Procédures de qualification **Télématicienne CFC**

Télématicienne CFC Télématicien CFC

Connaissances professionnelles écrites

Pos. 5 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 60 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche (sans banque

de données), règle, cercle, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiple, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

 Si dans un exercice on demande plusieurs réponses vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombre de points maximum: 39,0

37,5 - 39,0	Points = Note	6,0
33,5 - 37,0	Points = Note	5,5
29,5 - 33,0	Points = Note	5,0
25,5 - 29,0	Points = Note	4,5
21,5 - 25,0	Points = Note	4,0
18,0 - 21,0	Points = Note	3,5
14,0 - 17,5	Points = Note	3,0
10,0 - 13,5	Points = Note	2,5
6,0 - 9,5	Points = Note	2,0
2,0 - 5,5	Points = Note	1,5
0.0 - 1.5	Points = Note	1.0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice

avant le 1^{er} septembre 2013.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Télématicienne CFC / Télématicien CFC

Editeur: CSFO, département procédures de qualification, Berne

EFA_12_TM_Techn_systèmes_élec_FS

Exer	cices	Nombre d	e points obtenus
	Plan de formation 6.3.3, Bloom 3		
1.	Soit le schéma de résistances suivant :	4	
	U _G a		
	Ra = 12Ω Rb = 20Ω		
	$RD = 20 \Omega$ $Rc = 10 \Omega$		
	$Rd = 30 \Omega$		
	 Redessinez d'abord le schéma de résistances de façon plus claire. Les éléments doivent être dessinés verticaux ou horizontaux, et leurs valeurs doivent figurer à côté. [2] 		
	U _G c		
	b) Calculez la tension aux bornes de chaque résistance, rapportée à la tension $U_G.$		
	$U_d = \underline{\underline{U_G}}$		
	$R_{ab} = \frac{1}{\frac{1}{R_a} + \frac{1}{R_b}} = \frac{1}{\frac{1}{12 \Omega} + \frac{1}{20 \Omega}} = 7,5 \Omega$		
	$U_c = U_G \cdot \frac{R_c}{R_c + R_{ab}} = U_G \cdot \frac{10 \Omega}{10 \Omega + 7.5 \Omega} = \underbrace{\frac{0.571 \cdot U_G}{10 \Omega}}_{}$		
	$U_{a} = U_{b} = U_{G} \cdot \frac{R_{ab}}{R_{c} + R_{ab}} = U_{G} \cdot \frac{7,5 \Omega}{10 \Omega + 7,5 \Omega} = \frac{0,429 \cdot U_{G}}{}$		

Exe	cices	Nombre d	e points obtenus	
2.	Plan de formation 6.2.1, Bloom 2 Le patron d'une menuiserie se plaint de perdre systématiquement des appels téléphoniques. Le télématicien propose la solution d'installer une corne d'appel.	2		
	Calculez la chute de tension sur le conducteur en cuivre alimentant cette corne d'appel depuis un relais courant fort. La section du fil est de 1,5 mm². Le courant circulant dans ce conducteur est de 1,8 A.			
	Relais courant fort $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$R_{conducteur} = \frac{\rho \cdot I}{A} = \frac{0,0175 \frac{\Omega m m^2}{m} \cdot 53 m \cdot 2}{1,5 m m^2} = 1,23\overline{6} \Omega$			
	$U_{conducteur} = R_{conducteur} \cdot I = 1,23\overline{6} \Omega \cdot 1,8 A = 2.22 V$			

Exer	cices	Nombre o	de points obtenus
	Plan de formation 6.3.5, Bloom 1		Obtonido
3.	Le signal représenté ci-dessous correspond à l'affichage d'un oscilloscope.	3	
	U		
	1 division (1 carré) = 0,5 V		
	1 division (1 carré) = 100 μs		
	Définissez :		
	a) la valeur de crête û		
	$\hat{\mathbf{u}} = 4 \cdot 0,5 \ \mathbf{V} = 2 \ \mathbf{V}$	(1)	
	b) la valeur efficace U _{eff}		
	1 1		
	$U_{\text{eff}} = \frac{1}{\sqrt{2}} \cdot \hat{\mathbf{u}} = \frac{1}{\sqrt{2}} \cdot 2 \text{ V} = \underbrace{\frac{1,414 \text{ V}}{====}}$	(1)	
	v= v=		
	c) la fréquence f		
	La période T de la sinusoïde est représentée par 15 divisions à		
	100 μs/division, soit 1,5 ms.		
	. 1 1 =		
	$f = \frac{1}{T} = \frac{1}{1,5 \text{ ms}} = \frac{666, \overline{6} \text{ Hz}}{2}$	(1)	

rercices	Nombre o	le point
	maximal	obtenu
Plan de formation 6.3.1, Bloom 3 Soit le schéma ci-dessous, représentant une ligne de transmission :	4	
Soit le schéma ci-dessous, représentant une ligne de transmission :	4	
15.0		
15 Ω 0,7 H		
$\pm 5 \mu\text{F}$		
V Voltmetre V Voltmetre		
▼ 15 Ω 0,7 H → 5 μ1		
'		
On admettra que le voltmètre a une résistance interne infinie.		
Calculez la tension aux bornes du voltmètre, pour une fréquence de 25 Hz.		
Décistance non industance : V		
Résistance par inductance : $X_L = \omega \cdot L = 2\pi \cdot 25 \text{ Hz} \cdot 0.7 \text{ H} = 109.956 \Omega$		
Résistance par condensateur : $X_C = \frac{1}{\omega \cdot C} = \frac{1}{2\pi \cdot 25 \text{ Hz} \cdot 5 \mu\text{F}} = 1273,237 \Omega$		
$\omega \cdot C = 2\pi \cdot 25 \text{ Hz} \cdot 5 \mu\text{F}$		
Déciatores tatals du circuit :		
Résistance totale du circuit :	``	
$Z_{TOT} = \sqrt{(2 \cdot R)^2 + (2 \cdot X_C - 2 \cdot X_L)^2} = \sqrt{(2 \cdot 15 \Omega)^2 + (2 \cdot 1273,237 \Omega - 2 \cdot 109,956 \Omega)^2}$	2)2	
$Z_{TOT} = 2326,755 \Omega$		
11 70 V		
Courant circulant : $I = \frac{U}{Z_{TOT}} = \frac{70 \text{ V}}{2326,755 \Omega} = 30,085 \text{ mA}$		
Z _{TOT} 2326,755 Ω		
U sur voltmètre : $U_{voltmètre} = I \cdot X_C \cdot 2 = 0,030085 \text{ A} \cdot 1273,237 \Omega \cdot 2 = 76,61 \text{ V}$		
U 3ul Voltmetre : V _V oltmètre = 1 · A _C · 2 = 0,030003 A · 1273,237 12 · 2 = 70,01 V		
Indication pour l'expert : répartition des points		
- Résistance par inductance : 1 pt		
- Résistance par condensateur : 1 pt		
- Résistance totale : 1 pt		
- Courant et tension sur le voltmètre : 1 pt		
		1

ercices	s	Nombre o	le point obtenu
Une suiv	n de formation 6.3.2, Bloom 2 semaine (7 j) de mesures sur un répartiteur d'étage (RE) donne les résultats ants : énergie consommée : 63 kWh. Les valeurs efficaces de la tension et courant sont : 2,3 A et 232 V.	2	
a)	Déterminez la puissance active moyenne du répartiteur ?		
	Puissance active : $P = \frac{W}{t} = \frac{63 \text{ kWh}}{7 \text{ j} \cdot \frac{24 \text{ h}}{j}} = \frac{375 \text{ W}}{}$	(1)	
b) de	Calculer le coût mensuel (30 j) de l'énergie consommée pour un prix kWh 23 ct.		
	Energie mensuelle consommée :	(4)	
	$W = 63 \text{ kWh} \cdot \frac{30 \text{ j}}{7 \text{ j}} = 270 \text{ kWh}$	(1)	
	Coût mensuel de l'énergie :		
	C = W · k = 270 kWh · 23 $\frac{\text{ct}}{\text{kWh}}$ = $\frac{6210 \text{ ct} = \text{Fr.62,10}}{\text{model}}$		

ices Plan de forr	mation 6.4.3 Bloom 1			Nombre maximal	
Complétez	lan de formation 6.4.3, Bloom 1 Complétez le tableau ci-dessous en effectuant les conversions.				
	Binaire	Décimal	Hexadécimal		
1)	11011010	218	DA		
2)	1000000001	1025	401		
3)	110110100011	3491	DA3		
	1				

xercices	Nombre o	e points obtenus
Plan de formation 6.3.1, Bloom 2 7. Développez un signal dérivé du signal ci-dessous et représentant l'harmonique 2 de cette fondamentale, en retard de 180° et à 50% d'amplitude.	3	
Indication pour l'expert : répartition des points		
- Harmonique 2 : 1 pt - Décalage de la phase : 1 pt - Amplitude : 1 pt		

Exer	cices	Nombre o	le points obtenus
8.	Plan de formation 6.3.2, Bloom 2 Soient deux consommateurs. Consommateur 1 : $P_1 = 25$ W, $Q_1 = 30$ var inductif Consommateur 2 : $P_2 = 25$ W, $Q_2 = 80$ var capacitif	4	
	 Faites un croquis du triangle des puissances utilisées par ces 2 consommateurs en parallèle. 		
	$Q_1 = 30 \text{ var}$ $Q_1 = 25 \text{ W}$ $Q_2 = 80 \text{ var}$	(1)	
	b) Calculez la puissance apparente totale. $S = \sqrt{P^2 + Q^2} = \sqrt{(50 \text{ W})^2 + (80 \text{ var} - 30 \text{ var})^2} = \underline{70,71 \text{ VA}}$	(1)	
	c) Calculez le cos φ de ce circuit. $\cos \varphi = \frac{P}{S} = \frac{50 \text{ W}}{70.71 \text{ VA}} = \underline{0,707}$	(1)	
	d) Ce circuit est-il inductif ou capacitif ? capacitif	(1)	
	Indication pour l'expert : d'autre croquis justes sont aussi acceptés !		

rcice	S	Nombre d maximal	obteni
	de formation 6.3.6, Bloom 1 et 2	maximai	Obtent
a)		2	
'	and the first of the second se		
	C'est la vitesse de propagation de l'électricité dans un câble,		
	rapportée à la vitesse de la lumière.	(1)	
b)	Quel est le temps de propagation (en µs) d'un signal sur un câble ayant		
	une valeur NVP de 0,77, pour une longueur de câble de 100 m?		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	Vitesse de la lumière : 300'000 km/s = 300'000'000 m/s	(4)	
	100	(1)	
	$t = \frac{1}{100 \text{ m}} = \frac{100 \text{ m}}{100 \text{ m}} = 432.9 \text{ ns} = 0.4329 \text{ µs}$		
	$t = \frac{I}{NVP \cdot c} = \frac{100 \text{ m}}{0.77 \cdot 300'000'000 \frac{m}{a}} = 432.9 \text{ ns} = \frac{0.4329 \text{ µs}}{10.000'000'000}$		
	s		
1			

Nombre de points maximal obtenus Exercices Plan de formation 6.4.1, Bloom 3

11. Le circuit ci-dessous représente une combinaison logique.

Les entrées U₁₁ et U₁₂ peuvent être raccordées soit :

à la masse (0 V)

"= 0 logique"

à +5 V

ouvert

"= 1 logique" "= 1 logique"

On admet que si :

• $U_2 \ge 4 \text{ V}$ \Rightarrow "= 1 logique"

• $U_2 \le 1 \text{ V}$ \Rightarrow "= 0 logique"

Evaluez les affirmations suivantes comme justes ou fausses :

Vrai	Faux	
	X	Le circuit correspond à une porte logique OU
X		Le circuit correspond à une porte logique ET
	X	Lorsque U_{11} et U_{12} = 0, la sortie = 1
X		Lorsque $U_{11} = 0$ et $U_{12} = 1$, la sortie = 0
	Х	Lorsque U_{11} et U_{12} = 1, la sortie = 0
	Х	Lorsque U ₁₁ et U ₁₂ ne sont pas alimentées, la sortie =
	^	+5 V

6

Exer	cice	5	Nombre o	le points obtenus
12.	Un s	n de formation 6.3.1, Bloom 3 switch Zyxel GS2200-24P est utilisé pour raccorder des téléphones VoIP k sur IP).	3	
	Ci-d	essous un extrait des caractéristiques de ce switch :		
	Zyxel GS2200-24 Switch administrable Layer 2 10/100/1000 · 24x Gigabit-LAN, 4x miniGBIC/RJ-45 · Administrable via interface WEB · Diverses caractéristiques d'exploitation Layer-3			
		Mode classification : le switch alloue à chaque appareil connecté la puissance (W) correspondante à sa classe PoE. Le budget total pour cela est de 220 W.		
	a)	En admettant que tous les téléphones raccordés soient de la classe PoE3 (selon la norme 802.3af : consommation maximale à la sortie du switch 15,4 W), combien de téléphones peuvent être raccordés simultanément ?		
		Nombre de téléphones : $\frac{220 \text{ W}}{15,4 \text{ W/tél}} = \frac{14,28}{15,4 \text{ W/tél}}$, donc $\frac{14 \text{ téléphones}}{15,4 \text{ W/tél}}$	(1)	
	b)	Quelle sera la puissance maximale consommée par le switch, en admettant que sa puissance propre soit de 48 W ?		
		Pmax = 220 W + 48 W = <u>268 W</u>	(1)	
	c)	Quelle sera la solution si tous les ports du switch doivent alimenter un téléphone VoIP en classe PoE 3 ?		
		Alimenter une partie des téléphones localement. Installer un deuxième switch PoE	(1)	
		Total	39	