

Fajny płot

Każdy wie, że Balázs ma najfajniejszy płot w całym mieście. Płot zbudowany jest z N fajnych segmentów. Wszystkie segmenty są prostokątami stojącymi na ziemi jeden obok drugiego. ity z nich ma wysokość h_i i szerokość w_i .

Balázs poszukuje fajnych prostokątów na swoim płocie.

Prostokąt jest fajny jeśli:

- każdy z jego boków jest poziomy lub pionowy i ma całkowitą długość
- jego odległość od ziemi jest całkowita
- jego odległość od lewego boku pierwszego prostokąta jest całkowita
- nie wystaje poza segmenty

Twoim zadaniem jest obliczenie liczby fajnych prostokątów modulo $10^9 + 7$.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą N oznaczającą liczbę segmentów. Druga linia wejścia zawiera N liczb całkowitych, i-ta z nich to wysokość i-tego segmentu h_i . Trzecia linia wejścia zawiera N liczb całkowitych, i-ta z nich to szerokość i-tego segmentu w_i .

Wyjście

Na wyjściu powinna znaleźć się jedna liczba całkowita będąca liczbą fajnych prostokątów modulo $10^9 + 7$.

Przykłady

Wejście	Wyjście
2	12
1 2	
1 2	

1

v2

Wyjaśnienie

Mamy !	5 fajnych prostokątów o kształ	cie:
Mamy :	3 fajne prostokąty o kształcie:	
Mamy 1	1 fajny prostokąt o kształcie:	
Mamy 2	2 fajne prostokąty o kształcie:	
Mamy 1	1 fajny prostokąt o kształcie:	

Ograniczenia

 $1 \le N \le 10^5$ $1 \le h_i, w_i \le 10^9$

 $\textbf{Limit czasu:} \ 0.1 \ s$

Limit pamięci: 32 MiB

Ocenianie

Podzadanie	Punkty	Ograniczenia
1	0	przykład
2	12	$N \leq 50$ i $h_i \leq 50$ i $w_i = 1$ dla każdego i
3	13	$h_i = 1$ lub $h_i = 2$ dla każdego i
4	15	wszystkie h_i są równe
5	15	$h_i \leq h_{i+1}$ dla każdego $i \leq N-1$
6	18	$N \le 1000$
7	27	brak dodatkowych ograniczeń

2

v2