A *dynamical system* is a system where there is a rule for how the state of a system evolves with time.

1.1 Types of systems in this course

- Maps: $x \mapsto f(x)$ or $x_{n+1} = f(x_n)$, where there is a timestep Δt in between the old state and the new state, so the state of the system, x_n , is known at discrete time intervals. (See chapter 10)
- Differential equations (flows): $\dot{x} = f(x)$, with x(t) a solution. Given a solution x(t), the state of the system, x is known at every instant. (See chapter 2)

1.2 Long term behavior of solutions

1.2.1 Question of the week

Given a differential equation $\dot{x} = f(x)$, what are the possible long term behaviors of solutions of this system?

1.2.2 Identifying long term behavior

Equilibrium solutions are one type of solutions. These are solutions $x(t) = x^*$ to the differential equation where x^* is a constant. Let x^* be a constant such that $f(x^*) = 0$. Now consider the function $x(t) = x^*$. We have $\frac{dx}{dt} = 0$ because x(t) is a constant function. We also have $f(x^*) = 0$ because of our choice of x^* . So we have $\frac{dx}{dt} = f(x)$, and the function $x(t) = x^*$ is a solution of the differential equation. We call x^* a fixed point and the solution $x(t) = x^*$ an equilibrium solution.

Figure: From the plot on the left we can see that f(a) = 0 and f(b) = 0. In the time-series plot on the right, the equilibrium solutions x(t) = a and x(t) = b are shown.

To reason about other solutions, we looked to the sign of the *vector field* $\dot{x} = f(x)$. When $\dot{x} < 0$, we know x(t) is decreasing and when $\dot{x} > 0$ we know x(t) is increasing.

Figure: From the plot on the left we can see that f(x)>0 for x< a, that f(x)<0 for a< x< b and f(x)<0 for x>b. In the time series plot on the right we can see approximate solutions corresponding to those cases. Note that for $x_0< a$ we have $x(t)\to a$ as $t\to\infty$. On the far right we have the vector field (or *phase portrait*) of the system drawn vertically. The solid dot at a is indicating that nearby *trajectories* approach a. Note that trajectories are drawn in the phase space of the system. The open circle at b is indicating that nearby trajectories move away from b.

1.3 Determining the stability of fixed points

Once we know whether nearby trajectories approach or leave a particular fixed point, we can make an approximate sketch of the time-series of solutions of the differential equation. How do we determine whether trajectories are approaching or leaving?

1.3.1 Graphical analysis

Figure: On the far left we have $\dot{x}>0$ for $x< x^*$ and $\dot{x}<0$ for $x>x^*$. In this case, nearby trajectories approach the fixed point. In the center we have $\dot{x}<0$ for $x< x^*$ and $\dot{x}>0$ for $x>x^*$. In this case nearby trajectories move away from x^* . On the right we have $\dot{x}>0$ for $x\neq x^*$. Trajectories approach x^* from one side and leave from the other.

The sign of \dot{x} on either side of x^* lets us determine whether trajectories are approaching or leaving.

1.3.2 Linear stability

In many cases, we can learn about the sign of \dot{x} very close to x^* by looking at the linear approximation to the function f(x) where $\dot{x}=f(x)$. Let $\eta=x-x^*$. Very close to x^* , $\eta^2\ll |\eta|$ so we can neglect higher order terms of the approximation and use $f(x)\approx f(x^*)+\eta f'(x^*)$ as a good approximation to f(x). For $\frac{df}{dx}(x^*)\neq 0$, this will work. The slope $f'(x^*)$ tells us whether we're crossing from positive to negative (negative slope $\frac{df}{dx}(x^*)$) or from negative to positive as x increases through x^* (positive slope $f'(x^*)$). If $f'(x^*)=0$ then the linear approximation has not given us enough information to know either way.