# **Short Range Communication Technologies and Protocols**

# **Short Range Communication Technologies**



# **Broad Classification of IoT Capillary Technologies**



# Capillary (Multi-Hop) Networks

| Standard                      | Frequency Bands  | Max Tx Rate | Max Range | TX Power | Application                         |
|-------------------------------|------------------|-------------|-----------|----------|-------------------------------------|
| ZigBee (802.15.4)             | 868/915/2450 MHz | 250 kbps    | 100m      | 1-100mW  | Home automation<br>Backhaul for WSN |
| WI-SUN (802.15.4g)            | sub-1GHz, 2.4GHz | 1Mpbs       | 200m      | 1-100mW  | Home automation<br>Backhaul for WSN |
| ULP (802.15.4q)               | 868/915/2450 MHz | 100kbps     | 100m      | 5-15mW   | Ultra low power applications        |
| Wireless M-Bus                | 169/433/868 MHz  | 100 kbps    | 300m      | 1-100mW  | Metering                            |
| Z-Wave                        | 908 MHz          | 100 kbps    | 100m      | 1-100mW  | Home automation                     |
| Bluetooth<br>Low Energy (BLE) | 2450 MHz         | 1 Mbps      | 30m       | 1-100mW  | e-Health, Sport,<br>Multimedia      |
| WiFi Low Power<br>(802.11ah)  | Sub-1 GHz        | 7.8 Mbps    | 1000m     | 10mW-1W  | Long range WSN<br>Backhaul for WSN  |

- Highly fragmented technologies/standards/protocols
- ☐ Fine for small-scale, hot spot coverage
- ☐ The "Gateway Problem"

### **A New Communication Stack Needed**



### **Several Solutions available**

- Classification Guidelines
  - Proprietary (WirelessHART) vs open standard (WiFi, ZigBee, 6LowPAN, THREAD)
  - Application specific vs application agnostic
    - ZWAVE for home automation, WirelessHART for industrial applications; 6LowPAN/THREAD for everything
  - IP-compliant vs non-IP-compliant

## The Status Quo: ZigBee vs 6LowPAN

- Main (rough) difference:
  - 6LowPAN extends IP to the Internet of Things
  - Zigbee doesn't
- Similarities in the lower layers





# **ZigBee**

### **Main features**

- □ Low-cost Hardware (2\$) and software
- ☐ Limited TX range (~10m)
- ☐ Low Latency
- High Energy Efficiency!

## Towards ZigBee...

- Too many proprietary solutions in the field of IoT (mid 90s)
- Dramatic compatibility/interoperability issues (and high costs)
- WP 4 within IEEE launched in 2001 to have a reference technology
- ☐ IEEE 802.15.4 standard published in March 2003.
- The technology is often (misleadingly) referenced as:



## **Zigbee: Communication Stack**



# 802.15.4: Types of Devices

- **□** Full Function Device (FFD):
  - Can send beacons
  - Can communicate with other FFDs
  - Can route frames
  - Can act as PAN coordinator
  - Typically features power supply
- □ Reduced Function Device (RFD):
  - Cannot route frames
  - Cannot communicate with other RFDs
  - Can communicate with FFD
  - Runs typically on batteries
- PAN Coordinator
  - Is responsible of a Personal Area Network (PAN)
  - Manages PAN association/de-association

# **Supported Topology: Stars**



# **Supported Topology: Mesh**



# Supported Topology: Cluster-Tree (not in 802.15.4 standard)



### 802.15.4: PHY

- Activation and deactivation of the radio transceiver
- Energy detection (ED) within the current channel
  - Detect energy level for each channel (used to implement scanning functionalities)
- ☐ Link quality indicator (LQI) for received packets
- Clear channel assessment (CCA)
  - Used to implement the carrier sense multiple access with collision avoidance (CSMA-CA)
- Channel frequency selection
- Data transmission and reception

