

UNIVERSIDAD NACIONAL DE CHIMBORAZO

"Libres Por La Ciencia Y El Saber"

FACULTAD DE INGENIERÍA

MODELADO DE INSTRUMENTOS

Tema: Modelado

Escuela: Ingeniería En Telecomunicaciones

Materia: Instalaciones Eléctricas Y De Comunicaciones

Nombre del estudiante: Jimmy Andrés Villa Yuquilema

Docente: Edgar Giovanny Cuzco Silva

Programas Utilizados y su Objetivo en el desarrollo del proyecto

Para la realización de del Proyecto de investigación se a utilizo los siguientes softwares los cuales nos a permitido avanzar con el proyecto.

SketchUp

SketchUp es un software de modelado 3D que permite modelar en 3D de edificios, paisajes, escenarios, mobiliario, personas y cualquier objeto o artículo que imagine el diseñador o dibujante. Diseñado con el objetivo de que pudiera usarse de una manera intuitiva y flexible. El programa incluye una galería de objetos, texturas e imágenes listas para descargar.

Objetivo: el objetivo de la utilización de este software es permitir modelar los objetos que queramos en 3D.

OBJETIVO

Objetivo General

• Diseñar los instrumentos eléctricos propuestos por el docente

Objetivo específico

- Comprender el funcionamiento de cada instrumento eléctrico.
- Identificar las partes de cada instrumento.

INSTRUMENTOS MODELADOS

1. TRANSFORMADORES EN REDES DE DISTRIBUCIÓN 13,8 Kv Grdy / 7,96 Kv - 13,2 Kv Grdy / 7,62 Kv

A continuación, se presentarán las capturas del equipo modelado:

• VISTA FRONTAL

• VISTA LATERAL

VISTA SUPERIOR

• VISTA GENERAL

La modelación mostrada se a realizado bajo las medidas del ministerio de electricidad de energía renovable, sección 2: manual de unidades de construcción

CLASIFICACIÓN DE TRANSFORMADORES ELÉCTRICOS SE RESUMEN EN LA SIGUIENTE TABLA.

 Auto-refrigerados por aire (tipo seco) Refrigerados por chorro de aire (tipo seco) Sumergidos en líquido, auto-refrigerados Sumergidos en aceite, combinación con auto-refrigeración y chorro de aire Sumergidos en aceite, refrigerados por agua Sumergidos en aceite, enfriados por aceite forzado Sumergidos en aceite, combinación de auto-refrigerados y refrigerados por agua
Devanados aislados entre síAutotransformadores
MonofásicosPolifásicos
 En poste y plataforma Subterráneos En bóveda Especiales
 Voltaje constante Voltaje variable Corriente Corriente constante
 Gran potencia Pequeña potencia Distribución Iluminación de carteles Control y señalización Para lámparas de descarga gaseosa Para timbres Para instrumentos Corriente constante Transformadores en serie para el alumbrado público
De fracción de un watt a miles de megavatios
De unos pocos voltios a 750 kilovoltios
Para alimentación, audio, RF, etc.

LISTA DE MATERIALES

DESCRIPCIÓN

Transformador trifásico DYN5, 13200 ó 13800 - 220 / 127 V

Cable de acero galvanizado, grado Siemens Martin, 7 hilos, 9,52 mm (3/8"), 3155 kgf

Abrazadera de acero galvanizado, pletina, 2 pernos, extensión escalón, 30 x 6 x 200 mm (1 3/16 x 1/4 x 7 7/8")

Soporte de acero galvanizado para montaje de transformador trifásico, repisa

2. ESTRUCTURAS EN REDES AÉREAS DE DISTRIBUCIÓN 13,8 kV GRDy / 7,96 kV - 13,2 kV GRDy / 7,62 Kv

• VISTA FRONTAL

• VISTA LATERAL

VISTA SUPERIOR

Las modelaciones mostradas se han realizado bajo las medidas del ministerio de electricidad de energía renovable, sección 2: manual de unidades de construcción

LISTA DE MATERILAES

DESCRIPCIÓN

Cruceta de acero galvanizado, universal, perfil "L" 75 x 75 x 6 mm (3 x 3 x 1/4")

