UNIK4690 Project

Akhsarbek Gozoev - akhsarbg Sadegh Hoseinpoor - sadeghh Key Long Wong - keylw

May 15, 2018

Project description

The purpose of the software is to recognise text from any surface with uneven lighting.

First step

As we want to test the prof of concept first we simplyfied the SW to just be: Recognise numbers [0-9] from a binary img, with computer printed numbers on homogenous background. Containing one horizontal line of numbers

Second step

Assume sequence(n number of lines) of numbers. not horizontal lines. on homogeneous background.

Report

Week 1 19.04.18

- \bullet Feedback on project proposal
- Overview of project
 - simplification
 - binary image \rightarrow numbers \rightarrow straight text \rightarrow Classify
- $\bullet\,$ init; github atom
- first test of charcter Segmentation

Week 2 26.04.18

- Charcter Segmentation Projection Histograms OpenCV
 - By projection the histogram of the binary image on the Y-axis, we can find where the sentences/lines of text appears. Following, a projection histogram on the X-axis can discover where the charecters appear.

9270453186

Figure 1: [0-9] segmented with projection histogram

- Classification Perceptron neural network TensorFlow
 - MNIST dataset Datasett consisting of several thousand handwritten labeled numbers
 - * Numbers ranging from [0-9]
 - * Images are 28x28pixels
 - Hyperparameter tuneing
 - * Activation function
 - * Number of hidden layers
 - * Nodes in hidden layers
 - * Cost function
 - * Optimazation function
 - * Learning rate
 - Theoretic accuracy of the network with 2 hidden layers 98%
 - * Measured accuracy 97%

```
4690-p2018|Sadegh(master)$ p3 src/find_symbol.py
Model restored
Extracted text: 9220453189
```

Figure 2: First output with classification. input see Figure 1

Week 3 03.05.18

- Rotation of text
 - Hough transform
 - cv2.minAreaRect()
- How to distinguish between upside-down, and verticle vs horisontal text segments
 - Classifiy in all 4 rotations, and choose the classification with highest avrage confidence
- Classification Perceptron neural network Error
 - Error rate too high, test-set accuracy 97%, validation set accuracy < 50%
 - CNN TensorFlow Estimator API
 - * Challenging documentation; load/save models
 - Dataset FNIST Group contribution
 - * Dataset including several fonts
 - * English alphabet, and numbers [0-9]

Week 4 17.05.18

• —

• —