Analisi e Progetto di Algoritmi

Giuseppe Facchi

A.A. 2020-2021

Indice

1	LIS	3
2	LCS	5
3	LICS	7
4	LZS	9
5	LCS che non ha due caratteri consecutivi	12
6	LCS che alterna valori ≤ 5 e valori ≥ 10	15
7	LCS tra X e Y che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari	19

1 LIS

Problema Principale Data una sequenza X di lunghezza m trovare la più lunga sottosequenza crescente

Problema Ridotto Data una sequenza X di lunghezza m trovare la **lunghezza** della più lunga sottosequenza crescente

Problema Vincolato Data una sequenza X di lunghezza m trovare la **lunghezza** della più lunga sottosequenza crescente che termina con x_m

Sottoproblema di dimensione (i) Lunghezza LIS di X_i che termina con x_i

$$i \in \{0, \ldots, m\}$$

Variabile

 $C_i = \text{Lunghezza LIS di } X_i$ che termina con x_i

Casi Base

• $C_0 = 1$

Passo Ricorsivo

$$C_i = \begin{cases} 1 + \max \{C_h \neq 0 \mid 0 \leq h < i \land x_h < x_i\} & \forall i > 0 \\ \max \{\emptyset\} = 0 \end{cases}$$

Soluzione PV

 ${\cal C}_m =$ Lunghezza LIS di X che termina con x_m

$$max \{C_i \mid 0 \le i \le m\}$$

Algorithm 1 LIS di X

```
C[0] = 1
for i = 1 to m do
  max = 0
  for h = 0 to i - 1 do
    if C[h] > max \wedge x[h] < x[i] then
      max = C[h]
    end if
  end for
  C[i] = 1 + max
end for
ottimo = 1
for i = 1 to m do
 if C[i] > ottimo then
    max = C[h, k]
  end if
end for
return ottimo
```

2 LCS

Problema Principale Date due sequenze X di lunghezza m e Y di lunghezza n trovare la loro LCS

Problema Ridotto Date due sequenze X di lunghezza m e Y di lunghezza n trovare la **lunghezza** della loro LCS

Problema Vincolato Date due sequenze X e Y trovare la **lunghezza** della loro LCS che termina con $x_m = y_n$

Sottoproblema di dimensione (i, j) Lunghezza LCS di X_i e Y_j che termina con $x_i = y_j$

$$i \in \{0, \dots, m\}$$
$$j \in \{0, \dots, n\}$$

Variabile

 $C_{i,j} = \operatorname{Lunghezza} \operatorname{LCS}$ di X_i e
 Y_j che termina con $x_i = y_j$

Casi Base

- $C_{i,0} = 0$ $\forall i$
- $\bullet \ C_{0,j} = 0 \qquad \forall \ j$
- se $x_i \neq y_j$ $C_{i,j} = 0$ $\forall i, j > 0$

Passo Ricorsivo

• se $x_i = y_i$

$$C_{i,j} = \begin{cases} 1 + \max \{ C_{h,k} \neq 0 \mid 0 \le h < i, \ 0 \le k < j \} \\ \max \{\emptyset\} = 0 \end{cases} \quad \forall i, j > 0$$

Soluzione PV

 $C_{m,n} =$ Lunghezza LCS di X e Y che termina con $x_m = y_n$

$$max \{C_{i,j} \mid 0 \le i \le m, \ 0 \le j \le n\}$$

Algorithm 2 LCS tra X e Y

```
for i = 1 to m do
  C[i,0] = 0
end for
for j = 1 to n do
  C[0, j] = 0
end for
for i = 1 to m do
  for j = 1 to n do
    if x[i] \neq y[j] then
      C[i,j] = 0
    end if
    if x[i] == y[j] then
      max = 0
      for h = 0 to i - 1 do
        for k = 0 to j - 1 do
          if C[h, k] > max then
             max = C[h, k]
          end if
        end for
      end for
      C[i,j] = 1 + \max
    end if
  end for
end for
ottimo = 0
for i = 1 to m do
  for j = 1 to n do
    if C[i,j] > ottimo then
      ottimo = C[i, j]
    end if
  end for
end for
return ottimo
```

