

RF EXPOSURE

1. Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Frequency Range	Electric Field Strength [V/m]	Magnetic Field Strength [A/m]	Power Density [mW/cm ²]	Averaging Time [minute]
Limits for General Population / Uncontrolled Exposure				
0.3 ~ 1.34	614	1.63	*(100)	30
1.34 ~ 30	824/f	2.19/f	*(180/f2)	30
30 ~ 300	27.5	0.073	0.2	30
300 ~ 1 500	/	/	f/1 500	30
1 500 ~ 15 000	/	/	1	30

f=frequency in MHz, *= plane-wave equivalent power density

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2 \quad \left(\Rightarrow R = \sqrt{PG/4\pi S} \right)$$

S = power density [mW/cm²]

P = Power input to antenna [mW]

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna [cm]

2. RF Exposure Compliance Issue

The information should be included in the user's manual:

This appliance and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter. A minimum separation distance of 20 cm must be maintained between the antenna and the person for this appliance to satisfy the RF exposure requirements.

MPE Calculations: Bluetooth (BDR)

- Frequency Range: 2402 MHz ~ 2480 MHz

- Measured RF Output Power : <u>1.00</u> dBm

- Target Power & Tolerance 0.85 dBm & ± 1.00 dB

(Maximum : <u>1.85</u> dBm & Minimum : <u>-0.15</u> dBm)

- Maximum Peak Antenna Gain: -0.56 dBi

- Maximum Output Power for the Calculation : <u>1.85</u> dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

= <u>1.85</u> dBm + <u>-0.56</u> dBi P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

= <u>1.35</u> mW

Power Density at the specific separation

$$-S = EIRP / (4 X R^2 \pi)$$
 - NOTE

s : Maximum Power Density (mW/cm²)

= <u>0.000 268</u> mW/cm² EIRP : Equivalent Isotropic Radiated Power (mW)

R : Distance to the center of the radiation of the antenna (20 cm)

MPE Calculations: Bluetooth (EDR)

- Frequency Range: 2402 MHz ~ 2480 MHz

- Measured RF Output Power : <u>0.41</u> dBm

- Target Power & Tolerance <u>-0.50</u> dBm & ± <u>1.00</u> dB

(Maximum: 0.50 dBm & Minimum: -1.50 dBm)

- Maximum Peak Antenna Gain: -0.56 dBi

- Maximum Output Power for the Calculation : 0.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

= 0.50 dBm + -0.56 dBi

= -0.06 dBm

= 0.99 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

$$-S = EIRP / (4 X R^2 \pi)$$

 $= 0.99 / (4 \times 20^2 \times \pi)$

= **0.000 196** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11b

- Frequency Range: 2412 MHz ~ 2462 MHz

- Measured RF Output Power : <u>18.89</u> dBm

- Target Power & Tolerance 18.50 dBm & ± 1.00 dB

(Maximum : <u>19.50</u> dBm & Minimum : <u>17.50</u> dBm)

- Maximum Peak Antenna Gain : -0.56 dBi

- Maximum Output Power for the Calculation : 19.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 19.50 dBm + -0.56 dBi

= 18.94 dBm

= 78.34 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 78.34 / (4 \times 20^{2} \times \pi)$

= **0.015 586** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11g

- Frequency Range: 2412 MHz ~ 2462 MHz

- Measured RF Output Power : <u>18.95</u> dBm

- Target Power & Tolerance 18.50 dBm & ± 1.00 dB

(Maximum : <u>19.50</u> dBm & Minimum : <u>17.50</u> dBm)

- Maximum Peak Antenna Gain: -0.56 dBi

- Maximum Output Power for the Calculation : 19.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 19.50 dBm + -0.56 dBi

= 18.94 dBm

= 78.34 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 78.34 / (4 \times 20^{2} \times \pi)$

= **0.015 586** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11n_HT20

- Frequency Range: 2412 MHz ~ 2462 MHz

- Measured RF Output Power : <u>18.93</u> dBm

- Target Power & Tolerance 18.50 dBm & ± 1.00 dB

(Maximum : <u>19.50</u> dBm & Minimum : <u>17.50</u> dBm)

- Maximum Peak Antenna Gain: -0.56 dBi

- Maximum Output Power for the Calculation : 19.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P + G

