Методы оптимизации Лекция 3: Сопряжённые множества, конусы и их свойства

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

21 сентября 2020 г.

• Аффинные множества

- Аффинные множества
- ▶ Топологические свойства выпуклых множеств

- Аффинные множества
- ▶ Топологические свойства выпуклых множеств
- Отделимость множеств

- Аффинные множества
- ▶ Топологические свойства выпуклых множеств
- ▶ Отделимость множеств
- ▶ Опорная гиперплоскость

Сопряжённое множество

Определение

Сопряжённым (двойственным) к множеству $\mathcal{G}\subseteq\mathbb{R}^n$ называют такое множество \mathcal{G}^* , что

$$\mathcal{G}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in \mathcal{G} \}.$$

Сопряжённое множество

Определение

Сопряжённым (двойственным) к множеству $\mathcal{G}\subseteq\mathbb{R}^n$ называют такое множество \mathcal{G}^* , что

$$\mathcal{G}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in \mathcal{G} \}.$$

Утверждение

Пусть $\mathcal{G}_1\subset\mathcal{G}_2$, тогда $\mathcal{G}_2^*\subset\mathcal{G}_1^*$.

Сопряжённое множество

Определение

Сопряжённым (двойственным) к множеству $\mathcal{G}\subseteq\mathbb{R}^n$ называют такое множество \mathcal{G}^* , что

$$\mathcal{G}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in \mathcal{G} \}.$$

Утверждение

Пусть $\mathcal{G}_1\subset\mathcal{G}_2$, тогда $\mathcal{G}_2^*\subset\mathcal{G}_1^*$.

Доказательство

- lacktriangle Пусть $\mathbf{p} \in \mathcal{G}_2^*$, тогда $\langle \mathbf{p}, \mathbf{x}
 angle \geq -1, \ orall \mathbf{x} \in \mathcal{G}_2$
- lacktriangle Так как $\mathcal{G}_1\subset\mathcal{G}_2$, то $\langle\mathbf{p},\mathbf{y}
 angle\geq -1\ orall \mathbf{y}\in\mathcal{G}_1$
- lacktriangle A значит $\mathbf{p} \in \mathcal{G}_1^*$

Определение

Дважды сопряжённым (двойственным) к множеству $\mathcal{G} \subseteq \mathbb{R}^n$ называют такое множество \mathcal{G}^{**} , что $\mathcal{G}^{**} = \{\mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle > -1, \ \forall \mathbf{x} \in \mathcal{G}^* \}.$

Утверждение

Пусть \mathcal{G} — произвольное множество в \mathbb{R}^n . Тогда $\mathcal{G}^{**}=\operatorname{cl}\left(\operatorname{conv}\left(\mathcal{G}\cup\{0\}\right)\right)$.

Определение

Дважды сопряжённым (двойственным) к множеству $\mathcal{G}\subseteq\mathbb{R}^n$ называют такое множество \mathcal{G}^{**} , что

$$\mathcal{G}^{**} = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in \mathcal{G}^* \}.$$

Утверждение

Пусть \mathcal{G} — произвольное множество в \mathbb{R}^n . Тогда $\mathcal{G}^{**}=\operatorname{cl}\left(\operatorname{conv}\left(\mathcal{G}\cup\{0\}\right)\right)$.

Доказательство

Определение

Дважды сопряжённым (двойственным) к множеству $\mathcal{G}\subseteq\mathbb{R}^n$ называют такое множество \mathcal{G}^{**} , что

$$\mathcal{G}^{**} = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in \mathcal{G}^* \}.$$

Утверждение

Пусть \mathcal{G} — произвольное множество в \mathbb{R}^n . Тогда $\mathcal{G}^{**}=\operatorname{cl}\left(\operatorname{conv}\left(\mathcal{G}\cup\{0\}\right)\right)$.

Доказательство

▶ Обозначим $\hat{\mathcal{G}} \equiv \operatorname{cl}\left(\operatorname{conv}\left(\mathcal{G} \cup \{0\}\right)\right)$. Пусть $\mathbf{x} \in \mathcal{G}$ тогда по определению \mathcal{G}^* выполнено $\langle \mathbf{p}, \mathbf{x} \rangle \geq -1$ для всех $\mathbf{p} \in \mathcal{G}^*$. Это значит, что $\mathbf{x} \in \mathcal{G}^{**}$

Определение

Дважды сопряжённым (двойственным) к множеству $\mathcal{G} \subseteq \mathbb{R}^n$ называют такое множество \mathcal{G}^{**} , что $\mathcal{G}^{**} = \{\mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle > -1, \ \forall \mathbf{x} \in \mathcal{G}^* \}.$

Утверждение

Пусть \mathcal{G} — произвольное множество в \mathbb{R}^n . Тогда $\mathcal{G}^{**}=\operatorname{cl}\left(\operatorname{conv}\left(\mathcal{G}\cup\{0\}\right)\right)$.

Доказательство

- ▶ Обозначим $\hat{\mathcal{G}} \equiv \operatorname{cl}\left(\operatorname{conv}\left(\mathcal{G} \cup \{0\}\right)\right)$. Пусть $\mathbf{x} \in \mathcal{G}$ тогда по определению \mathcal{G}^* выполнено $\langle \mathbf{p}, \mathbf{x} \rangle \geq -1$ для всех $\mathbf{p} \in \mathcal{G}^*$. Это значит, что $\mathbf{x} \in \mathcal{G}^{**}$
- ▶ В итоге $\mathcal{G} \subseteq \mathcal{G}^{**}$, но \mathcal{G}^{**} содержит 0, является выпуклым и замкнутым, поэтому $\operatorname{cl}\left(\operatorname{conv}\left(\mathcal{G} \cup \{0\}\right)\right) \subseteq \mathcal{G}^{**}$

▶ Пусть $\mathbf{y} \in \mathcal{G}^{**}$, но $\mathbf{y} \notin \hat{\mathcal{G}}$. Тогда можно строго отделить \mathbf{y} и $\hat{\mathcal{G}}$: $\langle \mathbf{q}, \mathbf{x} \rangle > \beta > \langle \mathbf{q}, \mathbf{y} \rangle$, $\forall \mathbf{x} \in \hat{\mathcal{G}}$

- ▶ Пусть $\mathbf{y} \in \mathcal{G}^{**}$, но $\mathbf{y} \notin \hat{\mathcal{G}}$. Тогда можно строго отделить \mathbf{y} и $\hat{\mathcal{G}}$: $\langle \mathbf{q}, \mathbf{x} \rangle > \beta > \langle \mathbf{q}, \mathbf{y} \rangle$, $\forall \mathbf{x} \in \hat{\mathcal{G}}$
- lacktriangle Tak kak $0\in\hat{\mathcal{G}}$, to eta<0

- ▶ Пусть $\mathbf{y} \in \mathcal{G}^{**}$, но $\mathbf{y} \notin \hat{\mathcal{G}}$. Тогда можно строго отделить \mathbf{y} и $\hat{\mathcal{G}}$: $\langle \mathbf{q}, \mathbf{x} \rangle > \beta > \langle \mathbf{q}, \mathbf{y} \rangle$, $\forall \mathbf{x} \in \hat{\mathcal{G}}$
- ▶ Так как $0 \in \hat{\mathcal{G}}$, то $\beta < 0$
- ightharpoonup Разделим все части неравенства на -eta и получим

$$\langle \mathbf{s}, \mathbf{x} \rangle > -1, \ \forall \mathbf{x} \in \hat{\mathcal{G}}$$
 (1)

$$\langle \mathbf{s}, \mathbf{y} \rangle < -1,$$
 (2)

