

Technik & Architektur

FH Zentralschweiz

Hochschule Luzern Technik & Architektur

Inhalt

• Zahnradgetriebe (Teil 1)

- Grundlagen, Funktion und Wirkung
- Zahnräder und Getriebearten
- Verzahnungsgesetze
- Flankenprofile und Verzahnungsarten
- Zahnradwerkstoffe
- Schmierung von Zahnradgetrieben
- Getriebewirkungsgrad
- Konstruktionshinweise für Zahnräder und Getriebegehäuse

Weiterführende Literatur:

- [1] Roloff / Matek; Maschinenelemente: Normung, Berechnung, Gestaltung; 22. Auflage, Verlag Springer Vieweg, Wiesbaden 2015
- [2] Schlecht, B.; Maschinenelemente 2: Getriebe Verzahnungen Lagerungen; Pearson, München 2010

Funktion und Wirkung von Zahnradgetrieben

- Die Aufgaben der gleichförmig übersetzenden Zahnradgetriebe können sein…
 - Schlupflose Übertragung einer Leistung oder einer Drehbewegung
 - · Wandlung des Drehmoments oder der Drehzahl
 - Änderung der Drehrichtung zwischen Antriebs- und Abtriebswelle
 - Bestimmung der Wellenlage zueinander
- Zahnradgetriebe bestehen aus...
 - Einem oder mehreren Zahnradpaaren
 - Einem Gehäuse das die Zahnradpaare vollständig oder teilweise umschliesst
- Sie zeichnen sich aus durch...
 - eine kompakte Bauweise
 - einen relativ hohen Wirkungsgrad
- · Nachteilig sind...
 - die durch den Formschluss bedingte starre Kraftübertragung
 - die bei hohen Drehzahlen möglichen aber unerwünschten Schwingungen

Abtriebswelle (Hohlwelle)
starre Kraftübertragung

© HSLU TA.PR+SY_H16

Hochschule Luzern

Übersetzungsstufe
 Übersetzungsstufe

Umschliessendes Gehäuse

Getriebeart

- Die Zahnradpaarung bzw. die Getriebeart lässt sich eindeutig beschreiben durch die Parameter wie:
 - die Radkörperform (Grundkörper)
 - den Verlauf der Flankenlinie (Gerad-, Schräg- usw. verzahnung)
 - die (Zahn-) Profilform

© HSLU TA.PR+SY_H16 5

Getriebeart nach der Radkörperform

Getriebeart		Funktionsfläche		Lage der Achsen	Kontaktart	
triebe	Stirnrad- getriebe		*	Zylinder	parallel $\Sigma = 0$ $a > 0$	Linie
Wälzgetriebe	Kegelrad- getriebe		E.	Kegel	sich schneidend $\Sigma > 0$ (meist $\Sigma = 90^{\circ}$) $a = 0$	Linie
Schraubwälzgetriebe	Stirnrad- schraub- getriebe	E. C.	Σ.	(Zylinder)	sich kreuzend $\Sigma > 0$ $a > 0$	Punkt
Schraubwä	Kegelrad- schraub- getriebe		Z 3/	(Kegel)	sich kreuzend $\Sigma = 90^{\circ}$ $a > 0$	Punkt
Schraub- getriebe	Schnecken- getriebe		a Σ	Zylinder und Globoid ¹⁾	sich kreuzend $\Sigma = 90^{\circ}$ $a > 0$	Linie

Hochschule Luzern Technik & Architektu

Wälzgetriebe

Stirnradgetriebe

- Paarung zweier im Regelfall aussenverzahnter Stirnräder, der Grenzfall ist die Zahnstange mit unendlich grossem Durchmesser
- Raumsparende Stirnradgetriebe werden vielfach als Innenradpaar ausgeführt (Ritzel und Hohlrad)
- Die R\u00e4der werden mit Gerad-, Schr\u00e4g- oder Doppelschr\u00e4gbzw. Pfeilverzahnung ausgef\u00fchrt
- Übersetzung je (Aussen-) Radpaar $i \le 6$ ($i_{max} \approx 8 \dots 10$), bei Innenradpaar i praktisch unbegrenzt $|z_2|$ $z_1 > 10$

