Package 'FMMcsVS'

March 3, 2023

 $\mathbf{Type} \ \operatorname{Package}$

Title Bayesian Finite Mixure Regression Models with Cluster-Specific Variable Selections
Version 0.1.0
Author Zhen Wang
Maintainer Zhen Wang <zwangiowa@gmail.com></zwangiowa@gmail.com>
Description Different MCMC algorithms for different Bayesian mixture models in a regression setup, including clustering, variable selection and regression coeficcient estimations.
Depends Matrix, caret, MCMCprecision, truncdist, faux, mcclust.ext, philentropy, aricode, gsl, label.switching, mclust, clustvarsel, coda, flexmix, BNPmix, factoextra, MASS, R $(\dot{\epsilon} = 2.10)$
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
R topics documented:
coffee 2 country 3 data_gen_func 4 flea 6

2 coffee

happy		7
posterior_inf		8
posterior_inf_split	1	11
ppd_sim	1	13
r_sq_post	1	14
simulation_func	1	15
simulation_func_rpms	1	17
simulation_split	2	20

coffee

Coffee Data

Description

Data on the chemical composition of coffee samples collected from around the world, comprising 43 samples from 29 countries. Each sample is either of the Arabica or Robusta variety. Twelve of the thirteen chemical constituents reported in the study are given. The omitted variable is total chlorogenic acid; it is generally the sum of the chlorogenic, neochlorogenic and isochlorogenic acid values.

Usage

coffee

Format

A data frame with 43 observations and 14 variables. The first two columns contain Variety and Country, respectively, while the remaining 12 columns contain the chemical properties. The Variety is either (1) Arabica or (2) Robusta

Note

The German to English translations of the variable names were carried out by Dr. Sharon M. McNicholas.

Source

Streuli, H. (1973). Der heutige stand der kaffeechemie. In Association Scientifique International du Cafe, 6th International Colloquium on Coffee Chemisrty, Bogata, Columbia, pp. 61–72.

```
coffee
variety_coffee <- coffee$Variety</pre>
```

country 3

country

Country Data

Description

Country profile data with 4 socio-economic and 3 public health indicators that measure the overall development of a country in 2019. The factors are chosen from the World Development Indicators (WDI) database of the World Bank.

Usage

country

Format

A data frame with 157 observations and 8 variables:

country_name country name

gdppc The GDP per capita. Calculated as the Total GDP divided by the total population.

health Current health expenditure (percentage of GDP).

import Imports of goods and services (percentage of the GDP).

income Adjusted net national income per capita (current USD).

inflation Inflation, GDP deflator (annual percentage), the measurement of the annual growth rate of the total GDP.

life_exp Life expectancy at birth, total (years). The average number of years a new born child would live if the current mortality patterns are to remain the same.

total_fert Fertility rate, total (births per woman). The number of children that would be born to each woman if the current age-fertility rates remain the same.

Note

Due to the COVID-19 pandemic, the current database does not update health expenditure data after 2019, so we collect the data for all indicators of all countries in year 2019. This will exclude some important countries, eg, the United Kingdom, since the income data for UK is only updated through 2018. After removing countries with missing values in any of the indicators, 157 countries remain in the data.

Source

World Bank Open Data, https://data.worldbank.org/

```
country
name_country <- country$country_name</pre>
```

4 data_gen_func

data_gen_func

Generate Simulation Data

Description

Generate the simulation data for various models. The data consists of single-dim response y and multi-dim covariates X. For subjects in different clusters, (alpha, beta, zeta, lambda) are different. The function can generate correlated data, by specifying the correlation matrix among X, and balanced/inbalanced data by specifying the cluster probabilities.

For the split model, the data consists of y, fixed covariates W and random covariates Z. For subjects in different clusters, (alpha, beta, psi, zeta, lambda) are different.

For covariates following t and Gamma distributions, only independent covariates are geneated.

