

PATIENT Wang, Chu-Mao

TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)
COUNTRY CODE
TW

REPORT DATE
06 January 2023

ORDERED TEST # ORD-1533770-01

ABOUT THE TEST FoundationOne®Liquid CDx is a next generation sequencing (NGS) assay that identifies clinically relevant genomic alterations in circulating cell-free DNA.

PATIENT

DISEASE Esophagus squamous cell carcinoma (SCC)

NAME Wang, Chu-Mao

DATE OF BIRTH 16 December 1957

SEX Male

MEDICAL RECORD # 19787189

ORDERING PHYSICIAN Yeh, Yi-Chen

MEDICAL FACILITY Taipei Veterans General Hospital

ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID 205872

PATHOLOGIST Not Provided

SPECIMEN ID C-MW 16/DEC/1957
SPECIMEN TYPE Blood
DATE OF COLLECTION 23 December 2022

SPECIMEN RECEIVED 29 December 2022

Biomarker Findings

Blood Tumor Mutational Burden - 13 Muts/Mb Microsatellite status - MSI-High Not Detected Tumor Fraction - Elevated Tumor Fraction

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

CCND1 amplification

KRAS amplification

BAP1 splice site 1117-6_1143del33

CBL splice site 1096-12_1111del28

DNMT3A E442*, M439fs*212

FGF19 amplification

FGF3 amplification

FGF4 amplification

MLL2 C735*

TP53 H179Y, splice site 994-2A>T, splice site 376-1G>A

Report Highlights

- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 13)
- Variants that may represent clonal hematopoiesis and may originate from non-tumor sources: DNMT3A E442*, M439fs*212 (p. 9), MLL2 C735* (p. 11)

BIOMARKER FINDINGS

Blood Tumor Mutational Burden -

13 Muts/Mb

10 Trials see p. <u>13</u>

Microsatellite status -

MSI-High Not Detected

Tumor Fraction -

Elevated Tumor Fraction

THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
None	None

MSI-High not detected. No evidence of microsatellite instability in this sample (see Appendix section).

Tumor fraction is considered elevated when ctDNA levels are high enough that aneuploidy can be detected. There is higher sensitivity for identifying genomic alterations and a lower risk of false negative results in specimens with elevated tumor fraction; the positive percent agreement observed between liquid and tissue for defined short variants is ≥ 90% (Li et al., 2021; AACR Abstract 2231) (see Biomarker Findings section).

GENOMIC FINDINGS	VAF%	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANO (IN OTHER TUMOR TYPE)
CCND1 - amplification	-	None	None
6 Trials see p. <u>15</u>			

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the possibility of use

PATIENT Wang, Chu-Mao

TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)
COUNTRY CODE
TW

REPORT DATE
06 January 2023

ORDERED TEST # ORD-1533770-01

GENOMIC FINDINGS	VAF%	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
KRAS - amplification	-	None	None
10 Trials see p. <u>17</u>			

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS (CH)

Genomic findings below may include nontumor somatic alterations, such as CH. The efficacy of targeting such nontumor somatic alterations is unknown. This content should be interpreted based on clinical context. Refer to appendix for additional information on CH.

DNMT3A - E442*, M439fs*212

.. p. 9 **MLL2 -** C735*

.. p. <u>11</u>

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

BAP1 - splice site 1117-6_1143del33p.	p. <u>10</u>
CBL - splice site 1096-12_1111del28p.	<u>MLL2 - C735*</u> p. <u>11</u>
<i>DNMT3A</i> - E442*, M439fs*212p.	<i>TP53</i> - H179Y, splice site 994-2A>T, splice site
FGF19 - amplification p. 9	p. <u>12</u>
FGF3 - amplification p. 10	<u>)</u>

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the therapies listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and/or exhaustive. Neither the therapies nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies. Therapies contained in this report may have been approved by the TDA or other national authorities; however, they might not have been approved in your respective country. In the appropriate clinical context, germline testing of APC, ATM, BAP1, BRCA2, BRIP1, CHEK2, FH, FLCN, MEN1, MLH1, MSH2, MSH6, MUTYH, NF1, NF2, PALB2, PMS2, POLE, PTEN, RAD51C, RAD51D, RB1, RET, SDHA, SDHB, SDHC, SDHD, SMAD4, STK11, TGFBR2, TP53, TSC1, TSC2, VHL, and WT1 is recommended.

Variant Allele Frequency is not applicable for copy number alterations.

Variant Allele Frequency Percentage

(VAF%)

HISTORIC PATIENT FINE	DINGS	ORD-1533770-01 VAF%	
Blood Tumor Mutational Bur	den	13 Muts/Mb	
Microsatellite s	status	MSI-High Not Detected	
Tumor Fraction		33%	
CCND1	amplification	Detected	
KRAS	amplification	Detected	
BAP1	• splice site 1117-6_1143del33	19.1%	
CBL	splice site1096-12_1111del28	1.4%	
DNMT3A	M439fs*212	1.8%	
	● E442*	1.9%	
FGF19	amplification	Detected	
FGF3	amplification	Detected	
FGF4	amplification	Detected	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

HISTORIC PATIENT	FINDINGS	ORD-1533770-01 VAF%
MLL2	• C735*	12.9%
TP53	splice site376-1G>A	0.21%
	splice site 994-2A>T	10.5%
	● H179Y	21.1%

NOTE This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx or FoundationOne®CDx tests. Up to five previous tests may be shown.

For some genes in FoundationOne Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology.

As new scientific information becomes available, alterations that had previously been listed as Variants of Unknown Significance (VUS) may become reportable.

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of \geq 5%, and bTMB is calculated based on variants with an allele frequency of \geq 0.5%.

Not Tested = not baited, not reported on test, or test preceded addition of biomarker or gene

Not Detected = baited but not detected on test

Detected = present (VAF% is not applicable)

VAF% = variant allele frequency percentage

Cannot Be Determined = Sample is not of sufficient data quality to confidently determine biomarker status

BIOMARKER FINDINGS

BIOMARKER

Blood Tumor Mutational Burden

RESULT 13 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies –

On the basis of clinical evidence in solid tumors, increased blood tumor mutational burden (bTMB) may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L11-3, anti-PD-13-4, anti-PD-1/CTLA4 therapies5-6, anti-PD-L1/CTLA4 therapies⁷⁻¹⁰. A Phase 2 multi-solidtumor trial showed that bTMB \geq 16 Muts/Mb (as measured by this assay) was associated with improved survival from treatment with a PD-1 inhibitor alone or in combination with a CTLA-4 inhibitor⁵. In non-small cell lung cancer (NSCLC), multiple clinical trials have shown patients with higher bTMB derive clinical benefit from immune checkpoint inhibitors following single-agent or combination treatments with either CTLA4 inhibitors or chemotherapy, with reported high bTMB cutpoints ranging from 6 Muts/Mb-16 $Muts/Mb^{1,8-10}$. In head and neck squamous cell carcinoma (HNSCC), a Phase 3 trial showed that bTMB ≥16 Muts/Mb (approximate equivalency ≥8 Muts/Mb as measured by this assay) was associated with improved survival from treatment with a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor¹¹. In colorectal cancer (CRC), a Phase 2 study showed that bTMB TMB ≥28 Muts/Mb (approximate equivalency ≥14

Muts/Mb as measured by this assay) was associated with improved OS from a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor⁷

Potential Resistance

CCND1 amplification may predict worse outcomes on immune checkpoint inhibitors (anti-PD-1/PD-L1/CTLA-4) in solid tumors on the basis of 2 meta-analyses¹²⁻¹³; in these studies, CCND1 amplification was associated with significantly decreased response rate¹³ and OS (HR=1.6-2.0)¹²⁻¹³ across various tumor types and significantly shorter OS specifically in urothelial carcinoma (HR=2.2-3.6), melanoma (HR=1.6-2.5), and solid tumors harboring elevated TMB (HR=2.8)¹²⁻¹³.

FREQUENCY & PROGNOSIS

Average bTMB levels in solid tumors other than NSCLC have not been evaluated (PubMed, Mar 2022). For patients with squamous cell carcinoma (SCC) treated with PD-L1/PD-1 inhibitors, a Kaplan-Meier analysis showed a significant association for patients with high tumor mutational burden (TMB) with longer time to treatment failure (9.9 vs. 4.4 months)14. In the majority of cutaneous SCC cases, high mutational burden has been attributed to UV exposure rather than defective DNA mismatch repair or polymerase activity¹⁵⁻¹⁶, although one study reported a small number of cutaneous SCC cases (4/39) harboring a mutation signature similar to that of human papillomavirus-positive head and neck SCC16. In patients with non-small cell lung cancer (NSCLC), TMB is similar between cases with squamous and non-squamous histology¹⁷, and increased TMB is associated with higher tumor grade and poor

prognosis¹⁸, as well as with a decreased frequency of known driver mutations in EGFR, ALK, ROS1, or MET (1% of high-TMB samples each) but not BRAF (10%) or KRAS (9.4%)¹⁷. Although some studies have reported a lack of association between smoking and increased TMB in NSCLC18-19, several other large studies did find a strong prognostic association²⁰⁻²³. For patients with gastric cancer, increased TMB is reported to be associated with prolonged OS²⁴⁻²⁶. One study observed that the OS and disease-free survival (DFS) benefits of postoperative chemotherapy were more pronounced in patients with TMB-low gastric cancer (stage Ib/II) compared to those with TMBhigh; however, patients with stage III gastric cancer benefitted regardless of TMB level²⁷. In esophageal cancer, patients with TMB-high who had not received radiotherapy had significantly reduced OS (p=0.038) compared to those with TMB-low²⁸.

