What is Causal Inference?

Paul Zivich, PhD

Assistant Professor
Department of Epidemiology
University of North Carolina at Chapel Hill

September 13, 2024

Acknowledgments

Open office hours: Thursdays 3-5pm Rosenau 023

☑ pzivich@unc.edu

😱 pzivich

Thank you to Steve Cole, Jess Edwards, Bonnie Shook-Sa, Michael Hudgens, Daniel Westreich, & CIRG members

But you can only blame me for my perspective.¹

 $^{^{1}\}mbox{Footnotes}$ are for references or asides. Footnotes are fair game for questions or discussion

A Series of Perspectives on Causal Inference

Observational Studies 2022 Vol 8, Issue 2

- Ian Shrier interviewed Heckman, Pearl, Robins, Rubin
- Other perspective pieces

Overview

Panoramic view rather than microscopic

- Basics
 - Causal Models
 - Parameters
 - Identification
 - Estimation
- Extensions
- Advanced Topics

Please interrupt with questions²

²Think of this as more of a guided discussion instead of a presentation

A Favorite Quote

"The subject-specific data from a longitudinal study consist of a string of numbers. These numbers represent a series of empirical measurements. Calculations are performed on these strings and causal inferences are drawn. [...] The nature of the relationship between the sentence expressing these causal conclusions and the computer calculations performed on the strings of numbers has been obscure. Since the computer algorithms are well-defined mathematical objects, it is useful to provide formal mathematical definitions for the English sentences expressing the investigator's causal inference, [...]"

James M Robins (1999 Syntheses 121:151-179)

What is Causal Inference to Me

A formal set of philosophical and mathematical tools and concepts that can be leveraged towards understanding systems under different sets of actions to improve decision making

Causal inference is not the only way to infer causal relationships

• I think 'causal inference' is an unfortunate name for the field

A Defense of 'Causal Inference'

In statistics, there is the idea of *suitable regularity conditions*. To quote Casella & Berger 2002 (pg 516), these conditions are "typically very technical, rather boring, and usually satisfied in most reasonable problems."

Some of the conditions provided are³

- 1. Observe n independent units with $X_i \sim f(x \mid \theta)$
- 2. Parameter is identifiable, i.e., if $\theta \neq \theta'$ then $f(x \mid \theta) \neq f(x \mid \theta')$
- 3. $f(x \mid \theta)$ has common support and is differentiable
- 4. θ is an interior point in the parameter space

³Ask Steve Cole about the British regularity conditions for an alternative set

A Defense of 'Causal Inference'

The field of causal inference is a reaction to this second regularity condition⁴

- No longer is identification of the parameter presumed to be 'boring' or 'usually satisfied'
- Causal inference as a field drags one of the background assumptions of statistical inference to the forefront

⁴I do not know the actual etymology. This is simply my best defense

An Algorithmic Perspective

 $\mathsf{Ontology} \to \mathsf{Parameter} \to \mathsf{Identification} \to \mathsf{Estimation}$

Causal Models

Some options

- Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE)⁵
- Finest Fully Randomized Causally Interpretable Structured Tree Graph (FFRCISTG)⁶
- Minimal Counterfactual Model (MCM)⁷
- (Potential Outcome) Agnostic Causal Model⁸

⁵Pearl 1995 *Biometrika* 82(4):669–709

⁶Robins 1986 *Mathematical Modelling* 7(9-12):1393-1512

⁷Robins & Richardson 2011 in Causality and Psychopathology: Finding the Determinants of Disorders and their Cures

⁸Spirtes et al. 1993 Causation, Prediction and Search

Implications

To progress, we need to commit to a causal model⁹

- Defines our universe of discourse
- Comes with some philosophical commitments
- Determines what parameters are well-defined objects of study

I'm going to operate under FFRCISTG

- Most discussion will also hold for NPSEM-IE
- Mostly ignore the implications

⁹Sarvet & Stensrund 2022 Epidemiology 33(3):372-378

Questions to Parameters

Transform scientific question into a parameter

 Or parameter that most closely addresses the motivating scientific question

One of the most difficult steps

- Often requires revision of the question
- But a big advantage offered by causal inference
 - Can ask clearer questions (and maybe even answer them)

An Example

Does smoking cause lung cancer?

- Among who?
- When in time?
- What constitutes 'smoking'?

Potential Outcomes

To define our parameters, I will use potential variables. 10

If Y is our outcome then

$$Y_i^a$$

is the *potential outcome*, ¹¹ which is the value of Y for unit i if were to take action (e.g., treatment, intervention, exposure) a. ¹²

 Ex: whether my clothes would be wet after arriving on campus today if I took an umbrella with me (or not)

To keep simple, will limit to a binary action A

 $^{^{10}}$ Jerzy Neyman proposed this idea in his 1923 Master's thesis

¹¹FFRCISTG requires that we believe potential outcomes exist

 $^{^{12}}$ There are alternatives (e.g., do operator) but there are equivalencies

Individual Causal Effect

Potential outcome if i took action 1

Here, we run into the 'fundamental problem of causal inference'. 13

- We cannot observe the same unit at the same time and in the same place under two different actions
 - Even the lab scientists cannot escape this problem
 - Be suspicious of anyone who claims they can learn individual causal effects

¹³Holland 1986 JASA 81(396):945-960

Average Causal Effect (ACE)

Mean if took action 1
$$E[Y^1-Y^0] = \boxed{E[Y^1]} - \boxed{E[Y^0]}$$
 Mean if took action 0

where $E[\cdot]$ is the expected value function.¹⁴

The ACE requires a well-defined population

Unless noted otherwise, this will be the parameter of interest

Zivich Causal Inference?

¹⁴The subscript i's are implicit above to simplify notation

Conditional Average Causal Effect¹⁵

This parameter is like the average causal effect, but is the average causal effect among 'types' of people, where type is defined by X

Ex: average causal effect by age

Zivich Causal Inference?

 $^{^{15}}$ When you read about people estimating the 'individual causal effect', this is usually what they are actually estimating

Stochastic Causal Effects

Generalization of the parts of the ACE (set $Pr^*(A=1)=1$)

 \bullet The natural course, or E[Y], can also be seen as another special case

Build contrasts between different assignments

Local Average Causal Effect

Represents the average causal effect among those who would always comply with the specified action (an unknown subpopulation)

- Common in instrumental variable analysis
- More common in economics

Some Other Parameters

 $\mathsf{ACE}\ \mathsf{among}\ A = 1$

$$E[Y^1 - Y^0 \mid A = 1]$$

Marginal structural models

$$E[Y^a \mid \beta]$$

Structural nested mean models

$$E[Y^a - Y^0 \mid A = a, X = x; \gamma]$$

Optimal action regimes

$$\arg\max_{r\in\mathcal{R}} E[Y^{r(a)}]$$

Risk Ratio

$$\frac{\Pr(Y^1 = 1)}{\Pr(Y^0 = 1)}$$

Population attributable fraction

$$\frac{E[Y] - E[Y^0]}{E[Y]}$$

Difference in CDF

$$E[Y^1 \le y] - E[Y^0 \le y]$$
 for $y \in \mathcal{Y}$

Identification

Identification: Parameter Translation

Transformation of parameter into measured variables

- Our parameter is expressed in terms of *potential* variables, but all we have is *observed* variables
- ullet $Y^a o (W,A,Y)$ for a given parameter

Variations on identification

- Partial
- Point
 - Nonparametric
 - Parametric

Partial Identification

Frechet Bounds: range of possible values of the ACE with binary Y^{16} under only causal consistency (defined later)¹⁷

¹⁶Cole et al. 2019 Am J Epidemiol 188(4):632–636

¹⁷Note that these width of these bounds is always 1

Nonparametric Point Identification

Uniquely express the ACE in terms of the observed data. To do this, we will need to make assumptions about the data generating process

One sufficient set of assumptions is

- 1 Causal Consistency
- 2 Exchangeability
- 3 Positivity

Causal Consistency

Provides a connection between Y and Y^a . 18

¹⁸Cole & Frangakis 2009 Epidemiology 20(1):3-5

Causal Consistency

ID	A_i	Y_i	Y_i^1	$\overline{Y_i^0}$
1	1	5	-	-
2	1	2	-	-
3	0	4	-	-
4	0	9	-	-
5	0	1	-	-

ID	A_i	Y_i	Y_i^1	Y_i^0
1	1	5	5	-
2	1	2	2	-
3	0	4	_	4
4	0	9	-	9
5	0	1	-	1

Causal Consistency Implications

Equation implies both¹⁹

- 1 Action variation irrelevance
 - ullet Any differences in how A could be applied don't matter
 - Ex: aspirin dose on pain relief
- 2 No interference
 - Unit i's potential outcome does not dependent on unit j's action
 - Ex: vaccination and human-to-human transmissible diseases

¹⁹This special case of causal consistency is also referred to as Stable Unit Treatment Values Assumption (SUTVA)

Beyond Causal Consistency

Stochastic potential outcomes

- ullet Distribution instead of a fixed value for i
- $E[Y^a \mid A = a] = E[Y \mid A = a]^{20}$
- Also can help to weaken action variation irrelevance

Interference²¹

- $Y_i^{\mathbf{a}} = Y_i^{a_1, a_2, \dots, a_i, \dots, a_n}$
- Also modifies the parameters to consider

²¹Hudgens & Halloran 2008 JASA 103(482):832-842

²⁰Richardson & Robins 2013 In *Second UAI Workshop on Causal Structure Learning*

Exchangeability²²

A statement about the independence of A and Y^a

which is short-hand for saying we can

$$E[Y^a \mid W = w] = E[Y^a \mid A = a \ , W = w] \ \forall (w \in \mathcal{W})$$
 all unique values of w in population

Zivich Causal Inference?

²²You might also hear ignorability, exogeneity, no unmeasured confounding

Exchangeability Graphically

Causal Diagrams

But how do we decide what's included in W?

Causal Directed Acyclic Graphs²³

$$f_W(\epsilon_W)$$
 $f_A(W;\epsilon_A)$
 $f_Y(A,W;\epsilon_Y)$

²³Greenland et al. 1999 Epidemiology 10(1):37-48; Lipsky & Greenland 2022 JAMA 327(11):1083-1084

Causal Diagrams

Single World Intervention Graphs²⁴

$$W \xrightarrow{A \mid a \longrightarrow} Y^a$$

²⁴Breskin et al. 2018 Epidemiology 29(3):e20-e21

Causal Diagrams for Exchangeability

Can read independence between any two variables in a graph

- Check if any open backdoor path between two variables
 - Closed if there is a collider: $P \to Q \leftarrow R$
 - Closed if condition on a non-collider: $P \leftarrow \boxed{\mathsf{Q}} \to R$
 - Open if condition on a collider
- Do not condition on 'downstream' variables

Examples

Examples

Examples

$$A \leftarrow W \rightarrow Y$$
$$A \leftarrow V \rightarrow M \rightarrow Y$$

Better Definitions²⁶

Historically, epidemiologists defined a confounder as a variable associated with both the action and the outcome²⁵

²⁵For a better definition, see VanderWeele 2013 *Ann Stat* 41(1):196-220 ²⁶Causal diagrams have helped to clarify a number of concepts, such as selection bias, missing data, generalizability

Beyond Exchangeability

Proximal causal inference offers different identification assumptions that allow for the ACE to be identified in this context²⁷

²⁷Zivich et al. 2023 Am J Epidemiol 192(7):1224-1227, Tchetgen Tchetgen et al. 2024 Statist Sci 39(3):375-390

Positivity

Ensures exchangeability is mathematically well-defined

$$\begin{array}{c} \text{non-zero chance for } A=1 \text{ or } A=0 \\ \hline 1>\Pr(A=1\mid W=w)>0 \quad \forall (w\in\mathcal{W}) \\ \hline \text{all unique values of } w \text{ in population} \\ \hline \end{array}$$

Exchangeability with Positivity²⁸

In the case of binary W, Y, positivity is

$$\Pr(A = a \mid W = w) > 0 \text{ for } a \in \{0, 1\} \text{ where } \Pr(W = w) > 0$$

with exchangeability needing

$$\Pr(Y^a = 1 \mid A = a, W = w) = \frac{\Pr(Y^a = 1, A = a, W = w)}{\Pr(A = a \mid W = w) \quad \Pr(W = w)}$$

$$\underbrace{\Pr(Y^a = 1, A = a, W = w)}_{\text{positivity ...}} \quad \underbrace{\Pr(W = w)}_{\text{for } W \text{ we see}}$$

Zivich Causal Inference?

²⁸More of this argument is in Zivich et al. 2022 arXiv:2207.05010

Positivity Graphically

Beyond Positivity

Modify the population

Restrict population to regions with positivity

Modify the parameter

- Select parameters that avoid nonpositivity
- Ex: incremental propensity score effects²⁹

Leverage external information³⁰

Zivich et al. 2024 Epidemiology 35(1):23-31

²⁹Naimi et al. 2021 *Epidemiology* 32(2):202-208

³⁰Greenland 2017 *EJE* 32(1):3-20,

Putting it all together...

