Beginning Activities for Section 9.2

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (Introduction to Infinite Sets)

1. The contrapositive of "If A is a finite set, then A is not equivalent to any of its proper subsets" is

If A is equivalent to one of its proper subsets, then A is an infinite set.

The contrapositive of "For each set A, if A is a finite set, then for each proper subset of B of A, $A \not\approx B$ " is

For each set A, if there exists a proper subset B of A such that $A \approx B$, then A is an infinite set.

This means that if we can show that there exists a set B such that $B \subset A$ and $A \approx B$, then we can conclude that A is an infinite set.

- **2.** (a) Since D^+ is a proper subset of \mathbb{N} and $\mathbb{N} \approx D^+$, we conclude that \mathbb{N} is an infinite set.
 - (b) We can also conclude that D^+ is an infinite set since if D^+ is finite, then there exists a $k \in \mathbb{N}$ such that $D^+ \approx \mathbb{N}_k$. Since we proved in part (a) that $\mathbb{N} \approx D^+$, we can then use part (c) of Theorem 9.1, to conclude that \approx , $\mathbb{N} \approx \mathbb{N}_k$ and this is a contradiction since \mathbb{N} is infinite and \mathbb{N}_k is finite.
- **3.** (a) If 0 < b < 1, then (0, b) is a proper subset of (0, 1) and $(0, 1) \approx (0, b)$. Hence, (0, 1) is an infinite set.
 - (b) If b > 1, then (0, 1) is a proper subset of (0, b) and $(0, 1) \approx (0, b)$. Hence, (0, b) is an infinite set.

Beginning Activities for Section 9.2

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 2 (A Function from $\mathbb N$ to $\mathbb Z$)

1. If the pattern continues,

$$f(8) = 4$$
 $f(9) = -4$
 $f(10) = 5$ $f(11) = -5$
 $f(12) = 6$ $f(13) = -6$

2. If the pattern continues, it would appear that f is a bijection.

3. It appears that if *n* is even, then $f(n) = \frac{n}{2}$.

4. It appears that if *n* is odd, then $f(n) = \frac{1-n}{2}$.

5. Define $f: \mathbb{N} \to \mathbb{Z}$ where

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{1-n}{2} & \text{if } n \text{ is odd} \end{cases}$$

6. (a) The results are consistent with the pattern.

(b)
$$f(1000) = 500$$
 and $f(1001) = -500$.

(c)
$$f(2000) = 1000$$
.

We will prove that this function is a bijection in Theorem 9.13, and hence $\mathbb{N} \approx \mathbb{Z}$.

