التكامـــل

I- تكامل دالة متصلة على مجا<u>ل</u>

ا- تعریف و ترمیز

. I و عنصرين من I و الf دالة متصلة على مجال ا

F(b)-F(a)=G(b)-G(a) في F(b)-F(a)=G(b)-G(a) على F(b)-F(a)=G(b)-G(a) و G(a)

أي أن العدد الحقيقي (F(b)-F(a غير مرتبط باختيار الدالة الأصلية F.

تعريف

.I و م وb عنصرين من I و اf دالة متصلة على مجال ا

b العدد الحقيقي (b)-F(a) الدالة f على F حيث F دالة أصلية للدالة العدد الحقيقي F(b)-F(a) العدد الحقيقي

(x)dx الى b الى b الى b يكتب $\int_a^b f\left(x\right)dx$ ويقرأ مجموع $f\left(x\right)dx$ من a إلى b ويكتب

$$\int_{a}^{b} f(x) dx$$
 وd يسميا محدا التكامل be a

في الكتابة $\int_{a}^{b}f\left(x
ight) dx$ يمكن تعويض x في الكتابة

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(u) du = \dots$$

 $\int_{a}^{b} f\left(x\right) dx = \left[F(x)\right]_{a}^{b}$ من أجل تبسيط الكتابة (b)-F(a نكتبها على الشكل

أمثلة

$$\int_{1}^{2} \frac{1}{x} dx \quad \text{i.e.} \quad *$$

 $x \to \ln x$ الدالة $x \to \frac{1}{x}$ متصلة على [1,2] و دالة أصلية لها هي

$$\int_{1}^{2} \frac{1}{x} dx = \left[\ln x\right]_{1}^{2} = \ln 2$$
 اذن

$$\int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} dx$$
 ; $\int_{-1}^1 \frac{1}{x^2 + 1} dx$; $\int_{\frac{\pi}{2}}^0 \cos x dx$ *

<u>2- خاصیات</u> أ نامات

 ${
m I}$ لتکن f دالة متصلة على مجال ${
m I}$ و ${
m c}$ وك عناصر من

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx * \int_{a}^{a} f(x) dx = 0*$$

(علاقة شال)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx *$$

<u>امثلة</u>

$$I = \int_{-1}^{1} |x| dx$$
 أحسب

$$\int_{-1}^{1} |x| dx = \int_{-1}^{1} |x| dx = \int_{-1}^{0} -x dx + \int_{0}^{1} x dx = \left[\frac{-1}{2} x^{2} \right]_{-1}^{0} + \left[\frac{1}{2} x^{2} \right]_{0}^{1} = 1$$

 ${
m I}$ ب)- لتكن f دالة متصلة على مجال ${
m I}$ و ${
m a}$

$$\varphi: I \to \mathbb{R}$$

$$x \to \int_a^x f(t)dt$$

.I دالة أصلية لf على F حيث التا $\phi(x) = F(x) - F(a)$ لدينا

 φ التي تنعدم I التي الدالة g على I أي أن φ دالة الأصلية للدالة f على I التي تنعدم الذن φ

 \mathbf{I} دالة متصلة على مجال \mathbf{I} و \mathbf{a} عنصرا من \mathbf{I}

a التي تنعدم في I الدالة المعرفة على I التي تنعدم في $x o \int_{a}^{x} f(t) dt$

. 1مي تنعدم في $]0;+\infty[$ على $]0;+\infty[$ التي تنعدم في $x \to \ln x$ على الدالة

$$\forall x \in]0; +\infty[\quad \ln x = \int_1^x \frac{1}{t} dt$$

 $\forall x \in \left]0;+\infty\right[$ $f\left(x\right)=\frac{1}{\sqrt{2}}\ln x$ حدد الدالة الأصلية لـ fعلى $\left[0;+\infty\right[$ التي تنعدم في 2 حيث حدد الدالة الأصلية لـ $f\left(x\right)=0$

