HW₁₀

박성빈, 수학과, 20202120 **1-2(S** 9.3)

(a) In each proof, I'll concentrate on the symmetric power part since alternating power part has the same proof struccuture. To prove the results, it is enough to show that $\sigma_T(\chi)$ is well-defined for |T| < 1/n where $n = \deg \chi$. Since

$$\left|\chi_{\sigma}^{k}(s)\right| \leq \prod_{i=1}^{k} (|\lambda_{1}| + \ldots + |\lambda_{n}|) = n^{k} \tag{1}$$

for $s \in G$ where λ_i are the eigenvalues of $\rho(s)$, for T = a/n for |a| < 1

$$\left|\chi_{\sigma}^{k} T^{k}\right| \leq \left|\chi_{\sigma} T\right|^{k} < \left|a\right|^{k},\tag{2}$$

and the power series converges absolutely in the domain. Now, I can use the uniqueness and calculus properties of power series. By the similar argument, I can repeat the statement for $\lambda_T(\chi)$.

For eigenvalues $\{\lambda_1, \dots, \lambda_n\}$ of $\rho(s)$, we get

$$\chi_{\sigma}^{k}(s) = \sum_{1 \le n_1 \le n_2 \le \dots \le n_k \le n} \lambda_{n_1} \cdots \lambda_{n_k}$$
(3)

Also,

$$\frac{1}{\det(I - \rho(s)T)} = \prod_{i=1}^{n} \frac{1}{1 - \lambda_i T} = \prod_{i=1}^{n} \left(\sum_{i=0}^{\infty} (\lambda_i T)^i \right). \tag{4}$$

Now, let's show a lemma.

Lemma 1. For $s \in G$, we get

$$\sum_{k=0}^{\infty} \chi_{\sigma}^{k}(s) T^{k} = \frac{1}{\det(I - \rho(s)T)}$$
 (5)

for $|T| < 1/(\deg \chi)$.

Proof. Note that (4) converges absolutely for |T| < 1/n, so I just need to check whether the coefficients of T^k coincide. To show this, I'll state a proposition.

Proposition 2. For $\{c_i\}_{i=1}^N \subset \mathbb{C}^{\times}$ and an undeterminate T in the domain |T| < 1, it satisfies

$$\prod_{i=1}^{N} \sum_{j=0}^{\infty} (c_i T)^j = \sum_{k=0}^{\infty} \sum_{1 \le n_1 \le n_2 \le \dots \le n_k \le N} c_{n_1} \cdots c_{n_k} T^k.$$
 (6)

Proof. Since $c_i \in \mathbb{C}^{\times}$ and |T| < 1, the series in LHS converges absolutely, so it is well-defined and change of the order of summation does not change the result. Therefore, we again need to check whether the coefficients of T^k for both side coincide.

Now, let's change the view point of RHS. The RHS can be rewritten by

$$\sum_{k=0}^{\infty} \sum_{1 \le n_1 \le n_2 \le \dots \le n_k \le N} c_{n_1} \dots c_{n_k} T^k = \sum_{k=0}^{\infty} T^k \sum_{\substack{\sum_{i=1}^{N} d_i = k \\ d > 0}} c_1^{d_1} \dots c_N^{d_N}.$$
 (7)

To check this, it is enough to show that any element (d_1, \ldots, d_N) such that $\sum_{i=1}^N d_i = k$ bijectively correspond to $c_1^{d_1} \cdots c_N^{d_N}$ and the set of $c_{n_1} \cdots c_{n_k}$ with

$$\underbrace{c_1 \cdots c_1}_{d_1} \cdots \underbrace{c_N \cdots c_N}_{d_N}. \tag{8}$$

Finally, the coefficient of T^k in the LHS (6) is same as the RHS in (7), so it proves the result.

Applying above proposition with (3) and (5), we get

$$\frac{1}{\det(I - \rho(s)T)} = \prod_{i=1}^{N} \sum_{j=0}^{\infty} (\lambda_i T)^j$$

$$= \sum_{k=0}^{\infty} \sum_{1 \le n_1 \le n_2 \le \dots \le n_k \le N} \lambda_{n_1} \dots \lambda_{n_k} T^k$$

$$= \sum_{k=0}^{\infty} \chi_{\sigma}^k(s) T^k.$$
(9)

for
$$|T| < 1/n$$
.

