fMRI Data Analysis and Curve Smoothing

Zach Wang 6/7/2020

Introduction

1. Plot entire time Series

The dataframe is converted to 'zoo' series to plot using package zoo. I first plot the 32 time series individually and then plot them all on one plot to compare. However, other than seeing some peakness possibly occur around the same time, it is hard to provide any further analysis for this high dimensional time series data.

2. Summary Statistics

In the *boxplot*, I found several outliers with large value. Later I may try separate these outliers and put them on a different plot.

SM6, SM7, SM9 and SM15 have maximum value greater than 11. I will plot the paired lineplots of them in part 3.

```
# boxplot
boxplot(data_15may2020, horizontal = TRUE)
title(main="boxplot of 32 nodes bold signal")
```

boxplot of 32 nodes bold signal

Summary
summary(data 15may2020)

	##	SM1	SM2	SM3	SM4
:	##	Min. :-3.9946	Min. :-6.69790	Min. :-4.10330	Min. :-5.28630
:	##	1st Qu.:-0.6169	1st Qu.:-0.99755	1st Qu.:-0.76570	1st Qu.:-0.69760
:	##	Median : 0.0000	Median : 0.00000	Median : 0.00000	Median : 0.00000
:	##	Mean : 0.1001	Mean : 0.01257	Mean : 0.05552	Mean : 0.03187
:	##	3rd Qu.: 0.6971	3rd Qu.: 1.12265	3rd Qu.: 0.71915	3rd Qu.: 0.69632
:	##	Max. : 4.9380	Max. :10.08440	Max. : 8.10310	Max. : 7.72790
:	##	SM5	SM6	SM7	SM8
:	##	Min. :-5.17430	Min. :-6.7834	Min. :-8.2743	Min. :-4.32390
:	##	1st Qu.:-0.74713	1st Qu.:-1.0041	1st Qu.:-1.3890	1st Qu.:-0.52715
:	##	Median : 0.00000	Median : 0.0000	Median : 0.0000	Median : 0.00000
:	##	Mean : 0.09668	Mean : 0.1105	Mean : 0.1739	Mean : 0.09949
:	##	3rd Qu.: 0.77695	3rd Qu.: 1.0542	3rd Qu.: 1.4444	3rd Qu.: 0.61080
:	##	Max. : 9.65990	Max. :12.4982	Max. :13.9896	Max. : 8.27250
:	##	SM9	SM10	SM11	SM12
:	##	Min. :-6.3056	Min. :-4.5342	Min. :-4.34890	Min. :-6.3714
:	##	1st Qu.:-0.8451	1st Qu.:-0.7050	1st Qu.:-0.81078	1st Qu.:-0.7069
:	##	Median : 0.0000	Median : 0.0000	Median : 0.00000	Median : 0.0000
:	##	Mean : 0.2287	Mean : 0.1419	Mean : 0.08206	Mean : 0.1797
:	##	3rd Qu.: 1.0902	3rd Qu.: 0.8735	3rd Qu.: 0.87585	3rd Qu.: 0.8516
:	##			Max. : 5.44480	
:	##			SM15	
:	##			Min. :-6.8753	
:	##	-		1st Qu.:-1.3974	-
:	##	Median : 0.00000		Median : 0.0000	
:	##	Mean : 0.02108		Mean : 0.1794	
	##	3rd Qu.: 0.97935		3rd Qu.: 1.2862	-
:	##			Max. :13.5269	
	##			SM19	
	##			Min. :-8.27950	
	##	-		1st Qu.:-0.83808	
	##	Median : 0.00000			Median : 0.0000
	##	Mean : 0.06334			
	##	-		3rd Qu.: 1.06445	
	##			Max. :11.27570	
	##		SM22		SM24 Min. :-6.06530
	## ##		Min. :-5.395400	1st Qu.:-0.6957	
	##	Median : 0.0000	Median : 0.000000		Median : 0.00000
	##			Mean : 0.1109	
	##			3rd Qu.: 0.7637	
	##	-	-	Max. : 9.0250	-
	##	SM25	SM26	SM27	SM28
	##		Min. :-4.28790		Min. :-5.80050
	##	1st Qu.:-0.5648			
	##	Median : 0.0000	Median : 0.00000	Median : 0.00000	Median : 0.00000
	##	Mean : 0.0305	Mean :-0.01985		Mean :-0.02022
	##		3rd Qu.: 0.65495		
	##			Max. : 8.82470	
	##	SM29	SM30	SM31	SM32
:	##			Min. :-5.89830	
:	##			1st Qu.:-0.66585	
:	##		Median : 0.0000		

```
:-0.03549
                                                 : 0.04033
                                                                     : 0.01196
##
    Mean
                       Mean
                               : 0.0323
                                          Mean
                                                             Mean
##
   3rd Qu.: 0.58165
                       3rd Qu.: 0.6589
                                          3rd Qu.: 0.68780
                                                             3rd Qu.: 0.95103
##
   Max.
           : 4.77690
                       Max.
                               : 5.2447
                                          Max.
                                                 : 4.55700
                                                             Max.
                                                                     : 5.93040
```

3. Paired lineplots

Below are the paired lineplots of SM6, SM7, SM9, SM15.

