Capítulo 3-Circuitos Sequenciais

Blocos padrão sequenciais Profa. Eliete Caldeira

Blocos padrão sequenciais

- Existem circuitos sequenciais que por serem muito utilizados, são disponibilizados como dispositivos de prateleira
- Entre estes dispositivos estão registradores, registradores de deslocamento, contadores, incrementadores, temporizadores,

Registrador de N bits

- É um componente sequencial capaz de armazenar N bits.
- Larguras típicas: 8, 16 e 32, embora qualquer largura seja possível.
- Ações básicas:
 - Carregar, escrever ou armazenar dados em um registrador
 - Ler um registrador, que consiste em se conectar as saídas do registrador
- A leitura não está sincronizada com o relógio
- Além disto, a leitura não remove os bits do registrador nem os modifica de nenhum modo

Registrador de N bits

- Tipo mais básico de registrador
 - Conjunto de flip-flops que são carregados a cada ciclo de relógio.
- Deve ser carregado em todos os ciclos de relógio

Figure 3.30 A basic 4-bit register internal design (left) and block symbol (right).

 Útil como registrador de estado em um bloco de controle

Figure 3.47 Standard controller architecture for the laser timer.

- Pode-se obter controle sobre a carga de um registrador colocando um multiplexador 2x1.
- Na borda de subida do clock:
 - Se load=0 cada flip-flop será carregado com o valor de sua própria saída Q
 - Se load=1 cada flip-flop será carregado com uma das entradas de dados

- No circuito da figura, CLR é uma entrada de reset assíncrona e LD é a entrada que controla sincronamente a carga
 - Se LD = 0 mantém a memória
 - Se LD = 1 carrega novo valor

 Exemplo:Para o circuito, as entradas são como na figura da direita

Figure 4.2 Basic register example.

Figure 4.3 Basic register example: (a) timing diagram, and (b) the contents of each register.

- Exemplo: Balança com display que mostra peso atual e peso salvo anteriormente
 - Pode ser usada para comparar pesos
 - Um botão salva o valor atual da balança

Figure 4.4 Weight sampler implemented using a 4-bit parallel load register.

Registrador de deslocamento

 Desloca os conteúdos de um registrador para a esquerda ou para a direita

Registrador de deslocamento

Na figura o deslocamento é para a direita

shr = 0 → mantém memória shr = 1 → desloca para a direita shr_in → bit que será inserido

Registrador circular

- Variação do registrador de deslocamento
- Para o deslocamento circular para a direita

Figure 4.12 Right rotate example: (a) register contents before and after the rotate, and (b) bit-by-bit view of the rotate operation.

Registradores com múltiplas funções

- Realizam uma variedade de operações (funções):
 - Carga, deslocamento à direita, deslocamento à esquerda, rotação à direita, rotação à esquerda, etc.
- O usuário do registrador seleciona a operação desejada definindo as entradas de controle

Registrador com carga paralela e deslocamento à direita

O usuário seleciona a função com s1 e s0

Figure 4.14 4-bit register with parallel load and shift right operations: (a) internal design, and (b) block symbol.

s1	s0	Operation
0	0	Maintain present value
0	1	Parallel load
1	0	Shift right
1	1	(unused – let's load 0s)

Figure 4.15 Operation table of a 4-bit register with parallel load and shift right operations.

Registrador com carga paralela e deslocam. à direita e à esquerda

O usuário seleciona a função com s1 e s0

Figure 4.16 4-bit register with parallel load, shift left, and shift right operations: (a) internal design, (b) block symbol.

s 1	s0	Operation
0	0	Maintain present value
0	1	Parallel load
1	0	Shift right
1	1	Shift left

Figure 4.17 Operation table of a 4-bit register with parallel load, shift left, and shift right operations.

Registrador com carga paralela e deslocam. à direita e à esquerda

- Geralmente, os registradores não vêm com entradas de controle que codificam a função usando o número mínimo de bits
- Cada função tem a própria entrada de controle

Figure 4.19 A small combinational circuit maps the control inputs 1d, shr, and sh1 to the mux select inputs s1 and s0.

