SWCON253: Machine Learning

Lecture 02 Review of Linear Algebra

Jinwoo Choi Assistant Professor CSE, Kyung Hee University

Contents

- 1. Notation & Basic Operations
- 2. Linear Independence & Inverse
- 3. Norm, Orthogonality & Projection
- 4. Determinant, Decomposition, Quadratic Forms

References

- Linear Algebra Review by J. Zico Kolter (http://www.cs.cmu.edu/~zkolter/course/linalg/)
- Review of Linear Algebra by Xinkun Nie & Fereshte Khani (http://cs229.stanford.edu/syllabus-fall2020.html)
- Linear Algebra for Machine Learning by Sargur N. Srihari (https://cedar.buffalo.edu/~srihari/CSE574/)

1. Notation & Basic Operations

- 1. Vector & Matrix
- 2. Special Matrices
- 3. Additions & Multiplications
- 4. Transpose
- 5. Trace

Vector & Matrix

- By $x \in \mathbb{R}^n$, we denote a vector with n entries.

1-D array of numbers
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}. \qquad x^7 = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

- By $A \in \mathbb{R}^{m \times n}$ we denote a matrix with m rows and n columns, where the entries of A are real numbers.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ & & & \\ & & & & \end{vmatrix} \\ = \begin{bmatrix} & & & & \\ & & & \\ & & & & \end{vmatrix} \end{bmatrix} = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & & & \vdots \\ - & a_m^T & - \end{bmatrix}.$$

2-D array of numbers

a set of column vectors

a set of row vectors

Tensor

Multi-dimensional array of numbers


```
tf.Tensor(

[[[ 0 1 2 3 4]

  [ 5 6 7 8 9]]

[[10 11 12 13 14]

  [15 16 17 18 19]]

[[20 21 22 23 24]

  [25 26 27 28 29]]], shape=(3, 2, 5)
```


Product of Vectors

inner product or dot product WH

$$y \in \mathbb{R} = [x_1 \ x_2 \ \cdots$$

$$y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i. = y^T x$$

outer product
$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix} \cdot = (yx^T)^T$$

Special Matrices – Zero

The Zero Matrix

$$0 \in \mathbb{R}^{m \times n} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Special Matrices – Identity

The Identity Matrix

$$I \in \mathbb{R}^{n \times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

~ collection of unit vectors in Rⁿ

Has the property that for any $A \in \mathbb{R}^{m \times n}$

$$AI = A = IA$$

Special Matrices – Diagonal

Diagonal Matrices

For $d \in \mathbb{R}^n$

$$\operatorname{diag}(d) \in \mathbb{R}^{n \times n} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

ullet For example, the identity is given by $I={
m diag}(1)$

$$1 \in \mathbb{R}^n = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Scalar Operations: aA+b

A scalar can be added to a matrix.

A matrix can be multiplied by a scalar.

$$B = aA + b$$
 → $B_{i,j} = aA_{i,j} + b$
したこれ は 日をアルル よっかり 生た 似色 에 いか出
言呼 되

Matrix Addition: A+B

• For two matrices of the same size and type, $A, B \in \mathbb{R}^{m \times n}$ addition is just sum of corresponding elements

$$A + B = C \in \mathbb{R}^{m \times n} \iff C_{ij} = A_{ij} + B_{ij}$$

Addition is *undefined* for matrices of different sizes $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$

(Note: Numpy's *broadcasting* allows addition of different sized arrays)

Matrix-Vector Multiplication: Ax

- If we write A by rows, then we can express Ax as,

$$y = Ax = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix} x = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}.$$

- If we write A by columns, then we have:

$$y = Ax = \begin{bmatrix} \begin{vmatrix} & & & \\ & a^1 & a^2 & \cdots & a^n \\ & & & \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a^1 \\ x_1 \end{bmatrix} x_1 + \begin{bmatrix} a^2 \\ & \end{bmatrix} x_2 + \ldots + \begin{bmatrix} a^n \\ & \end{bmatrix} x_n .$$

y is a *linear combination* of the *columns* of A.

