Keren Zhou

3180 18th St – San Francisco, CA – 94110, United States

→ +1-281-687-6961

keren.zhou@rice.edu

www.jokeren.tech

RESEARCH INTERESTS

High Performance Computing

Parallel Algorithms Program Analysis

Tools for Machine Learning Systems

EDUCATION

08/2017-05/2022 Department of Computer Science, Rice University

Houston, United States

Degree: *Ph.D. in Computer Science* **Advisor:** John Mellor-Crummey

Thesis: Performance Measurement, Analysis, and Optimization of GPU-accelerated

Applications

08/2014-08/2017 Institute of Computing Technology, Chinese Academy of Sciences

Beijing, China

Degree: M.S. in Computer Architecture

Advisor: Guangming Tan **Thesis:** High Performance Deep Learning Algorithms

09/2010-08/2014 School of Software, Yunnan University

Kunming, China

Degree: B.E. in Network Engineering Rank: 1/290

Advisor: Wei Zhou Thesis: A Practical Concurrent Quadtree

AWARDS & HONORS

2022	ASPLOS Distinguished Artifact Award	
2020	ACM-IEEE-CS George Michael Memorial HPC Fellowship	
2019	Ken Kennedy Institute ExxonMobil Fellowship	
2019	Second Place, ACM CGO Student Research Competition	
2017	Ken Kennedy Institute Andrew Ladd Fellowship	
2017	Ken Kennedy Institute CS&E Fellowship	
2017	PPoPP Best Artifact Award	
2016	Merit Student of Chinese Academy of Sciences	
2016	Schlumberger Scholarship	
2015	Top 10, Alibaba 1st Middleware Engineering Contest	
2014	Outstanding B.E. Degree Thesis of Yunnan University	
2013	Best Creative Award, Baidu Future Search Engine Contest	
2013	Meritorious Winner, Mathematical Contest in Modeling	
2011&2012&2016 National Scholarship		

2011&2012&2016 National Scholarship

PROFESSIONAL EXPERIENCE

06/2022-current	Member of Technical Staff at OpenAI	San Francisco, United States
08/2017-05/2022	Research Assistant at Rice University	Houston, United States
05/2021-08/2021	Intern at Deep Learning Profiler Team, Nvidia	Dallas, United States
05/2020-08/2020	Intern at C++ Performance Optimization Team, Google	Houston, United States
06/2018-08/2018	Intern at PyTorch Team, Facebook	Menlo Park, United States
06/2015-07/2017	Research Assistant at Chinese Academy of Sciences	Beijing, China
04/2017-07/2017	Intern at Devtech Team, Nvidia	Beijing, China
10/2013-02/2014	Intern at Baidu	Beijing, China

