Question #1

We have two datasets for Waterloo and New York. To compare mean values of temperatures for pre-, during-, and post-quarantine periods, we divided data into three subsets by Year: Pre-Quarantine Period is year 2019, During-Quarantine Period is year 2020, and Post-Quarantine Period is year 2021.

```
waterloo_clean <-
read. csv(' . /datasets/Waterloo_Muni ci pal _I owaCl ean. csv' )
nyc_cl ean <-
read. csv(' . /datasets/JFK_I nternati onal _NewYorkCl ean. csv' )
##Data splitting by year for Waterloo data_w<-split(waterloo_clean$Year)
waterloo_pre<-data_w$`2019
waterloo_during<-data_w$`2020`
waterloo_post<-data_w$`2021`
w_pre_monthly<-
waterloo_pre[!is.na(waterloo_pre$MonthlyMeanTemperature),]
w_d_monthly<-
waterl oo_duri ng[!is. na(waterl oo_duri ng$Monthl yMeanTemperature), ]
w_post_monthl y<-
waterl oo_post[!is.na(waterl oo_post$Monthl yMeanTemperature),]</pre>
##Data splitting by year for New York:
data_nyc<-split(nyc_clean, nyc_clean$Year)
nyc_pre<-data_nyc$`2019`
nyc_duri ng<-data_nyc$`2020`
nyc_post<-data_nyc$`2021`
nyc_duri ng[!is.na(nyc_duri ng$MonthlyMeanTemperature),]
nyc_post_monthly<
nyc_post[!is.na(nyc_post$MonthlyMeanTemperature),]
```

We can see the summary information about average temperature in Waterloo by month for three years:

- Summary information for Waterloo:

```
w_summary<-
round(cbi nd(summary(w_pre_monthl y$Monthl yMeanTemperature),
summary(w_d_monthl y$Monthl yMeanTemperature),
summary(w_post_monthl y$Monthl yMeanTemperature)), 2)
col names(w_summary) = c("2019", "2020", "2021")
print("Monthl y Average Temperatyre in Waterloo for pre-, during-,
and post- COVID period:")
w_summary</pre>
```

The Output:

```
2019 2020 2021
Min. 15.60 23.20 10.60
1st Qu. 30.75 37.58 43.38
Median 48.40 47.40 57.90
Mean 47.21 49.67 53.17
3rd Qu. 69.67 64.85 72.28
Max. 76.70 77.40 75.50
```

- Summary information for New York:

```
nyc_summary<-
round(cbi nd(summary(nyc_pre_monthl y$Monthl yMeanTemperature),
summary(nyc_d_monthl y$Monthl yMeanTemperature),
summary(nyc_post_monthl y$Monthl yMeanTemperature)), 2)
col names(nyc_summary)=c("2019", "2020", "2021")
print("Monthl y Average Temperatyre in New York for pre-, during-,
and post- COVID period:")
nyc_summary</pre>
```

The Output:

```
2019 2020 2021
Min. 32.40 38.50 33.20
1st Qu. 39.60 44.70 45.98
Median 56.10 54.55 62.20
Mean 54.67 56.20 58.31
3rd Qu. 69.73 69.18 71.23
Max. 78.80 79.30 76.90
```

To compare Monthly Average Temperature for these three periods, we will plot the graph to see if there are any significant differences in the graphs:

- Waterloo:

```
plot(w_pre_monthly$Month, w_pre_monthly$MonthlyMeanTemperature, type = "b", col = "red", xlab = "Month", ylab = "Average Temperature", main = "Average Monthly Temperature in Waterloo in years 2019 - 2021")
lines(w_d_monthly$Month, w_d_monthly$MonthlyMeanTemperature, type = "b", col = "blue")
lines(w_post_monthly$Month, w_post_monthly$MonthlyMeanTemperature, type = "b", col = "green")
legend("topleft", legend = c(2019, 2020, 2021), col = c("red", "blue", "green"), lty = 1:2, cex = 0.8)
```

