101100001000 101100001000 101100001000 101100001000 101100001000

CS(

CSCI 2824: Discrete Structures Lecture 10: Introduction to Proofs

Assume a = b and neither are equal to 0.

$$ab = b^{2}$$

$$ab - a^{2} = b^{2} - a^{2}$$

$$a(b - a) = (b - a)(b + a)$$

$$a = b + a$$

$$a = a + a \text{ (since a=b)}$$

$$a = 2a$$

$$\therefore 1 = 2$$

Rachel Cox

Department of Computer Science

101100001000 101100001000 101100001000 101100001000 101100001000

So how do we prove a statement of the form $\forall x (P(x) \rightarrow Q(x))$?

- 1. Prove $P(c) \rightarrow Q(c)$ for **arbitrary** c
- 2. Conclude $\forall x (P(x) \rightarrow Q(x))$ by universal generalization

This is what we really do, but we don't usually verbalize Step 2

OK, so how to we prove $P(c) \rightarrow Q(c)$?

- Direct or Conditional Proof
- Contrapositive Proof
- Proof by Contradiction

Direct Proof: We want to show that $p \rightarrow q$ is true.

Strategy:

- \triangleright Assume p is true.
- \triangleright Proceed through rules of inference, mathematical facts, axioms, etc. as necessary until we find that q is true.

A fragment from Euclid's *Elements*

Example: If a divides b and b divides c, then a divides c.

Example: If n is a four_digit palindrome then n is divisible by 11.

Contraposition Proof: We want to show that $p \to q$ is true. If that is difficult to show directly, we apply a direct proof to prove the logically equivalent contrapositive statement $\neg q \to \neg p$

Strategy:

- \triangleright Assume $\neg q$ is true.
- \triangleright Proceed through rules of inference, mathematical facts, axioms, etc. as necessary until we find that $\neg p$ is true.

If $p \rightarrow q$, then $\neg q \rightarrow \neg p$

Example: If n = ab, where a and b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Example: If $x^2(y+3)$ is even, then x is even or y is odd.

Proof by Contradiction: We want to show that $p \to q$ is true. Assume p is true and $\neg q$ is true, then derive a contradiction. Alternatively, when proving p is true, assume $\neg p$ and derive a contradiction.

Strategy:

- \triangleright Assume p and $\neg q$, derive a contradiction.
- \triangleright Alternatively, when proving p is true, assume $\neg p$, then derive a contradiction.

Example: Prove that if 3n + 2 is odd, then n is odd.

We wanted to prove $p \rightarrow q$

The argument form that we just used looked as follows

$$((p \land \neg q) \to \mathbf{F}) \to (p \to q)$$

p	q	$\neg q$	$p \land \neg q$	$(p \land \neg q) \to \mathbf{F}$	$p \rightarrow q$	$((p \land \neg q) \to \mathbf{F}) \to (p \to q)$
T	T	F	F	T	T	T
T	F	T	T	F	F	T
F	T	F	F	T	T	T
F	F	T	F	T	T	T

The argument is a **tautology** so it is valid

Example: Prove that $\sqrt{2}$ is irrational.

Example: Integer n is even if and only if 3n + 5 is odd.

➤ **Proving a biconditional**: $p \leftrightarrow q$ is logically equivalent to $(p \rightarrow q) \lor (q \rightarrow p)$

