Bayesian Estimation in Linear Models

STA 721: Lecture 8

Merlise Clyde (clyde@duke.edu)

Duke University

Outline

Readings:

- Christensen Chapter 2.9 and Chapter 15
- Seber & Lee Chapter 3.12

Bayes Estimation

Model $\mathbf{Y} = \mathbf{X} oldsymbol{eta} + oldsymbol{\epsilon}$ with $oldsymbol{\epsilon} \sim \mathsf{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$ is equivalent to

$$\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{eta}, \mathbf{I}_n/\phi)$$

- $\phi = 1/\sigma^2$ is the **precision** of the data.
- we might expect $\boldsymbol{\beta}$ to be close to some vector \mathbf{b}_0
- represent this a priori with a Prior Distribution for β , e.g.

$$oldsymbol{eta} \sim \mathsf{N}(\mathbf{b}_0, oldsymbol{\Phi}_0^{-1})$$

- ${f b}_0$ is the prior mean and ${f \Phi}_0$ is the **prior precision** of ${m eta}$ that captures how close ${m eta}$ is to ${f b}_0$
- Similarly, we could represent prior uncertainty about σ , σ^2 or equivalently ϕ with a probability distribution
- for now treat ϕ as fixed

Bayesian Inference

- ullet once we see data \mathbf{Y} , Bayesian inference proceeds by updating prior beliefs
- represented by the **posterior distribution** of β which is the conditional distribution of β given the data \mathbf{Y} (and ϕ for now)
- Posterior $p(\boldsymbol{\beta} \mid \mathbf{Y}, \phi)$

$$p(oldsymbol{eta} \mid \mathbf{Y}) = rac{p(\mathbf{Y} \mid oldsymbol{eta}, \phi)p(oldsymbol{eta} \mid \phi)}{c}$$

ullet c is a constant so that the posterior density integrates to 1

$$c = \int_{\mathbb{R}^p} p(\mathbf{Y} \mid oldsymbol{eta}, \phi) p(oldsymbol{eta} \mid \phi) d\,oldsymbol{eta} \equiv p(\mathbf{Y})$$

- since c is a constant that doesn't depend on $oldsymbol{eta}$ just ignore
- work with density up to constant of proportionality

Posterior Density

Posterior for $\boldsymbol{\beta}$ is $p(\boldsymbol{\beta} \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) p(\boldsymbol{\beta} \mid \phi)$

• Likelihood for $\boldsymbol{\beta}$ is proportional to $p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi)$

$$egin{aligned} p(\mathbf{Y} \mid oldsymbol{eta}, \phi) &= (2\pi)^{-n/2} |\mathbf{I}_n/\phi|^{-1/2} \exp\left\{-rac{1}{2} \left((\mathbf{Y} - \mathbf{X}oldsymbol{eta})^T \phi \mathbf{I}_n (\mathbf{Y} - \mathbf{X}oldsymbol{eta})
ight)
ight\} \ &\propto \exp\left\{-rac{1}{2} \left(\phi \mathbf{Y}^T \mathbf{Y} - 2oldsymbol{eta}^T \phi \mathbf{X}^T \mathbf{Y} + \phi oldsymbol{eta} \mathbf{X}^T \mathbf{X}oldsymbol{eta}
ight)
ight\} \end{aligned}$$

similarly expand prior

$$egin{aligned} p(oldsymbol{eta} \mid \phi) &= (2\pi)^{-p/2} |\mathbf{\Phi}_0^{-1}|^{-1/2} \exp\left\{-rac{1}{2}ig((oldsymbol{eta} - \mathbf{b}_0)^T \mathbf{\Phi}_0 (oldsymbol{eta} - \mathbf{b}_0)ig)
ight\} \ &\propto \exp\left\{-rac{1}{2}ig(\mathbf{b}_0^T \mathbf{\Phi}_0 \mathbf{b}_0 - 2oldsymbol{eta}^T \mathbf{\Phi}_0 \mathbf{b}_0 + oldsymbol{eta} \mathbf{\Phi}_0 oldsymbol{eta}ig)
ight\} \end{aligned}$$

