LaPIS Diagnostic Test Workbook - Mathematics

Name : Dharshana Bala A

Class: 7

Section : B

School : AKV Public School

Login ID : AKV137

Dharshana Bala A's Performance Report

Score: 18/40 Percentage: 45.0%

Dharshana Bala A's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures _____°.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{\textit{Question: 3}}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved				
Perimeter	Perimeter of triangle			

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

4						
A	n.	81	17	P	r	•

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 5

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 6

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$___$$
, and breadth = $___$.
Perimeter of the floor = $2(____+ ___)$.

Therefore, length of the rectangular floor is ______.

Data handling

Topics to be Improved				
Chance of probability Sample space in probability, Basis of probability				
Range	Finding the range			
Arithmetic mean, mode and median	Mean, Median and Mode			

Hi, here in this video you will learn Basics of probability

Question: 7

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

......

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 8

Write the possible outcomes while spinning the given wheel.

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
<i>Question:</i> 9
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Basics of probability
<i>Question:</i> 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events.
Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is
event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
<i>Question:</i> 11
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.

Question: 12
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have
Hi, here in this video you will learn Range
Question: 13
Range of the data =
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
Question: 14
Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9
$-20+51$ $\frac{-38-51}{2}$ $51+38$ $\frac{51+20}{2}$
Answer:
Range =
Arranging the data in ascending order, In the given data, Highest value = , Lowest value = , Range = =
Question: 15
Find the range of first 10 multiple of 5.
Answer:
First 10 multiple of 5 = Therefore, Highest value =, Lowest value =, Range = =
Hi, here in this video you will learn Mean , Median , Mode
Question: 16
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98

Arranging the da	ber that occursta in ascending order:					
	occurs most number of	times.	l'hen, mod	le of the giv	ven data is .	
$\underline{Question:~17}$						
Which shape con	tains median of the gi	ven data	3, 5, 6, 2,	7, 9, 6, 4 8	and 1	
4	1	5) (6	9	
$\underline{Answer:}$						
ascending or desc	(first/cen cending order. n data in ascending or					
Central value of	the given data is		_ and it i	is the		of a data.
$\underline{\textit{Question: } 18}$						
						_
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
$Mean = \underline{\hspace{1cm}},$	Median = ar	nd Mode	=	_ .		
$\underline{Answer:}$						
$Mean = \frac{1}{mu}$	of all observation of observation of observation					
Here s sum of all	observation =		, number	of observa	$tion = \underline{\hspace{1cm}}$	

Therefore, mean = _____

Arrange the data in ascending order : _____ Here, median = _____ , mode = _____ .

Geometry

Topics to be Improved				
Types of triangle	Basics of types of triangle (sides)			
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			
Right angle triangle and pythagoras property	Basics of Pythagoras property			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles			

Hi, here in this video you will learn **Types of triangle**

Quest	tion:	19
$\omega \omega c \sigma \iota$	ooie.	10

Polygon with three sides is called as _____.

Answer:

A polygon is a simple $___$ (open / closed) curve made up of only line segments.

Polygon with three sides is called _____.

Draw a diagram of polygon with three sides :

Question: 20

Identify the types of triangles.

Answer:

Triangle has _____ sides.

 \bullet Triangle with all sides are equal is called _____ triangle.

•	Triangle wi	th two sides	of equal le	ength is ca	alled	triangle.
	1110011510 111	CII CII O DIGIOD	or oquar r	CIIS CII ID CO		or roundro.

•	Triangle with	three sides of	different	length is called	triangle.
---	---------------	----------------	-----------	------------------	-----------

Question: 21	
--------------	--

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is ______.

The possible length of third side is _____.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 22

Find the greatest distance to reach C from A in the given diagram.

.....

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 23

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 24	
--------------	--

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ___ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Pythagoras property

Question: 25	

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ ...

Question: 26

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the $\underline{\hspace{1cm}}$ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/legs) of the triangle.

By Pythagoras theorem,
$$(\underline{\hspace{1cm}})^2 = (\underline{\hspace{1cm}})^2 + (\underline{\hspace{1cm}})^2$$

Therefore, hypotenuse of the triangle is ______.

