### Recommendation Systems

Learning to rank

#### RecSystem structure



#### RecSystem structure



#### Ok, ML

#### How to define it?

- •
- $x \in X = \{x_1, \dots x_n\}$  items,  $y \in Y = \{y_1, \dots, y_n\}$  «labels»
- There are  $X_n, Y_n$  given dataset with «answers», we believe that there is implicit dependency  $y^*: X \to Y$
- Need to define algorithm  $\alpha: X \to Y$ .
- If  $Y \in \{0,1\}$  this task is called binary classification If  $Y \in \{y_0, y_1 \dots y_n\}$  this task is called multi class classification If Y = R this task is called regression

#### Ok, ML

#### How to define it?

- •
- $x \in X = \{x_1, \dots x_n\}$  items,  $y \in Y = \{y_1, \dots, y_n\}$  «labels»
- There are  $X_n, Y_n$  given dataset with «answers», we believe that there is implicit dependency  $y^*: X \to Y$
- Need to define algorithm  $\alpha: X \to Y$ .
- If  $Y \in \{0,1\}$  this task is called binary classification If  $Y \in \{y_0, y_1 \dots y_n\}$  this task is called multi class classification If Y = R this task is called regression

#### Ok, binary classification.

#### Does our cases fits binary classification?







#### Learning to rank

#### Definition

• X — set of objects. Exists:  $x_i < x_j$  — order relation.

Our task to implement ranking function:  $x_i < x_j \rightarrow a(x_i) < a(x_j)$ 

- Most of times order exists alongside with groupId (query relevant documents search engine) if  $y(q,d)=\{0,1\}$  binary relevance,  $d_q^{(i)}$  i-th doc by a(x\_i) desc
- Ok, what's do you need more?
- Metrics
- Algorithms
- Tricks

- Precision:  $P_n(q) = 1/n \sum_{i=1}^n y(q, d_q^{(i)})$  (percentage of correct in first n).
- Problems?
- Average Precision:  $AP(q) = \sum y(d, d_q^{(n)})P_n(q) / \sum y(q, d_n^q)$  (average P\_n by all relevant docs position)
- Problems?
- Mean average precision:  $MAP = 1/|Q| \sum_{q} AP(x)$

• MRR: 
$$MRR = 1/|Q|\sum_{i=1}^{|Q|} 1/rank_i$$
:

- Sum over relevant!
- Easy to interpret
- DCG (discounted cumulative gain):  $DCG_n(q) = \sum_i^n G_q(d_q^i)D(i)$   $G_q(d_q^i) = (y(d,q)) \text{gain}, \ 1/0 \text{ for relevant/unrelevant doc's}$  D(i) = 1/log2(i+1) discounts, higher relevant docs are better
- NDCG:  $NDCG(q) = DCG_n(q)/maxDCG_n(q)$  normalized version

DCG (discounted cumulative gain): 
$$DCG_n(q) = \sum_i G_q(d_q^i)D(i)$$

$$G_q(d_q^i)=(y(d,q))-$$
 gain, 1/0 for relevant/unrelevant doc's 
$$D(i)=1/log2(i+1)-$$
 discounts, higher relevant docs are  $-$  better

- NDCG:  $NDCG(q) = DCG_n(q)/maxDCG_n(q)$  normalized version
- Also NDCG exists w.r.t. groupId, possible to use averaged over groups.
- Strongly correlates with AUC-per-groupld, but works with ranking objectives (unbounded)



# Learning to rank NDCG by example

#### NDCG - Example

4 documents: d<sub>1</sub>, d<sub>2</sub>, d<sub>3</sub>, d<sub>4</sub>

| i | Ground Truth             |                | Ranking Function <sub>1</sub> |                | Ranking Function <sub>2</sub> |                |
|---|--------------------------|----------------|-------------------------------|----------------|-------------------------------|----------------|
|   | Document<br>Order        | r <sub>i</sub> | Document<br>Order             | r <sub>i</sub> | Document<br>Order             | r <sub>i</sub> |
| 1 | d4                       | 2              | d3                            | 2              | d3                            | 2              |
| 2 | d3                       | 2              | d4                            | 2              | d2                            | 1              |
| 3 | d2                       | 1              | d2                            | 1              | d4                            | 2              |
| 4 | d1                       | 0              | d1                            | 0              | d1                            | 0              |
|   | NDCG <sub>GT</sub> =1.00 |                | NDCG <sub>RF1</sub> =1.00     |                | NDCG <sub>RF2</sub> =0.9203   |                |

