Problème de transport

[ERO1] Eléments de recherche opérationnelle

Table des matières

- → De quoi s'agit-il?
- → Modélisation du problème de transport
- → Une heuristique
- → Vers une solution optimale
- → Validité, terminaison, complexité

De quoi s'agit-il?

Problème de transport : un exemple

Définitions

Problème de transport

- → Consiste à expédier à coût minimum des quantités d'un même produit à partir de *m* origines vers *n* destinations, selon l'offre et la demande.
- → Un tel problème est dit équilibré si l'offre est égal à la demande.

Il est toujours possible d'équilibrer artificiellement un problème pour lequel l'offre est supérieure à la demande.

Comment équilibrer ce problème ?

Comment équilibrer ?

Déséquilibre

1800 -1500 = 300

Demande 400 0000 Client 1 **Production 900** Demande 500 000000 Factory 1 0000 Client 2 **Production 900** Demande 600 000000 Factory 2 Client 3 coût = 0 Demande 300 Client fictif

Un glouton

F1 F2 F3 F4	C1	C2	C3	C4	C5
<i>F</i> 1	200	600	500	900	500
F2	100	400	500	900	500
F3	500	200	100	700	600
F4	600	300	400	500	900

wooclap

Un glouton

- 1. Trier les origines par offre décroissante
- 2. Saturer les demandes par coût croissant

Les liaisons les moins chères sont-elles forcément les plus intéressantes ?

Les liaisons les moins chères sont-elles forcément les plus intéressantes ?

Les liaisons les moins chères sont-elles forcément les plus intéressantes ?

Modélisation du problème de transport

Modélisation à l'aide d'un réseau

On cherche un flot maximum à coût minimum dans ce réseau. Si le flot résultant vaut 400+500+600, c'est ok.

Un autre modèle : le tableau de transport

Coûts unitaires de transport

Coûts	C1	C2		C4	C5
<i>F</i> 1	200	600	500	900	500
F2	100	400	500	900	500
F3	500	200	100	700	600
F4	600	300	500 500 100 400	500	900

Un autre modèle : le tableau de transport

transport unitaires

Toute l'information est encapsulée de manière synthétique dans le tableau de transport.

Equivalence des modèles

Déterminer le flot circulant sur les arcs \Leftrightarrow remplir le tableau. On note $x_{ij} \ge 0$ la valeur de case (i,j).

	C1	C2	C3	C4	C5	Offre
	200	600	500	900	900	
<i>F</i> 1	10					26
F2	100	400	500	900	500	
						24
	500	200	100	700	600	
F3					15	27
	600	300	400	500	900	
F4						23
Demande	18	20	22	19	21	100

Le tableau de transport

	C1	C2	СЗ	C4	C5	Offre
<i>F</i> 1	200	600	500	900	900	26
F2	100	400	500	900	500	24
F3	500	200	100	700	600	27
F4	600	300	400	500	900	23
Demande	18	20	22	19	21	100

On cherche alors à remplir le tableau de sorte que :

Pour une colonne j donnée,
 la somme des lignes = demande,

 $\sum_{i=1}^{m} x_{ij} = \text{demande}_j$ pour toute destination j

Le tableau de transport

	C1	C2	C3	C4	C5	Offre
F1	200	600	500	900	900	26
F2	100	400	500	900	500	24
F3	500	200	100	700	600	27
F4	600	300	400	500	900	23
Demande	18	20	22	19	21	100

On cherche alors à remplir le tableau de sorte que :

- Pour une colonne j donnée,
 la somme des lignes = demande,
- 2. Pour une ligne *i* donnée, la somme des colonnes = offre,

$$\sum_{j=1}^{n} x_{ij} = \text{offre}_i \text{ pour toute origine } i$$

Le tableau de transport

	C1	C2	C3	C4	C5	Offre
<i>F</i> 1	200	600	500	900	900	26
F2	100	400	500	900	500	24
F3	500	200	100	700	600	27
F4	600	300	400	500	900	23
Demande	18	20	22	19	21	100

On cherche alors à remplir le tableau de sorte que :

- Pour une colonne j donnée,
 la somme des lignes = demande,
- 2. Pour une ligne *i* donnée, la somme des colonnes = offre,
- 3. Le coût total soit minimal.

Une heuristique

Mieux qu'un glouton?

