Theory of Computation

1. Finite Automata

- 1. Central Concepts of Automata Theory:
 - L(A): the set of strings accepted by an automaton A is the language of A.
 - \circ \sum : an alphabet is any finite set of symbols.
 - $\circ \sum^*$: set of all strings over alphabet \sum
 - L: A *language* is a subset of \sum^* for some alphabet \sum .
- 2. DFA:
 - Five parts: Q, \sum , δ , q_0 , F
 - \circ Transition Function: $\delta(q,a)$ or $\delta^*(q,w)$
- 3. Proofs of Set Equivalence: L(A) and the set of strings satisfies N
 - 1. If w is accepted by the DFA then $w \in N$: an induction on length of w
 - 2. If $w \in N$ then w is accepted by the DFA: contrapositive
- 4. Prove a language L is regular:
 - 1. A language *L* is *regular* if it is the language accepted by some DFA.
 - 2. Construct the DFA: five parts.
- 5. NFA:
 - Five parts: Q, \sum , δ , q_0 , F
 - For any NFA there is a DFA that accepts the same language: subset construction (lazy form)
 - \circ $\delta_N(q,w)$
- 6. ϵ -NFA
 - \circ CL(q): set of states you can reach from state q following only arcs labeled ϵ .
 - \circ $\delta_E(q,w)$
 - \circ Equivalence of NFA, ϵ -NFA

Exercise:

2.2.4: Give DFA's accepting the following languages over the alphabet {0,1}

- a) The set of all strings ending in 00.
- b) The set of all strings with three consecutive 0's (not necessarily at the end)
- c) The set of strings with 011 as a substring.

States:

- A: string seen so far has no 011, but ends in 111 or $00(q_0)$
- B: string seen so far has no 011, but ends in a single 0
- C: string seen so far has no 011, but ends in 01
- D: string seen so far has 011(F)

2.3.1: Convert to a DFA the following NFA:

	0	1
$\rightarrow p$	$\begin{cases} \{p,q\} \\ \{r\} \end{cases}$	$\{p\}$
q	$\{r\}$	$\{r\}$
r	$\{s\}$	Ø
*s	$\{s\}$	$\{s\}$

	0	1
→{p}	{p,q}	{p}
{p,q}	{p,q,r}	{p,r}
{p,q,r}	{p,q,r,s}	{p,r}
{p,r}	{p,q,s}	{p}
*{p,q,r,s}	{p,q,r,s}	{p,r,s}
*{p,q,s}	{p,q,r,s}	{p,r,s}
*{p,r,s}	{p,q,s}	{p,s}
*{p,s}	{p,q,s}	{p,s}

2.5.1 Consider the following ϵ -NFA. Convert the automaton to a DFA

	ϵ	a	b	c
$\rightarrow p$	Ø	{ <i>p</i> }	$\{q\}$	$\{r\}$
q	$\{p\}$	$\{q\}$ $\{r\}$	$\{q\}$ $\{r\}$	Ø
*r	$\{q\}$	$\{r\}$	\emptyset	$\{p\}$

$CL(p)=\{p\},CL(q)=\{p,q\},CL(r)=\{p,q,r\}$

	a	b	с
→{p}	{p}	{p,q}	{p,q,r}
{p,q}	{p,q}	{p,q,r}	{p,q,r}
*{p,q,r}	{p,q,r}	{p,q,r}	{p,q,r}

2. Regular Language

- 1. Regular Expressions:
 - o Three operations: Union, Concatenation, Kleene star
 - Equivalence of RE and DFA:
 - lacktriangledown RE to ϵ -NFA: an induction on the number of operators (+, concatenation, *) in the RE

3.2.1: Here is a transition table for a DFA. Construct the transition diagram for the DFA and give a regular expression for its language by eliminating state q_2

$$\begin{array}{c|ccccc} & 0 & 1 \\ \hline \rightarrow q_1 & q_2 & q_1 \\ q_2 & q_3 & q_1 \\ *q_3 & q_3 & q_2 \\ \end{array}$$