Fundamental Theorem of Causal Inference

$$\begin{array}{c} \text{Parameter} \\ \hline \\ \Pr[Y^a=1] \end{array} = \sum_{w \in \mathcal{W}} \Pr[Y^a=1 \mid W=w] \Pr(W=w) \\ \\ = \sum_{w \in \mathcal{W}} \Pr[Y^a=1 \mid A=a, W=w] \Pr(W=w) \\ \\ = \sum_{w \in \mathcal{W}} \Pr[Y=1 \mid A=a, W=w] \Pr(W=w) \\ \\ \hline \\ \text{Causal Consistency} \end{array}$$

Fundamental Theorem of Causal Inference

A more general result...

$$E[Y^{a}] = E \{ E[Y^{a} \mid W] \}$$

$$= E \{ E[Y^{a} \mid A = a, W] \}$$

$$= E \{ E[Y \mid A = a, W] \}$$

An Equivalent Result

We can also get an equivalent expression³¹

$$\Pr[Y^a = 1] = \sum_{w \in \mathcal{W}} \Pr[Y = 1 \mid A = a, W = w] \Pr(W = w)$$

$$= \sum_{w \in \mathcal{W}} \frac{\Pr[Y = 1, A = a, W = w]}{\Pr(A = a \mid W = w) \Pr(W = w)} \Pr(W = w)$$

$$= \sum_{w \in \mathcal{W}} \frac{\Pr[Y = 1, A = a, W = w]}{\Pr(A = a \mid W = w)}$$

$$= \sum_{i=1}^{n} \frac{Y_i I(A_i = a)}{\Pr(A_i = a \mid W_i)}$$

Zivich Causal Inference?

³¹This equivalence holds in the nonparametric setting

Estimation

Once our parameter is expressed in terms of the observed data, we can leave the second regularity condition and return to statistical inference results

- But those working in causal inference have provided novel estimators
- So we will review those

Nuisance Functions

From our identification results

$$n^{-1} \sum_{i=1}^{n} E[Y_i \mid A_i = a, W_i] \qquad n^{-1} \sum_{i=1}^{n} \frac{Y_i I(A_i = a)}{\Pr(A_i = a \mid W_i)}$$

Requires

$$m_Y(a, W) = E[Y_i \mid A_i = a, W_i]$$
 $\pi_A(W) = \Pr(A_i = a \mid W_i)$

When these are unknown

- Estimators based on estimating one of these
- Not of direct interest, so called 'nuisance'

High-Dimensional W

In practice, W includes many variables

- Identifiable does not mean estimable³²
- Random positivity violations

$$\widehat{\Pr}(A = a \mid W_i = w) = 0$$

- Use models to borrow information from 'nearby' observations
 - $\pi_A(W)$ replaced with $\pi_A(W;\alpha)$
 - $m_Y(a, W)$ replaced with $m_Y(a, W; \beta)$

³²Maclaren & Nicholson 2021 Workshop at the 38th International Conference on Machine Learning; Aronow et al. 2021 arXiv:2108.11342; Robins & Ritov 1997 Stats in Med 16(3):285-319

Model Specification

Correct model specification

$$\Pr(A \mid W) \in \mathcal{M}_{\alpha}$$

Example:

$$\operatorname{logit} \left[\pi_A(W; \alpha) \right] = \alpha_0 + \alpha_1 W + \alpha_2 W^2$$

with

$$\mathcal{M}_{\alpha} = \{ \operatorname{expit}(\alpha_0 + \alpha_1 W + \alpha_2 W^2) : \alpha \in \mathbb{R}^3 \}$$

so \mathcal{M}_{lpha} covers logistic linear and quadratic relations

Propensity Scores

Donald Rubin proposed estimators based on³³

$$\pi_A(W;\alpha)$$

Been operationalized a number of ways³⁴

- Stratification
- Matching
- Regression adjustment
- Weighting

$$\hat{\mu}_{a,w} = n^{-1} \sum_{i=1}^{n} \frac{Y_i I(A_i = a)}{\pi_A(W; \hat{\alpha})}$$

³³Rubin 1974 *J Ed Psychol* 66:688-701

³⁴Austin 2011 Multivariate Behav Res 46(3):399-424

Inverse Probability Weighting

IPW: Heuristically

Reweighting by $\frac{I(A_i=a)}{\Pr(A_i|W_i)}$

- ullet Removing W,A relationship
- $\bullet\,$ No confounding by W anymore

G-formula

James Robins proposed estimator based on³⁵

$$m_Y(a, W; \beta)$$

$$\hat{\mu}_{a,m} = n^{-1} \sum_{i=1}^{n} m_Y(a, W; \hat{\beta})$$

Causal Inference?

