杭州电子科技大学学生考试卷(A)卷

考试课	计算机组成原理	里(甲)	考试日	2014 年	6月日	成	
程			期			绩	
课程号	A0507030	教师号		任课者	数师姓名		赵辽英、冯建文、章复 翔、高志刚、赵备
考生姓 名		学 号 (8 位)		年级	12	专业	

所有试题均做在答题纸上, 否则不计分!

题号	_	=	Ξ	四	五		总分
					1	2/3	
分数	20	20	15	20	10	15	100
得分							

答题纸

1、 单项选择题(20分,每题1分,按小标号填写答案)

				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10
)
(11	(12	(13	(14	(15	(16	(17	(18	(19	(20
))))))))))
							1		

2、 计算填空题(20分,每空1分)

(1)	(2)	(3)	(4)	(5)
(6)	(7)	(8)	(9)	(10)
(44)	(12)	(42)	(44)	(4-)
(11)	(12)	(13)	(14)	(15)
(16)	(17)	(18)	(19)	(20)

3、 简答题(15分,每题5分)

第1页 共5页

座位号:	1								
	5、 综合设	汁题(25 _:	分)						
4、 计算题(20 分)									
	3. (2)	,		Г	表 4	_			
	指令	W_r_s	imm_ s	rt_imm _s	wr_data	ALU_O P	Write_Re	Mem_Wr ite	PC_s
	addi rt, rs, imm	1							
								第 2 五	

र्ग्य	ひロ	
坐	\mathcal{L} 5	•

试题

- 1、 单项选择题(20 分,每空 1 分)
- 1、 下列选项中,描述 CPU 运算能力的 MIPS 单位含义是:(1)。

A. 千万指令每秒

- B. 百万指令每秒 C. 万指令每秒
- D. 百万浮点运算每秒

2、8位二进制补码所能表示的整数范围为<u>(2)</u>。

A. -256~255

- B. -128~127
- C. -255~255
- D. -127~127
- 3、 码距为(3)的校验码具备检出错误和纠正一位错误的能力。

A. 0

- B. 1
- C. 2
- D. 3
- 4、 在汉字系统中存在下面几种编码,汉字库中存放的是(4)。

A. 汉字输入码

- B. 汉字内码
- C. 汉字交换码
- D. 汉字字模码
- 5、 设机器字长 8 位,若机器数 11H 为补码,则算术左移一位后为<u>(5)</u>,算术右移一位后为<u>(6)</u>。 C. 88H B. 22H
 - A. 44H

- D. 08H
- E. 20H

6、指令格式中,<u>(7)</u>字段用来指明指令所要完成操作。

A. 微指令

- B. 操作数
- C. 地址码
- D. 操作码

- 7、 微程序控制器特点是 (8)。
 - A.指令执行速度慢, 指令功能的修改和扩展容易 B.指令执行速度慢, 指令功能的修改和扩展难 C.指令执行速度快,指令功能的修改和扩展容易 D.指令执行速度快,指令功能的修改和扩展难
- 8、 浮点机器数的符号(数符)由<u>(9)</u>来决定。
 - A. 尾数的符号
- B. 阶码的符号
- C. 阶码的底 D. 隐含决定
- り、 某机采用二级流水线组织,第一级为取指令、译码,需要 200ns 完成操作;第二级为执行周期,一部 分指令能在 180ns 内完成,另一些指令要 360ns 才能完成,如果采用同步控制方式则机器周期应选 <u>(10)</u>.
- A. 180ns
- B. 190ns
- C. 200ns
- D. 360ns
- 10、某计算机存储器按字节编址,主存地址空间大小为 32MB,现用 4M*8 位的 RAM 芯片组建主存储器。 则计算机地址寄存器 AR 的位数是<u>(11)</u>。
 - A. 22 位
- B. 23 位
- C. 25 位
- D. 26 位
- |11、若阶码的底为 2,则规格化浮点数的尾数 <math>M 应满足条件(12)
- A. 1/2 > |M|
- B. $1/2 \le |M| \le 1$
- C. 1/3 > |M|
- D. 1< | M|
- 12、以下存储器中,(13)是数据掉电丢失的。
- A. FLASH B. EPROM C. SRAM D. E²PROM E. SSD
- 13、微程序控制器中,一条机器指令通常是由<u>(14)</u>来解释执行的。
 - A. 一段微程序
- B. 一个微命令
- C. 一条微指令
- D. 一个微操作
- 14、寄存器寻址方式中,操作数在(15)中。
 - A. 程序计数器
- B. 堆栈
- C. 寄存器
- D. 主存
- 15、假定用若干个 1K*8 位的芯片组成一个 8K*8 位的存储器,则地址 0910H 所在芯片的起始地址是 <u>(16)</u>.

- A. 0000H
- B. 0600H
- C. 0700H
- D. 0800H
- 16、控制器取指令过程中,指令地址是由(17)提供的。
 - A. PC 寄存器
- B. AR 寄存器
- C. 基址寄存器
- D. IR 寄存器
- 17、定点二进制运算器中,减法运算一般通过_(18)_来实现。
 - A. 原码运算的二进制减法器 B. 补码运算的二进制减法器
 - C. 原码运算的十进制加法器 D. 补码运算的二进制加法器
- 18、假设一补码机器数为 10000000, 则其十进制真值是(19)。
 - A. + 128
- B. 127
- C. 128
- D. +127 E. 0
- 19、控制存储器属于计算机的以下哪个部件: (20)。
 - A. 运算器
- B. 控制器
- C. 存储器
- D. 外设

2、 计算填空题(20分, 每空1分)

- 1、在 CPU 执行的一段时间内, Cache 完成存取的次数为 3900 次, 主存完成的存取次数为 100 次, 已 知 Cache 的存储周期为 15ns, 主存的存储周期为 75ns。则 Cache 的命中率为(1), Cache/主存系统 的平均访问时间为(2)_ns, Cache/主存系统的效率为(3)_。
- 2、设主存容量 16MB, 存储器按字节编址; Cache 容量 32KB, 每块 16B, Cache 按照 4 路组相联方式 组织,则主存地址有<u>(4)</u>位;其中"标记"字段<u>(5)</u>位,Cache 组地址<u>(6)</u>位,块内地址<u>(7)</u> 位; 主存地址 111634H 映射到 Cache 的(8)组。
- 3、设某8位计算机指令格式如下:

OP	(4	MOD	(2	RD (2位)			
位)			位)						
	ADDR/ DATA / DISP								

其中,RD为源/目的寄存器号,MOD为寻址方式码字段,指令第二字为地址、数据或偏移量; 源操作数由 MOD 字段和指令第二字共同确定。除了 HALT 指令为单字指令外,其他指令均为双字指 今;操作码字段解释见表 1-1, MOD 字段解释见表 1-2, RD 字段解释见表 1-3。

表 l-l										
指令助记符	操作码	指令助记符	操作码							
MOV	0000	SBB	0100							
ADD	0001	JMP	1000							
SUB	SUB 0010									
AND	0011	HALT	1111							

表 1-2

	1× 1-2
MOD	寻址方式
00	立即寻址
01	直接寻址
10	变址寻址(SI)
11	间接寻址

12.13	
RD	寄存器
00	R0
01	R1
10	R2
11	R3

表 1-3

1 指令 ADD R1, ((40H)) 的功能: R1 = ((40H)) + R1; 指令使用间接寻址,则该指令机器码第一字节

第3页 共5页

座位号:

为(9) H, 第二字节为(10) H。

②内存地址的部分单元内容如表 2,若(PC) = 20H,变址寄存器(SI) = 10H,则此时启动程序执行,则程序执行的前三条指令如表 3,请填写完整。

表 2

衣丝								
单元地址	内容	单元地址	内容	单元地址	内容			
10H	80H	20H	10H	24H	39H			
11H	90H	21H	11H	25H	03H			
12H	10H	22Н	05H	26H	F0H			
13H	11H	23H	12H	27H	20H			

表3

指令序号	助记符	寻址方式	源操作数	执行结果	
1	(11)	(12)	(13)		
2	(14)	(15)	(16)		
3	(17)	(18)	(19)	(20)	

- 3、 简答题(15分, 每题5分)
- 1. (5 分) 简述 RISC 指令系统的特点。
- 2. (5分)简述控制器的功能和主要组成部件。
- 3. (5分)从计算机组成的角度,谈谈你对计算机工作过程的理解。

四、计算题 (20分)

1. (4分)设浮点数的格式为:阶码 5位,包含一位符号位,尾数 7位,包含一位符号位,阶码和尾数均用补码表示,排列顺序为:

阶符(1位)	阶码 (4位)	数符(1位)	尾数 (6位)

则按上述浮点数的格式: 若 $(X)_{10} = 9/32$, $(Y)_{10} = -1.75$, 求 X 和 Y 的规格化浮点数表示形式。

- 2. (6分) 在上题基础上,使用规格化浮点数,计算 X+Y,写出计算过程和结果。
- 3. (10分) 若某机器指令长16位, 指令中每个操作数地址码长4位, 采用扩展码技术:
- (1)(6分)设计一个指令系统,三地址指令 12条,两地址指令 50条,单地址指令 20条,没有零地址指令;写出编码方案;
- (2) (4分)假设指令系统有三地址指令 M条,两地址指令 N条,没有零地址指令。问:该指令系统最多有多少条一地址指令?

五、综合设计题(25分,第2题和第3题二选一)

1. (10 分)某 CPU 地址总线 16 位,数据总线 8 位,CPU 的控制信号线有: MREQ#(存储器访问请求,低电平有效),R/W#(读写控制,低电平为写信号,高电平为读信号)。若用若干个8K×4 位的 SRAM 芯片形成 32K×8 位的 RAM 存储区域,起始地址为 2000H,假设 SRAM 芯片有 CS#(片选,低电平有效)和 WE#(写使能,低电平有效)信号控制端;试写出 RAM 的地址范围,并画出 SRAM 与 CPU 的连接图(请标明 SRAM 芯片个数、译码器的输入输出线、地址

线、数据线、控制线及其连接)。

以下 2、3 两题二选一:

- 2. (15 分) 某 8 位模型机采用微程序控制器,结构如图 1 所示。其中 MEM 为主存,R0~R3 是通用寄存器。各部件的控制信号均已标出,控制信号的命名准则是: '→'符号前的是数据发送方部件,'→'符号后的是数据接收方部件,并且控制信号中的 B 表示总线; J1#控制指令译码,其他读写信号具有普通意义。
- (1) (4分) 图 1 中有 28 个微操作控制信号,其中 J1 # ~ J5 # 是用于转移的判别测试条件。在微指令中,控制字段采用直接控制法,判别测试字段采用译码法编码,下址字段 8 位,则该模型机的控制存储器容量是多少?
- (2) (4分)模型机的某条指令的微程序流程图如图 2 所示,写出该条指令的功能、寻址方式、指令第二字的含义。
- (3) (2分) 写出 Mem→IR 微指令应该发送的微操作控制信号。
- (4) (5分) 根据图 1 所示的数据通路,写出 ADDDR, # data 指令的微程序流程图,指令功能为 (DR) + data→DR。

座位号:

3. (15分)为实现 MIPS 核心指令子集,设计一个计算机系统,其单周期 CPU 的结构和数据通路如图 3 所示,其中 ALU 有 4 种功能。假设在其上实现一条 I 型指令 addi rt, rs, imm, 功能是 (rs) +imm→rt, 即带符号数的立即数加法指令:

(1) (5分) 写出指令 addi 在机器上执行的过程;

imm

w r s

指令

addi rt, rs, imm

(2) (5分)为实现 addi 指令的数据通路,写出译码与控制单元所需设置的控制信号,填入表 4。

表 4

rt_imm wr_data ALU_O Write_Re Mem_Wr PC_s
_s _s P g ite

(3) (5分)假设译码与控制单元采用微程序实现,即所有的控制信号由微指令发送,控制字段采用 直接控制法,没有判别测试字段,下址字段 6位,则该 CPU 的控制存储器容量是多少?

图 3 MIPS CPU 数据通路