# Ch<sub>5</sub>

In this notebook, you will find my solutions to some exercises from Chapter 5 of *Statistical Rethinking* and the assigned exercises from this course.

# Chapter 5

| ROOK   | - VORCICOC |
|--------|------------|
| LILLIK | Exercises  |
|        |            |
|        |            |

## Exercise 5M4

Data preparation. Standardize LDS members per 100 000 population. Merging with WaffleDivorce data.

# library(dplyr)

```
Attache Paket: 'dplyr'

Die folgenden Objekte sind maskiert von 'package:stats':

filter, lag

Die folgenden Objekte sind maskiert von 'package:base':

intersect, setdiff, setequal, union
```

# library(rethinking)

```
Lade nötiges Paket: cmdstanr
This is cmdstanr version 0.8.0
- CmdStanR documentation and vignettes: mc-stan.org/cmdstanr
- CmdStan path: /Users/eleonora/Documents/PhD/Statistics/cmdstan
- CmdStan version: 2.36.0
Lade nötiges Paket: posterior
This is posterior version 1.6.1
Attache Paket: 'posterior'
Die folgenden Objekte sind maskiert von 'package:stats':
    mad, sd, var
Die folgenden Objekte sind maskiert von 'package:base':
    %in%, match
Lade nötiges Paket: parallel
rethinking (Version 2.42)
Attache Paket: 'rethinking'
Das folgende Objekt ist maskiert 'package:stats':
   rstudent
```

#### # A tibble: 49 x 5

|                  | Location            | Divorce     | Marriage    | ${\tt MedianAgeMarriage}$ | <pre>lds_per_capita</pre> |  |
|------------------|---------------------|-------------|-------------|---------------------------|---------------------------|--|
|                  | <chr></chr>         | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>               | <dbl></dbl>               |  |
| 1                | Alabama             | 1.65        | 0.0226      | -0.606                    | -0.423                    |  |
| 2                | Alaska              | 1.54        | 1.55        | -0.687                    | 1.21                      |  |
| 3                | Arizona             | 0.611       | 0.0490      | -0.204                    | 1.42                      |  |
| 4                | Arkansas            | 2.09        | 1.66        | -1.41                     | -0.123                    |  |
| 5                | California          | -0.927      | -0.267      | 0.600                     | 0.409                     |  |
| 6                | Colorado            | 1.05        | 0.892       | -0.285                    | 0.671                     |  |
| 7                | ${\tt Connecticut}$ | -1.64       | -0.794      | 1.24                      | -0.909                    |  |
| 8                | Delaware            | -0.433      | 0.786       | 0.439                     | -0.693                    |  |
| 9                | Florida             | -0.652      | -0.820      | 0.278                     | -0.466                    |  |
| 10               | Georgia             | 0.995       | 0.523       | -0.124                    | -0.375                    |  |
| # i 39 more rows |                     |             |             |                           |                           |  |

Let's create the model

```
m <- quap(
   alist(
     Divorce ~ dnorm(mu, sigma),
     mu <- a + bM * Marriage + bA * MedianAgeMarriage + bL * lds_per_capita,
     a ~ dnorm(0,0.2),
     c(bM, bA, bL) ~ dnorm(0,0.5),
     sigma ~ dexp(1)</pre>
```

# ), data=lds\_divorce) print(precis(m))

```
    mean
    sd
    5.5%
    94.5%

    a
    -0.003415348
    0.09558462
    -0.1561780
    0.14934734

    bM
    0.081157181
    0.16955160
    -0.1898190
    0.35213339

    bA
    -0.690926343
    0.17360606
    -0.9683824
    -0.41347033

    bL
    -0.294559603
    0.15094072
    -0.5357920
    -0.05332718

    sigma
    0.758827075
    0.07621448
    0.6370216
    0.88063253
```

# plot(precis(m))



## Exercise 5H1

Let's use dagitty

```
library(dagitty)

mad <- dagitty("dag{M->A->D}")
impliedConditionalIndependencies(mad)
```

```
D _ | | M | A
```

#### Exercise 5H2

```
m5H2 <- quap(
  alist(
    # A -> D
    Divorce ~ dnorm( muD , sigmaD ),
    muD <- aD + bAD*MedianAgeMarriage,
    # M -> A
    MedianAgeMarriage ~ dnorm( muA , sigmaA ),
    muA <- aA + bMA*Marriage,
    # priors
    c(aD,aA) ~ dnorm(0,0.2),
    c(bAD,bMA) ~ dnorm(0,0.5),
    c(sigmaD,sigmaA) ~ dexp(1)
    ) , data=lds_divorce )
precis(m5H2)</pre>
```

```
meansd5.5%94.5%aD0.0036368750.09901106-0.15460190.16187568aA-0.0434442930.07765531-0.16755250.08066389bAD-0.5542406260.12184617-0.7489743-0.35950691bMA-0.6690265620.08349898-0.8024741-0.53557906sigmaD0.7960529240.079565600.66889170.92321412sigmaA0.5897246210.059106970.49526030.68418897
```

```
M_seq <- seq( from=-3 , to=3 , length.out=30 )
sim_dat <- data.frame( Marriage=M_seq )
s <- sim( m5H2 , data=sim_dat , vars=c("MedianAgeMarriage","Divorce") )
plot( sim_dat$Marriage , colMeans(s$MedianAgeMarriage) , ylim=c(-2,2) , type="l" ,
xlab="manipulated M" , ylab="counterfactual A" )
shade( apply(s$MedianAgeMarriage,2,PI) , sim_dat$Marriage )
mtext( "Counterfactual M -> A" )
```



```
plot( sim_dat$Marriage , colMeans(s$D) , ylim=c(-2,2) , type="l" ,
xlab="manipulated M" , ylab="counterfactual D" )
shade( apply(s$Divorce,2,PI) , sim_dat$Marriage )
mtext( "Counterfactual M -> A -> D" )
```

