Name: Jigar Siddhpura SAPID: 60004200155

DIV: C/C2 Branch: Computer Engineering

IS - Experiment 7 - MD5 Algorithm

		6000921015	
		Jigar Wild	
IS - En	0,7 - MD5	C22	
	- 1 - 1 1 1 - x 1 3 1 mg		
edin :	To Study & implement HI	05 haring algorithm.	
heory:	MD5 is quite fast &	produces a 128 bit me is processed in 5/2 16, 32 bit subblocks) 4, 32 bit blocks, wh	wage
11, 60 /	digest. The input text	is processed in 5/2	bit
The auton	of do is a sel !	16, 32 bit subblocks)	
makeup	128 hit message diges	4, 32 bit blocks, wh	ick
	Je wys		
Working a	P MD5 :		
· Padding	- Make length of	original may equal to	volne
0 =	which is 64 bits	less than exact mul	Hiple
of 312	bits padding consist of	original may equal to less than exact mul	Ьу
2) cdnm	1 Peneth - Altin on bles	cal Date benefit of and	· l · · · ·
Sippore	in toms of 64	calculate length of original bits (2°64) which is blocks. 9 var e- A, B, C& C	nal mag
appended	at and.		
3' Divid	le input into 512 bit	blocks.	
9 Fritial	ise colaining variables -	9 var 8- A, B, C & C	2
	11 / 4 / 11	nitialised.	
(5) Proces	blocks - A loop that	· In each round, we pa	locks
011 16 4	Llacks Took for	rounds are all 16 sub block	ocets.
	a,b,c,d; some cons		
	ounds voy in one mojor	A	1
rounds have	a diff. processing . 7	In each sound, we have	e
16 input	subblocks named MOD	, M[1] , M[15] , also	
	0	tains 69 elements with	
element	Consisting of 32 bits, we	denote it as k(0), k(1)	··· K[63]
Eundaram	FOR EDUC	CATIONAL USE	
Market and the second			

Digramatically, where F(x,y,z) = (x and y) or (not (x) and z) I(x,7,2) = Y + (X or NZ) So, here F are given B, C, D at start of the round then output is added with A , output obtained is then added to M[i] , the to K[i], which is circularly left stifter by 5 bits.

B is added up then at lest all variables are right shifted Conclusion: Thus, we studied & implemented MDS in python for 25t sound. FOR EDUCATIONAL USE Sundaram

CODE

```
import random
def left rotate(x, n):
  return ((x << n) | (x >> (32 - n))) & 0xFFFFFFFF
def md5(message):
  A function to calculate the MD5 hash of the input message.
  Takes a message as input and returns the MD5 hash in hexadecimal format.
  # Step 1 and 2: Padding and Append Length
  padding length = 0
  if (len(message) + 64) % 512:
     message += "1"
    padding length = 512 - ((len(message) + 64) \% 512)
  message += "0" * padding_length
  print(f"Padding Length : {padding length + 1}")
  # Step 3: Divide the input into 512-bit blocks
  message words = [int(message[i: i + 32], 2) for i in range(0, len(message), 32)]
  original message length = len(message) - 64
  message words.append(original message length)
  # Step 4: Initialise the chaining variables
  # Hexadecimal Constants are initialized
  K = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476]
  print(f"Chaining variables are: {K}")
  def F(x, y, z):
    return (x \& y) \mid (\sim x \& z)
  # Step 5: Process Block
  a, b, c, d = K
  for i in range(0, len(message words), 16):
    f = F(b, c, d)
    g = (i >> 2) \& 0x03
    for j in range(16):
       if i + j < len(message words):
         temp = (a + f + message words[i + j] + g) & 0xFFFFFFF
          a = d
          d = c
          c = b
          b = (b + left rotate(temp, 7)) & 0xFFFFFFF
```

```
digest = format(a, "08x")
digest += format(b, "08x")
digest += format(c, "08x")
digest += format(d, "08x")
return digest

random_message = "".join([random.choice(["0", "1"]) for _ in range(1000)])
print("Random 1000-bit message:", random_message)
first_round_res = md5(random_message)
print("After First Round :", first_round_res)
```

OUTPUT