2 – Linguagens Regulares

Aula 11

Sumário

Capítulo 2 – Linguagens Regulares

- 2.1. Definição
 - 2.1.1. Linguagem Tipo 3
 - 2.1.2. Sistema de estados finitos
- 2.2. Formalismos
 - 2.2.1. Autômatos
 - a. Autômato Finito Determinístico (AFD)
 - b. Autômato Finito Não-Determinístico
 - c. Autômato Finito com Movimentos Vazios
 - d. Equivalência entre autômatos
 - e. Minimização de autômatos
 - 2.2.2. Expressão Regular
 - 2.2.3. Gramática Regular
 - 2.2.4. Transformações e equivalências entre os formalismos

Sumário

Capítulo 2 – Linguagens Regulares

2.2.3. Gramática Regular

- a. Gramática Linear Unitária
- 2.2.3. Transformações e equivalências entre os formalismos
 - a. Automato ↔ Expressão regular (já vimos)
 - b. Autômato ↔ Gramática Regular
 - b.1. Autômato → Gramática Regular
 - b.2. Gramática Regular → Autômato
 - c. Expressão Regular ↔ Gramática Regular

Linguagens Regulares

- Estudaremos três abordagens (Formalismos):
 - 1. Autômato finito (já vimos)
 - 2. Expressão regular (já vimos)
 - 3. Gramática regular

Linguagens Regulares

- Estudaremos três abordagens (Formalismos):
 - 1. Autômato finito(ja vimos)
 - Formalismo operacional ou reconhecedor
 - Basicamente um sistema de estados finitos
 - 2. Expressão regular(ja vimos)
 - Formalismo denotacional (funcional) ou gerador
 - Defindas a partir de três elementos:
 - Conjuntos básicos, Concatenação, União
 - 3. Gramática regular
 - Formalismo axiomático ou gerador
 - Gramática com restrições da forma das regras de produção

Hierarquia de Chomsky

Tipo 0. Gramáticas com estruturas de frase

Tipo 1. Gram. Sensíveis ao contexto

- Nenhuma das regras de produção pode reduzir o comprimento da forma sentencial que for substituida
- Se $\alpha \rightarrow \beta$ então $|\alpha| <= |\beta|$

Tipo 2. Gram. Livres de contexto

- As regras tem apenas uma Variavel do lado esquerdo
- Não pode ter terminal do lado esquerdo
- Ex:
 - $A \rightarrow \beta$
 - Aa → β, não pode

Tipo 3. Gram. Regulares

- Deve ser Linear à direita ou à esquerda
- Ex:
 - $A \rightarrow aB \mid a$
 - B → Ba | a
 - A → ABa, Não pode

- Gramática regular
 - Além das características definidas na hierarquia <u>Chomsky</u> podemos ainda restringir um pouco mais;
 - Isto é, classificá-las de acordo com o comprimento do lado direito das produções

- Gramática regular G = (V, T, P, S)
 - Gramática Linear à Direita (GLD)
 - $A \rightarrow WB$ ou $A \rightarrow W$
 - Gramática Linear à Esquerda (GLE)
 - A → Bw ou A → w
 - Gramática Linear Unitária à Direita (GLUD)
 - GLD
 - | w | ≤ 1
 - Gramática Linear Unitária à Esquerda (GLUE)
 - GLE
 - | w | ≤ 1

- <u>Teorema</u>: Equivalência das Gramáticas Lineares
 - Seja L uma linguagem. Então:
 - L é gerada por uma GLD sse
 - L é gerada por uma GLE sse
 - L é gerada por uma GLUD sse
 - L é gerada por uma GLUE

Exemplo: Gram. Regular: a(ba)*

Linear a direita

$$-G = (\{S, A\}, \{a, b\}, P, S)$$

- S → aA
- A → baA | ε
- Linear à Esquerda.

$$-G = (\{S\}, \{a, b\}, P, S)$$

Linear Unitária à Direita.

$$- G = (\{ S, A, B \}, \{ a, b \}, P, S)$$

- S → aA
- $A \rightarrow bB \mid \epsilon$
- B → aA
- Linear Unitária à Esquerda.

