

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2002年12月10日
Date of Application:

出願番号 特願2002-357476
Application Number:
[ST. 10/C] [JP 2002-357476]

願人 セイコーエプソン株式会社
Applicant(s):

CERTIFIED COPY OF
PRIORITY DOCUMENT

2003年12月 9日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

出証番号 出証特2003-31016

BEST AVAILABLE COPY

BEST AVAILABLE COPY

【書類名】 特許願
【整理番号】 J0095305
【提出日】 平成14年12月10日
【あて先】 特許庁長官殿
【国際特許分類】 G03G 15/08
【発明者】
【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内
【氏名】 岡本 克巳
【特許出願人】
【識別番号】 000002369
【氏名又は名称】 セイコーエプソン株式会社
【代理人】
【識別番号】 100095452
【弁理士】
【氏名又は名称】 石井 博樹
【手数料の表示】
【予納台帳番号】 055561
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0016652
【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 現像ローラの摩擦熱発生抑制装置及び該装置を備える現像カートリッジ

【特許請求の範囲】

【請求項 1】 複数の現像カートリッジを装着した状態で回転軸の周囲で回転することにより、選択された現像カートリッジを画像形成装置における感光体ドラムに隣接させて該現像カートリッジ内のトナーを感光体ドラムに移行可能なロータリー現像ユニットで使用する現像カートリッジであって、該現像カートリッジが、

内部にトナー収容部が形成されているハウジングと、
前記ハウジングの端面にその回転軸が回転可能に支持される現像ローラと、
前記現像ローラを前記ハウジングの一方の端面側に付勢する付勢装置と、
前記ハウジングの内面に形成され、前記現像ローラの付勢される方向の側に位置する前記現像ローラの端面の移動を規制する度当て部と、
前記現像ローラの端面と前記度当て部との間に挟まれるように設けられる低摩擦部材とを備えることを特徴とする現像ローラの摩擦熱発生抑制装置。

【請求項 2】 複数の現像カートリッジを装着した状態で回転軸の周囲で回転することにより、選択された現像カートリッジを画像形成装置における感光体ドラムに隣接させて該現像カートリッジ内のトナーを感光体ドラムに移行可能なロータリー現像ユニットで使用する現像カートリッジにおいて、該現像カートリッジが、

内部にトナー収容部が形成されているハウジングと、
前記トナー収容部に隣接して設けられ、その回転軸が前記ハウジングの端面に回転可能に支持される供給ローラと、
前記供給ローラの周面に接する周面を有し、その回転軸が前記ハウジングの端面に回転可能に支持される現像ローラと、
前記現像ローラを前記ハウジングの一方の端面側に付勢する付勢装置と、
前記ハウジングの内面に形成され、前記現像ローラの付勢される方向の側に位置する前記現像ローラの端面の移動を規制する度当て部と、

前記現像ローラの端面と前記度当て部との間に挟まれるように設けられる低摩擦部材とを備えることを特徴とする現像ローラの摩擦熱発生抑制装置。

【請求項3】 請求項1または2において、前記低摩擦部材はポリスライダーであることを特徴とする現像ローラの摩擦熱発生抑制装置。

【請求項4】 請求項1～3のいずれか1項において、前記付勢装置は、前記現像ローラの回転軸の一端側に設けられ、周面にハス歯が形成される現像ローラ駆動ギアと、前記ハウジングの端面に支持される支持軸を有し、周面に前記現像ローラ駆動ギアと歯合するハス歯が形成される中間ギアとによって構成され、前記ハス歯の噛み合い作用により、前記現像ローラは前記現像ローラ駆動ギア側へ付勢されることを特徴とする現像ローラの摩擦熱発生抑制装置。

【請求項5】 請求項1～4のいずれかに記載の現像ローラの摩擦熱発生抑制装置を備えることを特徴とする現像カートリッジ。

【請求項6】 請求項5に記載の現像カートリッジが用いられる画像形成装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、トナーを収容すると共に感光体ドラムに形成された潜像をトナーで現像するための、レーザービームプリンタ、デジタル複写機等の画像形成装置で使用する現像カートリッジに係り、特に現像カートリッジを一方的に付勢して位置決めする際に生じる度当て部での過熱を防止する構造に関するものである。

【0002】

【従来の技術】

ロータリー現像ユニットを備える従来のレーザービームプリンタの構造を説明する（例えば、特許文献1、特許文献2および特許文献3参照。）。このロータリー現像ユニットを備えるレーザービームプリンタでは、各々色の異なるトナーを収容した複数の現像カートリッジがロータリー現像ユニットにセットされている。印刷時には、ロータリー現像ユニットを回転しながら必要な色の現像カートリッジを感光体ドラムに隣接させて、感光体ドラムに形成された潜像にトナーを

担持させ、このトナーを感光体ドラムから転写ベルトを介してシート（印刷媒体）に転写して定着する。

【0003】

現像カートリッジには供給ローラと現像ローラとが設けられており、トナーは、供給ローラを介して現像ローラに供給され、現像ローラから感光体ドラムに供給される。また、現像ローラの回転軸にハス歯ギアを設けて、これと噛み合う同じくハス歯ギアで構成されるアイドルギアとの作用により現像ローラをギアの位置する側へ付勢させて、現像ローラの端面をハウジングに形成された度当てに当接させることにより、現像カートリッジの長手方向の位置を決定するようしている。

【0004】

しかし、このような構成では、現像ローラの端面が常に度当てに圧接しているため、現像ローラの回転時に現像ローラの端面と度当ての表面との間で摩擦熱が発生し、通常、熱可塑性部材で構成されている度あてが、この摩擦熱により軟化して変形してしまうことがある。これにより現像ローラの長手方向の位置がずれてしまうことになる。また現像ローラの端面と度あてとの摩擦抵抗が大きいと、これらのいずれかが摩耗して、現像ローラの位置ずれの原因となったり、現像ローラの安定した回転を阻害する原因となりうる。

【0005】

【特許文献1】

特開平2002-268319号公報

【特許文献2】

特開平10-3248号公報

【特許文献3】

特開平8-129306号公報

【0006】

【発明が解決しようとする課題】

本発明の目的は、現像ローラの端面と度あてとの間で生じる摩擦熱を極力少なくし、現像ローラが滑らかに安定して回転できるような現像ローラの摩擦熱発生

抑制装置及びこれを備える現像カートリッジを提供することにある。

【0007】

【課題を解決するための手段】

上記目的を達成するため、本発明の第1の態様に係る現像ローラの摩擦熱発生抑制装置は、複数の現像カートリッジを装着した状態で回転軸の周囲で回転することにより、選択された現像カートリッジを画像形成装置における感光体ドラムに隣接させて該現像カートリッジ内のトナーを感光体ドラムに移行可能なロータリー現像ユニットで使用する現像カートリッジであって、該現像カートリッジが、内部にトナー収容部が形成されているハウジングと、前記ハウジングの端面にその回転軸が回転可能に支持される現像ローラと、前記現像ローラを前記ハウジングの一方の端面側に付勢する付勢装置と、前記ハウジングの内面に形成され、前記現像ローラの付勢される方向の側に位置する前記現像ローラの端面の移動を規制する度当て部と、前記現像ローラの端面と前記度当て部との間に挟まれるように設けられる低摩擦部材とを備えることを特徴とする。

