Level III

- 1. Write a program that will print all the prime numbers between two integers entered by the user.
- 2. If the user enters two numbers, print all the palindrome numbers between those two numbers.
- 3. If the user enters two numbers, print all the perfect numbers between those two numbers.
- 4. Find the sum of the squares of the first 100 odd numbers.
- 5. Compute the sum, $S = 1^1 + 2^2 + 3^3 + \dots + 10^{10}$
- 6. Compute the sum, $S = 1^0 + 2^{-1} + 3^{-2} + \dots + 10^{-9}$
- 7. Compute the sum, $S = 1! + 2! + 3! + \cdots + 10!$
- 8. Compute the value of e^x . The user will enter the value of x and n. The value of n cannot be greater than 10. xcan be a fraction. Use the following formula.

$$e^{x} = \frac{x^{0}}{0!} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!}$$

- 9. Find all the numbers between 10 and 1000 where each number's summation of their digits is a prime number. For example 344 should be printed because 3+4+4=11 which is a prime number.
- 10. Take 25 integers from the user and count the number of odd, even, positive and negative numbers the user enters. Print the results. Remember 0 is neither positive nor negative but it's an even number.
- 11. Print the following shapes given the size. If the user enters 5 the shapes should look like the following.

a)	1	b) 54321	c) 1	d)	FiveFour Three Two One
	12	1234	10 Five 1	Four	Three Two
	123	3 2 1	101Five F	our	Three
	1234	1 2	1010	Fi	ve Four
	12345	1	10101Five	<u>,</u>	