Vector-Matrix Multiplication: x^TA

If we write A by columns, then we can express x^TA as,

$$y^{T} = x^{T}A = x^{T} \begin{bmatrix} \begin{vmatrix} & & & & \\ a^{1} & a^{2} & \cdots & a^{n} \\ & & & \end{vmatrix} = \begin{bmatrix} x^{T}a^{1} & x^{T}a^{2} & \cdots & x^{T}a^{n} \end{bmatrix}$$

expressing A in terms of rows we have:

$$y^{T} = x^{T}A = \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{m} \end{bmatrix} \begin{bmatrix} - & a_{1}^{T} & - \\ - & a_{2}^{T} & - \\ \vdots & \\ - & a_{m}^{T} & - \end{bmatrix}$$
$$= x_{1} \begin{bmatrix} - & a_{1}^{T} & - \\ - & a_{2}^{T} & - \\ \vdots & - & a_{m}^{T} & - \end{bmatrix} + x_{2} \begin{bmatrix} - & a_{2}^{T} & - \\ - & a_{2}^{T} & - \end{bmatrix} + \dots + x_{m} \begin{bmatrix} - & a_{m}^{T} & - \\ - & a_{m}^{T} & - \end{bmatrix}$$

 y^T is a linear combination of the rows of A.

Matrix Multiplication: AB

• For two matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, their product is

$$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Multiplication is undefined when number of columns in A doesn't equal number or rows in B (one exception: cA for $c \in \mathbb{R}$ taken to mean scaling A by c)

$$A^{2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$AB = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$C_{11} = [x_{1} + 3x_{2} + 5x_{3}] = 22$$

Matrix Multiplication – Different Views

1. As a set of vector-vector products

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ b^1 & b^2 & \cdots & b^p \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} a_1^T b^1 & a_1^T b^2 & \cdots & a_1^T b^p \\ a_2^T b^1 & a_2^T b^2 & \cdots & a_2^T b^p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b^1 & a_m^T b^2 & \cdots & a_m^T b^p \end{bmatrix}.$$

2. As a sum of outer products

$$C = AB = \begin{bmatrix} \begin{vmatrix} & & & & \\ & a^1 & a^2 & \cdots & a^n \\ & & & \end{vmatrix} \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ \vdots & & \\ - & b_n^T & - \end{bmatrix} = \sum_{i=1}^n a^i b_i^T.$$

Matrix Multiplication - Different Views (cont'd)

3. As a set of matrix-vector products.

$$C = AB = A \begin{bmatrix} \begin{vmatrix} 1 & 1 & 1 \\ b^1 & b^2 & \cdots & b^p \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} 1 & 1 & 1 \\ Ab^1 & Ab^2 & \cdots & Ab^p \\ 1 & 1 & 1 \end{bmatrix}.$$
 (2)

Here the *i*th column of C is given by the matrix-vector product with the vector on the right, $c_i = Ab_i$. These matrix-vector products can in turn be interpreted using both viewpoints given in the previous subsection.

4. As a set of vector-matrix products.

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ \vdots & & \\ - & a_m^T & - \end{bmatrix} B = \begin{bmatrix} - & a_1^T B & - \\ - & a_2^T B & - \\ \vdots & & \\ - & a_m^T B & - \end{bmatrix}.$$

Matrix Multiplication – Diagonal Matrix

• Multiplying $A \in \mathbb{R}^{m \times n}$ by a diagonal matrix $D \in \mathbb{R}^{n \times n}$ on the right scales the *columns* of A

$$AD = \begin{bmatrix} & & & & & & \\ d_1a_1 & d_2a_2 & \cdots & d_na_n \\ & & & & & \end{bmatrix}$$

$$\rightarrow \text{ column scaler}$$

$$(\text{ diagonal on the right})$$

• Multiplying by a diagonal matrix $D \in \mathbb{R}^{m \times m}$ on the left scales the *rows* of A

$$DA = \begin{bmatrix} -& d_1a_1^T & - \\ -& d_2a_2^T & - \\ & \vdots & \\ -& d_ma_m^T & - \end{bmatrix}$$

Matrix Multiplication – Important Properties

- Associative: $(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q})$

$$A(BC) = (AB)C$$

- Distributive: $(A \in \mathbb{R}^{m \times n}, B, C \in \mathbb{R}^{n \times p})$

$$A(B+C) = AB + AC$$

 NOT commutative: (the dimensions might not even make sense, but this doesn't hold even when the dimensions are correct)

$$AB \neq BA$$

Transpose ~ flipping

The transpose of a matrix results from "flipping" the rows and columns. Given a matrix $A \in \mathbb{R}^{m \times n}$, its transpose, written $A^T \in \mathbb{R}^{n \times m}$, is the $n \times m$ matrix whose entries are given by

$$(A^T)_{ij} = A_{ji}$$
.

