Link analysis: PageRank

Web search results: desired

- List of webpages / websites ranked according to
 - Relevance to query
 - Importance / trustworthiness of websites centrality
 - Location / time of query
 - Recency of page
 - ... and many other factors

Node centrality in Web

- Web graph:
 - Nodes are webpages
 - Edges are hyperlinks (directed)

 We already discussed one algorithm for computing node centrality on the Web graph: HITS

 In this lecture, we see the most popular algorithm for node centrality on the Web

PAGERANK ALGORITHM

PageRank

- By Larry Page and Sergey Brin
- PageRank of a page
 - Just one of many factors used by Google to rank pages
 - Independent of query
- Problem in measuring importance by indegree
 - Not all in-links are same
 - How important are those pages which link to page p?

Idea of PageRank

PR of page p is a function of the PR of pages which link to pPR(p) is a function

If page q links to 3 pages, q contributes PR(q)/3 to the PR of each of those 3 pages

 Iterative algorithm, multiple iterations needed until convergence (similar to HITS)

of PR(a) and PR(b)

PageRank computation

```
/* initialization */
for all nodes u in G: d(u) \square 1/N, where N = \#nodes
for all nodes u in G: PR(u) \square d(u)
/* iteration */
do until PR vector converges
  for all nodes u in G
   for all nodes v that links to u
        t = \sum PR(v) / out-degree(v)
   PR(u) \square a * t + (1 - a) * d(u)
   normalize scores
  check for convergence
end
```


t = PR(v1)/3 + PR(v2)/1 + PR(v3)/4

α is a parameter; will be explained short

Theoretical basis of PageRank

- Random surfer model
 - Start at a random node
 - Execute a random walk on Web graph

 At each step, proceed from current node u to a randomly chosen node that u links to

- Random walk may reach a dead end
 - Teleport: jump to any random node with probability 1/N

Theoretical basis of PageRank

- Random surfer model
 - Start at a random node, and repeat this process:
 - At a node with no outgoing links (dead end), teleport
 - At a node that has outgoing links
 - Follow standard random walk with probability a where 0<a<1</p>
 - Teleport with probability (1-a)
 - □ Standard value of a: 0.85

Nodes visited more frequently in this random walk are web-pages with higher PR

Theoretical basis of PageRank

- The random walk defines a Markov chain
 - A discrete time stochastic process following Markov property (next state depends only on current state)
 - N states corresponding to the N nodes; the walk/Markov chain is at one of the states at any given time-step
 - \square N x N transition probability matrix $P: P_{ij}$ is the probability that state at next time-step is j, given current state is i

$$\forall i,j,P_{ij}\in[0,1]$$

$$\forall i, \sum_{j=1}^{N} P_{ij} = 1.$$

Toy example of transition probability matrix

Toy example of transition probability matrix

$$\left(\begin{array}{ccc}
0 & 0.5 & 0.5 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)$$

- P is a stochastic matrix
 - Every element is in [0, 1]
 - Sum of every row is 1
 - Largest eigenvalue is 1
 - Has a principal left eigenvector corresponding to its largest eigenvalue

Transition matrix for random surfer

How to derive the transition matrix for the random surfer on the Web graph?

- Adjacency matrix of Web graph
 - $\Box A_{ii} = 1$ if there is a hyperlink from page *i* to page *j*
 - $\Box A_{ij} = 0$ otherwise
- Derive transition matrix P of Markov chain from A

Transition matrix for random surfer

- Derive transition matrix P of Markov chain from A
 - If a row of A has no 1's, replace each element by 1/N
 - For all other rows: divide each 1 by the number of 1's in the row
 - Multiply the resulting matrix by a
 - □ Add (1-a)/N to every entry of the resulting matrix

Example: Mini web graph

$$\mathbf{P} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 5 & 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 6 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Example: Fixing sinks & teleporting

$$\bar{\mathbf{P}} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\bar{\bar{\mathbf{P}}} = \alpha \bar{\mathbf{P}} + (1 - \alpha) \mathbf{e} \mathbf{e}^T / n = \begin{pmatrix} 1/60 & 7/15 & 7/15 & 1/60 & 1/60 & 1/60 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 19/60 & 19/60 & 1/60 & 1/60 & 19/60 & 1/60 \\ 1/60 & 1/60 & 1/60 & 1/60 & 7/15 & 7/15 \\ 1/60 & 1/60 & 1/60 & 1/60 & 11/12 & 1/60 & 1/60 \end{pmatrix}$$

Given P, how to compute PageRank?

