Import required packages

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

Read the data

```
In [2]: file_location="C:\\Users\\omkar\\OneDrive\\Documents\\Data science\\Naresh
    visa_df=pd.read_csv(file_location)
    visa_df.head()
```

Out[2]:		case_id	continent	education_of_employee	has_job_experience	requires_job_training	no_
	0	EZYV01	Asia	High School	N	N	
	1	EZYV02	Asia	Master's	Υ	N	
	2	EZYV03	Asia	Bachelor's	N	Υ	
	3	EZYV04	Asia	Bachelor's	N	N	
	4	EZYV05	Africa	Master's	Υ	N	
	4						

In [3]: visa_df.dtypes

```
Out[3]: case_id
                                   object
                                   object
        continent
        education_of_employee
                                   object
        has_job_experience
                                   object
        requires_job_training
                                   object
        no_of_employees
                                    int64
        yr_of_estab
                                    int64
        region_of_employment
                                   object
        prevailing_wage
                                  float64
        unit_of_wage
                                   object
        full_time_position
                                   object
        case_status
                                   object
        dtype: object
```

prevailing - wage

```
In [4]: | p_wage=visa_df['prevailing_wage']
        p_wage
Out[4]: 0
                    592.2029
        1
                  83425.6500
        2
                 122996.8600
                 83434.0300
                 149907.3900
        4
                 77092.5700
        25475
        25476
                 279174.7900
        25477
                 146298.8500
        25478
                 86154.7700
        25479
                  70876.9100
        Name: prevailing_wage, Length: 25480, dtype: float64
          count
          • max
          • min
          mean
          • median
          • 25p
          • 50p
          • 75p
In [5]: p_wage.count()
Out[5]: 25480
In [6]: p_wage=visa_df[['prevailing_wage']]
        p_wage.count().iloc[0]
        p_wage=visa_df['prevailing_wage']
        p_wage.count()
```

Out[6]: 25480

```
In [7]:
       p_wage=visa_df['prevailing_wage']
        wage_count=p_wage.count()
        wage_mean=round(p_wage.mean(),2)
        wage_median=round(p_wage.median(),2)
        wage_max=round(p_wage.max(),2)
        wage_min=round(p_wage.min(),2)
        # print(wage_count)
        # print(wage_mean)
        # print(wage_median)
        # print(wage max)
        # print(wage_min)
        list1=[wage_count,wage_max,wage_min,wage_mean,wage_median]
        index_list=['count','max','min','mean','median']
        pd.DataFrame(list1,
                     columns=['prevailing_wage'],
                     index=index list)
```

Out[7]: prevailing_wage

count	25480.00
max	319210.27
min	2.14
mean	74455.81
median	70308.21

```
In [8]: # Numerical columns seperaetly
    num_cols=visa_df.select_dtypes(exclude='object').columns
    dict1={}
    for i in num_cols:
        count=visa_df[i].count()
        mean=round(visa_df[i].mean(),2)
        median=round(visa_df[i].median(),2)
        maxx=round(visa_df[i].max(),2)
        minn=round(visa_df[i].min(),2)
        list1=[count,maxx,minn,mean,median]
        dict1[i]=list1
    index_list=['count','max','min','mean','median']
    numer_df=pd.DataFrame(dict1,index=index_list)
    numer_df.to_csv("numer_df.csv")
    numer_df
```

Out[8]:

	no_of_employees	yr_of_estab	prevailing_wage
count	25480.00	25480.00	25480.00
max	602069.00	2016.00	319210.27
min	-26.00	1800.00	2.14
mean	5667.04	1979.41	74455.81
median	2109.00	1997.00	70308.21

```
In [9]:
          visa df.describe()
 Out[9]:
                 no_of_employees
                                   yr_of_estab prevailing_wage
                     25480.000000
                                  25480.000000
                                                 25480.000000
           count
                      5667.043210
                                   1979.409929
                                                 74455.814592
           mean
             std
                     22877.928848
                                     42.366929
                                                 52815.942327
             min
                       -26.000000
                                   1800.000000
                                                     2.136700
            25%
                      1022.000000
                                   1976.000000
                                                 34015.480000
            50%
                      2109.000000
                                   1997.000000
                                                 70308.210000
            75%
                      3504.000000
                                   2005.000000
                                                107735.512500
                    602069.000000
                                   2016.000000
                                                319210.270000
            max
In [10]:
          p_wage=visa_df['prevailing_wage']
          wage_count=p_wage.count()
          wage_mean=round(p_wage.mean(),2)
          wage_median=round(p_wage.median(),2)
          wage_max=round(p_wage.max(),2)
          wage_min=round(p_wage.min(),2)
          wage_std=round(p_wage.std(),2)
          list1=[wage_count,wage_max,wage_min,
                  wage_mean,wage_median,wage_std]
          index_list=['count','max','min','mean','median','std']
          pd.DataFrame(list1,
                         columns=['prevailing_wage'],
                         index=index_list)
Out[10]:
                   prevailing_wage
            count
                         25480.00
                        319210.27
              max
                             2.14
              min
             mean
                         74455.81
                         70308.21
           median
              std
                         52815.94
 In [ ]: | # what ever we did the calculations on above
          # by using pandas dataframe way
          # the same we can achieve by numpy package also
In [11]:
          # wage_mean=round(p_wage.mean(),2)=== pandas
          p_wage=visa_df['prevailing_wage']
          np.mean(p_wage)
          np.median(p_wage)
          np.max(p_wage)
          np.min(p_wage)
          np.std(p_wage)
```

Out[11]: 74455.81459209183

- In the numpy package we have np.percentile() and np.quantile()
- percentile: if you want to 25p 25
- quantile: q1=25p (0.25) q2=50p q3=75p
- · Assume that a student got 120 Marks 95P
- 95% of students has marks below 120

```
In [12]: |np.percentile(p_wage,25)
Out[12]: 34015.479999999996
In [15]: np.quantile(p_wage,0.25)
Out[15]: 34015.479999999996
In [16]:
        p_wage=visa_df['prevailing_wage']
        wage_count=p_wage.count()
        wage_mean=round(p_wage.mean(),2)
        wage median=round(p wage.median(),2)
        wage_max=round(p_wage.max(),2)
        wage_min=round(p_wage.min(),2)
        wage_std=round(p_wage.std(),2)
        wage_25p=round(np.percentile(p_wage,25),2)
        wage_50p=round(np.percentile(p_wage,50),2)
        wage_75p=round(np.percentile(p_wage,75),2)
        list1=[wage_count, wage_max, wage_min,
              wage_mean,wage_median,wage_std,
              wage_25p,wage_50p,wage_75p]
        index_list=['count','max','min','mean',
                    'median','std','25%','50%','75%']
        pd.DataFrame(list1,
                    columns=['prevailing_wage'],
                    index=index_list)
```

Out[16]:

prevailing_wage

	proruming_mage
count	25480.00
max	319210.27
min	2.14
mean	74455.81
median	70308.21
std	52815.94
25%	34015.48
50%	70308.21
75%	107735.51

```
In [17]:
        # Numerical columns seperaetly
         num_cols=visa_df.select_dtypes(exclude='object').columns
         dict1={}
         for i in num_cols:
             count=visa_df[i].count()
             mean=round(visa_df[i].mean(),2)
             median=round(visa_df[i].median(),2)
             maxx=round(visa_df[i].max(),2)
             minn=round(visa_df[i].min(),2)
             std=round(visa df[i].std(),2)
             p25=round(np.percentile(visa_df[i],25),2)
             p50=round(np.percentile(visa df[i],50),2)
             p75=round(np.percentile(visa_df[i],75),2)
             list1=[count,maxx,minn,mean,median,std,p25,p50,p75]
             dict1[i]=list1
         index_list=['count','max','min','mean',
                      'median','std','25%','50%','75%']
         numer_df=pd.DataFrame(dict1,index=index_list)
         numer_df.to_csv("numer_df.csv")
         numer_df
```