где
$$\mathbf{s} = -\mathbf{q}/\beta$$

- ▶ Пусть $\mathbf{y} \in \mathcal{G}^{**}$, но $\mathbf{y} \notin \hat{\mathcal{G}}$. Тогда можно строго отделить \mathbf{y} и $\hat{\mathcal{G}}$: $\langle \mathbf{q}, \mathbf{x} \rangle > \beta > \langle \mathbf{q}, \mathbf{y} \rangle$, $\forall \mathbf{x} \in \hat{\mathcal{G}}$
- Так как $0 \in \hat{\mathcal{G}}$, то $\beta < 0$
- ightharpoonup Разделим все части неравенства на -eta и получим

$$\langle \mathbf{s}, \mathbf{x} \rangle > -1, \ \forall \mathbf{x} \in \hat{\mathcal{G}}$$
 (1)

$$\langle \mathbf{s}, \mathbf{y} \rangle < -1,$$
 (2)

lacktriangle Так как $\mathcal{G}\subseteq\hat{\mathcal{G}}$, то из (1) следует, что $\mathbf{s}\in\mathcal{G}^*$

- ▶ Пусть $\mathbf{y} \in \mathcal{G}^{**}$, но $\mathbf{y} \notin \hat{\mathcal{G}}$. Тогда можно строго отделить \mathbf{y} и $\hat{\mathcal{G}}$: $\langle \mathbf{q}, \mathbf{x} \rangle > \beta > \langle \mathbf{q}, \mathbf{y} \rangle$, $\forall \mathbf{x} \in \hat{\mathcal{G}}$
- ightharpoonup Tak kak $0 \in \hat{\mathcal{G}}$, to $\beta < 0$
- ightharpoonup Разделим все части неравенства на -eta и получим

$$\langle \mathbf{s}, \mathbf{x} \rangle > -1, \ \forall \mathbf{x} \in \hat{\mathcal{G}}$$
 (1)

$$\langle \mathbf{s}, \mathbf{y} \rangle < -1,$$
 (2)

- lacktriangle Так как $\mathcal{G}\subseteq\hat{\mathcal{G}}$, то из (1) следует, что $\mathbf{s}\in\mathcal{G}^*$
- ▶ Поскольку $\mathbf{s} \in \mathcal{G}^*, \mathbf{y} \in \mathcal{G}^{**}$, то по определению выполнено $\langle \mathbf{s}, \mathbf{y} \rangle \geq -1$, что противоречит (2)

- ▶ Пусть $\mathbf{y} \in \mathcal{G}^{**}$, но $\mathbf{y} \notin \hat{\mathcal{G}}$. Тогда можно строго отделить \mathbf{y} и $\hat{\mathcal{G}}$: $\langle \mathbf{q}, \mathbf{x} \rangle > \beta > \langle \mathbf{q}, \mathbf{y} \rangle$, $\forall \mathbf{x} \in \hat{\mathcal{G}}$
- lacktriangle Tak kak $0 \in \hat{\mathcal{G}}$, to eta < 0
- ightharpoonup Разделим все части неравенства на -eta и получим

$$\langle \mathbf{s}, \mathbf{x} \rangle > -1, \ \forall \mathbf{x} \in \hat{\mathcal{G}}$$
 (1)

$$\langle \mathbf{s}, \mathbf{y} \rangle < -1, \tag{2}$$

- lacktriangle Так как $\mathcal{G}\subseteq \hat{\mathcal{G}}$, то из (1) следует, что $\mathbf{s}\in \mathcal{G}^*$
- ▶ Поскольку $\mathbf{s} \in \mathcal{G}^*, \mathbf{y} \in \mathcal{G}^{**}$, то по определению выполнено $\langle \mathbf{s}, \mathbf{y} \rangle \geq -1$, что противоречит (2)
- ▶ Значит $\mathcal{G}^{**} \subseteq \hat{\mathcal{G}}$

- ▶ Пусть $\mathbf{y} \in \mathcal{G}^{**}$, но $\mathbf{y} \notin \hat{\mathcal{G}}$. Тогда можно строго отделить \mathbf{y} и $\hat{\mathcal{G}}$: $\langle \mathbf{q}, \mathbf{x} \rangle > \beta > \langle \mathbf{q}, \mathbf{y} \rangle$, $\forall \mathbf{x} \in \hat{\mathcal{G}}$
- ightharpoonup Tak kak $0 \in \hat{\mathcal{G}}$, to $\beta < 0$
- ightharpoonup Разделим все части неравенства на -eta и получим

$$\langle \mathbf{s}, \mathbf{x} \rangle > -1, \ \forall \mathbf{x} \in \hat{\mathcal{G}}$$
 (1)

$$\langle \mathbf{s}, \mathbf{y} \rangle < -1,$$
 (2)

- lacktriangle Так как $\mathcal{G}\subseteq\hat{\mathcal{G}}$, то из (1) следует, что $\mathbf{s}\in\mathcal{G}^*$
- ▶ Поскольку $\mathbf{s} \in \mathcal{G}^*, \mathbf{y} \in \mathcal{G}^{**}$, то по определению выполнено $\langle \mathbf{s}, \mathbf{y} \rangle \geq -1$, что противоречит (2)
- ▶ Значит $\mathcal{G}^{**} \subseteq \hat{\mathcal{G}}$

Следствие

Если множество $\mathcal G$ выпукло, замкнуто и содержит 0, то $\mathcal G^{**}=\mathcal G$

Напоминание: конус

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Напоминание: конус

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K.$

Определение

Множество $\mathcal K$ называется выпуклым конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \; \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Сопряжённый конус

Определение

Если $\mathcal{K} \subseteq \mathbb{R}^n$ конус, то

$$\mathcal{K}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge 0, \ \forall \mathbf{x} \in \mathcal{K} \}.$$

Сопряжённый конус

Определение

Если $\mathcal{K} \subseteq \mathbb{R}^n$ конус, то

$$\mathcal{K}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle \ge 0, \ \forall \mathbf{x} \in \mathcal{K} \}.$$

Определение

Если $\mathcal{L} \subseteq \mathbb{R}^n$ подпространство, то

$$\mathcal{L}^* = \{ \mathbf{p} \in \mathbb{R}^n \mid \langle \mathbf{p}, \mathbf{x} \rangle = 0, \ \forall \mathbf{x} \in \mathcal{L} \} = \mathcal{L}^{\perp}.$$

Сопряжённая норма

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Сопряжённая норма

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\blacksquare \| \cdot \|_2 \to \| \cdot \|_* = \| \cdot \|_2$

Сопряжённая норма

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\|\cdot\|_2 \to \|\cdot\|_* = \|\cdot\|_2$
- $\blacksquare \|\cdot\|_{\infty} \to \|\cdot\|_{*} = \|\cdot\|_{1}$

Утверждение

Нормой q сопряжённой норме p является такая норма что $\frac{1}{p}+\frac{1}{q}=1$

