

198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological

Development District, Guangzhou, China 510663

Telephone: +86 (0) 20 82155555
Fax: +86 (0) 20 82075059
Email: ee.guangzhou@sgs.com

Report No.: GZEM180800476301
Page: 1 of 102
FCC ID: XVMDUAL21D

TEST REPORT

Application No.: GZEM1808004763CR

Applicant: ACE BAYOU CORPORATION

Address of Applicant: 1000 Superior Blvd. #309 Wayzata MN 55391 United States of America

Manufacturer: ACE BAYOU CORPORATION

Address of Manufacturer: 1000 Superior Blvd. #309 Wayzata MN 55391 United States of America

Equipment Under Test (EUT):

EUT Name: X ROCKER CHAIR
FCC ID: XVMDUAL21D
Model No.: DUAL21D
Trade Mark: X Rocker

Standard(s): 47 CFR Part 15, Subpart C 15.247

Date of Receipt: 2018-08-16

Date of Test: 2018-08-21 to 2018-08-31

Date of Issue: 2018-12-11

Test Result: Pass*

Kobe Jian Lab Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="https://www.sgs.com/en/Terms-and-Conditions/rerms

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: GZEM180800476301

Page: 2 of 102

Revision Record								
Version Chapter Date Modifier Remark								
01		2018-12-11		Original				

Authorized for issue by:		
Tested By	Curry Wu	2018-08-21 to 2018-08-31
	Curry_Wu /Project Engineer	Date
Checked By	Riday Liu	2018-09-06
	Ricky_Liu /Reviewer	Date

Report No.: GZEM180800476301

Page: 3 of 102

2 Test Summary

Radio Spectrum Technical Requirement							
Item	Standard	Method	Requirement	Result			
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass			
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1), (g), (h)	N/A			

N/A: Not applicable

Radio Spectrum Matter Part							
Item	Standard	Method	Requirement	Result			
Conducted Emissions at AC Power Line (150kHz- 30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass			
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass			
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass			
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass			
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass			
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass			
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass **			

^{**:} The EUT passed Radiated Spurious Emissions below 1GHz test after modification.

Report No.: GZEM180800476301

Page: 4 of 102

3 Contents

4	_		
1	Cove	er Page	
2	Test	Summary	3
3	Cont	ents	
4	Gene	eral Information	
	4.1	Details of E.U.T.	
	4.2	Description of Support Units	
	4.3	Measurement Uncertainty	
	4.4 4.5	Test Location	
	4.6	Test Facility Deviation from Standards	
	4.7	Abnormalities from Standard Conditions	
_			
5	Equi	pment List	
6	Radi	o Spectrum Technical Requirement	14
Ū			
	6.1	Antenna Requirement	
	6.1.1 6.1.2	· ·	
	6.2	Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	
	6.2.1		
	6.2.2	·	
7	-	o Spectrum Matter Test Results	
•			
	7.1	Conducted Emissions at AC Power Line (150kHz-30MHz)	
	7.1.1 7.1.2	· ·	
	7.1.2	·	
	7.1.3	Conducted Peak Output Power	
	7.2.1	·	
	7.2.2	·	
	7.2.3		
	7.3	20dB Bandwidth	2′
	7.3.1	·	
	7.3.2	, ,	
	7.3.3		
	7.4	Carrier Frequencies Separation	
	7.4.1	E.U.T. Operation	
	7.4.2	1 5	
	7.4.3 7.5	Measurement Procedure and Data	
	7.5 7.5.1	E.U.T. Operation	
	7.5.1		
	7.5.2	, ,	
	7.6	Dwell Time	
	7.6.1	E.U.T. Operation	
	7.6.2		

Report No.: GZEM180800476301

Page: 5 of 102

	7.6.3	Measurement Procedure and Data	
	7.7	Conducted Band Edges Measurement	25
	7.7.1	E.U.T. Operation	
	7.7.2	Test Setup Diagram	
	7.7.3	Measurement Procedure and Data	25
	7.8	Conducted Spurious Emissions	26
	7.8.1	E.U.T. Operation	
	7.8.2	Test Setup Diagram	
	7.8.3	Measurement Procedure and Data	26
	7.9 F	Radiated Emissions which fall in the restricted bands	27
	7.9.1	E.U.T. Operation	27
	7.9.2	Test Setup Diagram	28
	7.9.3	Measurement Procedure and Data	29
	7.10 F	Radiated Spurious Emissions	32
	7.10.1		
	7.10.2	Past Setup Diagram	33
	7.10.3	Measurement Procedure and Data	34
8	Apper	ndix	39
	8.1 A	Appendix 15.247	39

Report No.: GZEM180800476301

Page: 6 of 102

4 General Information

4.1 Details of E.U.T.

Power Supply: Model: BI18-090200-AdU

Input: AC 100-240V~50/60Hz 0.8A

Output: DC 9V 2A

Test Voltage: 120V AC 60Hz

Cable: About 2.0m unscreened DC Output cable

About 1.0m unscreened AUX In cable

Antenna Gain: 0 dBi

Antenna Type: PCB Antenna

Channel Spacing: 1MHz

Modulation Type: GFSK, $\pi/4DQPSK$, 8DPSK

Number of Channels: 79

Operation Frequency: 2402MHz to 2480MHz

Spectrum Spread Frequency Hopping Spread Spectrum(FHSS)

Technology:

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	±5.5 x 10-8
2	Duty cycle	±0.57%
3	Occupied Bandwidth	±3%
4	RF Conducted power	±0.68dB
5	RF Power Density	±1.50dB
6	Conducted Spurious Emissions	±1.04dB
7	RF Radiated Power	±4.5dB (below 1GHz)
1	RF Radiated Power	±4.8dB (above 1GHz)
0	Dedicted Courieus Emission Test	±4.5dB (30MHz-1GHz)
8	Radiated Spurious Emission Test	±4.8dB (1GHz-18GHz)
9	Temperature	±0.4°C
10	Humidity	±1.3%
11	Supply Voltages	±1.5%
12	Time	±3%

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou Branch EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663

Tel: +86 20 82155555 Fax: +86 20 82075059

No tests were sub-contracted.

