LECTURE 18

WINTER 2021
APPLIED MACHINE LEARNING
CIHANG XIE

GROUP ACTIVITIES

• Week 9 is the last week that you need to turn in your files

Most groups are doing extremely great

CLASS PARTICIPATION

IF you submitted all polling questions:

you are good

ELSEIF #(zoom participations less than 1hr) < 3

ELSE

you may lose participation credit

Come to my next Tuesday office hour

-- send me an email for booking this appointment

EXTRA CREDITS

Course Feedback

Medium	Online								
Timing	Scheduled								
	 Start Date 2021-05-24 08:00 End Date 2021-06-06 23:59 								
Response	Rate								
Response	Rate	Invited	% Rate						

60+ responded --- everyone get 1pt 80+ responded --- everyone get 2pts All responded --- everyone get 3pts

TODAY

- Convolutional Neural Network
 - TensorFlow implementation
- Transfer Learning
- Other Training Considerations
 - Batch normalization
 - Proper weight initialization

THE WHOLE CNN

cat dog

Flatten

Can repeat many times

THE WHOLE CNN

Input

6

Property I	7	3	

Some pat 8 7 1

Property 2

 The same different r
 0
 8
 4
 5

maxpool 8

Property 3

Subsampling the pixels will not change the object

Output

6

9

THE WHOLE CNN

cat dog Convolution Max Pooling Fully Connected Feedforward network Convolution 00000000 Max Pooling **Flatten**

Applied Machine Learning

Can repeat many times

CONVOLUTION VS FULLY-CONNECTED

convolution

-1 -1 -1 -2 -1 -1 -2 -4

image

Fullyconnected

I	0	0	0	0	1
0	_	0	0	_	0
0	0	_	_	0	0
I	0	0	0	1	0
0		0	0	ı	0
0	0		0	1	0


```
input
                                                 28 \times 28 \times I
  model.add(Conv2D(filters = 25, kernel size = (3, 3),
                                                                  Convolution
  activation = 'relu', input shape = (28, 28, 1)))
                                                 26 \times 26 \times 25
 How many parameters for each filter?
  model.add(MaxPooling2D(pool_size = (2, 2)))
                                                                  Max Pooling
                                                 13 \times 13 \times 25
model.add(Conv2D(filters = 1250, kernel_size = (3, 3),
                                                                  Convolution
activation = 'relu'))
 How many parameters for each filter? 225
                                              11 x 11 x 1250
  model.add(MaxPooling2D(pool size = (2, 2)))
                                                                  Max Pooling
                                                 5 \times 5 \times 1250
```


TRANSFER LEARNING

TRANSFER LEARNING

- A shortcut in training neural networks for recognition tasks
- The idea is to start with a fully trained image recognition neural network, off the shelf with trained weights.
- We can repurpose the trained network for our particular recognition task.
- What was learned by the neural network in it's early layers are useful features in recognizing various things in images.
- Keras even has pretrained models built in for this purpose:
 - Xception, VGG I 6, VGG I 9, ResNet, Inception V3, Inception ResNet V2, Mobile Net,
 DenseNet, NASNet

TRANSFER LEARNING WITH CNN

OTHER TRAINING CONSIDERATIONS

PROPER WIGHT INITIALIZATION

Initialization too small:
 Activations go to zero, gradients
 also zero → No learning

Usage in a Keras layer: initializer = tf.keras.initializers.HeNormal() layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun

Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

BATCH NORMALIZATION

- Distribution of each layer's input changes during training, as parameters of previous layers change → Internal covariate shift
- We try to fix this problem by normalization:
 - Input $x: N \times D$
 - Learnable Parameters γ , β : D
 - Intermediates μ , σ : D
 - $-\hat{x}: N \times D$
 - Output $y: N \times D$

EXTRA CREDITS

Course Feedback

60+ responded --- everyone get 1pt 80+ responded --- everyone get 2pts All responded --- everyone get 3pts

EXERCISE

HTTPS://BIT.LY/2RKUDRQ

QUESTIONSP