Выпускной проект.

Описание проекта

Проект:

• Заказчик - металлургический комбинат.

Цель:

- Цель заказчика уменьшить потребление электроэнергии на этапе обработки стали. Для этого комбинату нужно контролировать температуру сплава.
- Задача проекта построить модель, которая будет предсказывать температуру сплава. Разработанная модель будет использована для имитации технологического процесса. Модель позволит снизить затраты на электричество, обслуживание и ремонт.

Данные представлены 7-мью файлами:

- data_arc_new.csv данные об электродах;
- data_bulk_new.csv данные о подаче сыпучих материалов (объём);
- data_bulk_time_new.csv данные о подаче сыпучих материалов (время);
- data_gas_new.csv данные о продувке сплава газом;
- data_temp_new.csv результаты измерения температуры;
- data_wire_new.csv данные о проволочных материалах (объём);
- data_wire_time_new.csv данные о проволочных материалах (время).

Дополнительная информация:

- Целевой признак последнее измерение температуры партии.
- В одной партии несколько итераций нагрева (полных циклов).
- Целевая метрика МАЕ (МАЕ<=6.8)
- random_state = 91224;

Дополнения заказчика:

- Информация по выбросам (отрицательная реактивная мощность, температура плавления стали менее 1500)
- посчитать и проинтерпретировать R2 для лучшей модели на тестовой выборке
- провести анализ важности признаков лучшей модели

Загрузка данных

import shap

```
In [1]:
         !pip install phik shap matplotlib seaborn --upgrade
        Requirement already satisfied: phik in /opt/conda/lib/python3.9/site-packages (0.12.4)
        Requirement already satisfied: shap in /opt/conda/lib/python3.9/site-packages (0.46.0)
        Requirement already satisfied: matplotlib in /opt/conda/lib/python3.9/site-packages (3.9.4)
        Requirement already satisfied: seaborn in /opt/conda/lib/python3.9/site-packages (0.13.2)
        Requirement already satisfied: joblib>=0.14.1 in /opt/conda/lib/python3.9/site-packages (from phik) (1.1.0)
        Requirement already satisfied: numpy>=1.18.0 in /opt/conda/lib/python3.9/site-packages (from phik) (1.24.4)
        Requirement already satisfied: scipy>=1.5.2 in /opt/conda/lib/python3.9/site-packages (from phik) (1.9.1)
        Requirement already satisfied: pandas>=0.25.1 in /opt/conda/lib/python3.9/site-packages (from phik) (1.2.4)
        Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (21.3)
        Requirement already satisfied: kiwisolver>=1.3.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (1.4.4)
        Requirement already satisfied: contourpy>=1.0.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (1.3.0)
        Requirement already satisfied: pillow>=8 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (8.4.0)
        Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (2.8.1)
        Requirement already satisfied: importlib-resources>=3.2.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (6.4.5)
        Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (0.11.0)
        Requirement already satisfied: pyparsing>=2.3.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (2.4.7)
        Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib) (4.55.3)
        Requirement already satisfied: zipp>=3.1.0 in /opt/conda/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib)
        (3.5.0)
        Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.9/site-packages (from pandas>=0.25.1->phik) (2021.1)
        Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)
        Requirement already satisfied: slicer==0.0.8 in /opt/conda/lib/python3.9/site-packages (from shap) (0.0.8)
        Requirement already satisfied: numba in /opt/conda/lib/python3.9/site-packages (from shap) (0.60.0)
        Requirement already satisfied: cloudpickle in /opt/conda/lib/python3.9/site-packages (from shap) (3.1.0)
        Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.9/site-packages (from shap) (0.24.1)
        Requirement already satisfied: tqdm>=4.27.0 in /opt/conda/lib/python3.9/site-packages (from shap) (4.61.2)
        Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /opt/conda/lib/python3.9/site-packages (from numba->shap) (0.43.0)
        Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn->shap) (3.1.0)
In [2]:
         import pandas as pd
         import matplotlib.pyplot as plt
         plt.rcParams["figure.figsize"] = (5,5)
         from phik.report import plot correlation matrix
         from phik import report
```

```
import sklearn
         from sklearn.pipeline import Pipeline
         from sklearn.impute import SimpleImputer
         import numpy as np
         from sklearn.model selection import train test split
         import seaborn as sns
         from sklearn.preprocessing import OrdinalEncoder, StandardScaler, MinMaxScaler, RobustScaler
         from sklearn.compose import ColumnTransformer
         from sklearn.model selection import RandomizedSearchCV, GridSearchCV
         from sklearn.linear model import LinearRegression
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.dummy import DummyRegressor
         from sklearn.metrics import r2 score
         from sklearn.metrics import mean absolute error
In [3]:
         data arc new=pd.read csv('', parse dates=['Начало нагрева дугой', 'Конец нагрева дугой'])
In [4]:
         data bulk new=pd.read csv('')
In [5]:
         data bulk time new=pd.read csv('')
In [6]:
         data gas new=pd.read csv('')
In [7]:
         data temp new=pd.read csv('', parse dates=['Bpems замера'])
In [8]:
         data wire new=pd.read csv('')
In [9]:
         data wire time new=pd.read csv('', parse dates=['Wire 1', 'Wire 2', 'Wire 3', 'Wire 4', 'Wire 5', 'Wire 6',
                'Wire 7', 'Wire 8', 'Wire 9'])
```

Исследовательский анализ каждого документа

Выполнен исследовательский анализ каждого документа и сделаны выводы об имеющихся признаках.

Иследование документа data_arc_new

```
In [10]:
```

```
# Данные об электродах
data_arc_new.info()
display(data_arc_new.describe())
display(data_arc_new.head())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14876 entries, 0 to 14875
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	key	14876 non-null	int64
1	Начало нагрева дугой	14876 non-null	datetime64[ns]

2 Конец нагрева дугой 14876 non-null datetime64[ns] 3 Активная мощность 14876 non-null float64

4 Реактивная мощность 14876 non-null float64 dtypes: datetime64[ns](2), float64(2), int64(1)

memory usage: 581.2 KB

key	Активная мощность	Реактивная мощность
-----	-------------------	---------------------

count	14876.000000	14876.000000	14876.000000
mean	1615.220422	0.662752	0.438986
std	934.571502	0.258885	5.873485
min	1.000000	0.223120	-715.479924
25%	806.000000	0.467115	0.337175
50%	1617.000000	0.599587	0.441639
75%	2429.000000	0.830070	0.608201
max	3241.000000	1.463773	1.270284

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность
0	1	2019-05-03 11:02:14	2019-05-03 11:06:02	0.305130	0.211253
1	1	2019-05-03 11:07:28	2019-05-03 11:10:33	0.765658	0.477438
2	1	2019-05-03 11:11:44	2019-05-03 11:14:36	0.580313	0.430460

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность
3	1	2019-05-03 11:18:14	2019-05-03 11:24:19	0.518496	0.379979
4	1	2019-05-03 11:26:09	2019-05-03 11:28:37	0.867133	0.643691

In [11]:

Выделена аномалия, про которую говорил заказчик. Она единичная. data_arc_new[data_arc_new['Peaктивная мощность']<=0]

Out[11]: key Начало нагрева дугой Конец нагрева дугой Активная мощность Реактивная мощность

9780 2116 2019-07-28 02:22:08 2019-07-28 02:23:57 0.705344 -715.479924

In [12]:

Как будет выглядеть распределение данных без аномалии, которую уберу в главе предобработки данных.
gr1=data_arc_new[data_arc_new['Peaктивная мощность']>=0]['Peaктивная мощность'].plot(kind='hist', bins=50, title='Pacпределение pegr1.set_xlabel('Peaктивная мощность');

Итоги по data_arc_new:

- Пропусков нет.
- Начало нагрева дугой и Конец нагрева дугой загружены в формате datetime64.

- Реактивная мощность единичный производственный выброс.
- key номер партии;
- Начало нагрева дугой время начала нагрева;
- Конец нагрева дугой время окончания нагрева;
- Активная мощность значение активной мощности;
- Реактивная мощность значение реактивной мощности.

Иследование документа data_bulk_new

```
In [13]:
          # Данные о подаче сыпучих материалов (объём)
          data bulk new.info()
          display(data bulk new.describe())
          display(data bulk new.head())
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3129 entries, 0 to 3128
         Data columns (total 16 columns):
              Column
                       Non-Null Count Dtype
                       3129 non-null
                                      int64
          0
              key
              Bulk 1
                       252 non-null
                                       float64
              Bulk 2
                       22 non-null
                                       float64
              Bulk 3
                       1298 non-null float64
              Bulk 4
                       1014 non-null
                                      float64
              Bulk 5
                       77 non-null
                                       float64
          6
              Bulk 6
                       576 non-null
                                      float64
              Bulk 7
                       25 non-null
                                       float64
              Bulk 8
                       1 non-null
                                       float64
              Bulk 9
                       19 non-null
                                       float64
          10 Bulk 10 176 non-null
                                       float64
              Bulk 11 177 non-null
                                       float64
          12 Bulk 12
                       2450 non-null
                                      float64
                       18 non-null
              Bulk 13
                                       float64
                       2806 non-null
                                      float64
          14 Bulk 14
          15 Bulk 15 2248 non-null
                                       float64
         dtypes: float64(15), int64(1)
         memory usage: 391.2 KB
```

	key	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	Bulk 7	8 8	Bulk 9	Bulk 10	Bulk 11	В
count	3129.000000	252.000000	22.000000	1298.000000	1014.000000	77.000000	576.000000	25.000000	1.0	19.000000	176.000000	177.000000	2450.0

	key	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	Bulk 7	Bulk 8	Bulk 9	Bulk 10	Bulk 11	В
mean	1624.383509	39.242063	253.045455	113.879045	104.394477	107.025974	118.925347	305.600000	49.0	76.315789	83.284091	76.819209	260.4
std	933.337642	18.277654	21.180578	75.483494	48.184126	81.790646	72.057776	191.022904	NaN	21.720581	26.060347	59.655365	120.6
min	1.000000	10.000000	228.000000	6.000000	12.000000	11.000000	17.000000	47.000000	49.0	63.000000	24.000000	8.000000	53.0
25%	816.000000	27.000000	242.000000	58.000000	72.000000	70.000000	69.750000	155.000000	49.0	66.000000	64.000000	25.000000	204.0
50%	1622.000000	31.000000	251.500000	97.500000	102.000000	86.000000	100.000000	298.000000	49.0	68.000000	86.500000	64.000000	208.0
75%	2431.000000	46.000000	257.750000	152.000000	133.000000	132.000000	157.000000	406.000000	49.0	70.500000	102.000000	106.000000	316.0
max	3241.000000	185.000000	325.000000	454.000000	281.000000	603.000000	503.000000	772.000000	49.0	147.000000	159.000000	313.000000	1849.0

	key	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	Bulk 7	Bulk 8	Bulk 9	Bulk 10	Bulk 11	Bulk 12	Bulk 13	Bulk 14	Bulk 15
0	1	NaN	NaN	NaN	43.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	206.0	NaN	150.0	154.0
1	2	NaN	NaN	NaN	73.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	206.0	NaN	149.0	154.0
2	3	NaN	NaN	NaN	34.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	205.0	NaN	152.0	153.0
3	4	NaN	NaN	NaN	81.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	207.0	NaN	153.0	154.0
4	5	NaN	NaN	NaN	78.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	203.0	NaN	151.0	152.0

