Eleanor Batty | Curriculum Vitae

Education

Columbia University 2014 - 2020

Ph.D., Neurobiology & Behavior

Brown University 2010 - 2014

B.Sc. with Honors in Neuroscience, B.A. in Physics, GPA 4.0

Research and Work Experience

Lecturer/Curriculum Developer for Computational Neuroscience

May 2020 - Present

Harvard University Program in Neuroscience

Ph.D. Research 2015 - 2020

Advisor: Liam Paninski, Center for Theoretical Neuroscience, Columbia University

Research focuses at the intersection of machine learning and neuroscience, specific projects include developing artificial neural network based methods for improved encoding and decoding of neural responses and developing a toolbox to analyze behavioral videos and connect to neural activity

Facebook AI Research Internship/Contingent Worker

June 2019 - Present

Advisor: Ari Morcos

Research focuses on methodical analysis of regularization methods and their impact on network representation

Undergraduate Thesis Research

2013 - 2014

Advisor: Elie Bienenstock, Applied Mathematics Department, Brown University
Incorporated graph-theory concepts into hierarchical models of vision to improve performance

EPFL Summer Research Program

Summer 2013

Advisor: Wulfram Gerstner, Laboratory for Computational Neuroscience, EPFL

CSHL Undergraduate Research Program

Summer 2012

Advisor: Anne Churchland, Cold Spring Harbor Laboratory

Publications

- BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos
 Batty, E*, Whiteway, M*, Saxena, S, Biderman, D, Abe, T, Musall, S, Gillis, W, Markowitz, J, Churchland, A, Cunningham, J, Datta, S, Linderman, S, Paninski, L *Authors contributed equally
 Advances in Neural Informational Processing Systems (NeurIPS) 2019
- Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons
 Parthasarathy, N*, Batty, E*, Falcon, W, Rutten, T, Rajpal, M, Chichilnisky, E, Paninski, L *Authors contributed equally

Advances in Neural Information Processing Systems (NeurIPS) 2017

- YASS: Yet Another Spike Sorter
 Lee, J, Carlson, D, Shokri, H, Yao, W, Goetz, G, Hagen, E, Batty, E, Chichilnisky, E, Einevoll, G, Paninski, L
 Advances in Neural Information Processing Systems (NeurIPS) 2017
- Multilayer recurrent network models of primate retinal ganglion cell responses
 Batty, E, Merel, J, Brackbill, N, Heitman, A, Sher, A, Litke, A, Chichilnisky E, Paninski, L
 International Conference on Learning Representations (ICLR) 2017

Conference Talks

- "Encoding and Decoding Retinal Responses Using Artificial Neural Networks." Gatsby Tri-Center Meeting. 2018.
- "Neural Networks for Efficient Bayesian Decoding of Natural Images from Retinal Neurons." Annual Conference on Cognitive Computational Neuroscience. 2017.

Abstracts

- **Batty, E***, Whiteway, M*, et al (2019). BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos. Society for Neuroscience.
- o Parthasarathy, N*, **Batty, E***, et al (2017). Nonlinear amortized Bayesian decoding of natural scenes from retinal responses. Collaborative Research in Computational Neuroscience (CRCNS) Annual PI Meeting.
- **Batty, E** et al (2016). Multilayer recurrent network models of primate retinal ganglion cells. NIPS Workshop, Brains and Bits: Neuroscience meets Machine Learning.
- o Brackbill, N, Heitman, A, **Batty, E** et al (2016). Spatial extent of inputs to primate ganglion cells in natural viewing conditions. FASEB.

Awards, Honors, & Fellowships

o Google PhD Fellowship	2018 - Present
o National Science Foundation Graduate Research Fellowship	2015 - 2018
o James T. McIlwain Award for Excellence in Undergraduate Research	2014
o BIO REU Travel Scholarship	2013

Peer Review

Neural Information Processing Systems (NeurIPS)	2019
o Computational and Systems Neuroscience (Cosyne)	2019

Teaching Experience

	Lecturer, Columbia University	Fall 2016, 2017
O	Quantitative Approaches for Experimental Neuroscientists	

Teaching Assistant, Columbia UniversityIntroduction to Theoretical Neuroscience

	Teaching Assistant, Columbia University	Fall 2016
	Experimental Approaches	

Teaching Assistant, Columbia University	Fall 2015
O C	

Statistical Analysis of Neural Data

Skills

Advanced: Python, PyTorch, Matlab, Deep Learning, Probabilistic Graphical Modeling, Computational Neuroscience

Intermediate: TensorFlow