| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

## **MASTERY QUIZ DAY 17**

Math 237 – Linear Algebra

Fall 2017

Version 2 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

| Standard V3.             | Mark                                              |   |                  |   |                                                  |       |                                                  |                       |
|--------------------------|---------------------------------------------------|---|------------------|---|--------------------------------------------------|-------|--------------------------------------------------|-----------------------|
| Determine if the vectors | $\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$ | , | 3<br>1<br>3<br>6 | , | $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ | , and | $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ | span $\mathbb{R}^4$ . |

Solution:

RREF 
$$\left( \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, the vectors do not span  $\mathbb{R}^4$ .

Mark: Standard V4.

Determine if the set of all lattice points, i.e.  $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$  is a subspace of  $\mathbb{R}^2$ .

Solution: This set is closed under addition, but not under scalar multiplication so it is not a subspace.

Standard S2.

Determine if the set  $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$  is a basis of  $\mathcal{P}_2$ 

Solution:

RREF 
$$\left( \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Additional Notes/Marks