

Computing Theory

COMP 147 (4 units)

Chapter 1: Regular Languages

Section 1.2: Nondeterminism

Nondeterministic Finite Automata

- An NFA can have more than one transition for a member of the alphabet Σ .
- An NFA can transition to a new state without reading any symbol. These are called εtransitions.
- Allows threads of execution in parallel.
 Each thread is searching for a match with the input string.

Example of an NFA

NFA – Nondeterministic Finite Automaton

- I.A state may have 0 or more transitions labeled with the same symbol.
- 2. E transitions are possible.

Computation of an NFA

- When several transitions with the same label exist, an input word may induce several paths.
- When no transition is possible a computation is "stuck".

Q:Which inputs are accepted and which are not?

A: If input *w* induces (at least) a single accepting path, the automaton "chooses" this accepting path and *w* is accepted.

Possible Computations

DFA

 Q_0

At each step of the computation:

DFA - A single state is occupied.

NFA - Several states may be occupied.

Example NFA Computation

Does it accept w=01011?

Yes there exists an accepting path and w is accepted.

Can we characterize (find) the language recognized by this automaton?

Computation tree for 01011

Example - A Complicated DFA

What does this DFA recognize?

Example – An Equivalent NFA

What does this NFA recognize?

bit strings with a I in third position from end

An NFA over a Unary Alphabet

• Let $\Sigma = \{0\}$.

What language does it accept?

Formal Definition of an NFA

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

P(Q) is the power set of Q

Formal NFA Example

- 1. $Q = \{q_1, q_2, q_3, q_4\},\$
- 2. $\Sigma = \{0,1\},$
- 3. δ is given as

	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø,

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

Another NFA

- Does this NFA accepts the following strings
- &
- a
- baba
- baa
- b
- bb
- babba

NOTE

 Soon we will see that the language accepted by the previous NFA is the same language generated by the regular expression

$$((\epsilon + a)ba^*(a+b)a)^*$$

Design NFA

• L = {w | w ends with 00}

DFA, NFA Equivalence

 Definition: A language is regular is some finite automata recognizes it.

Theorem: Every NFA has an equivalent DFA.

 Corollary: A language is regular if and only of some NFA recognizes it.

DFA, NFA Equivalence Proof

- Proof by construction:
 - Give algorithm that will convert any NFA to a DFA
 - States in the DFA defined by powerset of states in NFA
 - Start state of DFA is the state containing only the start state of NFA
 - Accept states of DFA are all states that contain any accept state of NFA
 - Transition function needs some explanation

DFA, NFA Equivalence Example

Convert this NFA to a DFA.

DFA, NFA Equivalence Example

Remove unreachable states

DFA, NFA Equivalence Example

