SPRINGBOARD DATA SCIENCES CERTIFICATION PROGRAM CAPSTONE PROJECT

MICHAEL ENGLISH

INTRO TO M.E

- Michael English
- Double Major inMathematics and Music
- Student Researcher
- Violinist/Violist

WHAT'S ALL THIS ABOUT?

WHAT IS DATA SCIENCE?

HARTSFIELD-JACKSON INTERNATIONAL AIRPORT (ATL)

Source: https://www.transtats.bts.gov/airports.asp?pn=1

WHAT IS THE QUESTION?

- ♦ More consumers utilize air travel than before to fly around the world. Record inbound and outbound flights at Hartsfield-Jackson International Airport (ATL) have lead to ATL consistently being named the world's busiest airport. Since the concentration of people is dense at ATL there is potential to study the social and fiscal trends associated with the steady increasing flow of people through checkpoints. Online resources collect various consumer and aviation data that can be organized to illuminate the notion of using flight routes to determine highly populated times and days at ATL.
- This research will utilize various data sets that include passenger throughput, maximum number of passengers per flight, aircraft load data, and popular flight routes from Atlanta to predict the population of passengers in the airport. Results from this research determine when ATL is overcrowded through the comparison of passengers enplaning that are traveling to the six most populous flight routes from Atlanta: Fort Lauderdale, FL; Orlando, FL; Tampa, FL; New York, NY; Los Angeles, CA; and Boston, MA.

HOW WE DO IT

- Data Wrangling :: Cleaning and Organizing Data for Efficient Use
- Exploratory Data Analysis :: After Cleaning, a comprehensive analysis of the data and structure
- Statistical Analysis and Data Visualization :: Visual charts, plots, and graphs which allow for statistical inference.
- Machine Learning: Applying regression models to datasets to determine actively
 "predict" what is happening, mathematically

THE DATASETS

To develop a model for predicting the population at Hartsfield-Jackson Airport (ATL) on a particular day, specific information is retrieved and merged from a list of publicly available databases.

- Atlanta Routes Database [1]: In this database, the total number of passengers that enplaned in ATL in March 2019 are listed.
- BTS Database [2]: This database provides information regarding all flights enplaning at ATL for the month of March in 2019.

