DMAD - spójność, lasy i drzewa, krawędzie i wierzchołki cięcia, oszacowania liczby krawędzi

Jak przygotować się do rozwiązywania zadań?

Przeczytać rozdziały 7.8 - 7.9 z materiałów.

Przed zajęciami powinnam/powinienem znać:

- twierdzenie 7.3, twierdzenia 7.4 7.9;
- definicje 7.21 7.26;

A Zadania na ćwiczenia

Zadanie A.1. Znajdź wszystkie składowe spójności grafu a).

Zadanie A.2. Pokaż, że jeżeli L jest lasem, to liczba jego drzew $\omega = \omega(L)$ dana jest wzorem

$$\omega(L) = \nu(L) - \varepsilon(L).$$

Zadanie A.3. Wyznacz wszystkie wierzchołki i krawędzie cięcia w grafach poniżej.

Jak może się zmienić liczba składowych grafu po usunięciu jednej krawędzi? A jak może się zmienić po usunięciu jednego wierzchołka?

Zadanie A.4. Udowodnij, że e jest krawędzią cięcia grafu G wtedy i tylko wtedy, gdy e nie należy do żadnego cyklu grafu G. Wyciągnij z tego wniosek, że graf L jest lasem wtedy i tylko wtedy, gdy każda krawędź L jest krawędzią cięcia.

Zadanie A.5. Grafy G_1 i G_2 składają się z dwóch składowych spójności, które są grafami pełnymi. Niech $G_1 = K_\ell \oplus K_k$, $G_2 = K_{\ell+1} \oplus K_{k-1}$ i $\ell \geqslant k \geqslant 2$. Pokaż, że $\varepsilon(G_2) \geqslant \varepsilon(G_1)$.

Zadanie A.6. Ile najmniej i ile najwięcej krawędzi może mieć graf prosty o 16 wierzchołkach i 5 składowych spójności? Jak zmieni się odpowiedź, jeśli graf ten ma minimalny stopień co najmniej 1?

B Zadania na ćwiczenia - jeśli czas pozwoli

Zadanie B.1. Ile należy usunąć krawędzi ze spójnego grafu o n wierzchołkach i m krawędziach, aby uzyskać drzewo rozpięte?

Zadanie B.2. Ile najmniej i ile najwięcej krawędzi może mieć graf prosty o 23 wierzchołkach i 7 składowych spójności? Jak zmieni się odpowiedź, jeśli graf ten ma minimalny stopień co najmniej 2?

Zadanie B.3. Rozstrzygnij ile najmniej i ile najwięcej składowych spójności może mieć graf prosty, który ma 50 wierzchołków i 45 krawędzi. Podaj przykłady takich grafów o najmniejszej i największej liczbie składowych?

C Zadania do samodzielnej pracy w domu

- Zadanie C.1. Znajdź wszystkie składowe spójności grafów b) i c) z zadania A.1.
- Zadanie C.2. Czy każde drzewo jest grafem dwudzielnym?
- **Zadanie C.3.** Drzewo T ma dwa wierzchołki stopnia 4, jeden wierzchołek stopnia 3, dwa wierzchołki stopnia 2 i n wierzchołków stopnia 1. Wyznacz n.
- **Zadanie C.4.** Zarówno G jak i G^c jest drzewem. Ile wierzchołków ma G?
- **Zadanie C.5.** Ile najmniej i ile najwięcej krawędzi może mieć graf prosty o 23 wierzchołkach i 7 składowych spójności? Jak zmieni się odpowiedź, jeśli graf ten ma minimalny stopień co najmniej 2?
- **Zadanie C.6.** Ile najmniej i ile najwięcej składowych spójności może mieć graf prosty o 100 wierzchołkach i 54 krawędziach?
- **Zadanie C.7.** Dany jest graf prosty G o 12 wierzchołkach i 56 krawędziach.
 - a) Ile najmniej i ile najwięcej składowych może mieć G?
 - b) Ile najmniej i ile najwięcej składowych może mieć G^c ?
- Zadanie C.8. Narysuj wszystkie nieizomorficzne drzewa na siedmiu wierzchołkach o maksymalnym stopniu równym 3.

Odpowiedzi do niektórych zadań

 $\textbf{C1.} \text{ graf b: } \{b,e\},\ \{a,l,m,n,o\},\ \{g,j,k\},\ \{c,d,f,h,i\}. \quad \text{graf c: } \{1,5,8,11,14\},\ \{12,13\},\ \{3,15\},\ \{2,4,6,7,9,10\}.$

C2. TAK

C3. n = 7

C4. $\nu(G) = 1$ lub $\nu(G) = 4$

C5. $\varepsilon \in \{16, \dots, 136\}.$

 $(\delta \geqslant 2 : \varepsilon \in \{23, \dots, 28\}).$

C6. $\omega \in \{46, \dots, 90\}$.

C7. a) $\omega = 1$. b) $\omega \in \{2, ..., 8\}$.