Let's reproduce the same argument for $\lambda_T(\chi)$. For k > n, we know that $\chi^k_{\lambda} = 0$ by the property of the symmetric power, so we can assume $k \le n$. For eigenvalues of $\rho(s)$, we get

$$\lambda_T(\chi)(s) = \sum_{k=0}^n \chi_{\lambda}^k(s) T^k = \sum_{1=n_1 < n_2 < \dots < n_k = n} \lambda_{n_1} \lambda_{n_2} \cdots \lambda_{n_k} T^k$$

$$\det(1 + \rho(s)T) = \prod_{i=1}^n (1 + \lambda_i T).$$
(10)

We can easily check that the two have same coefficient for T^k by noticing that it is equivalent to choosing k distinct element from $\{\lambda_1, \ldots, \lambda_n\}$.

To proceed next step, I need some fact from linear algebra. Fortunately, we are dealing with diagonalizable matrices, so we can easily check the fact from the linear algebra.

Let's define

$$\frac{1}{1-A} := \sum_{k=0}^{\infty} A^k \tag{11}$$

for a diagonalizable matrix A with eigenvalues λ_i with $|\lambda_i| < 1$. This is well-defined since writing $A = V\Lambda V^{-1}$ which is diagonalization,

$$\sum_{k=0}^{N} A^{k} = V \left(\sum_{k=0}^{N} \Lambda^{k} \right) V^{-1}$$
 (12)

and the diagonal part have $\sum_{k=0}^{N} \lambda_i^k$, which converges absolutely as $N \to \infty$. By the similar mean, we define

$$-\ln(1-A) := \sum_{k=1}^{\infty} \frac{A^k}{k}.$$
 (13)

for the same restriction on A. Finally, we define

$$\exp A := \sum_{k=0}^{\infty} \frac{A^k}{k!} \tag{14}$$

with arbitrary restriction on A: to check the convergence, see "Matrix exponential" article in the Wikipedia. Note that if A are diagonalizable, then the three operations preserves the diagonalizability. For diagonalizable matrix A, we know that

$$\det(\exp(A)) = \exp(\operatorname{tr} A), \tag{15}$$

so replacing A by $-\ln(1 - \rho(s)T)$ for |T| < 1/n, we get

$$= \det(\exp(-\ln(1 - \rho(s)T))) = \exp(\operatorname{tr}(-\ln(1 - \rho(s)T)))$$
 (16)

Let's calculate both sides. For LHS with diagnalization $\rho(s) = V\Lambda V^{-1}$,

$$\det\left(\exp(-\ln(1-\rho(s)T))\right) = \det\left(\exp\left(V\left(\sum_{k=0}^{\infty} \left(\frac{\Lambda T}{k}\right)^{k}\right) V^{-1}\right)\right)$$

$$= \det\left(V\exp\left(\sum_{k=0}^{\infty} \left(\frac{\Lambda T}{k}\right)^{k}\right) V^{-1}\right),$$
(17)

and the center term is

$$\exp\left(\sum_{k=0}^{\infty} \left(\frac{\Lambda T}{k}\right)^{k}\right) = \begin{pmatrix} \exp\left(\sum_{k} \frac{\lambda_{1}T}{k}\right)^{k} & 0 & \dots & \vdots \\ 0 & \exp\left(\sum_{k} \frac{\lambda_{2}T}{k}\right)^{k} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \dots & 0 & \exp\left(\sum_{k} \frac{\lambda_{n}T}{k}\right)^{k} \end{pmatrix}$$

$$= \begin{pmatrix} \exp\left(-\ln(1-\lambda_{1}T)\right) & 0 & \dots & \vdots \\ 0 & \exp\left(-\ln(1-\lambda_{2}T)\right) & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \dots & 0 & \exp\left(-\ln(1-\lambda_{n}T)\right) \end{pmatrix}$$

$$= \frac{1}{1-\Lambda T}.$$
(18)

It shows that

$$\det\left(\exp(-\ln(1-\rho(s)T))\right) = \det\left(\frac{1}{1-\Lambda T}\right). \tag{19}$$

Furthermore, using (18), we get

$$\det(\exp(-\ln(1 - \rho(s)T))) = \frac{1}{\det(1 - \Lambda T)} = \frac{1}{\det(1 - \rho(s)T)}.$$
 (20)

For the RHS of (16), we again get

$$\exp\left(\operatorname{tr}(-\ln(1-\rho(s)T))\right) = \exp\left(\operatorname{tr}\left(\sum_{k=1}^{\infty} \frac{(\Lambda T)^{k}}{k}\right)\right)$$

$$= \exp\left(\sum_{k=1}^{\infty} \operatorname{tr} \Lambda^{k} \frac{T^{k}}{k}\right) = \exp\left(\sum_{k=1}^{\infty} \operatorname{tr} \rho^{k}(s) \frac{T^{k}}{k}\right)$$

$$= \exp\left(\sum_{k=1}^{\infty} \operatorname{tr} \rho(s^{k}) \frac{T^{k}}{k}\right) = \exp\left(\sum_{k=1}^{\infty} \Psi^{k}(\chi)(s) \frac{T^{k}}{k}\right).$$
(21)

For $\lambda_T(\chi)(s)$, we repeat the similar computation. Pluggin $A = \ln(1 + \rho(s)T)$ for (15), we get

$$\det\left(\exp(\ln(1+\rho(s)T))\right) = \exp\left(\operatorname{tr}\ln(1+\rho(s)T)\right). \tag{22}$$

The RHS is

$$\exp\left(\text{tr}\ln(1+\rho(s)T)\right) = \exp\left(\sum_{k=1}^{\infty} (-1)^{k-1} \Psi^{k}(\chi) T^{k} / k\right),\tag{23}$$

and the LHS is

$$\det\left(\exp(\ln(1+\rho(s)T))\right) = \det(1+\rho(s)T). \tag{24}$$

Finally, for |T| < 1/n, $\sigma_T(\chi)(s)$ is smooth and has well-defined series form derivative, so we get

$$(\ln \sigma_T(\chi)(s))' = \frac{(\sigma_T(\chi)(s))'}{\sigma_T(\chi)(s)},\tag{25}$$

and we know that $\sigma_T(\chi)(s) \neq 0$ for all |T| < 1 since it has exponential form, and $\sum_{k=1}^{\infty} \Psi^k(\chi) T^k / k$ converges absolutely for |T| < 1/n as $|\Psi^k(\chi)(s)| \leq n$. Therefore,

$$\left(\sum_{k=1}^{\infty} \Psi^{k}(\chi) T^{k} / k\right)' \left(\sum_{k=0}^{\infty} \chi_{\sigma}^{k} T^{k}\right) = \sum_{n=0}^{\infty} T^{n} \sum_{k=1}^{n+1} \Psi^{k}(\chi) \chi_{\sigma}^{n+1-k} = \sum_{n=1}^{\infty} n \chi_{\sigma}^{n} T^{n-1}.$$
 (26)

It shows that

$$n\chi_{\sigma}^{n} = \sum_{k=1}^{n} \Psi^{k}(\chi)\chi_{\sigma}^{n-k}.$$
 (27)

Repeating same calculation, we again get

$$n\chi_{\lambda}^{n} = \sum_{k=1}^{n} (-1)^{k-1} \Psi^{k}(\chi) \chi_{\lambda}^{n-k}.$$
 (28)

(b) Since Ψ^k is \mathbb{Z} linear map, it is enough to show that $\Psi^k(\chi) \in R(G)$ for an irreducible character χ on G. I'll show the result for $k \geq 0$, and extend it to \mathbb{Z} . Let's use induction on k. For k = 1, it is trivial, so assume it is true for k < K. For k = K, note that

$$\Psi^{K}(\chi) = K\chi_{\sigma}^{K} - \sum_{k=1}^{K-1} \Psi^{k}(\chi)\chi_{\sigma}^{K-k}.$$
 (29)

We know that R(G) is closed under addition and multiplication, and $\chi_{\sigma}^{n} \in R(G)$ for all $n \ge 1$. Therefore, we get $\Psi^{K}(\chi) \in R(G)$ as $\Psi^{k}(\chi) \in R(G)$ for k < K by the induction hypothesis.