FINDING SUMMARY

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma $^{29\mbox{-}30}$ and cigarette smoke in lung cancer³¹⁻³², treatment with temozolomide-based chemotherapy in glioma³³⁻³⁴, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD₁ genes³⁵⁻³⁹, and microsatellite instability $(MSI)^{35,38\text{-}39}.$ This sample harbors a bTMB level that may be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{1-2,4}.

BIOMARKER FINDINGS

BIOMARKER

Tumor Fraction

DESILIT

Elevated Tumor Fraction

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Specimens with elevated tumor fraction have high circulating-tumor DNA (ctDNA) content, and thus high sensitivity for identifying genomic alterations. Such specimens are at low risk of false negative results. Tumor fraction levels currently have limited implications for diagnosis, surveillance, or therapy and should not be overinterpreted or compared from one blood draw to another. There are currently no targeted approaches to address

specific tumor fraction levels. In the research setting, changes in tumor fraction estimates have been associated with treatment duration and clinical response and may be a useful indicator for future cancer management⁴⁰⁻⁴⁵.

FREQUENCY & PROGNOSIS

Detectible ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported for patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)⁴⁶. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer⁴⁷, Ewing sarcoma and osteosarcoma⁴⁸, prostate cancer⁴³, breast cancer⁴⁹, leiomyosarcoma⁵⁰, esophageal cancer⁵¹, colorectal cancer⁵², and gastrointestinal cancer⁵³.

FINDING SUMMARY

Tumor fraction provides an estimate of the percentage of ctDNA present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate for this sample is based on the observed level of aneuploid instability. The tumor fraction algorithm utilized for FoundationOne Liquid CDx uses the allele frequencies of approximately 1,000 singlenucleotide polymorphism (SNP) sites across the genome. Unlike the maximum somatic allele frequency (MSAF) method of estimating ctDNA content⁵⁴, the tumor fraction metric does not take into account the allele frequency of individual variants but rather produces a more holistic estimate of ctDNA content using data from across the genome. The amount of ctDNA detected may correlate with disease burden and response to therapy⁵⁵⁻⁵⁶.

GENOMIC FINDINGS

CCND1

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Amplification or overexpression of CCND1 may predict sensitivity to CDK4/6 inhibitors, such as abemaciclib, palbociclib, and ribociclib $^{57-62}$, although as monotherapy these agents have shown limited activity in tumor types other than breast cancer 61,63 . In refractory advanced solid tumors with CCND1 (n=39) or CCND3 (n=1) amplification and retinoblastoma protein expression, palbociclib resulted in SD for 39% (14/36) of patients and a median PFS of 1.8 months in the NCI-MATCH trial 64 ; 4 patients (13%, 4/36 overall) with squamous cell carcinomas (lung, esophageal, or

laryngeal) or adenoid cystic carcinoma experienced prolonged SD in this study⁶⁴. Among 9 patients with CCND1-amplified advanced solid tumors, 1 patient with bladder cancer responded to ribociclib in a Phase 2 trial⁶⁵.

Potential Resistance

CCND1 amplification may predict worse outcomes on immune checkpoint inhibitors (anti-PD-1/PD-L1/CTLA-4) in solid tumors on the basis of 2 meta-analyses $^{12-13}$; in these studies, CCND1 amplification was associated with significantly decreased response rate 13 and OS (HR=1.6-2.0) $^{12-13}$ across various tumor types and significantly shorter OS specifically in urothelial carcinoma (HR=2.2-3.6), melanoma (HR=1.6-2.5), and solid tumors harboring elevated TMB (HR=2.8) $^{12-13}$.

Nontargeted Approaches —

In addition, overexpression of cyclin D1 has been associated with a poor response to chemotherapy

and chemoradiotherapy in patients with ESCC66-67.

FREQUENCY & PROGNOSIS

Among gastroesophageal carcinomas, CCND1 amplification is most frequent in esophageal squamous cell carcinomas (ESCC; 22-70%)⁶⁸⁻⁷⁴ and less frequent in esophageal adenocarcinomas (7-15%)⁷⁴⁻⁷⁶ and gastric adenocarcinomas (6%)⁷⁷. Expression of cyclin D1 has also been detected in 42-58% of ESCC samples^{71,78}. CCND1 amplification and cyclin D1 overexpression have been correlated with tumor recurrence, reduced survival, and poor prognosis in patients with ESCC^{68,72,79-80}.

FINDING SUMMARY

CCND1 encodes cyclin D1, a binding partner of the kinases CDK4 and CDK6, that regulates RB activity and cell cycle progression. Amplification of CCND1 has been positively correlated with cyclin D1 overexpression⁸¹ and may lead to excessive proliferation⁸²⁻⁸³.

GENE

KRAS

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Preclinical evidence suggests that KRAS activation may predict sensitivity to MEK inhibitors, such as trametinib, binimetinib, cobimetinib, and selumetinib⁸⁴⁻⁸⁹. Clinical evidence that KRAS amplification in the absence of a concurrent KRAS activating mutation is sensitive to MEK inhibitors is limited. A Phase 2 study of selumetinib plus

docetaxel in patients with gastric cancer reported 1 of 2 patients with KRAS amplification experienced a PR^{90} . A patient with cervical cancer harboring both KRAS and PIK₃CA amplification treated with the combination of trametinib and the AKT inhibitor GSK2141795 achieved a SD⁹¹.

FREQUENCY & PROGNOSIS

KRAS amplification has been reported in up to 27% of esophageal adenocarcinomas examined, compared with 17% of esophageal squamous cell carcinomas^{75,92-94}. KRAS alterations, including mutations⁹⁵ and amplification^{94,96-97} are associated with worse prognosis in patients with gastroesophageal cancer. One study reported that KRAS alteration did not significantly associate with OS in a cohort of patients with gastric,

esophageal, or gastroesophageal adenocarcinoma⁹⁸. Published data investigating the prognostic implications of KRAS alterations in esophageal squamous cell carcinoma are limited (PubMed, Sep 2022).

FINDING SUMMARY

KRAS encodes a member of the RAS family of small GTPases. Activating mutations in RAS genes can cause uncontrolled cell proliferation and tumor formation^{85,99}. In numerous cancer type-specific studies as well as a large-scale pan-cancer analysis, KRAS amplification was shown to correlate with increased expression¹⁰⁰⁻¹⁰³. Additionally, KRAS amplification correlated with sensitivity of cancer cell lines to KRAS knockdown, suggesting that amplified KRAS is an oncogenic driver¹⁰³.

GENOMIC FINDINGS

GENE

BAP1

ALTERATION

splice site 1117-6_1143del33

TRANSCRIPT ID

NM_004656.2

CODING SEQUENCE EFFECT

1117-6_1143del33

VARIANT CHROMOSOMAL POSITION

chr3:52438575-52438608

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies –

Clinical¹⁰⁴ and preclinical¹⁰⁵ evidence in the context of mesothelioma suggests that tumors with BAP1 inactivation may be sensitive to EZH2 inhibitors such as tazemetostat. Preclinical studies suggest that BAP1 is involved in the DNA damage response¹⁰⁶⁻¹⁰⁹, and BAP1 inactivation might be associated with sensitivity to PARP

inhibitors¹⁰⁷⁻¹⁰⁸. One preclinical study suggests that HDAC inhibitors may be beneficial in BAP1-mutated uveal melanoma; however, it is unclear if these inhibitors are effective in other BAP1-mutated cancers¹¹⁰.

FREQUENCY & PROGNOSIS

In esophageal squamous cell carcinomas, BAP1 mutation has been reported in 2% of cases¹¹¹ and one study reported deletion of the BAP1 locus in 52% (14/27) cases¹¹². Published data investigating the prognostic implications of BAP1 alteration in esophageal carcinomas are limited (PubMed, Aug 2022).

FINDING SUMMARY

BAP1 (BRCA1 associated protein-1) encodes a ubiquitin hydrolase, a protein involved in regulating the availability of target proteins for the ubiquitin-proteasome protein degradation pathway; BAP1 is located on chromosome 3p21.3, in a region of frequent loss of heterozygosity (LOH) in breast and lung cancer, and has been postulated

to be a tumor suppressor $^{113-114}$. Alterations such as seen here may disrupt BAP1 function or expression $^{114-123}$.

POTENTIAL GERMLINE IMPLICATIONS

BAP1 germline inactivating alterations, including mutations and deletions, are associated with BAP1 tumor predisposition syndrome (BAP1-TPDS), an autosomal-dominant syndrome characterized by early onset of benign melanocytic skin tumors^{117,124-125}. An estimated 2% of patients with BAP1-inactivated melanocytic tumors display germline BAP1 mutations¹²⁶. Later in life, patients have an increased risk of cancers such as uveal melanoma, mesothelioma, clear cell renal cell carcinoma, basal cell carcinoma, and meningioma^{116-120,127}. In small studies, the prevalence of pathogenic germline BAP1 mutation has been reported as 22% in familial uveal melanoma and 4.4% in mesothelioma 128-129. In the appropriate clinical context, germline testing of BAP1 is recommended.

