guide-R

Guide pour l'analyse de données d'enquêtes avec R

Joseph Larmarange

 $14~\mathrm{mars}~2023$

Table des matières

Pı	éface		11
	Rem	erciements	13
	Lice	nce	13
I	Ba	ses du langage	14
1	Pack	kages	15
	1.1	Installation (CRAN)	16
	1.2	Chargement	16
	1.3	Mise à jour	17
	1.4	Installation depuis GitHub	18
	1.5	Le tidyverse	19
2	Vect	teurs	22
	2.1	Types et classes	22
	2.2	Création d'un vecteur	23
	2.3	Longueur d'un vecteur	26
	2.4	Combiner des vecteurs	27
	2.5	Vecteurs nommés	27
	2.6	Indexation par position	29
	2.7	Indexation par nom	30
	2.8	Indexation par condition	31
	2.9	Assignation par indexation	35
	2.10	En résumé	36
	2.11	webin-R	37
3	Liste	es	38
	3.1	Propriétés et création	38
	3.2	Indexation	41
	3.3	En résumé	45
	3 4	webin-R	46

4	Tab	oleaux de données	47
	4.1	Propriétés et création	. 47
	4.2	Indexation	. 49
	4.3	Afficher les données	. 53
	4.4	En résumé	. 62
	4.5	webin-R	. 62
5	Tibl	bles	63
	5.1	Le concept de tidy data	. 63
	5.2	tibbles : des tableaux de données améliorés	. 63
	5.3	Données et tableaux imbriqués	. 68
6	Attı	ributs	71
II	Ma	anipulation de données	74
7	Le r	pipe	75
	7.1		
	7.2	Le pipe du tidyverse : %>%	
	7.3		
	7.4	Accéder à un élément avec purrr::pluck() et	
		purrr::chuck()	. 79
8	dpl	yr	82
	8.1	Opérations sur les lignes	. 83
		8.1.1 filter()	. 83
		8.1.2 slice()	. 88
		8.1.3 $\operatorname{arrange}() \dots \dots \dots \dots$. 89
		8.1.4 slice_sample() \dots	. 91
		$8.1.5 distinct() \dots \dots \dots \dots \dots$. 93
	8.2	Opérations sur les colonnes	. 95
		$8.2.1 \text{select}() \dots \dots \dots \dots$. 95
		8.2.2 relocate()	
		8.2.3 rename() \dots	
		8.2.4 rename_with() \dots	
		8.2.5 pull()	
		8.2.6 mutate()	
	8.3	Opérations groupées	
		8.3.1 group_by()	
		8.3.2 summarise()	
		$8.3.3 \text{count}() \dots \dots \dots \dots \dots$. 110

		8.3.4 Grouper selon plusieurs variables	. 111
	8.4	Cheatsheet	. 116
	8.5	webin-R \ldots	. 116
9	Fact	eurs et forcats	117
•	9.1	Création d'un facteur	
	9.2		
	9.3	Modifier les modalités	
	9.4	Découper une variable numérique en classes	
10	C		
10		biner plusieurs variables	136
		$if_else() \dots \dots$	
		case_when()	
	10.3	recode_if()	. 141
11		uettes de variables	146
	11.1	Principe	. 146
	11.2	Manipulation sur un vecteur / une colonne	. 148
	11.3	Manipulation sur un tableau de données	. 150
	11.4	Préserver les étiquettes	. 151
12	Étiq	uettes de valeurs	153
	12.1	La classe haven_labelled	. 153
		Manipulation sur un vecteur / une colonne	
		Manipulation sur un tableau de données	
		Conversion	
		12.4.1 Quand convertir les vecteurs labellisés ?	. 159
		12.4.2 Convertir un vecteur labellisé en facteur	
		12.4.3 Convertir un vecteur labellisé en	
		numérique ou en texte	. 163
		12.4.4 Conversion conditionnelle en facteurs	
13	Vale	urs manquantes	169
13		Valeurs manquantes étiquettées ($tagged\ NAs$) .	
	10.1	13.1.1 Création et test	
		13.1.2 Valeurs uniques, doublons et tris	
		13.1.2 Valeurs uniques, doublons et tris	
		13.1.4 Conversion en user NAs	
	19 0		. 110
	15.2	Valeurs manquantes définies par l'utilisateurs	177
		(user NAs)	
		13.2.1 Création	
		13.2.2 Tests	. 180

		13.2.3 Conversion	181
14	Impo	ort & Export de données	184
	-	Importer un fichier texte	184
		14.1.1 Structure d'un fichier texte	
		14.1.2 Interface graphique avec RStudio	185
		14.1.3 Dans un script	186
	14.2	Importer un fichier Excel	187
	14.3	Importer depuis des logiciels de statistique	188
		14.3.1 SPSS	188
		14.3.2 SAS	189
		14.3.3 Stata	190
		14.3.4 dBase	190
	14.4	Sauver ses données	190
	14.5	Export de tableaux de données	192
15	Met	tre en forme des nombres	193
	15.1	label_number()	194
	15.2	Les autres fonctions de {scales}	196
		15.2.1 label_comma()	
		15.2.2 label_percent()	197
		15.2.3 label_dollar()	197
		15.2.4 label_pvalue()	198
		15.2.5 label_number_si()	198
		15.2.6 label_scientific()	199
		15.2.7 label_bytes()	199
		15.2.8 label_ordinal()	199
		$15.2.9$ label_date(), label_date_short() &	
		label_time()	200
		15.2.10 label_wrap()	
	15.3	Les fonctions de formatage de {gtsummary}	201
		15.3.1 style_number()	202
		$15.3.2$ style_sigfig()	
		$15.3.3$ style_percent()	203
		$15.3.4$ style_pvalue()	
		$15.3.5$ style_ratio()	
	15.4	Bonus: signif_stars() de {ggstats}	205
16	Coul	leurs & Palettes	206
	16.1	Noms de couleur	206
	16.2	Couleurs RVB et code hexadécimal	207

16.3 Palettes de couleurs	208
16.3.1 Color Brewer	208
16.3.2 Palettes de Paul Tol	210
16.3.3 Interface unifiée avec {paletteer	?} 212
III Analyses	215
17 Graphiques avec ggplot2	216
17.1 Ressources	216
17.2 Les bases de ggplot2	
17.3 Cheatsheet	221
17.4 Exploration visuelle avec esquisse	221
17.5 webin-R	223
17.6 Combiner plusieurs graphiques	224
18 Statistique univariée & Intervalles de confia	
18.1 Exploration graphique	
18.1.1 Variable continue	
18.1.2 Variable catégorielle	
18.2 Tableaux et tris à plat	
18.2.1 Thème du tableau	
18.2.2 Étiquettes des variables	
18.2.3 Statistiques affichées	
18.2.4 Affichage du nom des statistiques	
18.2.5 Forcer le type de variable 18.2.6 Afficher des statistiques sur pl	
lignes (variables continues)	
18.2.7 Mise en forme des statistiques	
18.2.8 Données manquantes	
18.2.9 Ajouter les effectifs observés	
18.3 Calcul manuel	
18.3.1 Variable continue	
18.3.2 Variable catégorielle	
18.4 Intervalles de confiance	
18.4.1 Avec gtsummary	
18.4.2 Calcul manuel	
19.5 mobin D	270

19	Stat	istique bivariée & Tests de comparaison	27 1
	19.1	Deux variables catégorielles	271
		19.1.1 Tableau croisé avec gtsummary	
		19.1.2 Représentations graphiques	274
		19.1.3 Calcul manuel	
		19.1.4 Test du Chi² et dérivés	284
		19.1.5 Comparaison de deux proportions	286
	19.2	Une variable continue selon une variable	
		catégorielle	290
		19.2.1 Tableau comparatif avec gtsummary	290
		19.2.2 Représentations graphiques	292
		19.2.3 Calcul manuel	298
		19.2.4 Tests de comparaison	299
		19.2.5 Différence de deux moyennes	302
	19.3	Deux variables continues	303
		19.3.1 Représentations graphiques	303
		19.3.2 Tester la relation entre les deux variables	307
	19.4	Matrice de corrélations	309
	19.5	webin-R	310
20	Régi	ression linéaire	311
	_	Modèle à une seule variable explicative continue .	311
		Modèle à une seule variable explicative catégorielle	
		Modèle à plusieurs variables explicatives	
21	Dági	ression logistique binaire	322
41		Préparation des données	
		Statistiques descriptives	
		Calcul de la régression logistique binaire	
		Interpréter les coefficients	
		La notion d'odds ratio	
		Afficher toutes les comparaisons (pairwise	996
	21.0	contrasts)	338
	21 7	Identifier les variables ayant un effet significatif.	
		Sélection pas à pas d'un meilleur modèle	
		Régressions logistiques univariées	
		OPrésenter l'ensemble des résultats dans un même	991
	<u> </u>	tableau	353
	21.1	1webin-R	
		,,,,_,	-

22	Préd	lictions marginales, contrastes marginaux &	
	effet	s marginaux 3	5
	22.1	Terminologie	58
	22.2	Données d'illustration	59
	22.3	Prédictions marginales	62
		22.3.1 Prédictions marginales moyennes 3	62
		22.3.2 Prédictions marginales à la moyenne 3	70
		22.3.3 Variantes	78
	22.4	Contrastes marginaux	8
		22.4.1 Contrastes marginaux moyens 3	8
		22.4.2 Contrastes marginaux à la moyenne 3	9(
	22.5	Pentes marginales / Effets marginaux 3	9:
		22.5.1 Pentes marginales moyennes / Effets	
		marginaux moyens 3	94
		22.5.2 Pentes marginales à la moyenne / Effets	
		marginaux à la moyenne 3	99
	22.6	Lectures complémenaires (en anglais) 3	99
^^			_
23		` ,	0
	23.1	Contrastes de type traitement	0(
		23.1.1 Exemple 1 : un modèle linéaire avec une	0.0
		variable catégorielle 4	U
		23.1.2 Exemple 2 : une régression logistique avec	0.6
		deux variables catégorielles 4	
	00.0	23.1.3 Changer la modalité de référence 4	
	23.2	Contrastes de type somme	1.
		23.2.1 Exemple 1 : un modèle linéaire avec une	1.
		variable catégorielle 4	Ι.
		23.2.2 Exemple 2 : une régression logistique avec	11
	00.0	deux variables catégorielles 4	
	23.3	Autres types de contrastes	
		23.3.1 Contrastes de type Helmert 4	
	00.4	23.3.2 Contrastes polynomiaux	
	23.4	Lectures additionnelles	2.
24	Inte	ractions 4	2
-		Données d'illustration 4	
		Modèle sans interaction 4	
		Définition d'une interaction	
		Significativité de l'interaction	
		Interprétation des coefficients	

	434
24.7 Pour aller plus loin	438
24.8 webin-R	438
5 Multicolinéarité	439
25.1 Définition	439
25.2 Mesure de la colinéarité	441
25.3 La multicolinéarité est-elle toujours un problèm	e ?444
25.4 webin-R	447
/ Données pondérées avec survey	448
Définir un plan d'échantillonnage	449
26.1 Différents types d'échantillonnage	
26.2 Avec survey::svydesign()	
26.3 Avec srvyr::as_survey_design()	455
26.4 webin-R	459
Manipulation de données pondérées	460
27.1 Utilisation de {srvyr}	461
27.2 Lister / Rechercher des variables	463
27.3 Extraire un sous-échantillon	463
3 Analyses uni- et bivariées pondérées	465
28.1 La fonction tbl_svysummary()	
28.2 Calcul manuel avec {survey}	470
28.3 Intervalles de confiance et tests statistiques .	472
28.4 Impact du plan d'échantillonnage	475
Graphiques pondérés	479
) Régression logistique binaire pondérée	483
regression logistique billune ponderee	400
30.1 Données des exemples	483
30.1 Données des exemples	484
30.1 Données des exemples	484 485

V	Manipulation avancée	490
31	Dates avec lubridate	491
32	Réorganisation avec tidyr	492

Préface

Guide en cours d'écriture

Ce guide est encore incomplet. Le plan prévu est visible à cette adresse : https://github.com/larmarange/guide-R/issues/12.

En attendant, nous vous conseillons de compléter votre lecture par le site analyse-R.

Ce guide porte sur l'analyse de données d'enquêtes avec le logiciel R, un logiciel libre de statitistiques et de traitement de données. Les exemples présentés ici relèvent principalement du champs des sciences sociales quantitatives et des sciences de santé. Ils peuvent néanmoins s'appliquer à d'autre champs disciplinaires. Cependant, comme tout ouvrage, ce guide ne peut être exhaustif.

Ce guide présente comment réaliser des analyses statistiques et diverses opérations courantes (comme la manipulation de données ou la production de graphiques) avec R. Il ne s'agit pas d'un cours de statistiques : les différents chapitres présupposent donc que vous avez déjà une connaissance des différentes techniques présentées. Si vous souhaitez des précisions théoriques / méthodologiques à propos d'un certain type d'analyses, nous vous conseillons d'utiliser votre moteur de recherche préféré. En effet, on trouve sur internet de très nombreux supports de cours (sans compter les nombreux ouvrages spécialisés disponibles en librairie).

De même, il ne s'agit pas d'une introduction ou d'un guide pour les utilisatrices et utilisateurs débutant es. Si vous découvrez R, nous vous conseillons la lecture de l'Introduction à R et au tidyverse de Julien Barnier (https://juba.github. io/tidyverse/). Vous pouvez également lire les chapitres introductifs d'analyse-R: Introduction à l'analyse d'enquêtes avec R et RStudio (https://larmarange.github.io/analyse-R/). Néanmoins, quelques rappels sur les bases du langage sont fournis dans la section Bases du langage. Une bonne compréhension de ces dernières, bien qu'un peu ardue de prime abord, permet de comprendre le sens des commandes qu'on utilise et de pleinement exploiter la puissance que R offre en matière de manipulation de données.

R disposent de nombreuses extensions ou packages (plus de 16 000) et il existe souvent plusieurs manières de procéder pour arriver au même résultat. En particulier, en matière de manipulation de données, on oppose¹ souvent base R qui repose sur les fonctions disponibles en standard dans R, la majorité étant fournies dans les packages {base}, {utils} ou encore {stats}, qui sont toujours chargés par défaut, et le {tidyverse} qui est une collection de packages comprenant, entre autres, {dplyr}, {tibble}, {tidyr}, {forcats} ou encore {ggplot2}. Il y a un débat ouvert, parfois passionné, sur le fait de privilégier l'une ou l'autre approche, et les avantages et inconvénients de chacune dépendent de nombreux facteurs, comme la lisibilité du code ou bien les performances en temps de calcul. Dans ce guide, nous avons adopté un point de vue pragmatique et utiliserons, le plus souvent mais pas exclusivement, les fonctions du {tidyverse}, de même que nous avons privilégié d'autres packages, comme {gtsummary} ou {questionr} par exemple pour la statistique descriptive. Cela ne signifie pas, pour chaque point abordé, qu'il s'agit de l'unique manière de procéder. Dans certains cas, il s'agit simplement de préférences personnelles.

Bien qu'il en reprenne de nombreux contenus, ce guide ne se substitue pas au site analyse-R. Il s'agit plutôt d'une version complémentaire qui a vocation à être plus structurée et parfois plus sélective dans les contenus présentés.

En complément, on pourra également se référer aux webin-R, une série de vidéos avec partage d'écran, librement accessibles sur Youtube : https://www.youtube.com/c/webinR.

Cette version du guide a utilisé *R version 4.2.2 (2022-10-31 ucrt)*. Ce document est généré avec quarto et le code source est disponible sur GitHub. Pour toute suggestion ou correction, vous pouvez ouvrir un ticket GitHub. Pour d'autres questions,

¹ Une comparaison des deux syntaxes est illustrée par une vignette dédiée de dplyr.

vous pouvez utiliser les forums de discussion disponibles en bas de chaque page sur la version web du guide. Ce document est régulièrement mis à jour. La dernière version est consultable sur https://larmarange.github.io/guide-R/.

Remerciements

Ce document a bénéficié de différents apports provenant notamment de l'Introduction à R et de l'Introduction à R et A et A

Merci donc à Julien Barnier, Julien Biaudet, François Briatte, Milan Bouchet-Valat, Ewen Gallic, Frédérique Giraud, Joël Gombin, Mayeul Kauffmann, Christophe Lalanne & Nicolas Robette.

Licence

Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International.

partie I Bases du langage

1 Packages

L'installation par défaut du logiciel **R** contient le cœur du programme ainsi qu'un ensemble de fonctions de base fournissant un grand nombre d'outils de traitement de données et d'analyse statistiques.

R étant un logiciel libre, il bénéficie d'une forte communauté d'utilisateurs qui peuvent librement contribuer au développement du logiciel en lui ajoutant des fonctionnalités supplémentaires. Ces contributions prennent la forme d'extensions (packages en anglais) pouvant être installées par l'utilisateur et fournissant alors diverses fonctionnalités supplémentaires.

Il existe un très grand nombre d'extensions (plus de 16 000 à ce jour), qui sont diffusées par un réseau baptisé **CRAN** (Comprehensive R Archive Network).

La liste de toutes les extensions disponibles sur **CRAN** est disponible ici : http://cran.r-project.org/web/packages/.

Pour faciliter un peu le repérage des extensions, il existe un ensemble de regroupements thématiques (économétrie, finance, génétique, données spatiales...) baptisés Task views : http://cran.r-project.org/web/views/.

On y trouve notamment une *Task view* dédiée aux sciences sociales, listant de nombreuses extensions potentiellement utiles pour les analyses statistiques dans ce champ disciplinaire : http://cran.r-project.org/web/views/SocialSciences.html.

On peut aussi citer le site Awesome R (https://github.com/qinwf/awesome-R) qui fournit une liste d'extensions choisies et triées par thématique.

1.1 Installation (CRAN)

L'installation d'une extension se fait par la fonction install.packages(), à qui on fournit le nom de l'extension. Par exemple, si on souhaite installer l'extension {gtsummary}:

```
install.packages("gtsummary")
```

Sous **RStudio**, on pourra également cliquer sur *Install* dans l'onglet *Packaqes* du quadrant inférieur droit.

Alternativement, on pourra avoir recours au package {remotes} et à sa fonction remotes::install_cran():

```
remotes::install_cran("gtsummary")
```

Note

Le package {remotes} n'est pas disponible par défaut sous R et devra donc être installé classiquement avec install.packages("remotes"). À la différence de install.packages(), remotes::install_cran() vérifie si le package est déjà installé et, si oui, si la version installée est déjà la dernière version, avant de procéder à une installation complète si et seulement si cela est nécessaire.

1.2 Chargement

Une fois un package installé (c'est-à-dire que ses fichiers ont eté téléchargés et copiés sur votre ordinateur), ses fonctions et objets ne sont pas directement accessibles. Pour pouvoir les utiliser, il faut, à chaque session de travail, charger le package en mémoire avec la fonction library() ou la fonction require():

```
library(gtsummary)
```

À partir de là, on peut utiliser les fonctions de l'extension, consulter leur page d'aide en ligne, accéder aux jeux de données qu'elle contient, etc.

Alternativement, pour accéder à un objet ou une fonction d'un package sans avoir à le charger en mémoire, on pourra avoir recours à l'opérateur ::. Ainsi, l'écriture p::f() signifie la fonction f() du package p. Cette écriture sera notamment utilisée tout au long de ce guide pour indiquer à quel package appartient telle fonction : remotes::install_cran() indique que la fonction install_cran() provient du packages {remotes}.

! Important

Il est important de bien comprendre la différence entre install.packages() et library(). La première va chercher un package sur internet et l'installe en local sur le disque dur de l'ordinateur. On n'a besoin d'effectuer cette opération qu'une seule fois. La seconde lit les informations de l'extension sur le disque dur et les met à disposition de R. On a besoin de l'exécuter à chaque début de session ou de script.

1.3 Mise à jour

Pour mettre à jour l'ensemble des pacakges installés, il suffit d'exécuter la fonction update.packages() :

```
update.packages()
```

Sous **RStudio**, on pourra alternativement cliquer sur *Update* dans l'onglet *Packages* du quadrant inférieur droit.

Si on souhaite désinstaller une extension précédemment installée, on peut utiliser la fonction remove.packages():

```
remove.packages("gtsummary")
```

¶ Installer / Mettre à jour les packages utilisés par un projet

Après une mise à jour majeure de **R**, il est souvent nécessaire de réinstaller tous les packages utilisés. De même, on peut parfois souhaiter mettre à jour uniquement les packages utilisés par un projet donné sans avoir à mettre à jour tous les autres packages présents sur son PC.

Une astuce consiste à avoir recours à la fonction renv::dependencies() qui examine le code du projet courant pour identifier les packages utilisés, puis à passer cette liste de packages à remotes::install_cran() qui installera les packages manquants ou pour lesquels une mise à jour est disponible.

Il vous suffit d'exécuter la commande ci-dessous :

```
renv::dependencies() |>
  purrr::pluck("Package") |>
  remotes::install_cran()
```

1.4 Installation depuis GitHub

Certains packages ne sont pas disponibles sur **CRAN** mais seulement sur **GitHub**, une plateforme de développement informatique. Il s'agit le plus souvent de packages qui ne sont pas encore suffisament matures pour être diffusés sur **CRAN** (sachant que des vérifications strictes sont effectués avant qu'un package ne soit référencés sur **CRAN**).

Dans d'autres cas de figure, la dernière version stable d'un package est disponible sur **CRAN** tandis que la version en cours de développement est, elle, disponible sur **GitHub**. Il fuat être vigilant avec les versions de développement. Parfois, elle corrige un bug ou introduit une nouvelle fonctionnalité qui n'est pas encore dans la version stable. Mais les versions de développement peuvent aussi contenir de nouveaux bugs ou des fonctionnalités instables.

⚠ Sous Windows

Pour les utilisatrices et utilisateurs sous **Windows**, il faut être conscient que le code source d'un package doit être compilé afin de pouvoir être utilisé. **CRAN** fournit une version des packages déjà compilée pour **Windows** ce qui facilite l'installation.

Par contre, lorsque l'on installe un package depuis **GitHub**, **R** ne récupère que le code source et il est donc nécessaire de compiler localement le package. Pour cela, il est nécessaire que soit installé sur le PC un outil complémentaire appelé **RTools**. Il est téléchargeable à l'adresse https://cran.r-project.org/bin/windows/Rtools/.

Le code source du package {labelled} est disponible sur **GitHub** à l'adresse https://github.com/larmarange/labelled. Pour installer la version de développement de {labelled},on aura recours à la fonction remotes::install_github() à laquelle on passera la partie située à droite de https://github.com/dans l'URL du package, à savoir:

```
remotes::install_github("larmarange/labelled")
```

1.5 Le tidyverse

Le terme {tidyverse} est une contraction de *tidy* (qu'on pourrait traduire par bien rangé) et de *universe*. Il s'agit en fait d'une collection de packages conçus pour travailler ensemble et basés sur une philosophie commune.

Ils abordent un très grand nombre d'opérations courantes dans \mathbf{R} (la liste n'est pas exhaustive) :

- visualisation ({ggplot2})
- manipulation des tableaux de données ({dplyr}, {tidyr})
- import/export de données ({readr}, {readxl}, {haven})
- manipulation de variables ({forcats}, {stringr}, {lubridate})

• programmation ({purrr}, {magrittr}, {glue})

Un des objectifs de ces extensions est de fournir des fonctions avec une syntaxe cohérente, qui fonctionnent bien ensemble, et qui retournent des résultats prévisibles. Elles sont en grande partie issues du travail d'Hadley Wickham, qui travaille désormais pour RStudio.

{tidyverse} est également le nom d'une extension générique qui permets d'installer en une seule commande l'ensemble des packages constituant le *tidyverse* :

```
install.packages("tidyverse")
```

Lorsque l'on charge le package $\{tidyverse\}$ avec library(), cela charge également en mémoire les principaux packages du $tidyverse^2$.

```
library(tidyverse)
```

² Si on a besoin d'un autre package du *tidyverse* comme {lubridate}, il faudra donc le charger individuellement.

```
-- Attaching packages -----
                             ----- tidyverse 1.3.2 --
v ggplot2 3.4.0
                 v purrr
                          1.0.1
v tibble 3.1.8
                 v dplyr
                         1.0.10
                 v stringr 1.5.0
v tidyr
        1.2.1
                 v forcats 0.5.2
v readr
        2.1.3
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
              masks stats::lag()
```


Figure 1.1: Packages chargés avec library(tidyverse)

2 Vecteurs

Les vecteurs sont l'objet de base de ${\bf R}$ et correspondent à une liste de valeurs. Leurs propriétés fondamentales sont :

- les vecteurs sont unidimensionnels (i.e. ce sont des objets à une seule dimension, à la différence d'une matrice par exemple);
- toutes les valeurs d'un vecteur sont d'un seul et même type ;
- les vecteurs ont une longueur qui correspond au nombre de valeurs contenues dans le vecteur.

2.1 Types et classes

Dans \mathbf{R} , il existe plusieurs types fondamentaux de vecteurs et, en particulier, :

- les nombres réels (c'est-à-dire les nombres décimaux³), par exemple 5.23;
- les nombres entiers, que l'on saisi en ajoutant le suffixe L⁴, par exemple 4L;
- les chaînes de caractères (qui correspondent à du texte),
 que l'on saisit avec des guillemets doubles (") ou simples
 ('), par exemple "abc";
- les valeurs logiques ou valeurs booléennes, à savoir vrai ou faux, que l'on représente avec les mots TRUE et FALSE (en majuscules⁵).

En plus de ces types de base, il existe de nombreux autres types de vecteurs utilisés pour représenter toutes sortes de données, comme les facteurs (voir Chapitre 9) ou les dates (voir Chapitre 31).

³ Pour rappel, **R** étant anglophone, le caractère utilisé pour indiqué les chiffres après la virgule est le point (.).

⁴ R utilise 32 bits pour représenter des nombres entiers, ce qui correspond en informatique à des entiers longs ou *long integers* en anglais, d'où la lettre L utilisée pour indiquer un nombre entier.

⁵ On peut également utiliser les raccourcis T et F. Cependant, pour une meilleure lisibilité du code, il est préférable d'utiliser les versions longues TRUE et FALSE.

La fonction class() renvoie la nature d'un vecteur tandis que la fonction typeof() indique la manière dont un vecteur est stocké de manière interne par R.

Table 2.1: Le type et la classe des principaux types de vecteurs

x	class(x)	typeof(x)
3L	integer	integer
5.3	numeric	double
TRUE	logical	logical
"abc"	character	character
<pre>factor("a")</pre>	factor	integer
as.Date("2020-0	01-01") Date	double

• Astuce

Pour un vecteur numérique, le type est "double" car ${\bf R}$ utilise une double précision pour stocker informatiquement les nombres réels.

En interne, les facteurs sont représentés par un nombre entier auquel est attaché une étiquette, c'est pourquoi typeof() renvoie "integer".

Quand aux dates, elles sont stockées en interne sous la forme d'un nombre réel représentant le nombre de jours depuis le 1^{er} janvier 1970, d'où le fait que typeof() renvoie "double".

2.2 Création d'un vecteur

Pour créer un vecteur, on utilisera la fonction c() en lui passant la liste des valeurs à combiner⁶.

taille <-
$$c(1.88, 1.65, 1.92, 1.76, NA, 1.72)$$
 taille

[1] 1.88 1.65 1.92 1.76 NA 1.72

⁶ La lettre c est un raccourci du mot anglais *combine*, puisque cette fonction permet de combiner des valeurs individuelles dans un vecteur unique.

```
sexe <- c("h", "f", "h", "f", "f", "f")
sexe

[1] "h" "f" "h" "f" "f"

urbain <- c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE)
urbain</pre>
```

[1] TRUE TRUE FALSE FALSE FALSE TRUE

Nous l'avons vu, toutes les valeurs d'un vecteur doivent obligatoirement être du même type. Dès lors, si on essaie de combiner des valeurs de différents types, **R** essaiera de les convertir au mieux. Par exemple :

[1] "character"

Dans le cas présent, toutes les valeurs ont été converties en chaînes de caractères.

Dans certaines situations, on peut avoir besoin de créer un vecteur d'une certaine longueur mais dont toutes les valeurs sont identiques. Cela se réalise facilement avec rep() à qui on indiquera la valeur à répéter puis le nombre de répétitions :

```
rep(2, 10)
[1] 2 2 2 2 2 2 2 2 2 2 2
```

On peut aussi lui indiquer plusieurs valeurs qui seront alors répétées en boucle :

```
rep(c("a", "b"), 3)
[1] "a" "b" "a" "b" "a" "b"
```

Dans d'autres situations, on peut avoir besoin de créer un vecteur contenant une suite de valeurs, ce qui se réalise aisément avec seq() à qui on précisera les arguments from (point de départ), to (point d'arrivée) et by (pas). Quelques exemples valent mieux qu'un long discours :

```
seq(1, 10)

[1] 1 2 3 4 5 6 7 8 9 10

seq(5, 17, by = 2)

[1] 5 7 9 11 13 15 17

seq(10, 0)

[1] 10 9 8 7 6 5 4 3 2 1 0

seq(100, 10, by = -10)

[1] 100 90 80 70 60 50 40 30 20 10

seq(1.23, 5.67, by = 0.33)

[1] 1.23 1.56 1.89 2.22 2.55 2.88 3.21 3.54 3.87 4.20 4.53 4.86 5.19 5.52
```

L'opérateur : est un raccourci de la fonction seq() pour créer une suite de nombres entiers. Il s'utilise ainsi :

```
1:5

[1] 1 2 3 4 5

24:32

[1] 24 25 26 27 28 29 30 31 32

55:43

[1] 55 54 53 52 51 50 49 48 47 46 45 44 43

2.3 Longueur d'un vecteur

La longueur d'un vecteur correspond au nombre de valeurs qui le composent. Elle s'obtient avec length():

length(taille)
```

```
length(taille)

[1] 6

length(c("a", "b"))

[1] 2

La longueur d'un vecteur vide (NULL) est zéro.
length(NULL)
```

[1] 0

2.4 Combiner des vecteurs

Pour combiner des vecteurs, rien de plus simple. Il suffit d'utiliser c()! Les valeurs des différents vecteurs seront mises bout à bout pour créer un unique vecteur.

```
x <- c(2, 1, 3, 4)
length(x)

[1] 4

y <- c(9, 1, 2, 6, 3, 0)
length(y)

[1] 6

z <- c(x, y)
z

[1] 2 1 3 4 9 1 2 6 3 0

length(z)

[1] 10</pre>
```

2.5 Vecteurs nommés

Les différentes valeurs d'un vecteur peuvent être nommées. Une première manière de nommer les éléments d'un vecteur est de le faire à sa création :

```
sexe <- c(
  Michel = "h", Anne = "f",
  Dominique = NA, Jean = "h",</pre>
```

```
Claude = NA, Marie = "f"
)
```

Lorsqu'on affiche le vecteur, la présentation change quelque peu.

sexe

```
Michel Anne Dominique Jean Claude Marie
"h" "f" NA "h" NA "f"
```

La liste des noms s'obtient avec names().

```
names(sexe)
```

```
[1] "Michel" "Anne" "Dominique" "Jean" "Claude" "Marie"
```

Pour ajouter ou modifier les noms d'un vecteur, on doit attribuer un nouveau vecteur de noms :

```
names(sexe) <- c("Michael", "Anna", "Dom", "John", "Alex", "Mary")
sexe</pre>
```

```
Michael Anna Dom John Alex Mary
"h" "f" NA "h" NA "f"
```

Pour supprimer tous les noms, il y a la fonction unname():

```
anonyme <- unname(sexe)
anonyme</pre>
```

```
[1] "h" "f" NA "h" NA "f"
```

2.6 Indexation par position

L'indexation est l'une des fonctionnalités les plus puissantes mais aussi les plus difficiles à maîtriser de **R**. Il s'agit d'opérations permettant de sélectionner des sous-ensembles de valeurs en fonction de différents critères. Il existe trois types d'indexation : (i) l'indexation par position, (ii) l'indexation par nom et (iii) l'indexation par condition. Le principe est toujours le même : on indique entre crochets⁷ ([]) ce qu'on souhaite garder ou non.

Commençons par l'indexation par position encore appelée indexation directe. Ce mode le plus simple d'indexation consiste à indiquer la position des éléments à conserver.

Reprenons notre vecteur taille:

```
taille
[1] 1.88 1.65 1.92 1.76 NA 1.72
```

Si on souhaite le premier élément du vecteur, on peut faire :

```
taille[1]
```

[1] 1.88

Si on souhaite les trois premiers éléments ou les éléments 2, 5 et 6 :

```
taille[1:3]

[1] 1.88 1.65 1.92

taille[c(2, 5, 6)]

[1] 1.65 NA 1.72
```

Si on veut le dernier élément :

⁷ Pour rappel, les crochets s'obtiennent sur un clavier français de type PC en appuyant sur la touche Alt Gr et la touche (ou).

```
taille[length(taille)]
```

[1] 1.72

Il est tout à fait possible de sélectionner les valeurs dans le désordre :

```
taille[c(5, 1, 4, 3)]
```

[1] NA 1.88 1.76 1.92

Dans le cadre de l'indexation par position, il est également possible de spécifier des nombres négatifs, auquel cas cela signifiera toutes les valeurs sauf celles-là. Par exemple :

```
taille[c(-1, -5)]
```

[1] 1.65 1.92 1.76 1.72

À noter, si on indique une position au-delà de la longueur du vecteur, ${\bf R}$ renverra NA. Par exemple :

```
taille[23:25]
```

[1] NA NA NA

2.7 Indexation par nom

Lorsqu'un vecteur est nommé, il est dès lors possible d'accéder à ses valeurs à partir de leur nom. Il s'agit de l'indexation par nom.

```
sexe["Anna"]
```

Anna

"f"

```
sexe[c("Mary", "Michael", "John")]

Mary Michael John
  "f" "h" "h"
```

Par contre il n'est pas possible d'utiliser l'opérateur – comme pour l'indexation directe. Pour exclure un élément en fonction de son nom, on doit utiliser une autre forme d'indexation, l'indexation par condition, expliquée dans la section suivante. On peut ainsi faire...

```
sexe[names(sexe) != "Dom"]
```

... pour sélectionner tous les éléments sauf celui qui s'appelle Dom.

2.8 Indexation par condition

L'indexation par condition consiste à fournir un vecteur logique indiquant si chaque élément doit être inclus (si TRUE) ou exclu (si FALSE). Par exemple :

```
sexe
```

```
Michael Anna Dom John Alex Mary
"h" "f" NA "h" NA "f"
```

sexe[c(TRUE, FALSE, FALSE, TRUE, FALSE, FALSE)]

```
Michael John
```

Écrire manuellement une telle condition n'est pas très pratique à l'usage. Mais supposons que nous ayons également à notre disposition les deux vecteurs suivants, également de longueur 6.

```
urbain <- c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE) poids <- c(80, 63, 75, 87, 82, 67)
```

Le vecteur **urbain** est un vecteur logique. On peut directement l'utiliser pour avoir le sexe des enquêtés habitant en milieu urbain :

sexe[urbain]

```
Michael Anna Mary
"h" "f" "f"
```

Supposons qu'on souhaite maintenant avoir la taille des individus pesant 80 kilogrammes ou plus. Nous pouvons effectuer une comparaison à l'aide des opérateurs de comparaison suivants :

Table 2.2: Opérateurs de comparaison

Opérateur de comparaison	Signification
==	égal à
%in%	appartient à
!=	différent de
>	strictement supérieur à
<	strictement inférieur à
>=	supérieur ou égal à
<=	inférieur ou égal à

Voyons tout de suite un exemple :

```
poids >= 80
```

[1] TRUE FALSE FALSE TRUE TRUE FALSE

Que s'est-il passé ? Nous avons fourni à **R** une condition et il nous a renvoyé un vecteur logique avec autant d'éléments qu'il y a d'observations et dont la valeur est TRUE si la condition

est remplie et FALSE dans les autres cas. Nous pouvons alors utiliser ce vecteur logique pour obtenir la taille des participants pesant 80 kilogrammes ou plus :

```
taille[poids >= 80]
```

[1] 1.88 1.76 NA

On peut combiner ou modifier des conditions à l'aide des opérateurs logiques habituels :

Table 2.3: Opérateurs logiques

Opérateur logique	Signification
& 	et logique ou logique
!	négation logique

Supposons que je veuille identifier les personnes pesant 80 kilogrammes ou plus **et** vivant en milieu urbain :

```
poids >= 80 & urbain
```

[1] TRUE FALSE FALSE FALSE FALSE

Les résultats sont différents si je souhaite isoler les personnes pesant 80 kilogrammes ou plus **ou** vivant milieu urbain :

```
poids >= 80 | urbain
```

[1] TRUE TRUE FALSE TRUE TRUE TRUE

Comparaison et valeur manquante

Une remarque importante : quand l'un des termes d'une condition comporte une valeur manquante (NA), le résultat de cette condition n'est pas toujours TRUE ou FALSE, il peut aussi être à son tour une valeur manquante.

```
taille
```

[1] 1.88 1.65 1.92 1.76 NA 1.72

```
taille > 1.8
```

[1] TRUE FALSE TRUE FALSE NA FALSE

On voit que le test NA > 1.8 ne renvoie ni vrai ni faux, mais NA.

Une autre conséquence importante de ce comportement est qu'on ne peut pas utiliser l'opérateur l'expression == NA pour tester la présence de valeurs manquantes. On utilisera à la place la fonction ad hoc is.na():

```
is.na(taille > 1.8)
```

[1] FALSE FALSE FALSE TRUE FALSE

Pour compliquer encore un peu le tout, lorsqu'on utilise une condition pour l'indexation, si la condition renvoie NA, R ne sélectionne pas l'élément mais retourne quand même la valeur NA. Ceci a donc des conséquences sur le résultat d'une indexation par comparaison.

Par exemple si je cherche à connaître le poids des personnes mesurant 1,80 mètre ou plus :

```
taille
```

[1] 1.88 1.65 1.92 1.76 NA 1.72

poids

[1] 80 63 75 87 82 67

poids[taille > 1.8]

```
[1] 80 75 NA
```

Les éléments pour lesquels la taille n'est pas connue ont été transformés en NA, ce qui n'influera pas le calcul d'une moyenne. Par contre, lorsqu'on utilisera assignation et indexation ensemble, cela peut créer des problèmes. Il est donc préférable lorsqu'on a des valeurs manquantes de les exclure ainsi:

```
poids[taille > 1.8 & !is.na(taille)]
[1] 80 75
```

2.9 Assignation par indexation

L'indexation peut être combinée avec l'assignation (opérateur <-) pour modifier seulement certaines parties d'un vecteur. Ceci fonctionne pour les différents types d'indexation évoqués précédemment.

```
v <- 1:5
[1] 1 2 3 4 5
  v[1] <- 3
[1] 3 2 3 4 5
  sexe["Alex"] <- "non-binaire"</pre>
  sexe
      Michael
                                                                        Alex
                         Anna
                                          Dom
                                                        John
           "h"
                          "f"
                                           NA
                                                          "h" "non-binaire"
         Mary
           "f"
```

Enfin on peut modifier plusieurs éléments d'un seul coup soit en fournissant un vecteur, soit en profitant du mécanisme de recyclage. Les deux commandes suivantes sont ainsi rigoureusement équivalentes :

```
sexe[c(1,3,4)] <- c("Homme", "Homme", "Homme")
sexe[c(1,3,4)] <- "Homme"</pre>
```

L'assignation par indexation peut aussi être utilisée pour ajouter une ou plusieurs valeurs à un vecteur :

```
length(sexe)
[1] 6
  sexe[7] <- "f"
  sexe
      Michael
                         Anna
                                         Dom
                                                        John
                                                                       Alex
      "Homme"
                          "f"
                                     "Homme"
                                                     "Homme" "non-binaire"
         Mary
           "f"
                          "f"
  length(sexe)
```

[1] 7

2.10 En résumé

- Un vecteur est un objet unidimensionnel contenant une liste de valeurs qui sont toutes du même type (entières, numériques, textuelles ou logiques).
- La fonction class() permet de connaître le type du vecteur et la fonction length() sa longueur, c'est-à-dire son nombre d'éléments.
- La fonction c() sert à créer et à combiner des vecteurs.

- Les valeurs manquantes sont représentées avec NA.
- Un vecteur peut être nommé, c'est-à-dire qu'un nom textuel a été associé à chaque élément. Cela peut se faire lors de sa création ou avec la fonction names().
- L'indexation consiste à extraire certains éléments d'un vecteur. Pour cela, on indique ce qu'on souhaite extraire entre crochets ([]) juste après le nom du vecteur. Le type d'indexation dépend du type d'information transmise.
- S'il s'agit de nombres entiers, c'est l'indexation par position : les nombres représentent la position dans le vecteur des éléments qu'on souhaite extraire. Un nombre négatif s'interprète comme tous les éléments sauf celui-là.
- Si on indique des chaînes de caractères, c'est l'indexation par nom : on indique le nom des éléments qu'on souhaite extraire. Cette forme d'indexation ne fonctionne que si le vecteur est nommé.
- Si on transmet des valeurs logiques, le plus souvent sous la forme d'une condition, c'est l'indexation par condition : TRUE indique les éléments à extraire et FALSE les éléments à exclure. Il faut être vigilant aux valeurs manquantes (NA) dans ce cas précis.
- Enfin, il est possible de ne modifier que certains éléments d'un vecteur en ayant recours à la fois à l'indexation ([]) et à l'assignation (<-).

2.11 webin-R

On pourra également se référer au webin-R #02 (les bases du langage R) sur YouTube.

https://youtu.be/Eh8piunoqQc

3 Listes

Par nature, les vecteurs ne peuvent contenir que des valeurs de même type (numérique, textuel ou logique). Or, on peut avoir besoin de représenter des objets plus complexes composés d'éléments disparates. C'est ce que permettent les listes.

3.1 Propriétés et création

Une liste se crée tout simplement avec la fonction list():

```
11 <- list(1:5, "abc")
11

[[1]]
[1] 1 2 3 4 5

[[2]]
[1] "abc"</pre>
```

Une liste est un ensemble d'objets, quels qu'ils soient, chaque élément d'une liste pouvant avoir ses propres dimensions. Dans notre exemple précédent, nous avons créé une liste 11 composée de deux éléments : un vecteur d'entiers de longueur 5 et un vecteur textuel de longueur 1. La longueur d'une liste correspond aux nombres d'éléments qu'elle contient et s'obtient avec length() :

```
length(11)
```

[1] 2

Comme les vecteurs, une liste peut être nommée et les noms des éléments d'une liste sont accessibles avec names():

```
12 <- list(
    minuscules = letters,
    majuscules = LETTERS,
    mois = month.name
  )
  12
$minuscules
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
$majuscules
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "O" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"
$mois
 [1] "January"
                 "February"
                             "March"
                                         "April"
                                                     "May"
                                                                  "June"
                             "September" "October"
 [7] "July"
                 "August"
                                                     "November" "December"
  length(12)
[1] 3
  names(12)
[1] "minuscules" "majuscules" "mois"
Que se passe-t-il maintenant si on effectue la commande
suivante?
  1 <- list(11, 12)
```

À votre avis, quelle est la longueur de cette nouvelle liste 1?

5?

```
length(1)
```

[1] 2

Eh bien non ! Elle est de longueur 2 car nous avons créé une liste composée de deux éléments qui sont eux-mêmes des listes. Cela est plus lisible si on fait appel à la fonction str() qui permet de visualiser la structure d'un objet.

```
str(1)
List of 2
 $ :List of 2
  ..$: int [1:5] 1 2 3 4 5
  ..$ : chr "abc"
 $ :List of 3
  ..$ minuscules: chr [1:26] "a" "b" "c" "d" ...
  ..$ majuscules: chr [1:26] "A" "B" "C" "D" ...
                 : chr [1:12] "January" "February" "March" "April" ...
  ..$ mois
Une liste peut contenir tous types d'objets, y compris d'autres
listes. Pour combiner les éléments d'une liste, il faut utiliser la
fonction append():
  1 <- append(11, 12)</pre>
  length(1)
[1] 5
  str(1)
List of 5
 $
              : int [1:5] 1 2 3 4 5
 $
              : chr "abc"
 $ minuscules: chr [1:26] "a" "b" "c" "d" ...
```

: chr [1:12] "January" "February" "March" "April" \dots

\$ majuscules: chr [1:26] "A" "B" "C" "D" ...

Note

On peut noter en passant qu'une liste peut tout à fait n'être que partiellement nommée.

3.2 Indexation

Les crochets simples ([]) fonctionnent comme pour les vecteurs. On peut utiliser à la fois l'indexation par position, l'indexation par nom et l'indexation par condition.

```
1
[[1]]
[1] 1 2 3 4 5
[[2]]
[1] "abc"
$minuscules
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
$majuscules
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"
$mois
 [1] "January"
                             "March"
                                          "April"
                 "February"
                                                      "May"
                                                                  "June"
 [7] "July"
                             "September" "October"
                                                     "November" "December"
                 "August"
  1[c(1,3,4)]
[[1]]
[1] 1 2 3 4 5
$minuscules
```

```
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
$majuscules
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"
  1[c("majuscules", "minuscules")]
$majuscules
 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"
$minuscules
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
  1[c(TRUE, TRUE, FALSE, FALSE, TRUE)]
[[1]]
[1] 1 2 3 4 5
[[2]]
[1] "abc"
$mois
 [1] "January"
                              "March"
                                           "April"
                 "February"
                                                       "May"
                                                                    "June"
                              "September" "October"
 [7] "July"
                 "August"
                                                       "November"
                                                                   "December"
Même si on extrait un seul élément, l'extraction obtenue avec
les crochets simples renvoie toujours une liste, ici composée d'un
seul élément :
  str(1[1])
List of 1
 $ : int [1:5] 1 2 3 4 5
```

Supposons que je souhaite calculer la moyenne des valeurs du premier élément de ma liste. Essayons la commande suivante :

```
mean(1[1])
```

Warning in mean.default(l[1]): l'argument n'est ni numérique, ni logique : renvoi de NA

[1] NA

Nous obtenons un message d'erreur. En effet, **R** ne sait pas calculer une moyenne à partir d'une liste. Ce qu'il lui faut, c'est un vecteur de valeurs numériques. Autrement dit, ce que nous cherchons à obtenir c'est le contenu même du premier élément de notre liste et non une liste à un seul élément.

C'est ici que les doubles crochets ([[]]) vont rentrer en jeu. Pour ces derniers, nous pourrons utiliser l'indexation par position ou l'indexation par nom, mais pas l'indexation par condition. De plus, le critère qu'on indiquera doit indiquer un et un seul élément de notre liste. Au lieu de renvoyer une liste à un élément, les doubles crochets vont renvoyer l'élément désigné.

```
str(1[1])
List of 1
$ : int [1:5] 1 2 3 4 5

str(1[[1]])
int [1:5] 1 2 3 4 5
```

Maintenant, nous pouvons calculer notre moyenne:

```
mean(1[[1]])
```

[1] 3

Nous pouvons aussi utiliser l'indexation par nom.

```
1[["mois"]]
```

```
[1] "January" "February" "March" "April" "May" "June" [7] "July" "August" "September" "October" "November" "December"
```

Mais il faut avouer que cette écriture avec doubles crochets et guillemets est un peu lourde. Heureusement, un nouvel acteur entre en scène : le symbole dollar (\$). C'est un raccourci des doubles crochets pour l'indexation par nom qu'on utilise ainsi :

```
1$mois
```

```
[1] "January" "February" "March" "April" "May" "June" [7] "July" "August" "September" "October" "November" "December"
```

Les écritures l\$mois et l[["mois"]] sont équivalentes. Attention ! Cela ne fonctionne que pour l'indexation par nom.

1\$1

Error: unexpected numeric constant in "1\$1"

L'assignation par indexation fonctionne également avec les doubles crochets ou le signe dollar :

```
l[[2]] <- list(c("un", "vecteur", "textuel"))
l$mois <- c("Janvier", "Février", "Mars")
l</pre>
```

```
[[1]]
[1] 1 2 3 4 5

[[2]]
[[2]][[1]]
[1] "un" "vecteur" "textuel"

$minuscules
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

$majuscules
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "p" "Q" "R" "S"
[20] "T" "U" "V" "W" "X" "Y" "Z"

$mois
[1] "Janvier" "Février" "Mars"
```

3.3 En résumé

- Les listes sont des objets unidimensionnels pouvant contenir tout type d'objet, y compris d'autres listes.
- Elles ont une longueur qu'on obtient avec length().
- On crée une liste avec list() et on peut fusionner des listes avec append().
- Tout comme les vecteurs, les listes peuvent être nommées et les noms des éléments s'obtiennent avec base::names().
- Les crochets simples ([]) permettent de sélectionner les éléments d'une liste, en utilisant l'indexation par position, l'indexation par nom ou l'indexation par condition. Cela renvoie toujours une autre liste.
- Les doubles crochets ([[]]) renvoient directement le contenu d'un élément de la liste qu'on aura sélectionné par position ou par nom.
- Le symbole \$ est un raccourci pour facilement sélectionner un élément par son nom, liste\$nom étant équivalent à liste[["nom"]].

3.4 webin-R

On pourra également se référer au webin-R#02 (les bases du langage R) sur YouTube.

https://youtu.be/Eh8piunoqQc

4 Tableaux de données

Les tableaux de données, ou *data frame* en anglais, est un type d'objets essentiel pour les données d'enquêtes.

4.1 Propriétés et création

Dans **R**, les tableaux de données sont tout simplement des listes (voir Chapitre 3) avec quelques propriétés spécifiques :

- les tableaux de données ne peuvent contenir que des vecteurs ;
- tous les vecteurs d'un tableau de données ont la même longueur ;
- tous les éléments d'un tableau de données sont nommés et ont chacun un nom unique.

Dès lors, un tableau de données correspond aux fichiers de données qu'on a l'habitude de manipuler dans d'autres logiciels de statistiques comme **SPSS** ou **Stata**. Les variables sont organisées en colonnes et les observations en lignes.

On peut créer un tableau de données avec la fonction data.frame():

```
df <- data.frame(
    sexe = c("f", "f", "h", "h"),
    age = c(52, 31, 29, 35),
    blond = c(FALSE, TRUE, TRUE, FALSE)
)
df

sexe age blond
1    f 52 FALSE</pre>
```

```
31
            TRUE
     f
3
     h
        29
            TRUE
     h
        35 FALSE
  str(df)
'data.frame':
                4 obs. of 3 variables:
               "f" "f" "h" "h"
 $ sexe : chr
 $ age : num
               52 31 29 35
$ blond: logi FALSE TRUE TRUE FALSE
```

Un tableau de données étant une liste, la fonction length() renverra le nombre d'éléments de la liste, donc dans le cas présent le nombre de variables, et names() leurs noms:

```
length(df)

[1] 3

    names(df)

[1] "sexe" "age" "blond"
```

Comme tous les éléments d'un tableau de données ont la même longueur, cet objet peut être vu comme bidimensionnel. Les fonctions nrow(), ncol() et dim() donnent respectivement le nombre de lignes, le nombre de colonnes et les dimensions de notre tableau.

```
nrow(df)
[1] 4
    ncol(df)
[1] 3
```

```
dim(df)
```

[1] 4 3

De plus, tout comme les colonnes ont un nom, il est aussi possible de nommer les lignes avec row.names():

```
row.names(df) <- c("Anna", "Mary-Ann", "Michael", "John")
df</pre>
```

4.2 Indexation

Les tableaux de données étant des listes, nous pouvons donc utiliser les crochets simples ([]), les crochets doubles ([[]]) et le symbole dollar (\$) pour extraire des parties de notre tableau, de la même manière que pour n'importe quelle liste.

```
df[1]
```

```
Anna f
Mary-Ann f
Michael h
John h
```

```
df[[1]]
```

```
[1] "f" "f" "h" "h"
```

df\$sexe

```
[1] "f" "f" "h" "h"
```

Cependant, un tableau de données étant un objet bidimensionnel, il est également possible d'extraire des données sur deux dimensions, à savoir un premier critère portant sur les lignes et un second portant sur les colonnes. Pour cela, nous utiliserons les crochets simples ([]) en séparant nos deux critères par une virgule (,).

Un premier exemple:

df

```
sexe age blond
Anna f 52 FALSE
Mary-Ann f 31 TRUE
Michael h 29 TRUE
John h 35 FALSE
```

```
df[3, 2]
```

[1] 29

Cette première commande indique que nous souhaitons la troisième ligne de la seconde colonne, autrement dit l'âge de Michael. Le même résultat peut être obtenu avec l'indexation par nom, l'indexation par condition, ou un mélange de tout ça.

```
df["Michael", "age"]
[1] 29

df[c(F, F, T, F), c(F, T, F)]
[1] 29
```

```
df[3, "age"]
[1] 29
  df["Michael", 2]
[1] 29
```

Il est également possible de préciser un seul critère. Par exemple, si je souhaite les deux premières observations, ou les variables sexe et blond:

```
df[1:2,]
```

sexe age blond Anna f 52 FALSE Mary-Ann f 31 TRUE

```
df[,c("sexe", "blond")]
```

sexe blond f FALSE Anna Mary-Ann TRUE Michael TRUE John h FALSE

Il a suffi de laisser un espace vide avant ou après la virgule.

Avertissement

ATTENTION! Il est cependant impératif de laisser la virgule pour indiquer à \mathbf{R} qu'on souhaite effectuer une indexation à deux dimensions. Si on oublie la virgule, cela nous ramène au mode de fonctionnement des listes. Et le résultat n'est pas forcément le même :

```
df[2,]
         sexe age blond
Mary-Ann
           f 31 TRUE
  df[, 2]
[1] 52 31 29 35
  df[2]
         age
Anna
         52
Mary-Ann 31
Michael
          29
         35
John
```

Note

Au passage, on pourra noter quelques subtilités sur le

```
résultat renvoyé.
  str(df[2, ])
'data.frame':
               1 obs. of 3 variables:
$ sexe : chr "f"
$ age : num 31
$ blond: logi TRUE
  str(df[, 2])
num [1:4] 52 31 29 35
  str(df[2])
'data.frame': 4 obs. of 1 variable:
 $ age: num 52 31 29 35
```

```
str(df[[2]])
```

num [1:4] 52 31 29 35

df[2,] signifie qu'on veut toutes les variables pour le second individu. Le résultat est un tableau de données à une ligne et trois colonnes. df[2] correspond au mode d'extraction des listes et renvoie donc une liste à un élément, en l'occurrence un tableau de données à quatre observations et une variable. df[[2]] quant à lui renvoie le contenu de cette variable, soit un vecteur numérique de longueur quatre. Reste df[, 2] qui renvoie toutes les observations pour la seconde colonne. Or l'indexation bidimensionnelle a un fonctionnement un peu particulier : par défaut elle renvoie un tableau de données mais s'il y a une seule variable dans l'extraction, c'est un vecteur qui est renvoyé. Pour plus de détails, on pourra consulter l'entrée d'aide help("[.data.frame").

4.3 Afficher les données

Prenons un tableau de données un peu plus conséquent, en l'occurrence le jeu de données ?questionr::hdv2003 disponible dans l'extension {questionr} et correspondant à un extrait de l'enquête *Histoire de vie* réalisée par l'INSEE en 2003. Il contient 2000 individus et 20 variables.

```
library(questionr)
data(hdv2003)
```

Si on demande d'afficher l'objet hdv2003 dans la console (résultat non reproduit ici), **R** va afficher l'ensemble du contenu de hdv2003 à l'écran ce qui, sur un tableau de cette taille, ne sera pas très lisible. Pour une exploration visuelle, le plus simple est souvent d'utiliser la visionneuse intégrée à **RStudio** et qu'on peut appeler avec la fonction View().

View(hdv2003)

Figure 4.1: Interface View() de R RStudio

Les fonctions head() et tail(), qui marchent également sur les vecteurs, permettent d'afficher seulement les premières (respectivement les dernières) lignes d'un tableau de données:

head(hdv2003)

```
id age
                                                             nivetud
      28 Femme Enseignement superieur y compris technique superieur 2634.398
2
     23 Femme
                                                                <NA> 9738.396
3
      59 Homme
                                  Derniere annee d'etudes primaires 3994.102
4
     34 Homme Enseignement superieur y compris technique superieur 5731.662
5
                                  Derniere annee d'etudes primaires 4329.094
  5
     71 Femme
6
  6 35 Femme
                      Enseignement technique ou professionnel court 8674.699
                            qualif freres.soeurs clso
                  occup
1 Exerce une profession
                           Employe
                                                8
                                                   Oui
        Etudiant, eleve
                                                2
                                                   Oui
3 Exerce une profession Technicien
                                                   Non
                                                   Non
4 Exerce une profession Technicien
                                                1
5
               Retraite
                           Employe
                                                0
                                                   Oui
6 Exerce une profession
                           Employe
                                                   Non
                                                   trav.imp
                                                               trav.satisf
1 Ni croyance ni appartenance
                                              Peu important Insatisfaction
```

2	Ni croyance ni appartenance)			<na></na>	•	<na></na>
3	Ni croyance ni appartenance	a Aussi	importar	nt que 1	e reste)	Equilibre
4	Appartenance sans pratique	Moins	importar	nt que 1	le reste	e Sat	tisfaction
5	Pratiquant regulier	:			<na></na>	•	<na></na>
6	Ni croyance ni appartenance)	Le	plus in	portant	;	Equilibre
	hard.rock lecture.bd peche.	chasse	cuisine	bricol	cinema	sport	heures.tv
1	Non Non	Non	Oui	Non	Non	Non	0
2	Non Non	Non	Non	Non	Oui	Oui	1
3	Non Non	Non	Non	Non	Non	Oui	0
4	Non Non	Non	Oui	Oui	Oui	Oui	2
5	Non Non	Non	Non	Non	Non	Non	3
6	Non Non	Non	Non	Non	Oui	Oui	2

tail(hdv2003, 2)

id age nivetud poids sexe 1999 1999 24 Femme Enseignement technique ou professionnel court 13740.810 2000 2000 66 Femme Enseignement technique ou professionnel long 7709.513 occup qualif freres.soeurs clso 1999 Exerce une profession Employe 2 Non 2000 Au foyer Employe 3 Non relig trav.imp trav.satisf 1999 Appartenance sans pratique Moins important que le reste Equilibre 2000 Appartenance sans pratique hard.rock lecture.bd peche.chasse cuisine bricol cinema sport heures.tv 1999 Non Non Non Non Non Oui Non 0.3 2000 Non Oui Non Oui Non 0.0 Non Non

L'extension {dplyr} propose une fonction dplyr::glimpse() (ce qui signifie aperçu en anglais) qui permet de visualiser rapidement et de manière condensée le contenu d'un tableau de données.

library(dplyr)
glimpse(hdv2003)

Rows: 2,000 Columns: 20

```
$ id
              <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1~
              <int> 28, 23, 59, 34, 71, 35, 60, 47, 20, 28, 65, 47, 63, 67, ~
$ age
              <fct> Femme, Femme, Homme, Homme, Femme, Femme, Femme, Homme, ~
$ sexe
$ nivetud
              <fct> "Enseignement superieur y compris technique superieur", ~
$ poids
              <dbl> 2634.3982, 9738.3958, 3994.1025, 5731.6615, 4329.0940, 8~
              <fct> "Exerce une profession", "Etudiant, eleve", "Exerce une ~
$ occup
              <fct> Employe, NA, Technicien, Technicien, Employe, Employe, 0~
$ qualif
$ freres.soeurs <int> 8, 2, 2, 1, 0, 5, 1, 5, 4, 2, 3, 4, 1, 5, 2, 3, 4, 0, 2,~
              <fct> Oui, Oui, Non, Non, Oui, Non, Oui, Non, Oui, Non, Oui, O~
$ clso
$ relig
              <fct> Ni croyance ni appartenance, Ni croyance ni appartenance~
              <fct> Peu important, NA, Aussi important que le reste, Moins i~
$ trav.imp
              <fct> Insatisfaction, NA, Equilibre, Satisfaction, NA, Equilib~
$ trav.satisf
              $ hard.rock
$ lecture.bd
              $ peche.chasse
              <fct> Non, Non, Non, Non, Non, Oui, Oui, Non, Non, Non, N~
              <fct> Oui, Non, Non, Oui, Non, Oui, Oui, Oui, Non, Non, Oui, N~
$ cuisine
$ bricol
              <fct> Non, Non, Non, Oui, Non, Non, Oui, Non, Oui, O~
$ cinema
              <fct> Non, Oui, Non, Oui, Non, Oui, Non, Non, Oui, Oui, Oui, N~
$ sport
              <fct> Non, Oui, Oui, Oui, Non, Oui, Non, Non, Oui, Non, O~
$ heures.tv
              <dbl> 0.0, 1.0, 0.0, 2.0, 3.0, 2.0, 2.9, 1.0, 2.0, 2.0, 1.0, 0~
```

L'extension {labelled} propose une fonction labelled::look_for() qui permet de lister les différentes variables d'un fichier de données:

```
library(labelled)
look_for(hdv2003)
```

```
pos variable
                    label col_type missing
1
    id
                           int
                                     0
2
                           int
                                     0
    age
3
                           fct
                                     0
    sexe
    nivetud
                           fct
                                     112
```

5	poids	-	dbl	0
6	occup	-	fct	0

7 quali:	f –	fct	347
----------	-----	-----	-----

8	freres.soeurs	; –	int	0
9	clso	-	fct	0

13 hard.rock - fct 0

14 lecture.bd - fct 0

15 peche.chasse - fct 0

16 cuisine - fct 0

17 bricol - fct 0

18 cinema - fct 0

19 sport - fct 0

20 heures.tv - dbl 5
values

 ${\tt Homme}$

Femme

N'a jamais fait d'etudes A arrete ses etudes, avant la derniere ann~

Derniere annee d'etudes primaires

1er cycle

2eme cycle

Enseignement technique ou professionnel co~ Enseignement technique ou professionnel lo~ Enseignement superieur y compris technique~

Exerce une profession

Chomeur

Etudiant, eleve

Retraite

Retire des affaires

Au foyer

Autre inactif

Ouvrier specialise

Ouvrier qualifie

Technicien

Profession intermediaire

Cadre

Employe

Autre

Oui

Non

Ne sait pas

Pratiquant regulier

Pratiquant occasionnel

Appartenance sans pratique Ni croyance ni appartenance Rejet NSP ou NVPR Le plus important Aussi important que le reste Moins important que le reste Peu important Satisfaction Insatisfaction Equilibre Non Oui Non Oui Non Oui Non Oui Non Oui Non Oui Non Oui

Lorsqu'on a un gros tableau de données avec de nombreuses variables, il peut être difficile de retrouver la ou les variables d'intérêt. Il est possible d'indiquer à labelled::look_for() un mot-clé pour limiter la recherche. Par exemple :

```
look_for(hdv2003, "trav")
```

Insatisfaction Equilibre

Il est à noter que si la recherche n'est pas sensible à la casse (i.e. aux majuscules et aux minuscules), elle est sensible aux accents.

La méthode summary() qui fonctionne sur tout type d'objet permet d'avoir quelques statistiques de base sur les différentes variables de notre tableau, les statistiques affichées dépendant du type de variable.

summary(hdv2003)

```
id
                       age
                                      sexe
       :
                         :18.00
           1.0
                                  Homme: 899
Min.
                 Min.
1st Qu.: 500.8
                 1st Qu.:35.00
                                  Femme: 1101
Median :1000.5
                 Median :48.00
Mean
       :1000.5
                 Mean
                         :48.16
3rd Qu.:1500.2
                  3rd Qu.:60.00
       :2000.0
                         :97.00
Max.
                 Max.
```

	nivetud	poids
Enseignement technique ou professionnel	court :463	Min. : 78.08
Enseignement superieur y compris techni	que superieur:441	1st Qu.: 2221.82
Derniere annee d'etudes primaires	:341	Median : 4631.19
1er cycle	:204	Mean : 5535.61
2eme cycle	:183	3rd Qu.: 7626.53
(Other)	:256	Max. :31092.14
NA's	:112	
occup	qualif	freres.soeurs
Exerce une profession:1049 Employe	:594	Min. : 0.000
Chomeur : 134 Ouvrier qu	nalifie :292	1st Qu.: 1.000
Etudiant, eleve : 94 Cadre	:260	Median : 2.000
Retraite : 392 Ouvrier sp	ecialise :203	Mean : 3.283
Retire des affaires : 77 Profession	intermediaire:160	3rd Qu.: 5.000
Au foyer : 171 (Other)	:144	Max. :22.000
Autre inactif : 83 NA's	:347	
clso	relig	
Oui : 936 Pratiquant regulier	:266	

Non :1037 Pratiquant occasionnel :442 Ne sait pas: 27 Appartenance sans pratique :760

Ni croyance ni appartenance:399
Rejet : 93
NSP ou NVPR : 40

trav.imp trav.satisf hard.rock lecture.bd

Le plus important : 29 Satisfaction :480 Non:1986 Non:1953 Aussi important que le reste:259 Insatisfaction:117 Oui: 14 Oui: 47

Moins important que le reste:708 Equilibre :451 Peu important : 52 NA's :952

NA's :952

peche.chasse cuisine bricol cinema sport heures.tv Non:1776 Non:1277 : 0.000 Non:1119 Non:1147 Non:1174 Min. Oui: 224 Oui: 853 Oui: 723 Oui: 881 Oui: 826 1st Qu.: 1.000

Median: 2.000
Mean: 2.247
3rd Qu.: 3.000
Max: :12.000

NA's :5

On peut également appliquer summary() à une variable particulière.

summary(hdv2003\$sexe)

Homme Femme 899 1101

summary(hdv2003\$age)

Min. 1st Qu. Median Mean 3rd Qu. Max. 18.00 35.00 48.00 48.16 60.00 97.00

4.4 En résumé

- Les tableaux de données sont des listes avec des propriétés particulières :
 - i. tous les éléments sont des vecteurs ;
 - ii. tous les vecteurs ont la même longueur ;
 - iii. tous les vecteurs ont un nom et ce nom est unique.
- On peut créer un tableau de données avec data.frame().
- Les tableaux de données correspondent aux fichiers de données qu'on utilise usuellement dans d'autres logiciels de statistiques : les variables sont représentées en colonnes et les observations en lignes.
- Ce sont des objets bidimensionnels : ncol() renvoie le nombre de colonnes et nrow() le nombre de lignes.
- Les doubles crochets ([[]]) et le symbole dollar (\$) fonctionnent comme pour les listes et permettent d'accéder aux variables.
- Il est possible d'utiliser des coordonnées bidimensionnelles avec les crochets simples ([]) en indiquant un critère sur les lignes puis un critère sur les colonnes, séparés par une virgule (,).

4.5 webin-R

On pourra également se référer au webin-R #02 (les bases du langage R) sur YouTube.

https://youtu.be/Eh8piunoqQc

5 Tibbles

5.1 Le concept de tidy data

Le {tidyverse} est en partie fondé sur le concept de *tidy data*, développé à l'origine par Hadley Wickham dans un article de 2014 du *Journal of Statistical Software*.