【0008】

また、本発明の第2の態様に係る現像ローラの摩擦熱発生抑制装置は、複数の現像カートリッジを装着した状態で回転軸の周囲で回転することにより、選択された現像カートリッジを画像形成装置における感光体ドラムに隣接させて該現像カートリッジ内のトナーを感光体ドラムに移行可能なロータリー現像ユニットで使用する現像カートリッジにおいて、該現像カートリッジが、内部にトナー収容部が形成されているハウジングと、前記トナー収容部に隣接して設けられ、その回転軸が前記ハウジングの端面に回転可能に支持される供給ローラと、前記供給ローラの周面に接する周面を有し、その回転軸が前記ハウジングの端面に回転可能に支持される現像ローラと、前記現像ローラを前記ハウジングの一方の端面側に付勢する付勢装置と、前記ハウジングの内面に形成され、前記現像ローラの付勢される方向の側に位置する前記現像ローラの端面の移動を規制する度当て部と、前記現像ローラの端面と前記度当て部との間に挟まれるように設けられる低摩擦部材とを備えることを特徴とするものである。

【0009】

第1の態様または第2の態様によれば、現像ローラの回転時に現像ローラの端面と低摩擦部材とが滑らかに摺接し、また度当て部と低摩擦部材も滑らかに摺接することができる。これにより摺接部分での摩擦熱の発生が極力抑えられるため、摩擦熱に起因する度当て部の変形も生じない。また度当て部や現像ローラの端面での摩耗が起こらないため、現像ローラの長手方向の位置決めが確実に行われる。

【0010】

また、本発明の第3の態様に係る現像ローラの摩擦熱発生抑制装置は、前記第1の態様または第2の態様において、前記低摩擦部材はポリスライダーであることを特徴とするものである。ポリスライダーは接触する材料との摩擦係数が低く、且つ耐摩耗性に優れるので低摩擦部材として最適である。

【0011】

また、本発明の第4の態様に係る現像ローラの摩擦熱発生抑制装置は、前記第1乃至第3のいずれかの態様において、前記付勢装置は、前記現像ローラの回転軸の一端側に設けられ、周面にハス歯が形成される現像ローラ駆動ギアと、前記ハウジングの端面に支持される支持軸を有し、周面に前記現像ローラ駆動ギアと歯合するハス歯が形成される中間ギアとによって構成され、前記ハス歯の噛み合い作用により、前記現像ローラは前記現像ローラ駆動ギア側へ付勢されることを特徴とするものである。

本態様によれば、現像ローラ駆動ギアのハス歯と中間ギアのハス歯との噛み合い作用により、現像ローラは現像ローラ駆動ギア側へ付勢される。

【0012】

また、本発明の第5の態様に係る現像カートリッジは、前記第1乃至第4のいずれかの態様に係る現像ローラの摩擦熱発生抑制装置を備えることを特徴とするものである。本態様によれば、摩擦熱に起因して度当て部が変形したり、度当て部等が摩耗することができないため、現像ローラの長手方向の位置が正確に決定され、感光体ドラムへの安定したトナー供給を実現することができる。

【0013】

また、本発明の第6の態様に係る画像形成装置は、第5の態様に係る現像カー

トリッジが用いられるものである。これにより、高品質の画像を安定して得るとこができる。

【0014】

【発明の実施の形態】

以下、本願発明の実施の形態を図面に基づいて説明する。図1は本発明に係る現像ローラの摩擦熱発生抑制装置を装備する画像形成装置を示す側断面図であり、図2は、ロータリー現像ユニットの斜視図であり、図3は、上部ハウジング部材と下部ハウジング部材とを矢印の方向に開けた状態を示す斜視図であり、図4は、現像カートリッジの側断面図である。また図5は、2つの現像カートリッジに注目して、ロータリー現像ユニットが(a)に示す状態から(b)に示す状態に回転したときの各現像カートリッジ内のトナーの動きを示す説明図である。更に図6の(a)はローラ支持フレームの全体を示す正面図であり、(b)はローラ支持フレームの左側部分の拡大図であり、(c)はローラ端シール部材及びローラ支持フレーム周辺を示す側断面図であり、また図7の(a)は図3における現像ローラの左側を破断して軸が支持されている様子を示し、(b)は図3における現像ローラ55の右側を破断して軸が支持されている様子を示す断面図である。更に図8は、ローラ支持フレームと、これに支持される供給ローラ及び現像ローラを示す斜視図である。

【0015】

本発明が適用される画像形成装置1では、装置本体3内に感光体ドラム5が矢印7の方向に回転自在に設けられている。感光体ドラム5の周りには回転方向7に沿って、帯電手段である帯電器9、現像手段である現像カートリッジを保持するロータリー現像ユニット11およびクリーニング部13がそれぞれ配置されている。帯電器9は帯電バイアス回路(図示省略)から帯電バイアスが印加されており、感光体ドラム5の外周面を均一に帯電させることができる。

【0016】

ロータリー現像ユニット11の下方には露光ユニット15が設けられ、露光ユニット15からは帯電器9によって帯電された感光体ドラム5の外周面に向けてレーザ光しが照射される。この露光ユニット15は、画像形成指令を画像展開し

て得られる画像データに応じてレーザ光Lを感光体ドラム5上に走査露光して、感光体ドラム5上に画像形成指令に対応する静電潜像を形成する。

【0017】

このように形成された静電潜像はロータリー現像ユニット11によってトナー現像される。すなわち、本実施の形態ではロータリー現像ユニット11として、イエロー用の現像カートリッジ12Y、シアン用の現像カートリッジ12C、マゼンタ用の現像カートリッジ12M、およびブラック用の現像カートリッジ12Kがロータリー現像ユニット11の回転軸31を中心に回転自在に設けられている。これらの現像カートリッジ12Y, 12C, 12M, 12Kは現像ユニット11の周方向での位置が決定されることで、感光体ドラム5に対して選択的に隣接し、トナーを感光体ドラム5の表面に供給することができる。これにより、感光体ドラム5上の静電潜像が選択されたトナー色で顕像化される。図1ではイエロー用の現像カートリッジ12Yがトナーを感光体ドラム5に供給している状態を示している。尚、本明細書において、現像カートリッジについてその「上」または「下」の語を使用する場合、図1の現像カートリッジ12Yの向きを基準とし、現像カートリッジについて「左」または「右」の語を使用する場合、図3に示した現像カートリッジの向きを基準とする。

【0018】

ロータリー現像ユニット11からクリーニング部13にかけての上方には転写ユニット19が設けられている。転写ユニット19は、複数のローラに掛け渡された中間転写ベルト21と、中間転写ベルト21を回転駆動させる駆動部（図示省略）とを備えている。現像ユニット11で現像されたトナー像は、一次転写領域17で転写ユニット19の中間転写ベルト21上に一次転写される。また感光体ドラム5は、一次転写領域17から図1の矢印7で示す回転方向に回転した位置で、クリーニング部13によって、一次転写後に感光体ドラム5の外周面に残留して付着しているトナーが搔き落とされる。

【0019】

カラー画像をシート部材Sに転写する場合には、感光体ドラム5上に形成される各色のトナー像を中間転写ベルト21上に重ね合わせてカラー画像を形成する

と共に、二次転写領域 23において、カセット 25から取り出されたシート部材 S上にカラー画像を二次転写する。このようにしてカラー画像が形成されたシート部材 Sは定着ユニット 27を経由して装置本体 3の上面部に設けられた排出トレイ部 29上へ搬送される。

