Learning Multi-Step Predictive State Representations - Appendix

Abstract

This appendix contains pseudocode for the algorithms presented in the main paper, and more details on the experiments.

Pseudocode of the encoding function

The pseudocode is given in Algorithm 1, using the following notation:

bestEncoding: A map from indices i of Q to the optimal encoding of Q[:i].

minEncoding: A map from indices i of Q to |bestE[i]| **opsEnding**: A map from indices i of Q to the set of strings in Σ' : $\{x \in \Sigma' s.tQ[i-|x|:i] == x\}$

Algorithm 1 Encoding Algorithm

```
\overline{\text{INPUT: } x}
OUTPUT: \kappa(x)
 1: procedure DPENCODE
         bestEncoding[] \leftarrow String[|x|+1]
 2:
 3:
         minEncoding[] \leftarrow Int[|x|+1]
         opsEnding[] \leftarrow String[|x|+1][]
 4:
         bestEncoding[0] = x[0]
 5:
         minEncoding[0] = 0
 6:
 7:
         for i in [1, |x|] do
             ospEnding[i] \leftarrow \{s \in \Sigma', x[i-|s|:i] == s\}
 8:
 9:
         end for
10:
        for i in [1, |x|] do
            bestOp \leftarrow null
11:
12:
             m \leftarrow null
             for s \in opEnd[i] do
13:
14:
                 t \leftarrow minE[i - |s|] + 1
                if m == null or t < m then
15:
16:
                     m \leftarrow t
                     bestOp \leftarrow s
17:
18:
                 end if
             end for
19:
20:
             minEncoding[i+1] \leftarrow m
             bestEncoding[i+1] \leftarrow bestEncoding[i-1]
21:
     |bestOp|] + bestOp
22:
         end for
23:
         return bestEncoding[|x|]
24: end procedure
```

Experiments

The figures below depict the Double Loop and Pacman environments used in the experiments.

Algorithm 2 Base Selection Algorithm

```
INPUT: Train, Sub_M
OUTPUT: \Sigma'
 1: procedure Base Selection
         \Sigma' \leftarrow \{s, s \in \Sigma\}
 2:
 3:
         bestEncoding \leftarrow null
 4:
         for each obs in Train do
 5:
             bestEncoding[obs] \leftarrow |obs|
 6:
         end for
 7:
         i \leftarrow 0
         while i < numOps do
 8:
             bestOp \leftarrow null
 9:
10:
             m \leftarrow 0
11:
             for each s \in Sub_M do
12:
                  c \leftarrow 0
13:
                 for each obs in Train do
14:
                            \leftarrow c + DPEncode(obs) -
                      c
    prevBestE(obs) \\
                 end for
15:
                 if c > m then
16:
17:
                      bestOp \leftarrow obs
18:
                      m \leftarrow c
19:
                 end if
             end for
20:
             \Sigma' \leftarrow \Sigma' \cup bestOp
21:
             for each obs in Train do
22:
                  bestEncoding \leftarrow DPEncode(obs, \Sigma')
23:
             end for
24:
25:
             i \leftarrow i + 1
26:
         end while
         return \Sigma'
27:
28: end procedure
```

Figure 1: Double Loop Environment

Figure 2: Graph of Pacman Labyrinth