$$D^*(2010)^{\pm}$$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

$D^*(2010)^{\pm}$ MASS

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{\rm s1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV) TECN CHG COMMENT DOCUMENT ID

2010.26 ± 0.05 OUR FIT

• • We do not use the following data for averages, fits, limits, etc. • •

2008 2008.6 ± 1.0 1 GOLDHABER 77 MRK1 \pm $e^{+}e^{-}$ 77 LGW \pm e^+e^-

$m_{D^*(2010)^+} - m_{D^+}$

The fit includes D^{\pm} , D^0 , D^{\pm}_s , $D^{*\pm}$, D^{*0} , $D^{*\pm}_s$, $D_1(2420)^0$, $D^*_2(2460)^0$, and $D_{\rm S1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
140.67 ± 0.08 OUR FIT				
$140.64 \pm 0.08 \pm 0.06$	620	BORTOLETTO92B	CLE2	$e^+e^- ightarrow hadrons$

$m_{D^*(2010)^+} - m_{D^0}$

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{\rm S1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
145.4257±0.0017 OUR	FIT				
145.4258±0.0020 OUR	AVERAGE	Error includes scale	e fact	or of 1.2	
$145.4259 \pm 0.0004 \pm 0.003$	17 312.8k	LEES	13X	BABR	$D^{*\pm} \rightarrow D^0 \pi^{\pm} \rightarrow (K\pi_* K3\pi)\pi^{\pm}$
145.412 ±0.002 ±0.012	2	ANASTASSOV	02	CLE2	$(K\pi,K3\pi)\pi^{\pm}$ $D^{*\pm} \to D^{0}\pi^{\pm} \to (K\pi)\pi^{\pm}$
145.54 ± 0.08	611	³ ADINOLFI	99	BEAT	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.45 ± 0.02		³ BREITWEG	99	ZEUS	$D^{*\pm} \rightarrow D^0 \pi^{\pm} \rightarrow (K\pi)\pi^{\pm}$
145.42 ± 0.05		³ BREITWEG	99	ZEUS	$D^{*\pm} \rightarrow D^{0} \pi^{\pm} \rightarrow (K\pi)\pi^{\pm}$ $D^{*\pm} \rightarrow D^{0} \pi^{\pm} \rightarrow (K^{-3}\pi)\pi^{\pm}$ $D^{*\pm} \rightarrow D^{0} \pi^{\pm}$
145.5 ± 0.15	103	⁴ ADLOFF	97 B	H1	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.44 ± 0.08	152	⁴ BREITWEG	97	ZEUS	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$,
145.42 ±0.11	199	⁴ BREITWEG	97	ZEUS	$D^{0} \xrightarrow{K} X^{-3\pi}$ $D^{*\pm} \xrightarrow{D^{0}} D^{0\pi^{\pm}},$ $D^{0} \xrightarrow{K} X^{-\pi^{+}}$
HTTP://PDG.LBL.G	VO	Page 1	(Created:	5/30/2017 17:21

 $^{^1}$ From simultaneous fit to $D^*(2010)^+,\ D^*(2007)^0,\ D^+,\ {\rm and}\ D^0;$ not independent of FELDMAN 77B mass difference below. 2 PERUZZI 77 mass not independent of FELDMAN 77B mass difference below and PERUZZI 77 D^0 mass value.

