Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

APR 3 1945 Please return with abstract

> 1,96 R31Fsn

NEVADA COOFERATIVE SMOW SURVEYS

66-81 - 187-96-86

Part II. Humboldt River Basins
Eastern and Southern Nevada,
and Nevada National Wildlife
Refuges.

Seasonal Snow Survey and Kindred Data, with Forecast of Stream Flow

March 1, 1945

08 18 86 86 MeX

Issued in cooperation with the Nevada Agricultural Experiment Station, United States Division of Irrigation of the Soil Conservation Service, Forest Service, Bureau of Reclamation, Weather Bureau, Geological Survey, Fish and Vildlife Service, Humboldt River Vater Users, Nevada State Engineer, and Elko-Lamoille Power Company, and Wells Power Company.

Nevada Agricultural Experiment Station

Reno, Nevada

CONTENTS

	Page
FORECAST SUM ARY OF STREAM FLOW March 1, 1945	. 1
GAINS IN FORECASTING AND NELDS	2-3
March 1 SNOV SURVEY DATA I. Upper Humboldt Basin	• 4
II. Lower Humboldt Dasin 1. Rock Creek-Little Humboldt	• 7
III. Eastern Nevada Steptoe Valley Baker Creek	. 8
IV. Southern Nevada Charleston Hountain	, 8
V. Wildlife Refuges 1. Sheldon Antelope Refuge	8 9
COMPARISON OF MARCH 1 SNOW-SURVEY DATA 1938-1945	.10-11
WINTER PRECIPITATION (NovFeb.) 1944-1945	. 12-13
VINTER RUNOFF 1942-1945	
Humboldt at Palisade Martin Creek	14
TINTER TEMPERATURE 1942-1945	
Elko	14
 Departure from Normal	.14
LELL MEASUREMENTS Humboldt and Lamoille Valleys	. 15
NORMAL SUMMER RUNOFF Humboldt at Palisade	. 16 . 16
FORECAST 1. Factors	.17

A respectation and a respectation of the contraction of the contractio 1811. 1955 B. 1870. deeperate and expenses and and the first of AND THE STATE OF STAT Andrew Commence of the Commenc THE RESERVE OF THE PROPERTY OF THE RESERVE OF THE PROPERTY OF (6, 1+3d, 1 4 erra creation and a second and a second and a second as a second a The same of the sa ACTION OF THE CONTRACT OF THE Control of the contro Consider the contract of the world will be a first of the The second of th

FORECAST SUM ARY OF STREAMFLOW

March 1, 1945

1. Humboldt Basins

The snow cover percentages March 1 of 77.6 and 88.0 on the northern and southern feeders of the upper Humboldt and 94.9 on the Little Humboldt should be realized in a similar flow in their respective basins.

In the Reese River Basin the snow cover appears to be heavier possibly by 20 percent than in 1944 and the winter precipitation at Austin was 103.3 percent or 5 percent of normal greater than last year.

At Palisade, whose measurements are affected by the water table in Lamoille and Humboldt Valleys, the average flow of 82.8 percent for the joint feeders should even be exceeded by 10 to 15 percent of normal if rains during runoff are normal.

The normal flow at Palisade March-July is 215,000 A.F. or adjusted median 203,300 A.F. on the basis of 93 percent, a runoff of 200,000 (189,000) A.F. should be realized, which approximates the normal need.

At 95 percent of normal, Martin Creek in the Little Humboldt should flow 20,300 A.F.

2. Eastern Nevada

The winter precipitation at Ely is 82.2 percent of normal or 17 percent of normal better than last year but the snow cover in Steptoe Valley and Baker Creek Basin is 12 percent less than a year ago.

3. Southern Nevada

The winter precipitation at Las Vegas Airport was only 52.2 percent of normal but the snow cover shows an average increase of 8 percent over last year.

4. Wildlife Refuges

The snow over in Sheldon Antelope Refuge in northern Washoe County is practically identical in amount with last year, though packed to half the depth.

In Ruby Lake Refuge in Elko County, the water content of the snow is practically the same as in 1943 and the winter precipitation at Arthur 95.3 percent.

The main forecast for the year will be made April 1.

* 1

GAINS IN FORECASTING AND NEEDS

1. Stream Gages

Stream gaging has now been expanded until the runoff of the Humboldt below all of the principal tributaries except above Deeth is now being exactly determined. If at all feasible, stations should be established on the main stream at Deeth and at the outlet of Lamoille Creek.

Recorders have been maintained at the canyon throats of Starr, Secret, Lamoille Creeks and South Fork to determine the relationship of the snow cover to the runoff above diversions and on lower Marys River and North Fork.

Gages are planned for Susie and Maggie Creeks to determine the possible source of the increased flow noted in the Humboldt between Moleen Canyon and Palisade. The long planned and essential gage at the canyon throat of Marys River will be definitely established this year. The counter-effect of heavy initial water supply and impeded flow should be studied with a view to increasing the net water supply of the Humboldt.

2. Well Measurements

The system of well measurements, found even more promising this past year in modifying the snow cover and runoff percentage at Palisade, has been expanded to include 8 wells in the Humboldt Valley and 15 wells in Lamoille Valley, measured monthly. These are divided for compariosn into deep and shallow wells the better to study their seasonal fluctuation. The trend of the minimum level is particularly being studied.

Snow Courses

Owing to State concentration on the search for new water sources, particularly in ground water, new snow courses are being planned on the west face of Mount Charleston overlooking Pahrump Valley and in the White Mountains.

The alternate snow course in 76 Creek adjoining upper Marys River on the west and the series of courses in Pole Creek Basin east of Marys River should be laid out without delay.

3. Safety

Survey crews are being increased to at least 3 each but distance and storm such as occurred at the time of the March 1 snow survey make the construction of additional shelter cabins imperative.

A snowmobile, like the Tucker Sno-Cat, would have made possible the crection of a high level seasonal precipitation gage on Mount Charleston this past autumn and the laying out of the snow course on the west face of Mount Charleston, failed by storm and exhaustion.

Ultimately an autogiro or helicopter will transport surveyors high above avalanches to the sources of the snow. Avalanche

restlessness has been noted this season in both the Sierra Nevada and Ruby Mountains. In the latter, in Lamoille Canyon a snow slide ruined the snow course at 8,500 ft. and some of the precipitation gages on the Terrace there.

4. Personnel

The Forest Service has been badly drained of its man power and but few civilians are available for the more remote tasks. However, men of earlier experience in the snow surveys have in several cases returned for the emergency work.

The U.S. Division of Irrigation will place a helper in snow surveying in Nevada and Arizona and the U.S. Weather Bureau is expanding its net work of seasonal and recording precipitation gages over the State.

5. Increase in State Appropriation

Through the generous approval of Governor Carville and vote of the Legislature, the State appropriation for snow-surveying for the biennium has been increased from \$1,500 to \$2,500 and from \$3,000 to \$5,000 for cooperative stream measurements. This will vitally supplement the funds of other cooperating organizations.

MARCH 1 SNOW SURVEY DATA 1. UPPER HUMBOLDT BASIN

Temperature departure Nov.-Feb. Elko (5,077 ft.) -5.9°F. Mean temperature above freezing +1.60F.

Seasonal		percentage of normal	at U.S.W.B. stations	NovFeb.					Jarbidge-Mala Vista	(6,100-5,585 ft.)	6.26 in.					٠		North Fork-Tuscarora-	Owyhee- (6,500-5,400 I	7.19	9						: Tuscarora (6,400 ft.) 86.7
er. Percentage.	of Mar. 1:	: normal :	••	••	••	••	00	:65.0) 65.6	:62.2)	••	••	••	••	: 66.99 69.3	:71.7)	••	9000	:92.2)	_	0.67 (7.00)			: 55°()	••	••	••	: 98•7
ent: Normal water:	equivalent	March 1						20.6	11.1	20.3				12.1	8			11.6	7 2	0 C	14 - C	13.6	4.°C				7.7
Water equivalent: Normal water:		••	••	••	••			13.4	6.9	**	90	**	• • •	8.1	6.3	• •	77.7	10.7	v v		0.01	9.8	2 2	•			7.6
Density	percent:	••	••	••	••	••	••	22.7 :	23.6 :	••	••	60	••	28.6 :	28.9	••	02 00	52.1	0 0	2000	51.8	29,2	29.3	••	••	••	32.2
Snow depth: Density	inches	••		••	••	••	••	59.1 :	29.2	••	• •	0.0	••	28.3	21.7 :	••	20 €1	22 22 23		TA A	31.5 :	29.5	7.5 :	••	••	••	23.6
		••	••	••	90	••		: Mare 3 :	.: Mar. 4 :	:Not taken	••	•6	••	Mar. 1 :	:Mar. 1 :	••	•••	. Mox 7		: Mar. 2	: Mar. 2 :	. Mar. 3 :		••	••	• •	Mar. 3
Flevetion feet: Date					Northern Feeders	Marys River		Bear Creek 8,100		er.		Marys River-North Forks			Gold Creek 6,600		North Fork			Jack Creek 7,000	Rodeo Flat 7,000		Tremewan Rch. 5,600		Susie-Waggie Creeks		Taylor Canyon 5,200
					Nort	Me		Bear	Fox Creek	Marys		Marys		Big B	Gold		North	F	Jack	Jack	Rodec	F Pry C	Treme		Susie		Taylo

AVERAGE OF NORTHERN FEEDERS

91.7

Higher Levels 77.6 Lower Levels 55.0

Lower Levels

:

C

the common that the control of the c

A A CONTRACTOR

1. UPPER HUMBOLDT BASIN (Cont.)

Scasonal percentage of normal at U. S. W. B. stations NovFeb.		Arthur-Wells (6,500-5,633 ft.) 116.0 Lamoille-Elko	(6,290-5,077 ft.) 134.2
Percentage of March 1	•• •• ••	:83.1) :76.2) :68.7) :69.9) :103.3	82.7) 80.5) 86.1)
Normal: water: equivalent: March 1:		24	15.0
Water :Norma equivalent:water :equiv		21.1 6.4 6.4 5.8 3.1 22.1	12.4 10.3
0 00 00 00 00 00		22 27 27 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0	25.0 24.8 27.6
Snow depth : Density: : percent:		65.8 23.7 45.1 18.8 10.2 72.1 62.7	49.7 41.5 38.1
Date : Snow depth : Density : percent :	•• •• ••	Mar. 5 Feb. 28 Feb. 28 Feb. 25 Mar. 4	Mar. 3 Mar. 1
Elevation feet	ders		8,500* 8,100 7,600
Elevati	Southern Feeders Trout-Starr-Secret Greeks:	Trout Creek Trout Creek Dorsey Basin Dry Creek Ryan Ranch Lamoille-Rabbit Creeks	Lemoille Lemoille Lemoille Lemoille

⁺ Cross Course

^{*} Snow Course Destroyed by Avalanche.

the state of the s and the state of t V Comment of the comm and the second s we will be to be the second of the second (100 ex 104 ex 100 ex 1 $A = \mathbf{e}^{-1}$, $A = \mathbf{e}^{-1}$ the second of th the state of the s

MARCH 1 SNOW SURVEY DATA

1. UPPER HUMBOLDT BASIN (Continued)

8 8	JC:	••	••	••	•	• •	•	••	••	••	••	•	• •	•	• •	••	**	,	
	:Normal water :Percentage of: Scasonal percentage of:	:equivalent Mor.1: Mar. 1 normal: normal of U.S.W.B.	stations NovFeb.					: Hylton-Kuby Lake	: (7,081-6,200 ft.)	••	•	•	••	••	••	••	•	•	128.1* Inc.
0 0 0 0	ge of	ormel							9	94.4									
00000000	: Perconta	L.Mara 1 n	••		•	••	· ·	:124.8)	: 76.3)	·•	89 1)	(+ - 70 .	••	••	••	••		••	
	Normal water	:equivelent Mar.	1		••	••	••	14.5	: 17.3		2	0.0	••	**	••	••		••	
0000000	Water	equiva-	Jent.	7 1 1	Mare 1			18.1	13.2	(0 9.	() () () () () () () () () ()	70.4	:5.9)			0 4	0.11.	15.5	
	Snow depth : Density : Water	percent:	•	•	••	••	••	26.9	27.6 :			••	28.4 :5	••	••		•	31.03	
0	<u>.</u>	••	•	•	••	••	••	••	••	•	•	••	••	••	•	•	•	. 6 6	
	Snow dept	inches						67.3	47,9	1 26	T.007		20.8			L C	000	49.5	
	,	•	• •		••	••	••	••	•	•	••	••	• 0	• •	•	• (• •	••	
		3	• (••	••	••	••	.Mar. 4	Mar. 3	TOTAL .	: Mar. c		Mar. 2				8,500 : Mar. 7	7,000 : Mar. 7	
	100))		r S		y Lak		8.500			7,400		6.600	, ,		(8,500	7,000	
	They notten	ב ווסרס מסדם	F	Southern Feeders	(Cont.)	South Fork-Ruby Lake:		Commed Cantron 8:500 : Ware	Collect Centy of	Green Mountains, vos	Harrison Pass 7,400 : Mar.	井つ	Harrison Pass 6.600 : Mare	#1 TO THE	7-		Hager Canyon		(

AVERAGE OF SOUTHERN FEEDERS

Higher Levels 88.0* Lower Levels 103.3? *The average for the Southern Feeders is computed by weighting the three groups of stations representing South Fork, Lamoille Creek, and Starr Greek on the basis of 2, 1, and 1/2 representing their relative contributions to the flow of the main Humboldt.

AVERAGE OF UPPER HUMBOLDI

Higher Levels 82.8 Lower Levels 79.2?

109.9 Inc.

MARCH 1 SNOW SURVEY DATA

11. LOWER HUMBOLDT BASIN

Temperature departure Nov.-Feb. Winnemucca +1.2°F. Mean/temperature above freezing +10.2°F.

	Elevati	on: o. o. o.	Elevation:	0 0 0 0 0 0 0		0 0 0 0 0 0 0		
	feet	: Date	Snow depth		: Water	: Normal	: Percentage of	: Precipitation
		••	inches	: percent	: equiva-	: water	: Mar. 1 normal	: (U. S. W. B. per-
		••		••	: lent	: equiva-	••	: centage of normal
		••		••	: inches	: lent	••	: Nov-Feb.)
		••		••	••	: Mar. 1	••	••
	,	••		••	••	••	••	••
Rock Creek-Little Humboldt Midas 7,	201dt 7,000	Mar.12	22.7	34.8	7.9	•• ••	•• ••	
		••		••	••	••	••	••
Little Humboldt Basin	sin	••		••	••	••	••	••
Lemance Creek	7.000	Feb. 27	33.0	29.1	9	12.6	76.2)	
Granite Peak	8,600	.Mar.	41.6		11.4	13.6	83.5)	· Faradise-Orovada
Martin Creek R.S.	7,000		24.2	27.3	9.9	7.9	5	(4,050-4,500 It.)
		••		••	••	••	S → ₩ S (· · · · · · · · · · · · · · · · · ·	. 153.4
Upper Buckskin Mt.	8,200	.Mar. 10:	35.0		14.2	10.3	137.9)	•
Lower Buckskin Mt.	6,800	:Mar. 10:	31.2	28.2	ω ω	9.4	93.6)	•••
AVERACE LITTLE HUMBOLDI	OT BASIN						94.9	
Reese River Basin		Tempe	Temperature departure		NovFeb. Austin -0.4°F.	n -0.40F.		
Big Creek		ł	Mean temperature		above freezing +10.7°F.	+10.7°F.		
Cabin Course (Middle)		: Mar. 3 :	19.9	28.13/	4.6	•	•	
Big Creek Camp Ground (Lower)	(Lower)		16.1	31.7	2	•	. •	. Amstin (6.594 ft
Upper Big Creek	8,000	Mar. 3:	36.4	25.8	9.4	• ••	• ••	
Reese River		•• •	••		••	••	••	103.3
Lower Corral	7,500	Mar. 2	6711	29.4	••	••	••	••
Upper Corral	8,500	8,500 Mar. 2	26.0	20 H 20 H 20 H	0 0 0	•• ••	•• ••	~. •

