

FACULTY OF COMPUTING

SEMESTER 1 2024/2025

SECI 1013 DISCRETE STRUCTURE

SECTION 03

ASSIGNMENT 1

LECTURER: DR. MUHAMMAD ALIIF BIN AHMAD

Student name	Matric Number
TOH SHEE THONG	A24CS0309
NUR ALIA ATHIRAH BINTI SUZUDDIN	A24CS0153
LEE PEI YUAN	A24CS0262
MUHAMMAD ALIFF BIN HELMI	A24CS0272

ASSIGN MENT 1

CHAP :

- 1. U = \{\gamma\lambda\rambers, 10 \color= n \color=30\}

 Q = \{\gamma\lambda\rambers\
- a) F = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29}
- b) G = {12,14,16,18,20,22,24,26,28}
- F .ii .21
 .io .i3 G .i2 .iu .23
 .i5 .i6 .i8 .25
 .i6 .i7 .i0 .21
 .i7 .i9 .i9 .27
 .i9 .29 .29

4= { 10, 11, 12, 13, 14, 15, 16, 17, 5, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

d) $\Theta F = (G \cup F) - (G \wedge F)$ $= (G - F) \vee (F - G)$ $= \frac{1}{2} \vee \frac{1}{2} \cdot \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $= \frac{1}{2} \cdot \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{1}, \frac{1}{9}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $= \frac{1}{2} \cdot \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{1}, \frac{1}{9}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $= \frac{1}{2} \cdot \frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{1}, \frac{1}{9}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

A)
$$|A| = 3$$

$$|P(A)| = 2^3$$

$$= 8$$

d)
$$B \times C = \{ (s,n), (s,e), (s,t), (e,n), (e,e), (e,t), (t,n), (t,e), (t,t) \}$$

- b) True
- c) True
- d) Fulse
- e) Trae

1) (p → q) ∧ (¬p ←> ¬q)

9	V	79	79	P -> 9	7p ↔ 79	(p → q) ~ (7p ↔ 7q)
7	T	F	F	77	V pr T or	The state of the s
T	F	F	7	F	F	F
F	7	7	F	1	F	F
F	F	7	1	1	7	7

b) (p ← q) V (7p → 7q)

P	2	7 9	79	p co or	79 -> 79	(p 4 q) V (7p → 7 9)
7	Т	F	F	T , ,	T it	Τ,
Т	F	F	1	F	7 7	7
F	Т	7	F	F	F	F
F	F	T	T	T	Τ	1

P	9	r	79	79	15	79 V7r	7p ~ (7q V 7r)
Т	7	1	F	F	F	F	F
τ	Т	F	f	F	7	1	F
T	F	7	F	T	F	1	F
Т	ŧ	F	F	7	Т	1	F
F	T	7	1	F	F	F	F
F	7	F	ī	F	ī	7	1
F	۴	1	Т	T	F	7	1
F	F	f	T	T	7	7	1

P	٩	7	g 1r	p v (q1r)
T	T	T	Ŧ	7
1	T	F	F	19 1
T	F	T	F.	1
T	F	F	F	1
F	1	T	T	- Expair
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

= ¬p ^ (¬q ∨ ¬r) ≠ p v (q ^r)
A ≠ B

6. A= p ~ (p V q) B= p V (p ~ q)

P	9	pvy	1 6 × 6 × 4)
T	7	7	Т
1	۴	T	Т
F	T	Т	F
F	F	F	F
-			

= p \ (p \ q) = p \ (1 \ q)

A = B

P	9	pnq	br (bvd)
T	1	T	7
T	F	F	Т
F	7	F	F
F	F	F	F

- 7. P(x) = x is a student Q(x) = x is smart R(x) = x is sny
- 1) In (P(X) A P(X))
- b) ∀n (Q(x) →¬R(x))
- 8. $n < 0 \rightarrow n$ is negative number (-n)(-n) = (-1)(-1)(-n)(-n) $= + n^{2}$
 - Hence, it proves that a square of any negative numbers is positive.

