

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Subsidiary/ Advanced Level In Physics (WPH11)

Paper 1: Mechanics and Materials

Question	Answer	Mark
Number		
1	C is the correct answer	(1)
	A is incorrect because the velocity should be squared	
	B is incorrect because the displacement should be doubled and the velocity squared D is incorrect because the displacement should be doubled	
2	C is the correct answer	(1)
-	o is the correct answer	
	A is incorrect because it takes no account of the k.e.	
	B is incorrect because the energy dissipated would be greater than the original energy	
	D is incorrect because the energy dissipated could not be negative	
3	D is the correct answer	(1)
	A is incorrect because the acceleration is not positive	
	B is incorrect because the acceleration is decreasing	
	C is incorrect because the acceleration is constant	
4	B is the correct answer	(1)
	A is incorrect because the graph would have a gradient of $g/2$	
	C is incorrect because the graph would have a gradient of 2/g	
	D is incorrect because the graph would have a gradient of 1/g	(4)
5	C is the correct answer	(1)
	A is incorrect because breaking stress is material property independent of dimensions	
	B is incorrect because density is material property independent of dimensions	
	D is incorrect because Young modulus is material property independent of dimensions	
6	A is the correct answer	(1)
	B is incorrect because object B has greater leftward momentum than object A	
	C is incorrect because total momentum is not the sum of the magnitudes D is incorrect because total momentum is not the sum of the magnitudes	
7	C is the correct answer	(1)
1	C is the correct answer	(1)
	A is incorrect because the ball bearing is not in the oil at V	
	B is incorrect because the ball bearing has not reached terminal velocity at W	
	D is incorrect because the ball bearing has not reached terminal velocity at W	
8	C is the correct answer	(1)
	A is incorrect because density is not a vector	
	A is incorrect because density is not a vector B is incorrect because kinetic energy is not a vector	
	D is incorrect because viscosity is not a vector	
9	B is the correct answer	(1)
	A is incorrect because the forces do act in opposite directions	
	C is incorrect because the forces are of the same type	
10	D is incorrect because the forces do have the same magnitude	(1)
10	C is the correct answer	(1)
	A is incorrect because time is not speed/distance	
	B is incorrect because time is not speed/distance	
	D is incorrect because the powers of ten are incorrect	

Question	Answer	Mark
Number		
11(a)	Three downward arrows to show the forces of the people and the weight of the plank (1) Upward arrow to show reaction/contact/value force at the pivot. (1) 0.90 m 1850 N 250 N 4.0 m	2
11(b)	• Use of moment = Fx • Application of principle of moments • $x = 0.89 \text{ m}$ (1) Example of calculation $x = (0.9 \text{ m} \times 950 \text{ N} - 1.1 \times 250) / 650 \text{ N} = 0.89 \text{ m}$	3
	Total for question 11	5

Question	Answer	Mar
Number		k
12(a)	• Use of $\Delta E_{\text{grav}} = mg\Delta h$ • Use of trigonometry to calculate Δh • $P = 180 \text{ (W)}$ (1)	
	OR • Use of $W = Fs$ • Use of trigonometry to calculate component of weight along slope • $P = 180 \text{ (W)}$ (1)	3
	Example of calculation: $P = 72 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.51 \text{m s}^{-1} \times \sin 30^{\circ} = 180 \text{ W}$	
12(b)	 Use of efficiency = useful power output/total power input Calculates useful power output Power input = 3500 W (1) (1) (1)	3
	Example of calculation $15 \times 180 \text{ W} / 0.78 = 3.46 \times 10^3 \text{ W}$	
	Total for question 12	6

Question	Answer	Mark
Number		
13(a)	• Use of $v^2 = u^2 + 2as$ • Vertical component, $u_V = u \sin 35^\circ$ • Speed of ball = 17.3 (m s ⁻¹) (1)	3
	Example of calculation $0 = u_v^2 - 2 \times 9.81 \text{ m s}^{-2} \times 5.0 \text{ m}$ $u_v^2 = 98.1, u_v = \sqrt{98.1} = 9.9 \text{ m s}^{-1}$ $u = 9.9 / \sin 35^\circ = 17.3 \text{ m s}^{-1}$	
13(b)	• Use of $u_H = u \cos \theta$ • Use of $t = s/u_H$ • Use of $s = ut + \frac{1}{2}at^2$ with $u_V = u \sin \theta$ and $a = -g$ • Height = 3.2 (m) (1) • Comparison of result consistent with calculation of height at 22 m. (1)	5
	Example of calculation Horizontal speed = $17.0 \cos 35^\circ = 13.9 \text{ m s}^{-1}$ Time to travel $22 \text{ m} = 22 \div 13.9 = 1.58 \text{ s}$ Initial vertical speed = $17.0 \sin 35^\circ = 9.8 \text{ m s}^{-1}$ Height gained in $1.58 \text{ s} = 9.8 \times 1.58 - 0.5 \times 9.81 \times 1.58^2 = 3.16 \text{ m}$	
	Total for question 13	8

