Indian Institute of Technology Madras PH1020, Tutorial Set-9

16-04-2018

- Q1. Two plane polarized electromagnetic waves propagate in the positive z-direction, with their planes of polarization along x and y direction, respectively. The electric fields of the two waves have equal amplitudes given by $|E_o|$. The frequency of each wave is ω and the wave vector is \vec{k} . a) Write the expression for the electric and magnetic fields of the two waves. b) Find the values of $\frac{\partial U}{\partial t}$ and $\vec{\nabla} \cdot \vec{S}$ for the two waves where U is the electromagnetic energy and \vec{S} is the Poynting vector.
- Q2. The electric field of a plane wave in vacuum is $\vec{E} = E_0 \hat{e}_z \cos kx \cos \omega t$. Write the components of the corresponding magnetic field \vec{B} such that $\vec{B} = 0$ when $\underline{t} = 0$. Find the mean flux of the energy.
- Q3. Write down the real component of the electric and magnetic fields for a monochromatic plane wave of amplitude E_0 , frequency ω , and phase angle zero in vacuum that is a) traveling in the negative x-direction and polarized in the z-direction, (b) traveling along (111) with polarization parallel to the xy-plane.
- Q4. Calculate the following for a plane sinusoidal electromagnetic wave travelling in free space with an electric field amplitude, $E_o = 40 \mu V/m$. a) Average energy density in the wave, b) Peak energy density, and c) Average value of the Poynting vector.
- Q5. An electromagnetic wave propagating in an isotropic medium has its electric vector as $\vec{E}(x,y,z,t) = (70\hat{e}_y)\cos\left[\pi\times10^7(\frac{x}{3}-10^8t)\right]+(50\hat{e}_z)\cos\left[\pi\times10^7(\frac{x}{3}-10^8t)\right]$ in V/m. x is in meters and t in seconds. Find a) the refractive index of the material of the medium in which the electromagnetic wave is travelling and b) the corresponding $\vec{H}(x,y,z,t)$. C) Hence calculate the time average value of the Poynting vector \vec{S}