BEOGRAD, 04.11.2010.

Kolokvijum iz Programiranja 1

Kolokvijum traje 120 minuta

Napomene:

- a) Pažljivo proučite Uputstvo pre popunjavanja Obrasca za odgovore.
- b) Vrednost odgovora: tačan = 10; netačan = -2.5; nevažeći (nula ili više zacrnjenih kružića) = 0.
- c) Na pitanjima se može osvojiti najviše 50 poena.
- d) Zadaci nose po 25 poena.

ZADACI

- 1) Napisati program na simboličkom mašinskom jeziku za picoComputer koji učitava niz celih brojeva dužine N, a zatim ispisuje ukupan broj onih brojeva koji su veći od celobrojne vrednosti aritmetičke sredine učitanog niza. Program treba da smešta niz u memoriju počevši od adrese 150. Ako se za dužinu niza unese vrednost manja od 0 ili veća od 100, program se prekida, a u suprotnom, program ponavlja prethodne korake, počevši od čitanja dužine niza.
- 2) Na simboličkom mašinskom jeziku za picoComputer napisati sledeće potprograme:
- a) čitanje tri cela broja i njihovo smeštanje u uzastopne memorijske lokacije počevši od lokacije čija adresa je smeštena u lokaciju **A**;
- b) provera da li tri cela broja smeštena u uzastopne memorijske lokacije počevši od lokacije čija je adresa smeštena u lokaciju **A** predstavljaju validno vreme zadato u sekundama, minutama i satima (sekunde su smeštene u nižoj memorijskoj lokaciji). Validno vreme mora imati sve komponente pozitivne, a vrednosti sekunda i minuta moraju biti manje od 60. Potprogram smešta vrednost 1 u lokaciju **V** ako je vreme validno, 0 u suprotnom;

Napisati program koji, koristeći navedene potprograme, pročita vreme i smesti ga na lokaciju 100, a zatim proveri da li je pročitano vreme validno. Program ponavlja čitanje i proveru vremena sve dok korisnik unosi **nevalidno** vreme.

II PITANJA

1)Na računaru, na kojem su celi brojevi predstavljeni u drugom komplementu, izvršava se operacija X:=A+B+C. Ako su $1763_{(8)}$, $101001001_{(2)}$ i $2C4_{(16)}$ vrednosti brojeva smeštenih u lokacije A, B i C, respektivno, koji je minimalan broj bita potreban za predstavljanje celih brojeva na datom računaru, tako da navedena operacija ne uzrokuje prekoračenje?

A)11 **(B)** 13 C)12

2) Na nekom računaru celi brojevi prikazani su u drugom komplementu na širini od 8 bita. Neka je maxINT oznaka za najveći ceo broj na datom računaru, a minINT oznaka za najmanji ceo broj na datom računaru. Kako izgleda sadržaj memorijske lokacije X nakon izvršenja operacije X:=maxINT+minINT+maxINT?

A)87₁₆ **(B)** 176₈ C)01111100₂

3) Koji je dovoljan uslov da izraz $\overline{c} \cdot (\overline{a+\overline{b}}+d) + c \cdot \overline{d} + a \cdot (c+d)$ Bulove algebre (nad skupom B={0,1}) bude jednak 0?

A) c=0, d=0

(B) a=0, c=1, d=1

(C) a=1, c=0, d=0

4)Koji od sledećih programa na simboličkom mašinskom jeziku računaju vrednost istog izraza? Pretpostaviti da se kod 0-adresne mašine na stek prvo stavlja prvi, pa drugi operand u izrazu.

I) 0-adresna mašina	II) 1-adresna mašina	III) 2-adresna mašina
PUSH A	LOAD A	MUL A,B
PUSH B	MUL B	ADD A,C
MUL	STORE A	DIV A,D
PUSH C	LOAD C	
PUSH D	DIV D	
DIV	ADD A	
ADD	STORE A	
POP A		

(A) I i II

B) I i III

C) II i III

5) Koja od sledećih tvrđenja za picoComputer su tačna:

- (A) Indirektno adresiranje je jedini način pristupa operandima na adresama većim od 7.
- B) Instrukcija JSR neće promeniti vrednost brojača naredbi (registra PC).
- C) Aritmetičke operacije imaju od 0 do 3 argumenta.

6)Šta ispisuje sledeći program na simboličkom mašinskom jeziku za pC, ako se unese vrednost 46?

-7		
N=1	LAB: DIV P,N,2	
S=2	MUL P,P,2	
P=3	SUB P,N,P	
ORG 8	ADD S,P,S	
IN N	DIV N,N,2	
SUB S,S,S	BEQ N,0,K1	
	BEQ N,N,LAB	
	K1: STOP S	
	·	

A)2 B)6 (C) 4