This weeks problem set provides practice with diagonalisable operators and the basic properties of inner products. A question marked with a \dagger is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

- 1. From section 6.2, problems 1, $2b, g, i, k, 5^*, 6, 7, 9, 13^*, 17^*, 22$.
- 2. From section 6.3, problems 1, 2a, 3a, c, 4, 6, 8^* .
- 3. Let V be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .
 - (a) Fix $y \in V$ and suppose $\langle x, y \rangle = 0$ for all $x \in V$. Show that y = 0.
 - (b) Let $T:V\longrightarrow V$ be a linear map such that $\langle T(x),T(y)\rangle=\langle x,y\rangle$ for all pairs $x,y\in V$ (we call such a map an *isometry*). Prove that T is an isomorphism.
 - (c) † Find all isometries $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ that have $\det T = 1$.