Report No.: GZEM180800476301

Page: 7 of 102

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● NVLAP (Lab Code: 200611-0)

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

ACMA

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

● SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

● CNAS (Lab Code: L0167)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to

ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

● FCC Recognized 2.948 Listed Test Firm(Registration No.: 282399)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

◆FCC Recognized Accredited Test Firm(Registration No.: 486818)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: CN5016, Test Firm Registration Number: 486818, Jul 13, 2017.

● Industry Canada (Registration No.: 4620B-1)

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

● VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

● CBTL (Lab Code: TL129)

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01 and Rules of procedure IECEE 02, and the relevant IECEE CB-Scheme Operational documents.

Report No.: GZEM180800476301

Page: 8 of 102

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

The EUT passed Radiated Spurious Emissions below 1GHz test after modification.

Report No.: GZEM180800476301

Page: 9 of 102

5 Equipment List

N.		1		O. T.I.N.	Cal. date	Cal.Due date
No.	Test Equipment	Manufacturer	Model No.	Serial No.	(YYYY-MM- DD)	(YYYY-MM- DD)
EMC0306	Shielding Room	Zhong Yu	8 x 3 x 3.8 m ³	N/A	2016-12-27	2019-12-26
EMC0118	Two-line v-netwok	R&S	ENV216	100359	2018-01-19	2019-01-18
EMC0203	LISN	AFJ	LS16- OPT001	116019831056	2018-01-08	2019-01-07
EMC0506	EMI Test Receiver	Rohde & Schwarz	ESCS30	100085	2018-11-19	2019-11-18
EMC0107	Coaxial Cable	SGS	2m	N/A	2017-07-23	2019-07-22
EMC0106	Voltage Probe	SGS	N/A	N/A	2018-04-04	2020-04-03
EMC2123	8 Line ISN Cat 6	SCHWARZBECK MESS- ELEKTRONIK	NTFM 8158	NTFM 8158 0151	2018-05-29	2019-05-29
EMC2124	8 Line ISN Cat 5	SCHWARZBECK MESS- ELEKTRONIK	CAT5 8158	CAT5 8158-188	2018-05-29	2019-05-29
EMC2126	8 Line ISN Cat 3	SCHWARZBECK MESS- ELEKTRONIK	CAT3 8158	CAT38158-0081	2018-05-29	2019-05-29
EMC2122	ISN S8	SCHWARZBECK MESS- ELEKTRONIK	ISN S8	57	2018-05-29	2019-05-29
EMC2121	ISN S1	SCHWARZBECK MESS- ELEKTRONIK	ISN S1	10	2018-05-29	2019-05-29
EMC2125	2 wires ISN	SCHWARZBECK MESS- ELEKTRONIK	NTFM 8131	8131-198	2018-05-29	2019-05-29
EMC2048	CDN	Elektronik- Feinmechanik	L- 801:M2/M3	2738	2018-08-13	2020-08-12
EMC2062	6dB Attenuator	HP	8491A	24487	2018-04-04	2020-04-03
EMC0167	Conical metal housing	SGS-EMC	N/A	N/A	2018-04-19	2020-04-18

Report No.: GZEM180800476301

Page: 10 of 102

Conducted Peak Output Power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
EXA Signal Analzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14		
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03		
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A		

20dB Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
EXA Signal Analzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14		
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03		
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A		

Carrier Frequencies Separation						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EXA Signal Analzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14	
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03	
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A	

Hopping Channel Number						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EXA Signal Analzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14	
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03	
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A	

Dwell Time					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EXA Signal Analzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A

Report No.: GZEM180800476301

Page: 11 of 102

Conducted Band Edges Measurement						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
MXA Signal Analyzer	Agilent Technologies	N9020A	SEM004-10	2018-03-10	2019-03-09	
ESG Vector Signal Generator	Keysight	E4438C	SEM006-03	2018-04-10	2019-04-10	
EXG Analog Signal Generator	Agilent Technologies	N5171B	SEM006-04	2017-07-26	2020-07-25	
Power Meter	Agilent Technologies	U2021XA_Ch2	SEM009-02	2017-09-19	2018-09-18	
Power Meter	Agilent Technologies	U2021XA_Ch3	SEM009-03	2017-09-19	2018-09-18	
EXA Signal Analzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14	
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03	
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A	

Conducted Spurious Emissions						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EXA Signal Analzer	Agilent Technologies	N9010A	EMC2138	2017-11-15	2018-11-14	
6dB Attenuator	HP	8491A	EMC2062	2018-04-04	2020-04-03	
Test Software JS1120-3	HangTianXing	V2.6	GZE100-69	N/A	N/A	

Report No.: GZEM180800476301

Page: 12 of 102

Radiated Emissions wh			Inventory			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test Receiver	Rohde & Schwarz	ESIB26	EMC0522	2018-01-19	2019-01-18	
EMI Test Receiver	Rohde & Schwarz	ESCI	EMC0056	2018-01-19	2019-01-18	
Chamber cable	HangTianXing	N/A	EMC0542	2017-06-30	2019-06-30	
Trilog Broadband Antenna 30MHz-1GHz	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	EMC2025	2016-09-08	2019-09-07	
Bi-log Type Antenna	Schaffner -Chase	CBL6112B	EMC0524	2016-09-08	2019-09-07	
Bi-log Type Antenna	Schaffner -Chase	CBL6143	EMC0519	2017-05-04	2020-05-03	
Horn Antenna 1GHz-18GHz	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	EMC2026	2016-09-09	2019-09-08	
1GHz-26.5 GHz Pre-Amplifier	Agilent	8449B	EMC0521	2018-01-08	2019-01-07	
Amplifier	HP	8447F	EMC2065	2018-06-01	2019-05-31	
Pre-Amplifier MH648A	ANRITSU CORP	MH648A	EMC2086	2017-11-20	2018-11-19	
Active Loop Antenna	EMCO	6502	EMC0523	2018-02-24	2019-02-23	
High Pass Filter (915MHz)	FSY MICROWAVE	HM1465-9SS	EMC2079	2018-01-19	2019-01-18	
2.4GHz Filter	Micro-Tronics	BRM 50702	EMC2069	2018-01-08	2019-01-07	
10m Semi-Anechoic Chamber	ETS	N/A	EMC0530	2017-06-18	2019-06-18	
966 Anechoic Chamber	C.R.T	9m x 6m x 6m	EMC2142	2017-11-29	2018-11-28	
MXE EMI Receiver	Keysight	N9038A	EMC2139	2017-11-15	2018-11-14	
EXA Signal Analyzer	Keysight	N9010A	EMC2138	2017-11-15	2018-11-14	
Test Software E3	Audix	Ver.6.120110a	GZE100-61	N/A	N/A	