Question: 27

Find the length of the rectangle, if breadth is $3~\mathrm{cm}$ and diagonal is $5~\mathrm{cm}$.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Criteria of congruence

Question: 28

Circle the groups that contain congruent images.

|--|--|--|--|

Answer:

Two geometrical shapes are said to be congruent if they are(identical/non-identical) in shapes and size. Example: Square and Rectangle are (congruent/not congruent).
$Question: \ 29$
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under (SSS/ASA/SAS) criteria .
$\underline{Answer:}$
Two triangle are (congruent/not congruent) if they are identical in shapes and size Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria $(2/3/5)$ angles and (one/two) side

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

between them are equal to the corresponding angles and the included side of the other

Question: 30

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

triangle.

A	ns	w	er	:
		w	\sim	•

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved		
Operations on rational numbers	Subtraction of rational numbers, Division of rational numbers	
Exponents	Solving exponents	
Properties of integers	Associative property	
Positive and negative rational numbers	Identification of positive rational numbers	
Introduction to rational numbers	Basics of rational numbers	

Hi, here in this video you will learn **Operation on rational numbers**

Question: 31

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$$

 $\underline{\textit{Question: 32}}$

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$. Shaded part of box A in fraction $= \underline{\hspace{1cm}}$. Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $__$ + $__$ = $_$

Question: 33

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$$

......

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} +$ _____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ _____

Therefore, result is _

Hi, here in this video you will learn **Operation on rational num**bers

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

......

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 35
Solve: $\frac{18}{7} \div 0.6$
Answer:
Fraction form of $0.6 = \underline{\hspace{1cm}}$, when any fraction is divided by a fraction, we multiply the dividend by the $\underline{\hspace{1cm}}$ (same/reciprocal) of the divisor. Here, dividend = $\underline{\hspace{1cm}}$ and divisor = $\underline{\hspace{1cm}}$.
$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$
<u>Question:</u> 36 Find the missing number in the expression $\frac{8}{3} \div \frac{16}{} = 2$
Answer:
$\frac{8}{3} \div \frac{16}{\square} = 2$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$
Transposing 8/3 to RHS,
$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \square$$

$$\frac{\square}{16} = \square$$

Transposing 16 to other side, the result is ______.

Hi, here in this video you will learn Exponents and power

.

Question: 37

Find the exponential form of 1000.

Answer:

(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as _____ (Base / Power). 1000 can be written as = $10 \times$ 10 is raised to the power of $\underline{\hspace{1cm}} = (10)\overline{\hspace{1cm}}$ Question: 38 Find the value of $(-2)^3$. Answer: ____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3 = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$ Question: 39 (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$). (ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$). Answer: Exponential form = (Base)— (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____. (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____. Hi, here in this video you will learn Properties of integers Question: 40

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

Answer:

(i)	Therefore, + =		
	From the given option	satisfies the closure property.	
(ii)	Therefore, $(a + b) + c = \underline{\hspace{1cm}}$		
	From the given option	satisfies the Associative property.	
(iii)	Therefore, $a + b = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$		
	<u> </u>	satisfies the Commutative property.	
(iv)	Identity property : The sum of $_$ Therefore, $a + ___ = a$	and any number always returns same number.	
		satisfies the Identity property.	
Que	stion: 41		
		ative property holds true for any two integers.	
		Dist	
	Addition Sub	traction Multiplication Division	
Ans	wer:		
		e (order/ brackets) of the operands	
	ny two integers, commutative pro	ge the result. perty holds true for	
Γhe o	commutative property for addition	ı is	
Γhe σ	commutative property for multipli	cation is	
Que	stion: 42		.
Are a	additive identity and multiplicative	e identity the same? (Yes or No)	
Ans	wer:		
	ity property holds only for		
		and additive identity is n is and multiplicative identity is	
rne i		in is and multiplicative identity is	
Γ her	efore, additive identity is	(equal / not equal) to multiplicative identity.	
	nal numbers	learn Positive and Negative ra-	
Que			
	gate positive and negative rations		
0			

Answer:

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then	it	is
	(positive/negative) rational number.			

• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question:~44
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question:~45
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
$\underline{Answer:}$
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number

 $\operatorname{Hi},$ here in this video you will learn $\operatorname{\bf Basics}$ of rational numbers

Question: 46

The numbers in the diagram represents_

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

.....

Question: 47

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 48

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, _____ is/are rational number and _____ is/are not a rational number.

Comparing Quantities

	Topics to be Improved					
Conversion of fraction into percentage	Conversion of fraction into percentage					
Percentage	Basic of percentage					

......