【0020】

次に、図1の画像形成装置1に装備されたロータリー現像ユニット11の構成およびその動作について説明する。図2に示す如く、ロータリー現像ユニット11は中心に回転軸31を有し、該回転軸31の周囲には互いに90度の角度の間隔で形成された4つのフレーム要素33から構成される支持フレーム35が回転軸31に固定して設けられている。各フレーム要素33の間には収納部37が形成されており、各収納部37に対して前述の4色の現像カートリッジ12Y, 12C, 12M及び12Kが収納され、図示しない固定金具によって支持フレーム33に固定されている。尚図2では、簡略のため現像カートリッジ12Yのみを示している。

【0021】

回転軸31には図示しない駆動部がクラッチを介して接続されており、この駆動部を駆動することで支持フレーム35を回転させ、4つの現像カートリッジ12Y, 12C, 12M, 12Kのうち、いずれか一つの現像カートリッジを選択的に感光体ドラム5と対向する現像位置（図1中、現像カートリッジ12Yの位置）に位置決めできるように構成されている。

【0022】

支持フレーム35に保持される現像カートリッジ12Y, 12C, 12M, 12Kは、いずれも同一の構成を有している。従ってここでは、現像カートリッジ12Y, 12C, 12M, 12Kを総称して現像カートリッジ12として、以下説明する。

現像カートリッジ12は、上部ハウジング部材41と下部ハウジング部材42が一体的に組み合わされて、本体となるハウジング43が形成されている。

【0023】

図3に示す如く、ハウジング43内にはトナーを収容するためのトナー収容部

45が形成されており、トナー収容部45には、トナー47を攪拌するための複数の傾斜した攪拌片51が形成されている。ロータリー現像ユニット11が回転軸31を中心として回転するときに、トナー47が攪拌片51に沿って落下することによりトナー収容部45内でトナー47が攪拌されるようになっている。

【0024】

またトナー収容部45には、表面がウレタンスponジで形成された供給ローラ53（Sローラともいう）が、金属製の回転軸139に支持された状態でハウジング43に対して回転可能な状態で配置されている。図3及び図4に示す如く、供給ローラ53の外側には現像ローラ55（Dローラとも云う）が供給ローラ53と接触し且つ金属製の回転軸135に支持された状態で、ハウジング43に対して回転可能に設けられている。供給ローラ53がハウジング43内に収納されたトナー47をその表面に担持した状態で矢印（図4）の方向に回転するとき、現像ローラ55はその外周面に供給ローラ53からトナー47を受け取りながら、供給ローラ53より低速で図4の矢印の方向へ回転するようになっている。この例では供給ローラ53が現像ローラ55の1.5倍の速度で回転するようになっている。尚、供給ローラ53及び現像ローラ55には、後述する機構により帯電バイアスが印加され帯電可能となっている。

【0025】

図4に示す如く、現像ローラ55は感光体ドラム5と接触しながら回転し、現像ローラ55に担持されたトナー47は、現像位置39において感光体ドラム5の表面に付着するようになる。このようにして、トナー47は供給ローラ53から現像ローラ55の表面に擦り付けられて、所定厚み（例えば約 $10\mu m$ ～ $20\mu m$ ）のトナー層を形成し、このトナー層が同様にして感光体ドラム5へ移行する。

【0026】

図2に戻り、ハウジング43を構成する上部ハウジング部材41の上面57には、トナー収容部45内の空気を大気と流通させるための連通孔61が形成されており、連通孔61には、空気は通過するがトナーは通過しない大きさの多数の微孔が形成されたシール63が貼付されている。このようなトナー収容部45内

との空気連通手段を上部ハウジング部材41の上面57に設けることにより、ロータリー現像ユニット11が回転軸31を中心として回転するとき、トナー47の落下現象によりその下側の空気が連通孔61から押し出されるため、トナー収容部45内の空気を入れ替えることができる。

【0027】

図5は現像カートリッジ12Cと現像カートリッジ12Kとに注目して、ロータリー現像ユニット11が図5（a）に示す状態から図5（b）に示す状態に回転したときの各現像カートリッジ12C、12K内のトナー47の動きを示すものである。尚、図5（a）、（b）ではシール63は図示を省略してある。

【0028】

図5（a）において、現像カートリッジ12K内のトナー47Kは下部ハウジング部材42側に位置し、その後図5（b）に示す位置までロータリー現像ユニット11が回転すると、現像カートリッジ12K内のトナー47Kは上部ハウジング部材41側へ落下するように移動し、その時、トナー収容部45内の空間の領域65の空気は上側から覆い被さるように落下してくるトナー47Kによって連通孔61から追い出されるようになる。

【0029】

このようにトナー収容部45内の空気が連通孔61を介して自由に流通可能とすることにより、トナー収容部45内のトナー47が消費されていく過程でも、トナー収容部45内が負圧とならず、トナー収容部45内の圧力を常に大気圧と等しくしておくことができる。またトナー収容部45の近くに熱発生源が存在する場合でも、トナー収容部45内の空気がこの熱発生源からの熱で膨張して加圧状態になることを防止することができる。従ってトナー収容部45内の圧力の影響を排除して、トナー収容部45からのトナーの供給状態を常に一定に維持することができる。

【0030】

次に現像カートリッジ12における現像ローラ55の周辺構造について図4、図6、図8を参照しながら説明する。現像カートリッジ12のハウジング43にはローラ支持フレーム75が固定されている。ローラ支持フレーム75は全体が

金属で構成されており、図6（a）に示す如く、下枠部77と、下枠部77の両端から90度屈曲して形成される側枠部79a、79bと、側枠部79a、79bの各上端にネジ81で接続されている上枠部83とから構成されている。そして下枠部77、上枠部83及び2つの側枠部79a、79bによって囲まれた領域には現像ローラ55が配置可能となっている。

【0031】

また図6に示す如く、下枠部77には、ブレード固定フレーム85が複数の固定ネジ87によって取り付けられており、該ブレード固定フレーム85と下枠部77との間には図4に示す如く、リン青銅でできたブレード支持プレート89が設けられている。ブレード支持プレート89の先端側の上面にはゴムや樹脂部材等で構成される規制ブレード91が貼付されており、該規制ブレード91は、ブレード支持プレート89自体のバネ復帰作用と、ブレード支持プレート89の先端側の下側に設けられるバックアップスponジ93（図4参照）の弾性復帰作用とにより、現像ローラ55の周面に対してその長手方向に亘って一定圧で押圧されている。

【0032】

規制ブレード91は、トナー47がこれと摩擦することによって同じ極性に帶電するという機能を有する。このようにして現像ローラ55に対して所定極性に帶電されたトナーが供給され、感光体ドラム5上の静電潜像を現像ローラ55上のトナー47によって現像することができる。

【0033】

また規制ブレード91は、現像ローラ55の周面に付着したトナー47を、例えば厚みが最終的に $20\mu m$ 程度になるように平均的に馴らす機能を有する。従って、現像ローラ55の長手方向でのトナー47の厚みを均一にするため、規制ブレード91が現像ローラ55の周面に対してその長手方向に亘って一定圧で押圧されていることが現像カートリッジ12にとって重要なことである。

