МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ)"

	Утверждаю: Проректор МАДИ по учебной работе
_	Л.Л. Зиманов «»2019 г.
ПРОГРА вступительных испыта	
Направление п 09.04.01 - «ИНФОРМАТИКА И ВЬ магистерские в	ІЧИСЛИТЕЛЬНАЯ ТЕХНИКА»
Интегрированные АСУ в отраслях тра	-

Степень **Магистр**

Формы обучения **Очная**

OMO	<u> </u>

1. ЦЕЛИ И ЗАДАЧИ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

Вступительные испытания являются формой входного контроля и предназначены для определения теоретической и практической подготовленности поступающего в магистратуру бакалавра или специалиста и проводятся с целью определения соответствия компетенций, знаний, умений и навыков поступающего требованиям обучения в магистратуре по направлению подготовки.

Основные задачи вступительных испытаний:

- выявление общекультурных и профессиональных компетенций претендента;
- определение уровня овладения претендентом общекультурными и профессиональными компетенциями;
- проверка уровня знаний претендента;
- определение склонности к научно-исследовательской деятельности;
- выяснение мотивов поступления в магистратуру;
- определение уровня научных интересов;
- определение уровня научно-технической эрудиции претендента.

Программа вступительных испытаний в магистратуру составлена с соответствии с порядком приема в магистратуру московского автомобильно-дорожного государственного технического университета (МАДИ) и рекомендована Приемной комиссией МАДИ на основании Устава МАДИ, Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации», Приказа Минобрнауки от 14 октября 2015 года № 1147, письма Минобрнауки России от 07 декабря 2016 г. № ЛО-1841/05 и Правил приема в МАДИ в 2017 году» утвержденных решением Ученого совета МАДИ от 27 сентября 2016 года протокол № 1.

В основу программы вступительных испытаний положены квалификационные требования, предъявляемые к бакалаврам по направлению 09.03.01 - «Информатика и вычислительная техника». Программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (зарегистрирован в Минюсте России 25 ноября 2014 г. № 34914), предъявляемыми к подготовке поступающих в магистратуру по направлению 09.04.01 «Информатика и вычислительная техника» (уровень магистратуры) (Приказ Министерства образования и науки Российской Федерации от 30 октября 2014 г. № 1420).

2. ФОРМА ПРОВЕДЕНИЯ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

Прием на первый курс обучения по направлению подготовки магистратуры 09.04.01 - «Информатика и вычислительная техника» осуществляется на основе конкурса по результатам вступительных испытаний с учетом индивидуальных достижений. При расчете суммарного конкурсного балла и принятии решения о зачислении абитуриентов в магистратуру МАДИ в качестве критериев оценки используются:

- результаты вступительного испытания (экзамена по данному направлению подготовки);
 - индивидуальные достижения.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В ходе вступительных испытаний поступающий должен показать:

- знание теоретических основ дисциплин бакалавриата по соответствующему направлению;
- владение специальной профессиональной терминологией и лексикой;
- умение использовать математический аппарат при изучении и количественном описании реальных процессов и явлений;

- умение оперировать ссылками на соответствующие положения в учебной и научной литературе;
- владение культурой мышления, способность в письменной и устной речи правильно оформлять его результаты;
- умение поставить цель и сформулировать задачи, связанные с реализацией профессиональных функций.

4. СТРУКТУРА И СОДЕРЖАНИЕ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

4.1. Структура вступительных испытаний

При проведении испытаний абитуриентам запрещается пользоваться научной и учебной литературой, заранее подготовленными записями, телекоммуникационными средствами. При нарушении данных требований абитуриент удаляется из помещения сдачи экзаменов и вступительное испытание считается абитуриентом не выполненным, о чем делается соответствующая запись в экзаменационной ведомости. Пересдача вступительных испытаний не допускается.

При начале вступительных испытаний проводится регистрация участвующих абитуриентов. Не прибывшие на испытания абитуриенты считаются не прошедшими испытания и повторные испытания для них не проводятся, кроме отдельных случаев, решение о которых принимается Председателем Приемной комиссии МАДИ.

