实验 7- 定时器实验

1. 实验目的

掌握 NRF24LE1 的定时器的配置和使用。

2. 实验内容

配置 NRF24LE1 的 GPIO P0.0 输出控制指示灯 D1 的亮灭。

配置定时器 0 每 20ms 产生一次中断。

在定时器 0 中断中每隔 500ms 将 D1 状态取反。

观察到 D1 以 500ms 的间隔闪烁。

3. 实验原理

3.1. 电路原理

开发板上配置的两个用户指示灯 D1、D2,分别有 GPIO P0.0 和 P0.1 控制,当 GPIO 输出高电平时,LED 两端电压相等,LED 上没有电流流过,LED 处于灭状态,当 GPIO 输出低电平时,LED 两端存在压差,电流流过 LED,LED 被点亮。

3.2. 寄存器配置

1. GPIO 寄存器配置

NRF24LE1 的 GPIO 通过 2 个寄存器来配置: PxDIR 和 PxCON(更详细的内容请查阅 NRF24LE1 数据手册)。

- PxDIR: 设置 IO 的方向。
- PxCON: 设置 IO 的功能。

表 1: PODIR 寄存器 (地址: 0x93, 复位值: 0xFF)

位	名称	R/W	功能
7~0	方向	R/W	P0.0~P0.7 方向位。输出: dir=0, 输入: dir=1.
			P0DIR 0 – P0.0
			P0DIR 1 – P0.1

1

	P0DIR 2 – P0.2
	P0DIR 3 – P0.3
	P0DIR 4 – P0.4
	P0DIR 5 – P0.5
	P0DIR 6 – P0.6
	P0DIR 7 – P0.7

按照上述内容,对 P0.0 进行配置如下: $P0DIR \&= \sim 0x01$; //配置 P0.0 为输出 D1=1; //设置 D1 初始状态为熄灭

POCON: 采用默认值即可。

2. Timer0 寄存器配置

Timer0 的配置涉及到如下寄存器:

- TCON: 定时器/计数器控制寄存器;
- TMOD: 定时器模式寄存器;
- Timer 0: TH0, TL0.

表 2: TCON 寄存器

				衣 2: 100	, ,,
地址	复位值	位	名称	自动清除	说明
	0x00	7	tf1	是	Timer1 溢出标志, 当 Timer1 溢出时
					由硬件置位。
		6	tr1	否	Timer1 运行控制位,清零时,Timer1
0x88					停止工作。
		5	tf0	是	Timer0 溢出标志, 当 Timer0 溢出时
					由硬件置位。
		4	tr0	否	Timer0 运行控制位,清零时,Timer0
					停止工作。
		3	ie1	是	外部中断1标志,由硬件置位。
		2	it1	否	外部中断 1 类型控制。1: 下降沿触
					发,0:低电平触发。
		1	ie0	是	外部中断 0 标志,由硬件置位。
		0	it0	否	外部中断 0 类型控制。1: 下降沿触
					发,0:低电平触发。

表 2: TMOD 寄存器

地址	复位值	位	名称	说明
		7	gate1	Timer1 门控控制
		6	ct1	Timer1 计数器/定时器选择。1: 计数器, 0:
				定时器。
0x89	0x00	5~4	mode1	Timer1 模式:
				00—模式 0: 13 位计数器/定时器。
				01—模式 1: 16 位计数器/定时器。
				10一模式 2:8位自动重装定时器。

		11一模式 3: 两个 8 位定时器/计数器。
3	gate0	Timer0 门控控制
2	ct10	Timer0 计数器/定时器选择。1: 计数器, 0:
		定时器。
1~0	mode0	Timer0 模式:
		00 一模式 0: 13 位计数器/定时器。
		01-模式 1: 16 位计数器/定时器。
		10 一模式 2: 8 位自动重装定时器。
		11一模式 3: 两个 8 位定时器/计数器。

表 4: Timer 0 - THO, TLO 寄存器

地址	名称
0x8A	TL0
0x8C	TH0

按照上述内容,配置 Timer0 为 16 位定时器,定时时间为 50ms,产生溢出中断的代码 如下:

TMOD = 0x01;

//设置 Timer0 工作在模式 1, 即 16 位定时器

TH0 = (65536-TIMERO_VALUE)/256; //写入定时器初值

TL0 = (65536-TIMER0_VALUE)%256;

ET0 = 1; //使能 Timer0 溢出中断

EA = 1; //开启全局中断 TR0 = 1;//启动 Timer0

定时器初值计算

□ **计算方式:** 先计算出定时时间,再用 65536(16 位定时器)-定时时间对应的数值,即 得到定时器初值。

□ 计算过程:

- 系统时钟: 16MHz
- 定时器使用的是系统时钟的 12 分频
- 假设预定时的时间为 T, 那么对应的数值为: $T \times \frac{16 \times 10^6}{12}$, 其中 T 的单位为秒。

4. 实验步骤

- 在 Keil uVision4 中打开工程 "Timer0.uvproj" 工程;
- 编译工程,注意查看编译输出栏,观察编译的结果,如果有错误,修改程序,直到 编译成功为止;

- 将编译生成的 HEX 文件"Timer0.hex" (该文件位于工程目录下的"Object"文件 夹中)通过编程器下载到开发板中运行。
- 观察指示灯 D1,应以 500ms 的间隔闪烁。

5. 实验程序

5.1. 程序流程

定时器实验程序执行流程如下图所示:

5.2. 程序清单

#define D1 P00 //开发板上的指示灯 D1 #define TIMER0 VALUE 26666 //Timer0 定时器定时 20ms 对应的数值

uint8_t count=0; //软件计数变量

*描 述:配置 IO P0.0

*入 参:无

4

合肥艾克姆电子科技有限公司: 保持诚信 身子创新

```
*返回值:无
void IO Init(void)
  PODIR &=~0x01; //配置 P0.0 为输出
  D1 = 1; //设置 D1 初始状态为熄灭
*描述:配置 Timer0 为 16 位定时器,定时时间 20ms,开启中断
*入 参:无
*返回值:无
void Timer0Init(void)
                       //16 位定时器
 TMOD = 0x01;
 THO = (65536-TIMERO_VALUE)/256; //写入初值
 TL0 = (65536-TIMER0_VALUE)\%256;
 ET0 = 1; //使能 Timer0 溢出中断
 EA = 1;
         //使能全局中断
       //启动 Timer0
 TR0 = 1;
/********************************
*描述:主函数
*入 参:无
*返回值:无
********************************
void main(void)
       //配置 IO
 IO Init();
 Timer0Init(); //Timer0 初始化
       //死循环,等待 Timer0 溢出中断
 while(1);
/*********************
*描 述:Timer0 中断服务函数
*入 参:无
*返回值:无
**************************
void Timer0 irq() interrupt INTERRUPT T0
{
 TH0=(65536-TIMER0_VALUE)/256; //写入初值
```

```
TL0=(65536-TIMER0_VALUE)%256;
count++; //软件计数器加 1
if(count==25) //500ms 时间到
{
    count=0; //软件计数器清零
    D1 = ~D1; //D1 指示灯状态取反
}
```