Math primer for the Neural Networks course

Roberto Esposito

roberto.esposito@unito.it

Image dreamed by stable diffusion

Prompt: "abstract, geometric shapes, 3d render, dark dusty colors, dark red, light gray, strokes"

<u>Calculus knowledge poll</u>

Ca/CU/US

Derivatives

Suppose we have a function y=f(x), where both x and y are real numbers.

The derivative of f at point x, denoted f'(x) or $\frac{df}{dx}(x)$ is the slope of the tangent line to f at point x.

In other words, it specifies how to scale a small change in the input in order to obtain the corresponding change in the output: $f(x+\epsilon) \approx f(x) + \epsilon f'(x)$.

$$f'(x) = \lim_{h o 0} rac{f(x+h)-f(x)}{h}$$

Secant line

Properties of derivatives

Property

Linearity	(lpha f(x) + eta g(x))'	lpha f'(x) + eta g'(x)
Chain rule	(f(g(x)))'	f'(g(x))g'(x)
Product rule	(g(x)h(x))'	g'(x)h(x)+g(x)h'(x)
Quotient	$\left(\frac{f(x)}{g(x)}\right)'$	$\frac{f(x)'g(x) - f(x)g'(x)}{(g(x))^2}$
Rule	$\left(\overline{g(x)} \right)$	$(g(x))^2$
Power rule	$(x^r)'$	rx^{r-1}

• • •

Examples

- Power rule: $(x^4)'$
- Linearity: $(3\sin(x) + x^2)'$
- Chain rule: $(\sin(x^2))'$
- Product rule: $(x^2x^3)'$
- Quotient rule: $(\frac{x^5}{x^2})'$

Examples

- Power rule: $(x^4)' = 4x^3$
- ullet Linearity: $(3\sin(x)+x^2)'=3(\sin(x))'+(x^2)'=3\cos(x)+2x$
- Chain rule: $(\sin(x^2))' = \cos(x^2)(x^2)' = 2\cos(x^2)x$
- ullet Product rule: $(x^2x^3)'=2x(x^3)+x^2(3x^2)=5x^4=(x^5)'$
- Quotient rule: $(\frac{x^5}{x^2})' = \frac{5x^4(x^2) x^5(2x)}{x^4} = \frac{3x^6}{x^4} = 3x^2 = (x^3)'$

Integrals

Consider $f:\mathbb{R} o \mathbb{R}$ and an interval [a,b] on the real line.

The integral of f between a and b is the area under f in the given region (when the function is below 0, the area contributes negatively).

If f admits an antiderivative F, i.e., if it exists F such that F'(x)=f(x), then:

$$\int f(x)dx = F(x) + C$$

and

$$\int_a^b f(x)dx = F(x)ig|_a^b = F(b) - F(a)$$

Properties of Integrals

Property

linearity	$\int lpha f(x) + eta g(x) dx$	$lpha \int f(x) dx + eta \int g(x) dx$
constant rule	$\int k dx$	kx+C
power rule	$\int x^n dx$	$rac{x^{n+1}}{n+1}+C, n eq -1$
log rule	$\int \frac{1}{x} dx$	$\ln(x) + C$
exponential rule	$\int a^{kx} dx$	$rac{a^{kx}}{k \ln a} + C, a > 0, a eq 1$
Sin rule	$\int \sin(x) dx$	$-\cos(x) + C$
Cosin rule	$\int \cos(x) dx$	$\sin(x) + C$

. . .

g'(x) Area under g' between -5 and 5 /g(x)Tangent line evaluated at x_0 , using $g'(x_0)$ as slope $g(x) = 0.1 \frac{x^3}{3} - \cos(x)$ $g'(x) = 0.1x^2 + \sin(x)$

 $\int g'(x)dx = g(x) + C$

Integration/derivatives

Partial derivatives and Gradients

Assume you have a function $y=f(x_1,\ldots,x_n)=f(\mathbf{x})$, where $y\in\mathbb{R},\mathbf{x}\in\mathbb{R}^n$.

The partial derivative $\frac{\partial}{\partial x_j} f(\mathbf{x})$ measures how f changes as only the x_j variable increases at point \mathbf{x} :

$$egin{aligned} rac{\partial}{\partial x_j} f(\mathbf{x}) &= \lim_{h o 0} rac{f(\mathbf{x} + h \hat{\imath}_j) - f(\mathbf{x})}{h} \ &= \lim_{h o 0} rac{f(x_1, \dots, x_j + h, \dots, x_n) - f(x_1, \dots, x_n)}{h} \end{aligned}$$

In this example:

- gray plane: x = 1
- ullet black parabola: intersection between x=1 and f
- ullet blu line: tangent to f on the plane x=1 evaluated at y=1.

Partial derivative

The **gradient** of f, denoted $\nabla_{\mathbf{x}} f$ (or simply ∇f), is the vector collecting all partial derivatives:

$$abla f = \left[rac{\partial f}{\partial x_1}, \ldots, rac{\partial f}{\partial x_n}
ight]^ op$$

Chain rule for multivariate calculus

Assume z=f(x,y) and let x,y depend on an additional variable t, then:

$$rac{dz}{dt} = rac{\partial z}{\partial x} rac{dx}{dt} + rac{\partial z}{\partial y} rac{dy}{dt}.$$

More in general for $f:\mathbb{R}^n o \mathbb{R}$, when $x_1 \dots x_n$ depend on a variable t:

$$rac{df}{dt} = \sum_{i=1}^n rac{\partial f}{\partial x_i} rac{dx_i}{dt}$$

Example

Let:

$$ullet$$
 $(x,y)=(t^2,t)$, i.e., $x(t)=t^2$ and $y(t)=t$.

