DIGITAL LOGIC

Lecture 1 Course Introduction Number Systems

2023 Fall

1

Outline

- Introduction to course
- Lecture
 - Digital Number Systems
 - Data Representation
 - Binary Logic
- PreLab
 - What is an FPGA
- Reading: Textbook, Chapter 1

Course Information

• Course website: CS207-30022126-2023FA: Digital Logic Fall 2023

Blackboard: 教师: 工学院/计算机科学与工程系 白雨卉; 计算机科学与工程系 王薇;

Instructor:

Dr. Yuhui BAI (baiyh@sustech.edu.cn)

• Office: 411 College of Engineering South

Office hour: Wed. 14:00-16:00 (by appointment)

Lecture

10:20-12:10 Monday, Lecture Hall #1

Lab

• 14:00 -15:50 Mon., 511, Lecture Hall #3 (Yuhui BAI)

• 16:20 -18:10 Tue., 504, Lecture Hall #3 (Wei WANG)

• 14:00 -15:50 Wed., 510, Lecture Hall #3 (Wei WANG)

• 10:20-12:10 Fri., 510, Lecture Hall #3 (Wei WANG)

• 14:00 -15:50 Mon., 503, Lecture Hall #3 (Wei WANG)

群名称: CS207-2023f 群 号: 922162289

Textbook

Textbook:

 Digital Design: With an Introduction to the Verilog HDL, VHDL, and System Verilog by M. Morris Mano and Michael D. Ciletti, 6th edition.

Reference book:

- Digital Principles and Logic Design by A. Saha and N. Manna.
- Digital Logic Design by B. Holdsworth and C. Woods

Course Outline

- 1. Digital Systems and Binary Numbers
 - Binary Systems, Conversions, Signed Binary, Codes
- 2. Boolean Algebra and Logic Gates
 - Theorems, Boolean Functions, operators, gates
- 3. Gate-level Minimization
 - Truth table, K Map, two-level implementations, NAND, NOR
- 4. Combinational Logic
 - Combinational circuits, arithmetic logic, mux, de-mux, encoder, decoder
- 5. Synchronous Sequential Logic
 - Sequential circuit, Latches, Flip flops, State Machines
- 6. Registers and Counters
- 7. Memory and Programmable Logic
 - RAM, ROM, FPGA
- 8. Verilog (Lab)

Tentative Schedule

WEEK	LECTURE	TOPIC	TOPIC
1	Lec #1	Binary Numbers	Environment Setup
2	Lec #2	Boolean Algebra & Logic Gates	Structural-Based Design
3	Lec #3	Gate-Level Minimization	Dataflow Design
4	Lec #4	Two-Level Implementation	Testbench
5	Lec #5	Combinational Logic	Behavioral-Based Design
6	Lec #5	Combinational Logic (cont.)	Encoder, Decoder
7	Lec #6	Standard Components	Multiplexer, De-multiplexer
8	Lec #7	Latches and Flip-flops	Verilog Summary
9	Mid-term Exam	Mid-term Exam (contents of Lec 1-6) No lecture, lab remains unchanged	Latch, FlipFlop & Project Release
10	Lec #8	Synchronous Sequential Logic	Finite state machine
11	Lec #9	Arithmetic Circuit	Frequency devider
12	Lec #10	Registers	Full adder & Project Q&A
13	Lec #10	Registers (cont.)	Register
14	Lec #11	Counters	Counter
15	Lec #12	Memory and Programmable Logic	Project Inspection
16	Lec #12	Revision	Project Inspection 6

Grading criteria

- Lecture (20%)
 - 10% Attendance and in-class Quiz
 - Same mark as the actual mark if above 60;
 - 60, if 60 or below or you are absent with an accepted permission;
 - 0, if absence.
 - 10% Homework
- Exam (50%)
 - 25% Mid-term examination
 - 25% Final examination
- Lab (30%)
 - 5% Attendance and Lab practices
 - 10% Lab assignments on OJ
 - 15% Lab Project
 - In groups of 2~3. Please team up as soon as possible.
 - Please try to choose classmates from the same lab class.
 - In special circumstances where cross-class teams are needed, it is important to ensure that all team members can attend the Project Inspection at the end of the semester.

Outline

- Introduction to course
- Lecture
 - Digital Number Systems
 - Data Representation
 - Binary Logic
- PreLab
 - What is an FPGA

Analog vs. Digital Signals

Signal definition

- Quantity that can represent and convey information
- Passed between devices to send and receive information

Analog signals

- Converts information into waves of varying amplitude and frequency
- Continuously changes
- Records exact waveform

Digital signals

- ON (1) or OFF (0) pulses (i.e. binary)
- Square waves made by sampling along the wave form

Analog vs. Digital Signals

Digital Systems

- A digital system is a system that processes digital signals or data. It operates on discrete values and performs operations such as logic, arithmetic, and data storage in a binary format.
- Digital systems are prevalent in modern electronics, including computers, smartphones, and digital communication devices, due to their reliability and ease of processing.

Common Number Systems

- It is natural for human to use decimal system(十进制)
- In a digital world, we think in **binary**(二进制)
- The **octal** (八进制) and **hexadecimal** (十六进制) numbers are shorter forms for representing binary numbers.

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
0	0000	00	0x0
1	0001	01	0x1
2	0010	02	0x2
3	0011	03	0x3
4	0100	04	0x4
5	0101	<mark>0</mark> 5	0x5
6	0110	<mark>0</mark> 6	0x6
7	0111	<mark>0</mark> 7	0x7
8	1000	010	8x0
9	1001	<mark>0</mark> 11	0x9
10	1010	012	0xA
11	1011	<mark>0</mark> 13	0xB
12	1100	014	0xC
13	1101	<mark>0</mark> 15	0xD
14	1110	<mark>0</mark> 16	0xE
15	1111	<mark>0</mark> 17	0xF

Conversion among Bases

The possibilities:

A quick example:

•
$$25_{10} = 11001_2 = 31_8 = 19_{16}$$

Base or Radix

Radix-r to Decimal Conversion

 We use Positional Number Systems: Let r be the radix (or base), then the (n+m)-digit number

$$D = d_{n-1}d_{n-2} \cdots d_1 d_{\bullet \bullet} d_{-1}d_{-2} \cdots d_{-m} \quad 0 \leq d < r$$

has the value

radix point

$$D = \underbrace{d_{n-1}}^{n-1} + d_{n-2}r^{n-2} + \dots + d_1r + d_0 + d_{-1}r^{-1} + d_{-2}r^{-2} + \dots + \underbrace{d_{-m}}^{r-m}$$

Most-significant Digit (MSD)

Least-significant Digit (LSD)

$$D = \sum_{i=-m}^{n-1} d_i r^i$$

Radix-r to Decimal Conversion

• **Decimal** Number System: Base (radix) r = 10

2

1

0

-1

-2

5

2

- Coefficients $D=(d_2d_1d_0.d_{-1}d_{-2}) = (512.74)_{10}$
- $(512.74)_{10} = 5x10^2 + 1x10^1 + 2x10^0 + 7x10^{-1} + 4x10^{-2}$

Exercise:

 $1010.101_2 = ?_{10}$

• **Binary** Number System: Base (radix) r = 2

2

1

0

-1

-2

0

1

- Coefficients $D=(b_2b_1b_0.b_{-1}b_{-2}) = (101.01)_2$
- $(101.01)_2 = 1x2^2 + 0x2^1 + 1x2^0 + 0x2^{-1} + 1x2^{-2} = (5.25)_{10}$

$$22.22_4 = ?_{10}$$

$$12.5_8 = ?_{10}$$

$$A.A_{16} = ?_{10}$$

Radix-r to Decimal Conversion

$$D = \underbrace{d_{n-1}}^{n-1} + d_{n-2}r^{n-2} + \dots + d_1r + d_0 + d_{-1}r^{-1} + d_{-2}r^{-2} + \dots + \underbrace{d_{-m}}^{r-m}$$

Most-significant Digit (MSD)

Least-significant Digit (LSD)

Exercise:

$$1010.101_2 = 1^23 + 0^22 + 1^21 + 0^20 + 1^2-1 + 0^2-2 + 1^2-3 = 10.625_{10}$$

$$22.22_4 = 2^4 +$$

$$12.5_8 = 1*8^1 + 2*8^0 + 5*8^{-1} = 10.625_{10}$$

$$A.A_{16} = 10*16^{0}+10*16^{-1} = 10.625_{10}$$

Decimal to Radix-r Conversion

- Integer part: Successive divisions by r and observe the remainders
- Fraction: Successive multiplications by r and observe the integer part

Decimal to Binary Conversion (1)

- For Integer
- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Example: $(13)_{10}$