GENE

CBL

ALTERATION

splice site 1096-12_1111del28

TRANSCRIPT ID

NM_005188.2

CODING SEQUENCE EFFECT

1096-12_1111del28

VARIANT CHROMOSOMAL POSITION

chr11:119148862-119148890

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

CBL inactivation may lead to the hyperactivation of various receptor tyrosine kinases (RTKs), including MET¹³⁰, PDGFRA¹³¹, KIT¹³², VEGFR2¹³³, and the TAM (TYRO₃, AXL, MER) RTKs¹³⁴. These RTKs are targets of the multikinase inhibitor sitravatinib¹³⁵,

which has shown activity in CBL-mutated advanced solid tumors¹³⁶. Among 8 patients with CBL inactivating alterations in a Phase 1b trial, sitravatinib produced 2 PRs (25% ORR), with 1 NSCLC and 1 melanoma responding for over 4 months, and 4 SD outcomes, with 3 prolonged SDs seen in a patient with NSCLC, a patient with esophageal cancer, and a patient with a pancreatic neuroendocrine tumor¹³⁶. CBL has been shown to downregulate EGFR¹³⁷⁻¹⁴¹ and FLT3¹⁴²⁻¹⁴⁴. Preclinical models of myeloid malignancies have demonstrated that CBL inactivation confers sensitivity to the FLT3-targeting therapies sunitinib¹⁴², midostaurin¹⁴⁴, and quizartinib¹⁴⁵, as well as to dasatinib146, although clinical evidence for this approach in solid tumors is lacking.

FREQUENCY & PROGNOSIS

CBL mutations have been reported in 3.5% of esophagogastric carcinomas, 3.2% of esophageal squamous cell carcinomas, 2.3% of esophagogastric,

and in 0.9% of stomach adenocarcinomas (cBioPortal, Apr 2022)¹⁴⁷⁻¹⁴⁸. CBL protein expression was detected in 67% (82/122), and diffuse expression in 29% (25/122), of gastric carcinoma samples; the latter was associated with increased depth of invasion, lymph node metastasis, and tumor stage¹⁴⁹.

FINDING SUMMARY

CBL encodes an E3 ubiquitin protein ligase that is involved in cell signaling and ubiquitination, targeting proteins such as EGFR, FGFR1, FGFR2, PDGFR-alpha, PDGFR-beta, FLT3, and SRC for degradation by the proteasome¹⁵⁰⁻¹⁵⁴. CBL alterations that result in loss or disruption of the tyrosine kinase binding domain, RING finger domain, and/or tail domain, as observed here, are predicted to be inactivating and to promote tumorigenesis¹⁵⁵⁻¹⁷².

GENOMIC FINDINGS

GENE

DNMT3A

ALTERATION

E442*, M439fs*212

TRANSCRIPT ID

NM_022552.3, NM_022552.3

CODING SEQUENCE EFFECT 1324G>T, 1315delA

VARIANT CHROMOSOMAL POSITION

chr2:25469134, chr2:25469142-25469143

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no targeted therapies available to address genomic alterations in DNMT₃A in solid tumors.

FREQUENCY & PROGNOSIS

DNMT₃A alterations have been reported at relatively low frequencies in solid tumors and are more prevalent in hematological malignancies (cBioPortal, Feb 2022)¹⁴⁷⁻¹⁴⁸. Published data investigating the prognostic implications of DNMT₃A alterations in solid tumors are limited (PubMed, Feb 2022).

FINDING SUMMARY

The DNMT₃A gene encodes the protein DNA methyltransferase ₃A, an enzyme that is involved in the methylation of newly synthesized DNA, a function critical for gene regulation¹⁷³⁻¹⁷⁴. The role of DNMT₃A in cancer is uncertain, as some reports describe increased expression and contribution to tumor growth, whereas others propose a role for DNMT₃A as a tumor suppressor¹⁷⁵⁻¹⁸⁰. Alterations such as seen here may disrupt DNMT₃A function or expression¹⁸¹⁻¹⁸⁴.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion¹⁸⁵⁻¹⁹⁰. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy¹⁸⁵⁻¹⁸⁶. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease¹⁹¹. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH189,192-193. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

GENE

FGF19

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

A Phase 1 study of the FGFR4 inhibitor fisogatinib (BLU-554) for patients with advanced hepatocellular carcinoma (HCC) reported a 17% ORR (11/66, 1 CR, ongoing for >1.5 years) and 3.3-month PFS for FGF19 IHC-positive patients; patients with negative or unknown FGF19 IHC scores experienced poorer outcomes (0% ORR, 2.3-month PFS)¹⁹⁴. A Phase 1/2 study evaluating another FGFR4 inhibitor, FGF401, demonstrated an ORR of 7.5% (4/53) and SD rate of 53% (28/53) for patients with HCC¹⁹⁵. A Phase 1 study of the FGFR4 inhibitor H3B-6527 reported a 17% ORR (OS of 10.3 months, 46% clinical benefit rate) among

patients with HCC; enrollment of patients with intrahepatic cholangiocarcinoma (ICC) was suspended due to efficacy¹⁹⁶. A retrospective analysis reported that 50% (2/4) of patients with HCC harboring FGF19 amplification experienced a CR to sorafenib¹⁹⁷, though another retrospective study found patients with higher pretreatment serum levels of FGF19 experienced reduced benefit from sorafenib compared with those with lower serum FGF19 (PFS of 86 vs. 139 days, OS of 353 vs. 494 days); no difference was observed for lenvatinib198. A patient with head and neck squamous cell carcinoma (HNSCC) with 11q13 (FGF3, FGF4, FGF19) and 12p13 (FGF6 and FGF23) amplification experienced a CR lasting 9 months from a pan-FGFR inhibitor¹⁹⁹.

FREQUENCY & PROGNOSIS

For patients with solid tumors, FGF19 amplification has been reported most frequently in breast cancer (17%), head and neck cancer (12%), lung squamous cell carcinoma (SCC; 12%), and urothelial carcinoma cancer (11%)²⁰⁰⁻²⁰². FGF19

mutations are rare in solid tumors²⁰⁰. FGF19 expression or amplification has been associated with poor prognosis in hepatocellular carcinoma (HCC)²⁰³⁻²⁰⁴, and in prostate cancer following radical prostatectomy²⁰⁵. Studies suggest FGF19 expression may also be a poor prognostic indicator in head and neck squamous cell carcinoma (HNSCC)²⁰⁶ and lung SCC²⁰⁷.

FINDING SUMMARY

FGF19 encodes fibroblast growth factor 19, an FGFR4 ligand involved with bile acid synthesis and hepatocyte proliferation in the liver²⁰⁸⁻²⁰⁹. FGF19 lies in a region of chromosome 11q13 that also contains FGF3, FGF4, and CCND1; this region is frequently amplified in a diverse range of malignancies²¹⁰. Correlation between FGF19 amplification and protein expression has been reported in hepatocellular carcinoma (HCC)²¹¹, lung squamous cell carcinoma^{207,212}, and head and neck squamous cell carcinoma (HNSCC)²⁰⁶, but was not observed in other cancers^{198,213}.

GENOMIC FINDINGS

GENE

FGF3

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no targeted therapies that directly address genomic alterations in FGF3. Inhibitors of FGF receptors, however, are undergoing clinical trials in

a number of different cancers. Limited data suggest that pan-FGFR inhibitors show activity in FGF amplified cancers; following treatment with a selective pan-FGFR inhibitor, a patient with head and neck squamous cell carcinoma (HNSCC) and amplification of 11q13 (FGF3, FGF4, FGF19) and 12p13 (FGF6 and FGF23) experienced a radiologic CP2¹⁴

FREQUENCY & PROGNOSIS

FGF3 lies in a region of chromosome 11q13 that also contains FGF19, FGF4, and CCND1, the latter gene encoding cyclin D1, a key regulator of cell

cycle progression. This chromosomal region is frequently amplified in a diverse range of malignancies⁸².

FINDING SUMMARY

FGF3 encodes fibroblast growth factor 3, a growth factor that plays a central role in development of the inner ear. Germline mutations in FGF3 give rise to an autosomal recessive syndrome characterized by microdontia, deafness, and complete lack of inner ear structures²¹⁵.

GENE

FGF4

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

FGF4 amplification and overexpression was associated with cell sensitivity to the multikinase inhibitor sorafenib in preclinical studies $^{216\text{-}217}$ and amplification of FGF4/FGF3 in HCC significantly correlated with patient response to sorafenib $(p{=}0.006)^{216}.$ Limited data suggest that pan-FGFR inhibitors show activity in FGF amplified cancers; following treatment with a selective pan-FGFR

inhibitor, a patient with head and neck squamous cell carcinoma (HNSCC) and amplification of 11q13 (FGF3, FGF4, FGF19) and 12p13 (FGF6 and FGF23) experienced a radiologic CR²¹⁴.

FREQUENCY & PROGNOSIS

FGF4 lies in a region of chromosome 11q13 that also contains FGF19, FGF3, and CCND1, the latter gene encoding cyclin D1, a key regulator of cell cycle progression. This chromosomal region is frequently amplified in a diverse range of malignancies⁸² including esophageal carcinoma (35%), head and neck squamous cell carcinoma (HNSCC; 24%), breast invasive carcinoma (14%), lung squamous cell carcinoma (13%), cholangiocarcinoma (11%), bladder urothelial carcinoma (10%), stomach adenocarcinoma (7%), skin melanoma (5%), and hepatocellular carcinoma

(HCC; 5%), however FGF4 amplification is rare in hematopoietic and lymphoid malignancies, reported in less than 1% of samples analyzed (cBioPortal, Jan 2023)¹⁴⁷⁻¹⁴⁸.

