

06/09/00

S&H Form: PTO/SB/05 (12/97)

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

 JC803 U.S. PTO
 06/09/00
 500264

APPLICATION ELEMENTS See MPEP chapter 600 concerning utility patent application contents.		ADDRESS TO: Assistant Commissioner for Patents Box Patent Application Washington, DC 20231
1. <input checked="" type="checkbox"/> Fee Transmittal Form 2. <input checked="" type="checkbox"/> Specification, Claims & Abstract [Total Pages: <u>43</u>] 3. <input checked="" type="checkbox"/> Drawing(s) (35 USC 113) [Total Sheets: <u>15</u>] 4. <input checked="" type="checkbox"/> Oath or Declaration [Total Pages: <u>3</u>] a. <input checked="" type="checkbox"/> Newly executed (original or copy) b. <input type="checkbox"/> Copy from a prior application (37 CFR 1.63(d)) (<i>for continuation/divisional with Box 17 completed</i>) i. <input type="checkbox"/> DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b). 5. <input type="checkbox"/> Incorporation by Reference (usable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein. 6. <input type="checkbox"/> Microfiche Computer Program (<i>Appendix</i>) 7. <input type="checkbox"/> Nucleotide and/or Amino Acid Sequence Submission (<i>if applicable, all necessary</i>) a. <input type="checkbox"/> Computer Readable Copy b. <input type="checkbox"/> Paper Copy (identical to computer copy) c. <input type="checkbox"/> Statement verifying identity of above copies		
ACCOMPANYING APPLICATION PARTS		
8. <input checked="" type="checkbox"/> Assignment Papers (cover sheet & document(s)) 9. <input type="checkbox"/> 37 CFR 3.73(b) Statement (<i>when there is an assignee</i>) <input type="checkbox"/> Power of Attorney 10. <input type="checkbox"/> English Translation Document (<i>if applicable</i>) 11. <input type="checkbox"/> Information Disclosure Statement (IDS)/PTO-1449[<input type="checkbox"/> Copies of IDS Citations 12. <input type="checkbox"/> Preliminary Amendment 13. <input checked="" type="checkbox"/> Return Receipt Postcard (MPEP 503) (<i>Should be specifically itemized</i>) 14. <input type="checkbox"/> Small Entity Statement(s) <input type="checkbox"/> Statement filed in prior application, status still proper and desired. 15. <input checked="" type="checkbox"/> Certified Copy of Priority Document(s) (<i>if foreign priority is claimed</i>) 16. <input type="checkbox"/> Other: _____		
17. If a CONTINUING APPLICATION , check appropriate box and supply the requisite information: [<input type="checkbox"/> Continuation] <input type="checkbox"/> Divisional <input type="checkbox"/> Continuation-in-part (CIP) of prior application No: <u> / </u>		
18. CORRESPONDENCE ADDRESS STAAAS & HALSEY, LLP Attn: James D. Halsey, Jr. 700 Eleventh Street, N.W., Suite 500 Washington, DC 20001		
Telephone: (202) 434-1500 Facsimile: (202) 434-1501		

MULTICAST DISTRIBUTION SYSTEM OF PACKETS

FIELD OF THE INVENTION

The present invention relates to a multicast distribution system in a distributed packet exchange network.

BACKGROUND OF THE INVENTION

In a distributed packet exchange network such as the Internet, the packet distribution format is classified into several types according to the destination designation method. Following packet distributions are employed in IPv4 used in the present Internet and IPv6 which is standard of next-generation Internet.

1) Unicast distribution in which the destination is the address expressing the single interface,

2) Multicast distribution (hereafter referred to as multicast) in which the destination represents a group of a plurality of interfaces, and copy of packet (in the explanation below 'packet' may mean 'packets') is distributed to all of them, and

3) Anycast distribution in which the destination represents a group of the plurality of interfaces, and copy of packet is distributed to any one of them.

The present invention relates to the above-mentioned multicast. In multicast it is possible to distribute same data

efficiently to a plurality of nodes. Therefore, this type of distribution is utilized in the fields of multimedia data broadcast, multi-point audio and video conference, etc.

An example of realizing multicast in IPv4 will be explained here as a prior art. In IPv6 of which standardization is being presently proposed, the method of realization is nearly the same as explained here. Actual execution of multicast requires three steps described in detail below. That is:

- 1) Address assignment of multicast,
- 2) Request of route setting, and
- 3) Packet distribution.

1) Address assignment of multicast :-

In IPv4, of the IP (Internet protocol) address space of four octets, one-sixteenth is assigned for the space of multicast called class D. The address of class D is determined so that the higher four bits may start with 1110. A sender of multicast of packet is assigned with a multicast address by the IANA (Internet Assigned Number Authority) and ICANN (Internet Corporation for Assigned Names and Numbers), one each for every group of address node for multicast.

2) Request of route setting

The sender, while communicating with each one of the receivers, must request preliminarily route setting to be used in the actual packet distribution (described below) to all routers on the route to which the multicast packet is

distributed.

3) Packet distribution

IPv6 packet has the header format as shown in Fig. 20 in both unicast and multicast. 'Version' in this figure refers to the edition number, 'Class' indicates whether the data is video, audio or normal data, and 'Flow Label' determines the flow number to be given to the flow.

'Payload Length' denotes the data length, and the 'NextHeader' tells which protocol in advance. 'Hop Limit' indicates the upper limit of the number of repeats to avoid endless hopping of packet in the network.

'Source Address' is the sender's address and 'Destination Address' is the end address. Finally, the host protocol data is provided.

The transmission node stores and transmits the multicast address assigned to the destination address among them. An intermediate router searches the route table prepared for relaying the packet in a correct direction. The route table is composed as shown in Fig. 21. 'Network' row in this figure lists up the networks that can be reached from this route on the Internet.

The network is expressed by the network prefix and mask (net mask). For example, if the prefix is 3FFE:501:1000::, and the mask is 40 (FFFF:FFFF:FF00::), it expresses a network in

a range of 3FFE:501:1000:0:0:0:0:0:0 to

3FFE:501:10FF:FFFF:FFFF:FFFF:FFFF:FFFF.

'Destination' row in Fig. 21 expresses the address neighbor of the route to which the router itself request distribution next for distributing the packet to this network,
5 and the interface for sending out the packet for this purpose. The route table search is to calculate the AND of the address to be searched and net mask in the first place, and find out an item of which result is equal to the network prefix, and the packet is distributed from the interface to the destination neighbor of the searched item (various high speed techniques are proposed for this route table search, and many patents are pending).

