Appendix A Instruction Reference

A.1 Introduction

This appendix provides quick references for the instruction set, opcode map, and encoding.

Figure A-1. Programming Model

A.2 Stack and Memory Layout

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS ODD BEFORE INTERRUPT

" (JI W/ (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OIL HVIERING	, i
SP +8	RTN _{LO}		SP +9
SP +6	Y _{LO}	RTN _{HI}	SP +7
SP +4	X _{LO}	Y _{HI}	SP +5
SP +2	А	X _{HI}	SP +3
SP	CCR	В	SP +1
SP -2			SP -1

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS EVEN BEFORE INTERRUPT

II 3	F WAS EVEN DI	LLOKE IMIEKK	UFI
SP +9			SP +10
SP +7	RTN _{HI}	RTN _{LO}	SP +8
SP +5	Y _{HI}	Y _{LO}	SP +6
SP +4	X _{HI}	X _{LO}	SP +4
SP +1	В	Α	SP +2
SP -1		CCR	SP

SP Before **Higher Addresses** SP +10 Interrupt 1 RTN_LO RTN_{HI} Y_{LO} Y_{HI} X_{LO} X_{HI} В CCRL SP After CCR_H Interrupt Lower Addresses

HCS12X

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS ODD BEFORE INTERRUPT

RTN _{LO}		SP +10
Y _{LO}	RTN _{HI}	SP +8
X _{LO}	Y _{HI}	SP +6
Α	X _{HI}	SP +4
CCR _L	В	SP +2
	CCR _H	SP
	Y _{LO} X _{LO} A	Y _{LO} RTN _{HI} X _{LO} Y _{HI} A X _{HI} CCR _L B

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS EVEN BEFORE INTERRUPT

II OF WAS EVERY DEFORE HATERAGE I							
SP +10			SP +11				
SP +8	RTN _{HI}	RTN _{LO}	SP +9				
SP +6	Y _{HI}	Y _{LO}	SP +7				
SP +4	X _{HI}	X _{LO}	SP +5				
SP +2	В	Α	SP +3				
SP	CCR _H	CCR _L	SP +1				

A.3 Interrupt Vector Locations

```
$FFFE, $FFFF
                Power-On (POR) or External Reset
$FFFC, $FFFD
                Clock Monitor Reset
$FFFA, $FFFB
                Computer Operating Properly (COP Watchdog Reset
$FFF8, $FFF9
                Unimplemented Opcode Trap
$FFF6, $FFF7
                Software Interrupt Instruction (SWI)
$FFF4, $FFF5
                XIRQ
$FFF2, $FFF3
                IRO
$FF00-$FFF1
                Device-Specific Interrupt Sources
```

A.4 Notation Used in Instruction Set Summary

```
CPU12 Register Notation
            Accumulator A — A or a
                                           Index Register Y — Y or y
            Accumulator B — B or b
                                           Stack Pointer — SP, sp, or s
            Accumulator D — D or d
                                           Program Counter — PC, pc, or p
            Index Register X — X or x
                                           Condition Code Register — CCR or c
Explanation of Italic Expressions in Source Form Column
         abc — A or B or CCR
     abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3.
         abd — A or B or D
      abdxys — A or B or D or X or Y or SP
        dxys — D or X or Y or SP
       msk8 — 8-bit mask, some assemblers require # symbol before value
        opr8i — 8-bit immediate value
      opr16i — 16-bit immediate value
       opr8a — 8-bit address used with direct address mode
      opr16a — 16-bit address value
   oprx0_xys — Indexed addressing postbyte code:
                    oprx3,-xysPredecrement X or Y or SP by 1 . . . 8
                    oprx3,+xysPreincrement X or Y or SP by 1 . . . 8
                    oprx3,xys-Postdecrement X or Y or SP by 1 . . . 8
                    oprx3,xys+Postincrement X or Y or SP by 1 . . . 8
                    oprx5,xysp5-bit constant offset from X or Y or SP or PC
                    abd,xyspAccumulator A or B or D offset from X or Y or SP or PC
       oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
       oprx5 — Any integer in the range -16 \dots +15
       oprx9 — Any integer in the range -256 \dots +255
      oprx16 — Any integer in the range -32,768 \dots 65,535
        page — 8-bit value for PPAGE, some assemblers require # symbol before this value
```

S12XCPU Reference Manual, v01.01

Freescale Semiconductor

427

- rel8 Label of branch destination within –128 to +127 locations
- rel9 Label of branch destination within –256 to +255 locations
- rel16 Any label within 64K memory space
- trapnum Any 8-bit integer in the range \$30–\$39 or \$40–\$FF
 - xys X or Y or SP
 - xysp X or Y or SP or PC

Operators

- + Addition
- — Subtraction
- — Logical AND
- | Logical OR (inclusive)
- ⊕ Logical exclusive OR
- × Multiplication
- ÷ Division
- \overline{M} Negation. One's complement (invert each bit of M)
- : Concatenate
 - Example: A : B means the 16-bit value formed by concatenating 8-bit accumulator A with 8-bit accumulator B.
 - A is in the high-order position.
- ⇒ Transfer
 - Example: $(A) \Rightarrow M$ means the content of accumulator A is transferred to memory location M.
- ⇔ Exchange
 - Example: $D \Leftrightarrow X$ means exchange the contents of D with those of X.

Address Mode Notation

- INH Inherent; no operands in object code
- IMM Immediate; operand in object code
- DIR Direct; operand is the lower byte of an address from \$0000 to \$00FF
- EXT Operand is a 16-bit address
- REL Two's complement relative offset; for branch instructions
- IDX Indexed (no extension bytes); includes:
 - 5-bit constant offset from X, Y, SP, or PC
 - Pre/post increment/decrement by 1 . . . 8
 - Accumulator A, B, or D offset
- IDX1 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
- IDX2 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes
- [IDX2] Indexed-indirect; 16-bit offset from X, Y, SP, or PC
- [D, IDX] Indexed-indirect; accumulator D offset from X, Y, SP, or PC

S12XCPU Reference Manual, v01.01

Machine Coding

- dd 8-bit direct address \$0000 to \$00FF. (High byte assumed to be \$00).
- ee High-order byte of a 16-bit constant offset for indexed addressing.
- eb Exchange/Transfer post-byte. See Table A-5.
- ff Low-order eight bits of a 9-bit signed constant offset for indexed addressing, or low-order byte of a 16-bit constant offset for indexed addressing.
- hh High-order byte of a 16-bit extended address.
- ii 8-bit immediate data value.
- jj High-order byte of a 16-bit immediate data value.
- kk Low-order byte of a 16-bit immediate data value.
- lb Loop primitive (DBNE) post-byte. See Table A-6.
- ll Low-order byte of a 16-bit extended address.
- mm 8-bit immediate mask value for bit manipulation instructions. Set bits indicate bits to be affected.
- pg Program page (bank) number used in CALL instruction.
- qq High-order byte of a 16-bit relative offset for long branches.
- tn Trap number \$30–\$39 or \$40–\$FF.
- rr Signed relative offset \$80 (-128) to \$7F (+127).

 Offset relative to the byte following the relative offset byte, or low-order byte of a 16-bit relative offset for long branches.
- xb Indexed addressing post-byte. See Table A-3 and Table A-4.

Access Detail

Each code letter except (,), and comma equals one CPU12 cycle. Uppercase = 16-bit operation and lowercase = 8-bit operation. For complex sequences see the *CPU12 Reference Manual* (CPU12RM/AD) for more detailed information.

- f Free cycle, CPU12 doesn't use bus
- g Read PPAGE internally
- I Read indirect pointer (indexed indirect)
- i Read indirect PPAGE value (CALL indirect only)
- n Write PPAGE internally
- NA Not available
 - O Optional program word fetch (P) if instruction is misaligned and has an odd number of bytes of object code otherwise, appears as a free cycle (f); Page 2 prebyte treated as a separate 1-byte instruction
 - P Program word fetch (always an aligned-word read)
 - r 8-bit data read

Freescale Semiconductor 429

S12XCPU Reference Manual, v01.01

- R 16-bit data read
- s 8-bit stack write
- S 16-bit stack write
- w 8-bit data write
- W 16-bit data write
- u 8-bit stack read
- U 16-bit stack read
- V 16-bit vector fetch (always an aligned-word read)
- t 8-bit conditional read (or free cycle)
- T 16-bit conditional read (or free cycle)
- x 8-bit conditional write (or free cycle)
- () Indicate a microcode loop
- , Indicates where an interrupt could be honored

Special Cases

- PPP/P Short branch, PPP if branch taken, P if not
- OPPP/OPO Long branch, OPPP if branch taken, OPO if not

Condition Codes Columns

- — Status bit not affected by operation.
- 0 Status bit cleared by operation.
- 1 Status bit set by operation.
- Δ Status bit affected by operation.
- fl Status bit may be cleared or remain set, but is not set by operation.
- 1 Status bit may be set or remain cleared, but is not cleared by operation.
- ? Status bit may be changed by operation but the final state is not defined.
- ! Status bit used for a special purpose.

Table A-1. Instruction Set Summary (Sheet 1 of 20)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access HCS12X	Detail HCS12	ѕхні	NZVC
ABA	(A) + (B) ⇒ A	INH	18 06	00	00	Δ-	ΔΔΔΔ
ABX	Add Accumulators A and B $(B) + (X) \Rightarrow X$	IDX	1A E5	Pf	Pf		
ABY	Translates to LEAX B,X $(B) + (Y) \Rightarrow Y$	IDX	19 ED	Pf	Pf		
	Translates to LEAY B,Y						
ADCA #opr8i ADCA opr8a	$(A) + (M) + C \Rightarrow A$ Add with Carry to A	IMM DIR	89 ii 99 dd	P rPf	P rPf	Δ-	
ADCA opr16a	nad min odny to n	EXT	B9 hh 11	rPO	rPO		
ADCA oprx0_xysp		IDX	A9 xb	rPf	rPf		
ADCA oprx9,xysp ADCA oprx16,xysp		IDX1 IDX2	A9 xb ff A9 xb ee ff	rPO frPP	rPO frPP		
ADCA (D,xysp)		[D,IDX]	A9 xb ee 11	fIfrPf	fIfrPf		
ADCA [oprx16,xysp]		[IDX2]	A9 xb ee ff	fIPrPf	fIPrPf		
ADCB #opr8i	$(B) + (M) + C \Rightarrow B$	IMM	C9 ii	P	P	Δ-	ΔΔΔΔ
ADCB opr8a	Add with Carry to B	DIR	D9 dd	rPf	rPf		
ADCB opr16a ADCB oprx0_xysp		EXT IDX	F9 hh 11 E9 xb	rPO rPf	rPO rPf		
ADCB oprx9,xysp		IDX1	E9 xb ff	rPO	rPO		
ADCB oprx16,xysp		IDX2	E9 xb ee ff	frPP	frPP		
ADCB [D,xysp]		[D,IDX]	E9 xb	fIfrPf	fIfrPf		
ADCB [oprx16,xysp]	(4) (2)	[IDX2]	E9 xb ee ff	fIPrPf	fIPrPf		
ADDA #opr8i ADDA opr8a	$(A) + (M) \Rightarrow A$ Add without Carry to A	IMM DIR	8B ii 9B dd	P rPf	P rPf	A -	ΔΔΔΔ
ADDA opr16a	Add without oarry to A	EXT	BB hh 11	rPO	rPO		
ADDA oprx0_xysp		IDX	AB xb	rPf	rPf		
ADDA oprx9,xysp		IDX1	AB xb ff	rPO	rPO		
ADDA oprx16,xysp ADDA [D,xysp]		IDX2 [D,IDX]	AB xb ee ff AB xb	frPP fIfrPf	frPP fIfrPf		
ADDA [oprx16,xysp]		[IDX2]	AB xb ee ff	fIPrPf	fIPrPf		
ADDB #opr8i	(B) + (M) ⇒ B	IMM	CB ii	P	P	Δ-	ΔΔΔΔ
ADDB opr8a	Add without Carry to B	DIR	DB dd	rPf	rPf		
ADDB opr16a		EXT	FB hh 11	rPO	rPO	l .	
ADDB oprx0_xysp ADDB oprx9,xysp		IDX IDX1	EB xb EB xb ff	rPf rPO	rPf rPO		
ADDB oprx16,xysp		IDX1	EB xb ee ff	frPP	frPP		
ADDB [D,xysp]		[D,IDX]	EB xb	fIfrPf	fIfrPf		
ADDB [oprx16,xysp]		[IDX2]	EB xb ee ff	fIPrPf	fIPrPf		
ADDD #opr16i	$(A:B) + (M:M+1) \Rightarrow A:B$	IMM	C3 jj kk	PO	PO		ΔΔΔΔ
ADDD opr8a ADDD opr16a	Add 16-Bit to D (A:B)	DIR EXT	D3 dd F3 hh 11	RPf RPO	RPf RPO		
ADDD oprx0_xysp		IDX	E3 xb	RPf	RPf		
ADDD oprx9,xysp		IDX1	E3 xb ff	RPO	RPO		
ADDD oprx16,xysp		IDX2	E3 xb ee ff	fRPP	fRPP		
ADDD [D,xysp] ADDD [oprx16,xysp]		[D,IDX] [IDX2]	E3 xb E3 xb ee ff	fIfRPf fIPRPf	fIfRPf fIPRPf		
ADDX #opr16i	(X) + (M:M+1) ⇒ X	IMM	18 8B jj kk	OPO		Δ-	ΔΔΔΔ
ADDX #OPI 161	Add without Carry to X	DIR	18 9B dd	ORPf	NA NA	l .	
ADDX opr16a	,	EXT	18 BB hh 11	ORPO	NA	l .	
ADDX oprx0_xysp		IDX	18 AB xb	ORPf	NA	l .	
ADDX oprx9,xysp ADDX oprx16,xysp		IDX1 IDX2	18 AB xb ff 18 AB xb ee ff	ORPO OfRPP	NA NA		
ADDX (D,xysp)			18 AB xb	OfIfRPf	NA NA	l .	
ADDX [oprx16,xysp]			18 AB xb ee ff	OfIPRPf	NA		
ADDY #opr16i	(Y) + (M:M+1) ⇒ Y	IMM	18 CB jj kk	ОРО	NA	Δ-	ΔΔΔΔ
ADDY opr8a	Add without Carry to Y	DIR	18 DB dd	ORPf	NA		
ADDY opr16a ADDY oprx0_xysp		EXT IDX	18 FB hh 11 18 EB xb	ORPO ORPf	NA NA	l .	
ADDY oprx9,xysp		IDX1	18 EB xb ff	ORPO	NA.	l .	
ADDY oprx16,xysp		IDX2	18 EB xb ee ff	OfRPP	NA	l .	
ADDY [D,xysp] ADDY [oprx16,xysp]		1	18 EB xb 18 EB xb ee ff	OfIfRPf OfIPRPf	NA NA		
ADED #opr16i	(A:B) + (M:M+1) + C ⇒ A:B	IMM	18 C3 jj kk	OPO	NA NA	Δ-	ΔΔΔΔ
ADED #oprior	Add with Carry to D (A:B)	DIR	18 D3 dd	ORPf	NA NA	Δ_	
ADED opr16a		EXT	18 F3 hh 11	ORPO	NA		
ADED oprx0_xysp		IDX	18 E3 xb	ORPf	NA		
ADED oprx9,xysp ADED oprx16,xysp		IDX1 IDX2	18 E3 xb ff 18 E3 xb ee ff	ORPO OfRPP	NA NA	l .	
ADED OPIXIO, XYSP			18 E3 xb	OfifRPf	NA NA		
ADED [oprx16,xysp]	1		18 E3 xb ee ff	OfIPRPf	NA	l .	I

S12XCPU Reference Manual, v01.01

Table A-1. Instruction Set Summary (Sheet 2 of 20)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12X HCS12	SXHI	NZVC
ADEX #opr16i ADEX opr8a ADEX opr16a ADEX oprx0_xysp ADEX oprx9,xysp ADEX oprx16,xysp ADEX [0,xysp] ADEX [0,xysp]	(X) + (M:M+1) + C ⇒ X Add with Carry to X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 89 jj kk 18 99 dd 18 99 dd 18 89 hh 11 18 A9 xb 18 A9 xb ff 18 A9 xb ee ff 18 A9 xb	OPO	Δ-	ΔΔΔΔ
ADEY #opr16i ADEY opr8a ADEY opr16a ADEY opr0_xysp ADEY oprx9,xysp ADEY oprx16,xysp ADEY [D,xysp] ADEY [Oxysp]	(Y) + (M:M+1) + C ⇒ Y Add with Carry to Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 C9 jj kk 18 D9 dd 18 F9 hh 11 18 E9 xb 18 E9 xb ff 18 E9 xb ee ff 18 E9 xb ee ff	OPO NA ORPf NA ORPO NA ORPF NA ORPO NA OffRPP NA OfifRPf NA OfifRPf NA	Δ-	ΔΔΔΔ
ANDA #opr8i ANDA opr8a ANDA opr16a ANDA oprx0_xysp ANDA oprx9,xysp ANDA oprx16,xysp ANDA [D,xysp] ANDA [oprx16,xysp]	(A) • (M) ⇒ A Logical AND A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	84 ii 94 dd B4 hh ll A4 xb A4 xb ff A4 xb ee ff A4 xb A4 xb	P P rPf rPf rP0 rP0 rPf rPf rPO rP0 frPP frPP fifrPf fifrPf fiPrPf fiPrPf		ΔΔ0-
ANDB #opr8i ANDB opr8a ANDB opr16a ANDB oprx0_xysp ANDB oprx9,xysp ANDB oprx16,xysp ANDB [D,xysp] ANDB [Oprx16,xysp]	(B) • (M) ⇒ B Logical AND B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C4 ii D4 dd F4 hh l1 E4 xb E4 xb ff E4 xb ee ff E4 xb E4 xb ee ff	P P rPf rPf rPO rPO rPf rPf rPO rPO frPP frPP flfrpf flfrpf flPrpf flPrpf		ΔΔ0-
ANDCC #opr8i	(CCR) • (M) ⇒ CCR Logical AND CCR with Memory	IMM	10 ii	P P	11111	####
ANDX #opr16i ANDX opr8a ANDX opr16a ANDX oprx0_xysp ANDX oprx9,xysp ANDX oprx16,xysp ANDX [D,xysp] ANDX [D,xysp]	(X) • (M:M+1) ⇒ X Logical AND X with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 84 jj kk 18 94 dd 18 B4 hh 11 18 A4 xb 18 A4 xb ff 18 A4 xb ee ff 18 A4 xb	OPO NA ORPf NA ORPO NA ORPO NA OfRPP NA OfIFRPf NA		ΔΔ0-
ANDY #opr16i ANDY opr8a ANDY opr16a ANDY oprx0 xysp ANDY oprx9,xysp ANDY oprx16,xysp ANDY [D,xysp] ANDY [D,xysp] ANDY [oprx16,xysp]	(Y) • (M:M+1) ⇒ Y Logical AND Y with Memory		18 C4 jj kk 18 D4 dd 18 F4 hh 11 18 E4 xb 18 E4 xb ff 18 E4 xb ee ff 18 E4 xb ee ff	OPO NA ORPf NA ORPO NA ORPf NA ORPO NA OfRPP NA Ofiffref NA Ofiprpf NA		ΔΔ0-
ASL opr16a ASL oprx0_xysp ASL oprx9_xysp ASL oprx16_xysp ASL [D_xysp] ASL [oprx16_xysp] ASLA ASLA ASLB	C b7 b0 Arithmetic Shift Left Arithmetic Shift Left Accumulator A Arithmetic Shift Left Accumulator B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	78 hh 11 68 xb 68 xb ff 68 xb ee ff 68 xb 68 xb ee ff 48 58	rPwO rPwO rPw rPw rPwO rPwO frPwP frPwP fifrPw fifrPw fiPrPw fiPrPw 0 0 0 0		ΔΔΔΔ
ASLD	C b7 A b0 b7 B b0 Arithmetic Shift Left Double	INH	59	0 0		ΔΔΔΔ
ASLW opr16a ASLW oprx0_xysp ASLW oprx9,xysp ASLW oprx16,xysp ASLW [D,xysp] ASLW [oprx16,xysp] ASLX ASLX ASLY	C b15 b0 Arithmetic Shift Left Arithmetic Shift Left Index Register X Arithmetic Shift Left Index Register Y	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	18 78 hh 11 18 68 xb 18 68 xb ff 18 68 xb ee ff 18 68 xb 18 68 xb ee ff 18 48 18 58	ORPWO NA ORPW NA ORPWO NA OfFRWP NA OfIFRPW NA OO NA OO NA		ΔΔΔΔ

Table A-1. Instruction Set Summary (Sheet 3 of 20)

