CS321-Lecture 5

9/19/2004

Drawing Circles and Arcs

- Similar to line drawing
 - But non-linear
- Algorithms
 - Simple equation implementation
 - Optimized (Bresenham approach)

1

Circle Equations

Not a very good method, since slope changes dramatically.

Polar Coordinate Form

 $x = x_c + r\cos\theta$ $y = y_c + r\sin\theta$

 $\Delta s = r\theta$

 $\Delta s \approx 1$

Simple method: plot directly from parametric equations

 $\Delta\theta \approx \frac{1}{r}$

+

Calculating p_{k+1}

$$p_{k+1} = f_{circle}\left(x_{k+1} + 1, y_{k+1} - \frac{1}{2}\right)$$

$$= \left(x_k + 1 + 1\right)^2 + \left(y_{k+1} - \frac{1}{2}\right)^2 - r^2$$

$$= x_k^2 + 4x_k + 4 + y_{k+1}^2 - y_{k+1} + \frac{1}{4} - r^2$$

Recurrence Relation for p _k
0 0
$p_{k} = x_{k}^{2} + 12x_{k} + 11 + y_{k}^{2} - y_{k} + \frac{1}{4} - r^{2}$
$p_{k+1} = x_k^2 + 4x_k + 4 + y_{k+1}^2 - y_{k+1} + \frac{1}{4} - r^2$
$p_{k+1} = p_k + (2x_k + 2) + 1 + (y_{k+1}^2 - y_k^2) - (y_{k+1} - y_k)$
$= p_k + 2x_{k+1}^{2} + 1 + \left(y_{k+1}^{2} - y_k^{2}\right) - \left(y_{k+1} - y_k\right)$

	п
	Ш

Initial Values

$$(x_0, y_0) = (0, r)$$

$$p_0 = f_{circle} \left(0 + 1, r - \frac{1}{2} \right)$$

$$= 1 + \left(r - \frac{1}{2} \right)^2 - r^2$$

$$= 1 + r^2 - r + \frac{1}{4} - r^2$$

$$= \frac{5}{4} - r \approx 1 - r$$
Rou int

 $= \frac{5}{4} - r \approx 1 - r$ Round to nearest integer. Why? integer. Why?

Bresenham Algorithm Summary

At each point:

If
$$p_k < 0$$
:
$$Plot(x_k + 1, y_k)$$
$$p_{k+1} = p_k + 2(x_k + 1) + 1$$

If
$$p_k < 0$$
:
$$\frac{\text{Plot}(x_k + 1, y_k)}{p_{k+1} = p_k + 2(x_k + 1) + 1}$$
If $p_k >= 0$:
$$\frac{\text{Plot}(x_k + 1, y_k - 1)}{p_{k+1} = p_k + 2(x_k + 1) + 1 - 2(y_k - 1)}$$

Drawing Ellipses

- General ellipses
 - Polygon approximation
 - Rotation (later)
- Aligned axes
 - Constrained (no rotation)
 - Midpoint algorithm

16

