Problem Set 2

Warren Kim

April 23, 2023

Question 2

Prove that $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ for all $n \in \mathbb{N}$.

Response

Proof. Let P_n read " $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ for all $n \in \mathbb{N}$ ".

Base case: P_1 reads " $1^3 = 1^2$ ". Clearly, 1 = 1 so P_1 holds true.

Inductive Hypothesis: Assume P_n holds true for an arbitrary $n \in \mathbb{N}$. We want to show that P_{n+1} is true.

$$\begin{aligned} 1^3 + 2^3 + \dots + n^3 + (n+1)^3 &= (1^3 + 2^3 + \dots + n^3) + (n+1)^3 \\ &= (1 + 2 + \dots + n)^2 + (n+1)^3 & \text{from } P_n \\ &= \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 & \text{from class, we proved that } \sum_{i=1}^n i = \frac{n(n+1)}{2} \\ &= \frac{n^2(n+1)^2}{4} + (n+1)^3 \\ &= \frac{1}{4} \left[n^2(n+1)^2 + 4(n+1)^3 \right] \\ &= \frac{1}{4} \left[(n+1)^2(n^2 + 4(n+1)) \right] \\ &= \frac{1}{4} \left[(n+1)^2(n^2 + 4n + 4) \right] \\ &= \frac{1}{4} \left[(n+1)^2(n+2)^2 \right] \\ &= \frac{(n+1)^2(n+2)^2}{4} \\ &= \left(\frac{(n+1)(n+2)}{2} \right)^2 \end{aligned}$$

$$1^3 + 2^3 + \dots + n^3 + (n+1)^3 = (1+2+\dots+n+(n+1))^2$$
 from class, we proved that $\frac{n(n+1)}{2} = \sum_{i=1}^n i^{-n}$

By the principle of mathematical induction, since we proved that P_{n+1} holds true for an arbitrary $n \in \mathbb{N}$, P_n holds true for all $n \in \mathbb{N}$.

Question 6 part (b), (e), (f)

Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field (not necessarily \mathbb{Q} or $\mathbb{R}!$) and for any $x \in \mathbb{F}$, define

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases} \tag{1}$$

This is called the absolute value function. Notice that $|x| \ge 0$ for every $x \in \mathbb{F}$.

- (b) Let $a \in \mathbb{F}$ such that $a \ge 0$. Show that for $x, y \in \mathbb{F}$, $|x y| \le a$ if and only if $y a \le x \le y + a$.
- (e) Let $x, y \in \mathbb{R}$. Prove that if for any $\varepsilon > 0$, $x \le y + \varepsilon$, then $x \le y$. Show that we can also replace $x \le y + \varepsilon$ with $x < y + \varepsilon$ and obtain $x \le y$.
- (f) Let $x, y \in \mathbb{R}$. Prove that x = y if and only if for any $\varepsilon > 0$, we have $|x y| < \varepsilon$.

Response

(b) $Proof. \implies$ There are two cases:

Case I: $0 \le x - y$. Then, |x - y| = x - y, so

$$x - y \le a$$
$$x \le y + a$$

Case II: x - y < 0. Then, |x - y| = -(x - y) = y - x, so

$$y - x \le a$$
$$x \ge y - a$$

so, we have that $y - a \le x \le y + a$.

← There are two cases:

Case I: $x \le y + a$. Note that if $0 \le x - y \implies |x - y| = x - y$.

$$x \le y + a$$
$$a \ge x - y$$
$$a \ge |x - y|$$

Case II: $y - a \le x$. Note that if $x - y < 0 \implies |x - y| = -(x - y)$.

$$y - a \le x$$

$$a \ge y - x$$

$$a \ge -(x - y)$$

$$a \ge |x - y|$$

So, $|x - y| \le a$.

In both cases, we have that $|x-y| \le a$. Therefore, $|x-y| \le a \iff y-a \le x \le y+a$.

