

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

Факультет: Информатика и системы управления

Кафедра: ИУ7

Экология

Студент группы ИУ7-63, Степанов Александр Олегович

Преподаватель:

Сазонов Дмитрий Васильевич

Оглавление

1	Введение				
	1.1	Катег	ории отходов (неприродные)	3	
	1.2	Учени	ые	3	
	1.3	Три о	бщетеоретические задачи экологии	4	
	1.4	Три п	прикладные задачи экологии	4	
	1.5	Призн	наки живого	5	
	1.6	Уровн	ни организации живой материи	5	
2 Биосфера. Учение Вернандского					
	2.1	4 типа	а вещества	6	
	2.2	Функ	ции живого вещества	6	
	2.3	Грани	ицы атмосферы	7	
	2.4	Услов	вия необходимые для становления ноосферой	7	
3	Экс	ологич	леские факторы	9	
	3.1	Кривая толерантности			
	3.2	Закон	померности действия факторов на организм	10	
		3.2.1	Закон оптиума	10	
		3.2.2	Закон Либиха	10	
		3.2.3	Закон Шелфорда	10	
		3.2.4	Правило экологической индивидуальности	11	

3.3	Факторы			
	3.3.1	4 вида взаимодействия факторов	11	
	3.3.2	Абиотические факторы	12	
	3.3.3	Экологическая ниша	13	
	3.3.4	Биотические факторы	14	
3.4	Гомот	рипы	14	
3.5	Принцип Оми			
3.6	Фитог	ген	14	
3.7	Среда	а обитания	15	
	3.7.1	Организменная среда обитания	15	

1 Введение

1.1 Категории отходов (неприродные)

- Радиоактивные отходы
- Медицинские
- Химические

1.2 Ученые

- 1. Ламарк Выдвинул первые представления о биосфере
- 2. В 1848 **Ферхюльст** вывел логичетические уравнения скорости роста численности

$$\frac{dP}{dt}$$
 = $r \cdot P, r$ — константа

$$P = P_0 e^{rt}$$

$$\frac{dP}{dt} = r \cdot P \left(1 - \frac{P}{k}\right), k$$
 — емкость экологической ниши популяции

$$\frac{P}{k-P} = e^t \frac{P_0}{k-P_0}$$

$$P = \frac{k \cdot P_0 e^{vt}}{k + P_0 (e^{vt} - 1)}$$

Численность популяции стремится к k количеству, которое можно прокормить.

- 3. Первая половина 19 века. Рулье изучал животных и выдвинул ряд законов
- 4. Немецкий биолог **Геккель** в 1866 году ввел термин экология **Экология** – это наука, изучающая живые организмы, среду их обитания и их взаимосвязи.
- 5. Австралиец Зюс в 1875 ввел термин биосфера живая оболочка Земли.
- 6. 1927 год Элтон выпустил первый учебник монографии по экологии
- 7. Ученый-эколог Коммонер в 1974 выдвинул 4 закона экологии
 - (а) Все связано со всем
 - (b) За все надо платить (Нично не дается даром)
 - (с) Все должно куда-то деваться
 - (d) Природа знает лучше

ДДТ – стойкое органичесое вещество, вредное и опасное. Против комаров.

1.3 Три общетеоретические задачи экологии

- 1. Изучение биоразнообразия и способов его поддержания
- 2. Разработка общей теории устойчивости экосистем
- 3. Изучение экологических механизмов адаптации (приспособления) к среде

1.4 Три прикладные задачи экологии

- 1. Прогнозирование и оценка возможных отрицательных последствий для окружающей природной среды от хозяйственной деятельности человека
- 2. Сохранение воспроизводства и рациональное использование природных ресурсов

3. Оптимизация любых решений с точки зрения обеспечения экологическибезопасного устойчивого развития

1.5 Признаки живого

- 1. Клеточное строение
- 2. Химический состав (C, H, O, N)
- 3. Способность к росту и развитию
- 4. Способность к размножению и наследственность
- 5. Постонянный обмен веществом
- 6. Способность к адаптации
- 7. Наличие ответной реакции (раздражимость)
- 8. Изменчивость

