Modelos y Simulación

Clase 1: Conceptos básicos de modelado

Pablo Armando Montini Juan Ignacio Iturriaga Franco Lanzillotta

SISTEMA

 Conjunto de elementos que interactúan entre sí con un fin común y que se aísla del universo para su estudio.

SISTEMA

 Conjunto de elementos que interactúan entre sí con un fin común y que se aísla del universo para su estudio.

SUBSISTEMA

 Es un subconjunto de elementos que se aísla dentro del sistema, estos elementos y su interrelación definen subsistemas.

MODELO

• Es una representación fiel de un sistema real (no es una réplica).

MODELO

• Es una representación fiel de un sistema real (no es una réplica).

MODELO

• Es una representación fiel de un sistema real (no es una réplica).

MODELO

Es una representación fiel de un sistema real (no es una réplica).

SIMULAR

• Es ensayar en un modelo una alternativa para inferir lo que pasaría en el sistema real si se aplica dicha alternativa.

EMULAR

Imitar las acciones de "otro" procurando igualarlas e incluso excederlas.

Clasificación de los modelos

Dinámicos: utilizados para representar sistemas cuyo estado varía con el tiempo.

Estáticos: utilizados para representar sistemas cuyo estado es invariable a través del tiempo.

Matemáticos: representan la realidad en forma abstracta de muy diversas maneras.

Físicos: la realidad es representada por algo tangible, construido en escala o que por lo menos se comporta en forma análoga a esa realidad (maquetas, prototipos, modelos analógicos, etc.)

Numéricos: sólo se tiene el comportamiento numérico de las variables intervinientes. No se obtiene ninguna solución analítica.

Analíticos: la realidad se representa por fórmulas matemáticas. Estudiar el sistema consiste en operar con esas fórmulas matemáticas (resolución de ecuaciones).

Clasificación de los modelos

Discretos: representan sistemas cuyos cambios de estado son de a saltos. Las variables varían en forma discontinua.

Estocásticos: Representan sistemas donde los hechos suceden al azar, lo cual no es repetitivo. No se puede asegurar cuáles acciones ocurren en un determinado instante. Se conoce la probabilidad de ocurrencia y su distribución probabilística. (Por ejemplo, llega una persona cada 20 ± 10 segundos, con una distribución equiprobable dentro del intervalo).

Continuos: Representan sistemas cuyos cambios de estado son graduales. Las variables intervinientes son continuas.

Determinísticos: Son modelos cuya solución para determinadas condiciones es única y siempre la misma.

Construcción del Modelo

O **Definición del sistema con el máximo de detalle:** evaluar sus características, definir límites del mismo, analizar condiciones iniciales, régimen transitorio y permanente, qué resultados se desean obtener, evitar construir el modelo inmediatamente.

- Definición del sistema con el máximo de detalle: evaluar sus características, definir límites del mismo, analizar condiciones iniciales, régimen transitorio y permanente, qué resultados se desean obtener, evitar construir el modelo inmediatamente.
- **Elección del método para realizar el estudio:** buscar una solución analítica al problema, si no se encuentra entonces usar simulación.

- O **Definición del sistema con el máximo de detalle:** evaluar sus características, definir límites del mismo, analizar condiciones iniciales, régimen transitorio y permanente, qué resultados se desean obtener, evitar construir el modelo inmediatamente.
- Elección del método para realizar el estudio: buscar una solución analítica al problema, si no se encuentra entonces usar simulación.
- Variables a incluir en el modelo: cuáles variables / parámetros son importantes y debo incluir en mi estudio. Cuáles son internas y controladas por mi sistema y cuales son externas y fuera de control.

- Definición del sistema con el máximo de detalle: evaluar sus características, definir límites del mismo, analizar condiciones iniciales, régimen transitorio y permanente, qué resultados se desean obtener, evitar construir el modelo inmediatamente.
- Elección del método para realizar el estudio: buscar una solución analítica al problema, si no se encuentra entonces usar simulación.
- Variables a incluir en el modelo: cuáles variables / parámetros son importantes y debo incluir en mi estudio. Cuáles son internas y controladas por mi sistema y cuales son externas y fuera de control.
- Recolección y análisis de los datos del sistema: qué valores toman las variables, varían con el tiempo u otro factor, siguen alguna distribución de probabilidad: normal, poisson, equiprobables

