In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). One approach popular for requirements analysis is Use Case analysis. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. Techniques like Code refactoring can enhance readability. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Following a consistent programming style often helps readability. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. There exist a lot of different approaches for each of those tasks. However, Charles Babbage had already written his first program for the Analytical Engine in 1837.