KET/CHH 3. přednáška Ing. Martin Sýkora, Ph.D

Opakování z minulé přednášky… hladinové vyjádření

Veličina	Definiční vztah	Referenční hodnota
Hladina zrychlení	$L_a = 20 \cdot \log \frac{a}{a_0}$	a ₀ =10 ⁻⁶ [m·s ⁻²]
Hladina rychlosti	$L_{v} = 20 \cdot \log \frac{v}{v_0}$	v₀=10 ⁻⁹ [m·s ⁻¹]
Hladina výchylky	$L_A = 20 \cdot \log \frac{A}{A_0}$	A ₀ =10 ⁻⁶ [m]

KET/CHH 3.přednáška

Signály popisující chvění

- Chvění je charakterizováno některou z veličin (výchylka, rychlost, zrychlení)
- · Výše zmíněné veličiny lze vzájemně dopočítat
- Je možné převést tyto na lépe měřitelnou veličinu (např. elektrické napětí)
- Veličina popisuje chvění → popisuje nějaký stav a děj
- Nese informaci → hovoříme o signálu

KET/CHH 3.přednáška

Druhy signálu z hlediska popisu

- Deterministické
 - · Lze v každém okamžiku určit s jistotou jeho hodnotu
 - · Popsán matematickým zápisem, vztahem
 - · Např. harmonická funkce
- Stochastické
 - Hodnotu v každém okamžiku lze určit pouze s určitou pravděpodobností
 - · Např. bílý šum

KET/CHH 3.přednáška

Druhy signálu z hlediska periodicity

- Periodické
 - · Průběh signálu se v čase opakuje
 - Perioda opakování T
 - Prakticky lze zapsat s(t)=s(t+n·T), kde n je celé číslo
- Neperiodické
 - Opak periodických
 - · Na konečném úseku nelze nalézt periodu opakovaní

KET/CHH 3.přednáška

Další kritéria dělení signálů

· Vychází z obecné teorie signálů

Dělení podle spojitosti v čase

- Spojité
- Diskrétní

Dělení podle spojitosti v amplitudě

- Spojité
- Diskrétní

A další ...

KET/CHH 3.přednáška

Harmonický signál

Harmonický signál

- Speciální případ lze jej jednoduše popsat
- Signál je deterministický lze zapsat jej popsat rovnicí
- Signál je periodický opakuje se s periodou T
- Jednoduchý popis vztah, amplituda, frekvence, efektivní hodnota

KET/CHH 3.přednáška

Obecný periodický signál V reálném světě se většinou vyskytují složitější signály Např. obecný periodický signál Opakuje se s periodou – T Ale nelze jej zapsat jednoduchým vztahem Např. pohyb pístu spalovacího motoru

Obecný periodický signál

Obecný periodický signál

- · Obtížná analýza v časové oblasti
- · Nutné další nástroje hodnocení signálu

Přechod do frekvenční oblasti

- Frekvenční analýza
- Rozklad na jednotlivé harmonické složky
- · Fourierova transformace

KET/CHH 3.přednáška

Metody frekvenční analýzy

Bude rozebráno v samostatné přednášce Dva základní přístupy

- · Fourierova transformace
 - Výpočetní metoda
 - · Aplikace algoritmu FFT
- · Metoda pásmových filtrů
 - · Lze realizovat jak číslicově, tak analogově
 - · Menší rozlišovací schopnost
 - · Filtry o určité šířce pásma

KET/CHH 3.přednáška

Popis nedeterministických signálů

Použití statistických veličin

- · Pravděpodobné rozložení amplitud
- · Hustota pravděpodobnosti
- · Výkonová spektrální hustota

Autokorelační funkce

- Hustota pravděpodobnosti dává představu o rozložení amplitud signálu, ale chybí souvislost s předchozím vývojem signálu
- · Zavedení autokorelační funkce

KET/CHH 3.přednáška

Přechodové jevy a rázy

d

- Pravděpodobné rozložení amplitud
- · Hustota pravděpodobnosti
- Výkonová spektrální hustota

Autokorelační funkce

- Hustota pravděpodobnosti dává představu o rozložení amplitud signálu, ale chybí souvislost s předchozím vývojem signálu
- · Zavedení autokorelační funkce

KET/CHH 3.přednáška

