Assignment- 4 ECS 322: Electromagnetic Theory

Name: Ajay Choudhury Roll no.: 18018 Date: 4th May 2021

Solutions

1. Here, I have attached all the images of the output and the theoretical calculations.

Lossy (AC Analysis)

Fig.1. Circuit for Lossy AC analysis

Fig.2. Lossy AC analysis

Lossy (Transient Analysis)

Fig.3. Circuit for Lossy Transient analysis

Fig.4. Lossy Transient analysis

Lossless (AC Analysis)

Fig.5. Circuit for Lossless AC analysis

Fig.6. Lossless AC analysis

Lossless (Transient Analysis)

Fig.7. Circuit for Lossless Transient analysis

Fig.8. Lossless Transient analysis

Theoretical calculations:

1. Given, sinusoidal voltage,
$$V(t) = 10 \cos \omega t$$

frequency $f = 100 \text{ KHz}$

length $l = 10m$
 $L' = 0.26 \text{ MH/m}$
 $C' = 100 \text{ pF/m}$
 $E_T = 9.26$

Chanacteristic impedance =
$$\sqrt{\frac{L'}{C'}}$$

= $\sqrt{\frac{0.25}{100}} \times 10^{-6+12}$ ohm
= $\sqrt{\left(\frac{L}{4}\right)} \times 10^{4}$ ohm.
= 0.5 × 10² ohm = 5 @ ohm.

(ii) Phase constant (B) =
$$\frac{\partial \pi}{\partial x} \int \frac{\Gamma' c'}{\Gamma' c'}$$

$$= \frac{\partial \pi}{\partial x} \times 100 \times 10^{3} \text{ Hz } \times \int \frac{\Gamma' c'}{\Gamma' c'}$$
Now, $\psi_{p} = \frac{\omega}{\beta} = \frac{\partial \pi}{\partial x} \int \frac{\Gamma' c'}{\Gamma' c'}$
or, $\psi_{p} = \frac{1}{\sqrt{\Gamma' c'}}$
or, $\psi_{p} = \frac{1}{\sqrt{\Gamma' c'}}$

$$= \frac{1}{\sqrt{\Gamma' c'}} \text{ and } \frac{1}{\sqrt{\Gamma' c'}} \text{ and } \frac{1}{\sqrt{\Gamma' c'}}$$
or, $\psi_{p} = \frac{1}{\sqrt{\Gamma' c'}} \text{ and } \frac{1}{\sqrt{\Gamma' c'}}$

$$= \frac{1}{\sqrt{\Gamma' c'}} \text{ and } \frac{1}{\sqrt{\Gamma' c'$$

Input impedance

$$\beta = \frac{2\pi}{\lambda} = \frac{2\pi}{\text{up/f}} = \frac{\pi f}{10^8}$$
 (mad/m).

for seenais 1, Z1 = 500 , Z0 = 500

$$Z_1 = \frac{Z_1}{Z_0} = \frac{50}{50} = 1$$

for seenanio 2, Z=50 \, Z = 50 \, Z = 1.

$$Z_{in} = 50 \left[\frac{1/2 \cos Pl}{\cos Pl} + \frac{1}{3} (\frac{1}{2}) \sin Pl \right]$$

for scenario 4, Z= d5 1 , Zo = 50 1 , 70 = 1/2.

Zin =
$$Z_0 \left[\frac{Z_1 \cosh \beta L}{\cosh \beta L} + j Z_1 \sinh \beta L \right]$$

= $S_0 \left[\frac{1}{2} \cosh \left(\frac{\pi f L}{2} \times 10^{-6} \right) + j \sin \left(\frac{\pi f L}{2} \times 10^{-6} \right) \right]$
 $= S_0 \left[\frac{1}{2} \cosh \left(\frac{\pi f L}{2} \times 10^{-6} \right) + j \sin \left(\frac{\pi f L}{2} \times 10^{-6} \right) \right]$

Time-averaged passer

$$P_{\text{ou}} = \frac{|V_0^+|^2}{2Z_0} \left(1 - |T|^2\right)$$

$$Par = \frac{10^{4}}{2(50)} (1 - |\Gamma|^{2})$$

$$\Rightarrow \text{ scenario } 3: \rightarrow Z_1 = \frac{1}{2}.$$

$$\Gamma = \frac{Z_{L-1}}{Z_{L+1}} = -\frac{1}{3}.$$

$$P_{\text{ov}} = 1\left(1 - \left(\frac{1}{3}\right)^2\right)$$

$$P_{\text{ov}} = \frac{8}{9} \text{ W}$$

$$\Rightarrow \text{ scenario } 4, \quad Z_1 = \frac{1}{2}.$$

$$\Gamma = \frac{Z_{L-1}}{Z_{L+1}} = -\frac{1}{3}.$$

$$P_{\text{ov}} = 1\left(1 - \left(-\frac{1}{3}\right)^2\right)$$

$$P_{\text{ov}} = \frac{8}{9} \text{ W}$$

2. We need to set up a project in COMSOL to determine the potential and electric field of a 3D point charge. Here are the plots.

Fig.9. The electric field of a 3D point charge

 $\textbf{Fig.10.} \ \textbf{The electric potential of a 3D point charge}$

Fig.10. Line graph of the electric field and potential of a 3D point charge

Theoretical calculations:

2. for a solid changed sphere

-> data from COMSOL:

Electric field at the surface of changed sphere: 3.76 ×10 9 1/m Electric potential at the surface of changed sphere: 0.376 × 10 9

- Theoretical data:

$$E = \frac{Kq}{R^2} \quad \text{dividue}$$

$$R = 0.1 \text{ m}$$

$$P_0 = 1 \text{ C/m}^3$$

$$V = \frac{Kq}{R} \int \frac{whue}{K = q \times 10^{9}}$$
 $R = 0.1 m$
 $S_{v} = 1 C/m^{3}$

given,
$$P_{V} = \frac{q}{Y} = \frac{q}{\frac{4}{3} \times X \times (0.1)^{3}} = 1$$

$$E = \frac{9 \times 10^9 \times (4.2) \times 10^{-3}}{(0.1)^2} = 3.76 \times 10^9 \text{ M/m} \approx \text{Practical value}$$

$$V = \frac{9 \times 10^9 \times (4.2) \times 10^{-3}}{0.1} = 0.376 \times 10^9 \approx \text{Practical value}$$

Both electric field and potential will gradually decuease to zero as we extend to infinity (00).