	Ac	Addr. Machine		Access Detail			
Source Form	Operation	Mode	Coding (hex)	HCS12X	HCS12	SXHI	NZVC
ASR opr16a		EXT	77 hh 11	rPwO	rPwO		ΔΔΔΔ
ASR oprx0_xysp		IDX	67 xb	rPw	rPw		
ASR oprx9,xysp	b7 b0 C	IDX1	67 xb ff	rPwO	rPwO		
ASR oprx16,xysp	Arithmetic Shift Right	IDX2 [D,IDX]	67 xb ee ff 67 xb	frPwP fIfrPw	frPwP		
ASR [D,xysp]	Anumetic Shirt Right	[IDX2]	67 xb ee ff		fIfrPw		
ASR [oprx16,xysp] ASRA	Arithmetic Shift Right Accumulator A	INH	47	fIPrPw O	fIPrPw O		
ASRB	Arithmetic Shift Right Accumulator B	INH	57	0	0		
ASRW opr16a		EXT	18 77 hh 11	ORPWO	NA.		ΔΔΔΔ
ASRW oprx0_xysp	 	IDX	18 67 xb	ORPW	NA.		
ASRW oprx9,xysp		IDX1	18 67 xb ff	ORPWO	NA.		
ASRW oprx16,xysp	b15 b0 C	IDX2	18 67 xb ee ff	OfRPWP	NA		
ASRW [D,xysp]	Arithmetic Shift Right	[D,IDX]	18 67 xb	OfIfRPW	NA		
ASRW [oprx16,xysp]		[IDX2]	18 67 xb ee ff	OfIPRPW	NA		
ASRX	Arithmetic Shift Right Index Register X	INH	18 47	00	NA		
ASRY	Arithmetic Shift Right Index Register Y	INH	18 57	00	NA		
BCC rel8	Branch if Carry Clear (if C = 0)	REL	24 rr	PPP/P ¹	PPP/P ¹		
BCLR opr8a, msk8		DIR	4D dd mm	rPwO	rPwO		ΔΔ0-
BCLR opr16a, msk8	$(M) \bullet (\overline{mm}) \Rightarrow M$	EXT	1D hh 11 mm	rPwP	rPwP		
BCLR oprx0_xysp, msk8	Clear Bit(s) in Memory	IDX	0D xb mm	rPwO	rPwO		
BCLR oprx9,xysp, msk8		IDX1	OD xb ff mm	rPwP	rPwP		
BCLR oprx16,xysp, msk8		IDX2	OD xb ee ff mm	frPwPO	frPwPO		
BCS rel8	Branch if Carry Set (if C = 1)	REL	25 rr	PPP/P ¹	PPP/P ¹		
BEQ rel8	Branch if Equal (if Z = 1)	REL	27 rr	PPP/P ¹	PPP/P ¹		
BGE rel8	Branch if Greater Than or Equal (if $N \oplus V = 0$) (signed)	REL	2C rr	PPP/P ¹	PPP/P ¹		
BGND	Place CPU12 in Background Mode see CPU12 Reference Manual	INH	00	VfPPP	VfPPP		
BGT rel8	Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	2E rr	PPP/P ¹	PPP/P ¹		
BHI rel8	Branch if Higher (if C + Z = 0) (unsigned)	REL	22 rr	PPP/P ¹	PPP/P ¹		
BHS rel8	Branch if Higher or Same (if C = 0) (unsigned) same function as BCC	REL	24 rr	PPP/P ¹	PPP/P ¹		
BITA #opr8i	(A) • (M)	IMM	85 ii	P	P		ΔΔ0-
BITA opr8a	Logical AND A with Memory	DIR	95 dd	rPf	rPf		
BITA opr16a	Does not change Accumulator or Memory	EXT	B5 hh 11	rPO	rPO		
BITA oprx0_xysp		IDX	A5 xb	rPf	rPf		
BITA oprx9,xysp		IDX1	A5 xb ff	rPO	rPO		
BITA oprx16,xysp		IDX2	A5 xb ee ff	frPP	frPP		
BITA [D,xysp]		[D,IDX]	A5 xb	fIfrPf	fIfrPf		
BITA [oprx16,xysp]		[IDX2]	A5 xb ee ff	fIPrPf	fIPrPf		
BITB #opr8i	(B) • (M)	IMM	C5 ii	P	P		ΔΔ0-
BITB opr8a	Logical AND B with Memory	DIR	D5 dd	rPf	rPf		
BITB opr16a	Does not change Accumulator or Memory	EXT	F5 hh 11	rPO	rPO		
BITB oprx0_xysp		IDX	E5 xb	rPf	rPf		
BITB oprx9,xysp		IDX1	E5 xb ff	rPO	rPO		
BITB oprx16,xysp		IDX2	E5 xb ee ff	frPP	frPP		
BITB [D,xysp]		[D,IDX]	E5 xb	fIfrPf	fIfrPf		
BITB [oprx16,xysp]		[IDX2]	E5 xb ee ff	fIPrPf	fIPrPf		
BITX #opr16i	(x) • (M:M+1)	IMM	18 85 jj kk	OPO	NA.		ΔΔ0-
BITX opr8a	Logical AND X with Memory	DIR	18 95 dd	ORPf	NA		
BITX opr16a	Does not change Index Register or Memory	EXT	18 B5 hh 11	ORPO	NA.		
BITY opry0 yyon		IDX	18 A5 xb 18 A5 xb ff	ORPf	NA NA		
BITX oprx9,xysp		IDX1		ORPO	NA.		
BITX oprx16,xysp BITX [D,xysp]		IDX2 נעחו חז	18 A5 xb ee ff 18 A5 xb	OfRPP	NA NA		
BITX [D,xysp] BITX [oprx16,xysp]			18 A5 XD 18 A5 XD ee ff	OfIfRPf OfIPRPf	NA NA		
BITY #opr16i	(Y) • (M:M+1)	IMM	18 C5 jj kk	OPO	NA.		ΔΔ0-
BITY opr8a	Logical AND Ywith Memory	DIR	18 D5 dd	ORPf	NA NA		
BITY opr16a	Does not change Index Register or Memory	EXT	18 F5 hh 11	ORPO	NA.		
BITY oprx0_xysp	""	IDX	18 E5 xb	ORPf	NA.		
BITY oprx9,xysp		IDX1	18 E5 xb ff	ORPO	NA		
BITY oprx16,xysp		IDX2	18 E5 xb ee ff	OfRPP	NA		
BITY [D,xysp]		[D,IDX]	18 E5 xb	OfIfRPf	NA		
BITY [oprx16,xysp]		[IDX2]	18 E5 xb ee ff	OfIPRPf	NA		
	less three quales to refill the instruction quality if the bran		n and and program fotab avala if the b				

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 4 of 20)

	Addr. Machine Access Detail					
Source Form	Operation	Mode	Coding (hex)	HCS12X HCS12	SXHI	NZVC
BLE rel8	Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	2F rr	PPP/P ¹ PPP/P ¹		
BLO rel8	Branch if Lower (if C = 1) (unsigned) same function as BCS	REL	25 rr	PPP/P ¹ PPP/P ¹		
BLS rel8	Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	23 rr	PPP/P ¹ PPP/P ¹		
BLT rel8	Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	2D rr	PPP/P ¹ PPP/P ¹		
BMI rel8	Branch if Minus (if N = 1)	REL	2B rr	PPP/P ¹ PPP/P ¹		
BNE rel8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/P ¹ PPP/P ¹		
BPL rel8	Branch if Plus (if N = 0)	REL	2A rr	PPP/P ¹ PPP/P ¹		
BRA rel8	Branch Always (if 1 = 1)	REL	20 rr	PPP PPP		
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysp, msk8, rel8 BRCLR oprx9_xysp, msk8, rel8 BRCLR oprx16,xysp, msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh 11 mm rr 0F xb mm rr 0F xb ff mm rr 0F xb ee ff mm rr	rPPP rPPP rfppp rfppp rppp rppp rfppp rfppp Prfppp Prfppp		
BRN rel8	Branch Never (if 1 = 0)	REL	21 rr	P P		
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysp, msk8, rel8 BRSET oprx9,xysp, msk8, rel8 BRSET oprx16,xysp, msk8, rel8	Branch if (M) ● (mm) = 0 (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh 11 mm rr 0E xb mm rr 0E xb ff mm rr 0E xb ee ff mm rr	rPPP rPPP rfppp rfppp rppp rppp rfppp rfppp Prfppp Prfppp		
BSET opr8, msk8 BSET opr16a, msk8 BSET oprx0_xysp, msk8 BSET oprx9,xysp, msk8 BSET oprx16,xysp, msk8	(M) I (mm) ⇒ M Set Bit(s) in Memory Set CCR flags with respect to the result	DIR EXT IDX IDX1 IDX2	4C dd mm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb ee ff mm	rPwO rPwO rPwP rPwP rPwO rPwO rPwP rPwP frPwPO frPwPO		ΔΔ0-
BSR rel8	$ \begin{array}{l} (SP)-2 \Rightarrow SP; RTN_H : RTN_L \Rightarrow M_{(SP)} : M_{(SP+1)} \\ Subroutine \ address \ fi \ PC \\ Branch \ to \ Subroutine \\ \end{array} $	REL	07 rr	SPPP SPPP		
BTAS opr8, msk8 BTAS opr16a, msk8 BTAS oprx0_xysp, msk8 BTAS oprx9,xysp, msk8 BTAS oprx16,xysp, msk8	(M) I (Mask) ⇒ M Set Bit(s) in Memory Set CCR flags with respect to operand (M) read	DIR EXT IDX IDX1 IDX2	18 35 dd mm 18 36 hh 11 mm 18 37 xb mm 18 37 xb ff mm 18 37 xb ee ff mm	ORPWO NA ORPWP NA ORPWO NA ORPWP NA Offreed NA	1	ΔΔ0-
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹ PPP/P ¹		
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P ¹ PPP/P ¹		
CALL opr16a, page CALL oprx0_xysp, page CALL oprx9,xysp, page CALL oprx16,xysp, page CALL [D,xysp] CALL [oprx16, xysp]	$\begin{split} &(SP)-2\Rightarrow SP;RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)}\\ &(SP)-1\Rightarrow SP;(PPG)\Rightarrow M_{(SP)};\\ &pg\Rightarrow PPAGE\ register;\ Program\ address\Rightarrow PC\\ &Call\ subroutine\ in\ extended\ memory\\ &(Program\ may\ be\ located\ on\ another\ expansion\ memory\ page.)\\ &Indirect\ modes\ get\ program\ address\ and\ new\ pg\ value\ based\ on\ pointer. \end{split}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh 11 pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb 4B xb	gnSsPPP gnSsPPP gnSsPPP gnSsPPP gnSsPPP gnSsPPP fgnSsPPP fgnSsPPP flignSsPPP flignSsPPP flignSsPPP flignSsPPP		
СВА	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00 00		ΔΔΔΔ
CLC	0 ⇒ C Translates to ANDCC #\$FE	IMM	10 FE	P P		0
CLI	0 ⇒ I Translates to ANDCC #\$EF (enables I-bit interrupts)	IMM	10 EF	P P	0	
CLR opr16a CLR oprx0_xysp CLR oprx9_xysp CLR oprx16,xysp CLR [D,xysp] CLR [oprx16,xysp] CLR A CLRB	0 ⇒ MClear Memory Location 0 ⇒ AClear Accumulator A 0 ⇒ BClear Accumulator B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb ee ff 69 xb ee ff 87 C7	PwO PwO Pw Pw PwO PwO PwF PwF Pifw Pifw PIPW PiPw O O O O		0100

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 5 of 20)

		Addr.	Machine	Acces	s Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12X	HCS12	SXHI	NZVC
CLRW opr16a	0 ⇒ M:M+1Clear Memory Location	EXT	18 79 hh 11	OPWO	NA		0100
CLRW oprx0_xysp		IDX	18 69 xb	OPW	NA		
CLRW oprx9,xysp		IDX1	18 69 xb ff	OPWO	NA		
CLRW oprx16,xysp		IDX2	18 69 xb ee ff	OPWP	NA		
CLRW [D,xysp]		[D,IDX]	18 69 xb	OPIfW	NA		
CLRW [oprx16,xysp]	O VOIces Index Benistes V	[IDX2]	18 69 xb ee ff	OPIPW	NA.		
CLRX	0 ⇒ XClear Index Register X 0 ⇒ YClear Index Register Y	INH INH	18 87 18 C7	00	NA NA		
CLV	0 ⇒ V Translates to ANDCC #\$FD	IMM	10 FD	P	Р		0-
CMPA #opr8i	(A) – (M)	IMM	81 ii	Р	P		ΔΔΔΔ
CMPA opr8a	Compare Accumulator A with Memory	DIR	91 dd	rPf	rPf		
CMPA opr16a		EXT	B1 hh ll	rPO	rPO		
CMPA oprx0_xysp		IDX	A1 xb	rPf	rPf		
CMPA oprx9,xysp		IDX1	A1 xb ff	rPO	rPO		
CMPA (Duran)		IDX2	A1 xb ee ff	frPP	frPP		
CMPA [D,xysp]		[D,IDX]	A1 xb	fIfrPf	fIfrPf		
CMPA [oprx16,xysp]	(2)	[IDX2]	Al xb ee ff	fIPrPf	fIPrPf		
CMPB #opr8i CMPB opr8a	(B) – (M) Compare Accumulator B with Memory	IMM DIR	C1 ii D1 dd	P rPf	P rPf		ΔΔΔΔ
CMPB opr16a	Sompare Accountiation D with Michiely	EXT	F1 hh 11	rPO	rPO		
CMPB oprx0_xysp		IDX	E1 xb	rPf	rPf		
CMPB oprx9,xysp		IDX1	E1 xb ff	rPO	rPO		
CMPB oprx16,xysp		IDX2	E1 xb ee ff	frPP	frPP		
CMPB [D,xysp]		[D,IDX]	E1 xb	fIfrPf	fIfrPf		
CMPB [oprx16,xysp]		[IDX2]	E1 xb ee ff	fIPrPf	fIPrPf		
COM opr16a	$(\overline{M}) \Rightarrow M$ equivalent to $FF - (M) \Rightarrow M$	EXT	71 hh 11	rPwO	rPwO		ΔΔ01
COM oprx0_xysp	1's Complement Memory Location	IDX	61 xb	rPw	rPw		
COM oprx9,xysp		IDX1	61 xb ff	rPwO	rPwO		
COM oprx16,xysp		IDX2	61 xb ee ff	frPwP	frPwP		
COM [D,xysp]		[D,IDX]	61 xb	fIfrPw	fIfrPw		
COM [oprx16,xysp]	(A) ⇒ AComplement Accumulator A	[IDX2]	61 xb ee ff	fIPrPw	fIPrPw		
COMA COMB	$(\overline{B}) \Rightarrow BComplement \ Accumulator \ B$	INH INH	41 51	0	0		
COMW opr16a	(M:M+1) ⇒ M:M+1 equivalent to	EXT	18 71 hh 11	ORPWO	NA.		ΔΔ01
COMW oprx0_xysp	\$FF - (M:M+1) ⇒ M:M+1	IDX	18 61 xb	ORPW	NA		
COMW oprx9,xysp		IDX1	18 61 xb ff	ORPWO	NA		
COMW oprx16,xysp		IDX2	18 61 xb ee ff	OfRPWP	NA		
COMW [D,xysp]		[D,IDX]	18 61 xb	OfIfRPW	NA		
COMW [oprx16,xysp]	(X) ⇒ XComplement Index Register X	[IDX2]	18 61 xb ee ff	OfIPRPW	NA		
COMY	(V) ⇒ YComplement Index Register Y	INH	18 41 18 51	00	NA NA		
CPD #opr16i	(A:B) – (M:M+1)	IMM	8C ji kk	PO	PO		ΔΔΔΔ
CPD opr8a	Compare D to Memory (16-Bit)	DIR	9C dd	RPf	RPf		
CPD opr16a		EXT	BC hh 11	RPO	RPO		
CPD oprx0_xysp		IDX	AC xb	RPf	RPf		
CPD oprx9,xysp		IDX1	AC xb ff	RPO	RPO		
CPD oprx16,xysp		IDX2	AC xb ee ff	fRPP	fRPP		
CPD [D,xysp]		[D,IDX]	AC xb	fIfRPf	fIfRPf		
CPD [oprx16,xysp]			AC xb ee ff	fIPRPf	fIPRPf		
CPED #opr16i CPED opr8a	(A:B) – (M:M+1) – C Compare D to Memory with Borrow	IMM DIR	18 8C jj kk 18 9C dd	OPO ORPf	NA NA		ΔΔΔΔ
CPED opri6a	Sompare D to memory with borrow	EXT	18 BC hh 11	ORPO	NA NA		
CPED oprx0_xysp		IDX	18 AC xb	ORPf	NA NA		
CPED oprx9,xysp		IDX1	18 AC xb ff	ORPO	NA.		
CPED oprx16,xysp		IDX2	18 AC xb ee ff	OfRPP	NA		
CPED [D,xysp]		[D,IDX]		OfIfRPf	NA		
CPED [oprx16,xysp]		[IDX2]	18 AC xb ee ff	OfIPRPf	NA		
CPES #opr16i	(SP) - (M:M+1) - C	IMM	18 8F jj kk	ОРО	NA		ΔΔΔΔ
CPES opr8a	Compare SP to Memory with Borrow	DIR	18 9F dd	ORPf	NA		
CPES opr16a		EXT	18 BF hh 11	ORPO	NA		
CPES oprx0_xysp		IDX	18 AF xb	ORPf	NA		
CPES oprx9,xysp		IDX1	18 AF xb ff	ORPO	NA NA		
CPES oprx16,xysp		IDX2	18 AF xb ee ff	OfRPP	NA Na		
CPES [D,xysp] CPES [oprx16,xysp]		[D,IDX] [IDX2]	18 AF xb 18 AF xb ee ff	OfIfRPf OfIPRPf	NA NA		

Table A-1. Instruction Set Summary (Sheet 6 of 20)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12X HCS12	SXHI	NZVC
CPEX #opr16i CPEX opr8a CPEX opr16a CPEX oprx0_xysp CPEX oprx9,xysp CPEX oprx16,xysp CPEX [D,xysp] CPEX [oprx16,xysp]	(X) – (M:M+1) – C Compare X to Memory with Borrow	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 8E jj kk 18 9E dd 18 BE hh 11 18 AE xb 18 AE xb ff 18 AE xb ee ff 18 AE xb 18 AE xb	OPO		ΔΔΔΔ
CPEY #opr16i CPEY opr8a CPEY opr16a CPEY oprx0_xysp CPEY oprx9,xysp CPEY oprx16,xysp CPEY [D,xysp] CPEY [D,xysp] CPEY [oprx16,xysp]	(Y) – (M:M+1) – C Compare Y to Memory with Borrow	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 8D jj kk 18 9D dd 18 BD hh 11 18 AD xb 18 AD xb ff 18 AD xb ee ff 18 AD xb 18 AD xb	OPO NA ORPf NA ORPO NA ORPF NA ORPO NA OfrPP NA OfifrPf NA Ofiprpf NA		ΔΔΔΔ
CPS #opr16i CPS opr8a CPS opr16a CPS oprx0_xysp CPS oprx9_xysp CPS oprx16,xysp CPS [D,xysp] CPS [oprx16,xysp]	(SP) – (M:M+1) Compare SP to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8F jj kk 9F dd BF hh ll AF xb AF xb ee ff AF xb ee ff AF xb	PO PO RPf RPf RPO RPO RPf RPf RPO RPO fRPP fRPP fifRPf fifRPf fIPRPf fIPRPf		ΔΔΔΔ
CPX #opr16i CPX opr8a CPX opr16a CPX oprx0_xysp CPX oprx9_xysp CPX oprx16_xysp CPX [D_xysp] CPX [D_xysp] CPX [Oprx16,xysp]	(X) – (M:M+1) Compare X to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8E jj kk 9E dd BE hh 11 AE xb AE xb ff AE xb ee ff AE xb AE xb ee ff	PO PO RPf RPf RPO RPO RPF RPF RPO RPO FRPP fRPP flfRPf flfRPf flPRPf flPRPf		ΔΔΔΔ
CPY #opr16i CPY opr8a CPY opr16a CPY oprx0_xysp CPY oprx0_xysp CPY oprx16,xysp CPY [D,xysp] CPY [D,xysp] CPY [Oprx16,xysp]	(Y) – (M:M+1) Compare Y to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8D jj kk 9D dd BD hh 11 AD xb AD xb ff AD xb ee ff AD xb ee ff AD xb	PO PO RPf RPf RPO RPO RPf RPf RPO RPO fRPP fRPP fifRpf fifRpf fipRpf fipRpf		ΔΔΔΔ
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	ofo ofo		ΔΔ?Δ
DBEQ abdxys, rel9	(cntr) − 1 ⇒ cntr if (cntr) = 0, then Branch else Continue to next instruction Decrement Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPP (branch) PPO (no PPO (no branch) branch)		
DBNE abdxys, rel9	(cntr) − 1 ⇒ cntr If (cntr) not = 0, then Branch; else Continue to next instruction Decrement Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPP (branch) PPO (no PPO (no branch) branch)		
DEC opr16a DEC oprx0_xysp DEC oprx16,xysp DEC oprx16,xysp DEC [D,xysp] DEC [oprx16,xysp] DEC [oprx16,xysp] DECA DECB	(M) – \$01 ⇒ M Decrement Memory Location (A) – \$01 ⇒ A Decrement A (B) – \$01 ⇒ B Decrement B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	73 hh 11 63 xb 63 xb ff 63 xb ee ff 63 xb 63 xb ee ff 43 53	rPwO rPwO rPw rPw rPwO rPwO frPwP frPwP fifrPw fifrPw fiPrPw fiPrPw 0 0 0 0		ΔΔΔ-
DECW opr16a DECW oprx0_xysp DECW oprx9,xysp DECW oprx16,xysp DECW [D,xysp] DECW [oprx16,xysp] DECW [oprx16,xysp] DECX DECY	(M:M+1) – \$01 ⇒ M:M+1 Decrement Memory Location (X) – \$01 ⇒ X Decrement X (Y) – \$01 ⇒ Y Decrement Y	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	18 73 hh 11 18 63 xb 18 63 xb ff 18 63 xb ee ff 18 63 xb ee ff 18 63 xb 18 63 xb ee ff 18 43 18 53	ORPWO NA ORPW NA ORPWO NA OFRPWP NA OFIFRPW NA OFIFRPW NA OO NA OO NA		ΔΔΔ-