Registrador com carga paralela e deslocam. à direita e à esquerda

- Geralmente, os registradores não vêm com entradas de controle que codificam a função usando o número mínimo de bits
- Cada função tem a própria entrada de controle

Figure 4.19 A small combinational circuit maps the control inputs 1d, shr, and sh1 to the mux select inputs s1 and s0.

Passos	Explicação			
1. Determine o tamanho do multiplexador	Conte o número de funções e coloque um multiplexador à frente de cada flip-flop com, no mínimo, esse número de entradas de dados.			
2. Crie a tabela de funções do multiplexador	Crie uma tabela de funções que define as operações desejadas para cada valor possível das linhas de seleção do multiplexador.			
3. Conecte as entradas do multiplexador	Para cada função, conecte a entrada de dados correspondente do multiplexador à entrada externa ou saída de flip-flop apropriada para obter a função desejada.			
4. Mapeie as linhas de controle	Crie uma tabela-verdade que mapeia as linhas de controle externas nas linhas internas de seleção dos multiplexadores, com prioridades apropriadas, e então projete a lógica combinacional que implemente esse mapeamento			

 Exemplo: Projete um registrador com carga, deslocamento, set e clear síncronos

- Exemplo: Projete um registrador com carga, deslocamento à esquerda, set e clear síncronos
- Passo 1: Determine o tamanho do multiplexador
 - São cinco funções: carga, deslocamento à esquerda, clear síncrono, set síncrono e manutenção do valor atual
- Passo 2: Crie a tabela de funções do multiplexador

- Exemplo: Projete um registrador com carga, deslocamento à esquerda, set e clear síncronos
- Passo 2: Crie a tabela de funções do multiplexador

Figure 4.21 Operation table for a register with load, shift, and synchronous clear and set.

s2	s1	s0	Operation
0	0	0	Maintain present value
0	0	1	Parallel load
0	1	0	Shift left
0	1	1	Synchronous clear
1	0	0	Synchronous set
1	0	1	Maintain present value
1	1	0	Maintain present value
1	1	1	Maintain present value

- Exemplo: Projete um registrador com carga, deslocamento à esquerda, set e clear síncronos
- Passo 3: Conecte as entradas do multiplexador

Figure 4.22 Nth bit-slice of a register with the following operations: maintain present value, parallel load, shift left, synchronous clear, and synchronous set.

- Exemplo: Projete um registrador com carga, deslocamento à esquerda, set e clear síncronos
- Passo 4: Mapeie as linhas de controle

Figure 4.23 Truth table for the control lines of a register with the Nth bit-slice shown in Figure 4.22.

Inputs			Outputs				
cir	set	ld	shl	s2	s1	s0	Operation
0	0	0	0	0	0	0	Maintain present value
0	0	0	1	0	1	0	Shift left
0	0	1	Χ	0	0	1	Parallel load
0	1	Χ	Χ	1	0	0	Set to all 1s
1	Χ	Х	Х	0	1	1	Clear to all 0s

- Exemplo: Projete um registrador com carga, deslocamento à esquerda, set e clear síncronos
- Passo 4: Mapeie as linhas de controle

Figure 4.23 Truth table for the control lines of a register with the Nth bit-slice shown in Figure 4.22.