	Quotient	Remainder	Coefficient
13/2 =	6	1	$a_0 = 1$
6 / 2 =	3	0	$a_1 = 0$
3 / 2 =	1	1	$a_2 = 1$
1 / 2 =	0	1	$a_3^- = 1$
Answe	er: (13	$(a_3 a_2 a_3)$	$a_1 a_0)_2 = (1101)_2$
		1	
		MSB	LSB

Decimal to Binary Conversion (2)

- For Fraction, the computation is reversed again
- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: $(0.625)_{10}$

```
Integer Fraction Coefficient 0.625 * 2 = 1 . 25 	 a_{-1} = 1 0.25 * 2 = 0 . 5 	 a_{-2} = 0 0.5 * 2 = 1 . 0 	 a_{-3} = 1
```

Answer:
$$(0.625)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.101)_2$$

MSB LSB

Decimal to Binary Conversion (3)

Easier method

 \bullet (100011.011)₂

Decimal to Octal Conversion

Example:
$$(175.3125)_{10}$$

Quotient Remainder Coefficient

 $175 / 8 = 21$ 7 $a_0 = 7$
 $21 / 8 = 2$ 5 $a_1 = 5$
 $2 / 8 = 0$ 2 $a_2 = 2$

Integer part: $(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$
 $0.3125 * 8 = 2$ 5 $a_{-1} = 2$
 $0.5 * 8 = 4$ 0 $a_{-2} = 4$

Fraction part: $(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_8 = (0.24)_8$

Answer: $(175.3125)_{10} = (a_2 \ a_1 \ a_0 \ a_{-1} \ a_{-2} \ a_{-3})_8 = (257.24)_8$

Radix-r to Radix-r Conversion

Binary – Octal

- Each group of 3 bits represents an octal digit starting from radix point
- Works both ways (Binary to Octal & Octal to Binary)

Binary – Hexadecimal

- Each group of 4 bits represents a hexadecimal digit starting from radix point
- Works both ways (Octal to Hex & Hex to Octal)

Radix-r to Radix-r Conversion (2)

- Octal Hexadecimal
- Convert to Binary as an intermediate step

Common Notions

• Bits
10010110

most least significant bit bit

• Bytes 10010110

Bytes

Power	Meaning	Prefix	Symbol
210	1024	Kilo	K
2 ²⁰	1024 ²	Mega	М
2 ³⁰	1024 ³	Giga	G
240	1024 ⁴	Tera	Т
2 ⁵⁰	1024 ⁵	Peta	Р
2 ⁶⁰	1024 ⁶	Exa	E
2 ⁷⁰	1024 ⁷	Zetta	Z

e.g. 1MB = 1024KB

Binary Addition

- Same rules as for decimal numbers
- Column Addition

Binary Subtraction

- Same rules as for decimal numbers
- Borrow a "Base" when needed

Overflow

- Digital systems operate on a fixed number of bits
- Overflow(溢出): when result is too big to fit in the available number of bits
- Example: Add the following 4-bit binary numbers

Complements

- When human do subtraction, we use "borrow" concept to borrow a 1 from a higher significant position.
- It is hard for circuits to design "borrow". So complements are used to implement subtraction.
 - Simplify the subtraction operation.
 - Simpler, less expensive circuits.
- Two types for radix-r system
 - Radix complement (补码) (r's-complement)
 - Diminished radix complement (反码) ((r-1)'s-complement)
- Examples:
 - For a binary system: 2's complement and 1's complement.
 - For a decimal system: 10's complement and 9's complement.

Complements for decimal system

- Diminished radix complement
 - 9's-complement of 540 = 999 540 = 459
 - 9's-complement of 12 = 999 012 = 987
- Radix complement
 - 10's-complement of 540 = 1000 540 = 460
 - 10's-complement of 12 = 1000 012 = 988
 - Easier method 1: Calculate the diminished raid complement, then plus one
 - 10's-complement of 540 = 999 540 + 1 = 460
 - Easier method 2: use r minus the least significant non-zero digit, and r − 1 minus digits on the left
 - The least significant non-zero digit of 540 is 4: 10 4 = 6;
 - Digits on the left is 5: 9 5 = 4;
 - The 10's complement of 540 is 460.

