-컴퓨터 네트워크-Layer 3: Routing

2022 Spring Kyungseop Shin

Course Outline

- IP layer에서의 forwarding table 생성을 위한 기법에 대해 이해
 - Routing algorithm 기본 개념에 대해 이해
 - Link-state algorithm, Distance-Vector algorithm에 대한 개념 이해
- Internet에서의 routing 메커니즘에 대해 이해

Routing Control Plane

- Router 내의 data/control plane
 - 동작 성격 (Data forwarding / routing)에 따라 기능이 나뉘어짐

Data plane

- IP header 분석
- Datagram forwarding
- Fragmentation

Control plane

- Routing algorithm
- ICMP

Routing Algorithm

- Router의 forwarding table
 - 입력datagram에 대한 출력 port를 정하기 위해 각 router가 보유한 표
- Routing algorithm
 - Routing table을 만들기 위한 각 router의 동작
 - decentralized

Routing Algorithm

- Control plane (routing algorithm)에 의해 forwarding table 생성
- Data plane에서는 forwarding table을 이용 해서 동작
 - 이 IP address 목적지 는 어느 port 로 내보내 야 궁극적으로 도달하는 가?

Routing Algorithm

- Routing algorithm의 최종 목적
 - Source router destination router 간 가장 최적의 경로를 찾는 것

Background

- Routing algorithm은 graph theory를 기본적으로 활용
 - Graph G = (N,E)
 - N : node들의 집합 (router)
 - E: edge들의 집합 (router간 연결)
 - Weight : cost = c(x,y)
 - Path: $(x_1, x_2, ..., x_p)$

Routing Path

- Least-cost path
 - cost의 합이 최소인 경로 $c(x_1,x_2)+c(x_2,x_3)+...+c(x_{p-1},x_p)$.
 - 앞의 그림에서 u-w의 경우 u-x-y-w
- Shortest path
 - cost를 고려하지 않고 가장 짧은 path
 - 모든 cost가 같은 경우의 least-cost path

Routing Path

- u z 간 least-cost path를 구하고자 하면
 - 17가지 모든 경우의 수에 대해 해보면 답을 구할 수 있음
 - = Centralized routing algorithm
 - One location, complete information
 - Decentralized : router들이 하는 방식

Routing Algorithm 종류: Global vs. Decentralized

- Global routing algorithm
 - complete/global knowledge about network
 - connectivity, link에 대한 정보
 - Link-state(LS) algorithm
- Decentralized routing algorithm
 - Iterative, distributed manner
 - 특정 node가 모든 link에 대한 정보를 완벽하게 가지지 않으며, 주로 자신과 연결된 link
 에 대한 정보만 가지고 단계적으로 동작
 - Distance-vector(DV) algorithm

Routing Algorithm 종류: Static vs. Dynamic

- Static routing algorithms
 - Routing table이 시간에 따라 변하지 않거나 거의 변하지 않음
 - 주로 사람의 조작에 의해서만 변함
- Dynamic routing algorithms
 - Traffic load 및 topology 변화에 의해 자동으로 routing table 이 변함
 - 잘못하면 Routing loop, oscillation 문제가 발생할 여지가 있음

Fixed Routing

- Permanent route : 고정으로 routing 규칙을 지정
 - IP address 특정 대역 등에 대해 out-port 지정
- 활용 시점
 - 전체 관리가 사람에 의해 이루어질 때
 - 부분적으로 고정된 규칙을 적용하고 싶을 때
- 간단하지만 flexibility가 적고 수고가 많이 듬
 - Network failure, congestion 등의 dynamic한 상황에 취약함

Flooding

- 모든 neighbor들에게 packet을 무조건 뿌림
- 궁극적으로 destination은 multiple copy 형태로 수신
 - Sequence number를 통해 duplication 방지 가능
- 단순하면서 무식한 방법
 - Routing protocol이나 table등이 필요 없으므로, control plane관점에서 simple함
 - traffic load가 불필요하게 너무 크며 재전송에 대한 제어가 필요

- Topology 및 모든 link cost를 파악하고 routing table 생성
 - Link-state broadcast algorithm을 통해 활용
 - 각자의 Identity와 link 별 cost 정보를 neighbor에게 전달
 - 모든 node가 동일한 routing 정보를 공유할 수 있음
- Dijkstra's algorithm : least-cost path를 iterative하게 파악
 - D(v): cost of the least-cost path from the source node to destination v as of this iteration of the algorithm.
 - p(v): previous node (neighbor of v) along the current least-cost path from the source to v.
 - N': subset of nodes; v is in N' if the least-cost path from the source to v is definitively known.

