Backpropagation

國立中山大學 資訊工程系 張雲南

Adapted from NTU Prof.李宏毅's slides

Training process

- \diamond Suppose we want to find the parameter w to minimize L(w)
 - For example: $L(w) = \frac{1}{N} \sum_{i=1}^{N} \{h(x_i; w, m) y_i\}^2$
 - lacktriangle The most direct naïve approach is to find many w candidates.
 - ◆What if we have multiple parameters to solve?

$$L(w_1, w_2, w_3, \cdots, w_{100})$$

- $W \rightarrow L(w) \rightarrow L$
- ♦ the number of candidates will be very huge. Ex: 10¹⁰⁰
- ◆ the actual weights to train could be up to million.
- ◆ What terms will influence the loss function?

Gradient Descent Optimization Method

for k in range (max_iteration):

$$w^{k+1} = w^k - \eta \nabla L(w^k)$$
 # update weight if $\|w^{k+1} - w^k\| < \epsilon$ # stopping criteria break

η: adjustment (learning) rate

W

If the increase of W can reduce the loss, W will be increased.

Training data: (x_1, y_1) $h(x; w, m) = x \times w$ $L(w) = (x_1 \times w - y_1)^2$

Model

Epoch = 0

Loss

$$L(w) = (x_1 \times w - y_1)^2$$

Find the best w to minimize L(w)

Model

Epoch = 10

Loss

Model

Epoch = 100

Loss

$$L(w) = \sum_{i=1}^{4} (x_i \times w - y_i)^2$$

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Starting Parameters
$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \cdots$$

$$\nabla L(\theta)$$

$$= \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix}$$
Compute
$$\nabla L(\theta^0)$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$
Millions of parameters
$$To compute the gradients efficiently, we use backpropagation.$$

we use **backpropagation**.

Chain Rule

Case 1
$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z$$
 $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta S = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$L(\theta) = \sum_{n=1}^{N} l^{n}(\theta) \qquad \longrightarrow \qquad \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial l^{n}(\theta)}{\partial w}$$

Backpropagation

$$\frac{\partial l}{\partial w_i} = ? \frac{\partial l}{\partial z_k} \frac{\partial z_k}{\partial w_i}$$
(Chain rule)

$$\partial z_k / \partial w_i = x_i$$
$$\partial l / \partial z_k =$$

Forward pass

Compute $\partial z/\partial w$ for all parameters

Backward pass

Compute $\partial l/\partial z$ for all activation function inputs z

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

Backpropagation – Backward pass

$$\frac{\partial l}{\partial z_k} = \frac{\partial a}{\partial z_k} \frac{\partial l}{\partial a}$$

$$\sigma'(z_k)$$

$$\frac{\partial l}{\partial a} = \frac{\partial z'}{\partial a} \frac{\partial l}{\partial z'} + \frac{\partial z''}{\partial a} \frac{\partial l}{\partial z''} = w_i \frac{\partial l}{\partial z'} + w_j \frac{\partial l}{\partial z''}$$

$$w_i \stackrel{?}{=} w_j$$

Backpropagation – Backward pass

 $\sigma'(z)$ is a constant because z is already determined in the forward pass.

$$\frac{\partial l}{\partial z} = \sigma'(z) \left[w_i \frac{\partial l}{\partial z'} + w_j \frac{\partial l}{\partial z''} \right]$$

Backpropagation – Backward Pass

Compute $\partial l/\partial z$ for all activation function inputs z

Compute $\partial l/\partial z$ from the output layer

Backpropagation – Summary