 $(A^T)_{ii} = A_{ii}$. – The mirror image across a diagonal line

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{32} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{32} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

The following properties of transposes are easily verified:

$$-(A^T)^T = A$$

$$-(AB)^T = B^T A^T$$
$$-(A+B)^T = A^T + B^T$$

$$-(A+B)^T=A^T+B^T$$

Special Matrices – Symmetric

Symmetric Matrices

- Symmetric matrix: $A \in \mathbb{R}^{n \times n}$ with $A = A^T$
- Arise naturally in many settings

- For
$$A \in \mathbb{R}^{m \times n}$$
, $A^T A \in \mathbb{R}^{n \times n}$ is symmetric

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & a_2 & \cdots & a_n \\ 1 & 1 & 1 \end{bmatrix}$$

Gram matrix

Symmetric matrix examples

- distance matrix
- covariance matrix

Trace ~ sum of diagonals

The *trace* of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr} A$, is the sum of diagonal elements in the matrix:

$$tr A = \sum_{i=1}^{n} A_{ii}.$$

The trace has the following properties:

- For $A \in \mathbb{R}^{n \times n}$, $\operatorname{tr} A = \operatorname{tr} A^T$.
- For $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(A + B) = \operatorname{tr}A + \operatorname{tr}B$.
- For $A \in \mathbb{R}^{n \times n}$, $t \in \mathbb{R}$, $\operatorname{tr}(tA) = t \operatorname{tr} A$.
- For A, B such that AB is square, trAB = trBA.
- For A, B, C such that ABC is square, trABC = trBCA = trCAB, and so on for the product of more matrices.

2. Linear Independence & Inverse

- 1. Linear Independence
- 2. Span & Linear Transform
- 3. Rank & Inverse
- 4. Solving Linear Equations

Linear Independence 서형 되기

A set of vectors $\{x_1, x_2, ... x_n\} \subset \mathbb{R}^m$ is said to be *(linearly) dependent* if one vector belonging to the set *can* be represented as a <u>linear combination</u> of the remaining vectors; that is, if

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

for some scalar values $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$; otherwise, the vectors are (linearly) independent.

Example:

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$

are linearly dependent because $x_3 = -2x_1 + x_2$.

Span

The **span** of a set of vectors $\{x_1, x_2, ..., x_n\}$ is the set of all vectors that can be expressed as a linear combination of $\{x_1, ..., x_n\}$. That is,

$$\operatorname{span}(\{x_1,\dots x_n\}) = \left\{v : v = \sum_{i=1}^n \alpha_i x_i, \ \alpha_i \in \mathbb{R}\right\}.$$
 미나들는 있는 모든 본것 결합의 집합

• Note that the **span** of *n* **linearly independent** vectors is \mathbb{R}^n .

Linear Transform: v = Ax

$$v = Ax$$

• An m x n matrix A maps an n-dimensional vector x into an m-dimensional vector v.

$$x \in \mathbb{R}^n \xrightarrow{v = Ax} v \in \mathbb{R}^m$$

● ♦≒MM ♦ OPE Inear, it is called a linear transform.

For $\forall \alpha, \beta \in \mathbb{R}$ and $\forall x_1, x_2 \in \mathbb{R}^n$,

$$A(\alpha x_1 + \beta x_2) = \alpha(Ax_1) + \beta(Ax_2)$$

Range & Null Space: R(A) & N(A)

The range or the columnspace of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{R}(A)$, is the the span of the columns of A.

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}.$$
 (These)

The *nullspace* of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$ is the set of all vectors that equal 0 when multiplied by A, i.e.,

$$\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$$
 (kernel)

Rank ~ # of lin. ind. columns (rows)

The **column rank** of a matrix $A \in \mathbb{R}^{m \times n}$ is the size of the largest subset of columns of Athat constitute a linearly independent set.

The row rank is the largest number of rows of A that constitute a linearly independent set.

For any matrix $A \in \mathbb{R}^{m \times n}$, it turns out that the column rank of A is equal to the row rank of A (prove it yourself!), and so both quantities are referred to collectively as the rank of A, denoted as rank(A).