	C1	C2	C3	C4	C5	Offre
F1	200	600	500	900	900	26
F2	100	400	500	900	500	24
F3	500	200	100	700	600	27
F4	600	300	400	500	900	23
Demande	18	20	22	19	21	100

Quelle est l'augmentation minimale du coût de transport d'une unité si celle-ci n'emprunte pas la route de coût minimal disponible dans cette rangée ?

Mieux qu'un glouton?

 $\Delta = 500 - 200 = 300$

	C1	C2	СЗ	C4	C5	Offre	
<i>F</i> 1	200	600	500	900	500	26	$\Delta = 300$
F2	100	400	500	900	500	24	Δ = 300
F3	500	200	100	700	600	27	Δ = 100
F4	600	300	400	500	900	23	Δ = 100
Demande	18	20	22	19	21	100	

C'est la valeur absolue \triangle de la différence entre les deux coûts unitaires minimaux des cases disponibles sur cette rangée (pour lesquelles l'offre et la demande sont **>**0) Cette augmentation est appelée pénalité.

Un glouton amélioré : la méthode de Vogel*

- 1. Calculer et mettre à jour la pénalité pour chaque rangée.
- 2. Sélectionner la cellule (i,j) du tableau selon la règle hiérarchique suivante :
 - a. celle dont la rangée est associée à la pénalité la plus élevée
 - b. celle de coût minimal
 - c. celle à laquelle ont peut attribuer le nombre maximal d'unités à transporter.
- 3. Saturer la cellule (i,j) en prenant $x_{ij} = min \{demande_j, offre_j\}$.
- 4. Si toutes les demandes sont satisfaites, c'est fini, sinon go étape 1.

^{*}appelée aussi méthode des « pénalités »

Un glouton amélioré : la méthode de Vogel*

- 1. Calculer et mettre à jour la pénalité pour chaque rangée.
- 2. Sélectionner la cellule (i,j) du tableau selon la règle hiérarchique suivante :
 - a. celle dont la rangée est associée à la pénalité la plus élevée
 - b. celle de coût minimal
 - c. celle à laquelle ont peut attribuer le nombre maximal d'unités à transporter.
- 3. Saturer la cellule (i,j) en prenant $x_{ij} = min \{demande_j, offre_j\}$.
- 4. Si toutes les demandes sont satisfaites, c'est fini, sinon go étape 1.

^{*}appelée aussi méthode des « pénalités »

 $\Delta = 500 - 200 = 300$

	C1	C2	C3	C4	C5	Offre	
<i>F</i> 1	200	600	500	900	500	26	$\Delta = 30$
F2	100	400	500	900	500	24	$\Delta = 30$
F3	500	200	100	700	600	27	Δ = 10
F4	600	300	400	500	900	23	Δ = 10
Demande	18	20	22	19	21	100	

Un glouton amélioré : la méthode de Vogel*

- 1. Calculer et mettre à jour la pénalité pour chaque rangée.
- 2. Sélectionner la cellule (*i,j*) du tableau selon la règle hiérarchique suivante :
 - a. celle dont la rangée est associée à la pénalité la plus élevée
 - b. celle de coût minimal
 - c. celle à laquelle ont peut attribuer le nombre maximal d'unités à transporter.
- 3. Saturer la cellule (i,j) en prenant $x_{ij} = min \{demande_j, offre_j\}$.
- 4. Si toutes les demandes sont satisfaites, c'est fini, sinon go étape 1.

EPITA

^{*}appelée aussi méthode des « pénalités »

 identifier les rangées (ligne ou colonne) avec la plus grosse pénalité

- identifier les rangées (ligne ou colonne) avec la plus grosse pénalité
- identifier la cellule de plus petit coût dans cette rangée

- 1. identifier les rangées (ligne ou colonne) avec la plus grosse pénalité
- 2. identifier la cellule de plus petit coût dans cette rangée
- 3. identifier la quantité maximale pouvant circuler sur cette liaison, en prenant le minimum entre l'offre et la demande

 $min{22,27}$

La cellule à saturer a été identifiée.

Un glouton amélioré : la méthode de Vogel*

- 1. Calculer et mettre à jour la pénalité pour chaque rangée.
- 2. Sélectionner la cellule (i,j) du tableau selon la règle hiérarchique suivante :
 - a. celle dont la rangée est associée à la pénalité la plus élevée
 - b. celle de coût minimal
 - c. celle à laquelle ont peut attribuer le nombre maximal d'unités à transporter.
- 3. Saturer la cellule (i,j) en prenant $x_{ij} = min \{demande_j, offre_j\}$.
- 4. Si toutes les demandes sont satisfaites, c'est fini, sinon go étape 1.

