# Title

# D. Zack Garza

# Monday $3^{\rm rd}$ August, 2020

# Contents

| 1 | Basi           | ics 2                             |  |  |  |
|---|----------------|-----------------------------------|--|--|--|
|   | 1.1            | Useful Techniques                 |  |  |  |
|   | 1.2            | Definitions                       |  |  |  |
|   | 1.3            | Theorems                          |  |  |  |
|   |                | 1.3.1 Topology / Sets             |  |  |  |
|   |                | 1.3.2 Functions                   |  |  |  |
|   | 1.4            | Uniform Convergence               |  |  |  |
|   |                | 1.4.1 Series                      |  |  |  |
| 2 | Measure Theory |                                   |  |  |  |
|   | 2.1            | Useful Techniques                 |  |  |  |
|   | 2.2            | Definitions                       |  |  |  |
|   | 2.3            | Theorems                          |  |  |  |
| 3 | Inte           | egration g                        |  |  |  |
|   | 3.1            | Useful Techniques                 |  |  |  |
|   | 3.2            | Definitions                       |  |  |  |
|   | 3.3            | Theorems                          |  |  |  |
|   |                | 3.3.1 Convergence Theorems        |  |  |  |
|   | 3.4            | $L^1$ Facts                       |  |  |  |
|   | 3.5            | $L^p$ Spaces                      |  |  |  |
| 4 | Fou            | rier Transform and Convolution 16 |  |  |  |
|   | 4.1            | The Fourier Transform             |  |  |  |
|   | 4.2            | Approximate Identities            |  |  |  |
| 5 | Fun            | ctional Analysis 20               |  |  |  |
|   | 5.1            | Definitions                       |  |  |  |
|   | 5.2            | Theorems                          |  |  |  |
| 6 | Extr           | ra Problems 24                    |  |  |  |
| 7 | Prac           | ctice Exam (November 2014) 27     |  |  |  |
|   | 7.1            | 1: Fubini-Tonelli                 |  |  |  |
|   |                | 711 2                             |  |  |  |

|    |      | 7.1.2 b                                   | 27 |
|----|------|-------------------------------------------|----|
|    | 7.2  | 2: Convolutions and the Fourier Transform | 27 |
|    |      | 7.2.1 a                                   | 27 |
|    |      | 7.2.2 b                                   | 27 |
|    |      | 7.2.3 c                                   | 27 |
|    | 7.3  | 3: Hilbert Spaces                         | 28 |
|    |      | 7.3.1 a                                   | 28 |
|    |      | 7.3.2 b                                   | 28 |
|    |      | 7.3.3 c                                   | 28 |
|    | 7.4  | 4: $L^p$ Spaces                           | 29 |
|    |      | 7.4.1 a                                   | 29 |
|    |      | 7.4.2 b                                   | 29 |
|    |      | 7.4.3 c                                   | 29 |
|    | 7.5  | 5: Dual Spaces                            | 30 |
|    |      | 7.5.1 a                                   | 30 |
|    |      | 7.5.2 b                                   | 30 |
|    |      | 7.5.3 c                                   | 30 |
| 8  | Mid  | term Exam 2 (November 2018)               | 80 |
|    | 8.1  | 1 (Integration by Parts)                  | 30 |
|    | 8.2  | 2                                         | 30 |
|    | 8.3  | 3                                         | 31 |
| 9  | Mid  | term Exam 2 (December 2014)               | 31 |
|    | 9.1  | 1                                         | 31 |
|    | 9.2  | 2                                         | 31 |
|    | 9.3  | 3                                         | 31 |
|    | 9.4  | 4 (Weierstrass Approximation Theorem)     | 32 |
| 10 | Inea | ualities and Equalities 3                 | 32 |
|    |      | •                                         | 35 |

# 1 Basics

# 1.1 Useful Techniques

- $\lim f_n = \lim \sup f_n = \lim \inf f_n$  iff the limit exists, so  $\lim \sup f_n \leq g \leq \lim \inf f_n$  implies that  $g = \lim f$ .
- A limit does not exist iff  $\lim \inf f_n > \lim \sup f_n$ .
- If  $f_n$  has a global maximum (computed using  $f'_n$  and the first derivative test)  $M_n \longrightarrow 0$ , then  $f_n \longrightarrow 0$  uniformly.
- For a fixed x, if  $f = \sum f_n$  converges uniformly on some  $B_r(x)$  and each  $f_n$  is continuous at x, then f is also continuous at x.

# 1.2 Definitions

**Definition (Uniform Continuity)** f is uniformly continuous iff

$$\forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

$$\iff \forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |y| < \delta \implies |f(x - y) - f(y)| < \varepsilon$$

**Definition (Nowhere Dense Sets)** A set S is **nowhere dense** iff the closure of S has empty interior iff every interval contains a subinterval that does not intersect S.

**Definition (Meager Sets)** A set is **meager** if it is a *countable* union of nowhere dense sets.

**Definition (\$F\_\sigma\$ and \$G\_\delta\$)** An  $F_{\sigma}$  set is a union of closed sets, and a  $G_{\delta}$  set is an intersection of opens.

Mnemonic: "F" stands for *ferme*, which is "closed" in French, and  $\sigma$  corresponds to a "sum", i.e. a union

**Theorem (Heine-Cantor)** Every continuous function on a compact space is uniformly continuous.

#### 1.3 Theorems

#### 1.3.1 Topology / Sets

**Lemma** Metric spaces are compact iff they are sequentially compact, (i.e. every sequence has a convergent subsequence).

**Proposition** The unit ball in C([0,1]) with the sup norm is not compact.

**Proof** Take  $f_k(x) = x^n$ , which converges to a dirac delta at 1. The limit is not continuous, so no subsequence can converge.

**Proposition** A *finite* union of nowhere dense is again nowhere dense.

Lemma (Convergent Sums Have Small Tails)

$$\sum a_n < \infty \implies a_n \longrightarrow 0 \text{ and } \sum_{k=N}^{\infty} \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

**Theorem (Heine-Borel)**  $X \subseteq \mathbb{R}^n$  is compact  $\iff X$  is closed and bounded.

Lemma (Geometric Series)

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \iff |x| < 1.$$

Corollary: 
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1.$$

**Lemma** The Cantor set is closed with empty interior.

**Proof** Its complement is a union of open intervals, and can't contain an interval since intervals have positive measure and  $m(C_n)$  tends to zero.

1 BASICS

3

**Corollary** The Cantor set is nowhere dense.

**Lemma** Singleton sets in  $\mathbb{R}$  are closed, and thus  $\mathbb{Q}$  is an  $F_{\sigma}$  set.

**Theorem (Baire)**  $\mathbb{R}$  is a **Baire space** (countable intersections of open, dense sets are still dense). Thus  $\mathbb{R}$  can not be written as a countable union of nowhere dense sets.

**Lemma** Any nonempty set which is bounded from above (resp. below) has a well-defined supremum (resp. infimum).

#### 1.3.2 Functions

Proposition (Existence of Smooth Compactly Supported Functions) There exist smooth compactly supported functions, e.g. take

$$f(x) = e^{-\frac{1}{x^2}} \chi_{(0,\infty)}(x).$$

**Lemma** There is a function discontinuous precisely on  $\mathbb{Q}$ .

**Proof**  $f(x) = \frac{1}{n}$  if  $x = r_n \in \mathbb{Q}$  is an enumeration of the rationals, and zero otherwise. The limit at every point is 0.

**Lemma** There do not exist functions that are discontinuous precisely on  $\mathbb{R} \setminus \mathbb{Q}$ .

**Proof**  $D_f$  is always an  $F_\sigma$  set, which follows by considering the oscillation  $\omega_f$ .  $\omega_f(x) = 0 \iff f$  is continuous at x, and  $D_f = \bigcup A_{\frac{1}{n}}$  where  $A_\varepsilon = \{\omega_f \ge \varepsilon\}$  is closed.

**Proposition** A function  $f:(a,b) \longrightarrow \mathbb{R}$  is Lipschitz  $\iff f$  is differentiable and f' is bounded. In this case,  $|f'(x)| \leq C$ , the Lipschitz constant.

# 1.4 Uniform Convergence

**Theorem (Weierstrass Approximation)** If  $[a,b] \subset \mathbb{R}$  is a closed interval and f is continuous, then for every  $\varepsilon > 0$  there exists a polynomial  $p_{\varepsilon}$  such that  $\|f - p_{\varepsilon}\|_{L^{\infty}([a,b])} \stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} 0$ .

**Theorem (Egorov)** Let  $E \subseteq \mathbb{R}^n$  be measurable with m(E) > 0 and  $\{f_k : E \longrightarrow \mathbb{R}\}$  be measurable functions such that

$$f(x) \coloneqq \lim_{k \to \infty} f_k(x) < \infty$$

exists almost everywhere.

Then  $f_k \longrightarrow f$  almost uniformly, i.e.

$$\forall \varepsilon > 0, \ \exists F \subseteq E \text{ closed such that } m(E \setminus F) < \varepsilon \text{ and } f_k \xrightarrow{u} f \text{ on } F.$$

**Proposition** The space X = C([0,1]), continuous functions  $f : [0,1] \longrightarrow \mathbb{R}$ , equipped with the norm  $||f|| = \sup_{x \in [0,1]} |f(x)|$ , is a **complete** metric space.