S12XCPU Reference Manual, v01.01

Table A-1. Instruction Set Summary (Sheet 7 of 20)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12X HCS12	ѕхні	NZVC
DES	(SP) – \$0001 ⇒ SP Translates to LEAS –1,SP	IDX	1B 9F	Pf Pf		
DEX	(X) − \$0001 ⇒ X Decrement Index Register X	INH	09	0 0		-Δ
DEY	(Y) – \$0001 ⇒ Y Decrement Index Register Y	INH	03	0 0		-Δ
EDIV	$(Y:D) \div (X) \Rightarrow Y$ Remainder fi D 32 by 16 Bit \Rightarrow 16 Bit Divide (unsigned)	INH	11	ffffffffff ffffffffff		ΔΔΔΔ
EDIVS	$(Y:D) \div (X) \Rightarrow Y$ Remainder fi D 32 by 16 Bit \Rightarrow 16 Bit Divide (signed)	INH	18 14	Offfffffff Offffffffff		ΔΔΔΔ
EMACS opr16a ¹	$\begin{split} &(M_{(X)}\text{:}M_{(X+1)})\times (M_{(Y)}\text{:}M_{(Y+1)}) + (M\text{-}M\text{+}3) \Longrightarrow M\text{-}M\text{+}3 \\ \\ &16 \text{ by } 16 \text{ Bit} \Longrightarrow 32 \text{ Bit} \\ &\text{Multiply and Accumulate (signed)} \end{split}$	Special	18 12 hh 11	ORRORRWPP ORROfffRRfWWF		ΔΔΔΔ
EMAXD oprx0_xysp EMAXD oprx9,xysp EMAXD oprx16,xysp EMAXD [D,xysp] EMAXD [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ D MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1A xb 18 1A xb ff 18 1A xb ee ff 18 1A xb 18 1A xb ee ff	ORPÉ ORPÉ ORPO ORPO OFRPP OFIFRPÉ OFIFRPÉ OFIFRPÉ OFIFRPÉ OFIFRPÉ		ΔΔΔΔ
EMAXM oprx0_xysp EMAXM oprx9,xysp EMAXM oprx16,xysp EMAXM [D,xysp] EMAXM [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ M:M+1 MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1E xb 18 1E xb ff 18 1E xb ee ff 18 1E xb 18 1E xb ee ff	ORPW ORPW ORPWO ORPWC OfRPWP OfRPWF Of1fRPW Of1fRPW Of1PRPW Of1PRPW		ΔΔΔΔ
EMIND oprx0_xysp EMIND oprx9,xysp EMIND oprx16,xysp EMIND [D,xysp] EMIND [oprx16,xysp]	MIN((D), (M:M+1)) ⇒ D MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1B xb 18 1B xb ff 18 1B xb ee ff 18 1B xb 18 1B xb ee ff	ORPf ORPf ORPO ORPO OffRPP OffRPF Of1fRPf Of1fRPF Of1FRPf Of1FRPF		ΔΔΔΔ
EMINM oprx0_xysp EMINM oprx9,xysp EMINM oprx16,xysp EMINM [D,xysp] EMINM [oprx16,xysp]	MIN((D), (M:M+1)) ⇒ M:M+1 MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) − (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1F xb 18 1F xb ff 18 1F xb ee ff 18 1F xb 18 1F xb ee ff	ORPW ORPW ORPWO ORPWO OfRPWP OFIFRPW OFIFRPW OFIFRPW OFIPRPW OFIPRPW		ΔΔΔΔ
EMUL	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (unsigned)	INH	13	O ff0		$\Delta \Delta - \Delta$
EMULS	$ \begin{array}{c} (D)\times (Y)\Rightarrow Y\text{:}D\\ 16\text{ by 16 Bit Multiply (signed)} \end{array} $	INH	18 13	OfO OfO (if followed by Page 2 instruction) OffO OffO		ΔΔ-D
EORA #opr8i EORA opr8a EORA opr16a EORA oprx0_xysp EORA oprx9,xysp EORA oprx16,xysp EORA [D,xysp] EORA [oprx16,xysp]	$(A) \oplus (M) \Rightarrow A$ Exclusive-OR A with Memory	· ·	88 ii 98 dd 88 hh 11 A8 xb A8 xb ff A8 xb ee ff A8 xb A8 xb ee ff	P F rPf rPf rP0 rPc rPf rPf rPO rPc frPP frPP fIfrPf fIfrPf fIPrPf fIPrPf		ΔΔ0-
EORB #opr8i EORB opr8a EORB opr16a EORB oprx0_xysp EORB oprx16,xysp EORB (D,xysp) EORB [D,xysp] EORB [Oprx16,xysp]	(B) ⊕ (M) \Rightarrow B Exclusive-OR B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX]	C8 ii D8 dd F8 hh 11 E8 xb E8 xb ff E8 xb ee ff E8 xb E8 xb ee ff	P F rPf rPf rPO rPc rPf rPf rPO rPc frPP frPP fIfrPf fIfrPf fIPrPf fIPrPf		ΔΔ0-
EORX #opr16i EORX opr8a EORX opr16a EORX oprx0_xysp EORX oprx9,xysp EORX oprx16,xysp EORX [D,xysp] EORX [Oprx16,xysp]	(X) ⊕ (M:M+1) ⇒ X Exclusive-OR X with Memory	1	18 88 jj kk 18 98 dd 18 88 hh 11 18 A8 xb 18 A8 xb ff 18 A8 xb ee ff 18 A8 xb 18 A8 xb	OPO NA ORPf NA ORPO NA ORPf NA ORPO NA OfRPP NA OfIfRPf NA OfIPRPf NA		ΔΔ0-

Note:1. opr16a is an extended address specifiation. Both X and Y point to source operands.

Table A-1. Instruction Set Summary (Sheet 8 of 20)

0	Outpution	Addr. Machine		Access Detail	0 V III	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12X HCS12	5 х н і	NZVC
EORY #opr16i EORY opr8a EORY opr16a EORY oprx0_xysp EORY oprx9,xysp EORY oprx16,xysp EORY [D,xysp] EORY [D,xysp]	(Y) ⊕ (M:M+1) ⇒ Y Exclusive-OR Y with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 D8 dd 18 F8 hh 11 18 E8 xb 18 E8 xb ff 18 E8 xb ee ff 18 E8 xb	OPO NA ORPf NA ORPO NA ORPf NA ORPO NA OffRPP NA OffIfrPf NA OfIFRPF NA		ΔΔ0-
ETBL oprx0_xysp	(M:M+1) + [(B) × ((M+2:M+3) − (M:M+1))] ⇒ D 16-Bit Table Lookup and Interpolate Initialize B, and index before ETBL. <ea> points at first table entry (M:M+1) and B is fractional part of lookup value (no indirect addr. modes or extensions allowed)</ea>	IDX	18 3F xb	ORREFFFFFP ORREFFFFFP		ΔΔ-Δ
EXG abcdxys,abcdxys	$(r1) \Leftrightarrow (r2)$ (if r1 and r2 same size) or $\$00:(r1) \Rightarrow r2$ (if r1=8-bit; r2=16-bit) or $(r1_{low}) \Leftrightarrow (r2)$ (if r1=16-bit; r2=8-bit) r1 and r2 may be A, B, CCR, D, X, Y, or SP	INH	B7 eb	р р		
FDIV	$(D) \div (X) \Rightarrow X$; Remainder fi D 16 by 16 Bit Fractional Divide	INH	18 11	Offfffffffo Offfffffffo		– Δ Δ Δ
GLDAA opr8a GLDAA oprx0_xysp GLDAA oprx0_xysp GLDAA oprx16,xysp GLDAA (D,xysp] GLDAA [D,xysp]	$\mathbf{G}(\mathbf{M})\Rightarrow\mathbf{A}$ Load Accumulator A from Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 B6 hh 11 18 A6 xb 18 A6 xb ff 18 A6 xb ee ff 18 A6 xb	OrPf NA OrPO NA OrPf NA OFPO NA OfrPP NA OfIfrPf NA OfIPrPf NA		ΔΔ0-
GLDAB opr8a GLDAB opr16a GLDAB oprx0_xysp GLDAB oprx9,xysp GLDAB oprx16,xysp GLDAB [D,xysp] GLDAB [oprx16,xysp]	$\mathbf{G}(\mathbf{M})\Rightarrow \mathbf{B}$ Load Accumulator B from Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 F6 hh 11 18 E6 xb 18 E6 xb ff 18 E6 xb ee ff 18 E6 xb	OrPf NA OrPO NA OrPf NA OrPO NA OfrPP NA OfIfrPf NA OfIFrPf NA		ΔΔ0-
GLDD opr8a GLDD opr16a GLDD oprx0_xysp GLDD oprx9,xysp GLDD oprx16,xysp GLDD [D,xysp] GLDD [D,xysp]	G(M:M+1) ⇒ A:B Load Double Accumulator D (A:B) from Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 FC hh 11 18 EC xb 18 EC xb ff 18 EC xb ee ff 18 EC xb	ORPf NA ORPO NA ORPf NA ORPO NA OffRPP NA OffIfRPf NA OffIFRPf NA		ΔΔ0-
GLDS opr8a GLDS opr16a GLDS oprx0_xysp GLDS oprx9,xysp GLDS oprx16,xysp GLDS [D,xysp] GLDS [oprx16,xysp]	G(M:M+1) ⇒ SP Load Stack Pointer from Global Memory		18 FF hh 11 18 EF xb 18 EF xb ff 18 EF xb ee ff 18 EF xb	ORPÉ NA ORPO NA ORPÉ NA ORPO NA OFRPP NA OFIFRPF NA		ΔΔ0-
GLDX opr8a GLDX opr16a GLDX oprx0_xysp GLDX oprx9,xysp GLDX oprx16,xysp GLDX [D,xysp] GLDX [oprx16,xysp]	G(M:M+1) ⇒ X Load Index Register X from Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 FE hh 11 18 EE xb 18 EE xb ff 18 EE xb ee ff 18 EE xb	ORPÉ NA ORPO NA ORPÉ NA ORPO NA OÉRPP NA OÉIFRPÉ NA OÉIFRPÉ NA		ΔΔ0-
GLDY opr8a GLDY opr16a GLDY oprx0_xysp GLDY oprx9,xysp GLDY oprx16,xysp GLDY [D,xysp] GLDY [oprx16,xysp]	G(M:M+1) ⇒ Y Load Index Register Y from Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 FD hh 11 18 ED xb 18 ED xb ff 18 ED xb ee ff 18 ED xb	ORPF NA ORPO NA ORPF NA ORPO NA OFRPP NA OFIFRPF NA OFIFRPF NA		ΔΔ0-

Table A-1. Instruction Set Summary (Sheet 9 of 20)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12X HCS12	ѕхні	NZVC
GSTAA opr8a GSTAA opr16a GSTAA oprx0_xysp GSTAA oprx16,xysp GSTAA oprx16,xysp GSTAA [D,xysp] GSTAA [Oprx16,xysp]	$(A)\Rightarrow G(M)$ Store Accumulator A to Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 5A dd 18 7A hh 11 18 6A xb 18 6A xb ff 18 6A xb ee ff 18 6A xb	OPW NA		Δ Δ 0 -
GSTAB opr8a GSTAB opr16a GSTAB oprx0_xysp GSTAB oprx0_xysp GSTAB oprx16,xysp GSTAB [D,xysp] GSTAB [oprx16,xysp]	(B) ⇒ G(M) Store Accumulator B to Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 5B dd 18 7B hh 11 18 6B xb 18 6B xb ff 18 6B xb ee ff 18 6B xb 18 6B xb	OPW NA OPwO NA OPw NA OPwO NA OPwP NA OPIfw NA OPIPW NA	1	ΔΔ0-
GSTD opr8a GSTD opr16a GSTD oprx0_xysp GSTD oprx9,xysp GSTD oprx16,xysp GSTD [D,xysp] GSTD [Oprx16,xysp]	$(A)\Rightarrow G(M), (B)\Rightarrow G(M+1)$ Store Double Accumulator to Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 5C dd 18 7C hh 11 18 6C xb 18 6C xb ff 18 6C xb ee ff 18 6C xb 18 6C xb	OPW NA OPWO NA OPW NA OPWO NA OPWP NA OPIFW NA OPIFW NA		ΔΔ0-
GSTS opr8a GSTS opr16a GSTS oprx0_xysp GSTS oprx9,xysp GSTS oprx16,xysp GSTS [D,xysp] GSTS [D,xysp]	(SP) ⇒ G(M:M+1) Store Stack Pointer to Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 5F dd 18 7F hh 11 18 6F xb 18 6F xb ff 18 6F xb ee ff 18 6F xb ee ff	OPW NA OPWO NA OPW NA OPWO NA OPWP NA OPIFW NA OPIFW NA		ΔΔ0-
GSTX opr8a GSTX opr16a GSTX oprx0_xysp GSTX oprx9,xysp GSTX oprx16,xysp GSTX [D,xysp] GSTX [oprx16,xysp]	(X) ⇒ G(M:M+1) Store Index Register X to Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 5E dd 18 7E hh 11 18 6E xb 18 6E xb ff 18 6E xb ee ff 18 6E xb 18 6E xb	OFW NA OPWO NA OPW NA OPWO NA OPWP NA OPIEW NA OPIEW NA OPIEW NA		ΔΔ0-
GSTY opr8a GSTY opr16a GSTY oprx0_xysp GSTY oprx9,xysp GSTY oprx16,xysp GSTY [D,xysp] GSTY [oprx16,xysp]	(Y) ⇒ G(M:M+1) Store Index Register Yto Global Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 5D dd 18 7D hh 11 18 6D xb 18 6D xb ff 18 6D xb ee ff 18 6D xb ee ff 18 6D xb ee ff	OPW NA OPWO NA OPW NA OPWO NA OPWP NA OPIEW NA OPIEW NA OPIEW NA		ΔΔ0-
IBEQ abdxys, rel9	(cntr) + 1 ⇒ cntr If (cntr) = 0, then Branch else Continue to next instruction Increment Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPP (branch) PPO (no PPO (no branch) branch)		
IBNE abdxys, rel9	(cntr) + 1 ⇒ cntr if (cntr) not = 0, then Branch; else Continue to next instruction Increment Counter and Branch if ≠ 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPP (branch) PPO (no PPO (no branch) branch)		
IDIV	(D) \div (X) \Rightarrow X; Remainder \Rightarrow D 16 by 16 Bit Integer Divide (unsigned)	INH	18 10	Offfffffff Offffffffff		- Δ 0 Δ
IDIVS	(D) \div (X) \Rightarrow X; Remainder \Rightarrow D 16 by 16 Bit Integer Divide (signed)	INH	18 15	Offfffffff Offffffffff		ΔΔΔΔ
INC opr16a INC oprx0_xysp INC oprx9_xysp INC oprx16_xysp INC [D,xysp] INC [D,rx16_xysp] INC [Oprx16_xysp] INCA INCB	(M) + \$01 \Rightarrow M Increment Memory Byte (A) + \$01 \Rightarrow Alncrement Acc. A (B) + \$01 \Rightarrow Blncrement Acc. B		72 hh 11 62 xb 62 xb ff 62 xb ee ff 62 xb ee ff 62 xb ee ff 42 52	rPwO rPwO rPw rPw rPwO rPwO frPwP frPwP fifrPw fifrPw fiPrPw 0 0 0 0 0		ΔΔΔ-

Table A-1. Instruction Set Summary (Sheet 10 of 20)

0	Operation	Addr.	Machine	Access Detail		0 V III	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12X HCS1	2	SXHI	NZVC
INCW opr16a INCW oprx0_xysp INCW oprx9,xysp INCW oprx16,xysp INCW [D,xysp] INCW [oprx16,xysp] INCX INCX	(M:M+1) + \$01 ⇒ M:M+1 Increment Memory (X) + \$01 ⇒ XIncrement Index Register X (Y) + \$01 ⇒ YIncrement Index Register Y	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	18 72 hh 11 18 62 xb 18 62 xb ff 18 62 xb ee ff 18 62 xb ee ff 18 62 xb ee ff 18 42 18 52	ORPWO ORPW ORPWO OfRPWP OfifrPW OfifrPW OO OO	NA NA NA NA NA NA		ΔΔΔ
INS	(SP) + \$0001 ⇒ SP <i>Translates to</i> LEAS 1.SP	IDX	1B 81	Pf	Pf		
INX	(X) + \$0001 ⇒ X Increment Index Register X	INH	08	0	0		-Δ
INY	(Y) + \$0001 ⇒ Y Increment Index Register Y	INH	02	0	0		-Δ
JMP opr16a JMP oprx0_xysp JMP oprx9_xysp JMP porx16_xysp JMP [0_xysp] JMP [0_px16_xysp]	Routine address ⇒ PC Jump	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	06 hh 11 05 xb 05 xb ff 05 xb ee ff 05 xb ee ff	fIfPPP fI	PPP PPP PPP fPPP fPPP		
JSR opr8a JSR opr16a JSR oprx0_xysp JSR oprx9_xysp JSR oprx16_xysp JSR [D_xysp] JSR [D_xysp] JSR [Opx16_xysp]	$ \begin{aligned} & (SP) - 2 \Rightarrow SP; \\ & RTN_H; RTN_L \Rightarrow M_{(SP)}; M_{(SP+1)}; \\ & Subroutine \ address \Rightarrow PC \end{aligned} $ Jump to Subroutine	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	17 dd 16 hh 11 15 xb 15 xb ff 15 xb ee ff 15 xb ee ff	SPPP PPPS PPPS fPPPS fIfPPPS fIf	SPPP SPPP PPPS PPPS PPPS PPPS		
LBCC rel16 LBCS rel16	Long Branch if Carry Clear (if C = 0)	REL	18 24 qq rr	OPPP/OPO ¹ OPPP/			
1111	Long Branch if Carry Set (if C = 1)	REL	18 25 qq rr	OPPP/OPO ¹ OPPP/			
LBEQ rel16 LBGE rel16	Long Branch if Equal (if Z = 1) Long Branch Greater Than or Equal	REL	18 27 qq rr 18 2C qq rr	OPPP/OPO ¹ OPPP/ OPPP/OPO ¹ OPPP/			
LDGL 16110	(if $N \oplus V = 0$) (signed)	ILL	10 20 qq 11	OFFF/OFO OFFF/	OFO		
LBGT rel16	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹ OPPP/	OPO ¹		
LBHI rel16	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹ OPPP/	OPO ¹		
LBHS rel16	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	OPPP/OPO ¹ OPPP/	OPO ¹		
LBLE rel16	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹ OPPP/	OPO ¹		
LBLO rel16	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	OPPP/OPO ¹ OPPP/	OPO ¹		
LBLS rel16	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹ OPPP/	OPO ¹		
LBLT rel16	Long Branch if Less Than (if $N \oplus V = 1$) (signed)	REL	18 2D qq rr	OPPP/OPO ¹ OPPP/	OPO ¹		
LBMI rel16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹ OPPP/			
LBNE rel16	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹ OPPP/			
LBPL rel16	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹ OPPP/			
LBRA rel16	Long Branch Always (if 1 = 1)	REL	18 20 qq rr		OPPP		
LBRN rel16	Long Branch Never (if 1 = 0)	REL	18 21 qq rr	OPO	OPO		
LBVC rel16 LBVS rel16	Long Branch if Overflow Bit Clear (if V = 0)	REL REL	18 28 qq rr	OPPP/OPO ¹ OPPP/ OPPP/OPO ¹ OPPP/	- 1		
LDAA #opr8i LDAA opr8a LDAA opr16a LDAA opr30_xysp LDAA oprx9,xysp LDAA oprx16,xysp LDAA (D,xysp) LDAA [D,xysp] LDAA [Opx16,xysp]	Long Branch if Overflow Bit Set (if V = 1) (M) ⇒ A Load Accumulator A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX]	18 29 qq rr 86 ii 96 dd B6 hh 11 A6 xb A6 xb ff A6 xb ee ff A6 xb A6 xb	P rPf rPO rPf rPO frpp firpp fifrpf fI	P rPf rPO rPf rPO frPP frPf		ΔΔ0-

Notes:1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

S12XCPU Reference Manual, v01.01

Table A-1. Instruction Set Summary (Sheet 11 of 20)

	Ac Ac	Addr.	Machine	Acces	Access Detail		N 7 V 0
Source Form	Operation	Mode	Coding (hex)	HCS12X	HCS12	ѕхні	NZVC
LDAB #opr8i	(M) ⇒ B	IMM	C6 ii	P	P		ΔΔ0-
LDAB opr8a	Load Accumulator B	DIR	D6 dd	rPf	rPf		
LDAB opr16a		EXT	F6 hh ll	rPO	rPO		
LDAB oprx0_xysp		IDX	E6 xb E6 xb ff	rPf	rPf		
LDAB oprx9,xysp LDAB oprx16,xysp		IDX1 IDX2	E6 xb ee ff	rPO frPP	rPO frPP		
LDAB (D,xysp)		[D,IDX]	E6 xb ee II	fIfrPf	fIfrPf		
LDAB [oprx16,xysp]		[IDX2]	E6 xb ee ff	fIPrPf	fIPrPf		
LDD #opr16i	(M:M+1) ⇒ A:B	IMM	CC jj kk	PO	PO		ΔΔ0-
LDD opr8a	Load Double Accumulator D (A:B)	DIR	DC dd	RPf	RPf		440
LDD opr16a	, ,	EXT	FC hh 11	RPO	RPO		
LDD oprx0_xysp		IDX	EC xb	RPf	RPf		
LDD oprx9,xysp		IDX1	EC xb ff	RPO	RPO		
LDD oprx16,xysp		IDX2	EC xb ee ff	fRPP	fRPP		
LDD [D,xysp] LDD [oprx16,xysp]		[D,IDX] [IDX2]	EC xb EC xb ee ff	fIfRPf fIPRPf	fIfRPf fIPRPf		
	(1111.4) 00	ļ. ·					
LDS #opr16i LDS opr8a	(M:M+1) ⇒ SP Load Stack Pointer	IMM DIR	CF jj kk DF dd	PO RPf	PO RPf		ΔΔ0-
LDS opr16a	Load Stack Politiei	EXT	FF hh 11	RPO	RPO		
LDS oprx0_xysp		IDX	EF xb	RPf	RPf		
LDS oprx9,xysp		IDX1	EF xb ff	RPO	RPO		
LDS oprx16,xysp		IDX2	EF xb ee ff	fRPP	fRPP		
LDS [D,xysp]		[D,IDX]	EF xb	fIfRPf	fIfRPf		
LDS [oprx16,xysp]		[IDX2]	EF xb ee ff	fIPRPf	fIPRPf		
LDX #opr16i	(M:M+1) ⇒ X	IMM	CE jj kk	PO	PO		ΔΔ0-
LDX opr8a	Load Index Register X	DIR	DE dd	RPf	RPf		
LDX opr16a		EXT	FE hh ll	RPO	RPO		
LDX oprx0_xysp		IDX	EE xb	RPf	RPf		
LDX oprx9,xysp		IDX1	EE xb ff	RPO	RPO		
LDX oprx16,xysp		IDX2	EE xb ee ff EE xb	fRPP fTfRPf	fRPP		
LDX [D,xysp] LDX [oprx16,xysp]		[D,IDX] [IDX2]	EE xb ee ff	fIPRPf	fIfRPf fIPRPf		
	444 A V	<u> </u>					
LDY #opr16i LDY opr8a	(M:M+1) ⇒ Y Load Index Register Y	IMM DIR	CD jj kk DD dd	PO RPf	PO RPf		ΔΔ0-
LDY opr16a	Load Index Hegister 1	EXT	FD hh 11	RPO	RPO		
LDY oprx0_xysp		IDX	ED xb	RPf	RPf		
LDY oprx9,xysp		IDX1	ED xb ff	RPO	RPO		
LDY oprx16,xysp		IDX2	ED xb ee ff	fRPP	fRPP		
LDY [D,xysp]		[D,IDX]	ED xb	fIfRPf	fIfRPf		
LDY [oprx16,xysp]		[IDX2]	ED xb ee ff	fIPRPf	fIPRPf		
LEAS oprx0_xysp	Effective Address ⇒ SP	IDX	1B xb	Pf	Pf		
LEAS oprx9,xysp	Load Effective Address into SP	IDX1	1B xb ff	PO	PO		
LEAS oprx16,xysp		IDX2	1B xb ee ff	PP	PP		
LEAX oprx0_xysp	Effective Address \Rightarrow X	IDX	1A xb	Pf	Pf		
LEAX oprx9,xysp	Load Effective Address into X	IDX1	1A xb ff	PO	PO		
LEAX oprx16,xysp		IDX2	1A xb ee ff	PP	PP		
LEAY oprx0_xysp	Effective Address \Rightarrow Y	IDX	19 xb	Pf	Pf		
LEAY oprx9,xysp	Load Effective Address into Y	IDX1	19 xb ff	PO	PO		
LEAY oprx16,xysp		IDX2	19 xb ee ff	PP	PP		
LSL opr16a	—	EXT	78 hh 11	rPwO	rPwO		ΔΔΔΔ
LSL oprx0_xysp	0	IDX	68 xb	rPw	rPw		
LSL oprx9,xysp	C b7 b0	IDX1	68 xb ff	rPwO	rPwO		
LSL oprx16,xysp LSL [D,xysp]	Logical Shift Left same function as ASL	IDX2 [D,IDX]	68 xb ee ff 68 xb	frPPw	frPPw fIfrPw		
LSL [D,xysp] LSL [oprx16,xysp]	Same function as ASL	[IDX2]	68 xb ee ff	fIfrPw fIPrPw	fIPrPw		
LSLA	Logical Shift Accumulator A to Left	INH	48	0	0		
LSLB	Logical Shift Accumulator B to Left	INH	58	o	0		
LSLD	<u> </u>	INH	59	0	0		ΔΔΔΔ
2025				ľ	Ö		
	C b7 A b0 b7 B b0						
	Logical Shift Left D Accumulator						
	same function as ASLD						
LSR opr16a	→	EXT	74 hh 11	rPwO	rPwO		0ΔΔΔ
LSR oprx0_xysp		IDX	64 xb	rPw	rPw		
LSR oprx9,xysp	b7 b0 C	IDX1	64 xb ff	rPwO	rPwO		
LSR oprx16,xysp	Logical Shift Right	IDX2	64 xb ee ff	frPwP	frPwP		
LSR [D,xysp]		[D,IDX]	64 xb	fIfrPw	fIfrPw		
LSR [oprx16,xysp]	Landard Object Assessment Assessment		64 xb ee ff	fIPrPw	fIPrPw		
LSRA LSRB	Logical Shift Accumulator A to Right	INH	44	0	0	1	
Lann	Logical Shift Accumulator B to Right	INH	54	0	0	ı	I

