839 base pairs	• ;
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	, <u></u> *, ·
	(ii) MOLECULE TYPE: CDNA	
45	(v1) ORIGINAL SOURCE: (A) ORGANISM: mouse	
	(B) STRAIN: mouse lung cell	f*-
	(ix) FEATURE: (A) NAME/KEY: mat_peptide	
50	(B) LOCATION: 223. 1785	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

	GGAGTTTCAG	GTGAATGGGT	CACCGAGGGA	GGAGGCTGGC	CACGCCACAC	CTCGTCGCTA	60	
	GTGCCCACCT	CCCGGCCCCT	CTTTCCTTAG	GCGACAGCGG	TGGAGTTGCG	GGAGAGCGGT	120	
5	CCAGCGCACG	GAGCAACCGG	CTAGGGGCTC	GGCAGGTTCG	CTTATCTTGG	GAGCCTGGAC	180	
	ATTITGCTCA	TCATAAAGAT	TAGGTGACCA	GTGACATCAG	CCATGTCCGT	GAGGCCTTTT	240	
	GAAAGTCCAC	CTCCTTACAG	ACCTGATGAA	TTCAAACCCA	ATCATTATGC	ACCAAGCAAT	300	
10	GACATGTATG	GCGGAGAGAT	GCATGTCCGG	CCGATGCTCT	CTCAGCCAGC	GTACTCTTTT	360	
	TATCCGGAAG	ATGAAATTCT	TCACTTCTAC	AAATGGACGT	CGCCCCCAGG	GGTGATCCGG	420	
	ATCCTGTCTA	TGCTCATTAT	TGTGATGTGC	ATCCCCATAT	TIGCCTGTGT	GGCTTCCACA	480	
15	CTTGCTTGGG	ACAGAGGCTA	TGGGACAGGG	CTCTTTGGAG	GAAGCCTAAA	CTACCCTTAT	540	
	AGTGGCTTTG	GCTACGGAGG	TGGCTATGGA	GGCGGCTATG	GAGGCTATGG	CTATGGCTAT	600	
	GGCGGATATA	CAGACCCAAG	AGCAGCCAAA	GGCTTCCTGT	TGGCCATGGC	AGCCTTCTGC	660	,
20	TTCATCGCTT	CCTTAGTAAT	ATTTGTGACC	agtgttataà	GATCTGGAAT	GTCCAGGACA	720	
	AGAAGATATT	ACTTGATCGT	GATCATAGTC	AGCGCTATCC	TGGGCATCAT	GGTGTTTATT	780	
	GCCACGATCG	TGTACATAAT	GGGAGTGAAC	CCGACGGCCC	AGGCTTCTGG	ATCTATGTAC	840	
	GGCTCACAGA	TATATATGAT	CTGCAACCAG	TITTATACTC	CTGGAGGTAC	TGGTCTCTAC	900	
25	GTGGATCAAT	ATTTGTATCA	CTACTGTGTG	GTTGATCCCC	AGGAGGCTAT	AGCCATTGTC	960 - %	
	CTGGGGTTCA	TGATTATCGT	GCCTTTTGCT	TTAATCATCT	TTTTTGCTGT	GAAAACCCGA	1020	
	AGAAAGATGG	ATCGGTATGA	TAAGTCCAAT	ATTTTGTGGG	ATAAGGAACA	CATTTATGAT	1080	
90	GAACAGCCCC	CCAATGTTGA	AGAGTGGGTT	AAAAATGIGT	CTGCAGGCAC	ACAGGACATG	1140	
	CCTCCACCCC	CATCTGACTA	TGCGGAAAGA	GTTGACAGTC	CAATGGCCTA	CTCCTCCAAT	1200	
	GGCAAAGTGA	ATGGCAAGCG	ATCATACCCA	GAGTCTTTCT	ATAAGTCAAC	ACCTCTCGTG	1260	
35	CCTGAAGTGG	CCCAGGAGAT	TCCTCTGACC	TTGAGTGTGG	ATGACTTCAG	GCAGCCTCGG	1320	
	TACAGCAGCA	ATGGTAACCT	AGAGACACCT	TCTAAAAGGG	CTCCCACGAA	GGGGAAAGCA'	1380	
	GGAAAGGGCA	AGAGGACGGA	CCCTGACCAC	TATGAAACAG	ACTACACGAC	AGGTGGGGAG	1440	
10	TCCTGCGAGG	AGCTGGAGGA	GGACTGGGTC	AGGGAATATC	CACCTATCAC	TTCAGATCAA	1500	
	CAAAGACAAC	TCTACAAGAG	AAATTTTGAT	GCAGGTCTGC	AGGAGTATAA	GAGCTTACAG	1560	
	GCAGAACTAG	ACGACGTCAA	TAAAGAGCTC	TCTCGTCTAG	ATAAAGAGCT	GGATGACTAC	1620	
· 5	AGAGAGGAGA	GTGAAGAGTA	CATGGCTGCT	GCTGATGAAT	АТААТАБАСТ	AAAGCAAGTT	1680	
•	AAGGGATCTG	CAGATTATAA	AAGTAAGAGG	AATTACTGCA	AGCAGTTGAA	GAGCAAATTA	1740	
	TCGCACATCA	AGAGGATGGT	GGGAGACTAT	GACAGACGGA	AACCTTAGAG	AGATGCCAGT	1800	
	TGCGGGAGAA	GGGAGAGGTG	CATCTGCCTG	CACGATGTCT	CTGCAATTCT	CTCCAGAGGC	1860	
)	AAACTGACTT	TGGACTCTAA	TCTGGGAAGT	TAAAACTTTG	TGATCATTAC	AAAGTTTCCA	1920	
	TGGCTTTAAT	TCCATCAGTT	TCCTATCTCC	AGTATTGAAG	CATTTTATAA	ATGGCTTTTG	1980	