【0034】

このような規制ブレード91の現像ローラ55への押圧力の平均化を担保するために、上述したようにローラ支持フレーム75の構成要素として上枠部83を

追加し、ローラ支持フレーム75が閉ループ構造となるようにしている。

【0035】

即ち、このような閉ループ構造を採用し、現像ローラ55と規制ブレード91とをユニット化することにより、ローラ支持フレーム75の保形性が高くなるから、現像カートリッジ12をロータリー現像ユニット11の収納部37に装着したり、そこから脱着するときにローラ支持フレーム75に相当の力が加わったとしても、現像ローラ55の周面と規制ブレード91との位置関係はその長手方向に亘って変化しにくくなる。これにより規制ブレード91はその長さ方向に亘り、常に一定の力で現像ローラ55の周面に押圧し続けるから、現像ローラ55の周面でのトナー47の分布が現像ローラ55の長さ方向で偏ることを防止することができ、色の濃淡のムラ等の印刷不良を防止することができる。

【0036】

次にローラ支持フレーム75を下部ハウジング部材42に取り付ける構造について、図7（a）（b）を参照しながら説明する。図7（a）は図3における現像ローラ55の左側を破断して回転軸135が支持されている様子を示し、図7（b）は図3における現像ローラ55の右側を破断して回転軸135が支持されている様子を示す。

【0037】

図7（a）（b）に示す如く、下部ハウジング部材42の端面95a、95bには各々供給ローラ用貫通穴（図示せず）と現像ローラ用貫通穴99とが形成されており、端面95a、95bの外側には軸保持部材101a、101bが設けられている。

【0038】

また現像ローラ55の回転軸135の両端部は、軸保持部材101a、101bから現像ローラ用貫通穴99内へ延びる軸保持部105に回転可能に支持されている。図7（a）に示す如く、下部ハウジング部材42の左側の端面95aにはネジ107のネジ山よりも若干小さな2つの孔106が形成されており、そこに座金108を介してネジ107が強制的にねじ込まれることにより、左側の軸保持部材101aと下部ハウジング部材42の左側の端面95aとが固定されて

いる。またローラ支持フレーム75における左側の側枠部79aにも、下部ハウジング部材42の左側の端面95aの孔106と整合する位置にネジ107用の2つの孔が形成されているが、これらの孔はネジ107のネジ山よりも大きいばか孔109となっており、ここにネジ107が入り込んでいる。

【0039】

一方、図7（b）に示す如く、下部ハウジング部材42の右側の端面95bにはネジ111のネジ山よりも大きな2つのばか孔113が形成されており、ローラ支持フレーム75における右側の側枠部79bには、整合する位置にネジ111用の雌ネジが形成された2つのネジ孔115が形成されている。そして右側の軸保持部材101bに形成された孔からばか孔113及びネジ孔115にネジ111をねじ込むことにより、右側の軸保持部材101b、下部ハウジング部材42の右側の端面95b及び右側の側枠部79bが一体に固定される。

【0040】

このような構成の結果として、ハウジング43とローラ支持フレーム75との関係は、右側においてはハウジングの長手方向への移動が規制されるように互いに固定されているが、左側においてはローラ支持フレーム75の側枠部79aが下部ハウジング部材の端面95aに対して固定されていないため、両者は互いの影響を受けることなくハウジングの長手方向に自由に移動することが可能となる。

【0041】

かかる構成を採用する理由は、ハウジング43を構成する樹脂の方が、ローラ支持フレーム75を構成する金属よりも熱膨張係数が大きいので、熱変化によりハウジング43とローラ支持フレーム75との間で伸縮差（ハウジング43の方が伸縮差が大きい）を生じるが、このような伸縮差による影響をなくすためである。即ち、上記構成を採用することによりハウジング43とローラ支持フレーム75との伸縮差の違いによるローラ支持フレーム75の歪みを防止することができるから、ローラ支持フレーム75に設けられる現像ローラ55の外周面への規制ブレード91の当接圧力を、その長手方向に亘って一定に維持し続けることができ、長手方向に亘ってムラのないトナー供給が実現される。

【0042】

尚、図7（a）（b）では明瞭に示されていないが、下部ハウジング部材42の端面95aとローラ支持フレーム75の側枠部79aとの間は、下部ハウジング部材42が最も縮んだ状態でも両者の間に僅かに隙間が形成されているように設計されている。

【0043】

次にハウジング43内のトナー収納部45から外部へのトナー47の飛散を防止する構造について説明する。図4に示す如く現像ローラ55の上方には、ローラ支持フレーム75の上枠部83に対して飛散防止シール部材117が固定されており、飛散防止シール部材117の他端側は、下部ハウジング部材42に固定されているバックアップスポンジ119によって現像ローラ55側へ押し付けられている。これにより現像ローラ55と上枠部83との間からのトナー47の外部への飛散を防止している。

【0044】

またローラ支持フレーム75の上枠部83の内側にはシール部材121が貼付されており、該シール部材121が下部ハウジング部材42との間の隙間を塞いでおり、これによりバックアップスポンジ119を通過したトナー47の外部への飛散を防止している。

【0045】

更に図6（c）、図8に示す如く、現像ローラ55の周面の両端部にはローラ端シール部材123が当接し、現像ローラ55の端部からのトナー47の外部への飛散を防止している。図8中の一部拡大図に示す如く、ローラ端シール部材123は、上側の低摩擦機能部材125と下側の粉体シール機能部材127とが貼り合わされた2重構造である。上側の低摩擦機能部材125は、例えばフジロン7000（登録商標）（フジコー株式会社製）などのように現像ローラ55との接触面の回転摩擦抵抗をなるべく小さくし、回転摩耗に対する耐久性に優れた材質で構成されている。また下側の粉体シール機能部材127は、例えば羊毛フェルトのようにトナーなどの粉体に対するシール機能性に優れた材質で構成されている。

【0046】

このようなローラ端シール部材123の基端側はブレード支持プレート89又は下枠部77に固定されており、ローラ端シール部材123の先端側は、下部ハウジング部材42によって下側から支持されているが、下部ハウジング部材42には固定されておらず、自由端となっている。

【0047】

ローラ端シール部材123の先端側を自由端とすることにより、現像ローラ55の両端の周面とローラ端シール部材123との接触状態が経時的に微妙に変化するため、ローラ端シール部材123の同じ箇所だけが溝状に磨り減ってしまい、シール性能が低下するということを回避することができる。

【0048】

次に供給ローラ53及び現像ローラ55の駆動機構について図9～図12を参考しながら説明する。図9は、供給ローラ及び現像ローラの駆動系を示す現像カートリッジの側面図であり、図10は、供給ローラ及び現像ローラの駆動系を示す現像カートリッジの部分斜視図であり、図11は、現像カートリッジの右側端面を示す正面図であり、図12は、アイドルギアの回転軸の長手方向軸線に沿った断面図である。

【0049】

図9において符号129はロータリーギアを示し、ロータリーギア129は、ロータリー現像ユニット11の各収納部37の端面から内向きに形成されたピン128（図2参照）に挿入されて設けられている。ロータリーギア129は、図示しない駆動源に接続されており、後述するアイドルギア131等を介して供給ローラ及び現像ローラに駆動力を伝達する。

