Beam & Post Calculation Check

Simple, detailed derivations matching the implementation (loads \rightarrow actions \rightarrow stresses \rightarrow deflection \rightarrow column). Units shown at each step for verification.

Assumptions (Model)

- Beam is **simply supported**, subject to **uniform line load** only (no point loads, no cantilevers).
- Cross-section is rectangular; bending about strong axis; material properties are allowable (ASD) values.
- Reactions are symmetric for the span considered; R = w·L/2 per support.
- Shear stress uses rectangular peak factor 1.5. Deflection uses classic closed-form for UDL.
- Column (post) check uses a simplified ASD-style cap: min(Fc'·A, 0.3·P_{crit}) with Euler buckling based on unsupported height.

Symbols & Units

Loads

DL, SL, LL Dead/Snow/Live (psf)

q Total area load (psf) = DL+SL+LL

w Line load (plf) = $q \times tributary width (ft)$

Geometry

L Span (ft), L_{in}=12L (in)

b,d Width, depth (in)

S Section modulus (in³) = $b \cdot d^2/6$

I Moment of inertia (in⁴) = $b \cdot d^3/12$

Actions/Responses

 V_{max} Max shear (lb) = w·L/2

 M_{max} Max moment ($Ib \cdot in$) = $(w_{\text{lb/in}} \cdot L_{\text{in}}^2)/8$

R Reaction per support/post (lb) = V_{max}

Stresses

 f_b Bending (psi) = M_{max}/S

 f_v Shear (psi) = 1.5·V_{max}/(b·d)

 $f_{bearing}$ Bearing (psi) = R/A_{bearing}

Allowables

Fb' Allowable bending (psi)

Fv' Allowable shear (psi)

Fc⊥' Allowable comp. ⊥ grain (psi)

Deflection

Δ Midspan deflection (in)

E Modulus of elasticity (psi)

Limit $L/ratio (in) = L_{in} / (limit ratio)$

Step 1 — Area Load → **Line Load**

q = DL + SL + LL [psf]

w = q × (tributary width) [plf]

 $W_{lb/in} = W / 12 [lb/in]$

Quantity	Value	Units
DL		psf
SL		psf
LL		psf
q		psf
Tributary width		ft
W		plf
Wlb/in		lb/in

Step 2 — Shear & Moment

 $V_{max} = (w \times L) / 2 [lb]$

 $M_{max} = (w_{lb/in} \times L_{in}^2) / 8 [lb \cdot in]$

Quantity	Value	Units
L		ft
L _{in}		in
$V_{\sf max}$		lb
M _{max}		lb∙in
R		lb

Step 3 — Section Properties

$S = (b \times d^2)/6 [in^3]$	$I = (b \times d^3)/12 [in^4]$

Quantity	Value	Units
b		in
d		in
S		in ³
I		in ⁴

Step 4 — Stresses & Allowables

Bending

$$f_b = M_{max} / S [psi]$$

Item	Value	Units
f _b		psi
Fb'		psi
Status	PASS if f _b ≤ Fb'	

Shear

$$f_v = 1.5 \times V_{max} / (b \times d)$$
 [psi]

Item	Value	Units
f _v		psi
Fv'		psi
Status	PASS if $f_V \leq FV'$	

Bearing at Beam Seat

Item	Value	Units
A _{bearing}		in²
f _{bearing}		psi
Fcl′		psi
Status	PASS if f _{bearing} ≤ Fc⊥'	

Step 5 — **Deflection**

$$\Delta = [5 \times w_{lb/in} \times L_{in}^{4}] / [384 \times E \times I] [in]$$

Limit = L_{in} / (deflection limit ratio) [in]

	psi
	in
	in
SS if Δ ≤ Limit	
5	SS if Δ ≤ Limit

Step 6 — **Post (Column) Axial Capacity**

Simplified ASD-style: Euler buckling with slenderness, capped at 30% of Euler vs. axial stress capacity.

```
A = b × d [in²], I_{col} = b × d³ / 12 [in⁴], r = \sqrt{(I_{col}/A)} [in] slenderness = Le / r [-] P_{crit} \approx (\pi^2 \times E \times A) / (slenderness²) [lb] P_{allow} = min(Fc' \times A, 0.3 \times P_{crit}) [lb]
```

Item	Value	Units
Fc'		psi
А		in ²
Le		in
P _{allow}		lb
R (demand)		lb
Status	PASS if R ≤ P _{allow}	

Quick Verification Checklist

- 1. **Units:** psf \rightarrow plf via tributary width; convert plf \rightarrow lb/in where used.
- 2. **Statics:** For UDL: Vmax = wL/2, $Mmax = wL^2/8$ (with unit-consistent forms).
- 3. **Section:** Rectangular formulas: $S=b \cdot d^2/6$, $I=b \cdot d^3/12$.
- 4. **Stress:** $fb=M/S \le Fb'$, $fv=1.5V/(bd) \le Fv'$, $fbearing=R/A \le Fc \perp'$.
- 5. **Deflection:** $\Delta = 5wL^4/(384EI) \le L/ratio$.
- 6. **Column:** Pallow = min(Fc'·A, 0.3·Pcrit) with Pcrit $\approx \pi^2$ EA/slender².

Beam & Post Calculation Check • matches the implemented formulas in your tool • Replace placeholders with your actual results.