p-adic Groups

Guo Haoyang

March 2025

Contents

T		istruction of \mathbb{Z}_p and \mathbb{Q}_p
	1.1	Completion of \mathbb{Q}
	1.2	
2	Alg	ebraic properties of \mathbb{Z}_p and \mathbb{Q}_p
	2.1	Properties of \mathbb{Z}_p
	2.2	Properties of \mathbb{Q}_p
	2.3	Hensel's lemma
		2.3.1 Roots of unity in $\mathbb{Q}_p(\text{Application of Hensel's lemma})$
		2.3.2 Application: Judging whether a number is square
	2.4	Local-Global properties
	2.5	Field extensions of \mathbb{Q}_p
		2.5.1 Finite field extensions of \mathbb{Q}_p
		2.5.2 Algebraic closure $\overline{\mathbb{Q}_p}$
		2.5.3 Classifying all extensions of \mathbb{Q}_p
}	Elei	mentary analysis in \mathbb{Q}_p
	3.1	Sequences and Series
	3.2	Differentiation
	3.3	Integration
	3.4	Functions defined by power series
	3.5	Strassman's theorem
		Logarithm and exponential functions

- 1 Construction of \mathbb{Z}_p and \mathbb{Q}_p
- 1.1 Completion of \mathbb{Q}
- 1.2 Extending the absolute value
- 2 Algebraic properties of \mathbb{Z}_p and \mathbb{Q}_p

2.1 Properties of \mathbb{Z}_p

First, \mathbb{Z}_p is a local ring and \mathbb{Z}_p is compact. Hence, the results on local rings are applicable to detect the precise structure of \mathbb{Z}_p . It has unique maximal ideal and then can be decomposed into its collection of units \mathbb{Z}_p^{\times} and maximal ideals \mathfrak{m} . At the same time, \mathbb{Z}_p is also a (discrete) valuation ring. By virtue of the language of valuation, the detailed structure of \mathbb{Z}_p^{\times} and \mathfrak{m} is explicit.

Theorem 2.1: Exact sequence of \mathbb{Z}_p

The sequence

$$\{0\} \longrightarrow \mathbb{Z}_p \stackrel{[p^m]}{\longrightarrow} \mathbb{Z}_p \longrightarrow \mathbb{Z} \longrightarrow \{0\}$$

where $[p^m]: x \mapsto p^m \cdot x$ and , is a short exact sequence.

This theorem gives the structure of $\mathbb{Z}_p/p^m\mathbb{Z}_p$.

Corollary 2.1: Ring Type of \mathbb{Z}_p

Every ideal of \mathbb{Z}_p is of the form $\langle p^n \rangle$ for some $n \geq 0$. Hence, \mathbb{Z}_p is a principal ideal domain and a local ring.

Proof: Take an arbitrary ideal $I \neq \{0\} \subseteq \mathbb{Z}_p$. Let $m := \inf\{v_p(a) : a \in I\}$. Since $I \neq \{0\}$, then $m < \infty$. So, $\forall a \in I, a = p^m u \in p^m \mathbb{Z}_p$. Hence, $I \subseteq \langle p^m \rangle$. Now take an arbitrary element $b \in \langle p^m \rangle$, $b = p^m u$ with $u \in \mathbb{Z}_p^{\times}$. Hence, $u^{-1} \in \mathbb{Z}_p$ and $p^m = u^{-1}b \in I$ since I is an ideal. Then, $\langle p^m \rangle \subseteq I$.

Remark \mathbb{Z}_p is a local ring hence a PID hence a UFD. This would be useful in 2.1

2.2 Properties of \mathbb{Q}_p

2.3 Hensel's lemma

'Hensel's lemma' is probably the most important algebraic property of the p-adic numbers ([Gou20]). It basically says that if some information is given in modulo some power of p, i.e. p^k or $\mathbb{Z}/p^k\mathbb{Z}$, then then we know the limit case of that information \mathbb{Z}_p . In the meanwhile, modulo congruences are approximations: $a \equiv b \pmod{p^k}$ is equivalent to $|a-b|_p \leq p^{-k}$. From the perspective of approximation, the Hensel's lemma says that if we know the approximation of an element within any precision, say for any k, a_k approximates α within p^{-k} , then we know the information of α .

Theorem 2.2: Hensel's lemma: For simple roots

Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}_p[x]$. If \exists a *p*-adic integer $\alpha_1 \in \mathbb{Z}_p$ with

$$f(\alpha_1) \equiv 0 \mod p \quad f'(\alpha_1) \not\equiv 0 \mod p$$

where f'(x) is the formal derivative of f(x). Then, $\exists!\alpha\in\mathbb{Z}_p$, such that $f(\alpha)=0$ and $\alpha\equiv\alpha_1$ mod p.

Remark The condition $f(\alpha_1) \equiv 0$ but $f'(\alpha_1) \not\equiv 0$ means that α_1 is a simple root.

This theorem predicts that there is a unique root α within a certain distance of an approximate root α_1 .

In fact, the Hensel's lemma could be applied under a looser condition. In the next theorem, we introduce a general version of Hensel's lemma. The generality comes from the fact that it allows the multiple roots, i.e. roots $\alpha_1 \in \mathbb{Z}_p$ such that $f(\alpha_1) \equiv 0$ and $f'(\alpha_1) \equiv 0$. This is implied in the condition $|f(\alpha_1)|_p < |f'(\alpha_1)|_p^2$. Why? Since $f'(\alpha_1) \in \mathbb{Z}_p$, we have $|f'(\alpha_1)|_p \leq 1$.

When $|f'(\alpha_1)|_p = 1$, $|f(\alpha_1)|_p < 1$. So, we get the condition in theorem 2.2:

$$|f(\alpha_1)|_p < 1 \Leftrightarrow f(\alpha_1) \equiv 0 \mod p$$
 $|f'(\alpha_1)|_p = 1 \Leftrightarrow f'(\alpha_1) \not\equiv 0 \mod p$

When $|f'(\alpha_1)|_p < 1$, $|f(\alpha_1)|_p < 1$. We obtain:

$$|f(\alpha_1)|_p < 1 \Leftrightarrow f(\alpha_1) \equiv 0 \mod p$$
 $|f'(\alpha_1)|_p < 1 \Leftrightarrow f'(\alpha_1) \equiv 0 \mod p$

which is not contained in the condition of theorem 2.2 and is equivalent to saying α_1 is not a simple root.

Theorem 2.3: A strong version of Hensel's lemma: For multiple roots

Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}_p[x]$. If \exists a p-adic integer $\alpha_1 \in \mathbb{Z}_p$ with

$$|f(\alpha_1)|_p < |f'(\alpha_1)|_p^2$$

where f'(x) is the formal derivative of f(x). Then, $\exists ! \alpha \in \mathbb{Z}_p$, such that $f(\alpha) = 0$ and $|\alpha - \alpha_1|_p < |f'(\alpha_1)|_p$. Moreover,

(1)
$$|\alpha - \alpha_1|_p = \left| \frac{f(\alpha_1)}{f'(\alpha_1)} \right|_p < |f'(\alpha_1)|_p$$

(2)
$$|f'(\alpha)|_p = |f'(\alpha_1)|_p$$

Remark The reason why the inequality is less than $|f'(\alpha_1)|_p^2$ instead of being linear is from the proof 1: it ensures that the ???

Proof: (Proof 1: Newton's method)

Let $\{\alpha_n\}$ be the sequence recursively defined by Newton's method: $\alpha_{n+1} := \alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)}$. Claim: This sequence is a Cauchy sequence with the limit α . Let $c = \left| \frac{f(\alpha_1)}{f'(\alpha_1)} \right|_p$. Since $f'(\alpha_1) \in \mathbb{Z}_p$, $|f'(\alpha_1)|_p \le 1$ and $c < |f'(\alpha_1)|_p \le 1$.

To do this, there are three properties that $\{\alpha_n\}_n$ has: $\forall n$,

- (i) $|\alpha_n|_p \leq 1$
- $(ii) |f'(\alpha_n)|_p = |f'(\alpha_1)|_p$ $(iii) |f(\alpha_n)|_p \le |f'(\alpha_1)|_p^2 c^{2^n}$

Base case: These three are obviously applicable to n = 1.

