

학습목표

 비즈니스 아키텍처, 시스템 아키텍처, 데이터 아키텍처를 이해하고, 각 아키텍처에 대해 설명할 수 있다.

학습내용

- 비즈니스 아키텍처
- 시스템 아키텍처
- 데이터 아키텍처

- 1. 비즈니스 아키텍처란?
 - 1) 비즈니스 아키텍처 정의

비즈니스를 성공적으로 이끌기 위한 시스템 설계

요구 사항을 만족하는 시스템 개발을 위한 비즈니스 모델을 도식화

부합하는 아키텍처 설계

- 1. 비즈니스 아키텍처란?
 - 1) 비즈니스 아키텍처 정의

1 2 3 비즈니스 모델 및 기능 및 프로세스 정의 정의

2) 역할

기업 경영 목표와 목적에 연계되어 모든 의사결정이 이뤄질 수 있도록 함

- 1. 비즈니스 아키텍처란?
 - 2) 역할
- 경영 혁신 도구
- 경영전략이 프로세스, 정보, 조직 및 IT 측면에서 효과적으로 구현될 수 있도록 하는 구현 계획이 가능
- 혁신, 개선이 필요한 분야를 도출할 수 있는 도구
- 경영 중심의 프레임워크를 제공

2. 비즈니스 아키텍처 특성

특성

- 기업의 핵심 사항만 표현
- 기술적인 요건의 정의가 용이
- 관련 부서 간의 의사소통과 계획을 촉진
- 제품이나 기술과는 독립적으로 기술
- 기업에 대한 다양한 관점을 반영함
- 효율적인 변경이 가능해야 함
- 확장성이 있어야 함

3. 비즈니스 아키텍처 효과

효과

- 기술적인 지원이 필요한 분야의 도출이 가능
- 경영활동과 현재 제안된 IT 투자 간의 관련성 파악이 가능
- 기업 경영의 변화에 따라서 기술 요건이 어떻게 변화할지 파악이 가능
- 기술 변화가 기업에 미치는 영향의 파악이 가능
- 현업 부서와 IT 부서 간의 의사소통 수단으로 사용 가능

4. 비즈니스 아키텍처 작업 단계

〈 비즈니스 아키텍처 〉

1. 시스템 아키텍처 정의 및 특징

시스템이 어떻게 동작하는지 나타내는 구조를 도식화한 것

출처: https://commons.wikimedia.org

- 1. 시스템 아키텍처 정의 및 특징
 - 시스템 구성 및 동작 원리를 나타냄
 - 시스템 구성요소에 대해 설계 및 구현을 지원하는 수준으로 자세히 기술
 - 구성요소 간의 관계 및 시스템 외부 환경과 관계가 나타남
 - 요구 사항 및 시스템 전체 수명 주기를 고려
 - 시스템 전체에 대한 논리적인 기능 체계와 실현을 위한 구성방식, 최적화를 목표

2. 시스템 아키텍처 역할

시스템의 구조 파악 다양한 시스템 구성요소의 상호 작용 정의

역할 및 프로토콜, 인터페이스 정의 다른 기종 시스템 간의 상호 운영성 확보

신규나 기존(Legacy) 시스템의 응용 및 데이터의 연결성 확보 아키텍처 설계, 분석 단계의 방향성 유지

아키텍처 설계, 분석 시의 성능을 발휘할 수 있도록 구성

요소기술별 개선점 도출 및 보완

3. 시스템 아키텍처 구성 요소

4. 시스템 아키텍처 구성 기술

시스템 플랫폼

- M/F
- Unix 서버
- Window 서버

OS 및 기타 소프트웨어

- Web 서버 소프트웨어
- 미들웨어
- ■메일 소프트웨어
- 시스템 관리 소프트웨어 등

Storage 기술

- RAID
- DAS(Direct Attached Storage)
- NAS(Network Attached Storage)
- SAN(Storage Area Network)

4. 시스템 아키텍처 구성 기술

이중화, 부하분산 기술

- HA(High Availability)
- WAS Cluster
- L4 Switch

5. 시스템 아키텍처 주요 산출물

1) 분석, 설계 시 산출물

5. 시스템 아키텍처 주요 산출물

1) 분석, 설계단계 주요 산출물

요구 사항 정의서 (시스템 분야)

- ISP
- REP
- 제안서 리뷰
- 고객 조직 정의
- 시스템 비기능적 요구 사항 정의
- 시스템 운영 시 요구 사항 정의
- 교육 및 지원에 관한 요구 사항 정의

아키텍처 설계서

- 하드웨어 설계
- 디스크 레이아웃 설계
- 백업 방안 설계
- 장애 대응 방안 설계
- 데이터베이스 구조 설계
- 시스템 연계 방안 설계
- 시스템 관리 아키텍처 설계

5. 시스템 아키텍처 주요 산출물

1) 분석, 설계단계 주요 산출물

시스템 용량 산정

- 구현될 응용 아키텍처를 확인 및 트랜잭션 처리 현황 분석
- CPU/메모리/디스크 용량 산정
- 선정된 하드웨어 모델 검증

2) 구축단계 주요 산출물

전개 시나리오 운영자 매뉴얼 (운영자 가이드)

설치 확인서 등

5. 시스템 아키텍처 주요 산출물

2) 구축단계 주요 산출물

전개 시나리오

- 구축 상세 일정 및 체크리스트 작성
- 전개 대상 정의
- 전개 대상별 점검 항목 결정
- 전개 방법 결정
- 전개 팀 구성 및 담당자 결정
- 각 전개 대상별 작업 절차 개발

운영자 매뉴얼 (운영자 가이드)

