Lecture 7

- Extension of traditional linear model
- Some subset of the regression parameters vary randomly across subjects (schools, clusters, "independent units")
- Mean response is modeled as
 - Fixed effects: shared characteristics of the entire population
 - Subject ("Cluster")-specific effects: unique to individuals
- The variation among clusters in regression parameters is how we induce correlation structure into the model
 - All observations from the same subject share the same subject-specific regression parameter(s) creating a link/correlation

- In addition, these randomly varying or subject-specific parameters
 - Allow us to distinguish between different sources of variation in the data
 - Variation in responses at baseline across individuals
 - Variation in rate of change of responses across individuals
 - Random variation in the measurement process within an individual over time

- Benefits of these models:
 - Partitioning variance into between vs. within subject variation or more generally assigning variation to different levels or combinations of levels
 - Flexible in terms of handling imbalance: in number of observations per person and variation in measurement times
 - Modeling non-constant variance
 - Are valid given common missing data models
 - Prediction:
 - Can predict/describe population mean trajectories
 - Can predict individual trajectories

$$Y_i = X_i \beta + Z_i b_i + \varepsilon_i$$

Assume b_i and ε_i are independent.

 X_i is the design matrix for the fixed population - level effects β is the vector of population - level association parameters Z_i is the design matrix for the subject - specific or random effects b_i is the vector of subject - specific parameters $b_i \sim N(0,G)$, G is some covariance matrix $\varepsilon_i \sim N(0,\sigma_s^2R)$, R is some correlation matrix

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + b_i + \varepsilon_{ij}$$

Two-stage random effects formulation

Mean Responses

Subject-specific mean:

$$E(Y_{ij}|b_i) = \beta_0 + \beta_1 t_{ij} + b_i$$

Population-level mean:

$$E(Y_{ij}) = E[E(Y_{ij}|b_i)] = E[\beta_0 + \beta_1 t_{ij} + b_i] = \beta_0 + \beta_1 t_{ij}$$

Variance Estimates

Variance

$$Var(Y_{ij}) = Var(\beta_0 + \beta_1 t_{ij} + b_i + \varepsilon_{ij})$$
$$= Var(b_i + \varepsilon_{ij}) = \sigma^2_b + \sigma^2$$

Covariance

$$Cov(Y_{ij}, Y_{ik}) = Cov(b_i + \varepsilon_{ij}, b_i + \varepsilon_{ik})$$
$$= Cov(b_i, b_i) = \sigma^2_b$$

Correlation

$$Corr(Y_{ij}, Y_{ik}) = \frac{\sigma^2_b}{\sigma^2_b + \sigma^2}$$

Variance Estimates

- Linear random intercept model
 - Assumes constant variance, independent within subject residuals
 - Exchangeable correlation structure

$$Corr(Y_{ij}, Y_{ik}) = \frac{\sigma^2_b}{\sigma^2_b + \sigma^2}$$

- Within subject correlation can also be interpreted as:
 - The percentage of the total variation in Y that is attributable to differences across subjects relative to natural variation within subject.

Growth-curve modeling

- "asian children weights.dta"
- Measurements of weight were recorded for children up to 4 occasions at roughly 6 weeks, and then at 8,12, and 27 months
- Goal: We want to investigate the growth trajectories of children's weights as they get older
- Both the shape of the trajectories and the degree of variability are of interest

Observed Data

Graphs by gender

. autocor wtres visit id

l	time1	time2	time3	time4	acf
time2	1.0000 0.3344 0.4348	1.0000	1.0000		1. .600677 2. .5878199 3. .2059693
time4	0.2060	0.6277	0.5938	1.0000	++

- A reasonable model would be age, age-squared, gender and the interactions of the age terms and gender.
- Just to keep our model a bit more simple to interpret, we will use a linear spline model with knot at 1 year

```
gen age_c = age - 1
gen age_sp = (age_c>0)*age_c
gen age_c_girl = age_c*girl
gen age_sp_girl = age_sp*girl
mixed weight age_c age_sp girl age_c_girl age_sp_girl || id: , var
```

```
Mixed-effects ML regression
                                     Number of obs = 189
Group variable: id
                                     Number of groups = 68
                                     Obs per group: min = 1
                                                 avg = 2.8
                                                 max = 4
                                     Wald chi2(5) = 2471.22
Log likelihood = -265.42862
                                     Prob > chi2 = 0.0000
    weight | Coef. Std. Err. z > |z| [95% Conf. Interval]
    age_c | 6.466099 .2687824 24.06 0.000 5.939295 6.992903
    age sp | -4.5202 .3805891 -11.88 0.000 -5.266141 -3.774259
    girl | -.9660133 .2890176 -3.34 0.001 -1.532477 -.3995493
 age c girl | -.7398512 .3889635 -1.90 0.057 -1.502206 .0225032
age_sp_girl | .8015376 .5516641 1.45 0.146 -.2797043 1.882779
    _cons | 10.27181 .2032267 50.54 0.000 9.873495 10.67013
```