Here is the transition diagram:

If we eliminate state q_2 we get:

So the expression for the ways to get from q_1 to q_3 is: [1 + 01 + 00(0+10)*11]*00(0+10)*

3. Properties of Regular Languages

- 1. Pumping lemma:
 - \circ Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string w in L such that $|w| \geq n$, we can break w into three strings, w = xyz, such that:
 - 1. $y \neq \epsilon$.
 - $2. |xy| \leq n.$
 - 3. For all $k \geq 0$, the string xy^kz is also in L.
 - o Prove a language is not a RL: contrapositive
- 2. Product DFA:
 - \circ Product DFA has set of states $Q \times R$. I.e., pairs [q, r] with q in Q, r in R.
 - We can construct the final state and let a property is true if and only if the product automaton's language is empty.
- 3. State Minimization:
 - Combining indistinguishable states: If state p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.
 - Eliminating Unreachable State: Remove states that are not reachable from the start state.

Exercise:

4.1.1: Prove that the following are not regular languages.

c)
$$\{0^n 10^n | n \ge 1\}$$

Let n be the pumping-lemma constant. Pick $w=0^n10^n$. Then when we write w=xyz, we know that $|xy|\leq n$, and therefore y consists of only 0's. Thus, xz, which must be in L if L is regular, consists of fewer than n 0's, followed by a 1 and exactly n 0's. That string is not in L, so we contradict the assumption that L is regular.

4.3.1: Give an algorithm to tell whether a regular language L is infinite.

Let n be the pumping-lemma constant. Test all strings of length between n and 2n-1 for membership in L. If we find even one such string, then L is infinite.

4. Context-Free Grammar

1. CFG Formalism:

- $\circ G=(V,T,P,S)$, where V is the set of variables, T the terminals, P the set of productions, and S the start symbol.
- o Terminals: symbols of the alphabet of the language being defined.
- Variables: a finite set of other symbols, each of which represents a language.
- Start symbol: the variable whose language is the one being defined.
- Production: variable (head) \rightarrow string of variables and terminals (body).
- Derivations: ⇒* means "zero or more derivation steps."
- \circ L(G): G is a CFG, the language of G $L(G)=\{w|S\Rightarrow^*w\}$. A language that is defined by some CFG is called a *context-free language*(CFL).

2. Parse trees:

- Yield: The concatenation of the labels of the leaves in left-to-right order.
- Ambiguous: A CFG is *ambiguous* if there is a string in the language that is the yield of two or more parse trees. Or if there is a string in the language that has two different leftmost/rightmost derivations.
- LL(1) Grammars: a grammar you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol. LL(1) grammars are never ambiguous.

Exercise:

5.4.3: Consider the grammar: $S \to aS \mid aSbS \mid \epsilon$. This grammar is ambiguous. Please find an unambiguous grammar for the language.

$$S \rightarrow aS|aTbS|\epsilon$$

$$T \rightarrow aTbT|\epsilon$$

5. Pushdown Automata

1. PDA:

- o NPDA:
 - Defines all the CFL's.
 - $L_{wwr} = \{ww^R | w \text{ is in } (0+1)^*\}$
- o DPDA:
 - $\delta(q, a, X)$ and $\delta(q, \varepsilon, X)$ cannot both be nonempty.
 - lacksquare If L is a regular language, then L=L(P) for some DPDA P.
 - If L = N(P)/L(P) for some DPDA P, then L has an unambiguous context-free grammar.
 - $L_{wcwr} = \{wcw^R | w \ is \ in \ (0+1)^*\}$ is not regular, but accepted by DPDA.
- Seven parts: $Q, \sum, \Gamma, \delta, q_0, Z_0, F$
- $\delta(q, a, Z)$: a set of zero or more actions of the form (p, α) .

