明細書

新規なベンゾフラン誘導体、それを含有する医薬組成物およびそれらの用途

5 〔技術分野〕

本発明は、アデノシンA_{2A}受容体拮抗作用を有する新規なベンゾフラン誘導体、それを含有する医薬組成物およびそれらの用途に関する。

〔背景技術〕

- 10 アデノシンは、プリンヌクレオシドの一つであり、生体内において種々の調節機能、生理活性を有している。アデノシン受容体として、4つのサブタイプ(A $_1$ 、 A_{2A} 、 A_{2B} および A_3 受容体)が知られている。アデノシンが示す作用は、G蛋白共役型受容体ファミリーに属するこれらの膜受容体とアデノシンとの相互作用により媒介されることが知られている。
- 中枢神経系におけるアデノシンA2A受容体の分布および機能についてはよく 15 認識されており、アデノシンA2A受容体はコリン作動性、GABA作動性、グルタ ミン酸作動性ニューロンの調整に関与していることが明らかとされている。また 、アデノシンA2A受容体はドパミンD2受容体とも機能的に関連しており、アデ ノシンA2A受容体を拮抗することによりドパミンD2受容体に対するドパミンの 結合能が増加することが知られている(例えば、非特許文献1参照)。ドパミン 20 ニューロンの異常に起因する疾患としてパーキンソン病が知られている。パーキ ンソン病は中高年齢者に好発する進行性の神経変性疾患であり、安静時振戦、固 縮、無動、姿勢反射障害などの協調性運動機能障害を主症状とする。その病因は 中脳黒質ドパミン性神経細胞の変性による線条体ドパミンの欠乏に起因すると考 えられている。アデノシンA_{2A}受容体は、協調性運動機能の調節に重要な役割 25 を果たしている線条体に豊富に存在し、上述のようにアデノシンA2A受容体と ドパミンD2受容体とは相反性の関係にあることから、アデノシンA2A受容体を 選択的に拮抗する薬剤はパーキンソン病、ハンチントン病、ウィルソン病などの 運動機能障害の治療薬として有用であると考えられている(例えば、非特許文献

15

20

 $2\sim4$ 参照)。また、アデノシン A_{2A} 受容体の拮抗により、抗うつ作用、抗不安作用および神経保護作用が認められることから、アデノシン A_{2A} 受容体拮抗剤はうつ病、不安症、認知機能障害(例えば、アルツハイマー病など)の治療薬として有用であると期待されている(例えば、非特許文献 5 および 6 、特許文献 1 参照)。またアデノシン A_{2A} 受容体の拮抗は脳虚血後の障害を軽減し、脳梗塞量を低下させることが知られており、アデノシン A_{2A} 受容体拮抗剤は脳虚血性障害(例えば、脳卒中、脳血管攣縮後の脳障害など)の治療薬として有用であると期待されている(例えば、非特許文献 7 参照)。またアデノシン A_{2A} 受容体拮抗剤はレストレスレッグス症候群の治療薬として有用であると期待されている(例えば、特許文献 2 参照)。

Sangapure S.S.およびAgasimundin Y.S.らは、ベンゾフロ[3,2-d] ピリミジン 誘導体を合成するための中間体として下記一般式:

(式中、R^Aは非置換もしくはハロゲン、低級アルキル、低級アルコキシまたはカルボキシ基で置換されるフェニル基、ベンジル基または低級アルキル基であり、R^Bは水素原子または低級アルキルを表す)で表されるベンゾフラン誘導体を開示している(例えば、非特許文献8~11参照)。しかしながら、これらのベンゾフラン誘導体の生理活性については何ら記載されていない。

Basavaraj P. らは、抗菌剤、駆除剤、抗炎症薬として有用である 4-オキソナフト[2,1-b]フロ[3,2-d] ピリミジン誘導体を製造するための中間体として、1-アセチルアミノナフト[2,1-b] フランー 2-カルボキサミドおよび 1-ベンゾイルアミノナフト[2,1-b] フランー 2-カルボキサミドを開示している(例えば、非特許文献 1 2参照)。しかしながら、これらのナフト[2,1-b] フラン誘導体の生理活性については何ら記載されていない。

3-ベンゾイルアミノ-5-クロロベンゾフラン-2-カルボキサミド、5-25 クロロ-3-[2-(3, 4-ジエトキシフェニル)アセチルアミノ]ベンゾフ

ラン-2-カルボキサミド、5-プロモ-3-[2-(3, 4-ジエトキシフェニル)アセチルアミノ]ベンゾフラン-2-カルボキサミド、5-クロロ-3-(2-クロロアセチルアミノ)ベンゾフラン-2-カルボキサミドおよび3-アセチルアミノ-5-クロロベンゾフラン-2-カルボキサミドは、ケミカルアブストラクトに記載された公知の化合物であるが、これらの化合物の生理活性については何ら知られていない(例えば、非特許文献13~17参照)。

0ota T.らは、サイクリックGMP特異的ホスホジエステラーゼ阻害剤として有用であるベンゾフロ[3,2-d] ピリミジン-4-オン誘導体を製造するための中間体として下記一般式:

10 (式中、R^cは低級アルキル基を表す)で表されるベンゾフラン誘導体を開示している(例えば、特許文献3参照)。しかしながら、これらのベンゾフラン誘導体の生理活性については何ら記載されていない。

非特許文献

- 15 1. Ferre S.ら, 「Proc. Natl. Acad. Sci. U.S.A.」, 1991年, 88巻, p.7238-7241
 - 2. Ferre S.ら, 「Neurosci. Lett.」, 1991年, 130巻, p.162-164
 - 3. Mandhane S.N.ら, 「Eur. J. Pharmacol.」, 1997年, 328巻, p.135-141
 - 4. Varani K.ら, 「The FASEB Journal」, 2003年, 17巻, p. 2148-2150
- 20 5. EL. Yacoubi M. ら, 「British J. Pharmacol.」, 2001年, 134巻, p. 68-77
 - 6. Dall'Igna O.ら, 「British J. Pharmacol.」, 2003年, 138巻, p.1207-1209
 - 7. Phillis J.W.ら, 「Brain Res.」, 1995年, 705巻, p. 79-84
 - 8. Sangapure S.S.ら, 「Indian J. Chem.」, 1978年, 16B巻, p.627-629
 - 9. Agasimundin Y.S.ら, 「Indian J. Chem.」, 1981年, 20B巻, p.114-117

- 10. Agasimundin Y.S.ら, 「Indian J. Chem.」, 1993年, 32B巻, p.965-968
- 11. Agasimundin Y.S.ら、「Indian J. Heterocyclic Chem.」,1994年,3巻,p.247-252
- 12. Basavaraj P.ら, 「Indian J. Heterocyclic Chem.」, 2002年, 12巻, p.89-94
- 13. 「ケミカルアプストラクト」, Registry Number 340017-67-6
- 14. 「ケミカルアプストラクト」, Registry Number 663931-40-6
- 15. 「ケミカルアブストラクト」, Registry Number 633288-47-8
- 16. 「ケミカルアブストラクト」, Registry Number 397881-00-4
- 10 17. 「ケミカルアプストラクト」, Registry Number 332375-01-6 特許文献
 - 1. 国際公開第2004/108137号パンフレット
 - 2. 国際公開第2004/019949号パンフレット
 - 3. 特開平7-267961号公報

20

5

〔発明の開示〕

本発明者らは、アデノシン A_{2A} 受容体拮抗作用を有する新規な化合物について鋭意研究を重ねたところ、驚くべきことに、一般式(I)で表されるベンゾフラン誘導体が極めて強力なアデノシン A_{2A} 受容体拮抗作用を有すること、さらには当該ベンゾフラン誘導体がアデノシン A_{2A} 受容体関連疾患の治療または予防剤として有用であることを見出し、本発明を完成するに至った。

すなわち、本発明は、一般式(I):

$$R^4$$
 R^3
 R^2
 R^5
 $CONHR^1$
 R^6

〔式中、

R¹は、水素原子または低級アルキル基であり:

R²は、以下のa)~o):

- a)低級アルキル基、
- b)ハロ低級アルキル基、
- c) ヒドロキシ低級アルキル基、
- 5 d)シクロアルキル基、

15

- ·e) アリールシクロアルキル基、
- f) ヘテロシクロアルキル基、
- g)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
- 10 h) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキル基、
 - i)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールアルケニル基、
 - j) 低級アルコキシ基または低級アシルオキシ基から選択される基で置換され る低級アルキル基、
 - k)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
 - 1)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、
- 20 m)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールスルファニル低級アルキル基、
 - n)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基、または
- o)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の25 基で環が置換されるヘテロアリール低級アルキル基であり:

 X^1 、 X^2 、 X^3 、 X^4 および X^5 は、それぞれ独立して、以下のa) \sim x) :

- a) ハロゲン原子、
- b)低級アルキル基、
- c) ハロ低級アルキル基、

- d)シクロアルキル基、
- e) 低級アルコキシ基、
- f) ハロ低級アルコキシ基、
- g)シクロアルキルオキシ基、
- 5 h) ヘテロシクロアルキルオキシ基、
 - i) 低級アルコキシ低級アルコキシ基、
 - i) ヒドロキシ低級アルキル基、
 - k)水酸基、
 - 1)カルボキシ基、
- 10 m) 低級アルコキシカルボニル基、
 - n) アラルキルオキシカルボニル基、
 - o) 低級アシル基、
 - p)シアノ基、
 - $q) -A^{1}-NR^{20}R^{21}$
- 15 r) $-A^2 SR^{22}$

- s) $-SO_{2}NR^{23}R^{24}$,
- t) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるフェニル基、
- u) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェノキシ基、
- 25 v) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるヘテロアリール基、
 - w) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低

級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキル アミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるへ テロアリールオキシ基、または

x) アリール基もしくはヘテロアリール基から選択される基で置換される低級 7ルコキシ基を表すか、

あるいは X^1 、 X^2 、 X^3 、 X^4 および X^5 のうち2つが隣接する場合、それらが一緒になって-O(CH_2) $_n$ O-、-O(CH_2) $_n$ -、または-(CH_2) $_p$ -で表される基を形成し;

R²⁰およびR²¹は、それぞれ独立して、水素原子、低級アルキル基、シクロアルキル基、ヘテロシクロアルキル基、橋かけ環状炭化水素基、ヘテロアリール低級アルキル基、ヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基、低級アシル基、低級アルコキシカルボニル基またはジ低級アルキルアミノ低級アルキル基を表すか、あるいはR²⁰およびR²¹が、それらが結合している窒素原子と一緒になって、非置換あるいは以下のa)

15 ~p) からなる群:

20

- a) 低級アルキル基、
- b)シクロアルキル基、
- c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基、
- d)非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される $1\sim3$ 個の基で環が置換されるアラルキル基、または環の隣接する炭素原子が、 $-O-(CH_2)_m-O-$ で置換されるアラルキル基、
- 25 e) ヘテロアリール基、
 - f) ヘテロアリール低級アルキル基、
 - g) 水酸基、低級アルコキシ基、カルボキシ基、アラルキルオキシカルボニル基、環状アミノカルボニル基またはジ低級アルキルアミノ基から選択される基で置換される低級アルキル基、

- h)水酸基、
- i) オキソ基、
- j) 低級アルコキシカルボニル基、
- k) アラルキルオキシカルボニル基、
- 5 1)カルバモイル基、
 - m) 低級アシル基、
 - n)ベンゾイル基、
 - o)ジ低級アルキルアミノ基、および
 - p)ジフェニルメチレン基
- 10 から独立して選択される1~2個の基で置換される環状アミノ基を形成し:

 A^1 は、結合、 C_{1-3} アルキレン基またはカルボニル基を表し;

 A^2 は、結合または C_{1-3} アルキレン基を表し;

R²²は、以下のa)~d):

- a)低級アルキル基、
- b) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基、
 - c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択
- 20 される1~3個の基で置換されるヘテロアリール基、または
 - d) ジ低級アルキルアミノ低級アルキル基であり;

R²³およびR²⁴は、それぞれ独立して水素原子または低級アルキル基を表すか、あるいはR²³およびR²⁴が、それらが結合している窒素原子と一緒になって、非置換または以下からなる群:低級アルキル基もしくはアラルキル基から選択される基で置換される環状アミノ基を形成し:

mは、1または2であり;

25

nは、2または3であり:

pは、3または4であり:

 X^6 、 X^7 および X^8 は、それぞれ独立して、以下のa) $\sim s$):

- a) ハロゲン原子、
- b) 低級アルキル基、
- c) ハロ低級アルキル基、
- d) ヒドロキシ低級アルキル基、
- 5 e)シクロアルキル基、
 - f) ヘテロシクロアルキル低級アルキル基、
 - g)低級アルコキシ基、
 - h) ハロ低級アルコキシ基、
 - i) 低級アシル基、
- 10 j)カルボキシ基、

25

- $k) -A^{1}-NR^{20}R^{21}$
- 1) $-A^2 SR^{22}$
- m) $-SO_2NR^{23}R^{24}$,
- n) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低 級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキル アミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェニル基、
 - o) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェノキシ基、
 - p) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるアラルキル基、
 - q) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるへテロアリール基、

- r) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるヘテロアリールオキシ基、または
- 5 s) アラルキルオキシ基であり:
 - R³、R⁴、R⁵およびR⁶は、それぞれ独立して、以下のa)~m):
 - a) 水素原子、
 - b)ハロゲン原子、
 - c)低級アルキル基、
- 10 d) ハロ低級アルキル基、
 - e)低級アルコキシ基、
 - f) ハロ低級アルコキシ基、
 - g)水酸基、
 - h)シアノ基、
- i) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるアリール基、
- j) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択 20 される1~3個の基で環が置換されるアラルキルオキシ基、
 - k)ジ低級アルキルアミノ基、
 - 1) 低級アルキルスルファニル基、または
- m)ニトロ基を表すか、あるいは R^3 、 R^4 、 R^5 および R^6 のうち 2 つが隣接する場合、それらが一緒になって-CH=CH-CH=CH-で表される基を形成し、但し、 R^3 、 R^4 、 R^5 および R^6 の少なくとも一つは、水素原子以外である;

但し、1-アセチルアミノナフト[2,1-b]フランー2-カルボキサミド、1-ベンゾイルアミノナフト[2,1-b]フランー2-カルボキサミド、3-ベンゾイルアミノー5-クロロベンゾフランー2-カルボキサミド、5-クロロー3-[2

WO 2005/073210 PCT/JP2005/001168

- (3, 4-ジエトキシフェニル)アセチルアミノ]ベンゾフラン-2-カルボキサミド、5-プロモ-3-[2-(3, 4-ジエトキシフェニル)アセチルアミノ]ベンゾフラン-2-カルボキサミド、5-クロロ-3-(2-クロロアセチルアミノ)ベンゾフラン-2-カルボキサミドおよび3-アセチルアミノ-5-クロロベンゾフラン-2-カルボキサミドを除く〕で表される化合物またはそのプロドラッグ、あるいは薬理学的に許容される塩に関する。

また、本発明は、一般式(I)で表される化合物またはその薬理学的に許容される塩を有効成分として含有する医薬組成物に関する。

また、本発明は、一般式(I)で表される化合物またはその薬理学的に許容さ 10 れる塩を有効成分として含有する、アデノシンA_{2A}受容体関連疾患の治療また は予防剤に関する。

さらに本発明は、一般式(I)で表される化合物またはその薬理学的に許容される塩と、アデノシンA_{2A}受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤、認知機能障害治療薬および脳虚血性障害治療薬から選択される少なくとも1種とを組み合わせてなる医薬に関する。

15

さらに本発明は、アデノシン A_{2A} 受容体関連疾患の治療または予防剤を製造するための一般式(I)で表される化合物またはその薬理学的に許容される塩の使用に関する。

さらに本発明は、アデノシンA_{2A}受容体関連疾患の治療または予防方法に関 20 し、該方法は、一般式(I)で表される化合物またはその薬理学的に許容される 塩の有効量を投与する工程を包含する。

一般式(I)で表される化合物において、下記の用語は、特に断らない限り、 以下の意味を有する。

「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を表し、 X^1 、 X^2 、 X^3 、 X^4 および X^5 においては、フッ素原子、塩素原子または臭素原子が好適であり、さらに好適にはフッ素原子または塩素原子であり、最も好適にはフッ素原子であり; X^6 、 X^7 および X^8 においては、フッ素原子、塩素原子または臭素原子が好適であり、最も好適には塩素原子であり; R^3 において

は、フッ素原子が好適であり; R^4 においては、塩素原子またはフッ素原子が好適であり、さらに好適にはフッ素原子であり; R^5 および R^6 においては、塩素原子またはフッ素原子が好適である。

「低級アルキル基」とは、直鎖または分岐鎖状の炭素数 $1 \sim 6$ のアルキル基を意味し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソプチル基、1 なったい。 1 なったい

「ハロ低級アルキル基」とは、1~3個の同種または異種のハロゲン原子で置換された低級アルキル基を意味し、例えば、フルオロメチル基、クロロメチル基、ブロモメチル基、3ープロモプロピル基、4ープロモブチル基、5ープロモペンチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2ートリフルオロエチル基などが挙げられる。R²においては、4ープロモブチル基または5ープロモペンチル基が好適であり;R⁴、R⁵、R⁶においては、トリフルオロメチル基が好適であり;X¹、X²、X³、X⁴、X⁵、X⁶、X⁷およびX⁸においては、クロロメチル基またはトリフルオロメチル基が好適である。

「ヒドロキシ低級アルキル基」とは、水酸基で置換された低級アルキル基を意味し、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシオチルプロピル基、3-ヒドロキシプロピル基などが挙げられる。

25 「シクロアルキル基」とは、3~7員の飽和環状炭化水素を意味し、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基およびシクロヘプチル基が挙げられる。R²においては、シクロプロピル基またはシクロブチル基が好適であり、シクロプロピル基がさらに好適である。

「橋かけ環状炭化水素基」とは、炭素数7~10個を有し、5~7員環を有す

25

る橋かけ状の飽和環状炭化水素を意味し、例えば、ビシクロ[2.2.1] ヘプタンー2-イル基、アダマンタン-1-イル基などが挙げられる。

「シクロアルキルオキシ基」とは、(シクロアルキル)-O-で表される基を 意味し、例えば、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペン チルオキシ基、シクロヘキシルオキシ基などが挙げられる。

「アリールシクロアルキル基」とは、アリール基で置換されたシクロアルキル基を意味し、例えば、2-フェニルシクロプロピル基、2-フェニルシクロペンチル基などが挙げられる。

「ヘテロシクロアルキル基」とは、環内に-NH-、-O-または-S-を含 10 有する4~7員の飽和複素環基を意味し、例えば、テトラヒドロフリル基、テト ラヒドロチエニル基、テトラヒドロピラニル基、ピロリジン-2-イル基、ピロ リジン-3-イル基、ピペリジン-2-イル基、ピペリジン-3-イル基、ピペ リジン-4-イル基などが挙げられる。また当該ヘテロシクロアルキル基は、必 要に応じて1~2個の低級アルキル基またはアラルキル基で置換されてもよく、

15 このような置換へテロシクロアルキル基としては、例えば、N-メチルピペリジン-4-イル基、N-ベンジルピペリジン-4-イル基、N-フェネチルピペリジン-4-イル基などが挙げられる。

「ヘテロシクロアルキルオキシ基」とは、(ヘテロシクロアルキル)-O-で表される基を意味し、例えば、テトラヒドロピラン-4-イルオキシ基、ピペリジン-4-イルオキシ基、N-ベンジルピペリジン-4-イルオキシ基、N-フェネチルピペリジン-4-イルオキシ基などが挙げられる。

「ヘテロシクロアルキル低級アルキル基」とは、ヘテロシクロアルキル基で置換された低級アルキル基を意味し、例えば、Nーメチルピペリジンー4ーイルメチル基、Nーイソプロピルピペリジンー4ーイルメチル基、Nーベンジルピペリジンー4ーイルメチル基、Nーフェネチルピペリジンー4ーイルメチル基などが挙げられる。

「アルケニル基」とは、少なくとも1個の二重結合を有する、直鎖または分岐 鎖状の炭素数2~6個の不飽和炭化水素を意味し、例えば、ビニル基、アリル基 などが挙げられる。

5

15

20

25

「アリール基」とは、炭素数6~10個の芳香族炭化水素を意味し、フェニル基、1-ナフチル基、2-ナフチル基が挙げられ、好適にはフェニル基である。

「アラルキル基」とは、アリール基で置換された低級アルキル基を意味し、ベンジル基、フェネチル基、1-フェニルエチル基、3-フェニルプロピル基、4-フェニルブチル基、ナフチルメチル基などが挙げられ、好適にはベンジル基、フェネチル基、1-フェニルエチル基、3-フェニルプロピル基または4-フェニルブチル基である。

「アリールアルケニル基」とは、アリール基で置換されたアルケニル基を意味 10 し、例えば、スチリル基、シンナミル基などが挙げられる。

「アリールオキシ基」とは、(アリール)-O-で表される基を意味し、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基などが挙げられ、好適にはフェノキシ基である。

「アラルキルオキシ基」とは、(アラルキル) - O - で表される基を意味し、 例えば、ベンジルオキシ基、フェネチルオキシ基、1 - フェニルエトキシ基、3 - フェニルプロポキシ基などが挙げられ、好適にはベンジルオキシ基である。

「アリールオキシ低級アルキル基」とは、アリールオキシ基で置換された低級アルキル基を意味し、例えば、フェノキシメチル基、1-フェノキシエチル基、2-フェノキシエチル基、1-メチル-1-フェノキシエチル基、3-フェノキシプロピル基、ナフチルオキシメチル基などが挙げられ、好適にはフェノキシメチル基、1-フェノキシエチル基、2-フェノキシエチル基または3-フェノキシプロピル基である。

「アラルキルオキシ低級アルキル基」とは、アラルキルオキシ基で置換された 低級アルキル基を意味し、例えば、ベンジルオキシメチル基、2-ベンジルオキ シエチル基、フェネチルオキシメチル基、ナフチルメチルオキシメチル基などが 挙げられ、好適にはベンジルオキシメチル基である。

「低級アルキルスルファニル基」とは、(低級アルキル) - S - で表される基を意味し、例えば、メチルスルファニル基、エチルスルファニル基、プロピルスルファニル基、イソプロピルスルファニル基、ブチルスルファニル基などが挙げ

られる。

5

10

20

「アリールスルファニル基」とは、(アリール)-S-で表される基を意味し、例えば、フェニルスルファニル基、1-ナフチルスルファニル基、2-ナフチルスルファニル基などが挙げられ、好適にはフェニルスルファニル基である。

「アリールスルファニル低級アルキル基」とは、アリールスルファニル基で置換された低級アルキル基を意味し、例えば、フェニルスルファニルメチル基、1ーフェニルスルファニルエチル基、2ーフェニルスルファニルエチル基、1ーメチルー1ーフェニルスルファニルエチル基、3ーフェニルスルファニルプロピル基、ナフチルスルファニルメチル基などが挙げられ、好適にはフェニルスルファニルメチル基である。

「低級アルコキシ基」とは、直鎖または分岐鎖状の炭素数 $1\sim 6$ のアルコキシ基を意味し、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、secーブトキシ基、tertーブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などが挙げられる。 R^3 、 R^4 、 R^5 、 R^6 、 X^6 、 X^7 および X^8 においては、 C_{1-3} アルコキシ基が好適であり、メトキシ基またはエトキシ基がさらに好適であり、メトキシ基が最も好適である。 X^1 、 X^2 、 X^3 、 X^4 および X^5 においては、 C_{1-4} アルコキシ基が好適であり、メトキシ基、エトキシ基、プロポキシ基またはイソプロピル基がさらに好適である。

「ハロ低級アルコキシ基」とは、1~3個の同種または異種のハロゲン原子で 置換された低級アルコキシ基を意味し、例えば、ジフルオロメトキシ基、トリフ ルオロメトキシ基、2, 2, 2-トリフルオロエトキシ基などが挙げられる。

「低級アルコキシ低級アルキル基」とは、低級アルコキシ基で置換された低級 アルキル基を意味し、例えば、メトキシメチル基、2-メトキシエチル基、エト キシメチル基などが挙げられ、好適にはメトキシメチル基である。

25 「低級アルコキシ低級アルコキシ基」とは、低級アルコキシ基で置換された低級アルコキシ基を意味し、例えば、2-メトキシエトキシ基、2-エトキシエトキシ基、3-メトキシプロポキシ基、4-メトキシプトキシ基などが挙げられる

「低級アシル基」とは、H-CO-もしくは(低級アルキル)-CO-で表さ

10

れる基を意味し、例えば、ホルミル基、アセチル基、プロピオニル基、プチリル 基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基などが挙げられ、好適にはアセチル基である。

「低級アシルオキシ基」とは、(低級アシル) - O - で表される基を意味し、 例えば、アセチルオキシ基、プロピオニルオキシ基、イソブチリルオキシ基、ピ バロイルオキシ基などが挙げられ、好適にはアセチルオキシ基である。

「低級アルコキシカルボニル基」とは、(低級アルコキシ)-CO-で表される基を意味し、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基などが挙げられる。

「アラルキルオキシカルボニル基」とは、(アラルキルオキシ)-CO-で表される基を意味し、ベンジルオキシカルボニル基などが挙げられる。

15 「ジ低級アルキルアミノ基」とは、低級アルキル基で二置換されたアミノ基を 意味し、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、 ジイソプロピルアミノ基などが挙げられ、好適にはジメチルアミノ基またはジエ チルアミノ基である。

「ジ低級アルキルアミノ低級アルキル基」とは、ジ低級アルキルアミノ基で置 20 換された低級アルキル基を意味し、例えば、ジメチルアミノメチル基、2-ジメチルアミノエチル基、3-ジメチルアミノプロピル基、ジエチルアミノメチル基、2-ジエチルアミノエチル基などが挙げられ、好適には2-ジメチルアミノエチル基である。

「環状アミノ基」とは、環内に-NH-、-O-または-S-を含んでもよい、 25 5~8 員の環状アミンを意味し、例えば、1-ピロリジル基、ピペリジノ基、ピペラジノ基、モルホリノ基、チオモルホリノ基、アゼパン-1-イル基などが挙 げられ、好適には1-ピロリジル基、ピペリジノ基、モルホリノ基、ピペラジノ 基、アゼパン-1-イル基である。また当該環状アミノ基は、必要に応じて隣接 する環の炭素原子がベンゼン環またはシクロアルキル環と縮合されてもよく、こ

のような縮合環状アミノ基として、例えば、インドリン-1-イル基、1, 2, 3, 4-テトラヒドロキノリン-1-イル基、オクタヒドロイソインドール-2-イル基などが挙げられる。また当該環状アミノ基は、環の炭素原子が1, 2-エチレンジオキシ基とスピロ環を形成してもよく、このような環状アミノ基として、例えば、1, 4-ジオキサ-8-アザスピロ[4, 5]デク-8-イル基などが挙げられる。

「環状アミノカルボニル基」とは、(環状アミノ)-CO-で表される基を意味し、例えば、ピロリジノカルボニル基、ピペリジノカルボニル基、モルホリノカルボニル基、ピペラジノカルボニル基などが挙げられる。

「ヘテロアリール基」とは、 $1\sim5$ 個の炭素原子ならびにO、NおよびS原子 10 からなる群から独立して選択される1~4個のヘテロ原子を含有する5~6員の 単環式芳香族複素環、あるいは $1\sim9$ 個の炭素原子ならびにO、NおよびS原子 からなる群から独立して選択される1~4個のヘテロ原子を含有する8~10員 の二環式芳香族複素環を意味し、但し、これらの環は、隣接する酸素原子および /または硫黄原子を含まない。単環式芳香族複素環としては、例えば、ピロリル、 15 フリル、チエニル、イミダゾリル、ピラゾリル、オキサゾリル、イソキサゾリル、 1, 2, 4-オキサジアゾリル、テトラゾリル、チアゾリル、イソチアゾリル、 1, 2, 3-チアジアゾリル、トリアゾリル、ピリジル、ピラジニル、ピリミジ ルおよびピリダジニルなどが挙げられ、好適にはフリル、チエニル、イソキサゾ リルまたはピリジルであり、さらに好適にはフリルである。二環式芳香族複素環 20 としては、例えば、インドリル、インダゾリル、ベンゾフラニル、ベンゾチエニ ル、ベンゾチアゾリル、キノリル、イソキノリル、フタラジニル、ベンズイミダ ゾリル、ペンゾオキサゾリルなどが挙げられ、好適にはベンゾフラニルである。 これらの複素環の全ての位置異性体が考えられる(例えば、2-ピリジル、3-25 ピリジル、4ーピリジルなど)。

「ヘテロアリール低級アルキル基」とは、ヘテロアリール基で置換された低級アルキル基を意味し、例えば、2-フリルメチル基、3-フリルメチル基、2-チエニルメチル基、3-チエニルメチル基、3-ピリジルメチル基、3-ピリジルメチル基、3-ピリジルエチル基、3-ベンゾチエニルメチル基などが挙

げられる。

20

25

「 C_{1-3} アルキレン基」とは、炭素数 $1\sim3$ の 2 価の直鎖飽和炭化水素鎖を意味し、当該炭化水素鎖は必要に応じて $1\sim3$ 個のメチル基で置換されてもよい。当該 C_{1-3} アルキレン基の具体例として、例えば、 $-CH_2-$ 、 $-CH_2$ CH $_2-$ 、 $-CH_3$ CH $_3$ CH $_2-$ 、 $-CH_4$ CH $_3$ CH $_3$ CH $_3$ CH $_4-$ 、 $-CH_4$ CH $_3$ CH $_4$ CH $_5$ CH $_5$ CH $_5$ CH $_5$ CH $_5$ CH $_5$ CH $_6$ CH $_6$ CH $_7$ CH $_$

一般式(I)で表される化合物において1つまたはそれ以上の不斉炭素原子が存在する場合、本発明は各々の不斉炭素原子がR配置の化合物、S配置の化合物、およびそれらの任意の組み合せの化合物のいずれも包含する。またそれらのラセミ化合物、ラセミ混合物、単一のエナンチオマー、ジアステレオマー混合物が本発明の範囲に含まれる。本発明の前記一般式(I)で表される化合物において幾何学異性が存在する場合、本発明はcis異性体、trans異性体、およびそれらの混合物のいずれも包含する。さらに一般式(I)で表される化合物には、水和物やエタノール等の医薬品として許容される溶媒との溶媒和物も含まれる。

一般式(I)で表される化合物は、塩の形態で存在することができる。このような塩としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの鉱酸との付加塩、ギ酸、酢酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸、プロピオン酸、クエン酸、コハク酸、酒石酸、フマル酸、酪酸、シュウ酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アスパラギン酸等の有機酸との付加塩、ナトリウム塩、カリウム塩、カルシウム塩等の無機塩基との塩、トリエチルアミン、ピペリジン、モルホリン、リジン等の有機塩基との塩を挙げることができる。

本発明において「プロドラッグ」とは生体内において前記一般式(I)に変換される化合物を意味し、このようなプロドラッグはまた本発明の範囲内である。 プロドラッグの様々な形態が当該分野で周知である。

例えば、前記一般式(I)で表される化合物がカルボン酸官能基を有する場合、

プロドラッグとして、当該カルボン酸基の水素原子と、以下のような基:低級ア ルキル基、低級アルカノイルオキシメチル、1-(低級アルカノイルオキシ)エチ ル、1-メチル-1-(低級アルカノイルオキシ)エチル、低級アルコキシカルボ ニルオキシメチル、1‐(低級アルコキシカルボニルオキシ)エチル、1‐メチル -1-(低級アルコキシカルボニルオキシ)エチル、N-(低級アルコキシカル ボニル) アミノメチル、1- (N- (低級アルコキシカルボニル) アミノ) エチ ル、3-フタリジル、4-クロトノラクトニル、ガンマーブチロラクトン-4-イル、N,N-ジ低級アルキルアミノ-低級アルキル(例えばβ-ジメチルアミ ノエチル)、カルバモイルー低級アルキル、N.Nージ低級アルキルカルバモイ ルー低級アルキル、あるいはピペリジノー、ピロリジノーまたはモルホリノ低級 10 アルキルとの置換により形成されるエステルが挙げられる。また前記一般式 (I)で表される化合物が、水酸基を有する場合、プロドラッグとして、当該水 酸基の水素原子と、以下のような基:低級アシル基(例えば、アセチル基、プロ ピオニル基、ブチリル基、イソブチリル基、ピバロイル基など);低級アルコキ 15 シカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、プロ ポキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル 基など);またはスクシノイル基との置換により形成される化合物が挙げられる。 また前記一般式(I)で表される化合物が、-NHまたは-NH。のようなアミ ノ基を有する場合、プロドラッグとして、当該アミノ基の水素原子と、以下のよ うな基:低級アシル基(例えば、アセチル基、プロピオニル基、ブチリル基、イ 20 ソブチリル基、ピバロイル基など);または低級アルコキシカルボニル基(例え ば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、 イソプロポキシカルボニル基、tert-ブトキシカルボニル基など)との置換によ り形成される化合物が挙げられる。これらのプロドラッグ化合物は、公知の方法、 25 例えば、T.W.Green およびP.G.H.Wuts, 「Protective Groups in Organic Synthesis」第3版、およびそこに記載された参考文献に従って化合物(Ⅰ)か ら製造することができる。

本発明の一般式(I)で表される化合物のひとつの実施態様において、

R¹は、好ましくは水素原子であり;

R²は、好ましくは、以下のa)~h):

- a) 低級アルキル基、
- b) シクロアルキル基、
- 5 c)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
 - d)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキル基、
 - e) 低級アルコキシ低級アルキル基、
- 10 f)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
 - g)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、または
- h)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim 3$ 個の 15 基で環が置換されるヘテロアリール基であり、

さらに好ましくは、R²は、以下のa)~c):

- a)シクロアルキル基:
 - b) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、または
- 20 c)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基であり;

 X^1 、 X^2 、 X^3 、 X^4 および X^5 は、好ましくは、それぞれ独立して、以下のa) \sim i) :

- a) ハロゲン原子、
- [・]25 b) 低級アルキル基、
 - c)低級アルコキシ基、
 - d) ハロ低級アルコキシ基、
 - e) ヘテロシクロアルキルオキシ基、
 - f) 水酸基、

- g) $-A^{1}-NR^{20}R^{21}$,
- h) $-A^2 SR^{22}$,
- $i) SO_2NR^{23}R^{24}$
- j) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるヘテロアリール基であるか、

あるいは X^1 、 X^2 、 X^3 、 X^4 および X^5 のうち2つが隣接する場合、それらが一緒になって-OCH $_2$ O-を形成し;

- X^6 、 X^7 および X^8 は、好ましくは、それぞれ独立して、以下のa) ~ i):
 - a) ハロゲン原子、
 - b) 低級アルキル基、
 - c) ヒドロキシ低級アルキル基、
 - d)シクロアルキル基、
- 15 e) ヘテロシクロアルキル低級アルキル基、
 - $f) -A^{1}-NR^{20}R^{21}$
 - g) $-SO_2NR^{23}R^{24}$,
- h) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキル 20 アミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェニル基、または
 - i) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェノキシ基であり:

R³は、好ましくは水素原子であり;

 R^4 、 R^5 および R^6 は、それぞれ独立して、好ましくは以下のa) $\sim e$):

a) 水素原子、

25

b) ハロゲン原子、

- c) 低級アルキル基、
- d) ハロ低級アルキル基、または
- e)低級アルコキシ基である、但し、R⁴、R⁵およびR⁶の少なくとも一つは、 水素原子以外である。

本発明の好ましい実施態様では、R1は、水素原子である。

本発明のさらに好ましい実施態様では、 R^1 は水素原子であり、 R^3 は水素原子である。

本発明のなおさらに好ましい実施態様では、

10 R¹は、水素原子であり、

R²は、以下のa)~h):

- a) 低級アルキル基、
- b)シクロアルキル基、
- c)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される
- 15 1~5個の基で置換されるアリール基、
 - d) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキル基、
 - e) 低級アルコキシ低級アルキル基、
 - f)非置換もしく $はX^1$ 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される
- 20 1~5個の基で環が置換されるアリールオキシ低級アルキル基、
 - g)非置換もしくはX¹、X²、X³、X⁴およびX⁵からなる群から選択される
 - 1~5個の基で環が置換されるアラルキルオキシ低級アルキル基、または
 - h) 非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基であり、
- ²⁵ R³は、水素原子である。

本発明のなおさらに好ましい実施態様では、

R¹は、水素原子であり、

R²は、以下のa)~h):

a) 低級アルキル基、

- b)シクロアルキル基、
- c)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
- d)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキル基、
 - e) 低級アルコキシ低級アルキル基、
- f)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
- g)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、または
 - h)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基であり、

R³は、水素原子であり、

R⁴、R⁵およびR⁶は、それぞれ独立して、以下のa)~e):

- 15 a) 水素原子、
 - b)ハロゲン原子、
 - c)低級アルキル基、
 - d) ハロ低級アルキル基、または
 - e) 低級アルコキシ基である、但し、R⁴、R⁵およびR⁶の少なくとも一つは、
- 20 水素原子以外である。

本発明のなおさらに好ましい実施態様では、

R¹は、水素原子であり、

R²は、以下のa)~c):

- a) シクロアルキル基:
- 25 b)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、または
 - c)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim 3$ 個の基で環が置換されるヘテロアリール基であり、

R³は、水素原子であり、

R⁴、R⁵およびR⁵は、それぞれ独立して、以下のa)~e):

- a)水素原子、
- b)ハロゲン原子、
- c) 低級アルキル基、
- 5 d) ハロ低級アルキル基、または
 - e) 低級アルコキシ基である、但し、R⁴、R⁵およびR⁶の少なくとも一つは、 水素原子以外である。

本発明のなおさらに好ましい実施熊様では、

R1は、水素原子であり、

- 10 R²は、以下のa)~c):
 - a)シクロアルキル基;
 - b) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、または
- c)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の 15 基で環が置換されるヘテロアリール基であり、

R³は、水素原子であり、

R⁴、R⁵およびR⁶は、それぞれ独立して、以下のa)~e):

- a)水素原子、
- b) ハロゲン原子、
- 20 c) 低級アルキル基、
 - d) ハロ低級アルキル基、または
 - e)低級アルコキシ基であり、但し、 R^4 、 R^5 および R^6 の少なくとも一つは、水素原子以外であり、

 X^1 、 X^2 、 X^3 、 X^4 および X^5 は、それぞれ独立して、以下のa) ~ j) :

- · 25 a) ハロゲン原子、
 - b) 低級アルキル基、
 - c) 低級アルコキシ基、
 - d) ハロ低級アルコキシ基、
 - e) ヘテロシクロアルキルオキシ基、

- f) 水酸基、
- g) $-A^{1}-NR^{20}R^{21}$,
- h) $-A^2 SR^{22}$,
- i) $-SO_2NR^{23}R^{24}$,
- j)非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるヘテロアリール基であるか、

あるいは X^1 、 X^2 、 X^3 、 X^4 および X^5 のうち2つが隣接する場合、それらが 10 一緒になって-OCH $_2$ O-を形成し;

 X^{6} 、 X^{7} および X^{8} は、それぞれ独立して、以下のa) ~ i):

- a) ハロゲン原子、
- b) 低級アルキル基、
- c) ヒドロキシ低級アルキル基、
- 15 d)シクロアルキル基、

25

- e) ヘテロシクロアルキル低級アルキル基、
- $f) -A^{1}-NR^{20}R^{21}$
- g) $-SO_2NR^{23}R^{24}$,
- h) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低20 級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェニル基、または
 - i) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェノキシ基である。

本発明の好ましい実施態様の具体例は、以下からなる群から選択される化合物 またはその薬理学的に許容される塩である:

3-シクロプロパンカルボニルアミノ-5-フルオロベンゾフラン-2-カル

ボキサミド;

- 5-クロロ-3-シクロプロパンカルボニルアミノベンゾフラン-2-カルボ キサミド:
- 3 (3 フルオロベンゾイルアミノ) 6 メトキシベンゾフラン-2 カ 5 ルボキサミド;
 - 3-(4-フルオロベンゾイルアミノ)-6-メトキシベンゾフラン-2-カルボキサミド:
 - 5-フルオロ-3-(3-メチルベンゾイルアミノ)ベンゾフラン-2-カルボキサミド:
- 10 3 (ベンゾ [1, 3] ジオキソール-5-カルボニル) アミノ-6-フルオロベンゾフラン-2-カルボキサミド;
 - 5-クロロ-3-(フラン-2-カルボニル)アミノベンゾフラン-2-カルボキサミド:
- 5, 7-ジフルオロー3-(フラン-2-カルボニル)アミノベンゾフランー15 2-カルボキサミド:
 - 5, 7-ジフルオロー3-(5-メチルフラン-2-カルボニル)アミノベン ゾフラン-2-カルボキサミド;
 - 3-(5-エチルフラン-2-カルボニル)アミノ-5-フルオロベンゾフラン-2-カルボキサミド;
- 20 3-(5-エチルフラン-2-カルボニル)アミノ-5,7-ジフルオロペン ゾフラン-2-カルボキサミド;
 - 6-メトキシ-3-(5-フェニルフラン-2-カルボニル)アミノベンゾフ ラン-2-カルボキサミド:
- 6-フルオロー3-(6-フェノキシピリジン-3-カルボニル)アミノベン
 25 ゾフラン-2-カルボキサミド:
 - 6-メトキシ-3-(2-メトキシアセチルアミノ) ベンゾフラン-2-カルボキサミド;
 - 3-[2-(4-クロロフェノキシ)アセチルアミノ]-5-フルオロベンゾフラン-2-カルボキサミド;

- 6-クロロ-3-シクロプロパンカルボニルアミノベンゾフラン-2-カルボ キサミド:
- 5 3 ーシクロプロパンカルボニルアミノー 5,7 ージフルオロベンゾフランー 2 ーカルボキサミド;
 - 7-クロロ-3-シクロプロパンカルボニルアミノ-5-フルオロベンゾフラン-2-カルボキサミド:
- 3 ーシクロプロパンカルボニルアミノー5 ーフルオロー7 メトキシベンゾフ 10 ラン-2 - カルボキサミド;
 - 3 -シクロブタンカルボニルアミノ-5,7 -ジフルオロベンゾフラン-2 -カルボキサミド:
 - 5-フルオロ-7-メトキシ-3-(4-メトキシベンゾイルアミノ)ベンゾフラン-2-カルボキサミド;
- 15 5, 7-ジフルオロ-3-フェニルアセチルアミノベンゾフラン-2-カルボ キサミド;
 - 5, 7-ジフルオロ-3-[3-(4-メチルピペラジン-1-カルボニル) ベンゾイルアミノ] ベンゾフラン-2-カルボキサミド:
- 6 メトキシー3 [3 (4 フェニルピペラジン-1 イルメチル) ベン 20 ゾイルアミノ] ベンゾフラン-2 - カルボキサミド:
 - 6-メトキシー3-[4-(1-メチルー1H-イミダゾールー2-イルスルファニルメチル)ベンゾイルアミノ]ベンゾフランー2-カルボキサミド;
 - 3 [5 (4 ベンジルピペラジン 1 イルメチル) フラン 2 カルボニル] アミノ 5,7 ジフルオロベンゾフラン 2 カルボキサミド;
- 3 [5 (4 べンゾ [1,3] ジオキソール-5 イルメチルピペラジン 1 イルメチル) フラン-2 カルボニル] アミノ-5,7 ジフルオロベン ゾフラン-2 カルボキサミド;
 - 4-[5-(2-カルバモイル-5,7-ジフルオロベンゾフラン-3-イルカルバモイル)フラン-2-イルメチル]ピペラジン-1-カルボン酸 tert-ブ

チル;および

5-フルオロ-3-[5-(1-ヒドロキシエチル)フラン-2-カルボニル]アミノベンゾフラン-2-カルボキサミド。

5 一般式(I)で表される化合物は、スキーム1~4に示す方法に従って製造することができる。

スキーム 1
$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{7}$$

$$R^{6}$$

$$R^{7}$$

$$R^{$$

(式中、R¹、R²、R³、R⁴、R⁵およびR⁶は上記と同義であり、L¹は塩素 原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、pートルエンスルホ ニルオキシ基などの脱離基を表す。)

工程1-1

10

15

2-ヒドロキシベンゾニトリル誘導体(X)を、不活性溶媒中、塩基の存在下に化合物(XI)と縮合させることにより、化合物(XII)が得られる。この縮合反応に用いられる溶媒としては、例えば、エタノール、アセトニトリル、N,Nージメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、1-メチルー2-ピロリドンおよびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、N,Nージイソプロピルエチルアミンなどが挙げられる。その反応温度は通常、0℃~室温であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、

通常、1時間~24時間である。

工程1-2

5.

