

Voitist 611 (VOI611)

嵌入式深度学习语音识别芯片

数据手册

(V1.40)

2019年9月16日

● 版权所有 © 北京探境科技有限公司 2019。保留一切权利。 非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或 全部,并不得以任何形式传播。

● 商标声明

INTENGINE 探境科技和其他探境商标均为北京探境科技有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

● 注意

您购买的产品、服务或特性等应受北京探境科技有限公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,探境科技有限公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

● 联系方式

北京探境科技有限公司

地址: 北京市朝阳区望京宏泰西街博泰大厦 1503 室 邮编: 100102

网址: http://www.intenginetech.cn/index.htm

目 录

1.	产品概述1
2.	芯片系统结构2
	产品规格3
	语音识别系统能力3
3.2.	MCU 性能
3.3.	NPU 性能
3.4.	固件存储方式3
3.5.	外设接口4
3.6.	调试接口4
3.7.	定时器资源4
3.8.	音频 ADC 特性4
3.9.	时钟、电源、功耗5
	管脚定义6
4.1.	管脚分配图6
4.2.	电源管脚定义7
4.3.	音频 I/O 管脚定义8
	控制 I/O 管脚定义9
4.5.	系统功能管脚定义10
	典型应用11
6.	电气特性12

1. 产品概述

Voitist 611(简称 VOI611)是一颗针对嵌入式产品的深度学习语音识别芯片,内置神经网络硬件加速模块 NPU,标准 ARM 处理器 Cortex-M3,集成多种控制和通信接口。

VOI611 可以运行多种神经网络,在有噪声干扰 的近场和远场情况下,支持离线语音命令词识别。

用户可以在设备不联网的情况下,通过说出简单 命令词的方式,有效控制目标电器设备,执行既定的 操作行为。

该芯片具有低功耗,高性能,高灵活性等特点,适用于智能家电、智能车载、 智能音箱、人机交互等产品。

2. 芯片系统结构

VOI611 是针对嵌入式产品的深度学习语音识别芯片,主要的组成部分包括:

- 神经网络硬件加速模块 NPU
- 标准 ARM 处理器 Cortex-M3
- 用于连接外置 Flash 的 QSPI 接口
- 多种音频数据接口:

I2S、PDM 数字输入、Mic 模拟输入、Audio 模拟输出

● 多种外围控制接口:

PWM 输出、I2C、UART、SPI、GPIO

- JTAG 调试接口
- 内置 PLL、定时器、看门狗

图 2-1 VOI611 系统框图

3. 产品规格

3.1. 语音识别系统能力

- 交互步骤:唤醒词→响应→命令语音输入→识别→反馈(语音和电路动作
- 支持命令词数量:最高 200 个,通常每个命令词 3~6 个字
- 反馈时间: 0.1s(语音输入结束到反馈信号发出的时间)
- 识别率:在 60dB 环境噪音下,识别率达到 98%以上
- 支持语音问答:最多支持5层
- 支持输入语言:汉语普通话、英语
- 拾音距离: 5米以上
- 语音输入:支持模拟和数字麦克风,支持远场识别、噪声抑制和音源定位
- 反馈方式:语音输出,执行电路控制
- 语音输出内容:可定制
- 开发支持:支持客户二次开发,或者提供定制开发服务

3.2. MCU 性能

- ARM 32bit Cortex-M3 处理器
- 最高 131MHz 工作频率
- 内存空间: 512KB

3.3. NPU 性能

- 基于探境科技的存储优先(SFA)结构设计的 NPU,具有以下特点:
 - 支持多种神经网络
 - 高效率的运算及存储单元

3.4. 固件存储方式

使用外置 QSPI Flash 存储固件,最小容量要求 4MB。

3.5. 外设接口

● I2S 音频数据接口:

可用作 Master 或 Slave, 16K 采样率, 1 个输入通道, 1 个输出通道

- PDM 数字 Mic 输入接口: 1 个(左右声道)
- Mic 模拟音频输入接口: 1 组(左右声道)
- Audio 模拟音频输出接口: 1组(左右声道)
- PWM 输出: 4 个
- I2C 接口: 1 个, Master 模式
- UART 接口: 2 个,最高波特率 115200
- SPI 接口: 1 个, Master 模式, 时钟为 65.5MHz
- QSPI 接口:用于连接 SPI Flash
- GPIO: 16 个,全部为复用管脚

