STA201

Introduction to Random Variables and Mathematical Expectation

13.1 – Introduction to Random Variables

13.1.1 - Random Variables

What are Random Variables?

A random variable is a variable which takes specified values with specified probability. A random variable is a variable that takes on numerical values as a result of a random experiment or measurement, and associates a probability with each possible outcome. Mathematically, a random variable is a real-valued function defined over a sample space. Random variables are generally denoted by uppercase letters, such as X, Y, Z etc.

Example: Consider the experiment of flipping two fair coins. The possible outcomes are: $S = \{HH, HT, TH, TT\}$. Let, X = The number of heads. So, $X = \{0, 1, 2\}$

And the probabilities associated with each value of X can be represented by the following table:

X = x	0	1	2
$\mathbf{P}(\mathbf{X} = \mathbf{x})$	1/4	2/4	1/4

Goals scored by Messi in different matches:

And the probabilities associated with each value of X can be represented by the following table:

X = x	0	1	2	3	4	5
P(X = x)	1/9	3/9	2/9	1/9	1/9	1/9

Types of Random Variables:

Discrete Random Variables: A discrete random variable is a random variable whose possible values either constitutes a finite set of values or an infinite sequence of numbers that is a countably infinite set of numbers. Example:

- X =The number of cars crossing an intersection every hour
- X =The number of phone calls received per day at a call center.
- X = Number of employee hire by a company.

Continuous Random Variable: A random variable is said to be continuous whose possible values consists of either all values of a small interval on real number line or all numbers in a disjoint union of such intervals (e.g. [0, 5] U [10, 15]). Continuous random variables can represent any value within a specified range or interval and can take on an infinite number of possible values. Example:

- X =The time taken to serve a customer at a call center
- X =The daily temperature at noon

13.1.2 - Probability Functions of Random Variables:

Probability Mass Function (PMF)

The probability distribution of a discrete random variable is known as discrete probability distribution.

If X is a discrete random variable with possible values x_1, x_2, \ldots, x_n , where each value has a corresponding probability $P(X = x_i)$; $i = 1, 2, \ldots, n$, the probability mass function P(x) of X is defined by

$$P(x_i) = \begin{cases} P(X = xi); & \text{if } X = xi, i = 1,2,...,n \\ 0; & \text{Otherwise} \end{cases}$$
And has following properties:

- 1. $0 \le P(x) \le 1$ for all x_i
- 2. $\sum_{i=1}^{n} P(x) = 1$

Example 1:

Consider the experiment of flipping two fair coins.

Let X =The number of heads

So,
$$X = \{0, 1, 2\}$$

$$P(x_i) = \begin{cases} P(X = xi); & \text{if } X = xi, i = 1,2,..., n \\ 0; & \text{otherwise} \end{cases}$$

x_i	0	1	2
$P(x_i)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Example 2: Let *X* be a random variable with probability function defined as follows:

x_i	2	4	6	8
$P(x_i)$	2/10	1/10	4/10	3/10

Probability Density Function (PDF)

The probability distribution of a continuous random variable is known as continuous probability distribution

If *X* is a continuous random variable, the probability density function f(x) of *X* is a function such that for any two numbers a and b with $a \le b$

$$P[a \le x \le b] = \int_{a}^{b} f(x) dx$$

That is, the probability that X takes on a value in the interval [a, b] is equivalent to the area below the graph of f(X) between the interval [a, b]. The graph of f(X) is often referred to as the density curve.

And a valid PDF f(x) has the following properties

1.
$$0 \le f(x) \le 1$$

$$2. \int_{-\infty}^{\infty} f(x) = 1$$

Note: The value of P(X) for any point value of X, say X=k, will always be 0. That is,

$$P(X = k) = 0; \quad k \in X$$

Example: The probability density function of a random variable X is defined as

$$f(x) = \begin{cases} x; & 0 \le x < 1 \\ 2 - x; & 1 \le x < 2 \\ 0; & x \ge 2 \end{cases}$$