KegelradgetriebePaarung zweier

- Paarung zweier Kegelräder, gerade oder schrägverzahnt
- Die Achsen liegen in einer Ebene
- Übersetzung bis *i_{max}* ≈ 6

Zahnstange

Geradverzahnung Schrägverzahnung

Schraubwälzgetriebe

Stirnrad- und Kegelradschraubgetriebe

- Radpaare bei denen sich die Achsen nicht in einer Ebene schneiden, was grosse konstruktive Freiheiten zulässt
- Durch die punktförmige Berührung und dem hohen Gleitanteil eher beschränkte Leistungsfähigkeit
- Übersetzung bis $i_{max} \approx 5$

Kegelrad-Schraubgetriebe (Hypoidgetriebe)

Schraubgetriebe

Schneckenradgetriebe

- Reine Schraubgetriebe mit sich rechtwinklig kreuzenden Radachsen
- Übersetzung von $i_{min} \approx 5$ bis $i_{max} \approx 60$, in Ausnahmefällen bis $i_{max} \approx 100$

Zylinderschnecken-Getriebe

© HSLU TA.PR+SY_H16

Hochschule Luzern Technik & Architektur

Zahnradpaarungen entsprechend ihrer Radkörperformen

	•				•
Stirnradgetriebe außen	Stirnradgetriebe innen	Kegelrad- getriebe	Stirnrad- schraubgetriebe	Schnecken- getriebe	Kegelradschraub- getriebe (Hypoid)
Linienkontakt	Linienkontakt	Linienkontakt	Punktkontakt	Linienkontakt	Punktkontakt
$i \le 6$ $i_{max} = (810)$	$i \ge 3,5$ $i_{max} = 13$	$i \le 6$ $i_{max} = (810)$	$i_{max} = 5$	$i_{min} = 5$ $i_{max} = (60100)$	$i \le 6$ $i_{max} = (810)$
			$\bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n}$		

Kombination von Getrieben und Motoren

• Baukasten aus Getrieben und Motoren mit Optionen (Beispiel)

Hochschule Luzern Technik & Architektur 10

Getriebeart nach der Radanordnung

• Ein-, zwei, oder mehrstufige Getriebe

• Empfehlung zur Aufteilung von *i* für zwei- und dreifstufige Stirnradgetriebe

Antrieb

2

Antrieb

Abtrieb

Ш

Dreistufiges Getriebe

TB 21-11

© HSLU TA.PR+SY_H16

Stufe I

Getriebeart nach der Radanordnung

• Die Räder bzw. die Radachsen sind im Gehäuse «ortsfest»

 Teilweise sind die Räder bzw. die Radachsen nicht mehr «ortsfest»

Umlaufrädergetriebe

Planetengetriebe, typisches Umlaufgetriebe

© HSLU TA.PR+SY_H16

12

Beispielhafte Zahnradgetriebe

Hochschule Luzern Technik & Architektu

Beispielhafte Zahnradgetriebe

Schneckengetriebe Antriebsleistung P = 3.7 kWEingangsdrehzahl $n = 500 \text{ min}^{-1}$ Untersetzung i = 50

Bild: Schaeffler / FAG

© HSLU TA.PR+SY_H16

16

Hochschule Luzern Technik & Architektu

Beispielhafte Zahnradgetriebe

Umlaufrädergetriebe zum Einsatz in einer Windenergieanlage

Bild: Maschinenelemente 2; Schlecht, B.

