

JOE BARRETT
CONNOR NICKOL
BRITTANY NGUYEN
(GROUP 3)

DS 4002 SPRING 2022

F1 Data Analysis

Agenda

DBJECTIVE AND HYPOTHESIS DEVELOPMENT	1
DATA OVERVIEW AND BACKGROUND	2
EDA AND MODELING PLAN	3
NITIAL MODEL AND FEATURE ENGINEERING	4
FULL MODEL AND EVALUATION	5
CONCLUDE, FUTURE DIRECTIONS, REFLECT	6

OBJECTIVE

• CLASSIFICATION ML:

->1096 RACES TOTAL

• MODELS USED:

-> EMPLOYED DECISION TREE, RANDOM FOREST LOGISTIC REGRESSION, BAGGING/BOOSTING

VARIABLES

1) W E A T H E R
2) Q U A L I F Y I N G T I M E G A P
- > W I T H R E S P E C T T O 4 T H
P L A C E Q U A L I F I E R
3) Q U A L I F Y I N G P O S I T I O N
4) C I R C U I T I D / R E F E R E N C E
5) D R I V E R N A T I O N A L I T Y
6) L A T I T U D E & L O N G I T U D E
7) C O U N T O F S A F E T Y C A R S
8) C O U N T O F P I T S T O P S

$\square V$	$D \cap$	TH	E C	E C
	Гυ		LJ	LJ

- HIGHER LIKELIHOOD OF WINNING A RACE WITH:
- 1) LESS PIT STOPS
- 2) MORE SAFETY CARS
- 3) WEATHER = RAINY

* "SAFETY CARS" & "WEATHER" MAKE
CERTAIN TRACKS MORE UNPREDICTABLE
->INCREASED LIKELIHOOD OF OVERTAKES
->DECREASED CHANCE OF 1ST PLACE
QUALIFIER WINNING

NAME	WEATHER_WET	CIRCUITREF	circuitld	circuit	country	lat	Ing	alt	code	forename	sumame	nationality	qual_gap	won_race
Australian Grand Prix	N	albert_park	0	Albert Park Grand Pr	Australia	-37.8497	144.968	10	VET	Sebastian	Vettel	German	-0.084	0
Australian Grand Prix	N	albert_park	0	Albert Park Grand Pr	Australia	-37.8497	144.968	10	BAR	Rubens	Barrichello	Brazilian	-0.409	0
Australian Grand Prix	N	albert_park	C	Albert Park Grand Pr	Australia	-37.8497	144.968	10	BUT	Jenson	Button	British	-0.712	1
Malaysian Grand Pri:	Υ	sepang	0	Sepang Internationa	Malaysia	2.76083	101.738	18	TRU	Jamo	Trulli	Italian	-0.378	0
Malaysian Grand Pri:	Υ	sepang	C	Sepang International	Malaysia	2.76083	101.738	18	BUT	Jenson	Button	British	-0.47	1
Chinese Grand Prix	Υ	shanghai	0	Shanghai Internation	China	31.3389	121.22	5	WEB	Mark	Webber	Australian	-0.027	0
Chinese Grand Prix	Y	shanghai	0	Shanghai Internation	China	31.3389	121.22	5	ALO	Fernando	Alonso	Spanish	-0.112	0
Chinese Grand Prix	Υ	shanghai	C	Shanghai Internation	China	31.3389	121.22	5	VET	Sebastian	Vettel	German	-0.309	1
Bahrain Grand Prix	N	bahrain	3	Bahrain Internationa	Bahrain	26.0325	50.5106	7	VET	Sebastian	Vettel	German	-0.029	0
Bahrain Grand Prix	N	bahrain	3	Bahrain Internationa	Bahrain	26.0325	50.5106	7	GLO	Timo	Glock	German	-0.332	0

DATA OVERVIEW AND BACKGROUND

Source	Dataset	Selected Variables	Source Dataset	Selected Variables
	circuits	 circuitId circuitRef Name Lat/long Altitude Country 		raceIDdriverIDnum_stops
Kaggle	results	 resultId raceID driverID positionOrder position 	pitstops	• date_time
	drivers	 driverId code forename surname nationality 	races Oracle	raceIDWeather_wetName
	qualify	 driverId raceID position q1 q2 q3 		• year
	results	 constructorId humber positionText Points fastestLapTime fastestLapSpeed 	safety cars	yearRaceCountLaps