ج <u>)- خاصیة</u> a;b و g دالتین متصلتین علی a;b و g دالتین متصلتین علی الت

$$\int_{a}^{b} (\lambda f(x)) dx = \lambda \int_{a}^{b} f(x) dx \qquad \int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$(\cos^4 x$$
 یمکن اخطاط) $\int_0^{\pi} \cos^4 x dx$; $\int_0^1 (x^2 - 3x + 1) dx$

 $\int_a^b f(x)dx$ <u>د التأويل الهندسي للعدد</u>

إذا كانت f دالة متصلة و موجبة على igl[a;bigr] إذا كانت f دالة متصلة و موجبة على igl[a;bigr]و محور الأفاصيل و المستقيمين المعرفتين على التوالي بالمعادلتين x=b و x=b و محور الأفاصيل و المستقيمين المعرفتين على التوالي بالمعادلتين fبوحدة قياس المساحات $A(f) = \int_{-\infty}^{b} f(x) dx$

إذا كان المستوى منسوب إلى معلم متعامدين فان وحدة قياس المساحة هي مساحة المربع **OIJK**

<u>تمرين</u>

$$f(x) = \frac{1}{x^2}$$
 نعتبر

$$\left(\left\|\vec{i}\right\| = 1cm \quad \left\|\vec{j}\right\| = 2cm\right) \quad C_f$$
 أنشئ

أحسب بـ cm^2 مساحة الحيز المحصور بين C_f و محور الأفاصيل و المستقيمين المعرفين بالمعادلتين $\mathbf{r}=\mathbf{3}$

[- تقنيات حساب التكاملات

1- <u>الاستعمال المباشر لدوال الأصلية</u>

<u>أمثلة</u>

$$u(x) = \ln x$$
 نلاحظ أن $\frac{(\ln x)^2}{x}$ على شكل $u'u^2$ حيث $\int_1^e \frac{(\ln x)^2}{x} dx$ أحسب

$$\int_{1}^{e} \frac{\left(\ln x\right)^{2}}{x} dx = \left[\frac{1}{3}u^{3}(x)\right]_{1}^{e} = \left[\frac{1}{3}\ln^{3}x\right]_{1}^{e} = \frac{1}{3}\text{ id} \quad \text{id} \quad$$

الدينا
$$\frac{2}{1+e^x}$$
 يكتب على شكل $\frac{2}{e^x+1} = 2\frac{e^{-x}}{1+e^{-x}}$ يكتب على شكل $\int_0^1 \frac{2}{e^x+1} dx$ أحسب $\int_0^1 \frac{2}{e^x+1} dx$ إذن $u(x) = 1 + e^{-x}$ على شكل $u(x) = 1 + e^{-x}$ حيث $u(x) = 1 + e^{-x}$ على شكل

$$\int_0^{\frac{\pi}{4}} \sin^3 x \, dx \quad -1 \quad \frac{1}{2}$$

$$\forall x \neq 0$$
 $\frac{2x^4 + x^2 + x - 1}{x^3 + x} = ax + \frac{b}{x} + \frac{c}{x^2 + 1}$ cobe a -1 -2

. این أن التعبیر
$$\frac{1}{x^2-2x+5}$$
 یکتب علی شکل $\frac{1}{2u^2+1}$ حیث $\frac{1}{x^2-2x+5}$ حیث $\frac{1}{x^2-2x+5}$

$$\int_{1}^{1+2\sqrt{3}} \frac{1}{x^2-2x+5} dx$$
 استنتج قیمة

$$\left(\frac{1}{x \ln x} = \frac{\frac{1}{x}}{\ln x}\right) \qquad \int_{e}^{e^{2}} \frac{1}{x \ln x} dx \quad ; \quad \int_{0}^{1} \frac{1}{(x+1)(x+2)} dx \quad -4$$

<u>2- المكاملة بالأجزاء</u>

 $egin{aligned} \left[a;b
ight]$ لتكن g و g دالتين قابلتين للاشنقاق على $\left[a;b
ight]$ بحيث f و g متصلتين على

نعلم أن

$$\forall x \in [a;b] \quad (fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\forall x \in [a;b] \quad f'(x)g(x) = (fg)'(x) - f(x)g'(x)$$