10

15

続いて化合物(XII)を不活性溶媒中、塩基の存在下に閉環させることにより、化合物(XIII)が得られる。当該反応に用いられる溶媒としては、例えば、エタノール、アセトニトリル、N, Nージメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、1ーメチルー2ーピロリドンおよびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、N, Nージイソプロピルエチルアミンなどが挙げられる。その反応温度は通常、室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、1時間~24時間である。

また、化合物(XIII)は、工程1-1で得られる化合物(XII)を単離することなく、工程1-2を行うことによっても製造することが出来る。

工程1-3

次いで化合物(XIII)を、不活性溶媒中、縮合剤(例えば、ジシクロヘキシルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩、シアノリン酸エチル、アジ化ジフェニルホスホリルなど)の存在下にカルボン酸(XIV)と縮合させることにより、化合物(I)が得られる。

また、化合物(I)は、カルボン酸(XIV)を常法に従ってその反応性誘導体(例えば、酸ハライド、酸無水物、混合酸無水物、4-二トロフェニルエステル、202、5-ジオキサピロリジンエステルなど)に変換後、塩基の存在下または非存在下に化合物(XIII)と縮合させることによっても得ることができる。この縮合反応に用いられる溶媒としては、例えば、アセトニトリル、N,Nージメチルホルムアミド、テトラヒドロフラン、塩化メチレン、およびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、トリエチルアミン、N,N25-ジイソプロピルエチルアミン、ピリジン、Nーメチルモルホリン、N,Nージメチルアニリン等などが挙げられる。その反応温度は通常-20℃〜還流温度であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、15分〜24時間である。

一般式(I)で表される化合物のうち、R¹が水素原子である化合物(Ia)は、スキーム2に示す方法に従っても製造することができる。

スキーム2

(式中、R²、R³、R⁴、R⁵、R⁶およびL¹は上記と同義である。)

5 工程2-1

10

2-ヒドロキシベンゾニトリル誘導体(X)を、不活性溶媒中、塩基の存在下に化合物(XV)と縮合させることにより、化合物(XVI)が得られる。この縮合反応に用いられる溶媒としては、例えば、エタノール、アセトニトリル、1-メチルー2-ピロリドン、N,Nージメチルホルムアミドなどが挙げられる。塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、トリエチルアミン、N,Nージイソプロピルエチルアミンなどが挙げられる。その反応温度は通常、0 \mathbb{C} \mathbb{C}

工程2-2

15 続いて化合物(XVI)を不活性溶媒中、塩基の存在下に閉環させることにより、 化合物(XVII)が得られる。当該反応に用いられる溶媒としては、例えば、メタ ノール、エタノール、イソプロパノールなどのアルコール類、およびこれらアル コール類と水との混合溶媒が挙げられる。塩基としては、例えば、水酸化カリウ ム、水酸化ナトリウムなどが挙げられる。その反応温度は通常、室温~環流温度 であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、 1時間~24時間である。

工程2-3

次いで化合物 (XVII) とカルボン酸 (XIV) とを、工程 1 - 3 と同様にして、 5 縮合させることにより、化合物 (Ia) が得られる。

一般式(I)で表される化合物のうち、一般式(Ib)で表される化合物は、スキーム3に示す方法に従って製造することができる。

スキーム 3
$$HO_2C-Ar$$
 $A^{10}L^2$ R^4 R^3 HN Ar $A^{10}L^2$ R^5 R^6 R^7 R^8 R^8

10 (式中、 R^1 、 R^3 、 R^4 、 R^5 および R^6 は上記と同義であり、 A^{10} は C_{1-3} アルキレン基を表し、 A_{Γ} はアリール基またはヘテロアリール基を表し、 L^2 は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-hルエンスルホニルオキシ基などの脱離基を表し、Yは-N(R^{20})-または-S-であり、Yが-N(R^{20})-である場合、 R^{30} は R^{21} と同義であり、Yが-S-である 場合、 R^{30} は R^{22} と同義である。)

工程3-1

化合物 (XIII) と化合物 (XVIII) とを、工程 1-3 と同様にして縮合させることにより、化合物 (XIX) が得られる。

工程3-2

続いて、化合物(XIX)を、不活性溶媒中、塩基の存在下または非存在下に化合物(XX)と反応させることにより、化合物(Ib)が得られる。この反応に用いられる溶媒としては、例えば、エタノール、イソプロパノール、アセトニトリル、N,Nージメチルホルムアミド、テトラヒドロフラン、塩化メチレン、1-メチルー2-ピロリドンおよびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、Nーメチルモルホリン、N,Nージメチルアニリン等などが挙げられる。その反応温度は通常-20℃~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、15分~24時間である。

10

一般式(I)で表される化合物のうち、一般式(Ic)で表される化合物は、 スキーム4に示す方法に従って製造することができる。 スキーム4

$$R^4$$
 R^3 L^2 CO_2H R^4 R^3 HN O L^2 またはその反応性誘導体 R^5 $(XIII)$ R^6 $(XIII)$ R^6 $(XIII)$

(式中、 R^1 、 R^3 、 R^4 、 R^5 、 R^6 および L^2 は上記と同義であり、 A^{20} は C_{1-6} アルキレン基を表し、 R^{40} は非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基を表し、 X^1 、 X^2 、 X^3 、 X^4 および X^5 は上記と同義である。)

工程4-1

15

化合物(XIII)と化合物(XXI)とを、工程1-3と同様にして縮合させるこ

とにより、化合物(XXII)が得られる。

工程 4-2

続いて、化合物(XXII)を、不活性溶媒中、塩基の存在下に化合物(XXIII)と反応させることにより、化合物(Ic)が得られる。この反応に用いられる溶媒としては、例えば、エタノール、イソプロパノール、アセトニトリル、N,Nージメチルホルムアミド、テトラヒドロフラン、塩化メチレン、1-メチルー2-ピロリドンおよびそれらの混合溶媒等が挙げられる。塩基としては、例えば、炭酸カリウム、トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、Nーメチルモルホリン、N,Nージメチルアニリン等などが挙げられる。その反応温度は通常-20℃~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度等により異なるが、通常、15分~24時間である。

スキーム1において用いられる出発原料のうち、化合物(X)は以下のスキーム5または6に示す方法に従って製造することができる。

15

20

10

5

スキーム5

$$R^3$$
 工程5-1 R^3 CHO 工程5-2 R^4 CN $NH_2OH \bullet HCI$ R^5 OH R^5 (XXIV) (XXV) R^5 (XXV) R^5 R^5

(式中、R³、R⁴、R⁵およびR⁶は上記と同義である。)

工程5-1

フェノール誘導体 (XXIV) とヘキサメチレンテトラミンとを、トリフルオロ酢酸溶媒中で縮合させることにより、イミン化合物が得られる。続いて、このイミン化合物を酸加水分解することにより、化合物 (XXV) が得られる。この縮合反応の温度は、通常、室温から還流温度であり、反応時間は使用する原料物質、反応温度によっても異なるが、通常、1~144時間である。加水分解に用いられる酸としては、例えば、硫酸水溶液などが挙げられる。加水分解反応の温度は、室温から還流温度であり、反応時間は15分から12時間である。

また、化合物(XXV)は、フェノール誘導体(XXIV)とパラホルムアルデヒドとを、不活性溶媒(例えば、アセトニトリルなど)中、塩化マグネシウムおよび塩基の存在下に縮合させることによっても得られる。本反応に用いられる塩基としては、例えば、トリエチルアミン、N, N-ジイソプロピルエチルアミンなどが挙げられる。この縮合反応の温度は、通常、室温から還流温度であり、反応時間は使用する原料物質、反応温度によっても異なるが、通常、0.5~48時間である。

工程5-2

5

続いて、化合物 (XXV) とヒドロキシアミン塩酸塩とを、適切な溶媒(例えば、10 1-メチルー2-ピロリドン、ギ酸など)中で反応させることにより、化合物 (X) が得られる。その反応温度は、通常、室温~還流温度であり、反応時間は使用する原料物質、溶媒、反応温度によっても異なるが、通常、1~144時間である。

スキーム6

(式中、R³、R⁴、R⁵およびR⁶は上記と同義であり、Yは塩素原子または臭素原子を表す。)

工程 6-1

15

20

また化合物(X)は、フェノール誘導体(XXIV)を、不活性溶媒中、ルイス酸の存在下にメチルチオシアン酸と反応させることによっても得られる。当該反応に用いられる溶媒としては、例えば、ジクロロメタン、1, 2-ジクロロエタンなどが挙げられる。ルイス酸としては、三ハロホウ素(例えば、三塩化ホウ素または三臭化ホウ素)/塩化アルミニウムなどが挙げられる。その反応温度は、通常、0 \mathbb{C} $\mathbb{$

上記に示したスキームは、一般式(I)で表される化合物またはその製造中間体を製造するための方法のいくつかの例示であり、当業者には容易に理解され得るようにこれらのスキームの様々な改変が可能である。

5 一般式(I)で表される化合物、および当該化合物を製造するために使用される中間体は、必要に応じて、当該分野の当業者には周知の単離・精製手段である溶媒抽出、結晶化、再結晶、クロマトグラフィー、分取高速液体クロマトグラフィーなどの操作を行うことにより、単離・精製することができる。

このようにして製造される一般式(I)で表される化合物は、優れたアデノシンA_{2A}受容体拮抗作用を有するのでアデノシンA_{2A}受容体関連疾患、例えば、運動機能障害(例えば、パーキンソン病、ハンチントン病、ウィルソン病など)、うつ病、不安症、認知機能障害(例えば、アルツハイマー病など)、脳虚血性障害(脳卒中、脳血管攣縮後の脳障害など)、レストレスレッグス症候群などの治療または予防薬として有用である。

15 また、一般式(I)で表される化合物は、必要に応じて、アデノシンA2A受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤、認知機能障害治療薬または脳虚血性障害治療薬と組み合わせて使用することができる。このような一般式(I)で表される化合物と組み合わせて使用できるパーキンソン病治療薬として、例えば、レボドパ、レボドパ/カルビドパ合剤、レボドパ/ベンセラジド合剤、

ドロキシドパ、メレボドパ、スレオドプス;ドパミンD₂受容体アゴニスト(例えば、カベルゴリン、メシル酸ブロモクリプチン、テルグリド、塩酸タリペキソール、塩酸ロピニロール、メシル酸ペルゴリド、塩酸プラミペキソール、ロチゴチンなど);抗コリン剤(例えば、プロフェナミン、塩酸トリヘキシフェニジル、塩酸マザチコール、ピペリデン、塩酸ピロヘプチン、塩酸メチキセンなど);

25 COMT (catechol 0-methyl transferase) 阻害剤(例えば、トルカポン、エンタカポンなど); NMDA拮抗剤(例えば、ブジピン、など); モノアミンオキシダーゼB阻害剤(例えば、塩酸セレギリン、メシル酸ラサギリンなど); ゾニサミド; 塩酸アマンタジンなどが挙げられる。一般式(I)で表される化合物と組み合わせて使用できる抗うつ剤として、例えば、選択的セロトニン再取り込

み阻害剤(例えば、塩酸フルオキセチン、塩酸セルトラリン、塩酸パロキセチン 、臭化水素酸シタロプラム、マレイン酸フルボキサミンなど);選択的ノルアド レナリン再取り込み阻害剤(例えば、塩酸デシプラミン、塩酸アミトリプチリン 、塩酸ノルトリプチリン、レボキセチンなど);セロトニン/ノルアドレナリン 混合型再取り込み阻害剤(例えば、塩酸ベンラファキシン、塩酸ブプロプリオン 、塩酸ネファゾドン、塩酸ミルナシプランなど) などが挙げられる。一般式 (I)で表される化合物と組み合わせて使用できる認知機能障害治療薬として、例え ば、アセチルコリンエステラーゼ阻害剤(例えば、タクリン、塩酸ドネペジル、 酒石酸リバスチグミン、メトリフォネート、臭化水素酸ガランタミンなど) : 塩 10 酸メマンチン;アリピプラゾール;S-8510;AC-3933などが挙げら れる。一般式(I)で表される化合物と組み合わせて使用できる脳虚血性障害治 療薬として、例えば、血栓溶解剤(例えば、 t - P A (tissue plasminogen activator)、ウロキナーゼなど);トロンビン阻害剤(例えば、アルガトロバ ンなど) ; TXA。合成酵素阻害剤(例えば、オザグレルナトリウムなど) ; ラ 15 ジカル消去剤(例えば、エブセレン、エダラボン、ニカラベンなど):5-HT 1Aアゴニスト(例えば、SUN-N4057、BAYx3702など): NM DA拮抗剤(例えば、塩酸アプチガネルなど); AMPA拮抗剤(例えば、S-1746など); Rho kinase阻害剤(例えば、ファスジルなど); src阻害剤 などが挙げられる。

- 20 一般式(I)で表される化合物またはその薬理学的に許容される塩を有効成分として含有する医薬組成物は、用法に応じ種々の剤型のものが使用される。このような剤型としては例えば、散剤、顆粒剤、細粒剤、ドライシロップ剤、錠剤、カプセル剤、注射剤、液剤、軟膏剤、坐剤、貼付剤などを挙げることができ、経口または非経口的に投与される。
- 25 これらの医薬組成物は、その剤型に応じ製剤学的に公知の手法により、適切な 賦形剤、崩壊剤、結合剤、滑沢剤、希釈剤、緩衝剤、等張化剤、防腐剤、湿潤剤、 乳化剤、分散剤、安定化剤、溶解補助剤などの医薬品添加物と適宜混合または希 釈・溶解することにより製剤化することができる。
 - 一般式(I)で表される化合物またはその薬理学的に許容される塩の投与量は

5

10

15

20

患者の年齢、性別、体重、疾患および治療の程度等により適宜決定されるが、経口投与の場合成人1日当たり約1mg~約500mgの範囲で、非経口投与の場合は、成人1日当たり約0.1mg~約500mgの範囲で、一回または数回に分けて適宜投与することができる。

一般式(I)で表される化合物またはその薬理学的に許容される塩と、アデノシンA_{2A}受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤および認知機能障害治療薬から選択される少なくとも1種とを組み合わせてなる医薬は、これらの有効成分を一緒に含有する製剤、またはこれらの有効成分の各々を別々に製剤化した製剤として投与することができる。別々に製剤化した場合、それらの製剤を別々にまたは同時に投与することができる。また、別々に製剤化した場合、それらの製剤を使用時に希釈剤などを用いて混合し、同時に投与することができる。

一般式(I)で表される化合物またはその薬理学的に許容される塩と、アデノシンA_{2A}受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤および認知機能障害治療薬から選択される少なくとも1種とを組み合わせてなる医薬において、薬剤の投与量は、患者の年齢、性別、および体重、症状、投与時間、剤形、投与

方法、薬剤の組み合わせなどにより、適宜選択することができる。

本発明の一般式(I)で表される化合物は、アデノシン A_{2A} 受容体に対して強力な阻害作用を有する。さらに本発明の好ましい化合物は、アデノシン A_{2A} 受容体に対して選択的な阻害作用を有する。従って、本発明の化合物は、アデノシン A_{2A} 受容体関連疾患、例えば、運動機能障害、うつ病、不安症、認知機能障害、脳虚血性障害、レストレスレッグス症候群などの治療または予防剤として有用であり、特にパーキンソン病の治療または予防剤として好適である。

[発明を実施するための最良の形態]

25 本発明の内容を以下の参考例、実施例および試験例でさらに詳細に説明するが、 本発明はこれらの内容に限定されるものではない。

参考例1-1

3-プロモー5-フルオロー2-ヒドロキシベンズアルデヒド

WO 2005/073210

2-プロモー4-フルオロフェノール(2g)のトリフルオロ酢酸(10mL)溶液に、ヘキサメチレンテトラミン(2.94g)を室温にて加え、更に 2 0時間加熱還流した。反応混合物に 5 0%硫酸を加え、室温にて更に 4 時間撹拌した。酢酸エチルを加えて抽出を行い、水、1 mol/L塩酸、飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。有機溶媒を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、表題化合物(1.93g)を得た。 1 H-NMR (CDCl $_3$) δ ppm: 7.25-7.30 (1H, m), 7.56-7.61 (1H, m), 9.83 (1H, s), 11.35 (1H, s)

10 2 - プロモー4 - フルオロフェノールの代わりに 2, 4 - ジフルオロフェノー ルおよび4 - フルオロー 2 - メトキシフェノールを用い、参考例 1 - 1 と同様の 方法により、参考例 1 - 2 および 1 - 3 を合成した。

参考例1-2

3, 5-ジフルオロ-2-ヒドロキシベンズアルデヒド

15 1 H-NMR (CDCl₃) δ ppm: 7.08-7.20 (2H, m), 9.88 (1H, d, J=1.9Hz), 10.72 (1H, s)

参考例 1-3

5-フルオロー2-ヒドロキシー3-メトキシベンズアルデヒド

 1 H-NMR (CDCl₃) δ ppm : 3.92 (3H, s), 6.85-6.90 (2H, m), 9.87 (1H, s),

20 10.80 (1H, brs)

参考例2-1

2-フルオロー6-ヒドロキシベンゾニトリル

2-フルオロ-6-ヒドロキシベンズアルデヒド(1g)の1-メチル-2-ピロリドン(10mL)溶液中、ヒドロキシアミン塩酸塩(0.60g)を加えた後、120℃にて2日間加熱撹拌した。酢酸エチルにて抽出を行い、水、飽和食塩水で洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、表題化合物(0.35g)を得た。

1H-NMR (CDCl₃) δ ppm: 6.30-6.86 (3H, m), 7.36-7.50 (1H, m)

2-フルオロー6-ヒドロキシベンズアルデヒドの代わりに対応する2-ヒドロキシベンズアルデヒドを用い、参考例2-1と同様の方法により、参考例2-2~2-20を合成した。

5 参考例2-2

5-フルオロー2-ヒドロキシベンゾニトリル

¹ H-NMR (DMSO-d₆) δ ppm : 6.95-7.05 (1H, m), 7.30-7.45 (1H, m), 7.50-7.65 (1H, m), 11.05 (1H, s)

参考例 2-3

10 4-フルオロ-2-ヒドロキシベンゾニトリル

 1 H-NMR (CDCl $_{3}$) δ ppm : 6.20-6.35 (1H, m), 6.65-6.80 (2H, m), 7.45-7.60 (1H, m)

参考例 2-4

3, 5-ジフルオロー2-ヒドロキシベンゾニトリル

15 1 H-NMR (DMSO-d₆) δ ppm: 7.46-7.74 (2H, m), 11.42 (1H, brs)

参考例2-5

3-ブロモー5-フルオロー2-ヒドロキシベンゾニトリル

 1 H-NMR (DMSO-d₆) δ ppm : 7.69-7.76 (1H, m), 7.89-7.96 (1H, m), 11.01(1H, brs)

20 参考例 2-6

2-ヒドロキシ-5-メチルベンゾニトリル

 1 H-NMR (CDCl $_{3}$) δ ppm : 2.29 (3H, s), 6.89 (1H, d, J=8.4Hz), 7.24-7.32 (2H, m)

参考例2-7

25 2-ヒドロキシ-3-メチルベンゾニトリル

¹H-NMR (CDCl₃) δ ppm : 2.28 (3H, s), 5.87 (1H, brs), 6.86-6.94 (1H, m), 7.30-7.40 (2H, m)

参考例2-8

1-ヒドロキシナフタレン-2-カルポニトリル

 1 H-NMR (CDCl₃) δ ppm: 7.35-7.85 (5H, m), 8.21-8.38 (1H, m)

参考例 2-9

2-ヒドロキシ-5-メトキシベンゾニトリル

¹H-NMR (CDCl₃) δ ppm: 3.78 (3H, s), 5.77 (1H, brs), 6.88-6.98 (2H, m).

5 7.02-7.08 (1H, m)

参考例 2-10

2-ヒドロキシー4-メトキシベンゾニトリル

 1 H-NMR(CDCl $_{3}$) δ ppm:3.94(3H, s), 6.27(1H, brs), 6.86-7.16(3H, m) 参考例 2-1 1

10 4ーベンジルオキシー2ーヒドロキシベンゾニトリル

¹H-NMR (CDCl₃) δ ppm: 5.08 (2H, \Rightarrow s), 6.54-6.64 (2H, m), 7.30-7.48 (6H, m)

参考例2-12

2-ヒドロキシー3-メトキシベンゾニトリル

15 1 H-NMR (CDCl₃) δ ppm : 3.83 (3H, s), 6.46-6.58 (2H, m), 7.40 (1H, d, J=8.8Hz)

参考例 2-13

3-エトキシ-2-ヒドロキシベンゾニトリル

¹ H-NMR (CDCl₃) δ ppm : 1.48 (3H, t, J=6.9Hz), 4.15 (2H, q, J=6.9Hz),

20 6.27 (1H, s), 6.80-7.15 (3H, m)

参考例 2-14

4-ジエチルアミノ-2-ヒドロキシベンゾニトリル

¹ H-NMR (DMSO-d₆) δ ppm : 1.06-1.13 (6H, m), 3.28-3.37 (4H, m), 6.13-6.26 (2H, m), 7.25 (1H, d, J=8.8Hz), 10.35 (1H, s)

25 参考例 2-15

4, 5-ジフルオロー2-ヒドロキシベンゾニトリル

¹H-NMR (DMSO-d₆) δ ppm : 6.90-7.00 (1H, m), 7.85-7.95 (1H, m), 11.57 (1H, brs)

参考例 2-16

3-クロロ-5-フルオロ-2-ヒドロキシベンゾニトリル

¹H-NMR (CDCl₃) δ ppm: 7.18-7.25 (1H, m), 7.34-7.39 (1H, m)

参考例 2-17

5-フルオロ-2-ヒドロキシ-3-メトキシベンゾニトリル

5 ¹H-NMR (CDCl₃) δ ppm: 3.94 (3H, s), 6.04 (1H, s), 6.75-6.85 (2H, m) 参考例 2-18

4-エチルー2-ヒドロキシベンゾニトリル

¹ H-NMR (CDCl₃) δ ppm : 1.25 (3H, t, J=7.6Hz), 2.67 (2H, q, J=7.6Hz), 6.78-6.92 (2H, m), 7.40-7.50 (1H, m)

10 参考例 2-19

2-ヒドロキシー4-イソプロピルベンゾニトリル

 1 H-NMR (CDCl $_{3}$) δ ppm : 1.24 (6H, d, J=6.9Hz), 2.75-3.00 (1H, m), 6.35 (1H, brs), 6.80-6.95 (2H, m), 7.30-7.50 (1H, m)

参考例 2-20

15 4-エトキシー2-ヒドロキシベンゾニトリル

 1 H-NMR (CDCl $_{3}$) δ ppm : 1.42 (3H, t, J=6.9Hz), 4.04 (2H, q, J=6.9Hz), 6.40-6.60 (2H, m), 7.30-7.45 (1H, m)

参考例 3-1

20 4-クロロー2-ヒドロキシベンゾニトリル

水冷下、3-クロロフェノール(2.86mL)をジクロロエタン(48mL)溶液中、塩化アルミニウム(4.00g)、三臭化ホウ素(3.39mL)を加えた後、更にメチルチオシアン酸(2.46mL)を加えて、塩化アルミニウムが溶解するまで室温にて撹拌した。更に120℃にて20時間加熱撹拌した。放冷した後、反応混合物に4mol/L 水酸化ナトリウム水溶液(99mL)を加え、約80℃にて30分間撹拌した。得られた溶液をジクロロメタンにて洗浄し、得られた水層に6mol/L 塩酸(75mL)を加えて酸性とし、ジエチルエーテルにて抽出した。得られた有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥した。有機溶媒を減圧下濃縮し、得られた残渣をヘキサンにて懸濁、濾取することにより表題化合物(2.5g)を得た。

WO 2005/073210 PCT/JP2005/001168

42

¹ H-NMR (CDCl₃) δ ppm : 6.99 (1H, dd, J=1.8, 8.5Hz), 7.03 (1H, d, J=1.8Hz), 7.44 (1H, d, J=8.5Hz)

参考例 3-2

5 3-ヒドロキシビフェニル-4-カルボニトリル

3-クロロフェノールの代わりに3-ヒドロキシビフェニルを用い、参考例3-1と同様の方法により、参考例3-2を合成した。

 1 H-NMR (CDCl $_{3}$) δ ppm : 6.10 (1H, brs), 7.18-7.28 (2H, m), 7.39-7.50 (3H, m), 7.54-7.60 (3H, m)

10

15

参考例4-1

3-アミノ-4-フルオロベンゾフラン-2-カルボキサミド

2-フルオロ-6-ヒドロキシベンゾニトリル (0.35g)をエタノール (20mL) に溶かし、炭酸カリウム <math>(0.54g) を加えた後、室温にてブロモアセトアミド (0.43g) を加え、2 時間加熱還流した。更に水酸化カリウム (0.29g) を加え、1 2 時間加熱還流した。反応混合物に水を加え、有機溶媒を減圧濃縮した。析出物を濾取し、表題化合物 (0.25g) を得た。

¹ H-NMR (CDCl₃) δ ppm : 5.24 (2H, brs), 5.81 (2H, brs), 6.80-6.96 (1H, m), 7.10-7.42 (2H, m)

20

2-7ルオロ-6-ヒドロキシベンゾニトリルの代わりに対応する2-ヒドロキシベンゾニトリルを用い、参考例4-1と同様の方法により、参考例 $4-2\sim$ 4-27を合成した。これらを表1に示した。

[表 1]

〔表1〕			
参考例	構造式	参考例	構造式
4-1	F NH ₂ O NH ₂	4-10	NH ₂ O NH ₂
4-2	F NH ₂ O NH ₂	4-11	NH ₂ O NH ₂
4-3	NH ₂ O NH ₂	4-12	NH ₂ O NH ₂
4-4	Ch NH ₂ O NH ₂	4-13	NH ₂ O NH ₂
4-5	CI O NH ₂	4-14	NH ₂ O NH ₂
4-6	F NH ₂ O NH ₂	4-15	NH ₂ O NH ₂
4-7	F NH ₂ O NH ₂	4-16	NH ₂ O NH ₂
4-8	NH ₂ O NH ₂	4-17	NH ₂ O NH ₂
4-9	NH ₂ O NH ₂	4-18	O-NH ₂ ONH ₂ O

表 1 (続き)

参考例	構造式	参考例	構造式
- 303		2 7 7 3	
4-19	F O NH ₂	4-24	NH ₂ O NH ₂
4-20	F O NH ₂ O NH ₂	4-25	NH ₂ O NH ₂
4-21	F NH ₂ O NH ₂	4-26	NH ₂ O NH ₂
4-22	NH ₂ O NH ₂	4-27	NH ₂ O
4-23	NH ₂ O NH ₂		

参考例4-2~4-27の物性値を以下に示した。

参考例4-2

 1 H-NMR (DMSO- 1 G) δ ppm: 5.97 (2H, s), 7.08-7.72 (5H, m)

参考例4-3

 1 H-NMR (CDCl $_{3}$) δ ppm : 5.03 (2H, brs), 5.71 (2H, brs), 6.96-7.14 (2H, m), 7.44-7.54 (1H, m)

参考例4-4

10 1 H-NMR (DMSO-d₆) δ ppm : 6.02 (2H, s), 7.12-7.50 (4H, m), 7.94-8.00 (1H, m)

参考例 4-5

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 6.07 (2H, brs), 7.10-7.36 (3H, m), 7.48-7.58 (1H, m), 7.80-7.92 (1H, m)

参考例4-6

 $^{1}H-NMR$ (DMSO-d₆) δ ppm: 6.07 (2H, brs), 7.15-7.65 (4H, m)

5 参考例4-7

¹ H-NMR (DMSO-d₆) δ ppm : 6.06 (2H, brs), 7.29 (2H, s), 7.62-7.78 (2H, m)

参考例4-8

 1 H-NMR (DMSO- d_{6}) δ ppm : 2.39 (3H, s), 5.92 (2H, s), 7.04-7.32 (4H, m),

10 7.57-7.65 (1H, m)

参考例 4-9

¹ H-NMR (DMSO-d₆) δ ppm : 2.44 (3H, s), 5.93 (2H, brs), 7.06-7.28 (4H, m), 7.63 (1H, d, J=7.6Hz)

参考例4-10

15 1 H-NMR (DMSO-d₆) δ ppm: 6.05 (2H, brs), 7.22 (2H, brs), 7.35-7.80 (7H, m), 7.92 (1H, d, J=8.2Hz)

参考例4-11

¹H-NMR (DMSO-d₆) δ ppm : 6.05 (2H, brs), 7.30 (2H, brs), 7.52-8.40 (6H, m)

20 参考例4-12

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 3.79 (3H, s), 5.90 (2H, s), 7.02 (1H, dd, J=2.7, 9.0Hz), 7.17 (2H, brs), 7.31 (1H, d, J=9.0Hz), 7.40 (1H, d, J=2.7Hz)

参考例 4-13

25 ¹H-NMR (DMSO-d₆) δ ppm: 3.93 (3H, s), 5.98 (2H, s), 6.97-7.44 (5H, m) 参考例 4-14

¹H-NMR (DMSO-d₆) δ ppm : 3.81 (3H, s), 5.97 (2H, s), 6.83-6.95 (2H, m), 7.04 (2H, brs), 7.71 (1H, d, J=8.7Hz)

参考例 4-15

¹ H-NMR (CDCl₃) δ ppm : 1.52 (3H, t, J=6.9Hz), 4.24 (2H, q, J=6.9Hz), 4.99 (2H, brs), 6.85-7.00 (1H, m), 7.05-7.20 (2H, m)

参考例 4 - 1 6

 1 H-NMR (DMSO- d_{6}) δ ppm : 5.18 (2H, s), 5.99 (2H, s), 6.91-7.02 (2H, m),

5 7.08 (2H, brs), 7.30-7.52 (5H, m), 7.73 (1H, d, J=8.7Hz)

参考例4-17

¹H-NMR (DMSO-d₆) δ ppm: 1.05-1.18 (6H, m), 3.28-3.52 (4H, m), 5.87 (2H, brs), 6.47 (1H, s), 6.60-6.72 (1H, m), 6.84 (2H, brs), 7.55 (1H, d, J=8.9Hz)

10 参考例4-18

¹ H-NMR (DMSO-d₆) δ ppm : 6.21 (2H, s), 7.51 (2H, brs), 8.08-8.26 (3H, m)

参考例4-19

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 6.04 (2H, brs), 7.29 (2H, brs), 7.55-7.70 (1H,

15 m), 7.85-7.95 (1H, m)

参考例 4-20

 1 H-NMR (DMSO-d₆) δ ppm : 3.94 (3H, s), 5.93 (2H, brs), 6.93-7.04 (1H, m), 7.13-7.45 (3H, m)

参考例 4-21

20 ¹ H-NMR (DMSO-d₆) δ ppm : 2.31-2.36 (3H, m), 5.96 (2H, s), 7.21 (2H, brs), 7.30-7.37 (1H, m), 7.55-7.65 (1H, m)

参考例 4-22

 1 H-NMR (DMSO-d₆) δ ppm : 2.42 (3H, s), 5.98 (2H, s), 6.95-7.35 (4H, m), 7.68-7.74 (1H, m)

25 参考例4-23

¹ H-NMR (CDCl₃) δ ppm : 1.28 (3H, t, J=7.6Hz), 2.77 (2H, q, J=7.6Hz), 4.99 (2H, brs), 7.06-7.22 (2H, m), 7.40-7.48 (1H, m)

参考例 4 - 2 4

 1 H-NMR (CDCl $_{3}$) δ ppm : 1.30 (6H, d, J=6.9Hz), 2.90-3.15 (1H, m), 4.99

(2H, brs), 5.71 (2H, brs), 7.05-7.30 (2H, m), 7.40-7.50 (1H, m) 参考例 4 - 2 5

 1 H-NMR(CDCl $_3$) δ ppm:1.37(9H, s), 4.99(2H, brs), 7.28-7.50(3H, m) 参考例 4-2 6

5 ¹ H-NMR (DMSO-d₆) δ ppm: 6.16 (2H, s), 7.41 (2H, brs), 7.55-7.65 (1H, m), 7.73-7.80(1H, m), 8.05-8.15 (1H, m)

参考例 4-27

¹ H-NMR (CDCl₃) δ ppm : 1.46 (3H, t, J=6.9Hz), 4.07 (2H, q, J=6.9Hz), 4.99 (2H, brs), 6.80-6.90 (2H, m), 7.35-7.45 (1H, m)

10

15

参考例 5-1

4-フェノキシベンゾイルクロリド

4-フェノキシ安息香酸(1.4g)を塩化メチレン(15mL)に懸濁した後、N,N-ジメチルホルムアミド(0.05mL)を加え、氷冷下にてオキサリルクロリド(1.2mL)を滴下した。室温にて1時間撹拌した後、反応混合物を減圧濃縮し、表題化合物(1.54g)を得た。

¹H-NMR (CDCl₃) δ ppm: 6.95-7.15 (4H, m), 7.20-7.30 (1H, m), 7.40-7.50 (2H, m), 8.05-8.15 (2H, m)

20 4-フェノキシ安息香酸の代わりに対応するカルボン酸を用い、参考例 5-1 と同様の方法により、参考例 5-2 および 5-3 を合成した。

参考例 5-2

5-エチルフラン-2-カルボニルクロリド

 1 H-NMR (CDC1₃) δ ppm : 1.30 (3H, t, J=7.5Hz), 2.76 (2H, q, J=7.5Hz),

25 6.20-6.30 (1H, m), 7.40-7.45 (1H, m)

参考例 5-3

3-プロモー4-フルオロベンゾイルクロリド

 1 H-NMR (CDCl₃) δ ppm : 7.20-7.30 (1H, m), 8.05-8.15 (1H, m), 8.30-8.40 (1H, m)

参考例 6-1

2 - カルバモイル-5 - フルオロ-7 - ヒドロキシベンゾフラン-3 - イルアン モニウムブロミド

5 3-アミノ-5-フルオロ-7-メトキシベンゾフラン-2-カルボキサミド (4.44g)および塩化メチレン(100mL)の混合物に、氷冷下1mol/L三臭化ホウ素塩化メチレン溶液(100mL)を加え、室温にて一晩撹拌した。反応混合物を氷冷下、メタノール(200mL)に注ぎ、さらに1時間撹拌した。得られた混合物を減圧下にて溶媒を留去し、得られた残留物にメタノールを加え、析出物を濾取し、表題化合10 物(4.0g)を得た。

¹H-NMR (DMSO-d₆) δ ppm: 6.62-6.70 (1H, m), 7.00-7.30 (3H, m)

参考例 6-2

2 - カルバモイル-7-ヒドロキシベンゾフラン-3-イルアンモニウムブロミ 15 ド

3-アミノ-5-フルオロ-7-メトキシベンゾフラン-2-カルボキサミド の代わりに3-アミノ-7-メトキシベンゾフラン-2-カルボキサミドを使用 し、参考例6-1と同様にして参考例6-2を合成した。

 1 H-NMR (DMSO- d_{6}) δ ppm: 6.60-7.50 (3H, m), 7.61(1H, d, J=8.5Hz)

20

参考例7-1

3-アミノ-7-クロロ-5-フルオロベンゾフラン-2-カルボキサミド
3-クロロ-5-フルオロ-2-ヒドロキシベンゾニトリル(24.8g)、炭酸カリウム(60.1g)および1-メチル-2-ピロリドン(150mL)の混合物に、室温にてクロロアセトニトリル(11.0mL)を加え、60℃にて5時間撹拌した。氷水に反応混合物を注ぎ、析出物を濾取した。再び酢酸エチル(250mL)に溶かし、アミノプロピルシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル)にて精製し、3-クロロ-2-シアノメトキシ-5-フルオロベンゾニトリル(23.88g)を得た。得られた3-クロロ-2-シアノメトキシ-5-フルオロベンゾニトリル

のエタノール(200mL)溶液に水酸化カリウム(9.5g)を加え、一晩加熱還流した。 反応混合物に水(750mL)を加え、析出物を濾取した。酢酸エチル(500mL)に懸濁後、アミノプロピルシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル)にて精製し、表題化合物(13.09g)を得た。

 1 H-NMR (DMSO-d₆) δ ppm: 6.09 (2H, s), 7.34 (2H, brs), 7.55-7.61 (1H, m), 7.67-7.74 (1H, m)

参考例8-1

5-[2-(4-メトキシフェニル) エチル] フラン-2-カルボン酸メチル (5-メトキシカルボニルフラン-2-イルメチル) トリフェニルホスホニウムクロリド(0.823g)、4-メトキシベンズアルデヒド(0.257g)及びN, N-ジメチルホルムアミド(10mL)の混合物に、水素化ナトリウム(60%, 0.09g)を加え、室温にて3時間撹拌した。反応混合物に水および酢酸エチルを加え、有機層を分離した。有機層を1mol/L塩酸、1mol/L水酸化ナトリウム水溶液、1mol/L塩酸、

15 水、飽和食塩水にて順次洗浄した後、無水硫酸マグネシウムにて乾燥した。減圧下にて溶媒を留去し、残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒: ヘキサン/酢酸エチル=8/1)にて精製し、5-[2-(4-メトキシフェニル)ビニル]フラン-2-カルボン酸メチルを得た。

得られた5-[2-(4-メトキシフェニル) ビニル] フラン-2-カルボン 20 酸メチル、10%パラジウム炭素(50%wet, 0.01g)及び酢酸エチル(30mL)の混合 物を、室温水素雰囲気下常圧にて1.5時間撹拌した。触媒を濾去後、減圧下にて溶媒を留去し、表題化合物(0.344g)を得た。

¹ H-NMR (CDCl₃) δ ppm : 2.90-3.02 (4H, m), 3.79 (3H, s), 3.89 (3H, s), 6.07 (1H, d, J=3.5Hz), 6.78-6.88 (2H, m), 7.05-7.15 (3H, m)

25

4-メトキシベンズアルデヒドの代わりに対応するアルデヒドまたはケトンを用い、参考例8-1と同様の方法により、参考例 $8-2\sim8-6$ を合成した。参考例8-2

5- [2-(3-メトキシフェニル) エチル] フラン-2-カルボン酸メチル

¹ H-NMR (CDCl₃) δ ppm : 2.92-3.05 (4H, m), 3.79 (3H, s), 3.89 (3H, s), 6.10 (1H, d, J=3.5Hz), 6.70-6.82 (3H, m), 7.06-7.24 (2H, m)

参考例8-3

5-[2-(2-メトキシフェニル) エチル] フラン-2-カルボン酸メチル

 1 H-NMR (CDCl $_{3}$) δ ppm : 2.99 (4H, s), 3.82 (3H, s), 3.89 (3H, s), 6.09 (1H, d, J=3.5Hz), 6.81-6.91 (2H, m), 7.05-7.24 (3H, m)

参考例 8-4

5 - (1-イソプロピルピペリジン-4-イルメチル)フラン-2-カルボン酸 メチル

10 ¹H-NMR (CDCl₃) δ ppm: 1.02 (6H, d, J=6.6Hz), 1.20-1.38 (2H, m), 1.62-1.77 (3H, m), 2.00-2.15 (2H, m), 2.56-2.90 (5H, m), 3.87 (3H, s), 6.12 (1H, d, J=3.5Hz), 7.09 (1H, d, J=3.5Hz)

参考例8-5

5- (1-ベンジルピペリジン-4-イルメチル)フラン-2-カルボン酸メチ

15 ル

¹H-NMR (CDCl₃) δ ppm: 1.22-1.38 (2H, m), 1.58-1.80 (3H, m), 1.87-2.00 (2H, m), 2.61 (2H, d, J=7.3Hz), 2.80-2.90 (2H, m), 3.48 (2H, s), 3.87 (3H, s), 6.11 (1H, d, J=3.5Hz), 7.09 (1H, d, J=3.5Hz), 7.20-7.40 (5H, m) 参考例 8 - 6

20 5-(1-フェネチルピペリジン-4-イルメチル)フラン-2-カルボン酸メ チル

MS (ESI, m/z) : 328 (M+H)+

参考例9-1

5-[2-(4-メトキシフェニル) エチル] フラン-2-カルボン酸
 5-[2-(4-メトキシフェニル) エチル] フラン-2-カルボン酸メチル (0.344g)のエタノール(5mL)溶液に、2mol/L水酸化ナトリウム水溶液(1.35mL)を加え、2時間加熱還流した。反応混合物に水およびジエチルエーテルを加え、水層を分離後、得られた水層に1mol/L塩酸(6mL)を加えて酸性とした。得られた水

層に酢酸エチルを加え、有機層を分離後、飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥した。減圧下にて溶媒を留去し、表題化合物 (0.296g) を得た。 1 H-NMR $(CDCl_{3})$ δ ppm: 2.90-3.07 (4H, m), 3.79 (3H, s), 6.12 (1H, d, J=3.5Hz), 6.80-6.86 (2H, m), 7.06-7.14 (2H, m), 7.23 (1H, d, J=3.5Hz)

5

5-[2-(4-メトキシフェニル) エチル] フランー 2-カルボン酸メチル の代わりに対応するカルボン酸エステルを用い、参考例 9-1 と同様の方法により、参考例 $9-2\sim 9-2$ 6 を合成した。

参考例9-2

10 5-[2-(3-メトキシフェニル) エチル] フラン-2-カルボン酸

¹ H-NMR (CDCl₃) δ ppm: 2.95-3.10 (4H, m), 3.79 (3H, s), 6.15 (1H, d, J=3.6Hz), 6.70-6.80 (3H, m), 7.18-7.25 (2H, m)

参考例 9-3

5-[2-(2-メトキシフェニル) エチル] フラン-2-カルボン酸

15 1 H-NMR (CDCl $_{3}$) δ ppm : 3.01 (4H, s), 3.82 (3H, s), 6.14 (1H, d, J=3.4Hz), 6.80-6.93 (2H, m), 7.05-7.25 (3H, m)

参考例 9-4

20 参考例 9-5

5-(1-ベンジルピペリジン-4-イルメチル)フラン-2-カルボン酸

MS (ESI, m/z) : 300 (M+H) +

参考例 9 - 6

5-(1-フェネチルピペリジン-4-イルメチル)フラン-2-カルボン酸

25 MS (ESI, m/z) : 314 (M+H)+

参考例 9-7

5-(アゼパン-1-スルホニル)フラン-2-カルボン酸

¹ H-NMR (CDCl₃) δ ppm : 1.55-1.85 (8H, m), 3.40-3.50 (4H, m), 7.00-7.10 (1H, m), 7.30-7.35 (1H, m)

参考例 9 - 8

 $5-(4-メチルピペラジン-1-スルホニル) フラン-2-カルボン酸
^1H-NMR (DMSO-d₆) <math>\delta$ ppm: 2.26 (3H, s), 2.45-2.60 (4H, m), 3.05-3.20 (4H, m), 7.05-7.10 (1H, m), 7.20-7.25 (1H, m)

5 参考例 9 - 9

3-シクロヘキシルオキシ安息香酸

 1 H-NMR(CDCl $_3$) δ ppm:1.25-1.65(6H, m),1.75-2.10(4H, m),4.25-4.40(1H, m),7.10-7.20(1H, m),7.30-7.45(1H, m),7.55-7.75(2H, m) 参考例 9 - 1 0

10 3-(テトラヒドロピラン-4-イルオキシ) 安息香酸

¹H-NMR (CDCl₃) δ ppm: 1.75-1.90 (2H, m), 1.95-2.10 (2H, m), 3.50-3.70 (2H, m), 3.95-4.05 (2H, m), 4.50-4.65 (1H, m), 7.10-7.25 (1H, m), 7.30-7.45 (1H, m), 7.60-7.75 (2H, m)

15 4ーベンジルオキシー 3 ーモルホリンー 4 ーイルメチル安息香酸

¹H-NMR (DMSO-d₆) δ ppm: 2.25-2.50 (4H, m), 3.40-3.70 (4H, m), 3.59 (2H, brs), 5.22 (2H, s), 7.10-7.55 (6H, m), 7.80-8.00 (2H, m), 12.66 (1H, brs)

参考例 9-12

参考例 9-11

- 20 4-エトキシー3-モルホリン-4-イルメチル安息香酸・塩酸塩

 ¹H-NMR (CDCl₃+MeOD-d₄) δ ppm:1.50 (3H, t, J=7.0Hz), 2.85-3.05 (2H, m),
 3.35-3.45 (2H, m), 3.90-4.00 (1H, m), 4.15-4.25 (4H, m), 4.34 (2H, s),
 6.95-7.05 (1H, m), 8.10-8.25 (2H, m)
 参考例9-13
- 25 6-(2-フルオロフェノキシ) 二コチン酸

 ¹H-NMR (CDCl₃) δ ppm: 7.00-7.15 (1H, m), 7.15-7.30 (4H, m), 8.30-8.40 (1H, m), 8.86 (1H, d, J=2.1Hz)

 参考例 9-1 4
 6-(3-フルオロフェノキシ) ニコチン酸

¹ H-NMR (CDCl₃) δ ppm: 6.90-7.05 (4H, m), 7.35-7.45 (1H, m), 8.30-8.40 (1H, m), 8.90 (1H, d, J=2.2Hz)

参考例 9-15

6-(4-フルオロフェノキシ) ニコチン酸

 1 H-NMR (CDCl $_{3}$) δ ppm: 6.99 (1H, d, J=8.4Hz), 7.05-7.20 (4H, m), 8.30-8.40 (1H, m), 8.88 (1H, d, J=2.5Hz)

参考例 9-16

6-(2,4-ジフルオロフェノキシ)ニコチン酸

 1 H-NMR (CDCl $_{3}$) δ ppm: 6.85-7.05 (2H, m), 7.08 (1H, d, J=9.0Hz), 7.15-

10 7.30 (1H, m), 8.30-8.45 (1H, m), 8.83 (1H, d, J=2.2Hz)

参考例 9-17

6-(2,4,6-トリフルオロフェノキシ)ニコチン酸

 1 H-NMR (CDCl₃) δ ppm: 6.75-6.90 (2H, m), 7.10-7.20 (1H, m), 8.35-8.45 (1H, m), 8.80-8.85 (1H, m)

15 参考例 9-18

6-(2-イソプロピルフェノキシ) ニコチン酸

¹ H-NMR (CDCl₃) δ ppm: 1.19 (6H, d, J=7.0Hz), 3.00-3.15 (1H, m), 6.94 (1H, d, J=8.9Hz), 7.00-7.10 (1H, m), 7.20-7.30 (2H, m), 7.35-7.45 (1H, m), 8.25-8.35 (1H, m), 8.91 (1H, d, J=2.0Hz)

20 参考例 9-19

6-(4-イソプロピルフェノキシ) ニコチン酸

¹H-NMR (CDCl₃) δ ppm: 1.27 (6H, d, J=6.9Hz), 2.85-3.00 (1H, m), 6.90-7.00 (1H, m), 7.05-7.15 (2H, m), 7.20-7.35 (2H, m), 8.25-8.35 (1H, m), 8.90-8.95 (1H, m)

25 参考例 9 - 2 0

6-(4-フルオロ-2-メチルフェノキシ) ニコチン酸

¹ H-NMR (CDCl₃) δ ppm : 2.15 (3H, s), 6.90-7.10 (4H, m), 8.30-8.40 (1H, m), 8.87 (1H, d, J=2.0Hz)

参考例 9-21

6-(2-メトキシフェノキシ) ニコチン酸

 1 H-NMR(CDCl $_3$) δ ppm:3.76(3H, s), 6.95-7.10(3H, m), 7.10-7.20(1H, m), 7.20-7.30(1H, m), 8.25-8.35(1H, m), 8.87(1H, d, J=1.9Hz) 参考例 9 - 2 2

