Алгебра.

Лектор — В. А. Петров Создатель конспекта — Глеб Минаев *

TODOs

Содержание

1	Основные понятия.	1
2	Теория делимости	3
3	Идеалы и морфизмы	6
4	Многочлены	10
5	Теория категорий 5.1 Мономорфизмы и эпиморфизмы	15 22
	Литература:	
	• Ван дер Варден, "Алгебра".	
	• Лэнг, "Алгебра".	
	• Винберг, "Курс Алгебры".	
	• Маклейн, "Категории для работающего математика".	

Немного истории

Зарождение — Аль Хорезин, "Китхаб Альджебр валь мукабалт". "Альджебр" значит "перенос из одной части уравнения в другую", а "мукабалт" — "приведение подобных".

1 Основные понятия.

Определение 1. Алгебраическая структура — это множество M + заданные на нём операции + аксиомы на операциях.

Определение 2. Абелева группа — набор $(M, + : M^2 \to M)$ с аксиомами:

 $^{^*}$ Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

- A_1) $\forall a, b, c \in M : (a + b) + c = a + (b + c)$ ассоциативность сложения
- A_2) $\exists 0 \in M : \forall a \in M : a + 0 = a = 0 + a$ нейтральный по сложению элемент
- A_3) $\forall a, b \in M : a + b = b + a$ коммутативность сложения
- A_4) $\forall a \in M : \exists -a : a + (-a) = 0 = (-a) + a$ существование противоположного

Определение 3. Опишем следующие аксиомы на наборе $(M,+:M^2\to M,\cdot:M^2\to M)$ в добавок к A_1,\ldots,A_4 :

- D) $\forall a, b, k \in M : k(a+b) = ka + kb, (a+b)k = ak + bk$ дистрибутивность
- M_1) $\forall a, b, c \in M : (a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения
- M_2) $\exists 1 \in M : \forall a \in M : a \cdot 1 = a = 1 \cdot a$ нейтральный по умножению элемент
- M_3) $\forall a, b \in M : a \cdot b = b \cdot a$ коммутативность умножения
- M_4) $\forall a \in M \setminus \{0\} : \exists a^{-1} : a \cdot a^{-1} = 1 = a^{-1} \cdot a$ существование обратного

По этим аксиомам определим следующие понятия:

Кольцо — набор $(M, +, \cdot, 0)$, что верны A_1, A_2, A_3, A_4 и D.

Ассоциативное кольцо — кольцо с M₁.

Кольцо с единицей — кольцо с M_2 .

Тело — кольцо с M_1 , M_2 , M_4 .

Поле — кольцо с M_1 , M_2 , M_3 , M_4 .

 $\mathbf{\Pi}$ олукольцо — кольцо без A_4 .

 $\Pi pumep 1.$ Если взять \mathbb{R}^3 , то векторное произведение в нём неассоциативно и антикоммутативно. Но есть

Пример 2. Если взять $R^4 = R \times R^3$ и рассмотреть $\cdot : ((a;u);(b;v)) \mapsto (ab-u \cdot v;av+bu+u \times v)$ и $+ : ((a;u);(b;v)) \mapsto (a+b,u+v)$, тогда получим \mathbb{H} — ассоциативное некоммутативное тело кватернионов. Ассоциативность доказал Гамильтон.

Лемма 1. $0 \cdot a = 0$

Определение 4. Коммутативное кольцо без делителей нуля называется *областью (целостности)*.

Определение 5. Пусть $m \in \mathbb{N}$. Тогда множество остатков при делении на m или $\mathbb{Z}/m\mathbb{Z}$ — это фактор-множество по отношению эквивалентности $a \sim b \Leftrightarrow (a-b) \mid m$.

Определение 6. Подкольцо — это подмножество кольца, согласованное с его операциями. Как следствие ноль и обратимость согласуются автоматически.

Утверждение 2. Если R — подкольцо области целостности S, то R — область целостности.

Определение 7. Целые Гауссовы числа или $\mathbb{Z}[i]$ — это $\{a+bi \mid a,b \in \mathbb{Z}\}$.

Определение 8. Некоторое подмножество R кольца S замкнуто относительно сложения (умножения), если $\forall a, b \in R : a + b \in R \ (ab \in R \ \text{соответственно}).$

3амечание 1. 3амкнутое относительно сложения **И** умножения подмножество — подкольцо.

 Π ример 3. Пусть d — целое, не квадрат. Тогда $\mathbb{Z}[\sqrt{d}]$ — область целостности.

2 Теория делимости

Пусть R — область целостности.

Определение 9. "a делит b" или же $a \mid b$ значит, что $\exists c \in R : b = ac$.

Утверждение 3. Отношение "|" рефлексивно и транзитивно.

Определение 10. *a* и *b ассоциированы*, если $a \mid b$ и $b \mid a$. Обозначение: $a \sim b$.

Утверждение 4. " \sim " — отношение эквивалентности.

Утверждение 5. $a \sim b \Leftrightarrow \exists \ \textit{обратимый } \varepsilon : a = \varepsilon b.$

Доказательство. Пусть $a \sim b$. Тогда $\exists c, d : ac = b, bd = a$. Тогда a(1-cd) = a - acd = a - bd = a - a = 0, значит либо a = 0, либо cd = 1. В первом случае b = ac = 0c = 0, значит можно просто взять $\varepsilon = 1$. Во втором случае, cd = 1, значит c и d обратимы, тогда можно взять $\varepsilon = d$. следствие в одну сторону доказано.

Пусть $a = \varepsilon b$, где ε обратим. Значит:

- 1. $b \mid a;$
- 2. $\exists \delta : \delta \varepsilon = 1$, значит $\delta a = \delta \varepsilon b = b$, значит $a \mid b$.

Таким образом $a \sim b$.

 $\Pi pumep \ 4. \ B \ \mathbb{Z}[i]$ есть только следующие обратимые элементы: $1, \ -1, \ i \ u \ -i.$ Поэтому все ассоциативные элементы получаются друг из друга домножением на один из $1, \ -1, \ i, \ -i \ u$ вместе образуют квадрат (на комплексной плоскоти) с центром в нуле.

Определение 11. Главным идеалом элемента a называется множество $M := \{ak \mid k \in R\} = \{b \mid a$ делит $b\}$. Обозначение: (a) или aR.

Утверждение 6. $a \mid b \Leftrightarrow b \in aR \Leftrightarrow bR \subseteq aR$.

Утверждение 7. $a \sim b \Leftrightarrow aR = bR$.

Утверждение 8. $\forall a \in R$

- 1. $0 \in aR$
- 2. $x \in aR \Rightarrow -x \in aR$
- 3. $x, y \in aR \Rightarrow x + y \in aR$
- 4. $x \in aR, r \in R \Rightarrow xr \in aR$

3 a мечание 2. То же верно и в некоммутативном R.

 Π ример 5. В поле есть только 0R и 1R.

 $\Pi pumep 6. \ B \ \mathbb{Z} \ ecть только <math>m\mathbb{Z}$ для каждого $m \in \mathbb{N} \cup \{0\}.$

Определение 12. Пусть P — кольцо. $I \subseteq P$ называется *правым идеалом*, если

- 1. $0 \in I$;
- 2. $a, b \in I \Rightarrow a + b \in I$;

- 3. $a \in I \Rightarrow -a \in I$;
- 4. $a \in I, r \in R \Rightarrow ar \in I$.

I называется левым идеалом, если аксиому 4 заменить на " $a \in I, r \in R \Rightarrow ra \in I$ ". Также I называется двухсторонним идеалом, если является левым и правым идеалом, и обозначается как $I \triangleleft P$.

Замечание 3. В коммутативном кольце (и в частности в области целостности) все идеалы двухсторонние.

 $\Pi p u м e p 7.$ Пусть дано кольцо P и фиксированы $a_1, \ldots, a_n \in P$. Тогда $a_1 P + \cdots + a_n P = \{a_1 x_1 + \cdots + a_n x_n \mid x_1, \ldots, x_n \in P\}$ есть правый (конечнопорождённый) идеал, порождённый элементами a_1, \ldots, a_n . Аналогично $Pa_1 + \cdots + Pa_n = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \ldots, x_n \in P\}$ — левый (конечнопорождённый) идеал, порождённый элементами a_1, \ldots, a_n .

Определение 13. Область главных идеалов $(O\Gamma U)$ — область целостности, где все идеалы главные.

Определение 14. Область целостности R называется $E \epsilon \kappa n u \partial o \delta o \tilde{u}$, если существует функция ("Евклидова норма") $N: R \setminus \{0\} \to \mathbb{N}$, что

$$\forall a, b \neq 0 \ \exists q, r : a = bq + r \land (r = 0 \lor N(r) < N(b))$$

Теорема 9. Евклидово кольцо — область главных идеалов.

Доказательство. Пусть наше кольцо — R. Если $I = \{0\}$, то I = 0R. Иначе возьмём $d \in I \setminus \{0\}$ с минимальной Евклидовой нормой. Тогда $\forall a \in I$ либо $d \mid a$, либо $\exists q, r : a = dq - r$. Во втором случае $dq \in I$, $r = a - dq \in I$, но N(r) < N(d) — противоречие. Значит I = dR.

Определение 15. Общим делителем a и b называется c, что $c \mid a$ и $c \mid b$. Наибольшим общим делителем (НОД) a и b называется общий делитель a и b, делящийся на все другие общие делители a и b.

Теорема 10 (алгоритм Евклида). В Евклидовом кольце у любых двух чисел есть НОД.

Доказательство. Заметим, что (a, b) = (a + bk, b).

Пусть даны a и b. Предположим, что $\varphi(a) \geqslant \varphi(b)$, иначе поменяем их местами. Тем самым по аксиоме Евклида найдутся q и r, что a = bq + r, а $\varphi(r) < \varphi(b) \leqslant \varphi(a)$, значит $\varphi(a) + \varphi(b) > \varphi(r) + \varphi(b)$. При этом (a,b) = (r,b). Значит бесконечно $\varphi(a) + \varphi(b)$ не может бесконечного уменьшаться, так как натурально, значит за конечное кол-во переходов мы получим, что одно из чисел делит другое, а значит НОД стал определён.

