Análise Matemática Gleberson Antunes

22 de Setembro de 2023

Compilado de todas as minhas soluções, da parte de Análise Real, das Provas de Admissão ao Mestrado em Matemática na UFSM. As resoluções são despretensiosas e são sujeitas à erros.

Sugestões e correções são bem-vindas e podem ser enviadas para glebersonset@gmail.com. Outras soluções podem ser encontradas em minha página Gleberson Antunes.

Sumário

Sumário		
1	Prova de Seleção para o Mestrado em Matemática 2009.1	2
2	Prova de Seleção para o Mestrado em Matemática 2010.1	9
3	Prova de Seleção para o Mestrado em Matemática 2011.1	13
4	Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de	
	Verão - Prova 1)	19
5	Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de	
	Verão - Prova 2)	29
6	Prova de Seleção para o Mestrado em Matemática 2012.1	34
7	Prova de Seleção para o Mestrado em Matemática 2013.1	42
8	Prova de Seleção para o Mestrado em Matemática 2013.2	49
9	Prova de Seleção para o Mestrado em Matemática 2015.1	54
10	Prova de Seleção para o Mestrado em Matemática 2016.1	61
11	Prova de Seleção para o Mestrado em Matemática 2018.1	70
12	Prova de Seleção para o Mestrado em Matemática 2018.2	77

1 Prova de Seleção para o Mestrado em Matemática 2009.1

22 de Setembro de 2023

Exercício 1. Responda Verdadeiro (V) ou Falso (F) nos intens abaixo, justificando suas respostas.

- (a) Seja $A \subset \mathbb{R}$ tal que A possui um elemento máximo a. Então sup A = a.
- (b) A sequência $a_n = \sqrt{n+1} \sqrt{n}, n \ge 1, n \in \mathbb{N}$ é convergente.
- (c) Seja $f:[-L,L] \longrightarrow \mathbb{R},\, L>0$ uma função par. Então

$$\int_{-L}^{L} f(x)dx = 2\int_{0}^{L} f(x)dx.$$

(d)
$$\lim_{x \to 0^+} \left[\cos\left(\frac{1}{x}\right) \right] = 1.$$

Demonstração.

- (a) Verdadeiro. Óbvio.
- (b) Verdadeiro. Basta notar que, para todo $n \in \mathbb{N}$, temos

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \longrightarrow 0.$$

(c) Sabemos que

$$\int_{-L}^{L} f(x)dx = \int_{-L}^{0} f(x)dx + \int_{0}^{L} f(x)dx$$
$$= \int_{-L}^{0} f(-x)dx + \int_{0}^{L} f(x)dx$$

Tomando u=-x, obtemos du=-dx. Note que $x=-L \Rightarrow u=L.$ Assim, temos

$$\int_{-L}^{L} f(x)dx = -\int_{L}^{0} f(u)du + \int_{0}^{L} f(x)dx$$
$$= \int_{0}^{L} f(u)du + \int_{0}^{L} f(x)dx$$
$$= 2\int_{0}^{L} f(x)dx.$$

(d) Falso. Suponhamos que a afirmação seja verdade. Então, para toda sequência de pontos $x_n \in [0, \infty) - \{0\}$ que é tal que $x_n \longrightarrow 0$, $\cos\left(\frac{1}{x_n}\right) \longrightarrow 1$. Considere então as sequências $\left(\frac{1}{2n\pi}\right)$ e $\left(\frac{2}{\pi + 4n\pi}\right)$, que claramente convergem para 0. Note porém que

$$cos\left(\frac{1}{\frac{1}{2n\pi}}\right) = cos(2n\pi) \longrightarrow 1,$$

 \mathbf{e}

$$cos\left(\frac{1}{\frac{2}{\pi+4n\pi}}\right) = cos\left(\frac{\pi}{2} + 2n\pi\right) \longrightarrow 0,$$

o que é absurdo. $\hfill\Box$

Exercício 2.

(a) Prove que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{3}{4}$$

.

(b) Prove que $\forall a, b \in \mathbb{R}$ vale $|\sin b - \sin a| \le |b - a|$.

Demonstração.

(a) Podemos decompor $\frac{1}{n(n+2)}$ em frações parciais. Nesse caso teríamos

$$\frac{1}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$$

$$\Rightarrow \frac{1}{n(n+2)} = \frac{A(n+2) + Bn}{n(n+2)} = \frac{(A+B)n + 2A}{n(n+2)}$$

$$A + B = 0$$

$$A = \frac{1}{2}$$

$$\Rightarrow B - \frac{1}{2}.$$
(1)

Assim

$$\frac{1}{n(n+1)} = \frac{1}{2n} - \frac{1}{2(n+2)}.$$

Notemos que

$$\left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{4} - \frac{1}{8}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \left(\frac{1}{8} - \frac{1}{12}\right) + \dots + \left(\frac{1}{2(n-2)} - \frac{1}{2n}\right) + \left(\frac{1}{2(n-1)} - \frac{1}{2(n+1)}\right) \\ + \left(\frac{1}{2n} - \frac{1}{2(n+2)}\right) + \left(\frac{1}{2(n+1)} - \frac{1}{2(n+3)}\right)$$

$$= \frac{1}{2} + \frac{1}{4} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)}.$$

Segue daí que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \lim_{x \to \infty} \frac{1}{2} + \frac{1}{4} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}.$$

(b) Sabemos que a função

$$sin: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto sin(x),$$

é derivável em toda reta. Escolhamos dois números reais a e b arbitrários. Tome então o intervalo fechado [a,b] (poderá ser [b,a] ou consitirá em um único ponto, dependendo da escolha desses números). O **Teorema do Valor Médio** nos garante que existe $c \in (a,b)$ tal que

$$\frac{\sin b - \sin a}{b - a} = \cos c.$$

Em módulo temos que

$$\left| \frac{\sin b - \sin a}{b - a} \right| = |\cos c| \le 1$$

$$\Rightarrow |sin \ b - sin \ a| \le |b - a|,$$

como queríamos provar.

Exercício 3.

- (a) Mostre que $e^x \ge 1 + x$, para todo x real não negativo.
- (b) Mostre que a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} x^3 sin(\frac{1}{x}), & \text{se } x \neq 0. \\ 0, & \text{se } x = 0. \end{cases}$$

é derivável com derivada primeira contínua.

(c) Seja $f:[a,b] \longrightarrow \mathbb{R}$ contínua. Mostre que existe $c \in (a,b)$ tal que

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Demonstração.

(a) Notemos que

$$e^x \ge 1 + x \Leftrightarrow x \ge ln(1+x).$$

Provaremos a segunda afirmação, e portanto, a equivalência. Sabemos que a função

$$ln: (0, \infty) \longrightarrow \mathbb{R}$$

 $x \longmapsto \int_{1}^{x} \frac{1}{t} dt,$

é monótona crescente e derivável. Para todo $x \in (0, \infty)$ o **Teorema do Valor Médio** nos garante que existe $c \in (1, 1+x)$ tal que

$$\frac{ln(1+x) - ln(1)}{(x+1) - 1} = \frac{1}{c} < 1.$$

$$\frac{\ln(1+x)}{x} = \frac{1}{c} < 1.$$

$$\Rightarrow ln(1+x) < x.$$

Segue daí que

$$1 + x < e^x,$$

para todo $x \in (0, \infty)$.

(b) Se $x \neq 0$, então

$$f'(x) = -x \cdot cos\left(\frac{1}{x}\right) + 3x^2 \cdot sin\left(\frac{1}{x}\right)$$

Se x = 0, então

$$\lim_{x \to 0} \frac{x^3 \cdot \sin\left(\frac{1}{x}\right)}{x - 0} = \lim_{x \to 0} \frac{x^3 \cdot \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x^2 \cdot \sin\left(\frac{1}{x}\right) = 0.$$

Provaremos agora que f'(x) é contínua. Considere então a função

$$f'(x) = \begin{cases} -x \cdot \cos\left(\frac{1}{x}\right) + 3x^2 \cdot \sin\left(\frac{1}{x}\right), & \text{se } x \neq 0. \\ 0, & \text{se } x = 0. \end{cases}$$

Se $x \neq 0$, então

$$f''(x) = \frac{\sin\left(\frac{1}{x}\right)}{x} - 4 \cdot \cos\left(\frac{1}{x}\right) + 6x \cdot \sin\left(\frac{1}{x}\right).$$

Se x=0, então

$$\lim_{x \to 0} -x \cdot \cos\left(\frac{1}{x}\right) + 3x^2 \cdot \sin\left(\frac{1}{x}\right) - f'(0) = 0,$$

uma fez que $\sin\left(\frac{1}{x}\right)$ e $\cos\left(\frac{1}{x}\right)$ são funções limitadas. Logo f' é contínua em \mathbb{R} . Isso se dá pois f' é derivável em todo ponto $x \neq 0$, e daí ela será contínua em $\mathbb{R} - 0$. Por outro lado, $\lim_{x\longrightarrow 0} f'(x) = f'(0)$ nos garante a continuidade de f' no ponto x = 0.

(c) Sabemos que toda função contínua é integrável. Pelo **Teorema Fundamental do Cálculo**, sabemos que toda função contínua possui uma primitiva. Considere então a função

$$F: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_{a}^{x} f(x) dx.$$

Essa função é contínua e derivável, com F'(x) = f(x), para todo $x \in [a, b]$. Pelo **Teorema do Valor Médio**, existe $c \in (a, b)$ tal que

$$\frac{1}{b-a} \cdot \left(\int_a^b f(x) dx - \int_a^a f(x) dx \right) = F'(c)$$

$$\Rightarrow \frac{1}{b-a} \cdot \left(\int_a^b f(x)dx - 0 \right) = f(c)$$

$$\Rightarrow \int_{a}^{b} f(x)dx = f(c)(b-a).$$

2 Prova de Seleção para o Mestrado em Matemática 2010.1

23 de Setembro de 2023

Exercício 1. Seja $\{a_n\}$ uma sequência dada recursivamente por $a_1 = \sqrt{3}$ e $a_n = \sqrt{3 + a_{n-1}}$, n > 1. Mostrar que $\{a_n\}$ é convergente. Calcule $\lim_{n \to \infty} a_n$.

Demonstração. Facilmente verificamos que (a_n) é uma sequência monótona crescente. Provaremos agora que ela é limitada e, portanto, é convergente. Por indução, temos que:

Para $n=1,\,a_1=\sqrt{3}<10.$ Suponhamos então que essa afirmação é válida para um certo n>1, isto é, $a_n<10.$ Então

$$3 + a_n < 3 + 10$$

 $\Rightarrow a_{n+1} = \sqrt{3 + a_n} < \sqrt{3 + 10} < 10.$

Logo (a_n) é limitada. Seja $S=\lim a_n=\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{\dots}}}}\,$. Note que

$$S^2 = 3 + \underbrace{\sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{\dots}}}}}_{S} .$$

Então

$$S^2 - S - 3 = 0,$$

e daí as possíveis soluções são:

$$S_{1,2} = \frac{1 \pm \sqrt{13}}{2}.$$

Como (a_n) é uma sequência estritamente positiva, temos que $S = \frac{1 + \sqrt{13}}{2}$.

Exercício 2.

- (a) Seja A um subconjunto de \mathbb{R} , caracterize ponto interior e ponto de fronteira de A.
- (b) Sejam A = [a, b] um intervalo fechado e $f : A \longrightarrow A$ um função contínua. Mostre que f tem um ponto fixo em A, ou seja, existe $c \in A$ tal que f(c) = c.
- (c) Sejam $I \subset \mathbb{R}$ um intervalo de \mathbb{R} e $f: I \longrightarrow \mathbb{R}$ uma função contínua. Mostre que se f'(x) = 0 para todo x no interior de I, então f é constante.

Demonstração.

(a)

Definição. Diremos que $a \in A$ é um ponto interior de A quando existe $\varepsilon > 0$ tal que

$$(a-\varepsilon,a+\varepsilon)\subset A.$$

Definição. Diremos que $a \in \mathbb{R}$ é um ponto de fronteira de A quando para todo $\varepsilon > 0$, temos que

$$(a-\varepsilon, a+\varepsilon) \cap A \neq \emptyset$$
 e $(a-\varepsilon, a+\varepsilon) \cap (\mathbb{R}-A) \neq \emptyset$.

(b) Consideremos a função contínua

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x - f(x).$$

Como $a \leq f(a)$ e $f(b) \leq b$, devemos ter

$$a - f(a) \le 0 \le b - f(b).$$

Se for a-f(a)=0 ou b-f(b)=0, então f possui um ponto fixo. Do contrário, sendo a-f(a)<0< b-f(b), o **Teorema do Valor Intermediário** nos garante que existe um ponto $c\in [a,b]$ tal que

$$c - f(c) = 0$$

$$\Rightarrow f(c) = c.$$

Logo f possui um ponto fixo.

(c) Para todo $x \in [a, b)$, o **Teorema do Valor Médio**, nos garante que existe $d \in (a, x)$ tal que

$$\frac{f(x) - f(a)}{x - a} = f'(d) = 0$$

$$\Rightarrow f(x) - f(a) = 0$$

$$\Rightarrow f(x) = f(a).$$

Como f(a) = f(b) por esse mesmo teorema, temos que f deve ser constante.

Exercício 3. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{1}{2} + |x|^3 \sin\left(\frac{1}{x}\right), & \text{se } x \neq 0.\\ k, & \text{se } x = 0. \end{cases}$$

- (a) Qual o valor de k que torna f contínua.
- (b) A função f, como k escolhido no item anterior, é derivável?

Demonstração.

