Self-interacting diffusions: a simulated annealing version

Olivier Raimond

Received: 30 October 2006 / Revised: 6 February 2008 / Published online: 26 March 2008 © Springer-Verlag 2008

Abstract We study asymptotic properties of processes X, living in a Riemannian compact manifold M, solution of the stochastic differential equation (SDE)

$$dX_t = dW_t(X_t) - \beta(t)\nabla V \mu_t(X_t)dt$$

with W a Brownian vector field, $\beta(t) = a \log(t+1)$, $\mu_t = \frac{1}{t} \int_0^t \delta_{X_s} ds$ and $V\mu_t(x) = \frac{1}{t} \int_0^t V(x, X_s) ds$, V being a smooth function. We show that the asymptotic behavior of μ_t can be described by a non-autonomous differential equation. This class of processes extends simulated annealing processes for which V(x, y) is only a function of x. In particular we study the case $M = \mathbb{S}^n$, the n-dimensional sphere, and $V(x, y) = -\cos(d(x, y))$, where d(x, y) is the distance on \mathbb{S}^n , which corresponds to a process attracted by its past trajectory. In this case, it is proved that μ_t converges almost surely towards a Dirac measure.

Mathematics Subject Classification (2000) 60K35

1 Introduction

Let M be a smooth compact Riemannian manifold without boundary. We denote by n the dimension of M. Let $\mathcal{M}(M)$ be the Banach space of Borel bounded measures on M, equipped with the norm

$$|\mu| = \sup\{|\mu f|: f \in C(M), \|f\|_{\infty} = 1\},\$$

Département de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay cedex, France e-mail: olivier.raimond@math.u-psud.fr

O. Raimond (SS)

where μf denotes $\int_M f(x)\mu(dx)$. Let $C^r(M)$, $r \ge 1$, be the space of r times continuously differentiable real functions on M. We also let C(M) be the space of continuous functions on M. Let $V: M \times M \to \mathbb{R}$ be a smooth function. The function V is called the interacting potential. For all measures μ in $\mathcal{M}(M)$, we set

$$V\mu(x) = \int V(x, y)\mu(dy)$$

(without loss of generality, in the following, we will choose V such that $||V||_{\infty} \le 1$). Let Δ be the Laplacian on M. For all measures μ in $\mathcal{M}(M)$, we define the operator A_{μ} acting on $C^2(M)$ by

$$A_{\mu}f = \Delta f - \langle \nabla(V\mu), \nabla f \rangle.$$

Let $\beta:\mathbb{R}^+\to\mathbb{R}$ be a C^1 -function. We now consider the process X_t solution of the SDE

$$dX_t = \sum_i e_i(X_t) \circ dB_t^i - \beta(t) \nabla(V\mu_t)(X_t) dt, \tag{1}$$

where

$$\mu_t = \frac{1}{t} \int_0^t \delta_{X_s} ds,\tag{2}$$

 B^i are independent Wiener processes and e_i are vector fields such that $\sum_i e_i(e_i f) = 2\Delta f$. This process is such that

$$f(X_t) - f(X_0) - \int_0^t A_{\beta(s)\mu_s} f(X_s) ds$$

is a martingale for all $f \in C^2(M)$. The process X could also have been defined as the unique solution (in law) of this martingale problem.

The case $\beta(t) = 1$ has been studied in [2–4]. In this case, the asymptotics of μ_t can be described by a dynamical system on $\mathcal{M}(M)$. This dynamical system is generated by the ordinary differential equation (ODE)

$$\frac{d\mu}{dt} = F(\mu),$$

the vector field F being defined by

$$F(\mu) = -\mu + \Pi(\mu),$$

where

$$\Pi(\mu)(dx) = \frac{e^{-V\mu(x)}}{Z_{\mu}}\lambda(dx)$$

with λ , the normalized Riemann measure on M, and

$$Z_{\mu} = \int_{M} e^{-V\mu(x)} \lambda(dx).$$

When β is not constant, we can expect to describe the asymptotics of μ_t by a non-autonomous dynamical system on $\mathcal{M}(M)$, generated by the non-autonomous ordinary differential equation

$$\frac{d\mu}{dt} = F_t(\mu),\tag{3}$$

where F_t , the vector field at time t, is defined by

$$F_t(\mu) = -\mu + \Pi_t(\mu),$$

with

$$\Pi_t(\mu) = \Pi(\beta(e^t)\mu).$$

We intend to describe the asymptotic behavior of μ_t for β of the form $\beta(t) = a \log(t+1)$ for a sufficiently small constant a. The case $\beta(t) = t$ has been studied by different authors (see [5,6,10]). In [5,6], the process lives in \mathbb{R} (and in \mathbb{R}^d in [10]). The result proved in these works is that for a class of functions V of the form V(x, y) = U(x - y), with U a convex function having a unique minimum at 0, the process converges a.s. The technics employed in these papers do not involve any approximation by an ODE.

When $\beta(t) = a \log(t+1)$, one cannot hope for the almost sure convergence of the process X. In Sect. 2, we show a theorem that describes how close is the trajectory $(\mu_{e^{t+s}})_{s\geq 0}$ to the solution of the non autonomous ODE (3) started at time t at position μ_{e^t} . In Sect. 3, the example $M = \mathbb{S}^n$ and $V(x, y) = -\cos(d(x, y))$ (where d is the geodesic distance on \mathbb{S}^n) is investigated. The fact that μ_t converges towards a Dirac measure is proved. The proofs of these results use the techniques of [2] and involves an approximation by an ODE.

When V(x, y) is only a function of x (i.e. when there is no interaction with the past trajectory), the processes defined by the SDE (1) are simulated annealing processes (see [7,9]). In this case, the process X_t converges in law towards the uniform measure on Argmin(V), the set of points x such that $V(x) = \inf\{V(x); x \in M\}$.

Note that when $\beta(t)$ converges towards ∞ as t goes to ∞ , then $\Pi_t(\mu)$ converges towards the uniform measure on $\operatorname{Argmin}(V\mu)$. Thus, for the class of processes we study in this paper, one can guess that μ_t converges towards a measure μ that is the uniform measure on $\operatorname{Argmin}(V\mu)$. One would also like to replace the non-autonomous ODE (3) by the ODE (if it could be properly defined)

$$\frac{d\mu}{dt} = -\mu + \lambda_{\mu},\tag{4}$$

where λ_{μ} is the uniform probability measure on Argmin($V\mu$). For the example developed in Sect. 3, when $\beta(t) = a$ for a sufficiently large constant a, μ_t converges towards a random measure μ satisfying $\mu = \Pi(a\mu)$, that is not the uniform probability measure on M. When a goes to ∞ , $\Pi(a\mu)$ converges towards a Dirac measure. This explains the result of Sect. 3, where $\beta(t)$ is a function converging towards ∞ . Unfortunately, with the approximation technics used here, we are not in position to study all the functions $\beta(t)$ that converges towards ∞ .

In the whole paper K (respectively C) denotes a constant (respectively a random constant) that may change from line to line, and that depends only on V, on β and on M.

In the following, the function β will satisfy the hypothesis

Hypothesis 1.1 There exists a positive a and t_0 such that for $t \ge t_0$,

$$|\beta(t)| \le a \log(t)$$

and there exists $\gamma \in (0, 1)$ such that

$$|\beta'(t)| = O(t^{-\gamma}).$$

This hypothesis is satisfied for the functions $\beta(t) = a \log(t+1)$, $\beta(t) = a \log(t+2)$ and $\beta(t) = a$, but is not satisfied for $\beta(t) = t$.

2 Approximation by a non-autonomous ODE

For s and t positive, $f \in C(M)$, set

$$\epsilon_t(s)f = \int\limits_{e^t}^{e^{t+s}} \frac{f(X_u) - \Pi(\beta(u)\mu_u)f}{u} du.$$

Then

$$\mu_{e^{t+s}} f - \mu_{e^t} f = \int_0^s \left(-\mu_{e^{t+u}} f + \Pi(\beta(e^{t+u})\mu_{e^{t+u}}) f \right) du + \epsilon_t(s) f.$$

In this section we prove the following

Theorem 2.1 Assume that β satisfies Hypothesis 1.1. There exists a constant $a_c > 0$ such that if a and γ satisfy $a < a_c \gamma$, then there are constants K > 0 and $\alpha \in]0, 1]$ such that for all $f \in C(M)$

$$\mathsf{E}\left[\sup_{s\geq 0}(\epsilon_t(s)f)^2|\mathcal{F}_{e^t}\right]\leq K\exp\left(-\alpha t\right)\|f\|_{\infty}^2,$$

which implies that almost surely,

$$\limsup_{t\to\infty}\frac{1}{t}\log\left(\sup_{s\geq0}|\epsilon_t(s)f|\right)\leq-\frac{\alpha}{2}.$$

When $\gamma = 1$ and $\beta(t) = o(\log(t))$, the theorem is satisfied for all $\alpha < 1$, and when $\beta(t) = a$ it is satisfied with $\alpha = 1$.

Following [2], the mapping

$$(t,\mu) \mapsto -\mu + \Pi_t(\mu)$$

is a locally Lipschitz function mapping $\mathbb{R}^+ \times \mathcal{P}(M)$ into $\mathcal{P}(M)$, with $\mathcal{P}(M)$ equipped with the variation norm. This implies the existence of a family $(\phi_{s,t})_{s \leq t}$ such that for all s > 0 and $\mu \in \mathcal{P}(M)$, $\phi_{s,s+\cdot}(\mu)$ is the solution of the non autonomous differential equation

$$\phi_{s,t}(\mu) = \mu + \int_{s}^{t} (-\phi_{s,u}(\mu) + \Pi_{u}(\phi_{s,u}(\mu))) du.$$

This family is also continuous with respect to the weak topology and satisfies, for all s < t < u,

$$\phi_{s,u} = \phi_{t,u} \circ \phi_{s,t}$$
.