- 1 Gussgehäuse
- 2 Momentenstütze
- 3 Eingangswelle (Umlaufträger 1. Stufe)
- 4 Lagerung des Umlaufträgers
- 5 Sonnenwelle 1. Stufe (Hohlwelle)
- 6 Planetenräder 1. Stufe
- 7 Planetenachsen 1. Stufe
- 8 Lagerung der Planeten
- 9 Hohlrad 1. Stufe (fest im Gehäuse)
- 10 Umlaufträger 2. Stufe
- 11 Lagerung des Umlaufträgers
- 12 Sonnenwelle 2. Stufe (Hohlwelle)
- 13 Planetenräder 2. Stufe
- 14 Planetenachsen 2. Stufe
- 15 Lagerung der Planeten 2. Stufe
- 16 Hohlrad 2. Stufe (fest im Gehäuse)
- 17 Stirnradstufe
- 18 Ausgangswelle (zum Generator)

© HSLU TA.PR+SY H16

17

Hochschule Luzern Technik & Architektur

Das Harmonic Drive Prinzip

i = 50 320 einstufig η bis 85 % z_1 ist in der Regel um zwei kleiner als z_3

Verzahnungsgesetz

- Voraussetzung für den gleichmässigen Laufes eines Zahnradpaares ist eine stets konstant bleibende Übersetzung $i = \omega_1 / \omega_2$
- Der Eingriffspunkt wandert auf der Eingriffslinie

Eingriffspunkt

Kopfpunkt B (A):

Schnittpunkt zwischen Flanke und Kopfkreis

Wälzpunkt C:

Schnittpunkt zwischen Flanke und Wälzkreis

Wälzpunkt B (E):

Innerster Punkt wo die Flanke mit dem Gegenrad

zum Eingriff kommt

© HSLUTA PR+SY H16

Verzahnungsgesetz

- Bedingung für gleichförmige Bewegungsübertragung $i = \omega_1 / \omega_2 =$ konstant
- Bedingung bei Flankenberührung im Wälzpunkt C (gelb)

$$V_1 = V_2 \Rightarrow \begin{array}{ccc} r_1 \cdot \omega_1 &= r_2 \cdot \omega_2 \\ R_1 \cdot \omega_1 &= R_2 \cdot \omega_2 \end{array} \Rightarrow \begin{array}{ccc} i = \frac{\omega_1}{\omega_2} = \frac{r_2}{r_1} = \frac{R_2}{R_1} \end{array}$$

• Bedingung bei Flankenberührung im beliebigen Punkt B (rot)

$$V_{n1} = V_{n2} \Rightarrow \text{fn}_1 \cdot W_1 = \text{fn}_2 \cdot W_2 \Rightarrow i = \frac{\omega_1}{\omega_2} = \frac{r_{n2}}{r_{n1}} = \frac{r_2}{r_1}$$

Hochschule Luzern

Verzahnungsgesetz:

Die Verzahnung ist zur Übertragung einer Drehbewegung mit konstanter Übersetzung nur dann brauchbar, wenn die gemeinsame Normale n-n in jedem Eingriffspunkt (Berührungspunkt B) zweier Zahnflanken durch den Wälzpunkt C geht.

Ferner gilt: Zwei Zahnflankenprofile können nur dann zusammenarbeiten, wenn sie die gleichen Eingriffslinien haben, deren Verlauf durch das Verzahnungsgesetz festgelegt ist.

Zykloidenverzahnung

- Zykloiden sind Kurven, die von einem Punkt P eines Rollkreises beschrieben werden, der auf einer Wälzgeraden oder auf bzw. in einem Wälzkreis abrollt.
- Je nach "Abrollobjekt" wird unterschieden in:

© HSLU TA.PR+SY_H16 26

Hochschule Luzern Technik & Architektur

Zykloidenverzahnung

• Bei der Zykloidenverzahnung steht immer ein **konvex** gekrümmtes Flankenprofil k_1 und k_2 mit einem **konkav** gekrümmten Flankenprofil f_1 und f_2 im Eingriff, so dass sich eine günstige Anschmiegung der Zahnflanken und eine gute Flankentragfähigkeit ergibt.

27

Zykloidenverzahnung

 Triebstockverzahnung als Spezialfall (Punktverzahnung) der Zykloidenverzahnung.

 Anwendung beschränkt sich auf niedrige Umfangsgeschwindigkeiten bis 1 m/s. (z.B. Schwenkantriebe, Schützenwinden, Hubtore,

Schleusen etc.)