For k = 0, it is just $\Psi^0(\chi)(s) = \chi(s^0) = \chi(1)$, so it is $\chi(1)1_G$. For k < 0, choose sufficiently large m > 0 such that k + mg > 0, then

$$\Psi^{k+mg}(\chi)(s) = \chi(s^{k+mg}) = \chi(s^k) = \Psi^k(\chi)(s)$$
(30)

for all $s \in G$. Therefore, $\Psi^k(\chi) = \Psi^{k+mg}(\chi) \in R(G)$. It ends the proof.

(If the stability means $\Psi^k : R(G) \to R(G)$ is bijective for all k, it is false: $\Psi^g(\chi) = \chi(1)1_G$ for all irreducible representation χ on G.)

3-4(S9.4)

(a) I'll first show a proposition.

Proposition 3. Let's define $\varphi: G \to G$ by $\varphi(s) = s^n$. If (n, g) = 1, then φ is a bijective map.

Proof. Since (n,g) = 1, there exists $k \in \mathbb{N}$ such that $kn \equiv 1 \mod g$. If $g_1^n = g_2^n$, then $g_1 = g_1^{kn} = g_2^{kn} = g_2$, so φ is injective. Since the domain and codomain have same finite cardinality, φ is bijective.

Corollary 4. Let c_1 be a conjugacy class in G. Then the φ maps c_1 to another conjugacy class bijectively, i.e. if I write $c'_1 = \text{Im } \varphi(c_1)$, then $\varphi|_{c_1} : c_1 \to c'_1$ is bijective.

Proof. Let's consider $\varphi|_{c_i}$, then it is contained in some conjugacy class, in fact, it is surjective on the conjugacy class: if $s_1 \in c_i$, then for any $s \in G$, $\varphi(ss_1s^{-1}) = ss_1^n s^{-1}$, so it is contained in some conjugacy class c_1' containing s_1^n and generated any element in the class. Since φ is injective, $\varphi|_{c_1}$ is bijective.

Corollary 5. Let $\{c_1, \ldots, c_h\}$ be the set of conjugacy classes in G. Let's define

$$\Phi: \{c_1, \dots, c_h\} \to \{c_1, \dots, c_h\} \tag{31}$$

by $\Phi(c_i) = \operatorname{Im} \varphi(c_i)$. Then, Φ is a bijective map.

Proof. From the above consideration, the map $\Phi: \{c_1, \ldots, c_h\} \to \{c_1, \ldots, c_h\}$ is well-defeind. Since φ is bijective, Φ is again surjective, so bijective.

Using the proposition, we get

$$\langle \Psi^n(\chi), \Psi^n(\chi) \rangle = \frac{1}{g} \sum_{s \in G} \chi(s^n) \chi(s^{-n}) = \frac{1}{g} \sum_{s \in G} \chi(s) \chi(s^{-1}) = \langle \chi, \chi \rangle = 1.$$
 (32)

Also, $\Psi^n(\chi)(1) = \chi(1) > 0$. By the problem 9.2, we know that $\Psi^n \chi$ is an irreducible character of G.

(b) The center of the algebra $\mathbb{C}[G]$ is spanned by $e_c = \sum_{s \in C} s$ where c is a conjugacy class of G; in fact, it is a basis. Now, I'll prove a lemma.

Lemma 6. For two conjugacy classes c_1, c_2 in G, we get

$$\sum_{s \in c_1} \sum_{s' \in c_2} s^n (s')^n = \sum_{s \in c_1} \sum_{s' \in c_2} (ss')^n.$$
 (33)

Proof. If G were abelian, then it is easy to see, so assume G is non-abelian. Let's use proposition 13 and algebra homomorphisms ω_i which sends $\sum_{s \in G} u(s)s \in \text{Cent. } \mathbb{C}[G]$ to \mathbb{C} by

$$\omega_i \left(\sum_{s \in G} u(s)s \right) = \frac{1}{n_i} \sum_{s \in G} u(s) \chi_i(s), \tag{34}$$

where χ_i is the irreducible character corresponding to ω_i and $n_i = \deg \chi_i$. (For detailed explanation, see Chapter 6.3, S.) Since $(\omega_i)_{i=1}^h$, where h is the number of conjugacy classes in G, defines an isomorphism of the center of $\mathbb{C}[G]$ onto the algebra \mathbb{C}^h , it is enough to show that

$$\omega_i \left(\sum_{s \in c_1} \sum_{s' \in c_2} s^n (s')^n \right) = \omega_i \left(\sum_{s \in c_1} \sum_{s' \in c_2} (ss')^n \right).$$

$$(35)$$

for all i.