145.4	± 0.2		48	⁴ DERRICK	95	ZEUS	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.39	± 0.06	± 0.03		BARLAG	92 B	ACCM	π^- 230 GeV
145.5	± 0.2		115	⁴ ALEXANDER	91 B	OPAL	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.30	± 0.06			⁴ DECAMP	91 J	ALEP	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.40	± 0.05	± 0.10		ABACHI	88B	HRS	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.46	±0.07	± 0.03		ALBRECHT	85F	ARG	$D^{*\pm} \rightarrow D^0 \pi^+$
145.5	± 0.3		28	BAILEY	83	SPEC	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.5	± 0.3		60	FITCH	81	SPEC	π^- A
145.3	± 0.5		30	FELDMAN	77 B	MRK1	$D^{*+} \rightarrow D^0 \pi^+$
• • • W	/e do not	use the fo	ollowing da	ita for averages, fit	ts, lim	its, etc.	• • •
145.4256	5 ± 0.0006	6 ± 0.0017	138.5k	LEES	13X	BABR	$D^{*\pm} D^{0} \pi^{\pm} K^{0} \pi^{\pm} D^{*\pm} D^{0} \pi^{\pm} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0} K^{0$
145.4266	$5 \pm 0.000!$	5 + 0 0010	17/13k	1.550			- "\\ \ - \(\) \ \ \
		-10.0015	117.JK	LEES	13X	BABR	$D^{*\perp} \rightarrow D^0 \pi^{\perp} \rightarrow$
145.44	±0.09	9±0.0019	122	⁴ BREITWEG	13х 97в	BABR ZEUS	$(K^-2\pi^+\pi^-)\pi^{\pm}$ $D^{*\pm} \rightarrow D^0\pi^{\pm},$
145.44 145.8	±0.09 ±1.5	J±0.0013					$(K^-2\pi^+\pi^-)\pi^{\pm}$
		J ± 0.0013	122	⁴ BREITWEG	97 B	ZEUS	$(K^{-}2\pi^{+}\pi^{-})\pi^{\pm}$ $D^{*\pm} \rightarrow D^{0}\pi^{\pm},$ $D^{0} \rightarrow K^{-}\pi^{+}$ $D^{*+} \rightarrow D^{0}\pi^{+}$ $D^{*\pm} \rightarrow D^{0}\pi^{\pm}$
145.8	± 1.5	3±0.0013	122 16	⁴ BREITWEG AHLEN	97в 83	ZEUS HRS	$(K^{-}2\pi^{+}\pi^{-})\pi^{\pm} \\ D^{*\pm} \to D^{0}\pi^{\pm}, \\ D^{0} \to K^{-}\pi^{+} \\ D^{*+} \to D^{0}\pi^{+}$
145.8 145.1	$\pm 1.5 \\ \pm 1.8$	3±0.0013	122 16 12	⁴ BREITWEG AHLEN BAILEY	97B 83 83	ZEUS HRS SPEC SPEC	$(K^{-}2\pi^{+}\pi^{-})\pi^{\pm}$ $D^{*\pm} \rightarrow D^{0}\pi^{\pm},$ $D^{0} \rightarrow K^{-}\pi^{+}$ $D^{*+} \rightarrow D^{0}\pi^{+}$ $D^{*\pm} \rightarrow D^{0}\pi^{\pm}$

 $^{^3}$ Statistical errors only.

 $\begin{array}{cc} \sim 145.5 \\ 145.2 & \pm 0.6 \end{array}$

$m_{D^*(2010)^+} - m_{D^*(2007)^0}$

BLIETSCHAU 79 BEBC νp

VALUE (MeV)	DOCUMENT ID	TECN COMMENT	
• • • We do not use t	he following data for averages, fit	ts, limits, etc. • • •	
2.6 ± 1.8	⁵ PERUZZI 77	LGW e ⁺ e ⁻	

 $^{^5}$ Not independent of FELDMAN 77B mass difference above, PERUZZI 77 $\it D^0$ mass, and GOLDHABER 77 $\it D^*(2007)^0$ mass.

