Лекция 7:

(7.1) Второй занечательный предел

Пример 1: Dokamen, emo lim $(1+\frac{1}{x})^x = e$.

My are V=N, $\mathcal{U}_{Y}(\infty)=\{n\in N: n>N\}$, $X=\{x\in R: x>0\}$, $\mathcal{U}_{X}(+\infty)=\{x\in R: x>R\}$, $x\in R$. If X=X, XDes beausi My (00) = {n > N} moneno maime Mx (+00) = {2 > N+1}

eo chon'co-bou, and gue $x \in \{x>N+1\}$ years $2acx [x] \in \{n>N\}$. Paccumpus $g(n) = (1 + \frac{1}{n})^n$, $g_1(n) = (1 + \frac{1}{n+1})^n$ u $g_2(n) = (1 + \frac{1}{n})^{n+1}$

** omopne unesom clour spegeren syn $n \to \infty$ rucco e. Torge no reopere 2 $(g \circ f)(x) = (1 + \frac{1}{(x)})^{[x]}, (g_* \circ f)(x) = (1 + \frac{1}{(x)^q})^{(x)}, (g_* \circ f)(x) = (1 + \frac{1}{(x)})^{(x)^{1/2}}$

Стремятся при х→+00 к гислу е.

Banemuse, 2mo how 221 hpu $x \ge 1$ $\left(1 + \frac{1}{IxIH}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{[x]}\right)^{[x]+1}$ normany $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{x} = \ell$. Dave $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{x} = \lim_{t \to +\infty} \left(1 - \frac{1}{t}\right) = \lim_{t \to +\infty} \left(1 + \frac{1}{t-1}\right)^{t} = \lim_{t \to$

Demande mosses gamemums, zmo uj lim $\left(1+\frac{1}{x}\right)^{\frac{2}{x}} = \ell$ u lim $\left(1+\frac{1}{x}\right)^{\frac{2}{x}} = \ell$ вогтекает

 $=\lim_{t\to+\infty}\left(1+\frac{1}{t-t}\right)^{t-1}\lim_{t\to+\infty}\left(1+\frac{1}{t-t}\right)=\lim_{t\to+\infty}\left(1+\frac{1}{t-t}\right)^{t-1}=\lim_{t\to+\infty}\left(1+\frac{1}{t}\right)^{t}=e$

 $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = \ell.$

B cusy lim $(1+\frac{1}{x})^x = e$, gre $\forall \varepsilon > 0 \ \exists S_+ > 0 \ \forall x \ (x > S_+) \Rightarrow \left| (1+\frac{1}{x})^x - e \right| < \varepsilon$. a b cumy $\lim_{x\to -\infty} (1+\frac{1}{2})^x = e$, give $\forall \varepsilon = 0$ $\exists S = 0$ $\forall x (x < S) \Rightarrow |(1+\frac{1}{2})^x - e| < \varepsilon$. Torga give $\forall \varepsilon = 0$ rpu $|x| > S = \max\{|S_-|, |S_+|\}$ Tygen unemy zno 1 (1+ \frac{1}{2})^2-e < \\ \xi.

To expedend the smo u obtained, and $\lim_{z\to\infty} \left(1+\frac{1}{z}\right)^2 = e$.

🛈 Предел монотонных функций

Oпреление 7.1: Рункция f: X → R наупвается

- 1) убывающей на Х 👄 Vx', x"EX, m.z. x'<2" > f(x')>f(x");
- 2) неводрастающей на X 👄 Vx; x" \(X m.z. x' < 2" \(\alpha \) \(f(x') \)
- 3) неубывающей на Х 👄 $\forall x', x'' \in X$ m, $z : x' < z'' \Rightarrow f(x') \leq f(x'')$ 4) возрастающей на 🛚 👄 $\forall x', x'' \in X$ m.z. $x' < x'' \Rightarrow f(x') < f(x'')$.

Рункция назпрается монотокной на Х, если она едного uz munos 1)-4).

Теорема 7.1: (о пределе моноточной орушкуми) Неубпвающая на множестве Х opyukyus of uneem npeger npu x→3, zge 3=3upX, mozga u mortho morga, korga f orpanurena chepry (m.e. $\exists C \in \mathbb{R} \ \forall x \in X \Rightarrow f(x) < C$). Аналогично, невозрастающая на минтестве х дружумя з имет npeges npu $x \rightarrow i$, sge $i = \inf X$ morga u moльно morga korga f ограничена снизу.

Lorasaserbos Pyens cymecmbyen $\lim_{x\to 3} f(x)$, a on palen A. Torga no onpegeneнию предела найдётся прокольтая окрестность Й(s) точни з во мыстестве X т.г. функция в ограничена на и(з). Япоскольну функция в неубывающая то в ограничена сверку на Х.

Пусть неубпвающая друшкумя в ограничена сверку на х. Докатец сто lim f(x) equipembyen B ency exponentiation depay equipostre $A=\sup_{x\to 1}f(x)$. To experience mornou beparen spane $V \in \mathcal{F} \cup \mathcal{F}$ $A - \mathcal{E} < f(x') \leq A < A + \mathcal{E}$

B any negrobance gue box $x \in X$, m.z. x' < x, bygen uneme $A-\epsilon < f(x) < A+\epsilon$

Tax rax $s = \sup X$ no $\lim f(z) = A$. Второй слугай рассматривается аналогично.