```
In [14]:
```

Много пропусков, они будут заполнены позже.

Анализ самых заполненных признаков

(3129-(data_bulk_new.isna().sum())).sort_values(ascending=False)

Out[14]: key
Bulk 14 3129 2806 Bulk 12 2450 Bulk 15 2248 Bulk 3 1298 Bulk 4 1014 Bulk 6 576 Bulk 1 252 Bulk 11 177 Bulk 10 176 Bulk 5 77

```
Bulk 7 25
Bulk 2 22
Bulk 9 19
Bulk 13 18
Bulk 8 1
dtype: int64
```

In [15]:

```
# Распределения объемов сыпучих материалов, которые чаще всего подавались НА ОДНОМ ГРАФИКЕ list_bulk=['Bulk 14', 'Bulk 12', 'Bulk 15', 'Bulk 3', 'Bulk 4'] gr2=data_bulk_new[list_bulk].plot(kind='hist', bins=50, alpha=0.5, title='Распределения объемов сыпучих материалов') gr2.set_xlabel('Объем сыпучих материалов');
```


In [16]: # Распределения объемов сыпучих материалов, которые чаще всего подавались НА РАЗНЫХ ГРАФИКАХ data_bulk_new[list_bulk].hist(bins=50, figsize=(15, 15));

Итоги по data_bulk_new:

- Много пропусков для разных материалов.
- Пропуски будут заполнены нулевыми значениями, тк предполагается, что материал просто не подавался в ковш.
- Признаки 14, 12, 15, 3, 4 заполнены лучше прочих. Их распределения в целом находятся в одном диапазоне. Явных выбросов не наблюдается, распределения смещены в сторону меньших значений и представлены лог-нормальными распределениями. У признака Bulk12 имеются два локальных максимума.
- key номер партии;
- Bulk 1 ... Bulk 15 объём подаваемого материала.

Иследование документа data_bulk_time_new.csv

```
In [17]:
```

```
# Данные о подаче сыпучих материалов (время)
data_bulk_time_new.info()
display(data_bulk_time_new.head())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3129 entries, 0 to 3128
Data columns (total 16 columns):
    Column
             Non-Null Count Dtype
             3129 non-null int64
    key
    Bulk 1
             252 non-null
                            object
             22 non-null
    Bulk 2
                            object
    Bulk 3
             1298 non-null
                           obiect
    Bulk 4
             1014 non-null
                            object
    Bulk 5
             77 non-null
                            object
    Bulk 6
             576 non-null
                            object
    Bulk 7
             25 non-null
                            object
                            object
    Bulk 8
             1 non-null
```

9 Bulk 9 19 non-null object
10 Bulk 10 176 non-null object
11 Bulk 11 177 non-null object
12 Bulk 12 2450 non-null object
13 Bulk 13 18 non-null object
14 Bulk 14 2806 non-null object
15 Bulk 15 2248 non-null object
dtypes: int64(1), object(15)

memory usage: 391.2+ KB

	key	Bulk 1	Bulk 2	Bulk 3	Bulk 4	Bulk 5	Bulk 6	Bulk 7	Bulk 8	Bulk 9	Bulk 10	Bulk 11	Bulk 12	Bulk 13	Bulk 14	Bulk 15
0	1	NaN	NaN	NaN	2019-05-03 11:28:48	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2019-05-03 11:24:31	NaN	2019-05-03 11:14:50	2019-05-03 11:10:43
1	2	NaN	NaN	NaN	2019-05-03 11:36:50	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2019-05-03 11:53:30	NaN	2019-05-03 11:48:37	2019-05-03 11:44:39
2	3	NaN	NaN	NaN	2019-05-03 12:32:39	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2019-05-03 12:27:13	NaN	2019-05-03 12:21:01	2019-05-03 12:16:16
3	4	NaN	NaN	NaN	2019-05-03 12:43:22	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2019-05-03 12:58:00	NaN	2019-05-03 12:51:11	2019-05-03 12:46:36
4	5	NaN	NaN	NaN	2019-05-03 13:30:47	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2019-05-03 13:30:47	NaN	2019-05-03 13:34:12	2019-05-03 13:30:47

```
In [18]: # Анализ самых заполненных признаков
# Такое же заполнение как и у data_bulk_new
(3129-(data_bulk_time_new.isna().sum())).sort_values(ascending=False)
```

```
Out[18]:
         key
                    3129
         Bulk 14
                    2806
         Bulk 12
                    2450
         Bulk 15
                    2248
         Bulk 3
                    1298
         Bulk 4
                    1014
         Bulk 6
                     576
         Bulk 1
                     252
         Bulk 11
                     177
         Bulk 10
                     176
         Bulk 5
                     77
         Bulk 7
                      25
         Bulk 2
                      22
         Bulk 9
                     19
```

```
Bulk 13 18
Bulk 8 1
dtype: int64
```

Итоги по data_bulk_time_new:

- key номер партии;
- Bulk 1 ... Bulk 15 время подачи материала.
- Документ о времени подачи материалов не войдет в финальную таблицу, нужен для проверки корректности данных.
- Данные лучше всего заполнены для тех же признаков: Bulk 14, Bulk 12, Bulk 15, Bulk 3, Bulk 4

Иследование документа data_gas_new.csv

	key	Газ 1
count	3239.000000	3239.000000
mean	1621.861377	11.002062
std	935.386334	6.220327
min	1.000000	0.008399
25%	812.500000	7.043089
50%	1622.000000	9.836267
75%	2431.500000	13.769915

		,	
ma	ЭX	3241.000000	77.99504
k	сеу	Газ 1	
0	1	29.749986	
1	2	12.555561	
2	3	28.554793	
3	4	18.841219	
4	5	5.413692	

key

Газ 1

```
In [20]:
```

```
gr3=data_gas_new['Газ 1'].plot(kind='hist', bins=50, title='Распределение объема газа для продувки') gr3.set_xlabel('Объем газа');
```


Итоги по data_gas_new:

- key номер партии;
- Газ 1 объём подаваемого газа,

• Явных выбросов не наблюдается, распределение смещено в сторону меньших значений и представлено лог-нормальным распределением.

Иследование документа data_temp_new.csv

```
In [21]:
          # Результаты измерения температуры;
          data temp new.info()
          display(data temp new.describe())
          display(data temp new.head())
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 18092 entries, 0 to 18091
          Data columns (total 3 columns):
              Column
                             Non-Null Count Dtype
              key
                             18092 non-null int64
          1 Время замера 18092 non-null datetime64[ns]
          2 Температура 14665 non-null float64
          dtypes: datetime64[ns](1), float64(1), int64(1)
          memory usage: 424.2 KB
                        кеу Температура
          count 18092.000000 14665.000000
          mean
                 1616.460977
                             1590.722741
                  934.641385
                                20.394381
            std
            min
                    1.000000
                              1191.000000
           25%
                  807.750000
                              1580.000000
           50%
                 1618.000000
                              1590.000000
           75%
                 2429.000000
                              1599.000000
                 3241.000000
                              1705.000000
           max
            key
                     Время замера Температура
              1 2019-05-03 11:02:04
                                        1571.0
                                        1604.0
              1 2019-05-03 11:07:18
```

1 2019-05-03 11:11:34

1618.0

	key	Время замера	Температура
3	1	2019-05-03 11:18:04	1601.0
4	1	2019-05-03 11:25:59	1606.0

In [22]:

gr4=data_temp_new[data_temp_new['Temneparypa']<=1500].plot(kind='hist', bins=50, title='Pacпpeдeление темпеparypa ниже 1500') gr4.set_xlabel('Temneparypa');

In [23]:

Присутствуют 5 производственных выбросов (связанных с температурой, которая меньше температуры плавления стали), они будут удалег data_temp_new[data_temp_new['Temnepatypa']<=1500]['Temnepatypa'].count()

Out[23]: 5

Итоги по data_temp_new:

- Время замера в правильном формате
- В признаке температура есть пропуски
- В признаке температура есть 5 производственых выбросов
- key номер партии;

- Время замера время замера;
- Температура значение температуры.

Иследование документа data_wire_new.csv

