TEMA 1. LENGUAJES FORMALES

Alfabeto (\Sigma): Conjunto finito de símbolos gráficos. $\Sigma_1 = \{0, 1\}, \Sigma_2 = \{a, b, c, d, ..., z\}$

Subalfabeto (\Sigma): Subconjunto de un alfabeto. $\Sigma_4 = \{c, d\}$ es un subalfabeto de Σ_2

Palabra (x): dado un alfabeto Σ . Conjunto finito y ordenado de símbolos del alfabeto con o sin repetición.

$$x,y \longrightarrow palabras / a,b \longrightarrow símbolos x = ababa (palabra)$$

Palabra vacía (λ): La palabra que no contiene símbolos. λ no $\in \Sigma$

Longitud de una palabra (|x|): es igual al nº de símbolos de una palabra.

$$x = aabb \rightarrow |x| = 4$$
, $z = \lambda \rightarrow |z| = 0$

Palabra inversa (x^{-1}): es la palabra con todos sus símbolos a la inversa. x^{-1} = bbaa

Definición Recursiva: Si $|x| = 0 \Rightarrow x = \lambda$, $x^{-1} = \lambda$ // $|x| > 0 \Rightarrow \exists$ w palabra y \exists a $\in \Sigma$ tal que x = wa, $x^{-1} = aw^{-1}$

Palabra simétrica: Una palabra es simétrica si $x = x^{-1}$. aba es simétrica

Lenguajes universal (\Sigma^*): El conjunto de todas las palabras que se pueden formar sobre Σ , incluyendo λ . Σ es finito pero Σ^* es infinito.

OPERACIONES CON PALABRAS

Concatenación de palabras (·): Es una operación mediante la cual a partir de dos palabras se obtiene otra al poner una detrás de la otra. x = ab, y = cd; $x \cdot y = abcd$

Propiedades:

- Operación bien definida: $x, y \in \Sigma * \rightarrow x \cdot y \in \Sigma *$
- Asociativa: x, y, $z \in \sum *$; $x \cdot (y \cdot (z)) = ((x \cdot y) \cdot z)$
- Elemento neutro: $\forall x \in \Sigma * \exists \lambda \text{ tal que } x \cdot \lambda = \lambda \cdot x = x$
- No es conmutativa
- (∑*, ·) Tiene estructura de semigrupo.

$$- |x \cdot y| = |x| + |y|$$

$$- \forall x, y \in \Sigma^* (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$$

$$-x^i = x \cdot x \cdot x (i \text{ veces}) x^0 = \lambda$$

$$-|x^{i}| = i \cdot |x| // x^{i+j} = xi \cdot xj$$

$$xy = xz \Rightarrow y = z$$

$$xy = zy \Rightarrow x = z$$

ación 🛴

 $x^{i+1} = x^i \cdot x = x \cdot x^i$

 $x^{i+j} = x^i \cdot x^j$

 $|x^i| = i \cdot |x|$

Potencia: se llama potencia i-ésima de una palabra a la concatenación consigo misma i veces. Propiedades de la potencia: x = 01. $x^3 = 010101$

Posible Ejercicio: Comprobar que $(wx)^{-1} = x^{-1}w^{-1}$

$$|x| = 0 \longrightarrow x = \lambda \longrightarrow (w \lambda)^{-1} = w^{-1} = \lambda w^{-1} = \lambda^{-1} w^{-1} = x^{-1} w^{-1}$$

 $|x| = n + 1 \longrightarrow x = ya \quad y \in \Sigma^* \quad y = n \quad a \in \Sigma$

Hipótesis de inducción: $(wy)^{-1} = y^{-1}w^{-1}$ Suponemos cierto (para a = 1) $(wx)^{-1} = (w(ya))^{-1} = ((wy)a)^{-1} = a(wy)^{-1} = ay^{-1}w^{-1} = (ay^{-1})w^{-1} = (ya)^{-1}w^{-1} = x^{-1}w^{-1}$ Asociativa Definición (inversa) Hip. Ind Asociativa Definición

LENGUAJES FORMALES

Dado un alfabeto Σ , L es un lenguaje formal sobre Σ cuando sus palabras cumplen una propiedad. L = $\{x \in \Sigma^* \mid x \text{ cumple P }\}$

 \mathfrak{T} = Todos los lenguajes sobre Σ^* (todos los lenguajes posibles sobre el lenguaje universal)

- Tanto Ø como { λ } son lenguajes sobre cualquier alfabeto.
- El alfabeto ∑ puede considerarse como uno de los lenguajes generados por él mismo

Ejemplo 1:

- $\circ \Sigma = \{0, 1\}$
- L₁= {1, 10, 100, 1000 ...} L es el conjunto de las palabras que empiezan por 1 seguidos de cero o más ceros.

OPERACIONES CON LENGUAJES:

Unión de lenguajes: Dado un alfabeto \sum y L_1 y L_2 lenguajes sobre \sum , la unión de dichos lenguajes esta definida como:

$$L_1 \cup L_2 = \{x \in \Sigma^* \mid x \in L_1 \text{ o } x \in L_2\}$$

Propiedades:

- Operación bien definida y cerrada: la unión de dos lenguajes sobre el mismo alfabeto es también un lenguaje sobre dicho alfabeto.
- Asociativa: $\forall L_1, L_2, L_3 \longrightarrow (L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)$
- Elemento neutro: $L1 \cup \emptyset = \emptyset \cup L1 = L1$
- Es conmutativa: $L_1 \cup L_2 = L_2 \cup L_1$
- Idempotente: L∪L=L
- (\sum^* , ·) Tiene estructura de semigrupo con elemento neutro y conmutativa.

Concatenación de lenguajes: Dado un alfabeto \sum y L_1 y L_2 lenguajes sobre \sum , la concatenación de dichos lenguajes:

$$L_1 \cdot L_2 = \{ x \in \Sigma^* \mid \exists u \in L_1, v \in L_2, x = uv \}$$

Propiedades:

- Operación bien definida: $x, y \in \Sigma^* \rightarrow x \cdot y \in \Sigma^*$
- Asociativa: $\forall L_1, L_2, L_3 : (L_1 \cdot L_2) \cdot L_3 = L_1 \cdot (L_2 \cdot L_3)$
- Elemento neutro: $\forall L \in \mathfrak{T} \exists \{\lambda\}, L \cdot \{\lambda\} = \{\lambda\} \cdot L = L$
- No es conmutativa
- Tiene estructura de semigrupo con elemento neutro

Potencia de un lenguaje: es la operación que consiste en concatenarlo consigo mismo i $L^1 = L$ $L^{i} = L \cdot L \cdot L \cdot L \cdot ... \cdot L$ (i veces) veces.

Se verifica que: 1) $L^{i} + 1 = L^{i} \cdot L = L \cdot L^{i}$ (i > 0) 2) $L^{i} \cdot L^{j} = L^{i} + L^{j}$ (i, j > 0)

 $L^0 = \{ \lambda \}$ cualquiera que sea L.

Cierre o Clausura (Estrella de Kleene): dado un lenguaje es la unión de todas las potencias del lenguaje, incluida la 0.

$$L* = \bigcup_{i=0}^{\infty} L^{i} = L^{0} \cup L^{1} \cup L^{2} \cup L^{3}...;$$
 $L^{0} = \{\lambda\}$

• Si L = Σ entonces L* = Σ * (El cierre de un lenguaje es igual al lenguaje universal si el lenguaje es igual que su alfabeto)

Clausura Positiva: es el lenguaje que se forma por la unión de todas las potencias de L $L^{+} = \bigcup_{i=1}^{\infty} L^{i} = L^{i} = L^{1} \cup L^{2} \cup L^{3}...;$ menos L⁰.

• Si L = Σ entonces L⁺ = Σ * - { λ }

Se puede llegar a las siguientes conclusiones:

$$\label{eq:lambda} \begin{array}{ll} -\; L^* = L^+ \cup \; \{\; \lambda \; \} & \quad -\; L^+ = L \cdot \; L^* = L^* \cdot \; \; L \end{array}$$

Lenguaje Inverso: dado un lenguaje L está formado por la aplicación de inversión a cada una de las palabras de L. $L^{-1} = \{ w \in \Sigma^* \mid w = u^{-1} \text{ donde } u \in L \}$

3

Eiemplo: $\Sigma = \{0, 1\}$

 $L(\Sigma) = \{0, 1, 00, 10\}$ $L(\Sigma)^{-1} = \{0, 1, 00, 01\}$

Intersección de lenguajes: dado un alfabeto \sum y los lenguajes L_1 y L_2 , su intersección será el conjunto que contenga las palabras que pertenezcan a los dos lenguajes.

$$L_1 \cap L_2 = \{x \in \Sigma^* / x \in L_1 \cap x \in L_2\}$$

Propiedades:

- Operación bien definida:
- Asociativa: \forall L₁, L₂, L₃: (L₁ \cap L₂) \cap L₃ = L₁ \cap (L₂ \cap L₃)
- Elemento neutro: $\forall L \in \Sigma^* \rightarrow L \cap \Sigma^* = \Sigma^* \cap L = L$
- Es conmutativa: $\forall L_1, L_2, L_3 : (L_1 \cap L_2) \cap L_3$
- Tiene estructura de semigrupo con elemento neutro y conmutativa.

