

Módulo 12: endereçamento IPv6

Versão original: Cisco Network Academy Versão modificada: Eduardo Costa

Introdução às redes v7.0 (ITN)

Objetivos do módulo

Título do módulo: Endereçamento IPv6

Objetivo do Módulo: Implementar um esquema de endereçamento IPv6.

Título do Tópico	Objetivo do Tópico
Problemas do IPv4	Explicar a necessidade do endereçamento IPv6.
Representação dos Endereços IPv6	Explicar como os endereços IPv6 são representados.
Tipos de Endereços IPv6	Comparar os tipos de endereços de rede IPv6.
Configuração Estática do GUA e do LLA	Expliquar como configurar endereços de rede IPv6 estáticos unicast globais e link-local.
Endereçamento dinâmico para GUAs em IPv6	Explicar como configurar endereços unicast globais de forma dinâmica.

☐ ESTIG – IPB :: Eduardo Costa (raposo@ipb.pt)

Objetivos do módulo (Cont.)

Título do módulo: Endereçamento IPv6

Objetivo do Módulo: Implementar um esquema de endereçamento IPv6.

Título do Tópico	Objetivo do Tópico
Endereçamento dinâmico para LLAs IPv6	Configurar endereços link-local de forma dinâmica.
Endereços multicast IPv6	Identificar endereços IPv6
Divisão de uma rede IPv6 em sub-redes	Implementar um esquema de Endereçamento IPv6 com sub-sedes

12.1 Problemas do IPv4

Problemas do IPv4 Necessidade do IPv6

- O IPv4 está a ficar sem endereços. O IPv6 é o sucessor do IPv4. Tem um espaço de endereço maior, com 128 bits
- O desenvolvimento do IPv6 também incluiu correções para as limitações do IPv4 e outras melhorias.
- Com uma população cada vez maior na Internet, espaço de endereços IPv4 Iimitado, problemas com NAT a Internet das Coisas (IoT), chegou o momento de iniciar a transição para o IPv6.

Problemas do IPv4

A coexistência do IPv4 e do IPv6

Tanto o IPv4 como o IPv6 coexistirão no futuro próximo e a transição levará vários anos.

A IETF criou vários protocolos e ferramentas para ajudar os administradores de rede a migrarem as redes para IPv6. As técnicas de migração podem ser divididas em três categorias:

- Pilha dupla (Dual Stack) Os dispositivos executam ambas as pilhas protocolores, IPv4 e IPv6 simultaneamente.
- Tunelamento (Tunneling) Um método de transporte de pacotes IPv6 através de uma rede IPv4. O pacote IPv6 é encapsulado dentro de um pacote IPv4.
- **Tradução (Translation)** NAT64 (Network Address Translation 64) permite que os dispositivos habilitados para IPv6 comuniquem com os dispositivos habilitados para IPv4 usando uma técnica de tradução semelhante ao NAT em IPv4.

Observação: O tunelamento e a tradução são para transição para IPv6 nativo e só devem ser usados quando necessário. O objetivo deve ser as comunicações IPv6 nativas da origem até o destino.

Representação do Endereço IPv6

Representação de endereços IPv6 Formatos do endereçamento IPv6

- Os endereços IPv6 têm 128 bits e são escritos em hexadecimal.
- Os endereços IPv6 não diferenciam maiúsculas e minúsculas e podem ser escritos tanto em minúsculas como em maiúsculas.
- O formato preferencial para escrever um endereço IPv6 é x: x: x: x: x: x: x: x: x; x: x; com cada "x" consistindo em quatro valores hexadecimais.
- No IPv6, um hexteto é o termo não oficial usado para se referir a um segmento de 16 bits ou quatro valores hexadecimais.
- Exemplos de endereços IPv6 no formato preferido:

```
2001:0db8:0000:1111:0000:0000:0000:0200
2001:0db8:0000:00 a3:abcd:0000:0000:1234
```


Representação de endereços IPv6

Regra 1 - Omitir zeros à esquerda

A primeira regra para ajudar a reduzir a notação de endereços IPv6 é omitir quaisquer 0s (zeros) iniciais.

Exemplos:

- 01AB pode ser representado como 1AB
- 09f0 pode ser representado como 9f0
- 0a00 pode ser representado como a00
- 00ab pode ser representado como ab

Observação: A regra aplica-se apenas aos 0s à esquerda, e NÃO aos 0s à direita. Caso contrário, o endereço ficaria ambíguo.

