Chapter 36 Applications linéaires

Applications linéaires 36.1

36.1.1 Définition

Exercice 36.1

Vérifier la linéarité des applications suivantes.

1.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^3$$
 . $(x, y, z) \mapsto (x, y)$

2.
$$f_2: \mathscr{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$$
 $\varphi \mapsto \varphi(0)$.

$$\begin{array}{cccc} \mathbf{3.} & f_3: & \mathbb{C} & \rightarrow & \mathbb{R} \\ & z & \mapsto & \Re \operatorname{e}(z) \end{array}.$$

4.
$$f_4: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$
.

$$\mathbf{4.} \ f_4: \ \mathbb{R}[X] \to \mathbb{R}[X] \ .$$

$$P \mapsto X^2 P'$$

$$\mathbf{5.} \ f_5: \ \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}} \ .$$

$$(u_n)_{n \in \mathbb{N}} \mapsto (u_{2n})_{n \in \mathbb{N}}$$

Exercice 36.2

Les applications suivantes de \mathbb{K}^3 dans \mathbb{K} sont-elles des formes linéaires ?

1.
$$u:(x,y,z)\mapsto x+y$$
.

2.
$$u:(x, y, z) \mapsto xy$$
.

3.
$$u:(x,y,z)\mapsto 2x-y+z$$
.

4.
$$u:(x,y,z)\mapsto x^2-y$$

5.
$$u:(x, y, z) \mapsto x + y + 1$$
.
6. $u:(x, y, z) \mapsto 3y$.

6.
$$u:(x,y,z)\mapsto 3y$$

Exercice 36.3

Montrer que l'application $D: \mathscr{C}^{\infty}(\mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R}), f \mapsto f'$ est une application linéaire.

Exercice 36.4

Soit E l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . À toute application $f \in E$, on associe l'application A(f) définie par

$$x \mapsto \int_0^x f(t) \, \mathrm{d}t.$$

1

- **1.** Justifier que A est une application de E à valeurs dans E.
- **2.** Montre que *A* est linéaire.

36.1.2 Exemples

36.1.3 Quelques applications particulières

36.1.4 Composition et combinaison linéaire d'applications linéaires

36.1.5 Isomorphismes

Exercice 36.5

Montrer que l'application
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 appartient à $\mathbf{GL}(\mathbb{R}^2)$. $(x,y) \mapsto (x+3y,4x-2y)$

Préciser f^{-1} . Vérifier que f^{-1} est effectivement linéaire.

Exercice 36.7

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$ vérifiant

$$(f - \mathrm{Id}_E) \circ (f + 2 \, \mathrm{Id}_E) = 0. \tag{1}$$

Montrer que f est bijective.

36.2 Anatomie d'une application linéaire

36.2.1 Noyau et image

Exercice 36.12

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si u est injective, surjective, bijective.

1.
$$u: \mathbb{R}[X] \to \mathbb{R}[X]$$
.
 $P \mapsto P'$

3. $u: \mathbb{R}[X] \to \mathbb{R}^3$
 $P \mapsto (P(-1), P(0), P(1))$

2. $u: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$.
 $P \mapsto P'$

4. $u: \mathbb{R}[X] \to \mathbb{R}[X]$.
 $P \mapsto P - (X - 2)P'$

Exercice 36.13

On définit sur le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} deux applications A et B par

$$A(P(X)) = P'(X) \qquad \text{et} \qquad B(P(X)) = XP(X).$$

Démontrer les assertion suivantes.

- **1.** A et B sont des endomorphismes de $\mathbb{R}[X]$.
- **2.** Im $A = \mathbb{R}[X]$ et ker $A \neq \{0\}$.
- 3. ker $B = \{0\}$ et B n'a pas d'application réciproque.
- **4.** $A \circ B B \circ A = \operatorname{Id}_{\mathbb{R}[X]}$.
- **5.** Pour tout $k \in \mathbb{N}^*$, $A^k \circ B B \circ A^k = kA^{k-1}$.

Exercice 36.14

On considère l'application T définie par

$$T: \mathbb{C}[X] \to \mathbb{C}[X]$$

 $P \mapsto (3X+8)P + (X^2-5X)P' - (X^3-X^2)P''$.

- **1.** Montrer que *T* est linéaire.
- **2.** Préciser T(1), T(X), $T(X^2)$ et $T(X^3)$.
- 3. Soit $P \in \mathbb{C}[X]$ tel que $\deg(P) = n \in \mathbb{N}$. Déterminer une condition nécessaire et suffisante pour que $\deg(T(P)) \leq n$.

- **4.** Démontrer que $T(\mathbb{C}_3[X]) \subset \mathbb{C}_3[X]$.
- **5.** Dans quel sous-espace de $\mathbb{C}[X]$ doit-on chercher le noyau de T? Déterminer ker T. Que peut-on en déduire?
- **6.** En raisonnant par l'absurde, démontrer que le polynôme X n'admet pas d'antécédent par T.
- 7. Déterminer V_8 , l'ensemble de tous les polynômes $P \in \mathbb{C}[X]$ tels que T(P) = 8P.
- 8. On considère l'ensemble V des polynômes P pour lesquels il existe un scalaire λ tel que $T(P) = \lambda P$. Montrer que V contient quatre polynômes normalisés.

