Solution to Exercise 4

Simon A. Broda

- 1. If we set α and β_1 to the same value, e.g., 1, then both series trend up by 1 each period. The correlograms look quite similar, but the time series plots don't really, even if we crank up the variance of the trend-stationary series. This is because the latter is stationary after de-trending (subtracting off $\beta_1 \cdot t$, whereas the random walk with drift remains nonstationary if we subtract $\alpha \cdot t$ (it becomes a random walk without drift).
- 2. (a) The time series plot and the correlogram are shown below.

Date: 11/17/22 Time: 17:42 Sample: 1934M01 2022M10 Included observations: 1066

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.993	0.993	1054.3	0.000
	i	2	0.982	-0.329	2085.6	0.000
		3	0.971	0.168	3095.5	0.000
	(4	0.961	-0.022	4086.1	0.000
		5	0.952	-0.003	5057.6	0.000
	(+	6	0.941	-0.045	6009.3	0.000
		7	0.933	0.213	6945.6	0.000
		8	0.927	0.004	7870.7	0.000
		9	0.920	-0.142	8782.4	0.000
	4	10	0.910	-0.108	9675.5	0.000
	1)	11	0.899	0.028	10548.	0.000
	(+	12	0.888	-0.036	11401.	0.000
		13	0.879	0.108	12236.	0.000
	4	14	0.869	-0.104	13052.	0.000
	🜓	15	0.857	-0.069	13848.	0.000
	1	16	0.846	0.061	14624.	0.000
	4	17	0.835	-0.113	15381.	0.000
		18		-0.012	16118.	0.000
		19		-0.008	16833.	0.000
	1	20	0.798	0.092	17527.	0.000
	1	21	0.789	0.106	18205.	0.000
	1	22	0.782	0.048	18871.	0.000
	1)	23	0.775	0.028	19527.	0.000
	1	24	0.768	0.009	20172.	0.000
	1	25	0.762	0.015	20807.	0.000
	1)	26	0.756	0.026	21433.	0.000
	•	27		-0.047	22049.	0.000
	"	28		-0.008	22652.	0.000
		29		-0.016	23242.	0.000
	•	30		-0.027	23819.	0.000
	1	31	0.718	0.018	24386.	0.000
	1	32	0.711	0.055	24943.	0.000
1	1	33	0.706	0.009	25491.	0.000
	1	34	0.701	0.012	26033.	0.000
	1	35	0.697	0.019	26569.	0.000
	1	36	0.693	0.054	27100.	0.000

From the correlogram, it looks like the T-Bill rate is I(1): the autocorrelations are large and decay slowly and approximately linearly. We can confirm this with an ADF test: open the series and click on $View \rightarrow Unit$ Root $Tests \rightarrow Standard$ Unit Root Test... The data don't seem to have a trend¹, so we include just an intercept (because the mean is not zero). Choose automatic lag length selection, but switch to the AIC instead of the default BIC. This results in the following output.

¹One could argue that there is a breaking trend, upwards until around 1982, downwards thereafter, but this kind of test is not available in EViews.

Null Hypothesis: TBILL3M has a unit root

Exogenous: Constant

Lag Length: 21 (Automatic - based on AIC, maxlag=30)

		t-Statistic	Prob.*
Augmented Dickey-Fu		-2.206152	0.2043
Test critical values:	1% level 5% level	-3.436395 -2.864098	
	10% level	-2.568183	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TBILL3M)

