

Ejemplos

Paquete datana

Este documento extiende los ejemplos de distintas funciones del paquete datana (Salas-Eljatib & Campos, 2025) implementado en el software R (R Core Team, 2025) para uso interno.

$\mathbf{\acute{I}ndice}$

1.	interp	2
	1.1. Sobre esta función	2
	1.2. Ejemplo	2
2	nlotrend	Δ

1. interp

1.1. Sobre esta función

La función **interp** fue creada principalmente para los procesos de análisis de series de ahusamiento. La idea es que con esta función se generen los datos faltantes (*i.e.* alturas fustales, diámetros fustales) que permiten obtener volúmenes comerciales, además de ser un requisito para que las series de ahusamiento cumplan con los siguientes supuestos:

- 1. Diámetro decreciente en altura.
- 2. Que siempre exista una sección a la altura de tocón (generalmente 0.3 m), a la altura del DAP (1.3 m) y entre los dos valores anteriores (generalmente 0.8 m).
- 3. Que el diámetro con corteza simpre sea mayor que el diámetro sin corteza.
- 4. Que la última sección tenga diámetro 0 (cero) y hl = htot.

1.2. Ejemplo

Se cargan los datos de ahusamiento de un árbol

```
df <- read.csv(("./resources/ahusa.csv"))
head(df[, c("dl.cc", "hl")])</pre>
```

```
dl.cc hl

1 11.02 0.05

2 8.46 1.30

3 8.10 1.58

4 7.86 2.37

5 6.90 3.16

6 6.70 3.95
```

Este árbol no tiene una sección a los 0.8 metros, por lo que esta se genera

```
library(datana)
## la altura de la seccion sera 0.8 m
nuevaseccion <- 0.8
interpolada <- interp(x = df$dl.cc, y = df$hl, ylu = nuevaseccion)
interpolada$datares</pre>
```

```
y interpolated
Х
1
   11.020000 0.05
                           FALSE
2
    9.378939 0.80
                            TRUE
3
    8.460000 1.30
                           FALSE
    8.100000 1.58
                           FALSE
4
5
    7.860000 2.37
                           FALSE
6
    6.900000 3.16
                           FALSE
7
    6.700000 3.95
                           FALSE
8
    6.000000 4.74
                           FALSE
```


9	5.500000	5.53	FALSE
10	4.400000	5.60	FALSE
11	3.500000	6.32	FALSE
12	2.820000	7.11	FALSE
13	0.000000	9.00	FALSE

2. plotrend

Sobre esta función

Datos para el ejemplo

Se cargan los datos de ahusamiento de un árbol

```
df <- datana::maple
head(df)</pre>
```

```
tree dbh leaf branch
                       bole bark total
1
    1 9.1 0.67
                 21.30
                        9.94
                              1.51
                                    33.42
2
    2 9.1 0.54
                20.30
                        6.21 0.63
                                    27.68
3
    3 9.9 0.72 19.26
                       13.93 1.69
                                    35.60
4
    4 10.2 0.60 21.77
                       17.68 1.60 41.65
    5 16.7 2.90 28.47 101.94 11.37 144.68
5
    6 17.2 2.39 26.94
                       90.26 12.35 131.94
```

Se ajusta un modelo lineal

```
m1 <- lm(leaf ~ dbh, data=df)
m1</pre>
```

Call:

lm(formula = leaf ~ dbh, data = df)

Coefficients:

(Intercept) dbh -6.1498 0.5375

Usando la función

```
datana::plotrend(x = df$dbh, y = residuals(m1))
abline(h = 0)
```


Referencias

R Core Team. (2025). $R: A \ language \ and \ environment \ for \ statistical \ computing \ [http://www.R-project.org].$ R Foundation for Statistical Computing. Vienna, Austria.

Salas-Eljatib, C., & Campos, N. (2025). datana: Data and functions to accompany Análisis de datos con R [R package version 1.1.4]. https://doi.org/10.32614/CRAN.package.datana