Algorithmic Analysis

Algorithms

Algorithm

- A clear and concise sequence of steps to solve a class of problems
- Every operation we've discussed in this class is an algorithm for modifying a data structure
- We have characterized these operations as fast , ok , and slow in terms of speed
 - You will now see what we've meant by these terms throughout the course

Characterizing Algorithms

- Algorithms can be characterized in terms of:
 - Runtime (speed)
 - Space
- Accurately doing this is difficult
 - Computers are different
 - We want to characterize these independent on hardware
 - We want to look at the worst case that is normally encountered
- Time as a function of size
 - How fast is an algorithm based on the size of the problem?
 - The definition is based on what the algorithm calls for
 - For data structures, the number of elements is the basis for the size of the program

Ram Model of Computation

- A very simple and crude way to approximate the speed of an algorithm is to count operations
 - Simple operations (arithmetic, assignment, memory access) take 1 unit of time
 - Loops, functions, etc are not simple operations
- Consider the following code:

```
for (int i=0; i<10; i++)
System.out.println("hi");</pre>
```

How many operations are performed?

	10	increments
	10	prints
+	10	comparisons
	30	operations
	1	initialize i
+	1	comparison to terminate
	32	operations

If, instead of i<10, it was changed to i<n, then there would be 3n+2 operations.

This is more complicated than we need and should be simplified. We want to know how the algorithm *scales*

Big Oh

- Complexity is denoted with Big-Oh notation: O(f(n))
 - big-oh of n
 - order n
- To go from the counted number of operations to big-oh notation, take only the largest term (in n) and drop the coefficients
 - 3n + 2 = O(n), $n^2 + 3n + 2 = O(n^2)$, etc

Examples

But Why Drop Small Terms?

- Consider 3n + 2
 - $n = 10, \frac{2}{32} = 6.25\%$ • $n = 100, \frac{2}{302} = .662\%$
- As n gets large, the small terms contribute much less to the runtime

Growth Rates

- Consider O(n) and $O(n^2)$
 - O(n): Worst time = cn
 - $O(n^2)$: Worst time = cn^2
- What if we double n?
 - O(n): c(2n) = 2cn
 - $O(n^2)$: $c(2n)^2 = 4cn \leftarrow$ The problem size quadruples!
- What about lg(n) (Worst time: c * lg(n)
 - $clg(2n) = clg(2) + clg(n) = c(1 + lg(n)) \leftarrow$ Grows slower than O(n)!

So What Does That Mean?

- Everything we have characterized as fast is O(1)
- Everything we have characterized as slow is O(n)
- \bullet Everything we have characterized as ok is $\mathit{O}(\mathit{lg}(n))$