Relational Algebra

Vũ Tuyết Trinh

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1

Learning points

- 1. Introduction to relational algebra
- 2. Set operators
- 3. Relational operators: Projection, Selection, Rename, Join
- 4. Common extensions

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Learning objectives

- Upon completion of this lesson, students will be able to:
 - Understand relational algebra operators
 - · Write relational algebraic expressions

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3

Keywords and descriptions

Keyword	Description			
Relational data model	Is data representation format as a table of values, each row in the table represents a collection of related data values			
Set	Is collection of Object			
Operator	Is a special token that represent computations such as union, minus, selection, join, etc			
Expression	Is a expression built up from operators and operands			

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Database Schema

student(student_id, first_name, last_name, dob, gender, address, note, clazz_id)
clazz(clazz_id, name, lecturer_id, monitor_id)
subject(subject_id, name, credit, percentage_final_exam)
enrollment(student_id, subject_id, semester, midterm_score, final_score)
lecturer(lecturer_id, first_name, last_name, dob, gender, address, email)
teaching(subject_id, lecturer_id)
grade(code, from_score, to_score)

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

5

Database

student				
student_id	first_name	last_name	dob	clazz_id
20160001	Ngọc An	Bùi	3/18/1987	
20160002	Anh	Hoàng	5/20/1987	 20162101
20160003	Thu Hồng	Trần	6/6/1987	 20162101
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101
20170001	Nhật Ánh	Nauvễn	5/15/1988	 20172201

subject			
subject_id	name	credit	percentage_ final_exam
IT1110	Tin học đại cương	4	60
IT3080	Mạng máy tính	3	70
IT3090	Cơ sở dữ liệu	3	70
IT4857	Thị giác máy tính	3	60
IT4866	Học máy	2	70

name	lecturer_id	monitor_id
CNTT1.01-K61	02001	20160003
CNTT1.02-K61		
CNTT2.01-K62	02002	20170001
CNTT2.02-K62		
	CNTT1.01-K61 CNTT1.02-K61 CNTT2.01-K62	CNTT1.01-K61 02001 CNTT1.02-K61 CNTT2.01-K62 02002

enrollment				
student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1. Introduction to relational algebra

- Relational algebra providing a theoretical foundation for relational databases, particularly query languages for relational databases.
- Relational algebra expression is composed of one or several relational algebraic operators:
 - · Operator: represent computations
 - · Input: one or two relation
 - · Output: a relation
 - Unary operator (one input) vs. binary operator (two inputs)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

7

2. Set operators

- 2.1. Union
- 2.2. Intersection
- 2.3. Difference
- 2.4. Cartesian product

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2.1. Union

• Combining the tuples from two *union-compatible relation* inputs (having the same set of attributes).

С

2.2. Intersection

 Keeping only common tuples from 2 input union-compatible relations.

11

2.4. Cartesian Product

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

• The concatenation of every tuple of one relation with every tuple of the other relation.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3. Relational algebra operators

- 3.1. Selection
- 3.2. Projection
- 3.3. Rename
- 3.4. Join
- 3.5. Division

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

13

3.1. Selection

• Choose from R each tuple where the condition holds.

3.4. Join

• Combine attributes from 2 tables.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

17

3.5. Division

• Divides a dividend relation R_1 or degree m+n by a divisor relation R_2 of degree n, and produces a quotient relation of degree m.

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

19

An example

• List student_id who enroll in all subjects.

enrollment				
student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

-

An example

• List student_id who enroll in all subjects.

 $_{\prod \mathsf{student_id},\,\mathsf{subject_id}}(\mathsf{enrollement})$

 $\Pi_{\mathsf{Subject_id}}(\mathsf{subject})$

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

21

An example

• List student_id who enroll in all subjects.

25 SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

22

4. Common extension

- 4.1. Natural join
- 4.2. Outer join
- 4.3. Aggregation

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

23

4.1. Natural join

 Special join operation with equal join condition on their common attributes, noted *

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

4.3. Aggregation

Aggregation

$$\mathsf{G_1},\,\mathsf{G_2},\,...\,\mathsf{G_n}\;\mathcal{G}\;\mathsf{F_1}(\mathsf{A_1}),\,\mathsf{F_2}(\mathsf{A_2}),....\mathsf{F_n}(\mathsf{A_n})\;(\mathcal{R})$$

• $G_1, G_2, \ldots G_n$ is a list of attributes on which to group F_1 (A_1), F_2 (A_2),... F_n (A_n) is a list of aggregation function on attribute A_1 , A_2 ,... A_n

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

27

4.3. Aggregation

• Example of Aggregation

 $G_{student\ id}\ Gcount(subject_id)\ (enrollment\)$

enrollment				
student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

4.3. Aggregation

• Example of Aggregation

G count(student_id) (student)

value not a relation

5

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

29

Summary

- Introduction to relational algrebra
 - Procedural langue
- Set operators
 - Union, intersection, difference
- Relational operators
 - Projection, Selection, Rename, Join
- Common extensions
 - Natural join, Outer join, Aggregation

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

-