Find $P[0.5 \le x \le 1.5]$

Sol:
$$P(0.5 \le x \le 1.5) = \int_{0.5}^{1.5} f(x) dx$$

 $1 = \int_{0.5}^{1} x dx + \int_{1}^{1.5} (2 - x) dx$ X C C 1 1 C C
 $= \left[\frac{x^2}{2}\right]_{0.5}^{1} + \left[2x - \frac{x^2}{2}\right]_{1}^{1.5}$
 $= \frac{3}{4}$

13.2 – Mathematical Expectation of Random Variables

13.2.1 - Expectation of Discrete Random Variables:

Mathematical Expectation

Let X be a random variable with probability function P(x) (if X is discrete), or density function f(x) (if X is continuous). Let g(x) be a function of the random variable X. Then, the mathematical expectation of the random variable g(x) is defined by

$$\sum g(x) \cdot P(x); \qquad \text{if X is discrete}$$

$$E[g(x)] = \{ \int g(x) \cdot f(x) \, dx; \qquad \text{if X is continuous}$$

E[g(x)] is also known as the expected value of g(x), or the mean of the distribution of g(x).

Expectation of Discrete Random Variable

Let X be a discrete random variable which can take a finite or infinite sequence of possible values x_1 , x_2, \ldots, x_n, \ldots with corresponding probabilities $P(x_1), P(x_2), \ldots, P(x_n), \ldots$; then the mathematical expectation of the random variable X, denoted by μ is defined as

$$\mu = E[X] = \sum_{i=1}^{n} x_i P(x_i)$$
; if X is finite

Example 1:

Let *X* e a random variable with probability function defined as follows:

x	2	4	6	8
P(<i>x</i>)	2/10	1/10	4/10	3/10

What is the expected value of X?

Solution:

$$E(x) = \sum x_i \cdot P(x_i)$$

= $(2 \times 2/10) + (4 \times 1/10) + (6 \times 4/10) + (8 \times 3/10)$

= 5.6

Example 2:

Imagine a game in which, on any play, a player has a 20% chance of winning Tk. 30 and an 80% chance of losing Tk. 10. What is the expected gain/loss of the player in the long run?

Solution: Let X = the gain on a play

$$E(x) = \sum x_i \cdot P(x_i)$$

= (30 × 0.2) + (-10 × 0.8)

x	30	-10
P(x)	0.2	0.8

Example 3:

If the random variable X is the top face of a tossed, fair, six-sided die, what is the expected value of X?

Solution: $X = \{1, 2, 3, 4, 5, 6\}$

$$P(x) = 1/6$$
; for $x = 1, 2, 3, 4, 5, 6$

x	1	2	3	4	5	6
P(<i>x</i>)	1/6	1/6	1/6	1/6	1/6	1/6

$$E(x) = \sum x_i \cdot P(x_i)$$

$$= (1 \times 1/6) + (2 \times 1/6) + (3 \times 1/6) + (4 \times 1/6) + (5 \times 1/6) + (6 \times 1/6)$$

$$= 3.5$$

Inspiring Excellence

13.2.2 Expectation of Continuous Random Variables:

Expectation of Continuous Random Variables

Let X be a continuous random variable with probability density function f(x); then the mathematical expectation of the random variable X, denoted by μ is defined as

$$\mu = E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Example 1:

Suppose X is a continuous random variable with probability density function

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & otherwise \end{cases}$$

What is the expected value of *X*?

Solution:

$$E(x) = \int_0^1 x \cdot f(x) \, dx$$

$$= \int_0^1 x \cdot 2x \, dx$$

$$= \int_0^1 2x^2 \, dx$$

$$= \left[\frac{2x^3}{3}\right]_0^1$$

$$= \frac{2}{3}$$

Example 2: The probability density function of a random variable *X* is defined as

What is the expected value of *X*?

$$f(x) = \begin{cases} x; & 0 \le x < 1 \\ 2 - x; & 1 \le x < 2 \\ 0; & x \ge 2 \end{cases}$$
11119 Fxcellence

Solution:

$$E(x) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

$$= \int_{0}^{2} x \cdot f(x) dx$$

$$= \int_{0}^{1} x \cdot f(x) dx + \int_{1}^{2} x \cdot f(x) dx$$

$$= \int_{0}^{1} x \cdot x dx + \int_{1}^{2} x \cdot (2 - x) dx$$

 $=\int_0^1 x^2 dx + \int_1^2 2x - x^2 dx$ $=\left[\frac{x^3}{3}\right]_0^1 + \left[x^2 - \frac{x^3}{3}\right]_1^2$