^{*}appelée aussi méthode des « pénalités »

Un glouton amélioré : la méthode de Vogel*

- 1. Calculer et mettre à jour la pénalité pour chaque rangée.
- 2. Sélectionner la cellule (i,j) du tableau selon la règle hiérarchique suivante :
 - a. celle dont la rangée est associée à la pénalité la plus élevée
 - b. celle de coût minimal
 - c. celle à laquelle ont peut attribuer le nombre maximal d'unités à transporter.
- 3. Saturer la cellule (i,j) en prenant $x_{ij} = min \{demande_j, offre_j\}$.
- 4. Si toutes les demandes sont satisfaites, c'est fini, sinon go étape 1.

^{*}appelée aussi méthode des « pénalités »

	C1	C2	C3	C4	C5	Offre	
<i>F</i> 1	200	600	500	900	500	26	Δ = 300
F2	100	400	500	900	500	24	Δ = 300
F3	500	200	100	700	600	27	Δ = 30
F4	600	300	400	500	900	23	Δ = 200
Demande	18	20	22	19	21	100	
	$\Delta = 100$	$\Delta = 100$	$\Delta = 300$	$\Delta = 200$	$\Delta = 0$		

	C1	C2	C3	C4	C5	Offre	
F1	200	600	500	900	500	26	$\Delta = 300$
F2	100	400	500	900	500	24 6	Δ = 300
F3	500	200	100	700	600	21 5	$\Delta = 300$
F4	600	300	400	500	900	23	Δ = 200
Demande	18 0	20	22 0	19	21	100	
	$\Delta = 100$	$\Delta = 100$		$\Delta = 200$	$\Delta = 0$		

Méthode de Vogel : un exemple

	C1	C2	C3	C4	C5	Offre	
F1	200	600	500	900	500	26	$\Delta = 300$
F2	100	400	500	900	500	24 6	$\Delta = 300$
F3	500	200	100	700	600	21 5	$\Delta = 300$
F4	600	300	400	500	900	23	Δ = 200
Demande	18 0	20	22 0	19	21	100	
	Δ = 100	$\Delta = 100$		$\Delta = 200$	$\Delta = 0$	-	

Î	C1	C2	C3	C4	C5	Offre	
<i>F</i> 1	200	600	500	900	500	26	Δ = 100
F2	100	400	500	900	500	24 6	Δ = 100
F3	500	200	100	700	600	5 0	$\Delta = 400$
F4	600	300	400	500	900	23	Δ = 200
Demande	18 0	26 15	22 0	19	21	100	
		$\Delta = 100$		$\Delta = 200$	$\Delta = 0$		

	C1	C2	C3	C4	C5	Offre	
F1	200	600	500	900	500	26	Δ = 100
F2	100	400	500	900	500	24 6	Δ = 100
F3	500	200	100	700	600	<i>5</i> 0	
F4	600	300	400	500	900	23	Δ = 200
Demande	1 8 0	20 15	22 0	19	21	100	
		$\Delta = 100$		$\Delta = 200$	$\Delta = 0$		

	C1	C2	C3	C4	C5	Offre	y .
F1	200	600	500	900	500	26	Δ = 100
F2	100	400	500	900	500	24 6	Δ = 10
F3	500	200	100	700	600	5/0	
F4	600	300	400	500	900	23 4	Δ = 20
Demande	18 0	26 15	22 0	19 0	21	100	
1		$\Delta = 100$		$\Delta = 400$	$\Delta = 0$		

_	C1	C2	C3	C4	C5	Offre	
F1	200	600		900	500	26	Δ = 10
F2	100	400		900	500	24 6	Δ = 10
F3	500	200		700	600	<i>5</i> 0	
F4	600	300		500	900	25 4	Δ = 20
Demande	18 0	20 15	22 0	1 9 0	21	100	
		$\Delta = 100$		$\Delta = 400$	$\Delta = 0$		

	C1	C2	C3	C4	C5	Offre	
F1	200	600			500	26	Δ = 100
F2	100	400			500	24 6	Δ = 100
F3	500	200			600	5 0	
F4	600	300		500 19	900	A 0	Δ = 600
Demande	18 0	1 5 11	22 0	1 9 0	21	100	
		$\Delta = 100$			$\Delta = 0$		