Table A-1. Instruction Set Summary (Sheet 12 of 20)

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	NZVC
	oporation.	Mode	Coding (hex)	HCS12X HCS12		
LSRD	0 b7 A b0 b7 B b0 C Logical Shift Right D Accumulator	INH	49	0 0		Ο Δ Δ Δ
LSRW opr16a LSRW oprx0_xysp LSRW oprx16,xysp LSRW oprx16,xysp LSRW [D,xysp] LSRW [oprx16,xysp] LSRX	0 - b15 b0 C	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	18 74 hh 11 18 64 xb 18 64 xb ff 18 64 xb ee ff 18 64 xb 18 64 xb 18 64 xb ee ff 18 44	ORPWO NA ORPW NA ORPWO NA OfFPWP NA OfIFRPW NA OfIFRPW NA OO NA		ΟΔΔΔ
LSRY MAXA oprx0_xysp MAXA oprx9,xysp MAXA oprx16,xysp MAXA [D,xysp] MAXA [0prx16,xysp]	Logical Shift Index Register Y to Right MAX((A), (M)) ⇒ A MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	INH IDX IDX1 IDX2 [D,IDX] [IDX2]	18 18 xb 18 18 xb ff 18 18 xb ee ff 18 18 xb ee ff	OO NA OrPf OrPf OrPO OrPO OfrPP OfrPP OfIfrPf OfIfrPf OfIPrPf OfIPrPf		ΔΔΔΔ
MAXM oprx0_xysp MAXM oprx9_xysp MAXM oprx16,xysp MAXM [D,xysp] MAXM [oprx16,xysp]	MAX((A), (M)) ⇒ M MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1C xb 18 1C xb ff 18 1C xb ee ff 18 1C xb 18 1C xb ee ff	OrPw OrPw OrPwO OrPwO OfrPwP OfrPwP OfIfrPw OfIfrPw OfIPrPw OfIPrPw		ΔΔΔΔ
MEM	m (grade) fi $M_{(Y)}$; $(X) + 4 \Rightarrow X$; $(Y) + 1 \Rightarrow Y$; A unchanged if $(A) < P1$ or $(A) > P2$ then $m = 0$, else $m = MIN[((A) - P1) \times S1, (P2 - (A)) \times S2, \$FF]$ where: $A = \text{current crisp input value}$; X points at 4-byte data structure that describes a trapezoidal membership function $(P1, P2, S1, S2)$; Y points at fuzzy input $(RAM \text{ location})$. See $CPU12$ Reference Manual for special cases.	Special	01	RRFOW RRFOW	?-	????
MINA oprx0_xysp MINA oprx9,xysp MINA oprx16,xysp MINA [D,xysp] MINA [oprx16,xysp]	$\begin{aligned} & \text{MIN}((A), (M)) \Rightarrow A \\ & \text{MIN of 2 Unsigned 8-Bit Values} \\ & \text{N, Z, V and C status bits reflect result of} \\ & \text{internal compare } ((A) - (M)). \end{aligned}$	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 19 xb 18 19 xb ff 18 19 xb ee ff 18 19 xb ee ff 18 19 xb ee ff	OrPf OrPf OrPO OrPO OfrPP OfrPP OfIfrPf OfIfrPf OfIPrPf OfIPrPf		ΔΔΔΔ
MINM oprx0_xysp MINM oprx9_xysp MINM oprx16,xysp MINM [D,xysp] MINM [oprx16,xysp]	$\begin{split} & \text{MIN}((A), (M)) \Rightarrow M \\ & \text{MIN of 2 Unsigned 8-Bit Values} \\ & \text{N, Z, V and C status bits reflect result of internal compare ((A) – (M)).} \end{split}$	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1D xb 18 1D xb ff 18 1D xb ee ff 18 1D xb 18 1D xb 18 1D xb ee ff	OrPw OrPw OrPwO OrPwO OfrPwP OfrPwP OfIfrPw OfIfrPw OfIPrPw OfIPrPw		ΔΔΔΔ
MOVB #opr8i, opr16a ¹ MOVB #opr8i, oprx0_xysp ¹ MOVB #opr8i, oprx9_xysp ¹ MOVB #opr8i, oprx16_xysp ¹ MOVB #opr8i, [D_xysp] ¹ MOVB #opr8i, [Oprx16_xysp] ¹	# ⇒ M Immediate to Memory Byte-Move (8-Bit)	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 0B ii hh 11 18 08 xb ² ii 18 08 xb ² ff ii 18 08 xb ² ee ff ii 18 08 xb ² ii 18 08 xb ² ee ff ii	PwP NA PwO NA PwP NA PPwO NA PIOW NA PIOWP NA		
MOVB opr16a, opr16a ¹ MOVB opr16a, oprx0_xysp ¹ MOVB opr16a, oprx9_xysp ¹ MOVB opr16a, oprx16_xysp ¹ MOVB opr16a, [D_xysp] ¹ MOVB opr16a, [oprx16_xysp] ¹	(M₁) ⇒ M₂ Memory to Memory Byte-Move (8-Bit) EXT Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 0C hh 11 hh 11 18 09 xb ² hh 11 18 09 xb ² ff hh 11 18 09 xb ² ee ff hh 11 18 09 xb ² hh 11 18 09 xb ² ee ff hh 11	PrPwO NA PrPw NA PrPwO NA PPrPw NA PrIPw NA PPrIPw NA PPrIPw NA		
MOVB oprx0_xysp, opr16a ¹ MOVB oprx0_xysp, oprx0_xysp ¹ MOVB oprx0_xysp, oprx9_xysp ¹ MOVB oprx0_xysp, oprx16_xysp ¹ MOVB oprx0_xysp, oprx16_xysp ¹ MOVB oprx0_xysp, [D_xysp] ¹ MOVB oprx0_xysp, [oprx16_xysp] ¹	(M₁) ⇒ M₂ Memory to Memory Byte-Move (8-Bit) IDX Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 0D xb hh 11 18 0A xb xb 18 0A xbxb ff 18 0A xb xb ee ff 18 0A xb xb 18 0A xb xb	PPW NA PPOW NA PPW NA PPW NA PPOPW NA PPIOW PP		
MOVB oprx9_xysp, opr16a ¹ MOVB oprx9_xysp, oprx0_xysp ¹ MOVB oprx9_xysp, oprx9_xysp ¹ MOVB oprx9_xysp, oprx16_xysp ¹ MOVB oprx9_xysp, [D_xysp] ¹ MOVB oprx9_xysp, [oprx16_xysp] ¹	(M₁) ⇒ M₂ Memory to Memory Byte-Move (8-Bit), IDX1 Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 0D xb ff hh 11 18 0A xb ff xb 18 0A xb ff xb ff 18 0A xb ff xb ee ff 18 0A xb ff xb ee ff 18 0A xb ff xb ee ff	PrOPW NA PrOOW NA PrOPW NA PrOOPW NA PrOIOW NA PrOPIOW NA		

Notes: 1. The first operand in the source code statement specifies the source for the move.

2. The IDX destination code is listed before the source for backwards compatibility.

Table A-1. Instruction Set Summary (Sheet 13 of 20)

Source Form	Operation	Addr. Mode		Access Detail	SXHI	NZVC
MOVB oprx16_xysp, opr16a ¹ MOVB oprx16_xysp, oprx0_xysp ¹ MOVB oprx16_xysp, oprx9_xysp ¹ MOVB oprx16_xysp, oprx16_xysp ¹ MOVB oprx16_xysp, [D_xysp] ¹ MOVB oprx16_xysp, [oprx16_xysp] ¹	(M₁) ⇒ M₂ Memory to Memory Byte-Move (8-Bit), IDX2 Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2	18 0D xb ee ff hh 11 18 0A xb ee ff xb 18 0A xb ee ff xb ff 18 0A xb ee ff xb ee ff 18 0A xb ee ff xb 18 0A xb ee ff xb	HCS12X HCS12		
			I	PrPPIOW PrPPIO		
MOVB [D_xysp], opr16a ¹ MOVB [D_xysp], oprx0_xysp ¹ MOVB [D_xysp], oprx9_xysp ¹ MOVB [D_xysp], oprx16_xysp ¹ MOVB [D_xysp], [D_xysp] ¹ MOVB [D_xysp], [oprx16_xysp] ¹	$(M_1) \Rightarrow M_2$ Memory to Memory Byte-Move (8-Bit), [D,IDX] Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 0A xb xb ff 18 0A xb xb ff 18 0A xb xb ee ff 18 0A xb xb	IPrfPw NA IPrfOw NA IPrfPw NA IPrfOPw NA IPrfIOw NA IPrfPIOw NA		
MOVB [oprx16_xysp], opr16a ¹ MOVB [oprx16_xysp], oprx0_xysp ¹ MOVB [oprx16_xysp], oprx9_xysp ¹ MOVB [oprx16_xysp], oprx16_xysp ¹ MOVB [oprx16_xysp], [D_xysp] ¹ MOVB [oprx16_xysp], [oprx16_xysp] ¹	(M₁) ⇒ M₂ Memory to Memory Byte-Move (8-Bit), [IDX2] Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 0A xb ee ff xb 18 0A xb ee ff xb ff 18 0A xb ee ff xb ee ff 18 0A xb ee ff xb 18 0A xb ee ff xb ee ff 18 0A xb ee ff xb ee ff	PIPrfPW NA PIPrfOW NA NA PIPrfPW NA NA PIPrfPW NA NA PIPrfOPW PIPrfIOW		
MOVW #opr16i, opr16a ¹ MOVW #opr16i, oprx0_xysp ¹ MOVW #opr16i, oprx9_xysp ¹ MOVW #opr16i, oprx16_xysp ¹ MOVW #opr16i, [D_xysp] ¹ MOVW #opr16i, [Opxx16_xysp] ¹	# ⇒ M:M+1 ₂ Immediate to Memory Word-Move (16-Bit)	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 00 xb ² jj kk 18 00 xb ² ff jj kk 18 00 xb ² ee ff jj kk 18 00 xb ² jj kk	PWFO NA PWP NA PPWO NA PPWP NA PIPW NA PIPWP NA		
MOVW opr16a, opr16a ¹ MOVW opr16a, oprx0_xysp ¹ MOVW opr16a, oprx9_xysp ¹ MOVW opr16a, oprx16_xysp ¹ MOVW opr16a, [D_xysp] ¹ MOVW opr16a, [oprx16_xysp] ¹	(M:M+1₁) ⇒ M:M+1₂ Memory to Memory Word-Move (16-Bit), EXT Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 04 hh 11 hh 11 18 01 xb ² hh 11 18 01 xb ² ff hh 11 18 01 xb ² ee ff hh 11 18 01 xb ² hh 11	PRPWO NA PRPW NA PRPWO NA PPRPW NA PRIPW NA PPRIPW NA		
MOVW oprx0_xysp, oprx16a1 MOVW oprx0_xysp, oprx0_xysp1 MOVW oprx0_xysp, oprx9_xysp1 MOVW oprx0_xysp, oprx16_xysp1 MOVW oprx0_xysp, [D_xysp]1 MOVW oprx0_xysp, [D_xysp]1	(M:M+1₁) ⇒ M:M+1₂ Memory to Memory Word-Move (16-Bit), IDX Source fi Addr. Mode Destination	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 02 xb xb ff 18 02 xb xb ff 18 02 xb xb ee ff 18 02 xb xb	RPPW NA RPOW NA RPPW NA RPOPW NA RPIOW NA RPPIOW NA		
MOVW oprx9_xysp, opr16a ¹ MOVW oprx9_xysp, oprx0_xysp ¹ MOVW oprx9_xysp, oprx9_xysp ¹ MOVW oprx9_xysp, oprx16_xysp ¹ MOVW oprx9_xysp, [D_xysp] ¹ MOVW oprx9_xysp, [D_xysp] ¹	(M:M+1₁) ⇒ M:M+1₂ Memory to Memory Word-Move (16-Bit), IDX1 Source fi Addr. Mode Destination		18 02 xb ff xb 18 02 xb ff xb ff 18 02 xb ff xb ee ff 18 02 xb ff xb ee ff 18 02 xb ff xb	PROPW NA PROOW NA PROPW NA PROOPW NA PROIOW NA PROPIOW NA		
MOVW oprx16_xysp, opr16a ¹ MOVW oprx16_xysp, oprx0_xysp ¹ MOVW oprx16_xysp, oprx9_xysp ¹ MOVW oprx16_xysp, oprx16_xysp ¹ MOVW oprx16_xysp, [D_xysp] ¹ MOVW oprx16_xysp, [oprx16_xysp] ¹	(M:M+1 ₁) ⇒ M:M+1 ₂ Memory to Memory Word-Move (16-Bit), IDX2 Source fi Addr. Mode Destination	IDX2 [D,IDX]	18 02 xb ee ff xb 18 02 xb ee ff xb ff 18 02 xb ee ff xb ee ff 18 02 xb ee ff xb 18 02 xb ee ff xb ee ff	PRPPW NA PRPOW NA NA PRPPW NA NA NA PRPPW NA NA PRPOPW		
				PRPIOW PRPPIO		

Notes: 1. The first operand in the source code statement specifies the source for the move.

2. The IDX destination code is listed before the source for backwards compatibility.

Table A-1. Instruction Set Summary (Sheet 14 of 20)

	T			Access Date!!		
Source Form	Operation	Addr.	Machine	Access Detail	ѕхні	NZVC
	•	Mode	Coding (hex)	HCS12X HCS12		
MOVW [D_xysp], opr16a ¹	$(M:M+1_1) \Rightarrow M:M+1_2$	EXT		IPRfPW NA		
MOVW [D_xysp], oprx0_xysp1	Memory to Memory Word-Move (16-Bit),	IDX		IPRFOW NA		
MOVW [D_xysp], oprx9_xysp1	[D,IDX] Source fi Addr. Mode Destination	IDX1		IPRfPW NA		
MOVW [D_xysp], oprx16_xysp ¹		IDX2		IPRÍOPW NA		
MOVW [D_xysp], [D_xysp] ¹		[D,IDX]		IPRFIOW NA		
MOVW [D_xysp], [oprx16_xysp] ¹		[IDX2]	18 02 xb xb ee ff	IPRÉPIOW NA		
MOVW [oprx16_xysp], opr16a ¹	$(M:M+1_1) \Rightarrow M:M+1_2$	EXT	18 05 xb ee ff hh 11	PIPRfPW NA		
MOVW [oprx16_xysp], oprx0_xysp ¹	Memory to Memory Word-Move (16-Bit),	IDX	18 02 xb ee ff xb	PIPRFOW NA		
MOVW [oprx16_xysp], oprx9_xysp ¹	[IDX2] Source fi Addr. Mode Destination	IDX1	18 02 xb ee ff xb ff	NA.		
MOVW [oprx16_xysp], oprx16_xysp ¹		IDX2	18 02 xb ee ff xb ee ff	PIPRFPW NA		
MOVW [oprx16_xysp], [D_xysp] ¹		[D,IDX]	18 02 xb ee ff xb	NA.		
MOVW [oprx16_xysp], [oprx16_xysp] ¹		[IDX2]	18 02 xb ee ff xb ee ff	NA		
				PIPRfOPW		
				PIPRFIOW		
				PIPRfPIOW		
MUL	$(A) \times (B) \Rightarrow A:B$	INH	12	0 0		Δ
	8 by 8 Unsigned Multiply			ŭ,		-
NEG opr16a	$0 - (M) \Rightarrow M$ equivalent to $(\overline{M}) + 1 \Rightarrow M$	EXT	70 hh 11	rPwO rPwO		ΔΔΔΔ
NEG oprx0_xysp	Two's Complement Negate	IDX		rPw rPw		
NEG oprx9,xysp	1 WO S Complement Negate	IDX IDX1		rPwO rPwO		
NEG oprx16,xysp		IDX1		frPwP frPwP		
NEG [D,xysp]		[D,IDX]		fIfrPw fIfrPw		
NEG [oprx16,xysp]		[IDX2]		fIPrPw fIPrPw		
NEGA	$0 - (A) \Rightarrow A$ equivalent to $(\overline{A}) + 1 \Rightarrow A$	INH		0 0		
The same	Negate Accumulator A		20	0		
NEGB	$ 0 - (B) \Rightarrow B$ equivalent to $(\overline{B}) + 1 \Rightarrow B$	INH	50	0 0		
	Negate Accumulator B					
NEOW and Ca	0-(M:M+1)⇒M:M+1 equivalent to (M:M+1)	EXT	40 70 11 11			
NEGW opr16a	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	I		ORPWO NA		ΔΔΔΔ
NEGW oprx0_xysp	+1⇒M:M+1	IDX IDX1		ORPW NA		
NEGW oprx9,xysp NEGW oprx16,xysp	Two's Complement Negate	IDX1		ORPWO NA OfRPWP NA		
NEGW [D,xysp]		[D,IDX]		Ofifrew NA		
NEGW [oprx16,xysp]		[IDX2]		Ofirpw NA Ofirpw NA		
NEGX		INH		OO NA		
I LOX	$0 - (X) \Rightarrow X$ equivalent to $(\overline{X}) + 1 \Rightarrow X$		10 10			
NEGY	Negate Index Register X	INH	18 50	OO NA		
	$0 - (Y) \Rightarrow Yequivalent to (\overline{Y}) + 1 \Rightarrow Y$					
	Negate Index Register Y					
NOP	No Operation	INH	A7	0 0		
	'					
ORAA #opr8i	$(A) \mid (M) \Rightarrow A$	IMM	-	P P		ΔΔ0-
ORAA opr8a	Logical OR A with Memory	DIR		rPf rPf		
ORAA opr16a		EXT		rPO rPO		
ORAA oprx0_xysp		IDX		rPf rPf		
ORAA oprx9,xysp		IDX1		rPO rPO		
ORAA (D. wool		IDX2		frPP frPP		
ORAA [D,xysp]				fIfrPf fIFrPf fTPrPf		
ORAA [oprx16,xysp]						
ORAB #opr8i	$(B) \mid (M) \Rightarrow B$	IMM	· ·	P P		ΔΔ0-
ORAB opr8a	Logical OR B with Memory	DIR		rPf rPf		
ORAB opr16a		EXT		rPO rPO		
ORAB oprx0_xysp		IDX		rPf rPf		
ORAB oprx9,xysp		IDX1		rPO rPO		
ORAB (D. wool		IDX2		frPP frPP		
ORAB [D,xysp]		[D,IDX]		fIfrPf fIfrPf		
ORAB [oprx16,xysp]		[IDX2]		fIPrPf fIPrPf		
ORCC #opr8i	(CCR) M ⇒ CCR	IMM	14 ii	P P	↑-↑↑	11111
	Logical OR CCR with Memory					
ORX #opr16i	$(X) \mid (M:M+1) \Rightarrow X$	IMM		OPO NA		ΔΔ0-
ORX opr8a	Logical OR X with Memory	DIR		ORPf NA		
ORX opr16a		EXT		ORPO NA		
ORX oprx0_xysp		IDX		ORPf NA		
ORX oprx9,xysp		IDX1		ORPO NA		
ORX oprx16,xysp		IDX2		OfRPP NA		
ORX [D,xysp]				OfIfRPf NA OfIPRPf NA		
ORX [oprx16,xysp]		[IDX2]		OfIPRPf NA		

Notes: 1. The first operand in the source code statement specifies the source for the move.

