(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 4 November 2004 (04.11.2004)

(10) International Publication Number WO 2004/094671 A2

(51) International Patent Classification7:

C12Q 1/68

(21) International Application Number:

PCT/US2004/012788

(22) International Filing Date: 22 April 2004 (22.04.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/464,586 60/464,588

22 April 2003 (22.04.2003) US 22 April 2003 (22.04.2003) US

(71) Applicants (for all designated States except US): COLEY PHARMACEUTICAL GmbH [DE/DE]; Elisabeth-Selbert-Strasse 9, D-40764 Langenfeld (DE). COLEY PHARMACEUTICAL GROUP, INC. [US/US]; 93

Worcester Street, Suite 101, Wellesley, MA 02481 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VOLLMER, Jörg [DE/DE]; Kohlrauschweg 24, D-40591 Duesseldorf (DE).

JURK, Marion [DE/DE]; Klosterstr. 4, D-41540 Dornagel (DE). LIPFORD, Grayson, B. [GB/US]; 38 Bates Road, Watertown, MA 02472 (US). SCHETTER, Christian [DE/DE]; Oerkhaushof 35, D-40723 Hilden (DE). FORSBACH, Alexandra [DE/DE]; Raiffeisenstrasse N°1, D-40764 Rantingen (DE). KRIEG, Arthur, M. [US/US]; 173 Winding River Road, Wellesley, MA 02482 (US).

- (74) Agent: TREVISAN, Maria, A.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS

candidate immunomodulatory compounds. The invention further provides methods for assessing biological activity of composition containing a known TLR ligand. These latter methods can be used for quality assessment and selection of various lots of test compositions, including pharmaceutical products for clinical use.

GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

-1-

METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS

Background of the Invention

5

10

15

20

30

Nucleic acids with immunostimulatory activity have been identified. The first recognized immunostimulatory motif was the CpG motif in which at least the C of the dinucleotide was unmethylated. It has been postulated that mammalian subjects recognize the unmethylated dinucleotide as being of bacterial origin, and thus mount a heightened immune response following exposure. The ensuing immune response includes both cell mediated and humoral aspects. Since the discovery of the CpG immunostimulatory motif, other immunostimulatory motifs have also been identified including the poly-T and T-rich motifs, the TG motif and the poly-G motif. In some instances, immunostimulation has also been observed in response to exposure to methylated CpG motifs and motif-less nucleic acids having phosphorothioate backbone linkages.

The responses induced by immunostimulatory nucleic acids are varied and can include production and secretion of cytokines, chemokines, and other growth factors. The nucleic acids can induce a heightened immune stimulation regardless of whether an antigen is also introduced to the subject. Identification of new motifs as well as of subtle differences between response profiles of different nucleic acids oftentimes can be laborious, and a high throughput system for screening nucleic acids for their ability to be immunostimulatory as well as to determine the profile of responses they induce would be useful.

Summary of the Invention

The invention provides in its broadest sense screening methods and tools for

identification and discrimination of immunomodulatory molecules and assessment and
standardization of samples containing known immunomodulatory molecules. The
immunomodulatory molecules can be immunostimulatory or immunoinhibitory, and most
preferably are Toll-like receptor (TLR) ligands.

In one aspect, the invention provides a screening method for identifying TLR agonists. The method comprises contacting a cell line endogenously expressing at least one TLR with a test compound and measuring a test level of TLR signaling activity, wherein a positive test level is indicative of a TLR agonist (i.e., an immunostimulatory compound). The positive test

-2-

level may be apparent without referring to a control. Preferably, however, it is determined relative to a control (i.e., the TLR signaling activity from a reference compound).

5

10.

15

20

25

30

In some embodiments, the reference compound is a compound that induces no response (i.e., a zero response) or a minimal response. In this case, a test level that is greater than the reference level is indicative of a compound with TLR signaling activity. More preferably, the reference compound is a compound that induces a positive response (i.e., a non-zero response) and that is immunostimulatory. These reference compounds are referred to herein as negative and positive reference compounds, respectively. If the reference compound is immunostimulatory (i.e., a positive reference compound), a non-zero test level that is lower than the reference level is still indicative of an immunostimulatory test compound. In this latter embodiment, the test compound is less immunostimulatory than the reference compound (for that particular readout), but it is nonetheless immunostimulatory given the non-zero response induced. There may be one or more concurrent or consecutive assays with a negative reference compound, a positive reference compound, or both. The reference may also be a standard curve or data generated previously.

In a related aspect, the screening method involves exposing the same cell to a positive reference compound and a test compound in order to identify a test compound that inhibits the immunostimulatory response of the positive reference compound (i.e., a TLR antagonist or an immunoinhibitory compound).

In still a related aspect, the screening method involves exposing the same cells to a positive reference compound and a test compound in order to identify a test compound that enhances the immunostimulatory response of the positive reference compound (i.e., an enhancer).

In both of these latter aspects, the assay requires a co-incubation of the positive reference compound, the test compound and the cells. Separate assays with positive reference compound alone and optionally negative reference compound alone are usually also performed.

The positive reference compound is a known TLR ligand. Non-limiting examples include but are not limited to TLR3 ligands, TLR7 ligands, TLR8 ligands and TLR9 ligands. In some embodiments, the positive reference compound is an immunostimulatory nucleic acid. In some embodiments, the positive reference compound is a CpG nucleic acid, a poly-T nucleic acid, a T-rich nucleic acid or a poly-G nucleic acid. Another example of a positive

- 3 -

reference compound is a nucleic acid comprising a backbone that contains at least one phosphorothioate linkage.

5

10

15

20

25

30

It has been further discovered according to the invention that the RPMI 8226 cell line expresses TLR7 and responds to the imidazoquinoline compound R-848 (Resiquimod) which is known to signal through TLR7 and TLR8. Accordingly, the screening method can be performed using RPMI 8226, Raji or RAMOS cells and an imidazoquinoline compound such as R-848 or R-847 (Imiquimod) as the positive reference compound.

In one embodiment, the test compound is a nucleic acid such as but not limited to a DNA, an RNA and a DNA/RNA hybrid. The test compound may be a nucleic acid that does not comprise motif selected from the group consisting of a CpG motif, a poly-T motif, a Trich motif and a poly-G motif. The test compound may be a nucleic acid that comprises a phosphorothioate backbone linkage. In another embodiment, the test compound is a non-nucleic acid small molecule. The non-nucleic acid small molecule may be derived from a molecular library. In other embodiments, the test compound comprises amino acids, carbohydrates such as polysaccharides. It may be a hormone or a lipid or contain moieties derived therefrom. In other embodiments, the test compounds are putative ligands for TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10 or TLR11.

In one embodiment, the cell is a RPMI 8226 cell, a Raji cell, a RAMOS cell, a THP-1 cells, a Nalm cell or a KG-1 cell and the TLR is TLR9. In another embodiment, the cell is a RPMI 8226 cell, a Raji cell or a RAMOS cell and the TLR is TLR7. In yet another embodiment, the cell is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

In another embodiment, the cell is an RPMI 8226 cell and the TLR is TLR7 or TLR9. In still another embodiment, the cell is a Raji cell and the TLR is TLR9, TLR7 or TLR3.

Depending upon the embodiment, the TLR signaling activity may be measured or detected in a number of ways. In one embodiment, the TLR signaling activity is measured by cytokine, chemokine, or growth factor secretion. The cytokine secretion may be selected from the group consisting of IL-6 secretion, IL-10 secretion, IL-12 secretion, IFN- α secretion and TNF- α secretion, but is not so limited. The chemokine secretion may be IP-10 secretion or IL-8 secretion, but is not so limited.

In another embodiment, the TLR signaling activity is measured by antibody secretion. The antibody secretion may be IgM secretion, but is not limited to this antibody subtype.

-4-

In another embodiment, the TLR signaling activity is measured by phosphorylation. The total level of phosphorylation in the cell or the level of phosphorylation of particular factors in the cell may be measured. These factors are preferably signaling factors and can be selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, Jun, c-fos, and subunits of NF-kB, but are not so limited.

5

10

15

20

25

30

In still a further embodiment, the TLR signaling activity is measured by cell surface marker expression. In one embodiment, the TLR signaling activity is measured by an increase in cell surface marker expression. Examples of cell surface markers to be analyzed include CD71, CD86, HLA-DR, CD80, HLA Class I, CD54 and CD69. In other embodiments, the TLR signaling activity is measured by a decrease in cell surface marker expression. Cell surface marker expression can be determined using flow cytometry. TLR signaling activity can also be measured by protein production (e.g., by Western blot).

In another embodiment, the TLR signaling activity is measured by gene expression. Gene expression profiles may be determined using Northern blot analysis or RT-PCR that uses mRNA or total RNA as a starting material. The gene expression of interest may be that of the chemokines and cytokines and cell surface molecules recited above. Gene expression analysis can be performed using microarray techniques.

In yet another embodiment, the TLR signaling activity is measured by cell proliferation. Cell proliferation assays can be measured in a number of ways including but not limited to ³H-thymidine incorporation.

In one embodiment, the cell is an RPMI 8226 cell and TLR signaling is indicated by expression of a marker such as CD71, CD86 and/or HLA-DR or by expression, production or secretion of a factor such as IL-8, IL-10, IP-10 and/or TNF-α. Preferably, in this latter embodiment, the RPMI 8226 cell is unmodified. In another embodiment, the cell is a Raji cell and the TLR signaling is indicated by IL-6 or IFN-α2 expression, production or secretion. In yet another embodiment, the cell is a RAMOS cell and the TLR signaling is indicated by CD80 cell surface expression.

TLR signaling activity can be measured via a native readout or an artificial readout or both. A native readout is one that does not rely on introduction of a reporter construct into the cell of interest.

The cell line may be used in a modified or unmodified form. In one embodiment, the cell line is transfected with a reporter construct. The transfection may be transient or stable. The reporter construct generally comprises a promoter, a coding sequence and a

- 5 -

polyadenylation signal. The coding sequence may comprise a reporter sequence selected from the group consisting of an enzyme (e.g., luciferase, alkaline phosphatase, β -galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Patent No. 5,491,084), etc.), a surface-expressed molecule (e.g., CD25), a secreted molecule (e.g., IL-8, IL-12 p40, TNF- α , etc.), and other detectable protein sequences known to those of skill in the art. Preferably, the coding sequence encodes a protein, the level or activity of which can be quantified, with preferably a wide linear range.

5

10

15

20

25

30

In some embodiments, the promoter is a promoter that is responsive to TLR signaling pathways (i.e., a "TLR responsive promoter"). In some embodiments, the promoter contains a binding site for a transcription factor activated upon CpG nucleic acid exposure, such as for example NF-kB. In other embodiments, the promoter contains a binding site for a transcription factor that is activated by a positive reference compound other than CpG nucleic acids. The transcription factor binding site may be selected from the group consisting of a NF-kB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, as well as others known to those of skill in the art.

In another embodiment, the promoter contains a functional promoter element from an IL-1 gene, an IL-6 gene, an IL-8 gene, an IL-10 gene, an IL-12 p40 gene, an IFN- α 1 gene, an IFN- α 4 gene, an IFN- β gene, an IFN- γ gene, a TNF- α gene, a TNF- β gene, an IP-9 gene, an IP-10 gene, a RANTES gene, an ITAC gene, a MCP-1 gene, an IGFBP4 gene, a CD54 gene, a CD69 gene, a CD71 gene, a CD80 gene, a CD86 gene, a HLA-DR gene, and a HLA class I gene.

The TLR responsive promoter may be a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter, a TLR10 responsive promoter or a TLR11 responsive promoter.

In these latter embodiments, the cell line may be transfected with a reporter construct having a promoter derived from a particular cytokine, chemokine, or cell surface marker, and a unique reporter coding sequence conjugated thereto. In this way, the readout from a particular reporter construct is a surrogate readout for cytokine, chemokine, or cell surface marker readout. Measuring readout from the reporter coding sequences described herein is in

-6-

some instances easier than measuring cytokine or chemokine secretion, or upregulation of a cell surface marker.

In these latter embodiments, the cell line may be transfected with a number of reporter constructs each having a promoter derived from a particular cytokine, chemokine, or cell surface marker, and a unique distinguishable coding sequence conjugated thereto. In these embodiments, multiple readouts are possible from one screen. In other embodiments, multiple native readouts are also possible from one screen.

5

10

15

20

25

30

In a related embodiment, the cell may be further transfected with a nucleic acid that codes for a TLR polypeptide or a fragment thereof. Preferably, the TLR is one that is not endogenously expressed by the cell. As an example, if the cell is an RPMI 8226 cell which has been shown to express TLR7 and TLR9 according to the invention, then it may be modified to express TLRs other than these (e.g., TLR8) in some embodiments. In this aspect, the RPMI 8226 cell is responsive to TLR8 ligands. In preferred embodiments, the TLR is a human TLR (i.e., hTLR).

In another aspect, the invention provides an RPMI 8226 cell transfected with a TLR nucleic acid. In still another embodiment, the TLR nucleic acid is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR8, TLR10 and TLR11. The encoded TLRs nucleic acids can derive from human or non-human sources. Examples of non-human sources include, but are not limited to, murine, bovine, canine, feline, ovine, porcine, and equine species. Other species include chicken and fish, e.g., aquaculture species. The TLR nucleic acids can also include chimeric sequences consisting of domains originating from different species. In preferred embodiments, the TLR is a human TLR.

In still another aspect, the invention provides kits including the cells lines (e.g., the RPMI 8226 cell line), the reporter constructs and/or expression constructs described above, and instructions for use.

Other aspects of the invention provide methods for analyzing the biological activity of individual lots of material containing previously identified specific TLR ligands (i.e., specific compounds which are ligands for a particular TLR) intended for use as, or for use in the preparation of, pharmaceutical compositions. The methods permit a qualitative and, importantly, a quantitative assessment of biological activity of individual lots of TLR ligands, pre-formulation as well as post-formulation. Such methods are useful in the manufacture and validation of pharmaceutical compositions containing, as an active agent, at least one specific ligand of at least one specific TLR. The specific TLR can be any known TLR, including

5

10

15

20

25

30

without limitation TLR3, TLR7, TLR8 and TLR9. The specific TLR ligand is an isolated TLR ligand, either found in nature or synthetic (not found in nature), including in particular certain nucleic acid molecules and small molecules. Nucleic acid molecules that are specific TLR ligands include synthetic and naturally-occurring oligonucleotides having specific base sequence motifs. Furthermore, specific TLR ligands include both agonists and antagonists of specific TLR.

-7-

These methods are to be distinguished from test procedures and acceptance criteria for new drug substances and new drug products which are classified as chemical substances. Unlike the afore-mentioned test procedures and acceptance criteria, the methods of the instant invention deal specifically with characterizing drug substances and drug products which are classified as oligonucleotides. Oligonucleotides are explicitly excluded in ICH Topic Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances, Step 4 – Consensus Guideline: 6 October 1999, § 1.3.

Further still, the methods of the instant invention are to be distinguished from test procedures and acceptance criteria for biotechnological/biological products. Unlike the aforementioned test procedures and acceptance criteria, the methods of the invention deal specifically with characterizing biotechnological/biological products which are classified as DNA products. DNA products are explicitly excluded in ICH Harmonised Tripartite Guideline Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products, Step 4 – 10 March 1999, § 1.3.

In one aspect, the invention provides a method for quality assessment of a test composition containing a known TLR ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule; measuring a test activity of a test composition comprising the known TLR ligand; and comparing the test activity to the reference activity. In one embodiment the method further involves the step of selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

In one embodiment, the reference composition is a first production lot of a pharmaceutical composition comprising the known TLR ligand, and the test composition is a second production lot of a pharmaceutical composition comprising the known TLR ligand. This embodiment is particularly useful as a method for developing and applying acceptance criteria for finished pharmaceutical products containing a known TLR ligand.

-8-

In another embodiment, the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and the test composition is a second in-process lot of a composition comprising the known TLR ligand. This embodiment is particularly useful as a method for developing and applying acceptance criteria for raw materials and/or other in-process materials containing a known TLR ligand bound for use in a pharmaceutical product.

5

10

15

20

25

In one embodiment according to this aspect of the invention, measuring the reference activity involves contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and measuring the test activity involves contacting the test composition with the isolated cell expressing the TLR responsive to the known TLR ligand. Further, in one embodiment the isolated cell expressing the TLR responsive to the known TLR ligand includes an expression vector for the TLR responsive to the known TLR ligand. Such expression vector, and likewise for any expression vector according to the instant invention, can be introduced into the cell using any suitable method.

In one embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand. Such a cell can be naturally occurring or it can be a cell line, provided the cell does not include an expression vector introduced into the cell for the purpose of artificially inducing the cell to express or overexpress the TLR.

In one particular embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is Raji, RAMOS, Nalm, THP-1 or KG-1 and the TLR is TLR9. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226, Raji or RAMOS and the TLR is TLR7. In yet another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

Further according to this aspect of the invention, in one embodiment measuring the reference activity and measuring the test activity each comprises measuring signaling activity mediated by a TLR responsive to the known TLR ligand. As described in greater detail elsewhere herein, TLR signaling involves a series of intracellular signaling events. These signaling events give rise to various downstream products, including certain transcription

10

15

20

25

30

factors (e.g., NF-kB and AP-1), cytokines, chemokines, etc., which can affect the activity of certain gene promoters. For example, in one embodiment the signaling activity is activity of a reporter gene or reporter construct under the control of a NF-kB response element.

In other embodiments, the signaling activity is activity of a reporter gene or reporter construct under the control of an interferon-stimulated response element (ISRE); an IFN- α promoter; an II- β promoter; an IL- β promoter.

In one embodiment, the known TLR ligand is an immunostimulatory nucleic acid. An immunostimulatory nucleic acid can include, without limitation, a CpG nucleic acid. In another embodiment, the known TLR ligand is an immunoinhibitory nucleic acid. When the known TLR ligand is a TLR antagonist (e.g., an immunoinhibitory oligonucleotide), the method according to this aspect of the invention can further involve measuring the reference activity of the reference composition and measuring the test activity of the test composition, each performed in the presence of a known immunostimulatory TLR ligand.

In various embodiments, the known TLR ligand is a ligand for a particular TLR. Thus in one embodiment the known TLR ligand is a TLR9 ligand. More specifically, in one embodiment the known TLR ligand is a CpG nucleic acid.

In one embodiment, the known TLR ligand is a TLR3 ligand. Such a ligand can include, for example, a double-stranded RNA or a homolog thereof.

In one embodiment, the known TLR ligand is a TLR7 ligand. In one embodiment the known TLR ligand is a TLR8 ligand.

The invention provides in another aspect a method for quality assessment of a test lot of a pharmaceutical product containing a known TLR9 ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference lot of a pharmaceutical product comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid molecule; measuring a test activity of a test lot of a pharmaceutical product comprising the known TLR9 ligand; comparing the test activity to the reference activity; and rejecting the test lot if the test activity falls outside of a predetermined range of variance about the reference activity.

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT GTC GTT-3' (SEQ ID NO:1).

- 10 -

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGA CGT TTT GTC GTT-3' (SEQ ID NO:139).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT TTT CGA-3' (SEQ ID NO:140).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTC GTC GTT-3' (SEQ ID NO:141).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTT GTC GTT-3' (SEQ ID NO:142).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GGT CGT TTT-3' (SEQ ID NO:143).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GTG CGT TTT T-3' (SEQ ID NO:144).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TCG GCG GCC GCC GCC G-3' (SEQ ID NO:145).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TC_G TTT TAC_GGC GCC_GTG CCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by "_", which are phosphodiester.

Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention.

25

5

10

15

25

- Fig. 1 is a bar graph showing cell surface expression of various markers by RPMI 8226 24 hours and 48 hours following stimulation with CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), LPS and IL-1.
- Fig. 2 is a bar graph showing IL-8 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.
 - Fig. 3 is a bar graph showing IL-6 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.
- Fig. 4 is a bar graph showing IP-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.
 - Fig. 5 is a bar graph showing IL-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.
 - Fig. 6 is a dose response curve showing fold induction of IL-8 production 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1) and non-CpG nucleic acid (SEQ ID NO: 2). The EC₅₀ for CpG nucleic acid is 19 nM and the EC₅₀ for non-CpG nucleic acid is 263 nM.
- Fig. 7 is a bar graph showing NF-κB activation in RPMI 8226 transfected transiently with a NF-κB-luciferase reporter gene construct as a function of cell density and nucleic acid amount transfected, following exposure to CpG nucleic acid (SEQ ID NO: 1), LPS and TNF-α. NF-κB activation is measured by luciferase activity.
 - Fig. 8 is a bar graph showing RT-PCR results from RNA isolated from RPMI 8226 using gene specific primers for TLR7, TLR8 and TLR9 genes.
 - Fig. 9 is a dose response curve showing IP-10 production induced by SEQ ID NO: 1, and inhibition thereof in the presence of SEQ ID NO: 151, a immunoinhibitory nucleic acid.
 - Fig. 10 is a bar graph showing the results of a TLR9 RT-PCR analysis of a number of cell lines.
- Fig. 11 is a bar graph showing the results of a TLR7 RT-PCR analysis of a number of cell lines.
 - Fig. 12 is a bar graph showing the results of a TLR3 RT-PCR analysis of a number of cell lines.

Fig. 13 is a bar graph showing the results of a TLR3, TLR7, TLR8 and TLR9 RT-PCR analysis of the Raji cell line.

Fig. 14 is a graph showing IL-6 production by the Raji cell line upon stimulation with various ODN (SEQ ID NO:1; SEQ ID NO:154; SEQ ID NO:158; SEQ ID NO:160; SEQ ID NO:159; SEQ ID NO:161).

Fig. 15 is a bar graph showing IL-6 production of the Raji cell line upon stimulation with poly I:C and R-848.

Fig. 16 is a bar graph showing IFN-o2 production by the Raji cell line upon stimulation with CpG ODN (SEQ ID NO: 1), R-848 and poly I:C.

Fig. 17 is a bar graph showing CD80 expression (by flow cytometry) by the RAMOS cell line upon stimulation with CpG ODN (SEQ ID NO: 1) and non-CpG ODN (SEQ ID NO: 2).

Fig. 18A is a bar graph showing the induction of NF-κB by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 18B is a bar graph showing the amount of IL-8 produced by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 19 is a bar graph showing the induction of NF-κB-luc produced by stably transfected 293-mTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 20 is a bar graph showing the induction of NF-κB-luc produced by stably transfected 293-hTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 21 is a series of gel images depicting the results of reverse transcriptase-polymerase chain reaction (RT-PCR) assays for murine TLR9 (mTLR9), human TLR9 (hTLR9), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in untransfected control 293 cells, 293 cells transfected with mTLR9 (293-mTLR9), and 293 cells transfected with hTLR9 (293-hTLR9).

30

25

5

10

15

20

It is to be understood that the Figures are not required for enablement of the invention.

SEQ ID NO:1 is the nucleotide sequence of an immunostimulatory nucleic acid (TLR9 ligand).

SEQ ID NO:2 is the nucleotide sequence of a non-CpG nucleic acid.

5

10

30

SEO ID NO:3 is the nucleotide sequence of human TLR2 cDNA (U88878).

SEQ ID NO:4 is the amino acid sequence of human TLR2 protein (AAC34133).

SEQ ID NO:5 is the nucleotide sequence of murine TLR2 cDNA (AF165189).

SEQ ID NO:6 is the amino acid sequence of murine TLR2 protein (NP_036035).

SEQ ID NO:7 is the nucleotide sequence of human TLR3 cDNA (NM_003265).

SEQ ID NO:8 is the amino acid sequence of human TLR3 protein (NP_003256).

SEQ ID NO:9 is the nucleotide sequence of murine TLR3 cDNA (AF355152).

SEQ ID NO:10 is the amino acid sequence of murine TLR3 protein (AAK26117).

SEQ ID NO:11 is the nucleotide sequence of human TLR4 cDNA (U88880).

SEQ ID NO:12 is the nucleotide sequence of human TLR4 cDNA transcript variant 4 (NM 138557).

15 SEQ ID NO:13 is the nucleotide sequence of human TLR4 cDNA transcript variant 2 (NM 138556).

SEQ ID NO:14 is the nucleotide sequence of human TLR4 cDNA transcript variant 1 (NM 138554).

SEQ ID NO:15 is the nucleotide sequence of human TLR4 cDNA transcript variant 3 (NM 003266).

SEQ ID NO:16 is the amino acid sequence of human TLR4 protein isoform A (NP 612564).

SEQ ID NO:17 is the amino acid sequence of human TLR4 protein isoform B (NP 612566).

25 SEQ ID NO:18 is the amino acid sequence of human TLR4 protein isoform C (NP 003257).

SEQ ID NO:19 is the amino acid sequence of human TLR4 protein isoform D (NP_612567).

SEQ ID NO:20 is the nucleotide sequence of murine TLR4 cDNA (NM_021297).

SEO ID NO:21 is the nucleotide sequence of murine TLR4 mRNA (AF185285).

SEQ ID NO:22 is the nucleotide sequence of murine TLR4 mRNA (AF110133).

SEQ ID NO:23 is the amino acid sequence of murine TLR4 protein (AAD29272).

SEQ ID NO:24 is the amino acid sequence of murine TLR4 protein (AAF04278).

SEQ ID NO:25 is the nucleotide sequence of human TLR5 cDNA (AB060695). SEQ ID NO:26 is the amino acid sequence of human TLR5 protein (BAB43558). SEQ ID NO:27 is the amino acid sequence of human TLR5 protein (O60602). SEQ ID NO:28 is the amino acid sequence of human TLR5 protein (AAC34136). SEQ ID NO:29 is the nucleotide sequence of murine TLR5 cDNA (AF186107). 5 SEQ ID NO:30 is the amino acid sequence of murine TLR5 protein (AAF65625). SEQ ID NO:31 is the nucleotide sequence of human TLR7 cDNA (AF240467). SEQ ID NO:32 is the nucleotide sequence of human TLR7 cDNA (AF245702). SEO ID NO:33 is the nucleotide sequence of human TLR7 cDNA (NM_016562). SEQ ID NO:34 is the amino acid sequence of human TLR7 protein (AAF60188). 10 SEQ ID NO:35 is the amino acid sequence of human TLR7 protein (AAF78035). SEQ ID NO:36 is the amino acid sequence of human TLR7 protein (NP 057646). SEQ ID NO:37 is the amino acid sequence of human TLR7 protein (Q9NYK1). SEQ ID NO:38 is the nucleotide sequence of murine TLR7 cDNA (AY035889). SEQ ID NO:39 is the nucleotide sequence of murine TLR7 splice variant 15 (NM_133211). SEQ ID NO:40 is the nucleotide sequence of murine TLR7 splice variant (AF334942). SEQ ID NO:41 is the amino acid sequence of murine TLR7 protein (AAK62676). SEQ ID NO:42 is the amino acid sequence of murine TLR7 protein (AAL73191). SEQ ID NO:43 is the amino acid sequence of murine TLR7 protein (AAL73192). 20 SEQ ID NO:44 is the amino acid sequence of murine TLR7 protein (NP_573474). SEQ ID NO:45 is the amino acid sequence of murine TLR7 protein (P58681). SEQ ID NO:46 is the nucleotide sequence of human TLR8 cDNA (AF245703). SEQ ID NO:47 is the nucleotide sequence of human TLR8 cDNA (AF246971). SEO ID NO:48 is the nucleotide sequence of human TLR8 cDNA (NM_138636). 25 SEQ ID NO:49 is the nucleotide sequence of human TLR8 cDNA (NM_016610). SEQ ID NO:50 is the amino acid sequence of human TLR8 protein (AAF78036). SEQ ID NO:51 is the amino acid sequence of human TLR8 protein (AAF64061). SEQ ID NO:52 is the amino acid sequence of human TLR8 protein (Q9NR97). SEQ ID NO:53 is the amino acid sequence of human TLR8 protein (NP_619542). 30 SEQ ID NO:54 is the amino acid sequence of human TLR8 protein (NP_057694). SEQ ID NO:55 is the nucleotide sequence of murine TLR8 cDNA (AY035890). SEQ ID NO:56 is the nucleotide sequence of murine TLR8 cDNA (NM 133212).

10

15

20

25

30

SEQ ID NO:57 is the amino acid sequence of murine TLR8 protein (AAK62677). SEQ ID NO:58 is the amino acid sequence of murine TLR8 protein (NP_573475). SEQ ID NO:59 is the amino acid sequence of murine TLR8 protein (P58682). SEQ ID NO:60 is the nucleotide sequence of human TLR9 cDNA (AF245704). SEQ ID NO:61 is the nucleotide sequence of human TLR9 cDNA (AB045180). SEQ ID NO:62 is the amino acid sequence of human TLR9 protein (AAF78037). SEQ ID NO:63 is the amino acid sequence of human TLR9 protein (AAF72189). SEQ ID NO:64 is the amino acid sequence of human TLR9 protein (AAG01734). SEO ID NO:65 is the amino acid sequence of human TLR9 protein (AAG01735). SEQ ID NO:66 is the amino acid sequence of human TLR9 protein (AAG01736). SEQ ID NO:67 is the amino acid sequence of human TLR9 protein (BAB19259). SEQ ID NO:68 is the nucleotide sequence of murine TLR9 cDNA (AF348140). SEQ ID NO:69 is the nucleotide sequence of murine TLR9 cDNA (AB045181). SEQ ID NO:70 is the nucleotide sequence of murine TLR9 cDNA (AF314224). SEQ ID NO:71 is the nucleotide sequence of murine TLR9 cDNA (NM_031178). SEO ID NO:72 is the amino acid sequence of murine TLR9 protein (AAK29625). SEQ ID NO:73 is the amino acid sequence of murine TLR9 protein (AAK28488). SEQ ID NO:74 is the amino acid sequence of murine TLR9 protein (BAB19260). SEQ ID NO:75 is the amino acid sequence of murine TLR9 protein (NP_112455). SEQ ID NO:76 is the nucleotide sequence of human TLR10 cDNA (AF296673). SEQ ID NO:77 is the amino acid sequence of human TLR10 protein (AAK26744). SEQ ID NO:78 is the nucleotide sequence of human TLR6 cDNA (AB020807). SEQ ID NO:79 is the nucleotide sequence of human TLR6 mRNA (NM 006068). SEQ ID NO:80 is the amino acid sequence of human TLR6 protein (BAA78631). SEQ ID NO:81 is the amino acid sequence of human TLR6 protein (NP_006059). SEQ ID NO:82 is the amino acid sequence of human TLR6 protein (Q9Y2C9). SEQ ID NO:83 is the nucleotide sequence of murine TLR6 cDNA (AB020808). SEQ ID NO:84 is the nucleotide sequence of murine TLR6 cDNA (NM 011604). SEQ ID NO:85 is the nucleotide sequence of murine TLR6 cDNA (AF314636). SEO ID NO:86 is the amino acid sequence of murine TLR6 protein (BAA78632). SEQ ID NO:87 is the amino acid sequence of murine TLR6 protein (AAG38563). SEQ ID NO:88 is the amino acid sequence of murine TLR6 protein (NP 035734). SEQ ID NO:89 is the amino acid sequence of murine TLR6 protein (Q9EPW9).

15

25

30

SEQ ID NO:90 is the nucleotide sequence of a consensus sequence for NF-kB p50 subunit.

SEQ ID NO:91 is the nucleotide sequence of a consensus sequence for NF-kB p65 subunit.

5 SEQ ID NO:92 is the nucleotide sequence of an example of an NF-κB p65 subunit binding site.

SEQ ID NO:93 is the nucleotide sequence of an example of a murine CREB binding site.

SEQ ID NO:94 is the nucleotide sequence of an example of a murine AP-1 binding site.

SEQ ID NO:95 is the nucleotide sequence of an example of a murine AP-1 binding site.

SEQ ID NO:96 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:97 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:98 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:99 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:100 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:101 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:102 is the nucleotide sequence of an example of an ISRE.

20 SEQ ID NO:103 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:104 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:105 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:106 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:107 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:108 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:109 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:110 is the nucleotide sequence of an example of a GAS.

SEQ ID NO:111 is the nucleotide sequence of a p53 binding site consensus sequence.

SEQ ID NO:112 is the nucleotide sequence of an example of a p53 binding site.

SEO ID NO:113 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:114 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:115 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:116 is the nucleotide sequence of an example of a p53 binding site.

20

SEQ ID NO:117 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:118 is the nucleotide sequence of an example of a TARE (TNF- α response element).

SEQ ID NO:119 is the nucleotide sequence of an example of an SRF binding site.

SEQ ID NO:120 is the nucleotide sequence of an example of an SRF binding site.

SEQ ID NO:121 is the nucleotide sequence of the -620 to +50 promoter region of IFN- α 4.

SEQ ID NO:122 is the nucleotide sequence of the -140 to +9 promoter region of IFN- α 1.

SEQ ID NO:123 is the nucleotide sequence of the -140 to +9 promoter region of IFN- α 1 (point mutation, AL353732).

SEQ ID NO:124 is the nucleotide sequence of the -280 to +20 promoter region of IFN- β .

SEQ ID NO:125 is the nucleotide sequence of the -397 to +5 promoter region of human RANTES (AB023652).

SEQ ID NO:126 is the nucleotide sequence of the -751 to +30 promoter region of human IL-12 p40.

SEQ ID NO:127 is the nucleotide sequence of the -250 to +30 promoter region of human IL-12 p40.

SEQ ID NO:128 is the nucleotide sequence of the -288 to +7 promoter region of human IL-6.

SEQ ID NO:129 is the nucleotide sequence of the IL-6 gene promoter from -1174 to \pm 7 (M22111).

SEQ ID NO:130 is the nucleotide sequence of the -734 to +44 promoter region derived from human IL-8.

SEQ ID NO:131 is the nucleotide sequence of the -162 to 44 promoter region of human IL-8.

SEQ ID NO:132 is the nucleotide sequence of the -615 to +30 promoter region of human TNF- α .

SEQ ID NO:133 is the nucleotide sequence of a promoter region of human TNF- β . SEQ ID NO:134 is the nucleotide sequence of the -875 to +97 promoter region of human IP-10.

10

15

20

25

30

SEQ ID NO:135 is the nucleotide sequence of the -219 to +114 promoter region of human CXCL11 (IP-9).

SEQ ID NO:136 is the nucleotide sequence of the full length promoter region of human CXCL11 (IP-9).

SEQ ID NO:137 is the nucleotide sequence of the -289 to +217 promoter region of IGFBP4 (Insulin growth factor binding protein 4).

SEQ ID NO:138 is the nucleotide sequence of the full length promoter region of IGFBP4.

SEQ ID NO:139 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:140 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:141 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:142 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:143 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:144 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:145 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:146 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:147 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:148 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:149 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

, SEQ ID NO:150 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEO ID NO:151 is the nucleotide sequence of an immunoinhibitory nucleic acid.

SEQ ID NO:152 is the nucleotide sequence of a sense primer for human TLR3.

SEO ID NO:153 is the nucleotide sequence of an antisense primer for human TLR3.

SEQ ID NO:154 is the nucleotide sequence of a GpC nucleic acid.

SEO ID NO:155 is the nucleotide sequence of a CpG ODN.

SEQ ID NO:156 is the nucleotide sequence of a GpC ODN.

SEQ ID NO:157 is the nucleotide sequence of a Me-CpG ODN.

SEQ ID NO:158 is the nucleotide sequence of a TLR9 ligand.

SEQ ID NO:159 is the nucleotide sequence of a TLR9 ligand.

- 19 -

SEQ ID NO:160 is the nucleotide sequence of a TLR9 ligand. SEQ ID NO:161 is the nucleotide sequence of a TLR9 ligand.

5

10

15

20

25

30

Detailed Description of the Invention

In its broadest sense, the invention relates to screening methods and tools to be used to identify and discriminate between newly discovered immunomodulatory molecules and to compare and standardize compositions of known immunomodulatory molecules. The immunomodulatory molecules are preferably TLR ligands.

Thus, the invention is based in part on the discovery that cell lines expressing endogenous TLR respond to TLR ligands in a manner similar to the response of peripheral blood mononuclear cells (PBMC). PBMC respond to immunomodulatory TLR ligands by modulating one or more parameters including gene expression, cell surface marker expression, cytokine and/or chemokine production and secretion, cell cycle status, phosphorylation status, and the like. TLR ligands can be categorized and distinguished based on the cellular changes they induce (i.e., their induction profiles). The ability of a TLR ligand to provide therapeutic or prophylactic benefit to a subject depends on its induction profile. The ability to screen new TLR ligands for a panel of response indicators or parameters allows for rapid discrimination and categorization of TLR ligands. Moreover, the similarity between the cell line responses and those observed after in vivo administration of the TLR ligand indicates that the cell lines are suitable predictors of in vivo activity. The use of in vitro propagated cell lines additionally overcomes the variability encountered when using freshly isolated PBMC.

The TLR ligands identified according to the invention therefore can be used therapeutically or prophylactically in a more patient- or disorder-specific manner. The invention allows for the tailoring of TLR ligands for particular patients or disorders.

The invention identifies a number of cell lines that can be used to identify TLR ligands based on endogenous TLR expression such as TLR3, TLR7 and TLR9 expression. As an example; the invention is premised in part on the discovery of TLR9 expression in a number of cell lines including RPMI 8226, Raji, RAMOS, THP-1, Nalm-6 and KG-1. Cell lines RPMI 8226, Raji and RAMOS have been determined to express TLR7 according to the invention. Cell lines KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell have been discovered to express TLR3 according to the invention.

It is further premised in part on the discovery that RPMI 8226 cells respond to the imidazoquinoline compound R-848. Consistent with this latter finding, it was also discovered that RPMI 8226 cells express TLR7.

The invention in other aspects provides for screening methods and tools for verifying and standardizing compositions containing known TLR ligands. These compositions may be for example commercial production lots to be used in a clinical setting. Accordingly, the invention provides methods for standardizing lots of known TLR ligands prior to distribution and use clinically. In this way, production processes can be observed and controlled and substandard production lots can be identified and eliminated prior to shipment.

The methods of the instant invention can be used at any step in the preparation and production of clinical material, i.e., pharmaceutical product. In particular, the methods will find use in characterizing or validating raw materials, in-process materials, finished product materials (e.g., pre-release materials), and post-production materials (e.g., post-release materials). The methods can also be used to validate existing process methods, as well as to validate new or changed process methods used in the production of the pharmaceutical product.

20 Screening Assays Generally

5

10

15

25

30

The screening assays provided herein may be used to identify immunomodulatory agents. Immunomodulatory agents are agents that either stimulate or inhibit immune responses in a subject. Accordingly, as used herein, immunomodulation embraces both immunostimulation and immunoinhibition.

The screening methods are used to identify TLR agonists and antagonists. The methods can also be used to identify compounds that enhance the immunostimulation induced by a TLR agonist. This latter set of compounds is referred to herein as "enhancers". A TLR agonist is a compound that stimulates TLR signaling activity. A TLR antagonist is a compound that inhibits TLR signaling activity. Agonists are generally referred to herein as immunostimulatory compounds because stimulation of TLR is associated with immune stimulation. Antagonists are generally referred to herein as immunoinhibitory compounds because inhibition of TLR is associated with immune inhibition. TLR antagonists include compounds that reduce (or eliminate completely) the immunostimulation induced by a TLR

agonist. In some embodiments, the agonists, antagonists and enhancers are TLR ligands (i.e., they bind to a TLR). In other embodiments, the test compounds with agonist, antagonist or enhancer activity may act downstream or upstream of the TLR-TLR ligand interaction.

An "immunostimulatory compound" as used herein refers to a natural or synthetic compound that characteristically induces a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunostimulatory compound is a natural or synthetic compound that induces a TLR-mediated response when contacted with a cell that naturally or artificially expresses a suitable functional TLR polypeptide. Depending on the aspect of the invention, the cell may be an experimental cell or a primary cell such as a PBMC.

Examples of immunostimulatory compounds include the following immunostimulatory nucleic acids, which are discussed in further detail below:

5

10

25

30

	5'-TCGTCGTTTTGTCGTTTTGTCGTT-3'	(SEQ ID NO:1)
	5'-TCGTCGTTTTGACGTTTTGTCGTT-3'	(SEQ ID NO:139)
15	5'-TCGTCGTTTTGTCGTTTTTTTCGA-3'	(SEQ ID NO:140)
	5'-TCGTCGTTTCGTCGTTTC3'	(SEQ ID NO:141)
	5'-TCGTCGTTTCGTCGTTTTGTCGTT-3'	(SEQ ID NO:142)
	5'-TCGTCGTTTTTCGGTCGTTTT-3'	(SEQ ID NO:143)
	5'-TCGTCGTTTTTCGTGCGTTTTT-3'	(SEQ ID NO:144)
20	5'-TCGTCGTTTTCGGCGGCCGCCG-3'	(SEQ ID NO:145)
	5'-TCGTC_GTTTTAC_GGCGCC_GTGCCG-3'	(SEQ ID NO:146)

Imidazoquinolines are immune response modifiers thought to induce expression of several cytokines including interferons (e.g., IFN-α and IFN-β), TNF-α and some interleukins (e.g., IL-1, IL-6 and IL-12) as well as chemokines (e.g., IP-10 and IL-8). Imidazoquinolines are capable of stimulating a Th1 immune response, as evidenced in part by their ability to induce increases in IgG2a levels. Imidazoquinoline agents reportedly are also capable of inhibiting production of Th2 cytokines such as IL-4, IL-5, and IL-13. Some of the cytokines induced by imidazoquinolines are produced by macrophages and dendritic cells. Some species of imidazoquinolines have been reported to increase NK cell lytic activity and to stimulate B cells proliferation and differentiation, thereby inducing antibody production and secretion. Imidazoquinoline mimics can also be tested using the screening methods.

- 22 -

An "immunoinhibitory compound" as used herein refers to a natural or synthetic compound that characteristically inhibits a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunoinhibitory compound is a natural or synthetic compound that inhibits a TLR-mediated response when contacted with a cell that naturally or artificially expresses a suitable functional TLR polypeptide.

5

10

15

20

25

30

In addition to the immunoinhibitory nucleic acids disclosed elsewhere herein, immunoinhibitory compounds and TLR antagonists encompass certain small molecules (chloroquine, quinacrine, 9-aminoacridines and 4-aminoquinolines, and derivatives thereof) described by Macfarlane and colleagues in U.S. Pat. 6,221,882; U.S. Pat. 6,399,630; U.S. Pat. 6,479,504; U.S. Pat. 6,521,637; and published U.S. Pat. application 2002/0151564, the contents of all of which are hereby incorporated by reference in their entirety.

The invention provides in part methods and tools that utilize cell lines, in modified or unmodified form, as surrogates for PBMC. Immunomodulation by TLR ligands can be assessed using one or preferably more parameters including but not limited to cytokine and chemokine secretion, upregulation of cell surface markers, changes in cell proliferation, phosphorylation changes, and the like. These parameters may be native readouts or artificial readouts as described herein.

The cellular response to immunostimulatory nucleic acids by the cell lines described herein (e.g., RPMI 8226, Raji, RAMOS, and the like) so resembles that of PBMC that these cells can be used to identify and differentiate between immunomodulatory compounds based on the extent of the induced response and the particular profile of that response. The invention provides a number of cell lines each with a particular endogenous TLR expression profile, as described herein.

The cell lines can be used to identify immunomodulatory compounds with particular response profiles. As an example, the cell lines can be used to identify molecules that are mimics to known TLR ligands. The cell lines can also be used to identify TLR ligands that trigger some but not necessarily all of the responses induced by known TLR ligands. For example, the cell line can be used to distinguish between compounds based on individual or group cytokine or chemokine secretion, or based on upregulation of one, a subset or all cell surface markers. As an example, in some therapeutic instances, it may be desirable to use a compound that induces the secretion of relatively high levels of chemokine such as IP-10, yet induces only relatively low levels of one or more other factors. The screening methods of the invention allow for the identification of such a compound with this type of induction profile.

- 23 -

It is to be understood that the screening method also can be used to determine effective amounts of known and newly identified immunomodulatory compounds. For example, the EC₅₀ value of a TLR ligand for the production of a particular cytokine or chemokine can be determined, thereby facilitating comparison between different nucleic acids.

Generally, these assays require the incubation of cells with a reference compound and a test compound, and an analysis of the readout. Depending on the embodiment, the same cells are exposed to the reference compound and the test compound. An example of this latter embodiment is a screening assay for compounds that enhance the immunostimulatory effects of a TLR agonist. Another example is a screening assay for compounds that inhibit the immunostimulatory effects of a TLR agonist. In both examples, the reference compound is a positive reference compound (i.e., it is itself immunostimulatory).

5

10

15

20

25

30

In other embodiments, particularly those directed at identifying immunostimulatory compounds, separate aliquots from the same cell line (or from the same freshly harvested cell population) are exposed to either the reference compound or the test compound, and the readouts from each are measured and compared to the other. If the reference compound is a negative reference compound (i.e., it is inert and neither immunostimulatory nor immunoinhibitory), then any test level that is greater than the reference level is indicative of a test compound that has at least some immunostimulatory capacity. Generally, the negative reference compound is used to set background levels of immunostimulation or immunoinhibition observed in the absence of the test compound. If the reference compound is a positive reference compound (i.e., it is immunostimulatory), then it is possible to compare and contrast the induction profile of the test compound to that of the reference compound.

In some instances, separate reference assays individually containing a positive and a negative reference compound are performed alongside the test assay. For example, if the test assay is a screen for an immunostimulatory TLR ligand, then reference assays can be a positive reference assay (in which the reference compound is immunostimulatory), a negative reference assay (in which the reference compounds is immunologically inert or neutral), or both. A test compound is defined as immunostimulatory if it induces a response greater than that of the negative reference compound. The level and profile of the immunostimulatory response can be compared to the level and profile induced by the positive reference compound. It is to be understood that a test compound that induces a level of immunostimulation less than that of the positive reference compound may still be considered immunostimulatory according to the invention. Modifications to these screening assays for a

desired readout will be apparent to those of ordinary skill in the are based on the teachings provided herein.

5

10

15

20

25

30

If the test assay is a screen for an immunoinhibitory TLR ligand, then the assay may generally involve co-incubation of the test compound and a positive reference compound. The control assay may include co-incubation of the negative and positive reference compounds. As used herein, co-incubation embraces simultaneous or consecutive addition of the reference and test compounds. The test compound may be added before or after the positive reference compound. An immunoinhibitory test compound may be identified by a diminution of the immunostimulatory response induced by the positive reference compound when in the presence of the test compound. If the level of the response is less in the presence of the test compound, this indicates that the test compound is capable of interfering with the immunostimulatory effects of the positive reference compound. As an example, simultaneous or consecutive addition of a putative immunoinhibitory test compound can reduce the amount of cytokines or chemokines secreted by cells in response to the positive reference compound alone, indicating an inhibition of the immunostimulatory effects of the positive reference compound.

The reference immunoinhibitory compound can be used at one or more concentrations in conjunction with a selected or constant concentration of reference immunostimulatory compound. Under proper conditions, the immunostimulatory effect of the reference immunostimulatory compound will be less in the presence of the immunoinhibitory substance than in the absence of the immunoinhibitory substance. Furthermore, under proper conditions, the immunostimulatory effect of the reference immunostimulatory compound will decrease with increasing concentration of the immunoinhibitory substance.

The breadth of response by the cell line to immunomodulatory compounds, and its facile manipulation, allows for the identification of novel compounds. The cell line allows the rapid discovery of such compounds given that is lends itself to high throughput screening methods such as those provided herein. These methods and compositions are described in greater detail below. The invention therefore provides screening methods that utilize cell lines that either endogenous express TLRs such as the RPMI 8226 cell line as well as cell lines that have been modified to express TLRs. The invention further provides compositions that comprise such cell lines.

The verification and standardization methods of the invention generally involve assays in which an isolated cell expressing a functional TLR is contacted with each of two

- 25 -

compositions, each composition containing a known ligand for the TLR. One composition is a reference composition, and the assay using the reference composition yields a reference activity. The second composition is a test composition, and the assay using the test composition yields a test activity. The two contacting steps can be performed on separate cells that are alike, and typically will be performed on separate populations of cells that are alike. For example, the separate cells or the separate populations of cells can be drawn from a single population of cells. In typical usage according to this embodiment, the reference and test activities are measured essentially concurrently, although the use of historical reference activity is also contemplated by the methods of the invention. As an alternative, the two contacting steps can be performed on a single cell or on a single population of cells, usually in an essentially concurrent manner when it is desirable to have competition between reference and test compositions. In one embodiment the known TLR ligand is a nucleic acid molecule.

5

10

15

20

25

30

The assays of the invention are performed under specific conditions so that comparison can be made between reference and test activities or levels. The results of the comparison can be used as a basis upon which to accept or reject the test material as suitable for its intended use.

The biological characterization of the reference composition will generally entail a series of biological activity measurements of the reference composition using a single assay under defined conditions in order to define a range of inter-test variance. The range of intertest variance so obtained using reference composition can be used to define an acceptable range of variance within which a subsequent test measurement must fall in order to satisfy quality standards. Such a range of acceptable variance can serve as a basis for developing predetermined range of variance about the reference activity, i.e., acceptance criteria for a particular test composition or test lot. For example, a particular reference composition can be assayed under defined conditions in a number of independent measurements and found to yield a result expressed as 100 ± 5 units of activity. Under this same example, a subsequent test measurement of a test composition performed using the same assay and defined conditions is found to yield 97 units of activity. The activity of the test composition under this example thus yielded a result that falls within the normal range of inter-test variance observed for the reference composition. Accordingly, the test material under this example could be selected on the basis of the test activity falling within a predetermined range of variance about the reference activity. In short, the test material can be deemed acceptable

- 26 -

provided the test activity falls within a predetermined range of activity that is related to the activity of the reference material.

In one embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of the same particular TLR ligand. Such comparison is useful for quality control assessment of the test lot of material, also referred to herein as validation, e.g., product validation. Such comparison is also useful for process validation.

5

10

15

20

25

30

In another embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of a different TLR ligand. In a simple example, where a test TLR ligand (T) is expected to have little or no activity characteristic of reference TLR ligand (R), comparison can be made between T and R to confirm the lack of R-like activity possessed by T. In a more complex example, where a test TLR ligand (C) is capable of exerting two different effects, wherein each effect is characteristic of one of two different classes of TLR ligand and is best characterized by one of two different reference TLR ligands (A and B), the test TLR ligand (C) can be compared with either of the two reference TLR ligands (A or B). In this second example, test composition C could be found, for example, to possess 50 percent A-like activity compared with reference A and 70 percent B-like activity compared with reference B. Test composition C could thus independently meet or fail to meet predetermined standards for each of A-like activity and B-like activity. Such comparison is also useful for quality control assessment of the test lot of material, e.g., product validation. Of course test TLR ligand C can alternatively or additionally be compared against reference TLR ligand C, as described in the preceding paragraph.

To facilitate the methods of the invention, certain conditions for carrying out the assays are standardized and used for measurements of both reference activity and test activity. In this way direct comparison between reference activity and test activity can be made readily. Conditions that can be standardized and used in this manner can include, without limitation, readout, temperature, media characteristics, duration (time between introduction of reference composition or test composition and activity measurement), methods of sampling, etc. In some embodiments the methods of the invention can be at least partially automated in order to increase throughput and/or to reduce inter-test variability. For example, robotic devices and workstations with the capacity to dispense and/or sample fluids in a set or programmable fashion are now well known in the art and can be used in performing the methods of the instant invention.

In one embodiment a standard curve of reference composition activity is employed. Typically the standard curve is generated by selecting conditions including concentration of the reference composition such that the dose-response curve is essentially linear (and the slope is non-zero) over a range of concentrations that includes the effective concentration at which activity is 50 percent of maximum (EC50). In one embodiment the standard curve spans a range of concentrations defined by EC50 \pm 1 log concentration, e.g., 1×10^{-7} M $- 1 \times 10^{-5}$ M, where EC50 is 1×10^{-6} M. In another embodiment the standard curve spans a broader range of concentrations defined by EC50 \pm 2 log concentration, e.g., 1×10^{-8} M $- 1 \times 10^{-4}$ M, where EC50 is 1×10^{-6} M. In yet another embodiment the standard curve spans a narrower range of concentrations defined by EC50 \pm 0.5 log concentration, e.g., 3.16×10^{-7} M $- 3.16 \times 10^{-6}$ M, where EC50 is 1×10^{-6} M. The foregoing embodiments are intended to be exemplary and not limiting in any way. One of skill in the art will be able to select, for a given reference composition and without undue experimentation, an appropriate range of concentrations about some middle value in order to generate an essentially linear standard curve with a non-zero slope.

10

15

20

25

30

In one embodiment a non-linear standard curve of reference and test composition activity is employed. The standard curve can be generated by selecting conditions including concentrations of the reference composition such that the dose-response curve is sigmoidal and the EC50 value can be determined. Comparison of reference and test activity can be done by comparing, e.g., the EC50 values of both curves. Concentration range is chosen to yield a complete sigmoidal response, e.g., concentration should include EC50 \pm 3 log concentration or EC50 \pm 4 log concentration. In the case of testing an inhibitory compound the value determined would be the IC50, i.e., concentration where inhibition of the stimulatory signal is half-maximal.

The methods of the invention can be adapted to be automated or at least partially automated methods, as well as to parallel array or high throughput format methods. For example, the assays can be set up using multiwell plates in which cells are dispensed in individual wells and reagents are added in a systematic manner using a multiwell delivery device suited to the geometry of the multiwell plate. Manual and robotic multiwell delivery devices suitable for use in a high throughput screening assay are known by those skilled in the art. Each well or array element can be mapped in a one-to-one manner to a particular test condition, such as the test compound. Readouts can also be performed in this multiwell array, preferably using a multiwell plate reader device or the like. Examples of such devices are

- 28 -

known in the art and are available through commercial sources. Sample and reagent handling can be automated to further enhance the throughput capacity of the screening assay, such that dozens, hundreds, thousands, or even millions of parallel assays can be performed in a day or in a week. Fully robotic systems are known in the art for applications such as generation and analysis of combinatorial libraries of synthetic compounds. See, for example, U.S. Pat. Nos. 5,443,791 and 5,708,158.

Cell lines

5

10

15

20

25

30

The screening methods may use experimental cells. As used herein, an experimental cell is a non-primary cell (i.e., it is not a cell that has been recently harvested from a subject). It excludes, for example, freshly harvested PBMCs. An experimental cell includes a cell from a cell line such as the RPMI 8226 cell line.

In certain embodiments, the cell naturally expresses a functional TLR. In one embodiment relating to the verification and standardization aspects of the invention, the cell may be a PBMC, preferably a PBMC freshly harvested from a subject.

Cells that would be suitable for identification of TLR agonists, antagonists or enhancers according to the invention may possess one or more particular attributes. These attributes include but are not limited to being of human origin, being an immortalized stable cell line, endogenously expressing at least one functional TLR or a combination of functional TLRs, having intact signaling mechanisms, having intact uptake mechanisms, being able to upregulate cytokines, chemokines or cell surface markers, deriving from normal human B cells or from myeloma or B cell leukemia, deriving from human plasmacytoid and myeloid dendritic cells, and readily activatable by TLR ligands such as TLR7 ligands, TLR8 ligands or TLR9 ligands such as CpG nucleic acids or nucleic acids having other immunostimulatory sequence motifs or small molecules such as imidazoquinoline compounds.

In some embodiments, the cell line is the Raji cell line which expresses TLR3, TLR7 and TLR9. This latter cell line secretes, for example, IL-6 and IFN-α2 upon CpG nucleic acid exposure. In other embodiments, the cell line is RPMI 8226 which expresses TLR7 and TLR9. Upon CpG nucleic acid exposure, this cell line expresses, produces and/or secretes IL-8, IL-10, IP-10 and TNF-α. It also expresses at its cell surface CD86, HLA-DR and CD71. In yet other embodiments, the cell line is the RAMOS cell line which expresses TLR3, TLR7 and TLR9. This cell line at least induces CD80 cell surface expression in response to CpG nucleic acid exposure.

The cell lines have been observed to respond in a concentration dependent manner to TLR ligands such as but not limited to CpG nucleic acids and some non-CpG nucleic acids including T-rich nucleic acids, poly-T nucleic acids and poly-G nucleic acids. The highest responses have been observed using CpG nucleic acids.

The screening methods employ a variety of cell lines as shown in the Examples. These include A549 (human lung carcinoma, ATCC CCL-185), BeWo (human choriocarcinoma, ATCC CCL-98), HeLa (human cervix carcinoma, ATCC CCL-2), Hep-2 (human cervix carcinoma, ATCC CCL-23), KG-1 (human acute myeloid leukemia, ATCC CCL-246), MUTZ-3 (human acute myelomonocytic leukemia, German Collection of Cell lines and Microorganisms (DSZM) ACC-295), Nalm-6 (human B cell precursor leukemia, DSZM ACC-128), NK-92 (human Natural killer cell line, ATCC CRL-2407), NK-92 MI (IL-2 independent human Natural killer cell line, ATCC CRL-2408), Raji (human B lymphocyte Burkitt's lymphoma, ATCC CRL-1596), RPMI 8226 (human B lymphocyte multiple myeloma, ATCC CCL-155), THP-1 (human acute monocytic leukemia, ATCC TIB 202), U937 (human lymphoma, ATCC CRL-1593.2) and Jurkat (human T cell leukemia, ATCC TIB 152).

As shown in the Examples, each of the afore-mentioned cell lines has a particular endogenous TLR expression profile which dictates its suitability in a particular screening assay.

A cell that artificially expresses a functional TLR can be a cell that does not express the functional TLR but for a transfected TLR expression vector. For example, human 293 fibroblasts (ATCC CRL-1573) do not express TLR7, TLR8 or TLR9, and they express very little TLR3. As described in the examples below, such cells can be transiently or stably transfected with suitable expression vector (or vectors) so as to yield cells that do express TLR3, TLR7, TLR8, TLR9, or any combination thereof. Alternatively, a cell that artificially expresses a functional TLR can be a cell that expresses the functional TLR at a significantly higher level with the TLR expression vector than it does without the TLR expression vector. Transfected cells are considered modified cells, as used herein.

A cell that artificially expresses an expression or reporter construct is preferably stably transfected.

RPMI

5

10

15

20

25

30

The RPMI 8226 cell line is a human multiple myeloma cell line. The cell line was established from the peripheral blood of a 61 year old man at the time of diagnosis for multiple myeloma (IgG lambda type). RPMI 8226 was previously reported as responsive to CpG nucleic acids as evidenced by the production and secretion of IL-6 protein and production of IL-12p40 mRNA. (Takeshita et al. (2000), Eur. J. Immunol. 30, 108-116, and Takeshita et al. (2000) Ibid. 30, 1967-1976) Takeshita et al. however used the cell line solely to study promoter constructs in order to identify transcription factor binding sites important for CpG nucleic acid signaling. It is now known according to the invention that the cell line produces a number of other chemokines and cytokines including IL-8, IL-10 and IP-10. It has also been discovered according to the invention that the cell line responds to immunostimulatory nucleic acids by upregulating cell surface expression of particular markers. Many of these markers, including CD71, CD86 and HLA-DR, are similarly upregulated in PBMCs exposed to immunostimulatory nucleic acids. This has been observed using flow cytometric analysis of the cell line following CpG nucleic acid exposure. In other aspects of the invention, the cell line can be used in similar screening assays that involve secretion of IL-6, IL-12 and/or TNF-α.

It has recently been discovered that R-848 mediates its immunostimulatory effects via other TLR family members, namely TLR7 and TLR8. TLR7 has previously been found expressed on human B cells. It has now also been discovered according to the invention that RPMI 8226 expresses TLR9 as well as TLR7, thus making it a suitable cell line for identifying immunostimulatory nucleic acid and/or imidazoquinoline (e.g., R-848) mimics or other small molecules that also signal through TLR7 and/or TLR9. Incubation of RPMI 8226 cells with the imidazoquinoline R-848 (Resiquimod) induces for example IL-8, IL-10 and IP-10 production.

25

30

10

15

20

Known TLR Ligands

Ligands for many but not all of the TLRs have been described. For instance, it has been reported that TLR1 and TLR2 signals in response to peptidoglycan and lipopeptides. Yoshimura A et al. (1999) *J Immunol* 163:1-5; Brightbill HD et al. (1999) *Science* 285:732-6; Aliprantis AO et al. (1999) *Science* 285:736-9; Takeuchi O et al. (1999) *Immunity* 11:443-51; Underhill DM et al. (1999) *Nature* 401:811-5. TLR4 has been reported to signal in response to lipopolysaccharide (LPS). Hoshino K et al. (1999) *J Immunol* 162:3749-52; Poltorak A et al. (1998) *Science* 282:2085-8; Medzhitov R et al. (1997) *Nature* 388:394-7. Bacterial

flagellin has been reported to be a natural ligand for TLR5. Hayashi F et al. (2001) *Nature* 410:1099-1103. TLR6, in conjunction with TLR2, has been reported to signal in response to proteoglycan. Ozinsky A et al. (2000) *Proc Natl Acad Sci USA* 97:13766-71; Takeuchi O et al. (2001) *Int Immunol* 13:933-40.

TLR9 is a receptor for CpG DNA. Hemmi H et al. (2000) *Nature* 408:740-5. Other TLR9 ligands are described herein under "Immunostimulatory Nucleic Acids". Certain imidazoquinoline compounds having antiviral activity are ligands of TLR7 and TLR8. Imidazoquinolines are potent synthetic activators of immune cells with antiviral and antitumor properties. R-848 is a ligand for human TLR7 and TLR8. Jurk M et al. (2002) *Nat Immunol* 3:499. Ligands of TLR3 include poly(I:C) and double-stranded RNA (dsRNA). Alexopoulou et a. (2001) Nature 413:732-738. For purposes of this invention, poly(I:C) and double-stranded RNA (dsRNA) are classified as oligonucleotide molecules. TLR3 may have a role in host defense against viruses.

15 Reference and Test Compounds

5

10

20

25

30

A test and/or reference compound can be a nucleic acid such as an oligonucleotide or a polynucleotide, an oligopeptide, a polypeptide, a lipid such as a lipopolysaccharide, a carbohydrate such as an oligosaccharide or a polysaccharide, or a small molecule.

Alternatively, these compounds may also comprise or be synthesized from elements such as amino acids, carbohydrates, hormones, lipids, organic molecules, and the like.

Small molecules in general include naturally occurring, synthetic, and semisynthetic organic and organometallic compounds with molecular weight less than about 2.5 kDa. Examples of small molecules include most drugs, subunits of polymeric materials, and analogs and derivatives thereof.

Some specific examples of small molecules include the imidazoquinolines. As used herein, an imidazoquinolines include imidazoquinoline amines (imidazoquinolinamines), imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, and 1,2 bridged imidazoquinoline amines. These compounds have been described in U.S. Pat. Nos. 4,689,338; 4,929,624; 5,238,944; 5,266,575; 5,268,376; 5,346,905; 5,352,784; 5,389,640; 5,395,937; 5,482,936; 5,494,916; 5,525,612; 6,039,969 and 6,110,929. Particular species of imidazoquinoline agents include resiquimod (R-848; S-28463; 4-amino-2 ethoxymethyl- α , α -dimethyl-1H-imidazo[4,5-c]quinoline-1-ethanol); and imiquimod (R-837; S-26308; 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-4-amine). Further examples of specific small

- 32 -

molecules include 4-aminoquinoline and derivatives thereof, 9-aminoacridine and derivatives thereof, and additional compounds disclosed in U.S. Pat. Nos. 6,221,882; 6,399,630; 6,479,504; and 6,521,637; and published U.S. Pat. Application No. 2002/0151564 A1, the entire contents of which are hereby incorporated by reference.

The test and reference compounds may be formulated for pharmaceutical use or not. For example, a test compound not formulated for pharmaceutical use can be a compound (e.g., a lot or batch of the compound) under evaluation for possible use in preparing a pharmaceutical formulation of the compound.

5

10

15

20

25

30

A reference compound, as used herein, is a compound having a known activity in the presence of a TLR. The reference compound may stimulate TLR signaling (and is therefore regarded as a positive reference compound), or it may be inert in the presence of a TLR (and is therefore regarded as a negative reference compound). If it is a positive reference compound, it need not be the best known stimulator of TLR signaling (i.e., it is possible that other reference compounds and even test compounds will stimulate TLR signaling to a greater extent). The readout of the screening assay may simply be stated relative to the level of signaling that occurs in the presence of the reference compound. Preferably, the reference compound is analyzed prior to the screening assay in order to determine its level of activity on a TLR. In some aspects of the invention, the reference compound and the test compound will be assayed separately (i.e., in separate wells); in other aspects, the reference compound and the test compound will be assayed together (i.e., in the same well). These latter aspects are designed to measure the ability of a test compound to modulate the activity of the reference compound. The activity of the test compound and the reference compound combined (i.e., when assayed together in the same well) may be the same as that of the positive reference compound alone, indicating at a minimum that the test compound is not inhibitory; or it may be less than that of the positive reference compound, indicating at a minimum that it is inhibitory to the effect of the reference compound; or it may be additive or synergistic possibly indicating that the test compound is an enhancer. The effect of an enhance may be due to its ability to stimulate TLR signaling independently of the positive reference compound.

A "reference composition" as used herein refers to a composition that includes a reference compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A reference compound may be an immunostimulatory compound or it may be an immunoinhibitory compound.

15

20

25

30

As discussed further below, in some aspects of the invention the reference compositions include both finished products, e.g., finished pharmaceutical products, as well as raw materials and other in-process materials used for the preparation of such finished products, all of which contain a known TLR ligand. As used herein, a "production lot" shall refer to a batch or lot of a completed product prepared for release as clinical material, e.g., a pharmaceutical product. As used herein, an "in-process lot" shall refer to a batch or lot of unfinished product that is prepared in the course of making a production lot; an "in-process lot" shall also refer to a batch or lot of raw material provided for use in the production of a production lot.

In some aspects of the invention, the reference compositions of the invention are highly characterized in terms of their chemical, physical, and biological properties. A reference composition will be a specific composition previously determined to have a specific activity, or range of specific activity, of the particular known TLR ligand present in the composition. As used herein, "specific activity" refers to an amount of activity per unit mass or per unit volume of the reference composition as a whole, as determined using a defined assay under defined conditions. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR ligand at a determined concentration or activity.

At least the following parameters are typically very well defined for a given reference composition: chemical formula of the active ingredient TLR ligand (e.g., nucleobase sequence and type of backbone of a nucleic acid; structural formula of a small molecule); concentration; diluent composition; and purity. Such parameters as purity and concentration can be determined using any appropriate physicochemical method, e.g., optical spectroscopy including absorbance at one or more specified wavelengths; nuclear magnetic resonance (NMR) spectroscopy; mass spectrometry (MS), including matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS); melting point; specific gravity; chromatography including as appropriate high pressure liquid chromatography (HPLC), one-and two-dimensional polyacrylamide gel electrophoresis (PAGE), capillary electrophoresis, and the like; as well as other methods known to those of skill in the art.

Reference compositions can also be very well characterized in terms of their biological activity, independent of the methods of the invention, although the methods of the

- 34 -

invention generally include such characterization, at least in part. A reference composition can be very well characterized in terms of its biological activity by characterizing, both qualitatively and quantitatively, the response by sensitive cells to the reference composition under defined conditions. For example, a reference composition can be a specific CpG oligonucleotide such as SEQ ID NO:1 which in a specific assay and under specific conditions of temperature, concentration, duration of contact between the CpG oligonucleotide and a population of TLR9-expressing cells, and particular readout, reliably yields a specific result or range of results. Results can be expressed in any suitable manner, but can include results expressed on a per-cell basis, e.g., picograms of particular cytokine per cell per hour of contact with the reference composition. Reference compositions can be very well characterized in terms of their biological activity according to one or more parameters, for example, according to their capacity to induce each of a plurality of cytokines.

5

10

15

20

25

30

The methods of the invention also involve measurement of a test activity of a test composition containing a known TLR ligand. A "test composition" as used herein refers to a composition that includes a test compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A test compound can be an immunostimulatory compound or it can be an immunoinhibitory compound. In some aspects of the invention, the test compound is a known TLR ligand. Test compositions of the invention may comprise known TLR agonist or TLR antagonist compounds, generally but not necessarily nominally the same as the reference compositions against which comparison is to be made according to some aspects of the invention. Thus test compositions may encompass immunostimulatory compounds, immunoinhibitory compounds, known TLR ligands, finished pharmaceutical products, and raw materials and other in-process materials used for the preparation of such finished products.

Unlike a reference composition, a test composition is not characterized at all, or is only partially characterized, or is not as well characterized as the reference composition, in terms of its chemical, physical, or (most particularly) biological properties. The methods of the invention permit further characterization of the test composition by comparison with a reference composition. In some aspects, a test composition will be a specific composition previously determined to be a ligand of a specific TLR. In one embodiment the test composition is a representative sample of a particular lot or batch of a particular lot or batch of

- 35 -

a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR ligand at a determined concentration or activity.

Immunostimulatory and Immunoinhibitory Nucleic Acids

5

10

15

20

25

30

Nucleic acids useful as reference compounds and as test compounds in the methods of the invention include single- and double-stranded natural and synthetic nucleic acids, including those with phosphodiester, stabilized, and chimeric backbones. Also encompassed are at least the following classes of nucleic acids, which are described in detail below: immunostimulatory CpG nucleic acids (CpG nucleic acids), including but not limited to types A, B, and C; immunostimulatory non-CpG nucleic acids, including without limitation methylated CpG nucleic acids, T-rich nucleic acids, TG-motif nucleic acids, CpI motif nucleic acids, and poly-G nucleic acids; and immunoinhibitory nucleic acids. Nucleic acids useful as reference compounds and as test compounds in the methods of the invention also include nucleic acids with modified backbones, including "soft" and "semi-soft" oligonucleotides as described herein. As will be appreciated from the descriptions below, certain of these various classes of nucleic acids can coexist in a given nucleic acid molecule.

A "nucleic acid" as used herein with respect to test compounds and reference compounds used in the methods of the invention, shall refer to any polymer of two or more individual nucleoside or nucleotide units. Typically individual nucleoside or nucleotide units will include any one or combination of deoxyribonucleosides, ribonucleosides, deoxyribonucleotides, and ribonucleotides. The individual nucleotide or nucleoside units of the nucleic acid can be naturally occurring or not naturally occurring. For example, the individual nucleotide units can include deoxyadenosine, deoxycytidine, deoxyguanosine, thymidine, and uracil. In addition to naturally occurring 2'-deoxy and 2'-hydroxyl forms, individual nucleosides also include synthetic nucleosides having modified base moieties and/or modified sugar moieties, e.g., as described in Uhlmann E et al. (1990) Chem Rev 90:543-84. The linkages between individual nucleotide or nucleoside units can be naturally occurring or not naturally occurring. For example, the linkages can be phosphodiester, phosphorothioate, phosphorodithioate, phosphoramidate, as well as peptide linkages and other covalent linkages, known in the art, suitable for joining adjacent nucleoside or nucleotide units. The linkages can also be mixed in a single polymer (e.g., a semi-soft backbone). The nucleic acid test compounds and nucleic acid reference compounds typically range in size from 3-4 units to a few tens of units, e.g., 18-40 units.

In some embodiments the nucleic acids are oligonucleotides made up of 2 to about 100 nucleotides, and more typically 4 to about 40 nucleotides. Oligonucleotides composed exclusively of deoxynucleotides are termed oligodeoxyribonucleotides or, equivalently, oligodeoxynucleotides (ODN).