- 시스템 운영에 필요한 항목 도출
- 서버 및 시스템 소프트웨어 가동 종료 스크립트 작성
- 장애 대응방안 수립
- 비상 연락망 구성

- 1. 데이터 아키텍처 정의 및 특징
 - 1) 데이터 아키텍처 정의

최상위의 단계에서부터 데이터베이스 단계까지 데이터에 관한 모든 구조를 통합하여 연계시킨 아키텍처

〈데이터 아키텍처〉

출처: https://commons.wikimedia.org

- 1. 데이터 아키텍처 정의 및 특징
 - 1) 데이터 아키텍처 정의
 - 프로젝트 전체의 데이터베이스, 데이터 구조를 도식화
 - 기능, 프로세스, 애플리케이션에 활용될 핵심 데이터
 및 정보를 명확히 정의
 - 데이터의 주제 영역, 개념 모델을 정의
 - 데이터 통합 및 분산 방안을 정의
 - 데이터 표준과 설계 원칙 정의

- 1. 데이터 아키텍처 정의 및 특징
 - 2) 데이터 아키텍처 특징

데이터 아키텍처 특징은?

- 전사적인 데이터 아키텍처 구축을 목적으로 분류하고 정의
- 전사 중심 데이터인 키 주제 영역을 정의, 업무 활동을 고려하여 메인 주제 영역 정의
- 전사적인 참조모델을 개발하여 일관된
 데이터 구조 구축 기반을 제공하기 위한 분류 기준
- 개체집합이나 행위 집합 단위 그룹으로 주제 영역을 분류하고 데이터 모델링을 진행하므로 향후 통합에 유리

2. 데이터 아키텍처 구성

Data Principle DA Framework Data Governance Data Reference Model

Data Principle 전사적 데이터 관리 및 유지하기 위한 기본 원칙 제공

DA Framework

- 전사 데이터 해석 및 이해하는 기본 틀을 제공(구조, 흐름, 관리)
- Data Structure, Data Flow, Data Management 3가지 요소로 구성

Data Governance 전사 데이터 관리 및 유지, 통제, 수단 제공(표준화, QA, 조직)

3. 데이터 아키텍처 프레임워크

(전사, 계획) - Planner 관점

(개념, 관리) - Owner 관점

(논리, 설계) - Designer 관점

(물리, 설계) - Builder 관점

상세화

3. 데이터 아키텍처 프레임워크

(전사, 계획) - Planner 관점

--> 전사의 핵심전략적 방향성, 상위 수준의 블루프린트 시각

데이터 구조

 기업 경영 목표를 달성하기 위해 필요한 주요 비즈니스 데이터의 대상 및 범위로서 데이터 구성 및 데이터 주제 영역 정의

데이터 흐름

 기업을 중심으로 외부의 기관 및 관련 업체 간에 흐름 및 내부 데이터 분산 구조를 정의

3. 데이터 아키텍처 프레임워크

(개념, 관리) - Owner 관점

--> 비즈니스 데이터 개념 수준 모델 시각

데이터 구조

 개념(상위) 수준에서 전사적인 핵심 정보 실체와 관계 정의

데이터 흐름

 전사 관점에서 분산된 시스템 간 비즈니스 데이터 흐름의 관계를 정의

3. 데이터 아키텍처 프레임워크

(물리, 설계) - Builder 관점

--> 논리 정보 모델, 시스템 배치를 위한 시각

데이터 구조

논리적으로 명확히 표현되는 실체와 실체 간의 관계 및
 속성으로서 논리적인 데이터 구조 정의

데이터 흐름

 시스템 간 흐름이 발행하는 데이터에 대한 명확한 요건을 정의

3. 데이터 아키텍처 프레임워크

(논리, 설계) - Designer 관점

--> 시스템 기능, 물리 데이터 정보, 시스템 구성에 집중하는 시각

데이터 구조

 데이터의 물리적인 구조 표현, 실 세계에서의 데이터의 이용을 위한 접근 및 저장구조

데이터 흐름

 데이터 흐름의 대상이 되는 데이터의 물리적인 단위 및 변환/정제 규칙 정의

핵심정리

1. 비즈니스 아키텍처

- •기업의 미션, 비전 목표를 정의
- •비즈니스 모델 및 구조를 정의하며 비즈니스 모델을 위한 기능과 프로세스를 정의함
- 경영 혁신 도구로 쓰이며 기업에 대한 다양한 관점을 반영하며, 효율적인 변경 및 확장성을 가져야 함
- •비즈니스 아키텍처의 효과로 경영 활동과 현재 제안된 IT 투자 간의 관련성 파악이 가능하며 기술 변화가 기업에 미치는 영향을 파악할 수 있음

2. 시스템 아키텍처

- •구성요소간의 관계 및 시스템 외부환경과 관계가 나타나며 요구 사항 및 시스템 전체 수명 주기를 고려하여 설계해야 함
- •시스템이 어떻게 동작하는지 나타내는 구조를 도식화 함
- •시스템 아키텍처를 통하여 전체 구조를 파악 가능하며 이기종 간의 상호 운영성 확보 및 다양한 시스템 구성요소의 상호 작용을 정의함
- •시스템 아키텍처 구성 기술로는 시스템 플랫폼, OS, 기타소프트웨어, Storage 기술, 이중화, 부하 분산 기술이 있음

핵심정리

3. 데이터 아키텍처

- •최상위의 단계에서부터 데이터베이스단계까지 데이터에 관한 모든 구조를 통합하여 연계시킨 아키텍처
- •기능, 프로세스, 애플리케이션에 활용될 핵심 데이터 및 정보를 명확히 정의해야 함
- •목적: 전사적인 데이터 아키텍처 구축