Daniel Bustos, Camino Par en Digrafo de pari-1 dades

a) Sea H el digrafo bipartito que tiene dos vértices v⁰, v¹ por cada vértice $v \in V(G)$. Donde v^0 es adyacente a w^1 (asumimos ida y vuelta en digrafo) en $H \leftrightarrow v$ y w son advacentes en G. (Notar que $\{v^i|v\in V(G)\}$ es un conjunto independiente para $i \in \{0, 1\}$).

Demostrar que $v_1,...,v_k$ es un recorrido en $G \leftrightarrow v_1^1,v_2^0,...v_k^{K\mod 2}$ es un recorrido en H.

Probemos la ida y la vuelta:

 $P = v_1, ..., v_k$ es un recorrido en $G \Rightarrow v_1^1, v_2^0, ..., v_k^{K \mod 2}$ es un recorrido en H.

Dado que tenemos un recorrido en G, sabemos que $\forall v_i \in P, v_i \text{ y } v_{i+1} \text{ son}$

Luego, por la regla del Digrafo H, sabemos que en este existen las aristas: v_i^0, v_{i+1}^1 . Por la misma lógica, como v_{i+1} es adyacente a v_{i+2} , por la regla del digrafo existe en H la arista: v_{i+1}^1, v_{i+2}^0 y así sucesivamente.

Probémoslo por inducción:

 $P(k) := P = v_1, ..., v_k$ es un recorrido en $G \Rightarrow v_1^1, v_2^0, ... v_k^{k \mod 2}$ es un recorr rido en H.

Caso base: P(1) vale claramente, ya que como v_1 existe en G, existe v_1^1 en H y eso ya es todo nuestro recorrido.

Paso Inductivo: $H.I. \exists k_0$ tal que vale: $P=v_1,...,v_{k_0}$ es un recorrido en $G\Rightarrow v_1^1,v_2^0,...v_{k_0}^{k_0} \stackrel{\text{mod }2}{=}$ es un recorrido en H.

Q.V.Q:
$$P(k_0) \Rightarrow P(k_0 + 1)$$

Tenemos un camino de tamaño k_0+1 en G. Observemos que por la H.I., existe el recorrido $v_1^1, v_2^0, \dots, v_{k_0}^{k_0 \mod 2}$. Luego, indistintamente de la paridad v_{k_0} , como v_{k_0} es adyacente a v_{k_0+1} , existe la arista: $v_{k_0}^1, v_{k_0+1}^0$ y $v_{k_0}^0, v_{k_0+1}^1$. Por lo tanto, siempre podemos agregar al camino de la H.I. la arista correspondiente a la paridad. Por lo tanto, vale el paso inductivo y $P(k) \ \forall k \in \mathbb{N}$.

Ahora, la vuelta: $v_1^1,v_2^0,...v_k^{K\mod 2}$ es un recorrido en $H\Rightarrow v_1,...,v_k$ es un recorrido en

Podemos hacer una inducción similar, pero también podemos plantear un absurdo. Supongamos que este recorrido en G no existe, entonces debe existir un v_i (i < k) tal que la arista v_i, v_{i+1} no exista. Si esta arista no existe, quiere decir que tampoco están las conexiones: v_i^1, v_{i+1}^0 y v_i^0, v_{i+1}^1 , lo cual nos dice que el camino (que suponemos existe) no puede ser un camino, sin importar cuáles de las dos aristas pertenezcan a él. ¡Absurdo!

b) Sea $G^{=2}$ el digrafo que tiene los mismos vértices de G tal que v es advacente a w en $G^{=2}$ si y solo si existe $z \in G$ tal que $v \to z \to w$ es un camino de G. Demostrar que G tiene un recorrido de longitud 2k si y solo si $G^{=2}$ tiene un recorrido de longitud k.

Probemos la ida : G tiene un recorrido de longitud $2k \implies G^{=2}$ tiene un recorrido de longitud k.

Si G tiene un recorrido de longitud 2k, sabemos que para todo $v_i, v_{i+2} (i \le 2k-2) \exists v_{i+1}$ tal que $v_i \to v_{i+1} \to v_{i+2}$ Luego por definicion de $G^{=2}$ quiere decir que el recorrido $v_i, v_{i+2}.v_{i+4}, \ldots, v_{2k}$ existe en $G^{=2}$, y este tiene longitud : $\frac{2k}{2} = k$

Ahora la vuelta: $G^{=2}$ tiene un recorrido de longitud $k \implies G$ tiene un recorrido de longitud 2k

El razonamiento es igual al anterior, pero "al reves"