【0050】

図9に示す如く、ロータリーギア129は隣接する中間ギアであるアイドルギア131に歯合しており、アイドルギア131は、現像カートリッジ12のハウジング43の右側端面130（図3において右側に位置する端面）に固定して設けられる支持軸133に対して回転自在に設けられている。アイドルギア131は、現像ローラ55の回転軸135に設けられる現像ローラ駆動ギア137にも

歯合しており、現像ローラ駆動ギア 137 は、供給ローラ 53 の回転軸 139 に設けられる供給ローラ駆動ギア 141 に歯合している。

【0051】

現像ローラ駆動ギア 137 は、外側に位置しハス歯ギアの形態を有する第1ギア部分 143 と、内側に位置し平歯ギアの形態を有する第2ギア部分 145 との2つのギア部分から構成されている。第2ギア部分 145 は、第1ギア部分 143 に隣接し、第1ギア部分 143 より若干小さな外径寸法を有する。図9に示す如く、当該現像カートリッジ 12 の出荷時に、アイドルギア 131 と現像ローラ駆動ギア 137 とが歯合する部分の上側にはグリス 138 が供給されており、使用されることで各ギアの回転時にグリス 138 がギアの周面を介して全てのギアに行き渡るようにしてある。尚、グリスを設ける位置は他のギア同士が歯合する部分の上側でもよい。

【0052】

アイドルギア 131 は、現像ローラ駆動ギア 137 における第1ギア部分 143 と歯合可能なハス歯ギアの形態を有し、またロータリーギア 129 も、アイドルギア 131 と歯合可能なハス歯ギアの形態を有している。一方供給ローラ駆動ギア 141 は平歯ギアの形態をしており、現像ローラ駆動ギア 137 における第2ギア部分 145 と歯合している。

【0053】

アイドルギア 131 及び現像ローラ駆動ギア 137 の第1ギア部分 143 のはす歯ギアの歯の向きは、図10において各ギアが矢印で示す方向に回転したときに、現像ローラ 55 が矢印 147 で示す方向に付勢されるような向きとなっている。このように供給ローラ 53 及び現像ローラ 55 の駆動機構にハス歯ギアを採用することにより現像ローラ 55 を矢印 147 で示す方向に付勢して、現像ローラ 55 の長手方向での位置決めを行っている。尚このようなハス歯ギアによる現像ローラ 55 の付勢構造は、請求項1における付勢装置に対応する。

【0054】

このような付勢力の反作用としてアイドルギア 131 は矢印 149 で示す方向に付勢される傾向にあり、その結果としてアイドルギアの支持軸 133 は、ギア

等の摩擦熱等により軟化したハウジング43の右側端面130を内側へ押し込んで変形させてしまう。

【0055】

そこで図11に示す如く、変形防止装置として、ハウジング43の右側端面130の外面に当接し、支持軸133の断面よりも十分に広い面積でハウジングの端面130の外面側に当接する圧力分散板151を設けている。これによりアイドルギアの支持軸133に掛かる応力を圧力分散板151に分散させて、ハウジング43の右側端面130が変形することを防止している。

【0056】

更に詳しく説明すると、図12に示す如く、アイドルギアの支持軸133の中央付近には、該支持軸133からフランジ状に拡径された押さえ部153が一体形成されており、押さえ部153よりも外側にアイドルギア131が回転自在に設けられている。アイドルギアの支持軸133の基端側は、ハウジング43の右側端面130を貫通し、ナット155により端面130に固定されている。圧力分散板151は一例として支持軸133が貫通するための穴を有する金属プレート板から構成されており、押さえ部153とハウジング43の右側端面130の外面との間に挟持されるように設けられている。これによりアイドルギアの支持軸133に矢印149で示す方向に負荷が掛かると、押さえ部153が圧力分散板151を押し、圧力分散板151がハウジング43の右側端面130の広い面積で支持されることにより、端面130の変形が防止される。

【0057】

圧力分散板151の形状及び大きさは、アイドルギアの支持軸133に掛かる負荷に応じて、ハウジング43の右側端面130が変形しないように適宜決定することができる。また押さえ部153は支持軸133と一体形成する必要はなく、従来の支持軸133にリング状の押さえ部153を貫通させ、ピン等で固定するようにしてもよい。また押さえ部153を使用せず、圧力分散板151を直接、支持軸133に固定することもできる。

【0058】

次に現像ローラ55の周辺構造について図13～図17を参照しながら説明す

る。図13は、現像ローラ駆動ギアの内部を示す縦断面図であり、図14は、現像カートリッジの右側部分を示す斜視図であり、図15は、度当て部周辺の構造を示す斜視図であり、図16は、現像ローラの右側端面に低摩擦部材が設けられる状態を示す斜視図であり、図17は、当接規制コロと感光体ドラムの関係を示す正面図である。

【0059】

図13に示す如く、現像ローラ駆動ギア137は、前述した第1ギア部分143と第2ギア部分145とが段付きで形成される外側部分157と、現像ローラの回転軸135を支持する内側部分159とから構成されている。現像ローラ駆動ギア137の外側部分157は樹脂で形成されており、内側部分159は金属を焼結させて形成されている。焼結金属製の内側部分159は第1ギア部分143と第2ギア部分145とに跨るように形成されている。このような構造を採用することにより、現像カートリッジ12内で発生した熱が現像ローラの回転軸135を伝わり、現像ローラ駆動ギア137の内側部分159から放熱されるため、現像カートリッジ12内が過剰に加熱されることを防止することができる。

【0060】

このような形態の現像ローラ駆動ギア137を形成する場合には、焼結金属製の内側部材159を用意し、この焼結金属製内側部材159を存在させた状態でインサート成型により外側部材157を成形する。樹脂のみから段付きの2つのギア部分を有するギアを形成する従来の方法では、型成形後の冷却時に、2つのギア部分の厚みの違いから境界部分に「ヒケ」と呼ばれる凹んだ部分が形成され、軸受け精度やギアの外縁の精度に影響を及ぼしていたが、上記のように内側部材159を焼結金属製にして外側部分157だけを樹脂成形することにより、このような「ヒケ」が形成されることがない。

【0061】

従って現像ローラ駆動ギア137の軸受け部分の精度が高くなり、現像ローラの回転軸135のがたつきを防止できるとともに、現像ローラ駆動ギア137の外縁の精度が高まる結果、現像ローラの駆動が安定したものとなる。また内側部分159を焼結金属で構成することにより、軸を圧入しやすいという利点もある

。

【0062】

上記のようにギアを金属製の内側部材と樹脂製の外側部材の二重構造にして、内側部材に取り付けられる軸を介して、現像カートリッジ内の熱を内側部材から放熱する構成は、現像ローラ駆動ギア137の他に、供給ローラ駆動ギア141、アイドルギア131、ロータリーギア129にも同様に適用することができる。

【0063】

また図17に示す如く、現像ローラ55の回転軸135の両端には現像ローラ55より僅かに大きな直径を有する当接規制コロ69が回転軸135に対して回転自在に設けられている。図1においてロータリー現像ユニット11が回転し、例えばイエロー用の現像カートリッジ12Yが感光体ドラム5に近づくと、現像カートリッジ12Yの2つの当接規制コロ69の周面が感光体ドラム5に衝突して、現像ローラ55の周面と感光体ドラム5の周面との距離を所定距離に規定する。尚、この所定距離は図17では比較的大きく描かれているが、実際には1m以下の中間的な距離である。