2. Instantaneous description(ID):

- \circ a triple (q, w, α) , q is the current state, w is the remaining input, α is the stack contents, top at the left.
- $\circ (q, aw, X\alpha) \vdash (p, w, \beta\alpha)$ for any w and α , if $\delta(q, a, X)$ contains (p, β) .

- o ⊢*, meaning "zero or more moves"
- 3. L(P): P is a PDA, $L(P)=\{w|(q_0,w,Z_0)\vdash^* (f,\epsilon,\alpha)\}$ for final state f and any α .

N(P): P is a PDA,
$$N(P)=\{w|(q_0,w,Z_0)\vdash^* (q,\epsilon,\epsilon)\}$$
 for any state q.

These two definitions are equal.

- 4. Proof L(P) = L(G):
 - $\circ \ \, (q,wx,S)\vdash^* (q,x,\alpha) \text{ for any x if and only if } S\Rightarrow_{lm}^* w\alpha.$
 - o Only if: an induction on the number of steps made by P
 - If: an induction on the number of steps in the leftmost derivation.
- 5. Equivalence of PDAs and CFGs:
 - \circ CFG(L(G)) \rightarrow PDA(N(P)):
 - Input: $w = xy = xA\alpha$
 - \blacksquare ID $(q, y, A\alpha)$
 - lacksquare Tail: Alpha
 - Transition function δ :
 - 1. For each variable A: $\delta(q,\epsilon,A)=\{(q,B)|A o \beta \ is \ a \ production \ of \ G\}$
 - 2. For each terminal $a, \delta(q, a, a) = \{(q, \epsilon)\}$
 - \circ PDA(N(P)) \rightarrow CFG(L(G)):
 - [pXq]:
 - 1. A way of describing one variable.
 - 2. All those strings w that cause P to pop X from its stack while going from state p to state q.

3.
$$(p, w, X) \vdash^* (q, \epsilon, \epsilon)$$

- $S \Rightarrow^* w$ if and only if $[q_0 Z_0 p] \Rightarrow^* w$, and $[q_0 Z_0 p] \Rightarrow^* w$ if and only if $(q_0, w, Z_0) \vdash^* (p, \epsilon, \epsilon)$
- The productions of G:

1.
$$S
ightarrow [q_0 Z_0 p]$$

2.
$$[qXr_k] o a[rY_1r_1][r_1Y_2r_2]\dots [r_{k-1}Y_kr_k]$$
 if $\delta(q,a,X)$ contain the pair $(r,Y_1Y_2\dots Y_k)$

Exercise:

6.2.8: A PDA is called restricted if on any transition it can increase the height of the stack by at most one symbol. That is, for any rule $\delta(q,a,Z)$ contains (p,γ) , it must be that $|\gamma|\leq 2$. Show that if P is a PDA, then there is a restricted PDA P_3 such that $L(P)=L(P_3)$.

Suppose that there is a rule that $(p,X_1X_2\dots X_k)$ is a choice in $\delta(q,a,Z)$. We create k-2 new states $r_1,r_2,\dots r_{k-2}$ that simulate this rule but do so by adding one symbol at a time to the stack. That is, replacing $(p,X_1X_2\dots X_k)$ in the rule by $(r_{k-2},X_{k-1}X_k)$. Then create new rules $\delta(r_{k-2},\epsilon,X_{k-1})=\{(r_{k-3},X_{k-2}X_{k-1})\}$, and so on, down to $\delta(r_2,\epsilon,X_3)=\{(p,X_1X_2)\}$

6.3.1: Convert the grammar: $S o 0S1|A,A o 1A0|S|\epsilon$, to a PDA that accepts the same language by empty stack.

