

PROYECTO Nº 1: PLANTEAMIENTO DE PROYECTO Y DE DATASET DATAFRAME

Alumno: Abel Montiel Aguilar.

1 º DATA-SET/FRAME

1. Bank:

a. **Asunto**: Util para predecir si alguien merece un préstamo.

b. **Contenido**:

- i. Contiene 41.188 filas
- ii. Contiene 21 columnas

c. Columas:

i.	0 age	41188 non-null	int64
ii.	1 job	41188 non-null	object
iii.	2 marital	41188 non-null	object
iv.	3 education	41188 non-null	object
٧.	4 default	41188 non-null	object
vi.	5 housing	41188 non-null	object
vii.	6 loan	41188 non-null	object
viii.	7 contact	41188 non-null	object
ix.	8 month	41188 non-null	object
х.	9 day_of_week	41188 non-null	object
xi.	10 duration	41188 non-null	int64
xii.	11 campaign	41188 non-null	int64
xiii.	12 pdays	41188 non-null	int64
xiv.	13 previous	41188 non-null	int64
XV.	14 poutcome	41188 non-null	object
xvi.	15 emp.var.rate	41188 non-null	float64
xvii.	16 cons.price.idx	41188 non-null	float64
xviii.	17 cons.conf.idx	41188 non-null	float64
xix.	18 euribor3m	41188 non-null	float64
XX.	9 nr.employed	41188 non-null	float64
xxi.	20 y	41188 non-null	object

d. **Potencial**: Este conjunto de datos es ideal para construir y entrenar modelos predictivos, como clasificadores, que pueden prever la probabilidad de que un cliente acepte un préstamo. Podrías explorar algoritmos de aprendizaje automático, como regresión logística o árboles de decisión, para este propósito.

Es fundamental realizar un análisis exploratorio de datos para comprender las relaciones entre las variables y decidir qué características son más relevantes para la predicción.

e. PowerBI: Algunas sugerencias:

i. Análisis Descriptivo:

- 1. Utiliza gráficos de barras para visualizar la distribución de categorías en variables categóricas como "job", "marital", "education", etc.
- 2. Crea histogramas para entender la distribución de variables numéricas como "age", "duration", "campaign", etc.

ii. Análisis de Correlación:

- 1. Emplea gráficos de dispersión para explorar relaciones entre variables numéricas.
- 2. Calcula y visualiza la matriz de correlación para entender la fuerza y dirección de las relaciones.

iii. Análisis Temporal:

- 1. Utiliza gráficos de líneas para representar la evolución temporal de variables como "month" y "day_of_week".
- 2. Examina la relación entre el tiempo de contacto ("duration") y la respuesta del cliente.

iv. Segmentación de Datos:

 Aplica filtros dinámicos para segmentar datos por características específicas (por ejemplo, trabajo, estado civil) y observar cómo estas segmentaciones afectan la aceptación del préstamo.

v. Machine Learning:

- 1. Incorpora visualizaciones que resuman el rendimiento del modelo, como la precisión, la sensibilidad y la especificidad.
- 2. Utiliza gráficos de importancia de características para destacar qué variables son más influyentes en las predicciones.

vi. Panel de Control Interactivo:

1. Crea un panel interactivo que permita a los usuarios ajustar parámetros del modelo, como umbrales de decisión, y ver cómo afecta esto a las predicciones.

f. METODO: SMART:

i. Específico (Specific):

- 1. Objetivo: Predecir la probabilidad de aceptación de préstamos por parte de clientes.
- 2. Enfoque: Utilizar variables demográficas, de empleo y de historial de contactos para desarrollar un modelo predictivo.

ii. Medible (Measurable):

- 1. Métrica de éxito: La precisión del modelo en predecir si un cliente aceptará o no un préstamo.
- 2. Indicadores clave de rendimiento (KPI):
 - a. Precisión del modelo.
 - b. Sensibilidad y especificidad.
 - c. Análisis de la curva ROC.

iii. Alcanzable (Achievable):