Assume (n (Dnc') + }}

let m & (n (nnc')

therefore, n & C and n & (onc')

= 6

ø = 23

: He Henre, the assumption is wrong

so, (0 (DOC') = {} is true

CHAP 10. - Irreflexive a R b if and only it la-bl=2 - symmetric Z = set of integer number 7 = { 1, 2, 3, 4} 4=1 , 1=1 11-11:0 9=2 6=1 12-11=1 4:3 b=1 13-11 = 1 d=1, b=1 |1-2|=1 a= 2 6 - 2 12 - 21 = 0 a=3 b= 1 13-21 = 1 q=1 , b= 3 |1-3| = 2 q=1 b=3 |3-31 = 1 9=3 5=3 13-31=0 a=4 b=3 14-31=1 a=4 b=4 14-41=0 a=1 b=4 |2-4|=1 9=3 6=4 13-41=1 4=1, 6=4 11-41=3 hy ny ny R= {(1,3), (2,4), (3,1), (4,2)} Mr = R is irreflexive because (1,1), (2,2), (3,3), (4,4) & R R is symmetric because (2,4) ER then (4,2) ER. A is not transitive because Mr & mr 7 Mr. Ric not reflexive because (and) ER, la-al = 2 asymmetric because if (a,b) ER, then (b,a) ER, Ris not Ris not antisymmetric because if (a,b) ER and (b,a) ER, mr & Mr & Mr then a=p but a x b. 11. A = { a,b,c,d} R = { (a,a), (a,b), (a,a), (b,b), (b,c), (c,c), (c,d), (4,a), (d,d)} mr @ mr = Wr = 0 1404041

= Ris not un equivalence relation

12.
$$f(x,y) = (2x-y, x-2y)$$
; $(x,y) \in \mathbb{R} \times \mathbb{R}$,
 $\mathbb{R} = \text{real numbers}$

a)
$$3 \quad 2x_1 - y_1 = 2x_1 - y_2 - 0$$

 $x_1 - 2y_1 = x_1 - 2y_2 - 0$
 $0 = 3 \quad x_1 - \frac{y_1}{2} = x_2 - \frac{y_2}{2} - 0$

$$x_1 - 2y_1 = x_2 - 2y_1$$

 $x_1 - 2y_1 + 2y_1 = x_1$
 $x_1 = x_2$

$$3^{1} = 3^{7}$$

$$3^{2} - 3^{2} + 3^{2} = -\frac{7}{3} \cdot 3^{7}$$

: This shows that f is one to one.

13 · A =
$$\{1,2,3\}$$

B = $\{1,2,3,4\}$
C = $\{1,2\}$

f = {(1,2), (2,3), (3,4)}

is a one-to-one function

because each element in B

that, has at most one arrow

but not onto B = {1,2,3,u}

because no arrow pointing

at 1.

$$g:A\to C$$

g = { (1,2),(2,1), (3,2)}
is not a one-to-one function because has
two arrows pointing at 2 and is
onto c = {1,2} because each element in chas at least one arrow.

14.
$$f(x)=x^3$$
, $g(x)=x-1$
1) $g \cdot f = g(f(x))$ f. $g = f(g(x))$ ii) $g \cdot f = x^3-1$
 $= (x-1)^3$ f. $g = (x-1)^3$
 $= (x-1)(x-1)(x-1)$ $= x^3-3x^4+3x-1$
 $= (x^3-x^2-x^2-x^2+2x+x-1)$
 $= x^3-x^2-x^2+2x+x-1$
 $= x^3-3x^2+3x-1$
15. $a \cdot f = f(x)$ sumber of strings that do not contain D1.
(ace 1: number of strings that all numbers are zero - 1 way (are 2: number of strings that have all one before zero - (n-1) ways

return ((n-1)+((n-2)

3