Theorem 2.1 shows how close is $(\mu_{e^{t+s}})_{s\geq 0}$ to be a solution to this non autonomous differential equation. More can be proved if in addition to Hypothesis 1.1, we assume $\beta(t) = o(\log(t))$ and $V(x, y) = \sum_{i=1}^n f_i(y)g_i(x)$ for some smooth functions f_i and g_i . Let d_w be a distance on $\mathcal{P}(M)$ compatible with the weak topology. For convenience we choose f_i such that $||f_i||_{\infty} \leq 1$ and take for d_w the distance defined by

$$d_w(\mu, \nu) = \sum_{i=1}^{\infty} 2^{-i} |\mu f_i - \nu f_i|,$$

where $(f_i)_{i>n}$ are chosen such that f_i is continuous, $||f_i||_{\infty} \le 1$ and $\{f_i\}_{i\ge 1}$ is dense in $\{f \in C^0(M) : ||f||_{\infty} \le 1\}$. Then we have

Theorem 2.2 For all T > 0,

$$\lim_{t \to \infty} \sup_{s \in [0,T]} d_w(\mu_{e^{t+s}}, \phi_{t,t+s}(\mu_{e^t})) = 0.$$

Proof There exists a constant K such that for all t > 0, all $f \in C^0(M)$, and all μ and $\nu \in \mathcal{P}(M)$,

$$\begin{aligned} |\Pi_t(\mu)f - \Pi_t(\nu)f| &\leq K\beta(e^t) \|V\mu - V\nu\|_{\infty} \times \|f\|_{\infty} \\ &\leq K\beta(e^t) \sup_{1 \leq i \leq n} |\mu f_i - \nu f_i| \times \|f\|_{\infty} \\ &\leq K\beta(e^t) d_w(\mu, \nu) \times \|f\|_{\infty}. \end{aligned}$$

Fix T > 0 and take $\epsilon < \frac{\alpha}{2T}$. There exists t_0 such that for all $t > t_0$, $\beta(e^t) \le \epsilon \log(t)$. This implies that

$$d_w(-\mu + \Pi_t(\mu), -\nu + \Pi_t(\nu)) \le K(1 + \beta(e^t))d_w(\mu, \nu).$$

A standart application of Gronwall's lemma implies the existence of a constant K_T depending only on T such that for all $t > t_0$,

$$\sup_{s \in [0,T]} d_w(\mu_{e^{t+s}}, \phi_{t,t+s}) \le K_T(1 + te^{\epsilon Tt}) \times \left(\sum_{i=1}^{\infty} 2^{-i} \sup_{s \in [0,T]} |\epsilon_t(s) f_i| \right)$$

which converges towards 0 as $t \to \infty$ because of Theorem 2.1.

2.1 Semigroup estimates

Let μ be a positive Borel finite measure on M. We define P^{μ}_t as the Feller semigroup with generator A_{μ} and invariant probability measure $\Pi(\mu)$. For $f \in L^2(\lambda)$ (which coincides with $L^2(\Pi(\mu))$ for all μ), we set

$$K_{\mu}f = f - \Pi(\mu)f \tag{5}$$

and

$$Q_{\mu}f = -\int_{0}^{\infty} \mathsf{P}_{t}^{\mu} K_{\mu} f dt. \tag{6}$$

Then Q_{μ} is the "inverse" of $-A_{\mu}$ and we have

$$A_{\mu} \mathsf{Q}_{\mu} f = -K_{\mu} f.$$

The next crucial lemma bounds $\|\mathbf{Q}_{\mu}f\|_{\infty}$ and $\|\nabla\mathbf{Q}_{\mu}f\|_{\infty}$ in terms of the L^{∞} norm of f.

Lemma 2.3 There exist positive constants K and κ such that

$$\|\mathsf{Q}_{\mu}f\|_{\infty} \le Ke^{\kappa\|V\mu\|_{\infty}} \|f\|_{\infty} \tag{7}$$

for all $f \in L^{\infty}$. Furthermore, if f is C^{∞} , $\mathbb{Q}_{\mu} f \in C^{1}$ and

$$\|\nabla Q_{\mu} f\|_{\infty} \le K (1 + \|Hess(V\mu)\|_{\infty})^{1/2} e^{\kappa \|V\mu\|_{\infty}} \|f\|_{\infty}. \tag{8}$$

Proof We first prove inequality (7). In order to do this, We need to show the following ultra-contractive inequality:

Lemma 2.4 There exist constants $\kappa_1 > 0$ and K > 0 such that for all $f \in L^{\infty}$, $t \in]0, 1],$

$$\|\mathsf{P}_{t}^{\mu}f\|_{\infty} \le Ke^{\kappa_{1}\|V\mu\|_{\infty}}t^{-n/2}\|f\|_{2,\mu},\tag{9}$$

where $\|\cdot\|_{2,\mu}$ denotes the norm in $L^2(\Pi(\mu))$.

Proof The Dirichlet form \mathcal{E}_{μ} associated with P_{t}^{μ} is defined by

$$\mathcal{E}_{\mu}(f, f) = \int \|\nabla f\|^2 d\Pi(\mu),$$

with $f \in C^1(M)$. Note that (see [1]) A_μ satisfies the following log-Sobolev inequality

$$\Pi(\mu)(f^2 \log(f^2)) - \Pi(\mu)(f^2) \log(\Pi(\mu)(f^2)) \le \Pi(\mu)(f^2) \Phi_{\mu} \left(\frac{\mathcal{E}_{\mu}(f, f)}{\Pi(\mu)(f^2)}\right)$$
(10)

where Φ_{μ} is defined by

$$\Phi_{\mu}(x) = \frac{n}{2} \log(c_1(\mu) + c_2(\mu)x).$$

The constants $c_1(\mu)$ and $c_2(\mu)$ can be taken of the form $c_1e^{2\|V\mu\|_{\infty}}$ and $c_2e^{2\|V\mu\|_{\infty}}$. In [1] is proved the following: for all s>0, if we set

$$t_{\mu}(s) = \frac{1}{2} \int_{1}^{\infty} \Phi'_{\mu}(sx) \frac{dx}{\sqrt{x(x-1)}}$$

$$m_{\mu}(s) = \frac{1}{2} \int_{1}^{\infty} \frac{\Psi_{\mu}(sx)}{x} \frac{dx}{\sqrt{x(x-1)}}$$

where $\Psi_{\mu}(x) = \Phi_{\mu}(x) - x \Phi'_{\mu}(x)$, then

$$\|P_{t_{\mu}(s)}^{\mu}\|_{1,\infty} \le e^{m_{\mu}(s)},\tag{11}$$

where

$$\|P_{t_{\mu}(s)}^{\mu}\|_{1,\infty} = \sup \left\{ \frac{\|P_{t_{\mu}(s)}^{\mu}f\|_{\infty}}{\|f\|_{1,\mu}}; \quad f \in L^{1}(\mu) \right\}$$

with $\|\cdot\|_{1,\mu}$ denoting the norm in $L^1(\Pi(\mu))$. Since

$$\Phi_{\mu} = n \|V\mu\|_{\infty} + \Phi_0,$$

we have $t_{\mu}(s) = t_0(s)$ and $m_{\mu}(s) = \kappa_1 ||V\mu||_{\infty} + m_0(s)$, with

$$\kappa_1 = \frac{n}{2} \int_{1}^{\infty} \frac{dx}{x\sqrt{x(x-1)}}.$$

This implies that

$$||P_{t_0(s)}^{\mu}||_{1,\infty} \le e^{\kappa_1 ||V\mu||_{\infty}} e^{m_0(s)}.$$

As $s \to \infty$ (see [1]), $st_0(s)$ converges towards n/2 and

$$m_0(s) = \frac{n}{2}\log(s) + K + o(1).$$

This implies that there exists a constant K (that does not depend on μ) such that for all $t \in]0, 1]$

$$||P_t^{\mu}||_{1,\infty} \leq Ke^{\kappa_1||V\mu||_{\infty}}t^{-n/2}.$$

This inequality implies the lemma.

In addition to this ultra-contractive inequality, we also have the spectral gap inequality: there exists a positive constant b such that for all $f \in L^{\infty}$,

$$\lambda f^2 - (\lambda f)^2 \le b\lambda(\|\nabla f\|^2). \tag{12}$$

Using the fact that for all $\mu \in \mathcal{M}(M)$,

$$\Pi(\mu)f^{2} - (\Pi(\mu)f)^{2} = \frac{1}{2} \int_{M^{2}} (f(x) - f(y))^{2} \Pi(\mu)(dx) \Pi(\mu)(dy),$$

inequality (12) implies the following spectral gap inequality: for all $\mu \in \mathcal{M}(M)$, $f \in L^{\infty}$,

$$\Pi(\mu)f^{2} - (\Pi(\mu)f)^{2} \le be^{4\|V\mu\|_{\infty}}\Pi(\mu)(\|\nabla f\|^{2}). \tag{13}$$

With these inequalities in hand, we can now prove (7). The ultra-contractive inequality, with the semigroup property, implies that

$$\|\mathbf{Q}_{\mu}f\|_{\infty} \leq \int_{0}^{\infty} \|\mathbf{P}_{t}^{\mu}(K_{\mu}f)\|_{\infty} dt$$

$$\leq 2\|f\|_{\infty} + \int_{0}^{\infty} \|\mathbf{P}_{1}^{\mu}(\mathbf{P}_{t}^{\mu}(K_{\mu}f))\|_{\infty} dt$$

$$\leq 2\|f\|_{\infty} + Ke^{\kappa_{1}\|V_{\mu}\|_{\infty}} \int_{0}^{\infty} \|\mathbf{P}_{t}^{\mu}(K_{\mu}f))\|_{2,\mu} dt. \tag{14}$$

The spectral gap inequality then implies that

$$\|\mathsf{P}_{t}^{\mu}(K_{\mu}f))\|_{2,\mu} \le \exp\left\{-\frac{t}{be^{4\|V_{\mu}\|_{\infty}}}\right\} \|K_{\mu}f\|_{2,\mu}$$

$$\le 2\exp\left\{-\frac{t}{be^{4\|V_{\mu}\|_{\infty}}}\right\} \|f\|_{\infty}. \tag{15}$$

Combining (14) and (15) shows that

$$\|\mathbf{Q}_{\mu}f\|_{\infty} \leq \|f\|_{\infty} (2 + Ke^{\kappa_1 \|V\mu\|_{\infty}} be^{4\|V\mu\|_{\infty}}).$$

Inequality (7) is proved.