Il s'agit d'un modèle d'organisation des données qui vise à faciliter le travail souvent long et fastidieux de nettoyage et de préparation préalable à la mise en oeuvre de méthodes d'analyse.

Les principes d'un jeu de données tidy sont les suivants :

- 1. chaque variable est une colonne
- 2. chaque observation est une ligne
- 3. chaque type d'observation est dans une table différente

Un chapitre dédié à $\{\text{tidyr}\}\$ (voir Chapitre 32) présente comment définir et rendre des données tidy avec ce package.

Les extensions du {tidyverse}, notamment {ggplot2} et {dplyr}, sont prévues pour fonctionner avec des données tidy.

5.2 tibbles : des tableaux de données améliorés

Une autre particularité du {tidyverse} est que ces extensions travaillent avec des tableaux de données au format tibble::tibble(), qui est une évolution plus moderne du classique data.frame de R de base.

Ce format est fourni est géré par l'extension du même nom ({tibble}), qui fait partie du coeur du *tidyverse*. La plupart des fonctions des extensions du *tidyverse* acceptent des data.frames en entrée, mais retournent un *tibble*.

Contrairement aux data frames, les tibbles:

- n'ont pas de noms de lignes (rownames)
- autorisent des noms de colonnes invalides pour les data frames (espaces, caractères spéciaux, nombres...) ⁸
- s'affichent plus intelligemment que les data frames : seules les premières lignes sont affichées, ainsi que quelques informations supplémentaires utiles (dimensions, types des colonnes...)
- ne font pas de partial matching sur les noms de colonnes
- affichent un avertissement si on essaie d'accéder à une colonne qui n'existe pas

Pour autant, les tibbles restent compatibles avec les data frames.

Il est possible de créer un *tibble* manuellement avec tibble::tibble().

```
library(tidyverse)
tibble(
    x = c(1.2345, 12.345, 123.45, 1234.5, 12345),
    y = c("a", "b", "c", "d", "e")
)
```

On peut ainsi facilement convertir un *data frame* en tibble avec tibble::as_tibble():

⁸ Quand on veut utiliser des noms de ce type, on doit les entourer avec des backticks (')

⁹ Dans **R** base, si une table d contient une colonne qualif, d\$qual retournera cette colonne.

```
d <- as_tibble(mtcars)
d</pre>
```

```
# A tibble: 32 x 11
     mpg
            cyl
                 disp
                           hp
                                drat
                                         wt
                                              qsec
                                                       ٧s
                                                              am
                                                                  gear
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                 <dbl>
                                                          <dbl>
                                                                        <dbl>
                                       2.62
 1
    21
                  160
                          110
                                3.9
                                              16.5
                                                        0
                                                                      4
                                                                             4
 2
    21
                  160
                                       2.88
                                                                      4
                                                                             4
               6
                          110
                                3.9
                                              17.0
                                                        0
                                                               1
 3
    22.8
              4
                  108
                           93
                                3.85
                                      2.32
                                              18.6
                                                               1
                                                                      4
                                                                             1
                                                        1
 4
    21.4
                  258
                                3.08
                                      3.22
                                              19.4
                                                               0
                                                                      3
                                                                             1
              6
                          110
                                                        1
 5
    18.7
                                3.15
                                      3.44
                                              17.0
                                                        0
                                                               0
                                                                      3
                                                                             2
              8
                  360
                          175
 6
    18.1
               6
                  225
                          105
                                2.76
                                      3.46
                                              20.2
                                                        1
                                                               0
                                                                      3
                                                                             1
 7
    14.3
                          245
                                3.21
                                      3.57
                                              15.8
                                                        0
                                                               0
                                                                      3
                                                                             4
                  360
                                                                             2
 8
    24.4
                  147.
                           62
                                3.69
                                      3.19
                                              20
                                                               0
                                                                      4
 9
    22.8
              4
                  141.
                           95
                                3.92
                                      3.15
                                              22.9
                                                        1
                                                               0
                                                                      4
                                                                             2
10
    19.2
                                3.92 3.44
                                                                             4
               6
                  168.
                          123
                                             18.3
                                                        1
                                                               0
                                                                      4
# ... with 22 more rows
```

D'ailleurs, quand on regarde la classe d'un tibble, on peut s'apercevoir qu'un tibble hérite de la classe data.frame mais possède en plus la classe tbl_df. Cela traduit bien le fait que les *tibbles* restent des *data frames*.

```
[1] "tbl df" "tbl" "data.frame"
```

class(d)

Si le *data frame* d'origine a des *rownames*, on peut d'abord les convertir en colonnes avec tibble::rownames_to_column():

```
d <- as_tibble(rownames_to_column(mtcars))
d</pre>
```

A tibble: 32 x 12 rowname cyl disp hp drat mpg wt qsec ٧S amgear <chr> <dbl> 21 6 160 0 4 1 Mazda RX4 110 3.9 2.62 16.5 1 4 6 1 4 4 2 Mazda RX4 ~ 21 160 110 3.9 2.88 17.0 0

```
3 Datsun 710
                                108
                                                    2.32
                                                           18.6
                  22.8
                                         93
                                             3.85
                                                                            1
                                                                                          1
 4 Hornet 4 D~
                  21.4
                            6
                                258
                                        110
                                             3.08
                                                    3.22
                                                           19.4
                                                                     1
                                                                            0
                                                                                   3
                                                                                          1
 5 Hornet Spo~
                                360
                                                    3.44
                                                           17.0
                                                                            0
                                                                                   3
                                                                                          2
                  18.7
                            8
                                        175
                                             3.15
                                                                     0
                                                                                   3
 6 Valiant
                  18.1
                            6
                               225
                                        105
                                             2.76
                                                    3.46
                                                           20.2
                                                                     1
                                                                            0
                                                                                          1
 7 Duster 360
                  14.3
                            8
                               360
                                       245
                                             3.21
                                                    3.57
                                                           15.8
                                                                     0
                                                                            0
                                                                                   3
                                                                                          4
8 Merc 240D
                            4
                                147.
                                             3.69
                                                                                   4
                                                                                          2
                  24.4
                                         62
                                                    3.19
                                                           20
                                                                     1
                                                                            0
 9 Merc 230
                  22.8
                            4
                                141.
                                         95
                                             3.92
                                                    3.15
                                                           22.9
                                                                            0
                                                                                   4
                                                                                          2
                                                                      1
10 Merc 280
                                168.
                                             3.92
                                                    3.44
                                                           18.3
                                                                                   4
                                                                                          4
                  19.2
                                        123
                                                                      1
                                                                            0
```

À l'inverse, on peut à tout moment convertir un tibble en data frame avec tibble::as.data.frame():

as.data.frame(d)

... with 22 more rows

```
rowname mpg cyl disp hp drat
                                                    wt qsec vs am gear carb
             Mazda RX4 21.0
                               6 160.0 110 3.90 2.620 16.46
                                                               0
                                                                            4
1
2
         Mazda RX4 Wag 21.0
                               6 160.0 110 3.90 2.875 17.02
                                                                       4
                                                                            4
3
            Datsun 710 22.8
                               4 108.0 93 3.85 2.320 18.61
                                                                            1
4
        Hornet 4 Drive 21.4
                               6 258.0 110 3.08 3.215 19.44
                                                                       3
                                                                            1
5
                               8 360.0 175 3.15 3.440 17.02
                                                                       3
                                                                            2
     Hornet Sportabout 18.7
6
               Valiant 18.1
                               6 225.0 105 2.76 3.460 20.22
                                                                       3
                                                                            1
7
            Duster 360 14.3
                               8 360.0 245 3.21 3.570 15.84
                                                                  0
                                                                       3
                                                                            4
                                                                            2
             Merc 240D 24.4
                               4 146.7 62 3.69 3.190 20.00
                                                                       4
8
9
                                                                            2
              Merc 230 22.8
                               4 140.8 95 3.92 3.150 22.90
                                                                       4
              Merc 280 19.2
                               6 167.6 123 3.92 3.440 18.30
10
                                                                            4
11
             Merc 280C 17.8
                               6 167.6 123 3.92 3.440 18.90
                                                                            4
12
            Merc 450SE 16.4
                               8 275.8 180 3.07 4.070 17.40
                                                                       3
                                                                            3
            Merc 450SL 17.3
                               8 275.8 180 3.07 3.730 17.60
13
                                                                       3
                                                                            3
14
           Merc 450SLC 15.2
                               8 275.8 180 3.07 3.780 18.00
                                                                  0
                                                                       3
                                                                            3
                               8 472.0 205 2.93 5.250 17.98
15
    Cadillac Fleetwood 10.4
                                                                       3
                                                                            4
16
  Lincoln Continental 10.4
                               8 460.0 215 3.00 5.424 17.82
                                                               0
                                                                  0
                                                                       3
                                                                            4
     Chrysler Imperial 14.7
                               8 440.0 230 3.23 5.345 17.42
                                                                       3
                                                                            4
17
                                  78.7
                                        66 4.08 2.200 19.47
18
              Fiat 128 32.4
                               4
                                                                       4
                                                                            1
19
           Honda Civic 30.4
                                  75.7
                                        52 4.93 1.615 18.52
                                                                            2
20
        Toyota Corolla 33.9
                               4
                                  71.1
                                        65 4.22 1.835 19.90
                                                                       4
                                                                            1
21
         Toyota Corona 21.5
                               4 120.1 97 3.70 2.465 20.01
                                                                  0
                                                                       3
                                                                            1
22
                               8 318.0 150 2.76 3.520 16.87
                                                                            2
      Dodge Challenger 15.5
                                                                       3
                                                                            2
23
           AMC Javelin 15.2
                               8 304.0 150 3.15 3.435 17.30
                                                                       3
                                                               0
            Camaro Z28 13.3
                               8 350.0 245 3.73 3.840 15.41
24
                                                                       3
                                                                            4
```

```
25
     Pontiac Firebird 19.2
                            8 400.0 175 3.08 3.845 17.05
26
            Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90
                                                                      1
27
        Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70
                                                                      2
28
         Lotus Europa 30.4
                            4 95.1 113 3.77 1.513 16.90 1
                                                                 5
                                                                      2
29
       Ford Pantera L 15.8
                            8 351.0 264 4.22 3.170 14.50 0 1
                                                                 5
                                                                      4
30
         Ferrari Dino 19.7
                            6 145.0 175 3.62 2.770 15.50 0
                                                                 5
                                                                      6
31
        Maserati Bora 15.0
                            8 301.0 335 3.54 3.570 14.60 0 1
                                                                      8
32
           Volvo 142E 21.4
                            4 121.0 109 4.11 2.780 18.60 1 1
                                                                      2
```

Là encore, on peut convertir la colonne *rowname* en "vrais" *rownames* avec tibble::column_to_rownames():

```
column_to_rownames(as.data.frame(d))
```

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2

```
Fiat X1-9
                    27.3
                                     66 4.08 1.935 18.90
                              79.0
                                                                         1
Porsche 914-2
                    26.0
                            4 120.3
                                    91 4.43 2.140 16.70
                                                                   5
                                                                         2
                    30.4
                            4 95.1 113 3.77 1.513 16.90
                                                                   5
                                                                        2
Lotus Europa
                            8 351.0 264 4.22 3.170 14.50
                                                                   5
                                                                         4
Ford Pantera L
                    15.8
Ferrari Dino
                    19.7
                            6 145.0 175 3.62 2.770 15.50
                                                           0
                                                              1
                                                                   5
                                                                        6
Maserati Bora
                    15.0
                            8 301.0 335 3.54 3.570 14.60
                                                                   5
                                                                        8
Volvo 142E
                    21.4
                            4 121.0 109 4.11 2.780 18.60
                                                                   4
                                                                         2
```

Note

Les deux fonctions tibble::column_to_rownames() et tibble::rownames_to_column() acceptent un argument supplémentaire var qui permet d'indiquer un nom de colonne autre que le nom rowname utilisé par défaut pour créer ou identifier la colonne contenant les noms de lignes.

5.3 Données et tableaux imbriqués

Une des particularités des *tibbles* est qu'ils acceptent, à la différence des *data frames*, des colonnes composées de listes et, par extension, d'autres tibbles (qui sont des listes)!

```
d <- tibble(</pre>
    g = c(1, 2, 3),
    data = list(
      tibble(x = 1, y = 2),
      tibble(x = 4:5, y = 6:7),
      tibble(x = 10)
    )
  )
  d
# A tibble: 3 x 2
      g data
  <dbl> <list>
      1 <tibble [1 x 2]>
1
      2 <tibble [2 x 2]>
2
      3 <tibble [1 x 1]>
```

```
d$data[[2]]
```

Cette fonctionalité, combinée avec les fonctions de {tidyr} et de {purrr}, s'avère très puissante pour réaliser des opérations multiples en peu de ligne de code.

Dans l'exemple ci-dessous, nous réalisons des régressions linéaires par sous-groupe et les présentons dans un même tableau. Pour le moment, le code présenté doit vous sembler complexe et un peu obscur. Pas de panique : tout cela sera clarifié dans les differents chapitres de ce guide. Ce qu'il y a à retenir pour le moment, c'est la possibilité de stocker, dans les colonnes d'un *tibble*, différent types de données, y compris des sous-tableaux, des résultats de modèles et même des tableaux mis en forme.

```
reg <-
    iris |>
    group_by(Species) |>
    nest() |>
    mutate(
      model = map(
        data,
        ~ lm(Sepal.Length ~ Petal.Length + Petal.Width, data = .)
      ),
      tbl = map(model, gtsummary::tbl_regression)
    )
  reg
# A tibble: 3 x 4
# Groups:
            Species [3]
  Species
             data
                               model tbl
  <fct>
             t>
                               t> <list>
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Charac teeis		p- value			p- value		95% a CI	p- value
Petal.Lengtn	- 0.20, 0.99	0.2	0.93	0.59, 1.3	< 0.00)11.0	0.81, 1.2	<0.001
Petal.Wi@lf/h	- 0.27, 1.7	0.2	0.32	1.1, 0.49	0.4	0.01	- 0.35, 0.37	>0.9

6 Attributs

Les objets \mathbf{R} peuvent avoir des attributs qui correspondent en quelque sorte à des métadonnées associées à l'objet en question. Techniquement, un attribut peut être tout type d'objet \mathbf{R} (un vecteur, une liste, une fonction...).

Parmi les attributs les plus courants, on retrouve nottament :

• class : la classe de l'objet

• lenghth : sa longueur

• names : les noms donnés aux éléments de l'objet

• levels : pour les facteurs, les étiquettes des différents niveaux

• label : une étiquette de variable

La fonction attributes() permet de lister tous les attributs associés à un objet.

```
attributes(iris)
```

\$names

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

\$class

[1] "data.frame"

\$row.names

```
7
 [1]
        1
             2
                 3
                      4
                          5
                               6
                                        8
                                             9
                                                10
                                                     11
                                                         12
                                                              13
                                                                   14
                                                                       15
                                                                            16
                                                                                17
                                                                                     18
[19]
       19
           20
                21
                     22
                         23
                              24
                                  25
                                       26
                                            27
                                                28
                                                     29
                                                         30
                                                              31
                                                                   32
                                                                       33
                                                                            34
                                                                                35
                                                                                     36
[37]
       37
            38
                39
                     40
                         41
                              42
                                  43
                                       44
                                            45
                                                46
                                                     47
                                                         48
                                                              49
                                                                  50
                                                                       51
                                                                            52
                                                                                53
                                                                                     54
[55]
       55
            56
                57
                     58
                         59
                              60
                                  61
                                       62
                                            63
                                                64
                                                     65
                                                         66
                                                              67
                                                                   68
                                                                       69
                                                                            70
                                                                                71
                                                                                     72
[73]
                75
                     76
                         77
                                                82
                                                              85
       73
           74
                              78
                                  79
                                       80
                                            81
                                                     83
                                                         84
                                                                  86
                                                                       87
                                                                            88
[91]
       91
           92
                93
                     94
                         95
                              96
                                  97
                                       98
                                            99 100 101 102 103 104 105 106 107 108
[109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
```

```
[127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 [145] 145 146 147 148 149 150
```

Pour accéder à un attribut spécifique, on aura recours à attr() en spéficiant à la fois l'objet considéré et le nom de l'attribut souhaité.

```
iris |> attr("names")

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

Pour les attributs les plus courants de R, il faut noter
qu'il existe le plus souvent des fonctions spécifiques, comme
class(), names() ou row.names().

class(iris)

[1] "data.frame"

names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

La fonction attr(), associée à l'opérateur d'assignation (<-)
permet également de définir ses propres attributs.</pre>
```

```
attr(iris, "perso") <- "Des notes personnelles"
attributes(iris)</pre>
```

\$names

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

\$class

[1] "data.frame"

\$row.names

```
[1]
            2
       1
                3
                    4
                        5
                            6
                                 7
                                     8
                                         9
                                            10
                                                11
                                                     12
                                                             14
                                                                      16
                                                         13
                                                                 15
                                                                          17
                                                                              18
[19]
      19
           20
               21
                   22
                       23
                            24
                                25
                                    26
                                        27
                                            28
                                                 29
                                                     30
                                                         31
                                                             32
                                                                 33
                                                                      34
                                                                          35
                                                                              36
[37]
       37
           38
               39
                   40
                       41
                            42
                                43
                                    44
                                        45
                                            46
                                                 47
                                                     48
                                                         49
                                                             50
                                                                 51
                                                                      52
                                                                          53
                                                                              54
[55]
      55
           56
               57
                   58
                       59
                            60
                                61
                                    62
                                        63
                                            64
                                                 65
                                                     66
                                                         67
                                                             68
                                                                 69
                                                                      70
                                                                          71
                                                                              72
[73]
      73
          74
               75
                   76
                       77
                                        81
                                                         85
                                                             86
                                                                 87
                                                                      88
                            78
                               79
                                    80
                                            82
                                                83
                                                     84
                                                                          89
                                                                              90
[91]
      91
          92
               93
                   94
                       95
                           96
                               97
                                    98
                                        99 100 101 102 103 104 105 106 107 108
[109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
[127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
[145] 145 146 147 148 149 150
```

\$perso

[1] "Des notes personnelles"

```
attr(iris, "perso")
```

[1] "Des notes personnelles"

partie II Manipulation de données

7 Le pipe

Il est fréquent d'enchainer des opérations en appelant successivement des fonctions sur le résultat de l'appel précédent.

Prenons un exemple. Supposons que nous ayons un vecteur numérique v dont nous voulons calculer la moyenne puis l'afficher via un message dans la console. Pour un meilleur rendu, nous allons arrondir la moyenne à une décimale, mettre en forme le résultat à la française, c'est-à-dire avec la virgule comme séparateur des décimales, créer une phrase avec le résultat, puis l'afficher dans la console. Voici le code correspondant, étape par étape.

```
v <- c(1.2, 8.7, 5.6, 11.4)
m <- mean(v)
r <- round(m, digits = 1)
f <- format(r, decimal.mark = ",")
p <- paste0("La moyenne est de ", f, ".")
message(p)</pre>
```

La moyenne est de 6,7.

Cette écriture, n'est pas vraiment optimale, car cela entraine la création d'un grand nombre de variables intermédiaires totalement inutiles. Nous pourrions dès lors imbriquer les différentes fonctions les unes dans les autres :

```
message(paste0("La moyenne est de ", format(round(mean(v), digits = 1), decimal.mark
```

La moyenne est de 6,7.

Nous obtenons bien le même résultat, mais la lecture de cette ligne de code est assez difficile et il n'est pas aisé de bien identifier à quelle fonction est rattaché chaque argument.

Une amélioration possible serait d'effectuer des retours à la ligne avec une indentation adéquate pour rendre cela plus lisible.

```
message(
  paste0(
    "La moyenne est de ",
    format(
        round(
        mean(v),
        digits = 1),
        decimal.mark = ","
    ),
    "."
  )
)
```

La moyenne est de 6,7.

C'est déjà mieux, mais toujours pas optimal.

7.1 Le pipe natif de R : |>

Depuis la version 4.1, \mathbf{R} a introduit ce que l'on nomme un *pipe* (tuyau en anglais), un nouvel opérateur noté $|\cdot|$.

Le principe de cet opérateur est de passer l'élément situé à sa gauche comme premier argument de la fonction située à sa droite. Ainsi, l'écriture $x \mid f()$ est équivalente à f(x) et l'écriture $x \mid f(y)$ à f(x, y).

Parfois, on souhaite passer l'objet x à un autre endroit de la fonction f() que le premier argument. Depuis la version 4.2, \mathbf{R} a introduit l'opérateur _,que l'on nomme un placeholder, pour indiquer où passer l'objet de gauche. Ainsi, $x \mid f(y, a = x)$ devient équivalent à f(y, a = x). ATTENTION : le

placeholder doit impérativement être transmis à un argument nommé!

Tout cela semble encore un peu abstrait ? Reprenons notre exemple précédent et réécrivons le code avec le *pipe*.

```
v |>
  mean() |>
  round(digits = 1) |>
  format(decimal.mark = ",") |>
  paste0("La moyenne est de ", m = _, ".") |>
  message()
```

La moyenne est de 6,7.

Le code n'est-il pas plus lisible?

Pour visualiser chaque étape du code, vous pouvez consulter le diaporama suivant : https://larmarange.github.io/guide-R/manipulation/ressources/flipbook-pipe.html

7.2 Le pipe du tidyverse : %>%

Ce n'est qu'à partir de la version 4.1 sortie en 2021 que \mathbf{R} a proposé de manière native un *pipe*, en l'occurence l'opérateur $|\cdot|$.

En cela, R s'est notamment inspiré d'un opérateur similaire introduit dès 2014 dans le *tidyverse*. Le pipe du *tidyverse* fonctionne de manière similaire. Il est implémenté dans le package {magrittr} qui doit donc être chargé en mémoire. Le *pipe* est également disponible lorsque l'on effecture library(tidyverse).

Cet opérateur s'écrit %>% et il dispose lui aussi d'un *placeholder* qui est le .. La syntaxe du *placeholder* est un peu plus souple puisqu'il peut être passé à tout type d'argument, y compris un argument sans nom. Si l'on reprend notre exemple précédent.

```
library(magrittr)
v %>%
  mean() %>%
  round(digits = 1) %>%
  format(decimal.mark = ",") %>%
  paste0("La moyenne est de ", ., ".") %>%
  message()
```

La moyenne est de 6,7.

7.3 Vaut-il mieux utiliser |> ou %>% ?

Bonne question. Si vous utilisez une version récente de **R** (4.2), il est préférable d'avoir recours au *pipe* natif de **R** dans la mesure où il est plus efficient en termes de temps de calcul car il fait partie intégrante du langage. Dans ce guide, nous privilégeons d'ailleurs l'utilisation de |>.

Si votre code nécessite de fonctionner avec différentes versions de **R**, par exemple dans le cadre d'un package, il est alors préférable, pour le moment, d'utiliser celui fourni par {magrittr} (%>%).

7.4 Accéder à un élément avec

purrr::pluck() et purrr::chuck()

Il est fréquent d'avoir besoin d'accéder à un élément précis d'une liste, d'un tableau ou d'un vecteur, ce que l'on fait d'ordinaire avec la syntaxe [[]] ou \$ pour les listes ou [] pour les vecteurs. Cependant, cette syntaxe se combine souvent mal avec un enchaînement d'opérations utilisant le *pipe*.

Le package {purrr}, chargé par défaut avec library(tidyverse), fournit une fonction purrr::pluck() qui, est l'équivalent de [[]], et qui permet de récupérer un élément par son nom ou sa position. Ainsi, si l'on considère le tableau de données iris, pluck(iris, "Petal.Witdh") est équivalent à iris\$Petal.Width. Voyons un example d'utilisation dans le cadre d'un enchaînement d'opérations.

```
iris |>
  purrr::pluck("Petal.Width") |>
  mean()
```

[1] 1.199333

Cette écriture est équivalente à :

```
mean(iris$Petal.Width)
```

[1] 1.199333

purrr::pluck() fonctionne également sur des vecteurs (et dans ce cas opère comme []).

```
v <- c("a", "b", "c", "d")
v |> purrr::pluck(2)
```

[1] "b"

```
v [2]
```

```
[1] "b"
```

On peut également, dans un même appel à purrr::pluck(), enchaîner plusieurs niveaux. Les trois syntaxes ci-après sont ainsi équivalents :

```
iris |>
    purrr::pluck("Sepal.Width", 3)

[1] 3.2

iris |>
    purrr::pluck("Sepal.Width") |>
    purrr::pluck(3)

[1] 3.2

iris[["Sepal.Width"]][3]
```

[1] 3.2

Si l'on demande un élément qui n'existe pas, purrr:pluck() renverra l'élement vide (NULL). Si l'on souhaite plutôt que cela génère une erreur, on aura alors recours à purrr::chuck().

```
iris |> purrr::pluck("inconnu")

NULL

iris |> purrr::chuck("inconnu")

Error in `purrr::chuck()`:
! Can't find name `inconnu` in vector.
```

```
v |> purrr::pluck(10)

NULL

v |> purrr::chuck(10)

Error in `purrr::chuck()`:
! Index 1 exceeds the length of plucked object (10 > 4).
```

8 dplyr

{dplyr} est l'un des packages les plus connus du *tidyverse*. Il facilite le traitement et la manipulation des tableaux de données (qu'il s'agisse de *data frame* ou de *tibble*). Il propose une syntaxe claire et cohérente, sous formes de verbes correspondant à des fonctions.

{dplyr} part du principe que les données sont *tidy* (chaque variable est une colonne, chaque observation est une ligne, voir Chapitre 5). Les verbes de {dplyr} prennent en entrée un tableau de données¹⁰ (*data frame* ou *tibble*) et renvoient systématiquement un *tibble*.

```
library(dplyr)
```

Dans ce qui suit on va utiliser le jeu de données {nycflights13}, contenu dans l'extension du même nom (qu'il faut donc avoir installée). Celui-ci correspond aux données de tous les vols au départ d'un des trois aéroports de New-York en 2013. Il a la particularité d'être réparti en trois tables :

- nycflights13::flights contient des informations sur les vols : date, départ, destination, horaires, retard...
- nycflights13::airports contient des informations sur les aéroports
- nycflights13::airlines contient des données sur les compagnies aériennes

On va charger les trois tables du jeu de données :

```
library(nycflights13)

## Chargement des trois tables du jeu de données
data(flights)
data(airports)
```

10 Le package {dbplyr} permets d'étendre les verbes de {dplyr} à des tables de bases de données SQL, {dtplyr} à des tableaux de données du type {data.table} et {srvyr} à des données pondérées du type {survey}.

data(airlines)

Normalement trois objets correspondant aux trois tables ont dû apparaître dans votre environnement.

8.1 Opérations sur les lignes

8.1.1 filter()

dplyr::filter() sélectionne des lignes d'un tableau de données selon une condition. On lui passe en paramètre un test, et seules les lignes pour lesquelles ce test renvoit TRUE (vrai) sont conservées¹¹.

Par exemple, si on veut sélectionner les vols du mois de janvier, on peut filtrer sur la variable month de la manière suivante :

¹¹ Si le test renvoie faux (FALSE) ou une valeur manquante (NA), les lignes correspondantes ne seront donc pas sélectionnées.

```
filter(flights, month == 1)
```

```
# A tibble: 27,004 x 19
```

```
year month
                   day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier
   <int> <int>
                <int>
                            <int>
                                                  <dbl>
                                                           <int>
                                                                              <dbl> <chr>
                                         <int>
                                                                     <int>
    2013
                                                      2
 1
               1
                      1
                              517
                                           515
                                                             830
                                                                       819
                                                                                 11 UA
 2
    2013
               1
                      1
                              533
                                           529
                                                      4
                                                             850
                                                                       830
                                                                                 20 UA
 3
    2013
               1
                      1
                              542
                                           540
                                                      2
                                                             923
                                                                       850
                                                                                 33 AA
 4
    2013
               1
                      1
                                                     -1
                                                            1004
                                                                      1022
                                                                                -18 B6
                              544
                                           545
 5
    2013
                      1
                              554
                                           600
                                                     -6
                                                             812
                                                                       837
                                                                                -25 DL
 6
    2013
                      1
                              554
                                           558
                                                     -4
                                                             740
                                                                       728
                                                                                 12 UA
 7
    2013
               1
                      1
                              555
                                           600
                                                     -5
                                                             913
                                                                       854
                                                                                 19 B6
 8
    2013
                                                     -3
                                                             709
                                                                                -14 EV
               1
                      1
                              557
                                           600
                                                                       723
 9
    2013
               1
                      1
                              557
                                           600
                                                     -3
                                                             838
                                                                       846
                                                                                 -8 B6
10
    2013
               1
                      1
                              558
                                           600
                                                     -2
                                                             753
                                                                       745
                                                                                  8 AA
```

- # ... with 26,994 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time hour <dttm>, and abbreviated variable names
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

Cela peut s'écrire plus simplement avec un pipe :

```
flights |> filter(month == 1)
```

A tibble: 27,004 x 19

	year	${\tt month}$	day	${\tt dep_time}$	sched_de~1	$dep_d~2$	$arr_t~3$	sched~4	$arr_d~5$	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	1	1	517	515	2	830	819	11	UA
2	2013	1	1	533	529	4	850	830	20	UA
3	2013	1	1	542	540	2	923	850	33	AA
4	2013	1	1	544	545	-1	1004	1022	-18	B6
5	2013	1	1	554	600	-6	812	837	-25	DL
6	2013	1	1	554	558	-4	740	728	12	UA
7	2013	1	1	555	600	-5	913	854	19	B6
8	2013	1	1	557	600	-3	709	723	-14	EV
9	2013	1	1	557	600	-3	838	846	-8	B6
10	2013	1	1	558	600	-2	753	745	8	AA

- # ... with 26,994 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, and abbreviated variable names
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

Si l'on veut uniquement les vols avec un retard au départ (variable dep_delay) compris entre 10 et 15 minutes :

```
flights |>
  filter(dep_delay >= 10 & dep_delay <= 15)</pre>
```

A tibble: 14,919 x 19

	year	${\tt month}$	day	dep_time	sched_de~1	dep_d~2	$arr_t~3$	sched~4	$arr_d~5$	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	1	1	611	600	11	945	931	14	UA
2	2013	1	1	623	610	13	920	915	5	AA
3	2013	1	1	743	730	13	1107	1100	7	AA
4	2013	1	1	743	730	13	1059	1056	3	DL
5	2013	1	1	851	840	11	1215	1206	9	UA
6	2013	1	1	912	900	12	1241	1220	21	AA
7	2013	1	1	914	900	14	1058	1043	15	UA

```
2013
 8
                   1
                           920
                                      905
                                                15
                                                      1039
                                                              1025
                                                                         14 B6
 9
   2013
                   1
                          1011
                                     1001
                                                10
                                                      1133
                                                              1128
                                                                          5 EV
10 2013
                                     1100
                                                      1440
             1
                   1
                          1112
                                                12
                                                              1438
                                                                          2 UA
# ... with 14,909 more rows, 9 more variables: flight <int>, tailnum <chr>,
    origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#
    minute <dbl>, time_hour <dttm>, and abbreviated variable names
#
    1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
    5: arr_delay
```

Si l'on passe plusieurs arguments à dplyr::filter(), celui-ci rajoute automatiquement une condition ET. La ligne ci-dessus peut donc également être écrite de la manière suivante, avec le même résultat :

```
flights |>
  filter(dep_delay >= 10, dep_delay <= 15)</pre>
```

Enfin, on peut également placer des fonctions dans les tests, qui nous permettent par exemple de sélectionner les vols avec la plus grande distance :

```
flights |>
  filter(distance == max(distance))
```

```
# A tibble: 342 x 19
    year month    day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier
    <int> <int> <int> <int> <int> <int> <dbl> <int> <dbl> <int> <dbl> <</pre>
```

	\TII (/	\TII (/	<tii (=""></tii>	\TII U /	\III 6/	/db1/	\III 6 /	\TII (/	(ubi) (ciii)
1	2013	1	1	857	900	-3	1516	1530	-14 HA
2	2013	1	2	909	900	9	1525	1530	-5 HA
3	2013	1	3	914	900	14	1504	1530	-26 HA
4	2013	1	4	900	900	0	1516	1530	-14 HA
5	2013	1	5	858	900	-2	1519	1530	-11 HA
6	2013	1	6	1019	900	79	1558	1530	28 HA
7	2013	1	7	1042	900	102	1620	1530	50 HA
8	2013	1	8	901	900	1	1504	1530	-26 HA
9	2013	1	9	641	900	1301	1242	1530	1272 HA
10	2013	1	10	859	900	-1	1449	1530	-41 HA

^{# ...} with 332 more rows, 9 more variables: flight <int>, tailnum <chr>,

[#] origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,

[#] minute <dbl>, time_hour <dttm>, and abbreviated variable names

- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

Évaluation contextuelle

Il est important de noter que {dplyr} procède à une évaluation contextuelle des expressions qui lui sont passées. Ainsi, on peut indiquer directement le nom d'une variable et {dplyr} l'interprétera dans le contexte du tableau de données, c'est-à-dire regardera s'il existe une colonne portant ce nom dans le tableau.

Dans l'expression flights |> filter(month == 1), month est interprété comme la colonne *month* du tableau flights, à savoir flights\$month.

Il est également possible d'indiquer des objets extérieurs au tableau :

```
m <- 2
flights |>
filter(month == m)
```

A tibble: 24,951 x 19

	year	month	day	dep_time	sched_de~1	dep_d~2	arr_t~3	sched~4	arr_d~5	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	2	1	456	500	-4	652	648	4	US
2	2013	2	1	520	525	-5	816	820	-4	UA
3	2013	2	1	527	530	-3	837	829	8	UA
4	2013	2	1	532	540	-8	1007	1017	-10	B6
5	2013	2	1	540	540	0	859	850	9	AA
6	2013	2	1	552	600	-8	714	715	-1	EV
7	2013	2	1	552	600	-8	919	910	9	AA
8	2013	2	1	552	600	-8	655	709	-14	B6
9	2013	2	1	553	600	-7	833	815	18	FL
10	2013	2	1	553	600	-7	821	825	-4	MQ

- # ... with 24,941 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, and abbreviated variable names
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

Cela fonctionne car il n'y a pas de colonne m dans

flights. Dès lors, {dplyr} regarde s'il existe un objet m dans l'environnement de travail.

Par contre, si une colonne existe dans le tableau, elle aura priorité sur les objets du même nom dans l'environnement. Dans l'exemple ci-dessous, le résultat obtenu n'est pas celui voulu. Il est interprété comme sélectionner toutes les lignes où la colonne *mois* est égale à elle-même et donc cela sélectionne toutes les lignes du tableau.

```
month <- 3
flights |>
  filter(month == month)
```

A tibble: 336,776 x 19

year month day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier <int> <int> <int> <int> <int> dbl><int> <int> <dbl> <chr> 11 UA 20 UA 33 AA -1 -18 B6 -25 DL -6 -4 12 UA -5 19 B6 -3 -14 EV -3 -8 B6 -2 8 AA

- # ... with 336,766 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, and abbreviated variable names
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

Afin de distinguer ce qui correspond à une colonne du tableau et à un objet de l'environnement, on pourra avoir recours à .data et .env (voir help(".env", package = "rlang")).

```
month <- 3
flights |>
  filter(.data$month == .env$month)
```

```
# A tibble: 28,834 x 19
                  day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier
    year month
   <int> <int> <int>
                          <int>
                                      <int>
                                               <dbl>
                                                       <int>
                                                                <int>
                                                                         <dbl> <chr>
    2013
                                       2159
                                                 125
                                                         318
                                                                   56
                                                                           142 B6
              3
                    1
                              4
 2
    2013
              3
                                                         526
                                                                            48 B6
                    1
                             50
                                       2358
                                                  52
                                                                  438
 3
    2013
              3
                    1
                            117
                                       2245
                                                 152
                                                         223
                                                                 2354
                                                                           149 B6
    2013
              3
                    1
                            454
                                        500
                                                         633
 4
                                                  -6
                                                                  648
                                                                           -15 US
 5
    2013
              3
                    1
                            505
                                        515
                                                 -10
                                                         746
                                                                  810
                                                                           -24 UA
                            521
 6
    2013
              3
                    1
                                        530
                                                  -9
                                                         813
                                                                  827
                                                                           -14 UA
 7
    2013
              3
                    1
                            537
                                        540
                                                  -3
                                                         856
                                                                  850
                                                                             6 AA
 8
    2013
              3
                    1
                            541
                                        545
                                                  -4
                                                        1014
                                                                 1023
                                                                            -9 B6
 9
    2013
              3
                    1
                            549
                                        600
                                                         639
                                                                  703
                                                                           -24 US
                                                 -11
10
    2013
              3
                    1
                            550
                                        600
                                                 -10
                                                         747
                                                                  801
                                                                           -14 EV
  ... with 28,824 more rows, 9 more variables: flight <int>, tailnum <chr>,
    origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
    minute <dbl>, time_hour <dttm>, and abbreviated variable names
    1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
    5: arr_delay
```

8.1.2 slice()

Le verbe dplyr::slice() sélectionne des lignes du tableau selon leur position. On lui passe un chiffre ou un vecteur de chiffres.

Si l'on souhaite sélectionner la $345^{\rm e}$ ligne du tableau airports :

```
airports |>
    slice(345)
# A tibble: 1 x 8
  faa
                                                tz dst
        name
                            lat
                                  lon
                                         alt
                                                         tzone
                          <dbl> <dbl> <dbl> <chr> <chr>
  <chr> <chr>
1 CYF
        Chefornak Airport 60.1 -164.
                                          40
                                                -9 A
                                                         America/Anchorage
```

Si l'on veut sélectionner les 5 premières lignes :

```
airports |>
  slice(1:5)
```

A tibble: 5 x 8 faa name lat lon alt tz dst tzone <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr> 41.1 -80.6 1044 1 04G Lansdowne Airport -5 A America/New~ Moton Field Municipal Airport -6 A America/Chi~ 2 06A 32.5 -85.7 264 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/Chi~ 4 06N Randall Airport 41.4 -74.4 523 -5 A America/New~ 5 09J Jekyll Island Airport 31.1 -81.4 -5 A America/New~ 11

8.1.3 arrange()

dplyr::arrange() réordonne les lignes d'un tableau selon une ou plusieurs colonnes.

Ainsi, si l'on veut trier le tableau flights selon le retard au départ, dans l'ordre croissant :

```
flights |>
arrange(dep_delay)
```

A tibble: 336,776 x 19

	year	month	day	dep_time	${\tt sched_de~1}$	$dep_d~2$	$arr_t~3$	sched~4	$arr_d~5$	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	12	7	2040	2123	-43	40	2352	48	B6
2	2013	2	3	2022	2055	-33	2240	2338	-58	DL
3	2013	11	10	1408	1440	-32	1549	1559	-10	EV
4	2013	1	11	1900	1930	-30	2233	2243	-10	DL
5	2013	1	29	1703	1730	-27	1947	1957	-10	F9
6	2013	8	9	729	755	-26	1002	955	7	MQ
7	2013	10	23	1907	1932	-25	2143	2143	0	EV
8	2013	3	30	2030	2055	-25	2213	2250	-37	MQ
9	2013	3	2	1431	1455	-24	1601	1631	-30	9E
10	2013	5	5	934	958	-24	1225	1309	-44	B6

- # ... with 336,766 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, and abbreviated variable names

```
# 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
# 5: arr_delay
```

On peut trier selon plusieurs colonnes. Par exemple selon le mois, puis selon le retard au départ :

```
flights |>
arrange(month, dep_delay)
```

```
# A tibble: 336,776 x 19
```

	year	month	day	dep_time	sched_de~1	dep_d~2	arr_t~3	sched~4	arr_d~5	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	1	11	1900	1930	-30	2233	2243	-10	DL
2	2013	1	29	1703	1730	-27	1947	1957	-10	F9
3	2013	1	12	1354	1416	-22	1606	1650	-44	FL
4	2013	1	21	2137	2159	-22	2232	2316	-44	DL
5	2013	1	20	704	725	-21	1025	1035	-10	AS
6	2013	1	12	2050	2110	-20	2310	2355	-45	B6
7	2013	1	12	2134	2154	-20	4	50	-46	B6
8	2013	1	14	2050	2110	-20	2329	2355	-26	B6
9	2013	1	4	2140	2159	-19	2241	2316	-35	DL
10	2013	1	11	1947	2005	-18	2209	2230	-21	9E

- # ... with 336,766 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, and abbreviated variable names
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

Si l'on veut trier selon une colonne par ordre décroissant, on lui applique la fonction dplyr::desc():

```
flights |>
  arrange(desc(dep_delay))
```

```
# A tibble: 336,776 x 19
```

year month day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier <int> <int> <int> <int> <int> <dbl> <int> <dbl> <chr> <int> 1 2013 641 1301 1242 1272 HA 1 9 900 1530 2 2013 6 15 1432 1935 1137 1607 2120 1127 MQ

```
2013
                                        1635
                                                          1239
                                                                   1810
 3
              1
                    10
                            1121
                                                 1126
                                                                            1109 MQ
 4
    2013
              9
                    20
                            1139
                                        1845
                                                 1014
                                                          1457
                                                                   2210
                                                                            1007 AA
 5
    2013
              7
                    22
                             845
                                        1600
                                                          1044
                                                                             989 MQ
                                                 1005
                                                                   1815
 6
    2013
              4
                    10
                            1100
                                        1900
                                                  960
                                                          1342
                                                                   2211
                                                                             931 DL
 7
    2013
              3
                    17
                            2321
                                         810
                                                  911
                                                           135
                                                                   1020
                                                                             915 DL
 8
    2013
              6
                    27
                                                  899
                                                                             850 DL
                             959
                                        1900
                                                          1236
                                                                   2226
 9
    2013
              7
                    22
                            2257
                                         759
                                                  898
                                                           121
                                                                   1026
                                                                             895 DL
             12
10 2013
                     5
                             756
                                        1700
                                                  896
                                                          1058
                                                                   2020
                                                                             878 AA
```

... with 336,766 more rows, 9 more variables: flight <int>, tailnum <chr>,

- origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- minute <dbl>, time_hour <dttm>, and abbreviated variable names #
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr delay

Combiné avec dplyr::slice(), dplyr::arrange() permet par exemple de sélectionner les trois vols ayant eu le plus de retard:

```
flights |>
  arrange(desc(dep delay)) |>
  slice(1:3)
```

A tibble: 3 x 19

```
day dep_time sched_dep~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier
   year month
  <int> <int> <int>
                         <int>
                                      <int>
                                               <dbl>
                                                       <int>
                                                                <int>
                                                                         <dbl> <chr>
  2013
             1
                   9
                           641
                                        900
                                                1301
                                                        1242
                                                                 1530
                                                                          1272 HA
2
  2013
             6
                  15
                          1432
                                       1935
                                                1137
                                                        1607
                                                                 2120
                                                                          1127 MQ
3
  2013
             1
                  10
                          1121
                                       1635
                                                1126
                                                        1239
                                                                 1810
                                                                          1109 MQ
```

- # ... with 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
- dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, #
- # time hour <dttm>, and abbreviated variable names 1: sched dep time,
- 2: dep_delay, 3: arr_time, 4: sched_arr_time, 5: arr_delay

8.1.4 slice_sample()

dplyr::slice_sample() permet de sélectionner aléatoirement un nombre de lignes ou une fraction des lignes d'un tableau. Ainsi si l'on veut choisir 5 lignes au hasard dans le tableau airports:

```
airports |>
  slice_sample(n = 5)
```

```
# A tibble: 5 x 8
```

	faa	name	lat	lon	alt	tz	dst	tzone
		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
1	UTM	Tunica Municipal Airport	34.7	-90.3	194	-6	Α	Amer~
2	S30	Lebanon State	44.3	-123.	344	-8	Α	Amer~
3	RDG	Reading Regional Carl A Spaatz Fie~	40.4	-76.0	344	- 5	Α	Amer~
4	N69	Stormville Airport	41.6	-73.7	358	-5	Α	Amer~
5	MWC	Lawrence J Timmerman Airport	43.1	-88.0	745	-6	Α	Amer~

Si l'on veut tirer au hasard 10% des lignes de flights :

```
flights |>
  slice_sample(prop = .1)
```

```
# A tibble: 33,677 x 19
```

	year	month	day	dep_time	sched_de~1	dep_d~2	arr_t~3	sched~4	arr_d~5	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	6	4	613	613	0	943	935	8	UA
2	2013	6	1	1148	1155	-7	1300	1310	-10	MQ
3	2013	6	18	1432	1357	35	1717	1629	48	UA
4	2013	5	26	1830	1830	0	2151	2200	-9	AA
5	2013	5	5	1736	1740	-4	1901	1908	-7	B6
6	2013	9	24	900	900	0	1159	1204	-5	DL
7	2013	4	29	600	600	0	734	745	-11	WN
8	2013	9	30	453	500	-7	621	648	-27	US
9	2013	9	23	801	759	2	1037	1049	-12	AA
10	2013	10	2	2043	2100	-17	2335	2344	-9	В6

- # ... with 33,667 more rows, 9 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, and abbreviated variable names
- # 1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
- # 5: arr_delay

Ces fonctions sont utiles notamment pour faire de l'"échantillonnage" en tirant au hasard un certain nombre d'observations du tableau.

8.1.5 distinct()

dplyr::distinct() filtre les lignes du tableau pour ne conserver que les lignes distinctes, en supprimant toutes les lignes en double.

```
flights |>
     select(day, month) |>
     distinct()
# A tibble: 365 x 2
     day month
   <int> <int>
        1
               1
 1
 2
        2
               1
 3
        3
               1
 4
        4
               1
 5
        5
              1
 6
        6
              1
 7
        7
               1
 8
        8
               1
 9
        9
               1
10
       10
               1
# ... with 355 more rows
```

On peut lui spécifier une liste de variables : dans ce cas, pour toutes les observations ayant des valeurs identiques pour les variables en question, dplyr::distinct() ne conservera que la première d'entre elles.

```
flights |>
    distinct(month, day)

# A tibble: 365 x 2
    month day
    <int> <int>
1     1     1
2     1     2
3     1     3
```

```
4
        1
                4
 5
        1
                5
 6
        1
                6
 7
                7
        1
 8
        1
                8
 9
        1
                9
10
        1
               10
# ... with 355 more rows
```

L'option .keep_all permet, dans l'opération précédente, de conserver l'ensemble des colonnes du tableau :

```
flights |>
  distinct(month, day, .keep_all = TRUE)
```

A tibble: 365 x 19 day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier year month <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr> <int> 1 2013 11 UA 2 2013 36 B6 3 2013 22 B6 4 2013 23 B6 5 2013 18 B6 6 2013 9 B6 47 B6 -6 -23 US -12 B6

-11 B6

^{# ...} with 355 more rows, 9 more variables: flight <int>, tailnum <chr>,

[#] origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,

[#] minute <dbl>, time_hour <dttm>, and abbreviated variable names

^{# 1:} sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,

^{# 5:} arr_delay

8.2 Opérations sur les colonnes

8.2.1 select()

dplyr::select() permet de sélectionner des colonnes d'un tableau de données. Ainsi, si l'on veut extraire les colonnes lat et lon du tableau airports :

```
airports |>
    select(lat, lon)
# A tibble: 1,458 x 2
    lat
           lon
   <dbl>
         <dbl>
 1 41.1 -80.6
 2 32.5 -85.7
 3 42.0 -88.1
 4 41.4 -74.4
 5 31.1 -81.4
 6 36.4 -82.2
 7 41.5 -84.5
 8 42.9 -76.8
 9 39.8 -76.6
10 48.1 -123.
# ... with 1,448 more rows
```

Si on fait précéder le nom d'un –, la colonne est éliminée plutôt que sélectionnée :

```
airports |>
  select(-lat, -lon)
```

```
# A tibble: 1,458 x 6
```

	faa	name	alt	tz	dst	tzone
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
1	04G	Lansdowne Airport	1044	-5	Α	America/New_York
2	06A	Moton Field Municipal Airport	264	-6	Α	America/Chicago
3	06C	Schaumburg Regional	801	-6	Α	America/Chicago
4	06N	Randall Airport	523	-5	Α	America/New_York

```
5 09J
         Jekyll Island Airport
                                                   -5 A
                                                            America/New_York
                                            11
 6 0A9
         Elizabethton Municipal Airport
                                          1593
                                                   -5 A
                                                            America/New_York
 7 0G6
         Williams County Airport
                                           730
                                                   -5 A
                                                            America/New_York
 8 0G7
         Finger Lakes Regional Airport
                                           492
                                                   -5 A
                                                            America/New_York
         Shoestring Aviation Airfield
9 OP2
                                          1000
                                                   -5 U
                                                            America/New_York
10 OS9
         Jefferson County Intl
                                           108
                                                   -8 A
                                                            America/Los_Angeles
# ... with 1,448 more rows
```

dplyr::select() comprend toute une série de fonctions
facilitant la sélection de multiples colonnes. Par exemple,
dplyr::starts_with(), dplyr::ends_width(), dplyr::contains()
ou dplyr::matches() permettent d'exprimer des conditions
sur les noms de variables:

```
flights |>
  select(starts_with("dep_"))
```

```
# A tibble: 336,776 x 2
   dep_time dep_delay
                  <dbl>
      <int>
         517
 1
                       2
 2
         533
                       4
 3
         542
                      2
 4
         544
                     -1
 5
         554
                     -6
 6
         554
                     -4
 7
         555
                     -5
 8
                     -3
         557
 9
         557
                     -3
10
         558
                     -2
```

... with 336,766 more rows

La syntaxe colonne1:colonne2 permet de sélectionner toutes les colonnes situées entre colonne1 et colonne2 incluses 12:

```
flights |>
  select(year:day)
```

A tibble: 336,776 x 3

12 À noter que cette opération est un peu plus "fragile" que les autres, car si l'ordre des colonnes change elle peut renvoyer un résultat différent.

```
year month
                 day
   <int> <int> <int>
 1 2013
             1
                   1
 2 2013
             1
                   1
 3 2013
             1
                   1
 4 2013
             1
                   1
 5 2013
             1
                   1
 6 2013
 7 2013
8 2013
             1
                   1
9 2013
             1
                   1
10 2013
             1
                   1
# ... with 336,766 more rows
```

dplyr::all_of() et dplyr::any_of() permettent de fournir une liste de variables à extraire sous forme de vecteur textuel. Alors que dplyr::all_of() renverra une erreur si une variable n'est pas trouvée dans le tableau de départ, dplyr::any_of() sera moins stricte.

```
flights |>
    select(all_of(c("year", "month", "day")))
# A tibble: 336,776 x 3
    year month
                 day
   <int> <int> <int>
 1 2013
             1
 2 2013
 3 2013
             1
                   1
 4 2013
             1
                   1
 5 2013
             1
                   1
 6 2013
             1
                   1
 7 2013
             1
                   1
 8 2013
             1
                   1
 9 2013
10 2013
             1
                   1
# ... with 336,766 more rows
```

```
flights |>
    select(all_of(c("century", "year", "month", "day")))
Error in `select()`:
! Problem while evaluating `all_of(c("century", "year", "month", "day"))`.
Erreur: Can't subset columns that don't exist.
x Column `century` doesn't exist.
  flights |>
    select(any_of(c("century", "year", "month", "day")))
# A tibble: 336,776 x 3
   year month
                 day
  <int> <int> <int>
 1 2013
            1
 2 2013
             1
 3 2013
 4 2013
5 2013 1
6 2013 1
7 2013 1
                   1
                   1
8 2013
                   1
            1
9 2013
           1
                   1
          1
10 2013
                   1
# ... with 336,766 more rows
dplyr::where() permets de sélectionner des variables à partir
d'une fonction qui renvoie une valeur logique. Par exemple,
pour sélectionner seulement les variables textuelles :
  flights |>
    select(where(is.character))
# A tibble: 336,776 x 4
   carrier tailnum origin dest
  <chr> <chr> <chr> <chr>
```

```
1 UA
            N14228
                     EWR
                             IAH
 2 UA
            N24211
                     LGA
                             IAH
 3 AA
            N619AA
                     JFK
                             MIA
 4 B6
            N804JB
                     JFK
                             BQN
 5 DL
            N668DN
                     LGA
                             ATL
 6 UA
            N39463
                     EWR
                             ORD
 7 B6
                     EWR
                             FLL
            N516JB
 8 EV
            N829AS
                     LGA
                             IAD
 9 B6
            N593JB
                     JFK
                             MCO
10 AA
            N3ALAA
                    LGA
                             ORD
# ... with 336,766 more rows
```

dplyr::select() peut être utilisée pour réordonner les colonnes d'une table en utilisant la fonction dplyr::everything(), qui sélectionne l'ensemble des colonnes non encore sélectionnées. Ainsi, si l'on souhaite faire passer la colonne name en première position de la table airports, on peut faire :

```
airports |>
  select(name, everything())
```

```
# A tibble: 1,458 x 8
   name
                                    faa
                                             lat
                                                    lon
                                                           alt
                                                                  tz dst
                                                                            tzone
                                    <chr> <dbl>
   <chr>
                                                  <dbl> <dbl> <dbl> <chr> <chr>
                                                                  -5 A
 1 Lansdowne Airport
                                    04G
                                            41.1
                                                  -80.6
                                                          1044
                                                                            America/~
                                            32.5
                                                  -85.7
 2 Moton Field Municipal Airport
                                                           264
                                                                  -6 A
                                                                            America/~
                                    06A
 3 Schaumburg Regional
                                            42.0
                                                                  -6 A
                                    06C
                                                  -88.1
                                                           801
                                                                            America/~
                                            41.4
 4 Randall Airport
                                    06N
                                                  -74.4
                                                           523
                                                                  -5 A
                                                                            America/~
 5 Jekyll Island Airport
                                    09J
                                            31.1
                                                  -81.4
                                                                  -5 A
                                                                            America/~
                                                            11
 6 Elizabethton Municipal Airport 0A9
                                            36.4
                                                  -82.2
                                                          1593
                                                                  -5 A
                                                                            America/~
 7 Williams County Airport
                                    0G6
                                            41.5
                                                  -84.5
                                                           730
                                                                  -5 A
                                                                            America/~
 8 Finger Lakes Regional Airport
                                    0G7
                                            42.9
                                                  -76.8
                                                           492
                                                                  -5 A
                                                                            America/~
 9 Shoestring Aviation Airfield
                                    0P2
                                            39.8
                                                  -76.6
                                                          1000
                                                                  -5 U
                                                                            America/~
10 Jefferson County Intl
                                    0S9
                                            48.1 -123.
                                                           108
                                                                  -8 A
                                                                            America/~
# ... with 1,448 more rows
```

8.2.2 relocate()

Pour réordonner des colonnes, on pourra aussi avoir recours à dplyr::relocate() en indiquant les premières variables.

Il n'est pas nécessaire d'ajouter everything() car avec dplyr::relocate() toutes les variables sont conservées.

```
airports |>
  relocate(lon, lat, name)
```

# A	# A tibble: 1,458 x 8								
	lon	lat	name	faa	alt	tz	dst	tzone	
	<dbl> <</dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	
1	-80.6	41.1	Lansdowne Airport	04G	1044	-5	Α	America/~	
2	-85.7	32.5	Moton Field Municipal Airport	06A	264	-6	Α	America/~	
3	-88.1	42.0	Schaumburg Regional	06C	801	-6	Α	America/~	
4	-74.4	41.4	Randall Airport	06N	523	-5	Α	America/~	
5	-81.4	31.1	Jekyll Island Airport	09J	11	-5	Α	America/~	
6	-82.2	36.4	Elizabethton Municipal Airport	OA9	1593	-5	Α	America/~	
7	-84.5	41.5	Williams County Airport	0G6	730	-5	Α	America/~	
8	-76.8	42.9	Finger Lakes Regional Airport	OG7	492	-5	Α	America/~	
9	-76.6	39.8	Shoestring Aviation Airfield	0P2	1000	-5	U	America/~	
10 -	-123.	48.1	Jefferson County Intl	0S9	108	-8	Α	America/~	
#	with	1,448	3 more rows						

8.2.3 rename()

Une variante de dplyr::select() est dplyr::rename()¹³, qui permet de renommer facilement des colonnes. On l'utilise en lui passant des paramètres de la forme nouveau_nom = ancien_nom. Ainsi, si on veut renommer les colonnes lon et lat de airports en longitude et latitude:

13 Il est également possible de renommer des colonnes directement avec select(), avec la même syntaxe que pour rename().

```
airports |>
  rename(longitude = lon, latitude = lat)
```

```
# A tibble: 1,458 x 8
```

	faa	name	latitude	longi~1	alt	tz	dst	tzone
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
1	04G	Lansdowne Airport	41.1	-80.6	1044	-5	Α	Amer~
2	06A	Moton Field Municipal Airport	32.5	-85.7	264	-6	Α	Amer~
3	06C	Schaumburg Regional	42.0	-88.1	801	-6	Α	Amer~
4	06N	Randall Airport	41.4	-74.4	523	-5	Α	Amer~

```
5 09J
         Jekyll Island Airport
                                                    -81.4
                                                                    -5 A
                                                                              Amer~
                                             31.1
                                                              11
 6 OA9
         Elizabethton Municipal Airport
                                             36.4
                                                    -82.2
                                                            1593
                                                                    -5 A
                                                                              Amer~
 7 0G6
         Williams County Airport
                                             41.5
                                                    -84.5
                                                             730
                                                                    -5 A
                                                                              Amer~
8 0G7
         Finger Lakes Regional Airport
                                             42.9
                                                    -76.8
                                                             492
                                                                    -5 A
                                                                              Amer~
9 OP2
         Shoestring Aviation Airfield
                                             39.8
                                                    -76.6 1000
                                                                    -5 U
                                                                              Amer~
10 OS9
         Jefferson County Intl
                                             48.1
                                                   -123.
                                                             108
                                                                    -8 A
                                                                              Amer~
# ... with 1,448 more rows, and abbreviated variable name 1: longitude
```

Si les noms de colonnes comportent des espaces ou des caractères spéciaux, on peut les entourer de guillemets (") ou de quotes inverses (`):

```
flights |>
  rename(
    "retard départ" = dep_delay,
    "retard arrivée" = arr_delay
) |>
  select(`retard départ`, `retard arrivée`)
```

A tibble: 336,776 x 2

	`retard départ`	`retard arrivée`
	<dbl></dbl>	<dbl></dbl>
1	2	11
2	4	20
3	2	33
4	-1	-18
5	-6	-25
6	-4	12
7	-5	19
8	-3	-14
9	-3	-8
10	-2	8

... with 336,766 more rows

8.2.4 rename_with()

La fonction dplyr::rename_with() permets de renommer plusieurs colonnes d'un coup en transmettant une fonction,

par exemple toupper() qui passe tous les caractères en majuscule.

```
airports |>
  rename_with(toupper)
```

```
# A tibble: 1,458 x 8
                                                          ALT
                                                                 TZ DST
   FAA
         NAME
                                            LAT
                                                   LON
                                                                           TZONE
   <chr> <chr>
                                          <dbl>
                                                 <dbl> <dbl> <dbl> <chr> <chr>
 1 04G
         Lansdowne Airport
                                           41.1
                                                 -80.6
                                                        1044
                                                                 -5 A
                                                                           America/~
2 06A
                                                 -85.7
                                                                 -6 A
         Moton Field Municipal Airport
                                           32.5
                                                          264
                                                                           America/~
 3 06C
                                           42.0
                                                 -88.1
                                                                 -6 A
                                                                           America/~
         Schaumburg Regional
                                                          801
 4 06N
         Randall Airport
                                           41.4
                                                 -74.4
                                                          523
                                                                 -5 A
                                                                           America/~
5 09J
         Jekyll Island Airport
                                           31.1
                                                 -81.4
                                                                 -5 A
                                                                           America/~
                                                           11
 6 0A9
         Elizabethton Municipal Airport
                                           36.4
                                                 -82.2
                                                                 -5 A
                                                                           America/~
                                                        1593
7 0G6
         Williams County Airport
                                           41.5
                                                 -84.5
                                                          730
                                                                 -5 A
                                                                           America/~
         Finger Lakes Regional Airport
 8 0G7
                                           42.9
                                                 -76.8
                                                          492
                                                                 -5 A
                                                                           America/~
9 OP2
         Shoestring Aviation Airfield
                                           39.8 -76.6
                                                        1000
                                                                 -5 U
                                                                           America/~
10 OS9
         Jefferson County Intl
                                           48.1 -123.
                                                          108
                                                                 -8 A
                                                                           America/~
# ... with 1,448 more rows
```

On pourra notamment utiliser les fonctions du package snakecase et, en particulier, snakecase::to_snake_case() que je recommande pour nommer de manière consistante les variables¹⁴.

8.2.5 pull()

La fonction dplyr::pull() permet d'accéder au contenu d'une variable. C'est un équivalent aux opérateurs \$ ou [[]]. On peut lui passer un nom de variable ou bien sa position.

```
airports |>
  pull(alt) |>
  mean()
```

[1] 1001.416

14 Le snake case est une convention typographique en informatique consistant à écrire des ensembles de mots, généralement, en minuscules en les séparant par des tirets bas.

Note

dplyr::pull() ressemble à la fonction purrr::chuck() que nous avons déjà abordée (cf. Section 7.4). Cependant, dplyr::pull() ne fonctionne que sur des tableaux de données tandis que purrr::chuck() est plus générique et peut s'appliquer à tous types de listes.

8.2.6 mutate()

dplyr::mutate() permet de créer de nouvelles colonnes dans le tableau de données, en général à partir de variables existantes.

Par exemple, la table airports contient l'altitude de l'aéroport en pieds. Si l'on veut créer une nouvelle variable alt_m avec l'altitude en mètres, on peut faire :

```
airports <-
  airports |>
  mutate(alt_m = alt / 3.2808)
```

On peut créer plusieurs nouvelles colonnes en une seule fois, et les expressions successives peuvent prendre en compte les résultats des calculs précédents. L'exemple suivant convertit d'abord la distance en kilomètres dans une variable distance_km, puis utilise cette nouvelle colonne pour calculer la vitesse en km/h.