5

10

15

20

25

30

A CpG nucleic acid is an immunostimulatory nucleic acid which contains a cytosineguanine (CG) dinucleotide, the C residue of which is unmethylated. The effects of CpG nucleic acids on immune modulation have been described extensively in U.S. Pat. Nos. 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068; and published patent applications, such as PCT/US95/01570 (WO 96/02555); PCT/US98/04703 (WO 98/40100); and PCT/US99/09863 (WO 99/56755). The entire contents of each of these patents and published patent applications is hereby incorporated by reference. The entire immunostimulatory nucleic acid can be unmethylated or portions can be unmethylated, but at least the C of the 5'-CG-3' must be unmethylated. The CpG nucleic acid sequences of the invention include, without limitation, those broadly described above as well as those disclosed in U.S. Pat. Nos. 6,207,646 and 6,239,116.

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTGTCGTTTTGTCGTT-3' (SEQ ID NO:1).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTGACGTTTTGTCGTT-3' (SEQ ID NO:139).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTGTCGTTTTTTTCGA-3' (SEQ ID NO:140).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCGTCGTTTCGTCGTT-3' (SEQ ID NO:141).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCGTCGTTTTTGTCGTT-3' (SEQ ID NO:142).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTCGGTCGTTTT-3' (SEQ ID NO:143).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTCGTGCGTTTTT-3' (SEQ ID NO:144).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTCGGCGGCCGCCG-3' (SEQ ID NO:145).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTC GTTTTAC GGCGCC GTGCCG-3' (SEQ ID NO:146).

- 37 -

The oligonucleotides described by SEQ ID NOs: 1, 139-145 are fully stabilized phosphorothioate backbone ODN. The oligonucleotide of SEQ ID NO:146 has a chimeric backbone in which all internucleoside linkages are phosphorothioate except for those indicated by "_", which are phosphodiester.

5

10

15

20

25

30

CpG nucleic acids have been further classified by structure and function into at least the following three types, all of which are intended to be encompassed within the methods of the instant invention: Type B CpG nucleic acids such as SEQ ID NO:1 include the earliest described CpG nucleic acids and characteristically activate B cells but do not induce or only weakly induce expression of IFN-a. Type B nucleic acids are described in U.S. Patents 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068. Type A CpG nucleic acids, described in published international application PCT/US00/26527 (WO 01/22990), incorporate a CpG motif, include a hybrid phosphodiester/phosphorothioate backbone, and characteristically induce plasmacytoid dendritic cells to express large amounts of IFN- α but do not activate or only weakly activate B cells. Type C oligonucleotides incorporate a CpG, include a chimeric backbone, include a GC-rich palindromic or nearly-palindromic region, and are capable of both activating B cells and inducing expression of IFN- α . These have been described, for example, in copending U.S. Pat. application Ser. No. 10/224,523, filed August 19, 2002. Exemplary sequences of A, B and C class nucleic acids are described in the afore-mentioned references, patents and patent applications, the entire contents of which are hereby incorporated by reference herein.

In other embodiments of the invention, a non-CpG nucleic acid is used. A non-CpG nucleic acid is an immunostimulatory nucleic acid which either does not have a CpG motif in its sequence, or has a CpG motif which contains a methylated C residue. In some instances, the non-CpG nucleic acid may still be immunostimulatory by virtue of its having other immunostimulatory motifs such as those described herein and known in the art. In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid. In some instances the non-CpG nucleic acid is still immunostimulatory despite methylation of the C of the CpG motif, even without having another non-CpG immunostimulatory motif described herein and known in the art.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGTTTTGTZGTTTTGTZGTTT-3' (SEQ ID NO:147), wherein Z represents 5-methylcytosine.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGZTGTZTZZGZTTZTTZTTGZZ-3' (SEQ ID NO:148), wherein Z represents 5-methylcytosine.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZGTTTGZTZTTZTTGZG-3' (SEQ ID NO:149), wherein Z represents 5-methylcytosine.

5

10

15

20

25

30

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZZZAAGZTGGZATZZGTZA-3' (SEQ ID NO:150), wherein Z represents 5-methylcytosine.

Non-CpG nucleic acids include T-rich immunostimulatory nucleic acids. The T-rich immunostimulatory nucleic acids include those disclosed in published PCT patent application PCT/US00/26383 (WO 01/22972), the entire contents of which are incorporated herein by reference. In some embodiments, T-rich nucleic acids 24 bases in length are used. A T-rich nucleic acid is a nucleic acid which includes at least one poly T sequence and/or which has a nucleotide composition of greater than 25% T nucleotide residues. A nucleic acid having a poly-T sequence includes at least four Ts in a row, such as 5'-TTTT-3'. In some embodiments the T-rich nucleic acid includes more than one poly T sequence. In important embodiments, the T-rich nucleic acid may have 2, 3, 4, or more poly T sequences, such as SEQ ID NO:1.

Non-CpG nucleic acids also include poly-G immunostimulatory nucleic acids. A variety of references describe the immunostimulatory properties of poly-G nucleic acids. Pisetsky DS et al. (1993) *Mol Biol Reports* 18:217-221; Krieger M et al. (1994) *Ann Rev Biochem* 63:601-637; Macaya RF et al. (1993) *Proc Natl Acad Sci USA* 90:3745-3749; Wyatt JR et al. (1994) *Proc Natl Acad Sci USA* 91:1356-1360; Rando and Hogan, 1998, In Applied Antisense Oligonucleotide Technology, Krieg and Stein, eds., pp. 335-352; Kimura Y et al. (1994) *J Biochem (Tokyo)* 116:991-994.

The immunostimulatory nucleic acids of the invention can also be those which do not possess CpG, methylated CpG, T-rich, or poly-G motifs.

Exemplary immunostimulatory nucleic acid sequences include but are not limited to those immunostimulatory sequences described and listed in U.S. Non-Provisional Pat. Application No. 09/669,187, filed on September 25, 2000, and in corresponding published PCT patent application PCT/US00/26383 (WO 01/22972).

Immunoinhibitory nucleic acids have been described in Lenert P et al. (2001)

Antisense Nucleic Acid Drug Dev 11:247-56 and in Stunz L et al. (2002) Eur J Immunol

- 39 -

32:1212-22. These inhibitory phosphorothioate ODN (S-ODN) differ from stimulatory S-ODN by having 2-3 G substitutions in the central motif. As inhibitory S-ODN did not directly interfere with the NF-κB DNA binding but prevented CpG-induced NF-κB nuclear translocation of p50, p65, and c-Rel and blocked p105, IκBα, and IκBβ degradation, Lenert et al. suggested that the putative target of immunoinhibitory ODN would lie upstream of inhibitory kinase (IKK) activation. Stunz et al. reported that replacing GCGTT or ACGTT with GCGGG or ACGGG converted a stimulatory 15-mer ODN into an inhibitory ODN. All inhibitory ODN had three consecutive G, and a fourth G increased inhibitory activity, but a deazaguanosine substitution to prevent planar stacking did not affect activity. Inhibitory ODN blocked apoptosis protection and cell-cycle entry induced by stimulatory ODN, but not that induced by lipopolysaccharide, anti-CD40 or anti-IgM+IL-4. ODN-driven up-regulation of cyclin D(2), c-Myc, c-Fos, c-Jun and Bcl(XL) and down-regulation of cyclin kinase inhibitor p27(kip1) were all blocked by inhibitory ODN. Stunz et al. also reported that interference with uptake of stimulatory ODN did not account for the inhibitory effects of the immunoinhibitory nucleic acids.

5

10

15

20

25

30

In one embodiment the immunoinhibitory nucleic acid has a base sequence provided by 5'-TCCTGGCGGGGAAGT-3' (SEQ ID NO:151).

Immunoinhibitory nucleic acids have also been described in U.S. Pat. No. 6,194,388, issued to Krieg et al. The immunoinhibitory oligonucleotides disclosed by Krieg et al. are oligonucleotides with GCG trinucleotides at or near the ends of the oligonucleotide and are represented by the formula 5' GCGX_nGCG 3' in which X is a nucleotide and n is an integer between 0 and 50.

The nucleic acids used as either test or reference compounds can be double-stranded or single-stranded. They can be deoxyribonucleotide (DNA) or ribonucleotide (RNA) molecules. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity. Thus in some the nucleic acid is single-stranded and in other embodiments the nucleic acid is double-stranded. In certain embodiments, while the nucleic acid is single-stranded, it is capable of forming secondary and tertiary structures (e.g., by folding back on itself, or by hybridizing with itself either throughout its entirety or at select segments along its length). Accordingly, while the primary structure of such a nucleic acid may be single-stranded, its higher order structures may be double- or triple-stranded.

- 40 -

For facilitating uptake into cells, the nucleic acids are preferably in the range of 6 to 100 bases in length. However, nucleic acids of any size equal to or greater than 6 nucleotides (even many kb long) are capable of inducing an immune response. Preferably the nucleic acid is in the range of between 8 and 100 and in some embodiments between 8 and 50 or 8 and 30 nucleotides in size.

5

10

15

20

25

30

The terms "nucleic acid" and "oligonucleotide" are used interchangeably to mean multiple nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g., cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g., adenine (A) or guanine (G)). As used herein, the terms "nucleic acid" and "oligonucleotide" refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms "nucleic acid" and "oligonucleotide" shall also include polynucleosides (i.e., a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g., genomic or cDNA), but are preferably synthetic (e.g., produced by nucleic acid synthesis).

The terms "nucleic acid" and "oligonucleotide" also encompass nucleic acids or oligonucleotides with substitutions or modifications, such as in the bases and/or sugars. For example, they include nucleic acids having backbone sugars that are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 2' position and other than a phosphate group or hydroxy group at the 5' position. Thus modified nucleic acids may include a 2'-O-alkylated ribose group. In addition, modified nucleic acids may include sugars such as arabinose or 2'-fluoroarabinose instead of ribose. Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide-nucleic acids (which have an amino acid backbone with nucleic acid bases). Other examples are described in more detail below.

The immunostimulatory and immunoinhibitory nucleic acids can encompass various chemical modifications and substitutions, in comparison to natural RNA and DNA, involving a phosphodiester internucleoside bridge, a β-D-ribose unit and/or a natural nucleoside base (adenine, guanine, cytosine, thymine, uracil). Examples of chemical modifications are known to the skilled person and are described, for example, in Uhlmann E et al. (1990) *Chem Rev* 90:543; "Protocols for Oligonucleotides and Analogs" Synthesis and Properties & Synthesis and Analytical Techniques, S. Agrawal, Ed, Humana Press, Totowa, USA 1993; Crooke ST et al. (1996) *Annu Rev Pharmacol Toxicol* 36:107-129; and Hunziker J et al. (1995) *Mod Synth*

5

20

25

30

Methods 7:331-417. An oligonucleotide according to the invention may have one or more modifications, wherein each modification is located at a particular phosphodiester internucleoside bridge and/or at a particular β-D-ribose unit and/or at a particular natural nucleoside base position in comparison to an oligonucleotide of the same sequence which is composed of natural DNA or RNA.

For example, the oligonucleotides may comprise one or more modifications and wherein each modification is independently selected from:

- a) the replacement of a phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside by a modified internucleoside bridge,
- 10 b) the replacement of phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a dephospho bridge,
 - c) the replacement of a sugar phosphate unit from the sugar phosphate backbone by another unit,
 - d) the replacement of a β -D-ribose unit by a modified sugar unit, and
- e) the replacement of a natural nucleoside base by a modified nucleoside base.
 More detailed examples for the chemical modification of an oligonucleotide are as follows.

The oligonucleotides may include modified internucleotide linkages, such as those described in (a) or (b) above. These modified linkages may be partially resistant to degradation (e.g., are stabilized). A "stabilized oligonucleotide molecule" shall mean an oligonucleotide that is relatively resistant to *in vivo* degradation (e.g., via an exo- or endonuclease) resulting from such modifications. Oligonucleotides having phosphorothicate linkages, in some embodiments, may provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases.

A phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside can be replaced by a modified internucleoside bridge, wherein the modified internucleoside bridge is for example selected from phosphorothioate, phosphorodithioate, NR¹R²-phosphoramidate, boranophosphate, α-hydroxybenzyl phosphonate, phosphate-(C₁-C₂₁)-O-alkyl ester, phosphate-[(C₆-C₁₂)aryl-(C₁-C₂₁)-O-alkyl]ester, (C₁-C₈)alkylphosphonate and/or (C₆-C₁₂)arylphosphonate bridges, (C₇-C₁₂)-α-hydroxymethyl-aryl (e.g., disclosed in WO 95/01363), wherein (C₆-C₁₂)aryl, (C₆-C₂₀)aryl and (C₆-C₁₄)aryl are optionally substituted by halogen, alkyl, alkoxy, nitro, cyano, and where R¹ and R² are, independently of each other, hydrogen, (C₁-C₁₈)-alkyl, (C₆-C₂₀)-aryl, (C₆-C₁₄)-aryl-(C₁-C₈)-alkyl, preferably hydrogen,

 (C_1-C_8) -alkyl, preferably (C_1-C_4) -alkyl and/or methoxyethyl, or R^1 and R^2 form, together with the nitrogen atom carrying them, a 5-6-membered heterocyclic ring which can additionally contain a further heteroatom from the group O, S and N.

The replacement of a phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a dephospho bridge (dephospho bridges are described, for example, in Uhlmann E and Peyman A in "Methods in Molecular Biology", Vol. 20, "Protocols for Oligonucleotides and Analogs", S. Agrawal, Ed., Humana Press, Totowa, 1993, Chapter 16, pp. 355 ff), wherein a dephospho bridge is for example selected from the dephospho bridges formacetal, 3'-thioformacetal, methylhydroxylamine, oxime, methylenedimethyl-hydrazo, dimethylenesulfone and/or silyl groups.

5

10

15

20

A sugar phosphate unit (i.e., a β-D-ribose and phosphodiester internucleoside bridge together forming a sugar phosphate unit) from the sugar phosphate backbone (i.e., a sugar phosphate backbone is composed of sugar phosphate units) can be replaced by another unit, wherein the other unit is for example suitable to build up a "morpholino-derivative" oligomer (as described, for example, in Stirchak EP et al. (1989) *Nucleic Acids Res* 17:6129-41), that is, e.g., the replacement by a morpholino-derivative unit; or to build up a polyamide nucleic acid ("PNA"; as described for example, in Nielsen PE et al. (1994) *Bioconjug Chem* 5:3-7), that is, e.g., the replacement by a PNA backbone unit, e.g., by 2-aminoethylglycine. The oligonucleotide may have other carbohydrate backbone modifications and replacements, such as peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), and oligonucleotides having backbone sections with alkyl linkers or amino linkers. The alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture.

A β-ribose unit or a β-D-2'-deoxyribose unit can be replaced by a modified sugar unit,

wherein the modified sugar unit is for example selected from β-D-ribose, α-D-2'-deoxyribose,

L-2'-deoxyribose, 2'-F-2'-deoxyribose, 2'-F-arabinose, 2'-O-(C₁-C₆)alkyl-ribose, preferably 2'
O-(C₁-C₆)alkyl-ribose is 2'-O-methylribose, 2'-O-(C₂-C₆)alkenyl-ribose, 2'-[O-(C₁-C₆)alkyl
O-(C₁-C₆)alkyl]-ribose, 2'-NH₂-2'-deoxyribose, β-D-xylo-furanose, α-arabinofuranose,

2,4-dideoxy-β-D-erythro-hexo-pyranose, and carbocyclic (described, for example, in Froehler

J (1992) Am Chem Soc 114:8320) and/or open-chain sugar analogs (described, for example, in Vandendriessche et al. (1993) Tetrahedron 49:7223) and/or bicyclosugar analogs (described, for example, in Tarkov M et al. (1993) Helv Chim Acta 76:481).

- 43 -

In some embodiments the sugar is 2'-O-methylribose, particularly for one or both nucleotides linked by a phosphodiester or phosphodiester-like internucleoside linkage.

5

10

15

20

25

30

In some embodiments, the nucleic acids may be soft or semi-soft nucleic acids. A soft nucleic acid is an immunostimulatory nucleic acid having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within and immediately adjacent to at least one internal pyrimidine -purine dinucleotide (YZ). Preferably YZ is YG, a pyrimidine-guanosine (YG) dinucleotide. The at least one internal YZ dinucleotide itself has a phosphodiester or phosphodiester-like internucleotide linkage. A phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide can be 5', 3', or both 5' and 3' to the at least one internal YZ dinucleotide.

In particular, phosphodiester or phosphodiester-like internucleotide linkages involve "internal dinucleotides". An internal dinucleotide in general shall mean any pair of adjacent nucleotides connected by an internucleotide linkage, in which neither nucleotide in the pair of nucleotides is a terminal nucleotide, i.e., neither nucleotide in the pair of nucleotides is a nucleotide defining the 5' or 3' end of the nucleic acid. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 dinucleotides and only n-3 internal dinucleotides. Each internucleotide linkage in an internal dinucleotide is an internal internucleotide linkage. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 internucleotide linkages and only n-3 internal internucleotide linkages. The strategically placed phosphodiester or phosphodiester-like internucleotide linkages, therefore, refer to phosphodiester or phosphodiester-like internucleotide linkages positioned between any pair of nucleotides in the nucleic acid sequence. In some embodiments the phosphodiester or phosphodiester-like internucleotide linkages are not positioned between either pair of nucleotides closest to the 5' or 3' end.

Preferably a phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide is itself an internal internucleotide linkage. Thus for a sequence N_1 YZ N_2 , wherein N_1 and N_2 are each, independent of the other, any single nucleotide, the YZ dinucleotide has a phosphodiester or phosphodiester-like internucleotide linkage, and in addition (a) N_1 and Y are linked by a phosphodiester or phosphodiester-like internucleotide linkage when N_1 is an internal nucleotide, (b) Z and N_2 are linked by a phosphodiester or phosphodiester-like internucleotide linkage when N_2 is an internal nucleotide, or (c) N_1 and Y are linked by a phosphodiester or

- 44 -

phosphodiester-like internucleotide linkage when N_1 is an internal nucleotide and Z and N_2 are linked by a phosphodiester or phosphodiester-like internucleotide linkage when N_2 is an internal nucleotide.

5

10

15

20

25

30

Soft nucleic acids according to the instant invention are believed to be relatively susceptible to nuclease cleavage compared to completely stabilized nucleic acids. Without meaning to be bound to a particular theory or mechanism, it is believed that soft nucleic acids of the invention are cleavable to fragments with reduced or no immunostimulatory activity relative to full-length soft nucleic acids. Incorporation of at least one nuclease-sensitive internucleotide linkage, particularly near the middle of the nucleic acid, is believed to provide an "off switch" which alters the pharmacokinetics of the nucleic acid so as to reduce the duration of maximal immunostimulatory activity of the nucleic acid. This can be of particular value in tissues and in clinical applications in which it is desirable to avoid injury related to chronic local inflammation or immunostimulation, e.g., the kidney.

A semi-soft nucleic acid is an immunostimulatory nucleic acid having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within at least one internal pyrimidine-purine (YZ) dinucleotide. Semi-soft nucleic acids generally possess increased immunostimulatory potency relative to corresponding fully stabilized immunostimulatory nucleic acids. Due to the greater potency of semi-soft nucleic acids, semi-soft nucleic acids may be used, in some instances, at lower effective concentations and have lower effective doses than conventional fully stabilized immunostimulatory nucleic acids in order to achieve a desired biological effect.

It is believed that the foregoing properties of semi-soft nucleic acids generally increase with increasing "dose" of phosphodiester or phosphodiester-like internucleotide linkages involving internal YZ dinucleotides. Thus it is believed, for example, that generally for a given nucleic acid sequence with five internal YZ dinucleotides, an nucleic acid with five internal phosphodiester or phosphodiester-like YZ internucleotide linkages is more immunostimulatory than an nucleic acid with four internal phosphodiester or phosphodiester-like YG internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with three internal phosphodiester or phosphodiester-like YZ internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with two internal phosphodiester or phosphodiester-like YZ internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with one internal phosphodiester or phosphodiester-like YZ internucleotide linkage. Importantly, inclusion of even one internal phosphodiester or

- 45 -

phosphodiester-like YZ internucleotide linkage is believed to be advantageous over no internal phosphodiester or phosphodiester-like YZ internucleotide linkage. In addition to the number of phosphodiester or phosphodiester-like internucleotide linkages, the position along the length of the nucleic acid can also affect potency.

5 .

10

15

20

25

30

The soft and semi-soft nucleic acids will generally include, in addition to the phosphodiester or phosphodiester-like internucleotide linkages at preferred internal positions, 5' and 3' ends that are resistant to degradation. Such degradation-resistant ends can involve any suitable modification that results in an increased resistance against exonuclease digestion over corresponding unmodified ends. For instance, the 5' and 3' ends can be stabilized by the inclusion thereof at least one phosphate modification of the backbone. In a preferred embodiment, the at least one phosphate modification of the backbone at each end is independently a phosphorothioate, phosphorodithioate, methylphosphonate, or methylphosphorothioate internucleotide linkage. In another embodiment, the degradation-resistant end includes one or more nucleotide units connected by peptide or amide linkages at the 3' end.

A phosphodiester internucleotide linkage is the type of linkage characteristic of nucleic acids found in nature. The phosphodiester internucleotide linkage includes a phosphorus atom flanked by two bridging oxygen atoms and bound also by two additional oxygen atoms, one charged and the other uncharged. Phosphodiester internucleotide linkage is particularly preferred when it is important to reduce the tissue half-life of the nucleic acid.

A phosphodiester-like internucleotide linkage is a phosphorus-containing bridging group that is chemically and/or diastereomerically similar to phosphodiester. Measures of similarity to phosphodiester include susceptibility to nuclease digestion and ability to activate RNAse H. Thus for example phosphodiester, but not phosphorothioate, nucleic acids are susceptible to nuclease digestion, while both phosphodiester and phosphorothioate nucleic acids activate RNAse H. In a preferred embodiment the phosphodiester-like internucleotide linkage is boranophosphate (or equivalently, boranophosphonate) linkage. U.S. Patent No. 5,177,198; U.S. Patent No. 5,859,231; U.S. Patent No. 6,160,109; U.S. Patent No. 6,207,819; Sergueev et al., (1998) *J Am Chem Soc* 120:9417-27. In another preferred embodiment the phosphodiester-like internucleotide linkage is diasteromerically pure Rp phosphorothioate. It is believed that diasteromerically pure Rp phosphorothioate is more susceptible to nuclease digestion and is better at activating RNAse H than mixed or diastereomerically pure Sp phosphorothioate. Stereoisomers of CpG nucleic acids are the subject of co-pending U.S.

patent application 09/361,575 filed July 27, 1999, and published PCT application PCT/US99/17100 (WO 00/06588). It is to be noted that for purposes of the instant invention, the term "phosphodiester-like internucleotide linkage" specifically excludes phosphorodithioate and methylphosphonate internucleotide linkages.

5

10

15

20

25

30

As described above the soft and semi-soft nucleic acids of the invention may have phosphodiester like linkages between C and G. One example of a phosphodiester-like linkage is a phosphorothioate linkage in an Rp conformation. Nucleic acid p-chirality can have apparently opposite effects on the immune activity of a CpG nucleic acid, depending upon the time point at which activity is measured. At an early time point of 40 minutes, the R_p but not the S_P stereoisomer of phosphorothioate CpG nucleic acid induces JNK phosphorylation in mouse spleen cells. In contrast, when assayed at a late time point of 44 hr, the SP but not the R_p stereoisomer is active in stimulating spleen cell proliferation. This difference in the kinetics and bioactivity of the R_p and S_P stereoisomers does not result from any difference in cell uptake, but rather most likely is due to two opposing biologic roles of the p-chirality. First, the enhanced activity of the Rp stereoisomer compared to the Sp for stimulating immune cells at early time points indicates that the Rp may be more effective at interacting with the CpG receptor, TLR9, or inducing the downstream signaling pathways. On the other hand, the faster degradation of the Rp PS-nucleic acids compared to the Sp results in a much shorter duration of signaling, so that the Sp PS-nucleic acids appear to be more biologically active when tested at later time points.

A surprisingly strong effect is achieved by the p-chirality at the CpG dinucleotide itself. In comparison to a stereo-random CpG nucleic acid the congener in which the single CpG dinucleotide was linked in Rp was slightly more active, while the congener containing an Sp linkage was nearly inactive for inducing spleen cell proliferation.

Nucleic acids also include substituted purines and pyrimidines such as C-5 propyne pyrimidine and 7-deaza-7-substituted purine modified bases. Wagner RW et al. (1996) *Nat Biotechnol* 14:840-4. Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, and thymine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.

A modified base is any base which is chemically distinct from the naturally occurring bases typically found in DNA and RNA such as T, C, G, A, and U, but which share basic chemical structures with these naturally occurring bases. The modified nucleoside base may be, for example, selected from hypoxanthine, uracil, dihydrouracil, pseudouracil, 2-thiouracil,

WO 2004/094671

4-thiouracil, 5-aminouracil, 5-(C₁-C₆)-alkyluracil, 5-(C₂-C₆)-alkenyluracil, 5-(C₂-C₆)-alkynyluracil, 5-(hydroxymethyl)uracil, 5-chlorouracil, 5-fluorouracil, 5-bromouracil, 5-hydroxycytosine, 5-(C₁-C₆)-alkylcytosine, 5-(C₂-C₆)-alkenylcytosine, 5-(C₂-C₆)-alkynylcytosine, 5-chlorocytosine, 5-fluorocytosine, 5-bromocytosine, N²-dimethylguanine,
2,4-diamino-purine, 8-azapurine, a substituted 7-deazapurine, preferably
7-deaza-7-substituted and/or 7-deaza-8-substituted purine, 5-hydroxymethylcytosine, N4-alkylcytosine, e.g., N4-ethylcytosine, 5-hydroxydeoxycytidine, 5-hydroxymethyldeoxycytidine, N4-alkyldeoxycytidine, e.g., N4-ethyldeoxycytidine, 6-thiodeoxyguanosine, and deoxyribonucleosides of nitropyrrole, C5-propynylpyrimidine, and
diaminopurine e.g., 2,6-diaminopurine, inosine, 5-methylcytosine, 2-aminopurine,
2-amino-6-chloropurine, hypoxanthine or other modifications of a natural nucleoside bases.
This list is meant to be exemplary and is not to be interpreted to be limiting.

Modified cytosines include but are not limited to 5-substituted cytosines (e.g., 5-methyl-cytosine, 5-fluoro-cytosine, 5-chloro-cytosine, 5-bromo-cytosine, 5-iodo-cytosine, 5-hydroxymethyl-cytosine, 5-difluoromethyl-cytosine, and unsubstituted or substituted 5-alkynyl-cytosine), 6-substituted cytosines, N4-substituted cytosines (e.g., N4-ethyl-cytosine), 5-aza-cytosine, 2-mercapto-cytosine, isocytosine, pseudo-isocytosine, cytosine analogs with condensed ring systems (e.g., N,N'-propylene cytosine or phenoxazine), and uracil and its derivatives (e.g., 5-fluoro-uracil, 5-bromo-uracil, 5-bromo-uracil, 4-thio-uracil, 5-hydroxy-uracil, 5-propynyl-uracil). In another embodiment, the cytosine base is substituted by a universal base (e.g., 3-nitropyrrole, P-base), an aromatic ring system (e.g., fluorobenzene or difluorobenzene) or a hydrogen atom (dSpacer).

Modified guanines include but are not limited to 7-deazaguanine,

7-deaza-7-substituted guanine (such as 7-deaza-7-(C2-C6)alkynylguanine),

7-deaza-8-substituted guanine, hypoxanthine, N2-substituted guanines (e.g., N2-methylguanine), 5-amino-3-methyl-3H,6H-thiazolo[4,5-d]pyrimidine-2,7-dione, 2,6-diaminopurine,

2-aminopurine, purine, indole, adenine, substituted adenines (e.g., N6-methyl-adenine, 8-oxoadenine) 8-substituted guanine (e.g., 8-hydroxyguanine and 8-bromoguanine), and

6-thioguanine. In another embodiment, the guanine base is substituted by a universal base (e.g., 4-methyl-indole, 5-nitro-indole, and K-base), an aromatic ring system (e.g., benzimidazole or dichloro-benzimidazole, 1-methyl-1H-[1,2,4]triazole-3-carboxylic acid amide) or a hydrogen atom (dSpacer).

For use in the instant invention, the oligonucleotide reference compounds and test compounds can be synthesized *de novo* using any of a number of procedures well known in the art, for example, the β-cyanoethyl phosphoramidite method (Beaucage SL et al. (1981) *Tetrahedron Lett* 22:1859), or the nucleoside H-phosphonate method (Garegg et al. (1986) *Tetrahedron Lett* 27:4051-4; Froehler BC et al. (1986) *Nucleic Acids Res* 14:5399-407; Garegg et al (1986) *Tetrahedron Lett* 27:4055-8; Gaffney et al. (1988) *Tetrahedron Lett* 29:2619-22). These chemistries can be performed by a variety of automated nucleic acid synthesizers available in the market. These oligonucleotides are referred to as synthetic oligonucleotides. An isolated oligonucleotide generally refers to an oligonucleotide which is separated from components which it is normally associated with in nature. As an example, an isolated oligonucleotide may be one which is separated from a cell, from a nucleus, from mitochondria or from chromatin.

Modified backbones such as phosphorothioates can be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl-and alkyl-phosphonates can be made, e.g., as described in U.S. Pat. No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Pat. No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (e.g., Uhlmann E et al. (1990) *Chem Rev* 90:544; Goodchild J (1990) *Bioconjugate Chem* 1:165).

TLR expression

15

20

25

30

The cell lines can be used in their native state without any modification. For example, in the case of the RPMI 8226 cell line, it can be used to identify compounds that signal through at least TLR9 and/or TLR7. In other instances, however, the cell line can be modified to express a TLR that it does not naturally express. In still other instances, the cell to be used in the screening method may express one or more endogenous TLR and yet still be manipulated to express an additional TLR different from those it endogenously expresses. The cell may also be manipulated in order to increase or decrease the level of TLR that it endogenously expresses. The cells may be stably or transiently transfected.

A cell that does not naturally express a protein or polypeptide, but is genetically manipulated to do so is referred to as ectopically expressing the protein or polypeptide.

5

10

15

20

25

30

The basic screening method remains the same regardless of which TLR is expressed by the cell. However, the reference compound and the readout may vary depending upon the TLR(s) expressed. In the most simple aspect, the screening method is used to identify a compound that signals through a TLR such as for example TLR9. In this case, the positive reference compound may be an immunostimulatory compound already known to act through TLR9 (e.g., CpG nucleic acid).

The methods of the invention involve, in part, contacting a functional TLR with a test composition. A functional TLR is a full-length TLR protein or a fragment thereof capable of inducing or inhibiting a signal in response to interaction with its ligand. Generally the functional TLR will include at least a TLR ligand-binding fragment of the extracellular domain of the full-length TLR and at least a fragment of a TIR domain capable of interacting with another Toll homology domain-containing polypeptide, e.g., MyD88. In various embodiments the functional TLR is a full-length TLR selected from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, and TLR10.

To date, there are eleven TLRs known. Nucleic acid and amino acid sequences for ten currently known human TLRs are available from public databases such as GenBank. Similarly, nucleic acid and amino acid sequences for various TLRs from numerous non-human species are also available from public databases including GenBank. For example, nucleic acid and amino acid sequences for human TLR9 (hTLR9) can be found as GenBank accession numbers AF245704 (coding region spanning nucleotides 145-3243) (SEQ ID NO: 60) and AAF78037 (SEQ ID NO: 62), respectively. Nucleic acid and amino acid sequences for murine TLR9 (mTLR9) can be found as GenBank accession numbers AF348140 (coding region spanning nucleotides 40-3138) (SEQ ID NO: 68) and AAK29625 (SEQ ID NO: 72), respectively.

Nucleic acid and amino acid sequences for human TLR8 (hTLR8) can be found as GenBank accession numbers AF245703 (coding region spanning nucleotides 49-3174) (SEQ ID NO: 46) and AAF78036 (SEQ ID NO: 50), respectively. Nucleic acid and amino acid sequences for murine TLR8 (mTLR8) can be found as GenBank accession numbers AY035890 (coding region spanning nucleotides 59-3157) (SEQ ID NO: 55) and AAK62677 (SEQ ID NO: 57), respectively.

Nucleic acid and amino acid sequences for human TLR7 (hTLR7) can be found as GenBank accession numbers AF240467 (coding region spanning nucleotides 135-3285) (SEQ ID NO: 31) and AAF60188 (SEQ ID NO: 34), respectively. Nucleic acid and amino acid

sequences for murine TLR7 (mTLR7) can be found as GenBank accession numbers AY035889 (coding region spanning nucleotides 49-3201) (SEQ ID NO: 38) and AAK62676 (SEQ ID NO: 41), respectively.

Nucleic acid and amino acid sequences for human TLR3 (hTLR3) can be found as GenBank accession numbers NM_003265 (coding region spanning nucleotides 102-2816) (SEQ ID NO: 7) and NP_003256 (SEQ ID NO: 8), respectively. Nucleic acid and amino acid sequences for murine TLR3 (hTLR3) can be found as GenBank accession numbers AF355152 (coding region spanning nucleotides 44-2761) (SEQ ID NO: 9) and AAK26117 (SEQ ID NO: 10), respectively.

Nucleic acid and amino acid sequences for human TLR1 (hTLR1) can be found as GenBank accession numbers NM_003263 and NP_003254, respectively. Nucleic acid and amino acid sequences for murine TLR1 (mTLR1) can be found as GenBank accession numbers NM_030682 and NP_109607, respectively.

The functional TLR also is not limited to native TLR polypeptides. As used herein, a native TLR is one that is naturally occurring. The TLR may be a non-native (or non-naturally occurring TLR). An example is a chimeric TLR having an extracellular domain and the cytoplasmic domain derived from TLRs from different species. Such chimeric TLR polypeptides can include, for example, a human TLR extracellular domain and a murine TLR cytoplasmic domain. In alternative embodiments, such chimeric TLR polypeptides can include chimerae created with different TLR splice variants or allotypes.

TLR Signaling Pathways

5

10

15

20

25

30

The screening methods provided by the invention measure TLR signaling activity. TLR signaling activity is activity that results from interaction of a TLR with a TLR ligand. TLR signaling can be measured in a number of ways including but not limited to interaction between a TLR and a protein or factor (such as an adaptor protein), interaction between downstream proteins or factors (such as an adaptor protein) with each other, activation of nuclear factors such as transcription factors or transcription complexes, up- or downregulation of genes, phosphorylation or dephosphorylation of proteins or factors in the signaling cascade, expression, production and/or secretion of cytokines and/or chemokines, changes in cell cycle status, up- or down-regulation of cell surface marker expression, and the like. Those of ordinary skill in the art are familiar with assays for measuring these latter

- 51 -

events including but not limited to gel shift assays, immunoprecipitations, phosphorylation status analysis of proteins, Northern analysis, RT-PCR analysis, etc.

The following is an exemplary TLR signaling pathway or cascade. It is to be understood that this is meant to be illustrative and that different factors may be involved in the signaling of particular TLR. One TLR signaling pathway is known to use the cytoplasmic 5 Toll/IL-1 receptor (TIR) homology domain, present in all TLRs. This domain interacts (e.g., binds to) and thereby transduces a signal to a similar domain on an adapter protein (e.g., MyD88). This type of interaction is referred to as a like: like interaction of TIR domains. This interaction is followed by an another interaction between the adapter protein and a kinase, through their respective "death domains". In the case of at least TLR4 signaling, the 10 kinase then interacts with tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6). Medzhitov R et al., Mol Cell 2:253 (1998); Kopp EB et al., Curr Opin Immunol 11:15 (1999). After TRAF6, two sequential kinase activation steps lead to phosphorylation of the inhibitory protein I kappa B and its dissociation from NF-κB. The first kinase is a mitogen-activated kinase kinase kinase (MAPKKK) known as NIK, for NF-kB-inducing kinase. The target of 15 this kinase is another kinase made up of two chains, called I kappa B kinase α (IKK α) and I kappa B kinase β (IKK β), that together form a heterodimer of IKK α :IKK β , which phosphorylates I kappa B. NF-κB translocates to the nucleus to activate genes with kappa B binding sites in their promoters and enhancers such as the genes encoding IL-6, IL-8, the p40 subunit of IL-12, and the costimulatory molecule CD86. The signaling mechanisms of TLRs 20 are not limited to this pathway; other signaling pathways exist and can be used in the screening readouts of the methods provided herein.

The screening assays employ a number of readouts (or parameters). The readouts can be native readouts. A native readout is one that does not rely on introduction of a reporter construct into the cell of interest. The readouts can be artificial. An artificial readout is one that relies on introduction of a reporter construct into the cell of interest. Examples of both are provided herein. In still other embodiments, a given assay may measure one or more native readouts and one or more artificial readouts. Each readout whether native or artificial is related to signaling pathways that ensue after TLR engagement with a ligand.

25

30

Each cell line described herein will be associated with a particular set of native readouts which the invention seeks to determine in the screening assays provided. As an example, the response of the RPMI 8226 cell line to an immunomodulatory molecule can be assessed in terms of native readouts such as CD71 expression, CD86 expression, HLA-DR

expression, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- α expression, TNF- α production and TNF- α secretion. RAMOS response can be assessed, inter alia, by CD80 cell surface expression. Raji response can be assessed, inter alia, by IL-6 secretion.

5

10

15

20

25

30

As described in greater detail herein, the cell line can be used in an unmodified form. In one respect, an unmodified cell line will naturally respond to a TLR ligand through a native readout system. For example, an RPMI 8226 cell exposed to an immunostimulatory TLR ligand may increase expression of IP-10 from the native gene locus. Alternatively, the cell line may be modified to contain a reporter construct that acts as a surrogate for the IP-10 gene locus. For example, the reporter construct may contain the TLR responsive promoter elements that are naturally found in the native IP-10 locus operably linked to a reporter coding sequence that encodes a gene product that is detectable and quantifiable. The structure and variability of suitable reporter constructs will be discussed in greater detail herein.

Readouts typically include the induction of a gene under control of a specific promoter such as a NF-κB promoter. The gene under the control of the NF-κB promoter can be a gene which naturally includes an NF-κB promoter or it can be a gene in a construct in which an NF-κB promoter has been inserted. Endogenous genes and transfected constructs which include the NF-κB promoter include but are not limited to IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc.

Increases in cytokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the cytokine in response to the TLR-mediated signaling. Cytokines generally include, without limitation, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-11, IL-12, IL-13, IL-15, IL-18, IFN-α, IFN-β, IFN-γ, TNF-α, GM-CSF, G-CSF, M-CSF. Th1 cytokines include but are not limited to IL-2, IFN-γ, and IL-12. Th2 cytokines include but are not limited to IL-4, IL-5, and IL-10.

Increases in chemokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the chemokine in response to the TLR-mediated signaling. Chemokines of particular significance in the invention include but are not limited to CCL5 (RANTES), CXCL9 (Mig), CXCL10 (IP-10), CXCL11 (I-TAC), IL-8, and MCP-1.

5

15

20

25

30

TLR signaling activity can also be measured by phosphorylation, such as total cellular phosphorylation or phosphorylation of specific factors such as but not limited to IRAK, ERK, MyD88, TRAF6, p38, NF-κB subunits, c-Jun and c-Fos.

TLR signaling activity can be measured by changes in gene expression. The expression of CD71, CD86, CD80, CD69, CD54, HLA-DR, HLA class I, IL-6, IL-8, IL-10, IP-9, IP-10, IFN-α, TNF-α, and the like can be assessed as a measure of TLR signaling activity. Gene expression analysis may be performed using microarray techniques.

TLR signaling activity can also be measured by cell proliferation status or changes thereto.

TLR signaling activity can also be measured by cell surface marker expression such as the cell surface expression of markers such as but not limited to CD71, CD86, HLA-DR, CD80, HLA class I, CD54 and CD69.

TLR signaling activity can also be measured by antibody secretion such as but not limited to IgM secretion.

Reporter and Expression Constructs

The cells can be manipulated by the introduction of expression and/or reporter constructs. The expression constructs preferably comprise a TLR coding sequence, as described above. The reporter constructs can be used as surrogate measures of native TLR signaling activity. These reporter constructs are intended to substitute for the "native" readouts capable with the cell line. In order to act as substitutes, the reporter constructs include a promoter element derived from a gene known to be modulated following TLR engagement with a TLR ligand. The reporter construct further includes a coding sequence linked to the promoter. The coding sequence is usually that of a reporter (i.e., a protein that is detectable or quantifiable).

The reporter construct generally includes a promoter, a coding sequence and a polyadenylation signal. These nucleic acids shall include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, in addition to promoter elements that are responsive to TLR signaling. The nucleic acid constructs may optionally include enhancer sequences or upstream activator sequences as desired.

The promoter in the reporter construct will include a TLR responsive promoter element, and will therefore be regarded as a TLR responsive promoter. As used herein, a

TLR responsive promoter is a promoter having an activity that is modulated (i.e., either activated or inhibited) by signaling through a TLR (e.g., by TLR interaction with its ligand). In order to be modulated by TLR signaling, the promoter contains sites that are bound by transcription factors modulated by TLR signaling. The factors may be activated or inhibited by TLR signaling. Activation of the transcription factor includes increases in the activity of the transcription factor per se, increases in its ability to interact with other factors or with DNA that serve to increase its activity, and increases in its transcription and translation (i.e., increased mRNA and protein levels of the transcription factor). Conversely, inhibition of the transcription factor includes decreases in the activity of the transcription factor per se, decreases in its ability to interact with other factors or with DNA that serve to decrease its 10 activity, and decreases in its transcription and translation (i.e., decreased mRNA and protein levels of the transcription factor). The effect on the transcription factor is usually the downstream result of other interactions in the signaling pathway. The expression of coding sequences linked to such promoters will therefore be modulated by TLR signaling events, and it is the level of expression of these coding sequences that can be used as a readout of TLR 15 signaling in the screening methods provided herein.

The TLR responsive promoter may comprise a transcription factor binding site selected from the group consisting of a NF-kB binding site, an AP-1 binding site, a CRE, a SRE, an interferon-stimulated response element (ISRE), a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, among others. These binding sites and their sequences are known in the art. Below is a exemplary list of these sequences.

W = A or T, R = A or G, Y = C or T

25 NF-κB Binding site:

20

35

Consensus p50 subunit 5' GGGGATYCCC 3' (SEQ ID NO:90)

30 Consensus p65 subunit 5' GGGRNTTTCC 3' (SEQ ID NO:91)

Example of p65 subunit binding site 5' AGT TGA GGG GAC TTT CCC AGG C 3' (SEQ ID NO:92)

CREB Binding site:

5'AGA GAT TGC CTG ACG TCA GAG AGC TAG 3' (SEQ ID NO:93)

```
AP-1 Binding site:
             5'- CGC TTG ATG AGT CAG CCG GAA -3' (SEQ ID NO:94)
             5'- CGC ATG AGT CAG ACA -3' (SEQ ID NO:95)
5
    ISRE:
             5'- TGCAGAAGTGAAACTGAGG-3' (SEO ID NO:96)
             5'- AGAACGAAACA-3' (SEQ ID NO:97)
             5'- GAGAAGTGAAAGTGG-3' (SEQ ID NO:98)
             5'- TAAGAACATGAAACTGAA-3' (SEO ID NO:99)
10
             5'- ATGAAACTGAAAGTA-3' (SEQ ID NO:100)
             5'- TGAAAACCGAAAGCGC-3' (SEQ ID NO:101)
             5'- AGAAATGGAAAGT-3' (SEQ ID NO:102)
    SRE
15
             5'- TCACCCCAC-3' (SEQ ID NO:103)
             5'- CTCACCCCAC-3' (SEQ ID NO:104)
             5'- GCCACCCTAC-3' (SEQ ID NO:105)
    NFAT:
20
             5'- TATGAAACAGTTTTTCC -3' (SEQ ID NO:106)
             5'- AGGAAACTC -3' (SEQ ID NO:107)
             5'- ARGARATTCC -3' (SEQ ID NO:108)
             5'- CCAGTTGAGCCAGAGA -3' (SEQ ID NO:109)
25
    GAS:
             5'- CTTTCAGTTTCATATTACTCTAAATCCATT -3' (SEQ ID NO:110)
    p53 Binding Site:
30
             p53 Consensus site:
             5'- RRRCWWGYYY -3' (SEQ ID NO:111)
             Examples of p53 binding sites:
             5'- AGGCATGCCT -3' (SEQ ID NO:112)
             5'- GGGCTTGCCC -3' (SEQ ID NO:113)
35
             5'- GGGCTTGCTT -3' (SEQ ID NO:114)
             5'- GCCTGGACTTGCC -3' (SEQ ID NO:115)
             5'- GGACATGCCCGGGCATGTCC -3' (SEQ ID NO:116)
             5'- GTAGCATTAGCCCAGACATGTCC -3' (SEQ ID NO:117)
40
    TARE (TNF-\alpha response element):
    e.g. from the COL1A1 promoter
                5'GAGGTATGCAGACAAGAGTCAGAGTTTCCCCTTGAA 3' (SEQ ID
    NO:118)
45
    SRF
                5'- CCWWWWWWGG -3' (SEO ID NO:119)
                5'- CCAAATAAGGC -3' (SEQ ID NO:120)
```

WO 2004/094671

5

10

15

20

25

30

The TLR responsive promoter element can be derived from the promoter of a naturally occurring (i.e., an endogenous) gene that is activated or inhibited by TLR signaling (such as the IL-6 gene, the IL-8 gene, the IL-10 gene, the IL-12 p40 gene, the IP-9 gene, the IP-10 gene, the type 1 IFN gene, the IFN- α 4 gene, the IFN- β 6 gene, the TNF- α 6 gene, the TNF- α 6 gene, the RANTES gene, the ITAC gene, the IGFBP4 gene, the CD54 gene, the CD69 gene, the CD71 gene, the CD80 gene, the CD86 gene, the HLA-DR gene, the HLA class I gene, and the like). The afore-mentioned genes are genes that are known to be activated in response to TLR interaction with its ligand.

Suitable promoter regions are described in the Examples. Briefly, the upstream (5') – 620 to +50 promoter region of IFN- α 4 or the upstream (5') –140 to +9 promoter region of IFN- α 1 can be used. In one embodiment, the IFN- α 4 sequence is cloned into the *SmaI* site of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') promoter region of IFN- α 4.

The promoter can also be the upstream (5') –280 to +20 promoter region of IFN- β .

The promoter can also be the upstream (5') –397 to +5 promoter region of RANTES. In one embodiment, the RANTES promoter sequence is cloned into the NheI site (filled in with Klenow) of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') –397 to +5 promoter region of RANTES.

The promoter can also be the upstream truncated (-250 to +30) and full length (-860 to +30) promoter regions derived from human IL-12 p40 genomic DNA. In one embodiment, the truncated IL-12 p40 promoter was cloned as a KpnI-XhoI insert into pβgal-Basic (Promega) resulting in an expression vector that includes a β gal gene under the control of the upstream (5') -250 to +30 promoter region of human IL-12 p40. In another embodiment, the full length IL-12 p40 promoter was cloned as a KpnI-XhoI insert into pβgal-Basic (Promega) resulting in an expression vector that includes a β gal gene under the control of the upstream (5') -751 to +30 promoter region of human IL-12 p40. In another embodiment, the truncated -250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -250 to +30 promoter region of human IL-12 p40. In yet another embodiment, the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the

5

15

20

25

30

pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -751 to +30 promoter region of human IL-12 p40.

The promoter can also be the upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to +7 (Accession No M22111, SEO ID NO:129).

The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71.

The promoter can also be derived from the -615 to +30 promoter region of human 10 TNF- α .

The promoter can also be derived from a promoter region of human TNF- β .

The promoter can also be derived from the -875 to +97 promoter region of human IP
10.

The promoter can also be derived from the -219 to +114 promoter region of human CXCL11 (IP9). The promoter can also be derived from the full length (-934 to +114) promoter region of human CXCL11 (IP9).

The promoter can also be derived from the -289 to +217 promoter region of human IGFBP4 (Insulin growth factor binding protein 4). The promoter can also be derived from the full length (-836 to +217) promoter region of human IGFBP4.

The promoter response element generally will be present in multiple copies, e.g., as tandem repeats. For example, in one reporter construct, coding sequence for luciferase is under control of an upstream 6X tandem repeat of NF-kB response element. In another example, an ISRE-luciferase reporter construct useful in the invention is available from Stratagene (catalog no. 219092) and includes a 5x ISRE tandem repeat joined to a TATA box upstream of a luciferase reporter gene.

The reporter construct coding sequence is preferably any nucleotide sequence that codes for a protein capable of detection or quantification. The protein can be an enzyme (e.g., luciferase, alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Pat. No. 5,491,084), etc.), blue fluorescent protein (BFP, e.g., U.S. Pat. No. 6,486,382), etc.), a surface-expressed molecule (e.g., CD25, CD80, CD86), a secreted molecule (e.g., IL-1, IL-6, IL-8, IL-12 p40, TNF-α), a hapten or antigen, and other detectable protein products known to those of skill in the art. For assays relying on enzyme activity

readout, substrate can be supplied as part of the assay, and detection can involve measurement of chemiluminescence, fluorescence, color development, incorporation of radioactive label, drug resistance, or other marker of enzyme activity. For assays relying on surface expression of a molecule, detection can be accomplished using flow cytometry (FACS) analysis or functional assays. Secreted molecules can be assayed using enzyme-linked immunosorbent assay (ELISA) or bioassays. Many of these and other suitable readout systems are well known in the art and are commercially available. Preferably, the coding sequence encodes a protein having a level or an activity that is quantifiable, preferably with a wide linear range.

5

10

15

20

25

30

The expression construct coding sequence is preferably a TLR coding sequence derived from the sequences listed herein. Preferably, the expression construct promoter is a constitutive promoter, although in some embodiments it may be inducible. Those of ordinary skill in the art are familiar with such promoters.

As used herein, a coding sequence and the regulatory sequences (such as promoters) are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the regulatory sequence. Two DNA sequences are said to be operably linked if induction of a promoter in the 5' regulatory sequence results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequence, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a regulatory sequence would be operably linked to a coding sequence if the gene expression sequence were capable of effecting transcription of that coding sequence such that the resulting transcript is translated into the desired protein or polypeptide.

Methods for nucleic acid introduction into cells are known in the art.

The nucleic acid may be delivered to the cells alone or in association with a vector. In its broadest sense, a vector is any vehicle capable of facilitating the transfer of the nucleic acid to the cells so that the reporter can be expressed. The vector generally transports the nucleic acid to the cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In general, the vectors useful in the invention include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antigen nucleic acid sequences. Viral vectors are a preferred type of vector and include, but are not limited

- 59 -

to, nucleic acid sequences from the following viruses: retrovirus, such as Moloney murine leukemia virus, Harvey murine sarcoma virus, murine mammary tumor virus, and Rous sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus. One can readily employ other vectors not named but known in the art.

Preferred viral vectors are based on non-cytopathic eukaryotic viruses in which non-essential genes have been replaced with the gene of interest. Non-cytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes *in vivo*. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell lined with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral particles) are provided in Kriegler, M., Gene Transfer and Expression, A Laboratory Manual W.H.

Freeman C.O., New York (1990) and Murray, E.J. Methods in Molecular Biology, vol. 7, Humana Press, Inc., Cliffton, New Jersey (1991).

10

15

20

25

30

A preferred virus for certain applications is the adeno-associated virus, a double-stranded DNA virus. The adeno-associated virus can be engineered to be replication -deficient and is capable of infecting a wide range of cell types and species. It further has advantages such as, heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hemopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions. Reportedly, wild-type adeno-associated virus manifest some preference for integration sites into human cellular DNA, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection. In addition, wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event. The adeno-associated virus can also function in an extrachromosomal fashion.

- 60 -

Recombinant adeno-associated viruses that lack the replicase protein apparently lack this integration sequence specificity.

5

10

15

20

25

Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well-known to those of skill in the art. See e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been found to be particularly advantageous for delivering genes to cells *in vivo* because of their inability to replicate within and integrate into a host genome. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid. Some commonly used plasmids include pBR322, pUC18, pUC19, pRc/CMV, SV40, and pBlueScript. Other plasmids are well-known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add specific fragments of DNA.

In general, the vectors useful in the invention are divided into two classes: biological vectors and chemical/physical vectors. Biological vectors and chemical/physical vectors are useful in the delivery and/or uptake of reporter constructs of the invention.

Most biological vectors are used for delivery of nucleic acids and thus would be most appropriate in the delivery of nucleic acids.

As used herein, a "chemical/physical vector" refers to a natural or synthetic molecule, other than those derived from bacteriological or viral sources, capable of delivering the reference and test compound.

A preferred chemical/physical vector of the invention is a colloidal dispersion system. Colloidal dispersion systems include lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system of the invention is a liposome. Liposomes are artificial membrane vessels which are useful as a delivery vector in vivo or in vitro. It has been shown that large unilamellar vessels (LUV), which range in size from 0.2 - 4.0 µm can encapsulate large macromolecules. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., Trends Biochem. Sci., (1981) 6:77).

Liposomes may be targeted to a particular tissue by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein. Ligands which may be useful for targeting a liposome to an immune cell include, but are not limited to, intact or fragments of molecules which interact with immune cell specific receptors and molecules,

such as antibodies, which interact with the cell surface markers of immune cells. Such ligands may easily be identified by binding assays well known to those of skill in the art. In still other embodiments, the liposome may be targeted to the cancer by coupling it to a one of the immunotherapeutic antibodies discussed earlier. Additionally, the vector may be coupled to a nuclear targeting peptide, which will direct the vector to the nucleus of the host cell.

Lipid formulations for transfection are commercially available from QIAGEN, for example, as EFFECTENETM (a non-liposomal lipid with a special DNA condensing enhancer) and SUPERFECT™ (a novel acting dendrimeric technology).

Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTINTM and LIPOFECTACETM, which are formed of cationic lipids such as N-[1-(2, 3 dioleyloxy)-propyl]-N, N, N-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Methods for making liposomes are well known in the art and have been described in many publications. Liposomes also have been reviewed by Gregoriadis, G. in *Trends in Biotechnology*, (1985) 3:235-241. In some preferred 15 embodiments, the method of choice for delivering DNA (for transfection) to the cells is electroporation, particularly where a stably transfected cell line is sought.

The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting.

20

25

30

5

10

Examples

Example 1. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using Cells Stably Transfected with hTLR9 Expression Vector

CpG ODN (SEQ ID NO:1) is currently in preclinical and clinical trials for a number of clinical applications. SEQ ID NO:1 has been discovered to induce signaling through TLR9. In order to assess different lots of clinical material, the methods of the invention are employed, using a highly characterized lot of SEQ ID NO:1 as a reference.

In a TLR9 assay, the CpG-non-responsive human embryonal kidney cell line HEK293 (e.g., ATCC CRL-1573) was stably transfected with a hTLR9 expression construct and found to express full-length human TLR9 constitutively. The cells also contained a genomic copy of a reporter construct with a 6x NF-kB binding site and a luciferase gene reporter cassette. Incubation of the cells with CpG ODN (SEQ ID NO:1) activates NF-κB driven expression of luciferase, while incubation with medium alone (negative control) does not. The cells are

then lysed and activity of the luciferase protein determined by its catalytic activity of luciferin oxidation which is measured in a luminometer. Results are expressed as fold induction above medium control.

Assay set-up includes a reference standard material which is highly pure and well characterized. The reference material is used to create a standard curve within a defined range where the dose-response curve is linear (e.g., in the range of the EC50 value for SEQ ID NO:1, 70-100 nM). The test material is dissolved for testing and assayed at a defined concentration. Activity of the test material is calculated using the standard curve of the reference material. Quality of the tested material is deemed acceptable if activity of the test material compared to activity of the reference material falls within predetermined limits.

5

10

15

20

25

30

Example 2. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using RPMI 8226 Cells

The assay of Example 1 is performed using RPMI 8226 cells (ATCC CCL-155) in place of the stably transfected HEK cells of Example 1. RPMI 8226 cells naturally express human TLR9. The cells are stably transfected with a 6x NF-kB-luciferase reporter construct. It is to be understood that the assay could also be carried out by measuring a native readout such as IL-10 secretion.

Example 3. Expression Vectors for Human TLR3 (hTLR3) and Murine TLR3 (mTLR3)

To create an expression vector for human TLR3, human TLR3 cDNA was amplified by the polymerase chain method (PCR) from a cDNA made from human 293 cells using the primers 5'-GAAACTCGAGCCACCATGAGACAGACTTTGCCTTGTATCTAC-3' (sense, SEQ ID NO:152) and 5'-GAAAGAATTCTTAATGTACAGAGTTTTTGGATCCAAG-3' (antisense, SEQ ID NO:153). The primers introduce *XhoI* and *EcoRI* restriction endonuclease sites at their 5' ends for use in subsequent cloning into the expression vector. The resulting amplification product fragment was cloned into pGEM-T Easy vector (Promega), isolated, cut with *XhoI* and *EcoRI* restriction endonucleases, ligated into an *XhoI/EcoRI*-digested pcDNA3.1 expression vector (Invitrogen). The insert was fully sequenced and translated into protein. The cDNA sequence corresponds to the published cDNA sequence for hTLR3, available as GenBank accession no. NM_003265 (SEQ ID NO:7). The open reading frame codes for a protein 904 amino acids long, having the sequence corresponding to GenBank accession no. NP_003256 (SEQ ID NO:8).

Corresponding nucleotide and amino acid sequences for murine TLR3 (mTLR3) are known. The nucleotide sequence of mTLR3 cDNA has been reported as GenBank accession no. AF355152 (SEQ ID NO:9), and the amino acid sequence of mTLR3 has been reported as GenBank accession no. AAK26117 (SEQ ID NO:10).

5

10

15

20

30

Example 4. Reconstitution of TLR3 Signaling in 293 Fibroblasts

Human TLR3 cDNA and murine TLR3 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the *EcoR*I site. The resulting expression vectors mentioned above were transfected into CpG-DNA non-responsive human 293 fibroblast cells (ATCC, CRL-1573) using the calcium phosphate method. Utilizing a "gain of function" assay it was possible to reconstitute human TLR3 (hTLR3) and murine TLR3 (mTLR3) signaling in 293 fibroblast cells.

Since NF-κB activation is central to the IL-1/TLR signal transduction pathway (Medzhitov R et al. (1998) *Mol Cell* 2:253-8; Muzio M et al. (1998) *J Exp Med* 187:2097-101), in a first set of experiments human 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an NF-κB-driven luciferase reporter construct.

Likewise, in a second set of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an IFN- α 4-driven luciferase reporter construct (described in Example 8 below).

In a third group of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and a RANTES-driven luciferase reporter construct (described in Example 14 below).

25 Example 5. Reconstitution of TLR7 Signaling

Methods for cloning murine and human TLR7 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated herein by reference. Human TLR7 cDNA and murine TLR7 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR7 (hTLR7) and murine TLR7 (mTLR7) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors

mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

Example 6. Reconstitution of TLR8 Signaling

Methods for cloning murine and human TLR8 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR8 cDNA and murine TLR8 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR8 (hTLR8) and murine TLR8 (mTLR8) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

15

20

25

30

10

5

Example 7. Reconstitution of TLR9 Signaling in 293 Fibroblasts

Methods for cloning murine and human TLR9 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR9 cDNA and murine TLR9 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR9 (hTLR9) and murine TLR9 (mTLR9) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

To generate stable clones expressing human TLR9, murine TLR9, or either TLR9 with the NF-κB-luc reporter plasmid, 293 cells were transfected in 10 cm plates (2x10⁶ cells/plate) with 16 μg of DNA and selected with 0.7 mg/ml G418 (PAA Laboratories GmbH, Cölbe, Germany). Clones were tested for TLR9 expression by RT-PCR, for example as shown in Fig. 21. The clones were also screened for IL-8 production or NF-κB-luciferase activity after stimulation with ODN. Four different types of clones were generated.

- 65 -

293-hTLR9-luc: expressing human TLR9 and 6x NF-κB-luciferase reporter

293-mTLR9-luc: expressing murine TLR9 and 6x NF-kB-luciferase reporter

293-hTLR9: expressing human TLR9

293-mTLR9: expressing murine TLR9

5

15

20

25

30

Human 293 fibroblast cells were transiently transfected with hTLR9 and a 6x NF-κB-luciferase reporter plasmid (NF-κB-luc, kindly provided by Patrick Baeuerle, Munich, Germany) (Fig. 18A) or with hTLR9 alone (Fig. 18B). After stimulus with CpG-ODN (2μM, TCGTCGTTTTGTCGTT, SEQ ID NO:1), GpC-ODN (2μM,

TGCTGCTTTTGTGCTT, SEQ ID NO:154), LPS (100 ng/ml) or media, NF-κB activation by luciferase readout (8h, Fig. 18A) or IL-8 production by ELISA (48h, Fig. 18B) was monitored. Results are representative of three independent experiments. Fig. 18 shows that cells expressing hTLR9 responded to CpG-DNA but not to LPS.

Human 293 fibroblast cells were transiently transfected with mTLR9 and the NF-κB-luc construct. Similar data was obtained for IL-8 production (not shown). Thus expression of TLR9 (human or mouse) in 293 cells results in a gain of function for CpG DNA stimulation similar to hTLR4 reconstitution of LPS responses.

Figs. 19 and 20 demonstrate the responsiveness of a stable 293-mTLR9-luc and 293-hTLR9-luc clones after stimulation with CpG-ODN (2 μ M, SEQ ID NO:1), GpC-ODN (2 μ M, SEQ ID NO:154), Me-CpG-ODN (2 μ M; TZGTZGTTTTGTZGTTTTGTZGTT, Z = 5-methylcytidine, SEQ ID NO:147), LPS (100 ng/ml) or media, as measured by monitoring NF- κ B activation. Similar results were obtained utilizing IL-8 production with the stable clones. These results demonstrate that CpG-DNA non-responsive cell lines can be stably genetically complemented with TLR9 to become responsive to CpG DNA in a motif-specific manner.

Example 8. Method of Making IFN-α4 Reporter Vector

A number of reporter vectors may be used in the practice of the invention. Some of the reporter vectors are commercially available, e.g., the luciferase reporter vectors pNF-kB-Luc (Stratagene) and pAP1-Luc (Stratagene). These two reporter vectors place the luciferase gene under control of an upstream (5') promoter region derived from genomic DNA for NF-kB or AP1, respectively. Other reporter vectors can be constructed following standard

methods using the desired promoter and a vector containing a suitable reporter, such as luciferase, β -galactosidase (β -gal), chloramphenicol acetyltransferase (CAT), and other reporters known by those skilled in the art. Following are some examples of reporter vectors constructed for use in the present invention.

IFN- α 4 is an immediate-early type 1 IFN. Sequence-specific PCR products for the – 620 to +50 promoter region of IFN- α 4 were derived from genomic DNA of human 293 cells and cloned into the *Sma*I site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –620 to +50 promoter region of IFN- α 4. The sequence of the –620 to +50 promoter region of IFN- α 4 is provided as SEQ ID NO:121.

Example 9. Method of Making IFN-a1 Reporter Vector

5

10

15

20

25

30

IFN- α 1 is a late type 1 IFN. Sequence-specific PCR products for the -140 to +9 promoter region of IFN- α 1 were derived from genomic DNA of human 293 cells and cloned into *Sma*I site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -140 to +9 promoter region of IFN- α 1. A sequence of the -140 to +9 promoter region of IFN- α 1 is provided as SEQ ID NO:122.

Example 10. Method of Making IFN-β Reporter Vector

IFN- β is an immediate-early type 1 IFN. The –280 to +20 promoter region of IFN- β was derived from the pUCβ26 vector (Algarté M et al. (1999) *J Virol* 73:2694-702) by restriction at *EcoR*I and *Taq*I sites. The 300 bp restriction fragment was filled in by Klenow enzyme and cloned into *Nhe*I-digested and filled in pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –280 to +20 promoter region of IFN- β . A sequence of the –280 to +20 promoter region of IFN- β is provided as SEQ ID NO:123.

Example 11. Method of Making Human IL-6 Reporter Vectors

Reporter constructs are made using the -285 to +7 promoter region derived from human IL-6 genomic DNA. (Takeshita et al. Eur. J. Immunol. 2000. 30: 108–116.) In one reporter construct the IL-6 promoter region is cloned as a *KpnI-XhoI* insert into pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of

- 67 -

an upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. A sequence of the -288 to +7 promoter region of human IL-6 is provided as SEQ ID NO:128.

The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to + 7 (GenBank Accession No M22111) as shown below as SEQ ID NO:129.

Example 12. Method of Making Human IL-8 Reporter Vectors

Reporter constructs have been made using a -546 to +44 and a truncated -133 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71. In each reporter construct the IL-8 promoter region was cloned as a *KpnI-XhoI* insert into pGL3-Basic Vector (Promega). One of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -546 to +44 promoter region derived from human IL-8 genomic DNA. Another of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -133 to +44 promoter region derived from human IL-8 genomic DNA.

The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71. A sequence of the -734 to +44 promoter region derived from human IL-8 is provided below as SEQ ID NO: 130.

20

25

30

5

10

15

Example 13. Method of Making Human IL-12 p40 Reporter Vectors

Reporter constructs have been made using truncated (-250 to +30, SEQ ID NO:127) and full length (-751 to +30, SEQID NO:126) promoter regions derived from human IL-12 p40 genomic DNA. (Takeshita et al. Eur. J. Immunol. 2000. 30: 108–116.) In one reporter construct the truncated IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into pβgal-Basic (Promega). The resulting expression vector includes a β gal gene under control of an upstream (5') –250 to +30 promoter region of human IL-12 p40. In a second reporter construct the full length IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into pβgal-Basic (Promega). The resulting expression vector includes a β gal gene under control of an upstream (5') –751 to +30 promoter region of human IL-12 p40. In a third reporter construct the truncated –250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –250 to +30 promoter region of human IL-12 p40. In a

5

25

30

fourth reporter construct the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -751 to +30 promoter region of human IL-12 p40. A sequence of the -751 to +30 promoter region of human IL-12 p40 is provided as SEQ ID NO: 126.

Example 14. Method of Making RANTES Reporter Vector

Transcription of the chemokine RANTES is believed to be regulated at least in part by IRF3 and by NF-κB. Lin R et al. (1999) J Mol Cell Biol 19(2):959-66; Genin P et al. (2000) J 10 Immunol 164:5352-61. A 483 bp sequence-specific PCR product including the -397 to +5 promoter region of RANTES was derived from genomic DNA of human 293 cells, restricted with PstI and cloned into pCAT-Basic Vector (Promega) using HindIII (filled in with Klenow) and PstI sites (filled in). The -397 to +5 promoter region of RANTES was then isolated from the resulting RANTES/chloramphenicol acetyltransferase (CAT) reporter plasmid by restriction with BgIII and SaII, filled in with Klenow enzyme, and cloned into the 15 NheI site (filled in with Klenow) of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -397 to +5 promoter region of RANTES. Comparison of the insert sequence -397 to +5 of Genin P et al. (2000) J Immunol 164:5352-61 and GenBank accession no. AB023652 (SEQ ID NO:125) revealed two point deletions (at positions 105 and 273 of SEQ ID NO:125) which do not 20 create new restriction sites. A sequence of the -397 to +5 promoter region of RANTES is provided as SEQ ID NO:125.

Example 15. RT-PCR Analysis of Cell Lines for TLR Expression

TLR expression was determined using total RNA of cells prepared by standard methods (QIAGEN). RNA was transcribed to cDNA using AMV Reverse Transcriptase (Roche). Quantitative PCR was performed with TLR-gene specific primer sets using a LightCycler Instrument (Roche). Controls for genomic DNA impurities were performed by a similar PCR method using RNA (but without reverse transcriptase).

A variety of cell lines was screened for their expression of TLR3, 7, 8 and 9. These cell lines are A549 (human lung carcinoma), BeWo (human choriocarcinoma), HeLa (human cervix carcinoma), Hep-2 (human cervix carcinoma), KG-1 (human acute myeloid leukemia), MUTZ-3 (human acute myelomonocytic leukemia), Nalm-6 (human B cell precursor

5

10

15

20

leukemia), NK-92 (human Natural killer cell line), NK-92 MI (human Natural killer cell line, IL-2 independent), Raji (human Burkitt's lymphoma, B lymphocyte), RAMOS (Burkitt's lymphoma, B lymphocyte), RPMI 8226 (human multiple myeloma, B lymphocyte), THP-1 (human acute monocytic leukemia), U937 (human lymphoma) and Jurkat (human T cell leukemia).

All B cell lines express, as determined by Real Time-PCR (RT-PCR), endogenous TLR9. In addition, all lines except NALM co-express TLR7. Nevertheless, none of the other cell lines appeared to express TLR7, whereas low TLR9 expression on the mRNA level was observed for KG-1 and THP-1. TLR3 appeared to be expressed in most of these cell lines, with the highest mRNA levels for example in the NK cell lines (e.g., NK-92).

Raji cells contain high levels of TLR9 mRNA and low levels of TLR3 and TLR7 mRNA suggesting high expression of TLR9 protein and lower levels of TLR3 and TLR7 protein.

These results indicate that the cell lines expressing TLR9 can be used to screen potential new TLR9 ligands (CpG ODN, etc.), cell lines expressing TLR7 to screen potential new TLR7 ligands (ORN (oligoribonucleotides), small molecules, etc.), and cell lines expressing both receptors may be used to screen for "hybrid" TLR7 and 9 agonists. In addition, cell lines lacking TLR8 expression (i.e., all cell lines tested) can be used to confirm the specificity of a TLR7 versus a TLR8 ligand (i.e., the latter should not be able to stimulate TLR7-expressing cells). In contrast, cell lines expressing TLR3 (e.g., Raji cells) may be used to screen for potential new TLR3 ligands (dsRNA, etc.).

Example 16. Screening of Various Cell Lines for Responses to TLR Ligands

Except where otherwise indicated, the following general methods were used.

Cells were plated at 5 x 10⁵/ml in 48 well plates in RPMI medium with 10% FBS. Stimulation was performed by addition of the oligonucleotides or other compounds diluted to the test concentrations in TE. Cells were incubated for 24 or 48h and the supernatants were taken to analyse for the presence of cytokines or chemokines.

The TLR ligands used are as follows:

30 TLR3: Poly I:C

TLR7, TLR8: R-848.

TLR9:

T*C*C*A*G*G*A*C*T*T*C*T*C*T*C*A*G*G*T*T (SEQ ID NO: 2);

- 70 -

T*C*G*T*C*G*T*T*T*T*G*T*C*G*T*T*T*T*G*T*C*G*T*T (SEQ ID NO: 1); G*G*G_G_A_C_G_A_C_G_T_C_G_T_G G*G*G*G*G*G*G*G (SEQ ID NO: 159); T*G*C*T*G*C*T*T*T*T*C*G*G*C*G*G*C*C*G*C*C*G (SEQ ID NO: 160); G*G*G_G_A_G_C_A_G_C_T_G_C_T_G_G*G*G*G*G*G*G (SEQ ID NO: 161).

* phosphorothioate linkage; phosphodiester linkage.

15

25

Increased expression of cell surface markers was determined using cells stimulated as 10 described above and then stained with different monoclonal antibody combinations specific

for the cell surface markers. Analysis of the cells was performed by flow cytometry.