Complementación de lenguajes: es el conjunto de palabras que no pertenecen al lenguaje.

$$\overline{L} = \{ w \in \Sigma^* / w \notin L \} = \Sigma^* - L$$

Propiedades de la complementación, Leyes de Morgan:

$$- \forall L_1, L_2 \in \mathfrak{T}; \qquad \overline{L_1 \cap L_2} = \overline{L_1 \cup L_2} \qquad \overline{L_1 \cap L_2} = \overline{L_1 \cup L_2}$$

EXPRESIONES REGULARES

Permiten representar lenguajes de forma que resumen la descripción de dicho lenguaje. Así, un lenguaje infinito tiene una representación finita.

Dado un alfabeto Σ , se construye a partir de él un nuevo alfabeto $B = \Sigma \cup \{\emptyset, \lambda, +, *, \cdot, ()\}$

Definimos expresión regular α sobre Σ .

$$\alpha \in \mathbf{B}^* \text{ si:} \qquad \mathbf{a} \in \Sigma \qquad \Rightarrow \mathbf{a}, \emptyset, \lambda \text{ son expresiones regulares sobre } \Sigma$$

$$\alpha, \beta \in \mathsf{ER}(\Sigma) \qquad \Rightarrow \alpha + \beta \in \mathsf{ER}(\Sigma)$$

$$\alpha = \mathsf{ER}(\Sigma) \qquad \Rightarrow \alpha \cdot \beta \in \mathsf{ER}(\Sigma)$$

$$\alpha \in \mathsf{ER}(\Sigma) \qquad \Rightarrow \alpha^* \in \mathsf{ER}(\Sigma) \qquad \text{que se define } \alpha^* = \bigcup_{i=0}^{\infty} \alpha^i \ (\alpha^0 = \lambda)$$

$$\alpha \in \mathsf{ER}(\Sigma) \qquad \Rightarrow (\alpha) \in \mathsf{ER}(\Sigma)$$

Son expresiones regulares de \sum únicamente las obtenidas por la aplicación de un número finito de veces de las 5 reglas anteriores.

El orden de prioridad de las operaciones en una ER es: * (cierre); \cdot (concatenación) y + (unión). Los paréntesis dan prioridad.

Toda ER definida sobre ∑, representa un lenguaje regular que se define recursivamente así:

- Si $\alpha = \emptyset$

 $L(\alpha) = L(\emptyset) = \emptyset$

- Si $\alpha = \lambda$

 $L(\alpha) = L(\lambda) = \lambda$

- Si α = a

 $L(\alpha) = L(a) = \{a\}$

- Si α y β son ER

 $L(\alpha + \beta) = L(\alpha) + L(\beta)$

- Si α y β son ER

 $L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta)$

- Si α es ER

 $L(\alpha^*) = (L(\alpha))^*$

Un lenguaje L es un lenguaje regular si $\exists \alpha$ tal que L(α) = L. Es decir, si se puede representar mediante una ER. Además, todo lenguaje finito es regular. *Ejemplo:*

 $L(\alpha) = L(abca) = L(a)L(b)L(c)L(a) = \{a\}\{b\}\{c\}\{a\} = \{abca\}$

EQUIVALENCIAS DE EXPRESIONES REGULARES

Dos expresiones regulares α y β son equivalentes si describen el mismo lenguaje regular.

$$\alpha, \beta \in ER(\Sigma)$$
 $\alpha \equiv \beta \Leftrightarrow L(\alpha) = L(\beta)$

Tenemos las siguientes propiedades:

1) + es asociativa:

•
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

2) + es conmutativa:

•
$$\alpha + \beta = \beta + \alpha$$

3) · es asociativa:

•
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

4) · es distributiva respecto a la + (unión):

•
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

•
$$(\beta + \gamma) \cdot \alpha = \beta \cdot \alpha + \gamma \cdot \alpha$$

5) · tiene elemento neutro λ :

•
$$\alpha \cdot \lambda = \lambda \cdot \alpha = \alpha$$

6) + tiene elemento neutro Ø:

•
$$\alpha + \emptyset = \emptyset + \alpha = \alpha$$

7) $\lambda^* = \lambda$

8) $\emptyset \alpha = \alpha \emptyset = \emptyset$

9) \emptyset * = λ

10) $\alpha^* \cdot \alpha^* = \alpha^*$

11) $\alpha \cdot \alpha^* = \alpha^* \cdot \alpha$

12) $(\alpha^*)^* = \alpha^*$

13) $\alpha^* = \lambda + \alpha \cdot \alpha^*$

14) $(\alpha^* + \beta^*)^* = (\alpha^*\beta^*)^* = (\alpha + \beta)^*$

15) $(\alpha \beta)^* \alpha = \alpha (\beta \alpha)^*$

16) $(\alpha^* \beta)^* \alpha^* = (\alpha + \beta)^*$

Ejemplo: $aa^* + \lambda = a^*$

 $-aa^* + \lambda = a(\lambda + a + a^2 + ...) + \lambda = (a + a^2 + ...) + \lambda$ $-a^* = (\lambda + a + a^2 + ...)$

Por tanto, si son ER equivalentes