	C1	C2	C3	C4	C5	Offre	
F1	200	600		900	500	26	$\Delta = 100$
F2	100	400		900	500	24 6	Δ = 100
F3	500	200		700	600	5 0	
F4		300				A 0	
Demande	1 8 0	1 5 11	22 0	1 9 0	21	100	
		$\Delta = 100$			$\Delta = 0$		

	C1	C2	СЗ	C4	C5	Offre	
<i>F</i> 1	200	600	500	900	500	26	Δ = 100
F2	100	400	500	900	500	6 0	Δ = 100
F3		200				\$ 0	
F4		300				1/0	
Demande	1 8 0	1 1 5	22 0	1 9 0	21	100	
		$\Delta = 200$			$\Delta = 0$		

	C1	C2	C3	C4	C5	Offre
VIS-SIA	200	600	500	900	500	of 0
F1		5			21	2 6 0
	100	400		900	500	,
F2		6				8 0
F3		5				5 0
F4		4				4 0
emande	18 0	5 0	22 0	19 0	21 0	100

	(C1		C2		C3	(C4	- 1	C5	Offre
		200		600		500		900		500	,
F1			5						21		2 6 0
		100		400		500		900		500	1.
F2	18		6								6 0
		500		200		100		700		600	,
F3			5		22						5 0
		600		300		400		500		900	,
F4			4				19				4 0
emande	1	8 0		5 0	2	2 0	1	9 0	2	0	100

Coût total = 31 600

Méthode de Vogel : mieux que le glouton ?

- → Un glouton donne une solution à 34 400 ; la méthode de Vogel donne 31 600
- → Des études empiriques ont montré que cette heuristique est « souvent » optimale, ou proche de l'optimalité
- → Mais comment savoir à coup sûr ? Et si la solution est encore sous-optimale, comment l'améliorer ?

Vers une solution optimale

Variables duales

Quel est l'impact sur le coût si l'offre en fl augmente d'une unité ?

Pour que l'offre et la demande restent équilibrées, il faut augmenter la demande d'une unité, par exemple en cl, et aussi considérer l'impact associé à cette augmentation.

Les valeurs (a priori inconnues) de ces impacts sont appelées variables duales de f1, c1.

Coûts marginaux

Mais alors la quantité totale qui circule dans le système augmente d'une unité (par exemple sur la liaison (f1,c1)), engendrant un coût supplémentaire.

Le gain (ou la perte) résultante est appelé coût marginal du couple f1, c1.

Coûts marginaux

Supposons maintenant que l'offre et la demande restent inchangées, et que l'on envoie une unité de f1 vers c1.

Cela nécessite de rééquilibrer l'offre et la demande, formant alors un cycle.

Coûts marginaux

Cette opération est rentable si ce cycle a un coût négatif (pour une unité en circulation).

Le coût de ce cycle correspond également au coût marginal du couple f1, c1.

Récapitulons

Coût marginal

- → La variable duale associée à un nœud origine est le gain (ou la perte) que l'on obtiendrait si l'on augmentait l'offre associée d'une unité.
- → La variable duale associée à un nœud destination est le gain (ou la perte) que l'on obtiendrait si l'on augmentait la demande associée d'une unité.
- → Le coût marginal d'un arc est le gain (ou la perte) que l'on obtiendrait si l'on augmentait simultanément l'offre et la demande sur les extrémités de cet arc, ou de manière alternative, si l'on activait l'arc (sans toucher à l'offre et à la demande).

Il s'agit donc de potentiels d'amélioration. Identifier les arcs de coût marginal strictement négatif peut être intéressant pour améliorer la solution courante.

Coût marginal

Calcul du coût marginal

→ Le coût marginal d'un arc est égal à son coût, auquel on soustrait les gains potentiels liés aux variables duales :

$$\bar{c}_{ij} = c_{ij} - \left(u_i + v_j\right)$$

→ Puisque le coût marginal est un potentiel d'amélioration pour un arc inactif, celui-ci est nul pour les arcs déjà actifs :

$$\bar{c}_{ij} = 0$$
 pour tout arc (i,j) tel que $x_{ij} > 0$.

On voudrait pouvoir connaître la valeur des coûts marginaux des arcs inactifs, mais comment les calculer puisque les valeurs des variables duales ne sont pas connues non plus a priori ?

Proposition

Un problème de transport avec m origines (offre) et n destinations (demande) possède toujours une solution avec au maximum m + n - 1 arcs actifs.

