Chapter 7 Principal Component Analysis

Contents

7	Prir	ncipal Component Analysis	1
	7.1	Introduction	2
	7.2	Benefits	2
		PCA Algorithm	
	7.4	PCA via Variance Maximization	3
	7.5	PCA via Minimizing Reconstruction Error	4
		PCA via Single Value Decomposition	
	7.7	PCA Example	5
	7.8	Linear PCA	5
	7.9	Kernel PCA	5

7.1 Introduction

- PCA is a linear dimensionality reduction technique that can be used to simplify a dataset by reducing the number of dimensions in the data.
- It is a linear transformation that chooses a new coordinate system for the dataset such that
 - The greatest variance by any projection of the dataset lies on the first axis (this is called the first principal component PC_1).
 - The second greatest variance is on the second axis PC_2 and so.
- PCA can be used for reducing dimensionality by eliminating the later principal components

7.2 Benefits

- Large datasets can be summarized into smaller ones that can be easier to analyze and visualize.
- Easy to calculate and compute.
- Identify correlations between data points.

- Can be used in exploratory data analysis,
- Prevents predictive algorithms from data overfitting issues.

7.3 PCA Algorithm

- Given the inputs $x_i \in \mathbb{R}^d$, normalize the data points.
- Compute the $d \times d$ covariance matrix S using the normalized-data matrix $\mathbf{X}_{n \times d}$
- . . .
- From the $k \in K$ eigenvalues, pick $\lambda_1 > \lambda_2 > \cdots > \lambda_k$, and its associated eigenvectors $\{v_1, v_2, \ldots, v_k\}$. v_1 is PC_1, v_2 is PC_2, \ldots, v_k is PC_k ,
- The k-dimensional projection of each input is $\mathbf{z}_i = \mathbf{v}_k^T \mathbf{x}_i$ where \mathbf{v}_k are the principal components.
- Larger λ implies higher principal component.
- PC captures the greatest variance of the projection.
- Maximizing the greatest variance of the projection ...

7.4 PCA via Variance Maximization

- Consider projecting the inputs $\mathbf{x}_i \in \mathbb{R}^d$ along directions \mathbf{v}_k .
- Projection of \mathbf{x}_i (red points) will be $\mathbf{v}_1^T \mathbf{x}_i$ (textcolorgreengreen points).
- Mean of the projections of all the inputs:

$$\frac{1}{n}\sum_{i=1}^n\mathbf{v}_k\dots$$

• Construct a Lagrangian for this optimization problem:

• v_k are eigenvectors of the covariance matrix S with eigenvalues λ_k .

• Thus, variance $\mathbf{v}_k^T \mathbf{S} \mathbf{v}_k$ will be maximum for the largest value of λ_k , since:

$$\mathbf{v}_k^T \mathbf{S} \mathbf{v}_k = \mathbf{v}_k^T \lambda_k \mathbf{v}_k$$
$$= \lambda_k \mathbf{v}_k^T \mathbf{v}_k$$
$$= \lambda_k$$

• If λ_1 is the largest eigenvalue, then \mathbf{v}_1 is the corresponding eigenvector, also known as the first principal component.

7.5 PCA via Minimizing Reconstruction Error

$$\arg_{\mathbf{v}_k} \max \frac{1}{n} \tag{7.1}$$

7.6 PCA via Single Value Decomposition

Any matrix $\mathbf{X}_{n\times d}$ can have a SVD such that $\mathbf{X}_{n\times d} = \mathbf{U}_{n\times n} \Lambda_{n\times d} \mathbf{V}_{d\times d}^T$

- \mathbf{U} is a matrix of left singular vectors i.e., columns of \mathbf{U} are eigenvectors of \mathbf{XX}^T .
- \mathbf{V} is a matrix of right singular vectors i.e., columns of \mathbf{V} are eigenvectors of $\mathbf{X}^T \mathbf{X}$.
- Λ is a diagonal matrix of singular values, where the squares of the diagonal elements are the eigenvalues of $\mathbf{X}\mathbf{X}^T$ and $\mathbf{X}^T\mathbf{X}$.
- U and V are orthonormal i.e., every vector (columns in matrix) have a magnitude of 1 and are mutually orthogonal i.e., their dot product is 0.

Recall, if X is the normalized-data matrix, then the covariance matrix is:

$$\mathbf{S} = \frac{1}{n} \mathbf{X}^{T} \mathbf{X}$$

$$= \frac{1}{n} (\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T})^{T} (\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T})$$

$$= \frac{1}{n} \mathbf{V} \boldsymbol{\Lambda} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}$$

$$= \frac{1}{n} \mathbf{V} \boldsymbol{\Lambda}^{2} \mathbf{V}^{T}$$

$$\mathbf{S} \mathbf{V} = \frac{1}{n} \mathbf{V} \boldsymbol{\Lambda}^{2} \mathbf{V}^{T} \mathbf{V}$$

$$\mathbf{S} \mathbf{V} = \frac{1}{n} \mathbf{V} \boldsymbol{\Lambda}^{2}$$

$$\mathbf{S} \mathbf{V} = \frac{1}{n} \mathbf{V} \boldsymbol{\Lambda}^{2} \mathbf{V}$$

where **V** is the eigenvector and $\frac{1}{n}\Lambda^2$ is the eigenvalue.

7.7 PCA Example

Let a dataset of 5 samples with 3-dimensional data be

Table 7.1: PCA Example Data

$$A \quad B \quad C$$

Compute the covariance matrix S:

$$S = \begin{bmatrix} 1 & \frac{673}{1000} & \frac{433}{500} \\ \frac{673}{1000} & 1 & \frac{97}{250} \\ \frac{433}{500} & \frac{97}{250} & 1 \end{bmatrix}$$

Eigen decomposition of **S** generates eigenpairs:

$$\lambda_1 = 2.304$$
 $\lambda_2 = 0.628$
 $\lambda_3 = 0.068$
 $\mathbf{v}_1 = \begin{bmatrix} 1.115 \\ \dots \end{bmatrix}$
 $\mathbf{v}_2 = \begin{bmatrix} \\ \\ \dots \end{bmatrix}$
 $\mathbf{v}_3 = \begin{bmatrix} \\ \\ \dots \end{bmatrix}$

7.8 Linear PCA

- PCA excels in linear data transformations but can falter with complex, non-linear datasets.
- Non-linear PCA:
 - Kernel PCA
 - Autoencoder

7.9 Kernel PCA

• Replace **X** with $\Phi(\mathbf{X})$ where $\Phi(\cdot)$ is a kernel function.