When relaying the unicast address, only one destination is always set, and the packet is transferred from the designated interface to the next designated router. Since one next router is always set in all routers from the sender to the receivers, as a result, the packets are distributed on one route.

On the other hand, in the multicast, only one destination is present, or two or more, depending on the router. In the case of one destination, the operation is same as in unicast, but in the case of two or more, the packet is copied and distributed to each one. Accordingly, only one packet at the time of transmission is branched off on the network, and is distributed to a plurality of receivers.

25 The existing multicast system involves the following

problems.

1) Address assignment

In the case of multicast, one multicast address must be assigned to every group to be distributed to. In the case of the broadcasting type multicast as substitute for the existing television and radio, a permanent address can be assigned, but in the case of communication with dynamically increasing channels such as multi-point television conference relay, it is required to issue multicast address dynamically on every occasion. It requires a uniform rule by the Internet, and in order to match commonly, a certain complicated structure is needed.

2) Router setting

After multicast address assignment, items of multicast addresses must be set in the route table of all routers existing in the route from the sender to the individual destination clients. In the key router of the Internet, this route table is an enormous number. Further, in the destination node group corresponding to the multicast address, members are changed frequently. On every occasion, the route must be calculated again, and the route table must be updated. This processing is also an enormous amount.

SUMMARY OF THE INVENTION

It is an object of this invention to provide a multicast

200-100000-00000

distribution system in which setting of addresses and setting of the route, in a router are not necessary.

(1) Fig. 1 is a block diagram showing the principle of the invention. In the illustrated system, routers 1 are connected with each other through an exclusive line 2. Nodes 4 are connected to each router 1. Legend 3 represents a packet transferred on the exclusive line.

In Fig. 1, a packet having a plurality of address lists and undistributed bit map is relayed to the packet header to be transferred according to the unicast route. A relay unit is provided in the router 1 or the node 4 for this purpose. The node 4 functions as transmitter or client as explained below.

According to the above configuration, without having multicast route information, multicast distribution is realized by the unicast route information only.

(2) Further, when distributing a same packet to the plurality of destinations, a list of destination addresses and undistributed bit map are stored in the packet header and transmitted, in which the node transmits by itself, and inspects the packet arriving at the own interface, and when the own node is included in the destination list, it is accepted.

According to the above configuration, without having multicast route information, multicast distribution is realized by the unicast route information only.

(3) Further, the present invention comprises a

transmitter for transmitting by storing a list of destination addresses and undistributed bit map in a packet header when distributing a same packet to the plurality of destinations, in which when the router relays the packet transmitted by the transmitter together with the branching regularity mark, the route table is searched for two nodes at both ends of the row not distributed according to the undistributed bit map, and if branching is not necessary, route search is omitted relating to other address, and the route table of all destinations is searched only when branching is necessary.

According to the above configuration, in the case of multicast packet distribution, the number of unicast addresses to be searched is smaller, and the packet distribution processing is smaller.

(4) Further, as for the address already distributed at the time of packet branching, the value is changed to a meaningless value as address, and then distributed.

As a result, one's own participation is kept secret to other clients participating in the multicast.

Or, when distributing the same packet to the plurality of destinations, by comprising a transmitter for transmitting by storing a list of destination addresses and undistributed bit map in a packet header, transmission of multicast packet is realized without requesting setting of multicast route information to the repeating router group.

Besides, by using a transmitter for transmitting together with a mark proving finish of distribution, by arranging the address appearance order in the list preliminarily so that the undistributed portions of the undistributed bit map may be
5 always continuous at an arbitrary path on the packet distribution route, the branching regularity router (mentioned later) can be efficiently distributed in multicast packet.

When relaying the packet transmitted by the transmitter together with the branching regularity mark, by comprising a router for searching the route table only for two nodes at both ends of the row not distributed in the undistributed bit map, omitting the route search about other address if branching is not necessary, and searching the route table of all destinations only when branching is necessary, at the time of multicast
10 15 packet distribution, the number of unicast addresses to be searched is smaller than in the router mentioned in connection to one aspect of this invention, and the packet distribution processing is smaller.

Also by including a transmitter for transmitting a branch
20 search packet having an address list, and creating a branching regularity list according to the obtained search result, the branching regularity list can be created automatically. As a result, the manager does not have to prepare a regular list beforehand.

25 As for the route search packet transmitted by the

transmitter, by comprising a router for searching the route
table, relaying the search packet by adding an undistributed
bit map to the end of the undistributed route list to the own
router when branching, and relaying the search packet directly
5 if not branching, the branching regularity list can be created
automatically. As a result, the manager does not have to
prepare a regular list beforehand.

By comprising a client for returning the undistributed
route list of search packet directly to the transmitter at the
destination node of relaying the search packet, the branching
regularity list can be created automatically. As a result, the
manager does not have to prepare a regular list beforehand.

As a result of route table search, if there is a route
having one or two destinations for relaying to the same router,
10 by comprising a router for omitting relaying of route search
packet until two routes become one or one route becomes two,
the number of packets for route search is smaller, and the
judging process at the transmitter is smaller. As a result,
the network flow rate is saved. Further, the repeating
15 processing and aliasing processing at the router and client can
be saved.

On the condition that the route search packet is omitted
by the router, by having a router for analyzing the branching
tree and arranging the address list according to the branching
20 regularity, the number of packets for route search is smaller,

and the judging process at the transmitter is smaller. As a result, the network flow rate is saved. Further, the repeating processing and aliasing processing at the router and client can be saved.

5 By having a transmitter capable of adding or deleting the destination address in the midst of a series of packet transmission, it is possible to join or leave the channel in the midst of multicast distribution.

By having a transmitter for searching the route about the added address and keeping the address in branching regularity, the efficiency of distribution by branching regularity maintains if joining or leaving the channel in the midst of multicast distribution.

By having a transmitter for transmitting a regularity ...
15 inspection packet for checking whether the address list is branching regularity or not periodically, and redoing regularity when receiving an irregularity notice, if the route is changed while repeating the multicast, it is detected in a certain time and handled adequately.