Usage

```
data_gen_func(n = 500, alpha_true = c(0.1, -0.6, 0.5),
             beta_true = rbind(c(0, 0, -0.5, 0, 0.5, 0),
                              c(-0.7, 0, 0.4, 0, 0, 0),
                              c(0.6, 0, 0, 0, -0.4, 0)),
             lambda = c(2, 2, 2), zeta_sep = 1,
             eta = 1, sample_prob = c(1, 1, 1),
             cor_mtx = NULL, rho = rep(0, 3))
data_gen_split(n = 500, alpha_true = c(0.1, -0.6, 0.5),
              beta_true = rbind(c(0, 0, -0.5, 0, 0.5, 0),
                                c(-0.7, 0, 0.4, 0, 0, 0),
                                c(0.6, 0, 0, 0, -0.4, 0)),
              psi_true = rep(c(-1,0,1),3),
              W_{mean} = 0, lambda = c(2, 2, 2), zeta_{sep} = 1,
              eta = 1, sample_prob = c(1, 1, 1), rho = 0.5)
data_gen_gamma(n = 500, alpha_true = c(0.1, -0.6, 0.5),
           beta_true = rbind(c(0, 0, -0.5, 0, 0.5, 0),
                             c(-0.7, 0, 0.4, 0, 0, 0),
                             c(0.6, 0, 0, 0, -0.4, 0)),
           lambda = c(2, 2, 2), zeta_sep = 1, sample_prob = c(1, 1, 1))
data_gen_t(n = 500, alpha_true = c(0.1, -0.6, 0.5),
           beta_true = rbind(c(0, 0, -0.5, 0, 0.5, 0),
                             c(-0.7, 0, 0.4, 0, 0, 0),
                             c(0.6, 0, 0, 0, -0.4, 0)),
           lambda = c(2, 2, 2), zeta_sep = 1, sample_prob = c(1, 1, 1))
```

Arguments

n sample size

alpha_true numeric vector, each element represents intercept for each cluster, length should equal the number of clusters

data_gen_func 5

beta_true numeric matrix, each row represents regression coefficients for each cluster, number of rows should equal the number of clusters lambda numeric vector, each element represent precision of response y in each cluster numeric, the difference of zeta values in different clusters, the true zeta zeta_sep values are set to be seq(0, true_M-1) * zeta_sep numeric, precision of covariates X, for split model, the precision of Z eta sample_prob numeric vector, ratios of sizes of clusters numeric matrix, correlation matrix of X, default value is for D=6, M=3, cor_mtx X1-X2, X3-X4, X5-X6 have blocked-wise correlation with coefficients given by rho (no specified in definition)

rho numeric vector, correlation coefficients among X in the case described

above. For split model, rho is a numeric value, which is the pair-wise

correlation among columns of W

Details

For data_gen_func:

The regression coefficients alpha, beta, the mean of X, zeta, and the precision of y, lambda are cluster-specific.

If no cor_mtx value is specified: 1) if rho is a vector of zero's, generated samples have independent X's; 2) if non-zero values are specified in rho, it's assumed to be the D=6, M=3 case, with a blocked-wise correlations of X1-X2, X3-X4 and X5-X6, and correlation coefficients given by rho, if a different setup (eg, different D or M) is desired, cor_mtx must be specified.

The true value of \$\zeta\$ for the three groups are 0, zeta_sep and 2*zeta_sep respectively.

For data_gen_split:

The regression coefficients alpha, beta for W, psi for Z, the mean of Z, zeta, and the precision of y, lambda, are cluster-specific.

W has a pair-wise correlation of rho.

For data_gen_gamma:

Covariates are independently following a Gamma(z², z) distributions, where for the M groups, $z = 2+m*zeta_sep$, m = 0, 1, ..., M-1.

For data_gen_t:

Covariates are independently following the $t_M/sqrt(M/(M-2)) + z$, where t_M is the Student's t-distribution with a degree of freedom of M, $z = m*zeta_sep$, m = 0, 1, ..., M-1.

Value

A list is returned:

numeric vector, response with length n У Χ numeric matrix, covariates matrix with dimension M*D W numeric matrix, fixed covariates matrix in split model Ζ numeric matrix, random covariates matrix in split model index numeric vector with length n, group membership indicator ranging from

1 to M for each subject

6 flea

```
alpha_true specified true alpha values
beta_true specified true beta values
```

psi_true specified true psi values for split model

Author(s)

```
Zhen Wang <zwangiowa@gmail.com>
```

Examples

```
##generate data with independent X
sample_data_1 <- data_gen_func()</pre>
##generate inbalanced data with ratio 1:2:10
sample_data_2 \leftarrow data_gen_func(sample_prob = c(1,2,10))
##generate data where D=6, M=3, and X has blocked-wise correlations of X1-X2, X3-X4 and X5-X6, and correlation of
sample_data_3 <- data_gen_func(rho = c(0.2,0.5,0.8))
##generate data where correlation matrix among X is given by:
require(Matrix)
cor_mtx = bdiag(matrix(c(1/1, 0.8, 0.8, 1/1), 2, 2),
                matrix(c(1/1, 0.2,0.2, 1/1), 2, 2),
                matrix(c(1/1, 0.9,0.9, 1/1), 2, 2))
sample_data_4 <- data_gen_func(cor_mtx=cor_mtx)</pre>
##generate data for the split model, where W has pair-wise correlation of 0.3
sample_split_data_1 <- data_gen_split(rho=0.3)</pre>
##generate data with gamma covariates
sample_data_gamma <- data_gen_gamma()</pre>
##generate data with t covariates
sample_data_t <- data_gen_t()</pre>
```

flea

Flea Beatles Measurements

Description

This data is from a paper by A. A. Lubischew, "On the Use of Discriminant Functions in Taxonomy", Biometrics, Dec 1962, pp.455-477.