Report No.: GZEM180800476301

Page: 13 of 102

Radiated Spurious Emi	Radiated Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test Receiver	Rohde & Schwarz	ESIB26	EMC0522	2018-01-19	2019-01-18	
EMI Test Receiver	Rohde & Schwarz	ESCI	EMC0056	2018-01-19	2019-01-18	
Chamber cable	HangTianXing	N/A	EMC0542	2017-06-30	2019-06-30	
Trilog Broadband Antenna 30MHz-1GHz	SCHWARZBECK MESS-ELEKTRONIK	VULB 9160	EMC2025	2016-09-08	2019-09-07	
Bi-log Type Antenna	Schaffner -Chase	CBL6112B	EMC0524	2016-09-08	2019-09-07	
Bi-log Type Antenna	Schaffner -Chase	CBL6143	EMC0519	2017-05-04	2020-05-03	
Horn Antenna 1GHz-18GHz	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	EMC2026	2016-09-09	2019-09-08	
1GHz-26.5 GHz Pre-Amplifier	Agilent	8449B	EMC0521	2018-01-08	2019-01-07	
Amplifier	HP	8447F	EMC2065	2018-06-01	2019-05-31	
Pre-Amplifier MH648A	ANRITSU CORP	MH648A	EMC2086	2017-11-20	2018-11-19	
Active Loop Antenna	EMCO	6502	EMC0523	2018-02-24	2019-02-23	
High Pass Filter (915MHz)	FSY MICROWAVE	HM1465-9SS	EMC2079	2018-01-19	2019-01-18	
2.4GHz Filter	Micro-Tronics	BRM 50702	EMC2069	2018-01-08	2019-01-07	
10m Semi-Anechoic Chamber	ETS	N/A	EMC0530	2017-06-18	2019-06-18	
966 Anechoic Chamber	C.R.T	9m x 6m x 6m	EMC2142	2017-11-29	2018-11-28	
MXE EMI Receiver	Keysight	N9038A	EMC2139	2017-11-15	2018-11-14	
EXA Signal Analyzer	Keysight	N9010A	EMC2138	2017-11-15	2018-11-14	
Test Software E3	Audix	Ver.6.120110a	GZE100-61	N/A	N/A	

General used equipment					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DMM	Fluke	73	EMC0006	2018-07-20	2019-07-19
DMM	Fluke	73	EMC0007	2018-07-19	2019-07-18

Report No.: GZEM180800476301

Page: 14 of 102

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: GZEM180800476301

Page: 15 of 102

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- > Number of shift register stages: 9
- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitter is not permitted.

Report No.: GZEM180800476301

Page: 16 of 102

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Execution of emission (MU=)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
*Decreases with the logarithm of the frequency.				

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 23.7 °C Humidity: 52 % RH Atmospheric Pressure: 1020 mbar Test Mode: b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK

modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

Report No.: GZEM180800476301

Page: 17 of 102

7.1.3 Measurement Procedure and Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H}$ + 5 ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: GZEM180800476301

Page: 18 of 102

Mode:b; Line:Live Line

Pol No Model	:LIVE						
Frequency MHz 0,15	read level dBuV 14,61	Cable Loss dB 0,10	LISN Factor dB 9,47	Measured level dBuV 24,18	Limit Line dBuV 55,78	Over limit dB -31,60	Remark AVERAGE
0,15	32,02	0,10	9,47	41,59	65,78	-24,19	QP
0,20	29,48	0.10	9,62	39,20	63,54	-24,33	QP
0,20	15,57	0,10	9,62	25,29	53,54	-28,24	AVERAGE
0.41	28,35	0,18	9,64	38,17	57,64	-19,47	QP
0,41	17,89	0,18	9,64	27,71	47,64	-19,93	AVERAGE
0.44	31,07	0,19	9,65	40,90	56,98	-16,07	QP
0.44	21,82	0,19	9,65	31,65	46,98	-15,32	AVERAGE
0,82	19,91	0,27	9,62	29,80	56,00	-26,20	QP
0,82	13,06	0,27	9,62	22,95	46,00	-23,05	AVERAGE
1,32	19,30	0,30	9,62	29,22	56,00	-26,78	QP
1.32	13.72	0.30	9.62	23.64	46.00	-22.36	AVERAGE

Report No.: GZEM180800476301

Page: 19 of 102

Mode:b; Line:Neutral Line

Pol No Model	NEUTR	IAL					
Frequency MHz 0,15	read level dBuV 21,28	Cable Loss dB 0,10	Factor dB	Measured level dBuV 30,76	Limit Line dBuV 56,00	Over limit dB -25,24	Remark AVERAGE
0,15	32,42	0,10	9,38	41,90	66,00	-24,10	QP
0,20	29,52	0,10	9,59	39,21	63,58	-24.37	QP
0,20	18,10	0,10	9,59	27,79	53,58	-25,79	AVERAGE
0.39	25,94	0.17	9,56	35,67	58,17	-22,49	QP
0.39	19,61	0,17	9,56	29,34	48,17	-18,82	AVERAGE
0.44	30,43	0,19	9,56	40,17	57,02	-16,85	QP
0.44	20,35	0,19	9,56	30,09	47,02	-16,93	AVERAGE
0,76	20,55	0,26	9,59	30,40	56,00	-25,60	QP
0.76	12,95	0,26	9,59	22,80	46,00	-23,20	AVERAGE
1,35	12,20	0,30	9,56	22,06	46,00	-23,94	AVERAGE
1,35	18,45	0,30	9,56	28,31	56,00	-27,69	QP

Report No.: GZEM180800476301

Page: 20 of 102

7.2 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(1)

Test Method: ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range (MHz)	Output power of the intentional radiator (watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 23.8 °C Humidity: 67.5 % RH Atmospheric Pressure: 1020 mbar

Test Mode: b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK

modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Report No.: GZEM180800476301