- Vector x (dimension N): probability distribution of surfer's position at any time
 - \Box At t = 0: one entry in x is 1, rest are 0
 - \Box At t = 1: xP
 - \Box At t = 2: $(xP)P = xP^2$
 - **...**

- Assume steady-state x = Π
 - □ Then $\Pi P = \Pi = 1.\Pi$
 - \Box By definition, Π is the principal left eigenvector of P

Given P, how to compute PageRank?

- Hence PageRank scores obtained as the principal left eigenvector of P
- Corresponding to eigenvalue 1

PageRank computation

- Till now, we discussed two methods for computing PageRank
 - Compute principal left eigenvector of a stochastic matrix derived from the adjacency matrix of the graph
 - 2. An iterative method (see slide 7)
- Several numerical methods available for computing eigenvectors of a matrix, e.g., power iteration
- Still, can be difficult for matrices of the size of the Web graph; iterative method can be more efficient

Why teleportation?

- Convergence of PageRank is guaranteed only if
 - The transition probability matrix P is irreducible, i.e., all transitions have a non-zero probability
 - In other words, if the graph (on which random surfing is taking place) is strongly connected

- To ensure convergence, conceptually do these:
 - From nodes with out-degree 0, add an outgoing edge to every node
 - Damp the walk by factor a, by adding a complete set of outgoing edges, with weight (1-a)/N, to all nodes

Practical challenges

- All links $u \square v$ do not signify a vote for v
 - E.g., links to a copyright page from all pages in a website
- Attempts to spam PageRank: link spam farms or link farms
 - A target page (whose PR the spammer wants to boost)
 - A number of boosting pages, which link to the target page, link to each other and also to external pages
 - Hijacked links links accumulated from pages outside the link farm

Example link farm

Figure 2: A web of good (white) and bad (black) nodes.

VARIATIONS OF PAGERANK

PageRank computation

```
/* initialization */
for all nodes u in G: d(u) \square 1/N, where N = \#nodes
for all nodes u in G: PR(u) \square d(u)
/* iteration */
do until PR vector converges
  for all nodes u in G
   for all nodes v that links to u
        t = \sum PR(v) / out-degree(v)
   PR(u) \square a * t + (1 - a) * d(u)
  normalize scores
  check for convergence
end
```

Biased PageRank

Instead of using the uniform vector d(u) □ 1/N for all nodes u, use a non-uniform preference vector:
 d(u) = 1 / |S|, for all u ε S
 = 0 otherwise

 The preference vector is said to be biased towards nodes in the subset S

Biased PageRank

- Instead of using the uniform vector d(u) □ 1/N for all nodes u, use a non-uniform preference vector:
 d(u) = 1 / |S|, for all u ε S
 - = 0 otherwise
- Implication for random surfer:
 - With probability a, follow standard random walk
 - With probability (1-a), teleport to a node in S, where the particular node in S is chosen randomly
- Ranks are biased towards nodes that are closer to nodes with a larger value in the preference vector

Topic-sensitive PageRank [Haveliwala, WWW 2002]

- Webpages are classified into various topics (16
 Open Directory Project high-level categories)
- Goal is to compute PageRank, considering a particular category of interest

- For category c_i
 - \Box T_j is the set of known websites for category c_j

 - Expected: webpages relevant to the category of interest will be ranked higher

TrustRank [Gyongyi, VLDB 2004]

- Goal: rank trusted pages higher, and push untrusted pages down in the rankings
- Assumes:
 - Trusted (good) nodes are expected to only link to other good nodes, but this assumption is violated in the real Web
 - Bad nodes will link to other bad nodes and good nodes
- Assumes a way of knowing some trusted nodes
- Run PageRank by biasing the preference vector towards the set of trusted nodes

Conclusion

- Discussed two algorithms for identifying authoritative pages in the Web

 - PageRank

 Studied the theoretical basis of PageRank – Random Surfer model

Brief discussion on some variants of PageRank

