Stem2Morph: Low-Resource Morphological Inflection

Team 9

Diwan Anuj Jitendra

Aditya Vavre

Yash Sharma

170070005

170050089

17D070059

Problem Statement

- Morphological Inflection is the task of generating a target (inflected form) word from a source word (base form), given a set of morphological attributes, e.g. number, tense, and person etc.
- Input:
 - i. **A lemma** (morphological stem of a word) $X = x_1 x_N$. Each x_i is a character.
 - ii. **Morphological tags** $T = t_1 ... t_M$. For eg., MASC (Masculine), N (Noun), GEN (Genitive), etc. Full list of tags is available in the Appendix of https://unimorph.github.io/doc/unimorph-schema.pdf.
- Output: The appropriate morphological inflected form $Y = y_1 \dots y_K$ of the lemma. Each y_i is a character.
- The goal is thus to model P(Y|X, T).

Problem Statement

- In this project, we tackle the problem of low-resource morphological inflection. Specifically, given data in a high resource language and extremely limited data in a low resource language, transfer learn morphological knowledge.
- This automatically learned morphology can then be used for other low-resource downstream NLP tasks, such as morphologically rich NMT.

Reference Paper(s)

We primarily refer to the paper "Pushing the Limits of Low-Resource Morphological Inflection" - Antonios Anastasopoulos and Graham Neubig, 2019 (https://www.aclweb.org/anthology/D19-1091.pdf) for the architecture and training algorithm.

We refer to the paper "The SIGMORPHON 2019 Shared Task: Morphological Analysis in Context and Cross-Lingual Transfer for Inflection" - Arya D. McCarthy, Ekaterina Vylomova et. al. 2019 (https://www.aclweb.org/anthology/W19-4226v3.pdf) for the dataset description.

Data - from SIGMORPHON 2019 dataset

- Each example is a (X, T, Y) lemma characters, morphological tokens, and inflected characters, respectively.
- All data be found here -<u>https://github.com/sigmorphon/2019/tree/master/task1</u>
- All high resource languages have exactly 10,000 train examples. All low resource languages have 100 train and 100 test examples.
- There are 100 language pairs of (high, low) languages.

tighten	tightened	V;V.PTCP;PST
misbelieve	misbelieved	V;PST
potentiate	potentiates	V;3;SG;PRS
पाना मिलाना धड़कना	पा रहा था मिलाते होंगे धड़किए	<pre>V;2;SG;PROG;PST;MASC V;3;PL;HAB;LGSPEC3;MASC V;2;PL;IMP;FORM</pre>
क्षत्रिय	क्षत्रियाणि	ADJ;VOC;PL;NEUT
पूर	पूराभ्याम्	ADJ;INS;DU;MASC
स्वतन्त्र	स्वतन्त्राः	ADJ;NOM;PL;MASC

Technique Used

Architecture[1] - Attention based seq-to-seq model:

- 1. 32 dimensional character embeddings
- 2. 1 bi-lstm encoder (1 layer) for input characters
- 3. 1 self-attention encoder with unidirectional for morphological tokens
- Both followed by 2 attention layers to get context vectors in output space weights from decoder
- 5. Unique decoder model to produce probability distribution over output.

Let data be of the form (X, T, Y). A four stage training process is followed.

- 1. Pass (X, [NULL], X) and (Y, T, Y) from both languages to the model to get a good starting set of parameters. This is called COPY data.
- 2. Pass the previous data with (X, T, Y), from both languages, with less weightage to "COPY" data.
- 3. Pass only (Y, T, Y) and (X, T, Y) of the target language only
- 4. Pass (X, T, Y) of the target language only

Figure 1: Visualization of our proposed two-step attention architecture. The decoder first attends over the tag sequence **T** and then uses the updated decoder state **s'** to attend over the character sequence **X** in order to produce the inflected form **Y**. (Example from Asturian.)

