Datu-egiturak

2.0.1. gaia: array eta matrize-egiturak

gardenkietan oinarritutako gardenkiak dira hauek, euren *Creative Commons* lizentzia bera daukana. Juanan Pereiraren eta Jon Iturriotzen

Aurkibidea

Zer dira?

Zergatik dira baliagarriak?

Egitura sinpleak

Array-ak

Erazagupena, sorkuntza eta hasieraketa

Txertaketa, ezabaketa eta elementuen bilaketa

Bektoreak

Erazagupena, sorkuntza eta hasieraketa

Txertaketa, ezabaketa eta elementuen bilaketa

Zerrenda estekatuak

Esteka sinpleko zerrendak

Esteka bikoitzeko zerrendak

Zerrenda zirkularrak

Datu-egiturakZer dira?

Datu-egitura bat oinarritzen da:

- -datu batzuen errepresentazioan
- -Datu horiengan onartutako eragiketa multzo batean

Egiten diren ohiko eragiketak:

Txertaketa

Ezabaketa

Bilaketa

Datu-egituren arteko desberdintasun nagusienak:

- -datuak antolatzeko modua
- -eragiketetan ezartzen diren murriztapenak

(adib: txertatutako azken elementua soilik atzitu daiteke).

Datu-egiturakZergatik dira baliagarriak?

Berrerabilpena: Programatu den kodea egiten diren programa berrietan erabil daiteke.

Abstrakzioa: funtzionalitatearen deklarazioa (interfazea) ez dago inplementazioaren mende Ikuspuntu honekin, datuen egitura alda daiteke, datuegitura honen erabiltzaileak ohartu gabe.

Array-ak (Matrizeak) Zer dira?

Unitate bat osatzen duten datu mota bereko elementuen bilduma

indexazio [] eragilea erabiliz atzitu daiteke arrayaren edozein elementu.

length atributuak array-ak daukan elementu kopurua itzultzen du

Array-ak (Matrizeak)

Erazagupena, Sorkuntza, Hasieraketa

Erazagupena: Array-ari izendatzaile bat ipini eta beren elementuen datu mota definitu

- Bi eratara egin daiteke:

```
mota arrayIzena[];
mota []arrayIzena;
```

- Erazagutu ondoren, oraindik ez da memoria erreserbatu/esleitu datuak gordetzeko

Sorkuntza: Array-aren memoria-tokia erreserbatzen da

- new erabiltzen da eta array-ren tamaina zehaztu
 behar da: arrayIzena = new mota[tamaina];
- array bat sortu ondoren eta beste modu batean hasieratu bitartean, array-aren elementuek dituzten balio lehenetsiak hartzen dituzte.

Balio lehenetsiak:

int, short, long = 0
float, double = 0.0
boolearrak = false
 String = null
 Object = null

Array-ak (Matrizeak)

Erazagupena, sorkuntza, hasieraketa

Hasieraketa: Array-aren elementuei balioa ematen zaie. Era desberdinetan egin daiteke:

```
Banaka: arrayName[0] = element0; arrayName[1] = element1; ...
```

Begizta baten bidez:

```
for(int i = 0; i < arrayName.length; i++){
    arrayName[i] = balioa;
}
```

Esleipen zuzenen bidez:

```
DatuMota arrayName [] = {elem1, elem2, elem3, ...};
```

Adibideak: Array-ak (Matrizeak)

Erazagupena, sorkuntza, hasieraketa

Oinarrizko datu moten array-ak

```
int a[]; //Erazagutu
a = new int[3] //Sortu

//Hasieratu
a[0]=1;
a[1]=2;
a[2]=3;
```

```
//Erazagutu & sortu
int a[] = new int[3]

//Hasieratu
a[0]=1;
a[1]=2;
a[2]=3;
```

```
//Erazagutu eta sortu
int a[] = new int[3]

//hasieratu
for(int i=0; i<a.length;i++){
    a[i]=i+1;
}</pre>
```

int a[] = {1, 2, 3}; //Erazagutu, sortu eta hasieratu

Objektuen erreferentziaz osatutako array-ak

```
NireKlase a[]; //Erazagutu
a = new NireKlase [3] //Sortu

//Hasieratu
a[0]=new NireKlase (param1);
a[1]=new NireKlase (param2);
a[2]=new NireKlase (param3);
```

```
//Erazagutu eta sortu
NireKlase a[] = new NireKlase [3]

//Hasieratu:
a[0]=new NireKlase (param1);
a[1]=new NireKlase (param2);
a[2]=new NireKlase (param3);
```

```
//Erazagutu eta sortu
NireKlase a[] = new NireKlase [3]

//Hasieratu:
for(int i=0; i<a.length;i++){
    a[i]=new NireKlase (param-i);
}
```

