

Projet de recherche 2025-2026

Context-Aware and Explainable Anomaly Detection in Financial Transactions: Building a Meta-Model for Trustworthy Audit Automation

Contexte et partenariat :

À la suite du projet mené en 2024–2025, qui a exploré l'analyse sémantique et la détection non supervisée d'anomalies financières (via Isolation Forest, One-Class SVM et incohérences de taux de change), ce sujet vise à aller plus loin sur trois dimensions :

- 1. L'enrichissement contextuel des données (temps, nature de la dépense),
- 2. L'explicabilité des décisions algorithmiques,
- 3. L'agrégation intelligente des modèles via un méta-modèle.

Le projet est réalisé en partenariat avec Zacca International, entreprise d'audit, qui apporte les données réelles et le cadre métier.

Mots clés: Audit Automation, Anomaly Detection, Semantic Features, Unsupervised Learning, contextually enriched dataset

Objectifs du projet:

- 1. Construire un méta-modèle de détection d'anomalies basé sur les résultats de plusieurs détecteurs (Isolation Forest, OCSVM, LOF, autoencoders).
- 2. Intégrer des variables contextuelles (temporelles, structurelles, sémantiques) dans les modèles.
- 3. Mettre en œuvre une pipeline Python modulaire allant de la préparation des données à la priorisation des cas.
- 4. Développer un dashboard interactif en Python (Streamlit ou Dash) intégrant :
 - o la visualisation des anomalies,
 - o les scores des différents modèles,
 - o les explications locales via SHAP/LIME,
 - o un module d'historique pour auditabilité.

Méthodologies envisagées :

- Extraction de caractéristiques : nature du flux, variation temporelle, profils utilisateur.
- Modèles de base : Isolation Forest, One-Class SVM, Local Outlier Factor, autoencoder.
- Méta-modèle (niveau 2) : logistic regression ou arbre de décision entraîné sur les scores produits par les modèles de base.
- Explicabilité : SHAP pour la vision globale, LIME pour les cas individuels.
- Construction du dashboard avec filtres dynamiques, export Excel/PDF, API REST éventuelle.

Projet de recherche 2025-2026

Livrables attendus:

- Un article scientifique sur les approches hybrides explicables en détection d'anomalies financières.
- Un pipeline modulaire open-source réutilisable.
- Un dashboard professionnel pour Zacca International, prêt à être intégré en phase de test.

Encadrement et partenariat :

- Supervision académique : Nancy CHENDEB (nancy.chendeb@devinci.fr)
- Partenaire industriel : Abdallah ZIADE, Zacca International données réelles + appui métier

Plan 6 mois

Mois	Phase principale	Activités clés	Livrables clés
1	Cadrage &	- Analyse métier avec	Dataset enrichi +
	enrichissement	Zacca	document de
	contextuel	- Intégration de variables	spécification
		contextuelles (temps,	
		nature, structure)	
2	Modélisation des	- Implémentation d'algos :	Résultats comparatifs des
	détecteurs unitaires	Isolation Forest, OCSVM,	détecteurs + scripts
		LOF, Autoencoders	
		- Comparaison initiale	
3	Construction du méta-	- Fusion des scores via	Méta-modèle validé +
	modèle	stacking ou vote pondéré	benchmark
		- Validation croisée	
		- Optimisation des seuils	
4	Explicabilité &	- Application de SHAP et	Rapport XAI + module
	auditabilité (XAI)	LIME	d'historique pour audit
		- Visualisation des	
		explications locales	
		- Préparation des logs	
5	Développement du	- Conception d'une interface	Dashboard fonctionnel +
	dashboard	interactive (Streamlit/Dash)	documentation utilisateur
		- Intégration : visualisation,	
		scores, XAI	
6	Tests finaux &	- Tests utilisateurs avec	Rapport final + dépôt
	valorisation	Zacca	GitHub + démonstration
		- Ajustements pipeline +	
		interface	
		- Dépôt GitHub + rapport	
		final	