CS 577- Intro to Algorithms

Computational Intractability (Part 3)

Dieter van Melkebeek

December 1, 2020

Motivation

"I can't find an efficient algorithm, I guess I'm just too dumb."

Motivation

"I can't find an efficient algorithm, because no such algorithm is possible!"

Motivation

"I can't find an efficient algorithm, but neither can all these famous people."

P: decision problems that have polynomial-time algorithms

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- ▶ Fact: $P \subseteq NP$

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- ▶ Fact: $P \subseteq NP$
- ightharpoonup Conjecture: $P \neq NP$

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: P ⊆ NP
- ightharpoonup Conjecture: $P \neq NP$
- ▶ Definition: *B* is NP-hard if $(\forall A \in NP) A \leq^p B$.

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- Fact: P ⊆ NP
- ightharpoonup Conjecture: $P \neq NP$
- ▶ Definition: *B* is NP-hard if $(\forall A \in NP) A \leq^p B$.
- ▶ Assume P \neq NP. If B is NP-hard then B \notin P.

- P: decision problems that have polynomial-time algorithms
- ▶ NP: decision problems with yes-instances that have polynomial-time verifiable certificates
- ► Fact: P ⊆ NP
- ightharpoonup Conjecture: $P \neq NP$
- ▶ Definition: *B* is NP-hard if $(\forall A \in NP) A \leq^p B$.
- ▶ Assume P \neq NP. If B is NP-hard then B \notin P.
- ► Theorem: Circuit-SAT is NP-hard.

Strategy

Strategy

To show a new problem C is NP-hard:

Strategy

To show a new problem C is NP-hard:

Find a known NP-hard problem B.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

ightharpoonup Circuit-SAT \leq^p 3-SAT

Strategy

To show a new problem *C* is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

- ightharpoonup Circuit-SAT \leq^p 3-SAT
- ▶ 3-SAT \leq^p Independent Set

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

- ▶ Circuit-SAT ≤^p 3-SAT
- ▶ 3-SAT \leq^p Independent Set

Strategy

To show a new problem C is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

- ► Circuit-SAT <^p 3-SAT
- ▶ 3-SAT \leq^p Independent Set

Today's instantiations

► Independent Set ≤^p Clique

Strategy

To show a new problem *C* is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

- ▶ Circuit-SAT ≤^p 3-SAT
- ▶ 3-SAT \leq^p Independent Set

- ► Independent Set \leq^p Clique
- ▶ Independent Set \leq^p Vertex Cover

Strategy

To show a new problem *C* is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

- ► Circuit-SAT <^p 3-SAT
- ▶ 3-SAT \leq^p Independent Set

- ► Independent Set \leq^p Clique
- ▶ Independent Set \leq^p Vertex Cover
- ▶ 3-SAT \leq^p 3-Coloring

Strategy

To show a new problem *C* is NP-hard:

- Find a known NP-hard problem B.
- ▶ Show that $B \leq^p C$.

Earlier instantiations

- ightharpoonup Circuit-SAT \leq^p 3-SAT
- ▶ 3-SAT \leq^p Independent Set

- ► Independent Set \leq^p Clique
- ▶ Independent Set \leq^p Vertex Cover
- ▶ 3-SAT $\leq^p 3$ -Coloring
- ➤ 3-SAT ≤^p Subset Sum

Definitions

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

▶ An independent set if $E \cap S \times S = \emptyset$.

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Relationships

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Relationships

▶ S is independent set in $G \Leftrightarrow S$ is clique in $\overline{G} \doteq (V, \overline{E})$.

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Relationships

- ▶ S is independent set in $G \Leftrightarrow S$ is clique in $\overline{G} \doteq (V, \overline{E})$.
- ▶ *S* is independent set in $G \Leftrightarrow \overline{S}$ is vertex cover in *G*.

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Relationships

- ▶ *S* is independent set in $G \Leftrightarrow S$ is clique in $\overline{G} \doteq (V, \overline{E})$.
- ▶ *S* is independent set in $G \Leftrightarrow \overline{S}$ is vertex cover in *G*.

Corollary

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Relationships

- ▶ S is independent set in $G \Leftrightarrow S$ is clique in $\overline{G} \doteq (V, \overline{E})$.
- ▶ *S* is independent set in $G \Leftrightarrow \overline{S}$ is vertex cover in *G*.

