

Energy Generation Calculations

To calculate the potential energy generation from each technology, we will use the provided data and standard efficiency values.

Piezoelectric Sensors

- **Efficiency**: Assume 15% efficiency as a standard value.
- **Energy per Vehicle**: Assume 0.05 kWh per vehicle (as a rough estimate).
- Daily Traffic: 500 vehicles per day.
- Annual Energy Generation:

Piezoelectric Energy per Day $=500\times0.05=25\,\mathrm{kWh/day}$ Piezoelectric Energy per Year $=25\times365\times0.15=1368.75\,\mathrm{kWh/year}$ However, a study suggests that a 1 km stretch of piezoelectric road can generate about 44,000 kWh per year. For a 6 km stretch:

Piezoelectric Energy per Year = $44,000 \times 6 = 264,000 \,\mathrm{kWh/year}$

Solar Panels

- Efficiency: Assume 18% efficiency.
- Solar Irradiance: Assume 1 kW/m².
- Available Area: 5000 m².
- Sunlight Hours: 5.5 hours per day.
- Annual Energy Generation:

```
Solar Energy per Day = 5000 \times 5.5 \times 0.18 = 4950 \,\text{kWh/day}
Solar Energy per Year = 4950 \times 365 = 1,806,750 \,\text{kWh/year}
```

Alternatively, using the average solar panel output:

Each solar panel produces about 2 kWh per day. For 5000 m², assuming a typical panel size of about 1.6 m², you can fit approximately 3125 panels (5000 m² / 1.6 m² per panel).

Solar Energy per Day = $3125 \times 2 = 6250 \, \text{kWh/day}$ Solar Energy per Year = $6250 \times 365 = 2,281,250 \, \text{kWh/year}$

Kinetic Speed Breakers

- Efficiency: Assume 20% efficiency.
- Energy per Vehicle: Assume 0.1 kWh per vehicle.
- Vehicles per Day: 225 vehicles.
- Annual Energy Generation:

Kinetic Energy per Day = $225 \times 0.1 = 22.5 \, \text{kWh/day}$ Kinetic Energy per Year = $22.5 \times 365 \times 0.20 = 1642.5 \, \text{kWh/year}$

Cost-Benefit Analysis

Installation Costs

- **Piezoelectric Sensors**: Approximately ₹3.5 crores per km for installation. For 6 km, the cost is about ₹21 crores.
- Solar Panels: The cost can vary, but a typical range is ₹50 to ₹75 per watt. For a system capable of covering 5000 m², assuming an average efficiency and panel size, the cost could be substantial, potentially exceeding ₹10 crores.
- **Kinetic Speed Breakers**: The cost is not well-documented, but assuming a similar scale to piezoelectric systems, it could be high.

Annual Energy Savings

- Cost per kWh: ₹6.
- Piezoelectric Annual Savings (using 264,000 kWh/year):

$$264,000 \times 6 = ₹15,84,000$$

• Solar Annual Savings (using 1,806,750 kWh/year):

$$1,806,750 \times 6 = 10,80,45,000$$

Kinetic Annual Savings:

$$1,642.5 \times 6 = 9,855$$

Payback Period

• Piezoelectric Payback Period:

$$21,00,00,000/15,84,000 \approx 13.25$$

years.

• Solar Payback Period:

$$10,00,00,000/10,80,45,000 \approx 0.93$$

years.

- **Kinetic Payback Period**: This calculation is not feasible due to the high cost and low energy output.

Environmental Impact

Carbon Emission Reduction

- Carbon Emission per kWh: Assume 0.0007 metric tons of CO₂ per kWh.
- Piezoelectric Carbon Reduction:

$$264,000 \times 0.0007 = 184.8$$

metric tons per year.

• Solar Carbon Reduction:

$$1,806,750 \times 0.0007 = 1264.725$$

metric tons per year.

• Kinetic Carbon Reduction:

$$1,642.5 \times 0.0007 = 1.14975$$

metric tons per year.

Feasibility Recommendations

Most Feasible Technology

Based on the payback period and environmental impact, **solar panels** are the most feasible technology for your college. They offer a quick payback period and significant carbon emission reduction.

Implementation Plan

1. Assessment and Planning:

- Conduct a detailed assessment of the solar potential and available space.
- Plan the layout and installation of solar panels.

2. Funding:

- Apply for government grants from the Education or Power ministries.
- Explore private partnerships or CSR initiatives.
- Consider crowdfunding or international research grants.

3. Installation:

- Hire a professional solar panel installation company.
- Ensure all safety and quality standards are met.

4. Maintenance and Monitoring:

- Regularly inspect and maintain the solar panels.
- Monitor energy generation and savings.

5. Expansion:

 Consider integrating piezoelectric sensors or kinetic speed breakers in high-traffic areas for additional energy generation.

Timelines

• Assessment and Planning: 2 months.

• **Funding**: 3-6 months.

• **Installation**: 3 months.

• Maintenance and Monitoring: Ongoing.

Funding Options

• Government Grants: Apply through official channels.

• **Private Partnerships**: Negotiate with companies interested in CSR initiatives.

• Crowdfunding: Use platforms like Kickstarter or GoFundMe.

Visual Representation

Energy Generation and Costs Table

Technology	Annual Energy Generation (kWh)	Installation Cost (₹)	Annual Savings (₹)	Payback Period (Years)
Piezoelectric	264,000	21,00,00,000	15,84,000	13.25
Solar	1,806,750	10,00,00,000	10,80,45,000	0.93
Kinetic	1642.5	Not Feasible	9,855	Not Feasible

References

- <u>Piezoelectric Sensors for Road Energy Generation</u>
- <u>Solar Panel Energy Production</u>
- <u>Kinetic Energy from Speed Breakers</u>
- Piezoelectric Roadway Costs
- Solar Panel Costs