Assignment - 4

Q1. Encrypt and decrypt a message "network" using RSA algorithm.

Ans: Let p=5 and q=17 are two prime numbers.

Thus, n=p*q=5*17=85 and

$$m=(p 1)*(q-1)=(5-1)*(17-1)=64$$

tus we get e=5 after calculation such that e and m are relatively prime.

Thus, d=13.

Encryption and Decryption is as shown in the table below:

Letters		p∧ _e	C=P^e mod n(encryption	C^d	P=C^d mod (n)[Decryption]	Letters
N	14	537824	29	1.0261E+19	14	N
E	5	3125	65	3.6972E+23	5	E
T	20	3200000	5	1220703125	20	Т
W	23	6436343	58	8.4055E+22	23	W
O	15	759375	70	9.6889E+23	15	0
R	18	1889568	18	2.0823E+16	18	R
K	11	161051	61	1.6192E+23	11	K

Q2. Explain RSA algorithm with example.

Ans: RSA is named for its inventors Rivest, Shamir, and Adleman (RSA) and it uses two numbers, e and d, as the public and private keys. The operation of RSA is described below with Example: Selecting Keys.

Bob uses the following steps to select the private and public keys:

1. Bob chooses two very large prime numbers p and q. Remember that a prime number is one that can be divided evenly only by 1 and itself.

- 2. Bob multiplies the above two primes to find n, the modulus for encryption and decryption. In other words, n ::: p X q.
- 3. Bob calculates another number ::: $(p 1) \times (q 1)$.
- 4. Bob chooses a random integer e. He then calculates d so that d x e::: 1 mod.
- 5. Bob announces e and n to the public; he keeps and d secret.

Example:

Generating public key:

Select two prime no's. Suppose P = 3 and Q = 11.

Now First part of the Public key: $n = P^*Q = 33$

We also need a small exponent say e:

But e Must be An integer.

Not be a factor of n.

 $1 < e < \Phi(n)$ [$\Phi(n)$ is discussed below],

Let us now consider it to be equal to 3.

Public key(33,3)

Generating private key:

We need to calculate $\Phi(n)$:

Such that $\Phi(n) = (P-1)(Q-1)$

so,
$$\Phi(n) = 20$$

Now calculate Private Key, d:

 $d = (k^*\Phi(n) + 1) / e$ for some integer k

For k = 1, value of d is 7.

Private key: (33,7)

Now if we encrypt number AE

Convert letters to numbers : A = 1 and E = 5

Thus Encrypted Data $c = 15^e \mod n$.

Thus our Encrypted Data comes out to be 9

Now we will decrypt 9

Decrypted Data = $c^d \mod n$.

Thus our Encrypted Data comes out to be 15

1 = A and 5 = E i.e. "AE"

Q3. Write down the steps involved in RSA algorithm. Encrypt and decrypt the message "encrypt" using RSA algorithm.

Ans:RSA is named for its inventors Rivest, Shamir, and Adleman (RSA) and it uses two numbers, e and d, as the public and private keys.

The operation of RSA is described below: Selecting Keys:

- 1. We use the following steps to select the private and public keys:
- 2.We choose two very large prime numbers p and q since a prime number is one that can be divided evenly only by 1 and itself.
- 3.We multiply the above two primes to find n, the modulus for encryption and decryption. In other words, n: p X q. We calculate another number: $(p \sim 1) \times (q \sim 1)$.
- 4. We choose a random integer e and then calculates d so that d x e: 1

mod 5. We announce e and n to the public but keep s and d a secret.

Here,

Let p=3 and q=23 are two prime numbers. Thus,

 $n=p^*q=3^*23=69$ and $m=(p-1)^*(q-1)=(3-1)^*(23-1)=44$ we get e=3 such that e and m are relatively prime.

Thus, d=15.

Encryption and Decryption is as shown in the table below:

Letters		p^e	C=P^e mod n(encryption	C^d	P=C^d mod (n)[Decryption]	Letters
E	5	125	56	1.6704E+26	5	E
N	14	2744	53	7.31372E+25	14	N
C	3	27	27	2.95431E+21	3	С
R	18	5832	36	2.21074E+23	18	R
Y	25	15625	31	2.34653E+22	25	Υ
P	16	4096	25	9.31323E+20	16	Р
T	20	8000	65	1.56207E+27	20	Т

A user of RSA creates and then publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers must be kept secret. Anyone can use the public key to encrypt a message, but only someone with knowledge of the prime numbers can decode the message .