FINDING SUMMARY

FGF4 encodes fibroblast growth factor 4, which plays a central role in development of the teeth²¹⁸ and acts synergistically with other FGFs and SHH (sonic hedgehog) to regulate limb outgrowth in vertebrate development²¹⁹. FGF4 lies in a region of chromosome 11q13 that also contains FGF19, FGF3, and CCND1, the latter gene encoding cyclin D1, a key regulator of cell cycle progression.

Amplification of FGF4, along with that of FGF3, FGF19, and CCND1, has been reported in a variety of cancers^{82,216,220-223} and may confer sensitivity to the multi-kinase inhibitor sorafenib²¹⁶.

GENOMIC FINDINGS

GENE

MLL2

ALTERATION C735*

TRANSCRIPT ID NM_003482.4

CODING SEQUENCE EFFECT 2205C>A

VARIANT CHROMOSOMAL POSITION chr12:49445261

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no targeted therapies available to address genomic alterations in MLL2.

FREQUENCY & PROGNOSIS

MLL2 alterations are observed in a number of solid tumor contexts²⁰⁰, and are especially prevalent in lung squamous cell carcinoma (SCC)²⁰¹ and small cell lung carcinoma (SCLC)²²⁴. MLL2 mutation was found to be an independent prognostic factor of poor PFS and OS in non-small cell lung cancer, but not in SCLC²²⁵. One study reported that MLL2 truncating mutations were more common in recurrent ovary granulosa cell tumors (GCT) compared with primary GCTs (24% [10/42] vs. 3.0% [1/32])²²⁶. In a study of esophageal SCC, high MLL2 expression positively correlated with tumor stage, differentiation, and size, and negatively correlated with OS²²⁷.

FINDING SUMMARY

MLL2 encodes an H₃K₄-specific histone methyltransferase that is involved in the transcriptional response to progesterone

signaling²²⁸. Germline de novo mutations of MLL2 are responsible for the majority of cases of Kabuki syndrome, a complex and phenotypically distinctive developmental disorder²²⁹. A significant number of inactivating MLL2 alterations have been observed in multiple tumor types, suggesting a tumor suppressor role²³⁰.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion¹⁸⁵⁻¹⁹⁰. Comprehensive genomic profiling of solid tumors may detect nontumor alterations that are due to CH^{189,192-193}. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

GENOMIC FINDINGS

GENE

TP53

ALTERATION

H179Y, splice site 994-2A>T, splice site 376-1G>A

TRANSCRIPT ID

NM_000546.4, NM_000546.4, NM_000546.4

CODING SEQUENCE EFFECT

535C>T, 994-2A>T, 376-1G>A

VARIANT CHROMOSOMAL POSITION

chr17:7578395, chr17:7574035, chr17:7578555

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib²³¹⁻²³⁴ or p53 gene therapy such as SGT53²³⁵⁻²³⁹. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype²⁴⁰. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer²⁴¹. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer²⁴². The combination of adavosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone 243. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24% (6/25) ORR with adavosertib

combined with paclitaxel²⁴⁴. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71% (5/7) response rate for patients with TP53 alterations²⁴⁵. The Phase 2 FOCUS4-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adavosertib treatment compared with active monitoring²⁴⁶. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage²³⁹. Missense mutations leading to TP₅₃ inactivation may be sensitive to therapies that reactivate mutated p53 such as eprenetapopt. In a Phase 1b trial for patients with p53-positive highgrade serous ovarian cancer, eprenetapopt combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR²⁴⁷. A Phase 1 trial of eprenetapopt with pembrolizumab for patients with solid tumors reported an ORR of 10% (3/ 29)248.

FREQUENCY & PROGNOSIS

TP53 mutations have been observed in 61-93% of esophageal squamous cell carcinoma samples²⁴⁹⁻²⁵¹. While some studies have reported no association between TP53 mutation status and prognosis in patients with esophageal carcinoma or gastroesophageal junction adenocarcinoma²⁵²⁻²⁵³ others have associated TP53 mutation and elevated p53 expression with poor prognosis for patients with esophageal squamous cell carcinoma²⁵⁴⁻²⁵⁵ or stomach cancer²⁵⁶⁻²⁵⁸.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers²⁵⁹. Alterations such as

seen here may disrupt TP₅₃ function or expression²⁶⁰⁻²⁶⁴.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the TP53 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with Li-Fraumeni syndrome (ClinVar, Sep 2022)²⁶⁵. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers266-268, including sarcomas²⁶⁹⁻²⁷⁰. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000²⁷¹ to 1:20,000²⁷⁰. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30²⁷². In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion¹⁸⁵⁻¹⁹⁰. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy¹⁸⁵⁻¹⁸⁶. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease¹⁹¹. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to $CH^{189,192-193}$. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

PATIENT Wang, Chu-Mao

TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)

REPORT DATE
06 January 2023

ORDERED TEST # ORD-1533770-01

CLINICAL TRIALS

IMPORTANT Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or

research staff. This is not a comprehensive list of all available clinical trials. There may also be compassionate use or early access programs available, which are not listed in this report. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials are not ranked in order of potential or predicted efficacy for this patient or

in order of level of evidence for this patient's tumor type. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. However, clinicaltrials.gov does not list all clinical trials that might be available.

BIOMARKER

Blood Tumor Mutational Burden

RESULT
13 Muts/Mb

RATIONALE

Increased tumor mutational burden may predict response to anti-PD-1 (alone or in combination

with anti-CTLA-4) or anti-PD-L1 immune checkpoint inhibitors.

NCT04237649	PHASE NULL
KAZ954 Alone and With PDR001, NZV930 and NIR178 in Advanced Solid Tumors	TARGETS ADORA2A, CD73, PD-1

LOCATIONS: Taipei (Taiwan), Shatin, New Territories (Hong Kong), Sunto Gun (Japan), Singapore (Singapore), Milano (Italy), Barcelona (Spain), California, Illinois, Toronto (Canada), Missouri

NCT04550260	PHASE 3
Study of Durvalumab Versus Placebo in Combination With Definitive Chemoradiation Therapy in Patient With ESCC	TARGETS PD-L1

LOCATIONS: Taipei (Taiwan), Tao-Yuan (Taiwan), Taichung (Taiwan), Changhua (Taiwan), Fuzhou (China), Tainan (Taiwan), Kaohsiung (Taiwan), Quanzhou (China), Jieyang (China), Hangzhou (China)

NCT04543617	PHASE 3
A Study of Atezolizumab With or Without Tiragolumab in Participants With Unresectable Esophageal Squamous Cell Carcinoma Whose Cancers Have Not Progressed Following Definitive Concurrent Chemoradiotherapy	TARGETS PD-L1, TIGIT

LOCATIONS: Zhongzheng Dist. (Taiwan), Taichung (Taiwan), Fuzhou (China), Tainan (Taiwan), Kaoisung (Taiwan), Xiamen (China), Lishui City (China), Jieyang City (China), Zhejiang (China), Shanghai City (China)

NCT04210115	PHASE 3
Study of Pembrolizumab (MK-3475) Versus Placebo in Participants With Esophageal Carcinoma Who Are Receiving Chemotherapy and Radiation Therapy (MK-3475-975/KEYNOTE-975)	TARGETS PD-1
LOCATIONS: Tainoi (Taiwan) Taichung (Taiwan) Fuzhou (China) Tainan (Taiwan) Kacheiung (Taiwan) Viamon (China) Hangahou (China) Shanghai

LOCATIONS: Taipei (Taiwan), Taichung (Taiwan), Fuzhou (China), Tainan (Taiwan), Kaohsiung (Taiwan), Xiamen (China), Hangzhou (China), Shanghai (China), Nanchang (China)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

CLINICAL TRIALS

NCT04949256	PHASE 3
Efficacy and Safety of Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) Plus Chemotherapy in Participants With Metastatic Esophageal Carcinoma (MK-7902-014/E7080-G000-320/LEAP-014)	TARGETS PD-1, KIT, VEGFRS, FGFRS, PDGFRA, RET

LOCATIONS: Taipei (Taiwan), Kaohsiung (Taiwan), Fuzhou (China), Tainan (Taiwan), Xiamen (China), Hangzhou (China), Wuxi (China), Kowloon (Hong Kong), Hong Kong (Hong Kong), Hefei (China)

NCT05166577	PHASE 1/2
Nanatinostat Plus Valganciclovir in Patients With Advanced EBV+ Solid Tumors, and in Combination With Pembrolizumab in EBV+ RM-NPC	TARGETS HDAC, PD-1

LOCATIONS: Taipei City (Taiwan), Taipei (Taiwan), Taoyuan City (Taiwan), Sha Tin (Hong Kong), Hong Kong (Hong Kong), Seoul (Korea, Republic of), Kuching (Malaysia), Kuala Lumpur (Malaysia), Singapore (Singapore), Blacktown (Australia)

NCT04785820	PHASE 2
A Study of RO7121661 and RO7247669 Compared With Nivolumab in Participants With Advanced or Metastatic Squamous Cell Carcinoma of the Esophagus	TARGETS PD-1, TIM-3, LAG-3

LOCATIONS: Zhongzheng Dist. (Taiwan), Jeollanam-do (Korea, Republic of), Seoul (Korea, Republic of), Bangkok (Thailand), Songkhla (Thailand), Singapore (Singapore), Van (Turkey), Moskva (Russian Federation), Moscow (Russian Federation), Erzurum (Turkey)