**Proof** 

1. Let  $\{f_k\}$  be Cauchy in X.

2. Define a candidate limit using pointwise convergence:

Fix an x; since

$$|f_k(x) - f_j(x)| \le ||f_k - f_k|| \longrightarrow 0$$

the sequence  $\{f_k(x)\}\$  is Cauchy in  $\mathbb{R}$ . So define  $f(x) := \lim_k f_k(x)$ .

3. Show that  $||f_k - f|| \longrightarrow 0$ :

$$|f_k(x) - f_j(x)| < \varepsilon \ \forall x \implies \lim_{j} |f_k(x) - f_j(x)| < \varepsilon \ \forall x$$

Alternatively,  $||f_k - f|| \le ||f_k - f_N|| + ||f_N - f_j||$ , where N, j can be chosen large enough to bound each term by  $\varepsilon/2$ .

4. Show that  $f \in X$ :

The uniform limit of continuous functions is continuous.

Note: in other cases, you may need to show the limit is bounded, or has bounded derivative, or whatever other conditions define X.

**Theorem (Uniform Limits of Continuous Functions are Continuous)** A uniform limit of continuous functions is continuous.

**Lemma (Testing Uniform Convergence)**  $f_n \longrightarrow f$  uniformly iff there exists an  $M_n$  such that  $||f_n - f||_{\infty} \leq M_n \longrightarrow 0$ .

**Negating:** find an x which depends on n for which the norm is bounded below.

**Lemma (Uniform Limits Commute with Integrals)** If  $f_n \longrightarrow f$  uniformly, then  $\int f_n = \int f$ .

**Lemma (Uniform Convergence and Derivatives)** If  $f'_n \longrightarrow g$  uniformly for some g and  $f_n \longrightarrow f$  pointwise (or at least at one point), then g = f'.

#### **1.4.1 Series**

Lemma (Uniform Convergence of Series of Numbers) If  $f_n(x) \leq M_n$  for a fixed x where  $\sum M_n < \infty$ , then the series  $f(x) = \sum f_n(x)$  converges pointwise.

**Lemma (Small Tails for Series of Functions)** If  $\sum f_n$  converges then  $f_n \longrightarrow 0$  uniformly.

**Lemma (M-test for Series)** If  $|f_n(x)| \leq M_n$  which does not depend on x, then  $\sum f_n$  converges uniformly.

**Lemma (p-tests)** Let n be a fixed dimension and set  $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ .

$$\sum \frac{1}{n^p} < \infty \iff p > 1$$

$$\int_{\varepsilon}^{\infty} \frac{1}{x^p} < \infty \iff p > 1$$

$$\int_{0}^{1} \frac{1}{x^p} < \infty \iff p < 1$$

$$\int_{B} \frac{1}{|x|^p} < \infty \iff p < n$$

$$\int_{B^c} \frac{1}{|x|^p} < \infty \iff p > n$$

# 2 Measure Theory

# 2.1 Useful Techniques

- $s = \inf\{x \in X\} \implies$  for every  $\varepsilon$  there is an  $x \in X$  such that  $x \le s + \varepsilon$ .
- Always consider bounded sets, and if E is unbounded write  $E = \bigcup_n B_n(0) \cap E$  and use countable subadditivity or continuity of measure.

# 2.2 Definitions

**Definition (Outer Measure)** The outer measure of a set is given by

$$m_*(E) \coloneqq \inf_{\substack{\{Q_i\} \rightrightarrows E \text{closed cubes}}} \sum |Q_i|.$$

**Definition (Limsup and Liminf of Sets)** 

$$\limsup_{n} A_{n} \coloneqq \bigcap_{n} \bigcup_{j \ge n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for inf. many } n \right\}$$
$$\liminf_{n} A_{n} \coloneqq \bigcup_{n} \bigcap_{j \ge n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for all except fin. many } n \right\}$$

**Definition (Lebesgue Measurable Set)** A subset  $E \subseteq \mathbb{R}^n$  is Lebesgue measurable iff for every  $\varepsilon > 0$  there exists an open set  $O \supseteq E$  such that  $m_*(O \setminus E) < \varepsilon$ . In this case, we define  $m(E) := m_*(E)$ .

#### 2.3 Theorems

**Lemma** Every open subset of  $\mathbb{R}$  (resp  $\mathbb{R}^n$ ) can be written as a unique countable union of disjoint (resp. almost disjoint) intervals (resp. cubes).

### Lemma (Properties of Outer Measure)

- Montonicity:  $E \subseteq F \implies m_*(E) \le m_*(F)$ .
- Countable Subadditivity: m<sub>\*</sub>(∪E<sub>i</sub>) ≤ ∑m<sub>\*</sub>(E<sub>i</sub>).
  Approximation: For all E there exists a G ⊇ E such that m<sub>\*</sub>(G) ≤ m<sub>\*</sub>(E) + ε.
- Disjoint Additivity:  $m_*(A | B) = m_*(A) + m_*(B)$ .

#### Lemma (Subtraction of Measure)

$$m(A) = m(B) + m(C)$$
 and  $m(C) < \infty \implies m(A) - m(C) = m(B)$ .

# Lemma (Continuity of Measure)

$$E_i \nearrow E \implies m(E_i) \longrightarrow m(E)$$
  
 $m(E_1) < \infty \text{ and } E_i \searrow E \implies m(E_i) \longrightarrow m(E).$ 

**Proof** 1. Break into disjoint annuli  $A_2 = E_2 \setminus E_1$ , etc then apply countable disjoint additivity to

2. Use  $E_1 = (\coprod E_j \setminus E_{j+1}) \coprod (\bigcap E_j)$ , taking measures yields a telescoping sum, and use countable disjoint additivity.

**Theorem** Suppose E is measurable; then for every  $\varepsilon > 0$ ,

- 1. There exists an open  $O \supset E$  with  $m(O \setminus E) < \varepsilon$
- 2. There exists a closed  $F \subset E$  with  $m(E \setminus F) < \varepsilon$
- 3. There exists a compact  $K \subset E$  with  $m(E \setminus K) < \varepsilon$ .

#### **Proof**

- (1): Take  $\{Q_i\} \rightrightarrows E$  and set  $O = \bigcup Q_i$ .
- (2): Since  $E^c$  is measurable, produce  $O \supset E^c$  with  $m(O \setminus E^c) < \varepsilon$ .
  - Set  $F = O^c$ , so F is closed.
  - Then  $F \subset E$  by taking complements of  $O \supset E^c$
  - $-E \setminus F = O \setminus E^c$  and taking measures yields  $m(E \setminus F) < \varepsilon$
- (3): Pick  $F \subset E$  with  $m(E \setminus F) < \varepsilon/2$ .
  - Set  $K_n = F \cap \mathbb{D}_n$ , a ball of radius n about 0.
  - Then  $E \setminus K_n \searrow E \setminus F$
  - Since  $m(E) < \infty$ , there is an N such that  $n \ge N \implies m(E \setminus K_n) < \varepsilon$ .

**Lemma** Lebesgue measure is translation and dilation invariant.

**Proof** Obvious for cubes; if  $Q_i \rightrightarrows E$  then  $Q_i + k \rightrightarrows E + k$ , etc.

Flesh out this

**Theorem (Non-Measurable Sets)** There is a non-measurable set.

<sup>&</sup>lt;sup>1</sup>This holds for outer measure **iff** dist(A, B) > 0.

#### **Proof**

- Use AOC to choose one representative from every coset of  $\mathbb{R}/\mathbb{Q}$  on [0,1), which is countable, and assemble them into a set N
- Enumerate the rationals in [0,1] as  $q_j$ , and define  $N_j = N + q_j$ . These intersect trivially.
- Define  $M := \prod N_i$ , then  $[0,1) \subseteq M \subseteq [-1,2)$ , so the measure must be between 1 and 3. By translation invariance,  $m(N_i) = m(N)$ , and disjoint additivity forces m(M) = 0, a contradiction.

Proposition (Borel Characterization of Measurable Sets) If E is Lebesgue measurable, then E = $H \mid N$  where  $H \in F_{\sigma}$  and N is null.

Useful technique:  $F_{\sigma}$  sets are Borel, so establish something for Borel sets and use this to extend it to Lebesgue.

**Proof** For every  $\frac{1}{n}$  there exists a closed set  $K_n \subset E$  such that  $m(E \setminus K_n) \leq \frac{1}{n}$ . Take  $K = \bigcup K_n$ , wlog  $K_n \nearrow K$  so  $m(K) = \lim m(K_n) = m(E)$ . Take  $N := E \setminus K$ , then m(N) = 0.

**Lemma** If  $A_n$  are all measurable,  $\limsup A_n$  and  $\liminf A_n$  are measurable.

**Proof** Measurable sets form a sigma algebra, and these are expressed as countable unions/intersections of measurable sets.

**Theorem (Borel-Cantelli)** Let  $\{E_k\}$  be a countable collection of measurable sets. Then

$$\sum_{k} m(E_k) < \infty \implies \text{ almost every } x \in \mathbb{R} \text{ is in at most finitely many } E_k.$$

#### **Proof**

- If  $E = \limsup E_j$  with  $\sum m(E_j) < \infty$  then m(E) = 0.
- If  $E_j$  are measurable, then  $\limsup_{j \to \infty} E_j$  is measurable.
- If  $\sum_{j} m(E_{j}) < \infty$ , then  $\sum_{j=N}^{\infty} m(E_{j}) \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$  as the tail of a convergent sequence.  $E = \limsup_{j} E_{j} = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_{j} \implies E \subseteq \bigcup_{j=k}^{\infty} \text{ for all } k$   $E \subset \bigcup_{j=k}^{\infty} \implies m(E) \le \sum_{j=k}^{\infty} m(E_{j}) \stackrel{k \longrightarrow \infty}{\longrightarrow} 0$ .