### 802.15.4:PHY

| PHY<br>(MHz) | Frequency     | Spreading parameters           |        | Data parameters    |                            |                   |  |
|--------------|---------------|--------------------------------|--------|--------------------|----------------------------|-------------------|--|
|              | band<br>(MHz) | Chip rate (kchip/s) Modulation |        | Bit rate<br>(kb/s) | Symbol rate<br>(ksymbol/s) | Symbols           |  |
| 969/015      | 868–868.6     | 300                            | BPSK   | BPSK 20 20         |                            | Binary            |  |
| 868/915      | 902–928       | 600                            | BPSK   | 40                 | 40                         | Binary            |  |
| 868/915      | 868–868.6     | 400                            | ASK    | 250                | 12.5                       | 20-bit PSSS       |  |
| (optional)   | 902–928       | 1600                           | ASK    | 250                | 50                         | 5-bit PSSS        |  |
| 868/915      | 868–868.6     | 400                            | O-QPSK | 100                | 25                         | 16-ary Orthogonal |  |
| (optional)   | 902–928       | 1000                           | O-QPSK | 250                | 62.5                       | 16-ary Orthogonal |  |
| 2450         | 2400–2483.5   | 2000                           | O-QPSK | 250                | 62.5                       | 16-ary Orthogonal |  |

- ☐ 3 channels available in 868MHz bands
- ☐ 30 channels available in the 915MHz bands
- □ 16 channels available in the 2.4GHz bands

### **PHY: PDU format**

|          |     | Octets                        |             |      |
|----------|-----|-------------------------------|-------------|------|
|          |     | 1                             | variable    |      |
| Preamble | SFD | Frame length Reserved (1 bit) |             | PSDU |
| SHR      |     | PF                            | PHY payload |      |

- Preamble: to achieve synchronization
- ☐ *SFD*: frame delimiter
- Frame Length: length (in octets) of the PHY payload
  - For MAC data frames in the range of [9-127]

## **MAC Sublayer Tasks**

- ☐ The features of the MAC sublayer are:
  - beacon management,
  - channel access management,
  - GTS management,
  - Frame validation,
  - acknowledged frame delivery,
  - association, and disassociation,
  - hooks for implementing applicationappropriate security mechanisms.

## **MAC:** Functional Description

☐ Two operation modes are defined:

#### Beacon Enabled

- ☐ PAN coordinator periodically transmits beacons
- Usually adopted in star topologies
- ☐ Slotted CSMA/CA + scheduled transmissions

#### Non Beacon Enabled

☐ Uncoordinated access through unslotted CSMA/CA

## 802.15.4 Channel Access

- The resource to be shared is time
- ☐ A Mixture of Scheduled and Random Access
- Scheduled Access implemented through PAN Coordinator (only beacon-enabled mode)
- □ Random Access allowed between RFDs and between RFD/FFD and PAN Coordinator (allowed in both operation modes)

## Beacon Enabled: functional description

Beacon Enabled



- Frame Length: from 15[ms] to 252[s] (15.38ms\*2n where  $0 \le n \le 14$ )
- RFD associated to PAN coordinator are aligned with the frame structure
- □ Random access through CSMA/CA in CAP
- Guranteed Time Slot statically assigned by PAN coordinator through beacons

# CSMA/CA

- Each device shall maintain three variables for each transmission attempt: NB, CW and BE.
  - NB is the number of times the CSMA-CA algorithm was required to backoff (initialized to zero before each new transmission attempt)
  - **CW** is the contention window length, defining the number of backoff periods that need to be clear of channel activity before the transmission can commence (initialized to 2, only for slotted CSMA-CA).
  - **BE** is the backoff exponent, which is related to how many backoff periods a device shall wait before attempting to assess a channel.
- ☐ Backoff period: duration of 20 symbols