13.2.3 **Properties of Mathematical Expectation:**

Expectation of Functions of a Random Variable

Let X be a random variable with probability function f(x). Let g(x) be a function of the random variable X. Then, the mathematical expectation of the function g(x) is defined by

$$E[g(x)] = \{ \begin{cases} \sum g(x) \cdot f(x); & \text{if } X \text{ is discrete} \\ \int g(x) \cdot f(x) \, dx; & \text{if } X \text{ is continuous} \end{cases}$$

For example, for a random variable X with probability function f(x), the expected value of X^2 is

$$E[X^{2}] = \{ \begin{cases} \sum X^{2} \cdot f(x); & \text{if } X \text{ is discrete} \\ \int X^{2} \cdot f(x) \, dx; & \text{if } X \text{ is continuous} \end{cases}$$

Linearity of Expectation

Let X and Y be two random variables, and let c be a constant.

Consequently, E[X] and E[Y] are the expected values of X and Y respectively Then, the following properties are true:

- E[c] = c
- E[cX] = c E[X]
- E[X + c] = E[X] + c
- E[X + Y] = E[X] + E[Y]
- E[X Y] = E[X] E[Y]

Multiplicity of Expectation

Let X and Y be two independent random variables, and E[X] and E[Y] are the expected values of X and Y and Y are the expected values of Y and Y are the expe Y respectively. Then,

$$E[XY] = E[X] \cdot E[Y]$$

Variance of Random Variables 13.2.4

Variance

$$\sigma^2 = Var(X) = E[X - E(X)]^2 = E(X^2) - [E(X)]^2 = E(X^2) - \mu^2$$

Standard Deviation

$$\sigma = SD(X) = \sqrt[2]{Var(X)}$$

Example:

You want to open a new Café. After your market research, you found that 20% of similar cafés make a monthly loss of Tk. 50,000, 30% of them make no profit or loss, 40% make a profit of Tk. 50,000, and 10% of them make a profit of Tk. 150,000.

- a) What is your expected profit if you decide to open a new Café?
- b) What is the standard deviation in your profit amount?
- c) If your fixed cost increases by Tk. 10,000, what will be your new expected profit?

Solution: Let X = profit amount

X = x	-50,000	0	50,000	150,000
f(x)	0.2	0.3	0.4	0.1

a)
$$E(X) = (-50,000 \times 0.2) + (0 \times 0.3) + (50,000 \times 0.4) + (1,50,000 \times 0.1) = 25000$$

b)
$$\sigma^2 = Var(X) = E(X^2) - [E(X)]^2$$

 $E[X^2] = (-50,000^2 \times 0.2) + (0^2 \times 0.3) + (50,000^2 \times 0.4) + (1,50,000^2 \times 0.1)$
 $= 3750000000$
 $(X) = \sigma^2 = 37500000000$ (25000)

∴
$$Var$$
 $(X) = \sigma^2 = 3750000000 - (25000)^2 = 3125000000$
∴ $SD(X) = \sigma = \sqrt{3125000000} = 55901.69944$

c)
$$E(X - 10000) = E(X) - E(10000) = E(X) - 10000 = 25000 - 10000 = 15000$$

Properties of Variance

Let X and Y be two independent random variables, and Var[X] and Var[Y] are the variances of X and Y respectively. Let c be a constant.

Then, the following properties are true:

- Var(c) = 0
- $I \cdot \bigvee_{Var(X+c)=Var(x)}^{Var(cX)=c^2Var(x)} n g \quad E \times c = 11 e n c e$
 - Var(X + Y) = Var(X) + Var(Y)
 - Var(X Y) = Var(X) + Var(Y)

Practice Problems

Probability & Statistics for Engineering and the Sciences (Devore)

Random Variables (Basic Concept)

Page 95-96: 7

Discrete Random Variables

Page 104-105: 11(a, c), 13, 15(a, b), 17, 19, 27

Page 113-114: 29, 35, 37, 39

Continuous Random Variables

Page 142-143: 3, 5, 7

Page 150-152: 15(b, e, f), 21, 23

Inspiring Excellence