Exercices supplémentaires

Exercice 1

Donner un exemple (schéma) pour expliquer le principe de protocole HDLC.

Exercice 2

Soit un mot de Hamming de longueur 15

1	0	1	1	0	1	1	1	1	0	1	1	0	1	1
	14													

Quels sont les bits de contrôle de parité?

Quel est le message reçu?

Est-ce que le message reçu correspond au message transmis ?

Quel a été le message transmis ?

Solution

Exercice 1
Exemple HDLC

Exercice 2

D10	D9	D8	D 7	D6	D 5	D4	C3	D3	D2	D1	C2	D0	C1	C0
1	0	1	1	0	1	1	1	1	0	1	1	0	1	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Les bits de contrôle de parité sont en position 2^i

Les bits de contrôle: 1111

Le message reçu: 10110111010

- Les bits de contrôle de réception vont être : $C_3^{'}C_2^{'}C_1^{'}C_0^{'}$
 - Si C_0' vaut 1, les valeurs possibles sont (0001, 0011, 0101, 0111, 1001, 1011, 1101, 1111) soit (1, 3, 5, 7, 9, 11, 13, 15).
 - Si C_1' vaut 1, les valeurs possibles sont (0010, 0011, 0110, 0111, 1001, 1010, 1011, 1111) soit (2, 3, 6, 7, 10, 11, 14, 15).
 - Si C_2' vaut 1, les valeurs possibles sont (0100, 0101, 0110, 0111, 1100, 1101, 1110, 1111) soit (4, 5, 6, 7, 12, 13, 14, 15).
 - Si C_3' vaut 1, les valeurs possibles sont (1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111) soit (8, 9, 10, 11, 12, 13, 14, 15).
 - Dans le message considéré on a :

$$C_0'=1+0+1+1+1+0+1+1=0$$

$$C_1'=1+0+0+1+1+0+0+1=0$$

$$C_2'=1+1+0+1+1+1+0+1=0$$

$$C_3'=1+1+1+0+1+1+0+1=0$$

 $\Rightarrow~C_3^{'}C_2^{'}C_1^{'}C_0^{'}$ vaut 0000. Il n'y a donc pas d'erreur dans le message reçu.