 $(\{q\},\{0,1\},\{0,1,A,S\},\delta,q,S,q)$ where δ is defined by:

1.
$$\delta(q, \epsilon, S) = \{(q, 0S1), (q, A)\}$$

2.
$$\delta(q, \epsilon, A) = \{(q, 1A0), (q, S), (q, \epsilon)\}$$

3.
$$\delta(q, 0, 0) = \{(q, \epsilon)\}$$

4.
$$\delta(q, 1, 1) = \{(q, \epsilon)\}$$

6.3.3: Convert the PDA P=({p,q},{0,1},{X,Z_0}, δ ,q, Z_0) to a CFG, if δ is given by:

1.
$$\delta(q, 1, Z_0) = \{(q, XZ_0)\}.$$

2.
$$\delta(q, 1, X) = \{(q, XX)\}.$$

3.
$$\delta(q, 0, X) = \{(p, X)\}.$$

4.
$$\delta(q, \epsilon, X) = \{(q, \epsilon)\}.$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}.$$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}.$$

- 1. $S
 ightarrow [qZ_0q]|[qZ_0p]$
- 2. The following four productions come from rule (1).

$$[\mathsf{q} Z_0 \mathsf{q}] o \mathsf{1} [\mathsf{q} \mathsf{X} \mathsf{q}] [\mathsf{q} Z_0 \mathsf{q}]$$

$$[\mathsf{q}Z_0\mathsf{q}] o \mathsf{1}[\mathsf{q}\mathsf{X}\mathsf{p}][\mathsf{p}Z_0\mathsf{q}]$$

$$[\mathsf{q} Z_0 \mathsf{p}] o \mathsf{1} [\mathsf{q} \mathsf{X} \mathsf{q}] [\mathsf{q} Z_0 \mathsf{p}]$$

$$[\mathsf{q} Z_0 \mathsf{p}] o \mathsf{1} [\mathsf{q} \mathsf{X} \mathsf{p}] [\mathsf{p} Z_0 \mathsf{p}]$$

3. The following four productions come from rule (2).

$$[qXq] \rightarrow 1[qXq][qXq]$$

$$[qXq] \rightarrow 1[qXp][pXq]$$

$$[qXp] \rightarrow 1[qXq][qXp]$$

$$[qXp] \rightarrow 1[qXp][pXp]$$

4. The following two productions come from rule (3).

$$[qXq] \rightarrow 0[pXq]$$

$$[qXp] \rightarrow 0[pXp]$$

5. The following production come from rule (4).

$$[\mathsf{qXq}]{\rightarrow}~\epsilon$$

6. The following production come from rule (5).

$$[pXp] \rightarrow 1$$

7. The following two productions come from rule (6).

$$[pZ_0 q]
ightarrow 0[qZ_0 q]$$

$$[\mathsf{p} Z_0 \mathsf{p}] o \mathsf{0}[\mathsf{q} Z_0 \mathsf{p}]$$

6. Properties of CFL:

- 1. Chomsky Normal Form(safe order $O(n^2)$):
 - 1. Eliminate ϵ -productions
 - 2. Eliminate unit productions
 - 3. Eliminate useless symbols: variables that derive nothing and unreachable symbols
 - 4. CNF: all productions are in one of two simple forms: A o BC or A o a

If G is a CFG whose language contains at least one string other than ϵ , then there is a grammar G_1 in Chomsky Normal Form, such that $L(G_1)=L(G)-\{\epsilon\}$

- 2. Pumping lemma for CFL:
 - Let L be a CFL. Then there exists a constant n such that if z is any string in L such that |z| is at least n, then we can write z = uvwxy, subject to the following conditions:
 - 1. $|vwx| \leq n$. That is, the middle portion is not too long.
 - 2. $vx \neq \epsilon$. Since v and x are the pieces to be pumped, this condition says that at least one of the strings we pump must not be empty.
 - 3. For all $i \geq 0$, uv^iwx^iy is in L. That is, the two strings v and x may be "pumped" any number of times, including 0, and the resulting string will still be a member of L.
 - o Prove a language is not a CFL: contrapositive
- 3. Decision Properties: membership(CYK: $O(n^3)$), empty(O(n)), infinite
- 4. Non-Decision Properties: equivalence, disjoint
- 5. Closure Properties: union, concatenation, closure(*), positive closure(+), homomorphism, reversal, inverse homomorphism, L/a
- 6. Non-closure properties:
 - o intersection, complement, subtraction, min/max
 - o Give a counter example
 - o If L is a CFL and R is a regular language, then
 - 1. $L \cap R$ is a CFL
 - 2. L-R is a CFL