<u>خاصىة</u>

$$\int_{a}^{b} f'(x)g(x)dx = \left[(fg)(x) \right]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

$$v(x) = x$$
 ; $u'(x) = \cos x$ نضع $\int_0^{\frac{\pi}{2}} x \cos x dx$ مثال أحسب

$$v'(x) = 1$$
 ; $u(x) = \sin x$ equip

$$\int_0^{\frac{\pi}{2}} x \cos x dx = \left[x \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x dx = \left[x \sin x \right]_0^{\frac{\pi}{2}} - \left[-\cos x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 1$$

$$\downarrow i$$

$$K = \int_0^{\frac{\pi}{2}} e^x \sin x dx$$
 ; $J = \int_0^{\pi} x^2 \sin x dx$; $I = \int_1^e \ln x dx$

$$K = \left[e^{x} \sin x\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^{x} \cos x dx = \left[e^{x} \sin x\right]_{0}^{\frac{\pi}{2}} - \left[e^{x} \cos x\right]_{0}^{\frac{\pi}{2}} - K$$

$$K = \frac{1}{2} \left[\left[e^x \sin x \right]_0^{\frac{\pi}{2}} - \left[e^x \cos x \right]_0^{\frac{\pi}{2}} \right] = \dots$$

$$\int_0^1 \ln \left| \frac{x+2}{x+1} \right| dx$$
 $\int_0^1 x \sqrt{x+3} dx$ $\int_0^3 (x-1)e^{2x} dx$ $\int_1^2 x^2 \ln x dx$ أحسب -1

$$f\left(x\right) = \frac{x}{\cos^2 x}$$
 حيث $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ حيث $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ حيث -2

$$(J=\int_0^x e^t \sin^2 t dt)$$
 احسب) $I=\int_0^x e^t \cos^2 t dt$ -3

لتكن g دالة قابلة للاشتقاق على $\left[a;b
ight]$ حيث $\left[a;b
ight]$ متصلة على $\left[a;b
ight]$. و g([a;b]) = J

 $\forall x \in [a;b]$ $(F \circ g)'(x) = f(g(x)) \times g'(x)$ فان f على f على f على f

$$\int_{a}^{b} f\left(g\left(x\right)\right)g'\left(x\right)dx = \left[F \circ g\left(x\right)\right]_{a}^{b} = F\left(g\left(b\right)\right) - F\left(g\left(a\right)\right) = \int_{g\left(a\right)}^{g\left(b\right)} f\left(t\right)dt$$

g([a;b]) = J

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(t)dt$$

ملاحظة

$$dt = g'(x)dx$$
 إذا وضعنا $t = g(x)$ فان $t = g(x)$ أي

f(t)dt المتغير t بالمتغير f(g(x))g'(x)dx المتغير f(t)dt

$$\begin{cases}
t = g(a) \\
t = g(b)
\end{cases}$$
 فان $\begin{cases}
x = a \\
x = b
\end{cases}$ فان اذا كان

t = g(x) نقول إننا أجرينا تغييرا للمتغير بوضع

$$\left(t = \tan\frac{x}{2}\right) \quad \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \cos x} \qquad \left(t = \frac{1}{x}\right) \quad \int_1^{\sqrt{3}} \frac{4}{x^2 \sqrt{x^2 - 1}} dx \quad \text{ decide }$$

$$\left(\cos x = \frac{1 - t^2}{1 + t^2} \right) \quad ; \quad \sin x = \frac{2t}{1 + t^2}$$

<u>III- التكامل و الترتيب</u>

1- مقارنة تكاملين

[a;b] لتكن f دالة متصلة على [a;b] و f دالة أصلية لـ f على [a;b]

$$\forall x \in [a;b]$$
 $F'(x) = f(x)$
$$\int_a^b f(x) dx = F(b) - F(a)$$
 إذا كانت f موجبة على $[a;b]$ فان f تزايدية على f ادن $f(a) \leq f(b)$ فان $f(a) \leq f(b)$ ادن $f(a) \leq f(b)$