Now, let's use corollary 4. Let's set $c_1' = \operatorname{Im} \varphi(c_1)$ and $c_2' = \operatorname{Im} \varphi(c_2)$, then we get

$$\sum_{s \in c_1} s^n = \sum_{s \in c'_1} s$$

$$\sum_{s' \in c_2} (s')^n = \sum_{s' \in c'_2} s',$$
(36)

and it shows that both are in the center of $\mathbb{C}[G]$. Now, we get

$$\omega_{i} \left(\sum_{s \in c_{1}} \sum_{s' \in c_{2}} s^{n} (s')^{n} \right) = \omega_{i} \left(\left(\sum_{s \in c_{1}} s^{n} \right) \left(\sum_{s' \in c_{2}} (s')^{n} \right) \right)$$

$$= \omega_{i} \left(\sum_{s \in c_{1}} s^{n} \right) \omega_{i} \left(\sum_{s' \in c_{2}} (s')^{n} \right)$$

$$= \frac{1}{n_{i}^{2}} \sum_{s \in c_{1}} \Psi^{n} \chi_{i}(s) \sum_{s' \in c_{2}} \Psi^{n} \chi_{i}(s').$$

$$(37)$$

From (a), we know that $\Psi^n \chi_i = \chi_j$ for some j since it is irreducible, and $n_i = n_j$ since $\Psi^n \chi_i(1) = \chi_i(1)$. It shows that

$$\omega_{i} \left(\sum_{s \in c_{1}} \sum_{s' \in c_{2}} s^{n} (s')^{n} \right) = \frac{1}{n_{i}^{2}} \sum_{s \in c_{1}} \Psi^{n} \chi_{i}(s) \sum_{s' \in c_{2}} \Psi^{n} \chi_{i}(s')$$

$$= \frac{1}{n_{j}^{2}} \sum_{s \in c_{1}} \chi_{j}(s) \sum_{s' \in c_{2}} \chi_{j}(s')$$

$$= \omega_{j} \left(\sum_{s \in c_{1}} s \right) \omega_{j} \left(\sum_{s' \in c_{2}} s' \right)$$

$$= \omega_{j} \left(\sum_{s \in c_{1}} \sum_{s' \in c_{2}} s s' \right).$$
(38)

Also,

$$\omega_{i} \left(\sum_{s \in c_{1}} \sum_{s' \in c_{2}} (ss')^{n} \right) = \frac{1}{n_{i}} \sum_{s \in c_{1}, s' \in c_{2}} \Psi^{n} \chi_{i}(ss')$$

$$= \frac{1}{n_{j}} \sum_{s \in c_{1}, s' \in c_{2}} \chi_{j}(ss')$$

$$= \omega_{j} \left(\sum_{s \in c_{1}, s' \in c_{2}} ss' \right).$$
(39)

Therefore, (35) holds and the lemma is true for (n, g) = 1.

The lemma shows that ψ_n is algebra endomorphism on the center of $\mathbb{C}[G]$ as it shows

$$\psi_n(e_{c_1})\psi_n(e_{c_2}) = \psi_n(e_{c_1}e_{c_2}) \tag{40}$$

for any conjugacy classes c_1 and c_2 in G. By the corollary 5, we know that $\text{Im } \psi_n$ maps the basis $\{e_c\}$ to the basis $\{e_c\}$ surjectively. Since the domain and codomain have same dimension, it shows that φ is an algebra automorphism on the center of $\mathbb{C}[G]$.