Also by having a router for searching the route table of address list of regularity inspection packet transmitted by the transmitter, returning the irregularity notice when the regularity is broken, and repeating the inspection packet otherwise, if the route is changed while repeating the multicast,
25 it is detected in a certain time and handled adequately.

In the configuration comprising the transmitter and router, if it is designed to store one of the nodes of the undistributed address list as former destination address of the packet, if there is a router not depending on the distribution 5 of the invention in the midst of the multicast distribution route, multicast repeating is possible.

By having a node which transmits by itself, inspects the packet arriving at the own interface, and accepts it when the own node is included in the destination list, without having multicast route information, multicast distribution is realized by the unicast route information only.

The invention solves the above problems by improving the conventional packet in which only one destination could be designated, and by adding a list of the plurality of destination 15 addresses and a bit map showing undistributed addresses in the list has an extension header of packet.

Other objects and features of this invention will become apparent from the following description with reference to the accompanying drawings.

20

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram showing the principle of the invention.

Fig. 2 is a diagram showing an example of composition of 25 packet.

Fig. 3 is a block diagram showing an embodiment of the invention.

Fig. 4 is a diagram showing transition of bit map.

Fig. 5 is an explanatory diagram of group branching.

5 Fig. 6 is a block diagram showing other embodiment of the invention.

Fig. 7 is a diagram showing routes of a, b.

Fig. 8 is a diagram showing routes of R1, R2.

10 Fig. 9 is a diagram showing an example of composition of packet.

Fig. 10 is a diagram showing an example of composition of packet.

Fig. 11 is a diagram showing an example of composition of ICMP.

15 Fig. 12 is a diagram showing an example of composition of packet.

Fig. 13 is a diagram showing an example of composition of branching tree.

Fig. 14 is a diagram showing creation of branching tree.

20 Fig. 15 is a diagram showing route tree in the midst of analysis.

Fig. 16 is a diagram showing group case dividing in each repeating destination interface.

25 Fig. 17 is an explanatory diagram of omission of relaying to h, c, e, b.

Fig. 18 is a diagram showing an example of composition of packet.

Fig. 19 is a diagram showing an example of composition of packet.

5 Fig. 20 is a structural diagram of header format of IPv6.

Fig. 21 is a diagram showing composition of search table.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, preferred embodiments of
10 the invention are described in detail below.

A server for transmitting data by multicast prepares a packet in a format shown in Fig. 2. The meaning of items different from those in the IP header are as follows.

(a) Destination Address (MSC address)

15 This is a special IP address showing this packet is an MSC (Multicast for Small Community). An intermediate router discriminates that this packet should be processed by the multicast system of the invention.

(b) MSC options

20 An option is designated in this item when assuring the subsequent processing variation.

(c) # of dest

The length of list of addresses included in this packet.

(d) Destination Address #n

25 An n-th destination address to which the multicast

address is distributed.

(e) destination bitmap

A bit map in which n-th destination to be reached henceforth by the packet in the address list is "1", and the destination not necessary to reach from this packet is "0".
5 Initially, all is "1".

When the number of destination addresses exceeds 32, following the 32nd address, a list of addresses is added successively across a bit map of 33rd to 65th addresses.

The router of the embodiment searches the route table for unicast as for the bit map being "1" of the addresses in the list. As a result of search, the packet is transferred to each one of the subsequent routers. At this time, if the next router is the same as a result of search, only one packet is enough, ...
10 and multicast is realized. The bit map showing the position of the destination address to which the repeating packet is further relayed is "1", and others are "0".
15

In this configuration, without having multicast route information, multicast distribution is possible by the unicast route information alone.
20

By this replaying, the packet reaches the final object node, and the list is inspected at this node, and if an address to the own is found, it is accepted, and a higher protocol stack (for example TCP) is processed. This embodiment includes a node
25 which transmits by itself, inspects the packet arriving at the

own interface, and accepts it when the own node is included in the destination list, and therefore, without having multicast route information, multicast distribution is realized by the unicast route information only.

5 Hereinafter, the branching regularity is a property of address list which is pretreated in order to simplify the route table search in the router. A branching regular address list refers to a sequential arrangement, in all routers in the multicast route, guaranteeing that the nodes of bit map being "1" are always continuous. For example, in the multicast for branching as shown in Fig. 3 (a block diagram showing an embodiment), suppose an address list of [a, b, c, d, e, f, g]. Same legends are provided to parts that are similar or same to those shown in Fig. 1.

10 15 The branching depth is assumed to be 2 in a, f, g, and 3 in b, c, d, and e. In the route from the sender to d, the router branch is passed three times. In this period, the bit map changes as shown in Fig. 4, and at any point of the route, the bit map 1 is continuous. This is established at all points, 20 and hence [a, b, c, d, e, f, g] is a branching regularity.

On the other hand, a list [a, g, f, b, c, d, e] is a first branch going toward "a", and the bit map is [1, 0, 0, 1, 1, 1, 1], and hence "1" is isolated. Therefore, this is not branching regularity.

25 When the branching regularity is guaranteed, only the

addresses at both ends of the bit map "1" portion are searched
in the route table, and if known to be relayed to the same router,
it is guaranteed to be distributed through the same router to
the destinations on the way, and therefore the next relaying
5 destinations can be determined without searching the route
table.

The embodiment comprises a transmitter for transmitting
by storing a list of destination addresses and undistributed
bit map in a packet header when distributing a same packet to
10 the plurality of destinations, and therefore transmission of
multicast packet is possible without requesting setting of
multicast route information to the repeating router group.

The transmitter capable of transmitting the packet in
such format, and the router for efficiently searching the route
15 table accordingly are described. In order to realize multicast
by employing this method, the transmitter sets the bit showing
that the address list is a branching regularity, in the MSC
option, and the router inspects the establishment of this bit,
and changes over the route table searching method.

20 The embodiment comprises a transmitter for transmitting
together with a mark proving finish of distribution, by
arranging the address appearance order in the list
preliminarily so that the undistributed portions of the
undistributed bit map may be always continuous at an arbitrary
25 path on the packet distribution route, and therefore the

branching regularity router can be efficiently distributed in multicast packet.

When relaying the packet transmitted by the transmitter together with the branching regularity mark, by comprising a 5 router for searching the route table only for two nodes at both ends of the row not distributed in the undistributed bit map, omitting the route search about other address if branching is not necessary, and searching the route table of all destinations only when branching is necessary, at the time of multicast 10 packet distribution, the number of unicast addresses to be searched is smaller than in the router mentioned in connection to one aspect of the present invention, and the packet distribution processing is smaller.

