```
In [1]: from fastai.vision.all import *
        from fastai.data.all import *
        from fastai.tabular.all import *
        from fastai.vision.all import *
        from fastai.metrics import error_rate
        from fastai.imports import *
In [2]: print(torch.cuda.device(0))
        print(torch.cuda.get device name(0))
        <torch.cuda.device object at 0x000001E32B57E610>
        NVIDIA GeForce GTX 1650
        In [3]:
In [4]: origin = Path("C:/Development/meteor detector/dataset/v7 adjusted/dataset/")
        origin.ls()
Out[4]: (#4) [Path('C:/Development/meteor detector/dataset/v7 adjusted/dataset/test set'),Pa
        th('C:/Development/meteor_detector/dataset/v7_adjusted/dataset/test_set_NEW'),Path
        ('C:/Development/meteor_detector/dataset/v7_adjusted/dataset/test_set_OLD'),Path
        ('C:/Development/meteor detector/dataset/v7 adjusted/dataset/training set')]
In [5]:
        rows values = []
        for dataset in ["test_set", "training_set"]:
    for meteor in ["meteor", "no-meteor"]:
                for fn in (origin/f"{dataset}/{meteor}").glob("*/"):
                    rows_values += [(str(fn)[len(str(origin)):], dataset, meteor)]
        df = pd.DataFrame(rows_values, columns=["fn", "dataset", "meteor"])
Out[5]:
```

	fn	dataset	meteor
0	\test_set\meteor\image-20210219194325.jpg	test_set	meteor
1	\test_set\meteor\image-20210219195726.jpg	test_set	meteor
2	\test_set\meteor\image-20210220000355.jpg	test_set	meteor
3	\test_set\meteor\image-20210220061647.jpg	test_set	meteor
4	\test_set\meteor\image-20210220063819.jpg	test_set	meteor
57165	\training_set\no-meteor\image-20210413064838.jpg	training_set	no-meteor
57166	\training_set\no-meteor\image-20210413064908.jpg	training_set	no-meteor
57167	\training_set\no-meteor\image-20210413064938.jpg	training_set	no-meteor
57168	\training_set\no-meteor\image-20210413065008.jpg	training_set	no-meteor
57169	\training_set\no-meteor\image-20210413065038.jpg	training_set	no-meteor

```
df.groupby(["dataset","meteor"]).size()
Out[6]: dataset
                         meteor
         test_set
                                          300
                         meteor
                                         5008
                         no-meteor
                                         1567
         training_set
                         meteor
                                        50295
                         no-meteor
         dtype: int64
         # quardar a fitxer
In [7]:
         df.to csv("C:/Development/meteor detector/dataset/index.csv", index=False)
         df[df.dataset=="training set"]
In [8]:
Out[8]:
                                                        fn
                                                               dataset
                                                                         meteor
                                                            training_set
           5308
                    \training set\meteor\image-20210219194125.jpg
                                                                          meteor
           5309
                    \training set\meteor\image-20210219194155.jpg
                                                            training set
                                                                          meteor
           5310
                    \training set\meteor\image-20210219194225.jpg
                                                            training set
                                                                          meteor
           5311
                    \training set\meteor\image-20210219194255.jpg
                                                            training set
                                                                          meteor
           5312
                    \training set\meteor\image-20210219195756.jpg
                                                            training set
                                                                          meteor
          57165
                 \training set\no-meteor\image-20210413064838.jpg
                                                            training set no-meteor
          57166
                 \training set\no-meteor\image-20210413064908.jpg
                                                            training set no-meteor
          57167
                 \training_set\no-meteor\image-20210413064938.jpg
                                                            training_set no-meteor
          57168
                 \training set\no-meteor\image-20210413065008.jpg
                                                            training set no-meteor
          57169
                 \training set\no-meteor\image-20210413065038.jpg
                                                            training set no-meteor
         51862 rows × 3 columns
In [9]:
         #Balanceo de los grupos de train y test
         df no meteor train = df[(df["meteor"]=="no-meteor") & (df["dataset"]=="training set"
         )].sample(n=1567) #frac=0.1
         df no meteor test = df[(df["meteor"]=="no-meteor") & (df["dataset"]=="test set")].sa
         mple(n=1000)
         df_meteor_train
                               = df[(df["meteor"]=="meteor")
                                                                     & (df["dataset"]=="training set"
         )]
                               = df[(df["meteor"]=="meteor") & (df["dataset"]=="test set")]
         df meteor test
         df=pd.concat([df_no_meteor_train,df_no_meteor_test,df_meteor_train,df_meteor_test])
         df.groupby(["dataset", "meteor"]).size()
Out[9]: dataset
                         meteor
         test_set
                                         300
                         meteor
                         no-meteor
                                        1000
```