- 5.4. Поступающие в магистратуру сдают вступительные испытания:
- граждане Российской Федерации экзамены по направлению подготовки, в письменной форме. Продолжительность экзамена составляет 60 минут без перерыва, возможно проведение экзамена с применением тестовой формы и собеседования;
- иностранные граждане вступительные испытания по направлению подготовки (испытания проводятся на русском языке). Продолжительность экзамена составляет 60 минут без перерыва, возможно проведение экзамена с применением тестовой формы и собеседования.

Проведению вступительных испытаний (экзаменов по направлениям подготовки) предшествует проведение консультаций абитуриентов. Дата и время проведения консультаций представляется на сайте МАДИ и на информационном стенде Приемной комиссии. Проведение экзамена осуществляется по следующим правилам:

- студент выбирает билет, каждый из которых содержит три вопроса: первый вопрос проверяет умение системно подходить к анализу и решению поставленной задачи; второй вопрос проверяет знания по теории хранения и обработки данных; третий вопрос проверяет знания, умение и навыки по применению современных информационно-коммуникационных технологий в автомобильно-дорожной отрасли;
- время на подготовку составляет не более 60 минут без перерыва;
- после подготовки претендент отвечает на вопросы билета в произвольном порядке комиссии, состоящей из трех человек. Председатель комиссии заведующий кафедрой;
- члены комиссии могут задавать дополнительные вопросы по темам билета для наиболее полного и объективного оценивания уровня компетенций претендента;
- после ответов на вопросы, студент покидает аудиторию проведения экзамена;
- после того, как все претенденты ответят на билеты и дополнительные вопросы, члены комиссии коллегиально оценивают продемонстрированный уровень компетенций каждого претендента с учетом индивидуальных достижений;
 - после принятия решения, претендентам сообщаются результаты сдачи экзамена;
- по итогам вступительного экзамена оформляется Протокол. При приёме вступительного экзамена у иностранных граждан Протокол оформляется индивидуально на каждого и сдаётся в отдел по работе с иностранными студентами (каб. 387б).

Для магистрантов с ограниченными возможностями при прохождении экзамена обеспечивается форма, учитывающая состояние здоровья и требования по доступности.

4.2. ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ В МАГИСТРАТУРУ

В основу программы положены дисциплины бакалавриата, формирующие требуемые компетенции:

Для магистерской программы «Интегрированные АСУ в отраслях транспортнодорожного комплекса»:

- «Системный анализ и принятие решений»,
- «Базы данных»,
- «Информационная поддержка жизненного цикла»
- «Микропроцессорные системы управления»,
- «Сети и телекоммуникации».

Список вопросов к экзамену

Для магистерской программы «Интегрированные АСУ в отраслях транспортнодорожного комплекса»:

«Системный анализ и принятие решений»

- 1. Понятие системы. Компоненты системы: элементы, связи.
- 2. Структура иерархии системы, декомпозиция.
- 3. Понятие и определение системного анализа.
- 4. Принципы и возможности системного анализа.
- 5. Классы операционных задач. Операционный подход к решению задач.
- 6. Задача линейного программирования. Методы решения.
- 7. Классическая транспортная задача.
- 8. Задача сетевого планирования. Алгоритм задачи.
- 9. Понятие сетевого графика. Примеры.
- 10. Многокритериальность. Примеры многокритериальных задач.
- 11. Изменение роли линейного программирования в многокритериальных задачах.
- 12. Разные типы проблем: хорошо и слабоструктурированные задачи.
- 13. Многокритериальный анализ.
- 14. Постановка многокритериальной задачи.
- 15. Группы задач принятия решений.
- 16. Основная теория многокритериальной теории полезности.
- 17. Определение иерархии. Основная задача иерархии.
- 18. Виды иерархий. Преимущества иерархии.
- 19. Метод многокритериальной оценки SMART.
- 20. Понятие информационной системы.