5(S 11.1) Assume I showed the following proposition: P2: "Let f be a class function on cyclic group G with values in \mathbb{Q} such that $f(x^m) = f(x)$ for all m primes to g, then $f \in \mathbb{Q} \otimes R(G)$ ". Let the original statement P1. It is trivial that P1 implies P2. Also, P2 implies P1: using th. 21' in the textbook, it is enough to show that for any cyclic subgroup $H \leq G$, $\operatorname{Res}_H f \in \mathbb{Q} \otimes R(H)$.

Since we assumed P2 is true, it is again enough to show that $f(x^m) = f(x)$ for all m prime to |H| for $x \in H$. To show it, let's fix $x \in H$ and m such that (m, |H|) = 1. Note that (m, |G|) need not to be 1. However, there always exists $k \in \mathbb{N}$ such that (m + k|H|, |G|) = 1 by the Dirichlet's theorem on arithmetic progressions: the original statment of the Dirichlet's theorem is that if (m, |H|) = 1, then m + k|H| contains infinitely many primes, which means that there exists k_0 such that $(m + k_0|H|, |G|) = 1$. It means that

$$f(x^m) = f(x^{m+k_0|H|}) = f(x). (41)$$

(The second equality is by the assumption of P1.) Therefore, the condition for P2 is satisfied and I showed that P2 implies P1. Now, I can safely reduce G to a cyclic group.

Let the generator of G by x and g = |G|. Choose any irreducible character χ_k from $0 \le k \le g-1$ such that $\chi_k(x) = \exp(2\pi i k/g)$ of G, then

$$\langle f, \chi_k \rangle = \sum_{m=1}^g f(x^m) \exp\left(\frac{-2\pi i k m}{g}\right).$$
 (42)

Now, take partition of $\{1, \ldots, g\}$ such that (a, g) = q for $1 \le q \le g$, for example,

$$A_a = \{a \in \{1, \dots, g\} : (a, g) = q\}. \tag{43}$$

Since (a/q, g/q) = 1, we get

$$\sum_{m \in A_g} \exp\left(\frac{-2\pi ikm}{g}\right) = \sum_{m \in A_g} \exp\left(\frac{-2\pi ik(m/q)}{g/q}\right) = \sum_{m \in (\mathbb{Z}/(g/q)\mathbb{Z})^{\times}} \exp\left(\frac{-2\pi ikm}{g/q}\right) \in \mathbb{Z}$$
(44)

for each q since the nth cyclotomic polynomial is in $\mathbb{Z}[x]$ for any $n \ge 1$. Now, I'll show a proposition.

Proposition 7. For any $a_1, a_2 \in \{1, ..., g\}$ such that $(a_1, g) = (a_2, g) = q$ for some $q \in \mathbb{Z}$, there exists $m \in \mathbb{N}$ such that $a_1 m \equiv a_2 \mod g$.

Proof. Consider a_1/q , $a_2/q \in (\mathbb{Z}/(g/q)\mathbb{Z})^{\times}$, so take $m \in \mathbb{Z}$ such that (m, g/q) = 1 and $a_1m/q - a_2/q \equiv 0 \mod g/q$. It shows that $a_1m - a_2 \equiv 0 \mod g$. Also, (m, g) = 1 since $(a_1m, g) = (a_1, g)(m, g) = (a_2, g)$.

The above proposition shows that $f(x^{a_1}) = f(x^{a_2})$. Therefore,

$$\langle f, \chi \rangle = \frac{1}{g} \sum_{m=1}^{g} f(x^{m}) \exp\left(\frac{-2\pi ikm}{g}\right)$$

$$= \frac{1}{g} \sum_{q=1}^{g} \sum_{m \in A_{q}} f(x^{m}) \exp\left(\frac{-2\pi ikm}{g}\right)$$

$$= \frac{1}{g} \sum_{q=1}^{g} \sum_{m \in A_{q}} f(x^{q}) \exp\left(\frac{-2\pi ikm}{g}\right)$$

$$= \frac{1}{g} \sum_{q=1}^{g} f(x^{q}) \sum_{m \in A_{q}} \exp\left(\frac{-2\pi ikm}{g}\right) \in \mathbb{Q},$$

$$(45)$$

for any irreducible character χ and it shows that $f \in \mathbb{Q} \otimes R(G)$.