Suppose this is true for all n, then consider n + 1:

(i°) Since $|\alpha_{n+1}|_p = |\alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)}|_p \le \max\left\{|\alpha_n|_p, \left|\frac{f(\alpha_n)}{f'(\alpha_n)}\right|_p\right\}$. It suffices to show $\left|\frac{f(\alpha_n)}{f'(\alpha_n)}\right|_p \le 1$. Notice that

$$\left| \frac{f(\alpha_n)}{f'(\alpha_n)} \right|_p \stackrel{\text{(ii)}}{=} \left| \frac{f(\alpha_n)}{f'(\alpha_1)} \right|_p \stackrel{\text{(iii)}}{\leq} |f'(\alpha_1)|_p c^{2^n} < 1$$

(ii°) We need the lemma:

Lemma 2.1 (Lipschitz property in \mathbb{Z}_p) Let $F(x) \in \mathbb{Z}_p[x]$. Then, $\forall \alpha, \beta \in \mathbb{Z}_p$, $|F(\alpha) - F(\beta)|_p < |\alpha - \beta|_p$.

Let $F(x) = \sum_{i=0}^n a_i x^i$ $F(x) - F(y) = \sum_{i=1}^n a_i (x^i - y^i) = (x - y) G(x, y)$ with $G(x, y) \in \mathbb{Z}_p[x, y]$. Since $G(\alpha, \beta) \in \mathbb{Z}_p$ $|G(\alpha,\beta)|_p \le 1$. Then,

$$|F(x) - F(y)|_p = |x - y|_p |G(x, y)|_p \le |x - y|_p$$

Let F := f', then

$$|f'(\alpha_{n+1}) - f'(\alpha_n)|_p \le |\alpha_{n+1} - \alpha_n|_p = \left| \frac{f(\alpha_n)}{f'(\alpha_n)} \right|_p = \left| \frac{f(\alpha_n)}{f'(\alpha_1)} \right|_p \stackrel{\text{(iii)}}{\le} |f'(\alpha_1)|_p = |f'(\alpha_n)|_p \tag{1}$$

By the strong triangle inequality in \mathbb{Z}_p , 1 implies $|f'(\alpha_{n+1})|_p = |f'(\alpha_n)|_p$. So, $|f'(\alpha_{n+1})|_p = |f'(\alpha_1)|_p$.

(iii°) Use the expansion, we have

$$f(\alpha_{n+1}) = f\left(\alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)}\right) \stackrel{\dagger}{=} f(\alpha_n) + f'(\alpha) \left(-\frac{f(\alpha_n)}{f'(\alpha_n)}\right) + z \left(\frac{f(\alpha_n)}{f'(\alpha_n)}\right)^2 = z \left(\frac{f(\alpha_n)}{f'(\alpha_n)}\right)^2$$

where
$$z \in \mathbb{Z}_p$$
. So, $|f(\alpha_{n+1})|_p \le \left|\frac{f(\alpha_n)}{f'(\alpha_n)}\right|_p^2 \stackrel{\text{(ii)}}{=} \left|\frac{f(\alpha_n)}{f'(\alpha_1)}\right|_p^2 \stackrel{\text{hypothesis}}{\le} \frac{(|f'(\alpha_1)|_p^2 c^{2^n})^2}{|f'(\alpha_1)|_p^2} = |f'(\alpha_1)|_p^2 c^{2^{n+1}}$

Existence: Now, use this sequence $\{\alpha_n\}$. We are going to show that this sequence admits a limit having the listed properties:

 $\{\alpha_n\}$ is a Cauchy sequence. Since $|\alpha_{n+1} - \alpha_n|_p = \left|\frac{f(\alpha_n)}{f'(\alpha_n)}\right|_p \le |f'(\alpha_1)|_p c^{2^n}$ and c < 1.

The existence of α comes from two parts: \bullet The completeness of \mathbb{Q}_p . \bullet Take the limit of (i), we have $|\alpha|_p \leq 1$, i.e. $\alpha \in \mathbb{Z}_p$

Take the limit of (ii) and (iii), (ii) implies (2): $|f'(\alpha)|_p = |f'(\alpha_1)|_p$. (iii) implies that $|f(\alpha)|_p = 0 \Leftrightarrow f(\alpha) = 0$ For $|\alpha - \alpha_1|_p = \left|\frac{f(\alpha_1)}{f'(\alpha_1)}\right|_p$, we use the induction and take it to the limit case. The base case n = 1 is immediate.