© HSLU TA.PR+SY_H16

28

Hochschule Luzern Technik & Architektur

Kreisbogenverzahnung

 Kreisbogenverzahnungen (DIN 58425) werden häufig in der Feingeräte- und Uhrenindustrie eingesetzt.

Hochschule Luzern

Evolventenverzahnung

• Kreisevolventen sind Kurven, die ein Punkt einer Geraden beschreibt, die auf einem Kreis, dem Grundkreis, abrollt.

© HSLU TA.PR+SY_H16 30

Evolventenverzahnung

- Zahnflanken haben immer konvexe Krümmungen
- Evolventen sind einfach mit Standardwerkzeugen herstellbar. Wechselradsätze sind möglich.
- Die Evolventen am Zahnrad reagieren "freundlich" auf geometrische Änderungen wie z.B. Achsabstandsänderungen. Die gemeinsame Profilnormal geht stets durch den Wälzpunkt.
- Die Mindestzähnezahl ist zwingend zu berücksichtigen: $z_{min} = 14$. Kleinere z sind nur mit besonderen Massnahmen möglich und sinnvoll.

Evolventenverzahnung

• Das **Bezugsprofil** eines Stirnrades ist nach DIN 867 ein festgelegtes Profil mit geraden Flanken das im Maschinenbau für Stirnräder mit Evolventenverzahnung nach DIN 3990 für $m_n = 1 - 70$ angewendet wird.

• Die Profilflanken schliessen mit der Profilbezugslinie den Profilwinkel α_p gleich Eingriffswinkel $\alpha = 20^{\circ}$ ein. Profil mit Protuberanz $p = \pi \cdot m$ Gegenprofil Kopflinie Werkzeugprofil mit Protuberanz P Profilbezugslinie nutzbare Flanke Fußlinie Fußende der Zahnmittellinie nutzbaren Flanke Fußrundung © HSLUTA PR+SY_H16 Flankenwinkel 2 Cp

Hochschule Luzern

Spanende Herstellung von Evolventenverzahnung

 Flankenprofile im Vergleich Tragfähigkeit Flanke Fuss 	ZYKLOIDEN Rad 1 Rad 2 * * *	EVOLVENTEN Rad 1 Rad 2 * *
Mindestzähnezahl	***	**
Achsabstandstoleranz	**	***
Werkzeugkosten	**	***
Rädersätze	*	***
 Verzahnungskorrektur In der Maschinentech 	★	★★★

Evolventenverzahnung verwendet.

Hochschule Luzern

36

Zahnradwerkstoffe

© HSLU TA.PR+SY_H16

- Viele Werkstoffe eignen sich für die Zahnradherstellung
 - Stähle haben die grösste Bedeutung
 - Kunststoffe gewinnen an Bedeutung
- Folgendes ist zu beachten:
 - Ungehärtete Zahnflanken gleicher Stahlwerkstoffe sind zu vermeiden
 - Das Ritzel sollte stets aus festerem Werkstoff sein, in der Regel aus Stahl
 - Grossrad aus GJL, GJS, GS oder St
 - Grossrad mit vergüteten oder gehärteten Zähnen häufig mit Zahnkranz auf einem Radkörper aufgeschrumpft
 - Kunststoffräder sind mit Metallrädern hoher Flankenglätte zu paaren

Zahnradwerkstoffe

Hochschule Luzern

Schmierung der Zahnradgetriebe

- Einflussfaktoren für das einwandfreie Arbeiten eines Getriebes
 - Schmierstoff
 - Art der Zuführung zu den Zahnflanken
- Vorzuziehen sind:
 - Flüssige Schmierstoffe mit ausreichender Viskosität
- Entscheidend für die Beanspruchung des Schmierfilms ist das Verhältnis von Gleitgeschwindigkeit zu Wälzgeschwindigkeit.
- Zahnräder laufen meist bei Mischreibung

Bilder: ruhr-uni-bochum.de

Grübchenbildung

Schmiersysteme und Schmierverfahren

- Bei offenen oder nicht öldichten Getrieben sollen Schmierfette oder pastöse Schmierstoffe (ν_{100} > 225 mm²/s eingesetzt werden • In allen übrigen Fällen sind Schmieröle sinnvoller