The mechanism for arranging the list in the branching 15 regularity is explained below. The transmitter attaches a list of addresses desired to have the branching regularity to a packet in which the higher protocol data is empty, and transmits to the MSC option together with a request mark for route search. The router operates as mentioned in connection to one aspect 20 of the present invention and performs multicast, and if branching the packet at the same time, additionally records how the packet is branched, as bit map, to the end of the higher protocol data portion.

When the packet reaches the destination client, the 25 history showing how the packet is branched is recorded from the

transmitter. It is directly returned to the transmitter. When the branching history is returned to the transmitter from all clients, the branching tree is analyzed, and arranged in the branching regularity.

5 According to this embodiment, the invention comprises a transmitter for transmitting a branch search packet having an address list, and creating a branching regularity list according to the obtained search result, the branching regularity list can be created automatically. As a result, the manager does not have to prepare a regular list beforehand.

10 As for the route search packet transmitted by the transmitter, by comprising a router for searching the route table, relaying the search packet by adding an undistributed bit map to the end of the undistributed route list to the own router when branching, and relaying the search packet directly if not branching, the branching regularity list can be created automatically. As a result, the manager does not have to prepare a regular list beforehand.

15 By comprising a client for returning the undistributed route list of search packet directly to the transmitter at the destination node of relaying the search packet, the branching regularity list can be created automatically. As a result, the manager does not have to prepare a regular list beforehand.

20 In the branching regularity search, as for the partial branching tree of which regularity is evident, a branching

regular list can be created without such inspection, and the search process is efficient.

The reason why search is not required depends on the mathematical induction about the number of addresses as explained below.

First, in the case of one or two addresses, evidently, it is branching regularity.

Suppose a branching regular list can be prepared as for the list of $n-1$ or less. Assume there are three or more (for example, n) addresses. A certain router receives a search packet of which n destinations are not distributed yet. By branching it, it can be divided into two groups at least, or n groups at the most. Each undistributed destination is one at least, or $n-1$ at the most. Herein, classifying by the number of groups containing one destination and two, it is as shown in Fig. 5.

In (A), there is no group having one or two destinations, the packet is branched only into groups with three or more. Being branched, anyway, each group has $n-1$ or less. In this case, adding and updating the history, by relaying the search packet to all groups, the partial list of branching destination can be set in branching regularity by the packet returning from the relaying destination. All groups are linked in this way.

In (B), the group as one destination, and there is no group having two destinations. The group with one destination is

evidently regular in branching, and is not relayed. Other groups are relayed. As a result, the history is returned to other groups. Although the history is not returned to the one group being omitted, but by collecting the histories of other
5 groups, it is known that there has been one branch, and it can be linked to the branching regularity of other groups.

In (C), similarly, there is either one group having one omitted destination or two groups having one omitted destination, and anyway by linking two missing destinations,
10 it is the branching regularity, which is connected to the branching regularity list of other groups.

According to this embodiment, as a result of route table search, if there is a route having one or two destinations for relaying to the same router, by comprising a router for omitting
15 relaying of route search packet until two routes become one or one route becomes two, the number of packets for route search is smaller, and the judging process at the transmitter is smaller. As a result, the network flow rate is saved. Further, the repeating processing and aliasing processing at the router
20 and client can be saved.

On the condition that the route search packet is omitted by the router, by having a router for analyzing the branching tree and arranging the address list according to the branching regularity, the number of packets for route search is smaller,
25 and the judging process at the transmitter is smaller. As a

result, the network flow rate is saved. Further, the repeating processing and aliasing processing at the router and client can be saved.

5 Besides, a transmitter capable of adding or deleting the address by changing the destination is realized. By using such transmitter capable of adding or deleting the destination address in the midst of a series of packet transmission, it is possible to join or leave the channel in the midst of multicast distribution.

10 This is a transmitter for starting again, from the beginning, normalization of branching at the time of the transmitter operation when making efficient by using the branching regularity. According to this embodiment, by using the transmitter for searching the route about the added address 15 and keeping the address in branching regularity, the efficiency of distribution by branching regularity maintains if joining or leaving the channel in the midst of multicast distribution.

When the router branches the packet, the content is cleared in the address of which bit map is "0", thereby concealing the intermediate route or end point or the destination of multicast by the host. According to the present invention, therefore, one's own participation can be kept secret to other clients participating in the multicast.

Moreover, inspecting the efficacy of regularity list once 25 built up, it is possible to cope with adaptively if the routing

environment is changed. When the transmitter sets the need of inspection in the option, each route of the route check the regularity. If not broken, it is returned to the source of transmission together with the history. Receiving it, the
5 transmitter newly normalizes the necessary partial list.

According to this embodiment, the invention has a transmitter for transmitting periodically a regularity inspection packet for checking whether the address list is branching regularity or not, and redoing regularity when
10 receiving an irregularity notice, if the route is changed while repeating the multicast, it is detected in a certain time and handled adequately.

Also by having a router for searching the route table of address list of regularity inspection packet transmitted by the transmitter, returning the irregularity notice when the regularity is broken, and repeating the inspection packet otherwise, if the route is changed while repeating the multicast,
15 it is detected in a certain time and handled adequately.

Or, if there is a router not corresponding to the MSC in
20 the midst of relaying, one undistributed address may be inserted, out of the MSC list, without inserting the address expressing the MSC, in the destination of IPv6 header so that the MSC may pass. The router can branch the non-MSC router whether to be relayed same as the ordinary unicast, or to interpret the MSC
25 on the way or at the end.

According to this embodiment, the invention comprises the transmitter and router, if it is designed to store one of the nodes of the undistributed address list as former destination address of the packet, if there is a router not depending on 5 the distribution of the invention in the midst of the multicast distribution route, multicast repeating is possible.

Fig. 6 is a block diagram showing other embodiment of the invention. In this embodiment, routers 1 are mutually connected through an exclusive line 6, and nodes 'a' to 'h' are 10 connected to each router. This embodiment is explained below by using this network. The network comprises eight hosts (a to h), four Ethernets (W to Z), one exclusive line 6, and two routers R1, R2.