Hi,	here	in	this	video	you	will	learn	${\bf Converting}$	${\bf fraction}$	into
per	\cdot cent	age	е							

Question: 49

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____

Therefore, 5% can be expressed as _____

Question: 50

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is ____

Question: 51

Find the percentage of shaded part of square.

Ans	wer:

The square shape is divided into ______ parts.

Number of shaded part of square is _____.

Shaded part of square in fraction is _____.

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 52

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

Question: 53

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks. 75 % can be written in fraction form ____

Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 54
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.
Answer:
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =
Convert it into a percent= x% =

Algebra

Topics to be Improved				
Basics of simple equation	Solving of simple equation			
subtraction of algebraic expressions	subtraction of algebraic expressions			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			

Hi, here in this video you will learn Solving an equation

Question:	<i>55</i>

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 56

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

.....

$$7$$
 $= -4$

Answer:

The given equation is 7—+3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times __+3 = __$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times __+3 = __$$

$$7 \times$$
 ____+ $3 =$ ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 57

Arrange the terms in the descending order when the value of x is 2.

$$2x$$
 $5x \times 1$ $x + 3$ $2x - 4$ $\frac{1}{2}$

Answer:

The va	ven expression a alue of x is	re			
	2x =	2× =	2x-c	$4 = 2 \times \underline{\qquad} - 4 =$	
	x + 3	3 = =	_	$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} =$	=
	$5x \times 1 = 5 \times$	×1=	_		
~		g order:,, aic terms are,	· ·		
Hi, h	nere in this vio	deo you will learn	Subtraction	on expression	
Quest	tion: 58				
Find the	he sum of two ex	expressions $a + b + c a$	and $b + c + d$		
\underline{Answ}	<u>er:</u>				
The tw	vo terms will get	ons are and _ added only if they ar sions = +	e(Like,	/ Unlike) terms.	
Quest	<i>tion:</i> 59				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i) T	Γotal number of l	boys in school A and	B is		
(ii) T	Total number of	students in school B i	S		
(iii) H	How many more	teachers are there in s	school B than so	hool A?	
\underline{Answ}	<u>er:</u>				
()	v	n school A = n school B =	*		

Total number of boys in school A and school B is $___$ + $___$ = $_$

(ii) Number of boys in school Number of girls in school Total number of students	•	<u> </u>
(iii) Number of teachers more school $A = \underline{\hspace{1cm}}$.	in school B than school $A = Teachers$ in s	school B — Teachers in
Question: 60		
Solve the following:		
$ \begin{array}{c c} 13x + \underline{\hspace{1cm}} \\ (+) & 12x + 10y \\ \underline{\hspace{1cm}} + 25y \end{array} $	$ \begin{array}{r} 3a - 5b \\ \hline (-) 5a - 7b \\ \hline -2a - \underline{\hspace{1cm}} \end{array} $	
Answer:		
The two terms will get added on	nly if they are (like/unlike) terms	
$ \begin{array}{c c} 13x + \underline{\hspace{1cm}} \\ (+) & 12x + 10y \\ \underline{\hspace{1cm}} + 25y \end{array} $	$ \begin{array}{c c} 3a - 5b \\ \hline (-) & 5a - 7b \\ \hline -2a - \underline{\hspace{1cm}} \end{array} $	
	will learn Types of expression expression $7x + 3y + m + 5$	
Answer:	expression $(x + y) + m + y$.	
In algebraic expression, of addition.	(variables/ terms) are connected ———————————————————————————————————	
	*	
_ -	n into monomial, binomial and polynomial	
v	i into monomiai, omoniai and porynomia.	
1. $7m + n + 2$		
2. $8x^2 + 0$		
3. 7xy + 4m		
$\underline{Answer:}$		
1. The terms in expression 8 Here, expression has		

Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a
$Question: \ 63$
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
$\underline{Answer:}$
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
Hi, here in this video you will learn Addition on expression
Question: 64
Shade the like terms.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\underline{Answer:}$
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
Question: 65
Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$
$\underline{Answer:}$
(Like / Unlike) terms can be added or subtracted.
$7r^2 + r \Box - 2 \Box = (7 + \ 2)_{r^2} = _$

$$\underline{\textit{Question: } \textit{66}}$$

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

.....

- (i) Total chocolates Ram and Sam have : _____.
- (ii) How many icecreams Sam have more than Ram : ______ .

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have :

 $Ram's \ chocolate + Sam's \ chocolates = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____