2. The IDX destination code is listed before the source for backwards compatibility.

Table A-1. Instruction Set Summary (Sheet 15 of 20)

Source Form	Operation	Addr.	Machine	Access Detail	ѕхні	NZVC
ORY #opr16i ORY opr8a ORY opr16a ORY oprx0_xysp ORY oprx16,xysp ORY [D,xysp] ORY [D,xysp] ORY [O,xysp]	(Y) I (M:M+1) ⇒ Y Logical OR Y with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	Coding (hex) 18 CA jj kk 18 DA dd 18 FA hh 11 18 EA xb 18 EA xb ff 18 EA xb ee ff 18 EA xb 18 EA xb	HCS12X HCS12		ΔΔ0-
PSHA	$(SP) - 1 \Rightarrow SP; (A) \Rightarrow M_{(SP)}$ Push Accumulator A onto Stack	INH	36	Os Os		
PSHB	$(SP) - 1 \Rightarrow SP; (B) \Rightarrow M_{(SP)}$ Push Accumulator B onto Stack	INH	37	0s 0s		
PSHC	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$ Push CCR onto Stack	INH	39	Os Os		
PSHCW	$\begin{array}{c} (\text{SP}) - 2 \Rightarrow \text{SP}; (\text{CCR}_{\text{H}}\text{:CCR}_{\text{L}}) \Rightarrow \text{M}_{(\text{SP})}\text{:M}_{(\text{SP}+1)} \\ \text{Push CCR onto Stack} \end{array}$	INH	18 39	oos na		
PSHD	$(SP) - 2 \Rightarrow SP; (A:B) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push D Accumulator onto Stack	INH	3В	os os		
PSHX	$(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register X onto Stack	INH	34	os os		
PSHY	$(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register Y onto Stack	INH	35	os os		
PULA	$(M_{(SP)}) \Rightarrow A; (SP) + 1 \Rightarrow SP$ Pull Accumulator A from Stack	INH	32	ufO ufO		
PULB	$(M_{(SP)}) \Rightarrow B; (SP) + 1 \Rightarrow SP$ Pull Accumulator B from Stack	INH	33	ufO ufO		
PULC	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$ Pull CCR from Stack	INH	38	ufO ufO	Δ fl Δ Δ	ΔΔΔΔ
PULCW	$(M_{(SP)}:M_{(SP+1)})\Rightarrow CCR_H:CCR_L; (SP)+2\Rightarrow SP$ Pull CCR from Stack	INH	18 38	OUFO NA	Δ fl Δ Δ	ΔΔΔΔ
PULD	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow A:B; (SP) + 2 \Rightarrow SP$ Pull D from Stack	INH	3A	UfO UfO		
PULX	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 2 \Rightarrow SP$ Pull Index Register X from Stack	INH	30	UfO UfO		
PULY	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L; (SP) + 2 \Rightarrow SP$ Pull Index Register Y from Stack	INH	31	UfO UfO		
REV	MIN-MAX rule evaluation Find smallest rule input (MIN). Store to rule outputs unless fuzzy output is already larger (MAX). For rule weights see REVW. Each rule input is an 8-bit offset from the base address in Y. Each rule output is an 8-bit offset from the base address in Y. \$FE separates rule inputs from rule out- puts. \$FF terminates the rule list. REV may be interrupted.	Special	18 3A	Orf(t,tx)O Orf(t,tx)O (exit+re-entry replaces comma above if interrupted) ff + Orf(t, ff + Orf(t,	?-	??∆?
REVW	MIN-MAX rule evaluation Find smallest rule input (MIN), Store to rule outputs unless fuzzy output is already larger (MAX). Rule weights supported, optional. Each rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The value \$FFFE separates rule inputs from rule outputs. \$FFFF terminates the rule list. REVW may be interrupted.	Special	18 3B	ORF(t,Tx)O ORF(t,Tx)O (loop to read weight if enabled) (r,RfRf) (r,RfRf) (exit + re-entry replaces comma above if interrupted) fffff + ORf(t, ffff + ORf(t,	?-	??∆!

Table A-1. Instruction Set Summary (Sheet 16 of 20)

0	On anotion	Addr.	Machine	Access D	Detail	0 V III	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12X	HCS12	SXHI	NZVC
ROL opr16a		EXT	75 hh 11	rPwO	rPwO		ΔΔΔΔ
ROL oprx0_xysp		IDX	65 xb	rPw	rPw		
ROL oprx9,xysp	C b7 b0	IDX1	65 xb ff	rPwO	rPwO		
ROL oprx16,xysp	Rotate Memory Left through Carry	IDX2 [D,IDX]	65 xb ee ff 65 xb	frPwP fIfrPw	frPwP fIfrPw		
ROL [D,xysp] ROL [oprx16,xysp]		[IDX2]	65 xb ee ff	fIPrPw	fIPrPw		
ROLA	Rotate A Left through Carry	INH	45	O	O		
ROLB	Rotate B Left through Carry	INH	155	0	0		
			18 75 hh 11				
ROLW opr16a ROLW oprx0_xysp		EXT IDX	18 75 nn 11 18 65 xb	ORPWO ORPW	NA NA		ΔΔΔΔ
ROLW oprx9,xysp	C b15 b0	IDX1	18 65 xb ff	ORPWO	NA NA		
ROLW oprx16,xysp	Rotate Memory Left through Carry	IDX2	18 65 xb ee ff	OfRPWP	NA.		
ROLW [D,xysp]			18 65 xb	OfIfRPW	NA.		
ROLW [oprx16,xysp]		[IDX2]	18 65 xb ee ff	fOIPRPW	NA		
ROLX	Rotate XLeft through Carry	INH	18 45	00	NA		
ROLY	Rotate YLeft through Carry	INH	18 55	00	NA		
ROR opr16a		EXT	76 hh 11	rPwO	rPwO		ΔΔΔΔ
ROR oprx0_xysp		IDX	66 xb	rPw	rPw		
ROR oprx9,xysp	b7 b0 C	IDX1	66 xb ff	rPwO	rPwO		
ROR oprx16,xysp	Rotate Memory Right through Carry	IDX2	66 xb ee ff	frPwP	frPwP		
ROR [D,xysp]		[D,IDX]	66 xb	fIfrPw	fIfrPw		
ROR [oprx16,xysp]		[IDX2]	66 xb ee ff	fIPrPw	fIPrPw		
RORA	Rotate A Right through Carry	INH	46	0	0		
RORB	Rotate B Right through Carry	INH	56	0	0		
RORW opr16a		EXT	18 76 hh 11	ORPWO	NA		ΔΔΔΔ
RORW oprx0_xysp	→	IDX	18 66 xb	ORPW	NA		
RORW oprx9,xysp	b15 b0 C	IDX1	18 66 xb ff	ORPWO	NA		
RORW oprx16,xysp	Rotate Memory Right through Carry	IDX2	18 66 xb ee ff	OfRPWP	NA		
RORW [D,xysp] RORW [oprx16,xysp]		[D,IDX]	18 66 xb 18 66 xb ee ff	OfIfRPW OfIPRPW	NA NA		
RORX	Rotate X Right through Carry	[IDX2] INH	18 46	OTIPRPW OO	NA NA		
RORY	Rotate Y Right through Carry	INH	18 56	00	NA.		
RTC	$(M_{(SP)}) \Rightarrow PPAGE; (SP) + 1 \Rightarrow SP;$	INH	0A	uUnfPPP	uUnfPPP		
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$						
	$(SP) + 2 \Rightarrow SP$						
	Return from Call						
RTI	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$	INH	0B	UUUUUPPP	UUUUUPPP	$\Delta \operatorname{fl} \Delta \Delta$	ΔΔΔΔ
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow B:A; (SP) + 2 \Rightarrow SP$			(with interrupt)	pending)		
	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 4 \Rightarrow SP$			UUUUUVfPPP	UUUUUVfPPP		
	$ \begin{aligned} & (M_{(SP)} : M_{(SP+1)}) \Rightarrow PC_{H} : PC_{L}; (SP) - 2 \Rightarrow SP \\ & (M_{(SP)} : M_{(SP+1)}) \Rightarrow Y_{H} : Y_{L}; (SP) + 4 \Rightarrow SP \end{aligned} $			0000001111	0000071111		
	$(M_{(SP)},M_{(SP+1)}) \Rightarrow T_H,T_L,(SP)+4 \Rightarrow SP$ Return from Interrupt						
	· ·						
RTS	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$	INH	3D	UfPPP	UfPPP		
	(SP) + 2 ⇒ SP						
	Return from Subroutine						
SBA	$(A) - (B) \Rightarrow A$	INH	18 16	00	00		ΔΔΔΔ
	Subtract B from A						
SBCA #opr8i	$(A) - (M) - C \Rightarrow A$	IMM	82 ii	P	P		ΔΔΔΔ
SBCA opr8a	Subtract with Borrow from A	DIR	92 dd	rPf	rPf		
SBCA opr16a			B2 hh 11	rPO	rPO		
SBCA oprx0_xysp		IDX	A2 xb	rPf	rPf		
SBCA oprx9,xysp SBCA oprx16,xysp		IDX1 IDX2	A2 xb ff A2 xb ee ff	rPO frPP	rPO frPP		
SBCA [D,xysp]		[D,IDX]	A2 xb ee 11 A2 xb	fIfrPf	fIfrPf		
SBCA [oprx16,xysp]		[IDX2]	A2 xb ee ff	fIPrPf	fIPrPf		
SBCB #opr8i	$(B) - (M) - C \Rightarrow B$	IMM		P			A A A A
SBCB #opr8a	(B) – (W) – C ⇒ B Subtract with Borrow from B	DIR	C2 ii D2 dd	rPf	P rPf		ΔΔΔΔ
SBCB opr16a	Subtract with bollow holl b	EXT	F2 hh 11	rPi rPO	rPI rPO		
SBCB oprx0_xysp		IDX	E2 xb	rPf	rPf		
SBCB oprx9,xysp		IDX1	E2 xb ff	rPO	rPO		
SBCB oprx16,xysp		IDX2	E2 xb ee ff	frPP	frPP		
SBCB [D,xysp]		[D,IDX]	E2 xb	fIfrPf	fIfrPf		
SBCB [oprx16,xysp]		[IDX2]	E2 xb ee ff	fIPrPf	fIPrPf		
	I	<u> </u>	I	1			

Table A-1. Instruction Set Summary (Sheet 17 of 20)

Source Form	Operation	Addr. Mode		Access Detail HCS12X HCS	12	ѕхні	NZVC
SBED #opr16i SBED opr8a SBED opr16a SBED oprx0_xysp SBED oprx9,xysp SBED oprx16,xysp SBED [D,xysp] SBED [Oprx16,xysp]	(D) – (M:M+1) – C ⇒ D Subtract with Borrow from D	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 83 jj kk 18 93 dd 18 B3 hh 11 18 A3 xb 18 A3 xb ff 18 A3 xb ee ff 18 A3 xb	OPO ORPf ORPO ORPf ORPO ORPP OfIRPP OfIFRPF	NA NA NA NA NA NA		ΔΔΔΔ
SBEX #opr16i SBEX opr8a SBEX opr16a SBEX oprx0_xysp SBEX oprx9,xysp SBEX oprx16,xysp SBEX [D,xysp] SBEX [oprx16,xysp]	(X) – (M:M+1) – C ⇒ X Subtract with Borrow from X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 82 jj kk 18 92 dd 18 B2 hh 11 18 A2 xb 18 A2 xb ff 18 A2 xb ee ff 18 A2 xb ee ff	OPO ORPf ORPO ORPF ORPO OFFP OFIFRPF	NA NA NA NA NA NA		ΔΔΔΔ
SBEY #opr16i SBEY opr8a SBEY opr16a SBEY oprx0_xysp SBEY oprx9,xysp SBEY oprx16,xysp SBEY [D,xysp] SBEY [D,xysp]	(Y) – (M:M+1) – C ⇒ Y Subtract with Borrow from Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 C2 jj kk 18 D2 dd 18 F2 hh 11 18 E2 xb 18 E2 xb ff 18 E2 xb ee ff 18 E2 xb ee ff	OPO ORPf ORPO ORPf ORPO ORPP OfIFRPF	NA NA NA NA NA NA		ΔΔΔΔ
SEC	1 ⇒ C Translates to ORCC #\$01	IMM	14 01	P	P		1
SEI	1 ⇒ I; (inhibit I interrupts) Translates to ORCC #\$10	IMM	14 10	P	Р	1	
SEV	1 ⇒ V Translates to ORCC #\$02	IMM	14 02	P	P		1-
SEX abc,dxys	\$00:(r1) ⇒ r2 if r1, bit 7 is 0 or \$FF:(r1) ⇒ r2 if r1, bit 7 is 1 Sign Extend 8-bit r1 to 16-bit r2 r1 may be A, B, or CCR r2 may be D, X, Y, or SP Alternate mnemonic for TFR r1, r2	INH	B7 eb	P	P		
STAA opr8a STAA opr16a STAA oprx0_xysp STAA oprx9,xysp STAA oprx16,xysp STAA [D,xysp] STAA [oprx16,xysp]	(A) ⇒ M Store Accumulator A to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX]	5A dd 7A hh 11 6A xb 6A xb ff 6A xb ee ff 6A xb 6A xb ee ff	PW PWO PW PWO PWP PIFW	PW PwO Pw PwO PwP PIfw		ΔΔ0-
STAB opr8a STAB opr16a STAB oprx9_xysp STAB oprx9_xysp STAB oprx16_xysp STAB [D,xysp] STAB [oprx16,xysp]	(B) ⇒ M Store Accumulator B to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5B dd 7B hh 11 6B xb 6B xb ff 6B xb ee ff 6B xb	Pw PwO Pw PwO PwP PIfw PIPw	Pw PwO PwO PwO Pufw PIfw	l .	ΔΔΟ-
STD opr8a STD opr16a STD oprx0_xysp STD oprx0_xysp STD oprx16,xysp STD [D,xysp] STD [oprx16,xysp]	$(A)\Rightarrow M, (B)\Rightarrow M+1$ Store Double Accumulator	DIR EXT IDX IDX1 IDX2 [D,IDX]	5C dd 7C hh 11 6C xb 6C xb ff 6C xb ee ff 6C xb 6C xb ee ff	PW PWO PW PWO PWP PIFW PIFW	PW PWO PW PWO PWP PIfW		ΔΔΟ-

Table A-1. Instruction Set Summary (Sheet 18 of 20)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12X HCS12	SXHI	NZVC
STOP	$\begin{split} &(SP)-2 \Rightarrow SP; \\ &RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP)-2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP)-2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP)-2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP)-1 \text{ fi } SP; (CCR) \Rightarrow M_{(SP)}; \\ &STOP \text{ All Clocks} \end{split}$	INH	18 3E	(entering STOP) OOSSSSSE OOSSSSSE (exiting STOP) fvfppp fvfppp (continue) ff		
	Registers stacked to allow quicker recovery by inter- rupt. If S control bit = 1, the STOP instruction is disabled and			(if STOP disabled)		
	acts like a two-cycle NOP.					
STS opr8a STS opr16a STS oprx0_xysp STS oprx9,xysp STS oprx16,xysp STS [D,xysp]	$(SP_H:SP_L) \Rightarrow M:M+1$ Store Stack Pointer	DIR EXT IDX IDX1 IDX2 [D,IDX]	5F dd 7F hh 11 6F xb 6F xb ff 6F xb ee ff 6F xb	PW PW PWO PWC PW PW PWO PWC PWP PWF PIFW PIFW	T	ΔΔ0-
STS [oprx16,xysp] STX opr8a STX opr16a STX oprx0_xysp STX oprx9,xysp STX oprx16,xysp STX [D,xysp]	(X _H :X _L) ⇒ M:M+1 Store Index Register X	DIR EXT IDX IDX1 IDX2 [D,IDX]	6F xb ee ff 5E dd 7E hh 11 6E xb 6E xb ff 6E xb ee ff 6E xb	PIPW PIPW PW PW PWO PWC PW PW PWO PWC PWP PWF PIFW PIFW PIFW PIFW		ΔΔ0-
STX [oprx16,xysp] STY opr8a STY opr16a STY oprx0_xysp	(Y _H :Y _L) ⇒ M:M+1 Store Index Register Y	DIR EXT IDX	6E xb ee ff 5D dd 7D hh 11 6D xb	PIPW PIPW PW PW PWO PWC PW PW		ΔΔ0-
STY oprx9,xysp STY oprx16,xysp STY [D,xysp] STY [oprx16,xysp]		IDX1 IDX2 [D,IDX] [IDX2]	6D xb ff 6D xb ee ff 6D xb 6D xb ee ff	PWO PWC PWP PWF PIfW PIfW PIPW PIPW	,	
SUBA #opr8i SUBA opr8a SUBA opr16a SUBA oprx0_xysp SUBA oprx9,xysp SUBA oprx16,xysp SUBA [D,xysp] SUBA [Oprx16,xysp]	(A) − (M) ⇒ A Subtract Memory from Accumulator A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	80 ii 90 dd B0 hh ll A0 xb A0 xb ff A0 xb ee ff A0 xb	P F rPf rPf rP0 rPC rPf rPf rP0 rPC frPp frPP fifrpf fifrpf fiprpf fiprpf		ΔΔΔΔ
SUBB #opr8i SUBB opr8a SUBB opr16a SUBB oprx0_xysp SUBB oprx9,xysp SUBB oprx16,xysp SUBB [D,xysp] SUBB [oprx16,xysp]	(B) – (M) ⇒ B Subtract Memory from Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C0 ii D0 dd F0 hh l1 E0 xb E0 xb ff E0 xb ee ff E0 xb	P F rPf rPf rP0 rPC rPf rPf rP0 rPC frPp frPF flfrpf flfrpf flprpf flprpf	:) :	ΔΔΔΔ
SUBD #opr16i SUBD opr8a SUBD opr16a SUBD oprx0_xysp SUBD oprx9,xysp SUBD oprx16,xysp SUBD [D,xysp] SUBD [oprx16,xysp]	(D) – (M:M+1) ⇒ D Subtract Memory from D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	83 jj kk 93 dd B3 hh ll A3 xb A3 xb ff A3 xb ee ff A3 xb	PO PC RPf RPf RPO RPC RPf RPf RPO RPC fRPP fRPF fifRPf fIfRPf fIPRPf fIPRPf		ΔΔΔΔ
SUBX #opr16i SUBX opr8a SUBX opr16a SUBX oprx0_xysp SUBX oprx9,xysp SUBX oprx16,xysp SUBX [D,xysp] SUBX [Oprx16,xysp]	(X) – (M:M+1) ⇒ X Subtract Memory from X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 80 jj kk 18 90 dd 18 B0 hh 11 18 A0 xb 18 A0 xb ff 18 A0 xb ee ff 18 A0 xb	OPO NA ORPE NA ORPO NA ORPE NA ORPO NA OFRP NA OFIRPE NA OFITREF NA		ΔΔΔΔ

Table A-1. Instruction Set Summary (Sheet 19 of 20)

		Addr.	Machine	Access Detail		
Source Form	Operation	Mode		HCS12X HCS12	SXHI	NZVC
SUBY #opr16i SUBY opr8a SUBY opr16a SUBY oprx0_xysp SUBY oprx9,xysp SUBY oprx16,xysp SUBY [D,xysp] SUBY [oprx16,xysp]	(Y) – (M:M+1) ⇒ Y Subtract Memory from Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	18 D0 dd 18 F0 hh 11 18 E0 xb 18 E0 xb ff 18 E0 xb ee ff 18 E0 xb	OPO NA ORPf NA ORPO NA ORPF NA ORPO NA OftPPP NA Of1fRPf NA Of1prPf NA		ΔΔΔΔ
SWI	$(SP) - \$0002 \Rightarrow SP; RTN_H : RTN_L \Rightarrow (M_{(SP)} :$	INH	3F	VSPSSPSSP* VSPSSPSSP*	1	
	$\begin{array}{l} M_{(SP+1)} \\ (SP) - \$0002 \Rightarrow SP; \ Y_H : Y_L \Rightarrow (M_{(SP)} : M_{(SP+1)}) \\ (SP) - \$0002 \Rightarrow SP; \ X_H : X_L \Rightarrow (M_{(SP)} : M_{(SP+1)}) \\ (SP) - \$0002 \Rightarrow SP; \ B : A \Rightarrow (M_{(SP)} : M_{(SP+1)}) \\ (SP) - \$0002 \Rightarrow SP; \ CCR_H : CCR_L \Rightarrow (M_{(SP)} : M_{(SP+1)}) \\ 1 \Rightarrow I; \ (SWI \ Vector) \Rightarrow PC \\ Software \ Interrupt \end{array}$			(for Reset) VfPPP VfPPP	11-1	
	e sequence for hardware interrupts and unimplemented		·	· · · · · · · · · · · · · · · · · · ·		
TAB	$(A) \Rightarrow B$ Transfer A to B	INH	18 0E	00 00		ΔΔ0-
TAP	$(A) \Rightarrow CCR$ Translates to TFR A , CCR	INH	B7 02	P P	Δ fl Δ Δ	ΔΔΔΔ
TBA	$(B) \Rightarrow A$ Transfer B to A	INH	18 OF	00 00		ΔΔ0-
TBEQ abdxys,rel9	If (cntr) = 0, then Branch; else Continue to next instruction Test Counter and Branch if Zero (cntr = A, B, D, X,Y, or SP)	REL (9-bit)		PPP (branch) PPP (branch) PPO (no PPO (no branch) branch)		
TBL oprx0_xysp	$(M) + [(B) \times ((M+1) - (M))] \Rightarrow A$	IDX	18 3D xb	ORFFFP ORFFFP		ΔΔ-Δ
	8-Bit Table Lookup and Interpolate Initialize B, and index before TBL. <ea> points at first 8-bit table entry (M) and B is fractional part of lookup value.</ea>					
	(no indirect addressing modes or extensions allowed)					
TBNE abdxys,rel9	If (cntr) not = 0, then Branch; else Continue to next instruction Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP)	REL (9-bit)		PPP (branch) PPP (branch) PPO (no PPO (no branch) branch)		
TFR abcdxys,abcdxys	$(r1) \Rightarrow r2 \text{ or}$ $\$00:(r1) \Rightarrow r2 \text{ or}$ $(r17:0) \Rightarrow r2$	INH	B7 eb	P P		or
	Transfer Register to Register r1 and r2 may be A, B, CCR, D, X, Y, or SP				Δ fl Δ Δ	ΔΔΔΔ
TPA	(CCR) ⇒ A Translates to TFR CCR ,A	INH	B7 20	P P		
TRAP trapnum	$ \begin{split} &(SP) - 2 \Rightarrow SP; \\ &RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)} \\ &1 \Rightarrow I; (TRAP \ Vector) \Rightarrow PC \end{split} $	INH	18 tn tn = \$30-\$39 or \$40-\$FF	OVSPSSPSSP OVSPSSPSSP	1	
	Unimplemented opcode trap					
TST opr16a TST oprx0_xysp TST oprx0_xysp TST oprx16,xysp TST [D,xysp] TST [oprx16,xysp] TST [oprx16,xysp] TSTA TSTB	(M) – 0 Test Memory for Zero or Minus (A) – 0Test A for Zero or Minus (B) – 0Test B for Zero or Minus	[IDX2] INH	E7 xb E7 xb ff E7 xb ee ff E7 xb ee ff E7 xb ee ff 97	rPO rPO rPf rPf rPO rPO frPP frPP fifrPf fifrPf fiPrPf 0 0 0		ΔΔ00

Table A-1. Instruction Set Summary (Sheet 20 of 20)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12X HCS12	ѕхні	NZVC
TSTW opr16a TSTW oprx0_xysp TSTW oprx9.xysp TSTW oprx16,xysp TSTW [D,xysp] TSTW [0,xysp] TSTW [0,xysp]	(M:M+1) – 0 Test Memory for Zero or Minus (X) – 0Test X for Zero or Minus	[IDX2] INH	18 F7 hh 11 18 E7 xb 18 E7 xb ff 18 E7 xb ee ff 18 E7 xb 18 E7 xb 18 E7 xb ee ff 18 97	ORPO NA ORPÍ NA ORPO NA OFRPP NA OFIFRPF NA OFIFRPF NA OO NA		ΔΔ00
TSX	(Y) – 0Test Yfor Zero or Minus (SP) ⇒ X	INH	18 D7 B7 75	P P		
	Translates to TFR SP,X		<i>5.</i> 73			
TSY	$ (SP) \Rightarrow Y $ $Translates to TFR SP, Y $	INH	в7 76	P P		
TXS	$(X) \Rightarrow SP$ Translates to TFR X,SP	INH	в7 57	P P		
TYS	$(Y) \Rightarrow SP$ Translates to TFR Y,SP	INH	B7 67	P P		
WAI	$\begin{split} &(SP) - 2 \Rightarrow SP; \\ &RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (SP) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}; \\ &WAIT for interrupt \end{split}$	INH	3E	OSSSSsf OSSSSsf (after interrupt) fVfPPP fVfPPP	1	 or or
WAV	$\sum_{i=1}^{B} S_i F_j \text{ fi Y:D} \text{and} \sum_{i=1}^{B} F_i \text{ fi X}$ Calculate Sum of Products and Sum of Weights for Weighted Average Calculation Initialize B, X, and Y before WAV. B specifies number of elements. X points at first element in S_i list. Y points at first element in F_i list. All S_i and F_i elements are 8-bits. If interrupted, six extra bytes of stack used for intermediate values	Special	18 3C	Of(frr,ffff)O Of(frr,ffff)O (add if interrupt) SSS + UUUrr, SSS + UUUrr,	?-	?∆??
wavr pseudo- instruction	see WAV Resume executing an interrupted WAV instruction (recover intermediate results from stack rather than initializing them to zero)	Special	3C	UUUrr, fffff UUUrr, fffff (frr, fffff) O (frr, fffff) O (exit + re-entry replaces comma above if interrupted) SSS + UUUrr, SSS + UUUrr,	?-	?Δ??
XGDX	$(D) \Leftrightarrow (X)$ Translates to EXG D, X	INH	B7 C5	P P		
XGDY	$(D) \Leftrightarrow (Y)$ Translates to EXG D, Y	INH	B7 C6	P P		

S12XCPU Reference Manual, v01.01

S12XCPU Reference Manual, v01.01

Table A-2. Opcode Map (Sheet 1 of 3) — HCS12 and HCS12X Page 1 Opcodes

00 †5			30 3					80 1				C0 1			F0 3
BGND	ANDCC	BRA	PULX	NEGA	NEGB	NEG	NEG	SUBA	SUBA	SUBA	SUBA	SUBB	SUBB	SUBB	SUBB
IH 1	IM 2		IH 1	IH 1	I	ID 2-4 61 3-6	EX 3	1	DI 2 91 3	ID 2-4 A1 3-6	EX 3	l	1	1	
MEM 3	'EDIV''	BRN	PULY	COMA	COMB	COM	COM	CMPA	CMPA	CMPA	CMPA	CMPB	CMPB	CMPB	CMPB
1	IH 1		IH 1			ID 2-4					EX 3			1	1
1		22 3/1		42 1	I	62 3-6		82 1			B2 3	l		1	F2 3
INY	MUL	BHI	PULA	INCA	INCB	INC	INC	SBCA	SBCA	SBCA	SBCA	SBCB	SBCB	SBCB	SBCB
IH 1	IH 1	I		IH 1	I	ID 2-4			DI 2	1	_			1	
	13 §1			43 1							B3 3	l		E3 3-6	
DEY	EMUL	BLS	PULB	DECA	DECB	DEC	DEC	SUBD	SUBD	SUBD	SUBD	ADDD	ADDD	ADDD	ADDD
IH 1		RL 2		IH 1 44 1		ID 2-4 64 3-6		IM 3 84 1	DI 2 94 3		EX 3	l		1	
loop* 3	ORCC	BCC	PSHX	44 1 LSRA	54 1 LSRB	LSR	LSR	ANDA	ANDA	A4 3-6 ANDA	ANDA	C4 1 ANDB	ANDB	E4 3-6 ANDB	ANDB
RI 3	IM 2		IH 1	IH 1		ID 2-4		IM 2			EX 3		1	1	
05 3-6	15 4-7			45 1				1		A5 3-6	_				F5 3
JMP	JSR	BCS	PSHY	ROLA	ROLB	ROL	ROL	BITA	BITA	BITA	BITA	BITB	BITB	BITB	BITB
ID 2-4	ID 2-4	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
	16 4		36 2	46 1	56 1	66 3-6	76 4			A6 3-6			1		
JMP	JSR	BNE	PSHA	RORA	RORB	ROR	ROR	LDAA	LDAA	LDAA	LDAA	LDAB	LDAB	LDAB	LDAB
-	EX 3	I		IH 1		ID 2-4			DI 2			IM 2	1		
07 4 BSR	17 4 JSR	27 3/1 BEQ	PSHB	47 1 ASRA	57 1 ASRB	67 3-6 ASR	77 4 ASR	87 1 CLRA	97 1 TSTA	A7 1 NOP	B7 1 TFR/EXG		D7 1	E7 3-6 TST	F7 3
						ID 2-4		IH 1			IH 2			1	
08 1	18 -				I	68 3-6	78 4				B8 3	l	1	E8 3-6	
INX	Page 2	BVC	PULC	ASLA	ASLB	ASL	ASL	EORA	EORA	EORA	EORA	EORB	EORB	EORB	EORB
IH 1		RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
09 1	19 2	29 3/1	39 2	49 1		69 2-4	79 3								
DEX	LEAY	BVS	PSHC	LSRD	ASLD	CLR	CLR	ADCA	ADCA	ADCA	ADCA	ADCB	ADCB	ADCB	ADCB
1	ID 2-4			IH 1	I	ID 2-4		1	DI 2	1	1			1	1
RTC /	1A 2 LEAX	2A 3/1 BPL	PULD	4A 7 CALL	5A 2 STAA	6A 2-4 STAA	STAA	8A 1 ORAA	9A 3 ORAA	AA 3-6 ORAA	BA 3 ORAA	CA 1 ORAB	DA 3 ORAB	EA 3-6 ORAB	FA 3 ORAB
	ID 2-4		-	EX 4	_	-	_	_	DI 2	_	EX 3		_		_
0B †8		2B 3/1		4B 7-10		6B 2-4		8B 1		AB 3-6	_	l		EB 3-6	
RTI	LEAS	BMI	PSHD	CALL	STAB	STAB	STAB	ADDA	ADDA	ADDA	ADDA	ADDB	ADDB	ADDB	ADDB
IH 1	ID 2-4	RL 2	IH 1	ID 2-5		ID 2-4	EX 3	IM 2	DI 2	ID 2-4			DI 2	ID 2-4	EX 3
0C 4-6	1C 4				I	6C 2-4				AC 3-6	1				FC 3
BSET	BSET	BGE	wavr	BSET	STD	STD	STD	CPD	CPD	CPD	CPD	LDD	LDD	LDD	LDD
ID 3-5	EX 4				I	ID 2-4		_	DI 2	1	1		DI 2		EX 3
0D 4-6 BCLR	1D 4 BCLR	2D 3/1 BLT	3D 5 RTS	4D 4 BCLR	5D 2 STY	6D 2-4 STY	7D 3 STY	8D 2 CPY	9D 3 CPY	AD 3-6 CPY	BD 3 CPY	CD 2 LDY	DD 3	ED 3-6	FD 3
ID 3-5	EX 4		IH 1		-	-	_	_	_	ID 2-4	_			ID 2-4	
0E 4-6		2E 3/1				6E 2-4				1	1	l	1	1	FE 3
BRSET	BRSET	BGT	WAI	BRSET	STX	STX	STX	CPX	CPX	CPX	CPX	LDX	LDX	LDX	LDX
ID 4-6	EX 5	RL 2	IH 1	DI 4	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3
0F 4-6		2F 3/1				6F 2-4								1	FF 3
BRCLR	BRCLR	BLE	SWI	BRCLR	STS	STS	STS	CPS	CPS	CPS	CPS	LDS	LDS	LDS	LDS
ID 4-6	EX 5	RL 2	IH 1	DI 4	DI 2	ID 2-4		IM 3 sheet 1 of 3) co							EX 3

Key to Table A-2

^{*} The opcode \$04 (on sheet 1 of 3) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.

Page 2 When the CPU12 encounters a page 2 opcode (\$18 on page 1 of the opcode map), it treats the next byte of object code as a page 2 instruction opcode.

 $[\]ensuremath{\dag}$ Refer to instruction summary for more information.

[§] EMUL requires 3 cycles for HCS12.

Table A-2. Opcode Map (Sheet 2 of 3) — HCS12 Page 2 Opcodes

00 4 10	12	20 4	30 10	40 10	50 10	60 10	70 10	80 10	90 10	A0 10	B0 10	C0 10	D0 10	E0 10	F0 10
MOVW ID	OIV	LBRA	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IM-ID 5 IH	2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
01 5 11	12	21 3	31 10	41 10	51 10	61 10	71 10	81 10	91 10	A1 10	B1 10	C1 10	D1 10	E1 10	F1 10
MOVW FD	DIV	LBRN	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-ID 5 IH	2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
02 5 12	13	22 4/3	32 10	42 10	52 10	62 10	72 10	82 10	92 10	A2 10	B2 10	C2 10	D2 10	E2 10	F2 10
MOVW EMA	ACS	LBHI	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-ID 4 SP	4	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
03 5 13	3	23 4/3	33 10			63 10	73 10							E3 10	
MOVW EMI	IULS	LBLS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IM-EX 6 IH		RL 4	IH 2		1	IH 2	IH 2	IH 2	IH 2		1		IH 2	IH 2	IH 2
04 6 14		24 4/3	-	44 10		64 10	74 10			-		-		E4 10	- 1
MOVW ED	DIVS	LBCC	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-EX 6 IH		RL 4	IH 2			IH 2	IH 2	1		IH 2	1		IH 2	IH 2	
05 5 15	12				55 10										
	IVS	LBCS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-EX 5 IH		RL 4	IH 2			IH 2		IH 2					IH 2	IH 2	
06 2 16 ABA SE		26 4/3 LBNE	36 10			66 10	76 10	1			1			E6 10 TRAP	F6 10 TRAP
	BA		TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	IH 2	
IH 2 IH 07 3 17		RL 4 27 4/3			57 10	IH 2 67 10		1	IH 2				IH 2 D7 10		F7 10
1	BA [LBEQ	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IH 2 IH		RL 4	IH 2		1	IH 2	IH 2				1	1	IH 2	IH 2	
08 5 18		28 4/3	38 10	1		68 10	78 10	1			1		D8 10	E8 10	
MOVB MA	AXA	LBVC	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IM-ID 4 ID	3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
09 5 19	4-7	29 4/3	39 10	49 10	59 10	69 10	79 10	89 10	99 10	A9 10	B9 10	C9 10	D9 10	E9 10	F9 10
MOVB MI	INA	LBVS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-ID 5 ID	3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0A 5 1A		2A 4/3				-		-		AA 10		CA 10			FA 10
	IAXD	LBPL	REV	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-ID 4 ID		RL 4	SP 2		1	IH 2	IH 2				1		IH 2	IH 2	
0B 4 1B			3B †5n/3n		5B 10			-		AB 10		-	DB 10		- 1
	IIND	LBMI	REVW	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IM-EX 5 ID 0C 6 1C	3-5 4-7	RL 4 2C 4/3	SP 2 3C †7B		1	IH 2 6C 10	IH 2 7C 10	1	IH 2 9C 10	IH 2 AC 10	1		IH 2 DC 10	IH 2 EC 10	1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AXM	LBGE	WAV 17B	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-EX 6 ID		RL 4	SP 2		1	IH 2	IH 2		IH 2		1	1	IH 2	IH 2	1 1
0D 5 1		2D 4/3		l	5D 10			1							FD 10
1	INM	LBLT	TBL	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-EX 5 ID		RL 4	ID 3		1	IH 2	IH 2				1		IH 2	IH 2	
0E 2 1E	4-7	2E 4/3		1		6E 10		8E 10		AE 10	1	CE 10	DE 10		FE 10
TAB EMA	AXM	LBGT	STOP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IH 2 ID	3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0F 2 1F		2F 4/3			5F 10			-	9F 10	1		-	DF 10		FF 10
TBA EM	1INM	LBLE	ETBL	l TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IH 2 ID	3-5	RL 4	ID 3	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2

^{*} The opcode \$04 (on sheet 1 of 3) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE. † Refer to instruction summary for more information.

Page 2 When the CPU12 encounters a page 2 opcode (\$18 on page 1 of the opcode map), it treats the next byte of object code as a page 2 instruction opcode.

