

Universidad Nacional Autónoma de México Facultad de Ciencias **Fundamentos de Bases de Datos**

TERCERA FORMA NORMAL

Gerardo Avilés Rosas

□ gar@ciencias.unam.mx

RECUPERACIÓN DE INFORMACIÓN

Interesa que la descomposición preserve la información contenida en la relación original.

Consideremos R(A, B, C) con $B \rightarrow C$ que suponemos es una violación a la BCNF,

- 1. Al descomponer R obtenemos S(B,C) y T=(A,B).
- 2. Sea t = (a, b, c) una tupla de R.
- 3. Al proyectarla en la descomposición se obtienen (a, b) para T y (b, c) para S.
- 4. Al hacer un join sobre el atributo común, en este caso B, obtenemos nuevamente t.

Sin embargo, regresar a las *tupla*s iniciales no es suficiente para asegurar que la relación original está realmente representada por la descomposición.

PROBLEMAS CON LA RECUPERACIÓN DE INFORMACIÓN Datos

Si se tiene la relación R con la siguiente extensión:

$$R = egin{array}{c|ccc} A & B & C \\ \hline a & b & c \\ \hline d & b & e \\ \hline \end{array}$$

Vamos a suponer que se descompone en las relaciones S y T, con su respectiva proyección:

$$S = \begin{bmatrix} A & B \\ a & b \\ d & b \end{bmatrix}$$

$$S \bowtie T = \begin{bmatrix} A & B & C \\ a & b & c \\ a & b & e \\ d & b & c \\ d & b & c \\ d & b & e \end{bmatrix} \neq R$$

¿Son correctas las proyecciones?

La justificación de la no pérdida ni ganancia de información es debido a que se están considerando a las DFs.

PROBLEMAS CON LA BCNF

 En ocasiones se puede encontrar que un esquema de relación y sus DF no están en BCNF pero no se desea descomponer más, por ejemplo:

Reservaciones (pelicula, cine, ciudad)

$$DF = \{cine \rightarrow ciudad, pelicula; ciudad \rightarrow cine\}$$

Ningún atributo por sí solo es una llave; por otro lado, las parejas {cine, pelicula} y {pelicula, ciudad} sí son llaves, de manera que la DF cine → ciudad, viola la BCNF. Si normalizamos esta relación obtenemos:

s =	cine	ciudad
	Real cinema	CDMX
	Linterna mágica	CDMX

T =	cine	película
	Real cinema	La vida es bella
	Linterna mágica	La vida es bella

...PROBLEMAS CON LA BCNF

 Ambas relaciones son permisibles de acuerdo a las DF de cada relación, pero al unirlas obtenemos:

- \square Esta relación viola la **DF** pelicula, ciudad \rightarrow cine.
- ☐ La solución al problema anterior es relajar la condición para la BCNF.

TERCERA FORMA NORMAL

- Una relación R está en Tercera Forma Normal (3NF) con respecto a F, si para toda dependencia no trivial $A_1, A_2, ..., A_n \rightarrow B$, se tiene que:
 - 1. El lado izquierdo $(A_1, A_2, ..., A_n)$ es una superllave o bien,
 - 2. El lado derecho, B, es miembro de alguna llave candidata de R.
 - \Box El **segundo punto** es el que permite una **dependencia** como *cine* \ragged *ciudad* del ejemplo anterior, porque *ciudad* es miembro de **una llave**.
- Siempre es posible descomponer un esquema de relación sin pérdida de información en esquemas que están en 3NF y permiten que se verifiquen todas las DFs.
- Si estas relaciones no están en BCNF, se tendrá un poco de redundancia en el esquema.

ATRIBUTOS SUPERFLUOS

- A es un atributo superfluo si se puede eliminar de la DF sin que se altere la cerradura de F.
 - \square Sea $\alpha \rightarrow \beta$ una **DF** en **F** y **A** un atributo, **A** es **superfluo** si:
 - 1. Si \mathbf{A} está en α (superfluo por la izquierda).
 - 2. Si \mathbf{A} está en β (superfluo por la derecha)

Ejemplo 1. Determinar si existen atributos superfluos en $F = \{AB \rightarrow C, E \rightarrow CD, B \rightarrow D\}$

Ejemplo 1. Continuación

$$\begin{array}{l} \{E\}+=\{ED\}^2\text{ i.Aparece C}? \Rightarrow |\text{NO APARECE}| \text{ i. C no es superfluo} \\ -\text{ cD es superfluo}? &\text{SI LO FUCES} &\text{E>C} \Rightarrow F^1=\{AB\to C, E\to C, B\to D\} \\ \{E\}+=\{EC\}^2\text{ i.Aparece D}? \Rightarrow |\text{NO APARECE}| \text{ i. D no es superfluo} \\ F_{\text{INACHENTE}}, F_{\text{HIN}}=\{AB\to C, E\to CD, B\to D\} &\text{Constituto de DF minimo} \\ \end{array}$$

Ejemplo 2. Determinar si existen atributos superfluos en $F = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$.