```
In [24]:
```

```
# Данные о проволочных материалах (объём);
data_wire_new.info()
display(data_wire_new.describe())
display(data_wire_new.head())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3081 entries, 0 to 3080
Data columns (total 10 columns):
    Column Non-Null Count Dtype
    kev
           3081 non-null int64
1 Wire 1 3055 non-null float64
2 Wire 2 1079 non-null float64
3 Wire 3 63 non-null
                          float64
4 Wire 4 14 non-null
                          float64
5 Wire 5 1 non-null
                          float64
6 Wire 6 73 non-null
                          float64
7 Wire 7 11 non-null
                          float64
8 Wire 8 19 non-null
                          float64
9 Wire 9 29 non-null
                          float64
dtypes: float64(9), int64(1)
memory usage: 240.8 KB
```

	key	Wire 1	Wire 2	Wire 3	Wire 4	Wire 5	Wire 6	Wire 7	Wire 8	Wire 9
count	3081.000000	3055.000000	1079.000000	63.000000	14.000000	1.000	73.000000	11.000000	19.000000	29.000000
mean	1623.426485	100.895853	50.577323	189.482681	57.442841	15.132	48.016974	10.039007	53.625193	34.155752
std	932.996726	42.012518	39.320216	99.513444	28.824667	NaN	33.919845	8.610584	16.881728	19.931616
min	1.000000	1.918800	0.030160	0.144144	24.148801	15.132	0.034320	0.234208	45.076721	4.622800
25%	823.000000	72.115684	20.193680	95.135044	40.807002	15.132	25.053600	6.762756	46.094879	22.058401
50%	1619.000000	100.158234	40.142956	235.194977	45.234282	15.132	42.076324	9.017009	46.279999	30.066399
75%	2434.000000	126.060483	70.227558	276.252014	76.124619	15.132	64.212723	11.886057	48.089603	43.862003
max	3241.000000	330.314424	282.780152	385.008668	113.231044	15.132	180.454575	32.847674	102.762401	90.053604

```
key
                   Wire 1 Wire 2 Wire 3 Wire 4 Wire 5 Wire 6 Wire 7 Wire 8 Wire 9
             1 60.059998
                            NaN
                                   NaN
                                          NaN
                                                NaN
                                                       NaN
                                                                    NaN
                                                              NaN
                                                                           NaN
              2 96.052315
                            NaN
                                  NaN
                                          NaN
                                                NaN
                                                       NaN
                                                              NaN
                                                                     NaN
                                                                           NaN
             3 91.160157
                            NaN
                                  NaN
                                          NaN
                                                NaN
                                                       NaN
                                                              NaN
                                                                     NaN
                                                                           NaN
             4 89.063515
                            NaN
                                  NaN
                                                NaN
                                                       NaN
                                                                    NaN
                                          NaN
                                                              NaN
                                                                           NaN
             5 89.238236 9.11456
                                  NaN
                                          NaN
                                                NaN
                                                       NaN
                                                              NaN
                                                                     NaN
                                                                           NaN
In [25]:
          # Заполненность
          # Wire 1, Wire 2 хорошо заполнены
          (len(data_wire_new.key)-data_wire_new.isna().sum()).sort_values(ascending=False)
         key
Out[25]:
                   3081
         Wire 1
                   3055
         Wire 2
                   1079
         Wire 6
                     73
         Wire 3
                     63
         Wire 9
                     29
         Wire 8
                     19
         Wire 4
                     14
         Wire 7
                     11
         Wire 5
                      1
         dtype: int64
```

In [26]:

Распределение объемов

data wire new.drop(['key'], axis=1).hist(bins=50, figsize=(15, 15));

Итоги по data_wire_new:

- key номер партии;
- Wire 1 ... Wire 9 объём подаваемых проволочных материалов.
- Много пропусков в многих признаках (материал не подавался в ковш)
- Хорошая заполненность у признаков Wire 1 и Wire 2.
- Там, где подавалось много материала нормальное распределение, где не так много лог-нормальное, смещенное к меньшим значениям.

Иследование документа data_wire_time_new.csv

```
In [27]:
```

```
# Данные о проболочных материалах (время)
data_wire_time_new.info()
display(data_wire_time_new.describe())
display( data_wire_time_new.head(20))
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3081 entries, 0 to 3080
Data columns (total 10 columns):
    Column Non-Null Count Dtype
             3081 non-null
     kev
                            int64
    Wire 1 3055 non-null
                            datetime64[ns]
1
    Wire 2 1079 non-null
                            datetime64[ns]
    Wire 3 63 non-null
                            datetime64[ns]
    Wire 4 14 non-null
                            datetime64[ns]
    Wire 5 1 non-null
                            datetime64[ns]
    Wire 6 73 non-null
                            datetime64[ns]
    Wire 7 11 non-null
                            datetime64[ns]
    Wire 8 19 non-null
                            datetime64[ns]
    Wire 9 29 non-null
                            datetime64[ns]
dtypes: datetime64[ns](9), int64(1)
memory usage: 240.8 KB
```

	key
count	3081.000000
mean	1623.426485
std	932.996726
min	1.000000
25%	823.000000
50%	1619.000000
75%	2434.000000
max	3241.000000

	key	Wire 1	Wire 2	Wire 3	Wire 4	Wire 5	Wire 6	Wire 7	Wire 8	Wire 9
0	1	2019-05-03 11:06:19	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
1	2	2019-05-03 11:36:50	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
2	3	2019-05-03 12:11:46	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
3	4	2019-05-03 12:43:22	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
4	5	2019-05-03 13:20:44	2019-05-03 13:15:34	NaT						
5	6	2019-05-03 13:57:27	2019-05-03 13:48:52	NaT						
6	7	2019-05-03 14:18:58	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
7	8	2019-05-03 15:01:30	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
8	9	2019-05-03 15:45:44	2019-05-03 15:39:37	NaT						
9	10	2019-05-03 16:27:00	2019-05-03 16:22:36	NaT						
10	11	2019-05-03 16:55:14	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
11	12	2019-05-03 17:42:46	NaT	NaT	NaT	NaT	NaT	NaT	NaT	NaT
12	13	2019-05-03 18:48:32	2019-05-03 18:40:57	NaT						
13	14	2019-05-03 20:13:48	2019-05-03 20:02:42	NaT						
14	15	2019-05-03 21:07:19	2019-05-03 21:00:19	NaT						

	key	Wire 1	Wire 2	Wire 3	Wire 4	Wire 5	Wire 6	Wire 7	Wire 8	Wire 9
15	16	2019-05-03 22:17:49	2019-05-03 22:07:59	NaT						
16	17	2019-05-03 23:01:58	2019-05-03 22:52:57	NaT						
17	18	2019-05-03 23:40:36	2019-05-03 23:26:15	NaT						
18	19	2019-05-04 00:57:11	2019-05-04 00:44:32	NaT						
19	20	2019-05-04 02:05:50	2019-05-04 02:00:27	NaT						

Итоги по data_wire_time_new:

- Wire 1 ... Wire 9 загружены в формате datetime64
- key номер партии;
- Wire 1 ... Wire 9 время подачи проволочных материалов.

Предобработка данных

Удаление производственных аномалий

Условия:

- Удаление ключа с отрицательной реактивной мощностью.
- Удаление ключа с температурами <1500 (температура плавления стали)
- Это выбросы производства
- Прочие выбросы удаляются только в обучающей выборке (чтобы искуственно не улучшить показания тестовой выборки)

```
In [28]:
# Удаление ключа с отрицательной реактивной мощностью - сделано
data_arc_new=data_arc_new[data_arc_new['Peaктивная мощность']>=0]
data_arc_new[data_arc_new['Peaктивная мощность']<=0]</pre>
```

Out[28]: key Начало нагрева дугой Конец нагрева дугой Активная мощность Реактивная мощность

```
In [29]:
# Удаление ключа с температурами <1500 (температура плавления стали) - сделано
data_temp_new=data_temp_new[data_temp_new['Temnepatypa']>=1500]
data_temp_new[data_temp_new['Temnepatypa']<=1500]</pre>
```

Удаление ключей с одним замером температуры

Условия:

• Удалить ключи с одним замером температуры, они не подходят для моделирования (нужны начальное и конечное значения)

```
In [30]:
          key counts = data temp new['key'].value counts()
          key counts
Out[30]: 2108
                 17
         1513
                 16
         1689
                 16
         46
                 14
         322
                 14
         3236
         2963
         2955
         2947
         2525
         Name: key, Length: 3215, dtype: int64
In [31]:
          valid_keys = key_counts[key_counts > 1].index
          valid keys
         Int64Index([2108, 1513, 1689, 46, 322, 44, 1829, 638, 1958, 1880,
                      661, 977, 1369, 112, 1281, 2194, 1449, 530, 2112, 269],
                    dtype='int64', length=2475)
In [32]:
          data temp new = data temp new[data temp new['key'].isin(valid keys)]
          (data temp new['key'].value counts()==1).sum()
Out[32]: 0
```

Удаление промежуточных температур в партии, создание признака Количество итераций

Условия:

- Исследовать можно только первую температуру в партии (замеренную до начала исследований).
- Промежуточные значения должны быть удалены, так как могут привести к утечке данных.
- Дополнительно на этом этапе создан признак Количество итераций

```
      In [33]:
      data_temp_new.head(15)

      Out[33]:
      key
      Время замера
      Температура

      0
      1
      2019-05-03 11:02:04
      1571.0
```

```
1 2019-05-03 11:07:18
                                    1604.0
                                   1618.0
      1 2019-05-03 11:11:34
2
      1 2019-05-03 11:18:04
                                   1601.0
 3
      1 2019-05-03 11:25:59
                                    1606.0
                                   1613.0
      1 2019-05-03 11:30:38
      2 2019-05-03 11:34:04
                                   1581.0
                                   1577.0
7
      2 2019-05-03 11:38:40
                                   1589.0
8
      2 2019-05-03 11:46:09
      2 2019-05-03 11:49:38
9
                                    1604.0
                                   1602.0
10
      2 2019-05-03 11:55:09
11
      3 2019-05-03 12:06:44
                                   1596.0
                                   1597.0
12
      3 2019-05-03 12:13:42
                                   1598.0
      3 2019-05-03 12:18:46
13
14
      3 2019-05-03 12:25:33
                                   1599.0
```

```
In [34]: # Создание временного признака - Количество итераций data_add=data_temp_new.groupby('key').count()['Время замера'] data_add
```

Out[34]: key 1

6

