Redes Bayesianas

TEORIA E IMPLEMENTAÇÃO

Prof. Dr. Thales Levi Azevedo Valente

Equipe: Euderlan Freire, Hissa Bárbara, Maria Clara, Lucas Costa

SÚMARIO

IINFERÊNCIA EM REDES BAYESIANAS

RACIOCÍNIO PROBABILÍSTICO

APLICAÇÃO PRÁTICA

REDES BAYESIANAS

REFERÊNCIAS

— Introdução

Sistemas que agem racionalmente

Raciocínio Lógico

Raciocínio Probabilístico

- ✓ Situações onde não se conhece todo o escopo
- ✓ Redes Bayesianas
 - Teoria de probabilidades
 - Teoria de grafos

— Raciocinando sobre incertezas

- "A principal vantagem de raciocínio probabilístico sobre raciocínio lógico é fato de que agentes podem tomar decisões racionais mesmo quando não existe informação suficiente para se provar que uma ação funcionará" [Russel]
- Alguns fatores podem condicionar a falta de informação em uma base de conhecimento:

- ✓ Ignorância Teórica
- ✓ Impossibilidade

Raciocinando sobre incertezas

- Utilizar conectivos que manipulem níveis de certeza e não apenas valores booleanos.
 - "Tenho 80% de chance de fazer um bom trabalho"
 - "A probabilidade de um trabalho de IA ser bom é 50%"
 - "A chance de um bom trabalho tirar nota máxima é 90%"

Ao invés de dizer "sim" ou não, dizemos:

- "Qual a **probabilidade** de eu tirar 10 neste trabalho?"
- Grafos podem representar relações causais entre eventos

— Raciocinando sobre incertezas

- Considere o seguinte Domínio: Pela manhã meu Del Rey não irá funcionar. Eu posso ouvir a ignição, mas nada acontece. Podem existir várias razões para o problema. O rádio funciona, então a bateria está boa. A causa mais provável é que a gasolina tenha sido roubada durante a noite ou que a mangueira esteja entupida. Também pode ser que seja o carburador sujo, um vazamento na ignição ou algo mais sério. Para descobrir primeiro eu verifico o medidor de gasolina. Ele indica ½ tanque, então eu decido limpar a mangueira da gasolina"
- Cenário: Carro não funciona

Gasolina? (Sim/Não)

Mangueira Limpa? (Sim/Não)

Medidor? (Cheio/1/2/Vazio)

Funcionando? (Sim/Não)

— Raciocinando sobre incertezas

- Conceitos Importantes
 - Experimento Aleatório
 - Espaço Amostral
 - Evento
 - Probabilidade

- Probabilidade
 - Dado pelo intervalo [0, 1].
 - Se o espaço amostral consiste de N elementos igualmente prováveis e o evento A corresponde a um subconjunto de r elementos do espaço amostral, então a probabilidade é dada por:

$$P(A) = r/N$$

- Probabilidade Conjunta
 - Dois ou mais eventos acontecendo simultaneamente, dado que os eventos são independentes.

$$P(A \wedge B)=P(A)P(B)$$

- Probabilidade Condicional
 - Dado um evento A, pode-se saber qual a probabilidade do evento B acontecer.

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

- Probabilidade Condicional Exemplo
 - Qual a probabilidade de uma pessoa ter câncer, dado que ela fuma?

	Não Fuma	Fuma	Total
Sem Câncer	40	10	50
Câncer	7	3	10
Total	47	13	60

- Marginalização
 - Também chamada de Totalização, é o processo de obter a probabilidade de uma variável sem considerar os valores das demais.
 - Usa a distribuição conjunta para somar os eventos onde a variável desejada assume um determinado valor.

- Marginalização Exemplo
 - Suponha duas variáveis: DorDeDente (D): {Verdadeiro, Falso}, Cárie (C): {Verdadeiro, Falso}. Qual a probabilidade de Cárie = Verdadeiro?