SUPERFLUOS POR LA IZQUIEZDA
$$\Rightarrow$$
 AC \Rightarrow D

- CA ES SUPERFLUO? \Rightarrow LO FUERA \Rightarrow CAPARECE D?

- CC ES SUPERFLUO? \Rightarrow LO FUERA \Rightarrow D \Rightarrow {CAPARECE D?

- CC ES SUPERFLUO? \Rightarrow LO FUERA \Rightarrow D \Rightarrow {A}+= {ABCD}+ i Si APARECE D?

- CC ES SUPERFLUO?

- CC ES SUPERFLUO

- C

Superfluos por la derecha
$$\Rightarrow A \Rightarrow BD$$
 $-CB \in Superfluo ? SI LO FUERA A \Rightarrow D \Rightarrow F' = \{A \Rightarrow D, B \Rightarrow C\}$
 $\{A\} + = \{AD\} C APARECE B ? \Rightarrow i No APARECE! B No ES SUPERFLUO

 $-CD \in SSUPERFLUO? SI LO FUERA A \Rightarrow B \Rightarrow F' = \{A \Rightarrow B, B \Rightarrow C\}$
 $\{A\} + = \{ABC\} C APARECE D? \Rightarrow i No APARECE! D No ES SUPERFLUO

FINALMENTE, FHIN = $\{A \Rightarrow BD, BC\}$$$

Ejemplo 3. Determinar si existen atributos superfluos en $F = \{A \rightarrow BC, B \rightarrow AC, C \rightarrow AB\}$.

COMO SE OBSEZVA, NO EXISTE NINGUNA DEPENDENCIA FUNCIONAL EN F QUE TENCA MÁS DE UN ATRIBUTO DEL LADO 12QUIEZDO , ASÍ QUE NO PODEMOS DERIFICAR QUE HAYA SUPERFLUOS POR LA 12QUIEZDA => VERIFICAREMOS SUPERFLUOS POR LA DEZECHA

SUPERFLUOS POR LA DEZECHA

- TOHAMOS A -> BC

EQUIVALENCIA DE CONJUNTOS DE DF

• Dos conjuntos de dependencias funcionales, F_1 y F_2 son equivalentes si:

$$F_1 \vDash F_2 y F_2 \vDash F_1$$

- Por ejemplo, sea $F = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$
 - \square Si $F_1 = \{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$ es equivalente a F, ya que:

$$\{A\} + = \{ABCD\}$$
 $\{A\} + = \{ABCD\}$
 $\{B\} + = \{BC\}$ $\{BC\} + = \{ABCD\}$

 \square Si $F_2 = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$ no es equivalente a F, ya que:

$$\{C\}+=\{CD\}\notin F+$$

CONJUNTO MÍNIMO

- Un conjunto F de dependencia funcionales es mínimo si
 - 1. No tiene atributos superfluos
 - 2. Cada **lado izquierdo** de las **DF** de **F** es único, es decir, no existen $\alpha_1 \rightarrow \beta_1$, $\alpha_2 \rightarrow \beta_2$ tales que $\alpha_1 = \alpha_2$.
- El **algoritmo** para calcular el conjunto F' equivalente a F que sea mínimo es:

Repetir

- 1. Aplicar la regla de la unión a relaciones tales que $\alpha_1 \rightarrow \beta_1$, $\alpha_1 \rightarrow \beta_2$, para obtener $\alpha_1 \rightarrow \beta_1\beta_2$ y sustituir con esta última las dependencias funcionales con igual lado izquierdo.
- 2. Eliminar los atributos superfluos de las dependencias funcionales.

Hasta que ya no haya ningún cambio.

ALGORITMO DE SÍNTESIS DE 3NF

- Su objetivo es descomponer R con dependencias funcionales F, en relaciones que satisfagan la 3NF.
 - 1. Hacer F mínimo
 - 2. Para toda DF en F mínimo:
 - a. Crear una relación que contenga sólo los atributos de las DF.
 - b. Eliminar un esquema si es subconjunto de otro.
 - 3. Si no existen esquemas que contengan llaves candidatas, crear una relación con esos atributos.

Ejemplo 4. Sea R(A,B,C,D) y $F=\{A\rightarrow B,B\rightarrow C,AC\rightarrow D\}$. Normalizar con 3NF.

SOLUCIÓN. COMENZAMOS DETERMINANDO SI EXISTEN VIDIACIONES A 3NF, SI REIORDAMOS:

Tercera Forma Normal

Una relación R está en **tercera forma normal** (3NF) con respecto a F, si para toda **dependencia funcional no trivial** $A_1, A_2, A_3, ..., A_n \rightarrow B$, se tiene que:

- 1. El lado izquierdo $\{A_1, A_2, A_3, ..., A_n\}$ es una **superllave** o bien,
- 2. El lado derecho B, es miembro de alguna llave candidata de R.