Page: 21 of 102

7.3 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.7

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 23.7 °C Humidity: 57 % RH Atmospheric Pressure: 1020 mbar Test Mode: b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK

modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

Report No.: GZEM180800476301

Page: 22 of 102

7.4 Carrier Frequencies Separation

Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)
Test Method: ANSI C63.10 (2013) Section 7.8.2

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than

0.125W

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23.5 °C Humidity: 66.8 % RH Atmospheric Pressure: 1020 mbar

Test Mode: a: TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK

modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

7.4.3 Measurement Procedure and Data

Report No.: GZEM180800476301

Page: 23 of 102

7.5 Hopping Channel Number

Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii)

Test Method: ANSI C63.10 (2013) Section 7.8.3

Limit:

Frequency range (MHz)	Number of hopping channels (minimum)
902-928	50 for 20dB bandwidth <250kHz
902-920	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 23.5 °C Humidity: 66.8 % RH Atmospheric Pressure: 1020 mbar

Test Mode: a: TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK

modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

Report No.: GZEM180800476301

Page: 24 of 102

7.6 Dwell Time

Test Requirement

ANSI C63.10 (2013) Section 7.8.4

47 CFR Part 15, Subpart C 15.247a(1)(iii)

Test Method:

Limit:

Frequency (MHz)	Limit
000 000	0.4S within a 20S period(20dB bandwidth<250kHz)
902-928	0.4S within a 10S period(20dB bandwidth≥250kHz)
2400-2483.5	0.4S within a period of 0.4S multiplied by the number of hopping channels
5725-5850	0.4S within a 30S period

7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 23.6 °C Humidity: 66.9 % RH Atmospheric Pressure: 1020 mbar

Test mode a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation,

 π /4DQPSK modulation, 8DPSK modulation. All modes have been tested and only

the data of worst case is recorded in the report.

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

Report No.: GZEM180800476301

Page: 25 of 102

7.7 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.6

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 23.7 °C Humidity: 67.9 % RH Atmospheric Pressure: 1020 mbar

Test mode: a: TX Hop mode Keep the EUT in frequency hopping mode with GFSK

modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

b. TX none Hop mode Keep the EUT in frequency none hopping mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

7.7.2 Test Setup Diagram

Ground Reference Plane

7.7.3 Measurement Procedure and Data

Report No.: GZEM180800476301

Page: 26 of 102

7.8 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 7.8.8

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 23.6 °C Humidity: 68.1 % RH Atmospheric Pressure: 1020 mbar

Test Mode: b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK

modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

Report No.: GZEM180800476301

27 of 102 Page:

7.9 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

3m

Measurement Distance:

Limit:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.9.1 E.U.T. Operation

Operating Environment:

Temperature: 23 % RH Atmospheric Pressure: 1020 Humidity: 55 mbar Test Mode: b:TX non-Hop mode Keep the EUT in continuously transmitting mode with GFSK

modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

Report No.: GZEM180800476301

Page: 28 of 102

7.9.2 Test Setup Diagram

Report No.: GZEM180800476301

Page: 29 of 102

7.9.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.
- Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

Report No.: GZEM180800476301

Page: 30 of 102

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low

		Read/	Antenna	Cable	Preamp		Limit	0ver		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2310.000	33.00	26.25	5.03	37.44	26.84	54.00	-27.16	HORIZONTAL	Average
2	2310.000	44.82	26.25	5.03	37.44	38.66	74.00	-35.34	HORIZONTAL	Peak
3	2390.000	31.86	26.43	4.88	37.42	25.75	54.00	-28.25	HORIZONTAL	Average
4	2390.000	44.64	26.43	4.88	37.42	38.53	74.00	-35.47	HORIZONTAL	Peak
5	2483.500	32.09	26.58	5.23	37.40	26.50	54.00	-27.50	HORIZONTAL	Average
6	2483.500	45.22	26.58	5.23	37.40	39.63	74.00	-34.37	HORIZONTAL	Peak
7	2500.000	31.56	26.60	4.95	37.39	25.72	54.00	-28.28	HORIZONTAL	Average
8	2500.000	45.81	26.60	4.95	37.39				HORIZONTAL	- 10 10 10 10 10 10 - 10 m

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low

		ReadA	ntenna	Cable	Preamp		Limit	0ver		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	-	-
1	2310.000	33.44	26.25	5.03	37.44	27.28	54.00	-26.72	VERTICAL	Average
2	2310.000	45.65	26.25	5.03	37.44	39.49	74.00	-34.51	VERTICAL	Peak
3	2390.000	33.26	26.43	4.88	37.42	27.15	54.00	-26.85	VERTICAL	Average
4	2390.000	45.53	26.43	4.88	37.42	39.42	74.00	-34.58	VERTICAL	Peak
5	2483.500	33.49	26.58	5.23	37.40	27.90	54.00	-26.10	VERTICAL	Average
6	2483.500	45.67	26.58	5.23	37.40	40.08	74.00	-33.92	VERTICAL	Peak
7	2500.000	34.62	26.60	4.95	37.39	28.78	54.00	-25.22	VERTICAL	Average
8	2500.000	46.11	26.60	4.95	37.39	40.27	74.00	-33.73	VERTICAL	Peak

Report No.: GZEM180800476301

Page: 31 of 102

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High

		ReadA	Antenna	Cable	Preamp		Limit	0ver		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		-
1	2310.000	32.44	26.25	5.03	37.44	26.28	54.00	-27.72	HORIZONTAL	Average
2	2310.000	45.84	26.25	5.03	37.44	39.68	74.00	-34.32	HORIZONTAL	Peak
3	2390.000	33.06	26.43	4.88	37.42	26.95	54.00	-27.05	HORIZONTAL	Average
4	2390.000	45.97	26.43	4.88	37.42	39.86	74.00	-34.14	HORIZONTAL	Peak
5	2483.500	45.06	26.58	5.23	37.40	39.47	54.00	-14.53	HORIZONTAL	Average
6	2483.500	56.58	26.58	5.23	37.40	50.99	74.00	-23.01	HORIZONTAL	Peak
7	2500.000	32.63	26.60	4.95	37.39	26.79	54.00	-27.21	HORIZONTAL	Average
8	2500.000	46.61	26.60	4.95	37.39	40.77	74.00	-33.23	HORIZONTAL	Peak