Changes in reporter gene activity were determined using cells transfected with a NF- κ B reporter construct (Stratagene) and a β -galactosidase reporter control plasmid (Invitrogen) using electroporation. For NF-κB analysis, a 5x NF-κB-Luciferase Vector (Stratagene) was used. The amount of DNA transfected as well as cell concentration was varied. Stimulation was performed 24h after transfection. Cells were stimulated with the indicated amounts of ODN, R-848, LPS, TNF- α , or IL-1 β for the indicated incubation times. Cell extracts were prepared by lysing the cells in 100 μ l reporter lysis buffer (Promega) using the freeze-thaw method. All data were normalized for β -galactosidase expression.

20 . Stimulation indices were calculated in reference to luciferase activity of medium without addition of ODN.

Stimulation of the Raji cell line with a TLR9 ligand (CpG ODN), a TLR3 ligand (poly I:C) or a TLR7 ligand (R-848) results in the ligand-specific secretion of cytokines. Figs. 14 and 15 show IL-6 production of Raji cells upon stimulation with ODN, poly I:C or R-848. Fig. 16 shows IFN-02 production of Raji cells upon stimulation with ODN, poly I:C or R-848. In all assays, cells were incubated with Na-Butyrate for 48h before stimulation with TLR ligands. CpG stimulation of the RAMOS cell lines can result in the CpG-specific upregulation of cell surface markers such as CD80, as shown in Fig. 17.

30 Example 17. Inhibition of a Positive Reference Compound Response with an Inhibitory **Test Compound**

Inhibition of CpG mediated chemokine production was determined using RPMI 8226 cells incubated with increasing amounts of SEQ ID NO:1 in the presence of an

- 71 -

immunoinhibitory ODN (SEQ ID NO: 151). IP-10 production was measured 24h later by ELISA (Fig. 9).

Equivalents

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.

All references, patents and patent publications that are recited in this application are incorporated in their entirety herein by reference.

15

We claim:

WO 2004/094671

5

10

15

25

Claims

1. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting an RPMI 8226 cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-8 production, IL-10 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- α expression, TNF- α production and TNF- α secretion.

2. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of an immunostimulatory compound, and

wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-20 1 cell.

- 3. The method of claim 1 or 2, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.
- 4. The method of claim 3, wherein the reference compound is a positive reference compound
- 5. The method of claim 4, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.

- 73 -

- 6. The method of claim 3, wherein the reference compound is a negative reference compound.
- 7. The method of claim 6, wherein the negative reference compound is medium alone.
 - 8. The method of claim 5, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.

10

- 9. The method of claim 5, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
- The method of claim 1 or 2, wherein the test compound is a nucleic acid.
 - 11. The method of claim 10, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.

- 12. The method of claim 10, wherein the nucleic acid comprises a phosphorothicate backbone linkage.
- 13. The method of claim 10, wherein the nucleic acid is a DNA, an RNA or 25 a DNA-RNA hybrid.
 - 14. The method of claim 1 or 2, wherein the test compound is a non-nucleic acid small molecule.
- 30 15. The method of claim 1 or 2, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
 - 16. The method of claim 15, wherein the carbohydrate is a polysaccharide.

PCT/US2004/012788

- 74 -

WO 2004/094671

10

20

25

30

17.	The method of claim 1 or 2, wherein the test compound is derived from
a molecular library.	

- 5 18. The method of claim 1, wherein the cell is transfected with a nucleic acid.
 - 19. The method of claim 18, wherein the nucleic acid encodes a TLR or a reporter construct.

The method of claim 2, wherein the cell is transfected with a nucleic acid.

- The method of claim 20, wherein the nucleic acid encodes a TLR or a reporter construct.
 - 22. The method of claim 19 or 21, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.

23. The method of claim 22, wherein the TLR is a human TLR.

- 24. The method of claim 19 or 21, wherein the reporter construct is selected from the group consisting of a luciferase reporter construct, a β -galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
- 25. The method of claim 19 or 21, wherein the reporter construct comprises a TLR responsive promoter.
- 26. The method of claim 25, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of a NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an

IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.

- 27. The method of claim 25, wherein the TLR responsive promoter is a
 5 promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-α promoter region, a TNF-β promoter region, an IP-9 promoter region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.
 - 28. The method of claim 18 or 20, wherein the cell is stably transfected.

29. The method of claim 1 or 2, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.

15

- 30. The method of claim 1, wherein the TLR signaling activity is selected
 from the group consisting of IL-8 secretion, IL-10 secretion, IP-10 secretion and TNF-α secretion.
 - 31. The method of claim 2, wherein the TLR signaling activity is selected from the group consisting of IL-6 expression, IL-6 production, IL-6 secretion, IL-8 expression, IL-8 production, IL-8 production, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, IL-12 expression, IL-12 production, IL-12 secretion, TNF-α expression, TNF-α production and TNF-α secretion.
- 32. The method of claim 2, wherein the TLR signaling activity is measured by phosphorylation.
 - 33. The method of claim 32, wherein phosphorylation is total cellular phosphorylation.

- 76 -

34. The method of claim 32, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NFkB subunits, c-Jun and c-Fos.

5

- 35. The method of claim 1 or 2, wherein the TLR signaling activity is measured by gene expression.
- 36. The method of claim 1, wherein the TLR signaling activity is measured by gene expression selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression, IP-10 expression, and TNF-α expression.
- 37. The method of claim 35, wherein TLR signaling activity is measured by microarray techniques.
 - 38. The method of claim 2, wherein the TLR signaling activity is measured by cell proliferation.
- 20 39. The method of claim 1 or 2, wherein TLR signaling activity is measured by cell surface marker expression.
 - 40. The method of claim 1, wherein TLR signaling activity is measured by cell surface expression of CD71, CD86 or HLA-DR.

25

41. The method of claim 2, wherein TLR signaling activity is measured by CD71 cell surface expression, CD86 cell surface expression, HLA-DR cell surface expression, CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

30

42. The method of claim 2, wherein TLR signaling activity is measured by antibody secretion.

- 77 -

- 43. The method of claim 42, wherein the antibody secretion is IgM secretion.
- 44. A composition comprising
 an RPMI 8226 cell stably transfected with a nucleic acid encoding a TLR
 5 polypeptide, or a fragment thereof.
 - 45. The composition of claim 44, further comprising a reporter construct comprising a promoter and a reporter sequence wherein the promoter is a TLR responsive promoter.

10

15

- 46. The composition of claim 45, wherein the TLR responsive promoter comprises a nucleic acid sequence selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 47. The composition of claim 45, wherein the reporter sequence is selected from the group consisting of a luciferase sequence, a β -galactosidase sequence, a green fluorescent protein sequence, a secreted alkaline phosphatase sequence and a chloramphenicol transferase sequence.
- 48. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is a human TLR polypeptide or fragment thereof.
- 25 49. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
- 50. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is a human TLR polypeptide.
 - 51. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

WO 2004/094671

5

25

contacting an cell that ectopically expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

- 78 -

PCT/US2004/012788

wherein the cell that ectopically expresses a TLR is selected from the group consisting of RPMI 8226, RAMOS, Raji, Nalm, THP-1, KG-1 and 293 HEK.

- 52. The method of claim 51, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.
 - 53. The method of claim 52, wherein the reference compound is a positive reference compound.
- 15 54. The method of claim 53, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.
- 55. The method of claim 54, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.
 - 56. The method of claim 54, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
 - 57. The method of claim 52, wherein the reference compound is negative reference compound.
- 58. The method of claim 57, wherein the negative reference compound is medium alone.
 - 59. The method of claim 51, wherein the test compound is a nucleic acid.

- 60. The method of claim 59, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.
- 5 61. The method of claim 59, wherein the nucleic acid comprises a phosphorothioate backbone linkage.

10

- 62. The method of claim 59, wherein the nucleic acid is a DNA, an RNA, or a DNA-RNA hybrid.
- 63. The method of claim 51, wherein the test compound is a non-nucleic acid small molecule.
- The method of claim 51, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
 - 65. The method of claim 64, wherein the carbohydrate is a polysaccharide.
- The method of claim 51, wherein the test compound is derived from a molecular library.
 - 67. The method of claim 51, wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-6 expression, IL-6 production, IL-6 secretion, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IL-12 expression, IL-12 production, IL-12 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- α expression, TNF- α production and TNF- α secretion.
- The method of claim 51, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
 - 69. The method of claim 51, wherein the TLR is a human TLR.

- 80 -

- 70. The method of claim 51, wherein the cell is transfected with a reporter construct.
- 71. The method of claim 70, wherein the reporter construct is selected from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
- 72. The method of claim 71, wherein the TLR signaling activity is
 10 measured by luciferase expression, β-galactosidase expression, chloramphenicol expression,
 acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase
 expression and alkaline phosphatase secretion.
- 73. The method of claim 71, wherein the reporter construct comprises a TLR responsive promoter.
 - 74. The method of claim 25 or 73, wherein the TLR responsive promoter is a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.

20

- 75. The method of claim 73, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 76. The method of claim 73, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-β promoter region, an IFN-β promoter region, an IFN-β promoter region, an IP-9 promoter

region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.

- 77. The method of claim 51, wherein the cell is stably transfected with a TLR nucleic acid.
- 78. The method of claim 70, wherein the cell is stably transfected with the reporter construct.
 - 79. The method of claim 51, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.
- 15 80. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, TNF- α secretion, IL-10 secretion and IP-10 secretion.
- 81. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion and IL-12 secretion.
 - 82. The method of claim 51, wherein the TLR signaling activity is measured by phosphorylation.
- 25 83. The method of claim 82, wherein phosphorylation is total cellular phosphorylation.
- 84. The method of claim 82, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF-κB
 30 subunits, c-Jun and c-Fos.
 - 85. The method of claim 51, wherein the TLR signaling activity is measured by gene expression.

86. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-8 expression, IL-10 expression, IP-10 expression, CD71 expression, CD86 expression and HLA-DR expression.

5

- 87. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- α expression.
- 88. The method of claim 51, wherein the TLR signaling activity is measured by microarray techniques.
 - 89. The method of claim 51, wherein the TLR signaling activity is measured by cell proliferation.
- 15 90. The method of claim 51, wherein the TLR signaling activity is measured by cell surface marker expression.
 - 91. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR cell surface expression.
 - 92. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

25

- 93. The method of claim 51, wherein the TLR signaling activity is measured by antibody secretion.
- 94. The method of claim 93, wherein the antibody secretion is IgM 30 secretion.
 - 95. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

20

25

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

5 wherein a test level that is less than a reference level is indicative of test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell.

- 10 96. The method of claim 95, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an immunostimulatory imidazoquinoline compound.
- 97. The method of claim 96, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.
 - 98. The method of claim 96, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
 - 99. The method of claim 95, wherein the test compound is a nucleic acid.
 - 100. The method of claim 99, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.
 - 101. The method of claim 99, wherein the nucleic acid comprises a phosphorothioate backbone linkage.
- 30 102. The method of claim 99, wherein the nucleic acid is a DNA, an RNA or a DNA-RNA hybrid.

- 84 -

WO 2004/094671 PCT/US2004/012788

- 103. The method of claim 95, wherein the test compound is a non-nucleic acid small molecule.
- The method of claim 95, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
 - The method of claim 104, wherein the carbohydrate is a polysaccharide.
- 10 106. The method of claim 95, wherein the test compound is derived from a molecular library.
 - 107. The method of claim 95, wherein the experimental cell is transfected with a nucleic acid.

108. The method of claim 107, wherein the nucleic acid encodes a TLR or a reporter construct.

- The method of claim 108, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
 - The method of claim 108, wherein the TLR is a human TLR.
- 111. The method of claim 108, wherein the reporter construct is selected
 25 from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
- 112. The method of claim 111, wherein the TLR signaling activity is selected from the group consisting of luciferase expression, β-galactosidase expression, chloramphenical acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase expression and alkaline phosphatase secretion.

- 85 -

- 113. The method of claim 108, wherein the reporter construct comprises a TLR responsive promoter.
- 114. The method of claim 113, wherein the TLR responsive promoter
 5 comprises a transcription factor binding site selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 115. The method of claim 113, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-α promoter region, a TNF-β promoter region, an IP-9 promoter region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.
- 20 116. The method of claim 113, wherein the TLR responsive promoter is selected from the group consisting of a TLR1 responsive promoter, TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.
 - The method of claim 107, wherein the cell is stably transfected with the nucleic acid.
- The method of claim 95, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.

PCT/US2004/012788

WO 2004/094671

119. The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion, IL-12 secretion and TNF- α secretion.

- 86 -

- The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, IL-10 secretion and IP-10 secretion.
- The method of claim 95, wherein the TLR signaling activity is measured by phosphorylation.
 - 122. The method of claim 121, wherein phosphorylation is total cellular phosphorylation.
- 15 123. The method of claim 122, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF-κB subunits, c-Jun and c-Fos.
- 124. The method of claim 95, wherein the TLR signaling activity is measured by gene expression.
 - 125. The method of claim 124, wherein the gene expression is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression and IP-10 expression.

- 126. The method of claim 124, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- α expression.
- The method of claim 95, wherein the TLR signaling activity is measured by microarray techniques.
 - 128. The method of claim 95, wherein the TLR signaling activity is measured by cell proliferation.

15

- 129. The method of claim 95, wherein the TLR signaling activity is measured by cell surface marker expression.
- 5 130. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR MHC class II cell surface expression.
- 131. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.
 - 132. The method of claim 95, wherein the TLR signaling activity is measured by antibody secretion.

133. The method of claim 132, wherein the antibody secretion is IgM secretion.

- The method of claim 95, wherein the cell is contacted to the positive reference compound and the test compound simultaneously.
 - The method of claim 95, wherein the cell is contacted to the positive reference compound prior to contact with the test compound.
- 25 136. The method of claim 95, wherein the cell is contacted to the test compound prior to contact with the positive reference compound.
 - 137. A method for quality assessment of a test composition containing a known Toll like receptor (TLR) ligand, comprising:
- measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule;

measuring a test activity of a test composition comprising the known TLR ligand; and comparing the test activity to the reference activity.

138. The method of claim 137, further comprising selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

5

139. The method of claim 1, wherein the reference composition is a first production lot of a pharmaceutical composition comprising the known TLR ligand, and wherein the test composition is a second production lot of a pharmaceutical composition comprising the known TLR ligand.

10

- 140. The method of claim 137, wherein the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and wherein the test composition is a second in-process lot of a composition comprising the known TLR ligand.
- 15 141. The method of claim 137, wherein the measuring the reference activity comprises contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and wherein the measuring the test activity comprises contacting the test composition with the isolated cell expressing a TLR responsive to the known TLR ligand.

- 142. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand comprises an expression vector for the TLR responsive to the known TLR ligand.
- 25 143. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand.
- The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226.

- 89 -

WO 2004/094671 PCT/US2004/012788

- 145. The method of claim 137, wherein the measuring the reference activity and the measuring the test activity each comprise measuring signaling activity mediated by a TLR responsive to the known TLR ligand.
- 5 146. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of NF-κB response element.
 - 147. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of interferon-stimulated response element (ISRE).

10

- 148. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IFN- α promoter.
- The method of claim 145, wherein the signaling activity is activity of a
 reporter gene under control of an IFN-β promoter.
 - 150. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-6 promoter.
- 20 151. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-8 promoter.
 - 152. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-12 p40 promoter.

- 153. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of a RANTES promoter.
- The method of claim 137, wherein the known TLR ligand is a TLR9 ligand.
 - 155. The method of claim 137, wherein the known TLR ligand is a TLR3 ligand.

- 90 -

10

25

30

WO 2004/094671 PCT/US2004/012788

	156.	The method of claim 137, wherein the known TLR ligand is a TLR?
ligand.		

- 5 157. The method of claim 137, wherein the known TLR ligand is a TLR8 ligand.
 - 158. The method of claim 137, wherein the known TLR ligand is an immunostimulatory nucleic acid.

159. The method of claim 137, wherein the known TLR ligand is a CpG nucleic acid.

- 160. The method of claim 137, wherein the known TLR ligand is an immunoinhibitory nucleic acid.
 - 161. A method for quality assessment of a test lot of a pharmaceutical product containing a known TLR9 ligand, comprising:

measuring a reference activity of a reference lot of a pharmaceutical product
comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid
molecule;

measuring a test activity of a test lot of a pharmaceutical product comprising the known TLR9 ligand;

comparing the test activity to the reference activity; and rejecting the test lot if the test activity falls outside of a predetermined range of variance about the reference activity.

162. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence TCGTCGTTTTGTCGTTTGTCGTT (SEQ ID NO:1).

WO 2004/094671

15

- 163. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTGACGTTTTGTCGTT-3' (SEQ ID NO:139).
- 5 164. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTTTCGA-3' (SEQ ID NO:140).
- 165. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGTCGTTTTCGTCGTT-3' (SEQ ID NO:141).
 - 166. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGTCGTTTTGTCGTT-3' (SEQ ID NO:142).
 - 167. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTCGGTCGTTTTT-3' (SEQ ID NO:143).
 - 168. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTCGTGCGTTTTT-3' (SEQ ID NO:144).
- 25 169. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTCGGCGGCCGCCG-3' (SEQ ID NO:145).
- 170. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTC_GTTTTAC_GGCGCC_GTGCCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by "_", which are phosphodiester.

WO 2004/094671

5

15

25

171. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-1 cell, and the TLR is TLR9.

10 172. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell or a RAMOS cell, and the TLR is TLR7.

- 173. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising
- contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell, and the TLR is TLR3.

- 174. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising
- contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity.

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell, and the TLR is TLR9.

5

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

10

15

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell and a Raji cell, and the TLR is TLR7.

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

25

20

wherein the cell is selected from the group consisting of a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is TLR3.

176. A screening method for identifying an enhancer of a Toll-like receptor 30 (TLR) agonist, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity, and

5

contacting a cell with the positive reference compound and a test compound and measuring a test level of TLR signaling activity,

wherein the positive reference compound is a TLR agonist, and a test level that is greater than the reference level is indicative of a test compound that is an enhancer of a TLR agonist.

- 177. The method of claim 176, wherein the positive reference compound is an immunostimulatory nucleic acid.
- 10 178. The method of claim 176, wherein the positive reference compound is an imidazoquinoline compound.
- The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is TLR3.
- 181. The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, an RPMI 8226 cell, a RAMOS cell, and a 20 THP-1 cell, and the TLR is TLR9.
 - The method of claim 176, wherein the cell is selected from the group consisting of a Raji cell, an RPMI 8226 cell and a RAMOS cell, and the TLR is TLR7.
- 25 183. The method of claim 1, wherein the TLR is TLR7 or TLR9.
 - 184. The method of claim 172-175 or 176, wherein the cell is unmodified.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 2004/094671

Fig. 6

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Fig. 9

SUBSTITUTE SHEET (RULE 26)

RELATIVE COPY NUMBER TLR3 SUBSTITUTE SHEET (RULE 26)

Fig. 14

SUBSTITUTE SHEET (RULE 26)

13/15

Fig. 17 SUBSTITUTE SHEET (RULE 26)

WO 2004/094671 PCT/US2004/012788

14/15

Fig. 18A

Fig. 18B

SUBSTITUTE SHEET (RULE 26)

NFkB-luc (FOLD INDUCTION)

Fig. 19

293-hTLR9

NFkB-luc (FOLD INDUCTION)

Fig. 20

SUBSTITUTE 19-12-1 (RULE 26)

WO 2004/094671 - 1 - PCT/US2004/012788

SEQUENCE LISTING

<110>	COLEY PHARMACEUTICAL GMbH COLEY PHARMACEUTICAL GROUP INC.	
<120>	METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS	
<130>	C1041.70024WO00	
	not yet assigned 2004-04-22	
	US 60/464,586 2003-04-22	
	US 60/464,588 2003-04-22	
<160>	161	
<170>	PatentIn version 3.2	
<210><211><212><213>	1 24 DNA Artificial Sequence	
<220>		
<223>	oligonucleotide	
<400> cgtcgt	1 cttt gtcgttttgt cgtt	24
<212>	2 20 DNA Artificial Sequence	
<220>		
<223>	oligonucleotide	
<400> ccagga	actt ctctcaggtt	20
	3 2600 DNA Homo sapiens	
<400>	3 aaag gagacctata gtgactccca ggagctctta gtgaccaagt gaaggtacct	60
		60 120
		180
		240

ggcagctcag	gatctttaaa	ctccattccc	tcagggctca	cagaagctgt	aaaaagcctt	300
gacctgtcca	acaacaggat	cacctacatt	agcaacagtg	acctacagag	gtgtgtgaac	360
ctccaggctc	tggtgctgac	atccaatgga	attaacacaa	tagaggaaga	ttctttttct	420
tccctgggca	gtcttgaaca	tttagactta	tcctataatt	acttatctaa	tttatcgtct	480
tcctggttca	agcccctttc	ttctttaaca	ttcttaaact	tactgggaaa	tccttacaaa	540
accctagggg	aaacatctct	tttttctcat	ctcacaaaat	tgcaaatcct	gagagtggga	600
aatatggaca	ccttcactaa	gattcaaaga	aaagattttg	ctggacttac	cttccttgag	660
gaacttgaga	ttgatgcttc	agatctacag	agctatgagc	caaaaagttt	gaagtcaatt	720
cagaacgtaa	gtcatctgat	ccttcatatg	aagcagcata	ttttactgct	ggagattttt	780
gtagatgtta	caagttccgt	ggaatgtttg	gaactgcgag	atactgattt	ggacactttc	840
catttttcag	aactatccac	tggtgaaaca	aattcattga	ttaaaaagtt	tacatttaga	900
aatgtgaaaa	tcaccgatga	aagtttgttt	caggttatga	aacttttgaa	tcagatttct	960
ggattgttag	aattagagtt	tgatgactgt	acccttaatg	gagttggtaa	ttttagagca	1020
tctgataatg	acagagttat	agatccaggt	aaagtggaaa	cgttaacaat	ccggaggctg	1080
catattccaa	ggttttactt	attttatgat	ctgagcactt	tatattcact	tacagaaaga	1140
gttaaaagaa	tcacagtaga	aaacagtaaa	gtttttctgg	ttccttgttt	actttcacaa	1200
catttaaaat	cattagaata	cttggatctc	agtgaaaatt	tgatggttga	agaatacttg	1260
aaaaattcag	cctgtgagga	tgcctggccc	tctctacaaa	ctttaatttt	aaggcaaaat	1320
catttggcat	cattggaaaa	aaccggagag	actttgctca	ctctgaaaaa	cttgactaac	1380
attgatatca	gtaagaatag	ttttcattct	atgcctgaaa	cttgtcagtg	gccagaaaag	. 1440
atgaaatatt	tgaacttatc	cagcacacga	atacacagtg	taacaggctg	cattcccaag	1500
acactggaaa	ttttagatgt	tagcaacaac	aatctcaatt	tattttcttt	gaatttgccg	1560
caactcaaag	aactttatat	ttccagaaat	aagttgatga	ctctaccaga	tgcctccctc	1620
ttacccatgt	tactagtatt	gaaaatcagt	aggaatgcaa	taactacgtt	ttctaaggag	1680
caacttgact	catttcacac	actgaagact	ttggaagctg	gtggcaataa	cttcatttgc	1740
tcctgtgaat	tectetectt	cactcaggag	cagcaagcac	tggccaaagt	cttgattgat	1800
tggccagcaa	attacctgtg	tgactctcca	tcccatgtgc	gtggccagca	ggttcaggat	1860
gtccgcctct	cggtgtcgga	atgtcacagg	acagcactgg.	tgtctggcat	gtgctgtgct	1920
ctgttcctgc	tgatcctgct	cacgggggtc	ctgtgccacc	gtttccatgg	cctgtggtat	1980
atgaaaatga	tgtgggcctg	gctccaggcc	aaaaggaagc	ccaggaaagc	tcccagcagg	2040
aacatctgct	atgatgcatt	tgtttcttac	agtgageggg	atgcctactg	ggtggagaac	2100

cttatggtcc aggagctgga gaacttcaat cccccttca agttgtgtct tcataagcgg 2160 gacttcattc ctggcaagtg gatcattgac aatatcattg actccattga aaagagccac 2220 aaaactgtct ttgtgctttc tgaaaacttt gtgaagagtg agtggtgcaa gtatgaactg 2280 gacttetece attteegtet ttttgaagag aacaatgatg etgeeattet cattettetg 2340 gagcccattg agaaaaaagc cattccccag cgcttctgca agctgcggaa gataatgaac 2400 accaagacct acctggagtg gcccatggac gaggctcagc gggaaggatt ttgggtaaat 2460 ctgagagctg cgataaagtc ctaggttccc atatttaaga ccagtctttg tctagttggg 2520 atctttatgt cactagttat agttaagttc attcagacat aattatataa aaactacgtg 2580 gatgtaccgt catttgagga 2600

<210> 4

<211> 784

<212> PRT

<213> Homo sapiens

<400> 4

Met Pro His Thr Leu Trp Met Val Trp Val Leu Gly Val Ile Ile Ser 1 5 10 15

Leu Ser Lys Glu Glu Ser Ser Asn Gln Ala Ser Leu Ser Cys Asp Arg 20 25 30

Asn Gly Ile Cys Lys Gly Ser Ser Gly Ser Leu Asn Ser Ile Pro Ser 35 40 45

Gly Leu Thr Glu Ala Val Lys Ser Leu Asp Leu Ser Asn Asn Arg Ile 50 55

Thr Tyr Ile Ser Asn Ser Asp Leu Gln Arg Cys Val Asn Leu Gln Ala 70 75 80

Leu Val Leu Thr Ser Asn Gly Ile Asn Thr Ile Glu Glu Asp Ser Phe 85 90 95

Ser Ser Leu Gly Ser Leu Glu His Leu Asp Leu Ser Tyr Asn Tyr Leu 100 105 110

Ser Asn Leu Ser Ser Ser Trp Phe Lys Pro Leu Ser Ser Leu Thr Phe 115 120 125

Leu Asn Leu Leu Gly Asn Pro Tyr Lys Thr Leu Gly Glu Thr Ser Leu 130 135 140

Phe Ser His Leu Thr Lys Leu Gln Ile Leu Arg Val Gly Asn Met Asp 145 150 155 160

Thr Phe Thr Lys Ile Gln Arg Lys Asp Phe Ala Gly Leu Thr Phe Leu 165 170 175

Glu Glu Leu Glu Ile Asp Ala Ser Asp Leu Gln Ser Tyr Glu Pro Lys 180 185 190

WO 2004/094671 - 4 - PCT/US2004/012788

Ser Leu Lys Ser Ile Gln Asn Val Ser His Leu Ile Leu His Met Lys Gln His Ile Leu Leu Glu Ile Phe Val Asp Val Thr Ser Ser Val Glu Cys Leu Glu Leu Arg Asp Thr Asp Leu Asp Thr Phe His Phe Ser Glu Leu Ser Thr Gly Glu Thr Asn Ser Leu Ile Lys Lys Phe Thr Phe 245 250 Arg Asn Val Lys Ile Thr Asp Glu Ser Leu Phe Gln Val Met Lys Leu 265 Leu Asn Gln Ile Ser Gly Leu Leu Glu Leu Glu Phe Asp Asp Cys Thr 280 285 Leu Asn Gly Val Gly Asn Phe Arg Ala Ser Asp Asn Asp Arg Val Ile Asp Pro Gly Lys Val Glu Thr Leu Thr Ile Arg Arg Leu His Ile Pro Arg Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Leu Tyr Ser Leu Thr Glu 330 Arg Val Lys Arg Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro 345 Cys Leu Leu Ser Gln His Leu Lys Ser Leu Glu Tyr Leu Asp Leu Ser Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Glu Asp 375 Ala Trp Pro Ser Leu Gln Thr Leu Ile Leu Arg Gln Asn His Leu Ala 390 395 Ser Leu Glu Lys Thr Gly Glu Thr Leu Leu Thr Leu Lys Asn Leu Thr Asn Ile Asp Ile Ser Lys Asn Ser Phe His Ser Met Pro Glu Thr Cys Gln Trp Pro Glu Lys Met Lys Tyr Leu Asn Leu Ser Ser Thr Arg Ile His Ser Val Thr Gly Cys Ile Pro Lys Thr Leu Glu Ile Leu Asp Val Ser Asn Asn Asn Leu Asn Leu Phe Ser Leu Asn Leu Pro Gln Leu Lys Glu Leu Tyr Ile Ser Arg Asn Lys Leu Met Thr Leu Pro Asp Ala Ser 485 490 Leu Leu Pro Met Leu Leu Val Leu Lys Ile Ser Arg Asn Ala Ile Thr 505 Thr Phe Ser Lys Glu Gln Leu Asp Ser Phe His Thr Leu Lys Thr Leu

Glu	Ala 530	515 Gly	Gly	Asn	Asn	Phe 535	520 Ile	Cys	Ser	Cys	Glu 540	525 Phe	Leu	Ser	Phe
Thr 545	Gln	Glu	Gln	Gln	Ala 550	Leu	Ala	Lув	Val	Leu 555	Ile	Asp	Trp	Pro	Ala 560
Asn	Tyr	Leu	Сув	Asp 565	Ser	Pro	Ser	His	Val 570	Arg	Gly	Gln	Gln	Val 575	Gln
Asp	Val	Arg	Leu 580	Ser	Val	Ser	Glu	Сув 585	His	Arg	Thr	Ala	Leu 590	Val	Ser
Gly	Met	Cys 595	Cys	Ala	Leu	Phe	Leu 600	Leu	Ile	Leu	Leu	Thr 605	Gly	Val	Leu
Cys	His 610	Arg	Phe	His	Gly	Leu 615	Trp	Tyr	Met	Lys	Met 620	Met	Trp	Ala	Trp
Leu 625	Gln	Ala	Lys	Arg	Lys 630	Pro	Arg	Lys	Ala	Pro 635	Ser	Arg	Asn	Ile	Cys 640
Tyr	Asp	Ala	Phe	Val 645	Ser	Tyr	Ser	Glu	Arg 650	Asp	Ala	Tyr	Trp	Val 655	Glu
Asn	Leu	Met	Val 660	Gln	Glu	Leu	Glú	Asn 665	Phe	Asn	Pro	Pro	Phe 670	Lys	Leu
Cys	Leu	His 675	Lys	Arg	Asp	Phe	Ile 680	Pro	Gly	Lys	Trp	Ile 685	Ile	Asp	Asn
Ile	Ile 690	Asp	Ser	Ile	Glu	Lys 695	Ser	His	Lys	Thr	Val 700	Phe	Val	Leu	Ser
Glu 705	Asn	Phe	Val	Lys	Ser 710	Glu	Trp	Cys	Lys	Tyr 715	Glu	Leu	Asp	Phe	Ser 720
His	Phe	Arg	Leu	Phe 725	Glu	Glu	Asn	Asn	Asp 730	Ala	Ala	Ile	Leu	Ile 735	Leu
Leu	Glu	Pro	Ile 740	Glu	Lys	Lys	Ala	Ile 745	Pro	Gln	Arg	Phe	Cys 750	Lys	Leu
Arg		Ile 755	Met	Asn	Thr		Thr 760	Tyr	Leu	Glu	Trp	Pro 765	Met	Asp	Glu
Ala	Gln 770	Arg	Glu	Gly	Phe	Trp 775	Val	Asn	Leu	Arg	Ala 780	Ala	Ile	Lys	Ser
<210 <211 <212 <213	> 2 > D	824 NA urin	e												
<400 gccc			ccat	atgg	g ca	ccgg	ggag	cgg	cgge	tgg	agga	ctcc	ta g	gctc	ctggg
cagg	cggt	ca c	atgg	caga	a ga	tgtg	tccg	caa	tcat	agt	ttct	gatg	gt g	aagg	ttgga
ggc	aqtc	to t	qcqa	ccta	σ aa	ataa	aaaa	gat	atca	ttc	aann	aaat	aa a	asat.	attta

60

120

180

cttctgacca tctggagcat	ggatcttgtt ccgaattgca	tctgagtgta tcaccggtca	ggggcttcac gaaaacaact	ttctctgctt taccgaaacc	ttcgttcatc tcagacaaag	240 300
cgtcaaatct	cagaggatgc	tacgagctct	ttggctcttc	tggatcttgg	tggccataac	360
agtcctcttc	agcaaacgct	gttctgctca	ggagtctctg	tcatgtgatg	cttctggggt	420
gtgtgatggc	cgctccaggt	ctttcacctc	tattccctcc	ggactcacag	cagccatgaa	480
aagccttgac	ctgtctttca	acaagatcac	ctacattggc	catggtgacc	tccgagcgtg	540
tgcgaacctc	caggttctga	ttttgaagtc	cagcagaatc	aatacaatag	agggagacgc	600
cttttattct	ctgggcagtc	ttgaacattt	ggatttgtct	gataatcacc	tatctagttt	660
atcttcctcc	tggttcgggc	ccctttcctc	tttgaaatac	ttaaacttaa	tgggaaatcc	720
ttaccagaca	ctgggggtaa	catcgctttt	tcccaatctc	acaaatttac	aaaccctcag	780
gataggaaat	gtagagactt	tcagtgagat	aaggagaata	gattttgctg	ggctgacttc	840
tctcaatgaa	cttgaaatta	aggcattaag	tctccggaat	tatcagtccc	aaagtctaaa	900
gtcgatccgc	gacatccatc	acctgactct	tcacttaagc	gagtctgctt	tcctgctgga	960
gatttttgca	gatattctga	gttctgtgag	atatttagaa	ctaagagata	ctaacttggc	1020
caggttccag	ttttcaccac	tgcccgtaga	tgaagtcagc	tcaccgatga	agaagctggc	1080
attccgaggc	tcggttctca	ctgatgaaag	ctttaacgag	ctcctgaagc	tgttgcgtta	1140
catcttggaa	ctgtcggagg	tagagttcga	cgactgtacc	ctcaatgggc	tcggcgattt	1200
caacccctcg	gagtcagacg	tagtgagcga	gctgggtaaa	gtagaaacag	tcactatccg	1260
gaggttgcat	atcccccagt	tctatttgtt	ttatgacctg	agtactgtct	attccctcct	1320
ggagaaggtg	aagcgaatca	cagtagagaa	cagcaaggtc	ttcctggttc	cctgctcgtt	1380
ctcccagcat	ttaaaatcat	tagaattctt	agacctcagc	gaaaatctga	tggttgaaga	1440
atatttgaag	aactcagcct	gtaagggagc	ctggccttct	ctacaaacct	tagttttgag	1500
ccagaatcat	ttgagatcaa	tgcaaaaaac	aggagagatt	ttgctgactc	tgaaaaacct	1560
gacctccctt	gacatcagca	ggaacacttt	tcatccgatg	cccgacagct	gtcagtggcc	1620
agaaaagatg	cgcttcctga	atttgtccag	tacagggatc	cgggtggtaa	aaacgtgcat	1680
tcctcagacg	ctggaggtgt	tggatgttag	taacaacaat	cttgactcat	tttctttgtt	1740
cttgcctcgg	ctgcaagagc	tctatatttc	cagaaataag	ctgaaaacac	tcccagatgc	1800
ttcgttgttc	cctgtgttgc	tggtcatgaa	aatcagagag	aatgcagtaa	gtactttctc	1860
taaagaccaa	cttggttctt	ttcccaaact	ggagactctg	gaagcaggcg	acaaccactt	1920
tgtttgctcc	tgcgaactcc	tatcctttac	tatggagacg	ccagctctgg	ctcaaatcct	1980
ggttgactgg	ccagacagct	acctgtgtga	ctctccgcct	cgcctgcacg	gccacaggct	2040
tcaggatgcc	cggccctccg	tcttggaatg	tcaccaggct	gcactggtgt	ctggagtctg	2100

WO 2004/094671 - 7 - PCT/US2004/012788

ctgtgccctt	ctcctgttga	tcttgctcgt	aggtgccctg	tgccaccatt	tccacgggct	2160
gtggtacctg	agaatgatgt	gggcgtggct	ccaggccaag	aggaagccca	agaaagctcc	2220
ctgcagggac	gtttgctatg	atgcctttgt	ttcctacagt	gagcaggatt	cccattgggt	2280
ggagaacctc	atggtccagc	agctggagaa	ctctgacccg	ccctttaagc	tgtgtctcca	2340
caagcgggac	ttcgttccgg	gcaaatggat	cattgacaac	atcatcgatt	ccatcgaaaa	2400
gagccacaaa	actgtgttcg	tgctttctga	gaacttcgta	cggagcgagt	ggtgcaagta	2460
cgaactggac	ttctcccact	tcaggctctt	tgacgagaac	aacgacgcgg	ccatccttgt	2520
tttgctggag	cccattgaga	ggaaagccat	tccccagcgc	ttctgcaaac	tgcgcaagat	2580
aatgaacacc	aagacctacc	tggagtggcc	cttggatgaa	ggccagcagg	aagtgttttg	2640
ggtaaatctg	agaactgcaa	taaagtccta	ggttctccac	ccagttcctg	acttccttaa	2700
ctaaggtctt	tgtgacacaa	actgtaacaa	agtttataag	taacatagaa	ttgtattatt	2760
gaggatatta	actatgggtt	ttgtcttgaa	tactgttata	taaatatgtg	acatcaggct	2820
ttag						2824

<210> 6

<211> . 784

<212> PRT

<213> murine

<400> 6

Met Leu Arg Ala Leu Trp Leu Phe Trp Ile Leu Val Ala Ile Thr Val 1 5 10 15

Leu Phe Ser Lys Arg Cys Ser Ala Gln Glu Ser Leu Ser Cys Asp Ala 20 25 30

Ser Gly Val Cys Asp Gly Arg Ser Arg Ser Phe Thr Ser Ile Pro Ser 35 40 45

Gly Leu Thr Ala Ala Met Lys Ser Leu Asp Leu Ser Phe Asn Lys Ile 50 55 60

Thr Tyr Ile Gly His Gly Asp Leu Arg Ala Cys Ala Asn Leu Gln Val 65 70 75 80

Leu Ile Leu Lys Ser Ser Arg Ile Asn Thr Ile Glu Gly Asp Ala Phe
85 90 95

Tyr Ser Leu Gly Ser Leu Glu His Leu Asp Leu Ser Asp Asn His Leu 100 105 110

Ser Ser Leu Ser Ser Ser Trp Phe Gly Pro Leu Ser Ser Leu Lys Tyr 115 120 125

Leu Asn Leu Met Gly Asn Pro Tyr Gln Thr Leu Gly Val Thr Ser Leu 130 135 140

WO 2004/094671 - 8 - PCT/US2004/012788

Phe Pro Asn Leu Thr Asn Leu Gln Thr Leu Arg Ile Gly Asn Val Glu 145 Thr Phe Ser Glu Ile Arg Arg Ile Asp Phe Ala Gly Leu Thr Ser Leu 165 Asn Glu Leu Glu Ile Lys Ala Leu Ser Leu Arg Asn Tyr Gln Ser Gln Ser Leu Lys Ser Ile Arg Asp Ile His His Leu Thr Leu His Leu Ser 200 Glu Ser Ala Phe Leu Leu Glu Ile Phe Ala Asp Ile Leu Ser Ser Val 215 Arg Tyr Leu Glu Leu Arg Asp Thr Asn Leu Ala Arg Phe Gln Phe Ser 235 Pro Leu Pro Val Asp Glu Val Ser Ser Pro Met Lys Lys Leu Ala Phe Arg Gly Ser Val Leu Thr Asp Glu Ser Phe Asn Glu Leu Leu Lys Leu 265 Leu Arg Tyr Ile Leu Glu Leu Ser Glu Val Glu Phe Asp Asp Cys Thr 280 Leu Asn Gly Leu Gly Asp Phe Asn Pro Ser Glu Ser Asp Val Val Ser Glu Leu Gly Lys Val Glu Thr Val Thr Ile Arg Arg Leu His Ile Pro 310 Gln Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Val Tyr Ser Leu Leu Glu 325 330 Lys Val Lys Arg Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro 345 Cys Ser Phe Ser Gln His Leu Lys Ser Leu Glu Phe Leu Asp Leu Ser Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Lys Gly 375 Ala Trp Pro Ser Leu Gln Thr Leu Val Leu Ser Gln Asn His Leu Arg Ser Met Gln Lys Thr Gly Glu Ile Leu Leu Thr Leu Lys Asn Leu Thr Ser Leu Asp Ile Ser Arg Asn Thr Phe His Pro Met Pro Asp Ser Cys Gln Trp Pro Glu Lys Met Arg Phe Leu Asn Leu Ser Ser Thr Gly Ile 440 Arg Val Val Lys Thr Cys Ile Pro Gln Thr Leu Glu Val Leu Asp Val Ser Asn Asn Asn Leu Asp Ser Phe Ser Leu Phe Leu Pro Arg Leu Gln

470 475 Glu Leu Tyr Ile Ser Arg Asn Lys Leu Lys Thr Leu Pro Asp Ala Ser 485 490 Leu Phe Pro Val Leu Leu Val Met Lys Ile Arg Glu Asn Ala Val Ser Thr Phe Ser Lys Asp Gln Leu Gly Ser Phe Pro Lys Leu Glu Thr Leu Glu Ala Gly Asp Asn His Phe Val Cys Ser Cys Glu Leu Leu Ser Phe Thr Met Glu Thr Pro Ala Leu Ala Gln Ile Leu Val Asp Trp Pro Asp 550 Ser Tyr Leu Cys Asp Ser Pro Pro Arg Leu His Gly His Arg Leu Gln 570 Asp Ala Arg Pro Ser Val Leu Glu Cys His Gln Ala Ala Leu Val Ser 585 Gly Val Cys Cys Ala Leu Leu Leu Leu Ile Leu Leu Val Gly Ala Leu Cys His His Phe His Gly Leu Trp Tyr Leu Arg Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro Lys Lys Ala Pro Cys Arg Asp Val Cys Tyr Asp Ala Phe Val Ser Tyr Ser Glu Gln Asp Ser His Trp Val Glu Asn Leu Met Val Gln Gln Leu Glu Asn Ser Asp Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe Val Pro Gly Lys Trp Ile Ile Asp Asn 680 Ile Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser Glu Asn Phe Val Arg Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser 710 His Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Val Leu Leu Glu Pro Ile Glu Arg Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu

Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Leu Asp Glu

Gly Gln Gln Glu Val Phe Trp Val Asn Leu Arg Thr Ala Ile Lys Ser

<210> 7 <211> 3029 <212> DNA

<213> Homo sapiens <400> 7 gcggccgcgt cgacgaaatg tctggatttg gactaaagaa aaaaggaaag gctagcagtc 60 atccaacaga atcatgagac agactttgcc ttgtatctac ttttggggggg gccttttgcc 120 ctttgggatg ctgtgtgcat cctccaccac caagtgcact gttagccatg aagttgctga 180 ctgcagccac ctgaagttga ctcaggtacc cgatgatcta cccacaaaca taacagtgtt 240 gaaccttacc cataatcaac tcagaagatt accagccgcc aacttcacaa ggtatagcca 300 gctaactagc ttggatgtag gatttaacac catctcaaaa ctggagccag aattgtgcca 360 gaaacttccc atgttaaaag ttttgaacct ccagcacaat gagctatctc aactttctga 420 taaaaccttt gccttctgca cgaatttgac tgaactccat ctcatgtcca actcaatcca 480 gaaaattaaa aataatccct ttgtcaagca gaagaattta atcacattag atctgtctca 540 taatggcttg tcatctacaa aattaggaac tcaggttcag ctggaaaatc tccaagagct 600 tctattatca aacaataaaa ttcaagcgct aaaaagtgaa gaactggata tctttgccaa 660 ttcatcttta aaaaaattag agttgtcatc gaatcaaatt aaagagtttt ctccagggtg 720 ttttcacgca attggaagat tatttggcct ctttctgaac aatgtccagc tgggtcccag 780 ccttacagag aagctatgtt tggaattagc aaacacaagc attcggaatc tqtctctqaq 840 taacagccag ctgtccacca ccagcaatac aactttcttg ggactaaagt ggacaaatct 900 cactatgete gatettteet acaacaactt aaatgtggtt ggtaacgatt cetttgettg 960 gcttccacaa ctagaatatt tcttcctaga gtataataat atacagcatt tgttttctca 1020 ctctttgcac gggcttttca atgtgaggta cctgaatttg aaacggtctt ttactaaaca 1080 aagtatttoo ottgootoao toocoaagat tgatgatttt tottttoagt ggotaaaatg 1140 tttggagcac cttaacatgg aagataatga tattccaggc ataaaaagca atatgttcac 1200 aggattgata aacctgaaat acttaagtet atecaactee tttacaagtt tgegaacttt 1260 gacaaatgaa acatttgtat cacttgctca ttctccctta cacatactca acctaaccaa 1320 gaataaaatc tcaaaaatag agagtgatgc tttctcttgg ttgggccacc tagaagtact 1380 tgacctgggc cttaatgaaa ttgggcaaga actcacaggc caggaatgga gaggtctaga 1440 aaatatttto gaaatotato tttootacaa caagtacotg cagotgacta qqaactoott 1500 tgccttggtc ccaagccttc aacgactgat gctccgaagg gtggccctta aaaatgtgga 1560 tageteteet teaceattee ageetetteg taacttgace attetggate taageaacaa 1620 caacatagee aacataaatg atgacatgtt ggagggtett gagaaactag aaattetega 1680 tttgcagcat aacaacttag cacggctctg gaaacacgca aaccctggtg gtcccattta 1740 tttcctaaag ggtctgtctc acctccacat ccttaacttg gagtccaacg gctttgacga 1800

gatcccagtt taatttaaac	gaggtcttca acacttccag	aggatttatt catctgtctt	tgaactaaag taataatcag	atcatcgatt gtgtctctaa	taggattgaa agtcattgaa	1860 1920
ccttcagaag	aatctcataa	catccgttga	gaagaaggtt	ttcgggccag	ctttcaggaa	1980
cctgactgag	ttagatatgc	gctttaatcc	ctttgattgc	acgtgtgaaa	gtattgcctg	2040
gtttgttaat	tggattaacg	agacccatac	caacatccct	gagctgtcaa	gccactacct	2100
ttgcaacact	ccacctcact	atcatgggtt	cccagtgaga	ctttttgata	catcatcttg	2160
caaagacagt	gccccctttg	aactctttt	catgatcaat	accagtatcc	tgttgatttt	2220
tatctttatt	gtacttctca	tccactttga	gggctggagg	atatctttt	attggaatgt	2280
ttcagtacat	cgagttcttg	gtttcaaaga	aatagacaga	cagacagaac	agtttgaata	2340
tgcagcatat	ataattcatg	cctataaaga	taaggattgg	gtctgggaac	atttctcttc	2400
aatggaaaag	gaagaccaat	ctctcaaatt	ttgtctggaa	gaaagggact	ttgaggcggg	2460
tgtttttgaa	ctagaagcaa	ttgttaacag	catcaaaaga	agcagaaaaa	ttatttttgt	2520
tataacacac	catctattaa	aagacccatt	atgcaaaaga	ttcaaggtac	atcatgcagt	2580
tcaacaagct	attgaacaaa	atctggattc	cattatattg	gttttccttg	aggagattcc	2640
agattataaa	ctgaaccatg	cactctgttt	gcgaagagga	atgtttaaat	ctcactgcat	2700
cttgaactgg	ccagttcaga	aagaacggat	aggtgccttt	cgtcataaat	tgcaagtagc	2760
acttggatcc	aaaaactctg	tacattaaat	ttatttaaat	attcaattag	caaaggagaa	2820
	tttaaaaagt					2880
	tatttgtaaa					2940
	atttcaggcc		aattgactta	attttaccca	aaataaaaca	3000
tataagcacg	caaaaaaaa	aaaaaaaa		•		3029

<210> 8

<211> 904 <212> PRT <213> Homo sapiens

<400> 8

Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro

Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His

Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp

Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg 55

Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu

WO 2004/094671 - 12 - PCT/US2004/012788

70 75 Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln 90 Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu 120 His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val 135 Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser 150 Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu 170 Leu Leu Ser Asn Asn Lys Ile Gln Ala Leu Lys Ser Glu Glu Leu Asp Ile Phe Ala Asn Ser Ser Leu Lys Lys Leu Glu Leu Ser Ser Asn Gln 200 Ile Lys Glu Phe Ser Pro Gly Cys Phe His Ala Ile Gly Arg Leu Phe 215 Gly Leu Phe Leu Asn Asn Val Gln Leu Gly Pro Ser Leu Thr Glu Lys Leu Cys Leu Glu Leu Ala Asn Thr Ser Ile Arg Asn Leu Ser Leu Ser · 250 Asn Ser Gln Leu Ser Thr Thr Ser Asn Thr Thr Phe Leu Gly Leu Lys 265 Trp Thr Asn Leu Thr Met Leu Asp Leu Ser Tyr Asn Asn Leu Asn Val Val Gly Asn Asp Ser Phe Ala Trp Leu Pro Gln Leu Glu Tyr Phe Phe Leu Glu Tyr Asn Asn Ile Gln His Leu Phe Ser His Ser Leu His Gly 310 Leu Phe Asn Val Arg Tyr Leu Asn Leu Lys Arg Ser Phe Thr Lys Gln 330 Ser Ile Ser Leu Ala Ser Leu Pro Lys Ile Asp Asp Phe Ser Phe Gln 345 Trp Leu Lys Cys Leu Glu His Leu Asn Met Glu Asp Asn Asp Ile Pro Gly Ile Lys Ser Asn Met Phe Thr Gly Leu Ile Asn Leu Lys Tyr Leu 375 Ser Leu Ser Asn Ser Phe Thr Ser Leu Arg Thr Leu Thr Asn Glu Thr 390 Phe Val Ser Leu Ala His Ser Pro Leu His Ile Leu Asn Leu Thr Lys

Ası	Lys	Ile	Ser 420	405 Lys	Ile	Glu	Ser	Asp 425	410 Ala	Phe	Ser	Trp	Leu 430	415 Gly	His
Let	ı Glu	Val 435	Leu	Asp	Leu	Gly	Leu 440	Asn	Glu	Ile	Gly	Gln 445	Glu	Leu	Thr
Gly	Gln 450	Glu	Trp	Arg	Gly	Leu 455	Glu	Asn	Ile	Phe	Glu 460	Ile	Tyr	Leu	Ser
Туг 465	Asn	Lys	Tyr	Leu	Gln 470	Leu	Thr	Arg	Asn	Ser 475	Phe	Ala	Leu	Val	Pro 480
Ser	Leu	Gln	Arg	Leu 485	Met	Leu	Arg	Arg	Val 490	Ala	Leu	Lys	Asn	Val 495	Asp
Ser	Ser	Pro	Ser 500	Pro	Phe	Gln	Pro	Leu 505	Arg	Asn	Leu	Thr	Ile 510	Leu	Asp
Let	ser	Asn 515	Asn	Asn	Ile	Ala	Asn 520	Ile	Asn	Asp	Asp	Met 525	Leu	Glu	Gly
Leu	Glu 530	ГÀЗ	Leu	Glu	Ile	Leu 535	Asp	Leu	Gln	His	Asn 540	Asn	Leu	Ala	Arg
545				•	550					555				_	560
Let	ser	His	Leu	His 565	Ile	Leu	Asn	Leu	Glu 570	Ser	Asn	Gly	Phe	Asp 575	Glu
	Pro		580					585				_	590		
	ı Gly	595					600					605			
	0 Val 610					615					620				
625					630					635					640
	Met		•	645					650					655	
	val		660					665					670		
	His	675					680					685			
	690		_			695		_	_		700				
705					710					715					720
	Leu			725					730					735	
Ser	· Val	His	Ara	Va]	Leu	Glv	Phe	LVS	Glu	Tle	Asn	Ara	Glr	Thr	Glu

WO 2004/094671 - 14 - PCT/US2004/012788

740 745 750 Gln Phe Glu Tyr Ala Ala Tyr Ile Ile His Ala Tyr Lys Asp Lys Asp Trp Val Trp Glu His Phe Ser Ser Met Glu Lys Glu Asp Gln Ser Leu 770 775 Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Phe Glu Leu Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe Val 805 810 Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Lys Arg Phe Lys Val 825 His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile Ile 840 845 Leu Val Phe Leu Glu Glu Ile Pro Asp Tyr Lys Leu Asn His Ala Leu 855 Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp Pro Val Gln Lys Glu Arg Ile Gly Ala Phe Arg His Lys Leu Gln Val Ala 890 Leu Gly Ser Lys Asn Ser Val His 900 <210> 9 <211> 3310 <212> DNA <213> murine tagaatatga tacagggatt gcacccataa tctgggctga atcatgaaag ggtgttcctc 60 ttatctaatg tactcctttg ggggactttt gtccctatgg attcttctgg tgtcttccac 120 aaaccaatgc actgtgagat acaacgtagc tgactgcagc catttgaagc taacacacat 180 acctgatgat cttccctcta acataacagt gttgaatctt actcacaacc aactcagaag 240 attaccacct accaacttta caagatacag ccaacttgct atcttggatg caggatttaa 300 ctccatttca aaactggagc cagaactgtg ccaaatactc cctttgttga aagtattgaa 360 cctgcaacat aatgagctct ctcagatttc tgatcaaacc tttgtcttct gcacgaacct 420 gacagaactc gatctaatgt ctaactcaat acacaaaatt aaaagcaacc ctttcaaaaa 480 ccagaagaat ctaatcaaat tagatttgtc tcataatggt ttatcatcta caaagttggg 540 aacgggggtc caactggaga acctccaaga actgctctta gcaaaaaata aaatccttgc 600 gttgcgaagt gaagaacttg agtttcttgg caattcttct ttacgaaagt tggacttgtc 660

atcaaatcca cttaaagagt tctccccggg gtgtttccag acaattggca agttattcgc

720

_	aacaacgccc agcatccaga	_				780 840
gagcactttc	tctgggctga	agtggacaaa	tctcacccag	ctcgatcttt	cctacaacaa	900
cctccatgat	gtcggcaacg	gttccttctc	ctatctccca	agcctgaggt	atctgtctct	960
ggagtacaac	aatatacagc	gtctgtcccc	tcgctctttt	tatggactct	ccaacctgag	1020
gtacctgagt	ttgaagcgag	catttactaa	gcaaagtgtt	tcacttgctt	cacatcccaa	1080
cattgacgat	ttttcctttc	aatggttaaa	atatttggaa	tatctcaaca	tggatgacaa	1140
taatattcca	agtaccaaaa	gcaatacctt	cacgggattg	gtgagtctga	agtacctaag	1200
tctttccaaa	actttcacaa	gtttgcaaac	tttaacaaat	gaaacatttg	tgtcacttgc	1260
tcattctccc	ttgctcactc	tcaacttaac	gaaaaatcac	atctcaaaaa	tagcaaatgg	1320
tactttctct	tggttaggcc	aactcaggat	acttgatctc	ggccttaatg	aaattgaaca	1380
aaaactcagc	ggccaggaat	ggagaggtct	gagaaatata	tttgagatct	acctatccta	1440
taacaaatac	ctccaactgt	ctaccagttc	ctttgcattg	gtccccagcc	ttcaaagact	1500
gatgctcagg	agggtggccc	ttaaaaatgt	ggatatctcc	ccttcacctt	teegecetet	1560
tcgtaacttg	accattctgg	acttaagcaa	caacaacata	gccaacataa	atgaggactt	1620
gctggagggt	cttgagaatc	tagaaatcct	ggattttcag	cacaataact	tagccaggct	1680
ctggaaacgc	gcaaaccccg	gtggtcccgt	taatttcctg	aaggggctgt	ctcacctcca	1740
catcttgaat	ttagagtcca	acggcttaga	tgaaatccca	gtcggggttt	tcaagaactt	1800
attcgaacta	aagagcatca	atctaggact	gaataactta	aacaaacttg	aaccattcat	1860
ttttgatgac	cagacatctc	taaggtcact	gaacctccag	aagaacctca	taacatctgt	1920
tgagaaggat	gttttcgggc	cgccttttca	aaacctgaac	agtttagata	tgcgcttcaa	1980
tccgttcgac	tgcacgtgtg	aaagtatttc	ctggtttgtt	aactggatca	accagaccca	2040
cactaatato	tttgagctgt	ccactcacta	cctctgtaac	actccacatc	attattatgg	2100
cttccccctg	aagcttttcg	atacatcatc	ctgtaaagac	agcgccccct	ttgaactcct	2160
cttcataatc	agcaccagta	tgctcctggt	ttttatactt	gtggtactgc	tcattcacat	2220
cgagggctgg	aggatctctt	tttactggaa	tgtttcagt <u>g</u>	catcggattc	ttggtttcaa	2280
ggaaatagac	acacaggctg	agcagtttga	atatacagcc	tacataattc	atgcccataa	2340
agacagagac	: tgggtctggg	aacatttctc	cccaatggaa	gaacaagacc	aatctctcaa	2400
attttgccta	gaagaaaggg	actttgaagc	aggcgtcctt	ggacttgaag	caattgttaa	2460
tagcatcaaa	agaagccgaa	aaatcatttt	cgttatcaca	caccatttat	taaaagaccc	2520
tctgtgcaga	agattcaagg	tacatcacgo	agttcagcaa	gctattgagc	aaaatctgga	2580
ttcaattata	ctgattttc	tccagaatat	tccagattat	aaactaaacc	atgcactctg	2640

WO 2004/094671 - 16 - PCT/US2004/012788

tttgcgaaga	ggaatgttta	aatctcattg	catcttgaac	tggccagttc	agaaagaacg	2700
gataaatgcc	tttcatcata	aattgcaagt	agcacttgga	tctcggaatt	cagcacatta	2760
aactcatttg	aagatttgga	gtcggtaaag	ggatagatcc	aatttataaa	ggtccatcat	2820
gaatctaagt	tttacttgaa	agttttgtat	atttatttat	atgtatagat	gatgatatta	2880
catcacaatc	caatctcagt	tttgaaatat	ttcggcttat	ttcattgaca	tctggtttat	2940
tcactccaaa	taaacacatg	ggcagttaaa	aacatcctct	attaatagat	tacccattaa	3000
ttcttgaggt	gtatcacagc	tttaaagggt	tttaaatatt	tttatataaa	taagactgag	3060
agttttataa	atgtaatttt	ttaaaactcg	agtcttactg	tgtagctcag	aaaggcctgg	3120
aaattaatat	attagagagt	catgtcttga	acttatttat	ctctgcctcc	ctctgtctcc	3180
agagtgttgc	ttttaagggc	atgtagcacc	acacccagct	atgtacgtgt	gggattttat	3240
aatgctcatt	tttgagacgt	ttatagaata	aaagataatt	gcttttatgg	tataaggcta	3300
cttgaggtaa						3310

<210> 10

<211> 905

<212> PRT

<213> murine

<400> 10

Met Lys Gly Cys Ser Ser Tyr Leu Met Tyr Ser Phe Gly Gly Leu Leu 1 5 10 15

Ser Leu Trp Ile Leu Leu Val Ser Ser Thr Asn Gln Cys Thr Val Arg 20 25 30

Tyr Asn Val Ala Asp Cys Ser His Leu Lys Leu Thr His Ile Pro Asp 35 40 45

Asp Leu Pro Ser Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu 50 55 60

Arg Arg Leu Pro Pro Thr Asn Phe Thr Arg Tyr Ser Gln Leu Ala Ile 65 70 75 80

Leu Asp Ala Gly Phe Asn Ser Ile Ser Lys Leu Glu Pro Glu Leu Cys 85 90 95

Gln Ile Leu Pro Leu Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu 100 105 110

Ser Gln Ile Ser Asp'Gln Thr Phe Val Phe Cys Thr Asn Leu Thr Glu 115 120 125

Leu Asp Leu Met Ser Asn Ser Ile His Lys Ile Lys Ser Asn Pro Phe 130 135 140

Lys Asn Gln Lys Asn Leu Ile Lys Leu Asp Leu Ser His Asn Gly Leu 145 150 155 160

WO 2004/094671 - 17 - PCT/US2004/012788

Ser Ser Thr Lys Leu Gly Thr Gly Val Gln Leu Glu Asn Leu Gln Glu Leu Leu Leu Ala Lys Asn Lys Ile Leu Ala Leu Arg Ser Glu Glu Leu 185 Glu Phe Leu Gly Asn Ser Ser Leu Arg Lys Leu Asp Leu Ser Ser Asn 200 Pro Leu Lys Glu Phe Ser Pro Gly Cys Phe Gln Thr Ile Gly Lys Leu Phe Ala Leu Leu Leu Asn Asn Ala Gln Leu Asn Pro His Leu Thr Glu 230 235 Lys Leu Cys Trp Glu Leu Ser Asn Thr Ser Ile Gln Asn Leu Ser Leu Ala Asn Asn Gln Leu Leu Ala Thr Ser Glu Ser Thr Phe Ser Gly Leu 265 Lys Trp Thr Asn Leu Thr Gln Leu Asp Leu Ser Tyr Asn Asn Leu His 280 Asp Val Gly Asn Gly Ser Phe Ser Tyr Leu Pro Ser Leu Arg Tyr Leu Ser Leu Glu Tyr Asn Asn Ile Gln Arg Leu Ser Pro Arg Ser Phe Tyr Gly Leu Ser Asn Leu Arg Tyr Leu Ser Leu Lys Arg Ala Phe Thr Lys 330 Gln Ser Val Ser Leu Ala Ser His Pro Asn Ile Asp Asp Phe Ser Phe Gln Trp Leu Lys Tyr Leu Glu Tyr Leu Asn Met Asp Asp Asn Asn Ile Pro Ser Thr Lys Ser Asn Thr Phe Thr Gly Leu Val Ser Leu Lys Tyr 375 Leu Ser Leu Ser Lys Thr Phe Thr Ser Leu Gln Thr Leu Thr Asn Glu 390 395 Thr Phe Val Ser Leu Ala His Ser Pro Leu Leu Thr Leu Asn Leu Thr Lys Asn His Ile Ser Lys Ile Ala Asn Gly Thr Phe Ser Trp Leu Gly Gln Leu Arg Ile Leu Asp Leu Gly Leu Asn Glu Ile Glu Gln Lys Leu 440 Ser Gly Gln Glu Trp Arg Gly Leu Arg Asn Ile Phe Glu Ile Tyr Leu Ser Tyr Asn Lys Tyr Leu Gln Leu Ser Thr Ser Ser Phe Ala Leu Val 470 475 Pro Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val

WO 2004/094671 - 18 - PCT/US2004/012788

485 490 495 Asp Ile Ser Pro Ser Pro Phe Arg Pro Leu Arg Asn Leu Thr Ile Leu 505 Asp Leu Ser Asn Asn Asn Ile Ala Asn Ile Asn Glu Asp Leu Leu Glu 520 Gly Leu Glu Asn Leu Glu Ile Leu Asp Phe Gln His Asn Asn Leu Ala Arg Leu Trp Lys Arg Ala Asn Pro Gly Gly Pro Val Asn Phe Leu Lys 555 Gly Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Leu Asp Glu Ile Pro Val Gly Val Phe Lys Asn Leu Phe Glu Leu Lys Ser Ile 585 Asn Leu Gly Leu Asn Asn Leu Asn Lys Leu Glu Pro Phe Ile Phe Asp 600 Asp Gln Thr Ser Leu Arg Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr Ser Val Glu Lys Asp Val Phe Gly Pro Pro Phe Gln Asn Leu Asn Ser 630 Leu Asp Met Arg Phe Asn Pro Phe Asp Cys Thr Cys Glu Ser Ile Ser 645 650 Trp Phe Val Asn Trp Ile Asn Gln Thr His Thr Asn Ile Phe Glu Leu 665 Ser Thr His Tyr Leu Cys Asn Thr Pro His His Tyr Tyr Gly Phe Pro Leu Lys Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu Leu Leu Phe Ile Ile Ser Thr Ser Met Leu Leu Val Phe Ile Leu Val Val Leu Leu Ile His Ile Glu Gly Trp Arg Ile Ser Phe Tyr Trp Asn Val Ser Val His Arg Ile Leu Gly Phe Lys Glu Ile Asp Thr Gln Ala Glu Gln Phe Glu Tyr Thr Ala Tyr Ile Ile His Ala His Lys Asp Arg 760 Asp Trp Val Trp Glu His Phe Ser Pro Met Glu Glu Gln Asp Gln Ser Leu Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Leu Gly Leu Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe 810 Val Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Arg Arg Phe Lys

820 825 830
Val His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile
835 840 845

Ile Leu Ile Phe Leu Gln Asn Ile Pro Asp Tyr Lys Leu Asn His Ala 850 855 860

Leu Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp 865 870 875 880

Pro Val Gln Lys Glu Arg Ile Asn Ala Phe His His Lys Leu Gln Val 885 890 895

Ala Leu Gly Ser Arg Asn Ser Ala His 900 905

<210> 11

<211> 3811

<212> DNA

<213> Homo sapiens

<400> 11

acagggccac tgctgctcac agaagcagtg aggatgatgc caggatgatg tctgcctcgc 60 gcctggctgg gactctgatc ccagccatgg ccttcctctc ctgcgtgaga ccagaaaget 120 gggagccctg cgtggagact tggccctaaa ccacacagaa gagctggcat gaaacccaga 180 gettteagae teeggageet eageeettea eeeegattee attgettett getaaatget 240 gccgttttat cacggaggtg gttcctaata ttacttatca atgcatggag ctgaatttct 300 acaaaatccc cgacaacctc cccttctcaa ccaagaacct ggacctgagc tttaatcccc 360 tgaggcattt aggcagctat agcttcttca gtttcccaga actgcaggtg ctggatttat 420 ccaggtgtga aatccagaca attgaagatg gggcatatca gagcctaagc cacctctcta 480 ccttaatatt gacaggaaac cccatccaga gtttagccct gggagccttt tctggactat 540 caagtttaca gaagctggtg gctgtggaga caaatctagc atctctagag aacttcccca 600 ttggacatct caaaactttg aaagaactta atgtggctca caatcttatc caatctttca 660 aattacctga gtatttttct aatctgacca atctagagca cttggacctt tccagcaaca 720 agattcaaag tatttattgc acagacttgc gggttctaca tcaaatgccc ctactcaatc 780 tetetttaga eetgteeetg aaceetatga aetttateea aecaggtgea tttaaagaaa 840 ttaggcttca taagctgact ttaagaaata attttgatag tttaaatgta atgaaaactt 900 gtattcaagg tetggetggt ttagaagtee ategtttggt tetgggagaa tttagaaatg 960 aaggaaactt ggaaaagttt gacaaatctg ctctagaggg cctgtgcaat ttgaccattg 1020 aagaatteeg attageatae ttagactaet acetegatga tattattgae ttatttaatt 1080 gtttgacaaa tgtttcttca ttttccctgg tgagtgtgac tattgaaagg gtaaaagact 1140 tttcttataa tttcggatgg caacatttag aattagttaa ctqtaaattt ggacagtttc 1200

ccacattgaa actcaaatct	ctcaaaaggc	ttactttcac	ttccaacaaa	ggtgggaatg	1260
ctttttcaga agttgatcta	ccaagccttg	agtttctaga	tctcagtaga	aatggcttga	1320
gtttcaaagg ttgctgttct	caaagtgatt	ttgggacaac	cagcctaaag	tatttagatc	1380
tgagetteaa tggtgttatt	accatgagtt	caaacttctt	gggcttagaa	caactagaac	1440
atctggattt ccagcattcc	aatttgaaac	aaatgagtga	gttttcagta	ttcctatcac	1500
tcagaaacct catttacctt	gacatttctc	atactcacac	cagagttgct	ttcaatggca	1560
tcttcaatgg cttgtccagt	ctcgaagtct	tgaaaatggc	tggcaattct	ttccaggaaa	1620
acttecttee agatatette	acagagctga	gaaacttgac	cttcctggac	ctctctcagt	1680
gtcaactgga gcagttgtct	ccaacagcat	ttaactcact	ctccagtctt	caggtactaa	1740
atatgagcca caacaacttc	ttttcattgg	atacgtttcc	ttataagtgt	ctgaactccc	1800
tccaggttct tgattacagt	ctcaatcaca	taatgacttc	caaaaaacag	gaactacagc	1860
attttccaag tagtctagct	ttcttaaatc	ttactcagaa	tgactttgct	tgtacttgtg	1920
aacaccagag tttcctgcaa	tggatcaagg	accagaggca	gctcttggtg	gaagttgaac	1980
gaatggaatg tgcaacacct	tcagataagc	agggcatgcc	tgtgctgagt	ttgaatatca	2040
cctgtcagat gaataagacc	atcattggtg	tgtcggtcct	cagtgtgctt	gtagtatctg	2100
ttgtagcagt tctggtctat	aagttctatt	ttcacctgat	gcttcttgct	ggctgcataa	2160
agtatggtag aggtgaaaac	atctatgatg	cctttgttat	ctactcaagc	caggatgagg	2220
actgggtaag gaatgagcta	gtaaagaatt	tagaagaagg	ggtgcctcca	tttcagctct	2280
gccttcacta cagagacttt	attcccggtg	tggccattgc	tgccaacatc	atccatgaag	2340
gtttccataa aagccgaaag	gtgattgttg	tggtgtccca	gcacttcatc	cagagccgct	2400
ggtgtatctt tgaatatgag	attgctcaga	cctggcagtt	tctgagcagt	cgtgctggta	2460
tcatcttcat tgtcctgcag	aaggtggaga	agaccctgct	caggcagcag	gtggagctgt	2520
accgccttct cagcaggaac	acttacctgg	agtgggagga	cagtgtcctg	gggcggcaca	2580
tcttctggag acgactcaga	aaagccctgc	tggatggtaa	atcatggaat	ccagaaggaa	2640
cagtgggtac aggatgcaat	tggcaggaag	caacatctat	ctgaagagga	aaaataaaaa	2700
cctcctgagg catttcttgc	ccagctgggt	ccaacacttg	ttcagttaat	aagtattaaa	2760
tgctgccaca tgtcaggcct	tatgctaagg	gtgagtaatt	ccatggtgca	ctagatatgc	2820
agggctgcta atctcaagga	gcttccagtg	cagagggaat	aaatgctaga	ctaaaataca	2880
gagtetteca ggtgggcatt	tcaaccaact	cagtcaagga	acccatgaca	aagaaagtca	2940
tttcaactct tacctcatca	agttgaataa	agacagagaa	aacagaaaga	gacattgttc	3000
ttttcctgag tcttttgaat	ggaaattgta	ttatgttata	gccatcataa	aaccattttg	3060

WO 2004/094671 - 21 - PCT/US2004/012788

gtagttttga	ctgaactggg	tgttcacttt	ttcctttttg	attgaataca	atttaaattc	3120
tacttgatga	ctgcagtcgt	caaggggctc	ctgatgcaag	atgccccttc	cattttaagt	3180
ctgtctcctt	acagaggtta	aagtctaatg	gctaattcct	aaggaaacct	gattaacaca	3240
tgctcacaac	catcctggtc	attctcgaac	atgttctatt	ttttaactaa	tcacccctga	3300
tatatttta	tttttatata	tccagttttc	atttttttac	gtcttgccta	taagctaata	3360
tcataaataa	ggttgtttaa	gacgtgcttc	aaatatccat	attaaccact	atttttcaag	3420
gaagtatgga	aaagtacact	ctgtcacttt	gtcactcgat	gtcattccaa	agttattgcc	3480
tactaagtaa	tgactgtcat	gaaagcagca	ttgaaataat	ttgtttaaag	ggggcactct	3540
tttaaacggg	aagaaaattt	ccgcttcctg	gtcttatcat	ggacaatttg	ggctataggc	3600
atgaaggaag	tgggattacc	tcaggaagtc	accttttctt	gattccagaa	acatatgggc	3660
tgataaaccc	ggggtgacct	catgaaatga	gttgcagcag	atgtttattt	ttttcagaac	3720
aagtgatgtt	tgatggacct	atgaatctat	ttagggagac	acagatggct	gggatccctc	3780
ccctgtaccc	ttctcactga	caggagaact	a			3811

