

์ บักหายาก

ในบ้านของคุณภัค บลังคอน มีแมลงอยู่ N ตัว หมายเลขตั้งแต่ 0 ถึง N-1 แมลงแต่ละตัวจะมี **สายพันธุ์** ซึ่งมีค่าได้ตั้งแต่ 0 ถึง 10^9 แมลงหลายตัวอาจจะมีสายพันธุ์เดียวกันได้

สมมติว่าเราจัดกลุ่มแมลงตามสายพันธุ์ เรานิยามว่าระดับสายพันธุ์ (cardinality) ที่**พบบ่อยที่สุด** คือจำนวนของแมลงในแต่ละกลุ่มสาย พันธุ์ที่มีจำนวนแมลงมากที่สุด ในทำนองเดียวกัน ระดับสายพันธุ์ที่**หายากที่สุด** คือจำนวนของแมลงในแต่ละกลุ่มสายพันธุ์ที่มีจำนวน แมลงน้อยที่สุด

ยกตัวอย่างเช่น มีแมลง 11 ตัว โดยที่สายพันธุ์ของแมลงแต่ละตัวเป็น [5,7,9,11,11,5,0,11,9,100,9] ในกรณีนี้ ระดับสาย พันธุ์ที่**พบบ่อยที่สุด** คือ 3 เนื่องจากกลุ่มที่มีจำนวนแมลงมากที่สุดคือสายพันธุ์ 9 และสายพันธุ์ 11 โดยแต่ละกลุ่มสายพันธุ์มีแมลง 3 ตัว ระดับสายพันธุ์ที่**หายากที่สุด** คือ 1 เนื่องจากกลุ่มที่มีจำนวนแมลงน้อยที่สุดคือสายพันธุ์ 7, สายพันธุ์ 9 และสายพันธุ์ 100 โดยแต่ละ กลุ่มสายพันธุ์มีแมลง 1 ตัว

คุณภัค บลังคอนไม่รู้จักสายพันธุ์ของแมลงเลย แต่เขามีเครื่องวิเคราะห์ที่มีปุ่มหนึ่งปุ่มที่สามารถให้ข้อมูลบางอย่างเกี่ยวกับสายพันธุ์ของ แมลงได้ โดยเริ่มแรก เครื่องวิเคราะห์จะว่าง ในการใช้เครื่องวิเคราะห์ จะมีสามกระบวนการให้เลือก

- 1. ใส่แมลงเข้าไปในเครื่องวิเคราะห์
- 2. นำแมลงออกจากเครื่องวิเคราะห์
- 3. กดปุ่มบนเครื่องวิเคราะห์

สำหรับแต่ละกระบวนการ สามารถทำได้ไม่เกิน 40~000 ครั้ง

เมื่อปุ่มถูกกด เครื่องวิเคราะห์จะรายงานระดับสายพันธุ์ที**่พบบ่อยที่สุด** จากการพิจารณาเฉพาะแมลงที่อยู่ในเครื่อง

ปัญหาของคุณคือหาค่าระดับสายพันธุ์ที่**หายากที่สุด**ในบรรดาแมลงทั้ง N ตัวที่พบในบ้านของคุณภัค บลังคอนโดยใช้เครื่องวิเคราะห์ นอกจากนั้น ในบางปัญหาย่อย คะแนนของคุณจะขึ้นอยู่กับจำนวนการเรียกใช้กระบวนการที่มากที่สุด (ดูรายละเอียดในปัญหาย่อย)

รายละเอียดการเขียนโปรแกรม

คุณต้องเขียนฟังก์ชันต่อไปนี้

int min_cardinality(int N)

- N: จำนวนแมลง
- ullet ฟังก์ชันนี้ต้องคืนค่าระดับสายพันธุ์ที่**หายากที่สุด**จากแมลงทั้ง N ตัวที่อยู่ในบ้านของคุณภัค บลังคอน
- ฟังก์ชันนี้จะถูกเรียกเพียงครั้งเดียวเท่านั้น

ฟังก์ชันดังกล่าวสามารถเรียกใช้ฟังก์ชันต่อไปนี้:

void move_inside(int i)

- ullet i: ระบุหมายเลขของแมลงที่จะใส่เข้าไปในเครื่องวิเคราะห์ โดยที่ i มีค่าได้ตั้งแต่ 0 ถึง N-1
- ถ้าแมล[่]งตัวที่ระบุอยู่ภายในเครื่องวิเคราะห์อยู่แล้ว ฟังก์ชันนี้จะไม่มีผลต่อเซตของแมลงที่อยู่ในเครื่อง แต่จะถูกนับเป็นการเรียก ใช้ฟังก์ชันหนึ่งครั้ง
- ฟังก์ชันนี้สามารถถูกเรียกได้สูงสุด $40\ 000$ ครั้ง

void move_outside(int i)

- ullet i: ระบุหมายเลขของแมลงที่จะนำออกจากเครื่องวิเคราะห์ โดยที่ i มีค่าได้ตั้งแต่ 0 ถึง N-1
- ถ้าแมลงตัวที่ระบุอยู่นอกเครื่องวิเคราะห์อยู่แล้ว ฟังก์ชันนี้จะไม่มีผลต่อเซตของแมลงที่อยู่ในเครื่อง แต่จะถูกนับเป็นการเรียกใช้ ฟังก์ชันหนึ่งครั้ง
- ฟังก์ชันนี้สามารถถูกเรียกได้สูงสุด 40 000 ครั้ง

int press_button()

- ฟังก์ชันนี้คืนค่าเป็นระดับสายพันธุ์ที่**พบบ่อยที่สุด** โดยการวิเคราะห์จากแมลงที่อยู่ในเครื่องเท่านั้น
- ฟังก์ชันนี้สามารถถูกเรียกได้สูงสุด 40 000 ครั้ง
- เกรดเดอร์จะ**ไม่มีการเปลี่ยนแปลง** กล่าวคือสายพันธุ์ของแมลงทั้ง N ตัว จะถูกกำหนดไว้ล่วงหน้าก่อนที่ $\min_cardinality$ จะถูกเรียก

ตัวอย่าง

พิจารณาตัวอย่างสถานการณ์ที่มีแมลง 6 ตัว แต่ละตัวมีสายพันธุ์เป็น [5,8,9,5,9,9] ตามลำดับ ฟังก์ชัน min_cardinality ถูกเรียกดังต่อไปนี้

min_cardinality(6)

ฟังก์ชันดังกล่าวอาจจะเรียกฟังชัน move_inside, move_outside และ press_button ตามลำดับต่อไปนี้

ฟังก์ชัน	ค่าที่ได้	แมลงในเครื่องวิเคราะห์	สายพันธุ์ของแมลงในเครื่องวิเคราะห์
		{}	
move_inside(0)		{0}	[5]
press_button()	1	{0}	[5]
move_inside(1)		{0,1}	[5,8]
press_button()	1	{0,1}	[5,8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
press_button()	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
press_button()	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

ณ จุดนี้ จะมีข้อมูลเพียงพอที่จะสรุปได้ว่าระดับสายพันธุ์ที่หายากที่สุดคือ 1 ดังนั้น ฟังก์ชัน min_cardinality ควรจะคืนค่า 1 ในตัวอย่างนี้ move_inside ถูกเรียก 7 ครั้ง, move_outside ถูกเรียก 1 ครั้ง และ press_button ถูกเรียก 6 ครั้ง ข้อจำกัด

• $2 \le N \le 2000$

ปัญหาย่อย

- 1. (10 points) $N \leq 200$
- 2. (15 points) $N \leq 1000$
- 3. (75 points) ไม่มีข้อจำกัดเพิ่มเติม

ถ้ามีกรณีทดสอบใดที่การเรียกฟังก์ชัน move_inside, move_outside หรือ press_button ไม่สอดคล้องกับข้อจำกัดที่ ระบุไว้ในรายละเอียดการเขียนโปรแกรม หรือคืนค่า min_cardinality ที่ไม่ถูกต้อง คะแนนของคุณในปัญหาย่อยนั้นจะเป็น 0

กำหนดให้ q คือค่าที่**มากที่สุด**จากสามค่าดังต่อไปนี้: จำนวนการเรียก <code>move_inside</code>, จำนวนการเรียก <code>move_outside</code> และ จำนวนการเรียก <code>press_button</code>

ในปัญหาย่อยที่ 3 คุณสามารถได้คะแนนบางส่วน กำหนดให้ m คือค่าที่มากที่สุดของ $\frac{q}{N}$ จากกรณีทดสอบทุกกรณีในปัญหาย่อยนี้ คะแนนของคุณในปัญหาย่อยนี้จะถูกคำนวนตามตารางต่อไปนี้:

เงื่อนไข	คะแนน		
20 < m	0 (รายงานเป็น "Output isn't correct" ใน CMS)		
$6 < m \le 20$	$\frac{225}{m-2}$		
$3 < m \le 6$	$81-rac{2}{3}m^2$		
$m \leq 3$	75		

เกรดเดอร์ตัวอย่าง

กำหนดให้ T เป็นอาร์เรย์ของจำนวนเต็ม N ตัว โดยที่ T[i] คือสายพันธุ์ของแมลงตัวที่ i

เกรดเดอร์ตัวอย่างจะอ่านค่าอินพุตตามรูปแบบต่อไปนี้:

- ullet บรรทัดที่ 1: N
- ullet บรรทัดที่ 2: T[0] T[1] \dots T[N-1]

ถ้าเกรดเดอร์ตรวจพบว่ามีการละเมิดโปรโตคอล เอาท์พุตของเกรดเดอร์ตัวอย่างจะเป็น Protocol Violation: <MSG> โดยที่ <MSG> มีค่าใดค่าหนึ่งต่อไปนี้:

- ullet invalid parameter: ในการเรียกใช้ move_inside หรือ move_outside ค่าของ i ไม่อยู่ในช่วงตั้งแต่ 0 ถึง N-1
- too many calls: มีการเรียกใช้**ฟังก์ชันใดฟังก์ชันหนึ่ง**จาก move_inside, move_outside หรือ press_button มากกว่า 40~000~ครั้ง

หากไม่พบปัญหา เอาท์พุตของของเกรดเดอร์ตัวอย่างจะอยู่ในรูปแบบต่อไปนี้:

- บรรทัดที่ 1: ค่าที่ได้จากการเรียก min_cardinality
- ullet บรรทัดที่ 2: q