Matematica Discreta Compito 8

- 1.) Trovare la fattorizazione in numeri primi di $2^{11} 1$ e $2^{24} 1$.
- 2.) Trovare la fattorizazzione in numeri primi di 569, 106381, 254609 e 223092870.
- 3.) Deteriminare il mcd(a, b) e mcm(a, b) dove
 - a.) $a = 2^2 \cdot 3^3 \cdot 5^5$ e $b = 2^5 \cdot 3^3 \cdot 5^2$
 - b.) $a = 2 \cdot 3 \cdot 5 \cdot 7 e b = 5 \cdot 3 \cdot 5 \cdot 7$
 - c.) $a = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ e $b = 2^{11} \cdot 3^9 \cdot 11 \cdot 17^{14}$
 - d.) a = 0 e b = 5.
- 4.) Consideriamo tre ruote dentati con 24, 15 e 16 denti, posizionato come sotto. Quale è il minimo numero di giri che devo compiere la routa a sinistra per far tornare nella posizione iniziale

- 5.) Consideriamo tre ruote dentati con 105, 45 e 90 denti, posizionato come sotto.
 - Quale è il minimo numero di giri che devo compiere la routa
 - a.) di sinistra per far tornare nella posizione iniziale quella di destra?
 - b.) di destra per far tornare nella posizione iniziale quella di sinistra?
 - c.) in mezzo per far tornare nella posizione iniziale quella di sinistra?
 - d.) in mezzo per far tornare nella posizione iniziale tutte le ruote?

- 6.) Trovare tutti i numeri primi p tale che 13p + 1 è un quadrato di un numero intero.
- 7.) Trovare l'intero più piccolo possibile che è ≥ 60060 e che non è divisible per un numero primo < 20.
- 8.) Sia n intero positivo, con $\phi(n)$ viene denotato il numero di interi tra 1 e n che sono relativamente primi con n. Cioè $\phi(n) = |\{a \in \mathbb{Z} \mid mcd(a, n) = 1, 1 \leq a \leq n\}|$. La funzione ϕ si chiama la funzione ϕ di Eulero.

 - a.) Calcolare $\phi(4)$, $\phi(7)$ e $\phi(14)$.
 - b.) Dimostrare: n è primo se e solo se $\phi(n) = n 1$.
 - c.) Dimostrare: $\phi(p^k) = p^{k-1}(p-1)$, dove p è un numero primo e k è un intero positivo.
- 9.) Trovare il numero x, con $0 \le x < m$, congruo a a modulo m, dove

a.)
$$a = 13 \text{ e } m = 3$$

b.)
$$a = 155 \text{ e } m = 19$$

b.)
$$a = 155 \text{ e } m = 19$$
 c.) $a = -97 \text{ e } m = 11$

d.)
$$a = -221 \text{ e } m = 23$$

- 10.) Consideriamo i numeri ISBN (International Standard Book Number).
 - a.) Calcolare il numero di controllo del libro 0-07-053965
 - b.) Trovare il numero Q mancante nel numero ISBN del libro 0-201-57Q89-1
- 11.) Scrivere i numeri in base 10.

a.)
$$(1011)_2$$

b.)
$$(100101)_2$$

c.) (101010101)₂

e.) $(100101)_8$

f.) $(ABC)_{16}$

12.) Scrivere i numeri in base 2, 8 e 16.

a.) 321

b.) 4532

c.) 97644

- 13.) Consideriamo i numeri in base 2.
 - a.) Sommare $(10111)_2$ e $(11010)_2$
- b.) Multiplicare $(1110)_2$ con $(1010)_2$
- c.) Multiplicare $(1001)_2$ con $(1110)_2$
- d.) Multiplicare $(11111)_2$ con $(11111111)_2$
- 14.) Stabilire se il numero (11122200000033344455555544433300000222111) $_8$ è divisibile per
 - a.) 3
- b.) 7
- c.) 16
- d.) 19