S12XCPU Reference Manual, v01.01

Table A-2. Opcode Map (Sheet 3 of 3) — HCS12X Page 2 Opcodes

00 4-6	10 12	20 4	30 10	40 2	50 2	60 4-7	70 5	80 3	90 4	A0 4-7	B0 4	C0 3	D0 4	E0 4-7	F0 4
MOVW	IDIV	LBRA	TRAP	NEGX	NEGY	NEGW	NEGW	SUBX	SUBX	SUBX	SUBX	SUBY	SUBY	SUBY	SUBY
IM-ID 5	IH 2			IH 2	IH 2	ID 3-5	EX 4	IM 4	DI 3	ID 3-5		IM 4	DI 3	ID 3-5	EX 4
01 5-7	11 12	21 3	31 10	41 2	51 2	61 4-7	71 5	81 10	91 10	A1 10	B1 10	C1 10	D1 10	E1 10	F1 10
MOVW	FDIV	LBRN	TRAP	COMX	COMY	COMW	COMW	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-ID 5	IH 2	RL 4	IH 2	IH 2	IH 2	ID 3-5	EX 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
02 5-10	12 9	22 4/3	32 10	42 2	52 2	62 4-7	72 5	82 3	92 4	A2 4-7	B2 4	C2 3	D2 4	E2 4-7	F2 4
MOVW	EMACS	LBHI	TRAP	INCX	INCY	INCW	INCW	SBEX	SBEX	SBEX	SBEX	SBEY	SBEY	SBEY	SBEY
ID-ID 4	SP 4	RL 4	IH 2	1	IH 2	ID 3-5	EX 4		DI 3	ID 3-5		IM 4	DI 3	ID 3-5	EX 4
03 5	13 3	23 4/3		-	53 2	63 4-7	73 5	1		A3 4-7	B3 4	C3 3	D3 4		F3 4
MOVW	EMULS	LBLS	TRAP	DECX	DECY	DECW	DECW	SBED	SBED	SBED	SBED	ADED	ADED	ADED	ADED
IM-EX 6	IH 2		IH 2		IH 2	ID 3-5	EX 4		_			IM 4	DI 3	ID 3-5	EX 4
04 6 MOVW	14 12 EDIVS	24 4/3 LBCC	TRAP	44 2 LSRX	54 2 LSRY	64 4-7 LSRW	74 5 LSRW	84 3 ANDX	94 4 ANDX	A4 4-7 ANDX	B4 3 ANDX	C4 3 ANDY	D4 4 ANDY	E4 4-7 ANDY	F4 3 ANDY
EX-EX 6		RL 4		_	IH 2	ID 3-5	EX 4					IM 4	DI 3		
05 5-8	l			1	55 2	65 4-7		85 3	95 4		B5 3		D5 4		F5 3
MOVW	IDIVS	LBCS	BTAS	ROLX	ROLY	ROLW	ROLW	BITX	BITX	BITX	BITX	BITY	BITY	BITY	BITY
ID-EX 5		RL 4	DI 4		IH 2	ID 3-5	EX 4			ID 3-5		IM 4	DI 3	ID 3-5	EX 4
06 2				1	56 2	66 4-7	76 5			A6 4-7	B6 4	C6 10	D6 4	E6 4-7	F6 4
ABA	SBA	LBNE	BTAS	RORX	RORY	RORW	RORW	TRAP	GLDAA	GLDAA	GLDAA	TRAP	GLDAB	GLDAB	GLDAB
IH 2	IH 2	RL 4	EX 5	IH 2	IH 2	ID 3-5	EX 4	IH 2	DI 3	ID 3-5	EX 4	IH 2	DI 3	ID 3-5	EX 4
07 3	17 2	27 4/3	37 5-7	47 2	57 2	67 4-7	77 5	87 2	97 2	A7 10	B7 10	C7 2	D7 2	E7 4-7	F7 4
DAA	CBA	LBEQ	BTAS	ASRX	ASRY	ASRW	ASRW	CLRX	TSTX	TRAP	TRAP	CLRY	TSTY	TSTW	TSTW
IH 2	IH 2		ID 4-6	1	IH 2	ID 3-5	EX 4		IH 2	IH 2	IH 2	IH 2	IH 2	ID 3-5	EX 4
08 4-6	18 4-7	28 4/3		-	58 2	68 4-7	78 5		98 4		B8 3	C8 3	D8 4	_	F8 3
MOVB	MAXA	LBVC	PULCW	ASLX	ASLY	ASLW	ASLW	EORX	EORX	EORX	EORX	EORY	EORY	EORY	EORY
IM-ID 4	ID 3-5	RL 4	IH 2	1	IH 2	ID 3-5	EX 4		DI 3	ID 3-5		IM 4	DI 3	ID 3-5	EX 4
09 5-7 MOVB	19 4-7 MINA	29 4/3 LBVS	39 3 PSHCW	49 10 TRAP	59 10 TRAP	69 4-7 CLRW	79 5 CLRW	89 3 ADEX	99 4 ADEX	A9 4-7 ADEX	B9 4 ADEX	C9 3 ADEY	D9 4 ADEY	E9 4-7 ADEY	F9 4 ADEY
EX-ID 5	ID 3-5	_	IH 2	IH 2	IH 2	ID 3-5	EX 4					IM 4	DI 3		
0A 5-10	1A 4-7	INL 4													
		2Δ 4/3					7A A		_					ID 3-5	
I MOVB		2A 4/3 I BPI	3A †3n	4A 10	5A 3	6A 3-5		8A 3	9A 4	AA 4-7	BA 3	CA 3	DA 4	EA 4-7	FA 3
MOVB	EMAXD	LBPL	3A †3n REV	4A 10 TRAP	5A 3 GSTAA	6A 3-5 GSTAA	GSTAA	8A 3 ORX	9A 4 ORX	AA 4-7 ORX	BA 3 ORX	CA 3 ORY	DA 4 ORY	EA 4-7 ORY	FA 3 ORY
	EMAXD	LBPL	3A †3n REV SP 2	4A 10 TRAP IH 2	5A 3 GSTAA DI 3	6A 3-5	GSTAA	8A 3 ORX	9A 4 ORX	AA 4-7 ORX	BA 3 ORX	CA 3	DA 4 ORY	EA 4-7 ORY ID 3-5	FA 3
	EMAXD ID 3-5	LBPL RL 4	3A †3n REV SP 2	4A 10 TRAP IH 2	5A 3 GSTAA DI 3	6A 3-5 GSTAA ID 3-5	GSTAA EX 4	8A 3 ORX IM 4	9A 4 ORX DI 3	AA 4-7 ORX ID 3-5	BA 3 ORX EX 4	CA 3 ORY IM 4	DA 4 ORY DI 3	EA 4-7 ORY ID 3-5	FA 3 ORY EX 4
ID-ID 4 0B 4	EMAXD ID 3-5 1B 4-7	LBPL RL 4 2B 4/3	3A †3n REV SP 2 3B †5n/3n	4A 10 TRAP IH 2 4B 10	5A 3 GSTAA DI 3 5B 3	6A 3-5 GSTAA ID 3-5 6B 3-5	GSTAA EX 4 7B 4	8A 3 ORX IM 4 8B 3 ADDX	9A 4 ORX DI 3 9B 4	AA 4-7 ORX ID 3-5 AB 4-7	BA 3 ORX EX 4 BB 4 ADDX	CA 3 ORY IM 4 CB 3	DA 4 ORY DI 3 DB 4	EA 4-7 ORY ID 3-5 EB 4-7	FA 3 ORY EX 4 FB 4 ADDY
ID-ID 4 0B 4 MOVB	EMAXD ID 3-5 1B 4-7 EMIND	LBPL RL 4 2B 4/3 LBMI	3A †3n REV SP 2 3B †5n/3n REVW SP 2	4A 10 TRAP IH 2 4B 10 TRAP IH 2	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB	GSTAA EX 4 7B 4 GSTAB	8A 3 ORX IM 4 8B 3 ADDX IM 4	9A 4 ORX DI 3 9B 4 ADDX DI 3	AA 4-7 ORX ID 3-5 AB 4-7 ADDX	BA 3 ORX EX 4 BB 4 ADDX	CA 3 ORY IM 4 CB 3 ADDY	DA 4 ORY DI 3 DB 4 ADDY	EA 4-7 ORY ID 3-5 EB 4-7 ADDY	FA 3 ORY EX 4 FB 4 ADDY
ID-ID 4 OB 4 MOVB IM-EX 5	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5	LBPL 4 2B 4/3 LBMI RL 4	3A †3n REV SP 2 3B †5n/3n REVW SP 2	4A 10 TRAP IH 2 4B 10 TRAP IH 2	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB ID 3-5	GSTAA EX 4 7B 4 GSTAB EX 4	8A 3 ORX IM 4 8B 3 ADDX IM 4	9A 4 ORX DI 3 9B 4 ADDX DI 3	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5	BA 3 ORX EX 4 BB 4 ADDX EX 4	CA 3 ORY IM 4 CB 3 ADDY IM 4	DA 4 ORY DI 3 DB 4 ADDY DI 3	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5	FA 3 ORY EX 4 FB 4 ADDY EX 4
ID-ID 4 0B 4 MOVB IM-EX 5 0C 6 MOVB EX-EX 6	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3	6A 3-5 GSTAA ID 3-5 GSTAB ID 3-5 6C 3-5 GSTD ID 3-5	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5	BA 3 ORX EX 4 BB 4 ADDX EX 4 BC 4 CPED EX 4	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4
ID-ID 4 OB 4 MOVB IM-EX 5 OC 6 MOVB EX-EX 6 OD 5-8	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB ID 3-5 6C 3-5 GSTD ID 3-5 6D 3-5	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7	BA 3 ORX EX 4 BB 4 ADDX EX 4 BC 4 CPED EX 4 BD 4	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2 CD 10	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 FD 4
ID-ID 4 OB 4 MOVB IM-EX 5 OC 6 MOVB EX-EX 6 OD 5-8 MOVB	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7 MINM	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3 LBLT	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6 TBL	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10 TRAP	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3 5D 3 GSTY	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB ID 3-5 6C 3-5 GSTD ID 3-5 6D 3-5 GSTY	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4 GSTY	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3 CPEY	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4 CPEY	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7 CPEY	BA 3 ORX EX 4 BB 4 ADDX EX 4 BC 4 CPED EX 4 BD 4 CPEY	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2 CD 10 TRAP	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4 GLDY	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7 GLDY	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 FD 4 GLDY
ID-ID 4 OB 4 MOVB IM-EX 5 OC 6 MOVB EX-EX 6 OD 5-8	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7 MINM ID 3-5	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3 LBLT RL 4	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6 TBL ID 3	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10 TRAP IH 2	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3 5D 3 GSTY DI 3	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB ID 3-5 6C 3-5 GSTD ID 3-5 6D 3-5 GSTY ID 3-5	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4 GSTY EX 4	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3 CPEY IM 4	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4 CPEY DI 3	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7 CPEY ID 3-5	BA 3 ORX EX 4 BB 4 ADDX EX 4 BC 4 CPED EX 4 BD 4 CPEY EX 4	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2 CD 10 TRAP IH 2	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4 GLDY DI 3	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7 GLDY ID 3-5	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 FD 4 GLDY EX 4 GLDY EX 4
ID-ID 4 OB 4 MOVB IM-EX 5 OC 6 MOVB EX-EX 6 OD 5-8 MOVB ID-EX 5 OE 2	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7 MINM ID 3-5 1E 4-7	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3 LBLT RL 4 2E 4/3	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6 TBL ID 3 3E 8	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10 TRAP IH 2 4D 10 TRAP	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3 GSTD DI 3 GSTY DI 3 5E 3	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB ID 3-5 6C 3-5 GSTD ID 3-5 6D 3-5 GSTY ID 3-5 6E 3-5	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4 GSTY EX 4 7E 4	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3 CPEY IM 4 8E 3	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4 CPEY DI 3 9E 4	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7 CPEY ID 3-5 AE 4-7	BA 3 ORX EX 4 BB 4 ADDX EX 4 BC 4 CPED EX 4 BD 4 CPEY EX 4 BE 4	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2 CD 10 TRAP IH 2 CD 10 TRAP IH 2	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4 GLDY DI 3 DD 4 GLDY DI 3 DE 4	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7 GLDY ID 3-5 ED 4-7	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 GLDV EX 4 GLDY EX 4 FD 4 GLDY EX 4 FE 4
ID-ID 4 OB 4 MOVB IM-EX 5 OC 6 MOVB EX-EX 6 OD 5-8 MOVB ID-EX 5 OE 2 TAB	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7 MINM ID 3-5 1E 4-7 EMAXM	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3 LBLT RL 4 2E 4/3 LBGT	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6 TBL ID 3 3E 8 STOP	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10 TRAP IH 2 4E 10 TRAP	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3 GSTY DI 3 GSTY DI 3 GSTY DI 3	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB ID 3-5 6C 3-5 GSTD ID 3-5 GD 3-5 GSTY ID 3-5 GSTX	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4 GSTY EX 4 7E 4 GSTX	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3 CPEY IM 4 8E 3 CPEX	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4 CPEY DI 3 9E 4 CPEX	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7 CPEY ID 3-5 AE 4-7 CPEX	BA 3 ORX EX 4 BB 4 ADDX EX 4 CPED EX 4 CPED EX 4 CPEY EX 4 BE 4 CPEX	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2 CD 10 TRAP IH 2 CE 10 TRAP	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4 GLDY DI 3 DD 4 GLDY DI 3 DE 4 GLDX	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7 GLDY ID 3-5 EE 4-7 GLDX	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 FD 4 GLDY EX 4 FE 4 GLDX
ID-ID 4 OB 4 MOVB IM-EX 5 OC 6 MOVB EX-EX 6 OD 5-8 MOVB ID-EX 5 OE 2 TAB IH 2	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7 MINM ID 3-5 1E 4-7 EMAXM ID 3-5	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3 LBLT RL 4 2E 4/3 LBGT RL 4	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6 TBL ID 3 3E 8 STOP IH 2	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10 TRAP IH 2 4E 10 TRAP IH 2	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3 5D 3 GSTY DI 3 5E 3 GSTX DI 3	6A 3-5 GSTAA ID 3-5 GSTAB ID 3-5 GC 3-5 GSTD ID 3-5 GC 3-5	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4 GSTY EX 4 7E 4 GSTX EX 4	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3 CPEY IM 4 8E 3 CPEX IM 4	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4 CPEY DI 3 9E 4 CPEX DI 3	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7 CPEY ID 3-5 AE 4-7 CPEX ID 3-5	BA 3 ORX EX 4 BB 4 ADDX EX 4 CPED EX 4 BD 4 CPEY EX 4 BE 4 CPEX EX 4	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2 CD 10 TRAP IH 2 CE 10 TRAP IH 2	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4 GLDY DI 3 DE 4 GLDX DI 3	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7 GLDY ID 3-5 EE 4-7 GLDX ID 3-5	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 FD 4 GLDY EX 4 FE 4 GLDX EX 4
ID-ID 4 OB 4 MOVB IM-EX 5 OC 6 MOVB EX-EX 6 OD 5-8 MOVB ID-EX 5 OE 2 TAB IH 2 OF 2	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7 MINM ID 3-5 1E 4-7 EMAXM ID 3-5 1F 4-7	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3 LBLT RL 4 2E 4/3 LBGT RL 4 2F 4/3	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6 TBL ID 3 3E 8 STOP IH 2 3F 8	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10 TRAP IH 2 4E 10 TRAP IH 2 4F 10	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3 5D 3 GSTY DI 3 5E 3 GSTX DI 3 5F 3	6A 3-5 GSTAA ID 3-5 6B 3-5 GSTAB ID 3-5 6C 3-5 GSTD ID 3-5 6D 3-5 GSTY ID 3-5 GE 3-5 GSTX ID 3-5	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4 GSTY EX 4 7E 4 GSTX EX 4 7F 4	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3 CPEY IM 4 8E 3 CPEX IM 4 8F 3	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4 CPEY DI 3 9E 4 CPEX DI 3 9F 4	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7 CPEY ID 3-5 AE 4-7 CPEX ID 3-5 AF 4-7	BA 3 ORX EX 4 BB 4 ADDX EX 4 CPED EX 4 BD 4 CPEY EX 4 BE 4 CPEX EX 4 BF 4	CA 3 ORY IM 4 CB 3 ADDY IM 4 IM 4 CC 10 TRAP IH 2 CD 10 TRAP IH 2 CE 10 TRAP IH 2 CE 10 TRAP IH 2 CF 10	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4 GLDY DI 3 DD 4 GLDY DI 3 DE 4 GLDX DI 3 DF 4	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7 GLDY ID 3-5 EE 4-7 GLDX ID 3-5 EF 4-7	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 FD 4 GLDY EX 4 FD 4 GLDY EX 4 FE 4 GLDX EX 4 FF 4
ID-ID	EMAXD ID 3-5 1B 4-7 EMIND ID 3-5 1C 4-7 MAXM ID 3-5 1 D4-7 MINM ID 3-5 1E 4-7 EMAXM ID 3-5 1F 4-7 EMINM	LBPL RL 4 2B 4/3 LBMI RL 4 2C 4/3 LBGE RL 4 2D 4/3 LBLT RL 4 2E 4/3 LBGT RL 4 2F 4/3 LBLE	3A †3n REV SP 2 3B †5n/3n REVW SP 2 3C †7B WAV SP 2 3D 6 TBL ID 3 3E 8 STOP IH 2 3F 8 ETBL	4A 10 TRAP IH 2 4B 10 TRAP IH 2 4C 10 TRAP IH 2 4D 10 TRAP IH 2 4E 10 TRAP IH 2 4F 10	5A 3 GSTAA DI 3 5B 3 GSTAB DI 3 5C 3 GSTD DI 3 5D 3 GSTY DI 3 5E 3 GSTX DI 3 5F 3 GSTS	6A 3-5 GSTAA ID 3-5 GSTAB ID 3-5 GC 3-5 GSTD ID 3-5 GC 3-5	GSTAA EX 4 7B 4 GSTAB EX 4 7C 4 GSTD EX 4 7D 4 GSTY EX 4 7E 4 GSTX EX 4 7F 4 GSTS	8A 3 ORX IM 4 8B 3 ADDX IM 4 8C 3 CPED IM 4 8D 3 CPEY IM 4 8E 3 CPEX IM 4 8F 3 CPES	9A 4 ORX DI 3 9B 4 ADDX DI 3 9C 4 CPED DI 3 9D 4 CPEY DI 3 9E 4 CPEX DI 3 9F 4 CPES	AA 4-7 ORX ID 3-5 AB 4-7 ADDX ID 3-5 AC 4-7 CPED ID 3-5 AD 4-7 CPEY ID 3-5 AE 4-7 CPEX ID 3-5 AF 4-7 CPES	BA 3 ORX EX 4 BB 4 ADDX EX 4 CPED EX 4 BD 4 CPEY EX 4 BE 4 CPEX EX 4 BF 4 CPES	CA 3 ORY IM 4 CB 3 ADDY IM 4 CC 10 TRAP IH 2 CD 10 TRAP IH 2 CE 10 TRAP IH 2 CE 10 TRAP IH 2 CE 10 TRAP IH 2 CF 10 TRAP	DA 4 ORY DI 3 DB 4 ADDY DI 3 DC 4 GLDD DI 3 DD 4 GLDY DI 3 DE 4 GLDX DI 3 DF 4 GLDS	EA 4-7 ORY ID 3-5 EB 4-7 ADDY ID 3-5 EC 4-7 GLDD ID 3-5 ED 4-7 GLDY ID 3-5 EE 4-7 GLDX ID 3-5 EF 4-7 GLDX	FA 3 ORY EX 4 FB 4 ADDY EX 4 FC 4 GLDD EX 4 FD 4 GLDY EX 4 FE 4 GLDX EX 4

^{*} The opcode \$04 (on sheet 1 of 3) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.
† Refer to instruction summary for more information.
Page 2 When the CPU12 encounters a page 2 opcode (\$18 on page 1 of the opcode map), it treats the next byte of object code as a page 2 instruction opcode.

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)

00	10	20	30	40	50	60	70	80	90	A0	B0	C0	D0	E0	F0
0,X	-16,X	1,+X	1,X+	0,Y	-16,Y	1,+Y	1,Y+	0,SP	-16,SP	1,+SP	1,SP+	0,PC	-16,PC	n,X	n,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
01	11	21	31	41	51	61	71	81	91	A1	B1	C1	D1	E1	F1
1,X	-15,X	2,+X	2,X+	1,Y	-15,Y	2,+Y	2,Y+	1,SP	-15,SP	2,+SP	2,SP+	1,PC	-15,PC	−n,X	-n,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
02	12	22	32	42	52	62	72	82	92	A2	B2	C2	D2	E2	F2
2,X	-14,X	3,+X	3,X+	2,Y	-14,Y	3,+Y	3,Y+	2,SP	-14,SP	3,+SP	3,SP+	2,PC	-14,PC	n,X	n,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b const	16b const
03	13	23	33	43	53	63	73	83	93	A3	B3	C3	D3	E3	F3
3,X	-13,X	4,+X	4,X+	3,Y	-13,Y	4,+Y	4,Y+	3,SP	-13,SP	4,+SP	4,SP+	3,PC	-13,PC	[n,X]	[n,SP]
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b indr	16b indr
04	14	24	34	44	54	64	74	84	94	A4	B4	C4	D4	E4	F4
4,X	-12,X	5,+X	5,X+	4,Y	-12,Y	5,+Y	5,Y+	4,SP	-12,SP	5,+SP	5,SP+	4,PC	-12,PC	A,X	A,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	A offset	A offset
05	15	25	35	45	55	65	75	85	95	A5	B5	C5	D5	E5	F5
5,X	-11,X	6,+X	6,X+	5,Y	-11,Y	6,+Y	6,Y+	5,SP	-11,SP	6,+SP	6,SP+	5,PC	-11,PC	B,X	B,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	B offset	B offset
06	16	26	36	46	56	66	76	86	96	A6	B6	C6	D6	E6	F6
6,X	-10,X	7,+X	7,X+	6,Y	-10,Y	7,+Y	7,Y+	6,SP	-10,SP	7,+SP	7,SP+	6,PC	-10,PC	D,X	D,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D offset	D offset
07	17	27	37	47	57	67	77	87	97	A7	B7	C7	D7	E7	F7
7,X	-9,X	8,+X	8,X+	7,Y	-9,Y	8,+Y	8,Y+	7,SP	-9,SP	8,+SP	8,SP+	7,PC	-9,PC	[D,X]	[D,SP]
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
08	18	28	38	48	58	68	78	88	98	A8	B8	C8	D8	E8	F8
8,X	_8,X	8,-X	8,X-	8,Y	-8,Y	8,-Y	8,Y-	8,SP	_8,SP	8,–SP	8,SP-	8,PC	_8,PC	n,Y	n,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
09	19	29	39	49	59	69	79	89	99	A9	B9	C9	D9	E9	F9
9,X	-7,X	7,–X	7,X-	9,Y	-7,Y	7,-Y	7,Y-	9,SP	_7,SP	7,–SP	7,SP-	9,PC	_7,PC	-n,Y	-n,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
0A	1A	2A	3A	4A	5A	6A	7A	8A	9A	AA	BA	CA	DA	EA	FA
10,X	-6,X	6,-X	6,X-	10,Y	-6,Y	6,-Y	6,Y-	10,SP	-6,SP	6,–SP	6,SP-	10,PC	-6,PC	n,Y	n,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b const	16b const
0B	1B	2B	3B	4B	5B	6B	7B	8B	9B	AB	BB	СВ	DB	EB	FB F BO
11,X	-5,X	5,-X	5,X-	11,Y	-5,Y	5,-Y	5,Y-	11,SP	-5,SP	5,–SP	5,SP-	11,PC	-5,PC	[n,Y]	[n,PC]
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b indr	16b indr
0C	1C	2C	3C	4C	5C	6C	7C	8C	9C	AC CD	BC	CC	DC 4 BC	EC	FC A DO
12,X	-4,X	4,-X	4,X-	12,Y	-4,Y	4,-Y	4,Y-	12,SP	-4,SP	4,–SP	4,SP-	12,PC	-4,PC	A,Y	A,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	A offset	A offset
0D	1D	2D	3D	4D	5D	6D	7D	8D	9D	AD	BD	CD	DD	ED	FD
13,X	-3,X	3,-X	3,X-	13,Y	-3,Y	3,-Y	3,Y-	13,SP	-3,SP	3,–SP	3,SP-	13,PC	-3,PC	B,Y	B,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	B offset	B offset
0E	1E	2E	3E	4E	5E	6E	7E	8E	9E	AE	BE	CE	DE	EE	FE
14,X	-2,X	2,–X	2,X-	14,Y	-2,Y	2,-Y	2,Y-	14,SP	-2,SP	2,–SP	2,SP-	14,PC	-2,PC	D,Y D offset	D,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const		D offset
		0.5	25	45		^F									
0F	1F	2F	3F	4F	5F	6F	7F	8F	9F	AF 1 CD	BF	CF 15 DC	DF 1 DC	EF	FF ID DC1
0F 15,X 5b const		2F 1,-X pre-dec	3F 1,X– post-dec	4F 15,Y 5b const	5F -1,Y 5b const	6F 1,-Y pre-dec	7F 1,Y- post-dec	8F 15,SP 5b const	9F -1,SP 5b const	AF 1,-SP pre-dec	1,SP- post-dec	CF 15,PC 5b const	-1,PC 5b const	EF [D,Y] D indirect	[D,PC] D indirect

Key to Table A-3

Table A-4. Indexed Addressing Mode Summary

Postbyte Code (xb)	Operand Syntax	Comments
rr0nnnn	,r n,r –n,r	5-bit constant offset n = -16 to +15 rr can specify X, Y, SP, or PC
111rr0zs	n,r –n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte (s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) rr can specify X, Y, SP, or PC
rr1pnnnn	n,-r n,+r n,r- n,r+	Auto predecrement, preincrement, postdecrement, or postincrement; $p = pre-(0)$ or post-(1), $n = -8$ to -1 , +1 to +8 rr can specify X, Y, or SP (PC not a valid choice)
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 8-bit or 16-bit) aa -00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC
111rr011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC
111rr111	[D,r]	Accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC

Table A-5. Transfer and Exchange Postbyte Encoding

	TRANSFERS													
	MS ⇒	0	1	2	3	4	5	6	7					
↓LS		Α	В	CCR	TMPx	D	х	Y	SP					
0	A	A ⇒ A TFR A,A	B ⇒ A TFR B,A	CCR _L ⇒ A TFR CCR,A TFR CCRL,A	TMP3 _L ⇒ A TFR TMP3,A TFR TMP3L,A	B ⇒ A TFR D,A	X _L ⇒ A TFR X, A TFR XL,A	Y _L ⇒ A TFR Y,A TFR YL,A	SP _L ⇒ A TFR SP,A TFR SPL,A					
1	В	$\begin{array}{c} A \Rightarrow B \\ TFR \; A, B \end{array}$	$B \Rightarrow B$ TFR B,B	$CCR_L \Rightarrow B$ $TFR\ CCR,B$ $TFR\ CCRL,B$	$TMP3_L \Rightarrow B$ $TFR TMP3,B$ $TFR TMP3L,B$	$\begin{array}{c} B \Rightarrow B \\ TFR \; D, B \end{array}$	$X_L \Rightarrow B$ TFR X, B TFR XL,B	$Y_L \Rightarrow B$ TFR Y,B TFR YL,B	$SP_L \Rightarrow B$ $TFR SP,B$ $TFR SPL,B$					
2	CCR	A ⇒ CCR TFR A,CCR TFR A,CCRL	B ⇒ CCR TFR B,CCR TFR B,CCRL	$ \begin{array}{c} CCR_L \Rightarrow CCR_L \\ TFR \ CCR, CCR \\ TFR \ CCRL, CCRL \end{array} $	$\begin{array}{c} \text{TMP3}_{\text{L}} \Rightarrow \text{CCR} \\ \text{TFR TMP3,CCR} \\ \text{TFR TMP3L,CCRL} \end{array}$	B ⇒ CCR TFR D,CCR TFR D,CCRL	$X_L \Rightarrow CCR$ TFR X,CCR TFR XL,CCRL	$ \begin{array}{c} \textbf{Y}_{L} \Rightarrow \textbf{CCR} \\ \textbf{TFR Y,CCR} \\ \textbf{TFR YL,CCRL} \end{array} $	$\begin{array}{c} \mathrm{SP_L} \Rightarrow \mathrm{CCR} \\ \mathrm{TFR} \ \mathrm{SP,CCR} \\ \mathrm{TFR} \ \mathrm{SPL,CCRL} \end{array}$					
3	TMP 2	sex:A ⇒ TMP2 SEX A,TMP2	sex:B ⇒ TMP2 SEX B,TMP2	sex:CCR _L ⇒ TMP2 SEX CCR,TMP2 SEX CCRL,TMP2	TMP3 ⇒ TMP2 TFR TMP3,TMP2	D ⇒ TMP2 TFR D,TMP2	X ⇒ TMP2 TFR X,TMP2	Y ⇒ TMP2 TFR Y,TMP2	SP ⇒ TMP2 TFR SP,TMP2					
4	D	sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	$\begin{array}{c} \text{sex:CCR}_{L} \Rightarrow \text{D} \\ \text{SEX CCR}_{L}, \text{D} \\ \text{SEX CCRL}, \text{D} \end{array}$	TMP3 ⇒ D TFR TMP3,D	D ⇒ D TFR D,D	$X \Rightarrow D$ TFR X,D	Y ⇒ D TFR Y,D	SP ⇒ D TFR SP,D					
5	Х	$\begin{array}{c} sex:A \Rightarrow X \\ SEX \ A, X \end{array}$	$\begin{array}{c} sex:B \Rightarrow X \\ SEX \; B,X \end{array}$	$\begin{array}{c} \text{sex:CCR}_{L} \Rightarrow \text{X} \\ \text{SEX CCR,X} \\ \text{SEX CCRL,X} \end{array}$	TMP3 ⇒ X TFR TMP3,X	$D \Rightarrow X$ TFR D,X	$X \Rightarrow X$ TFR X,X	Y ⇒ X TFR Y,X	$SP \Rightarrow X$ TFR SP,X					
6	Y	$\begin{array}{c} sex:A \Rightarrow Y \\ SEX \ A, Y \end{array}$	$\begin{array}{c} sex:B \Rightarrow Y \\ SEX \ B, Y \end{array}$	$\begin{array}{c} \text{sex:CCR}_{L} \Rightarrow \text{Y} \\ \text{SEX CCR,Y} \\ \text{SEX CCRL,Y} \end{array}$	TMP3 ⇒ Y TFR TMP3,Y	$\begin{array}{c} D \Rightarrow Y \\ TFR \; D, Y \end{array}$	$X \Rightarrow Y$ TFR X,Y	Y ⇒ Y TFR Y,Y	SP ⇒ Y TFR SP,Y					
7	SP	sex:A ⇒ SP SEX A,SP	sex:B ⇒ SP SEX B,SP	$\begin{array}{c} \text{sex:CCR}_\text{L} \Rightarrow \text{SP} \\ \text{SEX CCR,SP} \\ \text{SEX CCRL,SP} \end{array}$	TMP3 ⇒ SP TFR TMP3,SP	D ⇒ SP TFR D,SP	X ⇒ SP TFR X,SP	Y ⇒ SP TFR Y,SP	SP ⇒ SP TFR SP,SP					
8	Α	$A \Rightarrow A$ TFR A,A	$B \Rightarrow A$ TFR B,A	$CCR_H \Rightarrow A$ TFR CCRH,A	TMP3 _H ⇒ A TFR TMP3H,A	$B \Rightarrow A$ TFR D,A	$X_H \Rightarrow A$ TFR XH, A	Y _H ⇒ A TFR YH,A	SP _H ⇒ A TFR SPH,A					
9	В	A ⇒ B TFR A,B	B ⇒ B TFR B,B	CCR _L ⇒ B TFR CCRL,B	$TMP3_L \Rightarrow B$ $TFR TMP3L,B$	B ⇒ B TFR D,B	$X_L \Rightarrow B$ TFR XL, B	$Y_L \Rightarrow B$ TFR YL,B	$SP_L \Rightarrow B$ TFR SPL,B					
Α	CCR	A ⇒ CCR _H TFR A,CCRH	$B \Rightarrow CCR_L$ TFR B,CCRL	CCRW ⇒ CCRW TFR CCRW,CCRW	TMP3 ⇒ CCR _{H:L} TFR TMP3,CCRW	$D \Rightarrow CCR_{H:L}$ TFR D,CCRW	$X \Rightarrow CCR_{H:L}$ TFR X,CCRW	Y ⇒ CCR _{H:L} TFR Y,CCRW	$\begin{array}{c} SP \Rightarrow CCR_{H:L} \\ TFR \ SP, CCRW \end{array}$					
В	TMP x	A ⇒ TMP2 _H TFR A,TMP2H	B ⇒ TMP2 _L TFR B,TMP2L	CCR _{H:L} ⇒ TMP2 TFR CCRW,TMP2	TMP3 ⇒ TMP2 TFR TMP3,TMP2	D ⇒ TMP1 TFR D,TMP1	X ⇒ TMP2 TFR X,TMP2	Y ⇒ TMP2 TFR Y,TMP2	SP ⇒ TMP2 TFR SP,TMP2					
С	D	sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	$CCR_{H:L} \Rightarrow D$ TFR CCRW,D	TMP1 ⇒ D TFR TMP1,D	$\begin{array}{c} D \Rightarrow D \\ TFR \; D, D \end{array}$	$X \Rightarrow D$ TFR X,D	Y ⇒ D TFR Y,D	$\begin{array}{c} SP \Rightarrow D \\ TFR \ SP, D \end{array}$					
D	х	$A \Rightarrow X_H$ TFR A,XH	$B \Rightarrow X_L$ TFR B,XL	$CCR_{H:L} \Rightarrow X$ TFR CCRW,X	TMP3 ⇒ X TFR TMP3,X	sex:D ⇒ X SEX D,X	$X \Rightarrow X$ TFR X,X	Y ⇒ X TFR Y,X	$\begin{array}{c} SP \Rightarrow X \\ TFR \ SP, X \end{array}$					
E	Υ	A ⇒ Y _H TFR A,YH	$B \Rightarrow Y_L$ TFR B,YL	CCR _{H:L} ⇒ Y TFR CCRW,Y	TMP3 ⇒ Y TFR TMP3,Y	sex:D ⇒ Y SEX D,Y	X ⇒ Y TFR X,Y	Y ⇒ Y TFR Y,Y	SP ⇒ Y TFR SP,Y					
F	SP	A ⇒ SP _H TFR A,SPH	$B \Rightarrow SP_L$ TFR B,SPL	CCR _{H:L} ⇒ SP TFR CCRW,SP	TMP3 ⇒ SP TFR TMP3,SP	D ⇒ SP TFR D,SP	X ⇒ SP TFR X,SP	Y ⇒ SP TFR Y,SP	SP ⇒ SP TFR SP,SP					

Note: Encodings in the shaded area (LS = 8-F) are only available on the S12X.

Table A-5. Transfer and Exchange Postbyte Encoding (continued)

	EXCHANGES												
	MS⇒	8	9	Α	В	С	D	E	F				
↓ LS		Α	В	CCR	TMPx	D	х	Y	SP				
0	Α	A ⇔ A EXG A,A	B ⇔ A EXG B,A	CCR _L ⇔ A EXG CCR,A <i>EXG CCRL,A</i>	$ \begin{array}{c} TMP3_L \Rightarrow A \\ \$00:A \Rightarrow TMP3 \\ EXG \; A, TMP3 \end{array} $	B ⇔ A EXG D,A	$X_L \Rightarrow A$ \$00:A \Rightarrow X EXG X,A	$Y_L \Rightarrow A$ \$00:A \Rightarrow Y EXG Y,A	$SP_L \Rightarrow A$ \$00:A \Rightarrow SP EXG SP,A				
1	В	A ⇔ B EXG A,B	B ⇔ B EXG B,B	CCR _L ⇔ B EXG CCR,B EXG CCRL,B	$ \begin{array}{c} TMP3_L \Rightarrow B \\ \$FF:B \Rightarrow TMP3 \\ EXG \; B,TMP3 \end{array} $	$\begin{array}{c} B \Rightarrow B \\ \$FF \Rightarrow A \\ EXG \ D, B \end{array}$	$X_L \Rightarrow B$ \$FF:B \Rightarrow X EXG X,B	$ \begin{array}{c} Y_L \Rightarrow B \\ \$FF:B \Rightarrow Y \\ EXG\ Y,B \end{array} $	$\begin{array}{c} SP_L \Rightarrow B \\ \$FF:B \Rightarrow SP \\ EXG \ SP,B \end{array}$				
2	CCR	$A \Leftrightarrow CCR_L$ EXG A, CCR EXG A,CCRL	$B \Leftrightarrow CCR_L$ EXG B,CCR EXG B,CCRL	$\begin{aligned} & CCR_L \Leftrightarrow CCR_L \\ & EXG \ CCR,CCR \\ & EXG \ CCRL,CCRL \end{aligned}$	$ \begin{array}{c} TMP3_{L} \Rightarrow CCR_{L} \\ \$FF\text{:}CCR_{L} \Rightarrow TMP3 \\ EXG, TMP3, CCR \\ EXG TMP3, CCRL \end{array} $	$\begin{array}{c} B \Rightarrow CCR_L \\ \$FF : CCR_L \Rightarrow D \\ EXG \ D, CCR \\ EXG \ D, CCRL \end{array}$	$X_L \Rightarrow CCR_L$ \$FF:CCR _L $\Rightarrow X$ EXG X,CCR EXG X,CCRL	$Y_L \Rightarrow CCR_L$ \$FF:CCR _L \Rightarrow Y EXG Y,CCR EXG Y,CCRL	$\begin{array}{c} \operatorname{SP}_L \Rightarrow \operatorname{CCR}_L \\ \operatorname{\$FF:CCR}_L \Rightarrow \operatorname{SP} \\ \operatorname{EXG} \operatorname{SP,CCR} \\ \operatorname{EXG} \operatorname{SP,CCRL} \end{array}$				
3	TMP 2	$\begin{array}{c} \text{$00:A} \Rightarrow \text{TMP2} \\ \text{TMP2}_{\text{L}} \Rightarrow \text{A} \\ \text{EXG A,TMP2} \end{array}$	$\begin{array}{c} \$00:B \Rightarrow TMP2 \\ TMP2_L \Rightarrow B \\ EXG \; B, TMP2 \end{array}$	$\begin{array}{c} \$00\text{:}CCR_{L} \Rightarrow TMP2 \\ TMP2_{L} \Rightarrow CCR \\ EXG\;CCR, TMP2 \end{array}$	TMP3 ⇔ TMP2 EXG TMP3,TMP2	D ⇔ TMP2 EXG D,TMP2	X ⇔ TMP2 EXG X,TMP2	Y ⇔ TMP2 EXG Y,TMP2	SP ⇔ TMP2 EXG SP,TMP2				
4	D	\$00:A ⇒ D EXG A,D	\$00:B ⇒ D EXG B,D	$\begin{array}{c} \$00\text{:}CCR_{L} \Rightarrow D \\ B \Rightarrow CCR_{L} \\ EXG \ CCR, D \\ EXG \ CCRL, D \end{array}$	TMP3 ⇔ D EXG TMP3,D	D ⇔ D EXG D,D	$X \Leftrightarrow D$ EXG X,D	Y ⇔ D EXG Y,D	SP ⇔ D EXG SP,D				
5	х	$\begin{array}{c} \$00\text{:A} \Rightarrow X \\ X_L \Rightarrow A \\ \text{EXG A,X} \end{array}$	$\begin{array}{c} \$00:B \Rightarrow X \\ X_L \Rightarrow B \\ EXG B, X \end{array}$	$00:CCR_L \Rightarrow X$ $X_L \Rightarrow CCR_L$ EXG CCR,X EXG CCRL,X	TMP3 ⇔ X EXG TMP3,X	$D \Leftrightarrow X$ EXG D,X	$X \Leftrightarrow X$ EXG X,X	$Y \Leftrightarrow X$ EXG Y,X	SP ⇔ X EXG SP,X				
6	Y	$\begin{array}{c} \$00:A\Rightarrow Y\\ Y_L\Rightarrow A\\ EXG\ A,Y \end{array}$	$\begin{array}{c} \$00:B\Rightarrow Y\\ Y_L\Rightarrow B\\ EXG\ B,Y \end{array}$	$$00:CCR_L \Rightarrow Y$ $Y_L \Rightarrow CCR_L$ $EXG\ CCR,X$ $EXG\ CCRL,X$	TMP3 ⇔ Y EXG TMP3,Y	D ⇔ Y EXG D,Y	$X \Leftrightarrow Y$ EXG X,Y	Y ⇔ Y EXG Y,Y	SP ⇔ Y EXG SP,Y				
7	SP	$$00:A \Rightarrow SP$ $SP_L \Rightarrow A$ $EXG A,SP$	$$00:B \Rightarrow SP$ $SP_L \Rightarrow B$ $EXG B,SP$	$$00:CCR_L \Rightarrow SP$ $SP_L \Rightarrow CCR_L$ $EXG CCR,X$ $EXG CCRL,X$	TMP3 ⇔ SP EXG TMP3,SP	D ⇔ SP EXG D,SP	X ⇔ SP EXG X,SP	Y⇔SP EXG Y,SP	SP ⇔ SP EXG SP,SP				
8	Α	A ⇔ A EXG A,A	B ⇔ A EXG B,A	CCR _H ⇔ A EXG CCRH,A	TMP3 _H ⇔ A EXG TMP3H,A	B ⇔ A EXG D,A	X _H ⇔ A EXG XH,A	Y _H ⇔ A EXG YH,A	SP _H ⇔ A EXG SPH,A				
9	В	A ⇔ B EXG A,B	B ⇔ B EXG B,B	CCR _L ⇔ B EXG CCRL,B	TMP3 _L ⇔ B EXG TMP3L,B	\$FF ⇒ A, B ⇒ B EXG D,B	X _L ⇔ B EXG XL,B	Y _L ⇔ B EXG YL,B	$\begin{array}{c} SP_L \Leftrightarrow B \\ EXG \ SPL,B \end{array}$				
Α	CCR	A ⇔ CCR _H EXG A,CCRH	$B \Leftrightarrow CCR_L$ EXG B,CCRL	$CCR_{H:L} \Leftrightarrow CCR_{H:L}$ EXG CCRW,CCRW	TMP3 ⇔ CCR _{H:L} EXG TMP3,CCRW	D ⇔ CCR _{H:L} EXG D,CCRW	$X \Leftrightarrow CCR_{H:L}$ EXG X,CCRW	$Y \Leftrightarrow CCR_{H:L}$ EXG Y,CCRW	$\begin{array}{c} SP \Leftrightarrow CCR_{H:L} \\ EXG, SP, CCRW \end{array}$				
В	TMP x	A ⇔ TMP2 _H EXG A,TMP2H	B ⇔ TMP2 _L EXG B,TMP2L	CCR _{H:L} ⇔ TMP2 EXG CCRW,TMP2	TMP3 ⇔ TMP2 EXG TMP3,TMP2	D ⇔ TMP1 EXG D,TMP1	X ⇔ TMP2 EXG X,TMP2	Y ⇔ TMP2 EXG Y,TMP2	SP ⇔ TMP2 EXG SP,TMP2				
С	D	\$00:A ⇒ D EXG A,D	\$00:B ⇒ D EXG B,D	CCR _{H:L} ⇔ D EXG CCRW,D	TMP1 ⇔ D EXG TMP1,D	D ⇔ D EXG D,D	X ⇔ D EXG X,D	Y ⇔ D EXG Y,D	SP ⇔ D EXG SP,D				
D	х	$\begin{array}{c} A \Leftrightarrow X_H \\ EXG \ A, XH \end{array}$	$B \Leftrightarrow X_L$ EXG B,XL	CCR _{H:L} ⇔ X EXG CCRW,X	TMP3 ⇔ X EXG TMP3,X	D ⇔ X EXG D,X	$X \Leftrightarrow X$ EXG X,X	Y ⇔ X EXG Y,X	SP ⇔ X EXG SP,X				
E	Y	A ⇔ Y _H EXG A,YH	B ⇔ Y _L EXG B,YL	CCR _{H:L} ⇔ Y EXG CCRW,Y	TMP3 ⇔ Y EXG TMP3,Y	D ⇔ Y EXG D,Y	X ⇔ Y EXG X,Y	Y ⇔ Y EXG Y,Y	SP ⇔ Y EXG SP,Y				
F	SP	A ⇔ SP _H EXG A,SPH	$\begin{array}{c} B \Leftrightarrow SP_L \\ EXG \ B, SPL \end{array}$	CCR _{H:L} ⇔ SP EXG CCRW,SP	TMP3 ⇔ SP EXG TMP3,SP	D ⇔ SP EXG D,SP	X ⇔ SP EXG X,SP	Y⇔SP EXG Y,SP	SP ⇔ SP EXG SP,SP				

Note: Encodings in the shaded area (LS = 8-F) are only available on the S12X.

Table A-6. Loop Primitive Postbyte Encoding (lb)

00 A	10 A	20 A	30 A	40 A	50 A	60 A	70 A	80 A	90 A	A0 A	B0 A
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(–)	(+)	(–)	(+)	(–)
01 B	11 B	21 B	31 B	41 B	51 B	61 B	71 B	81 B	91 B	A1 B	
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)
02	12	22	32	42	52	62	72	82	92	A2	B2
_	_	_	_	_	_	_	_	_	_	_	_
03	13	23	33	43	53	63	73	83	93	A3	B3
_	_	_	_	_	_	_	_	_	_	_	_
04 D	14 D	24 D	34 D	44 D	54 D	64 D	74 D	84 D	94 D	A4 D	B4 D
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(–)	(+)	(-)	(+)	(–)	(+)	(–)	(+)	(-)	(+)	(–)
05 X	-		35X	45 X	55X		75X	85 X	95 X	A5 X	
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)
06 Y		26 Y	36 Y	46 Y	56 Y				96 Y	A6 Y	, ,
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
07 SP	17 SP	27 SP	37 SP	47 SP	57 SP	67 SP	77 SP	87 SP	97 SP	A7 SP	B7 SP
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(–)	(+)	(-)	(+)	(-)	(+)	(–)	(+)	(–)

Key to Table A-6

Table A-7. Branch/Complementary Branch

	Br	anch		Complementary Branch					
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment		
r>m	BGT	2E	$Z + (N \oplus V) = 0$	r≤m	BLE	2F	Signed		
r≥m	BGE	2C	N ⊕ V = 0	r <m< td=""><td>BLT</td><td>2D</td><td>Signed</td></m<>	BLT	2D	Signed		
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Signed		
r≤m	BLE	2F	$Z + (N \oplus V) = 1$	r>m	BGT	2E	Signed		
r <m< td=""><td>BLT</td><td>2D</td><td>N ⊕ V = 1</td><td>r≥m</td><td>BGE</td><td>2C</td><td>Signed</td></m<>	BLT	2D	N ⊕ V = 1	r≥m	BGE	2C	Signed		
r>m	BHI	22	C + Z = 0	r≤m	BLS	23	Unsigned		
r≥m	BHS/BCC	24	C = 0	r <m< td=""><td>BLO/BCS</td><td>25</td><td>Unsigned</td></m<>	BLO/BCS	25	Unsigned		
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Unsigned		
r≤m	BLS	23	C + Z = 1	r>m	BHI	22	Unsigned		
r <m< td=""><td>BLO/BCS</td><td>25</td><td>C = 1</td><td>r≥m</td><td>BHS/BCC</td><td>24</td><td>Unsigned</td></m<>	BLO/BCS	25	C = 1	r≥m	BHS/BCC	24	Unsigned		
Carry	BCS	25	C = 1	No Carry	BCC	24	Simple		
Negative	BMI	2B	N = 1	Plus	BPL	2A	Simple		
Overflow	BVS	29	V = 1	No Overflow	BVC	28	Simple		
r=0	BEQ	27	Z = 1	r≠0	BNE	26	Simple		
Always	BRA	20		Never	BRN	21	Unconditional		

For 16-bit offset long branches precede opcode with a \$18 page prebyte.

S12XCPU Reference Manual, v01.01

Table A-8. Hexadecimal to ASCII Conversion

Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII
\$00	NUL	\$20	SP space	\$40	@	\$60	` grave
\$01	SOH	\$21	!	\$41	Α	\$61	а
\$02	STX	\$22	" quote	\$42	В	\$62	b
\$03	ETX	\$23	#	\$43	С	\$63	С
\$04	EOT	\$24	\$	\$44	D	\$64	d
\$05	ENQ	\$25	%	\$45	Е	\$65	е
\$06	ACK	\$26	&	\$46	F	\$66	f
\$07	BEL beep	\$27	ʻ apost.	\$47	G	\$67	g
\$08	BS back sp	\$28	(\$48	Н	\$68	h
\$09	HT tab	\$29)	\$49	1	\$69	i
\$0A	LF linefeed	\$2A	*	\$4A	J	\$6A	j
\$0B	VT	\$2B	+	\$4B	K	\$6B	k
\$0C	FF	\$2C	, comma	\$4C	L	\$6C	I
\$0D	CR return	\$2D	- dash	\$4D	M	\$6D	m
\$0E	SO	\$2E	. period	\$4E	N	\$6E	n
\$0F	SI	\$2F	/	\$4F	0	\$6F	0
\$10	DLE	\$30	0	\$50	Р	\$70	р
\$11	DC1	\$31	1	\$51	Q	\$71	q
\$12	DC2	\$32	2	\$52	R	\$72	r
\$13	DC3	\$33	3	\$53	S	\$73	s
\$14	DC4	\$34	4	\$54	Т	\$74	t
\$15	NAK	\$35	5	\$55	U	\$75	u
\$16	SYN	\$36	6	\$56	V	\$76	V
\$17	ETB	\$37	7	\$57	W	\$77	w
\$18	CAN	\$38	8	\$58	Χ	\$78	х
\$19	EM	\$39	9	\$59	Υ	\$79	у
\$1A	SUB	\$3A	:	\$5A	Z	\$7A	Z
\$1B	ESCAPE	\$3B	;	\$5B	[\$7B	{
\$1C	FS	\$3C	<	\$5C	\	\$7C	1
\$1D	GS	\$3D	=	\$5D]	\$7D	}
\$1E	RS	\$3E	>	\$5E	۸	\$7E	~
\$1F	US	\$3F	?	\$5F	_ under	\$7F	DEL delete

A.5 Hexadecimal-to-Decimal Conversion

To convert a hexadecimal number (up to four hexadecimal digits) to decimal, look up the decimal equivalent of each hexadecimal digit in Table A-9. The decimal equivalent of the original hexadecimal number is the sum of the weights found in the table for all hexadecimal digits.

15 Bit 8 Bit 0 15 12 11 7 3 8 0 4th Hex Digit 3rd Hex Digit 2nd Hex Digit 1st Hex Digit **Decimal** Hex **Decimal** Hex Hex **Decimal** Hex **Decimal** 0 0 0 0 0 0 1 4,096 1 256 1 16 1 1 2 2 512 2 2 2 8,192 32 3 12,288 3 768 3 48 3 3 4 4 4 16,384 1,024 64 4 4 5 20,480 5 1,280 5 80 5 5 6 6 6 24,576 1,536 6 96 6 7 7 28,672 1,792 7 112 7 7 8 8 32,768 2,048 8 128 8 8 9 9 36,864 2,304 9 144 9 9 Α 40,960 Α 2,560 Α 160 Α 10 В 45,056 В В В 2,816 176 11 С С С 192 С 12 49,152 3,072 D D 53,248 3,328 D 208 D 13 Ε Ε 57,344 3,484 Ε 224 Е 14 F F F 240 F 61,440 3,840 15

Table A-9. Hexadecimal to/from Decimal Conversion

A.6 Decimal-to-Hexadecimal Conversion

To convert a decimal number (up to 65,535₁₀) to hexadecimal, find the largest decimal number in Table A-9 that is less than or equal to the number you are converting. The corresponding hexadecimal digit is the most significant hexadecimal digit of the result. Subtract the decimal number found from the original decimal number to get the *remaining decimal value*. Repeat the procedure using the remaining decimal value for each subsequent hexadecimal digit.

S12XCPU Reference Manual, v01.01