Project Report

CSC-869 Data Mining

Mini Project 1: Naïve Bayesian Classifier

Submitted to

Prof. Hui Yang

Ву-

Akshay Kasar

SFSU ID: 918812874

Problem Statement:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Visualizations:

1) Age Group vs Income Distribution Bargraph

a. Bin size = 5

income

Sum of Number of Records for each Age (bin). Color shows details about Income. The marks are labeled by sum of Number of Records.

b. Bin size = 10

income

Sum of Number of Records for each Age (bin). Color shows details about Income. The marks are labeled by sum of Number of Records.

c. Bin size = 15

income

Sum of Number of Records for each Age (bin). Color shows details about Income. The marks are labeled by sum of Number of Records.

2) Education vs income

count_edu

Count of Education for each Education. Color shows details about Income.

3) Hours-per-week vs income

sex_occupation_income

4) Race_income

race_income

Sum of Number of Records for each Income. Color shows details about Race.

5) Gender vs income

sex_occupation_income

Sum of Number of Records for each Sex. Color shows details about Sex. Size shows details about Income. The marks are labeled by sum of Number of Records.

6) native_country_distribution

native_country

The trend of sum of Number of Records for Native-Country.

7) Capital-Gain

capital-gain

Sum of Number of Records for each Capital-Gain (bin).

8) Capital-Loss

capital-loss

Sum of Number of Records for each Capital-Loss (bin).

9) Workclass vs Income

occupation_workclass

Sum of Number of Records for each Workclass. Color shows details about Income. The marks are labeled by sum of Number of Records.

Observations From Tableau:

- Only discrete values have missing values, and have '?' in case of null values
- Data is not evenly distributed as the number of observations of income '>50K'(~7K) is much less than the count of those with income '<=50K'(~24K).
- Column 'education-num' and 'education' are two columns representing the same data, only in different data types.
- Capital-Gain and Capital-Loss have an extremely uneven distributions with more than 30K records having both these columns initiated to 0.

Data Imputation

From the observations above, only the following columns have missing values in them

- 'workclass'
- 'occupation'
- 'native-country'

Missing values per column:

age	0
workclass	1836
fnlwgt	0
education	0
education-num	0
marital-status	0
occupation	1843
relationship	0
race	0
sex	0
capital-gain	0
capital-loss	0
hours-per-week	0
native-country	583
income	0

Since all the columns with missing values are discrete variables, we can make use of the following 2 methods to handle them:

- 1) Replace missing value with mean/mode.
- 2) Remove the records if there is null value for any of the attribute.

Implementation Approach:

 Made use of a dictionary, with key as the column name of the data set and the value as a pandas Series.

Classes_with_probability_yes = {column_names : Series}
This Series has the probability of all the unique classes of each column given that the income = ">50K". The index of this series is the name/interval of the unique class.
Similar dictionary is created for classes_with_probability_no.

- K-Fold cross validation is implemented using K = 10
 Data is shuffled before forming K-folds.
- These folds are then passed to predict() method where the test set is used for evaluation of the algorithm.

Evaluation & Analysis

After implementing the code and after using K-Fold cross validation, following are the evaluation results.

Changes	Avg. accuracy	Avg. precision	Avg. Recall	Avg F1 Measure	Execution Time in sec
All columns consideredNo. of bins = 8 for all continuous variables	81.78%	0.5937767739	0.765749818	0.6687902222	89.88757992
Removed 'fnlwgt', 'education-num'Bin size = 5 for 'age'Bin size = 10 for 'hours-per-week'	80.97%	0.5794379986	0.7774241213	0.6638424385	74.91934037
- Removed 'fnlwgt', 'education-num' - No. of bins = 8 for all continuous variables	80.48%	0.5679247792	0.7861518033	0.6593377642	78.82492542
 Removed 'education-num' column Bin size = 5 for 'age' Bin size = 10 for 'hours-per-week' No. of bins = 3 for 'capital-gain' No. of bins = 3 for 'capital-loss' 	80.38%	0.5676485947	0.7704455997	0.6535653865	76.78704524
- Using Gaussian Distribution for Discretization of continuous variables.	81.08%	0.5924216852	0.7700638019	0.6694990293	77.61646533