Algorithm Design and Analysis (ECS 122A) Study Guide

Davis Computer Science Club Tutoring Committee

Contents

1	\mathbf{Asy}	mptotic Notation 5
	1.1	O-Notation (Big O)
		1.1.1 Example
	1.2	o-Notation (Little O)
		1.2.1 Example
		1.2.2 Example
	1.3	Ω -Notation (Big Omega)
	1.4	ω -Notation (Little Omega)
	1.5	Θ-notation (Big Theta)
2	Rec	currence Relations 13
	2.1	Recurrence Relations
	2.2	Solving Recurrence Relations
	2.3	Substitution Method
		2.3.1 Example
	2.4	Master Theorem
		2.4.1 Case 1
		2.4.2 Case 2
		2.4.3 Case 3
		2.4.4 Example
		2.4.5 Example
		2.4.6 Example
3	Div	ide and Conquer Paradigm
	3.1	Steps
	3.2	Case Study: Merge Sort
	3.3	Case Study: Fibonacci Sequence
	3.4	Case Study: Maximum Subarray
		3.4.1 Example
4	Gre	edy Algorithm 25
	4.1	Properties
	4.2	Case Study: Activity-Selection
		4.2.1 Formal Problem Statement
		4.2.2 Informal Problem Statement
		4.2.3 Greedy Choice
		4.2.4 Steps
		4.2.5 Pseudocode
	4.3	Case Study: Huffman Coding

		4.3.1 Formal Problem Statement	28
		4.3.2 Informal Problem Statement	28
		4.3.3 Greedy Choice	28
		4.3.4 Steps	
		4.3.5 Example	
5	Dyr	amic Programming	31
	5.1	Case Study: Rod Cutting	32
	5.2	Case Study: Matrix Chain Multiplication	33
	5.3	Case Study: Longest Common Subsequence	34
	5.4	Case Study: Knapsack	35
6	Gra	ph Theory	37
	6.1	Case Study: Breadth First Search (BFS)	38
		Case Study: Depth-First Search (DFS)	
7	Side	e Topics	41
	7.1	Proof by Mathematical Induction	42
		7.1.1 Example	
		7.1.2 Example	

Chapter 1

Asymptotic Notation

1.1 O-Notation (Big O)

Notation

$$f(n) \in O(g(n))$$

Formal Definition

For a given function g(n), O(g(n)) is the set of functions for which there exists positive constants c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

$$O(g(n)) = \{ f(n) : \exists c, n_0 \text{ s.t. } 0 \le f(n) \le c \cdot g(n) \ \forall \ n \ge n_0 \}$$

Informal Definition

The function g(n) is an asymptotic upper bound for the function f(n) if there exists constants c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for $n \ge n_0$.

Another way to perceive Big O notation is that for $f(n) \in O(g(n))$, the function f's asymptotic¹ growth is no faster than that of function g's.

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

1.1.1 Example

Prove that asymptotic upper bound of f(n) = 2n + 10 is $g(n) = n^2$.

$$0 \le f(n) \le c \cdot g(n) \text{ for } n \ge n_0$$

$$0 \le 2n + 10 \le c \cdot n^2 \text{ for } n \ge n_0$$

Arbitrarily choose c and n_0 values. Simplest is to turn one of the variables into the value 1 and solve. For this example, we will assign the value 1 to n_0 .

$$0 \le 2n + 10 \le c \cdot n^2 \text{ for } n \ge 1$$

 $2(1) + 10 \le c \cdot (1)^2$
 $12 \le c$

By picking $n_0 = 1$ and c = 12, the inequality of $2n + 10 \le 12n^2$ will hold true for all $n \ge 1$. Since there exists a constant c and n_0 that fulfill this inequality, we have proven that $f(n) = 2n + 10 = O(n^2)$.

¹Asymptotic: As given variable approaches infinity.

1.2 o-Notation (Little O)

Notation

$$f(n) \in o(g(n))$$

Formal Definition

For a given function g(n), o(g(n)) is the set of functions for which every positive constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

$$o(g(n)) = \{ f(n) : \exists n_0 \text{ s.t. } 0 \le f(n) \le c \cdot g(n) \ \forall \ n \ge n_0, c \ge 0 \}$$

Informal Definition

The function g(n) is an upper bound that is not asymptotically tight. For all positive constant values of c, there must exists a constant n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$. The value of n_0 may not depend on n, but may depend on c.