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High

	ReadA		Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dВ	dB	dBuV/m	dBuV/m	dB	-	
1	2310.000	31.95	26.25	5.03	37.44	25.79	54.00	-28.21	VERTICAL	Average
2	2310.000	46.37	26.25	5.03	37.44	40.21	74.00	-33.79	VERTICAL	Peak
3	2390.000	31.71	26.43	4.88	37.42	25.60	54.00	-28.40	VERTICAL	Average
4	2390.000	45.40	26.43	4.88	37.42	39.29	74.00	-34.71	VERTICAL	Peak
5	2483.500	49.53	26.58	5.23	37.40	43.94	54.00	-10.06	VERTICAL	Average
6	2483.500	60.88	26.58	5.23	37.40	55.29	74.00	-18.71	VERTICAL	Peak
7	2500.000	33.90	26.60	4.95	37.39	28.06	54.00	-25.94	VERTICAL	Average
8	2500.000	45.44	26.60	4.95	37.39	39.60	74.00	-34.40	VERTICAL	Peak

Report No.: GZEM180800476301

Page: 32 of 102

7.10 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

Limit:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.10.1E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 55 % RH Atmospheric Pressure: 1020 mbar

Test Mode: b: TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK

modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been

tested and only the data of worst case is recorded in the report.

Report No.: GZEM180800476301

Page: 33 of 102

7.10.2Test Setup Diagram

Report No.: GZEM180800476301

Page: 34 of 102

7.10.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown

Report No.: GZEM180800476301

Page: 35 of 102

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low

		Antenna	Cable	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		-
40.559	26.77	13.73	0.61	26.51	14.60	40.00	-25.40	HORIZONTAL	QP
68.631	29.39	12.82	0.87	26.46	16.62	40.00	-23.38	HORIZONTAL	QP
103.442	45.64	9.43	1.12	26.40	29.79	43.50	-13.71	HORIZONTAL	QP
205.675	44.16	11.20	1.52	26.46	30.42	43.50	-13.08	HORIZONTAL	QP
485.609	38.94	17.97	2.38	27.46	31.83	46.00	-14.17	HORIZONTAL	QP
804.603	42.12	22.44	3.00	27.29	40.27	46.00	-5.73	HORIZONTAL	QP
	MHz 40.559 68.631 103.442 205.675 485.609	MHz dBuV 40.559 26.77 68.631 29.39 103.442 45.64 205.675 44.16 485.609 38.94	Freq Level Factor MHz dBuV dB/m 40.559 26.77 13.73 68.631 29.39 12.82 103.442 45.64 9.43 205.675 44.16 11.20 485.609 38.94 17.97	Freq Level Factor Loss MHz dBuV dB/m dB 40.559 26.77 13.73 0.61 68.631 29.39 12.82 0.87 103.442 45.64 9.43 1.12 205.675 44.16 11.20 1.52 485.609 38.94 17.97 2.38	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 40.559 26.77 13.73 0.61 26.51 68.631 29.39 12.82 0.87 26.46 103.442 45.64 9.43 1.12 26.40 205.675 44.16 11.20 1.52 26.46 485.609 38.94 17.97 2.38 27.46	MHz dBuV dB/m dB dB dBuV/m 40.559 26.77 13.73 0.61 26.51 14.60 68.631 29.39 12.82 0.87 26.46 16.62 103.442 45.64 9.43 1.12 26.40 29.79 205.675 44.16 11.20 1.52 26.46 30.42 485.609 38.94 17.97 2.38 27.46 31.83	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 40.559 26.77 13.73 0.61 26.51 14.60 40.00 68.631 29.39 12.82 0.87 26.46 16.62 40.00 103.442 45.64 9.43 1.12 26.40 29.79 43.50 205.675 44.16 11.20 1.52 26.46 30.42 43.50 485.609 38.94 17.97 2.38 27.46 31.83 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 40.559 26.77 13.73 0.61 26.51 14.60 40.00 -25.40 68.631 29.39 12.82 0.87 26.46 16.62 40.00 -23.38 103.442 45.64 9.43 1.12 26.40 29.79 43.50 -13.71 205.675 44.16 11.20 1.52 26.46 30.42 43.50 -13.08 485.609 38.94 17.97 2.38 27.46 31.83 46.00 -14.17	Freq Level Factor Level Line Limit Pol/Phase MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 40.559 26.77 13.73 0.61 26.51 14.60 40.00 -25.40 HORIZONTAL 68.631 29.39 12.82 0.87 26.46 16.62 40.00 -23.38 HORIZONTAL 103.442 45.64 9.43 1.12 26.40 29.79 43.50 -13.71 HORIZONTAL 205.675 44.16 11.20 1.52 26.46 30.42 43.50 -13.08 HORIZONTAL 485.609 38.94 17.97 2.38 27.46 31.83 46.00 -14.17 HORIZONTAL

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low

	ReadAnt		Antenna	Cable	Preamp		Limit	0ver		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	i i	1
1	4804.110	51.28	30.79	5.87	36.94	51.00	54.00	-3.00	HORIZONTAL	Average
2	4804.110	54.06	30.79	5.87	36.94	53.78	74.00	-20.22	HORIZONTAL	Peak
3	5599.412	33.21	31.96	7.30	36.99	35.48	54.00	-18.52	HORIZONTAL	Average
4	5599.412	43.81	31.96	7.30	36.99	46.08	74.00	-27.92	HORIZONTAL	Peak
5	7206.309	44.43	35.45	7.34	36.93	50.29	54.00	-3.71	HORIZONTAL	Average
6	7206.309	48.02	35.45	7.34	36.93	53.88	74.00	-20.12	HORIZONTAL	Peak
7	8840.473	31.20	36.40	8.06	36.98	38.68	54.00	-15.32	HORIZONTAL	Average
8	8840.473	43.25	36.40	8.06	36.98	50.73	74.00	-23.27	HORIZONTAL	Peak
9	9608.371	33.38	37.51	8.15	37.08	41.96	54.00	-12.04	HORIZONTAL	Average
10	9608.371	42.93	37.51	8.15	37.08	51.51	74.00	-22.49	HORIZONTAL	Peak
11	12010.580	29.53	39.50	10.67	37.20	42.50	54.00	-11.50	HORIZONTAL	Average
12	12010.580	41.19	39.50	10.67	37.20	54.16	74.00	-19.84	HORIZONTAL	Peak
12	12010.580	41.19	39.50	10.67	37.20	54.16	74.00	-19.84	HORIZONTAL	Pe