- Definición del sistema con el máximo de detalle: evaluar sus características, definir límites del mismo, analizar condiciones iniciales, régimen transitorio y permanente, qué resultados se desean obtener, evitar construir el modelo inmediatamente.
- Elección del método para realizar el estudio: buscar una solución analítica al problema, si no se encuentra entonces usar simulación.
- **Variables a incluir en el modelo:** cuáles variables / parámetros son importantes y debo incluir en mi estudio. Cuáles son internas y controladas por mi sistema y cuales son externas y fuera de control.
- Recolección y análisis de los datos del sistema: qué valores toman las variables, varían con el tiempo u otro factor, siguen alguna distribución de probabilidad: normal, poisson, equiprobables
- O **Definición de la estructura del modelo:** identificar y definir los atributos de las entidades permanentes y las transitorias, que eventos producen cambios de estado en mi sistema.

- Definición del sistema con el máximo de detalle: evaluar sus características, definir límites del mismo, analizar condiciones iniciales, régimen transitorio y permanente, qué resultados se desean obtener, evitar construir el modelo inmediatamente.
- Elección del método para realizar el estudio: buscar una solución analítica al problema, si no se encuentra entonces usar simulación.
- **Variables a incluir en el modelo:** cuáles variables / parámetros son importantes y debo incluir en mi estudio. Cuáles son internas y controladas por mi sistema y cuales son externas y fuera de control.
- Recolección y análisis de los datos del sistema: qué valores toman las variables, varían con el tiempo u otro factor, siguen alguna distribución de probabilidad: normal, poisson, equiprobables
- **Definición de la estructura del modelo:** identificar y definir los atributos de las entidades permanentes y las transitorias, que eventos producen cambios de estado en mi sistema.
- Creación del modelo: crear un programa que represente el modelo

Ensayo de alternativas

• **Validación del modelo:** hay que verificar algunas situaciones conocidas y analizar sus resultados para ver si se corresponden con el sistema real.

Ensayo de alternativas

- Validación del modelo: hay que verificar algunas situaciones conocidas y analizar sus resultados para ver si se corresponden con el sistema real.
- Análisis y crítica de los resultados: verificar que con los resultados obtenidos se puedan tomar decisiones, evitar información superflua, compactar la información representándola en cuadros, tablas o gráficos para simplificar su análisis y estudio por parte del usuario final. Si es posible, proponer alguna alternativa que mejore el rendimiento del sistema.

• ¿Puede fallar una simulación?

• ¿Puede fallar una simulación?

• **SI.** Porque el modelo no es válido (no representa fielmente al sistema real) y/o porque las alternativas simuladas no son buenas alternativas y al recomendar la mejor se recomendará "la menos mala" de las ensayadas (la cual no dejaría de ser mala).

- ¿Puede fallar una simulación?
 - **SI.** Porque el modelo no es válido (no representa fielmente al sistema real) y/o porque las alternativas simuladas no son buenas alternativas y al recomendar la mejor se recomendará "la menos mala" de las ensayadas (la cual no dejaría de ser mala).
- ¿Se puede demostrar que un modelo es válido?

• ¿Puede fallar una simulación?

• **SI.** Porque el modelo no es válido (no representa fielmente al sistema real) y/o porque las alternativas simuladas no son buenas alternativas y al recomendar la mejor se recomendará "la menos mala" de las ensayadas (la cual no dejaría de ser mala).

• ¿Se puede demostrar que un modelo es válido?

• **NO.** Ya que habría que probar todos los casos posibles, ensayarlos tanto en el sistema real como en el modelo y verificar su concordancia (imposible en la práctica).

• ¿Puede fallar una simulación?

 SI. Porque el modelo no es válido (no representa fielmente al sistema real) y/o porque las alternativas simuladas no son buenas alternativas y al recomendar la mejor se recomendará "la menos mala" de las ensayadas (la cual no dejaría de ser mala).

¿Se puede demostrar que un modelo es válido?

- **NO.** Ya que habría que probar todos los casos posibles, ensayarlos tanto en el sistema real como en el modelo y verificar su concordancia (imposible en la práctica).
- ¿Se puede demostrar que un modelo es inválido?

• ¿Puede fallar una simulación?