7.1.2: Begin with the grammar. Put the resulting grammar into Chomsky Normal Form.

$$S
ightarrow ASB|\epsilon$$

$$A
ightarrow aAS|a$$

$$B
ightarrow SbS|A|bb$$

1. Eliminate ϵ -productions

$$S
ightarrow ASB|AB$$
 $A
ightarrow aAS|aA|a$ $B
ightarrow SbS|bS|Sb|b|A|bb$

2. Eliminate unit productions

$$S
ightarrow ASB|AB$$

$$A
ightarrow aAS|aA|a$$

$$B
ightarrow SbS|bS|Sb|b|aAS|aA|a|bb$$

- Eliminate useless symbols no useless symbols
- 4. Construct CNF

$$\begin{array}{cccc} S \rightarrow & AE|AB \\ A \rightarrow & CF|CA|a \\ B \rightarrow & SG|DS|SD|b|CF|CA|a|DD \\ C \rightarrow & a \\ D \rightarrow & b \\ E \rightarrow & SB \\ F \rightarrow & AS \\ G \rightarrow & DS \end{array}$$

7.2.1: Use the CFL pumping lemma to show each of these languages not to be context-free

a)
$$\{a^i b^j c^k | i < j < k\}$$

Let n be the pumping-lemma constant and consider $z=a^nb^{n+1}c^{n+2}$. We may write z=uvwxy, $|vwx|\leq n$.

- 1. If vwx doesn't have c's, then uv^3wx^3y has at least n+2 a's or b's, and thus could not be in L.
- 2. If vwx has a c, then it could not have an a, because its length is limited to n. Thus, uwy has n a's, but no more than 2n+2 b's and c's in total. Thus uwy is not in L.

So we have a contradiction no matter how z is broken into uvwxy.

7. Turing Machines

- 1. TM:
 - Seven parts: $Q, \sum, \Gamma, \delta, q_0, B, F$
 - $\circ \delta(q,Z)$ is either undefined or a triple of the form (p,Y,D), p is a state, Y is the new tape symbol, and D is a direction, L or R.
 - o ID:
 - $\alpha q \beta$
 - \vdash * will be used to indicate zero, one, or more moves of the TM.
 - If $\delta(q,Z)=(p,Y,R)$, then $\alpha qZ\beta\vdash \alpha Yp\beta$
 - $\qquad \text{If } \delta(q,Z) = (p,Y,L) \text{, then } \alpha XqZ\beta \vdash \alpha pXY\beta$
- 2. $L(M) = \{w|q_0w \vdash^* I, where I \text{ is an } ID \text{ with } a \text{ final state}\}$