NCT05007106	PHASE 2
MK-7684A With or Without Other Anticancer Therapies in Participants With Selected Solid Tumors (MK-7684A-005)	TARGETS PD-1, KIT, VEGFRS, FGFRS, PDGFRA, RET, TIGIT

LOCATIONS: Taoyuan (Taiwan), Tainan (Taiwan), Taipei (Taiwan), Seoul (Korea, Republic of), Osaka (Japan), Nagoya (Japan), Tokyo (Japan), Kashiwa (Japan), Alaska, Adana (Turkey)

NCT03674567	PHASE 1/2
Dose Escalation and Expansion Study of FLX475 Monotherapy and in Combination With	TARGETS
Pembrolizumab	PD-1, CCR4

LOCATIONS: Taipei (Taiwan), Tainan (Taiwan), Busan (Korea, Republic of), Shatin (Hong Kong), High West (Hong Kong), Chungbuk (Korea, Republic of), Seoul (Korea, Republic of), Gyeonggi-do (Korea, Republic of), Bangkok (Thailand), Nedlands (Australia)

NCT04152018	PHASE 1
Study of PF-06940434 in Patients With Advanced or Metastatic Solid Tumors.	TARGETS PD-1
LOCATIONS: Taipei (Taiwan), Tainan (Taiwan), Seoul (Korea, Republic of), Liverpool (Austr	ralia), Wollongong (Australia), Poprad (Slovakia), Bratislava

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

© 2023 Foundation Medicine, Inc. All rights reserved.

(Slovakia), Washington, California, Arizona

LOCATIONS: Shanghai (China)

LOCATIONS: Melbourne (Australia)

CLINICAL TRIALS

GENE		
CCI	N	D1

RATIONALE

CCND1 amplification or overexpression may activate CDK4/6 and may predict sensitivity to

single-agent CDK4/6 inhibitors.

ALTERATION amplification

NCT04000529	PHASE 1
Phase Ib Study of TNO155 in Combination With Spartalizumab or Ribociclib in Selected Malignancies	TARGETS PD-1, SHP2, CDK6, CDK4

LOCATIONS: Shanghai (China), Hong Kong (Hong Kong), Chengdu (China), Chuo ku (Japan), Singapore (Singapore), Westmead (Australia), Bruxelles (Belgium), Barcelona (Spain), Massachusetts

NCT04282031	PHASE 1/2
A Study of BPI-1178 in Patients With Advanced Solid Tumor and HR+/HER2- Breast Cancer	TARGETS CDK6, CDK4, ER, Aromatase

NCT04801966	PHASE NULL
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF

	03297606	PHASE 2
VEGFRs, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR PD-1, CTLA-4, PARP, CDK4, CDK6,	an Profiling and Targeted Agent Utilization Trial (CAPTUR)	FLT3, CSF1R, RET, mTOR, ERBB2, MEK,

LOCATIONS: Vancouver (Canada), Edmonton (Canada), Saskatoon (Canada), Regina (Canada), Ottawa (Canada), Montreal (Canada), Toronto (Canada), Kingston (Canada), London (Canada)

NCT05252416	PHASE 1/2
(VELA) Study of BLU-222 in Advanced Solid Tumors	TARGETS ER, CDK4, CDK6, CDK2
LOCATIONS: Massachusetts, New York, Virginia, Texas, Florida	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PATIENT Wang, Chu-Mao

TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)

REPORT DATE 06 January 2023

ORDERED TEST # ORD-1533770-01

CLINICAL TRIALS

NCT02896335	PHASE 2
Palbociclib In Progressive Brain Metastases	TARGETS CDK4, CDK6
LOCATIONS: Massachusetts	

Wang, Chu-Mao

TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)

REPORT DATE 06 January 2023

ORDERED TEST # ORD-1533770-01

LOCATIONS: Guangzhou (China)

LOCATIONS: Melbourne (Australia)

NCTO 4EE1E31

CLINICAL TRIALS

GENE		
KR	Δ	ς

RATIONALE

KRAS activating mutations or amplification may predict sensitivity to inhibitors of MAPK pathway

components, including MEK inhibitors.

ALTERATION amplification

NCT04985604	PHASE 1/2
DAY101 Monotherapy or in Combination With Other Therapies for Patients With Solid Tumors	TARGETS BRAF, MEK

LOCATIONS: Busan (Korea, Republic of), Seoul (Korea, Republic of), Clayton (Australia), Edegem (Belgium), Oregon, Barcelona (Spain), Madrid (Spain), California, Colorado

NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, RET, PDGFRA, VEGFRs, KIT, MEK

NCT03284502

NCT03284502

Cobimetinib and HM95573 in Patients With Locally Advanced or Metastatic Solid Tumors

TARGETS

MEK, RAFs, NRAS

LOCATIONS: Hwasun (Korea, Republic of), Pusan (Korea, Republic of), Seongnam (Korea, Republic of), Seoul (Korea, Republic of), Goyang-si (Korea, Republic of)

NCT04801966	PHASE NULL
	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF

NC104551521	PHASE 2
CRAFT: The NCT-PMO-1602 Phase II Trial	TARGETS PD-L1, AKTs, MEK, BRAF, ALK, RET, ERBB2

LOCATIONS: Würzburg (Germany), Mainz (Germany), Heidelberg (Germany), Tübingen (Germany)

NCT03905148	PHASE 1/2
Study of the Safety and Pharmacokinetics of BGB-283 and PD-0325901 in Patients With Advanced or Refractory Solid Tumors	TARGETS RAFs, EGFR, MEK

LOCATIONS: Nedlands (Australia), Blacktown (Australia), Randwick (Australia), Melbourne (Australia), California, Texas

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE Esophagus squamous cell carcinoma (SCC) REPORT DATE
06 January 2023

ORDERED TEST # ORD-1533770-01

FOUNDATIONONE®LIQUID CDx

CLINICAL TRIALS

NCT05159245	PHASE 2				
The Finnish National Study to Facilitate Patient Access to Targeted Anti-cancer Drugs	TARGETS BRAF, VEGFRS, RET, KIT, ERBB2, TRKB, ALK, TRKC, ROS1, TRKA, SMO, PD-L1, MEK, CDK4, CDK6				
LOCATIONS: Kuopio (Finland), Helsinki (Finland), Tampere (Finland), Turku (Finland)					
NCT04720976	PHASE 1/2				
JAB-3312 Activity in Adult Patients With Advanced Solid Tumors	TARGETS MEK, SHP2, PD-1, EGFR, KRAS				
LOCATIONS: Utah, California, Arizona, Minnesota, Illinois, Michigan, Oklahoma, Missouri, Indiana, Connecticut					
NCT04965818	PHASE 1/2				
Phase 1b/2 Study of Futibatinib in Combination With Binimetinib in Patients With Advanced KRAS Mutant Cancer	TARGETS MEK, FGFRs				
LOCATIONS: California, Indiana, Texas					
NCT05340621	PHASE 1/2				
OKI-179 Plus Binimetinib in Patients With Advanced Solid Tumors in the RAS Pathway (Phase 1b) and NRAS-mutated Melanoma (Phase 2)	TARGETS HDACs, MEK				
LOCATIONS: Arizona, Illinois, Massachusetts, Texas, Georgia					

TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)

REPORT DATE 06 January 2023

FOUNDATION ONE ** LIQUID CDx

ORDERED TEST # ORD-1533770-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

ARID1A	C11ORF30 (EMSY)	CARD11	FANCA D694N, E369K and E484K
V1736M	V739A	V197fs*1	
FGF19	FGFR1	HSD3B1	JAK2
S50F	A435V	L56Q	H1077R
KDM5C	LTK	MLL2	NF1
R332P	R682Q	P777T	H2479R
PBRM1 I1573T	PDGFRA E485Q	ROS1 V665L	

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

ORDERED TEST # ORD-1533770-01

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

ABL1 Exons 4-9	ACVR1B	AKT1 Exon 3	AKT2	AKT3	ALK Exons 20-29, Introns 18, 19	ALOX12B	AMER1 (FAM123B or WTX)	APC
AR	ARAF Exons 4, 5, 7, 11, 13, 15, 16	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BCR* Introns 8, 13, 14	BRAF Exons 11-18, Introns 7-10	BRCA1 D Introns 2, 7, 8, 12, 16, 19, 20	BRCA2 0 Intron 2	BRD4	BRIP1	BTG1
BTG2	BTK Exons 2, 15	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD70	CD74* Introns 6-8	CD79A	CD79B	CD274 (PD-L1)	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	СЕВРА	СНЕК1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1 Exon 3	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1
DDR2 Exons 5, 17, 18	DIS3	DNMT3A	DOT1L	EED	EGFR Introns 7, 15, 24-27	EMSY (C11orf30)	EP300	ЕРНАЗ
ЕРНВ1	ЕРНВ4	ERBB2	ERBB3 Exons 3, 6, 7, 8, 10, 12, 20, 21, 23, 24, 25	ERBB4	ERCC4	ERG	ERRFI1	ESR1 Exons 4-8
ETV4* Intron 8	ETV5* Introns 6, 7	ETV6* Introns 5, 6	EWSR1* Introns 7-13	EZH2 Exons 4, 16, 17, 18	EZR* Introns 9-11	FANCA	FANCC	FANCG
FANCL	FAS	FBXW7	FGF10	FGF12	FGF14	FGF19	FGF23	FGF3
FGF4	FGF6	FGFR1 Introns 1, 5, Intron 17	FGFR2 Intron 1, Intron 17	FGFR3 Exons 7, 9 (alternative designation exon 10), 14, 18, Intron 17		FH	FLCN	FLT1
FLT3 Exons 14, 15, 20	FOXL2	FUBP1	GABRA6	GATA3	GATA4	GATA6	GID4 (C17orf39)	GNA11 Exons 4, 5
GNA13	GNAQ Exons 4, 5	GNAS Exons 1, 8	GRM3	GSK3B	H3-3A (H3F3A)	HDAC1	HGF	HNF1A
HRAS Exons 2, 3	HSD3B1	ID3	IDH1 Exon 4	IDH2 Exon 4	IGF1R	IKBKE	IKZF1	INPP4B
IRF2	IRF4	IRS2	JAK1	JAK2 Exon 14	<i>JAK3</i> Exons 5, 11, 12, 13, 15, 16	JUN	KDM5A	KDM5C
KDM6A	KDR	KEAP1	KEL	KIT Exons 8, 9, 11, 12, 13, 13, 11, 11, 12, 13, 13	KLHL6 7,	KMT2A (MLL) Introns 6, 8-11, Intron 7	KMT2D (MLL2)	KRAS

