§8. Элементарные функции

Перечисленные ниже функции называют основными элементарными функциями; они наиболее употребительны в приложениях математики.

- **1°.** y=C const. для $\forall x \in X$, где X промежуток числовой прямой, её график при $C \neq 0$ представляет собой отрезок прямой, параллельной оси абсцисс.
- **2°. Показательная функция** $y = a^x$, $a \ne 1$, a > 0. Основные свойства этой функции известны из школьного курса математики: a) $D(y) = \mathbf{R}$, $E(y) = (0, +\infty)$; б) при a > 1 показательная функция возрастает, при 0 < a < 1 она убывает. На рис. 8.1 изображены графики $y = a^x$ при a > 1 и 0 < a < 1.

Рис. 8.1. Графики показательной функции

Рис. 8.2. Графики логарифмической функции

- **3°.** Логарифмическая функция $y = \log_a x$, $a \ne 1$, a > 0. Эта функция является обратной по отношению к показательной функции, поэтому, в силу теоремы 7.1, основные её свойства следуют из свойств функции $y = a^x$: а) $D(y) = (0, +\infty)$, $E(y) = \mathbf{R}$; б) при a > 1 логарифмическая функция возрастает, при 0 < a < 1 она убывает; в) график функции $y = \log_a x$ симметричен графику функции $y = a^x$ относительно прямой y = x. На рис. 8.2 изображены графики $y = \log_a x$ при a > 1 и 0 < a < 1.
- **4°. Степенная функция** $y = x^a$, $a \in \mathbb{R}$, $a \neq 0$. При x > 0 эту функцию рассмотрим как суперпозицию показательной и логарифмической функций: $x^a = 10^{a \lg x}$, $\lg x = \log_{10} x$. Функции 10^x и $\lg x$ возрастают на $(0, +\infty)$; тогда и $y = x^a$, $a \neq 0$, строго монотонна на $(0, +\infty)$, а именно, возрастает при a > 0 и убывает при a < 0. При a > 0 эта функция определена в точке 0: y(0) = 0. При некоторых значениях a (например, при $a \in \mathbb{N}$) она определена на всей числовой оси. На рис. 8.3 изображены графики степенной функции при a = 3, 1/3 и -1/3.

Рис. 8.3. Графики степенной функции при различных значениях а

5°. Тригонометрические функции $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$.

Эти функции подробно рассмотрены в школьном курсе математики. Их графики приведены на рис. 8.4-8.5.

Рис. 8.4. Графики функций $y = \sin x$ и $y = \cos x$

6°. Обратные тригонометрические функции: $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$.

Рис. 8.6. График функции $y = \arcsin x$

1). Функция $y = \arcsin x$. По определению $y = \arcsin x$ — это угол (или дуга) из промежутка [— $\pi/2$, $\pi/2$], синус которого равен x. Таким образом, $y = \arcsin x$ — функция, обратная функции $y = \sin x$, $x \in [-\pi/2, \pi/2]$, поэтому основные ее

свойства можно вывести из свойств функции $y = \sin x$, $x \in [-\pi/2, \pi/2]$, и теоремы 7.1:

- a). $D(y) = [-1, 1], E(y) = x \in [-\pi/2, \pi/2];$
- б). $y = \arcsin x$ возрастает на D(y) от $-\pi/2$ до $\pi/2$;
- в). $y = \arcsin x$ нечётная функция:

$$\arcsin(-x) = -\arcsin x$$
 при $\forall x \in [-1, 1]$;

- г). график функции $y = \arcsin x$ симметричен графику функции $y = \sin x$, $x \in [-\pi/2, \pi/2]$, относительно прямой y = x (рис. 8.6);
 - д). $\sin(\arcsin x) = x$ при $\forall x \in [-1, 1]$, $\arcsin(\sin x) = x$ при $\forall x \in [-\pi/2, \pi/2]$.
- **2).** Функция $y = \arccos x$. По определению $y = \arccos x$ это угол (или дуга) из промежутка $[0, \pi]$, косинус которого равен x. Итак, $y = \arccos x$ –

функция, обратная функции $y = \cos x$, $x \in [0, \pi]$, поэтому основные её свойства можно вывести из свойств функции $y = \cos x$, $x \in [0, \pi]$, и теоремы 7.1:

- a). $D(y) = [-1, 1], E(y) = [0, \pi];$
- б). $y = \arccos x$ убывает на D(y) от π до 0;
- в). функция $y = \arccos x$ не обладает свойствами чётности или нечётности:

Рис. 8.7. График функции
$$y = \arccos x$$

- $arccos(-x) = \pi arccosx;$
- г). график функции $y = \arccos x$ симметричен графику функции $y = \cos x$, $x \in [0, \pi]$, относительно прямой y = x (рис. 8.7);
 - д). $\cos(\arccos x) = x$ при $\forall x \in [-1, 1]$, $\arccos(\cos x) = x$ при $\forall x \in [0, \pi]$.
- **3).** Функция $y = \operatorname{arct} gx$. По определению $y = \operatorname{arct} gx \operatorname{это}$ угол (или дуга) из промежутка $(-\pi/2, \pi/2)$, тангенс которого равен x. Таким образом, $y = \operatorname{arct} gx \varphi$ ункция, обратная функции $y = \operatorname{tg} x$, $x \in (-\pi/2, \pi/2)$, поэтому её основные свойства можно вывести из свойств этой функции и теоремы 7.1:
 - a). $D(y) = \mathbf{R}, E(y) = (-\pi/2, \pi/2);$
 - б). функция y = arctgx возрастает на D(y);
 - в). $y = \arctan x$ нечётная функция: $\arctan (-x) = -\arctan x$ при $\forall x \in \mathbb{R}$;
- г). график функции $y = \arctan y$ симметричен графику функции $y = \tan y$, $x \in [-\pi/2, \pi/2]$, относительно прямой y = x (рис. 8.8);
 - д). tg(arctgx) = x при $\forall x \in \mathbb{R}$; arctg(tgx) = x при $\forall x \in (-\pi/2, \pi/2)$.

