Notes

Kopnov Alexandr

15 мая 2023 г.

Содержание

	Постановка			
	1.1	Данные задачи:	1	
	1.2	О субградиенте	3	

1 Тема

Выбор метода решения задачи одномерной оптимизации (равномерный поиск / золотое сечение) для решения вспомогательной задачи градиентным методом наискорейшего спуска

2 Методы

2.1 Золотое сечение

Рассмотрим k-й шаг алгоритма. Интервал $[a_k, b_k]$

$$\lambda_k = a_k + \alpha(b_k - a_k) \qquad \qquad \mu_k = b_k - \alpha(b_k - a_k) \qquad \qquad \alpha = \frac{3 - \sqrt{5}}{2}$$

Если $f(\lambda_k) > f(\mu_k)$ на следующей итерации $[\lambda_k, b_k]$. При этом, $\lambda_{k+1} = \mu_k$ Иначе, $[a_k, \mu_k]$, $\mu_{k+1} = \lambda_k$

2.1.1 Оценка количества шагов

2.2 Равномерный поиск

Рассмотрим k-й шаг алгоритма. Интервал $[a_k, b_k]$. Разобьём его на подинтервалы точками $x_i = a + ih, h = \frac{b-a}{n}, i = \overline{o, n}$.

$$\min_{i} f(x_{i}) = f(x_{j}) \implies f(x_{j-1}) > f(x_{j}), f(x_{j+1}) > f(x_{j})$$

Функция унимодальна, значит $x_* \in [x_{j-1}, x_{j+1}].$ $a_{k+1} = x_{j-1}, b_{k+1} = x_{j+1}.$ Продолжаем, пока не будет выполнено условие неопределённости: $|b-a|=\epsilon$