E4FI Algèbre avancée

TP N° 3 - Interpolation polynomiale et base de Newton

Introduction

Le but de ce TP est d'explorer variante de la méthode directe afin d'interpoler une fonction par un polynôme vue lors du TP nº 1.

Soit:

- $a = x_0 < x_1 < \ldots < x_n = b$ une subdivision d'un intervalle [a; b];
- f une fonction dont on connaît les valeurs $y_i = f(x_i)$, pour i allant de 0 à n.

OBJECTIF

On cherche un polynôme P de degré au maximum égal à n et tel que :

$$y_i = P(x_i)$$
, pour 0 allant de 0 à n

On travaille dans la base de Newton $(N_0, N_1, N_2, \ldots, N_n)$ avec $N_0 = 1$ et :

$$\forall k \in [1; n], N_k = (x - x_0)(x - x - 1) \dots (x - x_{k-1})$$

On cherche P sous la forme :

$$P = a_0 + a_1.N_1 + a_2.N_2 + \ldots + a_n.N_n$$

QUESTIONS

- 1. Après avoir traduit $y_i = P(x_i)$, pour i allant de 0 à n, écrire ces égalités sous forme d'un système triangulaire.
- 2. Rappeler la résolution par différences divisées.
- 3. Tracer sur un même graphique une fonction $f\left(f=\sin\text{ puis }f=\frac{1}{1+10x^2}\right)$ ainsi que son polynôme d'interpolation associé.

ATTENDUS

Chaque binôme devra rendre:

- Un compte rendu succint (suivre l'énoncé pour le plan);
- Un code (Python) qui fonctionne.

INDICATIONS ET CONTENU SOUHAITABLE:

- 1. Entrées : a, b, n et f (par exemple $f = \sin \sup [0; 2\pi], n = 10, 20...$).
- **2.** Ecrire une fonction Base qui prend en paramètres X, k, x et qui renvoie $L_k(x)$.
- 3. Ecrire une fonction qui évalue le polynôme de Newton en x réel donné.
- 4. Passer à l'affichage en choisissant le nombre de points (au-dessus de 500) pour tracer f et P.