Array-ak (Matrizeak): Ohiko erroreak

Erazagupena, sorkuntza, hasieraketa

Matrizea erazagututa soilik badago, ezin daitezke bere elementuak atzitu. Konpilatzerakoan, errore bat agertuko da.

Arrayak (Matrizeak) Ohiko erroreak Erazagupena, sorkuntza, hasieraketa


```
public class MatrizeAdibidea2{
                                                                                                                      konpilatu
   public static void main(String args[]){
     int nireOsokoMatrizea[] = new int[10];
     float nireErrealMatrizea[]= new float[10];
     boolean nireBoolearMatrizea[] = new boolean[10];
                                                                                                                      Exekutatu
     char nireKaraktereMatrizea[] = new char[10];
     String nireStringMatrizea[] = new String[10];
     Object nireObjektuMatrizea[] = new Object[10];
     System.out.println("Osokoen balio lehenetsia: " + nireOsokoMatrizea[0]);
     System.out.println("Errealen balio lehenetsia:" + nireErrealMatrizea[0]);
     System.out.println("Boolearren balio lehenetsia: " + nireBoolearMatrizea[0]);
     System.out.println("Karaktereen balio lehenetsia: " + nireKaraktereMatrizea[0]);
     System.out.println("String-en balio lehenetsia: " + nireStringMatrizea[0]);
     System.out.println("Objektuen balio lehenetsia: " + nireObjektuMatrizea[0]);
```

Matrizea **erazagututa eta sortuta** dagoenean baina **ez hasieratuta**, bere elementuak eskuragarri daude baina **balio lehenetsia** izango dute

Osokoen balio lehenetsia: 0 Errealen balio lehenetsia: 0.0 Boolearren balio lehenetsia: false Karaktereen balio lehenetsia: String-en balio lehenetsia: null Objektuen balio lehenetsia: null

Dimentsio anitzeko array-ak

Dimentsio bat baino gehiago duten array-ak dira. Elementuak atzitzeko indize bat baino gehiago behar dira.

Dimentsio anitzeko array-ak Adibideak

Deklaratu eta sortu batera:

//Erazagutu eta Sortu
String [][]nireMatrizea = new String[3][4]

null	null	null	null
null	null	null	null
null	null	null	null

Erazagutu eta sortu bi pausotan:

int [][] nireMatrizea; // array-a erazagutu
nireMatrizea = new int[errenkKop][]; // Erreferentziazko array-a sortu

Adibide gehiago:

// 3x3 matrizea 0 balioarekin
int [][] a= new int[3][3];

0	0	0
0	0	0
0	0	0

1	2	3
4	5	6

BektoreakZer dira?

- Object datu motako elementuen bilduma bat da bektore bat.
- Bektorearen tamaina handitu eta txikitu daiteke dinamikoki
- Elementuak indize baten bidez atzi daitezke, baina ez []
 bidez
- Bektorearen tamaina:
 - capacity() metodoak bektoreak har ditzakeen elementuen kopurua itzultzen du.
 - **size()** metodoak une horretan dauzkan elementuen kopurua itzultzen du.
 - capacityIncrement aldagaiak bektorea handitzean zenbat haziko den adierazten du.

Bektoreak

Zer dira? Zein eraikitzaile dituzte?

- Klase bat da (Vector klasea)
- Elementu multzo bat kudeatzeko erabiltzen da
- java.util paketean dago eskuragarri

Eraikitzaileak	Esanahia	
Vector <t>()</t>	Bektore huts bat sortzen du	
Vector <t>(int capacity)</t>	capacity kopuruko bektore huts bat sortzen du	
Vector <t> (int capacity, int capacityIncrement)</t>	capacity kopuruko bektore bat sortzen du etabere gehikuntza kopurua capacityIncrement aldagaian finkatzen da	