## **CSMA Procedure at a Glance**

- ☐ A transmitting node delays for a random number of backoff periods in [0, 2<sup>BE</sup>-1]
- □ If clear channel assessments (CCA) is idle for CW consecutive backoff periods, the node starts the transmission and waits for an ACK.
- ☐ If the channel is busy, the exponent **BE** and the number of backoff attempts, **NB**, are incremented and the procedure is repeated
- ☐ After "too many" (NB<sub>max</sub>) failed retries, the packet is discarded

## **CSMA Further Nits**

- Transmission procedure (including ACK) must end within a CAP
- Classical unslotted CSMA/CA without synchronization
- CSMA not applied to beacons and ACKs
- ☐ In case of collision (ACK does not come back), the procedure restarts



# Data Transfer Modes: Beacon Enabled (slotetd CSMA/CA)



From device



From Coordinator

# Data Transfer Modes: non-beacon enabled (unslotted CSMA/CA)



From device



From coordinator

## **MAC Sublayer: Frame Format**

|               | Octets:             | 1                  | 0/2                              | 0/2/8                    | 0/2                         | 0/2/8                       | 0/5/6/10/<br>14                 | variable                     | 2   |
|---------------|---------------------|--------------------|----------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------------------|------------------------------|-----|
|               | Frame<br>Control    | Sequence<br>Number | Destination<br>PAN<br>Identifier | n Destination<br>Address | Source<br>PAN<br>Identifier | Source<br>Address           | Auxiliary<br>Security<br>Header | Frame<br>Payload             | FCS |
|               |                     | _                  | Addressing                       | g fields                 |                             |                             |                                 |                              |     |
| $\int$        | MHR                 |                    |                                  |                          |                             |                             |                                 | MAC<br>Payload               | MFR |
|               |                     |                    |                                  |                          |                             |                             |                                 |                              |     |
| Bits: 0-2     | 3                   | 4                  | 5                                | 6                        | 7–9                         | 10–11                       | 12–13                           | 14-15                        |     |
| Frame<br>Type | Security<br>Enabled | Frame<br>Pending   |                                  | PAN ID<br>Compression    | Reserved                    | Dest.<br>Addressing<br>Mode | Frame<br>Version                | Source<br>Addressing<br>Mode |     |

## **Beacon Frame format**

| Octets: 2        | 1                  | 4/10                 | 0/5/6/10/14                     | 2                           | variable                     | variable                                    | variable          | 2    |          |
|------------------|--------------------|----------------------|---------------------------------|-----------------------------|------------------------------|---------------------------------------------|-------------------|------|----------|
| Frame<br>Control | Sequence<br>Number | Addressing<br>fields | Auxiliary<br>Security<br>Header | Superframe<br>Specification | GTS<br>fields<br>(Figure 45) | Pending<br>address<br>fields<br>(Figure 46) | Beacon<br>Payload | FCS  |          |
| MHR              |                    |                      |                                 | MAC Payload                 |                              | <del>'</del>                                |                   | MFR  |          |
|                  |                    |                      |                                 |                             | <u> </u>                     |                                             |                   |      |          |
|                  |                    |                      |                                 |                             |                              | Octets:                                     | 1                 | var  | riable   |
|                  |                    |                      |                                 |                             | Pen                          | ding Address S                              | specification     | Addr | ess List |
|                  | (                  | Octets: 1            | 0/1                             | variable                    | _                            |                                             |                   |      |          |
|                  | GTS                | Specification        | GTS Direction                   | ons GTS List                |                              |                                             |                   |      |          |

- Addressing Field: only source PAN identifier + source address (short or long)
- Superframe Specification: to define the length and structure of the superframe (see next slide)

# **Superframe Specification**

| Bits: 0-3 | <b>4</b> -7 | 8-11     | 12              | 13       | 14          | 15          |
|-----------|-------------|----------|-----------------|----------|-------------|-------------|
| Beacon    | Superframe  | Final    | Battery Life    | Reserved | PAN         | Association |
| Order     | Order       | CAP Slot | Extension (BLE) |          | Coordinator | Permit      |

