ANALYSIS OF COVARIANCE

Chapter 9

LEARNING OBJECTIVES

- Explain differences between treatment factors and covariates
- Explain usual assumptions between covariates, treatments, and responses
- Write ANCOVA models for a single covariate
- Perform ANCOVA in R (upcoming Lab)

MOTIVATING EXAMPLE

- Goal: compare effects of several diets on the weights of month-old piglets
- Response: weight after being on diet for one month
- The initial weight (x_{ij}) is significantly correlated with the weight after one month

Prevent potential confounding and experimental error due to the variation in initial weight

COVARIATES AND NUISANCE FACTORS

- Nuisance factor: potential major source of variation unrelated to treatments
- **Control**: set the x_{ij} to similar level, no modeling
 - Not always possible
 - Could reduce representativeness of results
- ullet Blocking: group EU's having same/similar levels x_{ij}
 - Need to measure nuisance factor prior to randomization
 - Separate randomizations for each level!
- **Analysis of covariance:** Measure x_{ij} prior to treatment application and include relationship in the model

NOTATION COMMENTS

lacktriangle Before x_{ij} denoted the treatment factor values we studied

$$x_{i1} = x_{i2} = \cdots = x_{ir_i}$$

For ANCOVA, x_{ij} denotes measurement of a nuisance factor for the *j*-th replicate of treatment settings *i*

lacktriangle Expect the x_{ij} to be different for given i

RANDOMIZATION AND COVARIATES

- How does randomization affect covariates?
 - Reduce possibility that treatment effects are confused with covariate effects....but how?
- Let x_k be covariate value for EU k (hasn't yet been assigned to a treatment)
- \blacksquare Randomly partitioning the x_k into t groups
- Key: distribution of each group's covariates, denoted x_{ij} , similar to distribution of all x_k **
 - **less likely for small runs
- Covariates affect treatment responses similarly

ANCOVA ASSUMPTIONS

- Covariates explain EU/OU variation
- The x_k are not influenced by treatment
 - Measure covariate before treatment application
- If false, then you introduce potential confounding between covariate effects and treatment effects
- Won't be able to distinguish which is important

WHY INCLUDE COVARIATES?

- Randomization only reduces bias (potential confounding) due to covariate effect on average
- msE will be inflated estimate of σ^2 if we only fit the effects model \rightarrow low power
- Need to include covariate effect in model
- What are some common models for covariates?
 - Add effects to the existing models we have already seen

ANCOVA WITH QUANTITATIVE COVARIATES SIMPLE LINEAR REGRESSION

- Assume that covariate is quantitative and relationship with response is same for all treatments
- SLR ANCOVA model visualized:

ANCOVA WITH QUANTITATIVE COVARIATES SIMPLE LINEAR REGRESSION

Write model mathematically as:

$$Y_{ij} = \mu + \tau_i + \beta x_{ij} + E_{ij}$$

ANCOVA WITH QUANTITATIVE COVARIATES POLYNOMIAL MODELS

Polynomial ANCOVA model

$$Y_{ij} = \mu + \tau_i + \beta_1 x_{ij} + \beta_2 x_{ij}^2 + \dots + \beta_p x_{ij}^p + E_{ij}$$

- Treatment comparisons still assumed to be the same throughout the covariate values
- Polynomial coefficients are estimable
- Recommend backwards elimination
- Lack-of-fit unlikely due to no control over x_{ij} so unlikely to have replicates

COVARIATE-TREATMENT INTERACTION

May find that the relationship between covariate and response changes with treatment

- If treatment had no effect on the covariate value, then we need to assign a unique slope to each treatment
- Treatment comparisons depend on covariate value

MODEL INCLUDING COVARIATE-TREATMENT INTERACTION

One way to write the model is

$$Y_{ij} = \mu + \tau_i + \beta x_{ij} + \beta_i x_{ij} + E_{ij}$$

- Notes about this model:
 - The β_i are adjustments to β
 - lacktriangle Treatment comparisons depend on x_{ij} value

ANCOVA WITH CATEGORICAL COVARIATES

- Suppose we don't have piglet initial weight values but rather have 3 initial weight groups
 - Small (1), Medium (2), Large (3)
- Distribution of categories:

Small	Medium	Large	
11	9	10	

- How many small/medium/large assigned to each treatment group?
 - Random assignment means we EXPECT equal distribution
 - For a given experiment, the distribution will not be equal

ANCOVA WITH CATEGORICAL COVARIATES

Perform randomization and get following assignment

		Small	Medium	Large	Total:
Treatment	1	3	3	4	10
	2	2	4	4	10
	3	6	2	2	10
	Total:	11	9	10	

- Let θ_1 , θ_2 , θ_3 be effects for covariate group effect
 - Like treatment effects but we can't randomize to EUs
- What's a useful model for this data?

CATEGORICAL COVARIATE MODEL 1: TWO-FACTOR MAIN EFFECT MODEL

Want to combine two models together

- Treatment model: $Y_{ij} = \mu + \tau_i + E_{ij}$; i = 1,2,3; j = 1,...,10
- Initial group model: $Y_{kl}=\mu+\theta_k+E_{kl}; \quad k=1,2,3; \quad j=1,\dots,r_k$ $r_1=11, \ r_2=9; \quad r_3=10$
- Index individual observations using 3 subscripts:
 - *i* = treatment assigned
 - j = covariate group
 - k = replicate for paired (i,j)
- Final model:

$$Y_{ijk} = \mu + \tau_i + \boldsymbol{\theta_j} + E_{ijk}$$
 $i = 1, 2, 3; \quad j = 1, 2, 3; \quad k = 1, ..., r_{ij}; \quad E_{ijk} \sim^{iid} N(0, \sigma^2)$ $r_{11} = 3, r_{12} = 3, r_{13} = 4, ..., r_{33} = 2$

CATEGORICAL COVARIATE MODEL 2: DESIGN-DEPENDENT SUBSCRIPTS

Keep subscripts from one-way effects model

$$Y_{ij} = \mu + \tau_i + \theta_? + E_{ij}$$

- ? subscript should:
 - Equal 1, 2, or 3
 - Correspond to covariate group for jth replicate of treatment I
- Let $d[i,j] \in \{1,2,3\}$ = initial group for replicate j of treatment i
 - The "d" means it depends on the randomized design
- Final model:

$$Y_{ij} = \mu + \tau_i + \theta_{d[i,j]} + E_{ij}$$

$$i = 1,2,3; \quad j = 1,...,10; \quad d[i,j] \in \{1,2,3\}; \quad E_{ij} \sim^{iid} N(0,\sigma^2)$$

LEARNING OBJECTIVES REVIEW

- Explain differences between treatment factors and covariates
- Explain usual assumptions between covariates, treatments, and responses
- Write ANCOVA models for a single covariate
- Perform ANCOVA in R (upcoming Lab)