Radians: A Refresher

using π to measure angles

this is the "unit circle" because it has a radius of 1

you can express angles in terms of how far around the unit circle you are, starting on the right (the x axis)

so "all the way around," i.e. 360 degrees, is 2π radians, and smaller angles are some proportion of 2π

the diameter is 2, so the circumference is 2π

this lil guy pops up in weird places

$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots=\frac{\pi}{4}$$
 this is an "infinite sum" meaning that you can get as close as you want to the actual value of $\pi/4$ if you add up enough terms on the left. it's often attributed to Leibniz but is actually a special case of a formula discovered by the Indian mathematician Madhava in the 14th century!

discovered by the Indian mathematician Madhava in the 14th century!

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}$$
 ditto "infinite sum". figuring out the value of this sum is called "the basel problem" and was first solved by... you guessed it... ya boy Euler

$$\left(rac{2}{1}\cdotrac{2}{3}
ight)\cdot\left(rac{4}{3}\cdotrac{4}{5}
ight)\cdot\left(rac{6}{5}\cdotrac{6}{7}
ight)\cdots=rac{\pi}{2}$$
 an infinite product! as above, but with multiplication. from John Wallis in 1656

Buffon's needle problem: if we have a floor made of parallel strips of wood, each the same width, and we drop a needle as long as the strips are wide onto the floor, the probability that the needle will lie across a line between two strips is $2/\pi$