weight	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age_c	6.466099	.2687824	24.06	0.000	5.939295	6.992903
age_sp	-4.5202	.3805891	-11.88	0.000	-5.266141	-3.774259
girl	9660133	.2890176	-3.34	0.001	-1.532477	3995493
age_c_girl	7398512	.3889635	-1.90	0.057	-1.502206	.0225032
age_sp_girl	.8015376	.5516641	1.45	0.146	2797043	1.882779
_cons	10.27181	.2032267	50.54	0.000	9.873495	10.67013

Interpretation:

```
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

id: Identity | var(_cons) | .7161207 .1608949 .4610435 1.112322

var(Residual) | .5727228 .0730425 .4460526 .7353648

LR test vs. linear regression: chibar2(01) = 56.33 Prob >= chibar2 = 0.0000
```

$$Corr(Y_{ij}, Y_{ik}) = \frac{0.72}{0.72 + 0.57} = 0.56$$

Predicted Mean Growth

Graphs by gender

Predicted Mean vs. Individual Growth

Summary of Lecture 7

- Considered an example of how to fit a marginal model where measurements are unequally spaced
 - This is a common data feature
- Random Effects models
 - In these models, the within subject correlation is generated by subject specific effects (intercept, slopes)
 - This translates to linear regression models where the intercept and slopes are defined separately for each subject

Summary of Lecture 7, Part I

Random intercept model

- Assume a single predictor: time, where time = 0 is baseline
- The random intercept or subject specific intercept is the expected (mean) value of the response for each subject at baseline
- The model assumes that the mean response will change over time in the same linear fashion for each subject
- If we assume the within subject residuals are independent, then this model is equivalent to a marginal exchangeable correlation model
- Allows us to estimate the proportion of variation in the response that is attributable to differences across subjects relative to variation over time within a subject.

Inner-London School Data

- At age 16, students take Graduate Certificate of Secondary Education (GCSE) exams
 - Scores derived from the GCSE are used for schools comparisons
 - However, schools should be compared based upon their "value added"; the difference in GCSE score between schools after controlling for achievements before entering the school
- One measure of prior achievement is the London Reading Test (LRT)
 - taken by these students at age 11
- Goal: to investigate the relationship between GCSE and LRT and how this relationship varies across schools. Also identify which schools are most effective, taking into account intake achievement

Inner-London School data:

- Outcome: score exam at age 16 (gcse)
- Covariate: reading test score at age 11 prior to enrollment in the school (Irt)
- Data are clustered within schools:
 - 4059 students clustered within 65 schools
 - Level 1: Student
 - Level 2: School

Inner-London School Data

Analysis Goals:

- Estimate the school-specific relationship between the exam score at age 16 and the score at age 11
- Investigate how this association varies across schools
- Rank the schools in terms of "performance"
- Is there evidence that gender modifies the association between score exam at age 16 and score at age 11?
 - Modification at level 1: two level 1 predictors interacting
- Does the type of school (mixed/boys/girls) explain part of the observed variation across schools?
 - A level 2 predictor interacting with a level 1 predictor

Exploratory Data Analysis

```
* Create some new variables
sort school student
* Generate the number of students within each school
by school: egen totalstudents = count(student)
* Generate a counter for the number of students within each school
by school: gen withinschoolcount = n
* EDA
* What is the distribution of number of students in each school
summ totalstudents if withinschoolcount==1
   Variable | Obs Mean Std. Dev. Min Max
totalstude~s | 65 62.44615 29.74844 2 198
```

65 schools in the dataset:

Number of students ranges from 2 to 198, average 62

Exploratory Data Analysis

 Relationship between gcse and lrt among two schools (1 and 2)