- Beacon Order (BO): defines the Beacon Interval (BI)
  - BI = aBaseSuperframeDuration\*2<sup>BO</sup> symbols
- ☐ Superframe Order (SO): defines the Superframe Duration (SD)
  - SD = aBaseSuperframeDuration\*2<sup>SO</sup> symbols
- aBaseSuperframeDuration=16 slots x 60 symbols

## **Network Formation: Scanning**

- ☐ Active Scanning (only for FFDs):
  - a beacon request message is sent out to trigger beacon transmission



- Upon termination of the scanning procedure a PAN ID is chosen
- Passive Scanning (for FFDs and RMDs): similar to Active Scanning but without explicit *Beacon Request* messages

## **Network Formation: Association**



### IEEE802.15.4 Extensions

- ☐ IEEE 802.15.4e
  - Slotted channel access
- ☐ IEEE 802.15.4g
  - Amendement for smart utility applications
- ☐ IEEE 802.15.4k
  - Amendement for critical infrastructure monitoring

# **Network Layer**

## **Network Layer Functionalities**

**Configuring a new device**: this is the ability to sufficiently configure the stack for operation as required. **Starting a network**: this is the ability to establish a new network. Joining, rejoining and leaving a network: this is the ability to join, rejoin or leave a network as well as the ability of a ZigBee coordinator or ZigBee router to request that a device leave the network. Addressing: this is the ability of ZigBee coordinators and routers to assign addresses to devices joining the network. **Neighbor discovery**: this is the ability to discover, record, and report information pertaining to the one-hop neighbors of a device. **Route discovery**: this is the ability to discover and record paths through the network, whereby messages may be efficiently routed. **Reception control**: this is the ability for a device to control when the receiver is activated and for how long, enabling MAC sub-layer synchronization or direct reception. **Routing**: this is the ability to use different routing mechanisms such as unicast, broadcast, multicast or many to one to efficiently exchange data in the network

#### **Zigbee Routing: overview**

- ☐ Zigbee Specification (7/2005)
- ☐ Three Types of Devices:
  - ZB Coordinator (FFD)
  - ZB Router (FFD)
  - ZB End-Device (RFD o FFD)
- ☐ ZigBee Routing Integrates:
  - Ad-hoc On-demand Distance Vector (AODV)
  - Cluster Tree Algorithm

#### **Cluster Tree Algorithm: Tree Formation**

- A FFD kicks off the procedure:
  - It scans the available channels through the proper functionalities at the lower layers
  - Chooses a channel (e.g., the least interfered)
  - Sets the PAN identifier
  - Sets its own Network Address to 0 (Coordinator)
- Other devices may now associate to the coordinator through the lowerlayer association procedures
- Associated devices may be:
  - ZB Router (only FFD): may let other devices to associate to the network
  - ZB End-Device
- ☐ Address Assignment (16 bits short addresses) is performed jointly with association
- Each parent device (PAN coordinator, ZB router) assigns groups of addresses to its children (other ZB routers, ZB end devices)

## **Cluster Tree Formation: principles**

- On the basis of its depth in the tree, a newly joined router is assigned a range of consecutive addresses (16-bit integers).
- ☐ The first integer in the range becomes the node address while the rest will be available for assignment to its children (routers and end-devices).

#### **Cluster Tree Algorithm: Tree Creation**



## **Address Assignment Rule**

☐ The size A(d) of the range of addresses assigned to a router node at depth  $d < L_m$  is defined by:

$$A(d) = \begin{cases} 1 + D_{m} + R_{m} & \text{if } d = L_{m} - 1\\ 1 + D_{m} + R_{m}A(d+1) & \text{if } 0 \leq d < L_{m} - 1 \end{cases}$$

- $\square$  Nodes at depth  $L_m$  and end-devices are assigned a single address.
- ☐ Simple Assignment Rule:
  - $\square$  A mote at level d is assigned addresses in range [x,x + A(d)-1]
  - □ It will assign
    - [x+(i-1)A(d+1)+1,x+iA(d+1)] to its i-th router child  $(1 \le R_m)$
    - $x+R_mA(d+1)+j$  to its jth end-device child  $(1 \le j \le D_m)$ .

