Projet : développement d'un mini système d'exploitation pour PC x86

Jérôme Ermont et Emmanuel Chaput

IRIT - Toulouse INP/ENSEEIHT

PIT : Programmable Interval Timer

- Aussi appelé 8253/8254
- Timer matériel qui comprend :
 - un oscillateur de 1,19 MHz
 - un pré-scaleur
 - 3 ports de sortie

Ports

- Disposent d'un diviseur d'horloge
- Channel 0 : connecté à l'entrée 0 du PIC
- Channel 1 : permet de gérer la mémoire
- Channel 2 : utilisé par le haut parleur du PC
- Configurés par un registre de contrôle/commande

Num. Port	Utilisé pour	
0x40	Channel 0	
0x41	Channel 1	
0x42	Channel 2	
0x43	Registre de contrôle/commande	

Registre de contrôle/commande

Bits	Signification	
7 et 6	Selection du Channel	
	0 0 : Channel 0	
	0 1 : Channel 1	
	1 0 : Channel 2	
	1 1 : Utilisé pour la lecture du registre de contrôle/commande	
4 et 5	Mode d'accès	
	0 0 : Mode enregistrement valeur	
	0 1 : Poids faible seul	
	1 0 : Poids fort seul	
	1 1 : Poids faible/Poids fort	
de 1 à 3	Mode de fonctionnement	
	0 0 0 : Interruption sur compte à rebours	
	0 0 1 : Compte à rebours contrôlé	
	0 1 0 : Générateur d'impulsion	
	0 1 1 : Générateur de signal carré	
	1 0 0 : Impulsion à expiration d'un timer	
	1 0 1 : ldem	
	1 1 0 : Générateur d'impulsion 2	
	1 1 1 : Générateur de signal carré 2	
0	Mode BCD (1)/Binaire (0)	

Exemple de configuration

- outb(0x34, 0x43)
 Channel 0, accès poids faible/poids fort, générateur d'impulsion, fréquence définie en binaire
- outb(FREQUENCE&0xFF, 0x40)
 Affectation de la fréquence, poids faible, au Channel 0
- outb(FREQUENCE>>8, 0x40)
 Affectation de la fréquence, poids faible, au Channel 0
 - Calcul de la fréquence
 - Oscillateur : f_osc=1,19 MHz (0x1234BD)
 - FREQUENCE = f osc/HORLOGE
 - HORLOGE : fréquence de l'horloge à générer

PIC: Programmable Interrupt Controller

- Permet de géréer les interruptions provenant de différents matériels (Timer, Clavier, ...)
- Table de correspondance

Port d'entrée	Numéro d'IT	Description
IRQ0	0×20	Timer
IRQ1	0×21	Clavier
IRQ2	0×22	Cascade pour le PIC esclave
IRQ3	0×23	Port série 2
IRQ4	0×24	Port série 1
IRQ5	0×25	Port parallèle 2
IRQ6	0×26	Lecteur de disquette
IRQ7	0×27	Port parallèle 1
IRQ8/IRQ0	0×28	CMOS RTC
IRQ9/IRQ1	0×29	CGA
IRQ10/IRQ2	0×2A	Reservé
IRQ11/IRQ3	0x2B	Reservé
IRQ12/IRQ4	0x2C	PS/2
IRQ13/IRQ5	0x2D	FPU
IRQ14/IRQ6	0×2E	Controleur de disque dur
IRQ15/IRQ7	0x2F	Reservé

Gestion des interruptions via le PIC

- Le PIC dispose de 2 ports I/O pour le contrôler
 - 0x20 : Commande
 - 0x21 : Données de configuration
- Masquage de l'IT : outb(inb(NumPortPIC)|(1<<NumPortIRQ), NumPortPIC)
 Par ex : outb(inb(0x21)|1, 0x21) : désactivation de l'IT du Timer
- Démasquage de l'IT : outb(inb(NumPortPIC)&~(1<<NumPortIRQ), NumPortPIC)
 Par ex : outb(inb(0x21)&0xfe, 0x21) : activation de l'IT du Timer
- Acquittement de l'IT :
 outb(0x20, NumPortPIC)
 Par ex : outb(0x20, 0x20) : ack de l'IT du PIC Master

Travail à réaliser

Écrire le module time.c qui permet de gérer l'horloge système à 1 kHz (1 ms) et qui permet de faire la conversion vers les heures, minutes et secondes.

- Écrire la fonction qui initialise le timer pour la fréquence de 1 kHz et la ligne d'IT correspondante (penser à avoir un fichier assembleur de traitement de l'IT);
- 2 Écrire en C la fonction de traitement de l'IT reçue. Cette fonction acquitte l'IT et incrémente le compteur système.
- Écrire une fonction de conversion du compteur système vers un format hh :mm :ss
- 4 Afficher la durée d'exécution du système en haut et à droite de la console.