#### Lemma

- Characteristic functions are measurable
- If  $f_n$  are measurable, so are  $|f_n|$ ,  $\limsup f_n$ ,  $\liminf f_n$ ,  $\lim f_n$ ,
- Sums and differences of measurable functions are measurable,
- Cones F(x,y) = f(x) are measurable,
- Compositions  $f \circ T$  for T a linear transformation are measurable,
- "Convolution-ish" transformations  $(x,y) \mapsto f(x-y)$  are measurable

**Proof (Convolution)** Take the cone on f to get F(x,y) = f(x), then compose F with the linear transformation T = [1, -1; 1, 0].

# 3 Integration

Notation:

- "f vanishes at infinity" means  $f(x) \stackrel{|x| \longrightarrow \infty}{\longrightarrow} 0$ .
- "f has small tails" means  $\int_{|x|>N} f \xrightarrow{N \longrightarrow \infty} 0$ .

# 3.1 Useful Techniques

- Break integration domain up into disjoint annuli.
- Break integrals or sums into x < 1 and  $x \ge 1$ .
- Calculus techniques: Taylor series, IVT, ...
- Approximate by dense subsets of functions
- Useful facts about compactly supported continuous functions:
  - Uniformly continuous
  - Bounded

# 3.2 Definitions

**Definition (\$L^+\$)**  $f \in L^+$  iff f is measurable and non-negative.

**Definition (Integrable)** A measurable function is integrable iff  $||f||_1 < \infty$ .

**Definition (The Infinity Norm)** 

$$||f||_{\infty} := \inf_{\alpha > 0} \left\{ \alpha \mid m \left\{ |f| \ge \alpha \right\} = 0 \right\}.$$

**Definition (Essentially Bounded Functions)** A function  $f: X \longrightarrow \mathbb{C}$  is essentially bounded iff there exists a real number c such that  $\mu(\{|f| > x\}) = 0$ , i.e.  $\|f\|_{\infty} < \infty$ .

If  $f \in L^{\infty}(X)$ , then f is equal to some bounded function g almost everywhere.

**Definition (L infty)** 

$$L^{\infty}(X) \coloneqq \left\{ f: X \longrightarrow \mathbb{C} \;\middle|\; f \text{ is essentially bounded} \;\right\} \coloneqq \left\{ f: X \longrightarrow \mathbb{C} \;\middle|\; \left\|f\right\|_{\infty} < \infty \right\},$$

Example:

•  $f(x) = x\chi_{\mathbb{Q}}(x)$  is essentially bounded but not bounded.

#### 3.3 Theorems

Useful facts about  $C_c$  functions:

- Bounded almost everywhere
- Uniformly continuous

# Theorem (p-Test for Integrals in \$\RR\$)

$$\int_0^1 \frac{1}{x^p} < \infty \iff p < 1$$

$$\int_1^\infty \frac{1}{x^p} < \infty \iff p > 1.$$

Slogan: big powers of x help us in neighborhoods of infinity and hurt around zero

Some integrable functions:

• 
$$\int \frac{1}{1+x^2} = \arctan(x)^x \overrightarrow{\pi}^{\infty}/2 < \infty$$
  
• Any bounded function (or continuous on a compact set, by EVT)

$$\bullet \int_0^1 \frac{1}{\sqrt{x}} < \infty$$

• 
$$\int_{1}^{\infty} \frac{1}{x^{1+\varepsilon}} < \infty$$

Some non-integrable functions:

$$\bullet \quad \int_0^1 \frac{1}{x} = \infty.$$

$$\bullet \int_{1}^{\infty} \frac{1}{x} = \infty.$$

• 
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} = \infty$$

$$\bullet \quad \int_0^1 \frac{1}{x^{1+\varepsilon}} = \infty$$

# 3.3.1 Convergence Theorems

Theorem (Monotone Convergence) If  $f_n \in L^+$  and  $f_n \nearrow f$  a.e., then

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e.  $\int f_n \longrightarrow \int f$ .

Needs to be positive and increasing.

**Theorem (Dominated Convergence)** If  $f_n \in L^1$  and  $f_n \longrightarrow f$  a.e. with  $|f_n| \leq g$  for some  $g \in L^1$ , then  $f \in L^1$  and

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e.  $\int f_n \longrightarrow \int f < \infty$ ,

and more generally,

$$\int |f_n - f| \longrightarrow 0.$$

Positivity not needed.

# Theorem (Generalized DCT) If

- $f_n \in L^1$  with  $f_n \longrightarrow f$  a.e., There exist  $g_n \in L^1$  with  $|f_n| \le g_n$ ,  $g_n \ge 0$ .  $g_n \longrightarrow g$  a.e. with  $g \in L^1$ , and  $\lim \int g_n = \int g$ ,

then  $f \in L^1$  and  $\lim_{n \to \infty} \int f_n = \int f < \infty$ .

Note that this is the DCT with  $|f_n| < |g|$  relaxed to  $|f_n| < g_n \longrightarrow g \in L^1$ .

**Proof (Generalized DCT)** Proceed by showing  $\limsup \int f_n \leq \int f \leq \liminf \int f_n$ :

• 
$$\int f \ge \limsup \int f_n$$
:

$$\int g - \int f = \int (g - f)$$

$$\leq \liminf \int (g_n - f_n) \quad \text{Fatou}$$

$$= \lim \int g_n + \liminf \int (-f_n)$$

$$= \lim \int g_n - \limsup \int f_n$$

$$= \int g - \limsup \int f_n$$

$$\implies \int f \ge \limsup \int f_n.$$

- Here we use  $g_n - f_n \xrightarrow{n \to \infty} f$  with  $0 \le |f_n| - f_n \le g_n - f_n$ , so  $g_n - f_n$  are nonnegative (and measurable) and Fatou's lemma applies.

•  $\int f \leq \liminf \int f_n$ :

$$\int g + \int f = \int (g + f)$$

$$\leq \liminf \int (g_n + f_n)$$

$$= \lim \int g_n + \liminf \int f_n$$

$$= \int g + \liminf f_n$$

$$\int f \le \liminf \int f_n.$$

– Here we use that  $g_n + f_n \longrightarrow g + f$  with  $0 \le |f_n| + f_n \le g_n + f_n$  so Fatou's lemma again applies.

Lemma (Converges in \$L^1\$ implies convergence of \$L^1\$ norms) If  $f \in L^1$ , then

$$\int |f_n - f| \longrightarrow 0 \iff \int |f_n| \longrightarrow \int |f|.$$

**Proof** Let  $g_n = |f_n| - |f_n - f|$ , then  $g_n \longrightarrow |f|$  and

$$|g_n| = ||f_n| - |f_n - f|| \le |f_n - (f_n - f)| = |f| \in L^1,$$

so the DCT applies to  $g_n$  and

$$||f_n - f||_1 = \int |f_n - f| + |f_n| - |f_n| = \int |f_n| - g_n$$
  
 $\longrightarrow_{DCT} \lim \int |f_n| - \int |f|.$ 

**Theorem (Fatou's Lemma)** If  $f_n$  is a sequence of nonnegative measurable functions, then

$$\int \liminf_{n} f_n \le \liminf_{n} \int f_n$$
$$\lim \sup_{n} \int f_n \le \int \limsup_{n} f_n.$$

Theorem (Tonelli) For f(x,y) non-negative and measurable, for almost every  $x \in \mathbb{R}^n$ ,

- $f_x(y)$  is a **measurable** function
- $F(x) = \int f(x,y) dy$  is a **measurable** function,
- For E measurable, the slices  $E_x := \{y \mid (x,y) \in E\}$  are measurable.
- $\int f = \int \int F$ , i.e. any iterated integral is equal to the original.

**Theorem (Fubini)** For f(x,y) integrable, for almost every  $x \in \mathbb{R}^n$ ,

•  $f_x(y)$  is an **integrable** function

- $F(x) := \int f(x,y) \ dy$  is an **integrable** function,
- For E measurable, the slices  $E_x := \{y \mid (x,y) \in E\}$  are measurable.
- $\int f = \int \int f(x,y)$ , i.e. any iterated integral is equal to the original

Theorem (Fubini/Tonelli) If any iterated integral is absolutely integrable, i.e.  $\int \int |f(x,y)| < 1$  $\infty$ , then f is integrable and  $\int f$  equals any iterated integral.

Corollary (Measurable Slices) Let E be a measurable subset of  $\mathbb{R}^n$ . Then

- For almost every  $x \in \mathbb{R}^{n_1}$ , the slice  $E_x := \{ y \in \mathbb{R}^{n_2} \mid (x,y) \in E \}$  is measurable in  $\mathbb{R}^{n_2}$ .

$$F: \mathbb{R}^{n_1} \longrightarrow \mathbb{R}$$
$$x \mapsto m(E_x) = \int_{\mathbb{R}^{n_2}} \chi_{E_x} \ dy$$

is measurable and

$$m(E) = \int_{\mathbb{R}^{n_1}} m(E_x) \ dx = \int_{\mathbb{R}^{n_1}} \int_{\mathbb{R}^{n_2}} \chi_{E_x} \ dy \ dx$$

# **Proof (Measurable Slices)**

- Let f be measurable on  $\mathbb{R}^n$ .
- Then the cylinders F(x,y) = f(x) and G(x,y) = f(y) are both measurable on  $\mathbb{R}^{n+1}$ .
- Write  $A = \{G \leq F\} \bigcap \{G \geq 0\}$ ; both are measurable.