【0064】

図15に示す如く、下部ハウジング部材42の底面側には、現像ローラ55が現像ローラ駆動ギア137側へ付勢されるときの移動限界を決定するための度当て構造が形成されている。即ち下部ハウジング部材42には、現像ローラ55の回転軸135を支持する支持部161と、該支持部161の左側に間隔を開けて位置する度当て部163とが形成されており、支持部161と度当て部163との間には、右側の当接規制コロ69が入り込むようになっているコロ受け部165が形成されている。

【0065】

度当て部163の左側、即ち現像ローラ55側には、リング形状の低摩擦部材167が現像ローラの回転軸135を貫通して設けられ、低摩擦部材167は現像ローラ55の右側の端面と度当て部163との間に挟まれた状態で位置している。現像ローラ55が駆動機構の駆動により回転し、ハス歯形態の現像ローラ駆

動ギア 137 の作用により現像ローラ 55 が駆動ギア側へ付勢されるとき、現像ローラ 55 の右側の端面は、低摩擦部材 167 を間に挟んで度當て部 163 に押圧される。

【0066】

そのため、現像ローラ 55 の端面と低摩擦部材 167との間、及び低摩擦部材 167 と度當て部 163 との間では摩擦係数が小さくなり、発生する摩擦熱が減少する。従って現像カートリッジ 12 内の過熱を防止できるとともに、過熱に伴う度當て部 163 の軟化変形も防止できる。また度當て部 163 の変形が防止されることで、現像ローラ 55 の長手方向での位置決めが確実となり、ひいては現像カートリッジ 12 全体の位置決めも確実なものとなる。更に現像ローラ 55 の端面と度當て部 163 とが直接摩擦接触しないため、現像ローラ 55 の回転により現像ローラ 55 の端面や度當て部 163 が摩耗することを防止することもできる。

【0067】

低摩擦部材 167 の具体例としてはポリスライダー（登録商標）を挙げることができる。しかしこの他にも、低摩擦係数で且つ耐摩耗性を有する従来公知の材料を低摩擦部材 167 として使用することもできる。

【0068】

次に現像カートリッジ 12 の左側端部（現像ローラ駆動ギア 137 と反対側の端部）の構造及び該構造による作用について図 18～図 20 を参照しながら説明する。図 18 は、現像カートリッジの左端側用端部カバーを裏側から見た斜視図であり、図 19 は、現像カートリッジの左端に端部カバーが設けられた状態を示す斜視図であり、図 20 は、現像時に現像ローラが感光体ドラムに接近するときの状態を示す説明図である。

【0069】

図 19 に示す如く、現像カートリッジ 12 の左側端部には端部カバー 169 が設けられている。端部カバー 169 は現像カートリッジ 12 の左端部の形状に一致するようにはぼ扇形に形成されており、扇の要付近に長孔 171 が形成され、扇の両端付近に現像カートリッジ 12 側へ突出する 2 つの圧入突起部 173（図

18参照)が形成されている。また一方の圧入突起部173の近傍には孔部175が形成されている。

【0070】

一方現像カートリッジ12の左側端部には、2つのネジ孔172、174が形成されており、長孔171を介してネジ孔174にネジ176を螺合し、孔部175を介してネジ孔172にネジ178を螺合することにより、端部カバー169が現像カートリッジ12の左側端部に取り付けられている。端部カバー169はネジ176、178によって堅固に固定されているわけではない。即ち、孔部175に設けられたネジ178を中心として、ネジ176が長孔171の両端に当接する範囲で現像カートリッジ12が揺動可能となるように、ネジ176、178が設けられている。

【0071】

このような構成により現像ローラ55が右側の端部を中心として揺動可能となるため、ロータリー現像ユニット11の回転により現像カートリッジ12が感光体ドラム5に接近するとき、図20(a)に示す如く、初めはカム等の案内手段(図示せず)の作用により現像ローラ55が感光体ドラム5に対して若干傾斜した状態で接近し、その後図20(b)に示す如く次第に感光体ドラム5と平行に位置決めされるようになる。現像ローラ55が感光体ドラム5に対してこのような方法で接近することで、最終的に現像ローラ55と感光体ドラム5との位置関係がより正確に決定される。

【0072】

また図2に示す如く、支持フレーム35における各フレーム要素33の末端には末端圧入部177が形成され、各末端圧入部177の内側には内側圧入部179が形成されている。現像カートリッジ12を支持フレーム35に装着する場合には、現像カートリッジ12を収納部37内に配置した状態で長手方向にスライドさせ、現像カートリッジ12の2つの圧入突起部173(図18)をそれぞれ末端圧入部177と内側圧入部179とに圧入する。これにより現像カートリッジ12が支持フレーム35に対して固定される。

【0073】

次に当接規制コロ 69 の具体的構成について図 21～図 23 を参照しながら説明する。図 21 は、当接規制コロの拡大斜視図であり、図 22 は、当接規制コロの縦断面であり、図 23 は、当接規制コロの他の実施の形態を示す断面図である。

【0074】

図 17 に関して説明したように、当接規制コロ 69 は現像ローラの回転軸 135 に対して回転自在に設けられており、ロータリー現像ユニット 11 が回転したとき、2つの当接規制コロ 69 の周面が感光体ドラム 5 に衝突して、現像ローラ 55 の周面と感光体ドラム 5 の周面との距離を所定距離に規定する。

【0075】

当接規制コロ 69 は図 21 に示す如く、円筒状に形成されたコロ本体部 181 と、コロ本体部 181 の中央においてコロ本体部 181 の外周面から円盤状に拡径して一体形成されるコロ作用部 183 とを備えて成る。また当接規制コロ 69 の内周面には、コロ作用部 183 の内側に相当する位置であって、回転軸線方向の中央の位置から内方へ突出するように、内突部 185 が形成されている。

このような構成を採用することにより、現像ローラの回転軸 135 が当接規制コロ 69 と摺接する部分が狭くなるので、当接規制コロ 69 が回転軸 135 の周りで回転しやすくなる。

【0076】

内突部 185 の内周面は現像ローラの回転軸 135 を実質的に支持する部位であり、現像ローラの回転軸 135 は内突部 185 の内周面とのみ接触し、コロ本体部 181 の他の内周面 187 とは接触しない。内突部 185 はコロ作用部 183 の内側に形成されているため、コロ作用部 183 が感光体ドラム 5 に当接しているときに、その押圧力が内突部 185 に直に掛かり、これを現像ローラの回転軸 135 が支持することができる。

【0077】

またコロ本体部 181 の内突部 185 以外の内周面 187 は、内突部 185 から見て一段凹んでいる構成であるから、現像ローラの回転軸 135 は図 20 (a) に示す如く感光体ドラム 5 に対して傾いているとき、内突部 185 の両脇に現

像ローラの回転軸135が傾くことができる空間を提供することができる。これにより現像ローラ55が感光体ドラム5に対して接近する初めの段階（図20（a）参照）で、現像ローラの回転軸135が傾斜する姿勢をとっても、回転軸135がコロ本体部181の内周面187に食い込み、その状態から離脱できないような事態を回避することができる。

