Reconstruction parcimonieuse des signaux

Leo Davy

Université de Montpellier

Montpellier, 1 Juin 2021

Signaux

Signaux

Un signal est une application $f: X \to Y$

Example (familles de signaux)

- $\blacksquare \mathbb{R}^N$
- $L^2(\mathbb{R})$

Exemples de problèmes

- Compresser un signal
- Décomposer un signal en éléments simples
- Reconstruire un signal en utilisant un minimum de mesures

TODO:

ajouter image fourier-dirac+fourier sous-échantilloné

Traitement du signal

Mesure du signal

Opérateur d'analyse

$$A: f \mapsto (c_i(f))_I$$

avec
$$c_i(f) = \langle f, \varphi_i \rangle$$
.

$$g_m = \langle$$

Traitement du signal

Mesure du signal

Opérateur d'analyse

$$A: f \mapsto (c_i(f))_I$$

avec
$$c_i(f) = \langle f, \varphi_i \rangle$$
.

Reconstruction

Opérateur de synthèse

$$S:(c_i(f))_I\mapsto f$$

Traitement du signal

Mesure du signal

Opérateur d'analyse

$$A: f \mapsto (c_i(f))_I$$

avec
$$c_i(f) = \langle f, \varphi_i \rangle$$
.

Reconstruction

Opérateur de synthèse

$$S:(c_i(f))_I\mapsto f$$

Quelles conditions pour reconstruire n'importe quel signal f de \mathcal{F} à partir de A(f)?

Théorie des frames

Definition

On appelle $F = (\varphi_i)_I$ un frame de H si $\exists m, M > 0$ tels que

$$m||f||_2^2 \le \sum_I |\langle f, \varphi_i \rangle|^2 \le M||f||_2^2, \quad \forall f \in H$$

Théorie des frames

Definition

On appelle $F = (\varphi_i)_I$ un frame de H si $\exists m, M > 0$ tels que

$$m||f||_2^2 \le \sum_I |\langle f, \varphi_i \rangle|^2 \le M||f||_2^2, \quad \forall f \in H$$

Frame serré

Si m = M, formule de reconstruction :

$$f = \frac{1}{M} \sum_{i} \langle f, f_i \rangle f_i.$$

Décomposition en ondelettes

$$\begin{split} f &= \sum_{k=-\infty}^{+\infty} \langle f, \varphi_k \rangle \varphi_k \\ &+ \sum_{j=1}^{+\infty} \left(\sum_{k=-\infty}^{+\infty} \langle f, \psi_{j,k} \rangle \psi_{j,k} \right) \end{split}$$

$$\psi_{j,k} := 2^{j/2} \psi(2^j \cdot -k).$$

j: échelle (fréquence), k: localisation

Compression par les ondelettes

Moments nuls : $\langle P, \psi_{j,k} \rangle = 0$ si $\deg(P) \leq m$

Compression par les ondelettes

Moments nuls : $\langle P, \psi_{j,k} \rangle = 0$ si $\deg(P) \leq m$

Compression par les ondelettes

Moments nuls : $\langle P, \psi_{j,k} \rangle = 0$ si $\deg(P) \leq m$ <u>Jaffard 91</u>: $f \in C^{\alpha}$ et ψ avec $m \geq \alpha$ moments nuls, alors

$$|\langle f, \psi_{j,k} \rangle| \le C_{\alpha} 2^{-j(\alpha + \frac{1}{2})}$$

Soit $D = (\varphi_i)_I$ une famille de vecteurs (dictionnaire d'atomes), $f \in Vect(D)$:

1 Reconstruction : Quels $(c_i)_J$ pour que $f = \sum_J c_i \varphi_i$?

Soit $D = (\varphi_i)_I$ une famille de vecteurs (dictionnaire d'atomes), $f \in Vect(D)$:

- **I** Reconstruction : Quels $(c_i)_J$ pour que $f = \sum_J c_i \varphi_i$?
- 2 Reconstruction parcimonieuse : Quels $(c_i)_I$ minimise le nombre de coefficients non nuls et reconstruit f?

Soit $D = (\varphi_i)_I$ une famille de vecteurs (dictionnaire d'atomes), $f \in Vect(D)$:

- **I** Reconstruction : Quels $(c_i)_J$ pour que $f = \sum_J c_i \varphi_i$?
- **2** Reconstruction parcimonieuse : Quels $(c_i)_I$ minimise le nombre de coefficients non nuls et reconstruit f?

Problème P0 (décomposition atomique) :

$$\min ||x||_0: f = F_D x$$

avec $x = (c_i)_J$ et F_D matrice dont les colonnes sont les φ_i .

Soit $D = (\varphi_i)_I$ une famille de vecteurs (dictionnaire d'atomes), $f \in Vect(D)$:

- **1** Reconstruction : Quels $(c_i)_J$ pour que $f = \sum_J c_i \varphi_i$?
- **2** Reconstruction parcimonieuse : Quels $(c_i)_I$ minimise le nombre de coefficients non nuls et reconstruit f?

Problème P0 (décomposition atomique) :

$$\min ||x||_0: f = F_D x$$

avec $x = (c_i)_J$ et F_D matrice dont les colonnes sont les φ_i . Est-ce bien posé ? Est-ce calculable ?

Example (Fourier-Dirac)

$$D=(T,W)$$
 avec $T=(\delta_k)_{0\leq k\leq N-1}$ et $W=(rac{e^{-rac{2i\pi k\cdot N}{N}}}{\sqrt{N}})_{0\leq k\leq N-1}$

Theorem (Donoho-Stark 89)

Soit $f \in \mathbb{R}^N$ un signal non nul, alors

$$||F_T f||_0 + ||F_W f||_0 \ge 2\sqrt{N}$$
 (1)

Theorem (Donoho-Stark 89)

Soit $f \in \mathbb{R}^N$ et $x = (x_T, x_W)$ tel que $f = F_T x_T + F_W x_W$ et $||x||_0 < \sqrt{N}$. Alors x est l'unique solution de P0.

Principe d'incertitude \to Unicité de la décomposition atomique Cas particulier du dictionnaire Fourier-Dirac ?

Principe d'incertitude \rightarrow Unicité de la décomposition atomique Cas particulier du dictionnaire Fourier-Dirac ? Non, la matrice clef dans la preuve est :

$$F_{W}^{t}F_{T} = \begin{bmatrix} \langle \psi_{1}, \varphi_{1} \rangle & \langle \psi_{1}, \varphi_{2} \rangle & \cdots & \langle \psi_{1}, \varphi_{N} \rangle \\ \langle \psi_{2}, \varphi_{1} \rangle & \ddots & \vdots & \langle \psi_{2}, \varphi_{N} \rangle \\ \vdots & \ddots & \ddots & \vdots \\ \langle \psi_{N}, \varphi_{1} \rangle & \cdots & \cdots & \langle \psi_{N}, \varphi_{N} \rangle . \end{bmatrix}$$

Principe d'incertitude \rightarrow Unicité de la décomposition atomique Cas particulier du dictionnaire Fourier-Dirac ? Non, la matrice clef dans la preuve est :

$$F_{W}^{t}F_{T} = \begin{bmatrix} \langle \psi_{1}, \varphi_{1} \rangle & \langle \psi_{1}, \varphi_{2} \rangle & \cdots & \langle \psi_{1}, \varphi_{N} \rangle \\ \langle \psi_{2}, \varphi_{1} \rangle & \ddots & \vdots & \langle \psi_{2}, \varphi_{N} \rangle \\ \vdots & \ddots & \ddots & \vdots \\ \langle \psi_{N}, \varphi_{1} \rangle & \cdots & \cdots & \langle \psi_{N}, \varphi_{N} \rangle . \end{bmatrix}$$

Quantité clef : $M = \max_{i,j} |\langle \psi_i, \varphi_i \rangle|$ (incohérence)

Soit $D = (\Psi, \Phi)$ une paire de bases arbitraires de \mathbb{R}^N et $M = \max_{i,j} |\langle \psi_i, \varphi_j \rangle|$.

Theorem (Principe d'incertitude généralisé)

Soit $f \in \mathbb{R}^N$ un signal non nul. Alors

$$||F_{\Psi}f||_{0} + ||F_{\Phi}f||_{0} \ge \frac{2}{M}$$

Dictionnaire Fourier-Dirac : $M = \frac{1}{\sqrt{N}}$.

Soit $D = (\Psi, \Phi)$ une paire de bases arbitraires de \mathbb{R}^N et $M = \max_{i,j} |\langle \psi_i, \varphi_j \rangle|$.

Theorem (Principe d'incertitude généralisé)

Soit $f \in \mathbb{R}^N$ un signal non nul. Alors

$$||F_{\Psi}f||_0 + ||F_{\Phi}f||_0 \ge \frac{2}{M}$$

Theorem (Unicité de la solution de P0 généralisé)

Soit $f \in \mathbb{R}^N$ alors la décomposition atomique x de f est unique si $||x||_0 < \frac{1}{M}$.

Dictionnaire Fourier-Dirac : $M = \frac{1}{\sqrt{N}}$.

P1:

$$\min ||x||_1: f = F_D x \tag{2}$$

Avantages:

- Sous des hypothèses de parcimonie, la solution de P1 coincide avec celle de P0.
- Beaucoup d'algorithmes efficaces de résolution (Programmation linéaire)

Soit $D = (\Phi, \Psi)$ une paire de bases orthonormales et soit $f \in \mathbb{R}^N$ un signal, x_0 la solution de P0 pour $f = F_D x$, si l'une des hypothèses suivantes est vérifiée :

■ (Donoho-Huo 98) $||x_{0,\Phi}||_0 + ||x_{0,\Psi}|| < \frac{1}{2M}$

alors x_0 est l'unique solution de P1.

Soit $D = (\Phi, \Psi)$ une paire de bases orthonormales et soit $f \in \mathbb{R}^N$ un signal, x_0 la solution de P0 pour $f = F_D x$, si l'une des hypothèses suivantes est vérifiée :

- (Donoho-Huo 98) $||x_{0,\Phi}||_0 + ||x_{0,\Psi}|| < \frac{1}{2M}$
- (Elad-Bruckstein 02) $||x_{0,\Phi}||_0 + ||x_{0,\Psi}||_0 < \frac{\sqrt{2} - 0.5}{M} \sim \frac{0.92}{M}$

alors x_0 est l'unique solution de P1.

Soit $D=(\Phi,\Psi)$ une paire de bases orthonormales et soit $f\in\mathbb{R}^N$ un signal, x_0 la solution de P0 pour $f=F_Dx$, si l'une des hypothèses suivantes est vérifiée :

- (Donoho-Huo 98) $||x_{0,\Phi}||_0 + ||x_{0,\Psi}|| < \frac{1}{2M}$
- (Elad-Bruckstein 02)

$$||x_{0,\Phi}||_0 + ||x_{0,\Psi}||_0 < \frac{\sqrt{2}-0.5}{M} \sim \frac{0.92}{M}$$

 $||x_{0,\Phi}||_0 < \frac{1}{2M} \text{ et } ||x_{0,\Psi}||_0 < \frac{1}{2M}$

Soit $D = (\Phi, \Psi)$ une paire de bases orthonormales et soit $f \in \mathbb{R}^N$ un signal, x_0 la solution de P0 pour $f = F_D x$, si l'une des hypothèses suivantes est vérifiée :

- (Donoho-Huo 98) $||x_{0,\Phi}||_0 + ||x_{0,\Psi}|| < \frac{1}{2M}$
- (Elad-Bruckstein 02) $||x_{0,\Phi}||_0 + ||x_{0,\Psi}||_0 < \frac{\sqrt{2} - 0.5}{M} \sim \frac{0.92}{M}$
- $||x_{0,\Phi}||_0 < \frac{1}{2M} \text{ et } ||x_{0,\Psi}||_0 < \frac{1}{2M}$

alors x_0 est l'unique solution de P1.

Généralisations : Dictionnaire de bases arbitraire, frames (Torrésani 15).

Comment démontrer ces théorèmes ? Avec un principe d'incertitude.

Comment démontrer ces théorèmes ?

Avec un principe d'incertitude.

$$\mathcal{N} = \{\delta : F_D \delta = 0\}$$
. On pose

$$\mu(\Gamma_{\Phi}, \Gamma_{\Psi}) = \sup_{\delta \in \mathcal{N}} \frac{\sum_{i \in \Gamma_{\Phi}} |\delta_{\Phi,i}| + \sum_{i \in \Gamma_{\Psi}} |\delta_{\Psi,i}|}{||\delta_{\Phi}||_1 + ||\delta_{\Psi}||_1}$$
(3)

Comment démontrer ces théorèmes ?

