PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 38/00, 38/08, 38/12	A1	(11) International Publication Number: WO 98/34631 (43) International Publication Date: 13 August 1998 (13.08.98)
 (21) International Application Number: PCT/US (22) International Filing Date: 6 February 1998 (co.) (30) Priority Data: 60/036,941 7 February 1997 (07.02.97) (71) Applicant: THOMAS JEFFERSON UNIVERSITY 11th and Walnut Streets, Philadelphia, PA 19107 (72) Inventors: TOWNSEND, Robert, Martin; 2120 Strane, Boothwyn, PA 19061 (US). KORNGOLD 101 Dalton Terrace, Cherry Hill, NJ 08003 (US). (74) Agents: JOHNSON, Philip, S. et al.; Woodcock Wartz Mackiewicz & Norris LLP, 46th floor, On Place, Philadelphia, PA 19103 (US). 	(US/US). Shadysio, Robo	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. Solidates

(54) Title: PEPTIDE MIMETICS OF THE CYTOKINE RECEPTOR GAMMA CHAIN

(57) Abstract

Peptides which mimic a loop on the γ -chain that either interact with a cytokine or a γ -chain partner receptor chain of a heterodimeric cytokine receptor are disclosed. The peptides consist of 5-25 amino acids and inhibit signal transduction mediated by cytokine:receptor binding of cytokines that bind to receptors that comprise a γ -chain. Pharmaceutical compositions that comprise the peptides are disclosed. Methods of inhibiting signal transduction mediated by cytokine:receptor binding of cytokines that bind to receptors that comprise a γ -chain, methods of inhibiting cytokine mediated cell growth, proliferation, function or activity, methods of treating patients suffering from a disease disorder or condition characterized by cytokine mediated cell growth, proliferation, function or activity and methods of preventing a condition characterized by cytokine mediated cell growth, proliferation, function or activity are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑĽ	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belanis	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CF	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
	Cameroon	114	Republic of Korea	PL	Poland		
CM	China	KR	Republic of Korea	PT	Portugal		
CN	Cuba	KZ	Kazakstan	RO	Romania		
CU	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
CZ	•	LI	Liechtenstein ·	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia	LK	PIDELIA	50			

PEPTIDE MIMETICS OF THE CYTOKINE RECEPTOR GAMMA CHAIN

FIELD OF THE INVENTION

The present invention relates to molecules which have structures and functions that mimic the gamma chain that is shared by several cytokine recpetors. The present invention relates to the use of such molecules to modulate cytokine activity and cytokine mediated functions.

BACKGROUND OF THE INVENTION

A family of related cytokine receptors including the receptors for IL-2, IL-4, IL-7, IL-9, IL-13 and IL-15 have been reported to share a common protein chain, the γ-chain, for maximal ligand induced receptor binding and signaling. The γ-chain is a member of the cytokine receptor superfamily which includes receptors for growth hormone, erythropoietin, IL-3, IL-2, IL-4, IL-7, IL-6 and GM-CSF. The γ-chain is a 64 kd protein with a fibronectin type II and CKR-SF domain which share structural homology.

The crystal structure of the human growth hormone receptor has been published by deVos A.M., et al. 1992 Science 255:306-312, which is incorporated herein by reference, and shows that the receptors form a homodimer to bind ligand and induce a signal. The receptors for IL-4 have been shown to be in the form of a heterodimer consisting of IL-4α and the common γ-chain. A model for the human IL-4:IL-4-Receptor interaction has been published by Gustchina, A. et al. 1995 PROTEINS:

- 2 -

Structure, Function and Genetics 21:140-148, which is incorporated herein by reference.

Cytokine:receptor complexes are very important mediators of many immune responses. For example, T cell growth and differentiation is regulated in part by IL-2, IL-4, IL-7, IL-9, and IL-15. These cytokines have also been reported to play a role in other immunological functions as well.

Without the γ-chain, the cytokine receptors which normally form complexes with the γ-chain are much less efficient in binding their ligands and thus transmitting their signals to the target cells. Evidence for the central role of the γ-chain includes the findings that mutations in this receptor have been demonstrated to be the causative factor in the development of severe combined immunodeficiency. Recently, Boussiotis, V.A. et al. 1994 Science 266:1039-1047, which is incorporated herein by reference, demonstrated that the development of T cell anergy can be abrogated by signaling through this receptor by various means.

The function and activity of cells of the immune system are regulated and directed by cytokine:receptor interactions as is signaling which induces growth and proliferation. The activation of T cells and B cells is regulated by cytokine:receptor interactions including cytokine:receptor interactions involving receptors which include the γ -chain in a heterodimer.

There is a need for pharmaceutical compositions which can effectively inhibit the immune responses mediated by cytokine:receptor interactions. There is a need for a method of inhibiting cytokine mediated cell activation, function, growth and/or proliferation. There is a need for pharmaceutical compositions which can effectively inhibit signaling that involves receptors which include the γ -chain. There is a need for compositions and methods which can inhibit or suppress immune responses in order to therapeutically or prophylactically treat individuals who have conditions, diseases or disorders involving immune abnormal or undesirable immunological activity.

WO 98/34631

- 3 -

SUMMARY OF THE INVENTION

10

The present invention relates to peptide mimics of the loops on the γ -chain which either interact with cytokines or the partners of the γ -chain in heterodimeric cytokine receptors 5 that include the γ -chain. The peptides of the present invention are based on human and murine γ -chain sequences. sequences homology for the human and murine γ -chain is high (71% identical and 82% similar) making the translation from one species to the next more direct.

The peptide mimics bind to the cytokine or partner receptor and inhibit cytokine activity. Inhibitors of the common γ -chain inhibit the function of IL-2, IL-4, IL-7, IL-9, IL-13 and IL-15 by preventing their binding to their respective Thus, the inhibition of these cytokine mediated receptors. 15 events leads to immuno-suppressive responses which are beneficial for the prevention or treatment of numerous autoimmune diseases and graft rejection following various types of transplant procedures as well as diseases associated with hyperproliferation of T cells and/or B cells. For example, 20 many lymphomas are dependent on some of these cytokines (IL-2 for T cell lymphomas and IL-4 for B cell lymphomas) for growth.

The present invention relates to peptides that consist of 5 to 25 amino acids including: SEQ ID NO:1 IQLYQTF, SEQ ID NO:2 IHLYQTF, SEQ ID NO:3 CLQYLV, SEQ ID NO:4 CLEHLV, SEQ ID 25 NO:5 CLQYLT, SEQ ID NO:6 CLEHLT, SEQ ID NO:7 CLQYLTQ, SEQ ID NO:8 CLEHLTQ, SEQ ID NO:9 PIAGSSQQ, SEQ ID NO:36 PICGSSQQ, SEQ ID NO:10 PLCGSAQH, SEQ ID NO:11 PLAGSAQH, SEQ ID NO:12 NHEPRFLS, SEQ ID NO:13 DYRHKFSL, SEQ ID NO:14 LNLQNL, SEQ ID NO:15 LKLQNL, SEQ ID NO:16 NLSESQL, SEQ ID NO:17 KLSEQL or such 30 an amino acid sequence with one or more conservative substitutions, wherein the peptide inhibits cytokine mediated signal transduction.

peptides of the invention preferably have constrained conformations and most preferably are cyclic. 35 preferred embodiments, cysteine residues are provided at the

PCT/US98/02339

WO 98/34631

- 4 -

termini of the peptides to form di-sulfide bonds which result in the formation of cyclic peptides.