Posterior Steps

Expand quadratics and regroup terms

$$egin{aligned} p(oldsymbol{eta} \mid \mathbf{Y}, \phi) &\propto e^{\left\{-rac{1}{2}\left(\phioldsymbol{eta}\mathbf{X}^T\mathbf{X}oldsymbol{eta} + oldsymbol{eta}\mathbf{\Phi}_0oldsymbol{eta} - 2(\phioldsymbol{eta}^T\mathbf{X}^T\mathbf{Y} + oldsymbol{eta}^T\mathbf{\Phi}_0\mathbf{b}_0) + \phi\mathbf{Y}^T\mathbf{Y} + \mathbf{b}_0^T\mathbf{\Phi}_0\mathbf{b}_0)
ight)} \ &\propto \exp\left\{-rac{1}{2}\left(oldsymbol{eta}(\phi\mathbf{X}^T\mathbf{X} + \mathbf{\Phi}_0)oldsymbol{eta} - 2oldsymbol{eta}^T(\phi\mathbf{X}^T\mathbf{Y} + \mathbf{\Phi}_0\mathbf{b}_0)
ight)
ight\} \end{aligned}$$

Kernel of a Multivariate Normal

- Read off posterior precision from Quadratic in $oldsymbol{eta}$
- Read off posterior precision \times posterior mean from Linear term in $\boldsymbol{\beta}$
- will need to complete the quadratic in the posterior mean[†]

Posterior Precision and Covariance

$$p(oldsymbol{eta} \mid \mathbf{Y}, \phi) \propto \exp \left\{ -rac{1}{2} ig(oldsymbol{eta} (\mathbf{X}^T \mathbf{X} + \mathbf{\Phi}_0) oldsymbol{eta} - 2 oldsymbol{eta}^T (\phi \mathbf{X}^T \mathbf{Y} + \mathbf{\Phi}_0 \mathbf{b}_0) ig)
ight\}$$

Posterior Precision

$$\mathbf{\Phi}_n \equiv \phi \mathbf{X}^T \mathbf{X} + \mathbf{\Phi}_0$$

- sum of data precision and prior precision
- posterior Covariance

$$\mathsf{Cov}[oldsymbol{eta} \mid \mathbf{Y}, \phi] = oldsymbol{\Phi}_n^{-1} = (\phi \mathbf{X}^T \mathbf{X} + oldsymbol{\Phi}_0)^{-1}$$

• if Φ_0 is full rank, then $\mathsf{Cov}[m{\beta} \mid \mathbf{Y}, \phi]$ is full rank even if $\mathbf{X}^T\mathbf{X}$ is not

Posterior Mean Updating

$$egin{aligned} p(oldsymbol{eta} \mid \mathbf{Y}, \phi) &\propto \exp\left\{rac{1}{2}ig(oldsymbol{eta}(\phi\mathbf{X}^T\mathbf{X} + \mathbf{\Phi}_0)oldsymbol{eta} - 2oldsymbol{eta}^T(\phi\mathbf{X}^T\mathbf{Y} + \mathbf{\Phi}_0\mathbf{b}_0)ig)
ight\} \ &\propto \exp\left\{rac{1}{2}ig(oldsymbol{eta}(\phi\mathbf{X}^T\mathbf{X} + \mathbf{\Phi}_0)oldsymbol{eta} - 2oldsymbol{eta}^T\mathbf{\Phi}_n\mathbf{\Phi}_n^{-1}(\phi\mathbf{X}^T\mathbf{Y} + \mathbf{\Phi}_0\mathbf{b}_0)ig)
ight\} \end{aligned}$$

• posterior mean \mathbf{b}_n

$$egin{aligned} \mathbf{b}_n &\equiv \mathbf{\Phi}_n^{-1}(\phi \mathbf{X}^T \mathbf{Y} + \mathbf{\Phi}_0 \mathbf{b}_0) \ &= (\phi \mathbf{X}^T \mathbf{X} + \mathbf{\Phi}_0)^{-1} \left(\phi (\mathbf{X}^T \mathbf{X}) (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} + \mathbf{\Phi}_0 \mathbf{b}_0
ight) \ &= (\phi \mathbf{X}^T \mathbf{X} + \mathbf{\Phi}_0)^{-1} \left(\phi (\mathbf{X}^T \mathbf{X}) \hat{oldsymbol{eta}} + \mathbf{\Phi}_0 \mathbf{b}_0
ight) \end{aligned}$$

- a precision weighted linear combination of MLE and prior mean
- first expression useful if ${f X}$ is not full rank!

