Reinforcement Learning

und

Vier Gewinnt

von Robin Christopher Ladiges

HAW-Hamburg Projekt Lernende Agenten 16.01.2012

Gliederung

- Reinforcement Learning
 - Maschinelles Lernen
 - Reinforcement Learning
 - Bewertungsfunktionen
 - Temporal-difference Learning
- Vier Gewinnt

Maschinelles Lernen

- Überwachtes Lernen (Supervised Learning)
 - Eingabe- und Zielwerte bekannt
 - Trainingsdaten → Modell
 - Testdaten zur Validierung des Modells
- Unüberwachtes Lernen (Unsupervised Learning)
 - Ähnlichkeit von Eingabedaten → Modell
- Verstärkendes Lernen (Reinforcement Learning)
 - Ausprobieren → eigene Erfahrungen sammeln

Reinforcement Learning

- Agent lernt selbstständig durch ausprobieren
- Agent nimmt Umwelt mittels Sensoren wahr
- Probiert Aktionen aus
- Erhält Belohnung oder Bestrafung

Bewertungsfunktionen

Zustand-Wert-Funktion (V-Werte)

V(s) : Situation → Bewertung

Wie gut ist diese Situation?

Aktion-Wert-Funktion (Q-Werte)

Q(s,a): Situation x Aktion → Bewertung

Wie gut ist diese Aktion in dieser Situation?

Temporal-difference Learning

- Nicht nur die letzte Aktion beeinflusst Ergebnis
- Umso länger die Aktion zurückliegt, desto weniger Einfluss hatte sie auf das Ergebnis

Gliederung

- Reinforcement Learning
- Vier Gewinnt
 - Kommunikation Umwelt & Agent
 - Situations-ID
 - Einsparungen für Wertetabelle
 - Größe der Wertetabelle
 - Live-Demonstration

Vier Gewinnt

RL-Framework von Patrick Boekhoven ¹

Projektübernahme SS2011 von Daniel Wehring

Kommunikation Umwelt & Agenten

Situations-ID

Pro Feld 3 Zustände 7 Reihen, 6 Zeilen

naiv

$$3^{6.7} = 1,094 \cdot 10^{20} \rightarrow 67 Bit$$

optimal²

$$4,531 \cdot 10^{12} \rightarrow 43 \ Bit$$

Situations-ID

Problem:

Long nur 64 Bit

Farbe 1 Bit / Feld

 \rightarrow 42 Bit

Anzahl Steine / Reihe

 \rightarrow 7 x 3 Bit = 21 Bit

42 + 21 = 63 Bit

Situations-ID

= 7.686.219.650.993.325.465

Einsparung für Wertetabelle

V-Werte (Situation → Bewertung)

Q-Werte (Situation x Aktion → Bewertung)

Situation x Aktion = Folgesituation

Folgesituation → Bewertung

Einsparung in Wertetabelle von Faktor 7

RL-Framework arbeitet mit Q-Werten

Möglichkeit equals & hashCode von Situations-Aktionen zu überschreiben

Größe der Wertetabelle

Datenbank

- 64 Bit für Situation (Long)
- 32 Bit für Bewertung (Float)
- 4.531.985.219.092 legale Spiel-Situationen²
- \rightarrow 435.070.581.032.832 Bit = ~54 TB

Näherungsverfahren nötig (Neuronales Netz)

Live-Demonstration