Properties of the Rank

- For $A \in \mathbb{R}^{m \times n}$, rank $(A) \leq \min(m, n)$. If rank $(A) = \min(m, n)$, then A is said to be **full rank**.
- For $A \in \mathbb{R}^{m \times n}$, rank $(A) = \operatorname{rank}(A^T)$.
- For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, rank $(AB) < \min(\operatorname{rank}(A), \operatorname{rank}(B))$.
- For $A, B \in \mathbb{R}^{m \times n}$, rank $(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

Inverse

The *inverse* of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} , and is the unique matrix such that

$$A^{-1}A = I = AA^{-1}$$
.

$$A^{-1}$$
 exists $\iff Ax \neq 0$ for all $x \neq 0$

- We say that A is invertible or non-singular if A⁻¹ exists and non-invertible or singular otherwise.
- In order for a square matrix A to have an inverse A^{-1} , then A must be full rank.

Properties (Assuming $A, B \in \mathbb{R}^{n \times n}$ are non-singular):

- $-(A^{-1})^{-1}=A$
- $-(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^T = (A^T)^{-1}$. For this reason this matrix is often denoted A^{-T} .

$$(A+B)^{-1} \neq A^{-1} + B^{-1}$$

Solving Linear Equations: Using Inverse

- If exists, the inverse can be used to solve a system of linear equations
 - Two linear equations

$$4x_1 - 5x_2 = -13 \\
-2x_1 + 3x_2 = 9$$

• In vector form, Ax = b, with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

· Solution using inverse

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$x = A^{-1}b$$

$$Ax = b \iff A^{\mathsf{T}}Ax = A^{\mathsf{T}}b \iff x = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$$

- ♦ Note that the inverse may not exists
- Even exists, the inverse is not used in practice
 - It cannot be represented with sufficient precision
- Gaussian elimination also has disadvantages
 - It has numerical instability (division by small no.)
 O(n³) for n x n matrix
- Iterative algorithms are used instead
 - Many different decompositions can be used depending on the characteristics of A, x, and b

Solving Linear Equations: Using Gaussian Elimination

- 1. Find a particular solution to Ax = b
- 2. Find all solutions to Ax = 0
- 3. Combine the solutions from 1. and 2. to the general solution.

 $A(m \times n)$: m equations with n unknowns

- Under-determined: m < n
- Over-determined: m > n

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42 \\ 8 \end{bmatrix}$$

Reduced Row Echelon Form

Remark (Gaussian Elimination). Gaussian elimination is an algorithm that performs elementary transformations to bring a system of linear equations into reduced row echelon form.

- a solution is [42, 8, 0, 0][⊤]
- 2. $\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_2 & 0 \\ 0 & 1 & 2 & 12 \end{pmatrix} = \lambda_1(8c_1 + 2c_2 c_3) = 0$

3

$$\left\{x \in \mathbb{R}^4 : x = \begin{bmatrix} 42 \\ 8 \\ 0 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 8 \\ 2 \\ -1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} -4 \\ 12 \\ 0 \\ -1 \end{bmatrix}, \lambda_1, \lambda_2 \in \mathbb{R} \right\}$$

non-pivot columns are expressed as a combination of the pivot columns

3. Norm, Orthogonality & Projections

- 1. Norm
- 2. Angle
- 3. Orthogonality
- 4. Projection & Least Squares

Norm ~ length of a vector

A **norm** of a vector ||x|| is informally a measure of the "length" of the vector.

More formally, a norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies 4 properties:

- 1. For all $x \in \mathbb{R}^n$, $f(x) \ge 0$ (non-negativity).
- 2. f(x) = 0 if and only if x = 0 (definiteness).
- 3. For all $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, f(tx) = |t|f(x) (homogeneity).
- 4. For all $x, y \in \mathbb{R}^n$, $f(x+y) \le f(x) + f(y)$ (triangle inequality).

Note: ||x - y|| is a measure of the "distance" of the two vectors.

p-Norms

• ℓ_2 norm (Euclidean norm)

$$||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

• ℓ_1 **norm** (Manhattan norm)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• ℓ_{∞} norm (Max norm)

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Illustrations of unit circles in R² (length-one vectors from the origin)

