Cyclistic Case Study Mar21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for March 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
                       ✓ stringr 1.4.1
            1.2.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
  The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Mar21 <- read_csv("C:/Users/theby/Documents/202103-divvy-tripdata.csv")
```

```
## Rows: 228496 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
data type structure of columns, str().
View(Mar21)
 colnames (Mar21)
     [1] "ride id"
                                 "rideable_type"
                                                        "started at"
     [4] "ended at"
                                 "start station name" "start station id"
    [7] "end_station_name"
 ##
                                 "end_station_id"
                                                        "start_lat"
 ## [10] "start_lng"
                                 "end_lat"
                                                        "end_lng"
 ## [13] "member_casual"
 nrow(Mar21)
 ## [1] 228496
 dim(Mar21)
 ## [1] 228496
                     13
 head(Mar21)
 ## # A tibble: 6 × 13
 ##
      ride id
                       ridea…¹ started at
                                                     ended at
                                                                           start...<sup>2</sup> start...<sup>3</sup>
 ##
                       <chr>
                               <dttm>
                                                     <dttm>
 ## 1 CFA86D4455AA1... classi... 2021-03-16 08:32:30 2021-03-16 08:36:34 Humbol... 15651
 ## 2 30D9DC61227D1... classi... 2021-03-28 01:26:28 2021-03-28 01:36:55 Humbol... 15651
 ## 3 846D87A15682A... classi... 2021-03-11 21:17:29 2021-03-11 21:33:53 Shield... 15443
 ## 4 994D05AA75A16... classi... 2021-03-11 13:26:42 2021-03-11 13:55:41 Winthr... TA1308...
 ## 5 DF7464FBE92D8... classi... 2021-03-21 09:09:37 2021-03-21 09:27:33 Glenwo... 525
 ## 6 CEBA8516FD17F... classi... 2021-03-20 11:08:47 2021-03-20 11:29:39 Glenwo... 525
 ## # ... with 7 more variables: end station name <chr>, end station id <chr>,
        start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
 ## #
         member casual <chr>, and abbreviated variable names ¹rideable type,
```

```
tail(Mar21)
```

2start_station_name, 3start_station_id

#

```
## # A tibble: 6 × 13
##
     ride_id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
##
                            <dttm>
                                                   <dttm>
                     <chr>
                                                                        <chr>
## 1 081549DEA616C... electr... 2021-03-14 01:59:38 2021-03-14 03:13:09 Larrab... TA1309...
## 2 9397BDD14798A... docked... 2021-03-20 14:58:56 2021-03-20 17:22:47 Michig... 13042
## 3 BBBEB8D51AAD4... classi... 2021-03-02 11:35:10 2021-03-02 11:43:37 Kingsb... KA1503...
## 4 637FF754DA0BD... classi... 2021-03-09 11:07:36 2021-03-09 11:49:11 Michig... 13042
## 5 F8F43A0B978A7... classi... 2021-03-01 18:11:57 2021-03-01 18:18:37 Kingsb... KA1503...
## 6 3AE64EA5BF43C... electr... 2021-03-26 17:58:14 2021-03-26 18:06:43 <NA>
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
## #
       2start_station_name, 3start_station_id
```

```
summary(Mar21)
```

```
##
      ride id
                      rideable_type
                                           started at
                      Length:228496
                                         Min. :2021-03-01 00:01:09.00
##
   Length: 228496
                      Class :character
                                         1st Qu.:2021-03-10 10:45:36.75
##
   Class :character
##
   Mode :character
                      Mode :character
                                         Median :2021-03-19 17:37:20.50
                                         Mean :2021-03-17 23:22:08.81
##
##
                                         3rd Qu.:2021-03-25 08:39:23.25
##
                                         Max. :2021-03-31 23:59:08.00
##
##
      ended at
                                    start station name start station id
##
         :2021-03-01 00:06:28.00
                                    Length: 228496
                                                       Length: 228496
   1st Ou.:2021-03-10 11:04:40.25
                                                       Class :character
##
                                    Class :character
##
   Median :2021-03-19 17:55:05.00
                                    Mode :character
                                                      Mode :character
         :2021-03-17 23:45:00.76
   3rd Qu.:2021-03-25 08:54:12.75
##
##
   Max. :2021-04-06 11:00:11.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.65
##
   Length: 228496
                      Length:228496
                                                         Min. :-87.78
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                         Mean :-87.64
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.07
                                                         Max. :-87.53
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.64
                   Min. :-88.07
                                    Length: 228496
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.90
                                    Mode :character
##
                   Median :-87.64
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.08
                   Max. :-87.53
##
   NA's
          :167
                   NA's
                          :167
```

str(Mar21)

```
## spc tbl [228,496 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:228496] "CFA86D4455AA1030" "30D9DC61227D1AF3" "846D87A15682A284" "994D05AA75A168
## $ ride_id
F2"
##
   $ rideable_type
                        : chr [1:228496] "classic bike" "classic bike" "classic bike" ...
                        : POSIXct[1:228496], format: "2021-03-16 08:32:30" "2021-03-28 01:26:28" ...
   $ started at
                        : POSIXct[1:228496], format: "2021-03-16 08:36:34" "2021-03-28 01:36:55" ...
##
    $ ended at
## $ start_station_name: chr [1:228496] "Humboldt Blvd & Armitage Ave" "Humboldt Blvd & Armitage Ave" "Shields A
ve & 28th Pl" "Winthrop Ave & Lawrence Ave" ...
    $ start_station_id : chr [1:228496] "15651" "15651" "15443" "TA1308000021"
    $ end_station_name : chr [1:228496] "Stave St & Armitage Ave" "Central Park Ave & Bloomingdale Ave" "Halsted
St & 35th St" "Broadway & Sheridan Rd" ...
   $ end station id : chr [1:228496] "13266" "18017" "TA1308000043" "13323" ...
##
    $ start_lat
                        : num [1:228496] 41.9 41.9 41.8 42 42 ..
                        : num [1:228496] -87.7 -87.7 -87.6 -87.7 -87.7 ...
##
    $ start lng
                        : num [1:228496] 41.9 41.9 41.8 42 42.1 ...
##
    $ end lat
                        : num [1:228496] -87.7 -87.7 -87.6 -87.6 -87.7 ...
##
    $ end lna
                        : chr [1:228496] "casual" "casual" "casual" "casual" ...
##
    $ member casual
##
    - attr(*, "spec")=
##
     .. cols(
##
         ride_id = col_character(),
     . .
##
          rideable type = col character(),
     . .
          started_at = col_datetime(format = ""),
##
     . .
          ended_at = col_datetime(format = ""),
##
##
          start station name = col character(),
     . .
##
          start_station_id = col_character(),
     . .
##
          end_station_name = col_character(),
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Mar21$date <- as.Date(Mar21$started_at)
Mar21$month <- format(as.Date(Mar21$date), "%m")
Mar21$day <- format(as.Date(Mar21$date), "%d")
Mar21$year <- format(as.Date(Mar21$date), "%Y")
Mar21$day_of_week <- format(as.Date(Mar21$date), "%A")
Mar21$ride_length <- difftime(Mar21$ended_at,Mar21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Mar21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Mar21$ride_length <- as.numeric(as.character(Mar21$ride_length))
is.numeric(Mar21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Mar21 <- na.omit(Mar21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Mar21 <- subset(Mar21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
Mar21 <- subset (Mar21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Mar21$ride_length)
```

```
## [1] 1367.549
```

median(Mar21\$ride_length)

```
## [1] 748
```

max(Mar21\$ride_length)

```
## [1] 1900899
```

min(Mar21\$ride_length)

```
## [1] 2
```

Run a statistical summary of the ride length.

```
summary(Mar21$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 417 748 1368 1399 1900899
```

Compare the members and casual users

```
aggregate(Mar21$ride_length ~ Mar21$member_casual, FUN = mean)
```

```
## Mar21$member_casual Mar21$ride_length
## 1 casual 2308.8900
## 2 member 819.9872
```

```
aggregate(Mar21$ride_length ~ Mar21$member_casual, FUN = median)
```

```
## Mar21$member_casual Mar21$ride_length
## 1 casual 1166
## 2 member 602
```

```
aggregate(Mar21$ride_length ~ Mar21$member_casual, FUN = max)
```

```
## Mar21$member_casual Mar21$ride_length
## 1 casual 1900899
## 2 member 88022
```

```
aggregate(Mar21$ride_length ~ Mar21$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Mar21$ride_length ~ Mar21$member_casual + Mar21$day_of_week, FUN = mean)
```

```
##
      Mar21$member_casual Mar21$day_of_week Mar21$ride_length
## 1
                                      Friday
                                                      1775.2845
                   casual
## 2
                   member
                                      Friday
                                                       747.6784
## 3
                   casual
                                      Monday
                                                      2712.9499
## 4
                   member
                                      Monday
                                                      824.0340
## 5
                                    Saturday
                                                      2529.1231
                   casual
## 6
                                    Saturday
                                                       930.0881
                   member
## 7
                   casual
                                      Sunday
                                                      2464.6047
## 8
                   member
                                      Sunday
                                                       953.4953
## 9
                                                      1805.6213
                   casual
                                    Thursday
## 10
                   member
                                    Thursday
                                                       709.2299
## 11
                                                      2205.9162
                   casual
                                     Tuesday
## 12
                   member
                                     Tuesday
                                                       796.1308
## 13
                    casual
                                   Wednesday
                                                      1752.6361
## 14
                                                       754.9535
                   member
                                   Wednesday
```

Sort the days of the week in order.

```
Mar21$day_of_week <- ordered(Mar21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Mar21$ride_length ~ Mar21$member_casual + Mar21$day_of_week, FUN = mean)
head(x)</pre>
```

```
Mar21$member_casual Mar21$day_of_week Mar21$ride_length
## 1
                  casual
                                     Sunday
                                                     2464.6047
## 2
                                     Sunday
                                                     953.4953
                  member
## 3
                  casual
                                     Monday
                                                     2712.9499
## 4
                  member
                                     Monday
                                                     824.0340
## 5
                                                     2205.9162
                  casual
                                    Tuesday
## 6
                                                     796.1308
                  member
                                    Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member_casual weekday number_of_rides average_duration
##
                      <int>
## 1 casual
                                                        2465.
                          1
                                      15926
## 2 casual
                          2
                                      10767
                                                        2713.
## 3 casual
                          3
                                       9299
                                                        2206.
## 4 casual
                          4
                                       7684
                                                        1753.
## 5 casual
                          5
                                        4806
                                                        1806.
## 6 casual
                                        6846
                                                        1775.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Mar21$member_casual)
```

```
##
## casual member
## 75639 130035
```

```
table(Mar21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 152149 15657 37868
```

```
table(Mar21$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 32440 31369 30444 28149 19218 22848 41206
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Mar21$day_of_week,Mar21$member_casual))
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                       casual 15926
## 2
          Monday
                        casual 10767
## 3
                        casual 9299
         Tuesday
## 4
       Wednesday
                        casual
                                7684
## 5
       Thursday
                        casual
                                4806
## 6
          Friday
                        casual 6846
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Mar21$rideable_type,Mar21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
   rideable_type member_casual
                              Freq
## 1 classic_bike casual
     docked bike
## 2
                      casual 15657
                     casual 14627
## 3 electric bike
## 4 classic bike
                    member 106794
## 5 docked_bike
                    member
                                 0
## 6 electric_bike
                      member 23241
```

Plot for bike user vs bike type.

Riders and Ride Types 90000 60000 Classic_bike docked_bike electric_bike Riders

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Mar21, "Mar21.csv")