

Potoboose Privacy-Preserving Logging and Recovery for Growing Detaboose

Maria Fanelle, Johes Bater

1. Introduction:

- Database recovery logs record every transaction that occurred in the database.
- transactions could sensitive contain These information, such as names, addresses, and financial information.
- The number of transactions at any given time can reveal the behavior patterns of database users.
- Commonly used recovery algorithms are not designed with privacy in mind; instead, they focus primarily on achieving optimal recovery speed, efficiency, and scalability.
- A database can provide privacy guarantees with a minimal performance tradeoff.

2. Problem

- Problem: Database recovery logs reveal information about transactions occurring.
- An adversary can analyze the log and use it to reidentify individual transactions. The details from individual transactions and the total number of transactions executed should be kept private.
- Without a log, a database cannot recover from failure.
- A standard database log will show the data being inserted and reveal when certain transactions occur.
- A simple implementation of a privacy-enhanced database log grows at a uniform rate, with a constant number of transactions being executed against the database.
- Differential privacy is a statistical technique that provides a strong privacy guarantee. A database system can generate dummy transactions to obscure usage patterns and **protect** sensitive information.
- Question: How can we recover from database failure while ensuring individual privacy?

3. Proposed Solution:

We propose the following system:

Figure 1: System Design

- The analyst sends a transaction to an untrusted server.
- The execution engine batches the transactions and sends them to the log within an assigned timespan. It differentially private number of appends transactions to each batch.
- If there are not enough real transactions to meet the minimum required, artificial transactions will complete the batch. These artificial transactions mask the content of the real transactions and obscure the behavioral patterns of the analyst.
- Upon system failure, the database recovers both real and dummy transactions in the order they were appended.

4. Preliminary Results:

Chart 1: Number of transactions per logging technique

- The approach with a scale of 0.1 or 0.5 was close to the real transaction count, adding only a small number of dummy transactions. It was the most optimal for obfuscating the number of entries.
- The differentially private approaches with scales of 1.0, 2.0, and 5.0, along with the oblivious approach, caused the number of appended transactions to increase rapidly, leading to significantly higher memory consumption.
- Although recovery time was not measured in these results, it is likely that a database would take significantly longer to recover from a larger log file. This is an important consideration for privacypreserving recovery performance optimizations.
- The scale for each differentially private approach is calculated by dividing the sensitivity, which refers to how much a result can change when a data point is altered, by epsilon, the level of privacy guaranteed. The noise added is proportional to the change in the result based on the scale value. A smaller scale results in less noise being added, providing higher accuracy but weaker privacy protection.