happy 7

Usage

flea

Format

A data frame with 74 observations and 7 variables:

tars1 width of the first joint of the first tarsus in microns (the sum of measurements for both tarsi)

tars2 the same for the second joint

head the maximal width of the head between the external edges of the eyes in 0.01 mm

aede1 the maximal width of the aedeagus in the fore-part in microns

aede2 the front angle of the aedeagus (1 unit = 7.5 degrees)

aede3 the aedeagus width from the side in microns

species which species is being examined - concinna, heptapotamica, heikertingeri

Examples

head(flea)

happy

Happy Score Data

Description

Happy scores and six life quality factors for 149 countries in 2021.

Usage

happy

Format

A data frame with 149 observations and 8 variables:

country country name

Happy.Score happy score for countries in 2021, it is the national average response to the question of life evaluations.

GDP.per.cap The GDP per capita. Calculated as the Total GDP divided by the total population.

Socl.spprt Social support (or having someone to count on in times of trouble) is the national average of the binary responses (either 0 or 1) to the GWP question "If you were in trouble, do you have relatives or friends you can count on to help you whenever you need them, or not?".

Life.expt Healthy Life Expectancy (HLE), based on the data extracted from the World Health Organization's (WHO) Global Health Observatory data repository.

8 posterior_inf

Freedom Freedom to make life choices is the national average of responses to the GWP question "Are you satisfied or dissatisfied with your freedom to choose what you do with your life?".

Generosity Generosity is the residual of regressing national average of response to the GWP question "Have you donated money to a charity in the past month?" on GDP per capita.

Corruption Corruption Perception. The measure is the national average of the survey responses to two questions in the GWP: "Is corruption widespread throughout the government or not" and "Is corruption widespread within businesses or not?".

Source

World Happiness Report 2021, https://worldhappiness.report/ed/2021/.

Examples

```
happy
name_country <- happy$Country</pre>
```

posterior_inf

Posterior Inference for Various Models

Description

Calculate different metrics defined in the paper to evaluate performance of different models in: clustering accuracy, parameter estimation accuracy and variable selection accuracy. Besides the N-IFPP models, functions for inference of RPMS, BNPmix (P-Y mixture models, M9 and M10) and mclust (model-based clustering, M7) are also included.

Usage

```
post_inf(sim_res, scl = 10001:1e5, data)
post_inf_rpms(sim_res, scl = 10001:1e5, data)
post_inf_bnpmix(sim_res, data)
mclust_vs(data)
```

Arguments

sim_res	list, MCMC simulation results, return from the simulation functions defined in the package $$
scl	numeric vector, index of remaining samples after burn-in
data	list, the data input used to run the simulations

posterior_inf 9

Details

post_inf runs inference for N-IFPP models, post_inf_rpms runs inference results for the RPMS, post_inf_bnpmix runs inference for the two P-Y mixture models (M9, M10). The current versions of the functions can only handle the case of $M_{true} = 3$ as defined in the default simulation data setups.

mclust_vs does inference for the model-based clustering model (M7) introduced by Fraley and Raftrey (2002, JASA), two different types of VS procedures were implemented to adapt to the regression setup, which is not considered in the original model. The two methods are: 1) implemented the variable selection methods by the clustvarsel package, obtain the VS and clustering results, then a common set of variables are selected for all clusters, fit a linear regression model within each cluster to obtain estimates of alpha and beta; 2) run the mclust package for clustering with both the response and covariates, based on the clustering results with fixed K=3, run the variable selection procedure by the clustvarsel package for each cluster so a cluster-specific VS can be achieved, then within each cluster, fit a linear regression model to obtain estimates of alpha and beta;

Value

post_inf, post_inf_rpms and post_inf_bnpmix return:

true_size numeric vector, the true cluster sizes in the data

measure_km_ari numeric, a measurement defined to measure how far away the clusters are

from each other, calculated by the ARI values of the true clutering membership and the clustering result of the K-means method, a larger value generally means more distant clusters, thus easier clustering problem

auto_corr_k numeric vector, auto-correlations for posterior of K

geweke_k numeric, the Z-statistic for the geweke diagnostics for posterior of K

post_k numeric vector, posterior distribution of K

mse_a1, mse_a2, mse_a3

numeric vectors, the quartiles of the mean squared errors of alpha for the

3 clusters

mse_b1, mse_b2, mse_b3

numeric vectors, the quartiles of the mean squared errors of beta for the

3 clusters

ARI numeric vector, the (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1) quantiles of

