EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos 2003

MILITARES (Em RC e RV)

PROVA ESCRITA DE MATEMÁTICA

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui seis questões de resposta aberta, algumas subdivididas em alíneas, num total de onze.

Na página 9 deste enunciado encontra-se um formulário.

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- **1.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = (x-5)^3$.

Qual das afirmações seguintes é verdadeira?

- **(A)** A função f tem um extremo relativo para x=5
- **(B)** A função f tem um extremo relativo para x = -5
- **(C)** O gráfico da função f tem um ponto de inflexão para x=5
- **(D)** O gráfico da função f tem um ponto de inflexão para x=-5
- **2.** Seja g uma função de domínio \mathbb{R} , não identicamente nula, contínua em todo o seu domínio.

Seja
$$h = \frac{1}{g}$$

Relativamente ao gráfico de h, sabe-se que:

- é simétrico relativamente ao eixo Oy
- tem uma única assimptota vertical
- · tem uma assimptota horizontal

Qual das afirmações seguintes é verdadeira?

(A)
$$g(0) = 0$$

(B)
$$\lim_{x \to +\infty} g(x) = 0$$

(C)
$$g$$
 é uma função ímpar

3. Para um certo valor de a e para um certo valor de b, o gráfico da função, de domínio \mathbb{R} , definida por $f(x) = a + b e^x$, está parcialmente representado na figura abaixo.

Tal como a figura sugere,

- a recta de equação $y=-1\,$ é assimptota do gráfico de f
- ullet o gráfico de f intersecta o eixo Oy no ponto de ordenada 1

Quais são os valores de a e de b?

(A)
$$a = -1$$
 e $b = 2$

(B)
$$a = -1$$
 e $b = 1$

(C)
$$a = 1$$
 e $b = -1$

(D)
$$a = 1$$
 e $b = -2$

4. Na figura junta está representado um triângulo equilátero [ABC], de perímetro 6. Considere que um ponto P, partindo de B, se desloca sobre o lado [BC], terminando o seu percurso em C. Seja g a função que, à amplitude x (em radianos) do ângulo BAP, faz corresponder o comprimento do

Quais são, respectivamente, o domínio e o contradomínio de g?

(A)
$$\left[0, \frac{\pi}{4}\right]$$
 e $\left[\sqrt{2}, 2\right]$

segmento [AP].

(A)
$$\left[0,\frac{\pi}{4}\right]$$
 e $\left[\sqrt{2},2\right]$ (B) $\left[0,\frac{\pi}{4}\right]$ e $\left[\sqrt{3},2\right]$

(C)
$$\left[0, \frac{\pi}{3}\right]$$
 e $\left[\sqrt{2}, 2\right]$ (D) $\left[0, \frac{\pi}{3}\right]$ e $\left[\sqrt{3}, 2\right]$

(D)
$$\left[0, \frac{\pi}{3}\right]$$
 e $\left[\sqrt{3}, 2\right]$

- **5.** De quantas maneiras distintas podem ficar sentados quatro rapazes e cinco raparigas, num banco de nove lugares, de tal modo que os rapazes figuem todos juntos?
 - **(A)** 16470

(B) 17 280

(C) 18560

- **(D)** 19 340
- **6.** Queremos colocar 6 bolas indistinguíveis em 4 caixas distintas, de forma a que cada caixa contenha pelo menos uma bola.

De quantas maneiras diferentes podem as bolas ficar colocadas nas caixas?

(A) 4

(B) 8

(C) 10

- **(D)** 12
- **7.** Em \mathbb{C} , conjunto dos números complexos, considere

$$z = 2 \operatorname{cis}\left(\theta - \frac{\pi}{5}\right)$$

Para qual dos seguintes valores de $\,\theta\,$ é que $\,z\,$ é um número real?

(A) $\frac{6\pi}{5}$

(B) $\frac{7\pi}{5}$

(C) $\frac{8\pi}{5}$

(D) $\frac{9\pi}{5}$

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o **valor exacto**.

1. Em \mathbb{C} , conjunto dos números complexos, considere w=1+2i

Sem recorrer à calculadora, resolva as duas alíneas seguintes:

- **1.1.** Sabendo que $\,w\,$ é uma raiz quarta de um certo número complexo $\,z\,$, determine as restantes raízes quartas de $\,z\,$.
- **1.2.** Considere, no plano complexo, a circunferência de centro na imagem geométrica de w e que passa na origem do referencial. Defina, por meio de uma condição em \mathbb{C} , a parte desta circunferência que está contida no quarto quadrante (eixos não incluídos).
- **2.** A Rita foi andar num carrocel. A figura junta ilustra a situação.

