## Prior Art



Fig. 1
DIFF-SERV DOMAIN

```
On every packet arrival
Calculate the average queue size based on exponential moving weighted average 100
if ( average queue size < minth) enqueue the packet 110
if ( minth < average queue size < FeedbackThreshold )
enqueue the packet, 120
mark the bits (bit1,bit2) for all outgoing packets queue with (1,0), if the bits are not previously set as (1,1) 130
if ( FeedbackThreshold \leq average  queue size < maxth)
drop or enqueue the packet with the probability as decided by RED 140
mark the bits (bit1,bit2) for all outgoing packets with (1,1) /50
if (average queue size > maxth) drop the incoming packets 160
```

Fig. 2 Modifications to the RED algorithm at core nodes

Fig. 3

A SIMPLE TWO-BIT SCHEME FOR REPRESENTING LOCAL DOMAIN CONGESTION.

| Bit1 | Bit2 | Inference at the egress node                                   |
|------|------|----------------------------------------------------------------|
| 0    | 0    | No congestion detected so far up to this domain                |
| 0    | 1    | No local congestion, but Congestion occurred in a prior domain |
| 1    | 0    | Local congestion occurred, but no packet loss phase            |
| 1    | 1    | Local congestion occurred and in packet loss phase             |



Fig. 4
THE TOS/DSCP BYTE





Flouchart for JBF-Bused Rate Control Method

Fig. Ga

 $PktWt_0^j \leftarrow 1.0$ Initialize:  $PktWt^{j}$  is always within  $[minPktWt^{j}, maxPktWt^{j}]$ MD is a monotonously decreasing function that takes a value (0,1] MI is a monotonously increasing function that takes a positive value j denotes the label corresponding to fixed route between a given pair of ingress/egress nodes for every ith round trip time (between ingress and egress nodes) during congestion-free periods if( average TBF queue size at ingress node  $\geq DemandThrsh^{j}$ )  $PktWt_{i}^{j} \leftarrow PktWt_{i-1}^{j} * MD(PktWt_{i-1}^{j})$  230 \* decrease the  $PktWt^j$  during congestion free periods, based on demand at TBF \*/ if  $(PktWt_{i-1}^j > 1) PktWt_i^j \leftarrow max[1, PktWt_{i-1}^j * MD(PktWt_{i-1}^j)]$  $\text{if } (PktWt_{i-1}^j < 1 \text{ }) \text{ } PktWt_i^j \leftarrow min[1, PktWt_{i-1}^j * MI(PktWt_{i-1}^j)] \text{ })$ /\* restore  $PktWt^{j}$  close to 1.0 \*/ At congestion notification time  $PktWt_i^j \leftarrow \frac{(maxPktwt^j - 1)(1 - Pktwt_{i-1}^j)}{(1 - minPktWt^j)} + 1 \qquad \text{if } PktWt_{i-1}^j < 1.$ /\* The smaller the  $PktWt^j$  just before LCN, the bigger it will be during congestion period. A uniform mapping of  $[minPktWt^{j}, 1]$  on to  $(1, maxPktWt^{j}]$  intervals \*/ 250 During congestion period  $PktWt_{i}^{j} \leftarrow PktWt_{i-1}^{j} * MI(PktWt_{i-1}^{j}) \text{ if } PktWt_{i-1}^{j} \neq 1$ On receipt of congestion clearance notification Select a random time less than RTT and,  $PktWt_{i}^{j} \leftarrow PktWt_{i-1}^{j} * MD(PktWt_{i-1}^{j})$  220

Fig. **6**(b)



Fig. 7

VARYING OF PKT\_WT WITH DEMAND AND LCN MESSAGES



Fig. **B**STATE DIAGRAM OF PKTWT DYNAMICS



Fig.  $\bf 9$ The simulation setup

Fig. 10

Performance of the proposed DCM Scheme

|                   | Non feedback scheme    | DCM scheme       |            |               |                                                    |
|-------------------|------------------------|------------------|------------|---------------|----------------------------------------------------|
| i∏<br> ≟          | RED (core), % pkt loss | % of packet loss |            |               |                                                    |
| Util-             | at core                | at core          | at ingress | overall loss  | Overall improvement with DCM                       |
| <b>Z</b> ation    | nodes (x)              | nodes            | TBFs       | core+TBFs (y) | (relative reduction $\frac{(x-y)}{x}$ in pkt loss) |
| 0.5               | 3.88                   | 1.0859           | 1.4889     | 2.5748        | 33.76                                              |
| 0.5<br>0.6<br>0.7 | 8.00                   | 2.1948           | 2.7775     | 4.9723        | 37.87                                              |
| 0.7               | 11.4                   | 2.8461           | 3.9036     | 6.7498        | 40.79                                              |
| 0.8               | 12.8                   | 2.8148           | 4.5384     | 7.3531        | 42.55                                              |
| 0.9               | 14.1                   | 2.7192           | 6.3322     | 9.0514        | 35.81                                              |
| 1.0               | 16.6                   | 2.6678           | 7.6945     | 10.3623       | 37.59                                              |
| 1.1               | 18.3                   | 2.9650           | 10.3028    | 13.2677       | 27.54                                              |
| 1.2               | 19.3                   | 2.8883           | 11.4976    | 14.3858       | 25.49                                              |
| 1.3               | 20.76                  | 2.8530           | 12.7693    | 15.6223       | 24.75                                              |

## Fig 11

## DELAY PERFORMANCE OF THE DCM SCHEME

| Utilization | Average delay (seconds) at ingress TBFs |  |  |  |  |
|-------------|-----------------------------------------|--|--|--|--|
| 0.8         | 0.771937                                |  |  |  |  |
| 0.9         | 0.924975                                |  |  |  |  |
| 1.0         | 1.007773                                |  |  |  |  |
| 1.1         | 1.273592                                |  |  |  |  |
| 1.2         | 1.339390                                |  |  |  |  |
| 1.3         | 1.389371                                |  |  |  |  |





(a) Ave. queue size at an ingress node;

(b) PktWt distribution; util. = 0.8

Fig. 12



DISTRIBUTION OF PACKET DROP PHASE DURATION AT THE CORE NODES WITH NON-DCM SCHEME



DISTRIBUTION OF PACKET DROP PHASE DURATION AT THE CORE NODES WITH DCM SCHEME



PERFORMANCE OF THE DCM SCHEME WITH DOMAIN-RTT VARIATION