MARCH 1 SNOW SURVEY DATA EASTERN NEVADA

Temperature Departure Nov.-Feb. Ely (6,257 ft.) +0.90F. Mean temp. above freezing +8.50F.

later equive Normal water : Percentage: Precipitation	(U.S.W.B.)	percentage of	normal NovFeb.		Ely (6,257)	82.2	ζ	Lehman Caves	Nete Mone	(1,000 Ite)
. Percentage.	: of Mar. 1:	: normal :	••	••	••	••	••	••	••	••
Normal water	equivalent	Mar. 1 inches								
later equive-	: lent inches : equivalent : of Mar. 1 : (U.S.W.B.)	••	••	4.6	••	••	••	••	14.5	7.9
9	: percent :	••	••	32.4 :	**	••	**	••	22.3	21.8 :
Snow depth . Density	inches	••	••	14.2	••	••		en	64.9	36.5
. Date .	e.	••	••	7.500 : Mar. 1:	••	••	••	. Not tak	. Mar. 1:	: Mar. 1:
Elevation feet : Snow depth : Density			Steptoe Valley	Murray Summit 7.500		Baker Creek		Baker Creek No. 3 9,250: Not taken	Baker Creek No. 2 8,900 : Mar. 1:	Baker Creek No. 1 7,950 : Mar. 1

SOUTHERN NEVADA

Temperature Departure Nov.-Feb. Las Vegas A. P. (1,876 ft.) +2.60F; Kyle Can.R.S. (7,165 ft.) Mean temp. above freezing 30.80F.

	: Charleston R. S.	: (',,165 It.)	••	: Las Vegas A. P.	52.2	Sheldon Antelope Refuge (6,500 ft.) 111.6 Cedarville (4,675 ft.)
	••	80 (••	•0	***************************************	Sheldon National Antelope Refuge (Northern Washoe County) Temperature Departure NovFeb0.80F. Mean temp. above freezing +5.80F. Inc. 13.3 ; 24.8 ; 3.3 ; ; ; ;
	••	••	••	••	••	GES (Norte Nov.
	6.6	C	, a	13.3	13.6	WILDLIFE REFUGES thelope Refuge (Noture Departure Noture Departure Noture Semp. 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3
	•0	••	00	••	••	WILDD ttelol ttemp
	29.2	c	20.00	27.3	26.4	onal Ar Tempers Mean 24.8
	••	••	••	••	••	Natt
	33.9	0	ρ.Το.	48.7	51.5	Sheldon 13.3
lt.	8,200 : Feb,26 :	7,400		9,000 : Mar. 3 :	8,300 : Mar. 4 :	Sl Mountain 6,720: Feb.27; 5,680: Not taken.
Charleston Mt.	Kyle Canyon	Kyle Canyon	Rainbow Canyon	Lee Canyon	Lee Canyon	Bald Mou Virgin

MARCH 1 SNOW SURVEY DATA

Ruby Lake National Wildlife Refuge (Southern Elko County)

Temperature departure Nov.-Feb. Elko (5,077 ft.) -5.90F. ; Ruby Lake (6,012 ft.)

Mean temp. above freezing +1.6°F.; Ruby Lake

		0 0 0	0						
Elevation feet	eet	: Date		: Snow depth: Density:	Density:	Water equiva-	Normal water	* Percentage	Water equiva-: Normal water: Percentage : Precipitation
		••	••	inches	percent:	lent	equivalent : of Mar. 1		* (U. S. W. B.)
		0.0	••	••	••		: March 1	normal :	: Percentage of normal
		4.0	0.0	••	••		۰۰	••	NovFeb.
	,	••	••	((• • • • • • • • • • • • • • • • • • • •		••	••	
Hager Canyon 8	8,500	Mar	·• -	აგი ე	0007	000			: (Arthur 6,500 ft.)
	7,000	. Mar.	- - 00	49.5	° corc	C • C T	••		95.3
		••	**	••	••		50		Ruby Lake (6,200 ft.
		••	••	••	••				na.

