Inserire nel package it.unipa.community.nomecognome. prg.n11.esX le seguenti applicazioni.

1) GESTIONE DI UN MUSEO.

Scrivete le classi necessarie per la gestione delle opere d'arte dei musei. Un oggetto della classe **Museo** conterrà nome, indirizzo e l'elenco delle opere d'arte presenti nel museo.

Scrivete una gerarchia per rappresentare i seguenti oggetti: **OperaDArte, Scultura, Dipinto**. Tutti gli oggetti devono avere un titolo, un autore (String) e la dataDiCreazione (per semplicità un oggetto della classe String) inizializzati dal costruttore. Ogni **Scultura** ha in aggiunta il materiale e l'altezza mentre ogni **Dipinto** ha la tecnica (olio, tempera, litografia, serigrafia, china) e le dimensioni. Tutti i membri devono essere incapsulati.

La classe **Museo** deve avere un metodo per stampare la lista delle opere contenute e metodi per l'inserimento e la cancellazione di opere d'arte.

Utilizzate le vostre classi in un programma che crea un oggetto **Museo** e mostra un menù interattivo testuale in cui si dà all'utente la possibilità di aggiungere nuovi elementi da tastiera, stampare i dettagli di tutti gli oggetti presenti nel museo, eliminare un elemento individuato in base al titolo, stampare i dettagli di un'opera individuata attraverso il titolo.

2) SIMULAZIONE TRAFFICO MARITTIMO

Scrivete un programma per la simulazione del traffico marittimo in prossimità di un porto.

Si supponga che ogni nave sia caratterizzata da un codice univoco (String) e abbia una posizione in coordinate cartesiane (double), una velocità (double), una direzione (int fra 0 e 359), lunghezza e larghezza (entrambi double) e numero di passeggeri a bordo (int).

Le navi devono avere un metodo avanza(), che aggiorna le coordinate in base alla velocità e alla direzione (vedi suggerimenti).

Scrivete una classe Nave con tutti i dati, metodi e costruttori che ritenete opportuni.

Scrivete una classe **Porto** che, attraverso un suo metodo, permette di invocare il metodo avanza() di tutti i natanti presenti nello stretto.

La classe **Porto** deve permettere l'inserimento e l'eliminazione dei vari natanti.

Prevedete nella classe **Porto** anche un metodo per la verifica e prevenzione di collisioni (per semplicità il messaggio di pericolo verrà attivato quando la distanza fra due natanti è inferiore a una certa soglia che fisserete voi arbitrariamente).

Utilizzate le classi di cui sopra in un programma che crea un oggetto **Porto**, gestisce l'interazione con l'utente mediante un menu per inserimento o eliminazione di navi e, quando richiesto, invoca il metodo che fa avanzare tutti i natanti, stampa lo stato di tutte le navi e verifica la presenza di potenziali collisioni.

Suggerimenti:

```
La nuova posizione della nave si calcola con le formule:
```

```
x+=velocita*cos(direzione*3.14/180);
y+=velocita*sin(direzione*3.14/180);
```

La distanza tra due punti P0(x0, y0) e P1(x1, y1) si può calcolare nel seguente modo:

```
double dx = x1 - x0;
double dy = y1 - y0;
double distanza sqrt(dx*dx + dy*dy);
```