1.6 Уровни организации живой материи

- Молекулярный уровень
- Клеточный уровень
- Тканевый уровень
- Организменный уровень
- Популяционный (видовой) уровень
- Экосистемный уровень
 - **Экосистема** это совокупность живых организмов и среды их обитания, образующее единое функциональное целое.
- Биосферный (глобальный) уровень

2 Биосфера. Учение Вернандского

2.1 4 типа вещества

- 1. **Косное вещество** биологическое вещество не связанное с деятельностью живых организмов
- 2. Живое вещество все живые организмы
- 3. Биогенное вещество связаны с жизнедеятельностью живых организмов
- 4. Биокосное вещество тесная связь между биогенным и косным веществом

2.2 Функции живого вещества

- 1. **Концентрационная функция** организмы концентрируют в себе химические элементы
- 2. Газовая функция связана с текущим составом атмосферы
- 3. **Окислительно-восстановительная функция** способствование химическим реакциям
- 4. **Био-химическая функция** распространение живым веществом химических элементов по планете
 - Закон биогенной миграции атомов миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непост-

редственном участии живого вещества, или же она протекает в среде, геохиимческие особенности которой обусловлены живым веществом как тем, которым настоящее время населяют биосферу, так и тем, которые действовали на Земле в течение всей ее геологической истории.

- 5. **Биохимическая деятельность человека** связана с действием человека на планете
- 6. **Информационная функция** ДНК и РНК, в которых накапливается информация
- 7. Средообразующая и средорегулирующая функции
- 8. **Энергетическая функция** связана как с накоплением энергии в живом организме и передачи ее другим организмам в пищевой цепочке

2.3 Границы атмосферы

- Озоновый слой
- Водная среда вся толща до марианской впадины
- Суша до глубины, где 100 С

2.4 Условия необходимые для становления ноосферой

Ноосфера – сфера разума (1927г. Э.Леруа)

- 1. Заселение человеком всей планеты
- 2. Резкое преобразование средств связи и обмена между странами
- 3. Начало преобладания геологической роли человека над геологическими процессами, происходящими в биосфере
- 4. Усиление связей (в том числе политических) между странами

- 5. Расширение границ биосферы и выход в космос
- 6. Открытие новых источников энергии
- 7. Равенство людей, всех рас и религий
- 8. Увеличение ролей народных масс в решении вопросов внешней и внутренней политики
- 9. Свобода научной мысли, научного искания
- 10. Продуманная система народного образования, подъем благосостояния трудящихся, создание реальной возможности не допустить голода и нищеты и чрезвычайно ослабить болезни
- 11. Разумное преобразование первичной природы Земли с целью сделать ее способной, удовлетворить все материальные эстетические и материальные потребности численно возрастающего населения
- 12. Исключение вольной жизни в обществе

3 | Экологические факторы

Экологический фактор – любой элемент или свойство среды, способне оказывать прямое или косвенное воздействие на живой организм.

- Биотические факторы факторы живой прировы
- Абиотические факторы факторы неживой природы
- Андропагенные факторы все связанное с деятельностью человека

3.1 Кривая толерантности

Рис. 3.1: Кривая толерантности

Анабиоз – обезвоживание клеток, пережидание в совершенно неблагоприятных условиях существования

Криптобиоз – замедление жизнедеятельности организма (впадение в спячку, зимнее стояние лиственных деревьях)

3.2 Закономерности действия факторов на организм

3.2.1 Закон оптиума

Для каждого фактора существует область таких значений, при которых жизнеспособность организма максимальна

3.2.2 Закон Либиха

Тот из факторов, который больше всего отклоняется от оптимума в сторону минимума в данный момент ограничивает жизнедеятельность организма

3.2.3 Закон Шелфорда

Ограничивающим фактором может быть как минимум так и максимум экологического воздействия

Бочка Либиха

Рис. 3.2: Бочка Либиха

Какими бы не были длинными доски, все равно вода выливается по уровню минимальной доски

3.2.4 Правило экологической индивидуальности

В природе не существует двух видов с полным совпадением оптимумов и критических точек по отношению к комплексу факторов

3.3 Факторы

Результат влияния какого-либо экологического фактора на организм зависит не только от его количественного выражения, но и от того, какой комбинацией и с какой интенсивность действуют другие факторы.

3.3.1 4 вида взаимодействия факторов

- 1. **Аддитивность** «+» просуммировать факторы
- 2. Антагонизм «-» наличие одного фактора ослабляет действие другого
- 3. **Синергизм «*»** усиление действия одного фактора при наличии другого
- 4. **Нейтрализм «0»** взаимодействие не выявлено

3.3.2 Абиотические факторы

• Атмосферный воздух

- 1. $N_2 \sim 78\% (28 \frac{\Gamma}{\text{MOJIB}})$
- 2. $O_2 \sim 21\%(32\frac{\Gamma}{\text{MOJIb}})$
- 3. Инертные газы ≲ 1%
- 4. $CO_2 \sim 0.04\% \left(44\frac{\Gamma}{\text{MOJIb}}\right)$

В реальном воздухе есть еще $H_2O(18\frac{\Gamma}{\text{моль}})$

• Электромагнитные излучения (солнечный свет)

Рис. 3.3: Длины волн

Биологические процессы, связанные со светом

- Фотосинтез
- Выработка пигментов и витаминов
- Зрение, ориентация в пространстве
- Нагрев, передача тепла
- Фотопериодизм явление, связанное с реакцией организма на изменение продолжительности светлого времени суток
- Транспирация листья под действием солнечного света нагреваются, идет испарение воды с поверхности, вода падает на падает на почву и происходит питание организма

Рис. 3.4: Парниковый эффект

• Вода

Свойства

- Проводит ток (дистиллированная вода диэлектрик)
- Высокая теплоемкость $4200 \frac{\text{Дж}}{\text{кг-K}}$
- Может находиться в трех агрегатных состояниях (пар, вода, лёд)
- Является средой обитания для огромного количества живых организмов

• Температура

- Точка кипения 100 градусов
- Точка замерзания 0 градусов
- Денатурация белков 40-50 градусов

Биогенные элементы

3.3.3 Экологическая ниша

Экологическая ниша – это область таких значений экологических факторов, при которых данный вид может существовать неограниченно долго

3 составляющих экологической ниши

1. Трофическая (пищевая) ниша – место в пищевой цепочке

- 2. Пространственная ниша где обитает данный организм
- 3. Временная ниша днем или ночью активен организм

3.3.4 Биотические факторы

- Зоогенные животные
 - Гомотипические реации между особями одного вида
 - Гетеротипические реакции между особями разного вида
- Фитогенный растения
- Микроорганизмы

3.4 Гомотипы

- Конкуренция внутривидовая
 - Территория
 - Противоположный пол
- Групповой эффект положительный эффект (проще выживать, охотиться)
- Массовый эффект особей уже слишком много, отрицательный эффект

3.5 Принцип Оми

Для каждой популяции существует оптимальная численность и оптимальная плотность. Как недонаселенность, так и перенаселенность негативно сказывается на популяции.

3.6 Фитоген

• Прямые контактные взаимоотношения

- Механический (сплетение корней)
- Физиологический (симбиоз)
 Растения хищники, которые будут кого-то есть
- Косвенные контактные взаимоотношения

Изменение среды обитания, включая изменение светового режима. **Растения Эдификаторы** – растения, которые относительно сильно изменяют среду обитания

3.7 Среда обитания

Среда обитания – это часть природной среды, которая окружает живые организмы и оказывает прямое или косвенное воздействие на их состояния, развития, выживание и размножение.

Фактор	Водная	Наземно-	Организменная	Почвенная
		воздушная		
t	Медленно	большая	const	Средне
	меняется	амплитуда		меняется
Свет $h\nu$	Изначально	Избыток	Темно	Почти
	мало, падает с			отсутствует
	увеличением			
	глубины			
O_2	Расстворен	Избыток	Недостаток	Недостаток
	в среде,			
	потенциальный			
	недостаток			
H_2O	Избыток	Потенциальный	Достаточно	Недостаток
		недостаток		
Плотность ρ	$1000 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	$\frac{29}{22.4} = 1.3 \frac{\Gamma}{M} = 1.3 \frac{K\Gamma}{M^3}$		
Давление	$p = \rho g h + 1$ atm =	101325 Па		
	$= 1000 \cdot 10 \cdot 10 = 10^5$			

3.7.1 Организменная среда обитания

- Эндопаразиты снаружи
- Эктопаразиты внутри