Suppose this works for every n, then for n+1, $|\alpha_{n+1}-\alpha_1|_p=\max\{|\alpha_{n+1}-\alpha_n|_p, |\alpha_n-\alpha|_p \stackrel{\text{hypothesis}}{=} \left|\frac{f(\alpha_1)}{f'(\alpha_1)}\right|_p\}$.

Also, from above-mentioned argument, $|\alpha_{n+1} - \alpha_n|_p < \left|\frac{f(\alpha_1)}{f'(\alpha_1)}\right|_p$. So, $|\alpha_{n+1} - \alpha_1|_p = \left|\frac{f(\alpha_1)}{f'(\alpha_1)}\right|_p$. Take the limit, we get (1).

Uniqueness: We have already shown the existence of such an α satisfying all properties listed. It remains to do the uniqueness part. Suppose there is another root $\beta \in \mathbb{Z}_p$ satisfies all the properties, i.e. $f(\beta) = 0$, $|\beta - \alpha_1|_p < |f'(\alpha_1)|_p$ and $|f'(\beta)|_p = |f'(\alpha_1)|_p$. Then, write $\beta = \alpha + h$ with $h \in \mathbb{Z}_p$. If h = 0, done. If $h \neq 0$, then $|h|_p = |\beta - \alpha|_p = \max\{|\beta - \alpha_1|_p, |\alpha - \alpha_1|_p\} < |f'(\alpha_1)|_p$ since both of them by assumption $< |f'(\alpha_1)|_p$.

In the meanwhile, $0 = f(\beta) = f(\alpha + h) = f(\alpha) + f'(\alpha)h + zh^2 = f'(\alpha)h + zh^2$ with $z \in \mathbb{Z}_p$. Since $h \neq 0$, $f'(\alpha) = -zh$. Then, $|f'(\alpha)|_p = |zh|_p \leq |h|_p$, contradiction. So, it is impossible that $h \neq 0$.

(Proof 2: Contraction mapping)

Let f(x), g(x) be two polynomials. f(x) and g(x) are coprime mod p is more strict than being coprime in \mathbb{Z}_p . Why?

First we can consider this example (Exercise 125 in [Gou20]). The two polynomials x+1 and x+p+1. They have roots -1 and -p-1, respectively. $-1 \neq -p-1$ in \mathbb{Z}_p ($|-1|_p = 1 \neq |-p-1|_p = \frac{1}{p}$). So, they are not coprime in \mathbb{Z}_p . But, $-1 \equiv -p-1 \mod p$. So, they are coprime mod p. Conversely, being coprime mod p implies that being coprime in \mathbb{Z}_p .

2.3.1 Roots of unity in \mathbb{Q}_p (Application of Hensel's lemma)

Now, we use the notation μ_n to denote the set of *n*-th root of unity and μ_n^{prim} denotes the set of primitive *n*-th root of unity.

The first fact is: Every root of unity in \mathbb{Q}_p is a p-adic integer for every p. $\forall n$, let $\zeta \in \mu_n \cap \mathbb{Q}_p$. Then,

$$|\zeta|_p^n = |\zeta^n|_p = 1 \Rightarrow |\zeta|_p = 1 \Leftrightarrow \zeta \in \mathbb{Z}_p$$

This means $\forall p, (\bigcup_n \boldsymbol{\mu}_n) \cap \mathbb{Q}_p \subseteq \mathbb{Z}_p$.

It is incorrect that for all n, every n-th root of unity is a p-adic integer. That's because $|\cdot|_p$ is only defined for \mathbb{Q}_p , but some n-th roots of unity are not in \mathbb{Q}_p . So, for such a ζ , $|\zeta|_p$ is not well-defined. Hence, we cannot have $|\zeta|_p^n = |\zeta^n|_p$.