(a) f será contínua quando $\lim_{x\to 0} f(x) = f(0)$. Nesse caso, se tomarmos $k=\frac{1}{2}$, teríamos

$$\lim_{x \to 0} \frac{1}{2} + |x|^3 \sin\left(\frac{1}{x}\right) = \lim_{x \to 0} \frac{1}{2} + \lim_{x \to 0} |x|^3 \sin\left(\frac{1}{x}\right) = \frac{1}{2} = f(0).$$

(b) Se $x \neq 0$, então

$$f'(x) = -|x|^3 \cdot \cos\left(\frac{1}{x}\right) \cdot \frac{1}{x^2} + \sin\left(\frac{1}{x}\right) \cdot \frac{3x^5}{|x|^3}$$
$$= -|x| \cdot \cos\left(\frac{1}{x}\right) + |x| \cdot x \cdot \sin\left(\frac{1}{x}\right).$$

Se x=0, então

$$\lim_{x \to 0} \frac{\frac{1}{2} + |x|^3 sin\left(\frac{1}{x}\right) - \frac{1}{2}}{x - 0} = \lim_{x \to 0} \frac{|x|^3 sin\left(\frac{1}{x}\right)}{x}$$

$$= \lim_{x \to 0} \frac{x^2 \cdot |x| sin\left(\frac{1}{x}\right)}{x}$$

$$= \lim_{x \to 0} x \cdot |x| sin\left(\frac{1}{x}\right)$$

$$= 0.$$

Logo f será derivável.

3 Prova de Seleção para o Mestrado em Matemática 2011.1

24 de Setembro de 2023

Exercício 1. Faça o gráfico da função $y=\frac{x}{\sqrt{x^2+1}}$. Prove que sua imagem é o intervalo |y|<1. Prove que ela é injetiva e calcule sua inversa.

Demonstração. Sabemos que uma função é injetiva se, e somente se, possui inversa à esquerda. Consideremos a função

$$f \colon \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{x}{\sqrt{x^2 + 1}}.$$

Note que

$$y = \frac{x}{\sqrt{x^2 + 1}}$$

$$\Rightarrow y^2(x^2 + 1) = x^2$$

$$\Rightarrow y^2 = x^2 - y^2x^2$$

$$\Rightarrow y^2 = (1 - y^2)x^2$$

$$\Rightarrow x^2 = \frac{y^2}{1 - y^2}$$

$$\Rightarrow x = \frac{y}{\sqrt{1 - y^2}}.$$

Daí

$$\frac{\frac{x}{\sqrt{x^2 + 1}}}{\sqrt{1 - \left(\frac{x}{\sqrt{x^2 + 1}}\right)^2}} = \frac{\frac{x}{\sqrt{x^2 + 1}}}{\sqrt{\frac{1}{x^2 + 1}}}$$

$$= \frac{\frac{x}{\sqrt{x^2 + 1}}}{\frac{1}{\sqrt{x^2 + 1}}}$$

$$= \frac{x}{\sqrt{x^2 + 1}} \cdot \frac{\sqrt{x^2 + 1}}{1}$$

$$= x.$$

Logo a função

$$g: (-1,1) \longrightarrow \mathbb{R}$$

$$y \longmapsto \frac{y}{\sqrt{1-y^2}},$$

é a inversa à esquerda de f. Consequentemente, Im f = (-1, 1).

Exercício 2. Considere o conjunto $X = \left\{1 - \frac{1}{3n^2}; n \in \mathbb{N}\right\}$.

- (a) Mostre que sup X = 1.
- (b) Mostre que a sequência $x_n = 1 \frac{1}{3n^2}$ converge para 1.

(c) O conjunto X é compacto em \mathbb{R} ? Justifique.

Demonstração. Provarei primeiramente (b) e depois (a).

(b) Sabemos que a sequência $z_n=\frac{1}{n}$ converge para 0. Daí

$$-\frac{1}{3n^2} = -\frac{1}{3} \cdot \left[\frac{1}{n} \cdot \frac{1}{n} \right] = -\frac{1}{3} \cdot [z_n \cdot z_n] \longrightarrow -\frac{1}{3} \cdot 0 \cdot 0 = 0.$$

Como a sequência constante $y_n = 1$ converge para 1, temos que

$$x_n = y_n - z_n = 1 - \frac{1}{3n^2} \longrightarrow 1 - 0 = 1.$$

(a) Notemos, inicialmente, que a sequência x_n é monótona limitada. Dados $m, n \in \mathbb{N}$, com m < n, teremos que

$$m < n \Rightarrow m^{2} < n^{2}$$

$$\Rightarrow \frac{1}{n^{2}} < \frac{1}{m^{2}}$$

$$\Rightarrow -\frac{1}{3m^{2}} < -\frac{1}{3n^{2}}$$

$$\Rightarrow 1 - \frac{1}{3m^{2}} < 1 - \frac{1}{3n^{2}}$$

$$= x_{m} < x_{n},$$

Logo (x_n) é monótona crescente. Como ela converge pelo item (b), temos que $1 = \sup X$, pois o conjunto X corresponde a imagem da sequência (x_n) e, como sabemos, toda sequência monótona crescente converge para o supremo do conjunto da sua imagem.

(c) Sabemos, pelo **Teorema de Heine-Borel**, que um conjunto é compacto em \mathbb{R} se, e somente se, é fechado e limitado. Notemos que

$$\overline{X} = X \cup \{1\}.$$

Note que X sequer é fechado. Logo não pode ser compacto.

Exercício 3. Prove que toda coleção de abertos dois a dois disjuntos e não vazio de \mathbb{R} é enumerável.

Demonstração. Seja $\{A_{\lambda}\}_{{\lambda}\in I}$ uma coleção arbitrária de abertos dois a dois disjuntos. Para cada $a\in A_{\lambda}$, existe um intervalo aberto $(a-\varepsilon,a+\varepsilon)$, com $\varepsilon>0$, tal que $a\in (a-\varepsilon,a+\varepsilon)\subset A_{\lambda}$.

Como \mathbb{Q} é denso em \mathbb{R} , todo intervalo aberto em \mathbb{R} contém um número racional. Para cada A_{λ} escolhamos um número racional $\lambda_r \in A_{\lambda}$. A aplicação

$$f \colon \{A_{\lambda}\}_{{\lambda} \in I} \longrightarrow \mathbb{Q}$$

 $A_{\lambda} \longmapsto \lambda_r,$

é injetiva. Logo $\{A_{\lambda}\}_{{\lambda}\in I}$ é enumerável.

Exercício 4. Identifique se as afirmações abaixo são verdadeiras ou falsas, justicando sua resposta:

- (a) Toda sequência monótona limitada é convergente.
- (b) Se $\sum_{n=1}^{\infty} |x_n|$ converge então $\sum_{n=1}^{\infty} x_n$ converge.
- (c) Se a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ é derivável em um ponto $c \in (a, b)$, e f'(c) = 0 então f tem um extremo relativo em c.
- (d) Se $X \subset \mathbb{Q}$ e X é limitado, então existe $b \in \mathbb{Q}$ tal que $b = \sup X$.
- (e) Toda função integrável à Riemann em [a, b] possui primitiva em [a, b].

Demonstração.

(a). Verdade. Isso se dá pelo **Teorema de Convergência Monótona**.

- (b). Verdade. Isso se dá pelo Critério de Cauchy para convergência de séries.
- (c). Falso. Considere a aplicação

$$f \colon [-1, 1] \longrightarrow \mathbb{R}$$

 $x \longmapsto x^3$.

Note que f'(0) = 0, mas f náo possui um extremo relativo em 0.

(e). Falso. Seja X a imagem da sequência

$$x_n = \left(1 + \frac{1}{n}\right)^n.$$

Essa sequência é monótona crescente e limitada. Portanto, converge, pelo **Teorema** de Convergência Monótona. Note que $x_n \longrightarrow e = \sup X$, mas $e \notin \mathbb{Q}$.

(e). Sabemos que: Se $f:I\longrightarrow\mathbb{R}$ é derivável em I então f' não admite descontinuidades de primeira espécie. Considere então a função $f:[1,3]\longrightarrow\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0, & \text{se } x \notin \mathbb{N}. \\ 1, & \text{caso contrário.} \end{cases}$$

Não pode existir uma função $g:[a,b]\longrightarrow \mathbb{R}$ tal que g'=f, pois f admite descontinuidades de primeira espécie.

Exercício 5. Seja $f:[a,b] \longrightarrow \mathbb{R}$ derivável em (a,b) e contínua em [a,b], com f(a)=f(b). Mostre que existe um $c \in (a,b)$ tal que $f(c) \cdot f'(c)=0$.

Demonstração. O **Teorema do Valor Médio** nos garante que existe $c \in (a, b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$\Rightarrow f(c) \cdot f'(c) = f(c) \cdot \frac{0}{b - a} = 0,$$

como queríamos.

4 Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de Verão - Prova 1)

06 de Outubro de 2023

Exercício 1. Mostre que o conjunto \mathbb{Q} dos números racionais é denso em \mathbb{R} .

Demonstração. Seja $(a,b)\subset \mathbb{R}$ não-degenerado. Como b-a>0, existe $p\in \mathbb{N}$ tal que

$$0 < \frac{1}{p} < b - a,$$

pois \mathbb{R} é arquimediano. Consideremos o conjunto

$$S = \left\{ m \in \mathbb{Z} \mid \frac{m}{p} \ge b \right\}.$$

Sabemos que: Todo conjunto de números inteiros limitado inferiormente possui um elemento mínimo.

No caso do conjunto S é fácil ver que se m pertence a S, então $m \ge bp$. Logo S é limitado inferiormente por bp (Isso não significa que bp é o elemento mínimo do conjunto S). Seja $m_0 = \min S$. Como $m_0 - 1 < m_0$, temos que

$$\frac{m_0 - 1}{p} < b.$$

Se fosse

$$\frac{m_0 - 1}{p} < a < b \le \frac{m_0}{p},$$

então

$$b - a < \frac{m_0}{p} - \frac{m_0 - 1}{p} = \frac{1}{p},$$

o que é absurdo. Logo

$$a < \frac{m_0 - 1}{p} < b$$

$$\Leftrightarrow \frac{m_0 - 1}{p} \in (a, b).$$

Ou seja, todo intervalo aberto não-degenerado contém um número racional. Assim, \mathbb{Q} é denso em \mathbb{R} .

Exercícios 2. Considere $f, g: X \longrightarrow \mathbb{R}$ definidas em $X \subset \mathbb{R}$, com $X \neq \emptyset$.

- (a) Mostre que se f e g são não-negativas e limitadas superiormente, então fg: $X \longrightarrow \mathbb{R} \text{ \'e limitada superiormente e sup } (fg) \leq \sup f \cdot \sup g.$
- (b) Dê exemplos mostrando que pode ocorrer sup $(fg) < \sup f \cdot \sup g$.

Demonstração.

(a) Sejam $f,g:X\longrightarrow \mathbb{R}$ não-negativas e limitadas e $\alpha=\sup\,f(X)$ e $\beta=\sup\,g(X).$ Então

$$f(x) < \alpha \quad e \quad g(x) < \beta,$$

para todo $x \in X$. Segue daí que

$$fg(x) = f(x) \cdot g(x)$$

$$< \alpha \cdot \beta$$

$$= \sup f \cdot \sup g,$$

Logo fg é limitada superiormente e sup $fg < \sup \, f \cdot \sup \, g,$ como queríamos mostrar.

(b) Considere as funções $f,g:[0,1]\longrightarrow \mathbb{R}$ dadas por

$$f(x) = \begin{cases} 0, & \text{se } x \in [0, 1). \\ 1, & \text{se } x = 1. \end{cases}$$

e

$$g(x) = \begin{cases} 0, & \text{se } x \in (0, 1]. \\ 1, & \text{se } x = 0. \end{cases}$$

Note que sup $f = \sup g = 1 \text{ mas sup } fg = 0.$

Exercício 3. Seja (a_n) a sequência definida indutivamente por:

$$a_1 = \sqrt{2}$$
 e $a_{n+1} = \sqrt{2 + a_n}$, para $n > 1$.

- (a) Mostre, por indução, que $a_n < 2, \forall n \in \mathbb{N}$.
- (b) Mostre que (a_n) é crescente (sugestão: verifique que $a_{n+1}^2 a_n^2 = (2 a_n)(1 + a_n) > 0$, para $n \ge 1$, então $a_{n+1} > a_n$).
- (c) Conclua, pelos itens anteriores, que (a_n) é convergente e calcule seu limite.

Demonstração.

(a) Por indução, para n=1, temos que

$$a_1 = \sqrt{2} < 2.$$

Suponhamos que a afirmação é válida para um certo n>1, isto é,

$$a_n = \sqrt{2 + a_{n-1}} < 2.$$

Então

$$2 + a_n = 2 + \sqrt{2 + a_{n-1}} < 4,$$

o que implica que

$$a_{n+1} = \sqrt{2+a_n} < \sqrt{4} = 2,$$

como queríamos provar.

(b) Notemos que, para todo $n \in \mathbb{N}$

$$a_{n+1}^2 - a_n^2 = 2 + a_n - a_n^2$$

= $(2 - a_n) \cdot (1 + a_n)$
> 0,

pois $0 < a_n < 2$. Como todos os termos da sequência (a_n) são positivos, segue daí que $a_n < a_{n+1}$.

(c) Os itens (a) e (b) nos garantem que a sequência (a_n) é monótona limitada. Segue do **Teorema de Convergência Monótona** que (a_n) é convergente. Seja

$$S = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}$$

$$\Rightarrow S^2 = 2 + \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}}_{S}.$$

Obtemos então a equação

$$S^2 - S - 2 = 0.$$

cujas soluções são: $S_1 = -1$ e $S_2 = 2$. Como os termos da sequência são números positivos, devemos ter S = 2. Logo lim $a_n = 2$.