$D^*(2010)^{\pm}$ WIDTH

<i>VALUE</i> (keV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
83.4±1.8 OUR	AVER	AGE				
$83.3 \pm 1.2 \pm 1.4$		312.8k	⁶ LEES	13X	BABR	$D^{*\pm} \rightarrow D^0 \pi^{\pm} \rightarrow$
96 ±4 ±22			⁶ ANASTASSO	V 02	CLE2	$D^{*\pm} \rightarrow D^{0} \pi^{\pm} \rightarrow (K\pi, K3\pi)\pi^{\pm}$ $D^{*\pm} \rightarrow D^{0} \pi^{\pm} \rightarrow (K\pi) \pi^{\pm}$
• • • We do not us	se the	following	data for averages			
$83.4 \pm 1.7 \pm 1.5$		138.5k	⁶ LEES	13X	BABR	$D^{*\pm} \rightarrow D^0 \pi^{\pm} \rightarrow$
83.2±1.5± 2.6		174.3k	⁶ LEES	13X	BABR	$D^{*\pm} \to D^{0} \pi^{\pm} \to (K^{-}\pi^{+})\pi^{\pm}$ $D^{*\pm} \to D^{0} \pi^{\pm} \to (K^{-}2\pi^{+}\pi^{-})\pi^{\pm}$
<131	90	110	BARLAG			π^- 230 GeV
⁶ Ignoring the ele	ctroma	agnetic co	ntribution from E	o*± →	$D^{\pm} \gamma$.	

Created: 5/30/2017 17:21

⁴ Systematic error not evaluated.

$D^*(2010)^{\pm}$ DECAY MODES

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$D^{0}\pi^{+}$	(67.7±0.5) %
_	$D^+\pi^0$	$(30.7 \pm 0.5) \%$
Γ ₃	$D^+\gamma$	(1.6±0.4) %

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=0.3$ for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$$\begin{array}{c|cccc}
x_2 & -62 \\
x_3 & -43 & -44 \\
\hline
& x_1 & x_2
\end{array}$$

D*(2010)+ BRANCHING RATIOS

$\Gamma(D^0\pi^+)/\Gamma_{ m total}$			Γ_1/Γ
VALUE	DOCUMENT ID	TECN C	COMMENT
0.677 ± 0.005 OUR FIT			
0.677 ± 0.006 OUR AVERAG			
$0.6759 \pm 0.0029 \pm 0.0064$	^{7,8,9} BARTELT 98	CLE2 ϵ	e^+e^-
$0.688 \pm 0.024 \pm 0.013$	ALBRECHT 95	= ARG ϵ	$e^+e^- o$ hadrons
$0.681\ \pm0.010\ \pm0.013$	⁷ BUTLER 92	CLE2 e	$e^+e^- o$ hadrons
• • • We do not use the follow	ving data for averages, fit	s, limits, etc	5. ● ● ●
$0.57 \pm 0.04 \pm 0.04$	ADLER 881	MRK3 e	e^+e^-
0.44 ± 0.10	COLES 82	MRK2 e	e^+e^-
0.6 ± 0.15	⁹ GOLDHABER 77	MRK1 e	e ⁺ e ⁻
$\Gamma(D^+\pi^0)/\Gamma_{ m total}$			Γ_2/Γ
	VTS <u>DOCUMENT ID</u>	TECN	COMMENT
0.307 ±0.005 OUR FIT			
$0.3073 \pm 0.0013 \pm 0.0062$	^{7,8,9} BARTELT	98 CLE2	e^+e^-
• • • We do not use the follow	ving data for averages, fit	s, limits, etc	5. ● ● ●
$0.312 \pm 0.011 \pm 0.008$ 14	104 ALBRECHT	95F ARG	${ m e^+e^-} ightarrow$ hadrons
$0.308 \pm 0.004 \pm 0.008$	110 ⁷ BUTLER	92 CLE2	$e^+e^- ightarrow$ hadrons
$0.26 \pm 0.02 \pm 0.02$	ADLER	88D MRK	3 e ⁺ e ⁻
0.34 ± 0.07	COLES		2 e ⁺ e ⁻
		,	-
HTTP://PDG.LBL.GOV	Page 3	Created	d: 5/30/2017 17:21

 $\Gamma(D^+\gamma)/\Gamma_{\text{total}}$ Γ_3/Γ TECN COMMENT 0.016 ± 0.004 OUR FIT 0.016 ± 0.005 OUR AVERAGE 7,8 BARTELT CLE2 $0.0168 \pm 0.0042 \pm 0.0029$ ⁷ BUTLER 12 $0.011 \pm 0.014 \pm 0.016$ hadrons • • • We do not use the following data for averages, fits, limits, etc. • • **ALBRECHT** hadrons ADLER 0.17 ± 0.05 ± 0.05 ¹⁰ COLES MRK2 $e^+e^ 0.22 \pm 0.12$

