Nom: Prénom: Spécialité:

Université Paul Sabatier UPSSITECH L3

Examen d'Electronique Numérique Durée 1h00 - Sans Documents

NOM: Prénom: Spécialité:

Exercice I: combinatoire (Durée conseillée 20 min) - 6,5 pts

On désire concevoir un système qui commande les feux de circulation à l'intersection d'un carrefour d'un axe principal et d'une route secondaire. À cet effet, des capteurs $\mathbf{P_1}$, $\mathbf{P_2}$, $\mathbf{S_1}$ et $\mathbf{S_2}$ détectant la présence de voitures ont été placés à cette intersection. Ces capteurs donnent une information logique « 0 » quand il n'y a pas de voitures et « 1 » en présence de voitures.

Les feux de circulation se trouvant à cette intersection sont commandés de la façon suivante :

- Les feux $\mathbf{F_1}$ sont verts quand :
 - il y a des voitures dans les deux voies de l'axe principal,
 - il y a des voitures dans l'une des deux voies de l'axe principal sans qu'il y ait des voitures simultanément sur les deux voies de l'axe secondaire,
 - il n'y a pas de voitures du tout.

Les feux F₂ sont verts quand :

il y a des voitures dans l'une des deux voies ou les deux voies de l'axe secondaire et quand il y a au maximum une seule voie de l'axe principal occupée par des voitures.

La priorité est donnée à l'axe principal quand il y a simultanément une voiture sur une des voies de l'axe principal et une voiture sur une des voies de la route secondaire.

[1] Identifier les variables d'entrée et de sortie du système.

Entrées P1,P2,S1,S2 (0,25 PT)

Sorties F1,F2 (0,25 PT)

[2] Établir la table de vérité représentant le fonctionnement de ce système.(4pts : 0,25 pt par ligne)

P_1	P_2	S_1	S_2	F_1	F_2
0	0	0	0	1	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	0	1	1	0

1	1	1	0	1	0
1	1	1	1	1	0

Question 3, 4 mettre la moitié es points si la réponse est correcte à partir d'un résultat faux issu d'une question précédente

[3] Déterminer par la méthode de votre choix les équations simplifiées de chaque sortie et les présenter sous la forme de produits de somme.

Table de Karnaugh de F1 : (0,25 PT)

1 able de Ramaugh de 1 1 . (0,25 1 1)					
P_1P_2	S_1S_2	00	01	11	10
0	00	1	0	0	0
0	1	1	1	0	1
1	1		1	1	1
1	0	1	1	0	1

Table de Karnaugh de F2 : (0,25 PT)

1 do le de 1 da l'al l'agli de 1 2 : (0,23 1 1					
D D	S_1S_2	00	01	11	10
P_1P_2					
C	00	0	1		1
01		0	0	Ú	0
11		0	0	0	0
10		0	0	1	0

Équations simplifiées :

$$F1 = P1.P2 + \overline{S1}.\overline{S2} + P1.\overline{S1} + P2.\overline{S2} + P1.\overline{S2} + P2.\overline{S1}$$
 (0,5 PT)

$$F1 = P1.P2 + \overline{S1}.\overline{S2} + (P1 + P2).(\overline{S1} + \overline{S2})$$

$$F2 = \overline{P1}.S1.S2 + \overline{P2}.S1.S2 + \overline{P1}.\overline{P2}.S1 + \overline{P1}.\overline{P2}.S2 (0.5 PT)$$

$$F2 = (\overline{P1} + \overline{P2}).S1.S2 + \overline{P1}.\overline{P2}.(S1 + S2)$$

[4] Établir la relation algébrique qui existe entre les deux sorties.

$$F1 = \overline{F2}$$
 (0.5 PT)

Exercice II: séquentiel (durée conseillée 30 min) - 7 Pts

Le schéma de la figure ci-dessous décrit la fonction à étudier. À t=0, RVB=100 et les entrées PRESET1=PRESET2=PRESET3=CLR1=CLR2=CLR3 =1 (non actives).

Nom: Prénom: Spécialité:

[1] Rappeler la table de vérité des bascules du système. (1 pt : 0,5 pt pour chaque table de vérité)

J	K	Qt+1
0	0	Qt
0	1	0
1	0	1
1	1	Qt

Н	D	Q _{t+1}
0	X	Q _t 0
1	0	0
1	1	1

[2] Donner l'état de S à t=0, puis dessiner le chronogramme du système pour les 4 premières impulsions d'horloge (H) (2,5 pts)

à t=0 S=V \oplus B=0 (0,5 pt), Chronogramme S : 0,5 pt, Chronogramme R : 0,5 pt, Chronogramme V : 0,5 pt, Chronogramme B : 0,5 pt

1er front d'horloge descendant

- La bascule J1K1 : J1K1 = 00 Q=Q donc R reste à 1
- La bascule D2 : D2 =1 donc V=1
- La bascule J3K3 : J3=0, K3=1 Q=0 donc B=0
- S passe à 1

2nd front d'horloge descendant

- La bascule J1K1 : J1K1 = 11 Q=/Q donc R passe à 0
- La bascule D2 : D2 =1 donc V=1
- La bascule J3K3 : J3=1, K3=0 Q=1 donc B=1
- S passe à 0

3ème front d'horloge descendant

- La bascule J1K1 : J1K1 = 00 Q=Q donc R reste à 0
- La bascule D2 : D2 =0 donc V=0
- La bascule J3K3: J3=1, K3=0 Q=1 donc B=1
- S passe à 1

4ème front d'horloge descendant

- La bascule J1K1 : J1K1 = 11 Q=/Q donc R passe à 1

- La bascule D2 : D2 =0 donc V=0
- La bascule J3K3 : J3=0, K3=1 Q=0 donc B=0
- S passe à 1

[3] Donner la fonction de ce système, préciser si le système est synchrone ou asynchrone (justifier votre réponse). (0,5 pt : 0,25 pour séquenceur, 0,25 pt pour synchrone)

Séquenceur synchrone car les bascules ont la même horloge et déclenche sur le front descendant de l'horloge

[4] Donner l'état des sorties R, V, B et S lorsque l'on active (mise à 0) les entrées CLR1, CLR2 et CLR3 sur le front montant de la 7^{ème} impulsion d'horloge ? (2 pts)

R=V=B=S=0 car dès l'activation des entrées asynchrones les sorties des bascules passent à 0

[5] Que se passe-t-il si à t=0 RVB=000 ? (1 pt)

Nom: Prénom: Spécialité:

 $S=J1=K1=V\oplus B=0$ (0,5 pt), donc R ne changera pas d'état, donc au front descendant d'horloge RVB=000, donc le système reste dans son été initial (0,5pt)

Question de cours (Durée conseillée 10 min)

Dans cette partie, toute réponse juste sera notée 1 pt et toute réponse fausse sera notée -1 pt

- [1] Toute équation logique peut-être mis sous 2 formes : 1^{ère} forme canonique et 2^{ème} forme canonique. Lorsque l'on représente une équation sous la 2^{ème} forme canonique, toute variable = 1 est noté a et celle = 0 est notée a
 - Vrai Faux
- [2] Identifier le symbole correspondant à chaque opérateur

• XOR

Soit la figure ci-contre

- [3] Preset et Clear sont les entrées asynchrones de la bascule
 - Vrai
- Faux

- Vrai
- Faux

- La sortie Q passe à 1 quelque soit son état précédent
- La sortie Q passe à 1 quelque soit son état précédent
- La sortie Q ne change pas d'état quelque soit son état précédent
- La sortie Q ne change pas d'état quelque soit son état précédent