Comparison of March 1 Show-Survey Data 1938-1945 Water Equivalent only

Courses .	:Eleva-	:1945	1944	1943	1942	1941	1940	1939	1938;
	:feet								
1. Upper Humboldt	•	•							
Basin Northern Feeders	•			•					
Marys River	•	•		•					:
Bear Creek	:8,100	13.4	14.3	: 22.5	18.3	14.2	15.3	16.6	6.3:
Fox Creek Marys River	*6,900 *8,000	6.9	9.5	9.6	9.8	7.6	5.7	8.7	7.2
Mar y S Trr v Cr	:	•	* - 7 • 4	: 24.0	T (0 (
Marys River-North	:	•	•	•					:
Fork	:6,800	: Q7	. ().	27/ 7	20.0				0.0:
Big Bend Gold Creek R. S.	:6,600	6.3	6.4	10.9	8.1	6.2	4.7	1.5	71.
North Fork	:	:							:
Jack Creek	· • 7,800	: 10.7	9.4	:12.3	11.5	9.4	8.9	12.9	4.5:
Jack Creek	:7,000	: 6.6	4.9	: 3.3:	6.7:	4 4.2	1.3	7.9:	2.4:
Rodeo Flat Fry Canyon	:7,000 :6,800		:10.1 :8.2					10.0	_
Tremewan Ranch	:5,600		2.9					2.4:	
Susie-Maggie Creek	0 0	o c		:					•
Taylor Canyon	:5,200	7.6	1.2	4.4	8.5	8.3	3.0	5.6	4.9
	•	•	•	•					
Southern Feeders	ů č	0	9	8					:
Trout-Starr-Secret	6	•		2					:
Creeks	:0 =00	: :	•						
Trout Creek Trout Creek	8,500 6,900	21.1	11.09	24.8	17-5	24.9	19:7	19.6	16.1:
Dorsey Basin	:8,100	10.1	: 12.4	:10.1:	14.0	9.6	11.3	8.1:	6.1:
Dry Creek	:6,500	5.8	5.9	: 4.8:	7.6:	6.68	3.2	3.6:	5.8:
Ryan Ranch	:5,775	3.1	LL. O	: 0.88	4.38	9.48	0.58	1.6:	1.5:
Lamoille-Rabbits	0	6	6					0	•
Creeks	• 0 000	22 1	27 7	. 77 6	27 0	22 7	20 1	27 1.0	100
Lamoille Canyon Lamoille Canyon	:9,000		21.7						
Lamoille Canyon	8,500	•	: 16.1	:21.0:	18.5	15.3	14.7:	:	•
Lamoille Canyon	:8,100		13.0						
Lamoille Canyon Lamoille Canyon	:7,600 :7,400		10.5						
· ·	•								
South Fork-Ruby Lake Corral Canyon	8,500	: 18.1	16.2	:15.8	15.8:	13.4	14.4	16.1:	11.3:
Green Mountain	:8,000	: 12.3	12.6	:12.2:	:14.1:	13.78	13.1	15.3:	11.1:
Harrison Pass #2	:7,400	6.9	5.0	2.6					
Harrison Pass #1 Hagar Canyon	:6,600 :8,500	: 17.0	7.0	:19.1	21.0	14.8	19.3) • 1	L'- 0 L 0
Cave Creek	:7,000	: 15.5		:14.6:	16.2:	0 :	12.4:	:	•
		♣ C:	ross C	ourse					

Comparison of March 1 Snow Survey Data 1938-1945 (Continued)

Courses	·Flavo	1015	1011	101.7	10.2	a 1 (1). 5	1 Ol O	1070	7070	
OO WI DOD	:Eleva=	・エフリン	- 744	・エフリン	3 1 742	3 - 74 -	T 240	エソクソ	1770	•
	feet	2		0	•	6	:			*
2. Lower Humboldt	8	•		•	0	•				:
Basin Rock Creek-Little Humboldt River	•	0 0		•		:				:
Midas Little Humboldt	7,000	7.9	:4.8	5.2	9,2	7.3	5.2			:
Basin	•	:			•	•				•
Lamance Creek Granite Peak	7,000	9.6	700	13.6	10.4	11.9	9.9	8.7	6.9	
Martin Cr. R.S.	7,000	6.6	3.8	18.9	13.7	$\frac{15}{7}$	15.0	12.8	13.5	0
Upper Buckskin Lower Buckskin	8,600 7,000 8,200 6,800	8.8		9.3	7.6	130年	10.8. 5.8	8.0.	7.2	:
Reese River Basin Big Creek	•									2
Upper Big Creek Cabin Course (Middle	8,000	9.4:	7.3	3.4	6.6			:		:
Camp Ground (Lower)	•	: 5.1:	2.0	T	4.7		•	:		
Reese River Upper Corral	8,500	4 9	9.8	5.1.	5.0		:	2		•
Lower Corral	7,500	3.5	3.9	2.7	5.0			:		2
3. Eastern Nevada	•	•	9	8			:	:		e ii
Steptoe Valley	* FOO	1 1 12	64	9				•		¢ P
Murray Summit Baker Creek	7,500	4.6	5,2	5.0	3.7			0		
Baker Creek #3	:9,250			13.0:		•	2			2
Baker Creek #2 Baker Creek #1	·8,950 ·7,950	7.9	34.5:	12.8:	15.6:	•	6	3		
4.Southern Nevada				9	•	:		0		
Charleston Mountain	_		:	0 0 6	9	•		•		
Kyle Canyon Kyle Canyon	:8,200 : :7,400 :	9.9	12.9	15.7:	8.8:	÷	:	:		}
Rainbow Canyon	:7,800	9.5:	12.2:	16,7:	10.5:		2			
Lee Canyon Lee Canyon	:9,000	13.3:	9.3:	17.48	7.8:	8	8	:		
5. Nevada Wildlife	•		9	:	9	:	:	:		
Refuge Sheldon Antelope	•		:	:	6	•	•		3	
Refuge	6 720	7 70	7 1.	7 7	60	:	:	:	8	
Bald Mountain Mahogany Mountain	:6,720 :5,680	2.5:		7.7:			:	•	3	
Ruby Lake Wildlife	Refuge:	•	0	:	•	•	*	1	:	
Hagar Canyon	:8,500 :7,000			19:1:			• •	6	:	
	. 1,000 .	- J • J •	•	14.6:	TO • Z:	0:	1		:	