Раздел «Базы данных»

- 1. Основные понятие теории баз данных.
- 2. Системы управления базами данных (СУБД). Назначение, классификация
- 3. Модели БД. Основные достоинства и недостатки.
- 4. Реляционная модель и ее характеристики.
- 5. Представление информации в реляционных БД. Отношения
- 6. Понятие целостности данных в реляционной модели данных.
- 7. Понятие реляционной алгебры. Замкнутость в реляционной алгебре.
- 8. Традиционные операции над множествами.
- 9. Специальные реляционные операции.
- 10. Основные понятия SQL. Структура данных в SQL.
- 11. Оператор SELECT. Запросы с группировкой (предложение GROUP BY)
- 12. Вложенные запросы в SQL.
- 13. Ввод данных в базу(INSERT) и удаление существующих данных (DELETE).
- 14. Обновление существующих данных (Оператор UPDATE)
- 15. Агрегатные функции SQL.
- 16. Жизненный цикл БД.
- 17. Этап концептуального проектирования. Цель и виды работ.
- 18. Этап логического проектирования. Цель и виды работ.
- 19. Этап физического проектирования. Цель и виды работ.
- 20. Понятие предметной области. Роль описания предметной области в проектировании баз данных.
- 21. Понятие сущности. Сильные и слабые сущности. Свойства сущности.
- 22. Понятие и типы атрибутов. Обязательные атрибуты.
- 23. Правила выделения сущностей из описания предметной области. Отображение сущности в стандартах Чена и IDEF1X.
- 24. Домены атрибутов. Различия при работе с доменами на этапе концептуального и физического проектирования.
- 25. Понятие потенциального ключа. Роль потенциального ключа при проектировании БД.
- 26. Понятие первичного ключа. Роль первичного ключа при проектировании БД.
- 27. Понятие связи. Сильные и слабые связи. Степень связи. Рекурсивная связь. Отображение связи в стандарте Чена.
- 28. Показатель кардинальности связи. Правило нахождения. Примеры. Отображение связи в стандарте Чена.
- 29. Понятие показателя кардинальности связи. Зависимость показателя кардинальности от бизнес-правил организации и атрибутов сущностей.
- 30. Особенности показателя кардинальности 1:М. Понятие родительской сущности. Отображение связи в стандарте IDEF1X.

- 31. Особенности показателя кардинальности 1:1. Отображение связи в стандарте IDEF1X.
- 32. Особенности показателя кардинальности H:M. Понятие ассоциативной таблицы. Отображение связи в стандарте IDEF1X.
- 33. Степень участия. Правило нахождения. Примеры. Отображение степени участия связи в стандартах Чена и IDEF1X.
- 34. Правило проведения анализа модели на этапе логического проектирования.
- 35. Понятие ссылочной целостности. Стратегии целостности.
- 36. Правила генерации базы данных из среды Erwin.
- 37. Особенности CASE-средства Erwin. Среда CASE-средства Erwin.
- 38. Нормализация. Избыточность данных и аномалии обновления.

Раздел «Информационная поддержка жизненного цикла ИАСУ и изделий»

- 1. Продукт и его жизненный цикл
- 2. Требования к обмену данными об изделии
- 3. Способ повышения конкурентоспособности изделия
- 5. Концепция CALS
- 7. Стратегия CALS
- 9. Единое информационное пространство
- 11. CALS-технологии
- 13. Технологии реинжиниринга бизнес-процессов
- 14. Интерфейс SDAI
- 15. Технологии представления данных
- 16. SDAI-репозиторий
- 17. Стандарты ЕИП
- 19. Технология управления данными об изделии
- 20. Информационная модель изделия
- 21. PDM-система как рабочая среда
- 22. Интегрированные ресурсы
- 23. Управление хранением данных и документов
- 25. Управление процессами
- 26. Общая модель данных об изделии
- 27. Управление потоком работ
- 29. Управление составом изделия
- 31. PDM-система как средство интеграции
- 32. Описание изделия. Документы на изделие
- 33. Выгоды от использования РDМ
- 34. Реализация РDМ-системы
- 35. Процесс проектирования изделия
- 36. Функционал и реализация ИЭТР

Раздел «Микропроцессорные системы управления»

- 1. Архитектура ЭВМ. Блок схема.
- 2. Структура центрального процессора.
- 3. Алгоритм работы процессора.
- 4. Шинные структуры ЭВМ.
- 5. Микропроцессорная система на базе микроконтроллера.
- 6. Микроконтроллеры. Методы разработки аппаратных комплексов систем управления.
- 7. Программируемые логические контроллеры (ПЛК). Архитектура.
- 8. Структура микропроцессорной системы на базе ПЛК.
- 9. Рабочий цикл ПЛК. Фазы цикла.
- 10. Расчёт времени реакции системы ПЛК.
- 11. Факторы, определяющие скорость обработки данных в ПЛК.
- 12. Время реакции контроллера на внешнее событие. Расчёт.
- 13. Режим реального времени и ограничения на применение ПЛК.
- 14. Методика интеграции ПЛК в систему управления объектом.
- 15. Методика формализации логических алгоритмов управления в АСУ ТП.
- 16. Алгоритмы программ управления. Формализация и реализация в АСУ ТП.
- 17. Стандарт МЭК 61131-3. Основные разделы и функции.
- 18. Программирование в стандарте языков МЭК 61131-3. Назначение и особенности применения.
- 19. Язык последовательных функциональных схем (SFC). Назначение.
- 20. Язык релейно-контактных схем (LAD). Базовые функции.
- 21. Язык программирования функциональных блоковых диаграмм (ФБД) для ПЛК.
- 22. Инструменты разработки систем управления на базе ПЛК. Комплекс SCADA.
- 23. Аппаратно-программные комплексы человеко-машинных интерфейсов (НМІ).
- 24. Подготовка проектной документации систем управления на базе ПЛК.
- 25. Технологии построения открытых систем в АСУ ТП на базе ПЛК.
- 26. Иерархия интеграции программируемых логических контролеров в АСУТП.
- 27. Подготовка конструкторской документации по проектам МПС на базе ПЛК.
- 28. Анализ характеристик ПЛК для реализации проекта автоматизации и мониторинга.
- 29. Принципы организации аппаратного комплекса «интернета вещей» (IoT).
- 30. Сетевые интерфейсы. Архитектура интерфейса.
- 31. Беспроводные сетевые интерфейсы.
- 32. Сетевые структуры ПЛК в АСУ ТП.
- 33. Сетевые интерфейсы передачи данных в АСУ ТП. Протокол Profibus DP.
- 34. Протокол передачи данных HART.
- 35. Сетевые протоколы передачи данных для бортовых систем управления.

Архитектура протокола САN

- 36. Особенности аппаратных интерфейсов мобильных устройств. Особенности архитектуры процессоров мобильных устройств
- 37. Промышленные интерфейсы, их особенности.
- 38. Промышленные интерфейсы типа MODBUS.
- 39. Интерфейс CAN Databus, как основной интерфейс передачи данных в электронных автомобильных системах.
- 40. Системное проектирование взаимодействия человека с вычислительной системой. Основные понятия и определения. Основные принципы проектирования.
- 41. Понятие интерфейса взаимодействия. Информационно-логическая схема интерфейса взаимодействия. Общесистемные требования к интерфейсу взаимодействия.
- 42. Показатели качества взаимодействия человека с вычислительной системой. Точность работы оператора. Надежность человека-оператора.
- 43. Показатели качества взаимодействия человека с вычислительной системой. Быстродействие оператора. Пропускная способность человека-оператора.
- 44. Структурная схема кибернетической модели управления.
- 45. Инженерно-психологическое проектирование интерфейса взаимодействия. Основные принципы, цели и функции управления.
- 46. Принципы распределения функций между человеком и компьютером. Формализованная постановка задачи.
- 47. Принципы повышения производительности человека-оператора.
- 48. Проектирование пользовательского интерфейса. Основы разработки пользовательского интерфейса.
- 49. Проектирование пользовательского интерфейса. Поколения интерфейсов.
- 50. Проектирование пользовательского интерфейса. Принципы создания интерфейсов. Проблемы разработки прототипа. Состав группы разработчиков.
- 51. WEB-интерфейсы и их особенности. Разработка WEB-интерфейсов. Основные ошибки в WEB-дизайне.
- 52. Графические интерфейсы и средства их разработки. Классификация инструментальных средств. Три парадигмы интерфейсов.
- 53. Диалоговый интерфейс взаимодействия человека с вычислительной системой. Основные функции и типы диалога.
- 54. Оценка эффективности диалоговой системы. Основные характеристики эффективности.
- 55. Понятие сценария диалога. Методы формализации сценария диалога и их сравнительный анализ.
- 56. Структурная организация диалогового интерфейса. Синхронный и асинхронный способы организации взаимодействия человека с вычислительной системой.
- 57. Структурная организация диалогового интерфейса. Принципы и этапы проектирования диалогового интерфейса.
- 58. Структурная организация диалога. Этапы разработки диалоговой системы.

- 59. Особенности распределенных ОС.
- 60. Основные этапы проектирования сложных систем на примере проектирования распределенной информационно-вычислительной системы.
- 61. Задачи проектирования распределенной информационно-вычислительной системы. Их вложенность и взаимосвязь.

Список вопросов к экзамену

1-ый вопрос

- 1. Определение реляционной базы данных. Основные функции.
- 2. Системы управления базами данных. Назначение, классификация.
- 3. Основные отличия базы данных от файловых структур.
- 4. Модели баз данных. Иерархическая модель данных. Основные достоинства и недостатки.
- 5. Модели баз данных. Сетевая модель данных. Основные достоинства и недостатки.
- 6. Модели баз данных. Реляционная модель данных и ее характеристики.
- 7. Представление информации в реляционных базах данных. Отношения.
- 8. Жизненный цикл базы данных.
- 9. Этап концептуального проектирования базы данных. Цель и виды работ.
- 10. Этап логического проектирования базы данных. Цель и виды работ.
- 11. Этап физического проектирования базы данных. Цель и виды работ.
- 12. Понятие предметной области. Роль описания предметной области в проектировании баз данных.
- 13. Понятие CASE-средств. Особенности CASE-средств.
- 14. Типы CASE-средств.
- 15. Понятие файлового сервера.
- 16. Технология «клиент/сервер».
- 17. Понятие первичного ключа в базе данных.
- 18. Понятие показателя кардинальности связи в базе данных.
- 19. Метод проектирования базы данных (метод ER-D).
- 20. Языки манипулирования данными (SQL).

2-й вопрос

- 1. Понятие системы. Компоненты системы: элементы, связи.
- 2. Структура иерархии системы, декомпозиция.
- 3. Понятие и определение системного анализа.
- 4. Принципы и возможности системного анализа.
- 5. Классы операционных задач. Операционный подход к решению задач.
- 6. Задача линейного программирования. Методы решения.
- 7. Классическая транспортная задача.
- 8. Задача сетевого планирования. Алгоритм задачи.
- 9. Понятие сетевого графика. Примеры.

- 10. Многокритериальность. Примеры многокритериальных задач.
- 11. Изменение роли линейного программирования в многокритериальных задачах.
- 12. Разные типы проблем: хорошо и слабоструктурированные задачи.
- 13. Многокритериальный анализ.
- 14. Постановка многокритериальной задачи.
- 15. Группы задач принятия решений.
- 16. Основная теория многокритериальной теории полезности.
- 17. Определение иерархии. Основная задача иерархии.
- 18. Виды иерархий. Преимущества иерархии.
- 19. Метод многокритериальной оценки SMART.
- 20. Понятие информационной системы.