$$-G = (\{S, A\}, \{a, b\}, P, S)$$

- S → Aa | a
- A → Sb

Sumário

Capítulo 2 – Linguagens Regulares

2.2.3. Gramática Regular

2.2.3. Transformações e equivalências entre os formalismos

- a. Automato ↔ Expressão regular (já vimos)
- b. Autômato ↔ Gramática Regular
 - b.1. Autômato → Gramática Regular
 - b.2. Gramática Regular → Autômato
- c. Expressão Regular ↔ Gramática Regular

Transformações e equivalências

Os formalismos são equivalentes para as linguagens regulares <u>Tipo 3</u>

 Portanto é possível escrever uma linguagem regular por meio de um Autômato, de uma expressão regular ou de uma gramática regular

Sumário

Capítulo 2 – Linguagens Regulares

- 2.2.3. Gramática Regular
- 2.2.3. Transformações e equivalências entre os formalismos
 - a. Automato ↔ Expressão regular (já vimos)
 - b. Autômato ↔ Gramática Regular
 - **b.1.** Autômato → Gramática Regular
 - b.2. Gramática Regular → Autômato
 - c. Expressão Regular ↔ Gramática Regular

• Autômato → Gramática Regular

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S (aqui é o q0)

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>S</u>, ao chegar <u>a</u>, o que acontece?

Vamos trocar os nomes dos estados para facilitar nossa escrita!

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em S, ao chegar a, o que acontece?

Vamos trocar os nomes dos estados para facilitar nossa escrita!

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em S, ao chegar a, o que acontece?

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>S</u>, ao chegar <u>a</u>, o que acontece? - processou <u>a</u> e mudou para o estado <u>A</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>S</u>, ao chegar <u>a</u>, o que acontece?

- processou <u>a</u> e mudou para o estado <u>A</u>
- então você acaba de produzir <u>aA</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>S</u>, ao chegar <u>b</u>, o que acontece?

Continuando...

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em \underline{S} , ao chegar \underline{b} , o que acontece? - processou \underline{b} e mudou para o estado \underline{B}

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>S</u>, ao chegar <u>b</u>, o que acontece?

- processou **b** e mudou para o estado **B**
- então você acaba de produzir **bB**

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em A, ao chegar b, o que acontece?

Continuando...

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em A, ao chegar b, o que acontece?

- processou **b** e mudou para o estado **B**
- então você acaba de produzir **bB**

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em A, ao chegar a, o que acontece?

- processou <u>a</u> e mudou para o estado <u>C</u>
- então você acaba de produzir <u>aC</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em **B**, ao chegar **a**, o que acontece?

- processou **a** e mudou para o estado **A**
- então você acaba de produzir **aA**

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em **B**, ao chegar **b**, o que acontece?

- processou <u>b</u> e mudou para o estado <u>C</u>
- então você acaba de produzir **bC**

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>C</u>, ao chegar <u>b</u>, o que acontece?

- processou <u>b</u> e mudou para o estado <u>C</u>
- então você acaba de produzir **bC**

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>C</u>, ao chegar <u>a</u>, o que acontece?

- processou <u>a</u> e mudou para o estado <u>C</u>
- então você acaba de produzir <u>aC</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>C</u>, ao chegar <u>a</u>, o que acontece?

- processou <u>a</u> e pára
- então você acaba de produzir <u>a</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Estando em <u>C</u>, ao chegar <u>b</u>, o que acontece?

- processou <u>b</u> e pára
- então você acaba de produzir <u>b</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Gram reg, G

 $S \rightarrow aA \mid bB$

 $A \rightarrow bB \mid aC$

 $B \rightarrow aA \mid bC$

 $C \rightarrow bC \mid aC \mid \epsilon$

É equivalente, pois C é estado final

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Note que, esta Gramatica Regular é GLU a Direita.

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

Como seria construir uma GLU a Esquerda?

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece pelo simbolo inicial, S

- Não é tão simples como o GLUD
- Tem algumas técnicas que nos ajudam
- Requer mais atenção;
- Ao final, quando for testar, pode surgir alguns problemas e você ter que ajustar na mão

Como seria construir uma GLU a Esquerda?

