Bayesian dynamic pricing in discrete time

Yuqiong Wang

(joint work with Erik Ekström)

Department of Mathematics Uppsala University

12th Bachelier Finance Society Congress, Rio de Janeiro, Brazil
July 8, 2024

Outline

- Introduction
 - Incomplete information
 - Applications
- Problem formulation and results
 - Formulation
 - Construct the value function
 - Consequence of convexity
- Some remarks

• Optimal stopping problems often concern:

$$V = \sup_{\tau} \mathbb{E}[G(X_{\tau})].$$

• Optimal stopping problems often concern:

$$V = \sup_{\tau} \mathbb{E}[G(X_{\tau})].$$

• Usually uncertainty is associated with the assumptions:

• Optimal stopping problems often concern:

$$V = \sup_{\tau} \mathbb{E}[G(X_{\tau})].$$

• Usually uncertainty is associated with the assumptions:

- Is X a Gaussian with mean 0 or mean 1?

Optimal stopping problems often concern:

$$V = \sup_{\tau} \mathbb{E}[G(X_{\tau})].$$

Usually uncertainty is associated with the assumptions:

- Is X a Gaussian with mean 0 or mean 1?
- Combine optimal stopping and filtering: optimising while learning.

Optimal stopping problems often concern:

$$V = \sup_{\tau} \mathbb{E}[G(X_{\tau})].$$

• Usually uncertainty is associated with the assumptions:

- Is X a Gaussian with mean 0 or mean 1?
- Combine optimal stopping and filtering: optimising while learning.
- Applications: e.g. statistics, and option pricing.

Classical problem: Testing the unknown drift of a BM.

$$X_t = \theta t + W_t$$
.

where
$$\mathbb{P}(\theta = 1) = \pi = 1 - \mathbb{P}(\theta = 0), \ \pi \in (0, 1).$$

Classical problem: Testing the unknown drift of a BM.

Observe the trajectory of a BM with unknown drift:

$$X_t = \theta t + W_t$$
.

where
$$\mathbb{P}(\theta = 1) = \pi = 1 - \mathbb{P}(\theta = 0), \ \pi \in (0, 1).$$

• Want to test: $H_1: \theta = 1, H_0: \theta = 0$, as accurately as possible.

Classical problem: Testing the unknown drift of a BM.

$$X_t = \theta t + W_t$$
.

where
$$\mathbb{P}(\theta = 1) = \pi = 1 - \mathbb{P}(\theta = 0), \ \pi \in (0, 1).$$

- Want to test: $H_1: \theta = 1, H_0: \theta = 0$, as accurately as possible.
- Observation is not free: c > 0 per unit time of observation.

Classical problem: Testing the unknown drift of a BM.

$$X_t = \theta t + W_t$$
.

where
$$\mathbb{P}(\theta = 1) = \pi = 1 - \mathbb{P}(\theta = 0), \ \pi \in (0, 1).$$

- Want to test: $H_1: \theta = 1, H_0: \theta = 0$, as accurately as possible.
- Observation is not free: c > 0 per unit time of observation.
- Need to test as fast as possible.

Classical problem: Testing the unknown drift of a BM.

$$X_t = \theta t + W_t$$
.

where
$$\mathbb{P}(\theta = 1) = \pi = 1 - \mathbb{P}(\theta = 0), \ \pi \in (0, 1).$$

- Want to test: $H_1: \theta = 1, H_0: \theta = 0$, as accurately as possible.
- Observation is not free: c > 0 per unit time of observation.
- Need to test as fast as possible.
- The time to stop observing is part of the decision.

• The minimised cost *V*:

$$V = \inf_{\tau,d} \left\{ \mathbb{P}(d=0,\theta=1) + \mathbb{P}(d=1,\theta=0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

• The minimised cost *V*:

$$V = \inf_{\tau, d} \left\{ \mathbb{P}(d = 0, \theta = 1) + \mathbb{P}(d = 1, \theta = 0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

Solution: embed in another coordinate, solves a free-boundary problem.

Defining the posterior probability process

$$\Pi_t := \mathbb{P}_{\pi}(\theta = 1 | \mathscr{F}_t^X),$$

• The minimised cost *V*:

$$V = \inf_{\tau,d} \left\{ \mathbb{P}(d=0,\theta=1) + \mathbb{P}(d=1,\theta=0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

Solution: embed in another coordinate, solves a free-boundary problem.

Defining the posterior probability process

$$\Pi_t := \mathbb{P}_{\pi}(\theta = 1 | \mathscr{F}_t^X),$$

Problem (1) can be written as

$$V(\pi) = \inf_{ au} \mathbb{E}_{\pi}[c au + \Pi_{ au} \wedge (1 - \Pi_{ au})]$$

where

$$d\Pi_t = \Pi_t (1 - \Pi_t) d\tilde{W}_t$$

• The minimised cost *V*:

$$V = \inf_{\tau, d} \left\{ \mathbb{P}(d = 0, \theta = 1) + \mathbb{P}(d = 1, \theta = 0) + c\mathbb{E}[\tau] \right\}. \tag{1}$$

Solution: embed in another coordinate, solves a free-boundary problem.

