Problems (10 points max)

1. Two trains arrive at a station at random times. Their arrival times are independent and have an exponential distribution with density $e^{-x} \cdot \theta(x)$. A student arrives at the station at time 2.

Find

- (a) (1 point) the probability that he will be able to leave on at least one train
- (b) (1 point) the expected waiting time for the next train (assuming that the waiting time is zero if the student is late for both trains)

Here,

$$\theta(x) = \begin{cases} 1, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$

- 2. (2 points) On the plane, 4 points A = (1, 0), B = (0, 1), C = (-1, 0) and D = (0, -1) are marked. Let the random vector (ξ, η) be uniformly distributed inside the rhombus ABCD. Find the distribution of ξ and η . Will ξ and η be independent?
- 3. (2 points) Let (ξ, η) be a normal vector with an expected value of $0 \in \mathbb{R}^2$ and covariance matrix $\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Find the densities for its coordinates ξ and η . Use the fact that $\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$ in this problem.
- 4. (2 points) Let ξ_1, \ldots, ξ_n be independent identically distributed continuous random variables with density p(x). Find the density of random variables: $\max(\xi_1, \ldots, \xi_n)$ and $\min(\xi_1, \ldots, \xi_n)$.
- 5. Let ξ and η be two random variables. Prove that
 - (a) (1 point) ξ and η are independent if and only if $a\xi + b$ and η are independent. Here $a, b \in \mathbb{R}$ with $a \neq 0$
 - (b) (1 point) If each of the random variables ξ and η takes only two values, then they are independent if and only if $cov(\xi, \eta) = 0$