Insiemi

Andrea Canale

December 14, 2024

Contents

1	Definizione insieme	2
2	Simboli degli insiemi	2
	2.1 Inclusione	2
	2.2 Qualificatori universali	2
	2.2.1 Per ogni	2
	2.2.2 Esiste	2
	2.2.3 Negazione	2
3	Cardinalità di un insieme	2
4	Sottoinsiemi	3
	4.1 Insieme delle parti	3
	4.2 Intersezione e unione	3
	4.2.1 Intersezione \cap	3
	4.2.2 Unione \cup	3
5	Proprietà degli insiemi	3
	5.1 Associatività	3
	5.2 Idenpotente	3
	5.3 Distribuibilità	4
6	Differenza tra 2 insiemi	4
	6.1 Complementare	4
7	Leggi di De Morgan	4
8	Ricoprimento	4
9	Partizioni	4

 $\mathbf{5}$

11 Proprietà delle relazioni

1 Definizione insieme

Un insieme è una collezione ben definita di oggetti

Gli elementi in un insieme sono univoci

Può essere identificato come $A=\{1,2,3,\ldots\}$ Possiamo anche specificare una condizione: $A=\{x\in\mathbb{Q}|x^2-1=0\}$

2 Simboli degli insiemi

2.1 Inclusione

 \in , L'insieme include, può essere usato solo per gli elementi La sua negazione è \notin

2.2 Qualificatori universali

2.2.1 Per ogni

∀, indica che tutti gli elementi di un insieme rispettano una condizione

2.2.2 Esiste

∃, indica che esiste almeno un elemento nell'insieme che rispetta una condizione

2.2.3 Negazione

, indica il negato di una condizione

3 Cardinalità di un insieme

La cardinalità di un insieme, indicata come |A| = n, è il numero di elementi che un insieme contiene

Un insieme senza elementi è detto vuoto ed è indicato come \emptyset = che è diverso da A= \emptyset che contiene un elemento

4 Sottoinsiemi

I sottoinsiemi di un insieme A sono gli insiemi costituiti dagli elementi di A. Un insieme B è sottoinsieme di A se ogni suo elemento è presente anche in A. La relazione che lega A e B si può scrivere così: $B \subset A$ Esistono 3 tipologie di insiemi:

- Sottoinsiemi banali, Ø e l'insieme stesso
- Sottoinsiemi proprio, dove $B \subset A$ con $B \neq A$

4.1 Insieme delle parti

L'insieme delle parti è definito da tutti i sottoinsiemi di A.

$$P(A) = \{B | B \subset A\}$$

Ad esempio con $A=\{a,b\},$ l'insieme delle parti è

$$P(A) = \{\emptyset, a, b, A\}$$

Due insiemi sono uguali se $A \subseteq B$ e $B \subseteq A$ e P(A) = P(B)

4.2 Intersezione e unione

4.2.1 Intersezione \cap

Dati A e B, $A \cap B = \{x | x \in A, x \in B\}$

4.2.2 Unione ∪

Dati A e B, $A \cup B = \{x | x \in A, x \in B\}$

5 Proprietà degli insiemi

5.1 Associatività

$$(A \cap B) \cap C = A \cap (B \cap C)$$

5.2 Idenpotente

Un insieme intersecato o unito per un insieme vuoto, dà un insieme vuoto.

5.3 Distribuibilità

$$A \cap (B \cup C) = (A \cap B) \cup (A \cup C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

6 Differenza tra 2 insiemi

Siano A e B due insiemi finiti, la loro differenza è denotata come:

$$A \backslash B = \{ x \in A | x \notin B \}$$

6.1 Complementare

Nel caso in cui A sia sottoinsieme di B, l'insieme formato dalla loro differenza è detto complementare ed è definito come: $C_b(A) = B \setminus A$

7 Leggi di De Morgan

Dati 3 insiemi A, B e C, valgono le seguenti regole:

$$C_x(A \cap B) = C_x(A) \cup C_x(B)$$

$$C_x(A \cup B) = C_x(A) \cap C_x(B)$$

8 Ricoprimento

Dato un insieme A e una famiglia di sottoinsiemi $X = \{Ai\}_{i \in X}$, il suo ricoprimento è definito come la famiglia di sottoinsiemi che uniti danno l'insieme A di partenza. è definito attraverso questa notazione:

$$\bigcup_{i \in X} A_i = X$$

9 Partizioni

Dato un insieme A e una famiglia di sottoinsiemi $X = \{Ai\}_{i \in X}$ che sono ricoprimento di un insieme, essi sono una partizione di un insieme se soddisfano 3 requisiti:

- Sono ricoprimento di A
- $\forall i \in X, A_i \neq \emptyset$

• $\forall i, j \in X$ tali che $i \neq j$ i sottoinsiemi Ai e Aj sono disgiunti, $A_i \cap A_j = \emptyset$. Ossia i sottoinsiemi sono diversi tra loro

10 Prodotto cartesiano

Dati due insiemi A e B, il loro prodotto cartesiano e definito da un insieme che ha come elementi la coppia di un elemento dell'insieme A e un elemento dell'insieme B:

$$AXB = \{(a,b)|a \in A, b \in B\}$$

La cardinalità di questo insieme A X B e definita come: $|AXB| = |A| \cdot |B|$ Il prodotto cartesiano viene usato per esprimere relazioni tra insiemi.

11 Proprietà delle relazioni

- Dato un elemento di A X B, esso è veramente una relazione se $(a,b) \in \mathbb{R}$
- Una relazione viene detta riflessiva se $\forall a \in A$, a è in relazione con se stesso, quindi $a \in \mathbb{R}x\mathbb{R}$
- Relazione simmetrica
- Transitiva
- Equivalente, se è riflessiva, simmetrica e transitiva
- Dato un insieme A, esiste una relazione tra l'insieme delle relazioni di equivalenza e la sua partizione