Exercício 4. Dizemos que (a_n) é uma sequência de Cauchy quando para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$m, n > n_0 \Rightarrow |a_m - a_n| < \varepsilon.$$

- (a) Mostre que toda sequência convergente é de Cauchy.
- (b) Mostre que se uma sequência de Cauchy tem uma subsequência convergente então a sequência é convergente.
- (c) Mostre que toda sequência de Cauchy é limitada.
- (d) Conclua que uma sequência é convergente se, e somente se, a sequência é de Cauchy.

Demonstração.

(a) Seja $a = \lim a_n$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow |a_n - a| < \frac{\varepsilon}{2}.$$

Então, para todos $m, n > n_0$ temos que

$$|a_m - a_n| \le |a_m - a| + |a_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) é uma sequência de Cauchy.

(b) Sejam (a_n) uma sequência de Cauchy e (a_{n_k}) uma subsequência de (a_n) convergente. Seja $a=\lim a_{n_k}$. Como (a_n) uma sequência de Cauchy, dado $\varepsilon>0$, existe $n_1\in\mathbb{N}$ tal que

$$m, n > n_1 \implies |a_m - a_n| < \frac{\varepsilon}{2}.$$

Da mesma maneira, como lim $a_{n_k}=a,$ dado $\varepsilon>0,$ existe $n_2\in\mathbb{N}$ tal que

$$n_k > n_2 \implies |a_{n_k} - a| < \frac{\varepsilon}{2}.$$

Tomando $n_0 = \max \{n_1, n_2\}$ teremos que

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) converge para a.

(c) Seja (a_n) uma sequência de Cauchy. Tomando $\varepsilon=1,$ existirá $n_0\in\mathbb{N}$ tal que

$$m, n > n_0 \Rightarrow |a_m - a_n| < 1.$$

Fixando $n_0 + 1$ teremos que, para todo $n > n_0$

$$|a_n - a_{n0+1}| < 1$$

 $\Leftrightarrow a_n \in (a_{n0+1} - 1, a_{n0+1} + 1).$

Sejam α e β o maior e menor valor, respectivamente, do conjunto

$$X = \{a_1, a_2, ..., a_{n0}, a_{n0+1} - 1, a_{n0+1} + 1\}.$$

Então $a_n \in [\beta, \alpha]$ para todo $n \in \mathbb{N}$. Portanto (a_n) é uma sequência limitada.

(d) Provaremos a recíproca do item (a). Seja (a_n) uma sequência de Cauchy. Pelo item (c), toda sequência de Cauchy é limitada. Pelo **Teorema de Bolzano - Weierstrass**, toda sequência limitada admite uma subsequência convergente. Pelo item (b) temos que (a_n) é uma sequência convergente, pois admite uma subsequência convergente.

Exercício 5.

- (1) Considere duas sequências de números reais não-negativos (a_n) e (b_n) tais que $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, para algum c > 0. Mostre que $\sum a_n$ converge se, e somente se, $\sum b_n$ converge.
- (2) Use o resultado anterior para estudar a convergência das séries $\sum \frac{2n+1}{(n+1)^2}$ e $\sum \frac{1}{2^n-1}$.

Demonstração.

(1). Tomemos $\varepsilon = \frac{c}{2}$. Existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow \left| \frac{a_n}{b_n} - c \right| < \frac{c}{2}$$

$$\Leftrightarrow \frac{c}{2} < \frac{a_n}{b_n} < \frac{3c}{2}. *$$

 (\Rightarrow) Suponhamos que $\sum a_n$ converge. Então, invertendo a desigualdade * temos que

$$\frac{b_n}{a_n} < \frac{2}{c}$$

$$\Rightarrow b_n < \frac{2}{c} \cdot a_n$$

Como $\sum a_n$ converge, temos que $\sum \frac{2}{c} \cdot a_n$ também convergirá. Segue do **Teste da** Comparação que $\sum b_n$ converge.

- (⇐) Análogo.
- (2) **Não consegui resolver manualmente.** Olhando o WolframAlpha verificamos que

o que, salvo o melhor juízo, não nos dá nenhuma informação. Note também que

Input $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$ Infinite sum $\log(2) - \psi_{\underline{1}}^{(0)}(1)$

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1} = \frac{\log(2) - \psi_{\frac{1}{2}}^{(0)}(1)}{\log(2)} \approx 1.6066$$

Sum convergence
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1} \text{ converges}$$

$$\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2} \text{ diverges to } \infty$$
 e

(Não entendi nada.)

Exercício 6.

- (a) Considere o conjunto $Y = (1, 2) \cup \{0, 3, 4\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. Encontre int $Y \in \overline{Y}$. Além disso diga se Y é aberto, fechado ou nem aberto nem fechado. Justifique.
- (b) Prove que se $K \subset \mathbb{R}$ é compacto então o conjunto

$$S = \{x + y : x, y \in K\}$$

também é compacto.

(c) Dados $A,B\subset\mathbb{R}$ mostre que $\overline{A\cap B}\subset\overline{A}\cap\overline{B}$. Dê um exemplo em que $\overline{A\cap B}\neq\overline{A}\cap\overline{B}$.

Demonstração.

(a) Por definição, int Y é o maior aberto que está contido em Y. Nesse sentido, temos que int Y=(1,2). Sabemos que

$$\overline{A \cup B} = \overline{A} \cup \overline{B}.$$

Então

$$\overline{Y} = \overline{(1,2) \cup \{0,3,4\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}} = \overline{(1,2)} \cup \overline{\{0,3,4\}} \cup \overline{\left\{\frac{1}{n} : n \in \mathbb{N}\right\}}$$

$$= [1,2] \cup \{0,3,4\} \cup \left\{\left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}\right\}$$

$$= [1,2] \cup \{0,3,4\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}.$$

Note que Y não é aberto nem fechado.

(b) Sabemos que: Um conjunto S é compacto se, e somente se, toda sequência de pontos de S admite uma subsequência que converge para um ponto de S.

Seja (a_n) uma sequência de pontos de S. Para todo $n \in \mathbb{N}$ temos que

$$a_n = x_n + y_n,$$

onde $x_n, y_n \in K$. Considere então as sequências (x_n) e (y_n) . Como elas são sequências de um conjunto compacto K, ambas admitem subsequências (x_{n_k}) e (y_{n_k}) , respectivamente, que convergem para algum ponto de K. Segue daí que

$$a_{n_k} = x_{n_k} + y_{n_k},$$

é uma subsequência de (a_n) que converge para algum ponto de S. Logo S é compacto.

(c) Consideremos os conjuntos (0,1) e (1,2). Note que

$$\overline{(0,1) \cap (1,2)} = \overline{\emptyset} = \emptyset,$$

e

$$\overline{(0,1)} \ \cap \ \overline{(1,2)} \ = \ [0,1] \ \cap \ [1,2] \ = \ \{1\}.$$

5 Prova de Seleção para o Mestrado em Matemática 2011.1 (Curso de Verão - Prova 2)

08 de Outubro de 2023

Exercício 1. Seja $f: X \longrightarrow \mathbb{R}$ definida em $X \subset \mathbb{R}$ e $a \in X'$.

Demonstração. Suponhamos que não exista

$$L = \lim_{x \to a} f(x).$$

Fixemos $L \in \mathbb{R}$. Existe então $\varepsilon > 0$ tal que para todo $n \in \mathbb{N}$ podemos obter $x_n \in X$ com

$$0 < |x_n - a| < \frac{1}{n}$$
 e $|f(x_n) - L| \ge \varepsilon$.

Então $x_n \longrightarrow a$ e $f(x_n) \not\longrightarrow L$. Como L é arbitrário, essa sequência diverge.

Exercício 2. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua que se anula nos racionais. Prove que f é identicamente nula.

Demonstração. Seja $a \in \mathbb{R}$. Como \mathbb{Q} é denso em \mathbb{R} , podemos montar uma sequência (x_n) de números racionais que converge para a. Segue da continuidade de f que

$$x_n \longrightarrow a \implies 0 = f(x_n) \longrightarrow f(a).$$

Como o limite de uma sequência sempre é único, e $f(x_n) = 0$, para todo $x_n \in \mathbb{Q}$, temos que f(a) = 0. Logo f é identicamente nula.

Exercício 3. Seja $f: I \longrightarrow \mathbb{R}$ uma função com derivada crescente (decrescente) no intervalo I de \mathbb{R} . Prove que qualquer reta tangente ao gráfico de f só toca esse gráfico no ponto de tangência.

Demonstração. Suponhamos que dado um ponto $a \in I$, a reta g, tangente ao ponto (a, f(a)), corta o gráfico de f em um outro ponto (b, f(b)). SPG, suponhamos a < b. Temos então que

$$f'(a) = \frac{g(b) - g(a)}{b - a} = \frac{f(b) - f(a)}{b - a}.$$

Como f é contínua em [a,b] e derivável em (a,b), o **Teorema do Valor Médio** nos garante que existe um ponto $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Mas aí f'(a) = f'(c) com a < c. Isso é um absurdo pois a derivada é crescente (o mesmo argumento serve para o caso em que a derivada é decrescente).

Exercício 4. Considere uma função contínua $f:I\longrightarrow\mathbb{R}$ definida no intervalo $I\subset\mathbb{R}$. Mostre que se a imagem de f é conjunto enumerável então f é constante.

Demonstração. Suponhamos, por absurdo, que f não seja constante. Então Im(f) consta de pelo menos dois elementos. Sejam $f(\alpha), f(\beta) \in Im(f)$ distintos. SPG, suponhamos $f(\alpha) < f(\beta)$. Segue da continuidade de f e do **Teorema do Valor Intermediário** que o intervalo

$$[f(\alpha), f(\beta)] \subset Im(f).$$

O que é absurdo, uma vez que Im(f) é um conjunto enumerável e, consequentemente, todos os seus subconjuntos são enumeráveis.

Exercício 5. Encontre um contra exemplo para cada uma das seguintes afirmações, justificando sua resposta. Aqui I é um intervalo de \mathbb{R} .

- (a) Se $f: I \longrightarrow \mathbb{R}$ é tal que para algum $a \in \operatorname{int}(I)$ tem-se f'(a) = 0, então a é um ponto máximo ou mínimo local de f.
- (b) Se $f: I \longrightarrow \mathbb{R}$ tal que f tem um ponto de máximo ou mínimo local em $a \in I$ e f é derivável em a, então f'(a) = 0.
- (c) Se $f: I \longrightarrow \mathbb{R}$ é tal que f tem um ponto de máximo ou de mínimo local em $a \in \text{int}(I)$ e f é derivável em a, então f'(a) = 0.
- (d) Se $f: I \longrightarrow \mathbb{R}$ é derivável e crescente então f'(x) > 0 para todo $x \in I$.
- (e) Se $f:[a,b] \longrightarrow \mathbb{R}$ é integrável então existe $g:[a,b] \longrightarrow \mathbb{R}$ tal que g'=f.

Demonstração.

- (a) Consideremos a função $f: [-1,1] \longrightarrow \mathbb{R}$ dada por $f(x) = x^3$. Note que f'(0) = 0, mas 0 não é um mínimo local de f.
- (b) $f:[-1,1] \longrightarrow \mathbb{R}$ dada por $f(x)=x^3$. Note que -1 é um mínimo local de f e f'(-1)=3.
- (c) Isso aqui é verdade.
- (d) Consideremos a função $f:[0,1] \longrightarrow \mathbb{R}$ dada por $f(x)=x^3$. Note que f é crescente mas f'(0)=0.
- (e). Sabemos que: Se $f:I\longrightarrow\mathbb{R}$ é derivável em I então f' não admite descontinuidades de primeira espécie. Considere então a função $f:[1,3]\longrightarrow\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0, & \text{se } x \notin \mathbb{N}. \\ 1, & \text{caso contrário.} \end{cases}$$

Não pode existir uma função $g:[a,b]\longrightarrow \mathbb{R}$ tal que g'=f, pois f admite descontinuidades de primeira espécie. \Box

Exercício 6. Mostre que se $f:[a,b]\longrightarrow \mathbb{R}$ é contínua, $f\geq 0$ e f(c)>0 para algum $c\in [a,b]$ então $\int\limits_a^b f(x)dx>0$.

Demonstração. Sendo f contínua em ce sendo f(c)>0,existe uma vizinhança de c de raio $\delta>0$ tal que

$$|x-c| < \delta \Rightarrow f(x) > \frac{f(c)}{2},$$

pelo Teorema da Conservação de Sinal. Seja $[\beta_1, \beta_2] \subset (c - \delta, c + \delta) \subset [a, b]$. Então

$$0 < \frac{f(c)(\beta_2 - \beta_1)}{2} \le \int_{\beta_1}^{\beta_2} f(x) dx.$$

Daí

$$\int_{a}^{b} f(x)dx = \int_{a}^{\beta_{1}} f(x)dx + \int_{\beta_{1}}^{\beta_{2}} f(x)dx + \int_{\beta_{2}}^{b} f(x)dx > 0,$$

uma vez que

$$\int_{a}^{\beta_1} f(x)dx, \int_{\beta_2}^{b} f(x)dx \ge 0$$

.

Exercício 7. Seja $f:[a,b] \longrightarrow \mathbb{R}$ derivável, com f' integrável. Prove que para quaisquer $x,c \in [a,b]$ tem-se

$$f(x) = f(c) + \int_{c}^{x} f'(t)dt.$$

Demonstração. Fixado $c \in [a, b]$, considere a função

$$g: [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto f(c) + \int_{c}^{x} f'(t)dt.$

Sabemos que duas funções são iguais se, e somente se, possuem o mesmo domínio, o mesmo contradomínio e a mesma lei de formação. Note agora que, para todo $\alpha \in [a,b]$, temos

$$f(\alpha) = f(c) + \int_{c}^{\alpha} f'(t)dt$$

$$= f(c) + f(\alpha) - f(c) \text{ (Pelo Teorema Fundamental do Calculo)}$$

$$= f(\alpha).$$

Logo f = g. Assim,

$$f(x) = f(c) + \int_{c}^{x} f'(t)dt,$$

para quaisquer $x, c \in [a, b]$.

