1 Double Integrals over Rectangles

The Riemann sum

$$\int_{a}^{b} f(x) dx = \lim_{n \to \inf} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

FIGURE 1

4 Volumes and Double Integrals

Form the subrectangles

$$F_{ij} = \begin{bmatrix} x_{i-1}, x_y \end{bmatrix} \times \begin{bmatrix} y_{i-1}, y_i \end{bmatrix} = \left\{ (x,y) \mid x_{i-1} \leq x \leq x_i, y_{j-1} \leq y \leq y_j \right\}$$

each with area $\Delta A = \Delta x \Delta y$.

Definition: Double Integral

The **double integral** of f over the rectangle R is

$$\iint\limits_R f(x,y) \, dA = V = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*,y_{ij}^*) \Delta A$$

EXAMPLE 1. Estimate the volume

$$R = [0, 2] \times [0, 2], \quad z = 16 - x^2 - 2y^2$$

Divide R into 4 squares and choose the sample point to be the upper right corner of each square R_{ij} .

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_i, y_j) \Delta A$$
$$= f(1, 1) \Delta A + f(1, 2) \Delta A + f(2, 1) \Delta A + f(2, 2) \Delta A$$
$$= 13(1) + 7(1) + 10(1) + 4(1) = 34$$

EXAMPLE. If $R = \{(x,y) | -1 \le x \le 1, -2 \le y \le 2\}$, evaluate

$$\iint\limits_R \sqrt{1-x^2} \, dA$$

Since $\sqrt{1-x^2} \ge 0$, we can interpreting it as a volume. $x^2+z^2=1$ and $z\ge 0$. $\iint\limits_{\mathbb{R}} \sqrt{1-x^2}\,dA = \frac{1}{2}\pi(1)^2\times 4 = 2\pi$

1

The Midpoint Rule

Take $(x_i *, y_i *) = (\overline{x_i}, \overline{y_i})$ (the middle point between x_i, x_{i-1}).

Note. Double integral as a bolume is valid only when f is a positive function. So in the previous example, the integral is not a volume.

4 Average Value

The average value of f(x) on (a,b) is $f_{ave} = \frac{1}{b-a} \int_a^b f(x) dx$.

Definition : Average Value

The average value of f(x,y) on a rectangle R is

$$f_{\text{ave}} = \frac{1}{A(R)} \iint\limits_{R} f(x, y) \, dA$$

If $f(x,y) \ge 0$, the equation $A(R) \times f_{\text{ave}} = \iint_R f(x,y) dA$ says that it has the same V as a box with base R and height f_{ave} .

Properties of Double Integrals

The *linearity* of the integral $(+, c \times)$.

If $f(x,y) \ge g(x,y)$ for all $(x,y) \in R$, then

$$\iint\limits_{B} f(x,y) \, dA \ge \iint\limits_{B} g(x,y) \, dA$$

4 Iterated Integrals

 $\int_{c}^{d} f(x,y) dy$ means that x is fixed and f(x,y) is integrated with respect y from $c \to d$. (partial integration with respect to y).

Definition: Iterated Integral

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

work from the inside out.

Q EXAMPLE.

(a)

$$\int_0^3 \int_1^2 x^2 y \, dy \, dx = \int_0^3 \left[\int_1^2 x^2 y \, dy \right] dx$$
$$= \int_0^3 \frac{3}{2} x^2 \, dx = \frac{x^3}{2} = \frac{27}{2}$$

(b)
$$\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy = \int_{1}^{2} \left[\int_{0}^{3} x^{2} y \, dx \right] dy$$
$$= \int_{1}^{2} 9y \, dy = 9 \frac{y^{2}}{2} \bigg|_{1}^{2} = \frac{27}{2}$$

Definition: Fubini's Theorem

If f is continuous on $R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$, then

$$\iint\limits_{B} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

FIGURE 1

TEC Visual 15.2 illustrates Fubini's Theorem by showing an animation of Figures 1 and 2.

where A(x) is the area of the surface that is perpendicular to the x-axis.