EXPLORATORY DATA ANALYSIS (PT. 1)

EXPLORATORY DATA ANALYSIS (PT. 2)

EXPLORATORY DATA ANALYSIS (PT. 3)

FEATURE ENGINEERING

1) COLUMN "QUAL_GAP" IS THE DIFFERENCE BETWEEN QUAL. TIMES OF EACH QUALIFIER AND THE 4TH PLACE QUALIFIER (WAY OF STANDARDIZING DIFFERENCES)

2) CONVERSION OF THE QUALIFYING TIMES TO SECONDS

qual_gap	
	-0.084
	-0.409
	-0.712
	-0.378
	-0.47
	-0.027
	-0.112
	-0.309
	-0.029
	-0.332
	-0.613
	-0.172
	-0.274
	-0.407
	-0.194
	-0.344
	-0.369
	-0.192

FULL MODEL & EVALUATION

TWO SETS OF TRAINING DATA

- ONE ALL YEARS OF DATA(1950-2020)
- SECOND JUST 2011-2020 BUT WITH PIT STOP AND SAFETY CAR COUNTS AS PREDICTOR VARIABLES
- BOTH USED JUST 2021 AS THE TESTING DATA

Model	Full Data Accuracy	2011+ Data Accuracy
Logistic Regression	0.7543	0.7593
Recursive Binary Splitting	0.7543	0.7407
Random Forest	0.7018	0.7222
Bagging	0.6842	0.7037
Boosting	0.8070	0.7034

LOOKING AT WIN PROBABILITIES BY TRACK

÷	circuitld [‡]	avg_prob 🔻	name	country	location [‡]
1	6	0.6426821	Circuit de Monaco	Monaco	Monte-Carlo
2	14	0.5906555	Autodromo Nazionale di Monza	Italy	Monza
3	13	0.5625987	Circuit de Spa-Francorchamps	Belgium	Spa
4	9	0.5208961	Silverstone Circuit	UK	Silverstone
5	11	0.5095333	Hungaroring	Hungary	Budapest

CONCLUSIONS AND REFLECTIONS

1) CONCLUSIONS:

-INCLUDING PIT STOPS AND SAFETY CAR DATA PRODUCED HIGHER ACCURACIES FOR 3 OUT OF 5 MODELS

-BOOSTING = CHAMPION MODEL (W/OUT SAFETY CARS AND PIT STOPS)
LOG. REG = CHAMPION MODEL WITH SAFETY CARS AND PIT STOPS

2) FUTURE DIRECTIONS:

- PROBABILITY OF 2ND OR 3RD PLACE QUALIFIERS WINNING AT EACH OF SAME 5 MOST RACED-AT TRACKS

- TOTAL WINS BY NATIONALITY/COUNTRY

3) GENERAL REFLECTIONS FROM CYCLES 1+2:

- DECIDING WHEN IT IS "WORTH IT" TO EXCLUDE PORTIONS OF DATA (PROJECT 1: GDP DATA NOT AVAILABLE FOR PORTION OF TIME PROJECT 2: SAFETY CAR/PIT STOP DATA MISSING IN TRAINING DATA)

- VALUE OF EDA IN FORECASTING (PROJECT 1: WHAT COUNTRIES HAD HIGHEST MEDAL COUNT PROJECT 2: EFFECTS OF TRACK OR WEATHER ON WINS)

WORKS CITED

Oracle-Devrel. (2022). Oracle-devrel/redbull-analytics-hol: Learn machine learning the fun way, with

Oracle and Redbull Racing. GitHub. Retrieved April 25, 2022, from https://github.com/oracle-devrel/redbull-analytics-hol

Vopani. (2022, April 11). Formula 1 World Championship (1950 - 2022). Kaggle. Retrieved April 25, 2022,

from https://www.kaggle.com/datasets/rohanrao/formula-1-world-championship-1950-

2020?select=races.csv

Thank You!

ANY QUESTIONS? :)