Defining the posterior probability process

$$\Pi_t := \mathbb{P}_{\pi}(\theta = 1 | \mathscr{F}_t^X),$$

Problem (1) can be written as

$$V(\pi) = \inf_{ au} \mathbb{E}_{\pi}[c au + \Pi_{ au} \wedge (1 - \Pi_{ au})]$$

where

$$d\Pi_t = \Pi_t (1 - \Pi_t) d\tilde{W}_t$$

• Standard method applies: explicit solution. c.f. Shiryaev (1969).

• Consider the stock of a company with:

$$dX_t = \frac{\theta}{\theta} X_t dt + \sigma X_t dW_t, \quad X_0 = x,$$

• Consider the stock of a company with:

$$dX_t = \frac{\theta}{\theta} X_t dt + \sigma X_t dW_t, \quad X_0 = x,$$

where the company can be either in a good or bad state:

$$\mathbb{P}(\theta=1)=\pi=1-\mathbb{P}(\theta=0),\quad \pi\in(0,1)$$

.

Consider the stock of a company with:

$$dX_t = \frac{\theta}{\theta} X_t dt + \sigma X_t dW_t, \quad X_0 = x,$$

• where the company can be either in a good or bad state:

$$\mathbb{P}(\theta=1)=\pi=1-\mathbb{P}(\theta=0),\quad \pi\in(0,1)$$

- The **buyer** of the option needs to estimate θ .
- The value of an American put:

$$V = \sup_{\tau \leq T} \mathbb{E}_{t,x}[e^{-r\tau}(K - X_{\tau})^{+}]?$$

Consider the stock of a company with:

$$dX_t = \frac{\theta}{\theta} X_t dt + \sigma X_t dW_t, \quad X_0 = x,$$

• where the company can be either in a good or bad state:

$$\mathbb{P}(\theta=1)=\pi=1-\mathbb{P}(\theta=0),\quad \pi\in(0,1)$$

- The **buyer** of the option needs to estimate θ .
- The value of an American put:

$$V = \sup_{\tau < T} \mathbb{E}_{t,x}[e^{-r\tau}(K - X_{\tau})^{+}]?$$

• Solution: rely on the □ process again:

$$V = \sup_{\tau} \mathbb{E}_{t,x,\pi}[e^{-r\tau}(K - X_{\tau})^{+}].$$

c.f. Decamps et al. (2005), Gapeev (2012).

• Can reduce to a one (spatial)-dimensional problem.

The behavior of boundries depends on the parameter.
 c.f. Ekström et al. (2019)

What about control?

• Can we formulate a similar control problem?

What about control?

- Can we formulate a similar **control** problem?
- Why not start with a Bernoulli prior again?

What about control?

- Can we formulate a similar **control** problem?
- Why not start with a Bernoulli prior again?
- We consider a **learning-and-earning problem** in discrete time.

Introduction
Problem formulation and results
Some remarks

rmulation onstruct the value functio onsequence of convexity

Outline

- Introduction
 - Incomplete information
 - Applications
- 2 Problem formulation and results
 - Formulation
 - Construct the value function
 - Consequence of convexity
- Some remarks

• Consider a **seller** who offers a product for sale.

- Consider a seller who offers a product for sale.
- The potential **buyers** arrive in a sequential fashion.

- Consider a **seller** who offers a product for sale.
- The potential **buyers** arrive in a sequential fashion.
- At time n, the seller offers a price p_n .

- Consider a **seller** who offers a product for sale.
- The potential **buyers** arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- Let θ be the unknown state of the world, and priorly,

$$\mathbb{P}(\theta=1)=\pi=1-\mathbb{P}(\theta=0),\quad \pi\in(0,1).$$

- Consider a **seller** who offers a product for sale.
- The potential **buyers** arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- Let θ be the unknown state of the world, and priorly,

$$\mathbb{P}(\theta=1)=\pi=1-\mathbb{P}(\theta=0),\quad \pi\in(0,1).$$

• At time n, with a proposed price p, we observe the amount of product sold, $X_n(\theta, p)$.

- Consider a **seller** who offers a product for sale.
- The potential **buyers** arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- Let θ be the unknown state of the world, and priorly,

$$\mathbb{P}(\theta=1)=\pi=1-\mathbb{P}(\theta=0),\quad \pi\in(0,1).$$

- At time n, with a proposed price p, we observe the amount of product sold, $X_n(\theta, p)$.
- $X_i's$ are independent conditioning on θ .

