Causality

Data Analytics and Visualization with R Session 4

Viktoriia Semenova

University of Mannheim Spring 2023

Warm Up

Your GitHub Stats

Commits to Problem Set 3 by Time of Day

Commits to Problem Sets by Week Day

Tuesday	0	1	0
Wednesday	15	2	0
Thursday	22	3	6
Friday	19	11	0
Saturday	11	4	3
Sunday	11	34	12
Monday	4	20	20

Quiz: Which of these statements are correct?

- 1. Regression line represents a conditional mean of the explanatory variable X given the value of the outcome variable Y.
- 2. Extreme values of correlation coefficient (i.e. close to -1 or 1) imply that there is a large substantive effect of X on Y.
- 3. Correlation between X and Y implies there is a causal relationship between them.
- 4. Causal relationship between X and Y implies there is a correlation between them.
- 5. Causal relationship between X and Y implies there is an association between them.

04:00

Association vs. Correlation

Correlation is a type of association and measures increasing or decreasing trends quantified using correlation coefficients.

Causality

Data Generating Process

- An unknown process in the real world that "generates" the data we are interested in
- In social sciences, DGP is often not very precise
- Our understanding of DGP comes from the theory and subject knowledge

Causality

- A variable X is a cause of a variable Y if Y in any way relies on X for its value... X is a cause of Y if Y listens to X and decides its value in response to what it hears (Pearl, Glymour, and Jewell 2016, 5–6)
- This incorporates:
 - association between X and Y
 - time ordering: cause precedes outcome
 - nonspuriousness: there is plausible relationship
- Causal effect is the change in variable Y that would result from a change in variable X

Example: Boston Commuters Experiment

Causal Effects & Counterfactuals

- Two potential outcomes:
 - $Y_i(1)$: would commuter i report pro-immigration attitudes if exposed to Spanish-speakers (T=1)?
 - $Y_i(0)$: would commuter i report pro-immigration attitudes if **not** exposed to Spanish-speakers (T=0)?
- Causal effect: $Y_i(1) Y_i(0)$ (aka treatment effect)
 - $Y_i(1) Y_i(0) = 0$: exposure to Spanish-speakers has no impact on attitudes
 - $Y_i(1) Y_i(0) = +1$: exposure to Spanish-speakers leads to pro-immigration attitudes
 - $Y_i(1) Y_i(0) = -1$: exposure to Spanish-speakers leads to anti-immigration attitudes

Potential Outcomes

	Attitude if Treated	Attitude if Control
Jack	Pro-immigration	Anti-immigration

More formally:

$$\frac{Y_i(1) \quad Y_i(0)}{\text{Jack} \quad 1 \quad \emptyset}$$

Fundamental Problem of Causal Inference

- We cannot observe $Y_i(1) Y_i(0)$ in real life though:
 - We only observe one of the two potential outcomes $Y_i(1)$ or $Y_i(0)$
 - To infer causal effect, we need to infer the missing counterfactuals

Multiple Units

	$Y_i(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$
Jack	1	0	1
Dan	0	0	0
Anne	1	0	1
Yao	0	0	0
Judy	0	1	-1

- Individual treatment effects: value of $Y_i(1) Y_i(0)$ for each i
- Average treatment effect: mean of all the individual causal effects $ATE = \frac{1+0+1+0+(-1)}{5} = 0.2$

Back to Real World...

	$Y_i(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$
Jack	?	0	?
Dan	0	?	?
Anne	1	?	?
Yao	0	?	?
Judy	?	1	?

Randomized Experiment as a Solution

- Each unit's treatment assignment is determined by chance
- Randomization ensures balance between treatment and control group:
 - they are identical on average
 - we shouldn't see large differences between treatment and control group on pretreatment variable

ATE vs. Difference-in-Means

We want to estimate the average causal effects over all units:

Average Treatment Effect =
$$\frac{\sum_{i=1}^{n} (Y_i(1) - Y_i(0))}{n}$$

But we can only estimate instead:

Difference in means =
$$\overline{Y}_i(1) - \overline{Y}_i(0)$$

This is a pretty good estimate of ATE if randomization worked!

Casual Diagrams

Directed Acyclic Graphs (DAGs)

Nodes: variables in the DGP

Arrows: causal relationships in the DGP (associations)

Direction: from the cause variable to the caused variable

Directed: Each **node** has an arrow that points to another node

Acyclic: You can't cycle back to a node (and arrows only have one direction)

Graph: Well...it is a graph.

Major Types of Association

Confounding (Fork)

Common cause

Causation (Chain)

Mediation

Collision (Inverted Fork)

Selection / endogeneity

Confounding

Effect of money on elections

- 1. Find the part of campaign money that is explained by quality, remove it.
- 2. Find the part of win margin that is explained by quality, remove it.
- 3. Find the relationship between the residual part of money and residual part of win margin.

 This is the *causal effect*.

Campaign Example

Collider

Height is unrelated to basketball skill... among NBA players

Colliders can create fake causal effects

Causal Identification

- DAGs help us with the process of identification
- Causal effect is identified if the association between treatment and outcome is properly stripped and isolated
- Identification implies that:
 - All alternative stories are ruled out
 - We have enough information to answer a specific causal inference question
- Sometimes we cannot identify the effect with our data alone

Studying Example