6 Prova de Seleção para o Mestrado em Matemática 2012.1

09 de Outubro de 2023

Exercício 1.

- (a) Defina o que vem a ser um conjunto enumerável em \mathbb{R} .
- (b) Mostre que se A e B são conjuntos enumeráveis de $\mathbb R$ então $A \cup B$ é enumerável.

Demonstração.

- (a) Um conjunto $X \subset \mathbb{R}$ é dito enumerável se é finito ou se está em bijeção com o conjunto \mathbb{N} dos números naturais.
- (b) Sabemos que
 - (a) Se X é um conjunto enumerável e $f: X \longrightarrow Y$ é uma função sobrejetiva, então Y é enumerável.
 - (b) O produto cartesiano finito de conjuntos enumeráveis é enumerável.

Como A e B são conjuntos enumeráveis, existem funções sobrejetivas $f_1: \mathbb{N} \longrightarrow A$ e $f_2: \mathbb{N} \longrightarrow B$. Como $\{1,2\}$ e \mathbb{N} são conjuntos enumeráveis, o conjunto $\{1,2\} \times \mathbb{N}$ é enumerável. Considere então a função

$$f: \{1, 2\} \times \mathbb{N} \longrightarrow A \cup B$$

 $(m, n) \longmapsto f_m(n).$

Notemos que essa função é sobrejetiva. Se tomarmos $x \in A \cup B$ então $x \in A$ ou $x \in B$. Se $x \in A$ então existe $n \in \mathbb{N}$ tal que

$$f(1,m) = f_1(n) = x.$$

Da mesma maneira, se $x \in B$ então existe $m \in \mathbb{N}$ tal que

$$f(2,m) = f_2(m) = x.$$

Logo f é sobrejetiva. Segue do item (a) que $A \cup B$ é um conjunto enumerável.

Provaremos os seguintes lemas antes de darmos início a resolução da questão 2.

Lema 1. Toda sequência de Cauchy é limitada.

Demonstração. Seja (a_n) uma sequência de Cauchy. Tomando $\varepsilon=1$, existirá $n_0\in\mathbb{N}$ tal que

$$m, n > n_0 \Rightarrow |a_m - a_n| < 1.$$

+ Fixando $n_0 + 1$ teremos que, para todo $n > n_0$

$$|a_n - a_{n0+1}| < 1$$

 $\Leftrightarrow a_n \in (a_{n0+1} - 1, a_{n0+1} + 1).$

Sejam α e β o maior e menor valor, respectivamente, do conjunto

$$X = \{a_1, a_2, ..., a_{n0}, a_{n0+1} - 1, a_{n0+1} + 1\}.$$

Então $a_n \in [\beta, \alpha]$ para todo $n \in \mathbb{N}$. Portanto (a_n) é uma sequência limitada.

Lema 2. Se uma sequência de Cauchy admite uma subsequência convergente, então ela própria é convergente.

Demonstração. Sejam (a_n) uma sequência de Cauchy e (a_{n_k}) uma subsequência de (a_n) convergente. Seja $a=\lim a_{n_k}$. Como (a_n) uma sequência de Cauchy, dado $\varepsilon>0$, existe $n_1\in\mathbb{N}$ tal que

$$m, n > n_1 \implies |a_m - a_n| < \frac{\varepsilon}{2}.$$

Da mesma maneira, como lim $a_{n_k}=a,$ dado $\varepsilon>0,$ existe $n_2\in\mathbb{N}$ tal que

$$n_k > n_2 \implies |a_{n_k} - a| < \frac{\varepsilon}{2}.$$

Tomando $n_0 = \max \{n_1, n_2\}$ teremos que

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) converge para a.

Exercício 2. Uma sequência $(x_n)_n \subset \mathbb{R}$ é dita sequência de Cauchy se para cada $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que se $n, m \ge n_0$ então $|x_n - x_m| < \varepsilon$.

- (a) Mostre que se $(x_n)_n$ é convergente então $(x_n)_n$ é uma sequência de Cauchy.
- (b) Mostre que se $(x_n)_n$ é uma sequência de Cauchy então $(x_n)_n$ é convergente.

Demonstração.

(a) Seja $a = \lim a_n$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow |a_n - a| < \frac{\varepsilon}{2}.$$

Então, para todos $m, n > n_0$ temos que

$$|a_m - a_n| \le |a_m - a| + |a_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo (a_n) é uma sequência de Cauchy.

(b) Provaremos a recíproca do item (a). Seja (a_n) uma sequência de Cauchy. Pelo **Lema 1** temos que toda sequência de Cauchy é limitada. Pelo **Teorema de Bolzano** - **Weierstrass**, toda sequência limitada admite uma subsequência convergente. Pelo **Lema 2** temos que (a_n) é uma sequência convergente, pois admite uma subsequência convergente.

Exercício 3. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 + \frac{1}{q}, & \text{se } x = \frac{p}{q} \in \mathbb{Q}. \\ 1, & \text{caso contrário.} \end{cases}$$

- (a) Mostre que f é contínua em $\mathbb{R} \setminus \mathbb{Q}$ e é descontínua em \mathbb{Q} .
- (b) A função f é integrável em [0,1]? Justifique!

Demonstração.

(a) Seja $\frac{p}{q}$ um número racional. Consideremos a sequência $\frac{p}{q}+\frac{1}{n}.$ É claro que

$$\frac{p}{q} + \frac{1}{n} \longrightarrow \frac{p}{q},$$

e

$$f\left(\frac{p}{q} + \frac{1}{n}\right) = f\left(\frac{np+q}{qn}\right) = 1 + \frac{1}{qn} \longrightarrow 1.$$

Note porém que

$$f\left(\frac{p}{q}\right) = 1 + \frac{1}{q}.$$

Logo f é descontínua em $\frac{p}{q}$. Como f é arbitrário, temos que f é descontínua em \mathbb{Q} .

Sabemos que se $x \in \mathbb{R} \setminus \mathbb{Q}$ e $\left(\frac{p_n}{q_n}\right) \subset \mathbb{Q}$ é tal que $\frac{p_n}{q_n} \longrightarrow x$, então $q_n \longrightarrow \infty$.

Sejam i um número irracional e (x_n) uma sequência de pontos em \mathbb{R} que converge para i. Se (x_n) constar apenas de números irracionais, então

$$1 = f(x_n) \longrightarrow f(i) = 1.$$

Se (x_n) for da forma $x_n = \frac{p_n}{q_n}$ onde p_n e q_n são inteiros , então

$$f\left(\frac{p_n}{q_n}\right) = 1 + \frac{1}{q_n} \longrightarrow 1.$$

Por fim, se (x_n) consta de termos racionais e irracionais, então para n suficientemente grande, a sequência congervirá para 1. Logo f é contínua em $\mathbb{R} \setminus \mathbb{Q}$.

(b) Sabemos que uma função $f:[a,b] \longrightarrow \mathbb{R}$ é integrável se, e somente se, o conjunto dos seus pontos de descontinuidade tem medida nula. Como sabemos, \mathbb{Q} é enumerável e, portanto, tem medida nula. Como f é descontínua em \mathbb{Q} , temos que f é integrável.

Exercício 4. Suponha que $f:[0,\infty)\longrightarrow\mathbb{R}$ seja derivável, com f(0)=0, e que $f':(0,\infty)\longrightarrow\mathbb{R}$ seja crescente. Mostre que a função $g:(0,\infty)\longrightarrow\mathbb{R}$ definida por $g(x)=\frac{f(x)}{x}$ é crescente em $(0,\infty)$.

Demonstração. Sabemos que se uma função possui derivada positiva em todos os pontos de um intervalo I então ela é crescente em I. Provaremos agora que a derivada da função g é positiva no intervalo $(0, \infty)$.

Dado x > 0, existe $c \in (0, x)$ tal que

$$\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} = f'(c).$$

Como f' é crescente, e x > c, temos que

$$f'(x) > f'(c)$$

$$f'(x) > \frac{f(x)}{x}$$

$$\Rightarrow f'(x) \cdot x > f(x)$$

$$\Rightarrow f'(x) \cdot x - f(x) > 0$$

$$\Rightarrow \frac{f'(x) \cdot x - f(x)}{x^2} > 0,$$

para todo $x \in (0, \infty)$. Como

$$g'(x) = \frac{f'(x) \cdot x - f(x)}{r^2},$$

g é uma função crescente. Exercício 5.

- (a) Sejam $f, g : [a, b] \longrightarrow \mathbb{R}$ contínuas, com g(a) < f(a) e f(b) < g(b). Mostre que existe $c \in (a, b)$ tal que f(c) = g(c).
- (b) Sendo $D = \mathbb{R} \setminus \{\pm k\pi : k \in \mathbb{N}\}$, através do item (a) mostre que a função $h: D \longrightarrow \mathbb{R}$ definida por $h(x) = x \cot g(x)$ possui infinitas raízes.

Demonstração.

(a) Consideremos a função contínua

$$g - f \colon [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) - f(x).$$

Notemos que

Plots

$$g(a) - f(a) < 0$$
 e $g(b) - f(b) > 0$.

Segue do **Teorema do Valor Intermediário** que existe $c \in (a, b)$ tal que

$$g(c) - f(c) = 0$$

 $\Leftrightarrow g(c) = f(c).$

(b) (Não consegui resolver essa). Olhando o Wolfram Alpha vemos que de fato existem infinitas raízes

Posso estar enganado, mas essa questão parecer ser do tipo que foi elaborada para ninguém acertar, com base nesse link: Closed form of cotx = x.

Exercício 6. Seja $f:[a,b]\longrightarrow \mathbb{R}$ contínua. Mostre que f é integrável em [a,b].

Demonstração. O Critério de Riemann para integrabilidade nos garante que uma função limitada $f:[a,b] \longrightarrow \mathbb{R}$ é Riemann-integrável se, e somente se, para qualquer $\varepsilon > 0$ existe uma partição P de [a,b] (que pode depender de ε) que é tal que $S(f;P) - s(f;P) < \varepsilon$. Sabemos também que toda função $f:[a,b] \longrightarrow \mathbb{R}$ contínua é uniformemente contínua.

Dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b-a}.$$

Seja $P = \{a = a_1, a_2, ..., a_n = b\}$ uma partição de [a, b] tal que todos os intervalos $[a_{i-1}, a_i]$ tem comprimento menor que δ . Como f é contínua, o **Teorema de Weierstrass** nos garante que f atinge seus extremos em cada um desses intervalos $[a_{i-1}, a_i]$. Sejam $m_i = \min f([a_{i-1}, a_i])$ e $M_i = \max f([a_{i-1}, a_i])$ e $w_i = M_i - m_i$. Segue daí que

$$S(f; P) - s(f; P) = \sum_{i=1}^{n} w_i(t_i - t_{i-1})$$

$$< \sum_{i=1}^{n} \frac{\varepsilon}{b - a} \cdot (t_i - t_{i-1})$$

$$= \varepsilon.$$

Logo f é integrável.

7 Prova de Seleção para o Mestrado em Matemática 2013.1

13 de Outubro de 2023

Exercício 1.

- (a) Dê a definição de conjunto aberto em \mathbb{R} e de conjunto fechado em \mathbb{R} .
- (b) Mostre que se $A \subset \mathbb{R}$ é aberto, então $\mathbb{R} A$ é fechado.
- (c) O que é a fronteira ∂X de um conjunto $X \subset \mathbb{R}$?
- (d) Dê exemplo de um conjunto X em que ∂X é aberto em \mathbb{R} .

Demonstração.

(a) **Definição 1.** Seja $X \subset \mathbb{R}$. Diremos que $x \in X$ é um ponto interior de X quando existe $\varepsilon > 0$ tal que

$$(x - \varepsilon, x + \varepsilon) \subset X$$
.

Definição 2 (Conjunto aberto) Um conjunto $X \subset \mathbb{R}$ é dito aberto quando todos os seus pontos são pontos interiores.

Definição 3 (Conjunto fechado) Um conjunto $F \subset \mathbb{R}$ é dito fechado quando toda sequência convergente de pontos de F converge para algum ponto de F.

(b) Suponhamos que $\mathbb{R} - A$ não é fechado. Então existe uma sequência (f_n) de pontos de F que converge para algum ponto fora de F. Seja $x = \lim f_n$. Então $x \in A$. Como A é aberto, existe $\varepsilon > 0$ tal que

$$(x-\varepsilon,x+\varepsilon)\subset A.$$

Como (f_n) é convergente, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |f_n - x| < \varepsilon$$

 $\Leftrightarrow f_n \in (x - \varepsilon, x + \varepsilon) \subset A,$

o que é absurdo. Logo $\mathbb{R}-A$ é fechado.

(c) Seja $X\subset\mathbb{R}$. Diremos que $x\in\mathbb{R}$ é um ponto de ponto de fronteira de X quando, para todo $\varepsilon>0$, temos que

$$(x - \varepsilon, x + \varepsilon) \cap X \neq \emptyset$$
 e $(x - \varepsilon, x + \varepsilon) \cap X^c \neq \emptyset$.

Denotamos por ∂X o conjunto de todos os pontos de fronteira de X e o chamaremos de fronteira de X.

