Smart Materials - I

(Introduction)

Contents

- What is a Smart Material?
- Applications of Smart Material
- Smart systems using Smart Materials
- Smart Actuators
- Direct and Reverse Effects

Features of Smart Materials

- These materials are a part of a group of materials broadly known as Functional Materials.
- The basic energy forms that gets interchanged are: thermal energy, electric energy, magnetic energy, sound energy & mechanical energy.
- Analogous to Biological Materials: adaptivity, cellular function, self sensing, actuation & control.
- Smart sensors & actuators are highly embeddable.

Smartness in a scale of intelligence

- Stupid Dumb Foolish Trivial Sensible Smart/Clever Intelligent Wise.
- Present smart materials are in the range from highly sensible to poorly intelligent level.
- Passive smartness to Active Smartness; eg. of passive smartness multiphase rocket nozzle of Space Shuttle.
- Porous Tungsten with silver coating, Graphite, Ceramic Layer, Steel.
- Passive smartness is in open-loop!

Passive Smartness

- Lack the inherent capacity to transduce energy.
- ☐ Can act as only sensors but not as actuator.

Other example: Optical fiber cable

Active Smartness

- Possess capacity to modify their geometric or material properties.
- ☐ Thus, inherent capacity to transduce energy.
- ☐ Can acts as both sensors and actuators.

Traditional v/s Smart System

Traditional system

- Designed for certain performance requirements e.g. load, speed, life span.
- Unable to modify its specifications if there is a change of environment.

Smart System

- Can accommodate unpredictable environments.
- Can meet exacting performance requirement.
- Offer more efficient solutions for a wide range of applications.

Smart Materials

A **smart material** are those which posses ability to change their physical properties in a specific manner in response to specific stimulus input.

Commonly used smart materials are:-

- **Piezoelectric** Generate an electric charge in response to applied mechanical stress and vice versa.
- **Magnetostrictive** Change in dimension of ferromagnetic material in magnetic field and vice versa.
- **Phase-Transition dependent -** "Remembers" its original shape and after being deformed returns to its original shape when heated.
- **Electro/Magneto Rheological Materials** Change in viscosity in response to electric/magnetic field.

Why smart sensors and actuators?

- Real time response
- Exploit functional properties
- Better embeddability
- Minimal effect on structural properties
- Reduction in weight
- Less power consumption
- Better reliability

A Range of Applications

Smart Materials for Sensing & Actuation

Output	Current/ Charge	Magnetization	Strain	Temperature	Light
Input					
Electric Field	Conductivity Permittivity	Electro-magnetic Effect	Reverse Piezo electricity	Ohmic Resistance	Electro- Optic effect
Magnetic Field	Eddy Current Effect	Permeability	Joule - Effect Magnetostriction	Magneto caloric Effect	Magneto-Optic effect
Stress	Direct Piezo-electric Effect	Villary Effect	Elastic Modulus	Thermo- Mechanical Effect	Photo-elastic Effect
Heat	Pyro-electric Effect	Thermo- Magnetization	Thermal- Expansion Phase Transition	Specific Heat	Thermo- Luminescence
Light	Photo-Voltaic Effect	Photo- Magnetization	Photostriction	Photo-Thermal effect	Refractive index

Smart Materials as Sensors & Actuators

Direct Effect

- All Piezoelectric Materials and PVDF
- Magnetostrictive Materials
- Optical Fiber

Converse/Reverse Effect

- Ferroelectrics Perovskites, Piezoceramics, PVDF respond to electric field by change in shape.
- Terfenol-D, Amorphous Met-Glasses show a similar effect with the change in magnetic field.
- Shape Memory Alloy respond in a similar manner but with the change in Thermal Field.
- Electro/Magneto Rheological Fluids respond to electric/magnetic field by changing it's viscosity.

Traditional v/s New Actuators

Drive	Device	Displacement	Accuracy	Torque/Generative Force	Response Time
Air Pressure	Motor	Rotation	degrees	50 Nm	10 sec
	Cylinder	100mm	100µm	10 ⁻¹ N/mm ²	10 sec
Oil Pressure	Motor	Rotation	degrees	1000 Nm	1 sec
	Cylinder	1000mm	10µm	100 N/mm ²	1 sec
Electricity	AC Servo	Rotation	minutes	30 Nm	100 msec
	DC Servo	Rotation	minutes	200 Nm	10 msec
	Linear Stepper	1000mm	10μm	300 N	100 msec
	Voice-Coil	1mm	0.1μm	300 N	1 msec
Smart materials	Piezoelectric	100μm	0.01µm	30 N/mm ²	0.1 msec
	Magnetostrictive	100μm	0.01µm	100 N/mm ²	0.1 msec
	Ultrasonic Motor	Rotation	minutes	1 Nm	1 msec

Smart Actuators

Input Parameter	Actuator Type / Devices	
	Piezoelectric / Electrostrictive	
Electric Field	Electrostatic (MEMS)	
	Electro - Rheological Fluid	
Magnetic Field	Magnetostrictive	
	Magneto - Rheological Fluid	
Chemical	Mechano - chemical	
Heat	Shape Memory Alloy	
	Shape Memory Polymer	
Light	Photostrictive	

Properties of a few Smart Materials

Properties	PZT	PVDF	Terfenol-D	NiTiNOL
Free strain(ppm)	1000	700	2000	20000
Elastic Modulus (GPa)	62	2.1	48	27-Martensite 89 - Austenite
Band	0.1Hz - 1 GHz	0.1Hz - 1GHz	0.1Hz - 1 MHz	0 - 10 Hz

In the next lecture, we will learn about

- ✓ Piezoelectric materials
- ✓ Constitutive Equations
- ✓ Piezoelectric Polymer
- ✓ Piezoelectric Composites