ARI values calculated by all posterior samples of c

ARI_bnpmix numeric vector, the ARI values calculated from all posterior samples of c

by BNPmix

mclust_vs returns:

clust_no_g numeric vector, the sizes of clusters by mclust when G is not pre-specified

10 posterior_inf

ari_no_g	numeric, ARI values for clustering results by mclust when G is not prespecified	
cluster_no_g_vs	numeric, the sizes of clusters by clustvarsel when G is not pre-specified	
ari_no_g_vs	numeric, ARI values for clustering results by clustvarsel when G is not pre-specified	
clust_g3	numeric vector, the sizes of clusters by m clust when G is fixed at 3	
ari_g3	numeric, ARI values for clustering results by m clust when G is fixed at 3	
clust_g3_vs	numeric, ARI values for clustering results by clustvarsel when G is fixed at 3	
ari_g3_vs	numeric, ARI values for clustering results by clust varsel when G is fixed at 3	
se_a1.1, se_a2.	1, se_a3.1 squared-errors of alpha values for M7, method 1)	
se_b1.1, se_b2.	1, se_b3.1 squared-errors of alpha values for M7, method 1)	
FS1.1, FS2.1, FS3.1		
	FS values for each cluster for M7, method 1)	
MS1.1, MS2.1, MS3.1 MS values for each cluster for M7, method 1)		
se_a1.2, se_a2.2, se_a3.2 squared-errors of alpha values for M7, method 2)		
se_b1.2, se_b2.2	2, se_b3.2 squared-errors of alpha values for M7, method 2)	
FS1.2, FS2.2, FS3.2 FS values for each cluster for M7, method 2)		
MS1.2, MS2.2, M	S3.2 MS values for each cluster for M7, method 2)	

Note

The MSE values, FS, MS values for VS accuracy are calculated with samples of K=M=3. ARI values are calculated with all posterior samples.

Author(s)

 ${\rm Zhen} \ {\rm Wang} \ {\rm <} {\rm zwangiowa@gmail.com} {>}$

References

Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458):611–631, 2002.

Riccardo Corradin, Antonio Canale, and Bernardo Nipoti. Bnpmix: An r package for bayesian non- parametric modeling via pitman-yor mixtures. Journal of Statistical Software, $100(15):1-33,\ 2021.$

posterior_inf_split 11

Examples

```
##generate simulation data
simulation_data <- data_gen_func()

##FBMM with VS, hyper-prior for beta_bel
simulation_1 <- simulation_func(simulation_data$X, simulation_data$y, prior="Bessel")

##run posterior inference, burn-in the first 20k samples
post_fbmm_vs_1 <- post_inf(simulation_1, 20001:1e5, simulation_data)</pre>
```

posterior_inf_split

Posterior Inference for Split Models

Description

Calculate different metrics defined in the paper to evaluate performance of different split models in : clustering accuracy, parameter estimation accuracy and variable selection accuracy.

Usage

```
post_inf_split(sim_res, scl = 10001:1e5, data)
```

Arguments

sim_res list, MCMC simulation results, return from the simulation functions de-

fined in the package

scl numeric vector, index of remaining samples after burn-in

data list, the data input used to run the simulations

Details

Runs inference for N-split models.

Value

true_size numeric vector, the true cluster sizes in the data

measure_km_ari numeric, a measurement defined to measure how far away the clusters are

from each other, calculated by the ARI values of the true clutering membership and the clustering result of the K-means method, a larger value generally means more distant clusters, thus easier clustering problem

12 posterior_inf_split

auto_corr_k numeric vector, auto-correlations for posterior of K numeric, the Z-statistic for the geweke diagnostics for posterior of K geweke_k post_k numeric vector, posterior distribution of K mse_a1, mse_a2, mse_a3 numeric vectors, the quartiles of the mean squared errors of alpha for the 3 clusters mse_b1, mse_b2, mse_b3 numeric vectors, the quartiles of the mean squared errors of beta for the mse_psi numeric vectors, the quartiles of the mean squared errors of psi ARI numeric vector, the (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1) quantiles of ARI values calculated by all posterior samples of c c_bin numeric vector, sizes of clusters obtained by the Binder loss numeric vector, sizes of clusters obtained by the VI loss $c_{-}vi$ ari_point_bin numeric, ARI values calculated by c_bin and the truth ari_point_vi numeric, ARI values calculated by c_vi and the truth FS numeric vector, the mean False Spaecity for each cluster

Note

MS

The MSE values, FS, MS values for VS accuracy are calculated with samples of K = M = 3. ARI values are calculated with all posterior samples.

numeric vector, the mean Missed Spaecity for each cluster

Author(s)

Zhen Wang <zwangiowa@gmail.com>

References

Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458):611–631, 2002.