```
flights <-
  flights |>
  mutate(
    distance_km = distance / 0.62137,
    vitesse = distance_km / air_time * 60
)
```

8.3 Opérations groupées

8.3.1 group_by()

Un élément très important de {dplyr} est la fonction dplyr::group_by(). Elle permet de définir des groupes de lignes à partir des valeurs d'une ou plusieurs colonnes. Par exemple, on peut grouper les vols selon leur mois :

```
flights |>
  group_by(month)
```

A tibble: 336,776 x 21 # Groups: month [12]

	year	${\tt month}$	day	dep_time	sched_de~1	dep_d~2	arr_t~3	sched~4	$arr_d~5$	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	1	1	517	515	2	830	819	11	UA
2	2013	1	1	533	529	4	850	830	20	UA
3	2013	1	1	542	540	2	923	850	33	AA
4	2013	1	1	544	545	-1	1004	1022	-18	В6
5	2013	1	1	554	600	-6	812	837	-25	DL
6	2013	1	1	554	558	-4	740	728	12	UA
7	2013	1	1	555	600	-5	913	854	19	B6
8	2013	1	1	557	600	-3	709	723	-14	EV
9	2013	1	1	557	600	-3	838	846	-8	B6
10	2013	1	1	558	600	-2	753	745	8	AA

- # ... with 336,766 more rows, 11 more variables: flight <int>, tailnum <chr>,
- # origin <chr>, dest <chr>, air time <dbl>, distance <dbl>, hour <dbl>,
- # minute <dbl>, time_hour <dttm>, distance_km <dbl>, vitesse <dbl>, and
- # abbreviated variable names 1: sched_dep_time, 2: dep_delay, 3: arr_time,
- # 4: sched_arr_time, 5: arr_delay

Par défaut ceci ne fait rien de visible, à part l'apparition d'une mention *Groups* dans l'affichage du résultat. Mais à partir du moment où des groupes ont été définis, les verbes comme dplyr::slice() ou dplyr::mutate() vont en tenir compte lors de leurs opérations.

Par exemple, si on applique dplyr::slice() à un tableau préalablement groupé, il va sélectionner les lignes aux positions

indiquées pour chaque groupe. Ainsi la commande suivante affiche le premier vol de chaque mois, selon leur ordre d'apparition dans le tableau :

```
flights |>
    group_by(month) |>
    slice(1)
# A tibble: 12 x 21
# Groups:
            month [12]
    year month
                  day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier
   <int> <int> <int>
                          <int>
                                      <int>
                                              <dbl>
                                                       <int>
                                                                <int>
                                                                        <dbl> <chr>
 1
   2013
              1
                            517
                                        515
                                                   2
                                                         830
                                                                  819
                                                                            11 UA
                    1
 2
   2013
              2
                                                 -4
                                                                  648
                                                                             4 US
                    1
                            456
                                        500
                                                         652
 3 2013
                              4
                                                125
              3
                    1
                                       2159
                                                         318
                                                                   56
                                                                          142 B6
 4 2013
              4
                    1
                            454
                                        500
                                                 -6
                                                         636
                                                                  640
                                                                            -4 US
5 2013
              5
                    1
                              9
                                       1655
                                                434
                                                         308
                                                                 2020
                                                                           408 VX
                              2
 6 2013
              6
                    1
                                       2359
                                                   3
                                                         341
                                                                  350
                                                                            -9 B6
 7
              7
    2013
                    1
                              1
                                       2029
                                                212
                                                         236
                                                                 2359
                                                                          157 B6
 8
    2013
              8
                    1
                             12
                                       2130
                                                162
                                                         257
                                                                   14
                                                                           163 B6
 9
    2013
              9
                    1
                              9
                                       2359
                                                 10
                                                         343
                                                                  340
                                                                             3 B6
10
    2013
             10
                    1
                            447
                                                -13
                                                         614
                                                                  648
                                                                           -34 US
                                        500
11
    2013
             11
                    1
                              5
                                       2359
                                                  6
                                                         352
                                                                  345
                                                                             7 B6
    2013
             12
                    1
                             13
                                       2359
                                                  14
                                                         446
                                                                  445
                                                                             1 B6
12
# ... with 11 more variables: flight <int>, tailnum <chr>, origin <chr>,
    dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
    time_hour <dttm>, distance_km <dbl>, vitesse <dbl>, and abbreviated
#
#
    variable names 1: sched_dep_time, 2: dep_delay, 3: arr_time,
    4: sched_arr_time, 5: arr_delay
```

Idem pour dplyr::mutate(): les opérations appliquées lors du calcul des valeurs des nouvelles colonnes sont appliquée groupe de lignes par groupe de lignes. Dans l'exemple suivant, on ajoute une nouvelle colonne qui contient le retard moyen du mois correspondant:

```
flights |>
  group_by(month) |>
  mutate(mean_delay_month = mean(dep_delay, na.rm = TRUE))
```

A tibble: 336,776 x 22 # Groups: month [12]

	year	${\tt month}$	day	dep_time	sched_de~1	$dep_d~2$	$arr_t~3$	sched~4	$arr_d~5$	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	1	1	517	515	2	830	819	11	UA
2	2013	1	1	533	529	4	850	830	20	UA
3	2013	1	1	542	540	2	923	850	33	AA
4	2013	1	1	544	545	-1	1004	1022	-18	B6
5	2013	1	1	554	600	-6	812	837	-25	DL
6	2013	1	1	554	558	-4	740	728	12	UA
7	2013	1	1	555	600	-5	913	854	19	B6
8	2013	1	1	557	600	-3	709	723	-14	EV
9	2013	1	1	557	600	-3	838	846	-8	B6
10	2013	1	1	558	600	-2	753	745	8	AA
								_		_

... with 336,766 more rows, 12 more variables: flight <int>, tailnum <chr>,

origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,

minute <dbl>, time hour <dttm>, distance_km <dbl>, vitesse <dbl>,

mean_delay_month <dbl>, and abbreviated variable names 1: sched_dep_time,

2: dep_delay, 3: arr_time, 4: sched_arr_time, 5: arr_delay

Ceci peut permettre, par exemple, de déterminer si un retard donné est supérieur ou inférieur au retard moyen du mois en cours.

dplyr::group_by() peut aussi être utile avec dplyr::filter(), par exemple pour sélectionner les vols avec le retard au départ le plus important pour chaque mois :

```
flights |>
  group_by(month) |>
  filter(dep_delay == max(dep_delay, na.rm = TRUE))
```

A tibble: 12 x 21 # Groups: month [12]

day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier year month <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr> 1 2013 1242 1272 HA 1 9 641 900 1301 1530 2 2013 10 14 2042 900 702 2255 1127 688 DL 3 2013 798 3 603 1645 829 1913 796 DL 11 4 2013 12 5 756 1700 896 1058 2020 878 AA

```
2013
                   10
                           2243
                                        830
                                                 853
                                                          100
                                                                  1106
                                                                           834 F9
 5
              2
 6
   2013
              3
                   17
                           2321
                                        810
                                                 911
                                                          135
                                                                  1020
                                                                           915 DL
 7
    2013
              4
                   10
                           1100
                                       1900
                                                 960
                                                         1342
                                                                 2211
                                                                           931 DL
 8
    2013
              5
                    3
                           1133
                                       2055
                                                 878
                                                         1250
                                                                 2215
                                                                           875 MQ
 9
   2013
              6
                   15
                           1432
                                       1935
                                                1137
                                                         1607
                                                                 2120
                                                                          1127 MQ
10
    2013
              7
                   22
                            845
                                       1600
                                                1005
                                                         1044
                                                                  1815
                                                                           989 MQ
11
    2013
              8
                    8
                           2334
                                       1454
                                                 520
                                                          120
                                                                  1710
                                                                           490 EV
              9
12 2013
                   20
                           1139
                                       1845
                                                1014
                                                         1457
                                                                 2210
                                                                          1007 AA
```

... with 11 more variables: flight <int>, tailnum <chr>, origin <chr>,

- # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
- # time_hour <dttm>, distance_km <dbl>, vitesse <dbl>, and abbreviated
- # variable names 1: sched_dep_time, 2: dep_delay, 3: arr_time,
- # 4: sched_arr_time, 5: arr_delay

Attention: la clause dplyr::roup_by() marche pour les verbes déjà vus précédemment, sauf pour dplyr::arrange(), qui par défaut trie la table sans tenir compte des groupes. Pour obtenir un tri par groupe, il faut lui ajouter l'argument .by_group = TRUE.

On peut voir la différence en comparant les deux résultats suivants :

```
flights |>
  group_by(month) |>
  arrange(desc(dep_delay))
```

A tibble: 336,776 x 21 # Groups: month [12]

	year	${\tt month}$	day	dep_time	sched_de~1	dep_d~2	arr_t~3	sched~4	$arr_d~5$	carrier
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>
1	2013	1	9	641	900	1301	1242	1530	1272	HA
2	2013	6	15	1432	1935	1137	1607	2120	1127	MQ
3	2013	1	10	1121	1635	1126	1239	1810	1109	MQ
4	2013	9	20	1139	1845	1014	1457	2210	1007	AA
5	2013	7	22	845	1600	1005	1044	1815	989	MQ
6	2013	4	10	1100	1900	960	1342	2211	931	DL
7	2013	3	17	2321	810	911	135	1020	915	DL
8	2013	6	27	959	1900	899	1236	2226	850	DL
9	2013	7	22	2257	759	898	121	1026	895	DL

```
5
                                      1700
                                                       1058
                                                               2020
10
    2013
            12
                           756
                                               896
                                                                         878 AA
 ... with 336,766 more rows, 11 more variables: flight <int>, tailnum <chr>,
    origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#
    minute <dbl>, time_hour <dttm>, distance_km <dbl>, vitesse <dbl>, and
#
    abbreviated variable names 1: sched_dep_time, 2: dep_delay, 3: arr_time,
    4: sched_arr_time, 5: arr_delay
  flights |>
    group_by(month) |>
    arrange(desc(dep_delay), .by_group = TRUE)
# A tibble: 336,776 x 21
# Groups:
            month [12]
    year month
                  day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier
   <int> <int> <int>
                         <int>
                                     <int>
                                             <dbl>
                                                      <int>
                                                              <int>
                                                                      <dbl> <chr>
 1
   2013
             1
                    9
                           641
                                       900
                                              1301
                                                       1242
                                                               1530
                                                                        1272 HA
 2 2013
                   10
                                              1126
                                                       1239
             1
                          1121
                                      1635
                                                               1810
                                                                        1109 MQ
 3 2013
             1
                   1
                           848
                                      1835
                                               853
                                                       1001
                                                               1950
                                                                         851 MQ
 4 2013
                                       810
                                               599
                                                       2054
                   13
                          1809
                                                               1042
                                                                         612 DL
 5
  2013
             1
                   16
                          1622
                                       800
                                               502
                                                       1911
                                                               1054
                                                                         497 B6
 6
    2013
             1
                   23
                          1551
                                       753
                                               478
                                                       1812
                                                               1006
                                                                         486 DL
 7
    2013
                                       900
                                               385
             1
                   10
                          1525
                                                       1713
                                                               1039
                                                                         394 UA
 8
    2013
                                               379
             1
                    1
                          2343
                                      1724
                                                        314
                                                               1938
                                                                         456 EV
 9
    2013
             1
                    2
                          2131
                                      1512
                                               379
                                                       2340
                                                               1741
                                                                         359 UA
10
    2013
             1
                    7
                          2021
                                      1415
                                               366
                                                       2332
                                                               1724
                                                                         368 B6
 ... with 336,766 more rows, 11 more variables: flight <int>, tailnum <chr>,
    origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#
    minute <dbl>, time hour <dttm>, distance km <dbl>, vitesse <dbl>, and
#
    abbreviated variable names 1: sched_dep_time, 2: dep_delay, 3: arr_time,
    4: sched_arr_time, 5: arr_delay
```

8.3.2 summarise()

dplyr::summarise() permet d'agréger les lignes du tableau en effectuant une opération résumée sur une ou plusieurs colonnes. Il s'agit de toutes les fonctions qui prennent en entrée un ensemble de valeurs et renvoie une valeur unique, comme la moyenne (mean()). Par exemple, si l'on souhaite connaître les retards moyens au départ et à l'arrivée pour l'ensemble des vols du tableau flights :

Cette fonction est en général utilisée avec <code>dplyr::group_by()</code>, puisqu'elle permet du coup d'agréger et de résumer les lignes du tableau groupe par groupe. Si l'on souhaite calculer le délai maximum, le délai minimum et le délai moyen au départ pour chaque mois, on pourra faire :

```
flights |>
  group_by(month) |>
  summarise(
    max_delay = max(dep_delay, na.rm=TRUE),
    min_delay = min(dep_delay, na.rm=TRUE),
    mean_delay = mean(dep_delay, na.rm=TRUE)
)
```

A tibble: 12 x 4

month max_delay min_delay mean_delay <dbl> <int> <dbl> <dbl> 1 1 1301 -30 10.0 2 2 853 -33 10.8 3 3 911 -25 13.2 4 4 960 -21 13.9 5 5 878 -24 13.0 6 6 1137 -21 20.8 7 7 1005 -22 21.7 8 8 520 -26 12.6

9	9	1014	-24	6.72
10	10	702	-25	6.24
11	11	798	-32	5.44
12	12	896	-43	16.6

dplyr::summarise() dispose d'une fonction spéciale
dplyr::n(), qui retourne le nombre de lignes du groupe.
Ainsi si l'on veut le nombre de vols par destination, on peut
utiliser:

```
flights |>
    group_by(dest) |>
    summarise(n = n())
# A tibble: 105 x 2
   dest
             n
   <chr> <int>
 1 ABQ
           254
 2 ACK
           265
 3 ALB
           439
4 ANC
             8
 5 ATL
         17215
 6 AUS
          2439
 7 AVL
           275
8 BDL
           443
9 BGR
           375
10 BHM
           297
# ... with 95 more rows
```

dplyr::n() peut aussi être utilisée avec dplyr::filter() et
dplyr::mutate().

8.3.3 count()

À noter que quand l'on veut compter le nombre de lignes par groupe, on peut utiliser directement la fonction dplyr::count(). Ainsi le code suivant est identique au précédent:

```
flights |>
     count(dest)
# A tibble: 105 \times 2
   dest
              n
   <chr> <int>
 1 ABQ
            254
 2 ACK
            265
 3 ALB
            439
 4 ANC
              8
 5 ATL
         17215
 6 AUS
           2439
 7 AVL
            275
 8 BDL
            443
 9 BGR
            375
10 BHM
            297
# ... with 95 more rows
```

8.3.4 Grouper selon plusieurs variables

On peut grouper selon plusieurs variables à la fois, il suffit de les indiquer dans la clause du dplyr::group_by():

```
flights |>
    group_by(month, dest) |>
    summarise(nb = n()) |>
    arrange(desc(nb))
`summarise()` has grouped output by 'month'. You can override using the
`.groups` argument.
# A tibble: 1,113 x 3
# Groups:
            month [12]
   month dest
                  nb
   <int> <chr> <int>
 1
       8 ORD
                1604
 2
      10 ORD
                1604
 3
       5 ORD
                1582
```

```
4
        9 ORD
                  1582
 5
        7 ORD
                  1573
 6
        6 ORD
                  1547
 7
       7 ATL
                  1511
 8
        8 ATL
                  1507
 9
        8 LAX
                  1505
10
        7 LAX
                  1500
# ... with 1,103 more rows
```

On peut également compter selon plusieurs variables :

```
flights |>
  count(origin, dest) |>
  arrange(desc(n))
```

```
# A tibble: 224 x 3
   origin dest
                     n
   <chr>
          <chr> <int>
 1 JFK
          LAX
                 11262
 2 LGA
          ATL
                 10263
 3 LGA
          ORD
                  8857
 4 JFK
          SFO
                  8204
5 LGA
          CLT
                  6168
6 EWR
          ORD
                  6100
 7 JFK
          BOS
                  5898
 8 LGA
          AIM
                  5781
9 JFK
          MCO
                  5464
10 EWR
          BOS
                  5327
# ... with 214 more rows
```

On peut utiliser plusieurs opérations de groupage dans le même *pipeline*. Ainsi, si l'on souhaite déterminer le couple origine/destination ayant le plus grand nombre de vols selon le mois de l'année, on devra procéder en deux étapes :

- d'abord grouper selon mois, origine et destination pour calculer le nombre de vols
- puis grouper uniquement selon le mois pour sélectionner la ligne avec la valeur maximale.

Au final, on obtient le code suivant :

```
flights |>
  group_by(month, origin, dest) |>
  summarise(nb = n()) |>
  group_by(month) |>
  filter(nb == max(nb))
```

`summarise()` has grouped output by 'month', 'origin'. You can override using the `.groups` argument.

```
# A tibble: 12 x 4
# Groups: month [12]
   month origin dest
                          nb
   <int> <chr>
                 <chr> <int>
       1 JFK
                 LAX
                          937
 1
 2
       2 JFK
                 LAX
                         834
 3
       3 JFK
                 LAX
                          960
 4
       4 JFK
                 LAX
                         935
 5
       5 JFK
                 LAX
                         960
       6 JFK
 6
                 LAX
                         928
 7
       7 JFK
                 LAX
                         985
 8
       8 JFK
                 LAX
                         979
9
       9 JFK
                 LAX
                         925
10
      10 JFK
                 LAX
                         965
      11 JFK
11
                 LAX
                          907
12
      12 JFK
                 LAX
                         947
```

Lorsqu'on effectue un dplyr::group_by() suivi d'un dplyr::summarise(), le tableau résultat est automatiquement dégroupé de la dernière variable de regroupement. Ainsi le tableau généré par le code suivant est groupé par month et origin¹⁵:

```
flights |>
  group_by(month, origin, dest) |>
  summarise(nb = n())
```

¹⁵ Comme expliqué dans le message affiché dans la console, cela peut être contrôlé avec l'argument .groups de dplyr::summarise(), dont les options sont décrites dans l'aide de la fonction.

[`]summarise()` has grouped output by 'month', 'origin'. You can override using the `.groups` argument.

```
# A tibble: 2,313 x 4
# Groups:
            month, origin [36]
   month origin dest
                           nb
   <int> <chr>
                 <chr> <int>
       1 EWR
 1
                 ALB
                           64
 2
       1 EWR
                 ATL
                          362
 3
       1 EWR
                 AUS
                           51
 4
                            2
       1 EWR
                 AVL
 5
       1 EWR
                           37
                 BDL
 6
       1 EWR
                 BNA
                          111
 7
       1 EWR
                 BOS
                          430
 8
       1 EWR
                 BQN
                           31
 9
       1 EWR
                 BTV
                          100
10
       1 EWR
                 BUF
                          119
# ... with 2,303 more rows
```

Cela peut permettre d'enchaîner les opérations groupées. Dans l'exemple suivant, on calcule le pourcentage des trajets pour chaque destination par rapport à tous les trajets du mois :

```
flights |>
  group_by(month, dest) |>
  summarise(nb = n()) |>
  mutate(pourcentage = nb / sum(nb) * 100)
```

`summarise()` has grouped output by 'month'. You can override using the `.groups` argument.

```
# A tibble: 1,113 x 4
# Groups:
            month [12]
   month dest
                   nb pourcentage
   <int> <chr> <int>
                             <dbl>
 1
       1 ALB
                   64
                           0.237
 2
       1 ATL
                 1396
                           5.17
 3
       1 AUS
                  169
                           0.626
 4
       1 AVL
                           0.00741
                    2
 5
                   37
       1 BDL
                           0.137
 6
       1 BHM
                   25
                           0.0926
 7
       1 BNA
                  399
                           1.48
```

```
8 1 BOS 1245 4.61
9 1 BQN 93 0.344
10 1 BTV 223 0.826
# ... with 1,103 more rows
```

On peut à tout moment dégrouper un tableau à l'aide de dplyr::ungroup(). Ce serait par exemple nécessaire, dans l'exemple précédent, si on voulait calculer le pourcentage sur le nombre total de vols plutôt que sur le nombre de vols par mois :

```
flights |>
  group_by(month, dest) |>
  summarise(nb = n()) |>
  ungroup() |>
  mutate(pourcentage = nb / sum(nb) * 100)
```

`summarise()` has grouped output by 'month'. You can override using the `.groups` argument.

```
# A tibble: 1,113 x 4
   month dest
                   nb pourcentage
   <int> <chr> <int>
                             <dbl>
 1
       1 ALB
                   64
                          0.0190
 2
       1 ATL
                 1396
                          0.415
 3
       1 AUS
                  169
                          0.0502
 4
       1 AVL
                    2
                          0.000594
 5
       1 BDL
                   37
                          0.0110
 6
       1 BHM
                   25
                          0.00742
 7
       1 BNA
                  399
                          0.118
 8
                 1245
                          0.370
       1 BOS
 9
       1 BQN
                   93
                          0.0276
10
       1 BTV
                  223
                          0.0662
# ... with 1,103 more rows
```

À noter que dplyr::count(), par contre, renvoit un tableau non groupé :

```
flights |>
     count(month, dest)
# A tibble: 1,113 \times 3
   month dest
   <int> <chr> <int>
        1 ALB
                    64
 2
        1 ATL
                  1396
 3
        1 AUS
                   169
 4
        1 AVL
                     2
 5
        1 BDL
                    37
 6
                    25
        1 BHM
 7
        1 BNA
                   399
 8
        1 BOS
                  1245
 9
        1 BQN
                    93
10
        1 BTV
                   223
# ... with 1,103 more rows
```

8.4 Cheatsheet

8.5 webin-R

On pourra également se référer au webin-R#04 (manipuler les données avec dplyr) sur YouTube.

https://youtu.be/aFvBhgmawcs

9 Facteurs et forcats

Dans \mathbf{R} , les fecteurs sont utilisés pour représenter des variables catégorielles, c'est-à-dire des variables qui ont un nombre fixé et limité de valeurs possibles (par exemple une variable sexe ou une variable niveau d'éducation).

De telles variables sont parfois représentées sous forme textuelle (vecteurs de type character). Cependant, cela ne permets pas d'indiquer un ordre spécifique aux modalités, à la différence des facteurs.

Note

Lorsque l'on importe des données d'enquêtes, il est fréquent que les variables catégorielles sont codées sous la forme d'un code numérique (par exemple 1 pour femme et 2 pour homme) auquel est associé une étiquette de valeur. C'est notamment le fonctionnement usuel de logiciels tels que SPSS, Stata ou SAS. Les étiquettes de valeurs seront abordés dans un prochain chapitre (voir Chapitre 12).

Au moment de l'analyse (tableaux statistiques, graphiques, modèles de régression...), il sera nécessaire de transformer ces vecteurs avec étiquettes en facteurs.

9.1 Création d'un facteur

Le plus simple pour créer un facteur est de partir d'un vecteur textuel et d'utiliser la fonction factor().

```
x <- c("nord", "sud", "sud", "est", "est")
x |>
```

```
factor()
```

[1] nord sud sud est est est Levels: est nord sud

Par défaut, les niveaux du facteur obtenu correspondent aux valeurs uniques du fecteur textuel, triés par ordre alphabétique. Si l'on veut contrôler l'ordre des niveaux, et éventuellement indiquer un niveau absent des données, on utilisera l'argument levels de factor().

```
x |>
factor(levels = c("nord", "est", "sud", "ouest"))
```

[1] nord sud sud est est est Levels: nord est sud ouest

Si une valeur observée dans les données n'est pas indiqué dans levels, elle sera siliencieusement convertie en valeur manquante (NA).

```
x |>
  factor(levels = c("nord", "sud"))
```

[1] nord sud sud <NA> <NA> <NA> Levels: nord sud

Si l'on veut être averti par un warning dans ce genre de situation, on pourra avoir plutôt recours à la fonction readr::parse_factor() du package {readr}, qui, le cas échéant, renverra un tableau avec les problèmes rencontrés.

```
x |>
  readr::parse_factor(levels = c("nord", "sud"))
```

```
Warning: 3 parsing failures.
row col
                  expected actual
 4 -- value in level set
                              est.
  5 -- value in level set
                              est
  6 -- value in level set
                              est
[1] nord sud sud
                  <NA> <NA> <NA>
attr(,"problems")
# A tibble: 3 x 4
          col expected
                                 actual
  <int> <int> <chr>
                                  <chr>
           NA value in level set est
1
           NA value in level set est
           NA value in level set est
3
Levels: nord sud
```

Une fois un facteur créé, on peut accéder à la liste de ses étiquettes avec levels().

```
f <- factor(x)
levels(f)</pre>
```

[1] "est" "nord" "sud"

Dans certaines situations (par exemple pour la réalisation d'une régression logistique ordinale), on peut avoir avoir besoin d'indiquer que les modalités du facteur sont ordonnées héarchiquement. Dans ce cas là, on aura simplement recours à ordered() pour créer/convertir notre facteur.

```
c("supérieur", "primaire", "secondaire", "primaire", "supérieur") |>
  ordered(levels = c("primaire", "secondaire", "supérieur"))
```

[1] supérieur primaire secondaire primaire supérieur Levels: primaire < secondaire < supérieur

Techniquement, les valeurs d'un facteur sont stockés de manière interne à l'aide de nombres entiers, dont la valeur représente la

position de l'étiquette correspondante dans l'attribut levels. Ainsi, un facteur à n modalités sera toujours codé avec les nombre entiers allant de 1 à n.

```
class(f)

[1] "factor"

   typeof(f)

[1] "integer"

   as.integer(f)

[1] 2 3 3 1 1 1

   as.character(f)

[1] "nord" "sud" "sud" "est" "est" "est"
```

9.2 Changer l'ordre des modalités

Le pacakge {forcats}, chargé par défaut lorsque l'on exécute la commande library(tidyverse), fournie plusieurs fonctions pour manipuler des facteurs. Pour donner des exemples d'utilisation de ces différentes fonctions, nous allons utiliser le jeu de données hdv2003 du package {questionr}.

```
library(tidyverse)
data("hdv2003", package = "questionr")
```

Considérons la variable *qualif* qui indique le niveau de qualification des enquêtés. On peut voir la liste des niveaux de ce facteur, et leur ordre, avec levels(), ou en effectuant un tri à plat avec la fonction questionr::freq().

```
hdv2003$qualif |> levels()
```

```
[1] "Ouvrier specialise" "Ouvrier qualifie"
[3] "Technicien" "Profession intermediaire"
[5] "Cadre" "Employe"
[7] "Autre"
```

hdv2003\$qualif |> questionr::freq()

	n	%	val%
Ouvrier specialise	203	10.2	12.3
Ouvrier qualifie	292	14.6	17.7
Technicien	86	4.3	5.2
${\tt Profession\ intermediaire}$	160	8.0	9.7
Cadre	260	13.0	15.7
Employe	594	29.7	35.9
Autre	58	2.9	3.5
NA	347	17.3	NA

Parfois, on a simplement besoin d'inverser l'ordre des facteurs, ce qui peut se faire facilement avec la fonction forcats::fct_rev(). Elle renvoie le facteur fourni en entrée en ayant inverser l'ordre des modalités (mais sans modifier l'ordre des valeurs dans le vecteur).

```
hdv2003$qualif |>
  fct_rev() |>
  questionr::freq()
```

	n	%	val%
Autre	58	2.9	3.5
Employe	594	29.7	35.9
Cadre	260	13.0	15.7
Profession intermed	iaire 160	8.0	9.7
Technicien	86	4.3	5.2

Ouvrier	qualifie	292	14.6	17.7
${\tt Ouvrier}$	specialise	203	10.2	12.3
NA		347	17.3	NA

Pour plus de contrôle, on utilisera forcats::fct_relevel() où l'on indique l'ordre souhaité des modalités. On peut également seulement indiquer les premières modalités, les autres seront ajoutées à la fin sans changer leur ordre.

```
hdv2003$qualif |>
  fct_relevel("Cadre", "Autre", "Technicien", "Employe") |>
  questionr::freq()
```

	n	%	val%
Cadre	260	13.0	15.7
Autre	58	2.9	3.5
Technicien	86	4.3	5.2
Employe	594	29.7	35.9
Ouvrier specialise	203	10.2	12.3
Ouvrier qualifie	292	14.6	17.7
Profession intermediaire	160	8.0	9.7
NA	347	17.3	NA

La fonction forcats::fct_infreq() ordonne les modalités de celle la plus fréquente à celle la moins fréquente (nombre d'observations):

```
hdv2003$qualif |>
  fct_infreq() |>
  questionr::freq()
```

	n	%	val%
Employe	594	29.7	35.9
Ouvrier qualifie	292	14.6	17.7
Cadre	260	13.0	15.7
Ouvrier specialise	203	10.2	12.3
Profession intermediaire	160	8.0	9.7
Technicien	86	4.3	5.2
Autre	58	2.9	3.5
NA	347	17.3	NA

Pour inverser l'ordre, on combinera forcats::fct_infreq() avec forcats::fct_rev().

```
hdv2003$qualif |>
  fct_infreq() |>
  fct_rev() |>
  questionr::freq()
```

	n	%	val%
Autre	58	2.9	3.5
Technicien	86	4.3	5.2
Profession intermediaire	160	8.0	9.7
Ouvrier specialise	203	10.2	12.3
Cadre	260	13.0	15.7
Ouvrier qualifie	292	14.6	17.7
Employe	594	29.7	35.9
NA	347	17.3	NA

Dans certains cas, on souhaite créer un facteur dont les modalités sont triées selon leur ordre d'apparation dans le jeu de données. Pour cela, on aura recours à forcats::fct_inorder().

```
v <- c("c", "a", "d", "b", "a", "c") factor(v)
```

[1] c a d b a c Levels: a b c d

fct_inorder(v)

[1] c a d b a c Levels: c a d b

La fonction forcats::fct_reorder() permets de trier les modalités en fonction d'une autre variable. Par exemple, si je souhaite trier les modalités de la variable *qualif* en fonction de l'âge moyen (dans chaque modalité):

```
hdv2003$qualif_tri_age <-
hdv2003$qualif |>
fct_reorder(hdv2003$age, .fun = mean)
hdv2003 |>
dplyr::group_by(qualif_tri_age) |>
dplyr::summarise(age_moyen = mean(age))
```

A tibble: 8 x 2 qualif_tri_age age_moyen <fct> <dbl> 1 Technicien 45.9 2 Employe 46.7 3 Autre 47.0 4 Ouvrier specialise 48.9 5 Profession intermediaire 49.1 49.7 6 Cadre 7 Ouvrier qualifie 50.0 8 <NA> 47.9

Astuce

{questionr} propose une interface graphique afin de faciliter les opérations de réordonnancement manuel. Pour la lancer, sélectionner le menu Addins puis Levels ordering, ou exécuter la fonction questionr::iorder() en lui passant comme paramètre le facteur à réordonner.

9.3 Modifier les modalités

Pour modifier le nom des modalités, on pourra avoir recours à forcats::fct_recode() avec une syntaxe de la forme "nouveau nom" = "ancien nom".

```
hdv2003$sexe |>
    questionr::freq()

    n % val%

Homme 899 45 45

Femme 1101 55 55
```

```
hdv2003$sexe <-
hdv2003$sexe |>
fct_recode(f = "Femme", m = "Homme")
hdv2003$sexe |>
questionr::freq()

n % val%
m 899 45 45
f 1101 55 55
```

On peut également fusionner des modalités ensemble en leur attribuant le même nom.

```
hdv2003$nivetud |> questionr::freq()
```

```
% val%
                                                                39 2.0 2.1
N'a jamais fait d'etudes
A arrete ses etudes, avant la derniere annee d'etudes primaires
                                                                86 4.3 4.6
Derniere annee d'etudes primaires
                                                               341 17.0 18.1
                                                               204 10.2 10.8
1er cycle
                                                               183 9.2 9.7
2eme cycle
Enseignement technique ou professionnel court
                                                               463 23.2 24.5
Enseignement technique ou professionnel long
                                                               131 6.6 6.9
Enseignement superieur y compris technique superieur
                                                               441 22.0 23.4
NA
                                                               112 5.6
```

```
hdv2003$instruction <-
hdv2003$nivetud |>
fct_recode(
    "primaire" = "N'a jamais fait d'etudes",
    "primaire" = "A arrete ses etudes, avant la derniere annee d'etudes primaires",
    "primaire" = "Derniere annee d'etudes primaires",
    "secondaire" = "1er cycle",
    "secondaire" = "2eme cycle",
    "technique/professionnel" = "Enseignement technique ou professionnel court",
    "technique/professionnel" = "Enseignement technique ou professionnel long",
    "supérieur" = "Enseignement superieur y compris technique superieur"
```

```
)
hdv2003$instruction |>
questionr::freq()
```

	n	%	val%
primaire	466	23.3	24.7
secondaire	387	19.4	20.5
technique/professionnel	594	29.7	31.5
supérieur	441	22.0	23.4
NA	112	5.6	NA

¶ Interface graphique

Le package{questionr} propose une interface graphique facilitant le recodage des modalités d'une variable qualitative. L'objectif est de permettre à la personne qui l'utilise de saisir les nouvelles valeurs dans un formulaire, et de générer ensuite le code R correspondant au recodage indiqué.

Pour utiliser cette interface, sous **RStudio** vous pouvez aller dans le menu *Addins* (présent dans la barre d'outils principale) puis choisir *Levels recoding*. Sinon, vous pouvez lancer dans la console la fonction questionr::irec() en lui passant comme paramètre la variable à recoder.

La fonction forcats::fct_collapse() est une variante de forcats::fct_recode() pour indiquer les fusions de modalités. La même recodification s'écrirait alors :

```
hdv2003$instruction <-
hdv2003$nivetud |>
fct_collapse(
   "primaire" = c(
      "N'a jamais fait d'etudes",
      "A arrete ses etudes, avant la derniere annee d'etudes primaires",
      "Derniere annee d'etudes primaires"
```

```
),
  "secondaire" = c(
    "1er cycle",
    "2eme cycle"
),
  "technique/professionnel" = c(
    "Enseignement technique ou professionnel court",
    "Enseignement technique ou professionnel long"
),
  "supérieur" = "Enseignement superieur y compris technique superieur"
)
```

Pour transformer les valeurs manquantes (NA) en une modalité explicite, on pourra avoir recours à forcats::fct_na_value_to_level()¹⁶.

```
hdv2003$instruction <- fct_na_value_to_level(level = "(manquant)")
hdv2003$instruction |> questionr::freq()

s'appelait précédemment forcats::fct_explicit_na() et a été renommée depuis la version 1.0.0 de {forcats}.
```

Cette

fonction

```
n % val% primaire 466 23.3 23.3 secondaire 387 19.4 19.4 technique/professionnel 594 29.7 29.7 supérieur 441 22.0 22.0 (manquant) 112 5.6 5.6
```

Plusieurs fonctions permettent de regrouper plusieurs modalités dans une modalité autres.

Par exemple, avec forcats::fct_other(), on pourra indiquer les modalités à garder.

```
hdv2003$qualif |>
  questionr::freq()
```

n % val% Ouvrier specialise 203 10.2 12.3

```
      Ouvrier qualifie
      292 14.6 17.7

      Technicien
      86 4.3 5.2

      Profession intermediaire
      160 8.0 9.7

      Cadre
      260 13.0 15.7

      Employe
      594 29.7 35.9

      Autre
      58 2.9 3.5

      NA
      347 17.3 NA
```

```
hdv2003$qualif |>
  fct_other(keep = c("Technicien", "Cadre", "Employe")) |>
  questionr::freq()
```

```
n % val%
Technicien 86 4.3 5.2
Cadre 260 13.0 15.7
Employe 594 29.7 35.9
Other 713 35.6 43.1
NA 347 17.3 NA
```

La fonction forcats::fct_lump_n() permets de ne conserver que les modalités les plus fréquentes et de regrouper les autres dans une modalité autres.

```
hdv2003$qualif |>
  fct_lump_n(n = 4, other_level = "Autres") |>
  questionr::freq()
```

```
n % val%
Ouvrier specialise 203 10.2 12.3
Ouvrier qualifie 292 14.6 17.7
Cadre 260 13.0 15.7
Employe 594 29.7 35.9
Autres 304 15.2 18.4
NA 347 17.3 NA
```

Et forcats::fct_lump_min() celles qui ont un minimum d'observations.

```
hdv2003$qualif |>
  fct_lump_min(min = 200, other_level = "Autres") |>
  questionr::freq()
```

```
n % val%
Ouvrier specialise 203 10.2 12.3
Ouvrier qualifie 292 14.6 17.7
Cadre 260 13.0 15.7
Employe 594 29.7 35.9
Autres 304 15.2 18.4
NA 347 17.3 NA
```

Il peut arriver qu'une des modalités d'un facteur ne soit pas représentée dans les données.

```
v <- factor(
    c("a", "a", "b", "a"),
    levels = c("a", "b", "c")
)
    questionr::freq(v)

n % val%
a 3 75    75
b 1 25    25
c 0    0    0</pre>
```

Pour calculer certains tests statistiques ou faire tourner un modèle, ces modalités sans observation peuvent être problématiques. forcats::fct_drop() permet de supprimer les modalités qui n'apparaissent pas dans les données.

```
[1] a a b a
Levels: a b c

v |> fct_drop()
```

```
[1] a a b a Levels: a b
```

À l'inverse, forcats::fct_expand() permet d'ajouter une ou plusieurs modalités à un facteur.

```
[1] a a b a
Levels: a b c

v |> fct_expand("d", "e")

[1] a a b a
Levels: a b c d e
```

9.4 Découper une variable numérique en classes

Il est fréquent d'avoir besoin de découper une variable numérique en une variable catgéorielles (un facteur) à plusieurs modalités, par exemple pour créer des groupes d'âges à partir d'une variable age.

On utilise pour cela la fonction cut() qui prend, outre la variable à découper, un certain nombre d'arguments :

- breaks indique soit le nombre de classes souhaité, soit, si on lui fournit un vecteur, les limites des classes ;
- labels permet de modifier les noms de modalités attribués aux classes ;
- include.lowest et right influent sur la manière dont les valeurs situées à la frontière des classes seront inclues ou exclues ;
- dig.lab indique le nombre de chiffres après la virgule à conserver dans les noms de modalités.

Prenons tout de suite un exemple et tentons de découper la variable age en cinq classes :

Par défaut ${\bf R}$ nous a bien créé cinq classes d'amplitudes égales. La première classe va de 17,9 à 33,8 ans (en fait de 17 à 32), etc.

Les frontières de classe seraient plus présentables si elles utilisaient des nombres ronds. On va donc spécifier manuellement le découpage souhaité, par tranches de 20 ans :

```
hdv2003 <-
    hdv2003 |>
    mutate(groupe_ages = cut(age, c(18, 20, 40, 60, 80, 97)))
  hdv2003$groupe_ages |> questionr::freq()
               % val%
          n
             2.8
(18,20]
         55
                  2.8
(20,40] 660 33.0 33.3
(40,60] 780 39.0 39.3
(60,80] 436 21.8 22.0
(80,97]
         52
             2.6
                  2.6
NA
         17
             0.9
                   NA
```

Les symboles dans les noms attribués aux classes ont leur importance : (signifie que la frontière de la classe est exclue, tandis que [signifie qu'elle est incluse. Ainsi, (20,40] signifie « strictement supérieur à 20 et inférieur ou égal à 40 ».

On remarque que du coup, dans notre exemple précédent, la valeur minimale, 18, est exclue de notre première classe, et qu'une observation est donc absente de ce découpage. Pour résoudre ce problème on peut soit faire commencer la première classe à 17, soit utiliser l'option include.lowest=TRUE:

```
hdv2003 <-
hdv2003 |>
mutate(groupe_ages = cut(
age,
c(18, 20, 40, 60, 80, 97),
include.lowest = TRUE
))
hdv2003$groupe_ages |> questionr::freq()

n  % val%
[18,20] 72 3.6 3.6
(20,40] 660 33.0 33.0
(40,60] 780 39.0 39.0
(60,80] 436 21.8 21.8
(80,97] 52 2.6 2.6
```

On peut également modifier le sens des intervalles avec l'option right=FALSE :

```
hdv2003 <-
hdv2003 |>
mutate(groupe_ages = cut(
age,
c(18, 20, 40, 60, 80, 97),
include.lowest = TRUE,
right = FALSE
))
hdv2003$groupe_ages |> questionr::freq()

n  % val%
[18,20) 48 2.4 2.4
[20,40) 643 32.1 32.1
[40,60) 793 39.6 39.6
```

¶ Interface graphique

Il n'est pas nécessaire de connaître toutes les options de $\mathtt{cut}()$. Le package {questionr} propose là encore une interface graphique permettant de visualiser l'effet des différents paramètres et de générer le code $\mathbf R$ correspondant.

Pour utiliser cette interface, sous **RStudio** vous pouvez aller dans le menu *Addins* (présent dans la barre d'outils principale) puis choisir *Numeric range dividing*. Sinon, vous pouvez lancer dans la console la fonction questionr::icut() en lui passant comme paramètre la variable numérique à découper.

Une démonstration en vidéo de cet *add-in* est disponible dans le webin-R #05 (*recoder des variables*) sur [YouTube](https://youtu.be/CokvTbtWdwc?t=2795). https://youtu.be/CokvTbtWdwc

10 Combiner plusieurs variables

Parfois, on a besoin de créer une nouvelle variable en partant des valeurs d'une ou plusieurs autres variables. Dans ce cas on peut utiliser les fonctions dplyr::if_else() pour les cas les plus simples, ou dplyr::case_when() pour les cas plus complexes.

Une fois encore, nous utiliser le jeu de données hdv2003 pour illustrer ces différentes fonctions.

```
library(tidyverse)
data("hdv2003", package = "questionr")
```

10.1 if_else()

dplyr::if_else() prend trois arguments: un test, les valeurs à renvoyer si le test est vrai, et les valeurs à renvoyer si le test est faux.

Voici un exemple simple :

```
v <- c(12, 14, 8, 16)
if_else(v > 10, "Supérieur à 10", "Inférieur à 10")
```

[1] "Supérieur à 10" "Supérieur à 10" "Inférieur à 10" "Supérieur à 10"

La fonction devient plus intéressante avec des tests combinant plusieurs variables. Par exemple, imaginons qu'on souhaite créer une nouvelle variable indiquant les hommes de plus de 60 ans :

```
hdv2003 <-
  hdv2003 |>
  mutate(
    statut = if_else(
       sexe == "Homme" & age > 60,
       "Homme de plus de 60 ans",
       "Autre"
    )
  )
  hdv2003 |>
  pull(statut) |>
  questionr::freq()
```

Il est possible d'utiliser des variables ou des combinaisons de variables au sein du dplyr::if_else(). Suppons une petite enquête menée auprès de femmes et d'hommes. Le questionnaire comportait une question de préférence posée différemment aux femmes et aux hommes et dont les réponses ont ainsi été collectées dans deux variables différentes, pref_f et pref_h, que l'on souhaite combiner en une seule variable. De même, une certaine mesure quantitative a été réalisée, mais une correction est nécessaire pour normaliser ce score (retirer 0.4 aux scores des hommes et 0.6 aux scores des femmes). Cela peut être réalisé avec le code ci-dessous.

```
df <- tibble(
    sexe = c("f", "f", "h", "h"),
    pref_f = c("a", "b", NA, NA),
    pref_h = c(NA, NA, "c", "d"),
    mesure = c(1.2, 4.1, 3.8, 2.7)
)
df</pre>
```

A tibble: 4 x 4
sexe pref_f pref_h mesure

```
<chr>>
  <chr> <chr>
                          <dbl>
1 f
                 <NA>
                            1.2
         a
2 f
         b
                 <NA>
                            4.1
3 h
         <NA>
                 С
                            3.8
4 h
         <NA>
                 d
                            2.7
```

```
df <-
    df |>
    mutate(
    pref = if_else(sexe == "f", pref_f, pref_h),
    indicateur = if_else(sexe == "h", mesure - 0.4, mesure - 0.6)
)
df
```

```
# A tibble: 4 x 6
```

```
sexe pref_f pref_h mesure pref
                                     indicateur
                        <dbl> <chr>
  <chr> <chr>
               <chr>
                                          <dbl>
1 f
                <NA>
                          1.2 a
                                            0.6
        a
2 f
                <NA>
                          4.1 b
                                            3.5
        b
3 h
        <NA>
                          3.8 c
                                            3.4
4 h
        <NA>
                          2.7 d
                                            2.3
```

if_else() et ifelse()

La fonction dplyr::if_else() ressemble à la fonction ifelse() en base R. Il y a néanmoins quelques petites différences :

- dplyr::if_else() vérifie que les valeurs fournies pour true et celles pour false sont du même type et de la même classe et renvoie une erreur dans le cas contraire, là où ifelse() sera plus permissif;
- si un vecteur a des attributs (cf. Chapitre 6), ils seront préservés par dplyr::if_else() (et pris dans le vecteur true), ce que ne fera pas if_else();
- dplyr::if_else() propose un argument optionnel supplémentaire missing pour indiquer les valeurs à retourner lorsque le test renvoie NA.

10.2 case_when()

dplyr::case_when() est une généralisation de dplyr::if_else() qui permet d'indiquer plusieurs tests et leurs valeurs associées.

Imaginons que l'on souhaite créer une nouvelle variable permettant d'identifier les hommes de plus de 60 ans, les femmes de plus de 60 ans, et les autres. On peut utiliser la syntaxe suivante :

```
hdv2003 <-
hdv2003 |>
mutate(
    statut = case_when(
        age >= 60 & sexe == "Homme" ~ "Homme, 60 et plus",
        age >= 60 & sexe == "Femme" ~ "Femme, 60 et plus",
        TRUE ~ "Autre"
    )
)
hdv2003 |>
pull(statut) |>
questionr::freq()
```

```
n % val%
Autre 1484 74.2 74.2
Femme, 60 et plus 278 13.9 13.9
Homme, 60 et plus 238 11.9 11.9
```

dplyr::case_when() prend en arguments une série d'instructions sous la forme condition ~ valeur. Il les exécute une par une, et dès qu'une condition est vraie, il renvoit la valeur associée.

La clause TRUE ~ "Autre" permet d'assigner une valeur à toutes les lignes pour lesquelles aucune des conditions précédentes n'est vraie.

Important

Attention : comme les conditions sont testées l'une après l'autre et que la valeur renvoyée est celle correspondant à la première condition vraie, l'ordre de ces conditions est très important. Il faut absolument aller du plus spécifique au plus général.

Par exemple le recodage suivant ne fonctionne pas :

Comme la condition sexe == "Homme" est plus générale que sexe == "Homme" & age > 60, cette deuxième condition n'est jamais testée! On n'obtiendra jamais la valeur correspondante.

Pour que ce recodage fonctionne il faut donc changer l'ordre des conditions pour aller du plus spécifique au plus général :

```
hdv2003 <-
    hdv2003 |>
    mutate(
      statut = case_when(
         age >= 60 & sexe == "Homme" ~ "Homme, 60 et plus",
         sexe == "Homme" ~ "Homme",
        TRUE ~ "Autre"
      )
    )
  hdv2003 |>
    pull(statut) |>
    questionr::freq()
                           % val%
Autre
                   1101 55.0 55.0
Homme
                    661 33.1 33.1
Homme, 60 et plus 238 11.9 11.9
C'est pour cela que l'on peut utiliser, en toute dernière
condition, la valeur TRUE pour indiquer dans tous les
autres cas.
```

10.3 recode_if()

Parfois, on n'a besoin de ne modifier une variable que pour certaines observations. Prenons un petit exemple :

```
df <- tibble(
    pref = factor(c("bleu", "rouge", "autre", "rouge", "autre")),
    autre_details = c(NA, NA, "bleu ciel", NA, "jaune")
)
    df

# A tibble: 5 x 2
    pref autre_details
    <fct> <chr>
1 bleu <NA>
```

```
2 rouge <NA>
3 autre bleu ciel
4 rouge <NA>
5 autre jaune
```

Nous avons demandé aux enquêtés d'indiquer leur couleur préférée. Ils pouvaient répondre bleu ou rouge et avait également la possibilité de choisir autre et d'indiquer la valeur de leur choix dans un champs textuel libre.

Une des personnes enquêtées a choisi autre et a indiqué dans le champs texte la valeur bleu ciel. Pour les besoins de l'analyse, on peut considérer que cette valeur bleu ciel pour être tout simplement recodée en bleu.

En syntaxe \mathbf{R} classique, on pourra simplement faire :

```
df$pref[df$autre_details == "bleu ciel"] <- "bleu"

Avec dplyr::if_else(), on serait tenté d'écrire:

df |>
    mutate(pref = if_else(autre_details == "bleu ciel", "bleu", pref))

Error in `mutate()`:
! Problem while computing `pref = if_else(autre_details == "bleu ciel", "bleu", pref)`.

Caused by error in `if_else()`:
! `false` must be a character vector, not a `factor` object.

On obtient une erreur, car dplyr::if_else() exige les valeurs fournie pour true et false soient de même type. Essayons alors:

df |>
    mutate(pref = if_else(autre_details == "bleu ciel", factor("bleu"), pref))
```

Warning in `[<-.factor`(`*tmp*`, i, value = structure(1L, levels = c("autre", : niveau de facteur incorrect, NAs générés

```
# A tibble: 5 x 2
  pref autre_details
  <fct> <chr>
1 <NA> <NA>
2 <NA> <NA>
3 bleu bleu ciel
4 <NA> <NA>
5 <NA> jaune
```

Ici nous avons un autre problème, signalé par un message d'avertissement (warning) : dplyr::if_else() ne préserve que les attributs du vecteur passé en true et non ceux passés à false. Or l'ensemble des modalités (niveaux du facteur) de la variable pref n'ont pas été définis dans factor("bleu") et sont ainsi perdus, générant une perte de données (valeurs manquantes NA).

Pour obtenir le bon résultat, il faudrait inverser la condition :

```
df |>
    mutate(pref = if_else(
      autre_details != "bleu ciel",
      pref,
      factor("bleu")
    ))
# A tibble: 5 x 2
 pref autre_details
  <fct> <chr>
1 <NA>
        <NA>
2 <NA>
        <NA>
3 bleu bleu ciel
4 <NA>
        <NA>
5 autre jaune
```

Mais ce n'est toujours pas suffisant. En effet, la variable autre_details a des valeurs manquantes pour lesquelles le test autre_details != "bleu ciel" renvoie NA ce qui une fois encore génère des valeurs manquantes non souhaitées. Dès lors, il nous faut soit définir l'argument missing de dplyr::if_else(), soit être plus précis dans notre test.

```
df |>
    mutate(pref = if_else(
      autre_details != "bleu ciel",
      pref,
      factor("bleu"),
      missing = pref
    ))
# A tibble: 5 x 2
  pref autre_details
  <fct> <chr>
1 bleu <NA>
2 rouge <NA>
3 bleu bleu ciel
4 rouge <NA>
5 autre jaune
  df |>
    mutate(pref = if_else(
      autre_details != "bleu ciel" | is.na(autre_details),
      factor("bleu")
    ))
# A tibble: 5 x 2
  pref autre_details
  <fct> <chr>
1 bleu <NA>
2 rouge <NA>
3 bleu bleu ciel
4 rouge <NA>
5 autre jaune
```

Bref, on peut s'en sortir avec dplyr::if_else() mais ce n'est pas forcément le plus pratique dans le cas présent. La syntaxe

en base \mathbf{R} fonctionne très bien, mais ne peut pas être intégrée à un enchainement d'opérations utilisant le *pipe*.

Dans ce genre de situation, on pourra être intéressé par la fonction labelled::recode_if() disponible dans le package {labelled}. Elle permet de ne modifier que certaines observations d'un vecteur en fonction d'une condition. Si la condition vaut FALSE ou NA, les observations concernées restent inchangées. Voyons comment cela s'écrit :

```
df <-
    df |>
    mutate(
    pref = pref |>
        labelled::recode_if(autre_details == "bleu ciel", "bleu")
    )
    df

# A tibble: 5 x 2
    pref autre_details
    <fct> <chr>
1 bleu <NA>
2 rouge <NA>
3 bleu bleu ciel
4 rouge <NA>
5 autre jaune
```

C'est tout de suite plus intuitif!

11 Étiquettes de variables

11.1 Principe

Les étiquettes de variable permettent de donner un nom long, plus explicite, aux différentes colonnes d'un tableau de données (ou encore directement à un vecteur autonome). Dans le champs des grandes enquêtes, il est fréquent de nommer les variables q101, q102, etc. pour refléter le numéro de la question et d'indiquer ce qu'elle réprésente (groupe d'âges, milieur de résidence...) avec une étiquette.

Un usage, introduit par le package {haven}, et repris depuis par de nombreux autres packages dont {gtsummary} que nous aborderons dans de prochains chapitres, consiste à stocker les étiquettes de variables sous la forme d'un attribut¹⁷ "label" attaché au vecteur / à la colonne du tableau.

Le package {labelled} permet de manipuler aisément ces étiquettes de variables.

La visonneuse de données de **RStudio** sait reconnaître et afficher ces étiquettes de variable lorsqu'elles existent. Prenons pour exemple le jeu de données **gtsummary::trial** dont les colonnes ont des étiquettes de variable. La commande **View(gtsummary::trial)** permet d'ouvrir la visionneuse de données de **RStudio**. Comme on peut le constater, une étiquette de variable est bien présente sous le nom des différentes colonnes.

La fonction labelled::look_for() du package {labelled} permet de lister l'ensemble des variables d'un tableau de données et affiche notamment les étiquettes de variable associées.

¹⁷ Pour plus d'information sur les attributs, voir Chapitre 6.

Figure 11.1: Présentation du tableau gtsummary::trial dans la visionneuse de **RStudio**

```
library(labelled)
gtsummary::trial |>
  look_for()
```

pos 1 2 3	variable trt age marker	label Chemotherapy Treatment Age Marker Level (ng/mL)	<pre>col_type chr dbl dbl</pre>	values
4	stage	T Stage	fct	T1 T2 T3 T4
5	grade	Grade	fct	I II III
6 7 8	death	Tumor Response Patient Died Months to Death/Censor	int int dbl	

La fonction labelled::look_for() permet également de rechercher des variables en tenant compte à la fois de leur nom et de leur étiquette.

```
gtsummary::trial |>
  look_for("months")
```

• Astuce

8

Comme on le voit, la fonction labelled::look_for() est tout à fait adaptée pour générer un dictionnaire de codification. Ses différentes options sont détaillées dans une vignette dédiée. Les résultats renvoyés par labelled::look_for() sont récupérables dans un tableau de données que l'on pourra ainsi manipuler à sa guise.

```
gtsummary::trial |>
    look_for() |>
    dplyr::as_tibble()
# A tibble: 8 x 6
                                           col_type levels
                                                                  value_labels
    pos variable label
  <int> <chr>
                  <chr>
                                           <chr>
                                                    <named list> <named list>
1
      1 trt
                  Chemotherapy Treatment chr
                                                    <NULL>
                                                                  <NULL>
2
                                           dbl
                                                    <NULL>
                                                                  <NULL>
      2 age
                  Age
3
                                                    <NULL>
      3 marker
                  Marker Level (ng/mL)
                                           dbl
                                                                  <NULL>
4
                                                    <chr [4]>
      4 stage
                  T Stage
                                           fct
                                                                  <NULL>
5
                                                     <chr [3]>
      5 grade
                  Grade
                                           fct
                                                                  <NULL>
6
      6 response Tumor Response
                                           int
                                                    <NULL>
                                                                  <NULL>
7
      7 death
                  Patient Died
                                                    <NULL>
                                                                  <NULL>
                                           int
```

<NULL>

<NULL>

11.2 Manipulation sur un vecteur / une colonne

La fonction labelled::var_label() permets de voir l'étiquette de variable attachée à un vecteur (renvoie NULL s'il n'y en a pas) mais également d'ajouter/modifier une étiquette.

8 ttdeath Months to Death/Censor dbl

Le fait d'ajouter une étiquette de variable à un vecteur ne modifie en rien son type ni sa classe. On peut associer une

étiquette de variable à n'importe quel type de variable, qu'elle soit numérique, textuelle, un facteur ou encore des dates.

```
v <- c(1, 5, 2, 4, 1)
v |> var_label()
```

NULL

```
var_label(v) <- "Mon étiquette"
var_label(v)</pre>
```

[1] "Mon étiquette"

```
str(v)
num [1:5] 1 5 2 4 1
- attr(*, "label")= chr "Mon étiquette"
```

```
var_label(v) <- "Une autre étiquette"
var_label(v)</pre>
```

[1] "Une autre étiquette"

```
num [1:5] 1 5 2 4 1
- attr(*, "label") = chr "Une autre étiquette"
```

Pour supprimer une étiquette, il suffit d'attribuer la valeur NULL.

```
var_label(v) <- NULL
str(v)</pre>
```

```
num [1:5] 1 5 2 4 1
```

On peut appliquer labelled::var_label() directement sur une colonne de tableau.

```
var_label(iris$Petal.Length) <- "Longueur du pétale"</pre>
 var_label(iris$Petal.Width) <- "Largeur du pétale"</pre>
 var_label(iris$Species) <- "Espèce"</pre>
 iris |>
   look_for()
pos variable
                  label
                                      col_type values
    Sepal.Length -
                                      dbl
                                      dbl
    Sepal.Width -
3 Petal.Length Longueur du pétale dbl
   Petal.Width Largeur du pétale dbl
    Species
                 Espèce
                                      fct
                                               setosa
                                                versicolor
```

11.3 Manipulation sur un tableau de données

virginica

La fonction labelled::set_variable_labels() permets de manipuler les étiquettes de variable d'un tableau de données avec une syntaxe du type {dplyr}.

```
iris <-
  iris |>
  set_variable_labels(
    Species = NULL,
    Sepal.Length = "Longeur du sépale"
  )
  iris |>
  look_for()

pos variable label col_type values
1 Sepal.Length Longeur du sépale dbl
2 Sepal.Width - dbl
```

```
3 Petal.Length Longueur du pétale dbl
4 Petal.Width Largeur du pétale dbl
5 Species - fct setosa
versicolor
virginica
```

11.4 Préserver les étiquettes

Certaines fonctions de **R** ne préservent pas les attributs et risquent donc d'effacer les étiquettes de variables que l'on a définit. Un exemple est la fonction générique **subset()** qui permet de sélectionner certaines lignes remplissant une certaines conditions.

```
iris |>
   look_for()
pos variable
                 label
                                     col_type values
    Sepal.Length Longeur du sépale
                                     dbl
2
    Sepal.Width
                                     dbl
3
    Petal.Length Longueur du pétale dbl
4
                                     dbl
    Petal.Width Largeur du pétale
5
    Species
                                     fct
                                               setosa
                                               versicolor
                                               virginica
 iris |>
   subset(Species == "setosa") |>
   look_for()
pos variable
                 label col_type values
1
    Sepal.Length -
                        dbl
2
    Sepal.Width
                        dbl
3
    Petal.Length -
                        dbl
4
    Petal.Width
                        dbl
5
    Species
                        fct
                                 setosa
                                 versicolor
```

virginica

On pourra, dans ce cas précis, préférer la fonction dplyr::filter() qui préserve les attributs et donc les étiquettes de variables.

```
iris |>
   dplyr::filter(Species == "setosa") |>
   look_for()
                 label
pos variable
                                    col_type values
    Sepal.Length Longeur du sépale
                                    dbl
2
    Sepal.Width -
                                    dbl
   Petal.Length Longueur du pétale dbl
    Petal.Width Largeur du pétale
4
                                    dbl
    Species
                                    fct
                                             setosa
                                             versicolor
                                             virginica
```

On pourra également tirer parti de la fonction labelled::copy_labels_from() qui permet de copier les étiquettes d'un tabeau à un autre.

```
iris |>
   subset(Species == "setosa") |>
   copy_labels_from(iris) |>
   look_for()
pos variable
                 label
                                     col_type values
    Sepal.Length Longeur du sépale
                                    dbl
    Sepal.Width
                                     dbl
    Petal.Length Longueur du pétale dbl
4
    Petal.Width Largeur du pétale
                                    dbl
5
    Species
                                     fct
                                              setosa
                                              versicolor
                                              virginica
```

12 Étiquettes de valeurs

Dans le domaine des grandes enquêtes, il est fréquent de coder les variables catégorielles avec des codes numériques auxquels on associé une certaines valeurs. Par exemple, une variable milieu de résidence pourrait être codée 1 pour urbain, 2 pour semi-urbain, 3 pour rural et 9 pour indiquer une donnée manquante. Une variable binaire pourrait quant à elle être codée 0 pour non et 1 pour oui. Souvent, chaque enquête définit ses propres conventions.

Les logiciels statistiques propriétaires SPSS, Stata et SAS ont tous les trois un système d'étiquettes de valeurs pour représenter ce type de variables catégorielles.

R n'a pas, de manière native, de système d'étiquettes de valeurs. Le format utilisé en interne pour représenter les variables catégorielles est celui des facteurs (cf. Chapitre 9). Cependant, ce dernier ne permet de contrôler comment sont associées une étiquette avec une valeur numérique précise.

12.1 La classe haven_labelled

Afin d'assurer une importation complète des données depuis SPSS, Stata et SAS, le package {haven} a introduit un nouveau type de vecteurs, la classe haven_labelled, qui permet justement de rendre compte de ces vecteurs labellisés (i.e. avec des étiquettes de valeurs). Le package {labelled} fournie un jeu de fonctions pour faciliter la manipulation des vecteurs labellisés.

Important

Les vecteurs labellisés sont un format intermédiaire qui permets d'importer les données telles qu'elles ont été définies dans le fichier source. Il n'est pas destiné à être utilisé pour l'analyse statistique.

Pour la réalisation de tableaux, graphiques, modèles, **R** attend que les variables catégorielles soit codées sous formes de facteurs, et que les variables continues soient numériques. On aura donc besoin, à un moment ou à un autre, de convertir les vecteurs labellisés en facteurs ou en variables numériques classiques.

12.2 Manipulation sur un vecteur / une colonne

Pour définir des étiquettes, la fonction de base est labelled::val_labels(). Il est possible de définir des étiquettes de valeurs pour des vecteurs numériques, d'entiers et textuels. On indiquera les étiquettes sous la forme étiquette = valeur. Cette fonction s'utilise de la même manière que labelled::var_label() abordée au chapitre précédent (cf. Chapitre 11). Un appel simple renvoie les étiquettes de valeur associées au vecteur, NULL s'il n'y en n'a pas. Combiner avec l'opérateur d'assignation (<-), on peut ajouter/modifier les étiquettes de valeurs associées au vecteur.

```
library(labelled)
v <- c(1, 2, 1, 9)
v

[1] 1 2 1 9

class(v)

[1] "numeric"</pre>
```

```
val labels(v)
NULL
  val_labels(v) \leftarrow c(non = 1, oui = 2)
  val_labels(v)
non oui
  1
      2
<labelled<double>[4]>
[1] 1 2 1 9
Labels:
 value label
     1
         non
     2
          oui
  class(v)
[1] "haven_labelled" "vctrs_vctr"
                                          "double"
```

Comme on peut le voir avec cet exemple simple :

- l'ajout d'étiquettes de valeurs modifie la class de l'objet (qui est maintenant un vecteur de la classe haven_labelled);
- l'objet obtenu est multi-classes, la classe double indiquant ici qu'il s'agit d'un vecteur numérique ;
- il n'est pas obligatoire d'associer une étiquette de valeurs à toutes les valeurs observées dans le vecteur (ici, nous n'avons pas défini d'étiquettes pour la valeur 9).

La fonction labelled::val_label() (notez l'absence d'un s à la fin du nom de la fonction) permet d'accéder / de modifier l'étiquette associée à une valeur spécifique.

```
val_label(v, 1)
[1] "non"
  val_label(v, 9)
NULL
  val_label(v, 9) <- "(manquant)"</pre>
  val_label(v, 2) <- NULL</pre>
  v
<labelled<double>[4]>
[1] 1 2 1 9
Labels:
 value
             label
     1
               non
     9 (manquant)
Pour supprimer, toutes les étiquettes de valeurs, on attribuera
NULL avec labelled::val_labels().
  val_labels(v) <- NULL</pre>
[1] 1 2 1 9
  class(v)
```

On remarquera que, lorsque toutes les étiquettes de valeurs sont supprimées, la nature de l'objet change à nouveau et il redevient un simple vecteur numérique.

[1] "numeric"

Mise en garde

Il est essentiel de bien comprendre que l'ajout d'étiquettes de valeurs ne change pas fondamentalement la nature du vecteur. Cela ne le transforme pas en variable catégorielle. À ce stade, le vecteur n'a pas été transformé en facteur. Cela reste un vecteur numérique qui est considéré comme tel par R. On peut ainsi en calculer une moyenne, ce qui serait impossible avec un facteur.

```
v <- c(1, 2, 1, 2)
val_labels(v) <- c(non = 1, oui = 2)
mean(v)

[1] 1.5

f <- factor(v, levels = c(1, 2), labels = c("non", "oui"))
mean(f)

Warning in mean.default(f): l'argument n'est ni numérique, ni logique : renvoi
de NA

[1] NA</pre>
```

Les fonctions labelled::val_labels() et labelled::val_label() peuvent également être utilisées sur les colonnes d'un tableau.

```
2 2 [oui] 9 [(manquant)]
3 1 [non] 9 [(manquant)]
4 2 [oui] 3
```

On pourra noter, que si notre tableau est un *tibble*, les étiquettes sont rendues dans la console quand on affiche le tableau.

La fonction labelled::look_for() est également un bon moyen d'afficher les étiquettes de valeurs.

12.3 Manipulation sur un tableau de données

{labelled} fournie 3 fonctions directement applicables sur un tableau de données : labelled::set_value_labels(), labelled::add_value_labels() et labelled::remove_value_labels(). La première remplace l'ensemble des étiquettes de valeurs associées à une variable, la seconde ajoute des étiquettes de valeurs (et conserve celles déjà définies), la troisième supprime les étiquettes associées à certaines valeurs spécifiques (et laisse les autres inchangées).

```
df <- df |>
   set_value_labels(
     x = c(yes = 2),
     y = c("a répondu" = 3, "refus de répondre" = 9)
 df |>
   look_for()
pos variable label col_type values
                   dbl+lbl
                           [2] yes
2
                            [3] a répondu
                   dbl+lbl
                            [9] refus de répondre
 df <- df |>
   add_value_labels(
     x = c(no = 1)
   ) |>
   remove_value_labels(
     y = 9
   )
 df |>
   look_for()
pos variable label col_type values
                   dbl+lbl [2] yes
                            [1] no
2
                   dbl+lbl [3] a répondu
    У
```

12.4 Conversion

12.4.1 Quand convertir les vecteurs labellisés ?

La classe haven_labelled permets d'ajouter des métadonnées aux variables sous la forme d'étiquettes de valeurs. Lorsque les données sont importées depuis SAS, SPSS ou Stata, cela permet notamment de conserver le codage original du fichier importé.

Mais il faut noter que ces étiquettes de valeur n'indique pas pour autant de manière systématique le type de variable (catégorielle ou continue). Les vecteurs labellisés n'ont donc pas vocation à être utilisés pour l'analyse, notamment le calcul de modèles statistiques. Ils doivent être convertis en facteurs (pour les variables catégorielles) ou en vecteurs numériques (pour les variables continues).

La question qui peut se poser est donc de choisir à quel moment cette conversion doit avoir lieu dans un processus d'analyse. On peut considérer deux approches principales.

Figure 12.1: Deux approches possibles pour la conversion des étiquettes de valeurs

Dans l'approche A, les vecteurs labellisés sont convertis juste après l'import des données, en utilisant les fonctions labelled::unlabelled(), labelled::to_factor() ou base::unclass() qui sont présentées ci-après. Dès lors, toute la partie de nettoyage et de recodage des données se fera en utilisant les fonctions classiques de R. Si l'on n'a pas besoin de conserver le codage original, cette approche a l'avantage de s'inscrire dans le fonctionnement usuel de R.

Dans l'approche B, les vecteurs labellisés sont conservés pour l'étape de nettoyage et de recodage des données. Dans ce cas là, on pourra avoir recours aux fonctions de l'extension {labelled} qui facilitent la gestion des données labellisées. Cette approche est particulièrement intéressante quand (i) on veut pouvoir se référer au dictionnaire de codification fourni avec les données sources et donc on veut conserver le codage original et/ou (ii) quand les données devront faire l'objet d'un réexport après transformation. Par contre, comme dans

l'approche A, il faudra prévoir une conversion des variables labellisées au moment de l'analyse.

Avertissement

Dans tous les cas, il est recommandé d'adopter l'une ou l'autre approche, mais d'éviter de mélanger les différents types de vecteur. Une organisation rigoureuse de ses données et de son code est essentielle!

12.4.2 Convertir un vecteur labellisé en facteur

Il est très facile de convertir un vecteur labellisé en facteur à l'aide la fonction labelled::to_factor() du package $\{labelled\}^{18}$.

```
v \leftarrow c(1,2,9,3,3,2,NA)
val labels(v) <- c(</pre>
  oui = 1, "peut-être" = 2,
  non = 3, "ne sait pas" = 9
)
V
```

On priviligiera la fonction labelled::to_factor() fonction haven::as_factor() l'extension {haven}, la première ayant plus de possibilités et un comportement plus consistent.

```
<labelled<double>[7]>
[1] 1 2 9 3 3 2 NA
Labels:
 value
             label
     1
               oui
     2
        peut-être
               non
     9 ne sait pas
  to_factor(v)
```

```
[1] oui
                peut-être
                             ne sait pas non
                                                      non
                                                                   peut-être
[7] <NA>
```

Levels: oui peut-être non ne sait pas

Il possible d'indiquer si l'on souhaite, comme étiquettes du facteur, utiliser les étiquettes de valeur (par défaut), les valeurs elles-mêmes, ou bien les étiquettes de valeurs préfixées par la valeur d'origine indiquée entre crochets.

```
to_factor(v, 'l')
[1] oui
                 peut-être
                              ne sait pas non
                                                                     peut-être
                                                        non
[7] <NA>
Levels: oui peut-être non ne sait pas
  to factor(v, 'v')
[1] 1
         2
                                    <NA>
Levels: 1 2 3 9
  to_factor(v, 'p')
[1] [1] oui
                     [2] peut-être
                                       [9] ne sait pas [3] non
[5] [3] non
                      [2] peut-être
                                       <NA>
Levels: [1] oui [2] peut-être [3] non [9] ne sait pas
Par défaut, les modalités du facteur seront triées selon l'ordre
des étiquettes de valeur. Mais cela peut être modifié avec
l'argument sort_levels si l'on préfère trier selon les valeurs
ou selon l'ordre alphabétique des étiquettes.
  to factor(v, sort levels = 'v')
[1] oui
                 peut-être
                              ne sait pas non
                                                                     peut-être
                                                        non
[7] <NA>
Levels: oui peut-être non ne sait pas
  to_factor(v, sort_levels = '1')
[1] oui
                 peut-être
                              ne sait pas non
                                                        non
                                                                     peut-être
[7] <NA>
Levels: ne sait pas non oui peut-être
```

12.4.3 Convertir un vecteur labellisé en numérique ou en texte

Pour rappel, il existe deux types de vecteurs labellisés : des vecteurs numériques labellisés (x dans l'exemple ci-dessous) et des vecteurs textuels labellisés (y dans l'exemple ci-dessous).

```
x <- c(1, 2, 9, 3, 3, 2, NA)
val_labels(x) <- c(
  oui = 1, "peut-être" = 2,
  non = 3, "ne sait pas" = 9
)

y <- c("f", "f", "h", "f")
val_labels(y) <- c(femme = "f", homme = "h")</pre>
```

Pour leur retirer leur caractère labellisé et revenir à leur classe d'origine, on peut utiliser la fonction unclass().

À noter que dans ce cas-là, les étiquettes sont conservées comme attributs du vecteur.

Une alternative est d'utiliser labelled::remove_labels() qui supprimera toutes les étiquettes, y compris les étiquettes de variable. Pour conserver les étiquettes de variables et

ne supprimer que les étiquettes de valeurs, on indiquera keep_var_label = TRUE.