```
2
                   5
          3
                   5
                   5
          2495
                   5
          2496
                   7
          2497
          2498
          2499
                   5
          Name: Время замера, Length: 2475, dtype: int64
In [35]:
           # Запись признака в датафрейм
           data_temp_new['Количество итераций'] = data_temp_new.key.map(data_add)
           data temp new.head()
Out[35]:
                      Время замера Температура Количество итераций
              1 2019-05-03 11:02:04
                                          1571.0
                                                                   6
               1 2019-05-03 11:07:18
                                          1604.0
                                                                   6
               1 2019-05-03 11:11:34
                                          1618.0
                                                                    6
               1 2019-05-03 11:18:04
                                          1601.0
               1 2019-05-03 11:25:59
                                          1606.0
                                                                   6
In [36]:
           data_temp_new=data_temp_new.groupby("key").apply(lambda x: x.iloc[[0, -1]]).reset_index(drop=True)
           data_temp_new.head(6)
Out[36]:
                      Время замера Температура Количество итераций
             key
               1 2019-05-03 11:02:04
                                          1571.0
                                                                   6
               1 2019-05-03 11:30:38
                                          1613.0
                                                                   6
               2 2019-05-03 11:34:04
                                          1581.0
                                                                   5
               2 2019-05-03 11:55:09
                                          1602.0
                                                                   5
               3 2019-05-03 12:06:44
                                          1596.0
                                                                   6
               3 2019-05-03 12:35:57
                                          1599.0
                                                                   6
```

Работа с пропусками для подаваемых материалов

Условия:

- Если в данных о добавленных материалах пропуски, то материал не подавался в этой итерации в ковш и надо заполнить пропуски нулями.
- Таблицы о времени подачи материалов в итоговую таблицу не войдут. Эти таблицы нужны для проверки корректности данных.

```
In [37]:
           data bulk new.head()
             key Bulk 1 Bulk 2 Bulk 3 Bulk 4 Bulk 5 Bulk 6 Bulk 7 Bulk 8 Bulk 9 Bulk 10 Bulk 11 Bulk 12 Bulk 13 Bulk 14 Bulk 15
Out[37]:
                                 NaN
                                        43.0
                                               NaN
                                                      NaN
                                                             NaN
                                                                           NaN
                                                                                                                  150.0
          0
                   NaN
                          NaN
                                                                    NaN
                                                                                   NaN
                                                                                           NaN
                                                                                                  206.0
                                                                                                           NaN
                                                                                                                          154.0
               2
                   NaN
                          NaN
                                 NaN
                                        73.0
                                               NaN
                                                      NaN
                                                             NaN
                                                                    NaN
                                                                           NaN
                                                                                   NaN
                                                                                           NaN
                                                                                                  206.0
                                                                                                          NaN
                                                                                                                  149.0
                                                                                                                          154.0
               3
                                                                                                  205.0
                   NaN
                          NaN
                                 NaN
                                        34.0
                                               NaN
                                                      NaN
                                                             NaN
                                                                    NaN
                                                                           NaN
                                                                                   NaN
                                                                                           NaN
                                                                                                          NaN
                                                                                                                  152.0
                                                                                                                          153.0
                          NaN
                                        81.0
                                               NaN
                                                      NaN
                                                             NaN
                                                                                   NaN
                                                                                           NaN
                                                                                                  207.0
                                                                                                          NaN
                                                                                                                  153.0
                                                                                                                          154.0
                   NaN
                                 NaN
                                                                    NaN
                                                                           NaN
                                                                                                  203.0
               5
                   NaN
                          NaN
                                 NaN
                                        78.0
                                               NaN
                                                      NaN
                                                             NaN
                                                                    NaN
                                                                           NaN
                                                                                   NaN
                                                                                           NaN
                                                                                                           NaN
                                                                                                                  151.0
                                                                                                                          152.0
In [38]:
           s = (len(data bulk new['key'])-(data bulk new.isna().sum())).sort values(ascending=False)>=(len(data bulk new['key']))*0.8
In [39]:
           s.index[s]
          Index(['key', 'Bulk 14'], dtype='object')
In [40]:
           data_bulk_new=data_bulk_new[s.index[s].to_list()]
           data bulk new.head()
Out[40]:
             key Bulk 14
                    150.0
          0
               2
                   149.0
          1
```

```
key Bulk 14
                   152.0
         2
              3
          3
              4
                   153.0
              5
                   151.0
In [41]:
          data bulk new['Bulk 14'].isna().sum()
Out[41]: 323
In [42]:
          data bulk new['Bulk 14']=data bulk new['Bulk 14'].fillna(0)
          data bulk new['Bulk 14'].isna().sum()
Out[42]: 0
In [43]:
          data wire new.head()
Out[43]:
                   Wire 1
                           Wire 2 Wire 3 Wire 4 Wire 5 Wire 6 Wire 7 Wire 8 Wire 9
            key
              1 60.059998
                                   NaN
                                                                      NaN
                                                                             NaN
          0
                            NaN
                                           NaN
                                                  NaN
                                                        NaN
                                                               NaN
                                                                      NaN
                                                                             NaN
              2 96.052315
                             NaN
                                    NaN
                                           NaN
                                                  NaN
                                                        NaN
                                                               NaN
          2
              3 91.160157
                            NaN
                                    NaN
                                                  NaN
                                                        NaN
                                                                      NaN
                                                                             NaN
                                           NaN
                                                               NaN
              4 89.063515
                                                                             NaN
                            NaN
                                    NaN
                                           NaN
                                                  NaN
                                                        NaN
                                                               NaN
                                                                      NaN
              5 89.238236 9.11456
                                                                             NaN
                                    NaN
                                           NaN
                                                  NaN
                                                        NaN
                                                               NaN
                                                                      NaN
In [44]:
          s1 = (len(data_wire_new['key'])-(data_wire_new.isna().sum())).sort_values(ascending=False)>=(len(data_wire_new['key']))*0.8
          s1
Out[44]:
         key
                    True
         Wire 1
                    True
         Wire 2
                    False
         Wire 6
                    False
         Wire 3
                    False
```

```
Wire 9
                    False
         Wire 8
                   False
         Wire 4
                   False
         Wire 7
                   False
         Wire 5
                   False
         dtype: bool
In [45]:
          s1.index[s1]
Out[45]: Index(['key', 'Wire 1'], dtype='object')
In [46]:
          data wire new=data wire new[s1.index[s1].to list()]
          data wire new.head()
Out[46]:
            key
                   Wire 1
              1 60.059998
              2 96.052315
              3 91.160157
              4 89.063515
              5 89.238236
In [47]:
          data_wire_new['Wire 1']=data_wire_new['Wire 1'].fillna(0)
          data_wire_new['Wire 1'].isna().sum()
Out[47]: 0
```

Агрегация параметров

Условия:

• Объект моделирования - партия целиком, поэтому данные будут агрегированы по партиям. Будет посчитана сумма

```
In [48]: data_arc_new.head(10)
```

Out[48]:		key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность				
	0	1	2019-05-03 11:02:14	2019-05-03 11:06:02	0.305130	0.211253				
	1	1	2019-05-03 11:07:28	2019-05-03 11:10:33	0.765658	0.477438				
	2	1	2019-05-03 11:11:44	2019-05-03 11:14:36	0.580313	0.430460				
	3	1	2019-05-03 11:18:14	2019-05-03 11:24:19	0.518496	0.379979				
	4	1	2019-05-03 11:26:09	2019-05-03 11:28:37	0.867133	0.643691				
	5	2	2019-05-03 11:34:14	2019-05-03 11:36:31	0.381124	0.220351				
	6	2	2019-05-03 11:38:50	2019-05-03 11:44:28	0.261665	0.205527				
	7	2	2019-05-03 11:46:19	2019-05-03 11:48:25	0.710297	0.484962				
	8	2	2019-05-03 11:49:48	2019-05-03 11:53:18	0.786322	0.542517				
	9	3	2019-05-03 12:06:54	2019-05-03 12:11:34	1.101678	0.820856				
In [49]:	a	gg_da "/ "F	ezaция данных ata = data_arc_new.gr Активная мощность": ' Реактивная мощность": set_index()	'sum",						
In [50]:	# Переименование колонки для нового признака agg_data.rename(columns={ "Активная мощность": "Суммарная активная мощность", "Реактивная мощность": "Суммарная реактивная мощность" }, inplace=True)									
In [51]:	# Объединение агрегированных данных с исходным DataFrame data_arc_new = data_arc_new.merge(agg_data, on="key", how="left") data_arc_new.head(10)									

Out[51]:		key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность	Суммарная активная мощность	Суммарная реактивная мощность
	0	1	2019-05-03 11:02:14	2019-05-03 11:06:02	0.305130	0.211253	3.036730	2.142821
	1	1	2019-05-03 11:07:28	2019-05-03 11:10:33	0.765658	0.477438	3.036730	2.142821
	2	1	2019-05-03 11:11:44	2019-05-03 11:14:36	0.580313	0.430460	3.036730	2.142821
	3	1	2019-05-03 11:18:14	2019-05-03 11:24:19	0.518496	0.379979	3.036730	2.142821
	4	1	2019-05-03 11:26:09	2019-05-03 11:28:37	0.867133	0.643691	3.036730	2.142821
	5	2	2019-05-03 11:34:14	2019-05-03 11:36:31	0.381124	0.220351	2.139408	1.453357
	6	2	2019-05-03 11:38:50	2019-05-03 11:44:28	0.261665	0.205527	2.139408	1.453357
	7	2	2019-05-03 11:46:19	2019-05-03 11:48:25	0.710297	0.484962	2.139408	1.453357
	8	2	2019-05-03 11:49:48	2019-05-03 11:53:18	0.786322	0.542517	2.139408	1.453357
	9	3	2019-05-03 12:06:54	2019-05-03 12:11:34	1.101678	0.820856	4.063641	2.937457

Добавление признаков

Физические величины

Условия:

- Полная мощность Сумма квадратов активной и реактивной мощностей под корнем
- Работа произведение полной мощности и времени нагрева
- Число итераций (по плану, составленному до начала исследований, это не утечка данных)

