Total No. of Pages: 3

Seat	
No.	

F.Y. B. Tech. (All Branches) (Semester - I & II) (CBCS) Examination, December - 2019 BASIC ELECTRICAL ENGINEERING

Sub. Code: 71812 Day and Date : Tuesday, 3 - 12 - 2019 Total Marks: 70 Time: 2.30 p.m. to 5.00 p.m. Instructions: 1) Attempt 3 Questions from each section. Figures to the right indicates full marks. 2) Draw a neat labeled diagrams as a part of explanation. 3) In case of any missing data, assume suitable value, state it clearly. 4) **SECTION - I** Define the terms and their units-Q1) a) [6] E.M.F. i) Potential Difference iii) Current b) Two batteries A & B are connected in parallel across a load resistance of 6Ω . The emf & internal resistance of battery A & B are 32 volts, 4Ω and 36 volts, 6Ω respectively, using mesh or node analysis, [6] Find i) Current in battery A Current in battery B ii) Current in load resistance Define -[6] **Q2**) a) Magnetic Field strength i) Magnetic flux density ii) iii) Reluctance Explain the concept of magnetic leakage & fringing [5] b)

P.T.O.

Q3)	a) b)	Derive the expression for RMS value by analytical method. [5] A series R-L-C circuit connected across 250 volts 50 Hz ac supply draws a surrent of 10 arm at 0.8 names factor. If the consistence is of
		draws a current of 10 amp at 0.8 power factor. If the capacitance is of 419 microfarad, Find [6]
		i) Resistance
		ii) Inductance
		iii) Power
Q4)	Ans	wer any two.
	a)	Explain Kirchhoff's Laws. [6]
	b)	
	8000	circuit. [6]
	c)	Prove that average power consumed by pure inductor is zero. [6]
		SECTION - II
Q5)	a)	Explain the terms: Line voltage, Line current, Phase voltage, Phase current. [6]
	b)	Prove that line Voltage = $\sqrt{3}$ Phase Phase voltage in star connected circuit. [6]
Q6)	a)	Describe construction & working of fluorescent lamp. Also state its applications. [5]
	b)	Why earthing is necessary in a wiring installation? Briefly explain any one method of Earthing. [6]
Q7)	a)	State the principle on which transformer works. Describe with a neat sketch constructional features of core type transformer. [5]
	b)	A 50 KVA, 3000/600 volts, 50 hz single phase transformer has 200 turns on secondary winding. Calculate [6]
		i) Primary & secondary currents on full load
		ii) The number of primary turns
		- · · · · · · · · · · · · · · · · · · ·
		iii) The maximum value of flux

O8)	Answer	any	Two.
/			

a)	What are the advantages of 3 phase system over single-phase system?
	[6]

- b) A 400/800 V, 50 Hz single phase transformer operates on rated supply at no load by taking 2 A at 0.6 pf. The emf per turn is 4 V. Find [6]
 - i) Maximum flux in core
 - ii) Secondary winding turns
 - iii) Iron loss
- c) Draw single line diagram of typical power system and explain the stages involved in transmission of Electrical power from generating station to consumer premises.

•		_		_
ı	6	1.4		1.0
ı		1	1.	- 3