Method: Least Squares Date: 11/17/22 Time: 17:41

Sample (adjusted): 1935M11 2022M10 Included observations: 1044 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TBILL3M(-1)	-0.007083	0.003210	-2.206152	0.0276
D(TBILL3M(-1))	0.428522	0.031217	13.72731	0.0000
D(TBILL3M(-2))	-0.192362	0.033870	-5.679419	0.0000
D(TBILL3M(-3))	0.067953	0.034329	1.979469	0.0480
D(TBILL3M(-4))	-0.058873	0.034422	-1.710351	0.0875
D(TBILL3M(-5))	0.129746	0.034477	3.763218	0.0002
D(TBILL3M(-6))	-0.219951	0.034516	-6.372418	0.0000
D(TBILL3M(-7))	0.015916	0.035015	0.454557	0.6495
D(TBILL3M(-8))	0.058508	0.034911	1.675922	0.0941
D(TBILL3M(-9))	0.122711	0.034920	3.514096	0.0005
D(TBILL3M(-10))	-0.031473	0.034841	-0.903338	0.3666
D(TBILL3M(-11))	0.117373	0.034680	3.384416	0.0007
D(TBILL3M(-12))	-0.137393	0.034856	-3.941757	0.0001
D(TBILL3M(-13))	0.060972	0.034933	1.745389	0.0812
D(TBILL3M(-14))	0.093066	0.034949	2.662912	0.0079
D(TBILL3M(-15))	-0.114104	0.035068	-3.253817	0.0012
D(TBILL3M(-16))	0.124406	0.034513	3.604620	0.0003
D(TBILL3M(-17))	-0.014426	0.034526	-0.417819	0.6762
D(TBILL3M(-18))	0.031963	0.034467	0.927367	0.3540
D(TBILL3M(-19))	-0.066898	0.034435	-1.942716	0.0523
D(TBILL3M(-20))	-0.082596	0.033888	-2.437344	0.0150
D(TBILL3M(-21))	-0.053385	0.031389	-1.700730	0.0893
C	0.026842	0.014594	1.839237	0.0662
R-squared	0.290413	Mean depend	dent var	0.003372
Adjusted R-squared	0.275124	S.D. depende	ent var	0.362986
S.E. of regression	0.309045	Akaike info cr	iterion	0.511124
Sum squared resid	97.51447	Schwarz crite	rion	0.620194
Log likelihood	-243.8069	Hannan-Quin	ın criter.	0.552492
F-statistic	18.99390	Durbin-Watso	on stat	2.001414
Prob(F-statistic)	0.000000			

The observed test statistic is -2.206, larger than the critical value -2.86, so the test does not reject the null that the data are I(1), as expected. The same conclusion can be drawn from the p-value of 0.2043^2 .

(b) We start by inspecting the correlogram of the first difference. This can either be done

²Please be aware that in an exam, I might delete the top of the EViews output, and give you only the test regression at the bottom. Note that the p-value of the t-statistic there is wrong; it corresponds to the p-value from a standard regression with stationary variables, i.e., it's from a normal distribution instead of the Dickey-Fuller distribution. You can try this yourself by running the ADF regression manually, by entering d(TBILL3M) c TBILL3M(-1) d(TBILL3M(-1)) ...TBILL3M(-21) under Quick \rightarrow Estimate Equation....

by creating a new series via genr DTBILL3M = d(TBILL3M) and inspecting its correlogram, or by opening TBILL3M (i.e., the series in levels), and then clicking View \rightarrow Correlogram..., and specifying that you want the correlogram of the first difference.

Date: 11/18/22 Time: 14:36 Sample (adjusted): 1934M02 2022M10 Included observations: 1065 after adjustments