Another way to perceive Little O notation is that for $f(n) \in o(g(n))$, the function f's asymptotic growth is strictly less than that of the function g's. In this sense, Little O can be seen as a "stronger" bound in comparison to Big O. By proving that a function is an element of Little O, it also proves that the function is an element of Big O.

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

1.2.1 Example

Prove that f(n) = 2n has an upper bound $o(n^2)$.

$$0 \le c \cdot g(n) \le f(n) \text{ for } n \ge n_0$$

$$0 \le c \cdot 2n \le n^2 \text{ for } n \ge n_0$$

$$2c \le n \text{ for } n \ge n_0$$

$$2c \le n_0$$

For Little O to hold true, the inequality needs to hold true for all c > 0 and for all $n > n_0$. From simplifying the inequality, we assert that the inequality will hold true as long as the value of n_0 is twice the value of c. Given that they are both constants, then there exists a constant value of n_0 for all positive constant c that fulfill this inequality.

Another method to solve this problem is to use the limit definition.

$$\lim_{n \to \infty} \frac{2n}{n^2}$$

$$\lim_{n \to \infty} \frac{2}{n} = 0$$

1.2.2 Example

Prove that $f(n) = 2n^2$ does not have the upper bound $o(n^2)$.

$$0 \le c \cdot g(n) \le f(n) \text{ for } n \ge n_0$$

$$0 \le c \cdot 2n^2 \le n^2 \text{ for } n \ge n_0$$

$$2c \le 1 \text{ for } n \ge n_0$$

For a function to have the Little O bound, the inequality must hold true for all positive c. However, simplification of the inequality asserts that the inequality will only hold true for all $c < \frac{1}{2}$. Therefore, $f(n) = 2n^2$ does not have the upper bound $o(n^2)$.

1.3 Ω -Notation (Big Omega)

Notation

$$f(n) \in \Omega(g(n))$$

Formal Definition

For a given function g(n), $\Omega(g(n))$ is the set of functions for which there exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$.

$$\Omega(g(n)) = \{ f(n) : \exists c, n_0 \text{ s.t. } 0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0 \}$$

Informal Definition

The function g(n) is an asymptotic lower bound for the function f(n) if there exists constants c and n_0 such that $0 \le c \cdot g(n) \le f(n)$ for $n \ge n_0$.

Limit Definition

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$$

1.4 ω -Notation (Little Omega)

Notation

$$f(n) \in \omega(g(n))$$

Formal Definition

For a given function g(n), $\omega(g(n))$ is the set of functions for which every positive constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$.

$$\omega(g(n)) = \{ f(n) : \exists n_0 \text{ s.t. } 0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0, c \ge 0 \}$$

Informal Definition

The function g(n) is a lower bound that is not asymptotically tight. For all positive constant values of c, there must exist a constant n_0 such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$. The value of n_0 may not depend on n, but may depend on c.

Another way to perceive Little ω notation is that for $f(n) \in \omega(g(n))$, the function f's asymptotic growth is strictly greater than that of the function g's. In this sense, Little ω can be seen as a "stronger" bound in comparison to Big Ω . By proving that a function is an element of Little ω , it also proves that the function is an element of Big Ω .

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

1.5 Θ-notation (Big Theta)

Notation

$$f(n)\in\Theta(g(n))$$

Formal Definition

For a given function g(n), $\Theta(g(n))$ is the set of functions for which there exists positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 \text{ s.t. } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \ \forall \ n \ge n_0 \}$$

Informal Definition

The function g(n) is an asymptotic tight bound for the function f(n) if there exists constants c_1, c_2 , and n_0 such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for $n \ge n_0$.

Big theta implies that f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \in \mathbb{R}_{>0}$$

Chapter 2

Recurrence Relations

2.1 Recurrence Relations

A recurrence relation is an equation that recursively defines a sequence of values. After the initial terms are given, each subsequent term is defined as a function of the previous terms.