PUBLICATIONS

PUBLICATION	NS
JOURNALS	
[1]	Binqian Yin, Qinhong Hu, Yingying Zhu, Chen Zhao, and Keren Zhou . Paw-Net: Stacking ensemble deep learning for segmenting scanning electron microscopy images of fine-grained shale samples. In: <i>Computers & Geosciences</i> , 2022
[2]	Keren Zhou , Laksono Adhianto, Jonathon Anderson, Aaron Cherian, Dejan Grubisic, Mark. Krentel, Yumeng Liu, Xiaozhu Meng, John Mellor-Crummey. Measurement and Analysis of GPU-accelerated Applications with HPCToolkit. In: <i>Parallel Computing</i> (PARCO), 2021
[3]	Ryuichi Sai, John Mellor-Crummey, Xiaozhu Meng, Keren Zhou , Mauricio Araya-Polo, Jie Meng. Accelerating High-Order Stencils on GPUs. In: <i>Concurrency and Computation: Practice and Experience</i> , 2021
[4]	Keren Zhou , Xiaozhu Meng, Ryuichi Sai, Dejan Grubisic, and John Mellor-Crummey. An Automated Tool for Analysis and Tuning of GPU-accelerated Code in HPC Applications. In: <i>IEEE Transactions on Parallel and Distributed Systems</i> (TPDS), 2021
[5]	Keren Zhou , Guangming Tan, and Wei Zhou. Quadboost: A Scalable Concurrent Quadtree. In: <i>IEEE Transactions on Parallel and Distributed Systems</i> (TPDS), 2018
CONFERENCE	ES
[1]	Keren Zhou , Jonathon Anderson, Xiaozhu Meng, and John Mellor-Crummey. Low Overhead and Context Sensitive Profiling of GPU-accelerated Applications. In: <i>ACM International Conference on Supercomputing</i> (ICS), 2022
[2]	Keren Zhou* , Yueming Hao*, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu. ValueExpert: Exploring Value Patterns in GPU-accelerated Applications. In: <i>Conference on Architectural Support for Programming Languages and Operating Systems</i> (ASPLOS), 2022
[3]	Aaron Thomas Cherian, Keren Zhou , Dejan Grubisic, Xiaozhu Meng, and John Mellor-Crummey. Measurement and Analysis of GPU-Accelerated OpenCL Computations on Intel GPUs. In: <i>Workshop on Programming and Performance Visualization Tools</i> (ProTools), 2021
[4]	Barbara Chapman, Buu Pham, Charlene Yang, Christopher Daley, Colleen Bertoni, Dhruva Kulkarni, Dossay Oryspayev, Ed D'Azevedo, Gabriele Jost, Johannes Doerfert, Keren Zhou , Kiran Ravikumar, Mark Gordon, Mauro Del Ben, Meifeng Lin, Melisa Alkan, Michael
	Kruse, Oscar Hernandez, P.K. Yeung, Paul Lin, Peng Xu, Swaroop Pophale, Tosaporn Sattasathuchana, Vivek Kale, William Huhn, and Helen He. Outcomes of OpenMP Hackathon: OpenMP Application Experiences with the Offloading Model. In: <i>International Workshop on OpenMP</i> (IWOMP), 2021
[5]	Keren Zhou , Xiaozhu Meng, Ryuichi Sai, and John Mellor-Crummey. GPA: A GPU Performance Advisor Based on Instruction Sampling. In: <i>International Symposium on Code Generation and Optimization</i> (CGO), 2021
[6]	Keren Zhou , Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu. GVProf: A Value Profiler for GPU-based Clusters. In: <i>The International Conference for High Performance Computing, Networking, Storage, and Analysis</i> (SC), 2020
[7]	Keren Zhou , Mark Krentel, and John Mellor-Crummey. Tools for top-down performance analysis of GPU-accelerated applications. In: <i>ACM International Conference on Supercomputing</i> (ICS), 2020
[8]	Keren Zhou , Guangming Tan, Xiuxia Zhang, Chaowei Wang, and Ninghui Sun. A Performance Analysis Framework for Exploiting GPU Microarchitectural Capability. In <i>ACM International Conference on Supercomputing</i> (ICS), 2017
[9]	Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou , and Mingyu Chen. Understanding GPU Microarchitecture to Achieve Bare-Metal Performance Tuning. In: <i>ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming</i> (PPOPP), 2017
[10]	Zilong Tan, Keren Zhou , Hao Zhang, and Wei Zhou. BF-MapReduce: A Bloom Filter Based Efficient Lightweight Search. In: <i>International Conference on Collaboration and Internet Computing on IEEE</i> (CIC), 2015

ı	1	1	П	
L	1		٦,	

Qiang Li, Maojie Gu, **Keren Zhou**, Xiaoming Sun. Mining User Features for Purchase Prediction in M-Commerce. In: *Data Mining Workshop*, *IEEE International Conference on IEEE* (ICDMW), 2015