- Consider a **seller** who offers a product for sale.
- The potential buyers arrive in a sequential fashion.
- At time n, the seller offers a price p_n .
- Let θ be the unknown state of the world, and priorly,

$$\mathbb{P}(\theta=1)=\pi=1-\mathbb{P}(\theta=0),\quad \pi\in(0,1).$$

- At time n, with a proposed price p, we observe the amount of product sold, $X_n(\theta, p)$.
- $X_i's$ are independent conditioning on θ .
- We know this conditional distribution:

$$F_{\theta}(x,p) = \mathbb{P}(X(\theta,p) \leq x)$$

• The seller seeks to maximise the discounted profit:

$$V = \sup_{\{p_n\}_{n\geq 0}} \mathbb{E}\left[\sum_{n=0}^{\infty} a^n p_n X_n^{p_n}\right].$$

where 0 < a < 1.

• The seller seeks to maximise the discounted profit:

$$V = \sup_{\{p_n\}_{n\geq 0}} \mathbb{E}\left[\sum_{n=0}^{\infty} a^n p_n X_n^{p_n}\right].$$

where 0 < a < 1.

• The case where $X(\theta, p)$ being Bernoulli is studied in Economic & operations research literatures, c.f. Mclennan 1984, Harrison 2012.

• The seller seeks to maximise the discounted profit:

$$V = \sup_{\{p_n\}_{n\geq 0}} \mathbb{E}\left[\sum_{n=0}^{\infty} a^n p_n X_n^{p_n}\right].$$

where 0 < a < 1.

- The case where $X(\theta, p)$ being Bernoulli is studied in Economic & operations research literatures, c.f. Mclennan 1984, Harrison 2012.
- Observing one customer at a time.

Problem formulation

• The seller seeks to maximise the discounted profit:

$$V = \sup_{\{p_n\}_{n\geq 0}} \mathbb{E}\left[\sum_{n=0}^{\infty} a^n p_n X_n^{p_n}\right].$$

where 0 < a < 1.

- The case where $X(\theta, p)$ being Bernoulli is studied in Economic & operations research literatures, c.f. Mclennan 1984, Harrison 2012.
- Observing one customer at a time.
- "incomplete learning", myopic strategies, examples (linear).

Problem formulation

In a Bayesian setting, the problem can be embedded in a Markovian framework.

Problem formulation

In a Bayesian setting, the problem can be embedded in a Markovian framework.

Define the usual posterior probability process

$$\Pi_n^p := \mathbb{P}(\theta = 1 | \mathscr{F}_n^{X^p}).$$

In a Bayesian setting, the problem can be embedded in a Markovian framework

Define the usual posterior probability process

$$\Pi_n^p := \mathbb{P}(\theta = 1 | \mathscr{F}_n^{X^p}).$$

By conditioning, the value function can be written as

$$V(\pi) = \sup_{\{\rho_k\}_{k=0}^{\infty}} \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} a^k \rho_k \left(\Pi_k^{\rho_k} \int_{\mathbb{R}} x F_1(dx, \rho_k) + (1 - \Pi_k^{\rho_k}) \int_{\mathbb{R}} x F_0(dx, \rho_k) \right) \right]$$

• Only π dependent! Time-homogeneous.

We can find convex upper and lower bounds for V

- We can find convex upper and lower bounds for V
- By DPP, V satisfies

$$\frac{\mathbf{V}(\pi) = \sup_{p} \left\{ a \mathbb{E}_{\pi} \left[\frac{\mathbf{V}(\Pi_{1}^{p})}{1} \right] + p \left(\pi \int_{\mathbb{R}} x F_{1}(dx, p) + (1 - \pi) \int_{\mathbb{R}} x F_{0}(dx, p) \right) \right\}.$$

- We can find **convex** upper and lower bounds for *V*
- By DPP, V satisfies

$$\frac{\boldsymbol{V}(\pi) = \sup_{\boldsymbol{p}} \left\{ a \mathbb{E}_{\pi} \left[\frac{\boldsymbol{V}(\Pi_1^{\boldsymbol{p}})}{1} \right] + \boldsymbol{p} \left(\pi \int_{\mathbb{R}} \boldsymbol{x} F_1(d\boldsymbol{x}, \boldsymbol{p}) + (1 - \pi) \int_{\mathbb{R}} \boldsymbol{x} F_0(d\boldsymbol{x}, \boldsymbol{p}) \right) \right\}.$$

Definition

Define an operator T:

$$(T_{\mathbf{u}})(\pi) = \sup_{p} \left\{ a \mathbb{E}_{\pi} \left[\mathbf{u}(\Pi_{1}^{p}) \right] + p \left(\pi \int_{\mathbb{R}} x F_{1}(dx, p) + (1 - \pi) \int_{\mathbb{R}} x F_{0}(dx, p) \right) \right\}.$$

• Define a sequence of functions $\{u_n\}_{n\geq 0}$ by letting

$$u_0 = 0, \quad u_{n+1} = Tu_n.$$

We are able to show that

T preserves monotonicity and convexity,

We are able to show that

- T preserves monotonicity and convexity,
- T is a contraction,

We are able to show that

- T preserves monotonicity and convexity,
- T is a contraction,
- $u_{\infty} := \lim u_n$ exists and is the unique fixed point of T.

