Algorithmic Robustness for Semi-Supervised (ϵ , γ , τ)-Good Metric Learning

Maria-Irina Nicolae^{1,2} Marc Sebban¹ Amaury Habrard¹ Éric Gaussier² Massih-Reza Amini² ²Université Grenoble Alpes, CNRS-LIG/AMA, France

¹Université Jean Monnet, Laboratoire Hubert Curien, France

Abstract

The notion of metric plays a key role in machine learning problems such as classification, clustering or ranking. However, it is worth noting that there is a severe lack of theoretical guarantees that can be expected on the generalization capacity of the classifier associated to a given metric. The theoretical framework of (ϵ, γ, τ) -good similarity functions [1] has been one of the first attempts to draw a link between the properties of a similarity function and those of a linear classifier making use of it. We extend this theory by providing a new **generalization bound** for the associated classifier based on the algorithmic robustness framework.

Problem setting

- Labeled examples (x, I(x)) drawn from some unknown distribution P over $\mathcal{X} \times \{-1, 1\}$, where $\mathcal{X}\subseteq\mathbb{R}^d$;
- Unlabeled examples \mathbf{x} drawn from P over \mathcal{X} ;
- Generic similarity function $K_{\mathbf{A}}: \mathcal{X} \times \mathcal{X} \rightarrow [-1, 1]$ over \mathcal{X} , possibly parameterized by a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$;
- Learning a large margin global separator α ;
- Providing theoretical guarantees depending on $K_{\mathbf{A}}$.

(ϵ, γ, τ) -Good Similarity Functions [1]

Definition 1. K_A is a (ϵ, γ, τ) -good similarity function in hinge loss for a learning problem P if there exists a random indicator function $R(\mathbf{x})$ defining a probabilistic set of "reasonable points" such that the following conditions hold:

- $\mathbb{E}_{(\mathbf{x},l(\mathbf{x}))\sim P}\left[\left[1-l(\mathbf{x})g(\mathbf{x})/\gamma\right]_{+}\right] \leq \epsilon, \text{ where } g(\mathbf{x}) = \mathbb{E}_{(\mathbf{x}',l(\mathbf{x}'),R(\mathbf{x}'))}\left[l(\mathbf{x}')K_{\mathbf{A}}(\mathbf{x},\mathbf{x}')|R(\mathbf{x}')\right].$
- $Pr_{\mathbf{x}'}(R(\mathbf{x}')) \geq \tau.$

Theorem 2. Using similarity scores to reasonable points as features, there exists a linear separator lpha that has error ϵ at margin γ .

Formulation

$$\min_{\boldsymbol{\alpha}} \frac{1}{d_l} \sum_{i=1}^{d_l} \ell(\mathbf{A}, \boldsymbol{\alpha}, \mathbf{z}_i) \quad \text{s.t.} \quad \sum_{j=1}^{d_u} |\alpha_j| \leq 1/\gamma, \tag{1} \qquad I(\mathbf{x}) = \operatorname{sgn} \sum_{j=1}^{d_u} \alpha_j K_{\mathbf{A}}(\mathbf{x}, \mathbf{x}_j)$$

where $\ell(\mathbf{A}, \boldsymbol{\alpha}, (\mathbf{x}_i, I(\mathbf{x}_i))) = \left[1 - \sum_{j=1}^{d_u} \alpha_j I(\mathbf{x}_i) K_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j)\right]_+$ is the instantaneous loss estimated at point $(\mathbf{x}_i, I(\mathbf{x}_i))$.

Prediction rule

$$I(\mathbf{x}) = \operatorname{sgn} \sum_{j=1}^{d_u} \alpha_j K_{\mathbf{A}}(\mathbf{x}, \mathbf{x}_j)$$

Algorithmic Robustness

Definition 3.[6] An algorithm is **robust** if for any example z' falling in the same subset as a training example z, the gap between the losses associated with z and \mathbf{z}' is bounded.

