Chapter 6. Convex Sets and Their Separations (Exercises)

Exercise 6.1: Commodities that Cause Disutility. How is Figure 6.1 altered when

- (a) one of the choice variable is labor, which gives disutility to consumers and is an input to production,
- (b) when one of the goods is pollution, which gives disutility to consumers and is the by-product of an economically desirable good which is the other choice variable?

Interpret the associated prices in each of these contexts.

Exercise 6.2: Convexity of a Firm's Profit Function. A firm chooses vectors x of inputs and y of outputs subject to a production possibility constraint $G(x,y) \leq 0$, to maximize profit qy - px, where q denotes the row vector of output prices and p that of input prices. Let $\Pi(q,p)$ be the maximized profit expressed as a function of the prices. Prove that Π is a convex function of (q,p).

Exercise 6.3: Corner Solutions. Consider an economy with labor endowment L. It can produce two goods x_1 and x_2 . A unit of good j needs a fixed amount of a_j units of labor, so the production possibility constraint is

$$a_1x_1 + a_2x_2 < L$$
.

The world prices of the two goods are p_1 and p_2 , independent of the levels of production chosen by this country. The aim is to maximize the value of national product, $(p_1x_1 + p_2x_2)$.

Question 1: Draw a figure and solve the problem by separation of two convex sets. You will need to consider two cases separately, depending on which of p_1/p_2 and a_1/a_2 is larger.

Question 2: Having the solutions in the figure, verify Lagrange's conditions. Find and interpret the Lagrange multiplier. Show that the maximized national product, expressed

as a function of the prices (the revenue function or the GNP function) is

$$R(p_1, p_2) = \max \left\{ \frac{p_1}{a_1}, \frac{p_2}{a_2} \right\} L.$$