```
In [52]: # Добавление полной мощносты data_arc_new['Полная мощность']=(data_arc_new['Активная мощность']**2+data_arc_new['Реактивная мощность']**2)**0.5 # Добавление суммарной полной мощносты data_arc_new['Суммарная полная мощность']=(data_arc_new['Суммарная активная мощность']**2+data_arc_new['Суммарная реактивная мощность']**2+data_arc_new['Cymmapная реактивная мощность']**2+data_arc_new['Cymmapная реактивная мощность']**2+data_arc_new['Cymmapная реактивная реактивная
```

Out[52]:		key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность	Суммарная активная мощность	Суммарная реактивная мощность	Полная мощность	Суммарная полная мощность
	0	1	2019-05-03 11:02:14	2019-05-03 11:06:02	0.305130	0.211253	3.03673	2.142821	0.371123	3.71664
	1	1	2019-05-03 11:07:28	2019-05-03 11:10:33	0.765658	0.477438	3.03673	2.142821	0.902319	3.71664
	2	1	2019-05-03 11:11:44	2019-05-03 11:14:36	0.580313	0.430460	3.03673	2.142821	0.722536	3.71664
	3	1	2019-05-03 11:18:14	2019-05-03 11:24:19	0.518496	0.379979	3.03673	2.142821	0.642824	3.71664
	4	1	2019-05-03 11:26:09	2019-05-03 11:28:37	0.867133	0.643691	3.03673	2.142821	1.079934	3.71664
In [53]:				пра - Время на		aw['Konen nacr	рева дугой']-data arc	now['Hauano Harno	pa myroë'l	

```
с_пеw[ время нагрева дугой ]=data_arc_new[ конец нагрева дугой ]-data_arc_new[ начало нагрева дугой ]
```

In [54]: agg_data2=data_arc_new.groupby('key').agg({'Время нагрева дугой':'sum'}).reset_index() agg_data2.columns = ['key', 'Суммарное время нагрева дугой']

In [55]: data_arc_new = data_arc_new.merge(agg_data2, on="key", how="left") data_arc_new.head(20)

Out[55]: Начало Конец Суммарная Суммарная Суммарная Время Суммарное Активная Реактивная Полная key нагрева время нагрева нагрева нагрева активная реактивная полная мощность мощность мощность дугой дугой мощность мощность мощность дугой дугой 2019-05-2019-05-0 days 0 03 03 0.305130 0.211253 3.036730 2.142821 0.371123 3.716640 0 days 00:18:18 00:03:48 11:02:14 11:06:02 2019-05-2019-05-0 days 1 1 03 03 0.765658 0.477438 3.036730 2.142821 0.902319 0 days 00:18:18 3.716640 00:03:05 11:07:28 11:10:33

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность	Суммарная активная мощность	Суммарная реактивная мощность	Полная мощность	Суммарная полная мощность	Время нагрева дугой	Суммарное время нагрева дугой
2	1	2019-05- 03 11:11:44	2019-05- 03 11:14:36	0.580313	0.430460	3.036730	2.142821	0.722536	3.716640	0 days 00:02:52	0 days 00:18:18
3	1	2019-05- 03 11:18:14	2019-05- 03 11:24:19	0.518496	0.379979	3.036730	2.142821	0.642824	3.716640	0 days 00:06:05	0 days 00:18:18
4	1	2019-05- 03 11:26:09	2019-05- 03 11:28:37	0.867133	0.643691	3.036730	2.142821	1.079934	3.716640	0 days 00:02:28	0 days 00:18:18
5	2	2019-05- 03 11:34:14	2019-05- 03 11:36:31	0.381124	0.220351	2.139408	1.453357	0.440239	2.586371	0 days 00:02:17	0 days 00:13:31
6	2	2019-05- 03 11:38:50	2019-05- 03 11:44:28	0.261665	0.205527	2.139408	1.453357	0.332731	2.586371	0 days 00:05:38	0 days 00:13:31
7	2	2019-05- 03 11:46:19	2019-05- 03 11:48:25	0.710297	0.484962	2.139408	1.453357	0.860064	2.586371	0 days 00:02:06	0 days 00:13:31
8	2	2019-05- 03 11:49:48	2019-05- 03 11:53:18	0.786322	0.542517	2.139408	1.453357	0.955315	2.586371	0 days 00:03:30	0 days 00:13:31
9	3	2019-05- 03 12:06:54	2019-05- 03 12:11:34	1.101678	0.820856	4.063641	2.937457	1.373863	5.014163	0 days 00:04:40	0 days 00:10:55
10	3	2019-05- 03 12:13:52	2019-05- 03 12:15:56	0.542675	0.474673	4.063641	2.937457	0.720979	5.014163	0 days 00:02:04	0 days 00:10:55
11	3	2019-05- 03 12:18:56	2019-05- 03 12:20:45	0.774632	0.505690	4.063641	2.937457	0.925082	5.014163	0 days 00:01:49	0 days 00:10:55

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность	Суммарная активная мощность	Суммарная реактивная мощность	Полная мощность	Суммарная полная мощность	Время нагрева дугой	Суммарное время нагрева дугой
12	3	2019-05- 03 12:25:43	2019-05- 03 12:27:00	1.222963	0.863676	4.063641	2.937457	1.497189	5.014163	0 days 00:01:17	0 days 00:10:55
13	3	2019-05- 03 12:31:14	2019-05- 03 12:32:19	0.421693	0.272562	4.063641	2.937457	0.502111	5.014163	0 days 00:01:05	0 days 00:10:55
14	4	2019-05- 03 12:39:37	2019-05- 03 12:43:04	0.642946	0.516071	2.706489	2.056992	0.824445	3.399456	0 days 00:03:27	0 days 00:12:21
15	4	2019-05- 03 12:44:47	2019-05- 03 12:46:26	0.310693	0.241781	2.706489	2.056992	0.393685	3.399456	0 days 00:01:39	0 days 00:12:21
16	4	2019-05- 03 12:48:14	2019-05- 03 12:50:51	0.887855	0.644479	2.706489	2.056992	1.097105	3.399456	0 days 00:02:37	0 days 00:12:21
17	4	2019-05- 03 12:53:12	2019-05- 03 12:57:50	0.864995	0.654661	2.706489	2.056992	1.084803	3.399456	0 days 00:04:38	0 days 00:12:21
18	5	2019-05- 03 13:11:13	2019-05- 03 13:15:24	0.324563	0.279102	2.252950	1.687991	0.428064	2.815155	0 days 00:04:11	0 days 00:14:29
19	5	2019-05- 03 13:18:21	2019-05- 03 13:20:33	0.573810	0.439417	2.252950	1.687991	0.722735	2.815155	0 days 00:02:12	0 days 00:14:29

In [56]:

data_arc_new['Cymmaphoe время нагрева дугой sec'] = data_arc_new['Cymmaphoe время нагрева дугой'].dt.seconds

In [57]:

Добавление Работы

data_arc_new['Cymmapнaя paбoтa']=data_arc_new['Cymmapнaя полная мощность']*data_arc_new['Cymmaphoe время нагрева дугой sec'] data_arc_new.head()

_			
\cap	+	1 5 7	
υu	L	12/	١.

	key	Начало нагрева дугой	Конец нагрева дугой	Активная мощность	Реактивная мощность	Суммарная активная мощность	Суммарная реактивная мощность	Полная мощность	Суммарная полная мощность	Время нагрева дугой	Суммарное время нагрева дугой	Суммарное время нагрева дугой sec	Суммарная работа
0	1	2019- 05-03 11:02:14	2019- 05-03 11:06:02	0.305130	0.211253	3.03673	2.142821	0.371123	3.71664	0 days 00:03:48	0 days 00:18:18	1098	4080.870431
1	1	2019- 05-03 11:07:28	2019- 05-03 11:10:33	0.765658	0.477438	3.03673	2.142821	0.902319	3.71664	0 days 00:03:05	0 days 00:18:18	1098	4080.870431
2	1	2019- 05-03 11:11:44	2019- 05-03 11:14:36	0.580313	0.430460	3.03673	2.142821	0.722536	3.71664	0 days 00:02:52	0 days 00:18:18	1098	4080.870431
3	1	2019- 05-03 11:18:14	2019- 05-03 11:24:19	0.518496	0.379979	3.03673	2.142821	0.642824	3.71664	0 days 00:06:05	0 days 00:18:18	1098	4080.870431
4	1	2019- 05-03 11:26:09	2019- 05-03 11:28:37	0.867133	0.643691	3.03673	2.142821	1.079934	3.71664	0 days 00:02:28	0 days 00:18:18	1098	4080.870431

Признаки на основе времени

Условия:

- Время нагрева дугой уже посчитан
- Время замера между первой и последней температурами
- Количество итераций

In [58]:

```
# Время замера между первой и последней температурами data_temp_new['Bpeменной интервал'] = data_temp_new.groupby('key')['Bpeмя замера'].transform(lambda x: x.iloc[1] - x.iloc[0]) data_temp_new['Bpeменной интервал сек']=data_temp_new['Bpeменной интервал'].dt.seconds data_temp_new.head()
```

Out[58]:	key		Время замера	Температура	Количество итераций	Временной интервал	Временной интервал сек	
	0	1	2019-05-03 11:02:04	1571.0	6	0 days 00:28:34	1714	

кеу	Время замера	Температура	Количество итераций	Временной интервал	Временной интервал сек
1	2019-05-03 11:30:38	1613.0	6	0 days 00:28:34	1714
2	2019-05-03 11:34:04	1581.0	5	0 days 00:21:05	1265
2	2019-05-03 11:55:09	1602.0	5	0 days 00:21:05	1265
3	2019-05-03 12:06:44	1596.0	6	0 days 00:29:13	1753
	1 2	1 2019-05-03 11:30:38 2 2019-05-03 11:34:04 2 2019-05-03 11:55:09	1 2019-05-03 11:30:38 1613.0 2 2019-05-03 11:34:04 1581.0 2 2019-05-03 11:55:09 1602.0	1 2019-05-03 11:30:38 1613.0 6 2 2019-05-03 11:34:04 1581.0 5 2 2019-05-03 11:55:09 1602.0 5	1 2019-05-03 11:30:38 1613.0 6 0 days 00:28:34 2 2019-05-03 11:34:04 1581.0 5 0 days 00:21:05 2 2019-05-03 11:55:09 1602.0 5 0 days 00:21:05

In []:

Οι

Объединение данных

Условия:

- Объединение таблиц по INNER (берем те партии, которые представлены во всех таблицах)
- Должно быть не более 2332 ключей
- Не должно быть ключей с номерами более 2500 (.tail() будет выведен для проверки)