5 6-(3-メトキシフェノキシ) ニコチン酸

¹H-NMR (CDCl₃) δ ppm: 3.81 (3H, s), 6.65-6.85 (3H, m), 6.90-7.00 (1H, m), 7.34 (1H, t, J=8.2Hz), 8.25-8.40 (1H, m), 8.92 (1H, d, J=2.3Hz) 参考例 9 - 2 3

6-(4-フルオロ-2-メトキシフェノキシ) ニコチン酸

10 ¹ H-NMR (CDCl₃) δ ppm: 3.74 (3H, s), 6.65-6.80 (2H, m), 7.00 (1H, d, J=9.0Hz), 7.05-7.15 (1H, m), 8.25-8.35 (1H, m), 8.85 (1H, d, J=2.1Hz) 参考例 9 - 2 4

6-(ピリジン-3-イルオキシ) ニコチン酸

¹H-NMR (CDCl₃) δ ppm: 7.33 (1H, d, J=8.4Hz), 7.85-7.95 (1H, m), 8.15-15 8.30 (1H, m), 8.30-8.45 (1H, m), 8.65-8.75 (2H, m), 8.87 (1H, d, J=2.1Hz)

参考例9-25

6-(3-ヒドロキシメチルフェノキシ) ニコチン酸

¹H-NMR (DMSO-d₆) δ ppm: 4.52 (2H, brs), 5.25 (1H, brs), 7.00-7.25 (4H, 20 m), 7.35-7.45 (1H, m), 8.25-8.35 (1H, m), 8.60-8.70 (1H, m), 13.17 (1H, brs)

参考例 9-26

6-フェネチルオキシニコチン酸

¹H-NMR (CDCl₃) δ ppm: 3.11 (2H, t, J=7.1Hz), 4.62 (2H, t, J=7.1Hz), 6. 25 70-6.85 (1H, m), 7.15-7.40 (5H, m), 8.15-8.25 (1H, m), 8.85-8.95 (1H, m)

参考例10-1

3-(4-メチルピペラジン-1-カルボニル)安息香酸ペンジル 1-メチルピペラジン(0.656mL)の塩化メチレン(5mL)溶液に、3-クロロカル ボニル安息香酸ベンジル(2.14g)の塩化メチレン(5mL)溶液を加え、室温下にて一 晩撹拌した。反応混合物に水および酢酸エチルを加え、有機層を分離後、1 mol/L水酸化ナトリウム水溶液、水、飽和食塩水にて順次洗浄し、無水硫酸ナト リウムにて乾燥した。溶媒を減圧下留去し、得られた残留物をアミノプロピルシ リカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル)にて精製し、表題 化合物(1.7g)を得た。

¹ H-NMR (CDCl₃) δ ppm : 2.24-2.60 (7H, m), 3.41 (2H, brs), 3.81 (2H, brs), 5.37 (2H, s), 7.30-7.64 (7H, m), 8.08-8.16 (2H, m)

10 参考例 10-2

5

3-(モルホリン-4-カルボニル)安息香酸ベンジル

1-メチルピペラジンの代わりにモルホリンを用い、参考例10-1と同様の方法により、参考例10-2を合成した。

¹H-NMR (CDCl₃) δ ppm: 3.30-3.95 (8H, m), 5.38 (2H, s), 7.31-7.65 (7H, m), 8.07-8.18 (2H, m)

参考例11-1

3-(4-メチルピペラジン-1-カルボニル)安息香酸

3-(4-メチルピペラジン-1-カルボニル) 安息香酸ベンジル(1.7g)と1 0%パラジウム炭素(50%wet, 0.128g)のエタノール(50mL)混合物を、室温水素雰囲気下常圧にて3日間撹拌した。反応混合物にトリフルオロエタノール(50mL)と塩化メチレン(50mL)の混合溶媒を加えた後、室温にて10分間撹拌し、触媒を濾去した。濾液を減圧下にて濃縮し、表題化合物(1.15g)を得た。

¹ H-NMR (DMSO-d₆) δ ppm: 2.16-2.46 (7H, m), 3.00-3.80 (4H, m), 7.50-25 7.66 (2H, m), 7.83-8.06 (2H, m)

参考例11-2

- 3-(モルホリン-4-カルボニル)安息香酸
 - 3- (4-メチルピペラジン-1-カルポニル)安息香酸ペンジルの代わりに

3-(モルホリン-4-カルボニル)安息香酸ベンジルを用い、参考例11-1 と同様の方法により、参考例11-2を合成した。

¹H-NMR (DMSO-d₆) δ ppm : 3.20-3.80 (8H, m), 7.55-7.70 (2H, m), 7.90-8.0 4 (2H, m), 13.13 (1H, brs)

5

参考例12-1

5-(4-メチルピペラジン-1-スルホニル)フラン-2-カルボン酸メチル 5-クロロスルホニル-2-フランカルボン酸メチル(0.414g)のテトラヒドロフラン(5元)溶液に、氷冷下1-メチルピペラジン(0.41元)を加え、室温にて1日撹拌した。反応混合物に飽和炭酸ナトリウム水溶液及び酢酸エチルを加え、有機層を分離後、水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下にて溶媒を留去し、表題化合物(0.265g)を得た。

¹ H-NMR (CDCl₃) δ ppm : 2.30 (3H, s), 2.40-2.55 (4H, m), 3.20-3.40 (4H, m), 3.92 (3H, s), 7.04 (1H, d, J=3.5Hz), 7.20 (1H, d, J=3.5Hz)

15

10

5-クロロスルホニルー2-フランカルボン酸メチル及び1-メチルピペラジンの代わりに対応するスルホニルクロリド及びアミンを用い、参考例12-1と同様の方法により、参考例12-2~12-4を合成した。

参考例12-2

20 5- (アゼパン-1-スルホニル) フラン-2-カルボン酸メチル

¹H-NMR (CDCl₃) δ ppm: 1.55-1.80 (8H, m), 3.35-3.45 (4H, m), 3.92 (3H, s), 6.95-7.05 (1H, m), 7.15-7.20 (1H, m)

参考例12-3

3-(4-メチルピペラジン-1-スルホニル)安息香酸・塩酸塩

¹ H-NMR (DMSO-d₆) δ ppm: 2.73 (3H, s), 2.95-4.10 (8H, m), 7.75-7.95 (1H, m), 8.00-8.10 (1H, m), 8.15-8.35 (2H, m), 10.85 (1H, brs), 13.57 (1H, brs)

参考例12-4

3-(4-ベンジルピペラジン-1-スルホニル) 安息香酸

¹H-NMR (DMSO-d₆) δ ppm: 2.35-2.50 (4H, m), 2.80-3.00 (4H, m), 3.46 (2H, s), 7.15-7.40 (5H, m), 7.75-7.85 (1H, m), 7.90-8.00 (1H, m), 8.15-8.30 (2H, m), 13.54 (1H, brs)

5 参考例13-1

3-シクロヘキシルオキシ安息香酸メチル

シクロヘキサノール(1.10mL)のテトラヒドロフラン(10mL)溶液に、氷冷下トリエチルアミン(1.50mL)を加え、次いでメタンスルホニルクロリド(0.81mL)を5分間かけて加え、室温にて30分撹拌した。不溶物を濾去し濾液を、3ーヒドロキシ安息香酸メチル(1.52g)、炭酸セシウム(3.91g)及びN, Nージメチルホルムアミド(5mL)の混合物に撹拌しながら加え、60℃にて3日撹拌した。反応混合物に水及びジエチルエーテルを加え、有機層を分離後、水、飽和炭酸水素ナトリウム水溶液、飽和食塩水にて順次洗浄した。無水硫酸マグネシウムで乾燥後、減圧下にて溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/1-1/1)にて精製し、表題化合物(0.337g)を得た。

¹H-NMR (CDCl₃) δ ppm: 1.20-1.65 (6H, m), 1.75-2.05 (4H, m), 3.91 (3H, s), 4.25-4.35 (1H, m), 7.05-7.15 (1H, m), 7.25-7.35 (1H, m), 7.50-7.65 (2H, m)

20

10

15

参考例13-2

3-(テトラヒドロピラン-4-イルオキシ)安息香酸メチル シクロヘキサノールの代わりにテトラヒドロピラン-4-オールを用い、参考 例13-1と同様の方法により、参考例13-2を合成した。

¹ H-NMR (CDCl₃) δ ppm: 1.75-1.85 (2H, m), 1.95-2.10 (2H, m), 3.55-3.65 (2H, m), 3.92 (3H, s), 3.95-4.05 (2H, m), 4.50-4.60 (1H, m), 7.05-7.15 (1H, m), 7.25-7.40 (1H, m), 7.55-7.70 (2H, m)

参考例14

3-(1-ベンジルピペリジン-4-イルオキシ) 安息香酸

1-ベンジルピペリジン-4-オール(2.29g)、トリフェニルホスフィン (3.14g) 及びテトラヒドロフラン(20mL)の混合物に、氷冷下アゾジカルボン酸ジ イソプロピル(2.40mL)、3-ヒドロキシ安息香酸メチル(1.52g)を順次加え、室 温アルゴン雰囲気下にて一晩撹拌した。反応混合物にジエチルエーテル及び2 mol/L塩酸を加え、水層を分離した後、ジエチルエーテルで洗浄した。得られた 水層を飽和炭酸ナトリウム水溶液にてアルカリ性にした後、ジエチルエーテルを 加え、有機層を分離後、水及び飽和食塩水にて順次洗浄した。無水硫酸マグネシ ウムで乾燥後、減圧下にて溶媒を留去し、3-(1-ベンジルピペリジン-4-イルオキシ) 安息香酸メチルを得た。得られた3-(1-ベンジルピペリジン-10 4-イルオキシ) 安息香酸メチルとメタノール(20mL)の混合物に、2 mol/L水酸 化ナトリウム水溶液(20mL)を加え、60℃にて1時間撹拌した。減圧下にてメタ ノールを留去後、得られた残留物に水及びジエチルエーテルを加え、水層を分離 後、ジエチルエーテルにて洗浄した。得られた水層を2mol/L塩酸(20mL)にて中 15 和した後、析出物を濾取し、表題化合物(2.56g)を得た。

¹H-NMR (CDCl₃) δ ppm: 1.90-2.20 (4H, m), 2.60-3.00 (4H, m), 3.79 (2H, s), 4.45-4.55 (1H, m), 7.00-7.10 (1H, m), 7.25-7.45 (6H, m), 7.55-7.70 (2H, m)

20 参考例15-1

.25

6-(3-ヒドロキシメチルフェノキシ) ニコチン酸エチル

6 ークロロニコチン酸エチル(1.0g)、3 ーヒドロキシメチルフェノール(0.736g)、炭酸カリウム(1.49g)及び1ーメチルー2ーピロリドン(5mL)の混合物を、70℃にて2日撹拌した。反応混合物に水及び酢酸エチルを加え、有機層を分離後、水、飽和炭酸ナトリウム水溶液、水、飽和食塩水にて順次洗浄した。無水硫酸マグネシウムで乾燥し、減圧下にて溶媒を留去し、得られた残留物をアミノプロピルシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=10/1-0/1)にて精製して、表題化合物(0.44g)を得た。

¹ H-NMR (CDCl₃) δ ppm : 1.38 (3H, t, J=7.2Hz), 1.83 (1H, t, J=6.0Hz),

- 4.38 (2H, q, J=7.2Hz), 4.73 (2H, d, J=6.0Hz), 6.90-7.00 (1H, m), 7.05-7.10 (1H, m), 7.15-7.30 (2H, m), 7.35-7.45 (1H, m), 8.25-8.35 (1H, m), 8.75-8.85 (1H, m)
- 3-ヒドロキシメチルフェノールの代わりに対応するフェノール、またはピリジノールを用い、参考例15-1と同様の方法により、参考例 $15-2\sim15-14$ を合成した。

参考例15-2

- 6-(2-フルオロフェノキシ) ニコチン酸エチル
- 10 1 H-NMR (CDCl₃) δ ppm : 1.38 (3H, t, J=7.3Hz), 4.37 (2H, q, J=7.3Hz), 7.00-7.10 (1H, m), 7.15-7.30 (4H, m), 8.25-8.35 (1H, m), 8.78 (1H, d, J=1.8Hz)

参考例 1 5 - 3

- 6-(3-フルオロフェノキシ) ニコチン酸エチル
- 15 1 H-NMR (CDCl₃) δ ppm: 1.39 (3H, t, J=7.0Hz), 4.39 (2H, q, J=7.0Hz), 6.85-7.05 (4H, m), 7.30-7.45 (1H, m), 8.25-8.35 (1H, m), 8.83 (1H, d, J=2.3Hz)

参考例15-4

- 6-(4-フルオロフェノキシ) ニコチン酸エチル
- 20 ¹ H-NMR (CDCl₃) δ ppm: 1.38 (3H, t, J=7.2Hz), 4.38 (2H, q, J=7.2Hz), 6.90-7.00 (1H, m), 7.05-7.15 (4H, m), 8.25-8.35 (1H, m), 8.75-8.85 (1H, m)

参考例15-5

- 6-(2,4-ジフルオロフェノキシ)ニコチン酸エチル
- ¹ H-NMR (CDCl₃) δ ppm: 1.30-1.45 (3H, m), 4.30-4.45 (2H, m), 6.85-7.10 (3H, m), 7.10-7.25 (1H, m), 8.25-8.35 (1H, m), 8.77 (1H, d, J=2.3Hz) 参考例 1.5-6
 - 6-(2,4,6-トリフルオロフェノキシ)ニコチン酸エチル
 - 1 H-NMR (CDCl₃) δ ppm: 1.38 (3H, t, J=7.2Hz), 4.38 (2H, q, J=7.2Hz),

6.75-6.85 (2H, m), 7.05-7.20 (1H, m), 8.30-8.40 (1H, m), 8.75 (1H, d, J=2.2Hz)

参考例15-7

6-(2-イソプロピルフェノキシ) ニコチン酸エチル

5 ¹ H-NMR (CDCl₃) δ ppm: 1.18 (6H, d, J=6.9Hz), 1.38 (3H, t, J=7.2Hz), 3.00-3.15 (1H, m), 4.37 (2H, q, J=7.2Hz), 6.85-6.95 (1H, m), 7.00-7.10 (1H, m), 7.20-7.30 (2H, m), 7.35-7.45 (1H, m), 8.20-8.30 (1H, m), 8.80-8.90 (1H, m)

参考例15-8

- 10 6-(4-イソプロピルフェノキシ) 二コチン酸エチル

 ¹ H-NMR (CDCl₃) δ ppm: 1.27 (6H, d, J=6.9Hz), 1.38 (3H, t, J=7.3Hz),

 2.85-3.00 (1H, m), 4.30-4.45 (2H, m), 6.91 (1H, d, J=8.5Hz), 7.00-7.15 (2H, m), 7.20-7.35 (2H, m), 8.20-8.30 (1H, m), 8.80-8.90 (1H, m)

 参考例 1 5 9
- 15 6-(4-フルオロ-2-メチルフェノキシ) 二コチン酸エチル

 ¹H-NMR (CDCl₃) δ ppm: 1.38 (3H, t, J=7.1Hz), 2.14 (3H, s), 4.30-4.45 (2H, m), 6.85-7.10 (4H, m), 8.25-8.35 (1H, m), 8.75-8.85 (1H, m), 参考例 1 5-1 0

6-(2-メトキシフェノキシ) ニコチン酸エチル

20 ¹H-NMR (CDCl₃) δ ppm: 1.37 (3H, t, J=7.2Hz), 3.75 (3H, s), 4.36 (2H, q, J=7.2Hz), 6.90-6.97 (1H, m), 6.98-7.10 (2H, m), 7.10-7.20 (1H, m), 7.20-7.30 (1H, m), 8.20-8.30 (1H, m), 8.79 (1H, d, J=2.7Hz) 参考例 1 5 - 1 1

6-(3-メトキシフェノキシ) ニコチン酸エチル

¹ H-NMR (CDCl₃) δ ppm: 1.38 (3H, t, J=7.1Hz), 3.81 (3H, s), 4.38 (2H, q, J=7.1Hz), 6.65-6.85 (3H, m), 6.92 (1H, d, J=8.7Hz), 7.32 (1H, t, J=8.2Hz), 8.27 (1H, dd, J=2.3, 8.7Hz), 8.84 (1H, d, J=2.3Hz) 参考例 1 5 - 1 2 6 - (4-フルオロー2ーメトキシフェノキシ) ニコチン酸エチル

¹ H-NMR (CDCl₃) δ ppm: 1.37 (3H, t, J=7.2Hz), 3.74 (3H, s), 4.37 (2H, m), 6.65-6.80 (2H, m), 6.90-7.00 (1H, m), 7.05-7.15 (1H, m), 8.20-8.30 (1H, m), 8.77 (1H, d, J=2.1Hz)

参考例 1 5-13

5 6-(ピリジン-3-イルオキシ) 二コチン酸エチル

¹ H-NMR (CDCl₃) δ ppm: 1.39 (3H, t, J=7.2Hz), 4.39 (2H, q, J=7.2Hz),

7.00-7.10 (1H, m), 7.35-7.45 (1H, m), 7.50-7.60 (1H, m), 8.30-8.40 (1H, m), 8.45-8.60 (2H, m), 8.75-8.85 (1H, m)

参考例 1 5-1 4

10 6 - フェネチルオキシニコチン酸エチル

¹H-NMR (CDCl₃) δ ppm: 1.35-1.45 (3H, m), 3.00-3.15 (2H, m), 4.30-4.65 (4H, m), 6.65-6.80 (1H, m), 7.15-7.40 (5H, m), 8.05-8.20 (1H, m), 8.75-8.90 (1H, m)

15 参考例16

4ーヒドロキシー3ーモルホリンー4ーイルメチル安息香酸メチル 4ーヒドロキシー3ーモルホリンー4ーイルメチル安息香酸1水和物(5.11g) のメタノール(50mL)溶液に濃硫酸(1.2mL)を加え、一晩加熱還流した。反応混合 物に飽和炭酸ナトリウム水溶液及び酢酸エチルを加え、有機層を分離後、飽和食

20 塩水にて洗浄し、無水硫酸マグネシウムで乾燥した。減圧下にて溶媒を留去し、 表題化合物(3.86g)を得た。

¹ H-NMR (CDCl₃) δ ppm : 2.40-2.80 (4H, m), 3.60-3.85 (6H, m), 3.87 (3H, s), 6.80-6.90 (1H, m), 7.70-7.80 (1H, m), 7.85-7.95 (1H, m)

25 参考例17-1

4-ベンジルオキシ-3-モルホリン-4-イルメチル安息香酸メチル 4-ヒドロキシ-3-モルホリン-4-イルメチル安息香酸メチル(3.85g)、 炭酸カリウム(4.24g)及びN, N-ジメチルホルムアミド(15mL)の混合物にベン ジルブロミド(1.85mL)を加え、室温にて3日撹拌した。反応混合物に水を加え、 62

析出物を濾別して表題化合物(4.69g)を得た。

¹H-NMR (CDCl₃) δ ppm: 2.40-2.60 (4H, m), 3.61 (2H, brs), 3.65-3.80 (4H, m), 3.89 (3H, s), 5.15 (2H, s), 6.90-7.00 (1H, m), 7.30-7.50 (5H, m), 7.90-8.10 (2H, m)

5

参考例17-2

4-エトキシー3-モルホリンー4-イルメチル安息香酸エチル

4-ヒドロキシ-3-モルホリン-4-イルメチル安息香酸メチルおよびベンジルブロミドの代わりに4-ヒドロキシ-3-モルホリン-4-イルメチル安息 10 香酸1水和物およびヨードエタンを用い、参考例17-1と同様の方法により、 参考例17-2を合成した。

¹ H-NMR (CDCl₃) δ ppm : 1.39 (3H, t, J=7.1Hz), 1.45 (3H, t, J=7.0Hz), 2.45-2.60 (4H, m), 3.57 (2H, s), 3.65-3.80 (4H, m), 4.10 (2H, q, J=7.0Hz), 4.35 (2H, q, J=7.1Hz), 6.80-6.90 (1H, m), 7.90-8.10 (2H, m)

15

20

参考例18-1

6-(3-クロロメチルフェノキシ)ニコチノイルクロリド・塩酸塩

6-(3-ヒドロキシメチルフェノキシ)ニコチン酸 (0.4g) 及びトルエン (10mL) の混合物に、塩化チオニル (0.715mL) 、N 、N-ジメチルホルムアミド (0.040mL) を順次加え、80 ℃にて 2 時間撹拌した。反応混合液を減圧下にて濃縮し、表題化合物 (0.42g) を得た。

¹H-NMR (DMSO-d₆) δ ppm: 4.63 (2H, s), 6.95-7.00 (1H, m), 7.05-7.45 (4H, m), 7.62 (1H, s), 8.25-8.35 (1H, m), 8.75-8.80 (1H, m)

25 6-(3-ビドロキシメチルフェノキシ)ニコチン酸の代わりに対応するカルボン酸を用い、参考例18-1と同様の方法により、参考例 $18-2\sim18-1$ 9を合成した。

参考例18-2

6-(2-フルオロフェノキシ) ニコチノイルクロリド

¹ H-NMR (CDCl₃) δ ppm: 7.11 (1H, d, J=8.8Hz), 7.15-7.35 (4H, m), 8.30-8.40 (1H, m), 8.88 (1H, d, J=2.0Hz)

参考例18-3

6-(3-フルオロフェノキシ) ニコチノイルクロリド

 1 H-NMR (CDCl₃) δ ppm: 6.85-7.10 (4H, m), 7.35-7.45 (1H, m), 8.30-8.40 (1H, m), 8.92 (1H, d, J=2.6Hz)

参考例18-4

6-(4-フルオロフェノキシ) ニコチノイルクロリド

 1 H-NMR (CDCl₃) δ ppm: 7.03 (1H, d, J=8.6Hz), 7.10-7.20 (4H, m), 8.30-

10 8.40 (1H, m), 8.90 (1H, d, J=2.1Hz)

参考例18-5

6-(2,4-ジフルオロフェノキシ)ニコチノイルクロリド

 1 H-NMR (CDCl $_3$) δ ppm : 6.90-7.05 (2H, m), 7.10-7.15 (1H, m), 7.15-7.25 (1H, m), 8.30-8.40 (1H, m), 8.85-8.90 (1H, m)

15 参考例 18-6

6-(2,4-トリフルオロフェノキシ)ニコチノイルクロリド

¹ H-NMR (CDCl₃) δ ppm: 6.75-6.90 (2H, m), 7.20 (1H, d, J=8.6Hz), 8.35-8.45 (1H, m), 8.85 (1H, d, J=2.2Hz)

参考例18-7

¹ H-NMR (CDCl₃) δ ppm : 1.19 (6H, m), 2.95-3.10 (1H, m), 6.95-7.10 (2H, m), 7.20-7.30 (2H, m), 7.35-7.45 (1H, m), 8.25-8.40 (1H, m), 8.91 (1H, d, J=2.5Hz)

参考例18-8

25 6-(4-イソプロピル-フェノキシ) ニコチノイルクロリド

¹ H-NMR (CDCl₃) δ ppm : 1.28 (6H, d, J=6.9Hz), 2.90-3.05 (1H, m), 6.99 (1H, d, J=8.9Hz), 7.00-7.15 (2H, m), 7.25-7.35 (2H, m), 8.25-8.35 (1H, m), 8.94 (1H, d, J=2.5Hz)

参考例18-9

6 - (4-フルオロー2ーメチルフェノキシ) ニコチノイルクロリド 1 H-NMR (CDCl $_{3}$) δ ppm : 2.14 (3H, s), 6.90-7.10 (4H, m), 8.30-8.40 (1H, m), 8.89 (1H, d, J=2.4Hz)

参考例18-10

5 6-(2-メトキシフェノキシ) 二コチノイルクロリド

¹H-NMR (CDCl₃) δ ppm: 3.76 (3H, s), 6.95-7.10 (3H, m), 7.10-7.20 (1H, m), 7.20-7.35 (1H, m), 8.25-8.35 (1H, m), 8.85-8.95 (1H, m)

参考例 18-11

6-(3-メトキシフェノキシ) ニコチノイルクロリド

10 ¹H-NMR (CDCl₃) δ ppm: 3.82 (3H, s), 6.65-6.80 (2H, m), 6.80-6.90 (1H, m), 7.00 (1H, d, J=8.5Hz), 7.35 (1H, t, J=8.2Hz), 8.25-8.40 (1H, m), 8.93 (1H, d, J=2.5Hz)

参考例18-12

6-(4-フルオロ-2-メトキシフェノキシ) ニコチノイルクロリド

15 ¹H-NMR (CDCl₃) δ ppm: 3.74 (3H, s), 6.60-6.80 (2H, m), 7.00-7.15 (2H, m), 8.25-8.35 (1H, m), 8.85-8.90 (2H, m)

参考例18-13

5-(3-クロロメチルフェニル)フラン-2-カルボニルクロリド

¹ H-NMR (CDCl₃) δ ppm: 7.18 (1H, d, J=3.5Hz), 7.33 (1H, d, J=3.5Hz),

20 7.40-7.55 (2H, m), 7.75-7.85 (1H, m), 7.85-7.95 (1H, m)

参考例18-14

5-ピリジン-2-イルフラン-2-カルボニルクロリド

¹ H-NMR (CDCl₃) δ ppm : 7.60-7.70 (1H, m), 7.85-7.95 (1H, m), 8.35-8.55 (2H, m), 8.75-8.90 (2H, m)

25 参考例18-15

5-ピリジン-3-イルフラン-2-カルポニルクロリド

¹H-NMR (CDCl₃) δ ppm: 7.35-7.50 (2H, m), 7.75-7.85 (1H, m), 8.45-8.55 (1H, m), 8.65-8.75 (1H, m), 9.10-9.20 (1H, m)

参考例18-16

5-ピリジン-4-イルフラン-2-カルボニルクロリド

¹H-NMR (CDCl₃) δ ppm: 7.45-7.55 (1H, m), 7.85-7.90 (1H, m), 8.25-8.35 (2H, m), 8.85-8.95 (2H, m)

参考例18-17

5 - (アゼパン-1-スルホニル) フラン-2-カルボニルクロリド

¹H-NMR (CDCl₃) δ ppm: 1.55-1.85 (8H, m), 3.35-3.50 (4H, m), 7.00-7.10 (1H, m), 7.45-7.50 (1H, m)

参考例18-18

3-(4-メチルピペラジン-1-スルホニル)ベンゾイルクロリド・塩酸塩

10 ¹H-NMR (DMSO-d₆) δ ppm: 2.60-2.85 (5H, m), 3.05-3.25 (2H, m), 3.35-3.5 0 (2H, m), 3.70-3.90 (2H, m), 7.80-7.90 (1H, m), 8.00-8.10 (1H, m), 8.2 0-8.35 (2H, m), 10.55 (1H, brs)

参考例 18-19

4-ベンジルオキシ-3-モルホリン-4-イルメチルベンゾイルクロリド

15 1 H-NMR (DMSO-d₆) δ ppm: 2.80-2.95 (2H, m), 3.25-3.40 (2H, m), 3.80-3.9 5 (2H, m), 4.20-4.40 (2H, m), 4.31 (2H, s), 5.27 (2H, brs), 7.10-7.20 (1 H, m), 7.35-7.50 (5H, m), 8.15-8.25 (1H, m), 8.45-8.50 (1H, m), 13.38 (1 H, brs)

20 参考例19-1

5-ピリジン-2-イルフラン-2-カルボン酸

硝酸銀 (0.888g) の水 (5mL) 溶液に、氷冷下 2 mol/L 水酸化ナトリウム水溶液 (5mL) を加えた。続いて 5 - ピリジン - 2 - イルフラン - 2 - カルバルデヒド <math>(0.376g) を加え、テトラヒドロフラン (1mL) を加え、室温にて 1 時間撹拌した。

25 不溶物を濾別し、濾液を氷冷下、2mol/L塩酸(5.5mL)を加えた後、減圧濃縮した。析出物を濾別し、表題化合物(0.289g)を得た。

 1 H-NMR (DMSO-d₆) δ ppm: 7.25-7.50 (3H, m), 7.85-8.05 (2H, m), 8.60-8.7 0 (1H, m)

5-ピリジン-2-イルフラン-2-カルバルデヒドの代わりに対応するアルデヒドを用い、参考例<math>19-1と同様の方法により、参考例 $1\cdot 9-2$ および19-3を合成した。

参考例19-2

参考例19-3

5 - (3-ヒドロキシメチルフェニル) フラン-2-カルボン酸

¹ H-NMR (DMSO-d₆) δ ppm: 4.50-4.60 (2H, m), 5.20-5.40 (1H, m), 7.12 (1H, d, J=3.9Hz), 7.25-7.40 (2H, m), 7.43 (1H, t, J=7.8Hz), 7.68 (1H, d, J=7.8Hz), 7.77 (1H, s), 13.11 (1H, brs)

10 5 - シクロプロピルフランー 2 一カルボン酸

¹H-NMR (CDCl₃) δ ppm: 0.85-1.05 (4H, m), 1.95-2.05 (1H, m), 6.10 (1H, d, J=3.5Hz), 7.22 (1H, d, J=3.5Hz)

実施例1

15 3 - シクロプロパンカルボニルアミノ-5-フルオロベンゾフラン-2-カルボ キサミド(化合物1-1)

3-アミノ-5-フルオロベンゾフラン-2-カルボキサミド (0.1g)をテトラヒドロフラン (3mL) にとかし <math>0 \mathbb{C} に冷却、トリエチルアミン (0.144mL) を加えた後、シクロプロパンカルボニルクロリド (0.051mL) を加え、室温にて18時間撹拌した。反応混合物に水 (6mL) を加え、更に1時間撹拌した。析出物を濾取し、表題化合物 (0.063g) を得た。

 1 H-NMR (DMSO-d₆) δ ppm: 0.80-0.98 (4H, m), 1.91-2.06 (1H, m), 7.28-7.40 (1H, m), 7.55-7.70 (2H, m), 7.89 (1H, brs), 8.13 (1H, brs), 10.34 (1H, brs)

25

20

実施例2

3-シクロプロパンカルボニルアミノ-5-クロロベンゾフラン-2-カルボキサミド(化合物1-2)

シクロプロパンカルボン酸(0.018g)とトリホスゲン(0.032g)をテトラヒドロフ

ラン(1.5mL)に溶かし、室温にてN-メチルモルホリン(0.047mL)を加えた後、15分撹拌した。3-アミノ-5-クロロベンゾフラン-2-カルボキサミド(0.042g)のテトラヒドロフラン溶液(1.5mL)を加えて14時間撹拌した。ジエチルエーテルにて抽出し、10%水酸化ナトリウム水溶液、飽和食塩水にて洗浄した後、有機溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/テトラヒドロフラン=7/3)により精製して、表題化合物(0.013g)を得た。

5

10

¹ H-NMR (DMSO-d₆) δ ppm: 0.80-0.95 (4H, m), 1.95-2.05 (1H, m), 7.45-7.65 (2H, m), 7.92 (1H, brs), 7.95-8.00 (1H, m), 8.15 (1H, brs), 10.37 (1H, brs)

3-アミノ-5-フルオロベンゾフラン-2-カルボキサミドおよびシクロプロパンカルボニルクロリドの代わりに、対応する3-アミノベンゾフラン-2-カルボキサミドおよび対応する酸クロリドまたはカルボン酸を用い、実施例1または2と同様の方法により、化合物1-3~1-370を合成した。これらを表2に示した。

〔表2〕

化合物 No.	構造式	化合物 No.	構造式
1-1	O NH ₂ H O F	1-9	0=\NH ₂ F H O F O F
1-2	OH2 H O CI	1-10	F H O Br
1-3	O NH ₂ H O CI	1-11	F H O
1-4 .	O=NH ₂ H O	1-12	F H O
1-5	O=NH ₂ F H O F	1-13	F H O NH2
1-6	F————F	1-14	F H O O
1-7	F H O CI	1-15	F H O
1-8	F—————————————————————————————————————	1-16	F——NH ₂ H—O O

表	2	(続	丰	١
4X	4	(が)し	~	,

表2 (続き	(1)		•
化合物 No.	構造式	化合物 No.	構造式
1-17	F H O O	1-25	
1-18	F——NH ₂ H O	1-26	O=NH ₂ H O F
1-19	F H O	1-27	CI NH2
1-20	O=NH ₂ F H O	1-28	
1-21	F H O N	1-29	Br NH2
1-22	OH OH OH	1-30	Br. NH2
1-23		1-31	F N F
1-24	CI NH ₂ CI CI	1-32	F N O

表2 (続き)

表2(続き			· · ·
化合物 No.	構造式	化合物 No.	構造式
1-33	CI H O F	1-41	OHNH2 H OO
1-34	CI H O CI	1-42	O H O F
1-35	CI H O P	1-43	O NH ₂ H O CI
1-36	O=NH ₂ H O N F	1-44	O NH ₂ H O O
1-37	O NH ₂ H O N	1-45	O=NH ₂ H O N F
1-38	O=NH ₂ H O CI	1-46	0=\NH ₂ H 0
1-39	O=NH ₂ H O	1-47	NH ₂ H O
1-40	O=NH ₂ H O	1-48	FF H O F

表2(続き	r)		· · · · · · · · · · · · · · · · · · ·
化合物 No.	構造式	化合物 No.	構造式
1-49	FF H O	1-57	OHNH2 OH O
1-50	NH ₂ OH NO CI OF	1-58	CI NH ₂
1-51	O=NH ₂ H O N F	1-59	O=NH ₂ H O
1-52	CI CI	1-60	FF H O F
1-53	CI H O CI	1-61	FF HO
1-54	CI CI	1-62	N, HO
1-55	CINH2	1-63	ONH2 OHN H
1-56	CI————————————————————————————————————	1-64	NH ₂

表2 (続き)

表2(続き)				
化合物 No.	構造式	化合物 No.	構造式	
1-65	O NH ₂ H O F	1-73	OH NH2 OH OH	
1-66	ON NH2 H ON F	1-74	O=NH ₂ H O	
1-67		1-75	F H O F	
1-68	0=NH ₂ H 0 F	1-76	FF N N F	
1-69	O NH ₂ H O F	1-77	F NH ₂ H O	
1-70	O=NH ₂ O=NH ₂ O=O O=O O=O O=O O=O O=O O=O O=O O=O O=	1-78	O=NH ₂ H O	
1-71	O NH ₂ H O O	1-79	F H O O O O O O O O O O O O O O O O O O	
1-72	O NH ₂ H O	1-80	O=NH ₂ H O F	

表2 (続き)		
化合物 No.	構造式	化合物 No.	構造式
1-81	O=NH ₂ H O F	1-89	OH NH2 H OO
1-82	OH2 OH OCI	1-90	O=\frac{NH_2}{H} = 0
1-83	OH OF F	1-91.	0=NH ₂ H 0 N F
1-84	0=NH ₂ 0+10	1-92	O NH ₂ O NH ₂ O CI
1-85		1-93	O NH ₂ H O O
1-86	O-NH ₂ H-O N O-NH ₂	1-94	O NH ₂ H O O
1-87	O NH ₂ H O F	1-95	O NH ₂ O NH ₂ O CI
1-88	0 NH ₂ H O CI	1-96	O NH ₂ H O CI

表 2 (続き)					
化合物 No.	構造式	化合物 No.	構造式		
1-97	O=NH ₂ H O CI	1-105	O=NH ₂ H O CI		
1-98	O NH ₂ H O CI	1-106	O=NH ₂ H O N		
1-99	NH ₂ H O	1-107	O=NH ₂ H O		
1-100	S NH ₂	1-108	OH OH		
1-101	OH NH2 CI	1-109	O=NH ₂ H OF		
1-102	O NH ₂ H O CI	1-110	O=NH ₂ H O		
1-103	O NH ₂ H O CI	1-111	O NH ₂ H O O		
1-104	O=NH ₂ H O CI	1-1.12	O NH ₂ H O		

表2 (続き)

表2(続き	·)		
化合物 No.	構造式	化合物 No.	構造式
1-113	O NH ₂ H O O	1-121	NH ₂ H N O F
1-114	O=NH ₂ H-VO	1-122	O=NH ₂
1-115	O NH ₂ H O F	1-123	O=NH ₂ H O CI
1-116	O=NH ₂ H O F	1-124	O=NH ₂ O=NH ₂ OCI
1-117	O NH ₂ H O CI	1-125	O=NH ₂ H O F O F
1-118	O NH ₂ H O CI	1-126	0=NH ₂ H 70
1-119	O NH ₂ H O F F	1-127	O=NH ₂ H O
1-120	O=NH ₂ H O	1-128	O=NH ₂ H O

表2 (続き)		
化合物 No.	構造式	化合物 No.	構造式
1-129	CI H O	1-137	NH ₂ OHNO F
1-130	NH ₂ 0 H N O F	1-138	O=NH ₂ H O N O F
1-131	OH OH O	1-139	O=NH ₂ H O F
1-132	O=NH ₂ H O F F	1-140	O=NH ₂ H O CI
1-133	O=NH ₂ H Y O	1-141	ONH ₂ H ON
1-134	O NH ₂ H O CI	1-142	O=NH ₂
1-135	O=NH ₂ H O O CI	1-143	O=NH ₂ H O CI
1-136	CI N O	1-144	O NH ₂

表2 (続き)

表 2 (続き)					
化合物 No.	構造式	化合物 No.	構造式		
1-145		1-154	O=NH ₂ H O N F		
1-146		1-155	O=NH ₂ H O F		
1-147		1-156	O=NH ₂ H O CI		
1-148	CI—O NH2 O N O F	1-157	O=NH ₂ H O		
1-149	CI—ONH ₂ ONH ₂ CI ONH ₂ CI CI	1-158	O=NH ₂ H O		
1-150	O NH2 H O N	1-159	O NH ₂ H O O F		
1-151	O NH2 O NO CI	1-160	O=NH ₂ H O N		
1-152	NH ₂ O H N O F	1-161	O=NH ₂ H OF		
1-153	O NH ₂ H O CI	1-162	O=NH ₂ H O F		

表2(続き	•)		
化合物 No.	構造式	化合物 No.	構造式
1-163	O=NH ₂ H O N F	1-171	NH ₂ H O
1-164	O=NH ₂ O=F OF F	1-172	NH ₂ H O
1-165	O=NH ₂ H / O F	1-173	O=NH ₂ H O OH
1-166	OH2 H OF F	1-174	O NH ₂ H O F F F F
1-167	O=NH ₂ H O N F	1-175	F N O F
1-168	O=NH ₂ H O F F	1-176	OH2 H O N F
1-169	O=NH ₂ H O	1-177	O=NH ₂ H O O
1-170	0=NH ₂ H 0	1-178	OH H O OH F O F

表2 (続き)

表2 (続き	<u>(†)</u>		•
化合物 No.	構造式	化合物 No.	構造式
1-179	CI H	1-187	0=\NH ₂ H 0 N F
1-180	O NH ₂ H O O	1-188	O=NH ₂ H O CI
1-181	O NH ₂ H O O F	1-189	O=NH ₂ H O O
1-182	F N O	1-190	NH. OHNO F
1-183	CI N F	1-191	O NH ₂ H O O
1-184	Br NH ₂	1-192	CI H O F
1-185	Br. NH2 F O	1-193	OH NH2 OH OH
1-186	O=NH ₂ H O N F	1-194	CI NH ₂ H O F

表	2	(続	عد	١
_		[44	_	- 0
4.	~	しかりし	_	,

表2 (続き))		
化合物 No.	構造式	化合物 No.	構造式
1-195	O=NH ₂ H O F	1-203	O=NH ₂ H O F
1-196	O=NH ₂ H O N F	1-204	ON NH2
1-197	O NH ₂ H O F	1-205	O=NH ₂ H V O
1-198	O=NH ₂ H O	1-206	N H O F
1-199	O=\NH ₂ H \ O \ N \ O \ O \ O \ O \ O \ O \ O \ O	1-207	O=NH ₂ H O
1-200	0=NH ₂ H 0 F	1-208	O NH ₂ H O O
1-201	ON NH2 H OF F	1-209	O NH ₂ H O F
1-202	OH NH2 H OO F	1-210	O=NH ₂ H O F O F

表2(続き)		··.
化合物 No.	構造式	化合物 No.	構造式
1-211	O NH ₂ H O F	1-219	NH ₂ O N O F
1-212	OH NH2	1-220	0 NH ₂ H 0 F
1-213	O=NH ₂ H O N F	1-221	O NH ₂ H O F
1-214	O=NH ₂ H O F	1-222	OH TO
1-215	O NH ₂ H O F	1-223	OHNH2 OH ON OH OF
1-216	F O NH ₂	1-224	OH NH ₂ OH NH OH
1-217	O=NH ₂ H O	1-225	2 2 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
1-218	PFF N O O F	1-226	0 H O O N H O O N H O O O N H O O O O O O

表2 (続き)

表 2 (続き	き)		·
化合物 No.	構造式	化合物 No.	構造式
1-227	0 NH ₂ H 0 F	1-235	0=NH ₂ 0 H 70 N F
1-228	O NH ₂ H O	1-236	O=NH ₂ OH OF
1-229	OH NH2 H OF	1-237	O=NH ₂
1-230	O NH ₂ H O	1-238	O=NH ₂ H O F
1-231	ONH ₂ H O	1-239	O=NH ₂ H O N O CI
1-232	O NH2 H O N	1-240	OHH2 H OFF
1-233	ONH ₂ H O N F	1-241	O NH ₂ H O N
1-234	O H O F	1-242	0=\NH ₂ H 0

表2 (続き)

表 2 (続き)					
化合物 No.	構造式	化合物 No.	構造式		
1-243	OHN2 H OO	1-251	NH₂ H Y O F		
1-244	OHNH2 H TO	1-252	O=NH ₂ H-YO		
1-245	0=NH ₂ H 0	1-253	O=NH ₂ H PO N F		
1-246	N N N N N N N N N N N N N N N N N N N	1-254	O=NH ₂ H O		
1-247	ON NH2 ON OCI	1-255	O=NH ₂ H O F		
1-248	0=NH ₂ H 0 N F	1-256	O NH ₂ O H O F		
1-249	O NH ₂ O F O F	1-257	-0 NH ₂ H 0		
1-250	O=NH ₂ H O F O F	1-258	O NH ₂		

表 2 (続き)				
化合物 No.	構造式	化合物 No.	構造式	
1-259	O NH ₂ H O F	1-267	O NH ₂ O NH ₂ O CI	
1-260	O NH ₂	1-268	O=NH ₂ H O	
1-261	S-NH ₂ H O	1-269	O NH ₂ H O N	
1-262	S NH ₂	1-270	F O NH ₂ H O O F	
1-263	O=NH ₂ H O F F	1-271	O NH ₂ H O O	
1-264	O NH ₂ H O F O F	1-272	O NH2 H O N	
1-265	0=NH ₂ H 0 F	1-273	O=NH ₂ H OF	
1-266	O NH ₂ H O F	1-274	O N NH2 O N N N N N N N N N N N N N N N N N N N	

表2 (続き)		
化合物 No.	構造式	化合物 No.	構造式
1-275	NH ₂ OH OF F	1-283	O=NH ₂ H O
1-276	N-S N-S F	1-284	O NH ₂
1-277	NH ₂ NH ₂ NH ₂ NH ₃	1-285	NH ₂ H O
1-278	NH ₂ H O N O N O N O O O O O O O O O O O O O	1-286	NH ₂ H N O F F F
1-279	O=NH ₂ H O N O F	1-287	NH ₂ O H N
1-280	NH ₂ H N O F	1-288	O NH ₂ H O F
1-281	Br O P	1-289	0=\NH ₂ O=\N-\O
1-282	O NH ₂ H O N	1-290	O=NH ₂ H O O

表2 (続き	•)		·
化合物 No.	構造式	化合物 No.	構造式
1-291	O=NH ₂ H O F F	1-299	O NH ₂
1-292	O=NH ₂ H O F	1-300	, H O F
1-293	O NH ₂ H O O O O	1-301	O NH ₂ O CI
1-294	O NH ₂ H O N	1-302	O NH ₂
1-295	O NH ₂ H O	1-303	OH2 H ON
1-296	O=NH ₂ H O N F	1-304	OH NH2 H O F
1-297		1-305	NH ₂
1-298	CI O F	1-306	NH OF F

表2 (続き)

表2(続き)			· · · · · · · · · · · · · · · · · · ·
化合物 No.	構造式	化合物 No.	構造式
1-307	NH _N OF F	1-315	CI NH ₂ ONH ₂
1-308	O=NH ₂ H O N F	1-316	O=NH ₂ H O F F
1-309	NH ₂ · H O N	1-317	O NH ₂ H O N
1-310	O NH ₂ O N N N F	1-318	O NH ₂
1-311	CI NH ₂ H O N	1-319	OH NH2 H OO N
1-312	CI NH ₂ H O	1-320	O=NH ₂ H O F
1-313	O=NH ₂ H O	1-321	OH2 OH ON OF
1-314	O=NH ₂	1-322	O=NH ₂ H O F

表2 (続き	5)		**
化合物 No.	構造式	化合物 No.	構造式
1-323	O NH ₂ H O F	1-331	O=NH ₂ H O
1-324	N N N N N F	1-332	O NH ₂ H O N
1-325	NH ₂	1-333	O NH ₂ H O N F
1-326	NH ₂ H OF F	1-334	O NH ₂ H O F
1-327	O=NH ₂ H O F	1-335	O NH ₂ H O CI
1-328	O NH ₂ H O	1-336	O=NH ₂ H OF
1-329	O NH ₂ H O	1-337	O=NH ₂ H O
1-330	0=NH ₂ H 70	1-338	O=NH ₂ H O O

表2 (続き)

表2 (続き)		
化合物 No.	構造式	化合物 No.	構造式
1-339	OH2 H OF N OF	1-347	O NH ₂ H O N F
1-340	ONH ₂ H ON N F	1-348	ONH ₂ H OO N F
1-341	ONH ₂ H O	1-349	F O N F
1-342	O NH ₂ H O O	1-350	F NH ₂ H O F
1-343	ONH2 H ON N O	1-351	F NH ₂ H O F
1-344	ONH2 H ON	1-352	F O N O F
1-345	O NH ₂ H O F	1-353	F O N O F
1-346	O NH ₂ H O F F	1-354	O NH ₂ H O F