【0078】

更に内突部185の形成によりその部分が厚くなる結果、コロ作用部183がコロ本体部181から外方へ突出している構成を樹脂成形し冷却する工程で生じ得る「ヒケ」現象が生じにくくなる。また内突部185は他の内周より径寸法が小さく、その幅も狭いので高い精度で成形することが可能となる。

【0079】

図22に示す如く内突部185は幅W、高さHを有し、コロ本体部181の内周面における内突部185の両側の寸法Bは互いに等しく設定されている。内突部185の幅W、高さH及び寸法Bは、上述したように、現像ローラ55が感光体ドラム5に対して若干傾斜した状態で接近する初めの段階で、図20（a）に示す如く感光体ドラム5に対して傾いているとき、現像ローラの回転軸135がコロ本体部181の内周面187に接触しないような寸法に設定されている。このような寸法の一例を示すと、内突部185の幅Wは5.0mm、高さHは0.3mm、また上記寸法Bは2.2mmである。

【0080】

コロ本体部181の内周面における内突部185の両側の寸法Bに相当する部分、即ち符号187が付された延長部分の存在により、内突部185の左右でのバランスが良くなるため、当接規制コロ69の回転時に内突部185を中心とした調芯作用が向上して、当接規制コロ69が感光体ドラム5に対して垂直に当接する状態、即ち姿勢の良い状態を安定して維持することができる。

【0081】

当接規制コロ69は図23に示す如く、その一部の形態を変更することができる。即ち図23（a）に示す実施形態では、コロ作用部183の周面189の断面が外側に突出するように円弧状に形成されている。このような形態によれば、

コロ作用部183と感光体ドラム5との接触面積が小さくなるため、接触抵抗が小さくなり、当接規制コロ69の回転性が向上する。また図23（b）に示す実施形態では、内突部185の内周面191の断面が内側に突出するように円弧状に形成している。このような形態によれば、内突部185の内周面191と現像ローラの回転軸135との接触面積が小さくなるため、接触抵抗が小さくなり、当接規制コロ69の回転性が向上する。尚、内突部185の内周面191を円弧状に形成する場合には、内周面191の曲率は、現像ローラの回転軸135が傾斜しても、回転軸135がコロ本体部181の他の内周面187に接触しないよう設定されている。

【0082】

次に図24～図26を参照しながら、供給ローラ53と現像ローラ55とを帶電させるために帶電バイアスを印加する構成について説明する。図24は現像カートリッジの左端側から端部カバーを外した状態を示す斜視図であり、図25は導電弹性プレートと、供給ローラ及び現像ローラとの接触状態を示す斜視図であり、図26は導電弹性プレートの斜視図である。尚図25では、ブレード固定フレーム85、ブレード支持プレート89及び規制ブレード91が省略されて描かれている。

【0083】

前述したように供給ローラ53及び現像ローラ55は、トナーをローラ周面に吸着するために帶電可能となっている。また規制ブレード91も現像領域に搬送されるトナーを適切に帶電されるために、帶電可能となっている。これら帶電のために印加される電圧は、現像ローラ55の右端に接続された一方の電気端子（図示せず）と、該一方の電気端子から現像ローラ55の回転軸135、現像ローラ55の左端側に設けられる導電弹性プレート193、供給ローラ53の回転軸139を介して供給ローラ53の右端に接続される他の電気端子（図示せず）との間にかけられており、更に導電弹性プレート193からは規制ブレード91にも電圧を印加可能となっている。

【0084】

図24に示す如く、導電弹性プレート193は現像カートリッジ12の端部カ

バー169の内側に設けられており、全体として図26に示すように平板を折り曲げ加工して形成される立体的な構造を有する。導電弾性プレート193は第1ネジ固定部195及び第2ネジ固定部197を有し、現像カートリッジ12のハウジング43の左側端面に形成されたネジ孔（図示せず）にそれぞれネジ199、201によって固定されている。

【0085】

第1ネジ固定部195及び第2ネジ固定部197からは、それぞれほぼ直交する方向に延びる第1アーム部203と第2アーム部205が形成されており、第1アーム部203と第2アーム部205は第1電気接点207で交差している。第1電気接点207は供給ローラの回転軸139の左端側に当接している。

【0086】

このように互いにほぼ直交する方向に延びる第1アーム部203と第2アーム部205との交差部分に第1電気接点207を形成することで、第1アーム部203と第2アーム部205とが板バネとして作用し、第1電気接点207が供給ローラの回転軸139の端部に接触する接触圧を緩衝することができる。従って、第1電気接点207から離れた第1ネジ固定部195と第2ネジ固定部197とにおいて、導電弾性プレート193がネジ199、201でハウジング43に強く締め付けられても、第1アーム部203と第2アーム部205の板バネ緩衝作用により、第1電気接点207の供給ローラの回転軸139端部への接触圧はそれほど大きくならない。

【0087】

その一方、第1ネジ固定部195と第2ネジ固定部197とでハウジング43にネジ留めされる結果、第1電気接点207が供給ローラの回転軸139の端部へ付勢されるように導電弾性プレート193が弾性変形するため、第1電気接点207が供給ローラの回転軸139の端部に適切な接触圧で接触する状態を確実に維持することができる。

【0088】

このように、第1電気接点207は供給ローラの回転軸139の端部に比較的弱い接触圧で確実に接触することができるため、供給ローラの回転軸139の回

転による第1電気接点207との摩耗に起因する第1電気接点207の穴開きを防止することができる。

【0089】

上記実施の形態では第1アーム部203と第2アーム部205との交差角度がほぼ90度であるが、第1電気接点207が供給ローラの回転軸139の端部に接触する接触圧を微妙に変えるために、このような交差角度を30度～150度の範囲、好ましくは60度～120度の範囲、更に好ましくは80度～100度の範囲で適宜変えることもできる。

【0090】

導電弾性プレート193は、更に第2ネジ固定部197から一体的に延びる第3アーム部209を有し、第3アーム部209の途中には分岐アーム部211を介して板バネ状の第2電気接点213が接続されている。第2電気接点213は図26に示す如く下に凸状態に湾曲した形状を有し、この湾曲した下面側が現像ローラの回転軸135の左端部に圧接することで電気接点として機能している。尚、本例では、第1アーム部203、第2アーム部205、第3アーム部209、分岐アーム部211、第1電気接点207及び第2電気接点213は、現像カートリッジ12の左端面側のほぼ同一平面内に位置している。

【0091】

第2ネジ固定部197とは反対側の第3アーム部209の端部からは、そこからほぼ90度屈曲して現像ローラ55の右端方向へ延びる第4アーム部215が形成されている。第4アーム部215の末端にはリング状の第3ネジ固定部217が形成されており、第4アーム部215を矢印216で示す如く現像カートリッジ12の右端方向へ若干引っ張った状態で、第3ネジ固定部217は下枠部77に対してネジ219で固定されている。下枠部77からブレード支持プレート89を介して規制ブレード91（図6（b）参照）まで電気的導通が形成されており、この結果、導電弾性プレート193に掛かる電位が規制ブレード91に帶電作用をもたらす。尚本実施の形態では、規制ブレード91に掛かる電位は供給ローラ53及び現像ローラ55に掛かる電位と等電位になるように調整されているが、必ずしも等電位である必要はない。