WINTER PRECIPITATION (U. S. Weather Bureau)

1. Upper Humboldt Basin

Northern Feeders	Harys	River		. Nor	th Fork		Maggie-Susie Creeks
Stations	Jarbidge:	Mala Vis	sta : 1	North Fork	c: Owyh	nee :	Tuscarora
Elevation (Ft. alt.)	(6,100)	(5,585)		(6,500)	(5,4	.00)	(6,400)
November December January February Total	1.95 1.77 1.35 3.90 8.97	1.33 0.76 0.15 1.32 3.56		1.43 0.57 0.20 1.35 3.55	1.	80 11 20 59	1.71 0.50 1.37 1.64 5.22
Weather Bus Normal (NovFeb	•			4.64	5.	.10	6.02
Seasonal Po				76.5	111	8.	86.7
Area Percen	ntage				91	Lo7	
North	ern Feeder	S		91.7			
Feeders	Frout-Star Nells:Clov			Creeks	3		th Fork
Elevation							81) (6,200)
November December January February Total	2.97 (c 0.56 0.36 1.62 5.51	losed)	4.06 0.56 0.42 1.99 7.03	5.34 1.21 0.82 2.74 10.11	2.19 0.51 0.35 1.67 4.72	0.90	ed) 1.79 0.01) Inc.0.05) Inc.1.85 Inc.
Normal (NovFeb.)4.00	6.21	7•38	6.25	4.43	5.04	-
Seasonal P of Norma	~~		95•3	161.8	106.5		
Area Perce	ntage 1	16.6		131	1. 2		
South	ern Feeder	S	128	•3*			

*See Footnote p. 6

WINTER PRECIPITATION

(U. S. Weather Eureau)

2. Lower Numboldt Basin

Stations	Paradise Valley	Orovada	Austin	Battle Mt.	Winne- mucca	Rye Patch Dam	Lovelock
Elevation (Ft. Alt.) November December January February	(4,650) 2.29 0.87 0.83 2.22	(4,300) 2.68 0.73 1.38 1.56	(6,594) 2.13 0.56 1.07 0.66	(4,513) 1.54 0 0.63 1.33	1.77	(4,161) 1.56	1.33
Total	6.21	6.35	4.42	3.50	6.32	4.71	3.79
Normal (NovFeb.) 4.10	4.09	4.28	2.54	3.70		1.71
Seasonal F of norm	ercentage	155.3	103.3	137.8	170.8		221.6
Area Perce	ntage 153	-4	103.3	1	54.3		221.6
Stations	stern Nev	ada Lehman Cav Nat. Mon.	res C	Southern harlesto		5. Wil Re Ruby Lake	dlife fuges Sheldon
Elevation (Pt. Alt.)	(6,257 ft.)	(7,200 ft.	.)	(7,165 f	t.)	(6,200 ft.)	(6,500 ft.)
November December January February	1.60 0.44 0.23 0.63	0 0.39 1.56		4.44 0.81 1.02 2.76		1.79 0.01 0.05	2.16 0.41 1.65 1.06
Total	2.90			9.03			5.28
Normal (NovFeb.	·) 3·53						4.73
Seasonal I	Percentage 82.2			(Las Veg 52.2	as)	(Arth 95•	A .

WINTER RUNOFF 1942-1943-1944-1945 (Nov.-Feb.)

(Acrefeet)

	Normal	740 750 830	3,700			
Martin Creek at U.S. Gaging Point	1944-1945	582 538 764	5,884 (159.9%)		1944-1945 +1.5 +0.2 +2.9 +1.2 +10.4 + 8.5 + 8.5 + 10.2 +10.2	
	1943-1944		2,190 (59.5%)	. (adopted 1942) 22,375 = 196,7% EDEPARTURE FROM NORMAL F.	Winnemucca 943-1944 +1.4 +1.6 -6.0 -1.6 -1.6 -1.6 -1.6 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0	
	1942-1943	682 1,140 7,010	14,922 (405.5%)		942-1943 +1.4 +3.6 +5.4 +5.7 +5.5 +7.8 +7.8 +1.6 0.0 +7.2	t > -
	1941-1942		2,300 approx. (62.5%)			. • •
	Normal*	4,600 5,400 6,600	28,800	normal Median PERFTUF	DURING	+1•6
٤	1944-3945	3,780 5,640 6,920	44,010 (152.8%)	*37-year ** Normal WINTER TEM	n H	+4.2
Humboldt River at Falisade	1943-1944	3,280 4,340 4,100	18,347		641.1111	8.00
	1942-1943	5,530 13,400 35,880 70,520 125,350		E1ko 1942-1943 10.0 10.1 10.0 10.1 10.0 10.1 10.2 10	42°2	
Humboldt Ri	1941-1942		Feb. 20,259 Tot. 64,275 (223.2%)		Nove Jane Average Jane Feb.	Average

WELL MEASUREMENTS

March 1

The March 1 level of the Humboldt Valley wells, though lower than during the years of 1942, 1943 and 1944, is considerably higher than in 1941, and of the Lamoille Valley wells seems to be at its highest since that

one exception lower than in 1942 and 1943. Furthermore, unlike 1941 all levels are above normal or avarage for 10 years. Taken individually, the low water levels of the Lamoille wells are all higher than in 1944 though with

Lamoille Valley (Average of 5 wells 4.24 ft.) To water level:	0	1937	4 8 4 0 0 0 0 0 0	0.000	1942
Upper Humboldt Valley (Average of 7 wells) 11.62 ft.	7 wells 5 wells	1941		1945	*For 1941 to 1944 approximately April 1

Low Water Departure from Normal in Lamoille Valley Wells

=

P. Boardman The Low-Mater Departure from Wormal of some of the Lamoille wells since 1935 has been prepared by Here following table. in the following table.

Lamoille rells

*	945
*	1 1942 1942 1942 1944 1944 1
ft.) from Normal (/vg. of 10 Yrs. 135-144	1943
rs. 135	1942
of 10 Y	1941
(rvg.	1940
from Normal (/vg.	0201
•) from	0 %0
ure (ft	
Depart	
Low later Departure (ft.)	
Lo	
Low ater Departure (ft.) from Normal (/vg. of 10 Yrs. '35-'44	Depth Leil
	1.107

	• · · · · · · · · · · · · · · · · · · ·	*Frorisional
1945	11 + + + + + + + + + + + + + + + + + +	
1944	0 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1943	4.00+ 4.00+ 4.00+ 4.00+ 5.00+ 5.00+ 5.00+	
1942	* * * * * * * * * * * * * * * * * * *	
1941	7. 2. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.))
1940	24 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-
1939	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0
1938	11.0	4 •
1937	245000	-1.4
1936	1	0 -1 +
1935	11.27.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1.3
Leile	23.3 14.2 20.3 7.1 2.9	5.5
Depth	26.4 15.6 175.6 13.4 5.1	6.9
Vell	Charles Church Case Patterson McKinney Gate	Lytton Lane 2

NORMAL SUMMER RUNOFF

March - July and March-September

		Upper Humboldt at Palisade	(Acre Feet)		Creek se Valley
37 Yr, Average 1903/04-1939/40		Adju	Normal Median Adjusted 1903/06 and 1912/43		
Mch. Apr. May June July Total	32,600 47,200 54,500 60,400 20,300 215,000	25,6 39,7 51,0 70,5 16,5 203,3	00 00 00 00	3,6 6,3 6,5 2,9 20,3	30 30 50 00
Aug. Sept. Mch Sept.	3,600 2,100 220,700	2,2 1,7 207,2	00		20 00 4 0

... : . in the second *i*. .

FORECAST

The final forecast of streamflow for the season must depend upon the two snow surveys of March 1 and April 1 which are designed to give the basic snow cover at the beginning of March, when the shallow snow of the Great Basin mountains begins to melt, and the residual snow cover at the beginning of April, which should indicate the probable span of streamflow. In the present or earlier bulletin, therefore, only the general forecast based on the initial snow cover will be made.

1. Factors

The chief factors upon which the general accuracy of the forecasts must be based are the snow cover (or winter precipitation) and
the precipitation during the earlier portion of the period of
runoff when the snow cover is most widely extended. The relative
value of the two factors of total winter precipitation and snow
cover residue has now become a problem of active discussion and
investigation with very practical application in years like the
present of wide divergence between them.

For the broad alluvial valley below the canyon outlets of the feeders, the height of the water table represents the relative capacity of the soil to hold snow-melt and the correction that should be made in the percentage represented by the snow cover.

2. Basic Data

The following basic data with adjustments in factors represent the trend and probable quantity of the runoff:

- A. Precipitation and Snow Cover
 - I. Upper Humboldt Basin

(Percentage of Normal)

(a) Winter Precipitation and Snow Cover Mch. 1

(Mch. 1) 77.6 Northern Feeders Precip. (Nov. Feb.) 91.7; Snow Cover Southern Feeders 128.1 11 88.0 11 Inc. 17 11 11 11 11 82.0 Upper Humboldt 109.9 Inc.

(b) Winter Runoff at Palisade 152.8; (Median 196.7)

Runoff approximately normal during Nov. - Jan. but double normal in Feb.

(c) Well Heasurements (feet above normal)

Humboldt Valley +0.99 ft. Lamoille Valley +0.94 ft.

Estimated effect at Palisade 10-15 percent of normal.

· ·

After the state of the state of

Commence of the state of the st

we have the first of a grant and engineering the second of the second of

was the **!** 1.4 (1.6) . MILE

to a transfer of the second of

Section of the

(d) Estimated March-July runoff at Palisade
82.8 percent expanded to 95.0 percent because
of height of water table.
Normal 215,000 A.F. (Mean Median 203,300 A.F.)
Probable runoff (a) Mch.-July 200,000 A.F.;
(b) Mch.-Sept. 205,000 A.F.

II. Lower Humboldt Basin

(Percentage of Mormal)

- 1. Little Humboldt
- (a) Winter Frecipitation and Snow Cover Mar. 1 Precip. (Mov.-Feb.) 153.4; Snow Cover (Mch. 1) 94.9
 - (b) inter Munoff of Partin Creek 159.9

 (c) Estimated Munoff Mch. July 81 percent.

 Normal 20,320 A.F. (Mch. July); 21,440 (Mch. Sept.).

 Probable runoff Mch. July 16,460 A.F. Mch. Sept. 17,370

 A.F.
- 2. Reese River

Linter Precip. (Austin) 103.3
Snow Cover approx. 20 percent greater than in 1944.

3. Storage above Lovelock.

Rye Patch Reservoir is full, a month early, at its capacity of 178,100 A.F.

The Pitt-Taylor Reservoirs now have 11,000 A.F. stored in a usable capacity of 37,000 A.F.

III. Eastern Nevada

The Nov.-Feb. precipitation at Ely is 82.2 percent of normal or 17 percent better than last year. But the snow cover is 12 percent less than a year ago.

IV. Southern Nevada

The precipitation at Las Vegas Airport for Nov.-Feb. has been 52.2 percent of normal, but the snow cover shows an average increase of 8 percent over last year.

V. Wildlife Refuges

1. Sheldon Antelope Refuge

The snow cover at Bald Mountain is practically identical in amount with last year, though packed to half the depth. The precipitation for Nov.-March was 111.6 percent of normal.

_____ .

2. Ruby Lake Wildlife Refuge

The water content of the snow cover is approximately the same as in 1943 and the precipitation (Nov.-Feb.) as reported from Arthur is 95.3 percent of normal.

3. Accuracy of Forecasts 1943-44

(1) Upper Humboldt

The snow cover of the Upper Humboldt Basin on March 1 was 74.1 percent of normal of March 1 and April 1 the water table as shown by by wells was slightly normal and the winter runoff was 63.7 percent of normal despite a minus departure in temperature of 9° to 2°F in January and February. On the assumption that the excess effect of the water table should be at least 20 percent of normal the revised forecast of runoff at Palisade was set at 95 percent.

The precipitation during runoff was greatly deficient in March, May, and July but greatly in excess in April and June. For the period of March-June, when most effective, it totaled 143.0 percent of normal. The total excess due to rain on the basis of measurement in June 1913 was 20 percent.

The total runoff at Palisade March-July was 259,020 A.F. or 120.5 percent.

The data are summarized in the following table:

Water Table Mch. 1 and Apr. 1420.0 "

Probable Runoff
Mch.-July at Palisade..... 95.0 "

Effect of excess precip.

Mch.-June on runoff..... 20.0

Probable Max. Runoff......115.0 "

Actual Runoff 120.5

(2) Martin Creek

A mystery enveloped the snow cover in Paradise Valley in the Little Humboldt Basin in 194.

The snow survey at the headwaters of Martin Creek March 1 was 54.5 percent of normal but on April 1 was 90.8 percent and at Buckskin Mountain, not measured March 1, it was even 98.9 percent.

Last summer it was reported that precipitation of unusual intensity had fallen in that region during March. The total runoff, however, of Martin Creek during March-July was only 68.6 percent of normal.

* 49:

gradient de la company de la

we are the second of the secon

Annual Control Control

The second of the seco

Berger Burner Burner

The state of the s

The state of the s

It now appears that the precipitation for March as averaged for the two stations of Paradise Valley and Orovada on either side of the watershed was only 70.8 percent of normal but for April and June was greatly in excess of normal as in the Upper Humboldt. For the period of March-June, the total precipitation was 149.1 percent of normal, or on the basis of the Humboldt creating an increase in runoff of 20 percent.

The data are as follows:

Snow Cover Mch. 1 Precip. NovFeb.	54.5	percent
Probable Runoff	54.5	11
Effect of Excess Precipation MchJune on Runoff	20.0	12
Prob. Max. Runoff	75.0	15
Actual Runoff	68.6	tt

Neither the precipitation of 90.6 percent of normal Nov. Feb. nor the snow cover of 94.9 percent reported April 1 is harmonious with the runoff.

4. Preliminary Forecasts 1944-45

The preliminary forecasts for 1944-45 have been limited to Lamoille Canyon (7,400 ft.) in the Upper Humboldt Basin and Murray Summit (7,500 ft.) in Steptoe Valley of Eastern Nevada.

	Upper Humboldt Basin				Eastern Nevada		
		Density (%)		of		Density (%)	
Dec. 17	20.8	23.6	4.9	40.2			
Jan. 1	25.3	23.7	6.0	49.2	12.5	21.6	2.7
Feb. 11	30.8	28.6	18,8	71.9	13.4	23.1	3.1
Mar. 1	38.1	27.6	10.5	86.1	14.2	32.4	4.6

APPRECIATION

Unusual effort was made by organizations and snow surveyors to obtain the measurements the present year despite lack of personnel and the heavy storm at the beginning of March.

Nevada Agricultural Experiment
Station
March 13, 1945

J. E. Church

H. P. Boardman

Forecasters

Or an above the second second second

Start and the st

LANCE CONTRACTOR OF THE SECOND CONTRACTOR OF T The state of the s P v l

A STATE OF THE STA

