10万個の点から一番近い点を見つける

~KD treeを例とした効率的なアルゴリズムの設計~

自己紹介。

- ・さめ(meg-ssk)
- 🚨 フリーランスのソフトウェアエンジニア
- 得意分野:
 - ■ コンピュータビジョン (画像認識/ 点群処理)
 - **②** 空間情報処理 (GIS/リモートセンシング)
 - ◆ クラウドインフラ設計/IaC (AWS)
- GitHub: s-sasaki-earthsea-wizard
- Speaker Deck: syotasasaki593876
- LinkedIn: syota-sasaki-878901320

問題提起:一番近い点はどれ?

- 平面上に4つの点があります (A, B, C, D)
 - 点Aに一番近いのはどの点でしょう?
 - 点Bに一番近いのはどの点でしょう?
 - 点Cに一番近いのはどの点でしょう?
 - 点Dに一番近いのはどの点でしょう?
 - すべての点の一番近い点を計算するには?

シンプルな解き方

点Aに一番近い点を探す

- AB, AC, ADの長さ(ノルム)を計算す る
- 言うなれば「定規で長さを測る」
- あとはこの中の最小値を選べばOK!

min(||AB||, ||AC||, ||AD||)

合計3回の計算で解決!

点Bに一番近い点を探す

- BC, BDの長さを計算する
- BAの長さはすでに計算済み

合計2回の計算で解決!

点Cに一番近い点を探す

- CDの長さを計算する
- CA, CBの長さはすでに計算済み

合計1回の計算で解決!

- 3回 + 2回 + 1回 = 6回の計算で解決!
- なんだ簡単じゃん!めでたしめでたし! ...ではない!

₩計算量の爆発

点の数が10万個になったら?

- 点Aに一番近い点を計算するためには99,999回の 計算が必要
- 点Bに一番近い点を計算するためには99,998回の 計算が必要
- (以下略...)
- 合計約50億回の計算が必要!
- ¾ 計算量が爆発する!
- 🗶 現実的な時間、計算リソースでは計算不可能!
- ★ リアルタイムでの計算は不可能!
- り もっと賢く計算できないかな?

!? ジ 突然ですがクイズです!

- その中に毒入りワインが1本あります ♥
- 飲んでから1日後に毒の効果が現れます 🔮
- 毒入りワインを見つけるためには何人の毒見係が必要?
- 👬 4人以下の毒見係で毒入りワインを見つける方法があります!
- 🙋 有名なクイズなので、答えを知ってる人は手を挙げてください!

- ● アリスと ボブの2人が毒見係をします
- 以下の左の表のように2人がワインを飲みます

ワインが8本に増えたら? Tx8

3人の毒見係(ۖ ۖ) で毒ワイン ♥ ※ を特定できる

- まったく同じ方法で:
 - 16本のワイン **x16
 - 4人の毒味係で毒ワイン発見可能
 - 32本のワイン Tx32
 - 5人の毒味係で毒ワイン ♥減を 発見可能
 - 9 10万本の♥があったら?

n人の毒見係がいれば 2^n 本のワインを毒見できる

- 組み合わせの工夫で*n*人の毒見係がいれば2ⁿ本のワインから1本の毒入りワインを発見できる
- 10万本のワインがあっても、17人の毒見係がいれば1本の毒入りワインを発見できる!

 $2^{17} = 131072 > 100000$

- 少ない人数で多くのワインを毒見できる!
- 効率的な毒見係の配置が重要!
- ***これを応用して、10万個の点の中から一番近い点を探す方法はないかな?

効率化の鍵: KD Tree♥≫♥

- x軸に平行な線で空間を分割!
- 1回の分割でおおまかに候補を半分に絞り込める!

- 🤥 この分割を繰り返したらどうなる?
- 保補がどんどん減って、より効率的な探索ができそう!

分割のチカラ

- 全探索:
 - 4点から最近傍ペアを求める場合、すべての組み合わせ(6通り)の距離計算が必要
- KD-treeでの探索 (理想的なケース):
 - 軸方向に沿った分割で探索候補を 大幅に減らせる
 - 全探索よりずっと少ない計算で最 近接ペアを見つけられる

• この図では「調べなくてもいい領域」がわかった!