SI. Porque el modelo no es válido (no representa fielmente al sistema real) y/o porque las alternativas simuladas no son buenas alternativas y al recomendar la mejor se recomendará "la menos mala" de las ensayadas (la cual no dejaría de ser mala).

• ¿Se puede demostrar que un modelo es válido?

 NO. Ya que habría que probar todos los casos posibles, ensayarlos tanto en el sistema real como en el modelo y verificar su concordancia (imposible en la práctica).

• ¿Se puede demostrar que un modelo es inválido?

• **SI.** Basta un caso en que los resultados obtenidos en el modelo y los obtenidos en el sistema real no se correspondan para demostrar que el modelo es inválido.

• ¿Se puede simular un sistema continuo usando un modelo discreto?

- ¿Se puede simular un sistema continuo usando un modelo discreto?
 - SI. El estudio del movimiento del fluido por una cañería (Fluidodinámica) corresponde a sistemas continuos. Sin embargo si el fluido se lo discretiza dividiéndolo en gotas y se construye un modelo discreto por el cual circulan gotas de agua (una, dos, diez, cien, mil) podemos simularlo correctamente.

- ¿Se puede simular un sistema continuo usando un modelo discreto?
 - SI. El estudio del movimiento del fluido por una cañería (Fluidodinámica) corresponde a sistemas continuos. Sin embargo si el fluido se lo discretiza dividiéndolo en gotas y se construye un modelo discreto por el cual circulan gotas de agua (una, dos, diez, cien, mil) podemos simularlo correctamente.
- ¿Se puede simular un sistema determinístico usando un modelo estocástico?

• ¿Se puede simular un sistema continuo usando un modelo discreto?

SI. El estudio del movimiento del fluido por una cañería (Fluidodinámica) corresponde a sistemas continuos. Sin embargo si el fluido se lo discretiza dividiéndolo en gotas y se construye un modelo discreto por el cual circulan gotas de agua (una, dos, diez, cien, mil) podemos simularlo correctamente.

• ¿Se puede simular un sistema determinístico usando un modelo estocástico?

SI. supongan que se desea calcular la superficie comprendida entre el eje X y una curva Y=f(X) en el intervalo 0 -1, aplicando integrales obtenemos el resultado (problema determinístico).

Sin embargo, si generamos una cantidad muy grande de puntos al azar con coordenadas (X,Y) donde 0<=X<=1 y 0<=Y<=1, entonces podemos calcular la superficie utilizando el método de Monte Carlo, donde:

Área = n / N

Con n: puntos por debajo de la curva N: cantidad total de puntos

Herramientas

Lenguaje de programación:

• **GPSS**: General Purpose Simulation System (GPSS, en español: Simulación de Sistemas de Propósito General) es un lenguaje de programación de propósito general de simulación a tiempo discreto.

Desarrollado por Geoffrey Gordon (1960 - Bell Telephone Laboratories/IBM).

Software:

- **VisualSis**: Es un sistema que implementa GPSS y permite realizar simulaciones. Desarrollado por Eduardo Garrido y Estanislao Mileta (2001 Universidad FASTA).
- **Genmsi**: Es un sistema que permite desarrollar un modelo gráficamente y generar código GPSS.

Desarrollado por Eduardo Barrena y Juan Ignacio Iturriaga (2008 - Universidad FASTA). En el 2014 se amplió para realizar y monitorear simulaciones.

Entidades

Permanentes	Transitorias
Empleado, Procesador, Impresora Cajas, Memoria, Almacén, Habitación Fila de espera	Clientes, Procesos, Jefes, Documentos, Pasajeros

Entidades

Permanentes	Transitorias
Empleado, Procesador, Impresora Cajas, Memoria, Almacén, Habitación Fila de espera	Clientes, Procesos, Jefes, Documentos, Pasajeros
Facilities, Storages, Queues, etc	Transacciones

Ejemplo de Sistema: Un Banco

- Entidades permanentes:
 - o 3 Cajas de atención a clientes (con fila única) ->
 - o Informes atendido por una persona ->
 - Fila única de espera en las cajas ->
 - o Fila de espera en informes ->

- Transacciones:
 - Clientes
 - Clientes VIP
 - Gerente (que interrumpe a un empleado)

Ejemplo de Sistema: Un Banco

- Entidades permanentes:
 - 3 Cajas de atención a clientes (con fila única) -> Storage
 - Informes atendido por una persona -> Facility
 - Fila única de espera en las cajas -> **Queue**
 - o Fila de espera en informes -> **Queue**

- Transacciones:
 - Clientes
 - Clientes VIP
 - Gerente (que interrumpe a un empleado)

Ejemplo de Sistema: Sistema Operativo

- Entidades permanentes:
 - 1 procesador ->
 - Memoria ->
 - Buffer de datos ->
 - Cola de procesos listos ->
 - o Etc...

