

Analog Integrated Systems Design

Lecture 03 Quantization

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

- Sampling discretizes the analog signal in time domain.
- Quantization discretizes the analog signal in the voltage/amplitude domain.
 - Limited (finite) number of valid amplitude levels
- Quantization error: peak-to-peak $< \Delta$
 - Rounding (nearest level): $-0.5\Delta < error < 0.5\Delta$
 - Floor: $0 < error < \Delta$
 - Ceiling: $-\Delta < error < 0$

Binary Representation

$$B_s = \sum_{i=0}^{i=N-1} b_i 2^i = b_0 2^0 + b_1 2^1 + b_2 2^2 \dots + b_{N-1} 2^{N-1}$$

- N: word width, resolution, no. of bits
- Assume V_{ref} corresponds to 2^N
- No. of steps =
- b_0 : Least significant bit (LSB)
- \Box b_{N-1} : Most significant bit (MSB)
- $\Box V_{LSB} = \Delta =$
- N =
- Full-scale (digital) =
- Full-scale (analog) =

Binary Representation

$$B_s = \sum_{i=0}^{i=N-1} b_i 2^i = b_0 2^0 + b_1 2^1 + b_2 2^2 \dots + b_{N-1} 2^{N-1}$$

- N: word width, resolution, no. of bits
- Assume V_{ref} corresponds to 2^N
- No. of steps = $2^N 1$
- \Box b_0 : Least significant bit (LSB)
- \Box b_{N-1} : Most significant bit (MSB)

- $\square N = \log_2(V_{ref}/V_{LSB})$
- Full-scale (digital) = $111...111 = 2^N 1$
- Full-scale (analog) = $V_{FS} = V_{ref} V_{LSB}$

ADC Parameters

- ☐ Trip level = Decision level
 - The digital signal "trips" by one bit at the "trip level".

03: Quantization [M. Pelgrom, 2017] 5

Sine Wave Discretization Example

☐ The quantization error decreases as the number of bits increases

03: Quantization [M. Pelgrom, 2017] **6**

Quantization Error (Noise)

- For low-resolution ADC, the quantization error will show as distortion components (harmonics of the input).
- \Box For N > 6-bit, the quantization error can be approximated as:
 - Uniformly distributed PDF (from -0.5 LSB to 0.5 LSB)
 - White noise in the frequency domain (from 0 to $f_s/2$)

Quantization Noise: Deterministic Approach

 \Box Assume linear ramp input \rightarrow quantization error is sawtooth wave

$$V_{Q(rms)} = \left[\frac{1}{T}\int_{-T/2}^{T/2}V_{Q}^{2} dt\right]^{1/2} = \left[\frac{1}{T}\int_{-T/2}^{T/2}V_{LSB}^{2}\left(\frac{-t}{T}\right)^{2} dt\right]^{1/2}$$

03: Quantization [Johns & Martin, 2012] 8

Quantization Noise: Deterministic Approach

Assume linear ramp input \rightarrow quantization error is sawtooth wave

$$V_{Q(rms)} = \left[\frac{1}{T} \int_{-T/2}^{T/2} V_{Q}^{2} dt \right]^{1/2} = \left[\frac{1}{T} \int_{-T/2}^{T/2} V_{LSB}^{2} \left(\frac{-t}{T} \right)^{2} dt \right]^{1/2}$$
$$= \left[\frac{V_{LSB}^{2}}{T^{3}} \left(\frac{t^{3}}{3} \Big|_{-T/2}^{T/2} \right) \right]^{1/2}$$

$$V_{Q(rms)} = \frac{V_{LSB}}{\sqrt{12}}$$

Quantization Noise: Stochastic Approach

Assume uniformly distributed random error

$$V_{Q(avg)} = \int_{-\infty}^{\infty} x f_{Q}(x) dx = \frac{1}{V_{LSB}} (\int_{-V_{LSB}/2}^{V_{LSB}/2} x dx) = 0$$

$$V_{Q(rms)} = \left[\int_{-\infty}^{\infty} x^2 f_e(x) \, dx \right]^{1/2} = \left[\frac{1}{V_{LSB}} \left(\int_{-V_{LSB}/2}^{V_{LSB}/2} x^2 \, dx \right) \right]^{1/2} = \frac{V_{LSB}}{\sqrt{12}}$$

Signal-to-Quantization Noise Ratio

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power} \right) = 20 \log \left(\frac{V_{sigrms}}{V_{Qnrms}} \right)$$

$$Signal\ Power = \frac{\left(\frac{2^{N}V_{LSB}}{2}\right)^{2}}{2} = \frac{2^{2N}V_{LSB}^{2}}{8}$$

Quantization Power =
$$\frac{V_{LSB}^2}{12}$$

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power} \right) = 10 \log \left(\frac{3}{2} 2^{2N} \right)$$

Signal-to-Quantization Noise Ratio

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power} \right) = 20 \log \left(\frac{V_{sigrms}}{V_{Qnrms}} \right)$$

$$Signal\ Power = \frac{\left(\frac{2^{N}V_{LSB}}{2}\right)^{2}}{2} = \frac{2^{2N}V_{LSB}^{2}}{8}$$