training_set

dtype: int64

meteor

no-meteor

1567

1567

```
In [10]: df.groupby(["dataset","meteor"]).size()
Out[10]: dataset
                        meteor
         test_set
                        meteor
                                      300
                        no-meteor
                                     1000
         training_set
                       meteor
                                     1567
                        no-meteor
                                     1567
         dtype: int64
In [11]: | dls = ImageDataLoaders.from_df(df[df["dataset"]!="test_set"],
                                         folder=origin,
                                         bs=32,
                                         batch_tfms=aug_transforms(max_rotate=180,max_warp=0,ma
         x_zoom=0), #,pad_mode='zeros'),
                                         #batch tfms=aug transforms(),
                                         item_tfms=[Resize(224)],
                                         fn col=0,
                                         label_col=2,
                                         shuffle_train=True,
                                         drop_last=True,
                                         valid pct=0.2,
                                         num_workers=0)
In [12]: #aug_transforms?
In [13]: dls.show_batch()
```



```
In [15]: learn.lr_find(end_lr=0.1)
```

Out[15]: SuggestedLRs(lr_min=0.0006309573538601399, lr_steep=9.12010818865383e-07)

In [16]: learn.fine_tune(35,3*1e-3)

0.744409

0.746077 0.743739 00:42

0.255591

1.2 — train valid 1.0 0.8 0.6 0.4 0.2 0.0 + 30 10 20 40 50 60 70

0.655713

1.035894

epoch	train_loss	valid_loss	error_rate	accuracy	precision_score	f1_score	time
0	0.714231	0.444611	0.215655	0.784345	0.787071	0.784001	00:55
1	0.601025	0.398551	0.198083	0.801917	0.805621	0.801105	00:54
2	0.527630	0.360468	0.169329	0.830671	0.834315	0.830045	00:55
3	0.476098	0.304456	0.124601	0.875399	0.875388	0.875394	00:54
4	0.416477	0.337251	0.140575	0.859425	0.859593	0.859423	00:55
5	0.378760	0.319829	0.146965	0.853035	0.855687	0.852853	00:54
6	0.353319	0.330873	0.134185	0.865815	0.878339	0.864882	00:53
7	0.334949	0.284512	0.119808	0.880192	0.882418	0.880081	00:55
8	0.321864	0.290034	0.127796	0.872204	0.880764	0.871627	00:55
9	0.329213	0.277125	0.095847	0.904153	0.904626	0.904145	00:54
10	0.302762	0.245778	0.107029	0.892971	0.893734	0.892949	00:57
11	0.302807	0.255302	0.095847	0.904153	0.905051	0.904129	00:56
12	0.284154	0.264714	0.092652	0.907348	0.909914	0.907254	00:58
13	0.296450	0.256983	0.102236	0.897764	0.898087	0.897712	00:59
14	0.253098	0.221467	0.079872	0.920128	0.920479	0.920088	00:56
15	0.250970	0.214154	0.083067	0.916933	0.917454	0.916879	01:00
16	0.247653	0.207563	0.075080	0.924920	0.925987	0.924897	00:59
17	0.248974	0.220460	0.079872	0.920128	0.922351	0.920062	01:00
18	0.218404	0.255301	0.083067	0.916933	0.919141	0.916864	01:01
19	0.208020	0.191421	0.065495	0.934505	0.935328	0.934491	01:01
20	0.212502	0.205709	0.075080	0.924920	0.925508	0.924911	01:02
21	0.202278	0.208797	0.079872	0.920128	0.921053	0.920107	01:00
22	0.186256	0.200574	0.073482	0.926518	0.926624	0.926499	01:00
23	0.176874	0.177722	0.065495	0.934505	0.934505	0.934503	01:00
24	0.165712	0.166215	0.057508	0.942492	0.942821	0.942490	01:01
25	0.157288	0.182090	0.059105	0.940895	0.940943	0.940894	00:58
26	0.161435	0.165068	0.062300	0.937700	0.937710	0.937692	00:57
27	0.148797	0.186211	0.062300	0.937700	0.937952	0.937698	00:58
28	0.140098	0.179922	0.052716	0.947284	0.947284	0.947283	00:58
29	0.130737	0.174124	0.054313	0.945687	0.945707	0.945686	00:57
30	0.128349	0.173539	0.060703	0.939297	0.939624	0.939295	00:59
31	0.124146	0.181350	0.059105	0.940895	0.941028	0.940894	01:00
32	0.129066	0.175320	0.057508	0.942492	0.942579	0.942492	01:00
33	0.132317	0.177232	0.057508	0.942492	0.942579	0.942492	01:01
34	0.109418	0.174929	0.054313	0.945687	0.945676	0.945685	00:59

