

THE UNIVERSITY OF TEXAS AT AUSTIN

CS383C Numerical Analysis

Codes for QR Factorization

Edited by \LaTeX

Department of Computer Science

STUDENT
Jimmy Lin
xl5224

COURSE COORDINATOR

Robert A. van de Geijn

respect in van de deig

UNIQUE NUMBER
53180

RELEASE DATE **Sep. 25 2014**

DUE DATE

Oct. 02 2014

TIME SPENT

2 hours

September 25, 2014

Exercise 1. Classical Gram-Schmidt (CGS)

```
%% Project 01: CGS
% Copyright 2014 The University of Texas at Austin
% For licensing information see
              http://www.cs.utexas.edu/users/flame/license.html
% Programmed by: Jimmy Lin
              jimmylin@utexas.edu
function [ A_out, R_out ] = CGS_unb( A, R )
 [ AL, AR ] = FLA_Part_1x2 ( A, ...
                           0, 'FLA_LEFT' );
 [ RTL, RTR, ...
   RBL, RBR ] = FLA_Part_2x2(R, ...
                           0, 0, 'FLA_TL' );
 while ( size( AL, 2 ) < size( A, 2 ) )
   [ A0, a1, A2 ] = FLA_Repart_1x2_to_1x3( AL, AR, ...
                                    1, 'FLA_RIGHT');
   [ R00, r01, R02, ... r10t, rho11, r12t, ...
     R20, r21, R22 ] = FLA_Repart_2x_2_to_3x_3 (RTL, RTR, ...
                                             1, 1, 'FLA_BR');
   r01 = A0' * a1;
   a1 = a1 - A0 * r01;
   rho11 = norm(a1, 2);
   a1 = a1 / rho11;
   [ AL, AR ] = FLA_Cont_with_1x3_to_1x2 ( A0, a1, A2, ...
                                      'FLA_LEFT' );
   [ RTL, RTR, ...
     RBL, RBR ] = FLA_Cont_with_3x3_to_2x2 ( R00, r01, R02, ...
                                        r10t, rho11, r12t, ...
                                        R20, r21,
                                                   R22, ...
                                        'FLA_TL' );
 end
 A_{out} = [AL, AR];
 R_out = [ RTL, RTR
          RBL, RBR ];
return
```

Exercise 2. Modified Gram-Schmidt (MGS)

```
%% Project 01: MGS (Alternative)
% Copyright 2014 The University of Texas at Austin
% For licensing information see
              http://www.cs.utexas.edu/users/flame/license.html
% Programmed by: Jimmy Lin
              jimmylin@utexas.edu
function [ A_out, R_out ] = MGS_unb( A, R )
 [ AL, AR ] = FLA_Part_1x2(A, ...
                           0, 'FLA_LEFT' );
 [ RTL, RTR, ...
   RBL, RBR ] = FLA_Part_2x2(R, ...
                           0, 0, 'FLA_TL');
 while ( size( AL, 2 ) < size( A, 2 ) )
   [ A0, a1, A2 ]= FLA_Repart_1x2_to_1x3 ( AL, AR, ...
                                    1, 'FLA_RIGHT' );
   [ R00, r01, R02, ...
     r10t, rho11, r12t, ...
     R20, r21, R22 ] = FLA_Repart_2x_2_to_3x_3 ( RTL, RTR, ...
                                            RBL, RBR, ...
                                             1, 1, 'FLA_BR');
   rho11 = norm(a1);
   a1 = a1 / rho11;
   r12t = a1' * A2;
   A2 = A2 - a1 * r12t;
   [AL, AR] = FLA_{cont\_with\_1x3\_to\_1x2} (A0, a1, A2, ...
                                      'FLA_LEFT' );
   [ RTL, RTR, ...
     RBL, RBR ] = FLA_{cont_with_3x_3_{to_2x_2}} ( R00, r01, R02, ...
                                        r10t, rho11, r12t, ...
                                        R20, r21, R22, ...
                                        'FLA_TL' );
 end
 A_{\text{out}} = [AL, AR];
 R_{out} = [RTL, RTR]
          RBL, RBR ];
return
```