We now prove the second inequality (8). We will use the Γ_2 criterion of Bakry and Emery (see [1] or [8]). Let $R(\mu)$ be a lower bound of Ric + Hess($V\mu$), where Ric is the Ricci tensor on M and Hess($V\mu$) is the Hessian of $V\mu$. It is well-known that the semigroup P^μ_t satisfies a curvature-dimension inequality $CD(R(\mu), \infty)$. This curvature-dimension inequality implies that (see Eq. (2.3) in [8]) for all t > 0,

$$\|\nabla P_t^{\mu} f\|_{\infty}^2 \le \frac{-R(\mu)}{1 - e^{2R(\mu)t}} \|f\|_{\infty}^2. \tag{16}$$

We set $K(\mu) = -R(\mu) > 0$. Using the fact that $\frac{s}{1 - e^{-s}} \le 1 + s$ for all positive s, we get

$$\frac{-R(\mu)}{1-e^{2R(\mu)t}} \leq \frac{1+2tK(\mu)}{2t}.$$

Thus, for $t \in [0, 2]$

$$\|\nabla P_t^{\mu} f\|_{\infty} \le \frac{D(\mu)}{\sqrt{t}} \|f\|_{\infty}. \tag{17}$$

with

$$D(\mu) = \sqrt{\frac{1 + 4K(\mu)}{2}}. (18)$$

Using this inequality with the semigroup property, we obtain that

$$\begin{split} \|\nabla Q_{\mu} f\|_{\infty} &\leq \int\limits_{0}^{\infty} \|\nabla \mathsf{P}^{\mu}_{t}(K_{\mu} f)\|_{\infty} dt \\ &\leq 2D(\mu) \|f\|_{\infty} \int\limits_{0}^{2} \frac{dt}{\sqrt{t}} + \int\limits_{0}^{\infty} \|\nabla \mathsf{P}^{\mu}_{1}(\mathsf{P}^{\mu}_{t+1} K_{\mu} f)\|_{\infty} dt \\ &\leq 4\sqrt{2}D(\mu) \|f\|_{\infty} + D(\mu) \int\limits_{0}^{\infty} \|\mathsf{P}^{\mu}_{t+1} K_{\mu} f\|_{\infty} dt. \end{split}$$

The conclusion follows by the same arguments as in (14) and the fact that there exists a constant K such that $D(\mu) \le K(1 + \|\text{Hess}(V\mu)\|_{\infty})^{1/2}$.

Notice that the assumption $\|V\|_{\infty} \leq 1$ implies the existence of a constant K such that

$$\|\mathbf{Q}_{\mu}f\|_{\infty} \le Ke^{\kappa|\mu|} \|f\|_{\infty} \tag{19}$$

and that

$$\|\nabla \mathbf{Q}_{\mu} f\|_{\infty} \le K(1+|\mu|)^{1/2} e^{\kappa|\mu|} \|f\|_{\infty}. \tag{20}$$

We also have

Lemma 2.5 There exists a constant K > 0 such that for all μ and ν in $\mathcal{M}(M)$ and all $f \in C(M)$,

$$\begin{split} \|\nabla \mathsf{Q}_{\mu} f - \nabla \mathsf{Q}_{\nu} f\|_{\infty} &\leq K (1 + \|\mathrm{Hess}(V\mu)\|_{\infty})^{1/2} e^{\kappa \|V\mu\|_{\infty}} \\ &\times (1 + \|\mathrm{Hess}(V\nu)\|_{\infty})^{1/2} e^{\kappa \|V\nu\|_{\infty}} \\ &\times \|\nabla V\mu - \nabla V\nu\|_{\infty} \times \|f\|_{\infty} \end{split}$$

Proof Set $u = Q_{\nu} f$. Then, by definition of Q_{ν} ,

$$f = -A_{\nu}u + \Pi(\nu) f$$

Since

$$A_{\mu}u - A_{\nu}u = -\langle \nabla V \mu - \nabla V \nu, \nabla u \rangle$$

we have

$$\begin{aligned} \mathsf{Q}_{\mu}f &= \mathsf{Q}_{\mu}(-A_{\nu}u + \Pi(\nu)f) \\ &= -\mathsf{Q}_{\mu}A_{\nu}u \\ &= -\mathsf{Q}_{\mu}(A_{\mu}u + \langle \nabla V\mu - \nabla V\nu, \nabla u \rangle) \\ &= u - \Pi(\mu)u - \mathsf{Q}_{\mu}(\langle \nabla V\mu - \nabla V\nu, \nabla u \rangle). \end{aligned}$$

So that we get

$$\mathbf{Q}_{\mu}f - \mathbf{Q}_{\nu}f = -\Pi(\mu)\mathbf{Q}_{\nu}f - \mathbf{Q}_{\mu}(\langle \nabla V\mu - \nabla V\nu, \nabla \mathbf{Q}_{\nu}f \rangle)$$

and

$$\nabla Q_{\mu} f - \nabla Q_{\nu} f = -\nabla Q_{\mu} (\langle \nabla V \mu - \nabla V \nu, \nabla Q_{\nu} f \rangle)$$

The lemma then follows from Lemma 2.3.

2.2 Proof of the theorem

For $f \in C(M)$, t > 0 and $x \in M$, we set $F_t(x) = \frac{1}{t} Q_{\beta(t)\mu_t} f(x)$. Then we have

$$\epsilon_{t}(s)f = \int_{e^{t}}^{e^{t+s}} (f(X_{u}) - \Pi(\beta(u)\mu_{u})f) \frac{du}{u}$$

$$= \int_{e^{t}}^{e^{t+s}} K_{\beta(u)\mu_{u}} f(X_{u}) \frac{du}{u}$$

$$= -\int_{e^{t}}^{e^{t+s}} A_{\beta(u)\mu_{u}} F_{u}(X_{u}) du.$$

For t > 0, we set $A_t = A_{\beta(t)\mu_t}$, $Q_t = Q_{\beta(t)\mu_t}$ and $K_t = K_{\beta(t)\mu_t}$. Itô's formula then implies that

$$\epsilon_t(s) f = \epsilon_t^1(s) f + \epsilon_t^2(s) f + \epsilon_t^3(s) f$$

with

$$\epsilon_t^1(s)f = F_{e^t}(X_{e^t}) - F_{e^{t+s}}(X_{e^{t+s}})$$

$$\epsilon_t^2(s)f = \int_{e^t}^{e^{t+s}} \partial_u F_u(X_u) du$$

$$\epsilon_t^3(s)f = \sum_i \int_{e^t}^{e^{t+s}} e_i(F_u)(X_u) dB_u^i$$

In order to upper-estimate ϵ^1 , ϵ^2 and ϵ^3 , in addition to the estimates for $\|\mathbf{Q}_t f\|_{\infty}$ and for $\|\nabla \mathbf{Q}_t f\|_{\infty}$, we also need an upper-estimate for $\|\frac{d}{dt}\mathbf{Q}_t f\|_{\infty}$.

2.2.1 An upper-estimate for $\|\frac{d}{dt}Q_t f\|_{\infty}$

Given two Banach spaces \mathcal{X} and \mathcal{Y} we let $\mathcal{L}(\mathcal{X},\mathcal{Y})$ denote the Banach space of bounded linear operators from \mathcal{X} into \mathcal{Y} , equipped with the operator norm. For $f \in \mathcal{X}$ we let $\mathcal{L}_f(\mathcal{X},\mathcal{Y})$ denote the closed subset of $\mathcal{L}(\mathcal{X},\mathcal{Y})$ consisting of operators A such that Af=0. Set $E=\mathcal{L}_1(\mathcal{D}^2,L^2)$, $F=\mathcal{L}_1(L^2,\mathcal{D}^2)$ and $G=\mathcal{L}_1(\mathcal{D}^2,\mathcal{D}^2)$, where \mathcal{D}^2 is the L^2 -domain of Δ (i.e. \mathcal{D}^2 is the completion in L^2 of the C^∞ functions for the norm $\|f\|_2 + \|\Delta f\|_{L^2}$). For $\mu \in \mathcal{M}(M)$, the $L^2(\mu)$ -domain of A_μ coincides with \mathcal{D}^2 . Then, for a measure μ in $\mathcal{M}(M)$, equivalent to λ , $A_\mu \in E$, $\mathbf{Q}_\mu \in F$ and $K_\mu \in G$.

Lemma 2.6 Let g_t be the function defined by

$$g_t(x) = \frac{\beta(t)}{t} V(x, X_t) + t \frac{d}{dt} \left(\frac{\beta(t)}{t} \right) V \mu_t(x).$$

Then

(i) $t \mapsto A_t$ is C_1 and for all $f \in C^2(M)$,

$$\frac{d}{dt}A_t f = -\langle \nabla g_t, \nabla f \rangle.$$

(ii) $t \mapsto K_t$ is C_1 and, for all $f \in \mathcal{D}^2$,

$$\left(\frac{d}{dt}K_t\right)f = c(t, f)\mathbf{1}$$

with $\mathbf{1}(x) = 1$ and

$$c(t, f) = \Pi_t(fg_t) - (\Pi_t f)(\Pi_t g_t).$$

Proof Since

$$\frac{d}{dt}(\beta(t)\mu_t) = \frac{\beta(t)}{t}\delta_{X_t} + t\frac{d}{dt}\left(\frac{\beta(t)}{t}\right)\mu_t,$$

we have

$$g_t = \frac{d}{dt} V(\beta(t)\mu_t).$$

Let $f \in C^2(M)$. Then

$$\frac{d}{dt}A_t f = -\frac{d}{dt} \langle \nabla V(\beta(t)\mu_t), \nabla f \rangle$$
$$= -\langle \nabla g_t, \nabla f \rangle.$$

This proves (i).

Since, for μ and ν in $\mathcal{M}(M)$,

$$\frac{d\Pi(\mu)}{d\mu} \cdot \nu = -\left(V\nu(x) - \Pi(\mu)(V\nu)\right)\Pi(\mu)(dx),$$

we get that

$$\frac{d}{dt}K_t = -\frac{d}{dt}\Pi_t = -\frac{d\Pi}{d\mu}(\beta(t)\mu_t) \cdot \left(\frac{d}{dt}(\beta(t)\mu_t)\right)$$
$$= (g_t(x) - \Pi_t g_t)\Pi_t(dx).$$

This proves (ii).

Lemma 2.7 $t \mapsto Q_t$ is a C^1 map from \mathbb{R}^+ into F, with vector derivative

$$\frac{d}{dt}Q_t = \left(\frac{d}{dt}K_t + Q_t\frac{d}{dt}A_t\right)Q_t. \tag{21}$$

Proof Let $L: \mathbb{R}^+ \times F \to G$, $(t, \mathbb{Q}) \mapsto \mathbb{Q}A_t + K_t$. The map L is C^1 and (t, \mathbb{Q}_t) satisfies the implicit equation $L(t, \mathbb{Q}_t) = 0$. Set $L_1 = \frac{\partial L}{\partial \mathcal{Q}}(t, \mathbb{Q}_t)$. Then $L_1 \in \mathcal{L}(F, G)$ is the operator defined by $L_1(B) = BA_t$.