3-й вопрос

- 1. Архитектура ЭВМ. Блок схема.
- 2. Структура центрального процессора.
- 3. Алгоритм работы процессора.
- 4. Шинные структуры ЭВМ.
- 5. Микропроцессорная система на базе микроконтроллера.
- 6. Микроконтроллеры. Методы разработки аппаратных комплексов систем управления.
- 7. Программируемые логические контроллеры (ПЛК). Архитектура.
- 8. Структура микропроцессорной системы на базе ПЛК.
- 9. Рабочий цикл ПЛК. Фазы цикла.
- 10. Расчёт времени реакции системы ПЛК.
- 11. Факторы, определяющие скорость обработки данных в ПЛК.
- 12. Время реакции контроллера на внешнее событие. Расчёт.
- 13. Режим реального времени и ограничения на применение ПЛК.
- 14. Определение, основные параметры и характеристики вычислительной сети.
- 15. Классификация вычислительных сетей.
- 16. Архитектура вычислительной сети. Базовые архитектурные решения.
- 17. Методы организации обработки информации в вычислительной сети.
- 18. Организация памяти в вычислительной сети.
- 19. Методы анализа вычислительной сети.
- 20. Технология организации вычислений в современных вычислительных сетях.
- 21. Технология виртуализации в современных вычислительных сетях.
- 22. Системное программное обеспечение вычислительной сети.
- 23. Типовые операционные системы для вычислительной сети.
- 24. Правила выбора параметров вычислительной сети для решения прикладных задач.
- 25. Взаимодействие процессов в вычислительной сети. Общая память.
- 26. Взаимодействие процессов в вычислительной сети. Распределенная многопроцессорная среда.
- 27. Оценка производительности вычислительной сети.
- 28. Надежность вычислительной сети. Методы ее поддержки.

- 29. Расчет надежности элементов вычислительной сети.
- 30. Безопасность вычислительной сети.
- 31. Сетевые интерфейсы. Архитектура интерфейса.
- 32. Беспроводные сетевые интерфейсы.
- 33. Сетевые структуры ПЛК в АСУ ТП.
- 34. Сетевые протоколы передачи данных в АСУ ТП. Протокол Profibus DP.
- 35. Протокол передачи данных Hart.
- 36. Сетевые протоколы передачи данных для бортовых систем управления.
- 37. Архитектура протокола САN
- 38. Особенности архитектуры процессоров мобильных устройств
- 39. Промышленные интерфейсы, их особенности.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ 1.1.ОЦЕНКА И КРИТЕРИИ ОЦЕНКИ РЕЗУЛЬТАТОВ ЭКЗАМЕНА

Оценка результатов вступительного испытания проводится по 100-бальной шкале. Минимальное количество баллов для участия в конкурсе — 40 баллов. При оценке суммарного количества баллов каждого поступающего учитываются баллы за вступительные испытания (Таблица 1), а также индивидуальные достижения (Таблица 2). Максимальное количество набранных баллов не может превышать 135.

Таблица 1 - Критерии оценки письменного экзамена

Количество	Оценка	Критерии оценки	
баллов			
80-100	отлично	полный безошибочный ответ, в том числе на дополнительные вопросы членов экзаменационной комиссии. Поступающий должен правильно определять понятия и категории, выявлять основные тенденции и противоречия, свободно ориентироваться в теоретическом и	
		практическом материале	
56-79	хорошо	правильные и достаточно полные, не содержащие ошибок и упущений ответы. Оценка может быть снижена в случае затруднений студента при ответе на дополнительные вопросы членов экзаменационной комиссии. При ответе допущены отдельные несущественные ошибки.	
40-55	Удовлет-	недостаточно полный объем ответов, наличие ошибок и	
	ворительно	некоторых пробелов в знаниях.	
0-39	Неудовлет-	неполный объем ответов, наличие ошибок и пробелов в	
	ворительно	знаниях. Отсутствие необходимых знаний.	

Таблица 2 - Бальная оценка индивидуальных достижений

<i>№</i> n/n	Вид индивидуального достижения	Количество баллов
1	Наличие диплома с отличием	10
2	Наличие научных работ, публикаций в журналах (соответствующих выбранному направлению подготовки), входящих в перечень РИНЦ	10

3	Наличие документов, подтверждающих участие в конференциях с докладом, соответствующим выбранному направлению подготовки	5
4	Наличие дипломов участия в выставках, конкурсах, олимпиадах	5
5	Наличие рекомендации руководителя выпускной квалификационной работы или заключения кафедры по выбранному направлению подготовки с оценкой способностей студента к творческому мышлению, постановке и самостоятельному решению задач по направлению обучения и в других областях науки и техники (характеристика обучающегося)	5

Зачисление на бюджетные места производится по большему количеству баллов, с учетом количества мест, выделенных для приема в магистратуру. Выделение мест в общежитии МАДИ для нуждающихся производится на основании их заявлений на конкурсной основе в соответствии с набранными баллами.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

В период самостоятельной работы по подготовке к вступительным испытаниям претенденты по каждой теме экзаменационных вопросов должны:

- самостоятельно изучать отдельные разделы лекционного курса учебной дисциплины;
- подбирать и изучать тексты литературных источников учебников и учебных пособий;
- составлять план изученного учебного материала;
- работать с текстами ГОСТ и ISO.

