Vector Spaces and Subspaces

September 5, 2024

Definition of a Vector Space

Vector Space

A **vector space** (or linear space) over a field $\mathbb F$ is a set V together with two operations:

- 1. Addition: $+: V \times V \rightarrow V$
- 2. Scalar Multiplication: $\cdot : \mathbb{F} \times V \to V$

such that the following properties hold for all $u, v, w \in V$ and $c, d \in \mathbb{F}$:

1. Commutativity: u + v = v + u

Addition: (c + d)u = cu + du

- 2. Associativity: (u + v) + w = u + (v + w)
- 3. **Identity Element:** There exists an element $0 \in V$ such that u + 0 = u
- 4. Inverse Elements: For every $u \in V$, there exists $-u \in V$ such that u + (-u) = 0
- 5. Distributivity of Scalar Multiplication over Vector Addition: c(u + v) = cu + cv
- 6. Distributivity of Scalar Multiplication over Field

Example 1: Euclidean Space \mathbb{R}^n

The set \mathbb{R}^n with standard vector addition and scalar multiplication is a vector space.

$$\mathbb{R}^n = \{ \mathbf{x} = (x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, i = 1, 2, \dots, n \}$$

Proof Outline

- 1. Closure under Addition: Let $u = (u_1, u_2, \dots, u_n)$ and $v = (v_1, v_2, \dots, v_n)$ be in \mathbb{R}^n . Then $u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n) \in \mathbb{R}^n$.
- 2. Closure under Scalar Multiplication: Let $u = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then $cu = (cu_1, cu_2, \dots, cu_n) \in \mathbb{R}^n$.
- 3. **Zero Vector:** The vector $0 = (0, 0, ..., 0) \in \mathbb{R}^n$.
- 4. **Additive Inverse:** For any $u = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$, the vector $-u = (-u_1, -u_2, \dots, -u_n) \in \mathbb{R}^n$.

Conclusion

Example 2: The Set of Polynomials $\mathbb{P}_n(\mathbb{R})$

The set of all polynomials of degree at most n with coefficients in \mathbb{R} is a vector space.

$$\mathbb{P}_n(\mathbb{R}) = \{ p(x) = a_0 + a_1 x + \dots + a_n x^n \mid a_i \in \mathbb{R} \}$$

Proof Outline

- 1. Closure under Addition: If p(x) and q(x) are in $\mathbb{P}_n(\mathbb{R})$, then p(x) + q(x) is also a polynomial of degree at most n.
- 2. Closure under Scalar Multiplication: If $p(x) \in \mathbb{P}_n(\mathbb{R})$ and $c \in \mathbb{R}$, then cp(x) is also in $\mathbb{P}_n(\mathbb{R})$.
- 3. **Zero Polynomial:** The polynomial p(x) = 0 is in $\mathbb{P}_n(\mathbb{R})$.
- 4. **Additive Inverse:** For any $p(x) \in \mathbb{P}_n(\mathbb{R})$, the polynomial -p(x) is also in $\mathbb{P}_n(\mathbb{R})$.

Conclusion

Since $\mathbb{P}_n(\mathbb{R})$ satisfies all vector space axioms, it is a vector space.

Example 3: The Set of Continuous Functions C([a, b])The set of all continuous functions on the interval [a, b] with pointwise addition and scalar multiplication is a vector space.

$$C([a,b]) = \{f : [a,b] \rightarrow \mathbb{R} \mid f \text{ is continuous}\}$$

Proof Outline

- 1. Closure under Addition: If f(x) and g(x) are continuous on [a, b], then f(x) + g(x) is also continuous on [a, b].
- 2. Closure under Scalar Multiplication: If f(x) is continuous on [a, b] and $c \in \mathbb{R}$, then cf(x) is continuous on [a, b].
- 3. **Zero Function:** The zero function f(x) = 0 is in C([a, b]).
- 4. Additive Inverse: For any $f(x) \in C([a, b])$, the function -f(x) is also in C([a, b]).

Conclusion

Since C([a, b]) satisfies all vector space axioms, it is a vector space.

Definition of a Subspace

Subspace

A subset W of a vector space V over a field \mathbb{F} is called a **subspace** of V if W is itself a vector space under the operations of V.

Conditions for a Subspace

A non-empty subset $W \subseteq V$ is a subspace of V if:

- 1. $0 \in W$ (contains the zero vector)
- 2. $u, v \in W$ implies $u + v \in W$ (closed under addition)
- 3. $u \in W$ and $c \in \mathbb{F}$ implies $cu \in W$ (closed under scalar multiplication)

Example 1: The Zero Subspace

The set containing only the zero vector, $W = \{0\}$, is a subspace of any vector space V.

Proof Outline

- 1. **Zero Vector:** By definition, 0 is in W.
- 2. Closure under Addition: Since 0 + 0 = 0, W is closed under addition.
- 3. Closure under Scalar Multiplication: For any scalar $c \in \mathbb{F}$, c0 = 0, so W is closed under scalar multiplication.

Conclusion

The zero subspace $\{0\}$ is a subspace of V.

Example 2: The Set of All Vectors Parallel to a Given Vector In \mathbb{R}^3 , the set $W = \{tv \mid t \in \mathbb{R}\}$ for a fixed vector $v \in \mathbb{R}^3$ is a subspace.

Proof Outline

Let v be a vector in \mathbb{R}^3 and consider the set $W = \{tv \mid t \in \mathbb{R}\}.$

- 1. **Zero Vector:** If t = 0, then $tv = 0 \in W$.
- 2. Closure under Addition: If $u = t_1v$ and $w = t_2v$ are in W, then $u + w = (t_1 + t_2)v \in W$.
- 3. Closure under Scalar Multiplication: If $u = tv \in W$ and $c \in \mathbb{R}$, then $cu = (ct)v \in W$.

Conclusion

The set W is a subspace of \mathbb{R}^3 .

Example 3: The Set of Solutions to a Homogeneous Linear System

Given a matrix A of size $m \times n$, the set $W = \{x \in \mathbb{R}^n \mid Ax = 0\}$ is a subspace of \mathbb{R}^n .

Proof Outline

Let Ax = 0 be a homogeneous linear system.

- 1. **Zero Vector:** A0 = 0, so 0 is in the solution set W.
- 2. Closure under Addition: If $u, v \in W$, then Au = 0 and Av = 0. Hence, A(u + v) = 0, so $u + v \in W$.
- 3. Closure under Scalar Multiplication: If $u \in W$ and $c \in \mathbb{R}$, then A(cu) = 0, so $cu \in W$.

Conclusion

The set $W = \{x \in \mathbb{R}^n \mid Ax = 0\}$ is a subspace of \mathbb{R}^n .