Homework 10

Michael Brodskiy

Professor: D. Wood

December 6, 2023

- 1. As a simplified model of a planet being bombarded with cosmic rays at the poles, consider a conducting sphere of radius R that is being charged with wires at the north and south poles that each have a current I/2 flowing onto the sphere, so that the total charge of the sphere is increasing with time $\left(\frac{dQ}{dt} = I\right)$. Assume the charge is always distributed uniformly on the surface of the sphere.
 - (a) Calculate the displacement current density just above the surface of the sphere. We can begin by finding a relationship between displacement current and the electric displacement:

$$\vec{J} = \frac{\partial \vec{D}}{\partial t} \to \varepsilon_o \frac{\partial \vec{E}}{\partial t}$$

We know the formula for the electric field to be:

$$\vec{E} = \frac{Q}{4\pi\varepsilon_0 R^2}$$

Thus, we may conclude:

$$\vec{J} = \frac{\varepsilon_o}{4\pi\varepsilon_o R^2} \left(\frac{\partial Q}{\partial t}\right)$$

$$\vec{J} = \frac{I}{4\pi R^2}$$

(b) Use the Ampre-Maxwell equation to calculate the induced magnetic field just above the surface at location that is an angle θ from the north pole (latitude = $90^{\circ} - \theta$). [Hint: Use a ring of constant latitude as the amperian loop and use a cap-shaped enclosed surface of the loop that follows the surface of the sphere. Be sure to include both the physical current and the displacement current.] (While this is an interesting calculation, note that this is not a significant contribution to the Earth's magnetic field.)

1

We may begin by expressing the equation as:

$$\int \vec{B} \cdot d\vec{l} = \mu_o \left(\sum I \right)$$
$$\vec{B} \int d\vec{l} = \mu_o \left(I + I_d \right)$$

The situation can be sketched as follows:

Figure 1: The $90^{\circ} - \theta$ Shift Switches $\cos \rightarrow \sin$

We can then express the path as:

$$\vec{B}(2\pi R \sin(\theta)) = \mu_o(I + JA)$$
$$\vec{B}(2\pi R \sin(\theta)) = \mu_o(I + I)$$

And finally, we get:

$$\vec{B} = \frac{\mu_o I}{\pi R \sin(\theta)}$$

- 2. Consider a capacitor with circular parallel plates of radius a and separation d, where $d \ll a$, there the capacitor is discharging with a current I.
 - (a) Find the Poynting vector in the space between the plates. Assume that the surface charge is distributed uniformly over the plates.

We may find the Poynting vector using the relation:

$$\oint \vec{B} \cdot d\vec{A} = \mu_o \varepsilon_o \frac{d}{dt} \oint \vec{E} \cdot d\vec{A}$$

Given the uniform charge contained within the area as q, we may find:

$$\vec{E} = \frac{\sigma}{\varepsilon_o}$$

$$\vec{E} = \frac{q}{\pi \varepsilon_o a^2}$$

From here, we get:

$$\vec{B} \oint d\vec{r} = \mu_o \varepsilon_o \frac{d}{dt} \left(\frac{q}{\pi \varepsilon_o a^2} \int d\vec{A} \right)$$
$$\vec{B}(2\pi r) = \mu_o \varepsilon_o \frac{\pi r^2}{\pi \varepsilon_o a^2} \frac{dq}{dt}$$
$$\vec{B} = \frac{\mu_o r}{2\pi a^2} \frac{dq}{dt}$$

The change in charge with respect to time may be described as the current, so we get:

$$\vec{B} = \frac{\mu_o r I}{2\pi a^2}$$

We can then find the Poynting vector, using:

$$\vec{S} = \frac{1}{\mu_o} \left(\vec{E} \cdot \vec{B} \right) \hat{\mathbf{r}}$$

$$\vec{S} = \frac{1}{\mu_o} \left(\frac{q}{\pi \varepsilon_o a^2} \cdot \frac{\mu_o r I}{2\pi a^2} \right) \hat{\mathbf{r}}$$

This finally gives:

$$\vec{S} = \frac{qrI}{2\pi^2 \varepsilon_o a^4} \hat{\mathbf{r}}$$

(b) Calculate the rates of energy flow out of the volume between the plates by integrating \vec{S} over an appropriate surface and show that it is equal to |IV|. The energy flow out of the volume may be defined as:

$$P = \int \vec{S} \, dA$$
$$P = \vec{S}(2\pi ad)$$

Plugging in the value from (a) for \vec{S} , and evaluating at r=a we get:

$$P = \left(\frac{qaI}{2\pi^2\varepsilon_o a^4}\right)(2\pi ad)$$

$$P_{in} = \left(\frac{qId}{\pi\varepsilon_o a^2}\right)$$

The flow out would be the negative equivalent:

$$P_{out} = -\frac{qId}{\pi\varepsilon_o a^2}$$

We can see that the voltage may be defined as:

$$V = \frac{qd}{\pi \varepsilon_o a^2}$$

And that we then get the power outflow as:

$$P = -IV = |-IV|$$

- 3. An ideal parallel plate capacitor with area A and separation d is oriented with the lower plate in the xy plane and is immersed in a uniform horizontal magnetic field $\vec{B} = B_o \hat{\mathbf{x}}$. The capacitor starts with a charge +Q on the lower plate and Q on the upper plate. At time t=0, a vertical wire with resistance R is connected between the plates.
 - (a) Find the momentum (magnitude and direction) stored in the \vec{E} and \vec{B} fields at time t=0.

The magnetic field is given as:

$$\vec{B} = B_o \hat{\mathbf{x}}$$

The electric field can be defined as:

$$\vec{E} = \frac{Q}{\varepsilon_o A} \hat{\mathbf{z}}$$

The momentum density is defined as:

$$\frac{\vec{P}}{V} = \varepsilon_o \vec{E} \times \vec{B}$$

With V = Ad, we get:

$$\vec{P} = \varepsilon_o A d \left(\vec{E} \times \vec{B} \right)$$

$$\vec{P} = \varepsilon_o A d \left(\frac{Q}{\varepsilon_o A} \hat{\mathbf{z}} \times B_o \hat{\mathbf{x}} \right)$$

$$\vec{P} = \varepsilon_o A d \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 0 & 0 & \frac{Q}{\varepsilon_o A} \\ B_o & 0 & 0 \end{vmatrix}$$

Evaluating the matrix, we get:

$$\vec{P} = \varepsilon_o A d \left(\frac{B_o Q}{\varepsilon_o A} \right) \hat{\mathbf{y}}$$
$$\vec{P} = dB_o Q \hat{\mathbf{y}}$$

- (b) Find the force on the wire as a function of time
- (c) Find the total impulse $(\int \vec{F} dt)$ on the wire for $t \to \infty$. Compare this with the change in stored momentum.
- 4. We re-revisit the spinning hollow sphere from earlier assignments a hollow insulating sphere of radius R and mass M centered at the origin is covered with a uniform surface charge $\sigma = Q/(4\pi R^2)$, rotating about the z-axis with angular frequency ω . This time we consider both the magnetic field and the electric field produced by the sphere itself.
 - (a) Calculate the total energy of the electric and magnetic fields. You can use the results from Homework 8, Problem 1 for the \vec{B} -field you do not need to re-derive it. Be sure to include the magnetic field inside the sphere as well as outside. We begin by defining the energy density as:

$$\mathcal{U} = \frac{1}{2} \left(\varepsilon_o \vec{E}^2 + \frac{1}{\mu_o} \vec{B}^2 \right)$$

The electric field may be defined as:

$$\vec{E} = \frac{\sigma}{\varepsilon_o} \hat{\mathbf{r}}$$

$$\vec{E} = \frac{Q}{4\pi\varepsilon_o R^2} \hat{\mathbf{r}}$$

Combining this with the magnetic field, \vec{B} , obtained in Homework 8, we get:

$$\mathcal{U} = \frac{1}{2} \left(\varepsilon_o \left(\frac{Q}{4\pi \varepsilon_o R^2} \hat{\mathbf{r}} \right)^2 + \frac{1}{\mu_o} \left(\frac{\mu_o \sigma \omega R^4}{3r^3} \left[2\cos(\theta) \hat{\mathbf{r}} + \frac{\sin(\theta)}{r} \hat{\theta} \right] \right)^2 \right)$$

$$\mathcal{U} = \frac{Q^2}{32\pi^2 \varepsilon_o R^4} + \frac{\mu_o \sigma^2 \omega^2 R^8}{9r^6} \left[4\cos^2(\theta) + \frac{\sin^2(\theta)}{r^2} \right]$$

We need to take into account the inside and outside magnetic field, which gives:

$$\mathcal{U} = \frac{Q^2}{32\pi^2 \varepsilon_o R^4} + \frac{\mu_o \sigma^2 \omega^2 R^8}{9r^6} \left[4\cos^2(\theta) + \frac{\sin^2(\theta)}{r^2} \right] + \frac{\mu_o \sigma^2 \omega^2 R^2}{9} \left[4\cos^2(\theta) + \frac{\sin^2(\theta)}{R^2} \right]$$

From here, we need to integrate over the volume:

(b) Calculate the total angular momentum of the electromagnetic fields, L_Q .

(c) Consider a spinning shell whose rest energy (Mc^2) is equal to its electrostatic potential energy $(Q^2/(8\pi\varepsilon_o R))$. Find the ratio between the mechanical (L_M) and electromagnetic (L_Q) contributions to the angular momentum. Use the fact that $c=1/\sqrt{\varepsilon_o\mu_o}$.