

Proyect Index

- O1 Preview Analysis
- 02 Data Selection and Preparation
- **O3** Feature Engineering and Selection
- Model Building and Evaluation
- Optimization

 Hyperparameter Tuning and Model
 Optimization
- 06 Insights and Impact
- 7 Future Work and Improvements

Our data set

Danceability

Measure of how danceable the song is, based on rhythm, stability, beat strength and regularity (0 to 1).

Energy

Perceived level of intensity and activity of the song. High values represent fast and loud songs (0 to 1).

Valence

Emotional positivity of the song. High values indicate positivity (joy, euphoria), low values indicate sadness (0 to 1).

Tempo

Estimated tempo of the song in beats per minute (BPM).

Intrumentalness

Estimated tempo of the song in beats per minute (BPM). Predicts the amount of vocal elements in a song. Higher values indicate more instrumentals (0 to 1).

Loudness

Overall track volume in decibels (dB). Generally ranges from -60 to 0 dB.

Popularity

Measure of how popular the song is (0 to 100)

232.725 Tracks

Key

Pitch of the song represented as an integer (0 = Do, 1 = Do#, ...11 = Si).

Mode

Song mode: Major (1) or Minor (0).

Speechiness

Number of spoken words in the song. High values indicate spoken content (such as podcasts).

Acoustiness

Probability that the track is acoustic. Higher values indicate more acoustic content (0 to 1).

Liveness

The likelihood that the song was recorded live. Higher values indicate a more 'live' environment (0 to 1).

Duration_ms

Song duration in milliseconds.

Objective & Data Selection

Objective

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

Anticipate a song's popularity on Spotify based on its musical features

Target and Features

- Target: 'Popularity'
- Feature: the other variables

Data Analysis

"A In our data analysis, we detected some duplicate songs that did not appear as duplicates due to different genres assigned to them. Although the songs were the same, the genre distinction caused them to be treated as separate entries in the dataset."

artist_name mean_popularity

Top 30 popular genre & popularity

Iar		
&	mean_popularity	top_artist
rity genre		
Pop	66.590667	Drake
Rap	60.533795	Drake
Rock	59.619392	The Beatles
Нір-Нор	58.423131	Eminem
Dance	57.275256	Chris Brown
Indie	54.701561	G-Eazy
R&B	52.308719	Chris Brown
Alternative	50.213430	Five Finger Death Punch
Folk	49.940209	Bob Dylan
Soul	47.027836	John Legend
Country	46.100416	George Strait
Jazz	40.824383	Miles Davis
Electronic	38.056095	Moby
Reggaeton	37.742915	Daddy Yankee
Children's Music	36.202426	Kimbo Children's Music
Reggae	35.589328	Bob Marley & The Wailers
World	35.523145	Hillsong Worship
Blues	34.742879	Phish
Soundtrack	33.954800	Hans Zimmer
Classical	29.282195	Wolfgang Amadeus Mozart
Ska	28.612351	NOFX
Anime	24.258729	Nobuo Uematsu
Comedy	21.342630	George Carlin
Opera	13.335628	Giuseppe Verdi
Movie	12.174097	Randy Newman
A Capella	9.302521	The Singers Unlimited