= 19.50 dBm + -0.56 dBi

= 18.94 dBm

= 78.34 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 78.34 / (4 \times 20^{2} \times \pi)$

= **0.015 586** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R : Distance to the center of the radiation of the

MPE Calculations: 802.11a (UNII-1)

- Frequency Range: 5 180 MHz ~ 5 240 MHz

- Measured RF Output Power : <u>10.45</u> dBm

- Target Power & Tolerance 10.00 dBm & ± 1.00 dB

(Maximum : <u>11.00</u> dBm & Minimum : <u>9.00</u> dBm)

- Maximum Peak Antenna Gain: 0.00 dBi

- Maximum Output Power for the Calculation: 11.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P + G

= 11.00 dBm + 0.00 dBi

= 11.00 dBm

= 12.59 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 12.59 / (4 \times 20^{2} \times \pi)$

= **0.002 505** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11a (UNII-2A)

- Frequency Range: 5 260 MHz ~ 5 320 MHz

- Measured RF Output Power : 10.29 dBm

- Target Power & Tolerance 10.00 dBm & ± 1.00 dB

(Maximum : <u>11.00</u> dBm & Minimum : <u>9.00</u> dBm)

- Maximum Peak Antenna Gain: 0.00 dB

- Maximum Output Power for the Calculation: 11.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 11.00 dBm + 0.00 dBi

= 11.00 dBm

= 12.59 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 12.59 / (4 \times 20^{2} \times \pi)$

= **0.002 505** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11a (UNII-2C)

- Frequency Range: 5 500 MHz ~ 5 700 MHz

- Measured RF Output Power : 10.85 dBm

- Target Power & Tolerance 9.50 dBm & ± 1.50 dB

(Maximum : <u>11.00</u> dBm & Minimum : <u>8.00</u> dBm)

- Maximum Peak Antenna Gain: 0.00 dBi

- Maximum Output Power for the Calculation: 11.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 11.00 dBm + 0.00 dBi

= 11.00 dBm

= 12.59 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 12.59 / (4 \times 20^{2} \times \pi)$

= **0.002 505** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11a (UNII-3)

- Frequency Range: 5 745 MHz 5 805 MHz

- Measured RF Output Power : 8.11 dBm

7.50 - Target Power & Tolerance $dBm \& \pm 1.00 dB$

> Maximum: 8.50 dBm & 6.50 dBm Minimum:

- Maximum Peak Antenna Gain: 0.00

- Maximum Output Power for the Calculation : dBm <u>8.50</u>

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

$$-EIRP = P + G$$
 - NOT

8.50 dBm 0.00 dBi

dBm 8.50

7.08 mW - NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

$$-S = EIRP / (4 X R^2 \pi)$$

7.08 / $(4 \times 20^{2} \times \pi)$

0.001 408 mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11n_HT20 (UNII-1)

- Frequency Range: 5 180 MHz ~ 5 240 MHz

- Measured RF Output Power : 9.82 dBm

- Target Power & Tolerance 9.00 dBm & ± 1.00 dB

(Maximum : <u>10.00</u> dBm & Minimum : <u>8.00</u> dBm)

- Maximum Peak Antenna Gain: 0.00 dBi

- Maximum Output Power for the Calculation : 10.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 10.00 dBm + 0.00 dBi

= 10.00 dBm

= 10.00 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 10.00 / (4 \times 20^{2} \times \pi)$

= **0.001 989** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11n_HT20 (UNII-2A)

- Frequency Range: 5 260 MHz ~ 5 320 MHz

- Measured RF Output Power : 9.55 dBm

- Target Power & Tolerance 9.00 dBm & ± 1.00 dB

(Maximum : <u>10.00</u> dBm & Minimum : <u>8.00</u> dBm)

- Maximum Peak Antenna Gain : 0.00 dBi

- Maximum Output Power for the Calculation : 10.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 10.00 dBm + 0.00 dBi

= 10.00 dBm

= 10.00 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 10.00 / (4 \times 20^{2} \times \pi)$

= **0.001 989** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP : Equivalent Isotropic Radiated Power (mW)

 $\ensuremath{\mathsf{R}}$: Distance to the center of the radiation of the

MPE Calculations: 802.11n_HT20 (UNII-2C)

