Oculus Augmented Reality

Członkowie projektu:

Lidia Drużyńska Zuzanna Kaptur Hubert Nosek Jakub Wasilewski

Opis projektu

Celem projektu jest zrealizowanie systemu rzeczywistości wirtualnej z wykorzystaniem Oculus Rift i kamery stereoskopowej. Urządzenie ma umożliwiać wstawienie w tor przetwarzania jednej lub kilku wybranych funkcji z dostępnych w aplikacji. Dzięki modularnej budowie osobnych funkcji, możliwe będzie elastyczne dobieranie pożądanych funkcji.

Projekt podzielony jest na kilka faz, z których każda zawiera różne moduły przetwarzania zwiększające funkcjonalność faz poprzednich.

Docelowo aplikacja ma udostępniać opisane dalej funkcje oraz umożliwiać interakcję z użytkownikiem na podstawie ruchów dłoni i poleceń głosowych.

Wymagane elementy

- Oculus Rift Development Kit 2
- niewielka kamera stereoskopowa
- komputer przenośny
- (opcjonalnie) mikrofon

Schemat systemu

Fizyczny schemat systemu przedstawiony został na poniższym rysunku.

Zakładanymi sygnałami wejściowymi są obraz z kamery, dźwięk z mikrofonu oraz informacje o kącie obrotu z Oculusa. Przetwarzanie wykonywane jest na komputerze klasy PC. W głównym bloku przetwarzania, używane są wybrane w danej chwili przez użytkowanika funkcje. Bez względu na aktualnie wykorzystywaną funkcję, blok dopasowujący wykonuje przekształcenie beczkowe w sposób pozwalający na kompensację aberracji chromatycznej, co jest konieczne do poprawnego wyświetlania obrazu na Oculusie.

Plan projektu

Faza I

a) Wyświetlenie obrazu z kamery na Oculus Rift

b) Nakładka statyczna

Zastosowanie prostej nieruchomej nakładki na obraz z kamery. Efektem ma być wrażenie rozszerzenia postrzeganej sceny o statyczne informacje wyświetlane na ekranie.

c) Proste efekty przetwarzania obrazów

Opcja pozwalająca na przetwarzanie postrzeganego obrazu w czasie rzeczywistym za pomocą prostych operacji takich jak widok monochromatyczny, filtracja, wykrywanie krawędzi, zmiana barwy.

d) Tryb eLearningowy

Tryb ma pełnić funkcję pomocy dydaktycznej dla studentów do zajęć ze Wstępu do Multimediów. Aplikacja stosuje na przechwytywanym w czasie rzeczywistym obrazie różne operacje, co

umożliwia lepsze porównanie własności różnych obrazów i operacji. W szczególności możliwe będzie zastosowanie filtrów górno i dolnoprzepustowych, wyznaczenie DCT, wyrównanie histogramu obrazu, dodanie lub odjęcie wartości stałej, itp.

Faza II

a) Wyświetlanie pulpitu

Przechwycenie widoku pulpitu komputera i wyświetlenie go w trybie półprzezroczystości na Oculusie. Jest to krok wstępny do późniejszego sterowania pulpitem.

b) Wykrywanie znacznika

Wykrywanie pojedynczego znacznika naklejonego na palcu użytkownika systemu.

c) Wirtualne rysowanie

Wykorzystanie znacznika do rysowania i sporządzania notatek na wirtualnych ścianach w całym zakresie obrotu o 360°. Możliwość zapisywania i wczytywania stworzonych notatek.

Faza III

a) Proste wykrywanie kontekstu

Wykrywanie prostych obiektów na podstawie koloru. Np. wykrycie osoby w czerwonym ubraniu i powiadomienie o tym użytkownika.

b) Renderowanie modeli 3D

Wprowadzenie do obserwowanej sceny prostego modelu 3D i umożliwienie interakcji z nim.

c) Usprawnienie widzenia

Możliwość usprawnienia widzenia użytkownika poprzez inteligentne zastosowanie wyrównania histogramu, korekcji gamma i wyostrzania obrazu, w sceneriach z utrudnionymi warunkami.

Faza IV

a) Komendy głosowe

Możliwość zastosowania prostych poleceń głosowych w celu wybrania jednej z wielu opcji systemu.

b) Rozpoznawanie ruchów rąk

Rozpoznawanie ruchów rak i pojedynczych palców oraz wykorzystanie tego do sterowania sceną.

c) Rozpoznawanie osób

Umożliwienie rozpoznania osoby z mocno ograniczonej bazy danych.