Corollary

▶ Independent Set \leq^p Clique

Independent Set vs Clique vs Vertex Cover

Definitions

Fix a graph G = (V, E). A subset $S \subseteq V$ is:

- ▶ An independent set if $E \cap S \times S = \emptyset$.
- ▶ A clique if $S \times S \subseteq E$.
- ▶ A vertex cover if $E \subseteq S \times V$.

Relationships

- ▶ *S* is independent set in $G \Leftrightarrow S$ is clique in $\overline{G} \doteq (V, \overline{E})$.
- ▶ *S* is independent set in $G \Leftrightarrow \overline{S}$ is vertex cover in *G*.

Corollary

- ▶ Independent Set \leq^p Clique
- ► Independent Set ≤^p Vertex Cover

3-SAT

3-SAT

Input: 3-CNF formula φ

3-SAT

Input: 3-CNF formula φ E.g.: $\varphi = (x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_1} \lor x_2)$

3-SAT

Input: 3-CNF formula φ

 $\mathsf{E.g.:}\ \varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

3-Coloring

3-SAT

Input: 3-CNF formula φ

 $\mathsf{E.g.:}\ \varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

3-Coloring

Input: graph G = (V, E)

3-SAT

Input: 3-CNF formula φ

 $\mathsf{E.g.:}\ \varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

3-Coloring

Input: graph G = (V, E)

Output: whether G has a 3-coloring, i.e., a mapping

 $c: V \to [3]$ such that $(\forall (u, v) \in E) c(u) \neq c(v)$.

 $3-SAT \leq^p 3-Coloring$

▶ Include a color palette: complete graph on vertices {red, green, blue}

- ▶ Include a color palette: complete graph on vertices {red, green, blue}
- For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$.

- ▶ Include a color palette: complete graph on vertices {red, green, blue}
- ► For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$.
- ▶ Include the edges $(x_i, \overline{x_i})$, (x_i, blue) , and $(\overline{x_i}, \text{blue})$.

- Include a color palette: complete graph on vertices {red, green, blue}
- For each variable x_i , include two new vertices, one labeled x_i and the other $\overline{x_i}$.
- ▶ Include the edges $(x_i, \overline{x_i})$, (x_i, blue) , and $(\overline{x_i}, \text{blue})$.
- ▶ Bijection between assignments to variables $x_1, ..., x_n$ and valid colorings with {red, green, blue}.

For each 3-clause C_j , include a complete graph on 3 new vertices, each labeled with a unique literal of C_j .

- For each 3-clause C_j , include a complete graph on 3 new vertices, each labeled with a unique literal of C_j .
- ▶ Include for each new vertex v with label ℓ , a new vertex v'.

- For each 3-clause C_j , include a complete graph on 3 new vertices, each labeled with a unique literal of C_j .
- ▶ Include for each new vertex v with label ℓ , a new vertex v'.
- ▶ Include the edges (v, v'), (v', green), and (v', u), where u denotes the vertex in the variable gadget labeled ℓ .

- For each 3-clause C_j , include a complete graph on 3 new vertices, each labeled with a unique literal of C_j .
- ▶ Include for each new vertex v with label ℓ , a new vertex v'.
- Include the edges (v, v'), (v', green), and (v', u), where u denotes the vertex in the variable gadget labeled ℓ .
- A valid 3-coloring to the variable gadget can be extended to gadget for clause C_j iff underlying assignment satisfies C_j .

- ▶ For each 3-clause C_j , include a complete graph on 3 new vertices, each labeled with a unique literal of C_j .
- ▶ Include for each new vertex v with label ℓ , a new vertex v'.
- Include the edges (v, v'), (v', green), and (v', u), where u denotes the vertex in the variable gadget labeled ℓ .
- A valid 3-coloring to the variable gadget can be extended to gadget for clause C_j iff underlying assignment satisfies C_j .
- ► Clauses with less than 3 literals can be handled by repeating a literal in the clause until there are three.