```
var_label(x) <- "Etiquette de variable"
remove_labels(x)

[1] 1 2 9 3 3 2 NA

remove_labels(x, keep_var_label = TRUE)

[1] 1 2 9 3 3 2 NA
attr(,"label")
[1] "Etiquette de variable"

remove_labels(y)</pre>
```

[1] "f" "f" "h" "f"

Dans le cas d'un vecteur numérique labellisé que l'on souhaiterait convertir en variable textuelle, on pourra utiliser labelled::to_character() à la place de labelled::to_factor() qui, comme sa grande soeur, utilisera les étiquettes de valeurs.

12.4.4 Conversion conditionnelle en facteurs

Il n'est pas toujours possible de déterminer la nature d'une variable (continue ou catégorielle) juste à partir de la présence ou l'absence d'étiquettes de valeur. En effet, on peut utiliser des étiquettes de valeur dans le cadre d'une variable continue pour indiquer certaines valeurs spécifiques.

Une bonne pratique est de vérifier chaque variable inclue dans une analyse, une à une.

Cependant, une règle qui fonctionne dans 90% des cas est de convertir un vecteur labellisé en facteur si et seulement si toutes les valeurs observées dans le vecteur disposent d'une étiquette de valeur correspondante. C'est ce que propose la fonction labelled::unlabelled() qui peut même être appliqué à tout un tableau de données. Par défaut, elle fonctionne ainsi:

- 1. les variables non labellisées restent inchangées (variables f et g dans l'exemple ci-dessous);
- 2. si toutes les valeurs observées d'une variable labellisées ont une étiquette, elles sont converties en facteurs (variables b et c);
- 3. sinon, on leur applique base::unclass() (variables $a,\ d$ et e).

```
df <- dplyr::tibble(
    a = c(1, 1, 2, 3),
    b = c(1, 1, 2, 3),
    c = c(1, 1, 2, 2),
    d = c("a", "a", "b", "c"),
    e = c(1, 9, 1, 2),
    f = 1:4,
    g = as.Date(c(
        "2020-01-01", "2020-02-01",
        "2020-03-01", "2020-04-01"
    ))
    ) |>
    set_value_labels(
    a = c(No = 1, Yes = 2),
    b = c(No = 1, Yes = 2, DK = 3),
```

```
c = c(No = 1, Yes = 2, DK = 3),
     d = c(No = "a", Yes = "b"),
     e = c(No = 1, Yes = 2)
 df |> look_for()
pos variable label col_type values
                   dbl+lbl [1] No
                             [2] Yes
2
                   dbl+lbl
                            [1] No
                             [2] Yes
                             [3] DK
3
                   dbl+lbl [1] No
    С
                             [2] Yes
                             [3] DK
4
    d
                   chr+lbl
                            [a] No
                             [b] Yes
5
                   dbl+lbl
                            [1] No
                             [2] Yes
6
    f
                   int
7
                   date
    g
 to_factor(df) |> look_for()
pos variable label col_type values
    a
                   fct
                             No
                             Yes
                             3
                             No
                   fct
```

3

5

С

d

е

fct

fct

fct

Yes DK

No

Yes DK

No Yes c

No

```
Yes
    f
                    int
7
                    date
 unlabelled(df) |> look_for()
pos variable label col_type values
                    dbl
1
2
    b
                    fct
                              No
                              Yes
                              DK
3
    С
                    fct
                              No
                              Yes
                              DK
4
    d
                    chr
5
                    dbl
    е
6
    f
                    int
7
                    date
    g
```

On peut indiquer certaines options, par exemple $drop_unused_labels$ = TRUE pour supprimer des facteurs créés les niveaux non observées dans les données (voir la variable c).

```
unlabelled(df, drop_unused_labels = TRUE) |>
  look_for()
```

```
pos variable label col_type values
                     dbl
1
    a
2
    b
                     fct
                               No
                               Yes
                               DK
3
    С
                     fct
                               No
                               Yes
4
    d
                     chr
5
                     dbl
    е
6
    f
                     int
7
                     date
    g
```

```
unlabelled(df, levels = "prefixed") |>
look_for()
```

```
pos variable label col_type values
                dbl
2 b
                fct
                        [1] No
                        [2] Yes
                        [3] DK
3 c
                fct
                        [1] No
                        [2] Yes
                        [3] DK
4 d
                chr
5 е
                dbl
6 f
                int
7 g
                date
```

13 Valeurs manquantes

Dans ${f R}$ base, les valeurs manquantes sont indiquées par la valeurs logiques NA que l'on peut utiliser dans tous types de vecteurs.

Dans certains cas, par exemple dans la fonction dplyr::if_else() qui vérifie que les deux options sont du même type, on peut avoir besoin de spécifier une valeur manquante d'un certains types précis (numérique, entier, textuel...) ce que l'on peut faire avec les constantes NA_real_, NA_integer_ ou encore NA_character_.

De base, il n'existe qu'un seul type de valeurs manquantes dans R. D'autres logiciels statistiques ont mis en place des systèmes pour distinguer plusieurs types de valeurs manquantes, ce qui peut avoir une importance dans le domaine des grandes enquêtes, par exemple pour distinguer des ne sait pas d'un refus de répondre ou d'un oubli enquêteur.

Ainsi, **Stata** et **SAS** ont un système de valeurs manquantes étiquettées ou tagged NAs, où les valeurs manquantes peuvent recevoir une étiquette (une lettre entre a et z). De son côté, **SPSS** permet d'indiquer, sous la forme de métadonnées, que certaines valeurs devraient être traitées comme des valeurs manquantes (par exemple que la valeur 8 correspont à des refus et que la valeur 9 correspond à des ne sait pas). Il s'agit alors de valeurs manquantes définies par l'utilisateur ou user NAs.

Dans tous les cas, il appartient à l'analyste de décider au cas par cas comment ces valeurs manquantes doivent être traitées. Dans le cadre d'une variable numérique, il est essentiel d'exclure ces valeurs manquantes pour le calcul de statistiques telles que la moyenne ou l'écart-type. Pour des variables catégorielles, les pourcentages peuvent être calculées sur l'ensemble de l'échantillon (les valeurs manquantes étant

alors traitées comme des modalités à part entière) ou bien uniquement sur les réponses valides, en fonction du besoin de l'analyse et de ce que l'on cherche à montrer.

Afin d'éviter toute perte d'informations lors d'un import de données depuis Stata, SAS et SPSS, le package $\{haven\}$ propose une implémentation sous R des tagged NAs et des user NAs. Le package $\{labelled\}$ fournit quant à lui différentes fonctions pour les manipuler aisément.

```
library(labelled)
```

13.1 Valeurs manquantes étiquettées (tagged NAs)

13.1.1 Création et test

Les tagged NAs sont de véritables valeurs manquantes (NA) au sens de R, auxquelles a été attachées sur étiquette, une lettre unique minuscule (a-z) ou majuscule (A-Z). On peut les créer avec labelled::tagged_na().

```
x <- c(1:3, tagged_na("a"), tagged_na("z"), NA)
```

Pour la plupart des fonctions de \mathbf{R} , les tagged NAs sont juste considérées comme des valeurs manquantes régulières (regumar NAs). Dès lors, par défaut, elles sont justes affichées à l'écran comme n'importe quelle valeur manquante et la fonction is.na() renvoie TRUE.

X

[1] 1 2 3 NA NA NA

```
is.na(x)
```

[1] FALSE FALSE FALSE TRUE TRUE TRUE

Pour afficher les étiquettes associées à ces valeurs manquantes, il faut avoir recours à labelled::na_tag(), labelled::print_tagged_na() ou encore labelled::format_tagged_na().

```
na_tag(x)

[1] NA NA NA "a" "z" NA

print_tagged_na(x)

[1] 1 2 3 NA(a) NA(z) NA

format_tagged_na(x)
```

```
[1] " 1" " 2" " 3" "NA(a)" "NA(z)" " NA
```

Pour tester si une certaine valeur manquante est une regular NA ou une tagged NA, on aura recours à labelled::is_regular_na() et à labelled::is_tagged_na().

```
is.na(x)
```

[1] FALSE FALSE FALSE TRUE TRUE TRUE

```
is_regular_na(x)
```

[1] FALSE FALSE FALSE FALSE TRUE

```
is_tagged_na(x)
```

[1] FALSE FALSE FALSE TRUE TRUE FALSE

Il est possible de tester une étiquette particulière en passant un deuxième argument à labelled::is_tagged_na().

```
is_tagged_na(x, "a")
```

[1] FALSE FALSE FALSE TRUE FALSE FALSE

Note

Il n'est possible de définir des $tagged\ NAs$ seulement pour des vecteurs numériques (double). Si l'on ajoute une $tagged\ NA$ à un vecteur d'entiers, ce vecteur sera converti en vecteur numérique. Si on l'ajoute à un vecteur textuel, la valeur manquante sera convertie en $regular\ NA$.

```
valeur manquante sera convertie en regular NA.

y <- c("a", "b", tagged_na("z"))
y

[1] "a" "b" NA

is_tagged_na(y)

[1] FALSE FALSE FALSE

format_tagged_na(y)

Error: `x` must be a double vector

z <- c(1L, 2L, tagged_na("a"))
typeof(z)

[1] "double"

format_tagged_na(z)

[1] " 1" " 2" "NA(a)"</pre>
```

13.1.2 Valeurs uniques, doublons et tris

Par défaut, les fonctions classiques de R unique(), duplicated(), ordered() ou encore sort() traiteront les tagged NAs comme des valeurs manquantes tout ce qu'il y a de plus classique, et ne feront pas de différences entre des tagged NAs ayant des étiquettes différentes.

Pour traiter des tagged NAs ayant des étiquettes différentes comme des valeurs différentes, on aura recours aux fonctions labelled::unique_tagged_na(), labelled::duplicated_tagged_na(), labelled::order_tagged_na() ou encore labelled::sort_tagged_na().

```
x <- c(1, 2, tagged_na("a"), 1, tagged_na("z"), 2, tagged_na("a"), NA)
x |>
print_tagged_na()
```

[1] 1 2 NA(a) 1 NA(z) 2 NA(a) NA

```
x |>
  unique() |>
  print_tagged_na()
```

[1] 1 2 NA(a)

```
x |>
unique_tagged_na() |>
print_tagged_na()
```

[1] 1 2 NA(a) NA(z) NA

```
x |>
  duplicated()
```

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE

```
x |>
    duplicated_tagged_na()
[1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
  x |>
   sort(na.last = TRUE) |>
   print_tagged_na()
[1]
       1
           1
                   2
                     2 NA(a) NA(z) NA(a)
                                               NA
  x |>
    sort_tagged_na() |>
   print_tagged_na()
[1]
                         2 NA(a) NA(a) NA(z)
                   2
                                               NA
```

13.1.3 Tagged NAs et étiquettes de valeurs

Il est tout à fait possible d'associer une étiquette de valeurs (cf. Chapitre 12) à des $tagged\ NAs$.

```
x <- c(
    1, 0,
    1, tagged_na("r"),
    0, tagged_na("d"),
    tagged_na("z"), NA
)

val_labels(x) <- c(
    no = 0,
    yes = 1,
    "don't know" = tagged_na("d"),
    refusal = tagged_na("r")
)
x</pre>
```

```
<labelled<double>[8]>
[1] 1 0 1 NA(r) 0 NA(d) NA(z) NA

Labels:
  value label
    0     no
    1     yes
  NA(d) don't know
  NA(r) refusal
```

Lorsqu'un vecteur labellisé est converti en facteur avec labelled::to_factor(), les tagged NAs sont, par défaut convertis en en valeurs manquantes classiques (regular NAs). Il n'est pas possible de définir des tagged NAs pour des facteurs.

```
x |> to_factor()

[1] yes no yes <NA> no <NA> <NA> <NA>
Levels: no yes
```

L'option explicit_tagged_na de labelled::to_factor() permets de convertir les tagged NAs en modalités explicites du facteur.

explicit_tagged_na = TRUE

```
[1] [1] yes [0] no [1] yes [NA(r)] refusal [5] [0] no [NA(d)] don't know [NA(z)] NA(z) <NA>
Levels: [0] no [1] yes [NA(d)] don't know [NA(r)] refusal [NA(z)] NA(z)
```

13.1.4 Conversion en user NAs

La fonction labelled::tagged_na_to_user_na() permets de convertir des tagged NAs en user NAs.

```
x |>
    tagged_na_to_user_na()
<labelled_spss<double>[8]>
[1] 1 0 1 3 0 2 4 NA
Missing range: [2, 4]
Labels:
 value
            label
     0
              no
     1
              yes
     2 don't know
          refusal
     3
     4
            NA(z)
  x |>
    tagged_na_to_user_na(user_na_start = 10)
<labelled_spss<double>[8]>
[1] 1 0 1 11 0 10 12 NA
Missing range: [10, 12]
Labels:
 value
            label
     0
               no
     1
              yes
    10 don't know
    11
          refusal
    12
            NA(z)
```

La fonction labelled::tagged_na_to_regular_na() convertit les tagged NAs en valeurs manquantes classiques (regular NAs).

```
x |>
   tagged_na_to_regular_na()

<labelled < double > [8] >
[1]   1   0   1   NA   0   NA   NA   NA

Labels:
  value label
     0     no
     1     yes

  x |>
     tagged_na_to_regular_na() |>
     is_tagged_na()
```

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

13.2 Valeurs manquantes définies par l'utilisateurs (user NAs)

Le package {haven} a introduit la classe haven_labelled_spss, une extension de la classe haven_labelled permettant d'indiquer des valeurs à considérer comme manquantes à la manière de SPSS.

! Important

Cela revient à associer à un vecteur des attributs (cf. Chapitre 6) additionnels pour indiquer des valeurs que l'utilisateur pourrait/devrait considérer comme manquante. Cependant, il ne s'agit que de métadonnées et en interne ces valeurs ne sont pas stockées sous forme de NA mais restent des valeurs valides.

Il convient de garder en mémoire que la très grande majorité des fonctions de R ne prendront pas en compte ces métadonnées et traiteront donc ces valeurs comme des valeurs valides. C'est donc à l'utilisateur de convertir, au besoin, ces les valeurs indiquées comme manquantes en réelles valeurs manquantes (NA).

13.2.1 Création

Il est possible d'indiquer des valeurs à considérer comme manquantes ($user\ NAs$) de deux manières :

- soit en indiquant une liste de valeurs individuelles avec labelled::na_values() (on peut indiquer NULL pour supprimer les déclarations existantes);
- soit en indiquant deux valeurs représentant une plage de valeurs à considérées comme manquantes avec labelled::na_range() (seront considérées comme manquantes toutes les valeurs supérieures ou égale au premier chiffre et inférieures ou égales au second chiffre¹⁹).

```
v <- c(1, 2, 3, 9, 1, 3, 2, NA)
val_labels(v) <- c(
  faible = 1,
  fort = 3,
   "ne sait pas" = 9
)
na_values(v) <- 9
v</pre>
```

```
<labelled_spss<double>[8]>
[1] 1 2 3 9 1 3 2 NA
Missing values: 9
```

Labels:

```
value label
1 faible
3 fort
```

¹⁹ On peut utiler -Inf et Inf qui représentent respectivement moins l'infini et l'infini.

```
9 ne sait pas
  na_values(v) <- NULL</pre>
  V
<labelled<double>[8]>
[1] 1 2 3 9 1 3 2 NA
Labels:
 value
             label
     1
            faible
     3
              fort
     9 ne sait pas
  na_range(v) <- c(5, Inf)</pre>
<labelled_spss<double>[8]>
[1] 1 2 3 9 1 3 2 NA
Missing range: [5, Inf]
Labels:
 value
             label
     1
            faible
```

3

On peut noter que les $user\ NAs$ peuvent cohabiter avec des $regular\ NAs$ ainsi qu'avec des étiquettes de valeurs ($value\ labels$, cf. Chapitre 12).

Pour manipuler les variables d'un tableau de données, on peut également avoir recours à labelled::set_na_values() et labelled::set_na_range().

```
df <-
   dplyr::tibble(
   s1 = c("M", "M", "F", "F"),</pre>
```

fort

9 ne sait pas

```
s2 = c(1, 1, 2, 9)
) |>
set_na_values(s2 = 9)
df$s2

<labelled_spss<double>[4]>
[1] 1 1 2 9
Missing values: 9

df <-
df |>
set_na_values(s2 = NULL)
df$s2

<labelled<double>[4]>
[1] 1 1 2 9
```

13.2.2 Tests

La fonction is.na() est l'une des rares fonctions de base **R** à reconnaître les *user NAs* et donc à renvoyer TRUE dans ce cas. Pour des tests plus spécifiques, on aura recours à labelled::is_user_na() et labelled::is_regular_na().

```
V
```

```
v |> is.na()
```

[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE

```
v |> is_user_na()
```

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE

```
v |> is_regular_na()
```

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE

13.2.3 Conversion

Comme dit précédemment, pour la plupart des fonctions de \mathbf{R} , les users NAs sont toujours des valeurs valides.

```
x <- c(1:5, 11:15)
na_range(x) <- c(10, Inf)
x
```

<labelled_spss<integer>[10]>
[1] 1 2 3 4 5 11 12 13 14 15
Missing range: [10, Inf]

```
mean(x)
```

[1] 8

On aura alors recours à labelled::user_na_to_regular_na() pour convertir les $users\ NAs$ en véritables valeurs manquantes avant de procéder à un calcul statistique.

```
x |>
    user_na_to_na()

<labelled<integer>[10]>
[1] 1 2 3 4 5 NA NA NA NA NA
x |>
    user_na_to_na() |>
    mean(na.rm = TRUE)
```

Une alternative consiste à transformer les user NAs en tagged NAs avec labelled::user_na_to_tagged_na().

```
x |>
  user_na_to_tagged_na() |>
  print_tagged_na()
```

'x' has been converted into a double vector.

[1] 1 2 3 4 5 NA(a) NA(b) NA(c) NA(d) NA(e)

```
x |>
user_na_to_tagged_na() |>
mean(na.rm = TRUE)
```

'x' has been converted into a double vector.

[1] 3

[1] 3

Pour supprimer les métadonnées relatives aux user NAs sans les convertir en valeurs manquantes, on aura recours à labelled::remove_user_na().

```
x |>
    remove_user_na()
<labelled<integer>[10]>
 [1] 1 2 3 4 5 11 12 13 14 15
  x |>
    remove_user_na() |>
    mean()
[1] 8
Enfin, lorsque l'on convertit un vecteur labellisé en facteur
avec labelled::to_factor(), on pourra utiliser l'argument
user_na_to_na pour indiquer si les users NAs doivent être
convertis ou non en valeurs manquantes classiques (NA).
  x \leftarrow c(1, 2, 9, 2)
  val_labels(x) <- c(oui = 1, non = 2, refus = 9)</pre>
  na_values(x) <- 9</pre>
  x |>
    to_factor(user_na_to_na = TRUE)
[1] oui non <NA> non
Levels: oui non
  x |>
    to_factor(user_na_to_na = FALSE)
[1] oui
                 refus non
           non
```

Levels: oui non refus

14 Import & Export de données

14.1 Importer un fichier texte

Les fichiers texte constituent un des formats les plus largement supportés par la majorité des logiciels statistiques. Presque tous permettent d'exporter des données dans un format texte, y compris les tableurs comme Libre Office, Open Office ou Excel.

Cependant, il existe une grande variétés de format texte, qui peuvent prendre différents noms selon les outils, tels que texte tabulé ou texte (séparateur : tabulation), CSV (pour commaseparated value, sachant que suivant les logiciels le séparateur peut être une virgule ou un point-virgule).

14.1.1 Structure d'un fichier texte

Dès lors, avant d'importer un fichier texte dans \mathbf{R} , il est indispensable de regarder comment ce dernier est structuré. Il importe de prendre note des éléments suivants :

- La première ligne contient-elle le nom des variables ?
- Quel est le caractère séparateur entre les différentes variables (encore appelé séparateur de champs) ? Dans le cadre d'un fichier **CSV**, il aurait pu s'agir d'une virgule ou d'un point-virgule.
- Quel est le caractère utilisé pour indiquer les décimales (le séparateur décimal) ? Il s'agit en général d'un point (à l'anglo-saxonne) ou d'une virgule (à la française).
- Les valeurs textuelles sont-elles encadrées par des guillemets et, si oui, s'agit-il de guillements simple (') ou de guillemets doubles (")?

• Pour les variables textuelles, y a-t-il des valeurs manquantes et si oui comment sont-elles indiquées ? Par exemple, le texte NA est parfois utilisé.

Il ne faut pas hésitez à ouvrir le fichier avec un éditeur de texte pour le regarder de plus près.

14.1.2 Interface graphique avec RStudio

RStudio fournit une interface graphique pour faciliter l'import d'un fichier texte. Pour cela, il suffit d'aller dans le menu $File > Import\ Dataset$ et de choisir l'option $From\ CSV^{20}$. Cette option est également disponible via l'onglet Environment dans le quadrant haut-droite.

Pour la suite, nous allons utiliser ce fichier texte à titre d'exemple.

Figure 14.1: Importer un fichier texte avec RStudio

L'interface de **RStudio** vous présente sous *Import Options* les différentes options d'import disponible. La section *Data Preview* vous permet de voir en temps réel comment les données sont importées. La section *Code Preview* vous indique le code **R** correspondant à vos choix. Il n'y a plus qu'à le copier/coller dans un de vos scripts ou à cliquer sur **Import** pour l'exécuter.

20 L'option CSV fonctionne pour tous les fichiers de type texte, même si votre fichier a une autre extension, .txt par exemple Vous pourrez remarquer que **RStudio** fait appel à l'extension {readr} du tidyverse pour l'import des données via la fonction readr::read_csv().

 $\{\text{readr}\}\$ essaie de deviner le type de chacune des colonnes, en se basant sur les premières observations. En cliquant sur le nom d'une colonne, il est possible de modifier le type de la variable importée. Il est également possible d'exclure une colonne de l'import (skip).

14.1.3 Dans un script

L'interface graphique de **RStudio** fournit le code d'import. On peut également l'adapter à ces besoins en consultant la page d'aide de readr::read_csv() pour plus de détails. Par exemple :

```
library(readr)
d <- read_delim(
   "http://larmarange.github.io/analyse-R/data/exemple_texte_tabule.txt",
   delim = "\t",
   quote = "'"
)</pre>
```

On peut indiquer le chemin local vers un fichier (le plus courant) ou bien directement l'URL d'un fichier sur Internet.

{readr} propose plusieurs fonctions proches:readr::read_delim(), readr::read_csv(), readr::read_csv2() et readr::read_tsv(). Elles fonctionnent toutes de manière identique et ont les mêmes arguments. Seule différence, les valeurs par défaut de certainsparamètres.

• Fichiers de très grande taille

Si vous travaillez sur des données de grandes dimensions, les formats texte peuvent être lents à exporter et importer. Dans ce cas là, on pourra jeter un œil au package {vroom} et/ou aux fonctions data.table::fread() et data.table::fwrite().

Dans des manuels ou des exemples en ligne, vous trouverez parfois mention des fonctions utils::read.table(), utils::read.csv(), utils::read.csv2(), utils::read.delim() ou encore utils::read.delim2(). Il s'agit des fonctions natives et historiques de R (extension {utils}) dédiées à l'import de fichiers textes. Elles sont similaires à celles de {readr} dans l'idée générale mais diffèrent dans leurs détails et les traitements effectués sur les données (pas de détection des dates par exemple). Pour plus d'information, vous pouvez vous référer à la page d'aide de ces fonctions.

14.2 Importer un fichier Excel

Une première approche pour importer des données **Excel** dans **R** consiste à les exporter depuis **Excel** dans un fichier texte (texte tabulé ou **CSV**) puis de suivre la procédure d'importation d'un fichier texte.

Une feuille **Excel** peut également être importée directement avec l'extension {readxl} du *tidyverse*.

La fonction readxl::read_excel() permet d'importer à la fois des fichiers .xls (Excel 2003 et précédents) et .xlsx (Excel 2007 et suivants).

```
library(readxl)
donnees <- read_excel("data/fichier.xlsx")</pre>
```

Une seule feuille de calculs peut être importée à la fois. On pourra préciser la feuille désirée avec sheet en indiquant soit le nom de la feuille, soit sa position (première, seconde, ...).

```
donnees <- read_excel("data/fichier.xlsx", sheet = 3)
donnees <- read_excel("data/fichier.xlsx", sheet = "mes_donnees")</pre>
```

On pourra préciser avec col_names si la première ligne contient le nom des variables.

Par défaut, readxl::read_excel() va essayer de deviner le type (numérique, textuelle, date) de chaque colonne. Au besoin,

on pourra indiquer le type souhaité de chaque colonne avec col_types.

RStudio propose également pour les fichiers Excel un assitant d'importation, similaire à celui pour les fichiers texte, permettant de faciliter l'import.

14.3 Importer depuis des logiciels de statistique

Le package {haven} du *tidyverse* a été développé spécifiquement pour permettre l'importation de données depuis les formats des logiciels **Stata**, **SAS** et **SPSS**.

Il vise à offrir une importation unifiée depuis ces trois logiciels (là où le package {foreign} distribué en standard avec R adopte des conventions différentes selon le logiciel source).

Afin de ne pas perdre d'information lors de l'import, {haven} a introduit la notion d'étiquettes de variables (cf. Chapitre 11), une classe de vecteurs pour la gestion des étiquettes de valeurs (cf. Chapitre 12), des mécanismes pour reproduire la gestion des valeurs manquantes de ces trois logiciels (cf. Chapitre 13), mais également une gestion et un import correct des dates, dates-heures et des variables horaires (cf. le package {hms}).

À noter que **RStudio** intègre égalements une interface graphique pour l'import des fichiers **Stata**, **SAS** et **SPSS**.

14.3.1 SPSS

Les fichiers générés par SPSS sont de deux types : les fichiers SPSS natifs (extension .sav) et les fichiers au format SPSS export (extension .por).

Dans les deux cas, on aura recours à la fonction haven::read_spss():

```
library(haven)
donnees <- read_spss("data/fichier.sav", user_na = TRUE)</pre>
```

Valeurs manquantes

Dans **SPSS**, il est possible de définir des valeurs à considérées comme manquantes ou *user NAs*, voir Chapitre 13. Par défaut, haven::read_spss() convertir toutes ces valeurs en NA lors de l'import.

Or, il est parfois important de garder les différentes valeurs originelles. Dans ce cas, on appellera haven::read_spss() avec l'option user_na = TRUE.

14.3.2 SAS

Les fichiers **SAS** se présentent en général sous deux format : format **SAS** export (extension .xport ou .xpt) ou format **SAS** natif (extension .sas7bdat).

Les fichiers **SAS** natifs peuvent être importées directement avec haven::read_sas() de l'extension {haven}:

```
library(haven)
donnees <- read_sas("data/fichier.sas7bdat")</pre>
```

Au besoin, on pourra préciser en deuxième argument le nom d'un fichier **SAS catalogue** (extension .sas7bcat) contenant les métadonnées du fichier de données.

```
library(haven)
donnees <- read_sas(
   "data/fichier.sas7bdat",
   catalog_file = "data/fichier.sas7bcat"
)</pre>
```

Note

Les fichiers au format **SAS export** peuvent être importés via la fonction foreign::read.xport() de l'extension {foreign}. Celle-ci s'utilise très simplement, en lui passant le nom du fichier en argument :

```
library(foreign)
donnees <- read.xport("data/fichier.xpt")</pre>
```

14.3.3 Stata

Pour les fichiers **Stata** (extension .dta), on aura recours aux fonctions haven::read_dta() et haven::read_stata() de l'extension {haven}. Ces deux fonctions sont identiques.

```
library(haven)
donnees <- read_dta("data/fichier.dta")</pre>
```

Important

Gestion des valeurs manquantes

Dans **Stata**, il est possible de définir plusieurs types de valeurs manquantes, qui sont notées sous la forme .a à .z. Elles sont importées par {haven} sous formes de tagged NAs, cf. Chapitre 13.

14.3.4 dBase

L'Insee et d'autres producteur de données diffusent leurs fichiers au format dBase (extension .dbf). Ceuxci sont directement lisibles dans R avec la fonction foreign::read.dbf() de l'extension {foreign}.

```
library(foreign)
donnees <- read.dbf("data/fichier.dbf")</pre>
```

14.4 Sauver ses données

 ${f R}$ dispose également de son propre format pour sauvegarder et échanger des données. On peut sauver n'importe quel objet créé avec ${f R}$ et il est possible de sauver plusieurs objets dans un même fichier. L'usage est d'utiliser l'extension .RData pour les fichiers de données R. La fonction à utiliser s'appelle tout simplement save().

Par exemple, si l'on souhaite sauvegarder son tableau de données d'ainsi que les objets tailles et poids dans un fichier export.RData:

```
save(d, tailles, poids, file = "export.RData")
```

À tout moment, il sera toujours possible de recharger ces données en mémoire à l'aide de la fonction load() :

```
load("export.RData")
```

♦ Mise en garde

Si entre temps vous aviez modifié votre tableau d, vos modifications seront perdues. En effet, si lors du chargement de données, un objet du même nom existe en mémoire, ce dernier sera remplacé par l'objet importé.

La fonction save.image() est un raccourci pour sauvergarder tous les objets de la session de travail dans le fichier .RData (un fichier un peu étrange car il n'a pas de nom mais juste une extension). Lors de la fermeture de **RStudio**, il vous sera demandé si vous souhaitez enregistrer votre session. Si vous répondez *Oui*, c'est cette fonction save.image() qui sera appliquée.

```
save.image()
```

Un autre mécanisme possible est le format RDS de R. La fonction saveRDS() permet de sauvegarder un et un seul objet R dans un fichier.

```
saveRDS(d, file = "mes_donnees.rds")
```

Cet objet pourra ensuite être lu avec la fonction readRDS(). Mais au lieu d'être directement chargé dans la mémoire de l'environnement de travail, l'objet lu sera retourné

par la fonction readRDS() et ce sera à l'utilisateur de le sauvegarder.

```
donnees <- readRDS("mes_donnees.rds")</pre>
```

14.5 Export de tableaux de données

On peut avoir besoin d'exporter un tableau de données ${\bf R}$ vers différents formats. La plupart des fonctions d'import disposent d'un équivalent permettant l'export de données. On citera notamment :

- readr::write_csv() et readr::write_tsv() permettent d'exporter au format CSV et texte tabulé respectivement, readr::write_delim() offrant de multiples options pour l'exort au format texte;
- haven::write_sas() permet d'exporter au format SAS;
- haven::write_sav() au format SPSS;
- haven::write_dta() au format Stata;
- foreign::write.dbf() au format dBase.

L'extension readxl ne fournit pas de fonction pour exporter au format Excel. Par contre, on pourra passer par la fonction openxlsx::write.xlsx() du package {openxlsx} ou la fonction xlsx::write.xlsx() de l'extension {xlsx}. L'intérêt de {openxlsx} est de ne pas dépendre de Java à la différence de {xlsx}.

15 Mettre en forme des nombres

Dans les chapitres suivants, nous aurons régulièrement besoin, pour produire des tableaux ou des figures propres, de fonctions de formatage qui permettent de transformer des valeurs numériques en chaînes de texte.

La fonction **R** de base est format() mais de nombreux autres packages proposent des variations pour faciliter cette opération. Le plus complet est probablement {scales} et, notamment, ses fonctions scales::label_number() et scales::number().

Elles ont l'air très similaires et partagent un grand nombre de paramètres en commun. La différence est que scales::number() a besoin d'un vecteur numérique en entrée qu'elle va mettre en forme, tandis que que scales::label_number() renvoie une fonction que l'on pourra ensuite appliquer à un vecteur numérique.

```
library(scales)
  x \leftarrow c(0.0023, .123, 4.567, 874.44, 8957845)
  number(x)
[1] "0.00"
                                    "4.57"
                                                    "874.44"
                                                              "8 957 845.00"
                    "0.12"
  f <- label_number()</pre>
  f(x)
[1] "0.00"
                    "0.12"
                                    "4.57"
                                                    "874.44"
                                                                    "8 957 845.00"
  label number()(x)
```

[1] "0.00" "0.12" "4.57" "874.44" "8 957 845.00"

Dans de nombreux cas de figure (par exemple pour un graphique {ggplot2} ou un tableau {gtsummary}), il sera demandé de fournir une fonction de formatage, auquel cas on aura recours aux fonctions de {scales} préfixées par label_*() qui permettent donc de générer une fonction personnalisée.

15.1 label_number()

scales::label_number() est la fonction de base de mise en forme de nombres dans {scales}, une majorité des autres fonctions faisant appel à scales::label_number() et partageant les mêmes arguments.

Le paramètre accurary permets de définir le niveau d'arrondi à utiliser. Par exemple, .1 pour afficher une seule décimale. Il est aussi possible d'indiquer un nombre qui n'est pas une puissance de 10 (par exemple .25). Si on n'indique rien (NULL), alors scales::label_number() essaiera de deviner un nombre de décimales pertinent en fonction des valeurs du vecteur de nombres à mettre en forme.

```
label_number(accuracy = NULL)(x)
[1] "0.00"
                   "0.12"
                                   "4.57"
                                                   "874.44"
                                                                  "8 957 845.00"
  label_number(accuracy = .1)(x)
[1] "0.0"
                  "0.1"
                                 "4.6"
                                                "874.4"
                                                              "8 957 845.0"
  label_number(accuracy = .25)(x)
[1] "0.0"
                  "0.0"
                                 "4.5"
                                                "874.5"
                                                              "8 957 845.0"
```

L'option scale permets d'indiquer un facteur multiplicatif à appliquer avant de mettre en forme. On utilisera le plus souvent les options prefix et suffix en même temps pour indiquer les unités.

```
label_number(scale = 100, suffix = "%")(x) # pour cent
[1] "0%"
                                  "457%"
                   "12%"
                                                  "87 444%"
                                                                  "895 784 500%"
  label_number(scale = 1000, suffix = "\u2030")(x) # pour mille
[1] "2%"
                     "123%"
                                       "4 567%"
                                                        "874 440%"
[5] "8 957 845 000%"
  label_number(scale = .001, suffix = " milliers", accuracy = .1)(x)
[1] "0.0 milliers"
                       "0.0 milliers"
                                           "0.0 milliers"
                                                              "0.9 milliers"
[5] "8 957.8 milliers"
```

Les arguments decimal.mark et big.mark permettent de définir, respectivement, le séparateur de décimale et le séparateur de milliers. Ainsi, pour afficher des nombres à la française (virgule pour les décimales, espace pour les milliers):

Note : il est possible d'utiliser small.interval et small.mark pour ajouter des séparateurs parmi les décimales.

Les options style_positive et style_negative permettent de personnaliser la manière dont les valeurs positives et négatives sont mises en forme.

```
y <- c(-1.2, -0.3, 0, 2.4, 7.2)
label_number(style_positive = "plus")(y)

[1] "-1.2" "-0.3" "0.0" "+2.4" "+7.2"

label_number(style_negative = "parens")(y)

[1] "(1.2)" "(0.3)" "0.0" "2.4" "7.2"</pre>
```

15.2 Les autres fonctions de {scales}

15.2.1 label_comma()

scales::label_comma() (et scales::comma()) est une variante de scales::label_number() qui, par défaut, affiche les nombres à l'américaine, avec une virgule comme séparateur de milliers.

15.2.2 label_percent()

scales::label_percent() (et scales::percent()) est une
variante de scales::label_number() qui affiche les nombres
sous formes de pourcentages (les options par défaut sont scale
= 100, suffix = "%").

```
label_percent()(x)
```

[1] "0%" "12%" "457%" "87 444%" "895 784 500%"

On peut utiliser cette fonction pour afficher des résultats en pour mille (le code unicode du symbole ‰ étant u2030) :

```
label_percent(scale = 1000, suffix = "\u2030")(x)
```

- [1] "2%" "123%" "4 567%" "874 440%"
- [5] "8 957 845 000%"

15.2.3 label_dollar()

scales::label_dollar() est adapté à l'affichage des valeurs monétaires.

```
label_dollar()(x)
```

[1] "\$0" "\$5" "\$874" "\$8,957,845"

```
label_dollar(prefix = "", suffix = " €", accuracy = .01, big.mark = " ")(x)
```

- [1] "0.00 €" "0.12 €" "4.57 €" "874.44 €"
- [5] "8 957 845.00 €"

L'option style_negative permet d'afficher les valeurs négatives avec des parenthèses, convention utilisée dans certaines disciplines.

```
label_dollar()(c(12.5, -4, 21, -56.36))
[1] "$12.50" "-$4.00" "$21.00" "-$56.36"
  label_dollar(style_negative = "parens")(c(12.5, -4, 21, -56.36))
[1] "$12.50"
             "($4.00)" "$21.00"
                                      "($56.36)"
15.2.4 label_pvalue()
scales::label_pvalue() est adapté pour la mise en forme de
p-valeurs.
  label_pvalue()(c(0.000001, 0.023, 0.098, 0.60, 0.9998))
[1] "<0.001" "0.023" "0.098" "0.600" ">0.999"
  label_pvalue(accuracy = .01, add_p = TRUE)(c(0.000001, 0.023, 0.098, 0.60))
[1] "p<0.01" "p=0.02" "p=0.10" "p=0.60"
15.2.5 label_number_si()
scales::label_number_si() cherche le préfixe du Système
international d'unités le plus proche et arrondi chaque valeur
en fonction, en ajoutant la précision correspondante.
  label_number_si(unit = "g")(c(.00000145, .0034, 5, 12478, 14569787))
Warning: `label_number_si()` was deprecated in scales 1.2.0.
i Please use the `scale_cut` argument of `label_number()` instead.
[1] "0.0000 g" "0.0034 g" "5.0000 g" "12 Kg"
                                                 "15 Mg"
```

15.2.6 label_scientific()

scales::label_scientific() affiche les nombres dans un format scientifique (avec des puissances de 10).

```
label_scientific(unit = "g")(c(.00000145, .0034, 5, 12478, 14569787))
```

```
[1] "1.45e-06" "3.40e-03" "5.00e+00" "1.25e+04" "1.46e+07"
```

15.2.7 label_bytes()

scales::label_bytes() mets en forme des tailles exprimées en octets, utilisant au besoin des multiples de 1024.

```
b <- c(478, 1235468, 546578944897)
label_bytes()(b)
```

```
[1] "478 B" "1 MB" "547 GB"
```

```
label_bytes(units = "auto_binary")(b)
```

```
[1] "478 iB" "1 MiB" "509 GiB"
```

15.2.8 label_ordinal()

scales::label_bytes() permets d'afficher des rangs ou nombres ordinaux. Plusieurs langues sont disponibles.

```
label_ordinal()(1:5)
```

```
[1] "1st" "2nd" "3rd" "4th" "5th"
```

```
label_ordinal(rules = ordinal_french())(1:5)
```

[1] "1er" "2e" "3e" "4e" "5e"

```
label_ordinal(rules = ordinal_french(gender = "f", plural = TRUE))(1:5)

[1] "!res" "2es" "3es" "4es" "5es"

15.2.9 label_date(), label_date_short() & label_time()

scales::label_date(), scales::label_date_short() et scales::label_time() peuvent être utilisées pour la mise en forme de dates.

label_date()(as.Date("2020-02-14"))

[1] "2020-02-14"

label_date(format = "%d/%m/%Y")(as.Date("2020-02-14"))

[1] "14/02/2020"

label_date_short()(as.Date("2020-02-14"))

[1] "14\nfévr.\n2020"
```

La mise en forme des dates est un peu complexe. Ne pas hésiter à consulter le fichier d'aide de la fonction base::strptime() pour plus d'informations.

15.2.10 label_wrap()

La fonction scales::label_wrap() est un peu différente. Elle permets d'insérer des retours à la ligne (\n) dans des chaines de caractères. Elle tient compte des espaces pour identifier les mots et éviter ainsi des coupures au milieu d'un mot.

[1] "Ceci est un texte assez long et que l'on souhaiterait afficher sur plusieurs\nlignes. Cep

```
label_wrap(80)(x) |> message()
```

Ceci est un texte assez long et que l'on souhaiterait afficher sur plusieurs lignes. Cependant, on souhaite éviter que des coupures apparaissent au milieu d'un mot.

```
label_wrap(40)(x) |> message()
```

Ceci est un texte assez long et que l'on souhaiterait afficher sur plusieurs lignes. Cependant, on souhaite éviter que des coupures apparaissent au milieu d'un mot.

15.3 Les fonctions de formatage de {gtsummary}

Véritable couteau-suisse du statisticien, le package {gtsummary} sera largement utilisé dans les prochains chapitres pour produire des tableaux statistiques prêts à être publiés.

Ce package utilise par défaut ses propres fonctions de formatage mais, au besoin, il sera toujours possible de lui transmettre des fonctions de formatage créées avec {scales}.

15.3.1 style_number()

Fonction de base, gtsummary::style_number() accepte les paramètres big.mark (séparateur de milliers), decimal.mark (séparateur de décimales) et scale (facteur d'échelle). Le nombre de décimales se précisera quant à lui avec digits où l'on indiquera le nombre de décimales souhaité.

• Astuce

Nous verrons dans le chapitre sur les statistiques univariées (cf. Section 18.2.1) la fonction gtsummary::theme_gtsummary_language() qui permet de fixer globalement le séparateur de milliers et celui des décimales, afin de changer les valeurs par défaut de l'ensemble des fonctions de formatage de {gtsummary}. Il est important de noter que cela n'a aucun effet sur les fonctions de formatage de {scales}.

Mise en garde

gtsummary::style_number() est directement une
fonction de formatage (comme scales::number()) et
non une fonction qui générère une fonction de formatage
(comme scales::label::number()).

Pour créer une fonction de formatage personnalisée, on pourra avoir recours à purrr::partial() qui permet d'appeller partiellement une fonctio et qui renvoie une nouvelle fonction avec des paramètres par défaut personnalisés.

15.3.2 style_sigfig()

Variante de gtsummary::style_number(), gstummary::style_sigfig() arrondi les valeurs transmises pour n'afficher qu'un nombre choisi de chiffres significatifs. Le nombre de décimales peut ainsi varier.

```
style_sigfig(x)

[1] "0.12" "0.90" "1.1" "12" "-0.12" "-0.90" "-1.1" "-132"

style_sigfig(x, digits = 3)

[1] "0.123" "0.900" "1.12" "12.3" "-0.123" "-0.900" "-1.12" "-132"
```

15.3.3 style_percent()

La fonction gtsummary::style_percent() a un fonctionnement un peu différent de celui de scales::label_percent(). Par défaut, le symbole % n'est pas affiché (mais paramétrable avec symbol = TRUE. Par défaut, une décimale est affichée pour les valeurs inférieures à 10% et aucune pour celles supérieures à 10%. Un symbole < est ajouté devant les valeurs strictement positives inférieures à 0,1%.

```
v <- c(0, 0.0001, 0.005, 0.01, 0.10, 0.45356, 0.99, 1.45)
label_percent(accuracy = .1)(v)

[1] "0.0%" "0.0%" "0.5%" "1.0%" "10.0%" "45.4%" "99.0%" "145.0%"</pre>
```

```
style_percent(v)
          "<0.1" "0.5" "1.0" "10"
[1] "0"
                                     "45"
                                           "99"
                                                    "145"
  style_percent(v, symbol = TRUE)
[1] "0%"
           "<0.1%" "0.5%" "1.0%" "10%"
                                           "45%"
                                                   "99%"
                                                           "145%"
  style_percent(v, digits = 1)
           "0.01" "0.50" "1.00" "10.0" "45.4" "99.0" "145.0"
[1] "0"
15.3.4 style_pvalue()
La fonction gtsummary::style_pvalue() est similaire
à scales::label_pvalue() mais adapte le nombre de
décimales affichées,
  p <- c(0.000001, 0.023, 0.098, 0.60, 0.9998)
  label_pvalue()(p)
[1] "<0.001" "0.023" "0.098" "0.600" ">0.999"
  style_pvalue(p)
[1] "<0.001" "0.023" "0.10"
                             "0.6"
                                       ">0.9"
  style_pvalue(p, prepend_p = TRUE)
[1] "p<0.001" "p=0.023" "p=0.10" "p=0.6" "p>0.9"
15.3.5 style_ratio()
```

204

ratios.

Enfin, gtsummary::style_ratio() est adaptée à l'affichage de

```
r <- c(0.123, 0.9, 1.1234, 12.345, 101.234, -0.123, -0.9, -1.1234, -12.345, -101.234)
style_ratio(r)

[1] "0.12" "0.90" "1.12" "12.3" "101" "-0.12" "-0.90" "1.00" "1.00"
[10] "1.00"
```

15.4 Bonus: signif_stars() de {ggstats}

La fonction ggstats::signif_stars() de {ggstats} permet d'afficher des p-valeurs sous forme d'étoiles de significativité, Par défaut, trois astérisques si p < 0.001, deux si p < 0.01, une si p < 0.05 et un point si p < 0.10. Les valeurs sont bien sur paramétrables.

15.5

16 Couleurs & Palettes

Dans les prochains chapitres, notamment lorsque nous ferons des graphiques, nous aurons besoin de spécier à ${\bf R}$ les couleurs souhaitées.

Le choix d'une palette de couleurs adaptée à sa représentation graphique est également un élément essentiel avec quelques règles de base : un dégradé est adpaté pour représentée une variable continue tandis que pour une variable catégorielle non ordonnée on aura recours à une palette contrastée.

16.1 Noms de couleur

Lorsque l'on doit indiquer à **R** une couleur, notamment dans les fonctions graphiques, on peut mentionner certaines couleurs en toutes lettres (en anglais) comme "red" ou "blue". La liste des couleurs reconnues par **R** est disponible sur http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf.

```
library(tidyverse)
ggplot(iris) +
  aes(x = Petal.Length) +
  geom_histogram(colour = "red", fill = "blue")
```


16.2 Couleurs RVB et code hexadécimal

En informatique, les couleurs sont usuellement codées en Rouge/Vert/Bleu (voir https://fr.wikipedia.org/wiki/Rouge_vert_bleu) et représentées par un code hexadécimal à 6 caractères (chiffres 0 à 9 et/ou lettres A à F), précédés du symbole #. Ce code est reconnu par R. On pourra par exemple indiquer "#FF0000" pour la couleur rouge ou "#666666" pour un gris foncé. Le code hexadécimal des différentes couleurs peut s'obtenir aisément sur internet, de nombreux sites étant consacrés aux palettes de couleurs.

```
ggplot(iris) +
  aes(x = Petal.Length) +
  geom_histogram(colour = "#666666", fill = "#FF0000")
```


Parfois, au lieu du code hexadécimal, les couleurs RVB sont indiquées avec trois chiffres entiers compris entre 0 et 255. La conversion en hexadécimal se fait avec la fonction grDevices::rgb().

```
rgb(255, 0, 0, maxColorValue = 255)
```

[1] "#FF0000"

16.3 Palettes de couleurs

16.3.1 Color Brewer

Le projet Color Brewer a développé des palettes cartographiques, à la fois séquentielles, divergentes et catégorielles, présentées en détail sur http://colorbrewer2.org/. Pour chaque type de palette, et en fonction du nombre de classes, est indiqué sur ce site si la palette est adaptée aux personnes souffrant de daltonisme, si elle est rendra correctement sur écran, en cas d'impression couleur et en cas d'impression en noir et blanc.

Voici un aperçu des différentes palettes disponibles :

L'extension {RColorBrewer} permets d'accéder à ces palettes sous ${\bf R}.$

Si on utilise {ggplot2}, les palettes Color Brewer sont directement disponibles via les fonctions ggplot2::scale_fill_brewer() et ggplot2::scale_colour_brewer().

♦ Mise en garde

Les palettes Color Brewer sont seulement implémentées pour des variables catégorielles. Il est cependant possible de les utiliser avec des variables continues en les combinants avec ggplot2::scale_fill_gradientn() ou ggplot2::scale_coulour_gradientn() (en remplaçant "Set1" par le nom de la palette désirée):

scale_fill_gradientn(values = RColorBrewer::brewer.pal(6, "Set1"))

16.3.2 Palettes de Paul Tol

Le physicien Paul Tol a développé plusieurs palettes de couleurs adaptées aux personnes souffrant de déficit de perception des couleurs (daltonisme). À titre personnel, il s'agit des palettes de couleurs que j'utilise le plus fréquemment.

Le détail de ses travaux est présenté sur https://personal.sron.nl/~pault/.

Le pacakge $\{khroma\}$ implémente ces palettes de couleurs proposées par Paul Tol afin de pouvoir les utilisées directement dans $\mathbf R$ et avec $\{ggplot\}$.

```
library(khroma)
plot_scheme(colour("bright")(7), colours = TRUE)
```



```
ggplot(mpg) +
  aes(x = displ, y = hwy, colour = class) +
  geom_point() +
  khroma::scale_colour_bright()
```


plot_scheme(colour("muted")(9), colours = TRUE)

plot_scheme(colour("PRGn")(9), colours = TRUE, size = 0.9)

Pour la liste complète des palettes disponibles, voir https://packages.tesselle.org/khroma/articles/tol.html.

16.3.3 Interface unifiée avec {paletteer}

L'extension {paletteer} vise à proposer une interface unifiée pour l'utilisation de palettes de couleurs fournies par d'autres packages (dont {khroma}, mais aussi par exemple {ggsci} qui fournit les palettes utilisées par certaines revues scientifiques). Plus de 2 500 palettes sont ainsi disponibles.

On peut afficher un aperçu des principales palettes disponibles dans {paletteer} avec la commande suivante :

```
gt::info_paletteer()
```

Pour afficher la liste complète des palettes discrètes et continues, on utilisera les commandes suivantes :

```
palettes_d_names |> View()
palettes_c_names |> View()
```

La fonction paletteer::paletteer_d() permet d'obtenir les codes hexadécimaux d'une parlette discrète en précisant le nombre de couleurs attendues. Les fonctions paletteer::scale_color_paletteer_d()

et paletteer::scale_fill_paletteer_d() permettront d'utiliser une palette donnée avec {ggplot2}.

```
library(paletteer)
paletteer_d("khroma::bright", n = 5)
```

<colors>
#4477AAFF #EE6677FF #228833FF #CCBB44FF #66CCEEFF

```
ggplot(mpg) +
  aes(x = displ, y = hwy, colour = class) +
  geom_point() +
  scale_color_paletteer_d("khroma::bright")
```


L'équivalent existe pour les palettes continues, avec paletteer::paletteer_c(), paletteer::scale_color_paletteer_c() et paletteer::scale_fill_paletteer_c().

```
paletteer_c("viridis::viridis", n = 6)
```

<colors>
#440154FF #414487FF #2A788EFF #22A884FF #7AD151FF #FDE725FF

```
ggplot(iris) +
  aes(x = Sepal.Length, y = Sepal.Width, colour = Petal.Length) +
  geom_point() +
  scale_colour_paletteer_c("viridis::viridis", direction = -1)
```


partie III

Analyses

17 Graphiques avec ggplot2

Le package {ggplot2} fait partie intégrante du *tidyverse*. Développé par Hadley Wickham, ce package met en œuvre la grammaire graphique théorisée par Leland Wilkinson. Il devient vite indispensable lorsque l'on souhaite réaliser des graphiques un peu complexe.

17.1 Ressources

Il existe de très nombreuses ressources traitant de {ggplot2}.

Pour une introduction en français, on pourra se référer au chapitre Visualiser avec ggplot2 de l'Introduction à R et au tidyverse de Julien Barnier, au chapitre Introduction à ggplot2, la grammaire des graphiques du site analyse-R et adapté d'une séance de cours de François Briatte, ou encore au chapitre Graphiques du cours Logiciel R et programmation d'Ewen Gallic.

Pour les anglophones, la référence reste encore l'ouvrage ggplot2: Elegant Graphics for Data Analysis d'Hadley Wickham lui-même, dont la troisième édition est librement accessible en ligne (https://ggplot2-book.org/). D'un point de vue pratique, l'ouvrage R Graphics Cookbook: practical recipes for visualizing data de Winston Chang est une mine d'informations, ouvrage là encore librement accessible en ligne (https://r-graphics.org/).

17.2 Les bases de ggplot2

{ggplot2} nécessite que les données du graphique soient sous la forme d'un tableau de données (data.frame ou tibble) au format tidy, c'est-à-dire avec une ligne par observation et les différentes valeurs à représenter sous forme de variables du tableau.

Figure 17.1: La grammaire des graphiques

Tous les graphiques avec {ggplot2} suivent une même logique. En **premier** lieu, on appelera la fonction ggplot2::ggplot() en lui passant en paramètre le fichier de données.

{ggplot2} nomme esthétiques les différentes propriétés visuelles d'un graphique, à savoir l'axe des x (x), celui des y (y), la couleur des lignes (colour), celle de remplissage des polygones (fill), le type de lignes (linetype), la forme des points (shape), etc. Une représentation graphique consiste donc à représenter chacune de nos variables d'intérêt selon une esthétique donnée. En second lieu, on appelera donc la fonction ggplot2::aes() pour indiquer la correspondance entre les variables de notre fichier de données et les esthétiques du graphique.

A minima, il est nécessaire d'indiquer en **troisième** lieu une *géométrie*, autrement dit la manière dont les éléments seront représentés visuellement. À chaque géométrie corresponds une fonction commençant par geom_, par exemple ggplot2::geom_point() pour dessiner des points,

ggplot2::geom_line() pour des lignes, ggplot2::geom_bar() pour des barres ou encore ggplot2::geom_area() pour des aires. Il existe de nombreuses géométries différentes²¹, chacune prenant en compte certaines esthétiques, certaines étant requises pour cette géométrie et d'autres optionnelles. La liste des esthétiques prises en compte par chaque géométrie est indiquée dans l'aide en ligne de cette dernière.

²¹ On trouvera une liste dans la *cheat* sheet de {ggplot2}, voir Section 17.3.

Voici un exemple minimal de graphique avec {ggplot2} :

```
library(ggplot2)
p <-
    ggplot(iris) +
    aes(
    x = Petal.Length,
    y = Petal.Width,
    colour = Species
) +
    geom_point()
p</pre>
```


Figure 17.2: Un exemple simple de nuage de points avec ggplot2

Syntaxe additive

Le développement de {ggplot2} a débuté avant celui du tidyverse et la généralisation du pipe. Dès lors, on ne sera pas étonné que la syntaxe de {ggplot2} n'ait pas recours à ce dernier mais repose sur une approche additive. Un graphique est dès lors initialisé avec la fonction ggplot2::ggplot() et l'on ajoutera successivement des éléments au graphique en appelant différentes fonctions et en utilisant l'opérateur +.

Il est ensuite possible de personnaliser de nombreux éléments d'un graphique et notamment :

- les étiquettes ou labs (titre, axes, légendes) avec ggplot2::ggtitle(), ggplot2::xlab(), ggplot2::ylab() ou encore la fonction plus générique ggplot2::labs();
- les échelles (scales) des différentes esthétiques avec les fonctions commençant par scale_;
- le système de *coordonnées* avec les fonctions commençant par coord_;
- les *facettes* (*facets*) avec les fonctions commençant par facet_;
- la légende (guides) avec les fonctions commençant par guide_;
- le *thème* du graphiques (mise en forme des différents éléments) avec ggplot2::theme().

```
p +
  labs(
    x = "Longueur du pétale",
    y = "Largeur du pétale",
    colour = "Espèce"
) +
  ggtitle(
    "Relation entre longueur et largeur des pétales",
    subtitle = "Jeu de données Iris"
) +
  scale_x_continuous(breaks = 1:7) +
  scale_y_continuous(
```

```
labels = scales::label_number(decimal.mark = ",")
) +
coord_equal() +
facet_grid(cols = vars(Species)) +
guides(
    color = guide_legend(nrow = 2)
) +
theme_light() +
theme(
    legend.position = "bottom",
    axis.title = element_text(face = "bold")
)
```

Relation entre longueur et largeur des pétales

Figure 17.3: Un exemple avancé de nuage de points avec ggplot2

Pour visualiser chaque étape du code, vous pouvez consulter le diaporama suivant : https://larmarange.github.io/guide-R/analyses/ressources/flipbook-ggplot2.html

Figure 17.4: Cheatsheet ggplot2

17.3 Cheatsheet

17.4 Exploration visuelle avec esquisse

Le package {esquisse} propose un addin offrant une interface visuelle pour la création de graphiques {ggplot2}. Après installation du package, on pourra lancer {esquisse} directement à partir du menu addins de RStudio.

Figure 17.5: Lancement d'esquisse à partir du menu *Addins* de **RStudio**

Au lancement de l'addin, une interface permettra de choisir le tableau de données à partir duquel générer le graphique. Le plus simple est de choisir un tableau présent dans l'environnement. Mais {esquisse} offre aussi la possibilité d'importer des fichiers externes, voir de procéder à quelques modifications des données.

Le principe général d'{esquisse} consiste à associer des variables à des esthétiques par glisser/déposer²². L'outil déterminera automatiquement une géométrie adaptée en fonction de la nature des variables (continues ou catgéorielles). Un clic sur le nom de la géométrie en haut à gauche permet de sélectionner une autre géométrie.

Les menus situés en bas de l'écran permettent d'ajouter/modifier des étiquettes, de modifier certaines options du graphiques, de

²² Si une esthétique n'est pas visible à l'écran, on pourra cliquer en haut à droite sur l'icône en forme de roue dentée afin de choisir d'afficher plus d'esthétiques.

Figure 17.6: Import de données au lancement d'esquisse

Figure 17.7: Choix d'une géométrie dans esquisse

modifier les échelles de couleurs et l'apparence du graphique, et de filtrer les observations inclues dans le graphique.

Le menu **Code** permet de récupérer le code correspondant au graphique afin de pouvoir le copier/coller dans un script.

Figure 17.8: Obtenir le code du graphique obtenu avec esquisse

{esquisse} offre également la possibilité d'exporter le graphique obtenu dans différents formats.

17.5 webin-R

L'utilisation d' $\{esquisse\}$ est présentée dans le webin-R #03 (statistiques descriptives avec gtsummary et esquisse) sur YouTube.

https://youtu.be/oEF_8GXyP5c

 $\{ggplot2\}\$ est abordé plus en détails dans le webin-R #08 $(ggplot2\ et\ la\ grammaire\ des\ graphiques)$ sur YouTube.

https://youtu.be/msnwENny_cg

17.6 Combiner plusieurs graphiques

Plusieurs packages proposent des fonctions pour combiner ensemble des graphiques {ggplot2}, comme {patchwork}, {ggpubr}, {egg} ou {cowplot}. Ici, nous privilégierons le package {patchwork} car, bien qu'il ne fasse pas partie du tidyverse, est développé et maintenant par les mêmes auteurs que {ggplot2}.

Commençons par créer quelques graphiques avec {ggplot2}.

```
p1 <- ggplot(mtcars) +
   aes(x = wt, y = mpg) +
   geom_point()
p2 <- ggplot(mtcars) +
   aes(x = factor(cyl)) +
   geom_bar()
p3 <- ggplot(mtcars) +
   aes(x = factor(cyl), y = mpg) +
   geom_violin() +
   theme(axis.title = element_text(size = 20))
p4 <- ggplot(mtcars) +
   aes(x = factor(cyl), y = mpg) +
   geom_boxplot() +
   ylab(NULL)</pre>
```

Le symbole + permet de combiner des graphiques entre eux. Le package {patchwork} déterminera le nombre de lignes et de colonnes en fonction du nombre de graphiques. On pourra noter que les axes des graphiques sont alignés les uns par rapports aux autres.

```
library(patchwork)
p1 + p2 + p3 + p4
```


Les symboles \mid et / permettent d'indiquer une disposition côte à côte ou les uns au-dessus des autres.

p1 / p2

On peut utiliser les parenthèses pour indiquer des arrangements plus complexes.

Si l'on a une liste de graphiques, on pourra appeler patchwork::wrap_plots().

La fonction patchwork::plot_layout() permet de controler les hauteurs / largeurs relatives des lignes / colonnes.

$p1 + p2 + p3 + p4 + plot_layout(widths = c(2, 1))$ 35 -30 -10 count 5 -15 **-**0 -10factor(cyl) 35 -35 -30 -30 -25 -E 20 -25 -20 -15 -15 -

On peut également ajouter un titre ou des étiquettes avec patchwork::plot_annotation().

10 -

factor(cyl)

```
p1 + p2 + p3 + p4 +
  plot_annotation(
    title = "Titre du graphique",
    subtitle = "sous-titre",
    caption = "notes additionelles",
    tag_levels = "a",
    tag_suffix = "."
)
```

factor(cyl)

10-

Titre du graphique

sous-titre

18 Statistique univariée & Intervalles de confiance

On entend par statistique univariée l'étude d'une seule variable, que celle-ci soit continue (quantitative) ou catégorielle (qualitative). La statistique univariée fait partie de la statistique descriptive.

18.1 Exploration graphique

Une première approche consiste à explorer visuelle la variable d'intérêt, notamment à l'aide de l'interface proposée par {esquisse} (cf Section 17.4).

Nous indiquons ci-après le code correspond aux graphiques {ggplot2} les plus courants.

```
library(ggplot2)
```

18.1.1 Variable continue

Un histogramme est la représentation graphique la plus commune pour représenter la distribution d'une variable, par exemple ici la longueur des pétales (variable Petal.Length) du fichier de données datasets::iris. Il s'obtient avec la géométrie ggplot2::geom_histogram().

```
ggplot(iris) +
  aes(x = Petal.Length) +
  geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure 18.1: un histogramme simple

Astuce

Il faut noter qu'il nous a suffit d'associer simplement la variable Petal.Length à l'esthétique \mathbf{x} , sans avoir eu besoin d'indiquer une variable pour l'esthétique \mathbf{y} .

En fait, {ggplot2} associe par défaut à toute géométrie une certaine statistique. Dans le cas de ggplot2::geom_histogram(), il s'agit de la statistique ggplot2::stat_bin() qui divise la variable continue en classes de même largeur et compte le nombre d'observation dans chacunes. ggplot2::stat_bin() renvoie un certain nombre de variables calculées (la liste complète est indiquée dans la documentation dans la section Compute variables), dont la variable count qui correspond au nombre d'observations la classe. On peut associer cette variable calculée à une esthétique grace à la fonction ggplot2::after_stat(), par exemple aes(y = after_stat(count)). Dans le cas présent, ce n'est pas nécessaire car {ggplot2} fait cette association automatiquement si l'on n'a pas déjà attribué une variable à l'esthétique y.

On peut personnaliser la couleur de remplissage des rectangles en indiquant une valeur fixe pour l'esthétique fill dans l'appel de ggplot2::geom_histogram() (et non via la fonction ggplot2::aes() puisqu'il ne s'agit pas d'une variable du tableau de données). L'esthétique colour permet de spécifier la couleur du trait des rectangles. Enfin, le paramètre binwidth permet de spécifier la largeur des barres.

```
ggplot(iris) +
  aes(x = Petal.Length) +
  geom_histogram(
    fill ="lightblue",
    colour = "black",
    binwidth = 1
  ) +
  xlab("Longeur du pétale") +
  ylab("Effectifs")
```


Figure 18.2: un histogramme personnalisé

On peut alternativement indiquer un nombre de classes avec bins.

```
ggplot(iris) +
  aes(x = Petal.Length) +
  geom_histogram(bins = 10, colour = "black")
```


Figure 18.3: un histogramme en 10 classes

Une représentation alternative de la distribution d'une variable peut être obtenue avec une courbe de densité, dont la particularité est d'avoir une surface sous la courbe égale à 1. Une telle courbe s'obtient avec ggplot2::geom_density(). Le paramètre adjust permet d'ajuster le niveau de lissage de la courbe.

```
ggplot(iris) +
  aes(x = Petal.Length) +
  geom_density(adjust = .5)
```


Figure 18.4: une courbe de densité

18.1.2 Variable catégorielle

Pour représenter la répartition des effectifs parmi les modalités d'une variable catégorielle, on a souvent tendance à utiliser des diagrammes en secteurs (camemberts). Or, ce type de représentation graphique est très rarement appropriée : l'oeil humain préfère comparer des longueurs plutôt que des surfaces²³.

Dans certains contextes ou pour certaines présentations, on pourra éventuellement considérer un diagramme en donut, mais le plus souvent, rien ne vaut un bon vieux diagramme en barres avec ggplot2::geom_bar(). Prenons pour l'exemple la variable occup du jeu de données hdv2003 du package {questionr}.

```
data("hdv2003", package = "questionr")
ggplot(hdv2003) +
  aes(x = occup) +
  geom_bar()
```

²³ Voir en particulier https://www.data-to-viz.com/caveat/pie.html pour un exemple concret.

Figure 18.5: un diagramme en barres simple

Là encore, {ggplot2} a calculé de lui-même le nombre d'observations de chaque modalité, en utilisant cette fois la statistique ggplot2::stat_count().

Si l'on souhaite représenter des pourcentages plutôt que des effectifs, le plus simple est d'avoir recours à la statistique ggstats::stat_prop() du package {ggstats}²⁴. Pour appeler cette statistique, on utilisera simplement stat = "prop" dans les géométries concernées.

Cette statistique, qui sera également bien utile pour des graphiques plus complexes, nécessite qu'on lui indique une esthétique \mathbf{by} pour dans quels sous-groupes calculés des proportions. Ici, nous avons un seul groupe considéré et nous souhaitons des pourcentages du total. On indiquera simplement $\mathbf{by} = 1$.

Pour formater l'axe vertical avec des pourcentages, on pourra avoir recours à la fonction scales::label_percent() que l'on appelera via ggplot2::scale_y_continuous().

²⁴ Cette statistique est également disponible via le package {GGally}.

```
library(ggstats)
ggplot(hdv2003) +
  aes(x = occup, y = after_stat(prop), by = 1) +
  geom_bar(stat = "prop") +
  scale_y_continuous(labels = scales::label_percent())
```


Figure 18.6: un diagramme en barres épuré

Pour une publication ou une communication, il ne faut surtout pas hésiter à **épurer** vos graphiques (*less is better!*), voire à trier les modalités en fonction de leur fréquence pour faciliter la lecture (ce qui se fait aisément avec forcats::fct_infreq()).

```
) +
theme_minimal() +
theme(
   panel.grid = element_blank(),
   axis.text.y = element_blank()
) +
xlab(NULL) + ylab(NULL) +
ggtitle("Occupation des personnes enquêtées")
```

Occupation des personnes enquêtées

Figure 18.7: un diagramme en barres épuré

Pour visualiser chaque étape du code, vous pouvez consulter le diaporama suivant : https://larmarange.github.io/guide-R/analyses/ressources/flipbook-geom_bar-univarie.html

18.2 Tableaux et tris à plat

Le package {gtsummary} constitue l'une des boites à outils de l'analyste quantitativiste, car il permet de réaliser très facilement des tableaux quasiment publiables en l'état. En matière de statistique univarisée, la fonction clé est gtsummary::tbl_summary().

