Logic and Proofs CSE203

Benjamin Werner — Pierre-Yves Strub

École polytechnique

Constructive proofs and the Curry-Howard isomorphism

December 7th 2022

Bachelor S3 2022-23

What are proofs?

one answer, deduction trees:

This is a purely syntactical answer...

Heyting's proposal

In the 1920s, the school of *intuitionistic* mathematics or *constructive* mathematics

Arend Heyting

L.E.J. Brouwer

Heyting's semantics

A proof of...

is...

 $A \wedge B$

a pair (a,b) where a is a proof of A

b is a proof of B

 $A \vee B$

a pair (ε,c) where $\varepsilon=0$ and c:A or $\varepsilon=1$ and c:B

 $A \Rightarrow B$

a function f s.t. if a:A then f(a):B

Constructivism

In architecture

In art...

What is constructivism in mathematics?

Constructive semantics

$$\forall x. A(x)$$

a function f s.t. f(t): A(t)

A non constructive proof

$$\exists (a,b) \in \mathbb{R}, \ a \not\in \mathbb{Q} \land b \not\in \mathbb{Q} \land a^b \in \mathbb{Q}$$

We know that $\sqrt{2} \notin \mathbb{Q}$

If
$$\sqrt{2}^{\sqrt{2}} \in \mathbb{Q}$$

ok:
$$a = b = \sqrt{2}$$

If
$$\sqrt{2}^{\sqrt{2}} \notin \mathbb{Q}$$

take :
$$a = \sqrt{2}^{\sqrt{2}}$$
 $b = \sqrt{2}$

we have
$$a^b = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2}\sqrt{2})} = \sqrt{2}^2 = 2 \in \mathbb{Q}$$

Heyting's semantics

A proof of...

is...

 $A \wedge B$

a pair (a,b) where a is a proof of A

b is a proof of B

 $A \vee B$

a pair (ε,c) where $\varepsilon=0$ and c:A

or $\varepsilon = 0$ and c:B

 $A \Rightarrow B$

a function f s.t. if a:A then f(a):B

Seems familiar?

Heyting's semantics

A proof of...

is...

$$A \wedge B$$

a pair
$$(a,b):A \land B$$
, if a,b $a:A \times B$

$$A \vee B$$

a pair
$$(\varepsilon,c)$$
 where $\varepsilon=0$ and $c:A$ or $\varepsilon=0$ and $c:B$

$$A \Rightarrow B$$

a function
$$f$$
 s.t. if $a: Af theh B: B$

Seems familiar?

Propositions are types!

The Curry-Howard isomorphism

Propositions-as-types proofs-as-programs

The proofs are programs

⇒-fragment

```
fun a => a : A -> A
```

```
fun ab bc a => bc (ab a):

(A -> B) -> (B -> C) -> A -> C
```


Conjunction = cartesian product

Disjunction = sum-type


```
Inductive or (A B : Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B
```


Dependent Types

forall x: A, B is a function type

A -> B

is just a notation for forall x : A, B when x does not occur in B

even : nat -> Prop

is a function from nat to types

Prop is a type of types (like Type)

The details of the difference between Prop and Type is out of the scope of the course

Interesting example: existential quantifier

A proof of exists x : A, $P \times is a pair of:$

- an object t of type A
- a proof of (P t)

This can be defined inductively:

A proof involving 3


```
Inductive ex (A:Type)(P: A -> Prop) :=
  ex intro: forall x: A, (Px) \rightarrow (ex A P).
pq : forall x, P \times -> Q \times
Show: (exists x, P x) \rightarrow (exists y, Q y)
 fun ep : exists x, P x =>
    match ep with
   ex intro z pz =>
         (ex intro z (pq z pz))
   end.
```


The architecture of Coq

- The logical rules are typing rules: t:A
- ▶ The lemmas are constants : I1 := p : P
- The axioms are variables: a:P
- The type checker is a proof-checker
- The type checker is the critical part: the (only) one we need to trust
- Computations are used in the type-checker

Program extraction


```
We prove
```

```
Lemma div2 : forall n, exists p,

n = p+p \setminus / n = (S (p+p)).
```

Then we "execute" it:

```
div2 4 yields 2 and left (even) div 7 yields 3 and right (odd)
```


Termination and coherence

Suppose we can define non-terminating functions, like:

Fixpoint
$$F$$
 (a : A) : A := F a.

What is the problem?

Two examples of proofs of False...

A first problem


```
Definition negb (x : bool) := match x with
     true => false
     false => true
end.
Fixpoint foo (x : bool) := negb (foo x).
 (foo true) = negb (foo true)
true = negb (true)
                                true = false
false = negb (false)
```


A second version


```
Fixpoint goo (x:True) : False := goo x.
```

goo : True -> False