•
$$z = f(x, y) = x^2 y^2$$
.

Evaluate the derivative of z w.r.t. t.

Example

Let:

- ullet $(x,y)=(t^2,t)$, i.e., $x(t)=t^2$ and y(t)=t.
- $z = f(x, y) = x^2 y^2$.

$$rac{dz}{dt} = rac{\partial z}{\partial x}rac{dx}{dt} + rac{\partial z}{\partial y}rac{dy}{dt} = 2xy^2\cdot 2t + 2x^2y\cdot 1 = 4t^5 + 2t^5 = 6t^5$$

Note

By noticing that $f(x,y)=(x(t))^2\cdot(y(t))^2=(t^2)^2\cdot(t)^2=t^4t^2=t^6$.

The same results could have been obtained simply by evaluating $rac{d}{dt}t^6=6t^5$.

Directional derivatives

Assume \mathbf{u} to be a unit vector. The directional derivative of f at \mathbf{x} in \mathbf{u} direction is the rate of change in the direction given by vector \mathbf{u} .

$$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{h o 0} rac{f(\mathbf{x} + h\mathbf{u}) - f(\mathbf{x})}{h}$$

In other words, the directional derivative of f at \mathbf{x} in the direction of \mathbf{u} is the derivative of $f(\mathbf{x} + \alpha \mathbf{u})$ w.r.t. α evaluated at $\alpha = 0$.

Using the chain rule, we can easily compute an expression for $D_{\mathbf{u}}f(\mathbf{x})$:

$$\left. D_{\mathbf{u}} f(\mathbf{x}) = rac{d}{dlpha} f(\mathbf{x} + lpha \mathbf{u})
ight|_{lpha = 0} = \sum_{i=1}^n rac{\partial f(\mathbf{x} + lpha \mathbf{u})}{\partial x_i}
ight|_{lpha = 0} rac{dx_i}{dlpha} =
abla f(\mathbf{x}) \cdot \mathbf{u} = \mathbf{u}^ op
abla f(\mathbf{x})$$

Let assume we want to find the direction in which the function increases the most, i.e., we want to find \mathbf{u} such that $\nabla_{\mathbf{u}} f$ is largest. We want to solve:

$$\max_{\mathbf{u}, \mathbf{u}^{\top} \mathbf{u} = 1} D_{\mathbf{u}} f(\mathbf{x}) = \max_{\mathbf{u}, \mathbf{u}^{\top} \mathbf{u} = 1} \mathbf{u}^{\top} \nabla f(\mathbf{x}) = \max_{\mathbf{u}, \mathbf{u}^{\top} \mathbf{u} = 1} |\mathbf{u}| |\nabla f(\mathbf{x})| \cos(\theta)$$

Since $|\mathbf{u}|=1$ and since $\nabla f(\mathbf{x})$ does not depend on \mathbf{u} , we are left with finding \mathbf{u} that maximizes $\cos\theta$. Which implies that the maximum is attained when \mathbf{u} is in the same direction as $\nabla f(\mathbf{x})$.

Important: the **gradient** points in the direction in which f increases the most.

Jacobian Matrix

The **Jacobian** of a multi-valued, multi-variable function:

$$f: \mathbb{R}^n o \mathbb{R}^m, \quad f(\mathbf{x}) = \left[f(\mathbf{x})_1, \dots, f(\mathbf{x})_m
ight]^{ op}$$

is the matrix $\mathbf{J} \in \mathbb{R}^{m \times n}$ containing the partial derivatives of all $f(\mathbf{x})_i, (1 \leq i \leq m)$ for all variables $x_i, (1 \leq j \leq n)$:

$$\mathbf{J}_{i,j} = rac{\partial}{\partial x_j} f(\mathbf{x})_i$$

or, equivalently, the Jacobian is the matrix containing $abla[f(\mathbf{x})_i]$ in row i:

$$\mathbf{J} = ig[
abla[f(\mathbf{x})_i]^ opig]_{i=1}^m$$

Second derivatives

The **second derivative** is a derivative of a derivative. For instance, if $f: \mathbb{R}^n \to \mathbb{R}$, we can compute n^2 second derivatives:

$$\frac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{x})$$

The second derivative tells us how the first derivative will change as we vary the input. We can think of the second derivative as **measuring curvature**.

The matrix H(f) containing all these partial derivatives is called the Hessian of the function f. Note: $H(f) = \mathbf{J}(\nabla f)$

Properties of the Hessian matrix

Anywhere that the second partial derivatives are continuous, the differential operators are commutative, i.e. their order can be swapped:

$$rac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{x}) = rac{\partial^2}{\partial x_j \partial x_i} f(\mathbf{x})$$

This implies that **the Hessian is symmetric** at such points.

When $\nabla f(\mathbf{x}_0) = \mathbf{0}$ the Hessian helps us to understand if we are on a minimum (true if the Hessian is positive definite, i.e., all eigenvalues are > 0), a maximum (true if the Hessian is negative definite, i.e., all eigenvalues are < 0). If the Hessian is neither positive nor negative definite (we have at least one zero eigenvalue):

- we are on a saddle point if there is at least 1 positive eigenvalue and 1 negative eigenvalue;
- the test is inconclusive otherwise.

<u>Calculus knowledge poll</u>