

Prof. Jose J. Camata
Prof. Marcelo Caniato
Profa. Bárbara Quintela

<u>camata@ice.ufjf.br</u>

<u>marcelo.caniato@ice.ufjf.br</u>

<u>barbara@ice.ufjf.br</u>

Tópicos

- 1. Introdução
- 2. Propriedades
- 3. Inserção
- 4. Exemplos

Introdução

- > Também chamada de árvore rubro-negra
- É uma árvore balanceada, mas menos balanceada que a AVL
 - Melhor que a AVL em inserções e remoções
- É uma representação binária para um tipo de árvore conhecida como 2-3-4, criada por Rudolf Bayer em 1972
- Usada na estrutura de dados map da STL
- Muito usada em aplicações de tempo real

Introdução

A estrutura do nó possui um novo bit de informação, que designa a cor (vermelho ou preto) do nó

NoVP info // valor armazenado esq // filho esquerdo dir // filho direito pai // ponteiro p/ o pai cor // cor do nó

Propriedades

A árvore vermelho-preto é uma árvore binária de busca que deve atender, necessariamente, aos critérios abaixo

- 1. Cada nó é vermelho ou preto
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

Formas de representação

Com o NIL oculto

Formas de representação

Com o NIL explícito

Formas de representação

Com um nó sentinela

- Número de nós pretos em qualquer caminho de um nó x até uma folha, excluindo o nó x
 - A altura negra da árvore é a altura negra da raiz

Altura negra

- Número de nós pretos em qualquer caminho de um nó x até uma folha, excluindo o nó x
 - A altura negra da árvore é a altura negra da raiz

- Número de nós pretos em qualquer caminho de um nó x até uma folha, excluindo o nó x
 - A altura negra da árvore é a altura negra da raiz

- Número de nós pretos em qualquer caminho de um nó x até uma folha, excluindo o nó x
 - A altura negra da árvore é a altura negra da raiz

- Número de nós pretos em qualquer caminho de um nó x até uma folha, excluindo o nó x

Note que **qualquer** caminho partindo da raiz até alguma folha tem exatamente 2 nós pretos

- Número de nós pretos em qualquer caminho de um nó x até uma folha, excluindo o nó x
 - A altura negra da árvore é a altura negra da raiz

➤ A árvore a seguir é uma árvore vermelho-preto?

A árvore a seguir é uma árvore vermelho-preto?

- Cada nó é vermelho ou preto
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- Se um nó é vermelho, seus filhos são pretos
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

A árvore a seguir é uma árvore vermelho-preto?

- Cada nó é vermelho ou preto
- A raiz é preta
- 3. Cada folha (NIL) é preta
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- 5. Todo caminho até as folhas possui o mesmo número de nós pretos (altura negra)

A árvore a seguir é uma árvore vermelho-preto?

- 1. Cada nó é **vermelho** ou **preto**
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

A árvore a seguir é uma árvore vermelho-preto?

- Cada nó é vermelho ou preto
- A raiz é preta
- Cada folha (NIL) é preta
- Se um nó é vermelho, seus filhos são pretos
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

A árvore a seguir é uma árvore vermelho-preto?

- Cada nó é vermelho ou preto
- A raiz é preta
- Cada folha (NIL) é preta
- Se um nó é vermelho, seus filhos são pretos
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

A árvore a seguir é uma árvore vermelho-preto?

- 1. Cada nó é **vermelho** ou **preto**
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

A árvore a seguir é uma árvore vermelho-preto?

- 1. Cada nó é vermelho ou preto
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- Todo caminho até as folhas possui o mesmo número de nós pretos (altura negra)

A árvore a seguir é uma árvore vermelho-preto?

- 1. Cada nó é **vermelho** ou **preto**
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

A árvore a seguir é uma árvore vermelho-preto?

PROPRIEDADES

- 1. Cada nó é **vermelho** ou **preto**
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- Se um nó é vermelho, seus filhos são pretos
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

Sim! Note que os nós NIL estão ocultos, portanto a propriedade 3 não está sendo infringida.

A árvore a seguir é uma árvore vermelho-preto?

- 1. Cada nó é vermelho ou preto
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é preta
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- 5. Todo caminho até as folhas possui o mesmo número de nós **pretos** (**altura negra**)

A árvore a seguir é uma árvore vermelho-preto?

PROPRIEDADES

- 1. Cada nó é **vermelho** ou **preto**
- 2. A raiz é **preta**
- 3. Cada folha (NIL) é **preta**
- 4. Se um nó é **vermelho**, seus filhos são **pretos**
- Todo caminho até as folhas possui o mesmo número de nós pretos (altura negra)

Sim! Apesar de não haver nó vermelho nesta árvore, isso não infringe a propriedade 1.