Notes

Posterior is a Multivariate Normal $p(m{eta} \mid \mathbf{Y}, \phi) \sim \mathsf{N}(\mathbf{b}_n, \mathbf{\Phi}_n^{-1})$

- posterior mean: $\mathbf{b}_n = \mathbf{\Phi}_n^{-1}(\phi \mathbf{X}^T \mathbf{Y} + \mathbf{\Phi}_0 \mathbf{b}_0)$
- posterior precision: $\mathbf{\Phi}_n = \phi \mathbf{X}^T \mathbf{X} + \mathbf{\Phi}_0$
- the posterior precision (inverse posterior variance) is the sum of the prior precision and the data precision.
- the posterior mean is a linear combination of MLE/OLS and prior mean
- if the prior precision Φ_n is very large compared to the data precision $\phi \mathbf{X}^T \mathbf{X}$, the posterior mean will be close to the prior mean \mathbf{b}_0 .
- if the prior precision Φ_n is very small compared to the data precision $\phi \mathbf{X}^T \mathbf{X}$, the posterior mean will be close to the MLE/OLS estimator.
- data precision will generally be increasing with sample size

Bayes Estimators

A Bayes estimator is a potential value of β that is obtained from the posterior distribution in some principled way.

- Standard estimators include
 - the posterior mean estimator, which is the minimizer of the Bayes risk under squared error loss
 - the maximum a posteriori (MAP) estimator, the value β that maximizes the posterior density (or log posterior density)
- The first estimator is based on principles from classical decision theory, whereas the second can be related to penalized likelihood estimation.
- in the case of linear regression they turn out to be the same estimator!

Bayes Estimator under Squared Error Loss

• the Frequentist Risk $R(eta,\delta)\equiv \mathsf{E}_{\mathbf{Y}|m{eta}}[\|\delta(\mathbf{Y})-m{eta}\|^2]$ is the expected loss of decision δ for a given $m{eta}$

▼ Definition: Bayes Rule and Bayes Risk

The Bayes rule under squared error loss is the function of \mathbf{Y} , $\delta^*(\mathbf{Y})$, that minimizes the Bayes risk $B(p_{\beta}, \delta)$

$$\delta^*(\mathbf{Y}) = rg\min_{\delta \in \mathcal{D}} B(p_{oldsymbol{eta}}, \delta)$$

$$B(p_{oldsymbol{eta}},\delta) = \mathsf{E}_{oldsymbol{eta}}R(oldsymbol{eta},\delta) = \mathsf{E}_{oldsymbol{eta}}\mathsf{E}_{\mathbf{Y}|oldsymbol{eta}}[\|\delta(\mathbf{Y})-oldsymbol{eta}\|^2]$$

where the expectation is with respect to the prior distribution, p_{β} , over β and the conditional distribution of $\mathbf Y$ given β

Bayes Estimators

▼ Definition: Bayes Action

The Bayes Action is the action $a \in \mathcal{A}$ that minimizes the posterior expected loss:

$$\delta_B^*(\mathbf{Y}) = rg\min_{\delta \in \mathcal{D}} E_{oldsymbol{eta} | \mathbf{Y}} [\|\delta - oldsymbol{eta}\|^2]$$

