IB Analysis and Approaches HL2 Inverse Trigonometric Functions

Definition & Purpose

Triangle Example

Suppose we have a right triangle with an angle θ and sides of length a, b, and c as shown below.

In regular trigonometry:

$$\sin(\theta) = \frac{b}{c},$$

$$\cos(\theta) = \frac{a}{c},$$

$$\tan(\theta) = \frac{b}{a}.$$

Trigonometric Function	Domain	Range
$\arcsin(x)$		
$\arccos(x)$		
$\arctan(x)$		

Domain and Range Visualization

Example Problems

1. Find, where possible, the exact solutions of:

(a) $\arctan x = \frac{\pi}{6}$

(b) $\arccos(x-1) = \frac{\pi}{4}$

(c) $\arcsin x = \frac{\pi}{6}$

 $2. \ \mbox{Find}$ the invariant point for the inverse transformation from:

(a) $y = \sin x$ to $y = \arcsin x$

(b) $y = \tan x$ to $y = \arctan x$

- 4	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	

Key Takeaways

Inverse Trigonometric Functions

- $\arcsin(x)$: Inverse of $\sin(x)$. Domain: $-1 \le x \le 1$, Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
- $\arccos(x)$: Inverse of $\cos(x)$. Domain: $-1 \le x \le 1$, Range: $0 \le y \le \pi$.
- $\arctan(x)$: Inverse of $\tan(x)$. Domain: $-\infty < x < \infty$, Range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$.