Нейман, Пирсон и Чингачгук

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Математическая Статистика (/Subjects/Details?id=5)

Тема

Теория проверки статистических гипотез (/Topics/Details?id=35)

Раздел

Лемма Неймана-Пирсона (/SubTopics/Details?id=127)

Дата публикации

22.05.2020

Дата последней правки

01.06.2020

Последний вносивший правки

sobody

Рейтинг

**

Условие

Чингачгук покупает лук. Луки бывают двух видов: качественные и некачественные. Дальность полета стрелы (в метрах), выпущенной Чингачгуком из лука, является экспоненциально распределенной случайной величиной $EXP(\lambda)$. Если лук является качественным, то $\lambda=0.1$, а если нет, то $\lambda=0.2$. Чунгачгук сделал один выстрел из лука и его стрела пролетела на 5 метров.

- 1. Используя лемму Неймана-Пирсона найдите равномерно наиболее мощный критерий, с помощью которого можно протестировать гипотезу о том, что лук является качественным, на уровне значимости $\alpha=0.1$. Далее, вычислите мощность найденного критерия и сделайте вывод о том, можно ли, учитывая дальность полета стрелы Чунгачгука, на соответствующем уровне значимости отвергнуть предположение о том, что лук является качественным?
- 2. Повторите предыдущий пункт учитывая, что Чунгачгук сделал дополнительный выстрел и его стрела пролетела на 10 метров.
- 3. Какое минимальное количество выстрелов необходимо сделать Чунгачгуку, чтобы мощность критерия превысила 0.5 при уровне значимости lpha=0.1?

Подсказка: если имеются независимые случайные величины $X_1, \cdots, X_n \sim EXP(\lambda)$, то случайная величина $X_1 + \cdots + X_n$ будет иметь распределение Эрланга с параметрами n и λ . Квантиль уровня 0.5 для данного распределения с n=2 и $\lambda=0.1$ может быть найдена при помощи следующего кода в python:

from scipy.stats import erlang

erlang.ppf(0.5, 2, scale=1 / 0.1)

Решение

1. Тестируется гипотеза $H_0: \lambda = 0.1$, против альтернативы о том, что $H_1: \lambda = 0.2$.

Найдем тестовую статистику:

$$L(\lambda_0,X)=0.1e^{-0.1X}$$

$$L(\lambda_1, X) = 0.2e^{-0.2X}$$

$$\Lambda(X) = rac{0.2e^{-0.2X}}{0.1e^{-0.1X}} = 2e^{-0.1X}$$

Отыщем функцию распределения тестовой статистики при условии верной нулевой гипотезы и $x \in [0,2]$:

$$F_{\Lambda(X)|H_0}(x) = P\left(2e^{-0.1X} \leq x|H_0
ight) = P\left(X \geq -10\ln(0.5x)|H_0
ight) = e^{\ln(0.5x)} = 0.5x$$

Используя полученную функцию распределения найдем квантиль уровня $1-\alpha=1-0.1=0.9$ тестовой статистики при условии верной нулевой гипотезы:

$$0.5(\Lambda(X)|H_0)_{0.9}=0.9$$

Решая равенство получаем, что $(\Lambda(X)|H_0)_{0.9}=1.8.$

В итоге получаем статистический критерий, в соответствии с которым нулевая гипотеза отвергается на уровне значимости lpha=0.1 при:

$$2e^{-0.1X} > 1.8$$

Упрощая получаем:

$$X \le 1.05361$$

В результате критическая область будет иметь вид:

$$x^{(1)} = (-\infty, 1.05361)$$

Поскольку реализация упрощенной тестовой статистики составляет 5 и 5>1.05361, то нулевая гипотеза не отвергается.

Мощность данного критерия составит:

$$1 - P\left(X \ge 1.05361 | H_1\right) = e^{-0.2*1.05361} = 0.19$$

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