3 LICS

Problema Principale Date due sequenze X di lunghezza m e Y di lunghezza n trovare la loro LICS

Problema Ridotto Date due sequenze X di lunghezza m e Y di lunghezza n trovare la **lunghezza** della loro LICS

Problema Vincolato Date due sequenze X e Y trovare la **lunghezza** della loro LICS che termina con $x_m = y_n$

Sottoproblema di dimensione (i, j) Lunghezza LICS di X_i e Y_j che termina con $x_i = y_j$

$$i \in \{0, \dots, m\}$$
$$j \in \{0, \dots, n\}$$

Variabile

 $C_{i,j} = \operatorname{Lunghezza}$ LICS di X_i e
 Y_j che termina con $x_i = y_j$

Casi Base

- $C_{i,0} = 0$ $\forall i$
- $\bullet \ C_{0,j} = 0 \qquad \forall \ j$
- se $x_i \neq y_j$ $C_{i,j} = 0$ $\forall i, j > 0$

Passo Ricorsivo

• se $x_i = y_i$

$$C_{i,j} = \begin{cases} 1 + \max \{C_{h,k} \neq 0 \mid 0 \le h < i, \ 0 \le k < j \land x_h < x_i\} & \forall i, j > 0 \\ \max \{\emptyset\} = 0 \end{cases}$$

Soluzione PV

 $C_{m,n} =$ Lunghezza LICS di X e Y che termina con $x_m = y_n$

$$max \{C_{i,j} \mid 0 \le i \le m, \ 0 \le j \le n\}$$

Algorithm 3 LICS tra X e Y

```
for i = 1 to m do
  C[i,0] = 0
end for
for j = 1 to n do
  C[0, j] = 0
end for
for i = 1 to m do
  for j = 1 to n do
    if x[i] \neq y[j] then
      C[i,j] = 0
    end if
    if x[i] == y[j] then
      max = 0
      for h = 0 to i - 1 do
        for k = 0 to j - 1 do
           if C[h, k] > max \wedge x_h < x_i then
             max = C[h, k]
           end if
        end for
      end for
      C[i,j] = 1 + \max
    end if
  end for
end for
ottimo = 0
for i = 1 to m do
  for j = 1 to n do
    if C[i,j] > ottimo then
      ottimo = C[i, j]
    end if
  end for
end for
return ottimo
```

4 LZS

Problema Principale Data una sequenza X di lunghezza m trovare la più lunga sottosequenza zig-zag

Problema Ridotto Data una sequenza X di lunghezza m trovare la **lunghezza** della più lunga sottosequenza zig-zag

Problemi Vincolati

- $\underline{\mathbf{0}}$: Data una sequenza X di lunghezza m trovare la **lunghezza** della sua più lunga sottosequenza zig-zag che termina con x_m e che ha lunghezza pari
- 1: Data una sequenza X di lunghezza m trovare la lunghezza della sua più lunga sottosequenza zig-zag che termina con x_m e che ha lunghezza dispari

Sottoproblemi

• <u>0</u> Sottoproblema di dimensione (i): Trovare la lunghezza della sua più lunga sottosequenza zig-zag che termina con x_i e che ha lunghezza pari

$$i \in \{0, \dots, m\}$$

• <u>1</u> Sottoproblema di dimensione (i): Trovare la lunghezza della sua più lunga sottosequenza zig-zag che termina con x_i e che ha lunghezza dispari

$$i \in \{0, \dots, m\}$$

Variabili

- $C_{i,\underline{0}} =$ Lunghezza della più lunga sottosequenza zig-zag che termina con x_i e ha lunghezza pari
- $C_{i,\underline{1}}$ = Lunghezza della più lunga sottosequenza zig-zag che termina con x_i e ha lunghezza dispari