Question Number	Answer		Mark
14(a)(i)	• Use of $\rho = \frac{m}{v}$ • Use of $A = \pi r^2$ • Use of volume in 1 second = cross section area × speed • Speed = 37.1 (m s ⁻¹) $\frac{\text{Example of calculation}}{t} = \frac{300 \text{ kg s}^{-1}}{1030 \text{ kg m}^{-3}} = 0.291 \text{ m}^3 \text{s}^{-1}$ $A = \pi \times 0.05^2 = 7.85 \times 10^{-3} \text{ m}^2$ Speed = 0.291 m ³ s ⁻¹ / 7.85 × 10 ⁻³ m ² = 37.1 m s ⁻¹	(1) (1) (1) (1)	4
14(a)(ii)	• Use of $p = mv$ • Rate of change of momentum = $1.1 \times 10^4 \text{ kg m s}^{-2}$ (ecf from (a)(i)) $\frac{\text{Example of calculation}}{\text{mass} \times \text{speed}} = 300 \text{ kg} \times 37.1 \text{ m s}^{-1} = 1.11 \times 10^4 \text{ kg m s}^{-2}$	(1) (1)	2
14(b)	 Pump applies a (forward) force to the water. By Newton 3, water applies an (equal and) opposite/backward force to the pump Or By Newton 3, water applies a force to the pump in the opposite direction to the (flow of) water. 	(1) (1)	2
14(c)	 Initially (speed is constant because) drag force = forward force Turning on pump gives <u>resultant</u> force backwards, so boat slows. Drag force becomes less (as boat slows) until forces balance again. 	(1) (1) (1)	3
	Total for question 14		11

Question	Answer						Mark
Number							
15	with linkages Marks are aw lines of reaso The following lines of reaso	and fully- rarded for i ning. g table sho ning.	sustained reasoning ndicative content as ws how the marks s	nd for how the should be award	answer is struc		
	IC points	IC mark	Max linkage mark available	Max final mark			
	6 or more	4	2	6	_		
	5	3	2	5			
	4	3	1	4			
	3	2	1	3			
	2	2	0	2			
	1	1	0	1			
	0	0	0	0			
	Answer is pareasoning Answer has Indicative co In state Because In state Because In state Because He co	no linkage notent no linkage ntent nge 1 the ki use work is use work is use work is use work is nge 3 the ki use work is on the jum	netic energy of the s done on the cord a	jumper is incre jumper is incre jumper is incre as the cord stre jumper is decre at a greater rate	es of ed asing asing but at a etches) (as well easing than the gravi	l as increasing k.e.) tational force does	
1							6
	Total for que	estion 15					6