Δ	А	В	С	D	E	F
1	a	FL_DATE	TAIL_NUM	ORIGIN_CITY_	NDEST_CITY_NAME	
2	2019	3/1/2019	N343FR	Atlanta, GA	New York, NY	
3	2019	3/1/2019	N117HQ	Atlanta, GA	New York, NY	
4	2019	3/1/2019	N443YX	Atlanta, GA	New York, NY	
5	2019	3/1/2019	N535NK	Atlanta, GA	Fort Lauderdale, FL	
6	2019	3/1/2019	N525NK	Atlanta, GA	Fort Lauderdale, FL	
7	2019	3/1/2019	N515NK	Atlanta, GA	Fort Lauderdale, FL	
8	2019	3/1/2019	N948UW	Atlanta, GA	New York, NY	
9	2019	3/1/2019	N7722B	Atlanta, GA	Fort Lauderdale, FL	
10	2019	3/1/2019	N560WN	Atlanta, GA	Fort Lauderdale, FL	
11	2019	3/1/2019	N479WN	Atlanta, GA	Fort Lauderdale, FL	
12	2019	3/1/2019	N469WN	Atlanta, GA	Fort Lauderdale, FL	
13	2019	3/1/2019	N553WN	Atlanta, GA	Fort Lauderdale, FL	
14	2019	3/1/2019	N487WN	Atlanta, GA	New York, NY	
15	2019	3/1/2019	N441WN	Atlanta, GA	New York, NY	
16	2019	3/1/2019	N944WN	Atlanta, GA	New York, NY	
17	2019	3/1/2019	N565WN	Atlanta, GA	New York, NY	
18	2019	3/1/2019	N8317M	Atlanta, GA	New York, NY	
19	2019	3/1/2019	N706JB	Atlanta, GA	Fort Lauderdale, FL	
20	2019	3/1/2019	N531JL	Atlanta, GA	New York, NY	
21	2019	3/1/2019	N613JB	Atlanta, GA	Fort Lauderdale, FL	
22	2019	3/1/2019	N592JB	Atlanta, GA	New York, NY	
23	2019	3/1/2019	N656NK	Atlanta, GA	Fort Lauderdale, FL	
24	2019	3/1/2019	N656NK	Atlanta, GA	Fort Lauderdale, FL	
25	2019	3/1/2019	N660NK	Atlanta, GA	Fort Lauderdale, FL	
26	2019	3/1/2019	N952UW	Atlanta, GA	New York, NY	
27	2019	3/1/2019	N410YX	Atlanta, GA	New York, NY	
28	2019	3/1/2019	N417YX	Atlanta, GA	New York, NY	
29	2019	3/1/2019	N907DN	Atlanta, GA	New York, NY	
30	2019	3/1/2019	N358NW	Atlanta, GA	New York, NY	
31	2019	3/1/2019	N363DN	Atlanta, GA	Fort Lauderdale, FL	
32	2019	3/1/2019	N673DL	Atlanta, GA	Fort Lauderdale, FL	
33	2019	3/1/2019	N339DN	Atlanta, GA	Fort Lauderdale, FL	
34	2019	3/1/2019	N683DA	Atlanta, GA	Fort Lauderdale, FL	
35	2019	3/1/2019	N556NW	Atlanta, GA	Fort Lauderdale, FL	
36	2019	3/1/2019	N6714Q	Atlanta, GA	Fort Lauderdale, FL	
37	2019	3/1/2019	N320DN	Atlanta, GA	Fort Lauderdale, FL	
38	2019	3/1/2019	N554NW	Atlanta, GA	Fort Lauderdale, FL	
39	2019	3/1/2019	N347DN	Atlanta, GA	Fort Lauderdale, FL	
40	2019	3/1/2019	N659DL	Atlanta, GA	Fort Lauderdale, FL	

[1]