Avec un principe d'incertitude.

$$\mathcal{N} = \{\delta : F_D \delta = 0\}$$
. On pose

$$\mu(\Gamma_{\Phi}, \Gamma_{\Psi}) = \sup_{\delta \in \mathcal{N}} \frac{\sum_{i \in \Gamma_{\Phi}} |\delta_{\Phi,i}| + \sum_{i \in \Gamma_{\Psi}} |\delta_{\Psi,i}|}{||\delta_{\Phi}||_1 + ||\delta_{\Psi}||_1}$$
(3)

Lemma (Donoho-Huo 98)

Si $\mu(\Gamma_{\Phi}, \Gamma_{\Psi}) < \frac{1}{2}$ alors n'importe quelle solution de $f = F_D x$ supportée sur $\Gamma_{\Phi} \cup \Gamma_{\Psi}$ est l'unique solution de P1.

■ Trouver la décomposition atomique d'un signal parcimonieux

■ Trouver la décomposition atomique d'un signal parcimonieux

■ Trouver la décomposition atomique d'un signal parcimonieux

Difficultés :

■ Hypothèses de parcimonie fortes

■ Trouver la décomposition atomique d'un signal parcimonieux

Difficultés :

Hypothèses de parcimonie fortes

Solutions:

■ Candes-Romberg 06: Pour l'équivalence P0-P1, avec probabilité tendant vers 1, il suffit d'avoir $||x||_0 < \frac{C}{M^2 \log(N)}$.

- Trouver la décomposition atomique d'un signal parcimonieux
- Représenter un signal régulier avec peu de coefficients (ondelettes)

Difficultés :

Hypothèses de parcimonie fortes

Solutions:

■ Candes-Romberg 06: Pour l'équivalence P0-P1, avec probabilité tendant vers 1, il suffit d'avoir $||x||_0 < \frac{C}{M^2 \log(N)}$.

On sait:

- Trouver la décomposition atomique d'un signal parcimonieux
- Représenter un signal régulier avec peu de coefficients (ondelettes)

Difficultés:

- Hypothèses de parcimonie fortes
- Il faut faire toutes les mesures puis enlever la plupart des coefficients

Solutions:

■ Candes-Romberg 06: Pour l'équivalence P0-P1, avec probabilité tendant vers 1, il suffit d'avoir $||x||_0 < \frac{C}{M^2 \log(N)}$.

On sait:

- Trouver la décomposition atomique d'un signal parcimonieux
- Représenter un signal régulier avec peu de coefficients (ondelettes)

Difficultés:

- Hypothèses de parcimonie fortes
- Il faut faire toutes les mesures puis enlever la plupart des coefficients

Solutions:

- Candes-Romberg 06: Pour l'équivalence P0-P1, avec probabilité tendant vers 1, il suffit d'avoir $||x||_0 < \frac{C}{M^2 \log(N)}$.
- Candes-Romberg 06: Pour reconstruire un signal avec S coefficients non nuls, avec probabilité tendant vers 1, il suffit de faire S log(N) mesures et résoudre P1.

<u>Idée</u>: Exploiter la parcimonie pour faire moins de mesures

Idée : Exploiter la parcimonie pour faire moins de mesures

Cadre du problème : F_{Φ} matrice d'analyse, $\Omega \subset \{0, \cdots, N-1\}$. On mesure $y_{\Omega} = F_{\Phi,\Omega}s$, on veut retrouver s.

Idée : Exploiter la parcimonie pour faire moins de mesures

Cadre du problème : F_{Φ} matrice d'analyse, $\Omega \subset \{0, \cdots, N-1\}$. On mesure $y_{\Omega} = F_{\Phi,\Omega}s$, on veut retrouver s.

Difficulté : système sous déterminé $K:=\mathbb{E}(|\Omega|)<< N$

Idée : Exploiter la parcimonie pour faire moins de mesures

Cadre du problème : F_{Φ} matrice d'analyse, $\Omega \subset \{0, \cdots, N-1\}$. On mesure $y_{\Omega} = F_{\Phi,\Omega}s$, on veut retrouver s.

Difficulté : système sous déterminé $K:=\mathbb{E}(|\Omega|)<< N$

Solution: s est parcimonieux dans une base

P1 (Compressed Sensing):

$$\min_{x \in \mathbb{R}^N} ||x||_1 : F_{\Phi,\Omega} x = F_{\Phi,\Omega} s$$

- Matrice gaussienne $F_{G,\Omega}=(c_{i,j})_{(i,j)\in\Omega\times\{0,\cdots,N-1\}}$ avec $c_{i,j}\sim N(0,\frac{1}{\sqrt{N}})$
- Matrice de Fourier $F_{F,\Omega}$ restriction aux lignes indexées par Ω de la matrice de Fourier.