- Let A be measurable in  $\mathbb{R}^{n+1}$ . Define  $A_x = \{ y \in \mathbb{R} \mid (x,y) \in \mathcal{A} \}$ , then  $m(A_x) = f(x)$ .
- By the corollary,  $A_x$  is measurable set,  $x \mapsto A_x$  is a measurable function, and m(A) = $\int f(x) dx$ .
- Then explicitly,  $f(x) = \chi_A$ , which makes f a measurable function.

**Proposition (Differentiating Under an Integral)** If  $\left|\frac{\partial}{\partial t}f(x,t)\right| \leq g(x) \in L^1$ , then letting  $F(t) = \int_0^t f(x,t) dt$  $\int f(x,t) dt,$ 

$$\frac{\partial}{\partial t} F(t) := \lim_{h \to 0} \int \frac{f(x, t+h) - f(x, t)}{h} dx$$

$$\stackrel{\text{DCT}}{=} \int \frac{\partial}{\partial t} f(x, t) dx.$$

To justify passing the limit, let  $h_k \longrightarrow 0$  be any sequence and define

$$f_k(x,t) = \frac{f(x,t+h_k) - f(x,t)}{h_k},$$

so 
$$f_k \stackrel{\text{pointwise}}{\longrightarrow} \frac{\partial}{\partial t} f$$
.

Apply the MVT to  $f_k$  to get  $f_k(x,t) = f_k(\xi,t)$  for some  $\xi \in [0,h_k]$ , and show that  $f_k(\xi,t) \in L_1$ .

Proposition (Swapping Sum and Integral) If  $f_n$  are non-negative and  $\sum \int |f|_n < \infty$ , then  $\sum \int f_n = \int \sum f_n$ .

**Proof** MCT. Let  $F_N = \sum_{n=0}^{N} f_n$  be a finite partial sum; then there are simple functions  $\varphi_n \nearrow f_n$  and so  $\sum_{n=0}^{N} \varphi_n \nearrow F_N$ , so apply MCT.

**Lemma** If  $f_k \in L^1$  and  $\sum ||f_k||_1 < \infty$  then  $\sum f_k$  converges almost everywhere and in  $L^1$ .

**Proof** Define  $F_N = \sum_{k=1}^{N} f_k$  and  $F = \lim_{k \to \infty} F_k$ , then  $||F_N||_1 \le \sum_{k=1}^{N} ||f_k||_1 < \infty$  so  $F \in L^1$  and  $||F_N - F||_1 \longrightarrow 0$  so the sum converges in  $L^1$ . Almost everywhere convergence: ?

# 3.4 $L^1$ Facts

**Lemma (Translation Invariance)** The Lebesgue integral is translation invariant, i.e.  $\int f(x) dx = \int f(x+h) dx$  for any h.

**Proof** 

- For characteristic functions,  $\int_E f(x+h) = \int_{E+h} f(x) = m(E+h) = m(E) = \int_E f$  by translation invariance of measure.
- So this also holds for simple functions by linearity
- For  $f \in L^+$ , choose  $\varphi_n \nearrow f$  so  $\int \varphi_n \longrightarrow \int f$ .
- Similarly,  $\tau_h \varphi_n \nearrow \tau_h f$  so  $\int \tau_h f \longrightarrow \int f$
- Finally  $\left\{ \int \tau_h \varphi \right\} = \left\{ \int \varphi \right\}$  by step 1, and the suprema are equal by uniqueness of limits.

**Lemma (Integrals Distribute Over Disjoint Sets)** If  $X \subseteq A \bigcup B$ , then  $\int_X f \leq \int_A f + \int_{A^c} f$  with equality iff  $X = A \coprod B$ .

**Lemma (Unif. Cts. L1 Functions Vanish at Infinity)** If  $f \in L^1$  and f is uniformly continuous, then  $f(x) \stackrel{|x| \longrightarrow \infty}{\longrightarrow} 0$ .

Doesn't hold for general  $L^1$  functions, take any train of triangles with height 1 and summable areas.

**Lemma (L1 Functions Have Small Tails)** If  $f \in L^1$ , then for every  $\varepsilon$  there exists a radius R such that if  $A = B_R(0)^c$ , then  $\int_A |f| < \varepsilon$ .

**Proof** Approximate with compactly supported functions. Take  $g \xrightarrow{L_1} f$  with  $g \in C_c$ , then choose N large enough so that g = 0 on  $E := B_N(0)^c$ , then  $\int_E |f| \le \int_E |f - g| + \int_E |g|$ .

Lemma (\$L^1\$ Functions Have Absolutely Continuity)  $m(E) \longrightarrow 0 \implies \int_E f \longrightarrow 0.$ 

**Proof** Approximate with compactly supported functions. Take  $g \xrightarrow{L_1} f$ , then  $g \leq M$  so  $\int_E f \leq$ 

$$\int_{E} f - g + \int_{E} g \longrightarrow 0 + M \cdot m(E) \longrightarrow 0.$$

Lemma (\$L^1\$ Functions Are Finite Almost Everywhere) If  $f \in L^1$ , then  $m(\{f(x) = \infty\}) = 0$ .

**Proof** Idea: Split up domain Let  $A = \{f(x) = \infty\}$ , then  $\infty > \int f = \int_A f + \int_{A^c} f = \infty \cdot m(A) + \int_{A^c} f = \infty \cdot m(A)$ 

$$\int_{A^c} f \implies m(X) = 0.$$

Proposition (Continuity in \$L^1\$)

$$\|\tau_h f - f\|_1 \stackrel{h \longrightarrow 0}{\longrightarrow} 0$$

**Proof** Approximate with compactly supported functions. Take  $g \xrightarrow{L_1} f$  with  $g \in C_c$ .

$$\int f(x+h) - f(x) \le \int f(x+h) - g(x+h) + \int g(x+h) - g(x) + \int g(x) - f(x)$$

$$\stackrel{? \longrightarrow ?}{\Longrightarrow} 2\varepsilon + \int g(x+h) - g(x)$$

$$= \int_{K} g(x+h) - g(x) + \int_{K^{c}} g(x+h) - g(x)$$

$$\stackrel{??}{\Longrightarrow} 0.$$

which follows because we can enlarge the support of g to K where the integrand is zero on  $K^c$ , then apply uniform continuity on K.

Proposition (Integration by Parts, Special Case)

$$F(x) := \int_0^x f(y)dy \quad \text{and} \quad G(x) := \int_0^x g(y)dy$$
$$\implies \int_0^1 F(x)g(x)dx = F(1)G(1) - \int_0^1 f(x)G(x)dx.$$

**Proof** Fubini-Tonelli, and sketch region to change integration bounds.

Theorem (Lebesgue Density)

$$A_h(f)(x) := \frac{1}{2h} \int_{x-h}^{x+h} f(y) dy \implies ||A_h(f) - f|| \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

**Proof** Fubini-Tonelli, and sketch region to change integration bounds, and continuity in  $L^1$ .

# 3.5 $L^p$ Spaces

**Lemma** The following are dense subspaces of  $L^2([0,1])$ :

- Simple functions
- Step functions
- $C_0([0,1])$
- Smoothly differentiable functions  $C_0^{\infty}([0,1])$
- Smooth compactly supported functions  $C_c^{\infty}$  Theorem :

$$m(X) < \infty \implies \lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

**Proof** 

- Let  $M = ||f||_{\infty}$ .
- For any L < M, let  $S = \{|f| \ge L\}$ .
- Then m(S) > 0 and

$$||f||_{p} = \left(\int_{X} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq \left(\int_{S} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq L \ m(S)^{\frac{1}{p}} \stackrel{p \longrightarrow \infty}{\longrightarrow} L$$

$$\implies \liminf_{p} ||f||_{p} \geq M.$$

We also have

$$||f||_p = \left(\int_X |f|^p\right)^{\frac{1}{p}}$$

$$\leq \left(\int_X M^p\right)^{\frac{1}{p}}$$

$$= M \ m(X)^{\frac{1}{p}} \xrightarrow{p \longrightarrow \infty} M$$

$$\implies \limsup_p ||f||_p \leq M \blacksquare.$$

Theorem (Dual Lp Spaces) For  $p \neq \infty$ ,  $(L^p)^{\vee} \cong L^q$ .

Proof (p=1)?

**Proof (p=2)** Use Riesz Representation for Hilbert spaces.

Proof.

 $L^1 \subset (L^\infty)^\vee$ , since the isometric mapping is always injective, but never surjective.

4 Fourier Transform and Convolution

#### 4.1 The Fourier Transform

**Definition (Convolution)** 

$$f * g(x) = \int f(x - y)g(y)dy.$$

# **Definition (The Fourier Transform)**

$$\widehat{f}(\xi) = \int f(x) \ e^{2\pi i x \cdot \xi} \ dx.$$

**Lemma** If  $\widehat{f} = \widehat{g}$  then f = g almost everywhere.

Lemma (Riemann-Lebesgue: Fourier transforms have small tails)

$$f \in L^1 \implies \widehat{f}(\xi) \to 0 \text{ as } |\xi| \to \infty,$$

if  $f \in L^1$ , then  $\hat{f}$  is continuous and bounded.

#### **Proof**

• Boundedness:

$$\left|\widehat{f}(\xi)\right| \le \int |f| \cdot \left|e^{2\pi ix \cdot \xi}\right| = \|f\|_1.$$

• Continuity:

$$- \left| \widehat{f}(\xi_n) - \widehat{f}(\xi) \right|$$
- Apply DCT to show  $a \xrightarrow{n \longrightarrow \infty} 0$ .

# Theorem (Fourier Inversion)

$$f(x) = \int_{\mathbb{D}^n} \widehat{f}(x) e^{2\pi i x \cdot \xi} d\xi.$$

**Proof** Idea: Fubini-Tonelli doesn't work directly, so introduce a convergence factor, take limits, and use uniqueness of limits.

• Take the modified integral:

$$\begin{split} I_t(x) &= \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ e^{-\pi t^2 |\xi|^2} \\ &= \int \widehat{f}(\xi) \varphi(\xi) \\ &= \int f(\xi) \widehat{\varphi}(\xi) \\ &= \int f(\xi) \widehat{\widehat{g}}(\xi - x) \\ &= \int f(\xi) g_t(x - \xi) \ d\xi \\ &= \int f(y - x) g_t(y) \ dy \quad (\xi = y - x) \\ &= (f * g_t) \\ &\longrightarrow f \text{ in } L^1 \text{ as } t \longrightarrow 0. \end{split}$$

• We also have

$$\lim_{t \to 0} I_t(x) = \lim_{t \to 0} \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ e^{-\pi t^2 |\xi|^2}$$

$$= \lim_{t \to 0} \int \widehat{f}(\xi) \varphi(\xi)$$

$$=_{DCT} \int \widehat{f}(\xi) \lim_{t \to 0} \varphi(\xi)$$

$$= \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi}$$

• So

$$I_t(x) \longrightarrow \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ \text{ pointwise and } \|I_t(x) - f(x)\|_1 \longrightarrow 0.$$

- So there is a subsequence  $I_{t_n}$  such that  $I_{t_n}(x) \longrightarrow f(x)$  almost everywhere
- Thus  $f(x) = \int \widehat{f}(\xi) e^{2\pi i x \cdot \xi}$  almost everywhere by uniqueness of limits.

Proposition (Eigenfunction of the Fourier Transform)

$$g(x) := e^{-\pi |t|^2} \implies \widehat{g}(\xi) = g(\xi) \text{ and } \widehat{g}_t(x) = g(tx) = e^{-\pi t^2 |x|^2}.$$

**Proposition (Properties of the Fourier Transform)** 

?????

#### 4.2 Approximate Identities

**Definition (Dilation)** 

$$\varphi_t(x) = t^{-n} \varphi\left(t^{-1}x\right).$$

**Definition (Approximation to the Identity)** For  $\varphi \in L^1$ , the dilations satisfy  $\int \varphi_t = \int \varphi$ , and if  $\int \varphi = 1$  then  $\varphi$  is an *approximate identity*.

Example:  $\varphi(x) = e^{-\pi x^2}$ 

Theorem (Convolution Against Approximate Identities Converge in \$L^1\$)

$$||f * \varphi_t - f||_1 \stackrel{t \longrightarrow 0}{\longrightarrow} 0.$$

**Proof** 

$$\begin{split} \|f - f * \varphi_t\|_1 &= \int f(x) - \int f(x - y) \varphi_t(y) \ dy dx \\ &= \int f(x) \int \varphi_t(y) \ dy - \int f(x - y) \varphi_t(y) \ dy dx \\ &= \int \int \varphi_t(y) [f(x) - f(x - y)] \ dy dx \\ &=_{FT} \int \int \varphi_t(y) [f(x) - f(x - y)] \ dx dy \\ &= \int \varphi_t(y) \int f(x) - f(x - y) \ dx dy \\ &= \int \varphi_t(y) \|f - \tau_y f\|_1 dy \\ &= \int_{y < \delta} \varphi_t(y) \|f - \tau_y f\|_1 dy + \int_{y \ge \delta} \varphi_t(y) \|f - \tau_y f\|_1 dy \\ &\leq \int_{y < \delta} \varphi_t(y) \varepsilon + \int_{y \ge \delta} \varphi_t(y) \left(\|f\|_1 + \|\tau_y f\|_1\right) dy \quad \text{by continuity in } L^1 \\ &\leq \varepsilon + 2\|f\|_1 \int_{y \ge \delta} \varphi_t(y) dy \\ &\leq \varepsilon + 2\|f\|_1 \cdot \varepsilon \quad \text{since } \varphi_t \text{ has small tails} \\ \varepsilon \xrightarrow{\longrightarrow} 0. \end{split}$$

# Theorem (Convolutions Vanish at Infinity)

$$f, g \in L^1$$
 and bounded  $\Longrightarrow \lim_{|x| \to \infty} (f * g)(x) = 0.$ 

**Proof** 

- Choose  $M \ge f, g$ .
- By small tails, choose N such that  $\int_{B_N^c} |f|, \int_{B_n^c} |g| < \varepsilon$
- Note

$$|f * g| \le \int |f(x-y)| |g(y)| dy := I.$$

• Use  $|x| \le |x - y| + |y|$ , take  $|x| \ge 2N$  so either

$$|x-y| \ge N \implies I \le \int_{\{x-y \ge N\}} |f(x-y)| M \ dy \le \varepsilon M \longrightarrow 0$$

then

$$|y| \geq N \implies I \leq \int_{\{y \geq N\}} M|g(y)| \ dy \leq M\varepsilon \longrightarrow 0.$$

Proposition (Young's Inequality?):

$$\frac{1}{r} := \frac{1}{p} + \frac{1}{q} - 1 \implies \|f * g\|_r \le \|f\|_p \|g\|_q.$$

**Corollary** Take q = 1 to obtain

$$||f * g||_p \le ||f||p||g||1.$$

Corollary If  $f, g \in L^1$  then  $f * g \in L^1$ .

# 5 Functional Analysis

# 5.1 Definitions

Notation: H denotes a Hilbert space.

**Definition (Orthonormal Sequence)** ?

**Definition (Basis)** A set  $\{u_n\}$  is a *basis* for a Hilbert space  $\mathcal{H}$  iff it is dense in  $\mathcal{H}$ .

**Definition (Complete)** A collection of vectors  $\{u_n\} \subset H$  is *complete* iff  $\langle x, u_n \rangle = 0$  for all  $n \iff x = 0$  in H.

**Definition (Dual Space)** 

$$X^{\vee} := \left\{ L : X \longrightarrow \mathbb{C} \mid L \text{ is continuous } \right\}.$$

**Definition** A map  $L: X \longrightarrow \mathbb{C}$  is a linear functional iff

$$L(\alpha \mathbf{x} + \mathbf{y}) = \alpha L(\mathbf{x}) + L(\mathbf{y})..$$

**Definition (Operator Norm)** 

$$||L||_{X^{\vee}} \coloneqq \sup_{\substack{x \in X \\ ||x|| = 1}} |L(x)|.$$

**Definition (Banach Space)** A complete normed vector space.

**Definition (Hilbert Space)** An inner product space which is a Banach space under the induced norm.

#### 5.2 Theorems

**Theorem (Bessel's Inequality)** For any orthonormal set  $\{u_n\} \subseteq \mathcal{H}$  a Hilbert space (not necessarily a basis),

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

and thus

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2.$$

**Proof** 

• Let 
$$S_N = \sum_{n=1}^N \langle x, u_n \rangle u_n$$
  

$$\|x - S_N\|^2 = \langle x - S_n, x - S_N \rangle$$

$$= \|x\|^2 + \|S_N\|^2 - 2\Re\langle x, S_N \rangle$$

$$= \|x\|^2 + \|S_N\|^2 - 2\Re\langle x, \sum_{n=1}^N \langle x, u_n \rangle u_n \rangle$$

$$= \|x\|^2 + \|S_N\|^2 - 2\Re\sum_{n=1}^N \langle x, u_n \rangle u_n \rangle$$

$$= \|x\|^2 + \|S_N\|^2 - 2\Re\sum_{n=1}^N \overline{\langle x, u_n \rangle} \langle x, u_n \rangle$$

$$= \|x\|^2 + \|\sum_{n=1}^N \langle x, u_n \rangle u_n \|^2 - 2\sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$= \|x\|^2 + \sum_{n=1}^N |\langle x, u_n \rangle|^2 - 2\sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$= \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2.$$

• By continuity of the norm and inner product, we have

$$\lim_{N \to \infty} \|x - S_N\|^2 = \lim_{N \to \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\implies \left\| x - \lim_{N \to \infty} S_N \right\|^2 = \|x\|^2 - \lim_{N \to \infty} \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\implies \left\| x - \sum_{n=1}^\infty \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^\infty |\langle x, u_n \rangle|^2.$$

• Then noting that  $0 \le ||x - S_N||^2$ ,

$$0 \le ||x||^2 - \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$

$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2 \blacksquare.$$

Theorem (Riesz Representation for Hilbert Spaces) If  $\Lambda$  is a continuous linear functional on a Hilbert space H, then there exists a unique  $y \in H$  such that

$$\forall x \in H, \quad \Lambda(x) = \langle x, y \rangle...$$

**Proof** 

- Define  $M := \ker \Lambda$ .
- Then M is a closed subspace and so  $H = M \oplus M^{\perp}$
- There is some  $z \in M^{\perp}$  such that ||z|| = 1.
- Set  $u := \Lambda(x)z \Lambda(z)x$
- Check

$$\Lambda(u) = \Lambda(\Lambda(x)z - \Lambda(z)x) = \Lambda(x)\Lambda(z) - \Lambda(z)\Lambda(x) = 0 \implies u \in M$$

