

Industry Leader in Operational Database Management Systems

Industry Leader in Business Intelligence and Analytics Platforms

Hyper scale Infrastructure is the enabler

30 Regions Worldwide, 22 Generally Available...

Platform Services

Infrastructure Services

 \equiv

 \equiv

 \equiv

 \equiv

Networking

 \equiv

 \equiv

Datacenter Infrastructure (30 Regions, 22 Online)

=

Azure Compliance

The largest compliance portfolio in the industry

SOC 1 Type 2

SOC 2 Type 2

PCI DSS Level 1

Cloud Controls Matrix

ISO 27018

Content Delivery and **Security Association**

Shared Assessments

FedRAMP JAB P-ATO

HIPAA / HITECH

FIPS 140-2

21 CFR Part 11

FERPA

DISA Level 2

CJIS

IRS 1075

ITAR-ready

Section 508 **VPAT**

European Union Model Clauses

Australian

Zealand

GCIO

New

Japan Financial Services

EU Safe Harbor

United Kingdom G-Cloud

China Multi **Layer Protection** Scheme

China GB 18030

China CCCPPF

Singapore MTCS Level 3

Signals Directorate

Azure is an open cloud

DevOps

Management

Applications

App Frameworks & Tools

Databases & Middleware

Infrastructure

Transform data into intelligent action

From data to intelligent action

SQL Server 2016

- Advanced Analytics as a new workload
- Enables a new class of scenarios in SQL Server
- In-DB and in-memory analytics for performance
- Parallel execution for scale (Revolution Analytics)
- Train and test on-prem, operationalize in the cloud

SQL Server 2016

Industry leadership in Mission Critical OLTP

Operational DBMS

Business Intelligence

Data Warehouse

Advanced Analytics

Enterprise use of open source R

R needs data in memory to start a computation*

R is mostly single threaded

R requires skilled resource to scale out computations across a cluster and needs recoding for R map-reduce in Hadoop

Open source R is supported by the community

Microsoft R Server

High-performance open source R plus:

- Data source connectivity to big-data objects
- Big-data advanced analytics
- Multi-platform environment support
- In-Hadoop and in-Teradata predictive modeling
- Development and production environment support
 - IDE for data scientist developers
 - Secure, Scalable R Deployment
- Technical support, training and services

ScaleR - Performance comparison

Microsoft R Server has no data size limits in relation to size of available RAM. When open source R operates on data sets that exceed RAM it will fail. In contrast Microsoft R Server scales linearly well beyond RAM limits and parallel algorithms are much faster.

File Name	Compressed File Size (MB)	No. Rows	Open Source R (secs)	Revolution R (secs)
Tiny	0.3	1,235	0.00	0.05
V. Small	0.4	12,353	0.21	0.05
Small	1.3	123,534	0.03	0.03
Medium	10.7	1,235,349	1.94	◆ 0.08
Large	104.5	12,353,496	60.69	0.42
Big (full)	12,960.0	123,534,969	Memory!	4.89
V.Big	25,919.7	247,069,938	Memory!	9.49
Huge	51,840.2	494,139,876	Memory!	18.92

- US flight data for 20 years
- Linear Regression on Arrival Delay
- Run on 4 core laptop, 16GB RAM and 500GB SSD

SQL Server 2016 – In T-SQL Stored Proc

```
create procedure TrainModelR
as
begin
   exec sp execute external script
   @language = N'R',
   @script = N'
         ## Create model
         InputDataSet$Tag <- factor(InputDataSet$Tag)</pre>
         InputDataSet$Age <- factor(InputDataSet$Age)</pre>
         InputDataSet$Address <- factor(InputDataSet$Address)</pre>
          logitObj <- glm(Tag ~ ., family = binomial, data = InputDataSet)</pre>
          summary(logitObj)
         ## Serialize model and put it in data frame
         trained model <- data.frame(model=as.raw(serialize(logitObj, connection=NULL)));'
          ,@input data 1 = N'select * from features'
          ,@output data 1 name = N'trained model';
end
go
execute TrainModelR
```


Data Science with Microsoft SQL Server 2016

Download

Buck Woody, Danielle Dean, Debraj GuhaThakurta Gagan Bansal, Matt Conners, Wee-Hyong Tok

