1 Verificação de conceitos

- 1. Qual é a definição de transformação linear?
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^3$ é uma transformação linear. Sabendo que T(1,0)=(1,0,1) e T(0,1)=(0,2,-1) calcule T(3,5).
- 3. Se $T: \mathbb{R}^n \to \mathbb{R}^m$ é linear então existe uma matriz associada a esta transformação [T]. Quais são as dimensões desta matriz?
- 4. Verifique se as funções abaixo são lineares. Em caso afirmativo exiba a matriz associada (se possível).
 - (a) $A: \mathbb{R}^2 \to \mathbb{R}^2$, A(x,y) = (x+y, x-y)
 - (b) $B: \mathbb{R}^2 \to \mathbb{R}^2$, A(x, y) = (x + y, 1)
 - (c) $C: \mathbb{R}^2 \to \mathbb{R}^2$, $A(x,y) = (x \cdot y, y)$
 - (d) $D: \mathbb{R}^4 \to \mathbb{R}, D(x_1, x_2, x_3, x_4) = x_3$
 - (e) $E: \mathbb{R}^3 \to \mathbb{R}^2$, E(x, y, z) = (x z, x + y)
 - (f) $F: \mathbb{R}^2 \to \mathbb{R}^2$, F(x, y, z) = A(E(x, y, z))
- 5. A transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tem uma matriz associada $[T]_E^E = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ na base canônica. Qual é a matriz $[T]_\beta^\beta$ desta transformação na base $\beta = [u,v]$, onde u = (1,1) e v = (2,1)?
- 6. Determine a matriz da transformação $T: \mathbb{R}^2 \to \mathbb{R}^2$ que consiste na projeção ortogonal sobre o eixo Oy seguida de uma rotação em torno da origem por um ângulo de $\pi/4$.
- 7. Se uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ é sobrejetiva o que podemos dizer com relação ao sistema linear $[T] \cdot x = b$? O que podemos dizer sobre o posto desta matriz?
- 8. Se uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ é injetiva o que podemos dizer com relação ao sistema linear $[T] \cdot x = 0$? O que podemos dizer sobre o posto desta matriz?

2 Exercícios

- 1. Considere duas matrizes, $A_{10\times 3}$ e $B_{3\times 9}$ e seja $C_{10\times 9}$ o produto: $C=A\cdot B$. Qual é a dimensão mínima do núcleo de C? Qual é o posto máximo de C?
- 2. Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ linear e $\beta = [u_1, u_2, ..., u_n]$ uma base de \mathbb{R}^n . Mostre que T está completamente definida se forem conhecidas as imagens de T nos elementos da base, isto é, se forem conhecidos $v_1 = T(u_1), \ldots, v_n = T(u_n)$. Qual é a relação que existe entre os vetores v_i e a matriz associada a T?
- 3. Classifique como verdadeiro ou falso. Justifique sua classificação.
 - (a) Os vetores (1, 1, 1, 1), (2, 3, 0, 0) e (1, -1, 1, -1) são linearmente independentes.
 - (b) Os vetores $(1,\,1,\,1,\,1)$, $(2,\,3,\,0,\,0)$ e $(1,\,-1,\,1,\,-1)$ formam uma base de \mathbb{R}^4 .
 - (c) O espaço $E \subset \mathbb{R}^4$ tem uma base $\beta = [(1,1,2,3),(0,1,0,-1)]$ e o espaço $F \subset \mathbb{R}^4$ tem uma base $\gamma = [(1,-1,2,5),(1,2,3,2)]$. São subespaços distintos de \mathbb{R}^4 .
 - (d) Se o posto de $A_{101\times200}$ é 101, então o posto de A^T necessariamente é 101.
 - (e) Se as colunas de uma matriz são linearmente independentes então as linhas também são.
 - (f) As clunas de uma matriz formam uma base de sua imagem (espaço coluna).
 - (g) Seja v um vetor não nulo de \mathbb{R}^{10} . Considerando este vetor com uma matriz coluna, isto é, com 10 linhas e uma coluna a matriz $M = v \cdot v^T$ tem 10 linhas e 10 colunas e posto 1.