 $\cfrac{ extstyle extstyle$

$$\int_{a}^{b} f(x) dx \ge 0$$
 فان $[a;b]$ فان f موجبة على

 $(a \le b) \begin{bmatrix} a;b \end{bmatrix}$ لتكن fو g دالتين متصلتين على

$$\int_{a}^{b} f\left(x\right) dx \leq \int_{a}^{b} g\left(x\right) dx$$
 إذا كانت $f \leq g$ على $f \leq g$ فان $f \leq g$

$$I = \int_0^1 \frac{x^2}{1+x} dx$$
 نؤ طر $I = \int_0^1 \frac{x^2}{1+x} dx$ نؤ طر
$$\int_0^1 \frac{x^2}{2} dx \le I \le \int_0^1 x^2 dx$$
 ومنه
$$\forall x \in \left[0;1\right]$$

$$1 \le 1 + x \le 2 \Leftrightarrow \frac{x^2}{2} \le \frac{x^2}{1+x} \le x^2$$
 لدينا
$$\frac{1}{6} \le I \le \frac{1}{3}$$
 إذن

$$(a \le b) \begin{bmatrix} a;b \end{bmatrix}$$
 أ- لتكن f دالة متصلة على

$$\int_{a}^{b} f(x) dx \le 0$$
 فان $[a;b]$ فان f سالبة على

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx \quad -\infty$$

 $\left[a;b
ight]$ على $\left[a;b
ight]$ على القيمة القصوية و $\left[a;b
ight]$

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

إذا كانت f موجبة على [a;b] فان المساحة f(x)dx إذا كانت f في معلم م.م محصورة بين $.\left(b-a
ight)$ مساحتي المستطيل الذي بعديه M و $\left(b-a
ight)$ و المستطيل الذي بعديه

$$0 \le I \le \sqrt{2}$$
 نبین أن $I = \int_1^3 \frac{1}{x\sqrt{1+x^2}} dx$ نعتبر

$$\sup_{x \in [1;3]} f(x) = f(1) = \frac{\sqrt{2}}{2}$$
 ومنه $]0;+\infty[$ على على $]0;+\infty[$ موجبة و تناقصية على الدالة

$$0 \le I \le (3-1)\frac{\sqrt{2}}{2}$$
 اذن

[a;b] على وراية متصلة على القيمة القيمة القيمة القيمة الدنوية للدالة f على f على f على القيمة الدنوية للدالة f على القيمة التكن f دالة متصلة على القيمة القيمة القيمة القيمة الدنوية للدالة f على القيمة القيمة الدنوية للدالة f على القيمة القيمة القيمة الدنوية للدالة f على القيمة القيمة الدنوية للدالة f على القيمة القيمة القيمة الدنوية للدالة f على القيمة القيمة القيمة الدنوية للدالة f على القيمة القيمة الدنوية للدالة f على القيمة القيمة الدنوية للدالة f على القيمة القيمة القيمة القيمة القيمة القيمة القيمة القيمة القيمة الدنوية للدالة f على القيمة [a;b] ومنه حسب مبرهنة القيمة الوسطية يوجد على الأقل $m \leq \frac{1}{b-a} \int_a^b f(x) dx \leq M$ إذن $f(c) = \frac{1}{b} \int_{a}^{b} f(x) dx$ حيث

(a
eq b) [a;b] دالة متصلة على [a;b] دالة متصلة على

[a;b]العدد الحقيقي f على القيمة المتوسطة للدالة f على $\mu = \frac{1}{b-a} \int_a^b f(x) dx$

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$
 يوجد على الأقل c في $[a;b]$ حيث $[a;b]$

إذا كانت f موجبة على [a;b] فان المساحة $A(f) = \int_a^b f(x) dx$ في معلم م.م هي مساحة

المستطيل الذي بعداه (b-a) و (b-a)

تمرين 1 - أحسب القيمة المتوسطة للدالة f على I في الحالتين التاليتين I

$$I = [0;1]$$
 $f(x) = \frac{x^3 + 5x^2 + x + 3}{x + 1}$ $(b ; I = [-1;0]$ $f(x) = (x-1)e^x$ $(a = x^2 + 2x + 3)$