Fibonacci

Fibonacci is an example of a recurrence relation.

$$F_n = \begin{cases} F_{n-1} + F_{n-2}, & n \ge 2\\ 1, & n = 1\\ 0, & n = 0 \end{cases}$$

The first two terms are defined while the subsequent terms are a function of the two previous.

2.2 Solving Recurrence Relations

- Substitution Method
- Recursion-Tree Method
- Master Theorem

2.3 Substitution Method

- 1. Guess the bounds.
- 2. Apply mathematical induction to prove the bounds.

2.3.1 Example

Find the asymptotic upper bound for the following function:

$$T(n) \begin{cases} 2T(n-1) + 1, & n \ge 1 \\ 1, & n = 0 \end{cases}$$

Guess

$$T(n) \in O(2^n)$$

Inductive Basis

$$T(0) = 2^0$$
$$= 1$$

Inductive Hypothesis

Assume that $T(n) = 2^n$ holds true for all n = k.

Inductive Step

$$T(n) = 2T(n-1) + 1$$
 Base equation
$$= 2T((k+1) - 1) + 1$$
 Substitute n with $k+1$
$$= 2T(k) + 1$$
 Simplify parameters to T(n)
$$= 2(2^k) + 1$$
 Substitute T(n) with inductive hypothesis
$$= 2^{k+1} + 1$$
 Property of exponents Q.E.D

2.4 Master Theorem

Used for divide and conquer recurrences that follow the generic form:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$
 where $a \ge 1, b > 1$

2.4.1 Case 1

Condition

$$f(n) \in O(n^c)$$
$$c < log_b(a)$$

Solution

$$T(n) \in \Theta(n^{log_b(a)})$$

2.4.2 Case 2

Condition

$$f(n) \in \Theta(n^c)$$
$$c = log_b(a)$$

Solution

$$T(n) \in \Theta(n^{log_b(a)} \cdot log_2(n))$$

2.4.3 Case 3

Condition

$$f(n) \in \Omega(n^c)$$
$$c > log_b(a)$$

Regularity Condition

This case must also fulfill the regularity condition.

$$a \cdot f(\frac{n}{b}) \le k \cdot f(n)$$
 where $k < 1$

Solution

$$T(n) \in \Theta(f(n))$$

Remark

The idea behind this case is that given the generic form, the function f(n) will grow far quicker than $a \cdot T(\frac{n}{b})$ and will be the primary influence of T(n)'s asymptotic behavior.

2.4.4 Example

$$T(n) = 64T(\frac{n}{4}) + 1000n^2$$

Given

$$f(n) = 1000n^{2} \in \Theta(n^{2})$$

$$a = 64$$

$$b = 4$$

$$c = 2$$

Condition

$$c \quad ? \quad log_b(a)$$

$$2 \quad ? \quad log_4(64)$$

$$2 \quad < \quad 3$$

Condition satisfied for case 1

Solution

$$\therefore T(n) \in \Theta(n^{\log_4(64)}) = \Theta(n^3)$$

2.4.5 Example

$$T(n) = 32T(\frac{n}{2}) + 20n^5$$

Given

$$f(n) = 20n^5 \in \Theta(n^5)$$

$$a = 32$$

$$b = 2$$

$$c = 5$$

Condition

$$c ? log_b(a)$$

$$5 ? log_2(32)$$

$$5 = 5$$

Condition satisfied for case 2

Solution

$$\therefore T(n) \in \Theta(n^{\log_2(32)} \cdot \log_2(n)) = \Theta(n^5 \cdot \lg(n))$$

2.4.6 Example

$$T(n) = 7T(\frac{n}{7}) + 19n^{11}$$

Given

$$f(n) = 19n^{11} \in \Theta(n^{11})$$

$$a = 7$$

$$b = 7$$

$$c = 11$$

Condition

$$c \quad ? \quad log_b(a)$$

$$11 \quad ? \quad log_7(7)$$

$$5 \quad > \quad 1$$

Condition partially fulfilled for case 3. Must also check regularity condition.

$$a \cdot f(\frac{n}{b}) \leq k \cdot f(n)$$

$$7 \cdot \left[19(\frac{n}{7})^{11}\right] \leq k \cdot 19n^{11}$$

$$7 \cdot \frac{n^{11}}{7^{11}} \leq k \cdot n^{11}$$

$$\frac{1}{7^{10}} \cdot n^{11} \leq k \cdot n^{11}$$

Choosing $k = \frac{1}{7^{10}} < 1$ fulfills the regularity condition.