Out[17]:

	no_of_employees	yr_of_estab	prevailing_wage
count	25480.00	25480.00	25480.00
max	602069.00	2016.00	319210.27
min	-26.00	1800.00	2.14
mean	5667.04	1979.41	74455.81
median	2109.00	1997.00	70308.21
std	22877.93	42.37	52815.94
25%	1022.00	1976.00	34015.48
50%	2109.00	1997.00	70308.21
75%	3504.00	2005.00	107735.51

```
In [29]: #pwage 25p = 34015

#25% of total employees has wages below 34015

#100
#25 members salary < 34k

50*(25480)/100

#6370 employees has wages less than 34015
#12740 employees has wages less than 70308.21</pre>
```

Out[29]: 12740.0

Out[37]: <BarContainer object of 3 artists>


```
In [ ]: # You want to extract a dataframe
# which has wages Less than 34015(25p)
# 100  25 mem  34k
```

```
In [42]: # step-1: take the reference column first
         # Step-2: apply the condition
         # it will provide True or Flase
         # Step-3: Apply the original dataframe on top of that
                  So that it will give only True values
         p_wage=visa_df['prevailing_wage']
         p_25=np.percentile(p_wage,25)
         con=p_wage<p_25
         visa_df[con]
         visa_df[visa_df['prevailing_wage']<34015]</pre>
```

	case_id	continent	education_of_employee	has_job_experience	requires_job_trainii	
0	EZYV01	Asia	High School	N		
7	EZYV08	North America	Bachelor's	Υ		
12	EZYV13	Asia	Bachelor's	Υ		
16	EZYV17	Europe	Master's	Υ		
17	EZYV18	Asia	Master's	Υ		
25461	EZYV25462	Asia	Master's	Υ		
25465	EZYV25466	North America	High School	N		
25466	EZYV25467	Europe	Bachelor's	Υ		
25470	EZYV25471	North America	Master's	Υ		
25473	EZYV25474	Asia	Bachelor's	Υ		
6370 rc	6370 rows × 12 columns					

Out[43]:		case_id	continent	education_of_employee	has_job_experience	requires_job_trainii
	0	EZYV01	Asia	High School	N	
	_	E = 3		5		

0	EZYV01	Asia	High School	N		
6	EZYV07	Asia	Bachelor's	N		
7	EZYV08	North America	Bachelor's	Υ		
9	EZYV10	Europe	Doctorate	Υ		
12	EZYV13	Asia	Bachelor's	Υ		
25465	EZYV25466	North America	High School	N		
25466	EZYV25467	Europe	Bachelor's	Υ		
25470	EZYV25471	North America	Master's	Υ		
25473	EZYV25474	Asia	Bachelor's	Υ		
25474	EZYV25475	Africa	Doctorate	N		
40740	40740 manua ni 40 ashimana					

12740 rows × 12 columns

```
In [48]: # between 25p to 50p
# between 34k to 70k
# >25p and <50p
p_wage=visa_df['prevailing_wage']
p_25=np.percentile(p_wage,25)
p_50=np.percentile(p_wage,50)
# between 25p to 50p

con1=p_wage>p_25
con2=p_wage<p_50

visa_df[con1&con2]
#visa_df[(visa_df['prevailing_wage']>34015)&(visa_df['prevailing_wage']<7006</pre>
```

Out[48]:

	case_id	continent	education_of_employee	has_job_experience	requires_job_trainiı
6	EZYV07	Asia	Bachelor's	N	
9	EZYV10	Europe	Doctorate	Υ	
22	EZYV23	Asia	Master's	Υ	
28	EZYV29	Asia	Master's	Υ	
38	EZYV39	Asia	Bachelor's	Υ	
25449	EZYV25450	Asia	Bachelor's	Y	
25454	EZYV25455	Asia	Bachelor's	N	
25456	EZYV25457	Asia	Bachelor's	Υ	
25459	EZYV25460	Asia	High School	Υ	
25474	EZYV25475	Africa	Doctorate	N	
6308 rc	we x 12 coli	ımne			

6308 rows × 12 columns

In [45]: till 50 =12740 till 25 =6370 between 25 to 50 = 12740-6370=6370

Out[45]: 6370

```
p_wage =visa_df['prevailing_wage']
In [49]:
           p_25 = np.percentile(p_wage,25)
           p_75 = np.percentile(p_wage,75)
           con_1 = p_wage < p_25
           con_2 = p_wage > p_75
           visa_df[con_1 | con_2]
Out[49]:
                     case_id continent education_of_employee has_job_experience requires_job_trainii
               0
                     EZYV01
                                   Asia
                                                   High School
                                                                               Ν
               2
                     EZYV03
                                                    Bachelor's
                                                                               Ν
                                   Asia
                4
                     EZYV05
                                                      Master's
                                  Africa
                                                                               Υ
                                  North
               7
                                                    Bachelor's
                     EZYV08
                                America
               12
                     EZYV13
                                                    Bachelor's
                                   Asia
                                  North
            25469 EZYV25470
                                                      Master's
                                America
                                  North
                                                      Master's
           25470 EZYV25471
                                                                               Υ
                                America
```

Bachelor's

High School

Master's

Υ

12740 rows × 12 columns

25473 EZYV25474

25476 EZYV25477

25477 EZYV25478

In []: # You are good at writing the conditions

Histogram

- · From raw data will make class intervals
- · Will count the observations in each class intervals

Asia

Asia

Asia

- Freqiency distribution table
- Plot of Frequency distribution table is Hitogram

```
In [62]:
         p_wage=visa_df['prevailing_wage']
         freq,interval,n=plt.hist(p_wage,bins=40)
         freq, interval
Out[62]: (array([2992., 871., 1005., 1170., 1242., 1434., 1385., 1443., 1444.,
                 1445., 1457., 1335., 1268., 1217., 1088., 978., 807.,
                  509., 373., 264., 144., 105., 111., 107.,
                                                                    99.,
                                                                           88.,
                   79.,
                                        58., 53., 33., 33.,
                          65.,
                                 64.,
                                                                    29.,
                                                                           19.,
                    7.,
                           3.,
                                  6.,
                                         5.]),
          array([2.13670000e+00, 7.98234003e+03, 1.59625434e+04, 2.39427467e+04,
                 3.19229500e+04, 3.99031534e+04, 4.78833567e+04, 5.58635600e+04,
                 6.38437634e+04, 7.18239667e+04, 7.98041700e+04, 8.77843734e+04,
                 9.57645767e+04, 1.03744780e+05, 1.11724983e+05, 1.19705187e+05,
                 1.27685390e+05, 1.35665593e+05, 1.43645797e+05, 1.51626000e+05,
                 1.59606203e+05, 1.67586407e+05, 1.75566610e+05, 1.83546813e+05,
                 1.91527017e+05, 1.99507220e+05, 2.07487423e+05, 2.15467627e+05,
                 2.23447830e+05, 2.31428033e+05, 2.39408237e+05, 2.47388440e+05,
                 2.55368643e+05, 2.63348847e+05, 2.71329050e+05, 2.79309253e+05,
                 2.87289457e+05, 2.95269660e+05, 3.03249863e+05, 3.11230067e+05,
                 3.19210270e+05]))
          3000
          2500
          2000
           1500
           1000
            500
              0
                   0
                          50000
                                  100000
                                            150000
                                                    200000
                                                              250000
                                                                       300000
In [61]: 2.13670000e+00
                         # 2.13
         7.98234003e+03 # 7982
Out[61]: 7982.34003
In [65]: #2.13
                  to
                        7982.34003
                                       (2992)
         p_wage=visa_df['prevailing_wage']
         con1=p_wage>2.13
         con2=p wage<7982.34003
         len(visa df[con1&con2])
```

