▲ Try again once you are ready

5. Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :

$$\begin{split} a &= np.random.randn(4,3) \# a.shape = (4,3) \\ b &= np.random.randn(1,3) \# b.shape = (1,3) \end{split}$$

Grade received 70%

Latest Submission Grade 70% To pass 80% or higher

Try again

1/1 point

١.	In logistic regression given the input ${f x}$, and parameters $w\in\mathbb{R}^{n_x},b\in\mathbb{R}$, how do we generate the output \hat{y} ?	1/1 point
	$\bigcirc \tanh(W\mathbf{x} + b)$	
	∠ ⁿ Expand ⊘ Correct	
	Right, in logistic regression we use a linear function $W\mathbf{x}+b$ followed by the sigmoid function σ , to get an output y , referred to as \hat{y} , such that $0<\hat{y}<1$.	
2.	Suppose that $\hat{y}=0.5$ and $y=0$. What is the value of the "Logistic Loss"? Choose the best option.	0 / 1 point
	⊚ 0.5○ +∞	
	\bigcirc 0.693 \bigcirc $\mathcal{L}(\hat{y},y) = -\left(y\log\hat{y} + (1-y)\log(1-\hat{y})\right)$	
	∠ ⁿ Expand ⊗ Incorrect	
	No. This is the value of the L_1 -loss.	
١.	Suppose img is a $(32,32,3)$ array, representing a $32x32$ image with 3 color channels red, green and blue. How do you reshape this into a column vector x ?	1/1 point
	$x = img.reshape((32^{\circ}32.3))$ ⓐ $x = img.reshape((32^{\circ}32.3.1))$	
	x = img.reshape((1.32*32.3)) $x = img.reshape((3.32*32))$	
	∠ ^N Expand	
	⊙ Correct	
١.	Consider the following random arrays a and b , and c :	1/1 point
	a = np.random.randn(3,3) # a.shape = (3,3)	
	b = np.random.randn(2,1) *b.shape = (2,1)	
	c=a+b What will be the shape of c ?	
	c.shape = (2, 1)	
	C.shape = (2, 3, 3)	
	 The computation cannot happen because it is not possible to broadcast more than one dimension 	
	∠ [™] Expand	
	Correct Yes. It is not possible to broadcast together a and b. In this case there is no way to generate copies of one of the arrays to match the size of the other.	

⊘ Corr

 $\label{eq:Yes.b.T} \textit{Yes. b.T gives a column vector with shape (1, 4). The result of c is equivalent to broadcasting a*b.T.}$

9. Consider the following arrays:

a=np.array([[1,1],[1,-1]])

 $b = np.array \big([[2],[3]] \big)$

c=a+b

Which of the following arrays is stored in c?

O The computation cannot happen because the sizes don't match. It's going to be an "Error"!

⊘ Correct

Yes. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

10. Consider the following computational graph.

What is the output of J?

$$\bigcirc \quad (a-b)*(a-c)$$

$$\bigcirc a^2-c^2$$

$$\bigcirc a^2-b^2$$

$$a^2 + b^2 - c^2$$

∠[∞] Expand

⊗ Incorrect

No.
$$J = r + s = u * v + w * x = (a + b) * (a - b) + (b + c) * (b - c) = a^2 - b^2 + b^2 - c^2 = a^2 - c^2$$

1/1 point

0 / 1 point