Алгебра.

B. A. Петров lektorium.tv

Зарождение — Аль Хорезин, "Китхаб Альджебр валь мукабалт". "Альджебр" значит "перенос из одной части уравнения в другую", а "мукабалт" — "приведение подобных". Литература:

- Ван дер Варден "Алгебра"
- Лэнг "Алгебра"
- Винберг "Курс Алгебры"

Определение 1. Алгебраическая структура — это множество M + заданные на нём операции + аксиомы на операциях.

Определение 2. Абелева группа — набор $(M, + : M^2 \to M, 0 \in M)$ с аксиомами:

- A_1) $\forall a, b, c \in M : (a + b) + c = a + (b + c)$ ассоциативность сложения
- A_2) $\forall a \in M : a + 0 = a = 0 + a$ нейтральный по сложению элемент
- A_3) $\forall a,b \in M: a+b=b+a$ коммутативность сложения
- A_4) $\forall a \in M : \exists -a : a + (-a) = 0 = (-a) + a$ существование противоположного

Определение 3. Опишем следующие аксиомы на наборе $(M,+:M^2\to M,\cdot:M^2\to M,0\in M,1\in M)$:

- $D) \ \forall a,b,k \in M: k(a+b)=ka+kb, \ (a+b)k=ak+bk$ дистрибутивность
- M_1) $\forall a,b,c \in M: (a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения
- M_2) $\forall a \in M : a \cdot 1 = a = 1 \cdot a$ нейтральный по умножению элемент
- M_3) $\forall a,b \in M: a \cdot b = b \cdot a$ коммутативность умножения
- M_4) $\forall a \in M \setminus \{0\} : \exists a^{-1} : a \cdot a^{-1} = 1 = a^{-1} \cdot a$ существование обратного

По этим аксиомам определим следующие понятия:

- Кольцо набор $(M, +, \cdot, 0)$, что верны A_1, A_2, A_3, A_4 и D.
- $Accouuamuвное кольцо кольцо с <math>M_1$.
- Кольцо с единицей кольцо с M_2 .
- Tело кольцо с M_1 , M_2 .
- Поле кольцо с M_1 , M_2 , M_3 , M_4 .

• Полукольцо — кольцо без A_4 .

 $\Pi pumep 1.$ Если взять \mathbb{R}^3 , то векторное произведение в нём неассоциативно и антикоммутативно. Но есть

Пример 2. Если взять $R^4 = R \times R^3$ и рассмотреть $\cdot : ((a;u);(b;v)) \mapsto (ab-u\cdot v;av+bu+u\times v)$ и $+ : ((a;u);(b;v)) \mapsto (a+b,u+v)$, тогда получим \mathbb{H} — ассоциативное некоммутативное тело кватернионов. Ассоциативность доказал Гамильтон.

 Π емма. $0 \cdot a = 0$

Определение 4. Коммутативное кольцо без делителей нуля называетсся *областью* (*целостности*).

Определение 5. Пусть $m \in \mathbb{N}$. Тогда множество остатков при делении на m или $\mathbb{Z}/m\mathbb{Z}$ — это фактор-множество по отношению эквивалентности $a \sim b \Leftrightarrow (a-b) \mid m$.

Определение 6. *Подкольцо* — это подмножество кольца, согласованное с его операциями. Как следствие ноль и обратимость соглассуются автоматически.

Утверждение 1. Если R-noдкольцо области целостности S, mo R-oбласть целостности.

Определение 7. Целые Гауссовы числа или $\mathbb{Z}[i]$ — это $\{a+bi \mid a,b\in\mathbb{Z}\}$.

Определение 8. Некоторое подмножество R кольца S замкнуто относительно сложения (умножения), если $\forall a, b \in R : a + b \in R \ (ab \in R \ \text{соответственно}).$

Замечание 1. Замкнутое относительно сложения **И** умножения подмножество — подкольцо. Пример 3. Пусть d — целое, не квадрат. Тогда $\mathbb{Z}[\sqrt{d}]$ — область целостности.

1 Теория делимости

Пусть R — область целостности.

Определение 9. " $a \ deлum \ b$ " или же $a \mid b$ значит, что $\exists c \in R : b = ac$.

Утверждение 2. Отношение "|" рефлексивно и транзитивно.

Определение 10. *a* и *b accoulumuвны*, если $a \mid b$ и $b \mid a$. Обозначение: $a \sim b$.

Утверждение 3. " \sim " — отношение эквивалентности.

Утверждение 4. $a \sim b \Leftrightarrow \exists \ \textit{обратимый } \varepsilon : a = \varepsilon b.$

Доказательство. Пусть $a \sim b$. Тогда $\exists c, d : ac = b, bd = a$. Тогда a(1-cd) = a - acd = a - bd = a - a = 0, значит либо a = 0, либо cd = 1. В первом случае b = ac = 0c = 0, значит можно просто взять $\varepsilon = 1$. Во втором случае, cd = 1, значит c и d обратимы, тогда можно взять $\varepsilon = d$. следствие в одну сторону доказано.

Пусть $a = \varepsilon b$, где ε обратим. Значит:

- 1. $b \mid a$;
- 2. $\exists \delta : \delta \varepsilon = 1$, значит $\delta a = \delta \varepsilon b = b$, значит $a \mid b$.

Таким образом $a \sim b$.

