

Proseminar

Lineare Algebra f. Informatik

SoSe 2020

Übungszettel 10

Hinweis: Am Do 04.06.2020 14:15 findet der zweite Proseminar-Test statt.

- 41. Gegeben ist das in Beispiel 14 definierte Kreuzprodukt im \mathbb{R}^3 sowie das Standard-Skalarprodukt im \mathbb{R}^3 . Beweisen Sie, dass für alle Vektoren $a, b, c \in \mathbb{R}^3$ gilt:
 - $\bullet \ a \times b$ ist orthogonal zu a und zu b
 - $\langle a \times b, c \rangle = \langle b \times c, a \rangle$
- 42. Berechnen Sie die orthogonale Projektion des Vektors $x = \begin{pmatrix} 4 \\ -3 \\ 6 \end{pmatrix}$ auf die durch $\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ erzeugte Gerade G des \mathbb{R}^3 , sowie den Abstand des Punktes x von der Geraden G.
- 43. Berechnen Sie die orthogonale Projektion des Punktes $x = \begin{pmatrix} -7 \\ 5 \\ 9 \end{pmatrix}$ auf die Ebene E des \mathbb{R}^3 mit $E: -2x_1 x_2 + 2x_3 = 0$ auf zwei Arten:
 - mit der in der Vorlesung angegebenen Formel,
 - indem man durch x eine Gerade legt, die senkrecht auf E steht, und diese mit E schneidet.