Análise Diabetes

Matheus Caldas Carvalho matheus.ccarvalho@ufrpe.br

Fonte dos Dados: < https://diabetesatlas.org/data/en/indicators/21/ Aplicação OLAP: < http://bit.ly/3qKqgoF

Github: < https://github.com/matheuscarvalho16/diabetes-data-mart>

1 Etapa 1 - Planejamento

2

3

4

5

6

7

1 Contextualização

O Diabetes Mellitus (DM) é uma síndrome do metabolismo, de origem múltipla, decorrente da falta de insulina e/ou da incapacidade de a insulina exercer adequadamente seus efeitos.

De acordo com o Atlas do Diabetes da Federação Internacional de Diabetes (IDF) o Brasil é o 5º país em incidência de diabetes no mundo, com 16,8 milhões de doentes adultos (20 a 79 anos).

Os tipos mais conhecidos de Diabetes são: Tipo 1 causado pela destruição das células produtoras de insulina, em decorrência de defeito do sistema imunológico em que os anticorpos atacam as células que produzem a insulina.

Tipo 2 que resulta da resistência à insulina e de deficiência na sua secreção.

Diabetes Gestacional que é a diminuição da tolerância à glicose, diagnosticada pela primeira vez na gestação, podendo ou não persistir após o parto.

2 Escopo/objetivo do Data Mart

3

4

6

O objetivo do Data Mart a ser desenvolvido é fornecer uma análise detalhada da incidência de diabetes em diferentes países e faixas etárias ao longo do tempo. O Data Mart permitirá extrair insights valiosos sobre as tendências de prevalência da doença, identificar fatores de risco associados e avaliar a eficácia de medidas de prevenção e controle.

Os dados a serem analisados serão os Países, a faixa etária e a quantidade de pessoas com diabetes. E o período de análise sãos os anos 2000, 2011 e 2021.

3 Arquitetura Tecnológica

1

2

3

4

5

6

7

Fonte dos dados

ETL

Data Mart

Aplicação OLAP

4 Processo

- Planejamento
- Levantamento das Necessidades
- Modelagem dimensional
- Projeto Físico do BD
- Projeto ETC
- Aplicação OLAP

2

3

4

5

6

5 Abordagem

Para o desenvolvimento deste Data Mart foi utilizada a abordagem Bottom-up, pois ela é uma abordagem evolutiva, com disponibilização imediata dos produtos, e por se tratar de um Data Mart específico, focando de partes para o todo, usa-se a abordagem Bottom-up.

E foi utilizado o "Star Schema", pois é um estilo incremental do Bottom-up e é focada na construção de Data Mart, pois é uma abordagem descentralizada do conceito de DW, trabalhando na construção de tabelas dimensões e fatos.

2

3

4

5

6

7

6 Usuários

Os possíveis usuários para esse Data Mart são:

- Órgãos governamentais
- Pesquisadores e acadêmicos
- Profissionais de saúde
- Organizações de Saúde
- Diabéticos

Etapa 2 – Levantamento das Necessidades

7 Consultas de Apoio à Decisão

- Crescimento de diabéticos entre os anos;
- Quantidade de diabético por região e ano;
- Comparação da quantidade de diabéticos entre países por ano;
- Distribuição da quantidade de diabéticos por faixa etária e ano;

3

4

5

6

8 Indicadores de análise

- Quantidade de diabéticos por região
- Quantidade de diabéticos por país
- Quantidade de diabéticos por faixa etária
- Quantidade de diabéticos a cada 10 anos

2

3

4

5

6

Etapa 3 - Modelagem

9 Modelo Relacional

- A Área de Negócios
 - Saúde
- B Processo

2

3

4

5

- Análise da quantidade de diabéticos no mundo/país a cada 10 anos
- C Granularidade
 - Região X País X Ano X Faixa etária

D - Atributos e Hierarquia das Dimensões

(DIM_Local: região, pais)

(DIM_Tempo: ano)

(DIM_Faixa: faixa etária)

E - Métricas da Fato

quantidade_diabetes (aditiva)

1

2

3

4

5

6

F – Esquema Estrela

G - Simulação de inserção de 10 "fatos"

tempo			
PK_tempo ano			
1	2000		
2	2011		
3	2021		

faixa etaria				
PK_faixa_etaria	faixa etaria			
1	0-14			
2	0-19			
3	20-79			

local				
PK_local	regiao	pais		
1	América do Sul e Central	Brazil		
2	América do Norte e Caribe	Canada		
3	Africa	Angola		

fato				
id_tempo	id_local	id_faixa_etaria	quantidade	
1	1	1	85654	
1	1	2	81300	
1	2	3	90865	
2	1	2	114966	
2	1	3	84474	
3	3	3	90825	
2	3	3	137730	
2	2	2	99326	
1	3	3	118160	
3	3	1	83912	

6

H - Estimativa de espaço

Supondo uma média de 225 países analisados por ano, com 3 faixas etárias diferentes para o período de 3 anos diferentes temos:

 $225 \times 3 \times 3 = 2025 \text{ registros};$

Considerando ainda 3 chaves (pk_tempo, pk_local, pk_feica_etaria), cada uma com 4 bytes e 1 valor numérico de 4 bytes, temos;

 $2025 \times ((3x4)+(1x4)) = 32,4 \text{ bytes}$

1

2

3

4

5

6

4 Etapa 4 – Projeto Físico do BD

11 Modelo Relacional do Data Mart (físico)


```
3
```

4

5

6

```
CREATE TABLE dim_tempo (id SERIAL PRIMARY KEY,
 2
                             ano INTEGER NOT NULL);
 3
    CREATE TABLE dim_local (id SERIAL PRIMARY KEY,
                            regiao VARCHAR(255),
                            pais VARCHAR(255));
    CREATE TABLE dim_faixa_etaria (id SERIAL PRIMARY KEY,
 9
                                    faixa etaria VARCHAR(10));
10
11
    CREATE TABLE fato (id_tempo INTEGER REFERENCES dim_tempo(id),
12
                       id_local INTEGER REFERENCES dim_local(id),
13
                       id_faixa_etaria INTEGER REFERENCES dim_faixa_etaria(id),
14
                       quantidade INTEGER, PRIMARY KEY (id_tempo, id_local, id_faixa_etaria));
```

Etapa 5 - Extração, Transformação e Carga

12 Plano de Carga da Dimensão Tempo

13 Plano de Carga da Dimensão Local

14 Plano de Carga da Dimensão Faixa Etária

15 Plano de Carga da Fato

Etapa 6 - Aplicação OLAP e Painel de Bordo

16 Consulta OLAP - 1: Crescimento x ano

16 Consulta OLAP - 2: Quantidade região x ano

16 Consulta OLAP - 3: Quantidade pais x ano

0,5 Mi

0,0 Mi

1.0 Mi

Quantidade de diabéticos

1,5 Mi

16 Consulta OLAP - 4: Quantidade ano x faixa etaria

16 Painel de Bordo

Análise Diabética no Mundo nos Anos de 2000, 2011 e 2021

pais

Afghanistan Albania

American Samoa Andorra

Antigua and Barbuda

Algeria

Angola Anguilla

Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas

Bahrain

3

Referências

Dados fontes (abertos): Os dados utilizados para a criação do Data Mart são da IDF Diabetes Atlas (International Diabetes Federation) entre os anos 2000, 2011 e 2021.

Estão disponíveis no site da IDF, através do endereço: https://diabetesatlas.org/data/en/indicators/21/