

WHAT IS CLAIMED IS:

- 1 1. An angioplasty catheter comprising:
2 a catheter body having a proximal end and a distal end;
3 a radially expandable shell near the distal end of the catheter body;
4 an external structure carried over but unattached to the shell; and
5 an attachment structure having a proximal end and a distal end attached to the
6 external structure, wherein the attachment structure is sufficiently sized and compliant to
7 accommodate geometrical changes and reaction forces produced by the external structure as
8 it is expanded by the shell.

- 1 2. A catheter as in claim 1, wherein the external structure comprises a
2 scoring structure.

- 1 3. A catheter as in claim 1, wherein the external structure comprises a
2 cutting structure.

- 1 4. A catheter as in claim 1, wherein at least a portion of the external
2 structure is arranged helically over the shell.

- 1 5. A catheter as in claim 1, wherein the external structure has a proximal
2 end and a distal end, and wherein the proximal end of the attachment structure is fixed to the
3 catheter body and the distal end of the attachment structure is secured to the proximal end of
4 the external structure.

- 1 6. A catheter as in claim 5, wherein the distal end of the external structure
2 is fixed to the catheter body, and wherein the attachment structure axially extends to
3 accommodate foreshortening of the external structure as the shell is expanded.

- 1 7. A catheter as in claim 6, wherein the attachment structure rotationally
2 extends to accommodate rotation of the external structure as the shell is expanded.

- 1 8. A catheter as in claim 7, wherein the attachment structure comprises a
2 compliance tube having an outer diameter and an inner diameter that extends over the
3 catheter body.

1 9. A catheter as in claim 8, wherein the inner diameter of the compliance
2 tube is larger than an outer diameter of the catheter body so that the compliance tube freely
3 extends with respect to the catheter body as the external structure foreshortens.

1 10. A catheter as in claim 9, wherein the compliance tube inner diameter is
2 sized so that the compliance tube freely rotates with respect to the catheter body as the
3 external structure rotates.

1 11. A catheter as in claim 9, wherein the compliance tube is sized to
2 control the compliance of the external structure and expandible shell.

1 12. A catheter as in claim 11, wherein the compliance tube has a wall
2 thickness ranging from 0.01 in. to 0.1 in.

1 13. A catheter as in claim 11, wherein the compliance tube has a length
2 ranging from 1cm to 10 cm.

1 14. A catheter as in claim 9, wherein the material of the compliance tube is
2 selected to control the compliance of the external structure and expandible shell.

1 15. A catheter as in claim 14, wherein the compliance tube comprises an
2 elastic material.

1 16. A catheter as in claim 15, wherein the compliance tube comprises a
2 polymer selected from the group consisting of nylon or Pebax.

1 17. A catheter as in claim 15, wherein the compliance tube comprises a
2 braided material.

1 18. A catheter as in claim 15, wherein the compliance tube comprises a
2 metal.

1 19. A catheter as in claim 18, wherein the compliance tube comprises a
2 wire mesh.

1 20. A catheter as in claim 9, wherein the compliance tube has one or more
2 perforations to control the compliance of the external structure and expandible shell.

1 21. A catheter as in claim 20, wherein the one or more perforations
2 comprise one or more slots extending along the outside circumference of the compliance
3 tube.

1 22. A catheter as in claim 21, wherein the slots form a pattern along the
2 outside circumference of the compliance tube.

1 23. A catheter as in claim 22, wherein the slots are parallel to each other.

1 24. A catheter as in claim 22, wherein the slots extend helically across the
2 compliance tube.

1 25. A catheter as in claim 22, wherein the slots extend radially across the
2 compliance tube.

1 26. A catheter as in claim 22, wherein the slots are circular in shape.

1 27. A catheter as in claim 22, wherein the slots are rectangular in shape.

1 28. A catheter as in claim 8, wherein the compliance tube has an outer
2 diameter that tapers from its distal end to its proximal end.

1 29. A catheter as in claim 28, wherein the outer diameter of the
2 compliance tube tapers down from in the range of .04 in. to .010 in. from the distal end and to
3 the proximal end.

1 30. A external catheter as in claim 1, wherein the attachment structure is
2 connected at its distal end to the external structure and at its proximal end to a manipulator.

1 31. A catheter as in claim 30, wherein the manipulator is positioned at the
2 proximal end of the catheter body and the attachment structure extends from the external
3 structure across the length of the catheter body.