The host IP addresses are 'a' to 'h', and the IP address 15 of each interface of the router is r1, r2 in the exclusive line and w, x, y, z at the Ethernet side. At this time, the host IP addresses a and b have the route table as shown in Fig. 7.

Similarly, 'c' and 'd' are route tables having W, w changed to X, x; e and f, changed to Y, y; and g and h, changed 20 to Z, z.

The route table of the routers R1, R2 is as shown in Fig. 8.

An explanation will be provided for the operation.

First, an example will be explained. The sender of 25 multicast packet is supposed to be a, and the receivers are b,

c, d, e, f, g, h. The process on a requests message transmission through the socket interface.

```
sendto (socket, msg, length, flag, dest, destlen)
```

Herein, dest is a destination address designating

5 structure (struct sock addr msc) newly defined for this purpose, and the destination list is stored as follows.

```
struct sock addr msc {
```

short smsc family; /*AF MSC*/

10 unsigned int smsc list desc; /*regular list
desc*/

char smsc nnodes; /*# of dest
nodes*/

```
struct inet addr v6 smsc addrs [MAX ADDR LIST]/*dest address  
list*
```

15 /

}

Herein, smsc family is a constant of an address family defined for msc.

smsc list desc is a list instructor used in the following

20 branching regulation.

smsc nnodes is the number of destination nodes included in this list.

smcs addrs is the sequence of IPv6 address.

Node a transmits a packet having the following attributes

25 to it.

Ipv6 src =a
Ipv6 dst =MSC
Ipv6 opt =MSC followed

5 MSC option =None

RoutType =MSC
of dest =7
bitmap =[1,1,1,1,1,1,1]
dest addr =[b,c,d,e,f,g,h]

10 The packet is specifically as shown in Fig. 9.
The sender a, using the own route table, searches [b, c, d, e, f, g, h], and obtains the following result.
b: Direct distribution through Ethernet w possessed by own self.

15 c, d, e, f, g, h: Relaying through w.
When sending a packet directly to b, the bitmap is changed as follows.

bitmap =[1,0,0,0,0,0,0]
dest addr =[b,c,d,e,f,g,h]

20 To w, the following packet is sent.

bitmap =[0,1,1,1,1,1,1]
dest addr =[b,c,d,e,f,g,h]

Reviewing this packet, receiver b first inspect that IPv6 header shows the MSC, and then observing opt head, "no option" 25 is confirmed, and the bit map of the routing header is inspected.

The address with "1" is the own address, and it is accepted, and transferred to the host protocol.

Checking this packet, the router R1 first inspects that IPv6 header expresses the MSC, and checks the opt header to make sure no option. Next, the bit map of routing header is inspected. Each address with "1" is checked if it is own address or not, and the route table is inspected, and the following results are obtained.

c, d, g, h: Distributed through r2.
e, f: Distributed directly via Ethernet Y.
As a result, following bitmap is transmitted to r2 for
c, d, g, h:
bitmap = [0,1,1,0,0,1,1]
dest addr = [b,c,d,e,f,g,h]
Following bitmap is transmitted to e:
bitmap = [0,0,0,1,0,0,0]
dest addr = [b,c,d,e,f,g,h]
Following bitmap is transmitted to f:
bitmap = [0,0,0,0,1,0,0]
dest addr = [b,c,d,e,f,g,h]

Example of relaying operation in branching regularity:

Next, as operation relating to branching regularity, an example will be explained below. Suppose transmission from node a to destinations [c, d, g, h]. In the case of the invention according to one aspect, the router R1 relays the following

packet.

bitmap = [1,1,1,1]

dest addr =[c,d,g,h]

Accordingly, although four destinations are bound for the
5 same relaying destination r2, it was necessary to search the
route tables of all of c, d, g, h. However, according to the
present invention, only c and h are required to be searched.

First, the transmitter mounting the address appearance
order assembles the packet same as the transmitter having the
10 destination address, and the constant MSC REGULARED is written
in the MSC option.

The router R1 mounting the processing for searching the
route table of all destinations only when branching is necessary,
after confirming that the IPv6 destination address is MSC,
15 confirms that MSC REGULARED is written in the MSC option. In
this case, the path is searched only at both ends c, h of the
bit map. Since both are by way of r2, nothing is searched about
d, g, and they are directly related to r2.

On the other hand, the router R2 mounting the processing
20 for searching the route table of all destinations only when
branching is necessary similarly searches c and h. This time,
it is known that c must be relayed to the interface of X, and
h to Z. Therefore, d and g are also searched, and d is relayed
to X, and h to Z.

25 Example of branching regularity inspection :

An example of compilation of the branching regularity list mentioned above will be explained here. The overall sequence is as follows.

5 Program: Request to set destination list in branching regularity.

Transmitter: Transmission of search packet including destination list.

Router: Recording of branching history while relaying search packet.

10 Client: Returning of reaching search packet to transmitter in every branching history.

Transmitter: Creation of branching regularity list from the branching history. Returning of identifier corresponding to branching regularity list.

15 Program: Packet transmission by adding identifier to destination.

The transmitter creates the search packet having the following information, and transmits according to the method of the invention.

20 Ipv6 src =a
Ipv6 dst =MSC
Ipv6 opt =MSC followed

MSC option =MSC branch inquiry

ROUTING INFORMATION

```
RoutingHdr NextHdr=ICMP
Route Type =MSC
# of dest =7
bitmap =[1,1,1,1,1,1,1]
5 dest addr =[b,c,d,e,f,g,h]

ICMP Type =MSC Branch Inquiry
ICMP Code =None
ICMP bitmap len=0
10 ICMP Identifier = ID identified by every MSC inquiry
      The packet at this time is as shown in Fig. 10.
      The router, while making relaying operation same as in
      claim 1, updates the ICMP header as follows if there are two
      or more interfaces to be relayed, that is, branching occurs.
15      1 is added to #of bitmap.
      A new bitmap is added to the end of ICMP header.
      When relaying to e and f by router R1, the ICMP header
      changes as shown in Fig. 11.
      Receiving it, e returns the copy after Routing header to
20 a as follows.

Ipv6 src =e
Ipv6 dst =a
Ipv6 opt =None
Ipv6 NextHdr =ICMP
25 ICMP Type =MSC Branch record
```

ICMP Code =None

Hereinafter, copying after Routing header.

At this time, the packet is specifically as shown in Fig.

12.

In this case, similar packets return from all the clients.

This transmitter collects packets identical in Identifier. In this example, the following history is returned.