- 1. Datos Disponibles: Se cuenta con un conjunto de datos con 41,188 registros y 21 variables relevantes.
- Capacidad técnica: Se utilizarán algoritmos de aprendizaje automático estándar (regresión logística, árboles de decisión) implementados en herramientas como Power BI.

iv. Relevante (Relevant):

- Importancia del Problema: La capacidad de predecir la aceptación de préstamos permite a las instituciones financieras optimizar sus estrategias de marketing y gestión de clientes.
- Impacto Social: Ayuda a garantizar que los préstamos se otorguen de manera más precisa, evitando decisiones financieras desfavorables para los clientes.

v. Temporal (Time-bound):

- 1. Plazo: Desarrollar, entrenar y evaluar el modelo dentro de los próximos meses.
- 2. Iteraciones: Realizar al menos dos iteraciones del modelo, ajustando parámetros según sea necesario.

2º DATA-SET/FRAME

2. Madrid:

a. Asunto: Util para valorar precio de vivienda

b. **Contenido**:

- i. Contiene 38.754 filas
- ii. Contiene 22 Columnas

c. Columas:

i.	0 Título	38751 non-null object
ii.	1 Tipo de inmueble	38751 non-null object
iii.	2 Dirección	38742 non-null object
iv.	3 Precio	38754 non-null int32
٧.	4 Habitaciones	38754 non-null int32
vi.	5 Subtítulo	38742 non-null object
vii.	6 Barrio	38742 non-null object
viii.	7 Municipio	38742 non-null object
ix.	8 Distrito	38742 non-null object
х.	9 Euros/m2	38754 non-null int32
xi.	10 Metros cuadrados construidos	38754 non-null int32
xii.	11 Baños	38754 non-null int32
xiii.	12 Planta	38754 non-null int32
xiv.	13 Ascensor (Sí/No)	38742 non-null object
XV.	14 Obra nueva (Sí/No)	38742 non-null object
xvi.	15 Piscina (Sí/No)	38742 non-null object
xvii.	16 Terraza (Sí/No)	38742 non-null object
xviii.	17 Parking (Sí/No)	38742 non-null object
xix.	18 Parking incluído en el precio (Sí/No)	38742 non-null object
XX.	19 Aire acondicionado (Sí/No)	38742 non-null object
xxi.	20 Trastero (Sí/No)	38742 non-null object
xxii.	21 Jardín (Sí/No)	38742 non-null object

- d. Potencial: Este conjunto de datos es valioso para evaluar el mercado inmobiliario en Madrid. Puedes realizar análisis descriptivos para entender la distribución de precios y características de las viviendas. Además, podrías explorar modelos predictivos para predecir el precio de las viviendas basándote en las variables disponibles.
- e. PowerBI: Aquí hay algunas sugerencias:

i. i. Análisis Descriptivo:

- 1. Utiliza gráficos para visualizar la distribución de precios.
- 2. Crea gráficos de barras para mostrar la frecuencia de diferentes características, como el tipo de inmueble, el número de habitaciones, etc.

ii. Análisis de Correlación:

1. Explora la relación entre el precio y otras variables como metros cuadrados, número de baños, etc.

iii. Análisis Espacial:

1. Utiliza mapas para visualizar la distribución geográfica de las viviendas y sus precios.

iv. Filtros Dinámicos:

1. Aplica filtros para segmentar datos por características específicas y observar cómo afectan al precio.

v. Machine Learning:

1. Experimenta con modelos de regresión para predecir el precio de las viviendas.

vi. Panel de Control Interactivo:

1. Crea un panel interactivo que permita a los usuarios explorar diferentes aspectos del mercado inmobiliario en Madrid.

f. Método: SMART:

i. Específico (Specific):

- 1. Objetivo: Valorar el precio de las viviendas en Madrid.
- 2. Enfoque: Utilizar variables como tipo de inmueble, número de habitaciones, ubicación, etc., para desarrollar un modelo de valoración.

ii. Medible (Measurable):

- 1. Métrica de éxito: La precisión del modelo en predecir el precio de las viviendas.
- 2. Indicadores clave de rendimiento (KPI):
 - a. Precisión del modelo.
 - b. Análisis de error.

iii. Alcanzable (Achievable):