56

³⁵Robins 1986 Mathematical Modelling 7(9-12):1393-1512

G-formula: Heuristically

Learn $W \to Y$ and $A \to Y$ from the data

- Use that information to 'simulate' or 'impute' Y under A:=a
- Using $m_Y(a, W)$

A Brief Aside on Time-Varying Confounding

To understand Robins's contribution, need to step back and look at time-varying actions

• Intervene on A_0 and A_1

Robins's G-Methods

G(eneral)-methods for dealing with time-varying confounding³⁶

- G-formula (g-computation)
- Inverse Probability Weighting (IPW)
- G-estimation of Structural Nested Models

³⁶Naimi et al. 2017 *IJE* 46(2):756-762

Augmented IPW

Rely on corresponding model to be correctly specified

AIPW cleverly combines $\pi_A(W; \alpha)$ and $m_Y(a, W; \beta)$.³⁷

• Only one model needs to be correctly specified

$$n^{-1} \sum_{i=1}^{n} \left\{ \begin{array}{c} \underbrace{\frac{\text{IPW}}{\prod(A_i = a)}}_{\pi_A(W;\beta)} - \underbrace{\frac{1 - \pi_A(W;\alpha)}{\prod(a,w;\beta)}}_{\text{`Glue'}} \end{array} \right\}$$

³⁷A simpler implementation of AIPW is the weighted regression approach. This approach also has some performance benefits with sparse data. See Vansteelandt & Keiding 2011 *AJE* 173(7):739-742 or Shook-Sa et al. 2024 *arXiv:*2404:16166

Augmented IPW

Several important properties

- Doubly-robust
- Semiparametric efficient, unlike IPW
- Variance estimation via influence curve
- ullet Convergence rate is a product of π_A and m_Y rates

Last one will appear again

Targeted Maximum Likelihood Estimation

Related doubly robust estimator developed by Mark van der Laan³⁸

- Shares many properties with Augmented IPW
- Bounded in the parameter space

Instead combine π_A and m_Y via a targeting model

$$logit[Pr(Y=1)] = \eta_a + logit[m_Y(a, W; \beta)]$$

estimated with weights $\frac{I(A_i=a)}{\pi_A(W_i;\alpha)}$

Zivich Causal Inference?

62

 $^{^{38}}$ van der Laan & Rubin 2006 *IJB* 2(1) with Schuler & Rose 2017 *AJE* 185(1):65-73 for a good introduction

Causal Effect Estimation with Machine Learning

Concern over correct model specification

- Parametric models are relatively simplistic
- ullet Interest in more flexible alternatives to increase what \mathcal{M}_η may cover

Promise of machine learning

- Provide data-adaptive estimation
- Bolster model specification assumption
- Does not deal with identification

Causal Effect Estimation with Machine Learning

Two methodological challenges³⁹

- 1. Statistical convergence rates⁴⁰
 - ullet How fast estimators goes to truth by n
 - Flexibility means convergence is below $n^{-1/2}$
- 2. Complexity⁴¹
 - Certain algorithms overfit causing issues

Practical concerns, like pseudo-RNG,⁴² computational time

³⁹Zivich et al. 2022 Wiley StatsRef stat08412

⁴⁰Daniel 2018 Wiley StatsRef stat08068

⁴¹Chernozhukov et al. 2018 The Econometrics Journal 21(1):C1-C68;

Zivich & Breskin 2021 Epidemiology 32(3):393-401

⁴²Zivich 2024 Epidemiology In-Press

Addressing Statistical Convergence⁴³

Finally, if both $\hat{\alpha}$ and $\hat{\beta}$ are estimated by ML/OLS as described earlier, then both will converge at rate $O_{\mathbb{P}}(n^{-1/2})$, meaning that the product

$$\left\{ \frac{1}{\pi(\mathbf{X}_i; \widehat{\boldsymbol{\alpha}})} - \frac{1}{\pi(\mathbf{X}_i; \boldsymbol{\alpha}^*)} \right\} \left\{ m(\mathbf{X}_i; \widehat{\boldsymbol{\beta}}) - m(\mathbf{X}_i; \boldsymbol{\beta}^*) \right\}$$
(10)

. . .