Riccardo Corradin, Antonio Canale, and Bernardo Nipoti. Bnpmix: An r package for bayesian non- parametric modeling via pitman-yor mixtures. Journal of Statistical Software, 100(15):1–33, 2021.

```
##generate simulation data for split models
simulation_data <- data_gen_split()

##FBMM with VS, hyper-prior for beta_bel
simulation_1 <- simulation_split(simulation_data$W, simulation_data$Z, simulation_data$y, prior="Bessel")

##run posterior inference, burn-in the first 20k samples
post_fbmm_split_1 <- post_inf_split(simulation_1, 20001:1e5, simulation_data)</pre>
```

 ppd_sim 13

ppd_sim	Calculate the Posterior Predictive Density (ppd) for New Data Subjects
	Subjects

Description

A function to calculate the posterior predictive density for a new subject with response y^* and covariates X^* .

Usage

```
ppd_sim(sim.res, x.new, y.new, scl=10001:1e5, thin=20)
```

Arguments

sim.res	list, MCMC simulation results returned by simulation_func, simulation_split or simulation_func_rpms
x.new	numeric vector of length D, covariates for the new subject
y.new	numeric, the new y value to estimate the ppd at
scl	numeric vector, the index of remaining samples after burn-in
thin	numeric, the thinning factor to speed up calculations, posterior samples for every thin-th iterations are used to calculate ppd

Details

See the Appendix of the paper for formulas of the ppd.

Value

The ppd of x.new at y.new is returned.

Author(s)

```
{\rm Zhen} \ {\rm Wang} \ {\rm <} {\rm zwangiowa@gmail.com} {\rm >}
```

```
##generate simulation data
simulation_data <- data_gen_func()

##FBMM without VS, hyper-prior for beta_bel
simulation_1 <- simulation_func(simulation_data$X, simulation_data$y, prior="Bessel", SS=F)

x.new <- rnorm(6)</pre>
```

 r_sq_post

```
y.new <- 0.5
##calculate ppd
ppd.new.sample <- ppd_sim(simulation_1, x.new, y.new, scl=10001:1e5, thin=20)</pre>
```

 r_sq_post

Calculate R-square Values for all MCMC Samples

Description

A function to calculate the R-square values for all posterior samples returned by MCMC simulations.

Usage

```
r_sq_post(sim_res, data, scl=10001:1e5)
```

Arguments

sim_res	list, MCMC simulation results returned by simulation_func, simulation_split or simulation_func_rpms
data	dataframe, consists of response y and covariates X
scl	numeric vector, the index of remaining samples after burn-in

Details

Given the posterior samples of K, and c, for each iteration, within each cluster, fit a linear regression, obtain the R^2 value, then for each iteration, we obtain k_post R^2 values for k_post different clusters. Do such calculations for all posterior samples.

Value

The R-square values for all clusters in all posterior samples are returned as a numeric vector.

Author(s)

```
Zhen Wang <zwangiowa@gmail.com>
```

simulation_func 15

Examples

```
##generate simulation data
simulation_data <- data_gen_func()

##FBMM without VS, hyper-prior for beta_bel
simulation_1 <- simulation_func(simulation_data$X, simulation_data$y, prior="Bessel", SS=F)

##calculate the R^2 values
r_sq_samples <- r_sq_post(simulation_1, simulation_data)</pre>
```

simulation_func

MCMC Simulations for the Bayesian Finite Mixture Regression Models with Cluster-Specific Variable Selection

Description

A simulation function running MCMC simulations for various models with different algorithms. Accepted data should be one-dim response y and multi-dim (D ξ = 1) covariates X expect for the split model, for split model, W and Z should be specified instead of a single covariates matrix X.