Let $L_2 \in \mathcal{L}(G, F)$ be defined by $L_2(C) = -C \mathbf{Q}_t$. Since for all $C \in F$ and $B \in G$, C1 = B1 = 0, the fact that $A_t \mathbf{Q}_t f = -K_t f$ shows that L_2 is the inverse of L_1 . Therefore by application of the implicit function theorem in Banach spaces, the map $t \mapsto \mathbf{Q}_t$ is C^1 and its derivative is given by

$$\frac{d}{dt}Q_{t} = -\left(\frac{\partial L}{\partial Q}\right)^{-1}(t, Q_{t})\left(\frac{d}{dt}K_{t} + Q_{t}\frac{d}{dt}A_{t}\right)$$
$$= \left(\frac{d}{dt}K_{t} + Q_{t}\frac{d}{dt}A_{t}\right)Q_{t}.$$

Lemma 2.8 There exists a constant K such that for every $t \ge t_0$ and $f \in \mathcal{D}^2$

$$\left\| \frac{d}{dt} \mathsf{Q}_t f \right\|_{\infty} \le K \frac{(\log(t))^{3/2}}{t^{\gamma - 2a\kappa}} \times \|f\|_{\infty}.$$

Proof This is a straightforward consequence of the two previous lemmas and the estimate for $\|\mathbf{Q}_t f\|_{\infty}$:

$$\left\| \frac{d}{dt} \mathbf{Q}_t f \right\|_{\infty} \leq \left\| \left(\frac{d}{dt} K_t \right) \mathbf{Q}_t f \right\|_{\infty} + \left\| \mathbf{Q}_t \left(\frac{d}{dt} A_t \right) \mathbf{Q}_t f \right\|_{\infty}.$$

On one hand,

$$\left\| \left(\frac{d}{dt} K_t \right) \mathbf{Q}_t f \right\|_{\infty} \le c(t, \mathbf{Q}_t f)$$

$$\le 2 \|g_t\|_{\infty} \times \|\mathbf{Q}_t f\|_{\infty}$$

$$\le K \times \left(t \left| \frac{d}{dt} \left(\frac{\beta(t)}{t} \right) \right| + \frac{|\beta(t)|}{t} \right) \times e^{\kappa |\beta(t)|} \times \|f\|_{\infty}.$$

On the other hand,

$$\begin{split} \left\| \mathsf{Q}_{t} \left(\frac{d}{dt} A_{t} \right) \mathsf{Q}_{t} f \right\|_{\infty} &\leq K e^{\kappa |\beta(t)|} \left\| \left(\frac{d}{dt} A_{t} \right) \mathsf{Q}_{t} f \right\|_{\infty} \\ &\leq K e^{\kappa |\beta(t)|} \times \| \nabla g_{t} \|_{\infty} \times \| \nabla \mathsf{Q}_{t} f \|_{\infty} \\ &\leq K \times \left(t \left| \frac{d}{dt} \left(\frac{\beta(t)}{t} \right) \right| + \frac{|\beta(t)|}{t} \right) \times e^{\kappa |\beta(t)|} \\ &\times (1 + |\beta(t)|)^{1/2} \times e^{\kappa |\beta(t)|} \times \| f \|_{\infty}. \end{split}$$

We conclude using the fact that β satisfies Hypothesis 1.1.

2.2.2 Estimates of ϵ^1 , ϵ^2 and ϵ^3

Take $a_c = \gamma (2\kappa)^{-1}$ and $\alpha \in]0, \gamma - 2a_c\kappa[$.

Lemma 2.9 For all $a \in [0, a_c[$, there exists a constant K such that for all positive t,

- (i) $\sup_{s\geq 0} |\epsilon_t^1(s)f + \epsilon_t^2(s)f| \leq Ke^{-\alpha t} ||f||_{\infty}.$
- (ii) $\mathsf{E}[\sup_{s\geq 0} (\epsilon_t^3(s)f)^2 | \mathcal{F}_{e^t}] \leq K e^{-\alpha t} \|f\|_{\infty}^2$

Proof One has for all s and t,

$$|\epsilon_t^{1}(s)f| \le K(e^{-t}e^{\kappa|\beta(e^t)|} + e^{-(t+s)}e^{\kappa|\beta(e^{t+s})|}) ||f||_{\infty}$$

$$\le Ke^{-(1-a\kappa)t} ||f||_{\infty}.$$

Since

$$\begin{aligned} |\epsilon_{t}^{2}(s)f| &\leq \int_{e^{t}}^{e^{t+s}} \left(\left\| \frac{1}{u^{2}} \mathsf{Q}_{u} f \right\|_{\infty} + \left\| \frac{1}{u} \frac{d}{du} \mathsf{Q}_{u} f \right\|_{\infty} \right) du \\ &\leq K \|f\|_{\infty} \int_{e^{t}}^{e^{t+s}} \left(u^{-(2-a\kappa)} + (\log(u))^{3/2} u^{-(1+\gamma-2a\kappa)} \right) du \\ &\leq K e^{-\alpha t} \|f\|_{\infty}. \end{aligned}$$

This proves (i). Since $\epsilon_t^3(\cdot) f$ is a martingale whose quadratic variation satisfies

$$\frac{d}{ds} \langle \epsilon_{t}^{3}(\cdot) f \rangle_{s} = e^{t+s} \|\nabla F_{e^{t+s}}(X_{e^{t+s}})\|^{2}
\leq e^{t+s} \times e^{-2(t+s)} \|\nabla \mathbf{Q}_{e^{t+s}} f\|_{\infty}^{2}
\leq K e^{-(1-2a\kappa)(t+s)} \|f\|_{\infty}^{2}.$$

Applying Doob's inequality, one gets (ii).

This lemma implies that for all $f \in C(M)$,

$$\mathsf{E}\left[\sup_{s\geq 0}(\epsilon_t(s)f)^2|\mathcal{F}_{e^t}\right]\leq K\exp(-\alpha t)\|f\|_{\infty}^2.$$

To finish the proof of the theorem, we prove that this inequality implies that almost surely,

$$\limsup_{t\to\infty}\frac{1}{t}\log\left(\sup_{s\geq0}|\epsilon_t(s)f|\right)\leq-\frac{\alpha}{2}.$$

Let $\delta < \alpha$. Then,

$$\mathsf{P}\!\left(\sup_{s\geq 0}|\epsilon_n(s)f|>e^{-\frac{\delta}{2}n}\right)\leq Ke^{-(\alpha-\delta)n}\|f\|_{\infty}^2.$$

This implies that a.s.,

$$\limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{s \ge 0} |\epsilon_n(s) f| \right) \le -\frac{\delta}{2}. \tag{22}$$

Now, remark that for all $t \in [n, n + 1[$,

$$\sup_{s\geq 0} |\epsilon_t(s)f| \leq 2\sup_{s\geq 0} |\epsilon_n(s)f|.$$

Using this estimate and (22), we prove that for all $\delta < \alpha$, a.s.

$$\limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{s \ge 0} |\epsilon_t(s) f| \right) \le -\frac{\delta}{2}. \tag{23}$$

This implies the last claim of the theorem.

3 Study of one example

Let $M = \mathbb{S}^n$ be the unit sphere in \mathbb{R}^{n+1} , with $n \geq 1$. The geodesic distance on \mathbb{S}^n is denoted by d. To define the process X, we take for the interacting potential the function V defined by

$$V(x, y) = -\cos(d(x, y)) = -\langle x, y \rangle, \tag{24}$$

where $\langle \cdot, \cdot \rangle$ is the euclidean scalar product in \mathbb{R}^{n+1} . We choose a function β satisfying Hypothesis 1.1, with $\gamma = 1$ and a such that $a < a_c$, with a_c like in theorem 2.1. In addition to this assumption, we will assume that

$$\lim_{t \to \infty} \beta(t) = \infty.$$

In this section, we prove the following theorem

Theorem 3.1 There exists a random variable X_{∞} in \mathbb{S}^n such that almost surely, $\mu_t = \frac{1}{t} \int_0^t \delta_{X_s} ds$ converges weakly towards $\delta_{X_{\infty}}$.

In the proof of this theorem given here, for simplicity, we assume that β is nondecreasing.

Note that we do not have precise information on the distribution of X_{∞} . It depends on the initial condition. The only case one can say something is in the case where X_0 is uniformly distributed. Then the law of X_{∞} is rotationally invariant, which implies that X_{∞} is uniformly distributed.

3.1 Definition of Z_t and of z_t

For a finite measure μ on \mathbb{S}^n , we define

$$m(\mu) = \int_{\mathbb{S}^n} x\mu(dx),$$

$$r(\mu) = \|m(\mu)\|,$$

$$u(\mu) = m(\mu)/r(\mu) \quad \text{if} \quad r(\mu) > 0 \quad \text{and}$$

$$u(\mu) = 0 \quad \text{if} \quad r(\mu) = 0.$$

Then,

$$V\mu(x) = -r(\mu)\cos(d(x, u(\mu))) = -r(\mu)\langle x, u(\mu)\rangle. \tag{25}$$

Set v_t to be the measure defined by

$$v_t f = \mu_t f + \frac{1}{t} Q_{\beta(t)\mu_t} f(X_t)$$

for all $f \in C(M)$. Thus, as $t \to \infty$, $|v_t - \mu_t| \to 0$. Set $z_t = m(\mu_{e^t})$, $r_t = r(\mu_{e^t})$ and $u_t = u(\mu_{e^t})$. Set $Z_t = m(v_{e^t})$, $R_t = r(v_{e^t})$ and $U_t = u(v_{e^t})$. Then, as $t \to \infty$, $||Z_t - z_t|| \to 0$.

Let us remark that for all $\mu \in \mathcal{M}(M)$,

$$m(\Pi(\mu)) = \Lambda(r(\mu))u(\mu), \tag{26}$$

with $\Lambda = Z'/Z$, the function Z being defined by

$$Z(\rho) = \int_{\mathbb{S}^n} e^{\rho \cos(d(x,e))} \lambda(dx), \tag{27}$$

where $e \in \mathbb{S}^n$ (the definition of Z of course does not depend on the choice of e). We also have that

$$Z(\rho) = K_n \int_{0}^{\pi/2} \cosh(\rho \cos \theta) (\sin \theta)^{n-1} d\theta$$
 (28)

for some constant K_n .

3.2 Study of Λ

Let us briefly study the function Λ : It is an increasing concave function, $\Lambda(0) = 0$, $\Lambda'(0) > 0$ and as $\rho \to \infty$,

$$\Lambda(\rho) = 1 - K/\rho + o(1/\rho),\tag{29}$$

where *K* is a positive constant. The claim (29) holds since [using the change of variable $v = \rho(1 - \cos \theta)$]

$$\begin{split} 1 - \Lambda(\rho) &= \frac{\int_0^{\pi/2} e^{-\rho} [\cosh(\rho\cos\theta) - \cos\theta\sinh(\rho\cos\theta)] (\sin\theta)^{n-1} d\theta}{\int_0^{\pi/2} e^{-\rho} \cosh(\rho\cos\theta) (\sin\theta)^{n-1} d\theta} \\ &= \frac{\int_0^{\rho} [e^{-v} + e^{-2\rho} e^v - (1 - v/\rho) (e^{-v} - e^{-2\rho} e^v)] (v/\rho)^{\frac{n-2}{2}} (2 - v/\rho)^{\frac{n-2}{2}} dv}{\int_0^{\rho} (e^{-v} + e^{-2\rho} e^v) (v/\rho)^{\frac{n-2}{2}} (2 - v/\rho)^{\frac{n-2}{2}} dv} \\ &= \frac{\int_0^{\rho} ((v/\rho) e^{-v} + (2 - v/\rho) e^{-2\rho} e^v) (v/\rho)^{\frac{n-2}{2}} (2 - v/\rho)^{\frac{n-2}{2}} dv}{\int_0^{\rho} (e^{-v} + e^{-2\rho} e^v) (v/\rho)^{\frac{n-2}{2}} (2 - v/\rho)^{\frac{n-2}{2}} dv} \\ &\sim \frac{1}{\rho} \frac{\int_0^{\infty} (v e^{-v}) v^{\frac{n-2}{2}} dv}{\int_0^{\infty} (e^{-v}) v^{\frac{n-2}{2}} dv} \end{split}$$

using Lebesgue dominated convergence theorem.