(e) *Proof.* Assume by contradiction that y < x. Then, 0 < x - y. Fix $\varepsilon = \frac{1}{2}(x - y)$. Clearly, $0 < \frac{1}{2}(x - y)$ from our assumption. Then,

$$\frac{1}{2}(x-y) < x-y$$

$$\varepsilon < x-y$$

which is a contradiction to the statement that $x-y \le \varepsilon$. Therefore, if for any $\varepsilon > 0, \ x \le y + \varepsilon$, then $x \le y$.

Proof. Assume by contradiction that y < x. Then, 0 < x - y. Fix $\varepsilon = \frac{1}{2}(x - y)$. Clearly, $0 < \frac{1}{2}(x - y)$ from our assumption. Then,

$$\frac{1}{2}(x-y) < x - y$$
$$\varepsilon < x - y$$

which is a contradiction to the statement that $x-y<\varepsilon$. Therefore, if for any $\varepsilon>0,\ x< y+\varepsilon$, then $x\leq y$.

- (f) Proof. \Longrightarrow Let x=y. We want to prove that $|x-y|<\varepsilon$. $x=y\Longrightarrow x-y=0$. Then, |x-y|=|0|=0 by definition of the absolute value function. Substituting |x-y|=0, we get $|x-y|<\varepsilon=0<\varepsilon$. Clearly, for any $\varepsilon>0$, $0<\varepsilon$ holds true.
 - \Leftarrow Assume by contradiction that $x \neq y$. Then, $0 \leq |x-y|$ by definition of the absolute value function. Now take $\varepsilon = \frac{1}{2}|x-y|$. Clearly, $0 < \frac{1}{2}|x-y| < |x-y|$. Then, we have $\frac{1}{2}|x-y| < |x-y| \implies \varepsilon < |x-y|$, which is a contradiction to the statement for any $\varepsilon > 0, |x-y| < \varepsilon$.

Question 13 part (a)

Assume $\alpha \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$, which is a non-empty and bounded above. Prove that $\alpha = \sup A$ if and only if for every $\varepsilon > 0$, there exists an $a \in A$ such that $\alpha - \varepsilon \leq a$.

Response

Proof. \Longrightarrow Let $\alpha = \sup A$. Assume by contradiction that $\exists \varepsilon > 0$ such that $\forall a \in A$, we have $a < \alpha - \varepsilon$. Then $\alpha - \varepsilon$ is an upper bound for A. But $\alpha - \varepsilon < \alpha$, which is a contradiction to the statement that α is the *least* upper bound for A. Therefore, $\forall \varepsilon > 0$, $\exists a \in A$ such that $\alpha - \varepsilon \leq a$.

 \Leftarrow Assume $\forall \varepsilon > 0$, there exists some $a \in A$ such that $\alpha - \varepsilon \leq a$. Assume by contradiction that $\alpha \neq \sup A$. Since $\sup A$ is the least upper bound for A, we have that $\sup A < \alpha$ since α is an upper bound by the problem statement. Let $\varepsilon = \alpha - \sup A$. Clearly, since $\sup A < \alpha$, $0 < \varepsilon$. Then, there exists some $a \in A$ such that $\alpha - \varepsilon \leq a$. Substituting $\varepsilon = \alpha - \sup A$, we have $\alpha - (\alpha - \sup A) \leq a \implies \sup A \leq a$ which is a contradiction to the statement that $\sup A$ is a supremum for A.

Question 14

Assume that A, B are nonempty subsets of \mathbb{R} that are bounded above and $A \subseteq B$. Show that $\sup A \leq \sup B$.

Response

Proof. Note that $B \subseteq \mathbb{R}$, it is non-empty, and it is bounded above. Therefore, by definition of the supremum, $\sup B$ exists. We now want to show that $\sup A$ exists. Since $A \subseteq B$, by the transitive property of the subset relation, $A \subseteq \mathbb{R}$. By the problem statement, A is also non-empty and bounded above. Therefore, by definition of the supremum, $\sup A$ exists. Note that since $A \subseteq B$, we have $\forall a \in A, \ a \in B \implies \forall a \in A, \ a \le \sup B$. So, $\sup B$ is an upper bound for A. Since $\sup A$ is the *least* upper bound for A, by the definition of the supremum, $\sup A \le \sup B$.