[b,c,d,e,f,g,h]

b: [1,0,0,0,0,0,0]

10 c: [0,1,1,1,1,1,1]

[0,1,1,0,0,1,1]

[0,1,1,0,0,0,0]

[0,1,0,0,0,0,0]

d: [0,1,1,1,1,1,1]

[0,1,1,0,0,1,1]

[0,1,1,0,0,0,0]

[0,0,1,0,0,0,0]

e: [0,1,1,1,1,1,1]

[0,0,0,1,1,0,0]

20 f: [0,0,0,1,0,0,0]

f: [0,1,1,1,1,1,1]

[0,0,0,1,1,0,0]

[0,0,0,0,1,0,0]

g: [0,1,1,1,1,1,1]

25 [0,1,1,0,0,1,1]

[0,0,0,0,0,1,1]
 [0,0,0,0,0,1,0]
 h: [0,1,1,1,1,1,1]
 [0,1,1,0,0,1,1]
 5 [0,0,0,0,0,1,1]
 [0,0,0,0,0,0,1]

From now on, the branching regularity list is created in
 the following procedure.

```

struct regular list*make regular list() /* To make a regular
10 list,
 */
struct tree tree;
tree =make tree(); /* A branching tree is created. */
return make list(tree) /* Branching tree is made into a list.
15 */
*/
/* The branching tree is formed as shown in Fig. 13. o-mark
in this figure denotes the router. At the side of the router,
(e, f) or the like is attached, and it shows branching, and the
lower branching structure is a list of undecided nodes.

```

20 */
make tree() /* A branching tree is created. */
A router as the root of the branching tree is created.
Then, all nodes are put into the undecided node list.
/*o(b,c,d,e,f,g,h)*/
25 for(i=0; i<# of node;i++) /* About all nodes */

The history returned from node i is checked.

depth = branching depth of node i. /* If b, then 1, if h, then 4 /*

5 for (j = depth of root with node i.
 depth;j>0;j++)
 A router is created from the router with node i and
 extended.
 Node i is moved to newly made router.

10]
 Now, e hangs on the router with node i.
 for(j=# of bitmap ;j>0;j--)/* About all history */
 foreach (node changed by j-th and j-1-th history)
 if (node is undecided)
15 In router series up to node i, registered as undecided
 node in router with depth of j-1.]
 make regular list(tree){
 Searching tree by depth priority, nodes are listed up.
 }
20 Applying the above procedure into an example, a branching
 tree is created as shown in Fig. 14.
 Example of efficient branching regularity inspection :
 In branching inspection, returning of history from all
 clients is not necessary. For example, it is evident that
25 branching tree (h) in the midst of analysis of branching tree

shown in Fig. 15 can be put beside g without having history of h. Accordingly, by suppressing the search packet relay to h even in such a case, the inspection is made more efficient.

Another embodiment of the preset invention is explained

5 below.

First, the transmitter prepares a search packet, and designates effect branch inquiry as MSC option.

The router, when relaying this search packet, operates same as the router for relaying the search packet when not branching, but counts the groups in every relay destination interface, and divides as shown in Fig. 16.

In the case of (a), all are relayed.

In the case of (b), if delaying destination is not limited by omitting, relaying is omitted for one group at each destination.

In the case of (c), if delaying destination is not limited by omitting, relaying is omitted by selecting two groups for one destination, or one group for two destinations.

In the transmitter, the route analysis means changes as

20 follows.

```
make tree () /* A branching tree is made. */
```

A router as the root of branching tree is prepared.

Then, all nodes are put into the undecided node list.

```
/*o(b,c,d,e,f,g,h)*/
```

25 for(i=0; i<# of node; i++) /* About all nodes */

The history returned from node i is reviewed.

depth = branching depth of node i. /* If b, then 1, if h, then 4 */

for (j = depth of root with node i.

5 depth;j>0;j++)

The one router is created from the router with node i and extended.

Node i is moved to newly made router.

]

10 Now, e hangs on the router with node i.

for(j=# of bitmap;j>0;j--)/* About all history */

foreach (node changed by j-th and j-1-th history)

 if (node is undecided)

 In router series up to node i, registered as undecided

15 node in router with depth of j-1.

foreach (about all routers) /* If increased by previous process */

if (if undecided nodes are 2 or less)

20 Undecided node directly hangs on router.

]

 In [b, c, d, e, f, g, h], relaying to h, c, e, b can be omitted (see Fig. 17).

Destination change :

25 When the branching regularity is instructed by the

program and the regularity is decided, the identifier returns.
In the case of continuous flow of multicast packets, by using
the previous regular list commonly, regularity is not repeated.
However, if the client interrupts reception or a new client is
5 added, regularity must be decided from the beginning.

At this time, a transmitter for redoing regularity from
the beginning can be used. The regularity processing itself
is exactly the same as mentioned before.

Concealment of branching destination :

10 This is a repeating router for clearing all other than
branching destination nodes, and concealing the communication
destination to the own node from other clients. The operation
is nearly same as that of the router in claim 1, but when sending
the packet directly to b, the address is also cleared when
15 changing the bit map.

bitmap =[1,0,0,0,0,0]

dest addr =[b,0,0,0,0,0]

Following packet is transmitted to w.

bitmap =[0,1,1,1,1,1]

20 dest addr =[0,c,d,e,f,g,h]

Regularity inspection :

The regularity is inspected periodically in order to cope
with topological changes and troubles in the network. An
example of other transmitter is explained below.

25 Ipv6 src =a

DISCUSSION

```
Ipv          dst    =MSC
Ipv          opt    =MSC followed

MSC option =MSC check regular
5   RoutingHdr Nexthdr=ICMP
RoutType    =MSC
# of dest   =7
bitmap      =[1,1,1,1,1,1,1]
dest addr   =[b,c,d,e,f,g,h]

10  ICMP Type  =MSC check regular
ICMP Code   =None
ICMP bitmap len=0
ICMP Identifier = ID identified by every MSC inquiry
```

15 The packet is specifically as shown in Fig. 18.

On the other hand, in the router for relaying it, since
the MSC option is check regular, the nodes with bit map "1" are
searched in all routes. Herein, if all are in the same route,
or nodes at both ends are different relaying destination,
ordinary MSC relaying is performed. Although both ends are at
the same relaying destination, if there is a node of a different
relaying destination between them, the following packet is
returned to the transmission destination.

```
Ipv6        src    =router addr
25  Ipv6        dsc    =a
```

Ipv6 NextHdr =ICMP

ICMP Type =MSC not regular

ICMP Code =None

5 ICMP Identifier = ID identified by every MSC inquiry

Setting is repeated so that abnormal node may be "0" at the bit map having abnormality. The packet is specifically as shown in Fig. 19. The transmitter receives it, and determines the regularity again.