<210> 12

<211> 2845

<212> DNA

<213> Homo, sapiens

<400> 12

cctctcaccc tttagcccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag 60 gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca 120 ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct 180 cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa 240 gctgggagcc ctgcgtggag gtgtgaaatc cagacaattg aagatggggc atatcagagc 300 ctaagccacc tctctacctt aatattgaca ggaaacccca tccagagttt agccctggga 360 gccttttctg gactatcaag tttacagaag ctggtggctg tggagacaaa tctagcatct 420 ctagagaact tccccattgg acatctcaaa actttgaaag aacttaatgt ggctcacaat 480 cttatccaat ctttcaaatt acctgagtat ttttctaatc tgaccaatct agagcacttg gacctttcca gcaacaagat tcaaagtatt tattgcacag acttgcgggt tctacatcaa 600 atgcccctac tcaatctctc tttagacctg tccctgaacc ctatgaactt tatccaacca 660 ggtgcattta aagaaattag gcttcataag ctgactttaa gaaataattt tgatagttta 720 aatgtaatga aaacttgtat tcaaggtctg gctggtttag aagtccatcg tttggttctg 780 ggagaattta gaaatgaagg aaacttggaa aagtttgaca aatctgctct agagggcctg 840

tgcaatttga attgacttat	ccattgaaga ttaattgttt	attccgatta gacaaatgtt	gcatacttag tcttcatttt	actactacct ccctggtgag	cgatgatatt tgtgactatt	900 960
gaaagggtaa	aagacttttc	ttataatttc	ggatggcaac	atttagaatt	agttaactgt	1020
aaatttggac	agtttcccac	attgaaactc	aaatctctca	aaaggcttac	tttcacttcc	1080
aacaaaggtg	ggaatgcttt	ttcagaagtt	gatctaccaa	gccttgagtt	tctagatctc	1140
agtagaaatg	gcttgagttt	caaaggttgc	tgttctcaaa	gtgattttgg	gacaaccagc	1200
ctaaagtatt	tagatctgag	cttcaatggt	gttattacca	tgagttcaaa	cttcttgggc	1260
ttagaacaac	tagaacatct	ggatttccag	cattccaatt	tgaaacaaat	gagtgagttt	1320
tcagtattcc	tatcactcag	aaacctcatt	taccttgaca	tttctcatac	tcacaccaga	1380
gttgctttca	atggcatctt	caatggcttg	tccagtctcg	aagtcttgaa	aatggctggc	1440
aattctttcc	aggaaaactt	ccttccagat	atcttcacag	agctgagaaa	cttgaccttc	1500
ctggacctct	ctcagtgtca	actggagcag	ttgtctccaa	cagcatttaa	ctcactctcc	1560
agtcttcagg	tactaaatat	gagccacaac	aacttcttt	cattggatac	gtttccttat	1620
aagtgtctga	actccctcca	ggttcttgat	tacagtctca	atcacataat	gacttccaaa	1680
aaacaggaac	tacagcattt	tccaagtagt	ctagctttct	taaatcttac	tcagaatgac	1740
tttgcttgta	cttgtgaaca	ccagagtttc	ctgcaatgga	tcaaggacca	gaggcagctc	1800
ttggtggaag	ttgaacgaat	ggaatgtgca	acaccttcag	ataagcaggg	catgcctgtg	1860
ctgagtttga	atatcacctg	tcagatgaat	aagaccatca	ttggtgtgtc	ggtcctcagt	1920
gtgcttgtag	tatctgttgt	agcagttctg	gtctataagt	tctattttca	cctgatgctt	1980
cttgctggct	gcataaagta	tggtagaggt	gaaaacatct	atgatgcctt	tgttatctac	2040
tcaagccagg	atgaggactg	ggtaaggaat	gagctagtaa	agaatttaga	agaaggggtg	2100
cctccatttc	agctctgcct	tcactacaga	gactttattc	ccggtgtggc	cattgctgcc	2160
aacatcatcc	atgaaggttt	ccataaaagc	cgaaaggtga	ttgttgtggt	gtcccagcac	2220
ttcatccaga	gccgctggtg	tatctttgaa	tatgagattg	ctcagacctg	gcagtttctg	2280
agcagtcgtg	ctggtatcat	cttcattgtc	ctgcagaagg	tggagaagac	cctgctcagg	2340
cagcaggtgg	agctgtaccg	ccttctcagc	aggaacactt	acctggagtg	ggaggacagt	2400
gtcctggggc	ggcacatctt	ctggagacga	ctcagaaaag	ccctgctgga	tggtaaatca	2460
tggaatccag	aaggaacagt	gggtacagga	tgcaattggc	aggaagcaac	atctatctga	2520
agaggaaaaa	taaaaacctc	ctgaggcatt	tcttgcccag	ctgggtccaa	cacttgttca	2580
gttaataagt	attaaatgct	gccacatgtc	aggccttatg	ctaagggtga	gtaattccat	2640
ggtgcactag	atatgcaggg	ctgctaatct	caaggagctt	ccagtgcaga	gggaataaat	2700
gctagactaa	aatacagagt	cttccaggtg	ggcatttcaa	ccaactcagt	caaggaaccc	2760

atgacaaaga	aagtcatttc	aactcttacc	tcatcaagtt	gaataaagac	agagaaaaca	2820
gaaaaaaaaa	aaaaaaaaa	aaaaa				2845
<210> 13 <211> 3767 <212> DNA <213> Homo	7 o sapiens					
<400> 13	No. de de la constant					
	tttagcccag					60
	caccagtgcc					120
ttcacagggc	cactgctgct	cacagaagca	gtgaggatga	tgccaggatg	atgtctgcct	180
cgcgcctggc	tgggactctg	atcccagcca	tggccttcct	ctcctgcgtg	agaccagaaa	240
gctgggagcc	ctgcgtggag	acttggccct	aaaccacaca	gaagagctgg	catgaaaccc	300
agagctttca	gactccggag	cctcagccct	tcaccccgat	tccattgctt	cttgctaaat	360
gctgccgttt	tatcacggag	gtgtgaaatc	cagacaattg	aagatggggc	atatcagagc	420
ctaagccacc	tctctacctt	aatattgaca	ggaaacccca	tccagagttt	agccctggga	480
gccttttctg	gactatcaag	tttacagaag	ctggtggctg	tggagacaaa	tctagcatct	540
ctagagaact	tccccattgg	acatctcaaa	actttgaaag	aacttaatgt	ggctcacaat	600
cttatccaat	ctttcaaatt	acctgagtat	ttttctaatc	tgaccaatct	agagcacttg	660
gacctttcca	gcaacaagat	tcaaagtatt	tattgcacag	acttgcgggt	tctacatcaa	720
atgcccctac	tcaatctctc	tttagacctg	tccctgaacc	ctatgaactt	tatccaacca	780
ggtgcattta	aagaaattag	gcttcataag	ctgactttaa	gaaataattt	tgatagttta	840
aatgtaatga	aaacttgtat	tcaaggtctg	gctggtttag	aagtccatcg	tttggttctg	900
ggagaattta	gaaatgaagg	aaacttggaa	aagtttgaca	aatctgctct	agagggcctg	960
	ccattgaaga					1020
	ttaattgttt					1080
	aagacttttc					1140
	agtttcccac					1200
	ggaatgcttt					1260
	gcttgagttt					1320
	tagatctgag					1380
	tagaacatct					1440
tcagtattcc	tatcactcag	aaacctcatt	taccttgaca	tttctcatac	tcacaccaga	1500

gttgctttca aattctttcc	atggcatctt aggaaaactt	caatggcttg ccttccagat	tecagteteg atetteacag	aagtcttgaa agctgagaaa	aatggctggc cttgaccttc	1560 1620
ctggacctct	ctcagtgtca	actggagcag	ttgtctccaa	cagcatttaa	ctcactctcc	1680
agtcttcagg	tactaaatat	gagccacaac	aacttctttt	cattggatac	gtttccttat	1740
aagtgtctga	actccctcca	ggttcttgat	tacagtctca	atcacataat	gacttccaaa	1800
aaacaggaac	tacagcattt	tccaagtagt	ctagctttct	taaatcttac	tcagaatgac	1860
tttgcttgta	cttgtgaaca	ccagagtttc	ctgcaatgga	tcaaggacca	gaggcagctc	1920
ttggtggaag	ttgaacgaat	ggaatgtgca	acaccttcag	ataagcaggg	catgcctgtg	1980
ctgagtttga	atatcacctg	tcagatgaat	aagaccatca	ttggtgtgtc	ggtcctcagt	2040
gtgcttgtag	tatctgttgt	agcagttctg	gtctataagt	tctattttca	cctgatgctt	2100
cttgctggct	gcataaagta	tggtagaggt	gaaaacatct	atgatgcctt	tgttatctac	2160
tcaagccagg	atgaggactg	ggtaaggaat	gagctagtaa	agaatttaga	agaaggggtg	2220
cctccatttc	agctctgcct	tcactacaga	gactttattc	ccggtgtggc	cattgctgcc	2280
aacatcatcc	atgaaggttt	ccataaaagc	cgaaaggtga	ttgttgtggt	gtcccagcac	2340
ttcatccaga	gccgctggtg	tatctttgaa	tatgagattg	ctcagacctg	gcagtttctg	2400
agcagtcgtg	ctggtatcat	cttcattgtc	ctgcagaagg	tggagaagac	cctgctcagg	2460
cagcaggtgg	agctgtaccg	ccttctcagc	aggaacactt	acctggagtg	ggaggacagt	2520
gtcctggggc	ggcacatctt	ctggagacga	ctcagaaaag	ccctgctgga	tggtaaatca	2580
tggaatccag	aaggaacagt	gggtacagga	tgcaattggc	aggaagcaac	atctatctga	2640
agaggaaaaa	taaaaacctc	ctgaggcatt	tcttgcccag	ctgggtccaa	cacttgttca	2700
gttaataagt	attaaatgct	gccacatgtc	aggccttatg	ctaagggtga	gtaattccat	2760
ggtgcactag	atatgcaggg	ctgctaatct	caaggagctt	ccagtgcaga	gggaataaat	2820
gctagactaa	aatacagagt	cttccaggtg	ggcatttcaa	ccaactcagt	caaggaaccc	2880
atgacaaaga	aagtcatttc	aactcttacc	tcatcaagtt	gaataaagac	agagaaaaca	2940
gaaagagaca	ttgttctttt	cctgagtctt	ttgaatggaa	attgtattat	gttatagcca	3000
tcataaaacc	attttggtag	ttttgactga	actgggtgtt	cactttttcc	tttttgattg	3060
aatacaattt	aaattctact	tgatgactgc	agtcgtcaag	gggctcctga	tgcaagatgc	3120
cccttccatt	ttaagtctgt	ctccttacag	aggttaaagt	ctagtggcta	attcctaagg	3180
aaacctgatt	aacacatgct	cacaaccatc	ctggtcattc	tcgagcatgt	tctatttttt	3240
aactaatcac	ccctgatata	tttttatttt	tatatatcca	gttttcattt	ttttacgtct	3300
tgcctataag	ctaatatcat	aaataaggtt	gtttaagacg	tgcttcaaat	atccatatta	3360
accactattt	ttcaaggaag	tatggaaaag	tacactctgt	cactttgtca	ctcgatgtca	3420

- 25 -WO 2004/094671 PCT/US2004/012788

	ttccaaagtt	attgcctact	aagtaatgac	tgtcatgaaa	gcagcattga	aataatttgt	3480
	ttaaaggggg	cactctttta	aacgggaaga	aaatttccgc	ttcctggtct	tatcatggac	3540
	aatttgggct	agaggcagga	aggaagtggg	atgacctcag	gaggtcacct	tttcttgatt	3600
	ccagaaacat	atgggctgat	aaacccgggg	tgacctcatg	aaatgagttg	cagcagaagt	3660
	ttatttttt	cagaacaagt	gatgtttgat	ggacctctga	atctctttag	ggagacacag	3720
	atggctggga	tccctcccct	gtacccttct	cactgccagg	agaacta		3767
•	<210> 14 <211> 3814 <212> DNA <213> Homo	sapiens					
		tttagcccag	aactgctttg	aatacaccaa	ttgctgtggg	gcggctcgag	60
	gaagagaaga	caccagtgcc	tcagaaactg	ctcggtcaga	cggtgatagc	gagccacgca	120
	ttcacagggc	cactgctgct	cacagaagca	gtgaggatga	tgccaggatg	atgtctgcct	180
	cgcgcctggc	tgggactctg	atcccagcca	tggccttcct	ctcctgcgtg	agaccagaaa	240
	gctgggagcc	ctgcgtggag	gtggttccta	atattactta	tcaatgcatg	gagctgaatt	300
	tctacaaaat	ccccgacaac	ctccccttct	caaccaagaa	cctggacctg	agctttaatc	360
	ccctgaggca	tttaggcagc	tatagcttct	tcagtttccc	agaactgcag	gtgctggatt	420
	tatccaggtg	tgaaatccag	acaattgaag	atggggcata	tcagagccta	agccacctct	480
	ctaccttaat	attgacagga	aaccccatcc	agagtttagc	cctgggagcc	ttttctggac	540
	tatcaagttt	acagaagctg	gtggctgtgg	agacaaatct	agcatctcta	gagaacttcc	600
	ccattggaca	tctcaaaact	ttgaaagaac	ttaatgtggc	tcacaatctt	atccaatctt	660
	tcaaattacc	tgagtatttt	tctaatctga	ccaatctaga	gcacttggac	ctttccagca	720
	acaagattca	aagtatttat	tgcacagact	tgcgggttct	acatcaaatg	cccctactca	780
	atctctcttt	agacctgtcc	ctgaacccta	tgaactttat	ccaaccaggt	gcatttaaag	840
	aaattaggct	tcataagetg	actttaagaa	ataattttga	tagtttaaat	gtaatgaaaa	900
	cttgtattca	aggtctggct	ggtttagaag	tccatcgttt	ggttctggga	gaatttagaa	960
	atgaaggaaa	cttggaaaag	tttgacaaat	ctgctctaga	gggcctgtgc	aatttgacca	1020
	ttgaagaatt						1080
	attgtttgac	aaatgtttct	tcattttccc	tggtgagtgt	gactattgaa	agggtaaaag	1140

acttttctta taatttcgga tggcaacatt tagaattagt taactgtaaa tttggacagt

ttcccacatt gaaactcaaa tctctcaaaa ggcttacttt cacttccaac aaaggtggga

1200

1260

					101/0020	01,012,00
atgctttttc tgagtttcaa	agaagttgat aggttgctgt	ctaccaagcc tctcaaagtg	ttgagtttct attttgggac	agatctcagt aaccagccta	agaaatggct aagtatttag	1320 1380
atctgagctt	caatggtgtt	attaccatga	gttcaaactt	cttgggctta	gaacaactag	1440
aacatctgga	tttccagcat	tccaatttga	aacaaat <u>g</u> ag	tgagttttca	gtattcctat	1500
cactcagaaa	cctcatttac	cttgacattt	ctcatactca	caccagagtt	gctttcaatg	1560
gcatcttcaa	tggcttgtcc	agtctcgaag	tcttgaaaat	ggctggcaat	tctttccagg	1620
aaaacttcct	tccagatatc	ttcacagagc	tgagaaactt	gaccttcctg	gacctctctc	1680
agtgtcaact	ggagcagttg	tctccaacag	catttaactc	actctccagt	cttcaggtac	1740
taaatatgag	ccacaacaac	ttcttttcat	tggatacgtt	tccttataag	tgtctgaact	1800
ccctccaggt	tcttgattac	agtctcaatc	acataatgac	ttccaaaaaa	caggaactac	1860
agcattttcc	aagtagtcta	gctttcttaa	atcttactca	gaatgacttt	gcttgtactt	1920
gtgaacacca	gagtttcctg	caatggatca	aggaccagag	gcagctcttg	gtggaagttg	1980
aacgaatgga	atgtgcaaca	ccttcagata	agcagggcat	gcctgtgctg	agtttgaata	2040
tcacctgtca	gatgaataag	accatcattg	gtgtgtcggt	cctcagtgtg	cttgtagtat	2100
ctgttgtagc	agttctggtc	tataagttct	attttcacct	gatgcttctt	gctggctgca	2160
taaagtatgg	tagaggtgaa	aacatctatg	atgcctttgt	tatctactca	agccaggatg	2220 1
aggactgggt	aaggaatgag	ctagtaaaga	atttagaaga	aggggtgcct	ccatttcagc	2280
tctgccttca	ctacagagac	tttattcccg	gtgtggccat	tgctgccaac	atcatccatg	2340
aaggtttcca	taaaagccga	aaggtgattg	ttgtggtgtc	ccagcacttc	atccagagcc	2400
gctggtgtat	ctttgaatat	gagattgctc	agacctggca	gtttctgagc	agtcgtgctg	2460
gtatcatctt	cattgtcctg	cagaaggtgg	agaagaccct	gctcaggcag	caggtggagc	2520
tgtaccgcct	tctcagcagg	aacacttacc	tggagtggga	ggacagtgtc	ctggggcggc	2580
acatcttctg	gagacgactc	agaaaagccc	tgctggatgg	taaatcatgg	aatccagaag	2640
gaacagtggg	tacaggatgc	aattggcagg	aagcaacatc	tatctgaaga	ggaaaaataa	2700
aaacctcctg	aggcatttct	tgcccagctg	ggtccaacac	ttgttcagtt	aataagtatt	2760
aaatgctgcc	acatgtcagg	ccttatgcta	agggtgagta	attccatggt	gcactagata	2820
tgcagggctg	ctaatctcaa	ggagcttcca	gtgcagaggg	aataaatgct	agactaaaat	2880
acagagtctt	ccaggtgggc	atttcaacca	actcagtcaa	ggaacccatg	acaaagaaag	2940
tcatttcaac	tcttacctca	tcaagttgaa	taaagacaga	gaaaacagaa	agagacattg	3000
ttctttcct	gagtcttttg	aatggaaatt	gtattatgtt	atagccatca	taaaaccatt	3060
ttggtagttt	tgactgaact	gggtgttcac	tttttccttt	ttgattgaat	acaatttaaa	3120
ttctacttga	tgactgcagt	cgtcaagggg	ctcctgatgc	aagatgcccc	ttccatttta	3180

WO 2004/094671 - 27 - PCT/US2004/012788

agtctgtctc	cttacagagg	ttaaagtcta	gtggctaatt	cctaaggaaa	cctgattaac	3240
acatgctcac	aaccatcctg	gtcattctcg	agcatgttct	attttttaac	taatcacccc	3300
tgatatattt	ttattttat	atatccagtt	ttcattttt	tacgtcttgc	ctataagcta	3360
atatcataaa	taaggttgtt	taagacgtgc	ttcaaatatc	catattaacc	actatttttc	3420
aaggaagtat	ggaaaagtac	actctgtcac	tttgtcactc	gatgtcattc	caaagttatt	3480
gcctactaag	taatgactgt	catgaaagca	gcattgaaat	aatttgttta	aagggggcac	3540
tcttttaaac	gggaagaaaa	tttccgcttc	ctggtcttat	catggacaat	ttgggctaga	3600
ggcaggaagg	aagtgggatg	acctcaggag	gtcacctttt	cttgattcca	gaaacatatg	3660
ggctgataaa	cccggggtga	cctcatgaaa	tgagttgcag	cagaagttta	tttttttcag	3720
aacaagtgat	gtttgatgga	cctctgaatc	tctttaggga	gacacagatg	gctgggatcc	3780
ctcccctgta	cccttctcac	tgccaggaga	acta			3814

<210> 15

<211> 3934

<212> DNA

<213> Homo spaiens

<400> 15

cctctcaccc tttagcccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag 60 gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca 120 ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct 180 cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa 240 gctgggagcc ctgcgtggag acttggccct aaaccacaca gaagagctgg catgaaaccc 300 agagetttea gaeteeggag ceteageeet teaceeegat teeattgett ettgetaaat 360 gctgccgttt tatcacggag gtggttccta atattactta tcaatgcatg gagctgaatt 420 tctacaaaat ccccgacaac ctccccttct caaccaagaa cctggacctg agctttaatc 480 ccctgaggca tttaggcagc tatagcttct tcagtttccc aqaactqcaq qtqctqqatt tatccaggtg tgaaatccag acaattgaag atggggcata tcagagccta agccacctct 600 ctaccttaat attgacagga aaccccatcc agagtttagc cctgggagcc ttttctggac 660 tatcaagttt acagaagctg gtggctgtgg agacaaatct agcatctcta gagaacttcc 720 ccattggaca tctcaaaact ttgaaagaac ttaatgtggc tcacaatctt atccaatctt 780 tcaaattacc tgagtatttt tctaatctga ccaatctaga gcacttggac ctttccagca 840 acaagattca aagtatttat tgcacagact tgcgggttct acatcaaatg cccctactca 900 atctctcttt agacctgtcc ctgaacccta tgaactttat ccaaccaggt gcatttaaag 960

aaattaggct tcataagctg actttaagaa ataattttga tagtttaaat gtaatgaaaa cttgtattca aggtctggct ggtttagaag tccatcgttt ggttctggga gaatttagaa	1020 1080
atgaaggaaa cttggaaaag tttgacaaat ctgctctaga gggcctgtgc aatttgacca	1140
ttgaagaatt ccgattagca tacttagact actacctcga tgatattatt gacttattta	1200
attgtttgac aaatgtttct tcattttccc tggtgagtgt gactattgaa agggtaaaag	1260
acttttctta taatttcgga tggcaacatt tagaattagt taactgtaaa tttggacagt	1320
ttcccacatt gaaactcaaa tctctcaaaa ggcttacttt cacttccaac aaaggtggga	1380
atgettttte agaagttgat etaccaagee ttgagtttet agateteagt agaaatgget	1440
tgagtttcaa aggttgctgt tctcaaagtg attttgggac aaccagccta aagtatttag	1500
atctgagett caatggtgtt attaccatga gttcaaaett ettgggetta gaacaaetag	1560
aacatctgga tttccagcat tccaatttga aacaaatgag tgagttttca gtattcctat	1620
cactcagaaa cctcatttac cttgacattt ctcatactca caccagagtt gctttcaatg	1680
gcatcttcaa tggcttgtcc agtctcgaag tcttgaaaat ggctggcaat tctttccagg	1740
aaaacttcct tccagatatc ttcacagage tgagaaactt gaccttcctg gacctctctc	1800
agtgtcaact ggagcagttg tctccaacag catttaactc actctccagt cttcaggtac	1860
taaatatgag ccacaacaac ttetttteat tggatacgtt teettataag tgtetgaact	1920
ccctccaggt tcttgattac agtctcaatc acataatgac ttccaaaaaa caggaactac	1980
agcattttcc aagtagtcta gctttcttaa atcttactca gaatgacttt gcttgtactt	2040
gtgaacacca gagtttcctg caatggatca aggaccagag gcagctcttg gtggaagttg	2100
aacgaatgga atgtgcaaca ccttcagata agcagggcat gcctgtgctg agtttgaata	2160
tcacctgtca gatgaataag accatcattg gtgtgtcggt cctcagtgtg cttgtagtat	2220
ctgttgtagc agttctggtc tataagttct attttcacct gatgcttctt gctggctgca	2280
taaagtatgg tagaggtgaa aacatctatg atgcctttgt tatctactca agccaggatg	2340
aggactgggt aaggaatgag ctagtaaaga atttagaaga aggggtgcct ccatttcagc	2400
tctgccttca ctacagagac tttattcccg gtgtggccat tgctgccaac atcatccatg	2460
aaggtttcca taaaagccga aaggtgattg ttgtggtgtc ccagcacttc atccagagcc	2520
gctggtgtat ctttgaatat gagattgctc agacctggca gtttctgagc agtcgtgctg	2580
gtatcatctt cattgtcctg cagaaggtgg agaagaccct gctcaggcag caggtggagc	2640
tgtaccgcct tctcagcagg aacacttacc tggagtggga ggacagtgtc ctggggcggc	2700
acatcttctg gagacgactc agaaaagccc tgctggatgg taaatcatgg aatccagaag	2760
gaacagtggg tacaggatgc aattggcagg aagcaacatc tatctgaaga ggaaaaataa	2820
aaacctcctg aggcatttct tgcccagctg ggtccaacac ttgttcagtt aataagtatt	2880

aaatgctgcc	acatgtcagg	ccttatgcta	agggtgagta	attccatggt	gcactagata	2940
tgcagggctg	ctaatctcaa	ggagcttcca	gtgcagaggg	aataaatgct	agactaaaat	3000
acagagtctt	ccaggtgggc	atttcaacca	actcagtcaa	ggaacccatg	acaaagaaag	3060
tcatttcaac	tcttacctca	tcaagttgaa	taaagacaga	gaaaacagaa	agagacattg	3120
ttcttttcct	gagtcttttg	aatggaaatt	gtattatgtt	atagccatca	taaaaccatt	3180
ttggtagttt	tgactgaact	gggtgttcac	tttttccttt	ttgattgaat	acaatttaaa	3240
ttctacttga	tgactgcagt	cgtcaaggġg	ctcctgatgc	aagatgcccc	ttccatttta	3300
agtctgtctc	cttacagagg	ttaaagtcta	gtggctaatt	cctaaggaaa	cctgattaac	3360
acatgctcac	aaccatcctg	gtcattctcg	agcatgttct	attttttaac	taatcacccc	3420
tgatatattt	ttatttttat	atatccagtt	ttcatttttt	tacgtcttgc	ctataagcta	3480
atatcataaa	taaggttgtt	taagacgtgc	ttcaaatatc	catattaacc	actatttttc	3540
aaggaagtat	ggaaaagtac	actctgtcac	tttgtcactc	gatgtcattc	caaagttatt	3600
gcctactaag	taatgactgt	catgaaagca	gcattgaaat	aatttgttta	aagggggcac	3660
tcttttaaac	gggaagaaaa	tttccgcttc	ctggtcttat	catggacaat	ttgggctaga	3720
ggcaggaagg	aagtgggatg	acctcaggag	gtcacctttt	cttgattcca	gaaacatatg	3780
ggctgataaa	cccggggtga	cctcatgaaa	tgagttgcag	cagaagttta	tttttttcag	3840
aacaagtgat	gtttgatgga	cctctgaatc	tctttaggga	gacacagatg	gctgggatcc	3900
ctcccctgta	cccttctcac	tgccaggaga	acta			3934

<210> 16 <211> 839 <212> PRT

<213> Homo sapiens

Met Met Ser Ala Ser Arg Leu Ala Gly Thr Leu Ile Pro Ala Met Ala

Phe Leu Ser Cys Val Arg Pro Glu Ser Trp Glu Pro Cys Val Glu Val

Val Pro Asn Ile Thr Tyr Gln Cys Met Glu Leu Asn Phe Tyr Lys Ile

Pro Asp Asn Leu Pro Phe Ser Thr Lys Asn Leu Asp Leu Ser Phe Asn

Pro Leu Arg His Leu Gly Ser Tyr Ser Phe Phe Ser Phe Pro Glu Leu

Gln Val Leu Asp Leu Ser Arg Cys Glu Ile Gln Thr Ile Glu Asp Gly

WO 2004/094671 - 30 - PCT/US2004/012788

- Ala Tyr Gln Ser Leu Ser His Leu Ser Thr Leu Ile Leu Thr Gly Asn 100 105 110
- Pro Ile Gln Ser Leu Ala Leu Gly Ala Phe Ser Gly Leu Ser Ser Leu 115 120 125
- Gln Lys Leu Val Ala Val Glu Thr Asn Leu Ala Ser Leu Glu Asn Phe 130 140
 - Pro Ile Gly His L'eu Lys Thr Leu Lys Glu Leu Asn Val Ala His Asn 145 150 155 160
 - Leu Ile Gln Ser Phe Lys Leu Pro Glu Tyr Phe Ser Asn Leu Thr Asn 165 170 175
 - Leu Glu His Leu Asp Leu Ser Ser Asn Lys Ile Gln Ser Ile Tyr Cys 180 185 190
 - Thr Asp Leu Arg Val Leu His Gln Met Pro Leu Leu Asn Leu Ser Leu 195 200 205
 - Asp Leu Ser Leu Asn Pro Met Asn Phe Ile Gln Pro Gly Ala Phe Lys 210 215 220
 - Glu Ile Arg Leu His Lys Leu Thr Leu Arg Asn Asn Phe Asp Ser Leu 225 230 235 240
 - Asn Val Met Lys Thr Cys Ile Gln Gly Leu Ala Gly Leu Glu Val His 245 250 255
 - Arg Leu Val Leu Gly Glu Phe Arg Asn Glu Gly Asn Leu Glu Lys Phe 260 265 270
 - Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe 275 280 285
 - Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu Asp Asp Ile Ile Asp Leu Phe 290 295 300
 - Asn Cys Leu Thr Asn Val Ser Ser Phe Ser Leu Val Ser Val Thr Ile 305 310 315 320
 - Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu 325 330 335
 - Leu Val Asn Cys Lys Phe Gly Gln Phe Pro Thr Leu Lys Leu Lys Ser 340 345 350
 - Leu Lys Arg Leu Thr Phe Thr Ser Asn Lys Gly Gly Asn Ala Phe Ser 355 360 365
 - Glu Val Asp Leu Pro Ser Leu Glu Phe Leu Asp Leu Ser Arg Asn Gly 370 375 380
 - Leu Ser Phe Lys Gly Cys Cys Ser Gln Ser Asp Phe Gly Thr Thr Ser 385 390 395 400
 - Leu Lys Tyr Leu Asp Leu Ser Phe Asn Gly Val Ile Thr Met Ser Ser 405 410 415
 - Asn Phe Leu Gly Leu Glu Gln Leu Glu His Leu Asp Phe Gln His Ser

WO 2004/094671 - 31 - PCT/US2004/012788

Asn	Leu	Lys 435	420 Gln	Met	Ser	Glu	Phe 440	425 Ser	Val	Phe	Leu	Ser 445	430 Leu	Arg	Asn
Leu	Ile 450	Tyr	Leu	Asp	Ile	Ser 455	His	Thr	His	Thr	Arg 460	Val	Ala	Phe	Asn
Gly 465	Ile	Phe	Asn	Gly	Leu 470	Ser	Ser	Leu	Glu	Val 475	Leu	Lys	Met	Ala	Gly 480
Asn	Ser	Phe	Gln	Glu 485	Asn	Phe	Leu	Pro	Asp 490	Ile	Phe	Thr	Glu	Leu 495	Arg
Asn	Leu	Thr	Phe 500	Leu	Asp	Leu	Ser	Gln 505	Cys	Gln	Leu	Glu	Gln 510	Leu	Ser
Pro	Thr	Ala 515	Phe	Asn	Ser	Leu	Ser 520	Ser	Leu	Gln	Val	Leu 525	Asn	Met	Ser
His	Asn 530	Asn	Phe	Phe	Ser	Leu 535	Asp	Thr	Phe	Pro	Tyr 540	Lys	Суз	Leu	Asn
Ser 545	Leu	Gln	Val	Leu	Asp 550	Tyr	Ser	Leu	Asn	His 555	Ile	Met	Thr	Ser	Lуs 560
Lys	Gln	Glu	Leu	Gln 565	His	Phe	Pro	Ser	Ser 570	Leu	Ala	Phe	Leu	Asn 575	Leu
Thr	Gln	Asn	Asp 580	Phe	Ala	CÀa	Thr	Cys 585	Glu	His	Gln	Ser	Phe 590	Leu	Gln
Trp	Ile	Lys 595	Asp	Gln	Arg	Gln	Leu 600	Leu	Val	Glu	Val	Glu 605	Arg	Met	Glu
Cys	Ala 610	Thr	Pro	Ser	Asp	Lys 615	Gln	Gly	Met	Pro	Val 620	Leu	Ser	Leu	Asn
Ile 625	Thr	Cys	Gln	Met	Asn 630	ГÀЗ	Thr ·	Ile	Ile	Gly 635	Val	Ser	Val	Leu	Ser 640
Val	Leu	Val	Val	Ser 645	Val	Val	Ala	Val	Leu 650	Val	Tyr	Lys	Phe	Tyr 655	Phe
His	Leu	Met	Leu 660	Leu	Ala	Gly	Cys	Ile 665	Lys	Tyr	Gly	Arg	Gly 670	Glu	Asn
Ile	Tyr	Asp 675	Ala	Phe	Val	Ile	Tyr 680	Ser	Ser	Gln	Asp	Glu 685	Asp	Trp	Val
Arg	Asn 690	Glu	Leu	Val	Lys	Asn 695	Leu	Glu	Glu	Gly	Val 700	Pro	Pro	Phe	Gln
Leu 705	Cys	Leu	His	Tyr	Arg 710	Asp	Phe	Ile	Pro	Gly 715	Val	Ala	Ile	Ala	Ala 720
	Ile			725					730					735	
Val	Ser	Gln	His 740	Phe	Ile	Gln	Ser	Arg 745	Trp	Сув	Ile	Phe	Glu 750	Tyr	Glu
Ile	Ala	Gln	Thr	Trp	Gln	Phe	Leu	Ser	Ser	Ara	Ala	Glv	Ile	Ile	Phe

WO 2004/094671 - 32 - PCT/US2004/012788

755 760 765

Ile Val Leu Gln Lys Val Glu Lys Thr Leu Leu Arg Gln Gln Val Glu
770 780

Leu Tyr Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Ser 785 790 795 800

Val Leu Gly Arg His Ile Phe Trp Arg Arg Leu Arg Lys Ala Leu Leu 805 810 815

Asp Gly Lys Ser Trp Asn Pro Glu Gly Thr Val Gly Thr Gly Cys Asn 820 825 830

Trp Gln Glu Ala Thr Ser Ile 835

<210> 17

<211> 782

<212> PRT

<213> Homo sapiens

<400> 17

Met Lys Pro Arg Ala Phe Arg Leu Arg Ser Leu Ser Pro Ser Pro Arg 1 5 10 15

Phe His Cys Phe Leu Leu Asn Ala Ala Val Leu Ser Arg Cys Glu 20 25 30

Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu Ser 35 40 45

Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly Ala 50 55 60

Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr Asn 65 70 75 80

Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu Lys 85 90 95

Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro Glu 100 105 110

Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser Asn 115 120 125

Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln Met 130 135 140

Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn Phe 145 155 156

Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr Leu 165 170 175

Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln Gly
180 185 190

Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg Asn 195 200 205

WO 2004/094671 - 33 - PCT/US2004/012788

Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln Phe 280 Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser Asn 295 Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu Phe 310 315 Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu Pro 425 Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser Gln Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser Ser 455 Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp Thr 475 Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser Leu 490 Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu Leu

ì

- 34 -WO 2004/094671 PCT/US2004/012788

535 540 Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln Gly 550⁻ 555 Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala Val 585 Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr Ser 615 Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His Lys 665 Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser Arg 680 Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp Arg 740 Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 775 <210> 18 <211> 799 <212> PRT <213> Homo sapiens

<400> 18

Met Glu Leu Asn Phe Tyr Lys Ile Pro Asp Asn Leu Pro Phe Ser Thr

Lys Asn Leu Asp Leu Ser Phe Asn Pro Leu Arg His Leu Gly Ser Tyr

Ser Phe Phe Ser Phe Pro Glu Leu Gln Val Leu Asp Leu Ser Arg Cys 40

WO 2004/094671 - 35 - PCT/US2004/012788

Glu Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu Ser Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly Ala Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr Asn Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu Lys Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro 120 Glu Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser 135 Asn Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln 150 155 Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln 200 Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr 250 Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser 265 Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser 310 Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu 330 Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu

WO 2004/094671 - 36 - PCT/US2004/012788

Glu 385	370 His	Leu	Asp	Phe	Gln 390	375 His	Ser	Asn	Leu	Lys 395	380 Gln	Met	Ser	Glu	Phe 400
Ser	Val	Phe	Leu	Ser 405	Leu	Arg	Asn	Leu	Ile 410	Tyr	Leu	Asp	Ile	Ser 415	His
Thr	His	Thr	Arg 420	Val	Ala	Phe	Asn	Gly 425	Ile	Phe	Asn	Gly	Leu 430	Ser	Ser
Leu	Glu	Val 435	Leu	ГЛS	Met	Ala	Gly 440	Asn	Ser	Phe	Gln	Glu 445	Asn	Phe	Leu
Pro	Asp 450	Ile	Phe	Thr	Glu	Leu 455	Arg	Asn	Leu	Thr	Phe 460	Leu	Asp	Leu	Ser
Gln 465	Cys	Gln	Leu	Glu	Gln 470	Leu	Ser	Pro	Thr	Ala 475	Phe	Asn	Ser	Leu	Ser 480
Ser	Leu	Gln	Val	Leu 485	Asn	Met	Ser	His	Asn 490	Asn	Phe	Phe	Ser	Leu 495	Asp
Thr	Phe	Pro	Tyr 500	Lys	Cys	Leu	Asn	Ser 505	Leu	Gln	Val	Leu	Asp 510	Tyr	Ser
Leu	Asn	His 515	Ile	Met	Thr	Ser	Lys 520	Lys	Gln	Glu	Leu	Gln 525	His	Phe	Pro
Ser	Ser 530	Leu	Ala	Phe	Leu	Asn 535	Leu	Thr	Gln	Asn	Asp 540	Phe	Ala	Cys	Thr
Сув 545	Glu	His	Gln	Ser	Phe 550	Leu	Gln	Trp	Ile	Lys 555	Asp	Gln	Arg	Gln	Leu 560
Leu	Val	Glu	Val	Glu 565	Arg	Met	Glu	Cys	Ala 570	Thr	Pro	Ser	Asp	Lys 575	Gln
Gly	Met	Pro	Val 580	Leu	Ser	Leu	Asn	Ile 585	Thr	Cys	Gln	Met	Asn 590	ГАЗ	Thr
Ile	Ile	Gly 595	Val	Ser	Val	Leu	Ser 600	Val	Leu	Val	Val	Ser 605	Val	Val	Ala
Val	Leu 610	Val	Tyr	Lys	Phe	Tyr 615	Phe	His	Leu	Met	Leu 620	Leu	Ala	Gly	Cys
Ile 625	Lys	Tyr	Gly	Arg	Gly 630	Glu	Asn	Ile	Tyr	Asp 635	Ala	Phe	Val	Ile	Tyr 640
Ser	Ser	Gln	Asp	Glu 645	Asp	Trp	Val	Arg	Asn 650	Glu	Leu	Val	Lys	Asn 655	Leu
Glu	Glu	Gly	Val 660	Pro	Pro	Phe	Gln	Leu 665	Сув	Leu	His	Tyr	Arg 670	Asp	Phe
Ile	Pro	Gly 675	Val	Ala	Ile	Ala	Ala 680	Asn	Ile	Ile	His	Glu 685	Gly	Phe	His
Lys	Ser 690	Arg	Lys	Val	Ile	Val 695	Val	Val	Ser	Gln	His 700	Phe	Ile	Gln	Ser
Arg	Trp	Cys	Ile	Phe	Glu	Tyr	Glu	Ile	Ala	Gln	Thr	Trp	Gln	Phe	Leu

Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn 740 745 750

Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp
755 760 765

Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu
770 780

Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 785 790 795

<210> 19

<211> 639

<212> PRT

<213> Homo sapiens

<400> 19

Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn 1 5 10 15

Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr 20 25 30

Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln 35 40 45

Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg
50 55 60

Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu 65 70 75 80

Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr 85 90 95

Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser 100 105 110

Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr 115 120 125

Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln 130 135 140

Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser 145 150 155 160

Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu 165 170 175

Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser 180 185 190

Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe 195 200 205

WO 2004/094671 - 38 - PCT/US2004/012788

Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu 215 Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe 225 230 Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His 250 Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser 260 265 Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu 280 Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser 295 Gln Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser Ser Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp 325 330 Thr Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser 345 Leu Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr 375 Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu 390 395 Leu Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln 410 Gly Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe • 500 505 Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His 520 Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser

WO 2004/094671 - 39 - PCT/US2004/012788

530 540 Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu 545 550 555 560

Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys
565 570 575

Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn 580 585 590

Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp 595 600 605

Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu 610 615 620

Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 625 630 635

<210> 20

<211> 3866

<212> DNA

<213> murine

<400> 20

ctggttgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg 60 gcactgttct tetectgect gacaccagga agettgaate cetgcataga ggtagtteet 120 aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgatga cattccttct 180 tcaaccaaga acatagatct gagcttcaac cccttgaaga tcttaaaaag ctatagcttc 240 tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa 300 gacaaggcat ggcatggctt acaccacctc tcaaacttga tactgacagg aaaccctatc 360 cagagttttt ccccaggaag tttctctgga ctaacaagtt tagagaatct ggtggctgtg 420 gagacaaaat tggcctctct agaaagcttc cctattggac agcttataac cttaaagaaa 480 ctcaatgtgg ctcacaattt tatacattcc tgtaagttac ctgcatattt ttccaatctg 540 acgaacctag tacatgtgga tctttcttat aactatattc aaactattac tgtcaacgac 600 ttacagtttc tacgtgaaaa tccacaagtc aatctctctt tagacatgtc tttgaaccca attgacttca ttcaagacca agcetttcag ggaattaage tecatgaact gaetetaaga 720 ggtaatttta atageteaaa tataatgaaa acttgeette aaaacetgge tggtttacae 780 gtccatcggt tgatcttggg agaatttaaa gatgaaagga atctggaaat ttttgaaccc 840 tctatcatgg aaggactatg tgatgtgacc attgatgagt tcaggttaac atatacaaat 900 gatttttcag atgatattgt taagttccat tgcttggcga atgtttctgc aatgtctctg 960 gcaggtgtat ctataaaata tctagaagat gttcctaaac atttcaaatg gcaatcctta 1020 tcaatcatta gatgtcaact taagcagttt ccaactctgg atctaccctt tcttaaaagt 1080

ttgactttaa ctatgaacaa agctatctag atcttagtag	agggtctatc aaatgcactg	agttttaaaa agctttagtg	aagtggccct gttgctgttc	accaagtctc ttattctgat	1140 1200
ttgggaacaa acagcctgag	acacttagac	ctcagcttca	atggtgccat	cattatgagt	1260
gccaatttca tgggtctaga	agagctgcag	cacctggatt	ttcagcactc	tactttaaaa	1320
agggtcacag aattctcagc	gttcttatcc	cttgaaaagc	tactttacct	tgacatctct	1380
tatactaaca ccaaaattga	cttcgatggt	atatttcttg	gcttgaccag	tctcaacaca	1440
ttaaaaatgg ctggcaattc	ttțcaaagac	aacacccttt	caaatgtctt	tgcaaacaca	1500
acaaacttga cattcctgga	tctttctaaa	tgtcaattgg	aacaaatatc	ttggggggta	1560
tttgacaccc tccatagact	tcaattatta	aatatgagtc	acaacaatct	attgtttttg	1620
gattcatccc attataacca	gctgtattcc	ctcagcactc	ttgattgcag	tttcaatcgc	1680
atagagacat ctaaaggaat	actgcaacat	tttccaaaga	gtctagcctt	cttcaatctt	1740
actaacaatt ctgttgcttg	tatatgtgaa	catcagaaat	tcctgcagtg	ggtcaaggaa	1800
cagaagcagt tcttggtgaa	tgttgaacaa	atgacatgtg	caacacctgt	agagatgaat	1860
acctccttag tgttggattt	taataattct	acctgttata	tgtacaagac	aatcatcagt	1920
gtgtcagtgg tcagtgtgat	tgtggtatcc	actgtagcat	ttctgatata	ccacttctat	1980
tttcacctga tacttattgc	tggctgtaaa	aagtacagca	gaggagaaag	catctatgat	2040
gcatttgtga tctactcgag	tcagaatgag	gactgggtga	gaaatgagct	ggtaaagaat	2100
ttagaagaag gagtgccccg	ctttcacctc	tgccttcact	acagagactt	tattcctggt	2160
gtagccattg ctgccaacat	catccaggaa	ggcttccaca	agagccggaa	ggttattgtg	2220
gtagtgtcta gacactttat	tcagagccgt	tggtgtatct	ttgaatatga	gattgctcaa	2280
acatggcagt ttctgagcag	ccgctctggc	atcatcttca	ttgtccttga	gaaggttgag	2340
aagtccctgc tgaggcagca	ggtggaattg	tatcgccttc	ttagcagaaa	cacctacctg	2400
gaatgggagg acaatcctct	ggggaggcac	atcttctgga	gaagacttaa	aaatgcccta	2460
ttggatggaa aagcctcgaa	tcctgagcaa	acagcagagg	aagaacaaga	aacggcaact	2520
tggacctgag gagaacaaaa	ctctggggcc	taaacccagt	ctgtttgcaa	ttaataaatg	2580
ctacagetea cetggggete	tgctatggac	cgagagccca	tggaacacat	ggctgctaag	2640
ctatagcatg gaccttaccg	ggcagaagga	agtagcactg	acaccttcct	ttccaggggt	2700
atgaattacc taactcggga	aaagaaacat	aatccagaat	ctttaccttt	aatctgaagg	2760
agaagaggct aaggcctagt	gagaacagaa	aggagaacca	gtcttcactg	ggccttttga	2820
atacaagcca tgtcatgttc	tgtgtttcag	ttgctttaga	agagtattga	tagtttcaac	2880
tgaactgaac ggtttcttac	tttccctttt	ttctactgaa	tgcaatatta	aatagctctt	2940
tttgagaggt cttcattcca a	atttcatctt	ccattttatg	tcattttctt	ttcttttttg	3000

WO 2004/094671 - 41 - PCT/US2004/012788

tttttatcta	attctataag	aaatatgatt	gatacacgct	cacagatagc	ctggccaatc	3060
ctaagaatgc	tatatttatt	aaatacaatt	cctagtatac	ttttactttt	ataaattcag	3120
ttatcgtttt	tcatgccttg	actataaact	aatatcataa	ataagattgt	tacaggtatg	3180
ctaagaaggc	ccatatttga	ctataatttt	ttaagaaagt	atataaaata	tactttgtca	3240
tattgtcact	gaatgtcatt	cttaagttat	tacctaagtt	atggatgtca	cagagtcagt	3300
gttaaaaata	atttggttga	tagaaatatt	tttaatcagg	agggaaaagt	ggagaggggt	3360
gcaggaacag	aaatcatgat	ttcatcattt	attcttgatt	tttccggaag	ttcacatagc	3420
tgaatgacaa	gactacatat	gctgcaactg	atgttccttc	tcatcaagga	tactctctga	3480
acttgagaac	attttgggga	ggaagaaagg	tctaacatcc	ttttccttca	tcattctcat	3540
ttctggacat	gccttgtgag	atggatcaat	gttgggagta	cacatttctg	ctttcacctt	3600
atttcagtca	gcatgaacac	tgaatatata	atgtcatttc	acagtgtgtg	tgtgttgtgt	3660
atgtacatat	atgaacctgt	acatgtgttt	aagtttaaag	agaaaatagt	gtacagagca	3720
ggtgtatatt	tgtgataggg	ctttaaatag	ttgagctaat	tcagaaaagt	atggaggttt	3780
cttggtaaac	caaaccaaaa	gtagaatcat	tacaagatct	aacaataaaa	attttgaaaa	3840
aaaaaaaaa	aaaaaaaaa	aaaaaa				3866

<210> 21

<211> 2520

<212> DNA

<213> murine

<400> 21

atgatgecte cetggeteet ggetaggaet etgateatgg caetgttett etcetgeetg 60 acaccaggaa gcttgaatcc ctgcatagag gtagttccta atattaccta ccaatgcatg 120 gatcagaaac tcagcaaagt ccctgatgac attccttctt caaccaagaa catagatctg 180 agetteaace cettgaagat ettaaaaage tatagettet ceaattttte agaactteag 240 tggctggatt tatccaggtg tgaaattgaa acaattgaag acaaggcatg gcatggctta 300 caccacctct caaacttgat actgacagga aaccctatcc agagtttttc cccaggaagt 360 ttctctggac taacaagttt agagaatctg gtggctgtgg agacaaaatt ggcctctcta 420 gaaagcttcc ctattggaca gcttataacc ttaaagaaac tcaatgtggc tcacaatttt 480 atacattcct gtaagttacc tgcatatttt tccaatctga cgaacctagt acatgtggat 540 ctttcttata actatattca aactattact gtcaacgact tacagtttct acgtgaaaat 600 ccacaagtca atctctcttt agacatatct ttgaacccaa ttgacttcat tcaagaccaa 660 gcctttcagg gaattaagct ccatgaactg actctaagag gtaattttaa tagctcaaat 720

ataatgaaaa gaatttaaag	cttgccttca atgaaaggaa	aaacctggct tctggaaatt	ggtttacaca tttgaaccct	tccatcggtt ctatcatgga	gatcttggga aggactatgt	780 840
gatgtgacca	ttgatgagtt	caggttaaca	tatacaaatg	atttttcaga	tgatattgtt	900
aagttccatt	gcttggcgaa	tgtttctgca	atgtctctgg	caggtgtatc	tataaaatat	960
ctagaagatg	ttcctaaaca	tttcaaatgg	caatccttat	caatcattag	atgtcaactt	1020
aagcagtttc	caactctgga	tctacccttt	cttaaaagtt	tgactttaac	tatgaacaaa	1080
gggtctatca	gttttaaaaa	agtggcccta	ccaagtctca	gctatctaga	tcttagtaga	1140
aatgcactga	gctttagtgg	ttgctgttct	tattctgatt	tgggaacaaa	cagcctgaga	1200
cacttagacc	tcagcttcaa	tggtgccatc	attatgagtg	ccaatttcat	gggtctagaa	1260
gagetgeage	acctggattt	tcagcactct	actttaaaaa	gggtcacaga	attctcagcg	1320
ttcttatccc	ttgaaaagct	actttacctt	gacatctctt	atactaacac	caaaattgac	1380
ttcgatggta	tatttcttgg	cttgaccagt	ctcaacacat	taaaaatggc	tggcaattct	1440
ttcaaagaca	acaccettte	aaatgtcttt	gcaaacacaa	caaacttgac	attcctggat	1500
ctttctaaat	gtcaattgga	acaaatatct	tggggggtat	ttgacaccct	ccatagactt	1560
caattattaa	atatgagtca	caacaatcta	ttgtttttgg	attcatccca	ttataaccag	1620
ctgtattccc	tcagcactct	tgattgcagt	ttcaatcgca	tagagacatc	taaaggaata	1680
ctgcaacatt	ttccaaagag	tctagccttc	ttcaatctta	ctaacaattc	tgttgcttgt	1740
atatgtgaac	atcagaaatt	cctgcagtgg	gtcaaggacc	agaagcagtt	cttggtgaat	1800
gttgaacaaa	tgacatgtgc	aacacctgta	gagatgaata	cctccttagt	gttggatttt	1860
aataattcta	cctgttatat	gtacaagaca	atcatcagtg	tgtcagtggt	cagtgtgatt	1920
gtggtatcca	ctgtagcatt	tctgatatac	cacttctatt	ttcacctgat	acttattgct	1980
ggctgtaaaa	agtacagcag	aggagaaagc	atctatgatg	catttgtgat	ctactcgagt	2040
cagaatgagg	actgggtgag	aaatgagctg	gtaaagaatt	tagaagaagg	agtgccccgc	2100
tttcacctct	gccttcacta	cagagacttt	attcctggtg	tagccattgc	tgccaatatc	2160
atccaggaag	gcttccacaa	gagccggaag	gttattgtgg	tagtgtctag	acactttatt	2220
cagagccgtt	ggtgtatctt	tgaatatgag	attgctcaaa	catggcagtt	tctgagcagc	2280
cactctggca	tcatcttcat	tgtccttgag	aaggttgaga	agtccctgct	gaggcagcag	2340
gtggaattgt	atcgccttct	tagcagaaac	acctacctgg	aatgggagga	caatcctctg	2400
gggaggcaca	tcttctggag	aagacttaaa	aatgccctat	tggatggaaa	agcctcgaat	2460
cctgagcaaa	cagcagagga	agaacaagaa	acggcaactt	ggacctgagg	agaaccgcgg	2520

<210> 22 <211> 3866 <212> DNA <213> murine

<400> 22

ctggttgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg 60 gcactgttct tctcctgcct gacaccagga agcttgaatc cctgcataga ggtagttcct 120 aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgatga cattccttct 180 tcaaccaaga acatagatct gagcttcaac cccttgaaga tcttaaaaag ctatagcttc 240 tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa 300 gacaaggcat ggcatggctt acaccacctc tcaaacttqa tactqacaqq aaaccctatc 360 cagagttttt ccccaggaag tttctctgga ctaacaagtt tagagaatct ggtggctgtg 420 gagacaaaat tggcctctct agaaagcttc cctattggac agcttataac cttaaagaaa 480 ctcaatgtgg ctcacaattt tatacattcc tgtaagttac ctgcatattt ttccaatctg 540 acgaacctag tacatgtgga tctttcttat aactatattc aaactattac tgtcaacgac 600 ttacagtttc tacgtgaaaa tccacaagtc aatctctctt tagacatgtc tttgaaccca 660 attgacttca ttcaagacca agcctttcag ggaattaagc tccatgaact gactctaaga 720 ggtaatttta atagctcaaa tataatgaaa acttgccttc aaaacctggc tggtttacac 780 gtccatcggt tgatcttggg agaatttaaa gatgaaagga atctggaaat ttttgaaccc 840 tctatcatgg aaggactatg tgatgtgacc attgatgagt tcaggttaac atatacaaat 900 gatttttcag atgatattgt taagttccat tgcttggcga atgtttctgc aatgtctctg 960 gcaggtgtat ctataaaata tctagaagat gttcctaaac atttcaaatg gcaatcctta 1020 tcaatcatta gatgtcaact taagcagttt ccaactctgq atctaccctt tcttaaaaqt 1080 ttgactttaa ctatgaacaa agggtctatc agttttaaaa aagtggccct accaagtctc 1140 agctatctag atcttagtag aaatgcactg agctttagtg gttgctgttc ttattctgat 1200 ttgggaacaa acagcctgag acacttagac ctcagcttca atggtgccat cattatgagt 1260 gccaatttca tgggtctaga agagctgcag cacctggatt ttcagcactc tactttaaaa 1320 agggtcacag aattctcagc gttcttatcc cttgaaaagc tactttacct tgacatctct 1380 tatactaaca ccaaaattga cttcgatggt atatttcttg gcttgaccag tctcaacaca 1440 ttaaaaatgg ctggcaattc tttcaaagac aacacccttt caaatgtctt tgcaaacaca 1500 acaaacttga cattcctgga tctttctaaa tgtcaattgg aacaaatatc ttggggggta 1560 tttgacaccc tccatagact tcaattatta aatatgagtc acaacaatct attgtttttg 1620 gattcatccc attataacca gctgtattcc ctcagcactc ttgattgcag tttcaatcgc 1680 atagagacat ctaaaggaat actgcaacat tttccaaaga gtctagcctt cttcaatctt 1740

actaacaatt ctgttgcttg tatatgtgaa catcagaaat tcctgcagtg ggtcaaggaa cagaagcagt tcttggtgaa tgttgaacaa atgacatgtg caacacctgt agagatgaat	1800 1860
acctecttag tgttggattt taataattet acctgttata tgtacaagac aatcatcagt	1920
gtgtcagtgg tcagtgtgat tgtggtatcc actgtagcat ttctgatata ccacttctat	1980
tttcacctga tacttattgc tggctgtaaa aagtacagca gaggagaaag catctatgat	2040
gcatttgtga tctactcgag tcagaatgag gactgggtga gaaatgagct ggtaaagaat	2100
ttagaagaag gagtgccccg ctttcacctc tgccttcact acagagactt tattcctggt	2160
gtagccattg ctgccaacat catccaggaa ggcttccaca agagccggaa ggttattgtg	2220
gtagtgtcta gacactttat tcagagccgt tggtgtatct ttgaatatga gattgctcaa	2280
acatggcagt ttctgagcag ccgctctggc atcatcttca ttgtccttga gaaggttgag	2340
aagtccctgc tgaggcagca ggtggaattg tatcgccttc ttagcagaaa cacctacctg	2400
gaatgggagg acaatcetet ggggaggcac atettetgga gaagaettaa aaatgeeeta	2460
ttggatggaa aagcctcgaa tcctgagcaa acagcagagg aagaacaaga aacggcaact	2520
tggacctgag gagaacaaaa ctctggggcc taaacccagt ctgtttgcaa ttaataaatg	2580
ctacagetea eetggggete tgetatggae egagageeea tggaacacat ggetgetaag	2640
ctatagcatg gaccttaccg ggcagaagga agtagcactg acaccttcct ttccaggggt	2700
atgaattacc taactcggga aaagaaacat aatccagaat ctttaccttt aatctgaagg	2760
agaagaggct aaggcctagt gagaacagaa aggagaacca gtcttcactg ggccttttga	2820
atacaagcca tgtcatgttc tgtgtttcag ttgctttaga agagtattga tagtttcaac	2880
tgaactgaac ggtttcttac tttccctttt ttctactgaa tgcaatatta aatagctctt	2940
tttgagaggt cttcattcca atttcatctt ccattttatg tcattttctt ttcttttttg	3000
tttttatcta attctataag aaatatgatt gatacacgct cacagatagc ctggccaatc	3060
ctaagaatgc tatatttatt aaatacaatt cctagtatac ttttactttt ataaattcag	3120
ttatcgtttt tcatgccttg actataaact aatatcataa ataagattgt tacaggtatg	3180
ctaagaaggc ccatatttga ctataatttt ttaagaaagt atataaaata tactttgtca	3240
tattgtcact gaatgtcatt cttaagttat tacctaagtt atggatgtca cagagtcagt	3300
gttaaaaata atttggttga tagaaatatt tttaatcagg agggaaaagt ggagaggggt	3360
gcaggaacag aaatcatgat ttcatcattt attcttgatt tttccggaag ttcacatagc	3420
tgaatgacaa gactacatat gctgcaactg atgttccttc tcatcaagga tactctctga	3480
acttgagaac attttgggga ggaagaaagg tctaacatcc ttttccttca tcattctcat	3540
ttctggacat gccttgtgag atggatcaat gttgggagta cacatttctg ctttcacctt	3600
atttcagtca gcatgaacac tgaatatata atgtcatttc acagtgtgtg tgtgttgtgt	3660

atgtacatat atgaacctgt acatgtgttt aagtttaaag agaaaatagt gtacagagca 3720 ggtgtatatt tgtgataggg ctttaaatag ttgagctaat tcagaaaagt atggaggttt 3780 cttggtaaac caaaccaaaa gtagaatcat tacaagatct aacaataaaa attttgaaaa 3840 aaaaaaaaaa aaaaaaaa aaaaaaa 3866

<210> 23

<211> 835

<212> PRT

<213> murine

<400> 23

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe 1 5 10 15

Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val 20 25 30

Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro 35 40 45

Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro 50 55 60

Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln 65 70 75 80

Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala 85 90 95

Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro 100 105 110

Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu
115 120 125

Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro 130 135 140

Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe 145 150 155 160

Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu 165 170 175

Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn 180 185 190

Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp 195 200 205

Met Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly
210 215 220

Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn 225 230 235 240

WO 2004/094671 - 46 - PCT/US2004/012788

Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Val His Arg Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys 295 Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile 330 Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys Ser Leu Thr Leu Thr Met Asn Lys Gly Ser Ile Ser Phe Lys Lys Val Ala Leu Pro Ser Leu Ser Tyr Leu Asp Leu Ser Arg Asn Ala Leu Ser Phe Ser Gly Cys Cys Ser Tyr Ser Asp Leu Gly Thr Asn Ser Leu Arg His Leu Asp Leu Ser Phe Asn Gly Ala Ile Ile Met Ser Ala Asn Phe 410 Met Gly Leu Glu Glu Leu Gln His Leu Asp Phe Gln His Ser Thr Leu 420 425 Lys Arg Val Thr Glu Phe Ser Ala Phe Leu Ser Leu Glu Lys Leu Leu 440 Tyr Leu Asp Ile Ser Tyr Thr Asn Thr Lys Ile Asp Phe Asp Gly Ile 455 Phe Leu Gly Leu Thr Ser Leu Asn Thr Leu Lys Met Ala Gly Asn Ser Phe Lys Asp Asn Thr Leu Ser Asn Val Phe Ala Asn Thr Thr Asn Leu Thr Phe Leu Asp Leu Ser Lys Cys Gln Leu Glu Gln Ile Ser Trp Gly Val Phe Asp Thr Leu His Arg Leu Gln Leu Leu Asn Met Ser His Asn Asn Leu Leu Phe Leu Asp Ser Ser His Tyr Asn Gln Leu Tyr Ser Leu 535 Ser Thr Leu Asp Cys Ser Phe Asn Arg Ile Glu Thr Ser Lys Gly Ile 550 Leu Gln His Phe Pro Lys Ser Leu Ala Phe Phe Asn Leu Thr Asn Asn

Pro Val Glu Met Asn Thr Ser Leu Val Leu Asp Phe Asn Asn Ser Thr 610 615 620

Cys Tyr Met Tyr Lys Thr Ile Ile Ser Val Ser Val Ser Val Ile 625 630 635 640

Val Val Ser Thr Val Ala Phe Leu Ile Tyr His Phe Tyr Phe His Leu 645 650 655

Ile Leu Ile Ala Gly Cys Lys Lys Tyr Ser Arg Gly Glu Ser Ile Tyr 660 665 670

Asp Ala Phe Val Ile Tyr Ser Ser Gln Asn Glu Asp Trp Val Arg Asn
675 680 685

Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys 690 695 700

Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile 705 710 715 720

Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Ser
725 730 735

Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala 740 745 750

Gln Thr Trp Gln Phe Leu Ser Ser Arg Ser Gly Ile Ile Phe Ile Val 755 760 765

Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr 770 775 780

Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu 785 790 795 800

Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly 805 810 815

Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Glu Glu Thr Ala 820 825 830

Thr Trp Thr 835

<210> 24

<211> 835

<212> PRT

<213> murine

<400> 24

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe 1 5 10 15

WO 2004/094671 - 48 - PCT/US2004/012788

- Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val . 20 25 30
- Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro 35 40 45
- Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro 50 55 60
- Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln 65 70 75 80
- Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala 85 90 95
- Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro 100 105 110
- Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu 115 120 125
- Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro 130 135 140
- Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe 145 150 155 160
- Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu 165 170 175
- Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn 180 185 190
- Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp 195 200 205
- Ile Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly 210 215 220
- Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn 225 230 235 240
- Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Ile His Arg
 245 250 255
- Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu 260 265 270
- Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg 275 280 285
- Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys 290 295 300
- Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr 305 310 315 320
- Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile 325 330 335
- Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys

WO 2004/094671 - 49 - PCT/US2004/012788

345 340 Ser Leu Thr Leu Thr Met Asn Lys Gly Ser Ile Ser Phe Lys Lys Val 360 Ala Leu Pro Ser Leu Ser Tyr Leu Asp Leu Ser Arg Asn Ala Leu Ser Phe Ser Gly Cys Cys Ser Tyr Ser Asp Leu Gly Thr Asn Ser Leu Arg His Leu Asp Leu Ser Phe Asn Gly Ala Ile Ile Met Ser Ala Asn Phe Met Gly Leu Glu Glu Leu Gln His Leu Asp Phe Gln His Ser Thr Leu 425 Lys Arg Val Thr Glu Phe Ser Ala Phe Leu Ser Leu Glu Lys Leu Leu 440 Tyr Leu Asp Ile Ser Tyr Thr Asn Thr Lys Ile Asp Phe Asp Gly Ile 455 Phe Leu Gly Leu Thr Ser Leu Asn Thr Leu Lys Met Ala Gly Asn Ser 470 Phe Lys Asp Asn Thr Leu Ser Asn Val Phe Ala Asn Thr Thr Asn Leu Thr Phe Leu Asp Leu Ser Lys Cys Gln Leu Glu Gln Ile Ser Trp Gly Val Phe Asp Thr Leu His Arg Leu Gln Leu Leu Asn Met Ser His Asn Asn Leu Leu Phe Leu Asp Ser Ser His Tyr Asn Gln Leu Tyr Ser Leu Ser Thr Leu Asp Cys Ser Phe Asn Arg Ile Glu Thr Ser Lys Gly Ile 550 555 Leu Gln His Phe Pro Lys Ser Leu Ala Phe Phe Asn Leu Thr Asn Asn Ser Val Ala Cys Ile Cys Glu His Gln Lys Phe Leu Gln Trp Val Lys 585 Asp Gln Lys Gln Phe Leu Val Asn Val Glu Gln Met Thr Cys Ala Thr Pro Val Glu Met Asn Thr Ser Leu Val Leu Asp Phe Asn Asn Ser Thr Cys Tyr Met Tyr Lys Thr Ile Ile Ser Val Ser Val Val Ser Val Ile 630 635 Val Val Ser Thr Val Ala Phe Leu Ile Tyr His Phe Tyr Phe His Leu Ile Leu Ile Ala Gly Cys Lys Lys Tyr Ser Arg Gly Glu Ser Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asn Glu Asp Trp Val Arg Asn

WO 2004/094671 - 50 - PCT/US2004/012788

680 685 675 Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile 710 Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Ser Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala 740 745 Gln Thr Trp Gln Phe Leu Ser Ser His Ser Gly Ile Ile Phe Ile Val Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly 810 Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Gln Glu Thr Ala 825 Thr Trp Thr 835 25 <210> <211> 3431 <212> DNA <213> Homo sapiens <400> 25 ggcttatagg gctcgagcgg ccgcccgggc aggtatagaa ttcagcggcc gctgaattct 60 agggttttca ggagcccgag cgagggcgcc gcttttgcgt ccgggaggag ccaaccgtgg 120 egeaggegge geggggagge gteccagagt eteactetge egeceagget ggaetgeagt 180 gacacaatct cggctgactg caaccactgc ctccagggtt caagcgattc tcttgcctca 240 gcctcccaag tagctgggat tacagattga tgttcatgtt cctggcacta ctacaagatt 300 catactcctg atgctactga caacgtggct tctccacagt caccaaacca gggatgctat 360 actggacttc cctactctca tctgctccag cccctgacc ttatagttgc ccagctttcc 420 tggcaattga ctttgcccat caatacacag gatttagcat ccaqggaaga tgtcggagcc 480 tcagatgtta attttctaat tgagaatgtt ggcgctgtcc gaacctggag acagaaaaac 540 aaaaagtcct ttctcctgat tcaccaaaaa ataaaatact gactaccatc actgtgatga 600 gattcctata gtctcaggaa ctgaagtctt taaacaacca gggaccctct gcccctagaa 660

taagaacata ctagaagtcc cttctgctag gacaacgagg atcatgggag accacctgga

720

ccttetecta tgatggeega	ggagtggtgc atagcctttt	tcatggccgg atcgtttctg	tcctgtgttt caacctcacc	ggaatteett caggteecee	cctgctcctt aggtcctcaa	780 840
caccactgag	aggctcctgc	tgagcttcaa	ctatatcagg	acagtcactg	cttcatcctt	900
ccccttctg	gaacagctgc	agctgctgga	gctcgggagc	cagtataccc	ccttgactat	960
tgacaaggag	gccttcagaa	acctgcccaa	ccttagaatc	ttggacctgg	gaagtagtaa	1020
gatatacttc	ttgcatccag	atgcttttca	gggactgttc	catctgtttg	aacttagact	1080
gtatttctgt	ggtetetetg	atgctgtatt	gaaagatggt	tatttcagaa	atttaaaggc	1140
tttaactcgc	ttggatctat	ccaaaaatca	gattcgtagc	ctttaccttc	atccttcatt	1200
tgggaagttg	aattccttaa	agtccataga	tttttcctcc	aaccaaatat	tccttgtatg	1260
tgaacatgag	ctcgagcccc	tacaagggaa	aacgctctcc	ttttttagcc	tcgcagctaa	1320
tagcttgtat	agcagagtct	cagtggactg	gggaaaatgt	atgaacccat	tcagaaacat	1380
ggtgctggag	atactagatg	tttctggaaa	tggctggaca	gtggacatca	caggaaactt	1440
tagcaatgcc	atcagcaaaa	gccaggcctt	ctctttgatt	cttgcccacc	acatcatggg	1500
tgccgggttt	ggcttccata	acatcaaaga	tcctgaccag	aacacatttg	ctggcctggc	1560
cagaagttca	gtgagacacc	tggatctttc	acatgggttt	gtcttctccc	tgaactcacg	1620
agtctttgag	acactcaagg	atttgaaggt	tctgaacctt	gcctacaaca	agataaataa	1680
gattgcagat	gaagcatttt	acggacttga	caacctccaa	gttctcaatt	tgtcatataa	1740
ccttctgggg	gaactttaca	gttcgaattt	ctatggacta	cctaaggtag	cctacattga	1800
tttgcaaaag	aatcacattg	caataattca	agaccaaaca	ttcaaattcc	tggaaaaatt	1860
acagaccttg	gatctccgag	acaatgctct	tacaaccatt	cattttattc	caagcatacc	1920
cgatatcttc	ttgagtggca	ataaactagt	gactttgcca	aagatcaacc	ttacagcgaa	1980
cctcatccac	ttatcagaaa	acaggctaga	aaatctagat	attctctact	ttcttctacg	2040
ggtacctcat	ctccagattc	tcattttaaa	tcaaaatcgc	tteteeteet	gtagtggaga	2100
tcaaacccct	tcagagaatc	ccagcttaga	acagcttttc	cttggagaaa	atatgttgca	2160
acttgcctgg	gaaactgagc	tctgttggga	tgtttttgag	ggactttctc	atcttcaagt	2220
tctgtatttg	aatcataact	atcttaattc	ccttccacca	ggagtattta	gccatctgac	2280
tgcattaagg	ggactaagcc	tcaactccaa	caggctgaca	gttctttctc	acaatgattt	2340
acctgctaat	ttagagatcc	tggacatatc	caggaaccag	ctcctagctc	ctaatcctga	2400
tgtatttgta	tcacttagtg	tcttggatat	aactcataac	aagttcattt	gtgaatgtga	2460
acttagcact	tttatcaatt	ggcttaatca	caccaatgtc	actatagetg	ggcctcctgc	2520
agacatatat	tgtgtgtacc	ctgactcgtt	ctctggggtt	tccctcttct	ctctttccac	2580
ggaaggttgt	gatgaagagg	aagtcttaaa	gtccctaaag	ttctcccttt	tcattgtatg	2640