Tipo	Formato
Preferencial	2001: 0 db8: 000 0:1111: 000 0: 000 0: 000 0: 0 200
Sem zeros à esquerda	2001: db8:0: 1111:0: 0:0: 200

Representação de endereços IPv6 Regra 2 - Dois-pontos duplos

Dois pontos duplos (: :) podem substituir qualquer sequência única e contígua de um ou mais hextets de 16 bits que consistem em todos a zeros.

Exemplo:

2001:db8:cafe: 1:0:0:0:1 poderia ser representado como 2001:db8:cafe:1::1

Observação:Os dois pontos duplos (::) só podem ser usados uma vez num endereço; caso contrário, haveria mais de um endereço resultante possível.

Tipo	Formato
Preferencial	2001: 0 db8: 000 0:1111: 0000 : 0000 : 0000 : 0 200
Compactado	2001:db8:0:1111::200

12.3 Tipos de endereços IPv6

Tipo de Endereçamento IPv6 Unicast, Multicast, Anycast

Existem três grandes categorias de endereços IPv6:

- **Unicast** Um endereço IPv6 unicast identifica exclusivamente uma interface num dispositivo habilitado para IPv6.
- Multicast Um endereço IPv6 multicast é usado para enviar um único pacote IPv6 para vários destinos.
- Anycast Um endereço IPv6 anycast é qualquer endereço IPv6 unicast que possa ser atribuído a vários dispositivos. Um pacote enviado a um endereço de anycast é encaminhado para o dispositivo mais próximo que tenha esse endereço.

Observação: Ao contrário do IPv4, o IPv6 não possui um endereço de broadcast. No entanto, há um endereço multicast all-nodes IPv6 que fornece basicamente o mesmo resultado.

Tipos de endereços IPv6 Comprimento do prefixo IPv6

O comprimento do prefixo é representado na notação de barra e é usado para indicar a parte da rede de um endereço IPv6.

O comprimento do prefixo pode variar de 0 a 128. O comprimento recomendado do prefixo IPv6 para LANs e a maioria dos outros tipos de redes é / 64.

Observação: É altamente recomendado usar um ID de interface de 64 bits para a maioria das redes. Isso porque a configuração automática de endereço sem estado (Stateless Address Autoconfiguration - SLAAC) usa 64 bits para o ID de interface. Também facilita a criação e a gestão de sub-redes.

Tipos de endereços IPv6 Endereços IPv6 unicast

Ao contrário dos dispositivos IPv4 que têm apenas um único endereço, os dispositivos com endereços IPv6 normalmente têm dois endereços unicast:

- Um endereço unicast global (Global Unicast Address - GUA) é semelhante a um endereço IPv4 público. São endereços de encaminháveis na Internet e globalmente exclusivos.
- Endereço do link local (Link Local Address -LLA) – é obrigatório para todos os dispositivos habilitados para IPv6 e é usado para comunicar com outros dispositivos no mesmo link local. Os LLAs não são encaminháveis e estão confinados a um único link.

Tipos de endereços IPv6 Uma observação sobre o endereço locais exclusivos

Os endereços locais exclusivos IPv6 (intervalo fc00 :: / 7 a fdff :: / 7) têm alguma semelhança com os endereços privados do RFC 1918 para o IPv4, mas existem diferenças significativas:

- Os endereços locais exclusivos (Unique local adresses) são utilizados para endereçamento local dentro de um site ou entre um número limitado de sites.
- Unique local adresses podem ser usados para dispositivos que nunca precisarão ou terão acesso por outra rede.
- Unique local adresses não são globalmente encaminhados ou traduzidos para um endereço IPv6 global.

Nota: Muitos sites usam a natureza privada dos endereços RFC 1918 para tentar proteger ou ocultar sua rede de possíveis riscos à segurança. Este nunca foi o uso pretendido dos ULA.

Tipos de endereços IPv6 IPv6 GUA

O endereço IPv6 unicast global (**Global Unicast Address - GUA**) é globalmente exclusivo e roteável na Internet em IPv6.

- Atualmente, apenas estão a ser atribuídos GUAs com os três primeiros bits de 001 ou 2000::/3.
- GUAs disponíveis atualmente começam com 2 ou um 3 (Isso é apenas 1/8 do espaço total de endereços IPv6 disponível).