Autocorrelation	Partial Correlation	ienis	AC	PAC	Q-Stat	Prob
		1	0.340	0.340	123.72	0.000
dı .	<u> </u> -	2	-0.059	-0.198	127.44	0.000
dı .	ı)	3	-0.064	0.032	131.85	0.000
ψ	ļ ili	4	-0.009	-0.007	131.94	0.000
ıβ	l ij	5	0.043	0.044	133.93	0.000
□ '	l 🖳	6	-0.166	-0.236	163.56	0.000
□ '		7	-0.155	0.012	189.39	0.000
ı þ i		8	0.093	0.138	198.64	0.000
' 		9	0.206	0.107	244.33	0.000
ıþ	(+	10	0.080	-0.043	251.20	0.000
ψ	ф	11	-0.013	0.043	251.38	0.000
qi	 -	12	-0.098	-0.131	261.78	0.000
·þ		13	0.053	0.120	264.77	0.000
 		14	0.117	0.050	279.63	0.000
Ц·	d i	15	-0.067	-0.063	284.55	0.000
ψ		16	0.006	0.116	284.59	0.000
ıþ	ф	17	0.058	-0.002	288.24	0.000
ıþ	ф	18	0.082	-0.000	295.45	0.000
•	l 📭	19	-0.033	-0.108	296.66	0.000
□ '	–	20	-0.218	-0.109	348.57	0.000
□ '	q _'	21	-0.162	-0.056	377.15	0.000
ψ	(+	22	-0.042	-0.034	379.06	0.000
ψ.	•	23	-0.014	-0.013	379.28	0.000
ψ	•	24	-0.033	-0.020	380.50	0.000
ψ	ψ	25	-0.031	-0.036	381.52	0.000
ıþ	ф	26	0.066	0.053	386.24	0.000
' 	ψ	27	0.129	-0.007	404.52	0.000
ų)	ψ	28	0.028	0.021	405.37	0.000
qı	•	29	-0.055	0.023	408.72	0.000
фı	•	30	-0.059	-0.025	412.48	0.000
ф	d i	31	-0.069	-0.060	417.68	0.000
•	•	32	-0.038	-0.017	419.30	0.000
dı .		33	-0.065	-0.013	423.99	0.000
ф	•	34	-0.074	-0.027	430.10	0.000
()	di di	35	-0.042	-0.060	432.07	0.000
(i	ψ	36	-0.027	-0.015	432.89	0.000
	- '	-				

The first difference looks stationary. After some specification search³, we find that an ARMA(5, 5) model is the most adequate, even though it doesn't remove the autocorrelation completely. Estimating this model (either as $d(TBILL3M) \in AR(1 \text{ to } 5) \text{ MA}(1 \text{ to } 5)$, or if you created a new variable for the difference above, DTBILL3M $\in AR(1 \text{ to } 5)$ MA(1 to 5) MA(1 to 5) yields the output and correlogram below.

 $^{^3}$ freeze(mode=overwrite, armatable) tbill3m.autoarma(tform=none, diff=1, select=sic, maxar=10, maxma=10, atable) forec c

Dependent Variable: D(TBILL3M) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 11/18/22 Time: 14:41

Sample: 1934M02 2022M10 Included observations: 1065

Convergence achieved after 233 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) AR(3) AR(4) AR(5) MA(1) MA(2) MA(3) MA(4)	0.002897 0.922979 -1.062794 0.002677 0.176621 -0.500188 -0.511548 0.662301 0.460269 -0.249555	0.013904 0.049452 0.076221 0.090163 0.066271 0.031151 0.051091 0.059644 0.053463 0.041143	0.208373 18.66408 -13.94354 0.029689 2.665159 -16.05682 -10.01258 11.10430 8.609122 -6.065538	0.8350 0.0000 0.0000 0.9763 0.0078 0.0000 0.0000 0.0000 0.0000
MA(5) SIGMASQ	0.526464 0.099211	0.026709 0.001604	19.71112 61.86396	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.232134 0.224113 0.316767 105.6592 -281.3231 28.93938 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion nn criter.	0.002817 0.359617 0.550842 0.606850 0.572063 1.998371
Inverted AR Roots Inverted MA Roots	.6565i 66 .5969i 84	.65+.65i .59+.69i	.1593i .0987i	.15+.93i .09+.87i

