Subarrage basics

Printing subarrage

Generating all subarray sum

Printing all subarray sums

Announcement: 9 June 9:00- 10:30

1:5 hours

3 questions

you should be able to solve

atteast 2

> Watch all lectures if not already

- complete HWs & assignments

Sylabus: Arrays & TC

Constist discussion on same day

Subarray basics	
0	
· Continous part of an array is colled subarray	
• Single element is subarray ? Yes	
Complete array is subarray? You	
0 elements " ? No.	
0 1 2 3 4 5 6 7 8 9	
AL[10]: \(\frac{\xi}{2} - 2 6 3 8 1 3 2 - 10 \right\)	
22416-37843	
{143	
€1683 ~	
£61 423 L	
£7 8 43 √	
245 1 9 0 2 3 5 3	
₹53 V	
£45103 ~ acd	
£9023}	
£4513 V	

A[4] = \{\frac{1}{3}}	1 2 3 3 2 3 3 s < e	Number of subarrays
S e 0 D ξ -13 0 1 ξ -133 0 2 ξ -1323 0 3 ξ -1323	S e 1 1 2 233 1 2 2323 1 3 23233	S e S e 2 2 { 23 3 3 } { 3 2 } { 3 3 } { 3 2 } { 3 3 } { 3 2 } { 3 3
	Ans: 10	

No. of subarrays:

2	e	S	•	2	e
0	0	1	1	N-1	N-1
0	ı	-	2		
•					
1		•			
D	N-1	ſ	N-I		
N)	١	V-1	1	

 $N + (N-1) + (N-2) - ... 1 = N \times (N+1)$

(P2)	Giv	1en	N	array	elemen	ti,	paint	each	and	cuery
	SU	bose	ay?							
			0	1	2	3				
	A =	2	6	8	-1	7 3				
								CANNOT	OPTIM	$\overline{}$
	2	e		6.2					TC: 0(N	2
		0		£ 63		L	[5-0]	. S <= N	-l . c t	.+) §
	0	2		\(\frac{2}{5} \) \(\frac{2} \) \(\frac{2}{5} \) \(\frac{2}{5} \) \(\frac{2}{5} \) \(\frac{2} \) \(\frac{2} \) \(\frac{2}{5} \) \(\frac{2} \) \(\fr	. 3	101	•	(e=s;		•
	0	3		£ 6 8 -						-e; k++){
				£ 83	' 'J			1 P		
	1	2		£ 8 -13			3	guint ((n)	
	1	3		₹ 8 -1	_	3	\$			
	2	2		£ -13		3				
	2	3		£-1 73	,					
	3	3		£ 73						
				TC	to p	uint	a su	barray	: 0((N)
				~ (A		•	,			
				Total	No.	of	Suba	rrays:	<u>Nx(L</u> 2	171) × O(N2)
				TC	+o	funt	all	subari	ray:	$N \times N^2$
						J		subar	0 :	0 (N3)
										-

array elements, peint each subarray sum? A = \ \ 6 8 -1 73 £ 63 — £6 83 → 14 £6 δ-13 → 13 $\{ 68 - 17 \} \rightarrow 20$ { 8} → 8 €8 -13 → 7 € 8 -1 73 -> 14 £ -13 -7 -1 €-173 → 6 £ 73 -> 1 TC: 0(N3)

$$for(s=0; S \leftarrow N-1; S+t)$$

 $for(e=s; e^2=N-1; e+t)$
 $sum=0$
 $for(k=s; k \leftarrow e; k+t)$
 $sum t= A[k]$
 $gum t= A[k]$

TC: 0 (N2) Plyix sum sc: 0(N) Build pf array for (s=0; s <= N-1; s++) { for (e=s; e= N-1; e++) € → N2 if (s>0) & pf[e] - pf[s-1]} else E pf [e] 3 Finding sum for (R=s; k <= e; k++) { of subarray sum += A[R] sum (A[s:e]) = [s:e] Print (sum) 3 1 pt: {1 3 6 103 sun [A[s:e] : pf[e] -pf[u-]

P Given	an	ar[N]	print	a	ll	subarray	Jum		tarting
at	index	3							
			1		e		2		
A[10] = 2	3 8	4	7	9	4	3	2	7	6 3
	Sum =0					23			
puir	d d	7 16	26 2	-3 2	5	32 3	6		
							_	TC: 0((N^2)
		fo	v (s=0;	s<=	N-1;	s++) {		SC: ()(1)
			Sum =	D					
			for (e= s ;	e <=	N-1;	٤ (۲+)		
						um + Ale			
peint (sum)									
			3	,					
		3	7						
	puint	all	subarra	y so	ומו	otartir	g from	n j	nden D
	puint	oll oll	subarra	0 4 Su	Λ Υ	otartin	y fron	m ji	nden 1
	,			0			d I		2
					•				N-1
			Brook	(10:2	? ?	10:32)			
			iv due	- CIO · C					

Google

sum: 94

(P) Given N array elements, return sum of EAll subarray sums 3

A= \(\frac{2}{6} \) 8 -1 7 \(\frac{3}{3} \)

ے و

0 0 €63 > 6

£ 6 83 → 14

0 2 {6 d -13 → 13

 $0 \quad 3 \qquad \begin{cases} 2 & 6 & 8 - 1 & 7 \end{cases} \xrightarrow{2} 20$

| | { 8 } → 8

1 2 {8-13 -> 7

1 3 {8 -173 -> 14

2 2 \$ -13 -7 -1

3 3 573 -> 7

		0 (N ²)
D(N ³)	D(N ₂)	
Find all	prefix sum	carry forward
Subarray		
asing global var	using global var	using global var
How many subarray	ı inden 1 is	present?

TC: O(N) SC: O(1) Sum = 0 for (i=0; i<N; i++) { #freq of A[i] freq = (i+1) (N-i) Contribution = A[i] × freq sum += contribution return sum Done! 1) Pales , pin