

Model Prediksi Jumlah Limbah Berbahaya Pada Sepuluh Negara Bagian Terpadat Di Amerika Serikat

Statmat Team

Siti Nur Salamah

Maryesta Apriliani Sihombing

Raissa Anggia Maharani

Daftar Isi

BAB I Pendahuluan BAB II Pembahasan BAB III Kesimpulan

1	Latar Belakang	4	Landasan Teori	7	Kesimpulan
2	Rumusan Masalah	5	Metode Penelitian	8	Rekomendasi
3	Tujuan dan Manfaat	6	Hasil dan Pembahasan		

PENDAHULUAN

- 1. Latar Belakang
- 2. Rumusan Masalah
- 3. Tujuan dan Manfaat

Latar Belakang

Twenty countries with the largest population in 2024

Amerika Serikat merupakan negara dengan jumlah penduduk ke-3 terbanyak di dunia.

Health and Ecological Hazards Caused by Hazardous Substances

Emergency response efforts must consider the health and ecological hazards of a hazardous substance release. These hazards impact emergency responders and effected communities. In some cases, hazardous substances may irritate the skin or eyes, make it difficult to breathe, cause headaches and nausea, or result in other types of illness. Some hazardous substances can cause far more severe health effects, including:

- · behavioral abnormalities,
- cancer
- genetic mutations
- · physiological malfunctions (e.g., reproductive impairment, kidney failure, etc.),
- · physical deformations, and
- hirth defects

Sumber: EPA, 2024.

Penyakit yang bermunculan dapat disebabkan oleh limbah berbahaya.

Manufacturing Industry Outlook - United States

The United States of America holds the second-largest manufacturing industry in the world after China. The manufacturing value-added output of the United States of America was recorded to be at an all-time high of \$2.89 trillion in Q4 of 2023. The industry output Sumber: Yahoo Finance, 2024.

Amerika Serikat menduduki negara ke-2 dengan industri manufaktur terbesar di dunia setelah Cina.

US industry disposed of at least 60m pounds of PFAS waste in last five years

Estimate in new EPA analysis is probably 'dramatic' undercount because 'forever chemical' waste is unregulated in US

Sumber: Guardian, 2023.

Industri di Amerika Serikat menghasilkan limbah berbahaya dalam skala besar yang mencemari lingkungan.

Bagaimana model terbaik untuk memprediksi total limbah berbahaya berdasarkan data EPA pada sepuluh negara bagian terpadat di Amerika Serikat?

Rumusan Masalah

Apa faktor yang paling signifikan dalam mempengaruhi total limbah berbahaya pada sepuluh negara bagian terpadat di Amerika Serikat?

Bagaimana model prediksi total limbah berbahaya dapat digunakan untuk menyusun simulasi kebijakan lingkungan yang efektif pada sepuluh negara bagian terpadat di Amerika Serikat?

Tujuan Penelitian

Menganalisis model *machine learning* terbaik untuk memprediksi total limbah berbahaya berdasarkan data EPA pada sepuluh negara bagian terpadat di Amerika Serikat.

Mengidentifikasi faktor-faktor yang paling signifikan dalam mempengaruhi total limbah berbahaya pada sepuluh negara bagian terpadat di Amerika Serikat.

Menggunakan model prediksi total limbah berbahaya untuk menyusun simulasi kebijakan lingkungan yang efektif pada sepuluh negara bagian terpadat di Amerika Serikat.

Manfaat Penelitian

Menyediakan referensi mengenai model prediksi terbaik untuk memprediksi total limbah berbahaya berdasarkan data pada sepuluh negara bagian terpadat di Amerika Serikat yang dapat dimanfaatkan oleh peneliti maupun praktisi.

Mengidentifikasi faktor-faktor signifikan yang mempengaruhi total limbah berbahaya pada sepuluh negara bagian terpadat di Amerika Serikat yang dapat digunakan sebagai dasar dalam merancang kebijakan lingkungan dengan efektif.

Menghasilkan simulasi kebijakan lingkungan yang efektif berdasarkan hasil prediksi total limbah berbahaya yang dapat digunakan untuk mendukung pengambilan keputusan dalam upaya meningkatkan kesehatan masyarakat.

Rumusan Masalah

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian

Hasil dan Pembahasan

Kesimpulan

PEMBAHASAN

- 1. Landasan Teori
- 2. Metode Penelitian
- 3. Hasil dan Pembahasan

Limbah Berbahaya

Limbah berbahaya didefinisikan oleh Environmental Protection Agency (EPA) sebagai **limbah yang menimbulkan ancaman substansial atau potensial bagi kesehatan publik atau lingkungan**. Hal ini termasuk limbah yang bersifat toksik, korosif, mudah terbakar, atau reaktif.

Rumusan Masalah

Latar Belakang

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Model Machine Learning

Pada penelitian ini, dipilih 4 model *machine learning* dengan bentuk regresi karena variabel prediktornya berupa numerik.

Latar Belakang Rumusan Masalah Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Metrik Error

Digunakan 5 metrik error untuk mengevaluasi model dari berbagai sudut pandang, memastikan kinerja prediksi yang akurat, konsisten, dan andal secara keseluruhan.

Metrik	Definisi	Keunggulan			
MAE	Rata-rata nilai absolut selisih antara hasil prediksi dan nilai sebenarnya.	Mudah diinterpretasikan dan tidak dipengaruhi dengan nilai outlier			
MSE	Rata-rata kuadrat dari perbedaan antara prediksi dan aktual.	Menekankan kesalahan yang lebih besar terhadap nilai outlier.			
RMSE	Akar kuadrat dari MSE untuk menyajikan error dalam satuan aslinya.	Memberikan gambaran yang lebih intuitif tentang besarnya kesalahan yang relatif terhadap skala data.			
MAPE	Rata-rata error absolut dalam bentuk persentase relatif terhadap nilai sebenarnya.	Skala independen sehingga cocok untuk data dengan skala yang berbeda.			
R-squared	Proporsi variasi data yang dijelaskan oleh model, dengan interval nilai 0-1.	Menjelaskan proporsi varians, mudah diinterpretasikan, tidak bergantung terhadap skala data			

Metode Penelitian CRISP-DM

Latar Belakang Rumusan Masalah

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Business Understanding

Penelitian ini berfokus pada prediksi jumlah limbah berbahaya berdasarkan data 10 negara bagian terpadat di Amerika Serikat.

Variabel Target

Total Releases

Jumlah total bahan kimia beracun yang dilepaskan baik secara on-site (di lokasi fasilitas) maupun off-site (dipindahkan ke lokasi lain untuk pembuangan)

Business Understanding Urgensi Prediksi Total Releases

Latar Belakang Rumusan Masalah Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Data Understanding

Sumber Data

EPA pada tahun 2023

Informasi Data

- 77964 baris
- 122 kolom

Penelitian ini berfokus pada 10 negara bagian terpadat di Amerika Serikat berdasarkan data sensus Amerika Serikat, yaitu:

- 1. District of Columbia
- 2. New Jersey
- 3. Rhode Island
- 4. Massachusetts
- 5. Connecticut

- 6. Maryland
- 7. Delaware
- 8. Florida
- 9. New York
- 10. Pennsylvania

Dengan data 10 negara bagian terpadat di Amerika Serikat, didapatkan datanya mencakup 9943 baris dan 122 kolom.

Data Preparation

Diagram Alur Proses Preprocessing Konversi Tipe Data Penghapusan Fitur Tidak Relevan Penanganan Missing Value Penanganan Outlier Identifikasi dan Analisis Hapus Fitur > 80% Missing -Metode IQR Imputasi Data Tersisa 😽 Proses Pembersihan Dataset TRI Transformasi Data Kategorik Pembentukan Dataset Baru Label Encoding ·-10 State US Teratas Berdasarkan Kepadatan Penduduk Penghapusan Data Duplikat

Latar Belakang Rumusan Masalah Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Data Preparation

Konversi Tipe Data

1. YEAR: int64 2. TRIFD: object 3. FRS ID: float64 4. FACILITY NAME: object 5. STREET ADDRESS: object 6. CITY: object 7. COUNTY: object 8. ST: object 9. ZIP: int64 10. BIA: float64 11. TRIBE: object 12. LATITUDE: float64 13. LONGITUDE: float64 14. HORIZONTAL DATUM: object 15. PARENT CO NAME: object 16. PARENT CO DB NUM: object 17. STANDARD PARENT CO NAME: object 18. FOREIGN PARENT CO NAME: object 19. FOREIGN PARENT CO DB NUM: object 20. STANDARD FOREIGN PARENT CO NAME: object 21. FEDERAL FACILITY: object 22. INDUSTRY SECTOR CODE: int64 23. INDUSTRY SECTOR: object 24. PRIMARY SIC: float64 25. SIC 2: float64 26. SIC 3: float64 27. SIC 4: float64 28. SIC 5: float64 29. SIC 6: float64 30. PRIMARY NAICS: int64 31. NAICS 2: float64 32. NAICS 3: float64 33. NAICS 4: float64 34. NAICS 5: float64 35. NAICS 6: float64 36. DOC CTRL NUM: int64 37. CHEMICAL: object 38. ELEMENTAL METAL INCLUDED: object 39. TRI CHEMICAL/COMPOUND ID: object 40. CAS#: object 41. SRS ID: float64

Kolom Konversi

Ada 19 fitur yang diubah menjadi tipe data object

1. YEAR, 3. FRS ID, 9. ZIP, 10. BIA, 22. INDUSTRY SECTOR CODE, 24. PRIMARY SIC, 25. SIC 2, 26. SIC 3, 27. SIC 4, 28. SIC 5, 29. SIC 6, 30. PRIMARY NAICS, 31. NAICS 2, 32. NAICS 3, 33. NAICS 4, 34. NAICS 5, 35. NAICS 6, 36. DOC_CTRL_NUM, dan 41. SRS ID.

Data Preparation Drop Fitur

Fitur nilai unik = 1

Ada 11 fitur dengan nilai unik = 1

	Kolom	Nilai Unik
0	1. YEAR	2023
1	54. 5.4 - UNDERGROUND	0
2	57. 5.5.1 - LANDFILLS	0
3	61. 5.5.3 - SURFACE IMPNDMNT	0
4	72. 6.2 - M40 METAL	0
5	73. 6.2 - M61 METAL	0
6	74. 6.2 - M71	0
7	77. 6.2 - M72	0
8	78. 6.2 - M63	0
9	105. 6.2 - UNCLASSIFIED	0
10	108. 8.1 - RELEASES	0

Fitur Tidak Relevan

Ada 9 fitur tidak relevan
dengan target

No	Kolom	Alasan Penghapusan
1	3. FRS ID	ID kurang relevan
2	4. FACILITY NAME	Nama fasilitas (deskriptif, tidak relevan untuk analisis).
3	5. STREET ADDRESS	Alamat fasilitas (deskriptif).
4	36. DOC_CTRL_NUM	ID dokumen (unik, tidak relevan).
5	39. TRI CHEMICAL/COMPOUND ID, 40. CAS#, 41. SRS ID	Ketiganya mirip, salah satu bisa dihapus.
6	15. PARENT CO NAME, 16. PARENT CO DB NUM, 17. STANDARD PARENT CO NAME	Nama perusahaan induk (deskriptif, tidak relevan untuk analisis).
7	22. INDUSTRY SECTOR CODE	Rendundan dengan 23. INDUSTRY SECTOR
8	65. ON SITE RELEASE TOTAL	Fitur yang menghasilkan variabel prediktor '107. TOTAL RELEASES'
9	88. OFF SITE RELEASE TOTAL	Fitur yang menghasilkan variabel prediktor '107. TOTAL RELEASES'

Latar Belakang Rumusan Masalah Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Data Preparation

Handling Missing Value

Hapus fitur dengan missing value di atas 80%

Hapus baris yang memiliki missing value kecil (< 5%)

Imputasi modus untuk fitur kategorik "PROD_RATIO_ACTIVITY"

Tersisa 76336 baris

Latar Belakang Rumusan Masalah Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Duplikat Data, Filter Data, Outlier

Duplikat Data

Jumlah data duplikat: 13

Pada data ini, terdapat 13 duplikat yang akan dihapus karena dapat menyebabkan bias dalam analisis serta mempengaruhi performa model machine learning.

Filter Data

Jumlah data setelah filter: 9943

Fokus penelitian ini pada 10 negara bagian terpadat di AS, sehingga dataset difilter menjadi 9943 baris.

Latar Belakang

Outlier

Dipilih metode IQR (Interquartile Range) pada data ini untuk mendeteksi *outlier*.

	Kolom	Jumlah Outlier	17	101. 6.2 - M61 NON-METAL	1317
0	12. LATITUDE	926	18	102. 6.2 - M69	1022
1	13. LONGITUDE	6536	19	103. 6.2 - M95	616
2	66. 6.1 - POTW - TRNS RLSE	8925	20	104. OFF-SITE TREATED TOTAL	11543
3	67. 6.1 - POTW - TRNS TRT	3362	21	106. 6.2 - TOTAL TRANSFER	14578
4	68. POTW - TOTAL TRANSFERS	9766	22	107, TOTAL RELEASES	13844
5	89. 6.2 - M20	1910	23	109, 8.1A - ON-SITE CONTAINED	3689
6	90. 6.2 - M24	8357	24	110. 8.1B - ON-SITE OTHER	14505
7	91. 6.2 - M26	4640	25	111. 8.1C - OFF-SITE CONTAIN	16291
8	92. 6.2 - M28	15	26	112.8.1D - OFF-SITE OTHER R	17326
9	93. 6.2 - M93	5073	27	113. 8.2 - ENERGY RECOVER ON	2144
10	94. OFF-SITE RECYCLED TOTAL	18316	28	114. 8.3 - ENERGY RECOVER OF	7164
11	95. 6.2 - M56	5739	29	115. 8.4 - RECYCLING ON SITE	3804
12	96. 6.2 - M92	1992	30	116. 8.5 - RECYCLING OFF SIT	18301
13	97. OFF-SITE ENERGY RECOVERY T	7164	31	117. 8.6 - TREATMENT ON SITE	16500
14	98. 6.2 - M40 NON-METAL	637	32	118.8.7 - TREATMENT OFF SITE	11507
15	99, 6,2 - M50	5698	33	119. PRODUCTION WSTE (8.1-8.7)	11788
16	100. 6.2 - M54	1281	34	122. 8.9 - PRODUCTION RATIO	14762

Outlier di setiap fitur dibiarkan karena dianggap bagian dari variasi alami yang berguna untuk analisis dan pemodelan.

Encoding Data Kategorik

```
Jumlah Nilai Unik dari '2. TRIFD': 3525
Jumlah Nilai Unik dari '6. CITY': 1321
Jumlah Nilai Unik dari '7. COUNTY': 208
Jumlah Nilai Unik dari '8. ST': 10
Jumlah Nilai Unik dari '9. ZIP': 1713
Jumlah Nilai Unik dari '14. HORIZONTAL DATUM': 1
Jumlah Nilai Unik dari '21. FEDERAL FACILITY': 2
Jumlah Nilai Unik dari '23. INDUSTRY SECTOR': 29
Jumlah Nilai Unik dari '30. PRIMARY NAICS': 312
Jumlah Nilai Unik dari '37. CHEMICAL': 270
Jumlah Nilai Unik dari '38. ELEMENTAL METAL INCL<mark>U</mark>DED': 2
Jumlah Nilai Unik dari '39. TRI CHEMICAL/COMPOUND ID': 256
Jumlah Nilai Unik dari '42. CLEAN AIR ACT CHEMICAL': 2
Jumlah Nilai Unik dari '43. CLASSIFICATION': 3
Jumlah Nilai Unik dari '44. METAL': 2
Jumlah Nilai Unik dari '45. METAL CATEGORY': 6
Jumlah Nilai Unik dari '46. CARCINOGEN': 2
Jumlah Nilai Unik dari '47. PBT': 2
Jumlah Nilai Unik dari '48. PFAS': 2
Jumlah Nilai Unik dari '49. FORM TYPE': 2
Jumlah Nilai Unik dari '50. UNIT OF MEASURE': 2
Jumlah Nilai Unik dari '121. PROD_RATIO_OR_ ACTIVITY': 2
```

22 kolom kategorik pada data ini akan di encoding menggunakan Label Encoding.

Label Encoding dipilih pada kasus ini karena jumlah kategori pada setiap fitur sangat banyak, sehingga metode ini lebih efisien dan praktis dibandingkan teknik lain seperti One-Hot Encoding.

Latar Belakang Rumusan Masalah Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Modelling

Tujuan

Prediksi total limbah (*Total Releases*) di 10 negara bagian terpadat AS.

Jumlah Fitur Awal

81 buah

Metrik Evaluasi

MAE, RMSE, MSE, MAPE, dan R²

22/41

Feature Engineering

Geographical Features

2 Fitur Baru:

- 1.Region
- 2. Distance from Center

2 Indikator Risiko

1 Fitur Baru

3 Efisiensi Daur Ulang (Recycling) dan Pengolahan (Treatment)

2 Fitur Baru:

Latar Belakang

- 1. Treatment Efficiency
- 2. Recycling Efficiency

Feature Engineering

Geographical Features

1. Region

Latar Belakang

Tujuan: Mengidentifikasi pola geografis.

Ide: Mengelompokan data dengan K-Means Clustering berdasarkan fitur Latitude dan Longitude

Step:

KMEANS CLUSTERING

Clustering dengan K-Means

Hasil: Fitur Region yang terdiri dari 3 kategori

2. Distance from Center

Tujuan: Menangkap hubungan jarak Ide: Menghitung jarak ke pusat geografis AS menggunakan Geodesic Distance dalam kilometer.

Feature Engineering

2 Indikator Risiko

Environmental Risk Score

Tujuan: Mengukur risiko lingkungan dari

bahan kimia berbahaya.

Ide: Menggabungkan variabel

CARCINOGEN, PBT, dan PFAS

Rumus:

Environmental_Risk_Score = CARCINOGEN + PBT + PFAS

3 Efisiensi Daur Ulang (Recycling) dan Pengolahan (Treatment)

1. Recycling Efficiency

Tujuan: Mengukur proporsi limbah yang berhasil didaur ulang.

Rumus:

Recycling Efficiency = (8.4 -

RECYCLING ON SITE + 8.5 -

RECYCLING OFF SITE) /

PRODUCTION WSTE (8.1-8.7)

2. Treatment Efficiency

Tujuan: Mengukur proporsi limbah yang berhasil diolah sebelum dilepaskan.

Rumus:

Treatment Efficiency = (8.6 - TREATMENT ON SITE + 8.7 - TREATMENT OFF SITE) / PRODUCTION WSTE (8.1-8.7)

Feature Selection

3 Metode

Mutual Information, Select K-Best: f_regressor, dan Feature Importance.

Pertimbangan

"Region",

"Environmental_Risk_Score",
"Recycling_Efficiency", "INDUSTRY
SECTOR", dan "Treatment_Efficiency"

Dipertahankan.

Memberikan informasi penting terkait lokasi, risiko lingkungan, efisiensi pengelolaan, dan konteks industri.

Latar Belakana

"PFAS",
"LONGITUDE",
dan
"LATITUDE"

Dipertahankan
Dipakai untuk
feature
engineering.

"POTW – TRNS TRT", "OFF–SITE TREATED
TOTAL", "ENERGY RECOVER OF", "RECYCLING
OFF SIT", "TREATMENT ON SITE", "RECYCLING
ON SITE", dan "ENERGY RECOVER ON"

<u>Dipertahankan.</u>

Memiliki pasangan terkait dalam fitur lainnya.

Penghapusan 15 Feature

Berdasarkan Domain Knowledge dan didukung nilai Feature Importance-nya yang negatif

Diagram Alur Proses Modeling & Evaluation

Model Selection

Sebelum Model Selection:

Variabel

Target: Total Releases

Prediktor: 71 (setelah feature selection)

Split Data Split Data: train (80%) dan test (20%)

Reproducibility: random state = 42

Scaling Robust Scaler untuk mengurangi dampak pencilan.

Model Fitting: 4 Model

Ridge Regression, Linear Regression, Lasso, ElasticNet

Cross-Validation KFold (10 folds) untuk memastikan stabilitas dan generalisasi model terhadap data baru.

Rumusan Masalah

Latar Belakang

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Model Selection

Cross-Validation

KFold (10 folds) untuk memastikan stabilitas dan generalisasi model terhadap data baru.

Hasil CV:										
	MSE	MSE_std	RMSE	RMSE_std	MAE	MAE_std	MAPE	MAPE_std	R^2	R^2_std
Ridge Regression	3025.699304	8958.376424	55.006357	51.257992	0.735157	1.898918	8.621096e+10	4.355550e+10	1.000000	9.585253e-07
LinearRegression	2983.870470	8951.611329	54.624816	51.820993	0.612733	1.837933	5.331431e+09	3.407804e+08	1.000000	9.570260e-07
Lasso	67763.056413	198078.910664	260.313381	235.957681	8.145157	10.529416	6.421832e+15	4.300754e+15	0.999992	2.108485e-05
ElasticNet	69686.274246	206975.919676	263.981579	245.165926	5.088067	10.584096	7.451824e+14	2.641659e+14	0.999992	2.205541e-05

Linear Regression unggul dengan MSE, RMSE, dan MAE terendah

Ridge Regression memiliki performa yang mendekati Linear Regression

Model Selection: Berdasarkan Hasil CV

Ridge Regression dipilih karena:

Latar Belakang

- Performanya sangat stabil dengan metrik yang sangat baik.
- Lebih tahan terhadap multicollinearity dibanding Linear Regression.
- Kinerja jauh lebih baik dibanding Lasso dan ElasticNet dalam hal akurasi dan stabilitas.

Ridge Regression menjadi model pilihan untuk prediksi.

Tuning Selected Model

Concern Parameter

Solver dan Alpha pada Ridge Regression

4 Pendekatan

Pemilihan Parameter Solver

1.K-Fold Cross Validation dengan Kombinasi Solver dan Alpha

Pemilihan Parameter Alpha

- 1. Fitting Model dengan Kombinasi Solver dan Alpha
- 2. GridSearchCV
- 3.RidgeCV
- 4. Grafik Metrik Evaluasi MAE dan RMSE untuk setiap nilai Alpha

Diagram Alur Proses Modeling & Evaluation Split Data (Test Size = 20%) Feature Scaling (Robust Scaling) Model Fitting Model: 1. Ridge Regression 2. Linear Regression Lasso 4. ElasticNet Cross Validation (KFold) Pemilihan Model (Ridge Regression) **Tuning Model** (Hasil: solver 'auto', alpha 0.01) Grafik Metrik Evaluasi MAE dan RMSE untuk Fitting Model dengan Kombinasi Solver dan GridSearchCV RidgeCV setiap Nilai Alpha (Pemilihan Alpha) (Pemilihan Alpha) (Pemilihan Parameter Solver dan Alpha) (Pemilihan Alpha) Pemilihan Model Terbaik (Ridge Regression dengan Parameter Tuning: solver 'auto', alpha 0.01) Selesai

Rumusan Masalah

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian

Hasil dan Pembahasan

Kesimpulan

Tuning Selected Model

Hasil 4 Pendekatan

1. K-Fold Cross Validation dengan Kombinasi Solver dan Alpha

Solver: 'auto'

Performa konsisten dan optimal di seluruh metrik, termasuk MSE, RMSE, MAE, MAPE, dan R2.

Alpha

Semakin kecil nilai alpha, semakin baik performa model dalam hal akurasi prediksi

Dipilih
Parameter
Solver = 'auto'

2. GridSearchCV

Alpha (based on MAE): 0.01 Alpha (based on RMSE): 0.01

3. RidgeCV

Alpha (based on MAE): 0.01 Alpha (based on RMSE): 0.01

4. Grafik Metrik Evaluasi MAE dan RMSE untuk setiap nilai Alpha

Alpha (based on MAE dan RMSE)

Semakin kecil nilai alpha, semakin baik performa model dalam hal akurasi prediksi Dipilih
Parameter
Alpha= 0.01

Jadi, dipilih model akhir <u>Ridge Regression</u> dengan Parameter <u>Solver = 'auto'</u> dan <u>Alpha= 0.01</u>

Latar Belakang Rumusan Masalah Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Deployment

Model terbaik untuk 10 negara bagian terpadat di Amerika Serikat diterapkan dalam simulasi kebijakan menggunakan platform Dash.

Fitur Untuk Parameter Kebijakan

Pemilihan fitur didasarkan pada analisis feature importance, dengan 3 fitur paling berpengaruh yang dipilih.

Parameter kebijakan dapat diatur melalui kontrol interaktif pada dashboard, memungkinkan pengguna untuk menguji berbagai skenario secara fleksibel.

Hasil dari Best Model Ridge Regression

Berikut merupakan perbandingan Kinerja Ridge Regression sebelum dan sesudah Hyperparameter Tuning.

Latar Belakang Rumusan Masalah

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Analisis Model Terbaik

Feature Importance

STACK AIR: Perkiraan total bahan kimia yang dilepas sebagai emisi udara melalui cerobong (sumber titik) di fasilitas terkait. FUGITIVE AIR: Perkiraan total bahan kimia beracun yang dilepas sebagai emisi udara tak terkendali di fasilitas terkait.

Emisi udara melalui STACK AIR dan FUGITIVE AIR memiliki kontribusi dominan.

Interpretasi

Di 10 negara bagian terpadat di AS, polusi udara menjadi limbah utama yang dihasilkan. Kondisi ini menunjukkan perlunya fokus lebih dalam pada sumber polusi udara untuk mengendalikan dampak lingkungan.

Analisis Model Terbaik

SHAP

Latar Belakang

M64: Jumlah total bahan kimia yang dipindahkan untuk dibuang ke landfill lain

Emisi udara melalui STACK AIR, M64, dan FUGITIVE AIR memiliki kontribusi dominan.

Interpretasi

Di 10 negara bagian terpadat di AS, STACK AIR dan FUGITIVE AIR menjadi sumber utama polusi udara, sementara M64 berkontribusi pada polusi tanah. Kondisi ini menekankan perlunya perhatian khusus untuk mengendalikan emisi udara dari STACK AIR dan FUGITIVE AIR, serta pembuangan limbah ke M64 agar dampak lingkungan dapat diminimalkan.

Rumusan Masalah

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Simulasi Prediksi

Model terbaik : Ridge Regression Simulasi Prediksi menggunakan Dash

Fitur Untuk Simulasi Prediksi

3 fitur paling berpengaruh yang dipilih berdasarkan feature importance, yaitu FUGITVE AIR, SLACK AIR, dan OTHER LANDFILLS.

Pengguna bisa menggeser 3 parameter tersebut dan fitur lainnya digunakan nilai *baseline*.

Perubahan fitur dihitung dalam bentuk persentase (%), memungkinkan pengguna untuk melihat dampaknya secara langsung. Dengan mengklik atau menggeser slider, pengguna dapat melihat bagaimana perubahan pada fitur tersebut mempengaruhi prediksi Total Releases.

Latar Belakang Rumusan Masalah

Tujuan dan Manfaat

Landasan Teori

Metode Penelitian Hasil dan Pembahasan

Kesimpulan

Simulasi Prediksi Total Limbah Berbahaya

Dashboard Prediksi Total Limbah Berbahaya

Petunjuk Penggunaan Dashboard:

- Atur nilai perubahan fitur menggunakan slider untuk fitur dampak tinggi.
- Perubahan fitur dihitung dalam bentuk persentase (%).
- · Klik atau geser slider untuk melihat perubahan prediksi Total Releases.
- · Fitur yang tidak diubah akan menggunakan nilai baseline.