Prior Choice

One of the most common priors for the normal linear model is the **g-prior** of Zellner (1986) where $\Phi_0 = \frac{\phi}{q} \mathbf{X}^T \mathbf{X}$

$$egin{align} oldsymbol{eta} & | \phi, g \sim \mathsf{N}(\mathbf{0}, g/\phi(\mathbf{X}^T\mathbf{X})^{-1}) \ \mathbf{b}_n &= \left(\mathbf{X}^T\mathbf{X} + rac{\phi}{g}rac{\mathbf{X}^T\mathbf{X}}{\phi}
ight)^{-1}\mathbf{X}^T\mathbf{Y} \ &= \left(\mathbf{X}^T\mathbf{X} + rac{1}{g}\mathbf{X}^T\mathbf{X}
ight)^{-1}\mathbf{X}^T\mathbf{Y} \ &= \left(rac{1+g}{g}\mathbf{X}^T\mathbf{X}
ight)^{-1}\mathbf{X}^T\mathbf{Y} \ &= rac{g}{1+g}\hat{oldsymbol{eta}} \end{aligned}$$

Another Common Choice

another common choice is the independent prior

$$oldsymbol{eta} \mid \phi \sim \mathsf{N}(oldsymbol{0}, oldsymbol{\Phi}_0^{-1})$$

where $\mathbf{\Phi}_0 = \phi \kappa \mathbf{I}_b$ for some $\kappa > 0$

the posterior mean is

$$oldsymbol{eta}_n = (\mathbf{X}^T\mathbf{X} + \kappa\mathbf{I})^{-1}\mathbf{X}^T\mathbf{Y} \ = (\mathbf{X}^T\mathbf{X} + \kappa\mathbf{I})^{-1}\mathbf{X}^T\mathbf{X}\hat{oldsymbol{eta}}$$

- this is also a shrinkage estimator but the amount of shrinkage is different for the different components of \mathbf{b}_n depending on the eigenvalues of $\mathbf{X}^T\mathbf{X}$
- easiest to see this via an orthogonal rotation of the model

Rotated Regression

• Use the singular value decomposition of ${f X}={f U}{f \Lambda}{f V}^T$ and multiply thru by ${f U}^T$ to get the rotated model

$$\mathbf{U}^T\mathbf{Y} = \mathbf{\Lambda}\mathbf{V}^Toldsymbol{eta} + \mathbf{U}^Toldsymbol{\epsilon} \ ilde{\mathbf{Y}} = \mathbf{\Lambda}oldsymbol{lpha} + ilde{oldsymbol{\epsilon}}$$

where
$$oldsymbol{lpha} = \mathbf{V}^T oldsymbol{eta}$$
 and $ilde{oldsymbol{\epsilon}} = \mathbf{U}^T oldsymbol{\epsilon}$

- ullet the induced prior is still $oldsymbol{lpha} \mid \phi \sim \mathsf{N}(\mathbf{0}, (\phi\kappa)^{-1}\mathbf{I})$
- the posterior mean of lpha is

$$\mathbf{a} = (\mathbf{\Lambda}^2 + \kappa \mathbf{I})^{-1} \mathbf{\Lambda}^2 \hat{oldsymbol{lpha}} \ a_j = rac{\lambda_j^2}{\lambda_j^2 + \kappa} \hat{lpha}_j$$

sets to zero the components of the OLS solution where eigenvalues are zero!

Connections to Frequentist Estimators

- The posterior mean under this independent prior is the same as the classic ridge regression estimator of Hoerl and
- the variance of $\hat{\alpha}_j$ is σ^2/λ_j^2 while the variance of a_j is $\sigma^2/(\lambda_j^2+\kappa)$
- ullet clearly components of $oldsymbol{lpha}$ with small eigenvalues will have large variances
- ridge regression keeps those components from "blowing up" by shrinking them towards zero and having a finite variance
- rotate back to get the ridge estimator for $m{eta}, \hat{m{eta}}_R = \mathbf{Va}$
- ridge regression applies a high degree of shrinkage to the "parts" (linear combinations) of β that have high variability, and a low degree of shrinkage to the parts that are well-estimated.
- turns out there always exists a value of κ that will improve over OLS!
- Unfortunately no closed form solution except in orthogonal regression and then it depends on the unknown $\|\boldsymbol{\beta}\|^2$!

Next Class

- Frequentist risk of Bayes estimators
- Bayes and penalized loss functions