The assumption starts from the existence of 'roots of unity in \mathbb{Q}_p '. Naturally, let's pay attention to the question: When does an n-th root of unity lie in \mathbb{Q}_p ? Knowing this question implies the knowledge of which n-th roots of unity are in \mathbb{Z}_p .

Theorem 2.4: *n*-th root of unity in \mathbb{Q}_n

Let p be a prime. When p is odd, \mathbb{Q}_p contains only p-1-th roots of unity. When p=2, \mathbb{Q}_p contains

2.3.2 Application: Judging whether a number is square

2.4 Local-Global properties

Lemma 2.1: Local Gauss's lemma: General version

Let $f(x) \in \mathbb{Z}_p[x]$ be a polynomial with a non-trivial factorization in $\mathbb{Q}_p[x]$:

$$f(x) = g(x)h(x), \quad g(x), h(x) \in \mathbb{Q}_p[x]$$

(g(x), h(x)) are non-constant). Then, \exists non-constant polynomial $g_0(x), h_0(x) \in \mathbb{Z}_p[x]$ such that $f(x) = g_0(x)h_0(x)$.

Proof: (1) Preliminary: Let $k(x) = \sum_{0 \le i \le n} a_i x^i \in \mathbb{Q}_p[x]$ be any polynomial. Define

$$w(k(x)) := \min_{i} v_p(a_i)$$

i.e. w(k(x)) is the largest power of p that divides all coefficients a_i .

For $k \in \mathbb{Z}_p$, $w(kf(x)) = v_p(k) + w(f(x))$.

Since $f(x) \in \mathbb{Z}_p[x]$, $w(f(x)) \ge 0$. We are going to divide this into two cases: w(f(x)) > 0 and w(f(x)) = 0. Then, notice that the > 0 case can be converted into the = 0 case.

For w(f(x)) = 0, assume that f(x) has a factorization in $\mathbb{Q}_p[x]$: f(x) = g(x)h(x). Then, take $a \in \mathbb{Z}_p$ such that $ag(x) \in \mathbb{Z}_p[x]$ and $bh(x) \in \mathbb{Z}_p[x]$. The existence of a and b comes from !! . Set $f_1(x) := abf(x)$, $g_1(x) := ag(x)$ and $h_1(x) := bh(x)$. Then, $f_1(x) = g_1(x)h_1(x)$.

$$0 = w(f_1(x)) = w(abf(x)) = v_p(ab) + w(f(x)) = v_p(ab) \Rightarrow ab \in \mathbb{Z}_p^{\times}$$

ab is a unit in \mathbb{Z}_p implies that $(ab)^{-1} \in \mathbb{Z}_p$. Consider $g_0(x) := (ab)^{-1}g_1(x) \in \mathbb{Z}_p[x]$ and $h_0(x) := h_1(x)$. Then, $f(x) = g_0(x)h_0(x)$.

Swipe up to the w(f(x)) > 0 case. Claim: If the w(f(x)) = 0 case is true for every $f(x) \in \mathbb{Z}_p[x]$, then the factorization for w(f(x)) > 0 is true.

Let c be a coefficient of f(x) with smallest valuation. By assumption $f(x) \in \mathbb{Z}_p[x]$, $c \in \mathbb{Z}_p$. Set $\tilde{f}(x) := c^{-1}f(x)$. The valuation of $\tilde{f}(x)$ is

$$w(\tilde{f}(x)) = -v_p(c) + w(f(x)) = -v_p(x) + \min_i v_p(f(x)) = -v_p(x) + v_p(x) = 0$$

Since for each a_i , $v_p(c^{-1}a_i) = v_p(a_i) - v_p(c) \ge 0$, $\tilde{f}(x) \in \mathbb{Z}_p[x]$. By assumption, f(x) has a factorization f(x) = g(x)h(x). So, $\tilde{f}(x) = \tilde{g}(x)h(x)$ with $\tilde{g}(x) := c^{-1}g(x)$ in $\mathbb{Q}_p[x]$. The assumption in the claim tells that $\tilde{f}(x)$ boils down to a factorization in $\mathbb{Z}_p[x]$: $\tilde{f}(x) = \tilde{g}_0(x)\tilde{h}_0(x)$. Set $g_0(x) := c\tilde{g}_0(x)$ and $h_0(x) := \tilde{h}_0(x)$. We have $f(x) = g_0(x)h_0(x)$, as desired. \square

(2) Since \mathbb{Z}_p is a UFD and $\mathbb{Q}_p = \operatorname{Frac}(\mathbb{Z}_p)$, then from the (general) Gauss's lemma. This is true.