 $H(M) = \{w|q_0w \vdash^* I, and there is no move possible from ID I\}$

- Equivalence of L(M) and H(M)
- 3. Multiple Tracks:
 - Each track can hold one symbol, and the tape alphabet of the TM consists of tuples, with one component for each "track".
- 4. Subroutines:
 - $\circ~$ A Turing machine subroutine is a set of states that perform some useful process.
- 5. Multitape Turing Machines:
 - The control enters a new state which could be the same as the previous state.
 - o On each tape, a new tape symbol is written on the cell scanned.
 - Each of the tape heads makes a move, which can be either left, right, or stationary. The heads move independently, so different heads may move in different directions, and some may not move at all.
- 6. NTM:
 - $\circ \ \delta(q,X) = \{(q_1,Y_1,D_1), (q_2,Y_2,D_2), \dots, (q_k,Y_k,D_k)\}$
 - \circ If M_N is a nondeterministic Turing machine, then there is a deterministic Turing machine M_D such that $L(M_N)=L(M_D)$
- 7. Semi-infinite Tape:
 - \circ Every language accepted by a TM M_2 is also accepted by a TM M_1 with the following restrictions:
 - M_1 's head never moves left of its initial position.
 - M_1 never writes a blank.
- 8. Multistack Machines:
 - We can restrict the tapes of a multitape TM to behave like a stack.
 - A one-stack machine is really a DPDA, while a machine with two stacks can accept any RE language.
- 9. Recursively Enumerable Languages and Recursive Languages
 - Every language accepted by a TM that always halts is recursive language. Every CFL is a recursive language.
 - Every language accepted by a multitape TM is recursively enumerable
 - If L is a recursive language, so is \overline{L} .
 - o If both a language L and its complement are RE, then L and its complement is recursive.

8.2.5: Consider the Turing machine $M = (\{q_0, q_1, q_2, q_f\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_f\}).$

Informally but clearly describe the language L(M) if δ consists of the following sets of rules:

$$\delta(q_0,0) = (q_1,1,R); \delta(q_1,1) = (q_0,0,R); \delta(q_1,B) = (q_f,B,R)$$

Regular expression: (01)*0

8. Undecidability

1. L_d :

- \circ The "diagonalization language", which consists of all those string w such that the TM M whose code is w does not accept when given w as input.
- \circ L_d is not a recursively enumerable language.
- $\circ L_d$ has no Turing machine at all that accepts it.

2. L_u :

- $\circ L_u$ is the set of strings representing a TM and an input accepted by that TM.
- $\circ U$ simulates M on w. U accepts the coded pair (M,w) if and only if M accepts w.
- $\circ \ L_u$ is RE but not decidable/recursive.

3. Encode TM:

- \circ Transition rule: $\delta(q_i,X_j)=(q_k,X_l,D_m)$. We can code this rule by the string $0^i10^j10^k10^l10^m$
- \circ A code for the entire TM M consists of all the codes for the transitions, in some order, separated by pairs of 1's: $C_111C_211\cdots C_{n-1}11C_n$
- \circ A TM and a string (M,w): For this pair we use the code for M followed by 111, followed by w

4. Reductions:

- If we have an algorithm to convert instances of a problem P_1 to instances of a problem P_2 that have the same answer, then we say that P_1 reduces to P_2 . P_2 is at least as hard as P_1 .
- 5. Rice's Theorem: Every nontrivial property of the RE languages is undecidable.

$$\circ \ \ L_e = \{M|L(M) = \emptyset\} \text{ is non-RE, while } L_{ne} = \{M|L(M) \neq \emptyset\} \text{ is RE.}$$

- 6. Post's Correspondence Problem(PCP):
 - $\circ \;\; L_u$ reduces to MPCP, and MPCP reduces to PCP, so PCP and MPCP are undecidable.
 - PCP reduces to the question of whether a given CFG is ambiguous, so it is undecidable whether a CFG is ambiguous.
 - o List languages:
 - $lacksquare A
 ightarrow x_i A a_i B
 ightarrow x_i B a_i$
 - If L_A is the language for list A, then L_A and $\overline{L_A}$ is a context-free language.
 - Let G_1 and G_2 be context-free grammars, and let R be a regular expression. Then the following are undecidable:

a) Is
$$L(G_1) \cap L(G_2) = \emptyset$$
?

b) Is
$$L(G_1) = L(G_2)$$
?

c) Is
$$L(G_1) = L(R)$$
?

d) Is $L(G_1) = T^*$ for some alphabet T?

e) Is
$$L(G_1) \subseteq L(G_2)$$
?

f) Is
$$L(R) \subseteq L(G_1)$$

a) Let $L(G_1)=L_A, L(G_2)=L_B$. Then $L(G_1)\cap L(G_2)$ is the set of solutions to this instance of PCP. The intersection is empty if and only if there is no solution.

b), c), d) Let $L(G_1) = \overline{L_A} \cup \overline{L_B} = \overline{L_A \cap L_B}, L(G_2) = (\sum \bigcup I)^*$. Their languages are equal if and only if the PCP instance has no solution.

e), f) Let
$$L(G_1)=(\sum\bigcup I)^*, L(G_2)=\overline{L_A}\cup\overline{L_B}=\overline{L_A\cap L_B}$$
. Then $L(G_1)\subseteq L(G_2)$ if and if PCP has no solution.