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C →

GLUE

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa

GLUE

Estando em <u>C</u>, veio de <u>A</u> quando chegou <u>a</u> - então você acaba de produzir <u>Ab</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb

GLUE

Estando em <u>C</u>, veio de <u>B</u> quando chegou <u>b</u> - então você acaba de produzir <u>Bb</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca

GLUE

Estando em <u>C</u>, veio de <u>C</u> quando chegou <u>a</u> - então você acaba de produzir <u>Ca</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca | Cb

GLUE

Estando em <u>C</u>, veio de <u>C</u> quando chegou <u>b</u> - então você acaba de produzir <u>Cb</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca | Cb

A → Sa

GLUE

Estando em <u>A</u>, veio de <u>S</u> quando chegou <u>a</u> - então você acaba de produzir <u>Sa</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

$$C \rightarrow Aa \mid Bb \mid Ca \mid Cb$$

A $\rightarrow Sa \mid Ba$

GLUE

Estando em <u>A</u>, veio de <u>B</u> quando chegou <u>a</u> - então você acaba de produzir <u>Ba</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca | Cb

A → Sa | Ba

 $B \rightarrow Sb$

GLUE

Estando em **B**, veio de **S** quando chegou **b** - então você acaba de produzir **Sb**

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca | Cb

 $A \rightarrow Sa \mid Ba$

 $B \rightarrow Sb \mid Aa$

GLUE

Estando em **B**, veio de **A** quando chegou **a** - então você acaba de produzir **Aa**

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca | Cb

 $A \rightarrow Sa \mid Ba$

 $B \rightarrow Sb \mid Aa$

 $S \ \to \ \epsilon$

GLUE

Estando em <u>S</u>, veio de <u>?</u> quando chegou <u>E</u> - então você acaba de produzir <u>E</u>

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca | Cb

 $A \rightarrow Sa \mid Ba$

 $B \rightarrow Sb \mid Aa$

 $S \,\to\, \epsilon$

GLUE

Estando em <u>S</u>, veio de <u>?</u> quando chegou <u>E</u> - então você acaba de produzir <u>E</u>

Logo: Substituindo S → ε nas produções acima

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

C → Aa | Bb | Ca | Cb

 $A \rightarrow a \mid Ba$

 $B \rightarrow b \mid Aa$

Agora temos que testar...

GLUE

Estando em <u>S</u>, veio de <u>?</u> quando chegou <u>E</u> - então você acaba de produzir <u>E</u>

Logo: Substituindo S → ε nas produções acima

- Autômato → Gramática Regular
- G = (V, T, P, S)
- Comece por algum simbolo final

Gram reg, G

S → Aa | Bb | Sa | Sb

 $A \rightarrow a \mid Ba$

 $B \rightarrow b \mid Aa$

GLUE

Para melhorar podemos trocar C por S, para ficar igual a definição

Agora temos que testar...

Sumário

Capítulo 2 – Linguagens Regulares

- 2.2.3. Gramática Regular
- 2.2.3. Transformações e equivalências entre os formalismos
 - a. Automato ↔ Expressão regular (já vimos)
 - b. Autômato ↔ Gramática Regular
 - b.1. Autômato → Gramática Regular
 - **b.2. Gramática Regular** → **Autômato**
 - c. Expressão Regular ↔ Gramática Regular

- Gramática Regular → Autômato
- Processo mais simples

Gram reg, G

 $S \rightarrow aA \mid bB$

 $A \rightarrow bB \mid aC$

 $B \rightarrow aA \mid bC$

- Gramática Regular → Autômato
- Processo mais simples
- Começando por S → aA

Processa <u>a</u> e vai para o estado <u>A</u>

Gram reg, G

 $S \rightarrow aA \mid bB$

 $A \rightarrow bB \mid aC$

 $B \rightarrow aA \mid bC$

- Gramática Regular → Autômato
- Processo mais simples
- Agora, S → bB

Processa **b** e vai para o estado **B**

Gram reg, G

 $S \rightarrow aA \mid bB$

 $A \rightarrow bB \mid aC$

 $B \rightarrow aA \mid bC$

- Gramática Regular → Autômato
- Processo mais simples
- Agora, A → bB

Processa **b** e vai para o estado **B**

Gram reg, G

 $S \rightarrow aA \mid bB$

 $A \rightarrow bB \mid aC$

 $B \rightarrow aA \mid bC$

- Gramática Regular → Autômato
- Processo mais simples
- Assim por diante...

Gram reg, G $S \rightarrow aA \mid bB$ $A \rightarrow bB \mid aC$ $B \rightarrow aA \mid bC$ $C \rightarrow bC \mid aC \mid \epsilon$

- Gramática Regular → Autômato
- Processo mais simples
- Estados finais:
 - Possuem terminais explicitamente, ou
 - Caso transforme em 8

```
Gram reg, G
S \rightarrow aA \mid bB
A \rightarrow bB \mid aC
B \rightarrow aA \mid bC
C \rightarrow bC \mid aC \mid \epsilon
```


Neste caso apenas C é estado final. A e B não estados finais pois eles não tem A \rightarrow ϵ e B \rightarrow ϵ , respectivamente;

Sumário

Capítulo 2 – Linguagens Regulares

- 2.2.3. Gramática Regular
- 2.2.3. Transformações e equivalências entre os formalismos
 - a. Automato ↔ Expressão regular (já vimos)
 - b. Autômato ↔ Gramática Regular
 - b.1. Autômato → Gramática Regular
 - b.2. Gramática Regular → Autômato
 - c. Expressão Regular ↔ Gramática Regular

Expressão Regular + Gramática Regular

- Esta transformação é mais complicada fazer de forma direta
- Mas se utilizarmos um passo intermediário, facilita a conversão
 - Transforma para Autômato
 - Gram. Regular → Autômato, ou
 - Expressão Regular → Autômato
 - Posteriormente, faz a conversão desejada
 - Automato → Gram. Regular, ou
 - Autômato → Expressão Regular

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - L = { w | O conjunto de palavras com sufixo *abc* ou *bca*.}

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - $L = \{w \in \{a, b\}^* \mid w \text{ cont\'e apenas um ou dois b\'s}\}.$

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - 0(11)*0

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - a(cb)*

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - a(cb)*
 - fator (OPMULT fator)*
 - Podemos chamar de termo;
- Ex:
 - 4
 - 3 * 3
 - 9 * 8 * 1 ...
 - 7/9*7...

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - a(ca + def)*

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - a(ca + def)*
 - Ident (PONTO ident + ABREPARENT expr FECHAPARENT)*
 - Chamaremos de designador
- Ex:
 - Idade
 - Ponto.x
 - Vet [i]
 - Vet[i+1]
 - vetor[a].nome

- Exercicio:
- Faça as gramáticas regulares abaixo, para as seguintes linguagens:
 - a(b(cb)*)?a

→ lembrando que o ? significa 0 ou 1 ocorrencia

(Pos2008) Considere a seguinte gramática G , onde S é o símbolo inicial:

Assinale a alternativa que apresenta a palavra que NÃO pertence à linguagem gerada pela gramática G .

$$S \rightarrow AcB$$

$$A \rightarrow cA \mid aB$$

$$B \rightarrow cB \mid aA$$

$$A \rightarrow \varepsilon$$

(Pos2011) Considere, a seguir, a gramática livre de contexto:

$$S \rightarrow aS|Sb|c$$

Qual expressão regular gera a mesma linguagem que a gramática definida acima?

- a) a* c b*
- b) a+ b+ c
- c) a+ c b+
- d) c a* b*
- e) c a+ b+

(Pos2009) Qual é a linguagem da gramática com as seguintes regras de produção

$$S \rightarrow ASb \mid c$$

 $A \rightarrow a$

- A) $\{ \mathbf{a}^{\mathbf{n}} \mathbf{c} \mathbf{b} \mid \mathbf{n} \in \mathbb{N} \}$
- B) $\{ acb^n | n \in \mathbb{N} \}$
- C) $\{ \mathbf{a}^{n} \mathbf{c}^{n} \mathbf{b} \mid n \in \mathbb{N} \}$
- D) $\{ \mathbf{a}^n \mathbf{cb}^n | n \in \mathbb{N} \}$
- E) Nenhuma das respostas anteriores

(Pos2009) Considere uma produção pertencente a uma gramática G dada por:

$$L \rightarrow LaS \mid S$$

Assinale a alternativa abaixo que, substituindo essa produção, elimina a recursividade à esquerda criando uma gramática equivalente:

A) L
$$\rightarrow$$
 R S
R \rightarrow a S R | ϵ

C) L
$$\rightarrow$$
 S R
R \rightarrow S a R | ϵ

E) L
$$\rightarrow$$
 R S
R \rightarrow a R S | ϵ

B) L
$$\rightarrow$$
 S R D) L \rightarrow S a R R \rightarrow a S R | ϵ R \rightarrow S a R

L
$$\rightarrow$$
 S R D) L \rightarrow S a R
R \rightarrow a S R | ϵ R \rightarrow S a R | ϵ