• Compute

$$\begin{split} 0 &= \langle u, \ z \rangle \\ &= \langle \Lambda(x)z - \Lambda(z)x, \ z \rangle \\ &= \langle \Lambda(x)z, \ z \rangle - \langle \Lambda(z)x, \ z \rangle \\ &= \Lambda(x)\langle z, \ z \rangle - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x)\|z\|^2 - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x) - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x) - \langle x, \ \overline{\Lambda(z)}z \rangle, \end{split}$$

- Choose  $y := \overline{\Lambda(z)}z$ .
- Check uniqueness:

$$\langle x, y \rangle = \langle x, y' \rangle \quad \forall x$$

$$\implies \langle x, y - y' \rangle = 0 \quad \forall x$$

$$\implies \langle y - y', y - y' \rangle = 0$$

$$\implies \|y - y'\| = 0$$

$$\implies y - y' = \mathbf{0} \implies y = y'.$$

**Theorem (Continuous iff Bounded)** Let  $L: X \longrightarrow \mathbb{C}$  be a linear functional, then the following are equivalent:

- 1. L is continuous
- $2.\ L$  is continuous at zero
- 3. L is bounded, i.e.  $\exists c \geq 0 \mid |L(x)| \leq c||x||$  for all  $x \in H$

**Proof** 

 $2 \implies 3$ : Choose  $\delta < 1$  such that

$$||x|| \le \delta \implies |L(x)| < 1.$$

Then

$$|L(x)| = \left| L\left(\frac{\|x\|}{\delta} \frac{\delta}{\|x\|} x\right) \right|$$
$$= \frac{\|x\|}{\delta} \left| L\left(\delta \frac{x}{\|x\|}\right) \right|$$
$$\leq \frac{\|x\|}{\delta} 1,$$

so we can take  $c = \frac{1}{\delta}$ .

 $3 \implies 1$ :

We have  $|L(x-y)| \le c||x-y||$ , so given  $\varepsilon \ge 0$  simply choose  $\delta = \frac{\varepsilon}{c}$ .

**Theorem (Operator Norm is a Norm)** If H is a Hilbert space, then  $(H^{\vee}, \|\cdot\|_{\operatorname{op}})$  is a normed space.

**Proof** The only nontrivial property is the triangle inequality, but

$$||L_1 + L_2||_{\text{op}} = \sup |L_1(x) + L_2(x)| \le \sup |L_1(x)| + |\sup L_2(x)| = ||L_1||_{\text{op}} + ||L_2||_{\text{op}}.$$

**Theorem (Completeness in Operator Norm)** If X is a normed vector space, then  $(X^{\vee}, \|\cdot\|_{\text{op}})$  is a Banach space.

#### **Proof**

- Let  $\{L_n\}$  be Cauchy in  $X^{\vee}$ .
- Then for all  $x \in C$ ,  $\{L_n(x)\}\subset \mathbb{C}$  is Cauchy and converges to something denoted L(x).
- Need to show L is continuous and  $||L_n L|| \longrightarrow 0$ .
- Since  $\{L_n\}$  is Cauchy in  $X^{\vee}$ , choose N large enough so that

$$n, m \ge N \implies ||L_n - L_m|| < \varepsilon \implies |L_m(x) - L_n(x)| < \varepsilon \quad \forall x \mid ||x|| = 1.$$

• Take  $n \longrightarrow \infty$  to obtain

$$m \ge N \implies |L_m(x) - L(x)| < \varepsilon \quad \forall x \mid ||x|| = 1$$
  
$$\implies ||L_m - L|| < \varepsilon \longrightarrow 0.$$

• Continuity:

$$|L(x)| = |L(x) - L_n(x) + L_n(x)|$$

$$\leq |L(x) - L_n(x)| + |L_n(x)|$$

$$\leq \varepsilon ||x|| + c||x||$$

$$= (\varepsilon + c)||x|| \blacksquare.$$

**Theorem (Riesz-Fischer)** Let  $U = \{u_n\}_{n=1}^{\infty}$  be an orthonormal set (not necessarily a basis), then

1. There is an isometric surjection

$$\mathcal{H} \longrightarrow \ell^2(\mathbb{N})$$
  
 $\mathbf{x} \mapsto \{\langle \mathbf{x}, \mathbf{u}_n \rangle\}_{n=1}^{\infty}$ 

i.e. if  $\{a_n\} \in \ell^2(\mathbb{N})$ , so  $\sum |a_n|^2 < \infty$ , then there exists a  $\mathbf{x} \in \mathcal{H}$  such that

$$a_n = \langle \mathbf{x}, \mathbf{u}_n \rangle \quad \forall n.$$

2.  $\mathbf{x}$  can be chosen such that

$$\|\mathbf{x}\|^2 = \sum |a_n|^2$$

Note: the choice of **x** is unique  $\iff$   $\{u_n\}$  is **complete**, i.e.  $\langle \mathbf{x}, \mathbf{u}_n \rangle = 0$  for all nimplies  $\mathbf{x} = \mathbf{0}$ .

#### **Proof**

- Given {a<sub>n</sub>}, define S<sub>N</sub> = ∑<sup>N</sup> a<sub>n</sub>**u**<sub>n</sub>.
  S<sub>N</sub> is Cauchy in H and so S<sub>N</sub> → **x** for some **x** ∈ H.
  ⟨x, u<sub>n</sub>⟩ = ⟨x S<sub>N</sub>, u<sub>n</sub>⟩ + ⟨S<sub>N</sub>, u<sub>n</sub>⟩ → a<sub>n</sub>

- By construction,  $||x S_N||^2 = ||x||^2 \sum_{n=1}^{N} |a_n|^2 \longrightarrow 0$ , so  $||x||^2 = \sum_{n=1}^{\infty} |a_n|^2$ .

# 6 Extra Problems

#### Topology

- Show that every compact set is closed and bounded.
- Show that if a subset of a metric space is complete and totally bounded, then it is compact.
- Show that if K is compact and F is closed with K, F disjoint then dist(K, F) > 0.

# Continuity

• Show that a continuous function on a compact set is uniformly continuous.

#### Differentiation

• Show that if  $f \in C^1(\mathbb{R})$  and both  $\lim_{x \to \infty} f(x)$  and  $\lim_{x \to \infty} f'(x)$  exist, then  $\lim_{x \to \infty} f'(x)$  must be zero.

#### Advanced Limitology

- If f is continuous, is it necessarily the case that f' is continuous?
- If  $f_n \longrightarrow f$ , is it necessarily the case that  $f'_n$  converges to f' (or at all)?
- Is it true that the sum of differentiable functions is differentiable?
- Is it true that the limit of integrals equals the integral of the limit?
- Is it true that a limit of continuous functions is continuous?
- Show that a subset of a metric space is closed iff it is complete.

### Uniform Convergence

• Show that a uniform limit of bounded functions is bounded.

- Show that a uniform limit of continuous function is continuous.
  - I.e. if  $f_n \longrightarrow f$  uniformly with each  $f_n$  continuous then f is continuous.
- Show that if  $f_n \longrightarrow f$  pointwise,  $f'_n \longrightarrow g$  uniformly for some f, g, then f is differentiable and g = f'.
- Prove that uniform convergence implies pointwise convergence implies a.e. convergence, but none of the implications may be reversed.
- Show that  $\sum \frac{x^n}{n!}$  converges uniformly on any compact subset of  $\mathbb{R}$ .

# Measure Theory

- $\star$ : Show that for  $E \subseteq \mathbb{R}^n$ , TFAE:
  - 1. E is measurable
  - 2.  $E = H \bigcup Z$  here H is  $F_{\sigma}$  and Z is null
  - 3.  $E = V \setminus Z'$  where  $V \in G_{\delta}$  and Z' is null.
- Show that continuity of measure from above/below holds for outer measures.
- $\star$ : Show that if  $E \subseteq \mathbb{R}^n$  is measurable then  $m(E) = \sup \{ m(K) \mid K \subset E \text{ compact} \}$  iff for all  $\varepsilon > 0$  there exists a compact  $K \subseteq E$  such that  $m(K) \ge m(E) \varepsilon$ .
- Show that a countable union of null sets is null.

#### Measurability

- Show that f = 0 a.e. iff  $\int_E f = 0$  for every measurable set E.
- $\star$ : Show that cylinder functions are measurable, i.e. if f is measurable on  $\mathbb{R}^s$ , then F(x,y) := f(x) is measurable on  $\mathbb{R}^s \times \mathbb{R}^t$  for any t.

### Integrability

- Show that if f is a measurable function, then f = 0 a.e. iff  $\int f = 0$ .
- $\star$ : Prove that the Lebesgue integral is translation invariant, i.e. if  $\tau_h(x) = x + h$  then  $\int \tau_h f = \int f$ .
- \*: Prove that the Lebesgue integral is dilation invariant, i.e. if  $f_{\delta}(x) = \frac{f(\frac{x}{\delta})}{\delta^n}$  then  $\int f_{\delta} = \int f$ .
- $\star$ : Prove continuity in  $L^1$ , i.e.

$$f \in L^1 \Longrightarrow \lim_{h \to 0} \int |f(x+h) - f(x)| = 0.$$

- Show that a bounded function is Lebesgue integrable iff it is measurable.
- Show that simple functions are dense in  $L^1$ .
- Show that step functions are dense in  $L^1$ .
- Show that smooth compactly supported functions are dense in  $L^1$ .