- 1. Datos Disponibles: Se cuenta con un conjunto de datos con 38,754 registros y 22 variables relevantes.
- Capacidad técnica: Se utilizarán técnicas de análisis exploratorio y modelos predictivos implementados en herramientas como Power BI.

iv. Relevante (Relevant):

- 1. Importancia del Problema: Evaluar el precio de las viviendas es crucial para compradores, vendedores y agentes inmobiliarios.
- 2. Impacto Social: Facilita decisiones informadas sobre inversiones inmobiliarias.

v. Temporal (Time-bound):

- 1. Plazo: Desarrollar y evaluar el modelo en los próximos meses.
- 2. Iteraciones: Realizar al menos dos iteraciones del modelo, ajustando según sea necesario.

3 º DATA-SET/FRAME

3. Crimes

a. **Asunto**: Util para conocer datos sobre la criminalidad en Chicago desde 2001 hasta

b. **Contenido**:

- i. Contiene 7.846.809filas
- ii. Contiene 22 Columnas

c. Columas

i.	0 ID	int64
ii.	1 Case Number	object
iii.	2 Date	object
iv.	3 Block	object
٧.	4 IUCR	object
vi.	5 Primary Type	object
vii.	6 Description	object
viii.	7 Location Description	object
ix.	8 Arrest	bool
х.	9 Domestic	bool
xi.	10 Beat	int64
xii.	11 District	float64
xiii.	12 Ward	float64
xiv.	13 Community Area	float64
XV.	14 FBI Code	object
xvi.	15 X Coordinate	float64
xvii.	16 Y Coordinate	float64
xviii.	17 Year	int64
xix.	18 Updated On	object
XX.	19 Latitude	float6
xxi.	20 Longitude	float64
xxii.	21 Location	object

d. Potencial: Este conjunto de datos proporciona una visión detallada de la actividad criminal en Chicago, lo que permite análisis temporales, geoespaciales y de tipos de delitos.

e. PowerBI: Aquí hay algunas sugerencias:

i. Análisis Temporal:

- 1. Utiliza gráficos de líneas para representar la evolución temporal de la criminalidad en Chicago.
- 2. Examina la variación de tipos de delitos a lo largo de los años.

ii. Análisis Geoespacial:

1. Utiliza mapas para visualizar la distribución geográfica de los crímenes en diferentes áreas de Chicago.

iii. Análisis de Tipos de Delitos:

1. Crea gráficos de barras para mostrar la frecuencia de diferentes tipos de delitos.

iv. Filtros Dinámicos:

1. Permite a los usuarios filtrar datos por año, tipo de delito, ubicación, etc.

v. Machine Learning:

1. Explora modelos predictivos para predecir la frecuencia de crímenes en el futuro.

vi. Panel de Control Interactivo:

1. Crea un panel interactivo que permita a los usuarios explorar diferentes aspectos de la actividad criminal en Chicago.

f. Método: SMART:

i. Específico (Specific):

- 1. Objetivo: Analizar la criminalidad en Chicago desde 2001 hasta ahora.
- 2. Enfoque: Explorar patrones temporales y geoespaciales, así como la distribución de tipos de delitos.

ii. Medible (Measurable):

- 1. Métrica de éxito: Comprender y visualizar patrones claros en los datos de crímenes.
- 2. Indicadores clave de rendimiento (KPI):
 - a. Frecuencia de delitos por año.
 - b. Distribución geográfica de delitos.

iii. Alcanzable (Achievable):

- 1. Datos Disponibles: Se cuenta con un conjunto de datos extenso con información detallada sobre crímenes.
- 2. Capacidad técnica: Se utilizarán técnicas de análisis exploratorio y visualización de datos.

iv. Relevante (Relevant):

- 1. Importancia del Problema: Analizar la criminalidad es crucial para la seguridad pública y la toma de decisiones informada.
- 2. Impacto Social: Permite la implementación de estrategias efectivas para abordar y prevenir la delincuencia.

v. Temporal (Time-bound):

- 1. Plazo: Realizar análisis y presentar resultados en los próximos meses.
- 2. Iteraciones: Realizar iteraciones según sea necesario para profundizar en el análisis.