Abstract of the Disclosure

Method and system for converting a first light beam having a first frequency into a second light beam having a second frequency. A pump photon having (angular) frequency 3ω (or 4ω) is provided within an optical cavity, defined by two mirrors that are fully reflecting at a frequency 2ω . In a first approach, the pump photon is received and down-converted $(3\omega \to 2\omega + \omega)$ by a first nonlinear crystal, and the 2ω photon is further down-converted $(2\omega \to \omega + \omega)$ by a second nonlinear crystal), to produce three photons $(\omega + \omega + \omega)$ that exit from the cavity. In a second approach, the pump photon is received and down-converted $(4\omega \to 2\omega + 2\omega)$ by a first nonlinear crystal, and one or both of the 2ω photons is further down-converted $(2\omega \to \omega + \omega)$ by a second nonlinear crystal).