According to some embodiments of the present invention, peptides are selected from the group consisting of: 5 SEQ ID NO:18 CIQLYQTFC, SEQ ID NO:19 CIHLYQTFC, SEQ ID NO:20 CLQYLVC, SEQ ID NO:21 CLEHLVC, SEQ ID NO:22 CLQYLTC, SEQ ID NO:23 CLEHLTC, SEQ ID NO:24 CLQYLTQC, SEQ ID NO:25 CLEHLTQC, SEQ ID NO:26 CPIAGSSQQC, SEQ ID NO:37 CPICGSSQQC, SEQ ID NO:27 CPLCGSAQHC, SEQ ID NO:28 CPLAGSAQHC, SEQ ID NO:29 CNHEPRFLSC, 10 SEQ ID NO:30 CDYRHKFSLC, SEQ ID NO:31 CLNLQNLC, SEQ ID NO:32 CLKLQNLC, SEQ ID NO:33 CNLSESQLC, SEQ ID NO:34 CKLSESQLC and derivative peptides thereof. The derivative peptides consist of amino acid sequences which contain one or more conservative substitutions. Conservative substitutions include 15 following:

> I may be substituted with V, A or L; Q may be substituted with N;

L may be substituted with V, A or I;

Y may be substituted with F;

20

25

V may be substituted with I, A or L;

S may be substituted with T;

A may be substituted with V, I or L;

N may be substituted with Q;

E may be substituted with D;

F may be substituted with Y;

D may be substituted with E; and

I may be substituted with V, A or L.

In some preferred embodiments, the V in sequences SEQ ID NO:3 CLQYLV and SEQ ID NO:4 CLEHLV are substituted with T 30 to improve solubility in aqueous solutions. Accordingly, peptides SEQ ID NO:22 CLQYLTC, SEQ ID NO:23 CLEHLTC, SEQ ID NO:24 CLQYLTQC and SEQ ID NO:25 CLEHLTQC are provided.

The peptides of the invention are derived from sequences of the murine or human cytokine receptor common gamma 35 chain.

The peptides correspond to murine cytokine receptor gamma common chain residues SEQ ID NO:1 IQLYQTF (100-106), SEQ ID NO:3 CLQYLV (161-166), PICGSSQQ (207-214), SEQ ID NO:12 NHEPRFLS (181-188), SEQ ID NO:14 LNLQNL (124-129), SEQ ID NO:16 NLSESQL (142-148) and the corresponding sequences from the human cytokine receptor gamma common chain, i.e. SEQ ID NO: 2 IHLYQTF, SEQ ID NO:4 CLEHLV, SEQ ID NO:11 PLAGSAQH, SEQ ID NO:13 DYRHKFSL, SEQ ID NO:15 LKLQNL and SEQ ID NO:17 KLSEQL.

The peptides SEQ ID NO:18 CIQLYQTFC, SEQ ID NO:19 CIHLYQTFC, SEQ ID NO:20 CLQYLVC, SEQ ID NO:21 CLEHLVC, SEQ ID NO:26 CPIAGSSQQC, SEQ ID NO:37 CPICGSSQQC, SEQ ID NO:27 CPLCGSAQHC, SEQ ID NO:28 CPLAGSAQHC, SEQ ID NO:29 CNHEPRFLSC, SEQ ID NO:30 CDYRHKFSLC, SEQ ID NO:31 CLNLQNLC and SEQ ID NO:32 CLKLQNLC are modeled to mimic the regions of the cytokine receptor gamma common chain predicted to interact with ligands and the peptides SEQ ID NO:33 CNLSESQLC and SEQ ID NO:34 CKLSESQLC are modeled to mimic the regions of the cytokine receptor gamma common chain predicted to interact with other cytokine receptor chains with which the gamma chain forms heterodimers as an active receptor complex.

According to the invention, the peptides of the invention inhibit cytokine mediated signaling that involves cytokine receptors which include the gamma chain. Cytokines IL-2, IL-4, IL-7, IL-9, IL-13 and IL-15 each interact with receptor complexes that include the gamma chain. Accordingly, the peptides of the invention can be used to inhibit IL-2, IL-25 4, IL-7, IL-9, IL-13 and IL-15 signaling. Through this inhibition, the peptides of the invention are useful to suppress immunological responses and functions. For example, these cytokines are involved in immunological activity in which cells are induced to grow, proliferate and/or release factors, cytokines or other molecules including antibodies. The peptides of the invention can be used to inhibit these activities.

Inhibition of T cell and/or B cell proliferation is useful in the treatment of many diseases and conditions including, but not limited to, leukemia, lymphoma, graft versus host disease and other transplant rejections, allergies, asthma

and autoimmune and inflammatory diseases such as rheumatoid arthritis, lupus, multiple sclerosis and myasthenia gravis. The peptides of the invention can also inhibit the growth of B cells and T cells and/or inhibit T cells and B cells from releasing substances. Thus, by inhibiting cell growth and/or proliferation and/or function of cells involved in the immune system, the peptides can be useful to suppress the immune system.

The present invention relates to methods of preventing
and treating diseases involving or mediated by cells of the
immune system. According to some embodiments of the invention,
patients are administered compounds of the invention in an
amount sufficient to suppress immune function sufficiently to
have a therapeutic effect on patients suffering from such
diseases involving undesirable function, activity, growth or
proliferation of cells of the immune system. According to some
embodiments of the invention, patients are administered
compounds of the invention in an amount sufficient to suppress
immune function sufficiently to have a preventive effect on
patients at risk of developing diseases; disorders or
conditions involving undesirable function, activity, growth or
proliferation of cells of the immune system.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A-1D shows data from experiments described in Example 1 testing peptides gamma-4 and gamma-5 of the invention as described in Example 1 to determine their effect on the response of cells to exogenous cytokine IL-2 or IL-4. The cell line used proliferates in the absence of peptide. The data shows that the addition of peptide inhibits cell proliferation in response to addition of the IL-4 and that such inhibition is dose dependent.

Figure 2 shows data from experiments described in Example 1 testing peptides of the invention as described in Example 1 to determine their effect on the response of cells to exogenous murine IL-4. The cell line used proliferates in the absence of peptide. The data shows that the addition of

peptide inhibits cell proliferation in response to addition of mIL-4 and that such inhibition is dose dependent.

Figure 3 shows data from experiments described in Example 1 testing peptides of the invention as described in 5 Example 1 to determine their effect on the response of cells to exogenous murine IL-2. The cell line used proliferates in the absence of peptide.

Figure 4 shows data from experiments described in Example 1 testing the ability of peptides of the invention as 10 described in Example 1 to inhibit mixed lymphocyte responses (MLR assays as described in Example 2).

Figure 5 shows data from experiments described in Example 1 testing the ability of peptides of the invention as described in Example 1 to inhibit CH12.CX proliferation.

Figures 6A-6F shows data from experiments described in Example 2 testing the ability of peptides of the invention as described in Example 1 to inhibit cytokine mediated activity of various cell lines.

Figure 7 shows data from experiments described in 20 Example 2 testing the ability of peptides of the invention as described in Example 1 to inhibit human IL-4 mediated activity.

Figure 8 shows data from experiments described in Example 2 testing the ability of peptides of the invention as described in Example 1 to inhibit cytokine mediated activity of cells in vivo.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to molecules that have a molecular surface similar to a molecular surface of cytokine receptor common gamma chain. The peptides of the invention interact with molecules which ordinarily interact with the gamma chain and result in signal transduction. Not wishing to bound by any theory, it appears that the peptides of the invention thereby inhibit signal transduction by inhibiting cytokine:receptor binding either by binding to the cytokine or by binding to a cytokine receptor chain which forms

WO 98/34631

- 8 -

heterodimers with the gamma chain in order to form a functional receptor complex.

According to some embodiments of the invention, the invention can be represented by the formula:

 $R_1 - R_2 - R_3 - R_4 - R_5$

wherein:

5

25

 R_1 , R_2 , R_3 , R_4 and R_5 taken together are 5- 25 amino acids or less and

R, is a linking moiety, preferably cysteine or 10 penicillamine;

R2 is 0-10 amino acids, preferably 0 amino acids;

R, is SEQ ID NO:1 IQLYQTF, SEQ ID NO: 2 IHLYQTF, SEQ ID NO:3 CLQYLV, SEQ ID NO:4 CLEHLV, SEQ ID NO:5 CLQYLT, SEQ ID NO:6 CLEHLT, SEQ ID NO:7 CLQYLTQ, SEQ ID NO:8 CLEHLTQ, SEQ ID 15 NO:9 PIAGSSQQ, SEQ ID NO:10 PLCGSAQH, SEQ ID NO:11 PLAGSAQH, SEQ ID NO:12 NHEPRFLS, SEQ ID NO:13 DYRHKFSL, SEQ ID NO:14 LNLQNL, SEQ ID NO:15 LKLQNL, SEQ ID NO:16 NLSESQL, SEQ ID NO:17 KLSEQL or such an amino acid sequence with one or more conservative substitutions;

 R_4 is 0-10 amino acids, preferably 0 amino acids; and 20 R_s is a linking moiety, preferably cysteine or penicillamine.

It is preferred that R_1 is cysteine or penicillamine. It is more preferred that R₁ is cysteine.

It is preferred that R_2 is 0 amino acids.

It is preferred that R_3 is SEQ ID NO:1 IQLYQTF, SEQ ID NO: 2 IHLYQTF, SEQ ID NO:3 CLQYLV, SEQ ID NO:4 CLEHLV, SEQ ID NO:5 CLQYLT, SEQ ID NO:6 CLEHLT, SEQ ID NO:7 CLQYLTQ, SEQ ID NO:8 CLEHLTQ, SEQ ID NO:9 PIAGSSQQ, SEQ ID NO:10 PLCGSAQH, SEQ 30 ID NO:11 PLAGSAQH, SEQ ID NO:12 NHEPRFLS, SEQ ID NO:13 DYRHKFSL, SEQ ID NO:14 LNLQNL, SEQ ID NO:15 LKLQNL, SEQ ID NO:16 NLSESQL or SEQ ID NO:17 KLSEQL.

It is preferred that conservative substitutions include I, V, A and L are interchangeable, Q and N are 35 interchangeable, Y and F are interchangeable, S and T are interchangeable and E and D are interchangeable.

PCT/US98/02339 WO 98/34631

- 9 -

It is preferred that R₄ is 0-1 amino acids. It is preferred that R4 is 0 amino acids.

It is preferred that R₅ is cysteine or penicillamine. It is more preferred that R₅ is cysteine.

5

30

In preferred embodiments, the compound is SEQ ID NO:18 CIQLYQTFC, SEQ ID NO:19 CIHLYQTFC, SEQ ID NO:20 CLQYLVC, SEQ ID NO:21 CLEHLVC, SEQ ID NO:22 CLQYLTC, SEQ ID NO:23 CLEHLTC, SEO ID NO:24 CLQYLTQC, SEQ ID NO:25 CLEHLTQC, SEQ ID NO:26 CPIAGSSQQC, SEQ ID NO:27 CPLCGSAQHC, SEQ ID NO:28 CPLAGSAQHC, 10 SEQ ID NO:29 CNHEPRFLSC, SEQ ID NO:30 CDYRHKFSLC, SEQ ID NO:31 CLNLQNLC, SEQ ID NO:32 CLKLQNLC, SEQ ID NO:33 CNLSESQLC or SEQ ID NO:34 CKLSESQLC.

The present invention provides synthetic peptides that are 5-25 amino acids and comprise amino acid sequences from 15 human or murine cytokine receptor gamma common chain. gamma chain amino acid sequences are provided in some embodiments. The peptides are conformationally restricted, and are generally cyclized. In some embodiments, non-gamma chain sequences are included for the purposes of conformational 20 restriction. In embodiments that comprise both gamma chain and non-gamma chain sequences, at least 20-25% of the amino acid sequence of the peptides of the present invention are derived from he gamma chain. It is preferred that greater than about 20-25% of the amino acid sequence of the peptides of the 25 present invention are derived from the gamma chain, more preferably 30-40% and more preferably greater than 50%. some embodiments, the percentage of amino acid sequence of the peptides of the present invention derived from gamma chain is about 60% or about 75% or more.

The peptides of the present invention may be prepared by any of the following known techniques. Conveniently, the peptides may be prepared using the solid-phase synthetic technique initially described in Merrifield (1963) J. Am. Chem. Soc. 15:2149-2154. Other peptide synthesis techniques may be 35 found, for example, in M. Bodanszky et al., Peptide Synthesis, John Wiley & Sons, 2d Ed. (1976); Kent and Clark-Lewis in Synthetic Peptides in Biology and Medicine, p. 295-358, eds.

- 10 -

Alitalo, K., Partanen, P. and Vakeri, A., Elsevier Science Publishers, (Amsterdam, 1985); as well as other reference works known to those skilled in the art. A summary of peptide synthesis techniques may be found in J. Stuart and J.D. Young, 5 Solid Phase Peptide Synthelia, Pierce Chemical Company, Rockford, IL (1984). The synthesis of peptides by solution methods may also be used, as described in The Proteins, Vol. II, 3d Ed., p. 105-237, Neurath, H. et al., Eds., Academic Press, New York, NY (1976). Appropriate protective groups for use in such syntheses will be found in the above texts, as well as in J.F.W. McOmie, Protective Groups in Organic Chemistry, Plenum Press, New York, NY (1973).

In general, these synthetic methods involve the sequential addition of one or more amino acid residues or suitable protected amino acid residues to a growing peptide chain. Normally, either the amino or carboxyl group of the first amino acid residue is protected by a suitable, selectively-removable protecting group. A different, selectively removable protecting group is utilized for amino acids containing a reactive side group, such as lysine.

Using a solid phase synthesis as an example, the protected or derivatized amino acid is attached to an inert solid support through its unprotected carboxyl or amino group. The protecting group of the amino or carboxyl group is then 25 selectively removed and the next amino acid in the sequence having the complementary (amino or carboxyl) group suitably protected is admixed and reacted with the residue already attached to the solid support. The protecting group of the amino or carboxyl group is then removed from this newly added 30 amino acid residue, and the next amino acid (suitably protected) is then added, and so forth. After all the desired amino acids have been linked in the proper sequence, any remaining terminal and side group protecting groups (and solid support) are removed sequentially or concurrently, to provide 35 the final peptide. The peptide of the invention are preferably devoid of benzylated or methylbenzylated amino acids. protecting group moieties may be used in the course of

- 11 -

synthesis, but they are removed before the peptides are used. Additional reactions may be necessary, as described elsewhere, to form intramolecular linkages to restrain conformation.

The present peptides may also be prepared by recombinant DNA techniques, although such methods are not preferred because of the need for purification and subsequent chemical modifications to conformationally restrain the peptides.

In addition to peptides which comprise L amino acids,
pharmaceutical compositions according to the present invention
may comprise peptides made up of D amino acids. Because most
enzymes involved in degradation recognize a tetrahedral
alpha-carbon, the D-amino acids were utilized in order to avoid
enzyme recognition and subsequent cleavage. Our computer
studies indicate that the same folded presentation of the
peptide is accomplished by reversing the amino acid sequence,
employing D-amino acids. Thus, peptides comprised of D amino
acids are less susceptible to degradation.

Conservative substitutions in the amino acid sequence
20 may be made. Those having ordinary skill in the art can
readily design compounds of the invention with conservative
substitutions for CD8 amino acids. For example, following what
are referred to as Dayhof's rules for amino acid substitution
(Dayhof, M.D. (1978) Nat. Biomed. Res. Found., Washington, D.C.
25 Vol. 5, supp. 3), amino acid residues in a peptide sequence may
be substituted with comparable amino acid residues. Such
substitutions are well known and are based the upon charge and
structural characteristics of each amino acid.

Synthesized peptides may be circularized in order to mimic the geometry of those portions as they occur in the gamma chain. Circularization may be facilitated by disulfide bridges between cysteine residues. Alternatively, the peptides may be circularized by means of covalent bonds, such as amide bonds, between amino acid residues of the peptide such as those at or near the amino and carboxy termini.

Peptides for use in pharmaceutical compositions of the present invention may be designed following the guidelines set

PCT/US98/02339 WO 98/34631

- 12 -

out herein and using well known processes. Methods of synthesizing peptides and circularizing them may be performed routinely using standard techniques and readily available starting materials.

of The present invention relates to methods therapeutically or prophylactically treating an individual suffering from or susceptible to a disease, condition or disorder associated with T cell or B cell growth, proliferation and/or secretion of biologically active material. The present 10 invention relates to methods of therapeutically prophylactically treating an individual suffering from or susceptible to a disease, condition or disorder by suppressing immunological responses through the inhibition of cytokine mediated signal transduction.

Examples of diseases condition and disorders for which the present invention may be employed include T cell and B cell leukemias and lymphomas, inflammatory and autoimmune diseases, allergies and conditions and rejections associated with transplantation protocols.

15

20

Those having ordinary skill in the art can readily identify individuals suspected of suffering from or being susceptible to conditions, diseases and disorders which can be effectively treated or prevented by inhibition of cytokine mediated immune responses effected by the peptides of the 25 invention. Those with ordinary skill in the art could readily identify individuals for whom administration of the compounds of the invention would be beneficial to alleviate or prevent immune responses. Treatment may be provided prophylactically or in response to symptoms associated with undesirable immune 30 responses or activity of cells of the immune system. Pharmaceutical compositions useful in the methods of the present invention comprise the compounds described herein.

The method of therapeutically or prophylactically treating an individual comprises administering to such an 35 individual an effective amount of a peptide according to the A prophylactically effective amount is an amount invention. which is effective to prevent or decrease the immune response

- 13 -

associated with disease condition or disorder to be prevented. A therapeutically effective amount is an amount which is effective to decrease or eliminate symptoms in an individual suffering from such diseases, conditions and disorders. rejection. Those having ordinary skill in the art can readily and routinely determine the ranges of both prophylactically and therapeutically effective amounts of the peptides of the invention without undue experimentation.

present invention provides pharmaceutical 10 compositions that comprise the peptides of the invention and pharmaceutically acceptable carriers or diluents. pharmaceutical composition of the present invention may be formulated by one having ordinary skill in the art. pharmaceutical carriers are described in Remington's 15 Pharmaceutical Sciences, A. Osol, a standard reference text in this field, which is incorporated herein by reference. In carrying out methods of the present invention, conjugated compounds of the present invention can be used alone or in combination with other diagnostic, therapeutic or additional Such additional agents include excipients such as 20 agents. coloring, stabilizing agents, osmotic agents and antibacterial agents.

For parenteral administration, the peptides of the invention can be, for example, formulated as a solution, suspension, emulsion or lyophilized powder in association with a pharmaceutically acceptable parenteral vehicle. Examples of such vehicles are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Liposomes and nonaqueous vehicles such as fixed oils may also be used. The vehicle or lyophilized powder may contain additives that maintain isotonicity (e.g., sodium chloride, mannitol) and chemical stability (e.g., buffers and preservatives). The formulation is sterilized by commonly used techniques. For example, a parenteral composition suitable for administration by injection is prepared by dissolving 1.5% by weight of active ingredient in 0.9% sodium chloride solution.

- 14 -

The pharmaceutical compositions according to the present invention may be administered as a single dose or in multiple doses. The pharmaceutical compositions of the present invention may be administered either as individual therapeutic agents or in combination with other therapeutic agents. The treatments of the present invention may be combined with conventional therapies, which may be administered sequentially or simultaneously. In some embodiments, compounds are administered 1-2 days prior to transplantation, preferably 4-12 hours. Compounds may be delivered during transplantation procedures. In some embodiments, compounds are administered for 2 weeks to 2 months after transplantation procedures.

The pharmaceutical compositions of the present invention may be administered by any means that enables the 15 active agent to reach the targeted cells. These methods include, but are not limited to, oral, topical, intradermal, subcutaneous, intravenous, intramuscular and intraparenteral modes of administration. The compounds may be administered singly or in combination with other compounds. The compounds invention are preferably administered with 20 of the pharmaceutically acceptable carrier selected on the basis of administration and standard selected route of pharmaceutical practice.

