Stochastic Control and Optimization Homework 4

Akankshi Mody MSBA (am92786)

Problem	1
•	HOMEWORK 4 - STOUTASTIC CONTROL 1 OPTIMIZATION.
	Problem 1:
	(1,00 se 14. 352011)
	To max 0.05 L 2/3 x 1/3
	S.t. 12L + 15k = 100,000 1
	L;k20
-	l; k > 0. let' rewrite this to fathe openi function: let 12 L + 15 k = 100,000
	let 12 L + 15 K = 100,000
	L=(100,000-16K)
•	· Clares 16 & Boundly and Carlo, NV
	: Choose k 100,000 - 15km 13 13 10 2000 - 15km 12 13 10 2000 - 15km 12 10 2000 - 15k
	X12XIX DOWN
100	1,k20.
10 0-5	3 6 5 X A F2
	From apani, we get: k = 127.5942
	max machines = 102-21
-	10.0- X (51) 10 14
	maxi machines = 05/02 - 11 10 = 4
	0 5 000
-60-	
	Stanned with
C2	CamScanner

```
func1 <- function(k){
   machines= 0.05 * (((100000-(15*k))/12)^(2/3)) * (k^(1/3))
   return(-machines)
}
S=optim(100, func1, method="CG")
S$par
## [1] 127.5942
S$value
## [1] -102.2061</pre>
```

Thus, the maximum number of machines that can be produced = 102

Problem 2


```
library(matrixStats)
## Warning: package 'matrixStats' was built under R version 3.6.3
library(quadprog)
stocks = read.csv("homework4stocks.csv", header = TRUE)
tempdf = data.matrix(stocks[c(2:ncol(stocks))])
#colMeans(tempdf)
#colVars(tempdf)
#cor(tempdf, method = 'pearson')
m=colMeans(tempdf)
s=colSds(tempdf)
rho=cor(data.matrix(stocks[c(2:ncol(stocks))]), method = 'pearson')
covMat=diag(s) %*% rho %*% diag(s)
RVal=0.01
Dmat=2*covMat
dvec=rep(0,ncol(stocks)-1)
Amat=matrix(c(rep(1,27),rep(-1,27),m,-m),27)
bvec=c(1,-1,0.01,-0.01)
#no shorting
Amat=cbind(Amat,diag(27))
bvec=c(bvec, rep(0, 27))
S=solve.QP(Dmat,dvec,Amat,bvec)
cat("The fraction to be invested in each company: ",S$solution,"\n")
## The fraction to be invested in each company: 9.282749e-17 0.05169119 -
3.699079e-17 0 -7.268764e-17 5.055161e-18 -7.882407e-17 8.390146e-17
2.995731e-18 -3.452348e-18 -2.530938e-17 4.116472e-17 0.02485645 -3.136847e-
18 4.60379e-17 0.015273 2.010815e-17 -7.220215e-18 0.139413 -3.898155e-18
0.270172 6.079016e-18 6.107254e-18 0.1255622 0.05833401 -4.010437e-17
0.3146983
new portfolio = S$solution
cat("Estimated mean of portfolio: ",mean(new_portfolio),"\n")
## Estimated mean of portfolio: 0.03703704
cat("Estimated variance of portfolio: ",var(new_portfolio),"\n")
## Estimated variance of portfolio: 0.006812255
cat("Estimated standard deviation of portfolio: ",sd(new_portfolio),"\n")
## Estimated standard deviation of portfolio: 0.08253638
```

```
var_selection = read.csv("variable_selection.csv", header = TRUE, sep =",")
model1 = lm(y~x1, data = var_selection)
summary(model1)
##
## Call:
## lm(formula = y \sim x1, data = var selection)
## Residuals:
                       Median
##
        Min
                  1Q
                                    3Q
                                             Max
                                5.5414 20.8261
## -23.6770 -5.0361 -0.2131
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                     7.292 7.95e-11 ***
## (Intercept)
                 21.395
                             2.934
                                     2.989 0.00354 **
## x1
                  2.756
                             0.922
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.979 on 98 degrees of freedom
## Multiple R-squared: 0.08355,
                                  Adjusted R-squared: 0.0742
## F-statistic: 8.934 on 1 and 98 DF, p-value: 0.003538
model2 = lm(y\sim x2, data = var\_selection)
summary(model2)
##
## Call:
## lm(formula = y ~ x2, data = var_selection)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -7.0853 -2.1931 -0.4309 2.3346 7.5392
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                              <2e-16 ***
## (Intercept)
                 9.4198
                            0.7537
                                     12.50
## x2
                 3.9343
                            0.1339
                                     29.38
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.995 on 98 degrees of freedom
## Multiple R-squared: 0.8981, Adjusted R-squared: 0.897
## F-statistic: 863.4 on 1 and 98 DF, p-value: < 2.2e-16
model3 = lm(y\sim x3, data = var\_selection)
summary(model3)
##
## Call:
## lm(formula = y ~ x3, data = var_selection)
##
```

```
## Residuals:
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -27.9249 -5.9699 -0.2864
                                       20.9370
                                6.4416
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                     9.332 3.42e-15 ***
## (Intercept) 32.1473
                            3.4450
## x3
                -0.2365
                            0.3262 -0.725
                                               0.47
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.354 on 98 degrees of freedom
## Multiple R-squared: 0.005333, Adjusted R-squared:
## F-statistic: 0.5255 on 1 and 98 DF, p-value: 0.4703
model4 = lm(y\sim x1+x2, data = var selection)
summary(model4)
##
## Call:
## lm(formula = y ~ x1 + x2, data = var_selection)
##
## Residuals:
      Min
                10 Median
                                3Q
                                       Max
## -1.4861 -0.2674 0.0260 0.3658 1.1301
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.15258
                           0.21048
                                     0.725
                                               0.47
                                             <2e-16 ***
                           0.05337 56.195
## x1
                2.99924
## x2
                           0.02324 170.781
                                             <2e-16 ***
                3.96917
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5196 on 97 degrees of freedom
## Multiple R-squared: 0.997, Adjusted R-squared: 0.9969
## F-statistic: 1.592e+04 on 2 and 97 DF, p-value: < 2.2e-16
model5 = lm(y\sim x1+x3, data = var selection)
summary(model5)
##
## Call:
## lm(formula = y \sim x1 + x3, data = var_selection)
## Residuals:
##
        Min
                  10
                       Median
                                    3Q
                                            Max
                       0.2336
                                5.6330
                                        21.2464
## -24.2130 -5.4023
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 23.6973
                           4.3676
                                   5.426 4.24e-07 ***
## x1
               2.7468
                           0.9244 2.972 0.00374 **
## x3
               -0.2239
                           0.3139 -0.713 0.47747
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.002 on 97 degrees of freedom
## Multiple R-squared: 0.08833,
                                 Adjusted R-squared: 0.06953
## F-statistic: 4.699 on 2 and 97 DF, p-value: 0.01128
model6 = lm(y\sim x2+x3, data = var selection)
summary(model6)
##
## Call:
## lm(formula = y \sim x2 + x3, data = var_selection)
##
## Residuals:
     Min
             10 Median
                           3Q
                                 Max
## -7.072 -2.111 -0.457 2.337 7.599
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 9.71994 1.34887 7.206 1.25e-10 ***
## x2
               3.93181
                          0.13484 29.159 < 2e-16 ***
## x3
              -0.02828
                          0.10516 -0.269
                                            0.789
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.009 on 97 degrees of freedom
## Multiple R-squared: 0.8981, Adjusted R-squared: 0.896
## F-statistic: 427.7 on 2 and 97 DF, p-value: < 2.2e-16
```