Report No.: GZEM180800476301

Page: 36 of 102

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low

	ReadAntenn		ReadAntenna Cable Preamp				Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		• •
1	51.843	30.55	14.45	0.74	26.50	19.24	40.00	-20.76	VERTICAL	QP
2	104.170	51.26	9.48	1.12	26.40	35.46	43.50	-8.04	VERTICAL	QP
3	166.651	44.76	13.40	1.37	26.44	33.09	43.50	-10.41	VERTICAL	QP
4	211.527	48.66	11.20	1.53	26.47	34.92	43.50	-8.58	VERTICAL	QP
5	392.095	38.86	16.21	2.10	27.34	29.83	46.00	-16.17	VERTICAL	QP
6	804.028	44.70	22.44	3.00	27.29	42.85	46.00	-3.15	VERTICAL	QP

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Low

	Re		Antenna	Cable	Preamp		Limit	0ver		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dВ	dB	dBuV/m	dBuV/m	dB	-	7 <u>24 - </u>
1	3867.831	32.38	29.22	7.69	36.91	32.38	54.00	-21.62	VERTICAL	Average
2	3867.831	45.35	29.22	7.69	36.91	45.35	74.00	-28.65	VERTICAL	Peak
3	4804.110	38.70	30.79	5.87	36.94	38.42	54.00	-15.58	VERTICAL	Average
4	4804.110	46.65	30.79	5.87	36.94	46.37	74.00	-27.63	VERTICAL	Peak
5	7206.309	45.18	35.45	7.34	36.93	51.04	54.00	-2.96	VERTICAL	Average
6	7206.309	49.05	35.45	7.34	36.93	54.91	74.00	-19.09	VERTICAL	Peak
7	8638.399	33.71	36.20	7.96	36.95	40.92	54.00	-13.08	VERTICAL	Average
8	8638.399	42.96	36.20	7.96	36.95	50.17	74.00	-23.83	VERTICAL	Peak
9	9608.390	32.28	37.51	8.15	37.08	40.86	54.00	-13.14	VERTICAL	Average
10	9608.390	42.12	37.51	8.15	37.08	50.70	74.00	-23.30	VERTICAL	Peak
11	12010.700	28.60	39.50	10.67	37.20	41.57	54.00	-12.43	VERTICAL	Average
12	12010.700	39.95	39.50	10.67	37.20	52.92	74.00	-21.08	VERTICAL	Peak

Report No.: GZEM180800476301

Page: 37 of 102

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:middle

	Read	Antenna	Cable	Preamp		Limit	0ver		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
4027.554	34.39	29.52	7.17	36.90	34.18	54.00	-19.82	HORIZONTAL	Average
4027.554	46.39	29.52	7.17	36.90	46.18	74.00	-27.82	HORIZONTAL	Peak
4881.950	50.60	30.95	6.86	36.95	51.46	54.00	-2.54	HORIZONTAL	Average
4881.950	54.62	30.95	6.86	36.95	55.48	74.00	-18.52	HORIZONTAL	Peak
7323.267	42.60	35.74	7.39	36.92	48.81	54.00	-5.19	HORIZONTAL	Average
7323.267	48.32	35.74	7.39	36.92	54.53	74.00	-19.47	HORIZONTAL	Peak
9047.272	32.03	36.57	8.29	37.02	39.87	54.00	-14.13	HORIZONTAL	Average
9047.272	44.49	36.57	8.29	37.02	52.33	74.00	-21.67	HORIZONTAL	Peak
9764.390	30.17	37.70	8.33	37.09	39.11	54.00	-14.89	HORIZONTAL	Average
9764.390	42.29	37.70	8.33	37.09	51.23	74.00	-22.77	HORIZONTAL	Peak
12205.350	31.18	39.21	10.98	37.06	44.31	54.00	-9.69	HORIZONTAL	Average
12205.350	42.14	39.21	10.98	37.06	55.27	74.00	-18.73	HORIZONTAL	Peak
	MHz 4027.554 4027.554 4881.950 4881.950 7323.267 7323.267 9047.272 9047.272 9764.390 9764.390 12205.350	MHz dBuV 4027.554 34.39 4027.554 46.39 4881.950 50.60 4881.950 54.62 7323.267 42.60 7323.267 42.60 7323.267 48.32 9047.272 32.03 9047.272 44.49 9764.390 30.17 9764.390 42.29 12205.350 31.18	Freq Level Factor MHz dBuV dB/m 4027.554 34.39 29.52 4027.554 46.39 29.52 4881.950 50.60 30.95 4881.950 54.62 30.95 7323.267 42.60 35.74 7323.267 48.32 35.74 9047.272 32.03 36.57 9047.272 44.49 36.57 9764.390 30.17 37.70 9764.390 42.29 37.70 12205.350 31.18 39.21	MHz dBuV dB/m dB 4027.554 34.39 29.52 7.17 4027.554 46.39 29.52 7.17 4881.950 50.60 30.95 6.86 4881.950 54.62 30.95 6.86 7323.267 42.60 35.74 7.39 7323.267 48.32 35.74 7.39 9047.272 32.03 36.57 8.29 9047.272 44.49 36.57 8.29 9764.390 30.17 37.70 8.33 9764.390 42.29 37.70 8.33 12205.350 31.18 39.21 10.98	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 4027.554 34.39 29.52 7.17 36.90 4027.554 46.39 29.52 7.17 36.90 4881.950 50.60 30.95 6.86 36.95 4881.950 54.62 30.95 6.86 36.95 7323.267 42.60 35.74 7.39 36.92 7323.267 48.32 35.74 7.39 36.92 9047.272 32.03 36.57 8.29 37.02 9047.272 44.49 36.57 8.29 37.02 9764.390 30.17 37.70 8.33 37.09 12205.350 31.18 39.21 10.98 37.06	MHz dBuV dB/m dB dB dBuV/m 4027.554 34.39 29.52 7.17 36.90 34.18 4027.554 46.39 29.52 7.17 36.90 46.18 4881.950 50.60 30.95 6.86 36.95 51.46 4881.950 54.62 30.95 6.86 36.95 55.48 7323.267 42.60 35.74 7.39 36.92 48.81 7323.267 48.32 35.74 7.39 36.92 54.53 9047.272 32.03 36.57 8.29 37.02 39.87 9047.272 44.49 36.57 8.29 37.02 52.33 9764.390 30.17 37.70 8.33 37.09 39.11 9764.390 42.29 37.70 8.33 37.09 51.23 12205.350 31.18 39.21 10.98 37.06 44.31	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 4027.554 34.39 29.52 7.17 36.90 34.18 54.00 4027.554 46.39 29.52 7.17 36.90 46.18 74.00 4881.950 50.60 30.95 6.86 36.95 51.46 54.00 4881.950 54.62 30.95 6.86 36.95 55.48 74.00 7323.267 42.60 35.74 7.39 36.92 48.81 54.00 7323.267 48.32 35.74 7.39 36.92 54.53 74.00 9047.272 32.03 36.57 8.29 37.02 39.87 54.00 9047.272 44.49 36.57 8.29 37.02 52.33 74.00 9764.390 30.17 37.70 8.33 37.09 51.23 74.00 12205.350<	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 4027.554 34.39 29.52 7.17 36.90 34.18 54.00 -19.82 4027.554 46.39 29.52 7.17 36.90 46.18 74.00 -27.82 4881.950 50.60 30.95 6.86 36.95 51.46 54.00 -2.54 4881.950 54.62 30.95 6.86 36.95 55.48 74.00 -18.52 7323.267 42.60 35.74 7.39 36.92 48.81 54.00 -5.19 7323.267 48.32 35.74 7.39 36.92 54.53 74.00 -19.47 9047.272 32.03 36.57 8.29 37.02 39.87 54.00 -14.13 9047.272 44.49 36.57 8.29 37.02 52.33 74.00 -21.67 <td>Freq Level Factor Level Line Limit Pol/Phase MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 4027.554 34.39 29.52 7.17 36.90 34.18 54.00 -19.82 HORIZONTAL 4027.554 46.39 29.52 7.17 36.90 46.18 74.00 -27.82 HORIZONTAL 4881.950 50.60 30.95 6.86 36.95 51.46 54.00 -2.54 HORIZONTAL 4881.950 54.62 30.95 6.86 36.95 55.48 74.00 -18.52 HORIZONTAL 7323.267 42.60 35.74 7.39 36.92 48.81 54.00 -5.19 HORIZONTAL 7323.267 48.32 35.74 7.39 36.92 54.53 74.00 -19.47 HORIZONTAL 9047.272 32.03 36.57 8.29 37.02 39.87 54.00 -14.13 HORIZONTAL 9764.390 30.</td>	Freq Level Factor Level Line Limit Pol/Phase MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 4027.554 34.39 29.52 7.17 36.90 34.18 54.00 -19.82 HORIZONTAL 4027.554 46.39 29.52 7.17 36.90 46.18 74.00 -27.82 HORIZONTAL 4881.950 50.60 30.95 6.86 36.95 51.46 54.00 -2.54 HORIZONTAL 4881.950 54.62 30.95 6.86 36.95 55.48 74.00 -18.52 HORIZONTAL 7323.267 42.60 35.74 7.39 36.92 48.81 54.00 -5.19 HORIZONTAL 7323.267 48.32 35.74 7.39 36.92 54.53 74.00 -19.47 HORIZONTAL 9047.272 32.03 36.57 8.29 37.02 39.87 54.00 -14.13 HORIZONTAL 9764.390 30.