Commençons avec un premier exemple rapide. On part d'un tableau de données et on indique, avec l'argument include, les variables à afficher dans le tableau statistique (si on n'indique rien, toutes les variables du tableau de données sont considérées). Il faut noter que l'argument include de gtsummary::tbl_summary() utilise la même syntaxe dite tidy select que dplyr::select() (cf. Section 8.2.1). On peut indiquer tout autant des variables catégorielles que des variables continues.

```
library(gtsummary)
hdv2003 |>
  tbl_summary(include = c(age, occup))
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

	Table	18.1:	un	tableau	simple
--	-------	-------	----	---------	--------

Characteristic	N = 2,000
age	48 (35, 60)
occup	
Exerce une profession	1,049 (52%)
Chomeur	134 (6.7%)
Etudiant, eleve	$94 \ (4.7\%)$
Retraite	392~(20%)
Retire des affaires	77(3.9%)
Au foyer	$171 \ (8.6\%)$
Autre inactif	$83 \ (4.2\%)$

Remarque sur les types de variables et les sélecteurs associés

{gtsummary} permets de réaliser des tableaux statistiques combinant plusieurs variables, l'affichage des résultats pouvant dépendre du type de variables.

Par défaut, {gtsummary} considère qu'une variable est

catégorielle s'il s'agit d'un facteur, d'une variable textuelle ou d'une variable numérique ayant moins de 10 valeurs différentes.

Une variable sera considérée comme **dichotomique** (variable catégorielle à seulement deux modalités) s'il s'agit d'un vecteur logique (TRUE/FALSE), d'une variable textuelle codée yes/no ou d'une variable numérique codée 0/1.

Dans les autres cas, une variable numérique sera considérée comme **continue**.

Si vous utilisez des vecteurs labellisés (cf. Chapitre 12), vous devez les convertir, en amont, en facteurs ou en variables numériques. Voir l'extension {labelled} et les fonctions labelled::to_factor(), labelled::unlabelled() et unclass().

Au besoin, il est possible de forcer le type d'une variable avec l'argument type de gtsummary::tbl_summary(). {gtsummary} fournit des sélecteurs qui peuvent être utilisés dans les options des différentes fonctions, en particulier gtsummary::all_continuous() pour les variables continues, gtsummary::all_dichotolous() variables dichotomiques pour les gtsummary::all_categorical() pour les variables catégorielles. Cela inclue les variables dichotomiques. Il faut utiliser all_categorical(dichotomous = FALSE) pour sélectionner les variables catégorielles en excluant les variables dichotomiques.

18.2.1 Thème du tableau

{gtsummary} fournit plusieurs fonctions préfixées theme_gtsummary_*() permettant de modifier l'affichage par défaut des tableaux. Vous aurez notez que, par défaut, {gtsummary} est anglophone.

La fonction gtsummary::theme_gtsummary_journal() permets d'adopter les standards de certaines grandes revues scientifiques telles que JAMA (Journal of the American Medical Association), The Lancet ou encore le NEJM (New England Journal of Medicine).

La fonction gtsummary::theme_gtsummary_language() permet de modifier la langue utilisée par défaut dans les tableaux. Les options decimal.mark et big.mark permettent de définir respectivement le séparateur de décimales et le séparateur des milliers. Ainsi, pour présenter un tableau en français, on appliquera en début de script:

```
theme_gtsummary_language(
  language = "fr",
  decimal.mark = ",",
  big.mark = " "
)
```

Setting theme `language: fr`

Ce thème sera appliqué à tous les tableaux ultérieurs.

```
hdv2003 |>
  tbl_summary(include = c(age, occup))
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.2: un tableau simple en français

Caractéristique	N = 2 000
age	48 (35 – 60)
occup	
Exerce une profession	$1\ 049\ (52\%)$
Chomeur	134 (6,7%)
Etudiant, eleve	94 (4,7%)
Retraite	392~(20%)
Retire des affaires	77 (3,9%)
Au foyer	171 (8,6%)
Autre inactif	83 (4,2%)

18.2.2 Étiquettes des variables

gtsummary, par défaut, prends en compte les étiquettes de variables (cf. Chapitre 11), si elles existent, et sinon utilisera le nom de chaque variable dans le tableau. Pour rappel, les étiquettes de variables peuvent être manipulées avec l'extension {labelled} et les fonctions labelled::var_label() et labelled::set_variable_labels().

Il est aussi possible d'utiliser l'option label de gtsummary::tbl_summary() pour indiquer des étiquettes personnalisées.

```
hdv2003 |>
  labelled::set_variable_labels(
    occup = "Occupation actuelle"
) |>
  tbl_summary(
    include = c(age, occup, heures.tv),
    label = list(age ~ "Âge médian")
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

	Table	18.3:	un	tableau	étiquette
--	-------	-------	----	---------	-----------

Caractéristique	$N = 2 \ 000$
Âge médian	48 (35 – 60)
Occupation actuelle	
Exerce une profession	1~049~(52%)
Chomeur	134 (6,7%)
Etudiant, eleve	94 (4.7%)
Retraite	392 (20%)
Retire des affaires	77 (3,9%)
Au foyer	$171\ (8,6\%)$
Autre inactif	83 (4,2%)
heures.tv	$2,00 \ (1,00 - 3,00)$
Manquant	5

Pour modifier les modalités d'une variable catégorielle, il faut modifier en amont les niveaux du facteur correspondant.

Remarque sur la syntaxe des options

De nombreuses options des fonctions de {gtsummary} peuvent s'appliquer seulement à une ou certaines variables. Pour ces options-là, {gtsummary} attends une formule de la forme variables concernées ~ valeur de l'option ou bien une liste de formules ayant cette forme.

Par exemple, pour modifier l'étiquette associée à une certaine variable, on peut utiliser l'option label de gtsummary::tbl_summary().

```
trial |>
  tbl_summary(label = age ~ "Âge")
```

Lorsque l'on souhaite passer plusieurs options pour plusieurs variables différentes, on utilisera une list().

```
trial |>
  tbl_summary(label = list(age ~ "Âge", trt ~ "Traitement"))
```

{gtsummary} est très flexible sur la manière d'indiquer la ou les variables concernées. Il peut s'agir du nom de la variable, d'une chaîne de caractères contenant le nom de la variable, ou d'un vecteur contenant le nom de la variable. Les syntaxes ci-dessous sont ainsi équivalentes.

```
trial |>
  tbl_summary(label = age ~ "Âge")
trial |>
  tbl_summary(label = "age" ~ "Âge")
v <- "age"
trial |>
  tbl_summary(label = v ~ "Âge")
```

Pour appliquer le même changement à plusieurs variables, plusieurs syntaxes sont acceptées pour lister plusieurs

```
variables.
  trial |>
    tbl_summary(label = c("age", "trt") ~ "Une même étiquette")
  trial |>
    tbl_summary(label = c(age, trt) ~ "Une même étiquette")
II
            également
                         possible
                                     d'utiliser
                                                 la
     est
          {tidyselect}
                          _{
m et}
                               les
                                     sélecteurs
                                                 de
syntaxe
{tidyselect} comme tidyselect::everything(),
tidyselect::starts_with(),
tidyselect::contains() ou tidyselect::all_of().
Ces différents sélecteurs peuvent être combinés au sein
d'un c().
  trial |>
    tbl_summary(
      label = everything() ~ "Une même étiquette"
    )
  trial |>
    tbl_summary(
      label = starts_with("a") ~ "Une même étiquette"
    )
  trial |>
    tbl_summary(
      label = c(everything(), -age, -trt) ~ "Une même étiquette"
    )
  trial |>
    tbl_summary(
      label = age:trt ~ "Une même étiquette"
    )
Bien sûr, il est possible d'utiliser les sélecteurs propres à
{gtsummary}.
```

```
trial |>
    tbl_summary(
      label = all_continuous() ~ "Une même étiquette"
  trial |>
    tbl_summary(
      label = list(
        all_continuous() ~ "Variable continue",
        all_dichotomous() ~ "Variable dichotomique",
        all_categorical(dichotomous = FALSE) ~ "Variable catégorielle"
      )
    )
Enfin, si l'on ne précise rien à gauche du ~, ce sera
considéré comme équivalent à everything(). Les deux
syntaxes ci-dessous sont donc équivalentes.
  trial |>
    tbl summary(label = ~ "Une même étiquette")
  trial |>
    tbl summary(
      label = everything() ~ "Une même étiquette"
```

18.2.3 Statistiques affichées

Le paramètre statistic permets de sélectionner les statistiques à afficher pour chaque variable. On indiquera une chaîne de caractères dont les différentes statistiques seront indiquées entre accolades ({}).

Pour une variable continue, on pourra utiliser {median} pour la médiane, {mean} pour la moyenne, {sd} pour l'écart type, {var} pour la variance, {min} pour le minimum, {max} pour le maximum, ou encore {p##} (en remplacant ## par un nombre entier entre 00 et 100) pour le percentile correspondant (par exemple p25 et p75 pour le premier et le troisième quartile). Utilisez gtsummary::all_continous() pour sélectionner toutes les variables continues.

```
hdv2003 |>
  tbl_summary(
    include = c(age, heures.tv),
    statistic =
      all_continuous() ~ "Moy. : {mean} [min-max : {min} - {max}]"
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.4: statisques personnalisées pour une variable continue

Caractéristique	$N = 2\ 000$
age	Moy.: 48 [min-max: 18 - 97]
heures.tv	Moy. : $2,25$ [min-max : $0,00 - 12,00$]
Manquant	5

Il est possible d'afficher des statistiques différentes pour chaque variable.

```
hdv2003 |>
  tbl_summary(
    include = c(age, heures.tv),
    statistic = list(
       age ~ "Méd. : {median} [{p25} - {p75}]",
       heures.tv ~ "Moy. : {mean} ({sd})"
    )
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.5: statisques personnalisées pour une variable continue (2)

Caractéristique	N = 2 000
age heures.tv	Méd.: 48 [35 - 60] Moy.: 2,25 (1,78)
Manquant	5

Pour les variables continues, il est également possible d'indiquer le nom d'une fonction personnalisée qui prends un vecteur et renvoie une valeur résumée. Par exemple, pour afficher la moyenne des carrés :

```
moy_carres <- function(x) {
  mean(x^2, na.rm = TRUE)
}
hdv2003 |>
  tbl_summary(
  include = heures.tv,
  statistic = ~ "MC : {moy_carres}"
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.6: statisques personnalisées pour une variable continue (3)

Caractéristique	N = 2 000
heures.tv	MC: 8,20
Manquant	5

Pour une variable catégorielle, les statistiques possibles sont {n} le nombre d'observations, {N} le nombre total d'observations, et {p} le pourcentage correspondant. Utilisez gtsummary::all_categorical() pour sélectionner toutes les variables catégorielles.

```
hdv2003 |>
  tbl_summary(
    include = occup,
    statistic = all_categorical() ~ "{p} % ({n}/{N})"
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.7: statisques personnalisées pour une variable catégorielle

Caractéristique	$N = 2\ 000$
occup	
Exerce une profession	52% (1.049/2.000)
Chomeur	6,7 % (134/2 000)
Etudiant, eleve	4.7 % (94/2 000)
Retraite	20 % (392/2 000)
Retire des affaires	3.9 % (77/2 000)
Au foyer	8,6 % (171/2 000)
Autre inactif	4,2 % (83/2 000)

Il est possible, pour une variable catégorielle, de trier les modalités de la plus fréquente à la moins fréquente avec le paramètre sort.

```
hdv2003 |>
  tbl_summary(
    include = occup,
    sort = all_categorical() ~ "frequency"
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.8: variable catégorielle triée par fréquence

Caractéristique	N=2~000
occup	
Exerce une profession	1 049 (52%)
Retraite	392 (20%)
Au foyer	171 (8,6%)
Chomeur	134~(6,7%)
Etudiant, eleve	94 (4.7%)
Autre inactif	83 (4,2%)
Retire des affaires	77 (3,9%)

Pour toutes les variables (catégorielles et continues), les statistiques suivantes sont également disponibles :

- {N_obs} le nombre total d'observations,
- {N_miss} le nombre d'observations manquantes (NA),
- {N_nonmiss} le nombre d'observations non manquantes,
- {p_miss} le pourcentage d'observations manquantes (i.e. N_miss / N_obs) et
- {p_nonmiss} le pourcentage d'observations non manquantes (i.e. N_nonmiss / N_obs).

18.2.4 Affichage du nom des statistiques

Lorsque l'on affiche de multiples statistiques, la liste des statistiques est regroupée dans une note de tableau qui peut vite devenir un peu confuse.

```
tbl <- hdv2003 |>
  tbl_summary(
    include = c(age, heures.tv, occup),
    statistic = list(
        age ~ "{mean} ({sd})",
        heures.tv ~ "{median} [{p25} - {p75}]"
    )
  )
  tbl
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.9: tableau par défaut

Caractéristique	N=2~000
age	48 (17)
heures.tv	2,00 [1,00 - 3,00]
Manquant	5
occup	
Exerce une profession	$1\ 049\ (52\%)$
Chomeur	134~(6,7%)
Etudiant, eleve	94 (4.7%)
Retraite	392~(20%)
Retire des affaires	77 (3.9%)
Au foyer	171 (8,6%)
Autre inactif	83 (4,2%)

La fonction gtsummary::add_stat_label() permets d'indiquer le type de statistique à côté du nom des variables ou bien dans une colonne dédiée, plutôt qu'en note de tableau.

```
tbl |>
  add_stat_label()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.10: ajout du nom des statistiques

Caractéristique	N = 2 000
age, Moyenne (ET)	48 (17)
heures.tv, Médiane [EI]	2,00 [1,00 - 3,00]
Manquant	5
occup, n (%)	

Caractéristique	N = 2 000
Exerce une profession	1 049 (52%)
Chomeur	134 (6,7%)
Etudiant, eleve	94 (4,7%)
Retraite	392 (20%)
Retire des affaires	77 (3,9%)
Au foyer	171 (8,6%)
Autre inactif	83 (4,2%)

```
tbl |>
  add_stat_label(location = "column")
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.11: ajout du nom des statistiques dans une colonne séparée

Caractéristique	Statistique	N=2~000
age	Moyenne (ET)	48 (17)
heures.tv	Médiane [EI]	2,00 [1,00 - 3,00]
Manquant	n	5
occup		
Exerce une profession	n (%)	$1\ 049\ (52\%)$
Chomeur	n (%)	134 (6,7%)
Etudiant, eleve	n (%)	94 (4,7%)
Retraite	n (%)	392 (20%)
Retire des affaires	n (%)	77 (3,9%)
Au foyer	n (%)	171 (8,6%)
Autre inactif	n (%)	83 (4,2%)

18.2.5 Forcer le type de variable

Comme évoqué plus haut, {gtsummary} détermine automatiquement le type de chaque variable. Par défaut, la variabe age du tableau

de données trial est traitée comme variable continue, death comme dichotomique (seule la valeur 1 est affichée) et grade comme variable catégorielle.

```
trial |>
  tbl_summary(
    include = c(grade, age, death)
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.12: types de variable par défaut

Caractéristique	N = 200
Grade	
I	68 (34%)
II	68 (34%)
III	64 (32%)
Age	47 (38 - 57)
Manquant	11
Patient Died	112~(56%)

Il est cependant possible de forcer un certain type avec l'argument type. Précision : lorsque l'on force une variable en dichotomique, il faut indiquer avec value la valeur à afficher (les autres sont alors masquées).

```
trial |>
  tbl_summary(
   include = c(grade, death),
  type = list(
     grade ~ "dichotomous",
     death ~ "categorical"
  ),
  value = grade ~ "III",
  label = grade ~ "Grade III"
```

)

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.13: types de variable personnalisés

N = 200
64 (32%)
88 (44%)
112~(56%)

18.2.6 Afficher des statistiques sur plusieurs lignes (variables continues)

Pour les variables continues, {gtsummary} a introduit un type de variable "continuous2", qui doit être attribué manuellement via type, et qui permets d'afficher plusieurs lignes de statistiques (en indiquant plusieurs chaînes de caractères dans statistic). À noter le sélecteur dédié gtsummary::all_continuous2().

```
hdv2003 |>
  tbl_summary(
    include = c(age, heures.tv),
    type = age ~ "continuous2",
    statistic =
    all_continuous2() ~ c(
        "{median} ({p25} - {p75})",
        "{mean} ({sd})",
        "{min} - {max}"
    )
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at

https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.14: des statistiques sur plusieurs lignes (variables continues)

Caractéristique	N=2~000
age	
Médiane (EI)	48 (35 - 60)
Moyenne (ET)	48 (17)
Étendue	18 - 97
heures.tv	$2,00 \ (1,00 - 3,00)$
Manquant	5

18.2.7 Mise en forme des statistiques

L'argument digits permet de spécifier comment mettre en forme les différentes statistiques. Le plus simple est d'indiquer le nombre de décimales à afficher. Il est important de tenir compte que plusieurs statistiques peuvent être affichées pour une même variable. On peut alors indiquer une valeur différente pour chaque statistique.

```
hdv2003 |>
  tbl_summary(
   include = c(age, occup),
  digits = list(
    all_continuous() ~ 1,
    all_categorical() ~ c(0, 1)
  )
)
```

Table 18.15: personnalisation du nombre de décimales

Caractéristique	$N = 2 \ 000$
age	$48.0 \ (35.0 - 60.0)$
occup	
Exerce une profession	$1\ 049\ (52,4\%)$
Chomeur	134 (6,7%)
Etudiant, eleve	94 (4.7%)
Retraite	$392\ (19,6\%)$
Retire des affaires	77 (3,9%)
Au foyer	$171 \ (8,6\%)$
Autre inactif	83 (4,2%)

Au lieu d'un nombre de décimales, on peut indiquer plutôt une fonction à appliquer pour mettre en forme le résultat. Par exemple, {gtsummary} fournit les fonctions suivantes : gtsummary::style_number() pour les nombres de manière générale, gtsummary::style_percent() pour les pourcentages (les valeurs sont multipliées par 100, mais le symbole % n'est pas ajouté), gtsummary::style_pvalue() pour les p-valeurs, gtsummary::style_sigfig() qui n'affiche, par défaut, que deux chiffres significatifs, ou encore gtsummary::style_ratio() qui est une variante de gtsummary::`style_sigfig() pour les ratios (comme les odds ratios) que l'on compare à 1.

Il faiut bien noter que ce qui est attendu par digits, c'est une fonction et non le résultat d'une fonction. On indiquera donc le nom de la fonction sans parenthèse, comme dans l'exemple ci-dessous (même si pas forcément pertinent;-)).

```
hdv2003 |>
  tbl_summary(
    include = age,
    digits =
      all_continuous() ~ c(style_percent, style_sigfig, style_ratio)
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at

https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.16: personnalisation de la mise en forme des nombres

Caractéristique	N = 2 000
age	4 800 (35 – 60,0)

Comme digits s'attends à recevoir une fonction (et non le résultat) d'une fonction, on ne peut pas passer directement des arguments aux fonctions style_*() de {gtsummary}. Pour cela il faut créer une fonction à la levée :

```
trial |>
  tbl_summary(
    include = marker,
    statistic = ~ "{mean} pour 100",
    digits = ~ function(x){style_percent(x, digits = 1)}
)
```

Table 18.17: passer une fonction personnalisée à digits (syntaxe 1)

Caractéristique	N = 200
Marker Level (ng/mL)	91,6 pour 100
Manquant	10

Depuis **R 4.1**, il existe une syntaxe raccourcie équivalente, avec le symbole \ à la place de function.

```
trial |>
  tbl_summary(
```

```
include = marker,
statistic = ~ "{mean} pour 100",
digits = ~ \(x){style_percent(x, digits = 1)}
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.18: passer une fonction personnalisée à digits (syntaxe 2)

Caractéristique	N = 200
Marker Level (ng/mL)	, -
Manquant	10

Une syntaxe alternative consiste à avoir recours à la fonction purrr::partial() qui permet d'appeler partiellement une fonction et de renvoyer une nouvelle fonction.

```
trial |>
  tbl_summary(
    include = marker,
    statistic = ~ "{mean} pour 100",
    digits = ~ purrr::partial(style_percent, digits = 1)
)
```

Table 18.19: passer une fonction personnalisée à digits (syntaxe 3)

Caractéristique	N = 200
Marker Level (ng/mL) Manquant	91,6 pour 100 10

À noter dans l'exemple précédent que les fonctions style_*() de {gtsummary} tiennent compte du thème défini (ici la virgule comme séparateur de décimale).

Pour une mise en forme plus avancée des nombres, il faut se tourner vers l'extension {scales} et ses diverses fonctions de mise en forme comme scales::label_number() ou scales::label_percent().

ATTENTION : les fonctions de {scales} n'héritent pas des paramètres du thème {gtsummary} actif. Il faut donc personnaliser le séparateur de décimal dans l'appel à la fonction.

```
trial |>
  tbl_summary(
    include = marker,
    statistic = ~ "{mean}",
    digits = ~ scales::label_number(
        accuracy = .01,
        suffix = " ng/mL",
        decimal.mark = ","
    )
)
```

Table 18.20: passer une fonction personnalisée à digits (syntaxe 4)

Caractéristique	N = 200
Marker Level (ng/mL)	0.92 ng/mL
Manquant	10

18.2.8 Données manquantes

Le paramètre missing permets d'indiquer s'il faut afficher le nombre d'observations manquantes (c'est-à-dire égales à NA) : "ifany" (valeur par défaut) affiche ce nombre seulement s'il y en a, "no" masque ce nombre et "always" force l'affichage de ce nombre même s'il n'y pas de valeur manquante. Le paramètre missing_text permets de personnaliser le texte affiché.

```
hdv2003 |>
  tbl_summary(
    include = c(age, heures.tv),
    missing = "always",
    missing_text = "Nbre observations manquantes"
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.21: forcer l'affichage des valeurs manquantes

Caractéristique	$N = 2\ 000$
age	48 (35 - 60)
Nbre observations manquantes	0
heures.tv	$2,00 \ (1,00-3,00)$
Nbre observations manquantes	5

Il est à noter, pour les variables catégorielles, que les valeurs manquantes ne sont jamais pris en compte pour le calcul

des pourcentages. Pour les inclure dans le calcul, il faut les transformer en valeurs explicites, par exemple avec forcats::fct_na_value_to_level() de {forcats}.

```
hdv2003 |>
  dplyr::mutate(
    trav.imp.explicit = trav.imp |>
       forcats::fct_na_value_to_level("(non renseigné)")
  ) |>
  tbl_summary(
    include = c(trav.imp, trav.imp.explicit)
  )
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.22: valeurs manquantes explicites (variable catégorielle)

Caractéristique	N = 2 000
trav.imp	
Le plus important	29(2.8%)
Aussi important que le reste	259~(25%)
Moins important que le reste	708 (68%)
Peu important	52 (5,0%)
Manquant	952
trav.imp.explicit	
Le plus important	29 (1,5%)
Aussi important que le reste	259 (13%)
Moins important que le reste	708 (35%)
Peu important	52 (2,6%)
(non renseigné)	952 (48%)

18.2.9 Ajouter les effectifs observés

Lorsque l'on masque les manquants, il peut être pertinent d'ajouter une colonne avec les effectifs observés pour chaque variable à l'aide de la fonction gtsummary::add_n().

```
hdv2003 |>
  tbl_summary(
    include = c(heures.tv, trav.imp),
    missing = "no"
) |>
  add_n()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 18.23: ajouter une colonne avec les effectifs observés

Caractéristique	N	N = 2 000
heures.tv	1 995	2,00 (1,00 - 3,00)
trav.imp	1 048	,
Le plus important		29(2.8%)
Aussi important que le reste		259~(25%)
Moins important que le reste		708 (68%)
Peu important		52 (5,0%)

18.3 Calcul manuel

18.3.1 Variable continue

 ${f R}$ fournit de base toutes les fonctions nécessaires pour le calcul des différentes statistiques descriptives :

- mean() pour la moyenne
- sd() pour l'écart-type
- min() et max() pour le minimum et le maximum
- range() pour l'étendue
- median() pour la médiane

Si la variable contient des valeurs manquantes (NA), ces fonctions renverront une valeur manquante, sauf si on leur précise na.rm = TRUE.

```
hdv2003$heures.tv |> mean()
[1] NA
  hdv2003$heures.tv |> mean(na.rm = TRUE)
[1] 2.246566
  hdv2003$heures.tv |> sd(na.rm = TRUE)
[1] 1.775853
  hdv2003$heures.tv |> min(na.rm = TRUE)
[1] 0
  hdv2003$heures.tv |> max(na.rm = TRUE)
[1] 12
  hdv2003$heures.tv |> range(na.rm = TRUE)
[1] 0 12
  hdv2003$heures.tv |> median(na.rm = TRUE)
[1] 2
```

La fonction quantile() permets de calculer tous types de quantiles.

```
hdv2003$heures.tv |> quantile(na.rm = TRUE)
           50%
  0%
      25%
                75% 100%
             2
                  3
        1
                       12
  hdv2003$heures.tv |>
    quantile(
      probs = c(.2, .4, .6, .8),
      na.rm = TRUE
20% 40% 60% 80%
  1
      2
          2
              3
```

La fonction summary() renvoie la plupart de ces indicateurs en une seule fois, ainsi que le nombre de valeurs manquantes.

```
hdv2003$heures.tv |> summary()

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000 1.000 2.000 2.247 3.000 12.000 5
```

18.3.2 Variable catégorielle

Les fonctions de base pour le calcul d'un tri à plat sont les fonctions table() et xtabs(). Leur syntaxe est quelque peu différente. On passe un vecteur entier à table() alors que la syntaxe de xtabs() se rapproche de celle d'un modèle linéaire : on décrit le tableau attendu à l'aide d'une formule et on indique le tableau de données. Les deux fonctions renvoient le meme résultat.

```
tbl <- hdv2003$trav.imp |> table()
tbl <- xtabs(~ trav.imp, data = hdv2003)
tbl <- hdv2003 |> xtabs(~ trav.imp, data = _)
tbl
```

trav.imp

Comme on le voit, il s'agit du tableau brut des effectifs, sans les valeurs manquantes, et pas vraiment lisible dans la console de \mathbf{R} .

Pour calculer les proportions, on appliquera prop.table() sur la table des effectifs bruts.

```
prop.table(tbl)
```

trav.imp

Le plus important Aussi important que le reste 0.02767176 0.24713740 Moins important que le reste Peu important 0.67557252 0.04961832

Pour la réalisation rapide d'un tri à plat, on pourra donc préférer la fonction questionr::freq() qui affiche également le nombre de valeurs manquantes et les pourcentages, en un seul appel.

```
hdv2003$trav.imp |>
questionr::freq(total = TRUE)
```

	n	%	val%
Le plus important	29	1.5	2.8
Aussi important que le reste	259	13.0	24.7
Moins important que le reste	708	35.4	67.6
Peu important	52	2.6	5.0
NA	952	47.6	NA
Total	2000	100.0	100.0

18.4 Intervalles de confiance

18.4.1 Avec gtsummary

fonction gtsummary::add_ci() permet d'ajouter des intervalles de confiance à un tableau créé avec gtsummary::tbl_summary().

Avertissement

Par défaut. les variables continues. pour gtsummary::tbl_summary() affiche la médiane tandis que gtsummary::add_ci() calcule l'intervalle confiance d'une moyenne!

Il faut donc:

- soit afficher la movenne dans gtsummary::tbl_summary() à l'aide du paramètre statistic;
- soit calculer les intervalles de confiance d'une médiane (méthode "wilcox.text") paramètre method de gtsummary::add_ci().

```
hdv2003 |>
  tbl_summary(
    include = c(age, heures.tv, trav.imp),
    statistic = age ~ "{mean} ({sd})"
  ) |>
  add ci(
    method = heures.tv ~ "wilcox.test"
```

Table 18.24: ajouter les intervalles de confiance

Caractéristique	$N = 2\ 000$	95% CI
age	48 (17)	47, 49
heures.tv	$2,00 \ (1,00-3,00)$	$2,5,\ 2,5$
Manquant	5	
trav.imp		
Le plus important	29 (2.8%)	1,9%, 4,0%
Aussi important que le reste	259~(25%)	22%,27%
Moins important que le reste	708 (68%)	65%, 70%
Peu important	52 (5,0%)	3,8%, 6,5%
Manquant	952	

L'argument statistic permet de personnaliser la présentation de l'intervalle ; conf.level de changer le niveau de confiance et style_fun de modifier la mise en forme des nombres de l'intervalle.

```
hdv2003 |>
  tbl_summary(
    include = c(age, heures.tv),
    statistic = ~ "{mean}"
) |>
  add_ci(
    statistic = ~ "entre {conf.low} et {conf.high}",
    conf.level = .9,
    style_fun = ~ purrr::partial(style_number, digits = 1)
)
```

Table 18.25: des intervalles de confiance personnalisés

Caractéristique	$N = 2 \ 000$	90% CI
age	48	entre 47,5 et 48,8
heures.tv	2,25	entre 2,2 et 2,3

Caractéristique	N = 2 000	90% CI
Manquant	5	

18.4.2 Calcul manuel

Le calcul de l'intervalle de confiance d'une **moyenne** s'effectue avec la fonction t.test().

```
hdv2003$age |> t.test()

One Sample t-test

data: hdv2003$age
t = 127.12, df = 1999, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
47.41406 48.89994
sample estimates:
mean of x
48.157</pre>
```

Le résultat renvoyé est une liste contenant de multiples informations.

```
hdv2003$age |> t.test() |> str()
```

```
List of 10
$ statistic : Named num 127
..- attr(*, "names")= chr "t"
$ parameter : Named num 1999
..- attr(*, "names")= chr "df"
$ p.value : num 0
$ conf.int : num [1:2] 47.4 48.9
..- attr(*, "conf.level")= num 0.95
$ estimate : Named num 48.2
..- attr(*, "names")= chr "mean of x"
```

```
$ null.value : Named num 0
  ..- attr(*, "names")= chr "mean"
 $ stderr
             : num 0.379
$ alternative: chr "two.sided"
 $ method : chr "One Sample t-test"
 $ data.name : chr "hdv2003$age"
 - attr(*, "class")= chr "htest"
Si l'on a besoin d'accéder spécifiquement à l'intervalle de
confiance calculé:
  hdv2003$age |> t.test() |> purrr::pluck("conf.int")
[1] 47.41406 48.89994
attr(,"conf.level")
[1] 0.95
Pour celui d'une médiane, on utilisera wilcox.test() en
précisant conf.int = TRUE.
  hdv2003$age |> wilcox.test(conf.int = TRUE)
    Wilcoxon signed rank test with continuity correction
data: hdv2003$age
V = 2001000, p-value < 2.2e-16
alternative hypothesis: true location is not equal to 0
95 percent confidence interval:
47.00001 48.50007
sample estimates:
(pseudo)median
      47.99996
  hdv2003$age |>
    wilcox.test(conf.int = TRUE) |>
    purrr::pluck("conf.int")
```

```
[1] 47.00001 48.50007
attr(,"conf.level")
[1] 0.95
```

0.04961832

Pour une **proportion**, on utilisera **prop.test()** en lui transmettant le nombre de succès et le nombre d'observations, qu'il faudra donc avoir calculé au préalable. On peut également passer une table à deux entrées avec le nombre de succès puis le nombre d'échecs.

Ainsi, pour obtenir l'intervalle de confiance de la proportion des enquêtés qui considèrent leur travail comme *peu important*, en tenant compte des valeurs manquantes, le plus simple est d'effectuer le code suivant²⁵:

```
xtabs(~ I(hdv2003$trav.imp == "Peu important"), data
rev() |>
prop.test()
```

Notez l'utilisation de rev() pour inverser le tableau créé avec xtabs() afin que le nombre de succès (TRUE) soit indiqués avant le nombre d'échecs (FALSE).

1-sample proportions test with continuity correction

```
data: rev(xtabs(~I(hdv2003$trav.imp == "Peu important"), data = hdv2003)), null probability 0
X-squared = 848.52, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
    0.03762112    0.06502346
sample estimates:</pre>
```

Par défaut, prop.test() produit un intervalle de confiance bilatéral en utilisant la méthode de Wilson avec correction de continuité. Pour plus d'information sur les différentes manières de calculer l'intervalle de confiance d'une proportion, on pourra se référer à ce billet de blog.

• Astuce

Comme on le voit, il n'est pas aisé, avec les fonctions de **R** base de calculer les intervalles de confiance pour toutes les modalités d'une variable catégorielle.

On pourra éventuellement avoir recours à la petite fonction suivante qui réalise le tri à plat d'une variable catégorielle, calcule les proprotions et leurs intervalles de confiance.

```
prop_ci <- function(x, conf.level = .95, correct = TRUE) {</pre>
    tbl <- as.data.frame(table(x), responseName = "n")
    tbl$N <- sum(tbl$n)
    tbl$prop <- tbl$n / tbl$N
    tbl$conf.low <- NA real
    tbl$conf.high <- NA_real_
    for (i in 1:nrow(tbl)) {
      test <- prop.test(</pre>
        x = tbl\n[i],
        n = tbl$N[i],
        conf.level = conf.level,
        correct = correct
      tbl$conf.low[i] <- test$conf.int[1]</pre>
      tbl$conf.high[i] <- test$conf.int[2]</pre>
    }
    tbl
  prop_ci(hdv2003$trav.imp)
                                                       conf.low conf.high
                                       N
                                                prop
             Le plus important 29 1048 0.02767176 0.01894147 0.04001505
2 Aussi important que le reste 259 1048 0.24713740 0.22151849 0.27463695
3 Moins important que le reste 708 1048 0.67557252 0.64614566 0.70369541
                 Peu important 52 1048 0.04961832 0.03762112 0.06502346
```

18.5 webin-R

La statistique univariée est présentée dans le webin-R #03 (statistiques descriptives avec gtsummary et esquisse) sur YouTube.

 $https://youtu.be/oEF_8GXyP5c$

19 Statistique bivariée & Tests de comparaison

19.1 Deux variables catégorielles

19.1.1 Tableau croisé avec gtsummary

Pour regarder le lien entre deux variables catégorielles, l'approche la plus fréquente consiste à réaliser un tableau croisé, ce qui s'obtient très facilement avec l'argument by de la fonction gtsummary::tbl_summary() que nous avons déjà abordée dans le chapitre sur la statistique univariée (cf. Section 18.2).

Prenons pour exemple le jeu de données gtsummary::trial et croisons les variables *stage* et *grade*. On indique à by la variable à représenter en colonnes et à include celle à représenter en lignes.

```
library(gtsummary)
theme_gtsummary_language("fr", decimal.mark = ',')
```

Setting theme `language: fr`

```
trial |>
  tbl_summary(
    include = stage,
  by = grade
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.1: un tableau croisé avec des pourcentages en colonne

Caractéristique	I, N = 68	II, N = 68	III, $N = 64$
T Stage			
T1	17~(25%)	23 (34%)	13~(20%)
T2	18~(26%)	17~(25%)	19 (30%)
Т3	18~(26%)	11~(16%)	14~(22%)
T4	15~(22%)	17~(25%)	18~(28%)

Par défaut, les pourcentages affichés correspondent à des pourcentages en colonne. On peut demander des pourcentages en ligne avec percent = "row" ou des pourcentages du total avec percent = "cell".

Il est possible de passer plusieurs variables à include mais une seule variable peut être transmise à by. La fonction gtsummary::add_overall() permet d'ajouter une colonne totale. Comme pour un tri à plat, on peut personnaliser les statistiques affichées avec statistic.

```
library(gtsummary)
trial |>
  tbl_summary(
   include = c(stage, trt),
  by = grade,
   statistic = ~ "{p}% ({n}/{N})",
   percent = "row"
  ) |>
  add_overall(last = TRUE)
```

Table 19.2: un tableau croisé avec des pourcentages en ligne

	I , N =	II , N =	III, N =	Total, N
Caractéristique 68		68	64	= 200
T Stage				
T1	32%	43%	25%	100%
	(17/53)	(23/53)	(13/53)	(53/53)
T2	33%	31%	35%	100%
	(18/54)	(17/54)	(19/54)	(54/54)
T3	42%	26%	33%	100%
	(18/43)	(11/43)	(14/43)	(43/43)
T4	30%	34%	36%	100%
	(15/50)	(17/50)	(18/50)	(50/50)
Chemotherapy	•			
Treatment				
Drug A	36%	33%	32%	100%
	(35/98)	(32/98)	(31/98)	(98/98)
Drug B	32%	35%	32%	100%
	(33/102)	(36/102)	(33/102)	(102/102)

! Important

Choisissez bien votre type de pourcentages (en lignes ou en colonnes). Si d'un point de vue purement statistique, ils permettent tous deux de décrire la relation entre les deux variables, ils ne correspondent au même *story telling*. Tout dépend donc du message que vous souhaitez faire passer, de l'histoire que vous souhaitez raconter.

gtsummary::tbl_summary() est bien adaptée dans le cadre d'une analyse de facteurs afin de représenter un *outcome* donné avec by et une liste de facteurs avec include.

Lorsque l'on ne croise que deux variables et que l'on souhaite un affichage un peu plus traditionnel d'un tableau croisé, on peut utiliser gtsummary::tbl_cross() à laquelle on transmettra une et une seule variable à row et une et une seule variable à col. Pour afficher des pourcentages, il faudra indiquer le type de pourcentages voulus avec percent.

```
trial |>
  tbl_cross(
    row = stage,
    col = grade,
    percent = "row"
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.3: un tableau croisé avec tbl cross()

	I	II	III	Total
T Stage				
T1	17 (32%)	23~(43%)	13~(25%)	53 (100%)
T2	18 (33%)	17 (31%)	19 (35%)	54 (100%)
T3	18 (42%)	$11\ (26\%)$	14 (33%)	43~(100%)
T4	15 (30%)	17 (34%)	18 (36%)	50 (100%)
Total	68 (34%)	68 (34%)	64 (32%)	200 (100%)

19.1.2 Représentations graphiques

La représentation graphique la plus commune pour le croisement de deux variables catégorielles est le diagramme en barres, que l'on réalise avec la géométrie $\mathtt{ggplot2::geom_bar}()$ et en utilisant les esthétiques x et fill pour représenter les deux variables.

```
library(ggplot2)
ggplot(trial) +
  aes(x = stage, fill = grade) +
  geom_bar() +
  labs(x = "T Stage", fill = "Grade", y = "Effectifs")
```


Figure 19.1: un graphique en barres croisant deux variables

On peut modifier la position des barres avec le paramètre position.

```
library(ggplot2)
ggplot(trial) +
  aes(x = stage, fill = grade) +
  geom_bar(position = "dodge") +
  labs(x = "T Stage", fill = "Grade", y = "Effectifs")
```


Figure 19.2: un graphique avec des barres côte à côte

Pour des barres cumulées, on aura recours à position = "fill". Pour que les étiquettes de l'axe des y soient représentées sous forme de pourcentages (i.e. 25% au lieu de 0.25), on aura recours à la fonction scales::percent() qui sera transmise à ggplot2::scale_y_continuous().

```
library(ggplot2)
ggplot(trial) +
  aes(x = stage, fill = grade) +
  geom_bar(position = "fill") +
  labs(x = "T Stage", fill = "Grade", y = "Proportion") +
  scale_y_continuous(labels = scales::percent)
```


Figure 19.3: un graphique en barres cumulées

Ajouter des étiquettes sur un diagramme en barres

Il est facile d'ajouter des étiquettes en ayant recours à ggplot2::geom_text(), à condition de lui passer les bons paramètres.

Tout d'abord, il faudra préciser stat = "count" pour indiquer que l'on souhaite utiliser la statistique ggplot2::stat_count() qui est celle utilisé par défaut par ggplot2::geom_bar(). C'est elle qui permets de compter le nombre d'observations.

Il faut ensuite utiliser l'esthétique *label* pour indiquer ce que l'on souhaite afficher comme étiquettes. La fonction after_stat(count) permet d'accéder à la variable *count* calculée par ggplot2::stat_count().

Enfin, il faut indiquer la position verticale avec ggplot2::position_stack(). En précisant un ajustement de vertical de 0.5, on indique que l'on souhaite positionner l'étiquette au milieu.

```
ggplot(trial) +
  aes(
    x = stage, fill = grade,
    label = after_stat(count)
) +
  geom_bar() +
  geom_text(
    stat = "count",
    position = position_stack(.5)
)
```


Pour un graphique en barres cumulées, on peut utiliser de manière similaire ggplot2::position_fill(). On ne peut afficher directement les proportions avec ggplot2::stat_count(). Cependant, nous pouvons avoir recours à ggstats::stat_prop(), déjà évoquée dans le chapitre sur la statistique univariée (cf. Section 18.1.2) et dont le dénominateur doit être précisé via l'esthétique by.

```
library(ggstats)
ggplot(trial) +
  aes(
    x = stage,
    fill = grade,
    by = stage,
    label = scales::percent(after_stat(prop), accuracy = .1)
) +
  geom_bar(position = "fill") +
  geom_text(
    stat = "prop",
    position = position_fill(.5)
) +
  scale_y_continuous(labels = scales::percent)
```


On peut aussi comparer facilement deux distributions, ici la proportion de chaque niveau de qualification au sein chaque sexe.

```
p <- ggplot(trial) +</pre>
  aes(
    x = stage,
    y = after_stat(prop),
    fill = grade,
    by = grade,
    label = scales::percent(after_stat(prop), accuracy = 1)
  geom_bar(
    stat = "prop",
    position = position_dodge(.9)
  geom_text(
    aes(y = after_stat(prop) - 0.01),
    stat = "prop",
    position = position_dodge(.9),
    vjust = "top"
  ) +
  scale_y_continuous(labels = scales::percent)
p
```


Il est possible d'alléger le graphique en retirant des éléments superflus.

Pour visualiser chaque étape du code, vous pouvez consulter le diaporama suivant : https://larmarange.github.io/guide-R/analyses/ressources/flipbook-geom_bar-dodge.html

19.1.3 Calcul manuel

Les deux fonctions de base permettant le calcul d'un tri à plat sont table() et xtabs() (cf. Section 18.3.2). Ces mêmes fonctions permettent le calcul du tri croisé de deux variables

(ou plus). Pour table(), on passera les deux vecteurs à croisés, tandis que pour xtabs() on décrira le tableau attendu à l'aide d'une formule.

```
table(trial$stage, trial$grade)
      I II III
  T1 17 23
           13
  T2 18 17
           19
  T3 18 11 14
  T4 15 17
  tab <- xtabs(~ stage + grade, data = trial)</pre>
  tab
     grade
stage I II III
   T1 17 23
             13
   T2 18 17
             19
   T3 18 11
             14
   T4 15 17 18
```

Le tableau obtenu est basique et ne contient que les effectifs. La fonction addmargins () permet d'ajouter les totaux par ligne et par colonne.

```
tab |> addmargins()
```

```
grade
stage
        Ι
           II III Sum
  T1
            23
       17
                13
                    53
  T2
                    54
       18
           17
                19
  ТЗ
       18
           11
                14
                    43
  T4
       15
           17
                18
                    50
  Sum 68
           68
                64 200
```

Pour le calcul des pourcentages, le plus simple est d'avoir recours au package {questionr} qui fournit les fonctions questionr::cprop(), questionr::rprop() et questionr::prop() qui permettent de calculer, respectivement, les pourcentages en colonne, en ligne et totaux.

questionr::cprop(tab)

grade stage Ι ΙI III Ensemble T1 25.0 33.8 20.3 26.5 T2 26.5 25.0 29.7 27.0 Т3 26.5 16.2 21.9 21.5 T4 22.1 25.0 28.1 25.0 Total 100.0 100.0 100.0 100.0

questionr::rprop(tab)

	grade			
stage	I	II	III	Total
T1	32.1	43.4	24.5	100.0
T2	33.3	31.5	35.2	100.0
T3	41.9	25.6	32.6	100.0
T4	30.0	34.0	36.0	100.0
Ensemble	34.0	34.0	32.0	100.0

questionr::prop(tab)

grade stage Ι IIIIITotal 8.5 11.5 T1 6.5 26.5 T2 9.0 8.5 9.5 27.0 Т3 9.0 5.5 7.0 21.5 T4 7.5 9.0 25.0 8.5 Total 34.0 34.0 32.0 100.0

19.1.4 Test du Chi² et dérivés

Dans le cadre d'un tableau croisé, on peut tester l'existence d'un lien entre les modalités de deux variables, avec le très classique test du Chi² (parfois écrit ² ou Chi²). Pour une présentation plus détaillée du test, on pourra se référer à ce cours de Julien Barnier.

Le test du Chi² peut se calculer très facilement avec la fonction chisq.test() appliquée au tableau obtenu avec table() ou xtabs().

```
tab <- xtabs(~ stage + grade, data = trial)</pre>
  tab
     grade
stage I II III
   T1 17 23
             13
   T2 18 17
             19
   T3 18 11
             14
   T4 15 17 18
  chisq.test(tab)
    Pearson's Chi-squared test
data: tab
X-squared = 4.8049, df = 6, p-value = 0.5691
Si l'on est adepte de {gtsummary}, il suffit d'appliquer
gtsummary::add_p() au tableau produit avec gtsummary::tbl_summary().
  trial |>
    tbl_summary(
      include = stage,
      by = grade
    ) |>
    add_p()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.4: un tableau croisé avec test du khi²

Caractéris	tiq u eN = 68	II, N = 68	III, N = 64	p- valeur
T Stage				0,6
T1	17~(25%)	23 (34%)	13~(20%)	
T2	18 (26%)	17~(25%)	19 (30%)	
Т3	18~(26%)	$11\ (16\%)$	14~(22%)	
T4	15~(22%)	17~(25%)	18~(28%)	

Dans notre exemple, les deux variables *stage* et *grade* ne sont clairement pas corrélées.

Un test alternatif est le test exact de Fisher. Il s'obtient aisément avec fisher.test() ou bien en le spécifiant via l'argument test de gtsummary::add_p().

```
tab <- xtabs(~ stage + grade, data = trial)
fisher.test(tab)</pre>
```

Fisher's Exact Test for Count Data

data: tab
p-value = 0.5801
alternative hypothesis: two.sided

```
trial |>
  tbl_summary(
    include = stage,
    by = grade
) |>
  add_p(test = all_categorical() ~ "fisher.test")
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.5: un tableau croisé avec test exact de Fisher

Caractéris	tiq l eN = 68	II, N = 68	III, N = 64	p- valeur
T Stage				0,6
T1	17~(25%)	23 (34%)	13~(20%)	
T2	18~(26%)	17~(25%)	19 (30%)	
T3	18~(26%)	11 (16%)	14~(22%)	
T4	15~(22%)	17~(25%)	18~(28%)	

Note

Formellement, le test de Fisher suppose que les marges du tableau (totaux lignes et colonnes) sont fixées, puisqu'il repose sur une loi hypergéométrique, et donc celui-ci se prête plus au cas des situations expérimentales (plans d'expérience, essais cliniques) qu'au cas des données tirées d'études observationnelles.

En pratique, le test du Chi² étant assez robuste quant aux déviations par rapport aux hypothèses d'applications du test (effectifs théoriques supérieurs ou égaux à 5), le test de Fisher présente en général peu d'intérêt dans le cas de l'analyse des tableaux de contingence.

19.1.5 Comparaison de deux proportions

Pour comparer deux proportions, la fonction de base est prop.test() à laquelle on passera un tableau à 2×2 dimensions.

```
tab <- xtabs(~ I(stage == "T1") + trt, data = trial)
tab |> questionr::cprop()
```

2-sample test for equality of proportions with continuity correction

data: tab
X-squared = 0.24047, df = 1, p-value = 0.6239
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.2217278 0.1175050
sample estimates:
 prop 1 prop 2
0.4761905 0.5283019

Il est également envisageable d'avoir recours à un test exact de Fisher. Dans le cas d'un tableau à 2×2 dimensions, le test exact de Fisher ne teste pas si les deux proportions sont différents, mais plutôt si leur *odds ratio* (qui est d'ailleurs renvoyé par la fonction) est différent de 1.

```
fisher.test(tab)
```

Fisher's Exact Test for Count Data

data: tab
p-value = 0.5263
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.4115109 1.5973635
sample estimates:
odds ratio
 0.8125409

Mais le plus simple reste encore d'avoir recours à {gtsummary} et à sa fonction gtsummary::add_difference() que l'on peut appliquer à un tableau où le paramètre by n'a que deux modalités. Pour la différence de proportions, il faut que les variables transmises à include soit dichotomiques.

```
trial |>
  tbl_summary(
    by = trt,
    include = response
) |>
  add_difference()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.6: différence entre deux proportions

	Drug A,	Drug B,		95%	р-	
Caractéristikue 98		N = 102 Difference		nceIC	valeur	
Tumor	28 (29%)	33 (34%)	-4,2%	-18%	0,6	
Response				_		
				$9,\!9\%$		
Manquant	3	4				

Attention : si l'on passe une variable catégorielle à trois modalités ou plus, c'est la différence des moyennes standardisées (globale pour la variable) qui sera calculée et non la différence des proportions dans chaque groupe.

```
trial |>
  tbl_summary(
    by = trt,
    include = grade
) |>
  add_difference()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.7: différence moyenne standardisée

Caractéri	Drug A, istiquN = 98	Drug B , N = 102	Difference	95% e IC
Grade			0,07	-0,20 - 0,35
I II III	35 (36%) 32 (33%) 31 (32%)	33 (32%) 36 (35%) 33 (32%)		,

Pour calculer la différence des proportions pour chaque modalité de *grade*, il est nécessaire de transformer, en amont, la variable catégorielle *grade* en trois variables dichotomiques (de type oui/non, une par modalité), ce qui peut se faire facilement avec la fonction fastDummies::dummy_cols() de l'extension {fastDummies}.

```
trial |>
  fastDummies::dummy_cols("grade") |>
  tbl_summary(
    by = trt,
    include = starts_with("grade_"),
    digits = ~ c(0, 1)
  ) |>
  add_difference()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.8: différence entre proportions avec création de variables dichotomiques

Caractéris	Drug A, stiljue 98	Drug B , N = 102	Differer	95% nceIC	p- valeur
grade_I	35 (35,7%)	33 (32,4%)	3,4%	-11% _	0,7
grade_II	32 (32,7%)	36 $(35,3%)$	-2,6%	17% -17% -	0,8
grade_III	31 (31,6%)	33 (32,4%)	-0,72%	11% -14%	>0,9
	(01,070)	(52,470)		13%	

19.2 Une variable continue selon une variable catégorielle

19.2.1 Tableau comparatif avec gtsummary

Dans le chapitre sur la statitstique univariée (cf. Section 18.2), nous avons abordé comment afficher les statistiques descriptives d'une variable continue avec gtsummary::tbl_summary(). Pour comparer une variable continue selon plusieurs groupes définis par une variable catégorielle, il suffit d'utiliser le paramètre by:

```
trial |>
  tbl_summary(
    include = age,
    by = grade
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.9: âge médian et intervalle interquartile selon le grade

Caractéristique	I, N = 68	II, $N = 68$	III, $N = 64$
Age	47 (37 - 56)	48 (37 - 57)	47 (38 - 58)
Manquant	2	6	3

La fonction gtsummary::add_overall() permet d'ajouter une colonne total et gtsummary::modify_spanning_header() peut-être utilisé pour ajouter un en-tête de colonne.

```
trial |>
  tbl_summary(
    include = age,
    by = grade
) |>
  add_overall(last = TRUE) |>
  modify_spanning_header(
    all_stat_cols(stat_0 = FALSE) ~ "**Grade**"
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.10: âge médian et intervalle interquartile selon le grade

	I , N =	II , N =	III, N =	$\overline{\text{Total}, N} =$
Caractéristique 68		68	64	200
Age	47 (37 –	48 (37 –	47 (38 –	47 (38 - 57)
	56)	57)	58)	
Manquant	2	6	3	11

Comme pour un tri à plat, on peut personnaliser les statistiques à afficher avec statistic.

```
trial |>
  tbl_summary(
   include = age,
  by = grade,
   statistic = all_continuous() ~ "{mean} ({sd})",
   digits = all_continuous() ~ c(1, 1)
) |>
  add_overall(last = TRUE)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table	19 11.	âσe	moven	et	écart-type	selon	16	orade
Table	13.11.	age	moyen	CU	ecar t-type	SCIOII	16	grade

	I , N =	II , N =	III, N =	$\overline{\text{Total}, N} =$
Caractéristique 68		68	64	200
Age	46,2	47,5	48,1	47,2 (14,3)
	(15,2)	(13,7)	(14,1)	
Manquant	2	6	3	11

19.2.2 Représentations graphiques

La moyenne ou la médiane sont des indicateurs centraux et ne suffisent pas à rendre compte des différences de distribution d'une variable continue entre plusieurs sous-groupes.

Une représentation usuelle pour comparer deux distributions consiste à avoir recours à des boîtes à moustaches que l'on obtient avec ggplot2::geom_boxplot().

```
ggplot(trial) +
  aes(x = grade, y = age) +
  geom_boxplot(fill = "lightblue") +
  theme_light()
```


Figure 19.4: boîtes à moustache

Le trait central représente la médiane, le rectangle est délimité par le premier et le troisème quartiles (i.e. le 25° et le 75° percentiles). Les traits verticaux vont jusqu'aux extrêmes (minimum et maximum) ou jusqu'à 1,5 fois l'intervalle interquartile. Si des points sont situés à plus d'1,5 fois l'intervalle interquartile au-dessus du 3° quartile ou en-dessous du 1° quartile, ils sont considérés comme des valeurs atypiques et représentés par un point. Dans l'exemple précédent, c'est le cas des deux plus petites valeurs observées pour le grade I.

Alternativement, on peut utiliser un graphique en violons qui représentent des courbes de densité dessinées en mirroir.

```
ggplot(trial) +
  aes(x = grade, y = age) +
  geom_violin(fill = "lightblue") +
  theme_light()
```


Figure 19.5: graphique en violons

Il est toujours possible de représenter les observations inviduelles sous la forme d'un nuage de points. Le paramètre alpha permet de rendre les points transparents afin de mieux visualiser les supperpositions de points.

```
ggplot(trial) +
  aes(x = grade, y = age) +
  geom_point(alpha = .25, colour = "blue") +
  theme_light()
```


Figure 19.6: un nuage de points avec une variable continue et une variable catégorielle

Comme la variable grade est catégorielle, tous les points d'une meme modalité sont représentées sur une même ligne. La représentation peut être améliorée en ajoutant un décalage aléatoire sur l'axe horizontal. Cela s'obtient avec $ggplot2::position_jitter()$ en précisant height = 0 pour ne pas ajouter de décalage vertical et width = .2 pour décaler horizontalement les points entre -20% et +20%.

```
ggplot(trial) +
  aes(x = grade, y = age) +
  geom_point(
    alpha = .25,
    colour = "blue",
    position = position_jitter(height = 0, width = .2)
  ) +
  theme_light()
```


Figure 19.7: un nuage de points avec une variable continue et une variable catégorielle et avec un décalage horizontal aléatoire

La statistique ggstats::stat_weighted_mean() de {ggstats} permets de calculer à la volée la moyenne du nuage de points.

```
ggplot(trial) +
  aes(x = grade, y = age) +
  geom_point(stat = "weighted_mean", colour = "blue") +
  theme_light()
```


Figure 19.8: âge moyen selon le grade

Cela peut être utile pour effectuer des comparaisons multiples.

```
ggplot(trial) +
  aes(x = grade, y = age, colour = stage, group = stage) +
  geom_line(stat = "weighted_mean") +
  geom_point(stat = "weighted_mean") +
  facet_grid(cols = vars(trt)) +
  theme_light()
```


Figure 19.9: âge moyen selon le grade, par traitement et état d'avancement de la maladie

19.2.3 Calcul manuel

Le plus simple pour calculer des indicateurs par sousgroupe est d'avoir recours à dplyr::summarise() avec dplyr::group_by().

```
library(dplyr)
trial |>
  group_by(grade) |>
  summarise(
  age_moy = mean(age, na.rm = TRUE),
  age_med = median(age, na.rm = TRUE)
)
```

En base **R**, on peut avoir recours à tapply(). On lui indique d'abord le vecteur sur lequel on souhaite réaliser le calcul, puis un facteur qui indiquera les sous-groupes, puis une fonction qui sera appliquée à chaque sous-groupe et enfin, optionnellement, des arguments additionnels qui seront transmis à cette fonction.

```
tapply(trial$age, trial$grade, mean, na.rm = TRUE)
```

I II III 46.15152 47.53226 48.11475

19.2.4 Tests de comparaison

Pour comparer des moyennes ou des médianes, le plus facile est encore d'avoir recours à {gtsummary} et sa fonction gtsummary::add_p().

```
trial |>
  tbl_summary(
    include = age,
    by = grade
) |>
  add_p()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.12: test de comparaison sur la somme des rangs

Caractéristi	q ¶eN = 68	II, N = 68	III, N = 64	p- valeur
Age	47 (37 -	48 (37 -	47 (38 -	0,8
	56)	57)	58)	
Manquant	2	6	3	

Par défaut, pour les variables continues, un test de Kruskal-Wallis calculé avec la fonction stats::kruskal.test() est utilisé lorsqu'il y a trois groupes ou plus, et un test de Wilcoxon-Mann-Whitney calculé avec stats::wilcox.test() (test de comparaison des rangs) lorsqu'il n'y a que deux groupes. Au sens strict, il ne s'agit pas de tests de comparaison des médianes mais de tests sur la somme des rangs. En pratique, ces tests sont appropriés lorsque l'on présente les médianes et les intervalles interquartiles.

Si l'on affiche des moyennes, il serait plus juste d'utiliser un test t de Student (test de comparaison des moyennes) calculé avec $\mathtt{stats::t.test}()$, valable seulement si l'on compare deux moyennes. Pour tester si trois moyennes ou plus sont égales, on aura plutôt recours à $\mathtt{stats::oneway.test}()$.

On peut indiquer à gtsummary::add_p() le test à utiliser avec le paramètre test.

```
trial |>
  tbl_summary(
    include = age,
    by = grade,
    statistic = all_continuous() ~ "{mean} ({sd})"
) |>
  add_p(
    test = all_continuous() ~ "oneway.test"
)
```

Multiple parameters; naming those columns num.df, den.df

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.13: test de comparaison des moyennes

Caractéristic	q 1 eN = 68	II, N = 68	III, N = 64	p- valeur
Age	46 (15)	48 (14)	48 (14)	0,7
Manquant	2	6	3	

Précision statistique

Classiquement, le test t de Student présuppose l'égalité des variances entre les deux sous-groupes, ce qui permet de former une estimation commune de la variance des deux échantillons (on parle de pooled variance), qui revient à une moyenne pondérée des variances estimées à partir des deux échantillons. Pour tester l'égalité des variances de deux échantillons, on peut utiliser stats::var.test(). Dans le cas où l'on souhaite relaxer cette hypothèse d'égalité des variances, le test de Welch ou la correction de Satterthwaite reposent sur l'idée que l'on utilise les deux estimations de variance séparément, suivie d'une approximation des degrés de liberté pour la somme de ces deux variances.

Par défaut, la fonction stats::t.test() réalise un test de Welch. Pour un test classique de Student, il faut lui préciser var.equal = TRUE.

De manière similaire, stats::oneway.test() ne présuppose pas, par défaut, l'égalité des variances et généralise donc le test de Welch au cas à trois modalités ou plus. Cependant, on peut là encore indiquer var.equal = TRUE, auquel cas une analyse de variance (ANOVA) classique sera réalisée, que l'on peut aussi obtenir avec stats::aov().

Il est possible d'indiquer à gtsummary::add_p() des arguments additionnels à passer à la fonction utilisée pour réaliser le test :

```
trial |>
  tbl_summary(
    include = age,
    by = trt,
    statistic = all_continuous() ~ "{mean} ({sd})"
    ) |>
  add_p(
    test = all_continuous() ~ "t.test",
    test.args = all_continuous() ~ list(var.equal = TRUE)
  )
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Caractéristi	Drug A , N que = 98	Drug B , N = 102	p- valeur
Age	47 (15)	47 (14)	0,8
Manquant	7	4	

19.2.5 Différence de deux moyennes

La fonctions gtsummary::add_difference() permet, pour une variable continue et si la variable catégorielle spécifiée via by n'a que deux modalités, de calculer la différence des deux moyennes, l'intervalle de confiance de cette différence et test si cette différence est significativement différente de 0 avec stats::t.test().

```
trial |>
  tbl_summary(
   include = age,
   by = trt,
   statistic = all_continuous() ~ "{mean} ({sd})"
) |>
  add_difference()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 19.15: différence de deux moyennes

Caractéris	Drug A, stil/ue 98	Drug B , N = 102	Differe	95% nceIC	p- valeur
Age	47 (15)	47 (14)	-0,44	-4,6 -	0,8
Manquant	7	4		3,7	

19.3 Deux variables continues

19.3.1 Représentations graphiques

La comparaison de deux variables continues se fait en premier lieu graphique, en représentant, via un nuage de points, l'ensemble des couples de valeurs. Notez ici l'application d'un niveau de transparence (alpha) afin de faciliter la lecture des points superposés.

```
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_point(colour = "blue", alpha = .25) +
  theme_light()
```


Figure 19.10: nuage de points

La géométrie ggplot2::geom_smooth() permets d'ajouter une courbe de tendance au graphique, avec son intervalle de confiance. Par défaut, il s'agit d'une régression polynomiale locale obtenue avec stats::loess().

```
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_smooth() +
  geom_point(colour = "blue", alpha = .25) +
  theme_light()
```


Figure 19.11: nuage de points avec une courbe de tendance

Pour afficher plutôt la droite de régression linéaire entre les deux variables, on précisera method = "lm".

```
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_smooth(method = "lm") +
  geom_point(colour = "blue", alpha = .25) +
  theme_light()
```


Figure 19.12: nuage de points avec droite de régression linéaire

La géométrie ggplot2::geom_rug() permet d'afficher une représentation synthétique de la densité de chaque variable sur les deux axes.

```
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_smooth(method = "lm") +
  geom_point(colour = "blue", alpha = .25) +
  geom_rug() +
  theme_light()
```


Figure 19.13: nuage de points avec représentation synthétique des densités marginales

19.3.2 Tester la relation entre les deux variables

Si l'on a besoin de calculer le coefficient de corrélation de Pearson entre deux variables, on aura recours à stats::cor().

```
cor(iris$Petal.Length, iris$Petal.Width)
```

[1] 0.9628654

Pour aller plus loin, on peut calculer une régression linéaire entre les deux variables avec stats::lm().

```
m <- lm(Petal.Length ~ Petal.Width, data = iris)
summary(m)</pre>
```

Call:

lm(formula = Petal.Length ~ Petal.Width, data = iris)

Residuals:

```
Min 1Q Median 3Q Max -1.33542 -0.30347 -0.02955 0.25776 1.39453
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.08356  0.07297  14.85  <2e-16 ***
Petal.Width 2.22994  0.05140  43.39  <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.4782 on 148 degrees of freedom Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266 F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16

Les résultats montrent une corrélation positive et significative entre les deux variables.

Pour une présentation propre des résultats de la régression linéaire, on utilisera gtsummary::tbl_regression(). La fonction gtsummary::add_glance_source_note() permet d'ajouter différentes statistiques en notes du tableau de résultats.

```
m |>
  tbl_regression() |>
  add_glance_source_note()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Caractéristique	Beta	95% IC	p-valeur
Petal.Width	2,2	2,1-2,3	< 0,001

19.4 Matrice de corrélations

Le package {GGally} et sa fonction GGally::ggpairs() permettent de représenter facilement une matrice de corrélation entre plusieurs variables, tant quantitatives que qualitatives.

```
library(GGally)
ggpairs(iris)
```


Figure 19.14: une matrice de corrélation avec ggpairs()

GGally::ggpairs() et sa petite sœur GGally::ggduo() offrent de nombreuses options de personnalisation qui sont détaillées sur le site dédié du package.

```
ggpairs(trial, mapping = aes(colour = trt))
```


Figure 19.15: un second example de matrice de corrélation

19.5 webin-R

La statistique univariée est présentée dans le webin-R #03 (statistiques descriptives avec gtsummary et esquisse) sur YouTube.

 $https://youtu.be/oEF_8GXyP5c$

20 Régression linéaire

Un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une **variable continue**, dite expliquée, et une ou plusieurs variables, dites explicatives.

20.1 Modèle à une seule variable explicative continue

Nous avons déjà abordé très rapidement la régression linéaire dans le chapitre sur la *statistique bivariée* (cf. Section 19.3).

Reprenons le même exemple à partir du jeu de données iris qui comporte les caractéristiques de 150 fleurs de trois espèces différentes d'iris. Nous cherchons dans un premier temps à explorer la relation entre la largeur (*Petal.Width*) et la longueur des pétales (*Petal.Length*). Représentons cette relation sous la forme d'un nuage de points.

```
library(tidyverse)
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_point(colour = "blue", alpha = .25) +
  labs(x = "Longueur", y = "Largeur") +
  theme_light()
```


Figure 20.1: Relation entre la largeur et la longueur des pétales (nuage de points)

Il semble bien qu'il y a une **relation linéaire** entre ces deux variables, c'est-à-dire que la relation entre ces deux variables peut être représentée sous la forme d'une droite. Pour cela, on va rechercher la droite telle que la distance entre les points observés et la droite soit la plus petite possible. Cette droite peut être représentée graphique avec ggplot2::geom_smooth() et l'option method = "lm":

```
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_point(colour = "blue", alpha = .25) +
  geom_smooth(method = "lm") +
  labs(x = "Longueur", y = "Largeur") +
  theme_light()
```


Figure 20.2: Relation linéaire entre la largeur et la longueur des pétales

La fonction de base pour calculer une régression linéaire est la fonction $\mathtt{stats::m()}$. On doit en premier lieu spécifier le modèle à l'aide d'une **formule** : on indique la variable à expliquer dans la partie gauche de la formule et la variable explicative dans la partie droite, les deux parties étant séparées par un tilde²⁶ (~).

Dans le cas présent, la variable *Petal.Width* fait office de variable à expliquer et *Petal.Length* de variable explicative. Le modèle s'écrit donc Petal.Width ~ Petal.Length.

```
mod <- lm(Petal.Width ~ Petal.Length, data = iris)
mod</pre>
```

²⁶ Avec un clavier français, sous WIndows, le caracère tilde s'obtient en pressant simulténament les touches Alt Gr et 7.

Le résultat comporte deux coefficients. Le premier, d'une valeur de 0,4158, est associé à la variable Petal.Length et indique la pente de la courbe (on parle de slope en anglais). Le second, d'une valeur de -0,3631, représente l'ordonnée à l'origine (intercept en anglais), c'est-à-dire la valeur estimée de Petal.Width lorsque Petal.Length vaut 0. Nous pouvons rendre cela plus visible en élargissant notre graphique.