Solution

$$T(n) \in \Theta(19n^{11})$$

Chapter 3

Divide and Conquer Paradigm

3.1 Steps

- 1. **Divide** the problem into a number of independent subproblems.
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine the solutions of the subproblems into the solution of the original problem.

3.2 Case Study: Merge Sort

Steps

- 1. **Divide** the list of n elements into two sublists with $\frac{n}{2}$ elements each.
- 2. **Conquer** the sublists by sorting the two sublists recursively using merge sort. When the sublists are of size 1, it becomes sorted.
- 3. Combine the elements of the two sublists by mering them in a sorted sequence.

Recurrence Relation

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn, & n \ge 2\\ c, & n = 1 \end{cases}$$

Complexity

$$T(n) = \Theta(n \cdot lg(n))$$

3.3 Case Study: Fibonacci Sequence

Theorem

Fibonacci Sequence Starting with 0

Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_0 \\ F_1 \end{bmatrix}$$

Fibonacci Sequence Starting with 1

Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

Derivation

$$\begin{bmatrix}
F_{n} \\
F_{n-1}
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
F_{n-1} \\
F_{n-2}
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
F_{n-2} \\
F_{n-3}
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
F_{n-3} \\
F_{n-4}
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}^{4} \begin{bmatrix}
F_{n-4} \\
F_{n-5}
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}^{n-1} \begin{bmatrix}
F_{0} \\
F_{1}
\end{bmatrix}$$

To verify, let's choose n=5

$$\begin{bmatrix} F_5 \\ F_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^4 \begin{bmatrix} F_0 \\ F_1 \end{bmatrix} \\
= \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\
= \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

The fifth Fibonacci number (assuming that the sequence starts at 0) is 3.

Recurrence Relation

$$T(n) = T(\frac{n}{2}) + O(1)$$

Complexity

$$T(N) \in \Theta(lg(n))$$

3.4 Case Study: Maximum Subarray

Steps

- 1. Divide the array in half into two subarrays (left subarray and right subarray).
- 2. Recursively repeat this process until each subarray consists of only one element. At this point, the maximum sum of each subarray is the single element.
- 3. Calculate the maximum sum for the cross section.
 - (a) Start from the mid-point of the subarray.
 - (b) Sum up all numbers from the mid-point to the first element. Whenever the sum exceeds its previous value, that value becomes the left sum.
 - (c) Sum up all numbers from the mid-point+1 to the last element. Whenever the sum exceeds its previous value, that values becomes the right sum.
 - (d) The summation of the left sum and the right sum becomes the maximum sum for the cross section. Note: If all the elements in the subarrays are negative, then the left and right sum will return 0 by default.
- 4. Compare the maximum sum from the left array, right array, and cross section. The largest of the three get returned.

Recurrence Relation

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

Complexity

$$T(n) \in \Theta(n \cdot lg(n))$$

3.4.1 Example

Find the maximum subarray of the following array: $\{-2,1,-3,4,-1,2,1,-5,4\}$

Divide

Combine

Depth	Left Subarray	Right Subarray	Max(Left)	Max(Right)	Max(Cross)	Return
4	$\{-5\}$	{4}	-5	4	4	4
3	$\{-2\}$	{1}	-2	1	1	1
	{-3}	{4}	-3	4	4	4
	{-1}	{2}	-1	2	2	2
	{1}	$\{-5,4\}$	1	4	4	4
2	$\{-2,1\}$	$\{-3,4\}$	1	4	1	4
	$\{-1, 2\}$	$\{1, -5, 4\}$	2	4	3	4
1	$\{-2, 1, -3, 4\}$	$\{-1, 2, 1, -5, 4\}$	4	4	6	6

The maximum sum is 6 from indices 3 to 6.

Visual Method of Finding the Max of Cross Section

Taking depth = 1 with left subarray = $\{-2,1,-3,4\}$ and right subarray = $\{-1,2,1,-5,4\}$.