Complements for binary system

- 1's Complement (Diminished Radix Complement) for binary
 - All '0's become '1's
 - All '1's become '0's

```
Example (10110000)_2

\Rightarrow (01001111)_2
```

- 2's Complement: 1's complement, then plus one:
 - Another way: leave the first non-zero LSB unchanged, and then replacing 1's with 0's and 0's with 1's in the other MSBs:

Subtraction with Complements

- Replace subtraction with addition
- M-N = M + r's complement of N
 - If M >= N, the sum will produce an end carry rⁿ which is discarded, and what is left is the result M – N
 - If M < N, the sum does not produce an end carry. It is equal to the r's complement of (M - N). The correct answer is generated by
 - taking the r's complement of the answer
 - then adding a negative sign to the front
- Pay attention to align the number of digits for two operands

Subtraction with 10's Complement

- Example with M>=N
 - Using 10's complement, subtract 72532 3250.

$$M = 72532$$
10's complement of $N = \pm 96750$
Sum = 169282
Discard end carry $10^5 = \pm 100000$
Answer = 69282

- Example with M < N
 - Using 10's complement, subtract 3250 72532.

$$M = 03250$$
10's complement of $N = \pm 27468$

$$Sum = 30718$$
There is no end carry.

Subtraction with 2's Complement

Example:

• Given the two binary numbers X = 1010100 and Y = 1000011 (X > Y), perform the subtraction (a) X - Y; and (b) Y - X, by using 2's complement.

(a)
$$X = 1010100$$

 2 's complement of $Y = +0111101$
 $Sum = 10010001$
Discard end carry $2^7 = -10000000$
Answer. $X - Y = 0010001$

(b)
$$Y = 1000011$$

2's complement of $X = +0101100$
Sum = 1101111

There is no end carry. Therefore, the answer is Y - X = - (2's complement of 1101111) = - 0010001.

Signed Binary Numbers

- In real life one may have to face a situation where both positive and negative numbers may arise.
 - We have + and -.
 - Digital systems represent everything with binary digits.
- Three types of representations of signed binary numbers:
 - Sign-magnitude representation
 - Signed-1's complement representation
 - Signed-2's complement representation
- In Signed binary system, the convention is to make the sign bit (MSB) 0 for positive and 1 for negative.

Signed Binary Numbers

- Example, assume 9-bits number representation:
- $(105)_{10}$?
- 105₁₀=1101001₂, represent in 9 bits
 - Signed-magnitude representation of 105: 001101001
 - Signed-1's-complement representation of 105: 001101001
 - Signed-2's-complement representation of 105: 001101001
- $(-105)_{10}$?
- Magnitude of -105 is 1101001, represent in 9 bits
 - Signed-magnitude representation of -105: 101101001
 - Signed-1's-complement representation of -105: 110010110
 - Signed-2's-complement representation of -105: 110010111

Signed Binary Numbers

- All possible four-bit signed binary numbers in the three representations.
- Which one is the best? Why?

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
<u>-7</u>	1001	1000	1111
-8	1000	_	_

Signed Binary Numbers

	Addition	Representation of 0	Range
Sign-magnitude	Doesn't work → -6+6 1110 + 0110 10100 (wrong!)	Two representations 0000 +0 1000 -0	[-(2 ^{N-1} -1), 2 ^{N-1} -1]
Signed-1's complement	Doesn't work → -3+6 1100 + 0110 10010 (wrong!)	Two representations 0000 +0 1111 -0	[-(2 ^{N-1} -1), 2 ^{N-1} -1]
Signed-2's complement	Works → -3+6 1101 + 0110 10011 (correct!)	Only one 0000 ±0 1000 is -8	[-2 ^{N-1} , 2 ^{N-1} -1]

Binary Codes

BCD Code

- Four bits are required to code each decimal number.
 - Decimal 396 is represented in BCD with 12bits as 0011 1001 0110, with each group of 4 bits representing one decimal digit.
- Also known as 8-4-2-1 code, as 8, 4, 2, and 1 are the weights of the four bits of BCD.
- The binary combinations 1010 through 1111 are not used and have no meaning in BCD.

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD Addition

- First add the two numbers using normal rules for binary addition.
- If the 4-bit sum is equal to or less than 9, it becomes a valid BCD number.
- If the 4-bit sum is greater than 9, or if a carry-out of the group is generated, it is an invalid result.
 - In such a case, add (0110)₂ or (6)₁₀ to the 4-bit sum in order to skip the six invalid states and return the code to BCD. If a carry results when 6 is added, add the carry to the next 4-bit group.
- Example: Consider the addition of 184 + 576 = 760 in BCD:

BCD	1	1		
	0001	1000	0100	184
	<u>+0101</u>	<u>0111</u>	<u>0110</u>	+576
Binary sum	0111	10000	1010	
Add 6		<u>0110</u>	<u>0110</u>	
BCD sum	0111	0110	0000	760