```
ggplot(iris) +
  aes(x = Petal.Length, y = Petal.Width) +
  geom_point(colour = "blue", alpha = .25) +
  geom_abline(
    intercept = mod$coefficients[1],
    slope = mod$coefficients[2],
    linewidth = 1,
    colour = "red"
  ) +
  geom_vline(xintercept = 0, linewidth = 1, linetype = "dotted") +
  labs(x = "Longueur", y = "Largeur") +
  expand_limits(x = 0, y = -1) +
  theme_light()
```


Figure 20.3: Relation linéaire entre la largeur et la longueur des pétales (représentation graphique de l'intercept)

Le modèle linéaire calculé estime donc que le relation entre nos deux variables peut s'écrire sous la forme suivante :

$$Petal.Width = 0,4158 \cdot Petal.Length - 0,3631$$

Le package {gtsummary} fournit gtsummary::tbl_regression(), une fonction bien pratique pour produire un tableau propre avec les coefficients du modèle, leur intervalle de confiance à 95% et leur p-valeurs²⁷. On précisera intercept = TRUE pour forcer l'affichage de l'intercept qui est masqué par défaut.

```
library(gtsummary)
```

#BlackLivesMatter

```
mod %>%
  tbl_regression(intercept = TRUE)
```

²⁷ Si l'on a besoin de ces informations sous la forme d'un tableau de données classique, on pourra se référer à broom.helpers::tidy_plus_plus(), utilisée de manière sous-jacente par gtsummary::tbl_regression(), ainsi qu'à laméthode fonctions broom::tidy(). Cessont génériques et peut être utilisées avec une très grande variété de modèles.

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 20.1: un tableau mis en forme des coefficients du modèle

Characteristic	Beta	95% CI	p-value
(Intercept)	-0.36	-0.44, -0.28	< 0.001
Petal.Length	0.42	0.40, 0.43	< 0.001

Les p-valeurs calculées nous indique si le coefficient est statistiquement différent de 0. En effet, pour la variable explicative, cela nous indique si la relation est statistiquement significative. Le signe du coefficient (positif ou négatif) nous indique le sens de la relation.

• Astuce

Dans certains cas, si l'on suppose que la relation entre les deux variables est proportionnelle, on peut souhaiter calculer un modèle sans intercept. Par défaut, ${\bf R}$ ajoute un intercept à ses modèles. Pour forcer le calcul d'un modèle sans intercept, on ajoutera – 1 à la formule défissant le modèle.

```
lm(Petal.Width ~ Petal.Length - 1, data = iris)

Call:
lm(formula = Petal.Width ~ Petal.Length - 1, data = iris)

Coefficients:
Petal.Length
    0.3365
```

20.2 Modèle à une seule variable explicative catégorielle

Si dans un modèle linéaire la variable à expliquer est nécessairement continue, il est possible de définir une variable explicative catégorielle. Prenons la variable *Species*.

Il s'agit d'un facteur à trois modalités. Par défaut, la première valeur du facteur (ici setosa) va servir de modalité de référence.

```
mod <- lm(Petal.Width ~ Species, data = iris)
mod</pre>
```

Call:

lm(formula = Petal.Width ~ Species, data = iris)

Coefficients:

(Intercept) Speciesversicolor Speciesvirginica 0.246 1.080 1.780

```
mod %>%
  tbl_regression(intercept = TRUE)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 20.2: régression linaire avec une variable explicative catégorielle

Characteristic	Beta	95% CI	p-value
(Intercept)	0.25	0.19, 0.30	< 0.001
Species			
setosa			
versicolor	1.1	1.0, 1.2	< 0.001
virginica	1.8	1.7, 1.9	< 0.001

Dans ce cas de figure, l'*intercept* représente la situation à la référence, donc pour l'espèce setosa.

Calculons les moyennes par espèce :

```
iris %>%
  group_by(Species) %>%
  summarise(mean(Petal.Width))
```

A tibble: 3 x 2

	Species	`mean(Petal.Width)`
	<fct></fct>	<dbl></dbl>
1	setosa	0.246
2	${\tt versicolor}$	1.33
3	virginica	2.03

Comme on le voit, l'intercept nous indique donc la moyenne observée pour l'espèce de référence (0, 246).

Le coefficient associé à versicolor correspond à la différence par rapport à la référence (ici +1,080). Comme vous pouvez le constater, il s'agit de la différence entre la moyenne observée pour versicolor (1,326) et celle de la référence setosa (0,246): 1,326-0,246=1,080.

Ce coefficient est significativement différent de 0 (p<0,001), indiquant que la largeur des pétales diffère significativement entre les deux espèces.

• Astuce

Lorsque l'on calcule le même modèle sans *intercept*, les coefficients s'interprètent un différement :

```
lm(Petal.Width ~ Species - 1, data = iris)
```

Call:

lm(formula = Petal.Width ~ Species - 1, data = iris)

Coefficients:

Speciessetosa Speciesversicolor Speciesvirginica 0.246 1.326 2.026

En l'absence d'intercept, trois coefficients sont calculés et il n'y a plus ici de modalité de référence. Chaque coefficient représente donc la moyenne observée pour chaque modalité.

On appelle **contrastes** les différents manières de coder des variables catégorielles dans un modèle. Nous y

reviendrons plus en détail dans un chapitre dédié (cf. Chapitre 23).

20.3 Modèle à plusieurs variables explicatives

Un des intérêts de la régression linéaire est de pouvoir estimer un modèle multivarié, c'est-à-dire avec plusieurs variables explicatives. Pour cela, on listera les différentes variables explicatives dans la partioe droite de la formule, séparées par le symbole +.

```
mod <- lm(
    Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length + Species,
    data = iris
  )
  mod
Call:
lm(formula = Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
    Species, data = iris)
Coefficients:
      (Intercept)
                        Petal.Length
                                             Sepal.Width
                                                               Sepal.Length
         -0.47314
                             0.24220
                                                 0.24220
                                                                    -0.09293
Speciesversicolor
                    Speciesvirginica
                             1.04637
          0.64811
  mod %>%
    tbl_regression(intercept = TRUE)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 20.3: régression linaire avec plusieurs variables explicatives

Characteristic	Beta	95% CI	p-value
(Intercept)	-0.47	-0.82, -0.12	0.008
Petal.Length	0.24	0.15, 0.34	< 0.001
Sepal.Width	0.24	0.15, 0.34	< 0.001
Sepal.Length	-0.09	-0.18, 0.00	0.039
Species			
setosa		_	
versicolor	0.65	0.40, 0.89	< 0.001
virginica	1.0	0.72, 1.4	< 0.001

Ce type de modèle permet d'estimer l'effet de chaque variable explicative, toutes choses égales par ailleurs. Dans le cas présent, on s'aperçoit que la largeur des pétales diffère significativement selon les espèces, est fortement corrélée positivement à la longueur du pétale et la largeur du sépale et qu'il y a, lorsque l'on ajuste sur l'ensemble des autres variables, une relation négative (faiblement significative) avec la longueur du sépale.

Lorsque le nombre de coefficients est élevé, une représentation graphique est souvent plus facile à lire qu'un tableau. On parle alors de graphique en forêt ou *forest plot* en anglais. Rien de plus facile! Il suffit d'avoir recours à ggstats::ggcoef_model().

library(ggstats)
ggcoef_model(mod)

Figure 20.4: un graphique en forêt des coefficients du modèle

21 Régression logistique binaire

Dans le chapitre précédent (Chapitre 20), nous avons abordé la régression linéaire pour les variables continues. Pour analyser une variable catégorielle, il est nécessaire d'avoir recours à d'autres types de modèles. Les modèles linéaires généralisés (generalized linear models ou GLM en anglais) sont une généralisation de la régression linéaire grâce à l'utilisation d'une fonction de lien utilisée pour transformer la variable à expliquer et pouvoir ainsi retomber sur un modèle linéaire classique. Il existe de multiples fonctions de lien correspondant à tout autant de modèles. Par exemple, on pourra utiliser un modèle de Poisson pour une variable entière positive ou un modèle d'incidence.

Pour une variable binaire (c'est-à-dire du type oui / non ou vrai / faux), les modèles les plus courants utilisent les fonctions de lien *probit* ou *logit*, cette dernière fonction correspondent à la **régression logistique binaire** (modèle *logit*). Comme pour la régression linéaire, les variables explicatives peuvent être continues et/ou catégorielles.

21.1 Préparation des données

Dans ce chapitre, nous allons encore une fois utiliser les données de l'enquête *Histoire de vie*, fournies avec l'extension {questionr}.

```
data(hdv2003, package = "questionr")
d <- hdv2003</pre>
```

À titre d'exemple, nous allons étudier l'effet de l'âge, du sexe, du niveau d'étude, de la pratique religieuse et du nombre moyen d'heures passées à regarder la télévision par jour sur la probabilité de pratiquer un sport.

En premier lieu, il importe de vérifier, par exemple avec labelled::look_for(), que notre variable d'intérêt (ici sport) est correctement codée, c'est-à-dire que la première modalité correspondent à la référence (soit ne pas avoir vécu l'évènement d'intérêt) et que la seconde modalité corresponde au fait d'avoir vécu l'évènement.

Dans notre exemple, la modalité Non est déjà la première modalité. Il n'y a donc pas besoin de modifier notre variable.

Il faut également la présence éventuelle de données manquantes (NA)²⁸. Les observations concernées seront tout simplement exclues du modèle lors de son calcul. Ce n'est pas notre cas ici.

• Astuce

Alternativement, on pourra aussi coder notre variable à expliquer sous forme booléenne (FALSE / TRUE) ou numériquement en 0/1.

Il est possible d'indiquer un facteur à plus de deux modalités. Dans une telle situation, \mathbf{R} considérera que tous les modalités, sauf la modalité de référence, est une réalisation de la variable d'intérêt. Cela serait correct, par exemple, si notre variable sport était codée ainsi : Non, Oui, de temps en temps, Oui, régulièrement. Cependant, afin d'éviter tout risque d'erreur ou de mauvaise interprétation, il est vivement conseillé de recoder au préalable sa variable d'intérêt en un facteur

28 Pour visualiser le nombre de données manquantes (NA) de l'ensemble des variables d'un tableau, on pourra avoir recours à questionr::freq.na().

La notion de **modalité de référence** s'applique également aux variables explicatives catégorielles. En effet, dans un modèle, tous les coefficients sont calculés par rapport à la modalité de référence (cf. Section 20.2). Il importe donc de choisir une modalité de référence qui fasse sens afin de faciliter l'interprétation. Par ailleurs, ce choix doit dépendre de la manière dont on souhaite présenter les résultats (le data storytelling est essentiel). De manière générale on évitera de choisir comme référence une modalité peu représentée dans l'échantillon ou bien une modalité correspondant à une situation atypique.

Prenons l'exemple de la variable *sexe*. Souhaite-t-on connaitre l'effet d'être une femme par rapport au fait d'être un homme ou bien l'effet d'être un homme par rapport au fait d'être une femme ? Si l'on opte pour le second, alors notre modalité de référence sera le sexe féminin. Comme est codée cette variable ?

```
d |> look_for("sexe")

pos variable label col_type missing values
3 sexe - fct 0 Homme
Femme
```

La modalité Femme s'avère ne pas être la première modalité. Nous devons appliquer la fonction forcats::fct_relevel() ou la fonction stats::relevel():

```
library(tidyverse)
d <- d |>
  mutate(sexe = sexe |> fct_relevel("Femme"))
d$sexe |> questionr::freq()
```

n % val% Femme 1101 55 55

Données labellisées

Si l'on utilise des données labellisées (voir Chapitre 12), nos variables catégorielles seront stockées sous la forme d'un vecteur numérique avec des étiquettes. Il sera donc nécessaire de convertir ces variables en facteurs, tout simplement avec labelled::to_factor() ou labelled::unlabelled().

Les variables age et heures.tv sont des variables quantitatives. Il importe de vérifier qu'elles sont bien enregistrées en tant que variables numériques. En effet, il arrive parfois que dans le fichier source les variables quantitatives soient renseignées sous forme de valeur textuelle et non sous forme numérique.

```
d |> look_for("age", "heures")

pos variable label col_type missing values
2 age - int 0
20 heures.tv - dbl 5
```

Nos deux variables sont bien renseignées sous forme numérique (respectivement des entiers et des nombres décimaux).

Cependant, l'effet de l'âge est rarement linéaire. Un exemple trivial est par exemple le fait d'occuper un emploi qui sera moins fréquent aux jeunes âges et aux âges élevés. Dès lors, on pourra transformer la variable age en groupe d'âges (et donc en variable catégorielle) avec la fonction cut () (cf. Section 9.4):

Jetons maintenant un oeil à la variable nivetud :

```
d$nivetud |> questionr::freq()
```

```
% val%
                                                                 39
                                                                     2.0 2.1
N'a jamais fait d'etudes
A arrete ses etudes, avant la derniere annee d'etudes primaires
                                                                 86 4.3 4.6
Derniere annee d'etudes primaires
                                                                341 17.0 18.1
1er cycle
                                                                204 10.2 10.8
2eme cycle
                                                                183 9.2 9.7
Enseignement technique ou professionnel court
                                                                463 23.2 24.5
Enseignement technique ou professionnel long
                                                                131 6.6 6.9
Enseignement superieur y compris technique superieur
                                                                441 22.0 23.4
                                                                112 5.6
NA
                                                                           NA
```

En premier lieu, cette variable est détaillée en pas moins de huit modalités dont certaines sont peu représentées (seulement 39 individus soit 2 % n'ont jamais fait d'études par exemple). Afin d'améliorier notre modèle logistique, il peut être pertinent de regrouper certaines modalités (cf. Section 9.3):

```
d <- d |>
mutate(
   etudes = nivetud |>
    fct_recode(
    "Primaire" = "N'a jamais fait d'etudes",
    "Primaire" = "A arrete ses etudes, avant la derniere annee d'etudes primaires",
   "Primaire" = "Derniere annee d'etudes primaires",
   "Secondaire" = "1er cycle",
```

```
"Secondaire" = "2eme cycle",
    "Technique / Professionnel" = "Enseignement technique ou professionnel court",
    "Technique / Professionnel" = "Enseignement technique ou professionnel long",
    "Supérieur" = "Enseignement superieur y compris technique superieur"
    )
    )
    d$etudes |> questionr::freq()
```

```
n % val%
Primaire 466 23.3 24.7
Secondaire 387 19.4 20.5
Technique / Professionnel 594 29.7 31.5
Supérieur 441 22.0 23.4
NA 112 5.6 NA
```

Notre variable comporte également 112 individus avec une valeur manquante. Si nous conservons cette valeur manquante, ces 112 individus seront, par défaut, exclus de l'analyse. Ces valeurs manquantes n'étant pas négligeable (5,6 %), nous pouvons également faire le choix de considérer ces valeurs manquantes comme une modalité supplémentaire. Auquel cas, nous utiliserons la fonction forcats::fct_na_value_to_level()

```
d$etudes <- d$etudes |>
fct_na_value_to_level("Non documenté")
```

Enfin, pour améliorer les différentes sorties (tableaux et figures), nous allons ajouter des étiquettes de variables (cf. Chapitre 11) avec labelled::set_variable_labels().

```
d <- d |>
  set_variable_labels(
  sport = "Pratique un sport ?",
  sexe = "Sexe",
  groupe_ages = "Groupe d'âges",
  etudes = "Niveau d'études",
  relig = "Rapport à la religion",
  heures.tv = "Heures de télévision / jour"
```

)

```
Code récapitulatif (préparation des données)
  data(hdv2003, package = "questionr")
  d <-
    hdv2003 |>
    mutate(
      sexe = sexe |> fct_relevel("Femme"),
      groupe_ages = age |>
        cut(
          c(18, 25, 45, 65, 99),
          right = FALSE,
          include.lowest = TRUE,
          labels = c("18-24 \text{ ans}", "25-44 \text{ ans}",
                      "45-64 ans", "65 ans et plus")
        ),
      etudes = nivetud |>
        fct_recode(
           "Primaire" = "N'a jamais fait d'etudes",
           "Primaire" = "A arrete ses etudes, avant la derniere annee d'etudes primaires",
           "Primaire" = "Derniere annee d'etudes primaires",
           "Secondaire" = "1er cycle",
           "Secondaire" = "2eme cycle",
           "Technique / Professionnel" = "Enseignement technique ou professionnel court",
           "Technique / Professionnel" = "Enseignement technique ou professionnel long",
           "Supérieur" = "Enseignement superieur y compris technique superieur"
      fct_na_value_to_level("Non documenté")
    ) |>
    set_variable_labels(
      sport = "Pratique un sport ?",
      sexe = "Sexe",
      groupe_ages = "Groupe d'âges",
      etudes = "Niveau d'études",
      relig = "Rapport à la religion",
      heures.tv = "Heures de télévision / jour"
```

21.2 Statistiques descriptives

Avant toute analyse multivariée, il est toujours bon de procéder à une analyse descriptive bivariée simple, tout simplement avec gtsummary::tbl_summary(). Ajoutons quelques tests de comparaison avec gtsummary::add_p(). Petite astuce : gtsummary::modify_spanning_header() permet de rajouter un en-tête sur plusieurs colonnes.

```
library(gtsummary)
theme_gtsummary_language("fr", decimal.mark = ",", big.mark = " ")

d |>
    tbl_summary(
        by = sport,
        include = c(sexe, groupe_ages, etudes, relig, heures.tv)
    ) |>
    add_overall(last = TRUE) |>
    add_p() |>
    bold_labels() |>
    modify_spanning_header(
        update = all_stat_cols() ~ "**Pratique un sport ?**"
    )
```

Table 21.1: Pratique d'un sport selon différentes variables explicatives (analyse bivariée)

	Non, N	Oui, N	Total, N	p-
Caractéristic	$que = 1 \ 277$	= 723	= 2~000	valeur
Sexe				<0,001
Femme	747	354	1 101	
	(58%)	(49%)	(55%)	
Homme	530	369	899~(45%)	
	(42%)	(51%)		

	Non, N	Oui, N	Total, N	p -
Caractéristique	$e = 1 \ 277$	= 723	= 2~000	valeur
Groupe				< 0,001
d'âges				
18-24 ans	58 (4,5%)	111	169	
		(15%)	(8,5%)	
25-44 ans	359	347	706~(35%)	
	(28%)	(48%)		
45-64 ans	541	204	745 (37%)	
	(42%)	(28%)		
65 ans et plus	319	61 (8,4%)	380 (19%)	
	(25%)			
Niveau				< 0,001
d'études				
Primaire	416	50 (6,9%)	466~(23%)	
	(33%)	, , ,	, ,	
Secondaire	270	117	387 (19%)	
	(21%)	(16%)	, ,	
Technique /	378	216	594 (30%)	
Professionnel	(30%)	(30%)	, ,	
Supérieur	186	255	$441\ (22\%)$	
	(15%)	(35%)	, ,	
Non	27(2,1%)	85 (12%)	112	
documenté	,	,	(5,6%)	
Rapport à la				$0,\!14$
religion				
Pratiquant	182	84~(12%)	266 (13%)	
regulier	(14%)		, ,	
Pratiquant	295	147	442~(22%)	
occasionnel	(23%)	(20%)	, ,	
Appartenance	473	287	760 (38%)	
sans pratique	(37%)	(40%)	, ,	
Ni croyance ni	239	160	399 (20%)	
appartenance	(19%)	(22%)	, ,	
Rejet	60(4.7%)	33 (4,6%)	93 (4,7%)	
NSP ou NVPR	28 (2,2%)	12(1,7%)	40 (2,0%)	
Heures de	2,00 (1,00	2,00 (1,00	2,00 (1,00	< 0,001
télévision /	-3,00)	-3,00)	-3,00)	,
jour	, ,	, ,	, ,	
Manquant	2	3	5	

21.3 Calcul de la régression logistique binaire

La spécification d'une régression logistique se fait avec $\mathtt{stats::glm}()$ et est très similaire à celle d'une régression linéaire simple (cf. Section 20.3) : on indique la variable à expliquer suivie d'un tilde (~) puis des variables explicatives séparées par un plus (+)²⁹. Il faut indiquer à $\mathtt{glm}()$ la famille du modèle souhaité : on indiquera simplement $\mathtt{family} = \mathtt{binomial}$ pour un modèle $logit^{30}$.

```
29 Il est possible de spécifier des modèles plus complexes, notamment avec des effets d'interaction, qui seront aborder plus loin (cf. Chapitre 24).
```

```
30 Pour un modèle probit, ces.tv, indiquera family = binomial("probit").
```

Pour afficher les résultats du modèle, le plus simple est d'avoir recours à gtsummary::tbl_regression().

```
mod |>
  tbl_regression(intercept = TRUE) |>
  bold_labels()
```

mod <- glm(

Table 21.2:	Facteurs	associés	à	la	pratique	d'un	sport
	(régression	n logistiqu	ıe b	inaiı	re)		

Caractéristique	$\log(\mathrm{OR})$	95% IC	p-valeur
(Intercept)	-0,80	-1,40,17	0,014
Sexe			
Femme	_		
Homme	0,44	$0,\!23-0,\!65$	< 0,001
Groupe d'âges	,	,	,
18-24 ans			
25-44 ans	-0,42	-0,87 -	0,065
	,	0,03	•

Caractéristique	$\log(\mathrm{OR})$	95% IC	p-valeur
45-64 ans	-1,1	-1,60,62	<0,001
65 ans et plus	-1,4	-1,90,85	< 0,001
Niveau d'études			
Primaire			
Secondaire	0,95	$0,\!57-1,\!3$	< 0,001
Technique /	1,0	$0,\!68-1,\!4$	< 0,001
Professionnel			
Supérieur	1,9	$1,\!5-2,\!3$	< 0,001
Non documenté	2,2	$1,\!5-2,\!8$	< 0,001
Rapport à la			
religion			
Pratiquant regulier			
Pratiquant occasionnel	-0,02	-0.39 -	>0,9
		$0,\!35$	
Appartenance sans	-0,01	-0.35 -	>0,9
pratique		$0,\!34$	
Ni croyance ni	-0,22	$-0,\!59$ $-$	0,3
appartenance		$0,\!16$	
Rejet	-0,38	-0.95 -	0,2
		$0,\!17$	
NSP ou NVPR	-0,08	-0.92 -	0,8
		0,70	
Heures de télévision	-0,12	-0,19 -	< 0,001
/ jour		-0,06	

21.4 Interpréter les coefficients

L'intercept traduit la situation à la référence (i.e. toutes les variables catégorielles à leur modalité de référence et les variables continues à 0), après transformation selon la fonction de lien (i.e. après la transformation logit).

Illustrons cela. Supposons donc une personne de sexe féminin, âgée entre 18 et 24 ans, de niveau d'étude primaire, pratiquante régulière et ne regardant pas la télévision (situation de réference). Seul l'intercept s'applique dans le modèle, et donc le modèle prédit que sa probabilité de faire du sport est

de -0,80 selon l'échelle *logit*. Retraduisons cela en probabilité classique avec la fonction *logit inverse*.

```
logit_inverse <- binomial("logit") |> purrr::pluck("linkinv")
logit_inverse(-0.80)
```

[1] 0.3100255

Selon le modèle, la probabilité que cette personne fasse du sport est donc de 31%.

Prenons maintenant une personne identique mais de sexe masculin. Nous devons donc considérer, en plus de l'*intercept*, le coefficient associé à la modalité Homme. Sa probabilité de faire du sport est donc :

```
logit_inverse(-0.80 + 0.44)
```

[1] 0.4109596

Le coefficient associé à Homme est donc un modificateur par rapport à la situation de référence.

Enfin, considérons que cette dernière personne regarde également la télévision 2 heures en moyenne par jour. Nous devons alors considérer le coefficient associé à la variable heures.tv et, comme il s'agit d'une variable continue, multiplier ce coefficient par 2, car le coefficient représente le changement pour un incrément de 1 unité.

```
logit_inverse(-0.80 + 0.44 + 2 * -0.12)
```

[1] 0.3543437

Il est crucial de bien comprendre comment dans quels cas et comment chaque coefficient est utilisé par le modèle.

Le package {breakdown} permet de mieux visualiser notre dernier exemple.

```
individu3 <- d[1, ]
individu3$sexe[1] <- "Homme"
individu3$groupe_ages[1] <- "18-24 ans"
individu3$tetudes[1] <- "Primaire"
individu3$relig[1] <- "Pratiquant regulier"
individu3$heures.tv[1] <- 2

library(breakDown)
logit <- function(x) exp(x) / (1 + exp(x))
plot(
   broken(mod, individu3, predict.function = betas),
   trans = logit
) +
   scale_y_continuous(
   labels = scales::label_percent(),
   breaks = 0:5/5,
   limits = c(0, 1)
)</pre>
```


Figure 21.1: Décomposition de la probabilité de faire du sport de l'individu 3

21.5 La notion d'odds ratio

L'un des intérêts de la régression logistique logit réside dans le fait que l'exponentiel des coefficients correspond à des odds ratio ou rapport des côtes en français.

• Astuce

Pour comprendre la notion de côte (odd en anglais), on peut se référer aux paris sportifs. Par exemple, lorsque les trois quarts des parieurs parient que le cheval A va remporter la course, on dit alors que ce cheval à une côte de trois contre un (trois personnes parient qu'il va gagner contre une personne qu'il va perdre). Prenon un autre cheval: si les deux tiers pensent que le cheval B va perdre (donc un tiers pense qu'il va gagner), on dira alors que sa côte est de un contre deux (une personne pense qu'il va gagner contre deux qu'il va perdre).

Si l'on connait la proportion ou probabilité p d'avoir vécu ou de vivre un événenement donné (ici gagner la course), la côte (l'odd) s'obtient avec la formule suivante : p/(1-p). La côte du cheval A est bien 0.75/(1-0.75) =0,75/0,25=3 est celle du cheval B (1/3)/(2/3)=1/2=

Pour comparer deux côtes (par exemple pour savoir si le cheval A a une probabilité plus élevée de remporter la course que le cheval B, selon les parieurs), on calculera tout simplement le rapport des côtes ou odds ratio (OR): $OR_{A/B} = Odds_A / Odds_B = 3/0, 5 = 6.$

Ce calcul peut se faire facilement dans ${f R}$ avec la fonction questionr::odds.ratio().

```
questionr::odds.ratio(.75, 1/3)
```

[1] 6

L'odds ratio est donc égal à 1 si les deux côtes sont identiques, est supérieur à 1 si le cheval A une probabilité supérieure à celle du cheval B, et inférieur à 1 si c'est probabilité est inférieure.

On le voit, par construction, l'odds ratio de B par rapport à A est l'inverse de celui de A par rapport à B : $OR_{B/A}=1/OR_{A/B}$.

Pour afficher les *odds ratio* il suffit d'indiquer exponentiate = TRUE à gtsummary::tbl_regression().

```
mod |>
  tbl_regression(exponentiate = TRUE) |>
  bold_labels()
```

Table 21.3: Facteurs associés à la pratique d'un sport (odds ratios)

Caractéristique	\mathbf{OR}	$95\%~{ m IC}$	p-valeur
Sexe			
Femme			
Homme	$1,\!55$	$1,\!26-1,\!91$	< 0,001
Groupe d'âges			
18-24 ans		_	
25-44 ans	0,66	$0,\!42-1,\!03$	0,065
45-64 ans	0,34	$0,\!21-0,\!54$	< 0,001
65 ans et plus	$0,\!25$	$0,\!15-0,\!43$	< 0,001
Niveau d'études			
Primaire			
Secondaire	2,59	1,77 - 3,83	< 0,001
Technique / Professionnel	2,86	1,98-4,17	< 0,001
Supérieur	6,63	4,55 - 9,80	< 0,001
Non documenté	8,59	4,53 - 16,6	< 0,001
Rapport à la religion			
Pratiquant regulier		_	
Pratiquant occasionnel	0,98	0,68-1,42	>0,9
Appartenance sans pratique	0,99	0,71-1,40	>0,9
Ni croyance ni appartenance	0,81	0,55-1,18	0,3

Caractéristique	OR	95% IC	p-valeur
Rejet	0,68	0,39 - 1,19	0,2
NSP ou NVPR	0,92	$0,\!40-2,\!02$	0,8
Heures de télévision / jour	0,89	$0,\!83-0,\!95$	< 0,001

Pour une représentation visuelle, graphique en forêt ou forest plot en anglais, on aura tout simplement recours à ggstats::ggcoef_model().

Figure 21.2: Facteurs associés à la pratique d'un sport (forest plot)

p = 0.05 \bigcirc p > 0

♦ Mise en garde

En rédigeant les résultats de la régression, il faudra être vigilant à ne pas confondre les odds ratios avec des prevalence ratios. Avec un odds ratio de 1,55, il serait tentant d'écrire que les hommes ont une probabilité 55% supérieure de pratique un sport que les femmes (toutes choses égales par ailleurs). Une telle formulation

correspond à un prevalence ratio (rapport des prévalences en français) ou risk ratio (rapport des risques), à savoir diviser la probabilité de faire du sport des hommes par celle des femmes, p_{hommes}/p_{femmes} . Or, cela ne correspond pas à la formule de l'odds ratio, à savoir $(p_{hommes}/(1-p_{hommes}))/(p_{femmes}/(1-p_{femmes}))$. Lorsque le phénomène étudié est rare et donc que les probabilités sont faibles (inférieures à quelques pour-cents), alors il est vrai que les odds ratio sont approximativement égaux aux prevalence ratios. Mais ceci n'est plus du tout vrai pour des phénomènes plus fréquents.

21.6 Afficher toutes les comparaisons (pairwise contrasts)

Dans le tableau des résultats (Table 21.3), pour les variables catégorielles, il importe de bien garder en mémoire que chaque odds ratio doit se comparer à la valeur de référence. Ainsi, les odds ratios affichés pour chaque classe d'âges correspondent à une comparaison avec la classe d'âges de références, les 18-24 ans. La p-valeur associée nous indique quant à elle si cet odds ratio est significativement de 1, donc si cette classe d'âges données se comporte différemment de celle de référence.

Mais cela ne nous dit nullement si les 65 ans et plus diffèrent des 45-64 ans. Il est tout à fait possible de recalculer l'odds ratio correspondant en rapport les odds ratio à la référence : $OR_{65+/45-64} = OR_{65+/18-24}/OR_{45-64/18-24}.$

Le package {emmeans} et sa fonction emmeans::emmeans() permettent de recalculer toutes les combinaisons d'odds ratio (on parle alors de pairwise contrasts) ainsi que leur intervalle de confiance et la p-valeur correspondante.

On peut ajouter facilement³¹ cela au tableau produit avec gtsummary::tbl_regression() en ajoutant l'option add_pairwise_contrasts = TRUE.

³¹ Cela nécessite néanmoins au minimum la version 1.11.0 du package {broom.helpers} et la version 1.6.3 de {gtsummary}.

```
mod |>
  tbl_regression(
    exponentiate = TRUE,
    add_pairwise_contrasts = TRUE
) |>
  bold_labels()
```

Table 21.4: Facteurs associés à la pratique d'un sport (pairwise contrasts)

		95%	p-
Caractéristique	\mathbf{OR}	\mathbf{IC}	valeur
Sexe			
Homme / Femme	1,55	1,26 -	< 0,001
Groupe d'âges		1,91	
(25-44 ans) / (18-24 ans)	0,66	$0,\!37 - 1,\!18$	0,3
(45-64 ans) / (18-24 ans)	0,34	0.18 - 0.62	< 0,001
(45-64 ans) / (25-44 ans)	0,51	0,38 - 0,70	< 0,001
$65~\mathrm{ans}$ et plus / (18-24 ans)	0,25	0.12 - 0.51	< 0,001
65 ans et plus / $(25-44 \text{ ans})$	0,38	0,24 - 0,61	< 0,001
$65~\mathrm{ans}$ et plus / (45-64 ans)	0,74	0,47 - 1,17	0,3
Niveau d'études		1,11	
Secondaire / Primaire	2,59	$1{,}51 - 4{,}43$	< 0,001
(Technique / Professionnel) / Primaire	2,86	1,70 – 4,79	< 0,001
(Technique / Professionnel) / Secondaire	1,10	0.74 - 1.64	>0,9

		95 %	p -
Caractéristique	\mathbf{OR}	\mathbf{IC}	valeur
Supérieur / Primaire	6,63	3,89 -	<0,001
- ,	,	11,3	,
Supérieur / Secondaire	$2,\!56$	1,69 -	< 0,001
- ,		3,88	
Supérieur / (Technique /	2,32	1,61 -	< 0,001
Professionnel)		3,36	
Non documenté / Primaire	8,59	$3,\!49$ $-$	< 0,001
		21,1	
Non documenté / Secondaire	3,32	1,46 -	< 0,001
·		7,53	
Non documenté / (Technique /	3,01	$1,\!38 -$	0,001
Professionnel)		$6,\!56$	
Non documenté / Supérieur	1,30	$0,\!58 -$	>0.9
		2,90	
Rapport à la religion			
Pratiquant occasionnel /	0,98	$0,\!57$ $-$	>0.9
Pratiquant regulier		1,68	
Appartenance sans pratique /	0,99	$0,\!60 -$	>0,9
Pratiquant regulier		1,63	
Appartenance sans pratique /	1,02	$0,\!68$ $-$	>0,9
Pratiquant occasionnel		$1,\!52$	
Ni croyance ni appartenance /	0,81	$0,\!47$ $-$	0,9
Pratiquant regulier		1,40	
Ni croyance ni appartenance /	$0,\!82$	$0,\!52$ $-$	0,8
Pratiquant occasionnel		1,31	
Ni croyance ni appartenance /	0,81	$0,\!54$ $-$	0,7
Appartenance sans pratique		1,21	
Rejet / Pratiquant regulier	0,68	0,30 -	0,8
		$1,\!54$	
Rejet / Pratiquant occasionnel	0,70	$0,\!33 -$	0,8
		1,49	
Rejet / Appartenance sans	0,69	$0,\!33 -$	0,7
pratique		1,41	
Rejet / Ni croyance ni	$0,\!85$	$0,\!40$ $-$	>0,9
appartenance		1,79	
NSP ou NVPR / Pratiquant	0,92	$0,\!29$ $-$	>0,9
regulier		2,97	

~	0.70	95%	p-
Caractéristique	OR	IC	valeur
NSP ou NVPR / Pratiquant	0,94	$0,\!30 -$	>0,9
occasionnel		2,92	
NSP ou NVPR / Appartenance	0,93	$0,\!30 -$	>0,9
sans pratique		2,82	
NSP ou NVPR / Ni croyance ni	1,14	$0,\!37 -$	>0,9
appartenance		$3,\!55$	
NSP ou NVPR / Rejet	$1,\!35$	$0,\!37 -$	>0,9
		4,88	
Heures de télévision / jour	0,89	$0,\!83 -$	< 0,001
		0,95	

De même, on peur visualiser les coefficients avec la même option dans <code>ggstats::ggcoef_model()^32</code>. On peut d'ailleurs choisir les variables concernées avec l'argument <code>pairwise_variables</code>.

32 Cela nécessite néanmoins au minimum la version 1.11.0 du package {broom.helpers} et la version 0.2.0 de {ggstats}.

```
mod |>
  ggstats::ggcoef_model(
    exponentiate = TRUE,
    add_pairwise_contrasts = TRUE,
    pairwise_variables = c("groupe_ages", "etudes")
)
```


Figure 21.3: Facteurs associés à la pratique d'un sport (pairwise contrasts)

21.7 Identifier les variables ayant un effet significatif

Pour les variables catégorielles à trois modalités ou plus, les p-values associées aux *odds ratios* nous indique si un *odd ratio* est significativement différent de 1, par rapport à la modalité de référence. Mais cela n'indique pas si globalement une variable a un effet significatif sur le modèle. Pour tester l'effet global d'une variable, on peut avoir recours à la fonction car::Anova(). Cette dernière va tour à tour supprimer chaque variable du modèle et réaliser une analyse de variance (ANOVA) pour voir si la variance change significativement.

```
groupe_ages 52.803 3 2.020e-11 ***
etudes 123.826 4 < 2.2e-16 ***
relig 4.232 5 0.5165401
heures.tv 13.438 1 0.0002465 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Ainsi, dans le cas présent, la suppression de la variable *relig* ne modifie significativement pas le modèle, indiquant l'absence d'effet de cette variable.

Si l'on a recours à gtsummary::tbl_regression(), on peut facilement ajouter les p-valeurs globales avec gtsummary::add_global_p()³³.

```
mod |>
  tbl_regression(exponentiate = TRUE) |>
  bold_labels() |>
  add_global_p()
```

³³ Si l'on veut conserver les p-values individuelles associées à chaque *odds ratio*, on ajoutera l'option keep = TRUE.

Table 21.5: Ajout des p-valeurs globales

Caractéristique	OR	95% IC	p-valeur
Sexe			<0,001
Femme		_	
Homme	1,55	$1,\!26-1,\!91$	
Groupe d'âges			< 0,001
18-24 ans	_		
25-44 ans	$0,\!66$	$0,\!42-1,\!03$	
45-64 ans	$0,\!34$	$0,\!21-0,\!54$	
65 ans et plus	$0,\!25$	$0,\!15-0,\!43$	
Niveau d'études			< 0,001
Primaire			
Secondaire	$2,\!59$	1,77 - 3,83	
Technique / Professionnel	2,86	$1,\!98-4,\!17$	

Caractéristique	OR	95% IC	p-valeur
Supérieur	6,63	4,55 - 9,80	
Non documenté	8,59	$4,\!53-16,\!6$	
Rapport à la religion			0,5
Pratiquant regulier			
Pratiquant occasionnel	0,98	$0,\!68-1,\!42$	
Appartenance sans pratique	0,99	0,71-1,40	
Ni croyance ni appartenance	0,81	$0,\!55-1,\!18$	
Rejet	0,68	$0,\!39-1,\!19$	
NSP ou NVPR	0,92	$0,\!40-2,\!02$	
Heures de télévision / jour	0,89	$0,\!83-0,\!95$	< 0,001

Note

Concernant le test réalisé dans le cadre d'une Anova, il existe trois tests différents que l'on présente comme le type 1, le type 2 et le type 3 (ou I, II et III). Pour une explication sur ces différents types, on pourra se référer (en anglais) à https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/ ou encore http://md.psych.bio.uni-goettingen.de/mv/unit/lm_cat/lm_cat_unbal_ss_explained.html.

Le type I n'est pas recommandé dans le cas présent car il dépend de l'ordre dans lequel les différentes variables sont testées.

Lorsqu'il n'y a pas d'interaction dans un modèle, le type II serait à privilégier car plus puissant (nous aborderons les interactions dans un prochain chapitre, cf. Chapitre 24). En présence d'interactions, il est conseillé d'avoir plutôt recours au type III. Cependant, en toute rigueur, pour utiliser le type III, il faut que les variables catégorielles soient codées en utilisant un contrastes dont la somme est nulle (un contrast de type somme ou polynomial). Or, par défaut, les variables catégorielles sont codées avec un contraste de type traitement (nous aborderons les différents types de contrastes plus tard, cf. Chapitre 23). Par défaut, car::Anova() utilise le type II et gtsummary::add_global_p() le type III. Dans les deux cas, il est possible de préciser le type de test avec type =

"II" ou type = "III".

Dans le cas de notre exemple, un modèle simple sans interaction, le type de test ne change pas les résultats.

21.8 Sélection pas à pas d'un meilleur modèle

Il est toujours tentant lorsque l'on recherche les facteurs associés à un phénomène d'inclure un nombre important de variables explicatives potentielles dans son modèle logistique. Cependant, un tel modèle n'est pas forcément le plus efficace et certaines variables n'auront probablement pas d'effet significatif sur la variable d'intérêt.

Pour une présentation didactique du cadre théorique de la sélection de modèle, vous pouvez consulter en ligne le cours de L. Rouvière sur la sélection/validation de modèles.

La technique de sélection descendante pas à pas est une approche visant à améliorer son modèle explicatif³⁴. On réalise un premier modèle avec toutes les variables spécifiées, puis on regarde s'il est possible d'améliorer le modèle en supprimant une des variables du modèle. Si plusieurs variables permettent d'améliorer le modèle, on supprimera la variable dont la suppression améliorera le plus le modèle. Puis on recommence le même procédé pour voir si la suppression d'une seconde variable peut encore améliorer le modèle et ainsi de suite. Lorsque le modèle ne peut plus être amélioré par la suppresion d'une variable, on s'arrête.

Il faut également définir un critère pour déterminer la qualité d'un modèle. L'un des plus utilisés est le Akaike Information Criterion ou AIC. Plus l'AIC sera faible, meilleure sera le modèle. Il s'agit d'un compromis entre le nombre de degrés de liberté (e.g. le nombre de coefficients dans le modèle) que l'on cherche à minimiser et la variance expliquée que l'on cherche à maximiser.

La fonction step() permet justement de sélectionner le meilleur modèle par une procédure pas à pas descendante

³⁴ Il existe également des méthodes de sélection ascendante pas à pas, mais nous les aborderons pas ici.

basée sur la minimisation de l'AIC. La fonction affiche à l'écran les différentes étapes de la sélection et renvoie le modèle final.

```
mod2 <- step(mod)</pre>
Start: AIC=2236.17
sport ~ sexe + groupe_ages + etudes + relig + heures.tv
              Df Deviance
                             AIC
               5
                   2210.4 2230.4
- relig
                   2206.2 2236.2
<none>
- heures.tv
               1
                   2219.6 2247.6
- sexe
               1
                   2223.5 2251.5
- groupe_ages 3
                   2259.0 2283.0
- etudes
               4
                   2330.0 2352.0
Step: AIC=2230.4
sport ~ sexe + groupe_ages + etudes + heures.tv
              Df Deviance
                             AIC
<none>
                   2210.4 2230.4
- heures.tv
               1
                   2224.0 2242.0
                   2226.4 2244.4
               1
- sexe
- groupe_ages 3
                   2260.6 2274.6
```

Le modèle initial a un AIC de 2236,2. À la première étape, il apparait que la suppression de la variable religion permet diminuer l'AIC à 2210,4. Lors de la seconde étape, toute suppression d'une autre variable ferait augmenter l'AIC. La procédure s'arrête donc.

2334.3 2346.3

4

Pour obtenir directement l'AIC d'un modèle donné, on peut utiliser la fonction AIC().

AIC(mod)

- etudes

[1] 2236.173

AIC(mod2)

[1] 2230.404

On peut effectuer une analyse de variance ou ANOVA pour comparer les deux modèles avec la fonction anova().

```
anova(mod, mod2, test = "Chisq")
```

Analysis of Deviance Table

```
Model 1: sport ~ sexe + groupe_ages + etudes + relig + heures.tv
Model 2: sport ~ sexe + groupe_ages + etudes + heures.tv
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1980 2206.2
2 1985 2210.4 -5 -4.2319 0.5165
```

Il n'y a pas de différences significatives entre nos deux modèles (p=0,52). Autrement dit, notre second modèle explique tout autant de variance que notre premier modèle, tout en étant plus parcimonieux.

• Astuce

Une alternative à la fonction stats::step() est la fonction MASS::stepAIC() du package {MASS} qui fonctionne de la même manière. Si cela ne change rien aux régressions logistiques classiques, il arrive que pour certains types de modèle la méthode stats::step() ne soit pas disponible, mais que MASS::stepAIC() puisse être utilisée à la place.

library(MASS)

Attachement du package : 'MASS'

L'objet suivant est masqué depuis 'package:gtsummary':

```
select
L'objet suivant est masqué depuis 'package:dplyr':
    select
  mod2bis <- stepAIC(mod)</pre>
Start: AIC=2236.17
sport ~ sexe + groupe_ages + etudes + relig + heures.tv
              Df Deviance
                              AIC
                   2210.4 2230.4
- relig
<none>
                   2206.2 2236.2
- heures.tv 1 2219.6 2247.6
- sexe
               1 2223.5 2251.5
- groupe_ages 3 2259.0 2283.0
- etudes
               4 2330.0 2352.0
Step: AIC=2230.4
sport ~ sexe + groupe_ages + etudes + heures.tv
              Df Deviance
                              ATC
                   2210.4 2230.4
<none>
               1 2224.0 2242.0
- heures.tv
- sexe
               1 2226.4 2244.4
- groupe_ages 3
                   2260.6 2274.6
- etudes
                   2334.3 2346.3
Un critère similaire à l'AIC est le critère BIC (Bayesian
Information Criterion) appelé aussi SBC (Schwarz
information criterion). Il s'obtient avec stats::step()
en ajoutant l'argument k = log(n) où n est le nombre
d'observations inclues dans le modèle que l'on peut
obtenir avec nrow(model.matrix(reg)) (pour tenir
compte des éventuelles observations manquantes retirées
des données pour le calcul du modèle).
  mod2_bic <- step(mod, k = log(nrow(model.matrix(mod))))</pre>
```

```
Start: AIC=2320.15
sport ~ sexe + groupe_ages + etudes + relig + heures.tv
            Df Deviance
                          AIC
             5 2210.4 2286.4
- relig
<none>
                 2206.2 2320.2
- heures.tv 1 2219.6 2326.0
- sexe
        1 2223.5 2329.9
- groupe_ages 3 2259.0 2350.2
- etudes
             4 2330.0 2413.6
Step: AIC=2286.39
sport ~ sexe + groupe_ages + etudes + heures.tv
            Df Deviance
                          AIC
                 2210.4 2286.4
<none>
- heures.tv 1 2224.0 2292.4
             1 2226.4 2294.8
- sexe
- groupe_ages 3 2260.6 2313.8
- etudes
             4 2334.3 2379.8
```

On peut facilement comparer visuellement deux modèles avec ggstats::ggcoef_compare() de {ggstats}.

```
library(ggstats)
ggcoef_compare(
  list("modèle complet" = mod, "modèle réduit" = mod2),
  exponentiate = TRUE
)
```


Figure 21.4: Comparaison visuelle des deux modèles (dodge)

```
ggcoef_compare(
  list("modèle complet" = mod, "modèle réduit" = mod2),
  type = "faceted",
  exponentiate = TRUE
)
```


Figure 21.5: Comparaison visuelle des deux modèles (faceted)

Si l'on souhaite afficher l'AIC (ainsi que d'autres statistiques globales du modèle) en note du tableau des coefficients, on pourra utiliser gtsummary::add_glance_source_note().

```
mod2 |>
  tbl_regression(exponentiate = TRUE) |>
  bold_labels() |>
  add_glance_source_note()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 21.6: Modèle obtenu après réduction du nombre de variables

Caractéristique	OR	95% IC	p-valeur
Sexe			
Femme			
Homme	$1,\!52$	$1,\!24-1,\!87$	< 0,001
Groupe d'âges			
18-24 ans			
25-44 ans	$0,\!68$	$0,\!43-1,\!06$	0,084
45-64 ans	$0,\!36$	$0,\!23-0,\!57$	< 0,001
65 ans et plus	$0,\!27$	$0,\!16-0,\!46$	< 0,001
Niveau d'études			
Primaire			
Secondaire	$2,\!54$	1,73 - 3,75	< 0,001
Technique / Professionnel	$2,\!81$	$1,\!95-4,\!10$	< 0,001
Supérieur	$6,\!55$	$4,\!50-9,\!66$	< 0,001
Non documenté	8,54	$4,\!51-16,\!5$	< 0,001
Heures de télévision / jour	0,89	$0,\!83-0,\!95$	< 0,001

21.9 Régressions logistiques univariées

Les usages varient selon les disciplines et les revues scientifiques, mais il n'est pas rare de présenter, avant le modèle logistique

multivarié, une succession de modèles logistiques univariés (i.e. avec une seule variable explicative à la fois) afin de présenter les *odds ratios* et leur intervalle de confiance et p-valeur associés avant l'ajustement multiniveau.

Afin d'éviter le code fastidieux consistant à réaliser chaque modèle un par un (par exemple glm(sport ~ sexe, family = binomial, data = d)) puis à en fusionner les résultats, on pourra tirer partie de gtsummary::tbl_uvregression() qui permet de réaliser toutes ces régressions individuelles en une fois et de les présenter dans un tableau synthétique.

```
d |>
  tbl_uvregression(
    y = sport,
    include = c(sexe, groupe_ages, etudes, relig, heures.tv),
    method = glm,
    method.args = list(family = binomial),
    exponentiate = TRUE
) |>
  bold_labels()
```

OD 11	$^{\circ}$	_	D/		1	,
Table	ソレ	7.	Rec	ressions	logistiques	univariees

Caractéristique	N	OR	95% IC	p-valeur
Sexe	2			
	000			
Femme				
Homme		$1,\!47$	$1,\!22 -$	< 0,001
			1,77	
Rapport à la	2			
religion	000			
Pratiquant regulier				
Pratiquant		1,08	0,78 -	0,6
occasionnel			1,50	

Caractéristique	N	OR	95% IC	p-valeur
Appartenance sans		1,31	0,98 -	0,071
pratique			1,78	
Ni croyance ni		1,45	1,05 -	0,026
appartenance			2,02	
Rejet		1,19	0,72 -	0,5
			1,95	
NSP ou NVPR		0,93	$0,\!44$ $-$	0,8
			1,88	
Heures de	1	0,79	0,74 -	< 0,001
télévision / jour	995		0,84	
Groupe d'âges	2			
	000			
18-24 ans				
25-44 ans		$0,\!51$	$0,\!35 -$	< 0,001
			0,71	
45-64 ans		0,20	$0,\!14 -$	< 0,001
			0,28	
65 ans et plus		0,10	0.07 -	< 0,001
			$0,\!15$	
Niveau d'études	2			
	000			
Primaire				
Secondaire		3,61	$2{,}52 -$	< 0,001
			$5,\!23$	
Technique /		4,75	$3,\!42$ $-$	< 0,001
Professionnel			6,72	
Supérieur		11,4	8,11 -	< 0,001
			16,3	
Non documenté		26,2	15,7 $-$	< 0,001
		•	44,9	,

21.10 Présenter l'ensemble des résultats dans un même tableau

La fonction gtsummary::tbl_merge() permet de fusionner plusieurs tableaux (en tenant compte du nom des variables) et donc de présenter les différents résultats de l'analyse

descriptive, univariée et multivariée dans un seul et même tableau.

```
tbl_desc <-
  d |>
  tbl_summary(
    by = sport,
    include = c(sexe, groupe_ages, etudes, relig, heures.tv),
    statistic = all_categorical() ~ "{p}% ({n}/{N})",
    digits = all_categorical() ~ c(1, 0, 0)
  ) |>
  modify_column_hide("stat_1") |>
  modify_header("stat_2" ~ "**Pratique d'un sport**")
tbl_uni <-
  d |>
  tbl_uvregression(
    y = sport,
    include = c(sexe, groupe_ages, etudes, relig, heures.tv),
    method = glm,
    method.args = list(family = binomial),
    exponentiate = TRUE
  ) |>
  modify_column_hide("stat_n")
tbl_multi <-
  mod2 |>
  tbl_regression(exponentiate = TRUE)
list(tbl_desc, tbl_uni, tbl_multi) |>
  tbl_merge(
    tab_spanner = c(
      NA,
      "**Régressions univariées**",
      "**Régression multivariée**"
    )
  ) |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at

https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Pour visualiser chaque étape du code, vous pouvez consulter le diaporama suivant : https://larmarange.github.io/guide-R/analyses/ressources/flipbook-regression-logistique.html

21.11 webin-R

La régression logistique est présentée sur YouTube dans le webin-R #06 (régression logistique (partie 1) et le le webin-R #07 (régression logistique (partie 2).

https://youtu.be/-bdMv2aAqUY

https://youtu.be/BUo9i7XTLYQ

ole 21.8: tableau synthétique de l'analyse

	Pratique					
	d'un		95%	p-	95 %	p-
Caractéristi	iq up ort	\mathbf{OR}	\mathbf{IC}	valeur OR	\mathbf{IC}	valeu
Sexe						
Femme	49,0%					
	(354/723)					
Homme	51,0%	1,47	1,22	< 0,001 1,52	1,24	< 0,00
	(369/723)	,	_	, ,	_	,
	, , ,		1,77		1,87	
Groupe						
d'âges						
18-24 ans	$15{,}4\%$	_	_			
	(111/723)					
25-44 ans	$48,\!0\%$	$0,\!51$	$0,\!35$	< 0,001 0,68	$0,\!43$	0,084
	(347/723)		_		_	
			0,71		1,06	
45-64 ans	$28{,}2\%$	$0,\!20$	0,14	< 0,001 0,36	$0,\!23$	< 0.00
	(204/723)		_		_	
			$0,\!28$		$0,\!57$	
65 ans et	$8,\!4\%$	$0,\!10$	0,07	$< 0.001 \ 0.27$	$0,\!16$	< 0.00
plus	(61/723)		_		_	
			$0,\!15$		$0,\!46$	
Niveau						
d'études						
Primaire	6,9%	—				
	(50/723)					
Secondaire	$16{,}2\%$	3,61	$2,\!52$	< 0.0012,54	1,73	< 0.00
	(117/723)		_		_	
			$5,\!23$		3,75	
Technique	29,9%	4,75	3,42	< 0,001 2,81	1,95	< 0.00
	(216/723)		_		_	
Professionnel			6,72		4,10	
Supérieur	$35,\!3\%$	11,4	8,11	< 0.0016,55	4,50	< 0.00
	(255/723)		_		_	
			16,3		9,66	
Non	11,8%	26,2	15,7	< 0,001 8,54	$4,\!51$	< 0.00
documenté	(85/723)		-		_	
_			44,9		16,5	
Rapport						
à la						
religion	11 004		35 <u>6</u>			
Pratiquant	11,6%	—	50 <u>0</u>			
regulier	(84/723)	1.00	0.70	0.6		
Pratiquant	20,3%	1,08	0,78	0,6		
occasionnel	(147/723)		1 50			
A 4	- 20 707	1 01	1,50	0.071		
Appartenance		1,31	0,98	0,071		
sans	(287/723)		- 1 78			

22 Prédictions marginales, contrastes marginaux & effets marginaux

Avertissement

chapitre nécessite une version récente {broom.helpers} (version 1.12.0), de {gtsummary} 1.6.3), de {ggstats} (version 0.2.1) et de $\{\text{marginaleffects}\}\ (\text{version}\ 0.10.0).$

Les coefficients d'une régression multivariée ne sont pas toujours facile à interpréter car ils ne sont pas forcément exprimés dans la même dimension que la variable d'intérêt. C'est notamment le cas pour une régression logistique binaire (cf. Chapitre 21). Comment traduire la valeur d'un odds ratio en écart de probabilité?

Dans certaines disciplines, notamment en économétrie, on préfère souvent présenter les effets marginaux qui tentent de traduire les résultats du modèle dans la dimension de la variable d'intérêt. Plusieurs approches existent et l'on trouve dans la littérature des expressions telles que effets marginaux, effets statistiques, moyennes marginales, pentes marginales, effets marginaux à la moyenne, et autres expressions similaires.

Différents auteurs peuvent utiliser la même expression pour désigner des indicateurs différents, ou bien des manières différentes de les calculer.

Note

Si vous n'êtes pas familier des estimations marginales et souhaitez aller à l'essentiel, vous pouvez, en première lecture, vous concentrer sur les prédications marginales moyennes et les contrastes marginaux moyens, avant d'explorer les autres variantes.

22.1 Terminologie

Dans ce guide, nous avons décidé d'adopter une terminologie consistante avec celle du package {broom.helpers}, elle même basée sur celle du package {marginaleffects}, dont la première version a été publié en septembre 2021, et avec le billet d'Andrew Heiss intitulé *Marginalia* et publié en mai 2022.

Lorsque l'on utilise un modèle ajusté pour prédire l'outcome selon certaines combinaisons de valeurs des régresseurs / variables explicatives, par exemple leurs valeurs observées ou leur moyenne, on obtient des **prédictions ajustées**. Lorsque ces dernières sont moyennées selon un régresseur spécifique, nous parlerons alors de **prédictions marginales**.

Les **contrastes marginaux** correspondent au calcul d'une différence entre des prédictions marginales, que ce soit pour une variable catégorielle (e.g. différence entre deux modalités) ou pour une variable continue (différence observée au niveau de l'outcome pour un certain changement du prédicteur).

Les **pentes marginales** ou **effets marginaux** sont définis, pour des variables continues, comme la dérivée partielle (*slope*) de l'équation de régression pour certains valeurs de la variable explicative. Dit autrement, un effet marginal correspond à la pente locale de la fonction de régression pour certaines valeurs choisies d'un prédicteur continue. De manière pratique, les effets marginaux sont similaires aux contrastes marginaux.

L'ensemble de ces indicateurs marginaux se calculent pour certaines valeurs typiques des variables explicatives, avec plusieurs approches possibles pour définir des valeurs typiques : moyenne / mode, valeurs observées, valeurs personnalisées...

Nous présenterons ces différents concepts plus en détail dans la suite de ce chapitre.

Plusieurs packages proposent des fonctions pour le calcul d'estimations marginales, {marginaleffects}, {emmeans}, {margins}, {effects}, ou encore {ggeffects}, chacun avec des approches et un vocabulaire légèrement différent.

Le package {broom.helpers} fournit plusieurs tidiers qui permettent d'appeler les fonctions de ces autres packages et de renvoyer un tableau de données compatible avec la fonction broom.helpers::tidy_plus_plus() et dès lors de pouvoir générer un tableau mis en forme avec gtsummary::tbl_regression() ou un graphique avec ggstats::ggcoef_model().

22.2 Données d'illustration

Pour illustrer ce chapitre, nous allons reprendre le modèle réduit utilisé dans le chapitre sur la régression logistique binaire (cf. Chapitre 21).

```
library(tidyverse)
library(labelled)
library(gtsummary)
theme_gtsummary_language(
    "fr",
    decimal.mark = ",",
    big.mark = " "
)

data(hdv2003, package = "questionr")

d <-
    hdv2003 |>
    mutate(
    sexe = sexe |> fct_relevel("Femme"),
```

```
groupe_ages = age |>
      cut(
        c(18, 25, 45, 65, 99),
        right = FALSE,
        include.lowest = TRUE,
        labels = c("18-24 \text{ ans}", "25-44 \text{ ans}",
                   "45-64 ans", "65 ans et plus")
      ),
    etudes = nivetud |>
      fct recode(
        "Primaire" = "N'a jamais fait d'etudes",
        "Primaire" = "A arrete ses etudes, avant la derniere annee d'etudes primaires",
        "Primaire" = "Derniere annee d'etudes primaires",
        "Secondaire" = "1er cycle",
        "Secondaire" = "2eme cycle",
        "Technique / Professionnel" = "Enseignement technique ou professionnel court",
        "Technique / Professionnel" = "Enseignement technique ou professionnel long",
        "Supérieur" = "Enseignement superieur y compris technique superieur"
    fct_na_value_to_level("Non documenté")
  ) |>
  set_variable_labels(
    sport = "Pratique un sport ?",
    sexe = "Sexe",
    groupe_ages = "Groupe d'âges",
    etudes = "Niveau d'études",
    heures.tv = "Heures de télévision / jour"
  )
mod <- glm(</pre>
  sport ~ sexe + groupe_ages + etudes + heures.tv,
  family = binomial,
  data = d
mod |>
  tbl_regression(exponentiate = TRUE) |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 22.1: Odds Ratios du modèle logistique

Caractéristique	OR	95% IC	p-valeur
Sexe			
Femme	—	_	
Homme	$1,\!52$	$1,\!24-1,\!87$	< 0,001
Groupe d'âges			
18-24 ans			
25-44 ans	0,68	$0,\!43-1,\!06$	0,084
45-64 ans	$0,\!36$	$0,\!23-0,\!57$	< 0,001
65 ans et plus	$0,\!27$	$0,\!16-0,\!46$	< 0,001
Niveau d'études			
Primaire			
Secondaire	$2,\!54$	1,73 - 3,75	< 0,001
Technique / Professionnel	2,81	1,95-4,10	< 0,001
Supérieur	$6,\!55$	4,50 - 9,66	< 0,001
Non documenté	8,54	$4,\!51-16,\!5$	< 0,001
Heures de télévision / jour	0,89	$0,\!83-0,\!95$	< 0,001

Il faut se rappeler que pour calculer le modèle, les observations ayant au moins une valeur manquante ont été exclues. Le modèle n'a donc pas été calculé sur 2000 observations (nombre de lignes de hdv2003) mais sur 1995. On peut obtenir le tableau de données du modèle (model frame), qui ne contient que les variables et les observations utilisées, avec broom.helpers::model_get_model_frame().

```
mf <- mod %>%
  broom.helpers::model_get_model_frame()
  nrow(mf)
```

[1] 1995

colnames(mf)

[1] "sport" "sexe" "groupe_ages" "etudes" "heures.tv"

22.3 Prédictions marginales

22.3.1 Prédictions marginales moyennes

Pour illustrer et mieux comprendre ce que représente la différence entre les femmes et les hommes, nous allons effectuer des prédictions avec notre modèle en ne faisant varier que la variable *sexe*.

Une première approche consiste à dupliquer nos données observées et à supposer que tous les individus sont des femmes, puis à supposer que tous les individus sont des hommes.

```
mf_femmes <- mf |> mutate(sexe = "Femme")
mf_hommes <- mf |> mutate(sexe = "Homme")
```

Nos deux jeux de données sont donc identiques pour toutes les autres variables et ne varient que pour le *sexe*. Nous pouvons maintenant prédire, à partir de notre modèle ajusté, la probabilité de faire du sport de chacun des individus de ces deux nouveaux jeux de données, puis à en calculer la moyenne.

```
mod |> predict(type = "response", newdata = mf_femmes) |> mean()
[1] 0.324814

mod |> predict(type = "response", newdata = mf_hommes) |> mean()
```

Nous obtenons ainsi des **prédictions marginales moyennes**, average marginal predictions en anglais, de respectivement 32% et 40% pour les femmes et pour les hommes.

[1] 0.4036624

Le même résultat, avec en plus un intervalle de confiance, peut s'obtenir avec marginaleffects::predictions().

```
library(marginaleffects)
  mod |>
    predictions(variables = "sexe", by = "sexe", type = "response")
  sexe Estimate Std. Error
                               z Pr(>|z|) 2.5 % 97.5 %
 Femme
          0.325
                     0.0130 25.0
                                    <0.001 0.299 0.350
Homme
          0.404
                     0.0147 27.5
                                   <0.001 0.375 0.432
Prediction type: response
Columns: type, sexe, estimate, std.error, statistic, p.value, conf.low, conf.high
Pour une variable continue, on peut procéder de la même
manière en générant des prédictions marginales pour certaines
valeurs de la variable. Par défaut, marginaleffects::predictions()
réalise des prédictions selon les 5 nombres de Tukey's
five numbers, à savoir minimum, premier quartile, médiane,
troisième quartile et maximum).
  mod |>
    predictions(variables = "heures.tv", by = "heures.tv", type = "response")
                                     z Pr(>|z|) 2.5 % 97.5 %
heures.tv Estimate Std. Error
         0
              0.410
                        0.01711 23.96
                                         < 0.001 0.3764 0.443
         1
              0.386
                        0.01220 31.64
                                         <0.001 0.3621 0.410
         2
              0.363
                        0.00991 36.58
                                         <0.001 0.3432 0.382
         3
                                         <0.001 0.3173 0.362
              0.340
                        0.01145 29.66
        12
                        0.04220 3.99
                                         <0.001 0.0855 0.251
              0.168
Prediction type: response
Columns: type, heures.tv, estimate, std.error, statistic, p.value, conf.low, conf.high
Le package {broom.helpers} fournit la fonction broom.helpers::tidy_marginal_predictions()
qui génèrent les prédictions marginales de chaque variable<sup>35</sup>
                                                                      La
                                                                                fonction
                                                           broom.helpers::tidy_marginal_predictions()
avec marginaleffects::predictions()
                                        et renvoie les
                                                                  également
                                                                             gérer
résultat dans un format directement utilisable
```

combinaisons

de

interactions, voir Chapitre 24).

variables

gtsummary::tbl_regression().

Note

Il est à noter que broom.helpers::tidy_marginal_predictions() renvoie des p-valeurs qui, par défaut, teste si les valeurs prédites sont différentes de 0 (sur l'échelle de la fonction de lien, donc différentes de 50% dans le cas d'une régression logistique). Ce type de tests n'est pas vraiment pertinent dans le cas présent. On peut facilement masquer la colonne des p-valeurs avec modify_column_hide("p.value").

```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_marginal_predictions,
    type = "response",
    estimate_fun = scales::label_percent(accuracy = 0.1)
) |>
  bold_labels() |>
  modify_column_hide("p.value")
```

Table 22.2: Prédictions marginales moyennes

	Average Marginal	~
Caractéristique	Predictions	95% IC
Sexe		
Femme	32.5%	29.9% $-$
		35.0%
Homme	40.4%	37.5% $-$
		43.2%
Groupe d'âges		
18-24 ans	51.2%	42.2% $-$
		60.1%
25-44 ans	42.7%	39.3% –
		46.2%

	Average Marginal	
Caractéristique	Predictions	95% IC
45-64 ans	29.9%	26.6% $-$
		33.2%
65 ans et plus	24.9%	19.7%-
		30.0%
Niveau d'études		
Primaire	16.1%	11.9% $-$
		20.4%
Secondaire	31.8%	27.2% –
		36.4%
Technique /	34.0%	30.3% –
Professionnel		37.7%
Supérieur	53.2%	48.4% –
		57.9%
Non documenté	59.2%	47.0% -
		71.5%
Heures de		
télévision / jour	41.007	9 5 604
0	41.0%	37.6% -
1	20.007	44.3%
1	38.6%	36.2% –
0	26.207	41.0%
2	36.3%	34.3% - 38.2%
3	34.0%	38.2% $31.7%$ $-$
ð	34. U70	31.7% - 36.2%
12	16.8%	8.6% $-$
14	10.0/0	25.1%
		20.1/0

La fonction broom.helpers::plot_marginal_predictions() permet de visualiser les prédictions marginales à la moyenne en réalisant une liste de graphiques, un par variable, que nous pouvons combiner avec patchwork::wrap_plots(). L'opérateur & permet d'appliquer une fonction de {ggplot2} à chaque sous-graphique. Ici, nous allons uniformiser l'axe des y.

```
p <- mod |>
  broom.helpers::plot_marginal_predictions(type = "response") |>
  patchwork::wrap_plots() &
  scale_y_continuous(
    limits = c(0, .8),
    labels = scales::label_percent()
)
```


Figure 22.1: Prédictions marginales moyennes

Il est ici difficile de lire les étiquettes de la variable etudes. Nous pouvons éventuellement inverser l'axe des x et celui des y avec $ggplot2::coord_flip()$.

```
p & coord_flip()
```


Figure 22.2: Prédictions marginales moyennes

Une alternative possible avec d'avoir recours à ggtstats::ggcoef_model().