Сопряжённая норма

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\blacksquare \| \cdot \|_2 \to \| \cdot \|_* = \| \cdot \|_2$
- $\blacksquare \|\cdot\|_{\infty} \to \|\cdot\|_* = \|\cdot\|_1$

Утверждение

Нормой q сопряжённой норме p является такая норма что $\frac{1}{p}+\frac{1}{q}=1$

Самосопряжённые конусы

Сопряжённая норма

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\blacksquare \| \cdot \|_2 \to \| \cdot \|_* = \| \cdot \|_2$
- $\blacksquare \|\cdot\|_{\infty} \to \|\cdot\|_{*} = \|\cdot\|_{1}$

Утверждение

Нормой q сопряжённой норме p является такая норма что $\frac{1}{p}+\frac{1}{q}=1$

Самосопряжённые конусы

 $ightharpoonup \mathbb{R}^n_+$

Сопряжённая норма

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\| \cdot \|_2 \to \| \cdot \|_* = \| \cdot \|_2$

Утверждение

Нормой q сопряжённой норме p является такая норма что $\frac{1}{p}+\frac{1}{q}=1$

Самосопряжённые конусы

- $ightharpoonup \mathbb{R}^n_+$
- ▶ Конус второго порядка $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\|_2 \le t\}$

Сопряжённая норма

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\| \cdot \|_2 \to \| \cdot \|_* = \| \cdot \|_2$
- $\blacksquare \|\cdot\|_{\infty} \to \|\cdot\|_* = \|\cdot\|_1$

Утверждение

Нормой q сопряжённой норме p является такая норма что $\frac{1}{p}+\frac{1}{q}=1$

Самосопряжённые конусы

- $ightharpoonup \mathbb{R}^n_+$
- ▶ Конус второго порядка $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\|_2 \le t\}$
- $ightharpoonup \mathbf{S}_{+}^{n}$

Линейные матричные неравенства и их приложения

Линейные матричные неравенства и их приложения

Определение

Линейным матричным неравенством (LMI) называется выражение вида

$$\mathbf{A}_0 + x_1 \mathbf{A}_1 + \ldots + x_n \mathbf{A}_n \succeq 0,$$

в котором нужно проверить существование вектора ${f x}$, который удовлетворяет неравенству для заданных ${f A}_i \in {f S}^n.$

Упражнение

Проверьте, что множество векторов ${\bf x}$, которые удовлетворяют данному LMI, является выпуклым.

Теорема

Динамическая система $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \mathbf{x}_0$ устойчива iff $\exists \mathbf{P} \succ 0$ такая что $\mathbf{A}^{\top}\mathbf{P} + \mathbf{P}\mathbf{A} \prec 0$

Теорема

Динамическая система
$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}=\mathbf{A}\mathbf{x},\ \mathbf{x}(0)=\mathbf{x}_0$$
 устойчива iff $\exists \mathbf{P}\succ 0$ такая что $\mathbf{A}^{\top}\mathbf{P}+\mathbf{P}\mathbf{A}\prec 0$

Задача разрешимости LMI
$$\min_{\mathbf{P} \in \mathbf{S}_{++}^n} 0$$
 s.t. $\mathbf{A}^{\top}\mathbf{P} + \mathbf{P}\mathbf{A} \prec 0$

Теорема

Динамическая система
$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \mathbf{x}_0$$
 устойчива iff $\exists \mathbf{P} \succ 0$ такая что $\mathbf{A}^{\top}\mathbf{P} + \mathbf{P}\mathbf{A} \prec 0$

Задача разрешимости LMI
$$\min_{\mathbf{P} \in \mathbf{S}_{++}^n} \mathbf{0}$$
 s.t. $\mathbf{A}^{\top} \mathbf{P} + \mathbf{P} \mathbf{A} \prec \mathbf{0}$

lacktriangle Очевидный ответ у замкнутой задачи ${f P}=0$

Теорема

Динамическая система
$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}=\mathbf{A}\mathbf{x},\ \mathbf{x}(0)=\mathbf{x}_0$$
 устойчива iff $\exists \mathbf{P}\succ 0$ такая что $\mathbf{A}^{\top}\mathbf{P}+\mathbf{P}\mathbf{A}\prec 0$

$$\min_{\mathbf{P} \in \mathbf{S}_{++}^n} 0$$
s.t. $\mathbf{A}^{\top} \mathbf{P} + \mathbf{P} \mathbf{A} \prec 0$

- ightharpoonup Очевидный ответ у замкнутой задачи ${f P}=0$
- ▶ Чтобы его избежать, исправим ограничения $\mathbf{P} \varepsilon \mathbf{I} \in \mathbf{S}^n_+$ и $\mathbf{A}^{\top} \mathbf{P} + \mathbf{P} \mathbf{A} \preceq -\alpha \mathbf{P}$

Исследование устойчивости динамической системы

Теорема

Динамическая система
$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \mathbf{x}_0$$
 устойчива iff $\exists \mathbf{P} \succ 0$ такая что $\mathbf{A}^{\top}\mathbf{P} + \mathbf{P}\mathbf{A} \prec 0$

Задача разрешимости LMI

$$\min_{\mathbf{P} \in \mathbf{S}_{++}^n} 0$$
s.t. $\mathbf{A}^{\top} \mathbf{P} + \mathbf{P} \mathbf{A} \prec 0$

- ightharpoonup Очевидный ответ у замкнутой задачи ${f P}=0$
- ▶ Чтобы его избежать, исправим ограничения $\mathbf{P} \varepsilon \mathbf{I} \in \mathbf{S}^n_+$ и $\mathbf{A}^{\top} \mathbf{P} + \mathbf{P} \mathbf{A} \preceq -\alpha \mathbf{P}$
- Уменьшением параметров можно добиться эквивалентности задач, если это необходимо

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}, \quad \mathbf{A} = \begin{bmatrix} -2 & -4 \\ 4 & -1 \end{bmatrix}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}, \quad \mathbf{A} = \begin{bmatrix} -2 & -4 \\ 4 & -1 \end{bmatrix}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}, \quad \mathbf{A} = \begin{bmatrix} -2 & -4 \\ 4 & -1 \end{bmatrix}$$

$$\mathbf{P}^* = \begin{bmatrix} 0.21279944 & 0.00498653 \\ 0.00498653 & 0.22003798 \end{bmatrix} \mathbf{M}$$

$$\lambda(\mathbf{P}^*) = \{ 0.21025717, 0.22258025 \}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x}, \ \mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}, \quad \mathbf{A} = \begin{bmatrix} -2 & -4 \\ 4 & -1 \end{bmatrix}$$

- $\mathbf{P}^* = \begin{bmatrix} 0.21279944 & 0.00498653 \\ 0.00498653 & 0.22003798 \end{bmatrix} \mathbf{M}$ $\lambda(\mathbf{P}^*) = \{ 0.21025717, 0.22258025 \}$
- $\lambda(\mathbf{A}^{\top}\mathbf{P}^* + \mathbf{P}^*\mathbf{A}) = \{-0.81189559, -0.47937813\}$

Постановка задачи

Постановка задачи

▶ Рассмотрим матрицу $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + \sum_{i=1}^n x_i \mathbf{A}_i$

Постановка задачи

- ▶ Рассмотрим матрицу $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + \sum_{i=1}^n x_i \mathbf{A}_i$
- lacktriangle Задача $\min_{\mathbf{x}} \lambda_{\max}(\mathbf{A}(\mathbf{x}))$, где $\mathbf{A}_i \in \mathbf{S}^n$

