作業五 學號:R06922130 系級:資工碩一 姓名:葉韋辰

1. 請比較有無 normalize(在 rating 上)的差別。並說明如何 normalize (1%)

Collaborators: 黃禹程 R06944034、鄭克宣 R06921083、丁縉楷 R06922129、葉孟元 R04921094

NORMALIZATION	PRIVATE 分數	PUBLIC 分數	平均
有	0.85077	0.84926	0.850015
無	0.85676	0.85335	0.855055

- ▶ 架構:如圖1-1所示
- > 参數:batch=512, earlystopping, opt=adam, latent_dim=120, validation_split=0.1
- $m{\hspace{0.5cm}$\hspace{0.6cm}}$
- 結果;有無 Normalization 皆通過 public 與 private 之 simple 與 strong baseline,然有 normalization 表現略優,不排除是 shuffle training data 造成之差異

_ayer (type)	Output Shape	Param #	Connected to
.nput_1 (InputLayer)	(None, 1)	Θ	
.nput_2 (InputLayer)	(None, 1)	Θ	
mbedding_1 (Embedding)	(None, 1, 120)	724920	input_1[0][0]
embedding_2 (Embedding)	(None, 1, 120)	474360	input_2[0][0]
latten_1 (Flatten)	(None, 120)	<u> </u>	embedding_1[0][0]
latten_2 (Flatten)	(None, 120)	<u> </u>	embedding_2[0][0]
embedding_3 (Embedding)	(None, 1, 1)	6041	input_1[0][0]
embedding_4 (Embedding)	(None, 1, 1)	3953	input_2[0][0]
lot_1 (Dot)	(None, 1)	<u>o</u>	flatten_1[0][0] flatten_2[0][0]
latten_3 (Flatten)	(None, 1)	0	embedding_3[0][0]
latten_4 (Flatten)	(None, 1)	0	embedding_4[0][0]
add_1 (Add)	(None, 1)	0	dot_1[0][0] flatten_3[0][0] flatten_4[0][0]

圖 1: MF 之架構圖

2. 比較不同的 latent dimension 的結果(1%)

Collaborators: 黃禹程 R0694403、鄭克宣 R06921083、丁縉楷 R06922129、葉孟元 R04921094

DIM	PRIVATE 分數	PUBLIC 分數	平均
60	0.85017	0.85019	0.85018
120	0.84955	0.84931	0.84943
240	0.85005	0.84993	0.84999

- ▶ 架構:如圖1-1所示
- > 参數:batch=512, earlystopping, opt=adam, validation_split=0.1
- > 結果: dimension=**120** 效果**略優**,直觀上會認定 dimension 愈大愈好,但從實驗實據可發現不必然成立,不過不排除是 shuffle training data 造成之差異

3. 比較有無 bias 的結果(1%)

Collaborators: 黃禹程 R06944034、丁縉楷 R06922129、葉孟元 R04921094

BIAS	PRIVATE 分數	PUBLIC 分數	平均
有	0.84955	0.84931	0.84943
無	0.85091	0.85041	0.85066

- ▶ 架構:如圖1所示
- 参數:batch=512, earlystopping, opt=adam, latent_dim=120, validation_split=0.1
- 做法: 增設 user bias 與 movie bias 之 embedding layers,將參數 embeddings_initializer 設 為'zero',最後與相乘後的 user vector 與 movie vector 相加
- ▶ 結果:有bias 之表現略優
- 4. 請試著用 DNN(投影片 p.28)來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異(1%)

Collaborators: 黃禹程 R06944034、丁縉楷 R06922129

模型	PRIVATE 分數	PUBLIC 分數	平均
MF	0.85077	0.84926	0.850015
DNN	0.88690	0.88659	0.886745

- 》 架構:MF 如圖1所示,DNN 如圖2所示
- > 参數:batch=512, earlystopping, opt=adam, latent_dim=120, validation_split=0.1
- ▶ 做法:參考 TA Hour 投影片,concatenate user embedding 與 movie embedding,再放入 DNN
- > 結果:DNN 略遜,礙於時間有限並未最佳化 DNN 模型之參數與架構

0 0 362460 237180 0 0	input_1[0][0] input_2[0][0] embedding_1[0][0] embedding_2[0][0] flatten_1[0][0]
362460 237180 0	input_2[0][0] embedding_1[0][0] embedding_2[0][0]
237180 0 0	input_2[0][0] embedding_1[0][0] embedding_2[0][0]
0	embedding_1[0][0]
0	embedding_2[0][0]
0	flatton 1[0][0]
	flatten_2[0][0]
18150	concatenate_1[0][0]
7550	dense_1[0][0]
51	dense_2[0][0]
	7550

圖 2:DNN 之架構圖

5. 請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖(如投影片 p.29) (1%)

Collaborators: 黃禹程 R06944034、鄭克宣 R06921083、丁縉楷 R06922129、蔡孟庭 R05922078

- ▶ *作法:將電影分成以下4類並做tsne*
 - 'Adventure', 'Action', 'War', 'Western'
 - 'Thriller','Crime','Horror'
 - 'Documentary', 'Film-Noir','Mystery','Sci-Fi'
 - 'Fantasy', 'Romance', 'Musical', 'Comedy', 'Drama', 'Children\'s', 'Animation'
- ► 結果:如圖3所示,曾嘗試調整不同分類方式但並未得到更佳結果

6. BONUS: 試著使用除了 rating 以外的 feature, 並說明你的作法和結果, 結果好壞不會影響評分

Collaborators: 黃禹程 R06944034、鄭克宣 R06921083、丁縉楷 R06922129、葉孟元 R04921094

額外 FEATURE	PRIVATE 分數	PUBLIC 分數	平均
有	0.86349	0.86334	0.863415
無	0.85077	0.84926	0.850015

- ▶ 架構:如圖1所示
- 参數:batch=512, earlystopping, opt=adam, latent_dim=120, validation_split=0.1
- ▶ 做法:將users.csv 中的 user 年齡、性別與職業抽出,並架出相對應之 embedding Layers,至於 其他資訊則直接捨棄
- > 結果:額外 features 之效果略遜,或許是肇因於並未最佳化其參數設定