All-Pairs Shortest Paths

All-Pairs Shortest Paths

- ▶ Solve $\delta(u,v)$ for all $u,v \in V$.
- ▶ Run Bellman-Ford for every v∈V:
 - $O(|V|^2|E|)=O(|V|^4)$
- ▶ Run Dijkstra's algorithm for every v∈V:
 - $ightharpoonup O(|V|^3)$ Array
 - O(|V||E|log|V|) Binary heap
 - O(|V|²log|V|+|V||E|) Fibonacci heap

All-Pairs Shortest Paths

- In Chapter 25, the textbook gives several algorithms solving APSP for graphs without negative cycles.
- ▶ DP: O(|V|4)
- ▶ DP+Fast Exponentiation: O(|V|³log|V|)
- ▶ Floyd-Warshall: O(|V|³)
- Johnson's: Bellman-Ford+|V|×Dijkstra's
 - Negative edges

Floyd-Warshall

- G=(V,E) where $V=\{v_1,...,v_n\}$
- Dynamic programming
- Subproblem:
 - ▶ Dⁱ(u,v) is the minimum length of paths from u to v which only pass vertices in {v₁,...,v_i}.
 - \rightarrow Dⁱ(v,v)=0
 - ► $D^{o}(u,v)=w(u,v)$ $w(u,v)=\infty$ if $u\neq v$ and $(u,v)\notin E$
 - $\rightarrow D^{i}(u,v)=min(D^{i-1}(u,v),D^{i-1}(u,v_{i})+D^{i-1}(v_{i},v))$
 - \rightarrow Dⁿ(u,v)= δ (u,v)

Floyd-Warshall

```
\begin{array}{l} \blacktriangleright D^o = W \\ & \text{for } i = 1 \text{ to } n \\ & \text{for } u \in V \\ & \text{for } v \in V \\ & D^i(u,v) = min(D^{i-1}(u,v),D^{i-1}(u,v_i) + D^{i-1}(v_i,v)) \\ & \text{return } D^n \end{array}
```

- Predecessor
 - ▶ $\Pi^{o}(u,v)=u$ if $u\neq v$ and $(u,v)\in E$.
 - ▶ $\Pi^{o}(u,v)=NIL \text{ if } u=v \text{ or } (u,v)\notin E.$
 - $\Pi^{i}(u,v)=\Pi^{i-1}(u,v) \text{ if } D^{i}(u,v)=D^{i-1}(u,v)$
 - $\Pi^{i}(u,v)=\Pi^{i-1}(v_{i},v) \text{ if } D^{i}(u,v)\neq D^{i-1}(u,v)$

Correctness

p does not contain a cycle.

- Let p be the shortest path from u to v which only pass vertices in $\{v_1,...,v_i\}$. $w(p)=D^i(u,v)$
 - ▶ Case 1: p does not pass v_i . So $w(p)=D^{i-1}(u,v)$.
 - ▶ Case 2: p passes v_i . $w(p)=D^{i-1}(u,v_i)+D^{i-1}(v_i,v)$.

D^0	1	2	3	4	5
1	0	6	8	-2	8
2	8	O	8	-9	8
3	_1	8	O	_1	8
4	8	8	8	O	8
5	8	8	9	8	0

\prod^0	1	2	3	4	5
1	Z	1	Z	1	NIL
2	Z	Z	Z	2	NIL
3	3	NIL	NIL	3	NIL
4	Z	ZIL	Z	NIL	4
5	NIL	NIL	5	NIL	NIL

D^1	1	2	3	4	5
1	O	6	8	-2	8
2	8	O	8	-9	8
3	_1	5	0	-3	8
4	8	8	8	O	8
5	8	8	9	8	0

\prod^1	1	2	3	4	5
1	Z	1	I Z	1	NIL
2	<u>I</u>	<u>I</u>	Z	2	NIL
3	3	1	Z	1	NIL
4	Z	Z	Z	Z	4
5	NIL	NIL	5	NIL	NIL

D^2	1	2	3	4	5
1	0	6	8	-3	8
2	8	O	8	-9	8
3	_1	5	0	_4	8
4	8	8	8	O	8
5	8	8	9	8	0

\prod^2	1	2	3	4	5
1	Z	1	Z	2	NIL
2	Z	Z	Z	2	ZIL
3	3	1	ZIL	2	ZIL
4	ΝIL	ZIL	ZIL	ZIL	4
5	NIL	NIL	5	NIL	NIL

D^3	1	2	3	4	5
1	0	6	8	-3	8
2	8	O	8	-9	8
3		5	0	-4	8
4	8	8	8	O	8
5	8	14	9	5	О

\prod^3	1	2	3	4	5
1	Z	1	<u>I</u>	2	NIL
2	<u>I</u>	<u>I</u>	<u>I</u>	2	NIL
3	3	1	<u>I</u>	2	NIL
4	Z	Z	Z	<u>I</u>	4
5	3	1	5	2	NIL

D^4	1	2	3	4	5
1	0	6	8	-3	5
2	8	O	8	-9	1
3		5	0	-4	4
4	8	8	8	O	8
5	8	14	9	5	0

\prod^4	1	2	3	4	5
1	Z	1	Z	2	4
2	Z	Z	Z	2	4
3	3	1	Z	2	4
4	Z	ZIL	Z	Z	4
5	3	1	5	2	NIL

