

単語ベースモデル及び文字ベースモデルの 固有表現抽出の性能比較

加藤拓真1,* 宫脇峻平1, 阿部香央莉1, 大内啓樹2,1, 鈴木潤1,2, 乾健太郎1,2 *takuma.kato@ecei.tohoku.ac.jp ¹東北大学 ² 理化学研究所

概要

- 単語ベースおよび文字ベースモデルで日本語の 固有表現抽出 (NER) を行い性能を比較
- 単語ベース・文字ベースで、それぞれ解けた・解けな かった固有表現を分析

背景

- 現在の日本語NERは単語ベースが主流
- 中国語では、文字ベースで性能が向上したタスクがある1

日本語でも文字ベースで性能が上がるのか?

[1]:Yuxian Meng, 2019

提案手法:日本語NERモデル

ベースライン: ニューラルNERモデル2

- 比較実験のため、固有表現と単語区切りが一致した (単語ベースに合わせた) データを使用
- word2vecで学習したベクトルを使用

[2]: Jie Yang, 2018

文字ベースNERのメリット

1.形態素解析の必要がない

単語ベース

東北大学に行く 東北/大学/に/行く 東北/大学/に/行く

文字ベース

東北大学に行く

東/北/大/学/に/行/く Facility

2.語彙サイズの削減

単語ベース:約200万 文字ベース:約1万

約1/200 ①

3.単語ベースでは解けない問題を解ける

単語ベース

トランプが来日した

トランプ O Person

文字ベース

トランプが来日した

トランプ

Person

実験

実験設定 拡張固有表現コーパス³を使用

	文数	固有表現数		
訓練	34784	72318		
開発	7009	11954		
評価	6783	11669		

次元数 512 Optimizer Adam⁴ Dropout率 0.25 語彙数(単語) 336666 語彙数(文字) 15905

固有表現ラベル数:28

* 頻度10で足切り

[3]:橋本泰一, 2008 [4]:Diederik P. Kingma, 2015

① 単語ベースと文字ベースのF値

	開発	評価
単語ベース	66.69	68.13
文字ベース	62.29	62.73

文字ベースが単語ベースに届かなかった要因は?

- ・文が単語ベースよりも長く、予測する文字数が 多くなったため?
- 単語ベースに合わせたデータを使用したため?

今後の方針

- ELMoやBERTなどより良い言語モデルを文字ベクトル として用いて改善していきたい
- 文字ベースと単語ベースを組み合わせた場合でも実験 を行いたい

② ラベル正解数の比較 (〇:正解,×:不正解)

		単語ベース	
			×
文字ベース		6124	882
	×	1400	3548

例1. 単語ベース: 〇, 文字ベース: ×

: 災害対策基本法 正解

文字ベース:災害対策基本法上

「上」にも余計な ラベルが付いた

例2. 単語ベース:×, 文字ベース:○

正解 : 北東アジア

Location

「アジア」にのみ タグが付いた

単語ベース:北東 アジア O Location