In fact, all three norms presented so far are examples of the family of ℓ_p norms, which are parameterized by a real number $p \geq 1$, and defined as

$$||x||_{\rho} = \left(\sum_{i=1}^{n} |x_i|^{\rho}\right)^{1/\rho}.$$

Above figure is from: https://commons.wikimedia.org/w/index.php?curid=17428655

Frobenius Norm ~ a norm for matrices

$$\mathbb{R}^{m \times n} \to \mathbb{R}$$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\operatorname{tr}(A^T A)}.$$

$$A = \begin{bmatrix} A_0 & A_{02} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{2N} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \end{bmatrix}$$

$$A_{01} & A_{02} & \cdots & A_{2N} \end{bmatrix}$$

$$A_{02} & A_{02} & \cdots & A_{2N} \end{bmatrix}$$

$$\begin{array}{lll}
A_{1}^{T}a_{1} &= A_{1}^{T} + A_{2}^{T} + \cdots + A_{n}^{T} \\
A_{2}^{T}a_{2} &= A_{1}^{T} + A_{2}^{T} + \cdots + A_{n}^{T}
\end{array}$$

$$\begin{array}{lll}
A_{1}^{T}a_{1} &= A_{1}^{T}a_{2} + A_{2}^{T}a_{2} + \cdots + A_{n}^{T}a_{n}^{T$$

$$\textit{Teg} \quad J_R = J + \lambda \sum_{i=1}^L \left\| W^{(i)} \right\|_F$$

Angle between Vectors

Dot product of two vectors can be written in terms of their L^2 norms and angle θ between them

$$x^T y \Rightarrow ||x||_2 ||y||_2 \cos \theta$$

Cosine between two vectors is a measure of their (orientation) similarity

$$\cos \theta = \frac{x^T y}{||x||_2 ||y||_2}$$

Orthogonal Vectors

• Two vectors $x, y \in \mathbb{R}^n$ are orthogonal if

$$x^T y = 0$$

$$(\cos(\theta) = 0 \text{ or } \theta = \pi/2) \qquad \qquad x + 4.$$

• They are orthonormal if, in addition,

$$||x||_2 = ||y||_2 = 1$$

A vector $x \in \mathbb{R}^n$ is **normalized** if $||x||_2 = 1$.

Orthogonal *Matrices*

• A matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all it's columns are orthonormal, i.e.,

$$U^TU=I=UU^T$$
 \Leftrightarrow all its columns are orthogonal to each other $U^T=U^T$ (linearly independent

Transformations with orthogonal matrices preserve Euclidean distances and angles!

$$\|\boldsymbol{A}\boldsymbol{x}\|^2 = (\boldsymbol{A}\boldsymbol{x})^{\top}(\boldsymbol{A}\boldsymbol{x}) = \boldsymbol{x}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{I}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{x} = \|\boldsymbol{x}\|^2$$

$$\cos \omega = \frac{(\boldsymbol{A}\boldsymbol{x})^{\top}(\boldsymbol{A}\boldsymbol{y})}{\|\boldsymbol{A}\boldsymbol{x}\| \, \|\boldsymbol{A}\boldsymbol{y}\|} = \frac{\boldsymbol{x}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{y}}{\sqrt{\boldsymbol{x}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{y}}} = \frac{\boldsymbol{x}^{\top}\boldsymbol{y}}{\|\boldsymbol{x}\| \, \|\boldsymbol{y}\|}$$

Linear Independence vs. Orthogonality

Consider a set of vectors $S = \{v_1, \dots v_n\}$

Projection

- ◆ Definition: Idempotence
 - A projection matrix P is a linear transformation from a vector space to itself such that $P^2 = P$.
 - Such mapping is called a *projection*.

$$x \in \mathbb{R}^n \xrightarrow{v = Px} v \in \mathbb{R}^n$$

Examples

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 0 \\ \alpha & 1 \end{bmatrix}$$

Projection onto 1-D Subspaces

Assume we are given a line (1-dimensional subspace) through the origin with basis vector $\boldsymbol{b} \in \mathbb{R}^n$. The line is a one-dimensional subspace $U \subseteq \mathbb{R}^n$ spanned by \boldsymbol{b} . When we project $\boldsymbol{x} \in \mathbb{R}^n$ onto U, we seek the vector $\boldsymbol{v} = P\boldsymbol{x}$, $\in U$ that is closest to \boldsymbol{x} .

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector b.

The projection v = Px is closest to x.

 $\Rightarrow ||Px - x||$ is minimal.