表 2(続き)				
化合物 No.	構造式	化合物 No.	構造式	
1-355	ON NO F	1-363	NH ₂ O H N P O F	
1-356	F H O F	1-364	NH ₂ OHN F	
1-357	CI NH2 H O F	1-365	O=NH ₂ H O F	
1-358	O NH ₂ H O F	1-366	O=NH ₂ H O F O F	
1-359	0=NH ₂ H 0 N F	1-367	O=NH ₂ H O F O F	
1-360	0 NH ₂ H 0 N F	1-368	Br NH ₂ H O F	
1-361	F H O F	1-369	Br. HOFF	
1-362	NH ₂ H O	1-370	OHNO HNO OF	

化合物1-3~1-370の物性値を以下に示した。

化合物1-3

 1 H-NMR (CDCl $_{3}$) δ ppm : 1.65-2.45 (4H, m), 3.95-4.10 (1H, m), 4.15-4.25 (1H, m), 4.50-4.65 (1H, m), 6.47 (1H, brs), 6.70 (1H, brs), 7.30-7.50

5 (2H, m), 8.55-8.65 (1H, m), 10.89 (1H, brs)

化合物1-4

 1 H-NMR (DMSO-d₆) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.10 (1H, d, J=2.2Hz), 7.55-7.75 (3H, m), 7.76-8.20 (4H, m), 8.26 (1H, d, J=8.8Hz), 11.18 (1H, s)

10 化合物1-5

 1 H-NMR (DMSO-d₆) δ ppm : 7.36-7.95 (7H, m), 8.01 (1H, brs), 8.28 (1H, brs), 10.98 (1H, s)

化合物1-6

¹H-NMR (DMSO-d₆) δ ppm: 7.20-7.35 (1H, m), 7.40-7.50 (2H, m), 7.55 (1H, dd, J=2.2, 9.1Hz), 7.95 (1H, brs), 8.00-8.13 (2H, m), 8.15-8.30 (2H, m), 11.03 (1H, s)

化合物1-7

 1 H-NMR (DMS0-d₆) δ ppm : 7.38-7.90 (6H, m), 7.99 (1H, brs), 8.15-8.32 (2H, m), 11.03 (1H, s)

20 化合物 1-8

¹ H-NMR (MeOD-d₄) δ ppm: 7.20-7.35 (2H, m), 7.40-7.55 (2H, m), 8.05-8.15 (2H, m), 8.45-8.55 (1H, m)

化合物1-9

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 7.45-7.95 (6H, m), 8.06 (1H, brs), 8.33 (1H,

25 brs), 10.94 (1H, s)

化合物 1-10

 1 H-NMR (DMS0- 1 d 6) 6 ppm : 7.48-7.94 (6H, m), 8.07 (1H, brs), 8.18 (1H, brs), 10.91 (1H, s)

化合物1-11

¹H-NMR (DMSO-d₆) δ ppm: 2.43 (3H, s), 7.30-7.58 (3H, m), 7.62-7.96 (5H, m), 8.19 (1H, brs), 10.95 (1H, s)

化合物1-12

¹H-NMR (DMSO-d₆) δ ppm: 2.54 (3H, s), 7.20-7.38 (2H, m), 7.48-7.72 (2H, m), 7.76-8.00 (4H, m), 8.17 (1H, brs), 10.94 (1H, s)

化合物 1-13

5

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 7.50-7.93 (4H, m), 8.10-8.50 (5H, m), 10.96 (1H, s)

化合物1-14

10 1 H-NMR (DMSO-d₆) δ ppm: 3.81 (3H, ş), 7.09-7.19 (1H, m), 7.45-7.72 (4H, m), 7.77-8.00 (3H, m), 8.18 (1H, brs), 10.94 (1H, s)

化合物 1-15

¹H-NMR (DMSO-d₆) δ ppm: 3.99 (3H, s), 7.08-7.32 (2H, m), 7.48-7.72 (3H, m), 7.76-8.00 (3H, m), 8.13 (1H, brs), 10.93 (1H, s)

15 化合物 1-16

¹H-NMR (DMSO-d₆) δ ppm: 3.99 (3H, s), 7.13 (1H, d, J=7.9Hz), 7.20-7.30 (1H, m), 7.35-7.50 (2H, m), 7.70 (1H, d, J=7.9Hz), 7.89 (1H, brs), 8.00-8.20 (3H, m), 10.91 (1H, s)

化合物1-17

¹H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 6.92-7.20 (2H, m), 7.45-8.28 (7H, m), 11.14 (1H, s)

化合物1-18

 1 H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=6.9Hz), 4.30 (2H, q, J=6.9Hz), 7.05-7.15 (1H, m), 7.20-7.30 (1H, m), 7.35-7.50 (2H, m), 7.66 (1H, dd,

25 J=0.9, 8.2Hz), 7.90 (1H, brs), 8.00-8.20 (3H, m), 10.89 (1H, s)

化合物 1-19

¹ H-NMR (DMSO-d₆) δ ppm : 5.24 (2H, s), 7.00-7.20 (2H, m), 7.30-7.95 (10H, m), 8.11 (1H, brs), 8.17 (1H, d, J=9.0Hz), 11.14 (1H, s)

化合物 1-20

¹H-NMR (DMSO-d₆) δ ppm: 7.49-8.24 (10H, m), 8.37 (1H, brs), 8.50 (1H, d, J=8.2Hz), 11.03 (1H, s)

化合物1-21

¹H-NMR (DMSO-d₆) δ ppm: 1.14 (6H, t, J=7.1Hz), 3.43 (4H, q, J=7.1Hz), 5 6.58-6.64 (1H, m), 6.76-6.86 (1H, m), 7.48-7.92 (6H, m), 8.11 (1H, d, J=9.2Hz), 11.27 (1H, s)

化合物 1-22

¹H-NMR (CDCl₃) δ ppm: 5.64 (1H, brs), 6.43 (1H, brs), 7.20-7.65 (4H, m), 7.85-7.95 (1H, m), 8.00-8.10 (1H, m), 8.30-8.40 (1H, m), 10.88 (1H,

10 brs)

化合物1-23

 1 H-NMR (CDCl₃) δ ppm : 5.99 (1H, brs), 6.52 (1H, brs), 7.15-7.30 (1H, m), 7.35-7.55 (3H, m), 7.95-8.05 (2H, m), 8.30-8.40 (1H, m), 10.93 (1H, brs)

15 化合物 1 - 2 4

 1 H-NMR (DMSO-d₆) δ ppm: 7.57 (1H, dd, J=2.2, 8.8Hz), 7.60-7.70 (2H, m), 7.72-7.80 (1H, m), 7.90-8.10 (3H, m), 8.19 (1H, d, J=2.2Hz), 8.27 (1H, brs), 10.99 (1H, s)

化合物 1-25

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 7.36-7.48 (1H, m), 7.64-7.80 (3H, m), 7.92-8.08 (3H, m), 8.16-8.32 (2H, m), 11.04 (1H, s)

化合物 1-26

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 7.52-7.80 (4H, m), 7.96-8.12 (3H, m), 8.33 (1H, brs), 10.95 (1H, s)

25 化合物1-27

 1 H-NMR (DMSO-d₆) δ ppm : 3.87 (3H, s), 6.95-7.05 (1H, m), 7.07-7.15 (1H, m), 7.55-8.25 (7H, m), 11.13 (1H, s)

化合物 1-28

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz),

7.11 (1H, d, J=2.2Hz), 7.65-7.75 (2H, m), 7.76-8.25 (5H, m), 11.15 (1H, s)

化合物 1-29

¹ H-NMR (DMSO-d₆) δ ppm: 7.35-7.45 (1H, m), 7.50-7.75 (2H, m), 7.80-8.05 (4H, m), 8.15-8.30 (2H, m), 10.96 (1H, s)

化合物 1-30

¹ H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H, d, J=2.2Hz), 7.50-7.65 (1H, m), 7.75-8.25 (6H, m), 11.12 (1H, s)

10 化合物 1-31

 1 H-NMR (DMSO-d₆) δ ppm : 7.35-7.45 (1H, m), 7.60-7.75 (2H, m), 7.80-8.10 (4H, m), 8.24 (1H, brs), 10.91 (1H, s)

化合物 1-32

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 3.87 (3H, s), 6.99 (1H, dd, J=2.2, 8.8Hz),

15 7.11 (1H, d, J=2.2Hz), 7.60-8.20 (6H, m), 11.06 (1H, s)

化合物1-33

¹ H-NMR (DMSO-d₆) δ ppm: 7.35-7.45 (1H, m), 7.60-7.70 (2H, m), 7.75-7.85 (1H, m), 7.96 (1H, brs), 8.00-8.10 (1H, m), 8.15-8.30 (2H, m), 10.90 (1H, brs)

20 化合物 1-34

¹ H-NMR (DMSO-d₆) δ ppm: 7.40-7.45 (1H, m), 7.60-7.70 (1H, m), 7.75-7.80 (1H, m), 7.97 (1H, brs), 8.00-8.30 (4H, m), 10.95 (1H, brs) 化合物 1 - 3 5

¹ H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 6.95-7.05 (1H, m), 7.10-7.15

(1H, m), 7.60-7.70 (1H, m), 7.85 (1H, brs), 7.95-8.25 (4H, m), 11.06 (1H, brs)

化合物 1-36

¹ H-NMR (DMSO-d₆) δ ppm : 2.43 (3H, s), 7.35-7.55 (3H, m), 7.60-7.70 (1H, m), 7.75-7.90 (2H, m), 7.95-8.10 (2H, m), 8.27 (1H, brs), 11.00 (1H, s)

化合物1-37

- 1 H-NMR (DMSO-d₆) δ ppm : 2.42 (3H, s), 7.35-7.45 (3H, m), 7.66 (1H, m), 7.91 (2H, d, J=8.2Hz), 7.95-8.10 (2H, m), 8.27 (1H, brs), 11.01 (1H, s) 化合物 1-3 8
- 5 ¹H-NMR (DMSO-d₆) δ ppm: 2.42 (3H, s), 7.35-7.70 (4H, m), 7.85-8.00 (2H, m), 8.03 (1H, brs), 8.30-8.40 (1H, m), 8.32 (1H, brs), 11.04 (1H, brs) 化合物 1-39
 - 1 H-NMR (DMSO-d₆) δ ppm : 2.42 (3H, s), 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 9.1Hz), 7.10 (1H, d, J=2.2Hz), 7.45-7.55 (2H, m), 7.74-8.20 (4H,
- 10 m), 8.25 (1H, d, J=8.8Hz), 11.15 (1H, s)

化合物 1-40

 1 H-NMR (DMSO- 1 d 6) δ ppm : 2.41 (3H, s), 3.87 (3H, s), 6.99 (1H, dd, J=2.5, 9.1Hz), 7.10 (1H, d, J=2.2Hz), 7.41 (2H, d, J=7.9Hz), 7.70-8.20 (4H, m), 8.27 (1H, d, J=9.1Hz), 11.15 (1H, s)

15 化合物 1-41

¹H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=6.9Hz), 2.42 (3H, s), 4.29 (2H, d, J=7.3Hz), 7.10-7.15 (1H, m), 7.20-7.30 (1H, m), 7.40-7.55 (2H, m), 7.73 (1H, dd, J=0.9, 8.2Hz), 7.76-7.85 (2H, m), 7.90 (1H, brs), 8.08 (1H, brs), 10.93 (1H, s)

20 化合物 1-42

¹ H-NMR (DMSO-d₆) δ ppm: 1.23 (3H, t, J=7.6Hz), 2.72 (2H, q, J=7.6Hz), 7.35-7.50 (3H, m), 7.66 (1H, m), 7.85-8.10 (4H, m), 8.27 (1H, brs), 11.01 (1H, s)

化合物1-43

1 H-NMR (DMSO-d₆) δ ppm: 1.23 (3H, t, J=7.6Hz), 2.72 (2H, q, J=7.6Hz), 7.45 (2H, d, J=8.2Hz), 7.57 (1H, dd, J=2.5, 9.1Hz), 7.67 (1H, d, J=8.8Hz), 7.93 (2H, d, J=8.2Hz), 8.02 (1H, brs), 8.29 (1H, brs), 8.35 (1H, d, J=2.2Hz), 11.03 (1H, s)

¹ H-NMR (DMS0-d₆) δ ppm: 1.23 (3H, t, J=7.6Hz), 2.71 (2H, q, J=7.6Hz), 3.87 (3H, s), 6.99 (1H, dd, J=2.2, 9.1Hz), 7.10 (1H, d, J=2.2Hz), 7.44 (2H, d, J=8.2Hz), 7.70-8.20 (4H, m), 8.27 (1H, d, J=8.8Hz), 11.15 (1H, s)

5 化合物1-45

 $^1\text{H-NMR}$ (DMSO-d₆) δ ppm : 0.92 (3H, t, J=7.3Hz), 1.55-1.75 (2H, m), 2.66 (2H, t, J=7.3Hz), 7.35-7.50 (3H, m), 7.66 (1H, dd, J=4.1, 9.1Hz), 7.85-8.10 (4H, m), 8.27 (1H, brs), 11.00 (1H, s)

化合物 1-46

化合物1-47

15 ¹ H-NMR (DMSO-d₆) δ ppm: 0.91 (3H, t, J=7.3Hz), 1.25-1.40 (2H, m), 1.55-1.65 (2H, m), 2.69 (2H, t, J=7.6Hz), 7.35-7.50 (3H, m), 7.60-7.70 (1H, m), 7.85-8.10 (4H, m), 8.26 (1H, brs), 11.00 (1H, s) 化合物 1-48

¹ H-NMR (DMSO-d₆) δ ppm: 7.35-7.45 (1H, m), 7.60-7.75 (1H, m), 7.80-7.90 (2H, m), 7.95-8.10 (2H, m), 8.20-8.40 (3H, m), 11.07 (1H, s)

化合物 1-49

20

¹ H-NMR (DMSO-d6) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H, d, J=2.2Hz), 7.70-8.20 (5H, m), 8.25-8.35 (2H, m), 11.23 (1H, s)

25 化合物 1-50

¹H-NMR (DMSO-d₆) δ ppm : 4.87 (2H, s), 7.30-7.50 (1H, m), 7.60-7.75 (3H, m), 7.90-8.10 (4H, m), 8.27 (1H, brs), 11.02 (1H, s)

化合物 1-51

 1 H-NMR (CDCl₃) δ ppm : 4.68 (2H, s), 5.61 (1H, brs), 6.41 (1H, brs),

7. 20-7. 30 (1H, m), 7. 35-7. 45 (1H, m), 7. 50-7. 70 (2H, m), 7. 95-8. 10 (2H, m), 8. 35-8. 45 (1H, m), 10. 89 (1H, brs)

化合物1-52

¹H-NMR (DMSO-d₆) δ ppm: 4.87 (2H, s), 7.40-7.50 (1H, m), 7.60-7.80 (3H, m), 7.95-8.05 (3H, m), 8.20-8.30 (2H, m), 11.05 (1H, brs)

化合物 1 - 5 3

5

¹H-NMR (DMSO-d₆) δ ppm: 4.89 (2H, s), 7.40-7.50 (1H, m), 7.60-7.65 (1H, m), 7.70-7.80 (2H, m), 7.95-8.15 (3H, m), 8.20-8.30 (2H, m), 11.06 (1H, brs)

10 化合物 1-54

¹ H-NMR (DMSO-d₆) δ ppm: 4.87 (2H, s), 7.57 (1H, dd, J=2.2, 8.8Hz), 7.60-7.75 (3H, m), 7.95-8.10 (3H, m), 8.25-8.35 (2H, m), 11.04 (1H, s) 化合物 1 - 5 5

¹H-NMR (DMSO-d₆) δ ppm: 2.44 (3H, s), 4.87 (2H, s), 7.30-7.40 (1H, m), 7.45-7.55 (1H, m), 7.60-7.70 (2H, m), 7.90 (1H, brs), 7.95-8.05 (3H, m), 8.17 (1H, brs), 10.98 (1H, brs)

. 化合物 1-56

 1 H-NMR (DMSO- d_{6}) δ ppm : 2.44 (3H, s), 4.89 (2H, s), 7.30-7.40 (1H, m), 7.45-7.80 (3H, m), 7.90 (1H, brs), 7.95-8.15 (3H, m), 8.17 (1H, brs),

20 10.97 (1H, brs)

化合物 1-57

¹ H-NMR (DMSO-d₆) δ ppm : 3.87 (3H, s), 4.89 (2H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H, d, J=2.2Hz), 7.55-8.15 (6H, m), 8.21 (1H, d, J=8.8Hz), 11.17 (1H, s)

25 化合物1-58

¹ H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 4.87 (2H, s), 7.00 (1H, dd, J=2.2, 9.1Hz), 7.11 (1H, d, J=2.2Hz), 7.66 (2H, d, J=8.5Hz), 7.75-8.15 (4H, m), 8.24 (1H, d, J=8.8Hz), 11.17 (1H, s) 化合物 1 - 5 9

- 1 H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=6.9Hz), 4.30 (2H, q, J=6.9Hz), 4.89 (2H, s), 7.10-7.15 (1H, m), 7.20-7.30 (1H, m), 7.55-7.75 (3H, m), 7.91 (1H, brs), 7.95-8.00 (1H, m), 8.05-8.15 (2H, m), 10.95 (1H, s) 化合物 1 6 0
- 5 ¹H-NMR (DMSO-d₆) δ ppm: 7.35-7.45 (1H, m), 7.60-7.85 (3H, m), 7.97 (1H, brs), 8.23 (1H, brs), 8.30-8.45 (2H, m), 11.01 (1H, s) 化合物 1 6 1
 - 1 H-NMR (DMSO-d $_6$) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H, d, J=2.2Hz), 7.70-7.95 (2H, m), 8.05 (2H, d, J=8.8Hz), 8.30-
- 10 8.45 (2H, m), 11.15 (1H, s)

化合物 1-62

¹ H-NMR (DMSO-d₆) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H, d, J=2.2Hz), 7.75-8.20 (5H, m), 8.29 (1H, d, J=8.2Hz), 8.42 (1H, s), 11.11 (1H, s)

15 化合物 1 - 63

¹H-NMR (DMSO-d₆) δ ppm: 2.83 (4H, s), 7.35-7.45 (1H, m), 7.55-7.60 (1H, m), 7.65-7.80 (2H, m), 7.90-8.10 (4H, m), 8.27 (1H, brs), 11.02 (1H, s) 化合物 1 - 6 4

 1 H-NMR (DMSO-d₆) δ ppm : 2.70-2.95 (4H, m), 3.87 (3H, s), 6.90-7.30 (2H, 20 m), 7.40-8.30 (7H, m), 11.16 (1H, s)

化合物 1 - 6 5

¹H-NMR (DMSO-d₆) δ ppm: 2.23 (3H, s), 2.45 (4H, t, J=4.7Hz), 3.25-3.40 (4H, m), 7.08 (2H, d, J=8.8Hz), 7.20-7.30 (1H, m), 7.52 (1H, dd, J=2.2, 8.8Hz), 7.84 (2H, d, J=8.8Hz), 7.94 (1H, brs), 8.21 (1H, brs), 8.35-8.45

25 (1H, m), 10.99 (1H, s)

化合物 1 - 6 6

¹H-NMR (DMSO-d₆) δ ppm: 3.20-3.40 (4H, m), 3.65-3.85 (4H, m), 7.10 (2H, d, J=9.1Hz), 7.20-7.30 (1H, m), 7.53 (1H, dd, J=2.2, 8.8Hz), 7.80-8.00 (3H, m), 8.22 (1H, brs), 8.35-8.45 (1H, m), 11.00 (1H, s)

化合物 1 - 67

¹ H-NMR (CDCl₃) δ ppm: 1.40-1.55 (9H, m), 4.35-4.50 (2H, m), 4.98 (1H, brs), 5.92 (1H, brs), 6.43 (1H, brs), 7.30-7.50 (4H, m), 7.95-8.05 (2H, m), 8.65-8.75 (1H, m), 10.85 (1H, brs)

5 化合物 1 - 68

¹H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 7.20-7.30 (1H, m), 7.35-7.45 (1H, m), 7.48-7.60 (3H, m), 7.67 (1H, dd, J=4.4, 9.1Hz), 7.90-8.10 (2H, m), 8.27 (1H, brs), 11.02 (1H, s)

化合物 1 - 6 9

10 ¹H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 7.10-7.20 (2H, m), 7.35-7.45 (1H, m), 7.65 (1H, dd, J=4.1, 9.1Hz), 7.90-8.10 (4H, m), 8.26 (1H, brs), 10.95 (1H, s).

化合物1-70

¹ H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 7.24 (1H, dd, J=2.5, 7.9Hz),
7.43 (1H, dd, J=1.9, 8.8Hz), 7.48-7.60 (3H, m), 7.76 (1H, d, J=1.6Hz),
8.02 (1H, brs), 8.20-8.35 (2H, m), 11.06 (1H, s)
化合物 1 - 7 1

¹ H-NMR (DMSO-d₆) δ ppm : 3.86 (3H, s), 3.87 (3H, s), 6.99 (1H, dd, J=2.2, 8.8Hz), 7.10 (1H, d, J=2.2Hz), 7.20-7.30 (1H, m), 7.45-7.60 (3H,

20 m), 7.87 (1H, brs), 8.06 (1H, brs), 8.25 (1H, d, J=9.1Hz), 11.17 (1H, s) 化合物 1-72

¹ H-NMR (DMSO-d₆) δ ppm: 3.863 (3H, s), 3.866 (3H, s), 6.98 (1H, dd, J=2.2, 8.8Hz), 7.09 (1H, d, J=2.2Hz), 7.15-7.20 (2H, m), 7.75-8.15 (4H, m), 8.27 (1H, d, J=8.8Hz), 11.09 (1H, s)

25 化合物 1 - 7 3

 1 H-NMR(DMSO-d₆) δ ppm: 1.43(3H, t, J=6.9Hz), 3.86(3H, s), 4.30(2H, q, J=6.9Hz), 7.12(1H, d, J=7.9Hz), 7.20-7.30(2H, m), 7.45-7.65(3H, m), 7.73(1H, d, J=8.2Hz), 7.92(1H, brs), 8.09(1H, brs), 10.95(1H, s) 化合物 1-7 4

¹H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 7.10-7.20 (2H, m), 7.35-7.60 (3H, m), 7.69 (1H, dd, J=1.6, 8.5Hz), 7.75-7.85 (3H, m), 7.90-8.05 (3H, m), 8.21 (1H, brs), 8.39 (1H, d, J=8.5Hz), 11.03 (1H, s) 化合物 1 - 7 5

5 1 H-NMR (DMSO-d₆) δ ppm : 7.35-7.45 (1H, m), 7.60-7.80 (3H, m), 7.85-8.10 (4H, m), 8.26 (1H, brs), 11.03 (1H, s)

化合物 1 - 76

¹H-NMR (DMSO-d₆) δ ppm: 7.35-7.45 (1H, m), 7.61 (2H, d, J=7.9Hz), 7.67 (1H, dd, J=4.1, 9.1Hz), 7.85-8.05 (2H, m), 8.10-8.35 (3H, m), 11.00 (1H,

10 s)

化合物1-77

¹ H-NMR (DMSO-d₆) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.12 (1H, d, J=2.2Hz), 7.60-8.25 (7H, m), 11.20 (1H, s)

化合物1-78

15 1 H-NMR (DMSO-d $_{6}$) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H, d, J=2.2Hz), 7.61 (2H, d, J=8.5Hz), 7.70-8.30 (5H, m), 11.15 (1H, s)

化合物 1-79

¹H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=7.3Hz), 4.30 (2H, q, J=7.3Hz),

7.12 (1H, d, J=7.3Hz), 7.20-7.30 (1H, m), 7.62 (1H, dd, J=0.9, 8.2Hz),

7.68 (1H, d, J=8.2Hz), 7.72-7.80 (1H, m), 7.91 (1H, brs), 7.95 (1H, brs),

8.00-8.15 (2H, m), 10.97 (1H, s)

化合物1-80

¹ H-NMR (DMSO-d₆) δ ppm: 7.05-7.50 (7H, m), 7.55-7.80 (4H, m), 7.90-7.95 (1H, m), 7.98 (1H, brs), 8.26 (1H, brs), 11.00 (1H, brs)

化合物 1 - 8 1

¹ H-NMR (DMSO-d₆) δ ppm: 7.05-7.30 (5H, m), 7.35-7.55 (3H, m), 7.60-7.70 (1H, m), 7.90-8.10 (4H, m), 8.26 (1H, brs), 10.96 (1H, s)
化合物 1-8 2

¹H-NMR (DMSO-d₆) δ ppm: 7.05-7.35 (4H, m), 7.40-7.80 (7H, m), 8.01 (1H, brs), 8.20-8.30 (1H, m), 8.28 (1H, brs), 11.02 (1H, brs)

化合物1-83

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 7.05-7.35 (4H, m), 7.40-7.65 (5H, m), 7.70-

5 7.80 (2H, m), 8.05 (1H, brs), 8.33 (1H, brs), 10.95 (1H, brs)

化合物 1-84

¹ H-NMR (DMSO-d₆) δ ppm : 2.42 (3H, s), 7.05-7.65 (10H, m), 7.75-7.80 (1H, m), 7.88 (1H, brs), 7.90-8.00 (1H, m), 8.16 (1H, brs), 10.97 (1H, brs)

10 化合物 1-85

 1 H-NMR (CDCl $_3$) δ ppm : 3.88 (3H, s), 5.69 (1H, brs), 6.26 (1H, brs), 6.85-7.50 (9H, m), 7.65-7.80 (2H, m), 8.50-8.60 (1H, m), 10.95 (1H, brs) 化合物 1-8 6

¹ H-NMR (DMSO-d₆) δ ppm: 7.10-7.30 (5H, m), 7.35-7.55 (5H, m), 7.65-15 7.85 (4H, m), 7.97 (1H, brs), 8.00-8.10 (2H, m), 8.22 (1H, brs), 8.35 (1H, d, J=8.2Hz), 11.04 (1H, s)

化合物 1-87

¹ H-NMR (DMSO-d₆) δ ppm: 7.35-7.60 (4H, m), 7.65-7.85 (4H, m), 7.90-8.10 (4H, m), 8.20-8.35 (2H, m), 11.11 (1H, s)

20 化合物1-88

 1 H-NMR (CDC1 $_{3}$ +MeOD-d $_{4}$) δ ppm : 1.60-1.90 (4H, m), 3.00-3.50 (4H, m), 7.25-7.50 (2H, m), 7.80-8.20 (4H, m), 8.45-8.60 (1H, m)

化合物 1-89

¹ H-NMR (DMSO-d₆) δ ppm: 0.75-0.95 (6H, m), 1.40-1.60 (4H, m), 3.00-25 3.15 (4H, m), 3.87 (3H, s), 7.00 (1H, dd, J=2.5, 9.1Hz), 7.12 (1H, d, J=2.2Hz), 7.87 (1H, brs), 7.95-8.25 (6H, m), 11.21 (1H, s) 化合物 1-9 0

¹H-NMR (DMSO-d₆) δ ppm: 6.17 (2H, s), 7.12 (1H, d, J=8.2Hz), 7.35-7.45 (1H, m), 7.50 (1H, d, J=1.9Hz), 7.55-7.70 (2H, m), 7.90-8.05 (2H, m),

8.25 (1H, brs), 10.87 (1H, s)

化合物 1-91

¹H-NMR (DMSO-d₆) δ ppm: 6.17 (2H, s), 7.12 (1H, d, J=8.2Hz), 7.20-7.30 (1H, m), 7.49 (1H, d, J=1.6Hz), 7.50-7.60 (1H, m), 7.59 (1H, dd, J=1.6,

5 8.2Hz), 7.94 (1H, brs), 8.20 (1H, brs), 8.25-8.35 (1H, m), 10.94 (1H, s) 化合物 1-9 2

¹H-NMR (DMSO-d₆) δ ppm: 6.18 (2H, s), 7.10-7.15 (1H, m), 7.45-7.70 (4H, m), 8.02 (1H, brs), 8.25-8.30 (1H, m), 8.30 (1H, brs), 10.89 (1H, brs)
化合物 1 - 9 3

10 1 H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 6.17 (2H, s), 6.90-7.20 (3H, m), 7.40-7.65 (2H, m), 7.84 (1H, brs), 8.03 (1H, brs), 8.15-8.30 (1H, m), 11.02 (1H, s)

化合物 1 - 9 4

¹H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=6.9Hz), 4.29 (2H, q, J=6.9Hz),
15 6.16 (2H, s), 7.05-7.25 (3H, m), 7.50 (1H, d, J=1.6Hz), 7.59 (1H, dd,
J=1.9, 8.2Hz), 7.69 (1H, dd, J=0.9, 7.9Hz), 7.89 (1H, brs), 8.06 (1H,
brs), 10.79 (1H, s)

化合物 1 - 9 5

¹ H-NMR (DMSO-d₆) δ· ppm: 3.25-3.35 (2H, m), 4.60-4.70 (2H, m), 6.90-20 7.00 (1H, m), 7.50-7.70 (2H, m), 7.75-7.95 (2H, m), 8.01 (1H, brs), 8.30 (1H, brs), 8.30-8.40 (1H, m), 10.93 (1H, brs)

化合物 1 - 9 6

¹ H-NMR (CDCl₃) δ ppm : 2.05-2.25 (2H, m), 2.90-3.10 (4H, m), 7.30-7.50 (3H, m), 7.75-7.95 (2H, m), 8.65-8.75 (1H, m)

25 化合物 1 - 9 7

¹ H-NMR (CDCl₃) δ ppm: 3.82 (2H, s), 6.11 (1H, brs), 6.46 (1H, brs), 7.10-7.50 (6H, m), 7.55-7.60 (1H, m), 8.50-8.55 (1H, m), 9.94 (1H, brs) 化合物 1 — 9 8

¹ H-NMR (CDCl₃) δ ppm : 2.82 (2H, t, J=7.9Hz), 3.11 (2H, t, J=7.9Hz),

5.68 (1H, brs), 6.35 (1H, brs), 7.15-7.55 (7H, m), 8.45-8.55 (1H, m), 9.82 (1H, brs)

化合物 1-99

¹ H-NMR (DMSO-d₆) δ ppm: 3.81 (3H, s), 3.84 (3H, s), 3.86 (3H, s), 6.90-7.10 (4H, m), 7.20-7.30 (1H, m), 7.35-7.40 (1H, m), 7.55-7.65 (1H, m), 7.76 (1H, brs), 7.94 (1H, brs), 8.05-8.15 (1H, m), 10.26 (1H, brs) 化合物 1-100

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 3.84 (3H, s), 4.05 (2H, s), 6.93 (1H, dd, J=2.5, 9.1Hz), 6.98-7.15 (3H, m), 7.43 (1H, dd, J=1.3, 5.0Hz), 7.74 (1H,

10 brs), 7.90 (1H, brs), 7.93 (1H, d, J=8.8Hz), 10.34 (1H, s)

化合物1-101

 1 H-NMR (CDCl $_{3}$ +MeOD-d $_{4}$) δ ppm : 6.75-6.90 (1H, m), 7.25-7.75 (4H, m), 7.85-8.00 (1H, m), 8.20-8.30 (1H, m), 8.50-8.65 (1H, m)

化合物 1-102

¹H-NMR (DMSO-d₆) δ ppm: 7.35-7.45 (1H, m), 7.50-7.90 (6H, m), 8.08 (1H, brs), 8.38 (1H, brs), 8.40-8.45 (1H, m), 11.36 (1H, brs)

化合物 1 - 1 0 3

 1 H-NMR (CDCl $_{3}$ +MeOD-d $_{4}$) δ ppm : 2.74 (3H, s), 7.25-7.50 (2H, m), 8.30-8.70 (2H, m)

20 化合物 1-104

¹ H-NMR (CDCl₃) δ ppm: 5.64 (1H, brs), 6.41 (1H, brs), 7.10-7.20 (1H, m), 7.35-7.50 (2H, m), 7.60-7.70 (1H, m), 7.75-7.85 (1H, m), 8.65-8.75 (1H, m), 10.84 (1H, brs)

化合物 1-105

¹ H-NMR (CDCl₃) δ ppm: 5.64 (1H, brs), 6.40 (1H, brs), 6.80-6.90 (1H, m), 7.30-7.55 (3H, m), 8.10-8.20 (1H, m), 8.65-8.75 (1H, m), 10.54 (1H, brs)

化合物1-106

 1 H-NMR (DMSO-d₆) δ ppm: 1.14 (6H, t, J=7.1Hz), 3.43 (4H, q, J=7.1Hz),

6.56-6.62 (1H, m), 6.72-6.84 (2H, m), 7.30-7.35 (1H, m), 7.50-8.03 (3H, m), 8.19 (1H, d, J=9.1Hz), 11.21 (1H, s)

化合物1-107

¹ H-NMR (DMSO-d₆) δ ppm: 6.74-6.82 (1H, m), 7.34-7.47 (2H, m), 7.62-7.70 (1H, m), 7.96-8.12 (3H, m), 8.31 (1H, brs), 11.04 (1H, s)

化合物1-108

5

 1 H-NMR (DMSO-d $_6$) δ ppm : 6.72-6.84 (1H, m), 7.32-7.72 (3H, m), 7.96-8.11 (2H, m), 8.31 (1H, brs), 8.37-8.47 (1H, m), 11.04 (1H, s)

化合物1-109

10 1 H-NMR (DMSO-d₆) δ ppm : 6.70-6.90 (1H, m), 7.30-7.70 (2H, m), 7.85-8.20 (3H, m), 8.36 (1H, brs), 10.99 (1H, s)

化合物1-110

¹H-NMR (DMSO-d₆) δ ppm : 2.43 (3H, s), 6.75-6.80 (1H, m), 7.32-7.39 (2H, m), 7.49 (1H, d, J=8.5Hz), 7.92 (1H, brs), 8.00-8.12 (2H, m), 8.21 (1H,

15 brs), 10.99 (1H, s)

化合物1-111

 $^1\text{H-NMR}$ (DMSO-d₆) δ ppm : 3.81 (3H, s), 6.70-6.85 (1H, m), 7.05-7.60 (3H, m), 7.74-8.10 (3H, m), 8.20 (1H, brs), 11.02 (1H, s)

化合物1-112

¹H-NMR (DMSO-d₆) δ ppm: 3.98 (3H, s), 6.72-6.82 (1H, m), 7.08-7.40 (3H, m), 7.78-8.24 (4H, m), 10.98 (1H, s)

化合物 1-113

 1 H-NMR (DMSO-d₆) δ ppm : 3.86 (3H, s), 6.72-7.40 (4H, m), 7.86 (1H, brs), 7.96-8.35 (3H, m), 11.14 (1H, s)

25 化合物1-114

¹H-NMR (DMSO-d₆) δ ppm: 5.24 (2H, s), 6.72-6.83 (1H, m), 7.00-7.58 (8H, m), 7.85 (1H, brs), 7.97-8.20 (2H, m), 8.30 (1H, d, J=9.0Hz), 11.14 (1H, s)

化合物1-115

¹H-NMR (DMSO-d₆) δ ppm : 2.40 (3H, s), 6.30-6.40 (1H, m), 7.05-7.20 (1H, m), 7.28 (1H, d, J=3.2Hz), 7.45-7.55 (2H, m), 7.86 (1H, brs), 8.06 (1H, brs), 9.98 (1H, s)

化合物 1-116

5 ¹H-NMR (CDCl₃) δ ppm: 2.45 (3H, s), 5.59 (1H, brs), 6.15-6.25 (1H, m), 6.39 (1H, brs), 7.15-7.25 (2H, m), 7.35-7.45 (1H, m), 8.35-8.40 (1H, m), 10.72 (1H, brs)

化合物 1-117

 1 H-NMR (CDCl₃) δ ppm: 2.45 (3H, s), 5.59 (1H, brs), 6.15-6.25 (1H, m),

10 6.38 (1H, brs), 7.15-7.25 (1H, m), 7.35-7.45 (2H, m), 8.65-8.75 (1H, m), 10.73 (1H, brs)

化合物1-118

 1 H-NMR (DMSO-d₆) δ ppm : 2.41 (3H, s), 6.32-6.47 (1H, m), 7.20-7.48 (2H, m), 7.70-7.80 (1H, m), 7.97 (1H, brs), 8.24 (1H, brs), 8.36 (1H, d,

15 J=8.7Hz), 10.99 (1H, s)

化合物1-119

¹H-NMR (DMSO-d₆) δ ppm: 2.41 (3H, s), 6.35-6.47 (1H, m), 7.22-7.33 (1H, m), 7.54-7.64 (1H, m), 7.88-7.96 (1H, m), 8.05 (1H, brs), 8.35 (1H, brs), 10.93 (1H, s)

20. 化合物 1-120

¹H-NMR (DMSO-d₆) δ ppm : 2.41 (3H, s), 3.30 (3H, s), 6.35-6.45 (1H, m), 6.95-7.00 (1H, m), 7.05-7.10 (1H, m), 7.20-7.25 (1H, m), 7.82 (1H, brs), 8.03 (1H, brs), 8.25-8.35 (1H, m), 11.07 (1H, brs)

化合物 1-121

¹ H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.76 (2H, q, J=7.6Hz), 6.40-6.45 (1H, m), 7.25-7.30 (1H, m), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 8.00 (1H, brs), 8.10-8.15 (1H, m), 8.27 (1H, brs), 11.06 (1H, brs) 化合物 1-122

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.27 (3H, t, J=7.6Hz), 2.75 (2H, q, J=7.6Hz),

6.35-6.45 (1H, m), 7.20-7.30 (2H, m), 7.53 (1H, dd, J=2.2, 9.1Hz), 7.95 (1H, brs), 8.21 (1H, brs), 8.35-8.50 (1H, m), 11.12 (1H, s)

化合物 1-123

 1 H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.76 (2H, q, J=7.6Hz),

5 6.40-6.45 (1H, m), 7.25-7.30 (1H, m), 7.50-7.70 (2H, m), 8.02 (1H, brs), 8.29 (1H, brs), 8.40-8.50 (1H, m), 11.08 (1H, brs)

化合物 1-124

 1 H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.5Hz), 2.75 (2H, q, J=7.5Hz), 6.40-6.45 (1H, m), 7.20-7.30 (1H, m), 7.35-7.45 (1H, m), 7.70-7.80 (1H,

10 m), 7.99 (1H, brs), 8.25 (1H, brs), 8.35-8.45 (1H, m), 11.09 (1H, brs) 化合物 1-1 2 5

 1 H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.8Hz), 2.76 (2H, q, J=7.8Hz), 6.40-6.45 (1H, m), 7.25-7.30 (1H, m), 7.55-7.65 (1H, m), 7.90-8.00 (1H, m), 8.08 (1H, brs), 8.35 (1H, brs), 11.03 (1H, brs)

15 化合物 1-126

¹H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.43 (3H, s), 2.75 (2H, q, J=7.6Hz), 6.40-6.45 (1H, m), 7.20-7.40 (2H, m), 7.45-7.50 (1H, m), 7.90 (1H, brs), 8.10-8.20 (1H, m), 8.17 (1H, brs), 11.01 (1H, brs) 化合物 1-127

 1 H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.6Hz), 2.75 (2H, q, J=7.6Hz), 3.86 (3H, s), 6.35-6.45 (1H, m), 6.95-7.00 (1H, m), 7.05-7.10 (1H, m), 7.20-7.30 (1H, m), 7.85 (1H, brs), 8.03 (1H, brs), 8.25-8.35 (1H, m), 11.17 (1H, brs)

化合物 1-128

1 H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.6Hz), 1.42 (3H, t, J=6.9Hz), 2.75 (2H, q, J=7.6Hz), 4.29 (2H, q, J=6.9Hz), 6.41 (1H, d, J=3.5Hz), 7.12 (1H, d, J=8.2Hz), 7.15-7.30 (2H, m), 7.85 (1H, dd, J=0.9, 8.2Hz), 7.92 (1H, brs), 8.09 (1H, brs), 11.00 (1H, s) 化合物 1-129

 1 H-NMR (DMSO- d_{6}) δ ppm : 3.86 (3H, s), 4.93 (2H, s), 6.75-6.85 (1H, m), 6.95-7.15 (2H, m), 7.25-7.35 (1H, m), 7.86 (1H, brs), 8.06 (1H, brs), 8.15-8.30 (1H, m), 11.16 (1H, brs)

化合物1-130

¹ H-NMR (DMSO-d₆) δ ppm: 7.25-7.30 (1H, m), 7.40-7.70 (6H, m), 7.90-5 8.00 (2H, m), 8.15-8.25 (1H, m), 8.16 (1H, brs), 8.36 (1H, brs), 11.48 (1H, brs)

化合物1-131

¹ H-NMR (DMSO-d₆) δ ppm: 7.20-7.30 (1H, m), 7.35-7.55 (5H, m), 7.70-10 7.80 (1H, m), 7.90-8.00 (2H, m), 8.15 (1H, brs), 8.34 (1H, brs), 8.45-8.55 (1H, m), 11.50 (1H, brs)

化合物 1-132

 1 H-NMR (DMSO-d₆) δ ppm: 7.25-7.65 (6H, m), 7.85-8.10 (3H, m), 8.23 (1H, brs), 8.44 (1H, brs), 11.42 (1H, brs)

化合物1-133 15

> ¹H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 6.95-7.15 (2H, m), 7.20-7.30 (1H, m), 7.35-7.55 (4H, m), 7.85-8.15 (4H, m), 8.35-8.45 (1H, m), 11.55 (1H, brs)

化合物 1-134

 1 H-NMR (CDCl $_{3}$ +MeOD-d $_{4}$) δ ppm : 7.20-7.60 (3H, m), 7.80-8.00 (1H, m), 20 8.15-8.40 (1H, m), 8.60-8.80 (2H, m)

化合物 1-135

化合物1-137

 1 H-NMR (CDCl $_{3}$ +MeOD-d $_{4}$) δ ppm : 7.30-7.60 (3H, m), 8.20-8.80 (3H, m), 9.10-9.30 (1H, m)

· 25 化合物1-136

> ¹ H-NMR (DMSO-d₆) δ ppm : 3.87 (3H, s), 7.00 (1H, dd, J=2.2, 8.8Hz), 7. 12 (1H, d, J=2.2Hz), 7. 74-8. 20 (4H, m), 8. 38 (1H, dd, J=2.5, 8. 2Hz), 8. 99 (1H, d, J=2.2Hz), 11. 12 (1H, s)

¹H-NMR (DMSO-d₆) δ ppm: 7.15-7.33 (4H, m), 7.35-7.55 (3H, m), 7.67 (1H, dd, J=4.1, 9.1Hz), 7.88 (1H, dd, J=2.8, 9.5Hz), 7.98 (1H, brs), 8.24 (1H, brs), 8.40 (1H, dd, J=2.5, 8.5Hz), 8.78 (1H, d, J=2.5Hz), 10.90 (1H, s) 化合物 1-138

5 ¹H-NMR (DMSO-d₆) δ ppm: 7.15-7.35 (4H, m), 7.40-7.60 (4H, m), 7.95 (1H, brs), 8.10-8.30 (2H, m), 8.39 (1H, dd, J=2.5, 8.5Hz), 8.77 (1H, d, J=2.5Hz), 10.97 (1H, s)

化合物1-139

¹H-NMR (DMSO-d₆) δ ppm: 3.45 (3H, s), 4.10 (2H, s), 7.35-7.45 (1H, m), 10 7.55-7.70 (1H, m), 7.91 (1H, brs), 8.05-8.15 (1H, m), 8.20 (1H, brs), 10.76 (1H, s)

化合物1-140

 1 H-NMR (DMSO-d₆) δ ppm : 3.45 (3H, s), 4.11 (2H, s), 7.54 (1H, dd, J=2.2, 8.8Hz), 7.63 (1H, d, J=8.8Hz), 7.93 (1H, brs), 8.22 (1H, brs),

15 8.40 (1H, d, J=2.2Hz), 10.76 (1H, s)

化合物1-141

 1 H-NMR (DMSO-d₆) δ ppm : 3.45 (3H, s), 3.96 (3H, s), 4.09 (2H, s), 7.08-7.15 (1H, d, J=7.9Hz), 7.18-7.25 (1H, m), 7.75-7.95 (2H, d, J=8.2Hz), 8.07 (1H, brs), 10.73 (1H, s)

20 化合物 1-142

¹H-NMR (DMSO-d₆) δ ppm: 4.82 (2H, s), 6.95-7.15 (3H, m), 7.30-7.45 (3H, m), 7.60-7.70 (1H, m), 8.00 (1H, brs), 8.10-8.20 (1H, m), 8.24 (1H, brs), 11.16 (1H, brs)

化合物 1-143

¹ H-NMR (CDCl₃) δ ppm : 4.70 (2H, s), 6.90-7.15 (5H, m), 7.30-7.50 (4H, m), 8.55-8.65 (1H, m), 11.17 (1H, brs)

化合物 1-144

 1 H-NMR (CDCl₃) δ ppm: 3.88 (3H, s), 4.69 (2H, s), 5.63 (1H, brs), 6.24 (1H, brs), 6.85-7.15 (5H, m), 7.30-7.40 (2H, m), 8.45-8.55 (1H, m),

11.11 (1H, brs)

化合物1-145

 1 H-NMR (DMSO-d₆) δ ppm: 4.83 (2H, s), 7.05-7.15 (2H, m), 7.35-7.45 (3H, m), 7.60-7.70 (1H, m), 8.00 (1H, brs), 8.05-8.15 (IH, m), 8.25 (1H, brs),

5 11.13 (1H, brs)

化合物1-146

¹H-NMR (DMSO-d₆) δ ppm: 4.84 (2H, s), 7.10-7.15 (2H, m), 7.35-7.45 (2H, m), 7.50-7.70 (2H, m), 8.02 (1H, brs), 8.27 (1H, brs), 8.40-8.45 (1H, m), 11.13 (1H, brs)