Cross Section Left Sum

$$\{-2, 1, -3, 4, \underbrace{-1}_{Mid}, 2, 1, -5, 4\}$$

$$\{-2, 1, -3, 4, \underbrace{-1}_{-1}, 2, 1, -5, 4\}$$

$$\{-2,1,-3,\underbrace{4,-1}_{3},2,1,-5,4\}$$

$$\{-2,1,\underbrace{-3,4,-1}_{0},2,1,-5,4\}$$

$$\{-2,\underbrace{1,-3,4,-1}_{1},2,1,-5,4\}$$

$$\{\underbrace{-2,1,-3,4,-1}_{-1},2,1,-5,4\}$$

Max Left Sum = 3

Cross Section Right Sum

$$\{-2, 1, -3, 4, -1, \underbrace{2}_{Mid + 1}, 1, -5, 5\}$$

$$\{-2, 1, -3, 4, -1, \underbrace{2}_{2}, 1, -5, 5\}$$

$$\{-2,1,-3,4,-1,\underbrace{2,1}_{3},-5,5\}$$

$$\{-2, 1, -3, 4, -1, \underbrace{2, 1, -5}_{-2}, 4\}$$

$$\{-2,1,-3,4,-1,\underbrace{2,1,-5,4}_2\}$$

 ${\rm Max~Right~Sum}=3$

Max Sum = 3 + 3 = 6

Chapter 4

Greedy Algorithm

4.1 Properties

Greedy Choice

A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

Optimal Substructure Property

An optimal solution to the problem contains within it optimal solution to the subproblems.

4.2 Case Study: Activity-Selection

4.2.1 Formal Problem Statement

Assume there exists n activities, each with a start time s_i and finish time f_i . Two activities i and j are said to be non-conflicting if $s_i \geq f_j$ or $s_j \geq f_i$. The objective is to find the maximum solution set of non-conflicting activities.

4.2.2 Informal Problem Statement

Given n activities and their respective start (s_i) and finish (f_i) times, find the maximum number of activities that can be performed.

4.2.3 Greedy Choice

Choose the next activity with a start time greater than or equal to the previous activity's finish time and has the next smallest finish time.

4.2.4 Steps

- 1. Sort the activities according to their finish times.
- 2. Select the first activity from the sorted list.
- 3. Repeat this process for the remaining activities with the condition that the start time of subsequent activities are greater than or equal to the preceding activity's finish time.

4.2.5 Pseudocode

```
1: procedure ActivitySelection(A)
2:
       Sort(A)
                                                                             ▷ Sort by finish times
3:
       Let F be the set of finish times corresponding to the sorted list A
4:
       Let B be the set of start times corresponding to the sorted list A
5:
6:
       S = \{ A[1] \}
7:
       f = F_0
8:
9:
       for i=2 to n do
10:
          if F_i \geq f then
11:
              S \cup \{ A[i] \}
12:
              f = F_i
13:
           end if
15:
       end for
16: end procedure
```

4.3 Case Study: Huffman Coding

4.3.1 Formal Problem Statement

Let A be defined as the set of alphabets. ($A = \{a_0, a_1, a_2, ..., a_n\}$) Let W be defined as the set of weights for which $w_i = \text{Weight}(a_i)$. ($W = \{w_0, w_1, w_2, ..., w_n\}$) Let C be defined as the set of (binary) codewords for which $c_i = \text{CodeWord}(a_i)$.

Assume there exists n alphabets, each with a weight w_i . Find and define the codewords c_i for each respective alphabet a_i such that $\sum_{i=0}^{n} w_i \cdot length(c_i)$ is the smallest possible.

4.3.2 Informal Problem Statement

Given a set of symbols and their weights (probabilities), find a prefix-free binary code with minimum expected codeword length.

4.3.3 Greedy Choice

Choose the two alphabets with the lowest weight.

4.3.4 Steps

- 1. Pick two letters x and y from the alphabet A with the lowest frequencies or weight w_i .
- 2. Create a subtree with x and y as leaves. We will define the root as z.
- 3. The frequency or weight of node z will be define as $w_z = w_x + w_y$.
- 4. Remove x and y from alphabet. $A' = A \{x, y\}$
- 5. Insert z into the alphabet. $A' = A + \{z\}$
- 6. Repeat this process until the set of alphabets A consists of only one alphabet.