Preuve

 \rightarrow Pour rappel, une solution admissible au problème de transport satisfait toujours le système suivant (m + n équations):

$$\begin{cases} \sum_{i=1}^{m} x_{ij} = \text{demande}_{j} & \text{pour tout } j = 1, ..., n \\ \sum_{j=1}^{n} x_{ij} = \text{offre}_{i} & \text{pour tout } i = 1, ..., m \end{cases}$$

→ Puisque le problème de transport est supposé équilibré, on peut en déduire que

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} - \sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \text{offre}_i - \sum_{j=1}^{n} \text{demande}_j = 0$$

Preuve

→ Pour rappel, une solution admissible au problème de transport satisfait toujours le système suivant (*m* + *n* équations) :

$$\begin{cases} \sum_{i=1}^{m} x_{ij} = \text{demande}_j & \text{pour tout } j = 1, ..., n \\ \sum_{j=1}^{n} x_{ij} = \text{offre}_i & \text{pour tout } i = 1, ..., m \end{cases}$$

→ Puisque le problème de transport est supposé équilibré, on peut en déduire que

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} - \sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \text{offre}_i - \sum_{j=1}^{n} \text{demande}_j = 0$$

Autrement dit, parmi les m + n équations, l'une d'entre elles est redondante. Le nombre d'équations linéairement indépendantes est donc m + n - 1 au maximum .

On peut donc trouver une solution avec au plus m + n - 1 variables x_{ij} non nulles, c'està-dire m + n - 1 arcs actifs au maximum.

L'heuristique de Vogel initialise déjà m + n - 1 variables x_{ii}

Preuve alternative

- → Puisque le graphe biparti constitué des *m* origines et *n* destinations est acyclique, c'est un ensemble d'arbres.
- → Le nombre maximum d'arêtes que l'on peut avoir se produit lorsqu'il n'y a qu'un seul arbre, et dans ce cas celui-ci a m + n - 1 arêtes.

Calcul des coûts marginaux

- \rightarrow On sait que $\bar{c}_{ij} = c_{ij} (u_i + v_j) = 0$ pour tout arc actif.
- \rightarrow On sait par la proposition précédente que cela concerne au maximum m + n 1 arcs.
- \rightarrow On a donc un système à m+n inconnues, pour m+n-1 équations.
- Autrement dit le système à 1 degré de liberté. On peut poser $u_1 = 0$ arbitrairement et déduire de proche en proche les valeurs des autres variables duales u_r , et v_r .

On va pouvoir s'appuyer sur l'analyse de ces coûts marginaux pour améliorer la solution courante.

Vers une solution optimale : l'algorithme

- 1. Evaluer les coûts marginaux des liaisons inactives.
- Si tous les coûts marginaux sont supérieurs ou égaux à 0, on ne peut pas améliorer la solution. Sinon choisir la liaison dont le coût marginal est le plus petit.
- 3. Déterminer le nombre maximum d'unités pouvant être affectées à cette liaison dans le cycle associé, équilibrer l'offre et la demande et retourner à l'étape 1.

Vers une solution optimale : l'algorithme

- 1. Evaluer les coûts marginaux des liaisons inactives.
- Si tous les coûts marginaux sont supérieurs ou égaux à 0, on ne peut pas améliorer la solution. Sinon choisir la liaison dont le coût marginal est le plus petit.
- 3. Déterminer le nombre maximum d'unités pouvant être affectées à cette liaison dans le cycle associé, équilibrer l'offre et la demande et retourner à l'étape 1.

Reprenons la solution issue de Vogel

		C1	C2	СЗ	C4	C5	Offre
		200	600	500	900	500	
=	F1		5			21	26
		100	400	500	900	500	
	F2	18	6				24
		500	200	100	700	600	
	F3		5	22			27
		600	300	400	500	900	
	F4		4		19		23
	Demande	18	20	22	19	21	100

Calcul des coûts marginaux

Arc actif	Équation
Arc actii	$c_{ij} = u_i + v_j$
(1,2)	$u_1 + v_2 = 600$
(1,5)	$u_1 + v_5 = 500$
(2,1)	$u_2 + v_1 = 100$
(2,2)	$u_2 + v_2 = 400$
(3,2)	$u_3 + v_2 = 200$
(3,3)	$u_3 + v_3 = 100$
(4,2)	$u_4 + v_2 = 300$
(4,4)	$u_4+v_4=500$

En posant $u_1 = 0$ on obtient : $u_2 = -200$, $u_3 = -400$, $u_4 = -300$, $v_1 = 300$, $v_2 = 600$, $v_3 = 500$, $v_4 = 800$ et $v_5 = 500$.