Quantization Power =
$$\frac{V_{LSB}^2}{12}$$

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power} \right) = 10 \log \left(\frac{3}{2} 2^{2N} \right)$$

$$SQNR = 6.02 \times N + 1.76 \ [dB]$$

Verifying the SQNR Formula

	The approximate	formula gives god	d results, especial	lly for high	-resolution ADC
--	-----------------	-------------------	---------------------	--------------	-----------------

	Quantization	noise d	dominates	up to	around	N = 14-bit
--	--------------	---------	-----------	-------	--------	------------

Resolution	Simulated SN _Q R	6.02N + 1.76 dB
1	6.31 dB	7.78 dB
2	13.30 dB	13.80 dB
3	19.52 dB	19.82 dB
4	25.60 dB	25.84 dB
5	31.66 dB	31.86 dB
6	37.71 dB	37.88 dB
7	43.76 dB	43.90 dB
8	49.80 dB	49.92 dB

03: Quantization [M. Pelgrom, 2017] 13

Resolution, LSB, and dBFS

Each bit adds 6 dB to SNR.

RESOLUTION N	2 ^N	VOLTAGE (10V FS)	ppm FS	% FS	dB FS
2-bit	4	2.5 V	250,000	25	- 12
4-bit	16	625 mV	62,500	6.25	- 24
6-bit	64	156 mV	15,625	1.56	- 36
8-bit	256	39.1 mV	3,906	0.39	- 48
10-bit	1,024	9.77 mV (10 mV)	977	0.098	- 60
12-bit	4,096	2.44 mV	244	0.024	- 72
14-bit	16,384	610 μV	61	0.0061	- 84
16-bit	65,536	153 μV	15	0.0015	- 96
18-bit	262,144	38 μV	4	0.0004	- 108
20-bit	1,048,576	9.54 μV (10 μV)	1	0.0001	- 120
22-bit	4,194,304	2.38 μV	0.24	0.000024	- 132
24-bit	16,777,216	596 nV*	0.06	0.000006	- 144

[W. Kester, 2005] 03: Quantization

Oversampling/Processing Gain (1)

- \square Quantization power is uniformly spread from 0 to $f_s/2$.
- ☐ If only part of the spectrum is useful, some quantization power can be filtered out (digital filtering).

$$P_{Qn-total} = \frac{V_{LSB}^{2}}{12} = S_{Q}(f) \times \frac{f_{S}}{2} \implies S_{Q}(f) = \frac{V_{LSB}^{2}}{12} \times \frac{2}{f_{S}}$$

$$P_{Qn-red} = S_{Q}(f) \times BW = \frac{V_{LSB}^{2}}{12} \times \frac{BW}{f_{S}/2}$$

Oversampling/Processing Gain (2)

- \Box Quantization power is uniformly spread from 0 to $f_s/2$.
- ☐ If only part of the spectrum is useful, some quantization power can be filtered out (digital filtering).
- \square Select a bandwidth (BW) out of the available spectrum (0 to $f_s/2$):

$$SQNR = 10 \log \left(\frac{Signal\ Power}{Quantization\ Power \times \frac{BW}{f_s/2}} \right)$$

$$SQNR = 6.02 \times N + 1.76 + 10 \log \left(\frac{f_s/2}{BW} \right)$$

Quantization Noise Spectrum

- ☐ In most practical applications, the input to the ADC is a band of frequencies + noise
 - The quantization noise tends to be random white noise.
 - Uniformly distributed from 0 to $f_s/2$.
- ☐ In ADC testing/simulation, a pure single-tone sine wave is used.
 - The sampling frequency may be correlated to the test-tone.
 - The quantization noise power may also become correlated to the input signal.
 - Quantization noise may appear as harmonic distortion.
- ☐ This is a testing artifact.
 - It should be avoided so that the true ADC distortion is measured, rather than the correlated quantization noise.

Quantization Error/Noise Spectrum

03: Quantization [W. Kester, 2005]

FFT Noise Floor

Quantization Power
$$=\frac{V_{LSB}^2}{12} = S_Q \times \frac{f_S}{2} = S_{Q,FFT} \times \frac{M}{2} \rightarrow S_{Q,FFT} = \frac{V_{LSB}^2}{12} / \left(\frac{M}{2}\right)$$

FFT Noise Floor =
$$10 \log S_{Q,FFT} = 10 \log \frac{V_{LSB}^2}{12} - 10 \log \frac{M}{2}$$

Dithering: Is no noise good noise?

- ☐ The addition of a random signal allows to determine the value of a DC-signal at greater accuracy than the quantization process allows.
- Additional signal processing like averaging can then lead to resolution improvement for low-frequency signals.

FYI: http://www.analog.com/en/analog-dialogue/articles/adc-input-noise.html

03: Quantization [M. Pelgrom, 2017] 20

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- ☐ B. Murmann, EE 315, Stanford.
- Y. Chiu, EECT 7327, UTD.

Thank you!

SNR vs Input Level

- ☐ SNR depends on input level
 - Ex: Ideal 10-bit ADC

03: Quantization [Johns & Martin, 2012]