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

LTK	LYN	MAF	MAP2K1 (MEK1) Exons 2, 3	MAP2K2 (MEK2) Exons 2-4, 6,	MAP2K4 7	МАРЗК1	MAP3K13	MAPK1
MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MERTK	MET	MITF
MKNK1	MLH1	MPL Exon 10	MRE11 (MRE11A)	MSH2 Intron 5	MSH3	MSH6	MST1R	МТАР
MTOR Exons 19, 30, 39, 40, 43-45, 47, 48, 53, 56	MUTYH	MYB* Intron 14	MYC Intron 1	MYCL (MYCL1)	MYCN	MYD88 Exon 4	NBN	NF1
NF2	NFE2L2	NFKBIA	NKX2-1	<i>NOTCH1</i>	NOTCH2 Intron 26	<i>NOTCH3</i>	NPM1 Exons 4-6, 8, 10	NRAS Exons 2, 3
NSD2 (WHSC1 or MMSET)	NSD3 (WHSC1L1)	NT5C2	NTRK1 Exons 14, 15, Introns 8-11	NTRK2 Intron 12	NTRK3 Exons 16, 17	NUTM1* Intron 1	P2RY8	PALB2
PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)	PDGFRA Exons 12, 18, Introns 7, 9, 11	PDGFRB Exons 12-21, 23
PDK1	PIK3C2B	PIK3C2G	PIK3CA Exons 2, 3, 5-8, 10, 14, 19, 21 (Coding Exons 1, 2, 4-7, 9, 13, 18, 20)	PIK3CB	PIK3R1	PIM1	PMS2	POLD1
POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PRKN (PARK2)	РТСН1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1 Exons 3, 4, 6, 7, 10, 14, 15, 17, Introns 4-8	RARA Intron 2	RB1	RBM10	REL	RET Introns 7, 8, Exons 11, 13-16, Introns 9-11
RICTOR	RNF43	ROS1 Exons 31, 36-38, 40, Introns 31-35	RPTOR	RSPO2* Intron 1	SDC4* Intron 2	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SLC34A2* Intron 4	SMAD2	SMAD4	SMARCA4	SMARCB1
SMO	SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2
STAT3	STK11	SUFU	SYK	TBX3	TEK	TENT5C (FAM46C)	TERC*	TERT* Promoter
TET2	TGFBR2	TIPARP	TMPRSS2* Introns 1-3	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2
TYRO3	U2AF1	VEGFA	VHL	WT1	XPO1	XRCC2	ZNF217	ZNF703

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status Blood Tumor Mutational Burden (bTMB) Tumor Fraction

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Liquid CDx

FoundationOne Liquid CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. The CE-IVD regulatory status of FoundationOne Liquid CDx is applicable in countries that accept and/or recognize the CE mark.

ABOUT FOUNDATIONONE LIQUID CDX

FoundationOne Liquid CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Liquid CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform highcomplexity clinical testing.

Please refer to technical information for performance specification details.

INTENDED USE

FoundationOne Liquid CDx is a next generation sequencing based in vitro diagnostic device that analyzes 324 genes. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The test also detects the genomic signatures blood tumor mutational burden (bTMB), microsatellite instability (MSI), and tumor fraction. FoundationOne Liquid CDx utilizes circulating cell-free DNA (cfDNA) isolated from plasma derived from the anti-coagulated peripheral whole blood of cancer patients. The test is intended to be used as a companion diagnostic to identify patients who may benefit from treatment with targeted therapies in accordance with the approved therapeutic product labeling. Additionally, FoundationOne Liquid CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with malignant neoplasms.

TEST PRINCIPLES

The FoundationOne Liquid CDx assay is performed exclusively as a laboratory service using circulating cell-free DNA (cfDNA) isolated from plasma derived from anti-coagulated peripheral whole blood from patients with solid malignant neoplasms. The assay employs a single DNA extraction method to obtain cfDNA from plasma from whole blood. Extracted

cfDNA undergoes whole-genome shotgun library construction and hybridization-based capture of 324 cancer-related genes including coding exons and select introns of 309 genes, as well as only select intronic regions or non-coding regions of 15 genes. Hybrid-capture selected libraries are sequenced with deep coverage using the NovaSeq® 6000 platform. Sequence data are processed using a customized analysis pipeline designed to accurately detect genomic alterations, including base substitutions, indels, select copy number variants, and select genomic rearrangements. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The assay also reports tumor fraction, and genomic signatures including MSI and bTMB. A subset of targeted regions in 75 genes is baited for increased sensitivity.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

QUALIFIED ALTERATION CALLS (EQUIVOCAL)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls.

RANKING OF THERAPIES AND CLINICAL TRIALS

Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

LIMITATIONS

- 1. For in vitro diagnostic use.
- 2. For prescription use only. This test must be ordered by a qualified medical professional in accordance with clinical laboratory regulations.
- **3.** A negative result does not rule out the presence of a mutation below the limits of detection of the assay. Patients for whom no companion diagnostic alterations are detected should be considered for confirmation with an appropriately validated tumor tissue test, if available.
- 4. The FoundationOne Liquid CDx assay does not detect heterozygous deletions.
- **5.** The test is not intended to provide information on cancer predisposition.
- 6. Performance has not been validated for cfDNA input below the specified minimum input.
- 7. Tissue TMB and blood TMB (bTMB) are estimated from the number of synonymous and nonsynonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.
- 8. Tumor fraction is the percentage of circulating tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate is computationally derived from the observed level of aneuploidy in the sample. Tumor fraction is considered elevated when ctDNA levels are high enough that aneuploidy can be detected and is significantly distinct from that typically found in non-tumor samples.
- 9. Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the tumor genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor. The MSI algorithm is based on genome wide analysis of 1765 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines for solid tissue testing.
- **10.** Genomic findings from circulating cell-free DNA (cfDNA) may originate from circulating tumor DNA fragments, germline alterations, or non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate potential (CHIP). Genes with alterations that may be derived from CHIP include, but are not limited to: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2,

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

About FoundationOne®Liquid CDx

KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, TP53, and U2AF1.

- 11. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. If a reported alteration is suspected to be germline, confirmatory testing should be considered in the appropriate clinical context.
- 12. The test is not intended to replace germline testing or to provide information about cancer predisposition.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >30%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's

tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, ATM, CBL, CHEK2, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This report makes no promises or guarantees that a particular drug will be effective in the treatment of

disease in any patient. This report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Liquid CDx.

TREATMENT DECISIONS ARE THE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test or the information contained in this

Certain sample of variant characteristics may result in reduced sensitivity. These include: low sample quality, deletions and insertions >4obp, or repetitive/high homology sequences. FoundationOne Liquid CDx is performed using cell-free DNA, and as such germline events may not be reported.

TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)

REPORT DATE 06 January 2023

APPENDIX

About FoundationOne®Liquid CDx

ORDERED TEST # ORD-1533770-01

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
Muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ТКІ	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.4.0

