Lista 16, Capítulo 11 - Geometria Analítica e Álgebra Linear Profa. Roseli

Considere fixado um sistema ortogonal de coordenadas cartesianas.

1. Ache o cosseno do ângulo θ entre as retas:

(a) r:
$$X = (-\frac{5}{2}, 2, 0) + \lambda(\frac{1}{2}, 1, 1)$$
 s: $3x - 2y + 16 = 0$
 $3x - z = 0$

(d) r:
$$x = \frac{1-y}{2} = \frac{z}{3}$$
 s: $3x + y - 5z = 0$
 $2x + 3y - 8z = 1$

2. Ache a medida em radianos do ângulo θ entre a reta e o plano dados:

(a)
$$x = 0$$

 $y = z$ Π : $z = 0$

(b)
$$r: x = y = z$$
 $\Pi: z = 0$

(c) r:
$$X = (0, 0, 1) + \lambda$$
 (-1, 1, 0) Π : $3x + 4y = 0$

(d)
$$\begin{aligned} \mathbf{x} &= 1 + \lambda \\ \mathbf{r} &: \quad \mathbf{y} &= \lambda \\ \mathbf{z} &= -2\lambda \end{aligned} \qquad \qquad \Pi \text{:} \quad \mathbf{x} + \mathbf{y} - \mathbf{z} - 1 = 0$$

(e)
$$x + y = 2$$

 $x = 1 + 2z$ Π : $\frac{q}{\frac{45}{7}}x + y + 2z - 10 = 0$

3. Ache a medida em radianos do ângulo θ entre os planos:

(a)
$$\Pi_1$$
: $2x + y - z - 1 = 0$

$$\Pi_2$$
: x - y + 3z - 10 = 0

(b)
$$\Pi_1$$
: $X = (1, 0, 0) + \lambda(1, 0, 1) + \mu(-1, 0, 0)$ Π_2 : $x + y + z = 0$

$$\Pi_2$$
: $x + y + z = 0$

(c)
$$\Pi_1$$
: $X = (0, 0, 0) + \lambda(1, 0, 0) + \mu(1, 1, 1)$ Π_2 : $X = (1, 0, 0) + \lambda(-1, 2, 0) + \mu(0, 1, 0)$

$$\Pi_2$$
: X = (1, 0, 0) + λ (-1, 2, 0) + μ (0, 1, 0)

- 4. Ache a reta r que intercepta as retas s e t e forma ângulos congruentes com os eixos coordenados, sabendo que s: $\frac{x-1}{3} = \frac{y-1}{2} = -\frac{z}{3}$ e t: $y = 1 + 3\lambda$
- **5.** Ache a reta h qua passa pelo ponto P = (0, 2, 1) e forma ângulos congruentes com as retas:

- 6. Obtenha equações na forma simétrica da reta \mathbf{r} que passa pelo ponto P = (1, -2, 3) e que forma ângulos de 45° e 60° respectivamente com os eixo dos x e dos y.
- 7. Ache uma reta ${\bf t}$ que passa por P = (1, 1, 1), intercepta a reta ${\bf r}$: $\frac{{\bf x}}{2}={\bf y}={\bf z}$ e forma com ela um ângulo θ tal que cos $\theta = \frac{1}{\sqrt{3}}$.
- 8. Ache um vetor diretor de uma reta paralela ao plano Π : x + y + z = 0 e que forma um ângulo de 45^0 com o plano Π_1 : x - y = 0.
- 9. Ache uma equação geral do plano Π que contém a reta $\ \, r \colon \ \, \begin{array}{c} x=z+1 \\ y=z-1 \end{array} \,$ e que forma um ângulo de $\frac{\pi}{3}$ rd com o plano Π_1 : x + 2y - 3z + 2 = 0.
- 10. Obtenha uma equação geral do plano Π que contém a reta x: 3z x = 1 y 1 = 1 e forma com a reta s: $X = (1, 1, 0) + \lambda(3, 1, 1)$ um ângulo cuja medida em radianos é $\theta = \arccos \frac{2\sqrt{30}}{11}$.

RESPOSTAS

1. (a)
$$\cos \theta = \frac{20}{21}$$

(b)
$$\cos \theta = \frac{1}{2}, \quad \theta = 60^{\circ}$$

(c)
$$\cos \theta = \frac{\sqrt{2}}{2}$$
, $\theta = 45^{\circ}$

(d)
$$\cos \theta = 0$$
, $\theta = 90^{\circ}$

2. (a)
$$\theta = \frac{\pi}{4} \text{ rd}$$
 (b) $\sin \theta = \frac{\sqrt{3}}{3}$ (c) $\sin \theta = \frac{\sqrt{2}}{10}$ (d) $\sin \theta = \frac{2\sqrt{2}}{3}$ (e) $\theta = \frac{\pi}{6} \text{ rd}$

3. (a)
$$\cos \theta = \frac{\sqrt{66}}{33}$$
 (b) $\cos \theta = \frac{\sqrt{3}}{3}$ (c) $\cos \theta = \frac{\sqrt{2}}{2}$

4. r:
$$X = (\frac{5}{2}, 2, -\frac{3}{2}) + \lambda (1, 1, 1), \quad \lambda \in \mathbb{R}$$

ou r:
$$X = (-3, -\frac{5}{3}, 4) + \lambda (1, 1, -1), \quad \lambda \in \mathbb{R}$$

ou r:
$$X = (\frac{7}{5}, \frac{19}{5}, -\frac{2}{5}) + \lambda (-1, 1, 1), \quad \lambda \in \mathbb{R}$$

ou r: X =
$$(\frac{1}{7}, \frac{3}{7}, \frac{6}{7}) + \lambda$$
 (-1, 1, -1), $\lambda \in \mathbb{R}$

5. h:
$$X = (0, 2, 1) + \lambda (1, -1, -1), \quad \lambda \in \mathbb{R}$$

ou h:
$$X = (0, 2, 1) + \lambda (7, -1, -1), \quad \lambda \in \mathbb{R}$$

ou h:
$$X = (0, 2, 1) + \lambda (3, -1, 1), \quad \lambda \in \mathbb{R}$$

ou h:
$$X = (0, 2, 1) + \lambda (3, 1, -1), \quad \lambda \in \mathbb{R}$$

6.
$$r: \frac{x-1}{\sqrt{2}} = \frac{y+2}{1} = \frac{z-3}{1}$$

ou r:
$$\frac{x-1}{\sqrt{2}} = \frac{y+2}{1} = \frac{z-3}{-1}$$

ou r:
$$\frac{x-1}{\sqrt{2}} = \frac{y+2}{-1} = \frac{z-3}{1}$$

ou r:
$$\frac{x-1}{\sqrt{2}} = \frac{y+2}{-1} = \frac{z-3}{-1}$$

7.
$$t: X = (1, 1, 1) + \lambda (4, -1, -1), \quad \lambda \in \mathbb{R}$$

ou
$$t: X = (1, 1, 1) + \lambda (0, 1, 1), \lambda \in \mathbb{R}$$

8.
$$(-2 + \sqrt{3}, 1, 1 - \sqrt{3})$$
 ou $(-2 - \sqrt{3}, 1, 1 + \sqrt{3})$

9.
$$\Pi$$
: $2x - 3y + z - 5 = 0$ ou Π : $3x - y - 2z - 4 = 0$

10.
$$\Pi : x + y - 3z - 1 = 0$$
 ou $\Pi : x - y - 3z + 3 = 0$