We are able to show that

- T preserves monotonicity and convexity,
- T is a contraction,
- $u_{\infty} := \lim u_n$ exists and is the unique fixed point of T.
- $V = u_{\infty}$.

We are able to show that

- T preserves monotonicity and convexity,
- T is a contraction,
- $u_{\infty} := \lim u_n$ exists and is the unique fixed point of T.
- $V = u_{\infty}$.

Theorem

The value function V is convex and continuous on [0,1].

Consequence of convexity: how to choose a model

How to find a model where V is larger? Convexity gives us the answer.

Theorem

For any $(\pi,p) \in [0,1] \times \mathbb{R}$, take $\Pi_0 = \tilde{\Pi}_0 = \pi$. Assume the following two conditions hold, then $V_n(\pi) \geq \tilde{V}_n(\pi)$ for all $n \geq 0$ and $\pi \in [0,1]$.

- (Earning) $\int_{\mathbb{R}} xF_1(dx,p) \ge \int_{\mathbb{R}} x\tilde{F}_1(dx,p)$, and $\int_{\mathbb{R}} xF_0(dx,p) \ge \int_{\mathbb{R}} x\tilde{F}_0(dx,p)$.
- **2** (Learning) Π_1^p dominates $\tilde{\Pi}_1^p$ in convex order.

Properties of the optimal strategy

Example: Bernoulli observations

Properties of the optimal strategy

Example: Bernoulli observations

Other results

- Conditions for monotonicity of V.
- Conditions for monotonicity of the optimal strategy.

Outline

- Introduction
 - Incomplete information
 - Applications
- Problem formulation and results
 - Formulation
 - Construct the value function
 - Consequence of convexity
- 3 Some remarks

Incomplete learning?

Incomplete learning?

• It's possible, and fine.

Incomplete learning?

• It's possible, and fine.

Myopic strategy?

Incomplete learning?

• It's possible, and fine.

Myopic strategy?

• Not always optimal (obviously).

Incomplete learning?

• It's possible, and fine.

Myopic strategy?

• Not always optimal (obviously).

Generalisations?

Incomplete learning?

• It's possible, and fine.

Myopic strategy?

Not always optimal (obviously).

Generalisations?

 Can relax the prior to an arbitrary distribution, and let X be in the exponential family.

Incomplete learning?

• It's possible, and fine.

Myopic strategy?

Not always optimal (obviously).

Generalisations?

- Can relax the prior to an arbitrary distribution, and let X be in the exponential family.
- But the problems becomes time-dependent and very difficult.

Continuous time version?

Continuous time version?

Consider observing the process

$$dX_t = D(p_t)dt + dW_t, \quad X_0 = x.$$

Continuous time version?

• Consider observing the process

$$dX_t = D(p_t)dt + dW_t, \quad X_0 = x.$$

Dynamic pricing formulation:

$$V = \sup_{p} \mathbb{E}[\int_{0}^{\infty} e^{-rt} p_{t} D(p_{t}) dt].$$

Continuous time version?

Consider observing the process

$$dX_t = D(p_t)dt + dW_t, \quad X_0 = x.$$

Dynamic pricing formulation:

$$V = \sup_{p} \mathbb{E}[\int_{0}^{\infty} e^{-rt} p_{t} D(p_{t}) dt].$$

• Can write down HJB, characterise solutions.

Continuous time version?

Consider observing the process

$$dX_t = D(p_t)dt + dW_t, \quad X_0 = x.$$

Dynamic pricing formulation:

$$V = \sup_{p} \mathbb{E}[\int_{0}^{\infty} e^{-rt} p_{t} D(p_{t}) dt].$$

- Can write down HJB, characterise solutions.
- Explicit examples? In working progress...

Continuous time version?

Consider observing the process

$$dX_t = D(p_t)dt + dW_t, \quad X_0 = x.$$

Dynamic pricing formulation:

$$V = \sup_{p} \mathbb{E}[\int_{0}^{\infty} e^{-rt} p_{t} D(p_{t}) dt].$$

- Can write down HJB, characterise solutions.
- Explicit examples? In working progress...
- Arbitrary prior?

Thank you for your attention!

Contact: yuqiong.wang@math.uu.se