Proposition 2.1: Local Gauss's Lemma: Monic version

[Local Gauss's lemma] \Rightarrow Global Gauss's lemma]

Proposition 2.2: Eisenstein's theorem for \mathbb{Q}_p

- 2.5 Field extensions of \mathbb{Q}_p
- **2.5.1** Finite field extensions of \mathbb{Q}_p
- 2.5.2 Algebraic closure $\overline{\mathbb{Q}_n}$

Corollary 2.2: Absolute value on \mathbb{Q}_p

 \mathbb{Q}_p has a unique absolute value $|\cdot|_p'$ extending the absolute value $|\cdot|_p$ on \mathbb{Q}_p . In particular, $\forall \sigma \in \operatorname{Gal}(\mathbb{Q}_p/\mathbb{Q}_p)$ and $\forall \alpha \in \mathbb{Q}_p$, $|\sigma(\alpha)|_p' = |\alpha|_p'$

Proof: Since $\overline{\mathbb{Q}_p}/\mathbb{Q}_p$ is an algebraic extension, so the theorem ?? Define an absolute value on $\overline{\mathbb{Q}_p}$ by

$$|\cdot|_p^{\sigma}: \overline{\mathbb{Q}_p} \to \mathbb{Q} \quad \alpha \mapsto |\sigma(\alpha)|_p'$$

 $|\cdot|_p^{\sigma}$ is an non-Archimedean absolute value since: $\forall x,y\in\overline{\mathbb{Q}_p}$

- (1) $|x|_{p}^{\sigma} = |\sigma(x)|_{p}' \ge 0$, (2) $|xy|_{p}^{\sigma} = |\sigma(xy)|_{p}' = |\sigma(x)|_{p}'|\sigma(y)|_{p}' = |x|_{p}^{\sigma}|y|_{p}^{\sigma}$ (3) $|x+y|_{p}^{\sigma} = |\sigma(x)+\sigma(y)|_{p}' \le |x|_{p}^{\sigma}+|y|_{p}^{\sigma}$ (4) $|x+y|_{p}^{\sigma} = |\sigma(x)+\sigma(y)|_{p}' \le \max\{|x|_{p}^{\sigma},|y|_{p}^{\sigma}\}$

By uniqueness of absolute value on $\overline{\mathbb{Q}_p}$, $|\alpha|_p^{\sigma} = |\alpha|_p' \Rightarrow |\sigma(\alpha)|_p' = |\alpha|_p'$. Uniqueness? \square Here is another divergence between p-adic completion and ∞ completion. The algebraic closure of \mathbb{R} , \mathbb{C} is complete. While the algebraic closure of \mathbb{Q}_p , $\overline{\mathbb{Q}_p}$ is not complete.

Theorem 2.5: Incompleteness of \mathbb{Q}_p

 $\overline{\mathbb{Q}_p}$ is not complete.

☐ For a field with absolute value, its algebraically closure might not be complete. So, it can be completed with respect to that

Lemma 2.2: L

 $t(K, |\cdot|)$ be an algebraically closed field with a non-Archimedean absolute value. If K' is the completion of K with respect to $|\cdot|$, then K' is algebraically closed.

- 2.5.3 Classifying all extensions of \mathbb{Q}_n
- Elementary analysis in \mathbb{Q}_p 3
- Sequences and Series 3.1
- 3.2 Differentiation
- Integration 3.3
- Functions defined by power series
- 3.5 Strassman's theorem
- Logarithm and exponential functions 3.6

References

[Gou20] Fernando Q. Gouvêa. "Exploring \$\$ \mathbb{Q}_p \$". In: *p-adic Numbers: An Introduction.* Cham: Springer International Publishing, 2020, pp. 73–108. ISBN: 978-3-030-47295-5. DOI: 10.1007/978-3-030-47295-5_4. URL: https://doi.org/10.1007/978-3-030-47295-5_4.