

planetmath.org

Math for the people, by the people.

exact sequences for modules with finite projective dimension

 ${\bf Canonical\ name} \quad {\bf Exact Sequences For Modules With Finite Projective Dimension}$

Date of creation 2013-03-22 19:04:55 Last modified on 2013-03-22 19:04:55

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130)
Entry type Corollary
Classification msc 16E10
Classification msc 18G20
Classification msc 18G10

Proposition. Let R be a ring and M be a (left) R-module, such that proj $\dim(M) = n < \infty$. If

$$0 \to K \to P_n \to \cdots \to P_0 \to M \to 0$$

is an exact sequence of R-modules, such that each P_i is projective, then K is projective.

Proof. Since proj $\dim(M) = n < \infty$, then there exists exact sequence of R-modules

$$0 \to P'_n \to \cdots \to P'_0 \to M \to 0$$
,

Note that sequences

$$P_n \to \cdots \to P_0 \to M \to 0;$$

$$P'_n \to \cdots \to P_0 \to M \to 0$$
,

are projective resolutions of M. Let $\delta: P_n \to P_{n-1}$ and $\beta: P'_n \to P'_{n-1}$ be maps take from these resolutions. Then generalized Schanuel's lemma implies that $\ker \delta$ and $\ker \beta$ are projectively equivalent. But $\ker \delta \simeq K$ and $\ker \beta = 0$. This means, that there are projective modules P, Q such that

$$K \oplus P \simeq Q$$
.

Therefore K is a direct summand of a free module (since Q is), which completes the proof. \square