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:middle

		Read	Antenna	Cable	Preamp		Limit	0ver		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		7.0
1	4027.554	36.58	29.52	7.17	36.90	36.37	54.00	-17.63	VERTICAL	Average
2	4027.554	47.78	29.52	7.17	36.90	47.57	74.00	-26.43	VERTICAL	Peak
3	4882.043	39.25	30.95	6.86	36.95	40.11	54.00	-13.89	VERTICAL	Average
4	4882.043	47.70	30.95	6.86	36.95	48.56	74.00	-25.44	VERTICAL	Peak
5	7323.267	35.83	35.74	7.39	36.92	42.04	54.00	-11.96	VERTICAL	Average
6	7323.267	45.77	35.74	7.39	36.92	51.98	74.00	-22.02	VERTICAL	Peak
7	8840.473	28.11	36.40	8.06	36.98	35.59	54.00	-18.41	VERTICAL	Average
8	8840.473	44.16	36.40	8.06	36.98	51.64	74.00	-22.36	VERTICAL	Peak
9	9763.312	30.78	37.70	8.33	37.09	39.72	54.00	-14.28	VERTICAL	Average
10	9763.312	42.69	37.70	8.33	37.09	51.63	74.00	-22.37	VERTICAL	Peak
11	12205.760	27.00	39.21	10.98	37.06	40.13	54.00	-13.87	VERTICAL	Average
12	12205.760	40.25	39.21	10.98	37.06	53.38	74.00	-20.62	VERTICAL	Peak

Report No.: GZEM180800476301

Page: 38 of 102

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High

	ReadAntenna		Cable	Preamp		Limit	0ver			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		-
1	4027.554	35.59	29.52	7.17	36.90	35.38	54.00	-18.62	HORIZONTAL	Average
2	4027.554	46.97	29.52	7.17	36.90	46.76	74.00	-27.24	HORIZONTAL	Peak
3	4959.940	49.89	31.05	7.84	36.96	51.82	54.00	-2.18	HORIZONTAL	Average
4	4959.940	54.32	31.05	7.84	36.96	56.25	74.00	-17.75	HORIZONTAL	Peak
5	6974.982	33.61	35.08	7.27	36.94	39.02	54.00	-14.98	HORIZONTAL	Average
6	6974.982	44.72	35.08	7.27	36.94	50.13	74.00	-23.87	HORIZONTAL	Peak
7	7440.818	31.97	35.92	7.43	36.92	38.40	54.00	-15.60	HORIZONTAL	Average
8	7440.818	43.59	35.92	7.43	36.92	50.02	74.00	-23.98	HORIZONTAL	Peak
9	9920.151	31.22	37.92	8.63	37.10	40.67	54.00	-13.33	HORIZONTAL	Average
10	9920.151	43.62	37.92	8.63	37.10	53.07	74.00	-20.93	HORIZONTAL	Peak
11	12400.380	28.31	38.93	11.17	36.90	41.51	54.00	-12.49	HORIZONTAL	Average
12	12400.380	40.90	38.93	11.17	36.90	54.10	74.00	-19.90	HORIZONTAL	Peak