The Output:

- New York:

```
plot(nyc_pre_monthly$Month, nyc_pre_monthly$MonthlyMeanTemperature, type = "b", col = "red", xlab = "Month", ylab = "Average Temperature", main = "Average Monthly Temperature in New York in years 2019 - 2021") lines(nyc_d_monthly$Month, nyc_d_monthly$MonthlyMeanTemperature, type = "b", col = "blue") lines(nyc_post_monthly$Month, nyc_post_monthly$MonthlyMeanTemperature, type = "b", col = "green") legend("topleft", legend = c(2019, 2020, 2021), col = c("red", "blue", "green"), lty = 1:2, cex = 0.8)
```

The Output:

As we can see, we cannot say if there is a difference between the average monthly temperature in pre-, during-, and post-covid periods in Waterloo or New York. Thus, we heed to test hypothesis about the equivalence of mean values for these periods. We will use t-test:

a) Waterloo:

```
t_w1<-
t. test(w_pre_monthl y$Monthl yMeanTemperature, w_d_monthl y$Monthl yMeanT
emperature)
t_w2<-
t. test(w_pre_monthl y$Monthl yMeanTemperature, w_post_monthl y$Monthl yMe
anTemperature)
t_w3<-
t. test(w_d_monthl y$Monthl yMeanTemperature, w_post_monthl y$Monthl yMean
Temperature)
##Resul ts:
t_w1
t_w2
t_w3</pre>
```

The results for t-tests:

- Comparing mean values of the average monthly temperature in Waterloo for pre-COVID and during-COVID periods:

```
welch Two Sample t-test

data: w_pre_monthly$MonthlyMeanTemperature and w_d_monthly$MonthlyMeanTemperature
t = -0.28886, df = 21.722, p-value = 0.7754
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -20.12097    15.20431
sample estimates:
mean of x mean of y
47.20833    49.66667
```

As we can see, the p-value is 0.7754, which is greater than $\alpha = 0.05$. It means that we cannot reject the null-hypothesis about equality of means. Thus, the true difference in means for pre-Covid and during-Covid period in Waterloo is equal to zero.

- Comparing mean values of the average monthly temperature in Waterloo for pre-COVID and post-COVID periods:

```
Welch Two Sample t-test
```

Welch Two Sample t-test

```
data: w_pre_monthly$MonthlyMeanTemperature and w_post_monthly$MonthlyMeanTemperature t = -0.62254, df = 19.061, p-value = 0.541 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -26.00083 14.07750 sample estimates: mean of x mean of y 47.20833 53.17000
```

As we can see, the p-value is 0.541, which is greater than $\alpha = 0.05$. It means that we cannot reject the null-hypothesis about equality of means. Thus, the true difference in means for pre-Covid and post-Covid period in Waterloo is equal to zero.

- Comparing mean values of the average monthly temperature in Waterloo for during-COVID and post-COVID periods:

```
data: w_d_monthly$MonthlyMeanTemperature and w_post_monthly$MonthlyMeanTemperature t = -0.38336, df = 18.009, p-value = 0.7059 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:
```

-22.70185 15.69518 sample estimates: mean of x mean of y 49.66667 53.17000

As we can see, the p-value is 0.7059, which is greater than 0.05. It means that we cannot reject the null-hypothesis about equality of means. Thus, the true difference in means for during-Covid and post-Covid period in Waterloo is equal to zero.

b) New York:

```
t_ny1<-
t. test(nyc_pre_monthl y$Monthl yMeanTemperature, nyc_d_monthl y$Monthl yM
eanTemperature)
t_ny2<-
t. test(nyc_pre_monthl y$Monthl yMeanTemperature, nyc_post_monthl y$Month
l yMeanTemperature)
t_ny3<-
t. test(nyc_d_monthl y$Monthl yMeanTemperature, nyc_post_monthl y$Monthl y
MeanTemperature)
##Resul ts:
t_ny1
t_ny2
t_ny3</pre>
```

The results for t-tests:

- Comparing mean values of the average monthly temperature in New York for pre-COVID and during-COVID periods:

As we can see, the p-value is 0.8145, which is greater than $\alpha = 0.05$. It means that we cannot reject the null-hypothesis about equality of means. Thus, the true difference in means for pre-Covid and during-Covid period in New York is equal to zero.

- Comparing mean values of the average monthly temperature in New York for pre-COVID and post-COVID periods:

As we can see, the p-value is 0.6132, which is greater than $\alpha=0.05$. It means that we cannot reject the null-hypothesis about equality of means. Thus, the true difference in means for pre-Covid and post-Covid period in New York is equal to zero.

- Comparing mean values of the average monthly temperature in New York for during-COVID and post-COVID periods:

```
Welch Two Sample t-test
```

As we can see, the p-value is 0.7576, which is greater than 0.05. It means that we cannot reject the null-hypothesis about equality of means. Thus, the true difference in means for during-Covid and post-Covid period in New York is equal to zero.

Thus, as we can see, the average monthly temperature in pre-, during-, and post-COVID periods does not have statistically significant difference, i.e. we may conclude that the average monthly temperature did not change significantly in COVID period both in Waterloo and New York.

Question #2

At first, we will use 'Year' variable as factor variable:

```
nyc_cl ean$Year<-as. factor(nyc_cl ean$Year)</pre>
```

By using this data and 'Year' as factor, we can build a boxplot to see the average daily temperature in New York in years 2019 (pre-COVID time), 2020 (during-COVID time), and 2021 (post-COVID time):

```
library(ggplot2)
library(RColorBrewer)
ggplot(data = nyc_clean, aes(y = DailyAverageDryBulbTemperature, x =
Year), fill = "class") +
geom_boxplot()+
xlab("Year")+
ylab("Daily Average Temperature")+
ggtitle("Daily Average Temperature in New York by Year (2019 -
2021)")
```

The output:

As we can see from the boxplot, we can assume that the average daily temperature in New York during COVID-19 has changed: it is slightly greater for year 2020 compared to 2019; it's greater for year 2021 compared to 2019 and 2020.

The summary statistics:

 $tappl\ y(nyc_cl\ ean\ Dai\ l\ yAverageDryBul\ bTemperature,\ nyc_cl\ ean\ Year, function(x)\ format(summary(x)))$

The output:

```
$`2019`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
"10.00" "41.00" "56.00" "55.02" "71.00" "90.00" "12"

$`2020`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
"22.00" "44.00" "55.00" "56.49" "71.00" "87.00" "12"

$`2021`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
"22.00" "45.00" "60.50" "58.08" "72.75" "85.00" "10"
```

As we can see from the summary statistic, our assumption should be right. Let check it with t-test:

tt_ny1<-t.test(nyc_pre\$DailyAverageDryBulbTemperature, nyc_during\$DailyAverageDryBulbTemperature)

```
tt_ny2<-t.test(nyc_pre$DailyAverageDryBulbTemperature,
nyc_post$DailyAverageDryBulbTemperature)
tt_ny3<-t.test(nyc_during$DailyAverageDryBulbTemperature,
nyc_post$DailyAverageDryBulbTemperature)
tt_ny1
tt_ny2
tt_ny3</pre>
```

The results:

- Comparing the means for Daily Average Temperature in New York in pre-COVID and during-COVID periods:

As we can see, the p-value of the test is 0.2219, which is greater than $\alpha = 0.05$. It means that at 95% confidence level, we cannot reject the null-hypothesis: the true difference in means is equal to zero. Thus, there is no difference in daily average temperature in New York in pre- and during-COVID periods.

- Comparing the means for Daily Average Temperature in New York in pre-COVID and post-COVID periods:

```
welch Two Sample t-test

data: nyc_pre$DailyAverageDryBulbTemperature and nyc_post$DailyAverageDryBulbTempera
ture
t = -2.4115, df = 685.75, p-value = 0.01615
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -5.547524 -0.568150
sample estimates:
mean of x mean of y
    55.02192    58.07975
```

As we can see, the p-vlue is 0.01615, which is lower than $\alpha = 0.05$. Thus, we should reject the null-hypothesis about equality of means. Thus, there is a statistically significant

difference in pre- and post- daily average temperature in New York. We can check if our assumption is true and the post-COVID average daily temperature is higher than in pre-COVID period in NY:

```
tt_ny2_new<-t.test(nyc_post$DailyAverageDryBulbTemperature,
nyc_pre$DailyAverageDryBulbTemperature, alternative = "greater")
tt_ny2_new</pre>
```

The results:

As we can see, the p-value is 0.008075, which is lower than $\alpha=0.05$: we should reject the null-hypothesis. It means that the true difference in means between post-COVID daily average temperature and pre-COVID daily average temperature is greater than zero. Thus, the post-COVID daily average temperature is higher than the pre-COVID daily average temperature in New York.

Let see what we have for during- and post-COVID daily average temperature difference:

- Comparing the means for Daily Average Temperature in New York in during-COVID and post-COVID periods:

As we can see, the p-value is 0.1869, which is greater than $\alpha=0.05$, which means that we cannot reject the null-hypothesis. Thus, the difference between the mean values for daily average temperature in during- and post-COVID periods are equal to zero. Thus, there is no statistically significant difference in daily average temperatures in during- and post-COVID periods.

Thus, we can conclude that the post-COVID daily average temperature in New York is higher than in pre-COVID period, but it's not different from during-COVID period. The daily average temperature in pre-COVID and during-COVID period are not significantly different.

Question #3

At first, we will use 'Year' variable as factor variable:

```
waterl oo_cl ean$Year<-as. factor(waterl oo_cl ean$Year)</pre>
```

By using this data and 'Year' as factor, we can build a boxplot to see the average daily temperature in Waterloo in years 2019 (pre-COVID time), 2020 (during-COVID time), and 2021 (post-COVID time):

```
ggplot(data = waterloo_clean, aes(y =
DailyAverageDryBulbTemperature, x = Year), fill = "class") +
geom_boxplot()+
xlab("Year")+
ylab("Daily Average Temperature")+
ggtitle("Daily Average Temperature in Waterloo by Year (2019 -
2021)")
```

The output:

As we can see from the boxplot, we can assume that the average daily temperature in this city during COVID-19 has changed: it is slightly greater for year 2020 compared to 2019; it's greater for year 2021 compared to 2019 and slightly greater compared to year 2020.

The summary statistics:

tapply(waterloo_clean\$DailyAverageDryBulbTemperature, waterloo_clean\$Year, function(x) format(summary(x)))

The output:

```
$`2019`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
"-21.00" " 32.00" " 48.00" " 47.61" " 68.00" " 87.00" "12"

$`2020`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
" 0.00" "33.25" "49.50" "49.98" "68.00" "85.00" "12"

$`2021`
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
"-10.00" " 37.25" " 57.00" " 52.82" " 72.00" " 86.00" "10"
```

As we can see from the summary statistic, our assumption should be right. Let check it with t-test:

tt_w1<-t.test(waterloo_pre\$DailyAverageDryBulbTemperature, waterloo_during\$DailyAverageDryBulbTemperature)

```
tt_w2<-t.test(waterloo_pre$DailyAverageDryBulbTemperature,
waterloo_post$DailyAverageDryBulbTemperature)
tt_w3<-t.test(waterloo_during$DailyAverageDryBulbTemperature,
waterloo_post$DailyAverageDryBulbTemperature)
tt_w1
tt_w2
tt_w3</pre>
```

The results are:

Comparing the means for Daily Average Temperature in Waterloo in pre COVID and during-COVID periods:

```
welch Two Sample t-test

data: waterloo_pre$DailyAverageDryBulbTemperature and waterloo_during$DailyAverageDryBulbTemperature

t = -1.4724, df = 719.99, p-value = 0.1414

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
    -5.5427720    0.7919823

sample estimates:
mean of x mean of y
    47.60548    49.98087
```

As we can see, the p-value of the test is 0.1414, which is greater than $\alpha=0.05$. It means that at 95% confidence level, we cannot reject the null-hypothesis: the true difference in means is equal to zero. Thus, there is no difference in daily average temperature in Waterloo in pre- and during-COVID periods.

 Comparing the means for Daily Average Temperature in Waterloo in pre-COVID and post-COVID periods:

```
Welch Two Sample t-test

data: waterloo_pre$DailyAverageDryBulbTemperature and waterloo_post$DailyAverageDryBulbTemperature
t = -3.0033, df = 682.35, p-value = 0.002768
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -8.627019 -1.806194
sample estimates:
mean of x mean of y
47.60548 52.82209
```

As we can see, the p-value is 0.002768, which is lower than $\alpha = 0.05$. Thus, we should reject the null-hypothesis about equality of means. Thus, there is a statistically

significant difference in pre- and post- daily average temperature in Waterloo. We can check if our assumption is true and the post-COVID average daily temperature is higher than in pre-COVID period in Waterloo:

```
tt_w2_new<-t.test(waterloo_post$DailyAverageDryBulbTemperature,
waterloo_pre$DailyAverageDryBulbTemperature, alternative =
"greater")
tt_w2_new</pre>
```

The result:

```
Welch Two Sample t-test
```

As we can see, the p-value is 0.001384, which is lower than $\alpha=0.05$: we should reject the null-hypothesis. It means that the true difference in means between post-COVID daily average temperature and pre-COVID daily average temperature is greater than zero. Thus, the post-COVID daily average temperature is higher than the pre-COVID daily average temperature in Waterloo.

Let see what we have for during- and post-COVID daily average temperature difference:

- Comparing the means for Daily Average Temperature in Waterloo in during-COVID and post-COVID periods:

```
Welch Two Sample t-test
```

```
data: waterloo_during$DailyAverageDryBulbTemperature and waterloo_post$DailyAverageD
ryBulbTemperature
t = -1.7197, df = 660.84, p-value = 0.08595
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -6.085231    0.402808
sample estimates:
mean of x mean of y
   49.98087    52.82209
```

As we can see, the p-value is 0.08595, which is greater than $\alpha = 0.05$. But it is lower than $\alpha = 0.10$, which means that at 90% of confidence we can say that the mean values of daily average temperature for during- and post-COVID periods are different. We can check this:

```
tt_w3_new<-t.test(waterloo_post$DailyAverageDryBulbTemperature,
waterloo_during$DailyAverageDryBulbTemperature, alternative =
"greater")
tt_w3_new</pre>
```

The result:

```
Welch Two Sample t-test
```

As we can see, the p-value is 0.04297, which is lower than $\alpha=0.05$: we should reject the null-hypothesis. It means that the true difference in means between mean values of daily average temperature in post- and during-COVID period is greater than zero. Thus, the mean value of post-COVID daily average temperature is higher than the mean value of during-COVID daily average temperature in Waterloo.

Thus, we can conclude that the post-COVID daily average temperature in Waterloo is higher than in pre-COVID and during-COVID periods. The daily average temperature in pre-COVID and during-COVID period is not significantly different.

Question #4

Based on the previous analysis, we can say that the quarantine has not been effective in reducing daily mean temperature or average temperature in general. We can see, that post-COVID average daily temperature is higher than pre-COVID average daily temperature both for New York and waterloo. The reason that people during the COVID and in post-COVID period stay in their homes and use more electricity, cars, buy more food, etc.