School-specific relationships among schools with at least 5 students

Association between school-specific slope and intercept

Linear regression model with random intercept and random slope

 Y_{ij} gese for student j in school i

 x_{ij} lrt for student j in school i

 \bar{x}_{i} average lrt for school i

$$Y_{ij} = \beta_{0i} + \beta_{1i}(x_{ij} - \bar{x}_{i.}) + \varepsilon_{ij}$$

$$\beta_{0i} \sim N(\beta_0, \tau_1^2)$$

$$\beta_{1i} \sim N(\beta_1, \tau_2^2)$$

$$cov(\beta_{0i}, \beta_{1i}) = \tau_{12}$$

$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

Alternative representations of the same model

$$Y_{ij} = b_{0i} + \beta_0 + (b_{1i} + \beta_1)(x_{ij} - \bar{x}_{i.}) + \varepsilon_{ij}$$

$$b_{0i} \sim N(0, \tau_1^2)$$

$$b_{1i} \sim N(0, \tau_2^2)$$

$$cov(b_{0i}, b_{1i}) = \tau_{12}, \varepsilon_{ij} \sim N(0, \sigma^2)$$

$$Y_{ij} = \beta_{0i} + \beta_{1i}(x_{ij} - \bar{x}_{i.}) + \varepsilon_{ij}$$

$$\beta_{0i} = \beta_{0} + b_{0i}, b_{0i} \sim N(0, \tau_{1}^{2})$$

$$\beta_{1i} = \beta_{1} + b_{1i}, b_{1i} \sim N(0, \tau_{2}^{2})$$

$$\text{cov}(\beta_{0i}, \beta_{1i}) = \tau_{12}, \varepsilon_{ij} \sim N(0, \sigma^{2})$$

Random coefficient models induce heteroskedastic error structure!

$$Y_{ij} = (b_{0i} + \beta_0) + (b_{1i} + \beta_1)(x_{ij} - \bar{x}_{i.}) + \varepsilon_{ij}$$

$$Y_{ij} = (\beta_0 + \beta_1 x_{ij}) + (b_{0i} + b_{1i}(x_{ij} - \bar{x}_{i.})) + \varepsilon_{ij}$$

$$\xi_{ij} = (b_{0i} + b_{1i}(x_{ij} - \bar{x}_{i.})) + \varepsilon_{ij}$$

$$\operatorname{var}(\xi_{ij}) = \tau_1^2 + 2\tau_{12}(x_{ij} - \bar{x}_{i.}) + \tau_2^2(x_{ij} - \bar{x}_{i.})^2 + \sigma^2$$

The total residual variance is said to be heteroskedastic because it depends on x

$$au_2^2 = au_{12} = 0$$
 Model with random intercept only $ext{var}(\xi_{ij}) = au_1^2 + \sigma^2$

Mixed-effects REML regression Group variable: school	Number of Number of	obs = groups =	4059 65	
		Obs per gr	<pre>coup: min = avg = max =</pre>	2 62.4 198
Log restricted-likelihood = -	14020.718	Wald chi2(Prob > chi	(1) =	768.50 0.0000
gcse Coef. S	td. Err. z	P> z	[95% Conf.	Interval]
lrt_groupc .5529766cons 69.83566 .	0199474 27.72 5415451 128.96			
Random-effects Parameters		 . Err.	[95% Conf.	 Interval]
sd(_cons) corr(lrt_gr~c,_cons)	+	97349 13837 	3.505889	5.081833 .7630512
sd(Residual) LR test vs. linear regression	7.432694.08 : chi2(3) =			

Interpretation of fixed effects

gcse	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lrt_groupc _cons	.5529766 69.83566	.0199474	27.72 128.96		.5138805 68.77426	.5920727 70.89707

Interpretation of random effects

Random-effects Parameters	 Estimate +	Std. Err.	[95% Conf.	Interval]
<pre>school: Unstructured</pre>	.1202955 .1202941 .5481782	.0190615 .3997349 .13837	.0881804 3.505889 .2241939	.1641069 5.081833 .7630512
sd(Residual)	7.432694	.0838333	7.270187	7.598834

Interpretation of random effects

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
school: Unstructured sd(lrt_gr~c) sd(_cons) corr(lrt_gr~c,_cons)	.1202955 4.220941 .5481782	.0190615 .3997349 .13837	.0881804 3.505889 .2241939	.1641069 5.081833 .7630512
sd(Residual)	7.432694	.0838333	7.270187	7.598834

Impact of shrinkage on intercepts and slopes

Impact of shrinkage on predicted association between gcse and lrt

Goal: Rank the schools in terms of performance

What is the appropriate measure to use from the analysis?

- random intercept?
- random slope?

What is the interpretation of the EB estimates of the intercepts?

Lecture 7 Summary

- Reviewed linear random coefficient models for multilevel data
 - within cluster factor not time
- Since we are working in linear case, coefficients have both a marginal and conditional interpretation
- Random slope models allow for us to understand heterogeneity across clusters in within cluster associations
- Cluster-level summaries allow for ranking of clusters