# Social Media and Network Analysis: Exploration of Posts, Users, and Communities with Centrality Metrics, Sentiment Analysis, and Clustering

# **Descriptive Analysis – Basic Information** Data: Social media posts and network (friendship/following) relations **Time frame:** October 31 0:00 – October 31 23:59, 2024 Activity: Highest at 3:00 and lowest at 18:00 Number of Posts: 70,260 Number of Users: 46,849 Figure 1: Number of posts per hour Avg. Degree of Users: 4.05 Language: English **Duplicates:** High frequency of duplicates, especially by top users

# Figure 2: Top 10 Users with most posts across all hours

### **Network Analysis – Popularity of Users and Community** Detection



### **Popularity Measured with Centrality**

Figure 3: Most frequent duplicates

Metrics

As a first step in exploring the social media network using **centrality** metrics to assess user importance/popularity. Outlier: The user *robert78* dominates every metric due to 1700+

connections. Degree: Measures popularity based on direct connections to other users

Eigenvector: Measures Popularity by connection to other important users PageRank: Measures Popularity by the incoming connection from other important users

Closeness: Measures Popularity by efficiently/fastly reaching all other users

Betweenness: Popularity by the user acting as a bridge for other users

| User                                                      | Degree  | User           | Eigenvector | User           | Betweenness | User          | Page Rank | User         | Closeness |
|-----------------------------------------------------------|---------|----------------|-------------|----------------|-------------|---------------|-----------|--------------|-----------|
| robert78                                                  | 0.03814 | robert78       | 0.70588     | robert78       | 1085964482  | robert78      | 0.00736   | robert78     | 0.30633   |
| rharris                                                   | 0.00113 | matthew61      | 0.01893     | john04         | 7686513     | rharris       | 0.00024   | ryan91       | 0.23646   |
| davisjonathan                                             | 0.00105 | davidcurry     | 0.01828     | ryan91         | 6599323     | reidelizabeth | 0.00023   | taylorjeremy | 0.23623   |
| reidelizabeth                                             | 0.00105 | katherinejones | 0.01821     | charlesbuckley | 6504327     | davisjonathan | 0.00022   | karismith    | 0.23563   |
| jenniferbenton                                            | 0.00098 | khenry         | 0.01816     | lejacqueline   | 6486049     | edwardcabrera | 0.00021   | michael58    | 0.2356    |
| Figure 5: Top 5 popular users based on popularity metrics |         |                |             |                |             |               |           |              |           |



### **Community Detection with Louvain**

The Louvain approach is a community detection algorithm that can be computed directly on the graph representation of the network. The algorithm consists of two steps:

- 1. Assign each node to be in its own cluster
- 2. Try to gain maximum modularity by relocating each node to the cluster of its neighbor

### Results

Number of Communities: 245 Modularity Score: 0.96



### **Community Detection with DBSCAN**

Numeric vectors are necessary to use the **DBSCAN algorithm**. Consequently, the graph needs to be converted into a vector representation:

- 1. Convert Graph into Vector with Node2Vec (d=128)
- 2. Dimensionality Reduction with TruncatedSVD
- 3. K-Distance Plot
- 4. DBScan

### Results

Number of Communities: 348 Silhouette Score: 0.46

# Figure 6: Community detection with Louvain

Figure 7: Community detection with DBSCAN

Figure 4: Plot with IGraph

### Outlook

- Handling of **outliers**, probably spam posts or bot users
- Examination of homophily in the network based on characteristics such as the topic clusters
- Speed of **information spreading** through the network

### **Sentiment Analysis – Text Mining with Pre-Trained** Models **Overall Sentiment Distribution** An overview of **sentiment distribution** in the dataset shows that the majority of posts are positive, followed by neutral, and lastly negative. But which topics arise on that day, and how are they **emotionally charged**? Figure 8: Overall sentiment distribution **Sentiment Distribution Across Topics** The *news & social concern* category has the highest negative sentiment. Social media often amplifies negativity in these areas, reinforcing 'bubbles'. Figure 9: Sentiment distribution across all topics in % Do users who predominantly post tweets with negative sentiment tend to form **denser clusters** in the social network? **Pearson Correlation** Correlation = 0.0601 • p-value = 0.2936

## Thematic Clusters and User Behavior Analysis – **Dimensionality Reduction and Clustering**

### **Text Vectorization with TF-IDF**

To uncover thematic clusters through data dimensionality reduction, the top 500 terms are retained (elbow method).

### **Dimensionality Reduction with TruncatedSVD**

No, because the distribution between low and

equal and correlation is low and non-significant.

high Negative Sentiment Ratio data points is

Dimensionality reduction requires correlation, with some feature pairs showing strong links, indicating thematic overlaps in the text.

The given text data is **highly distributed**: No clear elbow point or optimal reduction to n dimensions

# 3.

### **Clustering with KMeans**

**Evaluate clustering performance** across dimensions and cluster sizes and use the silhouette score to assess the quality of clusters.



### **Cluster Visualization and Key Results**

Preprocessing: Identified 10 key terms per cluster, assigned posts to clusters, and analyzed user activity by post count. **Cluster-Model: The finer-grained cluster** distinctions model was chosen because this represents distinct themes supporting targeted analyses.

### Results

Most clusters are led by low-activity users, except niche clusters where a few highactivity users (e.g., influencers) drive the conversation.



Figure 10: Negative Sentiment Ratio and Cluster Density