 $f(x) = \arctan x$ حيث على [0;1] حيث -2

الجواب عن السؤال 2 لدينا f قابلة للاشتقاق على [0;1] و منه $\forall x \in [0;1]$ لدينا f الجواب عن السؤال 2

$$\frac{x}{2} \leq f\left(x\right) \leq x \quad \forall x \in \left[0;1\right] \qquad \int_0^x \frac{1}{2} dt \leq \int_0^x f'\left(t\right) dt \leq \int_0^x dt \quad \text{i.e.} \quad \forall x \in \left[0;1\right] \qquad \frac{1}{2} \leq f'\left(x\right) \leq 1$$

<u>IV- حساب المساحات</u>

1- حساب المساحات الهندسية

 $\left(o;\vec{i}\,;\vec{j}\,
ight)$ المستوى منسوب إلى م.م.م

لتكن f دالة متصلة على [a;b] و محور الأفاصيل $\Delta(f)$ الحيز المحصور بين C_f و محور الأفاصيل f $(\Delta_2): x = b$ $(\Delta_1): x = a$

المساحات $\int_a^b f\left(x\right)dx$ هي $\Delta(f)$ هان مساحة $\left[a;b\right]$ بوحدة قياس المساحات * $\Delta(-f)$ هي مساحة هي مساحة [a;b] مساحة f النا كانت f

$$A(f) = \int_a^b -f(x) dx = \int_a^b |f(x)| dx$$

و سالبة على $\left[a;b\right]$ و سالبة على $\left[a;b\right]$ و سالبة على $\left[a;b\right]$ و سالبة على $\left[a;b\right]$ [c;b]

[c;b] على [a;b] على [a;c] على الحيز [a;b] على [a;b]

$$A(f) = \int_a^c f(x) dx + \int_c^b -f(x) dx = \int_a^c |f(x)| dx + \int_c^b |f(x)| dx = \int_a^b |f(x)| dx$$

 $(o; \vec{i}; \vec{j})$ المستوى منسوب الى م.م.م

لتكن f دالة متصلة على igl[a,b] و منحناها و igl(a,bigr) الحيز المحصور بين المحصور الأفاصيل (Δ_2) : x = b (Δ_1) : x = a و المستقيمين

مساحة الحيز $\Delta(f)$ هو $\Delta(f)$ مساحة الحيز عبد المساحة الحيز عبد المساحة الحيز عبد المساحة الحيز عبد المساحة الحيز

 $\Delta(f)$ يسمى المساحة الهندسية للحيز العدد الموجب $\int_{a}^{b} |f(x)| dx$

 $\Delta(f)$ العدد الحقيقي يسمى المساحة الجبرية للحيز العدد الحقيقي يسمى المساحة الجبرية للحيز

$$f(x) = x^3 - 1$$
 نعتبر

حدد مساحة الحيز المحصور بين المنحنى $C_{\scriptscriptstyle f}$ و محور الأفاصيل و المستقيمين ذا المعادلتين

$$x = 2$$
 ; $x = 0$

$$A = \int_0^2 |f(x)| dx = \int_0^1 (1 - x^3) dx + \int_1^2 (x^3 - 1) dx = \frac{7}{2}u \qquad \left(u = \|\vec{i}\| \times \|\vec{j}\| \right)$$

مساحة حيز محصور بين منحنيين Δ و C_g و المستقيمين على C_g و المستقيمين على g و المستقيمين g و المستقيمين على g و المستقيمين على المحصور بين المحصور ب