APPENDIX

References

- 1. Gandara DR, et al. Nat. Med. (2018) pmid: 30082870
- 2. Wang Z, et al. JAMA Oncol (2019) pmid: 30816954
- 3. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- Aggarwal C, et al. Clin. Cancer Res. (2020) pmid:
- 5. Schenker et al., 2022; AACR Abstract CT022
- 6. Saori et al., 2021; ESMO Abstract 80P
- 7. Chen EX, et al. JAMA Oncol (2020) pmid: 32379280
- 8. Rizvi NA, et al. JAMA Oncol (2020) pmid: 32271377
- 9. Si H, et al. Clin Cancer Res (2021) pmid: 33355200
- 10. Leighl NB, et al. J Thorac Oncol (2022) pmid: 34800700
- 11. Li et al., 2020; ASCO Abstract 6511
- 12. Chen Y, et al. Front Immunol (2020) pmid: 32903763
- 13. Litchfield K, et al. Cell (2021) pmid: 33508232
- 14. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31003990
- 15. South AP, et al. J. Invest. Dermatol. (2014) pmid: 24662767
- Pickering CR, et al. Clin. Cancer Res. (2014) pmid: 25303977
- 17. Spigel et al., 2016; ASCO Abstract 9017
- 18. Xiao D, et al. Oncotarget (2016) pmid: 27009843
- 19. Shim HS, et al. J Thorac Oncol (2015) pmid: 26200269
- 20. Govindan R, et al. Cell (2012) pmid: 22980976
- 21. Ding L, et al. Nature (2008) pmid: 18948947
- 22. Imielinski M, et al. Cell (2012) pmid: 22980975
- 23. Kim Y, et al. J. Clin. Oncol. (2014) pmid: 24323028
- Cai L, et al. Cancer Commun (Lond) (2020) pmid: 25. Zhao DY, et al. World J Gastrointest Oncol (2021) pmid:
- 33510848
- 26. Wei XL, et al. Ther Adv Med Oncol (2021) pmid: 33613701
- 27. Wang D, et al. Gastric Cancer (2021) pmid: 33687617
- Yuan C, et al. Aging (Albany NY) (2020) pmid: 32165590
- 29. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 30. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 31. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 32. Rizvi NA, et al. Science (2015) pmid: 25765070
- 33. Johnson BE, et al. Science (2014) pmid: 24336570 34. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- Cancer Genome Atlas Research Network, et al. Nature
- (2013) pmid: 23636398
- Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 37. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 38. Nature (2012) pmid: 22810696
- Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 40. Bronkhorst AJ, et al. Biomol Detect Quantif (2019) pmid: 30923679
- 41. Raja R, et al. Clin. Cancer Res. (2018) pmid: 30093454
- 42. Hrebien S, et al. Ann. Oncol. (2019) pmid: 30860573 43. Choudhury AD, et al. JCI Insight (2018) pmid: 30385733
- 44. Goodall J, et al. Cancer Discov (2017) pmid: 28450425
- **45.** Goldberg SB, et al. Clin. Cancer Res. (2018) pmid: 29330207
- Bettegowda C, et al. Sci Transl Med (2014) pmid: 24553385
- 47. Lapin M, et al. J Transl Med (2018) pmid: 30400802
- 48. Shulman DS, et al. Br. J. Cancer (2018) pmid: 30131550
- 49. Stover DG, et al. J. Clin. Oncol. (2018) pmid: 29298117
- **50.** Hemming ML, et al. JCO Precis Oncol (2019) pmid: 30793095

- **51.** Egyud M, et al. Ann. Thorac. Surg. (2019) pmid: 31059681
- 52. Fan G. et al. PLoS ONE (2017) pmid: 28187169
- 53. Vu et al., 2020; DOI: 10.1200/PO.19.00204
- 54. Li G, et al. J Gastrointest Oncol (2019) pmid: 31602320
- 55. Zhang EW, et al. Cancer (2020) pmid: 32757294
- 56. Butler TM, et al. Cold Spring Harb Mol Case Stud (2019) pmid: 30833418
- 57. Morschhauser F, et al. Haematologica (2020) pmid: 32381571
- 58. Flaherty KT, et al. Clin. Cancer Res. (2012) pmid: 22090362
- 59. Finn RS, et al. Lancet Oncol. (2015) pmid: 25524798
- 60. Infante JR, et al. Clin. Cancer Res. (2016) pmid:
- 61. Patnaik A, et al. Cancer Discov (2016) pmid: 27217383
- 62. Leonard JP, et al. Blood (2012) pmid: 22383795
- 63. Dickler MN, et al. Clin. Cancer Res. (2017) pmid: 28533223
- 64. Clark et al., 2019: AACR Abstract LB-010/2
- 65. Peguero et al., 2016; ASCO Abstract 2528
- 66. Sarbia M, et al. Int. J. Cancer (1999) pmid: 9988238
- 67. Samejima R, et al. Anticancer Res. () pmid: 10697609
- 68. Takeshita H, et al. Br. J. Cancer (2010) pmid: 20389301
- Jin Y, et al. Cancer Genet. Cytogenet. (2004) pmid: 14697637
- 70. Manoel-Caetano Fda S, et al. Cancer Genet. Cytogenet. (2004) pmid: 15104278
- Sunpaweravong P, et al. J. Cancer Res. Clin. Oncol.
- (2005) pmid: 15672286
- 72. Roncalli M, et al. Lab. Invest. (1998) pmid: 9759649 73. Wang K, et al. Oncologist (2015) pmid: 26336083
- Cancer Genome Atlas Research Network, et al. Nature (2017) pmid: 28052061
- 75. Miller CT, et al. Clin. Cancer Res. (2003) pmid: 14581353
- 76. Morgan RJ, et al. Eur J Surg Oncol (1999) pmid: 10419705
- 77. Nature (2014) pmid: 25079317
- 78. Boone J, et al. Dis. Esophagus (2009) pmid: 19302210
- 79. Brücher BL, et al. Int J Colorectal Dis (2009) pmid:
- 80. Güner D, et al. Int. J. Cancer (2003) pmid: 12478659
- 81. Elsheikh S, et al. Breast Cancer Res. Treat. (2008) pmid:
- 82. Fu M, et al. Endocrinology (2004) pmid: 15331580
- Takahashi-Yanaga F, et al. Cell. Signal. (2008) pmid:
- 84. Nakano H. et al. Proc. Natl. Acad. Sci. U.S.A. (1984) pmid: 6320174
- 85. Pylayeva-Gupta Y, et al. Nat. Rev. Cancer (2011) pmid:
- 86. Yamaguchi T, et al. Int. J. Oncol. (2011) pmid: 21523318
- 87. Watanabe M, et al. Cancer Sci. (2013) pmid: 23438367
- 88. Gilmartin AG, et al. Clin. Cancer Res. (2011) pmid:
- 89. Yeh JJ, et al. Mol. Cancer Ther. (2009) pmid: 19372556
- 90. Lee et al., 2018; ASCO Abstract 4061
- 91. Liu JF, et al. Gynecol. Oncol. (2019) pmid: 31118140 92. Hjortland GO, et al. BMC Cancer (2011) pmid: 22014070
- 93. Bandla S, et al. Ann. Thorac. Surg. (2012) pmid: 22450065
- 94. Deng N, et al. Gut (2012) pmid: 22315472
- 95. Warneke VS, et al. Diagn. Mol. Pathol. (2013) pmid: 23846438
- 96. Wong GS, et al. Nat. Med. (2018) pmid: 29808010
- 97. Qian Z, et al. Genes Chromosomes Cancer (2014) pmid:

- 98. Kato S. et al. Clin. Cancer Res. (2018) pmid: 30348637
- 99. Kahn S, et al. Anticancer Res. () pmid: 3310850
- 100. McIntyre A, et al. Neoplasia (2005) pmid: 16354586
- 101. Mita H. et al. BMC Cancer (2009) pmid: 19545448.
- 102. Birkeland E, et al. Br. J. Cancer (2012) pmid: 23099803
- 103. Chen Y, et al. PLoS ONE (2014) pmid: 24874471
- 104. Zauderer et al., 2018: ASCO Abstract 8515
- 105. LaFave LM, et al. Nat. Med. (2015) pmid: 26437366
- Yu H, et al. Proc. Natl. Acad. Sci. U.S.A. (2014) pmid: 24347639
- 107. Ismail IH, et al. Cancer Res. (2014) pmid: 24894717
- 108. Peña-Llopis S, et al. Nat. Genet. (2012) pmid: 22683710
- 109. Nishi R, et al. Nat. Cell Biol. (2014) pmid: 25194926
- Landreville S, et al. Clin. Cancer Res. (2012) pmid:
- 111. Zhang L, et al. Am. J. Hum. Genet. (2015) pmid:
- 112. Mori T, et al. Cancer Sci. (2015) pmid: 26081045
- 113. Jensen DE, et al. Oncogene (1998) pmid: 9528852
- 114. Ventii KH, et al. Cancer Res. (2008) pmid: 18757409
- 115. Chan-On W, et al. Nat. Genet. (2013) pmid: 24185513 Abdel-Rahman MH, et al. J. Med. Genet. (2011) pmid:
- 21941004
- 117. Testa JR, et al. Nat. Genet. (2011) pmid: 21874000 118. Wiesner T, et al. Nat. Genet. (2011) pmid: 21874003
- Farley MN, et al. Mol. Cancer Res. (2013) pmid:
- 120. Aoude LG, et al. PLoS ONE (2013) pmid: 23977234
- Peng H, et al. Cancer Res (2018) pmid: 29284740 122. Nishikawa H, et al. Cancer Res (2009) pmid: 19117993
- Zhang Y, et al. Nat Cell Biol (2018) pmid: 30202049
- Walpole S, et al. J Natl Cancer Inst (2018) pmid: 30517737
- Boru G, et al. Genes Chromosomes Cancer (2019) pmid: 30883995
- Garfield EM, et al. J Am Acad Dermatol (2018) pmid: 126.
- 127. Shankar GM, et al. Neuro Oncol (2017) pmid: 28170043
- 128. Rai K, et al. Genes Chromosomes Cancer (2017) pmid:
- Zauderer MG, et al. J Thorac Oncol (2019) pmid: 129. 31323388
- 130. Mancini A, et al. J. Biol. Chem. (2002) pmid: 11847211
- 131. Miyake S, et al. Proc. Natl. Acad. Sci. U.S.A. (1998) pmid: 9653117
- 132. Masson K, et al. Biochem. J. (2006) pmid: 16780420
- Singh AJ, et al. Proc. Natl. Acad. Sci. U.S.A. (2007) pmid: 133. 17372230
- 134. Paolino M, et al. Nature (2014) pmid: 24553136
- 135. Patwardhan PP, et al. Oncotarget (2016) pmid:
- 136. Bazhenova et al., 2018; ESMO Abstract 4080
- **137.** Shtiegman K, et al. Oncogene (2007) pmid: 17486068
- 138. Padrón D, et al. Cancer Res. (2007) pmid: 17699773
- 139. Hosaka T, et al. Anticancer Res. () pmid: 17695511
- 140. Han W. et al. Cancer Biol. Ther. (2006) pmid: 16969069
- 141. Yang S, et al. Cancer Res. (2006) pmid: 16849543
- 142. Sargin B, et al. Blood (2007) pmid: 17446348
- 143. Oshikawa G, et al. J. Biol. Chem. (2011) pmid: 21768087 144. Reindl C, et al. Clin. Cancer Res. (2009) pmid: 19276253
- 145. Taylor SJ, et al. Blood (2012) pmid: 22990016
- 146. Makishima H, et al. Leukemia (2012) pmid: 22246246 147. Cerami E. et al. Cancer Discov (2012) pmid: 22588877
- 148. Gao J, et al. Sci Signal (2013) pmid: 23550210 149. Ito R, et al. Virchows Arch. (2004) pmid: 14991403