(d) Sabemos que um conjunto A é aberto se, e somente se, $A \cap \partial A = \emptyset$. Como \mathbb{R} é aberto, temos que

$$\mathbb{R} \cap \partial \mathbb{R} = \emptyset$$
$$\Rightarrow \partial \mathbb{R} = \emptyset,$$

uma vez que $\partial \mathbb{R} \subset \mathbb{R}$. Como sabemos, \emptyset é um aberto de \mathbb{R} .

Exercício 2.

- (a) Prove que toda sequência de números reais monótona e limitada é convergente.
- (b) Considere a sequência $(a_n)_{n\in\mathbb{N}}$ definida recursivamente por

$$a_1 = \sqrt{2}, \ a_n = \sqrt{2 + a_{n-1}}, \ n > 1$$

Prove que $(a_n)_{n\in\mathbb{N}}$ é convergente e calcule o seu limite.

Demonstração.

(a) Sem perda de generalidade, suponhamos que $(a_n)_{n\in\mathbb{N}}$ é uma sequência crescente. Seja $\alpha = \sup\{a_n \; ; \; n\in\mathbb{N}\}$. Afirmamos que $\alpha = \lim a_n$. Dado $\varepsilon > 0$, temos que $\alpha - \varepsilon$ não é cota superior de $\{a_n \; ; \; n\in\mathbb{N}\}$. Sendo assim, existe $n_0\in\mathbb{N}$ tal que

$$\alpha - \varepsilon < a_{n0}$$
.

Como $(a_n)_{n\in\mathbb{N}}$ é uma sequência crescente, temos que

$$\alpha - \varepsilon < a_n \le \alpha < \alpha + \varepsilon,$$

para todo $n > n_0$. Ou seja

$$n > n_0 \Rightarrow |a_n - \alpha| < \varepsilon.$$

Logo $a_n \longrightarrow \alpha$. De forma análoga provamos o caso em que $(a_n)_{n \in \mathbb{N}}$ é decrescente. Os casos **não-decrescente** e **não-crescente** são totalmente análogos.

- (b) Provaremos os itens (c) e (d) para concluir que $(a_n)_{n\in\mathbb{N}}$ é convergente.
- (c) $a_n < 2$, para todo $n \in \mathbb{N}$.

Por indução, para n = 1, temos que

$$a_1 = \sqrt{2} < 2.$$

Suponhamos que a afirmação é válida para um certo n>1, isto é,

$$a_n = \sqrt{2 + a_{n-1}} < 2.$$

Então

$$2 + a_n = 2 + \sqrt{2 + a_{n-1}} < 4,$$

o que implica que

$$a_{n+1} = \sqrt{2 + a_n} < \sqrt{4} = 2,$$

como queríamos provar.

(d) $(a_n)_{n\in\mathbb{N}}$ é uma sequência crescente.

Notemos que, para todo $n \in \mathbb{N}$

$$a_{n+1}^2 - a_n^2 = 2 + a_n - a_n^2$$

= $(2 - a_n) \cdot (1 + a_n)$
> 0.

pois $0 < a_n < 2$. Como todos os termos da sequência $(a_n)_{n \in \mathbb{N}}$ são positivos, segue daí que $a_n < a_{n+1}$. Os itens (c) e (d) nos garantem que a sequência $(a_n)_{n \in \mathbb{N}}$ é monótona limitada. Segue do item (a) que $(a_n)_{n \in \mathbb{N}}$ é uma sequência convergente. Seja

$$S = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}$$

$$\Rightarrow S^2 = 2 + \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\dots}}}}}_{S}.$$

Obtemos então a equação

$$S^2 - S - 2 = 0,$$

cujas soluções são: $S_1 = -1$ e $S_2 = 2$. Como os termos da sequência são números positivos, devemos ter S = 2. Logo lim $a_n = 2$.

Exercício 3. Sejam $f,g:[a,b]\longrightarrow \mathbb{R}$ funções contínuas e deriváveis em [a,b]. Mostre que:

- (a) Se f(a) = f(b), então existe $c \in (a, b)$ onde f'(c) = 0.
- (b) Se f(a) = g(a) e f(b) = g(b), então existe $c \in (a, b)$ onde f'(c) = g'(c).

Demonstração.

(a) Se f é contínua e derivável em [a,b] então existe, pelo **Teorema do Valor** Médio, $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$= \frac{f(a) - f(a)}{b - a}$$
$$= 0.$$

(b) Novamente, pelo **Teorema do Valor Médio**, existe $c \in (a, b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$= \frac{g(b) - g(a)}{b - a}$$
$$= g'(c).$$

Exercício 4. Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada integrável. Defina

$$F(x) = \int_{a}^{x} f(t)dt, \ x \in [a, b].$$

(a) Mostre que F é contínua em [a, b].

- (b) Prove que se f é contínua em $x_0 \in (a, b)$ então F é derivável em x_0 e $F'(x_0) = f(x_0)$.
- (c) Seja $g:[0,\infty)\longrightarrow \mathbb{R}$ definida por $g(x)=\int_0^x e^{-t^2}dt$. Mostre que g é estritamente crescente.

Demonstração.

(a) Seja $\alpha > 0$ tal que $|f(x)| < \alpha$, para todo $x \in [a, b]$. Dados $x, y \in [a, b]$ temos que

$$\left| F(x) - F(y) \right| = \left| \int_{a}^{x} f(t)dt - \int_{a}^{y} f(t)dt \right|$$
$$= \left| \int_{y}^{x} f(t)dt \right|$$
$$\leq \int_{y}^{x} \left| f(t)dt \right|$$
$$\leq \alpha \cdot |x - y|.$$

Ou seja, F é lipschitiziana e, portanto, é contínua.

(b) Dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|t-c| < \delta \Rightarrow |f(t)-f(c)| < \varepsilon.$$

Então, se $0 < h < \delta$ e $c + h \in [a, b]$ temos que

$$\int_{c}^{c+h} f(t)dt = F(c+h) - F(c)$$
 e $hf(c) = \int_{c}^{c+h} f(c)dt$.

Note que

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| = \frac{1}{h} \cdot \left| \int_{c}^{c+h} \left[f(t) - f(c) \right] dt \right|$$

$$\leq \frac{1}{h} \cdot \int_{c}^{c+h} \left| f(t) - f(c) \right| dt$$

$$\leq \frac{1}{h} \cdot \varepsilon \cdot h$$

$$= \varepsilon.$$

Logo F é derivável a direita e vale $F'_+(c) = f(c)$. De forma análoga provamos que F e derivável a esquerda e vale $F'_-(c) = f(c)$. Assim, concluimos que F'(c) = f(c).

(c) Sabemos, pelo **Teorema Fundamental do Cálculo**, que

$$g'(x) = e^{-x^2} = \frac{1}{e^{x^2}}.$$

Como g'(x)>0 para todo $x\in [a,b],$ temos que g é estritamente crescente.

Exercício 5. Não consegui fazer essa.

8 Prova de Seleção para o Mestrado em Matemática 2013.2

13 de Outubro de 2023

Exercício 1.

- (a) Mostre que toda sequência monótona limitada é convergente.
- (b) Mostre que se $\sum_{n=1}^{\infty} x_n$ for convergente e $x_n \ge 0, \forall n \in \mathbb{N}$ então $\sum_{n=1}^{\infty} \frac{\sqrt{x_n}}{n}$ converge.
- (c) Para quais valores de $x \in \mathbb{R}$ a série $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ converge.

Demonstração.

(a) Sem perda de generalidade, suponhamos que $(a_n)_{n\in\mathbb{N}}$ é uma sequência crescente. Seja $\alpha = \sup\{a_n \; ; \; n\in\mathbb{N}\}$. Afirmamos que $\alpha = \lim a_n$. Dado $\varepsilon > 0$, temos que $\alpha - \varepsilon$ não é cota superior de $\{a_n \; ; \; n\in\mathbb{N}\}$. Sendo assim, existe $n_0\in\mathbb{N}$ tal que

$$\alpha - \varepsilon < a_{n0}$$
.

Como $(a_n)_{n\in\mathbb{N}}$ é uma sequência crescente, temos que

$$\alpha - \varepsilon < a_n \le \alpha < \alpha + \varepsilon,$$

para todo $n > n_0$. Ou seja

$$n > n_0 \Rightarrow |a_n - \alpha| < \varepsilon.$$

Logo $a_n \longrightarrow \alpha$. De forma análoga provamos o caso em que $(a_n)_{n \in \mathbb{N}}$ é decrescente. Os casos **não-decrescente** e **não-crescente** são totalmente análogos.

(b) Notemos inicialmente que

$$0 \leq \left(x_n - \frac{\sqrt{x_n}}{n}\right)^2$$

$$\Leftrightarrow 0 \leq x_n^2 - \frac{2x_n\sqrt{x_n}}{n} + \frac{x_n}{n^2}$$

$$\Leftrightarrow \frac{2x_n\sqrt{x_n}}{n} \leq x_n^2 + \frac{x_n}{n^2}$$

$$\Leftrightarrow \frac{\sqrt{x_n}}{n} \leq \frac{x_n}{2} + \frac{1}{2n^2}$$

$$\Rightarrow \sum \frac{\sqrt{x_n}}{n} \leq \sum \frac{x_n}{2} + \frac{1}{2n^2}$$

$$= \sum \frac{x_n}{2} + \sum \frac{1}{2n^2}.$$

Como $\sum \frac{x_n}{2}$ e $\sum \frac{1}{2n^2}$ são séries convergentes de termos não negativos, então a série $\sum \frac{\sqrt{x_n}}{n}$ converge, uma vez que também é uma série de termos não negativos.

(c) Se x=0 então a série claramente convergirá. Suponhamos então $x\neq 0$. Utilizando o **Critério de D'Alembert** podemos verificar que a série convergirá desde que

$$\lim_{n \to \infty} \frac{\frac{x^2}{(1+x^2)^{n+1}}}{\frac{x^2}{(1+x^2)^n}} = \lim_{n \to \infty} \frac{x^2}{(1+x^2)^{n+1}} \cdot \frac{(1+x^2)^n}{x^2}$$

$$= \lim_{n \to \infty} \frac{(1+x^2)^n}{(1+x^2)^{n+1}}$$

$$= \lim_{n \to \infty} \frac{1}{(1+x^2)}$$

$$= \frac{1}{(1+x^2)}$$

$$< 1.$$

Isso se verifica com $x \neq 0$. Logo a série em questão converge para qualquer x real.

Exercício 2. Mostre que se $f:\mathbb{R}\longrightarrow\mathbb{Q}$ é contínua então f é constante.

Demonstração. Seja $f: \mathbb{R} \longrightarrow \mathbb{Q}$ contínua. Se Im(f) consta de apenas um único ponto, então f claramente é constante. Suponhamos agora que Im(f) possui mais de um ponto. Tomemos então $\alpha, \beta \in Im(f)$ com $\alpha < \beta$. Como $\mathbb{R} \setminus \mathbb{Q}$ é denso em

 \mathbb{R} , existe algum número irracional σ que pertence ao intervalo (α, β) . O **Teorema do Valor Intermediário** nos garante que para cada $\psi \in (\alpha, \beta)$ existe $c \in \mathbb{R}$ tal que $f(c) = \psi$. Sendo assim, existe $d \in \mathbb{R}$ tal que $f(d) = \sigma$. Mas isso é absurdo pois $Im(f) \subset \mathbb{Q}$. Logo f é constante.

Exercício 3. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ contínua. Mostre que se $\lim_{x \longrightarrow \infty} f(x) = 0$ e $\lim_{x \longrightarrow -\infty} f(x) = 0$ então f é limitada.

Demonstração. Dado $\varepsilon = 1$, existem N, M > 0 tais que

$$x > N \Rightarrow |f(x)| < 1,$$

e

$$x < -M \Rightarrow |f(x)| < 1.$$

Consideremos agora o intervalo [-M, N]. Como f é contínua, o **Teorema de Weierstrass** nos garante que f atinge seus extremos nesse intervalo. Logo f é limitada.

Exercício 4. Seja $f: I \longrightarrow \mathbb{R}$ uma função definida no intervalo $I \subset \mathbb{R}$. Dizemos que f é Lipschitz em I se existe C > 0 tal que $|f(x) - f(y)| \le C|x - y|, \ \forall x, y \in I$. Suponha que f é derivável em I. Prove que f é Lipschitz em I se, e somente se, f' é limitada em I.

Demonstração.

 \Rightarrow Suponhamos que $f:I\longrightarrow \mathbb{R}$ é Lipschitz e derivável em I. Para todos $x,y\in I$ temos que

$$|f(x) - f(y)| \le C \cdot |x - y|$$

 $\Leftrightarrow \left| \frac{f(x) - f(y)}{x - y} \right| \le C.$

Segue do fato que a função modular é contínua que

$$\lim_{x \to y} \left| \frac{f(x) - f(y)}{x - y} \right| = \left| \lim_{x \to y} \frac{f(x) - f(y)}{x - y} \right|$$
$$= |f'(y)|$$
$$\leq \lim_{x \to y} C$$
$$= C.$$

Logo f' é limitada em I.

 \Leftarrow Suponhamos que f' seja limitada. Então existe C>0 tal que para cada $x\in I$, $|f'(x)|\leq C$. Sejam $x,y\in I$. SPG, suponhamos y< x. O **Teorema do Valor Médio** nos garante que existe $c\in (x,y)$ tal que

$$\frac{f(x) - f(y)}{x - y} = f'(c)$$

$$\Rightarrow \left| \frac{f(x) - f(y)}{x - y} \right| = |f'(c)|$$

$$\leq C$$

$$\Rightarrow |f(x) - f(y)| \leq C \cdot |x - y|.$$

Logo f é Lipschitiziana.

Exercício 5. Seja $f:[a,b] \longrightarrow \mathbb{R}$ contínua. Mostre que se $\int_x^y f(s)ds = 0, \ \forall x,y \in [a,b]$ então $f(x) = 0, \ \forall x \in [a,b]$.

Demonstração. Ponhamos

$$F(x) = \int_a^x f(t)dt.$$

Segue do Teorema Fundamental do Cálculo e da Regra da Cadeia que

$$F'(x) = f(x) = 0,$$

para todo $x \in [a, b]$.

9 Prova de Seleção para o Mestrado em Matemática 2015.1

20 de Outubro de 2023

Exercício 1. Seja a>0 e $(a_n)_{n\in\mathbb{N}}$ a sequência definidada indutivamente por

$$a_1 = a, \quad a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right).$$

Mostre que $(a_n)_{n\in\mathbb{N}}$ é convergente e calcule o seu limite.

Demonstração. Não consegui essa.

Exercício 2. Sejam $N_1 \subset \mathbb{N}$ e $N_2 \subset \mathbb{N}$ tais que $N_1 \cup N_2 = \mathbb{N}$. Seja (x_n) uma sequência cujas restrições a N_1 e N_2 convergem para o mesmo limite L. Mostre que (x_n) converge para L.

Demonstração. Sejam $(x_{s'})$ e $(x_{m'})$ as subsequências geradas através das restrições de (x_n) a N_1 e N_2 , respectivamente. Dado $\varepsilon > 0$, existem $s_0, m_0 \in \mathbb{N}$ tais que

$$s' > s_0 \Rightarrow |x_{s'} - L| < \varepsilon \text{ e } m' > m_0 \Rightarrow |x_{m'} - L| < \varepsilon.$$

Seja $n_0 = \max\{s_0, m_0\}$. Então

$$n > n_0 \Rightarrow |x_n - L| < \varepsilon.$$

Logo $x_n \longrightarrow L$, uma vez que para todo $n > n_0, x_n \in x_n(N_1)$ ou $x_n \in x_n(N_2)$.

Exercício 3. Sobre funções contínuas:

- (a) Prove que $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua se, e somente se, para todo $X \subset \mathbb{R}$, tem-se $f(\overline{X}) \subset \overline{f(X)}$.
- (b) Prove que se $f:X\longrightarrow \mathbb{R}$ é contínua e X é compacto, então f é uniformemente contínua.

Demonstração.

(a)

 \Rightarrow Sejam $X\subset\mathbb{R}$ e $a\in\overline{X}.$ Segue da continuidade de f que para todo $\varepsilon>0,$ existe $\delta>0$ tal que

$$|z-a| < \delta \Rightarrow |f(z)-f(a)| < \varepsilon$$
.

Como $a \in \overline{X}$, temos que

$$[(a - \delta, a + \delta) - \{a\}] \cap X \neq \emptyset.$$

Ou seja, existe pelo menos um $x \in X$ tal que

$$|x-a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

$$\Leftrightarrow f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon).$$

Como $\varepsilon > 0$ é arbitrário, temos que $f(a) \in \overline{f(X)}$.

 \Leftarrow Suponhamos que para todo $X \subset \mathbb{R}$ tem-se $f(\overline{X}) \subset \overline{f(X)}$. Provaremos agora que f é contínua. Sabemos que: **Uma função** f **é contínua se, e somente se, a imagem inversa de um conjunto fechado é também um conjunto fechado**. A demonstração dessa afirmação pode ser encontrada em https://encurtador.com.

br/aIQVY>. Dado um conjunto fechado $C \subset \mathbb{R}$, seja $D = f^{-1}(C)$. Provaremos agora que D é fechado.

$$f(\overline{D}) \subset \overline{f(D)} \ = \ \overline{f(f^{-1}(C))} \subset C.$$

Note que

$$f(\overline{D}) \subset \overline{f(f^{-1}(C))} \Leftrightarrow \overline{D} \subset f^{-1}(C)$$
$$\Leftrightarrow \overline{D} \subset D.$$

Como $D \subset \overline{D}$ por definição, temos que $D = \overline{D}$. Segue daí que f é contínua.

(b) Como f é contínua em cada ponto $x_0\in X,$ podemos, dado $\varepsilon>0,$ encontrar $\delta_{x_0}>0$ tal que

$$|x-x_0| < \delta_{x_0} \Rightarrow |f(x)-f(x_0)| < \frac{\varepsilon}{2}.$$

A coleção

$$\mathcal{F} = \left\{ \left(x_0 - \frac{\delta_{x_0}}{2}, x_0 + \frac{\delta_{x_0}}{2} \right) \; ; \; x_0 \in X \right\}$$

é uma cobertura aberta de X. Como X é compacto, então $\mathcal F$ admite uma subcobertura finita

$$\mathcal{F}' = \left\{ \left(x_i - \frac{\delta_{x_i}}{2}, x_i + \frac{\delta_{x_i}}{2} \right) ; \ x_i \in X, \ 1 \le i \le n \right\}.$$

Sejam

$$\delta = \min \left\{ \frac{\delta_{x_i}}{2} ; 1 \le i \le n \right\},$$

e $x, y \in X$ tais que

$$|x-y| < \delta$$
.

É claro que $x \in \left(x_k - \frac{\delta_{x_k}}{2}, x_k + \frac{\delta_{x_k}}{2}\right)$, para algum $1 \le k \le n$. Pela desigualdade triangular temos que

$$|x-y| \le \underbrace{|x-x_k|}_{< \underbrace{\delta_{x_k}}_{2}} + |x_k-y|,$$

onde

$$|x_k - y| \le \underbrace{|x_k - x| + |x - y|}_{< \frac{\delta_{x_k}}{2} + \delta < \delta_{x_k}}.$$

Assim

$$|x - x_k| < \frac{\delta_{x_k}}{2} \Rightarrow |f(x) - f(x_k)| < \frac{\varepsilon}{2}.$$

$$|x_k - y| < \delta_{x_k} \Rightarrow |f(x_k) - f(y)| < \frac{\varepsilon}{2}.$$

Portanto

$$|x - y| < \delta \Rightarrow |f(x) - f(y)|$$

 $\leq |f(x) - f(x_k)| + |f(x_k) - f(y)|$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$
 $= \varepsilon.$

Logo f é uniformemente contínua.

Exercício 4. Seja \mathbb{R} derivável. Assuma que para todo $x \in \mathbb{R}$ tenha-se $0 \le f'(x) \le f(x)$. Conclua que

- (a) A função $g(x) = e^{-x} f(x)$ é não crescente.
- (b) Se f anula-se em algum ponto então f é identicamente nula.

Demonstração.

(a) Note que

$$g'(x) = e^{-x} \cdot f'(x) + f(x) \cdot \left(-\frac{e^x}{[e^x]^2} \right)$$

$$= \frac{f'(x)}{e^x} - \frac{f(x)}{e^x}$$

$$= \frac{f'(x) - f(x)}{e^x}$$

$$< 0,$$

para todo $x \in \mathbb{R}$. Sejam $x, y \in \mathbb{R}$ com x < y. O **Teorema do Valor Médio** nos garante que existe $c \in (x, y)$ tal que

$$\frac{g(y) - g(x)}{y - x} = g'(x)$$

$$\Rightarrow g(y) - g(x) = g'(x) \cdot (y - x)$$

$$\leq 0 \cdot (y - x)$$

$$= 0$$

$$\Rightarrow g(y) \leq g(x).$$

Logo g é não crescente.

(b) Como $f'(x) \ge 0$ para todo $x \in \mathbb{R}$, o **Teorema do Valor Médio** nos garante que f é não decrescente. Suponhamos que f se anula em um certo ponto α . Seja então $\beta < \alpha$. O **Teorema do Valor Médio** nos garante que existe $\psi \in (\beta, \alpha)$ tal que

$$\frac{f(\alpha) - f(\beta)}{\alpha - \beta} = -\frac{f(\beta)}{\alpha - \beta}$$

$$= f'(\psi)$$

$$\leq f(\psi)$$

$$\leq f(\alpha)$$

$$= 0$$

$$\Rightarrow f(\beta) = 0.$$

Logo f se anula em todos os pontos do intervalo $(-\infty, \alpha]$. Sejam $\sigma > \theta \ge \alpha$. O **Teorema do Valor Médio** nos garante que existe $\rho \in (\beta, \alpha)$ tal que

$$\frac{f(\sigma) - f(\theta)}{\sigma - \theta} = f'(\rho)$$

$$\leq f(\rho)$$

$$\leq f(\sigma)$$

$$\Rightarrow f(\sigma) - f(\theta) \leq f(\sigma) \cdot (\sigma - \alpha).$$
**

Se tomarmos $\sigma = \alpha + \frac{1}{2}$ e $\theta = \alpha$ teremos

$$f\left(\alpha + \frac{1}{2}\right) \leq f\left(\alpha + \frac{1}{2}\right) \cdot \left(\alpha + \frac{1}{2} - \alpha\right)$$

$$\Rightarrow f\left(\alpha + \frac{1}{2}\right) \leq \frac{f\left(\alpha + \frac{1}{2}\right)}{2}$$

$$\Rightarrow f\left(\alpha + \frac{1}{2}\right) = 0.$$

Como f é não decrescente, f deverá ser nula no intervalo $\left[\alpha,\alpha+\frac{1}{2}\right]$. Considere a coleção

$$X = \left\{ \left[\alpha + \frac{n}{2}, \alpha + \frac{n+1}{2} \right] : n \in \mathbb{N} \cup \{0\} \right\}$$

.

Por indução e pela desigualdade ** verificamos que f se anula em cada intervalo da forma $\left[\alpha+\frac{n}{2},\alpha+\frac{n+1}{2}\right]$. Como essa coleção é uma cobertura de $[\alpha,\infty)$, temos que f é nula em $[\alpha,\infty)$, o que completa a prova.

Exercício 5. Disserte sobre o tema Séries Numéricas. Nessa questão sugerimos que sejam abordados os seguintes tópicos

- Definição e exemplos.
- Critério da Comparação.
- Testes de d'Alembert e de Cauchy.
- Regra de Leibiniz.
- Séries absolutamente convegentes e condicionalmente convergentes.

10 Prova de Seleção para o Mestrado em Matemática 2016.1

27 de Outubro de 2023

Exercício 1. Sejam (x_n) e (y_n) sequências de números reais e tais que $x_n \leq y_n$ para n suficientemente grande. Mostre que:

- (a) Se (x_n) for monótona e limitada inferiormente e se (y_n) for convergente, então (x_n) será convergente;
- (b) Se ambas sequências forem convergentes, então $\lim x_n \le \lim y_n$. Dê exemplo de duas sequências convergentes tais que $x_n < y_n$, para n suficientemente grande, mas $\lim x_n = \lim y_n$;
- (c) Se $0 \le x_n$ para todo $n \in \mathbb{N}$ então a convergência de $\sum y_n$ implica a convergência de $\sum x_n$ enquanto a divergência de $\sum x_n$ implica a divergência de $\sum y_n$;
- (d) Se $0 \le x_n$ para todo $n \in \mathbb{N}$ e $\sum x_n^2$ e $\sum y_n^2$ convergirem, então $\sum (x_n y_n)$ converge.

Demonstração.

(a) Sabemos que toda sequência convergente é limitada. Logo existe $\alpha>0$ tal que

$$|y_n| < \alpha$$
,

para todo $n \in \mathbb{N}$. Por hipótese, para n suficientemente grande, teremos que

$$x_n \le y_n < \alpha$$

e, além disso, (x_n) é monótona e limitada inferiormente. Segue do **Teorema da** Convergência Monótona que (x_n) é uma sequência convergente.

(b) Seja s_1 o menor natural tal que

$$n > s_1 \implies x_n \le y_n.$$

Sejam lim $x_n=a$ e lim $y_n=b$. Suponhamos então que a>b. Considere então a sequência $z_n=x_n-y_n$. Como $x_n-y_n\longrightarrow a-b>0$, existe $n_1\in\mathbb{N}$ tal que

$$n > n_1 \implies 0 < x_n - y_n.$$

Tome agora $n_0 = \max\{s_1, n_1\}$. Então

$$n > n_0 \implies x_n - y_n > 0$$

$$\Leftrightarrow x_n > y_n.$$

Mas isso é absurdo por *.

- (c) Basta considerar as sequências das reduzidas das séries $\sum x_n$ e $\sum y_n$ e aplicar o raciocínio do item a.
- (d) Suponhamos que $0 \le x_n \le y_n$. Então

$$0 \leq (y_n - x_n)^2$$

$$\Leftrightarrow 0 \leq y_n^2 - 2x_n y_n + x_n^2$$

$$\Leftrightarrow 2x_n y_n \leq y_n^2 + x_n^2$$

$$\Rightarrow x_n y_n \leq \frac{1}{2} (y_n^2 + x_n^2)$$

$$\Rightarrow \sum x_n y_n \leq \sum \frac{1}{2} (y_n^2 + x_n^2)$$

$$= \frac{1}{2} \sum y_n^2 + \frac{1}{2} \sum x_n^2.$$

Logo $\sum x_n y_n$ converge pelo item anterior, uma vez que $\sum \frac{1}{2}(y_n^2 + x_n^2)$ é uma série convergente.

Exercício 2. Sejam $I\subset\mathbb{R}$ um intervalo e $f:I\longrightarrow\mathbb{R}$ uma função.

