Results

December 9, 2011

AutoPrelude.hs

Properties

 \parallel plain \mid simple ind \mid approx \mid fixpoint ind \mid

Summary

 \parallel total \mid plain \mid simple ind \mid approx \mid fixpoint ind

Bool.hs

	plain	simple ind	approx	fixpoint ind
$prop_{and_{absorb}}$		√∞	\checkmark_{∞}	
&& x (x y) = x				
$prop_{and_{assoc}}$		\checkmark_{∞}	√ ∞	
&& x (&& y z) = && (&& x y) z				
$prop_{and_{assoc_{comm}}}$				
&& y (&& x z) = && x (&& y z)				
$prop_{and_{comm}}$				
&& y x = && x y				
$prop_{and_{complement}}$		√ fin		
&& x (not x) = False				

$prop_{and_{distrib}}$		\checkmark_{∞}	\checkmark_{∞}
&& $(x y) (x z) = x (&& y z)$			
$prop_{and_{idem}}$		\checkmark_{∞}	√ _∞
x x x = x			
$prop_{and_{identity}}$		\checkmark_{∞}	\checkmark_{∞}
&& x (True) = x			
$prop_{and_{zero}}$		$\checkmark_{ m fin}$	
&& x (False) = False			
$prop_{de_{morgan_0}}$		\checkmark_{∞}	\checkmark_{∞}
&& (not x) (not y) = not (x y)			
$prop_{de_{morgan_1}}$		\checkmark_{∞}	$\sqrt{\infty}$
(not x) (not y) = not (&& x y)			
$prop_{not_{false}}$	√ _∞		\bigvee_{∞}
not (False) = True			
$prop_{not_{involutive}}$		\checkmark_{∞}	$\sqrt{\infty}$
	\checkmark_{∞}		\checkmark_{∞}
$prop_{not_{true}}$	• •		▼ ∞
Tallet			
$not (True) = False$ $prop_{or_{absorb}}$		\checkmark_{∞}	√ _∞
Γ· ~Γ UI absorb		• ∞	, &
v (((v v) = v			
$ x (\&\& x y) = x$ $prop_{or_{assoc}}$		√∞	√∞
45500		30	
x (y z) = (x y) z			
$prop_{or_{assocomm}}$			
comm			
y (x z) = x (y z)			

mmom	П	I		
$prop_{or_{comm}}$				
$prop_{or_{complement}}$		√ _{fin}		
Proposition of the complement		, iiii		
x (not x) = True				
$prop_{or_{distrib}}$		$\sqrt{\infty}$	\checkmark_{∞}	
(&& x y) (&& x z) = && x (y z)				
$prop_{or_{idem}}$		$\sqrt{\infty}$	\checkmark_{∞}	
$prop_{or_{identity}}$		√ _∞	$\sqrt{\infty}$	
Proridentity		1 • •	, × ∞	
x (False) = x				
$prop_{or_{zero}}$		√ fin		
x (True) = True				
A (IIue) - IIue	II	1		

	total	plain	simple ind	approx	fixpoint ind
\checkmark_{∞}	15/23	2/15	13/15	15/15	
√ fin	4/23		4/4		

EnvMonad.hs

	plain	simple ind	approx	fixpoint ind
$prop_{app_{assoc}}$				
>>== (>>== m f) g e = >>== m (lambda.5 f g) e				
$prop_{app_{assocl}}$				
>>= ($>>=$ m f) g e = $>>=$ m (lambda.4 f g) e				
$prop_{app_{return_{left}}}$	\checkmark_{∞}			
>>== f return e = f e				

$prop_{app_{return_{leftl}}}$	\bigvee_{∞}	
>>= f return e = f e		
$prop_{app_{return_{right}}}$	$\int_{-\infty}^{\infty}$	
>>== (return a) f e = f a e		
$prop_{app_{return_{rightl}}}$	√∞	
>>= (return a) f e = f a e		
$prop_{app_{returnl_{left}}}$	\checkmark_{∞}	
>>== f returnl e = f e		
$prop_{app_{returnl}_{leftl}}$	\checkmark_{∞}	
>>= f returnl e = f e		
$prop_{app_{returnl_{right}}}$	$\sqrt{\infty}$	
>>== (returnl a) f e = f a e		
$prop_{app_{returnl_{rightl}}}$	\checkmark_{∞}	
>>= (returnl a) f e = f a e		
prop _{assoc}		
>>== (>>== m f) g = >>== m (lambda.3 f g)		
prop _{assocl}		
>>= (>>= m f) g = >>= m (lambda.2 f g)		
$prop_{fmap_{comp}}$		
fmap (. f g) = . (fmap f) (fmap g)		
$prop_{fmap_{id}}$		
<pre>fmap id = id</pre>		
$prop_{fmapl_{comp}}$		
fmapl (. f g) = . (fmapl f) (fmapl g)		

$prop_{fmapl_{id}}$			
fmapl id = id			
$prop_{fmaplrl_{comp}}$			
$P \cap P \int map i r t_{comp}$			
fmaplrl (. f g) = . (fmaplrl f) (fmaplrl g)			
$prop_{fmaplrl_{idl}}$			
· · · · · · · · · · · · · · · · · · ·			
fmaplrl id = id			
$prop_{fmaprl_{comp}}$			
5 2 4 5 3 45 3 5			
fmaprl (. f g) = . (fmaprl f) (fmaprl g)			
$prop_{fmaprl_{id}}$			
fmaprl id = id			
$prop_{return_{left}}$	$\sqrt{\infty}$		
r. Freduinleft	• &		
>>== f return = f			
$prop_{return_{leftl}}$	$\sqrt{\infty}$		
·			
>>= f return = f			
$prop_{return_{right}}$	\checkmark_{∞}		
>>== (return a) f = f a			
	./		
$prop_{return_{rightl}}$	$\sqrt{\infty}$		
>>= (return a) f = f a			
$prop_{returnl_{left}}$	$\sqrt{\infty}$		
1 Trocal wiejt			
>>== f returnl = f			
$prop_{returnl_{leftl}}$	\checkmark_{∞}		
>>= f return1 = f			
$prop_{returnl_{right}}$	$\sqrt{\infty}$		
\\ (roturn] \(\) f - f \(\)			
>>== (returnl a) f = f a			

$prop_{returnl_{rightl}}$	$\sqrt{\infty}$		
>>= (returnl a) f = f a			

	total	plain	simple ind	approx	fixpoint inc
$\sqrt{\infty}$	16/28	16/16			

Expr.hs

Properties

	plain	simple ind	approx	fixpoint ind
$prop_{mirror}$		√∞		
e = mirror (mirror e)				
$prop_{mirror_{eval}}$				
eval e = eval (mirror e)				
$prop_{mirror_{size}}$				
size e = size (mirror e)				

Summary

	total	plain	simple ind	approx	fixpoint ind
$\sqrt{\sim}$	1/3		1/1		

Fix.hs

	plain	simple ind	approx	fixpoint ind
$prop_{even}$				
even x = evenFix x				
$prop_{evenSingl}$				
evenSingl $x = even x$				

mron a in		
$prop_{evenSinglFix}$		
evenSingl x = evenFix x		
$prop_{odd}$		
odd x = oddFix x		
odd $x = oddFix x$		

 \parallel total | plain | simple ind | approx | fixpoint ind

Functions.hs

	plain	simple ind	approx	fixpoint ind
$prop_{comp_{assoc}}$				
. (. f g) h = . f (. g h)				
$prop_{comp_{assoc'}}$	$\sqrt{\infty}$			
. (. fg) ha = . f (. gh) a				
$prop_{comp_{assocl}}$				
\dots (f g) h = \dots f (g h)				
$prop_{comp_{equal}}$				
. =				
$prop_{curry_{uncurry}}$				
id = . curry uncurry				
$prop_{dans_{identity}}$	$\sqrt{\infty}$			
const x y = id x				
$prop_{dans_{nonidentity}}$				
const $y x = id x$				

$prop_{left_{id}}$	\bigvee_{∞}	
. f id = f		
$rop_{left_{idl}}$	√∞	
f id = f		
$prop_{malins_{identity}}$	√∞	
const id x y = flip const x y		
$prop_{malins_{identity'}}$	√ ∞	
const id = flip const		
$prop_{mikaels_{identity}}$	√∞	
id f x = f x		
$prop_{nonidentity}$	1	
const x = id		
$prop_{right_{id}}$	\checkmark_{∞}	
. id f = f		
$cop_{right_{idl}}$	√∞	
id f = f		
$prop_{uncurry_{curry}}$		
id = . uncurry curry		
$prop_{uncurry_{equal}}$		
uncurry = uncurry'		
$prop_{uncurry_{f_{equal}}}$		
·*****		
uncurry f = uncurry' f		
$prop_{uncurry_{f_{tuple}}}$	√ fin	
equal		
mourry f + - unourry/ f +		
ncurry f t = uncurry' f t		

$prop_{uncurry_{f_{unboxedtuple}_{equal}}}$	$\sqrt{\infty}$		
uncurry f (T2 a b) = uncurry' f (T2 a b)			

	total	plain	simple ind	approx	fixpoint inc
\checkmark_{∞}	10/20	10/10			
√ _{fin}	1/20		1/1		
	2/20	2/2			

FV.hs

Properties

	plain	simple ind	approx	fixpoint ind	
$prop_{free}$					
					ı
					ı
mem v (freeVars e) = freeIn v e					