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

References

ORDERED TEST # ORD-1533770-01

- 150. Bacher U. et al. Ann. Hematol. (2010) pmid: 20195608
- 151. Miyake S, et al. J. Biol. Chem. (1999) pmid: 10347229
- 152. Polzer H, et al. Exp. Hematol. (2013) pmid: 23127761
- 153. Levkowitz G. et al. Genes Dev. (1998) pmid: 9851973
- 154. Bunda S, et al. Cancer Res. (2013) pmid: 23400592
- 155. Andoniou CE, et al. EMBO J. (1994) pmid: 7925293 156. Aranaz P. et al. Haematologica (2012) pmid: 22315494
- 157. Fernandes MS, et al. J. Biol. Chem. (2010) pmid: 20622007
- 158. Grand FH, et al. Blood (2009) pmid: 19387008
- 159. Javadi M, et al. J. Biol. Chem. (2013) pmid: 23696637
- 160. Kassenbrock CK, et al. J. Biol. Chem. (2004) pmid: 15117950
- 161. Levkowitz G, et al. Mol. Cell (1999) pmid: 10635327
- 162. Loh ML, et al. Blood (2009) pmid: 19571318
- 163. Martinelli S, et al. Am. J. Hum. Genet. (2010) pmid:
- 164. Saito Y, et al. Leuk. Res. (2012) pmid: 22591685
- 165. Sanada M, et al. Nature (2009) pmid: 19620960
- 166. Score J, et al. Blood (2012) pmid: 22053108
- 167. Shiba N, et al. Leukemia (2011) pmid: 21494262
- Standaert ML, et al. Biochemistry (2004) pmid:
- 169. Tan YH, et al. PLoS ONE (2010) pmid: 20126411
- 170. Thien CB, et al. Mol. Cell (2001) pmid: 11239464
- 171. Visser GD, et al. Exp. Cell Res. (2005) pmid: 16246327
- 172. Li M, et al. Cancer Res. (2016) pmid: 26676746
- 173. Trowbridge JJ. et al. Nat. Genet. (2011) pmid: 22200773
- 174. Prog Mol Biol Transl Sci (2011) pmid: 21507354
- 175. Yang J, et al. Mol Med Rep () pmid: 21887466
- Vallböhmer D, et al. Clin Lung Cancer (2006) pmid: 176. 16870044
- 177. Daskalos A, et al. Cancer (2011) pmid: 21351083
- Fabbri M, et al. Proc. Natl. Acad. Sci. U.S.A. (2007) pmid: 178. 17890317
- 179. Gao Q, et al. Proc. Natl. Acad. Sci. U.S.A. (2011) pmid: 22011581
- Kim MS, et al. APMIS (2013) pmid: 23031157
- 181. Chen ZX, et al. J. Cell. Biochem. (2005) pmid: 15861382
- 182. Guo X, et al. Nature (2015) pmid: 25383530
- 183. Sandoval JE, et al. J. Biol. Chem. (2019) pmid: 30705090
- 184. Zhang ZM, et al. Nature (2018) pmid: 29414941
- 185. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- 186. Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 187. Xie M, et al. Nat. Med. (2014) pmid: 25326804
- Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- Severson EA, et al. Blood (2018) pmid: 29678827
- 190. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 191. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320

- 192. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 193. Razavi P, et al. Nat. Med. (2019) pmid: 31768066
- 194. Kim RD, et al. Cancer Discov (2019) pmid: 31575541
- 195. Chan et al., 2017: AACR Abstract CT106
- 196. Macarulla et al., 2021; ASCO Abstract 4090
- 197. Kaibori M, et al. Oncotarget (2016) pmid: 27384874
- 198. Kanzaki H. et al. Sci Rep (2021) pmid: 33674622
- 199. Dumbrava EI, et al. JCO Precis Oncol (2018) pmid: 31123723
- 200. Zehir A. et al. Nat. Med. (2017) pmid: 28481359
- 201. Nature (2012) pmid: 22960745
- 202. Robertson AG, et al. Cell (2017) pmid: 28988769
- 203. Miura S, et al. BMC Cancer (2012) pmid: 22309595
- 204. Kang HJ, et al. Liver Cancer (2019) pmid: 30815392
- 205. Nagamatsu H, et al. Prostate (2015) pmid: 25854696
- 206. Gao L, et al. Oncogene (2019) pmid: 30518874
- 207. Li F, et al. Oncogene (2020) pmid: 32111983
- 208. Xie MH, et al. Cytokine (1999) pmid: 10525310
- 209. Hagel M, et al. Cancer Discov (2015) pmid: 25776529
- 210. Int. J. Oncol. (2002) pmid: 12429977
- 211. Kan Z, et al. Genome Res. (2013) pmid: 23788652
- **212.** Caruso S, et al. Gastroenterology (2019) pmid: 31063779
- 213. Sawey ET, et al. Cancer Cell (2011) pmid: 21397858 214. Dumbrava et al., 2018; doi/full/10.1200/PO.18.00100
- 215. Tekin M, et al. Am. J. Hum. Genet. (2007) pmid:
- 216. Arao T, et al. Hepatology (2013) pmid: 22890726
- 217. Yamada T, et al. BMC Cancer (2015) pmid: 25885470
- 218. Kratochwil K, et al. Genes Dev. (2002) pmid: 12502739
- 219. Scherz PJ, et al. Science (2004) pmid: 15256670
- 220. Zaharieva BM, et al. J. Pathol. (2003) pmid: 14648664
- 221. Arai H, et al. Cancer Genet. Cytogenet. (2003) pmid: 14499691
- 222. Ribeiro IP, et al. Tumour Biol. (2014) pmid: 24477574
- 223. Schulze K, et al. Nat. Genet. (2015) pmid: 25822088
- 224. Augert A, et al. J Thorac Oncol (2017) pmid: 28007623 Ardeshir-Larijani F. et al. Clin Lung Cancer (2018) pmid: 225.
- 29627316
- 226. Hillman RT, et al. Nat Commun (2018) pmid: 29950560
- Abudureheman A, et al. J. Cancer Res. Clin. Oncol. 227. (2018) pmid: 29532228
- 228. Vicent GP, et al. Genes Dev. (2011) pmid: 21447625
- 229. Hannibal MC, et al. Am. J. Med. Genet. A (2011) pmid:
- 230. Fagan RJ, et al. Cancer Lett. (2019) pmid: 31128216
- 231. Hirai H. et al. Cancer Biol. Ther. (2010) pmid: 20107315
- 232. Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- 233. Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid:
- 234. Osman AA, et al. Mol. Cancer Ther. (2015) pmid:

- 25504633
- 235. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850
- 236. Xu L, et al. Mol. Med. (2001) pmid: 11713371
- Camp ER, et al. Cancer Gene Ther. (2013) pmid:
- 238. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- 239. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 240. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 241. Moore et al., 2019; ASCO Abstract 5513
- 242. Leijen S. et al. J. Clin. Oncol. (2016) pmid: 27998224
- 243. Oza et al., 2015; ASCO Abstract 5506
- 244. Lee J, et al. Cancer Discov (2019) pmid: 31315834
- 245. Méndez E. et al. Clin. Cancer Res. (2018) pmid: 29535125
- 246. Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- 247. Gourlev et al., 2016: ASCO Abstract 5571
- 248. Park H, et al. ESMO Open (2022) pmid: 36084396
- 249. Song Y, et al. Nature (2014) pmid: 24670651
- 250. Lin DC, et al. Nat. Genet. (2014) pmid: 24686850
- Sawada G, et al. Gastroenterology (2016) pmid: 26873401
- 252. Sengpiel C, et al. Cancer Invest. (2009) pmid: 19160092
- Pühringer-Oppermann F, et al. J. Cancer Res. Clin. Oncol. (2006) pmid: 16538517
- 254. Han U, et al. Dis. Esophagus (2007) pmid: 17760650
- Yamasaki M, et al. Ann. Surg. Oncol. (2010) pmid: 19941080
- Liu X, et al. PLoS ONE (2012) pmid: 23285001
- 257. Wiksten JP, et al. Anticancer Res. () pmid: 18751407
- 258. Migliavacca M, et al. J. Cell. Physiol. (2004) pmid: 15254976
- 259. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid: 260. 18410249
- 261. Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid:
- 12826609 Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130
- 263. Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- 264. Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 265. 29165669
- 266. Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- 267. Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316 269 Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid:

19204208

271. Lalloo F. et al. Lancet (2003) pmid: 12672316 272. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy