Appendices for the paper *Thompson Sampling for Complex Online Problems* – Aditya Gopalan, Shie Mannor and Yishay Mansour

A. Proof of Theorem 1

Sampling from the posterior as proportional to exponential weights: Let $N_t(a)$ be the number of times action a has been played up to (and including) time t. At any time t, the posterior distribution π_t over Θ is given by Bayes' rule:

$$\forall S \subseteq \Theta: \quad \pi_t(S) = \frac{W_t(S)}{W_t(\Theta)}, \quad W_t(S) := \int_S W_t(\theta) \pi(d\theta), \tag{4}$$

with the weight $W_t(\theta)$ of each θ being the likelihood of observing the history under θ :

$$\begin{split} W_t(\theta) := \prod_{i=1}^t \left[\frac{l(Y_i; A_i, \theta)}{l(Y_i; A_i, \theta^*)} \right] &= \prod_{a \in \mathcal{A}} \prod_{y \in \mathcal{Y}} \prod_{i=1}^t \left[\frac{l(y; a, \theta)}{l(y; a, \theta^*)} \right]^{\mathbf{1}\{A_i = a, Y_i = y\}} \\ &= \exp\left(-\sum_{a \in \mathcal{A}} \sum_{y \in \mathcal{Y}} \sum_{i=1}^t \mathbf{1}\{A_i = a, Y_i = y\} \log \frac{l(y; a, \theta^*)}{l(y; a, \theta)} \right) \\ &= \exp\left(-\sum_{a \in \mathcal{A}} N_t(a) \sum_{y \in \mathcal{Y}} \frac{\sum_{i=1}^t \mathbf{1}\{A_i = a, Y_i = y\}}{N_t(a)} \log \frac{l(y; a, \theta^*)}{l(y; a, \theta)} \right), \end{split}$$

where we set $N_t(a) := \sum_{i=1}^t \mathbf{1}\{A_i = a\}$. Let $Z_t(a,y) := \frac{\sum_{i=1}^t \mathbf{1}\{A_i = a, Y_i = y\}}{N_t(a)}$, and $Z_t(a) := (Z_t(a,y))_{y \in \mathcal{Y}} \in \mathbb{R}^{|\mathcal{Y}|}$. Thus $Z_t(a)$ is the empirical distribution of the observations from playing action a up to time t. The expression for $W_t(\theta)$ above becomes

$$W_t(\theta) = \exp\left(-\sum_{a \in \mathcal{A}} N_t(a) D(\theta_a^* | | \theta_a) - \sum_{a \in \mathcal{A}} N_t(a) \sum_{y \in \mathcal{Y}} \left(Z_t(a, y) - l(y; a, \theta^*)\right) \log \frac{l(y; a, \theta^*)}{l(y; a, \theta)}\right). \tag{5}$$

Note that by definition, $W_t(\theta^*) = 1$ at all times t - a fact that we use often in the analysis.

Instead of observing $Y_t = f(X_t, A_t)$ at each round t, consider the following alternative probability space for the stochastic bandit in a time horizon $1, 2, \ldots$ with probability measure $\tilde{\mathbb{P}}$. First, for each action $a \in \mathcal{A}$ and each time $k = 1, 2, \ldots$, an independent random variable $Q_a(k) \in \mathcal{Y}$, is drawn with $\mathbb{P}\left[Q_a(k) = y\right] = l(y; a, \theta^*)$. Denote by $Q \equiv \{Q_a(k)\}_{a \in \mathcal{A}, k \geq 1}$ the $|\mathcal{A}| \times \infty$ matrix of these independent random variables. Next, at each round $t = 1, 2, \ldots$, playing action $A_t = a$ yields the observation $Y_t = Q_a(N_a(t) + 1)$. Thus, in this space,

$$Z_t(a, y) = U_{N_t(a)}(a, y), \text{ where } U_j(a, y) := \frac{1}{j} \sum_{k=1}^{j} \mathbf{1} \{ Q_a(k) = y \}.$$

The following lemma shows that the distribution of sample paths *seen by a bandit algorithm* in both probability spaces (i.e., associated with the measures \mathbb{P} and $\tilde{\mathbb{P}}$) is identical. This allows us to equivalently work in the latter space to make statements about the regret of an algorithm.

Lemma 1. For any action-observation sequence (a_t, y_t) , $t = 1, \ldots, T$ of a bandit algorithm,

$$\tilde{\mathbb{P}}\left[\forall 1 \leq t \leq T \ (A_t, Y_t) = (a_t, y_t)\right] = \mathbb{P}\left[\forall 1 \leq t \leq T \ (A_t, Y_t) = (a_t, y_t)\right].$$

Henceforth, we will drop the tilde on \mathbb{P} and always work in the latter probability space, involving the matrix Q.

Lemma 2. For any suboptimal action $a \neq a^*$,

$$\delta_a = \min_{\theta \in S_a'} D(\theta_a^* || \theta_a) > 0.$$

Let $N'_t(a)$ (resp. $N''_t(a)$) be the number of times that a parameter has been drawn from S'_a (resp. S''_a), so that $N_t(a) = N'_t(a) + N''_t(a)$.

The following self-normalized, uniform deviation bound controls the empirical distribution of each row $Q_a(\cdot)$ of the random reward matrix Q. It is a version of a bound proved in (Abbasi-Yadkori et al., 2011).

Theorem 3. Let $a \in \mathcal{A}$, $y \in \mathcal{Y}$ and $\delta \in (0,1)$. Then, with probability at least $1 - \delta \sqrt{2}$,

$$\forall k \ge 1 \quad |U_k(a, y) - l(y; a, \theta^*)| \le 4\sqrt{\frac{1}{k} \log\left(\frac{\sqrt{k}}{\delta}\right)}.$$

Put $c := \log \frac{|\mathcal{Y}||\mathcal{A}|}{\delta}$, and $\rho(x) \equiv \rho_c(x) := 4\sqrt{c + \frac{\log x}{2}}$ for x > 0. It follows that the following "good data" event occurs with probability at least $(1 - \delta\sqrt{2})$:

$$G \equiv G(c) := \left\{ \forall a \in \mathcal{A} \ \forall y \in \mathcal{Y} \ \forall k \ge 1 \ |U_k(a, y) - l(y; a, \theta^*)| \le \frac{\rho(k)}{\sqrt{k}} \right\}.$$

Lemma 3. Fix $\epsilon \in (0,1)$. There exist $\lambda, n^* \geq 0$, not depending on T, so that the following is true. For any $\theta \in \Theta$, $a \in \mathcal{A}$ and $y \in \mathcal{Y}$, under the event G,

1. At all times $t \geq 1$,

$$N_t(a)D(\theta_a^*||\theta_a) + N_t(a)\sum_{y\in\mathcal{Y}} (Z_t(a,y) - l(y;a,\theta^*))\log\frac{l(y;a,\theta^*)}{l(y;a,\theta)} \ge -\lambda,$$

2. If $N_t(a) \geq n^*$, then

$$N_t(a)D(\theta_a^*||\theta_a) + N_t(a) \sum_{y \in \mathcal{Y}} (Z_t(a, y) - l(y; a, \theta^*)) \log \frac{l(y; a, \theta^*)}{l(y; a, \theta)} \ge (1 - \epsilon)N_t(a)D(\theta_a^*||\theta_a).$$

Proof. Under G, we have

$$N_{t}(a)D(\theta_{a}^{*}||\theta_{a}) + N_{t}(a) \sum_{y \in \mathcal{Y}} (Z_{t}(a,y) - l(y;a,\theta^{*})) \log \frac{l(y;a,\theta^{*})}{l(y;a,\theta)}$$

$$\geq N_{t}(a)D(\theta_{a}^{*}||\theta_{a}) - N_{t}(a) \sum_{y \in \mathcal{Y}} |Z_{t}(a,y) - l(y;a,\theta^{*})| \left| \log \frac{l(y;a,\theta^{*})}{l(y;a,\theta)} \right|$$

$$\geq N_{t}(a)D(\theta_{a}^{*}||\theta_{a}) - \rho(N_{t}(a))\sqrt{N_{t}(a)} \sum_{y \in \mathcal{Y}} \left| \log \frac{l(y;a,\theta^{*})}{l(y;a,\theta)} \right|.$$

$$(6)$$

For a fixed $\theta \in \Theta$, $a \in \mathcal{A}$, the expression above diverges to $+\infty$, viewed as a function of $N_t(a)$, as $N_t(a) \to \infty$ (except when $\theta_a = \theta_a^*$, in which case the expression is identically 0.) Hence, the expression achieves a finite minimum $-\lambda_{\theta,a}$ (not depending on T) over non-negative integers $N_t(a) \in \mathbb{Z}^+$. Since there are only finitely many parameters $\theta \in \Theta$, it follows that if we set $\lambda := \max_{\theta \in \Theta, a \in \mathcal{A}} \lambda_{\theta,a}$, then the above expression is bounded below by $-\lambda$, uniformly across Θ . This proves the first part of the lemma.

To show the second part, notice again that for fixed $\theta \in \Theta$ and $a \in \mathcal{A}$, there exists $n_{\theta,a}^{\star} \geq 0$ such that

$$\rho(x)\sqrt{x}\sum_{y\in\mathcal{Y}}\left|\log\frac{l(y;a,\theta^*)}{l(y;a,\theta)}\right| \le \epsilon x D(\theta_a^*||\theta_a), \quad x \ge n_{\theta,a}^*$$

since $\rho(x) = o(x)$. Setting $n^* := \max_{\theta \in \Theta, a \in \mathcal{A}} n_{\theta, a}^*$ then completes the proof of the second part.

A.1. Regret due to sampling from $S_a^{"}$

The result of Lemma 3 implies that under the event G, and at all times $t \ge 1$:

$$\pi_{t}(\theta^{*}) = \frac{W_{t}(\theta^{*})\pi(\theta^{*})}{\int_{\Theta} W_{t}(\theta)\pi(d\theta)} = \frac{\pi(\theta^{*})}{\int_{\Theta} W_{t}(\theta)\pi(d\theta)}$$

$$\geq \frac{\pi(\theta^{*})}{\int_{\Theta} \exp(\lambda|\mathcal{A}|)\pi(d\theta)} = \pi(\theta^{*})e^{-\lambda|\mathcal{A}|} \equiv p^{*}, \text{ say.}$$
(7)

Also, under the event G, the posterior probability of $\theta \in S_a''$ at all times t can be bounded above using Lemma 3 and the basic bound in (6):

$$\pi_{t}(\theta) = \frac{W_{t}(\theta)\pi(\theta)}{\int_{\Theta} W_{t}(\psi)\pi(d\psi)} \leq \frac{W_{t}(\theta)\pi(\theta)}{\pi(\theta^{*})}$$

$$= \frac{\pi(\theta)}{\pi(\theta^{*})} \exp\left(-\sum_{a \in \mathcal{A}} N_{t}(a)D(\theta_{a}^{*}||\theta_{a}) - \sum_{a \in \mathcal{A}} N_{t}(a)\sum_{y \in \mathcal{Y}} \left(Z_{t}(a,y) - l(y;a,\theta^{*})\right) \log \frac{l(y;a,\theta^{*})}{l(y;a,\theta)}\right)$$

$$\leq \frac{\pi(\theta)e^{\lambda|\mathcal{A}|}}{\pi(\theta^{*})} \exp\left(-N_{t}(a^{*})D(\theta_{a^{*}}^{*}||\theta_{a^{*}}) - N_{t}(a^{*})\sum_{y \in \mathcal{Y}} \left(Z_{t}(a^{*},y) - l(y;a^{*},\theta^{*})\right) \log \frac{l(y;a^{*},\theta^{*})}{l(y;a^{*},\theta)}\right)$$

$$\leq \frac{\pi(\theta)e^{\lambda|\mathcal{A}|}}{\pi(\theta^{*})} \exp\left(-N_{t}(a^{*})D(\theta_{a^{*}}^{*}||\theta_{a^{*}}) + \rho(N_{t}(a))\sqrt{N_{t}(a^{*})}\sum_{y \in \mathcal{Y}} \left|\log \frac{l(y;a^{*},\theta^{*})}{l(y;a^{*},\theta)}\right|\right).$$

In the above, the penultimate inequality is by Lemma 3 applied to all actions $a \neq a^*$, and the final inequality follows in a manner similar to (6), for action a^* . Letting $d := \frac{e^{\lambda |\mathcal{A}|}}{\pi(\theta^*)}$, we have that under the event G, for $a \neq a^*$ and $\theta \in S_a''$,

$$\pi_t(\theta) \le d\pi(\theta) \exp\left(-N_t(a^*)D(\theta_{a^*}^*||\theta_{a^*}) + \rho(N_t(a))\sqrt{N_t(a^*)} \sum_{y \in \mathcal{Y}} \left| \log \frac{l(y; a^*, \theta^*)}{l(y; a^*, \theta)} \right| \right). \tag{8}$$

Recall that by definition, any $\theta \in S_a''$ with $a \neq a^*$ can be resolved apart from θ^* in the action a^* , i.e., $D(\theta_{a^*}^*||\theta_{a^*}) \geq \xi$. Moreover, the discrete prior assumption (Assumption 2) implies that $\xi > 0$. Using this, we can bound the right-hand side of (8) further under the event G:

$$\pi_t(\theta) \le d\pi(\theta) \exp\left(-\xi N_t(a^*) + 2\rho(N_t(a))\sqrt{N_t(a^*)} \log \frac{1-\Gamma}{\Gamma}\right). \tag{9}$$

Integrating (9) over $\theta \in S_a''$ and noticing that $\pi(S_a'') \leq 1$ gives, under G,

$$\pi_t(S_a'') \le d \exp\left(-\xi N_t(a^*) + 2\rho(N_t(a))\sqrt{N_t(a^*)}\log\frac{1-\Gamma}{\Gamma}\right). \tag{10}$$

We can now estimate, using the conditional version of Markov's inequality, the number of times that parameters from S_a'' are sampled under "good data" G:

$$\mathbb{P}\left[\sum_{t=1}^{\infty} \mathbf{1}\{\theta_t \in S_a''\} > \eta \mid G\right] \leq \eta^{-1} \sum_{t=1}^{\infty} \mathbb{E}\left[\mathbf{1}\{\theta_t \in S_a''\} \mid G\right] = \eta^{-1} \sum_{t=1}^{\infty} \mathbb{E}\left[\pi_t(S_a'') \mid G\right] \\
\leq \eta^{-1} \sum_{t=1}^{\infty} \left(1 \wedge \mathbb{E}\left[d \exp\left(-\xi N_t(a^*) + 2\rho(N_t(a))\sqrt{N_t(a^*)} \log \frac{1-\Gamma}{\Gamma}\right) \mid G\right]\right), \tag{11}$$

where the final inequality is by (10) and the fact that $\pi_t(S_a'') \leq 1$.¹³

 $^{^{13}}a \wedge b$ denotes the minimum of a and b.

At each time t, if we let \mathcal{F}_t denote the σ -algebra generated by the random variables $\{(\theta_i, A_i, Y_i) : i \leq t\}$, then

$$\mathbb{E}\left[e^{-\xi N_{t}(a^{*})} \mid G\right] = \mathbb{E}\left[\mathbb{E}\left[e^{-\xi N_{t}(a^{*})} \mid \mathcal{F}_{t-1}, G\right] \mid G\right]$$

$$= \mathbb{E}\left[e^{-\xi N_{t-1}(a^{*})}\mathbb{E}\left[e^{-\xi 1\{A_{t}=a^{*}\}} \mid \mathcal{F}_{t-1}, G\right] \mid G\right]$$

$$\leq \mathbb{E}\left[e^{-\xi N_{t-1}(a^{*})}\mathbb{E}\left[e^{-\xi 1\{\theta_{t}=\theta^{*}\}} \mid \mathcal{F}_{t-1}, G\right] \mid G\right]$$

$$(\theta_{t} = \theta \Rightarrow A_{t} = a^{*})$$

$$= \mathbb{E}\left[e^{-\xi N_{t-1}(a^{*})}\left(\pi_{t}(\theta^{*})e^{-\xi} + 1 - \pi_{t}(\theta^{*})\right) \mid G\right]$$

$$\leq \mathbb{E}\left[e^{-\xi N_{t-1}(a^{*})}\left(p^{*}e^{-\xi} + 1 - p^{*}\right) \mid G\right]$$

$$= \left(p^{*}e^{-\xi} + 1 - p^{*}\right)\mathbb{E}\left[e^{-\xi N_{t-1}(a^{*})} \mid G\right],$$

where, in the penultimate step, we use $\pi_t(\theta^*) \ge p^* \cdot \mathbf{1}_G$ from (7). Iterating this estimate and using it in (11) together with the trivial bound $\sqrt{N_t(a^*)} \le \sqrt{t}$ gives

$$\mathbb{P}\left[\sum_{t=1}^{\infty} \mathbf{1}\{\theta_t \in S_a''\} > \eta \mid G\right] \leq \eta^{-1} \sum_{t=1}^{\infty} \left(1 \wedge d\left(p^* e^{-\xi} + 1 - p^*\right)^t \exp\left(2\rho(t)\sqrt{t}\log\frac{1-\Gamma}{\Gamma}\right)\right).$$

Since $p^*e^{-\xi}+1-p^*<1$ and $\rho(t)\sqrt{t}=o(t)$, the sum above is dominated by a geometric series after finitely many t, and is thus a finite quantity $\alpha<\infty$, say. (Note that α does not depend on T.) Replacing δ by $\frac{\delta}{|\mathcal{A}|}$ and taking a union bound over all $a\neq a^*$, this proves

Lemma 4. There exists $\alpha < \infty$ such that

$$\mathbb{P}\left[G, \exists a \neq a^* \sum_{t=1}^{\infty} \mathbf{1}\{\theta_t \in S_a''\} > \frac{\alpha|\mathcal{A}|}{\delta}\right] \leq \delta.$$

A.2. Regret due to sampling from S'_a

For $\theta \in \Theta$, $a \in \mathcal{A}$, define $b_{\theta,a} : \mathbb{R}^+ \to \mathbb{R}$ by

$$b_{\theta,a}(x) := \left\{ \begin{array}{cc} -\lambda, & x < n^{\star} \\ (1 - \epsilon)x D(\theta_a^{\star} || \theta_a), & x \ge n^{\star}, \end{array} \right.$$

where λ and n^* satisfy the assertion of Lemma 3. Thus, by Lemma 3, under G, and for all $\theta \in \Theta$,

$$W_t(\theta) < e^{-\sum_{a \in \mathcal{A}} b_{\theta,a}(N_t(a))} < e^{-\sum_{a \in \mathcal{A}} b_{\theta,a}(N_t'(a))}$$

where the last inequality is because $N_t(a) = N_t'(a) + N_t''(a)$, and because $b_{\theta,a}(x)$ is monotone non-decreasing in x.

Note: In what follows, we assume that T>0 is large enough such that $\log T \geq \frac{\lambda |\mathcal{A}|}{\epsilon}$ holds.

We proceed to define the following sequence of non-decreasing stopping times, and associated sets of actions, for the time horizon $1, 2, \ldots, T$.

Let $\tau_0 := 1$ and $A_0 := \emptyset$. For each $k = 1, \dots, |A| - 1$, let

$$\tau_{k} := \min \quad \tau_{k-1} \le t \le T
\text{s.t.} \quad \mathsf{a}_{k} \notin \mathcal{A}_{k-1} \cup \{a^{*}\},
\min_{\theta \in S'_{\mathsf{a}_{k}}} \sum_{m=1}^{k-1} N'_{\tau_{m}}(a_{m}) D(\theta^{*}_{a_{m}} || \theta_{a_{m}}) + \sum_{a \notin \mathcal{A}_{k-1}} N'_{t}(a) D(\theta^{*}_{a} || \theta_{a}) \ge \frac{1+\epsilon}{1-\epsilon} \log T.$$
(12)

In other words, for each k, A_k represents a set of "eliminated" suboptimal actions. τ_k is the first time after τ_{k-1} , when some suboptimal action (which is not already eliminated) gets eliminated in the sense of satisfying the inequality in (12).

Essentially, the inequality checks whether the condition

$$\sum_{a \neq a^*} N_t'(a) D(\theta_a^* || \theta_a) \approx \log T$$

is met for all particles $\theta \in S'_{\mathbf{a}_k}$ at time t, with a slight modification in that the play count $N'_t(a)$ is "frozen" to $N_{\tau_m}(a_m)$ if action a has been eliminated at an earlier time $\tau_m \leq t$, and the introduction of the factor $\frac{1+\epsilon}{1-\epsilon}$ to the right hand side.

In case more than one suboptimal action is eliminated for the first time at τ_k , we use a fixed tie-breaking rule in \mathcal{A} to resolve the tie. We then put

$$\mathcal{A}_k := \mathcal{A}_{k-1} \cup \{\mathsf{a}_k\}.$$

Thus,
$$\tau_0 \le \tau_1 \le \ldots \le \tau_{|\mathcal{A}|-1} \le T$$
, and $\mathcal{A}_0 \subseteq \mathcal{A}_1 \subseteq \ldots \subseteq \mathcal{A}_{|\mathcal{A}|-1} = \mathcal{A}$.

For each action $a \neq a^*$, by definition, there exists a unique τ_k for which a is first eliminated at τ_k , i.e., $\mathcal{A}_k \setminus \mathcal{A}_{k-1} = a$. Let $\tau(a) := \tau_k$.

The following lemma states that after an action a is eliminated, the algorithm does not sample from S'_a more than a constant number of times.

Lemma 5. If $\log T \geq \lambda |\mathcal{A}|$, then

$$\mathbb{P}\left[G, \forall k \sum_{t=\tau_k+1}^{T} \mathbf{1}\{\theta_t \in S'_{\mathsf{a}_k}\} > \frac{|\mathcal{A}|}{\delta \pi(\theta^*)}\right] \leq \delta.$$

Proof. Observe that under G, whenever $T \geq t > \tau_k$, every $\theta \in S'_{a_k}$ satisfies

$$W_{t}(\theta) \leq \exp\left(-\sum_{a \in \mathcal{A}} b_{\theta,a}(N'_{t}(a))\right)$$

$$\leq \exp\left(-\sum_{a \in \mathcal{A}} ((1 - \epsilon)N'_{t}(a)D(\theta_{a}^{*}||\theta_{a}) - \lambda)\right) = \exp\left(-(1 - \epsilon)\sum_{a \in \mathcal{A}} N'_{t}(a)D(\theta_{a}^{*}||\theta_{a}) + \lambda|\mathcal{A}|\right)$$

$$\leq \exp\left(-(1 - \epsilon)\sum_{m=1}^{k-1} N'_{\tau_{m}}(a_{m})D(\theta_{a_{m}}^{*}||\theta_{a_{m}}) - (1 - \epsilon)\sum_{a \notin \mathcal{A}_{k-1}} N'_{t}(a)D(\theta_{a}^{*}||\theta_{a}) + \lambda|\mathcal{A}|\right)$$

$$\leq \exp\left(-(1 - \epsilon)\frac{1 + \epsilon}{1 - \epsilon}\log T + \epsilon\log T\right) = \frac{1}{T}.$$

The second inequality above is because the definition of $b_{\theta,a}(x)$ implies that $\forall x \geq 0 \ (1-\epsilon)xD(\theta_a^*||\theta_a) - b_{\theta,a}(x) \leq \lambda$. The penultimate inequality above is due to the fact that for any $m \leq k$, we have $\tau_m \leq \tau_k \leq t$, implying that $N_t'(a_m) \geq N_{\tau_m}'(a_m)$. We now estimate

$$\mathbb{E}\left[\mathbf{1}\{t > \tau_{k}\}\mathbf{1}\{\theta_{t} \in S_{\mathsf{a}_{k}}'\} \mid G\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbf{1}\{t > \tau_{k}\}\mathbf{1}\{\theta_{t} \in S_{\mathsf{a}_{k}}'\} \mid G, \mathcal{F}_{t}\right] \mid G\right]$$

$$= \mathbb{E}\left[\mathbf{1}\{t > \tau_{k}\}\pi_{t}(S_{\mathsf{a}_{k}}') \mid G\right] = \mathbb{E}\left[\mathbf{1}\{t > \tau_{k}\}\frac{\int_{S_{\mathsf{a}_{k}}'}W_{t}(\theta)\pi(d\theta)}{\int_{\Theta}W_{t}(\theta)\pi(d\theta)} \mid G\right]$$

$$\leq \mathbb{E}\left[\mathbf{1}\{t > \tau_{k}\}\frac{T^{-1}}{\pi(\theta^{*})} \mid G\right] \leq \frac{T^{-1}}{\pi(\theta^{*})},$$

which implies that

$$\mathbb{E}\left[\sum_{t=\tau_k+1}^T \mathbf{1}\{\theta_t \in S_{\mathsf{a}_k}'\} \bigm| G\right] = \sum_{t=1}^T \mathbb{E}\left[\mathbf{1}\{t > \tau_k\}\mathbf{1}\{\theta_t \in S_{\mathsf{a}_k}'\} \bigm| G\right] \leq \frac{1}{\pi(\theta^*)}.$$

Thus,

$$\mathbb{P}\left[\sum_{t=\tau_k+1}^T \mathbf{1}\{\theta_t \in S_{\mathsf{a}_k}'\} > \frac{1}{\delta\pi(\theta^*)} \mid G\right] \leq \delta.$$

Replacing δ by $\frac{\delta}{|\mathcal{A}|}$ and taking a union bound over $k=1,2,\ldots,|\mathcal{A}|-1$ proves the lemma.

Now we bound the number of plays of suboptimal actions under the event

$$H := G \bigcap \left\{ \exists a \neq a^* \ \sum_{t=1}^{\infty} \mathbf{1} \{ \theta_t \in S_a'' \} \leq \frac{\alpha |\mathcal{A}|}{\delta} \right\} \bigcap \left\{ \forall k \ \sum_{t=\tau_k+1}^T \mathbf{1} \{ \theta_t \in S_{\mathsf{a}_k}' \} \leq \frac{|\mathcal{A}|}{\delta \pi(\theta^*)} \right\},$$

which, according to the results of Theorem 3, Lemma 4 and Lemma 5, occurs with probability at least $1 - (\delta\sqrt{2} + 2\delta)$. Under the event H, we have

$$\begin{split} \sum_{a \neq a^*} N_T'(a) &= \sum_{k=1}^{|\mathcal{A}|-1} N_T'(\mathsf{a}_k) \\ &= \sum_{k=1}^{|\mathcal{A}|-1} N_{\tau_k}'(\mathsf{a}_k) + \sum_{k=1}^{|\mathcal{A}|-1} (N_T'(\mathsf{a}_k) - N_{\tau_k}'(\mathsf{a}_k)) \\ &= \sum_{k=1}^{|\mathcal{A}|-1} N_{\tau_k}'(\mathsf{a}_k) + \sum_{k=1}^{|\mathcal{A}|-1} \sum_{t=\tau_k+1}^T \mathbf{1} \{\theta_t \in S_{\mathsf{a}_k}'\} \\ &\leq \sum_{k=1}^{|\mathcal{A}|-1} N_{\tau_k}'(\mathsf{a}_k) + \frac{|\mathcal{A}|^2}{\delta \pi(\theta^*)}. \end{split}$$

Lemma 6. Under H, $\sum_{k=1}^{|\mathcal{A}|-1} N'_{\tau_k}(\mathsf{a}_k) \leq \mathsf{C}_T$, where C_T solves

$$C(\log T) := \max \sum_{k=1}^{|\mathcal{A}|-1} z_k(a_k)$$

$$s.t. \quad z_k \in \mathbb{Z}_+^{|\mathcal{A}|-1} \times \{0\}, a_k \in \mathcal{A} \setminus \{a^*\}, 1 \le k \le |\mathcal{A}| - 1,$$

$$z_i \succeq z_k, z_i(a_k) = z_k(a_k), i \ge k,$$

$$\forall 1 \le j, k \le |\mathcal{A}| - 1 :$$

$$\min_{\theta \in S'_{a_k}} \langle z_k, D_{\theta} \rangle \ge \frac{1+\epsilon}{1-\epsilon} \log T,$$

$$\min_{\theta \in S'_{a_k}} \langle z_k - e^{(j)}, D_{\theta} \rangle < \frac{1+\epsilon}{1-\epsilon} \log T.$$

$$(13)$$

Proof. With regard to the definition of the τ_k and a_k in (12), if we take

$$a_k = \mathsf{a}_k, \quad 1 \le k \le |\mathcal{A}| - 1,$$

and

$$z_k(a) = \begin{cases} N'_{\tau(a)}(a), & \tau(a) \le \tau_k, \\ N'_{\tau_k}(a), & \tau(a) > \tau_k, \end{cases}$$

then it follows, from (12), that the z_k and a_k satisfy all the constraints of the optimization problem (13). We also have $\sum_{k=1}^{|\mathcal{A}|-1} z_k(k) = \sum_{k=1}^{|\mathcal{A}|-1} N'_{\tau_k}(\mathsf{a}_k).$ This proves the lemma.

B. Proof of Corollary 1

The optimal action (in this case a subset) is $a^* = \{N - M + 1, \dots, N\}$. It can be checked that the assumptions 1-3 are verified, thus the bound (3) applies and we will be done if we estimate $C(\log T)$.

The essence of the proof is to first partition the space of suboptimal actions (subsets) according to the least-index basic arm that they contain, i.e., for i = 1, 2, ..., N - M, let

$$A_i := \{a \subset [N] : a \neq a^*, \min\{i \in a\} = i\}$$

be all the actions whose least-index (or "weakest") arm is i^{-14} .

Take any sequence $\{z_k\}_{k=1}^{|\mathcal{A}|-1}$, $\{a_k\}_{k=1}^{|\mathcal{A}|-1}$ feasible for (3). Fix $1 \leq i \leq N-M$ and consider the sum $\sum_{k:a_k \in \mathcal{A}_i} z_k(a_k)$. We claim that this does not exceed $1 + \left(\frac{1+\epsilon}{1-\epsilon}\right) \frac{1}{D(\mu_i||\mu_{N-M+1})} \log T$. If, on the contrary, it does, then put $\hat{k} := \max\{k : a_k \in \mathcal{A}_i\}$. Take any model $\theta \in S'_{a_{\hat{k}}}$. We must have $D(\mu_{a^*}||\theta_{a^*}) = 0$. Since the KL divergence due to observing a tuple of M independent rewards is simply the sum of the M individual (binary) KL divergences, we get that $\theta_j = \mu_j$ for all $j \geq N-M+1$. However, the optimal action for θ is $a_{\hat{k}}$ containing the basic arm i. Hence, we get that $\theta_i \geq \mu_{N-M+1} \geq \mu_i$, which implies that $D(\mu_i||\theta_i) \geq D(\mu_i||\mu_{N-M+1})$.

It now remains to estimate

$$\langle z_{\hat{k}} - e^{(\hat{k})}, D_{\theta} \rangle = \sum_{j=1}^{N} \langle \sum_{a:j \in a} z_{\hat{k}}(a) - \delta_{j \in a_{\hat{k}}}, D(\mu_{j}||\theta_{j}) \rangle$$

$$\geq \left(\sum_{a:i \in a} z_{\hat{k}}(a) - 1 \right) D(\mu_{i}||\theta_{i})$$

$$\geq \left(\sum_{a \in \mathcal{A}_{i}} z_{\hat{k}}(a) - 1 \right) D(\mu_{i}||\mu_{N-M+1})$$

$$= \left(\sum_{k:a_{k} \in \mathcal{A}_{i}} z_{k}(a_{k}) - 1 \right) D(\mu_{i}||\mu_{N-M+1})$$

$$\geq \log T,$$

by hypothesis. This violates the final inequality of (3) and yields the desired contradiction. Since the above argument is valid for any $1 \le i \le N - M$, summing over all such i completes the proof.

C. Proof of Proposition 2 & Corollary 2

Lemma 7. Let T be large enough such that $\max_{\theta \in \Theta, a \in \mathcal{A}} D(\theta_a^* || \theta_a) \leq \frac{1+\epsilon}{1-\epsilon} \log T$. Then, the optimization problem (3) admits the following upper bound:

$$C(\log T) \leq \max \quad ||z||_{1}$$

$$s.t. \quad z \in \mathbb{R}^{|\mathcal{A}|-1} \times \{0\},$$

$$a \in \mathcal{A}, a \neq a^{*},$$

$$\min_{\theta \in S'_{a}} \langle z, D_{\theta} \rangle \leq \frac{2(1+\epsilon)}{1-\epsilon} \log T,$$

$$0 \leq z(\hat{a}) \leq \frac{2}{\delta_{\hat{a}}} \left(\frac{1+\epsilon}{1-\epsilon}\right) \log T, \quad \forall \hat{a} \in \mathcal{A}, \hat{a} \neq a^{*}.$$

$$(14)$$

Proof. Take a feasible solution $\{z_k, a_k\}_{k=1}^{|\mathcal{A}|-1}$ for the optimization problem (3). We will show that $z = z_{|\mathcal{A}|-1}$ and $a = a_{|\mathcal{A}|-1}$ satisfy the constraints (14) above and yield the same objective function value in both optimization problems. First,

$$||z||_1 = \sum_{\hat{a} \in \mathcal{A}, \hat{a} \neq a^*} z(\hat{a}) = \sum_{k=1}^{|\mathcal{A}|-1} z_{|\mathcal{A}|-1}(a_k) = \sum_{k=1}^{|\mathcal{A}|-1} z_k(a_k),$$

as $z_{|\mathcal{A}|-1}(a_k) \geq z_k(a_k)$, for all $k \leq |\mathcal{A}|-1$, by (3). This shows that the objective functions of both (3) and (14) are equal at $\{z_k, a_k\}_{k=1}^{|\mathcal{A}|-1}$ and (z, a) respectively.

¹⁴This covers all of $A \setminus \{a^*\}$ since every suboptimal set must contain a basic arm of index N-M or lesser.

Next, for any $1 \le j \le |\mathcal{A}| - 1$ and the unit vector $e^{(j)}$, we have

$$\begin{split} \min_{\theta \in S_a'} \quad \langle z, D_{\theta} \rangle &= \min_{\theta \in S_{a_k}'} \quad \langle z_k, D_{\theta} \rangle \\ &\leq \min_{\theta \in S_{a_k}'} \quad \langle z_k - e^{(j)}, D_{\theta} \rangle + \max_{\theta \in \Theta, a \in \mathcal{A}} D(\theta_a^* || \theta_a) \\ &\leq \frac{1+\epsilon}{1-\epsilon} \log T + \frac{1+\epsilon}{1-\epsilon} \log T = \frac{2(1+\epsilon)}{1-\epsilon} \log T. \end{split}$$

This shows that the penultimate constraint in (14) is satisfied. For the final constraint in (14), fix $1 \le j \le |\mathcal{A}| - 1$, so that we have

$$\delta_{a_j} \cdot z(a_j) = \delta_{a_j} \cdot z_j(a_j) \le \min_{\theta \in S_a'} \langle z_j, D_\theta \rangle \le \frac{2(1+\epsilon)}{1-\epsilon} \log T,$$

exactly as in the preceding derivation. This implies that $z(\hat{a}) \leq \frac{2}{\delta_{\hat{a}}} \left(\frac{1+\epsilon}{1-\epsilon}\right) \log T$ for all $\hat{a} \neq a^*$.

Proposition 2. Let T be large enough such that $\max_{\theta \in \Theta, a \in \mathcal{A}} D(\theta_a^* || \theta_a) \leq \frac{1+\epsilon}{1-\epsilon} \log T$. Suppose

$$\Delta \le \min_{a \ne a^*} \delta_a = \min_{a \ne a^*, \theta \in S_a'} D(\theta_a^* || \theta_a).$$

Suppose also that $L \in \mathbb{Z}^+$ is such that for every $a \neq a^*$ and $\theta \in S'_a$,

$$|\{\hat{a} \in \mathcal{A} : \hat{a} \neq a^*, D(\theta_{\hat{a}}^* || \theta_{\hat{a}}) \geq \Delta\}| \geq L,$$

i.e., at least L coordinates of D_{θ} (excluding the |A|-th coordinate a^*) are at least Δ . Then,

$$\mathsf{C}(\log T) \le \left(\frac{|\mathcal{A}| - L}{\Delta}\right) \frac{2(1+\epsilon)}{1-\epsilon} \log T.$$

Proof of Proposition 2. Consider a solution (z,a) to a relaxation of the optimization problem (14) obtained by replacing $\delta_{\hat{a}}$ with Δ and D_{θ} with $D'_{\theta} := \min(D_{\theta}, \Delta \cdot \mathbf{1}) \leq D_{\theta}^{-15}$. We claim that $||z||_1 \equiv \langle \mathbf{1}, z \rangle \leq \left(\frac{|\mathcal{A}| - L}{\Delta}\right) \chi$ where $\chi := \frac{2(1+\epsilon)}{1-\epsilon} \log T$. If not, let $y = \chi\left(\frac{1}{\Delta}, \dots, \frac{1}{\Delta}, 0\right)$, and observe that

$$\langle D'_{\theta}, y - z \rangle = \langle D'_{\theta}, y \rangle - \langle D'_{\theta}, z \rangle$$

 $\geq \chi \cdot L \cdot \Delta \cdot \frac{1}{\Delta} - \chi = \chi(L - 1).$

But then,

$$\begin{split} \langle \mathbf{1}, y - z \rangle &= \langle \mathbf{1}, y \rangle - \langle \mathbf{1}, z \rangle \\ &< \frac{\chi(|\mathcal{A}| - 1)}{\Delta} - \frac{\chi(|\mathcal{A}| - L)}{\Delta} = \frac{\chi(L - 1)}{\Delta} \\ &\leq \frac{\langle D_{\theta}', y - z \rangle}{\Delta} \\ &\leq \frac{\langle \Delta \cdot \mathbf{1}, y - z \rangle}{\Delta} = \langle \mathbf{1}, y - z \rangle, \end{split}$$

since $D'_{\theta} \leq \Delta \cdot \mathbf{1}$ by definition and $z \leq y$ by hypothesis. This is a contradiction.

Playing Subsets with Max reward: Let $\beta \in (0,1)$, and suppose that $\Theta = \{1 - \beta^R, 1 - \beta^{R-1}, \dots, 1 - \beta^2, 1 - \beta\}^N$, for positive integers R and N. Consider an N armed Bernoulli bandit with arm parameters $\mu \in \Theta$. The complex actions are all size M subsets of the N basic arms, $M \leq \frac{N-1}{2}$. Let $\mu_{min} := \min_{a \in \mathcal{A}} \prod_{i \in a} (1 - \mu_i)$.

 $^{^{15}}$ Here 1 represents an all-ones vector of dimension \mathcal{A} , and the minimum is taken coordinatewise. Also, a solution exists since the objective is continuous and the feasible region is compact.

Proof of Corollary 2. Since the reward from playing a subset a is the maximum (equivalently, the Boolean OR) value, the marginal KL divergence along action a is simply the Bernoulli KL divergence for the product of the parameters: $D(\theta_a^*||\theta_a) = D(\mu_a||\theta_a) = D(\prod_{i \in a} (1 - \mu_i)||\prod_{i \in a} (1 - \theta_i)).$

Let us estimate

$$\Delta := \min\{D(\mu_a||\theta_a) : \theta \in \Theta, a \in \mathcal{A}, D(\mu_a||\theta_a) > 0\}.$$

If $\mu_i = 1 - \beta^{r_i}$ and $\theta_i = 1 - \theta^{s_i}$ for integers $r_i, s_i, i = 1, 2, \dots, N$, then Pinsker's inequality yields

$$D(\mu_{a}||\theta_{a}) \geq \frac{2}{\log 2} \left(\prod_{i \in a} (1 - \mu_{i}) - \prod_{i \in a} (1 - \theta_{i}) \right)^{2}$$

$$= \frac{2}{\log 2} \left(\beta^{\sum_{i \in a} r_{i}} - \beta^{\sum_{i \in a} s_{i}} \right)^{2}$$

$$= \frac{2}{\log 2} \beta^{2 \sum_{i \in a} r_{i}} \left(1 - \beta^{\sum_{i \in a} s_{i} - \sum_{i \in a} r_{i}} \right)^{2}.$$

 $D(\mu_a||\theta_a)>0$ if and only if $|\sum_{i\in a}s_i-\sum_{i\in a}r_i|\geq 1$. This implies, together with the above, that

$$\Delta \ge \frac{2\mu_{\min}^2(1-\beta)}{\log 2}.$$

Next, we claim that for any $\mu \neq \theta \in \Theta$, $D(\mu_a||\theta_a) > 0$ for at least $L = \binom{N-1}{M-1} - 1$ size M subsets/actions a. This is because if otherwise, then $\sum_{i \in a} r_i = \sum_{i \in a} s_i$ for at least $\binom{N}{M} - L = \binom{N}{M} - \binom{N-1}{M-1} + 1 = \binom{N-1}{M} + 1$ subsets a. However, a combinatorial result (Ahlswede et al., 2003) states that the maximum number of weight M vertices of the N dimensional hypercube (in our case, a size M subset corresponds to a weight M vertex) that do not span N dimensions is $\binom{N-1}{M}$. This forces $r_i = r_i$ for all $i \in [N]$ and hence $\mu = \theta$, a contradiction.

Now, we can apply Proposition 2 with Δ and L as above. This gives us that for T large enough, the total number of arm plays is bounded above, with probability at least $1 - \delta$, by