Circuits RC

Càrrega: $VC\left(1 - e^{-\frac{t}{\tau_C}}\right), \quad I(t) =$ Descàrrega:

 $\overline{VCe^{-\frac{t}{\tau_C}}}$, $I(t) = -\frac{V}{R}e^{-\frac{t}{\tau_C}}$

 $\tau_C = RC$

1.1 Condensadors

Energia electroestàtica: $E = \frac{1}{2}CV_C^2$

Circuits RL

Càrrega: I(t) $\frac{\varepsilon}{R_{\rm est}} \left(1 - e^{-\frac{t}{\tau_L}} \right)$ Descàrrega: $\frac{V}{R_{\rm est}}e^{-\frac{t}{\tau_L}}$ $\tau_L = \frac{L}{R}, R_{\rm est} = R + r$

2.1 Solenoides

Flux: $\Phi = NBS = \frac{\mu_0 N^2 SI}{I}$ Coeficient d'autoinducció: $\frac{L = \frac{\Phi}{I} = \frac{\mu_0 N^2 S}{l}}{\varepsilon_L = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -L\frac{\mathrm{d}I}{\mathrm{d}t}}$

3 Corrent alterna

f.e.m. alterna: V(t) $V_0\cos(\omega t + \varphi), T = \frac{2\pi}{\omega}$ $I(t) = \frac{V(t)}{R} = \frac{V_0}{R} \cos(\omega t +$ φ) = $I_0 \cos(\omega t + \varphi)$ Flux: $\Phi = BSN\cos(\omega t + 1)$ θ), B camp magnètic

Llei Faraday: $\overline{V_0}\sin(\omega t + \theta_0)$ Voltatge eficaç: $V_{\text{ef}} = \frac{V_0}{\sqrt{2}}$ Intensitat eficaç: $I_{\rm ef} = \frac{I_0}{\sqrt{2}}$

3.1 Circuit amb condensador

Voltatge: V(t) $V_0\cos(\omega t)$ I(t)Intensitat: $-V_0\omega C\sin(\omega t)$ $-I_0\sin(\omega t) = I_0\cos(\omega t + \frac{\pi}{2})$ (desfase de $-\frac{\pi}{2}$) $V(t) = V_0 e^{i\omega t}, \implies I(t) =$ $V_0 i\omega C e^{i\omega t}$

Llei d'Ohm: $(V = IR_C)$, $R_C = \frac{1}{i\omega C}, [C] = F$

Reactancia capacitiva: $\overline{X_C} = |R_C| = \frac{1}{\omega C},$

 $R_C = \frac{X_C}{i} = -iX_C$

3.2 Circuit amb inducció

V(t)Voltatge: $V_0\cos(\omega t)$

Autoinducció a la bobina: $\varepsilon_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$

Segona llei Kirchhoff:

 $\overline{V(t) + \varepsilon_L} = 0 \implies \overline{I(t)} =$ $\frac{V_0}{I_{\omega}}\sin(\omega t) = I_0\cos(\omega t - \frac{\pi}{2})$ (desfase de $\frac{\pi}{2}$)

 $R_L = i\omega L, [L] = H$

 $\varepsilon(t) = | \text{Reactancia inductiva:}$ $X_L = |R_L|$ $R_L = iX_L$

Impedància. Llei d'Ohm

Llei d'Ohm: V = IZImpedància: $\bar{Z} = R +$ Resistència: R $iX \ Condensador: -iX_C$ Inducció: iX_L

4.1 Circuit LCR

Angle de fase: $tg(\varphi) =$ $\overline{\frac{X_L - X_C}{R}}, ("I" + \varphi = "V")$ Corrent máxim: $I_0 = \frac{\varepsilon_0}{Z}$ Frequència: $f = \frac{\omega}{2\pi}$ Ressonància: $\text{Re}[Z] \implies \omega^2 = \frac{1}{LC}$

5 Potència

Potència instantània: = | P(t) = V(t)I(t) $V_0I_0\cos(\omega t)\cos(\omega t - \varphi)$ Potència mitja: $\frac{V_0 I_0}{2\cos(\varphi)} =$ $V_{\rm ef}I_{\rm ef}\cos(\varphi)$