Date: 11/18/22 Time: 14:42 Sample (adjusted): 1934M02 2022M10 Q-statistic probabilities adjusted for 10 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	ф	1	-0.000	-0.000	7.E-05	
ı j ı	1	2	0.011	0.011	0.1211	
ψ	ф	3	-0.005	-0.005	0.1531	
	•	4	-0.013	-0.013	0.3309	
ı)ı	1	5	0.032	0.032	1.4183	
ψ.	ψ		-0.023		2.0070	
ψ.	ψ	7	-0.011		2.1431	
·þ	1	8	0.053	0.054	5.1272	
ψ.	•	9	-0.021	-0.020	5.5833	
q ı	•	10	-0.041	-0.044	7.3512	
'P		11	0.116		21.940	0.000
	₩	ı	-0.024		22.576	0.000
111	ф	13		-0.001	22.644	0.000
'P	' -	14		0.130	38.449	0.000
q '	4'		-0.089		47.001	0.000
'P	'	16		0.081	56.292	0.000
q ı	₩		-0.037		57.798	0.000
	₩		-0.015		58.046	0.000
	()		-0.023		58.645	0.000
-	"		-0.108		71.399	0.000
q٠	0	ı	-0.064		75.860	0.000
q ı	4	ı	-0.026		76.599	0.000
q ı	()	ı	-0.042		78.567	0.000
111	₩		-0.005		78.592	0.000
q'	"	ı	-0.028		79.464	0.000
1	"[26		0.049	79.687	0.000
'P	'P	27	0.064	0.039	84.198	0.000
']'	"	28		0.008	84.242	0.000
₩	"		-0.012		84.413	0.000
<u> </u>	<u>"</u>	30		-0.024	84.414	0.000
9'	"		-0.086		92.601	0.000
9'	(!		-0.030		93.581	0.000
9'	"		-0.030		94.557	0.000
9'	"	ı	-0.040		96.349	0.000
<u>g</u> '	9 '	ı	-0.041		98.177	0.000
Q۱	()	36	-0.066	-0.041	103.04	0.000

Some autocorrelation remains, but we won't bother to model it. So our final model for Δ TBILL3M is an ARMA(5, 5). This means that the levels TBILL3M follow an ARIMA(5, 1, 5) model.

(c) To forecast an ARIMA model, we first forecast the ARMA model for the first difference. We'll spare us the hassle of doing a manual forecast for this complicated model, and just use EViews for it. Extending the workfile to 2022M12 via Proc→Structure / Resize Current Page..., we can forecast by clicking Forecast on the estimated equation and setting the options as follows⁴:

 $^{^4}$ Note that because I estimated my model using d (TBILL3M) c AR (1 to 5) MA (1 to 5), EViews gives me the option to directly predict the levels, but we'll ignore this here.

The forecasts are $\Delta \widehat{TBILL}_{2022M11} = 0.1636$ and $\Delta \widehat{TBILL}_{2022M12} = -0.0328$. The T-Bill rate in 2022M10 was 3.72, so the corresponding forecasts for the levels are

$$\widehat{\text{TBILL}}_{2022M11} = 3.72 + 0.1636 = 3.8836$$

and

$$\widehat{\text{TBILL}}_{2022M12} = 3.8836 - 0.0328 = 3.8508.$$

3. (a) We begin by creating the excess returns Note that the T-Bill rate is quoted in percent and in annualized terms, so we have to convert it to daily log returns first. The commands are

```
genr rf = log(1+dtb3/100)/365
genr r = dlog(ibm)-rf
genr rm = dlog(spx)-rf
```

Running the CAPM regression of ${\tt r}$ on ${\tt rm}$ and an intercept results in the following output.

Dependent Variable: R Method: Least Squares Date: 11/18/22 Time: 18:17

Sample (adjusted): 12/29/2015 11/16/2022 Included observations: 1735 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RM	-0.000279 0.851947	0.000294 0.024060	-0.948949 35.40913	0.3428 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.419782 0.419447 0.012230 0.259208 5179.853 1253.806 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	1.88E-05 0.016051 -5.968706 -5.962414 -5.966379 1.979212

The intercept (usually called α) is insignificant as predicted by the theory, and the CAPM β of IBM is .852.

- (b) The DW statistic is 1.9792. This value is between $d_u = 1.78$ and 4, so we don't reject the null of no first order autocorrelation.
- (c) In the estimation output, go to View→Residual Diagnostics→ Serial Correlation LM Test, and include 5 lags. This results in the output below.

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 5 lags

	F-statistic Obs*R-squared		Prob. F(5,1728) Prob. Chi-Square(5)	0.4530 0.4519
--	------------------------------	--	--	------------------

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 11/18/22 Time: 18:27 Sample: 12/29/2015 11/16/2022 Included observations: 1735