## An Example

- ☐ Address allocations for  $R_m = 2$ ,  $D_m = 2$ and  $L_m = 3$ .
  - A(2)=2+2+1=5
  - $\blacksquare$  A(1)=1+2+2A(2)=13
  - $\blacksquare$  A(0)=1+2+2A(1)=29
  - PAN Coordinator can assign addresses in the range [0,28]



## **Tree-Based Routing: Principles**

- ☐ Routing Along the Tree:
  - If destination address is one of children end devices:
    - route directly
  - Else if destination address belongs to one of children routers' addresses set:
    - send to corresponding children router
  - Else
    - ☐ Send to parent node



#### **Routing Along the Tree: Shortcomings**

- Routing may be not optimized
  - Route always along the tree
  - Routing is "quality-agnostic"
  - E.g.: A wants to send to B



## **ZigBee Routing Revealed**



## **AODV Routing**

- A node willing to send to a destination broadcast a Route Requests (RREQ) message
  - aka shout "where's the destination"
- RREQ messages are flooded by receiving nodes
  - relay shouting
- ☐ When a node re-broadcasts a *Route Request*, it sets up a reverse path pointing towards the source
  - stores "who shouted at me"
- ☐ When the intended destination receives a Route Request, it replies by sending a Route Reply
  - Shouts back "It's me"
- Route Reply travels along the reverse path set-up when Route Request is forwarded
  - Shouting travels back the same route

## **ZigBee Implementation of AODV**

- Routing Table
  - Destination Address: 16-bit network address of the destination
  - Next-hop Address: 16-bit network address of next hop towards destination
  - **Entry Status**: One of Active, Discovery or Inactive
- Routing Discovery Table
  - RREQID Unique ID (sequence number) given to every RREQ message being broadcasted
  - Source Address: Network address of the initiator of the route request
  - Sender Address: Network address of the device that sent the most recent lowest cost RREQ
  - Forward Cost: The accumulated path cost from the RREQ originator to the current device
  - Residual Cost: The accumulated path cost from the current device to the RREQ destination
- Entries of RT and RDT have validity time-outs



| Α | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | null     | inf      |

| В | DEST | NEXT | STATUS |
|---|------|------|--------|
|   |      |      |        |

| ID | SOURCE | SENDER | FWD COST | RES COST |
|----|--------|--------|----------|----------|
|    |        |        |          |          |

|   | DEST | NEXT | STATUS |
|---|------|------|--------|
| C |      |      |        |

| ID | SOURCE | SENDER | FWD COST | RES COST |
|----|--------|--------|----------|----------|
|    |        |        |          |          |

| ח | DEST | NEXT | STATUS |
|---|------|------|--------|
| D |      |      |        |

| ID | SOURCE | SENDER | FWD COST | RES COST |
|----|--------|--------|----------|----------|
|    |        |        |          |          |



RREQ A-B: cost 2 RREQ A-C: cost 3

| Α | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | null     | inf      |

| В | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 2        | inf      |

| $\mathcal{C}$ | DEST | NEXT | STATUS |
|---------------|------|------|--------|
| C             | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 3        | inf      |

| D | DEST | NEXT | STATUS |
|---|------|------|--------|
| U |      |      |        |

| ID | SOURCE | SENDER | FWD COST | RES COST |
|----|--------|--------|----------|----------|
|    |        |        |          |          |



RREQ B-C: fw cost 3 DROPPED

RREQ C-B: fw cost 4 DROPPED

RREQ B-D: fw cost 4 RREQ C-D: fw cost 5

| Α | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | null     | inf      |

| В | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 2        | inf      |

| $\mathcal{C}$ | DEST | NEXT | STATUS |
|---------------|------|------|--------|
| C             | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 3        | inf      |

| D | DEST | NEXT | STATUS |
|---|------|------|--------|
| ט |      |      |        |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | В      | 4        | inf      |



