Solution: TP2

Part I: Switches and Lights

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY SwLeD IS

PORT(SW: IN STD_LOGIC_VECTOR(17 DOWNTO 0); LEDR: OUT STD_LOGIC_VECTOR(17 DOWNTO 0));

END SwLeD;

ARCHITECTURE LALA OF SwleD IS

BEGIN

LEDR <=SW;

END LALA;

Part II: Multiplexers


```
library ieee;
use ieee.std_logic_1164.all;
entity Mux2to1 is
port( x: in std_logic_vector(7 downto 0);
                     y: in std_logic_vector(7 downto 0);
                     s: in std_logic;
                     LEDR: OUT std_logic_vector(15 downto 0);
                     m: out std_logic_vector(7 downto 0));
end Mux2to1;
architecture behaviore of Mux2to1 is
begin
m(0) \le ((not(s) \text{ and } x(0)) \text{ or } (y(0) \text{ and } s));
m(1) \le ((not(s) \text{ and } x(1)) \text{ or } (y(1) \text{ and } s));
m(2) \le ((not(s) \text{ and } x(2)) \text{ or } (y(2) \text{ and } s));
m(3) \le ((not(s) \text{ and } x(3)) \text{ or } (y(3) \text{ and } s));
m(4) \le ((not(s) \text{ and } x(4)) \text{ or } (y(4) \text{ and } s));
m(5) \le ((not(s) \text{ and } x(5)) \text{ or } (y(5) \text{ and } s));
m(6) \le ((not(s) \text{ and } x(6)) \text{ or } (y(6) \text{ and } s));
m(7) \le ((not(s) \text{ and } x(7)) \text{ or } (y(7) \text{ and } s));
LEDR \le y\&x;
--LEDR(0) <= x(0);
--LEDR(1) <= x(1);
--LEDR(2) <= x(2);
--LEDR(3) <= x(3);
--LEDR(4) <= x(4);
--LEDR(5) <= x(5);
--LEDR(6) <= x(6);
--LEDR(7) <= x(7);
--LEDR(8) <= y(0);
--LEDR(9) <= y(1);
--LEDR(10) <= y(2);
--LEDR(11)<=y(3);
--LEDR(12)<=y(4);
--LEDR(13)<=y(5);
--LEDR(14)<=y(6);
--LEDR(15) <= y(7);
end behaviore;
```

Part III: Multiplexers

a) Circuit

b) Truth table


```
end Mux5to1;
architecture behaviore of Mux5to1 is
begin
m<=u when (S2='0' and S1='0' and S0='0') else
v when (S2='0' and S1='0' and S0='1') else
w when (S2='0' and S1='1' and S0='0') else
x when (S2='0' and S1='1' and S0='0') else
y when (S2='1' and S1='0' and S0='0') else
y;
LEDR<=y&x&w&v&u;
end behaviore;
```

Part IV: 7-segment decoder

$c_2 c_1 c_0$	Character			
000	Н			
001	Е			
010	L			
011	О			
100				
101				
110				
111				

Table 1. Character codes.

Part V: 7-segment decoder


```
LIBRARY ieee;
Use ieee.std_logic_1164.all;
entity decodseg is
port(sw0,sw1,sw2,sw3,sw4: in std_logic_vector(2 downto 0);
sw5,sw6,sw7: in std_logic;
sortie: out std_logic_vector(6 downto 0));
end decodseg;
architecture BEHAVIOUR of decodseg is
SIGNAL M: STD_LOGIC_VECTOR(2 DOWNTO 0);
COMPONENT Mux5to1 PORT (
   u: in std_logic_vector(2 downto 0);
                v: in std_logic_vector(2 downto 0);
                w: in std_logic_vector(2 downto 0);
                x: in std_logic_vector(2 downto 0);
                y: in std_logic_vector(2 downto 0);
                s0: in std_logic;
                s1: in std_logic;
                s2: in std_logic;
                m: out std_logic_vector(2 downto 0));
END COMPONENT;
COMPONENT segdisplay PORT ( VALUE1 : in std_logic_vector(2 downto 0);
```

DISPLAY : out std_logic_vector(6 downto 0));
END COMPONENT;

Begin

M0: Mux5to1 PORT MAP (sw0,sw1,sw2,sw3,sw4,sw5,sw6,sw7, M);

H0: segdisplay PORT MAP (M, sortie);

END BEHAVIOUR;

$SW_{17} SW_{16} SW_{15}$	Character pattern				
000	Н	Е	L	L	О
001	Ε	E L L O	L	O	Η
010	L	L	O	Η	E
011	L	O	Η	E	L
100	O	Η	E	L	L

Table 2. Rotating the word HELLO on five displays.