Our Work

- 1. The existing implementation from the paper is in Dynet. We implemented the paper entirely in **Pytorch**. This reimplementation can a) support GPU training and many more architectures supported by Pytorch b) reproduce and confirm the paper's results on a new library.
- 2. We implemented a demo for the models we trained on both code bases (Dynet and Pytorch) so the inflected words can be obtained in a more user-friendly way.
- 3. We discuss some new experiments highlighting the importance of transferring from high resource AND related languages.
- 4. We qualitatively analyze the errors made by the system for one of the languages.

Metrics for evaluation

The performance of inflection systems is typically evaluated with:

- Exact-match token-level accuracy
- Average character-level Levenshtein distance between the predictions and their corresponding true forms.

What is Levenshtein distance?

The Levenshtein distance between two words is the minimum number of single-character edits (i.e. insertions, deletions or substitutions) required to change one word into the other.

We want a model with high exact-match accuracy and low Levenshtein distance. The two are usually inversely correlated.

Description of Experiments

- Reproducing results of the Dynet implementation using our Pytorch implementation. We do this for one language pair, Adyghe--Kabardian.
- 2. Results of the model on pairs of languages used for the demo.
- Pretraining on 3 different languages with different genetic distance from Kashubian to evaluate correlation b/w accuracy and genetic distance
- 4. Exploring effect of using language A to transfer learn for language B vs just using language B. We run this in two settings:
 - a. A = High resource Hindi, B = Low resource Bengali
 - b. A = B = Low resource Bengali
- 5. Qualitative analysis of errors made by the Bengali and Telugu systems

Results

Language Pair	Metric	Dynet - Dev Set	Dynet - Test Set	PyTorch - Dev Set	PyTorch - Test Set
AdygheKabardian	Accuracy	0.94	0.94	0.88	0.95
	Levenshtein	0.06	0.06	0.12	0.05

Language Pairs	Metric	Dev	Test
Hindi - Bengali	Acc	0.41	0.42
	Lev	1.35	1.29
Kannada - Telugu	Acc	0.84	0.74
	Lev	0.26	0.76
Urdu - Old-English	Acc	0.174	0.165
	Lev	1.951	2.045

Results

Language Pairs	Metric	Dev	Test
Polish - Kashubian	Acc	0.72	0.68
	Lev	0.34	0.42
Slovac/Czech - Kashubian	Acc	0.5	0.48
	Lev	0.72	0.86
Basque - Kashubian	Acc	0.46	0.34
	Lev	1.06	1.34

Language Pairs	Metric	Test
Hindi - Bengali	Acc	0.42
	Lev	1.29
Bengali - Bengali	Acc	0.23
	Lev	2.76

Demo and Case Study

- We'll show a short demo of the model trained on Hindi and Bengali
- Discussion of the experiments:
 - a. Expt 1: We can see that our Pytorch model was able to successfully reproduce the test set results of the Dynet model on Adyghe--Kabardian.
 - b. Expt 2: We obtain reasonable results for Bengali and Telugu. Urdu Old English has poor performance since the languages are pretty dissimilar.
 - c. Expt 3: We see that closer the genetic distance of the high resource language, better the transfer learning performance, as expected.
 - d. Expt 4: Not using a high-resource language to transfer learn worsens performance.
 - e. Expt 5: ref: ভালবাসা bhālabāsā: love -- ভালবাসছিলি bhālabāsachili: loved it (V;2;PST;PROG;LGSPEC1) pred: ভালবাসা bhālabāsā: love -- ভালছাস bhālachāsa no coherent meaning, frequent mistakes on this word

```
ref: জাগানো jāgānō:wake up -- জাগিয়েছিলি jāgiýēchili: woke up (V;2;PST;PRF;LGSPEC1)
```

pred: জাগাৰো jāgānō: wake up -- জেগায়িলি jēgāýili - no coherent meaning
Using a language model over the output may improve the model. This can be explored in future work.

Conclusion and Future Work

- We explore the task of low-resource morphological inflection. We implement the model in Pytorch, develop a demo, and run a few interesting experiments to explore the behaviour of the model.
- In future work, we would like to:
 - Apply an LM over the output to correct many of the errors we observed
 - Try other NN architectures, linguistically-inspired NN architectures
 - Apply the trained model for improving downstream tasks, such as NMT for morphologically rich languages