Introducción a las Redes(TUR)

Introducción a los Sistemas Operativos y Redes(TUW y Prof.)

Clase 6: Protocolo Ipv4

Internetworking

Es el proceso de interconexión de computadores y sus redes para formar una única internet. Es decir, lograr que dos o más redes luzcan y trabajen como una.

Internet ha crecido desde sus inicios.

De un prototipo → a un sistema de comunicación global.

Internet

- Una de las redes globales y la única de interés para la comunidad científica del mundo de hoy es la INTERNET.
- ✓ Internet es una red de redes de computadoras y computadoras.
- ✓ Internet interconecta computadoras de todo tipo y especificaciones sin considerar los Sistemas operativos específicos.
- ✓ Internet interconecta todos los tipos de redes de computadoras sin tener en cuenta sus topologías y otras características físicas.

Modelo TCP/IP

El modelo de referencia OSI universalmente reconocido es un modelo teórico.

El modelo de Internet es el *Protocolo de control de transmisión/Protocolo Internet (TCP/IP).*

La pila de protocolo TCP/IP hace posible la comunicación entre dos computadores, desde cualquier parte del mundo, y con cualquier configuración.

Modelo TCP/IP

Fue creado por el Departamento de Defensa de EE.UU

El modelo TCP/IP tiene cuatro capas:

La capa de aplicación, La capa de transporte, La capa de Internet y La capa de acceso de red y física.

Aunque algunas capas del modelo TCP/IP tienen el mismo nombre que las capas del modelo OSI, no tienen las mismas funciones.

Modelo OSI

Modelo TCP/IP

APLICACIÓN

PRESENTACIÓN

SESIÓN

TRANSPORTE

RED

ENLACE DE DATOS

FÍSICA

APLICACIÓN

TRANSPORTE

INTERNET

RED y FÍSICA

Datagramas

- ✓ En modelo OSI, los datos se encapsulan en cada capa.
- ✓ En la capa de red, los datos se encapsulan en datagramas.
- IP es el protocolo de red que usa Internet.
- ✓ IP es la implementación más popular de un esquema de direccionamiento de red jerárquico.
- ✓ IP determina la forma del encabezado del datagramas IP: información de direccionamiento y de control.
- Está formado por los datos de las capas superiores más el encabezado IP.

Version (4b)		Longitud Internet Header IHL (4b)		:	Tipo de servicio (8b)
Longitud Total (16b)					
Identificación (16b)					
Flags (3b)		Fragment Offset (13b)			
Tpo de Exist	enci	cia (8b) Protocol (8b)		otocol (8b)	
Header Checksum (16b)					
Source Address (32b)					b)
Destination Address (32b)					
Options (variable)		Pa	adding (variable)		

Campos de un Datagrama

- *Versión:* versión de IP que se usa actualmente.
- Longitud del encabezado IP: longitud del encabezado del datagrama en palabras de 32 bits.
- *Tipo de servicio:* nivel de importancia asignado por un protocolo de capa superior en particular.
- Longitud total: bytes total del datagrama (16 bits)
- Identificación: identifica el datagrama actual .
- *Offset de fragmentos:* ayuda a reunir los fragmentos.
- Protocolo: cuál es el protocolo de capa superior.
- *Flags*: controlan la fragmentación: un bit que especifica si el paquete puede fragmentarse y el segundo si el paquete es el último fragmento .
- *Tiempo de existencia:* decrece hasta cero. En este punto se descarta el datagrama.
- *Checksum*: garantiza la integridad del encabezado IP.
- Dirección origen: nodo emisor.
- Dirección destino: nodo receptor.
- Opciones: Permite que IP soporte varias opciones, como la seguridad
- Datos: información de capa superior
- Relleno: ceros adicionales a este campo para garantizar que el encabezado IP siempre sea un múltiplo de 32 bits

DETERMINACIÓN DE RUTA Y DIRECCIONAMIENTO

Determinación la ruta se produce a nivel de Capa de red.

La función de capa de red es encontrar la mejor ruta a través de la red.

Dos métodos de direccionamiento:

✓ Direccionamiento plano:

Asigna a un dispositivo la siguiente dirección disponible. No se tiene en cuenta la estructura del esquema de direccionamiento.