```
mod |>
  ggstats::ggcoef_model(
    tidy_fun = broom.helpers::tidy_marginal_predictions,
    tidy_args = list(type = "response"),
    show_p_values = FALSE,
    signif_stars = FALSE,
    significance = NULL,
    vline = FALSE
) +
  scale_x_continuous(labels = scales::label_percent())
```


Figure 22.3: Prédictions marginales moyennes

Importance de l'argument type pour les modèles glm

Lorsque l'on a recours à des modèles calculés avec glm(), il est possible de réaliser des prédictions selon deux échelles: l'échelle de notre outcome ou variable à expliquer (type = "response"), ici exprimée en probabilités ou proportions puisqu'il s'agit d'une régression logistique, ou bien selon l'échelle de la fonction de lien (type = "link") du modèle, ici la fonction logit (voir Section 21.4).

Avec l'option type = "reponse", on indique à {marginaleffects} de calculer pour chaque individu une prédiction selon l'échelle de l'outcome puis de procéder à la moyenne, ce que nous avons fait dans les exemples précédents.

Si nous avions indiqué type = "link", les prédictions auraient été faites selon l'échelle de la fonction de lien avant d'être moyennée.

```
mod |> predict(type = "link", newdata = mf_femmes) |> mean()
[1] -0.910525
```

```
mod |> predict(type = "link", newdata = mf_hommes) |> mean()
[1] -0.4928844
  mod |>
    predictions(variables = "sexe", by = "sexe", type = "link")
  sexe Estimate Std. Error
                                 z Pr(>|z|) 2.5 % 97.5 %
Femme
         -0.911
                    0.0751 -12.13 < 0.001 -1.058 -0.763
         -0.493
                     0.0779 -6.33 < 0.001 -0.646 -0.340
Homme
Prediction type: link
Columns: type, sexe, estimate, std.error, statistic, p.value, conf.low, conf.high
Depuis la version 0.10.0 de {marginaleffects}, si l'on
ne précise pas le paramètre type (i.e. si type = NULL),
la fonction marginaleffects::predictions() réalise les
prédictions selon l'échelle de la fonction de lien, calcule les
moyennes puis re-transforme ce résultat selon l'échelle de
la variable à expliquer.
  logit_inverse <- binomial("logit") |> purrr::pluck("linkinv")
  mod |> predict(type = "link", newdata = mf_femmes) |> mean() |> logit_inverse()
[1] 0.2868924
  mod |> predict(type = "link", newdata = mf_hommes) |> mean() |> logit_inverse()
[1] 0.3792143
  mod |>
    predictions(variables = "sexe", by = "sexe")
  sexe Estimate Pr(>|z|) 2.5 % 97.5 %
                  <0.001 0.258 0.318
Femme
          0.287
```

Homme 0.379 < 0.001 0.344 0.416

Prediction type: link

Columns: type, sexe, estimate, p.value, conf.low, conf.high

Or, la plupart du temps, le logit inverse de la moyenne des prédictions est différent de la moyenne des logit inverse des prédictions!

Les résultats seront similaires et du même ordre de grandeur, mais pas identiques.

22.3.2 Prédictions marginales à la moyenne

Pour les prédictions marginales moyennes, nous avons réalisé des prédictions pour chaque observations du tableau d'origine, en faisant varier juste une variable à la fois, avant de calculer la moyenne des prédictions.

Une alternative consiste à générer une sorte d'individu moyen / typique puis à réaliser des prédictions pour cette unique individu, en faisant juste varier la variable explicative d'intérêt. On parle alors de **prédictions marginales à la moyenne**, marginal predictions at the mean en anglais.

22.3.2.1 avec {marginaleffects}

On peut réaliser cela avec {marginaleffects} en précisant newdata = "mean". Prenons un exemple pour la variable sexe :

```
mod |> predictions(variables = "sexe", newdata = "mean")
```

```
Estimate Pr(>|z|) 2.5 % 97.5 % 0.239 <0.001 0.196 0.289 0.323 <0.001 0.273 0.378
```

Prediction type: link

Columns: rowid, rowidcf, type, estimate, p.value, conf.low, conf.high, sport, groupe_ages, etu-

Dans ce cas de figure, {marginaleffects} considère pour chaque variable continue sa moyenne (ici 2.246 pour heures.tv) et pour chaque variable catégorielle son mode (la valeur observée la plus fréquente, ici "Technique / Professionnel" pour la variable etudes). On fait juste varier les modalités de sexe puis on calculer la probabilité de faire du sport de ces individus moyens.

On peut également passer le paramètre newdata = "mean" à broom.helpers::tidy_marginal_predictions() ou même à gtsummary::tbl_regression()³⁶.

```
additionnels
                                                                          indiqués
                                                           gtsummary::tbl_regression()
mod |>
                                                           sont transmis en cascade
  tbl regression(
                                                           broom.helpers::tidy_plus_plus()
    tidy_fun = broom.helpers::tidy_marginal_predictiomsis
                                                           broom.helpers::tidy_marginal_predictions()
    newdata = "mean",
    estimate_fun = scales::label_percent(accuracy = 0.1)
                                                                        enfin
                                                           marginaleffects::predictions().
  ) |>
  bold_labels() |>
  modify_column_hide("p.value")
```

36

paramètres

Table 22.3: Prédictions marginales à la moyenne

	Marginal Predictions	
Caractéristique	at the Mean	95% IC
Sexe		
Femme	23.9%	19.6% $-$
		28.9%
Homme	32.3%	27.3% -
		37.8%
Groupe d'âges		
18-24 ans	46.8%	36.1% –
		57.8%
25-44 ans	37.3%	32.1% –
		42.8%

	Marginal Predictions	
Caractéristique	at the Mean	95% IC
45-64 ans	23.9%	19.6% -
		28.9%
65 ans et plus	19.2%	14.0% –
		25.6%
Niveau d'études		
Primaire	10.1%	7.3% $-$
		13.7%
Secondaire	22.1%	17.7% –
		27.2%
Technique /	23.9%	19.6% –
Professionnel		28.9%
Supérieur	42.3%	36.0% –
		48.9%
Non documenté	48.9%	34.7% –
		63.2%
Heures de		
télévision / jour		
0	29.2%	23.6% –
		35.5%
1	26.8%	21.9% –
_		32.3%
2	24.5%	20.1% -
	22.28	29.5%
3	22.3%	18.1% -
10	2 207	27.2%
12	8.8%	4.6% -
		16.4%

De même, on peut générer une représentation graphique :

```
p <- mod |>
  broom.helpers::plot_marginal_predictions(newdata = "mean") |>
  patchwork::wrap_plots() &
  scale_y_continuous(
    limits = c(0, .8),
    labels = scales::label_percent()
  ) &
```

```
coord_flip()
```


Figure 22.4: Prédictions marginales à la moyenne

Si l'on souhaite utiliser ggstats::ggcoef_model(), on peut directement indiquer newdata = "mean". Il faudra passer cette option via tidy_args qui prend une liste d'arguments à transmettre à tidy_fun.

```
mod |>
   ggstats::ggcoef_model(
     tidy_fun = broom.helpers::tidy_marginal_predictions,
     tidy_args = list(newdata = "mean"),
     show_p_values = FALSE,
     signif_stars = FALSE,
     significance = NULL,
     vline = FALSE
) +
   scale_x_continuous(labels = scales::label_percent())
```


Figure 22.5: Prédictions marginales à la moyenne

22.3.2.2 avec {effects}

Le package $\{\texttt{effects}\}^{37}$ adopte une approche un peu différente pour définir un individu moyen.

Calculons les prédictions marginales à la moyenne avec la fonction effects::Effect().

```
e <- effects::Effect("sexe", mod)
e</pre>
```

sexe effect
sexe
Femme Homme
0.2868924 0.3792143

On le voit, les résultats sont là encore assez proches mais différents. Regardons de plus près les données utilisées pour les prédictions.

```
e$model.matrix
```

37 Malgré son nom, le package {effects} ne calcule pas des effets marginaux mais des prédictions marginales, selon la terminologie retenue au début de ce document.

```
(Intercept) sexeHomme groupe_ages25-44 ans groupe_ages45-64 ans
1
            1
                                    0.3533835
                                                         0.3719298
2
                                    0.3533835
                                                         0.3719298
                      1
  groupe_ages65 ans et plus etudesSecondaire etudesTechnique / Professionnel
                  0.1904762
1
                                    0.193985
                                                                     0.2962406
2
                  0.1904762
                                     0.193985
                                                                     0.2962406
  etudesSupérieur etudesNon documenté heures.tv
        0.2205514
                           0.05614035 2.246566
1
        0.2205514
                           0.05614035 2.246566
attr(,"assign")
 [1] 0 1 2 2 2 3 3 3 3 4
attr(,"contrasts")
attr(,"contrasts")$sexe
[1] "contr.treatment"
attr(,"contrasts")$groupe_ages
[1] "contr.treatment"
attr(,"contrasts")$etudes
[1] "contr.treatment"
```

Pour les variables continues, {effects} utilise la moyenne observée de la variable, comme précédemment avec {marginaleffects}. Par contre, pour les variables catégorielles, ce n'est pas le mode qui est utilisé, mais l'ensemble des modalités, pondérées selon leur proportion observée dans l'échantillon. Cette approche a l'avantage de moyenniser également les variables catégorielles, même si les indvidus pour lesquels une prédiction est réalisée sont complètement fictifs.

On peut utiliser broom.helpers::tidy_all_effects() pour générer un tableau de prédictions marginales avec {effects}.

```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_all_effects,
    estimate_fun = scales::label_percent(accuracy = 0.1)
) |>
  bold_labels()
```

Table 22.4: Prédictions marginales à la moyenne avec le package effects

	Marginal Predictions	
Caractéristique	at the Mean	95% IC
Sexe		
Femme	28.7%	25.8% $-$
		31.8%
Homme	37.9%	34.4% –
		41.6%
Groupe d'âges		
18-24 ans	51.2%	41.0% -
25.44	11 × 04	61.3%
25-44 ans	41.5%	37.4% -
4F C4	27 207	45.7%
45-64 ans	27.3%	23.9% - 30.9%
65 ans et plus	22.0%	30.9% $17.4%$ $-$
oo alis et pius	22.070	27.5%
Niveau d'études		21.070
Primaire	14.9%	11.3% –
	11.070	19.3%
Secondaire	30.7%	26.2% –
		35.7%
Technique /	32.9%	29.1% –
Professionnel		37.0%
Supérieur	53.4%	48.3% –
		58.4%
Non documenté	59.9%	46.6% -
		71.8%
Heures de		
télévision / jour		
0	38.9%	34.8% –
	20 =04	43.2%
3	30.7%	28.1% -
		33.4%

Caractéristique	Marginal Predictions at the Mean	95% IC
6	23.6%	18.9% -
9	17.7%	$28.9\% \ 11.9\% -$
10	16.0%	25.4% $10.1%$ $-$
		24.4%

Pour une représentation graphique, nous pouvons utiliser les fonctions internes d'{effects} en appliquant plot() aux résultats de effects::allEffects() qui calcule les prédictions marginales de chaque variable.

```
mod |>
  effects::allEffects() |>
  plot()
```


Figure 22.6: Prédictions marginales à la moyenne avec le package effects

On peut aussi utiliser ggstats::ggcoef_model()³⁸.

38 De manière générale, ggstats::ggcoef_model() est compatible avec les mêmes tidy_fun que gtsummary::tbl_regression(), les deux fonctions utilisant en interne broom.helpers::tidy_plus_plus().

Heures de télévision / jour

0
3
6
-0
9
-0
10
-0
20% 40% 60%

Marginal Predictions at the Mea

Supérieur Non documenté

Figure 22.7: Prédictions marginales à la moyenne avec le package effects

Technique / Professionnel

22.3.3 Variantes

Le package {ggeffects} propose une fonction ggeffects::ggpredict() qui calcule des prédictions marginales à la moyenne des variables continues et à la première modalité (utilisée comme référence) des variables catégorielles. On ne peut donc plus, au sens strict, parler de prédictions à la moyenne. {broom.helpers} fournit une fonction tidy_ggpredict().

```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_ggpredict,
    estimate_fun = scales::label_percent(accuracy = 0.1)
) |>
```

bold_labels()

Data were 'prettified'. Consider using `terms="heures.tv [all]"` to get smooth plots.

Table 22.5: Prédictions marginales avec ggpredict()

	3.7 · 1	
Caractéristique	$egin{array}{c} \mathbf{Marginal} \ \mathbf{Predictions} \end{array}$	95% IC
		007010
Sexe		
Femme	23.8%	15.3% $-$
		35.1%
Homme	32.2%	21.4% -
		45.4%
Groupe d'âges		
18-24 ans	23.8%	15.3% $-$
		35.1%
25-44 ans	17.5%	12.7% –
		23.5%
45-64 ans	10.1%	7.3% $-$
		13.7%
65 ans et plus	7.8%	5.5% $-$
1		10.9%
Niveau d'études		, ,
Primaire	23.8%	15.3% $-$
		35.1%
Secondaire	44.2%	33.0% –
Secondario	11.2/0	56.1%
Technique /	46.8%	36.1% $-$
Professionnel	40.070	57.8%
Supérieur	67.2%	56.2% -
Duperieur	01.2/0	76.6%
Non documenté	72.8%	62.8% $-$
non documente	12.870	
		80.9%

	Marginal	
Caractéristique	$\mathbf{Predictions}$	$95\%~{ m IC}$
Heures de télévision		
/ jour		
0	29.1%	18.7% $-$
		42.3%
1	26.7%	17.2% –
		38.9%
2	24.4%	15.7% –
0	22.207	35.8%
3	22.2%	14.2% –
4	20.2%	$33.0\% \ 12.8\% -$
4	20.270	30.4%
5	18.3%	11.4% –
	10.070	28.2%
6	16.6%	10.0% $-$
		26.1%
7	15.0%	8.8% $-$
		24.3%
8	13.5%	7.7% $-$
		22.7%
9	12.1%	6.6% –
10	10.004	21.2%
10	10.9%	5.7% -
11	9.8%	$19.9\% \ 4.9\% -$
11	9.870	4.9% - 18.7%
12	8.8%	4.2% –
12	0.070	17.6%
		11.070

Pour une représentation graphique, on peut utiliser les fonctionnalités natives inclues dans le package {ggeffects}.

```
mod |>
   ggeffects::ggpredict() |>
   plot() |>
   patchwork::wrap_plots()
```


Figure 22.8: Prédictions marginales avec ggpredict()

22.4 Contrastes marginaux

Maintenant que nous savons estimer des prédictions marginales, nous pouvons facilement calculer des **contrastes marginaux**, à savoir des différences entre prédictions marginales.

22.4.1 Contrastes marginaux moyens

Considérons tout d'abord la variable catégorielle sexe et calculons les prédictions marginales moyennes avec marginaleffects::predictions().

```
pred <- predictions(mod, variables = "sexe", by = "sexe", type = "response")
pred</pre>
```

```
sexe Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % Femme 0.325 0.0130 25.0 <0.001 0.299 0.350 Homme 0.404 0.0147 27.5 <0.001 0.375 0.432
```

Prediction type: response

Columns: type, sexe, estimate, std.error, statistic, p.value, conf.low, conf.high

Le contraste entre les hommes et les femmes est tout simplement la différence et les deux prédictions marginales.

```
pred$estimate[2] - pred$estimate[1]
```

[1] 0.07884839

La fonction marginaleffects::avg_comparisons() permet de réaliser directement ce calcul.

```
avg_comparisons(mod, variables = "sexe")
```

```
Term Contrast Estimate Std. Error z Pr(>|z|) 2.5 % 97.5 % sexe Homme - Femme 0.0788 0.0197 4 <0.001 0.0402 0.117
```

Prediction type: response

Columns: type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high

Dans les faits, marginaleffects::avg_comparisons() a calculé la différence entre les hommes et les femmes pour chaque observation d'origine puis a réalisé la moyenne des différences. Mathématiquement, la moyenne des différences est équivalente à la différence des moyennes.

Les contrastes calculés ici ont été moyennés sur l'ensemble des valeurs observées. On parle donc de **contrastes marginaux moyens** (average marginal contrasts).

Par défaut, chaque modalité est contrastée avec la première modalité prise comme référence (voir exemple ci-dessous avec la variable *groupe_ages*.

Regardons maintenant une variable continue.

```
avg_comparisons(mod, variables = "heures.tv")
```

```
Term Contrast Estimate Std. Error z Pr(>|z|) 2.5 \% 97.5 \% heures.tv +1 -0.0227 0.0062 -3.66 <0.001 -0.0348 -0.0105
```

Prediction type: response

Columns: type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high

Par défaut, marginaleffects::avg_comparisons() calcule, pour chaque valeur observée de *heures.tv*, l'effet sur la probabilité de pratiquer un sport d'augmenter de 1 le nombre d'heures quotidiennes de télévision (plus précisément la différence des valeurs prédites pour la valeur observée plus 0,5 et la valeur observée moins 0,5).

On peut facilement obtenir la liste des contrastes marginaux pour l'ensemble des variables.

```
avg_comparisons(mod)
```

Term		Contrast	Estimate	Std. Error	z
etudes	Non documenté - Primaire		0.4309	0.0691	6.23
etudes	Secondaire - Primaire		0.1568	0.0314	4.99
etudes	Supérieur - Primaire		0.3701	0.0337	10.98
etudes	Technique / Professionnel -	Primaire	0.1781	0.0295	6.04
groupe_ages	25-44 ans - 18-24 ans		-0.0844	0.0492	-1.71
groupe_ages	45-64 ans - 18-24 ans		-0.2127	0.0507	-4.20
<pre>groupe_ages</pre>	65 ans et plus - 18-24 ans		-0.2631	0.0556	-4.73
heures.tv	+1		-0.0227	0.0062	-3.66
sexe	Homme - Femme		0.0788	0.0197	4.00
Pr(> z) 2	2.5 % 97.5 %				
<0.001 0.	2954 0.5665				
<0.001 0.	0952 0.2184				
<0.001 0.	3040 0.4361				
<0.001 0.	1203 0.2359				
0.0865 -0.	1808 0.0121				
<0.001 -0.	3121 -0.1133				

```
<0.001 -0.3720 -0.1541
<0.001 -0.0348 -0.0105
<0.001 0.0402 0.1175
```

Prediction type: response

Columns: type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high

Il est important de noter que le nom des colonnes n'est pas compatible avec les fonctions de {broom.helpers} et par extension avec gtsummary::tbl_regression() et ggstats::ggcoef model(). On utilisera donc broom.helpers::tidy markinakakommurasts() qui remets en forme le tableau de résultats dans un format compatible. On pourra ainsi produire un tableau propre des résultats⁴⁰.

```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_marginal_contrasts chapitre (cf. Chapitre 24).
    estimate_fun = scales::label_percent(
      accuracy = 0.1,
      style_positive = "plus"
    )
  ) |>
  bold labels()
```

broom.helpers::tidy_avg_comparisons() lui préférera on broom.helpers::tidy_marginal_contrasts(). Pour un modèle sans interaction, les résultats sont identiques. Mais broom.helpers::tidy_marginal_contrasts() peut gérer des termes d'interactions, ce qui sera utile dans un prochain

Notez l'utilisation de style_positive = "plus" dans l'appel de scales::label_percent() pour ajouter un signe + devant les valeurs positives, afin de bien indiquer que l'on représente le résultat d'une différence.

Table 22.6: Contrastes marginaux moyens

Caractéristique	Average Marginal Contrasts	95% IC	p- valeur
Sexe			
Homme - Femme	+7.9%	+4.0% $-$	< 0,001
		+11.7%	
Groupe d'âges			

	Average		
	Marginal		р-
Caractéristique	Contrasts	95% IC	valeur
25-44 ans - 18-24	-8.4%	-18.1% -	0,086
ans		+1.2%	
45-64 ans - 18-24	-21.3%	-31.2% $-$	< 0,001
ans		-11.3%	
65 ans et plus -	-26.3%	-37.2% $-$	< 0,001
18-24 ans		-15.4%	
Niveau d'études			
Non documenté -	+43.1%	+29.5%	< 0,001
Primaire		_	
		+56.6%	
Secondaire -	+15.7%	+9.5% $-$	< 0,001
Primaire		+21.8%	
Supérieur -	+37.0%	+30.4%	< 0,001
Primaire		_	
		+43.6%	
Technique /	+17.8%	+12.0%	< 0,001
Professionnel -		_	
Primaire		+23.6%	
Heures de			
télévision / jour			
+1	-2.3%	-3.5% $-$	< 0,001
		-1.1%	

De même, on peut représenter les contrastes marginaux moyens avec ggstats::ggcoef_model().

```
ggstats::ggcoef_model(
   mod,
   tidy_fun = broom.helpers::tidy_marginal_contrasts
) +
   ggplot2::scale_x_continuous(
       labels = scales::label_percent(style_positive = "plus")
)
```


Figure 22.9: Contrastes marginaux moyens


```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_marginal_contrasts,
    variables_list = list(
        list(heures.tv = 2),
        list(groupe_ages = "pairwise"),
        list(etudes = "sequential")
    ),
    estimate_fun = scales::label_percent(
        accuracy = 0.1,
        style_positive = "plus"
    )
    ) |>
    bold_labels()
```

Caractéristique	Average Marginal Contrasts	95% IC	p- valeur
Heures de			
télévision / jour +2	-4.5%	$-7.0\% - \\ -2.1\%$	< 0,001
Groupe d'âges			
25-44 ans - 18-24 ans	-8.4%	-18.1% $-18.2%$	0,086
45-64 ans - 18-24 ans	-21.3%	-31.2% -11.3%	< 0,001
45-64 ans - 25-44 ans	-12.8%	-17.6% 8.1%	< 0,001
65 ans et plus - 18-24 ans	-26.3%	-37.2% $-15.4%$	<0,001

65 ans et plus -	-17.9%	-24.3%	< 0,001
25-44 ans		_	
		-11.4%	
65 ans et plus -	-5.0%	-11.0%	0,10
45-64 ans		_	
		+0.9%	
Niveau d'études			
Non documenté -	+6.1%	-7.0% $-$	0,4
Supérieur		+19.2%	
Secondaire -	+15.7%	+9.5%	< 0,001
Primaire		_	
		+21.8%	
Supérieur -	+19.2%	+13.3%	< 0,001
Technique /		_	
Professionnel		+25.1%	
Technique /	+2.1%	-3.8% -	0,5
Professionnel -		+8.0%	,
Secondaire			

On peut obtenir le même résultat avec broom.helpers::tidy_avg_comparison() avec une syntaxe un peu plus simple (en passant une liste via variables au lieu d'une liste de listes via variables_list).

```
mod |>
  tbl_regression(
  tidy_fun = broom.helpers::tidy_avg_comparisons,
  variables = list(
    heures.tv = 2,
    groupe_ages = "pairwise",
    etudes = "sequential"
  ),
  estimate_fun = scales::label_percent(
    accuracy = 0.1,
    style_positive = "plus"
  )
  ) |>
  bold_labels()
```

Caractéristique	Average Marginal Contrasts	95% IC	p- valeur
Niveau d'études			
Non documenté -	+6.1%	-7.0% $-$	0,4
Supérieur		+19.2%	
Secondaire -	+15.7%	+9.5%	< 0,001
Primaire		_	
		+21.8%	
Supérieur -	+19.2%	+13.3%	< 0,001
Technique /		_	
Professionnel		+25.1%	

Technique / Professionnel - Secondaire	+2.1%	-3.8% - +8.0%	0,5
Groupe d'âges			
25-44 ans - 18-24 ans	-8.4%	-18.1%	0,086
		+1.2%	
45-64 ans - 18-24	-21.3%	-31.2%	< 0,001
ans		- -11.3%	
45-64 ans - 25-44	-12.8%	-17.6%	< 0,001
ans	26.207	8.1%	10.001
65 ans et plus - 18-24 ans	-26.3%	-37.2%	< 0,001
10-24 ans		-15.4%	
65 ans et plus -	-17.9%	-24.3%	< 0,001
25-44 ans		_	,
		-11.4%	
65 ans et plus -	-5.0%	-11.0%	$0,\!10$
45-64 ans		-	
Heures de		+0.9%	
télévision / jour			
+2	-4.5%	-7.0% -	< 0.001
' -	2.0,0	-2.1%	10,002

22.4.2 Contrastes marginaux à la moyenne

Comme précédemment, plutôt que de calculer les contrastes marginaux pour chaque individu observé avant de faire la moyenne des résultats, une approche alternative consiste à considérer un individu moyen / typique et à calculer les contrastes marginaux pour cet individu. On parle alors de contrastes marginaux à la moyenne (marginal contrasts at the mean).

Avec {marginaleffects}, il suffit de spécifier newdata = "mean". Les variables continues seront fixées à leur moyenne

et les variables catégorielles à leur mode (modalité la plus fréquente dans l'échantillon).

```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_marginal_contrasts,
    newdata = "mean",
    estimate_fun = scales::label_percent(
        accuracy = 0.1,
        style_positive = "plus"
    )
    ) |>
    bold_labels()
```

Table 22.9: Contrastes marginaux à la moyenne

	Marginal		
	Contrasts at the		p-
Caractéristique	Mean	95% IC	valeur
Sexe			
Homme - Femme	+8.4%	+4.3% $-$	< 0,001
		+12.5%	
Groupe d'âges			
25-44 ans - 18-24	-9.5%	-20.5% $-$	0,090
ans		+1.5%	
45-64 ans - 18-24	-22.9%	-33.8 $\%$ $-$	< 0,001
ans		-11.9%	
65 ans et plus -	-27.6%	-39.2% $-$	< 0,001
18-24 ans		-16.1%	
Niveau d'études			
Non documenté -	+38.8%	+24.1%	< 0,001
Primaire		_	
		+53.5%	
Secondaire -	+12.0%	+7.0% $-$	< 0,001
Primaire		+17.1%	

	Marginal Contrasts at the	0.707 T.G	p-
Caractéristique	Mean	95% IC	valeur
Supérieur -	+32.2%	+25.7%	<0,001
Primaire		_	
		+38.7%	
Technique /	+13.9%	+9.0% –	< 0,001
Professionnel -		+18.7%	
Primaire			
Heures de			
télévision / jour			
+1	-2.2%	-3.4% $-$	< 0,001
		-1.0%	

Pour la fonction ggstats::ggcoef_model(), on utilisera l'argument tidy_args pour transmettre l'option newdata = "mean".

```
ggstats::ggcoef_model(
   mod,
   tidy_fun = broom.helpers::tidy_marginal_contrasts,
   tidy_args = list(newdata = "mean")
) +
   ggplot2::scale_x_continuous(
    labels = scales::label_percent(style_positive = "plus")
)
```


Figure 22.10: Contrastes marginaux à la moyenne

22.5 Pentes marginales / Effets marginaux

Les effets marginaux, ou plus précisément les pentes marginales, sont similaires aux contrastes marginaux, avec un différence subtile. Pour une variable continue, les contrastes marginaux sont une différence entre deux prédictions tandis que les **effets marginaux** (marginal effects) ou **pentes marginales** (marginal slopes). Dis autrement, l'effect marginal d'un régresseur continu x est la pente / dérivée $\partial y/\partial x$ la fonction de prédiction y, mesurée à des valeurs spécifiques de x.

Les effets marginaux sont le plus souvent calculés selon l'échelle de l'outcome et représentent le changement attendu de l'outcome pour une augmentation du régresseur d'une unité.

Par définition, les effets marginaux ne sont pas définis pour les variables catégorielles. La plupart des fonctions rapportent, à la place, les contrastes marginaux pour ces variables catégorielles.

Comme pour les prédictions marginales et les contrastes marginaux, plusieurs approches existent (voir par exemple la vignette dédiée du package {marginaleffects}).

22.5.1 Pentes marginales moyennes / Effets marginaux moyens

Les **effets marginaux moyens** (average marginal effects) sont calculés en deux temps : (1) un effet marginal est calculé pour chaque individu observé dans le modèle ; (ii) puis la moyenne de ces effets individuels est calculée.

On aura tout simplement recours à la fonction marginaleffects::avg_slopes().

```
avg_slopes(mod)
```

```
Term
                                        Contrast Estimate Std. Error
etudes
           Non documenté - Primaire
                                                   0.4309
                                                              0.0691 6.23
etudes
            Secondaire - Primaire
                                                   0.1568
                                                              0.0314 4.99
           Supérieur - Primaire
                                                   0.3701
                                                             0.0337 10.98
etudes
etudes
           Technique / Professionnel - Primaire
                                                   0.1781
                                                              0.0295 6.04
groupe_ages 25-44 ans - 18-24 ans
                                                  -0.0844
                                                              0.0492 - 1.71
                                                              0.0507 -4.20
groupe_ages 45-64 ans - 18-24 ans
                                                 -0.2127
                                                              0.0556 - 4.73
groupe_ages 65 ans et plus - 18-24 ans
                                                  -0.2631
           dY/dX
heures.tv
                                                  -0.0227
                                                              0.0062 - 3.66
           Homme - Femme
sexe
                                                   0.0788
                                                              0.0197 4.00
Pr(>|z|)
         2.5 % 97.5 %
  <0.001 0.2954 0.5665
  <0.001 0.0952 0.2184
  <0.001 0.3040 0.4361
  <0.001 0.1203 0.2359
 0.0865 -0.1808 0.0121
  <0.001 -0.3121 -0.1133
  < 0.001 - 0.3720 - 0.1541
  <0.001 -0.0348 -0.0105
  <0.001 0.0402 0.1175
```

Prediction type: response

Columns: type, term, contrast, estimate, std.error, statistic, p.value, conf.low, conf.high

```
Pour un usage avec broom.helpers::tidy_plus_plus(), gtsummary::tbl_regression() ou ggstats::ggcoef_model(), on utilisera broom.helpers::tidy_avg_slopes().
```

```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_avg_slopes,
    estimate_fun = scales::label_percent(
       accuracy = 0.1,
       style_positive = "plus"
    )
  ) |>
  bold_labels()
```

Table 22.10: Effets marginaux moyens

	Average		
Caractéristique	$egin{aligned} \mathbf{Marginal} \\ \mathbf{Effects} \end{aligned}$	$95\%~{ m IC}$	p- valeur
Niveau d'études			
	. 40.107	100 507	-0.001
Non documenté -	+43.1%	+29.5%	< 0,001
Primaire		_	
		+56.6%	
Secondaire -	+15.7%	+9.5% $-$	< 0,001
Primaire		+21.8%	,
Supérieur - Primaire	+37.0%	+30.4%	< 0,001
	1 31.1370	_	10,002
		+43.6%	
Technique /	+17.8%	+12.0%	< 0,001
Professionnel -		_	,
Primaire		+23.6%	
Groupe d'âges		1 = 3.3,0	
25-44 ans - 18-24	-8.4%	-18.1% -	0,086
ans		+1.2%	,
45-64 ans - 18-24	-21.3%	-31.2% -	< 0,001
ans		-11.3%	
65 ans et plus -	-26.3%	-37.2% $-$	< 0,001
18-24 ans		-15.4%	

Caractéristique	Average Marginal Effects	95% IC	p- valeur
Heures de télévision / jour dY/dX	-2.3%	-3.5% –	<0,001
Sexe	-2.970	-1.1%	<0,001
Homme - Femme	+7.9%	$+4.0\% - \\ +11.7\%$	< 0,001

```
ggstats::ggcoef_model(
   tidy_fun = broom.helpers::tidy_avg_slopes
   ggplot2::scale_x_continuous(
     labels = scales::label_percent(style_positive = "plus")
   )
Niveau d'études
                               Non documenté - Primaire (p<0.001***)
                                  Secondaire - Primaire (p<0.001***)
                                   Supérieur - Primaire (p<0.001***)
                       Technique / Professionnel – Primaire (p<0.001***)
Groupe d'âges
                                   25-44 ans - 18-24 ans (p=0.086)
                                 45-64 ans - 18-24 ans (p<0.001***)
                               65 ans et plus - 18-24 ans (p<0.001***)
Heures de télévision / jour
                                               dY/dX (p<0.001***)
Sexe
                                      Homme - Femme (p<0.001***)
                                                             -402098204080°
                                                      Average Marginal
```

• p = 0.05 •

Figure 22.11: Effets marginaux moyens

Un résultat similaire peut être obtenu avec margins::margins(), le package {margins} s'inspirant de la commande **Stata** margins.

```
margins::margins(mod) %>% tidy()
```

```
# A tibble: 9 x 5
 term
                                  estimate std.error statistic p.value
  <chr>
                                     <dbl>
                                               <dbl>
                                                         <dbl>
                                                                   <dbl>
1 etudesNon documenté
                                    0.431
                                             0.0691
                                                          6.23 4.60e-10
2 etudesSecondaire
                                    0.157
                                             0.0314
                                                          4.99 6.10e- 7
3 etudesSupérieur
                                    0.370
                                             0.0337
                                                         11.0 4.69e-28
                                                          6.04 1.53e- 9
4 etudesTechnique / Professionnel
                                    0.178
                                             0.0295
5 groupe_ages25-44 ans
                                   -0.0844
                                             0.0492
                                                         -1.71 8.65e- 2
6 groupe_ages45-64 ans
                                                         -4.20 2.73e- 5
                                   -0.213
                                             0.0507
7 groupe_ages65 ans et plus
                                   -0.263
                                                         -4.73 2.21e- 6
                                             0.0556
8 heures.tv
                                                         -3.66 2.56e- 4
                                   -0.0227
                                             0.00620
9 sexeHomme
                                    0.0788
                                             0.0197
                                                          4.00 6.26e- 5
```

For {broom.helpers}, {gtsummary} or {ggstats}, use broom.helpers::tidy_margins().

```
mod |>
  tbl_regression(
    tidy_fun = broom.helpers::tidy_margins,
    estimate_fun = scales::label_percent(
        accuracy = 0.1,
        style_positive = "plus"
    )
    ) |>
    bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 22.11: Effets marginaux moyens avec margins

	Average		· · ·
	Marginal		p-
Caractéristique	Effects	95% IC	valeur
Niveau d'études			
Primaire	_	_	
Non documenté	+43.1%	$+29.5\% - \\ +56.6\%$	< 0,001
Secondaire	+15.7%	+9.5% - +21.8%	<0,001
Supérieur	+37.0%	+30.4% - $+43.6%$	< 0,001
Technique /	+17.8%	+12.0% $-$	< 0,001
Professionnel	1211070	+23.6%	10,001
Groupe d'âges		,, -	
18-24 ans	_		
25-44 ans	-8.4%	-18.1% - +1.2%	0,086
45-64 ans	-21.3%	-31.2% - $-11.3%$	<0,001
65 ans et plus	-26.3%	-37.2% - $-15.4%$	<0,001
Heures de	-2.3%	-3.5% -	< 0,001
télévision / jour	,,	-1.1%	10,001
Sexe			
Femme			
Homme	+7.9%	+4.0% - +11.7%	<0,001

```
ggstats::ggcoef_model(
   mod,
   tidy_fun = broom.helpers::tidy_margins
) +
   ggplot2::scale_x_continuous(
    labels = scales::label_percent(style_positive = "plus")
)
```


Figure 22.12: Effets marginaux moyens avec margins

22.5.2 Pentes marginales à la moyenne / Effets marginaux à la moyenne

Pour les effets marginaux à la moyenne (marginal effect at the mean), simplement indiquer newdata = "mean" à broom.helpers::tidy_marginaleffects().

22.6 Lectures complémenaires (en anglais)

- Documentation of the marginal effects package par Vincent Arel-Bundock
- Marginalia: A guide to figuring out what the heck marginal effects, marginal slopes, average marginal effects, marginal effects at the mean, and all these other marginal things are par Andrew Heiss
- Introduction to Adjusted Predictions and Marginal Effects in R par Daniel Lüdecke
- An Introduction to margins
- Marginal effects / slopes, contrasts, means and predictions with broom.helpers

23 Contrastes (variables catégorielles)

Dans les modèles de régression (comme les modèles linéaires, cf. Chapitre 20, ou les modèles linéaires généralisés comme la régression logistique binaire, cf. Chapitre 21), une transformation des variables catégorielles est nécessaire pour qu'elles puissent être prises en compte dans le modèle. On va dès lors définir des **contrastes**.

De manière générale, une variable catégorielle à n modalités va être transformée en n-1 variables quantitatives. Il existe cependant plusieurs manières de faire (i.e. plusieurs types de contrastes). Et, selon les contrastes choisis, les coefficients du modèles ne s'interpréteront pas de la même manière.

23.1 Contrastes de type traitement

Par défaut, **R** applique des contrastes de type traitement pour un facteur non ordonné. Il s'agit notamment des contrastes utilisés par défaut dans les chapitres précédents.

23.1.1 Exemple 1 : un modèle linéaire avec une variable catégorielle

Commençons avec un premier exemple que nous allons calculer avec le jeu de données *trial* chargé en mémoire lorsque l'on appelle l'extension {gtsummary}. Ce jeu de données contient les observations de 200 patients. Nous nous intéressons à deux variables en particulier : *marker* une variable numérique correspondant à un marqueur biologique et *grade* un facteur à trois modalités correspondant à différent groupes de patients.

Regardons la moyenne de marker pour chaque valeur de qrade.

```
library(tidyverse)
library(gtsummary)
trial |>
  select(marker, grade) |>
  tbl_summary(
    by = grade,
    statistic = marker ~ "{mean}",
    digits = marker ~ 4
) |>
  add_overall(last = TRUE)
```

	I , N =	II, N =	III, N =	Overall, N
Characteri	stic 68	68	64	= 200
Marker Level	1.0669	0.6805	0.9958	0.9160
(ng/mL)				
Unknown	2	5	3	10

Utilisons maintenant une régression linaire pour modéliser la valeur de *marker* en fonction de *grade*.

```
mod1_trt <- lm(marker ~ grade, data = trial)
mod1_trt</pre>
```

Call:

```
lm(formula = marker ~ grade, data = trial)
```

Coefficients:

```
(Intercept) gradeII gradeIII
1.0669 -0.3864 -0.0711
```

Le modèle obtenu contient trois coefficients ou termes : un intercept et deux termes associés à la variable grade .

Pour bien interpréter ces coefficients, il faut comprendre comment la variable *grade* a été transformée avant d'être inclue dans le modèle. Nous pouvons voir cela avec la fonction contrasts().

contrasts(trial\$grade)

II III I 0 0 III 1 0 III 0 1

Ce que nous montre cette matrice, c'est que la variable catégorielle grade à 3 modalités a été transformée en 2 variables binaires que l'on retrouve sous les noms de gradeII et gradeIII dans le modèle : gradeII vaut 1 si grade est égal à II et 0 sinon; gradeIII vaut 1 si grade est égal à III et 0 sinon. Si grade est égal à I, alors gradeIII et gradeIII valent 0.

Il s'agit ici d'un contraste dit de traitement ou la première modalité joue ici le rôle de **modalité de référence**.

Dans ce modèle linéaire, la valeur de l'intercept correspond à la moyenne de marker lorsque nous nous trouvons à la référence, donc quand grade est égal à I dans cet exemple. Et nous pouvons le constater dans notre tableau précédent des moyennes, 1.0669 correspond bien à la moyenne de marker pour la modalité I.

La valeur du coefficient associé à markerII correspond à l'écart par rapport à la référence lorsque marker est égal à II. Autrement dit, la moyenne de marker pour la modalité II correspond à la somme de l'intercept et du coefficient markerII. Et nous retrouvons bien la relation suivante : 0.6805 = 1.0669 + -0.3864. De même, la moyenne de marker lorsque grade vaut III est égale à la somme de l'intercept et du terme markerIII.

Lorsqu'on utilise des contrastes de type traitement, chaque terme du modèle peut être associé à une et une seule modalité d'origine de la variable catégorielle. Dès lors, il est possible de rajouter la modalité de référence lorsque l'on présente les résultats et on peut même lui associer la valeurs 0, ce qui peut être fait avec gtsummary::tbl_regression() avec l'option add_estimate_to_reference_rows = TRUE.

```
mod1_trt |>
  tbl_regression(
   intercept = TRUE,
   add_estimate_to_reference_rows = TRUE
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	Beta	95% CI	p-value
(Intercept)	1.1	0.86, 1.3	< 0.001
Grade			
I	0.00		
II	-0.39	-0.68, -0.09	0.010
III	-0.07	-0.37, 0.23	0.6

23.1.2 Exemple 2 : une régression logistique avec deux variables catégorielles

Pour ce deuxième exemple, nous allons utiliser le jeu de données hdv2003 fourni par l'extension {questionr} et recoder la variable age en groupes d'âges à 4 modalités.

```
library(questionr)
data("hdv2003")

library(tidyverse)

hdv2003 <- hdv2003 |>
  mutate(
    groupe_ages = cut(
    age,
```

```
c(16, 25, 45, 65, 99),
    right = FALSE,
    include.lowest = TRUE
) |>
    fct_recode(
       "16-24" = "[16,25)",
       "25-44" = "[25,45)",
       "45-64" = "[45,65)",
       "65+" = "[65,99]"
    )
) |>
    labelled::set_variable_labels(
       groupe_ages = "Groupe d'âges",
       sexe = "Sexe"
)
Nous allons faire une régression logisties
```

Nous allons faire une régression logistique binaire pour investiguer l'effet du sexe (variable à 2 modalités) et du groupe d'âges (variable à 4 modalités) sur la pratique du sport.

```
mod2_trt <- glm(</pre>
    sport ~ sexe + groupe_ages,
    family = binomial,
    data = hdv2003
  )
  mod2_trt
Call: glm(formula = sport ~ sexe + groupe_ages, family = binomial,
    data = hdv2003)
Coefficients:
     (Intercept)
                         sexeFemme groupe_ages25-44 groupe_ages45-64
          0.9021
                           -0.4455
                                              -0.6845
                                                                -1.6535
  groupe_ages65+
         -2.3198
Degrees of Freedom: 1999 Total (i.e. Null); 1995 Residual
Null Deviance:
                    2617
Residual Deviance: 2385
                            AIC: 2395
```

Le modèle contient 5 termes : 1 intercept, 1 coefficient pour la variable sexe et 3 coefficients pour la variable $groupe_ages$. Comme précédemment, nous pouvons constater que les variables à n modalités sont remplacées par défaut (contrastes de type traitement) par n-1 variables binaires, la première modalité jouant à chaque fois le rôle de modalité de référence.

```
contrasts(hdv2003$sexe)
```

$\begin{array}{cc} & \text{Femme} \\ \text{Homme} & 0 \\ \text{Femme} & 1 \\ \end{array}$

```
contrasts(hdv2003$groupe_ages)
```

	25-44	45-64	65+
16-24	0	0	0
25-44	1	0	0
45-64	0	1	0
65+	0	0	1

L'intercept correspond donc à la situation à la référence, c'està-dire à la prédiction du modèle pour les hommes (référence de sexe) âgés de 16 à 24 ans (référence de groupe_ages).

Il est possible d'exprimer cela en termes de probabilité en utilisant l'inverse de la fonction logit (puisque nous avons utilisé un modèle logit).

```
inv_logit <- binomial("logit")$linkinv
inv_logit(0.9021)</pre>
```

[1] 0.7113809

Selon le modèle, les hommes âgés de 16 à 24 ans ont donc 71% de chance de pratiquer du sport.

Regardons maintenant le coefficient associé à sexeFemme (-0.4455) : il représente (pour la modalité de référence des autres

variables, soit pour les 16-24 ans ici) la correction à appliquer à l'intercept pour obtenir la probabilité de faire du sport. Il s'agit donc de la différence entre les femmes et les hommes pour le groupe des 16-24 ans.

```
inv_logit(0.9021 - 0.4455)
```

[1] 0.6122073

Autrement dit, selon le modèle, la probabilité de faire du sport pour une femme âgée de 16 à 24 ans est de 61%. On peut représenter cela avec la fonction ggeffects::ggpredict() de {ggeffects}, qui représente les prédictions d'une variable toutes les autres variables étant à la référence.

```
library(ggeffects)
ggpredict(mod2_trt, "sexe") |> plot()
```


Bien souvent, pour une régression logistique, on préfère représenter les exponentielles des coefficients qui correspondent à des *odds ratios*.

```
mod2_trt |>
  tbl_regression(
    exponentiate = TRUE,
    intercept = TRUE,
    add_estimate_to_reference_rows = TRUE
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

OR	95% CI	p-value
2.46	1.76, 3.48	< 0.001
1.00		
0.64	0.53, 0.78	< 0.001
1.00		
0.50	0.35, 0.71	< 0.001
0.19	0.13, 0.27	< 0.001
0.10	0.06, 0.15	< 0.001
	2.46 1.00 0.64 1.00 0.50 0.19	2.46 1.76, 3.48 1.00 — 0.64 0.53, 0.78 1.00 — 0.50 0.35, 0.71 0.19 0.13, 0.27

Or, 0,64 correspond bien à l'odds ratio entre 61% et 71% (que l'on peut calculer avec questionr::odds.ratio()).

```
questionr::odds.ratio(0.6122, 0.7114)
```

[1] 0.6404246

De la même manière, les différents coefficients associés à groupe_ages correspondent à la différence entre chaque groupe d'âges et sa modalité de référence (ici 16-24 ans), quand les autres variables (ici le sexe) sont à leur référence (ici les hommes).

Pour prédire la probabilité de faire du sport pour un profil particulier, il faut prendre en compte toutes les termes qui s'appliquent et qui s'ajoutent à l'intercept. Par exemple, pour une femme de 50 ans il faut considérer l'intercept (0.9021), le coefficient sexeFemme (-0.4455) et le coefficient groupe_ages45-64 (-1.6535). Sa probabilité de faire du sport est donc de 23%.

```
inv_logit(0.9021 - 0.4455 - 1.6535)
```

[1] 0.2320271

23.1.3 Changer la modalité de référence

Il est possible de personnaliser les contrastes à utiliser et avoir un recours à un contraste de type traitement mais en utilisant une autre modalité que la première comme référence, avec la fonction contr.treatment(). Le premier argument de la fonction corresponds au nombre de modalités de la variable et le paramètre base permets de spécifier la modalité de référence (1 par défaut).

```
contr.treatment(4, base = 2)

1 3 4
1 1 0 0
2 0 0 0
3 0 1 0
4 0 0 1
```

contr.SAS() permets de spécifier un contraste de type traitement dont la modalité de référence est la dernière.

```
1 2 3
1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 0
```

Les contrastes peuvent être modifiés de deux manières : au moment de la construction du modèle (via l'option contrasts) ou comme attribut des variables (via la fonction contrasts()).

```
contrasts(hdv2003$sexe) <- contr.SAS(2)
mod2_trt_bis <- glm(
   sport ~ sexe + groupe_ages,
   family = binomial,
   data = hdv2003,
   contrasts = list(groupe_ages = contr.treatment(4, 3))
)
mod2_trt_bis |>
   tbl_regression(exponentiate = TRUE, intercept = TRUE)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	OR	95% CI	p-value
(Intercept)	0.30	0.25, 0.36	< 0.001
Sexe			
Homme	1.56	1.29, 1.90	< 0.001
Femme			
Groupe d'âges			
16-24	5.23	3.67, 7.52	< 0.001
25-44	2.64	2.12, 3.29	< 0.001
45-64			
65+	0.51	0.37, 0.70	< 0.001

Comme les modalités de référence ont changé, l'intercept et les différents termes ont également changé (puisque l'on ne compare plus à la même référence).

```
ggstats::ggcoef_compare(
  list(mod2_trt, mod2_trt_bis),
  exponentiate = TRUE,
  type = "faceted"
```


Cependant, du point de vue explicatif et prédictif, les deux modèles sont rigoureusement identiques.

```
anova(mod2_trt, mod2_trt_bis, test = "Chisq")
```

Analysis of Deviance Table

```
Model 1: sport ~ sexe + groupe_ages

Model 2: sport ~ sexe + groupe_ages

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1995 2385.2

2 1995 2385.2 0 0
```

De même, leurs prédictions marginales (cf. Chapitre 22) sont identiques.

```
ggstats::ggcoef_compare(
  list(mod2_trt, mod2_trt_bis),
  tidy_fun = broom.helpers::tidy_marginal_predictions,
  type = "dodge",
  vline = FALSE
```


23.2 Contrastes de type somme

Nous l'avons vu, les contrastes de type traitement nécessitent de définir une modalité de référence et toutes les autres modalités seront comparées à cette modalité de référence. Une alternative consiste à comparer toutes les modalités à la grande moyenne, ce qui s'obtient avec un contraste de type somme que l'on obtient avec contr.sum().

23.2.1 Exemple 1 : un modèle linéaire avec une variable catégorielle

Reprenons notre premier exemple de tout à l'heure et modifions seulement le contraste.

```
contrasts(trial$grade) <- contr.sum
mod1_sum <- lm(
  marker ~ grade,
  data = trial
)</pre>
```

```
mod1_sum
```

```
Call:
lm(formula = marker ~ grade, data = trial)

Coefficients:
(Intercept) grade1 grade2
0.9144 0.1525 -0.2339
```

L'intercept correspond à ce qu'on appelle parfois la grande moyenne (ou great average en anglais). Il ne s'agit pas de la moyenne observée de marker mais de la moyenne des moyennes de chaque sous-groupe. Cela va constituer la situation de référence de notre modèle, en quelque sorte indépendante des effets de la variable grade.

mean(moy_groupe\$moyenne_marker)

0.681

0.996

2 II

3 III

[1] 0.9144384

Le terme grade1 correspond quant à lui au modificateur associé à la première modalité de la variable grade à savoir I. C'est l'écart, pour cette modalité, à la grande moyenne : 1.0669 - 0.9144 = 0.1525.

De même, le terme grade2 correspond à l'écart pour la modalité II par rapport à la grande moyenne : 0.6805 - 0.9144 = -0.2339.

Qu'en est-il de l'écart à la grande moyenne pour la modalité III ? Pour cela, voyons tout d'abord comment la variable grade a été codée :

```
contrasts(trial$grade)
```

```
[,1] [,2]
I 1 0
II 0 1
III -1 -1
```

Comme précédemment, cette variable à trois modalités a été codée avec deux termes. Les deux premiers termes correspondent aux écarts à la grande moyenne des deux premières modalités. La troisième modalité est, quant à elle, codée systématiquement -1. C'est ce qui assure que la somme des contributions soit nulle et donc que l'*intercept* capture la grande moyenne.

L'écart à la grande moyenne pour la troisième modalité s'obtient donc en faisant la somme des autres termes et en l'inversant : (0.1525 - 0.2339) * -1 = 0.0814 = 0.9958 - 0.9144.

On peut calculer / afficher la valeur associée à la dernière modalité en précisant add_estimate_to_reference_rows = TRUE lorsque l'on appelle gtsummary::tbl_regression().

```
mod1_sum |>
  tbl_regression(
```

```
intercept = TRUE,
  add_estimate_to_reference_rows = TRUE
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	Beta	95% CI	p-value
(Intercept)	0.91	0.79, 1.0	< 0.001
Grade			
I	0.15	-0.02, 0.32	0.078
II	-0.23	-0.41, -0.06	0.008
III	0.08		

De même, cette valeur est correctement affichée par ggstats::ggcoef_model().

ggstats::ggcoef_model(mod1_sum)

Le fait d'utiliser des contrastes de type traitement ou somme n'a aucun impact sur la valeur prédictive du modèle. La quantité

de variance expliquée, la somme des résidus ou encore l'AIC sont identiques. En un sens, il s'agit du même modèle. C'est seulement la manière d'interpréter les coefficients du modèle qui change.

```
anova(mod1_trt, mod1_sum, test = "Chisq")
Analysis of Variance Table

Model 1: marker ~ grade
Model 2: marker ~ grade
  Res.Df RSS Df Sum of Sq Pr(>Chi)
1  187 134.17
2  187 134.17 0 0
```

23.2.2 Exemple 2 : une régression logistique avec deux variables catégorielles

Reprenons notre second exemple et codons les variables catégorielles avec un traitement de type somme.

```
mod2_sum <- glm(
   sport ~ sexe + groupe_ages,
   family = binomial,
   data = hdv2003,
   contrasts = list(sexe = contr.sum, groupe_ages = contr.sum)
)
mod2_sum |>
   tbl_regression(
      exponentiate = TRUE,
      intercept = TRUE,
      add_estimate_to_reference_rows = TRUE
)
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	\mathbf{OR}	95% CI	p-value
(Intercept)	0.62	0.55, 0.69	< 0.001
Sexe			
Homme	1.25	1.13, 1.38	< 0.001
Femme	0.80	_	
Groupe d'âges			
16-24	3.20	2.49, 4.15	< 0.001
25-44	1.62	1.38, 1.89	< 0.001
45-64	0.61	0.52, 0.72	< 0.001
65+	0.31		

ggstats::ggcoef_model(mod2_sum, exponentiate = TRUE)

Cette fois-ci, l'*intercept* capture la situation à la grande moyenne à la fois du sexe et du groupe d'âges, et les coefficients s'interprètent donc comme modificateurs de chaque modalité par rapport à cette grande moyenne. En ce sens, les contrastes de type somme permettent donc de capturer l'effet de chaque modalité.

Du point de vue explicatif et prédictif, le fait d'avoir recours à des contrastes de type somme ou traitement n'a aucun impact : les deux modèles sont rigoureusement identiques. Il n'y a que la manière d'interpréter les coeffcients qui chagnge.

```
anova(mod2_trt, mod2_sum, test = "Chisq")
Analysis of Deviance Table

Model 1: sport ~ sexe + groupe_ages
Model 2: sport ~ sexe + groupe_ages
```

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1995 2385.2
2 1995 2385.2 0 0

Les prédictions marginales (cf. Chapitre 22) sont identiques.

```
ggstats::ggcoef_compare(
  list(mod2_trt, mod2_sum),
  tidy_fun = broom.helpers::tidy_marginal_predictions,
  type = "dodge",
  vline = FALSE
)
```


23.3 Autres types de contrastes

23.3.1 Contrastes de type Helmert

Les contrastes de Helmert sont un peu plus complexes : ils visent à comparer la seconde modalité à la première, la troisième à la moyenne des deux premières, la quatrième à la moyenne des trois premières, etc.

Prenon un exemple avec une variable catégorielle à quatre modalités.

```
contrasts(trial$stage) <- contr.helmert</pre>
  contrasts(trial$stage)
   [,1] [,2] [,3]
T1
                -1
          -1
T2
      1
          -1
                -1
Т3
            2
                -1
T4
                 3
  mod_helmert <- lm(</pre>
    marker ~ stage,
    data = trial
  )
  mod_helmert
Call:
lm(formula = marker ~ stage, data = trial)
Coefficients:
(Intercept)
                   stage1
                                 stage2
                                                stage3
    0.91661
                  0.19956
                                0.03294
                                              -0.02085
```

Pour bien comprendre comment interpréter ces coefficients, calculons déjà la grande moyenne.

```
m <- trial |>
   dplyr::group_by(stage) |>
   dplyr::summarise(moy = mean(marker, na.rm = TRUE))
mean(m$moy)
```

[1] 0.9166073

On le voit, l'intercept (0.9166) capture ici cette grande moyenne, à savoir la moyenne des moyennes de chaque sous-groupe.

Maintenant, pour interpréter les coefficients, regardons comment évolue la moyenne à chaque fois que l'on ajoute une modalité. La fonction <code>dplyr::cummean()</code> nous permet de calculer la moyenne cumulée, c'est-à-dire la moyenne de la valeur actuelle et des valeurs des lignes précédentes. Avec <code>dplyr::lag()</code> nous pouvons obtenir la moyenne cumulée de la ligne précédente. Il nous est alors possible de calculer l'écart entre les deux, et donc de voir comment la moyenne a changé avec l'ajout d'une modalité.

```
m <- m |>
   dplyr::mutate(
        moy_cum = dplyr::cummean(moy),
        moy_cum_prec = dplyr::lag(moy_cum),
        ecart = moy_cum - moy_cum_prec
)
m
```

```
# A tibble: 4 x 5
```

```
stage
          moy moy_cum moy_cum_prec
                                       ecart
  <fct> <dbl>
                 <dbl>
                              <dbl>
                                       <dbl>
1 T1
        0.705
                 0.705
                                     NA
                             NA
2 T2
        1.10
                 0.905
                              0.705 0.200
3 T3
        1.00
                 0.937
                              0.905 0.0329
4 T4
                              0.937 -0.0208
        0.854
                 0.917
```

On le voit, les valeurs de la colonne ecart correspondent aux coefficients du modèle.

Le premier terme stage1 compare la deuxième modalité (T2) à la première (T1) et indique l'écart entre la moyenne des moyennes de T1 et T2 et la moyenne de T1.

Le second terme stage2 compare la troisième modalité (T3) aux deux premières (T1 et T2) et indique l'écart entre la moyenne des moyennes de T1, T2 et T3 par rapport à la moyenne des moyennes de T1 et T2.

Le troisième terme stage3 compare la quatrième modalité (T4) aux trois premières (T1, T2 et T3) et indique l'écart entre la moyenne des moyennes de T1, T2, T3 et T4 par rapport à la moyenne des moyennes de T1, T2 et T3.

Les contrastes de Helmert sont ainsi un peu plus complexes à interpréter et à réserver à des cas particuliers où ils prennent tout leur sens.

23.3.2 Contrastes polynomiaux

Les contrastes polynomiaux, définis avec contr.poly(), sont utilisés par défaut pour les variables catégorielles ordonnées. Ils permettent de décomposer les effets selon une composante linéaire, une composante quadratique, une composante cubique, voire des composantes de degrés supérieurs.

```
contrasts(trial$stage) <- contr.poly
contrasts(trial$stage)

.L .Q .C

T1 -0.6708204 0.5 -0.2236068

T2 -0.2236068 -0.5 0.6708204

T3 0.2236068 -0.5 -0.6708204

T4 0.6708204 0.5 0.2236068

mod_poly <- lm(
   marker ~ stage,
   data = trial
)
```

mod_poly

Call:

```
lm(formula = marker ~ stage, data = trial)
```

Coefficients:

(Intercept)	stage.L	${\tt stage.Q}$	stage.C
0.91661	0.07749	-0.27419	0.10092

Ici aussi, l'*intercept* correspond à la grande moyenne des moyennes. Il est par contre plus difficile de donner un sens interprétatif / sociologique aux différents coefficients.

23.4 Lectures additionnelles

- A (sort of) Complete Guide to Contrasts in R par Rose Maier
- An introductory explanation of contrast coding in R linear models par Athanassios Protopapas
- Understanding Sum Contrasts for Regression Models: A Demonstration par Mona Zhu

24 Interactions

Dans un modèle statistique classique, on fait l'hypothèse implicite que chaque variable explicative est indépendante des autres. Cependant, cela ne se vérifie pas toujours. Par exemple, l'effet de l'âge peut varier en fonction du sexe.

Nous pourrons dès lors ajouter à notre modèle des interactions entre variables.

24.1 Données d'illustration

Reprenons le modèle que nous avons utilisé dans le chapitre sur la régression logistique binaire (cf. Chapitre 21).

```
library(tidyverse)
library(labelled)
data(hdv2003, package = "questionr")
d <-
  hdv2003 |>
  mutate(
    sexe = sexe |> fct_relevel("Femme"),
    groupe_ages = age |>
      cut(
        c(18, 25, 45, 65, 99),
        right = FALSE,
        include.lowest = TRUE,
        labels = c("18-24 \text{ ans}", "25-44 \text{ ans}",
                    "45-64 ans", "65 ans et plus")
      ),
    etudes = nivetud |>
```

```
fct recode(
      "Primaire" = "N'a jamais fait d'etudes",
      "Primaire" = "A arrete ses etudes, avant la derniere annee d'etudes primaires",
      "Primaire" = "Derniere annee d'etudes primaires",
      "Secondaire" = "1er cycle",
      "Secondaire" = "2eme cycle",
      "Technique / Professionnel" = "Enseignement technique ou professionnel court",
      "Technique / Professionnel" = "Enseignement technique ou professionnel long",
      "Supérieur" = "Enseignement superieur y compris technique superieur"
 fct_na_value_to_level("Non documenté")
) |>
set_variable_labels(
  sport = "Pratique un sport ?",
  sexe = "Sexe",
  groupe_ages = "Groupe d'âges",
  etudes = "Niveau d'études",
 heures.tv = "Heures de télévision / jour"
```

24.2 Modèle sans interaction

Nous avions alors exploré les facteurs associés au fait de pratiquer du sport.

```
mod <- glm(
   sport ~ sexe + groupe_ages + etudes + heures.tv,
   family = binomial,
   data = d
)
library(gtsummary)
theme_gtsummary_language(
   "fr",
   decimal.mark = ",",
   big.mark = " "
)</pre>
```

```
mod |>
  tbl_regression(exponentiate = TRUE) |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 24.1: Odds Ratios du modèle logistique simple

Caractéristique	OR	$95\%~{ m IC}$	p-valeur
Sexe			
Femme			
Homme	$1,\!52$	$1,\!24-1,\!87$	< 0,001
Groupe d'âges			
18-24 ans			
25-44 ans	0,68	$0,\!43-1,\!06$	0,084
45-64 ans	$0,\!36$	$0,\!23-0,\!57$	< 0,001
65 ans et plus	$0,\!27$	$0,\!16-0,\!46$	< 0,001
Niveau d'études			
Primaire			
Secondaire	$2,\!54$	1,73-3,75	< 0,001
Technique / Professionnel	$2,\!81$	$1,\!95-4,\!10$	< 0,001
Supérieur	$6,\!55$	$4,\!50 - 9,\!66$	< 0,001
Non documenté	8,54	$4,\!51-16,\!5$	< 0,001
Heures de télévision / jour	0,89	$0,\!83-0,\!95$	< 0,001

Selon les résultats de notre modèle, les hommes pratiquent plus un sport que les femmes et la pratique du sport diminue avec l'âge.

Dans le chapitre sur les estimations marginales, cf. Chapitre 22, nous avons présenté la fonction broom.helpers::plot_marginal_predictions() qui permet de représenter les prédictions marginales moyennes du modèle.

```
mod |>
  broom.helpers::plot_marginal_predictions(type = "response") |>
```

```
patchwork::wrap_plots() &
scale_y_continuous(
   limits = c(0, .8),
   labels = scales::label_percent()
)
```


Figure 24.1: Prédictions marginales moyennes du modèle simple

24.3 Définition d'une interaction

Cependant, l'effet de l'âge est-il le même selon le sexe ? Nous allons donc introduire une interaction entre l'âge et le sexe dans notre modèle, ce qui sera représenté par sexe * groupe_agesdans l'équation du modèle.

```
mod2 <- glm(
  sport ~ sexe * groupe_ages + etudes + heures.tv,
  family = binomial,
  data = d
)</pre>
```

Commençons par regarder les prédictions marginales du modèle avec interaction.

```
mod2 |>
broom.helpers::plot_marginal_predictions(type = "response") |>
patchwork::wrap_plots(ncol = 1) &
scale_y_continuous(
   labels = scales::label_percent()
)
```


Figure 24.2: Prédictions marginales moyennes du modèle avec interaction

Sur ce graphique, on voit que la pratique d'un sport diminue fortement avec l'âge chez les hommes, tandis que cette diminution est bien plus modérée chez les femmes.

Par défaut, broom.helpers::plot_marginal_predictions() détecte la présence d'interactions dans le modèle et calcule les prédictions marginales pour chaque combinaison de variables incluent dans une interaction. Il reste possible de calculer des prédictions marginales individuellement pour chaque variable du modèle. Pour cela, il suffit d'indiquer variables_list = "no_interaction".

```
mod2 |>
    broom.helpers::plot_marginal_predictions(
      variables list = "no interaction",
      type = "response"
    ) |>
    patchwork::wrap_plots() &
    scale_y_continuous(
       labels = scales::label_percent()
                               60%
40%
                               40%
35%
                               30%
30%
                               20%
        Femme
                   Homme
                                   18-24 an $5-44 an $5-64 an $5 ans et plus
              Sexe
                                         Groupe d'âges
                               40%
60%
                               30%
40%
                               20%
20%
                               10%
   Primai Sie chnidaire / Pro Sespibliane documen
          Niveau d'études
                                     Heures de télévision / jour
```

24.4 Significativité de l'interaction

L'ajout d'une interaction au modèle augmente la capacité prédictive du modèle mais, dans le même temps, augmente

le nombre de coefficients (et donc de degrés de liberté). La question se pose donc de savoir si l'ajout d'un terme d'interaction améliore notre modèle.

En premier lieu, nous pouvons comparer les AIC des modèles avec et sans interaction.

```
AIC(mod)
```

[1] 2230.404

AIC(mod2)

[1] 2223.382

L'AIC du modèle avec interaction est plus faible que celui sans interaction, nous indiquant un gain : notre modèle avec interaction est donc meilleur.

On peut tester avec car::Anova() si l'interaction est statistiquement significative⁴¹.

```
car::Anova(mod2, type = "III")
```

Analysis of Deviance Table (Type III tests)

Response: sport

```
LR Chisq Df Pr(>Chisq)
                   19.349
                           1
                              1.089e-05 ***
sexe
groupe_ages
                   15.125
                           3
                              0.0017131 **
etudes
                  125.575
                           4
                              < 2.2e-16 ***
                   12.847
                              0.0003381 ***
heures.tv
                           1
                   13.023
                          3
sexe:groupe_ages
                              0.0045881 **
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

La p-valeur associée au terme d'interaction (sexe:groupe_ages) est inférieure à 1% : l'interaction a donc bien un effet significatif.

41 Lorsqu'il y a une interaction, il est préférable d'utiliser le type III, cf. Section 21.7. En toute rigueur, il serait préférable de coder nos variables catégorielles avec un contraste de type somme (cf. Chapitre 23). En pratique, nous pouvons nous en passer ici.

Nous pouvons également utiliser gtsummary::add_global_p().

```
mod2 |>
  tbl_regression(exponentiate = TRUE) |>
  add_global_p() |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 24.2: Odds Ratios du modèle logistique avec interaction

Caractéristique	OR	95% IC	p-valeur
Sexe			<0,001
Femme		_	
Homme	5,10	$2,\!41-11,\!4$	
Groupe d'âges			0,002
18-24 ans			
25-44 ans	1,06	$0,\!61-1,\!85$	
45-64 ans	$0,\!64$	$0,\!36-1,\!15$	
65 ans et plus	$0,\!49$	$0,\!25-0,\!97$	
Niveau d'études			< 0,001
Primaire			
Secondaire	2,55	1,74 - 3,78	
Technique / Professionnel	$2,\!84$	$1,\!97-4,\!14$	
Supérieur	$6,\!69$	4,60 - 9,89	
Non documenté	8,94	4,64-17,6	
Heures de télévision / jour	$0,\!89$	$0,\!83-0,\!95$	< 0,001
Sexe * Groupe d'âges			0,005
Homme $*$ 25-44 ans	0,31	$0{,}13-0{,}70$	
Homme * 45-64 ans	$0,\!24$	$0,\!10-0,\!54$	
Homme * 65 ans et plus	$0,\!23$	$0,\!09-0,\!60$	

24.5 Interprétation des coefficients

Jetons maintenant un œil aux coefficients du modèle. Pour rendre les choses plus visuelles, nous aurons recours à

ggtstats::ggcoef_model().

```
mod2 |>
   ggstats::ggcoef_model(exponentiate = TRUE)
```


Figure 24.3: Coefficients (odds ratio) du modèle avec interaction

Concernant les variables sexe et groupe_ages, nous avons trois séries de coefficients : une série pour le sexe, une pour le groupe d'âges et enfin des coefficients pour l'interaction entre le sexe et le groupe d'âges.

