## Seminar 10

**1.** Let  $f \in End_{\mathbb{R}}(\mathbb{R}^3)$  be defined by

$$f(x, y, z) = (x + y, y - z, 2x + y + z).$$

Determine the matrix  $[f]_E$ , where  $E = (e_1, e_2, e_3)$  is the canonical basis for  $\mathbb{R}^3$ .

**2.** Let  $f \in Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^2)$  be defined by

$$f(x, y, z) = (y, -x)$$

and consider the bases  $B = (v_1, v_2, v_3) = ((1, 1, 0), (0, 1, 1), (1, 0, 1))$  of  $\mathbb{R}^3$ ,  $B' = (v'_1, v'_2) = ((1, 1), (1, -2))$  of  $\mathbb{R}^2$  and let  $E' = (e'_1, e'_2)$  be the canonical basis of  $\mathbb{R}^2$ . Determine the matrices  $[f]_{BE'}$  and  $[f]_{BB'}$ .

**3.** Let  $f \in Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^4)$  be defined by

$$f(e_1) = (1, 2, 3, 4), f(e_2) = (4, 3, 2, 1), f(e_3) = (-2, 1, 4, 1)$$

on the elements of the canonical basis of  $\mathbb{R}^3$ . Determine:

- (i) f(v) for every  $v \in \mathbb{R}^3$ .
- (ii) the matrix of f in the canonical bases.
- (iii) a basis and the dimension of Ker f and Im f.
- **4.** Let  $f \in End_{\mathbb{R}}(\mathbb{R}^4)$  with the following matrix in the canonical basis E of  $\mathbb{R}^4$ :

$$[f]_E = \begin{pmatrix} 1 & 1 & -3 & 2 \\ -1 & 1 & 1 & 4 \\ 2 & 1 & -5 & 1 \\ 1 & 2 & -4 & 5 \end{pmatrix}.$$

- (i) Show that  $v = (1, 4, 1, -1) \in Ker f$  and  $v' = (2, -2, 4, 2) \in Im f$ .
- (ii) Determine a basis and the dimension of Ker f and Im f.
- (iii) Define f.
- **5.** Consider the real vector space  $\mathbb{R}_2[X] = \{f \in \mathbb{R}[X] \mid degree(f) \leq 2\}$  and its bases  $E = (1, X, X^2)$  and  $B = (1, X 1, X^2 + 1)$ . Consider  $\varphi \in End_{\mathbb{R}}(\mathbb{R}_2[X])$  defined by

$$\varphi(a_0 + a_1X + a_2X^2) = (a_0 + a_1) + (a_1 + a_2)X + (a_0 + a_2)X^2.$$

## Determine the matrices $[\varphi]_E$ and $[\varphi]_B$ .

- **6.** In the real vector space  $\mathbb{R}^2$  consider the bases  $B=(v_1,v_2)=((1,2),(1,3))$  and  $B'=(v_1',v_2')=((1,0),(2,1))$  and let  $f,g\in End_{\mathbb{R}}(\mathbb{R}^2)$  having the matrices  $[f]_B=\begin{pmatrix} 1 & 2\\ -1 & -1 \end{pmatrix}$  and  $[g]_{B'}=\begin{pmatrix} -7 & -13\\ 5 & 7 \end{pmatrix}$ . Determine the matrices  $[2f]_B$ ,  $[f+g]_B$  and  $[f\circ g]_{B'}$ .
  - 7. Consider the endomorphism  $f: \mathbb{R}^2 \to \mathbb{R}^2$ , defined by

$$f(x,y) = (x\cos\alpha - y\sin\alpha, x\sin\alpha + y\cos\alpha) \quad (\alpha \in \mathbb{R}).$$

Write its matrix in the canonical basis of  $\mathbb{R}^2$  and show that f is an automorphism.

**8.** Let V be a vector space of dimension 2 over the field  $K = \mathbb{Z}_2$ . Determine |V|,  $|End_K(V)|$  and  $|Aut_K(V)|$ .

[Hint: use the isomorphism between  $End_K(V)$  and  $M_n(K)$ , where  $dim_K(V) = n$ .]