```
In [59]:
# Дοποδεοποβκα παδπικ δηθ οδωθαιμεμικ
data_arc_new.set_index('key', inplace=True)
data_bulk_new.set_index('key', inplace=True)
data_gas_new.set_index('key', inplace=True)
data_temp_new.set_index('key', inplace=True)
data_wire_new.set_index('key', inplace=True)
```

In [60]: data_arc_new=data_arc_new.drop(columns=['Начало нагрева дугой', 'Конец нагрева дугой', 'Активная мощность', 'Реактивная мощность', data_arc_new.head()

Out[60]:	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Суммарное время нагрева дугой	Суммарное время нагрева дугой sec	Суммарная работа
key						
1	3.03673	2.142821	3.71664	0 days 00:18:18	1098	4080.870431
1	3.03673	2.142821	3.71664	0 days 00:18:18	1098	4080.870431

	Суммарная активная мощность		Суммарная реактивная мощность		Суммарная полная С мощность		е время за дугой	Суммарное время нагрева дугой sec		Суммарная работа	
	key										
	1	3.03673	2.142821	3	3.71664	0 days	00:18:18	109	8	4080.870431	
	1	3.03673	2.142821	3	3.71664	0 days	00:18:18	109	8	4080.870431	
	1	3.03673	2.142821	3	3.71664	0 days	00:18:18	109	8	4080.870431	
in [61]:		_arc_new=data_arc_new. _arc_new.head()	groupby('key').agg('me	ean')							
ut[61]:		Суммарная активі мощно		еактивная мощность	Суммарна м	я полная ющность	Суммарное	время нагрева дугой sec		Суммарная работа	
	key										
	1	3.036	730	2.142821		3.716640		1098		4080.870431	
	2	2.139	408	1.453357		2.586371		811		2097.546600	
	3	4.063	541	2.937457		5.014163		655		3284.276844	
	4	2.706	489	2.056992		3.399456		741		2518.996645	
	5	2.252	950	1.687991		2.815155		869		2446.369640	
n [62]:	# Объединение таблиц final_table=data_temp_new.join([data_bulk_new, data_gas_new, data_arc_new, data_wire_new],										
n [63]:		l_table=final_table.re l_table.head()	eset_index()								

Out[63]:		key	Время замера	Температура	Количество итераций	Временной интервал	Временной интервал сек	Bulk 14	Газ 1	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Суммарное время нагрева дугой sec	Суммарная работа
	0	1	2019- 05-03 11:02:04	1571.0	6	0 days 00:28:34	1714	150.0	29.749986	3.036730	2.142821	3.716640	1098	4080.870431
	1	1	2019- 05-03 11:30:38	1613.0	6	0 days 00:28:34	1714	150.0	29.749986	3.036730	2.142821	3.716640	1098	4080.870431
	2	2	2019- 05-03 11:34:04	1581.0	5	0 days 00:21:05	1265	149.0	12.555561	2.139408	1.453357	2.586371	811	2097.546600
	3	2	2019- 05-03 11:55:09	1602.0	5	0 days 00:21:05	1265	149.0	12.555561	2.139408	1.453357	2.586371	811	2097.546600
	4	3	2019- 05-03 12:06:44	1596.0	6	0 days 00:29:13	1753	152.0	28.554793	4.063641	2.937457	5.014163	655	3284.276844
	4													
In [64]:	fi	<pre>final_table=pd.concat([final_table.groupby('key')['Время замера'].min(), final_table.groupby('key')['Время замера'].max(), final_table.groupby('key')['Температура'].first(), final_table.groupby('key')['Температура'].last(), final_table.groupby('key')[['Количество итераций', 'Временной интервал сек', 'Bulk 14', 'Wire 1', 'Газ 1', 'Суммар</pre>										ная активная		

```
Ιr
            ], axis=1).reset_index() final_table.columns=['key', 'Время замера начало', 'Время замера конец', 'Температура начало', 'Температура конец', 'Количество ит
```

```
In [65]:
          final_table.head()
```

Out	[6	5]	•
-----	----	----	---

5]:		key	Время замера начало	Время замера конец	Температура начало	Температура конец	Количество итераций	Временной интервал сек	Bulk 14	Wire 1	Газ 1	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Сум н ду
_	0	1	2019- 05-03 11:02:04	2019- 05-03 11:30:38	1571.0	1613.0	6	1714	150.0	60.059998	29.749986	3.036730	2.142821	3.716640	
	1	2	2019- 05-03 11:34:04	2019- 05-03 11:55:09	1581.0	1602.0	5	1265	149.0	96.052315	12.555561	2.139408	1.453357	2.586371	
	2	3	2019- 05-03 12:06:44	2019- 05-03 12:35:57	1596.0	1599.0	6	1753	152.0	91.160157	28.554793	4.063641	2.937457	5.014163	
	3	4	2019- 05-03 12:39:27	2019- 05-03 12:59:47	1601.0	1625.0	5	1220	153.0	89.063515	18.841219	2.706489	2.056992	3.399456	
	4	5	2019- 05-03 13:11:03	2019- 05-03 13:36:39	1576.0	1602.0	5	1536	151.0	89.238236	5.413692	2.252950	1.687991	2.815155	
	4														•

```
if final_table['key'].value_counts().sum()<2332:
    print('Должно быть не более 2332 ключей - условие выполнено')
else:
    print('Должно быть не более 2332 ключей - условие НЕ выполнено')</pre>
```

Должно быть не более 2332 ключей - условие выполнено

```
In [67]: # Не должно быть ключей с номерами более 2500 final_table['key'].tail(10)
```

```
Out[67]: 2319 2489
2320 2490
2321 2492
2322 2493
2323 2494
2324 2495
2325 2496
```

2326 2497 2327 2498 2328 2499

Name: key, dtype: int64

Исследовательский анализ объединенных данных

Условия:

- Удаление ключа
- Графики для всех признаков (гистограммы, бокс-плоты)

```
In [68]:
```

```
# Удаление ключа final_table=final_table.drop('key', axis=1)
```

In [69]:

final_table.head()

Out[69]:

:	Время замера начало	Время замера конец	Температура начало	Температура конец	Количество итераций	Временной интервал сек	Bulk 14	Wire 1	Газ 1	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Суммарно врем нагрев дугой se
0	2019- 05-03 11:02:04	2019- 05-03 11:30:38	1571.0	1613.0	6	1714	150.0	60.059998	29.749986	3.036730	2.142821	3.716640	109
1	2019- 05-03 11:34:04	2019- 05-03 11:55:09	1581.0	1602.0	5	1265	149.0	96.052315	12.555561	2.139408	1.453357	2.586371	81
2	2019- 05-03 12:06:44	2019- 05-03 12:35:57	1596.0	1599.0	6	1753	152.0	91.160157	28.554793	4.063641	2.937457	5.014163	65
3	2019- 05-03 12:39:27	2019- 05-03 12:59:47	1601.0	1625.0	5	1220	153.0	89.063515	18.841219	2.706489	2.056992	3.399456	74

	Время замера начало	Время замера конец	Температура начало	Температура конец	Количество итераций	Временной интервал сек	Bulk 14	Wire 1	Газ 1	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Суммарно врем нагрев дугой se
4	2019- 05-03 13:11:03	2019- 05-03 13:36:39	1576.0	1602.0	5	1536	151.0	89.238236	5.413692	2.252950	1.687991	2.815155	86

```
In [70]: final_table_for_analysis=final_table.drop(columns=['Время замера начало', 'Время замера конец'])
final_table_for_analysis.head()
```

Out[70]:

•	Температура начало	Температура конец	Количество итераций	Временной интервал сек	Bulk 14	Wire 1	Газ 1	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Суммарное время нагрева дугой sec	Суммарная работа
0	1571.0	1613.0	6	1714	150.0	60.059998	29.749986	3.036730	2.142821	3.716640	1098	4080.870431
1	1581.0	1602.0	5	1265	149.0	96.052315	12.555561	2.139408	1.453357	2.586371	811	2097.546600
2	1596.0	1599.0	6	1753	152.0	91.160157	28.554793	4.063641	2.937457	5.014163	655	3284.276844
3	1601.0	1625.0	5	1220	153.0	89.063515	18.841219	2.706489	2.056992	3.399456	741	2518.996645
4	1576.0	1602.0	5	1536	151.0	89.238236	5.413692	2.252950	1.687991	2.815155	869	2446.369640

```
In [71]: # Функция Построение гистограммы и boxplot для каждого числового признака

for column in final_table_for_analysis.columns:
    fig, axes = plt.subplots(2, 1, figsize=(8, 6), sharex=True, gridspec_kw={'height_ratios': [3, 1]})

# Гистограмма

axes[0].hist(final_table_for_analysis[column], bins=50, color='skyblue', edgecolor='black')

axes[0].set_title(f'Гистограмма: {column}')

axes[0].set_ylabel('Частота')

# Boxplot

axes[1].boxplot(final_table_for_analysis[column], vert=False, patch_artist=True, boxprops=dict(facecolor='lightgreen'))

axes[1].set_title(f'Boxplot: {column}')
```

```
axes[1].set_xlabel(column)

# Μαcωmαδυροβαμυε οcu X

min_val = final_table_for_analysis[column].min()
max_val = final_table_for_analysis[column].max()
axes[0].set_xlim(min_val - (0.1 * abs(max_val - min_val)), max_val + (0.1 * abs(max_val - min_val)))
axes[1].set_xlim(min_val - (0.1 * abs(max_val - min_val)), max_val + (0.1 * abs(max_val - min_val)))