The dosage administered varies depending upon factors

such as: pharmacodynamic characteristics; its mode and route
of administration; age, health, and weight of the recipient;
nature and extent of symptoms; kind of concurrent treatment;
and frequency of treatment. Usually, the dosage of peptide can
be about 1 to 3000 milligrams per 50 kilograms of body weight;

preferably 10 to 1000 milligrams per 50 kilograms of body
weight; more preferably 25 to 800 milligrams per 50 kilograms
of body weight. Ordinarily 8 to 800 milligrams are
administered to an individual per day in divided doses 1 to 6
times a day or in sustained release form is effective to obtain
desired results.

EXAMPLES

Example 1

Novel peptide mimics that were derived from the sequence of the cytokine receptor common gamma chain were designed for the purpose of inhibiting cytokine receptor signal transduction. Such peptides are capable of inhibiting the functions of many immune cells which are responsive to these cytokines and thus are useful in the treatment of various maladies such as leukemia, lymphoma, inflammatory diseases, autoimmune disease, transplant rejection, allergies and others.

Based on the structural data, 5 sequences $(\gamma 1-5)$ were identified that are predicted to interact with the ligands of the γ -chain and one sequence $(\gamma 6)$ that is predicted to interact with the heterodimeric partner receptors was synthesized. The sequences are as follows:

		Murine	<u>Human</u>	% Identity
15	γ1 (I ₁₀₀ ->F ₁₀₆)	SEQ ID NO:1 IQLYQTF	SEQ ID NO:2 IHLYQTF	86
	$\gamma 2 (C_{161} - > V_{166})$	SEQ ID NO:3	SEQ ID NO:4 CLEHLV	67
	$\gamma 3 (P_{207} -> Q_{214})$	SEQ ID NO:36 PICGSSQQ	SEQ ID NO:10 PLCGSAQH	63
	$\gamma 4 \ (N_{181} - > L_{188})$	SEQ ID NO:12 NHEPRFLS	SEQ ID NO:13 DYRHKFSL	50
	γ5 (L ₁₂₄ ->L ₁₂₉)	SEQ ID NO:14 LNLQNL	SEQ ID NO:15 LKLQNL	83
20	γ6 (N ₁₄₂ ->L ₁₄₈)	SEQ ID NO:16 NLSESQL	SEQ ID NO:17 KLSEQL	86

Peptides have been synthesized based on these sequences and cyclized by the addition of cysteine residues at either end and disulfide bridging. We have tested the following murine peptides in vitro for their ability to inhibit cytokine driven proliferation 25 of cell lines such as CTLL (T-cell) and CH12.CX (B-cell) as well as in MLRs:

Per	<u>otide</u>	Sequence
γ1	(I ₁₀₀ ->F ₁₀₆)	SEQ ID NO:18 CIQLYQTFC
γ2	$(C_{161}->V_{166})$	SEQ ID NO:20 CLQYLVC
γ3	(P ₂₀₇ ->Q ₂₁₄)	SEQ ID NO:26 CPIAGSSQQC
5 γ4	$(N_{181} - > L_{188})$	SEQ ID NO:29 CNHEPRFLSC
γ5	(L ₁₂₄ ->L ₁₂₉)	SEQ ID NO:31 CLNLQNLC
γ6	(N ₁₄₂ ->L ₁₄₈)	SEQ ID NO:33 CNLSESQLC
γ2	lin.	SEQ ID NO:35 ERCLQYLVQY
γ2'	Γ (γ2 V->T)	SEQ ID NO:22 CLQYLTC

The murine sequences have been tested in at least two of these proliferation assays. Figures 1A-1D, 2 and 3 show the ability of these peptides to inhibit IL-4 induced proliferation of CTLL's. Figure 4 shows the ability of these peptides to inhibit MLRs and Figure 5 shows the ability of these peptides to inhibit 15 CH12.CX proliferation.

These data suggest that these peptides can in fact inhibit cytokine responses in vitro. These peptides do not appear to be toxic as the CTLL proliferation to IL-2 is not affected.

Example 2

- Experiments were performed to test the effect of each of peptides gamma-1, gamma-2, gamma-3, gamma-4, gamma-5 and gamma-6 on different cell types using several different assays. The data from the experiments is shown in Figures 6A-6F. The assays were performed as follows:
- 25 CTLL Proliferation Assay: The murine IL-2- and IL-4responsive CTLL cell line was used to assess the ability of the
 gamma chain peptides to inhibit the binding of these cytokines
 to their respective receptors. The cell line proliferates in
 responses to exogenously added cytokine and inhibition of this
 30 proliferation by the peptides would be a result of blocking the
 cytokines from interacting with their receptors. Briefly, 5000
 CTLL cells are added to the wells of a 96 well microtitre
 plate. Either 10 U/ml r-mIL-2 or 1 ng/ml r-mIL-4 are added to

PCT/US98/02339 WO 98/34631

- 17 -

these wells along with titred amounts of the indicated Cultures are incubated at 37°C for 24 hours and pulsed with ³H-TdR for the final 6 hours to indicate amount of proliferation. Wells containing no peptide are deemed the 5 positive response and well containing no peptide and no cytokine are deemed the background (bkg) proliferation. percent response is calculated as follows: (CPM experimental-CPM bkg)/CPM positive response-CPM bkg). All data are expressed in this manner.

10

CT4S Proliferation Assay: The murine IL-4 responsive CT4S cell line was used to assess the ability of the gamma chain peptides to inhibit the binding of IL-4 to its receptor. The cell line proliferates in responses to exogenously added mIL-4 and inhibition of this proliferation by the peptides 15 would be a result of blocking the mIL-4 from interacting with their receptors. Briefly, 5000 CT4S cells are added to the wells of a 96 well microtitre plate. r-mIL-4 (50 pg/ml) is added to these wells along with titred amounts of the indicated peptides. Cultures are incubated at 37°C for 48 hours and 20 pulsed with ³H-TdR for the final 6 hours to indicate amount of proliferation. Wells containing no peptide are deemed the positive response and wells containing no peptide and no cytokine are deemed the background (bkg) proliferation. percent response is calculated as follows: (CPM experimental-25 CPM bkg)/(CPM positive response-CPM bkg). All data are expressed in this manner.

CH12 Proliferation Assay: The CH12 murine B cell lymphoma, like many lymphomas, is an IL-4 producing cell line that is also dependent on IL-4 for proliferation. No exogenous 30 IL-4 is added to the wells of these cultures. Briefly, 1500 cells are added to each well along with titred amounts of the indicated peptides. Cultures are incubated at 37°C for 48 hours and pulsed with 3H-TdR for the final 6 hours to indicate amount of proliferation. Wells containing no peptide are 35 deemed the positive response and there is no true background response. A percent response is calculated as follows: (CPM

- 18 -

experimental)/(CPM positive response). All data are expressed in this manner.

Mixed Lymphocyte Assay: Allogeneic murine mixed lymphocyte response assays were performed to determine if the 5 gamma chain peptides were capable of inhibiting this response Assays were performed as previously described. as well. Briefly, responder lymph node cells were isolated from SJL mice and stimulator spleen cells were located from (B6xCBA) F, mice responder cells (2 x 105/well) were plated in 96 well plates 10 along with irradiated stimulator cells (4 x 10^5 /well). Titred amounts of gamma chain peptides were added to the indicated Cultures are incubated at 37°C for 3 days and pulsed with ³H-TdR for the final 18 hours to indicate amount of proliferation. Wells containing no peptide and both stimulator 15 and responder cells are deemed the positive response and wells containing no peptide and no stimulator cells are deemed the A percent response is background (bkg) proliferation. calculated as follows: (CPM experimental-CPM bkg)/(CPM positive response-CPM bkg). All data are expressed in this manner.

In vitro testing using human cells and in vivo testing was performed as follows.

20

TF-1 Proliferation Assay: The TF-1 cell line is a human cell line that is responsive to several cytokine including human IL-4. Inhibition of IL-4 induced proliferation 25 of this cell indicates that these peptides are capable if Briefly, TF-1 cells are rested inhibiting human IL-4. (Cultured in the absence of cytokines) for 48 hours prior to the initiation of the assay. Cells are plated (20000/well) along with titred amounts of the indicated peptides and 1 ng/ml Cultures are incubated at 37°C for 48 hours and pulsed with ${}^{3}\text{H-TdR}$ for the final 6 hours to indicate amount of proliferation. Wells containing no peptide are deemed the positive response and wells containing no peptide and no cytokine are deemed the background (bkg) proliferation. 35 percent response is calculated as follows: (CPM experimental-All data are CPM bkg)/(CPM positive response-CPM bkg). expressed in this manner. The results are shown in Figure 7.

Effect of Gamma Chain Peptides In Vivo: In order to evaluate the efficacy of these peptides in vivo, we challenged sub-lethally (500Rads) irradiated B10.A mice with 2x10⁵ CH12 (B-cell Lymphoma) cells and tracked the lethal effects of this tumor challenge. Indicated groups of mice (4/group) received either no treatment, gamma 2T (0.5 mg i.p. on days 0,3,6), of gamma4 (0.5 mg i.p. on days 0,3,6). Data is represented as % survival. The data is shown on Figure 8.

SEQUENCE LISTING

(1) GENERAL INFORMATION: Townsend, Robert M. Korngold, Robert (i) APPLICANT: (ii) TITLE OF INVENTION: Peptide Mimics of the Cytokine Receptor Common Gamma Chain and Methods and Compositions for Making and Using the Same (iii) NUMBER OF SEQUENCES: 37 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Woodcock Washburn Kurtz Mackiewicz & Norris LLP (B) STREET: One Liberty Place, 46th Floor (C) CITY: Philadelphia
(D) STATE: Pennsylvania (E) COUNTRY: USA (F) ZIP: 19103 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: Windows 3.11
(D) SOFTWARE: Wordperfect for Windows 6.1 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER:(B) FILING DATE:(C) CLASSIFICATION: (vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/036,941 (B) FILING DATE: 07-FEB-1997 (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: DeLuca, Mark (B) REGISTRATION NUMBER: 33,229 (C) REFERENCE/DOCKET NUMBER: TJU-2291 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 215-568-3100 (B) TELEFAX: 215-568-3439 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (D) TOPOLOGY: both (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: Ile Gln Leu Tyr Gln Thr Phe (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids(B) TYPE: amino acid(D) TOPOLOGY: both (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: Ile His Leu Tyr Gln Thr Phe (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (D) TOPOLOGY: both (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

WO 98/34631

- 21 -

```
Cys Gln Tyr Leu Val
```

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: both
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Cys Leu Glu His Leu Val

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 (B) TYPE: amino acid
 - (D) TOPOLOGY: both

 - (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Cys Leu Gln Tyr Leu Thr

- (2) INFORMATION FOR SEQ ID NO:6:
 (i) SEQUENCE CHARACTERISTICS:
 - - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Cys Leu Glu His Leu Thr

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Cys Leu Gln Tyr Leu Thr Gln 5

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Cys Leu Glu His Leu Thr Gln

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:

- 22 -

```
(A) LENGTH: 8 amino acids(B) TYPE: amino acid
```

- (D) TOPOLOGY: both
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Pro Ile Ala Gly Ser Ser Gln Gln

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Pro Leu Cys Gly Ser Ala Gln His

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Pro Leu Ala Gly Ser Ala Gln His

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids(B) TYPE: amino acid(D) TOPOLOGY: both

 - (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Asn His Glu Pro Arg Phe Leu Ser

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Asp Tyr Arg His Lys Phe Ser Leu

- (2) INFORMATION FOR SEQ ID NO:14:
 (i) SEQUENCE CHARACTERISTICS:
 - - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

- 23 -

Leu Asn Leu Gln Asn Leu

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: both
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Leu Lys Leu Gln Asn Leu

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Asn Leu Ser Glu Ser Gln Leu

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: both

 - (ii) MOLECULE TYPE: peptide
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Lys Leu Ser Glu Ser Gln Leu

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Cys Ile Gln Leu Tyr Gln Thr Phe Cys

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids

 - (B) TYPE: amino acid
 (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Cys Ile His Leu Tyr Gln Thr Phe Cys

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 7 amino acids
```

- (B) TYPE: amino acid
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Cys Leu Gln Tyr Leu Val Cys

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Cys Leu Glu His Leu Val Cys

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Cys Leu Gln Tyr Leu Thr Cys

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Cys Leu Glu His Leu Thr Cys

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Cys Leu Gln Tyr Leu Thr Gln Cys

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Cys Leu Glu His Leu Thr Gln Cys

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Cys Pro Ile Ala Gly Ser Ser Gln Gln Cys

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Cys Pro Leu Cys Gly Ser Ala Gln His Cys

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Cys Pro Leu Ala Gly Ser Ala Gln His Cys

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Cys Asn His Glu Pro Arg Phe Leu Ser Cys

- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids

 - (B) TYPE: amino acid(D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Cys Asp Tyr Arg His Lys Phe Ser Leu Cys

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid

```
(D) TOPOLOGY: circular (ii) MOLECULE TYPE: peptide
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Cys Leu Asn Leu Gln Asn Leu Cys

- (2) INFORMATION FOR SEQ ID NO:32:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Cys Leu Lys Leu Gln Asn Leu Cys

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Cys Asn Leu Ser Glu Ser Gln Leu Cys

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: circular

 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Cys Lys Leu Ser Glu Ser Gln Leu Cys

- (2) INFORMATION FOR SEQ ID NO:35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE: peptide
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Glu Arg Cys Leu Gln Tyr Leu Val Gln Tyr

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Pro Ile Cys Gly Ser Ser Gln Gln 5

- (2) INFORMATION FOR SEQ ID NO:37: (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 10 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: peptide
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Cys Pro Ile Cys Gly Ser Ser Gln Gln Cys
1 . 5 10

CLAIMS

- A peptide which mimics a loop on the γ -chain that either interact with a cytokine or a γ -chain partner receptor chain of a heterodimeric cytokine receptor, wherein said 5 peptide consists of 5-25 amino acids and inhibits signal transduction mediated by cytokine: receptor binding of cytokines that bind to receptors that comprise a γ -chain.
- The peptide of claim 1 wherein said peptide includes: SEQ ID NO:1 IQLYQTF; SEQ ID NO:2 IHLYQTF; SEQ ID NO:3 CLQYLV; 10 SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL; SEQ ID NO:14 LNLONL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL; SEQ 15 ID NO:17 KLSEQL or such an amino acid sequence with one or more conservative substitutions.
- The peptide of claim 1 wherein said peptide includes: 3. SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ ID NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ 20 ID NO:7 CLOYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL; SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL or SEQ ID NO:17 KLSEQL.
- The peptide of claim 1 wherein said peptide includes: 25 4. SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ ID NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 30 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL; SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL; SEQ ID NO:17 KLSEQL or such an amino acid sequence with one or more conservative substitutions.

- 5. The peptide of claim 1 wherein said peptide is conformationally restricted.
- 6. The peptide of claim 1 wherein said peptide is cyclic.
- 7. The peptide of claim 1 wherein said peptide has a cysteine residue at its N terminus and a cysteine residue at its C terminus and it is cyclized by formation of a disulfide bond between said cysteine residues.
- 8. The peptide of claim 1 wherein said peptide is selected from the group consisting of: SEQ ID NO:18 CIQLYQTFC;

 10 SEQ ID NO:19 CIHLYQTFC; SEQ ID NO:20 CLQYLVC; SEQ ID NO:21 CLEHLVC; SEQ ID NO:22 CLQYLTC; SEQ ID NO:23 CLEHLTC; SEQ ID NO:24 CLQYLTQC; SEQ ID NO:25 CLEHLTQC; SEQ ID NO:26 CPIAGSSQQC; SEQ ID NO:37 CPICGSSQQC; SEQ ID NO:27 CPLCGSAQHC; SEQ ID NO:28 CPLAGSAQHC; SEQ ID NO:29 CNHEPRFLSC; SEQ ID NO:30 CDYRHKFSLC;

 15 SEQ ID NO:31 CLNLQNLC; SEQ ID NO:32 CLKLQNLC; SEQ ID NO:33 CNLSESQLC; SEQ ID NO:34 CKLSESQLC and derivative peptides thereof.
- 9. The peptide of claim 1 wherein said peptide is selected from the group consisting of: SEQ ID NO:18 CIQLYQTFC; 20 SEQ ID NO:19 CIHLYQTFC; SEQ ID NO:20 CLQYLVC; SEQ ID NO:21 CLEHLVC; SEQ ID NO:22 CLQYLTC; SEQ ID NO:23 CLEHLTC; SEQ ID NO:24 CLQYLTQC; SEQ ID NO:25 CLEHLTQC; SEQ ID NO:26 CPIAGSSQQC; SEQ ID NO:37 CPICGSSQQC; SEQ ID NO:27 CPLCGSAQHC; SEQ ID NO:28 CPLAGSAQHC; SEQ ID NO:29 CNHEPRFLSC; SEQ ID NO:30 CDYRHKFSLC; SEQ ID NO:31 CLNLQNLC; SEQ ID NO:32 CLKLQNLC; SEQ ID NO:33 CNLSESQLC and SEQ ID NO:34 CKLSESQLC.
 - 10. The peptide of claim 1 wherein said peptide is a conformationally restricted peptide having the formula:

$$R_1 - R_2 - R_3 - R_4 - R_5$$

30 wherein:

R₁ is a linking moiety;

R₂ is 0-10 amino acids;

- 30 -

R₃ is SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ ID NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL; SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL; SEQ ID NO:17 KLSEQL or such an amino acid sequence with one or more conservative substitutions;

 R_4 is 0-10 amino acids; and R_5 is a linking moiety.

10

- 11. The peptide of claim 10 wherein: R_1 is cysteine; and R_5 is cysteine.
- 12. The peptide of claim 11 wherein:
- R₃ is SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ ID NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL; SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL; or SEQ ID NO:17 KLSEQL.
 - 13. The peptide of claim 12 wherein: R_1 is cysteine; and R_5 is cysteine.
- 25 14. A pharmaceutical composition comprising a peptide of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 15. The pharmaceutical composition of claim 14 wherein said peptide includes: SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ ID NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL;

SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL; SEQ ID NO:17 KLSEQL or such an amino acid sequence with one or more conservative substitutions.

- 16. The pharmaceutical composition of claim 14 wherein said peptide includes: SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ ID NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL; SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL or SEQ ID NO:17 KLSEQL.
 - 17. The pharmaceutical composition of claim 14 wherein said peptide is conformationally restricted.
- 18. The pharmaceutical composition of claim 14 wherein 15 said peptide is cyclic.
 - 19. The pharmaceutical composition of claim 14 wherein said peptide has a cysteine residue at its N terminus and a cysteine residue at its C terminus and it is cyclized by formation of a disulfide bond between said cysteine residues.
- 20 20. The pharmaceutical composition of claim 14 wherein said peptide is selected from the group consisting of: SEQ ID NO:18 CIQLYQTFC; SEQ ID NO:19 CIHLYQTFC; SEQ ID NO:20 CLQYLVC; SEQ ID NO:21 CLEHLVC; SEQ ID NO:22 CLQYLTC; SEQ ID NO:23 CLEHLTC; SEQ ID NO:24 CLQYLTQC; SEQ ID NO:25 CLEHLTQC; SEQ ID NO:26 CPIAGSSQQC; SEQ ID NO:37 CPICGSSQQC; SEQ ID NO:27 CPLCGSAQHC; SEQ ID NO:28 CPLAGSAQHC; SEQ ID NO:29 CNHEPRFLSC; SEQ ID NO:30 CDYRHKFSLC; SEQ ID NO:31 CLNLQNLC; SEQ ID NO:32 CLKLQNLC; SEQ ID NO:33 CNLSESQLC; SEQ ID NO:34 CKLSESQLC and derivative peptides thereof.
- 30 21. The pharmaceutical composition of claim 14 wherein said peptide is selected from the group consisting of: SEQ ID

- 32 -

NO:18 CIQLYQTFC; SEQ ID NO:19 CIHLYQTFC; SEQ ID NO:20 CLQYLVC; SEQ ID NO:21 CLEHLVC; SEQ ID NO:22 CLQYLTC; SEQ ID NO:23 CLEHLTC; SEQ ID NO:24 CLQYLTQC; SEQ ID NO:25 CLEHLTQC; SEQ ID NO:26 CPIAGSSQQC; SEQ ID NO:37 CPICGSSQQC; SEQ ID NO:27 CPLCGSAQHC; SEQ ID NO:28 CPLAGSAQHC; SEQ ID NO:29 CNHEPRFLSC; SEQ ID NO:30 CDYRHKFSLC; SEQ ID NO:31 CLNLQNLC; SEQ ID NO:32 CLKLQNLC; SEQ ID NO:33 CNLSESQLC and SEQ ID NO:34 CKLSESQLC.

22. The pharmaceutical composition of claim 14 wherein said peptide is a conformationally restricted peptide having 10 the formula:

$$R_1 - R_2 - R_3 - R_4 - R_5$$

wherein:

R, is a linking moiety;

R₂ is 0-10 amino acids;

R₃ is SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ ID NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH; SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13 DYRHKFSL; SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL; SEQ ID NO:17 KLSEQL or such an amino acid sequence with one or more conservative substitutions;

 R_4 is 0-10 amino acids; and R_5 is a linking moiety.

- 25 23. The pharmaceutical composition of claim 14 wherein: R_1 is cysteine; and R_5 is cysteine.
- The pharmaceutical composition of claim 23 wherein:

 R₃ is SEQ ID NO:1 IQLYQTF; SEQ ID NO: 2 IHLYQTF; SEQ

 10 NO:3 CLQYLV; SEQ ID NO:4 CLEHLV; SEQ ID NO:5 CLQYLT; SEQ ID

 NO:6 CLEHLT; SEQ ID NO:7 CLQYLTQ; SEQ ID NO:8 CLEHLTQ; SEQ ID

 NO:9 PIAGSSQQ; SEQ ID NO:36 PICGSSQQ; SEQ ID NO:10 PLCGSAQH;

 SEQ ID NO:11 PLAGSAQH; SEQ ID NO:12 NHEPRFLS; SEQ ID NO:13

- 33 -

DYRHKFSL; SEQ ID NO:14 LNLQNL; SEQ ID NO:15 LKLQNL; SEQ ID NO:16 NLSESQL; or SEQ ID NO:17 KLSEQL.

25. The pharmaceutical composition of claim 24 wherein: R_1 is cysteine; and R_5 is cysteine.

5

- 26. A method of inhibiting signal transduction mediated by cytokine:receptor binding of cytokines that bind to receptors that comprise a γ -chain, said method comprising the step of administering an effective amount of a peptide of claim 10 1.
 - 27. A method of inhibiting cytokine mediated cell growth, proliferation, function or activity comprising the step of contacting said cell with an peptide of claim 1.
- 28. A method of treating a patient suffering from a disease disorder or condition characterized by cytokine mediated cell growth, proliferation, function or activity comprising the step of administering to said patient a therapeutically effective amount of a peptide of claim 1.
- 29. A method of treating a patient suffering from a disease disorder or condition characterized by cytokine mediated cell growth, proliferation, function or activity comprising the step of administering to said patient a therapeutically effective amount of a peptide of claim 1, wherein said patient has lymphoma, leukemia, an allergic reaction, an autoimmune disease, graft versus host disease or rejection of a transplant or graft.
- 30. A method of preventing a condition characterized by cytokine mediated cell growth, proliferation, function or activity in a patient identified as being at risk of such a condition comprising the step of administering to said patient a prophylactically effective amount of a peptide of claim 1.

- 34 -

31. A method of preventing a condition characterized by cytokine mediated cell growth, proliferation, function or activity in a patient identified as being at risk of such a condition comprising the step of administering to said patient a prophylactically effective amount of a peptide of claim 1, wherein said patient is at risk of an allergic reaction, graft versus host disease or rejection of a transplant or graft.

SUBSTITUTE SHEET (RULE 26)

Fig. 3

Fig. 4

SUBSTITUTE SHEET (RULE 26)

10/16

Fig. 6B

Fig. 6C

PCT/US98/02339

Fig. 6D

Fig. 6E

14/16

Fig. 6F

15/16

SUBSTITUTE SHEET (RULE 26)

PCT/US98/02339

16/16 Effect of Gamma Chain peptides on CH12 Challenge In Vivo

WO 98/34631

FIGURE 8

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/02339

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61K 38/00, 38/08, 38/12			
US CL : 530/317, 328, 329			
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols)			
U.S. : 530/317, 328, 329			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
STN on line			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	WO 95/11312 A1 (WASHINGTON UNIVERSITY) 27 April 1995, 1-26 entire document		1-26
A,P	WO 97/28190 A1 (MEDVET SCIENCE PTY, LTD.) 07 August 1997, entire document.		1-26
A	TOWNSEND et al. Peptide Mimetics of the Cytokine Receptor Common Gamma Chain. J. of Allergy and Clin. Immunol. 1997, Vol. 99. No. 1, part 1, # 67.		1-26
Further documents are listed in the continuation of Box C. See patent family annex.			
Special categories of cited documents:			
"A" document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance			
"E" earlier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		considered novel or cannot be considered to involve an inventive step when the document is taken alone	
cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other		"Y" document of particular relevance; to considered to involve an inventive combined with one or more other su	e step when the document is
P* d	comment published prior to the international filing date but later than	being obvious to a person skilled in the art *&* document member of the same patent family	
Date of the actual completion of the international search Date of mailing of the international search report			
04 MAY 1998		1 9 JUN 1998	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		Authorized offices I Will To MICHAEL BORIN	
Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196	l

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/02339

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
Please See Extra Sheet.			
·			
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.; 1-26 (group I), subgroup A			
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/02339

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-25 drawn to peptides and their pharmaceutical compositions and claim 26, drawn to method of inhibition of signal transduction (first method of use).

Group II, claim 27, drawn to method of inhibiting cell growth.

Group III, claims 28-29, drawn to method of treating a patient.

Group IV, claims 30-31, drawn to method of preventing a condition characterized by cytokine-mediated cell growth.

The inventions listed as Groups I-IV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features because the peptides encompassed by generic claim 1 do not share any common structure, i.e., there is no structurally distinctive portion of the structure which is shared by all of the alternatives. Further, the peptides of the claim 1 are not the contribution over the prior art because they are suggested by references teaching the structure limitation of the peptides of the claim, i.e., peptides comprising 5-25 amino acid residues. For example, the peptide MDFQVOIFSF LLISASVIMSRO, wherein the underlined sequence is the sequence of SEQ ID No:1 with one or more conservative substitutions, is described in EP 338767. Therefore, the lack of unity is present because the linking technical feature is not a "special technical feature" as defined by PCT Rule 13.2. The first method of use (claim 26) will be examined together with the product of Group I in the scope commensurate with the elected product species (see below). Methods of use of Groups II-IV will be examined, in the scope commensurate with the elected product species, if the appropriate additional examination fees are paid.

This application contains invention of Group I directed to more than one species of the generic invention.

These species are deemed to lack unity of invention because they are not so linked as to form a single general inventive concept under PCT Rule 13.1.

The groups of species are as follows: SEQ ID Nos: 1, 2 and 18, 19 (subgroup a); 3, 4 and 20, 21 (subgroup b); 5, 6 and 22,23(subgroup c), and so on (9 species subgroups, a-i). Under PCT Rule 13.2, the species lack the same or corresponding special technical features because they do not share any common structure, i.e., there is no structurally distinctive portion of the structure which is shared by all of the alternatives. A reference teaching, e.g., a peptide of SEO ID 1 would not teach or suggest a peptide SEQ ID 3, and so on.

In order for more than one species to be examined, the appropriate additional examination fees must be paid.