Axiomes

Definition

On dit que F_{Ω} vérifie

λ-UUP si

$$\frac{K}{2N}||x||_2^2 \le ||F_{\Omega}x||_2^2 \le \frac{3K}{2N}||x||_2^2$$

est vrai avec probabilité au moins $1-\mathcal{O}(N^{-\rho/\alpha})$ pour tout signal $x\in\mathbb{R}^N$ S-parcimonieux qui vérifie

$$S \leq \alpha \frac{K}{\lambda}$$
.

Axiomes

Definition

On dit que F_{Ω} vérifie

λ-UUP si

$$\frac{K}{2N}||x||_2^2 \le ||F_{\Omega}x||_2^2 \le \frac{3K}{2N}||x||_2^2$$

- λ -ERP si, en notant $\sigma = sign(x)$, il existe $P \in \mathbb{R}^N$ tel que

 - $\exists Q \in \mathbb{R}^{\Omega} \text{ tel que } P = F_{\Omega}^*Q$
 - $P(t) < \frac{1}{2}, \forall t \notin supp(x)$

est vrai avec probabilité au moins $1 - \mathcal{O}(N^{-\rho/\alpha})$ pour tout signal $x \in \mathbb{R}^N$ S-parcimonieux qui vérifie

$$S \leq \alpha \frac{K}{\lambda}$$
.

Example

- La matrice Gaussienne $F_{G,\Omega}$ vérifie $\log(N)$ -UUP et $\log(N)$ -ERP
- La matrice de Fourier $F_{F,\Omega}$ vérifie $\log(N)^5$ -UUP et $\log(N)$ -ERP

Theorem (Candes-Tao 04)

Soit F_{Ω} qui vérifie λ -ERP et λ -UUP. Soit $K \geq \lambda$.

Soit s un signal dans \mathbb{R}^N tel que ses coefficients dans une base de référence décroissent comme :

$$|\theta_{(n)}| \leq C n^{-\frac{1}{p}}$$

pour un certain C > 0 et 0 .

On pose $r = \frac{1}{p} - \frac{1}{2}$, alors n'importe quelle solution x de (P1) vérifie :

$$||s-x||_2 \le C_r \left(\frac{\kappa}{\lambda}\right)^{-r}$$

avec probabilité au moins $1 - \mathcal{O}(N^{-\frac{\rho}{\alpha}})$, pour certains ρ et α .

Conséquences des théorèmes

TODO: ajouter image des reconstructions CS

Conclusion

- On peut représenter de façon parcimonieuse des signaux réguliers (ondelettes)
- On peut résoudre le problème de décomposition atomique (P1)
- Pour reconstruire un signal S-parcimonieux, S log(N) mesures suffisent (Compressed sensing)

Les ondelettes par l'analyse multi-échelle TODO:enlever

Si on a des sous espaces emboités

$$\{0\} = \lim_{N \to -\infty} \bigcap_{-\infty}^{N} V_j \subset \cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \cdots \subset \lim_{N \to \infty} \bigcup_{-\infty}^{+\infty} V_j = L^2(\mathbb{F}_{\mathbb{F}_q})$$

avec $V_j = V_{j-1} \oplus W_j$, alors on a la formule de reconstruction :

$$f = \pi_{V_0}(f) + \sum_{k \ge 1} \pi_{W_k}(f) \quad , \forall f \in L^2(\mathbb{R}).$$
 (4)

TODO:enlever

Deux propriétés supplémentaires pour que l'analyse soit multi-échelle :

- $f \in V_0 \iff f(\cdot k) \in V_0 \forall k \in \mathbb{Z}$.
- $f \in V_0 \iff f(2^j \cdot) \in V_i \forall j \in \mathbb{Z}$

Et les ondelettes?

Definition

On note

$$\psi_{j,k} := 2^{j/2} \psi(2^j \cdot -k). \tag{5}$$

On appelle ψ une ondelette si $(\psi_{j,k})_{j,k\in\mathbb{Z}\times\mathbb{Z}}$ est une base de $L^2(\mathbb{R})$.

j: échelle (fréquence), k: localisation

TODO:enlever

La famille $(\psi_{j,k})_{k\in\mathbb{Z}}$ est une base de W_j . De plus, on peut associer à ψ une application φ appelée ondelette d'échelle et telle que $(\varphi_k)_{k\in\mathbb{Z}}=(\varphi(\cdot-k))_{k\in\mathbb{Z}}$ soit une base de V_0 . Formule de reconstruction valable sur $L^2(\mathbb{R})$.