3.4 Data-Adaptive Estimation

Another consequence of the convergence result we sketched in Section 2.7.2, apart from leading to convenient inference, is that, unlike other estimators such as IPW and OR, good asymptotic properties of the resulting DR estimator can be achieved even when the convergence rates of the nuisance models is slower than the conventional parametric \sqrt{n} rate. This opens the door to using data-adaptive (machine learning) estimation strategies to estimate $\pi_0(\mathbf{X})$ and $m_0(\mathbf{X})$ without incurring small sample bias, and retaining tractable inferences, as long as both estimated nuisance functionals converge to their respective truths, and that the convergence of the product shown in Expression (10) is just faster than $\sqrt{n}^{[3]}$.

Zivich Causal Inference?

65

⁴³Screenshots from Daniel 2018 Wiley StatsRef stat08068

Addressing Complexity

Machine Learning Won't Always Save You

Example:

$$\Pr(A_i = 1 \mid W_i) = \begin{cases} 0.9 & \text{if } j \text{ is even} \\ 0.1 & \text{if } j \text{ is odd} \end{cases}$$

where \mathcal{W} divided into 10n bins and j is bin ID that W_i lies in.⁴⁴

- ... nonparametrically identified but fail to consistently estimate
 - Require some smoothness of the nuisance functions

⁴⁴Example adapted from Aronow et al. 2021 arXiv:2108.11342

Other Causal Approaches

Instrumental Variables⁴⁵

Difference-in-difference and other time-series analysis⁴⁶

Synthetic Controls⁴⁷

Mathematical modeling⁴⁸

Causal Discovery⁴⁹

⁴⁵Greenland 2000 *IJE* 29(4):722-729; Richardson & Tchetgen Tchetgen 2022 AJE 191(5):939-947

⁴⁶Haber et al. 2021 AJE 190(11):2474-2486; Richardson 2023 Epidemiology 34(2):167-174

⁴⁷Abadie 2021 Journal of Economic Literature 59(2):391–425

⁴⁸Ackley et al. 2022 AJE 191(1):1-6; Murray et al. 2021 AJE 190(8):1652-1658

⁴⁹Huber 2024 arXiv:2407.08602

Variance Estimation

Left off uncertainty estimation

- Uncertainty in parameter
- Depends on nuisance models when estimated
- Solutions
 - Bootstrap
 - Influence curve⁵⁰
 - Sandwich variance estimator⁵¹

⁵⁰Hines et al. 2022 Am Stat 76(3):292-304

⁵¹Ross et al. 2024 *IJE* 53(2):dyae030

Estimating Equations

Defined as⁵²

$$E[\psi(O_i;\theta)] = 0$$

with the corresponding estimator

$$\sum_{i=1}^{n} \psi(O_i; \hat{\theta}) = 0$$

where

- ullet ψ is a vector-valued function of dimension k
- ullet heta is the parameter vector of dimension k

⁵²Stefanski & Boos 2002 *Am Stat* 56(1):29-38

Estimating Equations

Example: IPW⁵³

$$\psi_w(O_i; \theta) = \begin{bmatrix} (A_i - \pi_A(W_i; \alpha)) \mathbb{W} \\ \frac{Y_i A_i}{\pi_A(W_i; \alpha)} - \mu_1 \\ \frac{Y_i (1 - A_i)}{1 - \pi_A(W_i; \alpha)} - \mu_0 \\ (\mu_1 - \mu_0) - \phi \end{bmatrix}$$

where $\theta = (\alpha, \mu_1, \mu_0, \phi)$

- Propensity score model
- IPW for A := 1
- IPW for A := 0
- Average causal effect

 $^{^{53}}$ Ross et al. 2024 *IJE* 53(2):dyae030 works through this and g-computation, and provides corresponding SAS/R/Python code