Exercise 3. Householder QR Transformation

```
%% Project 01: Householder QR Transformation
\ % Copyright 2014 The University of Texas at Austin
% For licensing information see
              http://www.cs.utexas.edu/users/flame/license.html
% Programmed by: Jimmy Lin
               jimmylin@utexas.edu
function [ A_out, T_out ] = HQR_unb ( A, T )
 [ ATL, ATR, ...
   ABL, ABR ] = FLA_Part_2x2(A, ...
                           0, 0, 'FLA_TL');
  [ TT, ...
   TB ] = FLA_Part_2x1(T, ...
                      0, 'FLA_TOP' );
 while ( size( ATL, 1 ) < size( A, 1 ) )
   [ A00, a01, A02, ...
     a10t, alpha11, a12t, ...
     A20, a21, A22 ] = FLA_Repart_2x2_to_3x3 (ATL, ATR, ...
                                              ABL, ABR, ...
                                              1, 1, 'FLA_BR');
   [ TO, ...
     t1t, ...
     T2 ] = FLA_Repart_2x1_to_3x1 ( TT, ...
                               TB, ...
                                1, 'FLA_BOTTOM');
   [ alpha11, a21, t1t ] = Housev( alpha11, a21 );
   w12t = (a12t + a21' * A22) / t1t;
   a12t = a12t - w12t;
   A22 = A22 - a21 * w12t;
   [ ATL, ATR, ...
     ABL, ABR ] = FLA_Cont_with_3x3_to_2x2 ( A00, a01,
                                                    A02, ...
                                        a10t, alpha11, a12t, ...
                                        A20, a21,
                                                     A22, ...
                                        'FLA_TL' );
   [ TT, ...
     TB ] = FLA_Cont_with_3x1_to_2x1(T0, ...
                                   t1t, ...
                                   'FLA_TOP' );
 end
 A_{\text{out}} = [ATL, ATR]
         ABL, ABR ];
  T_out = [TT]
          TB ];
return
```

Exercise 4. FormQ algorithm

```
%% Project 01: FormQ_unb algorithm
% Copyright 2014 The University of Texas at Austin
% For licensing information see
              http://www.cs.utexas.edu/users/flame/license.html
% Programmed by: Jimmy Lin
              jimmylin@utexas.edu
function [ A_out, T_out ] = FORMQ_unb ( A, T )
 [ ATL, ATR, ...
   ABL, ABR ] = FLA_Part_2x2(A, ...
                           0, 0, 'FLA_BR');
 [ TT, ...
   TB ] = FLA_Part_2x1(T, ...
                     0, 'FLA_BOTTOM');
 while ( size( ABR, 1 ) < size( A, 1 ) )
   [ A00, a01, A02, ...
     a10t, alpha11, a12t, ...
     A20, a21, A22 ] = FLA_Repart_2x2_to_3x3 ( ATL, ATR, ...
                                              ABL, ABR, ...
                                              1, 1, 'FLA_TL');
   [ TO, ...
     t1t, ...
     T2 ] = FLA_Repart_2x1_to_3x1 ( TT, ...
                               1, 'FLA_TOP' );
   alpha11 = 1 - 1 / t1t;
   a12t = - (a21' * A22) / t1t;
   A22 = A22 + a21 * a12t;
   a21 = - a21 / t1t;
   [ ATL, ATR, ...
     ABL, ABR ] = FLA_Cont_with_3x3_to_2x2 ( A00, a01,
                                                   A02, ...
                                       a10t, alpha11, a12t, ...
                                       A20, a21, A22, ...
                                        'FLA_BR' );
   [ TT, ...
     TB ] = FLA_Cont_with_3x1_to_2x1(T0, ...
                                  t1t, ...
                                  'FLA_BOTTOM' );
 end
 A_{\text{out}} = [ATL, ATR]
         ABL, ABR ];
 T_out = [TT]
          TB ];
return
```