При подготовке к экзамену студент должен повторно изучить конспекты лекций и рекомендованную литературу, просмотреть решения основных задач, а также составить письменные ответы на все вопросы, вынесенные на экзамен.

Методические рекомендации студентам по организации самостоятельной работы по изучению литературных источников

При организации самостоятельной работы, следует обратить особое внимание на регулярность изучения основной и дополнительной литературы. В период изучения литературных источников необходимо также вести конспект. В случае затруднений необходимо обратиться к преподавателям кафедры за разъяснениями.

2. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ а) основная литература

- 1. Советов Б.Я., Цехановский В.В, Чертовской В.Д. Базы данных. Теория и практика: учебник для бакалавров. –М.:Изд-во «Юрайт», ISBN: 9785991629133. 2013. -464 с.
- 2. Ржеуцкая С.Ю. Базы данных. Язык SQL: учебное пособие. Вологда: ВоГТУ, 2010. -159 с.
- 3. Голицына О.Л., Максимов Н.В., Попов И.И. Базы данных: учебное пособие. М.:ФОРУМ: ИНФРА-М, 2009. -400 с.
- 4. Коннолли Томас, Каролин Бегг. Базы данных. Проектирование, реализация, сопровождение. Теория и практика: Пер. с англ. –М.: ИД «Вильямс», 2008. -1440 с.

- 5. Вийера Роберт. Программирование баз данных Microsoft SQL Server: Базовый курс. Пер. с англ. –М.:ИД «Вильямс», 2007. -832 с.
- 6. Степаков А.И. Степаков А.И. Микропроцессоры в управлении
- 7. гидроприводами.: Учебное пособие/ МАДИ- М., 2003.-128с.
- 8. Александриди, Т.М. Организация ЭВМ и систем: Учеб. пособие для вузов по
- 9. специальности "Автоматизированные системы обработки информации и управл.(АС)"
- 10. Т.М. Александриди, Б.Н. Матюхин, Е.Н. Матюхина .— М. : МАДИ, 2010 .— 256 с. : ил., табл. Посвящается 80-летию МАДИ .— Библиогр.: с. 254.Филимонова, Е.В.
- 11. Информационные технологии в профессиональной деятельности : 3-е изд., доп. и перераб .— Ростов н/Д : Феникс, 2009 .— 381 с. : ил .— Библиогр.: с. 374.
- 12. Максимычев О.И., Либенко А.В., Виноградов В.А. Программирование логических контроллеров , МАДИ(ГТУ), 2016. -250с: ил.
- 13. Бернер Л.И. Системы реального времени: Учеб. пособие. (Конспект лекций)
- 14. Л.И. Бернер, Н.К. Богданов, А.С. Хадеев ; МАДИ .— 2-е изд., перераб. и доп. М. :
 - МАДИ, 2011.— 163 с.: ил. Библиогр.: с.160-163.
- 15. Авдеев В.А. Авдеев, В.А. Интерактивный практикум по компьютерной схемотехнике на Delphi [Электронный ресурс] : учебное пособие / В.А. Авдеев. —
- 16. Электрон. дан. Москва : ДМК Пресс, 2011. 360 с. Режим доступа: https://e.lanbook.com/book/899. Загл. с экрана.
- 17. Петровский А.Б. Теория принятия решений. М.: ИЦ "Академия", 2012. 400 с. ISBN 978-5-7695-5093-5
- 18. Ларичев О. И. Теория и методы принятия решений. М.: Логос, 2013.
- 19. Пескова С. А. Сети и телекоммуникации: Учеб. пособие для вузов по направлению 230100 "Информатика и вычислит. техника" / С. А. Пескова, А. В. Кузин, А. Н. Волков .— 3-е изд., стер .— М. : Академия, 2008 .— 349 с. : ил., табл .— (Высшее профессиональное образование) .— Библиогр.: с. 337-339.
- 20. Основы компьютерных сетей: Учеб. пособие для студентов среднего проф. образования по специальности 2200 "Информатика и вычислительная техника" / Б.Д. Виснадул, С.А. Лупин, С.В. Сидоров, П.Ю. Чумаченко ; Под ред. Л.Г. Гагариной .— М.: Форум-Инфра-М, 2009 .— 271 с.: ил. Библиогр.: с. 258.

