Nonlinear Planning using Constraint Posting

- Idea of constraint posting is to build up a plan by incrementally
 - hypothesizing operators,
 - partial ordering between operators and
 - binding of variables within operators
- At any given time in planning process, a solution is a partially ordered, partially instantiated set of operators.
- To generate actual plan, convert the partial order into any of a number of total orders.
- Let us incrementally generate a nonlinear plan to solve Sussman anomaly problem.

Initial State: $ON(C, A) \wedge ONT(A) \wedge ONT(B) \wedge AE \wedge CL(C) \wedge CL(B)$

Goal State: $ON(A, B) \wedge ON(B, C)$

- Begin with null plan (no operators).
- Look at the goal state and find the operators that can achieve them.
- MEA tells to choose two operators (steps) ST(A, B) and ST(B,C) with respect to post conditions as ON(A,B) and ON(B, C)

Pre Cond	CL(B) *HOLD(A)	CL(C) *HOLD(B)
Operator	ST(A, B)	ST(B,C)
Post Cond	ON(A, B) AE ~ CL(B) ~ HOLD(A)	ON(B,C) AE ~ CL(C) ~ HOLD(B)

- Here unachieved conditions are marked with * as HOLD in both the cases is not true as AE initially.
- Introduce new operator (step) to achieve these goals.
- This is called operator (step) addition.
- Add PU operator on both the goals

Pre Con	*CL(A) ONT(A) *AE	*CL(B) ONT(B) *AE
Operator	PU(A)	PU(B)
Post Cond	HOLD(A) ~ ONT(A) ~ AE ~ CL(A)	HOLD(B) ~ ONT(B) ~ AE ~ CL(B)
Pre Con	CL(B) *HOLD(A)	CL(C) *HOLD(B)
Operator	ST(A, B)	ST(B,C)
Post Cond	ON(A, B) AE ~ CL(B) ~ HOLD(A)	ON(B,C) AE ~ CL(C) ~ HOLD(B)

- It is clear that in a final plan, PU must precede STACK operator.
- Introduce the ordering as follows:
 - Whenever we employ operator, we need to introduce ordering constraints called promotion.

$$PU(A) \leftarrow ST(A, B)$$

$$PU(B) \leftarrow ST(B, C)$$

- Here we have four (partially ordered) operators and four unachieved pre conditions:- CL(A), CL(B), AE on both the paths
 - CL(A) is unachieved as top of A is not clear in initial state.
 - Also CL(B) is unachieved even though top of B is clear in initial state but there exist a operator ST(A,B) with post condition as ~CL(B).

Initial State: $ON(C, A) \Lambda ONT(A) \Lambda ONT(B) \Lambda AE \Lambda CL(C) \Lambda CL(B)$

• If we make sure that PU(B) precede ST(A, B) then CL(B) is achieved. So post the following constraints.

$$PU(B) \leftarrow ST(A, B)$$

- Note that pre cond CL(A) of PU(A) still is unachieved.
- Let us achieve AE preconditions of each Pick up operators before CL(A).
- Initial state has AE. So one PU can achieve its pre cond but other PU operator could be prevented from being executed.
- Assume AE is achieved as pre condition of PU(B) as its other preconditions have been achieved. So put constraint.
- Promotion:

 $PU(B) \leftarrow PU(A)$ (pre conds of PU(A) are not still achieved.)

- Now all preconditions of PU(B) are achieved.
- Here apply another heuristic called declobbering.
- Decobbering:
 - Placing operator Op2 between two operators Op1 and Op3 such that Op2 reasserts some pre conditions of Op3 that was negated by Op1.
- Since PU(B) makes ~AE and ST(B,C) will make AE which is precondition of PU(A), we can put the following constraint.

$$PU(B) \leftarrow ST(B, C) \leftarrow PU(A)$$

• Here PU(B) is said to clobber pre condition of PU(A) and ST(B, C) is said to declobber it. (removing deadlock)

• Now try to achieve CL(A). This can be done by US(C, A)

Pre Con	ON(C, A) * CL(C) *AE	
Operator	US(C, A)	
Post Cond	~ AE	
	CL(A)	
	HOLD(C)	
	$\sim ON(C, A)$	
Pre Con	*CL(A)	CL(B)
	ONT(A)	ONT(B)
	AE	AE
Operator	PU(A)	PU(B)
Post Cond	HOLD(A)	HOLD(B)
	$\sim ONT(A)$	$\sim ONT(B)$
	~ AE	~ AE
	~ CL(A)	~ CL(B)

Initial State: $ON(C, A) \wedge ONT(A) \wedge ONT(B) \wedge AE \wedge CL(C) \wedge CL(B)$

- ON(C, A) can easily be seen to be true in initial state.
- Even though *CL(C) is also true in initial state but may be denied by operator ST(B,C) already used earlier.
- Similarly *AE may be denied by operators PU(A) and PU(B). So put constraints
- Promotion:

$$US(C, A) \leftarrow ST(B, C)$$

 $US(C, A) \leftarrow PU(A)$
 $US(C, A) \leftarrow PU(B)$

• Now adding new operator requires checking, if the new step clobber some pre conditions of later.

• We notice that PU(B) requires AE but denied by new operator US(C,A). One way is to add a new declobbering operator that makes AE to the plan. This can be done by PD(C).

Pre Con
Operator
Post Cond
Post Cond
ONT(C)
AE

~ CL(A)

• Declobbering:

 $\overline{\text{US}(\text{C}, \text{A}) \leftarrow \text{PD}(\text{C}) \leftarrow \text{PU}(\text{B})}$

Combine the following partial plans to generate final plan.

