Algoritmos y la Teoría de Invariantes

Ejercicios Propuestos, semanas 3 y 4

- 1. Hacer el tutorial básico de MACAULAY 2
- 2. Dada la siguiente definición

Definición 1. Un ideal $I \subset R$ es homogéneo si $\forall p \in R \ (p \in I \Leftrightarrow p_j \in I, \forall j)$ donde $p = \sum_{j \in \mathbb{Z}} p_j$ es la descomposición que viene de la graduación.

Probar que la definición anterior es equivalente a: Existe un conjunto de elementos homogéneo que genera a I

3. Encuentre una demostración combinatoria de que

$$HF(k[x_1, \cdots x_n], m) = \binom{m+n-1}{m}$$

- 4. Trabajando con la serie de Hilbert:
 - a) Demuestre que $HS(k[x_1, \cdots x_n]) = \frac{1}{(1-t)^n}$
 - b) Use [4a] para calcular $HF(k[x_1, \dots x_n], m)$
 - (*) (Pensar) Calcule $HS(k[x_1, \cdots x_n])$ con $deg(x_i) = a_i, a_i > 0$. ¿Qué comportamiento tiene $HF(k[x_1, \cdots x_n], m)$?
- 5. Generalizando el ejercicio en clase
 - a) Demuestre que una presentación para $k[s^m, s^{m-1}t, \cdots t^m]$ está dada por

$$k[x_0,\cdots,x_m]/I$$

con

$$I = (x_i x_j - x_r x_s : i + j = r + s, \quad 0 \le i, j, r, s \le m)$$

- b) Encuentre un orden con respecto al cual los generadores sean base de Gröbner.
- 6. Demuestre que si $M=(m_1,\cdots,m_k)$ con m_i monomio y n es otro monomio, entonces

$$(M:n) = \left(\frac{m_1}{\gcd(m_1,n)}, \cdots, \frac{m_k}{\gcd(m_k,n)}\right)$$

7. Sea I un ideal en $k[\vec{x}, \vec{y}]$. Suponga que $I = J_1 + J_2$ con J_1 que depende sólo de \vec{x} y J_2 que depende sólo de \vec{y} . Demostrar que

$$k[\vec{x}, \vec{y}]/I \simeq k[\vec{x}]/J_1 \otimes k[\vec{y}]/J_2$$

8. Sea $I \subseteq k[x_1, \cdots x_n, y_1, \cdots, y_n]$ el ideal definido por

$$I = (y_i - \sigma_i(x_1, \cdots, x_n) : 1 \le i \le n)$$

y q_1, \ldots, q_n polinomios en $k[x_1, \cdots x_n, y_1, \cdots, y_n]$ asi

$$q_m = \sum_{j=1}^m h_{m-j}(x_m, \dots, x_n)y_j + h_m(x_m, \dots, x_n)$$

con $h_i(x_m, ..., x_n)$ igual a la suma de todos los monomios de grado i en las variables $x_m, ..., x_n$. Entonces, pruebe que $q_i \in I$, demostrando que

$$\sum_{j=1}^{m} h_{m-j}(x_m, \dots, x_n) \sigma_j(x_1, \dots, x_n) + h_m(x_m, \dots, x_n) = 0.$$

- 9. a) Demostrar el criterio de Buchberger (pg. 86 [1])
 - b) Si $in_{<}(f)$ e $in_{<}(g)$ son primos relativos, entonces res(S(f,g),G)=0
- 10. a) Si $in_{<}(I)$ es radical, entonces I es radical
 - b) Propiedades de grevlex
 - 1) Si $k[x_1, \dots, x_n]$ tiene orden grevlex con $x_1 > x_2 > \dots > x_n$ e $in_{<}(f) \in (x_k, \dots, x_n)$ entonces $f \in (x_k, \dots, x_n)$
 - 2) Use [10b1] para encontrar una base de Gtöbner para $(I:(x_n))$ a partir de una base de Gröbner.
 - 3) Use [10*b*2] para encontrar cómo calcular $I:(g_1,\cdots g_n)$.
- 11. a) Como calcular $I \cap J$ a partir de sus generadores
 - b) Dada la siguiente cadena

$$I \subset (I:(g)) \subset (I:(g^2)) \subset \cdots$$

defina

$$\Big(I:(g^\infty)\Big)=\bigcup_{k\geq 0} \left(I:(g^k)\right)$$

¿Cómo calcular $I:(g^{\infty})$? Sugerencia: $\phi:R\to R[g^{-1}]$ y $\Big(I:(g^{\infty})\Big)=\phi^{-1}\Big((\phi(I))\Big)$

Referencias

[1] David Cox, John Little, and Donal O'shea. *Ideals, varieties, and algorithms*, volume 3. Springer, 1992.