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High

		ReadAntenna		nna Cable Preamp			Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Pol/Phase	Remark
	MHz	dBuV	dB/m	dВ	dB	dBuV/m	dBuV/m	dB		7.0
1	4027.554	44.27	29.52	7.17	36.90	44.06	54.00	-9.94	VERTICAL	Average
2	4027.554	47.80	29.52	7.17	36.90	47.59	74.00	-26.41	VERTICAL	Peak
3	4960.307	39.08	31.05	7.84	36.96	41.01	54.00	-12.99	VERTICAL	Average
4	4960.307	47.14	31.05	7.84	36.96	49.07	74.00	-24.93	VERTICAL	Peak
5	7440.914	37.84	35.92	7.43	36.92	44.27	54.00	-9.73	VERTICAL	Average
6	7440.914	46.31	35.92	7.43	36.92	52.74	74.00	-21.26	VERTICAL	Peak
7	8440.945	32.14	36.13	8.06	36.93	39.40	54.00	-14.60	VERTICAL	Average
8	8440.945	43.03	36.13	8.06	36.93	50.29	74.00	-23.71	VERTICAL	Peak
9	9920.916	31.17	37.92	8.63	37.10	40.62	54.00	-13.38	VERTICAL	Average
10	9920.916	43.71	37.92	8.63	37.10	53.16	74.00	-20.84	VERTICAL	Peak
11	12400.280	28.66	38.93	11.17	36.90	41.86	54.00	-12.14	VERTICAL	Average
12	12400.280	40.01	38.93	11.17	36.90	53.21	74.00	-20.79	VERTICAL	Peak

Report No.: GZEM180800476301

Page: 39 of 102

8 Appendix

8.1 Appendix 15.247

1.20 dB Bandwidth

Test Mode	Test Channel	OBW[MHz]	EBW[MHz]	Limit[MHz]	Verdict
DH5	2402	0.91289	1.051		PASS
DH5	2441	0.91039	1.051		PASS
DH5	2480	0.91067	1.047		PASS
2DH5	2402	1.2025	1.374		PASS
2DH5	2441	1.2030	1.373		PASS
2DH5	2480	1.2005	1.370		PASS
3DH5	2402	1.2076	1.356		PASS
3DH5	2441	1.2046	1.350		PASS
3DH5	2480	1.2049	1.353		PASS

Report No.: GZEM180800476301

Page: 40 of 102

Report No.: GZEM180800476301

Page: 41 of 102

Report No.: GZEM180800476301

Page: 42 of 102

Report No.: GZEM180800476301

Page: 43 of 102

Report No.: GZEM180800476301

Page: 44 of 102

2.Conducted Peak Output Power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	1.679	21	PASS
DH5	2441	0.654	21	PASS
DH5	2480	0.052	21	PASS
2DH5	2402	3.581	21	PASS
2DH5	2441	2.685	21	PASS
2DH5	2480	2.096	21	PASS
3DH5	2402	3.872	21	PASS
3DH5	2441	3.088	21	PASS
3DH5	2480	2.431	21	PASS

Report No.: GZEM180800476301

Page: 45 of 102

Report No.: GZEM180800476301

Page: 46 of 102

Report No.: GZEM180800476301

Page: 47 of 102

Report No.: GZEM180800476301

Page: 48 of 102

Report No.: GZEM180800476301

Page: 49 of 102

3. Carrier Frequency Separation

Test Mode	Test Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	2402	1.027	0.70	PASS
DH5	2441	0.959	0.70	PASS
DH5	2480	1.029	0.70	PASS

Report No.: GZEM180800476301

Page: 50 of 102

Report No.: GZEM180800476301

Page: 51 of 102

4.Dwell Time

Test Mode	Test Channel	Burst Width[ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Limit[s]	Verdict
DH1	2402	0.37	740	0.27	0.4	PASS
DH1	2441	0.37	740	0.27	0.4	PASS
DH1	2480	0.39	740	0.29	0.4	PASS
DH3	2402	1.64	170	0.28	0.4	PASS
DH3	2441	1.66	170	0.28	0.4	PASS
DH3	2480	1.66	170	0.28	0.4	PASS
DH5	2402	2.92	110	0.32	0.4	PASS
DH5	2441	2.92	110	0.32	0.4	PASS
DH5	2480	2.93	110	0.32	0.4	PASS
2DH1	2402	0.39	760	0.30	0.4	PASS
2DH1	2441	0.38	760	0.29	0.4	PASS
2DH1	2480	0.39	750	0.29	0.4	PASS
2DH3	2402	1.64	170	0.28	0.4	PASS
2DH3	2441	1.66	160	0.27	0.4	PASS
2DH3	2480	1.64	170	0.28	0.4	PASS
2DH5	2402	2.93	110	0.32	0.4	PASS
2DH5	2441	2.92	110	0.32	0.4	PASS
2DH5	2480	2.93	100	0.29	0.4	PASS
3DH1	2402	0.39	740	0.29	0.4	PASS
3DH1	2441	0.38	740	0.28	0.4	PASS
3DH1	2480	0.39	740	0.29	0.4	PASS
3DH3	2402	1.66	170	0.28	0.4	PASS
3DH3	2441	1.64	170	0.28	0.4	PASS
3DH3	2480	1.66	170	0.28	0.4	PASS
3DH5	2402	2.93	110	0.32	0.4	PASS
3DH5	2441	2.93	110	0.32	0.4	PASS
3DH5	2480	2.93	110	0.32	0.4	PASS

Report No.: GZEM180800476301

Page: 52 of 102

Report No.: GZEM180800476301

Page: 53 of 102

Report No.: GZEM180800476301

Page: 54 of 102

Report No.: GZEM180800476301

Page: 55 of 102

Report No.: GZEM180800476301

Page: 56 of 102

Report No.: GZEM180800476301

Page: 57 of 102

Report No.: GZEM180800476301

Page: 58 of 102

Report No.: GZEM180800476301

Page: 59 of 102

Report No.: GZEM180800476301

Page: 60 of 102

