MP-1 HOME ASSIGNMENT-2

1. Find the solution of dual problem of LPP Max $Z=5x_1+3x_2$

Subject to the constraints $x_1 + x_2 \le 2$, $5x_1 + 2x_2 \le 10$, $3x_1 + 8x_2 \le 12$ $x_1, x_2 \ge 0$

Home Assignment

190031187

N.V. Radhakrishna

1. Max
$$z = 5\pi_1 + 3\pi_2$$

Subject 70 $x_1 + x_2 = 2$
 $5x_1 + 2\pi_2 = 10$
 $3x_1 + 8x_2 = 12$
 $x_1, x_2 > = 0$

The given problem is already in standard primal upp.

Converting the primal into it's dual

Min 2' = 2W1 + 10W2 + 12W3

subject To

$$1\omega_1 + 7\omega_2 + 3\omega_3 \ge 5$$

 $1\omega_1 + 2\omega_2 + 8\omega_3 \ge 3$

and W1, W2, W3 20

Solution using primal (given LPP)

By introducing the slack variables s_1 , s_2 , s_3 the problem in standard form becomes:

Max $z = 5x_1 + 3x_2 + 0s_1 + 0s_2 + 0s_3$ Subject To:

$$X_1 + X_2 + S_1 + OS_2 + OS_3 = 2$$

 $SX_1 + 2X_2 + OS_2 + S_2 + OS_3 = 10$
 $3X_1 + 8X_2 + OS_1 + OS_2 + S_3 = 12$
 $X_1, X_1, \dots, S_1, S_2, S_3 \ge 0$

CB; Cj 5 3 0 0 0

B·V
$$x_1$$
 x_2 S1 S2 S3 S01 Ratio

O S1 O 1 1 0 0 2

O S2 5 2 0 1 0 10

O S3 3 8 0 0 1 12 4

Zj 0 0 0 0 0 0

Cj-Zj 5 3 0 0 0

leaving = Si fintering = Xi key element = 1

Iteration - 1

CB; Cj 5 3 0 0 0 0 8.V
$$x_1$$
 x_2 y_1 y_2 y_3 y_0 y_1 y_2 y_3 y_0 y_1 y_2 y_3 y_0 y_1 y_2 y_3 y_0 y_1 y_1 y_2 y_3 y_0 y_1 y_1 y_2 y_3 y_0 y_1 y_1 y_2 y_1 y_2 y_3 y_0 y_1 y_1 y_1 y_2 y_3 y_1 y_1 y_2 y_3 y_1 y_2 y_3 y_1 y_2 y_3 y_1 y_2 y_1 y_2 y_3 y_1 y_2 y_1 y_2 y_3 y_1 y_2 y_3 y_1 y_2 y_3 y_1 y_2 y_1 y_2 y_1 y_2 y_3 y_1 y_2 y_1 y_2 y_3 y_1 y_2 y_1 y_2 y_3 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1 y_1 y_2 y_1 y_2 y_1 y_2 y_1 y_1 y_2 y_1

Hence optimal solution is arrived with value of variables as:

$$x_1 = 2$$
 $x_2 = 0$
Max $z = 10$

Dual problem

Min
$$z' = 2\omega_1 + 10\omega_2 + 12\omega_3$$

Subject To:

 $\omega_1 + 5\omega_2 + 3\omega_3 \ge 5$
 $\omega_1 + 2\omega_2 + 8\omega_3 \ge 3$
 $\omega_1, \omega_2, \omega_3 \ge 0$

solution of dual problem using primal LPP solution using 21 row corresponding to \$1,52,53 are 5,0,0 gives values for y, 42,43 respective - cy. and optimum value for z & 2' same Min 2'=10

2. Find the solution for Dual problem: Min $Z'=2 y_1+10 y_2+12 y_3$ s.to the constraints $y_1+5y_2+3y_3 >= 5$,

 $y_1+2 y_2+8y_3 >= 3, y_1,y_2,y_3 >= 0$

2. Min
$$2' = 2y_1 + 10y_2 + 12y_3$$

Subject To
$$y_1 + 5y_2 + 3y_3 \ge 5$$

$$y_1 + 2y_2 + 8y_3 \ge 3$$

$$y_1, y_2, y_3 \ge 0$$

converting constraints into less than or equal to

$$-9_{1} - 59_{L} - 39_{3} \le -5$$
 $-9_{1} - 29_{L} - 89_{3} \le -3$
 $9_{1}, 9_{L}, 9_{3} \ge 0$

Min 2 = 24, + 10 42 + 124, + 05, + 05, Subject To -4, -542 - 343 + S1 = -5

$$-y_1 - 2y_2 - 8y_3 + S_2 = -3$$

CS Scanned with $y_1, y_2, y_3, y_1, S_2 \ge 0$

190031187	NERELLA VENKATA RADHAKRISHNA

Intial Table

$$CB_1$$
 G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_7 G_7 G_8 G_7 G_8 G_7 G_8 G_8

Determination of Entering variable

Variables
$$y_1$$
 y_2 y_3 s_1 s_2 $-(g-z_j)$ -2 -10 -12 0 0 s_1 -1 -5 -3 1 0 Ratio 2 2 4 $-$

Iteration - 2

CBi Cj 2 10 12 0 0

BV Y1 Y2 Y3 51 52 501

2 Y1 1 5 3 -1 0 5

0
$$\frac{5}{2}$$
 0 3 -5 -1 1 2

2 10 6 -2 0

4-2 0 0 6 2 0

Therefore, solution of dual problem