ACM/CS 114 Parallel algorithms for scientific applications

Michael A. G. Aïvázis

California Institute of Technology

Winter 2010

A more careful look at contact detection

- consider a collection of tetrahedral meshes that model bodies in relative motion with triangular meshes as boundaries
- during the simulation, the bodies may come in contact
 - with each other or themselves
 - contact events consist of intersections among nodes, edges or faces
 - unless the mechanics is informed of the contact events, the objects will inter-penetrate
 - contact detection involves isolating the pairs of topological entities from each boundary that have intersected, whereas contact resolution refers to the calculation of appropriate restoring forces on the bodies
- ▶ the typical simulation update step proceeds along the following lines
 - 1. define the contact surfaces at time t
 - 2. predict the location of the nodes at a later time $t + \Delta t$ by integrating the equations of motion
 - search for potential contact events among nodes, edges and faces to identify the entities that come in contact
 - 4. correct the future location of the nodes by applying forces that tend to remove the overlap

Contact search

- the contact event identification in Step 3 above has the potential to dominate the calculation
 - given a candidate pair, the intersection logic involves very expensive geometrical calculations
 - ▶ naïve algorithms are $\mathcal{O}(n^2)$ in the number of topological entities on the boundary, prohibitively expensive even for moderate size calculations
- hence, a more sensible strategy is to break up the contact search into two separate steps
 - use a specialized data structure that encodes the location of mesh nodes and build a relatively fast algorithm to narrow down the candidates to a small number
 - perform the detailed calculations on the reduced set
- typically, the fast searches are implemented using orthogonal range queries that identify points whose coördinates fall within a given box
 - build a bounding box that contains the initial and final position of a given surface element, perhaps in some reduced form
 - form the capture box by enlarging the bounding box to account for the motion of the nodes
 - query the data structure for nodes that fall within the capture box

Orthogonal range queries

- an orthogonal range query is a generalization of the interval test to higher dimensions
 - given a number p and an interval [a, b), return true if the number falls within the interval, otherwise return false
 - extend by performing a test for each coördinate: does the point p fall within a given box?
- there is a variety of data structures that are a priori well suited to this problem
 - however, the problem context establishes some crucial constraints

- we will classify algorithms according to the following metrics
 - \blacktriangleright b(N): the time it takes to initially populate the data structure with N points
 - ightharpoonup r(N): the complexity of rebuilding or update the data structure
 - ightharpoonup s(N): the amount of storage required
 - ▶ q(N, n) and $\bar{q}(N, n)$: the (average) time required to perform a query if there are n points in the given range
- ▶ also, we'll start out in one dimension and generalize

Sequential scan

- the simplest approach is to look at each record and determine whether it falls in the range
 - ▶ this algorithm is trivial to implement and requires no extra storage
 - the performance is acceptable for sufficiently small N, or if most of the records fall in the query interval

$$b_{\text{SCAN}} = \mathcal{O}(N)$$
 , $r_{\text{SCAN}} = 0$
 $s_{\text{SCAN}} = \mathcal{O}(N)$, $q_{\text{SCAN}} = \mathcal{O}(N)$

Algorithm 1: RQ.SCAN(points, interval)

- 1 candidates $\leftarrow \emptyset$
- 2 for point in points do
- **if** $point \in interval$ **then**
- 4 candidates.insert(point)
- 5 return candidates

Binary search

- ▶ if the records are sorted, a binary search can locate any record with cost $\mathcal{O}(\log N)$, so in order to find all $p \in [a, b)$
 - find the first point that satisfies p >= a
 - and collect points in sequence while p < b
 - simple analysis yields

$$\begin{array}{lclcl} b_{\mathrm{BS}} & = & \mathcal{O}(N \log N) & , & r_{\mathrm{BS}} & = & \mathcal{O}(N) \\ s_{\mathrm{BS}} & = & \mathcal{O}(N) & , & q_{\mathrm{BS}} & = & \mathcal{O}(\log N + n) \end{array}$$

since the records must be sorted initially, while rebuilding the data structure can be done in linear time since it is almost sorted

Algorithm 2: RQ.BS(points, interval=(a,b))

- 1 candidates $\leftarrow \emptyset$
- 2 $iterator \leftarrow BINARY-SEARCH-LOWER-BOUND(points, a)$
- 3 while $\star iterator \leq b \ do$
- 4 **if** $point \in interval$ **then**
- 5 candidates.insert(point)
- 6 return candidates

Tricks with trees

- alternatively, we can store the points at the leaves of a binary tree data structure
 - each internal tree node acts has a discriminator that splits the data set into two subsets
 - numbers less than the discriminator go to the left branch, the rest to the right
 - once the population drops below some threshold, create a leaf node to hold the points
- two sensible choices for the discriminator are
 - ▶ the midpoint of the interval: yields a recursive subdivision of the interval
 - also known as interval trees or orthotrees
 - quadtrees in two dimensions, octrees in three
 - ▶ the median of the data set: partitions the data in subsets of equal size
 - kd trees

Creating a binary tree

Algorithm 3: TREE.MAKE(points)

```
1 if length[points] < tree.leafSize then
        leaf \leftarrow tree.newLeaf()
        leaf.insert(points)
        return leaf
 5 else
        branch \leftarrow tree.newBranch()
        select branch discriminator
        left \leftarrow \{x \in points : x < discriminator\}
 8
        branch.left \leftarrow tree.make(left)
 9
        right \leftarrow \{x \in points : x >= discriminator\}
10
        branch.right \leftarrow tree.make(right)
11
        return branch
12
```