$$A(x) = \int_{c}^{d} f(x, y) \, dy$$

FIGURE 2

Definition: Special case

In case f(x,y) = g(x)h(y),

$$\iint\limits_R g(x)h(y)\,dA = \int_a^b g(x)\,dx\int_c^d h(y)\,dy$$

 \triangleright EXAMPLE. $R = [0, \pi/2] \times [0, \pi/2]$, then

$$\iint_{R} \sin x \cos y \, dA = \int_{0}^{\pi/2} \sin x \int_{0}^{\pi/2} \cos y \, dy$$
$$= \left[-\cos x \right]_{0}^{\pi/2} \left[\sin y \right]_{0}^{\pi/2} = 1 \cdot 1 = 1$$

& Double Integrals over General Regions

The double integral of f over D is

$$\iint\limits_D f(x,y) \, dA = \iint\limits_R F(x,y) \, dA$$

graph of F

where $F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D \\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}$

FIGURE 4

FIGURE 3

$$D = \{(x,y)|a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

FIGURE 5 Some type I regions

Definition: Type I

If f is continuous on a type I region D such that

$$D = \{(x,y)|a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

then

$$\iint\limits_{D} f(x,y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$

which leads to the definition for **Type II**,

$$\iint\limits_{D} f(x,y) \, dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) \, dx \, dy$$

 $y = 1 + x^{2}$ $y = 1 + x^{2}$ (1, 2) $y = 2x^{2}$

• EXAMPLE. $y = 2x^2, y = 1 + x^2$, evaluate $\iint_D (x + 2y) dA$.

$$\int_{D} (x+2y) dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x+2y) dy dx$$

$$= \int_{-1}^{1} \left[xy + y^{2} \right]_{y-2x^{2}}^{y=1+x^{2}} dx$$

$$= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx$$

$$= \frac{32}{15}$$

FIGURE 8

FIGURE 13

EXAMPLE. Find the volume of the tetrahedron bounded by the planes x+2y+z=2, x=2y.x=0, z=0. $D=\left\{(x,y)\mid 0\leq x\leq 1, x/2\leq y\leq 1-x/2\right\}$

$$x + 2y = 2$$

$$(\text{or } y = 1 - x/2)$$

$$y = x/2$$

$$0$$

$$1$$

FIGURE 14

FIGURE 15

D as a type I region

Q EXAMPLE.

$$\int_{0}^{1} \int_{x}^{1} \sin(y^{2}) dy dx = \iint_{D} \sin(y^{2}) dA$$
$$D = \{(x, y) \mid 0 \le x \le 1, x \le y \le 1\}$$

can be transformed to

$$D = \{(x, y) \mid 0 \le y \le 1, 0 \le x \le y\}$$

FIGURE 16

D as a type II region

Properties 1: Double Integrals

Beside sum and constant multiplier.

■ If $f(x,y) \ge g(x,y)$ for all $(x,y) \in D$.

$$\iint\limits_D f(x,y) \, dA \ge \iint\limits_D g(x,y) \, dA$$

■ If $D = D_1 \cup D_2$, and they don't overlap except perhaps on their bound daries

$$\iint\limits_{D} f(x,y) \, dA = \iint\limits_{D} f(x,y) \, dA + \iint\limits_{D} f(x,y) \, dA$$

FIGURE 17

■ Since $\iint_D 1 dA = A(D)$, so if $m \le f(x,y) \le M$ for all $(x,y) \in D$.

$$mA(D) \le \iint\limits_D f(x,y) \, DA \le MA(D)$$

Q EXAMPLE. Estimate $\iint_D e^{\sin x \cos y} dA$, where D is the disk with center the origin and r = 2. Since $-1 \le \sin x \le 1$ and $-1 \le \cos y \le 1$, we have $-1 \le \sin x \cos y \le 1$. Therefore

$$e^{-1} \le e^{\sin x \cos y} \le e^{1}$$

$$\frac{4\pi}{e} \le \iint\limits_{D} e^{\sin x \cos y} \, dA \le 4\pi e$$

2 Double Integrals in Polar Coordinate

FIGURE 3 Polar rectangle

FIGURE 4 Dividing *R* into polar subrectangles

Divide into m subinterval $[r_{i-1}, r_i]$ of $\Delta r = (b-a)/m$ and n subinterval of $(\beta - \alpha)/n$.