- Frequency Range: 5 500 MHz ~ 5 700 MHz

- Measured RF Output Power : 10.39 dBm

- Target Power & Tolerance 9.00 dBm & ± 1.50 dB

(Maximum : <u>10.50</u> dBm & Minimum : <u>7.50</u> dBm)

- Maximum Peak Antenna Gain : 0.00 dBi

- Maximum Output Power for the Calculation : 10.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 10.50 dBm + 0.00 dBi

 $= 10.50 \, dBm$

= <u>11.22</u> mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 11.22 / (4 \times 20^{2} \times \pi)$

= **0.002 232** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP : Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

antenna (<u>20</u> cm)

MPE Calculations: 802.11n_HT20 (UNII-3)

- Frequency Range: 5 745 MHz MHz 5 805

- Measured RF Output Power : dBm 7.65

- Target Power & Tolerance 7.00 $dBm \& \pm 1.00 dB$

> Maximum: 8.00 dBm & Minimum: 6.00 dBm

- Maximum Peak Antenna Gain: 0.00

- Maximum Output Power for the Calculation : <u>8.00</u> dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

$$-EIRP = P + G$$
 - NOTE

8.00 dBm 0.00 dBi

dBm 8.00

6.31 mW - NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

$$-S = EIRP / (4 \times R^2 \pi)$$

6.31 / $(4 \times 20^{2} \times \pi)$

0.001 255 mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11n_HT40 (UNII-1)

- Frequency Range: 5 190 MHz ~ 5 230 MHz

- Measured RF Output Power : <u>10.08</u> dBm

- Target Power & Tolerance 9.50 dBm & ± 1.00 dB

(Maximum : <u>10.50</u> dBm & Minimum : <u>8.50</u> dBm)

- Maximum Peak Antenna Gain : 0.00 dBi

- Maximum Output Power for the Calculation : 10.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 10.50 dBm + 0.00 dBi

 $= 10.50 \, dBm$

= <u>11.22</u> mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 11.22 / (4 \times 20^{2} \times \pi)$

= **0.002 232** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11n_HT40 (UNII-2A)

- Frequency Range: 5 270 MHz ~ 5 310 MHz

- Measured RF Output Power : <u>9.81</u> dBm

- Target Power & Tolerance 9.00 dBm & ± 1.00 dB

(Maximum : <u>10.00</u> dBm & Minimum : <u>8.00</u> dBm)

- Maximum Peak Antenna Gain : <u>0.00</u> dBi

- Maximum Output Power for the Calculation : 10.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 10.00 dBm + 0.00 dBi

= 10.00 dBm

= 10.00 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 10.00 / (4 \times 20^{2} \times \pi)$

= **0.001 989** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11n_HT40 (UNII-2C)

- Frequency Range: 5510 MHz ~ 5670 MHz

- Measured RF Output Power : <u>10.62</u> dBm

- Target Power & Tolerance 9.70 dBm & ± 1.00 dB

(Maximum : <u>10.70</u> dBm & Minimum : <u>8.70</u> dBm)

- Maximum Peak Antenna Gain: 0.00 dBi

- Maximum Output Power for the Calculation : 10.70 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P + G

= 10.70 dBm + 0.00 dBi

 $= 10.70 \, dBm$

= <u>11.75</u> mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 11.75 / (4 \times 20^{2} \times \pi)$

= **0.002 337** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP : Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

antenna (<u>20</u> cm)

MPE Calculations: 802.11n_HT40 (UNII-3)

- Frequency Range : <u>5 755</u> MHz ~ <u>5 795</u> MHz

- Measured RF Output Power : 7.72 dBm

- Target Power & Tolerance 7.00 dBm & ± 1.00 dB

(Maximum : 8.00 dBm & Minimum : 6.00 dBm)

- Maximum Peak Antenna Gain : 0.00 dBi

- Maximum Output Power for the Calculation : 8.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

Power Density at the specific separation

mW

6.31

MPE Calculations: 802.11ac_VHT80 (UNII-1)

- Frequency Range: 5 210 MHz

- Measured RF Output Power : 9.02 dBm

- Target Power & Tolerance 8.50 dBm & ± 1.00 dB

(Maximum : <u>9.50</u> dBm & Minimum : <u>7.50</u> dBm)