			. — . — . —	<u> </u>		
12756 W	/N 425.2	Southwest Airlines Co.	Atlanta, GA	New Orleans, LA	2019	3
12399 DI	L 413.3	Delta Air Lines Inc.	Atlanta, GA	Providence, RI	2019	3
12333 W	/N 411.1	Southwest Airlines Co.	Atlanta, GA	Washington, DC	2019	3
12250 W	/N 408.3333333	Southwest Airlines Co.	Atlanta, GA	Los Angeles, CA	2019	3
11902 AA	A 396.7333333	American Airlines Inc.	Atlanta, GA	Los Angeles, CA	2019	3
11698 DI	L 389.9333333	Delta Air Lines Inc.	Atlanta, GA	Albany, NY	2019	3
11598 W	/N 386.6	Southwest Airlines Co.	Atlanta, GA	Nashville, TN	2019	3
11597 AA	A 386.5666667	American Airlines Inc.	Atlanta, GA	Philadelphia, PA	2019	3
11268 DI	L 375.6	Delta Air Lines Inc.	Atlanta, GA	Madison, WI	2019	3
11188 DI	L 372.9333333	Delta Air Lines Inc.	Atlanta, GA	Des Moines, IA	2019	3
11037 DI	L 367.9	Delta Air Lines Inc.	Atlanta, GA	Wichita, KS	2019	3
10963 DI	L 365.4333333	Delta Air Lines Inc.	Atlanta, GA	Columbia, SC	2019	3
10756 W	/N 358.5333333	Southwest Airlines Co.	Atlanta, GA	Kansas City, MO	2019	3
10486 W	/N 349.5333333	Southwest Airlines Co.	Atlanta, GA	Austin, TX	2019	3
10356 DI	L 345.2	Delta Air Lines Inc.	Atlanta, GA	Tallahassee, FL	2019	3
10330 DI	L 344.3333333	Delta Air Lines Inc.	Atlanta, GA	Tucson, AZ	2019	3
10314 9E	343.8	Endeavor Air Inc.	Atlanta, GA	Knoxville, TN	2019	3
9923 W	/N 330.7666667	Southwest Airlines Co.	Atlanta, GA	Jacksonville, FL	2019	3
9713 DI	L 323.7666667	Delta Air Lines Inc.	Atlanta, GA	Tulsa, OK	2019	3
9517 AA	A 317.2333333	American Airlines Inc.	Atlanta, GA	Phoenix, AZ	2019	3
9470 W	/N 315.6666667	Southwest Airlines Co.	Atlanta, GA	Richmond, VA	2019	3
9441 DI	L 314.7	Delta Air Lines Inc.	Atlanta, GA	El Paso, TX	2019	3
9270 DI	L 309	Delta Air Lines Inc.	Atlanta, GA	Albuquerque, NM	2019	3
9238 NI	K 307.9333333	Spirit Air Lines	Atlanta, GA	Baltimore, MD	2019	3
9163 N	K 305.4333333	Spirit Air Lines	Atlanta, GA	Detroit, MI	2019	3
8755 W	/N 291.8333333	Southwest Airlines Co.	Atlanta, GA	Raleigh/Durham, NC	2019	3
8714 DI	L 290.4666667	Delta Air Lines Inc.	Atlanta, GA	Harrisburg, PA	2019	3
8709 W	/N 290.3	Southwest Airlines Co.	Atlanta, GA	Phoenix, AZ	2019	3
8690 W	/N 289.6666667	Southwest Airlines Co.	Atlanta, GA	Indianapolis, IN	2019	3
8602 YV		Mesa Airlines Inc.	Atlanta, GA	Houston, TX	2019	3
8567 W	/N 285.5666667	Southwest Airlines Co.	Atlanta, GA	Columbus, OH	2019	3
8454 O	0	SkyWest Airlines Inc.	Atlanta, GA	Chattanooga, TN	2019	3
8429 9E	280.9666667	Endeavor Air Inc.	Atlanta, GA	Augusta, GA	2019	3
8390 O	_	SkyWest Airlines Inc.	Atlanta, GA	Montgomery, AL	2019	3
8229 95	277.6233333	Endeavor Air Inc	Atlanta GA	Gulfport/Riloxi_MS	2019	2

DATA WRANGLING

Cleanliness may be defined to be the emblem of purity of mind.
- Joseph Addison

Looking at the structure (str) of BTS, we see that there are an array of columns removed and added:

- * YEAR and ORIGIN_CITY_NAME were variables available in both datasets, and thus redundant. The extra set of rows were removed.
- Developed a sub-dataset that refines the collection to 6 points, collective, based on the six cities. The load factors of aircraft, averages based on the flights to the six

YEAR <dbl></dbl>	<pre></pre>	TAIL_NUM < chr>	LOAD_CAPACITY < dbl>	ORIGIN_CITY_NAME	Destination <chr></chr>	Avg_LF < dbl>	PASS_DAY <dbl></dbl>
2019	2019-03-01	N927NN	162	Atlanta, GA	Los Angeles, CA	143.6778	3220.633
2019	2019-03-01	N900WN	140	Atlanta, GA	Los Angeles, CA	124.1660	3220.633
2019	2019-03-01	N212WN	140	Atlanta, GA	Los Angeles, CA	124.1660	3220.633
2019	2019-03-01	N8313F	140	Atlanta, GA	Los Angeles, CA	124.1660	3220.633
2019	2019-03-01	N992NN	162	Atlanta, GA	Los Angeles, CA	143.6778	3220.633
2019	2019-03-01	N517NK	179	Atlanta, GA	Los Angeles, CA	158.7551	3220.633
2019	2019-03-01	N7724A	149	Atlanta, GA	Boston, MA	132.1481	3220.633
2019	2019-03-01	N8504G	189	Atlanta, GA	Boston, MA	167.6241	3220.633
2019	2019-03-01	N589JB	200	Atlanta, GA	Boston, MA	177.3800	3220.633
2019	2019-03-01	N206JB	110	Atlanta, GA	Boston, MA	97.5590	3220.633

