Architectural Uncore Frequency Scaling TPMI Interface

Introduction

TPMI (Topology Aware Register and PM Capsule Interface), planned for future Intel® Xeon® processor generations, is an architectural, PCIe-standards based model, where PM feature support is provided cleanly as a driver and not as part of the base OS.

Uncore Frequency Scaling provides a set of algorithms that can provide dynamic change to fabric frequency based on the current workload requirement. These changes can enable power savings, increase performance, and reduce latency.

Today, the Uncore Frequency Scaling interface today uses Model Specific Registers (MSR) which would require complex enabling and high software maintenance to meet the needs of future SoCs. Uncore Frequency Scaling will transition to using a driver that utilizes the TPMI interface in the future.

This document provides the pertinent specifications for Uncore Frequency Scaling.

Software Interface

TPMI is the only SW interface for future Uncore Frequency Scaling features. The legacy MSR 0x620, 0x621 and BIOS_SPARE2 registers are deprecated.

All TPMI Uncore Frequency Scaling registers are per-die scope. SW discovers the number of Uncore Frequency Scaling register instances through standard TPMI discovery mechanism.

Uncore Frequency Scaling Register map

This map is per die.

UFS_HEADER			
Field Name			
INTERFACE_VERSION			
Local Fabric Cluster ID Mask			UFS_STATUS
AUTONOMOUS UFS DISABLED		ID 0	UFS_CONTROL
FUSION: FABRIC UTILIZATION SCENARIO OPTIMIZATION	_	100	UFS_ADV_CONTROL_1
FLAGS			UFS_ADV_CONTROL 2
PTR_TELEM			
NUM_TELEM			
RSVD			
UFS_FABRIC_CLUSTER_OFFSET			
Local Fabric Cluster ID 0			
RSVD			

MAP

Throttle Modes

Future Intel® Xeon® Processors will support a handful a Uncore Frequency Scaling throttle modes as listed below.

Uncore Frequency Scaling Throttle Modes (source)

Throttl e Mode bit positio n	Throttle Mode bit value	Throttle Mode Name	Frequenc y Bounds	Use Case	Pcode Algorithm(s)	Uncore Frequenc y Scaling Heuristic s	RAPL line
0	0	Power Limited Ordered Throttling	min=max	Latency sensitive customers (comms). Don't change mesh frequency at all.	Disable RAPL line Disable Uncore Frequency Scaling heuristics	No	No

0	0	Power Limited Ordered Throttling	min <max< th=""><th>CPU manages mesh frequency autonomous ly within their bounds, but don't throttle mesh when power is limited. Another case is when boosting performance of core bound workload, i.e., core is not throttled when power is limited until mesh frequency has reached floor.</th><th>Disable RAPL line Enable Uncore Frequency Scaling Heuristic clip final freq within min/max bounds.</th><th>Yes</th><th>No</th></max<>	CPU manages mesh frequency autonomous ly within their bounds, but don't throttle mesh when power is limited. Another case is when boosting performance of core bound workload, i.e., core is not throttled when power is limited until mesh frequency has reached floor.	Disable RAPL line Enable Uncore Frequency Scaling Heuristic clip final freq within min/max bounds.	Yes	No
0	1	Power Limited Proportion al Throttling	min <max< td=""><td>CPU manages mesh frequency autonomous ly within the customer provided min/max bounds</td><td>enable RAPL line enable Uncore Frequency Scaling Heuristics clip final freq within min/max bounds</td><td>Yes</td><td>Yes</td></max<>	CPU manages mesh frequency autonomous ly within the customer provided min/max bounds	enable RAPL line enable Uncore Frequency Scaling Heuristics clip final freq within min/max bounds	Yes	Yes
0	1	Power Limited Proportion al Throttling	min=max	Customer wants traffic agnostic mesh frequency, but when power is limited it is	enable RAPL line disable Uncore Frequency Scaling heuristics	No	Yes

				okay to throttle mesh frequency.	clip final freq within min/max bounds			
1, 2, 3, 4, 5, 6 & 7	Reserve d	Reserved	Reserved	Reserved	Reserved	Reserved	Reserve d	

Uncore Frequency Scaling registers are as defined in the sections below.

Register Indexing (source)

Uncore Frequency Scaling Regi	sters
Name	Index
UFS_HEADER	0
UFS_FABRIC_CLUSTER_OFFSET	1
UFS_STATUS	0
UFS_CONTROL	1
UFS_ADV_CONTROL_1	2
UFS_ADV_CONTROL_2	3

UFS_HEADER

Header Register (source)

Field Name	Bits	Width	Access Type	Description	Default
UFS_HEADER					

INTERFACE_VERSION	7:0	8	RO	Version number for this interface	0x01
LOCAL_FABRIC_CLUSTER_ID_MASK	15:8	8	RO	ID assigned for each Fabric V/F Domain.	0x01
FLAGS	31:16	16	RO	Bit mask of the supported domain register. Pcode populates default setting. SW use it to discover which register is valid in the Uncore Frequency Scaling register bank.	0
AUTONOMOUS_UFS_DISABLED	32:32	1	RO	0=Autonomous Uncore Frequency Scaling algorithm is supported. 1=not supported	0
FUSION	33:33	1	RO	FUSION: FABRIC UTILIZATION SCENARIO OPTIMIZATION. 1=Mesh Boot Algorithm is supported. 0=not supported	0
RATIO_UNIT	35:34	2	RO	Frequency ratio unit. 00: 100MHz. All others : Reserved.	0
RSVD	63:36	28	RO	reserved	0

Please note that min and max supported values can be different for each dielet.

The P0, P1, Pm ratios are present in the SST_PP_INFO-11 register in the <u>SST HAS</u>. It is the per-PP level mesh frequency info register.

Global Fabric ID Computation in Software

Examples to compute Global Fabric ID (<u>source</u>)

Example 1: Two clusters per dielet			
Global fabric ID	local fabric ID	Die ID	Cluster_ID_MASK
0	0	0	0000_0011
1	1	0	
2	0	1	0000_0011
3	1	1	
4	0	2	0000_0011
5	1	2	
6	0	3	0000_0011
7	1	3	
Example 2: one cluster per dielet			
Global fabric ID	local fabric ID	Die ID	Cluster_ID_MASK
0	0	0	0000_0001
1	0	1	0000_0001
2	0	2	0000_0001

3 0000_0001

Num of local fabric clusters in one dielet = Count the number of 1s in CLUSTER_ID_MASK.

Global Fabric ID = (Die ID * Num of local fabric clusters in one dielet) + Local fabric cluster ID.

Max num of local fabric clusters = 1 for future Intel® Xeon Processors.

Each fabric with unique ID will have different observability register and control registers.

Future Intel® Xeon® processors will only have one fabric cluster per die. Therefore, Local fabric ID cluster mask is 8'b0000_0001 and only ID0 is used per die.

UFS_FABRIC_CLUSTER_OFFSET

UFS_FABRIC_CLUSTER_OFFSET (source)

UFS_FABRIC_CLUSTER_OFFSET					
Field Name	Bits	Width	Access Type	Description	Default
OFFSET_0	7:0	8	RO	Offset (Qword, 8 bytes) for status and control registers belonging to local cluster ID 0	0x02
RSVD	63:8	56	RO	reserved	0

STATUS

Uncore Frequency Scaling Status Register (source)

