Slikovne tehnologije

Vaja 2: Sledenje objektov –

- Priprava podatkovne baze - - Handball -

Kamera A

Kamera B

- Priprava podatkovne baze -
- Generiranje Gaussovega šuma na osnovi kovariančne matrike -

 Trajektorijam primešajte tri različne stopnje Gaussovega šuma, ki jih generirate s tremi različnimi kovariančnimi matrikami

https://www.mathworks.com/help/matlab/ref/randn.html

Primer uporabe funkcije randn()
za generiranje Gaussovega šuma:

- 1. Naloga: Optimalno prirejanje -

- Začnite z znanimi pozicijami igralcev. V vsakem koraku določanja novih pozicij najprej izračunajte matriko stroškov, nato pa prirejanje lokacij izvedite s skripto Munkresovega algoritma munkres.m.

- 1. Naloga: Optimalno prirejanje -

- Začnite z znanimi pozicijami igralcev. V vsakem koraku določanja novih pozicij najprej izračunajte matriko stroškov, nato pa prirejanje lokacij izvedite s skripto Munkresovega algoritma munkres.m.

- 1. Naloga: Optimalno prirejanje -

- Začnite z znanimi pozicijami igralcev. V vsakem koraku določanja novih pozicij najprej izračunajte matriko stroškov, nato pa prirejanje lokacij izvedite s skripto Munkresovega algoritma munkres.m.

* H. W. Kuhn, The Hungarian Method for The Assignment problem, 3. poglavje

- 2. Naloga: Kalmanov filter -

Rezultate Munkresovega algoritma filtrirajte s Kalmanovim filtrom.

- Vrednotenje rezultatov -

- Z Evklidsko razdaljo izračunajte napako med pravo pozicijo vsakega od igralcev in ocenjeno pozicijo