Tipos de endereços IPv6 Estrutura IPv6 GUA

Prefixo de encaminhamento global (Global Routing Prefix):

 O prefixo global de encaminhamento é o prefixo (parte de rede) do endereço que é atribuído pelo fornecedor (como um ISP) a um cliente ou um site. O prefixo de encaminhamento global varia dependendo das políticas do ISP.

ID da sub-rede (Subnet ID):

 O campo ID de sub-rede é a área entre o Prefixo de roteamento global e o ID da interface. A ID da sub-rede é usada por uma empresa para identificar sub-redes localmente.

ID da interface:

A ID da interface IPv6 equivale à parte de host de um endereço IPv4. É
altamente recomendado que na maioria dos casos sejam usadas sub-redes /64.

Nota: O IPv6 permite que os endereços com todos os bits a 0s e os endereços com todos os bits a 1s, na parte de host, possam ser atribuídos a um dispositivo. O endereço all-0s é reservado como endereço anycast do Suppret-Router e deve ser atribuído apenas aos routers.

Tipos de endereços IPv6

Um endereço IPv6 de link-local permite que um dispositivo comunique com outros dispositivos habilitados para IPv6 no mesmo link e somente nesse link (sub-rede).

- Pacotes com um LLA (Link-Local Address) de origem ou destino não podem ser encaminhados.
- Todas as interfaces de rede habilitadas para IPv6 deve ter um LLA.
- Se um LLA não estiver configurado manualmente numa interface, o dispositivo criará automaticamente um.
- Os LLAs IPv6 estão no intervalo fe80: :/10.

■ ESTIG – IPB :: Eduardo Costa (raposo@ipb.pt)

- 1. Routers use the LLA of neighbor routers to send routing updates.
- 2. Hosts use the LLA of a local router as the default-gateway.

12.4 Configuração estática GUA e LLA

Configuração estática GUA e LLA Configuração estática do GUA num router

A maioria dos comandos de configuração e verificação do IPv6 no Cisco IOS são semelhantes aos seus equivalentes no IPv4. Em muitos casos, a única diferença é o uso de **ipv6** em vez de **ip** nos comandos.

- O comando para configurar um GUA IPv6 numa interface é: ipv6 address ipv6address/prefix-length.
- O exemplo mostra comandos para configurar um GUA na interface G0/0/0 em R1:

```
R1(config)# interface gigabitEthernet 0/0/0
R1(config-if)#ipv6 address 2001:db8:acad:1::1/64
R1(config-if)# no shutdown
R1(config-if)# exit
```

Configuração estática da GUA e do LLA Configuração estática da GUA num host com Windows

- Configurar manualmente o endereço IPv6 num host é semelhante a configurar um endereço IPv4.
- O GUA ou LLA da interface do router podem ser usados como gateway por omissão (default gateway). A melhor prática é usar o LLA.

Nota: Quando DHCPv6 ou SLAAC é usado, o LLA do router será especificado automaticamente como o endereço de default gateway.

Configuração estática de GUA e LLA Configuração de GUA e LLA Configuração de GUA estática de um endereço Link Local Unicast

A configuração manual do LLA permite criar um endereço reconhecível e fácil de lembrar.

- Os LLAS podem ser configurados manualmente usando o comando ipv6 address ipv6-link-local-address link-local.
- O exemplo mostra comandos para configurar um LLA na interface G0/0/0 em R1

```
R1(config)# interface gigabitEthernet 0/0/0
R1 (config-if) # ipv6 endereço fe80:: 1:1 link-local
R1(config-if)# no shutdown
R1(config-if)# exit
```

Observação: O mesmo LLA pode ser configurado em cada link, desde que seja exclusivo nesse link. A prática comum é criar um LLA diferente em cada interface do router para facilitar a identificação do router e da interface específica.

12.5 Endereçamento dinâmico para GUAs IPv6

Endereçamento dinâmico para GUAs IPv6 Mensagens RS e RA

Os dispositivos obtêm endereços GUA dinamicamente através de mensagens ICMPv6 (Internet Control Message Protocol versão 6).

