OTONOM ARAÇ TASARIMINDA YAPAY ZEKA

ALI OSMAN ÖRS

YAPAY ZEKA STRATEJİ MÜDÜRÜ, OTOMOTİV SEKTÖRÜ

DEEP CON'18 YAPAY ZEKA KONFERANSI DEEP LEARNING TÜRKİYE ANKARA, 5 EKİM , 2018

SECURE CONNECTIONS FOR A SMARTER WORLD

GLOBAL TRENDS AN INCREDIBLE OPPORTUNITY

SAFE AND SECURE MOBILITY

AND AN INCREDIBLE RESPONSIBILITY

[3] MILYON

Dünyada trafik kazalarına dayalı olüm sayısı

HIT BY A VEHICLE TRAVELING AT:

********** 9 OUT OF 10 PEDESTRIANS SURVIVE*

HIT BY A VEHICLE TRAVELING AT:

********††††** 5 OUT OF 10 PEDESTRIANS SURVIVE

HIT BY A VEHICLE TRAVELING AT:

* ffffffffff ONLY 1 OUT OF 10 PEDESTRIANS SURVIVES

OUT OF ALL ACCIDENTS GLOBALLY, %90 **INSAN HATASI**

SAE Classification

SAE Classification

LEVEL 1 **Driver Assistance**

Driver 👸 👁 🖑 🚈

Vehicle [⊕] or □

- Adaptive cruise control
- Automatic braking
- Lane keeping

LEVEL 2 **Partial Automation**

Driver 😭 👁

Vehicle 🖑 🕮

- Partial automated parking
- Traffic jam assistance
- Emergency brake with steet

LEVEL 3 **Conditional Automation**

- Semi autonomous:
- -Highway chauffeur
- -Self parking
- · Human driver can regain control

LEVEL 4 **High Automation**

- Autonomous driving in some driving modes
- Human driver may not respond to request to intervene

LEVEL 5 **Full Automation**

Driver —

- Fully autonomous under all driving modes
- Human driver not expected to respond to request to intervene

ADAS

Responsibility for safe operation

Control of steering

Self-Driving

Control of vehicle speed

Camera Sensor Capabilities

- Dependency from environmental conditions
- Estimation No direct measurement of range/speed
- Very high computation effort drives power consumption+cost

Lidar Sensor Capabilities

- Dependency from environmental conditions
- Cost and size of sensors too high because of mechanics
- Systems w/o mechanics ~10y behind RADAR

Radar Sensor Capabilities

- Precise measurements but lack of resolution mainly in angular direction
- Current angular resolution imposes heavy limit to classification and mapping capabilities

Autonomous Driving at a High Level

Route Planning (navigation)

At the highest level a route is planned through the road network. Is the strategic target of the drive

Traffic Prediction

Predict the behavior of the detected perception objects in the near future. Output spatial-temporary trajectory points.

Behavioral (local planning)

decides on a local driving task that progresses the car towards the destination and abides by rules of the road. Output high level semantic decision to be executed

Motion planning

selects a continuous path through the environment (trajectory) to accomplish a local navigational task.

(Feedback Control) Reactive Layer

A control system that reactively executes the vehicle planned trajectory.

Autonomous Driving

Solutions Available

Automotive specific training data sets

• A dog is a dog is a dog, the breed is not important

Sensors; higher capability, more robust, less cost

• Imaging radar, smart cameras, solid state lidar

HPC and larger storage

• Increased server compute capacity as well as decreased cost of storage enabling faster training and more training data generation.

Sophisticated Driving Scenario Simulators

 Driving simulation SW with physics based scene and environment rendering built for AD development

Higher Edge Compute performance

• NXP solutions enabling embedded AI at 100x higher power efficiency compared to current deployed test AVs.

Use cases roadmap

Robotaxi

Driverless

High Availability

Increase functionality over time(OTA)

Highway Pilot & Auto Valet Parking

Driverless in park areas

ark areas
On Highway (<130km/h)

With/Without Driver Monitor Camera

Fail Operational Architecture 2021-2023

Increase functionality over time(OTA)

Next Generation ADAS Driver Support

NCAP 2018 -2020

2019

Supervised

City Pilot & Auto Valet Parking

2023-2027 Large Urban Road

Intersection and Traffic Light

Driverless Auto Park on Public Roads

Increase functionality over time(OTA)

Traffic Jam Pilot

2020

Unsupervised

Driver Monitor Camera

Boxed-in (<60km/h)

Redundant Architecture

Uluslararası Otonom Araç Hazırlılık Endeksi (KPMG)

		Yönetmelik	Teknoloji İnovasyon	Altyapı	Kullanıcı	
1	Hollanda	3	4	1	2	
2	Singapur	1	8	2	1	
3	ABD	10	1	7	4	
4	İsveç	8	2	6	6	
5	İngiltere (BK)	4	5	10	3	
6	Almanya	5	3	12	12	

Ülkeler Arası Otonom Araç Yayılım Evreleri

	Çin (16)	Fransa (13)	Almanya (6)	Japonya (11)	Singapur (2)	G. Kore (10)	BK (5)	ABD (3)
Sürücülü bölgesel deneme	2015	2015	2010	2013	2015	2016	2015	2010
Sürücüsüz bölgesel deneme								2017
Sürücülü ulusal deneme	2018		2017		2017			
Sürücüsüz ulusal deneme		2019					2019	
L3 ticari kullanım	2020		2017			2020		
L4 ticari kullanım	2025	2022		2025		2030	2021	
L5 ticari kullanım				2025		2030		

Gelecekte Uluslararası Sıralama

1	ABD	(3)
2	Almanya	(6)
3	Çin	(16)
4	Japonya	(11)
5	İngiltere	(5)

Autonomous Driving Challenges

Where does Sensor Fusion take place

How does this impact connectivity and BW across the vehicle

Is AI based path planning safe?

 Can Al be guaranteed to detect free space and safe trajectory planning (yet?)

How much test time/distance is necessary to ensure automated driving is safe?

• 1 Million/Billion/Trillion km/miles driven, how much of real driven miles, how much simulated

Yapay Zeka vs. Sürücü

Yapay Zeka vs. Sürücü