5.1 Potència en una resistència

No desfase: $\varphi = 0, V(t) =$ $\begin{vmatrix} V(t) = V_0 e^{i\omega t}, & \Longrightarrow & I = \begin{vmatrix} \overline{V_0 \cos(\omega t)}, I(t) = I_0 \cos(\omega t) \\ \overline{V_0 \cos(\omega t)}, I(t) = I_0 \cos(\omega t) \\ \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)} \end{vmatrix} = \begin{vmatrix} \overline{V_0 \cot(\omega t)} & \overline{V_0 \cot(\omega t)} & \overline{V_0 \cot(\omega t)} \\ \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)} & \overline{V_0 \cot(\omega t)} & \overline{V_0 \cot(\omega t)} \\ \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)} & \overline{V_0 \cot(\omega t)}, \overline{V_0 \cot(\omega t)} \\ \overline{V_0 \cot(\omega t)}, \overline{V_0$

Potència mitja: $P = \frac{V_0^2}{2R}$ $\overline{\text{Valors eficaços}}$: $V_{\text{ef}} = \frac{V_0}{\sqrt{2}}$, $I_{\rm ef} = \frac{I_0}{\sqrt{2}}$ Potència dissipada: P = $\frac{V_{\text{ef}}^2}{R} = RI_{\text{ef}}^2$

5.2 Potència en un condensador

<u>Desfase</u>: $\varphi = -\frac{\pi}{2}, V(t) =$ $V_0\cos(\omega t), I(t)$ $I_0\cos(\omega t + \frac{\pi}{2}) = -I_0\sin(\omega t)$ Potència instantània: $\overline{P(t) = -\frac{V_0^2}{X_C} \sin(\omega t) \cos(\omega t)}$ $= -\frac{V_0^2}{2X_C}\sin(2\omega t)$ Potència mitja: 0

5.3 Potència en una inducció

 $\underline{\text{Desfase}}: \ \varphi = \frac{\pi}{2}, V(t) = \Big|$ $V_0\cos(\omega t), I(t)$ $I_0\cos(\omega t - \frac{\pi}{2}) = I_0\sin(\omega t)$ Potència instantània: $P(t) = \frac{V_0^2}{X_r} \sin(\omega t) \cos(\omega t) =$ $\frac{V_0^2}{2X_L}\sin(2\omega t)$ Potencia mitja: 0

5.4 Potència complexa

 $V_0 e^{i\omega t}, \bar{I}$ $I_0e^{i\omega t-\varphi}, \bar{Z}=Ze^{i\varphi}$ $i \sin(\varphi)$

Potència activa [W]: $P = \operatorname{Re}[\bar{S}] = V_{\text{ef}}I_{\text{ef}}\cos(\varphi)$ Potència reactiva [VA]: $Q = \operatorname{Im}[\bar{S}] = V_{\text{ef}}I_{\text{ef}}\sin(\varphi)$ Potència aparent [VA]: $S = |\bar{S}| = V_{\rm ef}I_{\rm ef}$

5.5 Factor de potència

Factor de potència: $\cos(\varphi) = \frac{P}{S}$ Millora del f.d.p. en sèrie: $\overline{Z} = R + iX$, connectem $X' = -X. \ (X > 0, \varphi >$ $C = \frac{1}{\omega X}, (X < 0)$ $0, \varphi < 0) \implies L = \frac{|X|}{G}$ Millora del f.d.p. en paral·lel: $X' = -\frac{(R^2 + X^2)}{X} = -\frac{|Z|}{\sin(\varphi)}$

Superposició de senyals. Amplada de banda

Senyal sinusoidal: F(t) = $\overline{A}\sin(2\pi f_1 t + \varphi)$ Espectre: Rang frequències del senyal. Freqüència n-èssima harmònica: $f_n = \frac{n\omega_0}{2\pi} = \frac{n}{T}$ Pols: Un cicle.