CENG424 - Homework 2

Elif Ecem Ümütlü

November 5, 2023

- 1. K (the set of the given premises) entails the sentence r if and only if $K \to r$ is satisfiable.
 - $\equiv \neg K \lor r$ is satisfiable. (T)
 - $\equiv \neg(\neg K \lor r)$ is unsatisfiable. (\bot)
 - $\equiv K \wedge \neg r$ is unsatisfiable. (\perp)

If there are no satisfied end, then $K \wedge \neg r$ is unsatisfied. It means K entails r. But in the below case, there is such a satisfied case. Hence, K does not entail r for the following interpretation I $= \{ p \leftarrow 1, q \leftarrow 0, r \leftarrow 0 \}$

- 2. 1. $p \rightarrow q$ premise2. $q \rightarrow r$ premise
 - 3. $(q \to r) \to (p \to (q \to r)$ II
 - MP: 3, 25. $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$
 - 6. $(p \rightarrow q) \rightarrow (p \rightarrow r)$ MP : 5, 4
 - 7. $p \rightarrow r$ MP: 6, 1
 - 8. $(p \to r) \to ((p \to \neg r) \to \neg p)$ 9. $(p \to \neg r) \to \neg p$ CR
 - 9. $(p \rightarrow \neg r) \rightarrow \neg p$ MP: 8, 7
- 3. 1. $\neg \neg p$ premise
 - 2. $\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg p)$
 - 3. $\neg p \rightarrow \neg \neg p$ MP: 2, 1
 - 4. $(\neg p \rightarrow \neg p) \rightarrow ((\neg p \rightarrow \neg \neg p) \rightarrow p)$ CR
 - 5. $(\neg p \to (\neg \neg p \to \neg p)) \to (\neg p \to \neg \neg p) \to (\neg p \to \neg p)$ ID

II

$$\begin{array}{lll} 6. & \neg p \rightarrow (\neg \neg p \rightarrow \neg p) & II \\ 7. & (\neg p \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg p) & MP:6,5 \\ 8. & \neg p \rightarrow \neg p & MP:7,3 \\ 9. & (\neg p \rightarrow \neg \neg p) \rightarrow p & MP:4,8 \\ 10. & p & MP:9,3 \end{array}$$

4. If negation of the sentence results in {}, then the sentence is valid.

5. The set of clauses $\Delta =$

$$\begin{cases} \{ \neg p, q, s \}, \\ \{ p, s, t \}, \\ \{ p, s, \neg t \}, \\ \{ p, \neg s, \neg t \}, \\ \{ p, \neg s, t \}, \\ \{ p, q, \neg s \}, \\ \{ p, \neg q, s \} \end{cases}$$

Interpretation $I = \{\}$ at the beginning.

a. Split on p

$$\begin{split} \Delta &= \{\{q,s\}\} \\ I &= \{p\} \end{split}$$

b. Split on q
$$\Delta = \{\} \text{ SATISFIED}$$

$$I = \{p,q\}$$

This set of clauses is satisfiable.