- Transacciones:
 - Procesos
 - Proceso del sistema operativo

Ejemplo de Sistema: Sistema Operativo

- Entidades permanentes:
 - 1 procesador -> **Facility**
 - Memoria -> Storage
 - Buffer de datos -> User Chain
 - Cola de procesos listos -> User Chain
 - Etc...

- Transacciones:
 - Procesos
 - Proceso del sistema operativo

- 1. Definir las entidades permanentes.
- 2. Describir el comportamiento de las transacciones.
- Ejemplo:
 - A una boletería arriban clientes con una frecuencia de arribos de 60 ± 30 segundos,
 - forman fila por orden de llegada,
 - o son atendidos por un **empleado** que demora 30 ± 15 segundos con cada uno,
 - o luego de ser atendidos los **clientes** se retiran del sistema de estudio
 - Entidad permanentes:
 - Empleado (Facility)
 - Fila de espera (Queue)
 - Transacciones:
 - Clientes

Construcción del modelo (Implementación)

Diagrama de Flujo de Transacciones (DFT)

- El **DFT** especifica el comportamiento de las transacciones en el modelo.
- Está compuesto por módulos enlazados.
- Cada módulo representa "una acción" o comportamiento específico.
- Los módulos son de una clase.
- La clase de módulo representa un comportamiento genérico.
- Algunos módulos se utilizan para declarar entidades.
- Algunas entidades se "instancian" automáticamente con el primer uso.
- Durante la ejecución de la simulación las transacciones se "mueven" por el diagrama en forma <u>concurrente</u>.

Módulos

- Representan el comportamiento o acción de una transacción.
- Pertenecen a una **clase** que define el comportamiento genérico.
 - Demora de tiempo
 - Tomar un recurso
 - Liberar un recurso
 - Tomar una decisión
 - Ingresar al sistema
 - Salir del sistema
- El comportamiento específico lo definen las **propiedades** del módulo
 - ¿Cuánto tiempo está demorado?
 - ¿Qué recurso toma?
 - ¿Qué recurso libera?
 - ¿Qué condición se debe cumplir para tomar una decisión?
 - ¿Con qué frecuencia ingresa al sistema una transacción?
- Tienen **entradas** y **salidas** para definir el flujo de las transacciones.
 - De donde vienen y a dónde van las transacciones.

Ejercicio ejemplo

- A un **teatro** arriban **personas** a razón de 60 ± 30 segundos.
- El 50% se dirigen a la una boletería a comprar la entrada y el resto a la sala.
 - A la boletería demorar 10 ± 5 segundos en llegar.
 - A la sala demoran 30 ± 15 segundos en llegar.
- La boletería es atendida por un empleado que demora 90 ± 30 segundos con cada persona. Las personas hacen fila por estricto orden de llegada.
- Luego de la boletería el 80% de las personas ingresan al teatro y el resto se retira.
- Finalizar la simulación cuando hayan ingresado a la sala
 XX personas

Ejercicio ejemplo

- A un **teatro** arriban **personas** a razón de 60 ± 30 segundos.
- El 50% se dirigen a la una boletería a comprar la entrada y el resto a la sala.
 - A la boletería demorar 10 ± 5 segundos en llegar.
 - A la sala demoran 30 ± 15 segundos en llegar.
- La boletería es atendida por un empleado que demora 90 ± 30 segundos con cada persona. Las personas hacen fila por estricto orden de llegada.
- Luego de la boletería el 80% de las **personas** ingresan al teatro y el resto se retira.
- Finalizar la simulación cuando hayan ingresado a la sala
 XX personas

Modelos y Simulación

Clase 1: Conceptos básicos de modelado

Pablo Armando Montini Juan Ignacio Iturriaga Franco Lanzillotta