Постановка задачи

- ▶ Рассмотрим матрицу $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + \sum_{i=1}^n x_i \mathbf{A}_i$
- lacktriangle Задача $\min_{\mathbf{x}} \lambda_{\max}(\mathbf{A}(\mathbf{x}))$, где $\mathbf{A}_i \in \mathbf{S}^n$
- ▶ Равносильное преобразование

$$\min_{(\mathbf{x},t)} t$$

s.t.
$$\mathbf{A}(\mathbf{x}) - t\mathbf{I} \leq 0$$

Постановка задачи

- ▶ Рассмотрим матрицу $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + \sum_{i=1}^n x_i \mathbf{A}_i$
- lacktriangle Задача $\min_{\mathbf{x}} \lambda_{\max}(\mathbf{A}(\mathbf{x}))$, где $\mathbf{A}_i \in \mathbf{S}^n$
- ▶ Равносильное преобразование

$$\min_{(\mathbf{x},t)} t$$

s.t.
$$\mathbf{A}(\mathbf{x}) - t\mathbf{I} \leq 0$$

Пример

Постановка задачи

- ▶ Рассмотрим матрицу $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + \sum_{i=1}^n x_i \mathbf{A}_i$
- lacksquare Задача $\min_{\mathbf{x}} \lambda_{\max}(\mathbf{A}(\mathbf{x}))$, где $\mathbf{A}_i \in \mathbf{S}^n$
- Равносильное преобразование

$$\min_{(\mathbf{x},t)} t$$
s.t. $\mathbf{A}(\mathbf{x}) - t\mathbf{I} \prec 0$

Пример

$$\mathbf{A}_0 = \begin{bmatrix} 1 & -1 & -3 \\ -1 & -4 & 2 \\ -3 & 2 & 2 \end{bmatrix}, \mathbf{A}_1 = \begin{bmatrix} 0 & 1 & 3 \\ 1 & 2 & -1 \\ 3 & -1 & -3 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} -3 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Постановка задачи

- ▶ Рассмотрим матрицу $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + \sum_{i=1}^n x_i \mathbf{A}_i$
- lacktriangle Задача $\min_{\mathbf{x}} \lambda_{\max}(\mathbf{A}(\mathbf{x}))$, где $\mathbf{A}_i \in \mathbf{S}^n$
- ▶ Равносильное преобразование

$$\min_{(\mathbf{x},t)} t$$
s.t. $\mathbf{A}(\mathbf{x}) - t\mathbf{I} \preceq 0$

Пример

$$\begin{aligned} \mathbf{A}_0 &= \begin{bmatrix} 1 & -1 & -3 \\ -1 & -4 & 2 \\ -3 & 2 & 2 \end{bmatrix}, \mathbf{A}_1 = \begin{bmatrix} 0 & 1 & 3 \\ 1 & 2 & -1 \\ 3 & -1 & -3 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} -3 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix} \\ \mathbf{x}^* &= \begin{bmatrix} 0.96166719 & 0.33091336 \end{bmatrix}^\top, \lambda_{\max}(\mathbf{A}(\mathbf{x}^*)) \approx 0.0547863 \end{aligned}$$

$$\qquad \qquad (\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$$

$$(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$$

$$(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$$

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \operatorname{cl}(\mathcal{C}_1^* + \mathcal{C}_2^*)$

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \operatorname{cl}(\mathcal{C}_1^* + \mathcal{C}_2^*)$

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \operatorname{cl} \left(\mathcal{C}_1^* + \mathcal{C}_2^* \right)$

Доказательство

▶ Пусть $\mathbf{p} \in (\mathcal{C}_1 \times \mathcal{C}_2)^*$, тогда $\langle \mathbf{p}, \mathbf{x} \rangle = \langle \mathbf{p}_1, \mathbf{x}_1 \rangle + \langle \mathbf{p}_2, \mathbf{x}_2 \rangle \geq 0$

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \operatorname{cl} \left(\mathcal{C}_1^* + \mathcal{C}_2^* \right)$

- ▶ Пусть $\mathbf{p} \in (\mathcal{C}_1 \times \mathcal{C}_2)^*$, тогда $\langle \mathbf{p}, \mathbf{x} \rangle = \langle \mathbf{p}_1, \mathbf{x}_1 \rangle + \langle \mathbf{p}_2, \mathbf{x}_2 \rangle \geq 0$
- ▶ Значит $\mathbf{p}_1 \in \mathcal{C}_1^*$ и $\mathbf{p}_2 \in \mathcal{C}_2^* \Rightarrow \mathbf{p} \in \mathcal{C}_1^* \times \mathcal{C}_2^*$. Обратное включение следует явно из определения.

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \operatorname{cl} \left(\mathcal{C}_1^* + \mathcal{C}_2^* \right)$

- lacktriangle Пусть $\mathbf{p}\in (\mathcal{C}_1 imes\mathcal{C}_2)^*$, тогда $\langle \mathbf{p},\mathbf{x}
 angle=\langle \mathbf{p}_1,\mathbf{x}_1
 angle+\langle \mathbf{p}_2,\mathbf{x}_2
 angle\geq 0$
- ▶ Значит $\mathbf{p}_1 \in \mathcal{C}_1^*$ и $\mathbf{p}_2 \in \mathcal{C}_2^* \Rightarrow \mathbf{p} \in \mathcal{C}_1^* \times \mathcal{C}_2^*$. Обратное включение следует явно из определения.
- lacktriangle Пусть $\mathbf{p} \in (\mathcal{C}_1 + \mathcal{C}_2)^*$, тогда $\langle \mathbf{p}, \mathbf{x}_1 + \mathbf{x}_2 \rangle = \langle \mathbf{p}, \mathbf{x}_1 \rangle + \langle \mathbf{p}, \mathbf{x}_2 \rangle \geq 0$

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \operatorname{cl} \left(\mathcal{C}_1^* + \mathcal{C}_2^* \right)$

- ▶ Пусть $\mathbf{p} \in (\mathcal{C}_1 \times \mathcal{C}_2)^*$, тогда $\langle \mathbf{p}, \mathbf{x} \rangle = \langle \mathbf{p}_1, \mathbf{x}_1 \rangle + \langle \mathbf{p}_2, \mathbf{x}_2 \rangle \geq 0$
- ▶ Значит $\mathbf{p}_1 \in \mathcal{C}_1^*$ и $\mathbf{p}_2 \in \mathcal{C}_2^* \Rightarrow \mathbf{p} \in \mathcal{C}_1^* \times \mathcal{C}_2^*$. Обратное включение следует явно из определения.
- lacktriangle Пусть $\mathbf{p} \in (\mathcal{C}_1 + \mathcal{C}_2)^*$, тогда $\langle \mathbf{p}, \mathbf{x}_1 + \mathbf{x}_2 \rangle = \langle \mathbf{p}, \mathbf{x}_1 \rangle + \langle \mathbf{p}, \mathbf{x}_2 \rangle \geq 0$
- ▶ Значит $\langle \mathbf{p}, \mathbf{x}_1 \rangle \geq 0$ и $\langle \mathbf{p}, \mathbf{x}_2 \rangle \geq 0$. Тогда $\mathbf{p} \in \mathcal{C}_1^* \times \mathcal{C}_2^*$. Обратное включение аналогично следует из определения.