- As mensagens de solicitação de router (Router Solicitation RS) são enviadas por dispositivos host para descobrir routers IPv6
- As mensagens de anúncio de router (Router Advertisement RA) são enviadas por routers para informar os hosts sobre como obter um GUA IPv6 e fornecer informações úteis de rede, como:
 - Prefixo de rede e comprimento do prefixo
 - Endereço do default gateway
 - Endereços DNS e nome de domínio
- O RA pode fornecer três métodos para configurar um GUA IPv6:
 - SLAAC
 - SLAAC com servidor DHCPv6 stateless

Endereçamento dinâmico para GUAS IPv6 Método 1: SLAAC

- O SLAAC permite que um dispositivo configure um GUA sem os serviços do DHCPv6.
- Os dispositivos obtêm as informações necessárias para configurar um GUA a partir das mensagens de RA ICMPv6 do router local.
- O prefixo é fornecido pelo RA e o dispositivo usa o EUI-64 ou método de geração aleatória para criar um ID de interface.

Endereçamento dinâmico para IPv6 GUAs Método 2: SLAAC e DHCP sem estado

Um RA pode instruir um dispositivo a usar o SLAAC e o DHCPv6 sem estado.

A mensagem RA sugere que os dispositivos usem o seguinte:

- SLAAC para criar seu próprio GUA IPv6
- O LLA do router, que é o endereço IPv6 de origem da mensagem RA, como o endereço do default gateway
- Um servidor DHCPv6 stateless para obter outras informações como o endereço de um servidor DNS e um nome de domínio.

Endereçamento dinâmico para GUAs IPv6 Método 3: DHCPv6 com estado

Um RA pode instruir um dispositivo a usar apenas DHCPv6 com estado.

O DHCPv6 stateful é semelhante ao DHCP para IPv4. Um dispositivo pode receber automaticamente de um servidor DHCPv6 com estado um GUA, comprimento de prefixo e os endereços de servidores DNS.

A mensagem RA sugere que os dispositivos usem o seguinte:

- O LLA do router, que é o endereço IPv6 de origem da mensagem RA, como o endereço default gateway
- Um servidor DHCPv6 stateful para obter o endereço unicast global, o endereço do servidor DNS, o nome do domínio e outras informações.

■ ESTIG – IPB :: Eduardo Costa (raposo@ipb.pt)

Endereçamento dinâmico para IPv6 GUAS EUI-64 processo vs. gerado aleatoriamente

- Quando a mensagem de RA é SLAAC ou SLAAC com DHCPv6 stateless, o cliente deve gerar sua própria ID da interface.
- A ID da interface pode ser criada por meio do processo EUI-64 ou de um número de 64 bits gerado aleatoriamente

EUI-64 or random 64-bit number

Endereçamento dinâmico para IPv6 GUAS EUI-64 processo

O IEEE definiu o processo de identificador exclusivo estendido (Extended Unique Identifier EUI) ou EUI-64 modificado, que executa o seguinte:

- Um valor de 16 bits de fffe (em hexadecimal) é inserido no meio do endereço
 MAC Ethernet de 48 bits do cliente.
- O 7° bit do endereço MAC do cliente é revertido do binário 0 para 1.
- Exemplo:

MAC de 48 bits	fc: 99:47:75:ce:e0
ID da interface EUI-64	fe: 99:47:ff:fe:75:ce:e0

Endereçamento dinâmico para GUAs IPv6 IDs de interface gerados aleatoriamente

Dependendo do sistema operativo, um dispositivo pode usar um ID de interface gerado de forma aleatória em vez de usar o endereço MAC e o processo EUI-64.

Por exemplo, desde o Windows Vista, o Windows usa um ID da interface gerado de forma aleatória em vez de um criado com o EUI-64.

```
C:\> ipconfig
Windows IP Configuration
Adaptador Ethernet Conexão de Área Local:
Connection-specific DNS Suffix . :
IPv6 Address . . . . . . . . : 2001:db8:acad: 1:50 um 5:8 a35:a5bb:66
Link-local IPv6 Address . . . . . . . fe80: :50a 5:8 a35:a5bb:66e1
Gateway Padrão . . . . . . . : fe80::1
C:\ >
```

Observação: para garantir a exclusividade de qualquer endereço IPv6 unicast, o cliente pode usar um processo conhecido como detecção de endereço duplicado (DAD). Isso equivale a uma solicitação ARP para seu próprio endereço. Se não houver resposta, significa que o endereço é exclusivo.

12.6 Endereçamento dinâmico para LLAs IPv6

Endereçamento dinâmico para LLAs IPv6 LLAS dinâmicos

- Todas as interfaces IPv6 devem ter um LLA IPv6.
- Como GUAs IPv6, os LLAs podem ser configurados dinamicamente.
- A Figura mostra que o endereço de link local é criado dinamicamente com o prefixo FE80::/10 e que a ID da interface é criada por meio do processo EUI-64 ou por um número de 64 bits gerado aleatoriamente.

