Projet 4:

Segmentez des clients d'un site e-commerce

- I. Problématique et Jeu de données
- II. Feature Engineering et analyse exploratoire
- III. Modélisation effectuée et choix du modèle
- IV. Simulation du modèle

1. Problématique et Jeu de

données

Contexte

- Aider l'entreprise brésilienne « Olist » qui propose une solution de vente sur les marketplaces en ligne.
- Fournir à ses équipes une segmentation des clients réutilisable lors de leur campagne de communication.
- Comprendre les différents types de clients et étudier leurs comportements par le biais de leurs données.
- Fournir une description détaillée de la segmentation et de la logique de segmentation.
- Proposer un action de maintenance qui se base sur la stabilité des modèles de segmentation.

Jeu de données

- Une base de données anonymisée fournit par « Olist »
- Informations sur l'historique de commandes, les produits achetés, les commentaires de satisfaction, et la localisation des clients
- Données depuis janvier 2017.

	% du dataset complet	Nombre de valeurs manquantes	
order_id	100.00	0	
customer_unique_id	100.00	0	
payment_value	100.00	1	
payment_installments	100.00	1	
payment_sequential	100.00	1	
customer_id	100.00	0	
customer_city	100.00	0	
customer_zip_code_prefix	100.00	0	
customer_state	100.00	0	
order_estimated_delivery_date	100.00	0	
order_purchase_timestamp	100.00	0	
order_status	100.00	0	
geolocation_city	99.93	66	
geolocation_zip_code_prefix	99.93	66	
geolocation_lat	99.93	66	
geolocation_Ing	99.93	66	
order_approved_at	99.84	160	
review_score	99.23	768	
price	99.22	775	
freight_value	99.22	775	
order_delivered_carrier_date	98.21	1783	
order_delivered_customer_date	97.02	2965	

II. Feature Engineering et analyse

exploratoire

Feature Engineering – Ajout Features

Récence

 Durée depuis la dernière commande

Fréquence

Nombre de commandes

Montants

 Montant cumulé des commandes

Nombres de jours avant la livraison

 Nombre de jours avant la livraison de la commande

Nouvelles catégories

 Regroupement des produits par catégorie

DPENCLASSROOMS

Analyse exploratoire

Description des montants dépensés par les clients

Description des jours passés depuis la dernière commande

DPENCLASSROOMS

Analyse exploratoire

III. Modélisation effectuée et choix du

modèle

Test des modèles

Modèles utilisés:

- K-means
- DBSCAN
- Agglomerative

Composition testée

- Avec 3, 4 et 5 features.
- 4 et 5 clusters
- ACP pour déterminer le nombre optimal de composantes

K-Means Choix du nombre de clusters et de features

On détermine le nombre de clusters théorique :

Méthode du coude : 5 clusters

En pratique :

- Une Classe à 300 clients
- Classe avec trop peu de clients

Théoriquement, on décide de partir sur 4 clusters ! On valide nos résultats graphiquement.

K-Means – Résultats

Compositions essayées:

- 3 features et 5 clusters
- 3 features et 4 clusters

On confirme graphiquement nos résultats obtenus et on part sur 4 clusters

Compositions essayées:

- 4 features et 4 clusters
- 5 features et 4 clusters

Modèle à 4 features et 4 clusters retenus. Car « le review score » et « le nombre de jours » avant livraison sont très corrélés. Et on souhaite avoir autant de clusters que de features.

Cédric Randrianarivélo

<u>Résultats 4 features et K = 4 :</u>

- Cluster 0 : Forte récence et faible paiement cumulé
- Cluster 1 : Faible récence faible paiement cumulé
- Cluster 2 : Fréquence la plus haute
- Cluster 3: Paiement cumulé le plus élevé et « review score » le plus dispersé.

DBSCAN – Plusieurs Epsilon

- Test Epsilon = 1, 50, 80 et 80
- Une classe représentant plus 97% des données en général
- Se base sur la densité
- Non pertinent

AgglomerativeClustering – Résultats

	K-means AgglomerativeClusterir	
Temps fit	>1 s	132.5 s
Nombre éléments	100 000	40 000

- Résultats Similaires au K-Means
- Temps de fitting Long

Paramètres

Modèle Choisi :

K-means

Temps faible de fitting

Regroupe les clients par leur caractéristiques et non densité

<u>Paramètres</u>

4 clusters

•

4 features (Review Score, Payment by customers, Recency et Frequency)

IV. Simulation du modèle

Stabilité

- 342 jours, le coeff ARI passe en dessous de 0,9.
- Il faut partir sur une mise à jours de modèle environ tous les 340 jours.

Divergence Clusters

- Le cluster avec le plus faible nombre de clients diminue le plus (cluster les clients avec les clients qui dépense le plus)
- Le cluster avec les paiements cumulés faible augmente

Conclusion

Choix du modèles pour la segmentation

- Sélection du modèle K-means.
- Temps faible de fitting très nettement inférieur à l'agglomerative clustering
- La création de classe est **plus précise** que le DBSCAN (se basant sur la densité) qui se base sur leurs caractéristiques.
 - Regroupe les clients par leur caractéristiques et non densité.

Paramètres:

- 4 features (Review Score, Payment by customers, Recency et Frequency
- 4 clusters comprenant :
 - Un cluster avec une forte récence/ Faible paiement
 - Un cluster faible récence et faible paiement cumulé
 - Un cluster avec une fréquence d'achat haute
 - Un cluster avec le paiement cumulé élevé et des review scores plus mauvais.

Stabilité:

- Cluster instable au bout de 342 jours
- Contrat de maintenance tous les 340 jours

	Recency	Frequency	Payment by customer	review_score
N° Cluster				
0	388.50	1.05	121.05	4.18
1	128.06	1.06	121.07	4.16
2	222.55	1.33	583.54	4.03
3	235.12	1.25	1800.82	3.96

Merci pour votre attention! Question?