Querying a binary tree

Algorithm 4: RQ.TREE(tree, interval=(a,b))

```
    if tree is leaf then
    return RQ.SCAN(tree.points, interval)
    else
    candidates ← ∅
    if tree.discriminator ≥ a then
    candidates ← candidates + RQ.TREE(tree.left, interval)
    if tree.discriminator < b then</li>
    candidates ← candidates + RQ.TREE(tree.right, interval)
    return candidates
```

Performance of binary trees

for midpoint splitting, the depth D of the tree depends on the point distribution

$$\begin{array}{ll} b_{\text{ORTHO}} = \mathcal{O}((D+1)N) & r_{\text{ORTHO}} = \mathcal{O}((D+1)N) \\ s_{\text{ORTHO}} = \mathcal{O}((D+1)N) & q_{\text{ORTHO}} = \mathcal{O}(N) & \bar{q}_{\text{ORTHO}} = \mathcal{O}(D+n) \end{array}$$

for median splitting the depth of the tree depends only on the number of records

$$egin{aligned} b_{ ext{KD}} &= \mathcal{O}(N \log N) & r_{ ext{KD}} &= \mathcal{O}(N) \ s_{ ext{KD}} &= \mathcal{O}(N) & q_{ ext{KD}} &= \mathcal{O}(n + \log N) \end{aligned}$$

Binning

▶ another strategy is to partition the interval [a,b) into M cells of width

$$\delta := x_{m+1} - x_m = \frac{b-a}{M}$$

- ▶ the m^{th} cell C_m holds points in the interval $[x_m, x_{m+1})$
- \triangleright the point container then becomes an array of M point containers
- ▶ and the array index for a point *p* is obtained through

$$i = \lfloor \frac{p-a}{\delta} \rfloor$$

- ▶ the process of putting the points in the container is known as a *cell sort*
- they are optimal when properly tuned

$$egin{aligned} b_{ ext{CELL}} &= \mathcal{O}(N+M) & r_{ ext{CELL}} &= \mathcal{O}(N+M) \ s_{ ext{CELL}} &= \mathcal{O}(N+M) & q_{ ext{CELL}} &= \mathcal{O}(J+n) & ar{q}_{ ext{CELL}} &= \mathcal{O}(n) \end{aligned}$$

where J is the number of cells that overlap the query interval

Querying a cell array

Algorithm 5: RQ.CELL(cells, interval=(a,b))

```
1 candidates \leftarrow \emptyset
i \leftarrow index(cells, a)
i \neq index(cells, b)
4 for point in cells[i] do
       if point > a then
           candidates.insert(point)
  for k in [i + 1..j - 1] do
       if point in cells[k] then
           candidates.insert(point)
9
10 for point in cells[j] do
       if point < b then
11
           candidates.insert(point)
12
13 return candidates
```

Generalizing to higher dimensions

- the sequential scan algorithm has trivial generalizations
 - ▶ its performance is only acceptable for very small numbers of points
 - frequently used by the other algorithms to manage small size point sets
- binary search generalizes to the *projection* method in *d* dimensions
 - ightharpoonup sort the points according to their k^{th} coördinate and build a reference set for this ordering
 - for example, one can number the points, sort them according to each coördinate, and build arrays of the point indices, or arrays of pointers to the actual data
 - a range query along any dimension yields all the points that lie within a slice of the domain
 - to perform an orthogonal range query
 - perform a range query along each dimension using binary searches
 - identify the coördinate slice with the fewest records
 - perform a sequential scan

kd trees

- ▶ in *d* dimensions, there is a median point for each coördinate
 - split the tree using the coördinate with the largest spread
 - repeat this process at each level of the tree until the number of points to insert into the tree drops below some threshold
 - every internal node of the tree has to record at least
 - the direction that was chosen for the split
 - the value of the discriminant
 - references to the left and right branches of the node
 - leaf nodes are just point containers
- ▶ the orthogonal range query is defined recursively
 - at each internal node, check whether the left and right subdomains intersect the query interval by examining the discriminator
 - recurse into the branches that intersect the range
 - leaf nodes are examined using a sequential search

Orthotrees

- orthotrees are the generalization of interval trees in d dimensions
 - commonly known as quadtrees in two dimensions, and octrees in three
 - \triangleright recursively split the *d*-dimensional domain into 2^d equal size hyperboxes
 - ▶ each internal node has 2^d branches
 - some of the branches lead to leaf nodes that contain the actual data
- the depth of the tree depends on the actual distribution of points in the input set
 - points that are very close to each other could lead to some very deep trees
- ▶ orthogonal range queries are implemented similarly to kd trees

Binning in higher dimensions

- cell sort extends naturally to d dimensions
 - form a regular grid of spacing δ_i along the i^{th} dimension
 - convert the point coordinates into cell indices along each dimension using the same formula as in one dimension
- the orthogonal range query consists of accessing cells that
 - entirely interior to the query box
 - partially overlap the boundary of the query box
 - the former are unconditionally included in the candidate list, while point in the latter must be checked individually
- tuning is crucial to the performance of this method
 - cells that are too large can lead to many false positives
 - cells that are too small have higher access times
 - it is best to know the size of the query boxes so that the cell spacing can be optimized
- can be easily combined with any of the other methods to speed up access to the points in each cell
 - most combinations do not offer significant advantages
 - but using binary searches is an exception