# Γραφυκυ
plt.tight_layout()
plt.show()
```


In [72]: final_table_for_analysis.describe()

Out[72]:

•	Температура начало	Температура конец	Количество итераций	Временной интервал сек	Bulk 14	Wire 1	Газ 1	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Суммарное время нагрева дугой sec
count	2329.000000	2329.000000	2329.000000	2329.000000	2329.000000	2329.000000	2329.000000	2329.000000	2329.000000	2329.000000	2329.000000
mean	1587.386003	1593.365393	5.693860	2321.810219	153.853585	102.443601	11.375600	3.125033	2.300522	3.881500	807.600687
std	23.619841	11.200915	1.607639	1385.191527	81.404354	43.539993	6.392041	1.221007	0.903968	1.516643	340.897332
min	1519.000000	1541.000000	2.000000	270.000000	0.000000	0.000000	0.008399	0.267676	0.196228	0.331897	57.000000
25%	1571.000000	1587.000000	5.000000	1579.000000	105.000000	73.207679	7.282948	2.293900	1.669572	2.841624	581.000000

		Температура начало	Температура конец	Количество итераций	Временной интервал сек	Bulk 14	Wire 1	Газ 1	Суммарная активная мощность	Суммарная реактивная мощность	Суммарная полная мощность	Суммарное время нагрева дугой sec
5	50%	1587.000000	1593.000000	6.000000	2045.000000	149.000000	101.119201	10.100950	3.035365	2.225398	3.767064	778.000000
7	75%	1603.000000	1598.000000	7.000000	2791.000000	204.000000	128.091599	14.216688	3.834300	2.829159	4.767256	993.000000
ı	max	1660.000000	1653.000000	17.000000	23674.000000	636.000000	330.314424	77.995040	12.375636	8.949049	15.272257	4189.000000

Выводы по исследовательскому анализу финальных, собранных данных:

- Признак Температура начало нормально распределен, нет явных выбросов или аномалий
- Распределение признака Температура конец сужено, но в целом по форме это нормальное распределение. Присутствуют низкие и высокие значения в малом количестве, производственных выбросов нет.
- Признак количество итераций дискретный количественный признак. Без производственных аномалий.
- Признак Временной интервал представлен лог-нормальным распределением, распределение смещено в сторону меньших значений
- Признак Balk 14(подача сыпучего материала) представлен лог-нормальным распределением, распределение смещено в сторону меньших значений. Выделяются нулевые зеачения (в эти итерации не был подан материал)
- Признак wire 1 представлен нормальным распределением, нет явных выбросов или аномалий
- Признак Газ 1, представлен лог-нормальным распределением, распределение смещено в сторону меньших значений.
- Признаки Суммарная активная мощность, Суммарная реактивная мощность, Суммарная полная мощность, Суммарное время нагрева дугой sec нормально распределены, нет явных выбросов или аномалий. Есть небольшое количество высоких значений во всех признаках
- Суммарная работа предмтавлена лог-нормальным распределением.

Корреляционный анализ данных

Условия:

- Будет выведена матрица корреляции с heatmap
- Будет проверка на мультиколлинеарность (>=0.9), так как будет использована линейная регрессия. В случае высокого коэффициента корреляции между признаками, один из признаков будет удален.

```
Out[73]: Index(['Температура начало', 'Температура конец', 'Количество итераций',
                 'Временной интервал сек', 'Bulk 14', 'Wire 1', 'Газ 1',
                 'Суммарная активная мощность', 'Суммарная реактивная мощность',
                 'Суммарная полная мощность', 'Суммарное время нагрева дугой sec',
                 'Суммарная работа'],
                dtvpe='object')
In [74]:
          \# phik correlation matrix для всех признаков, для линейных и нелинейных связей.
          interval cols=['Температура начало', 'Температура конец',
                  'Временной интервал сек', 'Bulk 14', 'Wire 1', 'Газ 1',
                  'Суммарная активная мощность', 'Суммарная реактивная мощность',
                  'Суммарная полная мощность', 'Суммарное время нагрева дугой sec',
                  'Суммарная работа']
          # Вычисление коэффициентов корреляции phi для датафрейма df
          phik overview =final table for analysis.phik matrix(interval cols)
          # Визуализация тепловой карты коэффициентов корреляции
          plot correlation matrix(
              phik overview.values,
              x labels=phik overview.columns,
              y labels=phik overview.index,
              title=r"correlation $\phi K$",
              fontsize factor=1.5,
              figsize=(15, 12)
```

correlation ϕ_K

					C	orreia	ιιστι φ	'K				
Суммарная работа	1.00	0.87	0.81	0.79	0.81	0.68	0.09	0.80	0.77	0.89	0.29	0.15
Суммарное время н	0.87	1.00	0.78	0.78	0.78	0.50	0.09	0.59	0.73	0.86	0.32	0.35
Суммарная полная	0.81	0.78	1.00	0.98	1.00	0.57	0.19	0.49	0.72	0.94	0.49	0.25
Суммарная реактив	0.79	0.78	0.98	1.00	0.98	0.72	0.14	0.62	0.84	0.94	0.37	0.19
Суммарная активна	0.81	0.78	1.00	0.98	1.00	0.57	0.18	0.49	0.72	0.94	0.48	0.26
Газ 1	0.68	0.50	0.57	0.72	0.57	1.00	0.36	0.80	0.60	0.68	0.29	0.18
Wire 1	0.09	0.09	0.19	0.14	0.18	0.36	1.00	0.09	0.23	0.15	0.47	0.31
Bulk 14	0.80	0.59	0.49	0.62	0.49	0.80	0.09	1.00	0.56	0.69	0.24	0.18
Временной интерва	0.77	0.73	0.72	0.84	0.72	0.60	0.23	0.56	1.00	0.81	0.42	0.22
Количество итераций	0.89	0.86	0.94	0.94	0.94	0.68	0.15	0.69	0.81	1.00	0.42	0.30
Температура конец	0.29	0.32	0.49	0.37	0.48	0.29	0.47	0.24	0.42	0.42	1.00	0.42
Температура начало	0.15	0.35	0.25	0.19	0.26	0.18	0.31	0.18	0.22	0.30	0.42	1.00
	эная работа -	е время н	зя полная	я реактив	я активна	Газ 1 -	Wire 1	Bulk 14	й интерва	ю итераций -	тура конец -	гура начало -

1.00 - 0.75 - 0.50 - 0.25 0.00 -0.25 - -0.50 - -0.75

```
In [75]:

# Τεπλοβαя καρπα λυμεŭμοŭ κορρελяции πο Πυροομγ
pearson_corr_matrix = final_table_for_analysis[interval_cols].corr(method='pearson')

plt.figure(figsize=(15, 12))
sns.heatmap(
    pearson_corr_matrix,
    annot=True,
    fmt=".2f",
    cmap="coolwarm",
    cbar_kws={'shrink': 0.8},
    square=True
)
plt.title("Pearson Correlation Matrix for Linear Relationships", fontsize=16)
plt.show()
```

Pearson Correlation Matrix for Linear Relationships

- 0.6

- 0.4

- 0.2

			i cai soi	COLLC	acioii i	iuciix ioi	Lilleai	reciden	3113111P3		
Температура начало -	1.00	0.30	0.21	-0.18	0.26	0.04	-0.15	-0.15	-0.15	-0.38	-0.21
Температура конец -	0.30	1.00	0.10	0.11	0.32	0.06	0.18	0.17	0.18	0.28	0.22
Временной интервал сек -	0.21	0.10	1.00	0.17	0.15	0.44	0.54	0.53	0.54	0.56	0.69
Bulk 14 -	-0.18	0.11	0.17	1.00	-0.05	0.27	0.30	0.30	0.30	0.46	0.35
Wire 1 -	0.26	0.32	0.15	-0.05	1.00	0.12	0.14	0.14	0.14	0.06	0.09
Газ 1 -	0.04	0.06	0.44	0.27	0.12	1.00	0.37	0.37	0.37	0.40	0.40
Суммарная активная мощность -	-0.15	0.18	0.54	0.30	0.14	0.37	1.00	0.99	1.00	0.72	0.85
Суммарная реактивная мощность -	-0.15	0.17	0.53	0.30	0.14	0.37	0.99	1.00	1.00	0.71	0.84
Суммарная полная мощность -	-0.15	0.18	0.54	0.30	0.14	0.37	1.00	1.00	1.00	0.72	0.84
Суммарное время нагрева дугой sec -	-0.38	0.28	0.56	0.46	0.06	0.40	0.72	0.71	0.72	1.00	0.87
Суммарная работа -	-0.21	0.22	0.69	0.35	0.09	0.40	0.85	0.84	0.84	0.87	1.00
)а начало –	/ра конец –	ервал сек –	Bulk 14 -	Wire 1 -	Fa3 1 -	чощность –	лощность –	«ОЩНОСТЬ –	дугой sec –	ая работа –

Порверка на мультиколлинеарность по результатам Phi-корреляции:

- Суммарная реактивная мощность и Суммарная полная мощность и Суммарная активная мощность и количество итераций имеют между собой корреляцию >0.9
 - Будет оставлен признак Суммарная полная мощность

```
In [76]: df_ml=final_table_for_analysis.drop(columns=['Суммарная активная мощность', 'Суммарная реактивная мощность', 'Количество итераций
```

Итоги:

• Сформирован датасет df_ml, который будет подан на обучение. Данные предобработаны, объединены, исследованы, убрана мультиколлениарность.

Разбиение на выбрки

Условия:

- 1700 и более строк в обучающей выборке
- пропорция 75%/25%
- random_state = 91224

```
In [77]: RANDOM_STATE=91224

In [78]: X=df_ml.drop('Температура конец', axis=1) y=df_ml['Температура конец']
```

Обучение и выбор лучшей модели

Условия:

- Масштабирование будет выполнено в пайплайне
- Обучение 2-х моделей и более
- Использование Dummy Regressor в качестве базовой модели
- Будут подобраны гиперпараметры (с перебором минимум двух параметров), за исключением модели линейной регрессии.
- Для подбора лучшей модели используется randomized или gread search
- Используется значение метрики на кросс-валидации, по метрике 'neg_mean_absolute_error', отображение через best*score*
- Не использовать .predict