RREP D-B: res=0, fwd=4 RREP D-C: res=0, fwd=5

| Α | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | ?    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | А      | Α      | null     | inf      |

| В | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | D    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 2        | 2        |

| $\mathcal{C}$ | DEST | NEXT | STATUS |
|---------------|------|------|--------|
| C             | D    | D    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 3        | 2        |

| $\Box$ | DEST | NEXT | STATUS |
|--------|------|------|--------|
| U      |      |      |        |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | В      | 4        | inf      |



RREP B-A: res=2, fwd=4 RREP C-A: res=2, fwd=5

| Α | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | В    | Active |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | А      | Α      | null     | 4        |

| В | DEST | NEXT | STATUS |
|---|------|------|--------|
|   | D    | D    | Disc   |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 2        | 2        |

| С | DEST | NEXT | STATUS |  |
|---|------|------|--------|--|
|   | D    | D    | Disc   |  |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | Α      | 3        | 2        |

| D | DEST | NEXT | STATUS |  |
|---|------|------|--------|--|
| U |      |      |        |  |

| ID  | SOURCE | SENDER | FWD COST | RES COST |
|-----|--------|--------|----------|----------|
| 432 | Α      | В      | 4        | inf      |

#### **RREQ Transmission**



### **Route Set Up**



## **Routing Cost**

☐ The cost for path *P* composed of *L-1* links is defined as:

$$C\{P\} = \sum_{i=1}^{L-1} C\{[D_i, D_{i+1}]\}$$

☐ ZigBee standards "suggests" the following form for the cost of the generic link *l* 

$$C\{l\} = \begin{cases} 7, \\ \min\left(7, \text{round}\left(\frac{1}{p_l^4}\right)\right) \end{cases}$$

 $\square$  P<sub>1</sub> is the packet reception rate over link I

#### **Network Layer: Frame format**

16 bit Addresses

| 2 B                                    | ytes                | 2 Bytes                | 2 Bytes           | 1 E                 | Byte | 1 Byte                          | Variabile        |
|----------------------------------------|---------------------|------------------------|-------------------|---------------------|------|---------------------------------|------------------|
| FRAME<br>CONTROL                       |                     | Destination<br>Address | Source<br>Address | Broadcast<br>Radius |      | Broadcast<br>Sequence<br>Number | FRAME<br>PAYLOAD |
|                                        | Routing  NWK Header |                        |                   |                     |      | NWK Payload                     |                  |
| Frame Type, route discovery indication |                     |                        |                   |                     |      |                                 |                  |
|                                        | Max Hop count       |                        |                   |                     |      |                                 |                  |

## **ZigBee Application Profiles**

- ☐ Needs:
  - A common language for exchanging data
  - A well defined set of processing actions
  - Device interoperability across different manufacturers
  - Simplicity and reliability for the end users
- Profile Definition (9 Profile Libraries Currently Specified)
  - A set of devices required in the application area
  - A set of clusters to implement the functionality
    - ☐ A set of attributes to represent device state
    - ☐ A set of commands to enable the communication
  - Specification of which clusters are required by which devices
  - Specific functional description for each device

## **Profile Components**

- ☐ E.g.: Personal Health Care Profile
- Data Collection Unit
  - The Data Collection Unit (DCU) gathers the data from the different on-body medical and non-medical devices and delivers it to a gateway.
- □ Electrocardiograph
  - This is a device that records and measures the electrical activity of the heart over time.
- Pulse Monitor
  - A pulse monitor measures a proxy value for the heart rate.
- □ Sphygmomanometer
  - A sphygmomanometer (blood pressure meter) is a device that measures the blood pressure.



## **Profiles Snapshot**

