TDAB01 Sannolikhetslära och Statistik

Jose M. Peña IDA, Linköpings Universitet

Föreläsning 8

Översikt

- Punktskattning
- Maximum likelihood metoden
- Samplingfördelning
- Konfidensintervall
- ► Konfidensintervall för populationsväntevärden
- Konfidensintervall f\u00f6r proportioner

Punktskattning

- Grundproblem: Sannolikhetsmodeller har **okända** parametrar, θ .
 - ightharpoonup T ex medelinkomsten i Sverige. Populationens väntevärde μ är okänd.
 - T ex andelen defekta komponenter i produktionen av en produkt. Sannolikheten p är okänd.
 - ightharpoonup T ex spamfilter. Parametrarna eta_0 och eta_1 är okända i

$$p\left(\mathsf{spam}|\mathsf{antal\$}\right) = \frac{\exp\left(\beta_0 + \beta_1 \cdot \mathsf{antal\$}\right)}{1 + \exp\left(\beta_0 + \beta_1 \cdot \mathsf{antal\$}\right)}$$

- Vi vill använda (tränings)data för att bestämma värden för dessa parametrar.
- Punktskattning: Vår bästa gissning utifrån data.

Maximum likelihood metoden

 Maximum likelihood (ML) estimatorn: Välj värdet för θ som maximerar sannolikheten för data, dvs

$$\hat{\theta} = \operatorname{argmax}_{\theta \in \Theta} P(x_1, \dots, x_n | \theta)$$

Kontinuerliga fallet:

$$\hat{\theta} = \operatorname{argmax}_{\theta \in \Theta} f(x_1, \dots, x_n | \theta)$$

 Likelihoodfunktionen är sannolikheten för stickprovet sett som en funktion av parametern

$$L(\theta) = P(x_1, \dots, x_n | \theta)$$

- ▶ ML-estimatorn maximerar $L(\theta)$.
- Exempel: Data $X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0, X_5 = 1$ från Bernoulli(p).

$$L(p) = (1-p)pp(1-p)p = p^{3}(1-p)^{2}$$

Maximum likelihood metoden

lacktriangle Vi kan hitta **ML-skattningen** analytiskt: Lös med avseende på heta

$$\frac{\partial L(\theta)}{\partial \theta} = 0$$

Oftast enklare att maximera log-likelihoodfunktionen

$$\frac{\partial \ln L(\theta)}{\partial \theta} = 0$$

Exempel: Bernoulli data.

$$\frac{\partial \ln L(p)}{\partial p} = \frac{\partial}{\partial p} \left(s \ln p + f \ln (1-p) \right) = \frac{s}{p} + f \frac{-1}{1-p} = \frac{s}{p} - \frac{f}{1-p} = 0$$

vilket ger lösningen $\hat{p} = \frac{s}{s+f} = \frac{s}{n}$.

▶ Kontrollera \hat{p} är ett maximum, dvs andraderivatan är negativ i $p = \hat{p}$.

$$\frac{\partial^2 \ln L(p)}{\partial p^2} = -\frac{s}{p^2} - \frac{f}{(1-p)^2} < 0$$

för alla $p \in [0,1]$, inklusive $p = \hat{p}$.

5/1

Maximum likelihood metoden

Notera att oberoende data är praktiskt

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$

så log-likelihooden blir en summa som är lättare att derivera

$$\ln L(\theta) = \sum_{i=1}^n \ln f(x_i|\theta).$$

• Exempel: $X_1, \ldots, X_n \stackrel{iid}{\sim} Exp(\lambda)$ ger

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i}$$

och

$$\frac{\partial \ln L(\lambda)}{\partial \lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i = \frac{n}{\lambda} - n\bar{x},$$

och därmed $\hat{\lambda} = 1/\bar{x}$.