Exercise:

9.1.3: Show that the language is not accepted by a Turing machine, using a diagonalization-type argument.

a) The set of all w_i such that w_i is not accepted by M_{2i}

Suppose this language were accepted by some TM M. We need to find an i such that $M=M_{2i}$. Since all the codes for TM's end in a 0, that is not a problem.

If w_i is accepted by M_{2i} , then w_i is not accepted by M, and therefore not accepted by M_{2i} , which is the same TM. Similarly, if w_i is not accepted by M_{2i} , then w_i is accepted by M, and therefore by M_{2i} . Either way, we reach a contradiction, and conclude that M does not exist.

9.2.4: Let L_1, L_2, \cdots, L_k be a collection of languages over alphabet \sum such that:

- 1. For all $i \neq j, L_i \cap L_j = \emptyset$; i.e., no string is in two of the languages.
- 2. $L_1 \cup L_2 \cup \cdots \cup L_k = \sum^*$, i.e., every string is in one of the languages.
- 3. Each of the languages L_i for $i=1,2,\cdots,k$ is recursively enumerable.

Prove that each of the languages is therefore recursive.

By symmetry, if we can prove L_1 is recursive, we can prove any of the languages to be recursive. Take TM's M_1, M_2, \cdots, M_k for each of the languages L_1, L_2, \cdots, L_k , respectively. Design a TM M with k tapes that accepts L_1 and always halts. M copies its input to all the tapes and simulates M_i on the i-th tape. If M_1 accepts, then M accepts. if any of the other TM's accepts, M halts without accepting. Since exactly one of the M_i 's will accept, M is sure to halt.

9.3.8: Tell whether each of the following are recursive, RE-but-not-recursive, or non-RE

d) The set of all TM codes for TM's that fail to halt on at least one input.

We'll show it's non-RE by a reduction from the nonhalting problem, which is non-RE. Given (M, w), construct M' as follows:

- 1. M' ignores its own input and simulates M on w.
- 2. If M halts, M' halts on its own input. However, if M never halts on w, then M' will never halt on its own input.

As a result, M' fails to halt on at least one input if M fails to halt on w. If M halts on w, then M' halts on all input.

9. Intractable Problems

- 1. \mathscr{P} : problems can be solved in polynomial time by deterministic TM's.
 - \mathcal{NP} : problems can be solved in polynomial time by nondeterministic TM's. $\mathscr{P} \subseteq \mathcal{NP}$
 - \circ NP-complete:
 - L is in \mathcal{NP} .
 - For every language L' in \mathcal{NP} , there is a polynomial-time reduction of L' to L.
 - $\qquad \text{If some } NP-\text{complete problem } P \text{ is in } \mathscr{P} \text{, then } \mathscr{P} = \mathscr{NP}$
- 2. The Satisfiability Problem:
 - \circ A boolean expression E is said to be satisable if there exists at least one truth assignment T that satises E.
 - The satisability problem is: given a boolean expression, is it satisable?
 - o Cook's Theorem: SAT is NP-complete.
 - $E_{M,w} = U \wedge S \wedge N \wedge F$

