

2023 SCHOOL AT THE IAA-CSIC

EDUARDO SÁNCHEZ KARHUNEN

DEPT. ARTIFICIAL INTELLIGENCE. UNIV. SEVILLE. SPAIN

NEUROSCIENCE – THE ORIGIN

McCulloch-Pitts model (1943):

- First computational model of neurons.
- Idea: brain operation = logical functions composition.
- Model parameters: θ (hand-setting)

Basic unit reminds of the current ones:

- Neuron inputs are boolean $x_i \in \{0,1\}$.
- Inputs: excitatory / inhibitory.
- Inputs are all aggregated.
- A zero-one decision is taken. Threshold θ .
- Trigger an output $y \in \{0,1\}$.

$$y = 1$$
 if $\sum_{i=1}^{n} x_i \ge \theta$ $y = 0$ if $\sum_{i=1}^{n} x_i < \theta$

FUNCTIONAL & GEOMETRIC INTERPRETATION

THE FLY'S EYE

Perceptron - Rosenblatt (1958):

McCulloch-Pitts' model generalization:

- More realistic: inputs $\in \mathbb{R}$.
- Relative importance between inputs: W_i .
- The more inputs, the more complex to fix θ manually.
- Proposed neuron = almost "exactly" nowadays neuron.

Generalization cost:

- Number of parameters increases: $M(\theta) \Rightarrow M(\theta, w_i)$.
- (θ) fixed manually => (θ, w_i) needed a learning algorithm.

$$y = 1 \quad \text{if} \quad \sum_{i=1}^{n} w_i x_i \ge \theta$$

$$y = 0 \quad \text{if} \quad \sum_{i=1}^{n} w_i x_i < \theta$$

LITTLE CHANGES - HUGE GEOMETRIC IMPACT

McCulloch-Pitch

$$y = 1 \quad \text{if } \sum_{i=1}^{n} x_i \ge \theta$$

$$y = 0 \quad \text{if} \quad \sum_{i=1}^{n} x_i < \theta$$

Perceptron

$$y = 1 \quad \text{if } \sum_{i=1}^{n} w_i x_i \ge \theta$$

$$y = 0 \quad \text{if} \quad \sum_{i=1}^{n} w_i x_i < \theta$$

LUCKILY THERE EXISTS A LEARNING ALGORITHM

Meaning of learning:

- Dataset: tuples $\{(x_i, y_i), i = 1 \dots N\}$.
- Goal: obtain model parameters (θ, w_i) .
- s.t: classify properly the whole input dataset.

$\sum_{i=1}^{n} w_i x_i > \theta \implies \sum_{i=1}^{n} w_i x_i - \theta > 0$ $\sum_{i=1}^{n} w_i x_i - \theta * 1 > 0 \implies \sum_{i=0}^{n} w_i x_i > 0$

con $x_0 = 1$, $w_0 = \theta$

Perceptron algorithm convergence theorem:

- \circ θ is considered as a weight $w_{\mathbf{0}}$.
- Iterative adjustment of weight vector.
- Based on same distance between prediction and true value.
- If dataset is linearly separable: converges in a finite number of steps.

CARDS ON THE TABLE

Minsky & Papert (1969):

Describe perceptron limitations:

- Not able to capture a simple XOR logical function.
- Solution: add more layers (stacking).
- Problem: there was no training techniques for multilayer networks.

x_1	x_2	XOR
0	0	0
1	0	1
0	1	1
1	1	0

Simplifying notation: remove sum operator

NOT EVERYTHING WAS PEACHES AND CREAM

Obstacle race:

- DL has not only been an accumulation of advances.
- Alternation of winters and hypes:
 - hypes: periods of great optimism, huge expectations and advances.
 - winters: expectations are not met, starting periods of pessimism. Reduction of investments and scientific community leaves this line of research.

AI WINTER: 20 YEARS IN SEARCH OF THE HOLY GRAIL

Al Winter:

- Minsky & Papert criticism.
- Worldwide pessimism: ANN have no future.
- ANN are abandoned for years (1969-1986).

Grail = train multilayer networks

- Proposed by Werbos (1982) in his PhD.
- Popularized by Rumelhart(1986):
 - Backpropagation + Gradient descent.
- Training technique used nowadays in 99.9% of cases.

Collateral impact: all elements must be derivable: new activation functions.

MLP (Multi-Layer Perceptron)

We had all ingredients:

- Multilayer (layer stacking) is needed (1969)
- Training algorithm was proposed (1986):
 - Backpropagation + Gradient descent
- A new hype begins

First NN = Feedforward NN:

- Groups of perceptrons (Rosenblatt neurons): arranged in layers.
- Signal flows only in one direction: "no cycles".
- All neurons of a layer are interconnected with all neurons of the next layer.
- Data is injected in the network as vectors.

Multilayer perceptron

MLP: FORMAL INGREDIENTS

Layers and its parameters:

Input layer:

- Data injected to the network as vectors.
- # neurons = # components input vector X.

Dense layers:

- $W^{[i]}$: weight matrix of layer i.
- b_i: bias vector (a weight matrix column).
- Φ_i : activation function (typically common to the layer).

Hidden layers:

- Do not "see" directly the input vector X.
- A network with multiple hidden layers is called Deep.

Output layer:

neurons depends on each problem to solve.

$$\# = n_{input}$$
 $\# = n_1$ $\# = n_2$ $\# = n_{out}$ $\Phi = \Phi_1$ $\Phi = \Phi_2$

MATHEMATICAL POINT OF VIEW

Math implications:

Matrix multiplication + activation function application

$$Y = \phi_2(W^{[2]}A_1) = \phi_2(W^{[2]}\phi_1(W^{[1]}X)) = (\phi_2 \circ W^{[2]} \circ \phi_1 \circ W^{[1]})X$$

NN training interpretation

 ϕ_1 and ϕ_2 nothing to learn: are prefixed

Find values of matrices: $W^{[1]}$ and $W^{[2]}$

Activation function key role:

- Composition of linear functions = linear function
- Can only learn linear "things":

$$Y = W^{[2]}A_1 = W^{[2]}(W^{[1]}X) = (W^{[2]}W^{[1]})X$$

- To learn non-linear problems = break linearity
- Activation function = Non-linearity

HYPERPARAMS: #layers, #neurons per layer

▶ The real role of a layer = interdimensional portal

<u>credits</u>

13

MATRIX OPERATIONS ARE NOT EASY TO INTERPRET

Think of dimensional jumps:

- One side of the dimensional gate (Z1):
 - Layer receives a vector of n_1 components from the previous layer.
 - A representation of the problem in a n_1 -dim space.
- The other side of the dimensional gate (A1):
 - The layer "performs" its operations: sums and non-linearities.
 - Outputs a vector with n_2 components (# neurons of the layer)
 - A new representation the problem in a n_2 -dim space.

WHY CHANGE PROBLEM DIMENSION?

▶ In SVM (Support Vector Machines):

• Strategy facing on non-linearly separable dataset:

Dimensionality expansion

- A "Catalogue" of predetermined kernel functions (Gaussian, ...)
- By Trial and error, the best kernel is selected.

In Neural Networks:

- A generalization of this idea
- Each layer learns the necessary type of expansion.
- Even more, the one that better fits to each concrete problem

credits

LAYER AS A TRANSFORMATION

$$# = n_{input}$$
 $# = n_1$
 $\Phi = \Phi = \Phi_1$

neuron 1

neuron 2

neuron 3

$$w_{13} = 1$$
 $w_{23} = 1$
 $x_1 + x_2 > -2.5$
 $x_3 = 2.5$

NOW DECISION IS EASY

HIPERPARAMETROS (II): #capas, #neuronas por capa

Hierarchical learning:

- Each layer builds a new "vision of the world" based on the previous layer vision.
 - Each neuron makes a question yes/no based on the representation received
 - The number of neurons in a layer (n_i) = the number of yes/no question
 - Dimension of the new representation of the input dataset (n_i –dimension), n of neurons
- NN has learnt a hierarchical representation of the dataset useful to solve a specific task.

Knowledge stored:

- Network architecture (#layers, #neurons per layer)
- Model params $\{W^{[i]}\}$
- Transfer learning: knowledge obtained solving a task could be reused to solve a different but related task

INTERNALIZED FEATURE ENGINEERING

▶ Pipelines comparison: (e. g. image classification)

19

FORTUNATELY: IT IS STILL AN ART

Heuristics:

- Starting from a low-dimensional dataset:
 - 1. To expand dimensionality = increasing #neurons in the following layers.
 - 2. Once reached a high enough dimensional representation.
 - 3. Reduce dimensionality force "learning" key features.
 - 4. Typically, dimension is reduced gradually.
- Starting from a high-dimensional dataset:
 - 1. There is an excess of information.
 - 2. From the beginning, reduce dimensionality step by step.
 - 3. Typically: in image problems.

OUTPUT LAYER = f(problem to tackle)

Binary classification:

- Classical example: dog / cat
- # neurons = 1.
- Desired output interpretation: $P(A_{out} = Y = 1)$
- Activation function: sigmoid. $\phi_{out} = \sigma(z)$

Multiclass classification:

- Classical example: dog / cat / horse
- # neurons = # classes
- Desired neuron *i* output interpretation: $P(A_{out} = Y = i)$
- \circ To give a probability interpretation: $\sum_{i=1}^n P(\mathsf{A}_{\mathsf{out}} = Y = i) = 1$
- Activation function: softmax. $\phi_{out} = softmax(z)$

$$softmax(z)_i = rac{e^{z_i}}{\sum_{i=1}^n e^{z_i}}$$

- a) If $z_i < 0$, then $e^{z_i} > 0$
- b) Values normalization $\sum_{i=1}^n e^{z_i}$

GIVING SENSE TO NETWORK TRAINING

Meaning of network training?

- Once fixed the network architecture:
 - # layers & # neurons per layer.
 - Activation function of each layer.
- Given a problem: a dataset $\{(x^{(i)}, y^{(i)}), i = 1, ... m\}$
- Given an error measure: loss function $J(x; \theta) = J(x; W^{[i]})$
- Goal: find values of parameters = weights $\theta = W^{[i]}$, i = 1, ... n

Drawbacks:

- J is non-convex: due to the non-linearities (activation functions).
 - · Probably only local minima will be found.
- Search in a parameter space of dimension 10⁴-10⁷.

IMAGE PROBLEMS: LOSS FUNCTIONS

Depends on the problem:

- Task 1: Image location (Bounding box to locate object).
 - Problem: multi-regression, predict rectangle corners.
 - Loss function: Intersection-over-Union (IoU)
- Task 2: Object detection.
 - Problem: detect if object appears in an image or not.
 - Loss function: Mean Average Precision (mAP)
- Task 3: Image segmentation
 - Problem: associate to each pixel a class label.
 - Loss function: Pixel-wise cross entropy
- Task 4: Image classification
 - Problem: associate a class to each image
 - Loss function : CrossEntropy

CLASSIFICATION PROBLEMS: CROSSENTROPY

Why such a strange expression?

- Key: network outputs are a probability.
- How measure errors?
 - If true value = 1. If $P(Y = 1) \approx 0$, must penalize.
 - If true value = 0. If $P(Y = 1) \approx 1$, must penalize.
- Combine both branches:
 - Each branch is **weighted** using $y^{(i)}$ and $1 y^{(i)}$.
- Expression can be generalized easily for > 2 classes.

Total loss function:

$$J = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \cdot log(\hat{y}^{(i)}) + (1-y^{(i)}) \cdot log(1-\hat{y}^{(i)})]$$

NETWORK TRAINING: BACKPROPAGATION + GD

Backpropagation (Rumelhart, 1986)

- Forward pass (or forward propagation):
 - For each input data, network predicts a probability.
 - An error is calculated between prediction and true label.
 - If more than an input data, average error for all inputs
- Reverse pass (backward propagation):
 - Obtain error gradient w. r. t. all weights:

$$\nabla J = \frac{\partial J}{\partial W_i}$$

- Making use of the derivative chain-rule: backpropagated errors traversing the NN.
- Gradient descent:

$$\Delta W = -\eta \nabla J$$

- Adjust weights in the direction that maximizes the reduction of loss
- Learning rate modulates the weights adjustment speed.

BATCHSIZE: BACKPROPAGATION VARIATIONS

Key point:

- Weights are updated considering gradient of error
- To obtain this mean error in the forward pass. ¿How much input samples are considered?

Error calculus approaches:

- Batch: all samples are considered.
 - Weight update algorithm has access to the complete info.
 - Very slow, more stable towards the local minima.
- Stochastic GD (SGD): a unique data instance is considered.
 - Weight update algorithm has access to a strongly biased info.
 - High variance in the obtained gradients.
- Mini-Batch: a random sample is considered.
 - Reduces variance, with a more stable convergence.
 - New hyperparameter: Batchsize (32, 64, 128, ...).

WHAT IS HAPPENING HERE? IT DOES NOT WORK

Against all odds:

- During training: unexpected problems appeared.
- Worst of all: unknown problems source.

2nd Al Winter starts 1986 - 2010

Problem	Solution	
Lack of training data	Wait until digital revolution	
Lack of computing power	Development of GPU, TPU,	
Strong dependence on the value of η (learning rate)	Learning rate schedules	
Gradient descent is slow	Faster optimizers	
	Novel activation functions	
Gradient instabilities	Weight initialization techniques	
Gradient instabilities	Batch normalization	
	Gradient clipping	

FASTER OPTIMIZERS

Gradient Descent = slow!!

	Class	Convergence speed	Convergence quality
∇J	SGD	*	***
	SGD(momentum=)	**	***
	SGD(momentum=, nesterov=True)	**	***
	Adagrad	***	* (stops too early)
η	RMSprop	***	** or ***
	Adam	***	** Of ***
	Nadam	***	** Of ***
	AdaMax	***	** Of ***
		SGD SGD(momentum=) SGD(momentum=, nesterov=True) Adagrad RMSprop Adam Nadam	SGD * SGD(momentum=) ** SGD(momentum=, nesterov=True) ** Adagrad *** RMSprop *** η Adam ***

ACTIVATION FUNCTION EVOLUTION

Period	Visualización	Name	$\phi(z)$	Características	Current use
McColluch-Pitts (50s)	θ	Step function (Heaviside)	$= \begin{cases} 0, z < \theta \\ 1, z \ge \theta \end{cases}$	No derivable	Uso teórico
	$\overline{\qquad}$	Sign function	$= \begin{cases} -1, z < \theta \\ +1, z \ge \theta \end{cases}$	No derivable	Uso teórico
Backpropagation (90s)	$\left(\frac{\sigma}{\sigma} \right)$	Sigmoid/logistic	$=\frac{1}{1+e^{-z}}$	Cálculo lento	Last layer
		Tanh	$=2\sigma(2z)-1$	Cálculo lento	Last layer
Actualidad (<2015)		ReLU (Rectified Linear Unit)	$= \max(0, z)$	Fast train	Hidden layer