Pour bien interpréter ces coefficients, il faut toujours avoir en tête les modalités choisies comme référence pour chaque variable. Supposons une femme de 60 ans, dont toutes les autres variables correspondent aux modalités de référence (i.e. de niveau primaire, qui ne regarde pas la télévision). Regardons ce que prédit le modèle quant à sa probabilité de faire du sport au travers d'une représentation graphique, grâce au package {breakDown}.

```
library(breakDown)
logit <- function(x) exp(x)/(1+exp(x))
nouvelle_observation <- d[1, ]
nouvelle_observation$sexe[1] = "Femme"
nouvelle_observation$groupe_ages[1] = "45-64 ans"
nouvelle_observation$etud[1] = "Primaire"
nouvelle_observation$heures.tv[1] = 0
plot(
   broken(mod2, nouvelle_observation, predict.function = betas),
   trans = logit
) +
   ylim(0, 1) +
   ylab("Probabilité de faire du sport")</pre>
```


Figure 24.4: Représentation graphique de l'estimation de la probabilité de faire du sport pour une femme de 60 ans

En premier lieu, l'intercept s'applique et permet de déterminer la probabilité de base de faire du sport à la référence. Femme étant la modalité de référence pour la variable sexe, cela ne modifie pas le calcul de la probabilité de faire du sport. Par contre, il y a une modification induite par la modalité 45-64 ans de la variable groupe_ages.

Regardons maintenant la situation d'un homme de 20 ans.

```
nouvelle_observation$sexe[1] = "Homme"
nouvelle_observation$groupe_ages[1] = "18-24 ans"
plot(
   broken(mod2, nouvelle_observation, predict.function = betas),
   trans = logit
) +
   ylim(0, 1.2) +
   ylab("Probabilité de faire du sport")
```


Figure 24.5: Représentation graphique de l'estimation de la probabilité de faire du sport pour un homme de 20 ans

Nous sommes à la modalité de référence pour l'âge par contre il y a un effet important du sexe. Le coefficient associé globalement à la variable sexe correspond donc à l'effet du sexe à la modalité de référence du groupe d'âges.

Regardons enfin la situation d'un homme de 60 ans.

```
nouvelle_observation$groupe_ages[1] = "45-64 ans"
plot(
   broken(mod2, nouvelle_observation, predict.function = betas),
   trans = logit
) +
   ylim(0, 1.2) +
   ylab("Probabilité de faire du sport")
```


Figure 24.6: Représentation graphique de l'estimation de la probabilité de faire du sport pour un homme de 60 ans

Cette fois, plusieurs coefficients s'appliquent : à la fois le coefficient sexe = Homme (effet du sexe pour les 18-24 ans), le coefficient groupe_ages = 45-64 ans qui est l'effet de l'âge pour les femmes de 45-64 ans par rapport aux 18-24 ans et le coefficient sexe:groupe_ages = Homme:45-64 ans qui indique l'effet spécifique qui s'applique aux hommes de 45-64 ans, d'une part par rapport aux femmes du même âge et d'autre part par rapport aux hommes de 18-24 ans. L'effet des coefficients d'interaction doivent donc être interprétés par rapport aux autres coefficients du modèle qui s'appliquent, en tenant compte des modalités de référence.

24.6 Définition alternative de l'interaction

Il est cependant possible d'écrire le même modèle différemment. En effet, sexe * groupe_ages dans la formule du modèle est équivalent à l'écriture sexe + groupe_ages + sexe:groupe_ages, c'est-à-dire que l'on demande des coefficients pour la variable sexe à la référence de groupe_ages, des coefficients pour groupe_ages à la référence de sexe et enfin des coefficients pour tenir compte de l'interaction.

On peut se contenter d'une série de coefficients uniques pour l'interaction en indiquant seulement sexe : groupe_ages.

```
mod3 <- glm(
  sport ~ sexe : groupe_ages + etudes + heures.tv,
  family = binomial,
  data = d
)</pre>
```

Au sens strict, ce modèle explique tout autant le phénomène étudié que le modèle précédent. On peut le vérifier facilement avec stats::anova().

```
anova(mod2, mod3, test = "Chisq")
Analysis of Deviance Table

Model 1: sport ~ sexe * groupe_ages + etudes + heures.tv
Model 2: sport ~ sexe:groupe_ages + etudes + heures.tv
   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1    1982    2197.4
2    1982    2197.4    0    0
```

De même, les prédictions marginales sont les mêmes, comme nous pouvons le constater avec ggstats::ggcoef_compare().

```
ggstats::ggcoef_compare(
  list("sexe * groupe_ages" = mod2, "sexe : groupe_ages" = mod3),
  tidy_fun = broom.helpers::tidy_marginal_predictions,
  significance = NULL,
```

```
vline = FALSE
) +
   scale_x_continuous(labels = scales::label_percent())
```

Warning: Model matrix is rank deficient. Some variance-covariance parameters are missing.

Warning: Model matrix is rank deficient. Some variance-covariance parameters are missing.

Warning: Model matrix is rank deficient. Some variance-covariance parameters are missing.

Figure 24.7: Comparaison des prédictions marginales moyennes des deux modèles avec interaction

Par contre, regardons d'un peu plus près les coefficients de ce nouveau modèle. Nous allons voir que leur interprétation est légèrement différente.

Figure 24.8: Coefficients (odds ratio) du modèle avec interaction simple entre le sexe et le groupe d'âges

Cette fois-ci, il n'y a plus de coefficients globaux pour la variable sexe ni pour groupe_ages mais des coefficients pour chaque combinaison de ces deux variables. Reprenons l'exemple de notre homme de 60 ans.

```
plot(
   broken(mod3, nouvelle_observation, predict.function = betas),
   trans = logit
) +
   ylim(0, 1.2) +
   ylab("Probabilité de faire du sport")
```


Figure 24.9: Représentation graphique de l'estimation de la probabilité de faire du sport pour un homme de 60 ans (interaction simple)

Cette fois-ci, le coefficient d'interaction fournit indique l'effet combiné du sexe et du groupe d'âges par rapport à la situation de référence (femme de 18-24 ans).

Que l'on définisse une interaction simple (sexe:groupe_ages) ou complète (sexe*groupe_ages), les deux modèles calculés sont donc identiques en termes prédictifs et explicatifs, mais l'interprétation de leurs coefficients diffèrent.

Astuce

Il peut y avoir de multiples interactions dans un modèle, d'ordre 2 (entre deux variables) ou plus (entre trois variables ou plus). Il est dès lors tentant de tester les multiples interactions possibles de manière itératives afin d'identifier celles à retenir. C'est justement le but de la fonction ggmulti::glmulti() glmulti::glmulti() permets de tester toutes les combinaisons d'interactions d'ordre 2 dans un modèle, en retenant le meilleur modèle à partir d'un critère spécifié (par défaut l'AIC). ATTENTION: le temps de calcul de glmulti::glmulti() peut-être long.

24.7 Pour aller plus loin

Il y a d'autres extensions dédiées à l'analyse des interactions d'un modèle, de même que de nombreux supports de cours en ligne dédiés à cette question.

- Les effets d'interaction par Jean-François Bickel
- Analysing interactions of fitted models par Helios De Rosario Martínez

24.8 webin-R

Les interactions sont abordées dans le webin-R #07 (régression logistique partie 2) sur YouTube.

https://youtu.be/BUo9i7XTLYQ

25 Multicolinéarité

Dans une régression, la multicolinéarité est un problème qui survient lorsque certaines variables de prévision du modèle mesurent le même phénomène. Une multicolinéarité prononcée s'avère problématique, car elle peut augmenter la variance des coefficients de régression et les rendre instables et difficiles à interpréter. Les conséquences de coefficients instables peuvent être les suivantes :

- les coefficients peuvent sembler non significatifs, même lorsqu'une relation significative existe entre le prédicteur et la réponse ;
- les coefficients de prédicteurs fortement corrélés varieront considérablement d'un échantillon à un autre ;
- lorsque des termes d'un modèle sont fortement corrélés, la suppression de l'un de ces termes aura une incidence considérable sur les coefficients estimés des autres. Les coefficients des termes fortement corrélés peuvent même présenter le mauvais signe.

La multicolinéarité n'a aucune incidence sur l'adéquation de l'ajustement, ni sur la qualité de la prévision. Cependant, les coefficients individuels associés à chaque variable explicative ne peuvent pas être interprétés de façon fiable.

25.1 Définition

Au sens strict, on parle de multicolinéarité parfaite lorsqu'une des variables explicatives d'un modèle est une combinaison linéaire d'une ou plusieurs autres variables explicatives introduites dans le même modèle. L'absence de multicolinéarité parfaite est une des conditions requises pour pouvoir estimer

un modèle linéaire et, par extension, un modèle linéaire généralisé (dont les modèles de régression logistique).

Dans les faits, une multicolinéarité parfaite n'est quasiment jamais observée. Mais une forte multicolinéarité entre plusieurs variables peut poser problème dans l'estimation et l'interprétation d'un modèle.

Une erreur fréquente est de confondre multicolinéarité et corrélation. Si des variables colinéaires sont de facto fortement corrélées entre elles, deux variables corrélées ne sont pas forcément colinéaires. En termes non statistiques, il y a colinéarité lorsque deux ou plusieurs variables mesurent la même chose.

Prenons un exemple. Nous étudions les complications après l'accouchement dans différentes maternités d'un pays en développement. On souhaite mettre dans le modèle, à la fois le milieu de résidence (urbain ou rural) et le fait qu'il y ait ou non un médecin dans la clinique. Or, dans la zone d'enquête, les maternités rurales sont dirigées seulement par des sage-femmes tandis que l'on trouve un médecin dans toutes les maternités urbaines sauf une. Dès lors, dans ce contexte précis, le milieu de résidence prédit presque totalement la présence d'un médecin et on se retrouve face à une multicolinéarité (qui serait même parfaite s'il n'y avait pas une clinique urbaine sans médecin). On ne peut donc distinguer l'effet de la présence d'un médecin de celui du milieu de résidence et il ne faut mettre qu'une seule de ces deux variables dans le modèle, sachant que du point de vue de l'interprétation elle capturera à la fois l'effet de la présence d'un médecin et celui du milieu de résidence.

Par contre, si dans notre région d'étude, seule la moitié des maternités urbaines disposait d'un médecin, alors le milieu de résidence n'aurait pas été suffisant pour prédire la présence d'un médecin. Certes, les deux variables seraient corrélées mais pas colinéaires. Un autre exemple de corrélation sans colinéarité, c'est la relation entre milieu de résidence et niveau d'instruction. Il y a une corrélation entre ces deux variables, les personnes résidant en ville étant généralement plus instruites. Cependant, il existe également des personnes non instruites en ville et des personnes instruites en milieu rural. Le milieu

de résidence n'est donc pas suffisant pour prédire le niveau d'instruction.

25.2 Mesure de la colinéarité

Il existe différentes mesures de la multicolinéarité. L'extension {mctest} en fournie plusieurs, mais elle n'est utilisable que si l'ensemble des variables explicatives sont de type numérique.

L'approche la plus classique consiste à examiner les facteurs d'inflation de la variance (FIV) ou variance inflation factor (VIF) en anglais. Les FIV estiment de combien la variance d'un coefficient est augmentée en raison d'une relation linéaire avec d'autres prédicteurs. Ainsi, un FIV de 1,8 nous dit que la variance de ce coefficient particulier est supérieure de 80 % à la variance que l'on aurait dû observer si ce facteur n'est absolument pas corrélé aux autres prédicteurs.

Si tous les FIV sont égaux à 1, il n'existe pas de multicolinéarité, mais si certains FIV sont supérieurs à 1, les prédicteurs sont corrélés. Il n'y a pas de consensus sur la valeur au-delà de laquelle on doit considérer qu'il y a multicolinéarité. Certains auteurs, comme Paul Allison⁴², disent de regarder plus en détail les variables avec un FIV supérieur à 2,5. D'autres ne s'inquiètent qu'à partir de 5. Il n'existe pas de test statistique qui permettrait de dire s'il y a colinéarité ou non⁴³.

L'extension {car} fournit une fonction car::vif() permettant de calculer les FIV à partir d'un modèle. Elle implémente même une version généralisée permettant de considérer des facteurs catégoriels et des modèles linéaires généralisés comme la régression logistique.

Reprenons, pour exemple, un modèle logistique que nous avons déjà abordé dans d'autres chapitres.

```
library(tidyverse)
library(labelled)

data(hdv2003, package = "questionr")
```

⁴² When Can You Safely Ignore Multicollinearity?

⁴³ Pour plus de détails, voir ce post de Davig Giles, Can You Actually TEST for Multicollinearity?, qui explique pourquoi ce n'est pas possible.

```
d <-
  hdv2003 |>
 mutate(
    sexe = sexe |> fct_relevel("Femme"),
    groupe_ages = age |>
      cut(
        c(18, 25, 45, 65, 99),
        right = FALSE,
        include.lowest = TRUE,
        labels = c("18-24 \text{ ans}", "25-44 \text{ ans}",
                   "45-64 ans", "65 ans et plus")
      ),
    etudes = nivetud |>
      fct_recode(
        "Primaire" = "N'a jamais fait d'etudes",
        "Primaire" = "A arrete ses etudes, avant la derniere annee d'etudes primaires",
        "Primaire" = "Derniere annee d'etudes primaires",
        "Secondaire" = "1er cycle",
        "Secondaire" = "2eme cycle",
        "Technique / Professionnel" = "Enseignement technique ou professionnel court",
        "Technique / Professionnel" = "Enseignement technique ou professionnel long",
        "Supérieur" = "Enseignement superieur y compris technique superieur"
    ) |>
    fct_na_value_to_level("Non documenté")
  set_variable_labels(
    sport = "Pratique un sport ?",
    sexe = "Sexe",
    groupe_ages = "Groupe d'âges",
    etudes = "Niveau d'études",
   heures.tv = "Heures de télévision / jour"
  )
mod <- glm(
  sport ~ sexe + groupe_ages + etudes + heures.tv,
  family = binomial,
  data = d
)
```

Le calcul des FIV se fait simplement en passant le modèle à la

fonction car::vif().

Dans notre exemple, tous les FIV sont proches de 1. Il n'y a donc pas de problème potentiel de colinéarité à explorer.

Pour un tableau propre, nous pouvons aussi utiliser gtsummary::add_vif().

```
library(gtsummary)
theme_gtsummary_language(
    "fr",
    decimal.mark = ",",
    big.mark = " "
)

mod |>
    tbl_regression(exponentiate = TRUE) |>
    bold_labels() |>
    add_vif()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 25.1: Résumé du modèle logistique simple avec affichage des VIF généralisés

		95%	р-		Adjusted
${\bf Caract\'eristique}$	\mathbf{OR}	\mathbf{IC}	valeur	GVIF	GVIF
Sexe				1,0	1,0
Femme		_			
Homme	1,52	$1{,}24-\ 1{,}87$	<0,001		
Groupe d'âges				1,7	1,1
18-24 ans					
25-44 ans	0,68	$0{,}43 - 1{,}06$	0,084		
45-64 ans	0,36	$0,\!23 - 0,\!57$	<0,001		
65 ans et plus	0,27	,	<0,001		
Niveau		-, -		1,8	1,1
d'études				,	,
Primaire	_				
Secondaire	2,54	$1{,}73 - 3{,}75$	<0,001		
Technique / Professionnel	2,81	1,95 - 4,10	<0,001		
Supérieur	6,55	,	<0,001		
Non documenté	8,54	,	<0,001		
Heures de	0,89	,	< 0,001	1,1	1,0
télévision / jour	,	0,95	,	,	,

25.3 La multicolinéarité est-elle toujours un problème ?

Là encore, il n'y a pas de consensus sur cette question. Certains analystes considèrent que tout modèle où certains prédicteurs seraient colinéaires n'est pas valable. Dans le billet When Can

You Safely Ignore Multicollinearity?, Paul Allison évoque quant à lui des situations où la multicolinéarité peut être ignorée en toute sécurité. Le texte ci-dessous est une traduction de ce billet.

1. Les variables avec des FIV élevés sont des variables de contrôle, et les variables d'intérêt n'ont pas de FIV élevés.

Voici le problème de la multicolinéarité : ce n'est un problème que pour les variables qui sont colinéaires. Il augmente les erreurs-types de leurs coefficients et peut rendre ces coefficients instables de plusieurs façons. Mais tant que les variables colinéaires ne sont utilisées que comme variables de contrôle, et qu'elles ne sont pas colinéaires avec vos variables d'intérêt, il n'y a pas de problème. Les coefficients des variables d'intérêt ne sont pas affectés et la performance des variables de contrôle n'est pas altérée.

Voici un exemple tiré de ces propres travaux : l'échantillon est constitué de collèges américains, la variable dépendante est le taux d'obtention de diplôme et la variable d'intérêt est un indicateur (factice) pour les secteurs public et privé. Deux variables de contrôle sont les scores moyens au SAT et les scores moyens à l'ACT pour l'entrée en première année. Ces deux variables ont une corrélation supérieure à ,9, ce qui correspond à des FIV d'au moins 5,26 pour chacune d'entre elles. Mais le FIV pour l'indicateur public/privé n'est que de 1,04. Il n'y a donc pas de problème à se préoccuper et il n'est pas nécessaire de supprimer l'un ou l'autre des deux contrôles, à condition que l'on ne cherche pas à interpréter ou comparer l'un par rapport à l'autre les coefficients de ces deux variables de contrôle.

2. Les FIV élevés sont causés par l'inclusion de puissances ou de produits d'autres variables.

Si vous spécifiez un modèle de régression avec x et x^2 , il y a de bonnes chances que ces deux variables soient fortement corrélées. De même, si votre modèle a x, z et xz, x et z sont susceptibles d'être fortement corrélés avec leur produit. Il n'y a pas de quoi s'inquiéter, car la valeur p de xz n'est pas affectée par la multicolinéarité. Ceci est facile à démontrer : vous pouvez réduire considérablement les corrélations en centrant

les variables (c'est-à-dire en soustrayant leurs moyennes) avant de créer les puissances ou les produits. Mais la valeur p pour x^2 ou pour xz sera exactement la même, que l'on centre ou non. Et tous les résultats pour les autres variables (y compris le \mathbb{R}^2 mais sans les termes d'ordre inférieur) seront les mêmes dans les deux cas. La multicolinéarité n'a donc pas de conséquences négatives.

3. Les variables avec des FIV élevés sont des variables indicatrices (factices) qui représentent une variable catégorielle avec trois catégories ou plus.

Si la proportion de cas dans la catégorie de référence est faible, les variables indicatrices auront nécessairement des FIV élevés, même si la variable catégorielle n'est pas associée à d'autres variables dans le modèle de régression.

Supposons, par exemple, qu'une variable de l'état matrimonial comporte trois catégories : actuellement marié, jamais marié et anciennement marié. Vous choisissez anciennement marié comme catégorie de référence, avec des variables d'indicateur pour les deux autres. Ce qui se passe, c'est que la corrélation entre ces deux indicateurs devient plus négative à mesure que la fraction de personnes dans la catégorie de référence diminue. Par exemple, si 45 % des personnes ne sont jamais mariées, 45 % sont mariées et 10 % sont anciennement mariées, les valeurs du FIV pour les personnes mariées et les personnes jamais mariées seront d'au moins 3,0.

Est-ce un problème? Eh bien, cela signifie que les valeurs p des variables indicatrices peuvent être élevées. Mais le test global selon lequel tous les indicateurs ont des coefficients de zéro n'est pas affecté par des FIV élevés. Et rien d'autre dans la régression n'est affecté. Si vous voulez vraiment éviter des FIV élevés, il suffit de choisir une catégorie de référence avec une plus grande fraction des cas. Cela peut être souhaitable pour éviter les situations où aucun des indicateurs individuels n'est statistiquement significatif, même si l'ensemble des indicateurs est significatif.

25.4 webin-R

La multicolinéarité est abordée dans le webin-R#07 (r'egression logistique partie 2) sur YouTube.

 $\rm https://youtu.be/BUo9i7XTLYQ$

partie IV

Données pondérées avec survey

26 Définir un plan d'échantillonnage

Lorsque l'on travaille avec des données d'enquêtes, il est fréquent que les données soient **pondérées**. Cette pondération est nécessaire pour assurer la représentativité des données lorsque les participants ont été sélectionnés avec des probabilités variables. C'est par exemple le cas lorsqu'on réalise une enquête en grappes et/ou stratifiée.

De nombreuses fonctions acceptent une variable de pondération. Cependant, la simple prise en compte de la pondération est souvent insuffisante si l'on ne tient pas compte du plan d'échantillonnage de l'enquête. Le plan d'échantillonnage ne joue pas seulement sur la pondération des données, mais influence le calcul des variances et par ricochet tous les tests statistiques. Deux échantillons identiques avec la même variable de pondération mais des designs différents produiront les mêmes moyennes et proportions mais des intervalles de confiance différents.

Diverses fonctions de **R** peuvent prendre en compte une variable de pondération. Mais, en règle générale, elles sont incapables de tenir compte du plan d'échantillonnage. Il est donc préférable de privilégier le package {survey} qui est spécialement dédié au traitement d'enquêtes ayant des techniques d'échantillonnage et de pondération potentiellement très complexes. {survey} peut également être utilisée pour des pondérations simples.

26.1 Différents types d'échantillonnage

L'échantillonnage aléatoire simple ou échantillonnage équiprobable est une méthode pour laquelle tous les échantillons possibles (de même taille) ont la même probabilité d'être choisis et tous les éléments de la population ont une chance égale de faire partie de l'échantillon. C'est l'échantillonnage le plus simple : chaque individu à la même probabilité d'être sélectionné.

L'échantillonnage stratifié est une méthode qui consiste d'abord à subdiviser la population en groupes homogènes (strates) pour ensuite extraire un échantillon aléatoire de chaque strate. Cette méthode suppose une connaissance de la structure de la population. Pour estimer les paramètres, les résultats doivent être pondérés par l'importance relative de chaque strate dans la population.

L'échantillonnage par grappes est une méthode qui consiste à choisir un échantillon aléatoire d'unités qui sont elles-mêmes des sous-ensembles de la population (grappes ou clusters en anglais). Cette méthode suppose que les unités de chaque grappe sont représentatives. Elle possède l'avantage d'être souvent plus économique.

Il est possible de combiner plusieurs de ces approches. Par exemple, les *Enquêtes Démographiques et de Santé*⁴⁴ (EDS) sont des enquêtes stratifiées en grappes à deux degrés. Dans un premier temps, la population est divisée en strates par région et milieu de résidence. Dans chaque strate, des zones d'enquêtes, correspondant à des unités de recensement, sont tirées au sort avec une probabilité proportionnelle au nombre de ménages de chaque zone au dernier recensement de population. Enfin, au sein de chaque zone d'enquête sélectionnée, un recensement de l'ensemble des ménages est effectué puis un nombre identique de ménages par zone d'enquête est tiré au sort de manière aléatoire simple.

26.2 Avec survey::svydesign()

La fonction survey::svydesign() accepte plusieurs arguments décrits en détail sur sa page d'aide (obtenue avec la commande ?svydesign).

⁴⁴ Vaste programme d'enquêtes réalisées à intervalles réguliers dans les pays à faible et moyen revenu, disponibles sur https://dhsprogram.com/.

L'agument data permet de spécifier le tableau de données contenant les observations.

L'argument ids est obligatoire et spécifie sous la forme d'une formule les identifiants des différents niveaux d'un tirage en grappe. S'il s'agit d'un échantillon aléatoire simple, on entrera ids = ~ 1. Autre situation : supposons une étude portant sur la population française. Dans un premier temps, on a tiré au sort un certain nombre de départements français. Dans un second temps, on tire au sort dans chaque département des communes. Dans chaque commune sélectionnée, on tire au sort des quartiers. Enfin, on interroge de manière exhaustive toutes les personnes habitant les quartiers enquêtés. Notre fichier de données devra donc comporter pour chaque observation les variables id_departement, id_commune et id_quartier. On écrira alors pour l'argument ids la valeur suivante :

ids = ~ id_departement + id_commune + id_quartier.

Si l'échantillon est stratifié, on spécifiera les strates à l'aide de l'argument strata en spécifiant la variable contenant l'identifiant des strates. Par exemple : strata = ~ id_strate.

Il faut encore spécifier les probabilités de tirage de chaque cluster /grappe ou bien la pondération des individus. Si l'on dispose de la probabilité de chaque observation d'être sélectionnée, on utilisera l'argument probs. Si, par contre, on connaît la pondération de chaque observation (qui doit être proportionnelle à l'inverse de cette probabilité), on utilisera l'argument weights.

Si l'échantillon est stratifié, qu'au sein de chaque strate les individus ont été tirés au sort de manière aléatoire et que l'on connaît la taille de chaque strate, il est possible de ne pas avoir à spécifier la probabilité de tirage ou la pondération de chaque observation. Il est préférable de fournir une variable contenant la taille de chaque strate à l'argument fpc. De plus, dans ce cas-là, une petite correction sera appliquée au modèle pour prendre en compte la taille finie de chaque strate.

On peut tout à fait définir un **échantillonnage aléatoire** simple (on considère donc que toutes les observations ont le même poids, égal à 1). Pour rappel, en l'absence de

clusters/grappes, il faut préciser ids = ~ 1, ce paramètre n'ayant pas de valeur par défaut.

```
p_iris <- survey::svydesign(
  ids = ~ 1,
  data = iris
)</pre>
```

Warning in svydesign.default(ids = ~1, data = iris): No weights or probabilities supplied, assuming equal probability

```
p_iris
```

```
Independent Sampling design (with replacement)
survey::svydesign(ids = ~1, data = iris)
```

Pour un jeu de données **simplement pondéré** (chaque ligne représente plusieurs observations) :

```
titanic <- dplyr::as_tibble(Titanic)
titanic |> labelled::look_for()
```

```
pos variable label col_type missing values
1 Class - chr 0
2 Sex - chr 0
3 Age - chr 0
4 Survived - chr 0
5 n - dbl 0
```

```
p_titanic <- survey::svydesign(
  ids = ~ 1,
  data = titanic,
  weights = ~ n
)
p_titanic</pre>
```

```
Independent Sampling design (with replacement)
survey::svydesign(ids = ~1, data = titanic, weights = ~n)
```

Pour un **échantillon stratifié** pour lequel les strates sont indiquées dans la variable stype et les poids indiquées dans la variable pw.

```
data("api", package = "survey")
p_strates <- survey::svydesign(
  id = ~ 1,
    strata = ~ stype,
    weights = ~ pw,
    data = apistrat
)
p_strates</pre>
```

```
Stratified Independent Sampling design (with replacement)
survey::svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat)
```

Pour une **enquête en grappes à 1 degré**, pour laquelle l'identifiant des grappes (*clusters*) est indiqué par la variable *dnum*.

```
data("api", package = "survey")
p_grappes <- survey::svydesign(
  id = ~ dnum,
  weights = ~ pw,
  data = apiclus1
)
p_grappes</pre>
```

```
1 - level Cluster Sampling design (with replacement)
With (15) clusters.
survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1)
```

Voici un exemple un peu plus complexe d'une **enquête en grappes à deux degrés** (les deux niveaux étant donnés par les variables *dnum* et *snum*). Les poids ne sont pas fournis mais

la taille des grappes est connue et renseignée dans les variables fpc1 et fpc2 que nous pourrons donc transmettre via l'argument fpc.

```
data("api", package = "survey")
p_grappes2 <- survey::svydesign(
   id = ~ dnum + snum,
   fpc = ~ fpc1 + fpc2,
   data = apiclus2
)
p_grappes2

2 - level Cluster Sampling design
With (40, 126) clusters.
survey::svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)</pre>
```

Dans le cas présent, {survey} a calculé les poids s'appliquant à chaque individu. On peut les obtenir avec la fonction weights(), en l'occurrence avec p_grappes2 |> weights().

Enfin, prenons l'exemple d'une Enquête $D\'{e}mographique$ et de $Sant\'{e}$. Le nom des différentes variables est standardisé et commun quelle que soit l'enquête. Nous supposerons que vous avez importé le fichier individus dans un tableau de données nommés eds. Le poids statistique de chaque individu est fourni par la variable V005 qui doit au préalable être divisée par un million. Les grappes d'échantillonnage au premier degré sont fournies par la variable V021 (primary sample unit). Si elle n'est pas renseignée, on pourra utiliser le numéro de grappe V001. Enfin, le milieu de résidence (urbain / rural) est fourni par V025 et la région par V024. Pour rappel, l'échantillon a été stratifié à la fois par région et par milieu de résidence. Certaines enquêtes fournissent directement un numéro de strate via V022. Si tel est le cas, on pourra préciser le plan d'échantillonnage ainsi :

```
eds$poids <- eds$V005/1000000
p_eds <- survey::svydesign(
  ids = ~ V021,
  data = eds,</pre>
```

```
strata = ~ V022,
  weights = ~ poids
)
```

26.3 Avec srvyr::as_survey_design()

Dans le prochain chapitre (cf. Chapitre 27), nous aborderons le package {srvyr} qui est aux objets {survey} ce que {dplyr} est aux tableaux de données : plus précisément, ce package étend les verbes de {dplyr} aux plans d'échantillonnage complexe.

La fonction srvyr::as_survey_design() est équivalente à survey::svydesign() mais avec quelques différences:

- le paramètre ids dispose d'une valeur par défaut et on peut l'ignorer en l'absence de grappes ;
- les variables ne sont pas spécifiées avec une formule mais avec les mêmes sélecteurs que dplyr::select();
- l'objet renvoyé est à la fois du type "survey.design" et du type "tbl_svy", une sorte de *tibble* pour les objets {survey}.

Reprenons nos exemples précédents en commençant par un échantillonnage aléatoire simple.

```
t_iris <- iris |>
    srvyr::as_survey_design()
t_iris

Independent Sampling design (with replacement)
Called via srvyr
Sampling variables:
    - ids: '1'
Data variables: Sepal.Length (dbl), Sepal.Width (dbl), Petal.Length (dbl),
    Petal.Width (dbl), Species (fct)
class(t_iris)
```

```
"survey.design2" "survey.design"
[1] "tbl_svy"
Pour un jeu de données simplement pondéré (chaque ligne
représente plusieurs observations):
  titanic <- dplyr::as_tibble(Titanic)</pre>
  t_titanic <- titanic |>
    srvyr::as_survey_design(weights = n)
  t_titanic
Independent Sampling design (with replacement)
Called via srvyr
Sampling variables:
 - ids: `1`
- weights: n
Data variables: Class (chr), Sex (chr), Age (chr), Survived (chr), n (dbl)
Pour un échantillon stratifié pour lequel les strates sont
indiquées dans la variable stype et les poids indiquées dans la
variable pw.
  data("api", package = "survey")
  t_strates <- apistrat |>
    srvyr::as_survey_design(strata = stype, weights = pw)
  t_strates
Stratified Independent Sampling design (with replacement)
Called via srvyr
Sampling variables:
- ids: `1`
- strata: stype
 - weights: pw
Data variables: cds (chr), stype (fct), name (chr), sname (chr), snum (dbl),
  dname (chr), dnum (int), cname (chr), cnum (int), flag (int), pcttest (int),
  api00 (int), api99 (int), target (int), growth (int), sch.wide (fct),
  comp.imp (fct), both (fct), awards (fct), meals (int), ell (int), yr.rnd
  (fct), mobility (int), acs.k3 (int), acs.46 (int), acs.core (int), pct.resp
  (int), not.hsg (int), hsg (int), some.col (int), col.grad (int), grad.sch
  (int), avg.ed (dbl), full (int), emer (int), enroll (int), api.stu (int), pw
```

(dbl), fpc (dbl)

Pour une **enquête en grappes à 1 degré**, pour laquelle l'identifiant des grappes (*clusters*) est indiqué par la variable *dnum*.

```
data("api", package = "survey")
  t_grappes <- apiclus1 |>
      srvyr::as_survey_design(id = dnum, weights = pw)
  t_grappes
1 - level Cluster Sampling design (with replacement)
With (15) clusters.
Called via srvyr
Sampling variables:
- ids: dnum
 - weights: pw
Data variables: cds (chr), stype (fct), name (chr), sname (chr), snum (dbl),
  dname (chr), dnum (int), cname (chr), cnum (int), flag (int), pcttest (int),
  api00 (int), api99 (int), target (int), growth (int), sch.wide (fct),
  comp.imp (fct), both (fct), awards (fct), meals (int), ell (int), yr.rnd
  (fct), mobility (int), acs.k3 (int), acs.46 (int), acs.core (int), pct.resp
  (int), not.hsg (int), hsg (int), some.col (int), col.grad (int), grad.sch
  (int), avg.ed (dbl), full (int), emer (int), enroll (int), api.stu (int), fpc
  (dbl), pw (dbl)
```

Voici un exemple un peu plus complexe d'une **enquête en grappes à deux degrés** (les deux niveaux étant donnés par les variables dnum et snum). Les poids ne sont pas fournis mais la taille des grappes est connue et renseignée dans les variables fpc1 et fpc2 que nous pourrons donc transmettre via l'argument fpc.

```
data("api", package = "survey")
data("api", package = "survey")
t_grappes2 <- apiclus2 |>
    srvyr::as_survey_design(id = c(dnum, snum), fpc = c(fpc1, fpc2))
t_grappes2
```

2 - level Cluster Sampling design With (40, 126) clusters.

```
Called via srvyr
Sampling variables:
    ids: `dnum + snum`
    fpc: `fpc1 + fpc2`
Data variables: cds (chr), stype (fct), name (chr), sname (chr), snum (dbl),
    dname (chr), dnum (int), cname (chr), cnum (int), flag (int), pcttest (int),
    api00 (int), api99 (int), target (int), growth (int), sch.wide (fct),
    comp.imp (fct), both (fct), awards (fct), meals (int), ell (int), yr.rnd
    (fct), mobility (int), acs.k3 (int), acs.46 (int), acs.core (int), pct.resp
    (int), not.hsg (int), hsg (int), some.col (int), col.grad (int), grad.sch
    (int), avg.ed (dbl), full (int), emer (int), enroll (int), api.stu (int), pw
    (dbl), fpc1 (dbl), fpc2 (int[1d])
```

Enfin, prenons l'exemple d'une Enquête $D\'{e}mographique$ et de $Sant\'{e}$. Le nom des différentes variables est standardisé et commun quelle que soit l'enquête. Nous supposerons que vous avez importé le fichier individus dans un tableau de données nommés eds. Le poids statistique de chaque individu est fourni par la variable V005 qui doit au préalable être divisée par un million. Les grappes d'échantillonnage au premier degré sont fournies par la variable V021 (primary sample unit). Si elle n'est pas renseignée, on pourra utiliser le numéro de grappe V001. Enfin, le milieu de résidence (urbain / rural) est fourni par V025 et la région par V024. Pour rappel, l'échantillon a été stratifié à la fois par région et par milieu de résidence. Certaines enquêtes fournissent directement un numéro de strate via V022. Si tel est le cas, on pourra préciser le plan d'échantillonnage ainsi :

```
eds$poids <- eds$V005/1000000
t_eds <- eds |>
    srvyr::as_survey_design(
    ids = V021,
    strata = V022,
    weights = poids
)
```

26.4 webin-R

La statistique univariée est présentée dans le webin-R #10 (données pondérées, plan d'échantillonnage complexe & survey) sur YouTube.

 $\rm https://youtu.be/aXCn9SyhcTE$

27 Manipulation de données pondérées

L'objet créé avec survey::svydesign() ou srvyr::as_survey_design() n'est plus un tableau de données, mais plutôt un tableau de données auquel est attaché un plan d'échantillonnage. Les colonnes du tableau d'origine ne sont plus directement accessibles avec l'opérateur \$. En fait, elles sont stockées dans un sous-objet \$variables.

```
titanic <- dplyr::as_tibble(Titanic)
t_titanic <- titanic |>
   srvyr::as_survey_design(weights = n)
t_titanic$variables |> dplyr::glimpse()
```

Il n'est pas aisé de modifier des variables dans un objet de ce type. Il est donc préférable de procéder à l'ensemble des nettoyages, recodages de variables (et au besoin transformation des vecteurs labellisés en facteur), avant de définir le plan d'échantillonnage et de procéder aux analyses.

Si l'on souhaite manipuler les données, le plus simple est d'avoir recours au package {srvyr} qui étend les verbes de {dplyr} (cf. Chapitre 8) aux objets {survey}.

27.1 Utilisation de {srvyr}

```
{srvyr} fournit les verbes srvyr::select() et srvyr::filter()
pour sélectionner respectivement des colonnes et des lignes.
  library(srvyr)
Attachement du package : 'srvyr'
L'objet suivant est masqué depuis 'package:stats':
    filter
  t_titanic |> select(Sex, Age)
Independent Sampling design (with replacement)
Called via srvyr
Sampling variables:
- ids: `1`
- weights: n
Data variables: Sex (chr), Age (chr)
  t_titanic |> filter(Sex == "Female")
Independent Sampling design (with replacement)
Called via srvyr
Sampling variables:
- ids: `1`
- weights: n
Data variables: Class (chr), Sex (chr), Age (chr), Survived (chr), n (dbl)
On peut aussi utiliser srvyr::pull() pour extraire le contenu
d'une colonne ou srvyr::drop_na() pour supprimer les
observations contenant des valeurs manquantes.
```

Avertissement

Par contre, le verbe arrange() (tri du tableau) ou encore les fonctions de jointures (telles que left_join()) ne sont pas implémentées car ce type d'opération entraînerait des modifications du plan d'échantillonnage. Il est donc préférable de réaliser ce type d'opérations avant la déclaration du plan d'échantillonnage (quand les données sont donc encore stockées dans un tableau de données classiques).

srvyr fournit également le verbe srvyr::summarize() permettant de calculer des statistiques sur l'ensemble du fichier ou par sous-groupe (en combinant summarize() avec group_by()). Afin de prendre en compte correctement la pondération et le plan d'échantillonnage, srvyr fournit des fonctions adaptées pour un usage au sein de summarize() : srvyr::survey_mean(), srvyr::survey_total(), srvyr::survey_prop(), srvyr::survey_ratio(), srvyr::survey_quantile() encore srvyr::survey_median(). t_titanic |> group_by(Sex, Class, Survived) |> summarise(taux_survie = survey_prop()) |> filter(Survived == "Yes") # A tibble: 8 x 5 Sex, Class [8] # Groups: Sex Class Survived taux_survie taux_survie_se <chr> <chr> <chr> <dbl> <dbl> 1 Female 1st Yes 0.972 0.0384 2 Female 2nd Yes 0.877 0.145 3 Female 3rd Yes 0.459 0.306 4 Female Crew Yes 0.870 0.163 5 Male 1st Yes 0.344 0.312 6 Male 2nd Yes 0.140 0.150 7 Male 3rd Yes 0.173 0.183 Crew Yes 0.223 8 Male 0.249

27.2 Lister / Rechercher des variables

La fonction labelled::look_for(), que nous avons déjà abordée (cf. Section 4.3), est compatible avec les objets {survey} et peut donc être utilisée pour lister ou rechercher des variables.

```
t_titanic <- titanic |>
   labelled::set_variable_labels(
     Class = "Class du passager",
     Sex = "Sexe du passager",
     Age = "Enfant ou adulte ?",
     Survived = "A survécu au naufrage ?",
     n = "Nombre d'observations"
   srvyr::as_survey_design(weights = n)
 t_titanic |> labelled::look_for()
pos variable label
                                      col_type missing values
1
    Class
             Class du passager
                                      chr
2
    Sex
             Sexe du passager
                                      chr
                                               0
                                      chr
3
             Enfant ou adulte ?
                                               0
    Age
    Survived A survécu au naufrage ? chr
                                               0
5
             Nombre d'observations
                                      dbl
                                               0
 t_titanic |> labelled::look_for("nau")
pos variable label
                                      col_type missing values
```

27.3 Extraire un sous-échantillon

Survived A survécu au naufrage ? chr

Si l'on souhaite travailler sur un sous-échantillon de l'enquête, il importe de définir le plan d'échantillonnage sur l'ensemble du jeu de données **avant** de procéder à la sélection des observations.

La fonction classique pour sélectionner des lignes est subset(). Cependant, elle a un inconvénient lorsque nos données comportent des étiquettes de variables (cf. Chapitre 11) ou de valeurs (Chapitre 12), car les étiquettes ne sont pas conservées après l'opération.

On préférera donc avoir recours à srvyr::filter() qui conservent les attributs associés aux colonnes du tableau de données.

```
t_subset <- t_titanic |> subset(Sex == "Female")
 t_subset |> labelled::look_for()
pos variable label col_type missing values
1
    Class
                   chr
2
    Sex
                   chr
                             0
3
                             0
    Age
                   chr
4
    Survived -
                             0
                   chr
5
                   dbl
                             0
 t_filter <- t_titanic |> filter(Sex == "Female")
 t_filter |> labelled::look_for()
```

```
pos variable label
                                      col_type missing values
    Class
             Class du passager
                                      chr
                                                0
1
2
    Sex
             Sexe du passager
                                      chr
                                                0
3
                                                0
    Age
             Enfant ou adulte ?
                                      chr
4
    Survived A survécu au naufrage ? chr
                                                0
5
             Nombre d'observations
                                                0
                                      dbl
```

28 Analyses uni- et bivariées pondérées

28.1 La fonction tbl_svysummary()

Dans les chapitres sur la statistique univariée (cf. Chapitre 18) et la statistique bivariée (cf. Chapitre 19), nous avons abordé la fonction gtsummary::tbl_summary() qui permet de générer des tris à plats et des tableaux croisés prêts à être publiés.

Son équivalent pour les objets {survey} existe : il s'agit de la fonction gtsummary::tbl_svysummary() qui fonctionne de manière similaire.

Pour illustrer son fonctionnement, nous allons utiliser le jeu de données fecondite fournit dans le package {questionr}. Ce jeu de données fournit un tableau de données femmes comportant une variable poids de pondération que nous allons utiliser. Les données catégorielles étant stockées sous forme de vecteurs numériques avec étiquettes de valeurs (cf. Chapitre 12), nous allons les convertir en facteurs avec labelled::unlabelled(). De même, certaines valeurs manquantes sont indiquées sous formes de user NAs (cf. Section 13.2): nous allons les convertir en valeurs manquantes classiques (regular NAs) avec labelled::user_na_to_na().

```
data("fecondite", package = "questionr")
library(srvyr)
```

Attachement du package : 'srvyr'

L'objet suivant est masqué depuis 'package:stats':

filter

```
dp <- femmes |>
    labelled::user_na_to_na() |>
    labelled::unlabelled() |>
    as_survey_design(weights = poids)
dp

Independent Sampling design (with replacement)
Called via srvyr
Sampling variables:
    ids: `1`
    weights: poids
Data variables: id_femme (dbl), id_menage (dbl), poids (dbl), date_entretien (date), date_naissance (date), age (dbl), milieu (fct), region (fct), educ (fct), travail (fct), matri (fct), religion (fct), journal (fct), radio (fct), tv (fct), nb_enf_ideal (dbl), test (fct)
```

Chargeons {gtsummary} et définissons le français comme langue de rendu des tableaux.

```
library(gtsummary)
theme_gtsummary_language(
  language = "fr",
  decimal.mark = ",",
  big.mark = " "
)
```

Setting theme `language: fr`

Pour réaliser un tableau croisé, il nous suffit d'appeler gtsummary::tbl_svysummary() de la même manière que l'on aurait procédé avec gtsummary::tbl_summary(). En arrière plan, gtsummary::tbl_svysummary() appellera les différentes fonctions statistiques de {survey} : la pondération ainsi que les spécificités du plan d'échantillonnage seront donc correctement prises en compte.

```
dp |>
  tbl_svysummary(
    by = milieu,
    include = c(age, educ, travail)
) |>
  add_overall(last = TRUE) |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 28.1: Tableau croisé sur des données pondérées

	urbain,		
	N = 1	rural, N	Total, N
Caractéristique	026	= 1~002	= 2~027
Âge révolu (en années)	26 (20 –	28 (22 –	27 (21 –
à la date de passation	33)	36)	35)
du questionnaire	,	,	,
Niveau d'éducation			
aucun	414	681	1095
	(40%)	(68%)	(54%)
primaire	251	$257^{'}$	507
	(24%)	(26%)	(25%)
secondaire	303	61	364
	(30%)	(6,1%)	(18%)
supérieur	58	3(0,3%)	61
	(5,7%)	, ,	(3,0%)
A un emploi ?			
non	401	269	670
	(39%)	(27%)	(33%)
oui	621	731	1 351
	(61%)	(73%)	(67%)
Manquant	5	1	6

Important

Par défaut, les effectifs (ainsi que les pourcentages et autres statistiques) affichés sont pondérés. Il est important de bien comprendre ce que représentent ces effectifs pondérés pour les interpréter correctement. Pour cela, il faut savoir comment les poids de l'enquête ont été calculés. Dans certains cas, lorsque la population totale est connue, la somme des poids est égale à cette population totale dans laquelle l'échantillon a été tiré au sort. Les effectifs pondérés représentent donc une estimation des effectifs dans la population totale et ne représentent en rien le nombre d'observations dans l'enquête.

Dans d'autres enquêtes, les poids sont générés de telle manière que la somme des poids correspondent au nombre total de personnes enquêtées. Dans ce genre de situation, on a souvent tendance, à tort, à interpréter les effectifs pondérés comme un nombre d'observations. Or, il peut y avoir un écart important entre le nombre d'observations dans l'enquête et les effectifs pondérés.

éventuellement On pourra présenter séparément le nombre d'observations (i.e. les effectifs et les pondérées. non pondérés) proportions gtsummary::tbl_svysummary() fournit justement à la fois ces données pondérées et non pondérées. Il est vrai que cela nécessite quand même quelques manipulations. Pour les cellules, on précisera le type d'effectifs à afficher avec l'argument statistic. Pour personnaliser l'affiche du nombre de valeurs manquantes, cela doit se faire à un niveau plus global via gtsummary::set_gtsummary_theme(). Enfin, on passera par gtsummary::modify header() pour personnaliser les en-têtes de colonne.

```
set_gtsummary_theme(
  list("tbl_summary-str:missing_stat" = "{N_miss_unweighted} obs.")
)
dp |>
  tbl_svysummary(
  by = milieu,
  include = c(educ, travail),
   statistic = all_categorical() ~ "{p}% ({n_unweighted} obs.)",
  digits = all_categorical() ~ c(1, 0)
) |>
  modify_header(
  all_stat_cols() ~ "**{level}** ({n_unweighted} obs.)"
) |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

urbain (912				
Caractéristique	obs.)	rural (1088 obs.)		
Niveau				
d'éducation				
aucun	40,3% (375 obs.)	$68,0\% \ (763 \ \text{obs.})$		
primaire	24,4% (213 obs.)	$25,6\% \ (247 \ \text{obs.})$		
secondaire	29,5% (275 obs.)	6.1% (73 obs.)		
supérieur	5.7% (49 obs.)	0.3% (5 obs.)		
A un emploi?				
non	39,2% (370 obs.)	26,9% (296 obs.)		
oui	60.8% (537 obs.)	73,1% (790 obs.)		
Manquant	5 obs.	2 obs.		

Il faut noter qu'une modification du thème impactera tous les tableaux suivants, jusqu'à ce que le thème soit à nouveau modifié ou bien que l'on fasse appel à gtsummary::reset_gtsummary_theme().

28.2 Calcul manuel avec {survey}

Lorsque l'on travail avec un plan d'échantillonnage, on ne peut utiliser les fonctions statistiques classiques de **R**. On aura recours à leurs équivalents fournis par {survey}:

- survey::svymean(), survey::svyvar(), survey::svytotal(), survey::svyquantile() : moyenne, variance, total, quantiles
- survey::svytable(): tri à plat et tableau croisé
- survey::svychisq(): test du ²
- survey::svyby(): statistiques selon un facteur
- survey::svyttest(): test t de Student de comparaison de moyennes
- survey::svyciprop() : intervalle de confiance d'une proportion
- survey::svyratio(): ratio de deux variables continues

Ces fonctions prennent leurs arguments sous forme de formules pour spécifier les variables d'intérêt.

```
survey::svymean(~ age, dp)

mean    SE
age 28.468 0.2697

survey::svymean(~ age, dp) |> confint()

2.5 %    97.5 %
age 27.93931 28.99653

survey::svyquantile(~age, dp, quantile = c(0.25, 0.5, 0.75), ci = TRUE)
```

```
$age
```

```
quantile ci.2.5 ci.97.5 se
0.25 21 21 22 0.2549523
0.5 27 27 28 0.2549523
0.75 35 35 37 0.5099045
attr(,"hasci")
```

[1] TRUE
attr(,"class")
[1] "newsvyquantile"

Les tris à plat se déclarent en passant comme argument le nom de la variable précédé d'un tilde (\sim), tandis que les tableaux croisés utilisent les noms des deux variables séparés par un signe plus (+) et précédés par un tilde (\sim)⁴⁵.

```
<sup>45</sup> Cette syntaxe est similaire à celle de xtabs().
```

```
survey::svytable(~region, dp)
```

region

Nord Est Sud Ouest 611.0924 175.7404 329.2220 911.2197

```
survey::svytable(~milieu + educ, dp)
```

educ

```
milieu aucun primaire secondaire supérieur
urbain 413.608780 250.665214 303.058978 58.412688
rural 681.131096 256.694363 61.023980 2.679392
```

La fonction questionr::freq() peut être utilisée si on lui passe en argument non pas la variable elle-même, mais son tri à plat obtenu avec survey::svytable():

```
survey::svytable(~region, dp) |>
questionr::freq(total = TRUE)
```

```
n % val%
Nord 611.1 30.1 30.1
Est 175.7 8.7 8.7
Sud 329.2 16.2 16.2
Ouest 911.2 44.9 44.9
Total 2027.3 100.0 100.0
```

Les fonctions questionr::rprop() et questionr::cprop() peuvent être utilisées pour calculer les pourcentages en ligne ou en colonne.

```
survey::svytable(~milieu + educ, dp) |>
  questionr::cprop()
```

educ

```
milieu aucun primaire secondaire supérieur Ensemble urbain 37.8 49.4 83.2 95.6 50.6 rural 62.2 50.6 16.8 4.4 49.4 Total 100.0 100.0 100.0 100.0 100.0
```

Le principe de la fonction survey::svyby() est similaire à celui de tapply() (cf. Section 19.2.3). Elle permet de calculer des statistiques selon plusieurs sous-groupes définis par un facteur.

```
survey::svyby(~age, ~region, dp, survey::svymean)
    region age se
Nord Nord 29.03299 0.4753268
```

Est Est 27.54455 0.5261669 Sud Sud 28.96830 0.6148223 Ouest Ouest 28.08626 0.4458201

28.3 Intervalles de confiance et tests statistiques

La fonction gtsummary::add_ci() peut être appliquée à des tableaux produits avec gtsummary::tbl_svysummary()⁴⁶. Les

⁴⁶ Cela requiert une version récente (1.7.0) de {gtsummary}.

méthodes utilisées sont adaptées à la prise en compte d'un plan d'échantillonnage. On se référera à la document de la fonction pour plus de détails sur les méthodes statistiques utilisées. Rappel: pour les variables continues, on sera vigilant à ce que la statistique affichée (médiane par défaut) corresponde au type d'intervalle de confiance calculé (moyenne par défaut).

```
dp |>
  tbl_svysummary(
    include = c(age, region),
    statistic = all_continuous() ~ "{mean} ({sd})"
  ) |>
  add_ci() |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 28.3: Intervalles de confiance avec prise en compte du plan d'échantillonnage

Caractéristique	$egin{array}{c} N=2 \ 027 \end{array}$	95% CI
Âge révolu (en années) à la date de passation du questionnaire	28 (9)	28, 29
Région de résidence		
Nord	611	28%,
	(30%)	33%
Est	176	7,7%,
	(8,7%)	$9,\!8\%$
Sud	329	14%,
	(16%)	18%
Ouest	911	42%,
	(45%)	48%

De même, on peut aisément effectuer des tests de comparaison avec gtsummary::add_p(). Là aussi, les tests utilisés sont des

adaptations des tests classiques avec différentes corrections pour tenir compte à la fois de la pondération et du plan d'échantillonnage.

```
dp |>
  tbl_svysummary(
    include = c(age, region),
    by = milieu
) |>
  add_p() |>
  bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 28.4: Tests de comparaison avec prise en compte du plan d'échantillonnage

Caractéristique	$\begin{array}{c} \textbf{urbain}, \\ N = 1 \\ 026 \end{array}$	rural, N = 1 002	p- valeur
Âge révolu (en années) à la date de passation du questionnaire	26 (20 – 33)	28 (22 – 36)	<0,001
Région de résidence Nord	265	346	<0,001
Est	(26%) $48 (4,7%)$	(35%) 128	
Sud	79 (7,7%)	(13%) 250	
Ouest	633 $(62%)$	(25%) 278 $(28%)$	

28.4 Impact du plan d'échantillonnage

Lorsque l'on calcul des proportions, moyennes ou médianes pondérées, seuls les poids entrent en ligne de compte. Le plan d'échantillonnage (strates et/ou grappes) n'a de son côté pas d'effet. Par contre, le plan d'échantillonnage a un impact important sur le calcul des variances et, par extension, sur le calcul des intervalles de confiance et des tests de comparaison.

Pour illustrer cela, nous allons considérer un même jeu de données, avec la même variable de poids, mais en faisant varier la présence de strates et de grappes.

Commençons par regarder le jeu de données *apistrat* fourni par {survey}.

```
data("api", package = "survey")
nrow(apistrat)

[1] 200

summary(apistrat$pw)

Min. 1st Qu. Median Mean 3rd Qu. Max.
15.10 19.05 32.28 30.97 44.21 44.21

sum(apistrat$pw)
```

Nous avons ici un tableau de données de 200 lignes, avec des poids variant entre 15 et 44. Nous pouvons définir une pondération simple et croiser deux variables.

```
d_ponderation_simple <- apistrat |>
  as_survey_design(weights = pw)
```

[1] 6194

```
tbl <- survey::svytable(~ awards + yr.rnd, design = d_ponderation_simple)
tbl</pre>
```

```
yr.rnd
awards No Yes
No 2068.34 168.09
Yes 3274.06 683.51
```

Réalisons un test du Chi² entre ces deux variables. Si nous appliquions la fonction classique chisq.test() sur ce tableau, cette fonction considérait que nous avons 6194 observations (somme des poids) et dès lors nous obtiendrions une p-valeur très faible.

```
tbl |> chisq.test()
```

Pearson's Chi-squared test with Yates' continuity correction

```
data: tbl
X-squared = 113.84, df = 1, p-value < 2.2e-16</pre>
```

Le calcul précédent ne tient pas compte que nous n'avons que 200 observations dans notre échantillon. Refaisons le calcul survey::svychisq() qui est adaptée aux plans d'échantillonnage.

```
survey::svychisq(~ awards + yr.rnd, design = d_ponderation_simple)
```

Pearson's X^2: Rao & Scott adjustment

```
data: NextMethod()
F = 2.9162, ndf = 1, ddf = 199, p-value = 0.08926
```

Le résultat est ici tout autre et notre test n'est plus significatif au seuil de 5%! Ici, les corrections de Rao & Scott permettent

justement de tenir compte que nous avons un échantillon de seulement 200 observations.

Regardons maintenant si, à poids égal, il y a une différence entre une enquête stratifiée et une enquête en grappes.

```
# Pondération simple
  survey::svytable(~ awards + yr.rnd, design = d_ponderation_simple)
     yr.rnd
awards No Yes
  No 2068.34 168.09
  Yes 3274.06 683.51
  survey::svychisq(~ awards + yr.rnd, design = d_ponderation_simple)
   Pearson's X^2: Rao & Scott adjustment
data: NextMethod()
F = 2.9162, ndf = 1, ddf = 199, p-value = 0.08926
  # Enquête stratifiée
  d_strates <- apistrat |>
    as_survey_design(weights = pw, strata = stype)
  survey::svytable(~ awards + yr.rnd, design = d_strates)
     yr.rnd
awards
           No
                  Yes
  No 2068.34 168.09
  Yes 3274.06 683.51
  survey::svychisq(~ awards + yr.rnd, design = d_strates)
   Pearson's X^2: Rao & Scott adjustment
```

477

```
data: NextMethod()
F = 2.9007, ndf = 1, ddf = 197, p-value = 0.09012
  # Enquête en grappes
  d_grappes <- apistrat |>
    as_survey_design(weights = pw, ids = dnum)
  survey::svytable(~ awards + yr.rnd, design = d_grappes)
      yr.rnd
           No
                   Yes
awards
  No 2068.34 168.09
  Yes 3274.06 683.51
  survey::svychisq(~ awards + yr.rnd, design = d_grappes)
   Pearson's X^2: Rao & Scott adjustment
data: NextMethod()
F = 3.1393, ndf = 1, ddf = 134, p-value = 0.0787
```

On le constate : dans les trois cas les tableaux croisés sont identiques, mais pour autant les trois p-valeurs diffèrent.

Dès lors qu'un calcul de variance est impliqué, la simple prise en compte des poids est insuffisante : il faut appliquer des corrections en fonction du plan d'échantillonnage!

Pas d'inquiétude, {survey} s'en occupe pour vous, dès lors que le plan d'échantillonnage a correctement été défini.

29 Graphiques pondérés

Le package {ggplot2} n'est compatible directement avec les objets {survey}. Cependant, il accepte une esthétique weight qui permet de définir une variable de pondération.

Avertissement

ATTENTION: les graphiques obtenus ne sont corrects qu'à la condition que seuls les poids soient nécessaires pour les construire, ce qui est le cas d'un nuage de points ou d'un diagramme en barres.

Par contre, si le calcul du graphique implique le calcul de variances, la représentation sera incorrecte. Par exemple, avec ggplot2::geom_smooth(), les intervalles de confiance affichés ne prendront pas correctement en compte le plan d'échantillonnage.

Reprenons le jeu de données fecondite que nous avons abordé dans le chapitre sur les analyses bivariées pondérées, cf. Chapitre 28. Les poids d'enquête y sont indiqués dans la colonne poids. Pour rappel, les données catégorielles étant stockées sous forme de vecteurs numériques avec étiquettes de valeurs (cf. Chapitre 12), nous allons les convertir en facteurs avec labelled::unlabelled().

```
data("fecondite", package = "questionr")
library(tidyverse)
```

```
-- Attaching packages -----
                                ----- tidyverse 1.3.2 --
v ggplot2 3.4.0
                  v purrr
                           1.0.1
v tibble 3.1.8
                  v dplyr
                           1.0.10
v tidyr
        1.3.0
                  v stringr 1.5.0
v readr
        2.1.3
                  v forcats 1.0.0
```

```
-- Conflicts ------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

d <- labelled::unlabelled(femmes)
```

Pour réaliser un graphique, nous pouvons reprendre ce que nous avons vu dans notre chapitre introductif sur {ggplot2}, cf. Chapitre 17, en spécifiant simplement l'esthétique weight.

```
ggplot(d) +
  aes(x = region, fill = test, weight = poids) +
  geom_bar(position = "fill")
```


Figure 29.1: Un graphique en barres pondéré

Si l'on a déjà créé un objet {survey}, on peut obtenir les poids des observations avec la fonction weights(). Les données sont quant à elle accessibles via le sous-élément nommé variables.

```
library(srvyr)
```

Attachement du package : 'srvyr'

L'objet suivant est masqué depuis 'package:stats':

filter

```
dp <- femmes |>
  labelled::unlabelled() |>
  as_survey_design(weights = poids)

ggplot(dp$variables) +
  aes(x = region, fill = test, weight = weights(dp)) +
  geom_bar(position = "fill")
```


Figure 29.2: Un graphique en barres pondéré

Pour se faciliter les choses, on peut avoir directement recours à la fonction ggstats::ggsurvey(), que l'on utilisera à la place de ggplot2::ggplot(), et qui fait exactement la même chose que dans notre exemple précédent : on lui passe un objet de type {survey} et la fonction en extrait le sous-élément variables pour le passer à ggplot2::ggplot() et les poids qui sont automatiquement associés à l'esthétique weight.

Ainsi, le code de notre graphique précédent s'écrit tout simplement 47 :

⁴⁷ Notez que les poids ont déjà été associés à la bonne esthétique et qu'il n'est donc pas nécessaire de le refaire dans l'appel à aes().

```
ggstats::ggsurvey(dp) +
aes(x = region, fill = test) +
geom_bar(position = "fill")
```


Figure 29.3: Un graphique en barres pondéré

30 Régression logistique binaire pondérée

Nous avons abordé la régression logistique binaire non pondérée dans un chapitre dédié, cf. Chapitre 21. Elle se réalise classiquement avec la fonction glm() en spécifiant family = binomial.

Lorsque l'on utilise des données d'enquêtes, l'approche est similaire sauf que l'on aura recours à la fonction survey::svyglm() qui sait gérer des objets {survey} : non seulement la pondération sera prise en compte, mais le calcul des intervalles de confiance et des p-valeurs sera ajusté en fonction du plan d'échantillonnage.

30.1 Données des exemples

Nous allons reprendre les même données issues de l'enquête *Histoire de vie 2003*, mais en tenant compte cette fois-ci des poids de pondération fourni dans la variable *poids*.

```
library(tidyverse)
library(labelled)
data(hdv2003, package = "questionr")
d <-
   hdv2003 |>
   mutate(
    sexe = sexe |> fct_relevel("Femme"),
    groupe_ages = age |>
    cut(
        c(18, 25, 45, 65, 99),
        right = FALSE,
        include.lowest = TRUE,
```

```
labels = c("18-24 \text{ ans}", "25-44 \text{ ans}",
                 "45-64 ans", "65 ans et plus")
    ),
 etudes = nivetud |>
    fct_recode(
      "Primaire" = "N'a jamais fait d'etudes",
      "Primaire" = "A arrete ses etudes, avant la derniere annee d'etudes primaires",
      "Primaire" = "Derniere annee d'etudes primaires",
      "Secondaire" = "1er cycle",
      "Secondaire" = "2eme cycle",
      "Technique / Professionnel" = "Enseignement technique ou professionnel court",
      "Technique / Professionnel" = "Enseignement technique ou professionnel long",
      "Supérieur" = "Enseignement superieur y compris technique superieur"
 ) |>
 fct_na_value_to_level("Non documenté")
) |>
set_variable_labels(
 sport = "Pratique un sport ?",
 sexe = "Sexe",
 groupe_ages = "Groupe d'âges",
 etudes = "Niveau d'études",
 relig = "Rapport à la religion",
 heures.tv = "Heures de télévision / jour",
 poids = "Pondération de l'enquête"
```

Il ne nous reste qu'à définir notre objet {survey} en spécifiant la pondération fournie avec l'enquête. La documentation ne mentionne ni strates ni grappes.

```
library(srvyr)
library(survey)
dp <- d |>
  as_survey_design(weights = poids)
```

30.2 Calcul de la régression logistique binaire

La syntaxe de survey::svyglm() est similaire à celle de glm() sauf qu'elle a un argument design au lieu de data.

La plupart du temps, les poids de pondération ne sont pas des nombres entiers, mais des nombres décimaux. Dès lors, on ne peut plus utiliser la famille de modèles binomiale (qui repose sur des nombres entiers de succès et d'échecs)⁴⁸. On aura plutôt recours à la famille quasi-binomiale, que l'on spécifie avec family = quasibinomial et qui constitue une extension de la famille binomiale pouvant gérer des poids non entiers.

48 Si l'on indique family = binomial, vous obtiendrez avec une

version récente de R un message

d'avertissement du type Avis :

nombre de succès non entier

Simple, non?

30.3 Sélection de modèle

Comme précédemment, il est possible de procéder à une sélection de modèle pas à pas, par minimisation de l'AIC, avec step().

```
mod2 <- step(mod)</pre>
Start: AIC=2309.89
sport ~ sexe + groupe_ages + etudes + relig + heures.tv
              Df Deviance
                             AIC
                   2266.3 2302.2
- relig
                   2263.9 2309.9
<none>
                   2276.2 2320.2
- heures.tv
               1
               1
                   2276.4 2320.4
- sexe
               3
                   2313.9 2353.8
- groupe_ages
- etudes
                   2383.5 2421.2
Step: AIC=2296.28
sport ~ sexe + groupe_ages + etudes + heures.tv
              Df Deviance
                             AIC
```

30.4 Affichage des résultats

Nous pouvons tout à fait utiliser gtsumarry::tbl_regression() avec ce type de modèles. De même, on peut utiliser gtsummary::add_global_p() pour calculer les p-valeurs globales des variables ou encore gtsummary::add_vif() pour vérifier la multicolinéarité (cf. Chapitre 25).

```
library(gtsummary)
theme_gtsummary_language("fr", decimal.mark = ",", big.mark = " ")

mod2 |>
   tbl_regression(exponentiate = TRUE) |>
   add_global_p(keep = TRUE) |>
   add_vif() |>
   bold_labels()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Table 30.1: Facteurs associés à la pratique d'un sport (régression logistique pondérée)

Caractéristique	OR	95% IC	p- valeur	GVIF	Adjusted GVIF
Sexe			0,005	1,0	1,0
Femme					
Homme	1,44	1,12 -	0,005		
		1,87			
Groupe d'âges			< 0,001	2,1	1,1

		95%	р-		Adjusted
${\bf Caract\'eristique}$	\mathbf{OR}	\mathbf{IC}	valeur	GVIF	GVIF
18-24 ans		_			
25-44 ans	0,85	$0{,}48-\ 1{,}51$	0,6		
45-64 ans	0,40	$0,\!22-\ 0,\!73$	0,003		
65 ans et plus	0,37	0.19 - 0.72	0,004		
Niveau			< 0,001	2,2	1,1
d'études					
Primaire		_			
Secondaire	2,66	1,62 - 4,38	<0,001		
Technique / Professionnel	3,09	1,90 - 5,00	< 0,001		
Supérieur	6,54	,	<0,001		
Non documenté	10,3		<0,001		
Heures de télévision / jour	0,89	,	0,006	1,1	1,0

Pour un graphique des coefficients, nous pouvons utiliser ggstats::ggcoef_model().

```
mod2 |>
   ggstats::ggcoef_model(exponentiate = TRUE)
```


Figure 30.1: Facteurs associés à la pratique d'un sport (régression logistique pondérée)

30.5 Prédictions marginales

Pour visualiser les prédictions marginales moyennes du modèle (cf. Section 22.3), nous pouvons utiliser broom.helpers::plot_marginal_predictions().

```
mod2 |>
broom.helpers::plot_marginal_predictions(type = "response") |>
patchwork::wrap_plots() &
scale_y_continuous(
   limits = c(0, .8),
   labels = scales::label_percent()
)
```


Figure 30.2: Prédictions marginales moyennes du modèle pondéré

partie V Manipulation avancée

31 Dates avec lubridate

32 Réorganisation avec tidyr