PRÉDICTION DU RETARD D'AVION

IMSD2020

Fatima Zahra MOUHSINI | Fatma BALI

Plan

- 1. Contexte du projet
- 2. Base de données
 - a. Présentation du dataset
 - b. Data cleaning
 - c. La variable à prédire
- 3. Analyse descriptive
- 4. Modélisation
 - a. Classification
 - b. Régression
 - c. Evaluation des performances
- 5. Solution proposé

Context

Rien qu'en europe

Aéroports et compagnies aériennes:

Est-il possible de prédire le retard d'un vol ?

Particuliers: 🖺

Quelle est la probabilité que mon vol soit en retard?

6 MILLIONS

De passagers ont été victime d'un retard en Juillet/Août 2018

2,2 MILLIARDS

D'euro d'indemnisation

Les problèmes liées aux retards

- Correspondances manquées
- Retard dans les engagements commerciaux
- Frustration des voyageurs

Bénéfice de la prise de conscience du retard

- Sélection des vols
- Meilleure relation commerciale
- Rester en bonne santé

Base de données

Présentation du dataset

Base des vols de plusieurs compagnie aérienne y compris des données sur les aéroports et les compagnies.

- Dimension : 48 colonnes | 3279290 lignes
- Présentation des variables

AEROPORT DEPART	AEROPORT ARRIVEE	DEPART PROGRAMME	ARRIVEE PROGRAMMEE	HEURE DE DEPART	HEURE D'ARRIVEE	RETART DE DEPART	RETARD A L'ARRIVEE
le code IATA de l'aéroport de départ	le code IATA de l'aéroport d'arrivée	Heure de départ prévue	Heure d'arrivée prévue	Heure de départ réelle	Heure d'arrivée réelle	Le retard effectué au départ	Le retard effectué à l'arrivé

Base de données

Data cleaning

Les valeurs manquantes ont été traitées.

Nous avons supprimé les valeurs manquantes qui étaient désignées par NaN et les colonnes qui représente trop de valeurs manquantes.

Ce qui nous a laissé 2.997.544 vols dans le dataset.

IDENTIFIANT	0	
VOL	0	AEROPORT ARRIVEE
CODE AVION	0	AEROPORT DEPART
AEROPORT DEPART	0	
AEROPORT ARRIVEE	0	ANNULATION
DEPART PROGRAMME	0	ARRIVEE PROGRAMMEE
HEURE DE DEPART	51414	ATTERRISSAGE
RETART DE DEPART	51414	CODE AVION
TEMPS DE DEPLACEMENT A TERRE AU DECOLLAGE	53406	COMPAGNIE
DECOLLAGE	53406	COMPAGNIE AERIENNE
TEMPS PROGRAMME	6	DATE
TEMPS PASSE	62529	DECOLLAGE
TEMPS DE VOL	62529	DEPART PROGRAMME
DISTANCE	0	DESTINATION AIRPORT
ATTERRISSAGE	55336	DESTINATION HAUTEUR
TEMPS DE DEPLACEMENT A TERRE A L'ATTERRISSAGE	55336	
ARRIVEE PROGRAMMEE	0	DESTINATION_LATITUDE
HEURE D'ARRIVEE	55336	DESTINATION_LIEU
RETARD A L'ARRIVEE	62529	DESTINATION_LONGITUDE
DETOURNEMENT	0	DESTINATION_PAYS
ANNULATION	0	DESTINATION_PRIS RETARD POUR CHAQUE MINUTE APRES 10 MINUTES
RAISON D'ANNULATION	3225316	DESTINATION_PRIX RETARD PREMIERE 10 MINUTES
RETARD SYSTEM	2673943	DETOURNEMENT
RETARD SIGHE	2673943	DISTANCE
RETARD COMPAGNIE	2673943	HEURE D'ARRIVEE
RETARD AVION	2673943	HEURE DE DEPART
RETARD METEO	2673943	IDENTIFIANT
DATE	0	NIVEAU DE SECURITE
NIVEAU DE SECURITE	ő	ORIGIN AIRPORT
COMPAGNIE AERIENNE	223233	ORIGIN HAUTEUR
ORIGIN AIRPORT	0	
ORIGIN LIEU	ő	ORIGIN_LATITUDE
ORIGIN PAYS	0	ORIGIN_LIEU
ORIGIN LONGITUDE	0	ORIGIN_LONGITUDE
ORIGIN LATITUDE	0	ORIGIN_PAYS
ORIGIN HAUTEUR	0	ORIGIN_PRIS RETARD POUR CHAQUE MINUTE APRES 10 MINUTES
ORIGIN PRIX RETARD PREMIERE 10 MINUTES	0	ORIGIN_PRIX RETARD PREMIERE 10 MINUTES
ORIGIN PRIS RETARD POUR CHAQUE MINUTE APRES 10 MINUTES	0	RETARD A L'ARRIVEE
DESTINATION AIRPORT	0	RETART DE DEPART
DESTINATION LIEU	0	TEMPS DE DEPLACEMENT A TERRE A L'ATTERRISSAGE
DESTINATION PAYS	0	TEMPS DE DEPLACEMENT A TERRE AU DECOLLAGE
DESTINATION LONGITUDE	0	TEMPS DE VOL
DESTINATION LATITUDE	0	TEMPS PASSE
DESTINATION HAUTEUR	ő	TEMPS PROGRAMME
DESTINATION PRIX RETARD PREMIERE 10 MINUTES	ő	VOL
DESTINATION PRIS RETARD POUR CHAQUE MINUTE APRES 10 MINUTES	0	index
COMPAGNIE	0	dtype: int64
dtype: int64	-	dolpo. Inco.

Base de données

Variable à prédire

→ Vol retardé au départ:

Une variable qui permet d'identifier si un vol a été retardée ou pas(>15min).

→ Retard de départ :

Une variable avec la durée de retard effectuée au départ.

Le rationnel derrière notre choix de la variable cible se justifie par :

- Client : les retards de départs représentent la plus grande frustration chez les clients
- Compagnies aériennes : le retard départ justifié généralement le retard d'arrivée et donc l'entreprise doit surveiller les retards de départ en priorité .

Retard : à l'arrivée ou au départ ?

Sur cette figure, on peut constater que les retards à l'arrivée sont généralement plus faibles qu'au départ. Cela indique que les compagnies aériennes adaptent leur vitesse de vol afin de réduire les retards à l'arrivée. Dans ce qui suit, nous nous somme contenter d'examiner les retards au départ, ce qui justifie également notre choix de la variable a prédire.

Compagnies aériennes

	min	max	count	mean
COMPAGNIE AERIENNE				
ВТАТА	-24.0	644.0	40139.0	9.181370
AP	-27.0	1433.0	51128.0	0.624804
AAPF	-46.0	996.0	64261.0	14.317160
APSLM	-35.0	836.0	78258.0	16.468259
FIPI	-82.0	963.0	119255.0	1.862580
OA	-26.0	1006.0	174731.0	11.860059
SMITH	-36.0	1278.0	186921.0	10.524452
THA	-24.0	1314.0	347795.0	14.929375
16F	-55.0	1236.0	371833.0	8.955644
MAF	-48.0	1215.0	431393.0	7.726720
COA	-68.0	1988.0	538897.0	8.819524
NVPPA	-61.0	1289.0	592933.0	7.661872

- Pie chart 1: il y a une certaine disparité entre les transporteurs.Par exemple, NVPPA représente ~ 20% des vols, ce qui est similaire au nombre de vols affrétés par les 6 plus petites compagnies aériennes.
- Pie chart 2: les différences entre les compagnies aériennes sont moins prononcées quand il s'agit des retards moyens.

Compagnies aériennes

Ce graphique représente toutes les valeurs déclarées pour le retard. nous constatons qu'occasionnellement, nous pouvons être confrontés à des retards vraiment importants qui peuvent atteindre quelques dizaines d'heures!

On peut donc dire que indépendamment de la compagnie aérienne, les retards supérieurs à 45 minutes ne représentent que quelques pourcents. Cependant, la proportion des retards dans ces trois groupes dépend de la compagnie aérienne.

Relation entre l'aéroport d'origine et les retards

- Ce figure nous permet de tirer quelques conclusions, si nous considérons par exemple le panel à gauche nous verrons que la colonne associée "Always A Problem flights" signale principalement des retards importants. tandis que la colonne associée à " Ne Va Pas Partout" est principalement associée à des retards de moins de 5 minutes.
- Si nous examinons maintenant les aéroports d'origine, nous verrons que certains aéroports favorisent les départs tardifs: voir par exemple 'Sharjah', 'Bournemouth' etc. Inversement, d'autres aéroports connaissent surtout des départs à l'heure, comme 'Southampton' ou 'Cologne'.
- Nous pouvons déduire de ces observations qu'il existe une grande variabilité des retards moyens, à la fois entre les différents aéroports mais aussi entre les différentes compagnies aériennes.

Stavanger

Cologne

Ne Va Pas Partout Airlines
Corporate Overlord Airways
Try Hard Airlines
Morally Ambiguious Flights
Bel Air
Air Piloter Sans Les Mains
Overpriced Air
Flights Rossible Inc.
Better Take A Train Airlines
Aways A Problem Flights

Retard par mois et par jour du mois

Les retards varient considérablement en fonction du mois, par exemple les retards sont plus faibles en automne.

Les retards sont plus élevés durant la première semaine et plus au moins faible la dernière semaine du mois

Modélisation

Les retards des vols sont causés par les facteurs suivants.Les retards des vols peuvent être prédits à l'aide des facteurs suivants

- Météo - Jour du vol - Compagnie - Infrastructures aéroportuaires - heure programmée - saisonnalité - l'état de l'avion..

le modèle suppose que les vols sont sans escale. Nous ne traitons pas les vols de correspondance dans ces données.

le modèle de classification considère qu'un vol est retardé lorsqu'il est 15 minutes plus tard que l'heure prévue.

- Pertinence des données
- Disponibilité des données
- Précision du modèle et signification statistique

Variables choisies

Considéré mais abandonné

- TEMPS DE VOL
- TEMPS PROGRAMME

Raison:

 n'ayant pas d'impact significatif sur la précision du modèle

Sélectionné

- ARRIVEE
 PROGRAMMEE
- ANNEE, MOIS, JOUR,
- DEPART PROGRAMME
- DISTANCE
- AEROPORT ARRIVEE
- AEROPORT DEPART
- COMPAGNIE AÉRIENNE

Important mais manquant

- INFORMATIONS MÉTÉOROLOGIQUES HORAIRES
- CONGESTION DES PISTES
- L'ÉTAT DE L'AVION

Modélisation

Classification:

Choisir la variable cible Y : vol retardée

```
Entrée [96]: df_vols['Dep_retard15']=df_vols['RETART DE DEPART'].apply(lambda x:1 if x > 15 else 0)
```

- Preprocessing : transformer les variable catégorielle en variable numérique compréhensible par le modèle de classification : en utilisant le concept du One-Hot encoding
- Division des données en base de train et test :
 - → Pour ce modèle, nous avons fait une répartition de 70% train, 15% validation, 15% test
- Construire un modèle de régression logistique :
 - → Car ce modèle est généralement facile à interpréter, et nous permet de savoir quelles sont les plus variables importantes
- Sortir des scores pour évaluer notre modèle

Modélisation

Regression:

- Choisir la variable cible Y : durée de retard du vol
- Preprocessing : transformer les variable catégorielle en variable numérique compréhensible par le modèle de régression
- Division les donnée en base de train et test
- Construire un modèle de régression linéaire
- Sortir des scores pour évaluer notre modèle
- Construire d'autres model : Random forest et XGBRegressor
- Sortir les scores corresponds à ces models

Evaluation des performances

Regression:

R2_Squared

Linear regression	Random Forest	XGBRegressor
0.52	0.62	0.62

- A partir des scores obtenues de la régression linéaire et en faisant la prédiction de la durée de retard on peut conclure que ce modèle a un taux de performance de 52%.
- Nous avons construire d'autres model pour améliorer nos scores.

Evaluation des performances

Classification:

	Training	Validation	Test
AUC	0.650	0.649	0.648
Accuracy	0.608	0.601	0.600
Recall	0.620	0.621	0.618
Precision	0.606	0.246	0.244
Specificity	0.597	0.597	0.596

Ce modèle a permis d'expliquer 62 % des retards au départ. De plus, il a été observé que le retard des vols dépendait fortement des aéroports de départ (Cf. Features Importance). Cela implique clairement que si un aéroport est occupé et c'est un aéroport important, les chances de retard des vols seront plus élevées par rapport aux autres aéroports.

Solution Proposé

Solution voyageurs

Nous allons permettre à vos clients de consulter à tout moment une platform en ligne de prédiction du retards des vols.

- Permet aux voyageurs d'une compagnie de voir si leurs vol sera retardé ou non.
- Obtenir une information immédiate et mesurable afin d'éviter le mécontentement des clients.

Solution compagnies

Votre personnels aura un accès plus détaillé avec une vue d'ensemble sur tous les retards de la compagnie et des prediction sur 3 jours.

- Un tableau de bord qui résume l'état des vols retardées.
- Un système d'alerte qui se base sur le modèle de prédiction permet de réagir rapidement et éviter les retards.

Conclusion

le CRM est une révolution dans la stratégie d'entreprise, notamment parce qu'il permet une différenciation basée sur des différences autres que le prix.

Par conséquent, de nombreuses entreprises sont entrées dans une stratégie «sur mesure», combinant différents méthode pour fidéliser leurs clients et augmenter leurs satisfaction.