While SM1 represents the a "normal behaving" node, SM6, SM7, SM9 and SM15 are those with the larget value around the peak. One thing to notice is that SM7 and SM9 tend to move to the opposite direction around the peak time.

```
par(mfrow=c(2,2))
colList1 \leftarrow c(1, 6, 7, 9)
colList2 \leftarrow c(6, 7, 9, 15)
nameList <- names(data_15may2020)</pre>
for(i in 1:4) {
        plot(data 15may2020[,colList1[i]],type = "1",
             xlab = "time", ylab = "y_axis")
        lines(data_15may2020[,colList2[i]], col = "red")
        axis(side = 4, at = pretty(data_15may2020[,colList2[i]]),
             ylab=names(data_15may2020)[colList2[i]])
        legend(x = "bottomright",
                legend = c(nameList[colList1[i]], nameList[colList2[i]]),
                col = c("black", "red"),
                cex=0.45,
                lty = c(1, 1)
        title(main=paste(nameList[colList1[i]], "&", nameList[colList2[i]]))
}
```


4. Correlation of Raw data

This correlation heatmap is not very useful, because correlation on high dimensional space is not only hard to interpret but also missing a lot of information. I kept it here just for future references.

Below are the 4 correlation heatmaps of the time-series data of the 32 nodes divided into 4 time range. We can see the correlation between each pair of nodes are changing from time to time. It again, showing us the correlation analysis on high dimensional time series is not very useful.

```
par(mfrow=c(2,2))
for (i in 0:3){
        cor_mat <- cor(z[(i*150):(i*150+150),])
        #corrplot(cor_mat, method = "color", type = "upper", order = "hclust")
        corrplot(cor_mat, method = "color", type = "upper")
        title(main = paste("from index", i*150, "to", i*150+150))
}</pre>
```


5. Fourier Smoothing of fMRI data

I applied *Fourier basis function* to smooth the data of a 600x32 time-series matrix, because according to the visualization of the data I assume the data is periodic since they are all oscilating around zero. Below I created four smoothing curve plots, each with the respective K value 8, 50, 80,110 indicating how many basis functions were used in the *Fourier Basis system*.

```
time <- (1:600)
data_mat <- as.matrix(data_15may2020)
kList <- c(8, 50, 80, 110)
par(mfrow=c(2,2))

for(i in 1:4) {
   basis <- create.fourier.basis(c(1,600), kList[i])
   smoothfd <- smooth.basis(time, data_mat, basis)$fd
   plot(smoothfd)
   title(main=paste("Fourier Basis Smoothing with K: ", kList[i]))
}</pre>
```

Fourier Basis Smoothing with K: 8

Fourier Basis Smoothing with K: 50

Fourier Basis Smoothing with K: 80

time

Fourier Basis Smoothing with K: 110

6. mean GCV and SSE of Fourier Basis Smoothing with different K

Below the code iterates the *fourier basis function* for different *K* values, and plot the corresponding *Generalized Cross-validation* (*gcv*) and the *Sum of Squared Error* (*SSE*) measure on the y-axis. *gcv* is calculated using the criterion,

$$\frac{n}{n-df(\lambda)}\frac{SSE}{n-df(\lambda)}$$

This metrics is designed to twice-discounted for the degree of freedom in the basis functions. It is useful because we are increasing the number of basis function at each step. The result of *gcv* is a 300 x 32 matrix (because I limited the choice of K value to be no larger than 303, and the K=1,2 is not accepted by the algorithm in this case). I then plotted the mean value of the 32 columns. *SSE* is the frequently used *sum of squared errors* metrics in many statistical analysis,

$$SSE = \sum_{j}^{n} [y_j - x(t_j)]^2$$

```
smoothK.unwrapped = matrix(0, 300, 3)
colnames(smoothK.unwrapped) = c('k', 'gcv', 'sse')
kList <- c(3:303)

for(row in 1:300) {
    basis <- create.fourier.basis(c(1,600), kList[row])
    smoothList <- smooth.basis(time, data_mat, basis)
    smoothK.unwrapped[row, 1] = kList[row]
    smoothK.unwrapped[row, 2] = mean(smoothList$gcv)
    smoothK.unwrapped[row, 3] = smoothList$SSE
}
par(mfrow=c(1,2))
plot(smoothK.unwrapped[,1], smoothK.unwrapped[,2], xlab='K', ylab='GCV')
plot(smoothK.unwrapped[,1], smoothK.unwrapped[,3], xlab='K', ylab='SSE')</pre>
```