• 순차적으로 node를 넣고 least-cost path를 갱신

Link-State (LS) Algorithm for Source Node u

```
Initialization:
     N' = \{u\}
     for all nodes v
       if v is a neighbor of u
         then D(v) = c(u,v)
6
       else D(v) = \infty
  Loop
8
9
     find w not in N' such that D(w) is a minimum
    add w to N'
10
   update D(v) for each neighbor v of w and not in N':
11
          D(v) = \min(D(v), D(w) + C(w,v))
12
13 /* new cost to v is either old cost to v or known
   least path cost to w plus cost from w to v */
14
15 until N' = N
```

- 예시
 - node가 늘어날수록 D() 값이 줄어 등

• p를 추적하면 path를 찾을 수 있음

step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	U	2,υ	5,υ	1,u	∞	∞
	UX	2,υ	4,x	The same of the sa	2,x	∞
2	UXY	2,u	3,y		ammination of the second of th	4 ,y
3	UXYV		3,y		1000000000000000000000000000000000000	4,y
4	UXYVW					4 ,y
5	UXYVWZ					

- Forwarding table 결과
 - Routing path를 고려하여 destination 별로 out-port 지정

Destination	Link	
V	(u, v)	
W	(u, x)	
X	(u, x)	
У	(u, x)	
Z	(u, x)	

- Congestion-sensitive routing 과정에서의 oscillation
 - Link cost를 traffic load로 가정하면
 - Traffic 상태에 따라 Routing 경로가 안정적이지 못하고 왔다 할수 있음

a. Initial routing

c. x, y, z detect better path to w, counterclockwise

b. x, y detect better path to w, clockwise

d. x, y, z, detect better path to w, clockwise

- LS routing과는 다르게 asynchronous / distributed 함
 - Neighbor node끼리만 정보를 주고 받으면서 routing 계산
 - 더이상 neighbor node끼리 정보를 주고 받을 일이 없을 때 까지 iterative하게 정보 교환 / 계산을 반복
 - 각 node가 알아서 정보 교환을 하고 계산 수행
- Bellman-Ford equation 활용

$$d_{x}(y) = \min_{v} \{c(x, v) + d_{v}(y)\},$$

Node y에 대한 packet의 forwarding table element

- 기본적인 routing algorithm 방향
 - 각 node x는 Dx(y) 값을 특정 초기값으로 적절히 설정하고
 - Distance vector $\mathbf{D}_{\mathbf{x}}$ 에 대해 아래 정보를 통해 지속적으로 update
- For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v
- Node x's distance vector, that is, $\mathbf{D}_x = [D_x(y): y \text{ in } N]$, containing x's estimate of its cost to all destinations, y, in N
- The distance vectors of each of its neighbors, that is, $\mathbf{D}_v = [D_v(y): y \text{ in } N]$ for each neighbor v of x

- Neighbor node v로부터 DV를 받으면
 - Bellman-Ford equation에 의해 자신의 DV를 갱신

```
Initialization:
       for all destinations y in N:
           D_{x}(y) = c(x,y) /* if y is not a neighbor then c(x,y) = \infty */
       for each neighbor w
           D_{w}(y) = ? for all destinations y in N
       for each neighbor w
           send distance vector \mathbf{D}_{\mathbf{x}} = [D_{\mathbf{x}}(\mathbf{y}): \mathbf{y} \ in \ N] to w
  loop
10
       wait (until I see a link cost change to some neighbor w or
               until I receive a distance vector from some neighbor w)
11
12
       for each y in N:
13
           D_{x}(y) = \min_{v} \{c(x,v) + D_{v}(y)\}
14
15
       if D<sub>v</sub>(y) changed for any destination y
16
           send distance vector \mathbf{D}_{\mathbf{x}} = [D<sub>x</sub>(y): y in N] to all neighbors
17
18
19 forever
```