 $(o;ec{i}\,;ec{j})$ التكن (c_g) و (c_g) و (c_g) هو الحيز المحصور بين (c_g) و المستقيمين (c_g) في م.م.م $(c_g,ec{i}\,;ec{j})$ في م.م.م

$$Aig(\Deltaig) = Aig(fig) - Aig(gig)$$
 فان $f \geq g \geq 0$ إذا كان

$$A\left(\Delta\right) = \int_{a}^{b} f\left(x\right) dx - \int_{a}^{b} g\left(x\right) dx = \int_{a}^{b} \left(f\left(x\right) - g\left(x\right)\right) dx = \int_{a}^{b} \left|f\left(x\right) - g\left(x\right)\right| dx$$
 او کیفما کانت إشارتي $f \in g$ و بإتباع نفس الطریقة نحصل علی أن

$$A(\Delta) = \int_{a}^{b} |f(x) - g(x)| dx$$

<u>خاصية</u>

 $\left(\Delta_{2}\right)$: x=b $\left(\Delta_{1}\right)$: x=a و المستقيمين C_{g} و C_{f} مساحة الحيز Δ

هي
$$A\left(\Delta\right) = \int_{a}^{b} \left|f\left(x\right) - g\left(x\right)\right| dx$$
 وحدة قياس المساحات

$$A(\Delta) = \int_{a}^{c} (f(x) - g(x)) dx + \int_{c}^{b} (g(x) - f(x)) dx$$

٧- حساب الحجوم في الفضاء

الفضاء منسوب إلى معلم م.م $\left(o; ec{t} \, ; ec{j} \, ; ec{k}
ight)$ نفترض أن وحدة قياس الحجم هي حجم المكعب الذي طول حرفه $\left\|ec{t}
ight\|$

1- حجم مجسم في الفضاء

z=b و z=a و يكن S مجسما محصورا بين المستويين المعرفين بالمعادلتين z=t و بالرمز V(t) إلى حجم مجموعة نرمز بـS(t) إلى مساحة مجموعة النقط S(t) من S(t) من S(t) المحصور بين المستويين S(t) بين المستويين S(t) من S(t) من S(t) و S(t) عددا موجبا حيث S(t)

 $V\left(t_0+h\right)-V\left(t_0\right)$ هو $z=t_0+h$ و $z=t_0$ المحصورة بين S المحصورة بين $M\left(x;y;z\right)$ هو S هو ومن جهة ثانية هذا الحجم محصور بين حجمي الأسطوانتين التي ارتفاعهما S و مساحتا قاعدتيهما على التوالي $S\left(t_0+h\right)$ و $S\left(t_0+h\right)$

$$h \cdot S\left(t_0\right) \leq V\left(t_0 + h\right) - V\left(t_0\right) \leq h \cdot S\left(t_0 + h\right)$$
 فان $S\left(t_0\right) \leq S\left(t_0 + h\right)$ إذا افترضنا أن $S\left(t_0\right) \leq S\left(t_0 + h\right) - V\left(t_0\right)$ و منه $S\left(t_0\right) \leq S\left(t_0 + h\right) \leq S\left(t_0 + h\right)$

 $\lim_{h \to 0} \dfrac{V\left(t_0 + h\right) - V\left(t_0\right)}{h} = S\left(t_0\right)$ فان $\left[a;b\right]$ فان $t \to S\left(t\right)$ متصل على $t \to S\left(t\right)$ في أن الدالة $t \to V\left(t\right)$ قابلة للاشتقاق على $\left[a;b\right]$ على $\left[a;b\right]$ على $\left[a;b\right]$ على $t \to V\left(t\right)$ على أن الدالة $t \to V\left(t\right)$ دالة أصلية للدالة $t \to S\left(t\right)$

 $\forall t \in [a;b]$ $V(t) = \int_a^t S(x) dx$ فان V(a) = 0 فان و بما أن

. وحدة قياس الحجم $V=V\left(b\right)=\int_{a}^{b}S\left(x\right)dx$ هو S محجم المجسم

خاصىة

الفضاء منسوب إلى معلم م.م

z=b و z=a ليكن S مجسما محصورا بين المستويين المعرفين بالمعادلتين z=t في S مين S الى مساحة مجموعة النقط S(t) من S(t)

إذا كان أن التطبيق S(z) متصلا على [a;b] فان حجم المجسم S هــو S(t) وحدة قياس الحجم.

