Universidade Federal de Pelotas Cursos de Ciência e Engenharia de Computação Disciplina: Sistemas Discretos

Lista de Exercícios – Técnicas de Demonstração (Parte 1)

- 1) Dê contraexemplos para as proposições a seguir:
 - a. Toda figura geométrica com quatro ângulos retos é um quadrado.
 - b. Se um número real não for positivo, terá que ser negativo.
 - Todas as pessoas com cabelo ruivo têm olhos verdes ou são altas
 Uma pessoa ruiva com olhos castanhos e baixa
 - d. Se *n* for um número par, então $n^2 + 1$ será um número primo
 - e. Se $n^2 > 0$, então n > 0.

n = -1 (qualquer inteiro negativo)

2) Encontre o erro na seguinte "demonstração" de que a soma de dois números pares é um múltiplo de 4.

x e y são pares $\rightarrow x+y$ é múltiplo de 4

Supondo que

$$x = 2m$$
 $y = 2m$ $m \in Z$

Então

$$x + y = 2m + 2m = 4m$$

Logo

x+y é um múltiplo de 4

- 3) Prove as proposições a seguir:
 - a. Se n = 25, 100 ou 169, então n é um quadrado perfeito e é uma soma de dois quadrados perfeitos.
 - b. Se n for um inteiro par tal que $4 \le n \le 12$, então n será uma soma de dois números primos.

 $n \in \{4, 6, 8, 10, 12\} \rightarrow n$ é a soma de dois primos

$$n = 4$$
 = 2 + 2
 $n = 6$ = 3 + 3
 $n = 8$ = 3 + 5
 $n = 10$ = 3 + 7
 $n = 12$ = 5 + 7

- c. A soma de um inteiro com o seu quadrado e par.
- d. Para n um natural par e n > 2, $2^n 1$ não é primo.

NOTA: Um natural x não é primo se: i) for 0 ou 1 ou ii) ou se for maior que 1, ele têm **fatoração não trivial**; ou seja, podem ser fatorados como $x = a \times b$, onde tanto a como b são distintos de $x \in 1$.

Então

$$\begin{array}{ll} 2^n-1&=2^{2k}-1\\ &=(2^k+1)(2^k-1)&\text{como }k>1\text{, }(2^k-1)>1\text{, essa \'e uma fatora\'e\~ao}\\ &\text{n\~ao trivial }((2^k+1)\ e\ (2^k-1)\ s\~ao\ differentes\ de\\ &1\ e\ 2^n-1) \end{array}$$

Logo
$$2^n - 1$$
 não é primo

- e. Para todo inteiro n, o número $3(n^2 + 2n + 3) 2n^2$ é um quadrado perfeito (faça uma demonstração direta).
- f. Se n, m e p forem inteiros tais que $n \mid m$ e $m \mid p$, então $n \mid p$.

NOTA: dados dois inteiros n e m, n **divide** m, denotado por $n \mid m$, significa que m é divisível por n.

Supondo que

$$m=nk \hspace{1cm} p=\ mj \hspace{1cm} k,j\in Z$$

Então

$$p = mj = n(kj) kj \in Z$$

Logo

 $n \mid p$