Cárie (C)	DorDeDente (D)	Probabilidade P(C,D)P(C, D)
Verdadeiro	Verdadeiro	0,108
Verdadeiro	Falso	0,012
Falso	Verdadeiro	0,072
Falso	Falso	0,008

• Solução: P(C=V)=0,108+0,012=0,120

- Lei da Probabilidade Total
 - Se um evento A ocorre em m condições distintas, todas mutuamente exclusivas, então a probabilidade de ocorrer o evento A é a soma das probabilidades dele ocorrer nas m condições diferentes.

$$P(A) = \sum_{j=1}^m P(A \mid B_j) \cdot P(B_j)$$

- Teorema de Bayes
 - Lida com a incertezas e atualiza a crença em um determinado evento à medida que novas informações chegam.
 - Ferramenta útil para inferir a probabilidade a posteriori de um evento baseado na evidencia e num conhecimento a priori de outros eventos.

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

- Teorema de Bayes Exemplo
 - Um médico sabe que meningite causa dor no pescoço em 50% dos casos. Ele sabe que a probabilidade a priori de um paciente ter meningite (M) é 1/50000 e a possibilidade a priori de qualquer paciente ter uma dor no pescoço (S) é 1/20
 - Tem-se que: P(S|M) = 1/2, P(M) = 1/50000, P(S) = 1/20

- Teorema de Bayes Exemplo
- Um paciente chega ao consultório com dor no pescoço. Qual a probabilidade dele estar com meningite – P(M|S)?

$$P(M|S) = \frac{P(S|M) \cdot P(M)}{P(S)}$$

$$P(S|M) = \frac{1}{2}$$

$$P(M) = \frac{1}{50000}$$

$$P(S) = \frac{1}{20}$$

- Teorema de Bayes Exemplo
- Um paciente chega ao consultório com dor no pescoço. Qual a probabilidade dele estar com meningite P(M|S)?

$$P(M|S) = \frac{\frac{1}{2} \cdot \frac{1}{50000}}{\frac{1}{20}} = \frac{\frac{1}{100000}}{\frac{1}{20}}$$

$$P(M|S) = \frac{1}{100000} \cdot \frac{20}{1} = \frac{20}{100000} = \frac{1}{5000}$$

$$\frac{1}{5000} = 0,0002 = 0,02\%$$

— Redes Bayesianas

- Definição e Conceitos
- O que são: Também chamadas de redes de crença, redes probabilísticas ou redes causais
- Teoria dos grafos
- Distribuição de probabilidades
- Objetivo: Representar situações, variáveis e estados para realizar inferências

Redes Bayesianas

Estrutura de uma Rede Bayesiana

- Um conjunto de variáveis
- Um conjunto de arcos dirigidos
- Cada variável possui um conjunto de finito estados mutuamente exclusivos
- Uma tabela de probabilidade condicionada para cada variável e seus pais
- O grafo é acíclico

Redes Bayesianas

"Um novo alarme contra assaltos é instalado, mesmo sendo muito confiável na detecção de assaltos ele pode disparar caso ocorra um terremoto. Os dois vizinhos João e Maria se disponibilizaram a telefonar caso o alarme dispare. João sempre liga quando ouve o alarme, entretanto algumas vezes ele confunde o alarme com o telefone e também liga nestes casos. já Maria gosta de ouvir música alta e as vezes não houve o alarme disparar, não ligando nestes casos"

Redes Bayesianas

Exemplo de uma Rede Bayesiana

Figura 3: Representação de uma Rede Bayesiana do domínio

- Exemplo de uma Rede Bayesiana
- Considere que se deseja calcular a probabilidade do alarme ter tocado, mas nem um ladrão nem um terremoto aconteceram, e ambos, João em Maria ligaram, ou P(J∧M∧A∧¬L∧¬T)
- $P(J \land M \land A \land \neg L \land \neg T)$ = $P(J \mid A)P(M \mid A)P(A \mid \neg L \land \neg T)P(\neg L) P(\neg T)$
- $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$
- = 0.00062

— Inferência em Redes Bayesianas

- **Definição**: Processo de extrair conhecimento representado na rede
- **Base**: Utilizar evidências observadas para calcular probabilidades de eventos não observados

— Inferência em Redes Bayesianas

- Tipos de Inferência
- Inferência Diagnósticos: partindo dos efeitos para as causas;
 Ex: Observar que o alarme disparou → inferir probabilidade de assalto
- 2. Inferência Preditiva: partindo das causas para os efeitos; Ex: Saber que houve assalto → inferir probabilidade do alarme disparar