■ Then the center of the polar subrectangles has polar coordinate

$$r_i * = \frac{1}{2} (r_{i-1} + r_i), \quad \theta_j * = \frac{1}{2} (\theta_{j-1} + \theta_j)$$

■ And the area

$$\Delta A_i = \frac{1}{2} (r_i + r_{i-1}) (r_i - r_{i-1}) \Delta \theta$$
$$= r_i^* \Delta r \Delta \theta$$

Definition : Change to Polar Coordinates in a Double Integral

If f is continuous on a polar rectangle R $(0 \le a \le r \le b, \alpha \le \theta \le \beta, \text{ where } 0 \le \beta - \alpha \le 2\pi), \text{ then }$

$$\iint\limits_{R} f(x,y) \ dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r \, dr \, d\theta$$

FIGURE 5

$$\iint\limits_{D} f(x,y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

FIGURE 7

 $D = \{(r,\,\theta) \mid \alpha \leqslant \theta \leqslant \beta,\, h_1(\theta) \leqslant r \leqslant h_2(\theta)\}$

 \bigcirc EXAMPLE. Find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.

$$D = \{(r,\theta) \mid -\pi/4 \leq \theta \leq \pi/4, 0 \leq r \leq \cos 2\theta\}$$

So the area is

$$A(D) = \iint_{D} dA = \int_{-\pi/4}^{\pi/4} \int_{0}^{\cos 2\theta} r \, dr \, d\theta$$
$$= \int_{-\pi/4}^{\pi/4} \left[\frac{1}{2} r^{2} \right]_{0}^{\cos 2\theta} = \frac{1}{2} \int_{-\pi/4}^{\pi/4} \cos 2\theta^{2} \, d\theta$$
$$= \frac{1}{4} \int_{-\pi/4}^{\pi/4} (1 + \cos 4\theta) \, d\theta = \frac{1}{4} \left[\theta + \frac{1}{4} \sin 4\theta \right]_{-\pi/4}^{\pi/4} = \frac{\pi}{8}$$

FIGURE 8

• EXAMPLE. $z = x^2 + y^2$, $x^2 + y^2 = 2x$.

IGUKE 9

$$D = \{(r,\theta) \mid -\pi/2 \le \theta \le \pi/2, 0 \le r \le 2\cos\theta\}$$

$$V \iint_{D} (x^2 + y^2) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos t het a} r^2 r dr d\theta$$

$$= 4 \int_{-\pi/2}^{\pi/2} \cos\theta^4 d\theta = 8 \int_{0}^{\pi/2} \cos\theta^4 d\theta = 8 \int_{0}^{\pi/2} \left(\frac{1 + \cos 2\theta}{2}\right)^2 d\theta$$

$$= 2 \left[\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8}\sin 4\theta\right]_{0}^{\pi/2} = 2 \left(\frac{3}{2}\right) \left(\frac{\pi}{2}\right) = \frac{3\pi}{2}$$

Why split into 2 parts?

3 Surface Area

FIGURE 1

FIGURE 2

Divide into $m \times n$ square. Then $A(S) = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n \Delta T_{ij}$. Since $\Delta T_{ij} = |\mathbf{a} \times \mathbf{b}|$. Recall that $f_x(x_i, y_j)$ and $f_y(x_i, y_j)$ are the slopes of the tangent lines through P_{ij} .

$$\mathbf{a} = \Delta x \mathbf{i} + f_x(x_i, y_j) \Delta x \mathbf{k}$$

 $\mathbf{b} = \Delta y \mathbf{j} + f_y(x_i, y_j) \Delta y \mathbf{k}$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \Delta x & 0 & f_x(x_i, y_j) \Delta x \\ 0 & \Delta y & f_y(x_i, y_j) \Delta y \end{vmatrix}$$
$$= \left[-f_x(x_i, y_j) \mathbf{i} - f_y(x_i, y_j) \mathbf{j} + \mathbf{k} \right] \Delta A$$
$$\Delta T_{ij} = |\mathbf{a} \times \mathbf{b}| = \sqrt{\left[f_x(x_i, y_j) \right]^2 + \left[f_y(x_i, y_j) \right]^2 + 1} \Delta A$$

