第五周作业

董仕强

Sunday 23rd March, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	<mark>说明</mark>	0
1	Problem Set for 17 March 2025	1
	1.1 Exercise	1
	1.2 Problem	1

1 Problem Set for 17 March 2025

1.1 Exercise

Prove the following (Whenever we write f_*X , it is assumed that the linear space X is a subspace of the domain, and similarly for f^*X):

- 1. $U \subset f^*f_*U$, when does equality hold for all U?
- 2. $f_*f^*V \subset V$, when does equality hold for all V?
- 3. $f_*f^*f_* = f_*$.
- 4. $f^* f_* f^* = f^*$.
- 5. $f_*(U+V) = f_*U + f_*V$.
- 6. $f^*(U \cap V) = f^*U \cap f^*V$.
- 7. Explain $f_*(U \cap V) \subset f_*U \cap f_*V$.
- 8. Explain $f^*(U+V) \supset f^*U + f^*V$.

解答

- 1. f 单射
- 2. 等号能取到吧
- 3. $\forall v$, suppose f(U) = v, then $f_*(f^*v) = f_*U = v$.
- 4. $\forall v$, suppose $f^*(v) = U$, then $f^*(f_*u) = f^*v = U$.
- 5. $f(u+v) = f(u) + f(v) \in f_*U + f_*V$, so $f_*(U+V) \subset f_*U + f_*V$. $\forall f(u) \in f_*U$ and $f(v) \in f_*V$, $f(u) + f(v) = f(u+v) \in f_*(U+V)$. So $f_*U + f_*V \subset f_*(U+V)$.
- 6. $\forall x \in U \cap V, f^*(x) = f^*(x) \in f^*U \cap f^*V.$ So $f^*(U \cap V) \subset f^*U \cap f^*V.$ $\forall x \in f^*U \cap f^*V, f(x) \in U \cap V, x \in f^*(U \cap V).$ so $f^*U \cap f^*V \subset f^*(U \cap V).$
- 7. $\forall x \in U \cap V, f_*(x) = f_*(x) \in f_*U \cap f_*V.$ So $f_*(U \cap V) \subset f_*U \cap f_*V.$
- 8. $\forall x \in f^*U + f^*V$, $x = f^*(u) + f^*(v) = f^*(u+v) \in f^*(U+V)$. So $f^*U + f^*V \subset f^*(U+V)$.

1.2 Problem

- 1. Show that $\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}[x], \mathbb{F}) \cong \mathbb{F}[[x]]$.
- 2. Show that $\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}[[x]], \mathbb{F})$ has a subspace which is iso to $\mathbb{F}[x]$.

- 1. $(\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}[x],\mathbb{F}),+,\cdot)$ is a linear space over \mathbb{F} .we can find a basis $\{\varphi(x^k)\}_{k\geq 1}$ let $\sigma:\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}[x],\mathbb{F})\to\mathbb{F}[[x]],f\mapsto g(x)$ is a linear map. let $\sigma(\varphi(x^k))=\sum_{n=1}^\infty \delta_{kn}x^n$ let $\sigma(f)=\sigma(\sum_{k=0}^\infty a_k\varphi(x^k))=\sum_{k=0}^\infty a_kx^k=0\Rightarrow a_k=0\Rightarrow f=0$ and σ is surjective obveriously. so σ is an isomorphism.
- 2. $\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}[[x]], \mathbb{F})$ is a linear space over \mathbb{F} . let $U = \{\sum_{k=0}^{\infty} a_k \varphi(x^k) | a_k = 0, k \geq 1\}$ let $\sigma : U \to \mathbb{F}[x], f \mapsto g(x)$ is a linear map. let $\sigma(\sum_{k=0}^{\infty} a_k \varphi(x^k)) = \sum_{k=0}^{\infty} a_k x^k$ let $\sigma(f) = \sigma(\sum_{k=0}^{\infty} a_k \varphi(x^k)) = \sum_{k=0}^{\infty} a_k x^k = 0 \Rightarrow a_k = 0 \Rightarrow f = 0$ and σ is surjective obveriously. so σ is an isomorphism.