Deep Learning and Practice Lab 7: Caption generation with visual attention 李韡 0556157

fm.bigballon@gmail.com

Introduction

In this Lab, we are going to run a Caption generator by using CNN and RNN language generator to generate a sentence that describes the image.

We will modify the code (https://github.com/yunjey/show-attend-and-tell)

- Upgrade code for tensorflow 1.0 (model.py, solver.py).
- Deal with the memory problem

Lab Description:

- Learn how to combine CNN features and RNN language generator.
- Compare two different attention mechanisms.

Figure 1: Structure of model

Experiment setup

- Upgrade code for tensorflow 1.0 (model.py, solver.py).
- Download tf_upgrade.py
 (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/compatibility)
- 2. Using [python tf upgrade.py --infile InputFile --outfile OutputFile] to update
- Deal with the memory problem

1. prepro.py main ()

Because our machine has only 12GB memory, so we can't load all train data. So I split features to 9 files (10000 each, the last one is 2783).

And to run this code, I change the **batch_size** from 100 to 40

```
# split features.hkl to 9 files
# print n_examples
# 82783 / 10000 -> 9

part_size = 10000
for size in range(int(math.ceil(n_examples / 10000.0))):
    save_path = './data/%s/%s.features%d.hkl' % (split, split, size)

# 10000 features in each part
# the last part is 2783 features
st = size * 10000
ed = (size + 1) * 10000
if ed > n_examples:
    ed = n_examples
cur_size = ed - st
```

2. utils.py

If [split == 'train'], we will not load features.hkl.

```
# loading features in training time
if split != 'train':
    data['features'] = hickle.load(os.path.join(data_path, '%s.features.hkl' %split))
```

3. solver.py

In function train (), each epoch, we will load the 9 feature files in turn.

4. train.py

```
# solver.train()
solver.test(val_data, split='val')
```

5. model.py

change softmax alpha matrix to one hat matrix (argmax - 1 others - 0)

Result

Figure 2: batch loss of hard/soft attention

■ Some images:

■ Soft attention:

■ Hard attention (using one hat vector):

Discussion

About hard attention image:

		BLEU				
Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
Flickr8k	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27	_	_
	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC [†] °Σ	66.3	42.3	27.7	18.3	_
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
COCO	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	_	_	_	20.41
	MS Research (Fang et al., 2014)†a	_	_	_	_	20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	_
	Google NIC [†] ◦∑	66.6	46.1	32.9	24.6	_
	Log Bilinear ^o	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

```
Epoch 10

Bleu_1: 0.643495

Bleu_2: 0.429794

Bleu_3: 0.292037

Bleu_4: 0.204148

METEOR: 0.206734

ROUGE_L: 0.507476

CIDEr: 0.617629
```

Figure 3: val.bleu.scores.txt of hard attention

The hard attention's performance is worse than soft attention. (see figure 2's batch loss) According to paper, the METEOR is about 23%(training by sampling) in my lab (10 epochs, about 5 hour's training, using one hat vector), I got 20.6%.

From figure 4 & figure 5, we also can see after 10 epoch's training, my can got some good captions. But in figure 6, maybe hard attention's caption is incorrect?

(a) A man and woman are standing in a room.

(b) A man and a woman in a bar.

Figure 4: sample 1 of soft (a)/ hard(b) attention

(a) A man is playing tennis on a tennis court.

(b) A man is playing tennis on a tennis court.

Figure 5: sample 2 of soft (a)/ hard(b) attention

(a) A man and a woman standing in a kitchen.

(b) Hot people are in a pickup truck in parking.

Figure 6: sample 3 of soft (a)/ hard(b) attention