Snap-Together Motion

- Michael Gleicher, Hyun Joon Shin, Lucas Kovar, Andrew Jepsen

CS676: Computer Vision

Instructor: Dr. Amitabha Mukerjee

-Vempati Anurag Sai

Overview

- What?
 - simple graph structure that facilitates efficient planning of character motions
 - responsive, controllable, and efficient to simulate.
- Why?
 - Entertainment
 - virtual worlds with believable synthetic characters and realistic motion
 - Interactive gaming
 - 3D Animation
 - Understanding basic structure in human motion
- Some traditional practices and their problems
 - Move Trees
 - Fully authored graph structures lack high connectivity
 - Selective corpus
 - No automation
 - No cut-transitions
 - Visual artifacts

Pipeline

- Corpus
 - Motion capture data in standard skeletal format
 - Each frame: $(p, q_1, \ldots, q_n, o_1, \ldots, o_n)$. p root joint, q orientation, o offset.
 - Foot plant constraints.
- Graph
 - Edges > clips and nodes -> common pose for a 'match set'
 - Automated and interactive
- Transitions
 - Replacing the match set with a rigid transformation of common pose
 - C_1 continuity for seamless cut-transitions.

Choosing Match Frames

- Finding collection of "similar" frames from the corpus.
 - Similarity based on distance metric $D(\mathbf{F_i}, \mathbf{F_i})$
 - Small neighborhood of frames around each frame and Cloud of points.
 - Common coordinate system.
 - Computing optimal weighted sum of squared differences.

$$D(\mathbf{F_i}, \mathbf{F_j}) = \min_{\theta, x_0, z_0} \sum_{k} w_k \|\mathbf{p_{i,k}} - \mathbf{T}_{\theta, \mathbf{x_0}, \mathbf{z_0}} \mathbf{p_{j,k}}\|^2$$

• Closed form solution:

$$\theta = \arctan \frac{\sum_{i} w_{i}(x_{i}z'_{i} - x'_{i}z_{i}) - (\overline{x}\overline{z'} - \overline{x'}\overline{z})}{\sum_{i} w_{i}(x_{i}x'_{i} + z_{i}z'_{i}) - (\overline{x}\overline{x'} + \overline{z}\overline{z'})}$$

$$x_0 = (\overline{x} - \overline{x'}\cos(\theta) - \overline{z'}\sin\theta)$$

$$z_0 = (\overline{z} + \overline{x'}\sin(\theta) - \overline{z'}\cos\theta),$$

• Given \mathbf{F} , local minimas of $D(\mathbf{F}, \mathbf{F}_i)$, $\mathbf{F}_i \in \mathbf{M}_k$ lying below a threshold are computed $\forall \mathbf{M}_k$ in the corpus to form a match set $S = \{\mathbf{F}_1, \mathbf{F}_2, ...\}$

Transitions

- Transitions without constraints
 - Common pose $\mathbf{F}_{\mathbf{S}_i}$ is calculated by averaging over match frames
 - Using pair-wise transformations $T_{p,q}$ (aligns F_p to F_q) is inconsistent since, $T_{p,q} \ge T_{q,r} \ne T_{p,r}$
 - A common frame $\mathbf{F_{base}}$ is chosen and $\mathbf{T_{p,q}}$ is defined as $\mathbf{T_{p,base}} \times (\mathbf{T_{q,base}})^{-1}$
 - Closest to the rest of the frames is chosen as base frame.
 - The root position, joint offsets, and joint orientations of $\mathbf{F_{S_i}}$ are the average of the corresponding quantities in the match frames.
 - Replacing each $\mathbf{F_k} \in S_i$ by $(\mathbf{T_{k,base}})^{-1} \times \mathbf{F_{S_i}}$ assures C_0 continuity.
 - Displacement mapping on velocities results in C_1 continuity.
 - Displacement maps generally result in constraint violation

Results

STM overview:

http://www.youtube.com/watch?v=ls_qdjyOFzE&feature=youtu.be

Questions???