— Inferência em Redes Bayesianas

- Tipos de Inferência
- 3. **Inferência Intercausal:** entre causas de um efeito comum; **Ex**: Saber que houve assalto → como isso afeta a probabilidade de terremoto?
- 4. **Inferência Mista:** combinação de dois ou mais tipos de inferência
 Cenários mais realistas e complexos

- Tabela para pré-visualização

Essa tabela mostra alguns dados retirados dos Datasets

	precipitacao_mm	intensidade_chuva	duracao_chuva	mare	bairro	topografia	drenagem	enchente
0	85.2	intensa	6h+	alta	Centro	baixa	inadequada	True
1	45.1	moderada	2-6h	média	Vinhais	média	adequada	False
2	92.7	intensa	6h+	alta	João Paulo	baixa	inadequada	True
3	23.5	fraca	<2h	baixa	Renascença	alta	adequada	False
4	67.8	intensa	2-6h	média	Cohama	baixa	regular	True
5	15.2	fraca	<2h	baixa	Alemanha	média	regular	False
6	76.3	intensa	6h+	alta	São Francisco	baixa	inadequada	True
7	38.9	moderada	2-6h	baixa	Calhau	baixa	regular	False
8	55.1	intensa	2-6h	alta	Centro	baixa	inadequada	True
9	29.7	fraca	2-6h	média	Vinhais	média	adequada	False

Estimação das Tabelas de Probabilidades Condicional (CPDs)

(CPD para a variável: drenagem				
1	bairro	+ 	bairro(Vinhais)		
	topografia	+ 	topografia(média)		
L	drenagem(adequada)		1.0		
	drenagem(inadequada)		0.0		
1	drenagem(regular)		0.0		

Estimação das Tabelas de Probabilidades Condicional (CPDs)

CPD para a variável: ba	irro
+ bairro(Alemanha)	0.115385
bairro(Calhau)	0.115385
bairro(Centro)	0.153846
bairro(Cohama)	0.115385
bairro(João Paulo)	0.134615
1 ' ' '	0.115385
bairro(São Francisco)	
bairro(Vinhais)	0.134615

```
CPD para a variável: topografia
+-----+
| topografia(alta) | 0.115385 |
+-----+
| topografia(baixa) | 0.634615 |
+-----+
| topografia(média) | 0.25 |
```


Consulta 01: Probabilidade de enchente dado bairro='Centro', topografia='baixa', e drenagem 'inadequada

Consulta 02: Probabilidade dos estados de drenagem dado bairro='Vinhais', topografia='média', e enchente=False (não houve enchente).

drenagem	phi(drenagem)
drenagem(adequada)	1.0000
drenagem(inadequada)	0.0000
drenagem(regular) +	0.0000

Consulta 03: Probabilidade de enchente dado bairro='Calhau' e topografia='baixa' (o estado da drenagem não é fornecido como evidência e é inferido pelo modelo).

```
Situação 1: Drenagem Inferida

+-----+

| enchente | phi(enchente) |

+======+

| enchente(False) | 0.7222 |

+-----+

| enchente(True) | 0.2778 |

+-----+
```

Consulta 04: Probabilidade de enchente dado bairro='Calhau', topografia='baixa', e drenagem='inadequada' (o estado da drenagem é fornecido diretamente).

- Referências

"IA – Redes Baysianas", Site – YouTube. Disponível em: https://www.youtube.com/watch?v=PGaxIKVP4ao&t=1155s. Acesso em 02 de jun de 2025.

MARQUES, Roberto Ligeiro; DUTRA, Inês. *Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações.* Rio de Janeiro: COPPE/UFRJ, 2003. Disponível em: https://www.cos.ufrj.br/~ines/courses/cos740/leila/cos740/Bayesianas.pdf. Acesso em: 2 jun. 2025.

GONÇALVES, André Ricardo. **Redes Bayesianas.** Campinas: Universidade Estadual de Campinas, 2009. Disponível em: https://andreric.github.io/files/pdfs/bayesianas.pdf. Acesso em: 2 jun. 2025.

Obrigado!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution