MLT: Week-7

KNN and Decision Trees

A Aniruddha

Consider the following dataset where blue points have class +1 and green points have class -1

Consider the following dataset where blue points have class +1 and green points have class -1

Poi	Class	
x_1	(2, 3)	+1
x_2	(1, 2)	+1
x_3	(2, 1)	+1
x_4	(3, 2)	+1
x_5	(4, 3)	-1
x_6	(5,3)	-1
x_7	(5, 2)	-1
x_8	(4, 1)	-1

Consider a test point $x_t\,=\,(2,2)$ and assign a label for different values of K

Consider a test point $x_t\,=\,(2,2)$ and assign a label for different values of K

Consider a test point $x_t = (2,2)$ and assign a label for different values of K

To assign a label to a test point,

- 1. Compute its distance from every other point in the dataset
- 2. Depending on the value of K, we choose the K closest points and assign the label corresponding to the majority of the points

Consider a test point $x_t = (2,2)$ and assign a label for different values of K

To assign a label to a test point,

- 1. Compute its distance from every other point in the dataset
- 2. Depending on the value of K, we choose the K closest points and assign the label corresponding to the majority of the points

The distance of the point x_t from x_1 is given by, $\label{eq:distance} \text{Distance} = \sqrt{(2-2)^2 + (2-3)^2}$

The distance of the test data point from each training data point is,

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2, 1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

The distance of the test data point from each training data point is,

We now consider different values of K and assign the label accordingly

Poir	nt	Class	Distance
x_1	(2,3)	+1	1
x_2	(1,2)	+1	1
x_3	(2,1)	+1	1
x_4	(3,2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4,1)	-1	$\sqrt{5}$

For K = 3, we take the three closest points and assign the class corresponding to the majority

Poir

Poir	nt	Class	Distance
x_1	(2,3)	+1	1
x_2	(1,2)	+1	1
x_3	(2,1)	+1	1
x_4	(3,2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4,1)	-1	$\sqrt{5}$

For K = 3, we take the three closest points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2,3)	+1	1
x_2	(1,2)	+1	1
x_3	(2,1)	+1	1
x_4	(3,2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4,1)	-1	$\sqrt{5}$

For K = 3, we take the three closest points and assign the class corresponding to the majority

Here, we see that the three closest points have a label of +1 and so we will assign the test point with the same label

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4,1)	-1	$\sqrt{5}$

For K = 6, we take the six closest points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1,2)	+1	1
x_3	(2,1)	+1	1
x_4	(3,2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 6, we take the six closest points and assign the class corresponding to the majority

Here, we see that four points have a label of +1 and two points have a label of -1. Since the majority has label +1, we assign the same to x_t

Poir	nt	Class	Distance
x_1	(2,3)	+1	1
x_2	(1,2)	+1	1
x_3	(2,1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 8, we take all the points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2, 1)	+1	1
x_4	(3, 2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

For K = 8, we take all the points and assign the class corresponding to the majority

Here, we see that four points have a label of +1 and four points have a label of -1. Since there is no clear majority, we can assign any label

Poir	nt	Class	Distance
x_1	(2, 3)	+1	1
x_2	(1, 2)	+1	1
x_3	(2, 1)	+1	1
x_4	(3,2)	+1	1
x_5	(4,3)	-1	$\sqrt{5}$
x_6	(5,3)	-1	$\sqrt{10}$
x_7	(5,2)	-1	3
x_8	(4, 1)	-1	$\sqrt{5}$

Consider a test point $x_t\,=\,(4,2)$ and assign a label for different values of K

The distance of the test data point from each training data point is,

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1,2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3,2)	+1	1
x_5	(4,3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5,2)	-1	1
x_8	(4, 1)	-1	1

The distance of the test data point from each training data point is,

We now consider different values of K and assign the label accordingly

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

For K = 1, we take one of the closest points and assign its class to the test point

Point

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

For K = 1, we take one of the closest points and assign its class to the test point

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

For K = 1, we take one of the closest points and assign its class to the test point

Here, we see that the point x_4 has a label of +1 and so we assign the same label to the test point

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

For K = 5, we take the five closest points and assign the class corresponding to the majority

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3, 2)	+1	1
x_5	(4, 3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5, 2)	-1	1
x_8	(4, 1)	-1	1

For K = 5, we take the five closest points and assign the class corresponding to the majority

Here, we see that four points have a label of -1 and one point has a label of +1. Since the majority has label -1, we assign the same to x_t

Poir	nt	Class	Distance
x_1	(2,3)	+1	$\sqrt{5}$
x_2	(1, 2)	+1	3
x_3	(2,1)	+1	$\sqrt{5}$
x_4	(3,2)	+1	1
x_5	(4,3)	-1	1
x_6	(5,3)	-1	$\sqrt{2}$
x_7	(5,2)	-1	1
x_8	(4, 1)	-1	1

Growing a Tree - Notations

$$ullet$$
 D : dataset at the parent

- $x_f < s$: question
- $D_{\scriptscriptstyle L}$ and $D_{\scriptscriptstyle R}$: partitions
- $p_{_{P}}, p_{_{L}}, p_{_{R}}$: proportions at P, L, R
- γ : proportions of points in L
- $E_{\scriptscriptstyle p}$: entropy of P
- $E_{_{\rm I}}$: entropy of L
- $E_{\scriptscriptstyle R}$: entropy of R
- *IG*: information gain

$$n_{_{P}}=n_{_{L}}+n_{_{R}} \qquad \gamma=rac{n_{_{L}}}{n_{_{P}}}$$

$$E = -p\log p - (1-p)\log(1-p)$$

$$IG = E_{_{P}} - [\gamma E_{_{L}} + (1-\gamma)E_{_{R}}]$$

Consider a dataset $\{(\mathbf{x}_1,y_1),\,\cdots,(\mathbf{x}_n,y_n)\}$ where $\mathbf{x}_i\in\mathbb{R}^d,\;y_i\in\{0,1\}$

x_1	x_2	y
1	1	1
2	3	1
3	6	1
4	4	1
6	3	0
6	5	0
7	6	0
8	2	0

Consider a dataset $\{(\mathbf{x}_1,y_1),\,\cdots,(\mathbf{x}_n,y_n)\}$ where $\mathbf{x}_i\in\mathbb{R}^d,\;y_i\in\{0,1\}$

x_1	x_2	y	
1	1	1	
2	3	1	
3	6	1	
4	4	1	
6	3	0	
6	5	0	
7	6	0	
8	2	0	

Consider a dataset $\{(\mathbf{x}_1,y_1),\,\cdots,(\mathbf{x}_n,y_n)\}$ where $\mathbf{x}_i\in\mathbb{R}^d,\,y_i\in\{0,1\}$

x_1	x_2	y
1	1	1
2	3	1
3	6	1
4	4	1
6	3	0
6	5	0
7	6	0
8	2	0

To grow the tree, we start with the node that leads to maximum information gain

Best question

A question will be of the form: $x_f < s$

Best question

The IG for all questions is shown below and we find that $x_1 < 5$ has the most IG

Best question

The IG for all questions is shown below and we find that $x_1 < 5$ has the most IG

Growing a Tree - Example

$$p_{_{P}} = (14 / 28)$$
 $p_{_{L}} = (6 / 15)$ $p_{_{R}} = (8 / 13)$ $= 0.615$

$$p_{_{P}} = (14 / 28)$$
 $p_{_{L}} = (6 / 15)$ $p_{_{R}} = (8 / 13)$ $= 0.615$

$$E = -p \log p - (1-p)\log(1-p)$$

$$p_{_{P}} = (14 / 28)$$
 $p_{_{L}} = (6 / 15)$ $p_{_{R}} = (8 / 13)$ $= 0.5$ $= 0.4$ $= 0.615$

$$E = -p \log p - (1-p)\log(1-p)$$

$$\begin{split} E_P &= -0.5log(0.5) - (1-0.5)log(1-0.5) \\ &= -0.5log(0.5) - (0.5)log(0.5) \\ &= 1 \end{split}$$

$$p_{_{P}} = (14 / 28)$$
 $p_{_{L}} = (6 / 15)$ $p_{_{R}} = (8 / 13)$ $= 0.615$

$$E_{_{P}} = 1$$
 $E_{_{L}} = 0.970$ $E_{_{R}} = 0.961$

$$p_{_{P}} = (14 / 28)$$
 $p_{_{L}} = (6 / 15)$ $p_{_{R}} = (8 / 13)$ $= 0.615$

$$E_{_{P}} = 1$$
 $E_{_{L}} = 0.970$ $E_{_{R}} = 0.961$

$$IG = E_{_{P}} - [\gamma E_{_{L}} + (1 - \gamma)E_{_{R}}]$$

$$p_{_{P}} = (14 / 28)$$
 $p_{_{L}} = (6 / 15)$ $p_{_{R}} = (8 / 13)$ $= 0.5$ $= 0.4$ $= 0.615$

$$E_{_{P}} = 1$$
 $E_{_{L}} = 0.970$ $E_{_{R}} = 0.961$

$$\begin{split} IG &= E_{_{P}} - [\gamma E_{_{L}} + (1 - \gamma) E_{_{R}}] \\ &= 1 \ - \ 0.535(0.970) \ + (0.465)(0.961) \\ &= 0.034 \end{split}$$

$$p_{_{P}} = (8 / 13)$$
 $p_{_{L}} = (8 / 8)$ $p_{_{R}} = (0 / 5)$
 $= 0.615$ $= 1$ $= 0$
 $E_{_{P}} = 0.96$ $E_{_{L}} = 0$ $E_{_{R}} = 0$