```
),
# Обший пайплайн для подготовки данных
data preprocessor = ColumnTransformer(
        ("num", num pipe, num columns),
    ],
   remainder="passthrough",
# Итоговый пайплайн: подготовка данных и базовая модель - дерево решений
pipe final = Pipeline(
       ("preprocessor", data preprocessor),
       ("models", DummyRegressor(strategy='mean')),
param grid = [
    # Словарь для модели DecisionTreeClassifier()
        "models": [DecisionTreeRegressor(random state=RANDOM STATE)],
       "models max depth": range(10, 15),
        "models max features": range(2, 9),
        "preprocessor num scaler": [StandardScaler(), MinMaxScaler(), "passthrough"],
   },
    # Линейная модель
        "models": [LinearRegression()],
       "preprocessor num scaler": [StandardScaler(), MinMaxScaler(), "passthrough"],
    },
```

```
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)

# Выбор лучшей модели с использованием метрики SMAPE
GS = GridSearchCV(
    pipe_final,
    param_grid,
    cv=5,
```

```
scoring='neg mean absolute error',
     error score='raise',
     n jobs=-1,
 GS.fit(X train, y train)
 print('Лучшая модель и её параметры:\n\n', GS.best estimator)
print ('Метрика по кросс-валидации:', abs(GS.best score ))
Лучшая модель и её параметры:
 Pipeline(steps=[('preprocessor',
                 ColumnTransformer(remainder='passthrough',
                                   transformers=[('num',
                                                   Pipeline(steps=[('simpleImputer num',
                                                                    SimpleImputer(strategy='most frequent')),
                                                                   ('scaler',
                                                                    StandardScaler())]),
                                                   ['Температура начало',
                                                    'Временной интервал сек',
                                                    'Bulk 14', 'Wire 1', 'Γas 1',
                                                    'Суммарная полная мощность',
                                                    'Суммарное время нагрева
                                                    'дугой sec',
                                                    'Суммарная работа'])])),
                ('models', LinearRegression())])
Метрика по кросс-валидации: 6.2414663010830775
```

Итоги:

- Был использован пайплайн
- Проверялись разные виды масштабирования данных
- Обучались две модели: DecisionTreeClassifier(), LinearRegression()
- Для модели DecisionTreeClassifier() подбирались гиперпараметры "modelsmax_depth" и "modelsmax_features"
- Использовался GridSearchCV, который рассмотрел все возможные варианты
- Лучшая модель LinearRegression()
- Метрика по кросс-валидации: 6.2414663010830775
- Dummy regressor является базовой моделью в пайплайне. Возможно, этого Dummy теста достаточно. GridSearchCV не выбрал базовую модель, следовательно лучшая модель прошла проверку на адекватнось.

Тестировапние лучшей модели

Тестирование лучшей модели

Условие:

• Дополнительно посчитать и проинтерпретировать метрику R2 для модели.

```
In [84]:
          model=GS.best estimator .named steps['models']
          mode1
Out[84]: LinearRegression()
In [85]:
          preprocessor = GS.best_estimator_.named_steps['preprocessor']
          preprocessor
Out[85]:
         ColumnTransformer(remainder='passthrough',
                           transformers=[('num',
                                           Pipeline(steps=[('simpleImputer num',
                                                            SimpleImputer(strategy='most frequent')),
                                                           ('scaler', StandardScaler())]),
                                           ['Температура начало',
                                            'Временной интервал сек', 'Bulk 14', 'Wire 1',
                                            'Газ 1', 'Суммарная полная мощность',
                                            'Суммарное время нагрева дугой sec',
                                            'Суммарная работа'])])
In [86]:
          X train = preprocessor.fit transform(X train)
          X test = preprocessor.transform(X test)
In [87]:
          model.fit(X train , y train)
         LinearRegression()
Out[87]:
In [88]:
          preds = model.predict(X test )
In [89]:
          print(f'Meтрика R2 на тестовой выборке для лучшей модели: {r2 score(y test, preds)}')
          print(f'Метрика MAE на тестовой выборке для лучшей модели: {mean absolute error(y test, preds)}')
```

Метрика R2 на тестовой выборке для лучшей модели: 0.465787773978964 Метрика MAE на тестовой выборке для лучшей модели: 6.2489267146799765

```
plt.scatter(y_test, preds, label="Predictions vs Actuals")

z = np.polyfit(y_test, preds, 1)
p = np.poly1d(z)
plt.plot(y_test, p(y_test), color="red", linewidth=2, label="Trendline")

plt.title("Predicted vs Actual Values")
plt.xlabel("Actual Values (y_test)")
plt.ylabel("Predicted Values (preds)")

plt.legend()
plt.show()
```


Интерпретация R2: Помимо метрики MAE заказчик просил посчитать метрику R2. Хотя метрика имеет достаточно низкие значения (0.46), однако по графику видно, что причиной тому стали всего два выброса (плохо предсказанных значения). В целом, модель предсказала хорошо практически все значения.

Важность признаков

Условие:

• проанализировать важность признаков, можно взять топ признаков.

```
In [91]:
          X train = pd.DataFrame(X train , columns=X train.columns)
          X test = pd.DataFrame(X test , columns=X test.columns)
In [92]:
          explainer = shap.LinearExplainer(model, X test )
          shap values = explainer(X test )
          shap.plots.bar(shap values, max display=17)
                                                                                                       +7.95
          Суммарное время нагрева дугой sec
                                                                                             +6.49
                         Температура начало
                                                                       +3.49
                     Временной интервал сек
                                       Wire 1
                                                         +1.51
                Суммарная полная мощность
```

Итоги:

• График общей значимости признаков для лучшей модели показывает, что тройка самых значимых признаков это:

+0.65

• Суммарное время нагрева дугой, Начальная температура и Время замера между первой и последней температурами в секундах.

mean(|SHAP value|)

- Это коррелируется с данными тепловой карты, которая отражает линейную корреляцию между признаками (тройка лучших):
 - Wire 1, Начальная температура, Суммарное время нагрева дугой

Газ 1

Bulk 14

Суммарная работа

- Это коррелируется с данными тепловой карты, которая отражает НЕлинейную корреляцию между признаками (тройка лучших):
 - Полная мощность, Wire 1, Начальная температура, Время замера между первой и последней температурами в секундах

• Как именно в производстве эти параметры влияют на целевой можно обсудить с инженерами.

Итоговый вывод

В итоговом выводе описаны ключевые шаги с пояснениями; дано полное описание лучшей модели со значением метрики; указано, что цель достигнута.

Проект состоит из 11 глав:

- 1 Описание проекта в главе описаны цели заказчика и проекта, имеющиеся данные, требования заказчика.
- 2 Загрузка данных загружены библиотеки, модули и данные
- 3 Исследовательский анализ каждого документа проведен анализ документов на наличие производственных аномалий, правильного типа данных, пропусков. Проведено ознакомление с каждым документом.
- 4 Предобработка данных в главе произведено удаление производственных аномалий (согласованных с заказчиком), удаление ключей с одним замером температуры (информация не пригодня для моделирования), удаление промежуточных температур в партии (чтобы избежать утечки информации), работа с пропусками для подаваемых и насыпаемых материалов, агрегация параметров по партиям (партия единица моделирования).
- 5 Добавление признаков были рассчитаны такие физические величины как полная мощность и работа, а также временные величины: время нагрева дуги, время между замерами начальной и конечной температур. Признак количество итераций был рассчитан в главе 4 (в подразделе Удаление промежуточных температур в партии, перед удалением промежуточных температур). Эти признаки не являются утечкой, так как определены планом, составленным до начала исследований.
- 6 Далее были объединены данные по тому принципу, что оставлена только та информация, которая присутствует во всех документах.
- 7 Проведен исследовательский анализ объединенных данных: построены гистограммы и бокс-плоты в едином масштабе, выведены статистические характеристики. Оценены распределения и возможные выбросы.
- 8 Проведен корреляционный анализ данных (построены тепловые карты по линейной корреляции методом Пирсона и нелинейной Phi-корреляции). Удалены один из признаков в мультиколлинеарных парах.
- 9 Разбиение на выборки с соотношением 75/25, далее везде используется указанный заказчиком Random State
- 10 Обучение и выбор лучшей модели происходит в пайплайне,проверялись разные виды масштабирования данных, обучались две модели: DecisionTreeClassifier(), LinearRegression(). Для модели DecisionTreeClassifier() подбирались гиперпараметры "modelsmax_depth" и "modelsmax_features". Использовался GridSearchCV, который рассмотрел все возможные варианты. Dummy regressor является базовой моделью в пайплайне. GridSearchCV не выбрал базовую модель, следовательно лучшая модель прошла проверку на адекватнось.
- ПОЛНОЕ ОПИСАНИЕ ЛУЧШЕЙ МОДЕЛИ Лучшая модель LinearRegression(), ее метрика по кросс-валидации: 6.2414663010830775. На тестовой выборке Метрика МАЕ чуть выше: 6.2489267146799765, а Метрика R2 на тестовой выборке для лучшей модели:

0.465787773978964. Согласно условию заказчика метрика МАЕ на тестовой выборке должна быть <=6.8, соответственно, цель достигнута, так как лучшая модель имеет метрику МАЕ 6.2.

• 11 Тестирование лучшей модели - в данной главе тестировалась лучшая модель на тестовой выборке. Помимо метрики МАЕ заказчик просил посчитать метрику R2. Хотя метрика имеет достаточно низкие значения (0.46), однако по графику видно, что причиной тому стали всего два выброса (плохо предсказанных значения). В целом, модель предсказала хорошо практически все значения. Так же в главе выполнен анализ важности признаков. Самые важные признаки: Суммарное время нагрева дугой, Начальная температура и Время замера между первой и последней температурами в секундах. Это согласуется с тепловыми картами корреляции и общей производственной логикой.

Tn [].		
TII [] •	II []•	