10 Non-MSD routing :

The first address of which bit map is "1" in the MSD routing header list is entered in "dest" of IPv6 packet. As a result, if there is an MSD non-conforming router on the way, relaying is continued toward one of the destination nodes. If there is an MSD conforming router or the destination node corresponds to the MSD, replaying starts newly toward other destination.

As explained herein, according to this embodiments, the following advantages are obtained.

1) Multicast communication in a small group can be realized without having any particular route management for multicast on the router on the Internet.

2) The sender can search the route topology, and arrange the destination information so as to lower the route search cost at the router.

25 3) The client can join or leave the multicast group without

any action of router. At this time, too, the benefit of 2) is the same.

4) If there is a router not realizing the function of the invention on the way of the route, these merits are enjoyed
5 similarly.

As explained herein, the invention brings about the following effects.

(1) According to the present invention, by having the means for replaying a packet having a list of the plurality of destination addresses and its undistributed bit map to the packet header to be transferred, according to the unicast route, multicast distribution is possible by the unicast route information alone without having multicast route information.

(2) According to the present invention, the node transmits by itself, inspects the packet arriving at its own interface, and accepts it when the own node is included in the destination list, and therefore multicast distribution is possible by the unicast route information alone without having multicast route information.

(3) According to the present invention, the route table is searched for the two nodes at both ends of the row not distributed in the undistributed bit map, and when branching is not necessary, route search for other address is omitted, and only when branching is necessary, the search table of all destinations is searched, and therefore at the time of multicast

packet distribution, the number of unicast addresses to be searched is smaller, and the packet distribution process can be saved.

(4) According to the present invention, when branching the 5 packet, the already distributed addresses are distributed after changing to values meaningless as address, so that the own participation can be kept secret to other clients engaged in the multicast.

Thus, according to the present invention , the multicast 10 distribution system easy in address setting and router setting can be presented.

Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative 15 constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.

WHAT IS CLAIMED IS:

1. A multicast distribution system for transmitting and receiving a packet(s), said multicast distribution system comprising:

- 5 at least one router connected with a cable;
 at least one node connected to each of said routers; and
 a relay unit provided either in said router or in said
node which relay unit relaying a packet having a list of a
plurality of destination addresses and its undistributed bit
10 map, to the packet header to be transferred according to the
unicast route.

2. The multicast distribution system of packet according to
claim 1, wherein in the case of distributing a same packet to
15 a plurality of destinations, when transmitting a list of
destination addresses and undistributed bit map by storing in
a packet header, said node inspects the packet transmitted by
itself and reaching the own interface, and accepts when the own
node is included in the destination list.

- 20 3. The multicast distribution system of packet according to
claim 1, further comprising a transmitter which transmits a list
of destination addresses and undistributed bit map by storing
in a packet header, in the case of distributing a same packet
25 to the plurality of destinations,

wherein said router, when the transmitter relays the packet transmitted together with a branching regularity mark, searches a route table about two nodes at both ends of a row not distributed in the undistributed bit mat, and omits route
5 search about other address when branching is not necessary, and searches the route table about all destinations only when branching is necessary.

4. The multicast distribution system of packet according to
10 claim 1, wherein when branching the packet, the address distributed already is changing into a value which is meaningless as an address and then the packet is distributed.

5. A node provided in a multicast distribution system for
15 transmitting and receiving a packet(s), said node comprising:
a list of destination addresses;
an undistributed bit map; and
a transmitter transmitting said list and said bit map by
storing them in a packet header.

20
6. A router provided in a multicast distribution system,
having a node which transmits a list of destination addresses
and an undistributed bit map, for transmitting and receiving
a packet(s), said router comprising:

25 receiving means for receiving a packet transmitted with

a branching regularity mark; and

searching means for searching a route table about two nodes at both ends of a row not distributed in the undistributed bit map, omitting route search about other address when branching is not necessary, and searching the route table about all destinations only when branching is necessary.

ABSTRACT OF THE DISCLOSURE

A multicast distribution system of packet comprises routers connected with each other by a cable. Nodes are connected to each of the routers. The routers or the nodes is 5 provided with a unit for relaying a packet having a list of the plurality of destination addresses and its undistributed bit map to the packet header to be transferred, according to the unicast route.

FIG.1

FIG.2

FIG.3

FIG.4

[a, b, c, d, e, f, g]
 ======
 [1, 1, 1, 1, 1, 0, 0]
 [0, 0, 0, 1, 1, 0, 0]
 [0, 0, 0, 0, 1, 0, 0]

FIG.5

TWO DESTINATIONS/ ONE DESTINATION	NONE	ONE GROUP	TWO GROUPS OR MORE
NONE	(A)	(B)	(C)
	(C)	(C)	(C)

FIG.6

FIG.7

net work	gateway	interface
loopback	—	loopback
W	—	ethernet
default	w	ethernet

FIG.8

[R1] net work	gateway	interface
loopback	—	loopback
W	—	ethernet (W)
X	r2	r1
Y	—	ethernet (Y)
Z	r2	r1
[R2] net work	gateway	interface
loopback	—	loopback
W	r1	r2
X	—	ethernet (X)
Y	r1	r2
Z	—	ethernet (Z)

FIG.9

FIG.10

FIG.11

Type=MSCinquiry	Code=None	checksum	
#of bitmap=1		Identifier = ID of MSC	↑ ICMP Hdr ↓
0 0 0 1 1 0 0			

↑↑
EQUIVALENT TO e, f

FIG.12

FIG.13

FIG.14

FIG.15

FIG.16

TWO DESTINATIONS/ ONE DESTINATION	NONE	ONE GROUP	TWO GROUPS OR MORE
NONE	(A)	(B)	(C)
ONE GROUP OR MORE	(C)	(C)	(C)

FIG.17

FIG.18

FIG.19

FIG.20

Version	Class	Flow Label	
Payload Length		NextHeader	Hop Limit
Source Address			
Destination Address			
HOST PROTOCOL DATA			

FIG.21

Network		Destination	
network prefix	net mask	neighbor	interface
3FFE:501:1000::	40	12345678	le0
3FFE:501:1100::	40	12345678	ppp0
3FFE:501:1FFF::	44	12345678	le0
FF02::1	128	12345678 87654321	le0 ppp1
FF02::2	128	12341111 12342222 12343333	le0 ppp1 ppp2
FF02::3	128	12341111	le0

↑ UNICAST SECTION
 ↓ MULTICAST SECTION

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。

As a below named Inventor, I hereby declare: that:

私の住所、私務所、国籍は下記の私の氏名の後に記載された通りです。.

