Projektovanje algoritama

LO1. Uloga algoritama u računanju

Šta su algoritmi?

Algoritam = bilo koja dobro definisana procedura koja preuzima vrednost ili skup vrednosti kao **ulaz** i formira vrednost ili skup vrednosti kao **izlaz**

Algoritam = alat za rešavanje dobro specificiranog **problema računanja**

Primer algoritma

Problem sortiranja:

Ulaz: niz *N* brojeva $[a_1, a_2, ..., a_N]$

Izlaz: permutacija ulaznog niza

takva da je:

$$a'_1 <= a'_2 <= \dots <= a'_N$$

Kvalitet algoritma

Algoritam je tačan ukoliko se, za svaku kombinaciju ulaza, završava i formira tačan izlaz.

Tačan algoritam **rešava** dati problem računanja.

Od mnogo **tačnih** algoritama cilj je uvek pronaći **najbolji** algoritam za rešenje datog problema računanja, odn. algoritamskog problema.

Nemaju svi algoritamski problemi pronađeno tačno rešenje!

Aproksimativan algoritam = dovoljno dobro rešenje datog problema.

- čuvanje DNK sekvence u bazi podataka
- analiza DNK sekvence i otkrivanje sličnosti

The Human Genome Project

~100,000 gena

~3,000,000,000 baznih parova

~1,000,000,000,000 (10¹²) vrsta na Zemlji ¹ (od kojih znamo samo par miliona)

 \sim 5.0 x 10³⁷ baznih parova (1 par = 2 bita)

→ Nalaženje najveće zajedničke podsekvence (primer dinamičkog programiranja)

¹ Staff (2 May 2016). "Researchers find that Earth may be home to 1 trillion species". *National Science Foundation*.

- komunikacija između dva računara na Internetu

→ Problem najkraće putanje

- pretraga Interneta
 - → Brzo pretraživanje pomoću Hash tabela
 - → Poklapanje stringova

- elektronsko bankarstvo
- online kupovina
- sigurnost podataka

→ Algoritmi teorije brojeva

Sortiranje, ali <u>ne po aritmetičkom odnosu</u>.

 raspoređivanje zadataka takvo da se svaki zadatak izvrši pre svih zadataka koji koriste rezultat tog zadatka.

→ Topološko sortiranje

For each edge (u,v) u must be before v!

Strukture podataka

Struktura podataka je način čuvanja i organizacije podataka kako bi se omogućio pristup i modifikacija tih podataka.

→ Stack, Queue, List

→ Hash tabele

→ Stabla (Binary Search Tree)

 \rightarrow *Grafovi*

"Teški" problemi

Za dati skup lokacija:

Problem nalaženja najkraće putanje koja počinje na proizvoljnoj lokaciji, prolazi kroz svaku preostalu lokaciju tačno jednom i vraća se na početnu lokaciju.

Problem trgovačkog putnika (Traveling Salesman Problem)

→ NP-kompletni problemi

(nije pronađeno efikasno rešenje, ali nije ni dokazano da takvo rešenje ne postoji)

Dostižemo fizičke granice

Već smo u saturaciji Moore-ovog zakona.

Problemi disipacije i kvantne fizike nas ograničavaju.

→ Kvantni računari (van opsega predmeta)

→ Paralelni algoritmi (van opsega predmeta)

Da malo popričamo ...

- 1. Primer problema iz života koji zahteva sortiranje.
- 2. Koje strukture podataka poznajete?
- 3. Uporedimo problem najkraće putanje sa problemom trgovačkog putnika.
- 4. Primer problema iz života za koji je zadovoljavajuće dovoljno dobro rešenje.

Algoritmi su tehnologija

Šta možemo iskoristiti kao meru kvaliteta algoritma?

- vreme izvršavanja
- memorijski prostor potreban da se izvrši algoritam

Da su vreme i prostor neograničeni, svako tačno rešenje bi bilo i prihvatljivo.

Međutim, neka **tačna** rešenja su suviše **spora** da bi bila prihvatljiva. Brute Force

Zato učimo teoriju algoritama!

Kako ćemo meriti efikasnost algoritma?

Najčešće će nam najvažnija metrika biti vreme izvršavanja algoritma u zavisnosti od veličine ulaza.

Kako to merimo?

$$lg = log_2$$

Npr. naučićemo nekoliko načina sortiranja niza elemenata:

Insertion sort vreme izvršavanja $t = C_1 \times N^2$

Merge sort vreme izvršavanja $t = C_2 \times N \times lg(N)$

Zašto je efikasnost toliko važna?