BCD Subtraction

- Same as in the binary case:
- Take the 10's complement of the subtrahend and add it to the minuend.
- Example: Consider the subtraction of 109 132 = -23 in BCD:
 - Take 10's comp of 132 = 868
 - Convert difference into 10's complement

Subtraction		1		
	0001	0000	1001	109
	+10 <u>00</u>	0 <u>110</u>	1000	+868
Binary sum	1001	0111	10001	
Add 6	00 <u>00</u>	0000	0110	
10's complement	1001	0111	0111	977 -23

Gray Code

- Gray Code(格雷码)
 - Minimum change code: A number changes by only one bit as it proceeds from one number to the next.
 - Error detection.
 - Representation of analog data.
 - · Low power design.

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

ASCII Codes

- American Standard Code for Information Interchange (ASCII) Character Code
 - Many applications of the computer require not only handling of numbers, but also of letters.
 - To represent letters it is necessary to have a binary code for the alphabet.
 - Seven bits to code 128 characters.

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	4	7	G	W	g	W
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	1	1	Ì
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	O	_	O	DEL

Error-Detecting Code

- Error-Detecting Code
 - To detect errors in data communication and processing, an eighth bit is sometimes added to the ASCII character to indicate its parity.
 - A parity bit (校验位) is an extra bit included with a message to make the total number of 1's either even or odd.

Example:		With even parity	With odd parity
Ехатріо.	ASCII A = 1000001	01000001	11000001
	ASCII T = 1010100	11010100	01010100

Suppose we use even parity

Original code	With even parity	sender	receiver	Parity check Passed?
1000001	01000001	01000001	01000001	yes
1000001	01000001	0100 <mark>0</mark> 001	0100 <mark>1</mark> 001	No
1000001	01000001	01000001	01001101	Yes but fails for double errors

Binary Logic

- Binary logic deals with binary variables(e.g. can have two values, "0" and "1")
- Binary variables can undergo three basic logical operators AND, OR and NOT
 - AND is denoted by a dot (•) z = x y or z = xy.
 - OR is denoted by a plus (+) z = x + y.
 - NOT is denoted by a single quote mark (') after the variable, or an overbar (-) above the variable.
 - x'y is pronounced as "x prime y" or "x complement y.
- Binary logic resembles binary arithmetic.
 - However, binary logic should not be confused with binary arithmetic.
 - An arithmetic variable designates a number that may consist of many digits.
 - A logic variable is always either 0 or 1.

Binary Logic

Truth Tables, Boolean Expressions, and Logic Gates

It is fine to have more than two inputs for AND/OR

Binary Logic

 Voltage-operated, though on a range, interpreted to be either of the two values

Input-output signals for gates

Outline

- Introduction to course
- Lecture
 - Digital Number Systems
 - Data Representation
 - Binary Logic
- PreLab
 - What is an FPGA

FPGA for Digital Logic

- What?
- Why?
- How?

Calculate a + b using CPU

• How to calculate a + b?

```
int adder(int a, int b)
  int z = a + b;
  return z;
}
```

Compilation

C Programming language

Calculate a + b using FPGA

How to calculate a + b?

```
module adder(
  input wire [4:0] a,
  input wire [4:0] b,
  output wire [4:0] z
);
  assign z = a + b;
endmodule
```

Synthesis

Hardware Description Language (HDL)

Hardware design

 These hardware blocks are comprised completely of registers and logic gates

```
input wire [4:0] a,
input wire [4:0] b,
output wire [4:0] z
);
assign z = a + b;
endmodule
```


Hardware Description Language (HDL)

Hardware Schematic

Logic gates

$$B - F$$

$$A = \bigcap_{B} F$$

$$A = F$$

$$A \longrightarrow B$$

$$A F$$

$$A \rightarrow B \rightarrow F$$

Logic gates

• The logic gates can be implemented using look-up tables.

Programmable FPGA

 If you put together a bunch of look-up tables, and make them programmable, then you add a switching fabric that can connect them all together, it's just like playing with LEGO bricks!

FPGA design kit

FPGA

What

 A type of digital logic device that can be programmed and reprogrammed to perform a wide variety of digital functions.

Why?

 The programmability allows easily designing and updating designs, it provides a practical way to learn about digital system design.

• How?

• RTL (e.g. Verilog HDL) + EDA Tools (e.g. Vivado 2017.4) + FPGA board (e.g. ego1)