OBJETIVO

Al terminar la sesión, los integrantes del equipo contaran con la habilidad de diseñar circuitos combinatorios a partir de un enunciado.

INTRODUCCIÓN TEÓRICA

Proporcionada por los integrantes del equipo.

MATERIAL Y EQUIPO EMPLEADO

> 1 C. I. 74LS00

> 1 C. I. 74LS02

> 1 C. I. 74LS04

> 1 C. I. 74LS08

> 1 C. I. 74LS32

> 1 C. I. 74LS86

> 1 Tablilla de Prueba

DESARROLLO EXPERIMENTAL

1. Diseñe un comparador con magnitud de dos bits. Observe la tabla funcional y tenga en cuenta que tiene dos entradas y tres salidas. Arme el circuito resultante y verifique sus resultados.

#	A	В	F1= A <b< th=""><th>F2= A=B</th><th colspan="2">F3= A>B</th></b<>	F2= A=B	F3= A>B	
0	0	0	0	0	0	
1	0	1	1	0	0	
2	1	0	0	0	1	
3	1	1	0	1	0	

1.1 Coloque la solución del problema y dibuje su circuito lógico.

MINIMIZACIÓN

2. Diseñe un generador de Código Gray de 4 bits, y arme el circuito para verificar su funcionamiento.

#	A	В	$^{\prime}$ C	D	F1	F2	F3	F4
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	. 0	0	0	1	4
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	/	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0		0	1
7	0	. 1	1	1	0	1	0	0
8	1	0	0	0			0	0
9	1 '	0	0	1		1	0	1.
10	1	0	1	0	1	1	1	/
11	1	0	1	1	1	1	/	0
12	1	1,	0	0	/	0.	1	0
13.	. 1	1	. 0	1	1	0	/	1
14	_1	1	1	0	1	6	O	/
15	1	1	1	1	1	. 0	0	0

2.1 Coloque la solución del problema y dibuje el circuito lógico obtenido.

Esto es visto en las hojas adjacentes

2.2 Minimice algebraicamente las funciones lógicas obtenidas de la tabla de verdad y dibuje el circuito simplificado resultante.

de Igual porma se ve en higas adjacentos