#### Convergence

- Prove Fatou's lemma using the Monotone Convergence Theorem.
- Show that if  $\{f_n\}$  is in  $L^1$  and  $\sum \int |f_n| < \infty$  then  $\sum f_n$  converges to an  $L^1$  function and

$$\int \sum f_n = \sum \int f_n.$$

#### Convolution

• \*: Show that

$$f, g \in L^1 \implies f * g \in L^1 \text{ and } \|f * g\|_1 \le \|f\|_1 \|g\|_1.$$

- Show that if  $f \in L^1$  and g is bounded, then f \* g is bounded and uniformly continuous.
- If f, g are compactly supported, is it necessarily the case that f \* g is compactly supported?
- Show that under any of the following assumptions, f \* g vanishes at infinity:
  - $-f,g \in L^1$  are both bounded.
  - $-f,g \in L^1$  with just g bounded.
  - -f, g smooth and compactly supported (and in fact f \* g is smooth)
  - $-f \in L^1$  and g smooth and compactly supported (and in fact f \* g is smooth)
- Show that if  $f \in L^1$  and g' exists with  $\frac{\partial g}{\partial x_i}$  all bounded, then

$$\frac{\partial}{\partial x_i} (f * g) = f * \frac{\partial g}{\partial x_i}$$

# Fourier Analysis

- Show that if  $f \in L^1$  then  $\hat{f}$  is bounded and uniformly continuous.
- Is it the case that  $f \in L^1$  implies  $\widehat{f} \in L^1$ ?
- Show that if  $f, \hat{f} \in L^1$  then f is bounded, uniformly continuous, and vanishes at infinity.
  - Show that this is not true for arbitrary  $L^1$  functions.
- Show that if  $f \in L^1$  and  $\hat{f} = 0$  almost everywhere then f = 0 almost everywhere.
  - Prove that  $\hat{f} = \hat{g}$  implies that f = g a.e.
- Show that if  $f, g \in L^1$  then

$$\int \widehat{f}g = \int f\widehat{g}.$$

- Give an example showing that this fails if g is not bounded.
- Show that if  $f \in C^1$  then f is equal to its Fourier series.

# Approximate Identities

• Show that if  $\varphi$  is an approximate identity, then

$$||f * \varphi_t - f||_1 \stackrel{t \longrightarrow 0}{\longrightarrow} 0.$$

- Show that if additionally  $|\varphi(x)| \le c(1+|x|)^{-n-\varepsilon}$  for some  $c, \varepsilon > 0$ , then this converges is almost everywhere.
- Show that is f is bounded and uniformly continuous and  $\varphi_t$  is an approximation to the identity, then  $f * \varphi_t$  uniformly converges to f.

### $L^p$ Spaces

• Show that if  $E \subseteq \mathbb{R}^n$  is measurable with  $\mu(E) < \infty$  and  $f \in L^p(X)$  then

$$||f||_{L^p(X)} \stackrel{p \longrightarrow \infty}{\longrightarrow} ||f||_{\infty}.$$

• Is it true that the converse to the DCT holds? I.e. if  $\int f_n \longrightarrow \int f$ , is there a  $g \in L^p$  such that  $f_n < g$  a.e. for every n?

• Prove continuity in  $L^p$ : If f is uniformly continuous then for all p,

$$\|\tau_h f - f\|_p \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

• Prove the following inclusions of  $L^p$  spaces for  $m(X) < \infty$ :

$$L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X)$$
$$\ell^{2}(\mathbb{Z}) \subset \ell^{1}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z}).$$

# 7 Practice Exam (November 2014)

#### 7.1 1: Fubini-Tonelli

#### 7.1.1 a

Carefully state Tonelli's theorem for a nonnegative function F(x,t) on  $\mathbb{R}^n \times \mathbb{R}$ .

#### 7.1.2 b

Let  $f: \mathbb{R}^n \longrightarrow [0, \infty]$  and define

$$\mathcal{A} := \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t \le f(x) \right\}.$$

Prove the validity of the following two statements:

- 1. f is Lebesgue measurable on  $\mathbb{R}^n \iff \mathcal{A}$  is a Lebesgue measurable subset of  $\mathbb{R}^{n+1}$ .
- 2. If f is Lebesgue measurable on  $\mathbb{R}^n$  then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x) dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n \mid f(x) \ge t\right\}\right) dt.$$

#### 7.2 2: Convolutions and the Fourier Transform

### 7.2.1 a

Let  $f, g \in L^1(\mathbb{R}^n)$  and give a definition of f \* g.

### 7.2.2 b

Prove that if f, g are integrable and bounded, then

$$(f * g)(x) \stackrel{|x| \longrightarrow \infty}{\longrightarrow} 0.$$

#### 7.2.3 c

- 1. Define the Fourier transform of an integrable function f on  $\mathbb{R}^n$ .
- 2. Give an outline of the proof of the Fourier inversion formula.
- 3. Give an example of a function  $f \in L^1(\mathbb{R}^n)$  such that  $\widehat{f}$  is not in  $L^1(\mathbb{R}^n)$ .

# 7.3 3: Hilbert Spaces

Let  $\{u_n\}_{n=1}^{\infty}$  be an orthonormal sequence in a Hilbert space H.

# 7.3.1 a

Let  $x \in H$  and verify that

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|_{H}^{2} = \|x\|_{H}^{2} - \sum_{n=1}^{N} |\langle x, u_n \rangle|^{2}.$$

for any  $N \in \mathbb{N}$  and deduce that

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||_H^2.$$

# 7.3.2 b

Let  $\{a_n\}_{n\in\mathbb{N}}\in\ell^2(\mathbb{N})$  and prove that there exists an  $x\in H$  such that  $a_n=\langle x, u_n\rangle$  for all  $n\in\mathbb{N}$ , and moreover x may be chosen such that

$$||x||_H = \left(\sum_{n \in \mathbb{N}} |a_n|^2\right)^{\frac{1}{2}}.$$

#### **Proof**

- Take  $\{a_n\} \in \ell^2$ , then note that  $\sum |a_n|^2 < \infty \implies$  the tails vanish.
- Define  $x := \lim_{N \to \infty} S_N$  where  $S_N = \sum_{k=1}^N a_k u_k$
- $\{S_N\}$  is Cauchy and H is complete, so  $x \in H$ .
- By construction,

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n$$

since the  $u_k$  are all orthogonal.

• By Pythagoras since the  $u_k$  are normal,

$$||x||^2 = \left\| \sum_k a_k u_k \right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2.$$

#### 7.3.3 c

Prove that if  $\{u_n\}$  is *complete*, Bessel's inequality becomes an equality.

**Proof** Let x and  $u_n$  be arbitrary.

$$\left\langle x - \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle = \langle x, u_n \rangle - \left\langle \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle$$

$$= \langle x, u_n \rangle - \sum_{k=1}^{\infty} \langle \langle x, u_k \rangle u_k, u_n \rangle$$

$$= \langle x, u_n \rangle - \sum_{k=1}^{\infty} \langle x, u_k \rangle \langle u_k, u_n \rangle$$

$$= \langle x, u_n \rangle - \langle x, u_n \rangle = 0$$

$$\implies x - \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k = 0 \quad \text{by completeness.}$$

So

$$x = \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k \implies ||x||^2 = \sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2. \blacksquare.$$

# 7.4 4: $L^p$ Spaces

#### 7.4.1 a

Prove Holder's inequality: let  $f \in L^p, g \in L^q$  with p, q conjugate, and show that

$$||fg||_p \le ||f||_p \cdot ||g||_q$$
.

# 7.4.2 b

Prove Minkowski's Inequality:

$$1 \le p < \infty \implies ||f + g||_n \le ||f||_n + ||g||_n$$

Conclude that if  $f, g \in L^p(\mathbb{R}^n)$  then so is f + g.

#### 7.4.3 c

Let  $X = [0, 1] \subset \mathbb{R}$ .

- 1. Give a definition of the Banach space  $L^{\infty}(X)$  of essentially bounded functions of X.
- 2. Let f be non-negative and measurable on X, prove that

$$\int_X f(x)^p dx \stackrel{p \to \infty}{\longrightarrow} \begin{cases} \infty & \text{or} \\ m(\{f^{-1}(1)\}) \end{cases},$$

and characterize the functions of each type

#### **Proof**

$$\begin{split} \int f^p &= \int_{x < 1} f^p + \int_{x = 1} f^p + \int_{x > 1} f^p \\ &= \int_{x < 1} f^p + \int_{x = 1} 1 + \int_{x > 1} f^p \\ &= \int_{x < 1} f^p + m(\{f = 1\}) + \int_{x > 1} f^p \\ &\stackrel{p \longrightarrow \infty}{\longrightarrow} 0 + m(\{f = 1\}) + \begin{cases} 0 & m(\{x \ge 1\}) = 0 \\ \infty & m(\{x \ge 1\}) > 0. \end{cases} \end{split}$$

ustify passing imit into integrals

# 7.5 5: Dual Spaces

Let X be a normed vector space.

