MESURE NON INVASIVE DE LA GLYCEMIE HUMAINE

TIPE 2021-2022

Thème:Santé Prévention

Maryam EL YAAGOUBI

PLAN

- Problématique
- Modèle théorique
- Justification empirique
- Proposition d'un appareil de mesure
- Application
- Conclusion

Maryam EL YAAGOUBI

Maryam EL YAAGOUBI SCEI: 22459

Maryam EL YAAGOUBI SCEI: 22459

Maryam EL YAAGOUBI SCEI: 22459

PLAN

Problématique

Modèle théorique

Justification empirique

Proposition d'un appareil de mesure

Application

Conclusion

Maryam EL YAAGOUBI

Comment créer un appareil de mesure non invasive de la glycémie humaine ?

Dans quelle mesure cette nouvelle technologie pourrait-elle remplacer les méthodes en vigueur ?

Maryam EL YAAGOUBI SCEI: 22459

PLAN

Problématique

Modèle théorique

Justification empirique

Proposition d'un appareil de mesure

Application

Conclusion

Maryam EL YAAGOUBI

CHOIX DE LA METHODE

Utilisation des ondes électriques pour déterminer la concentration de glucose dans le sang.

Maryam EL YAAGOUBI

LIEN CHAMP ELECTRIQUE-GLYCEMIE:

Permittivité

Maryam EL YAAGOUBI

LE SANG

= diéléctrique à pertes

modélisé sous une excitation élctrique par le circuit suivant:

Figure 1: Circuit équivalent à un sang soumis à une excitation électrique
[1] étape 2

Maryam EL YAAGOUBI

Permittivité complexe

$$\varepsilon$$
 $(\omega) = \varepsilon' - j\varepsilon''$
définition de la permittivité complexe

où:

ε':partie réelle de la permittivité complexe ε'':l'opposé de sa partie imaginaire

Maryam EL YAAGOUBI

Figure 2: Courbe de la variation des parties réelle et imaginaire de la permittivité en fonction de la fréquence du champ extérieur

Maryam EL YAAGOUBI

CHOIX DE LA FREQUENCE DU CHAMP

Le domaine des micro-ondes: Zone B

Maryam EL YAAGOUBI

ON RETIENT QUE:

La permittivité complexe d'un sang soumis à une excitation de micro-ondes permet de le caractériser électriquement.

Maryam EL YAAGOUBI

PERMITTIVITE ET TISSU BIOLOGIQUE

$$\varepsilon (\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega) = \varepsilon_{\infty} + \frac{\Delta \varepsilon}{1 + (i\omega\tau)^{\alpha}}$$

où:

Relation de Cole-Cole

ε_∞ est la permittivité aux très hautes fréquences
Δε est la permittivité aux très basses fréquences
τ est le temps de relaxation du liquide,
α est une constante 0<α<1 liée à la largeur de la distribution des temps de relaxation

Maryam EL YAAGOUBI

LIEN PERMITTIVITE-GLYCEMIE

Maryam EL YAAGOUBI

PLAN

Problématique

Modèle théorique

Justification empirique

Proposition d'un appareil de mesure

Application

Conclusion

Maryam EL YAAGOUBI

PRESENTATION DE L'EXPERIENCE

But: Valider la dépendance de la permittivité vis à vis de la concentration de glucose.

Expérience: Calculer la capacité de plusieurs condensateurs dont les diélectriques sont à différentes concentrations de glucose.

Maryam EL YAAGOUBI

Figure 4 : Schéma de principe d'un condensateur

Maryam EL YAAGOUBI

CAPACITE-PERMITTIVITE

Hypothèses simplificatrices:

Relations de l'électrostatique valables Condensateur infini L'échantillon est un diélectrique parfait

Maryam EL YAAGOUBI

Relation capacité permittivié:

e : épaisseur de l'isolant = distance entre les armatures en m

Maryam EL YAAGOUBI

Figure 5: Les armatures des condensateurs

Maryam EL YAAGOUBI

Figure 6: Les diélectriques

Maryam EL YAAGOUBI SCEI: 22459

Figure 7: Circuit RC non branché à un GBF

Maryam EL YAAGOUBI

Figure 8:Multimètre

Maryam EL YAAGOUBI

CIRCUIT RC:

Résistance: 10kΩ

Capacité: inconnue

$$c = \frac{v_e - v_s}{2\pi R f v_s}$$

 v_e : Amplitude du signal du GBF v_s : Amplitude du signal aux bornes du condensateur R: Résistance f: Fréquence du signal du GBF C: Capacité du condensateur

Maryam EL YAAGOUBI

CIRCUIT RC: Résistance: $10k\Omega$

Capacité: inconnue

Figure 9: Circuit RC branché

Maryam EL YAAGOUBI

Les condensateurs utilisés

Figure 10: Les condensateurs utilisés

Maryam EL YAAGOUBI SCEI: 22459

CAPACITE EN FONCTION DE LA CONCENTRATION DE GLUCOSE

Figure 11: Courbe qui représente la capacité en fonction des différents "niveaux" de la concentration de glucose

Maryam EL YAAGOUBI

PERMITTIVITE EN FONCTION DE LA CONCENTRATION DE GLUCOSE

Figure 12: Courbe qui représente la permittivité en fonction des différents "niveaux" de la concentration de glucose

Maryam EL YAAGOUBI

On a donc:

1-Validé la dépendance de la permittivité vis à vis de la concentration de glucose et de la fréquence.

2- Justifié par l'expérience la validité de la figure 2 (permittivité en fonction de la fréquence).

Maryam EL YAAGOUBI

PLAN

Problématique

Modèle théorique

Justification empirique

Proposition d'un appareil de mesure

Application

Conclusion

Maryam EL YAAGOUBI

Figure 13: Exemple de capteur non invasif de la glycémie

Maryam EL YAAGOUBI SCEI: 22459

PLAN

Problématique

Modèle théorique

Justification empirique

Proposition d'un appareil de mesure

Application

Conclusion

Maryam EL YAAGOUBI

POMPE A INSULINE

Maryam EL YAAGOUBI

PLAN

Problématique

Modèle théorique

Justification empirique

Proposition d'un appareil de mesure

Application

Conclusion

Maryam EL YAAGOUBI

COMPARAISON A LA METHODE CLASSIQUE

VS

Un capteur qui se base sur la technologie proposée

Maryam EL YAAGOUBI

OF VOTRE 4> MERC

Maryam EL YAAGOUBI SCEI: 22459

SUE1: 2245

Annexe

```
capacité.py
      import matplotlib.pyplot as plt
      import numpy as np
      def f1(x):
          return ((2.44-x)/(2*np.pi*10000*1000*x))*10**(9)
      def f150(x):
          return ((2.44-x)/(2*np.pi*10000*150*1000*x))*10**(9)
      abs=np.array([0,1,2,3,4,5])
      Ord0=np.array([1.5,1.16,1.12,1.72,0.9,0.8])
 12
      Ord1=np.array([1.8,1.56,0.24,1.18,0.12,0.1])
 13
      Ord2=np.array([13.11,0.251,8.09,9.22,1.225,0.329])
      plt.plot(abs,f1(Ord0),color='red',label='1kHz')
      plt.plot(abs,f150(Ord1),color='blue',label='150kHz')
      plt.plot(abs,Ord2,color='magenta',label='multimètre')
      plt.savefig('capacite.png')
 21
      plt.show()
```

Maryam EL YAAGOUBI

Figure 14: code de la courbe de la figure 11

Annexe

```
permitivité.py
      import matplotlib.pyplot as plt
      import numpy as np
      def f1(x):
          return ((2.44-x)/(2*np.pi*10000*1000*x))*10**(9)
      def f150(x):
          return ((2.44-x)/(2*np.pi*10000*150*1000*x))*10**(9)
      abs=np.array([0,1,2,3,4,5])
      Ord0=np.array([1.5,1.16,1.12,1.72,0.9,0.8])
12
      Ord1=np.array([1.8,1.56,0.24,1.18,0.12,0.1])
      Ord2=np.array([13.11,0.251,8.09,9.22,1.225,0.329])
      plt.plot(abs,0.25*f1(Ord0),color='red',label='1kHz')
      plt.plot(abs,0.25*f150(Ord1),color='blue',label='150kHz')
      plt.plot(abs,0.25*Ord2,color='magenta',label='multimètre')
      plt.xlabel('Niveaux de concentration de glucose')
      plt.ylabel('Permittivité en nF/m')
      plt.legend()
      plt.savefig('permittivite.png')
      plt.show()
24
```

Maryam EL YAAGOUBI

41

Figure 15: Code de la courbe de la figure 12