Theorem 4. Given a partition of \mathcal{Z} into M subsets $\{C_i\}$ and $K_A(\mathbf{x}, \mathbf{x}')$, a k-lipschitz similarity function, Problem (1) is $(M, \frac{1}{2}k\rho)$ -robust with $\rho = \sup_{\mathbf{x}, \mathbf{x}' \in C_i} ||\mathbf{x} - \mathbf{x}'||.$

k-lipschitz similarity functions

- $K_{\mathbf{A}}^{1}(\mathbf{x}, \mathbf{x}') = 1 (\mathbf{x} \mathbf{x}')^{T} \mathbf{A} (\mathbf{x} \mathbf{x}'), k = 4||\mathbf{A}||_{2}$
- $K^2_{\mathbf{\Delta}}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}', k = ||\mathbf{A}||_2$
- $K_{\mathbf{A}}^3(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{(\mathbf{x}-\mathbf{x}')^T \mathbf{A}(\mathbf{x}-\mathbf{x}')}{2\sigma^2}\right)$, $k = \frac{2||\mathbf{A}||_2}{\sigma^2} \left(\exp\left(\frac{1}{2\sigma^2}\right) \exp\left(\frac{-1}{2\sigma^2}\right)\right)$.

Learning Guarantees

Theorem 5. For any $\delta > 0$ with probability at least $1 - \delta$, we have:

Lipschitz constant of K_A # of parts in partition

true risk
$$|\mathcal{R}^{\ell} - \widehat{\mathcal{R}}^{\ell}| \leq \frac{1}{\gamma} k \rho + \left(1 + \frac{1}{\gamma}\right) \sqrt{\frac{2M \ln 2 + 2 \ln(1/\delta)}{d_l}}$$
.

Application to Joint Similarity Learning

Formulation of JSL

$$\min_{\boldsymbol{\alpha},\mathbf{A}} \quad \frac{1}{d_l} \sum_{i=1}^{d_l} \left[1 - \sum_{j=1}^{d_u} \alpha_j I(\mathbf{x}_i) K_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j) \right]_+ \qquad \text{s.t. } \sum_{j=1}^{d_u} |\alpha_j| \leq 1/\gamma$$

$$\qquad \qquad \mathbf{A} \text{ diagonal, } |A_{kk}| \leq 1, \quad 1 \leq k \leq d.$$

Table 1: Average accuracy of JSL (%) with CI at 95%, 5 labeled points per class, all points used as unlabeled.

		Ionosphere					
$K_{\mathbf{A}}^{1}$	85.7 ± 3.5	88.5±2.6	74.5 ±4.4	63.9 ± 5.3	71.1 ± 3.8	72.3 ±4.1	87.7 ±5.0
K_{Δ}^2	87.1 ±2.5	91.0 ±2.0	71.4 ± 5.9	69.2 ±3.2	72.9 ±3.9	71.9 ± 4.2	84.2 ± 6.9
$K_{\mathbf{A}}^{3}$	81.1 ± 8.5	86.2 ± 2.8	68.2 ± 8.5	58.6 ± 6.3	71.1 ± 4.3	63.9 ± 10.0	83.5 ± 6.2

Table 2: Average accuracy (%) over all datasets with CI at 95%.