Casi Base

- $C_{1,0} = 0$
- $C_{1,\underline{1}} = 1$

Passo Ricorsivo

$$C_{i,\underline{0}} = \begin{cases} 1 + \max \{C_{h,\underline{1}} \neq 0 \mid 0 \leq h < i \land x_h < x_i\} & \forall i > 1 \\ \max \{\emptyset\} = 0 \end{cases}$$

$$C_{i,\underline{1}} = \begin{cases} 1 + \max \{C_{h,\underline{0}} \neq 0 \mid 0 \le h < i \land x_h > x_i\} \\ \max \{\emptyset\} = 0 \end{cases} \forall i > 1$$

Soluzioni PV

- $C_{m,\underline{0}} =$ Lunghezza LZS di X che termina con x_m e ha lunghezza pari
- $C_{m,\underline{1}} =$ Lunghezza LZS di X che termina con x_m e ha lunghezza dispari

$$max \{C_{i,\underline{0}} \ C_{i,\underline{1}} \mid 1 \le i \le m\}$$

Algorithm 4 LZS di X

```
C_0[1] = 0
C_1[1] = 1
for i = 2 to m do
  max_0 = max_1 = 0
  for h = 1 to i - 1 do
    if C_1[h] > max_0 \wedge x[h] < x[i] then
       max_0 = C_1[h]
    end if
    if C_0[h] > max_1 \wedge x[h] > x[i] then
       max_1 = C_0[h]
    end if
  end for
  if max_0 \neq 0 then
    C_0[i] = 1 + max_0
  end if
  C_1[i] = 1 + max_1
end for
ottimo = 1
for i = 1 to m do
  if max(C_0[i], C_1[i]) > ottimo then
    ottimo = max(C_0[i], C_1[i])
  end if
end for
return ottimo
```

5 LCS che non ha due caratteri consecutivi

Problema Principale Date due sequenze X di lunghezza m e Y di lunghezza n trovare la loro LCS che non ha due caratteri consecutivi

Problema Ridotto Date due sequenze X di lunghezza m e Y di lunghezza n trovare la **lunghezza** della loro LCS che non ha due caratteri consecutivi

Problema Vincolato Date due sequenze X di lunghezza m e Y di lunghezza n trovare la lunghezza della loro LCS che non ha due caratteri consecutivi e che termina con x_m (= y_n)

Sottoproblema di dimensione (i, j) Lunghezza LCS di X_i e Y_j che non ha due caratteri consecutivi che termina con $x_i = y_j$

$$i \in \{0, \ldots, m\}$$

$$j \in \{0, \dots, n\}$$

Variabile

 $C_{i,j}$ = Lunghezza della LCS tra X_i e Y_j che <u>non ha due caratteri consecutivi</u> e che termina con $x_i = y_j$

Casi base

- $\bullet \ C_{i,0} = 0 \qquad \forall \ i$
- $\bullet \ C_{0,j} = 0 \qquad \forall \ j$
- se $x_i \neq y_j$ $C_{i,j} = 0$ $\forall i, j > 0$

Caso Ricorsivo

$$C_{i,j} = \begin{cases} 1 + \max \{C_{h,k} \neq 0 \mid 0 \le h < i, \ 0 \le k < j \land x_h \neq x_i\} & \forall i, j > 1 \\ \max \{\emptyset\} = 0 \end{cases}$$