- 52 -WO 2004/094671 PCT/US2004/012788

cactgtcact	ctgactctgt	tcctcatgac	catcctcaca	gtcacaaagt	tccggggctt	2700
ctgttttatc	tgttataaga	cagcccagag	actggtgttc	aaggaccatc	cccagggcac	2760
agaacctgat	atgtacaaat	atgatgccta	tttgtgcttc	agcagcaaag	acttcacatg	2820
ggtgcagaat	gctttgctca	aacacctgga	cactcaatac	agtgaccaaa	acagattcaa	2880
cctgtgcttt	gaagaaagag	actttgtccc	aggagaaaac	cgcattgcca	atatccagga	2940
tgccatctgg	aacagtagaa	agatcgtttg	tcttgtgagc	agacacttcc	ttagagatgg	3000
ctggtgcctt	gaagccttca	gttatgccca	gggcaggtgc	ttatctgacc	ttaacagtgc	3060
tctcatcatg	gtggtggttg	ggtccttgtc	ccagtaccag	ttgatgaaac	atcaatccat	3120
cagaggcttt	gtacagaaac	agcagtattt	gaggtggcct	gaggatctcc	aggatgttgg	3180
ctggtttctt	cataaactct	ctcaacagat	actaaagaaa	gaaaaagaaa	agaagaaaga	3240
caataacatt	ccgttgcaaa	ctgtagcaac	catctcctaa	tcaaaggagc	aatttccaac	3300
ttatctcaag	ccacaaataa	ctcttcactt	tgtatttgca	ccaagttatc	attttggggt	3360
cctctctgga	ggttttttt	ttctttttgc	tactatgaaa	acaacataaa	tctctcaatt	3420
ttcgtatcaa	a					3431

<210> 26 <211> 858 <212> PRT

<213> Homo sapiens

<400> 26

Met Gly Asp His Leu Asp Leu Leu Leu Gly Val Val Leu Met Ala Gly

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr

Glu Arg Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Glu Leu Gly Ser Gln

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro 100

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe 120

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu

WO 2004/094671 - 53 - PCT/US2004/012788

Lys 145	130 Ala	Leu	Thr	Arg	Leu 150	135 Asp	Leu	Ser	Lys	Asn 155	140 Gln	Ile	Arg	Ser	Leu 160
Tyr	Leu	His	Pro	Ser 165	Phe	Gly	ŗуs	Leu	Asn 170	Ser	Leu	Lys	Ser	Ile 175	Asp
Phe	Ser	Ser	Asn 180	Gln	Ile	Phe	Leu	Val 185	Сув	Glu	His	Glu	Leu 190	Glu	Pro
Leu	Gln	Gly 195	Lys	Thr	Leu	Ser	Phe 200	Phe	Ser	Leu	Ala	Ala 205	Asn	Ser	Leu
Tyr	Ser 210	Arg	Val	Ser	Val	Asp 215	Trp	Gly	Lys	Cys	Met 220	Asn	Pro	Phe	Arg
Asn 225	Met	Val	Leu	Glu	Ile 230	Leu	Asp	Val	Ser	Gly 235	Asn	Gly	Trp	Thr	Val 240
Asp	Ile	Thr	Gly	Asn 245	Phe	Ser	Asn	Ala	Ile 250	Ser	ГЛа	Ser	Gln	Ala 255	Phe
Ser	Leu	Ile	Leu 260	Ala	His	His	Ile	Met 265	Gly	Ala	Gly	Phe	Gly 270	Phe	His
Asn	Ile	Lys 275	Asp	Pro	Asp	Gln	Asn 280	Thr	Phe	Ala	Gly	Leu 285	Ala	Arg	Ser
Ser	Val 290	Arg	His	Leu	Asp	Leu 295	Ser	His	Gly	Phe	Val 300	Phe	Ser	Leu	Asn
Ser 305	Arg	Val	Phe	Glu	Thr 310	Leu	Lys	Asp	Leu	Lys 315	Val	Leu	Asn	Leu	Ala 320
Tyr	Asn	Lys	Ile	Asn 325	Lys	Ile	Ala	Asp	Glu 330	Ala	Phe	Tyr	Gly	Leu 335	Asp
Asn	Leu	Gln	Val 340	Leu	Asn	Leu	Ser	Tyr 345	Asn	Leu	Leu	Gly	Glu 350	Leu	Tyr
Ser	Ser	Asn 355	Phe	Tyr	Gly	Leu	Pro 360	Lys	Val	Ala	Tyr	11e 365	Asp	Leu	Gln
ГÀв	Asn 370	His	Ile	Ala	Ile	Ile 375	Gln	Asp	Gln	Thr	Phe 380	FÀR	Phe	Leu	Glu
Lув 385	Leu	Gln	Thr	Leu	Asp 390	Leu	Arg	Asp	Asn	Ala 395	Leu	Thr	Thr	Ile	His 400
Phe	Ile	Pro	Ser	Ile 405	Pro	Asp	Ile	Phe	Leu 410	Ser	Gly	Asn	Lys	Leu 415	Val
Thr	Leu	Pro	Lys 420	Ile	Asn	Leu	Thr	Ala 425	Asn	Leu	Ile	His	Leu 430	Ser	Glu
		435			Leu		440					445			
	450				Ile	455					460				
Gly	Asp	Gln	Thr	Pro	Ser	Glu	Asn	Pro	Ser	Leu	Glu	Gln	Leu	Phe	Leu

WO 2004/094671 - 54 - PCT/US2004/012788

465 470 475 Gly Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Glu Leu Cys Trp Asp 490 Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu Asn His Asn Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu Thr Ala Leu Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu Ser His Asn 535 Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln Leu 550 Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val Leu Asp Ile 565 570 Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn 585 Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu 615 Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr 650 Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile Cys Tyr Lys 660 Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly Thr Glu Pro 680 Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe 695 Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser Asp Leu Asn Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln Tyr Gln Leu 790 Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu

805 810 Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu 825

Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys Asp Asn Asn

Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 855

<210> 27

<211> 858 <212> PRT <213> Homo sapiens

<400> 27

Met Gly Asp His Leu Asp Leu Leu Cly Val Val Leu Met Ala Gly

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr

Glu Arg Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Glu Leu Gly Ser Gln

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe 120

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu

Lys Ala Leu Thr Arg Leu Asp Leu Ser Lys Asn Gln Ile Arg Ser Leu 150

Tyr Leu His Pro Ser Phe Gly Lys Leu Asn Ser Leu Lys Ser Ile Asp

Phe Ser Ser Asn Gln Ile Phe Leu Val Cys Glu His Glu Leu Glu Pro

Leu Gln Gly Lys Thr Leu Ser Phe Phe Ser Leu Ala Ala Asn Ser Leu 200

Tyr Ser Arg Val Ser Val Asp Trp Gly Lys Cys Met Asn Pro Phe Arg

Asn Met Val Leu Glu Ile Val Asp Val Ser Gly Asn Gly Trp Thr Val 230 235

WO 2004/094671 - 56 - PCT/US2004/012788

Asp	Ile	Thr	Gly	Asn 245	Phe	Ser	Asn	Ala	Ile 250	Ser	Lys	Ser	Gln	Ala 255	Phe
Ser	Leu	Ile	Leu 260	Ala	His	His	Ile	Met 265	Gly	Ala	Gly	Phe	Gly 270	Phe	His
Asn	Ile	Lys 275	Asp	Pro	Asp	Gl'n	Asn 280	Thr	Phe	Ala	Gly	Leu 285	Ala	Arg	Ser
Ser	Val 290	Arg	Hìs	Leu	Asp	Leu 295	Ser	His	Gly	Phe	Val 300	Phe	Ser	Leu	Asn
Ser 305	Arg	Val	Phe	Glu	Thr 310	Leu	Lys	Asp	Leu	Lys 315	Val	Leu	Asn	Leu	Ala 320
Tyr	Asn	ГÀЗ	Ile	Asn 325	Lys	Ile	Ala	Asp	Glu 330	Ala	Phe	Tyr	Gly	Leu 335	Asp
Asn	Leu	Gln	Val 340	Leu	Asn	Leu	Ser	Tyr 345	Asn	Leu	Leu	Gly	Glu 350	Leu	Cys ,
		355					360	_			_	365	Asp		
	370					375					380				Glu
385					390					395			Thr		400
				405					410		-		Lys	415	
			420					425					Leu 430		
		435					440					445	Arg		
	450					455					460		Ser	•	
465					470					475			Leu		480
				485					490				Суз	495	_
			500					505			•		Asn 510		
		515					520					525			Leu
	530					535					540				Asn
545					550					555					Leu 560
Leu	Ala	Pro	Asn	Pro	Asp	Val	Phe	Val	Ser	Leu	Ser	Val	Leu	Asp	Ile

565 570 Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn 585 Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser Leu Lys Phe 630 Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr 650 Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile Cys Tyr Lys 665 Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly Thr Glu Pro 680 Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro

Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg

Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys

Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser Asp Leu Asn

Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln Tyr Gln Leu 790

Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu

Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu

Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys Asp Asn Asn

Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 850 855

<210> 28

<211> 365 <212> PRT

<213> Homo sapiens

<400> 28

WO 2004/094671 - 58 - PCT/US2004/012788

Cys Trp Asp Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu Asn His Asn Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu 20 Thr Ala Leu Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu Ser His Asn Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg 55 Asn Gln Leu Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val Leu Asp Ile Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro 105 Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile 165 170 Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly 180 185 Thr Glu Pro Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser 280 Asp Leu Asn Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln

295

310

Tyr Gln Leu Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln

Gln Tyr Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu

300

315

WO 2004/094671 - 59 - PCT/US2004/012788

325 330 335 His Lys Leu Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys 340 345 350

Asp Asn Asn Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 355 360 365

<210> 29 <211> 4286 <212> DNA

<213> murine

<400> 29

ttgaaatete acageceggt tggttgcagt gacceaette gttgaacata ttetteetaa 60 tectagtact tteaatttge tetatteeet ggtgtetatg catttaaate gactatgggg 120 ccattcttcc ttgaaccacc acagaagaca ttagetetet gggateettg ttaatttttt 180 ctcctcttac atagcaccta cgcttggaac atatgccaga cacatctgtg agacacccct 240 tgccgctgca gctcatggat ggatgctgag ttcccccacg caccacactt cagcaggtgg 300 gtgtatttet getteacatt atacteecae aeggeeatge atgteaggea tggageagge 360 420 tcataaccca cttaattaag gtgatcatat cagatccttt atcaagatgc atagagtgct cagtgcctgt actatgatct cggatctttg ggagatgggc tagatagagt ctgggacaga 480 540 atacagcaga gaaaccgata tgtttattgt ccgatcatca gctaagcttc tgggagctag gaatggggct ccttggatga acagaagtaa aaatgcctcg tctttatgac tttcaacttc 600 cctcagcagg tctggaatgg gtgaacaaac actgcctgcg tgggtgataa atagcctctt 660 tttgctgctt gtttgctgct tttatggttc tgggagggaa cctagaacct agcacatgct 720 agacaagtcc tctagcactg agctatctcc ccagcttgga tgaaatatct gtaaagtact 780 ggtgcccgtg tgtaaaatat gcaccattaa gtgttcaaga agaaaagact gggcatttct 840 gttccaccaa gacaagaaga atctgccagc agaatgtttg cgcagtcatt tgagcaaagg 900 ggtccaaggg acagtaccct ccagtgctgg ggacccatgt gccgagcctc aggctgtgat 960 gtggtgttgt ttttaattct ctcttttccc ataggatcat ggcatgtcaa cttgacttgc 1020 tcataggtgt gatcttcatg gccagcccg tgttggtaat atctccctgt tcttcagacg 1080 gcaggatagc ctttttccga ggctgtaacc tcacccagat tccctggatc ctcaatacta 1140 ccactgagag getectgete agetteaact atateagtat ggtggttgee acateattte 1200 cacteetgga geggeteeag ttgetggage tggggaceea gtatgetaac ttgaceattg 1260 gtccaggggc tttcagaaac ctgcccaatc ttaggatctt ggacttgggc caaagccaga 1320 tcgaagtett gaatcgagat gcctttcaag gtctgcccca tctcttggaa cttcggctgt 1380 tttcctgtgg actctccagt gctgtgttaa gtgacggtta cttcagaaat ctatattcat 1440

	agacctatct ttccttaagc					1500 1560
aagatgaact	cgagcctctg	cagggcaaaa	cactgtcttt	ctttggcctc	aaattaacta	1620
agctgttcag	cagagtctct	gtgggctggg	agacatgcag	gaaccccttc	agaggcgtga	1680
ggctagaaac	tctagatctt	tctgaaaatg	gctggacggt	ggacatcaca	aggaacttca	1740
gcaacatcat	ccagggaagc	cagatttcct	ctttgattct	taaacaccac	atcatgggtc	1800
ctggctttgg	cttccagaac	atcagagatc	ctgaccagag	cacatttgcc	agcctggcca	1860
gaagttcggt	gctgcaactg	gacctttcgc	acggctttat	cttctccttg	aatcctcgac	1920
tgtttgggac	actgaaggat	ttgaagatgc	tgaaccttgc	cttcaacaag	ataaacaaga	1980
ttggagagaa	tgccttttat	gggcttgaca	gcctccaggt	tctcaatcta	tcctataatc	2040
ttttggggga	actctataat	tccaacttct	atgggcttcc	tagagtagcc	tacgttgacc	2100
ttcaaaggaa	ccacattggg	atcattcaag	accaaacatt	cagattatta	aaaacgttac	2160
aaaccttaga	tctccgtgac	aatgctctta	aggccattgg	ttttattcca	agcatacaga	2220
tggtcctcct	gggaggcaat	aagctggtcc	atttgccaca	catccacttt	actgccaact	2280
tcctagagtt	atctgaaaac	aggctagaaa	acctgtccga	cctctacttc	ctcctgcgag	2340
tcccccagct	ccagtttctc	atcttgaatc	agaatcgcct	ttcgtcatgc	aaggcagccc	2400
acactccctc	ggagaaccca	agcttagaac	agcttttcct	tacagagaat	atgctgcagc	2460
tggcctggga	gaccggcctc	tgttgggatg	tttttcaagg	cctttcccgc	ctccagattc	2520
tttacctgag	taataactac	cttaatttcc	ttccacctgg	gatatttaac	gacctggttg	2580
cattacggat	gcttagtctt	agtgctaaca	agctgaccgt	gctctctccg	ggcagtttac	2640
ctgctaattt	agagattctc	gacatatcta	gaaatcagct	tttgtgtcct	gaccctgctt	2700
tgttttcttc	gcttcgtgtt	ttggacataa	ctcataacga	gttcgtctgc	aactgtgaac	2760
ttagcacttt	tatctcctgg	ctcaaccaaa	ccaacgtcac	cctgttcggc	tctcctgcag	2820
acgtgtattg	catgtaccct	aactcactgc	tagggggctc	cctctacaac	atatccaccg	2880
aagactgcga	tgaagaggaa	gccatgcggt	ccctaaagtt	ttcccttttc	atcctgtgca	2940
cggtcacttt	gactctattc	ctcgtcatca	cccttgtagt	cataaagttc	cggggaatct	3000
gtttcctgtg	ctataagacc	atccagaagc	tggtgttcaa	ggacaaggtc	tggagtttgg	3060
aacctggtgc	atatagatat	gatgcctact	tctgcttcag	cagcaaagac	tttgaatggg	3120
cacagaatgc	tttgctcaaa	cacctggatg	ctcactacag	ttcccgaaac	aggctcaggc	3180
tatgctttga	agaaagagac	ttcattccgg	gggaaaacca	tatctccaac	atccaggcgg	3240
ctgtctgggg	cagcaggaag	acggtgtgtc	tagtgagcag	acacttcctg	aaggatggtt	3300
ggtgcctgga	ggccttcagg	tatgcccaga	gccggagtct	gtctgacctc	aagagcattc	3360

WO 2004/094671 - 61 - PCT/US2004/012788

tcatcgtggt	ggtggtggga	tegetgteec	agtatcagct	gatgagacat	gagaccatca	3420
gagggtttct	gcaaaagcaa	cagtacttga	ggtggcctga	agacctccag	gatgttggct	3480
ggtttctcga	taaactctcc	ggatgcattc	taaaggaaga	aaaaggaaag	aaaagaagca	3540
gttccatcca	gttgcgaacc	atagcaacca	tttcctagca	ggagcgcctc	ctagcagaag	3600
tgcaagcatc	gtagataact	ctccacgctt	tatccgcaca	geegetgggg	gtccttccct	3660
ggagtcattt	ttctgacaat	gaaaacaaca	ccaatctctt	gatttttcat	gtcaacaggg	3720
agctttgtct	tcactgtttt	ccaaatggaa	agtaagaggt	ccagaaagct	gcctctaagg	3780
gctctcacct	gccattgatg	tcctttcagg	cccaatgaca	tggtttccct	ccatcctatt	3840
gcgtactgtc	tgctacccag	gtggcaagag	caccttggga	gaagttacag	gcagcttcat	3900
gctttctgtg	ctgttcagtt	caaaagcagg	tgccttgaga	atcctgaatt	caagcactct	3960
gtagaacatg	gacagacaag	atgggtcctt	ctctggccat	aggcatgagg	gccagttgct	4020
gaggactgct	ctcactacac	ctaagtgcac	aagtgataag	aagttggaca	gatagacaga	4080
tagcagcagt	cccattgctg	tagccagaat	gcacttattt	cctgttctga	ccctgcaggc	4140
ccagcttttg	gggaccacag	ccatgttctg	cacgggacct	ctcaacctgg	cattcatgcc	4200
ctttcacgac	ttagcaccgg	cctgcccttc	tttcttcccc	acaactatac	aagagctgtt	4260
gcaaccactg	aaaaaaaaa	aaaaaa				4286

<210> 30

<211> 859

<212> PRT

<213> murine

<400> 30

Met Ala Cys Gln Leu Asp Leu Leu Ile Gly Val Ile Phe Met Ala Ser 1 5 10 15

Pro Val Leu Val Ile Ser Pro Cys Ser Ser Asp Gly Arg Ile Ala Phe 20 25 30

Phe Arg Gly Cys Asn Leu Thr Gln Ile Pro Trp Ile Leu Asn Thr Thr 35 40 45

Thr Glu Arg Leu Leu Leu Ser Phe Asn Tyr Ile Ser Met Val Val Ala 50 55 60

Thr Ser Phe Pro Leu Leu Glu Arg Leu Gln Leu Leu Glu Leu Gly Thr 65 70 75 80

Gln Tyr Ala Asn Leu Thr Ile Gly Pro Gly Ala Phe Arg Asn Leu Pro 85 90 95

Asn Leu Arg Ile Leu Asp Leu Gly Gln Ser Gln Ile Glu Val Leu Asn 100 105 110

WO 2004/094671 - 62 - PCT/US2004/012788

Arg	Asp	Ala 115	Phe	Gln	Gly	Leu	Pro 120	His	Leu	Leu	Glu	Leu 125	Arg	Leu	Phe
Ser	Cys 130	Gly	Leu	Ser	Ser	Ala 135	Val	Leu	Ser	Asp	Gly 140	Tyr	Phe	Arg	Asn
Leu 145	Tyr	Ser	Leu	Ala	Arg 150	Leu	qaA	Leu	Ser	Gly 155	Asn	Gln	Ile	His	Ser 160
Leu	Arg	Leu	His	Ser 165	Ser	Phe	Arg	Glu	Leu 170	Asn	Ser	Leu	Ser	Asp 175	Val
Asn	Phe	Ala	Phe 180	Asn	Gln	Ile	Phe	Thr 185	Ile	Cys	Glu	Asp	Glu 190	Leu	Glu
Pro		Gln 195	Gly	Lys	Thr	Leu	Ser 200	Phe	Phe	Gly	Leu	Lys 205	Leu	Thr	Lys
Leu	Phe 210	Ser	Arg	Val	Ser	Val 215	Gly	Trp	Glu	Thr	Cys 220	Arg	Asn	Pro	Phe
Arg 225	Gly	Val	Arg	Leu	Glu 230	Thr	Leu	Asp	Leu	Ser 235	Glu	Asn	Gly	Trp	Thr 240
Val	Asp	Ile	Thr	Arg 245	Asn	Phe	Ser	Asn	Ile 250	Ile	Gln	Gly	Ser	Gln 255	Ile
Ser	Ser	Leu	Ile 260	Leu	Lys	His	His	Ile 265	Met	Gly	Pro	Gly	Phe 270	Gly	Phe
Gln	Asn	Ile 275	Arg	Asp	Pro	Asp	Gln 280	Ser	Thr	Phe	Ala	Ser 285	Leu	Ala	Arg
Ser	Ser 290	Val	Leu	Gln	Leu	Asp 295	Leu	Ser	His	Gly	Phe 300	Ile	Phe	Ser	Leu
Asn 305	Pro	Arg	Leu	Phe	Gly 310	Thr	Leu	Lys	Asp	Leu 315	Lys	Met	Leu	Asn	Leu 320
Ala	Phe	Asn	Lys	Ile 325	Asn	Lys	Ile	Gly	Glu 330	Asn	Ala	Phe	Tyr	Gly 335	Leu
Asp	Ser	Leu	Gln 340	Val	Leu	Asn	Leu	Ser 345	Tyr	Asn	Leu	Leu	Gly 350	Glu	Leu
Tyr	Asn	Ser 355	Asn	Phe	Tyr	Gly	Leu 360	Pro	Arg	Val	Ala	Tyr 365	Val	Asp	Leu
Gln	Arg 370	Asn	His	Ile	Gly	Ile 375	Ile	Gln	Asp	Gln	Thr 380	Phe	Arg	Leu	Leu
Lys 385	Thr	Leu	Gln	Thr	Leu 390	Asp	Leu	Arg	Asp	Asn 395	Ala	Leu	Lys	Ala	Ile 400
Gly	Phe	Ile	Pro	Ser 405	Ile	Gln	Met	Val	Leu 410	Leu	Gly	Gly	Asn	Lys 415	Leu
Val	His	Leu	Pro 420	His	Ile	His	Phe	Thr 425	Ala	Asn	Phe	Leu	Glu 430	Leu	Ser
Glu	Asn	Arg	Leu	Glu	Asn	Leu	Ser	Asp	Leu	Tyr	Phe	Leu	Leu	Arg	Val

440 Pro Gln Leu Gln Phe Leu Ile Leu Asn Gln Asn Arg Leu Ser Ser Cys 455 Lys Ala Ala His Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu Thr Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Gly Leu Cys Trp Asp Val Phe Gln Gly Leu Ser Arg Leu Gln Ile Leu Tyr Leu Ser Asn 505 Asn Tyr Leu Asn Phe Leu Pro Pro Gly Ile Phe Asn Asp Leu Val Ala 520 Leu Arg Met Leu Ser Leu Ser Ala Asn Lys Leu Thr Val Leu Ser Pro 535 Gly Ser Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln 555 Leu Leu Cys Pro Asp Pro Ala Leu Phe Ser Ser Leu Arg Val Leu Asp Ile Thr His Asn Glu Phe Val Cys Asn Cys Glu Leu Ser Thr Phe Ile 585 Ser Trp Leu Asn Gln Thr Asn Val Thr Leu Phe Gly Ser Pro Ala Asp Val Tyr Cys Met Tyr Pro Asn Ser Leu Leu Gly Gly Ser Leu Tyr Asn Ile Ser Thr Glu Asp Cys Asp Glu Glu Glu Ala Met Arg Ser Leu Lys 630 Phe Ser Leu Phe Ile Leu Cys Thr Val Thr Leu Thr Leu Phe Leu Val 650 Ile Thr Leu Val Val Ile Lys Phe Arg Gly Ile Cys Phe Leu Cys Tyr Lys Thr Ile Gln Lys Leu Val Phe Lys Asp Lys Val Trp Ser Leu Glu Pro Gly Ala Tyr Arg Tyr Asp Ala Tyr Phe Cys Phe Ser Ser Lys Asp 695 Phe Glu Trp Ala Gln Asn Ala Leu Leu Lys His Leu Asp Ala His Tyr Ser Ser Arg Asn Arg Leu Arg Leu Cys Phe Glu Glu Arg Asp Phe Ile Pro Gly Glu Asn His Ile Ser Asn Ile Gln Ala Ala Val Trp Gly Ser Arg Lys Thr Val Cys Leu Val Ser Arg His Phe Leu Lys Asp Gly Trp 760 Cys Leu Glu Ala Phe Arg Tyr Ala Gln Ser Arg Ser Leu Ser Asp Leu

WO 2004/094671 - 64 - PCT/US2004/012788

770 775 780 Lys Ser Ile Leu Ile Val Val Val Gly Ser Leu Ser Gln Tyr Gln 785 790 795 800

Leu Met Arg His Glu Thr Ile Arg Gly Phe Leu Gln Lys Gln Gln Tyr 805 810 815

Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu Asp Lys 820 825 830

Leu Ser Gly Cys Ile Leu Lys Glu Glu Lys Gly Lys Lys Arg Ser Ser 835 840 845

Ser Ile Gln Leu Arg Thr Ile Ala Thr Ile Ser 850 855

<210> 31

<211> 3373

<212> DNA

<213> Homo sapiens

<400> 31

agetggetag egittaaaeg ggeeetetag aetegagegg eegegaatte aetagtgatt 60 cacctctcat gctctgctct cttcaaccag acctctacat tccattttgg aagaagacta 120 aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt taacataatc 180 ctaatttcca aactccttgg ggctagatgg tttcctaaaa ctctgccctg tgatgtcact 240 ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt gacagaaatt 300 cctggaggta ttcccacgaa caccacgaac ctcaccctca ccattaacca cataccagac 360 atctccccag cgtcctttca cagactggac catctggtag agatcgattt cagatgcaac 420 tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaagaggct gcagattaaa 480 cccagaaget ttagtggact cacttattta aaatcccttt acctggatgg aaaccageta 540 ctagagatac cgcagggcct cccgcctagc ttacagcttc tcagccttga ggccaacaac 600 atcttttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat actctacctg 660 ggccaaaact gttattatcg aaatccttgt tatgtttcat attcaataga gaaagatgcc 720 ttcctaaact tgacaaagtt aaaagtgctc tccctgaaag ataacaatgt cacagccgtc 780 cctactgttt tgccatctac tttaacagaa ctatatctct acaacaacat gattgcaaaa 840 atccaagaag atgattttaa taacctcaac caattacaaa ttcttgacct aagtggaaat 900 tgccctcgtt gttataatgc cccatttcct tgtgcgccgt gtaaaaataa ttctccccta 960 cagatecetg taaatgettt tgatgegetg acagaattaa aagttttaeg tetacacagt 1020 aactetette ageatgtgee eecaagatgg tttaagaaca teaacaaact eeaggaactg 1080 gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct gcattttctc 1140 cccagcetca tecaattgga tetgtettte aattttgaac ttcaggteta tegtgcatet 1200

atgaatctat	cacaagcatt	ttcttcactg	aaaagcctga	aaattctgcg	gatcagagga	1260
tatgtcttta	aagagttgaa	aagctttaac	ctctcgccat	tacataatct	tcaaaatctt	1320
gaagttcttg	atcttggcac	taactttata	aaaattgcta	acctcagcat	gtttaaacaa	1380
tttaaaagac	tgaaagtcat	agatetttea	gtgaataaaa	tatcaccttc	aggagattca	1440
agtgaagttg	gcttctgctc	aaatgccaga	acttctgtag	aaagttatga	accccaggtc	1500
ctggaacaat	tacattattt	cagatatgat	aagtatgcaa	ggagttgcag	attcaaaaac	1560
aaagaggctt	ctttcatgtc	tgttaatgaa	agctgctaca	agtatgggca	gaccttggat	1620
ctaagtaaaa	atagtatatt	ttttgtcaag	tcctctgatt	ttcagcatct	ttctttcctc	1680
aaatgcctga	atctgtcagg	aaatctcatt	agccaaactc	ttaatggcag	tgaattccaa	1740
cctttagcag	agctgagata	tttggacttc	tccaacaacc	ggcttgattt	actccattca	1800
acagcatttg	aagagcttca	caaactggaa	gttctggata	taagcagtaa	tagccattat	1860
tttcaatcag	aaggaattac	tcatatgcta	aactttacca	agaacctaaa	ggttctgcag	1920
aaactgatga	tgaacgacaa	tgacatctct	tcctccacca	gcaggaccat	ggagagtgag	1980
tctcttagaa	ctctggaatt	cagaggaaat	cacttagatg	ttttatggag	agaaggtgat	2040
aacagatact	tacaattatt	caagaatctg	ctaaaattag	aggaattaga	catctctaaa	2100
aattccctaa	gtttcttgcc	ttctggagtt	tttgatggta	tgcctccaaa	tctaaagaat	2160
ctctctttgg	ccaaaaatgg	gctcaaatct	ttcagttgga	agaaactcca	gtgtctaaag	2220
aacctggaaa	ctttggacct	cagccacaac	caactgacca	ctgtccctga	gagattatcc	2280
aactgttcca	gaagcctcaa	gaatctgatt	cttaagaata	atcaaatcag	gagtctgacg	2340
aagtatttc	tacaagatgc	cttccagttg	cgatatctgg	atctcagctc	aaataaaatc	2400
cagatgatcc	aaaagaccag	cttcccagaa	aatgtcctca	acaatctgaa	gatgttgctt	2460
ttgcatcata	atcggtttct	gtgcacctgt	gatgctgtgt	ggtttgtctg	gtgggttaac	2520
catacggagg	tgactattcc	ttacctggcc	acagatgtga	cttgtgtggg	gccaggagca	2580
cacaagggcc	aaagtgtgat	ctccctggat	ctgtacacct	gtgagttaga	tctgactaac	2640
ctgattctgt	tctcactttc	catatctgta	tetetette	tcatggtgat	gatgacagca	2700
agtcacctct	atttctggga	tgtgtggtat	atttaccatt	tctgtaaggc	caagataaag	2760
gggtatcago	gtctaatatc	accagactgt	tgctatgatg	cttttattgt	gtatgacact	2820
aaagacccag	ctgtgaccga	gtgggttttg	gctgagctgg	tggccaaact	ggaagaccca	2880
agagagaaac	: attttaattt	atgtctcgag	gaaagggact	ggttaccagg	gcagccagtt	2940
ctggaaaacc	: tttcccagag	catacagett	agcaaaaaga	cagtgtttgt	gatgacagac	3000
aagtatgcaa	agactgaaaa	tttaagata	gcattttact	: tgtcccatca	gaggctcatg	3060

WO 2004/094671 - 66 - PCT/US2004/012788

gatgaa	aaaag	ttgatgtgat	tatcttgata	tttcttgaga	agccttttca	gaagtccaag	3120
ttcct	ccagc	tccggaaaag	gctctgtggg	agttctgtcc	ttgagtggcc	aacaaacccg	3180
caagct	tcacc	catacttctg	gcagtgtcta	aagaacgccc	tggccacaga	caatcatgtg	3240
gcctat	tagtc	aggtgttcaa	ggaaacggtc	tagaatcgaa	ttcccgcggc	cgccactgtg	3300
ctggat	tatct	gcagaattcc	accacactgg	actagtggat	ccgagctcgg	taccaagett	3360
aagtt	taaac	cgc					3373

<210> 32

<211> 3416

<212> DNA

<213> Homo sapiens

<400> 32

tccagatata ggatcactcc atgccatcaa gaaagttgat gctattgggc ccatctcaag 60 ctgatcttgg cacctctcat gctctgctct cttcaaccag acctctacat tccattttgg 120 aagaagacta aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt 180 taacataatc ctaatttcca aactccttgg ggctagatgg tttcctaaaa ctctgccctg 240 tgatgtcact ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt 300 gacagaaatt cctggaggta ttcccacgaa caccacgaac ctcaccctca ccattaacca 360 cataccagac atctccccag cgtcctttca cagactggac catctggtag agatcgattt 420 cagatgcaac tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaaqaqqct 480 gcagattaaa cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg 540 aaaccagcta ctagagatac cgcagggcct cccgcctagc ttacagcttc tcagccttqa 600 ggccaacaac atcttttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat 660 actotacctg ggccaaaact gttattatcg aaatcottgt tatgtttcat attcaataga 720 gaaagatgcc ttcctaaact tgacaaagtt aaaagtgctc tccctgaaag ataacaatgt 780 cacagoogto cotactgttt tgocatotac tttaacagaa ctatatotot acaacaacat 840 gattgcaaaa atccaagaag atgattttaa taacctcaac caattacaaa ttcttgacct 900 aagtggaaat tgccctcgtt gttataatgc cccatttcct tgtgcgccgt gtaaaaataa 960 ttctccccta cagatccctg taaatgcttt tgatgcgctg acagaattaa aagttttacg 1020 tctacacagt aactctcttc agcatgtgcc cccaagatgg tttaagaaca tcaacaaact 1080 ccaggaactg gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct 1140 geattttete eecageetea teeaattgga tetgtettte aattttgaae tteaggteta 1200 tegtgeatet atgaatetat cacaageatt ttetteaetg aaaageetga aaattetgeg 1260

	tatgtcttta gaagttcttg					1320 1380
gtttaaacaa	tttaaaagac	tgaaagtcat	agatctttca	gtgaataaaa	tatcaccttc	1440
aggagattca	agtgaagttg	gcttctgctc	aaatgccaga	acttctgtag	aaagttatga	1500
accccaggtc	ctggaacaat	tacattattt	cagatatgat	aagtatgcaa	ggagttgcag	1560
attcaaaaac	aaagaggctt	ctttcatgtc	tgttaatgaa	agctgctaca	agtatgggca	1620
gaccttggat	ctaagtaaaa	atagtatatt	ttttgtcaag	tcctctgatt	ttcagcatct	1680
ttettteete	aaatgcctga	atctgtcagg	aaatctcatt	agccaaactc	ttaatggcag	1740
tgaattccaa	cctttagcag	agttgagata	tttggacttc	tccaacaacc	ggcttgattt	1800
actccattca	acagcatttg	aagagcttca	caaactggaa	gttctggata	taagcagtaa	1860
tagccattat	tttcaatcag	aaggaattac	tcatatgcta	aactttacca	agaacctaaa	1920
ggttctgcag	aaactgatga	tgaacgacaa	tgacatctct	tcctccacca	gcaggaccat	1980
ggagagtgag	tctcttagaa	ctctggaatt	cagaggaaat	cacttagatg	ttttatggag	2040
agaaggtgat	aacagatact	tacaattatt	caagaatctg	ctaaaattag	aggaattaga	2100
catctctaaa	aattccctaa	gtttcttgcc	ttctggagtt	tttgatggta	tgcctccaaa	2160
tctaaagaat	ctctctttgg	ccaaaaatgg	gctcaaatct	ttcagttgga	agaaactcca	2220
gtgtctaaag	aacctggaaa	ctttggacct	cagccacaac	caactgacca	ctgtccctga	2280
gagattatcc	aactgttcca	gaagccacaa	gaatctgatt	cttaagaata	atcaaatcag	2340
gagtccgacg	aagtattttc	tacaagatgc	cttccagttg	cgatatctgg	atctcagctc	2400
aaataaaatc	cagatgatcc	aaaagaccag	cttcccagaa	aatgtcctca	acaatctgaa	2460
gatgttgctt	ttgcatcata	atcggtttct	gtgcacctgt	gatgctgtgt	ggtttgtctg	2520
gtgggttaac	catacggagg	tgactattcc	ttacctggcc	acagatgtga	cttgtgtggg	2580
gccaggagca	cacaagggcc	aaagtgtgat	ctccctggat	ctgtacacct	gtgagttaga	2640
tctgactaac	ctgattctgt	tctcactttc	catatctgta	tctctcttc	tcatggtgat	2700
gatgacagca	agtcacctct	atttctggga	tgtgtggtat	atttaccatt	tctgtaaggc	2760
caagataaag	gggtatcagc	gtctaatatc	accagactgt	tgctatgatg	cttttattgt	2820
gtatgacact	aaagacccag	ctgtgaccga	gtgggttttg	gctgagctgg	tggccaaact	2880
ggaagaccca	agagagaaac	attttaattt	atgtctcgag	gaaagggact	ggttaccagg	2940
gcagccagtt	ctggaaaacc	tttcccagag	catacagett	agcaaaaaga	cagtgtttgt	3000
gatgacagac	aagtatgcaa	agactgaaaa	ttttaagata	gcattttact	tgtcccatca	3060
gaggctcatg	gatgaaaaag	ttgatgtgat	tatcttgata	tttcttgaga	agccctttca	3120
gaagtccaag	ttcctccagc	tccggaaaag	gctctgtggg	agttctgtcc	ttgagtggcc	3180

aacaaacccg	caagctcacc	catacttctg	gcagtgtcta	aagaacgccc	tggccacaga	3240
caatcatgtg	gcctatagtc	aggtgttcaa	ggaaacggtc	tagcccttct	ttgcaaaaca	3300
caactgccta	gtttaccaag	gagaggcctg	gctgtttaaa	ttgttttcat	atatatcaca	3360
ccaaaagcgt	gttttgaaat	tcttcaagaa	atgagattgc	ccatatttca	ggggag	3416
<210> 33						

<210> 33

<211> 3418

<212> DNA

<213> Homo spaiens

<400> 33 actccagata tággatcact ccatgccatc aagaaagttg atgctattgg gcccatctca 60 agetgatett ggeacetete atgetetget etetteaace agacetetae attecatttt 120 ggaagaagac taaaaatggt gtttccaatg tggacactga agagacaaat tcttatcctt 180 tttaacataa teetaattte caaacteett ggggetagat ggttteetaa aactetgeee 240 tgtgatgtca ctctggatgt tccaaagaac catgtgatcg tggactgcac agacaagcat 300 ttgacagaaa ttcctggagg tattcccacg aacaccacga acctcaccct caccattaac 360 cacataccag acatetecee agegteettt cacagactgg accatetggt agagategat 420 ttcagatgca actgtgtacc tattccactg gggtcaaaaa acaacatgtg catcaagagg . 480 ctgcagatta aacccagaag ctttagtgga ctcacttatt taaaatccct ttacctggat 540 ggaaaccagc tactagagat accgcagggc ctcccgccta gcttacagct tctcagcctt 600 gaggccaaca acatcttttc catcagaaaa gagaatctaa cagaactggc caacatagaa 660 atactctacc tgggccaaaa ctgttattat cgaaatcctt gttatgtttc atattcaata 720 gagaaagatg ccttcctaaa cttgacaaag ttaaaagtgc tctccctgaa agataacaat 780 gtcacagccg tccctactgt tttgccatct actttaacag aactatatct ctacaacaac 840 atgattgcaa aaatccaaga agatgatttt aataacctca accaattaca aattcttgac 900 ctaagtggaa attgccctcg ttgttataat gccccatttc cttgtgcgcc gtgtaaaaat 960 aattctcccc tacagatccc tgtaaatgct tttgatgcgc tgacagaatt aaaagtttta 1020 cgtctacaca gtaactctct tcagcatgtg cccccaagat ggtttaagaa catcaacaaa 1080 ctccaggaac tggatctgtc ccaaaacttc ttggccaaag aaattgggga tgctaaattt 1140 etgeatttte teeccageet catecaattg gatetgtett teaattttga aetteaggte 1200 tatcgtgcat ctatgaatct atcacaagca ttttcttcac tgaaaagcct gaaaattctg 1260 eggateagag gatatgtett taaagagttg aaaagettta acetetegee attacataat 1320 ettcaaaatc ttgaagttct tgatcttggc actaacttta taaaaattgc taacctcagc 1380

atgtttaaac tcaggagatt	aatttaaaag caagtgaagt	actgaaagtc tggcttctgc	atagatettt teaaatgeea	cagtgaataa gaacttctgt	aatatcacct agaaagttat	1440 1500
gaaccccagg	tcctggaaca	attacattat	ttcagatatg	ataagtatgc	aaggagttgc	1560
agattcaaaa	acaaagaggc	ttctttcatg	tctgttaatg	aaagctgcta	caagtatggg	1620
cagaccttgg	atctaagtaa	aaatagtata	ttttttgtca	agtcctctga	ttttcagcat	1680
ctttctttcc	tcaaatgcct	gaatctgtca	ggaaatctca	ttagccaaac	tcttaatggc	1740
agtgaattcc	aacctttagc	agagctgaga	tatttggact	tctccaacaa	ccggcttgat	1800
ttactccatt	caacagcatt	tgaagagctt	cacaaactgg	aagttctgga	tataagcagt	1860
aatagccatt	attttcaatc	agaaggaatt	actcatatgc	taaactttac	caagaaccta	1920
aaggttctgc	agaaactgat	gatgaacgac	aatgacatct	cttcctccac	cagcaggacc	1980
atggagagtg	agtctcttag	aactctggaa	ttcagaggaa	atcacttaga	tgttttatgg	2040
agagaaggtg	ataacagata	cttacaatta	ttcaagaatc	tgctaaaatt	agaggaatta	2100
gacatctcta	aaaattccct	aagtttcttg	ccttctggag	tttttgatgg	tatgcctcca	2160
aatctaaaga	atctctcttt	ggccaaaaat	gggctcaaat	ctttcagttg	gaagaaactc	2220
cagtgtctaa	agaacctgga	aactttggac	ctcagccaca	accaactgac	cactgtccct	2280
gagagattat	ccaactgttc	cagaagcctc	aagaatctga	ttcttaagaa	taatcaaatc	2340
aggagtctga	cgaagtattt	tctacaagat	gccttccagt	tgcgatatct	ggatctcagc	2400
tcaaataaaa	tccagatgat	ccaaaagacc	agcttcccag	aaaatgtcct	caacaatctg	2460
aagatgttgc	ttttgcatca	taatcggttt	ctgtgcacct	gtgatgctgt	gtggtttgtc	2520
tggtgggtta	accatacgga	ggtgactatt	ccttacctgg	ccacagatgt	gacttgtgtg	2580
gggccaggag	cacacaaggg	ccaaagtgtg	atctccctgg	atctgtacac	ctgtgagtta	2640
gatctgacta	acctgattct	gttctcactt	tccatatctg	tatctctctt	tctcatggtg	2700
atgatgacag	caagtcacct	ctatttctgg	gatgtgtggt	atatttacca	tttctgtaag	2760
gccaagataa	aggggtatca	gcgtctaata	tcaccagact	gttgctatga	tgcttttatt	2820
gtgtatgaca	ctaaagaccc	agctgtgacc	gagtgggttt	tggctgagct	ggtggccaaa	2880
ctggaagacc	caagagagaa	acattttaat	ttatgtctcg	'aggaaaggga	ctggttacca	2940
gggcagccag	ttctggaaaa	cctttcccag	agcatacagc	ttagcaaaaa	gacagtgttt	3000
gtgatgacag	acaagtatgc	aaagactgaa	aattttaaga	tagcatttta	cttgtcccat	3060
cagaggetea	tggatgaaaa	agttgatgtg	attatcttga	tatttcttga	gaagcccttt	3120
cagaagtcca	agttcctcca	gctccggaaa	aggctctgtg	ggagttctgt	ccttgagtgg	3180
ccaacaaacc	cgcaagctca	cccatacttc	tggcagtgtc	taaagaacgc	cctggccaca	3240
gacaatcatg	tggcctatag	tcaggtgttc	aaggaaacgg	tctagccctt	ctttgcaaaa	3300

WO 2004/094671 - 70 - PCT/US2004/012788

caccaaactgcc tagtttacca aggagaggcc tggctgttta aattgttttc atatatatca 3360 caccaaaagc gtgttttgaa attcttcaag aaatgagatt gcccatattt caggggag 3418

<210> 34

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 34

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys 100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro

265 270 Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 310 315 Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 345 Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 390 395 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met 410 Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln 490 Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp 505 500 Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 520 Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 555 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 585 Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile

WO 2004/094671 - 72 - PCT/US2004/012788

Ser	Ser 610	595 Ser	Thr	Ser	Arg	Thr 615	600 Met	Glu	Ser	Glu	Ser 620	605 Leu	Arg	Thr	Leu
Glu 625	Phe	Arg	Gly	Asn	His 630	Leu	Asp	Val	Leu	Trp 635	Arg	Glu	Gly	Asp	Asn 640
Arg	Tyr	Leu	Gln	Leu 645	Phe	Lys	Asn	Leu	Leц 650	Lys	Leu	Glu	Glu	Leu 655	Asp
Ile	Ser	Lys	Asn 660	Ser	Leu	Ser	Phe	Leu 665	Pro	Ser	Gly	Val	Phe 670	Asp	Gly
Met	Pro	Pro 675	Asn	Leu	Lys	Asn	Leu 680	Ser	Leu	Ala	Lys	Asn 685	Gly	Leu	Lys
Ser	Phe 690	Ser	Trp	ГАЗ	Lys	Leu 695	Gln	Cys	Leu	ГÀВ	Asn 700	Leu	Glu	Thr	Leu
Asp 705	Leu	Ser	His	Asn	Gln 710	Leu	Thr	Thr	Val	Pro 715	Glu	Arg	Leu	Ser	Asn 720
Cys	Ser	Arg	Ser	Leu 725	rys	Asn	Leu	Ile	Leu 730	ГÀг	Asn	Asn	Gln	Ile 735	Arg
Ser	Leu	Thr	Lys 740	Tyr	Phe	Leu	Gln	Asp 745	Ala	Phe	Gln	Leu	Arg 750	Tyr	Leu
Asp	Leu	Ser 755	Ser	Asn	Lys	Ile	Gln 760	Met	Ile	Gln	Lys	Thr 765	Ser	Phe	Pro
Glu	Asn 770	Val	Leu	Asn	Asn	Leu 775	Lys	Met	Leu	Leu	Leu 780	His	His	Asn	Arg
Phe 785	Leu	Cys	Thr	Cys	Asp 790	Ala	Val	Trp	Phe	Val 795	Trp	Trp	Val	Asn	His 800
Thr	Glu	Val	Thr	Ile 805	Pro	Tyr	Leu	Ala	Thr 810	Asp	Val	Thr	Cys	Val 815	Gly
Pro	Gly	Ala	His 820	Lys	Gly	Gln	Ser	Val 825	Ile	Ser	Leu	Asp	Leu 830	Tyr	Thr
Cys	Glu	Leu 835	Asp	Leu	Thr	Asn	Leu 840	Ile	Leu	Phe	Ser	Leu 845	Ser	Ile	Ser
Val	Ser 850	Leu	Phe	Leu	Met	Val 855	Met	Met	Thr	Ala	Ser 860	His	Leu	Tyr	Phe
Trp 865	Asp	Val	Trp	Tyr	Ile 870	Tyr	His	Phe	Cys	Lys 875	Ala	Lys	Ile	Lys	Gly 880
Tyr	Gln	Arg	Leu	Ile 885	Ser	Pro	Asp	Cys	Cys 890	Tyr	Asp	Ala	Phe	Ile 895	Val
Tyr	Asp	Thr	Lys 900	Asp	Pro	Ala	Val	Thr 905	Glu	Trp	Val	Leu	Ala 910	Glu	Leu
Val	Ala	Lys 915	Leu	Glu	Ąsp	Pro	Arg 920	Glu	Lys	His	Phe	Asn 925	Leu	Cys	Leu
Glu	Glu	Arg	Asp	Trp	Leu	Pro	Gly	Gln	Pro	Val	Leu	Glu	Asn	Leu	Ser

WO 2004/094671 - 73 - PCT/US2004/012788

930 935 940

Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 . 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 35

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 35

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys
20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile
65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arq Asn Pro Cys Tyr Val Ser 185 Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 265 Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 345 Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 360 Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 375 Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 390 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met 410 Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp

500 505 Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 520 Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 555 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 615 Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 630 Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 Cys Ser Arg Ser His Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Pro Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu 745 Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu His His Asn Arg Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His 790 795 Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 825 Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser WO 2004/094671 - 76 - PCT/US2004/012788

835 840 845

Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850 855 860

Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 865 870 875 880

Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 885 890 895

Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 905 910

Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 915 920 925

Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930 935 940

Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 36

<211> 1049

<212> PRT

<213> Homo spaiens

<400> 36

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 65 70 75 80

WO 2004/094671 - 77 - PCT/US2004/012788

Ser	Pro	Ala	Ser	Phe 85	His	Arg	Leu	Asp	His 90	Leu	Val	Glu	Ile	Asp 95	Phe
Arg	Cys	Asn	Cys 100	Val	Pro	Ile	Pro	Leu 105	Gly	Ser	Lys	Asn	Asn 110	Met	Суз
Ile	Lys	Arg 115	Leu	Gln	Ile	Lys	Pro 120	Arg	Ser	Phe	Ser	Gly 125	Leu	Thr	туг
Leu	Lys 130	ser	Leu	Tyr	Leu	Asp 135	Gly	Asn	Gln	Leu	Leu 140	Glu	Ile	Pro	Gln
Gly 145	Leu	Pro	Pro	Ser	Leu 150	Gln	Leu	Leu	Ser	Leu 155	Glu	Ala	Asn	Asn	Ile 160
Phe	Ser	Ile	Arg	Lys 165	Glu	Asn	Leu	Thr	Glu 170	Leu	Ala	Asn	Ile	Glu 175	Ile
Leu	Tyr	Leu	Gly 180	Gln	Asn	Cys	Tyr	Tyr 185	Arg	Asn	Pro	Cys	Tyr 190	Val	Ser
Tyr	Ser	Ile 195	Glu	Lys	qaA	Ala	Phe 200	Leu	Asn	Leu	Thr	Lys 205	Leu	Lys	Val
Leu	Ser 210	Leu	Lys	Asp	Asn	Asn 215	Val	Thr	Ala	Val	Pro 220	Thr	Val	Leu	Pro
Ser 225	Thr	Leu	Thr	Glu	Leu 230	Tyr	Leu	Tyr	Asn	Asn 235	Met	Ile	Ala	Lys	11e
Gln	Glu	Asp	Asp	Phe 245	Asn	Asn	Leu	Asn	Gln 250	Leu	Gln	Ile	Leu	Asp 255	Lev
Ser	Gly	Asn	Сув 260	Pro	Arg	Cys	Tyr	Asn 265	Ala	Pro	Phe	Pro	Суs 270	Ala	Pro
Cys	Lys	Asn 275	Asn	Ser	Pro	Leu	Gln 280	Ile	Pro	Val	Asn	Ala 285	Phe	Asp	Ala
Leu	Thr 290	Glu	Leu	ГÀЗ	Val	Leu 295	Arg	Leu	His	Ser	Asn 300	Ser	Leu	Gln	His
Val 305	Pro	Pro	Arg		Phe 310		Asn	Ile		Lys 315		Gln	Glu		Asp 320
Leu	Ser	Gln	Asn	Phe 325	Leu	Ala	Lys	Glu	Ile 330	Gly	Asp	Ala	Lys	Phe 335	Let
His	Phe	Leu	Pro 340	Ser	Leu	Ile	Gln	Leu 345	Asp	Leu	Ser	Phe	Asn 350	Phe	Glu
Leu	Gln	Val 355	Tyr	Arg	Ala	Ser	Met 360	Asn	Leu	Ser	Gln	Ala 365	Phe	Ser	Sex
Leu	Lys 370	Ser	Leu	ГÀЗ	Ile	Leu 375	Arg	Ile	Arg	Gly	Tyr 380	Val	Phe	ГÀв	Glu
Leu 385	Lys	Ser	Phe	Asn	Leu 390	Ser	Pro	Leu	His	Asn 395	Leu	Gln	Asn	Leu	Glu 400
Va 1	T.eu	Asp	Len	Glv	Thr	Δαη	Phe	Tle	Tive	Tle	Δla	Δen	Len	Ser	Met

405 410 Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys 425 Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 470 Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp 500 505 Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 520 Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 535 Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 585 Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 615 Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 630 Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp 650 Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu 740 745 750

Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro
755 760 765

Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu His His Asn Arg

Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His 785 790 795 800

Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 805 810 815

Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 820 825 830

Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 835 840 845

Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850 855 860

Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 865 870 875 880

Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 885 890 895

Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 905 910

Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 915 920 925

Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930 935 940

Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 37 <211> 1049

<212> PRT

WO 2004/094671 - 80 - PCT/US2004/012788

<213> Homo sapiens <400> 37

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 . 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 260 265 270

Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300

Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 315 310 315

WO 2004/094671 - 81 - PCT/US2004/012788

Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 330 His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 360 Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 375 Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 390 395 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala 440 Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys . 470 Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 555 550 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile 600 Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 615 610 Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 635 Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp

WO 2004/094671 - 82 - PCT/US2004/012788

650 Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly 665 Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu 745 Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro 760 Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu His His Asn Arg 775 Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His 790 Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 810 Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 825 Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 855 Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 920 Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 935 Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 955 Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu

WO 2004/094671 - 83 - PCT/US2004/012788

980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys
995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 38

<211> 3243

<212> DNA

<213> murine

<400> 38

60 attetectee accagacete ttgatteeat tttgaaagaa aactgaaaat ggtgtttteg atgtggacac ggaagagaca aattttgatc tttttaaata tgctcttagt ttctagagtc 120 tttgggtttc gatggtttcc taaaactcta ccttgtgaag ttaaagtaaa tatcccagag 180 gcccatgtga tcgtggactg cacagacaag catttgacag aaatccctga gggcattccc 240 300 actaacacca ccaatcttac ccttaccatc aaccacatac caagcatctc tccagattcc ttccgtaggc tgaaccatct ggaagaaatc gatttaagat gcaattgtgt acctgttcta 360 ctggggtcca aagccaatgt gtgtaccaag aggctgcaga ttagacctgg aagctttagt 420 ggactetetg acttaaaage cetttacetg gatggaaace aacttetgga gataceacag 480 gatetgecat ecagettaca tettetgage ettgaggeta acaacatett etceatcacg 540 aaggagaatc taacagaact ggtcaacatt gaaacactct acctgggtca aaactgttat 600 660 tatcgaaatc cttgcaatgt ttcctattct attgaaaaag atgctttcct agttatgaga aatttgaagg tteteteaet aaaagataae aatgteaeag etgteeeeae eaetttgeea 720 780 cctaatttac taqaqctcta tctttataac aatatcatta agaaaatcca agaaaatgat 840 tttaataacc tcaatgagtt gcaagttett gaectaagtg gaaattgeec tegatgttat aatgtcccat atccgtgtac accgtgtgaa aataattccc ccttacagat ccatgacaat 900 gctttcaatt cattgacaga attaaaagtt ttacgtttac acagtaattc tcttcagcat 960 qtqccccaa catqqtttaa aaacatqaga aacctccagg aactagacct ctcccaaaac 1020 tacttggcca gagaaattga ggaggccaaa tttttgcatt ttcttcccaa ccttgttgag 1080 ttggattttt ctttcaatta tgagctgcag gtctaccatg catctataac tttaccacat 1140 tcactctctt cattggaaaa cttgaaaatt ctgcgtgtca aggggtatgt ctttaaagag 1200 1260 ctgaaaaact ccagtctttc tgtattgcac aagcttccca ggctggaagt tcttgacctt

ggcactaact tcataaaaat ctcatagacc tttcagtgaa	tgctgacctc taagatatct	aacatattca ccttcagaag	aacattttga agtcaagaga	aaacctcaaa agttggcttt	1320 1380
tgtcctaatg ctcaaacttc	tgtagaccgt	catgggcccc	aggtccttga	ggccttacac	1440
tatttccgat acgatgaata	tgcacggagc	tgcaggttca	aaaacaaaga	gccaccttct	1500
ttcttgcctt tgaatgcaga	ctgccacata	tatgggcaga	ccttagactt	aagtagaaat	1560
aacatatttt ttattaaacc	ttctgatttt	cagcatcttt	cattcctcaa	atgcctcaac	1620
ttatcaggaa acaccattgg	ccaaactctt	aatggcagtg	aactctggcc	gttgagagag	1680
ttgcggtact tagacttctc	caacaaccgg	cttgatttac	tctactcaac	agcctttgaa	1740
gagctccaga gtcttgaagt	tctggatcta	agtagtaaca	gccactattt	tcaagcagaa	1800
ggaattactc acatgctaaa	ctttaccaag	aaattacggc	ttctggacaa	actcatgatg	1860
aatgataatg acatctctac	ttcggccagc	aggaccatgg	aaagtgactc	tcttcgaatt	1920
ctggagttca gaggcaacca	tttagatgtt	ctatggagag	ccggtgataa	cagatacttg	1980
gacttcttca agaatttgtt	caatttagag	gtattagata	tctccagaaa	ttccctgaat	2040
tccttgcctc ctgaggtttt	tgagggtatg	ccgccaaatc	taaagaatct	ctccttggcc	2100
aaaaatgggc tcaaatcttt	cttttgggac	agactccagt	tactgaagca	tttggaaatt	2160
ttggacctca gccataacca	gctgacaaaa	gtacctgaga	gattggccaa	ctgttccaaa	2220
agtotcacaa cactgattct	taagcataat	caaatcaggc	aattgacaaa	atattttcta	2280
gaagatgctt tgcaattgcg	ctatctagac	atcagttcaa	ataaaatcca	ggtcattcag	2340
aagactagct tcccagaaaa	tgtcctcaac	aatctggaga	tgttggtttt	acatcacaat	2400
cgctttcttt gcaactgtga	tgctgtgtgg	tttgtctggt	gggttaacca	tacagatgtt	2460
actattccat acctggccac	tgatgtgact	tgtgtaggtc	caggagcaca	caaaggtcaa	2520
agtgtcatat cccttgatct	gtatacgtgt	gagttagatc	tcacaaacct	gattctgttc	2580
tcagtttcca tatcatcagt	cctctttctt	atggtagtta	tgacaacaag	tcacctcttt	2640
ttctgggata tgtggtacat	ttattatttt	tggaaagcaa	agataaaggg	gtatcagcat	2700
ctgcaatcca tggagtcttg	ttatgatgct	tttattgtgt	atgacactaa	aaactcagct	2760
gtgacagaat gggttttgca	ggagctggtg	gcaaaattgg	aagatccaag	agaaaaacac	2820
ttcaatttgt gtctagaaga	aagagactgg	ctaccaggac	agccagttct	agaaaacctt	2880
tcccagagca tacagctcag	caaaaagaca	gtgtttgtga	tgacacagaa	atatgctaag	2940
actgagagtt ttaagatggc	attttatttg	tctcatcaga	ggctcctgga	tgaaaaagtg	3000
gatgtgatta tcttgatatt	cttggaaaag	cctcttcaga	agtctaagtt	tcttcagctc	3060
aggaagagac tctgcaggag	ctctgtcctt	gagtggcctg	caaatccaca	ggctcaccca	3120
tacttctggc agtgcctgaa	aaatgccctg	accacagaca	atcatgtggc	ttatagtcaa	3180

argrrcaagg	aaacagtcta	gctctctgaa	gaatgtcacc	acctaggaca	tgccttgaat	3240
cga						3243
<210> 39 <211> 374 <212> DNA <213> mur						
<400> 39 gagctcaaag	gctctgcgag	tataggtttt	ctgttgcctt	ctctctgtct	cagaggactc	60
	accactctat					120
	tctctgactc					180
aaactgaaaa	tggtgtttc	gatgtggaca	cggaagagac	aaattttgat	ctttttaaat	240
atgctcttag	tttctagagt	ctttgggttt	cgatggtttc	ctaaaactct	accttgtgaa	300
gttaaagtaa	atatcccaga	ggcccatgtg	atcgtggact	gcacagacaa	gcatttgaca	360
gaaatccctg	agggcattcc	cactaacacc	accaatctta	cccttaccat	caaccacata	420
ccaagcatct	ctccagattc	cttccgtagg	ctgaaccatc	tggaagaaat	cgatttaaga	480
tgcaattgtg	tacctgttct	actggggtcc	aaagccaatg	tgtgtaccaa	gaggctgcag	540
attagacctg	gaagctttag	tggactctct	gacttaaaag	ccctttacct	ggatggaaac	600
caacttctgg	agataccaca	ggatctgcca	tccagcttac	atcttctgag	ccttgaggct	660
aacaacatct	tctccatcac	gaaggagaat	ctaacagaac	tggtcaacat	tgaaacactc	720
tacctgggtc	aaaactgtta	ttatcgaaat	ccttgcaatg	tttcctattc	tattgaaaaa	780
gatgctttcc	tagttatgag	aaatttgaag	gttctctcac	taaaagataa	caatgtcaca	840
gctgtcccca	ccactttgcc	acctaattta	ctagagctct	atctttataa	caatatcatt	900
aagaaaatcc	aagaaaatga	ttttaataac	ctcaatgagt	tgcaagttct	tgacctaagt	960
ggaaattgcc	ctcgatgtta	taatgtccca	tatccgtgta	caccgtgtga	aaataattcc	1020
cccttacaga	tccatgacaa	tgctttcaat	tcattgacag	aattaaaagt	tttacgttta	1080
cacagtaatt	ctcttcagca	tgtgccccca	acatggttta	aaaacatgag	aaacctccag	1140
gaactagacc	tctcccaaaa	ctacttggcc	agagaaattg	aggaggccaa	atttttgcat	1200
tttcttccca	accttgttga	gttggatttt	tctttcaatt	atgagctgca	ggtctaccat	1260
gcatctataa	ctttaccaca	ttcactctct	tcattggaaa	acttgaaaat	tctgcgtgtc	1320
aaggggtatg	tctttaaaga	gctgaaaaac	tccagtcttt	ctgtattgca	caagcttccc	1380
aggctggaag	ttcttgacct	tggcactaac	ttcataaaaa	ttgctgacct	caacatattc	1440
aaacattttg	aaaacctcaa	actcatagac	ctttcagtga	ataagatatc	tccttcagaa	1500

gagtcaagag aagttggctt caggtccttg aggccttaca	ttgtcctaat ctatttccga	gctcaaactt tacgatgaat	ctgtagaccg atgcacggag	tcatgggccc ctgcaggttc	1560 1620
aaaaacaaag agccaccttc	tttcttgcct	ttgaatgcag	actgccacat	atatgggcag	1680
accttagact taagtagaaa	taacatattt	tttattaaac	cttctgattt	tcagcatctt	1740
tcattcctca aatgcctcaa	cttatcagga	aacaccattg	gccaaactct	taatggcagt	1800
gaactctggc cgttgagaga	gttgcggtac	ttagacttct	ccaacaaccg	gcttgattta	1860
ctctactcaa cagcctttga	agagctccag	agtcttgaag	ttctggatct	aagtagtaac	1920
agccactatt ttcaagcaga	aggaattact	cacatgctaa	actttaccaa	gaaattacgg	1980
cttctggaca aactcatgat	gaatgataat	gacatctcta	cttcggccag	caggaccatg	2040
gaaagtgact ctcttcgaat	tctggagttc	agaggcaacc	atttagatgt	tctatggaga	2100
gccggtgata acagatactt	ggacttcttc	aagaatttgt	tcaatttaga	ggtattagat	2160
atctccagaa attccctgaa	ttccttgcct	cctgaggttt	ttgagggtat	gccgccaaat	2220
ctaaagaatc tctccttggc	caaaaatggg	ctcaaatctt	tcttttggga	cagactccag	2280
ttactgaagc atttggaaat	tttggacctc	agccataacc	agctgacaaa	agtacctgag	2340
agattggcca actgttccaa	aagtctcaca	acactgattc	ttaagcataa	tcaaatcagg	2400
caattgacaa aatattttct	agaagatgct	ttgcaattgc	gctatctaga	catcagttca	2460
aataaaatcc aggtcattca	gaagactagc	ttcccagaaa	atgtcctcaa	caatctggag	2520
atgttggttt tacatcacaa	tcgctttctt	tgcaactgtg	atgctgtgtg	gtttgtctgg	2580
tgggttaacc atacagatgt	tactattcca	tacctggcca	ctgatgtgac	ttgtgtaggt	2640
ccaggagcac acaaaggtca	aagtgtcata	tcccttgatc	tgtatacgtg	tgagttagat	2700
ctcacaaacc tgattctgtt	ctcagtttcc	atatcatcag	tcctctttct	tatggtagtt	2760
atgacaacaa gtcacctctt	tttctgggat	atgtggtaca	tttattattt	ttggaaagca	2820
aagataaagg ggtatcagca	tctgcaatcc	atggagtctt	gttatgatgc	ttttattgtg	2880
tatgacacta aaaactcagc	tgtgacagaa	tgggttttgc	aggagctggt	ggcaaaattg	2940
gaagatccaa gagaaaaaca	cttcaatttg	tgtctagaag	aaagagactg	gctaccagga	3000
cagccagttc tagaaaacct	ttcccagagc	atacagctca	gcaaaaagac	agtgtttgtg	3060
atgacacaga aatatgctaa	gactgagagt	tttaagatgg	cattttattt	gtctcatcag/	3120
aggctcctgg atgaaaaagt	ggatgtgatt	atcttgatat	tcttggaaaa	gcctcttcag	3180
aagtctaagt ttcttcagct	caggaagaga	ctctgcagga	gctctgtcct	tgagtggcct	3240
gcaaatccac aggctcaccc	atacttctgg	cagtgcctga	aaaatgccct	gaccacagac	3300
aatcatgtgg cttatagtca	aatgttcaag	gaaacagtct	agctctctga	agaatgtcac	3360
cacctaggac atgccttggt	acctgaagtt	ttcataaagg	tttccataaa	tgaaggtctg	3420

aatttttcct aacagttgtc atggctcaga ttggtgggaa atcatcaata tatggctaag	3480
aaattaagaa ggggagactg atagaagata atttetttét teatgtgeea tgeteagtta	3540
aatatttccc ctagctcaaa tctgaaaaac tgtgcctagg agacaacaca aggctttgat	3600
ttatctgcat acaattgata agagccacac atctgccctg aagaagtact agtagtttta	3660
gtagtagggt aaaaattaca caagctttct ctctctctga tactgaactg taccagagtt	3720
caatgaaata aaagcccaga gaacttc	3747

<210> 40

<211> 3449

<212> DNA

<213> murine

<400> 40

gegagteteg gttttetgtt geettetete tgteteagag gaeteeatet atagaaccae 60 tetatgeett caagaaagat gteettgget eeetteteag gatgateetg geetatetet 120 gactetette teeteeacca gacetettga tteeattttg aaagaaaact gaaaatggtg 180 ttttcgatgt ggacacggaa gagacaaatt ttgatctttt taaatatgct cttagtttct 240 agagtetttg ggtttegatg gttteetaaa aetetaeett gtgaagttaa agtaaatate 300 ccagaggccc atgtgatcgt ggactgcaca gacaagcatt tgacagaaat ccctgagggc 360 attoccacta acaccaccaa tottaccott accatcaacc acataccaag catototoca 420 gattccttcc gtaggctgaa ccatctggaa gaaatcgatt taagatgcaa ttgtgtacct 480 gttctactgg ggtccaaagc caatgtgtgt accaagaggc tgcagattag acctggaagc 540 tttagtggac tctctgactt aaaagccctt tacctggatg gaaaccaact tctggagata 600 ccacaggatc tgccatccag cttacatctt ctgagccttg aggctaacaa catcttctcc 660 atcacgaagg agaatctaac agaactggtc aacattgaaa cactctacct gggtcaaaac 720 tgttattatc gaaatccttg caatgtttcc tattctattg aaaaagatgc tttcctaqtt 780 atgagaaatt tgaaggttet etcaetaaaa gataacaatg teacagetgt eeccaecact 840 ttgccaccta atttactaga gctctatctt tataacaata tcattaagaa aatccaagaa 900 aatgatttta ataacctcaa tgagttgcaa gttcttgacc taagtggaaa ttgccctcga 960 tgttataatg tcccatatcc gtgtacaccg tgtgaaaata attccccctt acagatccat 1020 gacaatgctt tcaattcatt gacagaatta aaagttttac gtttacacag taattctctt 1080 cagcatgtgc ccccaacatg gtttaaaaac atgagaaacc tccaggaact agacctctcc 1140 caaaactact tggccagaga aattgaggag gccaaatttt tgcattttct tcccaacctt 1200 gttgagttgg atttttcttt caattatgag ctgcaggtct accatgcatc tataacttta 1260

ccacattcac aaagagctga	tctcttcatt aaaactccag	ggaaaacttg tctttctgta	aaaattctgc ttgcacaagc	gtgtcaaggg ttcccaggct	gtatgtettt ggaagttett	1320 1380
gaccttggca	ctaacttcat	aaaaattgct	gacctcaaca	tattcaaaca	ttttgaaaac	1440
ctcaaactca	tagacctttc	agtgaataag	atatctcctt	cagaagagtc	aagagaagtt	1500
ggcttttgtc	ctaatgctca	aacttctgta	gaccgtcatg	ggccccaggt	ccttgaggcc	1560
ttacactatt	tccgatacga	tgaatatgca	cggagctgca	ggttcaaaaa	caaagagcca	1620
ccttcttct	tgcctttgaa	tgcagactgc	cacatatatg	ggcagacctt	agacttaagt	1680
agaaataaca	tatttttat	taaaccttct	gattttcagc	atctttcatt	cctcaaatgc	1740
ctcaacttat	caggaaacac	cattggccaa	actcttaatg	gcagtgaact	ctggccgttg	1800
agagagttgc	ggtacttaga	cttctccaac	aaccggcttg	atttactcta	ctcaacagcc	1860
tttgaagagc	tccagagtct	tgaagttctg	gatctaagta	gtaacagcca	ctattttcaa	1920
gcagaaggaa	ttactcacat	gctaaacttt	accaagaaat	tacggcttct	ggacaaactc	1980
atgatgaatg	ataatgacat	ctctacttcg	gccagcagga	ccatggaaag	tgactctctt	2040
cgaattctgg	agttcagagg	caaccattta	gatgttctat	ggagagccgg	tgataacaga	2100
tacttggact	tcttcaagaa	tttgttcaat	ttagaggtat	tagatatctc	cagaaattcc	2160
ctgaattcct	tgcctcctga	ggtttttgag	ggtatgccgc	caaatctaaa	gaatctctcc	2220
ttggccaaaa	atgggctcaa	atctttcttt	tgggacagac	tccagttact	gaagcatttg	2280
gaaattttgg	acctcagcca	taaccagctg	acaaaagtac	ctgagagatt	ggccaactgt	2340
tccaaaagtc	tcacaacact	gattcttaag	cataatcaaa	tcaggcaatt	gacaaaatat	2400
tttctagaag	atgctttgca	attgcgctat	ctagacatca	gttcaaataa	aatccaggtc.	2460
attcagaaga	ctagcttccc	agaaaatgtc	ctcaacaatc	tggagatgtt	ggttttacat	2520
cacaatcgct	ttctttgcaa	ctgtgatgct	gtgtggtttg	tctggtgggt	taaccataca	2580
gatgttacta	ttccatacct	ggccactgat	gtgacttgtg	taggtccagg	agcacacaaa	2640
ggtcaaagtg	tcatatccct	tgatctgtat	acgtgtgagt	tagatctcac	aaacctgatt	2700
ctgttctcag	tttccatatc	atcagtcctc	tttcttatgg	tagttatgac	aacaagtcac	2760
ctctttttct	gggatatgtg	gtacatttat	tatttttgga	aagcaaagat	aaaggggtat	2820
cagcatctgc	aatccatgga	gtcttgttat	gatgctttta	ttgtgtatga	cactaaaaac	2880
tcagctgtga	cagaatgggt	tttgcaggag	ctggtggcaa	aattggaaga	tccaagagaa	2940
aaacacttca	atttgtgtct	agaagaaaga	gactggctac	caggacagcc	agttctagaa	3000
aacctttccc	agagcataca	gctcagcaaa	aagacagtgt	ttgtgatgac	acagaaatat	3060
gctaaʻgactg	agagttttaa	gatggcattt	tatttgtctc	atcagaggct	cctggatgaa	3120
aaagtggatg	tgattatctt	gatattcttg	gaaaagcctc	ttcagaagtc	taagtttctt	3180

cagctcagga	agagactctg	caggagctct	gtccttgagt	ggcctgcaaa	tccacaggct	3240
cacccatact	tctggcagtg	cctgaaaaat	gccctgacca	cagacaatca	tgtggcttat	3300
agtcaaatgt	tcaaggaaac	agtctagctc	tctgaagaat	gtcaccacct	aggacatgcc	3360
ttggtacctg	aagttttcat	aaaggtttcc	ataaatgaag	gtctgaattt	ttcctaacag	3420
ttgtcatggc	tcagattggt	gggaaatca				3449

<210> 41

<211> 1050

<212> PRT

<213> murine

<400> 41

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys 100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr
165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220

Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile

230 235 Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 250 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 265 Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 310 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 325 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 345 Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 360 Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu 375 Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 390 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 410 Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 425 Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500

Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn 520

Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 535

Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser

Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser

565 570 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp 600 Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile 615 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu 680 Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile 695 Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 790 His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 835 Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu 900 905 910

Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys
915 920 925

Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940

Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960

Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1040 1045 1050

<210> 42

<211> 1050

<212> PRT

<213> murine

<400> 42

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys
100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

WO 2004/094671 - 93 - PCT/US2004/012788

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 170 Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 315 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 345 Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 390 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 410 Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 425 Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys

WO 2004/094671 - 94 - PCT/US2004/012788

470 475 Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly 490 Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 535 Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 570 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile 615 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu 660 665 Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu 680 Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile 695 Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile 730 Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 775 Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 790 His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val

805 810 815 Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 820 825 830

Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 835 840 845 .

Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe 850 855 860

Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 865 870 875 880

Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 885 890 895

Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu 900 905 910

Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys 915 920 925

Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940

Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960

Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His
965 970 975

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1040 1045 1050

<210> 43

<211> 1050

<212> PRT

<213> murine

<400> 43

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

WO 2004/094671 - 96 - PCT/US2004/012788

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 120 Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 155 Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 185 Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 200 Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 250 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 315 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 330 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser

Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu

	370					375					380				
Leu 385	Lys	Asn	Ser	Ser	Leu 390	Ser	Val	Leu	His	Lys 395	Leu	Pro	Arg	Leu	Glu 400
Val	Leu	Asp	Leu	Gly 405	Thr	Asn	Phe	Ile	Lys 410	Ile	Ala	qaA	Leu	Asn 415	Ile
Phe	Lys	His	Phe 420	Glu	Asn	Leu	Lys	Leu 425	Ile	Asp	Leu	Ser	Val 430	Asn	ГЛS
Ile	Ser	Pro 435	Ser	Glu	Glu	Ser	Arg 440	Glu	Val	Gly	Phe	Cys 445	Pro	Asn	Ala
Gln	Thr 450	Ser	Val	Asp	Arg	His 455	Gly	Pro	Gln	Val	Leu 460	Glu	Ala	Leu	His
Tyr 465	Phe	Arg	Tyr	Asp	Glu 470	Tyr	Ala	Arg	Ser	Сув 475	Arg	Phe	Lys	Asn	Lys 480
Glu	Pro	Pro	Ser	Phe 485	Leu	Pro	Leu	Asn	Ala 490	Asp	Сув	His	Ile	Tyr 495	Gly
Gln	Thr	Leu	Asp 500	Leu	Ser	Arg	Asn	Asn 505	Ile	Phe	Phe	Ile	Lys 510	Pro	Ser
Asp	Phe	Gln 515	His	Leu	Ser	Phe	Leu 520	Lys	Сув	Leu	Asn	Leu 525	Ser	Gly	Asn
Thr	Ile 530	Gly	Gln	Thr	Leu	Asn 535	Gly	Ser	Glu	Leu	Trp 540	Pro	Leu	Arg	Glu
Leu 545	Arg	Tyr	Leu	Asp	Phe 550	Ser	Asn	Asn	Arg	Leu 555	Asp	Leu	Leu	Tyr	Ser 560
Thr	Ala	Phe	Glu	Glu 565	Leu	Gln	Ser	Leu	Glu 570	Val	Leu	Asp	Leu	Ser 575	Ser
Asn	Ser	His	Tyr 580	Phe	Gln	Ala	Glu	Gly 585	Ile	Thr	His	Met	Ьеи 590	Asn	Phe
Thr	Lys	Lуs 595	Leu	Arg	Leu	Leu	Asp 600	Lys	Leu	Met	Met	Asn 605	Asp	Asn	Asp
Ile	Ser 610	Thr	Ser	Ala	Ser	Arg 615	Thr	Met	Glu	Ser	Asp 620	Ser	Leu	Arg	Ile
Leu 625	Glu	Phe	Arg	Gly	Asn 630	His	Leu	Asp	Val	Leu 635	Trp	Arg	Ala	Gly	Asp 640
Asn	Arg	Tyr	Leu	Asp 645		Phe	Lys	Asn	Leu 650	Phe	Asn	Leu	Glu	Val 655	Leu
Asp	Ile	Ser	Arg 660	Asn	Ser	Leu	Asn	Ser 665	Leu	Pro	Pro	Glu	Val 670	Phe	Glu
Gly	Met	Pro 675	Pro	Asn	Leu	Lys	Asn 680	Leu	Ser	Leu	Ala	Lys 685	Asn	Gly	Leu
Lys	Ser 690	Phe	Phe	Trp	Asp	Arg 695		Gln	Leu	Leu	Lys 700	His	Leu	Glu	Ile
Len	Asn	T ₁ e11	Ser	His	Asn	Gln	Len	Thr	Lvs	٧al	Pro	Glu	Ara	Leu	Ala

- 705 710 715 720 Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile 725 730 735
- Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr 740 745 750
- Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe
 755 760 765
- Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 770 780
- Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Val Asn 785 790 795 800
- His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val 805 810 815
- Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 820 825 830
- Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 835 840 845
- Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe 850 855 860
- Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 865 870 875
- Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 885 890 895
- Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu 900 905 910
- Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys 915 920 925
- Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940
- Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 955 960
- Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975
- Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990
- Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005
- Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020
- Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035
- His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val

WO 2004/094671 1040 1045 1050 <210> 44 <211> 1050 <212> PRT <213> murine <400> 44 Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 150 155 Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 235 Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 265

Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser

280

275

WO 2004/094671 - 100 - PCT/US2004/012788

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300

Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 305 310 315 320

Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 325 330 335

His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 340 345 350

Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 355 360 365

Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu 370 375 380

Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 405 410 415

Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 420 425 430

Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala 435 440 445

Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His 450 455 460

Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 465 470 475 480

Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly
485 490 495

Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 505 510

Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn 515 520 525

Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 530 535 540

Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Tyr Ser 555 550 560

Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 565 570 575

Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe 580 585 590

Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp 595 600 605

Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile

	610					615					620				
Leu 625	Glu	Phe	Arg	Gly	Asn 630	His	Leu	Asp	Val	Leu 635	Trp	Arg	Ala	Gly	Asp 640
Asn	Arg	Tyr	Leu	Asp 645	Phe	Phe	Гув	Asn	Leu 650	Phe	Asn	Leu	Glu	Val 655	Leu
Asp	Ile	Ser	Arg 660	Asn	Ser	Leu	Asn	Ser 665	Leu	Pro	Pro	Glu	Val 670	Phe	Glu
Gly	Met	Pro 675	Pro	Asn	Leu	Lys	Asn 680	Leu	Ser	Leu	Ala	Lys 685	Asn	Gly	Leu
Lys	Ser 690	Phe	Phe	Trp	Asp	Arg 695	Leu	Gln	Leu	Leu	Lуs 700	His	Leu	Glu	Ile
Leu 705	Asp	Leu	Ser	His	Asn 710	Gln	Leu	Thr	Lys	Val 715	Pro	Glu	Arg	Leu	Ala 720
Asn	Cys	Ser	Lys	Ser 725	Leu	Thr	Thr	Leu	Ile 730	Leu	Lys	His	Asn	Gln 735	Ile
Arg	Gln	Leu	Thr 740	Lys	Tyr	Phe	Leu	Glu 745	qaA	Ala	Leu	Gln	Leu 750	Arg	Tyr
Leu	Asp	Ile 755	Ser	Ser	Asn	Lys	Ile 760	Gln	Val	Ile	Gln	Lув 765	Thr	Ser	Phe
Pro	Glu 770	Asn	Val	Leu	Asn	Asn 775	Leu	Glu	Met	Leu	Val 780	Leu	His	His	Asn
Arg 785	Phe	Leu	Сув	Asn	Cys 790	Asp	Ala	Val	Trp	Phe 795	Val	Trp	Trp	Val	Asn 800
His	Thr	Asp	Val	Thr 805	Ile	Pro	Tyr	Leu	Ala 810	Thr	Asp	Val	Thr	Cys 815	Val
Gly	Pro	Gly	Ala 820	His	Lys	Gly	Gln	Ser 825	Val	Ile	Ser	Leu	Asp 830	Leu	Tyr
Thr	Cys	Glu 835	Leu	Asp	Leu	Thr	Asn 840	Leu	Ile	Leu	Phe	Ser 845	Val	Ser	Ile
Ser	Ser 850	Val	Leu	Phe	Leu	Met 855	Val	Val	Met	Thr	Thr 860	Ser	His	Leu	Phe
Phe 865	Trp	Asp	Met	Trp	Tyr 870	Ile	Tyr	Tyr	Phe	Trp 875	Lys	Ala	Гув	Ile	880 FÀa
Gly	Tyr	Gln	His	Leu 885	Gln	Ser	Met	Glu	Ser 890	Cys	Tyr	Asp	Ala	Phe 895	Ile
Val	Tyr	Asp	Thr 900	Lys	Asn	Ser	Ala	Val 905	Thr	Glu	Trp	Val	Leu 910	Gln	Glu
Leu	Val	Ala 915	Lys	Leu	Glu	Asp	Pro 920	Arg	Glu	Lys	His	Phe 925	Asn	Leu	Cys
Leu	Glu 930	Glu	Arg	Asp	Trp	Leu 935	Pro	Gly	Gln	Pro	Val 940	Leu	Glu	Asn	Leu
Ser	Gln	Ser	Ile	Gln	Leu	Ser	Lys	Lys	Thr	Val	Phe	Val	Met	Thr	Gln

945 950 955 960 Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu
980 985 990

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1040 1045 1050

<210> 45

<211> 1050

<212> PRT

<213> murine

<400> 45

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys 100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
130 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

WO 2004/094671 - 103 - PCT/US2004/012788

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 230 235 Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 265 Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 310 315 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 330 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 360 Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 420 425 Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 505 Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn

WO 2004/094671 - 104 - PCT/US2004/012788

515 520 525 Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 535 Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser 555 Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 570 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile 615 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu 680 Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile 695 Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 785 790 His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe

WO 2004/094671 - 105 - PCT/US2004/012788

850 855 860	
Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 865 870 875 880	
Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 885 890 895	
Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu , 900 905 910	
Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys 915 920 , 925	
Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940	
Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960	
Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975	
Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990	
Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005	
Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020	
Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035	
His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1040 1045 . 1050	
<210> 46 <211> 3311 <212> DNA <213> Homo sapiens	
<400> 46 ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca acagaaacat ggaaaacatg	60
ttccttcagt cgtcaatgct gacctgcatt ttcctgctaa tatctggttc ctgtgagtta	120
tgcgccgaag aaaatttttc tagaagctat ccttgtgatg agaaaaagca aaatgactca	180
gttattgcag agtgcagcaa tegtegaeta caggaagtte eecaaacggt gggcaaatat	240
gtgacagaac tagacctgtc tgataatttc atcacacaca taacgaatga atcatttcaa	300
gggctgcaaa atctcactaa aataaatcta aaccacaacc ccaatgtaca gcaccagaac	360
ggaaatcccg gtatacaatc aaatggcttg aatatcacag acggggcatt cctcaaccta	420
aaaaacctaa gggagttact gcttgaagac aaccagttac cccaaatacc ctctggtttg	480
ccagagtett tgacagaact tagtetaatt caaaacaata tatacaacat aactaaagag	540

	gacttataaa agaaaactaa					600 660
ttgctatcac	tatctttcaa	ttctctttca	cacgtgccac	ccaaactgcc	aagctcccta	720
cgcaaacttt	ttctgagcaa	cacccagatc	aaatacatta	gtgaagaaga	tttcaaggga	780
ttgataaatt	taacattact	agatttaagc	gggaactgtc	cgaggtgctt	caatgcccca	840
tttccatgcg	tgccttgtga	tgġtggtgct	tcaattaata	tagatcgttt	tgcttttcaa	900
aacttgaccc	aacttcgata	cctaaacctc	tctagcactt	ccctcaggaa	gattaatgct	960
gcctggttta	aaaatatgcc	tcatctgaag	gtgctggatc	ttgaattcaa	ctatttagtg	1020
ggagaaatag	cctctggggc	atttttaacg	atgctgcccc	gcttagaaat	acttgacttg	1080
tcttttaact	atataaaggg	gagttatcca	cagcatatta	atatttccag	aaacttctct	1140
aaacttttgt	ctctacgggc	attgcattta	agaggttatg	tgttccagga	actcagagaa	1200
gatgatttcc	agcccctgat	gcagcttcca	aacttatcga	ctatcaactt	gggtattaat	1260
tttattaagc	aaatcgattt	caaacttttc	caaaatttct	ccaatctgga	aattatttac	1320
ttgtcagaaa	acagaatatc	accgttggta	aaagataccc	ggcagagtta	tgcaaatagt	1380
tcctctttc	aacgtcatat	ccggaaacga	cgctcaacag	attttgagtt	tgacccacat	1440
tcgaactttt	atcatttcac	ccgtccttta	ataaagccac	aatgtgctgc	ttatggaaaa	1500
gccttagatt	taagcctcaa	cagtattttc	ttcattgggc	caaaccaatt	tgaaaatctt	1560
cctgacattg	cctgtttaaa	tctgtctgca	aatagcaatg	ctcaagtgtt	aagtggaact	1620
gaattttcag	ccattcctca	tgtcaaatat	ttggatttga	caaacaatag	actagacttt	1680
gataatgcta	gtgctcttac	tgaattgtcc	gacttggaag	ttctagatct	cagctataat	1740
tcacactatt	tcagaatagc	aggcgtaaca	catcatctag	aatttattca	aaatttcaca	1800
aatctaaaag	ttttaaactt	gagccacaac	aacatttata	ctttaacaga	taagtataac	1860
ctggaaagca	agtccctggt	agaattagtt	ttcagtggca	atcgccttga	cattttgtgg	1920
aatgatgatg	acaacaggta	tatctccatt	ttcaaaggtc	tcaagaatct	gacacgtctg	1980
gatttatccc	ttaataggct	gaagcacatc	ccaaatgaag	cattccttaa	tttgccagcg	2040
agtctcactg	aactacatat	aaatgataat	atgttaaagt	tttttaactg	gacattactc	2100
cagcagttcc	ctcgtctcga	gttgcttgac	ttacgtggaa	acaaactact	ctttttaact	2160
gatagcctat	ctgactttac	atcttccctt	cggacactgc	tgctgagtca	taacaggatt	2220
teccacetae	cctctggctt	tctttctgaa	gtcagtagtc	tgaagcacct	cgatttaagt	2280
tccaatctgc	taaaaacaat	caacaaatcc	gcacttgaaa	ctaagaccac	caccaaatta	2340
tctatgttgg	aactacacgg	aaaccccttt	gaatgcacct	gtgacattgg	agatttccga	2400
agatggatgg	atgaacatct	gaatgtcaaa	attcccagac	tggtagatgt	catttgtgcc	2460

agtcctgggg	atcaaagagg	gaagagtatt	gtgagtctgg	agctgacaac	ttgtgtttca	2520
gatgtcactg	cagtgatatt	atttttcttc	acgttcttta	tcaccaccat	ggttatgttg	2580
gctgccctgg	ctcaccattt	gttttactgg	gatgtttggt	ttatatataa	tgtgtgttta	2640
gctaaggtaa	aaggctacag	gtctctttcc	acatcccaaa	ctttctatga	tgcttacatt	2700
tcttatgaca	ccaaagatgc	ctctgttact	gactgggtga	taaatgagct	gcgctaccac	2760
cttgaagaga	gccgagacaa	aaacgttctc	ctttgtctag	aggagaggga	ttgggacccg	2820
ggattggcca	tcatcgacaa	cctcatgcag	agcatcaacc	aaagcaagaa	aacagtattt	2880
gttttaacca	aaaaatatgc	aaaaagctgg	aactttaaaa	cagcttttta	cttggctttg	2940
cagaggctaa	tggatgagaa	catggatgtg	attatattta	tcctgctgga	gccagtgtta	3000
cagcattctc	agtatttgag	gctacggcag	cggatctgta	agagctccat	cctccagtgg	3060
cctgacaacc	cgaaggcaga	aggcttgttt	tggcaaactc	tgagaaatgt	ggtcttgact	3120
gaaaatgatt	cacggtataa	caatatgtat	gtcgattcca	ttaagcaata	ctaactgacg	3180
ttaagtcatg	atttcgcgcc	ataataaaga	tgcaaaggaa	tgacatttct	gtattagtta	3240
tctattgcta	tgtaacaaat	tatcccaaaa	cttagtggtt	taaaacaaca	catttgctgg	3300
cccacagttt	t					3311

<210> 47

<211> 3367

<212> DNA

<213> Homo spaiens

<400> 47

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacgt ggttctcttg acacttcagt gttagggaac atcagcaaga .cccatcccag 120 gagaccttga aggaagcctt tgaaagggag aatgaaggag tcatctttgc aaaatagctc 180 ctgcagcctg ggaaaggaga ctaaaaagga aaacatgttc cttcagtcgt caatgctgac ctgcattttc ctgctaatat ctggttcctg tgagttatgc gccgaagaaa atttttctag 300 aagctatcct tgtgatgaga aaaagcaaaa tgactcagtt attgcagagt gcagcaatcg 360 tcgactacag gaagttcccc aaacggtggg caaatatgtg acagaactag acctgtctga 420 taatttcatc acacacataa cgaatgaatc atttcaaggg ctgcaaaatc tcactaaaat 480 aaatctaaac cacaacccca atgtacagca ccagaacgga aatcccggta tacaatcaaa 540 tggcttgaat atcacagacg gggcattcct caacctaaaa aacctaaggg agttactgct 600 tgaagacaac cagttacccc aaataccctc tggtttgcca gagtctttga cagaacttag 660 tctaattcaa aacaatatat acaacataac taaagagggc atttcaagac ttataaactt 720

gaaaaatctc tatttggcct agaagatgga gtatttgaaa					780 840
tctttcacac gtgtcaccca	aactgccaag	ctccctacgc	aaacttttc	tgagcaacac	900
ccagatcaaa tacattagtg	aagaagattt	caagggattg	ataaatttaa	cattactaga	960
tttaagcggg aactgtccga	ggtgcttcaa	tgccccattt	ccatgcgtgc	cttgtgatgg	1020
tggtgcttca attaatatag	atcgttttgc	ttttcaaaac	ttgacccaac	ttcgatacct	1080
aaacctctct agcacttccc	tcaggaagat	taatgctgcc	tggtttaaaa	atatgcctca	1140
tctgaaggtg ctggatcttg	aattcaacta	tttagtggga	gaaatagcct	ctggggcatt	1200
tttaacgatg ctgccccgct	tagaaatact	tgacttgtct	tttaactata	taaaggggag	1260
ttatccacag catattaata	tttccagaaa	cttctctaaa	cctttgtctc	tacgggcatt	1320
gcatttaaga ggttatgtgt	tccaggaact	cagagaagat	gatttccagc	ccctgatgca	1380
gcttccaaac ttatcgacta	tcaacttggg	tattaatttt	attaagcaaa	tcgatttcaa	1440
acttttccaa aatttctcca	atctggaaat	tatttacttg	tcagaaaaca	gaatatcacc	1500
gttggtaaaa gatacccggc	agagttatgc	aaatagttcc	tcttttcaac	gtcatatccg	1560
gaaacgacgc tcaacagatt	ttgagtttga	cccacattcg	aacttttatc	atttcacccg	1620
tcctttaata aagccacaat	gtgctgctta	tggaaaagcc	ttagatttaa	gcctcaacag	1680
tattttcttc attgggccaa	accaatttga	aaatcttcct	gacattgcct	gtttaaatct	1740
gtctgcaaat agcaatgctc	aagtgttaag	tggaactgaa	ttttcagcca	ttcctcatgt	1800
caaatatttg gatttgacaa	acaatagact	agactttgat	aatgctagtg	ctcttactga	1860
attgtccgac ttggaagttc	tagatctcag	ctataattca	cactatttca	gaatagcagg	1920
cgtaacacat catctagaat	ttattcaaaa	tttcacaaat	ctaaaagttt	taaacttgag	1980
ccacaacaac atttatactt	taacagataa	gtataacctg	gaaagcaagt	ccctggtaga	2040
attagttttc agtggcaatc	gccttgacat	tttgtggaat	gatgatgaca	acaggtatat	2100
ctccattttc aaaggtctca	agaatctgac	acgtctggat	ttatccctta	ataggctgaa	2160
gcacatccca aatgaagcat	tccttaattt	gccagcgagt	ctcactgaac	tacatataaa	2220
tgataatatg ttaaagtttt	ttaactggac	attactccag	cagtttcctc	gtctcgagtt	2280
gcttgactta cgtggaaaca	aactactctt	tttaactgat	agcctatctg	actttacatc	2340
ttcccttcgg acactgctgc	tgagtcataa	caggatttcc	cacctaccct	ctggctttct	2400
ttctgaagtc agtagtctga	agcacctcga	tttaagttcc	aatctgctaa	aaacaatcaa	2460
caaatccgca cttgaaacta	agaccaccac	caaattatct	atgttggaac	tacacggaaa	2520
cccctttgaa tgcacctgtg	acattggaga	tttccgaaga	tggatggatg	aacatctgaa	2580
tgtcaaaatt cccagactgg	tagatgtcat	ttgtgccagt	cctggggatc	aaagagggaa	2640

gagtattgtg	agtctggagc	taacaacttg	tgtttcagat	gtcactgcag	tgatattatt	2700
tttcttcacg	ttctttatca	ccaccatggt	tatgttggct	gccctggctc	accatttgtt	2760
ttactgggat	gtttggttta	tatataatgt	gtgtttagct	aagataaaag	gctacaggtc	2820
tctttccaca	teccaaaett	tctatgatgc	ttacatttct	tatgacacca	aagatgcctc	2880
tgttactgac	tgggtgaťaa	atgagctgcg	ctaccacctt	gaagagagcc	gagacaaaaa	2940
cgttctcctt	tgtctagagg	agagggattg	ggacccggga	ttggccatca	tcgacaacct	3000
catgcagagc	atcaaccaaa	gcaagaaaac	agtatttgtt	ttaaccaaaa	aatatgcaaa	3060
aagctggaac	tttaaaacag	ctttttactt	ggctttgcag	aggctaatgg	atgagaacat	3120
ggatgtgatt	atatttatcc	tgctggagcc	agtgttacag	cattctcagt	atttgaggct	3180
acggcagcgg	atctgtaaga	gctccatcct	ccagtggcct	gacaacccga	aggcagaagg	3240
cttgttttgg	caaactctga	gaaatgtggt	cttgactgaa	aatgattcac	ggtataacaa	3300
tatgtatgtc	gattccatta	agcaatacta	actgacgtta	agtcatgatt	tcgcgccata	3360
ataaaga						3367

<210> 48

<211> 4211

<212> DNA

<213> Homo spaiens

<400> 48

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacat ggaaaacatg ttccttcagt cgtcaatgct gacctgcatt ttcctgctaa 120 tatctggttc ctgtgagtta tgcgccgaag aaaatttttc tagaagctat ccttgtgatg 180 agaaaaagca aaatgactca gttattgcag agtgcagcaa tcgtcgacta caggaagttc 240 300 cccaaacggt gggcaaatat gtgacagaac tagacctgtc tgataatttc atcacacaca taacgaatga atcatttcaa gggctgcaaa atctcactaa aataaatcta aaccacaacc 360 ccaatgtaca gcaccagaac ggaaatcccg gtatacaatc aaatggcttg aatatcacag 420 acggggcatt cctcaaccta aaaaacctaa gggagttact gcttgaagac aaccagttac cccaaatacc ctctggtttg ccagagtctt tgacagaact tagtctaatt caaaacaata 540 tatacaacat aactaaagag ggcatttcaa gacttataaa cttgaaaaat ctctatttgg 600 cctggaactg ctattttaac aaagtttgcg agaaaactaa catagaagat ggagtatttg 660 aaacgctgac aaatttggag ttgctatcac tatctttcaa ttctctttca cacgtgccac 720 ccaaactgcc aagctcccta cgcaaacttt ttctgagcaa cacccagatc aaatacatta 780 gtgaagaaga tttcaaggga ttgataaatt taacattact agatttaagc gggaactgtc 840

cgaggtgctt caatgcccca tagatcgttt tgcttttcaa	tttccatgcg aacttgaccc	tgccttgtga aacttcgata	tggtggtgct cctaaacctc	tcaattaata tctagcactt	900 960
ccctcaggaa gattaatgct	gcctggttta	aaaatatgcc	tcatctgaag	gtgctggatc	1020
ttgaattcaa ctatttagtg	ggagaaatag	cctctggggc	atttttaacg	atgctgcccc	1080
gcttagaaat acttgacttg	tcttttaact	atataaaggg	gagttatcca	cagcatatta	1140
atatttccag aaacttctct	aaacttttgt	ctctacgggc	attgcattta	agaggttatg	1200
tgttccagga actcagagaa	gatgatttcc	agcccctgat	gcagcttcca	aacttatcga	1260
ctatcaactt gggtattaat	tttattaagc	aaatcgattt	caaacttttc	caaaatttct	1320
ccaatctgga aattatttac	: ttgtcagaaa	acagaatatc	accgttggta	aaagataccc	1380
ggcagagtta tgcaaatagt	tcctctttc	aacgtcatat	ccggaaacga	cgctcaacag	1440
attttgagtt tgacccacat	tcgaactttt	atcatttcac	ccgtccttta	ataaagccac	1500
aatgtgctgc ttatggaaaa	gccttagatt	taagcctcaa	cagtattttc	ttcattgggc	1560
caaaccaatt tgaaaatctt	cctgacattg	cctgtttaaa	tctgtctgca	aatagcaatg	1620
ctcaagtgtt aagtggaact	gaattttcag	ccattcctca	tgtcaaatat	ttggatttga	1680
caaacaatag actagacttt	gataatgcta	gtgctcttac	tgaattgtcc	gacttggaag	1740
ttctagatct cagctataal	tcacactatt	tcagaatagc	aggcgtaaca	catcatctag	1800
aatttattca aaatttcaca	aatctaaaag	tttaaactt	gagccacaac	aacatttata	1860
ctttaacaga taagtataa	: ctggaaagca	agtecetggt	agaattagtt	ttcagtggca	1920
atcgccttga cattttgtgg	aatgatgatg	acaacaggta	tatctccatt	ttcaaaggtc	1980
tcaagaatct gacacgtcto	gatttatccc	ttaataggct	gaagcacatc	ccaaatgaag	2040
cattccttaa tttgccagco	agteteactg	aactacatat	aaatgataat	atgttaaagt	2100
tttttaactg gacattacto	cagcagtttc	ctcgtctcga	gttgcttgac	ttacgtggaa	2160
acaaactact ctttttaact	gatagcctat	ctgactttac	atcttccctt	cggacactgc	2220
tgctgagtca taacaggatt	teccaectae	catatggatt	tctttctgaa	gtcagtagtc	2280
tgaagcacct cgatttaagt	tccaatctgc	taaaaacaat	caacaaatcc	gcacttgaaa	2340
ctaagaccac caccaaatta	tctatgttgg	aactacacgg	aaaccccttt	gaatgcacct	2400
gtgacattgg agatttccga	agatggatgg	atgaacatct	gaatgtcaaa	attcccagac	2460
tggtagatgt catttgtgco	agtcctgggg	atcaaagagg	gaagagtatt	gtgagtctgg	2520
agctaacaac ttgtgtttca	gatgtcactg	cagtgatatt	atttttcttc	acgttcttta	2580
tcaccaccat ggttatgttg	gctgccctgg	ctcaccattt	gttttactgg	gatgtttggt	2640
ttatatataa tgtgtgttta	gctaaggtaa	aaggctacag	gtctctttcc	acatcccaaa	2700
ctttctatga tgcttacatt	tcttatgaca	ccaaagatgc	ctctgttact	gactgggtga	2760

taaatgagct	gcgctaccac	cttgaagaga	gccgagacaa	aaacgttctc	ctttgtctag	2820
aggagaggga	ttgggatccg	ggattggcca	tcatcgacaa	cctcatgcag	agcatcaacc	2880
aaagcaagaa	aacagtattt	gttttaacca	aaaaatatgc	aaaaagctgg	aactttaaaa	2940
cagcttttta	cttggctttg	cagaggctaa	tggatgagaa	catggatgtg	attatattta	3000
tcctgctgga	gccagtgtta	cagcattctc	agtatttgag	gctacggcag	cggatctgta	3060
agagetecat	cctccagtgg	cctgacaacc	cgaaggcaga	aggcttgttt	tggcaaactc	3120
tgagaaatgt	ggtcttgact	gaaaatgatt	cacggtataa	caatatgtat	gtcgattcca	3180
ttaagcaata	ctaactgacg	ttaagtcatg	atttcgcgcc	ataataaaga	tgcaaaggaa	3240
tgacatttct	gtattagtta	tctattgcta	tgtaacaaat	tatcccaaaa	cttagtggtt	3300
taaaacaaca	catttgctgg	cccacagttt	ttgagggtca	ggagtccagg	cccagcataa	3360
ctgggtcctc	tgctcagggt	gtctcagagg	ctgcaatgta	ggtgttcacc	agagacatag	3420
gcatcactgg	ggtcacactc	atgtggttgt	tttctggatt	caattcctcc	tgggctattg	3480
gccaaaggct	atactcatgt	aagccatgcg	agectetece	acaaggcagc	ttgcttcatc	3540
agagctagca	aaaaagagag	gttgctagca	agatgaagtc	acaatctttt	gtaatcgaat	3600
caaaaaagtg	atatctcatc	actttggcca	tattctattt	gttagaagta	aaccacaggt	3660
cccaccaget	ccatgggagt	gaccacctca	gtccagggaa	aacagctgaa	gaccaagatg	3720
gtgagctctg	attgcttcag	ttggtcatca	actattttcc	cttgactgct	gtcctgggat	3780
ggcctgctat	cttgatgata	gattgtgaat	atcaggaggc	agggatcact	gtggaccatc	3840
ttagcagttg	acctaacaca	tettettte	aatatctaag	aacttttgcc	actgtgacta	3900
atggtcctaa	tattaagctg	ttgtttatat	ttatcatata	tctatggcta	catggttata	3960
ttatgctgtg	gttgcgttcg	gttttattta	cagttgcttt	tacaaatatt	tgctgtaaca	4020
tttgacttct	aaggtttaga	tgccatttaa	gaactgagat	ggatagcttt	taaagcatct	4080
tttacttctt	accattttt	aaaagtatgc	agctaaattc	gaagcttttg	gtctatattg	4140
ttaattgcca	ttgctgtaaa	tcttaaaatg	aatgaataaa	aatgtttcat	tttacaaaaa	4200
aaaaaaaaa	a					4211

<400> 49

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacat ggttctcttg acacttcagt gttagggaac atcagcaaga cccatcccag 120

<210> 49 <211> 3468 <212> DNA <213> Homo sapiens

gagacettga e	aggaagcctt ggaaaggaga	tgaaagggag ctaaaaagga	aatgaaggag aaacatgttc	tcatctttgc cttcagtcgt	aaaatagctc caatgctgac	180 240
ctgcattttc	ctgctaatat	ctggttcctg	tgagttatgc	gccgaagaaa	atttttctag	300
aagctatcct	tgtgatgaga	aaaagcaaaa	tgactcagtt	attgcagagt	gcagcaatcg	360
tcgactacag	gaagttcccc	aaacggtggg	caaatatgtg	acagaactag	acctgtctga	420
taatttcatc	acacacataa	cgaatgaatc	atttcaaggg	ctgcaaaatc	tcactaaaat	480
aaatctaaac	cacaacccca	atgtacagca	ccagaacgga	aatcccggta	tacaatcaaa	540
tggcttgaat	atcacagacg	gggcattcct	caacctaaaa	aacctaaggg	agttactgct	600
tgaagacaac	cagttacccc	aaataccctc	tggtttgcca	gagtctttga	cagaacttag	660
tctaattcaa	aacaatatat	acaacataac	taaagagggc	atttcaagac	ttataaactt	720
gaaaaatctc	tatttggcct	ggaactgcta	ttttaacaaa	gtttgcgaga	aaactaacat	780
agaagatgga	gtatttgaaa	cgctgacaaa	tttggagttg	ctatcactat	ctttcaattc	840
tctttcacac	gtgccaccca	aactgccaag	ctccctacgc	aaacttttc	tgagcaacac	900
ccagatcaaa	tacattagtg	aagaagattt	caagggattg	ataaatttaa	cattactaga	960
tttaagcggg	aactgtccga	ggtgcttcaa	tgccccattt	ccatgcgtgc	cttgtgatgg	1020
tggtgcttca	attaatatag	atcgttttgc	ttttcaaaac	ttgacccaac	ttcgatacct	1080
aaacctctct	agcacttccc	tcaggaagat	taatgctgcc	tggtttaaaa	atatgcctca	1140
tctgaaggtg	ctggatcttg	aattcaacta	tttagtggga	gaaatagcct	ctggggcatt	1200
tttaacgatg	ctgccccgct	tagaaatact	tgacttgtct	tttaactata	taaaggggag	1260
ttatccacag	catattaata	tttccagaaa	cttctctaaa	cttttgtctc	tacgggcatt	1320
gcatttaaga	ggttatgtgt	tccaggaact	cagagaagat	gatttccagc	ccctgatgca	1380
gcttccaaac	ttatcgacta	tcaacttggg	tattaatttt	attaagcaaa	tcgatttcaa	1440
acttttccaa	aatttctcca	atctggaaat	tatttacttg	tcagaaaaca	gaatatcacc	1500
gttggtaaaa	gatacccggc	agagttatgc	aaatagttcc	tcttttcaac	gtcatatccg	1560
gaaacgacgc	tcaacagatt	ttgagtttga	cccacattcg	aacttttatc	atttcacccg	1620
tcctttaata	aagccacaat	gtgctgctta	tggaaaagcc	ttagatttaa	gcctcaacag	1680
tattttcttc	attgggccaa	accaatttga	aaatcttcct	gacattgcct	gtttaaatct	1740
gtctgcaaat	agcaatgctc	aagtgttaag	tggaactgaa	ttttcagcca	ttcctcatgt	1800
caaatatttg	gatttgacaa	acaatagact	agactttgat	aatgctagtg	ctcttactga	1860
attgtccgac	ttggaagttc	tagatctcag	ctataattca	cactatttca	gaatagcagg	1920
cgtaacacat	catctagaat	ttattcaaaa	tttcacaaat	ctaaaagttt	taaacttgag	1980
ccacaacaac	atttatactt	taacagataa	gtataacctg	gaaagcaagt	ccctggtaga	2040

attagttttc	agtggcaatc	gccttgacat	tttgtggaat	gatgatgaca	acaggtatat	2100
ctccattttc	aaaggtctca	agaatctgac	acgtctggat	ttatccctta	ataggctgaa	2160
gcacatccca	aatgaagcat	tccttaattt	gccagcgagt	ctcactgaac	tacatataaa	2220
tgataatatg	ttaaagtttt	ttaactggac	attactccag	cagtttcctc	gtctcgagtt	2280
gcttgactta	cgtggaaaca	aactactctt	tttaactgat	agcctatctg	actttacatc	2340
ttcccttcgg	acactgctgc	tgagtcataa	caggatttcc	cacctaccct	ctggctttct	2400
ttctgaagtc	agtagtctga	agcacctcga	tttaagttcc	aatctgctaa	aaacaatcaa	2460
caaatccgca	cttgaaacta	agaccaccac	caaattatct	atgttggaac	tacacggaaa	2520
cccctttgaa	tgcacctgtg	acattggaga	tttccgaaga	tggaṭggatg	aacatctgaa	2580
tgtcaaaatt	cccagactgg	tagatgtcat	ttgtgccagt	cctggggatc	aaagagggaa	2640
gagtattgtg	agtctggagc	taacaacttg	tgtttcagat	gtcactgcag	tgatattatt	2700
tttcttcacg	ttctttatca	ccaccatggt	tatgttggct	gccctggctc	accatttgtt	2760
ttactgggat	gtttggttta	tatataatgt	gtgtttagct	aaggtaaaag	gctacaggtc	2820
tctttccaca	tcccaaactt	tctatgatgc	ttacatttct	tatgacacca	aagatgcctc	2880
tgttactgac	tgggtgataa	atgagctgcg	ctaccacctt	gaagagagcc	gagacaaaaa	2940
cgttctcctt	tgtctagagg	agagggattg	ggatccggga	ttggccatca	tcgacaacct	3000
catgcagagc	atcaaccaaa	gcaagaaaac	agtatttgtt	ttaaccaaaa	aatatgcaaa	3060
aagctggaac	tttaaaacag	ctttttactt	ggctttgcag	aggctaatgg	atgagaacat	3120
ggatgtgatt	atatttatcc	tgctggagcc	agtgttacag	cattctcagt	atttgaggct	3180
acggcagcgg	atctgtaaga	gctccatcct	ccagtggcct	gacaacccga	aggcagaagg	3240
cttgttttgg	caaactctga	gaaatgtggt	cttgactgaa	aatgattcac	ggtataacaa	3300
tatgtatgtc	gattccatta	agcaatacta	actgacgtta	agtcatgatt	tegegecata	3360
ataaagatgc	aaaggaatga	catttctgta	ttagttatct	attgctatgt	aacaaattat	3420
cccaaaactt	agtggtttaa	aacaacacat	ttgctggccc	acagtttt		3468

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu 5

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg 20 25 30

<210> 50 <211> 1041 <212> PRT <213> Homo sapiens

<400> 50

WO 2004/094671 - 114 - PCT/US2004/012788

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His 85 Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn 105 Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg 120 Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 135 140 Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr 170 Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu 200 Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu 230 235 Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn 250 Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly 265 Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala 295 Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser

WO 2004/094671 - 115 - PCT/US2004/012788

Leu	Arg 370	355 Ala	Leu	His	Leu	Arg 375	360 Gly	Tyr	Val	Phe	Gln 380	365 Glu	Leu	Arg	Glu
Asp 385	Asp	Phe	Gln	Pro	Leu 390	Met	Gln	Leu	Pro	Asn 395	Leu	Ser	Thr	Ile	Asn 400
Leu	Gly	Ile	Asn	Phe 405	Ile	Lys ·	Gln	Ile	Asp 410	Phe	Lys	Leu	Phe	Gln 415	Asn
Phe	Ser	Asn	Leu 420	Glu	Ile	Ile	Tyr	Leu 425	Ser	Glu	Asn	Arg	Ile 430	Ser	Pro
Leu	Val	Lys 435	Asp	Thr	Arg	Gln	Ser 440	Tyr	Ala	Asn	Ser	Ser 445	Ser	Phe	Gln
Arg	His 450	Ile	Arg	Lys	Arg	Arg 455	Ser	Thr	Asp	Phe	Glu 460	Phe	Asp	Pro	His
Ser 465	Asn	Phe	Tyr	His	Phe 470	Thr	Arg	Pro	Leu	Ile 475	Lys	Pro	Gln	Cys	Ala 480
Ala	Tyr	Gly	Lys	Ala 485	Leu	qaA	Leu	Ser	Leu 490	Asn	Ser	Ile	Phe	Phe 495	Ile
Gly	Pro	Asn	Gln 500	Phe	Glu	Asn	Leu	Pro 505	Asp	Ile	Ala	Суз	Leu 510	Asn	Leu
Ser	Ala	Asn 515	Ser	Asn	Ala	Gln	Val 520	Leu	Ser	Gly	Thr	Glu 525	Phe	Ser	Ala
Ile	Pro 530	His	Val	Lys	Tyr	Leu 535	Asp	Leu	Thr	Asn	Asn 540	Arg	Leu	Asp	Phe
Asp 545	Asn	Ala	Ser	Ala	Leu 550	Thr	Glu	Leu	Ser	Asp 555	Leu	Glu	Val	Leu	Asp 560
Leu	Ser	Tyr	Asn	Ser 565	His	Tyr	Phe	Arg	Ile 570	Ala	Gly	Val	Thr	His 575	His
Leu	Glu	Phe	Ile 580	Gln	Asn	Phe	Thr	Asn 585	Leu	Lys	Val	Leu	Asn 590	Leu	Ser
His	Asn	Asn 595	Ile	Tyr	Thr	Leu	Thr 600	Asp	Lys	Tyr	Asn	Leu 605	Glu	Ser	Lys
Ser	Leu 610	Val	Glu	Leu	Val	Phe 615		Gly	Asn	Arg	Leu 620	Asp	Ile	Leu	Trp
Asn 625	Asp	Asp	Asp	Asn	Arg 630	-	Ile	Ser	Ile	Phe 635		Gly	Leu	Lys	Asn 640
Leu	Thr	Arg	Leu	Asp 645		Ser	Leu	Asn	Arg 650		Lys	His	Ile	Pro 655	Asn
Glu	Ala	Phe	Leu 660		Leu	Pro	Ala	Ser 665		Thr	Glu	Leu	His 670		Asn
Asp	Asn	Met 675		Lys	Phe	Phe	Asn 680		Thr	Leu	Leu	Gln 685		Phe	Pro
Arg	Leu	Glu	Leu	Leu	Asp	Leu	Arg	Gly	Asn	Lys	Leu	Leu	Phe	Leu	Thr

WO 2004/094671 - 116 - PCT/US2004/012788

695 690 700 Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser 730 Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu 760 Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp 795 Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala 840 His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr 875 Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp 885 Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn 905 Val Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 970 Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu 1010 1015

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile

1025 1030 1035 Lys Gln Tyr 1040

<210> 51

<211> 1059

<212> PRT

<213> Homo sapiens

<400> 51

Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu
1 5 10 15

Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile 20 25 30

Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 35 40 45

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile 50 55 60

Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly 65 70 75 80

Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile 85 90 95

Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu 100 105 110

Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln 115 120 125

Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn 130 135 140

Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser 145 150 155 160

Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile 165 170 175

Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn 180 185 190

Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr 195 , 200 205

Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu 210 215 220

Ser Leu Ser Phe Asn Ser Leu Ser His Val Ser Pro Lys Leu Pro Ser 225 230 235 240

Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser 245 250 255

Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser 260 265 270

WO 2004/094671 - 118 - PCT/US2004/012788

Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys 280 Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu 295 Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu 330 Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Pro Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr 410 Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile 440 Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser 455 Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp 475 Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe 505 Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val 565 570 Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr 585

His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn

600 Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu 615 Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile 630 Leu Trp Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu 650 Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile 665 Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln 695 Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr 760 Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met 775 Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu 805 Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile 825 Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val 870 Cys Leu Ala Lys Ile Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr 890 Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp 920 Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu

935 940

Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr

Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr

Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val

Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu 1000

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro 1015

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn 1030

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val

Asp Ser Ile Lys Gln Tyr 1055

<210> 52

<211> 1041 <212> PRT

<213> Homo sapiens

<400> 52

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arq

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn

Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His

Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn

Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg

Glu Leu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 135

Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn 145 150 155

WO 2004/094671 - 121 - PCT/US2004/012788

Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile 185 Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu 200 Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu 215 Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu 230 Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 325 Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser 345 Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn 390 395 Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His 455 Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala 470 475 Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile

WO 2004/094671 - 122 - PCT/US2004/012788

490 Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu 505 . Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala 520 Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe 535 Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp 550 Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys 600 Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp 615 Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn 665 Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro 680 Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr 695 Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser 730 Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp 785 790 Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser 810 Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe 825

Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala 840

His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu

Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr 875

Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp

Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn 905

Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile

Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe 930

Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe 950

Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 970

Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu 985

Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 995 1005

Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu 1015

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile 1025 1030

Lys Gln Tyr 1040

<210> 53

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 53

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr

WO 2004/094671 - 124 - PCT/US2004/012788

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg 120 Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 135 Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn 150 155 Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr 170 Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu 200 Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu 215 Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn 245 250 Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly 265 Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln 280 Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 330 Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu 375 Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn

390 395 Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile 490 Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu 505 Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala 520 Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys 600 Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn 630 Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro 680 Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser His Asn Arq Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser

WO 2004/094671 - 126 - PCT/US2004/012788

725 730 735

Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn
740 745 750

- Lys Ser Ala Leu Glu Thr Lys Thr Thr Lys Leu Ser Met Leu Glu
 755 760 765
- Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg
 770 780
- Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp 785 790 795 800
- Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser 805 810
- Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe 820 825 830
- Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala 835 840 845
- His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu 850 855 860
- Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr 865 870 875 880
- Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp 885 890 895
- Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn 900 905 910
- Val Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile 915 920 925
- Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe 930 935 940
- Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe 945 950 955 960
- Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 965 970 975
- Phe Ile Leu Clu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu 980 985 990
- Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 995 1000 1005
- Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu 1010 1015 1020
- Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile 1025 1030 1035

Lys Gln Tyr 1040 <210> 54

<211> 1059

<212> PRT

<213> Homo sapiens

<400> 54

Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu
1 5 10 15

Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile 20 25 30

Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 35 40 45

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile 50 55 60

Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly 65 70 75 80

Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile 85 90 95

Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu 100 105 110

Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln 115 120 125

Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn 130 135 140

Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser 145 150 155 160

Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile 165 170 175

Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn 180 185 190

Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr 195 200 205

Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu 210 215 220

Ser Leu Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser 225 230 235 240

Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser 245 250 255

Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser 260 265 270

Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys 275 280 285

WO 2004/094671 - 128 - PCT/US2004/012788

Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu 295 Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu Pro Arq Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu 375 Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu 390 Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe 425 Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser 455 Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln 490 Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe 500 Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu 520 Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu 555 Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu

WO 2004/094671 - 129 - PCT/US2004/012788

	610					615					620				
Ser 625	Lys	Ser	Leu	Val	Glu 630	Leu	Val	Phe	Ser	Gly 635	Asn	Arg	Leu	Ąsp	Ile
Leu	Trp	Asn	Asp	Asp 645	Asp	Asn	Arg	Tyr	Ile 650	Ser	Ile	Phe	Lys	Gly 655	Leu
Lys	Asn	Leu	Thr 660	Arģ	Leu	Asp	Leu	Ser 665	Leu	Asn	Arg	Leu	Lys 670	His	Ile
Pro	Asn	Glu 675	Ala	Phe	Leu	Asn	Leu 680	Pro	Ala	Ser	Leu	Thr 685	Glu	Leu	His
Ile	Asn 690	Asp	Asn	Met	Leu	Lуs 695	Phe	Phe	Asn	Trp	Thr 700	Leu	Leu	Gln	Gln
Phe 705	Pro	Arg	Leu	Glu	Leu 710	Leu	Asp	Leu	Arg	Gly 715	Asn	Lys	Leu	Leu	Phe 720
Leu	Thr	Asp	Ser	Leu 725	Ser	Asp	Phe	Thr	Ser 730	Ser	Leu	Arg	Thr	Leu 735	Leu
Leu	Ser	His	Asn 740	Arg	Ile	Ser	His	Leu 745	Pro	Ser	Gly	Phe	Leu 750	Ser	Glu
Val	Ser	Ser 755	Leu	Lys	His	Leu	Asp 760	Leu	Ser	Ser	Asn	Leu 765	Leu	Lys	Thr
Ile	Asn 770	Lys	Ser	Ala	Leu	Glu 775	Thr	Lys	Thr	Thr	Thr 780	Lys	Leu	Ser	Met
Leu 785	Glu	Leu	His	Gly	Asn 790	Pro	Phe	Glu	Сув	Thr 795	Cys	Asp	Ile	Gly	Asp 800
Phe	Arg	Arg	Trp	Met 805	Asp	Glu	His	Leu	Asn 810	Val	Lys	Ile	Pro	Arg 815	Leu
Val	Asp	Val	Ile 820	Cys	Ala	Ser	Pro	Gly 825	Asp	Gln	Arg	Gly	Lys 830	Ser	Ile
Val	Ser	Leu 835	Glu	Leu	Thr	Thr	Cys 840	Val	Ser	Asp	Val	Thr 845	Ala	Val	Ile
Leu	Phe 850	Phe	Phe	Thr	Phe	Phe 855	Ile	Thr	Thr	Met	Val 860	Met	Leu	Ala	Ala
Leu 865	Ala	His	His	Leu	Phe 870	Tyr	Trp	Asp	Val	Trp 875	Phe	Ile	Tyr	Asn	Val 880
Cys	Leu	Ala	Lys	Val 885	Lys	Gly	Tyr	Arg	Ser 890	Leu	Ser	Thr	Ser	Gln 895	Thr
Phe	Tyr	Asp	Ala 900	Tyr	Ile	Ser	Tyr	4sp 209	Thr	Lys	Asp	Ala	Ser 910	Val	Thr
Asp	Trp	Val 915	Ile	Asn	Glu	Leu	Arg 920	Tyr	His	Leu	Glu	Glu 925	Ser	Arg	Asp
Lys	Asn 930	Val	Leu	Leu	Cys	Leu 935	Glu	Glu	Arg	Asp	Trp 940	Asp	Pro	Gly	Leu
Ala	Ile	Ile	Asp	Asn	Leu	Met	Gln	Ser	Ile	Asn	Gln	Ser	Lys	Lys	Thr

WO 2004/094671 - 130 - PCT/US2004/012788

945 950 955 960 Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr 965 970 975

Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val 980 985 990

Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu
995 1000 1005

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro 1010 1015 1020

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn 1025 1030 1035

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val 1040 1045 1050

Asp Ser Ile Lys Gln Tyr 1055

<210> 55

<211> 3220

<212> DNA

<213> murine

<400> 55

attcagagtt ggatgttaag agagaaacaa acgttttacc ttcctttgtc tatagaacat 60 ggaaaacatg ccccctcagt catggattct gacgtgcttt tgtctgctgt cctctggaac 120 cagtgccatc ttccataaag cgaactattc cagaagctat ccttgtgacg agataaggca 180 caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaagttc cccaaactat 240 aggcaagtat gtgacaaaca tagacttgtc agacaatgcc attacacata taacgaaaga 300 gtcctttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca 360 gcacccaaat gaaaataaaa atggtatgaa tattacagaa ggggcacttc tcagcctaag 420 aaatctaaca gttttactgc tggaagacaa ccagttatat actatacctg ctgggttgcc 480 tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacaa 540 cacttttggg cttaggaact tggaaagact ctatttgggc tggaactgct attttaaatg 600 taatcaaacc tttaaggtag aagatggggc atttaaaaat cttatacact tgaaggtact 660 ctcattatct ttcaataacc ttttctatgt gccccccaaa ctaccaagtt ctctaaggaa 720 actttttctg agtaatgcca aaatcatgaa catcactcag gaagacttca aaggactgga 780 aaatttaaca ttactagatc tgagtggaaa ctgtccaagg tgttacaatg ctccatttcc 840 tigcacacct igcaaggaaa actcaiccai ccacatacai cciciggcii ticaaagici 900 cacccaactt ctctatctaa acctttccag cacttccctc aggacgattc cttctacctg 960 gtttgaaaat ctgtcaaatc tgaaggaact ccatcttgaa ttcaactatt tagttcaaga 1020

aattgcctcg	ggggcatttt	taacaaaact	acccagttta	caaatccttg	atttgtcctt	1080
caactttcaa	tataaggaat	atttacaatt	tattaatatt	tcctcaaatt	tctctaagct	1140
tcgttctctc	aagaagttgc	acttaagagg	ctatgtgttc	cgagaactta	aaaagaagca	1200
tttcgagcat	ctccagagtc	ttccaaactt	ggcaaccatc	aacttgggca	ttaactttat	1260
tgagaaaatt	gatttcaaag	ctttccagaa	tttttccaaa	ctcgacgtta	tctatttatc	1320
aggaaatcgc	atagcatctg	tattagatgg	tacagattat	tcctcttggc	gaaatcgtct	1380
tcggaaacct	ctctcaacag	acgatgatga	gtttgatcca	cacgtgaatt	tttaccatag	1440
caccaaacct	ttaataaagc	cacagtgtac	tgcttatggc	aaggccttgg	atttaagttt	1500
gaacaatatt	ttcattattg	ggaaaagcca	atttgaaggt	tttcaggata	tcgcctgctt	1560
aaatctgtcc	ttcaatgcca	atactcaagt	gtttaatggc	acagaattct	cctccatgcc	1620
ccacattaaa	tatttggatt	taaccaacaa	cagactagac	tttgatgata	acaatgcttt	1680
cagtgatctt	cacgatctag	aagtgctgga	cctgagccac	aatgcacact	atttcagtat	1740
agcaggggta	acgcaccgtc	taggatttat	ccagaactta	ataaacctca	gggtgttaaa	1800
cctgagccac	aatggcattt	acaccctcac	agaggaaagt	gagctgaaaa	geateteact	1860
gaaagaattg	gttttcagtg	gaaatcgtct	tgaccatttg	tggaatgcaa	atgatggcaa	1920
atactggtcc	atttttaaaa	gtctccagaa	tttgatacgc	ctggacttat	catacaataa	1980
ccttcaacaa	atcccaaatg	gagcattcct	caatttgcct	cagagcetee	aagagttact	2040
tatcagtggt	aacaaattac	gtttctttaa	ttggacatta	ctccagtatt	ttcctcacct	2100
tcacttgctg	gatttatcga	gaaatgagct	gtattttcta	cccaattgcc	tatctaagtt	2160
tgcacattcc	ctggagacac	tgctactgag	ccataatcat	ttctctcacc	taccctctgg	2220
cttcctctcc	gaagccagga	atctggtgca	cctggatcta	agtttcaaca	caataaagat	2280
gatcaataaa	tcctccctgc	aaaccaagat	gaaaacgaac	ttgtctattc	tggagctaca	2340
tgggaactat	tttgactgca	cgtgtgacat	aagtgatttt	cgaagctggc	tagatgaaaa	2400
tctgaatatc	acaattccta	aattggtaaa	tgttatatgt	tccaatcctg	gggatcaaaa	2460
atcaaagagt	atcatgagcc	tagatctcac	gacttgtgta	teggatacca	ctgcagctgt	2520
cctgtttttc	ctcacattcc	ttaccacctc	catggttatg	ttggctgctc	tggttcacca	2580
cctgttttac	tgggatgttt	ggtttatcta	tcacatgtgc	tctgctaagt	taaaaggcta	2640
caggacttca	tecacatece	aaactttcta	tgatgcttat	atttcttatg	acaccaaaga	2700
tgcatctgtt	actgactggg	taatcaatga	actgcgctac	caccttgaag	agagtgaaga	2760
caaaagtgtc	: ctcctttgtt	tagaggagag	ggattgggat	ccaggattac	ccatcattga	2820
taacctcatg	g cagagcataa	accagagcaa	gaaaacaatc	tttgttttaa	ccaagaaata	2880

WO 2004/094671 - 132 - PCT/US2004/012788

tgccaagagc	tggaacttta	aaacagcttt	ctacttggcc	ttgcagaggc	taatggatga	2940
gaacatggat	gtgattattt	tcatcctcct	ggaaccagtg	ttacagtact	cacagtacct	3000
gaggettegg	cagaggatct	gtaagagctc	catcctccag	tggcccaaca	atcccaaagc	3060
agaaaacttg	ttttggcaaa	gtctgaaaaa	tgtggtcttg	actgaaaatg	attcacggta	3120
tgacgatttg	tacattgatt	ccattaggca	atactagtga	tgggaagtca	cgactctgcc	3180
atcataaaaa	cacacagctt	ctccttacaa	tgaaccgaat			3220
<210> 56 <211> 3220 <212> DNA <213> muri						
<400> 56 attcagagtt	ggatgttaag	agagaaacaa	acgttttacc	ttcctttgtc	tatagaacat	60
ggaaaacatg	cccctcagt	catggattct	gacgtgcttt	tgtctgctgt	cctctggaac	120
cagtgccatc	ttccataaag	cgaactattc	cagaagctat	ccttgtgacg	agataaggca	180
caactccctt	gtgattgcag	aatgcaacca	tcgtcaactg	catgaagttc	cccaaactat	240
aggcaagtat	gtgacaaaca	tagacttgtc	agacaatgcc	attacacata	taacgaaaga	300
gtcctttcaa	aagctgcaaa	acctcactaa	aatcgatctg	aaccacaatg	ccaaacaaca	360
gcacccaaat	gaaaataaaa	atggtatgaa	tattacagaa	ggggcacttc	tcagcctaag	420
aaatctaaca	gttttactgc	tggaagacaa	ccagttatat	actatacctg	ctgggttgcc	480
tgagtctttg	aaagaactta	gcctaattca	aaacaatata	tttcaggtaa	ctaaaaacaa	540
cacttttggg	cttaggaact	tggaaagact	ctatttgggc	tggaactgct	attttaaatg	600
taatcaaacc	tttaaggtag	aagatggggc	atttaaaaat	cttatacact	tgaaggtact	660
ctcattatct	ttcaataacc	ttttctatgt	gcccccaaa	ctaccaagtt	ctctaaggaa	720
actttttctg	agtaatgcca	aaatcatgaa	catcactcag	gaagacttca	aaggactgga	780
aaatttaaca	ttactagatc	tgagtggaaa	ctgtccaagg	tgttacaatg	ctccatttcc	840
ttgcacacct	tgcaaggaaa	actcatccat	ccacatacat	cctctggctt	ttcaaagtct	900
cacccaactt	ctctatctaa	acctttccag	cacttccctc	aggacgattc	cttctacctg	960
gtttgaaaat	ctgtcaaatc	tgaaggaact	ccatcttgaa	ttcaactatt	tagttcaaga	1020
aattgcctcg	ggggcatttt	taacaaaact	acccagttta	caaatccttg	atttgtcctt	1080
caactttcaa	tataaggaat	atttacaatt	tattaatatt	tcctcaaatt	tctctaagct	1140
tcgttctctc	aagaagttgc	acttaagagg	ctatgtgttc	cgagaactta	aaaagaagca	1200
tttcgagcat	ctccagagtc	ttccaaactt	ggcaaccatc	aacttgggca	ttaactttat	1260

tgagaaaatt gatttcaaag	ctttccagaa	tttttccaaa	ctcgacgtta	tctatttatc	1320
aggaaatcgc atagcatctg	tattagatgg	tacagattat	tcctcttggc	gaaatcgtct	1380
tcggaaacct ctctcaacag	acgatgatga	gtttgatcca	cacgtgaatt	tttaccatag	1440
caccaaacct ttaataaagc	cacagtgtac	tgcttatggc	aaggccttgg	atttaagttt	1500
gaacaatatt ttcattattg	ggaaaagcca	atttgaaggt	tttcaggata	tcgcctgctt	1560
aaatctgtcc ttcaatgcca	atactcaagt	gtttaatggc	acagaattct	cctccatgcc	1620
ccacattaaa tatttggatt	taaccaaçaa	cagactagac	tttgatgata	acaatgcttt	1680
cagtgatctt cacgatctag	aagtgctgga	cctgagccac	aatgcacact	atttcagtat	1740
agcaggggta acgcaccgtc	taggatttat	.ccagaactta	ataaacctca	gggtgttaaa	1800
cctgagccac aatggcattt	acaccctcac	agaggaaagt	gagctgaaaa	gcatctcact	1860
gaaagaattg gttttcagtg	gaaatcgtct	tgaccatttg	tggaatgcaa	atgatggcaa	1920
atactggtcc atttttaaaa	gtctccagaa	tttgatacgc	ctggacttat	catacaataa	1980
ccttcaacaa atcccaaatg	gagcattcct	caatttgcct	cagageetee	aagagttact	2040
tatcagtggt aacaaattac	gtttctttaa	ttggacatta	ctccagtatt	ttcctcacct	2100
tcacttgctg gatttatcga	gaaatgagct	gtattttcta	cccaattgcc	tatctaagtt	2160
tgcacattcc ctggagacac	tgctactgag	ccataatcat	ttctctcacc	taccctctgg	2220
cttcctctcc gaagccagga	atctggtgca	cctggatcta	agtttcaaca	caataaagat	2280
gatcaataaa teeteeetge	aaaccaagat	gaaaacgaac	ttgtctattc	tggagctaca	2340
tgggaactat tttgactgca	cgtgtgacat	aagtgatttt	cgaagctggc	tagatgaaaa	2400
tctgaatatc acaattccta	aattggtaaa	tgttatatgt	tccaatcctg	gggatcaaaa	2460
atcaaagagt atcatgagcc	tagatctcac	gacttgtgta	tcggatacca	ctgcagctgt	2520
cctgtttttc ctcacattcc	ttaccacctc	catggttatg	ttggctgctc	tggttcacca	2580
cctgttttac tgggatgttt	ggtttatcta	tcacatgtgc	tctgctaagt	taaaaggcta	2640
caggacttca tccacatccc	aaactttcta	tgatgcttat	atttcttatg	acaccaaaga	2700
tgcatctgtt actgactggg	taatcaatga	actgcgctac	caccttgaag	agagtgaaga	2760
caaaagtgtc ctcctttgtt	tagaggagag	ggattgggat	ccaggattac	ccatcattga	2820
taacctcatg cagagcataa	accagagcaa	gaaaacaatc	tttgttttaa	ccaagaaata	2880
tgccaagagc tggaacttta	aaacagcttt	ctacttggcc	ttgcagaggc	taatggatga	2940
gaacatggat gtgattattt	tcatcctcct	ggaaccagtg	ttacagtact	cacagtacct	3000
gaggettegg cagaggatet	gtaagagcto	: catcctccag	tggcccaaca	atcccaaagc	3060
agaaaacttg ttttggcaaa	gtctgaaaaa	tgtggtcttg	actgaaaatg	attcacggta	3120
tgacgatttg tacattgatt	ccattaggca	atactagtga	tgggaagtca	cgactctgcc	3180

atcataaaaa cacacagctt ctccttacaa tgaaccgaat

3220

<210> 57

<211> 1032

<212> PRT

<213> murine

<400> 57

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu 1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg 20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 35 40 45

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr 50 55 60

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys 65 70 75 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His 85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile 100 105 110

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu 115 120 125

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 130 135 140

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 145 150 155 160

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn 165 170 175

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 180 185 190

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 195 200 205

Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 210 215 220

Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu 225 230 235 240

Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr 245 250 255

Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His 260 265 270

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 295 Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln 310 315 Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 330 Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile 345 Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu. His Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp 440 Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe 500 505 Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu 520 Thr Asn Asn Arg Leu Asp Phe Asp Asp Asn Asn Ala Phe Ser Asp Leu His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser 550 Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn 570 Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu 585 Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly

600 605 Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser 615 Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser 695 Leu Glu Thr Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys 745 Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile 775 Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln 790 . Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp 810 Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met 820 825 Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp 840 Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys 870 Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser WO 2004/094671 - 137 - PCT/US2004/012788

930 935 940

Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp 945 950 955 960

Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln 965 970 975

Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile 980 985 990

Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser 995 1000 1005

Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp 1010 1015 1020

Leu Tyr Ile Asp Ser Ile Arg Gln Tyr 1025 1030

<210> 58

<211> 1032

<212> PRT

<213> murine

<400> 58

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu 1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg 20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 35 40 45

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr 50 55

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys 65 70 75 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His 85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile 100 105 110

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu 115 120 125

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 130 135 140

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 145 150 155 160

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn 165 170 175

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 180 185 190

WO 2004/094671 - 138 - PCT/US2004/012788

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 200 Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 215 Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu 230 Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr 250 Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His 265 Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn . 285 Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 295 Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 330 Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His 360 Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His 375 Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe 395 Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr 425 Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln 485 490 Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe 505

Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu

520 525 Thr Asn Asn Arg Leu Asp Phe Asp Asn Asn Ala Phe Ser Asp Leu 535 His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser 550 Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn 570 Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu 585 Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly 600 Asn Arq Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn 630 635 Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser 650 645 Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp 665 Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser 695 Leu Glu Thr Leu Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys 745 Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp 810 Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met 820 825 Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp 840 Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser WO 2004/094671 - 140 - PCT/US2004/012788

850 855 860

Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys 865 870 875 885

Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu 885 890 895

Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp 900 905 910

Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn 915 920 925

Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser 930 935 940

Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp 945 950 955 960

Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln 965 970 975

Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile 980 985 990

Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser 995 1000 1005

Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp 1010 1015 1020

Leu Tyr Ile Asp Ser Ile Arg Gln Tyr 1025 1030

<210> 59

<211> 1032

<212> PRT

<213> murine

<400> 59

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu 1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg 20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 35 40 45

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr 50 55 60

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys
65 70 75 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His 85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile 100 105 110

WO 2004/094671 - 141 - PCT/US2004/012788

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 135 Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 150 155 Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 185 Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 200 Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 215 Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu 230 235 Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr 245 Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn 280 Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 295 Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile 340 345 Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His 360 Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr 425 Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp

WO 2004/094671 - 142 - PCT/US2004/012788

440 435 445 Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro 455 Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe 500 Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu 520 Thr Asn Asn Arg Leu Asp Phe Asp Asp Asn Asn Ala Phe Ser Asp Leu 535 His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu 585 Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser 615 Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser 645 650 Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp 660 Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg 680 Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser Leu Glu Thr Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser 715 Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile

Thr 785	Ile	Pro	Lys	Leu	Val 790	Asn	Val	Ile	Cys	Ser 795	Asn	Pro	Gly	Asp	Gln 800	
Lys	Ser	Lys	Ser	Ile 805	Met	Ser	Leu	Asp	Leu 810	Thr	Thr	Суз	Val	Ser 815	Asp	
Thr	Thr	Ala	Ala 820	Val	Leu	Phe	Phe	Leu 825	Thr	Phe	Leu	Thr	Thr 830	Ser	Met	
Val	Met	Leu 835	Ala	Ala	Leu	Val	His 840	His	Leu	Phe	Tyr	Trp 845	Asp	Val	Trp	
Phe	Ile 850	Tyr	His	Met	Cys	Ser 855	Ala	Lys	Leu	ГÀЗ	Gly 860	Tyr	Arg	Thr	Ser	
Ser 865	Thr	Ser	Gln	Thr	Phe 870	Tyr	Asp	Ala	Tyr	Ile 875	Ser	Tyr	Asp	Thr	Lys 880 .	
Asp	Ala	Ser	Val	Thr 885	qaA	Trp	Val	Ile	Asn 890	Glu	Leu	Arg	Tyr	His 895	Leu	
Glu	Glu	Ser	Glu 900	Asp	Lys	Ser	Val	Leu 905	Leu	Cys	Leu	Glu	Glu 910	Arg	Asp	
Trp	Asp	Pro 915	Gly	Leu	Pro	Ile	Ile 920	Asp	Asn	Leu	Met	Gln 925	Ser	Ile	Asn	
Gln	Ser 930	Lys	Lys	Thr	Ile	Phe 935	Val	Leu	Thr	Lys	L уs 940	Tyr	Ala	Lys	Ser	
Trp 945	Asn	Phe	Lys	Thr	Ala 950	Phe	Tyr	Leu	Ala	Leu 955	Gln	Arg	Leu	Met	Asp 960	
Glu	Asn	Met	Asp	Val 965	Ile	Ile	Phe	Ile	Leu 970	Leu	Glu	Pro	Val	Leu 975	Gln	
Tyr	Ser	Gln	Tyr 980	Leu	Arg	Leu	Arg	Gln 985	Arg	Ile	Cys	Lys	Ser 990	Ser	Ile	
Leu	Gln	Trp 995	Pro	Asn	Asn	Pro	Lys 1000		a Glu	ı Ası	n Let	1 Phe 100		rp G	ln Ser	
Leu	Lys 101		n Va	l Va	l Leı	1 Th:		lu As	sn As	sp Se		rg :	Fyr i	Asp A	Asp	
Leu	Tyr 102		e Asp	Se:	r Ile	Arg		ln Ty	γr							
<210 <211 <212 <213	L> 3 2> I	50 3352 DNA Homo	sap:	iens												
<400 agg		so cat a	aaaa	atcti	ta ct	tect	ctat	tct	tctga	agcc	gct	gctg	ccc (ctgt	gggaag	60
ggad	cctc	gag t	gtga	aagca	at co	ette	cctgt	ago	etgei	tgtc	cagi	ctg	ccc (gcca	gaccct	120
ctg	gagaa	agc o	ccct	gccc	cc ca	agcat	gggt	: tto	ctgc	cgca	gcg	cct	gca (cccg	ctgtct	180

ctcctggtgc ctaccctgtg	aggccatcat agctccagcc	gctggccatg ccacggcctg	accctggccc gtgaactgca	tgggtacctt actggctgtt	gcctgccttc cctgaagtct	240 300
gtgccccact	tctccatggc	agcaccccgt	ggcaatgtca	ccagcctttc	cttgtcctcc	360
aaccgcatcc	accacctcca	tgattctgac	tttgcccacc	tgcccagcct	gcggcatctc	420
aacctcaagt	ggaactgccc	gccggttggc	ctcagcccca	tgcacttccc	ctgccacatg	480
accatcgagc	ccagcacctt	cttggctgtg	cccaccctgg	aagagctaaa	cctgagctac	540
aacaacatca	tgactgtgcc	tgcgctgccc	aaatccctca	tatccctgtc	cctcagccat	600
accaacatcc	tgatgctaga	ctctgccagc	ctcgccggcc	tgcatgccct	gcgcttccta	660
ttcatggacg	gcaactgtta	ttacaagaac	ccctgcaggc	aggcactgga	ggtggccccg	720
ggtgccctcc	ttggcctggg	caacctcacc	cacctgtcac	tcaagtacaa	caacctcact	780
gtggtgcccc	gcaacctgcc	ttccagcctg	gagtatctgc	tgttgtccta	caaccgcatc	840
gtcaaactgg	cgcctgagga	cctggccaat	ctgaccgccc	tgcgtgtgct	cgatgtgggc	900
ggaaattgcc	gccgctgcga	ccacgctccc	aacccctgca	tggagtgccc	tcgtcacttc	960
ccccagctac	atcccgatac	cttcagccac	ctgagccgtc	ttgaaggcct	ggtgttgaag	1020
gacagttctc	teteetgget	gaatgccagt	tggttccgtg	ggctgggaaa	cctccgagtg	1080
ctggacctga	gtgagaactt	cctctacaaa	tgcatcacta	aaaccaaggc	cttccagggc	1140
ctaacacagc	tgcgcaagct	taacctgtcc	ttcaattacc	aaaagagggt	gtcctttgcc	1200
cacctgtctc	tggccccttc	cttcgggagc	ctggtcgccc	tgaaggagct	ggacatgcac	1260
ggcatettet	tccgctcact	cgatgagacc	acgctccggc	cactggcccg	cctgcccatg	1320
ctccagactc	tgcgtctgca	gatgaacttc	atcaaccagg	cccagctcgg	catcttcagg	1380
gccttccctg	gcctgcgcta	cgtggacctg	tcggacaacc	gcatcagcgg	agcttcggag	1440
ctgacagcca	ccatggggga	ggcagatgga	ggggagaagg	tctggctgca	gcctggggac	1500
cttgctccgg	ccccagtgga	cactcccagc	tctgaagact	tcaggcccaa	ctgcagcacc	1560
ctcaacttca	ccttggatct	gtcacggaac	aacctggtga	ccgtgcagcc	ggagatgttt	1620
gcccagctct	cgcacctgca	gtgcctgcgc	ctgagccaca	actgcatctc	gcaggcagtc	1680
aatggctccc	agttcctgcc	gctgaccggt	ctgcaggtgc	tagacctgtc	ccgcaataag	1740
ctggacctct	accacgagca	ctcattcacg	gagctaccgc	gactggaggc	cctggacctc	1800
agctacaaca	gccagccctt	tggcatgcag	ggcgtgggcc	acaacttcag	cttcgtggct	1860
cacctgcgca	ccctgcgcca	cctcagcctg	gcccacaaca	acatccacag	ccaagtgtcc	1920
cagcagctct	gcagtacgtc	gctgcgggcc	ctggacttca	gcggcaatgc	actgggccat	1980
atgtgggccg	agggagacct	ctatctgcac	ttcttccaag	gcctgagcgg	tttgatctgg	2040
ctggacttgt	cccagaaccg	cctgcacacc	ctcctgcccc	aaaccctgcg	caacctcccc	2100

aagagcctac	aggtgctgcg	tctccgtgac	aattacctgg	ccttctttaa	gtggtggagc	2160
ctccacttcc	tgcccaaact	ggaagtcctc	gacctggcag	gaaaccggct	gaaggccctg	2220
accaatggca	gcctgcctgc	tggcacccgg	ctccggaggc	tggatgtcag	ctgcaacagc	2280
atcagcttcg	tggcccccgg	cttcttttcc	aaggccaagg	agctgcgaga	gctcaacctt	2340
agcgccaacg	ccctcaagac	agtggaccac	tcctggtttg	ggcccctggc	gagtgccctg	2400
caaatactag	atgtaagcgc	caaccctctg	cactgcgcct	gtggggcggc	ctttatggac	2460
ttcctgctgg	aggtgcaggc	tgccgtgccc	ggtctgccca	gccgggtgaa	gtgtggcagt	2520
ccgggccagc	tccagggcct	cagcatcttt	gcacaggacc	tgcgcctctg	cctggatgag	2580
geceteteet	gggactgttt	cgccctctcg	ctgctggctg	tggctctggg	cctgggtgtg	2640
cccatgctgc	atcacctctg	tggctgggac	ctctggtact	gcttccacct	gtgcctggcc	2700
tggcttccct	ggcgggggcg	gcaaagtggg	cgagatgagg	atgccctgcc	ctacgatgcc	2760
ttcgtggtct	tcgacaaaac	gcagagcgca	gtggcagact	gggtgtacaa	cgagcttcgg	2820
gggcagctgg	aggagtgccg	tgggcgctgg	gcactccgcc	tgtgcctgga	ggaacgcgac	2880
tggctgcctg	gcaaaaccct	ctttgagaac	ctgtgggcct	cggtctatgg	cagccgcaag	2940
acgctgtttg	tgctggccca	cacggaccgg	gtcagtggtc	tcttgcgcgc	cagcttcctg	3000
ctggcccagc	agcgcctgct	ggaggaccgc	aaggacgtcg	tggtgctggt	gatcctgagc	3060
cctgacggcc	geegeteeeg	ctacgtgcgg	ctgcgccagc	gcctctgccg	ccagagtgtc	3120
ctcctctggc	cccaccagcc	cagtggtcag	cgcagcttct	gggcccagct	gggcatggcc	3180
ctgaccaggg	acaaccacca	cttctataac	cggaacttct	gccagggacc	cacggccgaa	3240
tagccgtgag	ccggaatcct	gcacggtgcc	acctccacac	tcacctcacc	tetgeetgee	3300
tggtctgacc	ctcccctgct	cgcctccctc	accccacacc	tgacacagag	ca	3352

