Ряди в комплексній площині

доц. І.В. Орловський

1. Числові ряди

Ряд

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \ldots + u_n + \ldots, \tag{1}$$

членами якого є комплексні числа, називають числовим рядом (в комплексній області). Ряд (1) з комплексними членами $u_n=a_n+ib_n$ можна записати у вигляді

$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} (a_n + ib_n) = (a_1 + ib_1) + (a_2 + ib_2) + \ldots + (a_n + ib_n) + \ldots,$$

де $a_n,\ b_n,\ n\in\mathbb{N}$, — дійсні числа. Суму

$$S_n = \sum_{k=1}^n u_k = \sum_{k=1}^n (a_k + ib_k) = \sum_{k=1}^n a_k + i\sum_{k=1}^n b_k$$

перших n членів ряду (1) називають n-тою частковою сумою ряду

Якщо існує скінченна границя S послідовності часткових сум $\{S_n, \, n \geq 1\}$ ряду (1):

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n a_k + i \lim_{n \to \infty} \sum_{k=1}^n b_k,$$

тоді ця границя називається сумою ряду (1), а сам числовий ряд називають збіжним. Якщо ж $\lim_{n\to\infty} S_n$ не існує , тоді ряд (1) називають розбіжним.

Очевидно, що ряд (1) ϵ збіжним тоді і тільки тоді, коли ϵ збіжним кожен з рядів

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots, \tag{2}$$

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + \ldots + b_n + \ldots$$
 (3)

Більш того, тоді $S=S_a+iS_b$, де S_a – сума ряда (2), а S_b – сума ряда (3). Це означає, що дослідження збіжності ряду з комплексними членами зводиться до дослідження рядів (2) і (3) з дійсними членами.

Завдяки останьому, основні означення, більшість теорем та їх доведення є аналогічними відповідним означенням та теоремам теорії рядів з дійсними членами.

Ряд

$$R_n = a_{n+1} + a_{n+2} + \dots = \sum_{k=n+1}^{\infty} u_k = \sum_{k=n+1}^{\infty} a_k + i \sum_{k=n+1}^{\infty} b_k,$$

називають n-м залишком ряду (1).

Теорема 1 (Необхідна ознака збіжності ряда)

Якщо ряд $\sum\limits_{n=1}^{\infty}\,u_n$ збігається, то його n-ий член u_n пряму ϵ до нуля при $n o\infty$, тобто

$$\lim_{n\to\infty} u_n = 0.$$

Числовий ряд $\sum\limits_{n=1}^{\infty}\,u_n$ називають абсолютно збіжним, якщо збігається ряд

$$\sum_{n=1}^{\infty} |u_n| = |u_1| + |u_2| + \ldots + |u_n| + \ldots$$
 (4)

Теорема 2

Якщо ряд $\sum\limits_{n=1}^{\infty}u_n$ ϵ абсолютно збіжним (збігається ряд $\sum\limits_{n=1}^{\infty}|u_n|$), тоді сам ряд також буде збіжним.

Властивості абсолютно збіжних рядів з комплексними членами

Нехай
$$\sum\limits_{n=1}^\infty u_n$$
 та $\sum\limits_{n=1}^\infty v_n$ – абсолютно збіжні ряди, причому $\sum\limits_{n=1}^\infty u_n = S_u$ та $\sum\limits_{n=1}^\infty v_n = S_v$. Тоді

- lacktriangledown $\forall c \in \mathbb{C}$ ряд $\sum_{n=1}^{\infty} \, cu_n$ збігається абсолютно, причому його сума дорівнює cS_u .
- $m{2}$ ряди $\sum\limits_{n=1}^{\infty} \, (u_n \pm v_n) \; \epsilon$ абсолютно збіжними, причому їх суми рівні $S_u \pm S_v.$
- **3** добуток цих двох рядів $\sum\limits_{n=1}^{\infty} w_n$, де $w_n = u_1 v_n + u_2 v_{n-1} + \ldots + u_n v_1 = \sum\limits_{k=1}^n u_k v_{n-k+1}$, також є абсолютно збіжним, причому його сума дорівнює $S_u \cdot S_v$.
- ① ряд, який отримано з $\sum\limits_{n=1}^\infty u_n$ довільною перестановкою його членів буде також абсолютно збіжним і матиме ту ж саму суму S_u .

Зауважимо також, що при дослідженні рядів з комплексними членами можна застосовувати всі відомі, з дійсного аналізу, ознаки збіжності знакопостійних рядів. Наприклад, радикальна ознака Коші: якщо існує границя $\lim_{n \to \infty} \sqrt[n]{|u_n|} = l$, то при l < 1, то ряд (1) є абсолютно збіжним, а при l > 1 — розбіжним.

2. Степеневі ряди

Степеневим рядом в комплексній області називають ряд вигляду

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n = c_0 + c_1 (z - z_0) + \dots + c_n (z - z_0)^n + \dots,$$
 (5)

де c_n , $n \geq 0$, — комплексні числа (коефіцієнтами степеневого ряду), z = x + iy — комплексна змінна.

Степеневий ряд $\sum\limits_{n=0}^{\infty}\,c_{n}\left(z-z_{0}
ight)^{n}$ заміною $z-z_{0}=t$ зводиться до ряду

$$\sum_{n=0}^{\infty} c_n z^n = c_0 + c_1 z + \dots + c_n z^n + \dots,$$
 (6)

з центром в точці $z_0 = 0$.

Покладаючи $z=z_0\in\mathbb{C}$ у степеневому ряді (6), дістаємо числовий ряд $\sum\limits_{n=1}^{\infty}c_nz_0^n$. Якщо отриманий числовий ряд збігається (розбігається), то точку z_0 називають точкою збіжності (розбіжності) ряду (6), а сам ряд збіжним (розбіжним) в цій точці.

Сукупність всіх точок збіжності степеневого ряду (6) називають областю збіжності цього ряду.

Теорема 3 (Абеля)

Якщо степеневий ряд $\sum\limits_{n=0}^{\infty} c_n z^n$ збігається в точці $z_0 \neq 0$, тоді він збігається абсолютно у всіх точках z, які задовольняють нерівність

$$|z|<|z_0|.$$

Якщо ряд розбігається в деякій точці z_1 , то він розбігається і у всіх точках z, що задовольняють нерівність

$$|z|>|z_1|.$$

3 теореми Абеля випливає існування такого невід'ємного числа R, що при всіх значеннях z, для яких |z| < R, степеневий ряд $\sum\limits_{n=0}^{\infty} c_n z^n$ збігається абсолютно, а при |z| > R є розбіжним. Зазначимо, що нерівності |z| < R задовольняють точки комплексної площини, що лежать всередині круга радіусом R з центром в точці z=0.

Величину R називають радіусом збіжності степеневого ряду (6), а кругу |z| < R — кругом збіжності ряду. У крузі |z| < R ряд збігається, поза кругом (|z| > R) — розбігається, а на колі |z| = R можуть бути як точки збіжності, так і точки розбіжності ряду.

Якщо ряд (6) збігається лише в точці z=0, тоді вважають R=0. Якщо ж ряд збігається на всій комплексній площині, то $R=\infty$. Кругом збіжності ряду (5) буде круг $|z-z_0| < R$.

Радіус збіжності степеневого ряду можна знаходити за формулою

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|c_n|}}.$$

Деякі властивості степеневих рядів

- Сума степеневого ряду всередині круга збіжності є аналітичною функцією;
- Степеневий ряд всередині круга збіжності можна почленно диференціювати та інтегрувати будь яку кількість разів. Ряд, який при цьому отримується, буде мати такий же радіус збіжності, що і початковий ряд.

3. Ряд Тейлора

Теорема 4 (Тейлора)

Будь-яку аналітичну у крузі $|z-z_0| < R$ функцію f(z) можна єдиним чином розвинути у цьому крузі у степеневий ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
 (7)

коефіцієнти якого визначають за формулами

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_{l_r} \frac{f(z)}{(z - z_0)^{n+1}} dz, \ n = 0, 1, 2, \dots,$$

 $\det l_r$ — довільне коло з центром у точці z_0 , який лежить всередині заданого круга.

Ряд (7) називають рядом Тейлора з центром у точці z_0 функції f(z).

Теорема 5 (про єдиність розвинення ряд Тейлора)

Якщо функція f(z) розвивна у крузі $|z-z_0| < R$ у степеневий ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

то цей ряд буде рядом Тейлора з центром у точці z_0 функції f(z).

Розвинення деяких функцій в ряд Маклорена (з центром в точці $z_0=0$)

$$\bullet \ e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \ z \in \mathbb{C};$$

3
$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \ z \in \mathbb{C};$$

4 sh
$$z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, z \in \mathbb{C};$$

6 ch
$$z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \ z \in \mathbb{C};$$

6
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \ |z| < 1;$$

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, \ |z| < 1;$$

$$\ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}, \ |z| < 1.$$

4. Ряди Лорана

Теорема 6 (Лорана)

Будь-яку аналітичну в кільці $r<|z-z_0|< R$ ($0\leq r< R\leq \infty$) функцію f(z) можна єдиним чином розвинути у цьому кільці в ряд

$$f(z) = \sum_{n = -\infty}^{\infty} c_n \left(z - z_0 \right)^n \tag{8}$$

коефіцієнти якого визначають за формулами

$$c_n = \frac{1}{2\pi i} \oint_{\gamma_r} \frac{f(z)}{(z - z_0)^{n+1}} dz, \ n \in \mathbb{Z},$$

де γ_r — довільне коло з центром у точці z_0 , який лежить всередині заданого кільця.

Ряд (8) називають рядом Лорана з центром у точці z_0 функції f(z).

Ряд Лорана для функції

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{m=1}^{\infty} \frac{c_{-m}}{(z - z_0)^m}$$

складається з двох частин. Першу частину ряду Лорана

$$f_1(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

називають правильною частиною ряду Лорана; цей ряд збігається до аналітичної функції $f_1(z)$ всередині круга $|z-z_0| < R$. Другу частину ряду Лорана

$$f_2(z) = \sum_{m=1}^{\infty} \frac{c_{-m}}{(z - z_0)^m}$$

називають головною частиною ряду Лорана; цей ряд збігається до аналітичної функції $f_2(z)$ ззовні круга $|z-z_0|>r$

Всередині кільця $r < |z - z_0| < R$ ряд

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n$$

збігається до аналітичної функції $f(z)=f_1(z)+f_2(z).$ При цьому в будь-якому вужчому кільці

$$r' < |z - z_0| < R'$$

де r < r' < R' < R, ряд Лорана збігається абсолютно і рівномірно. Якщо функція f(z) не має особливих точок всередині круга $|z-z_0| < R$, то її розвинення в ряд Лорана перетворюється на ряд Тейлора.

Література

- [1] Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій / Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика*, К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.