My residence, post office address and citizenship are as stated next to my name.

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者（下記の氏名が一つの場合）もしくは最初かつ共同発明者であると（下記の名称が複数の場合）信じています。

I believe I am the original, first and sole Inventor (if only one name is listed below) or an original, first and Joint Inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

MULTICAST DISTRIBUTION SYSTEM

OF PACKETS

上記発明の明細書（下記の欄でx印がついていない場合は、本書に添付）は、

the specification of which is attached hereto unless the following box is checked:

一月一日に提出され、米国出願番号または特許協定条約国出願番号を_____とし。
(該当する場合) _____に訂正されました。

was filed on _____
as United States Application Number or
PCT International Application Number
_____ and was amended on
_____ (if applicable).

私は、特許請求範囲を含む上記訂正後の明細書を検討し、内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるとおり、特許実務の立場について重要な情報を示す義務があることを認めます。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Japanese Language Declaration (日本語宣誓書)

私は、米国法典第35編119条(a)-(d)項又は365条(b)項に基く下記の、米國以外の國の少なくとも一ヶ國を指定している特許協力条約365条(a)項に基く國際出願、又は外國での特許出願もしくは発明の出版についての外國優先権をここに主張するとともに、優先権を主張している、本出願の前に出版された特許または発明登録の外國出版物を以下に、枠内をマークすることで、示しています。

Prior Foreign Application(s)

外國での先行出願

11-163463

(Number)
(番号)

Japan

(Country)
(国名)(Number)
(番号)(Country)
(国名)

私たる第35編米国法典119条(e)項に基いて下記の米国特許出願規定に記載された権利をここに主張いたします。

(Application No.)
(出願番号)(Filing Date)
(出願日)

私は、下記の米国法典第35編120条に基いて下記の米国特許出願に記載された権利、又は米国を指定している特許協力条約365条(c)項に基く権利をここに主張します。また、本出願の請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特許出願に開示されていない限り、その先行米国出願提出日までに記載の日本本国内または特許協力条約国提出日までに記載された特許登録の有無に関する重要な情報について開示義務があることを認識しています。

(Application No.)
(出願番号)(Filing Date)
(出願日)(Application No.)
(出願番号)(Filing Date)
(出願日)

私は、私自身の知識に基いて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基づく表明が全て真実であると信じていること、さらに故意になされた偽偽の表明及びそれと同等の行為は米国法典第18編第1001条に基くこと、同企または構成、もしくはその行為により处罚されること、そしてそのような敷罪による处罚の実行を行なえば、出版したこと、又は既に許可された特許の有効性が失われるることを認識し、よってここに上記のことく宣言を致します。

I hereby claim foreign priority under Title 35, United States Code, Section 119 (a)-(d) or 366(b) of any foreign application(s) for patent or inventor's certificate, or 366(d) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed
優先権主張なし

10/June/1999

(Day/Month/Year Filed)

(出願年月日)

(Day/Month/Year Filed)

(出願年月日)

I hereby claim the benefit under Title 36, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.)
(出願番号)(Filing Date)
(出願日)

I hereby claim the benefit under Title 36, United States Code, Section 120 of any United States application(s), or 366(c) of any PCT International application designating the United States, listed below, and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 36, United States Code, Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Status: Patented, Pending, Abandoned)
(現況: 特許許可済、係属中、放棄済)(Status: Patented, Pending, Abandoned)
(現況: 特許許可済、係属中、放棄済)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that wilful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration (日本語宣言書)

委任状： 私は下記の発明者として、本出願に関する一切の手続を米特許商標局に対して遂行する弁理士または代理人として、下記の者を指名いたします。（弁理士、または代理人の氏名及び登録番号を記すこと）

James D. Halsey, Jr., 22,729; Harry John Staus, 22,010, David M. Picher, 25,908; John C. Garvey, 28,607; J. Randall Becker,
30,356; William F. Herbert, 31,024; Richard A. Golthofer, 31,106; Mark J. Henry, 36,162; Gene M. Garner II, 34,172; Michael D.
Stein, 37,120; Paul I. Kravetz, 35,230; Gerald P. Joyce, III, 37,644; Todd E. Martens, 35,269; Harlan B. Williams, Jr., 34,756;
George N. Sauer, 36,938; Michael C. Sokner, 41,451; Norman L. Ourada, 41,235; Kevin R. Spivak, P-43,144; and William M.
Scheiner, 35,348 (agent)

書類送付先

POWER OF ATTORNEY: As a named Inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

Send Correspondence to:

STAAS & HALSEY
700 Eleventh Street, N.W.
Suite 500
Washington, D.C. 20001

直接電話連絡先：（名前及び電話番号）

Direct Telephone Call to: (name and telephone number)

STAAS & HALSEY
(202) 434-1500

第一または第一発明者名

Full name of sole or first inventor
Yuji IMAI

発明者の署名

日付

Inventor's signature

Date

Yuji Imai June 5, 2000

住所

Residence

Kanagawa, Japan

国籍

Citizenship

Japanese

郵便番

Post Office Address

c/o FUJITSU LIMITED
1-1, Kamikodanaka 4-chome,

Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8588 Japan

第二共同発明者

Full name of second joint inventor, if any
Masanobu YUHARA

第二共同発明者名

日付

Second Inventor's signature

Date

Masanobu Yuhara June 5, 2000

住所

Residence

Kanagawa, Japan

国籍

Citizenship

Japanese

郵便番

Post Office Address

c/o FUJITSU LIMITED
1-1, Kamikodanaka 4-chome,

Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8588 Japan

（第三以降の共同発明者についても同様に記述し、署名すること）

(Supply similar information and signature for third and subsequent joint inventors.)