Samplingfördelningen

- Hur bra är en estimator $\hat{\theta}$?
- ▶ Väntevärdesriktig ? $\mathbb{E}(\hat{\theta}) = \theta$.
- $Bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) \theta$.
- ▶ Samplingfördelningen beskriver variationen i $\hat{\theta}$ över alla stickprov av en viss storlek n.
- ▶ Standardfelet för $\hat{\theta}$ är $\sqrt{Var(\hat{\theta})}$, dvs standardavvikelsen för $\hat{\theta}$ över alla stickprov av storleken n.
- ► Mean Squared Error:

$$MSE(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + [Bias(\hat{\theta})]^2$$

Samplingfördelningen

- **Exemple:** Poisson data. ML-estimator för λ : \bar{X} . Se Example 9.7 i Baron.
- ▶ Väntevärdesriktig: $\mathbb{E}(\hat{\lambda}) = \lambda$ och $Var(\hat{\lambda}) = \frac{\sigma^2}{n} = \frac{\lambda}{n}$.
- Notera att $Var(\hat{\lambda}) = \frac{\lambda}{n}$ beror på den okända parametern λ . Lösning: Sätt $\lambda = \hat{\lambda} = \bar{x}$ eller sätt $\sigma^2 = s^2$
- ▶ Tekniker för att härleda samplingfördelningen för en estimator $\hat{\theta}$:
 - Om X_1, \ldots, X_n är iid från $N(\mu, \sigma^2)$ så är $\hat{\theta} = \bar{X} \sim N(\mu, \sigma^2/n)$ exakt.
 - ▶ CLT med väntevärdesriktighet: $\hat{\theta} \sim N(\theta, Var(\hat{\theta}))$ approximativt.
 - Bootstrapsimulering.

Bootstrap:

- Skapa N bootstrapstickprov x⁽¹⁾,...,x^(N) av samma storlek som det ursprungliga stickprovet genom dragning med återläggning.
- ▶ Beräkna estimatet $\hat{\theta}(\mathbf{x}^{(1)}), \dots, \hat{\theta}(\mathbf{x}^{(N)})$ för var och ett av dessa N stickprov.
- ▶ Den empiriska fördelningen för $\hat{\theta}(\mathbf{x}^{(1)}), \dots, \hat{\theta}(\mathbf{x}^{(N)})$ (tänk histogram) är en approximation av samplingfördelningen för $\hat{\theta}$.

Konfidensintervall

- Punktskattning ger bara en bästa gissning för θ . Konfidensintervall är ett försök att beskriva osäkerheten om θ .
- ▶ 95%-igt konfidensintervall för θ är ett intervall [a, b] sådant att

$$P{a ≤ θ ≤ b} = 0.95.$$

- Viktigt: Parametern θ är en fix konstant. Det är intervallet som är slumpmässigt, dvs a och b are funktioner av stickprovet.
- ▶ **Tolkning**: Ett 95%-igt konfidensintervall [a,b] kommer att **täcka** parametervärdet θ , dvs $\theta \in [a,b]$, i 95% av alla möjliga stickprov. Alltså om vi räknar a och b från alla stickprov, täcker intervallet θ i 95% av fallen. Denna konfidens säger mer om metoden för att räkna intervallet än om det specifika intervallet vi fick från stickprovet. Tänk på sannolikheten att intervallet täcker θ snarare än på sannolikheten att θ ligger i intervallet.
- Man kan naturligtvis ha andra konfidensnivåer än 95%, men 90%, 95% och 99% är vanligast.

Konfidensintervall

Konfidensintervall - standardprocedur

Antag normalfördelad väntevärdesriktig estimator $\hat{\theta}$, t ex \bar{X} vid normalfördelade data (eller CLT argument). Då gäller

$$Z = \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})} \sim N(0, 1)$$

Låt z_{α} vara $(1-\alpha)$ % percentilen i N(0,1) fördelningen, dvs värdet som klipper av ytan α till **höger**. Tabell A4 i Baron ger att $z_{0.025} = 1.96$.

Då gäller att

$$\boldsymbol{P}\Big(-z_{0.025}\leq \frac{\hat{\theta}-\theta}{\sigma(\hat{\theta})}\leq z_{0.025}\Big)=0.95$$

vilket kan skrivas om som

$$\mathbf{P}(\hat{\theta} - z_{0.025} \cdot \sigma(\hat{\theta}) \le \theta \le \hat{\theta} + z_{0.025} \cdot \sigma(\hat{\theta})) = 0.95$$

▶ Alltså, $[\hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta}), \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta})]$ är ett $(1 - \alpha)$ %-igt konfidensintervall för θ

Konfidensintervall för populationsväntevärdet

- Antag $\theta = \mu$, $\hat{\theta} = \bar{X}$, $\mathbb{E}(\hat{\theta}) = \mathbb{E}(\bar{X}) = \mu$, och $\sigma(\hat{\theta}) = Std(\bar{X}) = \sigma/\sqrt{n}$. Dessutom, σ antas känd.
- ▶ Centrala gränsvärdessatsen ger att $\hat{\theta} = \bar{X}$ är approximativt normalfördelad när n är stort ($n \ge 30$). Oavsett hur data är fördelade. Alltså, $\bar{X} \pm z_{0.025} \cdot \frac{\sigma}{\sqrt{n}}$ är ett (approximativt) 95%-igt konfidensintervall för θ . Om data är normalfördelade är intervallet exakt.
- Bestämning av stickprovsstorlek n: Vi kan bestämma n så att vi får ett konfidensintervall av given bredd.
- Se Examples 9.13 och 9.15 i Baron.

Konfidensintervall för populationsväntevärdet

- ▶ I praktiken är $\sigma(\hat{\theta})$ inte känd utan måste skattas (estimeras) från data, t ex $\sigma(\hat{\theta}) = Std(\bar{X}) = \sigma/\sqrt{n}$ och σ är ofta okänd.
- ▶ **Vid stort** *n* får vi en bra skattning av $\sigma(\hat{\theta})$ genom att ersätta den med t ex $s(\hat{\theta}) = s/\sqrt{n}$.
- Vid stort n får vi ett bra approximativt konfidensintervall genom att ersätta $\sigma(\hat{\theta})$ med $s(\hat{\theta})$, och anropa centralagränsvärdessatsen som tidigare.
- Vid litet n funkar $s(\hat{\theta})$ inte lika bra. Då, konfidensintervall för populationsväntevärdet μ vid små stickprov från en normalfördelad population:

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}(0,1)$$

▶ Så ett **exakt** 95%-igt konfidensintervall för μ ges då av

$$\bar{X} \pm t_{0.025} (n-1) \frac{s}{\sqrt{n}}$$

där $t_{0.025}(n-1)$ är 97.5% percentilen i t-fördelningen med $\nu=n-1$ frihetsgrader. Läses av från Tabell A5 i Baron.

- ▶ Se Example 9.19 i Baron.
- Man kan också använda den senaste metoden vid stora stickprov och få en exakt konfidensintervall.
- För små stickprov från en icke-normalfördelad population använd bootstrap för att approximera samplingfördelningen (se slide 8).

Konfidensintervall för en andel

- Exempel: 196 av 2000 utfrågade svarar att de röstar på centerpartiet. Hur stor andel p röstar på centerpartiet i hela populationen?
- $\hat{p} = 196/2000$ är ML-skattningen. Men hur säkra är vi ?
- $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$ där $X_i = 1$ om den i:te utfrågade person röstar på centerpartiet och $X_i = 0$ annars. Så \hat{p} är också ett medelvärde !
- ▶ Antag att $X_i \stackrel{iid}{\sim} Bernoulli(p)$. Då gäller $\mathbb{E}(X_i) = p$ och $Var(X_i) = p(1-p)$. Alltså,

$$\mathbb{E}(\hat{p}) = p \text{ och } Var(\hat{p}) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{1}{n^2} np(1-p) = \frac{p(1-p)}{n}$$

- $\sigma(\hat{p})$ beror på p, som vi ersätter med en skattning: $s(\hat{p}) = \sqrt{\hat{p}(1-\hat{p})/n}$.
- ightharpoonup Centralagränsvärdessatsen ger ett **approximativt** $(1-\alpha)100\%$ -igt intervall

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = (0.085, 0.111)$$

Översikt

- Punktskattning
- Maximum likelihood metoden
- Samplingfördelning
- Konfidensintervall
- ► Konfidensintervall för populationsväntevärden
- Konfidensintervall för proportioner