Теорема 11 (линейное представление НОД). $\forall a, b \in R \; \exists p, q \in R : ap + bq = (a, b).$

Доказательство. Докажем по индукции по N(a) + N(b).

База. N(a) + N(b) = 0. Значит N(a) = N(b) = 0, а тогда a и b не могут не делиться друг на друга, значит НОД — любой из них. А в этом случае разложение очевидно.

Шаг. WLOG $N(a) \geqslant N(b)$. Если $b \mid a$, то b - HOД, а тогда разложение очевидно. Иначе по аксиоме Евклида $\exists q, r: a = bq + r$. Заметим, что (a,b) = (b,r) = d, но $N(a) + N(b) \geqslant N(b) + N(b) > N(b) + N(r)$. Таким образом по предположению индукции для b и r получаем, что d = bk + rl для некоторых k и l, значит d = bk + (a - bq)l = al + b(k - ql).

Определение 16. Элемент p области целостности R называется nenpusodumum, если $\forall d \mid p$ либо $d \sim 1$, либо $d \sim p$.

Определение 17. Элемент p области целостности R называется npocmым, если из условия $p \mid ab$ следует, что $p \mid a$ или $p \mid b$. **Утверждение 12.** Любое простое неприводимо. Доказательство. Предположим противное, т.е. некоторое простое p представляется в виде произведения неделителей единицы a и b. Тогда WLOG $p \mid a$. Значит $p \sim a$, а $b \sim 1$ — противоречие. **Утверждение 13.** В области главных идеалов неприводимые просты. **Доказательство.** Пусть неприводимое p делит ab. Пусть тогда pR + aR = dR. В таком случае $d \sim p$, значит либо $d \sim p$, либо $d \sim 1$. Если $d \sim p$, то $p \mid a$. Иначе px + ay = 1, значит pxb + aby = b. Ho $p \mid pxb$ и $p \mid aby$, значит $p \mid b$. Поскольку рассуждение не зависит от a и b, то p просто. **Определение 18.** Область целостности R удовлетворяет условию обрыва возрастающих цеneŭ главных идеалов (APCC), если не существует последовательности $d_0R \subseteq d_1R \subseteq \ldots$ Такое кольцо область целостности называют нётеровой. **Теорема 14.** ОГИ нётерова. **Доказательство.** Пусть наша область — R. Предположим противное, т.е. существует последовательность $\{a_n\}_{n=0}^{\infty}$, что a_{n+1} — собственный делитель a_n (т.е. $a_{n+1} \mid a_n \wedge a_n \nsim a_{n+1}$). Тогда $a_0R\subsetneq a_1R\subsetneq a_2R\subsetneq\dots$ Тогда $\exists x:xR=\bigcup_{n=0}^\infty a_nR$, так как это объединение — идеал. Но тогда $x \in a_i R$ для некоторого j, а значит $xR \subseteq a_i R$, а тогда $a_{i+1}R \subseteq a_i R$ — противоречие. Определение 19. Область целостности называется факториальной областью, если в нём все неприводимые просты и оно нётерово. Пример 8. ОГИ факториальна. **Теорема 15** (основная теорема арифметики). Пусть R факториально. Тогда любое число представимо единственным образом в виде произведения простых с точностью до перестановки множителей и ассоциированности. Доказательство. **Пемма 15.1.** У каждого числа есть неприводимый делитель. Доказательство. Пусть это не так. Тогда есть подъём идеалов: $a_0 = a_1b_1$, $a_1 = a_2b_2$ и т.д., значит $a_0R \subsetneq a_1R \subsetneq a_2R \subsetneq \dots$ противоречие. Лемма 15.2. Каждое число представимо в виде произведения простых. Доказательство. Пусть это не так. Тогда есть подъём идеалов: $a_0 = p_1 a_1$, где p_1 прост, $a_1 =$ p_2a_2 , где p_2 прост, и т.д., значит $a_0R \subseteq a_1R \subseteq a_2R \subseteq \ldots$ противоречие. Это доказывает существование разложения. **Пемма 15.3.** Если $p_1 \cdot \ldots p_n = q_1 \cdot \cdots \cdot q_m$ для простых $p_1, \ldots, p_n, q_1, \ldots, q_m,$ то эти два набора совпадают с точностью до перестановки и ассоциированности. **Доказательство.** Докажем индукцией по n. **База:** Для n=0 утверждение очевидно, так как тогда $1=q_1 \cdot \dots \cdot q_m$, значит m=0. **Шаг:** Несложно видеть, что $p_n \mid q_1 \cdot \dots \cdot q_m$, значит $p_n \mid q_i$ для некоторого i, значит $p_n \sim q_i$. Переставим q_k , что $q'_m = q_i$. Значит $p_1 \cdot \dots \cdot p_{n-1} = q'_1 \cdot \dots \cdot q'_{m-1}$. По предположению индукции эти два набора совпадают с точностью до перестановки и ассоциированности, значит таковы и начальные наборы.

Это доказывает единственность разложения.

3 Идеалы и морфизмы

Теорема 16. Пусть даны $I \triangleleft R$ и $a \sim b \Leftrightarrow a - b \in I$. Тогда $\sim -$ отношение эквивалентности, $a \ R/I := R/\sim -$ кольцо.

Доказательство. Проверим, что \sim — отношение эквивалентности:

- $a a = 0 \in I$, значит $a \sim a$;
- $a \sim b$, значит $a b \in I$, значит $b a = -(a b) \in I$, значит $a \sim a$;
- $a \sim b, b \sim c$, значит $a-b \in I, b-c \in I$, значит $a-c = (a-b) + (b-c) \in I$, значит $a \sim c$.

Определим на R/I операции сложения и умножения, нуля, противоположного, единицы и обратного:

- [a] + [b] := [a+b];
- $\bullet \ [a] \cdot [b] := [a \cdot b];$
- 0 := [0] = I:
- -[a] := [-a];
- 1 := [1];
- $[a]^{-1} := [a^{-1}].$

Покажем, что R/I — кольцо:

A₁)
$$\forall a, b, c \in R : ([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + [b + c] = [a] + ([b] + [c])$$

$$A_2$$
) $\forall a \in R : [a] + [0] = [a+0] = a = [0+a] = [0] + [a]$

A₃)
$$\forall a, b \in R : [a] + [b] = [a+b] = [b+a] = [b] + [a]$$

$$\mathbf{A}_4) \ \forall a \in R : [a] + -[a] = [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a] = -[a] + [a]$$

D)
$$\forall a, b, k \in R : [k]([a] + [b]) = [k][a + b] = [k(a + b)] = [ka + kb] = [ka] + [kb] = [k][a] + [k][b],$$
 $([a] + [b])[k] = [a + b][k] = [(a + b)k] = [ak + bk] = [ak] + [bk] = [a][k] + [b][k]$

$$\mathbf{M_1}) \ \forall a,b,c \in R : ([a] \cdot [b]) \cdot [c] = [a \cdot b] \cdot [c] = [(a \cdot b) \cdot c] = [a \cdot (b \cdot c)] = [a] \cdot [b \cdot c] = [a] \cdot ([b] \cdot [c])$$

$$M_2$$
) $\forall a \in R : [a] \cdot [1] = [a \cdot 1] = [a] = [1 \cdot a] = [1] \cdot [a]$

$$M_3$$
) $\forall a, b \in R : [a] \cdot [b] = [a \cdot b] = [b \cdot a] = [b] \cdot [a]$

$$M_4$$
) $\forall a \in R \setminus \{0\} : [a] \cdot [a]^{-1} = [a] \cdot [a^{-1}] = [a \cdot a^{-1}] = [1] = [a^{-1} \cdot a] = [a^{-1}] \cdot [a] = [a]^{-1} \cdot [a]$

Замечание 4. Доказательство для классов эквивалентности каждой аксиомы основывалось только на соответствующей аксиоме и определениях ранее.

Определение 20. Гомоморфизм — такое отображение $\varphi: R \to S$ — это отображение, сохраняющее операции:

•
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
;

- $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b);$
- $\varphi(0) = 0$;
- $\varphi(-a) = -\varphi(a)$.

Гомоморфизм кольца с 1 — гомоморфизм, что $\varphi(1) = 1$.

Утверждение 17. Композиция гомоморфизмов — гомоморфизм.

Определение 21. Пусть $f: X \to Y$. Несложно видеть, что f раскладывается в композицию сюръекции $f: X \to f(X)$ и инъекции $id: f(X) \to Y$. Тогда $\mathrm{Im}(f) = \{f(x) \mid x \in X\} -$ множеество значений f, а классы значений X, переходящих в один $y \in Y$ суть слои — $f^{-1}(y) = \{x \mid f(x) = y\}$ для некоторого y.

Определение 22. Пусть $\varphi: R \to S$ — гомоморфизм. Тогда ядром φ называется $\mathrm{Ker}(\varphi):=\{r\in R\mid \varphi(r)=0\}.$

Утверждение 18. Ядро гомоморфизма — двусторонний идеал.

Определение 23. $\varphi: S \to R - uзомор \phi uз M$, если это биективный гомомор физм.

Определение 24. Два кольца называются изоморфными, если между ними есть изоморфизм. Обозначение: $R \cong S$.

Утверждение 19. Пусть $R \cong S$. Тогда

- \bullet Если R коммутативно, то и S коммутативно.
- ullet Если R область целостности, то и S область целостности.
- $Ecnu R O\Gamma M$, mo $u S O\Gamma M$.

Утверждение 20.

- 1. $R \cong R$.
- 2. $R \cong S \Leftrightarrow S \cong R$.
- 3. $R \cong S \cong T \Rightarrow R \cong T$.