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.19E-06	0.000294	-0.004058	0.9968
RM	0.001882	0.024087	0.078140	0.9377
RESID(-1)	0.009036	0.024052	0.375695	0.7072
RESID(-2)	-0.029789	0.024061	-1.238089	0.2159
RESID(-3)	-0.020329	0.024062	-0.844837	0.3983
RESID(-4)	-0.016857	0.024059	-0.700651	0.4836
RESID(-5)	-0.033360	0.024081	-1.385292	0.1661
R-squared	0.002716	Mean depend	lent var	-6.40E-20
Adjusted R-squared	-0.000746	S.D. dependent var		0.012226
S.E. of regression	0.012231	Akaike info criterion		-5.965662
Sum squared resid	0.258504	Schwarz criterion		-5.943639
Log likelihood	5182.212	Hannan-Quinn criter.		-5.957518
F-statistic	0.784445	Durbin-Watson stat		2.000099
Prob(F-statistic)	0.582073			

There are two versions of the test, the F-Test and the LM test. We'll focus on the LM test. The observed test statistic is $T \cdot R_{aux}^2 = 1735 \cdot 0.002716 = 4.71$, which doesn't exceed the critical value of 11.07 from the $\chi^2(5)$ distribution, so we don't reject the null of no serial correlation of order 5 or less. The same conclusion can be drawn from the top of the output, but that might get deleted in an exam.

(d) Selecting HAC standard errors in the Options tab of the estimation window results in the following.

Dependent Variable: R Method: Least Squares Date: 11/18/22 Time: 18:38

Sample (adjusted): 12/29/2015 11/16/2022 Included observations: 1735 after adjustments

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 8.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RM	-0.000279 0.851947	0.000283 0.038631	-0.986500 22.05368	0.3240 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.419782 0.419447 0.012230 0.259208 5179.853 1253.806 0.000000 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso Wald F-statis	ent var iterion rion in criter. on stat	1.88E-05 0.016051 -5.968706 -5.962414 -5.966379 1.979212 486.3648

As you can see, the difference isn't that big here, because there was little autocorrelation to begin with. Generally, if there is autocorrelation, then the HAC standard errors will be larger, i.e., the regular standard errors underestimate the variance of the estimates.

4. (a) For $Y_{1,t}$, we have

$$\mathbb{E}[\Delta Y_{1,t}] = \mathbb{E}[Y_{1,t} - Y_{1,t-1}]$$

$$= \mathbb{E}[\delta t + U_{1,t} - (\delta(t-1) + U_{1,t-1})]$$

$$= \delta + \mathbb{E}[U_{1,t} - U_{1,t-1})]$$

$$= \delta.$$

For $Y_{2,t}$,

$$\mathbb{E}[\Delta Y_{2,t}] = \mathbb{E}[Y_{2,t} - Y_{2,t-1}]$$

$$= \mathbb{E}[\delta + Y_{2,t-1} + U_{2,t} - Y_{2,t-1}]$$

$$= \mathbb{E}[\delta + U_{2,t}]$$

$$= \delta.$$

(b) Consider the AR(2) process

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + U_t.$$

We would like to test the null that $\phi_1 + \phi_2 = 1$ (unit root) vs. $\phi_1 + \phi_2 < 1$ (stationarity). This can be done by rearranging the equation as follows:

$$\begin{split} Y_t &= \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + U_t & | -Y_{t-1} \\ Y_t - Y_{t-1} &= (\phi_1 - 1) Y_{t-1} + \phi_2 Y_{t-2} + U_t & | \pm \phi_2 Y_{t-1} \\ Y_t - Y_{t-1} &= (\phi_1 - 1) Y_{t-1} + \phi_2 Y_{t-1} - \phi_2 Y_{t-1} + \phi_2 Y_{t-2} + U_t \\ Y_t - Y_{t-1} &= (\phi_1 + \phi_2 - 1) Y_{t-1} - \phi_2 \Delta Y_{t-1} + U_t \\ \Delta Y_t &= \psi Y_{t-1} + \alpha_1 \Delta Y_{t-1} + U_t, \end{split}$$

where $\psi := (\phi_1 + \phi_2 - 1)$ and $\alpha_1 := -\phi_2$. Thus testing $\phi_1 + \phi_2 = 1$ vs. $\phi_1 + \phi_2 = < 1$ is equivalent to testing $\psi = 0$ vs. $\psi < 0$ in a regression of ΔY_t onto Y_{t-1} , augmented by one lag of ΔY_{t-1} .