Пример 4. В $\mathbb{Z}[i]$ есть только следующие обратимые элементы: 1, -1, i и -i. Поэтому все ассоциативные элементы получаются друг из друга домножением на один из 1, -1, i, -i и вместе образуют квадрат (на комплексной плоскоти) с центром в нуле.

Определение 11. Главным идеалом элемента a называется множество $M := \{ak \mid k \in R\} = \{b \mid a$ делит $b\}$. Обозначение: (a) или aR.

Утверждение 5. $a \mid b \Leftrightarrow b \in aR \Leftrightarrow bR \subseteq aR$.

Утверждение 6. $a \sim b \Leftrightarrow aR = bR$.

Утверждение 7. $\forall a \in R$

- 1. $0 \in aR$
- 2. $x \in aR \Rightarrow -x \in aR$
- 3. $x, y \in aR \Rightarrow x + y \in aR$
- 4. $x \in aR, r \in R \Rightarrow xr \in aR$

3амечание 2. То же верно и в некоммутативном R.

 $\Pi pumep 5. В поле есть только <math>0R$ и 1R.

Пример 6. В \mathbb{Z} есть только $m\mathbb{Z}$ для каждого $m \in \mathbb{N} \cup \{0\}$.

Определение 12. Пусть P — кольцо. $I \subseteq P$ называется *правым идеалом*, если

- 1. $0 \in I$;
- $2. \ a,b \in I \Rightarrow a+b \in I$:
- 3. $a \in I \Rightarrow -a \in I$:
- 4. $a \in I, r \in R \Rightarrow ar \in I$.

I называется левым идеалом, ессли аксиому 4 заменить на " $a \in I, r \in R \Rightarrow ra \in I$ ". Также I называется двухсторонним идеалом, если является левым и правым идеалом.

Замечание 3. В коммутативном кольце (и в частности в области целостности) все идеалы двухсторонние.

 $\Pi p u m e p 7.$ Пусть дано кольцо P и фиксированы $a_1, \ldots, a_n \in P$. Тогда $a_1 P + \cdots + a_n P = \{a_1 x_1 + \cdots + a_n x_n \mid x_1, \ldots, x_n \in P\}$ есть правый (конечнопорождённый) идеал, попрождённый элементами a_1, \ldots, a_n . Аналогично $Pa_1 + \cdots + Pa_n = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in P\}$ — левый (конечнопорождённый) идеал, попрождённый элементами a_1, \ldots, a_n .

Определение 13. Область главных идеалов — область целостности, где все идеалы главные.

Определение 14. Элемент p области целостности R назвывается nenpuвodumыm, если $\forall d \mid p$ либо $d \sim 1$, либо $d \sim p$.

Определение 15. Элемент p области целостности R назвывается npocmыm, если из условия $p\mid ab$ следует, что $p\mid a$ или $p\mid b$.

Утверждение 8. Любое простое неприводимо.

Утверждение 9. В области главных идеалов наприводимые просты.

Определение 16. Область целостности R называется Eвклидовой, если существует функция ("Евклидова норма") $N: R \setminus \{0\} \to \mathbb{N}$, что

$$\forall a, b \neq 0 \; \exists q, r : a = bq + r \land (r = 0 \lor N(r) < N(b))$$

Теорема 1. Евклидово кольцо — область главных идеалов.

Доказательство. Пусть наше кольцо — R. Если $I = \{0\}$, то I = 0R. Иначе возьмём $d \in I \setminus \{0\}$ с минимальной Евклидовой нормой. Тогда $\forall a \in I$ либо $d \mid a$, либо $\exists q, r : a = dq - r$. Во втором случае $dq \in I$, $r = a - dq \in I$, но N(r) < N(d) — противоречие. Значит I = dR.

Определение 17. Общим делителем a и b называется c, что $c \mid a$ и $c \mid b$. Наибольшим общим делителем (НОД) a и b называется общий делитель a и b, делящийся на все другие общие делители a и b.

Теорема 2 (алгоритм Евклида). В Евклидовом кольце у любых двух чисел есть НОД.

Доказательство. Заметим, что (a, b) = (a + bk, b).

Пусть даны a и b. Предположим, что $\phi(a) \geqslant \phi(b)$, иначе поменяем их местами. Тем самым по аксиоме Евклида найдутся q и r, что a = bq + r, а $\phi(r) < \phi(b) \leqslant \phi(a)$, значит $\phi(a) + \phi(b) > \phi(r) + \phi(b)$. При этом (a,b) = (r,b). Значит бесконечно $\phi(a) + \phi(b)$ не может бесконечнго уменьшаться, так как натурально, значит за конечное кол-во переходов мы получим, что одно из чисел делит другое, а значит НОД стал определён.

Теорема 3 (линейное представление НОД). $\forall a, b \in R \exists p, q \in R : ap + bq = (a, b)$.

Доказательство. Докажем по индукции по N(a) + N(b).

База. N(a) + N(b) = 0. Значит N(a) = N(b) = 0, а тогда a и b не могут не делиться друг на друга, значит НОД — любой из них. А в этом случае разложение очевидно.

Шаг. WLOG $N(a) \geqslant N(b)$. Если $b \mid a$, то b - HOД, а тогда разложение очевидно. Иначе по аксиоме Евклида $\exists q, r: a = bq + r$. Заметим, что (a,b) = (b,r) = d, но $N(a) + N(b) \geqslant N(b) + N(b) > N(b) + N(r)$. Таким образом по предположению индукции для b и r получаем, что d = bk + rl для некоторых k и l, значит d = bk + (a - bq)l = al + b(k - ql).