- For each 3-clause C_j , include a complete graph on 3 new vertices, each labeled with a unique literal of C_j .
- ▶ Include for each new vertex v with label ℓ , a new vertex v'.
- ▶ Include the edges (v, v'), (v', green), and (v', u), where u denotes the vertex in the variable gadget labeled ℓ .
- A valid 3-coloring to the variable gadget can be extended to gadget for clause C_j iff underlying assignment satisfies C_j .
- ► Clauses with less than 3 literals can be handled by repeating a literal in the clause until there are three.

Conclusion

 φ is satisfiable \Leftrightarrow G is 3-colorable

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

Subset Sum

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

Subset Sum

Input:
$$a_1, a_2, \ldots, a_k \in \mathbb{N}$$
; $t \in \mathbb{N}$

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

Subset Sum

Input: $a_1, a_2, \ldots, a_k \in \mathbb{N}$; $t \in \mathbb{N}$

Output: whether there exists $I \subseteq [k]$ such that $\sum_{i \in I} a_i = t$.

3-SAT

Input: 3-CNF formula φ

E.g.: $\varphi = (x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_2)$

Output: whether φ has a satisfying assignment.

Subset Sum

Input: $a_1, a_2, \ldots, a_k \in \mathbb{N}$; $t \in \mathbb{N}$

Output: whether there exists $I \subseteq [k]$ such that $\sum_{i \in I} a_i = t$.

► Subset Sum \leq^p Knapsack

$3-SAT \leq^p Subset Sum$

$3-SAT \le p$ Subset Sum – variable gadgets

▶ For each variable x_i , include two numbers $a_{2i-1} = a_{2i} = 2^{i-1}$.

$3-SAT \le p$ Subset Sum – variable gadgets

- For each variable x_i , include two numbers $a_{2i-1} = a_{2i} = 2^{i-1}$.
- ▶ Label a_{2i-1} with x_i , and a_{2i} with $\overline{x_i}$.

$3-SAT \le p$ Subset Sum – variable gadgets

- For each variable x_i , include two numbers $a_{2i-1} = a_{2i} = 2^{i-1}$.
- ▶ Label a_{2i-1} with x_i , and a_{2i} with $\overline{x_i}$.
- ► Set $t = \sum_{i=1}^{n} 2^{i-1} = 2^n 1$.

3-SAT \leq^p Subset Sum – variable gadgets

- For each variable x_i , include two numbers $a_{2i-1} = a_{2i} = 2^{i-1}$.
- ▶ Label a_{2i-1} with x_i , and a_{2i} with $\overline{x_i}$.
- ► Set $t = \sum_{i=1}^{n} 2^{i-1} = 2^n 1$.
- ▶ Bijection between assignments to variables $x_1, ..., x_n$ and subsets $I \subseteq [2n]$ such that $\sum_{i \in I} a_i = t$.

3-SAT \leq^p Subset Sum – clause gadgets & connections

3-SAT \leq^p Subset Sum – clause gadgets & connections

For each clause C_j with k_j literals:

$3-SAT \le p$ Subset Sum – clause gadgets & connections

For each clause C_j with k_j literals:

▶ Pick bit two new consecutive bit positions B_i .

- Pick bit two new consecutive bit positions B_j.
- ▶ For each literal ℓ in C_j , set bits in B_j of the number a_i labeled ℓ to 01.

- Pick bit two new consecutive bit positions B_j.
- ▶ For each literal ℓ in C_j , set bits in B_j of the number a_i labeled ℓ to 01.
- ▶ Set bits in B_j of t to k_j in binary.

- Pick bit two new consecutive bit positions B_j.
- ▶ For each literal ℓ in C_j , set bits in B_j of the number a_i labeled ℓ to 01.
- ▶ Set bits in B_j of t to k_j in binary.
- ▶ Create $k_j 1$ new numbers with bits in B_j set to 01.

- Pick bit two new consecutive bit positions B_j.
- ▶ For each literal ℓ in C_j , set bits in B_j of the number a_i labeled ℓ to 01.
- ▶ Set bits in B_j of t to k_j in binary.
- ▶ Create $k_i 1$ new numbers with bits in B_i set to 01.
- ▶ Consider subset $I \subseteq [2n]$ such that $\sum_{i \in I}^{n} a_i = t \mod 2^n$.