	ATAATTGACT GGGCTGAACA CTCCAATTAA GGATTITACA GTTTCAACAT TGATTCTTFT	2040
	ATTAAGAATT AAAATGTTGC TTGAGGTTTT AAATGTCAAG AAAGGTCCTG GTGTGAGCTG	2100
5	TGATGTGTG GAGCTGTGAT GTGAAGGTTC ACACGCCAGG CAGCGTGTTC CTCCAGGTAG	2160
	ACCGTCTAAT CAATCTTTGC AGCAGCCCTC AGGTGACTGT TATTTAGAAT CAGGTTGTTT	2220
	TTGGTTTTCC AGACAGGGTT TCTCTGTGTA GCCCTGGCTG ACCTAGAACT TACGCTGTAG	2280
10	ACCAGGCTGG CCTTGAACTC ACACAGCTCC TCTGAGTGCT GGTGCAGGAG TTAACGTCCC:	2340
	GGACCGGTAT CATCACTTTT CCTGCGGTGA CTTCTCCAAA CTGAAACTGC TAAGGCAGTT	2400
	TTGGCTAAGT CTGTTTTATG ACTGCAAATG ACAGCATTCC TGCCTTTGTA TTTCAGGGGUA	2460
15	AATACGATAC ATTATATCGG CCATGTTCCC CACCACTGTT TITCTTATAT TGACTTTINA	2520
	CAAATGAATA GGATTATTTT TGGCTTTACA TTTTTTCCTA ACACTTAAGA TCATATAAIJ.	2580
	TTAACAAATA TGTGAAATTT AAGAATTGTA AATATATATT TACGTTTGAA AGATGATTTT	2640
en .	AAATCCAGGG TTAAAGTGCT TTTTATCTTG TATAGTTTAC ATGCTTTTTT TTTTTTTCD.	2700
	TAACCCACTA GACCTITCCA TIGIATCAGA GIATCCAATI ACATITACAA TIATGACTIC	2760
	AATTGTATTT CACAGGAATG CTCAAGTTTT GTACATATTT TATAAGGTAT TAAACCTGAT	2820
	GTTCTCTTC TAAAAAAAA	2839
25	(2) INFORMATION FOR SEQ ID NO: 7:	
00	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE, other nucleic acid (A) DESCRIPTION: /desc = "Synthesis DNA"	ing and the state of the state
5	the Marie of the transfer of the second of t	erine title i 1881 ble i 1881 ble i
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	TATGAGACAG ACTACACAAC TGGCGGCGAG TCC	a ga ta mara a sa 100.
o	(2) INFORMATION FOR SEQ ID NO. 8:	Automotive Bridge
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	in dag in trade in 1995 in 1985 - Padges 1985 - Silving District
5	(ii) MOTECUTE TYPE, other pusisic acid	dan de la companya dan de la compa La companya dan de la companya dan
o	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	ATCATAGTCT CCAACCATCT TCTTGATGTG	30

Brief Description of the Drawings:

Fig. 1 is photographs substituting for drawings showing the morphology of organisms. Photo. A is a stained immunofluorescent photomicrograph of cultured human intestinal epithelial cell strain T84 with an anti-human occludin rat monoclonal antibody. Photo. B is a stained immunofluorescent photomicrograph of cultured human intestinal epithelial cell strain T84 with a mouse monoclonal antibody against the TJ lining protein ZO-1. The same sites of T84 were photographed.

