In a numerical course I often ask my students to construct a "nontrivial" transformation matrix and, inevitably, they have a difficult time. Here I want you to construct one by using the steps I outline below. Each of you will have a different transformation matrix so you will have to perform certain steps to suggest your construction is valid but you may still not have a correct result, but this is how the real world operates. You will need a calculator but use absolutely no more than three significant figures.

Assume the basis e_i is known and components of vectors in Problem 1 are given with respect to this basis.

- 1. Construct a new basis E_i , and the transformation matrix $\begin{bmatrix} E a^e \end{bmatrix}$ by performing the following steps:
 - (i) Pick three distinct nonzero numbers as components v_i of a vector v.
 - (ii) Construct a second vector, \mathbf{u} , by choosing arbitrary numbers for the first two components u_1 and u_2 . Obtain the third component so that the equation $\mathbf{u} \cdot \mathbf{v} = 0$ is satisfied.
 - (iii)Construct a new orthonormal basis, E_i , as follows:

$$E_1 = \frac{v}{|v|}$$
 $E_2 = \frac{u}{|u|}$ $E_3 = E_1 \times E_2$

- (iv) Use the components of these vectors appropriately to construct the matrix $\begin{bmatrix} E & a^e \end{bmatrix}$.
- 2. Show that your transformation matrix is orthogonal and the determinant is +1.
- 3. Choose three nonzero distinct numbers as the components, w_i^E , of a vector, \mathbf{w} , with respect to the basis \mathbf{E}_i . Find the components w_i^e .
- 4. Show that $w_i^e w_i^e = w_A^E w_A^E$.
- 5. Pick components, Z_i^e , with respect to the basis, e_i , for another vector, \mathbf{Z} . Evaluate $\mathbf{w} \cdot \mathbf{Z}$.