 \Rightarrow (Px - x) is orthogonal to **b**.

$$\Rightarrow P = \frac{bb^T}{\|b\|^2}$$

Projection onto General Subspaces

 $x \in \mathbb{R}^n$

lower-dimensional subspaces $U \subseteq \mathbb{R}^n$ with $\dim(U) = m$

Assume that (b_1, \ldots, b_m) is an ordered basis of U.

$$\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_m] \in \mathbb{R}^{n \times m},$$

$$\mathbf{P} = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathsf{T}}.$$

Example 3.11 (Projection onto a Two-dimensional Subspace) For a subspace
$$U=\mathrm{span}[\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}0\\1\\2\end{bmatrix}]\subseteq\mathbb{R}^3$$
 and $\boldsymbol{x}=\begin{bmatrix}6\\0\\0\end{bmatrix}\in\mathbb{R}^3$

$$B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 $X = P_{X} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$.

Projection & Least Squares

Using projections, we can find approximate solutions to linear equations Ax = b.

- Suppose **b** does not lie in the span of A. Given that the linear equation cannot be solved exactly.
- We can find an approximate solution by computing the *orthogonal projection* of **b** onto the span of A.

Orthogonality:
$$(A\mathbf{x})^T(A\mathbf{x} - \mathbf{b}) = \mathbf{0}$$

$$\Rightarrow \mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$$

This problem arises often in practice, and the solution is called the *least-squares solution* of an over-determined system.

Square i Grow
$$\begin{aligned}
& \left[\left[\left(A \times - b \right) \right]^{2} = \left(A \times - b \right)^{T} \left(A \times - b \right) \\
& = \left[\left(A \times - b \right) \right]^{2} = \left(A \times - b \right)^{T} \left(A \times - b \right) \\
& = \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right)^{T} \left(A \times - b \right) \right] \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} = \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right) \right]^{2} \\
& \Rightarrow \left[\left(A \times - b \right)$$

4. Determinant, Decomposition, Quadratic Forms

- 1. Determinant
- 2. Eigenvector & Eigenvalue
- 3. Eigendecomposition
- 4. Quadratic Forms
- 5. Positive Definite
- 6. Singular Value Decomposition (SVD)

Determinant ~ volume

The **determinant** of a square matrix $A \in \mathbb{R}^{n \times n}$,

is a function \det . $\mathbb{R}^{n \times n} \to \mathbb{R}$, and is denoted |A| or $\det A$.

Measures how much multiplication by the matrix expands or contracts space

Given a matrix
$$\begin{vmatrix} - & a_1' & - \\ - & a_2^T & - \\ \vdots & - & a_n^T & - \end{vmatrix}$$
, consider the set of points $S \subset \mathbb{R}^n$ as follows:

$$S = \{ v \in \mathbb{R}^n : v = \sum_{i=1}^n \alpha_i a_i \text{ where } 0 \le \alpha_i \le 1, i = 1, \dots, n \}.$$

The absolute value of the determinant of A, is a measure of the "volume" of the set S

 $|\det A|$ is the area of the parallelogram

Determinant: Definition

- Can be formally defined by three properties
 - 1. Determinant of identity is one: $\det I = 1$
 - 2. Multiplying a row by scalar $t \in \mathbb{R}$ scales determinant:

$$\det \begin{bmatrix} - & ta_1^T & - \\ - & a_2^T & - \\ \vdots & - & a_n^T & - \end{bmatrix} = t \det A$$

3. Swapping rows negates determinant:

$$\det \begin{bmatrix} - & a_2^T & - \\ - & a_1^T & - \\ \vdots & - & a_n^T & - \end{bmatrix} = -\det A$$

In case you are wondering, it is not immediately obvious that a function satisfying the above three properties exists. In fact, though, such a function does exist, and is unique (which we will not prove here).

Determinant: Properties

Important properties

For
$$A, B \in \mathbb{R}^{n \times n}$$
,

- $-\det A = \det A^T$
- $-\det AB = \det A \det B$
- $-\det A = 0 \Leftrightarrow A \text{ singular (non-invertible)}$
- $\det A^{-1} = 1/\det A$

Determinant: Formula

Let $A \in \mathbb{R}^{n \times n}$, $A_{\setminus i, \setminus j} \in \mathbb{R}^{(n-1) \times (n-1)}$ be the *matrix* that results from deleting the *i*th row and *j*th column from A.

The general (recursive) formula for the determinant is

$$|A| = \sum_{i=1}^n (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}|$$
 (for any $j \in 1, \dots, n$)
 $= \sum_{j=1}^n (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}|$ (for any $i \in 1, \dots, n$)

with the initial case that $|A| = a_{11}$ for $A \in \mathbb{R}^{1 \times 1}$. If we were to expand this formula completely for $A \in \mathbb{R}^{n \times n}$, there would be a total of n! (n factorial) different terms. For this reason, we hardly ever explicitly write the complete equation of the determinant for matrices bigger than 3×3 .

However, the equations for determinants of matrices up to size 3×3 are fairly common, and it is good to know them:

$$\begin{vmatrix} [a_{11}]| &= a_{11} \\ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} \end{vmatrix}$$

Eigenvector & Eigenvalue

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an **eigenvalue** of A and $x \in \mathbb{C}^n$ is the corresponding **eigenvector** if

$$Ax = \lambda x, \quad x \neq 0.$$

Intuitively, this definition means that multiplying A by the vector x results in a new vector that points in the same direction as x, but scaled by a factor λ .

Matrix A acts by stretching the vector x, not changing its direction, so x is an eigenvector of A.

In this shear mapping, the red arrow changes direction, but the blue arrow does not. Thus the blue arrow is an eigenvector of this mapping.

Eigenvector & Eigenvalue (cont'd)

- Example of 2 × 2 matrix
- Matrix A with two orthonormal eigenvectors
 - $-v^{(1)}$ with eigenvalue λ_1 , $v^{(2)}$ with eigenvalue λ_2

Characteristic Polynomial

We can rewrite the equation above to state that (λ, x) is an eigenvalue-eigenvector pair of A if,

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

But $(\lambda I - A)x = 0$ has a non-zero solution to x if and only if $(\lambda I - A)$ has a non-empty nullspace, which is only the case if $(\lambda I - A)$ is singular, i.e.,

$$|(\lambda I - A)| = 0. = (\lambda_1 - \lambda)(\lambda_2 - \lambda)...(\lambda_n - \lambda)$$

We can now use the previous definition of the determinant to expand this expression $|(\lambda I - A)|$ into a (very large) polynomial in λ , where λ will have degree n. It's often called the characteristic polynomial of the matrix A.

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right] \qquad |A - \lambda I| = \left[\begin{array}{cc} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{array} \right] = 3 - 4\lambda + \lambda^2 \qquad \underset{\lambda = 3}{\lambda = 1}, \qquad v_{\lambda = 1} = \left[\begin{array}{c} 1 \\ -1 \end{array} \right], v_{\lambda = 3} = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

Eigendecomposition

- Suppose that matrix A has n linearly independent eigenvectors $\{v^{(1)},...,v^{(n)}\}$ with eigenvalues $\{\lambda_1,...,\lambda_n\}$
- Concatenate eigenvectors to form matrix V
- Concatenate eigenvalues to form vector λ=[λ₁,...,λ_n]
- Eigendecomposition of A is given by

$$A = V \operatorname{diag}(\lambda) V^{-1}$$

$$A = \lambda_1 \mathcal{I}_1$$

$$A = \lambda_2 \mathcal{I}_2$$

$$A = \lambda_2 \mathcal{I}_2$$

$$A = \lambda_3 \mathcal{I}_3$$

$$A \left[\frac{1}{2^{(1)}} , \dots , \frac{1}{2^{(n)}} \right] = \left[\frac{1}{2^{(n)}} , \dots , \frac{1}{2^{(n)}} \right]$$

$$A V = V \left[\frac{1}{2^{(n)}} , \frac{1}{2^{(n)}} \right]$$

$$Column \\ Scalar \\ (diagonal \\ constant \\$$

Properties of Eigenvalues

$$-(\operatorname{tr})A = \sum_{i=1}^{n} \lambda_i$$

$$-(\det A) = \prod_{i=1}^n \lambda_i$$

- rank(A) = number of non-zero eigenvalues
- Eigenvalues of A^- are $1/\lambda_i$, $i=1,\ldots,n$, eigenvectors are the same

Matrix is singular ⇔ any eigenvalue is zero

(:
$$tr(V\Lambda V^{-1}) = tr(\Lambda V^{-1}V) = tr(\Lambda)$$

: $det(V\Lambda V^{-1}) = detV \cdot det\Lambda \cdot detV^{-1}$
= $det\Lambda$ ($detV^{-1}$)

$$A_{x} = xx$$

$$x = xA^{x}x$$

$$\frac{1}{x}x = A^{x}x$$

Eigendecomposition of Real Symmetric Matrices

let's assume that A is a symmetric real matrix

 Every real symmetric matrix A can be decomposed into real-valued eigenvectors and eigenvalues

$$A = Q \Lambda Q^{\mathrm{T}}$$

where O is an orthogonal matrix composed of eigenvectors of A: $\{v^{(1)},...,v^{(n)}\}$