Inserção

- A inserção segue o mesmo procedimento da árvore binária de busca
 - Inserção como folha no local onde deveria se encontrar o nó
 - O nó é marcado como vermelho
- Pode ocorrer quebra de alguma propriedade da árvore
 - Na prática, apenas as propriedades 2 e 4 podem ser feridas
 - Propriedade 1: todo nó continuará sendo vermelho ou preto
 - Propriedade 3: a cor da folha (NIL) não tem como ser alterada
 - Estas duas propriedades estão atreladas à estrutura básica da árvore
 - Propriedade 5: como o nó inserido é marcado como vermelho, a altura negra não se altera
 - O rebalanceamento também é feito de modo a garantir a propriedade

Inserção

- A quebra de alguma das propriedades pode levar a duas possibilidades para o balanceamento
 - Troca de cores
 - Rotação
 - As mesmas da árvore AVL

Ponteiro para a raiz

APÓS O

BALANCEAMENTO

- > Caso 1
 - Árvore vazia

ANTES DA

INSERÇÃO

■ Nó é raiz, portanto deve ser preto (Propriedade 2)

APÓS A

INSERÇÃO

- Caso 2
 - Pai é vermelho e tio é vermelho.
 - Pai vermelho fere a Propriedade 4
 - Recolore pai, tio e avô

Se 30 for a raiz, também precisa ser **preto**

- Caso 3
 - Pai é vermelho e tio é preto
 - Pai vermelho fere a Propriedade 4
 - Aplica rotação

Inserção

- > Caso 3
 - Pai é vermelho e tio é preto
 - Pai vermelho fere a Propriedade 4
 - Aplica rotação
 - Após a rotação, recolorir os nós
 - Quais nós? Depende da rotação!
 - Rotação simples ⇒ recolore pai e avô
 - Rotação dupla ⇒ recolore nó e avô

- Caso 3
 - Rotação simples à esquerda
 - Recolore pai e avô
 - Análogo para a direita

- Caso 3
 - Rotação dupla à esquerda
 - Recolore nó e avô
 - Análogo para a direita

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Procedimento de inserção é o mesmo da árvore binária de busca

Ponteiro para a raiz

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Ponteiro para a raiz

Exemplo

- Inserir 40
- Encontra a posição de inserção

Exemplo

- ☐ Inserir 40
- Encontra a posição de inserção
- 2. Nó é raiz, colore como preto

Inserir 60

 Encontra a posição de inserção

Ponteiro para a raiz

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho

Ponteiro para a raiz

Exemplo

Inserir 80

 Encontra a posição de inserção

Exemplo

- Inserir 80
- Encontra a posição de inserção
- 2. Insere nó como vermelho

Ponteiro para a raiz

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
- 3.1. Pai vermelho + tio preto

Ponteiro para a raiz

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
 - 3.1. Pai vermelho + tio preto
 - 3.2. Rotação simples à esquerda

Ponteiro para a raiz

Exemplo

☐ Inserir 80

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
- 3.1. Pai vermelho + tio preto
- 3.2. Rotação simples à esquerda
- 3.3. Recolore pai e avô

Ponteiro para a raiz

Exemplo

Inserir 90

Encontra a posição de inserção

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho

Ponteiro para a raiz

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
- 3.1. Pai vermelho + tio vermelho

Ponteiro para a raiz

□ Inserir 90

- 1. Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
 - 3.1. Pai vermelho + tio vermelho
 - 3.2. Recolore pai, tio e avô

Ponteiro para a raiz

□ Inserir 90

- 1. Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
 - 3.1. Pai vermelho + tio vermelho
 - 3.2. Recolore pai, tio e avô
- 4. Propriedade 2 ferida
 - 4.1. Raiz vermelha

Ponteiro para a raiz

□ Inserir 90

- 1. Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
 - 3.1. Pai vermelho + tio vermelho
 - 3.2. Recolore pai, tio e avô
- 4. Propriedade 2 ferida
 - 4.1. Raiz vermelha
 - 4.2. Recolore a raiz

Exemplo

Inserir 85

 Encontra a posição de inserção

Exemplo

- Inserir 85
- Encontra a posição de inserção
- 2. Insere nó como vermelho

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
 - 3.1. Pai vermelho e tio preto

Ponteiro para a raiz

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
 - 3.1. Pai vermelho e tio preto
 - 3.2. Rotação dupla à esquerda

Ponteiro para a raiz

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
 - 3.1. Pai vermelho e tio preto
 - 3.2. Rotação dupla à esquerda
 - 3.3. Recolore nó e avô

Ponteiro para a raiz

Exemplo

- Encontra a posição de inserção
- 2. Insere nó como vermelho
- 3. Propriedade 4 ferida
- 3.1. Pai vermelho e tio preto
- 3.2. Rotação dupla à esquerda
- 3.3. Recolore nó e avô
- 4. Continua verificando até a raiz

Análise

- > A árvore vermelho-preto ocupa menos espaço por nó
 - Um bit de cor contra um inteiro para o fator de balanceamento da AVL
- Para entradas de dados aleatórios com sequências ordenadas, a árvore vermelho-preto é melhor que a AVL
 - É menos balanceada, mas realiza no máximo 1 rotação na remoção
 (O(logn) recolorações), enquanto a AVL realiza O(logn) rotações
 - Na inserção, é similar à AVL, executando no máximo 1 rotação e O(logn) recolorações
- A altura máxima de uma árvore vermelho-preto com n nós internos é de 2log(n+1)

Exercício

- Criar uma árvore vermelho-preto inserindo os elementos a seguir na ordem determinada:
 - 41, 38, 31, 12, 19, 8

- SZWARCFITER, Jayme Luiz; MARKENZON, Lilian. Estruturas de Dados e Seus Algoritmos, cap. 5. LTC Editora, 1994.
- DROZDEK, Adam. Data Structures and Algorithms in C++, Fourth Edition, cap. 10. Cengage Learning, 2013.
- SOUZA, Jairo F. Notas de aula de Estrutura de Dados II. 2016.
 Disponível em: http://www.ufjf.br/jairo_souza/ensino/material/ed2/

