ROBUST CONTROL OF CONTACT-RICH ROBOTS VIA NEURAL BAYESIAN INFERENCE

by

Nardos Ayele Ashenafi

A dissertation

submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering Boise State University

© 2023

Nardos Ayele Ashenafi

ALL RIGHTS RESERVED

CONTENTS

LI	ST O	F FIGURES	vii		
LI	ST O	F TABLES	viii		
1	BAC	CKGROUND	1		
	1.1	Contact Modeling with Linear Complementarity Problem	1		
	1.2	Passivity-Based Control (PBC)	1		
		1.2.1 Neural PBC	1		
		1.2.2 Neural Interconnection and Damping Assignment PBC	1		
	1.3	Bayesian Learning	1		
2	SWITCHING CONTROL WITH DEEP-NET MIXTURE OF EXPERTS				
	2.1	Introduction	2		
	2.2	Learning Deep-Net MOE Controllers	2		
	2.3	Experimental Results	2		
		2.3.1 Stable Switching Between Unstable Systems	2		
		2.3.2 Cartpole with Wall Contacts	2		
	2.4	Conclusion	2		
3	UNCERTAINTY HANDLING VIA NEURAL BAYESIAN INFERENCE				
	3.1	Introduction	3		

3.2	.2 Theoretical Justification of Robustness			
3.3	Learni	ng Robust Stochastic Controllers	į	
	3.3.1	Bayesian Neural PBC	3	
	3.3.2	Bayesian Neural Interconnection and Damping Assignment PBC	9	
3.4	Experi	mental Results	9	
	3.4.1	Simple Pendulum	S	
	3.4.2	Inertia Wheel Pendulum	3	
	3.4.3	Rimless Wheel	9	
3.5	Conclu	ısion		
DEDED	DNODO	1		
REFER	ENCES	5	٠	
APPEN	DICES		4	

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1:

BACKGROUND

- 1.1 Contact Modeling with Linear Complementarity
 - Problem
 - 1.2 Passivity-Based Control (PBC)
- 1.2.1 Neural PBC
- 1.2.2 Neural Interconnection and Damping Assignment PBC
 - 1.3 Bayesian Learning

CHAPTER 2:

SWITCHING CONTROL WITH DEEP-NET MIXTURE OF EXPERTS

2.1 Introduction

- 2.2 Learning Deep-Net MOE Controllers
 - 2.3 Experimental Results
- 2.3.1 Stable Switching Between Unstable Systems
- 2.3.2 Cartpole with Wall Contacts

2.4 Conclusion

CHAPTER 3:

UNCERTAINTY HANDLING VIA NEURAL BAYESIAN INFERENCE

3.1 Introduction

- 3.2 Theoretical Justification of Robustness
- 3.3 Learning Robust Stochastic Controllers
- 3.3.1 Bayesian Neural PBC
- 3.3.2 Bayesian Neural Interconnection and Damping Assignment PBC

3.4 Experimental Results

- 3.4.1 Simple Pendulum
- 3.4.2 Inertia Wheel Pendulum
- 3.4.3 Rimless Wheel

3.5 Conclusion

BIBLIOGRAPHY

APPENDIX

Expectation of the performance index

Proof of Lemma??. Substituting the solution (??) of the SDE (??) expression into the performance measure (??) yields

$$\mathcal{J} = -\frac{1}{4} \frac{q + r\theta^2}{p + \theta} \left(1 + e^{2T(p+\theta)} \right) + (q + r\theta^2) \theta \sigma \int_0^T e^{(p+\theta)t} \int_0^t e^{(p+\theta)(t-s)} dW_s dt + \frac{1}{2} (q + r\theta^2) \theta^2 \sigma^2 \int_0^T \left(\int_0^t e^{(p+\theta)(t-s)} dW_s \right)^2 dt$$

The conditional expectation of this quantity given the system parameter p under the distribution induced by the Wiener process may be computed in closed-form using Itô calculus:

$$\mathbb{E}_{W} \left[\mathcal{J} \mid p \right] = -\frac{1}{4} \frac{q + r\theta^{2}}{p + \theta} \left(1 - e^{2T(p + \theta)} \right) + \left(q + r\theta^{2} \right) \theta \sigma \int_{0}^{T} e^{(p + \theta)t} \mathbb{E}_{W} \left[\int_{0}^{t} e^{(p + \theta)(t - s)} dW_{s} \mid p \right] dt + \frac{1}{2} (q + r\theta)^{2} \theta^{2} \sigma^{2} \int_{0}^{T} \mathbb{E}_{W} \left[\left(\int_{0}^{t} e^{(p + \theta)(t - s)} dW_{s} \right)^{2} \mid p \right] dt + \frac{1}{2} (q + r\theta^{2}) \theta^{2} \sigma^{2} \int_{0}^{T} \left(\int_{0}^{t} e^{2(p + \theta)(t - s)} ds \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} \left(\int_{0}^{t} e^{2(p + \theta)(t - s)} ds \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} \int_{0}^{T} -\frac{1}{2(p + \theta)} \left(1 - e^{2T(p + \theta)} \right) dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} dt + \frac{1}{2} \left(q + r\theta^{2} \right) \theta^{2} \sigma^{2} dt + \frac{1}{2} \left($$