Umfangsgeschwindigkeit [m/s]	Schmierstofftyp	Schmierungsart	Getriebebauform	
Bis 2,5 m/s	Haftschmiere	Auftragsschmierung	Offen möglich 1)	
Bis 4 (evtl. 6)	Fließfett	Sprühschmierung		
Bis 8 (evtl. 10)		Tauchschmierung	Geschlossen	
Bis 25 (evtl. 30)	Schmieröl	hmieröl Tauchschmierung oder Einspritzschmierung		
Über 25 (evtl. 30)		Einspritzschmierung	1	
Bis 40		Nebelschmierung	1	

Tabelle: [2]

40 © HSLU TA.PR+SY_H16

Hochschule Luzern

Schmiersysteme und Schmierverfahren

• Beispiele von Schmiersystemen

Tauchschmierung

Druckumlaufschmierung

Bilder: [2]

Bestimmung der notwendigen Viskosität

- Zur Bestimmung der erforderlichen Viskosität wird nach DIN 51 509 ein Kraft-Geschwindigkeit-Faktor berechnet.
- Für Wälzgetriebe (Stirn- und Kegelradgetriebe) wird der Faktor:

$$\frac{k_{\rm S}}{v} \approx \left(3 \cdot \frac{F_{\rm t}}{b \cdot d_1} \cdot \frac{u+1}{u}\right) \cdot \frac{1}{v} \quad \frac{k_{\rm s}/v}{\frac{{\rm N/mm^2}}{{\rm m}}} \frac{F_{\rm t}}{{\rm bzw.}} \frac{b, d \mid u \mid v}{{\rm N/mm} \mid - \mid {\rm m/s}} \right)$$

$$\frac{F_{\rm t}}{b} \quad \begin{array}{c} {\rm Umfangskraft} \\ {\rm Zahnbreite} \\ d_1 \quad {\rm Teilkreisdurchmesser} \ (d_{\rm v1} \ {\rm bei} \ {\rm Kegelrädern}) \\ u \quad {\rm Zähnezahlverhältnis}; \ u = \frac{z_{\rm Gro} \ {\rm gad}}{z_{\rm Kleinrad}} \geq 1 \\ v \quad {\rm Umfangsgeschwindigkeit} \end{array}$$

Für Schraubradgetriebe (Schneckenradgetriebe und Stirn- und Kegelradschraubräder):

$$\frac{k_{\rm s}}{v} = \frac{T_2}{a^3 \cdot n_{\rm s}} \qquad \frac{k_{\rm s}/v \qquad T_2 \qquad a \qquad n_{\rm s}}{N \cdot \min/m^2 \qquad Nm \qquad m \qquad \min^{-1}}$$

T₂ Ausgangsdrehmoment

Achsabstand

n_s Schneckendrehzahl

© HSLU TA.PR+SY H16 42

Hochschule Luzern Technik & Architektur

Getriebewirkungsgrad

$$\eta = \frac{\text{abgegebene Leistung}}{\text{zugeführte Leistung}} = \frac{P_{ab}}{P_{an}}$$

- Verluste entstehen durch das Gleiten der Zahnflanken η_{Z} , durch Lagerreibung η_{L} und Wellendichtungen η_{D} .
- Der Gesamtwirkungsgrad wird damit für ein mehrstufiges Getriebe:

$$\eta_{ges} = \eta_{Zges} * \eta_{Lges} * \eta_{Dges}$$

• Es kann mit folgenden Mittelwerten gerechnet werden:

• Lagerung: $\eta_L \approx 0.97$ bis 0.99

• Dichtung: $\eta_D \approx 0.98$ • Gerad-Stirnrad: $\eta_Z \approx \text{bis } 0.99$

• Kegelstirnrad: $\eta_Z \approx \text{bis } 0.98$

• Stirnradschraubgetriebe: $\eta_Z \approx 0.50$ bis 0.95 • Schneckengetriebe: $\eta_Z \approx 0.20$ bis 0.97

