Theorem 1. Let $X \sim (v_i, f_i)_{1 \leq i \leq n}$, where $v_i < v_{i+1}$ for all $1 \leq i \leq n-1$ are possible reservations and $f_i = \mathbb{P}(X = v_i)$ with $\sum_{i=1}^n f_i = 1$. Denote by $F_j = \sum_{\ell=j}^n f_{\ell}$. Then the minimal expected makespan is returned by $E_{no_bf}(0)$ where:

$$E_{no_bf}(n) = \beta \cdot \mathbb{E}[X]$$

$$E_{no_bf}(i) = \min_{i+1 \le i' \le n} \left((\alpha \cdot v_{i'} + \gamma) \cdot F_{i+1} + \beta \cdot v_{i'} \cdot F_{i'+1} + E_{no_bf}(i') \right)$$

The sequence that minimizes $E_{no_bf}(0)$ can be computed in $O(n^2)$.