Out[65]: 2992

```
In [66]:
         p_wage=visa_df['prevailing_wage']
         con1=p_wage>7.98234003e+03
         con2=p wage<1.59625434e+04
         len(visa df[con1&con2])
Out[66]: 871
In [75]: # Histogram
         # what do you want represent in graphical way
         p_wage.values
         # raw observations
         # 25480 observations
         # we are dividng into 40 intervals
         11=sorted(p_wage.values)
         l1.index(2.1367) #0
         l1.index() # 2991
                               2992
         ValueError
                                                   Traceback (most recent call las
         t)
         Cell In[75], line 12
              10 l1=sorted(p_wage.values)
              11 l1.index(2.1367)
         ---> 12 l1.index(7.98234003e+03)
         ValueError: 7982.34003 is not in list
In [76]: freq
Out[76]: array([2992., 871., 1005., 1170., 1242., 1434., 1385., 1443., 1444.,
                1445., 1457., 1335., 1268., 1217., 1088., 978., 807., 645.,
                 509., 373., 264., 144., 105., 111., 107.,
                                                                   99.,
                                     58., 53.,
                                                     33., 33.,
                       65.,
                  79.,
                              64.,
                                                                   29.,
                                                                          19.,
                   7.,
                          3.,
                                6.,
                                        5.])
In [77]: interval
Out[77]: array([2.13670000e+00, 7.98234003e+03, 1.59625434e+04, 2.39427467e+04,
                3.19229500e+04, 3.99031534e+04, 4.78833567e+04, 5.58635600e+04,
                6.38437634e+04, 7.18239667e+04, 7.98041700e+04, 8.77843734e+04,
                9.57645767e+04, 1.03744780e+05, 1.11724983e+05, 1.19705187e+05,
                1.27685390e+05, 1.35665593e+05, 1.43645797e+05, 1.51626000e+05,
                1.59606203e+05, 1.67586407e+05, 1.75566610e+05, 1.83546813e+05,
                1.91527017e+05, 1.99507220e+05, 2.07487423e+05, 2.15467627e+05,
                2.23447830e+05, 2.31428033e+05, 2.39408237e+05, 2.47388440e+05,
                2.55368643e+05, 2.63348847e+05, 2.71329050e+05, 2.79309253e+05,
                2.87289457e+05, 2.95269660e+05, 3.03249863e+05, 3.11230067e+05,
                3.19210270e+05])
```

In [80]: pd.DataFrame(zip(freq,interval),columns=["Frequency","Intervel"])

Out[80]:		Frequency	Intervel
	0	2992.0	2.136700
	1	871.0	7982.340033
	2	1005.0	15962.543365
	3	1170.0	23942.746698
	4	1242.0	31922.950030
	5	1434.0	39903.153363
	6	1385.0	47883.356695
	7	1443.0	55863.560028
	8	1444.0	63843.763360
	9	1445.0	71823.966693
	10	1457.0	79804.170025
	11	1335.0	87784.373358
	12	1268.0	95764.576690
	13	1217.0	103744.780023
	14	1088.0	111724.983355
	15	978.0	119705.186688
	16	807.0	127685.390020
	17	645.0	135665.593353
	18	509.0	143645.796685
	19	373.0	151626.000018
	20	264.0	159606.203350
	21	144.0	167586.406683
	22	105.0	175566.610015
	23	111.0	183546.813348
	24	107.0	191527.016680
	25	99.0	199507.220013
	26	88.0	207487.423345
	27	79.0	215467.626678
	28	65.0	223447.830010
	29	64.0	231428.033343
	30	58.0	239408.236675
	31	53.0	247388.440008
	32	33.0	255368.643340
	33	33.0	263348.846673
	34	29.0	271329.050005
	35	19.0	279309.253338

36

37

38

7.0 287289.456670

3.0 295269.660002

6.0 303249.863335

	Frequency	Intervel
39	5.0	311230.066668

In [81]: visa_df.describe()

Out[81]:

	no_of_employees	yr_of_estab	prevailing_wage
count	25480.000000	25480.000000	25480.000000
mean	5667.043210	1979.409929	74455.814592
std	22877.928848	42.366929	52815.942327
min	-26.000000	1800.000000	2.136700
25%	1022.000000	1976.000000	34015.480000
50%	2109.000000	1997.000000	70308.210000
75%	3504.000000	2005.000000	107735.512500
max	602069.000000	2016.000000	319210.270000

In [82]: plt.hist(p_wage)

Out[82]: (array([6038., 5504., 5681., 4551., 2334., 624., 373., 240., 114., 21.]),

array([2.13670000e+00, 3.19229500e+04, 6.38437634e+04, 9.57645767e+04, 1.27685390e+05, 1.59606203e+05, 1.91527017e+05, 2.23447830e+05, 2.55368643e+05, 2.87289457e+05, 3.19210270e+05]),

<BarContainer object of 10 artists>)

