

All grammars are not LL(1)

Z	\rightarrow	d
Z	\rightarrow	XYZ
Y	\rightarrow	3
Y	\rightarrow	C
X	\rightarrow	Y
X	\rightarrow	a

	a	С	d	\$
X	X → a	$X \rightarrow Y$	$X \rightarrow Y$	
	$X \rightarrow Y$			
Y	$Y \rightarrow \varepsilon$	$Y \rightarrow C$	$Y \rightarrow \varepsilon$	
		$Y \rightarrow \varepsilon$		
Z	Z→XYZ	Z→XYZ	$Z \rightarrow d$	Z→XYZ
			Z→XYZ	

```
FIRST (X) = {a, c, ε}

FIRST (Y) = {c, ε}}

FIRST (Z) = {d, a, c}

FOLLOW(X) = {c, d, a}

FOLLOW(Y) = {a, c, d}

FOLLOW(Z) = {$}
```

All grammars are not LL(1)

A grammar is an LL(1) grammar if all productions conform to the following conditions:

- 1. For each production A $\rightarrow \sigma 1 \mid \sigma 2 \mid \sigma 3 \dots \mid \sigma n$,
- FIRST (σ_i) FIRST $(\sigma_j) = \emptyset$, for all i, j, i <> j
- 2. If nonterminal X derives an empty string, then

FIRST (X)
$$\bigcap$$
 FOLLOW (X) = \emptyset

Bottom up parsing

Bottom up parsing

$$E \Rightarrow \underline{T} \Rightarrow \underline{T * F} \Rightarrow T * \underline{id} \Rightarrow \underline{F} * \underline{id} \Rightarrow \underline{id} * \underline{id}$$

Bottom up parsing

A handle of a string is a substring that matches the right side of a production, and whose reduction to the non-terminal on the left side of the production represents one step along the reverse of a rightmost derivation.

(The string, together with its position in the right sentential form where it occurs and the production used to reduce it).

Reducing β to A in $\alpha\beta$ w is termed as "pruning the handle" Where w contains only terminal symbols.

Shift-reduce parsing

	<u>Stack</u>	<u>Input</u>	<u>Action</u>
Step 1: Locating a substring	\$	id * id \$	shift
Step 2: Choosing a production	\$ id	* id \$	reduce F → id
	\$ F	* id\$	shift
Stack Input	\$ F	* id\$	reduce T → F
Initial condition \$ w\$	\$ T	* id \$	shift
Final condition \$S \$	\$ T *	id\$	shift
	\$ T * id	\$	reduce F → id
Viable Prefix- The sequence of	\$ T * F	\$	reduce T→T* F
symbols on the parsing stack	\$ T	\$	reduce E → T
eymbets on the paramy stack	\$ E	\$	Accept

LR Parsing

- LR(k) parsing, introduce by D. Knuth in 1965
 - L is for Left-to-right scanning of the input
 - R is for reverse Rightmost derivation
 - k is the number of lookahead tokens
- Most general non-backtracking shift-reduce parsing method
- Can be constructed to recognise virtually all programming language constructs
- The class of grammar is a proper superset of the class of grammars that can be parsed with *predictive parsers*

LR Parsing

- Different types:
 - Simple LR or SLR, the easiest method for constructing shift-reduce parsers
 - Canonical LR
 - LALR
- LR-parsers represent the DFA as a 2D table
- Rows correspond to DFA states
- Columns correspond to terminals (action table) and nonterminals (goto table)

Transition between states

Two possibilities

- 1.If X is a terminal, then push X onto the stack
- 2.If X is a non-terminal, X will be pushed onto the stack during a reduction by X → β.
- 3. Thus, we need to first recognize β
- 4.So for every production $X \to \beta$, we need to indicate that X can be produced by reducing (recognising) any of the right hand sides of such productions.
- 5. This is basically the following transition.