✓ Direccionamiento jerárquico

La dirección se determina a través de la ubicación del nodo. Las direcciones IP tienen una estructura específica y no se asignan al azar.

Direcciones IP

- La dirección IP contiene la información necesaria para enrutar un paquete a través de la red.
- Cada dirección consta de 32 bits.
- El campo de dirección origen tiene la dirección IP del dispositivo que envía el paquete.
- El campo destino tiene la dirección IP del dispositivo que recibe el paquete.

Direcciones IP

- Una dirección IP se representa con un número binario de 32 bits.
- Las direcciones IP se expresan como números de notación decimal punteados: se dividen los 32 bits de la dirección en cuatro *octetos*.
- Un octeto es un grupo de 8 bits.
- Máximo valor de cada octeto es 255 (11111111).

Campos de un Datagrama

	4 8		16 19	3 24	3.	
VER8	HLEN	TIPO SERVICIO	LONGITUD TOTAL			
IDEN	TIFICACIO	N	FLAGS	DESPLAZAM	MIENTO	
ज	Le.	PROTOCOLO	CHECKSUM			
	27.5	IP (ORIGE	N		
		IP (DESTIN	10		
OPCIONES (SI LAS HAY) RELLEN			LEN0			
		-DA	ros	08		
		500				

Direcciones IP

En una dirección IP se identifica:

- La red a la cual pertenece el host o dispositivo.
- El host o dispositivo específico.

La cantidad de bits de cada uno determina el tipo de dirección

Tipos de Direcciones

El Registro Americano de Números de Internet (ARIN) es el responsable de otorgar las direcciones IP.

Hay tres clases principales de direcciones IP:

- Direcciones Clase A
- Direcciones Clase B
- Direcciones Clase C

Estas permiten direccionar nodos o dispositivos.

Otros tipos de direcciones:

- Direcciones Clase D
- Direcciones Clase E

Direcciones de Tipo A

Identificación de Red	Identificación de Nodo
8 bits	32 bits

- \star Primer bit de RED = 0.
- Otorgada a Gobiernos y a grandes empresas.

128 redes: 0..127

16.777.216 nodos

Direcciones de Tipo B

Identificación de Red	Identificación de Nodo
16 bits	16 bits

- \star Primer bit de RED = 1.
- \star Segundo bit de RED = 0.
- Otorgada a Medianas empresas y Universidades.

16384 redes: 128..191

65.536 nodos

Direcciones de Tipo C

Identificación de Red	Identificación de Nodo
24 bits	8 bits

- Primer bit de RED = 1.
- Segundo bit de RED = 1.
- \star Tercer bit de RED = 0.

2.097.152 redes: 192..223

256 nodos

Direcciones de Tipo D y E

D		E	
 Primer bit de RED Segundo bit de RED Tercer bit de RED Cuarto bit de RED 	= 1. = 1. = 1. = 0.	 Primer bit de RED Segundo bit de RED Tercer bit de RED Cuarto bit de RED 	= 1. = 1. = 1. = 1.

Redes D: 224..239

Redes E: 240..255

Direcciones Tipo D

- Se utilizan para aplicaciones de multidifusión, multicast
- Nose utiliza para operaciones de red "comunes".
- Se utilizan para identificar grupos de multidifusión en forma única. No hay direcciones de *host* de clase D, todos los *hosts* dentro de un grupo comparten la dirección IP del grupo a la hora de recibir datagramas.
- Los destinatarios son previamente seleccionados por el emisor. Esto significa que el envío está restringido y no todos los usuarios de una red reciben los datos.
- Antes del envío se debearmar el "grupo multicast". Este grupo multicast tiene asociada una dirección tipo D.

Ejemplo: 227.21.6.173

Direcciones Tipo E

- Las direcciones que van desde 240.0.0.0 a 255.255.255.255.
- A pesar de que esta clase está definida, nunca se especificó su uso, por lo que la mayoría de las implementaciones de red las consideran direcciones como ilegales o indefinidas, a excepción de una

¿Cuál?

