Modellierung und Simulation WS 2016/17 Abgabefrist: Siehe elearning bzw. exchange Name: ______ Aufwand (h): ______ Punkte:

Aufgabe 1 (3 + 2 + 1 = 6 Pkt): Schwingkreise und die Modellierung von Produktion und Verkaufsdynamik

- (a) Modellieren Sie in SIMULINK die Steuerung der Anheuerung bzw. des Abbauens von Arbeitern in Abhängigkeit vom Lagerstand eines Produktionsumfelds. Nehmen Sie anfänglich einen konstanten Absatz von 900 Einheiten an, eine Produktivität von 10 Einheiten pro Arbeiter, einen Sockel von 50 Stammarbeitsplätzen und einen anfänglichen Lagerstand von 100 vorrätigen Einheiten. Dokumentieren Sie Ihr Modell und entsprechende Testergebnisse – konvergiert dieses System?
- (b) Führen Sie eine Dämpfungskonstante in das Modell ein (mit Wert 0.1). Wie verändert das Ihr Modell und wie wirkt es sich auf die Simulation aus?
- (c) Nehmen wir an, der Preis ergebe sich als (200 Lagerstand / 10). Außerdem beeinflusse der Preis den Absatz: Anstatt eines konstanten Absatzes ergibt sich ein Absatz von (900 Preis / 10). Dokumentieren Sie erneut entsprechende Änderungen am Modell und Auswirkungen auf die Simulation.

Aufgabe 2 (6 Pkt): Wachstum, Adrenalingehalt des Blutes

Adrenalingehalt des Blutes: Adrenalin wird von der Nebenniere in das Blut ausgeschüttet (sekretiert) und dort durch Enzyme abgebaut. Die zeitabhängige Sekretionsrate sei in erster Näherung durch die Funktion $f(t) = a + b \cos(\pi(t-8)/12)$, mit a>b>0 konstant, bestimmt. Unter der Annahme, dass die Abbaurate proportional (Konstante α) zum gerade vorhandenen Adrenalingehalt A(t) ist, stelle man eine Differenzialgleichung für A auf. Wie verläuft der Adrenalingehalt für $\alpha = 0.2$, a = 0.1, b = 0.025 und dem Anfangswert 1 im Zeitraum $0 \le t < 48$? (Sowohl Simulation als auch direkte Berechnung sind gültige Lösungen)

Aufgabe 3 (6 Pkt): Logistisches Wachstum

Die Vermehrung der Fruchtfliege wurde 1920 von R. Pearl experimentell untersucht und folgende Gleichung für die Population P(t) (t in Tagen gemessen) gefunden:

 $P'(t) = (1/5) P(t) - (1/5175)P^{2}(t)$.

Wie groß ist die Population nach 12 Tagen, wenn anfänglich 10 Fruchtfliegen vorhanden sind? Wie viele Mitglieder gibt es maximal? Zeichnen Sie den Populationsverlauf bis zu dem Tag, an dem 99% des maximalen Wertes erreicht sind.

Aufgabe 4 (6 Pkt): Räuber und Beute

Bei einer Räuber-Beute Konstellation sind folgende Daten bekannt: Wachstumskonstante und mittlerer Bestand der Beute: 0,4 und 300 Sterbekonstante und mittlerer Bestand der Räuber: 0,3 und 50

Berechnen Sie den Verlauf der Räuber- und Beute Population beginnend mit R0 = 5 und B0 = 500.

Hinweise: Geben Sie Ihre Ausarbeitung gedruckt auf Papier ab.

Abgegebene Beispiele müssen in der Übungsstunde präsentiert werden können.

Übung 1 students@fh-ooe

1 Schwingkreise und Verkaufsdynamik

1.1 a

Abbildung 1: Modell mit positiver Rückkopplung

Abbildung 2: Verlauf der Simulation des Modells

Dieses System hat eine positive Rückkopplung und kann daher nicht zu einem Wert konvergieren, dazu wären zwei negative Rückkopplungen der beiden Integratoren *employees* und *stock*. Es fängt in diesem Fall auch nicht an zu Schwingen sondern "*implodiert*" regelrecht. Es gibt keine Möglichkeit dieses System durch Parameterveränderung zu stabilisieren, da es sich hier um ein instabiles System handelt.

S1610454013 2/ 11

OBERÖSTERREICH

1.2 b

Abbildung 3: Modell mit einfacher negativer Rückkopplung

Abbildung 4: Verlauf der Simulation des Modells, tMax=300

S1610454013 3/11

Abbildung 5: Verlauf der Simulation des Modells, tMax=1000

Dieses System wird durch die negative Rückkopplung stabilisiert und weist ein stabiles Verhalten auf, jedoch ist das System nun ein Schwingkreis. Dieses System wird auch nicht zu einem Punkt konvergieren, den es fehlt noch die zweite negative Rückkopplung, die das System dazu anregt zu einem Wert zu konvergieren.