Пусть \mathcal{C}_1 , \mathcal{C}_2 замкнутые выпуклые конусы, тогда

- $(\mathcal{C}_1 \times \mathcal{C}_2)^* = \mathcal{C}_1^* \times \mathcal{C}_2^*$
- $(\mathcal{C}_1 + \mathcal{C}_2)^* = \mathcal{C}_1^* \cap \mathcal{C}_2^*$
- $(\mathcal{C}_1 \cap \mathcal{C}_2)^* = \operatorname{cl} \left(\mathcal{C}_1^* + \mathcal{C}_2^* \right)$

- lacktriangle Пусть $\mathbf{p} \in (\mathcal{C}_1 imes \mathcal{C}_2)^*$, тогда $\langle \mathbf{p}, \mathbf{x} \rangle = \langle \mathbf{p}_1, \mathbf{x}_1 \rangle + \langle \mathbf{p}_2, \mathbf{x}_2 \rangle \geq 0$
- ▶ Значит $\mathbf{p}_1 \in \mathcal{C}_1^*$ и $\mathbf{p}_2 \in \mathcal{C}_2^* \Rightarrow \mathbf{p} \in \mathcal{C}_1^* \times \mathcal{C}_2^*$. Обратное включение следует явно из определения.
- lacktriangle Пусть $\mathbf{p} \in (\mathcal{C}_1 + \mathcal{C}_2)^*$, тогда $\langle \mathbf{p}, \mathbf{x}_1 + \mathbf{x}_2 \rangle = \langle \mathbf{p}, \mathbf{x}_1 \rangle + \langle \mathbf{p}, \mathbf{x}_2 \rangle \geq 0$
- ▶ Значит $\langle \mathbf{p}, \mathbf{x}_1 \rangle \geq 0$ и $\langle \mathbf{p}, \mathbf{x}_2 \rangle \geq 0$. Тогда $\mathbf{p} \in \mathcal{C}_1^* \times \mathcal{C}_2^*$. Обратное включение аналогично следует из определения.
- $(C_1 \cap C_2)^* = (C_1^{**} \cap C_2^{**})^* = ((C_1^* + C_2^*)^*)^* = (C_1^* + C_2^*)^{**} = cl(C_1^* + C_2^*)$

Определение

Множество $\mathcal{C}^n = \{\mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0, \ \mathbf{x} \geq 0 \}$ называется copositive cone.

Определение

Множество $\mathcal{C}^n = \{\mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0, \ \mathbf{x} \geq 0 \}$ называется copositive cone.

Определение

Множество $\mathcal{C}^n = \{\mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \geq 0, \ \mathbf{x} \geq 0\}$ называется copositive cone.

Свойства

 $ightharpoonup \mathcal{C}^n$ выпуклое множество

Определение

Множество $\mathcal{C}^n = \{\mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \geq 0, \ \mathbf{x} \geq 0\}$ называется copositive cone.

- $ightharpoonup \mathcal{C}^n$ выпуклое множество
- $ightharpoonup \mathbf{S}_{+}^{n} \subset \mathcal{C}^{n}$

Определение

Множество $\mathcal{C}^n = \{\mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \geq 0, \ \mathbf{x} \geq 0 \}$ называется copositive cone.

- $ightharpoonup \mathcal{C}^n$ выпуклое множество
- $ightharpoonup \mathbf{S}_+^n \subset \mathcal{C}^n$
- lacktriangle Задача проверки $\mathbf{X}
 ot\in \mathcal{C}^n$ является со-NP полной!

Определение

Множество $\mathcal{C}^n = \{\mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \geq 0, \ \mathbf{x} \geq 0 \}$ называется copositive cone.

- $ightharpoonup \mathcal{C}^n$ выпуклое множество
- $ightharpoonup \mathbf{S}^n_+ \subset \mathcal{C}^n$
- ▶ Задача проверки $\mathbf{X} \notin \mathcal{C}^n$ является со-NP полной!
- ightharpoonup Задача конической оптимизации с конусом \mathcal{C}^n является NP-трудной

Определение

Множество $\mathcal{C}^n = \{\mathbf{A} \in \mathbf{S}^n \mid \mathbf{x}^\top \mathbf{A} \mathbf{x} \geq 0, \ \mathbf{x} \geq 0 \}$ называется copositive cone.

Свойства

- $ightharpoonup \mathcal{C}^n$ выпуклое множество
- $ightharpoonup \mathbf{S}^n_+ \subset \mathcal{C}^n$
- ▶ Задача проверки $\mathbf{X} \notin \mathcal{C}^n$ является со-NP полной!
- ightharpoonup Задача конической оптимизации с конусом \mathcal{C}^n является NP-трудной

Упражнение

Найдите сопряжённый конус к \mathcal{C}^n

Полярный конус

Определение

Полярным конусом для конуса $\mathcal C$ называется следующее множество

$$C^{\circ} = \{ \mathbf{y} \in \mathbb{R}^n \mid \langle \mathbf{y}, \mathbf{x} \rangle \leq 0, \ \forall \mathbf{x} \in C \}.$$

Заметим, что $\mathcal{C}^{\circ} = -\mathcal{C}^*$.

Утверждение

▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ — проекция точки \mathbf{x} на множество \mathcal{G}

Утверждение

- ▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ проекция точки \mathbf{x} на множество \mathcal{G}

Утверждение

- ▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ проекция точки \mathbf{x} на множество \mathcal{G}
- lacktriangle Для выпуклого конуса ${\mathcal C}$ и вектора ${f x}$ справедливо

$$\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{x}) + \pi_{\mathcal{C}^{\circ}}(\mathbf{x})$$

Утверждение

- ▶ Для любого линейного подпространства \mathcal{L} и любого вектора \mathbf{x} выполнено $\mathbf{x} = \pi_{\mathcal{L}}(\mathbf{x}) + \pi_{\mathcal{L}^{\perp}}(\mathbf{x})$, где $\pi_{\mathcal{G}}(\mathbf{x})$ проекция точки \mathbf{x} на множество \mathcal{G}
- lacktriangle Для выпуклого конуса ${\mathcal C}$ и вектора ${f x}$ справедливо

$$\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{x}) + \pi_{\mathcal{C}^{\circ}}(\mathbf{x})$$

Главное в первой части

▶ Сопряжённое множество и его свойства

Главное в первой части

- ▶ Сопряжённое множество и его свойства
- ▶ Сопряжённый конус и самосопряжённые конусы

Главное в первой части

- ▶ Сопряжённое множество и его свойства
- ▶ Сопряжённый конус и самосопряжённые конусы
- Конус положительных полуопределённых матриц и линейные матричные неравенства

Главное в первой части

- Сопряжённое множество и его свойства
- ▶ Сопряжённый конус и самосопряжённые конусы
- Конус положительных полуопределённых матриц и линейные матричные неравенства
- ▶ Полярный конус и разложение Моро

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{v} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \operatorname*{arg\ min}_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

Доказательство

lacktriangle Пусть $\mathbf{a}
ot\in \mathcal{X}$, иначе очевидно

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{v} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- lacktriangle Пусть $\mathbf{a}
 ot\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ orall \mathbf{x} \in \mathcal{X}$