<211> 3257

<212> DNA

<213> Homo sapiens

<400> 61

cegetgetge cectgtggga agggaceteg agtgtgaage atcettecet gtagetgetg 60
tecagtetge cegecagace etetggagaa geecetgeee eccageatgg gtttetgeeg 120
cagegeeetg caccegetgt etetectggt geaggeeate atgetggeea tgaccetgge 180
cetgggtace ttgeetgeet tectaceetg tgageteeag ecceaeggee tggtgaactg 240
caactggetg tteetgaagt etgtgeeea etteteeatg geageaceee gtggeaatgt 300
caccageett teettgteet ecaaeegeat ecaeeacete catgattetg actttgeeea 360

cctgcccagc catgcacttc	ctgcggcatc ccctgccaca	tcaacctcaa tgaccatcga	gtggaactgc gcccagcacc	ccgccggttg ttcttggctg	gcctcagccc tgcccaccct	420 480
ggaagagcta	aacctgagct	acaacaacat	catgactgtg	cctgcgctgc	ccaaatccct	540
catatccctg	teceteagee	ataccaacat	cctgatgcta	gactctgcca	gcctcgccgg	600
cctgcatgcc	ctgcgcttcc	tattcatgga	cggcaactgt	tattacaaga	acccctgcag	660
gcaggcactg	gaggtggccc	cgggtgccct	ccttggcctg	ggcaacctca	cccacctgtc	720
actcaagtac	aacaacctca	ctgtggtgcc	ccgcaacctg	ccttccagcc	tggagtatct	780
gctgttgtcc	tacaaccgca	tcgtcaaact	ggcgcctgag	gacctggcca	atctgaccgc	840
cctgcgtgtg	ctcgatgtgg	gcggaaattg	ccgccgctgc	gaccacgctc	ccaacccctg	900
catggagtgc	cctcgtcact	tcccccagct	acatcccgat	accttcagcc	acctgagccg	960
tcttgaaggc	ctggtgttga	aggacagttc	teteteetgg	ctgaatgcca	gttggttccg	1020
tgggctggga	aacctccgag	tgctggacct	gagtgagaac	ttcctctaca	aatgcatcac	1080
taaaaccaag	gccttccagg	gcctaacaca	gctgcgcaag	cttaacctgt	ccttcaatta	1140
ccaaaagagg	gtgtcctttg	cccacctgtc	tctggcccct	tccttcggga	gcctggtcgc	1200
cctgaaggag	ctggacatgc	acggcatctt	cttccgctca	ctcgatgaga	ccacgctccg	1260
gccactggcc	cgcctgccca	tgctccagac	tctgcgtctg	cagatgaact	tcatcaacca	1320
ggcccagctc	ggcatcttca	gggccttccc	tggcctgcgc	tacgtggacc	tgtcggacaa	1380
ccgcatcagc	ggagcttcgg	agctgacagc	caccatgggg	gaggcagatg	gaggggagaa	1440
ggtctggctg	cagcctgggg	accttgctcc	ggccccagtg	gacactccca	gctctgaaga	1500
cttcaggccc	aactgcagca	ccctcaactt	caccttggat	ctgtcacgga	acaacctggt	1560
gaccgtgcag	ccggagatgt	ttgcccagct	ctcgcacctg	cagtgcctgc	gcctgagcca.	1620
caactgcatc	tcgcaggcag	tcaatggctc	ccagttcctg	ccgctgaccg	gtctgcaggt	1680
gctagacctg	tcccacaata	agctggacct	ctaccacgag	cactcattca	cggagctacc	1740
acgactggag	gccctggacc	tcagctacaa	cagccagccc	tttggcatgc	agggcgtggg	1800
ccacaacttc	agcttcgtgg	ctcacctgcg	caccctgcgc	cacctcagcc	tggcccacaa	1860
caacatccac	agccaagtgt	cccagcagct	ctgcagtacg	tcgctgcggg	ccctggactt	1920
cagcggcaat	gcactgggcc	atatgtgggc	cgagggagac	ctctatctgc	acttcttcca	1980
aggcctgagc	ggtttgatct	ggctggactt	gtcccagaac	cgcctgcaca	ccctcctgcc	2040
ccaaaccctg	cgcaacctcc	ccaagagcct	acaggtgctg	cgtctccgtg	acaattacct	2100
ggccttcttt	aagtggtgga	gcctccactt	cctgcccaaa	ctggaagtcc	tcgacctggc	2160
aggaaaccag	ctgaaggccc	tgaccaatgg	cagcctgcct	gctggcaccc	ggctccggag	2220
gctggatgtc	agctgcaaca	gcatcagctt	cgtggccccc	ggcttctttt	ccaaggccaa	2280

ggagetgega	gagetcaace	ttagcgccaa	cgccctcaag	acagtggacc	actcctggtt	2340
tgggcccctg	gcgagtgccc	tgcaaatact	agatgtaagc	gccaaccctc	tgcactgcgc	2400
ctgtggggcg	gcctttatgg	acttcctgct	ggaggtgcag	gctgccgtgc	ccggtctgcc	2460
cagccgggtg	aagtgtggca	gtccgggcca	gctccagggc	ctcagcatct	ttgcacagga	2520
cctgcgcctc	tgcctggatg	aggccctctc	ctgggactgt	ttcgccctct	cgctgctggc	2580
tgtggctctg	ggcctgggtg	tgcccatgct	gcatcacctc	tgtggctggg	acctctggta	2640
ctgcttccac	ctgtgcctgg	cctggcttcc	ctggcggggg	cggcaaagtg	ggcgagatga	2700
ggatgccctg	ccctacgatg	ccttcgtggt	cttcgacaaa	acgcagagcg	cagtggcaga	2760
ctgggtgtac	aacgagcttc	gggggcagct	ggaggagtgc	cgtgggcgct	gggcactccg	2820
cctgtgcctg	gaggaacgcg	actggctgcc	tggcaaaacc	ctctttgaga	acctgtgggc	2880
ctcggtctat	ggcagccgca	agacgctgtt	tgtgctggcc	cacacggacc	gggtcagtgg	2940
tctcttgcgc	gccagcttcc	tgctggccca	gcagcgcctg	ctggaggacc	gcaaggacgt	3000
cgtggtgctg	gtgatcctga	gccctgacgg	ccgccgctcc	cgctacgtgc	ggctgcgcca	3060
gcgcctctgc	cgccagagtg	tectectetg	gccccaccag	cccagtggtc	agcgcagctt	3120
ctgggcccag	ctgggcatgg	ccctgaccag	ggacaaccac	cacttctata	accggaactt	3180
ctgccaggga	cccacggccg	aatagccgtg	agccggaatc	ctgcacggtg	ccacctccac	3240
actcacctca	cctctgc					3257

<210> 62 <211> 1032 <212> PRT

<213> Homo sapiens

<400> 62

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 25

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met

100 105 Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu 120 Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro 185 Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr 200 Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 250 Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe 260 Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly 280 Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe 295 Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu 310 315 Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu 330 Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Glu Lys Val Trp Leu

WO 2004/094671 - 149 - PCT/US2004/012788

Gln	Pro	435 Glv	Asp	Leu	Ala	Pro	440 Ala	Pro	Val	asp	Thr	445 Pro	Ser	Ser	Glu
	450	Cly	1105			455			, 41		460			,	
Asp 465	Phe	Arg	Pro	Asn	Сув 470	Ser	Thr	Leu	Asn	Phe 475	Thr	Leu	Asp	Leu	Ser 480
Arg	Asn	Asn	Leu	Val 485	Thr	Val	Gln	Pro	Glu 490	Met	Phe	Ala	Gln	Leu 495	Ser
His	Leu	Gln	Cys 500	Leu	Arg	Leu	Ser	His 505	Asn	Cys	Ile	Ser	Gln 510	Ala	Val
Asn	Gly	Ser 515	Gln	Phe	Leu	Pro	Leu 520	Thr	Gly	Leu	Gln	Val 525	Leu	Asp	Leu
Ser	Arg 530	Asn	Lys	Leu	Asp	Leu 535	Tyr	His	Glu	His	Ser 540	Phe	Thr	Glu	Leu
Pro 545	Arg	Leu	Glu	Ala	Leu 550	Asp	Leu	Ser	Tyr	Asn 555	Ser	Gln	Pro	Phe	Gly 560
Met	Gln	Gly	Val	Gly 565	His	Asn	Phe	Ser	Phe 570	Val	Ala	His	Leu	Arg 575	Thr
Leu	Arg	His	Leu 580	Ser	Leu	Ala	His	Asn 585	Asn	Ile	His	Ser	Gln 590	Val	Ser
Gln	Gln	Leu 595	Сув	Ser	Thr	Ser	Leu 600	Arg	Ala	Leu	Asp	Phe 605	Ser	Gly	Asn
Ala	Leu 610	Gly	His	Met	Trp	Ala 615	Glu	Gly	Asp	Leu	Tyr 620	Leu	His	Phe	Phe
Gln 625	Gly	Leu	Ser	Gly	Leu 630	Ile	Trp	Leu	Asp	Leu 635	Ser	Gln	Asn	Arg	Leu 640
His	Thr	Leu	Leu	Pro 645	Gln	Thr	Leu	Arg	Asn 650	Leu	Pro	Lys	Ser	Leu 655	Gln
Val	Leu	Arg	Leu 660	Arg	Asp	Asn	Tyr	Leu 665	Ala	Phe	Phe	Lys	Trp 670	Trp	Ser
Leu	His	Phe 675	Leu	Pro	Lys	Leu	Glu 680	Val	Leu	Asp	Leu	Ala 685		Asn	Arg
Leu	Lys 690	Ala	Leu	Thr	Asn	Gly 695	Ser	Leu	Pro	Ala	Gly 700	Thr	Arg	Leu	Arg
Arg 705	Leu	Asp	Val	Ser	Cys 710	Asn	Ser	Ile	Ser	Phe 715		Ala	Pro	Gly	Phe 720
Phe	Ser	Lys	Ala	Lys 725	Glu	Leu	Arg	Glu	Leu 730		Leu	Ser	Ala	Asn 735	
Leu	Lys	Thr	Val 740	Asp	His	Ser	Trp	Phe 745	Gly	Pro	Leu	Ala	Ser 750	Ala	Leu
Gln	Ile	Leu 755	Asp	Val	Ser	Ala	Asn 760	Pro	Leu	His	Cys	Ala 765		Gly	Ala
77.	Dho	Mot	7 an	Πho	T 011	T 011	C1.,	Wa T	Cln	אן א	77-	17.7	Dro	Gl v	T.011

775 780 Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln 865 870 Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu 890 Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 935 Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 950 955 Asp Arg Lys Asp Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln 1000 Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1015 1020 Asn Phe Cys Gln Gly Pro Thr Ala Glu 1025 1030

<210> 63

<211> 1032

<212> PRT

<213> Homo sapiens

<400> 63

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln 1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 . 30

WO 2004/094671 - 151 - PCT/US2004/012788

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn 55 Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met 105 Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu 120 Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser 135 Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser 150 Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu 230 235 Ala Asn. Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu 310 315 Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu

WO 2004/094671 - 152 - PCT/US2004/012788

355 360 365 Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu 375 Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met 385 390 Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu 420 425 Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu 455 Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser 490 His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val 505 Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu 535 Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly 550 555 Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr 570 Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu 635 His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser 660 665 Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln 680 Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg

695 700 Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe 710 715 Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser 795 Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp 810 Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp 905 Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr 920 Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 935 Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 955 Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 985

Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln 995 1000 1005

Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1010 1015 1020

Asn Phe Cys Gln Gly Pro Thr Ala Glu

1030 1025

<210> 64 <211> 333 <212> PRT <213> Homo sapiens

<400> 64

Met Pro Met Lys Trp Ser Gly Trp Arg Trp Ser Trp Gly Pro Ala Thr 5

His Thr Ala Leu Pro Pro Pro Gln Gly Phe Cys Arg Ser Ala Leu His

Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu Ala 40

Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His Gly

Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe Ser

Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser Asn 90

Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser Leu

Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser Pro

Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu Ala 135

Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met Thr 150 155

Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His Thr 165 170

Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala Leu

Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg

Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu

Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn

Leu Pro Ser Ser Leu Glu Tyr Leu Leu Leu Ser Tyr Asn Arg Ile Val

Lys Leu Ala Pro Glu Asp Leu Ala Asn Leu Thr Ala Leu Arg Val Leu

Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys 280

Met Glu Cys Pro Arg His Phe Pro Gln Leu His Pro Asp Thr Phe Ser 290 295 300

His Leu Ser Arg Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu Ser 305 310 315

Trp Leu Asn Ala Ser Trp Phe Arg Gly Leu Gly Asn Leu 325 330

<210> 65

<211> 216

<212> PRT

<213> Homo sapiens

<400> 65

Met Leu Tyr Ser Ser Cys Lys Ser Arg Leu Leu Asp Ser Val Glu Gln 1 5 10 15

Asp Phe His Leu Glu Ile Ala Lys Lys Gly Phe Cys Arg Ser Ala Leu 20 25 30

His Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu 35 40 45

Ala Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His 50 55 60

Gly Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe 65 70 75 80

Ser Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser 85 90 95

Asn Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser 100 105 110

Leu Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser 115 120 125

Pro Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu 130 135 140

Ala Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met 145 150 155 160

Thr Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His 165 170 175

Thr Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala 180 185 190

Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys 195 200 205

Arg Gln Ala Leu Glu Val Ala Pro 210 215

- 156 -WO 2004/094671 PCT/US2004/012788

<211> 117

<212> PRT

<213> Homo sapiens

<400> 66

Met Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala

Phe Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp

Leu Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly 40

Asn Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His

Asp Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys 75

Trp Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His

Met Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu 105

Leu Asn Leu Ser Tyr 115

<210> 67

<211> 1032 <212> PRT <213> Homo sapiens

<400> 67

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln 10

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met

Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu

WO 2004/094671 - 157 - PCT/US2004/012788

Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser 135 Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser 150 Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly 170 Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu 230 235 Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 250 245 Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe 295 Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala 345 His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu 360 Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly 410 Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Glu Lys Val Trp Leu Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu

WO 2004/094671 - 158 - PCT/US2004/012788

Asp 465	450 Phe	Arg	Pro	Asn	Cys 470	455 Ser	Thr	Leu	Asn	Phe 475	460 Thr	Leu	Asp	Leu	Ser 480
Arg	Asn	Asn	Leu	Val 485	Thr	Val	Gln	Pro	Glu 490	Met	Phe	Ala	Gln	Leu 495	Ser
His	Leu	Gln	Cys 500	Leu	Arg	Leu	Ser	His 505	Asn	Cys	Ile	Ser	Gln 510	Ala	Val
Asn	Gly	Ser 515	Gln	Phe	Leu	Pro	Leu 520	Thr	Gly	Leu	Gln	Val 525	Leu	Asp	Leu
Ser	His 530	Asn	ГÀЗ	Leu	Asp	Leu 535	Tyr	His	Glu	His	Ser 540	Phe	Thr	Glu	Leu
Pro 545	Arg	Leu	Glu	Ala	Leu 550	Asp	Leu	Ser	Tyr	Asn 555	Ser	Gln	Pro	Phe	Gly 560
Met	Gln	Gly	Val	Gly 565	His	Asn	Phe	Ser	Phe 570	Val	Ala	His	Leu	Arg 575	Thr
Leu	Arg	His	Leu 580	Ser	Leu	Ala	His	Asn 585	Asn	Ile	His	Ser	Gln 590	Val	Ser
Gln	Gln	Leu 595	Cys	Ser	Thr	Ser	Leu 600	Arg	Ala	Leu	Asp	Phe 605	Ser	Gly	Asn
Ala	Leu 610	Gly	His	Met	Trp	Ala 615	Glu	Gly	Asp	Leu	Tyr 620	Leu	His	Phe	Phe
Gln 625	Gly	Leu	Ser	Gly	Leu 630	Ile	Trp	Leu	Asp	Leu 635	Ser	Gln	Asn	Arg	Leu 640
His	Thr	Leu	Leu	Pro 645	Gln	Thr	Leu	Arg	Asn 650	Leu	Pro	Lys	Ser	Leu 655	Gln
Val	Leu	Arg	Leu 660	Arg	Asp	Asn	Tyr	Leu 665	Ala	Phe	Phe	Lys	Trp 670	Trp	Ser
Leu	His	Phe 675	Leu	Pro	Lys	Leu	Glu 680	Val	Leu	Asp	Leu	Ala 685	Gly	Asn	Gln
Leu	Lys 690	Ala	Leu	Thr	Asn	Gly 695	Ser	Leu	Pro	Ala	Gly 700	Thr	Arg	Leu	Arg
Arg 705		Asp	Val	Ser	Сув 710	Asn	Ser	Ile	Ser	Phe 715	Val	Ala	Pro	Gly	Phe 720
Phe	Ser	Lys	Ala	Lys 725	Glu	Leu	Arg	Glu	Leu 730		Leu	Ser	Ala	Asn 735	
Leu	Lys	Thr	Val 740	_	His	Ser	Trp	Phe 745	Gly	Pro	Leu	Ala	Ser 750		Leu
Gln	Ile	Ьеи 755		Val	Ser	Ala	Asn 760		Leu	His	Суѕ	Ala 765		Gly	Ala
Ala	Phe 770		Asp	Phe	Leu	Leu 775		Val	Gln	Ala	Ala 780		Pro	Gly	Leu
Pro	Ser	Arg	Val	Lys	Gàa	Gly	Ser	Pro	Gly	Gln	Leu	Gln	Gly	Leu	Ser

800 790 795 Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp 805 810 Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val 825 Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His 840 Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln 875 Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp 905 Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr 920 Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 935 Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys Asp Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1010 1015 1020 Asn Phe Cys Gln Gly Pro Thr Ala Glu 1025 <210> 68 <211> 3200 <212> DNA <213> murine <400> 68 60 tgtcagaggg agcctcggga gaatcctcca tctcccaaca tggttctccg tcgaaggact ctgcacccct tgtccctcct ggtacaggct gcagtgctgg ctgagactct ggccctgggt 120 180 accetgactg cettectace etgtgagetg aagceteatg geetggtgga etgeaattgg ctgttcctga agtctgtacc ccgtttctct gcggcagcat cctgctccaa catcacccgc 240 ctctccttga tctccaaccg tatccaccac ctgcacaact ccgacttcgt ccacctgtcc 300

aacctgcggc	agctgaacct	caagtggaac	tgtccaccca	ctggccttag	cccctgcac	360
ttctcttgcc	acatgaccat	tgagcccaga	accttcctgg	ctatgcgtac	actggaggag	420
ctgaacctga	gctataatgg	tatcaccact	gtgccccgac	tgcccagctc	cctggtgaat	480
ctgagcctga	gccacaccaa	catcctggtt	ctagatgcta	acagcctcgc	cggcctatac	540
agcctgcgcg	ttctcttcat	ggacgggaac	tgctactaca	agaacccctg	cacaggagcg	600
gtgaaggtga	ccccaggcgc	cctcctgggc	ctgagcaatc	tcacccatct	gtctctgaag	660
tataacaacc	tcacaaaggt	gccccgccaa	ctgccccca	gcctggagta	cctcctggtg	720
tcctataacc	tcattgtcaa	gctggggcct	gaagacctgg	ccaatctgac	ctcccttcga	780
gtacttgatg	tgggtgggaa	ttgccgtcgc	tgcgaccatg	ccccaatcc	ctgtatagaa	840
tgtggccaaa	agtccctcca	cctgcaccct	gagaccttcc	atcacctgag	ccatctggaa	900
ggcctggtgc	tgaaggacag	ctctctccat	acactgaact	cttcctggtt	ccaaggtctg	960
gtcaacctct	cggtgctgga	cctaagcgag	aactttctct	atgaaagcat	caaccacacc	1020
aatgcctttc	agaacctaac	ccgcctgcgc	aagctcaacc	tgtccttcaa	ttaccgcaag	1080
aaggtatcct	ttgcccgcct	ccacctggca	agttccttca	agaacctggt	gtcactgcag	1140
gagctgaaca	tgaacggcat	cttcttccgc	tcgctcaaca	agtacacgct	cagatggctg	1200
gccgatctgc	ccaaactcca	cactctgcat	cttcaaatga	acttcatcaa	ccaggcacag	1260
ctcagcatct	ttggtacctt	ccgagccctt	cgctttgtgg	acttgtcaga	caatcgcatc	1320
agtgggcctt	caacgctgtc	agaagccacc	cctgaagagg	cagatgatgc	agagcaggag	1380
gagctgttgt	ctgcggatcc	tcacccagct	ccactgagca	cccctgcttc	taagaacttc	1440
atggacaggt	gtaagaactt	caagttcacc	atggacctgt	ctcggaacaa	cctggtgact	1500
atcaagccag	agatgtttgt	caatctctca	cgcctccagt	gtcttagcct	gagccacaac	1560
tccattgcac	aggctgtcaa	tggctctcag	ttcctgccgc	tgactaatct	gcaggtgctg	1620
gacctgtccc	ataacaaact	ggacttgtac	cactggaaat	cgttcagtga	gctaccacag	1680
ttgcaggccc	tggacctgag	ctacaacagc	cagcccttta	gcatgaaggg	tataggccac	1740
aatttcagtt	ttgtggccca	tctgtccatg	ctacacagcc	ttagcctggc	acacaatgac	1800
attcataccc	gtgtgtcctc	acatctcaac	agcaactcag	tgaggtttct	tgacttcagc	1860
ggcaacggta	tgggccgcat	gtgggatgag	gggggccttt	atctccattt	cttccaaggc	1920
ctgagtggcc	tgctgaagct	ggacctgtct	caaaataacc	tgcatatcct	ccggccccag	1980
aaccttgaca	acctccccaa	gagcctgaag	ctgctgagcc	tccgagacaa	ctacctatct	2040
ttctttaact	ggaccagtct	gtccttcctg	cccaacctgg	aagtcctaga	cctggcaggc	2100
aaccagctaa	aggccctgac	caatggcacc	ctgcctaatg	gcaccctcct	ccagaaactg	2160

gatgtcagca	gcaacagtat	cgtctctgtg	gtcccagcct	tcttcgctct	ggcggtcgag	2220
ctgaaagagg	tcaacctcag	ccacaacatt	ctcaagacgg	tggatcgctc	ctggtttggg	2280
cccattgtga	tgaacctgac	agttctagac	gtgagaagca	accctctgca	ctgtgcctgt	2340
ggggcagcct	tcgtagactt	actgttggag	gtgcagacca	aggtgcctgg	cctggctaat	2400
ggtgtgaagt	gtggcagccc	cggccagctg	cagggccgta	gcatcttcgc	acaggacctg	2460
cggctgtgcc	tggatgaggt	cctctcttgg	gactgctttg	gcctttcact	cttggctgtg	2520
gccgtgggca	tggtggtgcc	tatactgcac	catctctgcg	gctgggacgt	ctggtactgt	2580
tttcatctgt	gcctggcatg	gctacctttg	ctggcccgca	gccgacgcag	cgcccaagct	2640
ctcccctatg	atgccttcgt	ggtgttcgat	aaggcacaga	gcgcagttgc	ggactgggtg	2700
tataacgagc	tgcgggtgcg	gctggaggag	cggcgcggtc	gccgagccct	acgcttgtgt	2760
ctggaggacc	gagattggct	gcctggccag	acgctcttcg	agaacctctg	ggcttccatc	2820
tatgggagcc	gcaagactct	atttgtgctg	gcccacacgg	accgcgtcag	tggcctcctg	2880
cgcaccagct	tectgetgge	tcagcagcgc	ctgttggaag	accgcaagga	cgtggtggtg	2940
ttggtgatcc	tgcgtccgga	tgcccaccgc	tecegetatg	tgcgactgcg	ccagcgtctc	3000
tgccgccaga	gtgtgctctt	ctggccccag	cagcccaacg	ggcagggggg	cttctgggcc	3060
cagctgagta	cagccctgac	tagggacaac	cgccacttct	ataaccagaa	cttctgccgg	3120
ggacctacag	cagaatagct	cagagcaaca	gctggaaaca	gctgcatctt	catgcctggt	3180
tcccgagttg	ctctgcctgc					3200

<211> 3471 <212> DNA

<213> murine

tgaaagtgtc acttcctcaa ttctctgaga gaccctggtg tggaacatca ttctctgccg 60 cccagtttgt cagagggagc ctcgggagaa tcctccatct cccaacatgg ttctccgtcg 120 aaggactetg cacceettgt ceeteetggt acaggetgea gtgetggetg agaetetgge 240 cctgggtacc ctgcctgcct tcctaccctg tgagctgaag cctcatggcc tggtggactg caattggctg ttcctgaagt ctgtaccccg tttctctgcg gcagcatcct gctccaacat 300 caccegeete teettgatet ccaacegtat ccaccacetg cacaacteeg acttegteca 360 cctgtccaac ctgcggcagc tgaacctcaa gtggaactgt ccacccactg gccttagccc 420 480 cctgcacttc tcttgccaca tgaccattga gcccagaacc ttcctggcta tgcgtacact ggaggagetg aacctgaget ataatggtat caccactgtg ccccgactgc ccagetccct 540

ggtgaatctg cctatacagc	agcctgagcc ctgcgcgttc	acaccaacat tcttcatgga	cctggttcta cgggaactgc	gatgctaaca tactacaaga	gcctcgccgg acccctgcac	600 660
aggagcggtg	aaggtgaccc	caggcgccct	cctgggcctg	agcaatctca	cccatctgtc	720
tctgaagtat	aacaacctca	caaaggtgcc	ccgccaactg	cccccagcc	tggagtacct	780
cctggtgtcc	tataacctca	ttgtcaagct	ggggcctgaa	gacctggcca	atctgacctc	840
ccttcgagta	cttgatgtgg	gtgggaattg	ccgtcgctgc	gaccatgccc	ccaatccctg	900
tatagaatgt	ggccaaaagt	ccctccacct	gcaccctgag	accttccatc	acctgagcca	960
tctggaaggc	ctggtgctga	aggacagctc	tctccataca	ctgaactctt	cctggttcca	1020
aggtctggtc	aacctctcgg	tgctggacct	aagcgagaac	tttctctatg	aaagcatcaa	1080
ccacaccaat	gcctttcaga	acctaacccg	cctgcgcaag	ctcaacctgt	ccttcaatta	1140
ccgcaagaag	gtatcctttg	cccgcctcca	cctggcaagt	tccttcaaga	acctggtgtc	1200
actgcaggag	ctgaacatga	acggcatctt	cttccgctcg	ctcaacaagt	acacgctcag	1260
atggctggcc	gatctgccca	aactccacac	tctgcatctt	caaatgaact	tcatcaacca	1320
ggcacagete	agcatctttg	gtaccttccg	agcccttcgc	tttgtggact	tgtcagacaa	1380
tcgcatcagt	gggccttcaa	cgctgtcaga	agccacccct	gaagaggcag	atgatgcaga	1440
gcaggaggag	ctgttgtctg	cggatcctca	cccagctcca	ctgagcaccc	ctgcttctaa	1500
gaacttcatg	gacaggtgta	agaacttcaa	gttcaccatg	gacctgtctc	ggaacaacct	1560
ggtgactatc	aagccagaga	tgtttgtcaa	tctctcacgc	ctccagtgtc	ttagcctgag	1620
ccacaactcc	attgcacagg	ctgtcaatgg	ctctcagttc	ctgccgctga	ctaatctgca	1680
ggtgctggac	ctgtcccata	acaaactgga	cttgtaccac	tggaaatcgt	tcagtgagct	1740
accacagttg	caggccctgg	acctgagcta	caacagccag	ccctttagca	tgaagggtat	1800
aggccacaat	ttcagttttg	tgacccatct	gtccatgcta	cagagcctta	gcctggcaca	1860
caatgacatt	catacccgtg	tgtcctcaca	tctcaacagc	aactcagtga	ggtttcttga	1920
cttcagcggc	aacggtatgg	gccgcatgtg	ggatgagggg	ggcctttatc	tccatttctt	1980
ccaaggcctg	agtggcctgc	tgaagctgga	cctgtctcaa	aataacctgc	atatcctccg	2040
gccccagaac	cttgacaacc	tccccaagag	cctgaagctg	ctgagcctcc	gagacaacta	2100
cctatctttc	tttaactgga	ccagtctgtc	cttcctaccc	aacctggaag	tcctagacct	2160
ggcaggcaac	cagctaaagg	ccctgaccaa	tggcaccctg	cctaatggca	ccctcctcca	2220
gaaactcgat	gtcagtagca	acagtatcgt	ctctgtggtc	ccagccttct	tcgctctggc	2280
ggtcgagctg	aaagaggtca	acctcagcca	caacattctc	aagacggtgg	atcgctcctg	2340
gtttgggccc	attgtgatga	acctgacagt	tctagacgtg	agaagcaacc	ctctgcactg	2400
tgcctgtggg	gcagccttcg	tagacttact	gttggaggtg	cagaccaagg	tgcctggcct	2460

ggctaatggt	gtgaagtgtg	gcagccccgg	ccagctgcag	ggccgtagca	tcttcgcgca	2520
ggacctgcgg	ctgtgcctgg	atgaggtcct	ctcttgggac	tgctttggcc	tttcactctt	2580
ggctgtggcc	gtgggcatgg	tggtgcctat	actgcaccat	ctctgcggct	gggacgtctg	2640
gtactgtttt	catctgtgcc	tggcatggct	acctttgctg	gcccgcagcc	gacgcagcgc	2700
ccaaactctc	ccttatgatg	ccttcgtggt	gttcgataag	gcacagagcg	cagttgccga	2760
ctgggtgtat	aacgagctgc	gggtgcggct	ggaggagcgg	cgcggtcgcc	gagccctacg	2820
cttgtgtctg	gaggaccgag	attggctgcc	tggccagacg	ctcttcgaga	acctctgggc	2880
ttccatctat	gggagccgca	agactctatt	tgtgctggcc	cacacggacc	gcgtcagtgg	2940
cctcctgcgc	accagettee	tgctggctca	gcagcgcctg	ttggaagacc	gcaaggacgt	3000
ggtggtgttg	gtgatcctgc	gtccggatgc	ccaccgctcc	cgctatgtgc	gactgcgcca	3060
gcgtctctgc	cgccagagtg	tgctcttctg	gccccagcag	cccaacgggc	aggggggctt	3120
ctgggcccag	ctgagtacag	ccctgactag	ggacaaccgc	cacttctata	accagaactt	3180
ctgccgggga	cctacagcag	aatagctcag	agcaacagct	ggaaacagct	gcatcttcat	3240
gcctggttcc	cgagttgctc	tgcctgcctt	gctctgtctt	actacaccgc	tatttggcaa	3300
gtgcgcaata	tatgctacca	agccaccagg	cccacggagc	aaaggttggc	agtaaagggt	3360
agțtttcttc	ccatgcatct	ttcaggagag	tgaagataga	caccagaccc	acacagaaca	3420
ggactggagt	tcattctctg	cccctccacc	ccactttgcc	tgtctctgta	t	3471

<211> 3340

<212> DNA

<213> murine

<400> 70

tetetgagag accetggtgt ggaacateat tetetgeege ceagtttgte agagggagee 60 tegggagaat cetecatete ecaacatggt teteegtega aggaetetge acceettgte 120 cctcctggta caggctgcag tgctggctga gactctggcc ctgggtaccc tgcctgcctt 180 cctaccctgt gagctgaagc ctcatggcct ggtggactgc aattggctgt tcctgaagtc 240 300 tgtaccccgt ttctctgcgg cagcatcctg ctccaacatc acccgcctct ccttgatctc caaccgtatc caccacctgc acaactccga cttcgtccac ctgtccaacc tgcggcagct gaacctcaag tggaactgtc cacccactgg ccttagcccc ctgcacttct cttgccacat 420 gaccattgag cccagaacct tcctggctat gcgtacactg gaggagctga acctgagcta 480 taatggtatc accactgtgc cccgactgcc cagctccctg gtgaatctga gcctgagcca 540 caccaacatc ctggttctag atgctaacag cctcgccggc ctatacagcc tgcgcgttct 600

	gggaactgct ctgggcctga					660 720
aaaggtgccc	cgccaactgc	ccccagcct	ggagtacctc	ctggtgtcct	ataacctcat	780
tgtcaagctg	gggcctgaag	acctggccaa	tctgacctcc	cttcgagtac	ttgatgtggg	840
tgggaattgc	cgtcgctgcg	accatgcccc	caatccctgt	atagaatgtg	gccaaaagtc	900
cctccacctg	caccctgaga	ccttccatca	cctgagccat	ctggaaggcc	tggtgctgaa	960
ggacagctct	ctccatacac	tgaactcttc	ctggttccaa	ggtctggtca	acctctcggt	1020
gctggaccta	agcgagaact	ttctctatga	aagcatcaac	cacaccaatg	cctttcagaa	1080
cctaacccgc	ctgcgcaagc	tcaacctgtc	cttcaattac	cgcaagaagg	tatcctttgc	1140
ccgcctccac	ctggcaagtt	ccttcaagaa	cctggtgtca	ctgcaggagc	tgaacatgaa	1200
cggcatcttc	ttccgctcgc	tcaacaagta	cacgctcaga	tggctggccg	atctgcccaa	1260
actccacact	ctgcatcttc	aaatgaactt	catcaaccag	gcacagctca	gcatctttgg	1320
taccttccga	gcccttcgct	ttgtggactt	gtcagacaat	cgcatcagtg	ggccttcaac	1380
gctgtcagaa	gccacccctg	aagaggcaga	tgatgcagag	caggaggagc	tgttgtctgc	1440
ggatcctcac	ccagctccac	tgagcacccc	tgcttctaag	aacttcatgg	acaggtgtaa	1500
gaacttcaag	ttcaccatgg	acctgtctcg	gaacaacctg	gtgactatca	agccagagat	1560 '.
gtttgtcaat	ctctcacgcc	tccagtgtct	tagcctgagc	cacaactcca	ttgcacaggc	1620
tgtcaatggc	tctcagttcc	tgccgctgac	taatctgcag	gtgctggacc	tgtcccataa	1680
caaactggac	ttgtaccact	ggaaatcgtt	cagtgagcta	ccacagttgc	aggccctgga	1740
cctgggctac	aacagccagc	cctttagcat	aaagggtata	ggccacaatt	tcagttttgt	1800
ggcccatctg	tccatgctac	acagccttag	cctggcacac	aatgacattc	atacccgtgt	1860
gtcctcacat	ctcaacagca	actcagtgag	gtttcttgac	ttcagcggca	acggtatggg	1920
ccgcatgtgg	gatgaggggg	gcctttatct	ccatttcttc	caaggcctga	gtggcctgct	1980
gaagctggac	ctgtctcaaa	ataacctgca	tatcctccgg	ccccagaacc	ttgacaacct	2040
ccccaagagc	ctgaagctgc	tgagcctccg	agacaactac	ctatctttct	ttaactggac	2100
cagtctgtcc	ttcctgccca	acctggaagt	cctagacctg	gcaggcaacc	agctaaaggc	2160
cctgaccaat	ggcaccctgc	ctaatggcac	cctcctccag	aaactggatg	tcagcagcaa	2220
cagtatcgtc	tctgtggtcc	cagccttctt	cgctctggcg	gtcgagctga	aagaggtcaa	2280
cctcagccac	aacattctca	agacggtgga	tcgctcctgg	tttgggccca	ttgtgatgaa	2340
cctgacagtt	ctagacgtga	gaagcaaccc	tctgcactgt	gcctgtgggg	cagccttcgt	2400
agacttactg	ttggaggtgc	agaccaaggt	gcctggcctg	gctaatggtg	tgaagtgtgg	2460
cagccccggc	cagctgcagg	gccgtagcat	cttcgcacag	gacctgcggc	tgtgcctgga	2520

tgaggtcctc	tcttgggact	gctttggcct	ttcactcttg	gctgtggccg	tgggcatggt	2580
ggtgcctata	ctgcaccatc	tctgcggctg	ggacgtctgg	tactgttttc	atctgtgcct	2640
ggcatggcta	cctttgctgg	cccgcagccg	acgcagcgcc	caagctctcc	cctatgatgc	2700
cttcgtggtg	ttcgataagg	cacagagcgc	agttgcggac	tgggtgtata	acgagctgcg	2760
ggtgcggctg	gaggggcggc	gcggtcgccg	agccctacgc	ttgtgtctgg	aggaccgaga	2820
ttggctgcct	ggccagacgc	tcttcgagaa	cctctgggct	tccatctatg	ggagccgcaa	2880
gactctattt	gtgctggccc	acacggaccg	cgtcagtggc	ctcctgcgca	ccagcttcct	2940
gctggctcag	cagcgcctgt	tggaagaccg	caaggacgtg	gtggtgttgg	tgatcctgcg	3000
teeggatgee	caccgctccc	gctatgtgcg	actgcgccag	cgtctctgcc	gccagagtgt	3060
gctcttttgg	ccccagcagc	ccaacgggca	ggggggcttc	tgggcccagc	tgagtacagc	3120
cctgactagg	gacaaccgcc	acttctataa	ccagaacttc	tgccggggac	ctacagcaga	3180
atagctcaga	gcaacagctg	gaaacagctg	catcttcatg	cctggttccc	gagttgctct	3240
gcctgccttg	ctctgtctta	ctacaccgct	atttggcaag	tgcgcaatat	atgctaccaa	3300
gccaccgggc	ccacggagca	aaggttggct	gtaaagggta			3340

<211> 3471

<212> DNA

<213> murine

<400> 71

tgaaagtgtc acttcctcaa ttctctgaga gaccctggtg tggaacatca ttctctgccg 60 cccagtttgt cagagggagc ctcgggagaa tcctccatct cccaacatgg ttctccgtcg 120 aaggactotg caccecttgt coctectggt acaggetgca gtgctggctg agactetgge 180 cctgggtacc ctgcctgcct tcctaccctg tgagctgaag cctcatggcc tggtggactg 240 caattggetg ttcctgaagt ctgtaccccg tttctctgcg gcagcatcct gctccaacat 300 caccegcete teettgatet ccaacegtat ccaecacetg cacaacteeg acttegteca 360 cctgtccaac ctgcggcagc tgaacctcaa gtggaactgt ccacccactg gccttagccc 420 cctgcacttc tcttgccaca tgaccattga gcccagaacc ttcctggcta tgcgtacact 480 ggaggagetg aacetgaget ataatggtat caccactgtg ccccgactge ccageteect 540 ggtgaatetg agcetgagee acaceaacat cetggtteta gatgetaaca geetegeegg 600 cctatacagc ctgcgcgttc tcttcatgga cgggaactgc tactacaaga acccctgcac 660 aggageggtg aaggtgacce caggegeect cetgggeetg agcaatetea cecatetgte 720 tetgaagtat aacaacetea caaaggtgee eegecaactg eececeagee tggagtaeet 780

cctggtgtcc tataacctca ccttcgagta cttgatgtgg					840 900
tatagaatgt ggccaaaagt	ccctccacct	gcaccctgag	accttccatc	acctgagcca	960
tctggaaggc ctggtgctga	aggacagctc	tctccataca	ctgaactctt	cctggttcca	1020
aggtetggte aacctetegg	tgctggacct	aagcgagaac	tttctctatg	aaagcatcaa	1080
ccacaccaat gcctttcaga	acctaacccg	cctgcgcaag	ctcaacctgt	ccttcaatta	1140
ccgcaagaag gtatcctttg	cccgcctcca	cctggcaagt	tccttcaaga	acctggtgtc	1200
actgcaggag ctgaacatga	acggcatctt	cttccgctcg	ctcaacaagt	acacgctcag	1260
atggctggcc gatctgccca	aactccacac	tctgcatctt	caaatgaact	tcatcaacca	1320
ggcacagete ageatetttg	gtaccttccg	agcccttcgc	tttgtggact	tgtcagacaa	1380
tegeateagt gggeetteaa	cgctgtcaga	agccacccct	gaagaggcag	atgatgcaga	1440
gcaggaggag ctgttgtctg	cggatcctca	cccagctcca	ctgagcaccc	ctgcttctaa	1500
gaacttcatg gacaggtgta	agaacttcaa	gttcaccatg	gacctgtctc	ggaacaacct	1560
ggtgactatc aagccagaga	tgtttgtcaa	tctctcacgc	ctccagtgtc	ttagcctgag	1620
ccacaactcc attgcacagg	ctgtcaatgg	ctctcagttc	ctgccgctga	ctaatctgca	1680
ggtgctggac ctgtcccata	acaaactgga	cttgtaccac	tggaaatcgt	tcagtgagct	174,0
accacagttg caggccctgg	acctgagcta	caacagccag	ccctttagca	tgaagggtat	1800
aggccacaat ttcagttttg	tgacccatct	gtccatgcta	cagagcctta	gcctggcaca	1860
caatgacatt catacccgtg	tgtcctcaca	tctcaacagc	aactcagtga	ggtttcttga	1920
cttcagcggc aacggtatgg	gccgcatgtg	ggatgagggg	ggcctttatc	tccatttctt	1980
ccaaggcctg agtggcctgc	tgaagctgga	cctgtctcaa	aataacctgc	atatcctccg	2040
gccccagaac cttgacaacc	tccccaagag	cctgaagctg	ctgagcctcc	gagacaacta	2100
cctatctttc tttaactgga	ccagtctgtc	cttcctaccc	aacctggaag	tcctagacct	2160
ggcaggcaac cagctaaagg	ccctgaccaa	tggcaccctg	cctaatggca	ccctcctcca	2220
gaaactcgat gtcagtagca	acagtatcgt	ctctgtggtc	ccagccttct	tcgctctggc	2280
ggtcgagctg aaagaggtca	acctcagcca	caacattctc	aagacggtgg	atcgctcctg	2340
gtttgggccc attgtgatga	acctgacagt	tctagacgtg	agaagcaacc	ctctgcactg	2400
tgcctgtggg gcagccttcg	tagacttact	gttggaggtg	cagaccaagg	tgcctggcct	2460
ggctaatggt gtgaagtgtg	gcagccccgg	ccagctgcag	ggccgtagca	tettegegea	2520
ggacetgegg etgtgeetgg	atgaggtcct	ctcttgggac	tgctttggcc	tttcactctt	2580
ggctgtggcc gtgggcatgg	tggtgcctat	actgcaccat	ctctgcggct	gggacgtctg	2640
gtactgtttt catctgtgcc	tggcatggct	acctttgctg	gcccgcagcc	gacgcagcgc	2700

ccaaactctc ccttat	gatg ccttcgtggt	gttcgataag	gcacagagcg	cagttgccga	2760
ctgggtgtat aacgag	jetge gggtgegget	ggaggagcgg	cgcggtcgcc	gagccctacg	2820
cttgtgtctg gaggac	cgag attggctgcc	tggccagacg	ctcttcgaga	acctctgggc	2880
ttccatctat gggago	cgca agactctatt	tgtgctggcc	cacacggacc	gcgtcagtgg	2940
cctcctgcgc accago	ttec tgctggctca	gcagcgcctg	ttggaagacc	gcaaggacgt	3000
ggtggtgttg gtgato	ctgc gtccggatgc	ccaccgctcc	cgctatgtgc	gactgcgcca	3060
gcgtctctgc cgccag	gagtg tgctcttctg	gccccagcag	cccaacgggc	aggggggctt	3120
ctgggcccag ctgagt	acag ccctgactag	ggacaaccgc	cacttctata	accagaactt	3180
ctgccgggga cctaca	agcag aatagctcag	agcaacagct	ggaaacagct	gcatcttcat	3240
gcctggttcc cgagtt	gete tgeetgeett	gctctgtctt	actacaccgc	tatttggcaa	3300
gtgcgcaata tatgct	cacca agccaccagg	cccacggagc	aaaggttggc	agtaaagggt	3360
agttttcttc ccatgo	catct ttcaggagag	tgaagataga	caccagaccc	acacagaaca	3420
ggactggagt tcatto	etetg eccetecace	ccactttgcc	tgtctctgta	t	3471

<211> 1032

<212> PRT

<213> murine

<400> 72

Met Val Leu Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln 1 5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu 35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn 50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn 65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met 100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser 130 140

WO 2004/094671 - 168 - PCT/US2004/012788

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 170 Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro 185 Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 200 Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr 215 Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser 260 265 Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly 280 Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 310 315 Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu 325 330 Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu 1375 Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu 440 Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 455 Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu

WO 2004/094671 - 169 - PCT/US2004/012788

470 475 Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 485 490 Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala 505 Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp 520 Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe 555 Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser 565 570 Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 585 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly 600 Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu 650 Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 695 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala 710 715 Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly 760 Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser

WO 2004/094671 - 172 - PCT/US2004/012788

390 395 Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 455 Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu 470 Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 485 Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 535 Leu Pro Gln Leu Gln Ala Leu Asp Leu Gly Tyr Asn Ser Gln Pro Phe Ser Ile Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser 570 Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 585 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly 600 Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 695 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala 710 Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn 725 730 735

Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
740 745 750

Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly
755 760 765

Ala Ala Phe Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly
770 775 780

Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
785 790 795 800

Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser 805 810 815

Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val 820 825 830

Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe 835 840 845

His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser 850 855

Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln 865 870 875 880

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu 885 890 895

Gly Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp 900 905 910

Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr 915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 935 940

Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960

Asp Arg Lys Asp Val Val Leu Val Ile Leu Arg Pro Asp Ala His
965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990

Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln 995 1000 1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu 1025 1030

<210> 74 <211> 1032 <212> PRT <213> murine <400> 74

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
1 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu 35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn 50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn 65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met 100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser 130 135 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala 145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro 180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr 210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 225 230 235 240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser 260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly 275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe 290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315 320

WO 2004/094671 - 175 - PCT/US2004/012788

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala 345 Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu 360 Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu 375 Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met 390 395 Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr 425 Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu 440 Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 455 Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 535 Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe 550 555 Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser Met Leu Gln Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly 600 Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn 630 Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu

WO 2004/094671 - 176 - PCT/US2004/012788

				645					650					655	
rys.	Leu	Leu	Ser 660	Leu	Arg	Asp	Asn	Tyr 665	Leu	Ser	Phe	Phe	Asn 670	Trp	Thr
Ser	Leu	Ser 675	Phe	Leu	Pro	Asn	Leu 680	Glu	Val	Leu	Asp	Leu 685	Ala	Gly	Asn
Gln	Leu 690	Lys	Ala	Leu	Thr	Asn 695	Gly	Thr	Leu	Pro	Asn 700	Gly	Thr	Leu	Leu
Gln 705	Lys	Leu	Asp	Val	Ser 710	Ser	Asn	Ser	Ile	Val 715	Ser	Val	Val	Pro	Ala 720
Phe	Phe	Ala	Leu	Ala 725	Val	Glu	Leu	Lys	Glu 730	Val	Asn	Leu	Ser	His 735	Asn
Ile	Leu	Lys	Thr 740	Val	Asp	Arg	Ser	Trp 745	Phe	Gly	Pro	Ile	Val 750	Met	Asn
Leu	Thr	Val 755	Leu	Asp	Val	Arg	Ser 760	Asn	Pro	Leu	His	Cys 765	Ala	Cys	Gly
Ala	Ala. 770	Phe	Val	Asp	Leu	Leu 775	Leu	Glu	Val	Gln	Thr 780	Lys	Val	Pro	Gly
Leu 785	Ala	Asn	Gly	Val	Lys 790	Cys	Gly	Ser	Pro	Gly 795	Gln	Leu	Gln	Gly	Arg 800
Ser	Ile	Phe	Ala	Gln 805	Asp	Leu	Arg	Leu	Cys 810	Leu	Asp	Glu	Val	Leu 815	Ser
Trp	Asp	Cys	Phe 820	Gly	Leu	Ser	Leu	Leu 825	Ala	Val	Ala	Val	Gly 830	Met	Val
Val	Pro	Ile 835	Leu	His	His	Leu	Cys 840	Gly	Trp	Asp	Val	Trp 845	Tyr	Сув	Phe
His	Leu 850	Cys	Leu	Ala	Trp	Leu 855	Pro	Leu	Leu	Ala	Arg 860	Ser	Arg	Arg	Ser
Ala 865	Gln	Thr	Leu	Pro	Tyr 870	Asp	Ala	Phe	Val	Val 875	Phe	Asp	Lys	Ala	Gln 880
Ser	Ala	Val	Ala	Asp 885	Trp	Val	Tyr	Asn	Glu 890	Leu	Arg	Val	Arg	Leu 895	Glu
Glu	Arg	Arg	Gly 900	Arg	Arg	Ala	Leu	Arg 905	Leu	Cys	Leu	Glu	Asp 910	Arg	Asp
Trp	Leu	Pro 915	_	Gln	Thr	Leu	Phe 920	Glu	Asn	Leu	Trp	Ala 925		Ile	Tyr
Gly	Ser 930		Lys	Thr	Leu	Phe 935		Leu	Ala	His	Thr 940	Asp	Arg	Val	Ser
Gly 945		Leu	Arg	Thr	Ser 950	Phe	Leu	Leu	Ala	Gln 955		Arg	Leu	Leu	Glu 960
Asp	Arg	Lys	Asp	Val 965		Val	Leu	Val	Ile 970		Arg	Pro	Asp	Ala 975	His
Arg	Ser	Arg	Tyr	Val	Arg	Leu	Arg	Gln	Arg	Leu	Cys	Arg	Gln	Ser	Val

980 985 990 Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln

1000

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln

Asn Phe Cys Arg Gly Pro Thr Ala Glu 1030

<210> 75

<211> 1032 <212> PRT

<213> murine

<400> 75

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln 10

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 25

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met 105

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 120

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 200

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 230 235

WO 2004/094671 - 178 - PCT/US2004/012788

Ala	Asn	Leu	Thr	Ser 245	Leu	Arg	Val	Leu	Asp 250	Val	Gly	Gly	Asn	Cys 255	Arg
Arg	Сув	Asp	His 260	Ala	Pro	Asn	Pro	Cys 265	Ile	Glu	Суз	Gly	Gln 270	Lys	Ser
Leu	His	Leu 275	His	Pro	Glu	Thr	Phe 280	His	His	Leu	Ser	His 285	Leu	Glu	Gly
Leu	Val 290	Leu	Lys	Asp	Ser	Ser 295	Leu	His	Thr	Leu	Asn 300	Ser	Ser	Trp	Phe
Gln 305	Gly	Leu	Val	Asn	Leu 310	Ser	Val	Leu	Asp	Leu 315	Ser	Glu	Asn	Phe	Leu 320
Tyr	Glu	Ser	Ile	Asn 325	His	Thr	Asn	Ala	Phe 330	Gln	Asn	Leu	Thr	Arg 335	Leu
Arg	ГÀЗ	Leu	Asn 340	Leu	Ser	Phe	Asn	Tyr 345	Arg	Lys	Lys	Val	Ser 350	Phe	Ala
Arg	Leu	His 355	Leu	Ala	Ser	Ser	Phe 360	Lys	Asn	Leu	Val	Ser 365	Leu	Gln	Glu
Leu	Asn 370	Met	Asn	Gly	Ile	Phe 375	Phe	Arg	Ser	Leu	Asn 380	Lys	Tyr	Thr	Leu
Arg 385	Trp	Leu	Ala	Asp	Leu 390	Pro	Lys	Leu	His	Thr 395	Leu	His	Leu	Gln	Met 400
Asn	Phe	Ile	Asn	Gln 405	Ala	Gln	Leu	Ser	Ile 410	Phe	Gly	Thr	Phe	Arg 415	Ala
Leu	Arg	Phe	Val 420	Asp	Leu	Ser	Asp	Asn 425	Arg	Ile	Ser	Gly	Pro 430	Ser	Thr
Leu	Ser	Glu 435	Ala	Thr	Pro	Glu	Glu 440	Ala	Asp	Asp	Ala	Glu 445	Gln	Glu	Glu
Leu	Leu 450		Ala	Asp	Pro	His 455	Pro	Ala	Pro	Leu	Ser 460	Thr	Pro	Ala	Ser
Lys 465		Phe	Met		Arg 470		Lys	Asn		Lys 475		Thr	Met	_	Leu 480
Ser	Arg	Asn	Asn	Leu 485	Val	Thr	Ile	ГÀЗ	Pro 490	Glu	Met	Phe	Val	Asn 495	Leu
Ser	Arg	Leu	Gln 500	Суз	Leu	Ser	Leu	Ser 505	His	Asn	Ser	Ile	Ala 510	Gln	Ala
Val	Asn	Gly 515	Ser	Gln	Phe	Leu	Pro 520	Leu	Thr	Asn	Leu	Gln 525	Val	Leu	Asp
Leu	Ser 530	His	Asn	ГÀЗ	Leu	Asp 535	Leu	Tyr	His	Trp	Lys 540	Ser	Phe	Ser	Glu
Leu 545	Pro	Gln	Leu	Gln	Ala 550	Leu	Asp	Leu	Ser	Tyr 555	Asn	Ser	Gln	Pro	Phe 560
Ser	Met	Lys	Gly	Ile	Gly	His	Asn	Phe	Ser	Phe	Val	Thr	His	Leu	Ser

WO 2004/094671 - 179 - PCT/US2004/012788

				565					570					575	
Met	Leu	Gln	Ser 580	Leu	Ser	Leu	Ala	His 585	Asn	Asp	Ile	His	Thr 590	Arg	Val
Ser	Ser	His 595	Leu	Asn	Ser	Asn	Ser 600	Val	Arg	Phe	Leu	Asp 605	Phe	Ser	Gly
Asn	Gly 610	Met	Gly	Arg	Met	Trp 615	Asp	Glu	Gly	Gly	Leu 620	Tyr	Leu	His	Phe
Phe 625	Gln	Gly	Leu	Ser	Gly 630	Leu	Leu	Lys	Leu	Asp 635	Leu	Ser	Gln	Asn	Asn 640
Leu	His	Ile		Arg 645	Pro	Gln	Asn	Leu	Asp 650	Asn	Leu	Pro	Lys	Ser 655	Leu
Lys	Leu	Leu	Ser 660	Leu	Arg	Asp	Asn	Tyr 665	Leu	Ser	Phe	Phe	Asn 670	Trp	Thr
Ser	Leu	Ser 675	Phe	Leu	Pro	Asn	Leu 680	Glu	Val	Leu	qaA	Leu 685	Ala	Gly	Asn
Gln	Leu 690	Lys	Ala	Leu	Thr	Asn 695	Gly	Thr	Leu	Pro	Asn 700	Gly	Thr	Leu	Leu
Gln 705	Lys	Leu	Asp	Val	Ser 710	Ser	Asn	Ser	Ile	Val 715	Ser	Val	Val	Pro	Ala 720
Phe	Phe	Ala	Leu	Ala 725	Val	Glu	Leu	Lys	Glu 730	Val	Asn	Leu	Ser	His 735	Asn
Ile	Leu	Lys	Thr 740	Val	Asp	Arg	Ser	Trp 745	Phe	Gly	Pro	Ile	Val 750	Met	Asn
Leu	Thr	Val 755	Leu	Asp	Val	Arg	Ser 760	Asn	Pro	Leu	His	Сув 765	Ala	Cys	Gly
Ala	Ala 770	Phe	Val	Asp	Leu	Leu 775	Leu	Glu	Val	Gln	Thr 780	Lys	Val	Pro	Gly
Leu 785	Ala	Asn	Gly	Val	Lys 790	Cys	Gly	Ser	Pro	Gly 795	Gln	Leu	Gln	Gly	Arg 800
Ser	Ile	Phe	Ala	Gln 805	Asp	Leu	Arg	Leu	Cys 810	Leu	Asp	Glu	Val	Leu 815	Ser
Trp	Asp	Cys	Phe 820	Gly	Leu	Ser	Leu	Leu 825	Ala	Val	Ala	Val	Gly 830	Met	Val
Val	Pro	Ile 835	Leu	His	His	Leu	Cys 840	Gly	Trp	Asp	Val	Trp 845	Tyr	Cys	Phe
His	Leu 850	Cys	Leu	Ala	Trp	Leu 855	Pro	Leu	Leu	Ala	Arg 860	Ser	Arg	Arg	Ser
Ala 865	Gln	Thr	Leu	Pro	Tyr 870	Asp	Ala	Phe	Val	Val 875	Phe	Asp	Lys	Ala	Gln 880
Ser	Ala	Val	Ala	Asp 885	Trp	Val	Tyr	Asn	Glu 890		Arg	Val	Arg	Leu 895	Glu
Glu	Arg	Arg	Gly	Arg	Arg	Ala	Leu	Arg	Leu	Cys	Leu	Glu	Asp	Arg	Asp

WO 2004/094671 - 180 - PCT/US2004/012788

1 € 17052004	1012100
900 905 910 Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr 915 920 925	
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 940	
Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960	
Asp Arg Lys Asp Val Val Leu Val Ile Leu Arg Pro Asp Ala His , 965 970 975	
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990	
Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln 995 1000 1005	
Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1010 1015 1020	
Asn Phe Cys Arg Gly Pro Thr Ala Glu 1025 1030	
<210> 76 <211> 3002 <212> DNA <213> Homo sapiens	
<400> 76 gtggcttggt attcactggc aggtttcaga catttagatc tttcttttaa tgactaacac	60
catgcctatc tgtggagaag ctggcaacat gtcacacctg gaaattgttt ttcaacatta	120
atactattat ttggcagtaa tccagattgc ttttgccacc aacctgaaga catatagagg	180
cagaaggaca ggaataatto tatttgttto otgttttgaa acttocatot gtaaggotat	240
caaaaggaga tgtgagagag ggtattgagt ctggcctgac aatgcagttc ttaaaccaaa	300
ggtccattat gcttctcctc tctgagaatc ctgacttacc tcaacaacgg agacatggca	360
cagtagccag cttggagact tctcagccaa tgctctgaga tcaagtcgaa gacccaatat	420
acagggtttt gagctcatct tcatcattca tatgaggaaa taagtggtaa aatccttgga	480
aatacaatga gactcatcag aaacatttac atattttgta gtattgttat gacagcagag	540
ggtgatgete cagagetgee agaagaaagg gaactgatga ccaactgete caacatgtet	600
ctaagaaagg ttcccgcaga cttgacccca gccacaacga cactggattt atcctataac	660
ctcctttttc aactccagag ttcagatttt cattctgtct ccaaactgag agttttgatt	720
ctatgccata acagaattca acagctggat ctcaaaacct ttgaattcaa caaggagtta	780
agatatttag atttgtctaa taacagactg aagagtgtaa cttggtattt actggcaggt	840

ctcaggtatt tagatctttc ttttaatgac tttgacacca tgcctatctg tgaggaagct

900

		aatcctaggt gcatctaaat				960 1020
cattatgaag	aaggtagcct	gcccatctta	aacacaacaa	aactgcacat	tgttttacca	1080
atggacacaa	atttctgggt	tcttttgcgt	gatggaatca	agacttcaaa	aatattagaa	1140
atgacaaata	tagatggcaa	aagccaattt	gtaagttatg	aaatgcaacg	aaatcttagt	1200
ttagaaaatg	ctaagacatc	ggttctattg	cttaataaag	ttgatttact	ctgggacgac	1260
cttttcctta	tcttacaatt	tgtttggcat	acatcagtgg	aacactttca	gatccgaaat	1320
gtgacttttg	gtggtaaggc	ttatcttgac	cacaattcat	ttgactactc	aaatactgta	1380
atgagaacta	taaaattgga	gcatgtacat	ttcagagtgt	tttacattca	acaggataaa	1440
atctatttgc	ttttgaccaa	aatggacata	gaaaacctga	caatatcaaa	tgcacaaatg	1500
ccacacatgc	ttttcccgaa	ttatcctacg	aaattccaat	atttaaattt	tgccaataat	1560
atcttaacag	acgagttgtt	taaaagaact	atccaactgc	ctcacttgaa	aactctcatt	1620
ttgaatggca	ataaactgga	gacactttct	ttagtaagtt	gctttgctaa	caacacaccc	1680
ttggaacact	tggatctgag	tcaaaatcta	ttacaacata	aaaatgatga	aaattgctca	1740
tggccagaaa	ctgtggtcaa	tatgaatctg	tcatacaata	aattgtctga	ttctgtcttc	1800
aggtgcttgc	ccaaaagtat	tcaaatactt	gacctaaata	ataaccaaat	ccaaactgta	1860
cctaaagaga	ctattcatct	gatggcctta	cgagaactaa	atattgcatt	taattttcta	1920
actgatctcc	ctggatgcag	tcatttcagt	agactttcag	ttctgaacat	tgaaatgaac	1980
ttcattctca	gcccatctct	ggattttgtt	cagagctgcc	aggaagttaa	aactctaaat	2040
gcgggaagaa	atccattccg	gtgtacctgt	gaattaaaaa	atttcattca	gcttgaaaca	2100
tattcagagg	tcatgatggt	tggatggtca	gattcataca	cctgtgaata	ccctttaaac	2160
ctaaggggaa	ttaggttaaa	agacgttcat	ctccacgaat	tatcttgcaa	cacagetetg	2220
ttgattgtca	ccattgtggt	tattatgcta	gttctggggt	tggctgtggc	cttctgctgt	2280
ctccactttg	atctgccctg	gtatctcagg	atgctaggtc	aatgcacaca	aacatggcac	2340
agggttagga	aaacaaccca	agaacaactc	aagagaaatg	tccgattcca	cgcatttatt	2400
tcatacagtg	aacatgattc	tctgtgggtg	aagaatgaat	tgatccccaa	tctagagaag	2460
gaagatggtt	ctatcttgat	ttgcctttat	gaaagctact	ttgaccctgg	caaaagcatt	2520
agtgaaaata	ttgtaagctt	cattgagaaa	agctataagt	ccatctttgt	tttgtctccc	2580
aactttgtcc	agaatgagtg	gtgccattat	gaattttact	ttgcccacca	caatctcttc	2640
catgaaaatt	ctgatcatat	aattcttatc	ttactggaac	ccattccatt	ctattgcatt	2700
cccaccaggt	atcataaact	gaaagctctc	ctggaaaaaa	aagcatactt	ggaatggccc	2760
aaggataggc	gtaaatgtgg	gcttttctgg	gcaaaccttc	gagctgctat	taatgttaat	2820

gtattagcca ccagagaaat gtatgaactg cagacattca cagagttaaa tgaagagtct													
cgaggttcta caatctctct gatgagaaca gattgtctat aaaatcccac agtccttggg													
aagttgggga ccacatacac tgttgggatg tacattgata caacctttat gatggcaatt													
tg													
<210> 77 <211> 811 <212> PRT <213> Homo sapiens													
<400> 77													
Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met Thr 1 10 15													
Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu Met Thr 20 25 30													
Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp Leu Thr Pro 35 40 45													
Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu Phe Gln Leu Gln 50 55 60													
Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg Val Leu Ile Leu Cys 70 75 80													
His Asn Arg Ile Gln Gln Leu Asp Leu Lys Thr Phe Glu Phe Asn Lys 85 90 95													
Glu Leu Arg Tyr Leu Asp Leu Ser Asn Asn Arg Leu Lys Ser Val Thr 100 105 110													
Trp Tyr Leu Leu Ala Gly Leu Arg Tyr Leu Asp Leu Ser Phe Asn Asp 115 120 125													
Phe Asp Thr Met Pro Ile Cys Glu Glu Ala Gly Asn Met Ser His Leu 130 135 140													
Glu Ile Leu Gly Leu Ser Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln 145 150 155 160													
Lys Ile Ala His Leu His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr 165 170 175													
Leu Pro His Tyr Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys 180 185 190													
Leu His Ile Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg 195 200 205													
Asp Gly Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly 210 215 220													
Lys Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu 235 230 235 240													

WO 2004/094671 - 183 - PCT/US2004/012788

Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu Trp Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser Val Glu His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala Tyr Leu Asp 280 His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg Thr Ile Lys Leu 295 Glu His Val His Phe Arg Val Phe Tyr Ile Gln Gln Asp Lys Ile Tyr 315 310 Leu Leu Thr Lys Met Asp Ile Glu Asn Leu Thr Ile Ser Asn Ala 325 Gln Met Pro His Met Leu Phe Pro Asn Tyr Pro Thr Lys Phe Gln Tyr Leu Asn Phe Ala Asn Asn Ile Leu Thr Asp Glu Leu Phe Lys Arg Thr Ile Gln Leu Pro His Leu Lys Thr Leu Ile Leu Asn Gly Asn Lys Leu 375 Glu Thr Leu Ser Leu Val Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu His Leu Asp Leu Ser Gln Asn Leu Leu Gln His Lys Asn Asp Glu Asn 410 Cys Ser Trp Pro Glu Thr Val Val Asn Met Asn Leu Ser Tyr Asn Lys 425 Leu Ser Asp Ser Val Phe Arg Cys Leu Pro Lys Ser Ile Gln Ile Leu Asp Leu Asn Asn Asn Gln Ile Gln Thr Val Pro Lys Glu Thr Ile His Leu Met Ala Leu Arg Glu Leu Asn Ile Ala Phe Asn Phe Leu Thr Asp Leu Pro Gly Cys Ser His Phe Ser Arg Leu Ser Val Leu Asn Ile Glu 490 Met Asn Phe Ile Leu Ser Pro Ser Leu Asp Phe Val Gln Ser Cys Gln Glu Val Lys Thr Leu Asn Ala Gly Arg Asn Pro Phe Arg Cys Thr Cys Glu Leu Lys Asn Phe Ile Gln Leu Glu Thr Tyr Ser Glu Val Met Met 535 Val Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr Pro Leu Asn Leu Arg 550 555 Gly Ile Arg Leu Lys Asp Val His Leu His Glu Leu Ser Cys Asn Thr

570 565 Ala Leu Leu Ile Val Thr Ile Val Val Ile Met Leu Val Leu Gly Leu 585 Ala Val Ala Phe Cys Cys Leu His Phe Asp Leu Pro Trp Tyr Leu Arg 600 Met Leu Gly Gln Cys Thr Gln Thr Trp His Arg Val Arg Lys Thr Thr 615 Gln Glu Gln Leu Lys Arg Asn Val Arg Phe His Ala Phe Ile Ser Tyr 630 Ser Glu His Asp Ser Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu Glu Lys Glu Asp Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe Asp Pro Gly Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys 680 Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu 695 Trp Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu 715 Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe Tyr 730 Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu Lys Lys 745 Ala Tyr Leu Glu Trp Pro Lys Asp Arg Lys Cys Gly Leu Phe Trp 760 Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu Ala Thr Arg Glu 775 Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys Leu 805 <210> 78 <211> 2760 <212> DNA

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (2529)..(2529)
<223> n is a, c, g, or t

aagaatttgg actcatatca agatgctctg aagaagaaca accetttagg atagccactg

caacatcatg accaaagaca aagaacctat tgttaaaagc ttccattttg tttgccttat

120

gatcataata gttggaacca gtcaaaaaga ggtcttattc	gaatccagtt atgttccaaa	ctccgacgga agacctaccg	aatgaatttg ctgaaaacca	cagtagacaa aagtcttaga	180 240
tatgtctcag aactacatcg	ctgagcttca	ggtctctgac	atgagctttc	tatcagagtt	300
gacagttttg agactttccc	ataacagaat	ccagctactt	gatttaagtg	ttttcaagtt	360
caaccaggat ttagaatatt	tggatttatc	tcataatcag	ttgcaaaaga	tatcctgcca	420
tcctattgtg agtttcaggc	atttagatct	ctcattcaat	gatttcaagg	ccctgcccat	480
ctgtaaggaa tttggcaact	tatcacaact	gaatttcttg	ggattgagtg	ctatgaagct	540
gcaaaaatta gatttgctgc	caattgctca	cttgcatcta	agttatatcc	ttctggattt	600
aagaaattat tatataaaag	aaaatgagac	agaaagtcta	caaattctga	atgcaaaaac	660
ccttcacctt gtttttcacc	caactagttt	attcgctatc	caagtgaaca	tatcagttaa	720
tactttaggg tgcttacaac	tgactaatat	taaattgaat	gatgacaact	gtcaagtttt	780
cattaaattt ttatcagaac	tcaccagagg	tccaacctta	ctgaatttta	ccctcaacca	840
catagaaacg acttggaaat	gcctggtcag	agtctttcaa	tttctttggc	ccaaacctgt	900
ggaatatctc aatatttaca	atttaacaat	aattgaaagc	attcgtgaag	aagattttac	960
ttattctaaa acgacattga	aagcattgac	aatagaacat	atcacgaacc	aagtttttct	1020
gttttcacag acagctttgt	acaccgtgtt	ttctgagatg	aacattatga	tgttaaccat	1080
ttcagataca ccttttatac	acatgctgtg	tcctcatgca	ccaagcacat	tcaagttttt	1140
gaactttacc cagaacgttt	tcacagatag	tatttttgaa	aaatgttcca	cgttagttaa	1200
attggagaca cttatcttac	aaaagaatgg	attaaaagac	cttttcaaag	taggtctcat	1260
gacgaaggat atgccttctt	tggaaatact	ggatgttagc	tggaattctt	tggaatctgg	1320
tagacataaa gaaaactgca	cttgggttga	gagtatagtg	gtgttaaatt	tgtcttcaaa	1380
tatgcttact gactctgttt	tcagatgttt	acctcccagg	atcaaggtac	ttgatcttca	1440
cagcaataaa ataaagagcg	ttcctaaaca	agtcgtaaaa	ctggaagctt	tgcaagaact	1500
caatgttgct ttcaattctt	taactgacct	tcctggatgt	ggcagcttta	gcagcctttc	1560
tgtattgatc attgatcaca	attcagtttc	ccacccatcg	gctgatttct	tccagagctg	1620
ccagaagatg aggtcaataa	aagcagggga	caatccatto	: caatgtacct	gtgagctaag	1680
agaatttgtc aaaaatatag	accaagtato	aagtgaagtg	ttagagggct	ggcctgattc:	1740
ttataagtgt gactacccag	aaagttatag	aggaagccca	ı ctaaaggact	: ttcacatgtc	1800
tgaattatcc tgcaacataa	ctctgctgat	cgtcaccato	ggtgccacca	tgctggtgtt	1860
ggctgtgact gtgacctccc	: tctgcatcta	cttggatctg	g ccctggtato	tcaggatggt	1920
gtgccagtgg acccagacto	ggcgcagggc	: caggaacata	a cccttagaag	g aactccaaag	1980
aaacctccag tttcatgctt	: ttatttcata	tagtgaacat	gattctgcct	gggtgaaaag	2040