Inputs			Outputs				
clr	set	ld	shl	s2	s2 s1 s0 Operation		Operation
0	0	0	0	0	0	0	Maintain present value
0	0	0	1	0	1	0	Shift left
0	0	1	Χ	0	0	1	Parallel load
0	1	X	Х	1	0	0	Set to all 1s
1	X	X	Х	0	1	1	Clear to all 0s

```
s2 = clr'*set
s1 = clr'*set'*ld'*shl + clr
s0 = clr'*set'*ld + clr
```

Contador de N bits

- Componente construído a partir de uma extensão de um registrador de N bits:
 - Pode incrementar ou decrementar o próprio valor a cada ciclo de relógio
 - Pode ter uma entrada de habilitação para manter o valor (cnt = 0) ou contar (cnt = 1)
 - Incrementar significa adicionar 1, decrementar significa subtrair 1
- Contador que pode incrementar: contador crescente (upcounter)
- Contador que pode decrementar: contador decrescente (down-counter)
- Contador que pode incrementar e decrementar: contador crescente/decrescente (up-down-counter)
- Contagem terminal (ou terminal counter) = 1 durante o ciclo de relógio no qual o contador atinge seu último valor de contagem

Contador de N bits

- Na figura o contador crescente de 4 bits mantém a contagem se cnt = 0 e incrementa se cnt = 1
- Na situação mostrada, as saídas após a borda de subida do clock serão C=0010 e tc = 0

- Projeto de um contador crescente de N bits usando o processo de projeto de registradores descrito anteriormente
 - Valor incrementado do registrador irá alimentar uma entrada de dados do MUX
 - Linhas de controle do contador serão mapeadas para linhas de seleção do MUX

- Projeto de um contador crescente de N bits em uma visão mais simples:
 - Registrador
 - Componente incrementador para somar 1
 - cnt=0, o registrador deve manter o seu valor corrente.

cnt=1, o registrador deve ser carregado com o seu valor

corrente + 1

Figure 4.48 4-bit up-counter internal design.

- Incrementador: Pode-se usar um somador de N bits, colocando na entrada B o valor 0001 e um 0 na entrada de "vem um".
- Mas não é preciso toda a lógica envolvida em somador de N bits, uma vez que B sempre será 0001.
- Somar 1 a um número binário envolve apenas dois bits por coluna, e não três. Assim, pode-se usar meios-somadores

Figure 4.50 4-bit incrementer: (a) internal design, and (b) block symbol.

Figure 4.48 4-bit up-counter internal design.

- Podemos projetar um incrementador usando o processo de projeto lógico combinacional
 - Vantagem: Atraso total de apenas dois níveis de portas
- Incrementadores de mais bits a construção de somadores usando o processo de projeto lógico combinacional não é muito prática

	Inp	uts		Outputs				
a3	a2	a1	a0	c0	s3	s2	s1	s0
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1	1
0	0	1	1	0	0	1	0	0
0	1	0	0	0	0	1	0	1
0	1	0	1	0	0	1	1	0
0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	0	1	0	0	1
1	0	0	1	0	1	0	1	0
1	0	1	0	0	1	0	1	1
1	0	1	1	0	1	1	0	0
1	1	0	0	0	1	1	0	1
1	1	0	1	0	1	1	1	0
1	1	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	0

Figure 4.51 Truth table for four-bit incrementer.

Exemplo: Gerador de pulsos de 1Hz usando um oscilador de 256Hz

Figure 4.53 Clock divider.

- Projeto de um contador decrescente de N bits em uma visão mais simples:
 - Registrador
 - Componente decrementador para subtrair 1
 - cnt=0, o registrador deve manter o seu valor corrente.

cnt=1, o registrador deve ser carregado com o seu

valor corrente -1

 Decrementador: pode ser feito invertendo-se os bits de C, somando 1 e invertendo novamente. Ex: 0100 ->1011+1=1100->0011

Figure 4.54 4-bit down-counter design.

Contador crescente/decrescente

Figure 4.55 4-bit up/down-counter design.

Contador com carga paralela

Figure 4.57 Internal design of a 4-bit up-counter with load.

