Question number	Answer		Mark
13(a)	• Use of $E_{el} = \frac{1}{2}F\Delta x$ • $W = 0.12$ (J) Example of calculation $W = 0.5 \times 14 \text{ N} \times 0.017 \text{ m}$	(1) (1)	
	W = 0.119 J		(2)
13 (b)	 Use of E_{grav} = mgh Use of elastic potential energy = ½ mv² Or Use of grav potential energy = ½ mv² v_{head} = 6.1 (m s⁻¹) Or v_{toy} = 5.4 (m s⁻¹) (ecf from (a)) Use of p = mv P_{head} = 0.039 (kg m s⁻¹) and p_{toy} = 0.039 (kg m s⁻¹) and conclusion that momentum is conserved Or P_{head} = 0.039 (kg m s⁻¹) and p_{toy} = (0.039 kg m s⁻¹) and conclusion that momentum before = momentum after 	(1) (1) (1) (1)	
	Example of calculation For head, max ke = E_{el} of spring $\frac{1}{2} \times 0.0064 \text{ kg} \times v^2 = 0.119 \text{ J}$ max speed of head = 6.10 m s^{-1} max momentum of head = $0.0064 \text{ kg} \times 6.1 \text{ m s}^{-1}$ $p_{\text{head}} = 0.039 \text{ kg m s}^{-1}$		
	$E_{\rm grav} = 0.0072 \ {\rm kg} \times 9.81 \ {\rm N} \ {\rm kg}^{-1} \times 1.5 \ {\rm m} = 0.106 \ {\rm J}$ For whole toy, initial ke = 0.106 J ${}^{1}\!\!/_{2} \times 0.0072 \ {\rm kg} \times v^{2} = 0.106 \ {\rm J}$ For whole toy, initial $v = 5.42 \ {\rm m \ s}^{-1}$ For whole toy, initial momentum = 0.0072 kg × 5.42 m s ⁻¹ = 0.039 kg m s ⁻¹		(5)
13 (c)	 Calculate E_K values or identify from part (a) and (b) (0.12 J before and 0.11 J after) (ecf) Conclude (kinetic energy is) not conserved because energy before is greater than energy after (accept a conclusion consistent with their answers) 	(1) (1)	
	Example of calculation Head ke = $\frac{1}{2} \times 0.0064 \text{ kg} \times (6.1 \text{ m s}^{-1})^2 = 0.119 \text{ J}$ Whole toy ke = $\frac{1}{2} \times 0.0072 \text{ kg} \times (5.42 \text{ m s}^{-1})^2 = 0.106 \text{ J}$ Total for question 13		(2)