DC MOTOR OPERATION USING ARDUINO

The transfer function for the given high pass filter is:

$$Vo(s)/Vin(s) = 1/(1+RCs)$$

For excitation of $6\ V$, we will get

$$Vo(s) = 6/(1 + s)$$

$$Vo(t) = 6u(t)(1-e^{(-t)})$$

At $t \longrightarrow \inf$, $Vo(t) \longrightarrow 6 V$ and at t = 0, Vo(0) = 0V.

GRAPH OF Vo(t) FOR Vin = 6V USING MATPLOTLIB

So , representign the same graph that we obtained having T=1/500 .

Voltage	Duty Cycle (%) (voltage/12)*100	Digital Value (256/100)*(Duty)
0.5	4.16	~11
1	8.33	~21
1.5	12.5	32
2	16.67	~43
4	33.33	~85
6	50	128
8	66.67	~170

My digital level in my code is 256 an 8 bit TIMER0 register counting from $\,0\,$ till 255 .

Min resolutin in time that can be achived: is = 1/(time for 1 tick)

time for one tick = 16,000,000/(64), I am using 64 as prescaler value to reduce my frequency of operation.

So, time for 1 tick = 1/2,50,000.

so , we have resolution of $4 * 10^{(-5)} = 40 \text{ us}$.