High Dynamic Range Imaging

Introduction to Computational Photography:

EECS 395/495

Northwestern University

High Dynamic Range Imaging

How to extend the range of brightness values that can be represented by your digital camera

Topics:

- (1) Camera Response Function
- (2) Recovering High Dynamic Range Images
- (3) Tone-Mapping
- (4) Assorted Pixel Camera

From Radiance to Intensity

From Intensity to Radiance

Inverse Camera Response Function

Camera Response Function $f(\cdot)$

"Gamma Curves"

Radiometric Calibration: Finding $f(\cdot)$

Calibration using a chart:

- 1. Patches with known reflectance (when uniformly lit)
- 2. Fit linear segments or curve

90% 59.1% 36.2% 19.8% 9.0% 3.1% Reflectance

Dynamic Range of Imaging

Domain of Human Vision:

from $\sim 10^{-6}$ to $\sim 10^{+8}$ cd/m²

Range of Typical Displays:

from ~ 1 to ~ 100 cd/m²

Local Contrast and Perceived Higher Dynamic Range

Impression Sunrise, Claude Monet, 1873 http://webexhibits.org/colorart/monet.html

High Dynamic Range: Multiple Exposures

Assume Camera Response $f(\cdot)$ is Linear

$$Z_0 = \min(t_0 \cdot E, 255)$$

$$Z_1 = \min(t_1 \cdot E, 255)$$

$$Z_2 = \min(t_2 \cdot E, 255)$$

$$Z_3 = \min(t_3 \cdot E, 255)$$

High Dynamic Range: Multiple Exposures

Aggregate Image: $Z_{HDR} = Z_0 + Z_1 + Z_2 + Z_3$

Camera Response $f(\cdot)$ for Aggregate Image:

HDR Imaging without a ColorChecker

 Input: multiple images of the same scene with different exposures

Assumptions:

- Lighting changes can be ignored.
- Images should be registered well.
- Camera response is the same for all pixels.
- Working in the middle range of the response curve, where reciprocity will not fail.
- Smooth, monotonic camera response curve

- Z_{ij}: image intenstiy of the i-th point in the j-th image.
- E_i : irradiance of the i-th point

$$Z_{ij} = f(X) = f(E_i \Delta t_j)$$

$$g(Z_{ij}) = \ln f^{-1}(Z_{ij}) = \ln E_i + \ln \Delta t_j$$

$$g(Z_{ij}) = \ln E_i + \ln \Delta t_j$$

- g(Z) is unknown, but only discrete values are enough under smooth assumption.
- N*P equations, N+Zmax-Zmin+1 variables
- Thus, g(Z) and lnE can be solved by minimizing:

$$\sum_{i=1}^{N} \sum_{j=1}^{P} \left[g(Z_{ij}) - \ln E_i - \ln \Delta t_j \right]^2 + \lambda \sum_{z=Z_{\min}+1}^{Z_{\max}-1} \left[g(z-1) - 2g(z) + g(z+1) \right]^2$$

Least Square Error

Smoothness of g(Z)

Linear Least Square Problem which can be robustly solved by SVD

- g(Z) and E are solved up to a scale, but relative E are good enough for many applications.
- Weighting function is used to emphasize the central working range.

Optimization: Linear Least Square

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]\}^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} [w(z)g''(z)]^2$$

- 1. Set partial derivatives zero
- 2,

$$\min \sum_{i=1}^{M} (\mathbf{a_i} \mathbf{x} - \mathbf{b_i})^2 \rightarrow \text{least-square solution of} \begin{bmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \vdots \\ \mathbf{a_N} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{b_1} \\ \mathbf{b_2} \\ \vdots \\ \mathbf{b_N} \end{bmatrix}$$

Optimization: Linear Least Square

Merging to HDR is straightforward once we know g(Z) :

$$\ln E_i = \frac{\sum_{j=1}^P w(Z_{ij}) \left(g(Z_{ij}) - \ln \Delta t_j\right)}{\sum_{j=1}^P w(Z_{ij})}$$

 For color images, do it for R, G, B channels separately, and scale them by the color balance of the radiance map, either achromatic or proportional to color of the light sources.

Matlab Code

Matlab code

```
qsolve.m - Solve for imaging system response function
 Given a set of pixel values observed for several pixels in several
 images with different exposure times, this function returns the
 imaging system's response function g as well as the log film irradiance
 values for the observed pixels.
%
 Assumes:
%
 Zmin = 0
  Zmax = 255
%
% Arguments:
          is the pixel values of pixel location number i in image j
          is the log delta t, or log shutter speed, for image j
  B(j)
          is lamdba, the constant that determines the amount of smoothness
          is the weighting function value for pixel value z
  w(z)
 Returns:
          is the log exposure corresponding to pixel value z
  q(z)
          is the log film irradiance at pixel location i
  lE(i)
```

Matlab Code

```
function [q,lE]=qsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
k = 1;
                    %% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
   k=k+1;
  end
end
A(k,129) = 1; %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 %% Include the smoothness equations
 A(k,i)=1*w(i+1); A(k,i+1)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
 k=k+1;
end
x = A b;
                    %% Solve the system using SVD
q = x(1:n);
lE = x(n+1:size(x,1));
```

Recovered Response Function

Results

Original Photograph

Radiance Map

Radiance format (.pic, .hdr, .rad)

32 bits/pixel

(145, 215, 87, 149) = (145, 215, 87) * 2^(149-128) = (1190000, 1760000, 713000)

```
(145, 215, 87, 103) =
(145, 215, 87) * 2^{(103-128)} =
(0.00000432, 0.00000641, 0.00000259)
```

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

Rendering HDR Images: Tone Mapping

- Due to the limitation of current LDR 8-bit displays
- The goal is to compress the dynamic range of the input image and reproduce a realistic rendering based on human perception

Photograph

HDR

Photograph

HDR

Human Visual Adaptation

FIGURE 6.4 Although the headlights are on in both images, during daylight our eyes are less sensitive to car headlights than at night.