Endereçamento dinâmico para LLAs IPv6 LLAS dinâmicos no Windows

Sistemas operativos, como o Windows, normalmente usarão o mesmo método para um GUA criado pelo SLAAC e um LLA atribuído dinamicamente.

ID da interface gerada com EUI-64

```
C:\> ipconfig
Windows IP Configuration
Adaptador Ethernet Conexão de Área Local:
Connection-specific DNS Suffix . :
Link-local IPv6 Address . . . . : fe80::fc 99:47ff:fe75:cee0
Gateway Padrão . . . . . . . : fe80::1
C:\ >
```

ID da interface gerada aleatoriamente com 64 bits

```
C:\> ipconfig
Windows IP Configuration
Adaptador Ethernet Conexão de Área Local:
  Connection-specific DNS Suffix . :
  IPv6 Address. . . . . . . . . . . . . . . . . . 2001:db8:acad:1:50a 5:8 a35:a5bb:66e
  Link-local IPv6 Address . . . . .: fe80::50a 5:8 a35:a5bb:66e1
  Gateway Padrão . . . . . . . : fe80::1
C:\ >
```

Endereçamento dinâmico para LLAs IPv6 LLAS dinâmicos em Routers Cisco

Os routers Cisco criam automaticamente um endereço IPv6 de link local sempre que um endereço unicast global é atribuído à interface. Por defeito, os routers Cisco IOS usam o EUI-64 para gerar a ID da interface de todos os endereços de link local (LLAs) em interfaces IPv6.

A figura seguinte apresenta um exemplo de um LLA configurado dinamicamente na interface G0/0/0 de R1:

```
R1# show interface gigabitEthernet 0/0/0
GigabitEthernet0/0/0 está ativo, protocolo de linha está ativo
O hardware é ISR4221-2x1GE, o endereço é 7079.b392.3640 (bia 7079.b392.3640)
(Saída omitida)
R1#show ipv6 interface brief
GigabitEthernet0/0/0 [up/up]
FE80::7279:B3FF:FE92:3640
2001:DB8:ACAD:1::1
```

12.7 Endereços de multicast IPv6

Endereços IPv6 multicast Endereços IPv6 multicast atribuídos

Os endereços multicast IPv6 têm o prefixo ff00::/8. Há dois tipos de endereços IPv6 multicast:

- Endereços multicast bem conhecidos.
- Endereços multicast do nó solicitado

Observação: os endereços multicast só podem ser endereços destino, e não endereços origem.

Endereços IPv6 multicast Endereços IPv6 multicast bem conhecidos

Endereços multicast IPv6 conhecidos são atribuídos e reservados para grupos de dispositivos predefinidos.

Há dois grupos de multicast atribuídos IPv6 comuns:

- **ff02 :: 1 All-nodes multicast group** este é um grupo multicast ao qual se juntam todos os dispositivos habilitados com IPv6. Um pacote enviado para esse grupo é recebido e processado por todas as interfaces IPv6 no link ou rede.
- **ff02 :: 1 All-routers multicast group** este é um grupo multicast ao qual se juntam todos os routers habilitados com IPv6. Um router torna-se membro desse grupo quando é ativado como router IPv6 com o comando de configuração global ipv6 unicast-routing.

Endereços IPv6 multicast

Endereços IPv6 multicast do nó solicitado

- Um endereço multicast nó solicitado (solicited-node) é semelhante ao endereço multicast all-nodes.
- Um endereço multicast de nó solicitado é mapeado para um endereço multicast Ethernet especial.
- A NIC Ethernet pode filtrar o quadro examinando o endereço MAC de destino sem o enviar ao processo IPv6 para verificar se o dispositivo é o destino pretendido do pacote IPv6.

12.8 Divisão de uma rede IPv6

Divisão de uma rede IPv6 em sub-redes Divisão em sub-redes usando a ID da sub-rede

O IPv6 foi projetado com a sub-rede em mente.

- Um campo de ID de sub-rede separado no GUA IPv6 é usado para criar sub-redes.
- O campo ID da sub-rede é a área entre o Prefixo de Encaminhamento Global e o ID da interface.

Divisão de uma rede IPv6 em sub-redes **Exemplo de sub-redes IPv6**

Dado o prefixo de encaminhamento global 2001:db8:acad: :/48 com um ID de sub-rede de 16 bits.