From the above models we see model4 ($y\sim x1+x2$) performs best with highest Adjusted R-squared and least error.

	Indem 4: let 2j be whent flow through path between node 1 and node j
	Choose, χ_{12} , χ_{13} , χ_{23} , χ_{24} , χ_{34} 10 min χ_{12} ×1 + χ_{13} ×4 + χ_{23} ×6 + χ_{24} ×12 + χ_{34} ×3
	S.t. $x_{12} + x_{13} = 710$ $x_{24} + x_{34} = 710$ $x_{12} - x_{23} - x_{24} = 0$
•	$\chi_{13} + \chi_{23} - \chi_{34} = 0$
	Solve of structure:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
A	$ \begin{bmatrix} 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & -1 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 0 & 0 & 12 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} $ $ b = \begin{bmatrix} 710, -710, 710, -710, \\ 0, 0, 0, 0 \end{bmatrix} $
C	Scanned with CamScanner

```
library(quadprog)
0,4,0,0,0,
                0,0,6,0,0,
                0,0,0,12,0,
                0,0,0,0,3),5,5)
dvec=rep(0,5)
Amat=matrix(c(1,1,0,0,0,0,
              -1, -1, 0, 0, 0, 0, 0
              0,0,0,1,1,
              0,0,0,-1,-1,
              1,0,-1,-1,0,
              -1,0,1,1,0,
              0,1,1,0,-1,
              0, -1, -1, 0, 1), 5, 8
bvec=c(710,-710,710,-710,0,0,0,0)
S=solve.QP(Dmat, dvec, Amat, bvec)
cat("Current flowing through each resistor: ",S$solution)
## Current flowing through each resistor: 371.3846 338.6154 163.8462
207.5385 502.4615
Problem 5
nfl = read.csv("nflratings.csv", header = FALSE, sep = ',')
nfl$ActualPointSpread = nfl$V4-nfl$V5
func5 <- function(ratings){</pre>
  nfl$predicted_spread = ratings[nfl$V2]-ratings[nfl$V3] + ratings[33]
  prediction error = sum((nfl$ActualPointSpread-nfl$predicted spread)^2)
  return (prediction error)
}
random start = c(rep(85,32),3)
S=optim(random start,func5,method="CG")
cat("Ratings are: ", S$par[1:32],"\n")
## Ratings are: 84.52235 89.84145 92.74569 83.08899 88.75996 79.81205
87.54406 76.88701 92.12112 85.63577 70.50407 92.25558 86.98432 90.86235
78.43978 76.8882 86.61526 92.06484 96.12267 95.62867 85.09888 93.14842
75.03286 90.95815 86.64234 67.71995 92.60581 85.24194 74.73183 79.17108
82.18828 80.13629
cat("Home advantage: ",S$par[33],"\n")
## Home advantage: 2.172733
```