- Maximum Peak Antenna Gain: 0.00 dBi

- Maximum Output Power for the Calculation : 9.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

= 9.50 dBm + 0.00 dBi

 $= 9.50 \, dBm$

= 8.91 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

$$-S = EIRP / (4 X R^2 \pi)$$

= 8.91 / $(4 \times 20^2 \times \pi)$

= **0.001 773** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: 802.11ac_VHT80 (UNII-2A)

- Frequency Range: 5 290 MHz

- Measured RF Output Power : 9.22 dBm

- Target Power & Tolerance 8.50 dBm & ± 1.00 dB

(Maximum: 9.50 dBm & Minimum: 7.50 dBm)

- Maximum Peak Antenna Gain: 0.00 dBi

- Maximum Output Power for the Calculation : 9.50 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

= 9.50 dBm + 0.00 dBi

 $= 9.50 \, dBm$

= 8.91 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

$$-S = EIRP / (4 X R^2 \pi)$$

 $= 8.91 / (4 \times 20^2 \times \pi)$

= **0.001 773** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

antenna (<u>20</u> cm)

MPE Calculations: 802.11ac_VHT80 (UNII-2C)

- Frequency Range: 5 530 MHz

- Measured RF Output Power : 9.90 dBm

- Target Power & Tolerance 9.00 dBm & ± 1.00 dB

(Maximum : <u>10.00</u> dBm & Minimum : <u>8.00</u> dBm)

- Maximum Peak Antenna Gain: 0.00 dBi

- Maximum Output Power for the Calculation : 10.00 dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

-EIRP = P+G

= 10.00 dBm + 0.00 dBi

 $= 10.00 \, dBm$

= 10.00 mW

- NOTE

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

 $-S = EIRP / (4 X R^2 \pi)$

 $= 10.00 / (4 \times 20^{2} \times \pi)$

= **0.001 989** mW/cm²

- NOTE

S: Maximum Power Density (mW/cm²)

EIRP : Equivalent Isotropic Radiated Power (mW)

R : Distance to the center of the radiation of the

antenna (<u>20</u> cm)

MPE Calculations: 802.11ac_VHT80 (UNII-3)

- Frequency Range: 5 775 MHz

- Measured RF Output Power : dBm 7.20

- Target Power & Tolerance 7.00 $dBm \& \pm 1.00 dB$

> Maximum: 8.00 dBm & 6.00 dBm Minimum:

- Maximum Peak Antenna Gain: 0.00

- Maximum Output Power for the Calculation : <u>8.00</u> dBm

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

$$-EIRP = P + G$$
 - NOTE

8.00 dBm 0.00 dBi

dBm 8.00

6.31 mW

P: Max tuneup Power (dBm)

G: Maximum Peak Antenna Gain (dBi)

Power Density at the specific separation

$$-S = EIRP / (4 X R^2 \pi)$$
 - NOTE

6.31 / $(4 \times 20^{2} \times \pi)$

0.001 255 mW/cm²

S: Maximum Power Density (mW/cm²)

EIRP: Equivalent Isotropic Radiated Power (mW)

R: Distance to the center of the radiation of the

MPE Calculations: Bluetooth + WLAN 2G + WLAN 5G

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the The MPE calculation for this exposure is shown below.

Simultaneous MPE for Bluetooth and Wi-Fi

802.11b + 802.11a + Bluetooth (BDR)

```
- Total (%) =
                                               - NOTE
[ 802.11b Result(mW/cm2) / Limit(mW/cm2) ] +
                                                 802.11b + 802.11a + Bluetooth (BDR)
[ 802.11a Result(mW/cm2) / Limit(mW/cm2) ] +
                                                 WLAN 802.11b =
                                                                     0.015 586 mW/cm2
[BDR Result(mW/cm2) / Limit(mW/cm2)] * 100
                                                 WLAN 802.11a =
                                                                     0.002 505 mW/cm2
        0.015 586
                                                  Bluetooth(BDR) =
                                                                     0.000 268 mW/cm2
   [
                        1
                             ] +
                                                 Distance to the center of the radiation of the
        0.002 505
                        1
                            ] +
                                                  antenna (
                                                               20 cm)
                            1 *
        0.000 268
                        1
                                   100
                                                 Limit : ≤ 100 %
     1.585
             %
```