Contoh:

- 52. 5.2 STACK AIR: Tingkatkan nilai sebanyak 10%, maka prediksi akan menyesuaikan.
- 51. 5.1 FUGITIVE AIR: Kurangi nilai sebanyak 20%, maka hasil prediksi juga berubah.

Dashboard ini dapat dikembangkan dengan menambahkan lebih banyak fitur atau grafik visualisasi.

Fitur yang Dapat Diubah:

36/41

Hasil Prediksi:

Prediksi Total Releases: 4325.56

Kesimpulan

- 1. Kesimpulan
- 2. Rekomendasi

Kesimpulan

38/41

Latar Belakang Rumusan Tujuan dan Manfaat Landasan Teori Metode Penelitian Hasil dan Pembahasan Kesimpulan Rekomendasi

Rekomendasi

39/41

Latar Belakang Rumusan Tujuan dan Manfaat Landasan Teori Metode Penelitian Pembahasan Kesimpulan Rekomendasi

Daftar Pustaka

- [1] Statista. (2024). Countries with the largest population worldwide in 2023. Diakses pada 6 Januari 2025 dari https://www.statista.com/statistics/262879/countries-with-the-largest-population/
- [2] Yahoo Finance. (2024). Top manufacturing country in the world in 2024. Diakses pada 6 Januari 2025 dari https://finance.yahoo.com/news/top-manufacturing-country-world-2024-231816018.html
- [3] The Guardian. (2023). EPA faces calls to regulate PFAS 'forever chemicals' in waste. Diakses pada 6 Januari 2025 dari https://www.theguardian.com/environment/2023/nov/17/epa-pfas-forever-chemicals-waste-pollution-unregulated
- [4] U.S. Environmental Protection Agency. (2024.). Health and ecological hazards caused by hazardous substances. Diakses pada 6 Januari 2025 dari https://www.epa.gov/emergency-response/health-and-ecological-hazards-caused-hazardous-substances
- [5] U.S. Environmental Protection Agency. (2024). Hazardous waste. Diakses pada 6 Januari 2025 dari https://archive.epa.gov/epawaste/hazard/web/html/index.html
- [6] Sadat, L. A., MKK, S. O., Aminuddin, S. K., Putri Rizki Amalia Badri, M. K. M., Luh Suranadi, S. K. M., Sujaya, I. N., ... & Ok, S. (2024). PENGANTAR KESEHATAN MASYARAKAT. CV Rey Media Grafika.
- [7] Indonesia Safety Center. (2024). 6 sumber utama munculnya limbah B3 di perusahaan: Identifikasi dan pengelolaan yang tepat. Indonesia Safety Center.
- https://indonesiasafetycenter.org/6-sumber-utama-munculnya-limbah-b3-di-perusahaan-identifikasi-dan-pengelolaan-yang-tepat/
- [8] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.
- [9] Rajan, M. P. (2022). An efficient Ridge regression algorithm with parameter estimation for data analysis in machine learning. SN Computer Science, 3(2), 171.
- [10] Kumari, K., & Yadav, S. (2018). Linear regression analysis study. Journal of the practice of Cardiovascular Sciences, 4(1), 33-36.
- [11] Melkumova, L. E., & Shatskikh, S. Y. (2017). Comparing Ridge and LASSO estimators for data analysis. Procedia engineering, 201, 746-755.
- [12] Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301-320
- [13] Amansyah, I., Indra, J., Nurlaelasari, E., & Juwita, A. R. (2024). Prediksi Penjualan Kendaraan Menggunakan Regresi Linear: Studi Kasus pada Industri Otomotif di Indonesia. Innovative: Journal Of Social Science Research, 4(4), 1199-1216.
- [14] Murukonda, V. S. N. M., & Gogineni, A. C. (2022). Prediction of air quality index using supervised machine learning.

Terima Kasih

Statmat Team Universitas Indonesia

Siti Nur Salamah Maryesta Apriliani Sihombing Raissa Anggia Maharani