LMNN-diag [5] 65.1±5.5 68.2±5.6 71.5±5.2 LMNN [5] 69.4±5.9 70.9±5.3 73.2±5.2 ITML [3] 75.8±4.2 76.5±4.5 76.3±4.8 SVM 76.4±4.9 76.2±7.0 77.7±6.4 BBS [1] 77.2±7.3 77.0±6.2 77.3±6.3 SLLC [2] 70.5±7.2 75.9±4.5 75.8±4.8 LRML [4] 74.7±6.2 75.3±5.9 75.8±5.2	Method	b pts./cl.	10 pts./cl.	20 pts./cl.
LMNN [5] 69.4 ± 5.9 70.9 ± 5.3 73.2 ± 5.2 ITML [3] 75.8 ± 4.2 76.5 ± 4.5 76.3 ± 4.8 SVM 76.4 ± 4.9 76.2 ± 7.0 77.7 ± 6.4 BBS [1] 77.2 ± 7.3 77.0 ± 6.2 77.3 ± 6.3 SLLC [2] 70.5 ± 7.2 75.9 ± 4.5 75.8 ± 4.8 LRML [4] 74.7 ± 6.2 75.3 ± 5.9 75.8 ± 5.2	3NN	64.6±4.6	68.5 ± 5.4	70.4 ± 5.0
ITML [3] 75.8 ± 4.2 76.5 ± 4.5 76.3 ± 4.8 SVM 76.4 ± 4.9 76.2 ± 7.0 77.7 ± 6.4 BBS [1] 77.2 ± 7.3 77.0 ± 6.2 77.3 ± 6.3 SLLC [2] 70.5 ± 7.2 75.9 ± 4.5 75.8 ± 4.8 LRML [4] 74.7 ± 6.2 75.3 ± 5.9 75.8 ± 5.2	LMNN-diag [5]	65.1 ± 5.5	68.2 ± 5.6	$71.5 {\pm} 5.2$
SVM 76.4 ± 4.9 76.2 ± 7.0 77.7 ± 6.4 BBS [1] 77.2 ± 7.3 77.0 ± 6.2 77.3 ± 6.3 SLLC [2] 70.5 ± 7.2 75.9 ± 4.5 75.8 ± 4.8 LRML [4] 74.7 ± 6.2 75.3 ± 5.9 75.8 ± 5.2	LMNN [5]	69.4 ± 5.9	70.9 ± 5.3	73.2 ± 5.2
BBS [1] 77.2 ± 7.3 77.0 ± 6.2 77.3 ± 6.3 SLLC [2] 70.5 ± 7.2 75.9 ± 4.5 75.8 ± 4.8 LRML [4] 74.7 ± 6.2 75.3 ± 5.9 75.8 ± 5.2	ITML [3]	75.8 ± 4.2	76.5 ± 4.5	76.3 ± 4.8
SLLC [2] 70.5 ± 7.2 75.9 ± 4.5 75.8 ± 4.8 LRML [4] 74.7 ± 6.2 75.3 ± 5.9 75.8 ± 5.2	SVM	76.4 ± 4.9	76.2 ± 7.0	77.7 ± 6.4
LRML [4] 74.7 ± 6.2 75.3 ± 5.9 75.8 ± 5.2	BBS [1]	77.2 ± 7.3	77.0 ± 6.2	77.3 ± 6.3
	SLLC [2]	70.5 ± 7.2	75.9 ± 4.5	75.8 ± 4.8
78.4+23.78.7+10.78.3+16	LRML [4]	74.7 ± 6.2	75.3 ± 5.9	75.8 ± 5.2
	JSL	78.4 ±2.3	78.7 \pm 1.9	78.3 ±1.6

Figure 1: lonosphere with 15 unlabeled points.

Conclusion

- New generalization bound for the (ϵ, γ, τ) -good framework;
- Generic form of similarity function;
- Experiments for learning the similarity with guarantees.

Acknowledgments Funding for this project was provided by a grant from Région Rhône-Alpes.

References

- [1] M.-F. Balcan, A. Blum, and N. Srebro. Improved guarantees for learning via similarity functions. In R. A. Servedio and T. Zhang, editors, COLT, pages 287–298. Omnipress, 2008.
- [2] A. Bellet, A. Habrard, and M. Sebban. Similarity learning for provably accurate sparse linear classification. In ICML 2012, pages 1871–1878, 2012.
- [3] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning. In ICML, pages 209–216, New York, NY, USA, 2007. ACM.
- [4] S. C. H. Hoi, W. Liu, and S.-F. Chang. Semi-supervised distance metric learning for collaborative image retrieval. In CVPR, 2008.
- [5] K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. *JMLR*, 10:207–244, 2009.
- [6] H. Xu and S. Mannor. Robustness and generalization. *Machine Learning*, 86(3):391–423,