 이웃의 DV정보만 이용하며 DV 정보 교환을 각 node가 알 아서 asynchronous하게 함

• 예시

Node x table

		cost to				
			Χ	У	Z	
_	Х		0	2	7	
from	у		∞	∞	∞	
4	Z		∞	∞	∞	
		ı				

		cost to			
		Х	У	Z	
	Х	0	2	3)
om	у	2	0	1	\
	Z	7	1	0	
\$7 .		l			1

-		cost to			
		Х	У	Z	
1	х	0	2	3	
b	у	2	0	1	
F	Z	3	1	0	
ě		l			

Node y table

		CC	ost 1	to
		Χ	У	Z
from	Х	∞	∞	∞
	У	2	0	1
fr	Z	∞	∞	∞

		C	ost	to
		Х	У	Z
	Х	0	2	7
OM	у	2	0	1
=	Z	7	1	0
3	4	I		

			cost to				
Banna.	ł			X	У	Z	
	_	Х		0	2	3	
	5	у		2	0	1	
greed	=	Z		3	1	0	
I	4		I				

Node z table

		cc	ost 1	to
		Х	У	Z
	Х	8	∞	∝
from	у	∞	∞	∝
f	Z	7	1	0

		cost to			
1	7	X	У	Z	
	Х	0	2	7	
om	у	2	0	1	
1	Z	3	1	0	

			cost to				
	ł	,	Х	У	Z		
		Х	0	2	3		
	E	у	2	0	1		
·	=	Z	3	1	0		

Time

- Link-cost change 1 : cost reduced
 - to: y detects cost change (4 -> 1)
 - t1: z receives update (Dz(x): 5 -> 2)
 - t2: y receives update (no change)

- Link-cost change 2 : cost increased , $D_{y}(x) = 4$, $D_{y}(z) = 1$, $D_{z}(y) = 1$, and $D_{z}(x) = 5$.

 - to: y detects (4 -> 60), $D_y(x) = D_y(z) + D_z(x) = 6$
 - t1: z receives update (Dz(x): 5 -> 7)
 - Routing loop
 - t2: y receives update (Dy(x)=7)
 - 이후 link cost가 50이 될 때까지 1씩 증가
 - ==> To much iterations

Link State vs. Distance-Vector

- DV : 인접 node끼리만 정보 교환, 정보 내용은 모든 node에 대한 cost
- LS : 모든 node와 정보 교환, 정보 내용은 인접 node에 대한 cost
- Message complexity
 - LS 는 많은 메시지 전송이 필요, DV는 link cost 변화 빈도에 따라 메시지 전송 횟수 증가
- Speed of convergence : DV가 convergence 속도가 느림
- Robustness: LS는 각자 routing을 계산하는 방식이라 더 안정적임

Hierarchical Routing

- 실제 Internet은 sub-network와 gateway router 형태로 계층적으로 네트워크를 형성
 - Subnet간 packet routing은 gateway router를 통해서만 이루어짐
- Autonomous System (AS): 한 기관이 관리하는 router 및 network 모음
 - 동일한 routing protocol에 의해 밀접하게 동작
- Intra vs. inter-AS routing

Routing Information Protocol (RIP)

- intra-AS routing에 주로 활용되는 routing algorithm
- Distance-vector protocol에 속하며, link cost가 모두 1
 - Hop count가 cost metric임 (max cost : 15)
- RIP response/advertisement message (30초에 한번 전송)

Destination	Hops
u	1
V	2
W	2
Х	3
У	3
Z	2

Routing Information Protocol (RIP)

- Routing table : distance vector 및 forwarding table
- Routing advertisement message 수신 후

• Routing 정보 갱신

Destination Subnet	Next Router	Number of Hops to Destination
Z	C	4
W	_	1
Х	_	1

Destination Subnet	Next Router	Number of Hops to Destination
W	A	2
у	В	2
Z	В	7
Х	_	1

Destination Subnet	Next Router	Number of Hops to Destination
W	Α	2
у	В	2
Z	А	5
	••••	

Routing Information Protocol (RIP)

- 180초 이상 routing advertisement message 수신이 없으면
 - No longer reachable이라 판단
 - Routing table 을 수정하고 advertisement를 보냄
- RIP request message : 특정 destination에 대한 neighbor's cost를 요청 (UDP, port 520)

Open Shortest Path First (OSPF)

- RIP의 다음 버전이며, 여러가지 개선된 기능을 가짐
- Dijkstra least-cost path algorithm 기반이며, link state에 대한 flooding 활용
 - Complete topological map을 기반으로 모든 subnet에 대한 shortestpath 계산
 - Link cost는 network administrator가 지정하기 나름이며, 모든 link cost 를 1로 설정하면 minimum-hop routing이 됨
- 모든 router에게 link state information을 broadcasting함
 - robustness를 위해서 link change가 없어도 최소한 30분에 한번 수행

Border Gateway Protocol (BGP)

- Internet에서의 Exterior router protocol
 - AS 간 routing을 위한 protocol
- 아래 세가지 역할 수행
 - 인접 AS간 subnet reachability information 교환
 - Reachability 정보에 대해 AS내 router에게 전달
 - subnet에 대한 routing 결정

Key Design Issue

- Routing performance
 - Correctness, Optimality
- Low control overhead
 - Simplicity, Efficiency
- Robustness, Stability, Fairness