

time

Each thread is incharge of "depth" number of sums. Then one thread (P3) is in charge of adding up the partial sums. the pre task foreach thread is the initial set of the result variable

reduce (int, max) - Yes. It would find the max element in 3.2) cach section of the array then compare He max for each section against each other to find the whole max

reduce & std: string, concact> - yes, He also would concact each section then concast each section together, it would maintain proper order

reduce < float, sum > - yes, code is templeted, and int is similar to float & would work the same way

reduce (float, max> - yes, similar to reduce kint, max>

$$(i=1)$$
 $\rightarrow (i=1)$ $\rightarrow (i=2)$ $\rightarrow (i=3)$ $\rightarrow \dots \rightarrow (i=n)$

all tasks are dependent on the i-1 iteration. This is because to calculate pr[i], you need pr[i-1]

width = 1 CP: n+1 work=n+1

parallel version

Similar to the reduce function, the array will be split into smaller chunks and prefix sum will be computed then the last som of each chunck is added into the next chunk

sum of	- each chunck	15 added	n for
2 1 3 4 6 5 10	ar pr 6 0 7 6 8 13 9 21 10 30	ar pr 12 0 13 12 14 25 15 39 16 54 17 70	do partial prefix sum for each chunck of the data in this case 3 chunks. He offset is the largest partial sum of that chunk. This is step 1
15	2	. 10	

thread 3 thread 2 thread 1 offset = 87 offset=51 offset=15

Now add all the offsets from error = 51+15=66 error = 15 error=0 the previous chunks to each Pass 2 Fin pr or member of He partialsom fin pr 66 15 0 0 0 the som of the offsets is 0 78 12 21 the error. This sumation 91 25 28 is independent and can be 3 105 39 36 21 threaded similar to step 1. 120 45 54 30 this is step 2 and final 136 10 10 55 70 40 153 15 15 87 66 Step 51

mergesort (arr) if len (arr) =1: return arr

> left = left half of arr right = right half of arr

left = mergesort (left) right = mergesort (right) return merge (left, right)

merge (left, right)

result = empty array

while left is not emply

and right is not emply:

if left[0] \(\) right[0]:

result t= left[0]

result += risht [0]
rem risht[0]

if left is not empty
result to left

if right is not empty
result to right

return result

an array of size 1 is sorted

split into 2 parts

sort both left right parts
recursively
merse the two parts in order

go through both left tright sides and place the saller of the first clement into the result array

place the rest of the elements from either list into the result array

He first half of the dependency tree is the recursive part of mergesort() function it splits the array into 2 sobarrays. Then these subarrays are sorted and mersed in the second half of the dependency graph. The merse part of the dependency graph takes more time to compute

work = 3n-2 $CP = 2\log_2(n) + 1$ width = 1

PILI	N 2	513		[i-2]	I i - 4	Control State of Stat	i=n	
P2	n	77	1					
P3 1		54		[i=2]		2 - 1		
P4		21.3				999		
p5]		4 8	0	122	1=4	1		
P6								
P7]				122				
PS			1	e	•	. Designation of the second		
The acceptance of the state of	17 as a triminant and contact on before its absenced in California.	anag yang dan kalang kanan manan dan dan dan kanan dan dan dan dan dan dan dan dan dan	3	P	•			
1		time	9	0	0			

Diamond shape? If we don't have any penalty for spawning threads, then each recursive call would spawn 2 threads: one for each half of its current thread. There is very little "work" happening ofter than the creation of the threads. That is why the boars here are thin. When the marger of two subarrays happen, one thread will handle it but because it has to go through 2 sub arrays, the time taken to sort will double as the recursion stack collapses to the end condition is in

To make the code more parallel, I would remove some of the initial recursion so there is little dependency athe bigining of the run. For example with a Pot 4, He fist 2 "layers" of the shart chart I dependency graph will be sone. Then the processor mercesorts the 4 halves of the array. At the end a thread sorts the 2 halves that are left.