$$DCG_{GT} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF1} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF2} = 2 + \left(\frac{1}{\log_2 2} + \frac{2}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.2619$$

$$MaxDCG = DCG_{GT} = 4.6309$$

DCG (discounted cumulative gain):  $DCG_n(q) = \sum_i G_q(d_q^i)D(i)$ 

 $G_q(d_q^i) = (y(d,q))$  — gain, 1/0 for relevant/unrelevant doc's D(i) = 1/log2(i+1) —discounts, higher relevant docs are — better

- NDCG:  $NDCG(q) = DCG_n(q)/maxDCG_n(q)$  normalized version
- Also popular NDCG-at-k (k=3, for example)



- Pointwise: sorting by score  $\alpha(x_i)$  estimating «relevance»
- Pairwise: compares objects  $a(x_i, x_j) :> 0$  if  $x_i < x_j$  decide which one is more relevant
- Listwise: Takes the entire list of candidates and optimise it's order

• Pointwise: sorting by score  $\alpha(x_i)$  estimating «relevance»



- Positives  $-y_3 = 1$
- Negatives  $-y_{0,1,2,4,5} = 0$
- $\alpha(x)$  gives relevance score  $\in [0,1]$

• Pairwise: decide which one is more relevant



- Train set:  $\{x_3 < x_0, x_3 < x_1, \dots, x_3 < x_5\}$
- $\alpha(x_i, x_i)$  compares pair of objects
- OK, what's a problem?

• Pairwise: decide which one is more relevant



- Train set:  $\{x_3 < x_0, x_3 < x_1, \dots, x_3 < x_5\}$
- $\alpha(x_i, x_i)$  compares pair of objects
- OK, what's a problem?
- How much  $\alpha$  applications do you need to sort 10000 elemnts list?

Listwise: optimize the whole list



## Learning to rank SVD-factorisation





$$argmin_{p,q,b} \sum_{u,i \in K} (\langle p_u, q_j \rangle + b_u + b_i + \mu - x_{ij})^2 + \alpha \sum_i ||u_i||^2 + \beta \sum_j ||p_j||^2 + \gamma ||b_u|| + \theta ||b_i||$$

$$\alpha(u,i) = \langle p_u, q_i \rangle + b_u + b_i + \mu$$
 — Pointwise algorithm(!)

#### Learning to rank **BPR-factorisation**



$$p(\Theta \mid >_u) \propto p(>_u \mid \Theta)p(\Theta)$$



$$\begin{aligned} \mathsf{BPR-OPT} &:= \ln p(\Theta \mid >_u) \\ &\propto \ln p(>_u \mid \Theta) p(\Theta) \\ &= \ln \prod_{(u,i,j\in D)} \sigma(\hat{y}_{ui} - \hat{y}_{uj}) p(\Theta) \\ &= \sum_{(u,i,j\in D)} \ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}) + \ln p(\Theta) \\ &= \sum_{(u,i,j\in D)} \ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}) - \lambda_{\Theta} \|\Theta\|^2 \end{aligned}$$

$$r_{ui} = \langle e_u, e_i \rangle + b_u + b_i + \mu$$
  

$$\alpha(x_i, x_j, u) = \ln(\sigma(\langle e_u, e_i \rangle + b_u + b_i - \langle e_u, e_j \rangle - b_u - b_j))$$



$$\alpha(u,i) = \langle e_u, e_i \rangle$$

**Sort** with  $\alpha$ 



PAIRwise algorithm while learn **POINT**wise algorithm on runtime!

# Learning to rank Summary

- Ranking differs either classification or regression due to strict order properties on relevance
- It leads us to new metrics: MAP, MRR, AUC(~), NDCG
- Algorithms ontology: point-, pair-, list-wise
- There are no working «fair» listwise algorithms IRL (at least author saw no one)
- Best pairwise algorithms camouflages themselves as pointwise.