 Λ is a diagonal matrix of eigenvalues $\{\lambda_1,...,\lambda_n\}$

- By convention order entries of Λ in descending order:
- Decomposition is not unique when two eigenvalues are the same

Quadratic Forms

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the scalar value $x^T A x$ is called a *quadratic form*. Written explicitly, we see that

$$x^T A x = \sum_{i=1}^n x_i (A x)_i = \sum_{i=1}^n x_i \left(\sum_{j=1}^n A_{ij} x_j \right) = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$
.

$$x^{T}A \times = A_{11}(x_{1}^{2}) + A_{12}(x_{2}) + A_{13}(x_{1}x_{2}) + \cdots$$

$$+ A_{21}(x_{2}x_{1}) + A_{22}(x_{3}^{2}) + A_{23}(x_{2}x_{2}) + \cdots$$

$$+ A_{31}(x_{3}x_{1}) + A_{32}(x_{3}x_{2}) + A_{33}(x_{3}^{2}) + \cdots$$

a **quadratic form** is a polynomial with terms all of degree two

$$4x^2 + 2xy - 3y^2 = (x, y)$$

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{\mid \boldsymbol{\Sigma} \mid^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{D} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

Positive Definite

A symmetric matrix $A \in \mathbb{S}^n$ is:

- positive definite (PD), denoted A > 0 if for all non-zero vectors x ∈ Rⁿ, x^TAx > 0.
- positive semidefinite (PSD), denoted A ≥ 0 if for all vectors x^TAx ≥ 0.
- negative definite (ND), denoted $A \prec 0$ if for all non-zero $x \in \mathbb{R}^n$, $x^T A x < 0$.
- negative semidefinite (NSD), denoted A ≤ 0) if for all x ∈ Rⁿ, x^TAx ≤ 0.
- *indefinite*, if it is neither positive semidefinite nor negative semidefinite i.e., if there exists $x_1, x_2 \in \mathbb{R}^n$ such that $x_1^T A x_1 > 0$ and $x_2^T A x_2 < 0$.

One important property of positive definite and negative definite matrices is that they are always full rank, and hence, invertible.

Given any matrix $A \in \mathbb{R}^{m \times n}$ (not necessarily symmetric or even square), the matrix $G = A^T A$ (sometimes called a **Gram matrix**) is always positive semidefinite. Further, if $m \ge n$ and A is full rank, then $G = A^T A$ is positive definite.

Definiteness & Eigenvalue Signs

- 1. If all $\lambda_i > 0$, then the matrix A s positive definite
- 2. If all $\lambda_i \geq 0$, it is positive semidefinite
- Likewise, if all λ_i < 0 or λ_i ≤ 0, then A is negative definite or negative semidefinite respectively.
- 4. Finally, if A has both positive and negative eigenvalues, say $\lambda_i > 0$ and $\lambda_j < 0$, then it is indefinite.

Singular Value Decomposition (SVD)

- SVD is more general than eigendecomposition
 - If A is not square, eigendecomposition is undefined
 - Every real matrix has a SVD

$$oldsymbol{A} = oldsymbol{U} oldsymbol{D} oldsymbol{V}^{ op}$$

- U and V are orthogonal matrices
- D is a diagonal matrix not necessarily square
 - Elements of Diagonal of D are called singular values of A
 - Columns of U are called left singular vectors
 - Columns of V are called right singular vectors
- Left singular vectors of A are eigenvectors of (AA^T)
- Right singular vectors of A are eigenvectors of A^TA
- Nonzero singular values of A are square roots of eigen values of $A^{T}A$. Same is true of AA^{T}

Use of SVD in ML

- 1. SVD is used in generalizing matrix inversion
- Moore-Penrose inverse (discussed next)
- 2. Used in Recommendation systems
- Collaborative filtering (CF)

Moore-Penrose Pseudoinverse

ullet Solution to y = Ax (using the pseudoinverse): $oldsymbol{x} = oldsymbol{A}^+ oldsymbol{y}$

If the equation has:

- Exactly one solution: this is the same as the inverse.
- No solution: this gives us the solution with the smallest error $||Ax y||_2$.
- Many solutions: this gives us the solution with the smallest norm of x.