

Small Signal MOSFET

60 V, 380 mA, Single, N-Channel, SOT-23

2N7002K, 2V7002K

Features

- ESD Protected
- Low R_{DS(on)}
- Surface Mount Package
- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Low Side Load Switch
- Level Shift Circuits
- DC-DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	V
Gate-to-Source Voltage	V _{GS}	±20	V
	Ι _D	380 270	mA
	Ι _D	320 230	mA
Power Dissipation Steady State 1 sq in Pad Steady State Minimum Pad	P _D	420 300	mW
Pulsed Drain Current (t _p = 10 μs)	I _{DM}	5.0	Α
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)	I _S	300	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	T _L	260	°C
Gate-Source ESD Rating (HBM, Method 3015)	ESD	2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface-mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
 Surface-mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	1.6 Ω @ 10 V	380 mA
00 0	2.5 Ω @ 4.5 V	300 IIIA

SIMPLIFIED SCHEMATIC

CASE 318

MARKING DIAGRAM

= Device Code 704 = Date Code* = Pb-Free Package

(NOTE: Microdot may be in either location)

*Date Code orientation and/or location may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]		
2N7002KT1G, 2V7002KT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel		
2N7002KT7G	SOT-23 (Pb-Free)	3500 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	300	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 3)		92	
Junction-to-Ambient - Steady State (Note 4)		417	
Junction-to-Ambient - t ≤ 5 s (Note 4)		154	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	-	-		-	-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				71		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
		V _{DS} = 60 V	T _J = 125°C			10	
		V _{GS} = 0 V, V _{DS} = 50 V	T _J = 25°C			100	nA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V				±10	μΑ
		V _{DS} = 0 V, V _{GS} = ±10 V				450	nA
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 5.0 \text{ V}$				150	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = 250 μA	1.0		2.3	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 500 mA		1.19	1.6	Ω
		V _{GS} = 4.5 V, I _D = 200 mA			1.33	2.5	
Forward Transconductance	9FS	$V_{DS} = 5 \text{ V}, I_{D} = 200 \text{ mA}$			530		mS
CHARGES AND CAPACITANCES		_					=
Input Capacitance	C _{ISS}	., .,			24.5	45	pF
Output Capacitance	C _{OSS}	G.5	f = 1 MHz, = 20 V		4.2	8.0	
Reverse Transfer Capacitance	C _{RSS}	- V _{DS} = 20 V			2.2	5.0	
Total Gate Charge	Q _{G(TOT)}				0.7		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V	, V _{DS} = 10 V;		0.1		
Gate-to-Source Charge	Q_{GS}	I _D = 2	00 mA		0.3		
Gate-to-Drain Charge	Q_{GD}				0.1		
SWITCHING CHARACTERISTICS, V_{GS}	s = V (Note 6)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DD} = 25 V, I_{D} = 500 mA, R_{G} = 25 Ω			12.2		ns
Rise Time	t _r				9.0		
Turn-Off Delay Time	t _{d(OFF)}				55.8		
Fall Time	t _f				29		
DRAIN-SOURCE DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.8	1.2	V
		I _S = 200 mA	T _J = 85°C		0.7		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%

Surface-mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
 Surface-mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.

^{6.} Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

Figure 6. On-Resistance Variation with

Temperature

Figure 5. On-Resistance vs. Gate-to-Source

Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Diode Forward Voltage vs. Current

Figure 10. Threshold Voltage with Temperature

TYPICAL CHARACTERISTICS

Figure 11. Thermal Response - 1 sq in pad

Figure 12. Thermal Response - minimum pad

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales