Laboratório de CEME - Lab 2 Simulação de um sistema eletromecânico: Contatora

Cleiton M. Freitas

1 Objetivo

O objetivo desta experiência é montar a simulação de um sistema eletromecânico simples, o sistema de uma contatora.

2 A contatora

Uma contatora é um sistema geralmente utilizado como chave eletromecânica.

3 Desenvolvimento das Simulações do transformador

A Figura 2 possui a representação em quadripolo de um transformador monofásicos. Neste circuito, i_1 e i_2 são as correntes que entram nos enrolamentos primário e secundário do transformador. Além disso, e_1 e e_2 são as tensões induzidas destes enrolamentos. A caixa nomeada **Sistema Eletromag.**, por sua vez, representa a interação eletromagnética no circuito. Ou seja, ela representa as seguintes equações:

$$\begin{bmatrix} \lambda_1(t) \\ \lambda_2(t) \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix}$$
 (1)

$$\begin{bmatrix} e_1(t) \\ e_2(t) \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \lambda_1(t) \\ \lambda_2(t) \end{bmatrix}$$
 (2)

Figura 1: Esquema de uma contatora

¹Deixo como curiosidade a página sobre quadripolos na Wikipedia. Este assunto sempre aparece nos últimos capítulos dos livros de circuito, mas por questão tempo nem sempre é abordado em aula.

Figura 2: Representação em quadripolo do transformador

O circuito ainda apresenta três resistências e uma fonte de tensão. R_1 e R_2 são as resistências dos enrolamentos e R_L a resistência de carga.

O primeiro objetivo da simulação é computar as correntes i_1 e i_2 neste circuito. Para isso, o primeiro passo é obter duas equações diferencias que descrevam estas correntes em função da tensão apicada no primário. Ou seja, obter o seguinte par de equações:

$$\frac{di_1}{dt} = f_1(t, v_1, i_1, i_2) \tag{3}$$

$$\frac{di_2}{dt} = f_2(t, v_1, i_1, i_2) \tag{4}$$

Observe que as funções f_1 e f_2 são obtidas combinado a lei das malhas no circuito da figura 2 com as equações (1) e (2). Quando montar as equações, utilize os sentidos de tensões e correntes indicados na figura, ou problemas numéricos poderão aparecer.

O segundo passo consiste em resolver este sistema de equações. Mas ao invés de seguir as metodologias aprendidas em Cálculo III, resolveremos este sistema de forma numérica usando **SciPy**. Mais especificamente, utilizando a função **scipy.integrate.odeint**, que realiza a integração numérica de um sistema de equações diferencias de primeira ordem. O link a seguir possui um exemplo de utilização desta função para resolver um sistema de duas equações diferencias:

• scipy.integrate.odeint

Após calcular as correntes com a função a função scipy.integrate.odeint, podemos calcular fluxo concatenado e tensões induzidas utilizando as definições já apresentadas.

4 Dados do transformador

Antes de apresentar os dados, é necessário definir alguns parâmetros que só serão apresentados no futuro nas aulas de teoria. Estes parâmetros são as indutâncias de magnetização (L_{m1} e L_{m2}) e de dispersão (L_{l1} e L_{l2}). A indutância de magnetização, como o nome já diz, representa a magnetização do transformador, ou seja, permite o calculo do fluxo que flui através das duas bobinas. As indutâncias de dispersão representam, por outro lado, se relacionam com as parcelas de fluxo que se espalha pelo ar.

Tabela 1: Parâmetros do Transformador

Parâmetro	Notação	Valor
Tensão nominal do primário	V_1	127V
Tensão nominal do secundário	V_2	480V
Potência nominal	-	$5 \mathrm{kVA}$
Indutância de dispersão do primário	L_{l1}	$0.42 \mathrm{mH}$
Indutância de dispersão do secundário	L_{l2}	$6.11 \mathrm{mH}$
Indutância de Magnetização vista do primário	L_{m1}	0.17113H
Indutância de Magnetização vista do secundário	L_{m2}	2.44456H
Resistência da bobina primária	R_1	0.2Ω
Resistência da bobina secundária	R_2	2.8Ω

Pra fins de simplicidade, considere que os números de espiras N_1 e N_2 são numericamente iguais as tensões nominais.

De acordo com a referência [?, Capítulo 1], as indutâncias próprias e mútuas de um transformador são dadas por:

$$\mathbf{L} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} = \begin{bmatrix} L_{l1} + L_{m1} & \frac{N^2}{N^1} L_{m1} \\ \frac{N^1}{N^2} L_{m2} & L_{l2} + L_{m2} \end{bmatrix}$$
 (5)

É possível mostrar que:

$$\frac{N1}{N2}L_{m2} = \frac{N2}{N1}L_{m1} \tag{6}$$

Utilize este resultados para obter as indutâncias próprias e mútuas do transformador.

5 Casos teste

Uma vez que a simulação esteja funcionado, faça os casos testes apresentados a seguir. Em todos os casos, calcule e plote as correntes, os fluxos concatenados e as tensões induzidas. Além disso, para visualizar todos os efeitos, realize simulações com diferentes durações (de algumas dezenas de ms até alguns segundos).

1. Caso 1: Considere o transformador alimentado com tensão alternada nominal com 60Hz. Ou seja:

$$v_1(t) = \sqrt{2}V_1\sin(\omega t) \tag{7}$$

onde $\omega = 2\pi 60 = 120\pi$. Considere também que a carga possui 47Ω .

- 2. Caso 2: Considere a mesma tensão do caso anterior, mas desta vez use uma carga de $10k\Omega$.
- 3. Caso 2: Considere a carga de 47Ω , mas no lugar de uma fonte alternada, alimente o transformador com uma fonte CC de 2V