Web Retrieval and Mining Assignment #1

B0591025 Yu-Neng Wang

March 27, 2020

Problem

1. Query Processing:

We maintain two pointers, p_x and p_y , into X and Y and walk through Y and X. At each step, we advance p_y and check whether $docID(p_x) < docID(p_y)$. If so, put $docID(p_x)$ into resulting list and advance p_x . If $docID(p_x)$ equals $docID(p_y)$, advance p_x . Otherwise, stop p_x and continue next step of advance p_y . Looping the above step until run over X and Y (or if p_y is NIL while p_x is not, we put remaining docIDs in X into resulting list). Because we only visit every element in X and Y once, this merging algorithm evaluate the query in time O(x + y) where x and y are length of two lists..

2. Zip's Law:

- The probability of the most frequent word in the collection: $p(w_1|C) = 0.1/1 = 0.1$
- The probability of the second-most frequent word in the collection: $p(w_2|C) = 0.1/2 = 0.05$

3. γ code: 11100011101010111111011011111011

This γ code can be decoded as follows:

```
\Rightarrow 1110001, 11010, 101, 11111011011, 11011

\Rightarrow 9, 6, 3, 59, 7 (gap sequence)

\Rightarrow 9, 15, 18, 77, 84 (posting sequence)
```

4. Skip Pointer:

As p increases by 10x, the optimal value for c becomes $\frac{1}{\sqrt{10}}$, which is inversely proportional to \sqrt{p} . That is to say, to find more posting with minimal bytes read, others the same, one should reduce skip distance c.

Figure 1: k=4, n=1000000, p=1000

Figure 2: k=4, n=1000000, p=10000

The optimal value of c for a given set of k, n, and p can be derived as follow:

$$\frac{d}{dc}(\frac{kn}{c} + \frac{pc}{2}) = 0$$

$$\Rightarrow -\frac{kn}{c^2} + \frac{p}{2} = 0$$

$$\Rightarrow c^2 = \frac{2kn}{p}$$

$$\Rightarrow c = \sqrt{\frac{2kn}{p}} \ (c > 0)$$