UFS_STATUS			

Field Name	Bits	Width	Access Type	Description	Default
CURRENT_RATIO	6:0	7	RO	Instantaenous fabric frequency ratio	0
CURRENT_VOLTAGE	22:7	16	RO	Indicates current Fabric voltage in U3.13 format	0
AGENT_TYPE_CORE	23:23	1	RO	1: At least one core agent exists on the fabric cluster; 0: No core agent is present on the fabric cluster.	0
AGENT_TYPE_CACHE	24:24	1	RO	1: At least one cache agent exists on the fabric cluster; 0: No cache agent is present on the fabric cluster.	0
AGENT_TYPE_MEMORY	25:25	1	RO	1: At least one memory agent exists on the fabric cluster; 0: No memory agent is present on the fabric cluster.	0
AGENT_TYPE_IO	26:26	1	RO	1: At least one IO agent exists on the fabric cluster; 0: No IO agent is present on the fabric cluster.	0
RSVD	31:27	5	RO	Reserved	0
THROTTLE_COUNTER	63:32	32	RO	Count the number of 1ms intervals in which the fabric frequency violated the freq bound provided in Uncore Frequency Scaling control register. Increment counter only once within a 1ms interval if there is violation.	0

CONTROL

Uncore Frequency Scaling Control Registers (source)

UFS_CONTROL					
Field Name	Bits	Widt h	Acces s Type	Description	Defau It
UFS_THROTTLE_MODE	1:0	2	RW	Select one of the Uncore Frequency Scaling throttle modes	1
RSVD1	7:2	6	RW	Reserved	0
MAX_RATIO	14:8	7	RW	Max fabric domain frequency ratio	0x7F
MIN_RATIO	21:1 5	7	RW	Min fabric domain frequency ratio	0
EFFICIENCY_LATENCY_CTRL_RATIO	28:2	7	RW	Fabric domain frequency ratio floor while in the low power activity region determined by Efficiency_Latency_ Ctrl.	0
RSVD2	31:2 9	3	RW	Reserved	0
EFFICIENCY_LATENCY_CTRL_THRES HOLD	38:3 2	7	RW	This field provides the flexibility to alter the region of low power activity. It deteremines the	0

				region of Mesh utilization points to which the Efficiency_Latency_ Ctrl mode will be applied.	
RSVD3	63:3 9	25	RW	Reserved	0
UFS_ADV_CONTROL_1					
Field Name	Bits	Widt h	Acces s Type	Description	Defau It
SLOPE_1	7:0	8	RW	Slope that controls how fast the mesh frequency is brought down with core frequency when the socket is power limited. In 1/16 ratio bins (S4.3 format).	0
BASE_1	15:8	8	RW	The core frequency below which mesh frequency is brought down when socket is power limited. (S7.0 format)	0
RSVD	63:1 6	48	RW	Reserved	0
UFS_ADV_CONTROL_2					

Field Name	Bits	Widt h	Acces s Type	Description	Defau It
SLOPE_2	7:0	8	RW	Slope that controls how fast the mesh frequency is brought down with core frequency when the socket is power limited. In 1/16 ratio bins (S4.3 format).	0
BASE_2	15:8	8	RW	The core frequency below which mesh frequency is brought down when socket is power limited. (S7.0 format)	0
UTILIZATION_THRESHOLD	23:1	8	RW	Mesh Utilization Threshold. 255 = 100% utilization, 0 = 0% utilization.	0xFF
HBM_BW_THRESHOLD	31:2 4	8	RW	HBM BW Threshold	0xFF
RSVD	63:3 2	32	RW	Reserved	0

The slope and offset default settings will be tuned by Intel for pre-defined workloads. When SST PP level changes then its software responsibility to change slope and intercept as needed. By default, if software writes to this interface, no matter the SST PP level, the SoC will choose that overwritten slope and intercept.

Customers should be able to use the UFS_CONTROL register to select a throttle mode that suits their workload needs.

UFS_ADV_CONTROL exposes knobs for the more sophisticated customers who have desires to further fine-tune Uncore Frequency Scaling behaviors.

Slope1/base1 are for the legacy Uncore Frequency Scaling RAPL line while slope2/base2 for the Mesh Boost RAPL line.

Acceptable Values from Software:

We expect that software entity writing to this interface will make sure the following conditions are met for the feature to work correctly:

- 1. Min <= Max frequency (never write min value large than max value).
- 2. All dielets must have the same UFS_CONTROL.ufs_throttle_mode settings. If the ufs_throttle_mode is different, the behavior is undefined.