WO 2004/094671 - 186 - PCT/US2004/012788

tgaattggt	a ccttacctag	aaaaagaaga	tatacagatt	tgtcttcatg	agaggaactt	2100
tgtccctgg	c aagagcattg	tggaaaatat	catcaactgc	attgagaaga	gttacaagtc	2160
catctttgt	t ttgtctccca	actttgtcca	gagtgagtgg	tgccattacg	aactctattt	2220
tgcccatca	c aatctctttc	atgaaggatc	taataactta	atcctcatct	tactggaacc	2280
cattccaca	g aacagcattc	ccaacaagta	ccacaagctg	aaggctctca	tgacgcagcg	2340
gacttattt	g cagtggccca	aggagaaaag	caaacgtggg	ctcttttggg	ctaacattag	2400
agccgcttt	t aatatgaaat	taacactagt	cactgaaaac	aatgatgtga	aatcttaaaa	2460
aaatttagg	ga aattcaactt	aagaaaccat	tatttacttg	gatgatggtg	aatagtacag	2520
tcgtaagtr	na ctgtctggag	gtgcctccat	tatcctcatg	ccttcaggaa	agacttaaca	2580
aaaacaatg	gt ttcatctggg	gaactgagct	aggcggtgag	gttagcctgc	cagttagaga	2640
cagcccagt	c tettetggtt	taatcattat	gtttcaaatt	gaaacagtct	cttttgagta	2700
aatgctcag	gt ttttcagctc	ctctccactc	tgctttccca	aatggattct	gttggtgaag	2760

<210> 79

<211> 2753

<212> DNA

<213> Homo sapiens

<400> 79

agaatttgga ctcatatcaa gatgctctga agaagaacaa ccctttagga tagccactgc 60 aacatcatga ccaaagacaa agaacctatt gttaaaagct tccattttgt ttgccttatg 120 180 atcataataq ttggaaccag aatccagttc tccgacggaa atgaatttgc agtagacaag tcaaaaagag gtcttattca tgttccaaaa gacctaccgc tgaaaaccaa agtcttagat 240 atgtctcaga actacatcgc tgagcttcag gtctctgaca tgagctttct atcagagttg 300 acagttttga gactttccca taacagaatc cagctacttg atttaagtgt tttcaagttc 360 420 aaccaggatt tagaatattt ggatttatct cataatcagt tgcaaaagat atcctgccat cctattgtga gtttcaggca tttagatctc tcattcaatg atttcaaggc cctgcccatc 480 tqtaaqqaat ttggcaactt atcacaactg aatttcttgg gattgagtgc tatgaagctg 540 caaaaattag atttgctgcc aattgctcac ttgcatctaa gttatatcct tctggattta 600 agaaattatt atataaaaga aaatgagaca gaaagtctac aaattctgaa tgcaaaaacc 660 cttcaccttg tttttcaccc aactagttta ttcgctatcc aagtgaacat atcagttaat 720 780 : actttagggt gcttacaact gactaatatt aaattgaatg atgacaactg tcaagttttc attaaatttt tatcagaact caccagaggt tcaaccttac tgaattttac cctcaaccac 840 ataqaaacga cttggaaatg cctggtcaga gtctttcaat ttctttggcc caaacctgtg 900

gaatatctca tattctaaaa	atatttacaa cgacattgaa	tttaacaata agcattgaca	attgaaagca atagaacata	ttcgtgaaga tcacgaacca	agattttact agtttttctg	960 1020
ttttcacaga	cagctttgta	caccgtgttt	tctgagatga	acattatgat	gttaaccatt	1080
tcagatacac	cttttataca	catgctgtgt	cctcatgcac	caagcacatt	caagtttttg	1140
aactttaccc	agaacgtttt	cacagatagt	atttttgaaa	aatgttccac	gttagttaaa	1200
ttggagacac	ttatcttaca	aaaaatgga	ttaaaagacc	ttttcaaagt	aggtctcatg	1260
acgaaggata	tgccttcttt	ggaaatactg	gatgttagct	ggaattcttt	ggaatctggt	1320
agacataaag	aaaactgcac	ttgggttgag	agtatagtgg	tgttaaattt	gtcttcaaat	1380
atgcttactg	actctgtttt	cagatgttta	cctcccagga	tcaaggtact	tgatcttcac	1440
agcaataaaa	taaagagcgt	tcctaaacaa	gtcgtaaaac	tggaagcttt	gcaagaactc	1500
aatgttgctt	tcaattcttt	aactgacctt	cctggatgtg	gcagctttag	cagcctttct	1560
gtattgatca	ttgatcacaa	ttcagtttcc	cacccatcgg	ctgatttctt	ccagagctgc	1620
cagaagatga	ggtcaataaa	agcaggggac	aatccattcc	aatgtacctg	tgagctaaga	1680
gaatttgtca	aaaatataga	ccaagtatca	agtgaagtgt	tagagggctg	gcctgattct	1740
tataagtgtg	actacccaga	aagttataga	ggaagcccac	taaaggactt	tcacatgtct	1800
gaattatcct	gcaacataac	tctgctgatc	gtcaccatcg	gtgccaccat	gctggtgttg	1860
gctgtgactg	tgacctccct	ctgcatctac	ttggatctgc	cctggtatct	caggatggtg	1920
tgccagtgga	cccagactcg	gcgcagggcc	aggaacatac	ccttagaaga	actccaaaga	1980
aacctccagt	ttcatgcttt	tatttcatat	agtgaacatg	attctgcctg	ggtgaaaagt	2040
gaattggtac	cttacctaga	aaaágaagat	atacagattt	gtcttcatga	gaggaacttt	2100
gtccctggca	agagcattgt	ggaaaatatc	atcaactgca	ttgagaagag	ttacaagtcc	2160
atctttgttt	tgtctcccaa	ctttgtccag	agtgagtggt	gccattacga	actctatttt	2220
gcccatcaca	atctctttca	tgaaggatct	aataacttaa	tcctcatctt	actggaaccc	2280
attccacaga	acagcattcc	caacaagtac	cacaagctga	aggctctcat	gacgcagcgg	2340
acttatttgc	agtggcccaa	ggagaaaagc	aaacgtgggc	tcttttgggc	taacattaga	2400
gccgctttta	atatgaaatt	aacactagto	actgaaaaca	atgatgtgaa	atcttaaaaa	2460
aatttaggaa	attcaactta	agaaaccatt	atttacttgg	atgatggtga	atagtacagt	2520
cgtaagtaac	: tgtctggagg	tgcctccatt	atcctcatgc	cttcaggaaa	gacttaacaa	2580
aaacaatgtt	tcatctgggg	aactgagcta	ggcggtgagg	ttagcctgcc	agttagagac	2640
agcccagtct	: cttctggttt	aatcattatg	tttcaaattg	aaacagtctc	ttttgagtaa	2700
atgctcagtt	tttcagctcc	tetecaetet	gctttcccaa	atggattctg	ttg	2753

WO 2004/094671 - 188 - PCT/US2004/012788

<210> 80

<211> 796

<212> PRT

<213> Homo sapiens

<400> 80

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys

1 10 15

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn 20 25 30

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys 35 40 45

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile 50 . 55 60

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val 65 70 75 80

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe 85 90 95

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu 100 105 110

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 115 120 125

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn 130 135 140

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys 145 150 155 160

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu 165 170 175

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln 180 185 190

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu
195 200 205

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln 210 215 220

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys 225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu 245 250 255

Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 260 265 270

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 275 280 285

WO 2004/094671 - 189 - PCT/US2004/012788

Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu 330 Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro 345 Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser 360 Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu 375 Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val 470 Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser 490 Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly 585 Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr 600 Leu Asp Leu Pro Trp Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr

WO 2004/094671 - 190 - PCT/US2004/012788

620 615 Arg Arg Arg Ala Arg Asn Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu 630 635 Gln Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Ser Glu Leu Val Pro Tyr Leu Glu Lys Glu Asp Ile Gln Ile Cys Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Cys Ile Glu Lys Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His 710 715 His Asn Leu Phe His Glu Gly Ser Asn Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Pro Gln Asn Ser Ile Pro Asn Lys Tyr His Lys Leu Lys Ala Leu Met Thr Gln Arg Thr Tyr Leu Gln Trp Pro Lys Glu Lys Ser Lys Arg Gly Leu Phe Trp Ala Asn Ile Arg Ala Ala Phe Asn Met Lys 775 Leu Thr Leu Val Thr Glu Asn Asn Asp Val Lys Ser 790 <210> 81 <211> 796 <212> PRT <213> Homo sapiens <400> 81 Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu 100 105

WO 2004/094671 - 191 - PCT/US2004/012788

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu 170 Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln 185 Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu 200 Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys Phe Leu Ser Glu Leu Thr Arg Gly Ser Thr Leu Leu Asn Phe Thr Leu Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 280 Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu 295 Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser 315 305 Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro 345 Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser 360 Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys 395 Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 405 410 Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val 425 Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu

WO 2004/094671 - 192 - PCT/US2004/012788

Pro	Pro 450	435 Arg	Ile	Lys	Val	Leu 455	440 Asp	Leu	His	Ser	Asn 460	445 Lys	Ile	Lys	Ser
Val 465	Pro	Lys	Ġln	Val	Val 470	Lys	Leu	Glu	Ala	Leu 475	Gln	Glu	Leu	Asn	Val 480
Ala	Phe	Asn	Ser	Leu 485	Thr	Asp	Leu	Pro	Gly 490	Cys	Gly	Ser	Phe	Ser 495	Ser
Leu	Ser	Val	Leu 500	Ile	Ile	Asp	His	Asn 505	Ser	Val	Ser	His	Pro 510	Ser	Ala
Asp	Phe	Phe 515	Gln	Ser	Cys	Gln	Lys 520	Met	Arg	Ser	Ile	Lys 525	Ala	Gly	Asp
Asn	Pro 530	Phe	Gln	Cys	Thr	Cys 535	Glu	Leu	Arg	Glu	Phe 540	Val	Lys	Asn	Ile
Asp 545	Gln	Val	Ser	Ser	Glu 550	Val	Leu	Glu	Gly	Trp 555	Pro	Asp	Ser	Tyr	Ьув 560
Cys	Asp	Tyr	Pro	Glu 565	Ser	Tyr	Arg	Gly	Ser 570	Pro	Leu	Lys	Asp	Phe 575	His
Met	Ser	Glu	Leu 580	Ser	Cys	Asn	Ile	Thr 585	Leu	Leu	Ile	Val	Thr 590	Ile	Gly
Ala	Thr	Met 595	Leu	Val	Leu	Ala	Val 600	Thr	Val	Thr	Ser	Leu 605	Сув	Ile	Tyr
Leu	Asp 610	Leu	Pro	Trp	Tyr	Leu 615	Arg	Met	Val	Сув	Gln 620	Trp	Thr	Gln	Thr
Arg 625	Arg	Arg	Ala	Arg	Asn 630		Pro	Leu	Glu	Glu 635	Leu	Gln	Arg	Asn	Leu 640
Gln	Phe	His	Ala	Phe 645		Ser	Tyr	Ser	Glu 650	His	Asp	Ser	Ala	Trp 655	Val
Lys	Ser	Glu	Leu 660		Pro	Tyr	Leu	Glu 665	_	Glu	Asp	Ile	Gln 670	Ile	Сув
Leu	His	Glu 675		Asn	Phe	Val	Pro 680		Lys	Ser	Ile	Val 685		Asn	Ile
Ile	Asn 690	_	Ile	Glu	Lys	Ser 695		Lys	Ser	Ile	700		Leu	Ser	Pro
Asn 705		Val	Gln	Ser	Glu 710		Сув	His	Tyr	Glu 715	Leu	Tyr	Phe	Ala	His 720
His	Asn	Leu	Phe	His 725		Gly	Ser	Asn	730		ılle	Lev	ılle	Leu 735	
Glu	Pro	Ile	Pro 740		a Asr	ser	Ile	Pro 745		ь Гув	Tyr	His	750		Lys
Ala	Lev	Met 755		Gln	a Arg	Thr	760		Gln	Trp	Pro	Ъуs 765		Lys	Ser
ГХS	Arg	gly	Let	ı Phe	Trp	Ala	Asr	ıle	Arg	Ala	a Ala	Phe	e Asr	Met	Lys

WO 2004/094671 - 193 - PCT/US2004/012788

770 775 780 Leu Thr Leu Val Thr Glu Asn Asn Asp Val Lys Ser 785 790 795

<210> 82 .

<211> 796

<212> PRT

<213> Homo sapiens

<400> 82

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys
1 10 15

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn 20 25 30

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys 35 40 45

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile 50 55 60

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val 65 70 75 80

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe 85 90 95

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu 100 105 110

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 115 120 125

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn 130 135 140

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys 145 150 155 160

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu 165 170 175

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln 180 185 190

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu 195 200 205

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln 210 215 220

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys 225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu
245 250 255

Asn His Ile Glu Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 260 265 270

WO 2004/094671 - 194 - PCT/US2004/012788

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu 295 Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser , 310 315 Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu 325 330 Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro 345 Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu 375 Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 410 Ser Gly Arq His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu 440 Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser 455 Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val 475 470 Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala 505 Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His 565 570 Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly

Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr

Leu		595 Leu	Pro	Trp	Tyr		600 Arg	Met	Val	Cys		605 Trp	Thr	Gln	Thr	
	610					615					620				.	
Arg 625	Arg	Arg	Ala	Arg	Asn 630	Ile	Pro	Leu	Glu	Glu 635	Leu	Gln	Arg	Asn	Leu 640	
Gln	Phe	His	Ala	Phe 645	Ile	Ser	Tyr	Ser	Glu 650	His	Asp	Ser	Ala	Trp 655	Val	
Lys	Ser	Glu	Leu 660	Val	Pro	Tyr	Leu	Glu 665	Lys	Glu	Asp	Ile	Gln 670	Ile	Cys	
Leu	His	Glu 675	Arg	Asn	Phe	Val	Pro 680	Gly	Lys	Ser	Ile	Val 685	Glu	Asn	Ile	
Ile	Asn 690	Cys	Ile	Glu	Lys	Ser 695	.Tyr	Lys	Ser	Ile	Phe 700	۷al	Leu	Ser	Pro	
Asn 705	Phe	Val	Gln	Ser	Glu 710	Trp	Суз	His	Tyr	Glu 715	Leu	Tyr	Phe	Ala	His 720	
His	Asn	Leu	Phe	His 725	Glu	Gly	Ser	Asn	Asn 730	Leu	Ile	Leu	Ile	Leu 735	Leu	
Glu	Pro	Ile	Pro 740	Gln	Asn	Ser	Ile	Pro 745		Lys	Tyr	His	Lys 750	Leu	ГÀЗ	
Ala	Leu	Met 755		Gln	Arg	Thr	Tyr 760		Gln	Trp	Pro	Lys 765		ГÀЗ	Ser	
Lys	Arg 770		Leu	Phe	Trp	Ala 775		Ile	Arg	Ala	Ala 780		Asn	Met	Lys	
Leu 785		Leu	Val	Thr	Glu 790		Asn	Asp	Val	Lys 795		•				
	_															
<21 <21	1>	83 2604														
<21 <21		DNA muri	ne													
<40	0>	83			~~ ~	.		+	atat	aaaa	tac	racta	rtac	aaca	tgagee	60
															tgagcc	120
															tagtcg	
				•											iggaacc	180
															aaaact	240
															tgagac	300
															gacttag	360
aat	acct	:gga	tgto	tcac	cac a	atcg	gtts	gc aa	aaca	atcto	ttg	gctgo	ccct	atgg	gegagee	420
tga	ggca	atct	agac	ctct	ca t	tcaa	tgad	et tt	gate	gtact	gc	etgt	gtgt	aagg	gaatttg	480
gca	acct	gac	gaag	gctga	act t	tcct	ggga	at ta	agto	gctgo	caa	agtto	ccga	caa	ctggatc	540

tgctcccagt taaaaggcgg	tgctcacttg ggaaacagaa	catctaagct agtcttcaga	gcattcttct ttcccaatac	ggacttagtg caccgttctc	agtcatcata catttggtct	600 660
ttcatccaaa	tagcttgttc	tctgttcaag	tgaacatgtc	tgtaaacgct	ttaggacatt	720
tacaactgag	taatattaaa	ttgaatgatg	aaaactgtca	aaggttaatg	acatttttat	780
cagaactcac	cagaggtcca	accttattga	atgtgaccct	ccagcacata	gaaacaacct	840
ggaagtgctc	ggttaaactt	ttccaattct	tttggccccg	accggtggag	tacctcaata	900
tttacaactt	aacgataact	gagagaatcg	acagggaaga	atttacttac	tcggagacag	960
cactgaagtc	actgatgata	gagcacgtca	aaaaccaagt	gttcctcttt	tcaaaggagg	1020
cgctatactc	ggtgtttgct	gagatgaaca	tcaagatgct	ctctatctca	gacacccctt	1080
tcatccacat	ggtgtgcccg	ccatccccaa	gctcatttac	atttctgaac	tttacccaga	1140
atgtttttac	tgacagtgtt	tttcaaggct	gttccacctt	aaagagattg	cagacactta	1200
tcttacaaag	gaatggtttg	aagaactttt	ttaaagtagc	tctcatgact	aagaatatgt	1260
cctctctgga	aactttggat	gttagtttga	attctttgaa	ctctcatgca	tatgacagga	1320
catgcgcctg	ggctgagagc	atattggtgt	tgaatttgtc	ttcgaatatg	cttacaggct	1380
ctgtcttcag	atgcttacct	cccaaggtca	aggtccttga	ccttcacaac	aacaggataa	1440
tgagcatccc	taaagatgtc	acccacctgc	aggctttgca	ggaactcaat	gtagcatcca	1500
actccttaac	tgaccttcct	gggtgtgggg	ccttcagcag	cctttctgtg	ctggtcatcg	1560
accataacto	agtttcccat	ccctctgagg	atttcttcca	gagctgtcag	aatattagat	1620
ccctaacago	: gggaaacaac	ccattccaat	gcacatgtga	gctgagggac	tttgtcaaga	1680
acataggctg	ggtagcaaga	gaagtggtgg	agggctggcc	tgactcttac	aggtgtgact	1740
acccagaaag	g ctctaaggga	actgcactga	gggacttcca	catgtctcca	ctgtcctgtg	1800
atactgttct	gctgactgtc	accatcgggg	ccactatgct	ggtgctggct	gtcactgggg	1860
ctttcctctg	g tetetaettt	gacctgccct	ggtatgtgag	gatgctgtgt	cagtggacac	1920
agaccaggca	a cagggccagg	cacatcccct	tagaggaact	ccagagaaac	: ctccagttcc	1980
atgcttttgt	ctcatacagt	gagcatgatt	ctgcctgggt	gaagaacgaa	ttactaccca	2040
acctagagaa	a agatgacato	: cgggtttgcc	: tccatgagag	gaactttgto	: cctggcaaga	2100
gcattgtgga	a gaacatcato	: aatttcattg	g agaagagtta	caaggccato	tttgtgctgt	2160
ctccccactt	t catccagagt	gagtggtgcc	: attatgaact	ctattttgc	catcataatc	2220
tcttccatga	a aggetetgat	: aacttaatco	tcatcttgct	ggaacccatt	ctacagaaca	2280
acattccca	g tagataccad	aagctgcggg	g ctctcatggc	acagcggact	tacttggaat	2340
ggcctactga	a gaagggcaas	cgtgggctgt	: tttgggccaa	ccttagagct	tcatttatta	2400
tgaagttag	c cttagtcaat	gaggatgatg	g tgaaaacttg	g aaacttgggd	t ttctaactta	2460

ataaactgtc aacctgggct ctcatgaaca ctgtggtttt cagttcctac ctggaggtac	2520
ttetgttgtg gtgtettagt ttgetetgtg ettatgataa ataacatgtt tagaagtagt	2580
ttatgaaggt gctaagttca ttaa	2604
<210> 84 <211> 2604 <212> DNA <213> murine	
<400> 84 aagtaaaaat gctgtgaaga atggtaaagt ccctctggga tagcctctgc aacatgagcc	60
aagacagaaa acccatcgtg gggagtttcc actttgtttg cgccctggcc ttaatagtcg	120
gaagcatgac cccgttctct aatgaacttg agtctatggt agactattca aacaggaacc	180
ttactcatgt ccccaaagac ctgccaccaa gaacaaaagc cctgagtctg tctcaaaact	240
ctatatetga getteggatg cetgatatea getttetgte agagetgaga gttetgagae	300
tctcccacaa caggatacgg agccttgatt tccatgtatt cttgttcaat caggacttag	360
aatacctgga tgtctcacac aatcggttgc aaaacatctc ttgctgccct atggcgagcc	420
tgaggcatct agacctctca ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg	480
gcaacctgac gaagctgact ttcctgggat taagtgctgc caagttccga caactggatc	540
tgctcccagt tgctcacttg catctaagct gcattcttct ggacttagtg agtcatcata	600
taaaaggegg ggaaacagaa agtetteaga tteecaatae caeegttete catttggtet	660
ttcatccaaa tagcttgttc tctgttcaag tgaacatgtc tgtaaacgct ttaggacatt	720
tacaactgag taatattaaa ttgaatgatg aaaactgtca aaggttaatg acatttttat	780
cagaactcac cagaggtcca accttattga atgtgaccct ccagcacata gaaacaacct	840
ggaagtgete ggttaaaett ttecaattet tttggeeeeg aeeggtggag taeeteaata	900
tttacaactt aacgataact gagagaatcg acagggaaga atttacttac tcggagacag	960
cactgaagtc actgatgata gagcacgtca aaaaccaagt gttcctcttt tcaaaggagg	1020
cgctatactc ggtgtttgct gagatgaaca tcaagatgct ctctatctca gacacccctt	1080
tcatccacat ggtgtgcccg ccatccccaa gctcatttac atttctgaac tttacccaga	1140
atgtttttac tgacagtgtt tttcaaggct gttccacctt aaagagattg cagacactta	1200

tcttacaaag gaatggtttg aagaactttt ttaaagtagc tctcatgact aagaatatgt

cctctctgga aactttggat gttagtttga attctttgaa ctctcatgca tatgacagga

catgcgcctg ggctgagagc atattggtgt tgaatttgtc ttcgaatatg cttacaggct

ctgtcttcag atgcttacct cccaaggtca aggtccttga ccttcacaac aacaggataa

1260

1320

1380

1440

WO 2004/094671 - 198 - PCT/US2004/012788

	taaagatgtc tgaccttcct					1500 1560
accataactc	agtttcccat	ccctctgagg	atttcttcca	gagctgtcag	aatattagat	1620
ccctaacagc	gggaaacaac	ccattccaat	gcacatgtga	gctgagggac	tttgtcaaga	1680
acataggctg	ggtagcaaga	gaagtggtgg	agggctggcc	tgactcttac	aggtgtgact	1740
acccagaaag	ctctaaggga	actgcactga	gggacttcca	catgtctcca	ctgtcctgtg	1800
atactgttct	gctgactgtc	accatcgggg	ccactatgct	ggtgctggct	gtcactgggg	1860
ctttcctctg	tctctacttt	gacctgccct	ggtatgtgag	gatgctgtgt	cagtggacac	1920
agaccaggca	cagggccagg	cacatcccct	tagaggaact	ccagagaaac	ctccagttcc	1980
atgcttttgt	ctcatacagt	gagcatgatt	ctgcctgggt	gaagaacgaa	ttactaccca	2040
acctagagaa	agatgacatc	cgggtttgcc	tccatgagag	gaactttgtc	cctggcaaga	2100
gcattgtgga	gaacatcatc	aatttcattg	agaagagtta	caaggccatc	tttgtgctgt	2160
ctccccactt	catccagagt	gagtggtgcc	attatgaact	ctattttgcc	catcataatc	2220
tcttccatga	aggctctgat	aacttaatcc	tcatcttgct	ggaacccatt	ctacagaaca	2280
acattcccag	tagataccac	aagctgcggg	ctctcatggc	acagcggact	tacttggaat	2340
ggcctactga	gaagggcaaa	cgtgggctgt	tttgggccaa	ccttagagct	tcatttatta	2400
tgaagttagc	cttagtcaat	gaggatgatg	tgaaaacttg	aaacttgggt	ttctaactta	2460
ataaactgtc	aacctgggct	ctcatgaaca	ctgtggtttt	cagttcctac	ctggaggtac	2520
ttctgttgtg	gtgtcttagt	ttgctctgtg	cttatgataa	ataacatgtt	tagaagtagt	2580
ttatgaaggt	gctaagttca	ttaa				2604

<210> 85

<211> 2421

<212> DNA

<213> murine

<400> 85 atggtaaagt ccctctggga tagcctctgc aacatgagcc aagacagaaa acccatcgtg 60 gggagtttcc actttgtttg cgccctggcc ttaatagtcg gaagcatgac cccgttctct 120 aatgaacttg agtctatggt agactattca aacaggaacc ttactcatgt ccccaaagac 180 ctgccaccaa gaacaaaagc cctgagtctg tctcaaaact ctatatctga gcttcggatg 240 300 cctgatatca gctttctgtc agagctgaga gttctgagac tctcccacaa caggatacgg agcettgatt tecatgtatt ettgtteaat eaggaettag aatacetgga tgteteacae 360 aatcggttgc aaaacatctc ttgctgccct atggcgagcc tgaggcatct agacctctca 420 ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg gcaacctgac gaagctgact 480

ttcctgggat ta	aagtgetge a cattettet s	aaagttccga ggacttagtg	caactggatc agttatcata	tgctcccagt taaaaggcgg	tgctcacttg ggaaacagaa	540 600
agtcttcaga tt	cccaatac (caccgttctc	catttggtct	ttcatccaaa	tagcttgttc	660
tctgttcaag to	gaacatgtc 1	tgtaaacgct	ttaggacatt	tacaactgag	taatattaaa	720
ttgaatgatg aa	aaactgtca	aaggttaatg	acatttttat	cagaactcac	cagaggtcca	780
accttattga at	tgtgaccct	ccagcacata	gaaacaacct	ggaagtgctc	ggttaaactt	840
ttccaattct t	ttggccccg	accggtggag	tacctcaata	tttacaactt	aacgataact	900
gagagaatcg ad	cagggaaga	atttacttac	tcggagacag	cactgaagtc	actgatgata	960
gagcacgtca a	aaaccaagt	gttcctcttt	tcaaaggagg	cgctatactc	ggtgtttgct	1020
gagatgaaca t	caagatgct	ctctatctca	gacacccctt	tcatccacat	ggtgtgcccg	1080
ccatccccaa g	ctcatttac	atttctgaac	tttacccaga	atgtttttac	tgacagtgtt	1140
tttcaaggct g	ttccacctt	aaagagattg	cagacactta	tcttacaaag	gaatggtttg	1200
aagaactttt t	taaagtagc	tctcatgact	aagaatatgt	cctctctgga	aactttggat	1260
gttagtttga a	ttctttgaa	ctctcatgca	tatgacagga	catgcgcctg	ggctgagagc	1320
atattggtgt t	gaatttgtc	ttcgaatatg	cttacaggct	ctgtcttcag	atgcttacct	1380
cccaaggtca a	ggtccttga	ccttcacaac	aacaggataa	tgagcatccc	taaagatgtc	1440
acccacctgc a	ggctttgca	ggaactcaat	gtagcatcca	actccttaac	tgaccttcct	1500
gggtgtgggg c	cttcagcag	cctttctgtg	ctggtcatcg	accataactc	agtttcccat	1560
ccctctgagg a	tttcttcca	gagctgtcag	aatattagat	ccctaacagc	gggaaacaac	1620
ccattccaat g	cacatgtga	gctgagggac	tttgtcaaga	acataggctg	ggtagcaaga	1680
gaagtggtgg a	gggctggcc	tgactcttac	aggtgtgact	acccagaaag	ctctaaggga	1740
actgcactga g	ggacttcca	catgtctcca	ctgtcctgtg	atactgttct	gctgactgtc	1800
accatcgggg c	cactatgct	ggtgctggct	gtcactgggg	ctttcctctg	tctctacttt	1860
gacctgccct g	gtatgtgag	gatgctgtgt	cagtggacac	agaccaggca	cagggccagg	1920
cacatcccct t	agaggaact	ccagagaaac	ctccagttcc	atgcttttgt	ctcatacagt	1980
gagcatgatt o	tgcctgggt	gaagaacgaa	ttactaccca	acctagagaa	agatgacatc	2040
cgggtttgcc t	ccatgagag	gaactttgtc	cctggcaaga	gcattgtgga	gaacatcatc	2100
aatttcattg a	agaagagtta	caaggccatc	tttgtgctgt	ctccccactt	catccagagt	2160
gagtggtgcc a	attatgaact	ctattttgcc	catcataato	: tcttccatga	aggctctgat	2220
aacttaatcc t	catcttgct	ggaacccatt	ctacagaaca	acattcccaç	, tagataccac	2280
aagctgcggg (ctctcatggc	acagcggact	tacttggaat	ggcctactga	a gaagggcaaa	2340
cgtgggctgt t	tttgggccaa	ccttagagct	tcatttatta	a tgaagttago	cttagtcaat	2400

2421

gaggatgatg tgaaaacttg a

<210> 86

<211> 806

<212> PRT

<213> murine

<400> 86

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met

Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His

Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp 105

Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys 120

Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe 135

Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr

Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro

Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser His

His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr

Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val

Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys 235

Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu 250

Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr 265 260

WO 2004/094671 - 201 - PCT/US2004/012788

Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro 280 Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp 295 Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr 345 Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Phe Thr Phe 360 Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys 375 Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu 410 Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val 470 Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg 550 Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser

Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val

600 605 595 Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp 615 Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu 660 665 Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn 680 Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu 695 Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Leu Gln 745 Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe 775 Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn Glu Asp Asp Val Lys Thr 805 <210> 87 <211> 806 <212> PRT <213> murine <400> 87 Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp

WO 2004/094671 - 203 - PCT/US2004/012788

Pro	Asp	Ile	Ser	Phe 85	Leu	Ser	Glu	Leu	Arg 90	Val	Leu	Arg	Leu	Ser 95	His
Asn	Arg	Ile	Arg 100	Ser	Leu	Asp	Phe	His 105	Val	Phe	Leu	Phe	Asn 110	Gln	Asp
Leu	Glu	Tyr 115	Leu	Asp	Val	Ser	His 120	Asn	Arg	Leu	Gln	Asn 125	Ile	Ser	Сув
Cys	Pro 130	Met	Ala	Ser	Leu	Arg 135	His	Leu	Asp	Leu	Ser 140	Phe	Asn	Asp	Phe
Asp 145	Val	Leu	Pro	Val	Cys 150	Lys	Glu	Phe	Gly	Asn 155	Leu	Thr	Lys	Leu	Thr 160
Phe	Leu	Gly	Leu	Ser 165	Ala	Ala	Lys	Phe	Arg 170	Gln	Leu	Asp	Leu	Leu 175	Pro
Val	Ala	His	Leu 180	His	Leu	Ser	Сув	Ile 185	Leu	Leu	Asp	Leu	Val 190	Ser	Tyr
His	Ile	Lys 195	Gly	Gly	Glu	Thr	Glu 200	Ser	Leu	Gln	Ile	Pro 205	Asn	Thr	Thr
Val	Leu 210	His	Leu	Val	Phe	His 215	Pro	Asn	Ser	Leu	Phe 220	Ser	Val	Gln	Val
Asn 225	Met	Ser	Val	Asn	Ala 230	Leu	Gly	His	Leu	Gln 235	Leu	Ser	Asn	Ile	Lys 240
Leu	Asn	Asp	Glu	Asn 245	Cys	Gln	Arg	Leu	Met 250		Phe	Leu	Ser	Glu 255	Leu
Thr	Arg	Gly	Pro 260	Thr	Leu	Leu	Asn	Val 265		Leu	Gln	His	Ile 270	Glu	Thr
Thr	Trp	Lys 275		Ser	Val	Lys	Leu 280	Phe	Gln	Phe	Phe	Trp 285		Arg	Pro
Val	Glu 290		Leu	Asn	Ile	Tyr 295		Leu	Thr	·Ile	300		Arg	Ile	Asp
Arg 305		Glu	Phe	Thr	Tyr 310		Glu	Thr	Ala	Leu 315		Ser	Leu	Met	11e 320
Glu	His	Val	Lys	Asn 325		Val	Phe	Leu	Phe 330		Lys	Glu	ı Ala	Leu 335	Tyr
Ser	Val	Phe	Ala 340		Met	Asn	ılle	Ъуя 345		: Lev	. Ser	: Ile	350		Thr
Pro	Phe	11e 355		Met	. Val	Сув	360		Ser	Pro	Ser	Ser 365		e Thr	Phe
Leu	Asn 370		Thr	Glr	ı Aşn	Va]		th:	: Asg	Ser	7 Val		e Glr	ı Gly	r Cys
Ser 385		Leu	ı Lys	Arg	ј Leu 390		1 Thi	Let	ı Ile	e Let 395		ı Arç	g Ası	ı Gly	/ Leu 400
T ₁ VS	Asn	. Phe	Phe	Lvs	. Val	. Ala	a Lei	ı Met	Th	c Lys	s Ası	ı Met	t Sei	c Sei	. Lev

WO 2004/094671 - 204 - PCT/US2004/012788

410 405 Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 425 Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser 435 440 Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys 455 Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val 470 Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser 520 Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 585 Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val 600 Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp 615 Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 650 Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 705 710 715 Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His 725 Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Glu Pro Ile Leu Gln 740 745 750

Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln
755 760 765 .

Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe 770 775 780

Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 785 790 795 800

Glu Asp Asp Val Lys Thr 805

<210> 88

<211> 806

<212> PRT

<213> murine ·

<400> 88

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg 1 5 10 15

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile 20 25 30

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp 35 40 45

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg
50 55 60

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met 65 70 75 80

Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His
85 90 95

Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp 100 105 110

Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys 115 120 125

Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe 130 140

Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr 145 150 155 160

Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Pro 165 170 175

Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser His 180 185 190

His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr 195 200 205

Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val 210 215 220

WO 2004/094671 - 206 - PCT/US2004/012788

Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro 280 Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp 295 Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile 315 310 Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Phe Thr Phe 360 Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys 375 Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu 395 Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu 410 Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 425 Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys 535 Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg

Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 580 585 590

Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val 595 600 605

Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp 610 615 620

Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg 625 630 635 640

His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 645 650 655

Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu 660 665 670

Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn 675 . 680 685

Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu 690 695 700

Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 705 710 715 720

Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His 725 730 735

Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Leu Gln 740 745 750

Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln 755 760 . 765

Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe
770 780

Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 785 790 795 800

Glu Asp Asp Val Lys Thr 805

<210> 89

<211> 795

<212> PRT

<213> murine

<400> 89

Met Ser Gln Asp Arg Lys Pro Ile Val Gly Ser Phe His Phe Val Cys
1 5 10 15

Ala Leu Ala Leu Ile Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu 20 25 30

WO 2004/094671 - 208 - PCT/US2004/012788

- Glu Ser Met Val Asp Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys 35 Leu Pro Pro Arg Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile 50
- Ser Glu Leu Arg Met Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val 65 70 75 80
- Leu Arg Leu Ser His Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe
 85 90 95
- Leu Phe Asn Gln Asp Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu 100 105 110
- Gln Asn Ile Ser Cys Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu 115 120 125
- Ser Phe Asn Asp Phe Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn 130 135 140
- Leu Thr Lys Leu Thr Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln 145 150 155 160
- Leu Asp Leu Leu Pro Val Ala His Leu His Leu Ser Cys Ile Leu Leu 165 170 175
- Asp Leu Val Ser Tyr His Ile Lys Gly Glu Thr Glu Ser Leu Gln 180 185 190
- Ile Pro Asn Thr Thr Val Leu His Leu Val Phe His Pro Asn Ser Leu
 195 200 205
- Phe Ser Val Gln Val Asn Met Ser Val Asn Ala Leu Gly His Leu Gln 210 215 220
- Leu Ser Asn Ile Lys Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr 225 230 235 240
- Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu 245 250 255
- Gln His Ile Glu Thr Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe 260 265 270
- Phe Trp Pro Arg Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 275 280 285
- Thr Glu Arg Ile Asp Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu 290 295 300
- Lys Ser Leu Met Ile Glu His Val Lys Asn Gln Val Phe Leu Phe Ser 305 310 315 320
- Lys Glu Ala Leu Tyr Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu 325 330 335
- Ser Ile Ser Asp Thr Pro Phe Ile His Met Val Cys Pro Pro Ser Pro 340 345 350
- Ser Ser Phe Thr Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser

WO 2004/094671 - 209 - PCT/US2004/012788

360 355 Val Phe Gln Gly Cys Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu 375 Gln Arg Asn Gly Leu Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val 425 Leu Asn Leu Ser Ser Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys Val Leu Asp Leu His Asn Asn Arg Ile Met Ser 455 Ile Pro Lys Asp Val Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val 470 Ala Ser Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His 570 565 Met Ser Pro Leu Ser Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr 615 Arg His Arg Ala Arg His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys 665 Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile 680 Ile Asn Phe Ile Glu Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro

700 695 His Phe Ile Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His 710 His Asn Leu Phe His Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Leu Gln Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg 745 Ala Leu Met Ala Gln Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly 760 Lys Arg Gly Leu Phe Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys 775 Leu Ala Leu Val Asn Glu Asp Asp Val Lys Thr <210> 90 <211> 10 <212> DNA <213> artificial sequence <220> <223> consensus p50 subunit <220> <221> misc_feature <222> (7)..(7) <223> N = c or t <400> 90 10 ggggatnccc <210> 91 <211> 10 <212> DNA <213> artificial sequence <220> <223> consensus p65 subunit <220> <221> misc_feature <222> (4)..(4) <223> N = a or g <220> <221> misc feature <222> (5)..(5) <223> N = a, c, g, or t <400> 91 gggnntttcc 10

<210> 92

wo	2004/094671	- 211 -	PCT/US2004/012788
<211> <212> <213>			
<220>			
<223>	consensus subunit		
<400> agttga	92 gggg actttcccag gc		22
	27		
<220>			
	CREB binding site		
<400> agagat	93 :tgcc tgacgtcaga gagctag		27
<210> <211> <212> <213>	21		
<220>			
<223>	AP-1 binding site	•	
<400> cgctt	94 gatga gtcagccgga a.		21
<210> <211> <212> <213>	15 DNA artificial sequence		
<223>	AP-1 binding site		
<400> cgcat	95 gagtc agaca		15
	19 DNA artificial sequence		
<223>			
<400>	96		

wo 2	2004/094671		- 212 -	PCT/US2004/012788
tgcaga	agtg aaactg	agg		19
<210>				
<211>				
<212>				
<213>	artificial	sequence		
<220>				
<223>	ISRE			
<400>	97			
agaacg	aaac a			11
<210>	98			
<211>				
<212>				
<213>	artificial			
		sequence .		
<220>				
<223>	ISRE			
<400>	98			
	tgaa agtgg			
JJ	-33-33			15
<210>	00			
<211>				
<211>				•
	artificial	sequence		
<220>				
<223>	ISRE			
<400>	99			
	catg aaactga	aa		18
J	J			18
<210>	100			
<211>	15			
<212>	DNA			
<213>	artificial	sequence		
<220>				
<223>	ISRE			
<400>	100			
atgaaac	tga aagta			15
				13
<210>	101			
<211>	16			
<212>				
<213>	artificial	semience		
<220>				
	Taba			
<223>	ISRE			

	101 ecga aagege	16
	102	
	13 DNA	
	artificial sequence	
<220>		
<223>	ISRE	
<400>	102	
agaaatg	ggaa agt	13
<210>	103	
<211>	9	
<212>		
	arctrictar acquemoc	
<220>		
<223>	SRE	
<400>	103	9
tcaccc	cac	9
<210>		
<211>		
<212> <213>	DNA artificial sequence	
	- -	
<220>		
<223>	SRE	
<400>	104	
ctcacc	ccac	10
<210>	105	
<211>		
<212>	DNA artificial sequence	
<220>		
<223>	SRE	
<400>	105	10
gccacc	cctac	10
-210-	106	
<210><211>	106 17	
<212>		
	artificial sequence	

- 213 -

PCT/US2004/012788

WO 2004/094671

WO 2004/094671 - 214 - PCT/US2004/012788

<220>		
<223>	NFAT	
<400>	106	
tatgaa	acag tttttcc	17
<210>	107	
<211>	9	
<212>		
	artificial sequence	
<220>		
<223>	NFAT	
<400>	107	
aggaaa	ctc	9
55		
<210>	108	
<211>		
<212>		
	artificial sequence	
<220>		
<223>	NFAT	
<220>		
<221>	misc_feature	
<222>	(2) (2)	
<223>	N = a or g	
<220>		
<221>	misc_feature	
	(5)(5)	
<223>	N = a or g	
<400>	108	
angana	ttcc	10
<210>	109	
<211>	16	
<212>		
<213>		
<220>		
<223>	NFAT	
<400>	109	
ccagtt	gagc cagaga	16
<210>	110	
<211>		
<211>		
<213>		
<220>		

<223>	GAS	
<400> ctttcac	110 gttt catattactc taaatccatt	30
<210>		
<211>		
<212>	artificial sequence	
<213>	artificial sequence	
<220>		
<223>	p53 consensus site	
<220>		
	misc_feature	
<222>	(1)(3)	
<223>	N = a or g	
<220>		
	misc_feature	
	(5)(6)	
<223>	N = a or t	
<220>		
	misc_feature	
	(8)(10)	
<223>	N = c or t	
<400>	111	10
nnncnn	gnnn	10
<210>		
<211> <212>		
	artificial sequence	
	artificial poquence	
<220>		
<223>	p53 consensus site	
<400>	112	
aggcat	gcct	10
<210>	113	
<211>	10	
<212> <213>		
<213>	artificial sequence	
<220>		
<223>	p53 consensus site	
<400>	113	
gggctt		10
<210>	114	

wo	004/094671	- 216 -	PCT/US2004/012788
<211> <212>			
<213>	artificial sequence		
<220>			
<223>	p53 consensus site	•	
<400> gggctt			10
<210>	115		
<211>			
<212>			
<213>	artificial sequence		
<220>			
<223>	p53 consensus site		
<400>			
gcctgg	actt gcc		13
<210>	116		
<211>			
<212>			
<213>	artificial sequence		
<220>			
<223>	p53 consensus site		
<400>			
ggacat	gccc gggcatgtcc		20
<210>	117		
<211>			
<212>			
<213>	artificial sequence		
<220>			
<223>	p53 consensus site		
<400>	117		
gtagca	tag cccagacatg tcc		23
<210>	118		
	36		
<212>			
<213>	artificial sequence		
<220>			
<223>	TARE		
<400>	118		
gaggtat	gca gacaagagtc agagtttccc ct	tgaa	36

<210>	119						
<211>	10						
<212>	DNA						
<213>	artif	icial seque	ence				
<220>							
<223>	SRF						
<220>							
	misc	feature					
<222>	-	_					
<223>							
\223 /	. – ,	2 02 0					
<400>	119						10
ccnnnn	nngg						10
		•					
<210>	120						
<211>							
<212>							
		ficial sequ	ence				
(213)	arcı	TIOTHE DOGE					
<220>							
<223>	SRF						
<400>	120					•	
ccaaat	aagg	C					11
<210>	121						
<211>							
<212>							
		sapiens					
<213>	HOILE	sapiens					
<400>	121						
agaaaa	attt	taaaaaatta	ttcattcata	tttttaggag	ttttgaatga	ttggatatgt	60
aattat	attc	atattattaa	tgtgtatcta	tatagatttt	tattttgcat	atgtactttg	120
atacaa	aatt	tacatgaaca	aattacacta	aaagttattc	cacaaatata	cttatcaaat	180
taagtt	aaat	gtcaatagct	tttaaactta	aattttagtt	taacttttct	gtcattcttt	240
actttg	gaata	aaaagagcaa	actttgtagt	ttttatctgt	gaagtagagg	tatacgtaat	300
atacat	aaat	agatatgcca	aatctgtgtt	attaaaattt	catgaagatt	tcaattagaa	360
aaaaat	cacca	taaaaggctt	tgagtgcagg	tgaaaaatag	gcaatgatga	aaaaaaatga	420
aaaact	tttt	aaacacatgt	agagagtgcg	taaagaaagc	aaaaacagag	atagaaagta	480
caacta	aggga	atttagaaaa	tggaaattag	tatgttcact	atttaagacc	tatgcacaga	540
gcaaa	gtctt	cagaaaacct	agaggccgaa	gttcaaggtt	atccatctca	agtagcctag	600
					ctgatggccg		660
caget	acaaa						670

WO 2004/094671 - 218 - PCT/US2004/012788

<210> 122 <211> 207 <212> DNA <213> Homo sapiens	
<400> 122 aggttetetg aaggeettge tteetgeaga tgeettaaat agggaacata etgattteea	60
ctttcttaat gcttctggac catttccatt tctgtttttg ctttccttct taactcttta	120
catgagttta gagccgtgtt tctcaaatga tgggctagca cgcgtaagag ctcggtacct	180
atcgatagag aaatgttctg gcacctg	207
<210> 123 <211> 161 <212> DNA <213> Homo sapiens	
<400> 123 aggttctctg aaggctttgc ttcctgcaga tgccttaaat agggaacata ctgatttcca	60
ctttcttaat gcttctggac cactttccat ttctgttttt gctttccttc ttgaactctt	120
tacatgagtt tagagccgtg tttctcaacc attttgtttt t	161
<210> 124 <211> 300 <212> DNA <213> Homo sapiens <400> 124	
tteteaggte gtttgettte etttgettte teecaagtet tgttttacaa tttgetttag	60
tcattcactg aaactttaaa aaacattaga aaacctcaca gtttgtaaat ctttttccct	120
attatatata tcataagata ggagcttaaa taaagagttt tagaaactac taaaatgtaa	180
atgacatagg aaaactgaaa gggagaagtg aaagtgggaa attcctctga atagagagag	240
gaccatctca tataaatagg ccatacccac ggagaaagga cattctaact gcaacctttc	300
<210> 125 <211> 401 <212> DNA <213> Homo sapiens <400> 125	
<400> 125 gatctgtaat gaataagcag gaactttgaa gactcagtga ctcagtgagt aataaagact	60
cagtgaette tgateetgte etaactgeea eteettgttg teecaagaaa geggetteet	120
gctctctgag gaggacccct tccctggaag gtaaaactaa ggatgtcagc agagaaattt	180
ttccaccatt ggtgcttggt caaagaggaa actgatgagc tcactctaga tgagagagca	240
gtgagggaga gacagagact cgaatttccg gagctatttc agttttcttt tccgttttgt	300

gcaatttcac ttatgatacc ggccaatgct tggttgctat tttggaaact ccccttaggg gatgcccctc aactggccct ataaagggcc agcctgagct g	360 401
<210> 126 <211> 781 <212> DNA <213> Homo sapiens	
<400> 126 ggttgtctgt atgcctccct gagggtattt cactttctgc tcccatccgc ccctatgagc	60
gagtacctat gagcacagga tgtgcacata tttgagtctt attagtggta cacgcagttt	120.
tatcatctcc ccaggtctgt gtctgtatga aatgtgcatg ggtgtgtgtg tgcacgcgtg	180
tgttcccact cggggaatgt ggggagaggt gcatggagcc aagatgggtg gtaaatagta	240
tgtttctgaa attaaaggac taatgtggag gaaggcgccc cagatgtact aaaccctttg	300
ccttcatctc atcctctctg acttgggaag aaccaggatt ttgtttttaa gcccttgggc	360
atacagttgt tecatecega catgaactca geeteeegte tgacegeeee ttggeettee	420
ttetteeteg atetgtggaa eccagggaat etgeetagtg etgteteeaa geacettgge	480
catgatgtaa acccagagaa attagcatct ccatctcctt ccttattccc cacccaaaag	540
tcatttcctc ttagttcatt acctgggatt ttgatgtcta tgttccctcc tcgttattga	600
tacacacaca gagagagaca aacaaaaaag gaacttettg aaatteeece agaaggtttt	660
gagagttgtt ttcaatgttg caacaagtca gtttctagtt taagtttcca tcagaaagga	720
gtagagtata taagttccag taccagcaac agcagcagaa gaaacaacat ctgtttcagg	780
g	781
<210> 127 <211> 277 <212> DNA <213> Homo sapiens	
<400> 127 gcatctccat ctccttcctt attccccacc caaaagtcat ttcctcttag ttcattacct	60
gggattttga tgtctatgtt ccctcctcgt tattgataca cacacagaga gagacaaaca	120
aaaaaggaac ttcttgaaat tcccccagaa ggttttgaga gttgttttca atgttgcaac	180
aagtcagttt ctagtttaag tttccatcag aaaggagtag agtatataag ttccagtacc	240
agcaacagca gcagaagaaa caacatctgt ttcaggg	277
<210> 128	

<210> 128 <211> 305 <212> DNA <213> Homo sapiens

<400> 128

WO 2004/094671		- 220 -		PCT/US20	04/012788
caagacatgc caagtgctga tgcttcttag cgctagcctc	gtcactaata aatgacgacc	aagaaaaaag taagctgcac	aagtaaagga ttttccccct	agagtggttc agttgtgtct	60 120
tgcgatgcta aaggacgtca	ttgcacaatc	ttaataaggt	ttccaatcag	cccacccgc	180
tetggececa cecteacect	ccaacaaaga	tttatcaaat	gtgggatttt	cccatgagtc	240
tcaatattag agtctcaacc	cccaataaat	ataggactgg	agatgtctct	gaggctcatt	300
ctgcc					305
<210> 129 <211> 1181 <212> DNA <213> Homo sapiens <400> 129					
cctgcaagag acaccatcct	gaggggaaga	gggcttctga	accagcttga	cccaataaga	60
aattettggg tgccgacggg	gacagcagat	tcagagccta	gagccgtgcc	tgcgtccgta	120
gtttccttct agcttctttt	tgatttcaaa	tcaagactta	cagggagagg	gagcgataaa	180
cacaaactct gcaagatgcc	acaaggtcct	cctttgacat	ccccaacaaa	gaaggtgagt	240
agtaatctcc ccctttctgc	cctgaaccaa	gtggcttcag	taagtttcag	ggctccagga	300
gacctgggca tgcaggtgcc	gatgaaacag	tggtgaagag	actcagtggc	agtggcagtg	360
gggagagcac tcgcagcaca	ggcaaacctc	tggcacaaga	gcaaagtcct	cactggagga	420
ttcccaaggg tcacttggga	gagggcaggc	agcagccaac	ctcctctaag	tgggctgaag	480
caggtgaaga aatggcagaa	gacgcggtgg	tggcaaaaag	gagtcacaca	ctccacctgg	540
agacgccttg aagtaactgc	acgaaatttg	agggtggcca	ggcagttcta	caacagccgc	600
ctcacaggga gagccagaac	acagcaagaa	ctcagatgac	tggtagtatt	accttcttca	660
taatcccagg cttggggggc	tgcgatggag	tcagaggaaa	ctcagttcag	aacatctttg	720
gtttttacaa tacaaattaa	ctggaacgct	aaattctagc	ctgttaatct	ggtcactgaa	780
aaaaaaaaaa ttttttttt	ttcaaaaaac	atagctttag	cttattttt	ttttctcttt	840
gtaaaacttc gtgcatgact	tcagctttac	tcttgtcaag	acatgccaag	tgctgagtca	900
ctaataaaga aaaaagaagt	aaaggaagag	tggttctgct	tcttagcgct	agcctcaatg	960
acgacctaag ctgcactttt	cccctagtt	gtgtcttgcg	atgctaaagg	acgtcattgc	1020
acaatcttaa taaggtttcc	aatcagcccc	accegetetg	gccccaccct	caccctccaa	1080
caaagattta tcaaatgtgg	gattttccca	tgagtctcaa	tattagagtc	tcaaccccca	1140
ataaatatag gactggagat	gtctctgagg	ctcattctgc	С		1181

<210> 130 <211> 778 <212> DNA

WO 2004/094671 - 221 - PCT/US2004/012788

<213> Homo sapiens <400> 130	
ctaccacttg tctattctgc tatatagtca gtccttacat tgctttcttc ttctgata	aga 60
ccaaactctt taaggacaag tacctagtct tatctatttc tagatccccc acattact	cca 120
gaaagttact ccataaatgt ttgtggaact gatttctatg tgaagacatg tgcccctt	tca 180
ctctgttaac tagcattaga aaaacaaatc ttttgaaaag ttgtagtatg cccctaag	gag 240
cagtaacagt tcctagaaac tctctaaaat gcttagaaaa agatttattt taaattac	cct 300
ccccaataaa atgattggct ggcttatctt caccatcatg atagcatctg taattaac	ctg 360
aaaaaaaata attatgccat taaaagaaaa tcatccatga tcttgttcta acacctgo	cca 420
ctctagtact atatctgtca catggtctat gataaagtta tctagaaata aaaaagc	ata 480
caattgataa ttcaccaaat tgtggagctt cagtatttta aatgtatatt aaaatta	aat 540
tattttaaag atcaaagaaa actttcgtca tactccgtat ttgataagga acaaata	gga 600
agtgtgatga ctcaggtttg ccctgagggg atgggccatc agttgcaaat cgtggaa	ttt 660
cctctgacat aatgaaaaga tgagggtgca taagttctct agtagggtga tgatata	aaa 720
agccacegga gcactccata aggcacaaac tttcagagac agcagagcac acaagct	t 778
<210> 131	
<211> 207	
<212> DNA	
<213> Homo sapiens	
<pre><400> 131 actccgtatt tgataaggaa caaataggaa gtgtgatgac tcaggtttgc cctgagg</pre>	gga 60
tgggccatca gttgcaaatc gtggaatttc ctctgacata atgaaaagat gagggtg	cat 120
aagttotota gtagggtgat gatataaaaa gocacoggag cactocataa ggcacaa	act 180
ttcagagaca gcagagcaca caagctt	207
<210> 132	
<211> 645	
<212> DNA <213> Homo sapiens	
tome suppose	
<pre><400> 132 gggggtgatt tcactccccg gggctgtccc aggcttgtcc ctgctacccg cacccag</pre>	goot 60
ttcctgaggc ctcaagcctg ccaccaagcc cccagctcct tctccccgca gggccca	aaac 120
acaggeetca ggaetcaaca cagettttee etceaacece gttttetete eetcaac	egga 180
ctcagctttc tgaagcccct cccagttcta gttctatctt tttcctgcat cctgtc	tgga 240
agttagaagg aaacagacca cagacctggt ccccaaaaga aatggaggca ataggt	tttg 300
aggggcatgg ggacggggtt cagcctccag ggtcctacac acaaatcagt cagtgg	ccca 360

WO 2004/094671 - 222 - PCT/US2004/012788

				gtgaggggta gagaagaaac		420 480
ggtgcagggc	ccactaccgc	ttcctccaga	tgagctcatg	ggtttctcca	ccaaggaagt	540
tttccgctgg	ttgaatgatt	ctttccccgc	cctcctctcg	ccccagggac	atataaaggc	600
agttgttggc	acacccagcc	agcagacgct	ccctcagcaa	ggaca		645
<210> 133 <211> 457 <212> DNA <213> Homo <400> 133	o sapiens					
	agccaagggt	gcagagatgt	tatatatgat	tgctcttcag	ggaaccgggc	60
ctccagctca	caccccagct	gctcaaccac	ctcctctctg	aattgactgt	cccttctttg	120
gaactctagg	cctgacccca	ctccctggcc	ctcccagccc	acgattcccc	tgacccgact	180
ccctttccca	gaactcagtc	gcctgaaccc	ccagcctgtg	gttctctcct	aggcctcagc	240
ctttcctgcc	tttgactgaa	acagcagtat	cttctaagcc	ctgggggctt	cccgggccc	300
cagccccgac	ctagaacccg	cccgctgcct	gccacgctgc	cactgccgct	tcctctataa	360
agggacctga	gegteeggge	ccaggggctc	cgcacagcag	gtgaggctct	cctgccccat	420
ctccttgggc	tgcccgtgct	tegtgetttg	gactacc			457
	o sapiens					
<400> 134 gcagcaaatc	agaatggcag	tttgattcat	ggtgctgaga	ctggaggttc	ctctgctgta	60
ggctcagaat	atgtctaagc	aattgaggaa	tgtctcagaa	aacgtggggc	tagtgtgcca	120
tatttatctg	caaagccatt	ttccctccct	aattctgatt	ggataagggc	attacagttg	180
acttagcaaa	acctgctggc	tgttcctggg	gaagtcccat	gttgcagact	cgaaggtatt	240
atttattgta	gcctccaagt	tacggaattt	ccctctgctc	ctctttttt	ggtaatagtg	300
aattaggttt	cactttccaa	aacatgaact	gtttcttgaa	aaaaagaact	tcattgcata	360
tagaaaaaaa	caaaggttgc	aatccattct	aactataatg	ctttttctca	acacttaaac	420
ttttacagtt	actttcagag	gttatttttc	aaaatatccc	cagtaataga	aatttttcat	480
cctttatagg	taaacctaat	tttttggtaa	cagcaagttg	tgcctgatta	ttagaacagt	540
gatttacctg	gacagtcctc	cttgatcaaa	tactataaag	taataggact	ggcctgcttt	600
gacagggtca	aagatctgga	actggcaagt	tttaaataat	tcaataaatg	ctttgatcat	660

WO 2004/094671 - 223 - PCT/US2004/012788

gctcatttgg gtatctgatt tgtggtgtgt taaaacaagt ttcacgtctt atagcagtcc	780
ctgaatgaaa acatcataag atggtatcta gaatggtgtg agaaaaggat tcatagctat	840
cctagggtta ttgtaaaaaa caaagggtgc tttttgagga aatgaattta aaagcggggg	900
ggcacgcata gagacagacc ttgggaaagt agcttgagac agaagggaaa caggttgatt	960
tacgatgggg ttc	973
<210> 135 <211> 333 <212> DNA <213> Homo sapiens	
<400> 135 gctaccttaa gaaggctggt taccatctgg gttttcacag tgctttcaca ttcttatcac	60
tttcaacact actgcaaata ggaagggaca gtaacattta gaagagaaca aaacagaaac	120
tcttggaagc aggaaaggtg catgactcaa agagggaaat tcctgtgcca taaaaggatt	180
gctggtgtat aaaatgctct atatatgcca attatcaatt tcctttcatg ttcagcattt	240
ctactccttc caagaagagc agcaaagctg aagttagcag cagcagcacc agcagcaaca	300
gcaaaaaaca aacatgagtg tgaagggcat ggc	333
<210> 136 <211> 1048 <212> DNA <213> Homo sapiens	
<211> 1048 <212> DNA	60
<211> 1048 <212> DNA <213> Homo sapiens <400> 136	60 120
<211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca	
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt</pre>	120
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt</pre>	120 180
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg</pre>	120 180 240
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg aggaaagcag ctgccaagaa ggactgagcc cctgccatct gcctataatg aaagctttgc</pre>	120 180 240 300
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg aggaaagcag ctgccaagaa ggactgagcc cctgccatct gcctataatg aaagctttgc aaaataaaat aaatataaaa taaagtaata aaattaaatt aaatttaaaa ataaaataaa</pre>	120 180 240 300 360
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg aggaaagcag ctgccaagaa ggactgagcc cctgccatct gcctataatg aaagctttgc aaaataaaat aaatataaaa taaagtaata aaattaaatt aaatttaaaa ataaaataaa gcaaaacaaa ataaaatata taaagtaaaa attgttaaaa tgcaaaacaa tatggacata</pre>	120 180 240 300 360 420
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg aggaaagcag ctgccaagaa ggactgagcc cctgccatct gcctataatg aaagctttgc aaaataaaat aaatataaaa taaagtaata aaattaaatt aaatttaaaa ataaaataaa gcaaaacaaa ataaaatata taaagtaaaa attgttaaaa tgcaaaacaa tatggacata aatacagaaa cacagggaaa cttctttagg cactcattta caggtaaaaa tatgaaattg</pre>	120 180 240 300 360 420 480
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg aggaaagcag ctgccaagaa ggactgagcc cctgccatct gcctataatg aaagctttgc aaaataaaat aaatataaaa taaagtaata aaattaaatt aaatttaaaa ataaaataaa gcaaaacaaa ataaaatata taaagtaaaa attgttaaaa tgcaaaacaa tatggacata aatacagaaa cacagggaaa cttctttagg cactcattta caggtaaaaa tatgaaattg aataaaggtc atctggtgtc aaataatata ggccttatct attataagag tttggactga</pre>	120 180 240 300 360 420 480 540
<pre><211> 1048 <212> DNA <213> Homo sapiens <400> 136 ggtgaccaag aatgtgagca agcccaggca cagccactgt gggcgcctga ccaaacagca ctaaatttgt gtgggacatg atcccagagg tgtgtggctt cacccctcaa cgagtggcgt ggcatggagt tactgaatct ccaaggtcaa acaggccctc aaattcatca agaaaagggt agggacaaac atctgtacca agagaaggca ggaggagctg agcaacgtcc tgctgccatg aggaaagcag ctgccaagaa ggactgagcc cctgccatct gcctataatg aaagctttgc aaaataaaat aaatataaaa taaagtaata aaattaaatt aaatttaaaa ataaaataaa gcaaaacaaa ataaaatata taaagtaaaa attgttaaaa tgcaaaacaa tatggacata aatacagaaa cacagggaaa cttctttagg cactcattta caggtaaaaa tatgaaattg aataaaggtc atctggtgtc aaataatata ggccttatct attataagag tttggactga aaagcaaaag tgagataaca aaaaaagct tttcagaata ttattttgta tagatatgtg</pre>	120 180 240 300 360 420 480 540 600

WO 2004/094671 - 224 - PCT/US2004/012788

				************	annatatta	840
	aaataggaag					
gaagcaggaa	aggtgcatga	ctcaaagagg	gaaattcctg	tgccataaaa	ggattgctgg	900
tgtataaaat	gctctatata	tgccaattat	caatttcctt	tcatgttcag	catttctact	960
ccttccaaga	agagcagcaa	agctgaagtt	agcagcagca	gcaccagcag	caacagcaaa	1020
aaacaaacat	gagtgtgaag	ggcatggc				1048
<210> 137 <211> 504 <212> DNA <213> Homo	o sapiens					•
<400> 137 agggggcccc	gcagcagccc	cttggcttcc	cttctccctt	gcctcccctc	cggggctccg	60
gttcagaggc	actctgggcg	cctgctacag	cttccaaact	gcgccgcttc	cttcttcggc	120
agaaaaggac	tttcagatgc	ggcggcggcg	gcggcggcga	ctcaggacag	egececetee	180
cctaacggcc	gcctctccct	ctcccctcg	cccgcccgg	ctccccacc	tctgggaagg	240
cgctgggggt	gtggccaggg	accggtataa	agtccggggg	agccggtccc	gggcagccgc	300
tcagccccct	gcccctcgcc	gcccgccgcc	tgcctgggcc	gggccgagga	tgcggcgcag	360
cgcctcggcg	gccaggcttg	ctccctccgg	cacgcctgct	aacttcccc	gctacgtccc	420
cgttcgcccg	ccgggccgcc	cegtetecee	gcgccctccg	ggtcgggtcc	tccaggagcg	480
ccaggcgctg	ccgccgtgtg	ccct				504
	2 o sapiens					
<400> 138 gatcacaaca		tacacaatga	. ttacaaggaa	tggtgcccca	ctggagttgt	60
tcaacgcaaa	acttgcacat	tgcaagtggc	aatctcccag	geetgeetee	ctccacgagt	120
gggtctgaat	gggcctgaga	. ggcaaacato	caagaaggag	gaagaggcto	ggcggcacct	180
ccctccccgg	gagttctgct	gattccatct	tggggaagca	gggtggacca	gggcccaaat	240
gcgccctggg	gagattgcgg	gggcgggaga	ggttgcaagg	ggcaagtgg	aagagcctgt	300
taacgtctta	gggcctccag	gcctttctgt	gcccctagct	gtgcctgtad	getttacccc	360
acctcaggag	g gettggtete	: cagcggttga	ggctggaago	accggggtg	ggtggaaagg	420
gctctgtcca	a ggaagaccgg	g atccgcagag	g ccgggagtco	gggctagga:	a gtccctttct	480
cggtgggaga	a ctgaggccgc	cttggcggg	g cgggacgaga	a ctcctccga	g gtcgggaaag	540
ggggccccg	agcagcccct	tggattacat	tetecettge	c ctcccctcc	g gggctccggt	600

tcagaggcac tctgggcgcc tgctacagct tccaaactgc gccgcttcct tcttcggcag	660
aaaaggactt tcagatgcgg cggcggcggc ggcggcgact caggacagcg cccctcccc	720
taacggccgc ctctccctct ccccctcgcc cgccccggct cccccacctc tgggaaggcg	780
ctgggggtgt ggccagggac cggtataaag tccgggggag ccggtcccgg gcagccgctc	840
ageccectge ceetegeege eegeegeetg eetgggeegg geegaggatg eggegeageg	900
ceteggegge caggettget eceteeggea egeetgetaa etteeceege taegteeceg	960
ttcgcccgcc gggccgcccc gtctccccgc gccctccggg tcgggtcctc caggagcgcc	1020
aggegetgee geegtgtgee et	1042
<210> 139 <211> 24 <212> DNA <213> artificial sequence <220> <223> Immunostimulatory nucleic acid	
<400> 139	
tcgtcgtttt gacgttttgt cgtt	24
<210> 140 <211> 24 <212> DNA <213> artificial sequence <220>	
<223> Immunostimulatory nucleic acid	
<400> 140 tcgtcgtttt gtcgtttttt tcga	24
<210> 141 <211> 24 <212> DNA <213> artificial sequence	
<220>	
<223> Immunostimulatory nucleic acid	
<400> 141 tegtegttte gtegtttegt egtt	24
<210> 142 <211> 24 <212> DNA <213> artificial sequence	

`

<220> <223>	Immunostimulatory nucleic acid	
<400>	142	
	ttc gtegttttgt cgtt	24
<210>		
<211> <212>		
	artificial sequence	
<220>		
<223>	Immunostimulatory nucleic acid	
<400>	143	
tcgtcg	tttt teggtegttt t	21
	·	
<210>		
<211> <212>		
<213>	artificial sequence	
<220>		
<223>	Immunostimulatory nucleic acid	
<400>		
tegteg	tttt tcgtgcgttt tt	22
<210> <211>		
<212>		
<213>	artificial sequence	
<220>		
<223>	Immunostimulatory nucleic acid	
<400>	145	
tcgtcg	tttt cggcggccgc cg	22
<210><211>	146 24	
<212>		
<213>	artificial sequence	
<220>		
<223>	Immunostimulatory nucleic acid	
<400>		_
tegteg	tttt acggegeegt geeg	24
.030:	147	
<210> <211>	147 24	
<212>		

24

```
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc feature
<222> (2)..(2)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (5)..(5)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (13)..(13)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (21)..(21)
<223> N = 5-methylcytosine
<400> 147
tngtngtttt gtngttttgt ngtt
<210> 148
<211> 27
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
 <221> misc_feature
 <222> (2)..(2)
<223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (5)..(5)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (7)..(7)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (11)..(11)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (13)..(14)
 <223> N = 5-methylcytosine
```

27

```
<220>
<221> misc_feature
<222> (16)..(16)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (26)..(27)
<223> N = 5-methylcytosine
<400> 148
tngtngntgt ntnngnttnt tnttgnn
<210> 149
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (8)..(8)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (10)..(10)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (13)..(13)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (16)..(16)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
```

<222> (20)..(20)

```
<223> N = 5-methylcytosine
<400> 149
                                                                           21
gngtttgntn ttnttnttgn g
<210> 150
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature
<222> (2)..(4)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (8)..(8)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (12)..(12)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (15)..(16)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> N = 5-methylcytosine
<400> 150
                                                                            20
gnnnaagntg gnatnngtna
 <210> 151
 <211> 15
 <212> DNA
 <213> artificial sequence
 <220>
 <223> Immunostimulatory nucleic acid
 <400> 151
                                                                             15
 tcctggcggg gaagt
 <210> 152
 <211> 42
 <212> DNA
 <213> artificial sequence
 <220>
```

WO 200	04/094671	PCT/US2004/012788
<400>	152	
gaaact	cgag ccaccatgag acagactttg ccttgtatct ac	42
<210>	153	
<211> <212>	37 .	
<213>	DNA artificial sequence	
	sequence	
<220>		
<223>	Oligonucleotide	
<400>	153	
gaaaga	attc ttaatgtaca gagtttttgg atccaag	37
<210> <211>	154 24	
<212>	DNA	
<213>	artificial sequence	
<220>	·	
<223>	Immunostimulatory nucleic acid	
<400>	154	
tgctgc	tttt gtgcttttgt gctt	24
<210>	155	
<211>	20	•
<212> <213>	DNA artificial sequence	
	ar stractar seducince	
<220>		
<223>	Immunostimulatory nucleic acid	
<400>	155	
tccatga	legt teetgatget	20
	156	
<211> <212>	20	
	DNA artificial sequence	
<220>	2	
<223>	Immunostimulatory nucleic acid	
	156	
ccatga	gct tcctgatgct	20
.01.0		
	157	
	20 DNA	
	artificial seguenco	

WO 200	4/094671	PCT/US2004/0	127
<223>	Immunostimulatory nucleic acid	i	
<220> <221> <222> <223>	(8) (8)		
<400> tccatg	157 angt tootgatgot	. :	20
<210> <211> <212> <213>	22 DNA		
<223>	Immunostimulatory nucleic acid	•	
<400> tcgtcg		:	22
<210> <211> <212> <213>	21 DNA		
<220>			
<223>	Immunostimulatory nucleic acid		
<400> ggggac	159 gacg tcgtgggggg g	2	21
<210> <211> <212> <213>	22		
<223>	Immunostimulatory nucleic acid		
<400> tgctgc			22
<210> <211> <212> <213>			
<220>			
<223>	Immunostimulatory nucleic acid		
<400> ggggag	161 cagc tgctgggggg g		21