Top 30 popular artists

	artist_manne	mean_popularity	900
	Pedro Capó	87.000000	Pop
1	Mario Bautista	85.000000	Рор
2	Mau y Ricky	83.000000	Pop
3	Paloma Mami	82.000000	Рор
4	Ninho	82.000000	Нір-Нор
5	Kris Kross Amsterdam	82.000000	Рор
6	Martin Garrix	81.857143	Pop
7	Sofia Reyes	81.500000	Dance
8	NSG	81.000000	Hip-Hop
9	Anitta	81.000000	Рор
10	Kenny Man	81.000000	Pop
11	Heuss L'enfoiré	81.000000	Нір-Нор
12	Billie Eilish	80.500000	Рор
13	Piso 21	80.500000	Рор
14	Grupo Arranke	80.000000	Рор
15	Coolio	80.000000	Нір-Нор
16	juan karlos	80.000000	Indie
17	Lele Pons	80.000000	Pop
18	JENNIE	80.000000	Рор
19	4 Non Blondes	80.000000	Pop
20	Rombai	80.000000	Pop
21	Ramz	80.000000	Нір-Нор
22	XO Cupid	79.500000	Dance
23	Drax Project	79.000000	Рор
24	Katrina & The Waves	79.000000	Рор
25	Joel Adams	79.000000	Pop
26	Silk City	78.500000	Pop
27	Tommy Boysen	78.000000	Reggaeton
28	Dennis Lloyd	78.000000	Pop
29	Daniel Powter	78.000000	Pop

Top artists by songs number

Methodology for creating a ML Model

CHOOSING VARIABLES TO CREATE THE MODEL

STEP 1

Removing columns

Dropping NON-**ESSENCIAL** columns (['genre', 'artist_name', 'track_name', 'track_id']) and do get.dummies() **For regression problem we also remove the less correlated variables

CREATING A CLASSIFICATION FOR POPULARITY

STEP 2

Discretization of popularity column

We transformed this column dividing the numerical values into 5 categories:

- 'Very Low' (0-25)
- 'Low' (25-50)
- 'Medium' (50-75)
- 'High' (75-90)
- 'Top' (90-100)

PERFORMING TRAIN TEST SPLIT

STEP 3

Splitting data for training the model

We split the dataset for 80% of the data for training the model and 20% of the data for testing the model using as target column the new popularity column

NORMALIZATION OF DATA

STEP 4

STEP 5

A technique used to scale the features of data so that all values are within a specific range, typically between 0 and 1.

Choosing best components

Dimensionality reduction technique transforms a set of possibly correlated variables into a smaller of uncorrelated set variables called principal components

Changes made to improve our ML performance Do a label enconding for categorical variables

- The unique values from the time_signature column are extracted, and a number is assigned to each category using a mapping dictionary.
- In the mode column, 'Major' is replaced with 1 and 'Minor' with 0.
- The unique values from the key column are extracted and mapped to unique numbers using a mapping dictionary.

Balance strategy

Popularity

Integer variable in range 0 to 100

Classification variable:

• **Very Low:** 0 to 25

• **Low:** 25 to 50

• **Medium:** 50 to 75

• **High:** 75 to 90

• **Top:** 90 to 100

Approach to the ML project

- A ML project of a classification problem (5 classes)
- O 2 A ML project of a regression problem
- New idea: ML project of a classification problem with ONLY 2 clases

Feature Engineering and Selection

Model for a Classification problem

K-NN

Classifies data points based on the majority class of their k nearest neighbors (3) in the feature space.

F1 SCORE: 0.5879

Random Forest

Creates a collection (a "forest") of decision trees during training and combines their outputs to make predictions.

F1 SCORE: 0.7023

Logistic Regression

Estimates the probability that a given input belongs to a particular class using a logistic (sigmoid) function.

F1 SCORE: 0.530

XGBoost

Technique for building an ensemble of decision trees sequentially to improve model accuracy.

F1 SCORE: 0.53

Feature Engineering and Selection

Model for Regression problem

K-NN

Classifies data points based on the majority class of their k nearest neighbors (80) in the feature space.

SCORE: 0.29

Bagging model

Combine predictions from multiple models (usually decision trees) trained on different subsets of the training data to improve accuracy and reduce overfitting.

SCORE: 0.298

Random Forest

Creates a collection (a "forest") of decision trees during training and combines their outputs to make predictions.

SCORE: 0.446

Gradient Boosting

It belongs to the family of boosting algorithms, which build an ensemble of weak learners (typically decision trees) sequentially

SCORE: 0.515

Ada Boost

Iteratively train a series of models, each focusing on the errors made by previous models, and to give more weight to the harder-to-predict examples.

