How to Build a Cognitive Map

James C. R. Whittington, David McCaffary, Jacob J. W. Bakermans and Timothy E. J. Behrens

Presenter: Xuan Wen

Dec 7th, 2022

Classic Studies: Cognitive Mapping

• Edward C. Tolman, 1948

Straight -> Left -> Right -> Right

Classic Studies: Cognitive Mapping

• Edward C. Tolman, 1948

Straight -> Left -> Right -> Right

- Internal neural representations of spatial relationship that enable flexible behavior
 - Planning route
 - Finding shortcut

What brain areas support such function?

What brain areas support such function?

- Not restricted to spatial cognition
- Place cells firing to...
 - "Locations" in sound frequency
 - "Locations" in reward value
 - •

- Not restricted to spatial cognition
- Grid cell firing pattern can be found in:
 - Stimuli with two abstract dimensions

- Not restricted to spatial cognition
- Grid cell firing pattern can be found in:
 - Stimuli with two abstract dimensions

- Internal neural representations of spacial relationship that enable flexible behavior
 - Planning route
 - Finding shortcut
- Spacial Cognitive Map is just an instance of a broader coding mechanism
 - Organizing knowledge for generalization
 - Enable the rapid inference from sparse observations

How the brain represents these different domains of cognition in the same way?

Cognitive Mapping Problem

- We need a model to connect physical & abstract domains.
 - Contain information relevant to behavioral tasks
 - Enable new behaviors in the face of new challenges
 - Minimize time & resources for computation

- Classic Model-free Reinforcement Learning
 - Make decision based on the value of "states"

- Classic Model-free Reinforcement Learning
 - Make decision based on the value of "states"

• • •

- Classic Model-free Reinforcement Learning
 - Make decision based on the value of "states"
 - It's impossible to representing ALL states

- Classic Model-free Reinforcement Learning
 - Make decision based on the value of "states"
 - It's impossible to representing ALL states
- Need appropriate abstraction
- Need to know the relationship between states (state-space structure)

Spatial & Non-spatial states

How to formalize the representation of states?

Spatial & Non-spatial states

- How to formalize the representation of states?
- Graph theory!

Spatial & Non-spatial states

- How to formalize the representation of states?
- Graph theory!

- How can we define which graph to build?
- One sensory input, multiple possibilities.

- How can we define which graph to build?
- One sensory input, multiple possibilities.

- How can we define which graph to build?
- One sensory input, multiple possibilities.

The United State

- How can we define which graph to build?
- One sensory input, multiple possibilities.

The United Kingdom

- How can we define which graph to build?
- One sensory input, multiple possibilities.

- Accumulate self movement in space
- Accumulate relations in non-spatial concepts

- Accumulate self movement in space
- Accumulate relations in non-spatial concepts

- Accumulate self movement in space
- Accumulate relations in non-spatial concepts

- Accumulate self movement in space
- Accumulate relations in non-spatial concepts

Generalization

- Same rule should be able to generalize to other environment
- "Sequence Learning Problem"

Summary

- Cognitive map is a coding mechanism, encoding spatial & non-spatial relationships.
 - Enable flexible behavior
 - Fast learning on new environment
 - Minimize computational resources
- To construct models that describe cognitive mapping, we need to satisfy several requirements observed in empirical experiments.