- The running time of this algorithm on a multitape, DTM is $O(p^2(n))$, and that multitape TM can be converted to a single-tape TM that runs in time $O(p^4(n))$.
- We can reduce SAT to CSAT, then reduce CSAT to 3SAT.
- o The independent-set problem is NP-complete.(IS)
 - maximal if it is as large has as many nodes as no two nodes of I are connected by an edge of G
- The node-cover problem is NP-complete.(NC)
 - minimal if it has as few nodes as any node cover for the given graph.
- o The Directed Hamilton-Circuit Problem and Hamilton-Circuit Problem are NP-complete.(DHC, HC)

10.3.1: Put the following boolean expressions into 3-CNF:

- a) $xy+\overline{x}z$
 - 1. Put it into CNF: $(x+u)(y+u)(\overline{x}+\overline{u})(y+\overline{u})$
 - 2. Put it into 3-CNF:

$$(x+u+v_1)(x+u+\overline{v_1})(y+u+v_2)(y+u+\overline{v_2})(\overline{x}+\overline{u}+v_3)(\overline{x}+\overline{u}+\overline{v_3})(y+\overline{u}+v_4)(y+\overline{u}+\overline{v_4})$$

- d) $wx + \overline{x}y + u + v + w$
 - 1. Put it into CNF:

$$(w+a+b+c+d)(x+a+b+c+d)(\overline{x}+\overline{a}+b+c+d)(y+\overline{a}+b+c+d)(u+\overline{b}+c+d)(v+\overline{c}+d)(w+\overline{d})$$

2. Put it into 3-CNF:

$$(w+a+e_1)(b+\overline{e_1}+e_2)(c+d+\overline{e_2})(x+a+e_3)(b+\overline{e_3}+e_4)(c+d+\overline{e_4})(\overline{x}+\overline{a}+e_5)(b+\overline{e_5}+e_6)$$

$$(c+d+\overline{e_6})(y+\overline{a}+e_7)(b+\overline{e_7}+e_8)(c+d+\overline{e_8})(u+\overline{b}+e_9)(c+d+\overline{e_9})(v+\overline{c}+d)(w+\overline{d}+e_{10})(w+\overline{d}+\overline{e_{10}})$$

Hint:

Suppose $e_i = (x_1 + x_2 + \cdots + x_m)$ for some $m \ge 4$. Introduce new variables y_1, y_2, \dots, y_{m-3} and replace e_i by the product of clauses

$$(x_1 + x_2 + y_1)(x_3 + \overline{y_1} + y_2)(x_4 + \overline{y_2} + y_3) \cdots (x_{m-2} + \overline{y_{m-4}} + y_{m-3})(x_{m-1} + x_m + \overline{y_{m-3}})$$
(10.2)

10. Additional Classes of Problems

- 1. co-*NP*:
 - The class of complements of \mathcal{NP} .
 - $\circ \quad \mathcal{NP}\text{=-co-}\mathcal{NP} \text{ if and only if there is some NP-complete problem whose complement is in } \mathcal{NP}$
- 2. PS:
 - all the problems that can be solved by a Turing machine using an amount of tape that is polynomial in the length of its input.
 - \circ Savitch's theorem: PS = NPS
 - o PS-complete:
 - lacksquare P is in PS
 - lacktriangle All languages L in PS are polynomial-time reducible to P.
 - Suppose P is a PS-complete problem. Then:
 - a) If P is in \mathscr{P} , then $\mathscr{P}=PS$
 - b) If P is in \mathscr{NP} , then $\mathscr{NP}=PS$
- 3. RP:
 - $\circ~$ have an algorithm that runs in polynomial time $\mbox{\tt ll}$ using a random-number generator.
 - \circ $RP \subseteq \mathscr{NP}$

- \circ Both the primes and the complement of the language of primes—the composite numbers—are in NP. The composite numbers are in RP.
- 4. ZPP (zero-error, probabilistic, polynomial):
 - The class is based on a randomized TM that always halts, and has an expected time(rather than the worst-case running time) to halt that is some polynomial in the length of the input.
 - $\circ \ \ ZPP = RP \bigcap \text{co-}RP$
 - \circ $\mathscr{P}\subseteq ZPP$

