LiDAR Attack Pipeline

This pipeline simulates and analyzes different types of attacks on LiDAR data. It works in two main steps:

- LidarOnly.py collects LiDAR Data: A script in the CARLA simulator captures LiDAR
 point clouds and saves them as .npy files and .png images. The script collects 300
 frames.
- 2. FullLidarAttack.py creates 5 different attacks on the LiDAR cloud points: This script takes the collected data, applies attacks, visualizes the results, and creates a combined video showing all attacks in a 3x2 grid.

Step 1: Run LidarOnly.py - Collect LiDAR Data in CARLA

- A script runs in the CARLA simulator to capture LiDAR point cloud data.
- The data is saved as:
 - .npy files: These contain the raw 3D point cloud data.
 - .png images: These are 2D visualizations of the LiDAR data.
- Output:
 - A folder with .npy files (point clouds) and .png files (images).

Step 2: Run FullLidarAttack.py - Process and Visualize Attacks

This script processes the collected LiDAR data, applies attacks, and generates videos.

What Does This Script Do?

1. Load Data

• Reads the .npy files (LiDAR point clouds) and .png images from the folders.

2. Apply Attacks

The script applies five types of attacks to the LiDAR data:

Attack Type	Attack Description
Spoofing	Adds fake points to the LiDAR data, creating false obstacles.
Adversarial	Adds random noise to the points, making it harder to detect real
Noise	objects.

Occlusion	Removes points beyond a certain distance, simulating blocked or hidden objects.
Misalignment	Shifts the entire point cloud to the side, simulating a sensor calibration error.
Scaling	Shrinks the point cloud, making objects appear smaller than they really are.

3. Visualize Results

- For each attack, the script creates a 2D scatter plot of the LiDAR data.
- All points (original and attacked) are plotted in the same color (red) for consistency.
- The visualizations are saved as .png images in separate folders for each attack.

4. Generate Videos

- The function creates a video for each attack and the original data:
 - It takes all the .png images in each folder and combines them into a video.
 - Example: original.mp4, spoofing.mp4, adversarial_perturbation.mp4, etc.

5. Combine Videos into a 3x2 Grid

 The function combines all six videos (original + five attacks) into a single video arranged in a 3x2 grid:

Top row: Original Spoofing Adversarial Noise

Bottom row: Occlusion Misalignment Scaling

The combined video is saved as combined_attacks.mp4

Complete Pipeline Summary:

- 1. Data Collection: Captures real-world-like LiDAR data using CARLA.
- 2. Attack Simulation: Applies realistic attacks to the LiDAR data.
- 3. **Visualization**: Creates easy-to-understand 2D plots of the attacks.
- 4. **Video Generation**: Produces videos for each attack and combines them into one grid for comparison.

Next Step: Refine the LiDAR attacks further and integrate with Karim's camera-based pipeline.