Equipamentos de Imagiologia Médica

2021/2022

Teresa Sousa

Aula 10

Imagem por ultrassons

Princípios físicos

Ecografia

Ecodoppler

Imagem por ultrassons

Ecodoppler

• Efeito de Doppler

Efeito de Doppler

O efeito de Doppler é um fenómeno físico observado nas ondas quando emitidas ou refletidas por um objeto que está em movimento em relação ao observador.

Efeito de Doppler

O efeito de Doppler nos ultrassons consiste na alteração da frequência das ondas percebidas quando existe uma velocidade relativa entre a fonte e o recetor.

Considere-se que a fonte sonora está a mover-se na direção do recetor com uma velocidade **vs**:

Para o intervalo de tempo **t** depois da criação de uma determinada frente de onda, a distância entre a frente de onda (recetor) e a fonte é de **(v-vs)t**, o que significa que o comprimento de onda na direção do movimento é menor de que no sentido oposto.

Efeito de Doppler

Fonte estacionária de frequência f_s

Fonte a afastar-se do observador (receptor)

$$f' = \frac{v}{\lambda'} = \frac{v}{v + v_s} f_s$$

Fonte a aproximar-se do observador (receptor)

$$f'' = \frac{v}{\lambda''} = \frac{v}{v - v_s} f_s$$

v → Velocidade do som no meio

 $\lambda \longrightarrow$ Comprimento de onda no meio

$$f = \left(rac{c \pm v_{
m r}}{c \pm v_{
m s}}
ight)f_0$$

Variação na frequência do som percebido devido a diferença de velocidade entre o emissor e o receptor.

Efeito de Doppler aplicado à imagem médica

Na ultrassonografia, o transdutor é uma fonte (e receptor) estacionária de ondas de ultrassom de frequência e velocidade conhecida que são refletidas pelos tecidos. O ecodoppler é baseado na reflexão particular que ocorre no encontro destas ondas com os glóbulos vermelhos.

Como os glóbulos se movem, aproximando-se ou afastando-se do transdutor, ocorre o efeito de doppler o que faz com que a frequência refletida (FR) varie em relação a uma frequência transmitida fixa (FT). Quando os glóbulos se afastam, a FR será menor que a FT, quando se aproximam acontece a situação contrária.

Efeito de Doppler aplicado à imagem médica

O Ecodoppler é um exame não invasivo que permite estudar o fluxo nos vasos sanguíneos, mediante o recurso a ultrassons que incidem sobre as células sanguíneas. Permite estimar a velocidade e direção do fluxo sanguíneo.

Principais indicações?

Ecodoppler vascular arterial para diagnosticar e quantificar o processo de aterosclerose.

Ecodoppler das carótidas para avaliar se há um espessamento do revestimento interno destas artérias.

Ecodoppler venoso para o diagnóstico de trombose venosa profunda e para avaliar as veias superficiais e as veias perfurantes.

Efeito de Doppler aplicado à imagem médica

Efeito de Doppler aplicado à imagem médica

Efeito de Doppler aplicado à imagem médica

Efeito de Doppler aplicado à imagem médica

A variação de frequência devido ao efeito de Doppler, fd = (fr - fo), relaciona-se com a velocidade dos objetos, p.ex. os glóbulos vermelhos, vb, através da seguinte expressão:

$$f_d = \frac{2v_b \cos \theta}{v} f_o$$

Que pode ser resolvida em função da velociade do obejcto (vb):

Dependência do ângulo de incidência

Os equipamentos de ultrassom são capazes de calcular o desvio de frequências devido ao efeito de Doppler para uma ampla gama de ângulos.

Quando o fluxo sanguíneo se aproxima do transdutor, é observada *uma variação positiva* na frequência. Por outro lado, se o fluxo sanguíneo se afasta do transdutor, é registado *uma variação negativa*.

Se o ângulo entre o feixe e o vaso sanguíneo se aproximar de 90°, o sinal medido devido ao desvio de doppler vai ser praticamente nulo. Quando se aproxima de zero, o sinal medido é máximo. Para ângulos entre esses valores os valores serão medidos com algum erro associado.

Ecodoppler contínuo

O ecodoppler contínuo utiliza um transdutor com dois cristais, um emite o sinal continuamente, enquanto o outro destina-se somente a receber os sinais refletidos.

Esses dois elementos são organizados de modo a que os feixes de transmissão e receção se sobreponham. A região de sobreposição é conhecida como área ativa ou sensível, e é onde pode ser medido o desvio de Doppler.

O desvio de Doppler (Fd) é detetado através da comparação dos sinais transmitidos e recebidos: Fd = Fr - Ft. A velocidade do fluxo sanguíneo medida é o valor médio de toda a região sensível.

Vantagens: não limitar a profundidade máxima, nem a velocidade máxima mensurável.