From the two error measure curves, we can see the error measures kept decreasing as K became larger. It is not surprising if we pick the number large enough, the curves will fit the raw data almost perfectly. But we will be going exact the opposite way of what we are trying to acheive. We are hoping to smooth the data, not to model it with more complexity. Thus, what is the optimal value of K still requires more investigations. According to "*Elbow Method*", we might want to consider picking K equals to around 180, but I am not sure at this point.

We can see the speed of error decreasing slows down a bit around K=80, so that's why I have plotted the smoothed curves with K=80 in part 5 above. What I have found is, after K is greater than certain threshold value, keeping increasing the K value will not change the overall shape of smoothed curve too much, but instead, the amplitude of the peak values will be captured as a larger value (see plot in section 5 around t = 300 and K = 80 & 110).

In the next command cell, I again, plotted the traw data, and compare it with the smoothed data using fourier basis function with K=80 & 110 & 180

7. Plot of raw data and smoothed data using fourier basis function with K=80 & 110 & 180

Raw Data

Fourier Basis Smoothing with K: 80

Fourier Basis Smoothing with K: 110

Fourier Basis Smoothing with K: 180

8. fPCA_1

loop for differnt choice of nharm (# of Priciple Components) of a fixed smoothfd

```
basis <- create.fourier.basis(c(1,600), 280)
time <- (1:600)
data mat <- as.matrix(data 15may2020)</pre>
smoothfd <- smooth.basis(time, data mat, basis)$fd</pre>
N = c(1:15)
pcalist.sumvar = matrix(0, length(N), 4)
colnames(pcalist.sumvar) = c('total_var_explained', 'max_single_func'
                             ,'mean_func', 'median_func')
for(row in 2:length(N)) {
  pcalist = pca.fd(smoothfd, nharm=row, harmfdPar=fdPar(smoothfd))
  rotpcalist = varmx.pca.fd(pcalist)
  pcalist.sumvar[row,1] = sum(rotpcalist$varprop)
  pcalist.sumvar[row,2] = max(rotpcalist$varprop)
  pcalist.sumvar[row,3] = mean(rotpcalist$varprop)
  pcalist.sumvar[row,4] = median(rotpcalist$varprop)
}
par(mfrow=c(2,2))
plot(N, pcalist.sumvar[,1], xlab='nharm', ylab='total_var')
plot(N, pcalist.sumvar[,2], xlab='nharm', ylab='max single func')
plot(N, pcalist.sumvar[,3], xlab='nharm', ylab='mean_func')
plot(N, pcalist.sumvar[,4], xlab='nharm', ylab='median func')
```


9. fPCA 2

3D plot of top 3 Principle component:

nharm

3D scatter plot is created by specifying narhm = 6 with total variance covered about 65%, and picking the top 3 PCs (10.5%, 15.03%, 10.3% respectively) to draw.

nharm

```
pcalist = pca.fd(smoothfd, nharm=6, harmfdPar=fdPar(smoothfd))
rotpcalist = varmx.pca.fd(pcalist)
par(mfrow=c(2,3))
plot.pca.fd(rotpcalist)
```

A function 1 (Percentage of variability A function 2 (Percentage of variability A function 3 (Percentage of variability

CA function 4 (Percentage of variabilitCA function 5 (Percentage of variabilitCA function 6 (Percentage of variabilit

stated PC functions with largest scores, degitated PC functions with largest scores, degree

tated PC functions with largest scores, degreated PC functions with largest scores, degre

10. fPCA 3

The 2D scatter plot is created by specifying nharm=2 (# of fPCAs).

```
pcalist = pca.fd(smoothfd, nharm=2, harmfdPar=fdPar(smoothfd))
rotpcalist = varmx.pca.fd(pcalist)
par(mfrow=c(1,2))
plot.pca.fd(rotpcalist)
```

A function 1 (Percentage of variability A function 2 (Percentage of variability

Two rotated PC functions