Question	Answer		Mark
Number			
16(a)	Micrometer (screw gauge) Or digital (not Vernier) calliper(s)	(1)	1
16(b)(i)	 Attempt to calculate gradient Use of linear section, or tangent at origin, with use of large triangle E = 1.2 ± 0.05 × 10¹¹ Pa Example of calculation Extending straight section to 1% 120 × 10⁶ Pa ÷ 0.01 = 1.2 × 10¹¹ Pa 	(1) (1) (1)	3
16(b)(ii)	• Breaking stress read from graph • Use of $A = \pi r^2$ • Use of $\sigma = F/A$ • $F = 2.6 \times 10^4 \text{ N}$ • Example of calculation Area = $\pi \times (2.525 \times 10^{-3})^2 = 2.00 \times 10^{-5} \text{ m}^2$ Force = $1280 \times 10^6 \times 2 \times 10^{-5} = 2.56 \times 10^4 \text{ N}$	(1) (1) (1) (1)	4
16(b)(iii)	• Use of area under graph = $\frac{1}{2}\sigma\varepsilon$ • Substitution of $F = \sigma A$ and $\Delta x = \varepsilon x$ • Substitution of $Ax = V$ and $\Delta W = \frac{1}{2}F\Delta x$ Example of calculation Area = $\frac{1}{2}\sigma\varepsilon$ = $\frac{1}{2}(F/A)(\Delta x/x)$ = $\frac{1}{2}F\Delta x/(Ax)$ = $\Delta W/V$	(1) (1) (1)	3
16(b)(iv)	 Calculation of area under graph by a valid method. Area in range 60 to 64 (MJ m⁻³) Calculation of volume of sample Energy = 500±20 J Example of calculation One large square = 200 × 10⁶ × 0.01 = 2 × 10⁶ J m⁻³ 31 large squares Volume of sample = 0.40 m × 2.0 × 10⁻⁵ m² = 8.0 × 10⁻⁶ m³ Work = 31 × 8 × 10⁻⁶ m³× 2 × 10⁶ J m⁻³ = 4.96 × 10² J 	(1) (1) (1) (1)	4
	Total for question 16		15

Question	Answer	Mark
Number		
17(a)	• Use of $\Delta F = k\Delta x$ • $k = 1.9 \text{ (N cm}^{-1})$ (1) Example of calculation: $k = 15 \text{ N} \div 8 \text{ cm} = 1.875 \text{ N cm}^{-1}$	2
17(b)	• Use of $w = mg$ • Use of force triangle and Pythagoras to find F Or F resolved into components • Use of trigonometry to find θ . (1) • Use of $\Delta x = \frac{\Delta F}{k}$ (1) • $\Delta x = 5.4$ cm (ecf from (a), "show that" value gives 5.0 cm) (1) • $\theta = 32^{\circ}$ (ecf from (a)) (1) Example of calculation: $\theta = \tan^{-1}(0.55 \text{ kg} \times 9.81 \text{ N kg}^{-1} \div 8.5 \text{ N}) = 32.4^{\circ}$ $\Delta x = \sqrt{((0.55 \times 9.81)^2 + 8.5^2)} \div 1.88 = 5.37 \text{ cm}$	6
	Total for question 17	8

Question	Answer	Mark
Number 18(a)	Weight Or <i>W</i> , downwards	
10(a)	• Drag Or D, downwards (1	
	upthrust, U drag, D weight, W	
	weight, W	
18(b)	• Use of $V = \frac{4}{3}\pi r^3$ • Use of $\rho = \frac{m}{V}$ and $W = mg$ • Upthrust = 3.06×10^{-4} (N) (1) Example of calculation Volume of bead = $4/3 \times \pi \times (2.00 \times 10^{-3} \mathrm{m})^3 = 3.35 \times 10^{-8} \mathrm{m}^3$ Weight of displaced fluid = $930 \mathrm{kg} \mathrm{m}^{-3} \times 3.35 \times 10^{-8} \mathrm{m}^3 \times 9.81 \mathrm{N} \mathrm{kg}^{-1}$ = $3.06 \times 10^{-4} \mathrm{N}$	2)
18(c)(i)	• The flow must be laminar Or There must be no turbulent flow) 1
18(c)(ii)	• States $D = U - W$ • Use of $F = 6\pi \eta r v$ • $v = 0.16 \text{ (m s}^{-1})$ • Calculate $v_R = 0.13 \text{ (m s}^{-1})$ • Comparison of v with v_R and correct conclusion (ecf from (b)) Alternative method of comparison of $F(0.13)$ with D scores full marks.)))
	Example of calculation $U - W = 3.06 \times 10^{-4} - 1.05 \times 10^{-5} = 2.96 \times 10^{-4} \text{ N}$ $v = 2.96 \times 10^{-4} \text{ N} / (6\pi \times 4.9 \times 10^{-2} \text{ Pa s} \times 2.0 \times 10^{-3} \text{ m}) = 1.60 \times 10^{-1} \text{ m s}^{-1}$ $v_{R} = 10 \times 4.9 \times 10^{-2} \text{ Pa s} / (930 \text{ kg m}^{-3} \times 4.0 \times 10^{-3} \text{ m}) = 1.32 \times 10^{-1} \text{ m s}^{-1}$	
	Total for question 18	11