Desvantagem: não ser seletivo, ou seja, impede a avaliação específica de um único vaso.

Ecodoppler pulsado

São transmitidos vários impulsos para detetar o fluxo sanguíneo. Ecos provenientes de tecidos estacionários não variam em frequência. Ecos provenientes de difusores exibem pequenas diferenças de frequência, quando regressam ao transdutor.

Estas diferenças podem ser estimadas considerando a simples diferença de frequências, ou, mais usualmente, as diferenças de fase (a partir da qual a frequência/desvio de doppler é obtida/o).

Ecodoppler pulsado

$$depth_{min} = \frac{c(t_d - t_p)}{2}$$
 $depth_{max} = \frac{c(t_d + t_g)}{2}$

Um transdutor de faseado é usado para transmissão de impulsos e receção de sinais.

Uma série de impulsos de ultrassom, tipicamente 128, é transmitida a uma taxa denominada taxa de repetição de impulso (PRR), que é o inverso do tempo entre impulsos sucessivos (trep).

Com base numa varredura no modo B, é escolhida uma região de interesse que abrange o ponto de interesse (veia/artéria específica).

Ecodoppler pulsado: aliasing

A principal limitação do ecodoppler de onda pulsada é o facto de que a velocidade máxima a ser medida é limitada pelo metade do valor da taxa de repetição de impulso.

Se a velocidade do fluxo a analisar exceder esse valor máximo do sistema, ele será exibido como um valor incorreto.

O sinal medido sofre *aliasing* quando o desfasamento entre impulsos sucessivos (1/PRR) é maior que 180 graus.

Ecodoppler pulsado: aliasing

A velocidade mais elevada que pode ser medida com exatidão é determinada pelo limite de Nyquist.

Depende da metade do *PRR – pulse repetition rate* – (frequência de repetição do impulso) do instrumento:

$$f_{max} = \frac{1}{2t_{rep}} = \frac{PRR}{2}$$

$$v_{max} = \frac{cf_{max}}{2f_i} = \frac{(PRR)c}{4f_i}$$

Redução do aliasing:

Imagem por ultrassons

Ecodoppler

- Modos de apresentação do ecodoppler
- Agentes de Contraste
- Segurança
- Aplicações

Modos de apresentação

Doppler espectral (spectral doppler)

- Examina o fluxo numa linha de varredura de uma imagem modo B.
- Fornece uma análise detalhada da distribuição do fluxo.
- Apresenta boa resolução temporal permite examinar a forma de onda do fluxo.
- Permite cálculos da velocidade de fluxo e índices fisiológicos.
- Modo de visualização típico da aquisição Doppler contínua.

Doppler espectral (spectral doppler)

Para uma determinada posição axial (x), os sinais S1, S2 e S3 têm fases ligeiramente diferentes devido ao movimento sanguíneo. Como o valor de n está diretamente relacionado com o tempo após a aplicação do pulso inicial, a transformada de Fourier fornece o espectro de frequências Doppler. O processo é repetido para cada posição espacial da linha de varredura escolhida.

Doppler a cores – modo *duplex*

- Visão global do fluxo numa região segundo um mapa de cores (escala de cor – velocidade; escala de cinzento – anatomia).
- Baixa resolução temporal devido à necessidade de combinar a aquisição da imagem em modo B com a aquisição e processamento do doppler pulsado para escala de cores).
- Informa sobre a velocidade e direção do fluxo.
- Informa sobre a presença de fluxos turbulentos (normalmente associados a patologia).
- Baseado no ultrassom pulsado permite definir região de interesse e está sujeito a *aliasing*.

Towards

Velocity mode

Variance mode

Doppler a cores – modo *duplex*

Exemplo de imagem ecodoppler em modo duplex: cordão umbilical.

A imagem da esquerda apresenta artefacto devido a *aliasing* que é eliminado quando aumentando a frequência de repetição do impulso.

Doppler a cores – modo *duplex*

Uma das principais aplicações do doppler a cores é o estudo cardíaco. Trata-se de uma forma simples de evidenciar problemas como a regurgitação mitral.

Doppler a cores – modo triplex

No modo de visualização triplex, para além da combinação do doppler de cor com a ecografia modo B, é exibido também o Doppler espectral. Este tipo de imagem é o mais completo, pois disponibiliza uma grande quantidade de informação. No entanto, leva a uma *frame rate* mais baixa, uma vez que as diferentes imagens têm que ser adquiridos sequencialmente devido às suas diferenças.

Cada medição requer características de pulso diferentes: a geração de imagens de fluxo requer pulsos longos de ultrassom, pois o sinal Doppler é baseado na difusão e apresenta uma intensidade muito menor que a leitura no modo B, enquanto a aquisição no modo B usa pulsos curtos para manter a resolução axial elevada.