On commence par déterminer les valeurs des variables duales.

Calcul des coûts marginaux

On en déduit les coûts marginaux sur les arcs inactifs.

Vers une solution optimale : l'algorithme

- 1. Evaluer les coûts marginaux des liaisons inactives.
- Si tous les coûts marginaux sont supérieurs ou égaux à 0, on ne peut pas améliorer la solution. Sinon choisir la liaison dont le coût marginal est le plus petit.
- 3. Déterminer le nombre maximum d'unités pouvant être affectées à cette liaison dans le cycle associé, équilibrer l'offre et la demande et retourner à l'étape 1.

Activation d'un arc inactif

On sélectionne l'arc ayant le petit coût marginal : (F1,C1)

Vers une solution optimale : l'algorithme

- 1. Evaluer les coûts marginaux des liaisons inactives.
- 2. Si tous les coûts marginaux sont supérieurs ou égaux à 0, on ne peut pas améliorer la solution. Sinon choisir la liaison dont le coût marginal est le plus petit.
- 3. Déterminer le nombre maximum d'unités pouvant être affectées à cette liaison dans le cycle associé, équilibrer l'offre et la demande et retourner à l'étape 1.

Combien d'unités sur le nouvel arc activé ?

On détermine le cycle associé à l'activation de (f1,c1).

On ne peut pas faire circuler plus d'unités que le minimum sur ce cycle : 5.

Combien d'unités sur le nouvel arc activé?

On soustrait 5 unités à tous les arcs du cycle orienté « à l'envers » et l'on ajoute 5 à ceux « à l'endroit. »

Le coût marginal étant égal à -100, le coût de la solution va diminuer de 100x5 unités.

Combien d'unités sur le nouvel arc activé?

Mise à jour du tableau de transport

	C1	C2	C3	C4	C5	Offre
F1	5	600	500	900	500 21	26
F2	100	400	500	900	500	24
F3	500	200	100	700	600	27
F4	600	300	400	500 19	900	23
Demande	18	20	22	19	21	100

Le coût de la nouvelle solution vaut 31600 - 5x100 = 31100.

Vers une solution optimale : l'algorithme

- 1. Evaluer les coûts marginaux des liaisons inactives.
- Si tous les coûts marginaux sont supérieurs ou égaux à 0, on ne peut pas améliorer la solution. Sinon choisir la liaison dont le coût marginal est le plus petit.
- 3. Déterminer le nombre maximum d'unités pouvant être affectées à cette liaison dans le cycle associé, équilibrer l'offre et la demande et retourner à l'étape 1.

Mise à jour des coûts marginaux

		C1		C2		C3		C4		C5		Offre
= 0	F1	5	200	100	600	100	500	200	900	2	500	26
= -100	F2	1	100	1	400	200	500	300	900	100	500	24
= -300	F3	600	500	5	200	2	100	300	700	400	600	27
= -200	F4	600	600	4	300	200	400	1	500	600	900	23
	Demande	18		20		22		19		21		100

Tous les coûts marginaux sont positifs : la solution, de coût 31 100, est optimale.

wooclap

Validité, terminaison, complexité?

Validité – Terminaison - Complexité

- → Dans le cours suivant, nous aborderons le thème de la programmation linéaire (PL).
- → La PL généralise le concept de l'amélioration de la solution courante via les coûts marginaux, et fournit des clés pour mieux comprendre pourquoi l'algorithme est valide, ainsi que sa complexité.
- → Pour dire les choses de façon informelle : les coûts marginaux sont mis à jour un nombre fini de fois, ce qui assure la terminaison. Nous verrons qu'il existe des cas pathologiques où le nombre d'itérations peut-être non polynomial.

Le mot de la fin

Un problème – plusieurs modèles

- → Différentes modélisations pour le problème de transport
 - ◆ Comme un problème de flot
 - Via un tableau de transport
 - Via la programmation linéaire (à venir)
- La question naturelle qui se pose est comment choisir le type de modèle pour un problème donné?
- Savoir bien modéliser (et choisir le type de modèle si plusieurs options) constitue une grande valeur ajoutée en tant qu'ingénieur.

« Tous les modèles sont faux. Certains sont utiles. »

Le point sur le projet

- → Vous devriez avoir formalisé & modélisé le problème pour le drone et les déneigeuses
- → Vous devriez avoir un prototype pour le drone

