EI-27003: Electronics Devices and Circuits Lecture - 17

Subject Incharge: Mr. Rajesh Khatri Associate Professor

LECTURE - 17

Year: 2020-21

Unit – 2/3: Diode and BJT Modeling

PN Junction Diode

Forward Bias Diode:

Reverse Bias Diode:

Diode Equations

- Here we will obtain the equations:
- ➤ Diode current Equation: I_D
- ➤ Built-in Potential V₀
- Width of Depletion layer W

Consider the fig below.

The potential V_B is given by:

$$V_B = |V_P| + |V_n|$$
 ----- eq.(1)

Where : V_P = Potential fall in p-region

 V_n = Potential rise in n-region

- Width of depletion region: $x = x_p + x_n$ -----(2)
- Where: x_p and x_n are widths of depletion layers of p and n regions respectively.
- To find out the distribution of barrier potential in space charge region, use Poisson's equation

• Where $\rho = \text{charge density}$

 ε = permittivity of medium

The charge density in p-side of space charge region is given by:

Where Na= density of Acceptor atoms

Hence eq.(3) becomes

$$\frac{d^2V}{dx^2} = \frac{eNa}{\varepsilon} \quad ----(5)$$

Integrating eq.(5), it gives:

•
$$\frac{dV}{dx} = \frac{eNa}{\varepsilon}x + C1 ----(6)$$

C1 is constant of integration and can be obtained by using boundary condition

• At
$$x = -x_p$$
, $\frac{dV}{dx} = 0$

Hence eq(6) becomes

$$0 = -\frac{eNa}{\varepsilon}x_p + C1$$

Hence C1 =
$$\frac{eNa}{\epsilon} x_p$$
 ----(7)

Substitute eq(7) in eq(6)

$$\frac{dV}{dx} = \frac{eNa}{\varepsilon}x + \frac{eNa}{\varepsilon}x_p = \frac{eNa}{\varepsilon}(x + x_p) - ----(8)$$

Again integrating eq.(8)

•
$$V = \frac{eNa}{\varepsilon}(\frac{x^2}{2} + x.x_p) + C2 ----(9)$$

C2 is integration constant. Again apply boundary condition

•
$$0 = \frac{eNa}{\epsilon}(0+0) + C2$$
 OR C2=0

• eq(9) becomes :
$$V = \frac{eNa}{\varepsilon} (\frac{x^2}{2} + x. x_p)$$

• For p-region, at
$$x = -x_p$$
, $V = V_p$

• Hence
$$V_P = \frac{eNa}{\epsilon} (\frac{x_p^2}{2} + x_p^2) = -\frac{eNa}{\epsilon} \frac{x_p^2}{2}$$
 ----(10)

- Similarly, for the potential distribution in space charge region on n-side, the Poisson's equation can be written as:
 - $\frac{d^2V}{dx^2} = \frac{-\rho}{\varepsilon} = \frac{eNd}{\varepsilon}$ since $\rho = -eNd$
 - Where Nd = density of donor atoms
- Proceeding as above and applying the boundary conditions at :

• At
$$x=0$$
, V=0 and at $x=-x_n$, $\frac{dV}{dx}=0$

• We get :
$$V_n = -\frac{eN_d}{\varepsilon} \frac{x_n^2}{2}$$
 -----(11)

• Height of potential barrier is: $V_B = |V_P| + |V_n| = \frac{eNa}{\varepsilon} \frac{x_p^2}{2} + \frac{eNd}{\varepsilon} \frac{x_n^2}{2}$

•
$$V_B = \frac{e}{2\varepsilon} [Nax_p^2 + Ndx_n^2]$$
 -----(12)

Since crystal as a whole is electrically neutral, the number of charge carriers on both sides must be equal on both sides must be equal:

• Na.
$$x_p = Nd.x_n$$

•
$$x_n = \frac{\text{Na}}{\text{N}d} \cdot x_p$$
 -----(13)

Substitute eq(13) in eq(12)

•
$$V_B = \frac{e}{2\epsilon} [Nax_p^2 + \frac{N^2a}{N^2d}x_p^2]$$

•
$$V_B = \frac{e}{2\epsilon} \operatorname{Na} x_p^2 \left[1 + \frac{\operatorname{Na}}{\operatorname{N} d} \right]$$

•
$$x_p^2 = \frac{2\varepsilon V_B}{\text{eNa}[1 + \frac{\text{Na}}{\text{N}_d}]}$$

•
$$x_p = \sqrt{\frac{2\varepsilon V_B}{\text{eNa}[1 + \frac{\text{Na}}{\text{N}_d}]}}$$

So we have :
$$x_p = \sqrt{\frac{2\epsilon V_B}{\text{eNa}[1 + \frac{\text{Na}}{\text{N}_d}]}}$$
 similarly $x_n = \sqrt{\frac{2\epsilon V_B}{\text{eNd}[1 + \frac{\text{Nd}}{\text{N}_a}]}}$

• Now width of depletion layer: $x = x_p + x_n$

•
$$x = \sqrt{\frac{2\varepsilon V_B}{\text{eNa}[1+\frac{\text{Na}}{\text{N}_d}]}} + \sqrt{\frac{2\varepsilon V_B}{\text{eNd}[1+\frac{\text{N}_d}{\text{N}_a}]}}$$

• =
$$\sqrt{\frac{2\varepsilon V_B}{e}} \left[\left\{ \frac{(N_d/N_a)}{(N_a+N_d)} \right\}^{1/2} + \left\{ \frac{(N_a/N_d)}{(N_a+N_d)} \right\}^{1/2} \right]$$

•
$$x = \sqrt{\frac{2\varepsilon V_B}{\mathsf{e}(N_a + N_d)}} \left[\left(\frac{\mathsf{N}d}{\mathsf{N}a} \right)^2 + \left(\frac{\mathsf{N}a}{\mathsf{N}d} \right)^2 \right]$$

Conclusion/ Significance

- So we have :width of depletion layer : $x = \sqrt{\frac{2\epsilon V_B}{e(N_a + N_d)}} \left[\left(\frac{N_d}{N_a} \right)^2 + \left(\frac{N_a}{N_d} \right)^2 \right]$
- If Nd >> Na, neglect Na

• Hence
$$x = \sqrt{\frac{2\epsilon V_B}{\mathsf{e}(N_a + N_d)}} \left[\left(\frac{\mathsf{N}d}{\mathsf{N}a} \right)^2 + 0 \right]$$
 OR $x = \sqrt{\frac{2\epsilon V_B}{\mathsf{e}\mathsf{N}a}} = \left(\frac{2\epsilon V_B}{\mathsf{e}\mathsf{N}a} \right)^{1/2}$

 Conclusion: When doping(impurity concentration, Na) increases, the width of depletion layer decreases.

Attendance

https://forms.gle/JvcE74CWX5kWVU4c9