Homework 2 – STAT 542

Due Friday, Sept 20 by 11:59 PM (to be scanned and uploaded in Canvas under "Assignments")

1. Suppose a random variable X has the following cdf from class (which is neither a step function nor continuous):

$$F(x) = \begin{cases} 0 & x < 0 \\ (1+x)/2 & 0 \le x \le 1 \\ 1 & x > 1 \end{cases} \quad x \in \mathbb{R}.$$

- (a) Find the following probabilities: P(X > 1/2), $P(X \ge 1/2)$, $P(0 < X \le 1/2)$ & $P(0 \le X \le 1/2)$.
- (b) Conditional on the event "X > 0," the corresponding conditional cdf of X (i.e., given X > 0) is as follows at $x \in \mathbb{R}$:

$$P(X \le x | X > 0) = \frac{P(X \le x, X > 0)}{P(X > 0)} = \frac{P(0 < X \le x)}{P(X > 0)} = \frac{F(x) - F(0)}{1 - F(0)} = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } 0 < x \le 1 \\ 1 & \text{if } x > 1, \end{cases}$$

Based on the conditional cdf above, show that the distribution of X, conditional on "X > 0," is the same (i.e., has the same cdf) as that of a random variable Y which is "uniform" on the interval (0,1), having a constant pdf $f_Y(y) = 1$ for 0 < y < 1 (with $f_Y(y) = 0$ for all other $y \in \mathbb{R}$).

2. Statistical reliability involves studying the time to failure of manufactured units. In many reliability textbooks, one can find the exponential distribution

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & x > 0\\ 0 & x \le 0 \end{cases}$$

where $\theta > 0$ is a fixed value, for modeling the time X that a random unit runs until failure (i.e., X is a survival time). Show that if X has an exponential distribution as above, then

$$P(X > s + t | X > t) = P(X > s)$$

for any values t, s > 0; this feature is called the "memoryless" property of the exponential distribution.¹

- 3. 2.3, Casella & Berger
- 4. 2.4, Casella & Berger (Problem (c) is identifying the distribution of |X|)
- 5. 2.6(bc), Casella & Berger
 Just find the pdf in (b)-(c) & skip verifying the pdf part.
- 6. 2.9, Casella & Berger

Just find a non-decreasing function u(x) that will work & explain why (i.e., consider the function u(x) = F(x) where $F(\cdot)$ is the cdf of X, which gives a special transformation u(X) when applied to X, called the probability integral transform, having a known distribution).

7. 2.22(a,b), Casella & Berger Just find E(X) in (b). Use that

$$1 = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x^2 e^{-x^2/2} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^2 e^{-x^2/2} dx$$

which we will discuss later in talking about "normal" distributions.

¹While a useful distribution generally, the exponential distribution is not typically realistic for modeling failure times due to this "memoryless" property (which says that, given a product has survived past a time t (i.e., X > t holds), its conditional probability of surviving another s time units (i.e., P(X > s + t | X > t)) is the same as the unconditional probability of surviving past s time units when starting from 0 (i.e., P(X > s)). Usually, products wear-out over time so one would expect such conditional probabilities of survival to decrease and be smaller than survival probabilities starting from time zero.)

- 8. Suppose that a random variable U has a uniform (0,1) distribution (i.e., pdf $f_U(u) = 1$ for 0 < u < 1)
 - (a) Suppose a random variable X has a cdf F(x) which is strictly increasing and continuous on $x \in \mathbb{R}$; this implies that, for any real value of 0 < u < 1, there is an inverse $F^{-1}(u) = x \in \mathbb{R}$ so that $F(x) = F(F^{-1}(u)) = u$. Define a random variable $Y = F^{-1}(U)$ based on the random variable U. Show that X and Y have the same cdf (i.e., the same distributions). Hint: Use that, because F is strictly increasing, $P(Y \le y) = P(F(Y) \le F(y))$ holds for any $y \in \mathbb{R}$, i.e., Y can be less than or equal to y if and only if F(Y) is less than or equal to F(y). Note that $F(y) \in (0,1)$ for any real y.
 - (b) If there is a computer program (i.e., random number generator) that produces numbers uniformly distributed between zero and one (i.e., according to the pdf $f_U(u)$), explain how these numbers could be used to generate values distributed according to the pdf $f_Z(z) = e^{-|z|}/2$, $-\infty < z < \infty$. Hint: Use (a) where F now becomes the cdf of Z; you need to find $F^{-1}(u)$ for a given 0 < u < 1 by solving the expression F(z) = u for $z \in \mathbb{R}$.