【0092】

第4アーム部215が矢印216で示す方向に若干引っ張られた状態で固定されることにより、第3アーム部209が矢印216側へ撓み、これに伴って板バネ状の第2電気接点213が撓んで、適宜の接触圧で現像ローラの回転軸135の左端部に当接する状態を維持できる。第2電気接点213は第4アーム部215から分岐した自由端に形成されているため、矢印216の方向へ引っ張る力が多少強めであっても、第2電気接点213の板バネ作用により緩衝効果が生じて、摩耗により第2電気接点213に穴が形成されるほどの強い接触圧が第2電気接点213に生じることはない。従って長期に亘り、安定した電気接点を提供することができる。

【図面の簡単な説明】

【図1】 本発明を適用した画像形成装置を示す側断面図である。

【図2】 この発明のロータリー現像ユニットの斜視図である。

【図3】 この発明のハウジング部材を開けた状態の現像カートリッジの斜視図。

【図4】 この発明の現像カートリッジの側断面図である。

【図5】 この発明の回転時のトナーの動きを示す説明図である。

【図6】 (a) はこの発明のローラ支持フレームの全体を示す正面図、(b) は同ローラ支持フレームの左側部分の拡大図、(c) はローラ端シール部材及び同ローラ支持フレーム周辺を示す側断面図である。

【図7】 (a) は図3の現像ローラの左側を破断して軸が支持されている様子を示し、(b) は図3における現像ローラ55の右側を破断して軸が支持されている様子を示す断面図である。

【図8】 この発明のローラ支持フレーム、供給ローラ及び現像ローラの斜視図。

【図9】 この発明の供給ローラ、現像ローラの駆動系を示す側面図。

【図10】 この発明の供給ローラ、現像ローラの駆動系を示す部分斜視図。

。

【図11】 この発明のアイドルギア周辺の側断面図である。

【図 1 2】 この発明のアイドルギアの回転軸の長手方向軸線に沿った断面図。

【図 1 3】 この発明の現像ローラ駆動ギアの内部を示す縦断面図である。

【図 1 4】 この発明の現像カートリッジの右側部分を開放して示す斜視図。

【図 1 5】 この発明の度当て部周辺の構造を示す斜視図である。

【図 1 6】 この発明の低摩擦部材が設けられた現像ローラの斜視図。

【図 1 7】 この発明の当接規制コロと感光体ドラムの関係を示す正面図。

【図 1 8】 この発明の端部カバーを裏側から見た斜視図である。

【図 1 9】 この発明の現像カートリッジの左側部分を示す分解斜視図。

【図 2 0】 この発明の現像ローラが感光体ドラムに接近するときの説明図。

【図 2 1】 この発明の当接規制コロの拡大斜視図である。

【図 2 2】 この発明の当接規制コロの縦断面である。

【図 2 3】 この発明の当接規制コロの他の実施の形態を示す断面図。

【図 2 4】 この発明の現像カートリッジの左端側を示す斜視図である。

【図 2 5】 この発明の導電弾性プレートの接触状態を示す斜視図である。

【図 2 6】 この発明の導電弾性プレートの斜視図である。

【符号の説明】

- 1 画像形成装置、 3 装置本体、 5 感光体ドラム、 7 回転方向
- 9 帯電器、 11 ロータリー現像ユニット、 12 現像カートリッジ
- 13 クリーニング部、 15 露光ユニット、 17 一次転写領域
- 19 転写ユニット、 21 中間転写ベルト、 23 二次転写領域
- 25 カセット、 27 定着ユニット、 29 排出トレイ部、 31 回転軸
- 33 フレーム要素、 35 支持フレーム、 37 収納部、 39 現像位置
- 41 上部ハウジング部材、 42 下部ハウジング部材、 43 ハウジング
- 45 トナー収容部、 47 トナー、 51 搅拌片、 53 供給ローラ
- 55 現像ローラ、 57 上部ハウジング部材の上面、 61 連通孔
- 63 シール、 65 領域、 69 当接規制コロ、 75 ローラ支持フレーム、

77 下枠部、79a、79b 側枠部、81 ネジ、83 上枠部、
 85 ブレード固定フレーム、87 固定ネジ、89 ブレード支持プレート
 91 規制ブレード、93 バックアップスponジ、
 95a、95b 下部ハウジング部材の端面、99 現像ローラ用貫通穴
 101a、101b 軸保持部材、105 軸保持部、106 孔、
 107 ネジ、109 ばか孔、111 ネジ、113 ばか孔、
 115 ネジ孔、117 飛散防止シール部材、119 バックアップスponジ
 121 シール部材、123 ローラ端シール部材、125 低摩擦機能部材
 127 粉体シール機能部材、128 ピン、129 ロータリーギア、
 130 ハウジングの右側端面、131 アイドルギア、
 133 アイドルギアの支持軸、135 現像ローラの回転軸、
 137 現像ローラ駆動ギア、138 グリス、139 供給ローラの回転軸、
 141 供給ローラ駆動ギア、143 第1ギア部分、145 第2ギア部分
 147 矢印、149 矢印、151 圧力分散板、153 押さえ部
 155 ナット、157 現像ローラ駆動ギアの外側部分
 159 現像ローラ駆動ギアの内側部分、161 支持部、163 度当て部
 165 コロ受け部、167 低摩擦部材、169 端部カバー、171 長孔
 172 ネジ孔、173 圧入突起部、174 ネジ孔、175 孔部
 176 ネジ、177 末端圧入部、178 ネジ、179 内側圧入部
 181 コロ本体部、183 コロ作用部、185 内突部
 187 内突部以外の内周面（延長部分）、189 コロ作用部の周面、
 191 内突部の内周面、193 導電弾性プレート、195 第1ネジ固定部
 、
 197 第2ネジ固定部、199 ネジ、201 ネジ、203 第1アーム部
 205 第2アーム部、207 第1電気接点、209 第3アーム部
 211 分岐アーム部、213 第2電気接点、215 第4アーム部
 216 矢印、217 第3ネジ固定部、219 ネジ
 L レーザ光、S シート部材

【書類名】 図面

【図 1】

【図2】

【図3】

【図4】

【図5】

【図 6】

【図7】

【図 8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

(a)

(b)

【図 2 1】

【図 2 2】

【図23】

【図24】

【図25】

【図26】

【書類名】 要約書

【要約】

【課題】 現像ローラの端面と度当てとの間で生じる摩擦熱を極力少なくし、現像ローラが滑らかに安定して回転できるような現像ローラの摩擦熱発生抑制装置及びこれを備える現像カートリッジを提供すること。

【解決手段】 トナー収容部45に隣接して設けられ、その回動軸がハウジング43の端面に回転可能に支持される供給ローラ53と、供給ローラの周面に接する周面を有し、その回動軸がハウジング43の端面に回転可能に支持される現像ローラ55と、現像ローラをハウジングの一方の端面側に付勢する付勢装置137、131と、ハウジングの内面に形成され、現像ローラの付勢される方向の側に位置する現像ローラの端面の移動を規制する度当て部163と、現像ローラの端面と度当て部との間に挟まれるように設けられる低摩擦部材167とを備える。

【選択図】 図16

特願2002-357476

出願人履歴情報

識別番号 [000002369]

1. 変更年月日 1990年 8月20日

[変更理由] 新規登録

住所 東京都新宿区西新宿2丁目4番1号
氏名 セイコーエプソン株式会社