3.3 An SDE satisfied by Z_t

For all positive s and t,

$$z_{t+s} - z_t = \int_0^s \left(-r_{t+u} + \Lambda(\beta(e^{t+u})r_{t+u}) \right) u_{t+u} du + \int_{\mathbb{S}^n} x \, \epsilon_t(s) (dx).$$

This implies that

$$Z_{t+s} - Z_t = z_{t+s} - z_t - \int x \, \epsilon_t^{1}(s)(dx)$$

$$= \int_0^s \left(-r_{t+u} + \Lambda(\beta(e^{t+u})r_{t+u}) \right) u_{t+u} du + \int_{\mathbb{S}^n} x \, (\epsilon_t^{2}(s) + \epsilon_t^{3}(s))(dx).$$

For all positive t, set

$$H_t = (\partial_u F_u)_{|u=e^t}(X_{e^t}) + (-r_t + \Lambda(\beta(e^t)r_t)) u_t - (-R_t + \Lambda(\beta(e^t))R_t)) U_t,$$

where $F_t(x) = \frac{1}{t} Q_{\beta(t)\mu_t} f(x)$, with $f: \mathbb{S}^n \to \mathbb{R}^{n+1}$ defined by f(x) = x.

Lemma 3.2 There exists a positive constant K such that for all $t \ge \log(t_0)$,

$$|H_t| < Ke^{-(1+\alpha)t/2}.$$

Proof We have

$$\begin{aligned} |\partial_{u} F_{u}|_{|u=e^{t}}(X_{e^{t}}) &\leq e^{-2t} \|\mathsf{Q}_{e^{t}} f\|_{\infty} + e^{-t} \|\left(\frac{d}{du}\mathsf{Q}_{u}\right)_{|u=e^{t}} f\|_{\infty} \\ &\leq K(e^{-2t}e^{a\kappa t} + t^{3/2}e^{-t}e^{-(\gamma - 2a\kappa)t}) \\ &\leq Ke^{-(1+\alpha)t}. \end{aligned}$$

We also have that

$$r_t u_t - R_t U_t = m(\mu_{e^t}) - m(\nu_{e^t})$$

= $e^{-t} Q_{e^t} f(X_{e^t})$

with $f: \mathbb{S}^n \to \mathbb{R}^{n+1}$ defined by f(x) = x. This implies that

$$|r_t u_t - R_t U_t| \le K e^{-t} e^{a\kappa t} \le K e^{-\frac{(1+\alpha)}{2}t}$$
.

Finally, using the fact that $\Pi : \mathcal{M}(M) \to \mathcal{M}(M)$ is Lipschitzian (see Lemma 3.1 in [2]),

$$\begin{split} \left\| \Lambda(\beta(e^{t})R_{t})U_{t} - \Lambda(\beta(e^{t})r_{t})u_{t} \right\| &= \left\| m(\Pi(\beta(e^{t})\mu_{e^{t}})) - m(\Pi(\beta(e^{t})\nu_{e^{t}})) \right\| \\ &\leq (n+1) \left\| \Pi(\beta(e^{t})\mu_{e^{t}}) - \Pi(\beta(e^{t})\nu_{e^{t}}) \right\| \\ &\leq K\beta(e^{t})|\mu_{e^{t}} - \nu_{e^{t}}| \\ &\leq Kte^{-t}e^{a\kappa t} \\ &< Ke^{-\frac{(1+\alpha)}{2}t}. \end{split}$$

The lemma follows from these estimates.

We thus have

$$dZ_t = \left(-R_t + \Lambda(\beta(e^t)R_t)\right)U_tdt + H_tdt + dM_t,\tag{30}$$

where M is the martingale defined by $M_0 = 0$ and for all positive s and t,

$$M_{t+s} - M_t = \int x \epsilon_t^3(s)(dx).$$

For $1 \le j \le n+1$,

$$M_{t+s}^{j} - M_{t}^{j} = \sum_{i} \int_{e^{t}}^{e^{t+s}} e_{i}(F_{u}^{j})(X_{u}) dB_{u}^{i}$$

with

$$F_t^j(x) = \frac{1}{t} \mathsf{Q}_{\beta(e^t)\mu_t} f^j(x)$$

where $f^{j}(x) = x^{j}$. The martingale brackets of M are given by

$$\langle M^i, M^j \rangle_t = \int\limits_0^t e^{-s} \langle \nabla Q_{\beta(e^s)\mu_{e^s}} f^i, \nabla Q_{\beta(e^s)\mu_{e^s}} f^j \rangle (X_{e^s}) ds,$$

with $f^{i}(x) = x_{i}, 1 \le i \le n + 1$.

3.4 The bilinear form Φ

For all $x \in M$ and $\mu \in \mathcal{M}(M)$, we define the positive symmetric matrix $\Phi_{\mu}(x)$ by

$$\Phi_{\mu}^{i,j}(x) = \langle \nabla Q_{\mu} f^i, \nabla Q_{\mu} f^j \rangle (x), \quad 1 \le i, j \le n+1.$$
 (31)

The associated bilinear form is defined by

$$\Phi_{\mu}(u,v)(x) = \sum_{i,j} \Phi_{\mu}^{i,j}(x) u_i v_j,$$

with u and v in \mathbb{R}^{n+1} . For all positive t, the positive symmetric matrix $\Phi_{\beta(e^t)\mu_{e^t}}(X_{e^t})$ will be denoted by Φ_t .

For $\mu \in \mathcal{M}(M)$, we set $\Gamma_{\mu}(x) = \text{Tr}(\Phi_{\mu}(x))$ and $\Gamma_{t} = \text{Tr}(\Phi_{t})$, respectively the trace of $\Phi_{\mu}(x)$ and of Φ_{t} .

Equation (30) implies that

$$dR_t^2 = 2R_t \left(-R_t + \Lambda(\beta(e^t)R_t) \right) dt$$

+2R_t \langle U_t, H_t \rangle dt + e^{-t} \Gamma_t dt
+2R_t \langle U_t, dM_t \rangle. (32)

The martingale bracket of the martingale $N_t = \int_0^t \langle U_s, dM_s \rangle$ is given by

$$\langle N \rangle_t = \int_0^t e^{-s} \Phi_s(U_s, U_s) ds.$$
 (33)

Since $\Phi_s(U_s, U_s) \leq K \sup_i \|\nabla Q_s f^j\|_{\infty}^2$, we have the following estimate

$$\Phi_s(U_s, U_s) < K(1 + \mathrm{sr}_s)e^{2a\kappa \,\mathrm{sr}_s}.\tag{34}$$

With this estimate and using the fact that $\alpha < 1 - 2a\kappa$, one can prove

Lemma 3.3 There exists a positive constant K such that for all $t \ge \log(t_0)$,

$$\frac{d}{dt}\langle N \rangle_t \leq K e^{-\alpha t}$$
.

Proof This is straightforward since $r_t \leq 1$.

The following lemma will be used in the following section.

Lemma 3.4 There exists a constant K such that for all $\mu \in \mathcal{M}(M)$,

$$\sup_{i,j} \|\Phi_{\mu}^{i,j} - \Phi_{\lambda}^{i,j}\|_{\infty} \le K(1 + r(\mu))r(\mu)e^{2\kappa r(\mu)}$$

Proof We have

$$\begin{split} \Phi_{\mu}^{i,j}(x) - \Phi_{\lambda}^{i,j}(x) &= \langle \nabla \mathsf{Q}_{\mu} f^i, \nabla \mathsf{Q}_{\mu} f^j \rangle(x) - \langle \nabla \mathsf{Q}_{\lambda} f^i, \nabla \mathsf{Q}_{\lambda} f^j \rangle(x) \\ &= \langle \nabla \mathsf{Q}_{\mu} f^i - \nabla \mathsf{Q}_{\lambda} f^i, \nabla \mathsf{Q}_{\mu} f^j \rangle(x) \\ &+ \langle \nabla \mathsf{Q}_{\lambda} f^i, \nabla \mathsf{Q}_{\mu} f^j - \nabla \mathsf{Q}_{\lambda} f^j \rangle(x) \end{split}$$

Thus

$$\begin{split} \| \boldsymbol{\Phi}_{\boldsymbol{\mu}}^{i,j} - \boldsymbol{\Phi}_{\boldsymbol{\lambda}}^{i,j} \|_{\infty} &\leq \| \nabla \mathsf{Q}_{\boldsymbol{\mu}} f^i - \nabla \mathsf{Q}_{\boldsymbol{\lambda}} f^i \|_{\infty} \times \| \nabla \mathsf{Q}_{\boldsymbol{\mu}} f^j \|_{\infty} \\ &+ \| \nabla \mathsf{Q}_{\boldsymbol{\mu}} f^j - \nabla \mathsf{Q}_{\boldsymbol{\lambda}} f^j \|_{\infty} \times \| \nabla \mathsf{Q}_{\boldsymbol{\lambda}} f^i \|_{\infty}. \end{split}$$

The lemma then follows from Lemmas 2.3 and 2.5.

3.5 Study of the process R

In this section, we prove the following

Theorem 3.5 The process R_t converges towards 1, a.s.

This implies in particular that a.s., all limiting values μ of $\{\mu_t\}$ satisfy $r(\mu) = 1$. By strict convexity of the sphere, this implies that all limiting value of $\{\mu_t\}$ is a Dirac measure.

3.5.1 Non convergence towards 0

We first prove the following lemma (note that to prove this lemma, we don't use the fact that $\lim_{t\to\infty} \beta(t) = \infty$, the only additional assumption needed is that $\lim\inf_{t\to\infty} \beta(t) > 1/\Lambda'(0)$)

Lemma 3.6 Almost surely, $\lim \inf R_t > 0$.

In order to prove this lemma, we will need to have a lower estimate for Γ_t when $\beta(e^t)\mu_{e^t}$ is close to λ . This will be obtained using the fact that $\Gamma_{\lambda}(x) = nc(n)^2$, with $c(n) = \frac{1}{n-1}$: indeed, for all $i \in \{1, \ldots, n+1\}$, $\mathbf{Q}_{\lambda} f^i = -\frac{1}{n-1} f^i$, thus

$$\Phi_{\lambda}^{i,j}(x) = \langle \nabla \mathbf{Q}_{\lambda} f^{i}, \nabla \mathbf{Q}_{\lambda} f^{j} \rangle (x)$$

$$= c(n)^{2} \langle \nabla f^{i}, \nabla f^{j} \rangle (x)$$

$$= c(n)^{2} (\delta_{i,j} - x_{i} x_{j})$$

which gives $\Gamma_{\lambda}(x) = \sum_{i} \Phi_{\lambda}^{i,i}(x) = nc(n)^{2}$.

For all positive t, set

$$S_t = \inf\{s > t; R_s > 1/s\}.$$

We will prove that for large t, S_t is finite with a great probability, which roughly means that if R_s goes to 0, it cannot go as fast as 1/s. In order to prove this, we will first prove that

$$S_t^0 = \inf\{s > t; \quad R_s > (\beta(e^s))^{-1/4}e^{-s/2}\}$$

is finite with a great probability.

Lemma 3.7 For all $\beta \leq a$, $\Lambda(\beta) \geq \beta \Lambda'(a)$.

Proof For $\beta \leq a$ and $r \in [0, 1]$, set $\varphi_{\beta}(r) = \Lambda(\beta r)$. The function φ_{β} satisfies $\varphi_{\beta}(0) = 0$ and $\varphi'_{\beta}(r) = \beta \Lambda'(\beta r)$. Since Λ is concave, for $r \leq 1$ and $\beta \leq a$, $\varphi'_{\beta}(r) \geq \beta \Lambda'(a)$. This implies the lemma.

We use this lemma to prove

Lemma 3.8 There exist positive constants K and T such that

$$\mathsf{P}(S_t^0 = \infty | \mathcal{F}_{e^t}) \le K\beta(e^t)^{-1/2}. \tag{35}$$

Proof For $s \in]t, S_t^0[$, when $R_t < (\beta(e^t))^{-1/4}e^{-t/2}$ we have that

$$-R_s + \Lambda(\beta(e^s)R_s) \ge R_s(-1 + \beta(e^s)\Lambda'(\beta(e^s)R_s) \ge R_s(-1 + \beta(e^s)\Lambda'(\beta(e^s)s^{-1/4}e^{-s/2})).$$

Since

$$\liminf_{s \to \infty} \beta(e^s) \Lambda'(\beta(e^s)^{1-1/4} e^{-s/2}) = \liminf_{s \to \infty} \beta(e^s) \Lambda'(0) \\
= \infty,$$

there exists T such that for all $t \ge T$ and $s \in]t, S_t^0[$,

$$-R_s + \Lambda(\beta(e^s)R_s) \ge 0.$$

We now fix t > T. For $s \in [t, S_t^0]$, when $R_t < (\beta(e^t))^{-1/4}e^{-t/2}$ we have [using (32)] that

$$R_s^2 \ge R_t^2 + \int_t^s e^{-u} \Gamma_{\lambda}(X_{e^u}) du$$

$$+2 \int_t^s R_u \langle U_u, H_u \rangle du + \int_t^s e^{-u} (\Gamma_u - \Gamma_{\lambda}(X_{e^u})) du$$

$$+2 \int_t^s R_u dN_u$$

For $u \in]t, S_t^0[$, we have that

$$|R_u\langle U_u, H_u\rangle| \le K(\beta(e^u))^{-1/4}e^{-(1+\alpha/2)u}$$

and that

$$r_u \le R_u + ||m(\mu_{e^u} - \nu_{e^u})||$$

 $\le R_u + Ke^{-(1-a\kappa)u}.$

This implies that

$$ur_u \le uR_u + Ke^{-\left(\frac{1+\alpha}{2}\right)u}$$

$$\le Ku(\beta(e^u))^{-1/4}e^{-u/2}$$

Lemma 3.4 implies that

$$\begin{aligned} e^{-u}|\Gamma_{u} - \Gamma_{\lambda}(X_{e^{u}})| &\leq K(1 + ur_{u})ur_{u}e^{2a\kappa ur_{u}}e^{-u} \\ &\leq Ku(\beta(e^{u}))^{-1/4}e^{-3u/2} \\ &\leq K(\beta(e^{u}))^{-1/4}e^{-(1+\alpha/2)u}. \end{aligned}$$

Thus (since $\Gamma_{\lambda}(x) = nc(n)^2$ for all x)

$$\begin{split} \mathsf{E}[R_{S_t^0}^2|\mathcal{F}_{e^t}] &\geq (nc(n)^2 - K(\beta(e^t))^{-1/4} e^{-\frac{\alpha}{2}t}) e^{-t} \mathsf{P}(S_t^0 = \infty|\mathcal{F}_{e^t}) \\ &\geq \frac{nc(n)^2}{2} e^{-t} \mathsf{P}(S_t^0 = \infty|\mathcal{F}_{e^t}) \end{split}$$

for sufficiently large t. Since

$$\mathsf{E}[R_{S_t^0}^2|\mathcal{F}_{e^t}] \le (\beta(e^t))^{-1/2}e^{-t}\mathsf{P}(S_t^0 < \infty|\mathcal{F}_{e^t}),$$

we get

$$\mathsf{P}(S_t^0 = \infty | \mathcal{F}_{e^t}) \le \frac{1}{1 + \frac{nc(n)^2}{2} (\beta(e^t))^{1/2}}.$$

This proves the lemma.

We then prove that

Lemma 3.9

$$\mathsf{P}(S_t = \infty | \mathcal{F}_{e^t}) \le K(\beta(e^t))^{-1/2}. \tag{36}$$

Proof Let $S'_t = \inf\{s \geq S^0_t; R_s \in \{e^{-s}, 1/s\}\}$. For all $s \in [S^0_t, S'_t]$, by Itô's formula we have

$$R_{s} - R_{S_{t}^{0}} = \int_{S_{t}^{0}}^{s} (-R_{u} + \Lambda(\beta(e^{u})R_{u}))du + \int_{S_{t}^{0}}^{s} \langle U_{u}, H_{u} \rangle du$$

$$+ \int_{S_{t}^{0}}^{s} \frac{e^{-u}}{2R_{u}} (\Gamma_{u} - \Phi_{u}(U_{u}, U_{u}))du$$

$$+ N_{s} - N_{S_{t}^{0}}.$$
(37)

There exists c > 0 such that for t sufficiently large and $u \in [S_t^0, S_t']$, the following properties hold (using the fact that $\beta(e^u)R_u \leq a$):

- $-R_u + \Lambda(\beta(e^u)R_u) \ge (-1 + \beta(e^u)\Lambda'(a))R_u \ge c\beta(e^u)R_u;$ $\langle U_u, H_u \rangle \ge -Ke^{-(1+\alpha)u/2}.$

We now lower estimate $\frac{e^{-u}}{2R_u}(\Gamma_u - \Phi_u(U_u, U_u))$. For all $u \in \mathbb{S}^n$,

$$\Gamma_{\lambda}(x) - \Phi_{\lambda}(x)(u, u) = c(n)^{2}(n - 1 + \langle u, x \rangle^{2})$$

> 0.

We also have (for $u \in [S_t^0, S_t']$)

$$\Gamma_{u} - \Phi_{u}(U_{u}, U_{u}) \geq \Gamma_{\lambda}(X_{e^{u}}) - \Phi_{\lambda}(X_{e^{u}})(U_{u}, U_{u})
- |\Gamma_{u} - \Gamma_{\lambda}(X_{e^{u}})|
- |\Phi_{u}(U_{u}, U_{u}) - \Phi_{\lambda}(X_{e^{u}})(U_{u}, U_{u})|
> -K(1 + ur_{u})ur_{u}e^{2a\kappa ur_{u}}$$
(38)

which is greater that $-Kur_u$, for some positive constant K. Since $r_u \leq R_u +$ $Ke^{-u}e^{a\kappa ur_u}$, $ur_u \le 2$ for t large enough and $u \in]S_t^0, S_t'[$. Thus, $r_u \le R_u + Ke^{-u}$ and

$$\frac{e^{-u}}{2R_u}(\Gamma_u - \Phi_u(U_u, U_u)) \ge -Kue^{-u}(1 + e^{-u}/R_u)
\ge -Kue^{-u}
> -Ke^{-(1+\alpha)u/2}.$$

With the above estimates, relation (37) implies that for t large enough

$$R_{s} - R_{S_{t}^{0}} \ge c \int_{S_{t}^{0}}^{s} \beta(e^{u}) R_{u} du$$

$$- \int_{S_{t}^{0}}^{s} K e^{-(1+\alpha)u/2} du$$

$$+ N_{s} - N_{S_{t}^{0}}.$$

This implies that for $s \in [S_t^0, S_t']$ and t large enough,

$$\exp\left(-\int_{S_t^0}^s c\beta(e^u)du\right)R_s \ge R_{S_t^0}$$

$$+ \int_{S_t^0}^{s} \exp\left(-\int_{S_t^0}^{u} c\beta(e^{v}) dv\right) (dN_u - Ke^{-(1+\alpha)u/2} du)$$

$$\geq K(\beta(e^{S_t^0}))^{-1/4} e^{-S_t^0/2}$$

$$+ \int_{S_t^0}^{s} \exp\left(-\int_{S_t^0}^{u} c\beta(e^{v}) dv\right) dN_u.$$

On the event $\{R_{S'_t} = e^{-S'_t}\} \cup \{S'_t = \infty\},$

$$\lim_{s \uparrow S_t'} \exp\left(-\int_{S_t^0}^s c\beta(e^u)du\right) R_s = \exp\left(-\int_{S_t^0}^{S_t'} c\beta(e^u)du\right) e^{-S_t'}$$

which is dominated by $e^{-S_t^0}$. Thus there exists a positive constant K such that for t large enough, on the event $\{R_{S_t'}=e^{-S_t'}\}\cup\{S_t'=\infty\}=\{R_{S_t'}\in\{0,e^{-S_t'}\}\}$ there exists $s>S_t^0$ such that

$$\int_{S_t^0}^{s} \exp\left(-\int_{S_t^0}^{u} c\beta(e^v) dv\right) dN_u \le -K(\beta(e^{S_t^0}))^{-1/4} e^{-S_t^0/2}.$$

This implies that on the event $\{S_t^0 < \infty\}$, (to simplify $\int_{S_t^0}^u c\beta(e^v) dv$ will be denoted by c(u))

$$\begin{split} \mathsf{P}(R_{S_t'} \in \{0, e^{-S_t'}\} | \mathcal{F}_{e^{S_t^0}}) &\leq \mathsf{P}\left(\sup_{s \in [S_t^0, S_t']} \left| \int_{S_t^0}^s e^{-c(u)} dN_u \right| > K(\beta(e^{S_t^0}))^{-1/4} e^{-S_t^0/2} \left| \mathcal{F}_{e^{S_t^0}} \right| \right) \\ &\leq K(\beta(e^{S_t^0}))^{1/2} e^{S_t^0} \mathsf{E}\left(\int_{S_t^0}^{S_t'} e^{-2c(u)} e^{-u} e^{2a\kappa u R_u} du \left| \mathcal{F}_{e^{S_t^0}} \right| \right) \\ &\leq K(\beta(e^{S_t^0}))^{1/2} e^{S_t^0} \int_{S_t^0}^\infty e^{-2c(u)} e^{-u} du. \end{split}$$

Since $\int_s^\infty \exp\left(-2c\int_s^u \beta(e^v)dv\right)e^{-u}du = O(e^{-s}/\beta(e^s))$, on the event $\{S_t^0 < \infty\}$,

$$\mathsf{P}(R_{S_t'} \in \{0, e^{-S_t'}\} | \mathcal{F}_{e^{S_t^0}}) \le K(\beta(e^{S_t^0}))^{-1/2}.$$

Since $P(S_t = \infty | \mathcal{F}_{e^{S_t^0}}) \le P(R_{S_t'} \in \{0, e^{-S_t'}\} | \mathcal{F}_{e^{S_t^0}}),$

$$P(S_t = \infty | \mathcal{F}_{e^t}) = E[P(S_t = \infty | \mathcal{F}_{e^{S_t^0}}) 1_{\{S_t^0 < \infty\}} | \mathcal{F}_{e^t}]$$

$$+ P(S_t^0 = \infty | \mathcal{F}_{e^t})$$

$$\leq K(\beta(e^t))^{-1/2}$$

This proves the lemma.

Proof of Lemma 3.6 Let $H = \{ \lim \inf R_t > 0 \}$. Fix $\beta_0 > 1/\Lambda'(0)$ and let T be such that for all $t \ge T$, $\beta(e^t) \ge \beta_0$. For $t \ge 1$, set

$$T_t = \inf\{s \ge S_t; \quad R_s = e^{-(1-a\kappa)s}\}.$$

On the event $\{S_t < \infty\}$, for all $s \in [S_t, T_t]$,

$$R_{s} - R_{S_{t}} = \int_{S_{t}}^{s} (-R_{u} + \Lambda(\beta(e^{u})R_{u}))du + \int_{S_{t}}^{s} \langle U_{u}, H_{u} \rangle du + \int_{S_{t}}^{s} \frac{e^{-u}}{2R_{u}} (\Gamma_{u} - \Phi_{u}(U_{u}, U_{u}))du + N_{s} - N_{S_{t}}.$$
(39)

Fix r_1 and r_2 such that $0 < r_1 < r_2 < 1$ and such that for all $r < r_2$ and $\beta \ge \beta_0$, $-r + \Lambda(\beta r) > 0$. Let φ be a C^2 increasing concave function such that $\varphi(r) = r$ if $r < r_1$ and $\varphi'(r) = 0$ if $r > r_2$. Then it is clear that $\lim \inf_{t \to \infty} R_t \ge \lim \inf_{t \to \infty} \varphi(R_t)$. On the event $\{S_t < \infty\}$, for all $s \in [S_t, T_t]$, by Itô's formula,

$$\varphi(R_s) - \varphi(R_{S_t}) = \int_{S_t}^s \varphi'(R_u)(-R_u + \Lambda(\beta(e^u)R_u))du$$
 (40)

$$+\int_{S_{\epsilon}}^{s} \varphi'(R_{u})\langle U_{u}, H_{u}\rangle du \tag{41}$$

$$+\int_{S_{\epsilon}}^{s} \varphi'(R_u) \frac{e^{-u}}{2R_u} (\Gamma_u - \Phi_u(U_u, U_u)) du \tag{42}$$

$$+\frac{1}{2}\int_{S_{t}}^{s}\varphi''(R_{u})d\langle N\rangle_{u} \tag{43}$$

¹ Such r_2 exists since $-r + \Lambda(\beta r) \ge -r + \Lambda(\beta_0 r)$ and $\partial_r (-r + \Lambda(\beta_0 r))|_{r=0} = -1 + \beta_0 \Lambda'(0) > 0$.

$$+\int_{S_{t}}^{s} \varphi'(R_{u})dN_{u} \tag{44}$$

It is clear that (40) is nonnegative, because of our choice of r_2 . The term (41) is greater than

$$-K\int_{S_{\epsilon}}^{\infty}e^{-\frac{(1+\alpha)}{2}u}du=-Ke^{-\frac{(1+\alpha)}{2}S_{t}}.$$

Using Lemma 3.4, we get that

$$\Gamma_u - \Phi_u(U_u, U_u) \ge -K(1 + ur_u)ur_u e^{2a\kappa ur_u}$$

 $\ge -Ku^2 r_u e^{2a\kappa u}.$

There exists a constant K such that for t large enough and $u \in [S_t, T_t], r_u \leq KR_u$. This implies that (since $R_u \geq e^{-u}e^{a\kappa u}$)

$$\frac{e^{-u}}{2R_u}(\Gamma_u - \Phi_u(U_u, U_u)) \ge -Ku^2 e^{-(1-2a\kappa)u}$$
$$> -Ke^{-\alpha u}.$$

Thus (42) is greater than $-Ke^{-\alpha S_t}$. The term (43) is greater than

$$-K\int_{S_t}^{\infty} e^{-\alpha u} du = -Ke^{-\alpha S_t}$$

where K is a constant also depending on φ .

This implies that for all $s \in [S_t, T_t]$,

$$\varphi(R_s) \geq 1/S_t - Ke^{-\alpha S_t} + \inf_{s \in [S_t, T_t]} \int_{S_t}^s \varphi'(R_u) dN_u.$$

Thus

$$\inf_{s \in [S_t, T_t]} \varphi(R_s) \ge \frac{1}{2S_t} + \inf_{s \in [S_t, T_t]} \int_{S_t}^s \varphi'(R_u) dN_u.$$

for t large enough. Since (using Doob–Meyer inequality)

$$\mathsf{P}\left(\inf_{s\in[S_t,T_t]}\int_{S_t}^s\varphi'(R_u)dN_u\leq -\frac{1}{4S_t}\left|\mathcal{F}_{e^{S_t}}\right)\leq KS_t^2\int_{S_t}^\infty(\varphi'(R_u))^2d\langle N\rangle_u\right.\\ < Ke^{-\alpha S_t}$$

we obtain that

$$\mathsf{P}\left(\inf_{s\in[S_t,T_t]}\varphi(R_s)\geq \frac{1}{4S_t}\bigg|\,\mathcal{F}_{e^{S_t}}\right)\geq 1-Ke^{-\alpha S_t}.$$

Since

$$\left\{\inf_{s\in[S_t,T_t]}\varphi(R_s)\geq\frac{1}{4S_t}\right\}\cap\{S_t<\infty\}\subset H,$$

we have for t large enough that

$$P(H) \ge P(H \cap \{S_t < \infty\})$$

$$\ge E \left[P\left(\left\{ \inf_{s \in [S_t, T_t]} \varphi(R_s) \ge \frac{1}{4S_t} \right\} \middle| \mathcal{F}_{e^{S_t}} \right) 1_{\{S_t < \infty\}} \right]$$

$$\ge E[(1 - Ke^{-\alpha S_t}) 1_{\{S_t < \infty\}}]$$

$$\ge (1 - Ke^{-\alpha t}) P(S_t < \infty)$$

$$> (1 - Ke^{-\alpha t}) (1 - K(\beta(e^t))^{-1/2}),$$

which converges towards 1 as $t \to \infty$. This proves that P(H) = 1.

3.5.2 Convergence towards 1

Fix $\epsilon > 0$. Since P($\liminf_{s \to \infty} R_s > 0$) = 1, there exist r > 0 and t > 0 such that P($\Omega_{r,t}$) $\geq 1 - \epsilon$, where $\Omega_{r,t} = \{\inf_{s > t} R_s > r\}$. On $\Omega_{r,t}$, $\Lambda(\beta(e^s)R_s) \geq \Lambda(\beta(e^s)r)$. We fix t such that for all s > t,

$$\Lambda(\beta(e^s)r) \ge 1 - k/\beta(e^s)$$

for some constant k > 0. For all $s \le \inf\{u \ge t; R_u \le r\}$,

$$(1 - R_s) - (1 - R_t) = \int_{t}^{s} K_u du - (N_s - N_t),$$

with K_u being dominated by $-(1 - R_u) + \epsilon(u)$, with

$$\epsilon(u) = k/\beta(e^u) + Ke^{-(1+\alpha)u}.$$

This implies that for $s \le \inf\{u \ge t; R_u \le r\}$

$$e^{s}(1-R_s)-e^{t}(1-R_t)\leq \int\limits_t^s e^{u}(\epsilon(u)du-dN_u).$$

Thus, for $s \le \inf\{u \ge t; \ R_u \le r\}$

$$(1 - R_s) \le e^{-(s-t)}(1 - R_t) + e^{-s} \int_t^s \epsilon(u)e^u du - e^{-s} \int_t^s e^u dN_u.$$
 (45)

We first remark that since $\lim_{u\to\infty} \epsilon(u) = 0$, $e^{-s} \int_t^s \epsilon(u) e^u du$ converges towards 0 as $s\to\infty$.

Lemma 3.10 For all t > 0, the process $e^{-s} \int_t^s e^u dN_u$ converges a.s. towards 0 as $s \to \infty$.

Proof We fix t > 0. Set $Y_s = e^{-s} \int_t^s e^u dN_u$. Then

$$\mathsf{E}[Y_s^2] \le e^{-2s} \int\limits_t^s e^{2u} e^{-u} e^{2a\kappa u} du \le \frac{e^{-\alpha s}}{2-\alpha}.$$

Let $s_0 \ge t$, and $s > s_0$, then

$$Y_s = e^{-(s-s_0)}Y_{s_0} + e^{-s} \int_{s_0}^s e^u dN_u.$$

This implies that for all $\epsilon > 0$

$$\mathsf{P}\left(\sup_{s \in [s_0, s_0 + 1]} |Y_s - Y_{s_0}| \ge \epsilon\right) \le \mathsf{P}(|Y_{s_0}| \ge \epsilon/2) \\
+ \mathsf{P}\left(e^{-s_0} \sup_{s \in [s_0, s_0 + 1]} \left| \int_{s_0}^s e^u dN_u \right| > \epsilon/2\right) \\
\le \frac{K}{\epsilon^2} \left(e^{-\alpha s_0} + e^{-2s_0} \int_{s_0}^{s_0 + 1} e^{2u} e^{-u} e^{2a\kappa u} du\right) \\
\le \frac{K}{\epsilon^2} \left(e^{-\alpha s_0} + e^{-2s_0} e^{(1 + 2a\kappa)(s_0 + 1)}\right) \\
\le \frac{K}{\epsilon^2} e^{-\alpha s_0}.$$

Borel-Cantelli lemma implies that for all $\epsilon > 0$, a.s., there exists N such that for all $n \ge N$, $\sup_{s \in [n,n+1]} |Y_s - Y_n| < \epsilon$ and $|Y_n| < \epsilon$. This implies that for all positive ϵ , a.s. $\limsup_{s \to \infty} |Y_s| \le 2\epsilon$. This implies the lemma.

Proof of Theorem 3.5 Using this lemma, Eq. (45) and the fact that on $\Omega_{r,t}$, inf $\{u \ge t; R_u \le r\} = \infty$, we prove that a.s. on $\Omega_{r,t}$, R_s converges to 1. Let $\Omega_{\infty} = \bigcup_{r>0} \bigcup_{t>0} \Omega_{r,t}$, $P(\Omega_{\infty}) = 1$. We then have that a.s. on Ω_{∞} , R_s converges to 1. This proves Theorem 3.5.

3.6 Study of the process U_t

We prove here the following

Lemma 3.11 The process $U_t = Z_t/R_t$ converges a.s.

Proof We recall that

$$dZ_t = (-R_t + \Lambda(\beta(e^t)R_t))U_tdt + H_tdt + dM_t$$

and that

$$dR_{t} = (-R_{t} + \Lambda(\beta(e^{t})R_{t}))dt + \langle U_{t}, H_{t}\rangle dt + \frac{e^{-t}}{2R_{t}}(\Gamma_{t} - \Phi_{t}(U_{t}, U_{t}))dt + \langle U_{t}, dM_{t}\rangle.$$

By Itô's formula,

$$dU_{t} = \frac{dZ_{t}}{R_{t}} - U_{t} \frac{dR_{t}}{R_{t}} - \frac{1}{R_{t}^{2}} d\langle Z, R \rangle_{t} + U_{t} \frac{d\langle R \rangle_{t}}{R_{t}^{2}}$$

$$= \frac{1}{R_{t}} (dM_{t} - \langle dM_{t}, U_{t} \rangle U_{t})$$

$$+ \frac{1}{R_{t}} (H_{t} - \langle H_{t}, U_{t} \rangle U_{t}) dt$$

$$+ A_{t} dt$$

with

$$A_t = -\frac{e^{-t}}{2R_t^2} (\Gamma_t - 3\Phi_t(U_t, U_t)) U_t - \frac{e^{-t}}{R_t^2} \Phi_t U_t.$$

Note that Γ_t , $\Phi_t(U_t, U_t)$ and $\|\Phi_t U_t\|$ are dominated by

$$K \sup_{i} \|\nabla Q_{\beta(e^{t})\mu_{e^{t}}} f^{i}\|_{\infty}^{2} \le K(1+t)e^{2a\kappa t}$$

$$< Ke^{(1-\alpha)t}.$$

This implies that

$$||A_t|| \le \frac{K}{R_t^2} e^{-\alpha t}. \tag{46}$$

We also have that

$$\left\| \frac{1}{R_t} (H_t - \langle H_t, U_t \rangle U_t) \right\| \le \frac{K}{R_t} e^{-\left(\frac{1+\alpha}{2}\right)t}$$

$$\le \frac{K}{R_t} e^{-\alpha t}.$$
(47)

Since R_t converges a.s. towards 1,

$$\sup_{s\geq 0} \left| \int_{t}^{s} A_{u} du + \int_{t}^{s} \frac{1}{R_{u}} (H_{u} - \langle H_{u}, U_{u} \rangle U_{u}) du \right|$$

which is dominated by

$$K\int_{1}^{\infty}e^{-\alpha u}\left(\frac{1}{R_{u}^{2}}+\frac{1}{R_{u}}\right)du,$$

converges towards 0 as $t \to \infty$.

Lemma 3.12 Set $\tilde{M}_t = M_t - \int_0^t \langle dM_u, U_u \rangle U_u$. Almost surely,

$$\lim_{t\to\infty} \sup_{s\geq t} \left\| \int_{t}^{s} \frac{d\tilde{M}_{u}}{R_{u}} \right\| = 0.$$

Proof Fix $r \in]0, 1[$ and T > 0. Set $\Omega_{r,T} = \{\inf_{s>T} R_s > r\}$. Then

$$\lim_{r\downarrow 0}\lim_{T\uparrow \infty}\mathsf{P}(\Omega_{r,T})=1.$$

For $t \ge T$, set $\tau_t = \inf\{s \ge t; R_s \le r\}$ and

$$V_t = \sup_{s \ge t} \left\| \int_t^s \frac{d\tilde{M}_u}{R_u} \right\|.$$

Then, on $\Omega_{r,T}$, for all $t \geq T$, $\tau_t = \infty$ and

$$V_t = \sup_{s \in [t, \tau_t]} \left\| \int_t^s \frac{d\tilde{M}_u}{R_u} \right\|.$$

We then have that

$$\begin{split} \mathsf{E}[V_{t}1_{\Omega_{r,T}}] &\leq \mathsf{E}\left[\sup_{s \in [t,\tau_{t}]} \left\| \int_{t}^{s} \frac{d\tilde{M}_{u}}{R_{u}} \right\|^{2} \right]^{1/2} \mathsf{P}(\Omega_{r,T})^{1/2} \\ &\leq 2\mathsf{E}\left[\int_{t}^{\tau_{t}} \frac{\sum_{i} d\langle \tilde{M}^{i} \rangle_{u}}{R_{u}^{2}} \right]^{1/2} \mathsf{P}(\Omega_{r,T})^{1/2} \\ &\leq 2\mathsf{E}\left[\int_{t}^{\tau_{t}} \frac{e^{-u}}{R_{u}^{2}} (\Gamma_{u} - \Phi_{u}(U_{u}, U_{u})) du \right]^{1/2} \mathsf{P}(\Omega_{r,T})^{1/2} \\ &\leq K\mathsf{E}\left[\int_{t}^{\tau_{t}} e^{-\alpha u} du \right]^{1/2} \mathsf{P}(\Omega_{r,T})^{1/2} \\ &\leq Ke^{-\frac{\alpha}{2}t} \mathsf{P}(\Omega_{r,T})^{1/2}. \end{split}$$

This implies that for all positive ϵ , by Markov inequality,

$$\mathsf{P}(V_t \ge \epsilon | \Omega_{r,T}) \le \frac{Ke^{-\frac{\alpha}{2}t}}{\epsilon \mathsf{P}(\Omega_{r,T})^{1/2}}.$$

We also have that

$$\mathsf{E}\left[\sup_{s \in [t,t+1[}|V_s - V_t|1_{\Omega_{r,T}}\right] \le \mathsf{E}\left[\sup_{s \in [t,t+1[}\left|\int_t^{s \wedge \tau_t} \frac{d\tilde{M}_u}{R_u}\right| 1_{\Omega_{r,T}}\right]\right]$$

$$\le \mathsf{E}\left[\sup_{s \in [t,t+1[}\left|\int_t^{s \wedge \tau_t} \frac{d\tilde{M}_u}{R_u}\right|^2\right]^{1/2} \mathsf{P}(\Omega_{r,T})^{1/2}$$

$$\le Ke^{-\frac{\alpha}{2}t}\mathsf{P}(\Omega_{r,T})^{1/2}.$$

This implies that for all positive ϵ ,

$$\mathsf{P}\left(\sup_{s \in [t,t+1[} |V_s - V_t| \ge \epsilon \, \bigg| \, \Omega_{r,T}\right) \le \frac{Ke^{-\frac{\alpha}{2}t}}{\epsilon \mathsf{P}(\Omega_{r,T})^{1/2}}.$$

Using Borel-Cantelli lemma, we prove that for all positive ϵ , a.s. on $\Omega_{r,T}$, there exists N such that for all $n \geq N$, $V_n \leq \epsilon$ and $\sup_{s \in [n,n+1[} |V_s - V_n| \leq \epsilon$. This implies that for all positive ϵ , a.s. on $\Omega_{r,T}$, $\limsup_{t \to \infty} V_t \leq \epsilon$. This implies that a.s. on $\Omega_{r,T}$, $\lim_{t \to \infty} V_t = 0$. We conclude since $\lim_{t \to 0} \lim_{t \to \infty} P(\Omega_{r,T}) = 1$.

Estimates (46) and (47), with lemma 3.12 implies that, a.s.,

$$\lim_{t\to\infty}\sup_{s>t}\|U_s-U_t\|=0.$$

This proves the lemma.

Since the a.s. convergence of z_t towards a random variable z_{∞} such that $||z_{\infty}|| = 1$ implies that μ_t converges a.s. towards the Dirac measure $\delta_{z_{\infty}}$. Theorem 3.5 is proved.

References

- Bakry, D.: L'hypercontractivité et son utilisation en théorie des semigroupes. Ecole d'Eté de Probabilités de St-Flour. Lecture Notes in Mathematics 1581, 1–114, Springer, Heidelberg (1994)
- Benaïm, M., Ledoux, M., Raimond, O.: Self-interacting diffusions. Probab. Theory Relat. Fields 122(1), 1–41 (2002)
- Benaïm, M., Raimond, O.: Self-interacting diffusions II: convergence in law. Ann. Inst. H. Poincaré Probab. Statist. 39(6), 1043–1055 (2003)
- Benaïm, M., Raimond, O.: Self-interacting diffusions III: the symmetric case. Ann. Probab. 33(5), 1717-1759 (2005)
- 5. Cranston, M., Le Jan, Y.: Self-attracting diffusions: two case studies. Math. Ann. 303, 87-93 (1995)
- Herrmann, S., Roynette, B.: Boundedness and convergence of some self-attracting diffusions. Math. Ann. 325(1), 81–96 (2003)
- Holley, R.A., Kusuoka, S., Stroock, D.W.: Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83(2), 333–347 (1989)
- 8. Ledoux, M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse (to appear)
- Miclo, L.: Recuit simulé sans potentiel sur une variété riemannienne compacte. Stochastics Stochastics Rep. 41(1-2), 23-56 (1992)
- Raimond, O.: Self attracting diffusions: case of the constant interaction. Probab. Theor. Relat. Fields 107, 177–196 (1996)