Pie amigo de acero galvanizado, perfil "L" $38 \times 38 \times 6 \times 700$ mm (1 $1/2 \times 1$ $1/2 \times 1/4 \times 27$ 9/16")

Perno pin punta de poste simple de acero galvanizado, con accesorios de sujeción, 19 x 457 mm (3/4 x 18")

Abrazadera de acero galvanizado, pletina, 3 pernos, 38 x 4 x 140 mm (1 1/2 x 5/32 x 5 1/2")

Perno máquina de acero galvanizado, tuerca, arandela plana y presión, 16 x 38 mm (5/8 x 1 1/2")

Perno "U" de acero galvanizado,2 tuercas, 2 arandelas planas y 2 presión, de 16 x 152 mm (5/8" x 6"), ancho dentro de la "U"

Aislador espiga (pin), porcelana, con radio interferencia, 15 kV, ANSI 55-5

Perno pin de acero galvanizado, rosca plastica de 50 mm, 19 x 305 mm (3/4" x 12")

Alambre de Al, desnudo sólido, para atadura, 4 AWG

3. ESTRUCTURAS EN REDES AÉREAS DE DISTRIBUCIÓN 13,8 kV GRDy / 7,96 kV - 13,2 kV GRDy / 7,62 kV

• VISTA FRONTAL

• VISTA LATERAL

• VISTA SUPERIOR

• VISTA GENERAL

Las modelaciones mostradas se han realizado bajo las medidas del ministerio de electricidad de energía renovable, sección 2: manual de unidades de construcción

LISTA DE MATERIALES

DESCRIPCIÓN Cruceta de acero galvanizado, universal, perfil "L" 75 x 75 x 6 mm (3 x 3 x 1/4") Pie amigo de acero galvanizado, perfil "L" 38 x 38 x 6 x 700 mm (1 1/2 x 1 1/2 x 1/4 x 27 Perno ojo de acero galvanizado, 4 tuercas, 4 arandelas planas y 4 de presión, 16 x 254 mm (5/8 x 10") Tuerca ojo ovalado de acero galvanizado, perno de 16 mm (5/8") Perno pin punta de poste simple de acero galvanizado, con accesorios de sujeción, 19 x 457 mm (3/4 x 18") Abrazadera de acero galvanizado, pletina, 4 pernos, 38 x 4 x 140 mm (1 1/2 x 5/32 x 5 1/2") Perno máquina de acero galvanizado, tuerca, arandela plana y presión, 16 x 38 mm (5/8 x 1 Perno rosca corrida de acero galvanizado, 4 tuercas, 4 arandelas planas y 4 de presión, 16 x 306mm (5/8 x 12") Aislador espiga (pin), porcelana, con radio interferencia, 15 kV, ANSI 55-5 Aislador de suspensión, caucho siliconado, 15 kV, ANSI DS-15 Grapa de aleación de Al, terminal apernado, tipo pistola Horquilla de acero galvanizado, para anclaje 16 x 75 mm (5/8 x 3") Alambre de Al, desnudo sólido, para atadura, 4 AWG Perno pin de acero galvanizado, rosca plastica de 50 mm, 19 x 305 mm (3/4" x 12") Abrazadera de acero galvanizado, pletina, 4 pernos, 38 x 4 x 140 mm (1 1/2 x 5/32 x 5 1/2") Conector de aleación de Al, compresión tipo "H" Horquilla de acero galvanizado, para anclaje 16 x 75 mm (5/8 x 3")

4. MANUAL

Aislantes (1)

Para la realización d los aislantes en el software, se partió de cilindros, un cilindro se usó para el cuerpo y otros cilindros a las cuales se le dotaría de la forma particular del aislante

Cuerpo

de

Aislante

Realizamos unas circunferencias en la parte superior del cuerpo de nuestro modelo para poder realizar los anillos del aislante

Borramos la circunferencia dos y procedemos a darle cuerpo a cada circunferencia

Aislante 2

El siguiente aislante que se mostrara estructuras en redes aéreas de distribución

• De igual amera partimos de un cuerpo y realizamos los mismos anillos, pero con la siguiente variación.

Procedemos a darle forma:

