Universidade Federal de Pernambuco Departamento de Matemática - Geometria Analítica 1 Prof. Rodrigo Cavalcante

Oitava Lista de Exercícios Posições Relativas e Intersecções

Em todas as questões abaixo considere que os pontos são dados em relação a algum sistema ortogonal de coordenadas.

- 1. Sejam $r: X = (1,0,2) + \lambda(2,1,3)$ e $s: X = (0,1,-1) + \lambda(1,m,2m)$. Estude a posição relativa entre r e s em função de m. Quando possível, determine a equação geral do plano definido por r e s.
- 2. Estude a posição relativa entre r e π e, quando forem concorrentes, obtenha o ponto P de intersecção entre eles.

a)
$$r: \frac{x-1}{2} = y = z \text{ e } \pi: X = (3,0,1) + \lambda(1,0,1) + \mu(2,2,0);$$

b) $r: \begin{cases} x - y + z = 0 \\ 2x + y - z - 1 = 0 \end{cases}$ e $\pi: X = \left(0, \frac{1}{2}, 0\right) + \lambda\left(1, -\frac{1}{2}, 0\right) + \mu(0,1,1);$
c) $r: X = (0,0,0) + \lambda(1,4,1) \text{ e } \pi: X = (1,-1,1) + \lambda(0,1,2) + \mu(1,-1,0);$

- 3. Estude a posição relativa dos planos π_1 e π_2 .
 - a) π_1 : $X = (1,1,1) + \lambda(0,1,1) + \mu(-1,2,1)$ e π_2 : $X = (1,0,0) + \lambda(1,-1,0) + \mu(-1,-1,-2)$; b) π_1 : 2x - y + 2z - 1 = 0 e π_2 : 4x - 2y + 4z = 0;
 - c) π_1 : x y + 2z 2 = 0 e π_2 : $X = (0,0,1) + \lambda(1,0,3) + \mu(-1,1,1)$.
- 4. Obtenha uma equação vetorial da reta s que contém o ponto P=(1,1,0) e é paralela (ou está contida) no plano $\pi:\ 2x+y-z-3=0$ e é concorrente à reta $r:\ X=(1,0,0)+\lambda(-1,0,1)$.
- 5. Considere os planos π_1 : $2x=y, \pi_2$: $x=0, \pi_3$: z=0 e seja π_4 o plano determinado pelas retas r: $X=(1,2,0)+\lambda(1,2,-1)$ e s: $\begin{cases} x=0\\z+y=1 \end{cases}$. Mostre que estes quatro planos definem um tetraedo e encontre as coordenadas dos vértices deste tetraedro.
- 6. Considere as retas dadas por $r: X = (1,1,0) + \lambda(0,1,1)$ e $s: \frac{x-1}{2} = y = z$. Seja A o ponto onde a reta s que intercepta o plano $\pi: x-y+z=2$ e B e C os ponto onde a reta r que interceptam os planos xOz e xOy, respectivamente. Calcule a área do triângulo ABC.
- 7. Dados os pontos $A=(1,0,0),\ B=(0,2,0),\ C=(0,0,3)$ e O=(0,0,0), sejam $r,\ s$ e t as retas que contém os segmentos $OA,\ OB$ e OC, respectivamente. Encontre a equação geral do plano π paralelo ao plano que contém os pontos $A,\ B,\ C$ e de modo que a área do triângulo A'B'C' seja igual $\frac{7}{8}$, onde $A',\ B'$ e C' são os pontos de intersecção das retas $r,\ s$ e t com o plano π , respectivamente.