Em cada volta, que se inicia no ponto A, a Rita descreve uma circunferência com 5 metros de raio, centrada no ponto O, rodando no sentido indicado na figura.

A mãe da Rita ficou a observá-la de um ponto M, situado à distância de 8 metros de O e tal que o ângulo AOM é recto.

Para cada posição R, da Rita, fica determinado um ângulo de amplitude x, medida em radianos, que tem como lado origem a semi-recta $\dot{O}A$ e como lado extremidade a semi-recta $\dot{O}R$.

2.1. Mostre que, para cada valor de $\,x$, a distância $\,d(x)$, da Rita à mãe, é dada, em metros, por

$$d(x) = \sqrt{89 - 80 \sin x}$$

2.2. Calcule $d\left(\frac{\pi}{2}\right)$ e justifique o valor obtido, no contexto do problema.

3. Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \ln\left(x + \frac{1}{x}\right)$

Sem recorrer à calculadora, resolva as duas alíneas seguintes:

- **3.1.** Estude a função quanto à monotonia e à existência de extremos relativos.
- **3.2.** Calcule $\lim_{x \to +\infty} (f(x) \ln x)$

4.

4.1. Seja g uma função, de domínio \mathbb{R} , cuja expressão analítica é um polinómio do quarto grau, que tem uma raiz dupla x_0 . Prove que o eixo Ox é tangente ao gráfico de g no ponto de abcissa x_0 .

Sugestão: tenha em conta que, se x_0 é uma raiz dupla do polinómio que define a função g, então tem-se $g(x)=(x-x_0)^2(ax^2+b\,x+c)$

4.2. O polinómio $A(x)=x^4-7x^3+7x^2+15x-6$ tem quatro raízes reais distintas. Recorrendo à sua calculadora, determine, com aproximação às décimas, o número real **positivo** k para o qual o polinómio B(x)=A(x)-k tenha três raízes reais distintas.

Explique como procedeu. Na sua explicação, deve incluir o(s) gráfico(s) obtido(s) na sua calculadora, bem como coordenada(s) que considere relevante(s) de algun(s) ponto(s).

5. Um dos membros do casal Silva (ou o Manuel ou a Adelaide) vai todos os dias de manhã comprar pão à padaria da rua onde moram, mal ela abre.

Em 40% dos dias, é o Manuel Silva que vai comprar o pão. Nos restantes dias, é a Adelaide Silva que se encarrega dessa tarefa.

Sabe-se também que, nas vezes em que a Adelaide vai à padaria, ela compra apenas pão de trigo (o que acontece em 20% dessas vezes) ou apenas pão de centeio.

- **5.1.** Num certo dia, um vizinho da família Silva vai à mesma padaria, mal ela abre. Quem é mais provável que ele lá encontre: o Manuel, ou a Adelaide? Justifique.
- **5.2.** Calcule a probabilidade de que, num dia escolhido ao acaso, seja a Adelaide a ir à padaria e traga pão de centeio. Apresente o resultado na forma de percentagem.

6. Suponha que o dono de um casino lhe faz uma proposta, no sentido de inventar um jogo, para ser jogado por dois jogadores. Em cada jogada, é **lançado um par de dados**, numerados de um a seis, e observa-se a **soma dos números saídos**.

O dono do casino coloca ainda algumas restrições:

- o jogo terá de ser justo, isto é, ambos os jogadores deverão ter igual probabilidade de ganhar;
- para que o jogo seja mais emotivo, deverão ocorrer situações em que ninguém ganha, transitando o valor do prémio para a jogada seguinte;
- uma vez que o casino terá de ganhar algum dinheiro, deverá ocorrer uma situação (embora com probabilidade bastante mais pequena do que a probabilidade de cada um dos jogadores ganhar) em que o prémio reverta a favor do casino.

Numa curta composição, com cerca de dez linhas, apresente, ao dono do casino, uma proposta de um jogo que obedeça a tais condições.

Deverá fundamentar a sua proposta indicando, na forma de percentagem, a probabilidade de, em cada jogada:

- · cada um dos jogadores ganhar;
- · o casino ganhar.

Sugestão: Comece por elaborar uma tabela onde figurem todas as somas possíveis (no lançamento de dois dados).

FIM

COTAÇÕES

	la resposta certa	
	la resposta errada	
Cad	la questão não respondida ou anulada	0
Not	a: um total negativo neste grupo vale 0 (zero) pontos.	
II		
1		21
	1.1. 10	
	1.2. 11	
2		28
	2.1.	
	2.2.	
3		28
	3.1. 14	
	3.2. 14	
4		28
	4.1. 14	
	4.2. 14	
5.		16
	5.1. 6	
	5.2. 10	
6.		16

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2 k \pi}{n}, k \in \{0, ..., n - 1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$