3.6. 调试接口

支持 JTAG 调试接口和 UART 接口。

3.7. 定时器资源

- Timer 定时器: 3个
- Watch Dog (看门狗) 定时器: 1 个

3.8. 音频 ADC 特性

- 高分辨率立体声 Sigma-Delta 音频 ADC
- ADC 内置 PGA,最大增益 27dB
- 满幅输入电压: 2.1Vp-p

3.9. 时钟、电源、功耗

● 时钟:内置 PLL,外接 24.576MHz 晶体

● 电压:接口电压 3.3V,内核电压 1.2V

● 功耗:休眠模式: <15mW,识别模式: 100~150mW

4. 管脚定义

4.1. 管脚分配图

4.2. 电源管脚定义

管脚编号	管脚名称	类型	功能描述
1,18,27, 34,35,42, 52,58,68	DVDD12	DP	1.2V 内核电源
10,15	AVDD12	AP	1.2V 模拟电源(PLL 专用)
16,25,37,59	DVDD33	DP	3.3V 数字 IO 电源
12	AVDD33_PLL	AP	3.3V 模拟电源(PLL 专用)
7	AVDD33_ADC	AP	3.3V 模拟电源(ADC 专用)
2	ADC_VREFH	Al	ADC 基准电压输入,通过并联的 10uF 和 0.1uF 两个电容连接到 AVSS_ADC
3	ADC_VREFL	AI	ADC 基准电压输入,通过并联的 10uF 和 0.1uF 两个电容连接到 AVSS_ADC
5	ADC_VCOM	AO	基准电压输出,通过并联的 4.7uF 和 0.1uF 的电容连接到 AVSS_ADC; 其输出为 1.65V
6	ADC_MIBIAS	АО	麦克风偏置电压输出,输出范围为 1.6~2.8V;输出负载不小于 4.7uF
48	AVDD33_DAC	AP	3.3V 模拟电源(DAC 专用)
46	DAC_VREF	AO	DAC 内部基准电压,通过并联的 10uF 和 0.1uF 两个电容连接到 AVSS_DAC
50	AVDD33_HPL	AP	3.3V 模拟电源(扬声器左声道专用)
44	AVDD33_HPR	AP	3.3V 模拟电源(扬声器右声道专用)
26,36,53,67, EPAD	DVSS	DG	数字电源地
11	AVSS_PLL	AG	模拟电源地(PLL)
8	AVSS_ADC	AG	模拟电源地(ADC)
47	AVSS_DAC	AG	模拟电源地 (DAC)
51	AVSS_HPL	AG	模拟电源地 (扬声器左声道)
43	AVSS_HPR	AG	模拟电源地 (扬声器右声道)

4.3. 音频 I/O 管脚定义

管脚编号	管脚名称	类型	功能描述			
4	ADC_MICR	AI	ADC 输入(麦克风右声道)			
9	ADC_MICL	AI	ADC 输入(麦克风左声道)			
19	PDM_CLK	I	PDM 时钟;芯片内下拉			
19	GPIOC2	Ю	GPIOC2;芯片内下拉			
	I2S_SDI	ı	I2S 数据输入;芯片内下拉			
20	PDM_DATA	ı	PDM 数据输入;芯片内下拉			
	GPIOD2	Ю	GPIOD2;芯片内下拉			
21	I2S_SDO	0	I2S 数据输出;芯片内下拉			
22	I2S_WS	0	I2S 声道选择; 芯片内下拉			
23	I2S_SCLK	0	I2S 串行时钟;芯片内下拉			
24	I2S_MCLK	0	I2S 系统时钟;芯片内下拉			
45	DAC_HPR	AO	DAC 数据输出(扬声器右声道)			
49	DAC_HPL	AO	DAC 数据输出(扬声器左声道)			