SLR Parsing

LR(0) - zero tokens of lookahead

SLR - Simple LR: like LR(0), but uses FOLLOW sets to build more "precise" parsing tables

First we augment the grammar G with a new start symbol S' and a production

S' → S

Closure operation -

For a set of items I, we construct closure(I) as follows:

Every item in I is added to closure (I)

If $A \to \alpha$. B β is in closure (I) and $B \to \gamma$ is a production, then $B \to \cdot \gamma$ is added to closure (I)

Goto operation -

Goto(I, X) is the closure of the set of all items $[A \rightarrow \alpha \ X \ . \ \beta \]$, such that $[A \rightarrow \alpha \ . \ X \ \beta \]$ is in I.

Example

Augmented Grammar:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T^* F \mid F$$

$$F \rightarrow (E) \mid id$$

If
$$I = \{ E' \rightarrow \bullet E \}$$
,
then CLOSURE(I) is

$$E' \rightarrow \bullet E$$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow \bullet T$$

$$T \rightarrow \bullet T * F$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow id$$

Example

Augmented Grammar:

$$E' \rightarrow E$$

 $E \rightarrow E + T \mid T$
 $T \rightarrow T^* F \mid F$

$$F \rightarrow (E) \mid id$$

$$I = \begin{bmatrix} E' \rightarrow E \bullet \\ E \rightarrow E \bullet + T \end{bmatrix}$$

$$GOTO(I, +)$$

$$E \rightarrow E + . T$$
 $T \rightarrow . T * F$
 $T \rightarrow . F$
 $F \rightarrow . (E)$
 $F \rightarrow . id$

The Canonical LR(0) Collection -- Example

$$I_0: E' \rightarrow .EI_1: E' \rightarrow E.I_s: E \rightarrow E+.T$$

$$E \rightarrow .E+T$$

$$E \rightarrow E.+T$$

$$E \rightarrow .T$$

$$T \rightarrow .T*F$$

$$I_2: E \to T.$$

$$T \to T.*F$$

$$T \to .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_3: T \to F$$
.

$$I_a: F \to (.E)$$

$$E \rightarrow .E+T$$

$$E \to .T$$

$$T\to .T^*F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_{o}: E \to E+T$$
.

$$T \rightarrow .T^*F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_{10}: T \to T*F.$$

 $I_{ij}: F \to (E)$.

 $T \rightarrow T.*F$

$$I_7: T \to T^*.F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_{\mathbf{x}}: \mathbf{F} \to (\mathbf{E}.)$$

$$E \rightarrow E.+T$$

$$I_5$$
: $F \rightarrow id$.

Constructing SLR Parsing Table

Consider the grammar G'

1)Construct the canonical collection of sets of LR(0) items for G',

2)
$$C \leftarrow \{I_0, I_1 \dots I_n\}$$

3)Create the parsing <u>action</u> table as follows:

```
1)If a is a terminal, A \rightarrow \alpha. a \beta in I_i, and goto(I_i,a) = I_j, then action[i,a] = shift j
```

2)If $A \to \alpha$ is in I_i , then action[i,a] is reduce $A \to \alpha$ for all a in FOLLOW(A), where A <> S'

3)If S' \rightarrow S is in I_I, then action [I, \$] is accept

4)Create the parsing goto table

1) For all non-terminals A, if $goto(I_i, A) = I_i$, then goto[i, A] = j

5) All other entries will be marked as error

6)Initial state of the parser contains $S' \rightarrow S$

Parsing Tables of Expression Grammar

Action Table

Goto Table

E' → E
$1.E \rightarrow E + T$
$2.E \rightarrow T$
$3.T \rightarrow T^* F$
4. T → F
5.F → (E)
6.F <i>→</i> id

state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5	8		s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4			24		10
8		s6			s11		S7		
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Parsing

Stack	Input	Parser Action
S0	id+id \$	Shift and move to state 5
S0 id S5	+id \$	Reduce F → id
S0 F S3	+id \$	Reduce T→ id
S0 T S2	+id \$	Reduce E → T
S0 E S1	+id \$	Shift and move to state 6
S0 E S1 + S6	id \$	Shift and move to state 5
S0 E S1 + S6 id S5	\$	Reduce F → id
S0 E S1 + S6 F S3	\$	Reduce T → F
S0 E S1 + S6 T S9	\$	Reduce E → E+T
S0 E S1	\$	Accept