R أحسب حجم الفلكة التي مركزها O و شعاعها نفترض أن الفضاء منسوب م.م.م أصله O. الفلكة محصورة بين المستويين المعرفين على التوالي z = -R ; z = R بالمعادلتين

 $-R \le t \le R$ مجموعة النقط M(x,y,z) من الفلكة حيث $S\left(t
ight) = \pi\left(R^2 - t^2
ight)$ هي قرص شعاعه $\sqrt{R^2 - t^2}$ و مساحته $=\frac{4}{3}\pi R^3$ بما أن التطبيق $\left[-R;R\right]$ فان $t o \pi \left(R^2-t^2\right)$ فان

<u>2- ححم محسم الدوران</u>

 $\left(O;\vec{i}\;;\vec{j}
ight)$ منحناها في م.م.م $\left(a;b
ight]$ لتكن f دالة متصلة على $\left[a;b
ight]$ إذا دار C_f حول المحور $\left(O;ec{t}
ight)$ دورة كاملة فانه يولد مجسما يسمى مجسم الدوران

في هذه الحالة لدينا مجموعة النقط $M\left(x;y;z\right)$ من الجسم بحيث x=t هي قرص مساحته

$$S(t) = \pi f^2(t)$$

 $\left[a;b
ight]$ التطبيق $t o \pi f^2(t)$ متصلة على

 $V = \int_a^b \pi f^2(t) dt$ إذن حجم المجسم الدوراني هو

 $oxedsymbol{a}_{[a;b]}$ الفضاء منسوب إلى م.م.م أصله o , و f دالة متصلة على الفضاء

 $V=\int_{a}^{b}\pi f^{2}\left(t
ight)\!dt$ هو (OX) حجم مجسم الدوران المولد عن دوران المنحنى C_{f} حول المحور بوحدة قياس الحجم .

$$f(x) = \frac{1}{2}x\ln x$$
 نعتبر

igl[1;eigl] المجال أنشئ C_f حول المحور الدوران الذي يولده دوران المنحنى أنشئ وحدد حجم مجسم الدوران الذي يولده دوران المنحنى IV- حساب بعض النهايات باستعمال التكامل

[a;b] لتكن f متصلة على

$$S_n = \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(a+i\frac{b-a}{n}\right)$$
 ; $S_n = \frac{b-a}{n} \sum_{i=1}^n f\left(a+i\frac{b-a}{n}\right)$ نضع \mathbb{N}^* نضع نضع المحادة المحا

إذا كانت f رتيبة قطعا على a;b أو قابلة للاشتقاق و f' محدودة على a;b فان المتتاليتين a;b إذا كانت a;b

 $+\infty$ متقاربتین و تقبلان التکامل $\int_a^b f(x)dx$ نهایة مشترکة لهما عندما یؤول

مثال

$$\forall n \in \mathbb{N}^*$$
 $u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ نعتبر $\lim u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$

$$\forall n \in \mathbb{N}^* \quad u_n = \frac{1}{n} \left(\frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right) = \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}} = \sum_{k=1}^n f\left(1 + \frac{k}{n}\right)$$
 Lead of the sum o

$$f(x) = \frac{1}{x}$$

 $\lim_{n\to +\infty}u_n=\int_1^2\frac{1}{x}dx=\ln 2$ متصلة وتناقصية على $\left[1;2\right]$ ومنه المتتالية و $\left[1;2\right]$ متصلة وتناقصية على

<u>حالة خاصة</u>

$$\frac{1}{b-a}\int_a^b f(x)dx$$
 المتوسط الحسابي $\frac{1}{b-a}\int_{a}^b f(x)dx$ يؤول الى القيمة المتوسطة $\frac{1}{b-a}\int_a^b f(x)dx$

<u>تمرين</u>

$$\lim_{n\to +\infty} n \sum_{k=0}^{n-1} \frac{1}{n^2+k^2} \quad ; \quad \lim_{n\to +\infty} \frac{1}{n} \sum_{k=1}^n \cos \frac{k\pi}{n} \quad ; \quad \lim_{n\to +\infty} \sum_{k=1}^n \frac{\sqrt{k}}{n\sqrt{n}} \quad ; \quad \lim_{n\to +\infty} \sum_{k=1}^n \frac{k}{n^2}$$
 أحسب النهايات