DETERMINANDS ENTONCES ALGUMA LLAVE PARA R

LA RELACIÓN R ES SUSCEPTIBLE DE NORMALIZARSE. VAMOS A REVISAR ATRIBUTOS SUPERPLUOS

Ejemplo 4. Continuación...

b) Superfluos por la derecha

Tohanos A > BD

C B ES SUPERFLUO? > 1 LO FUERA A > D => F = { A > D , B > C }

{At += {AD} ino aparece } ... B no es superfluo

C D ES SUPERFLUO? > 1 LO FUERA A > B => F = {A > B , B > C }

{At += {ABC} ino aparece } ... D no es superfluo

Entonces, Fhin = {A > BD, BC}

Ejemplo 4. Continuación...

Algoritmo para obtener 3NF

- 1. Hacer F mínimo
- 2. Para toda dependencia funcional en F mínimo:
 - a. Crear una relación que contenga sólo los atributos de cada dependencia funcional.
 - b. Eliminar un esquema si es subconjunto de otro.

Si no existen esquemas que contengan llaves candidatas, crear una relación con esos atributos.

DADO QUE YA TENEMOS FMIN, PROCEDEMOS AL PASO 2 DEL ALGORITMO DE S'INTESIS:

Ejemplo 5. Sea R(A, B, C, D, E) y $F = \{AB \rightarrow C, DE \rightarrow C, B \rightarrow D\}$. Normaliza con 3NF.

SOLUCIÓN. VAMOS A DETERMINAR SI HAY VIOLACIONES A 3NF:

REUISAMOS ATRIBUTOS SUPERFLUOS:

a) SUPERFLUOS POR LA IZQUIERDA:

Ejemplo 5. Continuación...

b) SUPERFLUOS POR LA DERECHA

NO EXISTEN DF QUE TENGAN MÁS DE UN ATRIBUTO DEL LADO DERECHO, POR LO QUE NO HAY SUPERFLUOS POR LA DERECHA.

Ejemplo 6. Sea R(A,B,C,D,E,F) y $F=\{B\rightarrow D,B\rightarrow E,D\rightarrow F,AB\rightarrow C\}$. Normaliza con 3NF.

SOLUCIÓN. VAMOS A COMENZAR DETERMINANDO VIOLACIONES A LA 3NF.

COMO SE OBSERVA, PODEMOS APLICAR REGIA DE LA UNIÓN EN B-D , B-E

RENISAMO (ATRIBUTOS SUPERFLUOS:

Ejemplo 6. Continuación...

```
a) Superfluos for la izouierda:

Tohamos AB → C (Nota: No perder de vista que AB es una llave fara R)

CA ES SUPERFLUO?

SI LO FUERA B → C → (B) += (BD) (No AMARECE!

AND ES SUPERFLUO

CAPAZECE C?

CAPAZECE C?

AND ES SUPERFLUO

APAZECE C?

B NO ES SUPERFLUO

B NO ES SUPERFLUO
```

ESTE RESULTADO NO RESULTA SORPRENDENTE, YA QUE ALSER AB UNA LLAUE MINIMA, SÍ SE GUSIERA QUITAR ALGUNO DE LOS ATRIBUTOS, SE DESTRUIRÍA LA PROPIEDAD DE UNICIDAD.

Ejemplo 7. Sea R(A,B,C,D,E) y $F=\{AB\rightarrow C,C\rightarrow D,D\rightarrow B,D\rightarrow E\}$. Normaliza con 3NF.

SOLUCIÓN. VAMOS A COMENZAR VERIFICANO VIDIACIONES A 3NF.

COHO SE OBSERVA, PODEMOS APLICAR REGIA DE LA UNIÓN EN D-BYD-E

{AB}+ = {ABDE} => DEAGNI, PODENOS NOTAR QUE UNA LLAUE PARA RES ÀB

PEUISAMOS ATRIBUTOS SUPERFLUOS

Ejemplo 7. Continuación...

a) Superfluos por la izamezoa:

LA ÚNICA DF QUE CONTIENE MÁS DE DOS ATRIBUTOS DEL MOD IZQUIERDO ES AB >C, DADO QUE

AB ES UNA LLAVE PARA R, SABEMOS QUE NO PODEMOS RETIRAL NINGUNO DE LOS ATRIBUTOS

DE LA LIAUE, AN DESTRUIR LA PROPIEDAD DE UNICIDAD - NINCÚN ATRIBUTO ES SUPERFLUO

b) Superfluos por la Derecha:

¡GRACIAS!

No estés muy orgulloso de haber comprendido estas notas. La habilidad para manejar la Normalización por 3NF es insignificante comparado con el poder de la Fuerza.

