

MapReduce Algorithms – Matrix Multiplication

K V SubramaniamComputer Science and Engineering

Matrices and Vectors - introduction

Overview

- Matrix Multiplication algorithms
 - Fundamental to many computations, including Page Rank
- Source
 - Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of massive datasets*.
 Cambridge University Press, 2014.
 - http://infolab.stanford.edu/~ullman/mmds/book.
 pdf
 - 4.3.2 of T1

Background: Vectors and Matrices

PES

- Vectors
 - Can be defined as an ordered list of numbers
 - Visualization
 - An arrow where the direction of the vector is given by the relative size of the components
- Some Common Operations
 - Addition: **v**+w
 - Add components
 - Scalar multiplication av
 - Multiply each component by constant

Matrix

- Rectangular array of numbers.
- The numbers are called the elements of the matrix.
- An mxn matrix has m rows and n columns
 - Can be considered as a collection of
 - *m* row vectors
 - *n* column vectors
 - An nxn matrix is called a square matrix.
- Vector can be considered as a
 - 1xn matrix (row matrix)
 - *nx1* matrix (column matrix)

Each element of a matrix is often denoted by a variable with two subscripts. For example, $a_{2,1}$ represents the element at the second row and first column of a matrix **A**.

Matrix Vector Multiplication – Definition

- Multiply each row vector of A by the corresponding elements of x and sum
- Multiplying a mxn matrix by an n element vector gives an m element vector

$$A\mathbf{x} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

$$= egin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \ dots \ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}.$$

$$A = \left[egin{array}{ccc} 1 & 0 & -1 \ 3 & 1 & 2 \end{array}
ight]. \qquad \qquad \mathbf{x} = (x,y,z)$$

$$egin{aligned} A\mathbf{x} &= egin{bmatrix} 1 & 0 & -1 \ 3 & 1 & 2 \end{bmatrix} egin{bmatrix} x \ y \ z \end{bmatrix} = egin{bmatrix} x-z \ 3x+y+2z \end{bmatrix} \ &= (x-z, 3x+y+2z). \end{aligned}$$

Traditional Representation of Matrices

PES UNIVERSITY ONLINE

- Typically, matrices are stored as multi-dimensional arrays in programs
- int A[10][10] allocates 100 integers and is accessed as a 10x10 matrix

Space required to store the matrix - = 10x10*sizeof(int) = 100*sizeof(int) = 100*4 = 400 bytes.

In general, we need n² integers to store an *nxn* matrix

Matrix Representation of WWW

How do you represent the pages in WWW?

Page1	Page 2
Links to Page 2 Page 3	Links to Page 1 Page 3
Page 3	Page 4
Links to Page 4 Page 1	Page 4 Links to Page 1 Page 2

Consider a sample of the internet that contains 4 pages

How should we represent this?

Modelling the WWW as a directed graph

Pages in the WWW

Representing the graph as an Adjacency Matrix

Directed Graph

• This is fine for a small graph – 4 pages.

Source

Dest

- But internet is large billions of pages.
- How much storage will we require?

Large scale matrix representations

Representing the graph as an Adjacency Matrix

Directed Graph

• Internet is large – billions of pages.

Source

- Note most of the entries will be 0
- Store as a *sparse* matrix..

Sparse Matrix representation

- In Big Data, we deal with large matrices
 - e.g, n will be the order of 10¹⁰ if n is number of web pages

- And it will be a sparse matrix
- Won't fit in the memory (DRAM)
- Have to store it in HDFS

HDFS Sparse matrix representation

- Store only non-zero elements as a separate record in CSV format
- CSV format
- For each element store
 - <row_number, column_number, value>
 - As the format
- As many entries as there are links
- Exercise –Store the graph given on the right into a HDFS CSV file

0	1	1	1
1	0	0	1
1	1	0	0
0	1	1	0

Solution

1	7	1
Т,	Ζ,	T

1, 3, 1

1, 4, 1

2, 1, 1

2, 4, 1

3, 1, 1

3, 2, 1

4, 2, 1

4, 3, 1

0	1	1	1
1	0	0	1
1	1	0	0
0	1	1	0

As an exercise, try saving this in a file and loading it onto HDFS that you have installed.

Matrix Vector Multiplication

Matrix Vector multiplication with MapReduce

To multiply an nxn matrix M with an n-element vector

v, compute

$$x_i = \sum_{j=1}^n m_{ij} v_j$$

$$A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

Matrix Vector Multiplication with MapReduce

- Let us assume that the vector v fits into memory
- Vector v is shared by all the mappers
- M_{ij} is stored as a CSV file on HDFS and is distributed across multiple nodes

$$A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \hline a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \hline a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} \mathbf{2}$$

$$x_i = \sum_{j=1}^{n} m_{ij}v_j$$

Matrix Vector Multiplication with MapReduce

map:

- Computes the partial product
- Uses the key as i → the index into the target vector
- output $(i, m_{ii}v_i)$
- reduce:
 - Sums all the partial products.

$$x_i = \sum_{j=1}^{n} m_{ij}v_j$$

Working of the MR algorithm – Map Stage

Ma	trix			Vector
0	1	1	1	5
1	0	0	1	3
1	1	0	0	4
0	1	1	0	2

Note that the key is the index into the vector where this value will contribute

Mapper 1

Mapper 2

Key	Value
1	1*3 = 3
2	1*5 = 5
3	1*5= 5
3	1*3=3
4	1*3=3

Kev	Value
1	1*4=4
1	1*2=2
2	1*2=2
4	1*4=4

Working of the MR algorithm – Reduce Stage

Reducer Input

Key	Intermediate Value List			
1	2,3,4			
2	2, 5			
3	3, 5			
4	3, 4			

Mapper 2

Mapper 1

Reducer output

Key	Value
1	9
1	7
2	8
4	7

Review Problem

Mat	trix			Vector
0	0	3	8	1
0	9	5	0	2
0	10	0	0	3
5	0	0	1	4

- Assuming rows 1 and 3 are in datanode1 and 2 and 4 are in datanode 2, perform a matrix multiplication using Map Reduce
- Show inputs/outputs of mappers/reducers as dicussed in previous slides

Matrix Vector Multiplication - extensions

Matrix-Vector Multiplication using Mapreduce - 2

- Case 2: v doesn't fit into main memory.
- Partition M and v into stripes.

Figure 2.4: Division of a matrix and vector into five stripes

The same MapReduce algorithm can be used.

THANK YOU

K V Subramaniam

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu,
ushadevibg@pes.edu