- (a) Suponha I = [0, 1], f contínua em I e tal que f(0) = f(1). Mostre que existe um ponto $c \in [0, 1/2)$ tal que f(c) = f(c + 1/2).
- (b) Suponha I aberto e f derivável em I. Mostre que se a função derivada f' for limitada então f é uma função lipschitiziana, em particular, f é uniformemente contínua.
- (c) Suponha I aberto e f derivável em I e tal que $f'(x) \neq 0$ em cada $x \in I$. Mostre que f é uma função injetora.
- (d) Suponha I aberto e $f \in C^n(I)$, n par, tal que $f^{(j)}(\xi) = 0$ para $1 \le j \le n-1$, $f^{(n)}(\xi) \ne 0$, $\xi \in I$. Mostre que é ponto de mínimo local de f se, e somente se, $f^{(n)}(\xi) > 0$.

Demonstração.

(a) Suponhamos que não existe $c \in \left[0, \frac{1}{2}\right)$ tal que $f(c) = f(c + \frac{1}{2})$. Então, **em outras palavras**, temos que $f(x) \neq f\left(x + \frac{1}{2}\right)$, para todo $x \in \left[0, \frac{1}{2}\right)$. Consideremos agora as funções contínuas $g: \left[0, \frac{1}{2}\right] \longrightarrow \mathbb{R}$, definida por $g(x) = x + \frac{1}{2}$ e

$$f|_{[0,\frac{1}{2}]} - f \circ g \colon \left[0,\frac{1}{2}\right] \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) - f\left(x + \frac{1}{2}\right).$$

Sem perda de generalidade, podemos supor que $f(0) < f(\frac{1}{2})$. Então

$$[f|_{[0,\frac{1}{2}]} - f \circ g](0) = f(0) - f\left(\frac{1}{2}\right)$$
< 0.

Por outro lado

$$[f|_{[0,\frac{1}{2}]} - f \circ g] \left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - f(1)$$

$$= f\left(\frac{1}{2}\right) - f(0)$$

$$> 0.$$

Segue do **Teorema do Valor Intermediário** que existe $c \in (0, \frac{1}{2})$ tal que

$$f(c) - f\left(c + \frac{1}{2}\right) = 0$$

 $\Rightarrow f(c) = f\left(c + \frac{1}{2}\right),$

o que é absurdo por hipótese. Logo deve existir pelo menos um $c\in\left[0,\frac{1}{2}\right)$ que satisfaz o enunciado.

(b) Seja $\alpha > 0$ tal que $|f'(x)| < \alpha$, para todo $x \in I$. Sejam então $x, y \in I$ arbitrários. **Sem perda de generalidade**, suponhamos que y < x. Como f é derivável em (y, x) então existe $c \in (y, x)$ tal que

$$\frac{f(x) - f(y)}{x - y} = f'(c)$$

$$\Rightarrow \left| \frac{f(x) - f(y)}{x - y} \right| = |f'(c)| < \alpha$$

$$\Rightarrow |f(x) - f(y)| < \alpha \cdot |x - y|.$$

Logo f é lipschitiziana. Como sabemos, toda função lipschitiziana é uniformemente contínua.

(c) Sejam $x, y \in I$ distintos. Sem perda de generalidade, suponhamos que y < x. Como f é derivável em (y, x) então existe $c \in (y, x)$ tal que

$$\frac{f(x) - f(y)}{x - y} = f'(c) \neq 0$$

$$\Rightarrow f(x) - f(y) \neq 0$$

$$\Leftrightarrow f(x) \neq f(y).$$

(d) Seja $f:I\longrightarrow \mathbb{R}$ nvezes derivável no ponto $\xi\in I.$ Então para todo h tal que $\xi+h\in I,$

$$f(\xi + h) = f(\xi) + f'(\xi)h + \frac{f''(\xi)}{2!}h^2 + \dots + \frac{f^{(n)}(\xi)}{n!}h^n + r(h),$$
 onde $\lim_{h \to \infty} \frac{r(h)}{h^n} = 0$ (**Fórmula de Taylor**).

 \Rightarrow Suponhamos que ξ é um ponto de mínimo em f. Então, para todo h suficientemente pequeno e diferente de zero tal que $\xi + h \in I$, temos que

$$f(\xi) < f(\xi + h)$$

$$= f(\xi) + f'(\xi)h + \frac{f''(\xi)}{2!}h^2 + \dots + \frac{f^{(n-1)}(\xi)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(\xi)}{n!}h^n + r(h)$$

$$= f(\xi) + f'(\xi)h + \frac{f''(\xi)}{2!}h^2 + \dots + \frac{f^{(n-1)}(\xi)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(\xi)}{n!}h^n + r(h) \text{ (hipótese)}$$

$$= f(\xi) + \left[\frac{f^{(n)}(\xi)}{n!}h^n + \frac{r(h)}{h^n}\right]h^n.$$

Temos que h^n é sempre positivo quando diferente de zero. Além disso, $\frac{r(h)}{h^n}$ é "desprezível" quando h é suficientemente pequeno e diferente de zero. Logo $f^{(n)}(\xi)$ deve ser positivo. Desse modo, $f^{(n)} > 0$.

 \Leftarrow Suponhamos que $f^{(n)}(\xi) > 0$. Note então que

$$f(\xi+h) = f(\xi) + f'(\xi)h + \frac{f''(\xi)}{2!}h^2 + \dots + \frac{f^{(n-1)}(\xi)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(\xi)}{n!}h^n + r(h)$$

$$= f(\xi) + f'(\xi)h + \frac{f''(\xi)}{2!}h^2 + \dots + \frac{f^{(n-1)}(\xi)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(\xi)}{n!}h^n + r(h) \text{ (hipótese)}$$

$$= f(\xi) + \left[\frac{f^{(n)}(\xi)}{n!}h^n + \frac{r(h)}{h^n}\right]h^n.$$

Temos que h^n é sempre positivo quando diferente de zero. Além disso, $\frac{r(h)}{h^n}$ é "desprezível" quando h é suficientemente pequeno e diferente de zero. Como $f^{(n)}(\xi)$ é maior que zero, temos que $\left[\frac{f^{(n)}(\xi)}{n!}h^n + \frac{r(h)}{h^n}\right]h^n$ é maior que zero. Logo $f(\xi) < f(\xi+h)$. Desse modo, $f(\xi)$ é um ponto de mínimo de f.

Exercício 3. Dado $X \subset \mathbb{R}$ mostre que:

(a) b∈ R é um ponto interior de X se, e somente se toda sequência de números reais convergente a b é uma sequência de X (a partir de um certo termo). Mostre que b é um ponto isolado de X se e somente se toda sequência de X convergente a b é constante (a partir de um certo termo).

(b) o fecho de X é a união de X com a sua fronteira

Demonstração.

(a)

 \Rightarrow Suponhamos que $b \in X$ é um ponto interior. Então existe $\varepsilon' > 0$ tal que $(b-\varepsilon',b+\varepsilon') \subset X$. Seja (x_n) uma sequência que converge para b. Tomando $\varepsilon = \varepsilon' > 0$, podemos encontrar $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |x_n - b| < \varepsilon'$$

 $\Leftrightarrow n > n_0 \implies x_n \in (b - \varepsilon', b + \varepsilon')$
 $\subset X.$

Logo (x_n) é uma sequência de X a partir de um certo termo.

 \Leftarrow Seja $b \in \mathbb{R}$ com a propriedade de que toda sequência que converge para b é uma sequência de X a partir de um certo termo. Suponhamos que b não é um ponto interior de X. Então, para todo $\varepsilon > 0$, temos que

$$(b-\varepsilon,b+\varepsilon) \not\subset X.$$

Tomando $\varepsilon_1=1$ podemos encontrar $x_1\in (b-1,b+1)$ tal que $x_1\notin X.$ Tomando então

$$\varepsilon_2 = \min \left\{ \frac{1}{2}, |x_1 - b| \right\},\,$$

encontramos $x_2 \in (b-\varepsilon_2, b+\varepsilon_2)$ tal que $x_2 \notin X$. Prosseguindo dessa maneira obtemos uma sequência (x_n) de números reais tal que

$$|x_n - b| < |x_{n-1} - b|$$
 e $|x_n - b| < \frac{1}{n}$.

Note que

$$x_n \longrightarrow b$$
,

mas $x_n \notin X$ para todo $n \in \mathbb{N}$, o que é absurdo. Logo b deve ser ponto interior de X.

Próxima demonstração.

 \Rightarrow Suponhamos que $b \in X$ é um ponto isolado de X. Então existe $\varepsilon' > 0$ tal que

$$(b - \varepsilon', b + \varepsilon') \cap X = \{b\}.$$

Seja (x_n) uma sequência de pontos de X que converge para b. Tomando $\varepsilon = \varepsilon' > 0$, obtemos $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |x_n - b| < \varepsilon'$$

$$\Leftrightarrow n > n_0 \implies x_n \in (b - \varepsilon', b + \varepsilon')$$

$$\Leftrightarrow n > n_0 \implies x_n \in (b - \varepsilon', b + \varepsilon') \cap X$$

$$= \{b\}.$$

Logo (x_n) é constante a partir de um certo termo.

 \Leftarrow Seja $b\in X.$ Suponhamos que bnão é um ponto isolado de X. Então, para todo $\varepsilon>0$ temos que

$$\begin{array}{lll} (b-\varepsilon,b+\varepsilon) \ \cap \ X \ \neq \ \{b\} & \text{(respec. n\~ao vazio)} \\ \Leftrightarrow \left[(b-\varepsilon,b+\varepsilon)-\{b\}\right] \ \cap \ X \ \neq \ \emptyset \\ & \Leftrightarrow \ b \ \in \ X'. \end{array}$$

Logo existe uma sequência (x_n) de pontos de X de termos dois a dois distintos e que converge para b. Mas isso é absurdo, uma vez que toda sequência de pontos de X que converge para b se torna constante a partir de um certo termo. Logo b deve ser ponto interior.

(b)

 $\subset \ \, \mathrm{Seja} \,\, x \in \overline{X}.$ Por definição, temos que para $\varepsilon > 0$

$$(x - \varepsilon, x + \varepsilon) \cap X \neq \emptyset.$$

Como sabemos, $X \subset \overline{X}$. Logo temos duas possibilidades: ou $x \in X$ ou $x \notin X$. Se $x \in X$ então não há o que provar. Suponhamos então que $x \notin X$. Então

$$(x - \varepsilon, x + \varepsilon) \cap X \neq \emptyset$$
 e $(x - \varepsilon, x + \varepsilon) \cap (\mathbb{R} - X) \neq \emptyset$.

Logo $x \in \partial X$. Desse modo $x \in X \cup \partial X$.

 \supset Seja $x \in X \cup \partial X$. Se $x \in X$ então não há o que provar, uma vez que $X \subset \overline{X}$. Suponhamos então que $x \in \partial X$. Então, para todo $\varepsilon > 0$, temos que

$$(x - \varepsilon, x + \varepsilon) \cap X \neq \emptyset$$
 e $(x - \varepsilon, x + \varepsilon) \cap (\mathbb{R} - X) \neq \emptyset$.

Então $x \in \overline{X}$, uma vez que $(x - \varepsilon, x + \varepsilon) \cap X \neq \emptyset$ para todo $\varepsilon > 0$.

Exercício 4. Disserte sobre o tema limites de funções reais de uma variável real. Nessa questão sugerimos que sejam abordados os seguintes tópicos:

- Definição;
- Propriedades;
- Limites laterais;
- Limites no infinito;
- Limites infinitos.

11 Prova de Seleção para o Mestrado em Matemática 2018.1

30 de Outubro de 2023

Exercício 1. Prove que a sequência (a_n) definida por $a_n = \frac{n!}{(2n+1)!}$ para todo $n \in \mathbb{N}$ é convergente. A seguir, determine $\lim a_n$, justificando.

De monstração.

1. (a_n) é uma sequência limitada.

Para todo $n \in \mathbb{N}$ temos que

$$n! < (2n+1)!$$

$$\Rightarrow \frac{n!}{(2n+1)!} < 1,$$

além disso

$$0 < \frac{n!}{(2n+1)!}.$$

Desse modo, os termos da sequência (a_n) estão inteiramente contidos no intervalo fechado [0,1]. Portanto (a_n) é sequência limitada.

2. (a_n) é uma sequência decrescente.

Para todo $n \in \mathbb{N}$ temos que

$$\frac{n!}{(2n+1)!} - \frac{(n+1)!}{(2n+2)!} = \frac{(2n+2)!n! - (2n+1)!(n+1)!}{(2n+1)!(2n+2)!}$$

$$= \frac{(2n+2)(2n+1)!n! - (2n+1)!(n+1)n!}{(2n+1)!(2n+2)!}$$

$$= \frac{[(2n+1)!n!](2n+2 - (n+1))!}{(2n+1)!(2n+2)!}$$

$$= \frac{[(2n+1)!n!](n+1)}{(2n+1)!(2n+2)!}$$

$$\Rightarrow 0 < \frac{[(2n+1)!n!](n+1)}{(2n+1)!(2n+2)!}$$

$$\Rightarrow \frac{(n+1)!}{(2n+2)!} < \frac{n!}{(2n+1)!}.$$

3. (a_n) é convergente.

Como (a_n) é uma sequência monótona limitada, o **Teorema da Convergência Monótona** nos garante que a_n é convergente. Note então que

$$\lim a_n = \lim \frac{n!}{(2n+1)!}$$

$$= \lim \frac{n!}{(2n+1)(2n-2) \cdot \dots \cdot (n-1) \cdot n!}$$

$$= \lim \frac{1}{(2n+1)(2n-2) \cdot \dots \cdot (n-1)}$$

$$= 0.$$

Exercício 2. Seja $f:(0,1) \longrightarrow \mathbb{R}$ contínua e tal que $f(x)^2 = 1$, para todo $x \in (0,1)$. Prove utilizando o Teorema do Valor Intermediário, que ou f(x) = 1, para todo $x \in (0,1)$ ou f(x) - 1, para todo $x \in (0,1)$.