$$f = \sum_{k=-\infty}^{+\infty} \langle f, \varphi_k \rangle \varphi_k + \sum_{j=1}^{+\infty} \left(\sum_{k=-\infty}^{+\infty} \langle f, \psi_{j,k} \rangle \psi_{j,k} \right)$$
 (6)

Approximation rapide ?TODO:enlever

Mallat : $\sum_{k=0}^{+\infty} k^{2r} |\langle f, g_k \rangle|^2 \iff \varepsilon_{(g_k)}(N, f) = o(N^{-2r})$ Jaffard (91) : f α -Lipschitzienne en t_0 et ψ a $m > \alpha$ moments nuls $\implies |\langle f, \psi_{j,k} \rangle| \le C_{\alpha} 2^{-j(\alpha + \frac{1}{2})} (1 + |2^{-j}k - t_0|2^{j\alpha})$ TODO : ajouter images décroissance coeffs ondelette discret et continue Conséquences : JPEG2000, une représentation parcimonieuse des signaux ?

TODO:enlever Premier cas : On connait une base Ψ telle que $s = \Psi x_0$ avec x_0 parcimonieux.

On prend une mesure Φ incohérente avec Ψ et on cherche la solution P1 de $y = F_{\Phi}F_{\Psi}x$ (c'est x_0 sous des hypothèses fortes).

<u>Second cas:</u> On ne sait pas dans quelle base le signal est parcimonieux.

On prend les vecteurs de Φ tirés uniformément au hasard sur S^{N-1} , alors la distribution de F_{Φ} est invariante par changement de base, donc $F_{\Phi,\Omega}$ est presque sûrement incohérente avec une base Ψ arbitraire.

TODO:enlever Premier cas: On connait une base Ψ telle que $s = \Psi x_0$ avec x_0 parcimonieux.

On prend une mesure Φ incohérente avec Ψ et on cherche la solution P1 de $y=F_{\Phi}F_{\Psi}x$ (c'est x_0 sous des hypothèses fortes). Compressed sensing : on ne fait que les mesures indéxées par Ω . Quelle est la probabilité pour que la solution de P1 de $y_{\Omega}=F_{\Phi,\Omega}F_{\Psi}x$ soit différente de x_0 ?

<u>Second cas:</u> On ne sait pas dans quelle base le signal est parcimonieux.

On prend les vecteurs de Φ tirés uniformément au hasard sur S^{N-1} , alors la distribution de F_{Φ} est invariante par changement de base, donc $F_{\Phi,\Omega}$ est presque sûrement incohérente avec une base Ψ arbitraire.

Donc pour une matrice F_{Φ} de ce type, la probabilité de succès ou d'échec de la reconstruction ne dépend pas de la base Ψ .

TODO:enlever Premier cas: On connait une base Ψ telle que $s = \Psi x_0$ avec x_0 parcimonieux.

On prend une mesure Φ incohérente avec Ψ et on cherche la solution P1 de $y=F_{\Phi}F_{\Psi}x$ (c'est x_0 sous des hypothèses fortes). Compressed sensing : on ne fait que les mesures indéxées par Ω . Quelle est la probabilité pour que la solution de P1 de $y_{\Omega}=F_{\Phi,\Omega}F_{\Psi}x$ soit différente de x_0 ? Faible.

<u>Second cas:</u> On ne sait pas dans quelle base le signal est parcimonieux.

On prend les vecteurs de Φ tirés uniformément au hasard sur S^{N-1} , alors la distribution de F_{Φ} est invariante par changement de base, donc $F_{\Phi,\Omega}$ est presque sûrement incohérente avec une base Ψ arbitraire.

Donc pour une matrice F_{Φ} de ce type, la probabilité de succès ou d'échec de la reconstruction ne dépend pas de la base Ψ .

Résoudre P0?

On sait que dans le cas d'une paire de bases incohérentes, la solution est unique si suffisamment parcimonieuse.

Comment obtenir une telle solution?

Résoudre P0?

On sait que dans le cas d'une paire de bases incohérentes, la solution est unique si suffisamment parcimonieuse.

Comment obtenir une telle solution ? En général : très difficile

Résoudre P0?

On sait que dans le cas d'une paire de bases incohérentes, la solution est unique si suffisamment parcimonieuse.

Comment obtenir une telle solution ? En général : très difficile Solution : résoudre un autre problème et exploiter la parcimonie.