Soluzione PV

C[m, n] = Lunghezza della LCS tra X di lunghezza m e Y di lunghezza n che non ha due caratteri consecutivi e che termina con x_m (= y_n)

$$\max \{C_{i,j} \mid 0 \le i \le m, \ 0 \le j \le n\}$$

Algorithm 5 LCS tra X e Y che non ha due caratteri consecutivi

```
for i = 1 to m do
  C[i,0] = 0
end for
for j = 1 to n do
  C[0,j]=0
end for
for i = 1 to m do
  for j = 1 to n do
    if x[i] \neq y[j] then
      C[i,j] = 0
    end if
    if x[i] == y[j] then
      max = 0
      for h = 0 to i - 1 do
        for k = 0 to j - 1 do
           if C[h, k] > max \land x[h] \neq x[i] then
             max = C[h, k]
           end if
         end for
      end for
      C[i,j] = 1 + \max
    end if
  end for
end for
ottimo = 0
for i = 1 to m do
  for j = 1 to n do
    if C[i,j] > ottimo then
      ottimo = C[i, j]
    end if
  end for
end for
return ottimo
```

6 LCS che alterna valori ≤ 5 e valori ≥ 10

Problema Principale Date due sequenze X di lunghezza m e Y di lunghezza n trovare la loro LCS che alterna valori ≤ 5 e valori ≥ 10

Problema Ridotto Date due sequenze X di lunghezza m e Y di lunghezza n trovare la **lunghezza** della loro LCS che alterna valori ≤ 5 e valori ≥ 10

Problema Vincolato Date due sequenze X di lunghezza m e Y di lunghezza n trovare la lunghezza della loro LCS che alterna valori ≤ 5 e valori ≥ 10 e che termina con x_m (= y_n)

Sottoproblema di dimensione (i,j) Lunghezza LCS di X_i e Y_j che alterna valori ≤ 5 e valori ≥ 10 che termina con $x_i = y_j$

$$i \in \{0, \dots, m\}$$

$$j \in \{0, \dots, n\}$$

Variabile

 $C_{i,j}=$ Lunghezza della LCS tra X_i e Y_j che alterna valori ≤ 5 e valori ≥ 10 e che termina con $x_i=y_j$

Casi base

- $C_{i,0} = 0$ $\forall i$
- $\bullet \ C_{0,j} = 0 \qquad \forall \ j$
- se $x_i \neq y_j$ $C_{i,j} = 0$ $\forall i, j > 0$
- se $x_i == y_j \land 5 < x_i < 10$ $C_{i,j} = 0$ $\forall i, j > 0$

Casi Ricorsivi

• se $x_i == y_j \land x_i \le 5$

$$C_{i,j} = \begin{cases} 1 + \max \{ C_{h,k} \neq 0 \mid 0 \le h < i, \ 0 \le k < j \land x_h \ge 10 \} & \forall i, j > 1 \\ \max \{\emptyset\} = 0 \end{cases}$$

Sottostruttura Ottima: La lunghezza dell'LCS in cui si alternano valori ≤ 5 e valori ≥ 10 e che termina in $x_i = y_j \leq 5$ sarà data dall'aggiunta di 1 alla lunghezza della massima LCS in cui si alternano valori ≤ 5 e valori ≥ 10 che finisce con due elementi $x_h = y_k (h < i, k < j)$ ed è tale per cui $x_h \geq 10$

• se $x_i == y_j \wedge x_i \geq 10$

$$C_{i,j} = \begin{cases} 1 + \max \{ C_{h,k} \neq 0 \mid 0 \le h < i, \ 0 \le k < j \land x_h \le 5 \} & \forall i, j > 1 \\ \max \{\emptyset\} = 0 \end{cases}$$

Sottostruttura Ottima: La lunghezza dell'LCS in cui si alternano valori ≤ 5 e valori ≥ 10 e che termina in $x_i = y_j \geq 10$ sarà data dall'aggiunta di 1 alla lunghezza della massima LCS in cui si alternano valori ≤ 5 e valori ≥ 10 che finisce con due elementi $x_h = y_k (h < i, k < j)$ ed è tale per cui $x_h \leq 5$

Soluzione PV

 $C_{m,n}=$ Lunghezza della LCS tra X di lunghezza m e Y di lunghezza n che alterna valori ≤ 5 e valori ≥ 10 e che termina con $x_m=y_n$)

$$max \{C_{i,j} \mid 0 \le i \le m, \ 0 \le j \le n\}$$

Algorithm 6 LCS tra X e Y che alterna valori ≤ 5 e valori ≥ 10

```
1: for i = 1 to m do
      C[i, 0] = 0
 2:
 3: end for
 4: for j = 1 to n do
      C[0,j] = 0
 6: end for
 7: for i = 1 to m do
      for j = 1 to n do
        if x[i] \neq y[j] then
9:
10:
           C[i,j] = 0
        end if
11:
        if x[i] == y[j] \land x[i] \le 5 then
12:
           max = 0
13:
           for h = 0 to i - 1 do
14:
             for k = 0 to j - 1 do
15:
                if C[h, k] > max \wedge x[h] \ge 10 then
16:
                  max = C[h, k]
17:
                end if
18:
             end for
19:
20:
           end for
21:
           C[i,j] = 1 + max
        end if
22:
        if x[i] == y[j] \wedge x[i] \geq 10 then
23:
           max = 0
24:
           for h = 0 to i - 1 do
25:
26:
             for k = 0 to j - 1 do
                if C[h, k] > max \wedge x[h] \leq 5 then
27:
                  max = C[h, k]
28:
                end if
29:
             end for
30:
           end for
31:
           C[i,j] = 1 + max
32:
         end if
33:
34:
      end for
35: end for
```

```
egin{aligned} ottimo &= 0 \ &	ext{for } i &= 1 	ext{ to } m 	ext{ do} \ &	ext{for } j &= 1 	ext{ to } n 	ext{ do} \ &	ext{if } C[i,j] > ottimo 	ext{ then} \ &	ext{ottimo} &= C[i,j] \ &	ext{end if} \ &	ext{end for} \ &	ext{end for} \ &	ext{return } ottimo \end{aligned}
```

7 LCS tra X e Y che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari

Problema Principale Date due sequenze X di lunghezza m e Y di lunghezza n trovare la loro LCS che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari

Problema Ridotto Date due sequenze X di lunghezza m e Y di lunghezza n trovare la **lunghezza** della loro LCS che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari

Problemi Vincolati

- $\underline{\mathbf{0}}$: Date due sequenze X di lunghezza m e Y di lunghezza n trovare la lunghezza della loro LCS di lunghezza pari che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_m = y_n$
- 1: Date due sequenze X di lunghezza m e Y di lunghezza n trovare la lunghezza della loro LCS di lunghezza pari che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_m = y_n$

Sottoproblemi di dimensione (i, j)

• <u>0</u> Sottoproblema di dimensione (i, j): Trovare la lunghezza della LCS di lunghezza pari di X_i e Y_i che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_i = y_j$ (pari ≥ 10)

$$i \in 0, ..., m$$

 $j \in 0, ..., n$

• <u>0</u> Sottoproblema di dimensione (i, j): Trovare la lunghezza della LCS di lunghezza dispari di X_i e Y_i che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_i = y_j$

$$i \in 0, ..., m$$

 $j \in 0, ..., n$

Variabili

- $C_{i,j,\underline{0}} =$ lunghezza della LCS di lunghezza pari di X_i e Y_i che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_i = y_j$
- $C_{i,j,\underline{1}} =$ lunghezza della LCS di lunghezza dispari di X_i e Y_i che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_i = y_i$

Casi base PV_0

- $C_{i,0,0} = 0$ $\forall i$
- $C_{0,i,0} = 0$ $\forall j$
- se $x_i \neq y_j$ $C_{i,j,0} = 0$ $\forall i, j > 0$
- se $x_i == y_j \land 5 < x_i < 10$ $C_{i,j,0} = 0$ $\forall i, j > 0$
- se $x_i == y_j \wedge x_i \le 5$ $C_{i,j,\underline{0}} = 0$ $\forall i, j > 0$