(En breve lo podrá responder)

Ejemplo: 243.164.89.28

Direcciones Reservadas

Direcciones de Red

Tipo A: X.0.0.0

Tipo B: X.X.0.0

Tipo C: X.X.X.0

- Son aquellas que identifican a la Red.
- **✗** El identificador de Nodos es 0.
- Generalmente no son destino de ningún mensaje.

Direcciones Broadcast Directas

Tipo A: X.255.255.255

Tipo B: X.X.255.255

Tipo C: X.X.X.255

- ➤ Permiten enviar un mensaje a todos los nodos de una red.
- ➤ El identificador binario de Nodos está compuesto por todos 1.
- Broadcast implementado por hardware o software.

Direcciones Reservadas

Direcciones de Broadcast Limitado

255.255.255.255

- * Todos 1 en la dirección.
- ➤ Usado en tiempo de startup del sistema por una computadora que no conoce su número de red.
- **✗** Broadcast "cable simple".

Dirección Local

127.X.X.X

127.0.0.1

- Direcciona la computadora local.
- Dirección loopback.
- **★** Identificador de Red: 127

Direcciones IP

IP pública: Es la dirección IP con la que nos identificamos al conectarnos a otras redes (Internet). Puede ser:

- IP estática: Es cuando tenemos una dirección IP fija asignada.
- IP dinámica: La dirección es asignada cada vez que se conecta a Internet y depende de la disponibilidad.

IP privada: Es la dirección IP de cada en nuestra red.

Multicasting IP

- * Permite enviar un flujo de datos en forma eficiente a varios receptores.
- NO envía un flujo de paquetes de datos a cada uno de los usuarios (unicasting)
- NO transmite todos los paquetes a cada uno (broadcasting)
- Transmite a un subconjunto de usuarios de red designado.
- ★ La clave para multicasting IP:
 - * Protocolo de Administración de Grupo de Internet (IGMP): habilita al usuario a alistarse para sesiones multicast y permite que estos grupos sean administrados dinámicamente, en un aspecto distribuido.
- * Al principio de una sesión multicasting las direcciones de grupo son asignadas y luego al finalizar la sesión son abandonadas y reusadas posteriormente.

Direcciones o Nombres

Generalmente usamos nombres para:

Conectarnos a una computadora:

telnet inter2.unsl.edu.ar

0

telnet 170.120.172.52

Enviamos un e-mail:

mpiccoli@unsl.edu.ar

Nombres de Dominio

Ventajas:

Prácticos para el usuario.

Desventaja:

Mayor trabajo para la computadora: tamaño de representación, operaciones de comparación.

Traducción transparente al usuario

Nombres de Dominio

La traducción de nombres es un ejemplo claro de sistema Cliente-Servidor

La base de datos de nombres está distribuida entre un grupo de servidores distribuidos en el mundo.

Al necesitar una traducción, la aplicación se convierte en cliente y solicita la traducción al servidor de nombres.

Mientras NO (encontrar el nombre o finalizar la búsqueda)

Si (el servidor tiene la entrada para el dato) Entonces Responde con la dirección IP correspondiente.

Sino

Se convierte en cliente y solicita la información a otro servidor de nombres.

Estructura de Nombres

El esquena de nombres en Internet se llama:

DNS: Sistema de Nombres de Dominio

Los nombres de dominio son jerárquicos, la más significativa está a la derecha, la de más a la izquierda se corresponde al nombre de la computadora. Los otros identifican los grupos a los que pertenece la computadora.

inter2.unsl.edu.ar

Estructura de Nombres

Cuando quiere participar del sistema de nombres hay que solicitar el nombre de dominio más significativo a DNS.

com – edu - gov- mil – net –org – arpa – int - código de país (Org. Comercial – Inst. Educativa – Gobierno – Militar – Centro de Redes – Org. diferente a las anteriorer – Dominio ARPA temporal – Org. Internacional – País)

Estructura de Nombres

Toda organización debe registrarse en Internet y luego solicitar un dominio, el cual es único.

unsl.edu.ar

Obtenido el dominio, las organizaciones pueden crear su propia estructura jerárquica.

Los nombres de cada organización no necesitan seguir un patrón, sólo especifican una jerarquía