б) дополнительная литература

- 1. Дейт, К., Дж. Введение в системы баз данных, 7-е издание.: Пер. с англ. М.: Издательский дом "Вильямс", 2001. 1072 с
- 2. Основы современных баз данных. Информационно-аналитические материалы. С.Д. Кузнецов, WWW.CITFORUM.RU
- 3. Основы проектирования реляционных баз данных. Учебное пособие. В.В. Кириллов. WWW. CITFORUM.RU.
- 4. Вешкурцев, Ю.М. Основы телекоммуникационных технологий: Учеб. пособие / Ю.М. Вешкурцев, Е.Д. Бычков, Д.А. Титов; Осмск. гос. техн. ун-т. Омск: ОмГТУ, 2009. 170 с.: ил. Библиогр.: с. 166-170.
- 5. Губенков, А.А. Информационная безопасность вычислительных сете: Учеб. пособие для студентов направлений "Информационые системы", "Информационные технологии" и др. / ; Саратов. гос. техн. ун-т. Саратов: Саратов.ГТУ, 2009. 83 с.: ил. Библиогр.: с. [84].

- 6. Бернер, Л. И. Методические указания к лабораторным работам по дисциплине "Системы реального времени" : По направлению подготовки 230100
- 7. "Информатика и вычислительная техника", 230400 "Информационные системы и технологии (на транспорте)" / Л. И. Бернер, А. Б. Николаев, А. С. Хадеев ; МАДИ

М.: МАДИ, 2014. — 69 с.: ил. — Библиогр.: с. 68.

- 8. Максимычев О.И., В.А. Виноградов Программирование микроконтроллеров : метод. указания к лаб. работам по направлению подготовки "Информатика и вычислительная техника", "Электрооборудование автомобилей и тракторов" / ; МАДИ— М., 2015 .— 88 с. Библиогр.: с. 87.
- 9. Древс Ю.Г. Древс, Ю.Г. Технические и программные средства систем реального времени [Электронный ресурс]: учебник / Ю.Г. Древс. Электрон. дан. —Москва: Издательство "Лаборатория знаний", 2016. 337 с. Режим доступа: https://e.lanbook.com/book/70691. Загл. с экрана.
- 10. Буч Г., Рамбо Д., Якобсон И. Буч, Г. Язык UML. Руководство пользователя [Электронный ресурс] : руководство / Г. Буч, Д. Рамбо, И. Якобсон. Электрон. дан.
 - Москва : ДМК Пресс, 2008. 496 с. Режим доступа: https://e.lanbook.com/book/1246. Загл. с экрана.

3. ПЕРЕЧЕНЬ ЭЛЕКТРОННЫХ РЕСУРСОВ, НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. www.sql-tutorial.ru интерактивный учебник по SQL.
- 2. <u>www.intuit.ru</u> сайт интернет университета.
- 3. <u>www.sqlbook.ru</u> онлайн учебник по SQL.

4. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Экзамен проводятся в отдельной аудитории на кафедре «АСУ».

Для претендентов с ограниченными возможностями и инвалидов вступительные испытания проводятся в соответствии с Правилами приема в МАДИ в 2018 году.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки 09.04.01 «Информатика и вычислительная техника», магистерские программы «Базы и банки данных», «Сети ЭВМ и телекоммуникаации».

Программу составили: д.т.н., проф. Максимычев О.И., д.т.н. проф. Остоух А.В., д.т.н. проф. Юрчик П.Ф., доц. Исмоилов М.И.

Программа утверждена на заседании кафедры «Автоматизированные системы управления» протокол № 9 от мая 2018 г.

Заведующий кафедр	оой «Автоматизированные системы управления»,
д.т.н., проф.	Максимычев О.И.