	precision	recall	f1-score	support
meteor	0.82	0.98	0.89	300
no-meteor	0.99	0.94	0.96	1000
accuracy			0.95	1300
macro avg	0.91	0.96	0.93	1300
weighted avg	0.95	0.95	0.95	1300

In [19]: interp.plot_confusion_matrix(figsize=(4, 4))

In [20]: interp.print_classification_report()

	precision	recall	f1-score	support
meteor	0.82	0.98	0.89	300
no-meteor	0.99	0.94	0.96	1000
accuracy			0.95	1300
macro avg	0.91	0.96	0.93	1300
weighted avg	0.95	0.95	0.95	1300

In [21]: learn.show_results()

Prediction/Actual/Loss/Probability

Out[22]:

	fn	dataset	meteor
4665	\test_set\no-meteor\image-20210505004757.jpg	test_set	no-meteor
110	\test_set\meteor\image-20210419055134.jpg	test_set	meteor
4791	\test_set\no-meteor\image-20210505015835.jpg	test_set	no-meteor
1519	\test_set\no-meteor\image-20210422215737.jpg	test_set	no-meteor
583	\test_set\no-meteor\image-20210418232222.jpg	test_set	no-meteor
2751	\test_set\no-meteor\image-20210423050439.jpg	test_set	no-meteor
1610	\test_set\no-meteor\image-20210422222805.jpg	test_set	no-meteor
4836	\test_set\no-meteor\image-20210505022107.jpg	test_set	no-meteor
4632	\test_set\no-meteor\image-20210505003055.jpg	test_set	no-meteor
2735	\test_set\no-meteor\image-20210423045638.jpg	test_set	no-meteor
1223	\test_set\no-meteor\image-20210419045958.jpg	test_set	no-meteor
4699	\test_set\no-meteor\image-20210505011200.jpg	test_set	no-meteor
1150	\test_set\no-meteor\image-20210419041153.jpg	test_set	no-meteor
4567	\test_set\no-meteor\image-20210504234951.jpg	test_set	no-meteor
1168	\test_set\no-meteor\image-20210419042224.jpg	test_set	no-meteor
4557	\test_set\no-meteor\image-20210504233950.jpg	test_set	no-meteor
124	\test_set\meteor\image-20210423044839.jpg	test_set	meteor
4670	\test_set\no-meteor\image-20210505005027.jpg	test_set	no-meteor
4792	\test_set\no-meteor\image-20210505015905.jpg	test_set	no-meteor
1518	\test_set\no-meteor\image-20210422215717.jpg	test_set	no-meteor
1299	\test_set\no-meteor\image-20210419054733.jpg	test_set	no-meteor
4695	\test_set\no-meteor\image-20210505010959.jpg	test_set	no-meteor
4662	\test_set\no-meteor\image-20210505004627.jpg	test_set	no-meteor
4955	\test_set\no-meteor\image-20210505032615.jpg	test_set	no-meteor
4832	\test_set\no-meteor\image-20210505021907.jpg	test_set	no-meteor
1232	\test_set\no-meteor\image-20210419050429.jpg	test_set	no-meteor
2856	\test_set\no-meteor\image-20210423055913.jpg	test_set	no-meteor
4740	\test_set\no-meteor\image-20210505013302.jpg	test_set	no-meteor
1495	\test_set\no-meteor\image-20210422214842.jpg	test_set	no-meteor
2651	\test_set\no-meteor\image-20210423041802.jpg	test_set	no-meteor

```
In [24]: learn.predict(img)
```

```
Out[24]: ('meteor', tensor(0), tensor([0.8797, 0.1203]))
```

```
In [25]: img = PILImage.create('C:/Development/meteor_detector/dataset/vDef_dia0504/test/my
1.jpg')
x, = first(dls.test_dl([img]))
plt.imshow(img)
```