Usage

16 simulation_func

```
\item{N}{numeric, number of iterations}
\item{gamma_hyperprior}{logical, if TRUE, for FDMMM with conditional and marginal algorithm, a hyper
\item{gamma_fixed}{numeric, if gamma_hyperprior=FALSE, the fixed value for gamma}
\item{a_gamma, b_gamma}{numeric, if gamma_hyperprior=TRUE, a Gamma(a_gamma, b_gamma) is assigned to
\item{a_unif}{numeric, for FUMM, the unnormalised mixture weights S follows Unif(a_unif, 1), 0<=a_ui
\item{a_w, b_w}{numeric, a Beta(a_w, b_w) is assigned to the SS weights w}
\item{Lambda}{numeric, M ~ Posson_1(Lambda), a shifted Poisson distribution}
\item{a_bessel}{numeric, for FBMM, alpha_bel is fixed at this value}
\item{b_bessel_hyperprior}{logical, if TRUE, a hyperprior is specified to beta_bel}
\item{b_bessel_fixed}{numeric, if b_bessel_hyperprior=FALSE, beta_bel is fixed at this value}
\item{a_b_bessel, b_b_bessel}{numeric, if b_bessel_hyperprior=TRUE, a Gamma(a_b_bessel, b_b_bessel
\item{mu}{numeric, mean of the slab part of the SS prior on beta}
\item{a_tau, b_tau}{numeric, a Gamma(a_tau, b_tau) hyper-prior for the precision parameter tau of th
\item{a_zeta, b_zeta}{numeric, a Normal(a_tau, b_tau) hyper-prior for the mean parameter of X, zeta}
\item{a_lambda, b_lambda}{numeric, a Gamma(a_lambda, b_lambda) hyper-prior for the precision parame
\item{a_alpha, b_alpha}{numeric, a Normal(a_alpha, b_alpha) hyper-prior for the intercept parameter
\item{a_eta, b_eta}{numeric, a Gamma(a_eta, b_eta) hyper-prior for the precision parameter of X, eta
\item{a_psi}{numeric, the prior mean for psi, the regression coefficients corresponding to W}
\item{a_4, b_4}{numeric, a Gamma(a_4, b_4) hyper-prior is assigned to b_psi, the prior precison of page 1.
\item{L_dynamic}{numeric, the number of the auxiliary states, L, in Algorithm 8 of Neal (20000, JCGS)
\item{M_init}{numeric, initial value of M}
\item{lambda_init}{numeric, initial value of lambda}
\item{alpha_init}{numeric, initial value of alpha}
}
{
For simulation_func, a total of four different models are considered: within the N-IFPP category: FDN
For the FDMM, both the conditional and marginal algorithms are implemented, for other models, only the
For the marginal algorithm, Algorithm 8 of Neal (2000, JCGS) is applied.
{
\item{M_post}{numeric vector of length N, posterior samples of M}
\item{c_post}{numeric matrix of dim N*n, each row represents posterior samples of c for one iteration
\item{k_post}{numeric vector of length N, posterior samples of K}
\item{U}{numeric vector of length N, posterior samples of U, the auxiliary variable for the condition
\item{gamma_post}{numeric vector of length N, posterior samples of the concentration parameter gamma
\item{Beta_post}{list, each element of the list represents posterior samples of all beta components
\item{alpha_post}{list, each element of the list represents posterior samples of all alpha component
\item{zeta_post}{list, each element of the list represents posterior samples of all zeta components
\item{lambda_post}{numeric vector, posterior samples of lambda, precision of y}
\item{eta_post}{numeric vector, posterior samples of eta, precision of X}
\item{tau_post}{numeric vector, posterior samples of tau, precision of the slab part in SS prior}
\item{w_post}{numeric matrix of dim N*D, each row represents posterior smaples of the SS weights, w,
\item{weight_post}{list, each element represents posterior samples of the mixture weights, omega, o
\item{a_lambda}{pre-specified values}
```

simulation_func_rpms 17

```
\item{b_lambda}{pre-specified values}
\item{a_eta}{pre-specified values}
\item{b_eta}{pre-specified values}
\item{X}{covariates input}
\item{y}{response input}
}
{
Generalized Mixtures of Finite Mixtures and Telescoping Sampling. Sylvia Fr{\"u}hwirth-Schnatter, G
Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Compu
Is infinity that far? A Bayesian nonparametric perspective of finite mixture models. Raffaele Argien
}
{
Zhen Wang zwangiowa@gmail.com
##generate simulation data
simulation_data <- data_gen_func()</pre>
##FBMM without VS, hyper-prior for beta_bel
simulation_1 <- simulation_func(simulation_data$X, simulation_data$y, prior="Bessel", SS=F)</pre>
##Dynamic FDMM with VS, with fixed gamma value of 2
simulation_2 <- simulation_func(simulation_data$X, simulation_data$y, prior="Dynamic_FDMM",</pre>
                                gamma_hyperprior = FALSE,gamma_fixed = 2)
##FUMM where S ~ Unif(0.2, 1)
simulation_3 <- simulation_func(simulation_data$X, simulation_data$y, prior="Uniform", a_unif=0.2</pre>
```

Description

A simulation function running MCMC simulations for the RPMS model introduced in Barcella et al (SIM, 2016). Accepted data should be one-dim response y and multi-dim (D $\xi=1$) covariates X.