4.3.5 Example

Let $A=\{a,b,c,d,e\}$ and $W=\{30,16,6,15,35\}$. Find their corresponding Huffman codes.

Merge c and d

Alphabet	Weight
e	35
a	30
b	16
d	15
С	6

Merge c,d and b

Alphabet	Weight
e	35
a	30
$_{\mathrm{c,d}}$	21
b	16

Merge e and a

Alphabet	Weight
$_{ m b,c,d}$	37
e	35
a	30

Merge a,b,c,d and e

Alphabet	Weight
a,e	65
b,c,d	37

Solution

Alphabet	Weight	Codeword
e	35	00
a	30	01
b	16	11
d	15	100
е	6	101

Chapter 5

Dynamic Programming

5.1 Sequence

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed information

5.2 Case Study: Rod Cutting

5.3 Case Study: Matrix Chain Multiplication

5.4 Case Study: Longest Common Subsequence

5.5 Case Study: Knapsack

Chapter 6

Graph Theory

6.1 Case Study: Breadth First Search (BFS)

6.2 Case Study: Depth-First Search (DFS)

Chapter 7

Side Topics

7.1 Proof by Mathematical Induction

Steps

- 1. Basis (Base Case)
- 2. Inductive Hypothesis
- 3. Inductive Step

7.1.1 Example

Prove that the following systems of equations has the solution $T(n) = n \cdot lg(n)$.

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n, & n = 2^k \text{ for } k > 1\\ 2, & n = 2 \end{cases}$$

Basis

$$T(2) = (2) \cdot lg(2)$$
$$= 2 \cdot 1$$
$$= 2$$

Inductive Hypothesis

Assume that $T(n) = n \cdot lg(n)$ holds true for all $n = 2^k$.

Inductive Step

$$\begin{split} T(n) &= 2T(\frac{n}{2}) + n \\ &= 2T(\frac{2^{k+1}}{2}) + 2^{k+1} \\ &= 2T(2^k) + 2^{k+1} \\ &= 2(2^k \cdot lg(2^k)) + 2^{k+1} \\ &= 2^{k+1} \left[lg(2^k) + 1 \right] \\ &= 2^{k+1} \left[lg(2^k) + lg(2) \right] \\ &= 2^{k+1} \cdot lg(2^k \cdot 2) \\ &= 2^{k+1} \cdot lg(2^{k+1}) \end{split} \qquad \begin{array}{l} \text{Base equation} \\ \text{Substitute n with } 2^{k+1} \\ \text{Simplify parameters to function } T(\ldots) \\ \text{Inductive hypothesis} \\ \text{Distributive property} \\ \text{Logarithmic identity} \\ \text{Exponent property} \\ \text{Q.E.D} \\ \end{array}$$

7.1.2 Example

Prove that the following systems of equations has the solution T(n) = 2F(n) - 1 where F(n) = F(n-1) + F(n-2).

$$T(n) \begin{cases} T(n-1) + T(n-2) + 1, & \text{if } n \ge 2\\ 0, & \text{if } n = \{0, 1\} \end{cases}$$

Basis

$$T(0) = 1$$

Inductive Hypothesis

Assume that T(n) = F(n) - 1 is true for all n = k.

Inductive Step

$$T(n) = T(n-1) + T(n-2) + 1 \qquad \text{Base equation}$$

$$T(k+1) = T((k+1)-1) + T((k+1)-2) + 1 \qquad \text{Substitute n with k+1}$$

$$= T(k) + T(k-1) + 1 \qquad \text{Simplify parameters to function T(...)}$$

$$= (2F(k)-1) + (2F(k-1)-1) + 1 \qquad \text{Inductive hypothesis}$$

$$= 2F(k) + 2F(k-1) - 1 \qquad \text{Simplify equation}$$

$$= 2(F(k) + F(k-1)) - 1 \qquad \text{Distributive property}$$

$$= 2(F(k+1)) - 1 \qquad \text{Definition of function: } F(k+1) = F(k) + F(k-1)$$

$$= 2F(k+1) - 1 \qquad \text{Simplify}$$
 Q.E.D