Out[25]: <matplotlib.image.AxesImage at 0x1e303c6e1f0>


```
In [26]:
    def __init__(self, m):
        self.hook = m.register_forward_hook(self.hook_func)
    def hook_func(self, m, i, o): self.stored = o.detach().clone()
    def __enter__(self, *args): return self
    def __exit__(self, *args): self.hook.remove()
```

```
In [27]: class HookBwd():
    def __init__(self, m):
        self.hook = m.register_backward_hook(self.hook_func)
    def hook_func(self, m, gi, go): self.stored = go[0].detach().clone()
    def __enter__(self, *args): return self
    def __exit__(self, *args): self.hook.remove()
```

```
In [32]: cls = 0
with HookBwd(learn.model[0]) as hookg:
    with Hook(learn.model[0]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [33]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```



```
In [35]: learn.predict(img)
```

Out[35]: ('meteor', tensor(0), tensor([0.9945, 0.0055]))

```
In [51]: img = PILImage.create('C:/Development/meteor_detector/dataset/vDef_dia0504/test/my
2.jpg')
x, = first(dls.test_dl([img]))
plt.imshow(img)
```

Out[51]: <matplotlib.image.AxesImage at 0x1e316f04760>


```
In [52]: cls = 0
with HookBwd(learn.model[0]) as hookg:
    with Hook(learn.model[0]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [53]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```



```
In [55]: learn.predict(img)
Out[55]: ('meteor', tensor(0), tensor([9.9998e-01, 1.9137e-05]))
In [59]: img = PILImage.create('C:/Development/meteor_detector/dataset/Positius/eliminat_fon do/positive_1.jpg')
    x, = first(dls.test_dl([img]))
    plt.imshow(img)
```

Out[59]: <matplotlib.image.AxesImage at 0x1e30b82b4f0>


```
In [63]: cls = 0
with HookBwd(learn.model[0]) as hookg:
    with Hook(learn.model[0]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [64]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```



```
In [67]: learn.predict(img)
```

Out[67]: ('meteor', tensor(0), tensor([9.9986e-01, 1.3943e-04]))

Out[68]: <matplotlib.image.AxesImage at 0x1e300078dc0>


```
In [70]: learn.predict(img)
```

Out[70]: ('meteor', tensor(0), tensor([9.9986e-01, 1.3943e-04]))

Out[71]: <matplotlib.image.AxesImage at 0x1e3084c1b20>


```
In [73]: learn.predict(img)
Out[73]: ('meteor', tensor(0), tensor([0.9183, 0.0817]))
In [78]: img = PILImage.create('C:/Development/meteor_detector/dataset/Positius/eliminat_fon do/positive_14.jpg')
    x, = first(dls.test_dl([img]))
    plt.imshow(img)
```

Out[78]: <matplotlib.image.AxesImage at 0x1e33bc530d0>


```
In [80]: learn.predict(img)
```

Out[80]: ('meteor', tensor(0), tensor([9.9974e-01, 2.6009e-04]))

Out[81]: <matplotlib.image.AxesImage at 0x1e33bcfbb80>

Out[84]: <matplotlib.image.AxesImage at 0x1e343152670>


```
In [85]: learn.predict(img)
```

Out[85]: ('no-meteor', tensor(1), tensor([1.5450e-04, 9.9985e-01]))

Out[46]: <matplotlib.image.AxesImage at 0x1e303ca6c40>


```
In [47]: learn.predict(img)
```

Out[47]: ('meteor', tensor(0), tensor([9.9968e-01, 3.1693e-04]))

```
In [48]: cls = 0
with HookBwd(learn.model[0][-1]) as hookg:
    with Hook(learn.model[0][-1]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored
```

```
In [49]: w = grad[0].mean(dim=[1,2], keepdim=True)
    cam_map = (w * act[0]).sum(0)
```



```
In [ ]:
```