Usage

Arguments

Χ	numeric matrix, covariates matrix	
У	numeric vector, response	
SS	logical, if TRUE, spike and slab prior is specified on beta for cluster-specific variable selection; if FALSE, a continuous Gaussian prior is specified to beta, no variable selection in implemented	
N	numeric, number of iterations	
a_w, b_w	numeric, a Beta(a_w, b_w) is assigned to the SS weights w	
mu	numeric, mean of the slab part of the SS prior on beta	
a_tau, b_tau	numeric, a Gamma(a_tau, b_tau) hyper-prior for the precision parameter tau of the slab part of the SS prior on beta	
a_zeta, b_zeta	numeric, a Normal (a_tau, b_tau) hyper-prior for the mean parameter of X, zeta	
a_lambda, b_lambda		
	numeric, a Gamma(a_lambda, b_lambda) hyper-prior for the precision parameter of y, lambda	
a_alpha, b_alph	a	
	numeric, a Normal(a_alpha, b_alpha) hyper-prior for the intercept parameter alpha	
a_eta, b_eta	numeric, a Gamma (a_eta, b_eta) hyper-prior for the precision parameter of X, eta	
a_adp, b_adp	numeric, a Gamma (a_adp, b_adp) hyper-prior for the concentration parameter, alpha, of ${\rm DP}$	
k_{-} init	numeric, initial value of K	
$lambda_init\\$	numeric, initial value of lambda	
alpha_dp_init	numeric, initial value of alpha of DP	
$alpha_init$	numeric, initial value of alpha	
m_aux	numeric, the number of the auxiliary states, m, in Algorithm 8 of Neal (20000, JCGS)	

Details

A marginal algorithm is implemented, Algorithm 8 of Neal (2000, JCGS) is applied in this algorithm.

simulation_func_rpms 19

Value

c_post	numeric matrix of dim N*n, each row represents posterior samples of c for one iteration
$k_{-}post$	numeric vector of length N, posterior samples of K
alpha_dp_post	numeric vector of length N, posterior samples of concentration parameter alpha of DP
Beta_post	list, each element of the list represents posterior samples of all beta components in each iteration, of length $\rm M_post*D$
alpha_post	list, each element of the list represents posterior samples of all alpha components in each iteration, of length M post
zeta_post	list, each element of the list represents posterior samples of all zeta components in each iteration, of length $\rm M_post*D$
$lambda_post$	numeric vector, posterior samples of lambda, precision of y
eta_post	numeric vector, posterior samples of eta, precision of X
tau_post	numeric vector, posterior samples of tau, precision of the slab part in SS prior
w_post	numeric matrix of dim $N*D$, each row represents posterior smaples of the SS weights, w, in one iteration
a_lambda	pre-specified values
$b_{-}lambda$	pre-specified values
a_eta	pre-specified values
b_eta	pre-specified values
Χ	covariates input

Author(s)

У

Zhen Wang <zwangiowa@gmail.com>

response input

References

William Barcella, Maria De Iorio, Gianluca Baio, and James Malone-Lee. Variable selection in co-variate dependent random partition models: an application to urinary tract infection. Statistics in Medicine, 35(8):1373-1389, 2016.

Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2):249–265, 2000.

```
##generate simulation data
simulation_data <- data_gen_func()

##RPMS with VS
simulation_rpms_1 <- simulation_func_rpms(simulation_data$X, simulation_data$y)

##RPMS without VS
simulation_rpms_2 <- simulation_func_rpms(simulation_data$X, simulation_data$y, SS=F)</pre>
```

20 simulation_split

 $simulation_split$

MCMC Simulations for the Bayesian Finite Mixture Regression Models with Cluster-Specific Variable Selection

Description

A simulation function running MCMC simulations for various split models. Accepted data should be one-dim response y and multi-dim (D ξ = 1) covariates W and Z. Here Z are the covariates being modeled in the model, while W are the fixed covariates.