4.4. 控制 I/O 管脚定义

管脚编号	管脚编号 管脚名称		功能描述
28	QSPI_CSN	0	QSPI 选择信号;芯片内上拉
29	QSPI_IO1	Ю	QSPI 数据 1;芯片内下拉
30	QSPI_IO2	Ю	QSPI 数据 2; 芯片内下拉
31	QSPI_IO0	Ю	QSPI 数据 0; 芯片内下拉
32	QSPI_SCLK	0	QSPI 时钟;芯片内下拉
33	QSPI_IO3	Ю	QSPI 数据 3; 芯片内下拉
20	MSPI_SCLK	0	Master SPI 时钟; 芯片内下拉
38	GPIOA3	Ю	GPIOA3; 芯片内下拉
20	MSPI_SDO	0	Master SPI 数据输出;芯片内下拉
39	GPIOC3	Ю	GPIOC3; 芯片内下拉
40	MSPI_SDI	ı	Master SPI 数据输入;芯片内下拉
40	GPIOD3	10	GPIOD3;芯片内下拉
41	MSPI_CSN	0	Master SPI 选择信号;芯片内上拉
41	GPIOB3	Ю	GPIOB3;芯片内上拉
F.4	UART1_RX	ı	UART1 数据输入;芯片内上拉
54	GPIOD1	IO	GPIOD1;芯片内上拉
<i></i>	UART1_TX	0	UART1 数据输出;芯片内上拉
55	GPIOC1	Ю	GPIOC1;芯片内上拉
50	UARTO_TX	0	UARTO 数据输出;芯片内上拉
56	GPIOA1	Ю	GPIOA1;芯片内上拉
4-7	UARTO_RX	I	UARTO 数据输入;芯片内上拉
57	GPIOB1	Ю	GPIOB1;芯片内上拉
	MI2C_SDA	Ю	I2C 数据;芯片内上拉
64	GPIOB2	Ю	GPIOB2;芯片内上拉
C.F.	MI2C_SCL	0	I2C 时钟;芯片内上拉
65	GPIOA2	Ю	GPIOA2;芯片内上拉
65	GPIOA2	Ю	GPIOA2;芯片内上拉

4.5. 系统功能管脚定义

管脚编号	管脚名称	类型	功能描述		
13	XIN	I	晶体振荡器输入		
14	XOUT	0	晶体振荡器输出		
17	PROB	I	复位(低电平有效);芯片内上拉		
	JTAG_TDO	0	JTAG 数据输出;芯片内下拉		
60	PWM3	AO	PWM3 输出;芯片内下拉		
	GPIOD0	Ю	GPIOD0;芯片内下拉		
	JTAG_TDI	I	JTAG 数据输入;芯片内下拉		
61	PWM2	AO	PWM2 输出;芯片内下拉		
	GPIOC0	Ю	GPIOC0;芯片内下拉		
	JTAG_TMS	I	JTAG 模式选择;芯片内下拉		
62	PWM1	AO	PWM1 输出;芯片内下拉		
	GPIOB0	10	GPIOBO;芯片内下拉		
	JTAG_TCK	Ţ	JTAG 时钟;芯片内下拉		
63	PWM0	AO	PWM0 输出;芯片内下拉		
	GPIOA0	Ю	GPIOA0;芯片内下拉		
66	TEST_MODE	ı	测试用途(通常使用可接地); 芯片内下拉		

5. 典型应用

6. 电气特性

推荐运行条件下的电气特性参数如下表所示:

参数	名称	最小值	典型值	最大值	单位
内核电源电压	DVDD12	1.14	1.2	1.26	<
内核电源电流	DVDD12		80		mA
1.2V 模拟电源电压	AVDD12	1.14	1.2	1.26	V
数字 I/O 电源电压	DVDD33	3.0	3.3	3.6	٧
3.3V PLL 电源电压	AVDD33_PLL	3.14	3.3	3.46	V
3.3V ADC 电源电压	AVDD33_ADC	3.14	3.3	3.46	V
3.3V DAC 电源电压	AVDD33_DAC	3.14	3.3	3.46	V
3.3V HPL 电源电压	AVDD33_HPL	3.14	3.3	3.46	V
3.3V HPR 电源电压	AVDD33_HPR	3.14	3.3	3.46	V
SPI 时钟频率	SPI Clock	0.002		65.536	MHz
工作温度	Tamb	-25		85	చి
存储温度	Tstg	-55		125	${\mathfrak C}$
湿敏等级	MSL		3		Level
抗静电能力	ESD		2000		V

7. 封装信息

封装形式(单位 mm): QFN68-8x8x0.85