Claims

- 1. A DNA for encoding a human occludin protein having an amino acid sequence as defined in SEQ ID NO. 1.
- 2. The DNA for encoding a human occludin protein according to claim 1 which is a DNA defined in SEQ ID NO. 4.
- 15 3. A DNA for encoding a protein having an amino acid sequence in which one or plural amino acids in an amino acid sequence defined in SEQ ID NO. 1 are added, deleted or substituted.
 - A DNA defined in Sequence No. 5 for encoding a canine occluding protein having an amino acid sequence defined in SEQ ID NO. 2.
 - 5. A DNA defined in SEC ID NO. 6 for encoding a mouse occludin protein having an amino acid sequence defined in SEQ ID NO. 3.
 - 6. A vector which comprises the DNA described in any one of claims 1 to 5.
 - 7. A transformant which holds the vector described in claim 6.
 - 8. A human occludin protein which has an amino acid sequence defined in SEQ ID NO. 1.
- 30 9. A protein having an amino acid sequence in which one or plural amino acids in an amino acid sequence defined in SEQ ID NO. 1 are added, deleted or substituted.
 - 10. A partial peptide of a human occludin protein which has an amino acid sequence defined in SEQ ID NO. 1.
- 35 11. A canine occludin protein which has an amino acid sequence defined in SEQ ID NO. 2.
 - 12. A mouse occludin protein which has an amino acid sequence defined in SEQ ID NO. 3.
- 13. A method of manufacturing the protein described in any one of claims 8 to 11 which comprises the steps of culti-vating the transformant described in Claim 7 and collecting an expressed product.
 - 14. A DNA probe which comprises all or a part of a base sequence defined in SEQ ID NO. 4, 5 or 3.
 - 15. A DNA primer which comprises a part of a base sequence as defined in SEQ ID NO. 4, 5 or 6.
 - 16. A polyclonal antibody or a monoclonal antibody which specifically binds to the protein described in any one of claims 8, 11 and 12.
- 17. An analysis method of the DNA gene described in claim 2, 4 or 5 in a biological specimen, where n the DNA primer described in claim 15 is used.
 - 18. An analysis method of the DNA gene described in claim 2, 4 or 5 in a biological specimen, wherein the DNA probe described in claim 14 is used.
- 19. A screening method of a drug affecting the expression of occludin, which comprises the steps of illowing occludin-expressing cells and an analyte to coexist, and then determining an expression quantity of an occludin gene of the cells by the method of claim 17 or 18.

- 20. A polynucleotide for medical use which comprises at least 6 nucleotides for selectively hybridizing the human occludin DNA described in claim 4.
- 21. An assay reagent for occludin in a biological specimen, which comprises the antibody described in claim 16.

10

15

20

25

30

35

40

Fig. 1

INTERNATIONAL SEARCH REPO	RT	International appl	ication No.							
			P97/00665							
A. CLASSIFICATION OF SUBJECT MATTER Int. C16 C12N15/12, C12N15/63, C07K14/435, C12N1/21, C12P21/02, C12Q1/68, C07K16/18, C12P21/08, A61K38/17, G01N33/53 // (C12N1/21, C12R1:19), (C12P21/02, C12R1:19), According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS SEARCHED										
Minimum documentation searched (classification system followed by Int. C1 ⁶ C12N15/12, C12N15/63 C12Q1/68, C07K16/18,	, C07K14/435	, C12N1/21								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields at arched										
Electronic data base consulted during the international search (name of data base and, where practicable, search terms metal) WPIL BIOSIS PREVIEWS										
C. DOCUMENTS CONSIDERED TO BE RELEVANT										
Category* Citation of document, with indication, where a	ppropriate, of the rele	vatri passages	Relevant to claim No.							
X // Cell 80 (Jan. 1995) Natalie Roy et al. "The Gene for Neural Apoptosis Inhibitory Protein Is Partially Deleted in Individuals with Spinal 1, 2, 4, 5, Muscular Atrophy" p. 167-178										
P,X J. Cell Biol. 133(1) (Apr. 1996) Yuhko Ando- Akatsuka et al. "Interspecies Diversity of the Occludin Sequence: cDNA Cloning of Human, Mouse, Dog, and Rat-Kangaroo Homologues" p. 43-47										
A J. Cell. Biol. <u>123</u> (6) (199 "Occludin: A Novel Integra Localizing at Tight Juncti	1 Membrane P	rotein	1 - 21							
Further documents are listed in the continuation of Box C		family annex.								
 Special categories of cited documents: "A" document defining the gazeral state of the art which is not considere to be of particular relevance "B" earlier document but published on or after the international filling du 	"X" document of pa	nticular relevance; the	extional filing date or priority extion but o'red to understand investion claimed lavention cannot be							
"I." document which may throw donkts on priority chian(s) or which clied to easiblish the publication date of another clistion or oth special reason (as special reason) as special reason (as special reason) as a coal disclosure, use, exhibition or other clients are considered to the comment referring to an oral disclosure, use, exhibition or other clients.	step when the d "Y" document of pi contidered to	locument is taken alos sticular selevance; the involvo an inventive	claimed in ention cannot be step when the document is							
means "P" document published prior to the international filing date but later the the priority date claimed	n being obvious (on a person skilled in the same parage								
Date of the actual completion of the international search June 3, 1997 (03. 06. 97)	Date of mailing of the June 10,	1997 (10.	•							
Name and mailing address of the ISA/	Authorized officer									
Japanese Patent Office										
Facsimile No. Form PCT/ISA/210 (second sheet) (July 1992)	Telephone No.									