#### 7.5.1 a

Give the definition of what it means for a map  $L: X \longrightarrow \mathbb{C}$  to be a linear functional.

# 7.5.2 b

Define what it means for L to be bounded and show L is bounded  $\iff$  L is continuous.

#### 7.5.3 c

Prove that  $(X^{\vee}, \|\cdot\|_{\text{op}})$  is a Banach space.

# 8 Midterm Exam 2 (November 2018)

# 8.1 1 (Integration by Parts)

Let  $f, g \in L^1([0,1])$ , define  $F(x) = \int_0^x f$  and  $G(x) = \int_0^x g$ , and show

$$\int_0^1 F(x)g(x) \, dx = F(1)G(1) - \int_0^1 f(x)G(x) \, dx.$$

# 8.2 2

Let  $\varphi \in L^1(\mathbb{R}^n)$  such that  $\int \varphi = 1$  and define  $\varphi_t(x) = t^{-n}\varphi(t^{-1}x)$ .

Show that if f is bounded and uniformly continuous then  $f * \varphi_t^t \xrightarrow{t \to 0}$  uniformly.

#### 8.3 3

Let  $g \in L^{\infty}([0,1])$ .

a. Prove

$$||g||_{L^p([0,1])} \stackrel{p \longrightarrow \infty}{\longrightarrow} ||g||_{L^\infty([0,1])}.$$

b. Prove that the map

$$\Lambda_g: L^1([0,1]) \longrightarrow \mathbb{C}$$

$$f \mapsto \int_0^1 fg$$

defines an element of  $L^1([0,1])^{\vee}$  with  $\|\Lambda_g\|_{L^1([0,1])^{\vee}} = \|g\|_{L^{\infty}([0,1])}$ .

Note: 4 is a repeat.

# 9 Midterm Exam 2 (December 2014)

### 9.1 1

Note: (a) is a repeat.

- Let  $\Lambda \in L^2(X)^{\vee}$ .
  - Show that  $M := \left\{ f \in L^2(X) \mid \Lambda(f) = 0 \right\} \subseteq L^2(X)$  is a closed subspace, and  $L^2(X) = M \oplus M + 1$ .
  - Prove that there exists a unique  $g \in L^2(X)$  such that  $\Lambda(f) = \int_X g\overline{f}$ .

#### 9.2 2

- a. In parts:
- Given a definition of  $L^{\infty}(\mathbb{R}^n)$ .
- Verify that  $\|\cdot\|_{\infty}$  defines a norm on  $L^{\infty}(\mathbb{R}^n)$ .
- Carefully proved that  $(L^{\infty}(\mathbb{R}^n), \|\cdot\|_{\infty})$  is a Banach space.
- b. Prove that for any measurable  $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ ,

$$L^{1}(\mathbb{R}^{n}) \cap L^{\infty}(\mathbb{R}^{n}) \subset L^{2}(\mathbb{R}^{n}) \text{ and } \|f\|_{2} \leq \|f\|_{1}^{\frac{1}{2}} \cdot \|f\|_{\infty}^{\frac{1}{2}}.$$

# 9.3 3

- a. Prove that if  $f, g : \mathbb{R}^n \longrightarrow \mathbb{C}$  is both measurable then  $F(x, y) \coloneqq f(x)$  and  $h(x, y) \coloneqq f(x y)g(y)$  is measurable on  $\mathbb{R}^n \times \mathbb{R}^n$ .
- b. Show that if  $f \in L^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$  and  $g \in L^1(\mathbb{R}^n)$ , then  $f * g \in L^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$  is well defined, and carefully show that it satisfies the following properties:

$$\|f*g\|_{\infty} \le \|g\|_1 \|f\|_{\infty} \|f*g\|_1 \qquad \qquad \le \|g\|_1 \|f\|_1 \|f*g\|_2 \le \|g\|_1 \|f\|_2.$$

Hint: first show  $|f * g|^2 \le ||g||_1 (|f|^2 * |g|)$ .

# 9.4 4 (Weierstrass Approximation Theorem)

Note: (a) is a repeat.

Let  $f:[0,1] \longrightarrow \mathbb{R}$  be continuous, and prove the Weierstrass approximation theorem: for any  $\varepsilon > 0$  there exists a polynomial P such that  $||f - P||_{\infty} < \varepsilon$ .

# 10 Inequalities and Equalities

**Proposition (Reverse Triangle Inequality)** 

$$|||x|| - ||y||| < ||x - y||.$$

Proposition (Chebyshev's Inequality)

$$\mu(\lbrace x : |f(x)| > \alpha \rbrace) \le \left(\frac{\|f\|_p}{\alpha}\right)^p.$$

Proposition (Holder's Inequality When Surjective)

$$\frac{1}{p} + \frac{1}{q} = 1 \implies ||fg||_1 \le ||f||_p ||g||_q.$$

Application: For finite measure spaces,

$$1 \le p < q \le \infty \implies L^q \subset L^p \pmod{\ell^p \subset \ell^q}$$
.

**Proof (Holder's Inequality)** Fix p, q, let  $r = \frac{q}{p}$  and  $s = \frac{r}{r-1}$  so  $r^{-1} + s^{-1} = 1$ . Then let  $h = |f|^p$ :

$$||f||_p^p = ||h \cdot 1||_1 \le ||1||_s ||h||_r = \mu(X)^{\frac{1}{s}} ||f||_q^{\frac{q}{r}} \implies ||f||_p \le \mu(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_q.$$

Note: doesn't work for  $\ell_p$  spaces, but just note that  $\sum |x_n| < \infty \implies x_n < 1$  for large enough n, and thus  $p < q \implies |x_n|^q \le |x_n|^q$ .

**Proof (Holder's Inequality)** It suffices to show this when  $||f||_p = ||g||_q = 1$ , since

$$||fg||_1 \le ||f||_p ||f||_q \iff \int \frac{|f|}{||f||_p} \frac{|g|}{||g||_q} \le 1.$$

Using  $AB \leq \frac{1}{p}A^p + \frac{1}{q}B^q$ , we have

$$\int |f||g| \leq \int \frac{|f|^p}{p} \frac{|g|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

# **Proposition (Cauchy-Schwarz Inequality)**

$$|\langle f, \ g \rangle| = \|fg\|_1 \leq \|f\|_2 \|g\|_2 \quad \text{with equality} \quad \Longleftrightarrow \ f = \lambda g.$$

Note: Relates inner product to norm, and only happens to relate norms in  $L^1$ .

#### **Proof**?

# Proposition (Minkowski's Inequality:)

$$1 \le p < \infty \implies ||f + g||_p \le ||f||_p + ||g||_p.$$

Note: does not handle  $p = \infty$  case. Use to prove  $L^p$  is a normed space.

# **Proof**

• We first note

$$|f+g|^p = |f+g||f+g|^{p-1} \le (|f|+|g|)|f+g|^{p-1}.$$

• Note that if p, q are conjugate exponents then

$$\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$$
$$q = \frac{p}{p-1}.$$

• Then taking integrals yields

$$\begin{split} \|f+g\|_p^p &= \int |f+g|^p \\ &\leq \int (|f|+|g|) |f+g|^{p-1} \\ &= \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1} \\ &= \left\|f(f+g)^{p-1}\right\|_1 + \left\|g(f+g)^{p-1}\right\|_1 \\ &\leq \|f\|_p \left\|(f+g)^{p-1}\right\|_q + \|g\|_p \left\|(f+g)^{p-1}\right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^{p-1}\right) \right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\int |f+g|^p}{\left(\int |f+g|^p\right)^{\frac{1}{p}}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\|f+g\|_p^p}{\|f+g\|_p^p}. \end{split}$$

• Cancelling common terms yields

$$1 \le \left( \|f\|_p + \|g\|_p \right) \frac{1}{\|f + g\|_p}$$

$$\implies \|f + g\|_p \le \|f\|_p + \|g\|_p.$$

#### Proposition (Young's Inequality\*)

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1 \implies ||f * g||_r \le ||f||_p ||g||_q$$

Application: Some useful specific cases:

$$\begin{split} & \|f * g\|_1 \le \|f\|_1 \|g\|_1 \\ & \|f * g\|_p \le \|f\|_1 \|g\|_p, \\ & \|f * g\|_\infty \le \|f\|_2 \|g\|_2 \\ & \|f * g\|_\infty \le \|f\|_p \|g\|_q. \end{split}$$

#### Proposition (Bessel's Inequality:)

For  $x \in H$  a Hilbert space and  $\{e_k\}$  an orthonormal sequence,

$$\sum_{k=1}^{\infty} \|\langle x, e_k \rangle\|^2 \le \|x\|^2.$$

Note: this does not need to be a basis.

**Proposition (Parseval's Identity:)** Equality in Bessel's inequality, attained when  $\{e_k\}$  is a *basis*, i.e. it is complete, i.e. the span of its closure is all of H.

# 10.1 Less Explicitly Used Inequalities

# Proposition (AM-GM Inequality)

$$\sqrt{ab} \le \frac{a+b}{2}.$$

# Proposition (Jensen's Inequality)

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

Proposition (???):

$$AB \le \frac{A^p}{p} + \frac{B^q}{q}.$$

# Proposition (? Inequality)

$$(a+b)^p \le 2^p (a^p + b^p).$$

# Proposition (Bernoulli's Inequality)

$$(1+x)^n \ge 1 + nx$$
  $x \ge -1$ , or  $n \in 2\mathbb{Z}$  and  $\forall x$ .