Dive into DL

6.1 ~ 6.3

Index

- 6. Convolutional Neural Networks
 - 6.1. From Fully-Connected Layers to Convolutions
 - 6.2. Convolutions for Images
 - 6.3. Padding and Stride

- fully-connected layer characterized: pixels x features
- translation invariance: network should respond similarly to the same patch
- *locality* principle: focus on local regions, without regard for the contents of the image in distant regions.

6.1.2. Constraining the MLP

$$[\mathbf{H}]_{i,j} = [\mathbf{U}]_{i,j} + \sum_{k} \sum_{l} [\mathbf{W}]_{i,j,k,l} [\mathbf{X}]_{k,l}$$

$$= [\mathbf{U}]_{i,j} + \sum_{a} \sum_{b} [\mathbf{V}]_{i,j,a,b} [\mathbf{X}]_{i+a,j+b}.$$
H: hidden representations
W: fourth-order weight tensors
U: biases

X: Input

H: hidden representations

re-index : k = i + a, l = j + b $[V]_{i,j,a,b} = [W]_{i,j,i+a,j+b}$.

6.1.2.1. Translation Invariance

only possible if **V** and **U** do not actually depend on (i,j), i.e., we have $[V]_{i,j,a,b} = [V]_{a,b}$

$$[\mathbf{H}]_{i,j} = u + \sum_a \sum_b [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}.$$

6.1.2.2. Locality

$$|a|>\Delta$$
 or $|b|>\Delta$, set $[\mathbf{V}]_{a,b}=0$.

$$[\mathbf{H}]_{i,j} = u + \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}.$$

V is referred to as a convolution kernel, a filter, or simply the layer's weights that are often learnable parameters.

Constraining the MLP

Translation Invariance

6.1.2. Constraining the MLP

$$[\mathbf{H}]_{i,j} = [\mathbf{U}]_{i,j} + \sum_{k} \sum_{l} [\mathbf{W}]_{i,j,k,l} [\mathbf{X}]_{k,l}$$

$$= [\mathbf{U}]_{i,j} + \sum_{a} \sum_{b} [\mathbf{V}]_{i,j,a,b} [\mathbf{X}]_{i+a,j+b}.$$
H: hidden representations
W: fourth-order weight tensors
U: biases

X: Input

H: hidden representations

re-index : k = i + a, l = j + b $[V]_{i,j,a,b} = [W]_{i,j,i+a,j+b}$.

6.1.2.1. Translation Invariance

only possible if **V** and **U** do not actually depend on (i,j), i.e., we have $[V]_{i,j,a,b} = [V]_{a,b}$

$$[\mathbf{H}]_{i,j} = u + \sum_a \sum_b [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}.$$

6.1.2.2. Locality

$$|a|>\Delta$$
 or $|b|>\Delta$, set $[\mathbf{V}]_{a,b}=0$.

$$[\mathbf{H}]_{i,j} = u + \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}.$$

V is referred to as a convolution kernel, a filter, or simply the layer's weights that are often learnable parameters.

6.1.3. Convolutions

$$f,g:\mathbb{R}^d o\mathbb{R}$$

$$(f*g)(\mathbf{x}) = \int f(\mathbf{z})g(\mathbf{x}-\mathbf{z})d\mathbf{z}.$$
 running over Z $(f*g)(i) = \sum_a f(a)g(i-a).$

sum with indices (a,b) for f and (i-a,j-b) for g,

$$(f*g)(i,j) = \sum_a \sum_b f(a,b)g(i-a,j-b).$$

• 6.1.4. "Where's Waldo" Revisited

The convolutional layer picks windows of a given size and weighs intensities according to the filter V

6.1.5. Channel

In reality, third-order tensors, characterized by a height, width, and channel 3 channels: red, green, and blue

support multiple channels in both inputs X and hidden representations H

$$[\mathbf{H}]_{i,j} = u + \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}.$$

$$[\mathsf{H}]_{i,j,d} = \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} \sum_{c} [\mathsf{V}]_{a,b,c,d} [\mathsf{X}]_{i+a,j+b,c},$$

d : indexes the output channels in the hidden representations

6.2. Convolutions for Images

6.2.1. The Cross-Correlation Operation

an input tensor and a kernel tensor are combined to produce an output tensor.

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

6.2.2. Convolutional Layers

A convolutional layer cross-correlates the input and kernel and adds a scalar bias to produce an output

```
from d21 import tensorflow as d21
  import tensorflow as tf
  def corr2d(X, K): #@save
      """Compute 2D cross-correlation."""
      Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)))
      for i in range(Y.shape[0]):
          for j in range(Y.shape[1]):
              Y[i, j].assign(tf.reduce_sum(
                  X[i: i + h, j: j + w] * K))
      return Y
X = tf.constant([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = tf.constant([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)
<tf. Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy=
array([[19.. 25.].
       [37., 43.]], dtype=float32)>
```

6.2. Convolutions for Images

6.2.3. Object Edge Detection in Images construct an "image" of 6×8 pixels

construct a kernel K with a height of 1 and a width of 2.

The kernel K only detects vertical edges.

```
corr2d(tf.transpose(X), K)

<tf.Variable 'Variable:0' shape=(8, 5) dtype=float32, numpy=
array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]], dtype=float32)>
```

6.3. Padding and Stride

6.3.1. Padding

when applying convolutional layers is that we tend to lose pixels on the perimeter of our image. set the values of the extra pixels to zero.


```
0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0.
```

```
import tensorflow as tf
# We define a convenience function to calculate the convolutional layer. This
# function initializes the convolutional laver weights and performs
# corresponding dimensionality elevations and reductions on the input and
# output
def comp_conv2d(conv2d, X):
    # Here (1, 1) indicates that the batch size and the number of channels
    # are both 1
    X = tf.reshape(X, (1, ) + X.shape + (1, ))
    Y = conv2d(X)
    # Exclude the first two dimensions that do not interest us: examples and
    # channels
    return tf.reshape(Y, Y.shape[1:3])
# Note that here 1 row or column is padded on either side, so a total of 2
# rows or columns are added
conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same')
X = tf.random.uniform(shape=(8, 8))
comp_conv2d(conv2d, X).shape
TensorShape([8, 8])
# Here, we use a convolution kernel with a height of 5 and a width of 3. The
```

padding numbers on either side of the height and width are 2 and 1.

conv2d = tf.keras.layers.Conv2D(1, kernel_size=(5, 3), padding='valid')

respectively

TensorShape([4, 6])

comp_conv2d(conv2d, X).shape

6.3. Padding and Stride

6.3.2. Stride

controls how depth columns around the spatial dimensions (width and height) are allocated

stride of 3 vertically and 2 horizontally

```
0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8, 0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6.
```

```
conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same', strides=2)
comp_conv2d(conv2d, X).shape

TensorShape([4, 4])

conv2d = tf.keras.layers.Conv2D(1, kernel_size=3, padding='same', strides=2)
comp_conv2d(conv2d, X).shape

TensorShape([4, 4])
```