Hence we have

 ${\bf Definition: The\ Area\ of\ the\ Surface}$

If f_x, f_y are continuous.

$$A(S) = \iint\limits_{D} \sqrt{\left[f_{x}(x_{i}, y_{j})\right]^{2} + \left[f_{y}(x_{i}, y_{j})\right]^{2} + 1} dA$$
$$= \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

• EXAMPLE. Area of $z = x^2 + y^2$ that lies under z = 9.

Converting to polar coordinates, we obtain

$$A = \int_0^{2\pi} \int_0^3 \sqrt{1 + 4r^2} r \, dr \, d\theta$$
$$= \int_0^{2\pi} d\theta \int_0^3 \frac{1}{8} \sqrt{1 + 4r^2} (8r) \, dr$$
$$= 2\pi \left(\frac{1}{8}\right) \frac{2}{3} (1 + 4r^2)^{3/2} \Big]_0^3 = \frac{\pi}{6} (37\sqrt{37} - 1)$$

4 Triple Integrals

 $\begin{array}{c} \uparrow \\ \Delta z \\ + \Delta y + \Delta x \end{array}$

FIGURE 1

Divide into subboxes.

Definition: Triple Integrals

Let $B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k]$, then

$$\iiint\limits_{B} \lim_{l,m,n\to\infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}*, y_{ijk}*, z_{ijk}*) \Delta V$$

Fubini's Theorem. $\iiint\limits_B f(x,y,z)\,dV = \int_a^b \int_r^s \int_c^d f(x,y,z)\,dy\,dz\,dx$

Just the same, wrap E inside a box, and we got $\iiint_B F(x, y, z) dV$.

A type 1 solid region

 $\iiint\limits_{\Gamma} f(x,y,z) \, dV = \iint\limits_{\Gamma} \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \right] dA$ FIGURE 2

Definition: 3 Types of Triple Integrals

FIGURE 3

A type 1 solid region where the projection D is a type I plane region

A type 1 solid region with a type II

projection

Type I. D is the projection on the xy-plane.

$$E = \{(x, y, z) \mid a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)\}$$

 $E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$

$$\iint\limits_E f(x,y,z) \, dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \, dy \, dx$$

- **Type II.** D is the projection on the yz-plane.
- **Type III.** D is the projection on the xz-plane.

• EXAMPLE. $\iiint_{\mathbb{R}} \sqrt{x^2 + z^2} dV$, where E bounded by $y = x^2 + z^2$ and y = 4.

FIGURE 9

FIGURE 11 Projection onto xz-plane

Convert to polar coordinate in the xz-plane: $x = r\cos\theta, z = r\sin\theta$, which

$$\iiint_{E} \sqrt{x^{2} + z^{2}} \, dV = \iint_{D_{3}} (4 - x^{2} - z^{2}) \sqrt{x^{2} + z^{2}} \, dA$$

$$= \int_{0}^{2\pi} \int_{0}^{2} (4 - r^{2}) r \, r \, dr \, d\theta = \int_{0}^{2\pi} \, d\theta \int_{0}^{2} (4r^{2} - r^{4}) \, dr$$

$$= 2\pi \left[\frac{4r^{3}}{3} - \frac{r^{5}}{5} \right]_{0}^{2} = \frac{128\pi}{15}$$

Applications of Triple Integrals 5

First, begin with the special case where f(x, y, z) = 1 for all points in E. That would be the volume of the shape.

6 Triple Integrals in Cylindrical Coordinates

FIGURE 1

Recall the connection between polar and Cartesian coordinates:

$$x = r \cos \theta$$
 $y = r \sin \theta$
 $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$

 $P(r, \theta, z)$

FIGURE 2

z = r, a cone

The cylindrical coordinates of a point

Cylindrical Coordinates

Represented by (r, θ, z) ,

- r, θ : polar coordinates of the **projection** of P onto the xy-plane.
- $\blacksquare z$: the directed distance from the xy-plane to P.

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$
 $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$ $z = z$

This is the surface of z = r.

Evaluating Triple Integrals with Cylindrical Coordinates

Suppose $E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\},\$ and

$$D = \{(r, \theta) \mid \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)\}$$

Definition : Triple Integrals with Cylindrical Coordinates

$$\iiint_E f(x,y,z) dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta,r\sin\theta)}^{u_2(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z) r dz dr d\theta$$

7 Triple Integrals in Spherical Coordinates

Definition: **❖** Spherical Coordinates

FIGURE 1

The spherical coordinates of a point

The spherical coordinates (ρ, θ, ϕ) of a point P:

- $\rho = |OP| \ge 0$: the distance from O to P.
- θ : the same angle as in cylindrical coordinates.
- $0 \le \phi \le \pi$: the angle between the positive z and OP.

Useful when there is symmetry about a point.

We have $z = \rho \cos \phi$ and $r = \rho \sin \phi$.

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

The distance formula

$$\rho^2 = x^2 + y^2 + z^2$$

FIGURE 5

$$\iiint\limits_E f(x,y,z)\,dV$$

$$= \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$

where E is a spherical wedge

$$E = \{ (\rho, \theta, \phi) \mid a \leq \rho \leq b, \ \alpha \leq \theta \leq \beta, \ c \leq \phi \leq d \}$$

where $a \ge 0$, $\beta - \alpha \le 2\pi$, $d - c \le \pi$.

The formula can be extended as $g_1(\theta, \phi) \le \rho \le g_2(\theta, \phi)$.

8 Change of Variables in Multiple Integrals

Consider a transformation T from the uv-plane to the xy-plane: x = g(u, v), y = h(u, v). Assume T is a C^1 transformation (g, h) have continuous 1st-order partial derivatives).

FIGURE 1

If T is **one-to-one**, the the **inverse transformation** T^{-1} exist: u = G(x, y), v = H(x, y).

We approximate the image R by a parallelogram determined by

$$\begin{cases} \mathbf{a} &= \mathbf{r}(u_0 + \Delta u, v_0) - \mathbf{r}(u_0, v_0) \approx \Delta u \mathbf{r}_u \\ \mathbf{b} &= \mathbf{r}(u_0, v_0 + \Delta v) - \mathbf{r}(u_0, v_0) \approx \Delta v \mathbf{r}_v \\ S_R &= |(\Delta u \mathbf{r}_u) \times (\Delta v \mathbf{r}_v)| = |\mathbf{r}_u \times \mathbf{r}_v| \Delta u \, \Delta v \end{cases}$$

FIGURE 4

 $\mathbf{r}(u_0, v_0)$ $\Delta u \mathbf{r}_u$

Computing the cross product

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0 \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} \mathbf{k} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} \mathbf{k}$$

FIGURE 5

Definition: The Jacobian

The **Jacobian** of the transformation T: x = g(u, v), y = h(u, v) is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}$$

Hence we got $\Delta A \approx \left| \frac{\partial(x,y)}{\partial(u,v)} \Delta u \Delta v \right|$ where the Jacobian is evaluated at (u_0,v_0) .

FIGURE (

$$\iint\limits_{R} f(x,y) dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i}, y_{j}) \Delta A$$

$$\approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(g(u_{i}, v_{i}), h(u_{i}, v_{i})) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \Delta u \Delta v$$

Suppose T is a C^1 transformation whose Jacobian is nonzero, map from uv to xy. R, S are type I, II, f is continuous.

$$\iint\limits_R f(x,y) \, dA = \iint\limits_S f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Delta u \Delta v$$

Triple Integral

The **Jacobian** of T is the determinant

$$\begin{cases} x = g(u, v, w) \\ y = h(u, v, w) \\ z = k(u, v, w) \end{cases} \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Definition : Triple Integration in Spherical Coordinates

$$\iiint\limits_R f(x,y,z) \, dV = \iiint\limits_S f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$$

11