- 4. A transformação $P: \mathbb{R}^2 \to \mathbb{R}^2$ é a projeção ortogonal sobre o eixo Ox.
 - (a) Determine a matriz de P (da base canônica na base canônica, isto é $[P]_E^E$)
 - (b) Se $\beta = \{(1,1), (1,-1)\}$ determine as matrizes de mudança de base: $[Id]_E^{\beta}$ e $[Id]_{\beta}^E$.
 - (c) Encontre a matriz de P na base β , isto é, $[P]_{\beta}^{\beta}$.
- 5. Determine a matriz da rotação em \mathbb{R}^2 em torno da origem por um ângulo θ nas coordenadas $\beta = [u, v]$, onde u = (1, 1) e v = (2, 1)
- 6. Determine a matriz de rotação em \mathbb{R}^3 em torno do eixo Oz por um ângulo de θ na base canônica.
- 7. Calcule (use o computador, por favor) a matriz de rotação em \mathbb{R}^3 em torno do eixo definido pelo vetor $v = \frac{1}{\sqrt{3}}(1,1,1)$ por um ângulo de $\theta = \frac{\pi}{6}$.
 - (a) Use a matriz obtida para calcular a rotação em torno do eixo definido pelo vetor v por um ângulo de $\pi/6$ do ponto Q = (1, 3, 2). Faça um gráfico no computador com os três eixos coordenados com o vetor v, o ponto Q e o resultado da rotação R(Q).
- 8. Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ linear e $\beta = [u_1, u_2, ..., u_n]$ uma base de \mathbb{R}^n . Mostre que T está completamente definida se forem conhecidas as imagens de T nos elementos da base, isto é, se forem conhecidos $v_1 = T(u_1), \ldots, v_n = T(u_n)$. Qual é a relação que existe entre os vetores v_i e a matriz associada a T?
- 9. Seja $E = C(\mathbb{R})$ o espaço das funções contínuas $f : \mathbb{R} \to \mathbb{R}$. Defina o operador linear $A : E \to E$ pondo para cada $f \in E$, $A(f) = \phi$, onde $\phi(x) = \int_0^x f(t)dt$. Determine o núcleo e a imagem do operador A.
- 10. Assinale verdadeiro ou falso, justificando as afirmativas
 - () Para todo operador linear $A: E \to E$, se $u \in N(A)$ e $v \in C(A)$ então $u \cdot v = 0$
 - () O núcleo de toda transformação linear $A:\mathbb{R}^5 \to \mathbb{R}^3$ tem dimensão ≥ 3
 - () Em todo grafo com n vértices e m arestas vale #ciclosindependentes <math>#componentes conexas = m-n
 - () O conjunto dos funcionais afins $t: \mathbb{R}^n \to \mathbb{R}$ $(t(x_1,...,x_n) = a_0 + a_1x_1 + ... + a_nx_n)$ é um espaço vetorial
 - () O conjunto das transformações lineares $T: \mathbb{R}^n \to \mathbb{R}^m$ é um espaço vetorial de dimensão n
- 11. Determine uma base para a imagem e para o núcleo, quando possível, de cada uma das transformações lineares abaixo e indique quais são sobrejetivas.
 - (a) $A: \mathbb{R}^2 \to \mathbb{R}^2$, A(x,y) = (x y, x y)
 - (b) $B: \mathbb{R}^3 \to \mathbb{R}^3$, B(x, y, z) = (x + y/2, y + z/2, z + x/2)
 - (c) $C: M_{2\times 2} \to M_{2\times 2}, C(X) = A \cdot X$, onde $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $(M_{2\times 2} \neq 0 \text{ espaço das matrizes } 2 \times 2)$
 - (d) $D: P_n \to P_{n+1}, \, D(p(x)) = x \cdot p(x) \, \left(P_n \text{ \'e o espaço dos polinômios de grau at\'e } n \right)$
- 12. Considere o espaço P_n dos polinômios de grau até n. É verdade que ambas as transformações $D: P_n \to P_n$ e $I: P_n \to P_{n+1}$, dadas por $D(p(x)) = \frac{dp}{dx}(x)$ e $I(p(x)) = \int_0^x p(t) \cdot dt$ são lineares (justifique)? Em caso afirmativo, exiba as matrizes destas transformações de na base canônica de P_n e descreva o núcleo e a imagem delas.
- 13. O arquivo Matriz
Incidencia.csv que acompanha esta lista contém a matriz de incidência de uma rede
 direcionada (grafo), onde cada linha representa uma aresta e cada coluna um vértice. Se $A_{ij} = 1$ então
 a aresta i se inicia no vértice j. Se $A_{ij} = -1$ então a aresta i termina no vértice j. Deste modo em
 cada linha i há apenas uma entrada igual a 1 e uma entrada igual a -1 e todos demais elementos desta
 linha são iguais a zero.
 - (a) Encontre uma base para o núcleo da matriz de incidência. Você pode usar um pacote computacional, claro!
 - (b) Descreva quantas componentes conexas esta rede possui e quais são os vértices que pertencem a cada componente.