Part 2g: Introduction to Markov chains

Textbook: pp. 50-51, 56-57

	Intr	odu	ıctic	n t	o M	ark	ov c	haii	าร									
	•	Mar	kov	cha	ins (desc	ribe	pro	cess	ses i	n (d	iscre	ete)	tim	e.			
								-				ies (
	•	The	cha	ract	erist	tic fe	eatu	re o	f Ma	arko	v pr	oce	sses	is t	hat i	the		
		distr	ribu	tion	of t	he s	tate	at t	ime	<i>j</i> , f	or a	ny <i>j</i>	, de	oend	ds o	n pa	st	
									ly vi	a th	e th	e va	lue	of tl	ne p	roce	ess a	at
		the	pre۱	/iou	s tin	ne ϳ	—]											

Definition of a Markov chain

Definition 2.13 A stochastic process $X = (X_j)_{j \in \mathbb{N}_0}$ with values in a set S is a *Markov chain*, if

$$P(X_{j} \in A_{j} | X_{j-1} \in A_{j-1}, X_{j-2} \in A_{j-2}, ..., X_{0} \in A_{0})$$

$$= P(X_{j} \in A_{j} | X_{j-1} \in A_{j-1})$$
(2.2)

for all $A_0, A_1, \ldots, A_j \subseteq S$ and all $j \in \mathbb{N}$, that is if the distribution of X_j depends on X_0, \ldots, X_{j-2} only through X_{j-1} . The set S is called the *state space* of X. The distribution of X_0 is called the *initial distribution* of X.

$$f_{X_{1},X_{2},...,2C_{N}} = f_{X_{2},X_{1},...,2C_{N}} = f_{X_{2},X_{1},...,2C_{N}$$

Independence => marginal, Marker => Joint of pairs

Definition 2.16 If the transition probabilities given by the right-hand side of (2.2) do not depend on the time j, the Markov chain X is called *time-homogeneous*.

Dis	cret	e st	ate	spa	ce												
	The	ctat	o cr	1200	ic 4	iscr	atα										
	The							e, fo	or ex	amı	ole S	S =	{1,2	1,3},	or i	t	
	can																
•	Tran	sitio	on d	istri	buti	ons	can	be:	spec	ifie	d us	ing t	he t	ran	sitio	n	
	mat	rix (pos	sibly	' infi	nite):										
						/					\						
					P =	$\begin{pmatrix} p \\ p \end{pmatrix}$	11 21	$p_{12} = p_{22}$	p_{13} p_{23}								
					<i>i</i> —			:	:	٠.	J						
	whe	ro									<i>'</i>						
	WIIC	16															
				7	$b_{xy} =$	= <i>P</i>	(X_i)	= y	X_{i-}	₋₁ =	x)						

Continuous state space The state space is continuous. • The state space can be an interval or a similar set. It can be one-dimensional or multi-dimensional. Frequently, the transition distributions can be specified using transition densities (= kernels): **Definition 2.28** A *transition density* is a map $p: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ such that: (a) $p(x, y) \ge 0$ for all $x, y \in \mathbb{R}^d$; and (b) $\int_{\mathbb{R}^d} p(x, y) dy = 1$ for all $x \in \mathbb{R}^d$. If the Markov chain X can be described by a transition density, then we have $P(X_j \in A | X_{j-1} = x) = \int_A p(x, y) dy$ for all $x \in \mathbb{R}^d$.

An example **Example 2.29** On $S = \mathbb{R}$, let $X_0 = 0$ and $X_j = \frac{1}{2}X_{j-1} + \varepsilon_j$ for all $j \in \mathbb{N}$, where $\varepsilon_j \sim \mathcal{N}(0, 1)$ i.i.d. is a Markov chain with state space $S = \mathbb{R}$. $AR(1), \alpha_{1} = \frac{1}{2}, 6^{2} = 1$ $f(x_{1}, x_{2}..., x_{5} | x_{0} = 0)$ $= \frac{x_{2}}{\sqrt{2\pi}} e^{-\frac{x_{1}^{2}}{2}} . \frac{x_{2}-x_{1/2}}{\sqrt{2\pi}} e^{-\frac{x_{2}^{2}}{2}} . \frac{x_{3}-x_{2/2}}{\sqrt{2\pi}}$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{2}^{2}}{2}} . \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{2}^{2}}{2}} . \frac{x_{3}-x_{2/2}}{\sqrt{2\pi}} e^{-\frac{x_{3}^{2}-x_{2/2}}{2}}$ $= \frac{x_{3}-x_{1/2}}{\sqrt{2\pi}} e^{-\frac{x_{3}^{2}-x_{2/2}}{2}} . \frac{x_{3}-x_{1/2}}{\sqrt{2\pi}} e^{-\frac{x_{3}^{2}-x_{1/2}}{2}} . \frac{x_{3}-x_{1/2}}{\sqrt{2$