



Unit 01

210.95

# Simple Matrix Algebra and Excel Computation



- Definitions and Notations
  - ullet There are N risky assets whose expected returns are  $E(r_i)'s$
  - The matrix E(r) is the column vector of expected returns of these assets

$$E(r) = \begin{pmatrix} E(r_1) \\ E(r_2) \\ \vdots \\ E(r_N) \end{pmatrix}$$



- Definitions and Notations
  - $\bullet$   $\Omega$  is the  $N \times N$  variance-covariance matrix:

$$\Omega = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_{NN} \end{bmatrix} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_{N}^{2} \end{bmatrix}$$

## Simple Matrix Algebra and Excel Computation



- Definitions and Notations
  - A portfolio of risky assets is a column vector x whose coordinates sum to 1

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}, \sum_{i=1}^N x_1 = 1$$

- where  $x_i$  represents investment weight on i-th asset

#### Simple Matrix Algebra and Excel Computation



- Definitions and Notations
  - The expected portfolio return  $E(r_x)$  of a portfolio x is given by the product of x and return vector R

$$E(r_x) = \sum_{i=1}^{N} x_i E(r_i) = x'R$$
, where  $R = E(r) = \begin{bmatrix} E(r_1) \\ E(r_2) \\ \vdots \\ E(r_N) \end{bmatrix}$ 



- Definitions and Notations
  - The variance of portfolio x's return,  $\sigma_x^2 = \sigma_{xx}$ , is given by the product

$$x'\Omega x = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j \sigma_{ij}$$

• The covariance between the return of two portfolios x and y,  $Cov(r_x, r_y)$ , is defined by the product

$$\sigma_{xy} = x'\Omega y = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j \sigma_{ij}$$
. (Note:  $\sigma_{ij} = \sigma_{ji}$ )

## Simple Matrix Algebra and Excel Computation



## Computation with Excel

- For a given portfolio vector  $x = (x_1, \dots, x_n)'$  with return vector  $r = (r_1, \dots, r_n)'$ 
  - $E(x) \Rightarrow MMult(tranpose(x), E(r))$
  - $Var(x) \Rightarrow MMult(MMult(transpose(x), \Omega), x)$
  - $SD(x) \Rightarrow sqrt(Var(x))$
  - $Cov(x, y) \implies MMult(MMult(transpose(x), \Omega), y)$
  - $Corr(x, y) \Rightarrow Cov(x, y)/(sqrt(Var(x)) * sqrt(Var(y)))$