- Permite 65.536/64 sub-redes
- O prefixo de encaminhamento global é o mesmo para todas as sub-redes.
- Somente o hexteto do ID da sub-rede é incrementado em hexadecimal para cada sub-rede.

Divisão de uma rede IPv6 em sub-redes Alocação de sub-rede IPv6

A topologia de exemplo requer cinco sub-redes, uma para cada LAN e também para o link serie entre R1 e R2.

As cinco sub-redes IPv6 foram alocadas, com o campo ID de sub-rede 0001 a 0005. Cada sub-rede /64 fornecerá mais endereços que o necessário.

Divisão de uma rede IPv6 em sub-redes Router configurado com sub-redes IPv6

O exemplo mostra que cada uma das interfaces do router R1 foi configurada para estar numa sub-rede IPv6 diferente.

```
R1(config)# interface gigabitEthernet 0/0/0
R1(config-if)# ipv6 address 2001:db8:acad:1::1/64
R1(config-if)# no shutdown
R1(config-if)# exit
R1(config)# interface gigabitEthernet 0/0/1
R1 (config-if) # ipv6 endereço 2001:db8:acad:2::1/64
R1(config-if)# no shutdown
R1(config-if)# exit
R1(config-if)# exit
R1(config-if)# ipv6 address 2001:db8:acad:3::1/64
R1(config-if)# no shutdown
```

2.9 - Sumário

Sumário

O que aprendi neste módulo?

- O IPv4 tem um máximo teórico de 4,3 bilhões de endereços.
- A IETF criou vários protocolos e ferramentas para ajudar os administradores de rede a migrarem as redes para IPv6. As técnicas de migração podem ser divididas em três categorias: pilha dupla, encapsulamento e tradução.
- Os endereços IPv6 têm 128 bits e são escritos como uma sequência de valores hexadecimais.
- Como mostrado na Figura 1, o formato preferencial para escrever um endereço IPv6 é x: x: x:
 x: x: x: x: x, com cada "x" consistindo de quatro valores hexadecimais.
- Há três tipos de endereços IPv6: unicast, multicast e anycast.
- Um endereço IPv6 unicast identifica exclusivamente uma interface em um dispositivo habilitado para IPv6.
- O endereço IPv6 unicast global (GUA) é globalmente exclusivo e roteável na Internet IPv6.
- Um endereço IPv6 de link-local permite que um dispositivo se comunique com outros dispositivos habilitados para IPv6 no mesmo link e somente nesse link (sub-rede).
- O comando para configurar um GUA IPv6 em uma interface é ipv6 address ipv6address/prefix-length.
- Um dispositivo obtém um GUA dinamicamente através de mensagens ICMPv6. Os roteadores IPv6 enviam mensagens ICMPv6 de RA a cada 200 segundos para todos os dispositivos habilitados para IPv6 na rede.

Sumário

que aprendi neste módulo? (Cont.)

- As mensagens de RA têm três métodos: SLAAC, SLAAC com um servidor DHCPv6 sem estado e DHCPv6 com estado (sem SLAAC).
- A ID da interface pode ser criada por meio do processo EUI-64 ou de um número de 64 bits gerado aleatoriamente
- Esse processo usa o endereço MAC Ethernet de 48 bits de um cliente e insere outros 16 bits no meio do endereço MAC de 48 bits para criar uma ID da interface de 64 bits.
- Dependendo do sistema operativo, um dispositivo pode usar um ID de interface gerado aleatoriamente.
- Todos os dispositivos IPv6 devem ter um IPv6 LLA. Um LLA pode ser configurado manualmente ou criado dinamicamente.
- Os routers Cisco criam automaticamente um endereço IPv6 de link local sempre que um endereço unicast global é atribuído à interface.
- Existem dois tipos de endereços multicast IPv6: endereços multicast conhecidos e endereços multicast de nó solicitado.
- Dois grupos comuns de multicast atribuídos IPv6 são: ff02: :1 Grupo de multicast de todos os nós e ff02: :2 Grupo de multicast de todos os routers.
- Um endereço multicast solicited-node é semelhante ao endereço multicast all-nodes. A vantagem do endereço multicast solicited-node é que ele é mapeado para um endereço multicast Ethernet especial.
- O IPv6 foi projetado com a sub-rede em mente. Um campo de ID de sub-rede separado no GUA IPv6 é usado para criar sub-redes.