More about Graphical User Interfaces

CIS*2750

Advanced Computing Techniques

Complexity increases.

- The design task is now far more complex -there are many alternatives for techniques,
 colours, style
- The designer needs many skills graphics designer, psychologist, ergonomics expert, etc.
- The chances of clutter and confusion are increased.

- Learning time is not insignificant.
- Lack of experimentally derived design guidelines.
 - Because of the complexity of today's GUIs it is difficult to study the relationship of GUI elements to productivity and usability
- Inconsistencies in techniques and terminology.
 - This is a consequence of both the difficulties and time involved in developing standards and the commercial and *legal aspects* of user interface design.

- Symbols and graphics are not always as expressive as language can be for searching and describing actions and things.
 - Symbols are not as familiar as numbers and words.
 - The human ability to differentiate between different symbols is more limited than with text.
 - The human ability to effectively deal with a large number of icons is limited.

Q2. #Which iOS 7 Safari icon represents "share"?

- The development of new icons is expensive and largely an unknown domain.
 - In contrast, typeface design has existed for 300 years.
- Some studies have found that people prefer a display that incorporates textual captions.

• GUIs can be inefficient.

- Window manipulations are excessive and repetitive in some GUIs.
- Pointing and clicking is slower than typing for an experienced typist.
- Expert users often can make very effective use of command languages and are slowed down by GUIs.

- Graphics based formats may consume more screen space.
 - Example: compare a textual list of names and telephone numbers with a card file representation of the same.

Sophisticated Visual Presentation

- Interface elements
 - windows (primary, secondary, dialog boxes)
 - menus (menu bar, pull-down, pop-up)
 - icons (representing files, programs)
 - screen-based controls (list boxes, scroll bars, buttons)
 - mouse pointer and cursor
- The objective is to visually represent the real world of the user in a meaningful, simple and clear way.

Pick and Click Interaction

- The *identification* of an action to be performed is called a pick and the signal to *perform* the action is a click.
- Primary mechanism: mouse and mouse buttons.
- Secondary mechanism: keyboard.

Restricted Set of Interface Options

 All currently available alternatives are the only ones presented to the user (WYSIWYG).

Visualization

- Visualization is the process of representing graphical information that is hard to understand because of its volume or abstract nature.
- The graphic image must convey the relevant information about the data.
- "Periodic Table" of visualization methods:
 http://www.visual-literacy.org/periodic_table/periodic_table.html#

Object Orientation

 Objects are what users see on the screen -- they can be manipulated.

Characteristics of GUIs (objects)

- SAA (System Application Architecture) from IBM defines three types of objects :
 - Data objects represent information. They can be used for information collection or presentation.
 - Container objects hold other objects. They provide a grouping for ease of access and retrieval.
 - Workplace: storage area for all objects.
 - *Folders:* general purpose containers for long term storage of objects.
 - Work areas: temporary storage folders for objects currently being worked on.
 - Device objects represent physical objects in the real world.

Characteristics of GUIs (objects)

- Attributes of objects define the unique characteristics of an object.
- Objects can be acted upon or manipulated (commands) or have their attributes modified (attribute specification).
 - Command examples: opening a document, printing a file.
 - Attribute specification: selecting a font or colour.
- A series of actions can be performed on a specific object.

- A **view** is a way of looking at an object.
 - Composed views
 - present information and objects contained within an object.
 - Contents views
 - list the components of objects.
 - **Settings** views
 - permit the manipulation of object attributes.
 - **Help** views
 - provide help functions.

- Use of Recognition Memory
 - Continuously viewed objects do not have to be remembered.
- Concurrent Performance of Functions

Principles of Graphical User Interface Design

Aesthetically Pleasing

- Provide visual appeal by
 - meaningful contrast between screen elements
 - groupings
 - alignment of screen elements and groups
 - 3-D representation
 - effective and simple use of colour

Clarity

- Provide visual, conceptual and linguistic clarity for
 - visual elements
 - functions
 - metaphors
 - words and text

Compatibility

- Provide compatibility with
 - the user (adopt the user's perspective)
 - the task
 - the product

Comprehensibility

- The system should be easy to learn and understand. The sequence of actions to be taken should be in an order that is sensible and easy to remember.
- The user should realize:
 - what to look at
 - what to do
 - when to do it
 - why to do it
 - how to do it

Configurability

- The system should permit easy configuration and modification of settings.
 - allow for personal preferences
 - enhance an understanding of the system

Consistency

- The system should look and perform the *same way* at all times. Similar components should
 - have a similar look
 - have similar uses
 - operate similarly
 - the same action should always have the same result
 - the function of components should not change
 - the position of elements should not change

Control

The *user* must control the system.

- actions are the consequences of explicit user requests
- actions should be performed quickly
- actions should be interruptible
- the user should not be punished for errors
- The user's skills should be considered.
- Avoid over-constraining the user (i.e. many restrictive modes).
- Allow for customization, but
- Provide a good set of defaults.

Directness

• Tasks should be accomplished by direct and intuitive means.

Efficiency

- Eye, hand and other control movements should be minimized.
- Transitions between input/control modes should be infrequent, easy to accomplish and not distracting.

Familiarity

- Exploit things that the user is familiar with, such as concepts and languages.
- A natural interface mimics the user's behavioural patterns.
- Make use of real world metaphors.

Flexibility

- System behaviour should be based upon the knowledge and skill of the user. User characteristics that should be considered include
 - knowledge and skills
 - experience
 - personal preferences
 - habits

Forgiveness

- Tolerate and forgive usual human errors.
- Prevent errors whenever possible.
- Protect against catastrophic errors.
- Provide constructive error messages.

Predictability

- The user should be able to anticipate the behaviour of the system. This is aided by
 - distinct and recognizable screen elements
 - cues to the results of any action to be performed

Recovery

- The system should permit
 - commands to be terminated or reversed
 - return to a previous state if difficulties arise

Responsiveness

- The system must respond rapidly to requests.
- The system must acknowledge all user actions (visual, textual, auditory).

Simplicity

- KISS: Keep It Simple, Stupid!! Always prefer the simple over the complex.
 - Hide things until they are necessary.
 - Present common and necessary functions first.
 - Feature important functions.
 - Hide sophisticated and rarely used functions
 - Provide defaults.
 - Make common actions simple (uncommon actions can be more complex)
 - Provide uniformity and consistency.

Transparency

• Permit the user to concentrate on the task at hand and not be distracted by the mechanics of the interface.

Trade-Offs

- Design is always a balancing act between conflicting principles.
- The user's needs should always take precedence over the system's needs.

The Design Process (Overview)

- Understand the user.
- Involve the user.
- Perform rapid GUI prototyping and testing.
- Modify and iterate the design as many times as needed.
- Integrate all the system elements which have been developed concurrently.

The Steps of GUI Design (1)

- Know the user/client.
- Understand the task.
- Study and understand the principles of good screen design.
- Select the appropriate kinds of windows.
- Develop system menus.

The Steps of GUI Design (2)

- Select the appropriate control devices.
- Choose the proper screen-based controls.
- Organize and lay out the windows.
- Select the proper colours.
- Create/select meaningful icons.
- Provide meaningful messages/feedback.
- Test the system.