Esame di Elettronica Ingegneria Informatica/Automatica Esercizi d'esame anno 2016

22 gennaio 2016

Del circuito seguente, determinare l'andamento temporale della tensione V_{OUT} in presenza del gradino di tensione ideale in ingresso riportato in figura. (considerare il condensatore scarico a t=0)

$$V_{DD} = 10 \text{ V}$$

 $R_I = 1 \text{ k}\Omega$ $R_D = 2 \text{ k}\Omega$ $R_S = 1 \text{ k}\Omega$ $C = 2 \mu\text{F}$

Q₁:
$$V_T = 1 \text{ V}; \quad K = 0.5 \text{ mA/V}^2; \quad \lambda = 0, \ \chi = 0$$

Amplificatore Operazionale ideale con $L^+ = -L^- = 5 \text{ V}$

12 febbraio 2016

Del circuito seguente, calcolare:

- lo stato di polarizzazione dei tre transistori
- l'amplificazione di tensione per piccoli segnali $A_v = v_{out} / v_{in}$

02 aprile 2016

- 1) Del circuito seguente,
 - Determinare il guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{in}$

Amplificatore Operazionale ideale con $L^+ = -L^- = 10$ V

$$Q_I$$
: [$V_T = 2 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$]

$$R_I = 1 \text{ k}\Omega$$
; = $R_2 = 3 \text{ k}\Omega$; $R_D = 3 \text{ k}\Omega$;

$$V_{DD} = 10 \text{ V}; \quad V_1 = 1 \text{ V}$$

17 giugno 2016

1) Del circuito seguente, in presenza del segnale di tensione a gradino in ingresso V_{IN} , determinare l'andamento della tensione di uscita nel tempo, specificando i punti significativi.

Amplificatore Operazionale ideale con $L^+ = -L^- = 10$ V $R = 10 \text{ k}\Omega$; $C = 0,1 \text{ }\mu\text{F}$

21 luglio 2016

1) Del circuito seguente, calcolare lo stato di polarizzazione del transistore $Q_I(V_{GS}; I_D; V_{DS})$, e l'amplificazione di corrente $A_v = i_{out}/i_s$ per piccoli segnali.

Q₁:
$$V_T = 2 \text{ V}$$
; $K_I = 0.5 \text{ mA/V}^2$; $\lambda = 0$, $\chi = 0$

$$\chi = 0$$

$$I_1$$
=2mA

$$I_1$$
=2mA V_{DD} = 10 V; $C = \infty$

$$C = \infty$$

$$\mathbf{R}_{G} = 10 \text{ k}\Omega;$$
 $\mathbf{R}_{D} = 5 \text{ k}\Omega;$ $\mathbf{R}_{S} = 1 \text{ k}\Omega;$ $\mathbf{R}_{L} = 5 \text{ k}\Omega;$

$$R_D = 5 \text{ k}\Omega$$

$$R_S = 1 \text{ k}\Omega$$

$$R_L = 5 \text{ k}\Omega;$$

14 settembre 2016

1) Dato il circuito seguente, in cui V_{IN} è un generatore di onda quadra i cui valori sono riportati nel grafico e V_s un generatore sinusoidale di valor medio nullo, ampiezza 200mV e frequenza pari 1kHz, graficare la forma d'onda della tensione di uscita, V_{out} , specificandone i punti significativi.

$$M = \{V_t = 1 \text{ V}; K = 0.5 \text{ mA/V}^2; \lambda = 0\}$$

 $V_{DD} = 10 \text{V}; R_I = 1 \text{k}\Omega; R_2 = 5 \text{k}\Omega; R_D = 3 \text{k}\Omega R_S = 2 \text{k}\Omega$

Considerare l'amplificatore operazionale ideale, con tensione di alimentazione pari a $\pm V_{DD}$.

5 novembre 2016

1) Dati il circuito in figura in cui V_I è un generatore di tensione continua pari a 2V e V_2 ha l'andamento a gradino riportato, determinare l'evoluzione temporale della tensione di uscita Vout. Amplificatori Operazionali ideali con $L^+ = -L^- = 12$ V

$$R_I = 1 \text{ k}\Omega;$$
 $R_2 = 3 \text{ k}\Omega;$ $R_3 = 5 \text{ k}\Omega;$ $C = 100 \text{nF}$