Exercice 36.15

On désigne par $E = \mathscr{C}^1(\mathbb{R}, \mathbb{R})$ et on considère l'application φ définie sur E par

$$\forall f \in E, \varphi(f) = f'(1).$$

- 1. Démontrer que φ est une forme linéaire sur E.
- **2.** En déduire que $F = \{ f \in E \mid f'(1) = 0 \}$ est un sous-espace vectoriel de E.

Exercice 36.16

Soit $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions $\mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^{∞} . Montrer que $\varphi : f \mapsto f''$ est un endomorphisme de E, et déterminer $\operatorname{Im} \varphi$ et $\ker \varphi$.

Exercice 36.18

Soient E, F, G trois \mathbb{K} -espace vectoriel, $f \in L(E, F)$ et $g \in L(F, G)$.

- **1.** Montrer que $g \circ f = 0$ si et seulement si Im $f \subset \ker g$.
- **2.** Montrer que ker $f \subset \ker g \circ f$.
- **3.** Montrer que $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.

Exercice 36.20

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$. On note $f^2 = f \circ f$. Montrer que ker $f \subset \ker f^2$ et $\operatorname{Im} f^2 \subset \operatorname{Im} f$.

Exercice 36.21

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$. On pose $f^2 = f \circ f$. Montrer que

$$\ker(f) = \ker\left(f^2\right) \iff \operatorname{Im}(f) \cap \ker(f) = \{\, 0_E \,\}\,.$$

Exercice 36.22

Soit E un \mathbb{K} -espace vectoriel et u et v deux endomorphismes de E qui commutent. Montrer que ker u et Im u sont stables par v.

36.2.2 Injectivité, surjectivité

Exercice 36.24

Déterminer le noyau et l'image de l'application linéaire

Est-elle injective ? Surjective ?

Exercice 36.25

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si cellesci sont injectives ou surjectives.

- **1.** $f : \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x, y) = (y 3x, 5x + 2y, x + y).
- **2.** $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y + z, x + 3y + 2z, 3x + y + 2z).
- 3. $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par f(x, y, z) = (2x y + z, 3x + y z, x 3y + 3z, 2x + 4y 4z).

Exercice 36.26

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si cellesci sont injectives ou surjectives.

- 1. $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ définie par f(P) = X(P'(X+1) P'(1)).
- **2.** $f: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par f(P) = P XP' P(0).

Exercice 36.27

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si cellesci sont injectives ou surjectives.

4

- 1. $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (2x + y z, x + y).
- **2.** $M: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par M(P) = XP.
- **3.** φ : $\mathscr{C}^1(\mathbb{R}, \mathbb{K}) \to \mathscr{C}(\mathbb{R}, \mathbb{K})$ définie par $\varphi(f) = f' f$.
- **4.** $T: \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$ définie par $T\left((u_n)_{n\in\mathbb{N}}\right) = \left(u_{n+1}\right)_{n\in\mathbb{N}}$.
- 5. $f: \mathbb{C} \to \mathbb{R}$ définie par $f(z) = \mathfrak{Tm}(z) \mathfrak{Re}(z)$.

Exercice 36.28

Soit
$$\varphi$$
: $\mathbb{R}_3[X] \to \mathbb{R}^3$
 $P \mapsto (P(0), P'(1), P(2))$

- 1. Prouver que φ est linéaire.
- **2.** Déterminer le noyau de φ .
- 3. Déterminer l'image de φ .
- **4.** L'application φ est-elle injective? Est-elle surjective?

Exercice 36.29

Soit
$$\varphi$$
: $\mathbb{R}_2[X] \to \mathbb{R}^4$.
 $P \mapsto (P(0), P(1), P(2), P(3))$.

- 1. Prouver que φ est linéaire.
- **2.** Déterminer le noyau de φ .
- 3. Soit $y = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$. Déterminer une condition nécessaire et suffisante sur y pour avoir $y \in \text{Im}(\varphi)$.
- **4.** L'application φ est-elle injective? Est-elle surjective?

Exercice 36.30

Soit
$$\theta$$
: $\mathbb{R}_2[X] \rightarrow \mathbb{R}^3$
 $P \mapsto (P(0), P(1), P(2))$

- **1.** Prouver que $\theta \in L(\mathbb{R}_2[X], \mathbb{R}^3)$.
- **2.** Montrer que θ est injective.
- **3.** Montrer que θ est surjective.

Exercice 36.31

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si elles sont injectives, surjectives, bijectives.

5

1.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x, y)$

2.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x + 2y + z, x - z)$

3.
$$u: \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

 $(x, y, z) \mapsto (x - y, y + z, x + y + z)$

4.
$$u: \mathscr{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$$
 . $f \mapsto f(0)$

5.
$$u: \mathbb{C} \to \mathbb{R}$$

 $z \mapsto \Re e(z)$

6.
$$u : \mathbb{R}[X] \rightarrow \mathbb{R}$$
. $P \mapsto P(0)$

7.
$$u: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$
.
 $P \mapsto X^2 P'$

8.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$$
. $(u_n)_{n \in \mathbb{N}} \mapsto u_3$

9.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$

 $(u_n)_{n \in \mathbb{N}} \mapsto (u_{n+1})_{n \in \mathbb{N}}$

10.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$

$$(u_n)_{n \in \mathbb{N}} \mapsto (u_{2n})_{n \in \mathbb{N}}$$

36.2.3 Équation linéaire

36.2.4 Notion de sous-espace affine