A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EF

Bookmark

Show all steps: ON

Problem

Let G be a group; let H and K be subgroups of G, with H a normal subgroup of G. Prove the following:

H is a normal subgroup of *HK*.

Step-by-step solution

Step 1 of 3

Suppose that G is any group and let H, K are the subgroups of G, with H a normal subgroup of G. Consider the following set:

$$HK = \{xy : x \in H, y \in K\}$$

Objective is to prove that H is a normal subgroup of K (do correction in the question).

To show that H is a normal subgroup of K, there is a need to show that for some $k \in K$, and $h \in H$

 $khk^{-1} \in H$

Comment

Step 2 of 3

Before going to prove this, assume that $H \subseteq K \subseteq G$ (a subset).

Since H is normal in G, so H is a subgroup of G (obvious). But K is a subgroup of G and $H \subseteq K$. So, this implies that H is also a subgroup of K.

Let $k \in K$. Then $k \in G$. Since H is normal subgroup of G, by definition left and right cosets in H will be same. That is,

Hk = kH

This condition holds for all $k \in K$.

Step 3 of 3	
Since H is a subgroup of K and subgroup of K .	$Hk = kH$ for all $k \in K$, therefore it conclude that H is a no
Comment	