JND of Human Visual System

Weber's Law

$$\Delta I_b/I_b = const$$

Response Curves of Rods and Cones

Michaelis-Menten Equation (or, Naka-Rushton Equation)

$$\frac{R}{R_{\text{max}}} = \frac{I^n}{I^n + \sigma^n}$$

n is between 0.7 and 1.

Photoreceptor Adaption

$$\frac{R}{R_{\text{max}}} = \frac{I^n}{I^n + \sigma_{\text{b}}^n}$$

 σ_b varies with background light intensity.

Tone Mapping: Many Operators

Spatially Uniform Operators

- "Gamma Curve" operator
- Focused on preserving overall brightness
- Subjective brightness, B
- k = constant
- $L_0 = minimum luminance visible$
- alpha = [.333, 0.49]
- Not valid for complex scenes; chosen for computational simplicity

$$B = k(L - L_0)^{\alpha}$$

- Reinhard et al. 2002 "Photographic Tone Reproduction for Digital Images
- Technique is based on famous photographer Ansel Adams studies on tone reproduction using the Zone System (his invention); still widely used and practical

Algorithm:

- Use the log-average luminance to find the "key" of a scene
- Automatic "dodging" or "burning" (as in photography): all portions of the print receive difference exposure time.

Step 1. Log Average:

$$\bar{L}_w = \exp\left(\frac{1}{N}\sum_{x,y}\log\left(\delta + L_w(x,y)\right)\right)$$

Step 2. Scale Luminance to a key:

$$L(x,y) = \frac{a}{\bar{L}_w} L_w(x,y)$$

a is called the "key value"

Figure 5: The linear scaling applied to the input luminance allows the user to steer the final appearance of the tone-mapped image. The dynamic range of the image is 7 zones.

Step 3. Compress the high luminance:

$$L_d(x,y) = \frac{L(x,y)}{1 + L(x,y)}$$

Or, Step 3. Burning high luminance in a controlled fashion:

$$L_d(x,y) = \frac{L(x,y)\left(1 + \frac{L(x,y)}{L_{\text{white}}^2}\right)}{1 + L(x,y)}$$

Display luminance as function of world luminance for a family of values for $L_{\rm white}$.

Reinhard '02 Tone Mapping

http://pages.cs.wisc.edu/~csverma/CS766_09/HDRI/hdr.html

Homework 3: HDR Imaging

Fcam Programming

- 1. Write an exposure bracketing routine for your N900 phone MATLAB Programming
- 1. Estimate the camera response curve and the radiance map of the scene
- 2. Apply a tone mapping operator to radiance map

Due before class on Thursday 2/7

Dimensions of Imaging

How can we capture information in multiple dimensions using only a two-dimensional array of pixels?

High Dynamic Range: Single Shot

Assorted Pixels: Spatially Varying Color & Exposure

SuperCCD SR, FujiFilm: Pixels with Subpixels

Assorted Pixels: Multi-Sampled Images

SVC: Spatially Varying Color (Bayer Pattern)

SVE : Spatially Varying Exposure (Nayar et al., 00)

SVEC : Spatially Varying Color and Exposure

SVCP : Spatially Varying Color and Polarization

Simultaneous Sampling along Multiple Dimensions, 5

Assorted Pixel Sensor

Assorted Pixel Camera: HDR Example

Normal Camera

Assorted Pixel Camera

© 2005 Sony-Kihara Research Center, Inc.

References: Papers

[Grossberg 2003] M. D. Grossberg and S. K. Nayar. "What is the Space of Camera Response Function?". *CVPR*, 2003.

[Mitsunaga 1999] T. Mitsunaga and S. K. Nayar. "Radiometric Self Calibration". CVPR, 1999.

[Nakamura 2006] J. Nakamura. *Image Sensors and Signal Processing for Digital Still Cameras*. CRC Press, 2006.

[Nayar 2000] S. K. Nayar and T. Mitsunaga. "High Dynamic Range Imaging: Spatially Varying Pixel Exposures". *CVPR*, 2000.

[Nayar 2002] S. K. Nayar and S. G. Narasimhan. "Assorted Pixels: Multi-Sampled Imaging with Structured Models". *ECCV*, 2002.

Image Credits

- I.20 S. K. Nayar and T. Mitsunaga. "High Dynamic Range Imaging: Spatially Varying Pixel Exposures". CVPR, 2000
- I.21 S. K. Nayar and T. Mitsunaga. "High Dynamic Range Imaging: Spatially Varying Pixel Exposures". CVPR, 2000.
- I.22 http://www.dpreview.com/news/0301/03012202fujisuperccdsr.asp
- I.23 http://www.dpreview.com/news/0301/03012202fujisuperccdsr.asp