- Pick bit two new consecutive bit positions B_j.
- ▶ For each literal ℓ in C_j , set bits in B_j of the number a_i labeled ℓ to 01.
- ▶ Set bits in B_j of t to k_j in binary.
- ▶ Create $k_j 1$ new numbers with bits in B_j set to 01.
- Consider subset $I \subseteq [2n]$ such that $\sum_{i \in I}^n a_i = t \mod 2^n$. I can be extended with subset of new numbers to I' such that $\sum_{i \in I'} a_i$ equals t in positions B_j iff underlying assignment satisfies C_j .

For each clause C_i with k_i literals:

- Pick bit two new consecutive bit positions B_j.
- ▶ For each literal ℓ in C_j , set bits in B_j of the number a_i labeled ℓ to 01.
- ▶ Set bits in B_j of t to k_j in binary.
- ▶ Create $k_j 1$ new numbers with bits in B_j set to 01.
- Consider subset $I \subseteq [2n]$ such that $\sum_{i \in I}^n a_i = t \mod 2^n$. I can be extended with subset of new numbers to I' such that $\sum_{i \in I'} a_i$ equals t in positions B_j iff underlying assignment satisfies C_j .

Conclusion

 φ is satisfiable \Leftrightarrow there exists I' such that $\sum_{i \in I'} a_i = t$.

► Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT

- ► Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- Covering: Vertex Cover

Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT

► Packing: Independent Set, Clique

Covering: Vertex Cover

Partitioning: 3-Colorability

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- Covering: Vertex Cover
- Partitioning: 3-Colorability
 - 3-D Matching

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- ► Covering: Vertex Cover
- Partitioning: 3-Colorability

3-D Matching

Input: disjoint sets X, Y, Z; $T \subseteq X \times Y \times Z$

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- Packing: Independent Set, Clique
- Covering: Vertex Cover
- Partitioning: 3-Colorability

3-D Matching

Input: disjoint sets X, Y, Z; $T \subseteq X \times Y \times Z$

Output: whether there exists $S \subseteq T$ such that each element

of $X \cup Y \cup Z$ appears exactly once

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- Covering: Vertex Cover
- Partitioning: 3-Colorability

3-D Matching

Input: disjoint sets X, Y, Z; $T \subseteq X \times Y \times Z$

Output: whether there exists $S \subseteq T$ such that each element

of $X \cup Y \cup Z$ appears exactly once

Sequencing: Traveling Salesperson

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- Covering: Vertex Cover
- ► Partitioning: 3-Colorability

3-D Matching

Input: disjoint sets X, Y, Z; $T \subseteq X \times Y \times Z$

Output: whether there exists $S \subseteq T$ such that each element

of $X \cup Y \cup Z$ appears exactly once

Sequencing: Traveling Salesperson

Hamiltonicity

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- Covering: Vertex Cover
- Partitioning: 3-Colorability

3-D Matching

Input: disjoint sets X, Y, Z; $T \subseteq X \times Y \times Z$

Output: whether there exists $S \subseteq T$ such that each element

of $X \cup Y \cup Z$ appears exactly once

Sequencing: Traveling Salesperson

Hamiltonicity

Input: (di)graph G = (V, E)

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- ► Packing: Independent Set, Clique
- Covering: Vertex Cover
- Partitioning: 3-Colorability

3-D Matching

Input: disjoint sets X, Y, Z; $T \subseteq X \times Y \times Z$

Output: whether there exists $S \subseteq T$ such that each element

of $X \cup Y \cup Z$ appears exactly once

Sequencing: Traveling Salesperson

Hamiltonicity

Input: (di)graph G = (V, E)

Output: whether there exists a (directed) cycle/path that

visits every vertex once

- Constraint satisfaction: Circuit-SAT, CNF-SAT, 3-SAT
- Packing: Independent Set, Clique
- Covering: Vertex Cover
- Partitioning: 3-Colorability

3-D Matching

Input: disjoint sets $X, Y, Z; T \subseteq X \times Y \times Z$

Output: whether there exists $S \subseteq T$ such that each element

of $X \cup Y \cup Z$ appears exactly once

Sequencing: Traveling Salesperson

Hamiltonicity

Input: (di)graph G = (V, E)

Output: whether there exists a (directed) cycle/path that

visits every vertex once

Numerical: Subset Sum, Knapsack