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{v} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- lacktriangle Пусть $\mathbf{a}
 ot\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ orall \mathbf{x} \in \mathcal{X}$
- lacktriangle Выберем точку $\mathbf{x}_0 \in \mathcal{X}$ и зададим $\mathcal{Y} = \{\mathbf{x} \mid f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- ▶ Пусть $\mathbf{a} \not\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ orall \mathbf{x} \in \mathcal{X}$
- lacktriangle Выберем точку $\mathbf{x}_0 \in \mathcal{X}$ и зададим $\mathcal{Y} = \{\mathbf{x} \mid f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$
- lacktriangle Тогда $\mathcal{G} = \mathcal{X} \cap \mathcal{Y}$ является компактом

Определение

Проекцией точки $\mathbf{a} \in \mathbb{R}^n$ на множество $\mathcal{X} \subset \mathbb{R}^n$ по норме $\|\cdot\|$ будем называть такую точку $\pi_{\mathcal{X}}(\mathbf{a}) \in X$, что $\pi_{\mathcal{X}}(\mathbf{a}) = \arg\min_{\mathbf{y} \in \mathcal{X}} \|\mathbf{a} - \mathbf{y}\|$

Теорема о существовании проекции

Проекция точки ${\bf a}$ на непустое замкнутое множество всегда существует.

- lacktriangle Пусть $\mathbf{a}
 ot\in \mathcal{X}$, иначе очевидно
- lacktriangle Пусть $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$, где $\mathbf{x} \in \mathcal{X}$ и $f(\mathbf{x}) > 0 \ orall \mathbf{x} \in \mathcal{X}$
- lacktriangle Выберем точку $\mathbf{x}_0 \in \mathcal{X}$ и зададим $\mathcal{Y} = \{\mathbf{x} \mid f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$
- lacktriangle Тогда $\mathcal{G}=\mathcal{X}\cap\mathcal{Y}$ является компактом
- $f(\mathbf{x})$ достигает на \mathcal{G} своего минимального значение, которое и будет проекцией.

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

Доказательство

▶ Существование следует из предыдущей теоремы

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- ▶ Существование следует из предыдущей теоремы
- ▶ Пусть есть две точки $m{\pi}_1 \in \mathcal{X}$ и $m{\pi}_2 \in \mathcal{X}$, которые являются проекциями точки $m{a}$, тогда $\|m{\pi}_1 m{a}\|_2 = \|m{\pi}_2 m{a}\|_2$

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- ▶ Существование следует из предыдущей теоремы
- ▶ Пусть есть две точки $m{\pi}_1 \in \mathcal{X}$ и $m{\pi}_2 \in \mathcal{X}$, которые являются проекциями точки $m{a}$, тогда $\|m{\pi}_1 m{a}\|_2 = \|m{\pi}_2 m{a}\|_2$
- lacktriangle Рассмотрим $\mathbf{c}=rac{1}{2}m{\pi}_1+rac{1}{2}m{\pi}_2\in\mathcal{X}$ в силу выпуклости

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- Существование следует из предыдущей теоремы
- ▶ Пусть есть две точки $\pi_1 \in \mathcal{X}$ и $\pi_2 \in \mathcal{X}$, которые являются проекциями точки \mathbf{a} , тогда $\|\pi_1 \mathbf{a}\|_2 = \|\pi_2 \mathbf{a}\|_2$
- lacktriangle Рассмотрим ${f c}=rac{1}{2}m{\pi}_1+rac{1}{2}m{\pi}_2\in {\cal X}$ в силу выпуклости
- ▶ Тогда $\|\mathbf{c} \mathbf{a}\|_2 = \left\|\frac{1}{2}(\boldsymbol{\pi}_1 \mathbf{a}) + \frac{1}{2}(\boldsymbol{\pi}_2 \mathbf{a})\right\|_2 < \frac{1}{2}\|\boldsymbol{\pi}_1 a\|_2 + \frac{1}{2}\|\boldsymbol{\pi}_2 \mathbf{a}\|_2 = \|\boldsymbol{\pi}_1 \mathbf{a}\|_2$ противоречие

Теорема

Пусть $\mathcal X$ выпуклое замкнутое множество. Тогда проекция любой точки на это множество существует и единственна

- Существование следует из предыдущей теоремы
- ▶ Пусть есть две точки $m{\pi}_1 \in \mathcal{X}$ и $m{\pi}_2 \in \mathcal{X}$, которые являются проекциями точки \mathbf{a} , тогда $\|m{\pi}_1 \mathbf{a}\|_2 = \|m{\pi}_2 \mathbf{a}\|_2$
- lacktriangle Рассмотрим ${f c}=rac{1}{2}m{\pi}_1+rac{1}{2}m{\pi}_2\in {\cal X}$ в силу выпуклости
- ▶ Тогда $\|\mathbf{c} \mathbf{a}\|_2 = \left\|\frac{1}{2}(\boldsymbol{\pi}_1 \mathbf{a}) + \frac{1}{2}(\boldsymbol{\pi}_2 \mathbf{a})\right\|_2 < \frac{1}{2}\|\boldsymbol{\pi}_1 a\|_2 + \frac{1}{2}\|\boldsymbol{\pi}_2 \mathbf{a}\|_2 = \|\boldsymbol{\pi}_1 \mathbf{a}\|_2$ противоречие
- Значит проекция единственна

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}\rangle\geq 0$ для всех ${\bf x}\in{\cal X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}\rangle\geq 0$ для всех ${\bf x}\in{\cal X}$

Доказательство

1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - lacktriangle Значит $\|\mathbf{x}-\mathbf{a}\|_2 \geq \|\mathbf{y}-\mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y}=\pi_{\mathcal{X}}(\mathbf{a})$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - ▶ Значит $\|\mathbf{x} \mathbf{a}\|_2 \ge \|\mathbf{y} \mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - ▶ Значит $\|\mathbf{x} \mathbf{a}\|_2 \ge \|\mathbf{y} \mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - lacktriangle Значит $\|\mathbf{x}-\mathbf{a}\|_2 \geq \|\mathbf{y}-\mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y}=\pi_{\mathcal{X}}(\mathbf{a})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$
 - ► Тогда $\|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}\|_2^2 \le \|\mathbf{z}_{\lambda} \mathbf{a}\|_2^2 = \|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a} + \lambda(\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a}))\|_2^2 = \|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}\|_2^2 + \lambda^2 \|\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\|_2^2 + 2\lambda \langle \pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}, \mathbf{x} \pi_{\mathcal{X}}(\mathbf{a}) \rangle$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - lacktriangle Значит $\|\mathbf{x}-\mathbf{a}\|_2 \geq \|\mathbf{y}-\mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y}=\pi_{\mathcal{X}}(\mathbf{a})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$
 - ► Тогда $\|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}\|_{2}^{2} \leq \|\mathbf{z}_{\lambda} \mathbf{a}\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a} + \lambda(\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a}))\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}\|_{2}^{2} + \lambda^{2}\|\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} + 2\lambda\langle\pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}, \mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\rangle$
 - $2\langle \pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}, \mathbf{x} \pi_{\mathcal{X}}(\mathbf{a}) \rangle + \lambda \|\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} \ge 0$

Теорема

Дана точка ${\bf a}$ и выпуклое замкнутое множество ${\cal X}$. Тогда точка ${\bf y}\in{\cal X}$ есть проекция ${\bf a}$ iff $\langle {\bf y}-{\bf a},{\bf x}-{\bf y}
angle \geq 0$ для всех ${\bf x}\in{\cal X}$