1 32. A catheter as in claim 30, wherein the attachment structure axially
2 extends to accommodate foreshortening of the external structure as the shell is expanded.

1 33. A catheter as in claim 32, wherein the attachment structure rotationally
2 extends to accommodate rotation of the external structure as the shell is expanded.

1 34. A catheter as in claim 33, wherein the attachment structure comprises a
2 compliance tube having an outer diameter and an inner diameter that extends over the
3 catheter body.

1 35. A catheter as in claim 34, wherein the inner diameter of the
2 compliance tube is larger than an outer diameter of the catheter body so that the compliance
3 tube freely extends and rotates with respect to the catheter body as the external structure
4 foreshortens.

1 36. A catheter as in claim 35, wherein the compliance tube has a wall
2 thickness and a length that are sized to control the compliance of the external structure and
3 expandible shell.

1 37. A catheter as in claim 35, wherein the compliance of the external
2 structure is controlled by actuating the manipulator during expansion of the radially
3 expandible shell.

1 38. A catheter as in claim 35, wherein the compliance of the external
2 structure is controlled by actuating the manipulator during contraction of the radially
3 expandible shell.

1 39. A catheter as in any of claims 37 or 38, wherein actuating the
2 manipulator comprises axially advancing the attachment structure with respect to the catheter
3 body.

1 40. A catheter as in claim 39, wherein axially advancing the attachment
2 structure comprises pulling the attachment structure away from the distal end of the catheter
3 body.

1 41. A catheter as in any of claims 37 or 38, wherein actuating the
2 manipulator comprises rotating the attachment structure with respect to the catheter body.

1 42. A method of dilatating a stenosed region in a blood vessel, the method
2 comprising:

3 introducing an external structure carried over an expandible shell that is
4 connected to a catheter body by an attachment structure;

5 expanding the external structure within a stenosed region within the blood
6 vessel, wherein the attachment structure axially extends to accommodate foreshortening of
7 the external structure as the shell is expanded.

1 43. A method as in claim 42, wherein the attachment structure rotationally
2 extends to accommodate rotation of the external structure as the shell is expanded.

1 44. A method as in claim 43, wherein the attachment structure comprises a
2 compliance tube having an outer diameter and an inner diameter that extends over the
3 catheter body.

1 45. A method as in claim 44, wherein the inner diameter of the compliance
2 tube is larger than an outer diameter of the catheter body so that the compliance tube freely
3 extends and rotates with respect to the catheter body as the external structure foreshortens.

1 46. A method as in claim 44, wherein the compliance tube is sized to
2 control the compliance of the external structure and expandible shell.

1 47. A method as in claim 46, wherein the compliance tube has a wall
2 thickness ranging from 0.01 in. to 0.1 in.

1 48. A method as in claim 46, wherein the compliance tube has a length
2 ranging from 1cm to 10 cm.

1 49. A method as in claim 44, wherein the material of the compliance tube
2 is selected to control the compliance of the external structure and expandible shell.

1 50. A method as in claim 49, wherein the compliance tube comprises an
2 elastic material.

1 51. A method as in claim 50, wherein the compliance tube comprises a
2 polymer.

1 52. A method as in claim 43, wherein the external structure has a proximal
2 end and a distal end, and wherein the method further comprises the step of fixing the
3 proximal end of the attachment structure to the catheter body.

1 53. A method as in claim 43, wherein the external structure has a proximal
2 end and a distal end, and wherein the method further comprises the step of fixing the
3 proximal end of the attachment structure to a manipulator.

1 54. A method as in claim 53, wherein the manipulator is positioned at the
2 proximal end of the catheter body and the attachment structure extends from the external
3 structure across the length of the catheter body.

1 55. A method as in claim 54, wherein the compliance of the external
2 structure is controlled by actuating the manipulator during expansion of the radially
3 expandible shell.

1 56. A method as in claim 54, wherein the compliance of the external
2 structure is controlled by actuating the manipulator during contraction of the radially
3 expandible shell.

1 57. A method as in any of claims 55 or 56, wherein actuating the
2 manipulator comprises axially advancing attachment structure with respect to the catheter
3 body.

1 58. A method as in claim 57, wherein axially advancing attachment
2 structure comprises pulling the attachment structure away from the distal end of the catheter
3 body.

1 59. A method as in any of claims 55 or 56, wherein actuating the
2 manipulator comprises rotating the attachment structure with respect to the catheter body