Summary

 \parallel total \mid plain \mid simple ind \mid approx \mid fixpoint ind

Infinite.hs

	plain	simple ind	approx	fixpoint ind
$prop_{concat_{repeat}_{cycle}}$				
<pre>concat (repeat (: x xs)) = cycle (: x xs)</pre>				
$prop_{fmap_{comp}}$		\checkmark_{∞}		\checkmark_{∞}
<pre>fmap (. f g) t = fmap f (fmap g t)</pre>				
$prop_{fmap_{id}}$		\checkmark_{∞}	\checkmark_{∞}	
fmap id t = t				
$prop_{fmap_{iterate}}$				\checkmark_{∞}
fmap f (iterTree f f x) = iterTree f f (f x)				

$prop_{fmap_{left}}$	\checkmark_{∞}	$\sqrt{\infty}$	\checkmark_{∞}
F) F J mupleft	• &	• &	* &
<pre>fmap (. id f) t = fmap f t</pre>			
$prop_{fmap_{map_{toList}}}$			
<pre>map f (toList t) = toList (fmap f t)</pre>			
$prop_{fmap_{map_{traverse}}}$			
<pre>map f (traverse t) = traverse (fmap f t)</pre>			
prop _{fmapright}	$\sqrt{\infty}$	$\sqrt{\infty}$	$\sqrt{\infty}$
J			
<pre>fmap (. f id) t = fmap f t</pre>			
$prop_{map_{iterate}}$			\checkmark_{∞}
map f (iterate f x) = iterate f (f x)			
$prop_{mirror_{involutive}}$	\checkmark_{∞}		
mirror (mirror t) = t			
$prop_{mirror_{iterate}}$		$\sqrt{\infty}$	√ _∞
minner (iterTree f a v) - iterTree a f v			
$\frac{\text{mirror (iterTree f g x) = iterTree g f x}}{prop_{mirror_{traverse_{rev}}}}$			
P Spinitto traverserev			
reverse (traverse t) = traverse (mirror t)			
$prop_{repeat_{cycle}_{singleton}}$		\checkmark_{∞}	\checkmark_{∞}
repeat x = cycle (: x ([]))			
$prop_{repeat_{iterate}}$		$\sqrt{\infty}$	\checkmark_{∞}
repeat x = iterate id x			
prop _{tailrepeat}		√ _∞	$\sqrt{\infty}$
			~
repeat $x = tail$ (repeat x)			

	total	plain	simple ind	approx	fixpoint inc
$\sqrt{\infty}$	11/15		5/11	7/11	9/11

Integers.hs

	plain	simple ind	approx	fixpoint ind
$prop_{add_{assoc}}$			- 11	
+! x (+! y z) = +! (+! x y) z				
$prop_{add_{comm}}$				
$+! \times y = +! \times x$				
$prop_{add_{ident}_{left}}$				
x = +! zero x				
$prop_{add_{ident_{right}}}$		$\sqrt{\infty}$	√ _∞	
right				
x = +! x zero				
$prop_{add_{inv_{left}}}$				
$\frac{+! \text{ (neg x) } x = zero}{prop_{add_{inv_{right}}}}$				
$F \sim F \ autinv_{right}$				
$+! \times (\text{neg } x) = \text{zero}$ $prop_{mul_{assoc}}$				
Propinut _{assoc}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$prop_{mul_{comm}}$				
$\star ! x y = \star ! y x$				
$prop_{mul_{ident_{left}}}$				
x = *! one x				
$prop_{mul_{ident_{right}}}$				
x = *! x one				
$prop_{neg_{involutive}}$				
x = neg (neg x)				

$prop_{sign_{assoc}}$	√ ∞	\checkmark_{∞}	
r · · r sigitassoc	~ ~	. ~	
% s (% t u) = *% (*% s t) u			
$prop_{sign_{ident_{left}}}$	\checkmark_{∞}	\checkmark_{∞}	
*% s (Pos) = s			
$prop_{sign_{ident_{right}}}$	$\sqrt{\infty}$	\checkmark_{∞}	
*% (Pos) s = s			
$prop_{sign_{opposite}_{involutive}}$	$\sqrt{\infty}$	\checkmark_{∞}	
opposite (opposite s) = s			
$prop_{sign_{triple}}$	\checkmark_{∞}	\checkmark_{∞}	
% S (% S S) = S			

	total	plain	simple ind	approx	fixpoint ind
$_{\infty}$	6/16		6/6	6/6	

IWC.hs

	plain	simple ind	approx	fixpoint ind
$prop_{appAssoc}$		√ _∞		√∞
app (app xs ys) zs = app xs (app ys zs)				
$prop_{binomialTheorems}$				
exp (S x) n = sum' (Z) n (lambda.0 n x)				
$prop_{evenEq}$				\checkmark_{∞}
evenm n = evenr n				
$prop_{rotateLength}$				
rotate (len xs) xs = xs				

$prop_{split}$			
newSplit x w (len w) = splitList x w			
$prop_{sumLemma}$			
sum' n m (lambda.1 f g) = plus (sum' n m f) (sum	n m	ā) 	
$prop_{sumLemma2}$			
sum' n m (lambda.2 f t) = times t (sum' n m f)			

	total	plain	simple ind	approx	fixpoint ind
\checkmark_{∞}	2/7		1/2		2/2