Passo Ricorsivo PV_0

• se $x_i = y_j \wedge x_i (= y_j) \ge 10$

$$C_{i,j,\underline{0}} = \begin{cases} 1 + \max \left\{ C_{h,k,\underline{1}} \neq 0 \mid 0 \leq h < i, \ 0 \leq k < j \right\} & \forall i, j > 1 \\ \max \left\{ \emptyset \right\} = 0 \end{cases}$$

Casi base PV_1

- $C_{i,0,\underline{1}} = 0 \quad \forall i$
- $\bullet \ C_{0,j,\underline{1}} = 0 \qquad \forall \ j$
- se $x_i \neq y_j$ $C_{i,j,\underline{1}} = 0$ $\forall i, j > 0$
- se $x_i == y_j \land 5 < x_i < 10$ $C_{i,j,\underline{1}} = 0$ $\forall i, j > 0$
- se $x_i == y_j \land x_i \ge 10$ $C_{i,j,\underline{1}} = 0$ $\forall i, j > 0$

Passo Ricorsivo PV_1

• se $x_i = y_j \wedge x_i (= y_j) \le 5$

$$C_{i,j,\underline{1}} = \begin{cases} 1 + \max \left\{ C_{h,k,\underline{0}} \neq 0 \mid 0 \leq h < i, \ 0 \leq k < j \right\} & \forall i, j > 1 \\ \max \left\{ \emptyset \right\} = 0 \end{cases}$$

Soluzioni PV

- $C_{m,n,\underline{0}}$ = Lunghezza LCS di X_i di lunghezza pari che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_m = y_n$
- $C_{m,n,\underline{1}}=$ Lunghezza LCS di X_i di lunghezza dispari che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari e che termina con $x_m=y_n$

$$max \{C_{i,j,0} \ C_{i,j,1} \mid 0 \le i \le m, \ 0 \le j \le n\}$$

Algorithm 7 LCS tra X e Y che alterna valori ≤ 5 in posizione dispari e valori ≥ 10 in posizione pari

```
for i = 1 to m do
  C[i, 0, 0] = 0
  C[i, 0, 1] = 0
end for
for j = 1 to n do
  C[0, j, 0] = 0
  C[0, j, 1] = 0
end for
for i = 1 to m do
  for j = 1 to n do
    if x[i] \neq y[j] then
       C[i, j, 0] = 0
       C[i, j, 1] = 0
    end if
    if x[i] == y[j] \land x[i] > 5 \land x[i] < 10 then
       C[i, j, 0] = 0
       C[i, j, 1] = 0
    end if
    if x[i] == y[j] \land x[i] \le 5 then
       max = 0
       for h = 0 to i - 1 do
         for k = 0 to j - 1 do
            if C[h, k, 0] > max then
              max = C[h, k, 0]
            end if
         end for
       end for
       C[i, j, 1] = 1 + max
    end if
    if x[i] == y[j] \wedge x[i] \geq 10 then
       max = 0
       C[i, j, 0] = 0
       for h = 0 to i - 1 do
         for k = 0 to j - 1 do
            if C[h, k, 1] > max then
              max = C[h, k, 1]
            end if
         end for
                                    22
       end for
       if max \neq 0 then
         C[i, j, 0] = 1 + max
       end if
    end if
```

end for

```
egin{aligned} ottimo &= 1 \ &	ext{for } i = 0 	ext{ to } m 	ext{ do} \ &	ext{for } j = 0 	ext{ to } n 	ext{ do} \ &	ext{if } max(C[i,j,0],\ C[i,j,1]) > ottimo 	ext{ then} \ &	ext{ottimo} &= max(C[i,j,0],\ C[i,j,1]) \ &	ext{end if} \ &	ext{end for} \ &	ext{end for} \ &	ext{end for} \ &	ext{return } ottimo \end{aligned}
```