$PU(A) \leftarrow ST(A, B)$	
PU(B) ← ST(B, C)	
$PU(B) \leftarrow ST(A, B)$	
PU(B) ← PU(A)	
(pre conds of PU(A) are not still achieved	.)
$PU(B) \leftarrow ST(B, C) \leftarrow PU(A)$	
$US(C,A)\leftarrowST(B,C)$	
$US(C, A) \leftarrow PU(A)$	
$US(C, A) \leftarrow PU(B)$	
$US(C, A) \leftarrow PD(C) \leftarrow PU(B)$	

Final plan:

$$US(C, A) \leftarrow PD(C) \leftarrow PU(B) \leftarrow ST(B, C) \leftarrow PU(A) \leftarrow ST(A, B)$$

• Main steps involved in non linear plan generation are:

1. Step addition -

Creating new operator (step) for a plan

2. Promotion -

Constraining one operator to come before another in final plan

3. Declobbering -

Placing operator Op2 between two operators Op1 and Op3 such that Op2 reasserts some pre conditions of Op3 that was negated by Op1

4. Simple Establishment-

Assigning a value to a variable, in order to ensure the pre conditions of some step.

Summary

Initial State: $ON(C, A) \wedge ONT(A) \wedge ONT(B) \wedge AE \wedge CL(C) \wedge CL(B)$

Goal State: $ON(A, B) \land ON(B, C)$

 $PU(A) \leftarrow ST(A, B)$ and $PU(B) \leftarrow ST(B, C)$ – Ordering of operators

- CL(A) is not unachieved as top of A is not clear in initial state.
- Also CL(B) is unachieved even though top of B is clear in initial state but there exist a operator ST(A,B) with post condition as ~CL(B).
- So if we make sure that CL(B) is achieved, we post a constraints that PU(B) must precede ST(A,B)

Promotion: $PU(B) \leftarrow ST(A, B)$

- Here either PU operators could prevent the other from executing.
- Assume AE be achieved as pre condition of PU(B), then all pre conditions of PU(B) are satisfied.

Promotion: $PU(B) \leftarrow PU(A)$ (pre conds of PU(A) are not still achieved.)

• PU(B) makes ~AE and ST(B,C) will make AE which is precondition of PU(A).

Declobbering: $PU(B) \leftarrow ST(B, C) \leftarrow PU(A)$

• Now try to achieve CL(A). This can be done by US(C, A)

- ON(C, A) can be easily be seen to be true in initial state.
- But CL(C) may be denied by operator ST(B, C) already used earlier and AE may be denied by operators PU(A) and PU(B).

Promotion: $US(C, A) \leftarrow ST(B, C)$; $US(C, A) \leftarrow PU(A)$; $US(C, A) \leftarrow PU(B)$

- Now adding new operator requires checking, if the new step clobber some pre conditions of later.
- Here we see that PU(B) requires AE but denied by new operator US(C,A). One way is to add a new declobbering operator to the plan.

Declobbering: $US(C, A) \leftarrow PD(C) \leftarrow PU(B)$

Final plan: $US(C, A) \leftarrow PD(C) \leftarrow PU(B) \leftarrow ST(B, C) \leftarrow PU(A) \leftarrow ST(A, B)$

Algorithm:

- 1. Initialize S to be set of propositions in the goal state.
- 2. Remove some unachieved proposition P from S.
- 3. Achieve P by using step addition, promotion, declobbering, simple establishment.
- 4. Review all the steps in the plan, including any new steps introduced by step addition to see if any of their preconditions are unachieved.
- 5. Add to S the new set of unachieved preconditions.
- 6. If $S = \phi$, complete the plan by converting the partial order of steps into a total order and instantiate any variables as necessary and exit.
- 7. Otherwise go to step 2.

Triangle Table

- This is another planning technique.
- It provides a way of removing the goals that each operator is expected to satisfy as well as goals that must be true for it to execute correctly.
- A useful graphical mechanism to show the plan evolution as well as link the succession of operators in a triangle table.
- The structure of the table is staircase type which gives compact summary of the plan.
- Let us use the following acronyms.

AL(Op) - Add-list of op

ACC - Above cell contents

DL(Op) - del-list of op

$$m = 0$$

ī		m = 1		
n = 0	Initial state	Op1		
n = 1	ACC – DL(Op1)	AL(Op1)	m = 2 $Op2$	
	ACC – DL(Op2)	ACC – DL(Op2)	AL(Op2)	
				m = k Opk
n = k	ACC – DL(Opk)	ACC – DL(Opk)	ACC – DL(Opk)	AL(Opk)

Rules for forming such tables

- Given a resulting plan requiring the successive use of k operators, Op1, Op2, ...Opk, the table consists of
 - k+1 columns indexed by m from left to right with values 0 to k.
 - Similarly k+1 rows indexed by n from top to bottom with values 0 to k.
- Each cell may be empty or composed of a subset of the system state.
- Cell(0,0) contains initial state.
- Entries in the cells are made as follows:
 - 1. In Cell(m, n), for m > 0, add list of operator.

- 2. In Cell(m, n) in column m, for n > m, apply the following sub steps recursively.
 - Cell(m, n), n > m contains the contents of Cell(m, n-1) with delete list of operator m removed.
- This process starts with Cell(0, 0).
- Traversing the columns from top to bottom have reduction in the system state entries due to the succession of operator delete list applications.
- Finally when the table is complete, the union of the facts in the bottom row (n = k) represents the goal state.