10 化合物 1-147

 1 H-NMR (CDCl $_{3}$) δ ppm: 3.88 (3H, s), 4.66 (2H, s), 5.54 (1H, brs), 6.26 (1H, brs), 6.80-7.10 (4H, m), 7.20-7.40 (2H, m), 8.45-8.55 (1H, m), 11.09 (1H, brs)

化合物1-148

¹H-NMR (DMSO-d₆) δ ppm: 1.58 (6H, s), 7.05-7.20 (2H, m), 7.30-7.45 (3H, m), 7.60-7.70 (1H, m), 7.95 (1H, brs), 8.05-8.15 (1H, m), 8.22 (1H, brs), 11.24 (1H, brs)

化合物1-149

 1 H-NMR (DMSO-d₆) δ ppm: 1.58 (6H, s), 7.05-7.20 (2H, m), 7.30-7.45 (2H, 20 m), 7.50-7.70 (2H, m), 7.97 (1H, brs), 8.24 (1H, brs), 8.40-8.50 (1H, m), 11.28 (1H, brs)

化合物 1-150

¹H-NMR (DMSO-d₆) δ ppm : 4.23 (2H, s), 4.70 (2H, s), 7.25-7.45 (4H, m), 7.49 (2H, d, J=7.3Hz), 7.60-7.65 (1H, m), 7.98 (1H, brs), 8.05-8.15 (1H,

25 m), 8.22 (1H, brs), 10.90 (1H, s)

化合物 1-151

 1 H-NMR (DMSO-d₆) δ ppm : 4.23 (2H, s), 4.70 (2H, s), 7.25-7.45 (3H, m), 7.49 (2H, d, J=7.3Hz), 7.55 (1H, dd, J=2.2, 8.8Hz), 7.63 (1H, d, J=8.8Hz), 8.00 (1H, brs), 8.24 (1H, brs), 8.41 (1H, d, J=2.5Hz), 10.90

110

(1H, s)

化合物1-152

 1 H-NMR (DMSO-d₆) δ ppm : 0.80-0.95 (4H, m), 1.91-2.05 (1H, m), 7.15-7.25 (1H, m), 7.45-7.53 (1H, m), 7.85 (1H, brs), 7.93-8.02 (1H, m), 8.07

(1H, brs), 10.37 (1H, s) 5

化合物1-153

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 0.82-0.93 (4H, m), 1.94-2.05 (1H, m), 7.31-7.40 (1H, m), 7.67-7.74 (1H, m), 7.82-7.98 (2H, m), 8.11 (1H, s), 10.36 (1H, s)

化合物1-154 10

> 1 H-NMR (DMSO-d₆) δ ppm : 0.80-0.95 (4H, m), 1.90-2.00 (1H, m), 7.75-7.95 (1H, m), 7.89 (1H, brs), 8.10 (1H, brs), 10.38 (1H, brs)

化合物 1 - 1 5 5

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 0.80-1.00 (4H, m), 1.90-2.05 (1H, m), 7.45-

7.60 (2H, m), 7.95 (1H, brs), 8.18 (1H, brs), 10.35 (1H, s) 15

MS (ESI, m/z): 281 (M+H)+

化合物 1-156

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 0.78-0.96 (4H, m), 1.93-2.05 (1H, m), 7.55-7.74 (2H, m), 7.99 (1H, brs), 8.10 (1H, brs), 10.37 (1H, s)

化合物 1-157 20

> $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 0.81-0.94 (4H, m), 1.90-2.00 (1H, m), 2.44 (3H, s), 7.05-7.15 (1H, m), 7.30-7.40 (1H, m), 7.67-8.10 (3H, m), 10.32 (1H, s)

化合物1-158

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 0.80-0.95 (4H, m), 1.90-2.00 (1H, m), 3.31 (3H, 25 s), 7.45-7.55 (1H, m), 7.60-7.70 (1H, m), 7.83 (1H, brs), 8.06 (1H, brs), 10.34 (1H, brs)

化合物1-159

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 0.80-0.90 (4H, m), 1.90-2.00 (1H, m), 3.97 (3H,

s), 7.00-7.10 (1H, m), 7.10-7.20 (1H, m), 7.85 (1H, brs), 8.04 (1H, brs), 10.30 (1H, brs)

化合物1-160

¹ H-NMR (DMSO-d₆) δ ppm: 1.75-1.90 (1H, m), 1.90-2.05 (1H, m), 2.10-5 2.35 (4H, m), 3.20-3.45 (1H, m), 7.30-7.45 (1H, m), 7.55-7.70 (1H, m), 7.75-8.00 (2H, m), 8.15 (1H, brs), 10.05 (1H, s)

MS (ESI, m/z): 277 (M+H)+

化合物1-161

¹ H-NMR (DMSO-d₆) δ ppm: 1.75-1.90 (1H, m), 1.90-2.05 (1H, m), 2.10-10 2.35 (4H, m), 3.30-3.45 (1H, m), 7.50-7.60 (1H, m), 7.60-7.75 (1H, m), 7.95 (1H, brs), 8.19 (1H, brs), 10.03 (1H, s)

MS (ESI, m/z): 295 (M+H)+

化合物1-162

¹ H-NMR (DMSO-d₆) δ ppm: 1.50-2.00 (8H, m), 2.85-3.00 (1H, m), 7.30-15 7.40 (1H, m), 7.55-7.65 (1H, m), 7.75-7.85 (1H, m), 7.87 (1H, brs), 8.11 (1H, brs), 10.14 (1H, brs)

化合物 1-163

 1 H-NMR (DMSO-d₆) δ ppm: 1.15-1.50 (5H, m), 1.60-2.00 (5H, m), 2.40-2.55 (1H, m), 7.30-7.40 (1H, m), 7.55-7.65 (1H, m), 7.75-7.85 (1H, m),

20 7.87 (1H, brs), 8.11 (1H, brs), 10.13 (1H, brs)

化合物 1-164

¹ H-NMR (DMSO-d₆) δ ppm: 1.35-1.45 (1H, m), 1.50-1.60 (1H, m), 2.30-2.55 (2H, m), 7.15-7.40 (5H, m), 7.45-7.60 (2H, m), 7.93 (1H, brs), 8.17 (1H, brs), 10.40 (1H, brs)

25 化合物 1-165

 1 H-NMR (DMSO-d₆) δ ppm: 1.80-2.00 (2H, m), 2.00-2.15 (1H, m), 2.20-2.35 (1H, m), 3.80-3.95 (1H, m), 3.95-4.10 (1H, m), 4.45-4.60 (1H, m), 7.30-7.45 (1H, m), 7.55-7.70 (1H, m), 7.91 (1H, brs), 8.05-8.20 (1H, m), 8.21 (1H, brs), 10.90 (1H, s)

化合物 1-166

¹ H-NMR (DMSO-d₆) δ ppm: 1.80-2.00 (2H, m), 2.00-2.15 (1H, m); 2.20-2.35 (1H, m), 3.80-3.95 (1H, m), 3.95-4.10 (1H, m), 4.45-4.60 (1H, m), 7.30-7.45 (1H, m), 7.55-7.70 (1H, m), 7.91 (1H, brs), 8.05-8.20 (1H, m),

5 8.21 (1H, brs), 10.90 (1H, s)

化合物1-167

 1 H-NMR (DMSO-d₆) δ ppm : 7.40-7.50 (2H, m), 7.80-7.90 (1H, m), 8.00 (1H, brs), 8.05-8.25 (3H, m), 8.25 (1H, brs), 11.00 (1H, brs)

化合物1-168

10 ¹ H-NMR (DMSO-d₆) δ ppm: 7.40-7.50 (2H, m), 7.55-7.65 (1H, m), 7.70-7.80 (1H, m), 8.05-8.15 (3H, m), 8.37 (1H, brs), 10.92 (1H, brs) 化合物 1 - 169

¹H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 7.19 (1H, d, J=8.2Hz), 7.42 (1H, s), 7.43-7.60 (1H, m), 7.60-7.73 (1H, m), 7.75-8.00 (3H, m), 8.11 (1H, d,

15 J=8.2Hz), 8.17 (1H, brs), 11.07 (1H, s)

化合物1-170

 1 H-NMR (DMSO-d₆) δ ppm : 2.48 (3H, s), 7.19 (1H, d, J=8.5Hz), 7.35-7.50 (3H, m), 7.89 (1H, brs), 8.00-8.30 (4H, m), 11.04 (1H, s)

化合物1-171

 1 H-NMR (DMSO-d₆) δ ppm: 1.25 (3H, t, J=7.6Hz), 2.77 (2H, q, J=7.6Hz), 7.22 (1H, d, J=8.2Hz), 7.35-7.50 (3H, m), 7.89 (1H, brs), 8.00-8.25 (4H, m), 11.02 (1H, s)

化合物1-172

¹H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 6.95-7.05 (1H, m), 7.05-7.15 (1H, 25 m), 7.40-7.50 (2H, m), 7.87 (1H, brs), 8.00-8.15 (3H, m), 8.19 (1H, d, J=8.6Hz), 11.12 (1H, s)

化合物1-173

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 6.80-6.95 (2H, m), 7.40-7.50 (2H, m), 7.81 (1H, brs), 8.00-8.10 (3H, m), 8.10-8.15 (1H, m), 10.09 (1H, s), 11.14 (1H,

113

brs)

化合物1-174

¹H-NMR (DMSO-d₆) δ ppm: 7.40-7.50 (2H, m), 7.71 (1H, dd, J=0.9, 8.5Hz), 8.00 (1H, s), 8.03-8.20 (3H, m), 8.31 (1H, brs), 8.36 (1H, d, J=8.5Hz),

5 10.94 (1H, s)

化合物1-175

 1 H-NMR (DMSO- d_{6}) δ ppm : 2.40 (3H, s), 7.45-7.70 (3H, m), 7.75-8.05 (4H, m), 8.25 (1H, brs), 11.06 (1H, s)

化合物1-176

10 1 H-NMR (DMS0-d₆) δ ppm : 2.40 (3H, s), 7.35-7.60 (3H, m), 7.85-8.15 (4H, m), 8.25 (1H, brs), 11.04 (1H, s)

化合物1-177

¹H-NMR (DMSO-d₆) δ ppm: 4.00 (3H, s), 7.10-7.15 (1H, m), 7.40-7.50 (3H, m), 7.96 (1H, brs), 8.05-8.15 (2H, m), 8.20 (1H, brs), 10.90 (1H, brs)

15 化合物 1-178

 1 H-NMR (DMSO-d₆) δ ppm : 6.67-6.84 (1H, m), 7.19-7.53 (3H, m), 7.84-8.15 (4H, m), 10.84 (1H, s), 10.87 (1H, s)

化合物1-179

 1 H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=7.0Hz), 4.30 (2H, q, J=7.0Hz),

20 7.07-7.15 (1H, m), 7.19-7.28 (1H, m), 7.56-7.67 (2H, m), 7.70-7.77 (1H, m), 7.89 (1H, brs), 7.93-8.00 (1H, m), 8.00-8.15 (2H, m), 10.91 (1H, s) 化合物 1-180

 1 H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=7.0Hz), 4.30 (2H, q, J=7.0Hz), 7.08-7.28 (2H, m), 7.60-7.72 (3H, m), 7.90 (1H, brs), 8.00-8.15 (3H, m),

25 10.93 (1H, s)

化合物1-181

¹ H-NMR (DMSO-d₆) δ ppm: 4.00 (3H, s), 7.05-7.15 (1H, m), 7.40-7.45 (1H, m), 7.68 (2H, d, J=8.5Hz), 7.97 (1H, brs), 8.02 (2H, d, J=8.5Hz), 8.21 (1H, brs), 10.94 (1H, brs)

化合物1-182

¹H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=7.0Hz), 4.30 (2H, q, J=7.0Hz), 7.05-7.30 (2H, m), 7.50-7.75 (2H, m), 7.80-7.95 (2H, m), 8.00-8.15 (2H, m), 10.85 (1H, s)

5 化合物1-183

 1 H-NMR (DMSO-d₆) δ ppm: 7.50-7.75 (3H, m), 8.00-8.10 (2H, m), 8.20-8.30 (1H, m), 8.32 (1H, brs), 10.88 (1H, brs)

化合物1-184

¹H-NMR (DMSO-d₆) δ ppm: 7.35-7.45 (1H, m), 7.55-7.85 (3H, m), 7.97 (1H, brs), 8.00-8.10 (1H, m), 8.23 (1H, brs), 8.30-8.40 (1H, m), 10.90 (1H, brs)

化合物1-185

 1 H-NMR (DMSO- 1 G) δ ppm: 3.87 (3H, s), 6.95-7.15 (2H, m), 7.55-7.65 (1H, m), 7.70-7.90 (2H, m), 8.00-8.15 (2H, m), 8.25-8.35 (1H, m), 11.03 (1H,

15 brs)

化合物1-186

¹H-NMR (DMSO-d₆) δ ppm: 2.43 (3H, s), 7.22-7.33 (1H, m), 7.45-7.60 (3H, m), 7.75-7.86 (2H, m), 7.95 (1H, brs), 8.22 (1H, brs), 8.30-8.38 (1H, m), 11.07 (1H, s)

20 化合物 1-187

¹H-NMR (DMSO-d₆) δ ppm: 2.41 (3H, s), 7.22-7.35 (1H, m), 7.35-7.45 (2H, m), 7.50-7.60 (1H, m), 7.85-8.05 (3H, m), 8.22 (1H, brs), 8.32-8.40 (1H, m), 11.08 (1H, s)

化合物1-188

25 1 H-NMR (DMSO-d₆) δ ppm : 2.42 (3H, s), 7.40-7.55 (3H, m), 7.75-7.85 (3H, m), 8.02 (1H, brs), 8.25-8.35 (2H, m), 11.04 (1H, brs)

化合物1-189

 1 H-NMR (DMSO- d_{6}) δ ppm : 1.43 (3H, t, J=7.0Hz), 2.41 (3H, s), 4.29 (2H, q, J=7.0Hz), 7.05-7.30 (2H, m), 7.35-7.45 (2H, m), 7.70-7.80 (1H, m),

•

7.85-8.00 (3H, m), 8.08 (1H, brs), 10.93 (1H, s)

化合物 1-190

¹H-NMR (DMSO-d₆) δ ppm: 2.41 (3H, s), 4.00 (3H, s), 7.10-7.15 (1H, m), 7.41 (2H, d, J=8.0Hz), 7.50-7.55 (1H, m), 7.90 (2H, d, J=8.0Hz), 7.97

5 (1H, brs), 8.22 (1H, brs), 10.95 (1H, brs)

化合物 1-191

¹ H-NMR (DMSO-d₆) δ ppm: 1.23 (3H, t, J=7.6Hz), 2.71 (2H, q, J=7.6Hz), 4.00 (3H, s), 7.05-7.20 (1H, m), 7.44 (2H, d, J=8.2Hz), 7.50-7.60 (1H, m), 7.92 (2H, d, J=8.2Hz), 7.97 (1H, brs), 8.21 (1H, brs), 10.95 (1H,

10 brs)

化合物 1-192

¹H-NMR (DMSO-d₆) δ ppm: 4.89 (2H, s), 7.20-7.35 (1H, m), 7.50-7.70 (2H, m), 7.74 (1H, d, J=7.9Hz), 7.85-8.05 (2H, m), 8.09 (1H, s), 8.15-8.35 (2H, m), 11.09 (1H, s)

15 化合物 1 - 1 9 3

¹H-NMR (DMSO-d₆) δ ppm: 4.87 (2H, s), 7.20-7.35 (1H, m), 7.50-7.60 (1H, m), 7.60-7.75 (2H, m), 7.90-8.05 (3H, m), 8.22 (1H, brs), 8.27-8.35 (1H, m), 11.09 (1H, s)

化合物 1-194

20 ¹H-NMR (DMSO-d₆) δ ppm: 4.89 (2H, s), 7.55-7.85 (4H, m), 7.90-8.15 (3H, m), 8.36 (1H, brs), 10.98 (1H, brs)

化合物 1-195

 1 H-NMR (DMSO-d₆) δ ppm: 4.87 (2H, s), 7.50-7.85 (4H, m), 7.95-8.05 (2H, m), 8.09 (1H, brs), 8.36 (1H, brs), 10.98 (1H, brs)

25 化合物 1-196

¹H-NMR (DMSO-d₆) δ ppm: 2.40 (3H, s), 4.90 (2H, s), 7.50-7.80 (3H, m), 7.90-8.05 (3H, m), 8.08 (1H, s), 8.26 (1H, brs), 11.10 (1H, s)

化合物1-197

 1 H-NMR (DMSO-d₆) δ ppm : 2.40 (3H, s), 4.88 (2H, s), 7.50-7.75 (3H, m),

7.90-8.10 (4H, m), 8.26 (1H, brs), 11.10 (1H, s)

化合物 1-198

¹ H-NMR (DMSO-d₆) δ ppm : 2.48 (3H, s), 4.89 (2H, s), 7.20 (1H, d, J=8.5Hz), 7.42 (1H, s), 7.55-7.80 (2H, m), 7.91 (1H, brs), 7.97 (1H, d, J=7.9Hz), 8.09 (1H, s), 8.15 (1H, d, J=7.9Hz), 8.18 (1H, brs), 11.10 (1H,

化合物 1-199

s)

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 2.48 (3H, s), 4.87 (2H, s), 7.19 (1H, d, J=8.2Hz), 7.41 (1H, s), 7.66 (2H, d, J=8.2Hz), 7.91 (1H, brs), 8.01 (2H,

10 d, J=8.2Hz), 8.10-8.30 (2H, m), 11.10 (1H, s)

化合物 1-200

 1 H-NMR (CDC1₃) δ ppm : 2.50-2.60 (4H, m), 3.61 (2H, s), 3.75-3.85 (4H, m), 3.92 (3H, s), 5.73 (1H, brs), 6.50 (1H, brs), 6.95-7.10 (2H, m), 7.90-8.00 (1H, m), 8.05-8.25 (2H, m), 10.78 (1H, brs)

15 化合物 1-201

¹H-NMR (DMSO-d₆) δ ppm: 1.38 (3H, t, J=6.9Hz), 2.35-2.50 (4H, m), 3.54 (2H, s), 3.55-3.70 (4H, m), 4.16 (2H, q, J=6.9Hz), 7.10-7.25 (1H, m), 7.55-7.65 (1H, m), 7.85-8.05 (3H, m), 8.11 (1H, brs), 8.38 (1H, brs), 10.98 (1H, brs)

20 化合物1-202

¹H-NMR (DMSO-d₆) δ ppm: 2.35-2.50 (4H, m), 3.55-3.70 (4H, m), 3.58 (2H, s), 5.27 (2H, brs), 7.25-7.55 (7H, m), 7.60-7.70 (1H, m), 7.85-8.10 (4H, m), 8.26 (1H, brs), 11.01 (1H, brs)

化合物1-203

25 ¹H-NMR (DMSO-d₆) δ ppm: 2.35-2.50 (4H, m), 3.57 (2H, s), 3.55-3.70 (4H, m), 5.27 (2H, s), 7.25-7.65 (7H, m), 7.85-8.05 (3H, m), 8.08 (1H, brs), 8.34 (1H, brs), 10.96 (1H, brs)

化合物1-204

 $^{1}\text{H-NMR}$ (DMSO-d $_{6}$) δ ppm : 2.40-2.55 (4H, m), 2.48 (3H, s), 3.50-3.75 (6H,

m), 5.28 (2H, brs), 7.10-7.60 (8H, m), 7.80-8.35 (5H, m), 11.08 (1H, brs)

化合物1-205

¹H-NMR (DMSO-d₆) δ ppm: 2.40-2.50 (4H, m), 3.55-3.70 (4H, m), 3.58 (2H, s), 3.87 (3H, s), 5.26 (2H, brs), 6.95-7.15 (2H, m), 7.25-7.55 (6H, m), 7.75-8.15 (4H, m), 8.25-8.35 (1H, m), 11.15 (1H, brs).

化合物 1-206

 1 H-NMR (DMSO- $\mathrm{d_6}$) δ ppm: 7.50-8.50 (8H, m), 10.92 (1H, brs) 化合物 1-2 0 7

10 1 H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 3.86 (3H, s), 7.10-7.30 (2H, m), 7.41 (1H, s), 7.45-7.60 (3H, m), 7.90 (1H, brs), 8.10-8.25 (2H, m), 11.10 (1H, s)

化合物1-208

¹ H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 3.86 (3H, s), 7.14 (2H, d, J=8.8Hz), 7.18 (1H, d, J=8.2Hz), 7.40 (1H, s), 7.88 (1H, brs), 7.97 (2H, d, J=8.8Hz), 8.15 (1H, brs), 8.21 (1H, d, J=8.2Hz), 11.02 (1H, s) 化合物 1 - 209

 1 H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 7.20-7.35 (2H, m), 7.45-7.65 (4H, m), 7.96 (1H, brs), 8.22 (1H, brs), 8.29-8.39 (1H, m), 11.09 (1H, s)

20 化合物 1-210

¹H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 7.20-7.30 (1H, m), 7.45-7.65 (4H, m), 7.75-7.90 (1H, m), 8.09 (1H, brs), 8.37 (1H, brs), 10.97 (1H, brs) 化合物 1-211

¹H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 7.10-7.20 (2H, m), 7.50-7.65 (1H, 25 m), 7.80-8.05 (3H, m), 8.06 (1H, brs), 8.33 (1H, brs), 10.90 (1H, brs) 化合物 1-212

¹H-NMR (DMSO-d₆) δ ppm: 2.40 (3H, s), 3.86 (3H, s), 7.20-7.30 (1H, m), 7.45-7.65 (4H, m), 7.90-8.10 (2H, m), 8.26 (1H, brs), 11.10 (1H, s) 化合物 1-213

¹H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 3.99 (3H, s), 7.05-7.15 (3H, m), 7.50-7.55 (1H, m), 7.90-8.00 (3H, m), 8.20 (1H, brs), 10.89 (1H, brs) 化合物 1-214

¹ H-NMR (DMSO-d₆) δ ppm: 1.32 (6H, d, J=6.0Hz), 4.65-4.80 (1H, m), 5 7.15-7.25 (1H, m), 7.35-7.60 (4H, m), 7.63-7.70 (1H, m), 7.90-8.10 (2H, m), 8.27 (1H, brs), 11.01 (1H, s)

化合物1-215

¹ H-NMR (DMSO-d₆) δ ppm : 1.01 (3H, t, J=7.6Hz), 1.70-1.85 (2H, dt, J=6.6, 7.6Hz), 4.03 (2H, t, J=6.6Hz), 7.20-7.25 (1H, m), 7.35-7.60 (4H,

10 m), 7.63-7.70 (1H, m), 7.90-8.10 (2H, m), 8.27 (1H, brs), 11.01 (1H, s) 化合物 1-2 1 6

¹ H-NMR (DMSO-d₆) δ ppm: 7.23-7.33 (1H, m), 7.50-7.60 (1H, m), 7.65-7.80 (2H, m), 7.90-8.08 (3H, m), 8.15-8.30 (2H, m), 11.11 (1H, s) 化合物 1-217

15 ¹H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=7.0Hz), 4.30 (2H, q, J=7.0Hz), 7.09-7.28 (2H, m), 7.55-7.68 (3H, m), 7.90 (1H, brs), 8.00-8.20 (3H, m), 10.94 (1H, s)

化合物 1-218

 1 H-NMR (DMSO-d₆) δ ppm: 4.00 (3H, s), 7.05-7.15 (1H, m), 7.35-7.45 (1H, 20 m), 7.60 (2H, d, J=8.5Hz), 7.96 (1H, brs), 8.14 (2H, d, J=8.5Hz), 8.20 (1H, brs), 10.94 (1H, brs)

化合物 1-219

¹H-NMR (DMSO-d₆) δ ppm: 3.33 (3H, s), 3.65-3.75 (2H, m), 4.15-4.25 (2H, m), 7.20-7.30 (1H, m), 7.35-7.70 (5H, m), 7.90-8.10 (2H, m), 8.27 (1H,

25 brs), 11.00 (1H, s)

化合物 1-220

¹H-NMR (DMSO-d₆) δ ppm: 3.31 (3H, s), 3.33 (3H, s), 3.65-3.75 (2H, m), 4.10-4.30 (2H, m), 7.25 (1H, dd, J=2.2, 7.6Hz), 7.35-7.75 (4H, m), 7.90-8.05 (2H, m), 8.26 (1H, brs), 11.00 (1H, s)

化合物 1-221

¹ H-NMR (CDCl₃) δ ppm: 1.20-1.65 (6H, m), 1.75-1.90 (2H, m), 1.95-2.10 (2H, m), 4.30-4.45 (1H, m), 5.69 (1H, brs), 6.41 (1H, brs), 7.05-7.65 (6H, m), 8.35-8.45 (1H, m), 10.82 (1H, brs)

5 化合物 1 - 2 2 2

¹H-NMR (CDC1₃) δ ppm : 1.20-1.65 (6H, m), 1.75-1.90 (2H, m), 1.95-2.10 (2H, m), 2.51 (3H, s), 4.30-4.45 (1H, m), 5.55 (1H, brs), 6.36 (1H, brs), 7.05-7.30 (3H, m), 7.35-7.45 (1H, m), 7.50-7.65 (2H, m), 8.50-8.60 (1H, m), 10.90 (1H, brs)

10 化合物 1-223

¹H-NMR (CDCl₃) δ ppm: 1.75-1.95 (2H, m), 2.00-2.15 (2H, m), 3.55-3.70 (2H, m), 3.95-4.05 (2H, m), 4.55-4.70 (1H, m), 6.08 (1H, brs), 6.48 (1H, brs), 7.10-7.65 (6H, m), 8.30-8.45 (1H, m), 10.86 (1H, brs) 化合物 1 - 2 2 4

15 ¹ H-NMR (CDCl₃) δ ppm: 1.75-1.90 (2H, m), 2.00-2.15 (2H, m), 2.51 (3H, s), 3.55-3.65 (2H, m), 3.95-4.05 (2H, m), 4.55-4.70 (1H, m), 5.60 (1H, brs), 6.39 (1H, brs), 7.10-7.30 (3H, m), 7.35-7.50 (1H, m), 7.55-7.65 (2H, m), 8.45-8.55 (1H, m), 10.94 (1H, brs)

化合物 1 - 2 2 5

20 ¹H-NMR (CDCl₃) δ ppm: 1.80-2.15 (4H, m), 2.25-2.45 (2H, m), 2.33 (3H, s), 2.65-2.80 (2H, m), 4.40-4.55 (1H, m), 6.00 (1H, brs), 6.48 (1H, brs), 7.05-7.30 (2H, m), 7.35-7.65 (4H, m), 8.30-8.45 (1H, m), 10.85 (1H, brs) 化合物 1-226

¹ H-NMR (DMSO-d₆) δ ppm: 1.60-1.75 (2H, m), 1.90-2.05 (2H, m), 2.10-25 2.30 (5H, m), 2.55-2.75 (2H, m), 4.40-4.55 (1H, m), 7.20-7.30 (1H, m), 7.40-7.60 (4H, m), 7.70-7.80 (1H, m), 8.00 (1H, brs), 8.15-8.35 (2H, m), 11.02 (1H, s)

MS (ESI, m/z): 428 (M+H)+

化合物 1-227

- 1 H-NMR(CDCl $_3$) δ ppm:1.80-2.15(4H, m),2.20-2.45(2H, m),2.33(3H, s),2.60-2.80(2H, m),4.40-4.50(1H, m),5.96(1H, brs),6.56(1H, brs),7.00-7.20(2H, m),7.35-7.65(3H, m),8.15-8.25(1H, m),10.81(1H, brs),化合物 1-2 2 8
- 5 ¹H-NMR (CDCl₃) δ ppm: 1.80-2.10 (4H, m), 2.25-2.40 (2H, m), 2.32 (3H, s), 2.50 (3H, s), 2.65-2.80 (2H, m), 4.40-4.50 (1H, m), 5.81 (1H, brs), 6.41 (1H, brs), 7.00-7.30 (3H, m), 7.35-7.65 (3H, m), 8.45-8.55 (1H, m), 10.92 (1H, brs)

化合物1-229

10 ¹H-NMR (DMSO-d₆) δ ppm: 3.23-3.36 (2H, m), 4.60-4.70 (2H, m), 6.95 (1H, d, J=8.2Hz), 7.53-7.63 (1H, m), 7.77-7.92 (3H, m), 8.05 (1H, brs), 8.33 (1H, brs), 10.85 (1H, s)

化合物 1-230

¹ H-NMR (DMSO-d₆) δ ppm: 2.47 (3H, s), 6.17 (2H, s), 7.12 (1H, d, 15 J=8.2Hz), 7.18 (1H, d, J=8.2Hz), 7.40 (1H, s), 7.48 (1H, d, J=1.6Hz), 7.58 (1H, dd, J=1.6, 8.2Hz), 7.88 (1H, brs), 8.05-8.25 (2H, m), 10.95 (1H, s)

化合物 1-231

¹H-NMR (DMSO-d₆) δ ppm: 1.25 (3H, t, J=7.6Hz), 2.77 (2H, q, J=7.6Hz),
20 6.17 (2H, s), 7.05-7.15 (1H, m), 7.22 (1H, d, J=8.2Hz), 7.41 (1H, s),
7.49 (1H, s), 7.58 (1H, d, J=8.2Hz), 7.88 (1H, brs), 8.13 (1H, brs),
8.17 (1H, d, J=8.2Hz), 10.93 (1H, s)

化合物 1-232

¹H-NMR (DMSO-d₆) δ ppm: 2.39 (3H, s), 6.17 (2H, s), 7.05-7.20 (1H, m), 7.48 (1H, d, J=1.9Hz), 7.52-7.60 (2H, m), 7.90-8.05 (2H, m), 8.24 (1H, brs), 10.95 (1H, s)

化合物 1-233

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 2.68 (3H, s), 7.35-7.45 (1H, m), 7.67 (1H, dd, J=4.1, 9.1Hz), 7.87 (1H, d, J=8.5Hz), 7.93-8.10 (3H, m), 8.26 (1H, brs),

8.30 (1H, d, J=1.6Hz), 11.03 (1H, s)

化合物 1-234

 1 H-NMR (DMSO-d₆) δ ppm : 3.92 (3H, s), 7.35-7.48 (1H, m), 7.64-7.95 (3H, m), 8.02 (1H, brs), 8.20-8.35 (3H, m), 8.55-8.65 (1H, m), 11.11 (1H, s)

5 化合物 1-235

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 5.43 (2H, s), 7.32-8.08 (10H, m), 8.22-8.35 (3H, m), 8.59-8.65 (1H, m), 11.12 (1H, s)

化合物 1-236

¹H-NMR (DMSO-d₆) δ ppm: 2.68 (3H, s), 7.35-7.45 (1H, m), 7.65-7.80 (1H, m), 7.90-8.00 (1H, m), 8.01 (1H, brs), 8.20-8.30 (3H, m), 8.27 (1H, brs), 8.55-8.60 (1H, m), 11.12 (1H, brs)

化合物 1-237

¹H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 2.68 (3H, s), 7.15-7.25 (1H, m), 7.40-7.45 (1H, m), 7.70-7.80 (1H, m), 7.91 (1H, brs), 8.10-8.15 (1H, m),

15 8.17 (1H, brs), 8.20-8.30 (2H, m), 8.50-8.60 (1H, m), 11.19 (1H, brs) 化合物 1-238

¹ H-NMR (DMSO-d₆) δ ppm: 1.60-1.75 (2H, m), 1.90-2.05 (2H, m), 2.20-2.35 (2H, m), 2.60-2.75 (2H, m), 3.50 (2H, s), 4.45-4.60 (1H, m), 7.20-7.70 (11H, m), 7.95-8.05 (1H, m), 8.02 (1H, brs), 8.30 (1H, brs), 10.98

20 (1H, brs)

化合物 1-239

 1 H-NMR (DMS0-d₆) δ ppm: 1.60-1.75 (2H, m), 1.90-2.05 (2H, m), 2.20-2.35 (2H, m), 2.60-2.75 (2H, m), 3.50 (2H, s), 4.45-4.60 (1H, m), 7.20-7.60 (10H, m), 7.70-7.80 (1H, m), 7.99 (1H, brs), 8.15-8.35 (2H, m),

25 11.01(1H, s)

MS (ESI, m/z): 504 (M+H)+

化合物 1-240

¹ H-NMR (DMSO-d₆) δ ppm : 1.60-1.80 (2H, m), 1.90-2.05 (2H, m), 2.20-2.35 (2H, m), 2.60-2.80 (2H, m), 3.50 (2H, s), 4.45-4.60 (1H, m), 7.20-

7.35 (6H, m), 7.40-7.65 (4H, m), 7.75-7.85 (1H, m), 8.07 (1H, brs), 8.33 (1H, brs), 10.92 (1H, brs)

化合物1-241

5

¹ H-NMR (DMSO-d₆) δ ppm: 1.60-1.75 (2H, m), 1.90-2.05 (2H, m), 2.20-2.35 (2H, m), 2.48 (3H, s), 2.60-2.75 (2H, m), 3.50 (2H, s), 4.45-4.60 (1H, m), 7.15-7.60 (10H, m), 7.91 (1H, brs), 8.15-8.20 (1H, m), 8.19 (1H, brs), 11.06 (1H, brs)

化合物 1-242

¹ H-NMR (DMSO-d₆) δ ppm: 1.43 (3H, t, J=7.0Hz), 4.29 (2H, q, J=7.0Hz), 7.05-7.50 (8H, m), 7.55-7.82 (4H, m), 7.90 (1H, brs), 8.08 (1H, brs), 10.93 (1H, s)

化合物 1-243

¹ H-NMR (DMSO-d₆) δ ppm : 1.43 (3H, t, J=7.0Hz), 4.29 (2H, q, J=7.0Hz), 7.05-7.30 (7H, m), 7.40-7.52 (2H, m), 7.65-7.75 (1H, m), 7.90 (1H, brs),

15 8.00-8.15 (3H, m), 10.88 (1H, s)

化合物1-244

¹H-NMR (DMSO-d₆) δ ppm: 2.47 (3H, s), 7.05-7.25 (4H, m), 7.31 (1H, dd, J=2.2, 8.2Hz), 7.35-7.50 (3H, m), 7.53-7.65 (2H, m), 7.70-7.80 (1H, m), 7.88 (1H, brs), 8.12 (1H, d, J=8.2Hz), 8.16 (1H, brs), 11.08 (1H, s)

20 化合物1-245

¹H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 7.10-7.30 (6H, m), 7.35-7.55 (3H, m), 7.89 (1H, brs), 7.95-8.07 (2H, m), 8.10-8.25 (2H, m), 11.03 (1H, s) 化合物 1-246

¹H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 7.00-7.10 (2H, m), 7.15-7.25 (1H, 25 m), 7.35-7.55 (2H, m), 7.65-7.80 (2H, m), 7.90 (1H, brs), 7.90-8.00 (1H, m), 8.05-8.15 (1H, m), 8.18 (1H, brs), 8.45-8.55 (2H, m), 11.08 (1H, brs)

化合物1-247

¹H-NMR (DMSO-d₆) δ ppm: 2.83 (4H, s), 7.50-7.80 (4H, m), 7.90-8.10 (3H,

. .

m), 8.20-8.35 (2H, m), 11.03.(1H, s)

化合物1-248

¹H-NMR (DMSO-d₆) δ ppm : 3.82 (2H, s), 7.25-7.45 (6H, m), 7.55-7.75 (2H, m), 7.86 (1H, brs), 8.08 (1H, brs), 10.25 (1H, brs)

5 化合物 1-249

 1 H-NMR (DMS0-d₆) δ ppm : 3.82 (2H, s), 7.20-7.60 (7H, m), 7.94 (1H, brs), 8.16 (1H, brs), 10.27 (1H, s)

化合物1-250

¹ H-NMR (DMSO-d₆) δ ppm: 1.40-1.55 (3H, m), 3.95-4.10 (1H, m), 7.15-

10 7.60 (7H, m), 7.93 (1H, brs), 8.15 (1H, brs), 10.26 (1H, brs)

化合物1-251

¹ H-NMR (DMSO-d₆) δ ppm: 1.85-2.00 (2H, m), 2.40-2.73 (4H, m), 7.15-7.40 (6H, m), 7.56-7.75 (2H, m), 7.88 (1H, brs), 8.11 (1H, brs), 10.10 (1H, s)

15 化合物 1 - 2 5 2

 1 H-NMR (DMSO-d₆) δ ppm: 1.87-2.02 (2H, m), 2.40-2.73 (7H, m), 7.08-7.44 (7H, m), 7.78 (1H, brs), 7.88-7.96 (1H, m), 8.00 (1H, brs), 10.11 (1H, s)

化合物 1-253

20 1 H-NMR (DMS0-d₆) δ ppm: 1.60-1.70 (4H, m), 2.40-2.67 (4H, m), 7.11-7.41 (6H, m), 7.56-7.75 (2H, m), 7.88 (1H, brs), 8.11 (1H, brs), 10.10 (1H, s)

化合物 1-254

¹ H-NMR (DMSO-d₆) δ ppm: 1.60-1.70 (4H, m), 2.40-2.67 (7H, m), 7.08-7.40 (7H, m), 7.77 (1H, brs), 7.86-7.94 (1H, m), 8.00 (1H, brs), 10.10 (1H, s)

化合物 1-255

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 3.77 (3H, s), 3.78 (2H, s), 6.80-7.05 (3H, m), 7.20-7.35 (2H, m), 7.55-7.75 (2H, m), 7.87 (1H, brs), 8.09 (1H, brs),

10.24 (1H, brs)

化合物 1-256

¹H-NMR (DMSO-d₆) δ ppm : 3.73 (2H, s), 3.74 (3H, s), 6.85-6.95 (2H, m), 7.25-7.40 (3H, m), 7.55-7.75 (2H, m), 7.86 (1H, brs), 8.08 (1H, brs),

5 10.20 (1H, brs)

化合物 1-257

 1 H-NMR (DMSO-d₆) δ ppm: 1.84-1.95 (2H, m), 2.35-2.55 (5H, m), 2.59 (2H, t, J=7.7Hz), 3.71 (3H, s), 6.80-6.90 (2H, m), 7.10-7.20 (3H, m), 7.36 (1H, s), 7.77 (1H, brs), 7.90 (1H, d, J=8.2Hz), 8.00 (1H, brs), 10.09

10 (1H, s)

化合物 1-258

¹H-NMR (DMSO-d₆) δ ppm: 1.86-1.98 (2H, m), 2.40-2.47 (5H, m), 2.59 (2H, t, J=7.5Hz), 3.71 (3H, s), 3.74 (3H, s), 6.70-6.90 (3H, m), 7.10-7.20 (1H, m), 7.36 (1H, s), 7.77 (1H, brs), 7.92 (1H, d, J=8.1Hz), 8.01 (1H,

15 brs), 10.10 (1H, s)

化合物 1-259

 1 H-NMR (DMSO- d_{6}) δ ppm: 4.13 (2H, s), 6.89 (1H, s), 7.10-7.80 (7H, m), 7.92 (1H, brs), 8.14 (1H, brs), 10.44 (1H, brs)

化合物 1-260

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 2.45 (3H, s), 4.12 (2H, s), 6.88 (1H, s), 7.10-7.65 (6H, m), 7.80 (1H, brs), 7.88-7.96 (1H, m), 8.04 (1H, brs), 10.43 (1H, brs)

化合物 1-261

¹H-NMR (DMSO-d₆) δ ppm: 1.92-2.03 (2H, m), 2.47-2.55 (2H, m), 2.89 (2H, t, J=7.5Hz), 6.85-7.00 (2H, m), 7.30-7.40 (2H, m), 7.58-7.75 (2H, m), 7.89 (1H, brs), 8.11 (1H, brs), 10.11 (1H, s)

化合物 1-262

 1 H-NMR (DMSO-d₆) δ ppm: 1.90-2.04 (2H, m), 2.45 (3H, s), 2.47-2.53 (2H, m), 2.89 (2H, t, J=7.6Hz), 6.86-7.00 (2H, m), 7.13 (1H, d, J=8.1Hz),

7.30-7.40 (2H, m), 7.77 (1H, brs), 7.91 (1H, d, J=8.3Hz), 8.00 (1H, brs), 10.11 (1H, s)

化合物1-263

¹H-NMR (DMSO-d₆) δ ppm: 1.50 (3H, d, J=6.9Hz), 2.18 (3H, s), 5.22 (1H, q, J=6.9Hz), 7.50-7.65 (1H, m), 7.65-7.80 (1H, m), 8.07 (1H, brs), 8.29 (1H, brs), 10.71 (1H, s)

化合物1-264

 1 H-NMR (DMSO-d₆) δ ppm : 3.45 (3H, s), 4.11 (2H, s), 7.50-7.65 (1H, m), 7.90-8.10 (2H, m), 8.29 (1H, brs), 10.74 (1H, s)

10 化合物 1 - 2 6 5

 1 H-NMR (DMSO-d₆) δ ppm: 1.60 (3H, d, J=6.7Hz), 5.10 (1H, q, J=6.7Hz), 6.95-7.15 (3H, m), 7.25-7.40 (2H, m), 7.50-7.65 (1H, m), 7.80-7.95 (1H, m), 8.05 (1H, brs), 8.30 (1H, brs), 11.10 (1H, brs)

化合物1-266

15 ¹ H-NMR (DMSO-d₆) δ ppm: 2.85-3.00 (2H, m), 4.25-4.40 (2H, m), 6.90-7.05 (2H, m), 7.20-7.70 (6H, m), 7.89 (1H, brs), 8.08 (1H, brs), 10.27 (1H, brs)

化合物1-267

¹ H-NMR (DMSO-d₆) δ ppm: 2.85-3.00 (2H, m), 4.20-4.40 (2H, m), 6.90-20 7.05 (3H, m), 7.20-7.45 (3H, m), 7.65-7.80 (1H, m), 7.90-8.05 (1H, m), 7.91 (1H, brs), 8.09 (1H, brs), 10.31 (1H, brs)

化合物1-268

 1 H-NMR (DMS0- 1 d₆) δ ppm : 2.02-2.14 (2H, m), 2.45 (3H, s), 2.58-2.65 (2H, m), 3.98-4.10 (2H, m), 6.86-6.98 (3H, m), 7.08-7.38 (4H, m), 7.78 (1H,

25 brs), 7.91(1H, d, J=8.1Hz), 7.91 (1H, brs), 10.15 (1H, s)

化合物1-269

¹H-NMR (DMSO-d₆) δ ppm : 2.03-2.13 (2H, m), 2.63 (2H, t, J=7.4Hz), 4.05 (2H, t, J=6.4Hz), 6.87-7.00 (3H, m), 7.22-7.40 (3H, m), 7.57-7.77 (2H, m), 7.89 (1H, brs), 8.11 (1H, brs), 10.15 (1H, s)

化合物1-270

¹ H-NMR (DMSO-d₆) δ ppm: 2.92 (2H, t, J=6.0Hz), 4.28 (2H, t, J=6.0Hz), 6.95-7.05 (2H, m), 7.08-7.18 (2H, m), 7.30-7.40 (1H, m), 7.55-7.70 (2H, m), 7.91 (1H, brs), 8.11 (1H, brs), 10.28 (1H, s)

5 化合物1-271

¹ H-NMR (DMSO-d₆) δ ppm: 3.85 (3H, s), 4.22 (2H, s), 4.69 (2H, s), 6.90-7.00 (1H, m), 7.02-7.10 (1H, m), 7.28-7.42 (3H, m), 7.46-7.54 (2H, m), 7.82 (1H, brs), 7.97 (1H, brs), 8.30 (1H, d, J=9.0Hz), 10.98 (1H, s) 化合物 1-272

10 ¹H-NMR (DMSO-d₆) δ ppm: 3.83 (3H, s), 4.05 (2H, s), 6.85-6.95 (1H, m), 7.00-7.10 (1H, m), 7.15-7.50 (5H, m), 7.77 (1H, brs), 7.85-8.00 (2H, m), 10.84 (1H, brs)

化合物1-273

 1 H-NMR (DMSO-d₆) δ ppm : 4.06 (2H, s), 7.15-7.60 (7H, m), 8.00 (1H, brs), 8.23 (1H, brs), 10.74 (1H, brs)

化合物 1-274

15

¹ H-NMR (DMSO-d₆) δ ppm: 3.19-3.88 (8H, m), 7.36-7.48 (1H, m), 7.63-7.77 (3H, m), 7.88-8.16 (4H, m), 8.30 (1H, s), 11.03 (1H, s)

化合物 1-275

20 ¹ H-NMR (DMSO-d₆) δ ppm: 2.10-2.60 (7H, m), 3.10-3.80 (4H, m), 7.52-7.80 (4H, m), 7.95-8.15 (3H, m), 8.32 (1H, brs), 10.97 (1H, s)

MS (ESI, m/z): 443 (M+H)+

化合物1-276

¹H-NMR (DMSO-d₆) δ ppm: 2.15 (3H, s), 2.30-2.45 (4H, m), 2.90-3.05 (4H, 25 m), 7.55-7.65 (1H, m), 7.70-7.80 (1H, m), 7.85-8.05 (2H, m), 8.06 (1H, brs), 8.25-8.40 (3H, m), 11.09 (1H, brs)

化合物 1-277

¹H-NMR (DMSO-d₆) δ ppm : 2.40-2.50 (4H, m), 2.90-3.05 (4H, m), 3.47 (2H, s), 7.15-7.35 (5H, m), 7.50-7.65 (1H, m), 7.70-7.80 (1H, m), 7.85-8.05

(2H, m), 8.06 (1H, brs), 8.25-8.40 (3H, m), 11.09 (1H, brs) 化合物 1 - 2 7 8

 1 H-NMR (DMSO-d₆) δ ppm : 2.48 (3H, s), 7.15-7.45 (3H, m), 7.95 (1H, brs), 8.05-8.15 (1H, m), 8.22 (1H, brs), 8.80-8.90 (1H, m), 11.34 (1H, brs)

化合物1-279

5

¹ H-NMR (DMSO-d₆) δ ppm: 7.25-7.50 (2H, m), 7.60-7.75 (1H, m), 7.90-8.00 (1H, m), 8.02 (1H, brs), 8.35 (1H, brs), 8.80-8.95 (1H, m), 11.27 (1H, brs)