© HSLU TA.PR+SY_H16 44

Konstruktionshinweise für Zahnräder und Getriebegehäuse

- Stirnräder
 - Ritzel als Vollräder ausführen
 - Ritzelbreite sollte möglichst etwas breiter als die des Grossrades sein

Hochschule Luzern Technik & Architektu

Konstruktionshinweise für Zahnräder und Getriebegehäuse

- Empfehlungen für Gehäuseabmessungen
 - Gehäuse werden als Guss- oder Schweisskonstruktion ausgeführt

Bauteil	Gusskonstruktion	Schweißkonstruktion	
Gehäusewerkstoff: Guss: GJL, GJS, GS Aushebeschräge ca. 3° Geschweißt: S235JR, S355JO 1) I = größte lichte Gehäuselänge 2) +10 mm bei Turbogetrieben zur Schwingungs- und Geräuschdämpfung	I größte lichte Gehäuselänge in mm	I größte lichte Gehäuselänge in mm	
Wanddicke: Unterkasten s_1 : Oberkasten s_2 : Mindestwerte der Wanddicke	$\approx (0.005 \dots 0.01) \cdot l + 6 \text{ mm}^{1/2}$ $\approx (0.5 \dots 0.8) \cdot s_1$	$\approx (0,004 \dots 0,005) \cdot l + 4 \text{ mm}^{1}$ $\approx (0,5 \dots 0,8) \cdot s_1$	
$s_{1,2min}$: Höchstwerte der Wanddicke $s_{1,2max}$:	\approx 8 mm (GJL, GJS), \approx 12 mm (GS) \approx 50 mm	≈ 4 mm ≈ 25 mm	
Flansch: Flanschdicke $s_3 \approx s_4$: Flanschbreite b_1 :	$\approx (1,3 \dots 1,6) \cdot s_1$ $\approx 3 \cdot s_1 + 10 \text{ mm}$	$\approx 2 \cdot s_1$ $\approx 4 \cdot s_1 + 10 \text{ mm}$	

© HSLU TA.PR+SY_H16 Auszug: Roloff / Matek 46

Geräusche in Zahnradgetrieben

- Die wesentlichen Hauptschallquellen bei einem Zahnradgetriebe:
 - Zahneingriff
 - Rollgeräusche in der Lagerung
 - Flüssigkeitsschall durch Räder im Ölsumpf
 - Luftschall durch Lüfter
- Geräuschentstehung beim Zahneingriff:
 - Flankenformabweichung
 - Oberflächenunebenheiten, Flankenformfehler, Teilungsfehler, Verformungen
 - Wechselnde Zahnfedersteifigkeiten
 - Eingriffsstoss
 - Getrieberasseln
 - Reibkräfte
 - Airpocketing (periodisches Ausquetschen der Luft)

© HSLU TA.PR+SY_H16 47

Hochschule Luzern

Geräusche in Zahnradgetrieben

• Einfluss von Schrägverzahnung auf das Geräuschverhalten

Geräuschverhalten der Schrägverzahnung gegenüber der Geradverzahnung

Geräusche in Zahnradgetrieben

• Schallentstehung, Schallübertragung und Schallabstrahlung

Hochschule Luzern Technik & Architektu

Massnahmen zur Verminderung der Geräuschentwicklung

- Konstruktionsregeln zur Verringerung von Zahnradgeräuschen:
 - Erhöhung der Eingriffsdauer
 - Verwendung von schrägverzahnten Getrieben
 - Erhöhung der Zähnezahl
 - Verbesserung der Qualität
 - Verwendung von Kunststoff bei geringen Belastungen

Konstruktive Massnahmen zur Minderung der Körperschallanregung

d: günstige Lagerkraftführung

Bilder: [2]

51 © HSLU TA.PR+SY_H16

Hochschule Luzern

Gestaltung von Lagerdeckeln

a: Absenkung des Schwinggeschwindigkeitspegels durch Verstärkungen der Lagerdeckel

c: Anbringung einer dünnen Platte auf einer Deckelaussenwand (Prinzip der Körperschalldämmung durch Anwendung dünner Luftschichten)