Demonstração. Para todo $x \in (0,1)$ temos que

$$f(x)^{2} = 1$$

$$\Rightarrow f(x)^{2} - 1 = 0$$

$$\Rightarrow f(x) = 1 \text{ ou } f(x) = -1.$$

- 1. Suponhamos que $f(\alpha) \neq -1$, para algum $\alpha \in (0,1)$. Então $f(\alpha) = 1$. Se f(x) = 1 para todo $x \in (0,1)$ então não há o que provar. Suponha então que existe $\beta \in (0,1)$, que **sem perda de generalidade** podemos supor que seja $\beta > \alpha$, tal que $f(\beta) = -1$. Então o **Teorema do Valor Intermediário** nos garante que existe $c \in (\alpha, \beta)$ tal que $f(c) = \frac{1}{2}$. Note porem que $f(c)^2 \neq 1$, o que é absurdo.
- 2. Suponhamos que $f(\alpha) \neq 1$, para algum $\alpha \in (0,1)$. Então $f(\alpha) = -1$. Se f(x) = -1 para todo $x \in (0,1)$ então não há o que provar. Suponha então que existe $\beta \in (0,1)$, que **sem perda de generalidade** podemos supor $\beta > \alpha$, tal que $f(\beta) = 1$. Então o **Teorema do Valor Intermediário** nos garante que existe $c \in (\alpha,\beta)$ tal que $f(c) = \frac{1}{2}$. Note porem que $f(c)^2 \neq 1$, o que é absurdo.

Logo ou f(x) = 1, para todo $x \in (0,1)$ ou f(x) - 1, para todo $x \in (0,1)$.

Exercício 3. Seja $f:[0,1] \longrightarrow \mathbb{R}$ derivável de forma que não exista $x \in [0,1]$ tal que f(x) = f'(x) = 0. Prove que o conjunto $Z = \{x \in [0,1]; f(x) = 0\}$ é finito.

Demonstração. Suponhamos que Z é infinito.

1. Z é discreto.

Suponhamos que existe $x_0 \in Z \cap Z'$. Então, para todo $\varepsilon > 0$ dado temos que

$$[(x_0 - \varepsilon, x_0 + \varepsilon) - \{x_0\}] \cap Z \neq \emptyset.$$

Se tomarmos $\varepsilon > 0$ suficientemente pequeno, obteremos $h' \neq 0$ suficientemente pequeno tal que $f(x_0 + h') \in Z$, uma vez que x_0 é um ponto de acumulação de Z. Segue da **Fórmula de Taylor** porém que

$$f(x_0 + h') = f(x_0) + \left[f'(x_0) + \frac{r(h')}{h'} \right] h'$$

$$\neq 0,$$

o que é absurdo. Logo Z é discreto.

2. Z é compacto.

Sabemos que Z é um conjunto fechado. Como $Z \subset [0,1]$, temos que Z é limitado. Segue do **Teorema de Heine-Borel** que Z é compacto pois é fechado e limitado.

Como Z é discreto pelo item 1, podemos encontrar, para cada $z \in Z$, um intervalo aberto I_z tal que

$$I_z \cap Z = \{z\}.$$

Considere então a cobertura aberta

$$\mathcal{F} = \{ I_z \mid I_z \cap Z = \{z\}, z \in Z \}.$$

Como Z é compacto pelo item 2, então Z admite uma subcobertura finita

$$\mathcal{F}' = \{ I_{zi} \mid I_{zi} \cap Z = \{ z_i \}, z_i \in Z, 1 \le i \le n \}.$$

Mas aí Z seria finito, o que é absurdo.

Exercício 4. Para cada $n \in \mathbb{N}$, seja $p_n : \mathbb{R} \longrightarrow \mathbb{R}$, definida por

$$p_n(x) = x^n + x^{n-1} + \dots + x - 1, \forall x \in \mathbb{R}.$$

Prove que

- (a) Para cada $n \in \mathbb{N}$, p_n possui uma única raiz real positiva a_n , com $a_n \leq 1$;
- (b) (a_n) é decrescente;

(c) $a_n^{n+1} - 2a_n + 1 = 0$, para todo $n \in \mathbb{N}$;

Dica:
$$(x-1)(x^n + x^{n-1} + ... + x - 1) = x^{n+1} - 2x + 1.$$

(d) (a_n) converge e $\lim a_n = \frac{1}{2}$.

Demonstração.

(a)

1. Provaremos que p_n admite uma raiz a_n positiva, com $a_n \leq 1$.

Por indução, para n = 1, teremos o polinômio

$$p_1(x) = x - 1.$$

É claro que p(1) = 0. Logo $a_1 = 1$. Suponhamos então que a afirmação é válida para um certo n > 1. Consideremos então o polinômio

$$p_{n+1}(x) = x^{n+1} + x^n + x^{n-1} + \dots + x - 1$$

Note que

$$p_{n+1}(0) = -1$$
 e $p_{n+1}(a_n) = a_n^{n+1} + p_n(a_n) \stackrel{0}{=} a_n^{n+1} > 0.$

Segue então do **Teorema do Valor Intermediário** que existe $a_{n+1} \in (0, a_n)$ tal que $p_{n+1}(a_{n+1}) = 0$. Desse modo, p_n admite uma raiz a_n positiva, com $a_n \leq 1$.

2. Provaremos que cada raiz a_n é única.

Suponhamos que p_n admite duas raízes $a_n, a_{n'}$ positivas e menores ou iguais a 1. **Sem perda de generalidade**, suponhamos que $a_n < a_{n'}$. Considere então a derivada do polinômio p_n ,

$$p_n'(x) = nx^{n-1} + (n-1)x^{n-2} + \dots + x.$$

Note que $p'_n(x) > 0$, para todo $x \in [a_n, \infty)$. O **Teorema do Valor Médio** nos garante então que $p_n(x)$ é crescente no intervalo $[a_n, \infty)$. Mas isso é um absurdo pois $p_n(a'_n) = 0$. **Desse modo, cada raiz** a_n **é única**.

(b) Basta notar que para todo $n \in \mathbb{N}$, $a_{n+1} \in (0, a_n)$. Isso é uma consequência do **Teorema do Valor Intermediário** pois

$$p_{n+1}(0) = -1$$
 e $p_{n+1}(a_n) = a_n^{n+1} + p_n(a_n) \stackrel{0}{=} a_n^{n+1} > 0.$

(c) Sabemos que

$$(x-1)(x^n + x^{n-1} + \dots + x - 1) = x^{n+1} - 2x + 1.$$

Segue daí que

$$a_n^{n+1} - 2a_n + 1 = (a_n - 1)(\underbrace{a_n^n + a_n^{n-1} + \dots + a_n - 1}_{p_n(a_n) = 0})$$

$$= (a_n - 1) \cdot 0$$

$$= 0.$$

(d) Sabemos pelo item a que todos os termos da sequência (a_n) estão contidos no intervalo fechado [0,1]. Logo (a_n) é uma sequência limitada. Sabemos que (a_n) é uma sequência decrescente pelo item b. Segue do **Teorema da Convergência Monótona** que (a_n) é uma sequência convergente. Sabemos pelo item c que para todo $n \in \mathbb{N}$, $a_n^{n+1} - 2a_n + 1 = 0$. Note que

$$a_n^{n+1} - 2a_n + 1 = 0 \iff a_n = \frac{a_n^{n+1} + 1}{2}.$$

Como $0 < a_n \le 1$, então $0 < a_n^n \le 1$. Por meio da **Desigualdade de Bernoulli** conseguimos provar que $a_n^n \longrightarrow 0$. Segue daí que

$$a_n = a_n = \frac{a_n^{n+1} + 1}{2} \longrightarrow \frac{0+1}{2} = \frac{1}{2}.$$

Exercício 5. Disserte sobre o tema Topologia na Reta. Nesta quest~ao, sugerimos que sejam abordados os seguintes tópicos: Definições e exemplos, Conjuntos abertos e conjuntos fechados, Conjuntos conexos. Pontos de acumulação e Conjuntos compactos.

12 Prova de Seleção para o Mestrado em Matemática 2018.2

Exercício 1. Determine se cada uma das afirmações é verdadeira ou falsa. Demonstre a(s) afirmação(ções) verdadeira(s) e exiba um contraexemplo para a(s) falsa(s).

- (a) Se (a_n) é uma sequência com lim $a_n = 0$, então a série $\sum_{n=1}^{\infty} a_n$ converge.
- (b) Seja $D \subset \mathbb{R}$ tal que o fecho de D é \mathbb{R} , então D é não enumerável.
- (c) Se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é uma função derivável em $x_0 \in \mathbb{R}$, então f é contínua em x_0 .

Demonstração.

- (a) Falso. Considere a sequência $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$. Sabemos que $\frac{1}{n}\longrightarrow 0$, mas $\sum \frac{1}{n}$ diverge.
- (b) Falso. Sabemos que $\overline{\mathbb{Q}}=\mathbb{R},$ mas \mathbb{Q} é um conjunto enumerável.
- (c) Verdadeiro. Sabemos que $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua no ponto x_0 se, e somente se, $\lim_{x \longrightarrow x_0} f(x) = f(x_0)$. Note que

$$\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right]$$

$$= \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} \right] \cdot \lim_{x \to x_0} [(x - x_0)]$$

$$= f'(x_0) \cdot 0$$

$$= 0$$

$$\Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0).$$

Logo f é contínua no ponto x_0 .

Exercício 2.

- (a) Mostre que se $A_1, A_2, ..., A_n$ são conjuntos abertos em \mathbb{R} , então $\bigcap_{j=1}^n A_j = A_1 \cap A_2 \cap ... \cap A_n$ é um conjunto aberto de \mathbb{R} .
- (b) Se $\{A_i\}_{i\in I}$ é uma família de abertos em \mathbb{R} , onde I é um conjunto de índices arbitrário, podemos afirmar que $\bigcap_{j\in I} A_j$ é aberto em \mathbb{R} ? Justifique sua resposta.

Demonstração.

(a) (**Por indução**) Tomemos n=2. Seja $x\in A_1\cap A_2$. Existem então $(a,b),(c,d)\subset\mathbb{R}$ abertos tais que

$$x \in (a, b) \subset A_1$$
 e $x \in (c, d) \subset A_2$.

Seja $e = \max\{a,c\}$ e $f = \min\{b,d\}$. Então

$$x \in (e, f) \subset A_1 \cap A_2$$
.

Suponhamos então que essa afirmação é válida para um certo n>2, isto é, $A_1\cap A_2\cap\ldots\cap A_n$ é um conjunto aberto. Seja então

$$x \in (A_1 \cap A_2 \cap \dots \cap A_n) \cap A_{n+1}$$
.

Como $(A_1 \cap A_2 \cap ... \cap A_n)$ e A_{n+1} são abertos, existem $(g,h), (i,j) \subset \mathbb{R}$ abertos tais que

$$x \in (g,h) \subset A_1 \cap A_2 \cap ... \cap A_n$$
 e $x \in (i,j) \subset A_{n+1}$.

De forma análoga, pondo $l = \max\{g,i\}$ e $m = \min\{h,j\}$ temos que

$$x \in (l, m) \subset A_1 \cap A_2 \cap ... \cap A_n \cap A_{n+1}$$
.

Logo a interseção finita de conjuntos abertos é um conjunto aberto.

(b) Nem sempre será aberto. Considere a família de abertos

$$\mathcal{F} = \left\{ \left(-\frac{1}{n}, \frac{1}{n} \right); n \in \mathbb{N} \right\}.$$

Note que

$$\bigcap_{n\in\mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\},\$$

e {0} não é um aberto da reta.

Exercício 3 Abaixo apresentamos uma definição:

Definição: Uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ é dita contínua em $a \in \mathbb{R}$ se, para qualquer $\varepsilon > 0$, existe $\delta > 0$ tal que $|x - a| < \delta$ implica $|f(x) - f(a)| < \varepsilon$.

Mostre que uma função $g: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em \mathbb{R} se, e somente se, para todo conjunto aberto $X \subset \mathbb{R}$, sua imagem inversa é um conjunto aberto em \mathbb{R} .

Demonstração. Trocaremos g por f por questão de conveniência.

 \Rightarrow Seja $M \subset \mathbb{R}$ aberto. Se $f^{-1}(M) = \emptyset$, então não há o que provar. Suponhamos então que $f^{-1}(M) \neq \emptyset$. Seja $x_0 \in f^{-1}(M)$. Como M é aberto, existe $\varepsilon > 0$ tal que

$$|f(x) - f(x_0)| < \varepsilon \Leftrightarrow (f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subset M.$$

Segue da continuidade de f em x_0 que existe $\delta > 0$ tal que

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Note que

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon \Leftrightarrow (x_0 - \delta, x_0 + \delta) \subset f^{-1}(M).$$

Como x_0 é arbitrário, temos que $f^{-1}(M)$ é aberto.

 \Leftarrow Suponhamos que para todo $M \subset \mathbb{R}$ aberto, $f^{-1}(M)$ é aberto. Seja $f(x_0) \in M$. Existe $\varepsilon > 0$ tal que

$$|f(x) - f(x_0)| < \varepsilon \Leftrightarrow (f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subset M.$$

Por hipótese, $f^{-1}((f(x_0)-\varepsilon,f(x_0)+\varepsilon))$ é aberto. Logo existe $\delta>0$ tal que

$$|x - x_0| < \delta \iff (x_0 - \delta, x_0 + \delta) \subset f^{-1}((f(x_0) - \varepsilon, f(x_0) + \varepsilon)).$$

Perceba que

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Como x_0 é arbitrário, f é contínua.

Exercício 4. Disserte sobre o Teorema do Valor Médio. Nesta questão sugerimos que sejam abordados o enunciado e a demonstração do teorema, bem como suas aplicações.