10 化合物1-280

¹ H-NMR (DMSO-d₆) δ ppm: 7.25-7.45 (2H, m), 7.60-7.70 (1H, m), 7.85-8.00 (3H, m), 8.00 (1H, brs), 8.26 (1H, brs), 10.94 (1H, brs) 化合物 1-281

¹ H-NMR (DMSO-d₆) δ ppm: 6.85-6.95 (1H, m), 7.30-7.50 (2H, m), 7.60-7.70 (1H, m), 7.95-8.05 (2H, m), 8.28 (1H, brs), 11.00 (1H, brs) 化合物 1 - 2 8 2

¹H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.6Hz), 2.47 (3H, s), 2.75 (2H, q, J=7.6Hz), 6.35-6.45 (1H, m), 7.18 (1H, d, J=8.2Hz), 7.24 (1H, d, J=3.5Hz), 7.39 (1H, s), 7.89 (1H, brs), 8.16 (1H, brs), 8.27 (1H, d,

化合物 1 - 2 8 3

J=8. 2Hz), 11.11 (1H, s)

20

25

¹H-NMR (DMSO-d₆) δ ppm: 1.20-1.30 (6H, m), 2.70-2.82 (4H, m), 6.41 (1H, d, J=3.2Hz), 7.21 (1H, dd, J=1.6, 8.2Hz), 7.25 (1H, d, J=3.2Hz), 7.40 (1H, s), 7.89 (1H, brs), 8.14 (1H, brs), 8.29 (1H, d, J=8.2Hz), 11.10 (1H, s)

化合物1-284

¹ H-NMR (DMSO-d₆) δ ppm : 1.20-1.30 (9H, m), 2.75 (2H, q, J=7.6Hz), 3.00-3.15 (1H, m), 6.35-6.45 (1H, m), 7.20-7.30 (2H, m), 7.35-7.45 (1H, m), 7.90 (1H, brs), 8.12 (1H, brs), 8.29 (1H, d, J=8.5Hz), 11.08 (1H, s)

化合物1-285

¹H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 1.36 (9H, s), 2.76 (2H, q, J=7.6Hz), 6.42 (1H, d, J=3.2Hz), 7.26 (1H, d, J=3.2Hz), 7.44 (1H, dd, J=1.9, 8.5Hz), 7.48 (1H, d, J=1.9Hz), 7.93 (1H, brs), 8.13 (1H, brs),

5 8.30 (1H, d, J=8.5Hz), 11.10 (1H, s)

化合物1-286

 1 H-NMR (DMSO-d₆) δ ppm: 1.27 (3H, t, J=7.6Hz), 2.76 (2H, q, J=7.6Hz), 6.40-6.45 (1H, m), 7.29 (1H, d, J=3.5Hz), 7.70 (1H, dd, J=1.3, 8.5Hz), 7.97 (1H, s), 8.10 (1H, brs), 8.33 (1H, brs), 8.55 (1H, d, J=8.5Hz),

10 11.02 (1H, s)

15

化合物1-287

¹H-NMR (DMSO-d₆) δ ppm: 1.26 (3H, t, J=7.6Hz), 1.37 (3H, t, J=6.9Hz), 2.75 (2H, q, J=7.6Hz), 4.13 (2H, q, J=6.9Hz), 6.41 (1H, d, J=3.2Hz), 6.96 (1H, dd, J=2.2, 8.8Hz), 7.06 (1H, d, J=2.2Hz), 7.24 (1H, d, J=3.2Hz), 7.84 (1H, brs), 8.03 (1H, brs), 8.31 (1H, d, J=8.8Hz), 11.18 (1H, s)

化合物1-288

 1 H-NMR (CDCl₃) δ ppm : 1.34 (3H, t, J=7.6Hz), 2.79 (2H, q, J=7.6Hz), 5.67 (1H, brs), 6.15-6.25 (1H, m), 6.34 (1H, brs), 7.20-7.30 (2H, m),

20 8.55-8.65 (1H, m), 10.80 (1H, brs)

化合物1-289

 1 H-NMR (DMSO- 1 d₆) δ ppm: 1.26 (3H, t, J=7.6Hz), 2.30-2.45 (3H, m), 2.75 (2H, q, J=7.6Hz), 6.42 (1H, d, J=3.5Hz), 7.26 (1H, d, J=3.5Hz), 7.54 (1H, d, J=3.5Hz), 7.97 (1H, brs), 8.10 (1H, d, J=10.4Hz), 8.25 (1H, brs),

25 11.13 (1H, s)

化合物 1-290

 1 H-NMR (DMS0-d₆) δ ppm: 1.26 (3H, t, J=7.5Hz), 2.75 (2H, q, J=7.5Hz), 3.99 (3H, s), 6.35-6.45 (1H, m), 7.05-7.30 (1H, m), 7.60-7.70 (1H, m), 7.99 (1H, brs), 8.23 (1H, brs), 11.03 (1H, brs)

化合物 1 - 2 9 1

 1 H-NMR (DMSO-d₆) δ ppm: 1.34 (9H, s), 6.41 (1H, d, J=3.5Hz), 7.26 (1H, d, J=3.5Hz), 7.55-7.70 (1H, m), 8.04-8.10 (1H, m), 8.19 (1H, brs), 8.41 (1H, brs), 11.30 (1H, s)

化合物 1-292 5

> 1 H-NMR (DMSO-d₆) δ ppm: 0.82-0.95 (3H, m), 1.27-1.39 (4H, m), 1.62-1.75 (2H, m), 2.73 (2H, t, J=7.6Hz), 6.43 (1H, d, J=3.2Hz), 7.22-7.46 (2H, m), 7.60-7.70 (1H, m), 8.00 (1H, brs), 8.08-8.16 (1H, m), 8.27 (1H, brs), 11.03 (1H, s)

·化合物1-293 10

> 1 H-NMR (DMSO-d₆) δ ppm : 0.82-0.95 (3H, m), 1.25-1.40 (4H, m), 1.60-1.80 (2H, m), 2.47 (3H, s), 2.72 (2H, t, J=7.6Hz), 6.42 (1H, d, J=3.5Hz), 7.13-7.30 (2H, m), 7.39 (1H, s), 7.88 (1H, brs), 8.15 (1H, brs), 8.27 (1H, d, J=8.6Hz), 11.07 (1H, s)

化合物 1-294 15

> $^{1}H-NMR$ (DMSO-d₆) δ ppm: 2.00 (3H, s), 2.32 (3H, s), 7.09-7.72 (3H, m), 7.92-8.40 (3H, m), 10.95 (1H, s)

化合物 1-295

 1 H-NMR (DMSO-d₆) δ ppm : 2.00 (3H, s), 2.32 (3H, s), 2.47 (3H, s), 7.11-7.20(2H, m), 7.38 (1H, s), 7.85 (1H, brs), 8.14 (1H, brs), 8.26 (1H, 20 d, J=8.1Hz), 10.98 (1H, s)

化合物 1-296

 1 H-NMR (CDCl $_{3}$ +MeOD-d $_{4}$) δ ppm : 4.67 (2H, s), 6.55-6.60 (1H, m), 7.15-7.30 (2H, m), 7.35-7.45 (1H, m), 8.25-8.35 (1H, m)

化合物 1-297 25

> $^{1}H-NMR$ (DMSO-d₆) δ ppm: 4.93 (2H, s), 6.81 (1H, d, J=3.5Hz), 7.34 (1H, d, J=3.5Hz), 7.43 (1H, dd, J=1.9, 9.1Hz), 7.75 (1H, d, J=1.9Hz), 8.00 (1H, brs), 8.20-8.35 (2H, m), 11.07 (1H, s) 化合物 1 - 2 9 8

¹H-NMR (DMSO-d₆) δ ppm: 4.93 (2H, s), 6.82 (1H, d, J=3.5Hz), 7.36 (1H, d, J=3.5Hz), 7.55-7.65 (1H, m), 7.80-7.90 (1H, m), 8.08 (1H, brs), 8.36 (1H, brs), 11.00 (1H, s)

化合物 1-299

5 ¹ H-NMR (DMSO-d₆) δ ppm: 0.85-1.07 (4H, m), 2.04-2.15 (1H, m), 6.35-6.46 (1H, m), 7.18-7.28 (1H, m), 7.33-7.49 (1H, m), 7.57-7.70 (1H, m), 7.94-8.39 (3H, m), 11.08 (1H, s)

化合物1-300

 1 H-NMR (DMS0-d₆) δ ppm: 0.90-1.09 (4H, m), 2.05-2.17 (1H, m), 6.39-10 6.46 (1H, m), 7.20-7.33 (2H, m), 7.48-7.60 (1H, m), 8.00 (1H, brs), 8.43-8.50 (1H, m), 11.14 (1H, s)

化合物 1 - 3 0 1

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 0.90-1.09 (4H, m), 2.06-2.18 (1H, m), 6.38-6.47 (1H, m), 7.21-7.30 (1H, m), 7.66-7.76 (1H, m), 8.06-8.33 (3H, m),

15 11.03 (1H, s)

化合物 1-302

 1 H-NMR (DMSO-d₆) δ ppm: 0.90-1.05 (4H, m), 2.05-2.15 (1H, m), 3.86 (3H, s), 6.42 (1H, d, J=3.4Hz), 6.95-7.10 (2H, m), 7.22 (1H, d, J=3.4Hz), 7.90 (1H, brs), 8.06 (1H, brs), 8.34 (1H, d, J=9.0Hz), 11.19 (1H, s)

20 化合物 1 - 3 0 3

, H-NMR (DMSO-d₆) δ ppm : 2.25 (6H, s), 2.47 (3H, s), 3.60 (2H, s), 6.55-6.65 (1H, m), 7.15-7.20 (1H, m), 7.25-7.45 (2H, m), 7.90 (1H, brs), 8.16 (1H, brs), 8.20-8.30 (1H, m), 11.08 (1H, brs)

化合物1-304

25 ¹H-NMR (DMSO-d₆) δ ppm: 2.56 (3H, s), 7.35-7.70 (4H, m), 8.00-8.10 (1H, m), 8.11 (1H, brs), 8.35 (1H, brs), 11.38 (1H, brs)

化合物 1-305

 1 H-NMR (DMSO-d₆) δ ppm: 1.40-1.75 (8H, m), 3.35-3.45 (4H, m), 7.30-7.75 (4H, m), 8.00-8.10 (1H, m), 8.10 (1H, brs), 8.35 (1H, brs), 11.27

131

(1H, brs)

化合物 1-306

¹ H-NMR (CDCl₃+MeOD-d₄) δ ppm : 2.32 (3H, s), 2.50-2.60 (4H, m), 3.35-3.45 (4H, m), 7.00-7.10 (1H, m), 7.15 (1H, d, J=3.7Hz), 7.36 (1H, d,

J=3.7Hz, 8.05-8.15 (1H, m)

化合物1-307

MS (ESI, m/z): 428 (M+H)+

化合物1-308

MS (ESI, m/z): 476 (M+H)+

10 化合物 1 - 3 0 9

MS (ESI, m/z): 490 (M+H)+

化合物1-310

 1 H-NMR (DMSO-d₆) δ ppm : 7.35-7.70 (7H, m), 8.05-8.20 (2H, m), 8.13 (1H, brs), 8.36 (1H, brs), 11.39 (1H, brs)

15 化合物 1 - 3 1 1

 1 H-NMR (DMSO-d₆) δ ppm : 7.35-7.70 (6H, m), 7.85-7.95 (1H, m), 8.00-8.20 (3H, m), 8.35 (1H, brs), 11.39 (1H, brs)

化合物1-312

 1 H-NMR (DMSO-d₆) δ ppm: 7.05-7.25 (3H, m), 7.30-7.70 (3H, m), 7.90-

20 8.00 (2H, m), 8.10-8.20 (2H, m), 8.36 (1H, brs), 11.40 (1H, brs)

化合物 1 - 3 1 3

 1 H-NMR (DMSO-d₆) δ ppm : 2.48 (3H, s), 7.15-7.75 (7H, m), 7.85-8.45 (4H, m), 11.45 (1H, brs)

化合物 1-314

25 ¹H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 7.15-7.25 (1H, m), 7.35-7.60 (5H, m), 7.85-8.05 (3H, m), 8.24 (1H, brs), 8.25-8.35 (1H, m), 11.45 (1H, brs)

化合物 1-315

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 2.48 (3H, s), 7.15-7.25 (1H, m), 7.30-7.35 (1H,

m), 7.40-7.50 (2H, m), 7.55-7.65 (2H, m), 7.90-8.00 (2H, m), 8.03 (1H, brs), 8.25 (1H, brs), 8.25-8.35 (1H, m), 11.46 (1H, brs)

化合物 1-316

5

¹H-NMR (DMSO-d₆) δ ppm : 4.83 (2H, s), 7.30 (1H, d, J=4.0Hz), 7.45-7.70 (4H, m), 7.91 (1H, d, J=7.6Hz), 7.95-8.05 (2H, m), 8.17 (1H, brs), 8.40 (1H, brs), 11.31 (1H, s)

MS (ESI, m/z): 431 (M+H)+

化合物1-317

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 2.48 (3H, s), 3.97 (3H, s), 7.05-7.25 (4H, m),

7.35-7.50 (3H, m), 8.00-8.10 (2H, m), 8.34 (1H, brs), 8.30-8.40 (1H, m), 11.52 (1H, brs)

化合物1-318

 1 H-NMR (DMSO-d₆) δ ppm : 2.48 (3H, s), 3.84 (3H, s), 7.00-7.25 (4H, m), 7.35-7.45 (2H, m), 7.80-7.95 (2H, m), 8.02 (1H, brs), 8.24 (1H, brs),

15 8.30-8.40 (1H, m), 11.48 (1H, brs)

化合物1-319

 1 H-NMR (DMSO-d₆) δ ppm: 3.98 (3H, s), 7.05-7.25 (3H, m), 7.35-7.50 (3H, m), 7.60-7.70 (1H, m), 8.00-8.10 (1H, m), 8.17 (1H, brs), 8.20-8.25 (1H, m), 8.37 (1H, brs), 11.47 (1H, brs)

20 化合物 1-320

 1 H-NMR(DMSO-d $_{6}$) δ ppm:3.87(3H, s), 6.95-7.05(1H, m), 7.25-7.70(7H, m), 8.14(1H, brs),8.20-8.30(1H, m), 8.37(1H, brs),11.51(1H, brs),化合物 1 - 3 2 1

¹H-NMR (DMSO-d₆) δ ppm: 3.84 (3H, s), 7.05-7.15 (3H, m), 7.40-7.50 (1H, 25 m), 7.60-7.70 (1H, m), 7.80-7.90 (3H, m), 8.14 (1H, brs), 8.20-8.25 (1H, m), 8.36 (1H, brs), 11.42 (1H, brs)

化合物1-322

 1 H-NMR (DMSO-d₆) δ ppm: 7.30-7.70 (5H, m), 7.90-8.05 (2H, m), 8.10-8.20 (1H, m), 8.12 (1H, brs), 8.34 (1H, brs), 8.65-8.70 (1H, m), 11.43

133

(1H, brs)

化合物 1-323

 1 H-NMR (DMSO-d₆) δ ppm: 7.35-7.70 (5H, m), 8.15 (1H, brs), 8.15-8.35 (1H, m), 8.35 (1H, brs), 8.55-8.65 (1H, m), 9.15-9.25 (1H, m), 11.52 (1H,

5 brs)

化合物 1-324

 1 H-NMR (DMSO-d₆) δ ppm: 7.35-7.90 (7H, m), 8.10-8.20 (1H, m), 8.35 (1H, brs), 8.65-8.75 (2H, m), 11.51 (1H, brs)

化合物 1-325

10 ¹H-NMR (DMSO-d₆) δ ppm: 2.48 (3H, s), 7.15-7.25 (1H, m), 7.35-7.60 (3H, m), 7.80-7.90 (2H, m), 8.05 (1H, brs), 8.24 (1H, brs), 8.25-8.40 (1H, m), 8.65-8.75 (2H, m), 11.58 (1H, brs)

化合物 1-326

MS (ESI, m/z): 382 (M-H)-

15 化合物 1 - 3 2 7

20

 1 H-NMR (DMSO-d $_6$) δ ppm : 3.00-3.13 (4H, m), 6.39 (1H, d, J=3.5Hz), 7.14-7.70 (8H, m), 8.00-8.16 (2H, m), 8.32 (1H, brs), 11.13 (1H, s) 化合物 1 - 3 2 8

¹H-NMR (DMSO-d₆) δ ppm: 2.47 (3H, s), 3.00-3.10 (4H, m), 6.38 (1H, d, J=3.5Hz), 7.13-7.33 (7H, m), 7.40 (1H, s), 7.93 (1H, brs), 8.14-8.32 (2H, m), 11.17 (1H, s)

化合物 1-329

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 2.47 (3H, s), 2.99 (4H, s), 3.80 (3H, s), 6.30-6.44 (1H, m), 6.79-7.02 (2H, m), 7.10-7.45 (5H, m), 7.80-8.35 (3H,

25 m), 11.12 (1H, s)

化合物1-330

¹H-NMR (DMSO-d₆) δ ppm: 2.47 (3H, s), 2.95-3.15 (4H, m), 3.71 (3H, s), 6.33-6.44 (1H, m), 6.66-6.90 (3H, m), 7.09-7.45 (4H, m), 7.80-8.35 (3H, m), 11.16 (1H, s)

化合物1-331

¹H-NMR (DMSO-d₆) δ ppm: 2.47 (3H, s), 2.90-3.10 (4H, m), 3.70 (3H, s), 6.30-6.45 (1H, m), 6.73-7.45 (7H, m), 7.80-8.35 (3H, m), 11.15 (1H, s) 化合物 1 - 3 3 2

5 ¹H-NMR (DMSO-d₆) δ ppm: 2.99 (4H, s), 3.81 (3H, s), 6.33-6.42 (1H, m), 6.80-7.03 (2H, m), 7.10-7.70 (5H, m), 8.01 (1H, brs), 8.07-8.16 (1H, m), 8.27 (1H, brs), 11.07 (1H, s)

化合物 1 - 3 3 3

 1 H-NMR (DMSO-d₆) δ ppm: 2.90-3.15 (4H, m), 3.71 (3H, s), 6.39 (1H, d, 10 J=3.5Hz), 6.70-6.90 (3H, m), 7.10-7.73 (4H, m), 8.03 (1H, brs), 8.08-8.17 (1H, m), 8.28 (1H, brs), 11.11 (1H, s)

化合物1-334

 1 H-NMR (DMSO-d₆) δ ppm : 2.90-3.10 (4H, m), 3.70 (3H, s), 6.37 (1H, d, J=3.3Hz), 6.75-6.90 (2H, m), 7.10-7.73 (5H, m), 8.03 (1H, brs), 8.08-

15 8.17 (1H, m), 8.28 (1H, brs), 11.10 (1H, s)

化合物1-335

 1 H-NMR (DMSO-d₆) δ ppm: 7.40-7.50 (1H, m), 7.70-7.80 (2H, m), 7.95 (1H, brs), 8.10-8.30 (3H, m), 8.50-8.60 (1H, m), 8.75-8.80 (1H, m), 12.09 (1H, brs)

20 化合物1-336

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 7.50-7.80 (2H, m), 8.03 (1H, brs), 8.05-8.30 (3H, m), 8.35 (1H, brs), 8.70-8.85 (1H, m), 12.05 (1H, brs)

化合物1-337

¹H-NMR (DMSO-d₆) δ ppm: 3.87 (3H, s), 6.95-7.05 (1H, m), 7.09 (1H, d, J=2.3Hz), 7.60-7.90 (2H, m), 8.00 (1H, brs), 8.05-8.20 (1H, m), 8.24 (1H, d, J=8.0Hz), 8.46 (1H, d, J=8.7Hz), 8.77 (1H, d, J=4.3Hz), 12.11 (1H, s) 化合物 1-338

 1 H-NMR (DMSO-d₆) δ ppm: 4.00 (3H, s), 7.10-7.20 (1H, m), 7.70-7.75 (1H, m), 7.75-7.85 (1H, m), 7.91 (1H, brs), 8.05-8.15 (1H, m), 8.15-8.30 (2H,

m), 8.75-8.80 (1H, m), 12.03 (1H, brs)

化合物 1-339

 1 H-NMR (DMSO-d₆) δ ppm : 2.62 (3H, s), 7.55-7.65 (2H, m), 7.95-8.10 (3H, m), 8.15-8.25 (1H, m), 8.35 (1H, brs), 12.26 (1H, brs)

- 化合物 1-340 5
 - 1 H-NMR (DMSO-d₆) δ ppm : 1.30-1.40 (3H, m), 4.35-4.50 (2H, m), 6.95-7.05 (1H, m), 7.35-7.45 (1H, m), 7.60-7.75 (1H, m), 7.85-7.95 (1H, m), 8.00 (1H, brs), 8.15-8.35 (2H, m), 8.80-8.85 (1H, m), 10.90 (1H, s) 化合物 1 - 3 4 1
- $_{10}$ $_{1}$ H-NMR (DMSO-d $_{6}$) δ ppm : 3.87 (3H, s), 6.99 (1H, dd, J=2.2, 8.8Hz), 7.11 (1H, d, J=2.2Hz), 7.15-7.35 (4H, m), 7.40-7.55 (2H, m), 7.88 (1H, brs), 8.07 (1H, brs), 8.12 (1H, d, J=8.8Hz), 8.38 (1H, dd, J=2.5, 8.8Hz), 8.76 (1H, d, J=2.5Hz), 11.05 (1H, s)
 - 化合物 1 3 4 2
- $^{1}\,\mathrm{H-NMR}$ (DMSO-d $_{6}$) δ ppm : 1.43 (3H, t, J=6.9Hz), 4.29 (2H, q, J=6.9Hz), 15 7.05-7.35 (6H, m), 7.40-7.65 (3H, m), 7.91 (1H, brs), 8.08 (1H, brs), 8.40 (1H, dd, J=2.5, 8.5Hz), 8.78 (1H, d, J=2.5Hz), 10.83 (1H, s) 化合物 1-343
- $^{1}\text{H-NMR}$ (DMSO-d $_{6}$) δ ppm : 2.48 (3H, s), 7.15-7.35 (5H, m), 7.38-7.55 (3H, m), 7.88 (1H, brs), 8.07 (1H, d, J=8.2Hz), 8.14 (1H, brs), 8.39 (1H, dd, 20 J=2.5, 8. 2Hz), 8. 70-8.80 (1H, m), 10. 97 (1H, s)

化合物 1-344

- 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.25 (3H, t, J=7.6Hz), 2.77 (2H, q, J=7.6Hz), 7.15-7.35 (5H, m), 7.40-7.50 (3H, m), 7.89 (1H, brs), 8.07 (1H, d,
- J=8.5Hz), 8.12 (1H, brs), 8.39 (1H, dd, J=2.5, 8.5Hz), 8.77 (1H, d, 25 J=2.5Hz), 10.96 (1H, s)

化合物 1 - 3 4 5

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 7.15-7.35 (4H, m), 7.40-7.55 (2H, m), 7.80-7.90 (1H, m), 7.99 (1H, brs), 8.10-8.20 (1H, m), 8.23 (1H, brs), 8.35-

.

8.45 (1H, m), 8.70-8.80 (1H, m), 10.95 (1H, brs)

化合物 1-346

 1 H-NMR (DMSO- 1 G) δ ppm: 7.15-7.35 (4H, m), 7.40-7.65 (3H, m), 7.70 (1H, dd, J=2.2, 8.8Hz), 8.07 (1H, brs), 8.33 (1H, brs), 8.40 (1H, dd, J=2.5,

5 8.8Hz), 8.77 (1H, d, J=2.5Hz), 10.87 (1H, s)

化合物 1-347

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 2.39 (3H, s), 7.15-7.35 (4H, m), 7.40-7.60 (3H, m), 7.87 (1H, d, J=10.1Hz), 7.97 (1H, brs), 8.23 (1H, brs), 8.39 (1H, dd, J=2.2, 8.5Hz), 8.76 (1H, d, J=2.2Hz), 10.97 (1H, s)

10 化合物 1 - 3 4 8

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 4.00 (3H, s), .7.05-7.55 (8H, m), 7.95 (1H, brs), 8.17 (1H, brs), 8.35-8.45 (1H, m), 8.70-8.80 (1H, m), 10.88 (1H, brs)

化合物1-349

15 ¹ H-NMR (DMSO-d₆) δ ppm: 7.25-7.50 (6H, m), 7.60-7.75 (1H, m), 7.86 (1H, dd, J=2.8, 9.1Hz), 7.97 (1H, brs), 8.22 (1H, brs), 8.43 (1H, dd, J=2.5, 8.5Hz), 8.74 (1H, d, J=2.5Hz), 10.88 (1H, s)

化合物 1-350

¹ H-NMR (DMSO-d₆) δ ppm: 7.00-7.33 (4H, m), 7.35-7.55 (2H, m), 7.63-20 7.73 (1H, m), 7.87 (1H, dd, J=2.8, 9.1Hz), 7.98 (1H, brs), 8.24 (1H, brs), 8.42 (1H, brs), 8.79 (1H, d, J=2.2Hz), 10.91 (1H, s)

化合物 1-351

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 7.15-7.45 (6H, m), 7.60-7.70 (1H, m), 7.87 (1H, dd, J=2.5, 9.5Hz), 7.98 (1H, brs), 8.23 (1H, brs), 8.35-8.45 (1H, m),

25 8.76 (1H, d, J=2.5Hz), 10.90(1H, s)

化合物 1-352

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 7.10-7.25 (1H, m), 7.30-7.55 (4H, m), 7.67 (1H, dd, J=4.1, 8.8Hz), 7.85 (1H, dd, J=2.5, 9.1Hz), 7.98 (1H, brs), 8.25 (1H, brs), 8.43 (1H, dd, J=2.2, 8.8 Hz), 8.74 (1H, dd, J=2.2 Hz), 10.88 (1H,

137

s)

5

化合物 1 - 3 5 3

 1 H-NMR (DMSO-d₆) δ ppm : 7.30-7.55 (4H, m), 7.68 (1H, dd, J=4.1, 9.1) Hz), 7.83 (1H, dd, J=2.5, 9.1Hz), 7.98 (1H, brs), 8.24 (1H, brs), 8.48 (1H, dd, J=2.2, 8.5 Hz), 8.74 (1H, d, J=2.2Hz), 10.88 (1H, s)

化合物1-354

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.15 (6H, d, J=6.9Hz), 2.95-3.10 (1H, m), 7.05-7.13 (1H, m), 7.15-7.33 (3H, m), 7.35-7.50 (2H, m), 7.67 (1H, dd, J=4.1, 9.1 Hz), 7.86 (1H, dd, J=2.5, 9.1 Hz), 7.97 (1H, brs), 8.22 (1H,

brs), 8.39 (1H, dd, J=2.5, 8.5Hz), 8.75 (1H, d, J=2.5Hz), 10.87 (1H, s) 10 化合物1-355

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.24 (6H, d, J=6.9Hz), 2.85-3.05 (1H, m), 7.05-7.25 (3H, m), 7.30-7.45 (3H, m), 7.60-7.70 (1H, m), 7.88 (1H, dd, J=2.8, 9.1Hz), 7.98(1H, brs), 8.24 (1H, brs), 8.38 (1H, dd, J=2.5,

8.8Hz), 8.76 (1H, d, J=2.5Hz), 10.90 (1H, s) 15

化合物 1-356

 1 H-NMR (DMSO-d₆) δ ppm : 2.10 (3H, s), 7.05-7.30 (4H, m), 7.35-7.45 (1H, m), 7.67 (1H, dd, J=4.1, 9.1Hz), 7.86 (1H, dd, J=2.8, 9.1Hz), 7.99 (1H, brs), 8.25 (1H, brs), 8.40 (1H, dd, J=2.5, 8.8Hz), 8.73 (1H, d, J=2.5Hz),

20 10.88 (1H, s)

化合物 1 - 3 5 7

 1 H-NMR (DMSO-d₆) δ ppm : 4.80 (2H, s), 7.15-7.75 (7H, m), 8.04 (1H, brs), 8.30 (1H, brs), 8.35-8.45 (1H, m), 8.75-8.85 (1H, m), 10.86 (1H, brs)

25 化合物 1 - 3 5 8

> $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 3.71 (3H, s), 6.95-7.45 (6H, m), 7.67 (1H, dd, J=4.1, 9.1Hz), 7.87 (1H, dd, J=2.8, 9.1Hz), 7.97 (1H, brs), 8.23 (1H, brs), 8.36 (1H, dd, J=2.2, 8.5Hz), 8.71 (1H, d, J=2.2Hz), 10.87 (1H, s) 化合物1-359

 1 H-NMR (DMSO-d₆) δ ppm: 3.77 (3H, s), 6.70-7.00 (3H, m), 7.20 (1H, d, J=8.5Hz), 7.30-7.50 (2H, m), 7.60-7.75 (1H, m), 7.80-7.92 (1H, m), 7.98 (1H, brs), 8.23 (1H, brs), 8.39 (1H, dd, J=1.9, 8.5Hz), 8.79 (1H, s), 10.90 (1H, s)

5 化合物1-360

 1 H-NMR (DMS0-d₆) δ ppm: 3.79 (3H, s), 6.95-7.05 (2H, m), 7.10-7.20 (3H, m), 7.35-7.45 (1H, m), 7.63-7.70 (1H, m), 7.85-7.93 (1H, m), 7.98 (1H, brs), 8.23 (1H, brs), 8.37 (1H, dd, J=2.5, 8.8 Hz), 8.76 (1H, d, J=2.5 Hz), 10.89 (1H, s)

10 化合物 1 - 3 6 1

 1 H-NMR (DMSO-d₆) δ ppm: 3.73 (3H, s), 6.75-6.90 (1H, m), 7.05-7.30 (3H, m), 7.35-7.45 (1H, m), 7.67 (1H, dd, J=4.1, 9.1Hz), 7.87 (1H, dd, J=2.5, 9.1Hz), 7.97 (1H, brs), 8.23 (1H, brs), 8.36 (1H, dd, J=2.5, 8.8Hz), 8.71 (1H, d, J=2.5Hz), 10.86 (1H, s)

15 化合物 1 - 3 6 2

¹ H-NMR (DMSO-d₆) δ ppm: 7.30-7.47 (2H, m), 7.48-7.60 (1H, m), 7.60-7.80 (2H, m), 7.86 (1H, dd, J=2.5, 9.1Hz), 7.98 (1H, brs), 8.24 (1H, brs), 8.44 (1H, dd, J=2.5, 8.5Hz), 8.47-8.58 (2H, m), 8.76 (1H, d, J=2.2Hz), 10.91 (1H, s)

20 化合物 1 - 3 6 3

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 2.16 (3H, s), 7.45-7.60 (2H, m), 7.93 (1H, brs), 8.14 (1H, brs), 10.08 (1H, brs)

化合物1-364

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 1.13 (3H, t, J=7.5Hz), 2.46 (2H, q, J=7.5Hz),

25 7.45-7.65 (2H, m), 7.92 (1H, brs), 8.19 (1H, brs), 10.09 (1H, s)

化合物 1 - 3 6 5

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.18 (6H, d, J=7.0Hz), 2.65-2.80 (1H, m), 7.45-7.70 (2H, m), 7.95 (1H, brs), 8.19 (1H, brs), 10.15 (1H, s) MS (ESI, m/z): 283 (M+H)+

化合物1-366

¹H-NMR (DMSO-d₆) δ ppm: 1.28 (9H, s), 7.50-7.60 (1H, m), 7.80-7.90 (1H, m), 8.03 (1H, brs), 8.29 (1H, brs), 10.43 (1H, s)
化合物 1 - 367

5 1 H-NMR (DMSO-d₆) δ ppm : 4.29 (2H, s), 7.45-7.62 (2H, m), 8.02 (1H, brs), 8.25 (1H, brs), 10.65 (1H, s)

化合物 1-368

¹ H-NMR (DMSO-d₆) δ ppm : 1.70-1.80 (2H, m), 1.85-1.95 (2H, m), 2.40-2.60 (2H, m), 3.59 (2H, t, J=6.7Hz), 7.45-7.60 (2H, m), 7.94 (1H, brs),

10 8.16 (1H, brs), 10.10 (1H, s)

化合物 1-369

¹ H-NMR (DMSO-d₆) δ ppm : 1.40-1.55 (2H, m), 1.60-1.75 (2H, m), 1.80-1.95 (2H, m), 2.46 (2H, t, J=7.4Hz), 3.55 (2H, t, J=6.8Hz), 7.45-7.60 (2H, m), 7.93 (1H, brs), 8.15 (1H, brs), 10.09 (1H, s)

15 化合物 1 - 3 7 0

¹H-NMR (DMSO-d₆) δ ppm: 3.08 (2H, t, J=7.0Hz), 4.59 (2H, t, J=7.0Hz), 6.90-7.05 (1H, m), 7.10-7.75 (7H, m), 7.80-8.35 (4H, m), 8.75-8.90 (1H, m), 10.90 (1H, s)

20 実施例3

25

6-メトキシ-3-[3-(4-フェニルピペラジン-1-イルメチル) ベンゾ イルアミノ] ベンゾフラン-2-カルボキサミド(化合物2-1)

 $3-(3-\rho \Box \Box \lor \mp)$ ルベンゾイルアミノ)-6-メトキシベンゾフラン-2-カルボキサミド (化合物 1-5 7, 73mg) のテトラヒドロフラン(1元)溶液に、トリエチルアミン(0.035元)と4-フェニルピペラジン(76mg)を加え、6 0 ℃に

て一晩撹拌した。反応混合物に水を加え、析出物を濾別して、表題化合物(67mg)を得た。

¹H-NMR (DMSO-d₆) δ ppm : 2.50-2.60 (4H, m), 3.10-3.20 (4H, m), 3.30 (2H, s), 3.87 (3H, s), 6.70-6.80 (1H, m), 6.85-7.15 (6H, m), 7.55-7.70 (2H,

m), 7.75-8.15 (4H, m), 8.20-8.30 (1H, m), 11.19 (1H, brs)

3-(3-クロロメチルベンゾイルアミノ)-6-メトキシベンゾフラン-2-カルボキサミド(化合物1-57)、および4-フェニルピペラジンの代わりに対応するベンジルハライドまたは2-クロロメチルフラン、およびアミンもしくはチオールを用い、実施例3と同様の方法により、化合物2-2~2-145を合成した。これらを表3に示した。

〔表3〕

化合物 No.	構造式	化合物 No.	構造式
2-1	0 NH ₂ H 0	2-9	-N:_S_O_N_2_O_O_O
2-2		2-10	F O NH ₂ H O O O
2-3	NH ₂	2-11	NH ₂ H O N N S F
2-4	H O NH2 H O NH2	2-12	N N CI
2-5	F-S-S	2-13	NH ₂ H O
2-6	NH ₂ H O	2-14	O=NH ₂ H O F
2-7	N N N N	2-15	NH2 H O F
2-8	NH ₂ H O	2-16	O NH ₂ H O F

表3 (続き)				
化合物 No.	構造式	化合物 No.	構造式	
2-17	HO F	2-25	OH OH OF F	
2-18	O NH ₂ H O F	2-26	O=NH ₂ H O F F	
2-19	O=NH ₂ H O F	2-27	O NH ₂ O H O F O F	
2-20	HO NH2 HO F	2-28	O NH2 H O F N N F	
2-21	0=NH ₂ H 0 F	2-29	0=NH ₂ H 0 F	
2-22	ON NH2 H OO N	2-30	NH ₂ H O F F	
2-23	ON NH2 H OO CI	2-31	O NH ₂ H O F	
2-24	O=NH ₂ H O F	2-32	HO O NH2 H O F	

表3 (続き)

表3(続き	<u>) </u>		*
化合物 No.	構造式	化合物 No.	構造式
2-33	HO NH ₂ H O F	2-41	HO NH ₂ H O F
2-34	O NH ₂ H O F	2-42	OH OH OF F
2-35	O=NH ₂ H O F	2-43	HO N N F
2-36	O NH ₂ H O F	2-44	0 NH ₂ H O F H ₂ N O F
2-37	O NH ₂ O F	2-45	H ₂ N
2-38	O=NH ₂ H O F	2-46	O=NH ₂ H O F O F
2-39	HO N N F	2-47	
2-40	HO N N P F	2-48	O=NH ₂ H O F F

表3 (続き)

表3 (続き)				
化合物 No.	構造式	化合物 No.	構造式	
2-49	O NH ₂ H O F	2-57	NH ₂ H O F	
2-50		2-58	NH ₂ H O F H O F	
2-51	O=NH ₂ H O F	2-59	O NH ₂ H O F	
2-52	O NH ₂ H O F	2-60	O=NH ₂ H O N F	
2-53	NN N N F	2-61	O=NH ₂ H O CI	
2-54	HO N N N F	2-62	O NH ₂ H O F	
2-55	0 NH ₂ H 70 F	2-63	0=NH ₂ H 0 N F	
2-56	NH ₂ H O	2-64	O NH ₂ H O N	

表3 (続き)

表3 (続き	")		
化合物 No.	構造式	化合物 No.	構造式
2-65	O=NH ₂ H O F	2-73	HO F
2-66	NH ₂ H O CI	2-74	H-CI O= NH ₂ H O F
2-67	O=NH ₂ H O F	2-75	ONH ₂ H OF F
2-68	O=NH ₂ H O F	2-76	NH ₂ H OF
2-69	O NH ₂ H O CI	2-77	NH ₂ H OF F
2-70	0=NH ₂ H 0 F	2-78	HON P
2-71	O=NH ₂ H O F	2-79	O=NH ₂ H OF F
2-72	HO N O F	2-80	O=NH ₂ H / O N F

表3(続き)		· · · · · · · · · · · · · · · · · · ·
化合物 No.	構造式	化合物 No.	構造式
2-81	OH NH ₂ H OF F	2-89	HO NH ₂ H O F
2-82	O NH ₂ H O F	2-90	HO F
2-83	O NH ₂ O N O F	2-91	O=NH ₂ H O F
2-84	O NH2 H O CI	2-92	O=NH ₂ H O F
2-85	H·CI OHNH2 H OFF	2-93	N N O F
2-86	O=NH ₂ H O F	2-94	H-CI 0=NH ₂ H-O F F
2-87	O NH ₂ O N F	2-95	H-CI OH NH2 N H-OFF
2-88	H-CI 0=NH ₂ H-O F	2-96	O NH ₂ H O F

表3 (続き)	·		
化合物 No.	構造式	化合物 No.	構造式
2-97	O NH ₂ O N O F	2-105	O=NH ₂ H O F
2-98	O=NH ₂ H O N F	2-106	O=NH ₂ H 70 F
2-99	O=NH ₂ H O F	2-107	HO NH2 HO F
2-100	H-CI O=NH ₂ H O F	2-108	OH NH2 OH N OF F
2-101	O=NH ₂ H O F	2-109	HO F
2-102	O NH ₂ H O CI	2-110	OH N OF F
2-103	O=NH ₂ H O F	2-111	OH N OF
2-104	O=NH ₂ H O F	2-112	O=NH ₂ H POF F

表3 (続き)

表3 (続き)		· · · · · · · · · · · · · · · · · · ·
化合物 No.	構造式	化合物 No.	構造式
2-113	NH ₂ N O F	2-121	OF NH2 H OF F
2-114	OF NH ₂ H NO F	2-122	HO F
2-115	O NH ₂ H O CI	2-123	H-CI H-CI OF F
2-116	H-CI O=NH ₂ H O F	2-124	OH N OF F
2-117	O NH ₂ H O F	2-125	NH ₂ H O O N O CI
2-118	O NH ₂ H O F N F	2-126	O NH ₂ H O N N F
2-119	O=NH ₂ H O	2-127	O NH ₂ H O N N F
2-120	OF NH ₂ H OF F	2-128	O=NH ₂ H O CI

表3(続き)		
化合物 No.	構造式	化合物 No.	構造式
2-129	O=NH ₂ H O F	2-138	0=NH ₂ H 70 F
2-130	NH ₂ OHNOF F	2-139	O-NH ₂ H O F F
2-131	O=NH ₂ H O F	2-140	OH NH2 H O F N O F
2-132	O=NH ₂ H O F	2-141	O NH ₂ H O F
2-133	ONH ₂ H OF	2-142	O NH2 H O F N O F
2-134	O NH ₂ H O F	2-143	OF NH ₂ H OF F
2-135	OF NH2 H OF F	2-144	O NH ₂ H PO F F
2-136	0=NH ₂ H 0 F	2-145	O NH ₂ H O F
2-137	O=NH ₂ H O F		

化合物2-2~2-145の物性値を以下に示した。

化合物 2-2

¹H-NMR (DMSO-d₆) δ ppm: 1.65-1.75 (4H, m), 2.40-2.50 (4H, m), 3.68 (2H, s), 3.87 (3H, s), 6.95-7.15 (2H, m), 7.50-7.65 (2H, m), 7.80-7.95 (3H,

5 m), 8.06 (1H, brs), 8.20-8.30 (1H, m), 11.18 (1H, brs)

化合物 2-3

¹H-NMR (DMSO-d₆) δ ppm: 0.85 (6H, d, J=6.6Hz), 1.30-1.40 (2H, m), 1.64 (1H, heptet, J=6.6Hz), 2.08 (1H, brs), 2.45-2.55 (2H, m), 3.78 (2H, s), 3.87 (3H, s), 6.95-7.15 (2H, m), 7.50-7.65 (2H, m), 7.80-8.15 (4H, m),

10 8.20-8.30 (1H, m), 11.14 (1H, brs)

化合物 2-4

¹H-NMR (DMSO-d₆) δ ppm: 1.00-1.25 (5H, m), 1.50-2.05 (6H, m), 2.30-2.45 (1H, m), 3.82 (2H, s), 3.87 (3H, s), 6.95-7.15 (2H, m), 7.45-7.70 (2H, m), 7.80-8.10 (3H, m), 8.05 (1H, brs), 8.20-8.30 (1H, m), 11.14 (1H,

15 brs)

化合物 2-5

¹H-NMR (DMSO-d₆) δ ppm: 3.86 (3H, s), 4.30 (2H, s), 6.90-7.25 (4H, m), 7.35-7.55 (4H, m), 7.80-7.95 (3H, m), 8.04 (1H, brs), 8.15-8.25 (1H, m), 11.11 (1H, brs)

20 化合物 2 - 6

 1 H-NMR (DMSO-d₆) δ ppm : 3.87 (3H, s), 4.32 (2H, s), 6.90-7.20 (4H, m), 7.40-7.50 (2H, m), 7.80-7.95 (3H, m), 8.05 (1H, brs), 8.20-8.30 (1H, m), 11.11 (1H, brs), 12.25 (1H, brs)

化合物2-7

¹ H-NMR (DMSO-d₆) δ ppm: 3.39 (3H, s), 3.87 (3H, s), 4.27 (2H, s), 6.95-7.15 (3H, m), 7.20-7.25 (1H, m), 7.35-7.45 (2H, m), 7.80-7.90 (3H, m), 8.05 (1H, brs), 8.20-8.30 (1H, m), 11.13 (1H, brs)

化合物 2 - 8

 $^{1}\text{H-NMR}$ (DMSO-d $_{6}$) δ ppm : 2.55-2.70 (4H, m), 3.05-3.25 (4H, m), 3.70 (2H,

s), 3.86 (3H, s), 6.60-6.65 (1H, m), 6.70-6.80 (1H, m), 6.85-7.25 (6H, m), 7.30-7.35 (1H, m), 7.88 (1H, brs), 8.08 (1H, brs), 8.25-8.30 (1H, m), 11.13 (1H, brs)

化合物 2-9

5 ¹ H-NMR (DMSO-d₆) δ ppm: 2.10-2.25 (6H, m), 2.65-2.75 (2H, m), 3.80-3.95 (5H, m), 6.55-6.65 (1H, m), 6.95-7.15 (2H, m), 7.25-7.40 (1H, m), 7.86 (1H, brs), 8.08 (1H, brs), 8.20-8.30 (1H, m), 11.11 (1H, brs) 化合物 2 - 1 Ο

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 3.86 (3H, s), 4.35 (2H, s), 6.40-6.50 (1H, m),

10 6.90-7.25 (5H, m), 7.40-7.55 (2H, m), 7.89 (1H, brs), 8.08 (1H, brs), 8.20-8.30 (1H, m), 11.08 (1H, brs)

化合物2-11

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 3.53 (3H, s), 4.31 (2H, s), 6.35-6.40 (1H, m), 6.95-7.00 (1H, m), 7.20-7.30 (2H, m), 7.35-7.45 (1H, m), 7.60-7.70 (1H,

15 m), 7.95-8.10 (1H, m), 8.01 (1H, brs), 8.27 (1H, brs), 10.95 (1H, brs) 化合物 2-1 2

 $^{1}\text{H-NMR}$ (CDCl₃) δ ppm: 2.28 (6H, s), 3.53 (2H, s), 5.65 (1H, brs), 6.40 (1H, brs), 7.25-7.40 (1H, m), 7.45-7.65 (3H, m), 7.90-8.00 (2H, m), 8.55-8.65 (1H, m), 10.88 (1H, brs)

20 化合物 2-13

 1 H-NMR (DMSO-d₆) δ ppm : 2.19 (6H, s), 3.51 (2H, s), 7.35-7.50 (1H, m), 7.50-7.75 (3H, m), 7.85-7.95 (1H, m), 7.95 (1H, s), 7.95-8.10 (2H, m), 8.31 (1H, brs), 11.05 (1H, s)

MS (ESI, m/z): 356 (M+H)+

25 化合物 2-14

MS (ESI, m/z): 470 (M+H)+

化合物 2-15

 1 H-NMR (DMSO- 1 G) δ ppm : 2.22 (3H, s), 2.70-2.80 (2H, m), 2.90-3.00 (2H, m), 3.63 (2H, s), 7.10-7.20 (1H, m), 7.28 (1H, d, J=7.6Hz), 7.45-7.70

(4H, m), 7.80-7.95 (3H, m), 8.09 (1H, brs), 8.36 (1H, brs), 8.44 (1H, dd, J=0.9, 4.7Hz), 10.96 (1H, s)

