Таблица 1: Оптимальные k для разных $\mathbf{n}(01)$ – отличие от $\mathbf{n}(00)$ в 2^x раз

n(00)	n(01)	k	р двоичная	р десятичная	$\log_2 \frac{1}{P_{\mathcal{M}}(x)}$	MDL
1	4	2	0.11	0.8	3.6601	5.6601
1	8	2	0.11	0.8889	5.3203	7.3203
1	16	3	0.111	0.9412	6.0823	9.0823
1	32	4	0.1111	0.9697	6.9795	10.9795
1	64	5	0.11111	0.9846	7.9314	12.9314
1	128	6	0.111111	0.9922	8.9082	14.9082
1	256	7	0.1111111	0.9961	9.8967	16.8967
1	512	8	0.11111111	0.9981	10.891	18.891
1	1024	9	0.111111111	0.999	11.8882	20.8882

Таблица 2: Оптимальные k для разных $\mathbf{n}(01)$ – отличие от $\mathbf{n}(00)$ в x раз

n(00)	n(01)	k	р двоичная	р десятичная	$\log_2 \frac{1}{P_{\mathcal{M}}(x)}$	MDL
100000	200000	9	0.101010101	0.6667	275489.1627	275498.1627
100000	300000	2	0.11	0.75	324511.2498	324513.2498
100000	400000	8	0.11001101	0.8	360965.426	360973.426
100000	500000	9	0.110101011	0.8333	390014.7766	390023.7766
100000	600000	9	0.110110111	0.8571	414171.2664	414180.2664
100000	700000	3	0.111	0.875	434851.5546	434854.5546
100000	800000	9	0.111000111	0.8889	452932.8105	452941.8105
100000	900000	9	0.111001101	0.9	468996.8194	469005.8194
100000	1000000	10	0.1110100011	0.9091	483446.7613	483456.7613

Таблица 3: Сравнение оптимальных k для разных ${\rm n}(01)$ по MDL и по логарифму

n(00)	n(01)	k	р двоичная	р десятичная	$\log_2 \frac{1}{P_{\mathcal{M}}(x)}$	MDL	k_{log}	log
100000	200000	9	0.101010101	0.6667	275489.1627	275498.1627	29	275488.7502
100000	300000	2	0.11	0.75	324511.2498	324513.2498	2	324511.2498
100000	400000	8	0.11001101	0.8	360965.426	360973.426	26	360964.0474
100000	500000	9	0.110101011	0.8333	390014.7766	390023.7766	34	390013.453
100000	600000	9	0.110110111	0.8571	414171.2664	414180.2664	31	414170.945
100000	700000	3	0.111	0.875	434851.5546	434854.5546	30	434851.5546
100000	800000	9	0.111000111	0.8889	452932.8105	452941.8105	27	452932.5013
100000	900000	9	0.111001101	0.9	468996.8194	469005.8194	30	468995.5936
100000	1000000	10	0.1110100011	0.9091	483446.7613	483456.7613	33	483446.6856