- 1. Пусть неравенство выполнено для всех $\mathbf{x} \in \mathcal{X}$
 - Рассмотрим $\|\mathbf{x} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y} + \mathbf{y} \mathbf{a}\|_2^2 = \|\mathbf{x} \mathbf{y}\|_2^2 + \|\mathbf{y} \mathbf{a}\|_2^2 + 2\langle \mathbf{y} \mathbf{a}, \mathbf{x} \mathbf{y} \rangle$
 - ▶ Значит $\|\mathbf{x} \mathbf{a}\|_2 \ge \|\mathbf{y} \mathbf{a}\|_2$ для всех $\mathbf{x} \in \mathcal{X}$, значит по определению $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
- 2. Пусть $\mathbf{y} = \pi_{\mathcal{X}}(\mathbf{a})$
 - f L Для произвольного ${f x}\in {\cal X}$ рассмотрим ${f z}_{\lambda}=\lambda {f x}+(1-\lambda)\pi_{\cal X}({f a})\in {\cal X}$
 - Тогда

$$\begin{aligned} &\|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}\|_{2}^{2} \le \|\mathbf{z}_{\lambda} - \mathbf{a}\|_{2}^{2} = \|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a} + \lambda(\mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a}))\|_{2}^{2} = \\ &\|\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}\|_{2}^{2} + \lambda^{2}\|\mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} + 2\lambda\langle\pi_{\mathcal{X}}(\mathbf{a}) - \mathbf{a}, \mathbf{x} - \pi_{\mathcal{X}}(\mathbf{a})\rangle \end{aligned}$$

- $2\langle \pi_{\mathcal{X}}(\mathbf{a}) \mathbf{a}, \mathbf{x} \pi_{\mathcal{X}}(\mathbf{a}) \rangle + \lambda \|\mathbf{x} \pi_{\mathcal{X}}(\mathbf{a})\|_{2}^{2} \ge 0$
- lacktriangleright При $\lambda o 0$ получим требуемое неравенство

1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x}-\mathbf{z},\mathbf{c}-\mathbf{x}\rangle=-\langle \mathbf{y},\mathbf{c}-\mathbf{x}\rangle=-\langle \mathbf{y},\mathbf{c}\rangle$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - ▶ По критерию проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle \geq 0$ для всех $\mathbf{c} \in \mathcal{C}$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - ▶ Аналогично доказывается, что $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - lacktriangle По критерию проекции $\langle {f x}-{f z},{f c}-{f x}
 angle \geq 0$ для всех ${f c} \in {\cal C}$
 - ▶ Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - ▶ По критерию проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle \geq 0$ для всех $\mathbf{c} \in \mathcal{C}$
 - ightharpoonup Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$
 - ▶ Для $\mathbf{c} = 2\mathbf{x}$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \geq 0$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - lacktriangle По критерию проекции $\langle {f x}-{f z},{f c}-{f x}
 angle \geq 0$ для всех ${f c}\in {\cal C}$
 - ▶ Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$
 - ightharpoonup Для $\mathbf{c}=2\mathbf{x}$ имеем $\langle \mathbf{x}-\mathbf{z},\mathbf{x} \rangle \geq 0$
 - lacktriangle Значит $\langle {f z}-{f x},{f x}
 angle=0$. Пусть ${f u}={f z}-{f x}$. Покажем, что ${f u}\equiv{f y}$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - ▶ По критерию проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle \geq 0$ для всех $\mathbf{c} \in \mathcal{C}$
 - ightharpoonup Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$
 - ightharpoonup Для $\mathbf{c}=2\mathbf{x}$ имеем $\langle \mathbf{x}-\mathbf{z},\mathbf{x} \rangle \geq 0$
 - ightharpoonup Значит $\langle \mathbf{z} \mathbf{x}, \mathbf{x} \rangle = 0$. Пусть $\mathbf{u} = \mathbf{z} \mathbf{x}$. Покажем, что $\mathbf{u} \equiv \mathbf{y}$
 - ▶ Сначала покажем, что $\mathbf{u} \in \mathcal{C}^{\circ}$. Используем определение и рассмотрим $\langle \mathbf{u}, \mathbf{c} \rangle$ для произвольного $\mathbf{c} \in \mathcal{C}$

- 1. Пусть $\mathbf{z} = \mathbf{x} + \mathbf{y}$, $\mathbf{x} \in \mathcal{C}$, $\mathbf{y} \in \mathcal{C}^{\circ}$ и $\langle \mathbf{x}, \mathbf{y} \rangle = 0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - ▶ По критерию проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle \geq 0$ для всех $\mathbf{c} \in \mathcal{C}$
 - ightharpoonup Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$
 - ightharpoonup Для $\mathbf{c}=2\mathbf{x}$ имеем $\langle \mathbf{x}-\mathbf{z},\mathbf{x} \rangle \geq 0$
 - ightharpoonup Значит $\langle \mathbf{z} \mathbf{x}, \mathbf{x} \rangle = 0$. Пусть $\mathbf{u} = \mathbf{z} \mathbf{x}$. Покажем, что $\mathbf{u} \equiv \mathbf{y}$
 - ▶ Сначала покажем, что $\mathbf{u} \in \mathcal{C}^{\circ}$. Используем определение и рассмотрим $\langle \mathbf{u}, \mathbf{c} \rangle$ для произвольного $\mathbf{c} \in \mathcal{C}$
 - $hlap{f v}$ $\langle {f u},{f c}
 angle = \langle {f u},{f c}-{f x}
 angle = \langle {f z}-{f x},{f c}-{f x}
 angle \le 0$ по критерию проекции

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - ▶ По критерию проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle \geq 0$ для всех $\mathbf{c} \in \mathcal{C}$
 - ightharpoonup Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$
 - ightharpoonup Для $\mathbf{c}=2\mathbf{x}$ имеем $\langle \mathbf{x}-\mathbf{z},\mathbf{x} \rangle \geq 0$
 - ightharpoonup Значит $\langle \mathbf{z} \mathbf{x}, \mathbf{x} \rangle = 0$. Пусть $\mathbf{u} = \mathbf{z} \mathbf{x}$. Покажем, что $\mathbf{u} \equiv \mathbf{y}$
 - ▶ Сначала покажем, что $\mathbf{u} \in \mathcal{C}^{\circ}$. Используем определение и рассмотрим $\langle \mathbf{u}, \mathbf{c} \rangle$ для произвольного $\mathbf{c} \in \mathcal{C}$
 - $lack \langle {f u},{f c}
 angle = \langle {f u},{f c}-{f x}
 angle = \langle {f z}-{f x},{f c}-{f x}
 angle \le 0$ по критерию проекции
 - lacktriangle Далее покажем, что $\mathbf{u}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z}).$