Contadores

- Exemplo: Gerador de pulsos de 1 Hz usando um oscilador de 60 Hz
- Contador de 6 bits:
 - Conta de 0 a 63
 - Lógica para indicar 59 e
 - Resetar o contador

Temporizador

- Tipo especial de contador que mede tempo
- A medição de tempo é uma tarefa muito comum em sistemas digitais
- Se soubermos a duração de um ciclo de relógio, multiplicaremos o número de ciclos pela duração de um ciclo de relógio para obter a duração total do evento

Temporizador

 Exemplo: Sistema de medição de velocidade de rodovia

Temporizador

- Exemplo: Sistema de medição de velocidade de rodovia
 - Sensor a reseta e inicia o temporizador
 - Sensor b para o temporizador
- Conhecendo-se a frequência do temporizador e a distancia entre sensores, calcula-se a velocidade

- Componente de memória de blocos operacionais
- Propicia um acesso eficiente a um conjunto de M registradores
- Cada registrador tem uma largura de N bits
- Um registrador ativo por vez

Figure 4.80 16x32 register file block symbol.

- Usar para evitar:
 - Acúmulo de muitos fios, congestionamento
 - Ramificações de um fio, fanout
 - Correntes nos fios das ramificações sejam pequenas demais para poder controlar eficientemente os transistores
- Usar quando:
 - Não se necessita carregar mais de um registrador de cada vez
 - Não precisamos ler mais de um registrador de cada vez.
- Um banco de registradores MxN resolve os problemas de fanout e congestionamento
- M registradores são agrupados em um único componente:
 - Entrada e Saida de dados de N bits de largura

Figure 4.80 16x32 register file block symbol.

Implementação

Figure 4.80 16x32 register file block symbol.

Figure 4.81 One possible internal design of a 4x32 register file.

Figure 4.82 (a) driver, (b) three-state driver.

- Escrita
- Coloca-se:
 - Dados a serem escritos na entrada W_data
 - Endereço do registrador na entrada W_addr
 - Indicar que se deseja escrever (W_en = 1)

Figure 4.81 One possible internal design of a 4x32 register file.

W_data + W_addr+ W_en = Escrita

Figure 4.82 (a) driver, (b) three-state driver.

- Leitura
- Coloca-se:
 - Endereço do registrador a ser lido, R_addr
 - Habilita-se a leitura, R_en=1
 - Banco de registradores coloca na saída R_data o conteúdo do registrador que foi endereçado
- R_data + R_addr + R_en = Leitura

Figure 4.81 One possible internal design of a 4x32 register file.

Figure 4.82 (a) driver, (b) three-state driver.

- Driver ou Buffer
 - Saída de um driver é igual à sua entrada
 - Sinal de saída é mais robusto (corrente mais elevada)
 - Solucao para o fanout
- Driver de três estados ou Buffer de três estados.
 - c = 1, o componente atua como um *driver* comum
 - c = 0, a saída no estado de alta impedância ('Z'). É como se não houvesse nenhuma conexão entre a entrada e a saída do *driver*

Figure 4.82 (a) driver, (b) three-state driver.

- Escrita e Leitura
- A escrita e leitura são independentes entre si.
- Durante o mesmo ciclo de relógio, podese:
 - Escrever em um registrador e
 - Ler de outro (ou do mesmo) registrador

Figure 4.81 One possible internal design of a 4x32 register file.

Lendo e escrevendo ao mesmo tempo

Figure 4.83 Writing and reading a register file.

- Tipos de Banco de Registradores
 - Banco de registradores de porta dupla:
 - 1 porta de leitura e 1 de escrita
 - Banco de registradores de porta simples:
 - Apenas 1 porta, usada tanto para ler como para escrever.
 - Banco de registradores de portas múltiplas:
 - 3 portas: uma porta de escrita e duas portas de leitura.
 - Especialmente útil em microprocessadores
- Instrução típica de microprocessador opera com dois registradores e armazena o resultado em um terceiro registrador, como na instrução
 - "RO ← R1 + R2".

- Número típico de registradores:
 - De 4 a 1024,
- Larguras típicas:
 - de 8 a 64 bits por registrador
- Número de portas:
 - 1, 2, 3 portas e ate mais
- Indo além de três portas:
 - Desempenho do banco de registradores pode baixar e
 - Tamanho pode aumentar de forma significativa (dificuldade de roteamento)