$D^*(2010)^{\pm}$ REFERENCES

LEES	13X	PRL 111 111801	J.P. Lees et al.	(BABAR Collab.)	
Also		PR D88 052003	J.P. Lees et al.	(BABAR Collab.)	
Also	00	PR D88 079902 (errat.)		(BABAR Collab.)	
ANASTASSOV	-	PR D65 032003	A. Anastassov et al.	(CLEO Collab.)	
ADINOLFI	99	NP B547 3	M. Adinolfi et al.	(Beatrice Collab.)	
BREITWEG	99	EPJ C6 67	J. Breitweg <i>et al.</i>	(ZEUS Collab.)	
BARTELT	98	PRL 80 3919	J. Bartelt et al.	(CLEO Collab.)	
ADLOFF	97B	ZPHY C72 593	C. Adloff et al.	(H1 Collab.)	
BREITWEG	97	PL B401 192	J. Breitweg <i>et al.</i>	(ZEUS Collab.)	
BREITWEG	97B	PL B407 402	J. Breitweg <i>et al.</i>	(ZEUS Collab.)	
ALBRECHT	95F	ZPHY C66 63	H. Albrecht <i>et al.</i>	(ARGUS Collab.)	
DERRICK	95	PL B349 225	M. Derrick <i>et al.</i>	(ZEUS Collab.)	
BARLAG	92B	PL B278 480	S. Barlag <i>et al.</i>	(ACCMOR Collab.)	
BORTOLETTO	92B	PRL 69 2046	D. Bortoletto et al.	(CLEO Collab.)	
BUTLER	92	PRL 69 2041	F. Butler <i>et al.</i>	(CLEO Collab.)	
ALEXANDER	91B	PL B262 341	G. Alexander et al.	(OPAL Collab.)	
DECAMP	91J	PL B266 218	D. Decamp et al.	(ALEPH Collab.)	
ABACHI	88B	PL B212 533	S. Abachi et al.	(ANL, IND, MICH, PURD+)	
ADLER	88D	PL B208 152	J. Adler <i>et al.</i>	` (Mark III Collab.)	
ALBRECHT	85F	PL 150B 235	H. Albrecht et al.	(ARGUS Collab.)	
AHLEN	83	PRL 51 1147	S.P. Ahlen et al.	(ANL, IND, LBL+)	
BAILEY	83	PL 132B 230	R. Bailey et al.	(AMST, BRIS, CERN, CRAC+)	
COLES	82	PR D26 2190	M.W. Coles et al.	(LBL, SLAC)	
YELTON	82	PRL 49 430	J.M. Yelton <i>et al.</i>	(SLAC, LBL, UCB+)	
FITCH	81	PRL 46 761	V.L. Fitch et al.	(PRIN, SACL, TORI+)	
AVERY	80	PRL 44 1309	P. Avery et al.	(ILL, FNAL, COLU)	
BLIETSCHAU	79	PL 86B 108	J. Blietschau <i>et al.</i>	(AACH3, BONN, CERN+)	
FELDMAN	77B	PRL 38 1313	G.J. Feldman et al.	(Mark I Collab.)	
GOLDHABER	77	PL 69B 503	G. Goldhaber <i>et al.</i>	(Mark I Collab.)	
PERUZZI	77	PRL 39 1301	I. Peruzzi <i>et al.</i>	(LGW Collab.)	
LINGLEI	• •	1112 33 1331	i. i ciuzzi ci di.	(EGVV Collab.)	

Created: 5/30/2017 17:21

⁷The branching ratios are not independent, they have been constrained by the authors to sum to 100%.

⁸ Systematic error includes theoretical error on the prediction of the ratio of hadronic

⁹ modes.
9 Assuming that isospin is conserved in the decay.

¹⁰ Not independent of $\Gamma(D^0\pi^+)/\Gamma_{\text{total}}$ and $\Gamma(D^+\pi^0)/\Gamma_{\text{total}}$ measurement.