- 1. Sachant que 2 < $x \leqslant 3$, déterminer un encadrement de x^3
- **2.** Sachant que $-3 \le x \le 3$, déterminer un encadrement de x^3 .
- 3. Sachant que x > 4, déterminer une inégalité concernant x^3 .
- 4. Sachant que $x \leq -5$, déterminer une inégalité concernant x^3 .

175

- 1. Sachant que $8 \le x^3 \le 64$, déterminer un encadrement de x.
- 2. Sachant que $-1 < x^3 \le 125$, déterminer un encadrement de x.
- 3. Sachant que $x^3 > 27$, déterminer une inégalité concernant x.
- 4. Sachant que $x^3 < -1000$, déterminer une inégalité concernant x.

176

Résoudre dans $\mathbb R$ les inéquations d'inconnue x :

- 1. $-2x^3 > 16$
- **2.** $3x^3 \le 24$
- 3. $x^3 > -0.027$

1777

Donner un encadrement de $\frac{1}{x}$ pour :

- **1.** $x \in [1; 4]$
- **2.** $x \in]-4;-1]$
- **3.** $x \in]-10^4;-1[$

178

Résoudre les inéquations :

- 1. $\frac{1}{x} \ge 1$.
- **2.** $\frac{1}{x} > \frac{1}{2}$.
- 3. $\frac{1}{x} \geqslant -1$.

179

Pour quelles valeurs de x ne peut-on pas calculer les expressions suivantes :

- 1. $\frac{2}{x-3}$.
- **2.** $\frac{3x}{2x-5}$.
- 3. $3 + \frac{2+x}{x+7}$.

180

Mettre au même dénominateur pour x non nul :

- 1. $\frac{1}{x} + 5$.
- 2. $\frac{1}{x} + \frac{3}{4}$.
- 3. $\frac{2}{x} + \frac{1}{2x}$.

181

- 1. Justifier que :
 - **a.** $\frac{1}{\sqrt{2} + \sqrt{1}} = \sqrt{2} \sqrt{1}$.
 - **b.** $\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}$.
- **2.** Démontrer que pour tout entier naturel n,

$$\frac{1}{\sqrt{n+1}+\sqrt{n}} = \sqrt{n+1} - \sqrt{n}.$$

182

On considère deux réels a et b. Développer, réduire et ordonner :

- 1. $(a+b)^3$.
- **2.** $(a-b)^3$.