Računar A

$$10 \times 10^9 \frac{instr}{sec}$$

Insertion sort

$$t = 2n^2$$

$$n = 10^7$$

Računar B

$$10 \times 10^6 \frac{instr}{sec}$$

Merge sort

$$t = 50nlg(n)$$

$$\frac{2 \times (10^7)^2 \ instr}{10^{10} \ instr/sec} = 20,000 \ sec$$

$$n = 10^8 ???$$

$$\frac{50 \times 10^7 \times \lg(10^7) \ instr}{10^7 \ instr/sec} \approx 1{,}163 \ sec$$

Zašto učimo algoritme?

Algoritmi su srž većine računarskih tehnologija!

Zašto učimo algoritme?

Moderni izazovi zahtevaju obradu sve veće količine podataka.

Dobar od lošeg tačnog algoritma možemo da razlikujemo samo na **velikom broju podataka** koje obrađujemo.

Danas nam ne treba znanje algoritama ako želimo da napravimo Web stranicu ili dizajniramo GUI, ali ako imamo neka znanja iz algoritama možemo uraditi mnogo, mnogo više!

Vežbe

- Primer aplikacije koja zahteva dobar algoritam i opis algoritma koji je potreban.
- 2. Ukoliko algoritam A ima vreme izvršavanja $t_A=100n^2$, a algoritam B ima vreme izvršavanja $t_B=2^n$, da li algoritam A ikada pobedi algoritam B i za koju veličinu ulaznih podataka?

Vežbe

- Primer aplikacije koja zahteva dobar algoritam i opis algoritma koji je potreban.
- 2. Ukoliko algoritam A ima vreme izvršavanja $t_A=100n^2$, a algoritam B ima vreme izvršavanja $t_B=2^n$, da li algoritam A ikada pobedi algoritam B i za koju veličinu ulaznih podataka?

$$n = 15$$

 $t_A = 22,500$
 $t_B = 32,768$

f(n) / t	1 sec	1 min	1 h	1 dan	1 vek
$\lg n$					
n					
n^2					
2^n					
n!					

f(n) / t	1 sec	1 min	1 h	1 dan	1 vek
$\lg n$					
n	10 ⁶	6×10^7	3.6×10^{9}	8.64×10^{10}	3.16×10^{15}
n^2					
2^n					
n!					

f(n) / t	1 sec	1 min	1 h	1 dan	1 vek
$\lg n$	2^{10^6}	$2^{6\times10^7}$	2 ^{3.6×10⁹}	$2^{8.64 \times 10^{10}}$	$2^{3.16 \times 10^{15}}$
n	10 ⁶	6×10^7	3.6×10^{9}	8.64×10^{10}	3.16×10^{15}
n^2					
2^n					
n!					

f(n) / t	1 sec	1 min	1 h	1 dan	1 vek
$\lg n$	2 ¹⁰⁶	2 ^{6×10⁷}	$2^{3.6 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{3.16 \times 10^{15}}$
n	10 ⁶	6×10^7	3.6×10^{9}	8.64×10^{10}	3.16×10^{15}
n^2	1,000	7,745	60,000	293,938	5.62×10^7
2^n					
n!					

f(n) / t	1 sec	1 min	1 h	1 dan	1 vek
$\lg n$	2^{10^6}	$2^{6\times10^7}$	$2^{3.6 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{3.16 \times 10^{15}}$
n	10 ⁶	6×10^7	3.6×10^{9}	8.64×10^{10}	3.16×10^{15}
n^2	1,000	7,745	60,000	293,938	5.62×10^7
2^n	19	25	31	36	51
n!					

f(n) / t	1 sec	1 min	1 h	1 dan	1 vek
$\lg n$	2 ¹⁰⁶	$2^{6\times10^7}$	$2^{3.6 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{3.16 \times 10^{15}}$
n	10 ⁶	6×10^7	3.6×10^{9}	8.64×10^{10}	3.16×10^{15}
n^2	1,000	7,745	60,000	293,938	5.62×10^7
2^n	19	25	31	36	51
n!	9	11	12	13	17

1. Za svaku funkciju f(n) iz tabele, izračunati najveću veličinu ulaza n tako da se algoritam može završiti u vremenu t. Pretpostaviti da izvršenje algoritma zahteva f(n) mikrosekundi.

Svemir ima ~10⁷⁹ atoma!

f(n) / t	1 sec	1 min	1 h	1 dan	1 vek
$\lg n$	2 ¹⁰⁶	$2^{6\times10^7}$	$2^{3.6 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{3.16 \times 10^{15}}$
n	10 ⁶	6×10^7	3.6×10^{9}	8.64×10^{10}	3.16×10^{15}
n^2	1,000	7,745	60,000	293,938	5.62×10^7
2^n	19	25	31	36	51
n!	9	11	12	13	17

© Universal Studios, Revealing Homes