EEE 431: Telecommunications 1

Quiz 2

Nov. 7, 2021, 13:30-14:40

Instructor: Sinan Gezici

Name:	
Signature:	
Section:	
Bilkent ID:	

Prob. 1: _____ / 26
Prob. 2: ____ / 30
Prob. 3: ____ / 14
Prob. 4: ____ / 30

Total: ____ / 100

Some trigonometric identities: $\sin(2x) = 2\sin(x)\cos(x)$ $\cos(2x) = 1 - 2\sin^2(x) = 2\cos^2(x) - 1$ $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$ $\sin(x)\cos(y) = 0.5\sin(x+y) + 0.5\sin(x-y)$ $\cos(x)\cos(y) = 0.5\cos(x+y) + 0.5\cos(x-y)$ $\sin(x)\sin(y) = 0.5\cos(x-y) - 0.5\cos(x+y)$. **Problem 1** Consider an analog message signal m(t) given by $m(t) = 0.5\cos(2000\pi t) + \sin(1000\pi t)$. This message is transmitted via conventional AM, where the modulated signal is expressed as $x(t) = 5(1+m(t))\cos(200000\pi t)$.

- (a) Write down the Fourier transforms of m(t) and x(t). Also, plot them.
- (b) Determine the ratio of the average power in the sidebands to the overall average power in x(t).
- (c) Can we use an envelope detector to demodulate x(t)? Why or why not?

Problem 2 X is a random variable with the following PDF: $f_X(x) = 2x$ if $0 \le x \le 1$, and $f_X(x) = 0$ otherwise.

- (a) Calculate $E[X^2]$.
- (b) For this part, suppose that X is input to a 2-level (1-bit) uniform quantizer with the decision boundary at 0.5 and the reconstruction (quantization) levels of 0.25 and 0.75. Let Q(X) denote the output of this uniform quantizer. Calculate $E[(X Q(X))^2]$.
- (c) For this part, suppose that we first transform X into Y as $Y = X^2$, and then quantize Y with the same uniform quantizer as in Part (b). Let Q(Y) denote the output of the quantizer. Calculate $E[(Y Q(Y))^2]$. Do you get a smaller or larger value than that in Part (b)? Why? (explain intuitively).

Hint: First, express the CDF of Y in terms of the CDF of X, and then take derivative to obtain the PDF of Y in terms of the PDF of X.

Problem 3 For a strict sense stationary (SSS) random process, the following holds for any $k, \tau, t_1, \ldots, t_k$:

$$f_{X(t_1),X(t_2),\dots,X(t_k)}(x_1,\dots,x_k) = f_{X(t_1+\tau),X(t_2+\tau),\dots,X(t_k+\tau)}(x_1,\dots,x_k)$$
(1)

Prove or disprove the following statement: "For an SSS random process, the following expectation depends only on the time difference, i.e., $t_1 - t_2$: $E[(X(t_1))^2 \cos(X(t_2))]$." (No points without theoretical justification.) **Hint:** Consider the SSS condition in equation (1) for k = 2.

Problem 4 Consider the following random process: $Y(t) = A\cos(2\pi f t + \theta)$, where A is a Gaussian random variable with mean 3 and variance 2, f is a uniform (continuous) random variable in the closed interval of [100, 1000], and θ is a constant (fixed). Assume that A and f are independent.

- (a) Calculate the mean of Y(t).
- (b) Calculate the autocorrelation function of Y(t).
- (c) Is Y(t) wide-sense stationary (WSS)? Why or why not?
- (d) Is Y(t) cyclostationary? Why or why not?

Not cyclostationary, mean is not periodic with t.