第2章 数列极限

- 1. 极限 $\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^{(-1)^n} = ($).
- (A)1

- (B) -1
- (C) e

- (D) e^{-1}
- 2. $\mathbb{E} \lim_{n \to \infty} \left[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right]^n = ($).
- (A)e

- (B) e^{-1}
- (C)1

(D)2

- 3. 已知数列 $\{a_n\}$ 单调,下列结论正确的是().
- (A) $\lim_{n\to\infty} (e^{a_n}-1)$ 存在

(B) $\lim_{n\to\infty} \frac{1}{1+a_n^2}$ 存在

(C) $\limsup_{n\to\infty}$ 存在

- (D) $\lim_{n\to\infty} \frac{1}{1-a_n^2}$ 存在
- **4.** 设 a,b 均为大于 1 的实数,则 $\lim_{n\to\infty} \frac{a^{\frac{1}{n}}-a^{\frac{1}{n+1}}}{b^{\frac{1}{n}}-b^{\frac{1}{n+1}}}=($).
- $(A) \ln \frac{a}{b}$
- (B) $\frac{\ln a}{\ln b}$
- (C) $\frac{b \ln a}{a \ln b}$
- (D) $\frac{a \ln a}{b \ln b}$

- 5. 设 $\{x_n\}$ 与 $\{y_n\}$ 均无界, $\{z_n\}$ 有界,则().
- $(A)\{x_n+y_n\}$ 必无界

(B) $\{x_ny_n\}$ 必无界

 $(C)\{x_n+z_n\}$ 必无界

- (D) $\{x_n z_n\}$ 必无界

- 8. 设函数 f(x) 在[a,b] 上连续, x_1,x_2,\dots,x_n 是[a,b] 上的一个点列,求 $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}\sum_{k=1}^{n} e^{f(x_k)}}$.
- 9. $\Re x_1 > 0$, $x_{n+1} = \ln(x_n + 1)$ $(n = 1, 2, \dots)$.
- (1) 证明数列 $\{x_n\}$ 极限存在,并求此极限;
- (2) 求 $\lim_{n\to\infty} \left(\frac{1}{x_n} \frac{1}{x_{n+1}}\right)$;

考研人的精神家园

(3) 求 $\lim_{n\to\infty} \left(\frac{x_n}{x_{n+1}}\right)^{\frac{1}{x_n}}$.

B41

- 1. 已知数列 $\{x_n\}$ 满足 $x_{n+2}-\frac{4}{3}x_{n+1}+\frac{1}{3}x_n=0, n=1,2,3,\cdots$,且 $x_1=1,x_2=2$,则 $\{x_n\}$ 收敛于().
 - (A)1

- (B) -1
- (C) $\frac{5}{2}$
- (D) $-\frac{5}{2}$
- 3. 求极限 $\lim_{n\to\infty} n^2 \left(\arctan \frac{a}{n} \arctan \frac{a}{n+1}\right), a > 0.$
- 4. 设 $a_1 = 1$, $a_2 = 2$, 当 $n \ge 3$ 时, $a_n = a_{n-1} + a_{n-2}$, 证明:
- $(1) \frac{3}{2} a_{n-1} < a_n < 2a_{n-1};$
- $(2) \lim_{n\to\infty}\frac{1}{a_n}=0.$
- 5. (1) 设 $f(x) = x + \ln(2-x)$,求 f(x) 的最大值;
- (2) 设 $x_1 = \ln 2$, $x_n = \sum_{i=1}^{n-1} \ln(2-x_i)$, $n = 2, 3, \dots$, 证明 $\lim_{n \to \infty} x_n$ 存在并求其极限值.
- 6. 设 $f_0(x)$ 是[0, +∞) 上连续的严格单调增加函数,函数 $f_1(x) = \frac{\int_0^x f_0(t) dt}{x}$.
- (1) 补充定义 $f_1(x)$ 在 x = 0 处的值,使得补充定义后的函数(仍记为 $f_1(x)$) 在[0,+∞)上连续;
- (2) 在(1) 的条件下,证明 $f_1(x) < f_0(x)(x>0)$,且 $f_1(x)$ 也是[0,+ ∞) 上连续的严格单调增加函数;
 - (3) 令 $f_n(x) = \frac{\int_0^x f_{n-1}(t) dt}{x}$, $n = 1, 2, 3, \dots$, 证明:对任意的x > 0, 极限 $\lim_{n \to \infty} f_n(x)$ 存在.
 - 7. 设数列 $\{x_n\}$ 满足 $0 < x_1 < 1$, $\ln(1+x_n) = e^{x_{n+1}} 1(n = 1, 2, \dots)$. 证明:
 - (1) 当 0 < x < 1 时, $\ln(1+x) < x < e^x 1$;
 - (2) $\lim_{n\to\infty} x_n$ 存在,并求该极限.
 - 8. 设 f(x) 具有一阶连续导数,且 $0 \le f'(x) \le \frac{1}{1+x^2}$,又 $x_1 = a$, $x_{n+1} = f(x_n)$ $(n = 1, 2, \cdots)$.

证明:数列 $\{x_n\}$ 收敛,且其极限是方程 x=f(x) 的唯一根.

考研人的精神家园

QQ群: 118105451

- 1. 设比值极限 $\lim_{n\to\infty} \left| \frac{a_n}{a_{n-1}} \right| = \frac{1}{2}$,证明: $\lim_{n\to\infty} a_n = 0$.
- **2.** 设 f(x) 在[0, +∞) 上连续,满足 $0 \le f(x) \le x, x \in [0, +\infty)$,设 $a_1 \ge 0, a_{n+1} = f(a_n)$ $(n = 1, 2, \dots)$,证明:
 - $(1)\{a_n\}$ 为收敛数列;
 - (2) 设 $\lim_{n\to\infty} a_n = t$,则有 f(t) = t;
 - (3) 若条件改为 $0 \le f(x) < x, x \in (0, +\infty)$,则(2) 中的 t = 0.
- 3. 设当 $a \le x \le b$ 时, $a \le f(x) \le b$,并设存在常数 k, $0 \le k < 1$,对于[a,b] 上的任意两点 x_1 与 x_2 ,都有 $|f(x_1) f(x_2)| \le k|x_1 x_2|$. 证明:
 - (1) 存在唯一的 $\xi \in [a,b]$ 使 $f(\xi) = \xi$;
 - (2) 对于任意给定的 $x_1 \in [a,b]$,定义 $x_{n+1} = f(x_n)$, $n = 1,2,\cdots$,则 $\lim_{n \to \infty} x_n$ 存在,且 $\lim_{n \to \infty} x_n = \xi$.
- 4. 设 $F(x,y) = \frac{f(y-x)}{2x}$, $F(1,y) = \frac{y^2}{2} y + 5$, $x_0 > 0$, $x_1 = F(x_0, 2x_0)$, ..., $x_{n+1} = F(x_n, 2x_n)$, $n = 1, 2, \dots$ 证明 $\lim_{n \to \infty} x_n$ 存在,并求该极限.

微信公众号【神灯考研】 考研人的精神家园