(73) Сравнение функций

Unpegarenue 7.2: Рункуия f называется бесконегно магой по сревнению t opyukyuen g npu $x \to x_0$ ($x_0 \in \mathbb{R}$ um $x_0 - ogna$ uz beckotuzuocien) ⇔ rozga cywęcibyci U(x), m.z. в ней выпасняется соетношения f(x) = d(x)g(x),

иде $\phi(x)$ — бескопигно малая друмкумя при $x \to 70$. Ободнагания: f = O(g) (, f эвичется о-махом от g^{66})

Ease f=0(g) now $x\to x$, u g — быхонегно макая доункуня при х-то, то в наупваетая бесконигно макой быш впеского порядка по сравнению с д при х эко.

Ecm f=O(g) npu $x\to x_0$, u f,g — бесконегно большие при $x\to x_0$, то дозниция д называетая бесконично большей были высокого порядка по cpabnerum c f now x - xo.

||PUMEP 7.2: 1) $x^2 = o(x)$ npu $x \rightarrow 0$, m.k. $x^2 = x \cdot x$

 $x = o(x^2)$ npu $x \to \infty$, m.x. $x = \frac{1}{x} \cdot x^2$ npu $x \neq 0$

3) f = O(1) npu $x \rightarrow x_0 \Rightarrow f$ absorbes becomes major open $x \rightarrow x_0$

4) $\frac{1}{x^2} = O(\frac{1}{x})$ has $x \to \infty$ is $\frac{1}{x} \to 0 \Rightarrow \frac{1}{x^2}$ becomes house force

5) $\frac{1}{x} = O(\frac{1}{x^2})$ now $x \to \infty$ is $\frac{1}{x} + \infty$ becomes no pages to continuo c if now $x \to 0$ \Rightarrow if c is c continuo c if now $x \to 0$ в $\tilde{U}(x_0)$ дружжумя f и g эвляются функциями одного порядна при $x\to x_0$ \Leftrightarrow ногда при $x\to x_0$ f=O(g) и g=O(f). Это, оговидно, онвивалентно тому, гто g некоторый $\tilde{U}(x_0)$ ваполняются $C_1|g(x)| \leq |f(x)| \leq C_2|g(x)|$,

где С, >0 и С270 - финицованите константог

Πρимер 7.3: 1) $\left(Sinx + \frac{1}{x}\right)x = D(x)$ при $x \to \infty$, m.κ. $\left|Sinx + \frac{1}{x}\right| \le 2$ giz goemamozico δολευμία $\left|x\right|$.

2) Janemur, επο $x \le (2 + Sinx)x \le 3x$ giz beex $x \in \mathbb{R}$ Γρομησμή

gункуш x и $(2+\sin x)x$ эвляются функулями одного порядка при $x \to \infty$

Утвертление 7.1: Гри $x \rightarrow x_0$

- 1) O(f) + O(f) = O(f);
- 2) o(f) sbeemar O(f);
- 3) O(f) + O(f) = O(f);
- 4) O(f) + O(f) = O(f);5) $\mathcal{E}_{CAU} g(x) \neq 0$, $m_0 \frac{O(f(x))}{g(x)} = O(\frac{f(x)}{g(x)})$ $u \frac{O(f(x))}{g(x)} = O(\frac{f(x)}{g(x)})$

10каза τ ельс τ во: 1) Рассиотрим суму двух дункумі, которах гыгются 0(4) при $x \Rightarrow x_0$:

 $d_1(x) f(x) + d_2(x) f(x) = (d_1(x) + d_2(x)) f(x) = d_3(x) f(x)$

 $zge \quad d_3(x) := d_1(x) + d_2(x) \rightarrow 0 + 0 \text{ npu} \quad x \rightarrow x_0.$

1) Ecu lpha(x) – бесконично малах при $x\to x_0$, то lpha(x) Ограничена в некоторой $\mathring{\mathcal{U}}(x_0)$

3) Paccuompuu eyuuy gbyz qynxyui, xomopan zhiziomes O(f) rpu $x \Rightarrow x_0$: $\beta_1(x) f(x) + \beta_2(x) f(x) = (\beta_1(x) + \beta_2(x)) f(x) = \beta_3(x) f(x),$

 $u_{ge}=eta_{s}(x):=eta_{t}(x)+eta_{t}(x)$ shipemed organization b henomorous u(x)

4) Bormenaem uz 2) u 3)

5) Janemus, 2mo $\frac{O(f(x))}{O(f(x))} = d(x) f(x) = d(x) \frac{f(x)}{O(x)} = O(\frac{f(x)}{O(x)})$

 $\frac{O(f(x))}{g(x)} = \frac{o(x)f(x)}{g(x)} = o(x)\frac{f(x)}{g(x)} = O(\frac{f(x)}{g(x)})$ $\frac{O(f(x))}{g(x)} = \frac{f(x)f(x)}{g(x)} = \beta(x)\frac{f(x)}{g(x)} = O(\frac{f(x)}{g(x)}).$

Определение 7.4: Рункция f эквивалентна функции g при $z \to z_o$ ($f \sim g$ при $x \to k$) \Leftrightarrow когда существует $\mathring{U}(z_o)$, т.г. k ней выпоменю соотношение

 $f(x) = \gamma(x)g(x), \quad \text{age } \lim_{x \to x} \gamma(x) = 1$

Tax kax $\lim_{x\to x_0} \gamma(x) = 1 \Leftrightarrow \gamma(x) = 1 + \alpha(x)$ b renomposi U(x), $zge \lim_{x\to x_0} \alpha(x) = 0$ mo $f \sim g$ rpu $x \rightarrow x_0 \Leftrightarrow f(x) = g(x) + d(x)g(x) = g(x) + O(g(x))$ rpu $x \rightarrow x_0$.

Primer 7.4: 1) $\ln(1+x) \sim x$ uper $x \to 0$ um $\ln(1+x) = x + O(x)$ uper $x \to 0$ Действите попо,

 $\lim_{z \to 0} \frac{h(1+z)}{x} = \lim_{z \to 0} h(1+z)^{1/2} \stackrel{?}{=} \ln \left(\lim_{z \to 0} (1+z)^{1/2} \right) = \ln \left(\lim_{z \to 0} \left(1+\frac{1}{z} \right)^{2} \right) = \ln e = 1.$

2) $e^x = 1 + x + o(x)$ npu $x \to 0$ new $e^x - 1 \sim x$ npu $x \to 0$ Deciembumerono

 $\lim_{x\to 0} \frac{e^{x-t}}{x} = \left/ \begin{array}{l} \text{gamena} \\ \text{sc} = \ln (1+t) \right/ = \lim_{t\to 0} \frac{t}{\ln (1+t)} = 1.$

(1+x) = 1+ dx + 0(x) npu x = 0 use (1+x) ~ 1+dx npu x = 0 Desiconbumer suo,

 $\lim_{z \to 0} \frac{(1+z)^2 - 1}{z} = \lim_{z \to 0} \frac{e^{\frac{z}{2} \ln(1+z)} - 1}{\frac{z}{2} \ln(1+z)} \cdot \frac{\frac{z}{2} \ln(1+z)}{\frac{z}{2}} = \int_{z \to 0} \frac{1}{z} \frac{e^{\frac{z}{2}} - 1}{\frac{z}{2} \ln(1+z)} = \frac{e^{\frac{z}{2}} \ln(1+z)}{\frac{z}{2} \ln(1+z)$ Утвертление 7.2: Пусть f, ~f2 при x » ха Tozga lim f(z)g(z) = lim f2(x)g(z),

ecus ogun uz smuz npegenob cywyecmbyem Доказательство : lim f, (2) g(x) = lim 8(x) f2(x) g(x) = (lim 8(x)) (lim f2(x)g(x)) = lim f(x)g(x) \$

1) lim \(\frac{\lorentheta \cos x}{4 \cos x} = \frac{1}{4} \lorentheta \cos x \\ \frac{\tau \cos x}{2^4} = \frac{1}{4} \lorentheta \cos \frac{\lorentheta \cos x}{2} = \frac{1}{4} \lorentheta \cos x = f him ==== -1.

1)
$$\lim_{x \to +\infty} (\sqrt{x^2 + x^2} - x) = \lim_{x \to +\infty} x(\sqrt{1 + \frac{1}{x^2}} - 1) = \lim_{x \to +\infty} x(1 + \frac{1}{x} + \frac{1}{x} + o(\frac{1}{x}) - 1) =$$

=
$$\lim_{x \to +\infty} \left(\frac{1}{x} + x \cdot o(\frac{1}{x}) \right) = \lim_{x \to +\infty} \left(\frac{1}{x} + o(1) \right) = \frac{1}{x}.$$

ACUMN TOTHY ECKUX GOOPMYN Ipu x→0 compadegrubor acusermomurecuie

$$e^{x} = 1 + \frac{1}{n!}x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + O(x^{n+1})$$

$$\text{Sin}x = \frac{1}{n!}x - \frac{1}{n!}x^{3} + \dots + \frac{(-7)^{K}}{(2k+0)!}x^{2k+1} + O(x^{2k+3})$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{n!}x^{4} + \dots + \frac{(-1)^{K}}{(2k)!}x^{2k} + O(x^{2k+2})$$

$$\text{In } (1+x) = x - \frac{1}{2!}x^{2} + \frac{1}{3}x^{3} + \dots + \frac{(-1)^{n-1}}{n}x^{n} + O(x^{n+1})$$

$$(1+x)^{A} = 1 + \frac{1}{n!}x + \frac{A(d-1)}{2!}x^{2} + \dots + \frac{A(d-1)\dots (d-n+1)}{n!} + O(x^{n+1})$$

 $O(x^{m+1}) = x^{m+1} \cdot O(1) = x^m \cdot x \cdot O(1) = x^m \cdot O(1) = O(x^m)$ now $x \to 0$