Chem 30324, Spring 2018, Homework 8

Due April 4, 2018

Quantum mechanics of an H atom:

Consider an excited hydrogen atom with a 2s¹ electron configuration. The 2s radial wavefunction is given by

$$R_{2,0} = \frac{1}{\sqrt{2a_0^3}} (1 - \rho/2)e^{-\rho/2}, \rho = r/a_0$$

where a_0 = bohr radius. (*Hint:* It's easiest to solve the following using a_0 as the unit of length.)

- 1. Provide a hand sketch of the 3-D shape of a 2s wavefunction ("orbital"). Be sure to indicate the *sign* of the wavefunction in each region and the location(s) of nodes. How many radial and how many angular nodes does a 2s electron orbital have?
- 2. Plot the radial probability function $P_{20}(r) = r^2 |R_{2,0}(r)|^2$. Be sure to label both axes appropriately. (*Hint:* Stick with a_0 as the length unit.)
- 3. Determine and indicate on your plot $\langle r \rangle$, the expectation value of the distance of the electron from the nucleus.

- 4. Determine and indicate on your plot r_{MP} , the most probable distance of the electron from the nucleus.
- 5. Determine and indicate on your plot the maximum classical distance of the electron from the nucleus in this orbital.
- 6. What is the probability of finding the electron beyond the classical distance? (Evaluate the necessary integral numerically.)
- 7. Can a 2s electron undergo an allowed transition to a lower energy electronic state? If so, what frequency (in cm^{-1}) of light would be emitted?

Variations on the hydrogen atom

The *variational principle* allows us to develop approximate solutions to the Schr\"{o}dinger equation numerically. Here you will apply the variational principle to the H atom. For this problem it is easiest to work in atomic units. In these units, \hbar , a_0 , and $4\pi\epsilon_0$ are all equal to 1 and the unit of energy is the Hartree, equivalent to 27.212 eV. In atomic units the H atom Schr\"{o}dinger equation is written:

$$\left\{ -\frac{1}{2}\frac{d^2}{dr^2} - \frac{1}{r}\frac{d}{dr} - \frac{1}{r} + \frac{l(l+1)}{2r^2} \right\} R(r) = ER(r)$$

8. Normalize the true 1s wavefunction, $R_{10}(r) = e^{-r}$. Do not forget to include the r^2 integration factor.

- 9. Is this 1s wavefunction an eigenfunction of the hydrogen Schrodinger equation? What is the eigenvalue? Recall that your answer will be in Hartree.
- 10. Suppose in a fit of panic you forget the 1s radial function when asked on an exam. Now wanting to leave the answer blank, you decide to guess something, and liking bell-shaped curves, you guess $R_{10}(r) = e^{-r^2}$. Normalize this guess.
- 11. Calculate the expectation value of the energy of your normalized guess. Is it greater or less than the true value?
- 12. What does the variational principle say about the expectation value of the energy of your guess as you vary a parameter γ in your guess, $R_{10} = e^{-\gamma r^2}$? Suggest a strategy for determining the "best" γ .
- 13. Extra credit: Determine the best value of γ . Show and carefully justify your work to receive credit.

Many-electron atoms:

Oxygen (O) is the eighth atom on the periodic table and has 6 valence electrons.

14. Write the ground state atomic configuration of oxygen.

- 15. Provide *one possible set* of quantum numbers (n, l, m_l, m_s) for each of the valence electrons in the atom. What is the ground state *spin multiplicity* of O?
- 16. *Qualitatively* compare the energies necessary to remove a 1s electron from O and from sulfur (S), one row below O in the periodic table. Explain your answer. (Note that the measurement of these energies is the basis of X-ray core-level spectroscopy.)
- 17. Qualitatively compare the ionization energies (energies to remove a valence p electron) from O and from S, one row below O in the periodic table. Explain your answer.
- 18. Qualitatively compare the ionization energies (energies to remove a valence p electron) from O and from fluorine (F), one column to the right of O in the periodic table. Explain your answer.
- 19. Show that a 2s hydrogenic orbital approaches closer to the nucleus than the 2p, by comparing the probability of finding either electron within 1 atomic unit of the nucleus. In atomic units, the 2s and 2p radial wavefunctions are given by:

$$R_{2,0} = \frac{1}{\sqrt{2}}(1 - r/2)e^{-r/2}$$

$$R_{2,1} = \frac{1}{2\sqrt{6}} re^{-r/2}$$

Remember to construct the radial probability functions correctly.