An Engineer's Trek into Machine Learning

Satish Chandra Gupta Co-founder, Slang Labs

A Typical Trek

- Irresistible Allure
 - Is the trail worth it?
- Study the Terrain
 - Key features
 - Difficulties and dangers
- Train Hard
 - Plan, prepare
- Check your Gears
 - Map and Compass
- **Adventure Begins**

Irresistible Allure

In God We Trust; Others Must Provide Data.

Google Search Trends:

Al: Artificial Intelligence, DS: Data Science, ML: Machine Learning, DL: Deep Learning

ML/Al is all around us

Consumers

- Web Search: Result ranking
- Mail: Spam Detection, Inbox classification, Sentence completion
- Maps: ETA
- News: Story clustering
- Web/App Ads: Google, Facebook
- Recommendation Systems: Amazon, Netflix, Facebook, Quora
- Personal Assistants: Siri, Alexa, Google

Enterprises

- Fraud detection: Banks, Amazon
- Pricing/Financial Modeling
- Customer churn prediction
- Equipment failure prediction
- Network intrusion detection
- Customer segmentation
- Sentiment analysis
- Image/video analysis
- Speech/audio analysis

Study the Terrain

Artificial Intelligence vs. Machine Learning vs. Data Science

twitter.com/scgupta

linkedin.com/in/scgupta in

scgupta.link/ml-intro-for-developers

Artificial Intelligence (AI)

Intelligence demonstrated by machines by performing like humans.

Machine Learning (ML)

Making predictions with statistical models, by recognizing patterns in the data, without requiring explicit instructions.

Deep Learning (DL)

Machine Learning methods using deep neural networks.

Data Science (DS)

Use of statistical techniques to manually extract insights from data.

© Satish Chandra Gupta

Statistics

Calculus

Linear Algebra

Traditional Program vs. Machine Learning

Traditional Programs: Define algo/logic to compute output

Machine Learning: Learn model/logic from data

Example: Email Spam Detector

Traditional Programming

- How do human identify spams?
- Enumerate as exhaustive list of rules:
 - Word FREE occurs several times
 - Phrases like: Weight Loss
 - You have won lottery
- As spammer changes tactics => continuously update these rules
- Knowledge / Expert System Al

Machine Learning

- Prepare Data Set: human have tagged mails to Spam / No spam (Essentially user's Spam folder)
- Train / test / tune models, select best
- Use it to move mails to Spam
- Track: if user moves a mail from Inbox to Spam, or vice versa; add these to Data Set
- Remain up-to-date with new spam trends

Machine Learning

Regression

- Estimating value of dependent variable with one or more independent variables
- Y = f(X)

Y: outcome

X: features

- Estimate value of house, given
 - Size
 - Location
 - Number of Bedrooms
 - Number of Bathrooms

Classification

- Identifying class/group from characteristics of an object
- Y = f(X)

Y: labels, finite set

X: features

- Given a photo, identify whether it is a
 - Car
 - Truck
 - Motorcycle

Clustering

- Group objects into clusters of similar objects
- Unsupervised: Number and definition of clusters may not be known in advance
- Some notion of similarity
 - Connectivity, Centroid, Density, etc.
- Cluster similar news articles (based on topics that are not predefined)

No magic bullet: It is all in the data

- Data is logic
 - Garbage In ⇒ Garbage Out
- Train only for Truck and Car, model can not
 - Detect motorcycle
 - Distinguish Blue/Red Car and Blue/Red Truck
- Important to build intuition
 - **Data Visualisation**
 - How human will do what you are doing with ML

Deep Learning

- Deep Neural Network (DNN)
 - Convolutional CNN), Recurrent (RNN), Long Short-Term Memory (LSTM), ...
- Problems are same
 - Regression, Classification, ...
- Type of data: Structured vs. Unstructured
 - DNN used mostly on unstructured data
- **Unstructured Data**
 - Natural Language, Vision, Speech

Deep Neural Network

Deep Learning

Tools & Frameworks

Data Science / Machine Learning

- SciKit-Learn
- Pandas
- NumPy
- SciPy
- MatplotLib
- Seaborn
- Jupyter Notebook

Deep Learning

- **TensorFlow**
- PyTorch
- Keras

Cloud Deployment

- Google Cloud AutoML
- Amazon SageMaker
- Azure ML

Train Hard

Online Courses & Tutorials

- Machine Learning Basics
 - Andrew Ng's famous course: https://www.coursera.org/learn/machine-learning
- Machine Learning for practitioners with Python
 - https://www.udemy.com/python-for-data-science-and-machine-learning-bootcamp/
- TensorFlow
 - https://www.tensorflow.org/tutorials
- Deep Learning
 - https://www.deeplearning.ai/
- Cloud: Google, Amazon, Microsoft have online tutorials for their platforms
- Kaggle:
 - https://www.kaggle.com/

Books

- The Elements of Statistical Learning: Hastie, Tibshirani, Friedman
 - https://web.stanford.edu/~hastie/ElemStatLearn/
- An Introduction to Statistical Learning: James, Witten, Hastie, Tibshirani
 - http://faculty.marshall.usc.edu/gareth-james/ISL/
- Deep Learning: Goodfellow, Bengio, Courville, Bach
 - https://www.deeplearningbook.org/
- Pattern Recognition and Machine Learning: Bishop
 - https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book
- Machine Learning Yearning: Andrew Ng
 - https://www.deeplearning.ai/machine-learning-yearning/

Check your Gears

Data Scientists vs. Software Engineers

Data Scientists

- Strong math, especially statistics
- Expert in playing with data
- Design efficient models

Potential Weaknesses:

- May not appreciate need of continuous testing for correctness guarantees
- Typically built batch systems, may require significant (re)work to take it to production

Software Engineers

- Strong programming skill
- Expert in highly scalable applications
- Design/test/deploy 24x7 running system

Potential Weaknesses:

- Deterministic logic is ingrained. Struggle with notion of statistical correctness (how a test can fail if no code has changed?)
- if weak in math, model is a black box

Map & Compass

Miles to go before I sleep...

Tips for Operationalizing ML/Al

- Production can be graveyard of un-operationalized ML
- Figure out Data Strategy: Quality, Schema & Catalog
- Be seduced by impact, and not by cool tech
- Do not create ML models in silos
- Consider the scale of data, and feedback loop
- Be mindful of deployment and production environment
- Simplicity often trumps cleverness in production

Adventure Begins

Key Takeaways

- Al is real, future is here.
- "Al is the new electricity." Andrew Ng
- But it is the just the beginning of Al adventure.
- You can learn anything by training.

Best of Luck, Bon Voyage!!!

Thank You!

scgupta.link/ml-intro-for-developers

twitter.com/scgupta
linkedin.com/in/scgupta
scgupta.me