D^5	1	2	3	4	5
1	O	6	14	-3	5
2	7	O	8	-9	-1
3	_1	5	0	-4	4
4	16	22	17	O	8
5	8	14	9	5	O

\prod^5	1	2	3	4	5
1	Z	1	5	2	4
2	3	<u>I</u>	5	2	4
3	3	1	Z	2	4
4	3	1	5	Z	4
5	3	1	5	2	NIL

Complexity

- Time: $\Theta(|V|^3)$
 - $\bullet \Theta(|V|^3)$ subproblems
 - \bullet $\Theta(1)$ -time for each subproblem
- Space: $\Theta(|V|^3)$
 - ▶ D^i takes $\Theta(|V|^2)$
 - \triangleright Do,...,Dn take $\Theta(|V|^3)$
 - Can be reduce to $\Theta(|V|^2)$
 - Use only D and Π .

Improvement: Space Complexity

```
\begin{array}{l} \blacktriangleright D=W \\ \Pi=\Pi^o \\ \text{for } i=1 \text{ to } n \\ \text{for } u{\in}V \\ \text{for } v{\in}V \\ \text{if } D(u,v){>}D(u,v_i){+}D(v_i,v) \\ D(u,v){=}D(u,v_i){+}D(v_i,v) \\ \Pi(u,v){=}\Pi(v_i,v) \\ \text{return } D \end{array}
```

The Difference

- ► The new one might use Dⁱ(u,v_i)/Dⁱ(v_i,v) instead of Dⁱ⁻¹(u,v_i)/Dⁱ⁻¹(v_i,v).
- ▶ But $D^{i-1}(u,v_i)=D^i(u,v_i)$, $D^{i-1}(v_i,v)=D^i(v_i,v)$.

$$\begin{array}{c} v_{i} \longrightarrow v_{\langle i} \longrightarrow v$$

Johnson's Algorithm

- ▶ Floyd-Warshall is simple and efficient if the graph is dense.
- Dijkstra's has better performance if the graph is sparse.
 - But Dijkstra's cannot handle negative edges.
- Johnson's:
 - Reweighting the graph by Bellman-Ford
 - No negative edges Triangle inequality
 - Apply Dijkstra's.

- ▶ Idea: give a height h(v) to vertex v∈V
 - Use Bellman-Ford
- New weight: w'(u,v)=w(u,v)+h(u)-h(v)
 - w'(p)=w(p)+h(u)-h(v) if $p=\langle u=v_0,...,v_k=v\rangle$ is a path from u to v.
 - $\sum_{1 \le i \le k} w'(v_{i-1}, v_i) = \sum_{1 \le i \le k} w(v_{i-1}, v_i) + h(v_{i-1}) h(v_i)$
- Shortest paths are not changed by reweighting.

- ▶ Goal: w'(u,v)≥o for every (u,v) \in E
- ► Goal: $w(u,v) \ge h(v) h(u)$
- Add a vertex s and an edge (s,v) for $v \in V$.
 - \rightarrow w(s,v)=o

Run Bellman-Ford: source s

- Run Bellman-Ford: source s DONE
- ▶ Set $h(v) = \delta(s,v)$

- ► Set w'(u,v)=w(u,v)+h(u)-h(v) \geq o
 - \blacktriangleright w(u,v)+δ(s,u)≥δ(s,v) Triangle inequality

V	h(v)
1	_1
2	0
3	0
4	_9
5	_1

$$w'(p)=w(p)+h(u)-h(v)$$

δ	1	2	3	4	5
1	О	6	14	-3	5
2					
3					
4					
5					

V	h(v)
1	_1
2	0
3	0
4	_9
5	_1

$$w'(p)=w(p)+h(u)-h(v)$$

δ	1	2	3	4	5
1	О	6	14	-3	5
2	7	O	8	-9	_1
3					
4					
5					

V	h(v)
1	_1
2	0
3	O
4	- 9
5	_1

$$w'(p)=w(p)+h(u)-h(v)$$

δ	1	2	3	4	5
1	О	6	14	-3	5
2	7	0	8	_9	-1
3	_1	5	О	-4	4
4					
5					

V	h(v)
1	_1
2	0
3	0
4	- 9
5	_1

$$w'(p)=w(p)+h(u)-h(v)$$

δ	1	2	3	4	5
1	O	6	14	-3	5
2	7	O	8	-9	-1
3	_1	5	O	-4	4
4	16	22	17	0	8
5					

V	h(v)
1	_1
2	0
3	O
4	_9
5	_1

$$w'(p)=w(p)+h(u)-h(v)$$

δ	1	2	3	4	5
1	0	6	14	-3	5
2	7	0	8	- 9	-1
3	_1	5	O	_4	4
4	16	22	17	0	8
5	8	14	9	5	0

V	h(v)
1	_1
2	O
3	O
4	_9
5	_1

Time Complexity

- \blacktriangleright Bellman-Ford: O(|V||E|)
- ▶ |V|×Dijkstra's:
 - $ightharpoonup O(|V|^3)$ Array
 - O(|V||E|log|V|) Binary heap
 - ► O(|V|²log|V|+|V||E|) Fibonacci heap