- 1. Пусть $\mathbf{z}=\mathbf{x}+\mathbf{y}$, $\mathbf{x}\in\mathcal{C}$, $\mathbf{y}\in\mathcal{C}^{\circ}$ и $\langle\mathbf{x},\mathbf{y}\rangle=0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\diamond}}(\mathbf{z})$
 - ▶ По критерию проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle \geq 0$ для всех $\mathbf{c} \in \mathcal{C}$
 - ▶ Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$
 - lacktriangle Для ${f c}=2{f x}$ имеем $\langle {f x}-{f z},{f x}
 angle \geq 0$
 - lacktriangle Значит $\langle {f z}-{f x},{f x}
 angle=0.$ Пусть ${f u}={f z}-{f x}.$ Покажем, что ${f u}\equiv{f y}$
 - ▶ Сначала покажем, что $\mathbf{u} \in \mathcal{C}^{\circ}$. Используем определение и рассмотрим $\langle \mathbf{u}, \mathbf{c} \rangle$ для произвольного $\mathbf{c} \in \mathcal{C}$
 - $hlap{f v}$ $\langle {f u},{f c}
 angle = \langle {f u},{f c}-{f x}
 angle = \langle {f z}-{f x},{f c}-{f x}
 angle \le 0$ по критерию проекции
 - ightharpoonup Далее покажем, что $\mathbf{u}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z}).$
 - $lack \langle {f u}-{f z},{f c}-{f u}
 angle = \langle -{f x},{f c}-{f u}
 angle = -\langle {f x},{f c}
 angle \geq 0$ по критерию проекции

- 1. Пусть $\mathbf{z} = \mathbf{x} + \mathbf{y}$, $\mathbf{x} \in \mathcal{C}$, $\mathbf{y} \in \mathcal{C}^{\circ}$ и $\langle \mathbf{x}, \mathbf{y} \rangle = 0$
 - Рассмотрим выражение из критерия проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \mathbf{x} \rangle = -\langle \mathbf{y}, \mathbf{c} \rangle$
 - ▶ Так как $\mathbf{y} \in \mathcal{C}^{\circ}$, а \mathbf{c} произвольный элемент из \mathcal{C} , то $\langle \mathbf{y}, \mathbf{c} \rangle \leq 0$
 - ▶ По критерию проекции $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$
 - lacktriangle Аналогично доказывается, что $\mathbf{y}=\pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
- 2. Пусть $\mathbf{x} = \pi_{\mathcal{C}}(\mathbf{z})$ и $\mathbf{y} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$
 - ▶ По критерию проекции $\langle \mathbf{x} \mathbf{z}, \mathbf{c} \mathbf{x} \rangle \geq 0$ для всех $\mathbf{c} \in \mathcal{C}$
 - ightharpoonup Для $\mathbf{c} = 0$ имеем $\langle \mathbf{x} \mathbf{z}, \mathbf{x} \rangle \leq 0$
 - ightharpoonup Для $\mathbf{c}=2\mathbf{x}$ имеем $\langle \mathbf{x}-\mathbf{z},\mathbf{x} \rangle \geq 0$
 - ightharpoonup Значит $\langle \mathbf{z} \mathbf{x}, \mathbf{x} \rangle = 0$. Пусть $\mathbf{u} = \mathbf{z} \mathbf{x}$. Покажем, что $\mathbf{u} \equiv \mathbf{y}$
 - ▶ Сначала покажем, что $\mathbf{u} \in \mathcal{C}^{\circ}$. Используем определение и рассмотрим $\langle \mathbf{u}, \mathbf{c} \rangle$ для произвольного $\mathbf{c} \in \mathcal{C}$
 - $hlap{f v}$ $\langle {f u},{f c}
 angle = \langle {f u},{f c}-{f x}
 angle = \langle {f z}-{f x},{f c}-{f x}
 angle \le 0$ по критерию проекции
 - ightharpoonup Далее покажем, что $\mathbf{u} = \pi_{\mathcal{C}^{\circ}}(\mathbf{z})$.
 - $lack \langle {f u}-{f z},{f c}-{f u}
 angle = \langle -{f x},{f c}-{f u}
 angle = -\langle {f x},{f c}
 angle \geq 0$ по критерию проекции
 - ightharpoonup Значит $\mathbf{u} \equiv \mathbf{y}$

Проекция как нерастягивающий оператор

Теорема

Оператор проекции является нерастягивающим.

Доказательство

1. По свойству проекции, для любой точки \mathbf{y}_1

$$\langle \mathbf{y}_1 - \pi_{\mathcal{X}}(\mathbf{y}_1), \mathbf{x} - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \le 0, \quad \forall \mathbf{x} \in \mathcal{X}$$

2. Пусть $\mathbf{x} = \pi_{\mathcal{X}}(\mathbf{y}_2)$, тогда

$$\langle \mathbf{y}_1 - \pi_{\mathcal{X}}(\mathbf{y}_1), \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \le 0$$

 $\langle \pi_{\mathcal{X}}(\mathbf{y}_2) - \mathbf{y}_2, \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \le 0$

3. Сложим

$$\langle \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1), \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1) \rangle \leq \langle \pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1), \mathbf{y}_2 - \mathbf{y}_1 \rangle$$

4. По неравенству КБШ $\|\pi_{\mathcal{X}}(\mathbf{y}_2) - \pi_{\mathcal{X}}(\mathbf{y}_1)\|_2 \le \|\mathbf{y}_2 - \mathbf{y}_1\|_2$

Firmly non-expansiveness

Определение

Оператор f называется firmly non-expansive, если

$$||f(\mathbf{x}) - f(\mathbf{y})||_2^2 \le \langle f(\mathbf{x}) - f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$

Теорема

Оператор проекции является firmly non-expansive:

$$\|\pi_{\mathcal{X}}(\mathbf{x}) - \pi_{\mathcal{X}}(\mathbf{y})\|_{2}^{2} \le \langle \pi_{\mathcal{X}}(\mathbf{x}) - \pi_{\mathcal{X}}(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

 $lack ext{Проекция}$ — частный случай проксимального оператора для $f(\mathbf x)=I_{\mathcal X}(\mathbf x)=egin{cases} 0, & \mathbf x\in \mathcal X \ +\infty, & \mathbf x
ot\in \mathcal X \end{cases}$

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

- $lack ext{Проекция}$ частный случай проксимального оператора для $f(\mathbf x)=I_{\mathcal X}(\mathbf x)=egin{cases} 0, & \mathbf x\in \mathcal X \ +\infty, & \mathbf x
 ot\in \mathcal X \end{cases}$
- ightharpoonup Решение задачи $\min f(\mathbf{x})$ для выпуклой функции f является неподвижной точкой проксимального оператора

Определение

Проксимальным оператором для функции f в точке ${\bf x}$ называется такой оператор что

$$\mathbf{y} = \underset{\mathbf{u}}{\operatorname{arg min}} \left(f(\mathbf{u}) + \frac{1}{2\alpha} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right) = prox_{\alpha f}(\mathbf{x})$$

Свойства

- $lack ext{Проекция}$ частный случай проксимального оператора для $f(\mathbf x)=I_{\mathcal X}(\mathbf x)=egin{cases} 0, & \mathbf x\in \mathcal X \ +\infty, & \mathbf x
 ot\in \mathcal X \end{cases}$
- ightharpoonup Решение задачи $\min f(\mathbf{x})$ для выпуклой функции f является неподвижной точкой проксимального оператора
- Также является нерастягивающим и firmly non-expansiveness

Главное во второй части

▶ Проекция и её существование

Главное во второй части

- ▶ Проекция и её существование
- Критерий проекции

Главное во второй части

- ▶ Проекция и её существование
- Критерий проекции
- ▶ Понятие о проксимальном операторе и его свойствах