Теорема 21 (о гомоморфизме). Пусть $\varphi: R \to S$ — гомоморфизм. (Вспомним, что $\operatorname{Ker}(\varphi) \triangleleft R$, $a \operatorname{Im}(\varphi) = \varphi(R)$.) Тогда $R/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$, где изоморфизм переводит $[a] \mapsto \varphi(a)$.

$$R \xrightarrow{\varphi} S$$

$$r \mapsto [r] \downarrow \qquad \qquad \downarrow id$$

$$R / \operatorname{Ker}(\varphi) \xrightarrow{[r] \mapsto \varphi(r)} \operatorname{Im}(\varphi)$$

Доказательство.

- 1. Корректность. $[a] = [a'] \Leftrightarrow a a' \in \mathrm{Ker}(\varphi) \Leftrightarrow \varphi(a a') = 0 \Leftrightarrow \varphi(a) = \varphi(a')$. Замечание 5. Классы эквивалентности по $\mathrm{Ker}(\varphi)$ как раз слои φ .
- 2. Заметим, что работают следующие операции:
 - $[a] + [b] = [a+b] \mapsto \varphi(a) + \varphi(b) = \varphi(a+b);$
 - $[a] \cdot [b] = [a \cdot b] \mapsto \varphi(a) \cdot \varphi(b) = \varphi(a \cdot b).$
- 3. Сюръективность следует из того, что $\varphi(a) = \varphi(b) \Leftrightarrow [a] = [b]$.
- 4. Инъективность следует из того, что каждый элемент в $\text{Im}(\varphi)$ имеет прообраз.

Теорема 22 (китайская теорема об остатках (КТО) для двух чисел). Пусть m u n взаимно npocmu. $Tor\partial a$ $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Доказательство. Рассмотрим $\varphi: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}, [a]_{mn} \mapsto ([a]_m; [a]_n)$. Несложно заметить, что ядро φ тривиально, поэтому $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/mn\mathbb{Z}/\ker(\varphi) \cong \operatorname{Im}(\varphi)$. Но в последнем элементов не менее mn, так как $\operatorname{Im}(\varphi) \cong \mathbb{Z}/mn\mathbb{Z}$, но и не более, так как $|\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}| = mn$, поэтому $\operatorname{Im}(\varphi) = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, поэтому $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Теорема 23 (КТО). Пусть m_1, \ldots, m_k — попарно взаимно простые числа. Тогда

$$\mathbb{Z}/m_1 \dots m_k \cong \mathbb{Z}/m_1\mathbb{Z} \times \dots \times \mathbb{Z}/m_k\mathbb{Z}$$

Доказательство. По индукции по k с помощью КТО для двух чисел.

Теорема 24 (Универсальное свойтсво фактор-кольца). Пусть есть $I \triangleleft R$ и гомоморфизмы $\pi: R \to R/I$ — нативный гомоморфизм, $u \varphi: R \to S$, что $\pi(I) = \{0\}$. Тогда существует и единственен гомоморфизм $\varphi': R/I \to S$, что $\varphi' \circ \pi = \varphi$.

Доказательство. $\varphi'([a]) = (\varphi' \circ \pi)(a) = \varphi(a)$ — это означает единственность; так функцию и определим. Осталось показать корректность.

Несложно заметить, что если [a]=[b], то $a-b\in I$, значит $\varphi(a-b)=0$, значит $\varphi(a)=\varphi(b)$. Теперь проверим операции:

- $\bullet \ \varphi'([a]+[b])=\varphi'([a+b])=\varphi(a+b)=\varphi(a)+\varphi(b)=\varphi'([a])+\varphi'([b]).$
- $\bullet \ \varphi'([a] \cdot [b]) = \varphi'([a \cdot b]) = \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b) = \varphi'([a]) \cdot \varphi'([b])$

Определение 25. Пусть R — область целостности. Тогда рассмотрим $Q = R \times (R \setminus \{0\})$ и отношение \sim на Q, что $(a;b) \sim (c;d) \Leftrightarrow ad = bc$. Несложно видеть, что \sim — отношение эквивалентности. Тогда *полем частных* области целостности R называется $\operatorname{Frac}(R) = Q/\sim$, где операции:

• [(a;b)] + [(c;d)] := [(ad + bc;bd)];

- $[(a;b)] \cdot [(c;d)] := [(ac;bd)];$
- 0 := [(0;1)];
- -[(a;b)] := [(-a;b)];
- 1 := [(1;1)];
- $[(a;b)]^{-1} = [(b;a)].$

Несложно видеть, что все операции корректны, а поле частных — поле.

3амечание 6. Есть нативный инъективный гомоморфизм из R в Frac(R):

$$\varphi: R \to \operatorname{Frac}(R), r \mapsto [(r; 1)]$$

Теорема 25 (Уникальное свойтсво поля частных). Пусть R — область целостности, F — поле, $\varphi: R \to F$ — интективный гомоморфизм, сохраняющий $1, \pi: R \to \operatorname{Frac}(R)$ — нативный гомоморфизм. Тогда существует единственный гомоморфизм $\varphi': \operatorname{Frac}(R) \to F$, что $\varphi' \circ \pi = \varphi$.

Замечание 7. Если $\varphi: E \to F$ — гомоморфизм полей, сохраняющий 1, то он инъективен. Действительно, $\mathrm{Ker}(\varphi)$ — идеал, значит 0 или E, так как E поле, но случай E не подходит, так как не сохраняется 0, значит $\mathrm{Ker}(\varphi)=0$, значит φ инъективно.

Доказательство.

Лемма 25.1. $\varphi'(1/b) = 1/\varphi'(b)$

Доказательство. По замечанию 7 φ' — инъективен, но $\varphi'(0) = 0$, а тогда для всякого $a \neq 0$ верно, что $\varphi'(a) \neq 0$, значит $\varphi'(a) \cdot \varphi'(a^{-1}) = \varphi'(1) = 1$, значит $\varphi'(a)^{-1} = \varphi'(a^{-1})$.

Лемма **25.2.** $\varphi'(a/b) = \varphi'(a)/\varphi'(b)$.

Доказательство.
$$\varphi'(a/b) = \varphi'(a) \cdot \varphi'(b^{-1}) = \varphi'(a) \cdot \varphi'(b)^{-1} = \varphi'(a)/\varphi'(b)$$
. \square

Заметим, что $\varphi'(a)=\varphi'(\pi(a))=\varphi(a)$, поэтому $\varphi'(a/b)=\varphi(a)/\varphi(b)$ — это означает единственность φ' .

Теперь рассмотрим соответствующую $\varphi': a/b \mapsto \varphi(a)/\varphi(b)$. Проверим корректность:

$$\frac{a}{b} = \frac{c}{d} \qquad \Rightarrow \qquad ad = bc \qquad \Rightarrow \qquad \varphi(ad) = \varphi(bc) \qquad \Rightarrow$$

$$\varphi(a)\varphi(d) = \varphi(b)\varphi(c) \qquad \Rightarrow \qquad \frac{\varphi(a)}{\varphi(b)} = \frac{\varphi(c)}{\varphi(d)} \qquad \Rightarrow \qquad \varphi'\left(\frac{a}{b}\right) = \varphi'\left(\frac{c}{d}\right)$$

Теперь проверим согласованность с операциями:

$$\varphi'\left(\frac{a}{b}\cdot\frac{c}{d}\right) = \frac{\varphi(ac)}{\varphi(bd)} = \frac{\varphi(a)}{\varphi(b)}\cdot\frac{\varphi(c)}{\varphi(d)} = \varphi'\left(\frac{a}{b}\right)\cdot\varphi'\left(\frac{c}{d}\right);$$

$$\varphi'\left(\frac{a}{b} + \frac{c}{d}\right) = \varphi'\left(\frac{ad + bc}{bd}\right) = \frac{\varphi(ad + bc)}{\varphi(bd)} = \frac{\varphi(a)\varphi(d) + \varphi(b)\varphi(c)}{\varphi(b)\varphi(d)} = \frac{\varphi(a)}{\varphi(b)} + \frac{\varphi(c)}{\varphi(d)} = \varphi'\left(\frac{a}{b}\right) + \varphi'\left(\frac{c}{d}\right)$$

4 Многочлены

Теорема 26. Пусть дано кольцо R. Рассмотрим множество S финитных бесконечных последовательностей элементов из R; т.е. все такие последовательности $(a_n)_{n=0}^{\infty}$, что всякое $a_n \in R$ и есть такое N, что для всякого n > N верно, что $a_n = 0_R$. Также рассмотрим операции сложения и умножения на S:

$$+: S^{2} \to S, ((a_{n})_{n=0}^{\infty}, (b_{n})_{n=0}^{\infty}) \mapsto (a_{n} + b_{n})_{n=0}^{\infty} \cdot : S^{2} \to S, ((a_{n})_{n=0}^{\infty}, (b_{n})_{n=0}^{\infty}) \mapsto \left(\sum_{k=0}^{n} a_{k} \cdot b_{n-k}\right)_{n=0}^{\infty}$$

Tог ∂a

- 1. S является кольцом, sde + операция сложения, $\cdot -$ операция умножения, $(0_R)_{n=0}^{\infty} -$ нейтральный по сложению элемент.
- 2. S наследует от R аксиомы M_1 , M_2 u M_3 .
- 3. R изоморфно подкольцу S, состоящему из элементов вида $(a,0,0,\dots)$, где $a\in R$.

Определение 26. Множество S из прошлой теоремы называется кольцом многочленов над R и обозначается R[x]. При этом всякий его элемент $(a_n)_{n=0}^{\infty}$ обозначается как $a_0 + \cdots + a_n x^n + \cdots = \sum_{n=0}^{\infty} a_n x^n$.

Доказательство.

1. Важно сказать, что из A₁ следует корректность определения умножения. Проверим аксиомы:

A₁)
$$\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (c_n)_{n=0}^{\infty} \in S$$
:

$$((a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty}) + (c_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty} + (c_n)_{n=0}^{\infty}$$

$$= ((a_n + b_n) + c_n)_{n=0}^{\infty}$$

$$= (a_n + (b_n + c_n))_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty} + (b_n + c_n)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty} + ((b_n)_{n=0}^{\infty} + (c_n)_{n=0}^{\infty})$$

$$A_2$$
) $\forall (a_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} + (0)_{n=0}^{\infty} = (a_n + 0)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty}$$

$$= (0 + a_n)_{n=0}^{\infty}$$

$$= (0)_{n=0}^{\infty} + (a_n)_{n=0}^{\infty}$$

A₃)
$$\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \in R$$
:

$$(a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty}$$
$$= (b_n + a_n)_{n=0}^{\infty}$$
$$= (b_n)_{n=0}^{\infty} + (a_n)_{n=0}^{\infty}$$

 A_4) $\forall (a_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} + (-a_n)_{n=0}^{\infty} = (a_n + -a_n)_{n=0}^{\infty}$$

$$= (0)_{n=0}^{\infty}$$

$$= (-a_n + a_n)_{n=0}^{\infty}$$

$$= (-a_n)_{n=0}^{\infty} + (a_n)_{n=0}^{\infty}$$

D) $\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (k_n)_{n=0}^{\infty} \in R$:

$$(k_n)_{n=0}^{\infty}((a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty}) = (k_n)_{n=0}^{\infty} \cdot (a_n + b_n)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} k_t (a_{n-t} + b_{n-t})\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} k_t \cdot a_{n-t} + \sum_{t=0}^{n} k_t \cdot b_{n-t}\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} k_t \cdot a_{n-t}\right)_{n=0}^{\infty} + \left(\sum_{t=0}^{n} k_t \cdot b_{n-t}\right)_{n=0}^{\infty}$$

$$= (k_n)_{n=0}^{\infty}(a_n)_{n=0}^{\infty} + (k_n)_{n=0}^{\infty}(b_n)_{n=0}^{\infty}$$

И

$$((a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty})(k_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty} \cdot (k_n)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} (a_{n-t} + b_{n-t})k_t\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} a_{n-t} \cdot k_t + \sum_{t=0}^{n} b_{n-t} \cdot k_t\right)_{n=0}^{\infty}$$

$$= \left(\sum_{t=0}^{n} a_{n-t} \cdot k_t\right)_{n=0}^{\infty} + \left(\sum_{t=0}^{n} b_{n-t} \cdot k_t\right)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty} (k_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty} (k_n)_{n=0}^{\infty}$$

2. Проверим наследственность для каждой аксиомы:

 M_1) $\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}, (c_n)_{n=0}^{\infty} \in R$:

$$((a_{n})_{n=0}^{\infty} \cdot (b_{n})_{n=0}^{\infty}) \cdot (c_{n})_{n=0}^{\infty} = \left(\sum_{k=0}^{n} a_{k} \cdot b_{n-k}\right)_{n=0}^{\infty} \cdot (c_{n})_{n=0}^{\infty}$$

$$= \left(\sum_{k=0}^{n} \left(\sum_{l=0}^{k} a_{l} \cdot b_{k-l}\right) \cdot c_{n-k}\right)_{n=0}^{\infty}$$

$$= \left(\sum_{\substack{0 \le k \\ l \le 0 \\ k+l \le n}} (a_{k} \cdot b_{l}) \cdot c_{n-k-l}\right)_{n=0}^{\infty}$$

$$= \left(\sum_{\substack{0 \le k \\ l \le 0 \\ k+l \le n}} a_{k} \cdot (b_{l} \cdot c_{n-k-l})\right)_{n=0}^{\infty}$$

$$= \left(\sum_{k=0}^{n} a_{n-k} \cdot \left(\sum_{l=0}^{k} b_{l} \cdot c_{k-l}\right)\right)_{n=0}^{\infty}$$

$$= (a_{n})_{n=0}^{\infty} \cdot \left(\sum_{k=0}^{n} b_{k} \cdot c_{n-k}\right)_{n=0}^{\infty}$$

$$= (a_{n})_{n=0}^{\infty} \cdot ((b_{n})_{n=0}^{\infty} \cdot (c_{n})_{n=0}^{\infty})$$

 M_2) Обозначим за 1 в S последовательность $(t_n)_{n=0}^{\infty}$, где $t_0=1$, а все остальные члены равны 0. Тогда $\forall (a_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} \cdot 1 = \left(\sum_{k=0}^n a_k \cdot t_{n-k}\right)_{n=0}^{\infty}$$

$$= (a_n)_{n=0}^{\infty}$$

$$= \left(\sum_{k=0}^n t_{n-k} \cdot a_k\right)_{n=0}^{\infty}$$

$$= 1 \cdot (a_n)_{n=0}^{\infty}$$

 M_3) $\forall (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \in R$:

$$(a_n)_{n=0}^{\infty} \cdot (b_n)_{n=0}^{\infty} = \left(\sum_{k=0}^{n} a_k \cdot b_{n-k}\right)_{n=0}^{\infty}$$
$$= \left(\sum_{k=0}^{n} b_k \cdot a_{n-k}\right)_{n=0}^{\infty}$$
$$= (b_n)_{n=0}^{\infty} \cdot (a_n)_{n=0}^{\infty}$$

3. Рассмотрим отображение $\varphi:R \to S, a \mapsto (a,0,0,\dots)$. Тогда

•
$$\varphi(a) + \varphi(b) = (a+b,0,\dots) = \varphi(a+b)$$

- $\varphi(a) \cdot \varphi(b) = (ab, 0, \dots) = \varphi(a \cdot b)$
- $\varphi(0) = (0, 0, \dots) = 0$
- (в случае M_2) $\varphi(1) = (1,0,\dots) = 1$

Значит $\mathrm{Ker}(\varphi)=\{0\},\,R\cong\mathrm{Im}(\phi).$ При этом несложно видеть, что $\mathrm{Im}(\phi)$ и есть множество всех последовательностей вида $(a,0,0,\dots).$

5 Теория категорий

Определение 27. *Категория* C есть совокупность семейства (не обязательно множества) объектов Ob(C) и семейства *морфизмов* (также "стрелки"), что выполнены следующие условия.

- 1. У всякого морфизма f есть прообраз (также "начало", "source", "domain"; обозначение: s(f) или dom(f)) и образ (также "конец", "target", "codomain"; обозначение: t(f) или cod(f)), являющиеся объектами из рассмотренного семейства. Семейства всех морфизмов из X в Y (т.е. с прообразом X и образом Y) обозначается Hom(X,Y) или Mor(X,Y).
- 2. На семействе морфизмов введён не полностью определённый бинарный оператор \circ (можно считать, функциональное отношение из $M \times M$ в M, где M семейство морфизмов), что для всяких $X,Y,Z \in \mathrm{Ob}(C)$ и $f \in \mathrm{Hom}(X,Y), g \in \mathrm{Mor}(Y,Z)$ значение $g \circ f$ определено и лежит в $\mathrm{Hom}(X,Z)$. Данный оператор называется композицией, а $g \circ f$ композицией g и f.
- 3. Операция композиции морфизмов ассоциативна: для всяких $X,Y,Z,T\in \mathrm{Ob}(C)$ и $f\in \mathrm{Hom}(X,Y),\ g\in \mathrm{Hom}(Y,Z),\ h\in \mathrm{Hom}(Z,T)$

$$(f \circ g) \circ h = f \circ (g \circ h).$$

- 4. Для всякого $X \in \mathrm{Ob}(C)$ есть выделенный морфизм $\mathrm{id}_X \in \mathrm{Hom}(X,X)$ (также 1_X). Он называется тождественным морфизмом X.
- 5. Для всяких $X,Y \in \mathrm{Ob}(C)$ для всякого $f \in \mathrm{Hom}(X,Y)$ верно, что

$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f.$$

Пример 9.

- 1. Sets (Ens):
 - Ob(Sets) все множества,
 - $\operatorname{Hom}(X,Y)$ все отображения из X в Y,
 - о обычная композиция отображений,
 - id_X тождественное отображение $X \to X$.
- 2. Sets_{*}:
 - Ob(Sets*) пары (A, a), где A любое множество, а $a \in A$,
 - $\operatorname{Hom}((A,a),(B,b))$ все отображения из A в B, переводящие a в b,
 - о обычная композиция отображений,
 - id_A тождественное отображение $A \to A$.
- 3. Groups:
 - Ob(Groups) все группы,
 - $\operatorname{Hom}(G, H)$ все гомоморфизмы $G \to H$,
 - о обычная композиция гомоморфизмов,
 - id_G тождественный гомоморфизм $G \to G$.

- 4. Аналогично описываются категории Rings колец, CommRings коммутативных колец (если в случаях Rings и CommRings рассматриваются кольца с единицей, то надо требовать, чтобы гомоморфизмы переводили единицу в единицу), Vect_F векторных пространств над полем F, R Mod R-модулей, и т.д. для всякой алгебраической структуры.
- 5. Top:
 - Ob(Top) все топологические пространства,
 - $\operatorname{Hom}(X,Y)$ все непрерывные отображения $X \to Y$,
 - о обычная композиция отображений,
 - id_X тождественное отображение $X \to X$.
- 6. Top⋆:
 - Ob(Top \star) пары вида (X, x), где X топологическое пространство, а $x \in X$,
 - $\operatorname{Hom}((X,x),(Y,y))$ все непрерывные отображения $X \to Y$, переводящие x в y,
 - о обычная композиция отображений,
 - $\mathrm{id}_{(X,x)}$ тождественное отображение $X \to X$.
- 7. HTop:
 - Ob(HTop) все "хорошие" (компактно порождённые) топологические пространства,
 - \bullet Hom(X,Y) все непрерывные отображения по модулю гомотопии,
 - о обычная композиция отображений,
 - id_X тождественное отображение $X \to X$.
- 8. $Ob(C) = \{X\}$. В таком случае мы получаем *моноид* некоторых отображений X на себя: у нас есть множество морфизмов X на себя с операцией композиции (произведение в моноиде), которая ассоциативна и имеет нейтральный элемент (но не обязательно обратима).
- 9. Частичный предпорядок задаёт категорию:
 - \bullet Ob(C) = M,
 - $\operatorname{Hom}(x,y) = \begin{cases} \{\star_{x \to y}\} \text{ если } x \leqslant y, \\ \emptyset \text{ иначе,} \end{cases}$
 - $\bullet \ \star_{v \to z} \circ \star_{x \to y} := \star_{x \to z},$
 - \bullet id_x := $\star_{x \to x}$.
- 10. Rels категория отношений:
 - Ob(Rels) все множества;
 - $\operatorname{Hom}(X,Y)$ все подмножества $X \times Y$;
 - для всяких $S \in \text{Hom}(X,Y)$ и $R \in \text{Hom}(Y,Z)$

$$R \circ S := \{(x, z) \in X \times Z \mid \exists y \in Y : (x, y) \in S \land (y, z) \in R\};$$

- $id_X := \{(x, x)\}_{x \in X}$.
- 11. Пустая категория: нет объектов, нет морфизмов.

- 12. Категория с единственным объектом и единственным тождественным морфизмом на нём.
- 13. Дискретная категория: нет нетождественных морфизмов.
- 14. Произведение категорий C и D категория H, где $\mathrm{Ob}(H) = \mathrm{Ob}(C) \times \mathrm{Ob}(D)$, а для всяких $X = (X_C; X_D), Y = (Y_C, Y_D) \in H \ \mathrm{Hom}(X, Y) = \mathrm{Hom}(X_C, Y_C) \times \mathrm{Hom}(X_D, Y_D)$. При этом $(f_C, f_D) \circ (g_C, g_D) := (f_C \circ g_C, f_D \circ g_D)$, а $\mathrm{id}_{(X_C, X_D)} := (\mathrm{id}_{X_C}, \mathrm{id}_{X_D})$.

Определение 28. $X,Y \in \mathrm{Ob}(C)$ называются *изоморфными* (и тогда пишут $X \simeq Y$), если есть $f \in \mathrm{Hom}(X,Y)$ и $g \in \mathrm{Hom}(Y,X)$, что

$$f \circ g = \mathrm{id}_Y$$
 $g \circ f = \mathrm{id}_X$.

Определение 29. $\Pi o \partial \kappa ame ropus S$ категории C — категория, семейства объектов и морфизмов которой суть подсемейства объектов и морфизмов категории C соответственно.

Определение 30. Объект A категории C называется

- инициальным, если для всякого $X \in \mathrm{Ob}(C)$ существует единственный морфизм $A \to X$,
- mерминальный, если для всякого $X \in \mathrm{Ob}(C)$ существует единственный морфизм $X \to A$.

Лемма 27. Инициальный и терминальный объекты не более чем единственны с точностью до изоморфизма (даже, точнее говоря, с точностью до единственного изоморфизма).

Доказательство. Пусть A и B являются инициальными объектами. Тогда id_A — единственный морфизм $A \to A$ (по инициальности A), а id_B — единственный морфизм $B \to B$. Также по инициальности A и B есть морфизмы $f \in \mathrm{Hom}(A,B)$ и $g \in \mathrm{Hom}(B,A)$. При этом $g \circ f$ — морфизм A, т.е. $g \circ f = \mathrm{id}_A$, и по аналогии $f \circ g = \mathrm{id}_B$. Следовательно A и B изоморфны по определению. Значит все инициальные объекты изоморфны.

$$\operatorname{id}_A \bigcap A \xrightarrow{f} B \bigcap \operatorname{id}_B$$

Причём изоморфизм единственен. Так как если есть два изоморфизма: один образован f_1 и g_1 , а второй — f_2 и g_2 , то $f_2 \circ g_1$ — морфизм $A \to A$, а значит равен id_A . Следовательно

$$f_2 = f_2 \circ id_B = f_2 \circ (g_1 \circ f_1) = (f_2 \circ g_1) \circ f_1 = id_A \circ f_1 = f_1;$$

аналогично $g_1 = g_2$.

Утверждение для терминальных объектов доказывается аналогично.

Определение 31. Противоположная (двойственная) категория категория C^{op} , где

- $Ob(C^{op}) := Ob(C)$,
- $\operatorname{Hom}_{C^{\operatorname{op}}}(X,Y) := \operatorname{Hom}_{C}(X,Y),$
- $\operatorname{dom}_{C^{\operatorname{op}}}(f) := \operatorname{cod}_{C}(f), \operatorname{cod}_{C^{\operatorname{op}}}(f) := \operatorname{dom}_{C}(f),$
- $f \circ_{C^{\mathrm{op}}} q := q \circ f$.

Замечание. Инициальные объекты суть двойственны терминальным объектам в двойственном пространстве.

Существование двойственных категорий значит, что всякая теорема без условий, зависимых от инициальности (терминальности) объектов, и верная для инициальных объектов, верна и для терминальных объектов (и наоборот).

 $\Pi p u м e p 10.$

- 1. В Sets инициальным является только пустое множество, а терминальным любое одноэлементное множество.
- 2. В $Vect_F$ единственным инициальным и единственным терминальным является 0-мерное пространство.
- 3. В Тор тоже самое, что и для Sets.
- 4. В Тор∗ инициальные и терминальные объекты одноточечные пространства.
- 5. В категории порождённой частичным предпорядком инициальный и терминальный объекты наименьший и наибольший элементы соответственно (если существуют).

Определение 32. Пусть фиксированы объекты X и Y категории C.

• Произведением (также "product") объектов X и Y называется объект $X \times Y \in \mathrm{Ob}(C)$ и морфизмы $\mathrm{pr}_X \in \mathrm{Hom}(X \times Y, X)$ и $\mathrm{pr}_Y \in \mathrm{Hom}(X \times Y, Y)$, что для всякого объекта $Z \in \mathrm{Ob}(C)$, у которого есть морфизмы $f \in \mathrm{Hom}(Z, X)$ и $g \in \mathrm{Hom}(Z, Y)$, существует единственный морфизм $h \in \mathrm{Hom}(Z, X \times Y)$, что $f = \mathrm{pr}_X \circ h$ и $g = \mathrm{pr}_Y \circ h$.

• Копроизведением (также "coproduct" или "categorical sum") объектов X и Y называется объект $X \coprod Y \in \mathrm{Ob}(C)$ (или также обозначается $X \oplus Y$) и морфизмы $i_X \in \mathrm{Hom}(X, X \coprod Y)$ и $i_Y \in \mathrm{Hom}(Y, X \coprod Y)$, что для всякого объекта $Z \in \mathrm{Ob}(C)$, у которого есть морфизмы $f \in \mathrm{Hom}(X, Z)$ и $g \in \mathrm{Hom}(Y, Z)$, существует единственный морфизм $h \in \mathrm{Hom}(X \coprod Y, Z)$, что $f = h \circ i_X$ и $g = h \circ i_Y$.

Лемма 28. Для всяких $X,Y \in Ob(C)$ их произведение и копроизведение не более чем единственны с точностью до изоморфизма.

Доказательство. Пусть A и B суть произведения X и Y. Так как A — произведение X и Y, то значит есть единственный морфизм $h \in \operatorname{Hom}(A,A)$, что $\operatorname{pr}_{X,A} = h \circ \operatorname{pr}_{X,A}$ и $\operatorname{pr}_{X,B} = h \circ \operatorname{pr}_{X,B}$; и этот морфизм — id_A . При этом $f \circ \operatorname{pr}_{X,B} = \operatorname{pr}_{X,A}$, а $g \circ \operatorname{pr}_{X,A} = \operatorname{pr}_{X,B}$, следовательно

$$\operatorname{pr}_{X,A} = f \circ \operatorname{pr}_{X,B} = (f \circ g) \circ \operatorname{pr}_{X,A};$$
 аналогично $\operatorname{pr}_{Y,A} = (f \circ g) \circ \operatorname{pr}_{Y,A}.$

Следовательно $f \circ q = \mathrm{id}_A$. Аналогично $q \circ f = \mathrm{id}_B$.

Утверждение для копроизведений доказывается аналогично.

Π ример 11.

- 1. В Sets $X \times Y$ декартово произведение (где pr_X и pr_Y извлечения первого и второго элемента пары соответственно), а $X \coprod Y$ дизъюнктное объединение (где i_X и i_Y нативные вложения).
- 2. В Groups $G \times H$ декартово произведение групп, а $G \coprod H$ свободное произведение.
- 3. В Тор так же, как в Sets.
- 4. В $\text{Тор} \star (X, x) \times (Y, y) = (X \times Y, (x, y)), \ a(X, x) \coprod (Y, y)$ упражнение.
- 5. В категории, порождённой частичным предпорядком, $x \times y = \min(x, y)$, а $x \coprod y = \max(x, y)$.

Определение 33 (категория стрелки). Пусть даны категория C и объект $A \in \mathrm{Ob}(C)$. Тогда C/A обозначается категория, где

- $\mathrm{Ob}(C/A)$ пары вида (X, f), где $X \in \mathrm{Ob}(C)$, а $f \in \mathrm{Hom}(X, A)$,
- $\operatorname{Hom}((X, f), (Y, g))$ морфизмы $s \in \operatorname{Hom}(X, Y)$, что $f = s \circ g$ (осторожно: одно и тоже s может быть (и будет) использовано как сразу несколько разных морфизмов в C/A, так как всё зависит от начала и конца морфизма),

- $s \circ_{C/A} t := s \circ_C t$,
- $id_X id_X$ из C.

С другой стороны $C \setminus A$ обозначается категория, где

- $Ob(C \setminus A)$ пары вида (X, f), где $X \in Ob(C)$, а $f \in Hom(A, X)$,
- $\operatorname{Hom}((X, f), (Y, g))$ морфизмы $s \in \operatorname{Hom}(X, Y)$, что $g = f \circ s$ (осторожно: одно и тоже s может быть (и будет) использовано как сразу несколько разных морфизмов в C/A, так как всё зависит от начала и конца морфизма),

- $s \circ_{C \setminus A} t := s \circ_C t$,
- $id_X id_X$ из C.

Пример 12. В C/A терминальным объектом будет (A, id_A) .

Определение 34. Пусть даны $X, Y, A \in Ob(C)$ и фиксированы морфизмы $f \in Hom(X, A)$ и $g \in Hom(Y, A)$. Тогда если $(X, f) \times (Y, g)$ определено в Ob(C) и равно (Z, h), то Z называется расслоёным произведением $X \times_A Y$.

Таким образом $X \times_A Y$ — это такой объект в категории C вместе с $\operatorname{pr}_X \in \operatorname{Hom}(X \times_A Y, X)$ и $\operatorname{pr}_Y \in \operatorname{Hom}(X \times_A Y, Y)$, образующие с f и g коммутативный квадрат (так называемый "декартов квадрат"), что для всякого объекта $T \in \operatorname{Ob}(C)$ и морфизмов $s \in \operatorname{Hom}(T, X)$ и $t \in \operatorname{Hom}(T, Y)$, что $s \circ f = t \circ g$, есть единственный морфизм $u \in \operatorname{Hom}(T, X \times_A Y)$, что $s = u \circ \operatorname{pr}_X$ и $t = u \circ \operatorname{pr}_Y$.

 Π ример 13.

1. В Sets для множеств X,Y,A и отображений $f:X\to A$ и $g:Y\to A$ расслоёное произведение

$$X \times_A Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\}.$$

2. B Sets^{op}

$$X \coprod_A Y = (X \sqcup Y)/\sim,$$

где \sim — отношение эквивалентности, порождённое соотношениями $f(a) \sim g(a)$. Фактически это работает как склейка в топологии.

3. В Groups $G \times_K H$ — также как в Sets, а $G \coprod_K H$ — свободное произведение с объединённой подгруппой.

Определение 35. Пусть даны категории C и D. Φ унктор (также "ковариантный функтор") $F:C\to D$ — совокупность "функции" $\mathrm{Ob}(C)\to\mathrm{Ob}(D)$ и "функции" из класса морфизмов C в класс морфизмов D, что

- для всякого морфизма $f \in \text{Hom}(X,Y)$, где $X,Y \in \text{Ob}(C), F(f) \in \text{Hom}(F(X),F(Y))$,
- для всяких морфизмов f и g в C $F(f \circ g) = F(f) \circ F(g),$
- для всякого объекта $X \in \mathrm{Ob}(C)$ $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$.

 Π ример 14.

- 1. Взятие фундаментальной группы топологического порождает функтор $\pi_1: \text{Тор} \star \to \text{Groups}$.
- 2. Пусть M_1 и M_2 моноиды как категории. Тогда всякий функтор $M_1 \to M_2$ гомоморфизм моноидов.
- 3. Пусть M моноид как категория. Тогда всякий функтор $M \to \operatorname{Vect}_K$ выглядит так: единственному элементу категории M сопоставляется некоторое векторное пространство V, а функтор отображает сам моноид M в $\operatorname{End}(V)$ (моноид по умножению) как гомоморфизм моноидов.
- 4. Всякий функтор между классами, порождёнными частичными предпорядками, монотонная функция.

- 5. Пусть имеется категория S, состоящая из одного объекта и одного морфизма, и любая категория C. Тогда всякий функтор $S \to C$ выбор объекта в C, а $C \to S$ отобразить всё в данный единственный объект.
- 6. Функтор из категории с двумя объектами и двумя морфизмами в категорию C выбор двух (не обязательно различных) объектов в C.
- 7. Функтор из категории с двумя объектами и тремя морфизмами в категорию C выбор двух (не обязательно различных) объектов в C и морфизма между ними.
- 8. Забывающий функтор $U: \text{Groups} \to \text{Sets}$ функтор, переводящий группу G в множество G, а гомоморфизм f в функцию f.
- 9. Свободный функтор $F: Sets \to Groups$ функтор, где F(X) свободная группа на образующих X, а F(f) гомоморфизм, попрождённый соответствием образующих f.

10. ...

11. ...

- 12. В случае AbGroups и Groups, то есть тривиальный забывающий функтор U: AbGroups \to Groups и функтор F: Groups \to AbGroups, $G\to G/[G,G].$
- 13. Есть тривиальный забывающий функтор $U: \operatorname{Sets}_{\star} \to \operatorname{Sets}_{\star}(A,a) \mapsto A, f \mapsto f$. При этом в обратную сторону есть функтор

$$F: \mathrm{Sets} \to \mathrm{Sets}_{\star}, A \mapsto (A \sqcup \{\varnothing\}, \varnothing), f \mapsto f_{\star} := \begin{cases} f(x), & \text{ если } x \in A, \\ \varnothing, & \text{ если } x = \varnothing. \end{cases}$$

14. Пусть имеется категория C и фиксирован объект $A \in \mathrm{Ob}(C)$. Тогда можно определить функтор $F: C \to \mathrm{Sets}, X \mapsto \mathrm{Hom}(A, X), f \mapsto F(f) := f \circ \varphi$.

Функтор F называется копредставимым.

Лемма 29. Пусть дан функтор $F:C\to D$. Тогда если объекты X и Y категории C изоморфны, то F(X) и F(Y) изоморфны.

Определение 36. Контрвариантный функтор $F: C \to D$ — это обычный функтор $C^{op} \to D$. Т.е. это совокупность "функции" $\mathrm{Ob}(C) \to \mathrm{Ob}(D)$ и "функции" из класса морфизмов C в класс морфизмов D, что

- для всякого морфизма $f \in \text{Hom}(X,Y)$, где $X,Y \in \text{Ob}(C), F(f) \in \text{Hom}(F(Y),F(X))$,
- для всяких морфизмов f и g в C $F(f \circ g) = F(g) \circ F(f),$
- для всякого объекта $X \in \mathrm{Ob}(C)$ $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$.

 Πp имер 15.

- 1. Есть контравариантный функтор $F: \text{Тор} \to \mathbb{C}-\text{СоmmAlg}$, где F(X) = C(X) множество комплекснозначных непрерывных функций на X, а $F(f)(\varphi) := \varphi \circ f$.
- 2. Представимые функторы. Пусть дана категория C и фиксирован объект $A \in \text{Ob}(C)$. Тогда есть контравариантный функтор $h_A : C^{op} \to \text{Sets}$, что $h_A(X) = \text{Hom}(X, A)$, а $h_A(f)(\varphi) = \varphi \circ h$.

Определение 37. Категории C и D называются изоморфными, если есть функторы $F: C \to D$ и $G: D \to C$, что $GF = \mathrm{Id}_C$, а $FD = \mathrm{Id}_D$.

5.1 Мономорфизмы и эпиморфизмы

Определение 38. Морфизм f называется

- мономорфизмом, если для всяких морфизмов g и h будет верно $f \circ g = f \circ h \Rightarrow g = h$ (на f можно сокращать слева).
- расщепимым мономорфизмом, если есть морфизм r, что $r \circ f = \mathrm{id}$ (у f есть обратимый слева). r называется ретракцией f.
- эпиморфизмом, если для всяких морфизмов g и h будет верно $g \circ f = g \circ f \Rightarrow g = h$ (на f можно сокращать справа).
- расщепимым эпиморфизмом, если есть морфизм r, что $f \circ r = \mathrm{id}$ (у f есть обратимый справа).

 Πp имер 16.

- 1. В Sets (расщепимые) мономорфизмы инъективные отображения, (расщепимые) эпиморфизмы сюръективные отображения.
- 2. В Groups (расщепимые) мономорфизмы инъективные гомоморфизмы, (расщепимые) эпиморфизмы сюръективные гомоморфизмы.
- 3. B Rings так же как в Groups.

4. ...

Замечание. Функторы совершенно не всегда сохраняют мономорфизмы и эпиморфизмы.

Пемма 30. Функторы сохраняют расщепимые мономорфизмы и расщепимые эпиморфизмы. Пемма 31.

- cwiwa or.
- 1. Всякий морфизм, являющийся расщепимым мономорфизмом и эпиморфизмом, есть изоморфизм.
- 2. Всякий морфизм, являющийся расщепимым эпиморфизмом и мономорфизмом, есть изоморфизм.

Определение 39. Пусть имеются морфизмы $F,G:C\to D$. Естественное преобразование $\alpha:F\to G$ — это совокупность морфизмов $\alpha_X\in \mathrm{Hom}(F(X),G(X))$ для всякого $X\in \mathrm{Ob}(C)$, что для всяких $A,B\in \mathrm{Ob}(C)$ и всякого морфизма $f\in \mathrm{Hom}(A,B)$ верно, что $G(f)\circ\alpha_A=\alpha_B\circ F(f)$.

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$\downarrow^{F(f)} \qquad \downarrow^{G(f)}$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

Множество всех естественных преобразований $F \to G$ иногда обозначается Nat(F,G).

Композицией (также вертикальной композицией) естественных преобразований $\alpha: F \to G$ и $\beta: G \to H$, где $F, G, H: C \to D$ называется естественное преобразование $\beta \circ \alpha := \gamma: F \to H$, что $\gamma_X := \beta_X \circ \alpha_X$.

$$F(A) \xrightarrow{\alpha_A} G(A) \xrightarrow{\beta_A} H(A)$$

$$\downarrow^{F(f)} \qquad \downarrow^{G(f)} \qquad \downarrow^{H(f)}$$

$$F(B) \xrightarrow{\alpha_B} G(B) \xrightarrow{\beta_B} H(B)$$

Горизонтальной композицией естественных преобразований $\alpha: F \to G$ и $\beta: H \to I$, где $F,G:C\to D,\ H,I:D\to E$ называется естественное преобразование $\beta\cdot\alpha:=\gamma: H\circ F\to I\circ G$, где $\gamma_X:=\beta_{G(X)}H(\alpha_X)=I(\beta_X)\alpha_{H(X)}$. (В равенстве и определённости композиции можно убедиться, если нарисовать диаграмму всех переходов для каких-нибудь объектов A и B и морфизма $f\in \mathrm{Hom}(A,B)$; но она будет большая: 14 узлов, 29 стрелок и абсолютная коммутативность.)

Если α обратим, т.е. α_X обратим и его можно заменить на α_X^{-1} , то α называется естественным изоморфизмом, а F и G называются изоморфными, и пишут $F \simeq G$.

Категории C и D называются эквивалентными (и пишут $C \simeq D$), если есть функторы $F: C \to D, G: D \to C$ и естественные изоморфизмы $\alpha: \mathrm{id}_D \to F \circ G$ и $\beta: \mathrm{id}_C \to G \circ F$.

Замечание 8. Таким образом мы получили категорию ${\rm Funct}(C,D)$ функторов $C\to D$, где морфизмами являются естественные преобразования.

Лемма 32. Зафиксируем категорию I состоящую из объектов 0 и 1 и единственного нетождественного морфизма $0 \to 1$. Тогда для всяких функторов $F, G: C \to D$ задать естественное преобразование $F \to G -$ всё равно, что задать функционал $H: C \times I \to D$, что $H(\cdot, 0) = F$ и $H(\cdot, 1) = G$.

Лемма 33. Горизонтальная и вертикальная композиции коммутируют.

 Π ример 17.

1. ...

- 2. Назовём топологической группой группу заданную на топологическом пространстве G, что сама операция группы есть непрерывное отображение $G \times G \to G$. Например, \mathbb{R}^+ и \mathbb{R}^- есть топологические группы на \mathbb{R} и $\mathbb{R}^ \{0\}$ соответственно. Будем рассматривать категорию LocCompAbGroups локально компактных (у всякой точки есть замкнутая окрестность, являющаяся компактной) топологических абелевых групп. Для всякой группы A определим сопряжённую $A^* := \operatorname{Hom}(A, S^1)$ группа непрерывных гомоморфизмов $A \to S^1$ с некоторой топологией. Тогда есть тривиальный функтор F и нетривиальный функтор G из рассматриваемой категории в себя, где $G(A) = A^{**}$. При этом естественное преобразование $F \to G$ строится также как для векторных пространств. Таким образом LocCompAbGroups \cong LocCompAbGroups*.
- 3. CompAbGroups \simeq AbGroups.
- 4. Пусть СотрТор— категория компактных топологических пространств.

Определение 40. Пусть дан функтор $F:C\to D$. Для всяких $X,Y\in \mathrm{Ob}(C)$ временно обозначим функцию

$$F_{X,Y}: \operatorname{Hom}_C(X,Y) \to \operatorname{Hom}_D(F(X),F(Y)), f \mapsto F(f).$$

Тогда f называется

- унивалентным (также "faithful"), если $F_{X,Y}$ инъективен
- *полным* (также "full"), если $F_{X,Y}$ сюръективен
- вполне унивалентным (также "fully faithful"), если $F_{X,Y}$ биективен

для всяких $X, Y \in \mathrm{Ob}(C)$.

Также F называется cyщественно сюръективным (также "no cyществу сюръективный", "nnomhый", "essentially surjective" или "dense"), если для всякого $B \in \mathrm{Ob}(D)$ есть $A \in \mathrm{Ob}(C)$, что

$$B \simeq F(A)$$
.

Теорема 34. Функтор $F:C\to D$ задаёт эквивалентность категорий тогда и только тогда, когда

- F вполне унивалентен,
- F существенно сюрчективный.

Доказательство.

Лемма 34.1. Пусть даны объекты $X, Y, S, T \in \mathrm{Ob}(C)$ и изоморфизмы $\alpha \in \mathrm{Hom}(X, Y)$ и $\beta \in \mathrm{Hom}(S, T)$. Тогда есть единственная отображение, и оно является биекцией, $\varphi : \mathrm{Hom}(X, S) \to \mathrm{Hom}(Y, T)$, что следующая диаграмма коммутативна.

$$X \xrightarrow{\alpha} Y$$

$$f \downarrow \qquad \qquad \downarrow \varphi(f)$$

$$S \xrightarrow{\beta} T$$

Доказательство. Рассмотрим отображение

$$\varphi: \operatorname{Hom}(X,S) \to \operatorname{Hom}(Y,T), f \mapsto \beta f \alpha^{-1}.$$

Очевидно, он делает диаграмму коммутативной. При чём φ обратим: если определить функцию

$$\varphi^{-1}: \operatorname{Hom}(Y,T) \to \operatorname{Hom}(X,S), g \mapsto \beta^{-1}g\alpha,$$

то сразу будет понятно, что $\varphi^{-1} \circ \varphi = \mathrm{Id}_{\mathrm{Hom}(X,S)}$, а $\varphi \circ \varphi^{-1} = \mathrm{Id}_{\mathrm{Hom}(Y,T)}$. Это показывает существование φ и то, что оно биекция.

Если есть другая функция ψ , подходящая тем же требованиям, то мы имеем, что для всякого $f \in \operatorname{Hom}(X,S)$

$$\beta f = \psi(f)\alpha$$
 \Longrightarrow $\varphi(f) = \beta f \alpha^{-1} = \psi(f)\alpha \alpha^{-1} = \psi(f),$

что прямо означает $\varphi = \psi$. Это означает единственность φ .

Пусть F задаёт эквивалентность категорий. Тогда есть функтор $G:D\to C$ и естественные изоморфизмы $\tau:F\circ G\to \mathrm{Id}_D,\ \sigma:G\circ F\to \mathrm{Id}_C.$

ullet Для всякого $X\in D$ существование au означает

$$F(G(X)) \simeq X$$
.

Это означает существенную сюръективность F.

• Для всякого $f \in \text{Hom}(X,Y)$ $(X,Y \in \text{Ob}(C))$ существование σ означает, что есть изоморфизмы $\alpha \in \text{Hom}(X,G(F(X)))$ и $\beta \in \text{Hom}(Y,G(F(Y)))$, что следующая диаграмма коммутативна.

$$X \xrightarrow{\alpha} G(F(X))$$

$$f \downarrow \qquad \qquad \downarrow G(F(f))$$

$$Y \xrightarrow{\beta} G(F(X))$$

Следовательно, функция $f \mapsto G(F(f))$ есть биекция $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(G(F(X)),G(F(Y)))$. Аналогично $f \mapsto F(G(f))$ есть биекция. Значит F и G являются и инъекциями и сюръекциями, то бишь биекциями. Это означает вполне унивалентность F.

Теперь пусть F вполне унивалентен и существенно сюръективности. Из существенной сюръективности следует, что для всякого $X \in \mathrm{Ob}(D)$ есть $Y \in \mathrm{Ob}(C)$, что $X \simeq F(Y)$. Тогда определим искомый G на $\mathrm{Ob}(D)$: каждому X сопоставим только что найденный Y. В таком случае $X \simeq F(Y) = F(G(X))$.

Теперь определим искомый G на $\mathrm{Hom}(A,B)$. Мы знаем, что есть изоморфизмы $\alpha \in \mathrm{Hom}(A,F(G(A)))$ и $\alpha \in \mathrm{Hom}(B,F(G(B)))$. Значит есть единственная отображение (и оно биекция) $\varphi : \mathrm{Hom}(A,B) \to \mathrm{Hom}(F(G(A)),F(G(B)))$, что следующая диаграмма коммутативна.

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & F(G(A)) \\
\downarrow^{f} & & \downarrow^{\varphi(f)} \\
B & \xrightarrow{\beta} & F(G(B))
\end{array}$$

При этом $F_{G(A),G(B)}$ биективно по вполне унивалентности, а мы хотим, чтобы $F_{G(A),G(B)} \circ G_{A,B}$ задавала коммутативность диаграммы выше. Значит

$$F_{G(A),G(B)} \circ G_{A,B} = \varphi \implies G_{A,B} = F_{G(A),G(B)}^{-1} \circ \varphi.$$

Несложно проверить, что G функтор (т.е. что ещё $G(\mathrm{id}_A)=\mathrm{id}_{G(A)}$ и G(fg)=G(f)G(g)). Таким образом мы построили G, что $F\circ G\simeq \mathrm{Id}_D$.

Теперь покажем, что $G \circ F \simeq \mathrm{Id}_C$. Мы знаем, что для всякого $A \in \mathrm{Ob}(C)$ есть фиксированные (заданные естественным преобразованием $F \circ G \to \mathrm{Id}_D$)

$$\alpha_{F(A)} \in \operatorname{Hom}(F(A), F(G(F(A)))) \quad \text{ и } \quad \alpha_{F(A)}^{-1} \in \operatorname{Hom}(F(G(F(A))), F(A)),$$

вместе образующие изоморфизм F(A) и F(G(F(A))). По вполне унивалентности F есть

$$\beta_A \in \text{Hom}(A, G(F(A)))$$
 и $\beta_A^{-1} \in \text{Hom}(G(F(A)), A)$,

что $F(\beta_A) = \alpha_{F(A)}$ и $F(\beta_A^{-1}) = \alpha_{F(A)}^{-1}$. Следовательно,

$$F(\beta_A \beta_A^{-1}) = F(\beta_A) F(\beta_A^{-1}) = \alpha_{F(A)} \alpha_{F(A)}^{-1} = \mathrm{id}_{F(G(F(A)))} = F(\mathrm{id}_{G(F(A))}), \quad \Longrightarrow \quad \beta_A \beta_A^{-1} = \mathrm{id}_{G(F(A))};$$

аналогично $\beta_A^{-1}\beta_A=\mathrm{id}_A$. Т.е. β_A — изоморфизм $A\to G(F(A))$. Аналогичным образом можно поднять коммутативные диаграммы и понять, что все β_A задают естественный изоморфизм $\mathrm{Id}_C\to G\circ F$.

Определение 41. Категория называется *скелетной*, если в ней изоморфные объекты совпадают.

Cкелет категории C — такая категория D, что

- D скелетна,
- для всякого объекта $X \in C$ есть объект $Y \in D$, что $X \simeq Y$,
- $\operatorname{Hom}_D(X,Y) = \operatorname{Hom}_C(X,Y)$,
- $f \circ_D q = f \circ_C q$.

3амечание 9. Вложение D в C — вполне унивалентный существенно сюръективный функтор. Таким образом скелет категории эквивалентен самой категории.

Π ример 18.

- 1. В Sets в качестве объектов скелета можно взять кардиналы.
- 2. В категории вполне упорядоченных множеств объекты скелета ординалы.
- 3. В ${\rm Vect}_F$ объекты скелета $F^{(I)}$ для всякого кардинала I.
- 4. Скелет в предпорядке порядок.

Лемма 35.

- 1. В каждой категории существует скелет.
- 2. Скелет эквивалентен исходной категории.
- 3. Эквивалентность между скелетными категориями изоморфизм.
- 4. Две категории эквивалентны тогда и только тогда, когда их скелеты изоморфны.

Доказательство.

- 1. С помощью аксиомы выбора выделить в каждом классе изоморфности представителя и сузить категорию на них.
- 2. Вложение скелета категории в саму категорию вполне унивалентно (действительно, если в скелете есть объекты X и Y, то $\operatorname{Hom}(X,Y)$ в скелете был унаследован от изначальной категории, а поэтому обратное вложение задаёт биекцию на $\operatorname{Hom}(X,Y)$) и существенно сюръективно (так как по определению скелета у каждого объекта в изначальной категории у каждого объекта из его класса изоморфности был выделен в скелет какой-то объект в скелет). Значит по доказанной теореме данное вложение задаёт эквивалентность категорий.
- 3. Пусть категории C и D скелетны и эквивалентны, а эквивалентность задаётся функторами $F:C\to D$ и $G:D\to C$ и естественными изоморфизмами $\tau:GF\to \mathrm{Id}_C$ и $\sigma:FG\to \mathrm{Id}_D$. Тогда для всякого объекта $X\in \mathrm{Ob}(C)$ имеем, что $X\simeq G(F(X))$, а значит GF совпадает с Id_C на $\mathrm{Ob}(C)$. Таким образом F задаёт биекцию: F биекция на $\mathrm{Ob}(C)$ и на $\mathrm{Hom}(X,Y)$ для всех $X,Y\in \mathrm{Ob}(C)$. Значит можно рассмотреть обратный функтор $F^{-1}:D\to C$, и тогда $F^{-1}F=\mathrm{Id}_C$, $FF^{-1}=\mathrm{Id}_D$. Т.е. всякий функтор, задающий эквивалентность, задаёт изоморфность.
- 4. По предыдущим пунктам эквивалентность категорий равносильна эквивалентности их скелетов (так как эквивалетность категорий отношение эквивалентности), что равносильно изоморфности скелетов.

Определение 42. Пусть фиксированы категория C и объект $A \in \mathrm{Ob}(C)$. Тогда можно определить ковариантный функтор

$$\operatorname{Hom}(A,-) = h^A : C \to \operatorname{Sets},$$

$$\operatorname{Ob}(C) \ni X \mapsto \operatorname{Hom}(A,X),$$

$$\operatorname{Hom}(X,Y) \ni k \mapsto (\varphi : \operatorname{Hom}(A,X) \to \operatorname{Hom}(A,Y), f \mapsto k \circ f)$$

и контравариантный функтор

$$\operatorname{Hom}(-,A) = h_A : C \to \operatorname{Sets},$$

 $\operatorname{Ob}(C) \ni X \mapsto \operatorname{Hom}(X,A),$
 $\operatorname{Hom}(X,Y) \ni k \mapsto (\varphi : \operatorname{Hom}(X,A) \to \operatorname{Hom}(Y,A), f \mapsto f \circ k).$

Лемма 36 (Йонеды (Yoneda)). Пусть фиксированы категория C и объект $A \in Ob(C)$.

1. Для всякого ковариантного функтора $F: C \to \mathrm{Sets}$ отображение

$$\Lambda : \operatorname{Nat}(\operatorname{Hom}(A, -), F) \to F(A), \tau \mapsto \tau_A(\operatorname{id}_A)$$

является биекцией.

2. Для всякого контравариантного функтора $F: C \to \operatorname{Sets}$ отображение

$$\Lambda : \operatorname{Nat}(\operatorname{Hom}(-, A), F) \to F(A), \tau \mapsto \tau_A(\operatorname{id}_A)$$

является биекцией.

Доказательство.

1. Пусть дано какое-то естественное преобразование $\tau: h_A \to F$. Нарисуем его диаграмму для $k \in \text{Hom}(A, X)$. Выделим также в этой диаграмме орбиту id_A из Hom(A, A) (слева сверху). Получим следующую диаграмму.

По ней сразу понятно, что $\tau_X(k) = F(k)(\tau_A(\mathrm{id}_A))$. Это значит, что τ определяется не более чем единственным образом и только по $\tau_A(\mathrm{id}_A)$. Значит Λ — инъекция.

Тогда возьмём всякое $a \in F(A)$ и определим $\tau_X(f) := F(f)(a)$. Т.е. попытаемся восстановить τ для $\tau_A(\mathrm{id}_A) = a$. Совокупность $\{\tau_X\}$ мы восстановили, осталось проверить, что тогда τ действительно является естественным преобразованием.

Несложно видеть по нарисованным диаграммам, что вся суть проблемы коммутативности диаграммы заключается в доказательстве того, что $F(k)(F(f)(a)) = F(k \circ f)(a)$, т.е. $F(k) \circ F(f) = F(k \circ f)$. Но это следует из того, что F функтор. Это значит, что Λ — сюръекция. Таким образом F — биекция с простым описанием.

2. Поскольку $A_C = A_{C^{op}}$, $id_{A_C} = id_{A_{C^{op}}}$,

$$\operatorname{Hom}_{C}(-, A_{C}) = \operatorname{Hom}_{C^{\operatorname{op}}}(A_{C^{\operatorname{op}}}, -),$$

F — ковариантный функтор $C^{\text{op}} \to \text{Sets}$, а

$$\operatorname{Nat}(\operatorname{Hom}_C(-, A_C), F) = \operatorname{Nat}(\operatorname{Hom}_{C^{\operatorname{op}}}(A_{C^{\operatorname{op}}}, -), F),$$

то задача сводится к предыдущей.

Следствие 36.1. Выше упомянутые отображения задают биекции

$$\operatorname{Nat}(h^A, h^B) \leftrightarrow \operatorname{Hom}(B, A)$$
 $u \quad \operatorname{Nat}(h_A, h_B) \leftrightarrow \operatorname{Hom}(A, B).$

Следствие 36.2. Есть вполне унивалентный функтор

$$C \to \widehat{C} := \operatorname{Funct}(C^{\operatorname{op}}, \operatorname{Sets}).$$

Доказательство. Рассмотрим функтор

$$F: C \to \operatorname{Funct}(C^{\operatorname{op}}, \operatorname{Sets}),$$

 $\operatorname{Ob}(C) \ni X \mapsto h_X,$
 $\operatorname{Hom}(X, Y) \to \operatorname{Hom}(h_X, h_Y) = \operatorname{Nat}(h_X, h_Y),$

где отображение морфизмов производится согласно биекции из предыдущего следствия. И поскольку это соответствие — биекция, данный функтор вполне унивалентен.

Определение 43. Функтор $F: C \to \text{Sets}$ называется npedcmaвимым, если изоморфен Hom(A, -) для некоторого $A \in \text{Ob}(C)$. Аналогично если F контраваринтный, то представим, если изоморфен Hom(-, A).

Определение 44. Пусть даны категории C и D и объект $Z \in \mathrm{Ob}(D)$. Постоянный функтор

$$\operatorname{const}_Z: C \to D,$$

$$\operatorname{Ob}(C) \ni X \mapsto Z,$$

$$\operatorname{Hom}(X,Y) \ni f \mapsto \operatorname{id}_Z.$$

Определение 45. Пусть D — малая категория (т.е. категория, где класс объектов является множеством), а F — функтор $D \to C$. Конус над F — совокупность (L, φ) объекта $L \in \mathrm{Ob}(C)$ и семейства гомоморфизмов $\varphi_X : L \to F(X)$ для каждого $X \in \mathrm{Ob}(D)$, что для всякого морфизма $f : X \to Y$ в D верно $F(f) \circ \varphi_X = \varphi_Y$. Предел F — такой конус (L, φ) над F, что для всякого конуса (N, ψ) над F существует единственный морфизм $u : N \to L$, что $\varphi_X \circ u = \psi_X$.

Аналогично определяется коконус и копредел.

Определение 46. Пусть D — малая категория (т.е. категория, где класс объектов является множеством), а F — функтор $D \to C$. Предел F — объект, задающий представимость функтора $Z \mapsto \operatorname{Nat}(\operatorname{const}_Z, F)$, вместе с фиксированным преобразованием $\operatorname{const}_{\lim F} \to F$.

Π ример 19.

- 1. Терминальный и инициальный объекты это предел и копредел в случае пустой категории D.
- 2. Произведение и копроизведение это предел и копредел соответственно для D, состоящего только из 2 объектов.
- 3. Расслоёные произведение и копроизведение это предел и копредел соответственно диаграмм (функторов, где D).

4. Уравниитель — это предел диаграммы

5. Предел диаграммы из только одного объекта — тот самый объект.

Пример 20. Если рассмотреть в качестве C некоторое множество с порядком (т.е. для всякого элемента i в множестве определим элемент X_i в категории и определить стрелку $X_i \to X_j$ тогда и только тогда, когда i>j), то конусами и коконусами всякой диаграммы будут верхние и нижние грани соответствующего подмножества соответственно, а пределом и копределом в нём будут точные верхняя и нижняя грани.

Если же взять категорию коммутативных колец и выделить в ней категорию диаграмму с объектами $X_k := \mathbb{Z}/p^k\mathbb{Z}$ для каждого $k \in \mathbb{N}$ и морфизмами-факторизациями $\mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ для каждых $n \geqslant m$, то пределом будет кольцо p-адических чисел.

Аналогично, если в коммутативных кольцах выделить диаграмму с объектами $X_k := F[T]/(T^i)$, то получится кольцо степенных рядов F[[T]].