- 引き算型 vs + 割り算型

- 引き算型(線形探索):
 - 1回の計算で「候補を1つずつ」し か減らせない
 - 10万個の候補点があれば10万回 もチェックを繰り返す
 - すべてのペアを計算:
 - 10万x10万/2 = 約50億回の計

- 割り算型(KD-Treeでの探索):
 - 1回の分割で候補を約半分に減ら せる
 - 10万個が1回で約5万個、2回 で約2万5千個···
 - わずか17回で探索終了 🗸
 - すべてのペアを計算:
 - 10万+10万/2+10万/4+10万/8+ ... = 約20万回の計算
- 候補が引き算で減る vs 候補が割り算で減る
 - 分割を繰り返すほど、探索範囲が爆発的に縮む (理想的には!)
- 割り算で減らしていく方が圧倒的に速い

計算量と Big-O 記号

• 全探索:

- *n*個の点がある場合、すべてのペア(*n*×*n*)を調べるから *O*(*n*²)
 - ここで O(...) はnに対する計算 量の増え方の目安 (Big-O 記号)

• KD-Tree(理想的な場合):

- 分割を重ねて候補を絞るから、平 均的に *O*(*n* log *n*)
 - *n*が大きくなっても、全探索よりずっと速くなる

□平面から空間へ●

- KD-Treeは、*R²*(2次元)だけでなく、 *R³*(3次元)に も拡張可能
- 分割する平面を交互に変えながら、3次元空間を効率的に絞り込む
 - 3次元:
 - y-z平面 → z-x平面 → x-y平面 → y-z平面 →… でサイクリックに平面で分割
- 3Dデータの解析などで威力を発揮!
- 筆者は普段のお仕事でよく使ってます!

さらなる高次元へが

- KD-treeはR^d(d次元)にも拡張可能!
- 超平面 $H_0 \rightarrow H_1 \rightarrow ... \rightarrow H_d \rightarrow H_0 \rightarrow ...$ で分割

$$H_0: (\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^d)$$

$$H_1: (\mathbf{x}^0, \mathbf{x}^2, \dots, \mathbf{x}^d)$$

•

$$H_d: (\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^{d-1})$$

• 高次元空間の探索でこそ、KD-Treeの真価が発揮される!

- 一直線に並んだ点 -・-・-・-
 - 全探索と同じ *O*(*n*²) の計算量に
 - **Z** 現実の3Dデータでは局所的に点が一直線に並 ぶことは**十分あり得る**
 - ■ビル、▲道路、■堤防、などの人工構造物

- 横方向の分割に意味がない!縦方向の分割だけでは全探索と同じ!
- 対策: 軸を回転させる、ランダムな分割をする、など

● KD-treeの応用例

- 1. 点群データ解析
- 3DスキャンやLiDARデータの効率的な解析
- 点群の間引き、ノイズ除去
- 2. 特徴量ベクトルの類似度
- 趣味や好みの近いユーザーの探索
- 画像の類似度計算
- 3. Hausdorff距離の計算
- 機械学習モデルのトレーニングの損失関数
- 物体の形状比較

アルゴリズムの現実的な使い方

- - 正しさの証明
 - 性能の評価
 - アイディアの独自性
- そもそも新しいアルゴリズムを開発 すれば自分の名前がつくレベルの難 しさ!
 - エドガー・ダイクストラの"ダイク ストラ法"
 - カジミェシュ・クラワトスキの"クラワトスキ定理"
 - ティム・ピーターズの"ティムソート"

- サ既存のアルゴリズムの宝庫を活用 しよう
 - 数学、物理、電気電子工学…様々 な分野で培われた知恵
 - KD-treeも計算幾何学の分野から 生まれた
 - 現在の応用例は開発者も想定してなかったはず!
 - 自分の課題に使えるアルゴリズム があるはず!

*** 現代のエンジニアの強み

• 充実したライブラリ

- scikit-learn: sklearn.neighbors.KDTree
- SciPy: scipy.sparse.csgraph.dijkstra
- OpenCV: cv2.FlannBasedMatcher

• 実装済みの高品質なコード

- テスト済み
- 多くのユーザーによるフィードバック
- ■ドキュメントが豊富

☆ まとめ: 宝物は足元にある

- KD-treeを例に見てきたこと:
 - 単純な全探索 → **賢い分割**で効率化
 - 理想的な場合は劇的な性能向上
 - 最悪ケースを理解し、**対策をする**

• 先人の知恵を活用しよう!

- アルゴリズムの宝庫が既にそこにある
- 異分野のアイディアを組み合わせる
- 実装済みライブラリを有効活用
- 一緒に宝物を探しに行きましょう! > ダメジ