Probability and Statistics

1 – Descriptive Statistics

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

October 13, 2023

Lemma (1.27)

Let $x = (x_1, x_2, \dots, x_N)$ be a data set and

$$\xi_i = \alpha + \beta x_i$$
 for $i = 1, ..., N$ $\xi \in (\xi_i, ..., \xi_N)$

for some constant values lpha and eta. Then:

$$\xi_i^{\circ} = \operatorname{sgn}(\beta) \cdot x_i^{\circ}$$
 for $i = 1, ..., N$

$$\mathcal{J}_{i}^{\circ} = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} + \mathbf{J}_{i} \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} + \mathbf{J}_{i} \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) + \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i} \right) = \frac{1}{4} \left(\mathbf{J}_{i} - \mathbf{J}_{i} - \mathbf{J}_{i$$

5 = 151. Sx

Lemma (1.28)

Let $x = (x_1, x_2, ..., x_N)$ and $y = (y_1, y_2, ..., y_N)$ be non-constant data sets with mean \overline{x} and mean \overline{y} , respectively. Furthermore let r be the correlation coefficient of x and y. Then:

- (i) $r \in [-1, 1]$
- (ii) |r| = 1 iff and only if there exist constants a, b, such that

$$y_i = a + bx_i$$
 for all $i \in \{1, \dots, N\}$.

(In this case $r = \operatorname{sgn}(b)$.)

(iii) Let a, b, c and d constant values with $b \cdot d > 0$. Set

$$\xi_i = a + b \cdot x_i, \qquad \eta_i = c + d \cdot y_i$$

for $i=1,2,\ldots,N$. Then $\xi=(\xi_1,\xi_2,\ldots,\xi_N)$ and $\eta=(\eta_1,\eta_2,\ldots,\eta_N)$ have the same correlation coefficient as x and y:

$$r = r_{x,y} = r_{\xi,\eta}$$

(i): Consider the vectors:

$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2 \sum_{i=1}^{N} (y_i - \overline{y})^2}} = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| \cdot |\mathbf{w}|} = \cos(\alpha) \in [-1, 1]$$

 $v = (x_1 - \overline{x}, x_2 - \overline{x}, \dots, x_N - \overline{x})$ and $w = (y_1 - \overline{y}, y_2 - \overline{y}, \dots, y_N - \overline{y})$

where α denotes the angle between v and w.

(ii): |r|=1, if and only if v and w are collinear, i.e. if and only if there exists some $b\in\mathbb{R}$ such that:

$$y_{i} - \overline{y} = b(x_{i} - \overline{x}) \qquad \text{for all } i = 1, 2, ..., N$$

$$\iff \qquad \qquad y_{i} = (\overline{y} - b\overline{x}) + bx_{i} \qquad \text{for all } i = 1, 2, ..., N$$

$$\iff \qquad \qquad \text{for some } a: \quad y_{i} = a + bx_{i} \qquad \text{for all } i = 1, 2, ..., N$$

(ii): |r|=1, if and only if v and w are collinear, i.e. if and only if there exists some $b\in\mathbb{R}$ such that:

$$y_i - \overline{y} = b(x_i - \overline{x})$$
 for all $i = 1, 2, ..., N$ \iff $y_i = (\overline{y} - b\overline{x}) + bx_i$ for all $i = 1, 2, ..., N$ for some $a: y_i = a + bx_i$ for all $i = 1, 2, ..., N$

For the last equivalence note, that $y_i = a + b x_i$ for all i implies:

$$a = y_i - bx_i$$
 for all $i \implies a = \frac{1}{N} \sum_{i=1}^{N} (y_i - bx_i) = \overline{y} - b\overline{x}$

$$\xi_i{}^o = \operatorname{sgn}(b) \cdot x_i{}^o$$
 and $\eta_i{}^o = \operatorname{sgn}(d) \cdot y_i{}^o$ for $i = 1, \dots, N$

$$r_{\xi,\eta} = \frac{\sum_{i=1}^{N} \xi_{i}^{\circ} \eta_{i}^{\circ}}{(N-1)} = \frac{\operatorname{sgn}(b) \cdot \operatorname{sgn}(d) \cdot \sum_{i=1}^{N} x_{i}^{\circ} y_{i}^{\circ}}{(N-1)} = r_{x,y}$$