化合物 2-16

 1 H-NMR (DMSO- d_{6}) δ ppm : 2.20 (3H, s), 2.50-2.65 (2H, m), 3.24 (3H, s),

5 3.42-3.70 (4H, m), 7.48-7.70 (3H, m), 7.76-8.00 (3H, m), 8.09 (1H, s), 8.36 (1H, s), 10.98 (1H, s)

化合物 2-17

MS (ESI, m/z): 404 (M+H)+

化合物 2-18

10 ¹H-NMR (CDCl₃) δ ppm: 1.16 (9H, s), 2.82 (2H, t, J=5.5Hz), 3.63 (2H, t, J=5.5Hz), 3.82 (2H, s), 6.68 (1H, brs), 6.95-7.10 (1H, m), 7.40-7.60 (2H, m), 7.85-7.95 (1H, m), 8.10-8.30 (2H, m), 10.99 (1H, brs)

化合物 2-19

¹ H-NMR (DMSO-d₆) δ ppm: 0.90-1.35 (5H, m), 1.45-1.90 (7H, m), 2.30-2.70 (3H, m), 3.73 (2H, s), 4.20-4.35 (1H, m), 7.45-7.70 (3H, m), 7.80-7.90 (2H, m), 7.97 (1H, s), 8.10 (1H, brs), 8.40 (1H, brs), 11.00 (1H, brs)

化合物 2-20

 $^{1}\,\mathrm{H-NMR}$ (CDCl $_{3}\,+\mathrm{MeOD-d}$ $_{4}$) δ ppm : 2.65-2.75 (4H, m), 3.60-3.70 (4H, m),

20 3.78 (2H, s), 7.00-7.10 (1H, m), 7.45-7.55 (2H, m), 7.90-8.00 (1H, m), 8.15-8.25 (1H, m)

化合物 2-21

 1 H-NMR (DMSO- 1 d₆) δ ppm: 2.67 (4H, t, J=5.9Hz), 3.21 (6H, s), 3.43 (4H, t, J=5.9Hz), 3.76 (2H, s), 7.50-7.65 (3H, m), 7.80-7.95 (2H, m), 7.96

25 (1H, s), 8.10 (1H, brs), 8.38 (1H, brs), 10.98 (1H, s)

MS (ESI, m/z): 462 (M+H)+

化合物 2-22

 $^1\,H-NMR$ (DMSO-d $_6$) δ ppm : 2.30-2.45 (4H, m), 3.50-3.65 (6H, m), 7.35-7.45 (1H, m), 7.50-7.70 (3H, m), 7.85-8.10 (4H, m), 8.27 (1H, brs),

11.04 (1H, s)

MS (ESI, m/z): 398 (M+H)+

化合物 2-23

¹ H-NMR (DMSO-d₆) δ ppm: 2.30-2.45 (4H, m), 3.50-3.65 (6H, m), 7.40-5 7.50 (1H, m), 7.50-7.65 (2H, m), 7.70-7.80 (1H, m), 7.90 (1H, d, J=7.8Hz), 7.90-8.10 (2H, m), 8.20-8.35 (2H, m), 11.07 (1H, s)

MS (ESI, m/z): 414 (M+H)+

化合物 2-24

¹ H-NMR (DMSO-d₆) δ ppm: 2.40 (4H, brs), 3.50-3.70 (6H, m), 7.50-7.70 (3H, m), 7.80-7.90 (1H, m), 7.90 (1H, d, J=7.5Hz), 7.96 (1H, s), 8.38 (1H, brs), 11.00 (1H, s)

MS (ESI, m/z): 416 (M+H)+

化合物 2-25

¹ H-NMR (DMSO-d₆) δ ppm: 1.82 (1H, t, J=10.5Hz), 2.00-2.15 (1H, m),

2.64 (1H, d, J=11.0Hz), 2.78 (1H, d, J=11.0Hz), 3.20-3.65 (6H, m), 3.77 (1H, d, J=11.1Hz), 4.65 (1H, t, J=6.0Hz), 7.50-7.65 (3H, m), 7.83 (1H, d, J=7.8Hz), 7.91 (1H, d, J=7.3Hz), 7.96 (1H, s), 8.11 (1H, brs), 8.38 (1H, brs), 10.99 (1H, s)

MS (ESI, m/z): 446 (M+H)+

20 化合物 2-26

¹ H-NMR (DMSO-d₆) δ ppm: 1.13 (3H, d, J=6.0Hz), 1.30-1.45 (1H, m), 1.50-1.75 (2H, m), 1.85-2.20 (2H, m), 2.35-2.50 (1H, m), 2.75-2.85 (1H, m), 3.23 (1H, d, J=13.2Hz), 4.07 (1H, d, J=13.2Hz), 7.45-7.65 (3H, m), 7.80-8.00 (3H, m), 8.10 (1H, brs), 8.37 (1H, brs), 11.00 (1H, s)

25 化合物 2-27

 1 H-NMR (DMSO- 1 G) δ ppm: 1.90-2.05 (2H, m), 2.34 (2H, t, J=8.1Hz), 3.29 (2H, t, J=7.1Hz), 4.49 (2H, s), 7.52 (1H, d, J=7.8Hz), 7.55-7.65 (2H, m), 7.75-7.90 (2H, m), 7.92 (1H, d, J=7.8Hz), 8.10 (1H, brs), 8.38 (1H, brs), 11.00 (1H, s)

MS (ESI, m/z): 414 (M+H)+

化合物 2-28

¹H-NMR (DMSO-d₆) δ ppm: 2.74 (4H, s), 4.66 (2H, s), 7.50-7.70 (3H, m), 7.80-7.95 (3H, m), 8.11 (1H, brs), 8.39 (1H, brs), 11.00 (1H, brs)

5 化合物 2-29

MS (ESI, m/z): 443 (M+H)+

化合物 2-30

 1 H-NMR (DMSO-d₆) δ ppm : 1.40-2.00 (4H, m), 2.10-2.30 (1H, m), 2.60-2.90 (2H, m), 3.20-3.50 (6H, m), 4.10-4.30 (1H, m), 7.50-7.65 (3H, m),

7.80-8.00 (3H, m), 8.09 (1H, brs), 8.37 (1H, brs), 10.99 (1H, s)
MS (ESI, m/z): 444 (M+H)+

化合物 2-31

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.40-2.00 (4H, m), 2.10-2.30 (1H, m), 2.60-2.90 (2H, m), 3.20-3.50 (6H, m), 4.10-4.30 (1H, m), 7.50-7.65 (3H, m),

15 7.80-8.00 (3H, m), 8.09 (1H, brs), 8.37 (1H, brs), 10.99 (1H, s)

化合物 2-32

MS (ESI, m/z): 430 (M+H)+

化合物 2-33

MS (ESI, m/z): 430 (M+H)+

20 化合物 2-34

 1 H-NMR (DMSO-d₆) δ ppm: 1.70-1.90 (1H, m), 2.20-3.05 (5H, m), 3.25-3.45 (1H, m), 3.77 (2H, brs), 7.25-7.40 (2H, m), 7.50-7.70 (3H, m), 7.80-7.95 (2H, m), 8.00 (1H, s), 8.10 (1H, brs), 8.39 (1H, brs), 8.42-8.50 (2H, m), 11.01 (1H, s)

25 化合物 2 - 3 5

 1 H-NMR (DMSO-d₆) δ ppm : 1.30-1.45 (2H, m), 1.45-1.60 (4H, m), 2.35 (4H, brs), 3.53 (2H, s), 7.35-7.45 (1H, m), 7.50-7.75 (3H, m), 7.80-8.10 (4H, m), 8.27 (1H, brs), 11.03 (1H, s)

MS (ESI, m/z): 396 (M+H)+

化合物 2 - 3 6

¹ H-NMR (DMSO-d₆) δ ppm: 1.30-1.60 (6H, m), 2.36 (4H, brs), 3.54 (2H, s), 7.45-7.65 (3H, m), 7.75-8.00 (3H, m), 8.09 (1H, brs), 8.37 (1H, brs), 10.99 (1H, brs)

5 MS (ESI, m/z): 414 (M+H)+

化合物 2-37

 $^{1} \text{ H-NMR} \quad (\text{DMSO-d}_{6}) \quad \delta \quad \text{ppm} : 1.12 \quad (3\text{H}, d, J=6.0\text{Hz}), \quad 1.15-1.70 \quad (6\text{H}, m), \\ 1.90-2.05 \quad (1\text{H}, m), \quad 2.25-2.45 \quad (1\text{H}, m), \quad 2.55-2.70 \quad (1\text{H}, m), \quad 3.25 \quad (1\text{H}, d, J=14\text{Hz}), \quad 4.01 \quad (1\text{H}, d, J=14\text{Hz}), \quad 7.50-7.65 \quad (3\text{H}, m), \quad 7.80-7.90 \quad (2\text{H}, m),$

7.94 (1H, s), 8.11 (1H, brs), 8.38 (1H, brs), 11.00 (1H, brs)
MS (ESI, m/z): 428 (M+H)+

化合物 2-38

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 0.88 (3H, t, J=7.6Hz), 1.00-1.80 (8H, m), 1.90-2.80 (3H, m), 3.20-3.40 (1H, m), 3.90-4.10 (1H, m), 7.45-7.70 (3H,

15 m), 7.80-8.00 (3H, m), 8.09 (1H, brs), 8.36 (1H, brs), 10.99 (1H, s) 化合物 2-3 9

 1 H-NMR (DMSO-d₆) δ ppm: 1.30-1.50 (2H, m), 1.65-1.80 (2H, m), 2.00-2.15 (2H, m), 2.60-2.75 (2H, m), 3.40-3.60 (3H, m), 4.50-4.60 (1H, m), 7.50-7.70 (3H, m), 7.80-8.00 (3H, m), 8.10 (1H, brs), 8.38 (1H, brs),

20 10.98 (1H, s)

MS (ESI, m/z): 430 (M+H)+

化合物 2-40

 $^1\,H-NMR$ (CDC1 $_3\,+MeOD-d$ $_4$) $\,\delta\,$ ppm : 1.20-1.80 (5H, m), 1.90-2.15 (2H, m), 2.85-3.00 (2H, m), 3.30-3.50 (2H, m), 3.61 (2H, s), 7.00-7.10 (1H, m),

25 7.45-7.60 (2H, m), 7.85-8.00 (2H, m), 8.10-8.20 (1H, m)

化合物 2-41

 1 H-NMR (DMSO-d₆) δ ppm: 0.80-2.00 (7H, m), 2.60-2.95 (2H, m), 3.10-3.60 (4H, m), 4.30-4.45 (1H, m), 7.50-7.65 (3H, m), 7.80-7.95 (3H, m), 8.08 (1H, brs), 8.36 (1H, brs), 10.98 (1H, s)

156

化合物 2-42

MS (ESI, m/z): 444 (M+H)+

化合物 2 - 4 3

MS (ESI, m/z): 458 (M+H)+

化合物 2-44 5

MS (ESI, m/z): 457 (M+H)+

化合物 2-45

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.25-1.40 (1H, m), 1.40-1.55 (1H, m), 1.55-1.80 (2H, m), 1.85-2.10 (2H, m), 2.25-2.40 (1H, m), 2.65-2.85 (2H, m),

3.50-3.65 (2H, m), 6.76 (1H, brs), 7.28 (1H, brs), 7.50-7.65 (3H, m), 10 7.80-8.00 (3H, m), 8.10 (1H, brs), 8.39 (1H, brs), 10.99 (1H, s)

MS (ESI, m/z): 457 (M+H)+

化合物 2-46

MS (ESI, m/z): 462 (M+H)+

化合物 2-47 15

> $^{1}\text{H-NMR}$ (DMSO-d $_{6}$) δ ppm : 1.50-1.70 (4H, m), 3.62 (2H, s), 3.80-3.90 (4H, m), 7.35-7.50 (1H, m), 7.50-7.65 (2H, m), 7.70-7.80 (1H, m), 7.85-8.10 (3H, m), 8.15-8.40 (2H, m), 11.05 (1H, s)

MS (ESI, m/z): 470 (M+H)+

化合物 2 - 4 8 20

> $^{1}\text{H-NMR}$ (DMSO-d $_{6}$) δ ppm : 1.55-1.70 (4H, m), 2.35-2.60 (4H, m), 3.59 (2H, s), 3.85 (4H, s), 7.50-7.70 (3H, m), 7.75-8.00 (3H, m), 8.10 (1H, brs), 8.38 (1H, brs), 10.97 (1H, brs)

MS (ESI, m/z): 472 (M+H)+

25 化合物 2-49

> 1 H-NMR (DMSO-d $_{6}$) δ ppm : 2.05-2.60 (10H, m), 3.56 (2H, s), 7.50-7.70 (3H, m), 7.80-8.00 (3H, m), 8.10 (1H, brs), 8.38 (1H, brs), 10.98 (1H, s)

MS (ESI, m/z): 429 (M+H)+

化合物 2-50

¹H-NMR (DMSO-d₆) δ ppm : 2.20-2.60 (8H, m), 3.47 (2H, s), 3.58 (2H, s), 7.20-7.40 (5H, m), 7.40-7.50 (1H, m), 7.50-7.65 (2H, m), 7.70-7.80 (1H, m), 7.85-8.15 (3H, m), 8.15-8.40 (2H, m), 11.05 (1H, s)

5 MS (ESI, m/z): 503 (M+H)+

化合物 2-51

 1 H-NMR (DMSO-d₆) δ ppm : 2.20-2.60 (8H, m), 3.46 (2H, s), 3.57 (2H, s), 7.15-7.35 (5H, m), 7.50-7.65 (3H, m), 7.80-8.00 (3H, m), 8.07 (1H, brs), 8.34 (1H, brs), 10.97 (1H, s)

10 MS (ESI, m/z): 505 (M+H)+

化合物 2-52

 1 H-NMR (DMSO-d₆) δ ppm: 0.85-1.10 (6H, m), 2.20-2.75 (9H, m), 3.55 (2H, s), 7.45-7.65 (3H, m), 7.75-8.00 (3H, m), 8.06 (1H, brs), 8.34 (1H, brs), 10.97 (1H, s)

15 MS (ESI, m/z): 457 (M+H)+

化合物 2-53

 1 H-NMR (CDCl₃) δ ppm : 2.30-2.70 (8H, m), 2.56 (2H, t, J=7.4Hz), 2.74 (2H, t, J=7.4Hz), 3.60 (2H, s), 5.13 (2H, s), 5.96 (1H, brs), 6.56 (1H, brs), 7.00-7.10 (1H, m), 7.25-7.60 (7H, m), 7.85-8.05 (2H, m), 8.15-8.25

20 (1H, m), 10.82 (1H, brs)

化合物 2-54

MS (ESI, m/z): 487 (M+H)+

化合物 2-55

¹ H-NMR (DMSO-d₆) δ ppm: 3.25-3.55 (2H, m), 3.60-3.75 (2H, m), 4.05-25 4.25 (2H, m), 4.66 (2H, s), 5.11 (2H, s), 7.25-7.45 (5H, m), 7.50-7.70 (3H, m), 7.75-8.00 (3H, m), 8.10 (1H, brs), 8.38 (1H, brs), 11.01 (1H, s)

MS (ESI, m/z): 563 (M+H)+

化合物 2-56

¹H-NMR (DMSO-d₆) δ ppm: 1.01 (6H, d, J=6.0Hz), 2.70-2.85 (1H, m), 3.79 (2H, s), 6.45-6.60 (1H, m), 7.20-7.35 (1H, m), 7.35-7.50 (1H, m), 7.60-7.70 (1H, m), 7.90-8.15 (2H, m), 8.29 (1H, brs), 10.97 (1H, s) MS (ESI, m/z): 360 (M+H)+

5 化合物 2-57

 1 H-NMR (DMSO-d₆) δ ppm: 1.09 (9H, s), 3.78 (2H, s), 6.45-6.60 (1H, m), 7.25-7.35 (1H, m), 7.35-7.50 (1H, m), 7.60-7.75 (1H, m), 7.95-8.20 (2H, m), 8.29 (1H, brs), 10.96 (1H, s)

MS (ESI, m/z) : 374 (M+H)+

10 化合物 2-58

¹ H-NMR (DMSO-d₆) δ ppm: 1.50-1.70 (12H, m), 1.95-2.10 (3H, m), 3.80 (2H, s), 6.45-6.55 (1H, m), 7.25-7.35 (1H, m), 7.50-7.65 (1H, m), 7.85-7.95 (1H, m), 8.05 (1H, brs), 8.35 (1H, brs), 10.89 (1H, brs) 化合物 2 - 5 9

20 化合物 2 - 6 0

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 2.23 (6H, s), 3.58 (2H, s), 6.55-6.65 (1H, m), 7.30-7.45 (2H, m), 7.60-7.70 (1H, m), 8.02 (1H, brs), 8.05-8.15 (1H, m), 8.27 (1H, brs), 11.03 (1H, brs)

化合物 2-61

25 ¹H-NMR (DMSO-d₆) δ ppm: 2.23 (6H, s), 3.57 (2H, s), 6.55-6.60 (1H, m), 7.25-7.35 (1H, m), 7.40-7.50 (1H, m), 7.70-7.80 (1H, m), 8.01 (1H, brs), 8.25 (1H, brs), 8.36 (1H, d, J=9.1Hz), 11.05 (1H, s) MS (ESI, m/z): 362 (M+H)+ 化合物 2-6 2

 1 H-NMR (CDCl $_{3}$) δ ppm: 2.36 (6H, s), 3.62 (2H, s), 6.40-6.45 (1H, m), 6.50 (1H, brs), 6.95 (1H, brs), 6.95-7.05 (1H, m), 7.20-7.25 (1H, m), 8.05-8.15 (1H, m), 10.80 (1H, brs)

化合物 2 - 6 3

5 ¹H-NMR (CDCl₃) δ ppm: 0.85-0.95 (6H, m), 1.70-1.90 (1H, m), 2.15-2.25 (2H, m), 2.32 (3H, s), 3.68 (2H, s), 5.99 (1H, brs), 6.20-6.60 (2H, m), 7.15-7.40 (3H, m), 8.30-8.40 (1H, m), 10.76 (1H, brs)

化合物 2-64

¹ H-NMR (CDCl₃) δ ppm: 1.10 (6H, d, J=6.5Hz), 2.33 (3H, s), 2.90 (1H, heptet, J=6.5Hz), 3.72 (2H, s), 5.99 (1H, brs), 6.30-6.60 (2H, m), 7.10-7.40 (3H, m), 8.25-8.40 (1H, m), 10.74 (1H, brs)

化合物 2 - 6 5

 1 H-NMR (CDCl $_{3}$) δ ppm: 1.18 (6H, t, J=7.2Hz), 2.67 (4H, q, J=7.2Hz), 3.90 (2H, s), 6.40-6.50 (1H, m), 6.75 (1H, brs), 6.91 (1H, brs), 7.10-7.40

15 (3H, m), 8.25-8.40 (1H, m), 10.84 (1H, brs)

化合物 2-66

¹ H-NMR (DMSO-d₆) δ ppm: 0.90-1.10 (6H, m), 3.73 (2H, s), 6.57 (1H, brs), 7.25-7.35 (1H, m), 7.35-7.45 (1H, m), 7.70-7.80 (1H, m), 8.01 (1H, brs), 8.25 (1H, brs), 8.30-8.45 (1H, m), 11.04 (1H, s)

20 MS (ESI, m/z): 390 (M+H)+

化合物 2 - 67

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 1.04 (6H, t, J=6.9Hz), 2.40-2.60 (4H, m), 3.73 (2H, s), 6.57 (1H, d, J=3.5Hz), 7.32 (1H, d, J=3.5Hz), 7.50-7.65 (1H, m), 7.90-8.00 (1H, m), 8.09 (1H, brs), 8.35 (1H, brs), 10.98 (1H, s)

25 化合物 2 - 6 8

 1 H-NMR (CDCl $_{3}$) δ ppm : 1.06 (12H, d, J=6.5Hz), 3.10 (2H, heptet, J=6.5Hz), 3.75 (2H, s), 5.78 (1H, brs), 6.30-6.50 (2H, m), 7.15-7.40 (3H, m), 8.30-8.45 (1H, m), 10.70 (1H, brs)

化合物 2 - 6 9

¹ H-NMR (DMSO-d₆) δ ppm: 0.90-1.15 (12H, m), 2.90-3.15 (2H, m), 3.72 (2H, s), 6.45-6.60 (1H, m), 7.20-7.35 (1H, m), 7.35-7.50 (1H, m), 7.70-7.80 (1H, m), 7.99 (1H, brs), 8.24 (1H, brs), 8.30-8.45 (1H, m). 10.98 (1H, s)

5 MS (ESI, m/z): 418 (M+H)+

化合物 2-70

 1 H-NMR (CDC1 $_{3}$ +MeOD-d $_{4}$) δ ppm : 1.00-2.00 (10H, m), 2.35-2.45 (1H, m), 2.37 (3H, s), 3.78 (2H, s), 6.40-6.50 (1H, m), 6.95-7.10 (1H, m), 7.20-7.35 (1H, m), 8.05-8.15 (1H, m)

10 化合物 2-71

MS (ESI, m/z): 460 (M+H) +

化合物 2-72

MS (ESI, m/z): 394 (M+H)+

化合物 2-73

15 ¹H-NMR (CDCl₃) δ ppm: 1.14 (9H, s), 2.92 (2H, t, J=6.0Hz), 3.57 (2H, t, J=6.0Hz), 3.86 (2H, s), 6.30-6.40 (1H, m), 6.69 (1H, brs), 6.95-7.10 (1H, m), 7.20-7.30 (1H, m), 8.15-8.25 (1H, m), 10.88 (1H, brs) 化合物 2-74

MS (ESI, m/z): 408 (M+H)+

25 化合物 2-76

 1 H-NMR (DMSO-d₆) δ ppm: 1.04 (3H, t, J=7.1Hz), 2.16 (6H, s), 2.30-2.45 (2H, m), 2.45-2.60 (4H, m), 3.77 (2H, s), 6.59 (1H, d, J=3.5Hz), 7.34 (1H, d, J=3.5Hz), 7.55-7.70 (1H, m), 7.90-8.00 (1H, m), 8.11 (1H, brs), 8.39 (1H, brs), 11.00 (1H, brs)

MS (ESI, m/z): 435 (M+H)+

化合物2-77

¹H-NMR (DMSO-d₆) δ ppm: 2.30 (3H, s), 2.65-3.00 (4H, m), 3.71 (2H, s), 6.50-6.60 (1H, m), 7.10-7.40 (4H, m), 7.50-7.75 (2H, m), 7.85-8.00 (1H,

5 m), 8.08 (1H, brs), 8.35-8.55 (2H, m)

化合物 2-78

¹H-NMR (DMSO-d₆) δ ppm: 2.55-2.65 (4H, m), 3.45-3.55 (4H, m), 3.83 (2H, s), 4.35-4.45 (2H, m), 6.55-6.65 (1H, m), 7.30-7.40 (1H, m), 7.55-7.65 (1H, m), 7.90-8.00 (1H, m), 8.14 (1H, brs), 8.41 (1H, brs), 10.99 (1H,

10 brs)

20

化合物 2-79

 1 H-NMR (DMSO-d₆) δ ppm : 2.70 (4H, t, J=6.0Hz), 3.24 (6H, s), 3.44 (4H, t, J=6.0Hz), 3.83 (2H, s), 6.59 (1H, d, J=3.5Hz), 7.33 (1H, d, J=3.5Hz), 7.55-7.70 (1H, m), 7.90-8.00 (1H, m), 8.10 (1H, brs), 8.38 (1H, brs),

15 10.99 (1H, s)

MS (ESI, m/z): 452 (M+H)+

化合物 2-80

¹ H-NMR (DMSO-d₆) δ ppm: 1.04 (6H, d, J=6.4Hz), 1.70-1.85 (2H, m), 2.70-2.80 (2H, m), 3.50-3.70 (4H, m), 6.60 (1H, d, J=3.3Hz), 7.32 (1H, d, J=3.3Hz), 7.35-7.50 (1H, m), 7.60-7.70 (1H, m), 7.95-8.10 (2H, m), 8.30 (1H, brs), 10.99 (1H, s)

MS (ESI, m/z): 416 (M+H)+

化合物 2-81

¹ H-NMR (DMSO-d₆) δ ppm: 1.88 (1H, t, J=10.5Hz), 2.10-2.25 (1H, m), 2.65-2.75 (1H, m), 2.82 (1H, d, J=10.9Hz), 3.25-3.60 (4H, m), 3.64 (2H, s), 3.70-3.85 (1H, m), 4.70 (1H, t, J=5.7Hz), 6.61 (1H, d, J=3.5Hz), 7.34 (1H, d, J=3.5Hz), 7.50-7.65 (1H, m), 7.85-7.95 (1H, m), 8.10 (1H, brs), 8.40 (1H, brs), 10.95 (1H, s)

MS (ESI, m/z): 436 (M+H)+

化合物 2-82

 1 H-NMR (DMSO-d₆) δ ppm: 2.40-2.50 (4H, m), 3.50-3.65 (6H, m), 6.61 (1H, d, J=3.5Hz), 7.34 (1H, d, J=3.5Hz), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.11 (1H, brs), 8.38 (1H, brs), 10.97 (1H, s)

5 MS (ESI, m/z): 406 (M+H)+

化合物 2-83

¹H-NMR (DMSO-d₆) δ ppm: 2.40-2.55 (4H, m), 3.55-3.70 (6H, m), 6.61 (1H, d, J=3.5Hz), 7.32 (1H, d, J=3.5Hz), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 8.00 (1H, brs), 8.00-8.10 (1H, m), 8.27 (1H, brs), 11.00 (1H, s)

10 MS (ESI, m/z): 388 (M+H)+

化合物 2-84

 1 H-NMR (DMS0-d₆) δ ppm : 2.40-2.55 (4H, m), 3.50-3.70 (6H, m), 6.55-6.65 (1H, m), 7.25-7.35 (1H, m), 7.40-7.50 (1H, m), 7.70-7.80 (1H, m), 8.00 (1H, brs), 8.25 (1H, brs), 8.34 (1H, d, J=9.1Hz), 11.02 (1H, s)

15 MS (ESI, m/z): 404 (M+H)+

化合物 2-85

¹ H-NMR (DMSO-d₆) δ ppm: 1.41 (3H, d, J=6.3Hz), 1.55-1.70 (1H, m), 1.80-2.05 (2H, m), 2.15-2.30 (1H, m), 3.20-3.70 (3H, m), 4.40-4.55 (1H, m), 4.60-4.80 (1H, m), 7.01 (1H, d, J=3.5Hz), 7.46 (1H, d, J=3.5Hz), 7.55-7.70 (1H, m), 7.80-7.95 (1H, m), 8.13 (1H, brs), 8.44 (1H, brs), 10.62 (1H, brs), 11.09 (1H, s)

化合物 2-86

20

 1 H-NMR (CDCl $_{3}$ +MeOD-d $_{4}$) δ ppm : 1.15-1.65 (8H, m), 2.00-2.25 (2H, m), 2.55-3.05 (4H, m), 3.84 (2H, s), 6.35-6.45 (1H, m), 6.95-7.05 (1H, m),

25 7.15-7.30 (1H, m), 8.05-8.15 (1H, m)

化合物 2-87

 1 H-NMR (DMSO-d₆) δ ppm: 1.40-1.55 (1H, m), 1.55-1.75 (2H, m), 1.75-1.95 (1H, m), 2.30-2.60 (1H, m), 2.65-2.80 (1H, m), 2.85-3.05 (1H, m), 3.15-3.45 (5H, m), 3.55-3.75 (1H, m), 4.00-4.15 (1H, m), 6.50-6.60 (1H,

163

m), 7.25-7.35 (1H, m), 7.55-7.65 (1H, m), 7.85-8.00 (1H, m), 8.12 (1H, brs), 8.38 (1H, brs), 10.97 (1H, s)

MS (ESI, m/z): 434 (M+H) +

化合物 2-88

 1 H-NMR (DMSO-d₆) δ ppm : 1.60-2.30 (4H, m), 3.20-3.90 (8H, m), 4.45-4.75 (2H, m), 7.01 (1H, d, J=3.5Hz), 7.46 (1H, d, J=3.5Hz), 7.55-7.70 (1H, m), 7.80-7.90 (1H, m), 8.12 (1H, brs), 8.44 (1H, brs), 10.76 (1H, brs), 11.09 (1H, s)

化合物 2-89

10 MS (ESI, m/z): 420 (M+H)+

化合物 2 - 9 0

MS (ESI, m/z): 420 (M+H)+

化合物 2 - 9 1

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 1.90-2.05 (2H, m), 2.30 (2H, t, J=8.1Hz), 3.45 (2H, t, J=7.1Hz), 4.51 (2H, s), 6.55-6.65 (1H, m), 7.30-7.40 (1H, m), 7.55-7.70 (1H, m), 7.85-8.00 (1H, m), 8.12 (1H, brs), 8.39 (1H, brs), 10.99 (1H, s)

MS (ESI, m/z): 404 (M+H)+

化合物 2 - 9 2

20 MS (ESI, m/z): 433 (M+H)+

化合物 2 - 9 3

MS (ESI, m/z): 433 (M+H)+

化合物 2-94

MS (ESI, m/z): 467 (M+H)+

25 化合物 2 - 9 5

MS (ESI, m/z): 467 (M+H)+

化合物 2 - 9 6

 1 H-NMR (DMSO-d₆) δ ppm: 1.30-1.45 (2H, m), 1.45-1.60 (4H, m), 2.35-2.50 (4H, m), 3.58 (2H, s), 6.56 (1H, d, J=3.5Hz), 7.30 (1H, d, J=3.5Hz),

7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 8.00 (1H, brs), 8.00-8.15 (1H, m), 8.27 (1H, brs), 10.98 (1H, brs)

MS (ESI, m/z): 386 (M+H)+

化合物 2 - 9 7

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.30-1.45 (2H, m), 1.45-1.60 (4H, m), 2.30-5 2.50 (4H, m), 3.59 (2H, s), 6.55-6.60 (1H, m), 7.30-7.40 (1H, m), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.10 (1H, brs), 8.37 (1H, brs), 10.96 (1H, s)

MS (ESI, m/z): 404 (M+H)+

- 化合物 2 98 10
 - 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.05-1.65 (9H, m), 2.10-2.35 (2H, m), 2.75-2.90 (1H, m), 3.81 (2H, brs), 6.55-6.65 (1H, m), 7.30-7.50 (2H, m), 7.60-7.75 (1H, m), 8.00-8.20 (2H, m), 8.31 (1H, brs), 11.05 (1H, s) MS (ESI, m/z): 400 (M+H)+
- 化合物 2 9 9 15
 - 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.05-1.30 (5H, m), 1.30-1.65 (4H, m), 2.10-2.30 (2H, m), 2.75-2.85 (1H, m), 3.78 (2H, s), 6.58 (1H, d, J=3.4Hz), 7.33 (1H, d, J=3.4Hz), 7.55-7.70 (1H, m), 7.90-8.00 (1H, m), 8.12 (1H, brs), 8.38 (1H, brs), 11.00 (1H, s)
- MS (ESI, m/z): 418 (M+H)+ 20

化合物2-100

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 0.85-1.00 (3H, m), 1.30-2.05 (7H, m), 2.10-2.25 (1H, m), 2.90-3.60 (3H, m), 4.40-4.70 (2H, m), 6.95-7.10 (1H, m), 7.40-7.55 (1H, m), 7.55-7.70 (1H, m), 7.80-7.95 (1H, m), 8.05-8.20 (1H,

m), 8.35-8.50 (1H, m), 10.43 (1H, brs), 11.00-11.20 (1H, m) 25

化合物2-101

 1 H-NMR (DMSO-d $_{6}$) δ ppm : 1.10-1.30 (9H, m), 1.45-1.65 (3H, m), 2.25-2.40 (2H, m), 3.97 (2H, s), 6.50-6.65 (1H, m), 7.32 (1H, d, J=3.4Hz), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 8.02 (1H, brs), 8.10-8.20 (1H, m),

8.26 (1H, brs), 11.02 (1H, s)

MS (ESI, m/z): 414 (M+H)+

化合物 2-102

5

 1 H-NMR (DMSO-d₆) δ ppm : 1.00-1.35 (9H, m), 1.45-1.65 (3H, m), 2.25-

2.50 (2H, m), 3.98 (2H, brs), 6.50-6.65 (1H, m), 7.25-7.40 (1H, m),

7.40-7.50 (1H, m), 7.70-7.80 (1H, m), 8.01 (1H, brs), 8.25 (1H, brs),

8.35-8.50 (1H, m), 11.05 (1H, s)

MS (ESI, m/z): 430 (M+H)+

化合物 2-103

10 ¹ H-NMR (DMSO-d₆) δ ppm: 1.10-1.30 (9H, m), 1.45-1.65 (3H, m), 2.25-2.40 (2H, m), 3.97 (2H, s), 6.59 (1H, d, J=3.6Hz), 7.34 (1H, d, J=3.6Hz), 7.55-7.70 (1H, m), 7.90-8.05 (1H, m), 8.12 (1H, brs), 8.38 (1H, brs), 11.00 (1H, s)

MS (ESI, m/z): 432 (M+H)+

15 化合物 2-104

 1 H-NMR (DMSO-d₆) δ ppm: 0.40-0.55 (1H, m), 0.81 (6H, d, J=6.3Hz), 1.45-1.70 (5H, m), 2.75-2.90 (2H, m), 3.59 (2H, s), 6.50-6.60 (1H, m), 7.25-7.35 (1H, m), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 7.95-8.10 (2H, m), 8.29 (1H, brs), 10.97 (1H, s)

20 MS (ESI, m/z): 414 (M+H)+

化合物 2-105

MS (ESI, m/z): 452 (M+H)+

化合物 2-106

¹ H-NMR (DMSO-d₆) δ ppm: 1.30-1.50 (2H, m), 1.65-1.80 (2H, m), 2.05-2.25 (2H, m), 2.65-2.85 (2H, m), 3.35-3.50 (1H, m), 3.60 (2H, s), 4.57 (1H, d, J=4.0Hz), 6.58 (1H, d, J=3.5Hz), 7.33 (1H, d, J=3.5Hz), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.12 (1H, brs), 8.38 (1H, brs), 10.96 (1H, s)

MS (ESI, m/z): 420 (M+H)+

化合物 2-107

MS (ESI, m/z): 434 (M+H)+

化合物 2-108

¹ H-NMR (DMSO-d₆) δ ppm: 0.75-0.95 (1H, m), 1.35-1.80 (5H, m), 1.95-2.05 (1H, m), 2.75-2.85 (1H, m), 2.85-2.95 (1H, m), 3.15-3.40 (2H, m), 3.59 (2H, s), 4.41 (1H, t, J=5.3Hz), 6.55-6.60 (1H, m), 7.30-7.35 (1H, m), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 7.95-8.10 (2H, m), 8.30 (1H, brs), 10.98 (1H, s)

MS ($\dot{E}SI$, m/z): 416 (M+H)+

10 化合物 2-109

 1 H-NMR (CDCl $_3$ +MeOD-d $_4$) δ ppm : 1.25-1.85 (5H, m), 2.10-2.25 (2H, m), 2.95-3.05 (2H, m), 3.30-3.50 (2H, m), 3.69 (2H, s), 6.45 (1H, d, J=3.5Hz), 7.00-7.10 (1H, m), 7.26 (1H, d, J=3.5Hz), 8.05-8.15 (1H, m) 化合物 2 - 1 1 0

15 ¹ H-NMR (DMSO-d₆) δ ppm: 0.75-0.95 (1H, m), 1.35-1.80 (5H, m), 1.90-2.05 (1H, m), 2.70-2.85 (1H, m), 2.85-2.95 (1H, m), 3.10-3.40 (2H, m), 3.59 (2H, s), 4.41 (1H, t, J=5.2Hz), 6.50-6.65 (1H, m), 7.25-7.40 (1H, m), 7.50-7.70 (1H, m), 7.85-7.95 (1H, m), 8.10 (1H, brs), 8.38 (1H, brs), 10.94 (1H, s)

20 MS (ESI, m/z): 434 (M+H)+

化合物 2-111

MS (ESI, m/z): 448 (M+H) +

化合物2-112

MS (ESI, m/z): 447 (M+H)+

25 化合物 2-113

¹ H-NMR (DMSO-d₆) δ ppm: 1.20-1.55 (2H, m), 1.55-1.75 (2H, m), 1.95-2.15 (2H, m), 2.25-2.40 (1H, m), 2.75-2.90 (2H, m), 3.61 (2H, s), 6.59 (1H, d, J=3.2Hz), 6.78 (1H, brs), 7.25-7.40 (2H, m), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.10 (1H, brs), 8.40 (1H, brs), 10.94 (1H, brs)

MS (ESI, m/z): 447 (M+H)+

化合物 2-114

 1 H-NMR (DMSO-d₆) δ ppm: 1.55-1.70 (4H, m), 3.65 (2H, s), 3.84 (4H, s), 6.55-6.65 (1H, m), 7.30-7.40 (1H, m), 7.55-7.65 (1H, m), 7.85-7.95 (1H,

5 m), 8.12 (1H, brs), 8.38 (1H, brs), 10.97 (1H, brs)

MS (ESI, m/z): 462 (M+H)+

化合物 2-115

¹H-NMR (DMSO-d₆) δ ppm: 1.55-1.70 (4H, m), 2.45-2.60 (4H, m), 3.65 (2H, s), 3.84 (4H, s), 6.55-6.65 (1H, m), 7.20-7.40 (1H, m), 7.42 (1H, dd,

10 J=1.9, 8.8Hz), 7.70-7.80 (1H, m), 8.01 (1H, brs), 8.25 (1H, brs), 8.34 (1H, d, J=8.8Hz), 11.02 (1H, s)

MS (ESI, m/z): 460 (M+H)+

化合物 2-116

¹H-NMR (DMSO-d₆) δ ppm: 1.45-2.00 (8H, m), 3.10-3.60 (4H, m), 4.54 (2H, d, J=4.1Hz), 7.02 (1H, d, J=3.8Hz), 7.46 (1H, d, J=3.8Hz), 7.55-7.70 (1H, m), 7.80-7.90 (1H, m), 8.12 (1H, brs), 8.43 (1H, brs), 10.83 (1H, brs), 11.10 (1H, s)

化合物 2-117

¹H-NMR (DMSO-d₆) δ ppm: 1.40-1.65(10H, m), 2.55-2.70 (4H, m), 3.75 (2H, s), 6.57 (1H, d, J=3.4Hz), 7.33 (1H, d, J=3.4Hz), 7.55-7.70 (1H, m), 7.90-8.00 (1H, m), 8.11 (1H, brs), 8.38 (1H, brs), 10.99 (1H, s) MS (ESI, m/z): 432 (M+H)+

化合物 2-118

¹ H-NMR (DMSO-d₆) δ ppm: 2.10-2.70 (11H, m), 3.61 (2H, s), 6.55-6.65 25 (1H, m), 7.25-7.40 (1H, m), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.10 (1H, brs), 8.38 (1H, brs), 10.96 (1H, brs)

MS (ESI, m/z): 419 (M+H)+

化合物 2-119

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm : 2.16 (3H, s), 2.20-2.60 (8H, m), 3.62 (2H, s),

6.58 (1H, d, J=3.5Hz), 7.31 (1H, d, J=3.5Hz), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 7.95-8.15 (2H, m), 8.27 (1H, brs), 10.99 (1H, s)

MS (ESI, m/z): 401 (M+H)+

化合物 2-120

5 ¹H-NMR (DMSO-d₆) δ ppm: 0.85-1.05 (6H, m), 2.20-2.70 (9H, m), 3.61 (2H, s), 6.58 (1H, d, J=3.5Hz), 7.33 (1H, d, J=3.5Hz), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.08 (1H, brs), 8.35 (1H, brs), 10.95 (1H, s)

MS (ESI, m/z): 447 (M+H)+

化合物2-121

10 MS (ESI, m/z): 501 (M+H)+

化合物 2-122

MS (ESI, m/z): 477 (M+H)+

化合物2-123

MS (ESI, m/z): 490 (M+H)+

15 化合物 2-124

MS (ESI, m/z): 532 (M+H) +

化合物2-125

 1 H-NMR (DMSO-d₆) δ ppm : 1.31 (3H, t, J=6.9Hz), 2.63 (4H, brs), 3.01 (4H, brs), 3.70 (2H, s), 3.99 (2H, q, J=6.9Hz), 6.63 (1H, d, J=3.1Hz),

20 6.80-6.95 (4H, m), 7.33 (1H, d, J=3.1Hz), 7.35-7.50 (1H, m), 7.70-7.80 (1H, m), 7.99 (1H, brs), 8.25 (1H, brs), 8.34 (1H, d, J=9.0Hz), 11.04 (1H, s)

MS (ESI, m/z): 523 (M+H)+

化合物 2 - 1 2 6

化合物 2-127

25 ¹ H-NMR (DMSO-d₆) δ ppm: 1.32 (3H, t, J=7.0Hz), 2.55-2.70 (4H, m), 2.90-3.10 (4H, m), 3.70 (2H, s), 3.99 (2H, q, J=7.0Hz), 6.60-6.70 (1H, m), 6.80-6.95 (4H, m), 7.30-7.45 (2H, m), 7.60-7.70 (1H, m), 8.00 (1H, brs), 8.05-8.15 (1H, m), 8.27 (1H, brs), 11.02 (1H, brs).

