Week 10 Participation Assignment (2 of 2)

Corey Mostero - 2566652

 $28~\mathrm{April}~2023$

Contents

1	Par	t 2	2															2										
	1.1	1).																										2
	1.2	2).																										2
	1.3	3).																										3
	1.4	4).																										4

1 Part 2

$$A = \begin{bmatrix} 3 & -1 & 3 & 7 & 2 & 2 & 15 \\ -4 & 3 & 11 & 4 & 2 & 3 & -17 \\ -3 & 2 & 6 & 1 & 1 & 1 & -16 \\ 1 & 4 & 40 & 37 & 12 & 17 & 24 \\ -5 & 3 & 7 & -1 & 0 & 1 & -22 \end{bmatrix} \xrightarrow{rref} R = \begin{bmatrix} 1 & 0 & 4 & 5 & 0 & 0 & 3 \\ 0 & 1 & 9 & 8 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Find a basis for

- 1). $W_1 = \operatorname{colspace}(A)$
- 2). $W_2 = \text{rowspace}(A)$
- 3). $W_3 = \text{nullspace}(A)$
- 4). Next, we can define W_1^{\perp} , W_2^{\perp} , W_3^{\perp} . Last time, we knew the ambient space of the orthogonal complements. Then let's use the definition of the orthogonal complements as well as the basis you found above to set up system of linear equations so that we can find a basis for the complement.

1.1 1).

$$\left\{ \begin{bmatrix} 3 \\ -4 \\ -3 \\ 1 \\ -5 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 2 \\ 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \\ 12 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \\ 17 \\ 1 \end{bmatrix} \right\}$$

1.2 2).

$$\left\{ \begin{bmatrix} 3 \\ -1 \\ 3 \\ 7 \\ 2 \\ 2 \\ 15 \end{bmatrix}, \begin{bmatrix} -4 \\ 3 \\ 11 \\ 4 \\ 2 \\ 3 \\ -17 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 6 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 40 \\ 37 \\ 12 \\ 1 \\ -16 \end{bmatrix}, \begin{bmatrix} 37 \\ 40 \\ 37 \\ 12 \\ 17 \\ -16 \end{bmatrix} \right\}$$

1.3 3).

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix}$$

$$= \begin{bmatrix} -4a - 3c - 3d \\ -4a - 8c + 4d \\ a \\ c \\ 4d \\ -5d \\ d \end{bmatrix}$$

$$= \begin{bmatrix} -4 \\ -9 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} -5 \\ -8 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + d \begin{bmatrix} -3 \\ 4 \\ 0 \\ 0 \\ 4 \\ -5 \\ 1 \end{bmatrix}$$

$$= \begin{cases} \begin{bmatrix} -4 \\ -9 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -8 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{cases} \begin{bmatrix} -4 \\ -9 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -8 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

1.4 4).

basis W_1^{\perp} :

$$\left\{ \begin{bmatrix} 3 \\ -4 \\ -3 \\ 1 \\ -5 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 2 \\ 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 11 \\ 6 \\ 40 \\ 7 \end{bmatrix}, \begin{bmatrix} 7 \\ 4 \\ 1 \\ 37 \\ -1 \end{bmatrix} \right\}$$

basis W_2^{\perp} :

$$\left\{\begin{bmatrix} 1\\0\\4\\4\\9\\5\\0\\0\\0\\-4\end{bmatrix},\begin{bmatrix} 0\\0\\0\\1\\0\\-4\end{bmatrix},\begin{bmatrix} 0\\0\\0\\0\\0\\1\\-4\end{bmatrix},\begin{bmatrix} 0\\0\\0\\0\\0\\1\\-4\end{bmatrix}\right\}$$

basis W_3^{\perp} :

$$\left\{ \begin{bmatrix} 1\\0\\4\\5\\5\\0\\0\\-4 \end{bmatrix}, \begin{bmatrix} 0\\1\\9\\8\\0\\0\\0\\-4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\0\\-4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\0\\-4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\1\\5 \end{bmatrix} \right\}$$