14

Bektoreak Atzipen metodoak

Atzipen-metodoak	Esanahia
T firstElement()	Lehenengo elementua itzultzen du
T lastElement()	Azkeneko elementua itzultzen du
T elementAt(int index)	Index posizioan dagoen elementua itzultzen du
Enumeration <t> elements()</t>	Elementuen zerrenda itzultzen du
boolean contains(T elem)	elem elementua bektorean dagoen ala ez itzultzen du
int indexOf(T elem)	elem elementua bektorean lehenengo
,	aldiz agertzen den posizioa itzultzen du
int indexOf(T elem, int index)	elem elementua bektorean index posiziotik aurrera
	lehenengo aldiz agertzen den posizioa itzultzen du
int lastIndexOf(T elem)	elem elementua bektorean agertzen den
	azken aldiaren posizioa itzultzen du
	elem elementua bektorean index posiziotik atzera
int lastIndexOf(T elem, int index)	lehenengo aldiz agertzen den posizioa itzultzen du

Bektoreak

Txertatu, ezabatu eta aldatzeko metodoak

Elementuak txertatu, ezabatu eta	Esanahia
aldatzeko metodoak	
void add(T elem)	elem objektua txertatzen da bektore bukaeran
void insertElementAt(T elem, int index)	elem objektua txertatzen da index posizioan
void setElementAt(T elem, int index)	index posizioan dagoen elementua elem objektuarekin ordezkatzen da
boolean removeElement(T elem)	elem objektuaren lehen agerpena ezabatzen da
void removeElementAt(int index)	index posizioko elementua ezabatzen da
void removeAllElements()	elementu guztiak ezabatzen dira

Bektoreak

Tamainari dagozkion metodoak

Metodoak	Esanahia	
int capacity()	bektoreak har dezakeen elementu kopurua itzultzen du	
int size()	une horretan dauzkan elementu kopurua itzultzen du	
void setSize(int newSize)	Tamaina berri bat finkatzen du	
void trimToSize()	Bektorearen edukiera = bektorearen elementu kopurua	
boolean isEmpty()	Bektorea hutsik badago, true bueltatzen du; false, bestela.	

Vector <Integer> v

Abibideak: Bektoreak

Erazagupena, sorkuntza, hasieraketa, atzipena

```
import java.util.Vector;
public class ProbaBektoreak{
 public static void main(String args[]){
  Vector<Integer> v;
                         //Bektorearen erazagupena
  v= new Vector<Integer>(); //Bektorea sortzen dugu
  Integer obj1= new Integer(1);
                                                         //Integer motako bi objektu sortzen ditugu
  Integer obj2= new Integer(2);
                                                         bektorean gordetzeko
  v.add(obj1);
  v.add(obj2);
  Integer i1 = v.elementAt(0);
  int osoa1 = i1.intValue();
  Integer i2 = v.elementAt(1);
  int osoa2 = i2.intValue();
  System.out.println(osoa1+" eta "+ osoa2+" = "+(osoa1+osoa2));
```

ARIKETA: Vector klaseko v objektua sortuta eta hasieratuta dagoela suposatuz (Integer klaseko objektuez osatuta), kalkulatu bektoreko elementu txikienaren eta handienaren indizeak eta inprimatu.

Array-ak vs Bektoreak

	ARRAY	BEKTORE
Datu mota nola finkatu	Erazagutzean ipintzen dena (<i>int a[]</i>)	T datu motako <u>objektuak</u> (<i>Vector<t> v;</t></i>)
Tamaina	length atributuaren bidez (a.length)	size() eta capacity() metodoen bidez (v.size())
Dinamikoa / Estatikoa	Sortzean definitzen da tamaina, eta finkoa da (a= new a[3])	Behar adina handi daiteke, dinamikoki (v.add())
Txertaketa	[] eragilearen bidez (<i>a[0]=2</i>)	Metodoen bidez: addElement(T obj) removeElement(T obj), insertElementAt(T obj, int index)
Non dator?	java.lang paketean	java.util paketean

Ariketa

ArrayList klase ainplementatu, arrayen bidez:

```
public class NireArrayList<T> {
        // atributuak
        public NireArrayList() { // eraikitzailea
        }
        public NireArrayList(int tamaina) { // eraikitzailea
        }
```

Array egiturak 20

Ariketa

```
public T get(int i) {
public void set(int i, T elem) {
public void add(T elem) {
public T remove(int index){
public boolean contains(T elem){
public int size(){
```

Array egiturak 21