PRESENTATIONS

12/2022	Invited Talk, UC Merced, Towards Agile Development of Efficient Deep Learning Operators
05/2022	Invited Talk, ThirdAI, Practical Performance Optimization for Deep Learning Applications
03/2022	Conference Talk , Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), ValueExpert: Exploring Value Patterns in GPU-accelerated Applications
11/2021	Conference Talk , <i>Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis</i> (SC), Performance Measurement, Analysis, and Optimization of GPU-accelerated Applications
04/2021	Invited Talk , <i>Nvidia GPU Technology Conference</i> (GTC), Measurement and Analysis of GPU-accelerated Applications with HPCToolkit
04/2021	Tutorial , ECP Annual Meeting, Using HPCToolkit for performance analysis on GPU-accelerated applications
03/2021	Tutorial , NERSC, Using HPCToolkit to Measure and Analyze the Performance of GPU-accelerated Applications
03/2021	Conference Talk , <i>IEEE/ACM International Symposium on Code Generation and Optimization</i> (CGO), GPA: A GPU Performance Advisor Based on Instruction Sampling
11/2020	Conference Talk , Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), GVProf: A Value Profiler for GPU-Based Clusters
07/2020	Conference Talk , <i>Proceedings of the ACM International Conference on Supercomputing</i> (ICS), Tools for Top-down Performance Analysis of GPU-Accelerated Applications
02/2020	Tutorial , <i>ECP Annual Meeting</i> , Using HPCToolkit to Measure and Analyze the Performance of GPU-Accelerated Applications
10/2019	Invited Talk, BP, Measurement and Analysis of GPU-computations Using HPCToolkit
08/2019	Invited Talk , <i>Intel Performance Brown Bag</i> , HPCToolkit—A tool for performance analysis for GPU-accelerated applications
08/2019	Invited Talk, ECP/NERSC OpenMP Hackathon, HPCToolkit + OpenMP
07/2019	Conference Talk , <i>Scalable Tools Workshop</i> , Optimizing GPU-accelerated Applications with HPCToolkit
06/2017	Conference Talk , <i>Proceedings of the International Conference on Supercomputing</i> (ICS), A performance analysis framework for exploiting GPU microarchitectural capability

ACADEMIC SERVICES

Reviewer	ASPLOS'23, SC'22, ICS'21, ICDCS'21, IPDPS'21, CLUSTER'21, PPoPP'21, TPDS, JPDC, TECS, TJSC
AE Committee	EuroSys'22, PPoPP'22, PPoPP'21, LCTES'21, SOSP'21
Session Chair	CLUSTER'21

09/2017-05/2022 Rice University

Houston, United States

Scalable GPU Performance Measurement and Analysis Tool

- Built a general *context-sensitive profiling tool* that collects and analyzes GPU activities on Nvidia, AMD, and Intel GPUs;
- Studied HPC and machine learning applications, including TensorFlow, PyTorch, Darknet, Quicksilver, Nekbone, Laghos, PeleC, QMCPACK, Nyx, Castro, GAMESS, NAMD, SUPERLU, and LAMMPS.

GPU Performance Advisor

- Built a *profile-guided performance advisor* based on GPU performance metrics, program structure, instruction counts, and PC samples;
- \circ Optimized GPU applications by applying advice generated by the advisor to obtain speedups on V100 and A100 GPUs with 1.19 \times on average.

GPU Value Profiler

- Developed the first *value profiler* for Nvidia GPUs to explore inefficient value patterns in applications running on multi-node multi-GPU clusters;
- Devised innovative instrumentation callbacks, sampling methods, and on-the-fly data processing GPU kernels to reduce the profiling overhead.

06/2015-07/2017 Institute of Computing Technology, Chinese Academy of Sciences Beijing, China High Performance Deep Learning Framework

- Devised a coarse-grained parallelism strategy with fine-grained vectorization and blocking, making CNNs 5-12 times faster than Caffe on a 16-core E5-2670;
- \circ Wrote assembly code to make use of dual issue and avoid bank conflict on GPUs, improving convolution performance with up to $1.6 \times$ speedup than cuDNN on Kepler architectures.

GPU Performance Model

- Decoded Nvidia GPU assembly codes and developed assemblers to generate GPU binaries;
- Built a static performance analysis model to estimate performance bottlenecks in GPU binaries.

01/2013-07/2014 Intelligent Web Laboratory, Yunnan University

Kunming, China

Concurrent Data Structures

 \circ Designed several concurrent multi-dimensional trees, including the first lock-free quadtree and k-d tree that are $2.09 \times$ faster than state-of-the-art concurrent trees;