Graph Theory-Class 3

Acyclic graph: A graph is acyclic if it has no cycles.

Acyclic graph: A graph is acyclic if it has no cycles.

Tree: A tree is connected acyclic graph.

Acyclic graph: A graph is acyclic if it has no cycles.

Tree: A tree is connected acyclic graph.

All trees with six vertices:

Original Graph

Original Graph

A Spanning Tree

Question: Does every graph has a spanning tree?

Statement:

Statement:

Every connected graph ${\it G}$ has a spanning tree.

Statement:

Every connected graph G has a spanning tree.

Statement:

Every connected graph G has a spanning tree.

Proof (Constructive via Edge Deletion Method):

1. Let G = (V, E) be a connected graph.

Statement:

Every connected graph G has a spanning tree.

- 1. Let G = (V, E) be a connected graph.
- 2. If G has no cycles (i.e., G is already a tree), then G itself is a spanning tree.

Statement:

Every connected graph G has a spanning tree.

- 1. Let G = (V, E) be a connected graph.
- 2. If G has no cycles (i.e., G is already a tree), then G itself is a spanning tree.
- 3. Otherwise, suppose G contains a cycle.

Statement:

Every connected graph G has a spanning tree.

- 1. Let G = (V, E) be a connected graph.
- 2. If G has no cycles (i.e., G is already a tree), then G itself is a spanning tree.
- 3. Otherwise, suppose G contains a cycle.
 - Select an edge e that belongs to some cycle.

Statement:

Every connected graph G has a spanning tree.

- 1. Let G = (V, E) be a connected graph.
- 2. If G has no cycles (i.e., G is already a tree), then G itself is a spanning tree.
- 3. Otherwise, suppose G contains a cycle.
 - Select an edge e that belongs to some cycle.
 - Remove e. Since e was part of a cycle, removing it does not disconnect the graph.

Statement:

Every connected graph G has a spanning tree.

- 1. Let G = (V, E) be a connected graph.
- 2. If G has no cycles (i.e., G is already a tree), then G itself is a spanning tree.
- 3. Otherwise, suppose G contains a cycle.
 - ► Select an edge *e* that belongs to some cycle.
 - Remove e. Since e was part of a cycle, removing it does not disconnect the graph.
- 4. Repeat until no cycles remain.

Statement:

Every connected graph G has a spanning tree.

- 1. Let G = (V, E) be a connected graph.
- 2. If G has no cycles (i.e., G is already a tree), then G itself is a spanning tree.
- 3. Otherwise, suppose G contains a cycle.
 - ▶ Select an edge *e* that belongs to some cycle.
 - Remove e. Since e was part of a cycle, removing it does not disconnect the graph.
- 4. Repeat until no cycles remain.
- Then the resulting graph is connected and acyclic, hence a tree.

Statement:

Every connected graph G has a spanning tree.

- 1. Let G = (V, E) be a connected graph.
- 2. If G has no cycles (i.e., G is already a tree), then G itself is a spanning tree.
- 3. Otherwise, suppose G contains a cycle.
 - Select an edge e that belongs to some cycle.
 - Remove e. Since e was part of a cycle, removing it does not disconnect the graph.
- 4. Repeat until no cycles remain.
- 5. Then the resulting graph is connected and acyclic, hence a tree.
- 6. Further no vertices are removed, which gives a spanning tree.

Question 2: How many spanning trees does a connected graph has?

Question 2: How many spanning trees does a connected graph has?

Let us see an example.

Question 2: How many spanning trees does a connected graph has?

Let us see an example.

Graph G.

Question 2: How many spanning trees does a connected graph has?

Let us see an example.

Preliminaries: Let G be a graph with n vertices.

Preliminaries: Let G be a graph with n vertices.

▶ The **degree matrix** D is an $n \times n$ diagonal matrix with each vertex's degree on the diagonal and other entries are zero.

Preliminaries: Let *G* be a graph with *n* vertices.

- ▶ The **degree matrix** D is an $n \times n$ diagonal matrix with each vertex's degree on the diagonal and other entries are zero.
- ▶ The **adjacency matrix** A is an $n \times n$ matrix where,

Preliminaries: Let *G* be a graph with *n* vertices.

- ▶ The **degree matrix** D is an $n \times n$ diagonal matrix with each vertex's degree on the diagonal and other entries are zero.
- ► The adjacency matrix A is an $n \times n$ matrix where, $A_{ij} =$ number of edges between vertices v_i and v_j .

Preliminaries: Let *G* be a graph with *n* vertices.

- ▶ The **degree matrix** D is an $n \times n$ diagonal matrix with each vertex's degree on the diagonal and other entries are zero.
- ▶ The adjacency matrix A is an $n \times n$ matrix where, $A_{ij} =$ number of edges between vertices v_i and v_j .

Definition (Laplacian Matrix): For a graph G = (V, E), the Laplacian matrix is defined as

$$L_G := D - A$$
.

Preliminaries: Let *G* be a graph with *n* vertices.

- ▶ The **degree matrix** D is an $n \times n$ diagonal matrix with each vertex's degree on the diagonal and other entries are zero.
- ▶ The adjacency matrix A is an $n \times n$ matrix where, $A_{ij} =$ number of edges between vertices v_i and v_j .

Definition (Laplacian Matrix): For a graph G = (V, E), the Laplacian matrix is defined as

$$L_G := D - A$$
.

When the context is clear, we simply write L.

Degree matrix
$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Degree matrix
$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Adjacency matrix
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Degree matrix
$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Adjacency matrix
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Laplacian matrix
$$L = D - A = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

Theorem (Kirchhoff's Matrix-Tree Theorem):

Theorem (Kirchhoff's Matrix-Tree Theorem): Let G = (V, E) be an graph with n vertices and Laplacian matrix of G be L.

Theorem (Kirchhoff's Matrix-Tree Theorem): Let G = (V, E) be an graph with n vertices and Laplacian matrix of G be L. For any $i, j \in \{1, 2, ..., n\}$, let $C_{i,j}$ denote the cofactor of L obtained by deleting the i-th row and j-th column.

Theorem (Kirchhoff's Matrix-Tree Theorem): Let G = (V, E) be an graph with n vertices and Laplacian matrix of G be L. For any $i, j \in \{1, 2, ..., n\}$, let $C_{i,j}$ denote the cofactor of L obtained by deleting the i-th row and j-th column.

Then the number of spanning trees in G is

$$T(G) = C_{i,j}$$
.

Theorem (Kirchhoff's Matrix-Tree Theorem): Let G = (V, E) be an graph with n vertices and Laplacian matrix of G be L. For any $i, j \in \{1, 2, \ldots, n\}$, let $C_{i,j}$ denote the cofactor of L obtained by deleting the i-th row and j-th column.

Then the number of spanning trees in G is

$$T(G)=C_{i,j}.$$

▶ $C_{i,j} := (-1)^{i+j} M_{i,j}$, where $M_{i,j}$ is the determinant of the minor obtained by removing the *i*-th row and *j*-th column from the original matrix.

Theorem (Kirchhoff's Matrix-Tree Theorem): Let G = (V, E) be an graph with n vertices and Laplacian matrix of G be L. For any $i, j \in \{1, 2, \ldots, n\}$, let $C_{i,j}$ denote the cofactor of L obtained by deleting the i-th row and j-th column.

Then the number of spanning trees in G is

$$T(G)=C_{i,j}.$$

- ▶ $C_{i,j} := (-1)^{i+j} M_{i,j}$, where $M_{i,j}$ is the determinant of the minor obtained by removing the *i*-th row and *j*-th column from the original matrix.
- ▶ The value $C_{i,j}$ is independent of the choice of i and j.

Question: Determine number of spanning trees in

- previous graph G and
- ► K₄.