STATISTICAL ANALYSIS

In Figure 3, each dot on the scatter plot represents a flight from the BTS database. passenger population at the airport:

Figure 4 represents the breakdown of flights,
Southwest Airlines provide a balanced baseline from having the most flights to these major cities. Further,
HJ_ATL is the home hub for Delta and Southwest, making them great data banks for enplaning flights.

MACHINE LEARNING

- Achine Learning is incorporated, in which the system conduct analyses based on different regression models or clustering models dictated to it. The exploratory data analysis showed that the number of passengers is related to the number of flights and load capacity available for the given flights.
- ❖ Performed a linear regression analysis with LOAD_CAPACITY and Dest (Destination) as the independent variables and PASS_DAY as the dependent variable. Dest, when constructed, had a data type of factor, which was be changed to numeric for use in the regression model:

```
lm(formula = PASS_DAY ~ LOAD_CAPACITY + Dest, data = BTS)
Residuals:
       Min
                                                   Max
-5.369e-10 1.110e-12 1.380e-12 1.700e-12 2.670e-12
Coefficients:
               Estimate Std. Error
                                    t value Pr(>|t|)
(Intercept)
              3.221e+03 6.129e-12 5.255e+14
                                                0.614
LOAD_CAPACITY 1.417e-14 2.804e-14 5.050e-01
              3.596e-15 3.582e-14 1.000e-01
                                                0.920
Dest
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.689e-11 on 400 degrees of freedom
  (33649 observations deleted due to missingness)
Multiple R-squared: 0.5001,
                               Adjusted R-squared: 0.4976
F-statistic: 200.1 on 2 and 400 DF, p-value: < 2.2e-16
```

THE ANALYSIS.

1. p-value, which displays the significance of the model compared to a null model, which is usually a model that displays averages of the dependent variable. It is a matter of laying down a baseline for accuracy of the model. The lower the p-value (ranging from 0 to 1), the more likely the model is more accurate at approximation than the null model, and the null model can be thrown out. Because the p-value is less than 0.05 (and even 0.01 for this regression, being 2.2e-16), the null model can be thrown out and it is concluded that this model is more accurate than the baseline.

2. R^2- value, which determines how closeâ the data points are to the regression (or best-fit) line. The values range from 0 to 1, with values closer to 1 indicating that the data points are â \(\precedeta \) closerâ \(\precedeta \) and more tightly correlated to the regression line. In laymanâ \(\precedeta \) s terms, the closer the value is to 1, the better approximation of the data points the predictive model will give. If it is closer to 0, then the independent variable may need to be changed as it does not provide enough context or influence on the dependent variable and is thus not useful for the model.

Here, the R² value is 0.5001. This is indicative of the values being moderately close to the line, as 0.5 is evenly between 0 and 1. This alsomeans that there is definitely another more refined choice for the best-fit line. With more testing and incorporating more observations, the results will be closer to the regression line.

FUTURE WORK

- ❖ In the future, the linear regression model will be expanded to consider additional independent variables.
- Also, the expansion of the data points will allow for a more detailed analysis. The point of approximating "congestion" in different systems such as the airport and overcrowding will be considered.

ACKNOWLEDGEMENTS

I would like to acknowledge my Springboard mentor, Dr. Goran Milonavanović, my faculty mentor, Dr. Torina Lewis for their expressed support, and the HBCU-UP Implementation Program.

This research opportunity was sponsored by the National Science Foundation, award numbers 1700408 and 1818682.