Usage

Arguments

9		
W	numeric matrix, covariates matrix that is fixed in a split model	
X	numeric matrix, covariates matrix that is modeled with Gaussian distributions in a split model $$	
У	numeric vector, response	
prior	char, priors on mixture weights, or different algorithm. "Dirichlet" for FDMM with conditional algorithm, "Bessel" for FBMM with conditional algorithm.	
SS	logical, if TRUE, spike and slab prior is specified on beta for cluster-specific variable selection; if FALSE, a continuous Gaussian prior is specified to beta, no variable selection in implemented	
N	numeric, number of iterations	
gamma_hyperprior		
	logical, if TRUE, for FDMMM with conditional and marginal algorithm, a hyper-prior is specified to the concentration parameter gamma, otherwise,	

gamma_fixed numeric, if gamma_hyperprior=FALSE, the fixed value for gamma

gamma is fixed

simulation_split 21

a_gamma, b_gamma

numeric, if gamma_hyperprior=TRUE, a Gamma(a_gamma, b_gamma) is

assigned to gamma

a_w, b_w numeric, a Beta(a_w, b_w) is assigned to the SS weights w

Lambda numeric, M ~ Posson_1(Lambda), a shifted Poisson distribution

a_bessel numeric, for FBMM, alpha_bel is fixed at this value

b_bessel_hyperprior

logical, if TRUE, a hyperprior is specified to beta-bel

b_bessel_fixed numeric, if b_bessel_hyperprior=FALSE, beta_bel is fixed at this value a_b_bessel, b_b_bessel

numeric, if b_bessel_hyperprior=TRUE, a Gamma(a_b_bessel, b_b_bessel)

hyper-prior is assigned to beta_bel-1

mu numeric, mean of the slab part of the SS prior on beta

a_tau, b_tau numeric, a Gamma(a_tau, b_tau) hyper-prior for the precision parameter

tau of the slab part of the SS prior on beta

a_zeta, b_zeta numeric, a Normal(a_tau, b_tau) hyper-prior for the mean parameter of

X, zeta

a_lambda, b_lambda

numeric, a $\operatorname{Gamma}(a_\operatorname{lambda},\ b_\operatorname{lambda})$ hyper-prior for the precision

parameter of y, lambda

a_alpha, b_alpha

numeric, a Normal(a_alpha, b_alpha) hyper-prior for the intercept param-

eter alpha

a_eta, b_eta numeric, a Gamma(a_eta, b_eta) hyper-prior for the precision parameter

of X, eta

a_psi numeric, the prior mean for psi, the regression coefficients corresponding

to W

a_4, b_4 numeric, a Gamma(a_4, b_4) hyper-prior is assigned to b_psi, the prior

precison of psi

M_init numeric, initial value of M
lambda_init numeric, initial value of lambda
alpha_init numeric, initial value of alpha

Details

Conditional algorithms are impelemted for both FDMM and FBMM with variable selection.

Value

M_post numeric vector of length N, posterior samples of M

c_post numeric matrix of dim N*n, each row represents posterior samples of c

for one iteration

k_post numeric vector of length N, posterior samples of K

U numeric vector of length N, posterior samples of U, the auxiliary variable

for the conditional algorithm of N-IFPP models

gamma_post numeric vector of length N, posterior samples of the concentration pa-

rameter gamma in both FDMM models

22 simulation_split

Beta_post	list, each element of the list represents posterior samples of all beta components in each iteration, of length M -post*D
alpha_post	list, each element of the list represents posterior samples of all alpha components in each iteration, of length M post
zeta_post	list, each element of the list represents posterior samples of all zeta components in each iteration, of length $\rm M_post*D$
$lambda_post$	numeric vector, posterior samples of lambda, precision of y
eta_post	numeric vector, posterior samples of eta, precision of X
tau_post	numeric vector, posterior samples of tau, precision of the slab part in SS $$ prior
w_post	numeric matrix of dim N*D, each row represents posterior smaples of the SS weights, w, in one iteration
weight_post	list, each element represents posterior samples of the mixture weights, omega, of length $\rm M_post$
psi_post	numeric matrix, each row represents posterior smaples of psi for each iteration
b_psi_post	numeric vector, posterior smaples of b_psi
a_lambda	pre-specified values
b_lambda	pre-specified values
a_eta	pre-specified values
b_eta	pre-specified values
у	response input
W	covariates input that is fixed
Z	covariates input that is modeled

Note

For current version of simulation_split, it's required that $\dim(W) \ \xi = 2$ and $\dim(Z) \ \xi = 3$.

Author(s)

Zhen Wang <zwangiowa@gmail.com>

References

Is infinity that far? A Bayesian nonparametric perspective of finite mixture models. Raffaele Argiento and Maria De Iorio, Ann. Statist. 50(5): 2641-2663, 2022.

```
##generate data for the split model
data_split <- data_gen_split()

###split model with FBMM
simulation_split_fbmm <- simulation_split(data_split$W, data_split$Z, data_split$y, prior = "Bessel")</pre>
```