UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

ESCUELA PROFESIONAL DE INGENIERÍA INFORMÁTICA Y DE SISTEMAS

"Metricas de software"

DOCENTE: Ing ROXANA LISETTE QUINTANILLA PORTUGAL

CURSO: INGENIERIA DE SOFTWARE

ESTUDIANTE:	CODIGO:
INCA CRUZ CARLOS EDUARDO	171943 P
BUSTAMANTE FLORES ERICK ANDREW	
CHOQUE SARMIENTO LEYDI DIANA	174909 P
HUANCARA CCOLQQUE ALEX HELDER	174911 P
PEREIRA CHINCHERO RICHARD MIKHAEL	174912 P
QUISPE CHAMBILLA CARLOS ENRIQUE	171916 P
SARCO JACINTO DANIEL EDUARDO	174447 P
VEGACENTENO OLIVERA RONALDINHO	174452 P
	140934 P

P= Participo NP = No Participo

Cusco - 2021

Metricas de software.

1. Definición.

Las métricas de desarrollo de software pueden revelar como se está desempeñando una aplicación y que tan efectivo es el equipo de desarrollo en su trabajo.

Existe una gama de posibles medidas abarca cuatro categorías clave:

- Productividad del desarrollador.
- Rendimiento del Software.
- Defectos y seguridad.
- Experiencia de usuario (UX).

Existen muchas formas de discutir o evaluar la eficiencia del equipo y el trabajo completado, en este documento evaluaremos las métricas siguiendo los siguientes pasos.

a. Identificar componentes del sistema.

En este paso pasamos a identificas los componentes del sistema.

Entradas externas (EE): Procesos en la que se introducen datos.

Entradas Externas (EO): Procesos en donde se envían datos al exterior.

Consultas (EQ): Procesos en donde se combina un dato de entrada y uno de salida sin afectar el almacenamiento.

Archivos Externos (EIF): Grupos de datos que se mantienen externamente.

Archivos Internos: Grupos de datos relacionados entre sí internos al sistema.

b. Calcular el numero de elemento y su complejidad.

Para este paso haremos uso de una tabal pre definida la cual contara con los siguientes puntajes para la evaluación posterior.

La primera tabla consta de la clasificación de entradas y consultas.

Clasificación de	1 a 4 atributos	5 a 15 atributos	Mas de 15
Entradas y	Simples	Media	atributos
Consultas			Compleja
Entradas externas	3	4	6
(EI)			
Archivos internos	7	10	15
(ILF)			
Consultas (EQ)	3	4	6

La segunda tabla consta de la clasificación de salidas.

Clasificación de Entradas y Consultas	1 a 4 atributos Simples	5 a 15 atributos Media	Mas de 15 atributos Compleja
Archivos externos (EIF)	5	7	10
Salidas externas (EO)	4	5	7

- c. Obtener los puntos de Función sin Ajustar (PFNA).
 Obteniendo los resultados del paso anterior pasamos a calcular los puntos de función no ajustados utilizando los datos identificados en el primer paso.
- d. Obtener los puntos de Funcion Ajustados (PFA). Ubicamos todos los datos en la tabla de factor de ajuste.
- e. Calcular el esfuerzo.

En este paso calculamos el esfuerzo que requerirá el desarrollo del software.

f. Calcular la duración del proyecto.
 Calculamos la estimación de desarrollo con respecto a las horas, personas y días de trabajo

Pasaremos a evaluar el Sistema de tutorías siguiendo estos pasos:

Paso 1. Identificar los componentes del sistema.

Contamos con los siguientes subsistemas.

Coordinador:

- Registrar Docentes.(EI)
- Registrar Alumno.(EI)
- Listado de todos los docentes.(EO)
- Listado de todos los alumnos.(EO)
- Filtrado de docentes.(EQ)
- 2 tablas en la base de datos (ILF)

Alumno:

• Revisar ficha de tutoría.(EQ)

Tutores:

- Generar Horarios. (EE).
- Designar Horario (EE).
- Listar Horarios (EO)
- 1 tabla en la base de datos (ILF)

Ficha de tutoría:

- Registrar ficha de tutoría (EE)
- Búsqueda de ficha de tutoría (EQ)
- Listar ficha de tutoría (EO)
- 1 tabla en la base de datos (ILF)

Asignaciones:

• Asignar docentes a tutores(EI)

- Asignar alumnos a tutorados(EI)
- 2 tablas en la base de datos (ILF)

Paso 2. Pasamos a evaluar el sistema con las tablas

- Registrar Docentes (EI 4 puntos).
- Registrar Alumno (EI 4 puntos).
- Listado de todos los docentes (EO 4 puntos).
- Listado de todos los alumnos (EO 4 puntos).
- Filtrado de docentes (EQ 3 puntos).
- 2 tablas en la base de datos (ILF 10 puntos).
- Revisar ficha de tutoría (EQ 3 puntos).
- Generar Horarios. (EI 3 puntos).
- Designar Horario (EI 3 puntos).
- Listar Horarios (EO 5 puntos).
- 1 tabla en la base de datos (ILF 7 puntos).
- Registrar ficha de tutoría (EI 4 puntos).
- Búsqueda de ficha de tutoría (EQ 4 puntos).
- Listar ficha de tutoría (EO 4 puntos).
- 1 tabla en la base de datos (ILF 7 puntos).
- Asignar docentes a tutores (EI 4 puntos).
- Asignar alumnos a tutorados (EI 4 puntos).
- 2 tablas en la base de datos (ILF 7 puntos).

Paso 3. Pasamos a identificar

Clasificación de	1 a 4	5 a 15	Mas de 15	Totales
Entradas y	atributos	atributos	atributos	
Consultas	Simples	Media	Compleja	
Entradas	3 (hay 2)	4 (hay 5)	6 (no hay)	26
externas (EI)	-	-	-	
Archivos	7 (hay 3)	10 (hay 1)	15 (no hay)	31
internos (ILF)	-	-	-	
Consultas (EQ)	3 (hay 2)	4 (hay 1)	6 (no hay)	10
	, ,	, ,	, ,	

Clasificación de	1 a 4	5 a 15	Mas de 15	Totales
Entradas y	atributos	atributos	atributos	
Consultas	Simples	Media	Compleja	
Archivos	5 (no hay)	7 (no hay)	10 (no hay)	0
externos (EIF)				
Salidas externas	4 (hay 3)	5 (hay 1)	7	17
(EO)				

$$PFNA = 26 + 31 + 10 + 0 + 17 = 84$$

Paso 4. Pasamos a obtener los puntos de función

Para este paso haremos uso de una tabla pre definida.

FACTOR DE AJUSTE	PUNTAJE
Comunicación de datos	4
Procesamiento distribuido	4
Objetivos de Rendimiento	2
Configuracion del equipamiento	1
Tasa de transacciones	4
Entrada de datos en Linea	3
Interfase con el usuario	4
Actualizaciones en Linea	1
Procesamiento complejo	0
Reusabilidad del código	3
Facilidad de implementación	0
Facilidad de operación	2
Instalación multiples	3
Facibilidad de cambios	4
Factor de ajuste total	35

Para poder evaluar utilizaremos la siguiente formula.

$$PFA = PFNA * [0.65 + (0.01 * factor de ajuste)]$$

Remplazando obtenemos:

$$PFA = 84 * [0.64 + (0.01 * 35)]$$

$$PFA = 84 * [0.65 + 0.35]$$

$$PFA = 84.00$$

Paso 5. Pasamos a hallar la estimación de esfuerzo ya con todos los datos obtenidos.

Lenguaje	Horas PF promedio	Líneas de código por PF
Ensamblador	25	300
COBOL	15	100
Lenguajes de 4ta	8	20
Generacion		
(Javascript(React))		

Hallamos la siguiente formula.

Hora / Hombre = PFA * Horas PF promedio

Hora / Hombre = 84.00 * 8

Hora / Hombre = 672.00

Hallando este resultado podemos observas que se necesitan aproximadamente 672 horas con un solo desarrollador.

Paso 6 Calculamos la duración del proyecto.

Estimamos la duración del proyecto con el equipo de desarrollo de 8 personas trabajando, a 3 horas diarios en 14 días al mes.

Hora = ((Horas/Hombre) / (Cantidad de personas))

Hora = (672/8) = 84 -> Duración del proyecto en horas

Días = (Horas / (Cantidad de horas))

Días = (84/3) = 28 -> Días de trabajo

Meses = ((días / (Cantidad de días))

Meses = $(28/14) = 2 \rightarrow 2$ meses de trabajo