In problem 3, we showed that Ψ^n maps R(G) to $\overline{R}(G)$, so extending the scalar to \mathbb{Q} , we can treat that Ψ^n maps $\mathbb{Q} \otimes R(G)$ to $\mathbb{Q} \otimes R(G)$. Also, if Im $f \subset \mathbb{Z}$, so Im $\Psi^n f \subset \mathbb{Z} \subset A$, then $(g/(g,n))\Psi^n f \in A \otimes R(G)$ by theorem 23. It means that for any irreducible character χ of G,

$$g/(g,n)\langle \Psi^n f, \chi \rangle \in \mathbb{Q} \cap A = \mathbb{Z}.$$
 (46)

Therefore, $(g/(g, n))\Psi^n f \in R(G)$.

For a class function $f(s) = \delta_{s=1}$, $\Psi^n f$ captures elements $s \in G$ such that |s| | n, i.e. $\Psi^n f = 1$ if |s| | n and 0 elsewhere. The above result shows that $g/(g,n)1_{\{s:|s||n\}} \in R(G)$, which generalize the result $g\delta_{s=1}$ is the character of regular representation.

6(Thm 23) From the class, what I need to show is the following:

Proposition 8. For each conjugacy class c of p-group G, and each irreducible character χ of G, we have $1/(g,n)\sum_{\chi^n\in c}\chi(x)\in A$.

and what we actually proved is the following

Proposition 9. Let c be a conjugacy class of a p-group G, let χ be a character of degree 1 of G, and let $a_c \sum_{x^n \in c} \chi(x)$. Then $a_c \in (g, n)A$.

To end the proof, I need to show that proposition 9 implies 8.

Before start, I'll prove some propositions.

Proposition 10. For a conjugacy class c of G, set $c^{-1} = \{s^{-1} : s \in c\}$, then c^{-1} is again a conjugacy class.

Proof. If $a_1, a_2 \in c^{-1}$, then $a_1^{-1}, a_2^{-1} \in c$, so there exists $s \in G$ such that $sa_1^{-1}s^{-1} = a_2^{-1}$. It shows that $sa_1s^{-1} = a_2$. Conversely, for fixed $a_1 \in c^{-1}$, $sa_1s^{-1} \in c^{-1}$ by the same reason. □

Proposition 11. For a conjugacy class c of G and a subgroup $H \leq G$, $c \cap H$ is a disjoint union of the conjugacy classes in H if $c \cap H \neq \emptyset$.

Proof. Assume
$$a \in c \cap H$$
, then for any $s \in H$, $sas^{-1} \in c \cap H$. It ends the proof.

From the fact that any irreducible character of p-group is induced by a character of degree 1, for an irreducible character χ of G, choose degree 1 character η of H such that $H \leq G$ satisfying $\chi = \operatorname{Ind}_H^G \eta$. Note that any subgroup of p-group is again p-group, so H is p-group. Now,

$$\langle \chi, \Psi^n f_{c^{-1}} \rangle = \frac{1}{g} \sum_{x^n \in c} \chi(x). \tag{47}$$

On the other hands,

$$\langle \chi, \Psi^n f_{c^{-1}} \rangle = \langle \eta, \text{Res}_H \, \Psi^n f_{c^{-1}} \rangle = \frac{1}{h} \sum_{x \in H} \eta(x) f_{c^{-1}}(x^{-n}) = \frac{1}{h} \sum_{x \in H, x^n \in c \cap H} \eta(x). \tag{48}$$

By the proposition 11, $c \cap H$ is a disjoint union of c_H^i , where these are conjugacy classes of H, so

$$\frac{1}{h} \sum_{x \in H, x^n \in c \cap H} \eta(x) = \frac{1}{h} \sum_{i} \sum_{x \in H, x^n \in c_H^i} \eta(x) \in (h, n) A$$
 (49)

by the 9. Finally, it implies

$$\langle \chi, \Psi^n f_{c^{-1}} \rangle \in (h, n) A \subset (g, n) A,$$
 (50)

and we get

$$\frac{1}{(g,n)} \sum_{x^n \in c} \chi(x) \in A. \tag{51}$$

It ends the proof.