169

 1 H-NMR (DMSO-d₆) δ ppm : 2.20-2.60 (8H, m), 3.45 (2H, s), 3.62 (2H, s), 6.50-6.60 (1H, m), 7.15-7.35 (6H, m), 7.35-7.45 (1H, m), 7.60-7.70 (1H, m), 7.90-8.15 (2H, m), 8.26 (1H, brs), 10.98 (1H, s)

MS (ESI, m/z): 477 (M+H)+

5 化合物 2-128

 1 H-NMR (DMSO-d₆) δ ppm : 2.20-2.60 (4H, m), 3.45 (2H, s), 3.62 (2H, s), 6.50-6.60 (1H, m), 7.20-7.40 (6H, m), 7.40-7.50 (1H, m), 7.70-7.80 (1H, m), 7.99 (1H, brs), 8.24 (1H, brs), 8.30-8.40 (1H, m), 11.01 (1H, s) MS (ESI, m/z): 493 (M+H)+

10 化合物 2-129

15

MS (ESI, m/z): 495 (M+H)+

化合物 2-130

¹H-NMR (DMSO-d₆) δ ppm: 2.30-2.60 (8H, m), 3.51 (2H, s), 3.62 (2H, s), 6.57 (1H, d, J=3.1Hz), 7.10-7.20 (2H, m), 7.25-7.35 (2H, m), 7.35-7.45 (1H, m), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.08 (1H, brs), 8.34 (1H, brs), 10.95 (1H, s)

MS (ESI, m/z): 513 (M+H)+

化合物 2-131

¹H-NMR (DMSO-d₆) δ ppm: 2.25-2.60 (8H, m), 3.48 (2H, s), 3.63 (2H, s), 20 6.58 (1H, d, J=3.7Hz), 7.00-7.20 (3H, m), 7.30-7.40 (2H, m), 7.50-7.65 (1H, m), 7.85-7.95 (1H, m), 8.07 (1H, brs), 8.34 (1H, brs), 10.95 (1H, s)

MS (ESI, m/z): 513 (M+H)+

化合物 2-132

25 ¹H-NMR (DMSO-d₆) δ ppm: 2.20-2.60 (8H, m), 3.43 (2H, s), 3.62 (2H, s), 6.50-6.65 (1H, m), 7.05-7.20 (2H, m), 7.20-7.40 (3H, m), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.07 (1H, brs), 8.34 (1H, brs), 10.94 (1H, s) MS (ESI, m/z): 513 (M+H)+

化合物 2-133

¹ H-NMR (DMSO-d₆) δ ppm: 2.25-2.60 (8H, m), 3.42 (2H, brs), 3.62 (2H, s), 3.73 (3H, s), 6.58 (1H, d, J=3.5Hz), 6.75-6.95 (3H, m), 7.15-7.30 (1H, m), 7.32 (1H, d, J=3.5Hz), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.07 (1H, brs), 8.34 (1H, brs), 10.95 (1H, s)

5 MS (ESI, m/z): 525 (M+H)+

化合物 2-134

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 2.20-2.65 (8H, m), 3.25-3.45 (2H, m), 3.62 (2H, s), 3.72 (3H, s), 6.57 (1H, brs), 6.80-6.95 (2H, m), 7.10-7.25 (2H, m), 7.32 (1H, brs), 7.50-7.65 (1H, m), 7.85-8.00 (1H, m), 8.07 (1H, brs),

10 8.34 (1H, brs), 10.94 (1H, s)

MS (ESI, m/z): 525 (M+H)+

化合物 2-135

15

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ ppm: 2.25-2.60 (8H, m), 3.38 (2H, s), 3.62 (2H, s), 3.71 (6H, s), 6.30-6.40 (1H, m), 6.40-6.55 (2H, m), 6.58 (1H, d, J=3.4Hz), 7.32 (1H, d, J=3.4Hz), 7.55-7.65 (1H, m), 7.85-7.95 (1H, m), 8.08 (1H, brs), 8.35 (1H, brs), 10.95 (1H, s)

MS (ESI, m/z): 555 (M+H)+

化合物 2-136

¹H-NMR (DMSO-d₆) δ ppm: 2.25-2.65 (8H, m), 3.49 (2H, s), 3.63 (2H, s), 6.50-6.65 (1H, m), 7.30-7.45 (2H, m), 7.50-7.80 (2H, m), 7.85-8.00 (1H, m), 8.00-8.20 (1H, m), 8.25-8.55 (3H, m), 10.95 (1H, s)

MS (ESI, m/z): 496 (M+H)+

化合物 2-137

¹H-NMR (DMSO-d₆) δ ppm: 2.30-2.60 (8H, m), 3.50 (2H, s), 3.64 (2H, s), 6.55-6.65 (1H, m), 7.25-7.40 (3H, m), 7.55-7.65 (1H, m), 7.85-8.00 (1H, m), 8.00-8.15 (1H, m), 8.25-8.45 (1H, m), 8.45-8.60 (2H, m), 10.95 (1H, s)

MS (ESI, m/z): 496 (M+H)+

化合物 2 - 1 3 8

MS (ESI, m/z): 539 (M+H)+

化合物 2-139

MS (ESI, m/z): 571 (M+H)+

化合物 2-140

5 ¹H-NMR (DMSO-d₆) δ ppm: 1.98 (3H, s), 2.35-2.55 (4H, m), 3.35-3.55 (4H, m), 3.68 (2H, s), 6.61 (1H, d, J=3.5Hz), 7.34 (1H, d, J=3.5Hz), 7.55-7.70 (1H, m), 7.85-7.95 (1H, m), 8.11 (1H, brs), 8.38 (1H, brs), 10.97 (1H, s)

化合物 2-141

10 ¹ H-NMR (DMSO-d₆) δ ppm: 2.35-2.65 (4H, m), 3.50-3.80 (4H, m), 6.55-6.70 (1H, m), 7.30-7.50 (6H, m), 7.55-7.70 (1H, m), 7.85-8.00 (1H, m), 8.12 (1H, brs), 8.39 (1H, brs), 10.97 (1H, s)

MS (ESI, m/z): 509 (M+H)+

化合物2-142

MS (ESI, m/z): 505 (M+H)+

化合物 2-143

20 ¹H-NMR (CDCl₃) δ ppm: 2.35-2.80 (12H, m), 3.67 (2H, s), 5.12 (2H, s), 5.70 (1H, brs), 6.35-6.45 (1H, m), 6.48 (1H, brs), 6.95-7.10 (1H, m), 7.20-7.45 (6H, m), 8.10-8.25 (1H, m), 10.72 (1H, brs)

化合物2-144

¹ H-NMR (DMSO-d₆) δ ppm: 3.45-3.60 (2H, m), 3.60-3.80 (2H, m), 4.00-25 4.20 (2H, m), 4.67 (2H, s), 5.11 (2H, m), 6.62 (1H, d, J=3.1Hz), 7.25-7.45 (6H, m), 7.50-7.65 (1H, m), 7.85-8.00 (1H, m), 8.08 (1H, brs), 8.36 (1H, brs), 11.01 (1H, s)

MS (ESI, m/z): 553 (M+H)+

化合物 2-145

¹ H-NMR (DMSO-d₆) δ ppm: 1.60-1.80 (3H, m), 2.20-2.80 (10H, m), 3.75 (2H, s), 6.57 (1H, d, J=3.5Hz), 7.32 (1H, d, J=3.5Hz), 7.55-7.65 (1H, m), 7.85-8.00 (1H, m), 8.10 (1H, brs), 8.40 (1H, brs), 11.00 (1H, brs)

5 実施例4

5-フルオロ-3-(4-ヒドロキシ-3-モルホリン-4-イルメチルベンゾ イルアミノ) ベンゾフラン-2-カルボキサミド(化合物3-1)

3- (4-ベンジルオキシ-3-モルホリン-4-イルメチルベンゾイルアミノ) -5-フルオロベンゾフラン-2-カルボキサミド(化合物1-202 ,0.026g)をテトラヒドロフラン(3mL)に溶かし、10%パラジウム炭素(50%wet,0.025g)を加え、室温水素雰囲気下にて6時間撹拌した。触媒を濾去後、濾液を減圧下濃縮して得られた残留物をメタノールにてコンディショニングしたSCXイオン交換カラム(アルゴノート社製1g、溶出溶媒:メタノール)にて精製し、表題化合物(0.01g)を得た。

15 ¹ H-NMR (CDCl₃) δ ppm: 2.45-2.80 (4H, m), 2.96 (1H, brs), 3.65-4.00 (6H, m), 5.78 (1H, brs), 6.43 (1H, brs), 6.90-7.00 (1H, m), 7.15-7.25 (1H, m), 7.35-7.45 (1H, m), 7.70-7.80 (1H, m), 7.85-7.95 (1H, m), 8.30-8.40 (1H, m), 10.73 (1H, brs)

20 3-(4-ベンジルオキシ-3-モルホリン-4-イルメチルベンゾイルアミノ)-5-フルオロベンゾフラン-2-カルボキサミド(化合物1-202)の代わりに、3-(4-ベンジルオキシ-3-モルホリン-4-イルメチルベンゾイルアミノ)-5,7-ジフルオロベンゾフラン-2-カルボキサミド(化合物1-203)、3-(4-ベンジルオキシ-3-モルホリン-4-イルメチルベンゾンイルアミノ)-6-メチルベンゾフラン-2-カルボキサミド(化合物1-204)、3-(4-ベンジルオキシ-3-モルホリン-4-イルメチルベンゾイルアミノ)-6-メトキシベンゾフラン-2-カルボキサミド(化合物1-205)、N-(2-カルバモイル-5-フルオロベンゾフラン-3-イル)イソフタルアミド酸ベンジル(化合物1-235)、3-{4-[3-(2-カルバワタルアミド酸ベンジル(化合物1-235)、3-{4-[3-(2-カルバ

モイルー5, 7ージフルオロベンゾフランー3ーイルカルバモイル) ベンジル] ピペラジンー1ーイル} プロピオン酸ベンジル(化合物2-53)、4ー[3ー(2ーカルバモイルー5, 7ージフルオロベンゾフランー3ーイルカルバモイル) ベンジル] ー3ーオキソピペラジンー1ーカルボン酸ベンジル(化合物2-55) および4ー[5ー(2ーカルバモイルー5, 7ージフルオロベンゾフランー3ーイルカルバモイル) フランー2ーイルメチル] ー3ーオキソピペラジンー1ーカルボン酸ベンジル(化合物2-144)を用い、実施例4と同様の方法により、化合物3-2~3-8を合成した。これらを表4に示した。

10 〔表4〕

5

(衣 4)	<u> </u>		
化合物 No.	構造式	化合物 No.	構造式
3-1	NH ₂ HO O F	3-5	OH HOOF
3-2	0=NH ₂ H 0 F	3-6	HO N N N F
3-3	O NH ₂ H O N N O N N O N N O N N O N N O N N O N	3-7	HN N F
3-4	O N N N O O	3-8	OHN2 H OF HN F

化合物3-2~3-8の物性値を以下に示した。

化合物 3-2

 $^{1}\text{H-NMR}$ (CDCl₃+MeOD-d₄) δ ppm: 2.50-2.80 (4H, m), 3.70-3.85 (4H, m), 3. 15 83 (2H, s), 6.90-7.10 (2H, m), 7.70-7.90 (2H, m), 8.05-8.15 (1H, m)

化合物 3 - 3

 1 H-NMR (CDCl $_{3}$) δ ppm : 2.50 (3H, s), 2.40-2.80 (4H, m), 3.70-3.85 (4H, m), 3.82 (2H, s), 5.54 (1H, brs), 6.36 (1H, brs), 6.90-6.95 (1H, m), 7.10-7.25 (2H, m), 7.75-7.80 (1H, m), 7.85-7.95 (1H, m), 8.45-8.55 (1H,

5 m), 10.80 (1H, brs)

化合物 3-4

¹H-NMR (CDCl₃) δ ppm: 2.40-2.80 (4H, m), 2.99 (1H, brs), 3.70-3.85 (6H, m), 3.89 (3H, s), 5.52 (1H, brs), 6.30 (1H, brs), 6.85-7.00 (3H, m), 7.70-7.80 (1H, m), 7.85-7.95 (1H, m), 8.50-8.60 (1H, m), 10.86 (1H, brs)

10 化合物 3-5

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$) δ ppm: 7.35-7.50 (1H, m), 7.62-7.80 (2H, m), 7.90-8.0 9 (2H, m), 8.15-8.35 (3H, m), 8.60 (1H, s), 11.13 (1H, s), 12.80-13.78 (1H, br)

化合物 3-6

15 1 H-NMR (MeOD-d₄) δ ppm : 2.40-2.85 (6H, m), 2.95-3.20 (4H, m), 3.70 (2H, s), 7.15-7.30 (1H, m), 7.45-7.65 (2H, m), 7.85-8.10 (3H, m)

化合物 3 - 7

¹ H-NMR (DMSO-d₆) δ ppm: 2.85-2.95 (2H, m), 3.15-3.30 (2H, m), 4.62 (2H, s), 7.50-7.70 (3H, m), 7.75-8.00 (3H, m), 8.10 (1H, brs), 8.37 (1H,

20 brs), 10.99 (1H, s)

MS (ESI, m/z): 429 (M+H)+

化合物 3-8

 1 H-NMR (DMSO-d₆) δ ppm : 2.60-2.85 (1H, m), 2.93 (2H, t, J=5.5Hz), 3.29 (2H, s), 3.39 (2H, t, J=5.5Hz), 4.62 (2H, s), 6.60 (1H, d, J=3.4Hz),

· 25 7.34 (1H, d, J=3.4Hz), 7.50-7.65 (1H, m), 7.85-8.00 (1H, m), 8.11 (1H, brs), 8.39 (1H, brs), 10.99 (1H, s)

MS (ESI, m/z): 419 (M+H)+

実施例5

5, 7-ジフルオロ-3-[5-(4-メチルピペラジン-1-カルボニル)フラン-2-カルボニル] アミノベンゾフラン-2-カルボキサミド(化合物4-1)

二塩化フラン-2,5-ジカルボニル(0.073g)のテトラヒドロフラン(3ml)溶液 に、氷冷下3-アミノ-5,7-ジフルオロベンゾフラン-2-カルボキサミド (0.08g)、N,N-ジメチルアニリン(0.096ml)を順次加え、室温にて一晩撹拌した。反応混合物に1-メチルピペラジン(0.085mL)を加え、3時間撹拌した。反応混合物に水及び酢酸エチルを加え、有機層を分離後、水で洗浄した。得られた有機層を2mol/L塩酸にて抽出し、水層を酢酸エチルにて洗浄した。得られた水 個を飽和炭酸ナトリウム水溶液にてアルカリ性とした後、酢酸エチルを加え、有機層を分離後、水、飽和炭酸ナトリウム水溶液、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムで乾燥した。減圧下にて溶媒を留去し、得られた残留物をアミノプロピルシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=9/1-0/1)にて精製し、表題化合物(0.004g)を得た。構造式を表 5に示した。

¹H-NMR (CDCl₃+MeOD-d₄) δ ppm: 2.30-2.65 (6H, m), 2.37 (3H, s), 3.95-4. 20 (2H, m), 7.00-7.10 (1H, m), 7.20 (1H, d, J=3.5Hz), 7.35 (1H, d, J=3.5 Hz), 8.10-8.25 (1H, m)

20 1-メチルピペラジンの代わりに1-ベンジルピペラジンを用い、実施例5と 同様の方法により、3- [5-(4-ベンジルピペラジン-1-カルボニル) フラン-2-カルボニル] アミノ-5, 7-ジフルオロベンゾフラン-2-カルボキサミド(化合物4-2)を合成した。構造式を表5に示した。

¹H-NMR (CDCl₃+DMSO-d₆) δ ppm: 2.50-2.70 (4H, m), 2.88 (2H, s), 3.55-3. 25 65 (2H, m), 3.90-4.10 (2H, m), 6.04 (1H, brs), 6.69 (1H, brs), 7.00-7.40 (8H, m), 8.15-8.25 (1H, m)

実施例6

5-(2-カルバモイル-5,7-ジフルオロベンゾフラン-3-イルカルバモ

イル) フラン-2-カルボン酸(化合物5-1)

二塩化フラン-2,5-ジカルボニル(0.073g)のテトラヒドロフラン(3ml)溶液に、氷冷下3-アミノ-5,7-ジフルオロペンゾフラン-2-カルボキサミド(0.08g)、N,N-ジメチルアニリン(0.096ml)を順次加え、室温にて一晩撹拌した。反応混合物に飽和炭酸ナトリウム水溶液及び酢酸エチルを加え、水層を分離後、酢酸エチルで洗浄した。得られた水層に2mol/L塩酸を加え、析出物を濾取した。水、メタノールで順次洗浄し、表題化合物(0.018g)を得た。構造式を表5に示した。

¹H-NMR (DMSO-d₆) δ ppm: 7.40 (1H, d, J=3.8Hz), 7.47 (1H, d, J=3.8Hz), 7.55-7.65 (1H, m), 7.75-7.90 (1H, m), 8.09 (1H, brs), 8.36 (1H, brs), 11.09 (1H, brs), 13.69 (1H, brs)

実施例7

15

5-フルオロ-3-[3-(1-ヒドロキシエチル)ベンゾイルアミノ] ベンゾフラン-2-カルポキサミド(化合物 6-1)

3-(3-アセチルベンゾイルアミノ)-5-フルオロベンゾフラン-2-カルボキサミド(化合物1-236,0.045g)、テトラヒドロフラン(5mL)及びメタノール(3mL)の混合物に、水素化ホウ素ナトリウム(0.02g)を加え、室温にて2時間撹拌した。反応混合物に水を加え、さらに1時間撹拌した。反応混合物を減圧20 濃縮して得られた残留物に水及び酢酸エチルを加え、有機層を分離後、飽和食塩水にて洗浄し、無水硫酸マグネシウムで乾燥した。減圧下にて溶媒を留去し、得られた残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=3/1-0/1)にて精製し、表題化合物(0.038g)を得た。構造式を表5に示した。

¹H-NMR (CDCl₃) δ ppm: 1.54 (3H, d, J=6.5Hz), 3.47 (1H, d, J=4.0Hz), 4. 95-5.05 (1H, m), 6.48 (1H, brs), 6.65 (1H, brs), 7.15-7.25 (1H, m), 7.3 5-7.55 (2H, m), 7.60-7.70 (1H, m), 7.85-7.95 (1H, m), 8.00-8.10 (1H, m), 8.30-8.40 (1H, m), 10.96 (1H, brs) 3-(3-アセチルベンゾイルアミノ)-5-フルオロベンゾフラン-2-カルボキサミド (化合物 <math>1-2 3 6) の代わりに、3-(5-アセチルフラン-2-カルボニル) アミノ-5-フルオロベンゾフラン-2-カルボキサミド (化合物 <math>1-3 0 4) を用い、実施例 7-1 と同様の方法により、5-フルオロ-3-[5-(1-ヒドロキシエチル) フラン-2-カルボニル] アミノベンゾフラン-2-カルボキサミド (化合物 <math>6-2) を合成した。構造式を表 5 に示した。 1 H-NMR (CDCl $_3$) δ ppm: 1.63 (3H, d, J=6.6Hz), 3.34 (1H, d, J=2.5Hz), 4.90-5.05 (1H, m), 6.09 (1H, brs), 6.44 (1H, d, J=3.5Hz), 6.51 (1H, brs), 7.15-7.25 (1H, m), 7.23 (1H, d, J=3.5Hz), 7.30-7.40 (1H, m), 8.30-8.40 (1H, m), 10.88 (1H, brs)

実施例8

5

10

5, 7-ジフルオロ-3-[3-(1H-テトラゾール-5-イル) ベンゾイル アミノ] ベンゾフラン-2-カルボキサミド (化合物 <math>7-1)

3 - (3 - シアノベンゾイルアミノ) - 5, 7 - ジフルオロベンゾフラン - 2 - カルボキサミド(化合物1 - 206, 0.12g)、アジ化ナトリウム(0.093g)、トリメチルアミン塩酸塩(0.101g)及び1 - メチル - 2 - ピロリドン(3mL)の混合物を130℃にて一晩撹拌した。反応混合物に水(7mL)を加え、さらに濃塩酸を加え、酸性とした後、室温にて1時間撹拌した。析出物を濾取し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=19/1-5/1)にて精製し、表題化合物(0.046g)を得た。構造式を表5に示した。

¹H-NMR (DMSO-d₆) δ ppm: 7.55-7.65 (1H, m), 7.70-7.90 (2H, m), 8.08 (1H, brs), 8.10-8.20 (1H, m), 8.25-8.35 (1H, m), 8.34 (1H, brs), 8.65-8.75 (1H, m), 11.08 (1H, brs)

実施例9

· 25

7-エトキシ-5-フルオロ-3-(4-フルオロベンゾイルアミノ) ベンゾフ ラン-2-カルボキサミド (化合物8-1) 5-7ルオロ-3-(4-7)ルオロベンゾイルアミノ)-7-ヒドロキシベンゾフラン-2-カルボキサミド(化合物 1-178,0.08g)、炭酸カリウム (0.1g)及びN,N-ジメチルホルムアミド(2mL)の混合物に、室温にてヨードエタン(0.029mL)を加え、60 Cにて一晩撹拌した。反応混合物に水を加え、析出物を濾別し、表題化合物(0.04g)を得た。構造式を表5に示した。

 1 H-NMR (DMSO-d $_6$) δ ppm : 1.43 (3H, t, J=7.1Hz), 4.26-4.36 (2H, m), 7.05-7.15 (1H, m), 7.35-7.50 (3H, m), 7.90-8.25 (4H, m), 10.89 (1H, s)

実施例10

- 10 5, 7-ジフルオロ-3-(5-ピペラジン-1-イルメチルフラン-2-カルボニル) アミノベンゾフラン-2-カルボキサミド(化合物 9-1)
 - 4-[5-(2-カルバモイル-5,7-ジフルオロベンゾフラン-3-イルカルバモイル)フラン-2-イルメチル]ピペラジン-1-カルボン酸 <math>ter t-ブチル(化合物2-142,0.44g)の4mol/L塩化水素酢酸エチル溶液(18mL)
- 15 を室温にて4時間撹拌した。反応混合物を減圧下にて溶媒を留去し、得られた残留物を酢酸エチル、メタノール及び1mol/L水酸化ナトリウム水溶液に溶かし、室温にて20分間撹拌した。反応混合物に水及び酢酸エチルを加え、有機層を分離後、減圧下にて溶媒を留去し、表題化合物(0.166g)を得た。構造式を表5に示した。
- 20 ¹ H-NMR (DMSO-d₆) δ ppm: 2.30-2.50 (4H, m), 2.65-2.80 (4H, m), 3.59 (2H, s), 6.50-6.65 (1H, m), 7.25-7.40 (1H, m), 7.50-7.65 (1H, m), 7.85-8.00 (1H, m), 8.06 (1H, brs), 8.39 (1H, brs)

実施例11

4-フルオロ-3-メチル安息香酸(0.1g)、N-ブロモスクシンイミド(0.121g)、過酸化ペンゾイル(0.021g、25%含水)及び四塩化炭素の混合物を4時間加熱還流した。不溶物を濾去し、得られた濾液を減圧下にて濃縮し、得られ

5

10

た残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒: 1 にでは、 1 にない。 1 にない。 1 にない、 1 にない、 1 にない。 1 にない、 1 にない

得られた 3-プロモメチルー 4-プルオロ安息香酸と塩化チオニル (2mL) の混合物に室温にてN,N-ジメチルホルムアミド (1滴) を加え、80℃にて2.5時間 撹拌した。反応混合物を減圧下にて濃縮し、得られた残留物を再びテトラヒドロフラン (1mL) に溶かし、得られた溶液を 3-アミノー 6-クロロベンゾフランー2-カルボキサミド (0.1g)、ジメチルアニリン (0.19mL) 及びテトラヒドロフラン (2mL) の混合物に加え、室温にて2時間撹拌した。反応混合物に水を加え、析出物を濾取し、3- (3-プロモメチルー4-フルオロベンゾイルアミノ) -6-クロロベンゾフラン-2-カルボキサミド (0.042g) を得た。

得られた3-(3-プロモメチル-4-フルオロベンゾイルアミノ)-6-クロロベンゾフラン-2-カルボキサミド、モルホリン <math>(0.0092g)、PS-NMM (登録商標) 樹脂 (アルゴノート社製、100~200メッシュ、1%ジビニルベンゼン、

- 1. 98 mmol/g樹脂、0. 152g) 及び1-メチル-2-ピロリドン(2mL)の混合物を80℃にて1時間撹拌した。室温に放冷した後、TMI-イソシアナート(登録商標)(ミモトープ社製、D-type、100μmol/unit、2units)を加え、80℃にて2時間撹拌した。反応混合液をメタノールにてコンディショニングしたSCXイオン交換カラム(アルゴノート社製、2g、洗浄溶媒:N,N-ジメチルホルムマミド 溶出溶媒:2mol/Lアンチニアメタノール溶液)にて精製し、表題化合
- 20 アミド、溶出溶媒: 2mol/Lアンモニアメタノール溶液) にて精製し、表題化合物(0.024g)を得た。構造式を表 5 に示した。

 1 H-NMR (DMSO-d₆) δ ppm : 2.35-2.50 (4H, m), 3.50-3.70 (6H, m), 7.35-7.50 (2H, m), 7.70-7.80 (1H, m), 7.90-8.15 (3H, m), 8.15-8.35 (2H, m), 11.05 (1H, s)

 $\cdot 25$ MS (ESI, m/z) : 432 (M+H)+

実施例12

3- [5-(3-ジメチルアミノメチルフェニル) フラン-2-カルボニル] アミノ-5、7-ジフルオロベンゾフラン-2-カルボキサミド(化合物11-1

)

5

10

15

3- [5- (3-クロロメチルフェニル) フラン-2-カルボニル] アミノ-5, 7-ジフルオロベンゾフラン-2-カルボキサミド (化合物1-316,0.041g)、ジメチルアミン塩酸塩 (0.0282g)、PS-NMM (登録商標) 樹脂 (アルゴノート社製、100~200メッシュ、1%ジビニルベンゼン、1.98mmol/g樹脂、0.144g)及び1-メチル-2-ピロリドン(2mL)の混合物を80℃にて7.5時間撹拌した。室温に放冷した後、TMI-イソシアナート (登録商標) (ミモトープ社製、D-type、100μmol/unit、3units)を加え、80℃にて4時間撹拌した。反応混合液をメタノールにてコンディショニングしたSCXイオン交換カラム (アルゴノート社製、2g、洗浄溶媒:N,N-ジメチルホルムアミド、溶出溶媒:2mol/Lアンモニアメタノール溶液)にて精製し、表題化合物(0.0045g)を得た。構造式を表5に示した。

¹H-NMR (DMSO-d₆) δ ppm: 2.18 (6H, s), 3.47 (2H, s), 7.20-7.40 (2H, m), 7.40-7.55 (2H, m), 7.55-7.65 (1H, m), 7.75-7.90 (2H, m), 7.95-8.10 (1H, m), 8.16 (1H, brs), 8.39 (1H, brs), 11.30 (1H, s)

MS (ESI, m/z): 440 (M+H)+

3- [5- (3-クロロメチルフェニル) フラン-2-カルボニル] アミノ-5,7-ジフルオロベンゾフラン-2-カルボキサミド(化合物1-316)の20 代わりに、N-(2-カルバモイル-5,7-ジフルオロベンゾフラン-3-イル)-6-(3-クロロメチルフェノキシ)ニコチンアミド(化合物1-357)を用い、実施例12と同様の方法により、N-(2-カルバモイル-5,7-ジフルオロベンゾフラン-3-イル)-6-(3-ジメチルアミノメチルフェノキシ)ニコチンアミド(化合物11-2)を合成した。構造式を表5に示した。25 ¹H-NMR (DMSO-d₆) δ ppm: 2.17 (6H, brs), 3.44 (2H, brs), 7.05-7.30 (4H, m), 7.35-7.80 (3H, m), 8.07 (1H, brs), 8.34 (1H, brs), 8.35-8.50 (1H, m), 8.75-8.85 (1H, m), 10.88 (1H, brs)

[表5]

_【衣 5】			······································
化合物 No.	構造式	化合物 No.	構造式
4-1	NH ₂ OH N F	8-1	NH ₂ H O F
4-2	O NH ₂ O H O F	9-1	O=NH ₂ HN F
5-1	OH N OF	10-1	O=NH ₂ H O CI
6-1	OH H O F	11-1	O—NH ₂ O—F
6-2	OH NH2 OH NH2 F	11-2	0 NH ₂ H 0 F
7–1	N H O F		

試験例1

ヒトアデノシンA2A受容体阻害作用試験

1) ヒトアデノシンA2A受容体発現細胞の作成

対数増殖期の CHO-K1 細胞をトリプシン処理し、10%ウシ胎仔血清(三光純薬社製)を含む D-MEM/F-12 培地(インビトロジェン社製)で浮遊状態にした。これに OPTI-MEM I(インビトロジェン社製)で調製したヒトアデノシン A_{2A} 受容体発現用のプラスミドとトランスフェクション試薬 Lipofectamine 2000(インビ

トロジェン社製)の混合液を加えた。この細胞懸濁液をポリーD-リジンコートの96 ウェルプレートへ細胞 5×10^4 個/well でまき、37C、5%CO $_2$ の条件下で24~30 時間培養後、試験に使用した。

2) ヒトアデノシンA_{2A}受容体阻害活性の測定

5 試験化合物をまずジメチルスルホキシドで溶解した後、細胞由来のリガンドであるアデノシンを不活化するアデノシンデアミナーゼ 2.5 ユニット/LL(カルビオケム社製) およびホスホジエステラーゼ阻害剤である Rolipram (シグマ社製) 30μMを含む D-MEM/F-12 培地で調製した。

細胞をD-MEM/F-12培地150 μ L/wellで2回洗浄し、試験化合物を50 μ L ずつ加えた。 37℃、5% C O $_2$ 下で10分間培養後、アデノシンデアミナーゼおよびRolipramを含むD-MEM/F-12培地で調製した1.2nMの5'-N-エチルカルボキシアミドアデノシン(NECA;シグマ社製)を50 μ L ずつ加え、37℃、5% C O $_2$ 下で25分間培養した。この反応の停止およびそれ以降のcAMPの測定は、アプライドバイオシステムズ社製のcAMPエンザイムイムノアッセイキットを用いて行った。化学発光の特別はMicroplate Luminometer TR717(アプライドバイオシステムズ社製)を使用した。

NECA刺激cAMP産生に対する試験化合物の阻害率およびKiを以下の式に従って算出した。

阻害率 (%) = $[1-\{$ (NECAと試験化合物共存下でのcAMP量-アデノシンデ20 アミナーゼおよびRolipramを含むD-MEM/F-12培地のみのcAMP量) / (NECA単独刺激のcAMP量-アデノシンデアミナーゼおよびRolipramを含むD-MEM/F-12培地のみのcAMP量) $\}$] x 1 0 0

また試験化合物と同一プレートで測定、算出したNECAに対するKmを用い、阻害定数Kiを、以下の式に従って算出した。

25 $Ki = IC_{50} / \{1 + (6 \times 10^{10} / Km)\}$ その結果を下記の表 6 に示した。

〔表6〕

			
化合物番号	Ki値 (nM)	化合物番号	Ki值 (nM)
1-1	8.5	1-150	2. 2
1-2	4.1	1-153	9.2
1-15	6.5	1-155	8. 1
1-16	0.9	1-156	9.8
1-36	6. 4	1-159	3.3
1-91	6. 5	1-161	7.0
1-108	9. 3	1-213	2.1
1-109	2.7	·1-249	4.6
1-119	1.9	1-275	0.5
1-121	0.8	2-1	8.0
1-125	1.2	2-7	8.6
1-133	3. 2	2-129	1.6
1-138	4.5	2-138	2.0
1-141	9.3	2-142	2.0
1-145	2.7	6-2	1.1

試験例2

ハロペリドール誘発カタレプシーに対する作用

5 薬物誘発パーキンソンモデルを用いて化合物のパーキンソン病治療薬としての 有用性を評価した。パーキンソン病は、黒質から線条体に投射するドパミン神経 細胞の変性・脱落を伴い、線条体のドパミン量が著明に減少することによって引 き起こされる運動機能障害である。ラットにドパミンD2受容体遮断作用のあるハ ロペリドールを投与すると、ドパミン性神経伝達を遮断するためパーキンソン様 症状の一つであるカタレプシーを起こす。

雄性ラット(Crj: CD(SD)IGS、体重210-260g、日本チャールズ・リバー株式会社)、1群3-5匹に、ドパミンD2拮抗薬ハロペリドール(セレネース注射液、大日本製薬株式会社)1mg/kgを腹腔内投与し、その5時間後にカタレプシー症状を水

WO 2005/073210 PCT/JP2005/001168

平棒試験 (Morelli and Chiara, Eur. J. Pharmacol. 117: 179-185 (1985))を 用いて測定した。被験化合物 (10mg/kg) は、PEG400に溶解しカタレプシー症状 観察の2時間前に経口投与した。また対照群として、PEG400を同様に経口投与した。ラットの両前肢を高さ10-12cmに設定した棒 (直径3mm) に懸け静止したとき から両前肢が棒から落ちるまでの時間を測定し、カタレプシー持続時間とした。 最大180秒まで測定し、結果を表7に示した。

〔表7〕

5

群	カタレプシー持続時間(秒)
対照群	180.0
化合物 1-2	91.6
化合物 1-16	. 116.4
化合物 1-121	48. 2
化合物 1-155	38.3

本発明の化合物は、優れたカタレプシー改善作用を示し、パーキンソン病治療 10 薬としての有用性が確認された。

〔産業上の利用可能性〕

一般式 (I) で表される化合物は、優れたアデノシン A_{2A} 受容体拮抗作用を有するのでアデノシン A_{2A} 受容体が媒介する疾患、例えば、運動機能障害、うつ病、不安症、認知機能障害、脳虚血性障害、レストレスレッグス症候群などの治療または予防剤として有用である。

請求の範囲

1. 一般式(I):

$$R^4$$
 R^3
 R^2
 R^5
 $CONHR^1$
 R^6

〔式中、

5 R¹は、水素原子または低級アルキル基であり;

R²は、以下のa)~o):

- a) 低級アルキル基、
- b) ハロ低級アルキル基、
- c) ヒドロキシ低級アルキル基、
- 10 d)シクロアルキル基、
 - e) アリールシクロアルキル基、
 - f) ヘテロシクロアルキル基、
 - g) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
- 15 h)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキル基、
 - i)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールアルケニル基、
- j) 低級アルコキシ基または低級アシルオキシ基から選択される基で置換され 20 る低級アルキル基、
 - k) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
 - 1) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、

- m) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールスルファニル低級アルキル基、
- n)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基、または
- 5 o) 非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール低級アルキル基であり;

 X^1 、 X^2 、 X^3 、 X^4 および X^5 は、それぞれ独立して、以下のa) \sim x):

- a) ハロゲン原子、
- b) 低級アルキル基、
- 10 c) ハロ低級アルキル基、
 - d) シクロアルキル基、
 - e) 低級アルコキシ基、
 - f) ハロ低級アルコキシ基、
 - g) シクロアルキルオキシ基、
- 15 h) ヘテロシクロアルキルオキシ基、
 - i) 低級アルコキシ低級アルコキシ基、
 - i) ヒドロキシ低級アルキル基、
 - k)水酸基、
 - 1) カルポキシ基、
- 20 m) 低級アルコキシカルボニル基、
 - n) アラルキルオキシカルボニル基、
 - o) 低級アシル基、
 - p) シアノ基、
 - $q) -A^{1}-NR^{20}R^{21}$
- $r) -A^2 SR^{22}$
 - $S) SO_2NR^{23}R^{24}$
 - t) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるフェニ

ル基、

5

- u)非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェノキシ基、
- v) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるヘテロアリール基、
- 10 w) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるヘテロアリールオキシ基、または
- x) アリール基もしくはヘテロアリール基から選択される基で置換される低級 15 アルコキシ基を表すか、

あるいは X^1 、 X^2 、 X^3 、 X^4 および X^5 のうち2つが隣接する場合、それらが一緒になって-O(CH_2) $_nO-$ 、-O(CH_2) $_n-$ 、または-(CH_2) $_p-$ で表される基を形成し;

R²⁰およびR²¹は、それぞれ独立して、水素原子、低級アルキル基、シクロアルキル基、ヘテロシクロアルキル基、橋かけ環状炭化水素基、ヘテロアリール低級アルキル基、ヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基、低級アシル基、低級アルコキシカルボニル基またはジ低級アルキルアミノ低級アルキル基を表すか、あるいはR²⁰およびR²¹が、それらが結合している窒素原子と一緒になって、非置換あるいは以下のa)

- · 25 ~ p) からなる群:
 - a)低級アルキル基、
 - b) シクロアルキル基、
 - c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択

される1~3個の基で置換されるフェニル基、

- d) 非置換もしくは以下からなる群: ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される $1\sim3$ 個の基で環が置換されるアラルキル基、または環の隣接する炭素原子が、 $-O-(CH_2)_m-O-$ で置換されるアラルキル基、
 - e) ヘテロアリール基、
 - f) ヘテロアリール低級アルキル基、
- g) 水酸基、低級アルコキシ基、カルボキシ基、アラルキルオキシカルボニル 基、環状アミノカルボニル基またはジ低級アルキルアミノ基から選択される基で 10 置換される低級アルキル基、
 - h) 水酸基、
 - i) オキソ基、
 - i) 低級アルコキシカルボニル基、
 - k) アラルキルオキシカルボニル基、
- 15 1)カルバモイル基、
 - m) 低級アシル基、
 - n) ベンゾイル基、
 - o) ジ低級アルキルアミノ基、および
 - p) ジフェニルメチレン基
- 20 から独立して選択される $1\sim 2$ 個の基で置換される環状アミノ基を形成し;

 A^1 は、結合、 C_{1-3} アルキレン基またはカルボニル基を表し;

 A^2 は、結合または C_{1-3} アルキレン基を表し;

R²²は、以下のa)~d):

- a) 低級アルキル基、
- 25 b) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で置換されるフェニル基、
 - c) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択

される1~3個の基で置換されるヘテロアリール基、または

d) ジ低級アルキルアミノ低級アルキル基であり;

R²³およびR²⁴は、それぞれ独立して水素原子または低級アルキル基を表すか、あるいはR²³およびR²⁴が、それらが結合している窒素原子と一緒になって、非置換または以下からなる群:低級アルキル基もしくはアラルキル基から選択される基で置換される環状アミノ基を形成し;

mは、1または2であり;

nは、2または3であり;

pは、3または4であり;

- X^{6} 、 X^{7} および X^{8} は、それぞれ独立して、以下のa) \sim s):
 - a) ハロゲン原子、
 - b) 低級アルキル基、
 - c) ハロ低級アルキル基、
 - d) ヒドロキシ低級アルキル基、
- 15 e)シクロアルキル基、
 - f) ヘテロシクロアルキル低級アルキル基、
 - g) 低級アルコキシ基、
 - h) ハロ低級アルコキシ基、
 - i) 低級アシル基、
- 20 j) カルボキシ基、
 - $k) -A^{1}-NR^{20}R^{21}$
 - 1) $-A^2 SR^{22}$,
 - m) $-SO_{2}NR^{23}R^{24}$
- n) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低 25 級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキル アミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェニル基、
 - o) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキル

10

アミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフェノキシ基、

- p) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるアラルキル基、
- q) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるへテロアリール基、
 - r) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキルアミノ低級アルキル基から独立して選択される1~3個の基で置換されるヘテロアリールオキシ基、または
- 15 s) アラルキルオキシ基であり;
 - R³、R⁴、R⁵およびR6は、それぞれ独立して、以下のa)~m):
 - a) 水素原子、
 - b) ハロゲン原子、
 - c) 低級アルキル基、
- 20 d) ハロ低級アルキル基、
 - e)低級アルコキシ基、
 - f) ハロ低級アルコキシ基、
 - g)水酸基、
 - h)シアノ基、
- 25 i) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択される1~3個の基で環が置換されるアリール基、
 - j) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低級アルキル基、低級アルコキシ基およびハロ低級アルコキシ基から独立して選択

される1~3個の基で環が置換されるアラルキルオキシ基、

- k) ジ低級アルキルアミノ基、
- 1) 低級アルキルスルファニル基、または
- m) ニトロ基を表すか、あるいは R^3 、 R^4 、 R^5 および R^6 のうち 2 つが隣接する場合、それらが一緒になって-CH=CH-CH=CH-で表される基を形成し、但し、 R^3 、 R^4 、 R^5 および R^6 の少なくとも一つは、水素原子以外である;

但し、1-アセチルアミノナフト[2,1-b]フラン-2-カルボキサミド、1-ベンゾイルアミノナフト[2,1-b]フラン-2-カルボキサミド、3-ベンゾイル10 アミノ-5-クロロベンゾフラン-2-カルボキサミド、5-クロロ-3-[2-(3,4-ジエトキシフェニル)アセチルアミノ]ベンゾフラン-2-カルボキサミド、5-プロモ-3-[2-(3,4-ジエトキシフェニル)アセチルアミノ]ベンゾフラン-2-カルボキサミド、5-クロロ-3-(2-クロロアセチルアミノ)ベンゾフラン-2-カルボキサミドおよび3-アセチルアミノ-5-クロロベンゾフラン-2-カルボキサミドを除く〕で表される化合物またはそのプロドラッグ、あるいは薬理学的に許容される塩。

- 2. R¹が、水素原子である、請求項1に記載の化合物またはその薬理学的に許容される塩。
- 3. R³が、水素原子である、請求項2に記載の化合物またはその薬理学的に許容される塩。
- 4. R²が、以下のa)~h):
- ·25 a) 低級アルキル基、

20

- b) シクロアルキル基、
- c) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、
 - d) 非置換もしくはX¹、X²、X³、X⁴およびX⁵からなる群から選択される

- 1~5個の基で環が置換されるアラルキル基、
 - e) 低級アルコキシ低級アルキル基、
- f)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアリールオキシ低級アルキル基、
- g)非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で環が置換されるアラルキルオキシ低級アルキル基、または
 - h)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基であり、

 X^1 、 X^2 、 X^3 、 X^4 、 X^5 、 X^6 、 X^7 および X^8 が、請求項1に記載した通り 10 である、請求項3に記載の化合物またはその薬理学的に許容される塩。

- 5. R⁴、R⁵およびR⁶が、それぞれ独立して、水素原子、ハロゲン原子、低級アルキル基、ハロ低級アルキル基または低級アルコキシ基であり、但し、R⁴、R⁵およびR⁶の少なくとも1つは水素原子以外である、請求項4記載の化合物またはその薬理学的に許容される塩。
- .6. R²が、以下のa)~c):
 - a) シクロアルキル基、

20

- b) 非置換もしくは X^1 、 X^2 、 X^3 、 X^4 および X^5 からなる群から選択される $1\sim 5$ 個の基で置換されるアリール基、または
 - c)非置換もしくは X^6 、 X^7 および X^8 からなる群から選択される $1\sim3$ 個の基で環が置換されるヘテロアリール基である、請求項5記載の化合物またはその薬理学的に許容される塩。
- $^{\cdot}25$ 7. X^{1} 、 X^{2} 、 X^{3} 、 X^{4} および X^{5} が、それぞれ独立して、以下のa) \sim j):
 - a) ハロゲン原子、
 - b)低級アルキル基、
 - c) 低級アルコキシ基、
 - d) ハロ低級アルコキシ基、

- e) ヘテロシクロアルキルオキシ基、
- f) 水酸基、
- g) $-A^{1}-NR^{20}R^{21}$,
- h) $-A^2 SR^{22}$,
- i) SO₂NR²³R²⁴、または 5
 - j) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低 級アルキル基、低級アルコキシ基、ハロ低級アルコギシ基およびジ低級アルキル アミノ低級アルキル基から独立して選択される1~3個の基で置換されるヘテロ アリール基であるか、
- 10 あるいは X^1 、 X^2 、 X^3 、 X^4 および X^5 のうち2つが隣接する場合、それらが 一緒になって一〇〇円。〇一を形成し、

 X^{6} 、 X^{7} および X^{8} が、それぞれ独立して、以下のa) ~ i):

- a) ハロゲン原子、
- b) 低級アルキル基、
- c)ヒドロキシ低級アルキル基、 15
 - d)シクロアルキル基、
 - e) ヘテロシクロアルキル低級アルキル基、
 - $f) -A^{1}-NR^{20}R^{21}$
 - g) $-SO_2NR^{23}R^{24}$,
- h) 非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低 20 級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキル アミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフ ェニル基、または
- i)非置換もしくは以下からなる群:ハロゲン原子、低級アルキル基、ハロ低 級アルキル基、低級アルコキシ基、ハロ低級アルコキシ基およびジ低級アルキル · 25 アミノ低級アルキル基から独立して選択される1~3個の基で環が置換されるフ ェノキシ基であり、

A¹、A²、R²⁰、R²¹、R²²、R²³およびR²⁴が請求項1に記載した通りで ある、請求項6記載の化合物またはその薬理学的に許容される塩。

- 8. 以下からなる群:
- 3-シクロプロパンカルボニルアミノ-5-フルオロベンゾフラン-2-カルボキサミド:
- 5 5 クロロー3 シクロプロパンカルボニルアミノベンゾフラン-2 カルボ キサミド:
 - 3-(3-フルオロベンゾイルアミノ)-6-メトキシベンゾフラン-2-カルボキサミド;
- 3 (4 フルオロベンゾイルアミノ) 6 メトキシベンゾフラン-2 カ 10 ルボキサミド;
 - 5-フルオロ-3-(3-メチルベンゾイルアミノ) ベンゾフラン-2-カルボキサミド:
 - 3-(ベンゾ[1, 3]ジオキソール-5-カルボニル)アミノ-6-フルオロベンゾフラン-2-カルボキサミド;
- 15 5 クロロ-3 (フラン-2 カルボニル) アミノベンゾフラン-2 カルボキサミド:
 - 5,7-ジフルオロ-3-(フラン-2-カルボニル)アミノベンゾフラン-2-カルボキサミド;
- 5, 7-ジフルオロ-3-(5-メチルフラン-2-カルボニル)アミノベン 20 ゾフラン-2-カルボキサミド;
 - 3-(5-エチルフラン-2-カルボニル)アミノ-5-フルオロベンゾフラン-2-カルボキサミド;
 - 3-(5-エチルフラン-2-カルボニル)アミノ-5,7-ジフルオロベン ゾフラン-2-カルボキサミド;
- 25 6-メトキシー3-(5-フェニルフラン-2-カルボニル)アミノベンゾフ ラン-2-カルボキサミド;
 - 6-フルオロ-3-(6-フェノキシピリジン-3-カルボニル)アミノベン ゾフラン-2-カルボキサミド;
 - 6-メトキシ-3-(2-メトキシアセチルアミノ)ペンゾフラン-2-カル

ボキサミド;

- 3-(2-ベンジルオキシアセチルアミノ)-5-フルオロベンゾフラン-2 5 -カルボキサミド;
 - 6-クロロ-3-シクロプロパンカルボニルアミノベンゾフラン-2-カルボ キサミド;
 - 3 ーシクロプロパンカルボニルアミノー 5, 7 ージフルオロベンゾフランー 2 ーカルボキサミド;
- - 3-シクロプロパンカルボニルアミノ-5-フルオロ-7-メトキシベンゾフラン-2-カルボキサミド;
- 3 ーシクロブタンカルボニルアミノー 5,7 ージフルオロベンゾフランー 2 ー 15 カルボキサミド:
 - 5-フルオロ-7-メトキシ-3-(4-メトキシベンゾイルアミノ)ベンゾ .フラン-2-カルボキサミド:
 - 5, 7-ジフルオロ-3-フェニルアセチルアミノベンゾフラン-2-カルボ キサミド:
- 20 5, 7-ジフルオロ-3-[3-(4-メチルピペラジン-1-カルボニル) ベンゾイルアミノ] ベンゾフラン-2-カルボキサミド;
 - 6-メトキシ-3-[3-(4-フェニルピペラジン-1-イルメチル)ベン ゾイルアミノ]ベンゾフラン-2-カルボキサミド;
- - 3 [5 (4 ベンジルピペラジン 1 イルメチル) フラン 2 カルボニル] アミノ 5,7 ジフルオロベンゾフラン 2 カルボキサミド:
 - 3 [5 (4) 2] [1,3] ジオキソール<math>-5 1 ルメチルピペラジン-1 1 ルメチル)フラン-2 1 カルボニル] アミノ-5, 7 2 フルオロベン

ゾフランー2-カルボキサミド;

4-[5-(2-カルバモイル-5,7-ジフルオロベンゾフラン-3-イルカルバモイル)フラン-2-イルメチル]ピペラジン-1-カルボン酸 tert-ブチル: および

- 5 5 フルオロー3 [5 (1 ヒドロキシエチル) フランー2 カルボニル] アミノベンゾフラン-2 カルボキサミド、またはその薬理学的に許容される塩から選択される、請求項1記載の化合物。
- 9. 請求項1~8のいずれか一項に記載の化合物またはその薬理学的に許容され 10 る塩を有効成分として含有する、医薬組成物。
 - 10. 請求項 $1 \sim 8$ のいずれか一項に記載の化合物またはその薬理学的に許容される塩を有効成分として含有する、アデノシン A_{2A} 受容体関連疾患の治療または予防剤。

15

- 11. 前記アデノシンA_{2A}受容体関連疾患が、運動機能障害である、請求項10 に記載の治療または予防剤。
- 12. 前記運動機能障害が、パーキンソン病、ハンチントン病またはウィルソン 20 病である、請求項11に記載の治療または予防剤。
 - 13. 前記アデノシンA_{2A}受容体関連疾患が、うつ病または不安症である、請求項10に記載の治療または予防剤。
- 25 14. 前記アデノシンA_{2A}受容体関連疾患が、認知機能障害である、請求項10 に記載の治療または予防剤。
 - 15. 前記アデノシンA_{2A}受容体関連疾患が、脳虚血性障害である、請求項10 に記載の治療または予防剤。

- 16. 前記アデノシン A_{2A} 受容体関連疾患が、レストレスレッグス症候群である、請求項10に記載の治療または予防剤。
- 5 17. 請求項1~8のいずれか一項に記載の化合物またはその薬理学的に許容される塩と、アデノシンA_{2A}受容体拮抗剤以外のパーキンソン病治療薬、抗うつ剤、認知機能障害治療薬および脳虚血性障害治療薬がら選択される少なくとも1種とを組み合わせてなる医薬。
- 10 18. アデノシン A_{2A} 受容体関連疾患の治療または予防剤を製造するための、請求項 $1\sim8$ のいずれか一項に記載の化合物またはその薬理学的に許容される塩の使用。
- 19. アデノシン A_{2A} 受容体関連疾患の治療または予防方法であって、該方法は 、請求項 $1\sim8$ のいずれか一項に記載の化合物またはその薬理学的に許容される 塩の有効量を投与する工程を包含する、方法。