SCORE: 0.5180

XGBoost

Technique for building an ensemble of decision trees sequentially to improve model accuracy.

SCORE: 0.399

Feature Engineering and Selection

Model for Regression and Classification problem

MPL Regressor

Type of artificial neural network (ANN) used for regression tasks. It's part of the scikit-learn library and implements a feedforward neural network with one or more hidden layers. The network is trained to learn the relationship between the input features (independent variables) and the continuous target variable (dependent variable) in a regression problem.

NN Structure

```
# model
    Dense(256, activation = 'relu',input shape=(X train norm.shape[1],)),
    Dropout(0.3),
    Dense(128, activation = 'relu'),
    Dropout(0.3),
    Dense(64, activation = 'relu'),
    Dense(len(np.unique(y_train)), activation='softmax')
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1, restore_best_weights=True)
lr_reduction = ReduceLROnPlateau(monitor='val loss', patience=3, verbose=1, factor=0.5, min lr=0.0001)
# copile model
model.compile(optimizer=Adam(learning_rate=0.0005),
            loss=focal loss()
            metrics=['accuracy'])
# train the model
 nistory = model.fit(
   validation_data=(X_test_norm, y_test_encoded),
   epochs=100.
   batch size=32.
  callbacks=[early stopping, lr reduction],
```

Regression

Loss: 0.70

Classification

Accuracy: 0.557 **Loss:** 0.02

Model selection & evaluation

Random Forest

Accuracy: 0.7113 Precision: 0.7126 Recall: 0.7113 F1 Score: 0.7023							
Classification Report: precision recall f1-score support							
High Low Medium Top Very Low	0.97 0.68 0.77 0.94 0.69	0.76 0.79 0.78 0.79 0.40	0.85 0.73 0.78 0.86 0.51	564 21362 15315 19 9285			
accuracy macro avg weighted avg	0.81 0.71	0.70 0.71	0.71 0.74 0.70	46545 46545 46545			

High & Top Categories:

- High precision (0.97 for "High", 0.94 for "Top") → The model correctly predicts these classes when it identifies them.
- Lower recall (0.76 for "High", 0.79 for "Top") \rightarrow The model fails to capture all cases in these categories.

Low & Medium Categories:

• Balanced recall (~0.78-0.79) → Model performs consistently here.

Very Low Category:

- Recall is only 0.40, meaning the model struggles to identify songs in this category.
- Could be due to class imbalance or overlapping feature distributions.

Hyperparameter Tuning and Model Optimization New idea: Divide differently "Popularity"

Popularity

Integer variable in range 0 to 100

Classification variable:

- No popular ≤ 55
- Popular > 55

Apply undersampling to ensure the classification and distribution of both categories ("Popular and not popular")

Accuracy: 0.8336 Precision: 0.8355

Recall: 0.8336 F1 Score: 0.8333

Danceability

Lower danceability is generally associated with reduced popularity. This suggests that songs that are more rhythmically engaging and suitable for dancing tend to be more popular among listeners.

Acousticness

A decrease in acousticness tends to correlate with a increasse in popularity.

INSIGHTS & IMPACT

Energy

This suggests that songs with higher energy levels are somewhat more likely to be popular. However, the relationship is not as strong, other factors also play significant roles in determining its popularity.

Speechiness

This indicates that songs with less words tend to be more popular. It suggests that tracks with a large number of words capture less attention and engagement from listeners.

Streamlit Popularity Prediction

Future work & improvements

Model Optimization

Fine-tune hyperparameters using advanced techniques
Test additional models for comparison.

Upgrade hardware (e.g., faster processors, more memory, GPUs) to run more complex models and accelerate training time.

Data Expansion

Incorporate more variables (e.g., playlist data) to enhance the model.

Increase dataset size for better generalization.

Distribution of the Popularity Variable

Test the trained models
with a different split of the
Popularity variable

ANY QUESTION?

Celia Manzano | Laura Sánchez | Carlota Gordillo