1.3 c

Abbildung 6: Modell mit doppelter negativer Rückkopplung

S1610454013 4/ 11

Abbildung 7: Verlauf der Simulation des Modells, tMax=100

Abbildung 8: Verlauf der Simulation des Modells, t
Max=500 $\,$

S1610454013 5/ 11

Abbildung 9: Verlauf der Simulation des Modells, tMax=1000

Mit dem hinzufügen der zweiten negativen Rückkopplung wird das System zum gedämpften Schwingkreis, dass zu einem Wert konvergiert (employees, stock).

S1610454013 6/ 11

Übung 1 students@fh-ooe

2 Adrenalingehalt des Blutes

Listing 1: Skript für die diskrete Berechnung des Verlaufs

```
% simulation parameters
   tStep = 0.01;
          = 100;
   tMax
3
   tSart = 1;
4
   \% simulation arguments
5
   alpha = 0.2;
6
          = 0.1;
          = 0.025;
9
   At
          = 1;
10
   % result matrizes
11
          = [];
   tSteps = [];
12
          = 1;
13
   for t=tSart:tStep:tMax
14
        % box{ discrete calculation of } A(n+1)
15
       At = (alpha * At) + (a + (b * (cos(pi*(t-8)/12))));
16
17
       res(i)
                  = At;
18
       tSteps(i) = t;
19
                  = i + 1;
20
21
   end
22
23
   % plot results
24
   figure;
   plot(tSteps, res);
25
   xlabel('time')
26
   legend('A(t): (alpha * At) + (a + b * (cos(pi*(t-8)/12)))');
```


Abbildung 10: Verlauf des Adrenalingehalts

Der Verlauf wurde diskret berechnet, da die Abbaurate proportional zum aktuellen Adrenalingehalt ist.

S1610454013 7/ 11

3 Logistisches Wachstum

Listing 2: Skript für die kontinuierliche Berechnung des Verlaufs

```
% Simulation parameters
  tStep = 1;
3 \mid tMax = 50;
4 | tSart = 1;
  % simulation arguments
  alpha = 1/5;
   beta
         = 1/5175;
          = alpha / beta; % border to converge too
9
   C99
          = C * 0.99;
                          % 99% value
10
          = 10;
                          % initial flys
11
   \% result matrizes
        = [];
12
   res
   Pt_12 = 0;
                           % value at day 12
13
   t_C99 = 0;
                           % days when 99% has beeen reached first
14
15
   for t=tSart:tStep:tMax
16
       % continous calculation
17
                  = alpha * Pt - (beta * Pt^2);
       Pt_
18
                  = Pt + (Pt_ * tStep);
19
20
21
       % save result
22
       res(t)
               = Pt;
23
       % get value at day 12
24
       if t == 12
25
           Pt_12 = Pt;
26
       end:
27
28
       % get days when 99% has been reached first
29
       if t_C99 == 0 && Pt >= C99
30
           t_C99 = t;
31
32
           break;
33
       end;
   end
34
35
   % plot results
36
  figure;
37
  plot(1:tStep:t_C99, res);
38
  xlabel('time')
39
  legend('A_(t): alpha * Pt - (beta * P^2)');
```

S1610454013 8/ 11

Abbildung 11: Verlauf und berechnete Werte

S1610454013 9/ 11

4 Logistisches Wachstum

Listing 3: Skript für die kontinuierliche Berechnung des Verlaufs

```
% Simulation parameters
   tStep = 0.01;
   tMax = 1003;
3
4
   % Simulation arguments
5
   alpha = 0.4; % breath rate
   gamma = 0.3; % death rate
        = 300; % mean prey
9
         = 50; % mean preadator
10
   beta = alpha / Mr;
   delta = gamma / Mb;
11
        = 5; % current preadator count (initially 5)
12
         = 500; % current prey count (initially 500)
13
14
   % result container
15
   bProg = zeros(tMax/tStep+1,1);
16
   rProg = zeros(tMax/tStep+1,1);
17
         = 1;
18
19
   for t=0:tStep:tMax
20
21
       % Continous calculation of predators and preys
22
       Bt_= (alpha * Bt) - (beta * Bt * Rt);
23
       Rt_{-} = (-gamma * Rt) + (delta * Bt * Rt);
24
       Bt = Bt + (Bt_* * tStep);
25
       Rt = Rt + (Rt_* * tStep);
26
27
       % remember results
28
       bProg(i) = Bt;
29
       rProg(i) = Rt;
30
       i = i + 1;
31
32
33
   end
34
   % plot results
35
   figure;
36
  title ('Predator and Prey');
37
  plot(0:tStep:tMax, [bProg, rProg]);
```

S1610454013 10/ 11

Abbildung 12: Verlauf

S1610454013 11/ 11