作業系統 Operating Systems

大綱-

資料處理模式

人腦 vs. 電腦

靜宜大學資訊傳播工程學系 劉國有 助理教授 kyliu@pu.edu.tw

資料處理模式

電腦之父-馮紐曼

● 1945年-世界上第一部通用電子電腦: Electronic Numerical Integrator And Computer (ENIAC, 電子數值積分計算機)

- 由賓州大學莫奇來(Mauchly)博士和他的學生愛克特 (Eckert)設計以真空管為元件所設計的電腦・目的是用來計 算砲彈彈道。
- ▶ 1945年-馮紐曼架構:儲存程式邏輯架構。為現代各式電腦 所遵循的主要設計架構。

Memory Subsystem

- Memory, also called RAM (Random Access Memory),
 - Consists of many memory cells (storage units) of a fixed size. Each cell has an address associated with it: 0, 1, ...
 - All accesses to memory are to a specified address. A cell is the minimum unit of access (fetch/store a complete cell).
 - The time it takes to fetch/store a cell is the same for all cells.
- When the computer is running, both
 - O Program
 - Data (variables)

are stored in the memory.

RAM

- Need to distinguish between
 - the <u>address</u> of a memory cell and the <u>content</u> of a memory cell
- Memory width (W):
 - How many bits is each memory cell, typically one byte (=8 bits)
- Address width (N):
 - How many bits used to represent each address, determines the maximum memory size = <u>address space</u>
 - If address width is N-bits, then address space is 2^N (0,1,...,2^N-1)

Structure of the Memory Subsystem

- Fetch(address)
 - Load address into MAR.
 - Decode the address in MAR.
 - Copy the content of memory cell with specified address into MDR.
- Store(address, value)
 - Load the address into MAR.
 - Load the value into MDR.
 - Decode the address in MAR
 - Copy the content of MDR into memory cell with the specified address.

Input/Output Subsystem

- Handles devices that allow the computer system to:
 - Communicate and interact with the outside world
 - Screen, keyboard, printer, ...
 - Store information (mass-storage)
 - Hard-drives, floppies, CD, tapes, ...
- Mass-Storage Device Access Methods:
 - Direct Access Storage Devices (DASDs)
 - Hard-drives, floppy-disks, CD-ROMs, ...
 - Sequential Access Storage Devices (SASDs)
 - Tapes (for example, used as backup devices)

I/O Controllers

- Speed of I/O devices is slow compared to RAM
 - RAM ~ 50 nsec.
 - Hard-Drive ~ 10msec. = (10,000,000 nsec)
- Solution:
 - I/O Controller, a special purpose processor:
 - Has a small memory buffer, and a control logic to control I/O device (e.g. move disk arm).
 - Sends an interrupt signal to CPU when done read/write.
 - Data transferred between RAM and memory buffer.
 - Processor free to do something else while I/O controller reads/writes data from/to device into I/O buffer.

The ALU Subsystem

- The ALU (Arithmetic/Logic Unit) performs
 - mathematical operations (+, -, x, /, ...)
 - logic operations (=, <, >, and, or, not, ...)

in today's computers integrated into the CPU

- Consists of:
 - Circuits to do the arithmetic/logic operations.
 - Registers (fast storage units) to store intermediate computational results.
 - Bus that connects the two.

Structure of the ALU

• Registers:

- Very fast local memory cells, that store operands of operations and intermediate results.
- <u>CCR</u> (condition code register), a special purpose register that stores the result of <, = , > operations

• ALU circuitry:

• Contains an array of circuits to do mathematical/logic operations.

O Bus:

 Data path interconnecting the registers to the ALU circuitry.

The Control Unit

- Program is stored in memory
 - as machine language instructions, in binary
- The task of the <u>control unit</u> is to execute programs by repeatedly:
 - Fetch from memory the next instruction to be executed.
 - Decode it, that is, determine what is to be done.
 - Execute it by issuing the appropriate signals to the ALU, memory, and I/O subsystems.
 - Continues until the HALT instruction

Machine Language Instructions

- A machine language instruction consists of:
 - Operation code, telling which operation to perform
 - Address field(s), telling the memory addresses of the values on which the operation works.
- Example: ADD X, Y (Add content of memory locations X and Y, and store back in memory location Y).
- Assume: opcode for ADD is 9, and addresses X=99, Y=100

Opcode (8 bits)	Address 1 (16 bits)	Address 2 (16 bits)
00001001	0000000001100011	0000000001100100

Structure of the Control Unit

- PC (Program Counter):
 - stores the address of next instruction to fetch
- IR (Instruction Register):
 - stores the instruction fetched from memory
- Instruction Decoder:
 - Decodes instruction and activates necessary circuitry