Doppler de potência (power doppler)

- Possui maior sensibilidade na deteção de fluxo do que o doppler a cores, o que é
 particularmente útil para o estudo de pequenos vasos e daqueles com fluxo de
 baixa velocidade.
- O sinal detetado pelo transdutor é integrado. As frequências Doppler positivas e negativas fornecem uma potência integrada positiva e, portanto, os vazios no sinal devido ao ângulo entre transdutor e fluxo a analisar anulam-se.
- Não depende do ângulo de incidência do transdutor.
- Não é sensível a problemas de aliasing uma vez que o que se está a medir é a amplitude do fluxo e não a velocidade.
- A amplitude varia em função do número de dispersores, isto é, o número de células sanguíneas com um desvio Doppler.
- A principal desvantagem é a perda da informação relativa à direção do fluxo.

Source: Manoj K. Karmakar, Edmund Soh, Victor Chee, Kenneth Sheah: Atlas of Sonoanatomy for Regional Anesthesia and Pain Medicine Copyright © McGraw-Hill Education. All rights reserved.

Doppler de potência (power doppler)

- Ferramenta preferida para aplicações oncológicas e avaliação da percentagem de vascularização.
- Permite detetar pequenas alterações na vascularização de órgãos e, assim, monitorizar a progressão de diferentes patologias/resposta a terapêutica.
- A geração destas imagens pode ser feita em conjunto com o modo 3D para fornecer informações volumétricas.

Agentes de contraste

Os agentes de contraste para imagens de ultrassom compreendem diferentes tipos e formulações de microbolhas, que contêm gás hexafluoreto de enxofre dentro de uma microesfera de moléculas fosfolipídicas.

São usados principalmente para ecocardiografia e imagem Doppler. Na imagem cardíaca, podem ser usados para delineamento das estruturas endocárdicas. Por outro lado, ao aumentar a intensidade do sinal do ultrassom por Doppler, eles possibilitam medições da perfusão sanguínea no coração e noutros órgãos como o fígado.

Ao contrário dos contrastes utilizados nas outras técnicas de imagem, estes são bastante seguros, com taxas de reação muito baixas e sem toxidade associada Podendo mesmo ser utilizados em pacientes com disfunção renal.

Ecografia e ecodoppler

Questões de segurança

(i) Spatial average (SA)	Takes into account the Gaussian shape of the lateral beamwidth and calculates the average value of the Gaussian function
(ii) Temporal average (TA)	Multiplies the average intensity during the pulse by the duty cycle (the percentage of the total imaging time for which the driving voltage is gated on)
(iii) Spatial peak (SP)	Measures the peak intensity at the focal spot of the beam
(iv) Temporal peak (TP)	Measures the highest instantaneous intensity of the beam

Existem várias formas de estimar a energia depositada no nosso organismo pelos ultrassons utilizados na ecografia.

As medidas apresentadas na tabela são muitas vezes combinadas (por exemplo, spatial average temporal average - SATA) para relatar a intensidade do ultrassom e usadas para formar diretrizes de segurança para diferentes protocolos de diagnóstico.

O aquecimento do tecido e a cavitação são os dois mecanismos pelos quais podem ocorrer efeitos negativos durante uma ecografia.

Aquecimento do tecido – a intensidade do feixe de ultrassom e a duração da aquisição são os parâmetros mais importantes no controlo o índice térmico.

Cavitação – amplitude da pressão devido à rarefacção no pico de pulso é o parâmetro mais relevante para o controlo do índice mecânico.

Ecografia e ecodoppler

Questões de segurança

Intensity limits, I_{SPTA}, (mW/cm²)

	FDA (track 1)	ODS (track 3)
Peripheral vessel	720	720
Cardiac	430	720
Foetal, neonatal	94	720
Opthalmic	17	50

A imagem por ultrassom é extremamente segura, depositando no paciente níveis de energia muito baixos. Os aumentos de temperatura nos tecidos são, em situações normais, insignificantes. No entanto, com a evolução das técnicas de ecografia (ex:combined compound scanning/three-dimensional imaging/power Doppler) e com o uso de contrastes as questões de segurança tornam-se mais relevantes.

Se os sistemas exibirem em tempo real índices de segurança (ODS - *output display standard*), como o índice mecânico e o índice térmico, os limites permitidos (FDA - *food and drugs administration*) são alargados, permitindo que sejam utilizadas intensidades de sinal bastante mais altas.

Exemplos de aplicações da imagem por ultrassons

- Obstetrícia e Ginecologia
- Imagem da mama
- Estrutura músculo-esquelética
- Ecocardiografia

Obstetrícia e Ginecologia

Obstetrícia e Ginecologia

Imagem da mama

Estrutura músculo-esquelética

Estrutura músculo-esquelética /MIS

Ecocardiografia

Boas festas!