Inference with Estimating Equations

Sandwich variance

$$\mathbf{V}(\theta) = \mathbf{B}(\theta)^{-1} \mathbf{M}(\theta) [\mathbf{B}(\theta)^{-1}]^T$$

with the 'bread'

$$\mathbf{B}(\theta) = E\left[\frac{\partial}{\partial \theta}\psi(O_i; \theta)\right]$$

and 'meat'

$$\mathbf{M}(\theta) = E\left[\psi(O_i; \theta)\psi(O_i; \theta)^T\right]$$

Automated in R's geex and Python's delicatessen

Extensions

Causal Inference as Missing Data

Recall from causal consistency

ID	A_i	Y_i	Y_i^1	Y_i^0
1	1	5	5	-
2	1	2	2	-
3	0	4	-	4
4	0	9	-	9
_5	0	1	-	1

 \therefore Causal inference = Missing Data + Y^a

Tools for Missing Data

Concepts and tools extend to any scenario we can frame as a missing data problem⁵⁴

- Missing data
- Measurement error
- Selection bias

⁵⁴Edwards et al. 2015 *IJE* 44(4):1452-1459

Missing Data

Causal Diagrams for Missing Data⁵⁵

Adapt causal estimators⁵⁶

'Action' is to prevent all missingness

⁵⁵Daniel et al. 2012 SMMR 21(3):243-256

⁵⁶Vansteelandt et al. 2010 Methodology: European Journal of Research Methods for the Behavioral and Social Sciences 6(1):37–48

Measurement Error

Causal Diagrams for Measurement Error⁵⁷

Adapt causal estimators⁵⁸

 \bullet 'Action' is to observe Y

⁵⁷Hernán & Cole 2009 *AJE* 170(8):959-962

⁵⁸Ross et al. 2024 *Epidemiology* 35(2):196-207

Selection Bias

Causal Diagrams for Selection Bias⁵⁹

Adapt causal estimators

ullet 'Action' is to observe Y regardless of S

⁵⁹Lu et al. 2022 *Epidemiology* 33(5):699-706

Uses in Randomized Trials

Improved efficiency⁶⁰

• IPW / g-computation can increase power

Per-protocol

Break randomization so susceptible to confounding

Generalizability

Draw inference for populations different from trial participants

⁶⁰ Morris et al. 2022 Trials 23(328)

Advanced Topics

Causal Mediation

Single World Intervention Graph

Mediation Parameters

Controlled direct effect

- $E[Y^{a,m}] E[Y^{a',m}]$
- ullet Effect of A after setting mediator fixed as m

Natural direct effect⁶¹

- $E[Y^{a,M(a')}] E[Y^{a',M(a')}]$
- Effects of A with M under level where A = a'

Natural effects are where NPSEM-IE & FFRCISTG diverge

Cross-world assumption

⁶¹Natural indirect effects instead contrast M(a)

Interference Parameters

Potential outcomes

$$Y_i^{a_1,\dots,a_n} = Y_i^{a_i,a_{-i}}$$

Direct (unit-action) effect

$$E[Y_i^{a_i,a_{-i}}] - E[Y_i^{a_i',a_{-i}}]$$

Indirect (spillover) effect

$$E[Y_i^{a_i,a_{-i}}] - E[Y_i^{a_i,a_{-i}'}]$$

Total effect

$$E[Y_i^{a_i,a_{-i}}] - E[Y_i^{a_i',a_{-i}'}]$$

Overall effect

$$E[Y_i^{g(\mathbf{a})}] - E[Y_i^{g'(\mathbf{a})}]$$

Bayesian Causal Inference

Everything so far has been frequentist

Can also be Bayesian⁶²

- Implications for our parameter of interest
- Use of propensity scores not motivated.⁶³

⁶²Li et al. 2023 *Philosophical Transactions of the Royal Society A* 381(2247):20220153

⁶³Robins et al. 2015 *Biometrics* 71(2):296-299

Bayes & Propensity Scores

Likelihood of the observed data

$$\mathcal{L}(\alpha, \beta, \gamma) = \prod_{i=1}^{n} f(Y_i \mid A_i, W_i; \beta) f(A_i \mid W_i; \alpha) f(W_i; \gamma)$$

Given α, β are independent, the posterior of our parameter is entirely determined by β, γ

So a Bayesian, only evaluates

$$p(E[Y^a]) = \int_{\beta,\gamma} \left\{ \prod_{i=1}^n f(Y_i \mid A_i, W_i; \beta) f(W_i; \gamma) p(\beta, \gamma) \right\} \partial \beta \partial \gamma$$