Рис. 8.8. График функции $y = \operatorname{arctg} x$

Рис. 8.9. График функции $y = \operatorname{arcctg} x$

4). Функция $y = \operatorname{arcct} g x$. По определению $y = \operatorname{arcct} g x - \operatorname{это}$ угол (или дуга) из промежутка $(0,\pi)$, котангенс которого равен x. Таким образом, $y = \operatorname{arcct} g x - \varphi$ функция, обратная функции $y = \operatorname{ct} g x$, $x \in (0,\pi)$, поэтому основные ее свойства можно вывести из свойств этой функции и теоремы 7.1:

- a). $D(y) = \mathbf{R}, E(y) = (0, \pi);$
- б). функция $y = \operatorname{arcctg} x$ убывает на D(y);
- в). функция $y = \operatorname{arcctg} x$ не обладает свойствами чётности или нечётности, $\operatorname{arcctg}(-x) = \pi \operatorname{arcctg} x$;
- г). график функции $y = \operatorname{arcctg} x$ симметричен графику функции $y = \operatorname{ctg} x$, $x \in (0, \pi)$, относительно прямой y = x (рис. 8.9);
 - д). ctg(arcctgx) = x при $\forall x \in \mathbf{R}$, arcctg(ctgx) = x при $\forall x \in (0, \pi)$.

Определение 8.1. Функция, которая может быть задана одним аналитическим выражением с помощью конечного числа суперпозиций и арифметических операций над основными элементарными функциями, называется элементарной функцией.

Элементарная функция называется алгебраической, если её можно задать с помощью конечного числа алгебраических действий (сложения, вычитания, умножения, деления и возведения в степень с рациональным показателем). Все другие элементарные функции называются трансцентдентными. Так,

например,
$$y = \frac{\sqrt[3]{1+\sqrt{x}}-2}{\sqrt{x+5}+x^{2/5}}$$
 – алгебраическая функция, а

$$y=$$
arctg $\frac{\sqrt{e^x-1}+\ln\cos(3x+1)}{\sin\frac{1}{x}+\cot g^3\sqrt{2x-5}}$ – элементарная трансцентдентная функция.

Частным случаем алгебраической функции является так называемая рациональная функция R(x), представляемая в виде отношения двух

многочленов:
$$R(x) = \frac{Q_m(x)}{P_n(x)} = \frac{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m}{a_0 x^n + a_1 x^{m-1} + \dots + a_{n-1} x + a_n}$$
. Если степенн

знаменателя $n \ge 1$, то рациональную функцию называют рациональной алгебраической дробью. В противном случае, т.е. при n = 0 рациональная функция представляет собой многочлен (ибо $P_0(x) \equiv p_0$, где $p_0 \in \mathbf{R}$).

Пример 8.1. Найти область определения функции
$$y = \sqrt{\log_{1/2}(4-x^2)}$$
.

▶ D(y): $\log_{1/2}(4-x^2) \ge 0$ или, в силу свойств логарифмической функции, D(y): $0 < 4-x^2 \le 1$. Последнее неравенство равносильно системе из двух неравенств: $0 < 4-x^2 \land 4-x^2 \le 1$. Для первого из них имеем:

$$4-x^2 > 0 \Leftrightarrow x^2 < 4 \Leftrightarrow |x| < 2 \Leftrightarrow -2 < x < 2$$
. Решение второго выполним по аналогии: $4-x^2 \le 1 \Leftrightarrow x^2 \le 3 \Leftrightarrow |x| \ge \sqrt{3} \Leftrightarrow -2 < x < 2$.

 $\Leftrightarrow x \le -\sqrt{3} \lor x \ge \sqrt{3}$. Пересечение найденных решений приводит к равенству: $D(y) = (-2, -\sqrt{3}] \cup [\sqrt{3}, 2)$ (рис. 8.10).

Пример 8.2. Является ли функция $y = \frac{1}{2}(e^x - e^{-x})$ чётной? нечётной?

▶ $D(y) = \mathbf{R}$, $y(-x) = \frac{1}{2}(e^{-x} - e^{-(-x)}) = -\frac{1}{2}(e^x - e^{-x}) = -y(x)$ при $\forall x \in \mathbf{R}$, поэтому данная функция нечётная. ◀

Пример 8.3. Найти $\sup_{x \in X} f(x)$, $\inf_{x \in X} f(x)$ и $\max_{x \in X} f(x)$, $\min_{x \in X} f(x)$, если $f(x) = \operatorname{arctg}|x|$ и $X = \mathbf{R}$.

▶Данная функция является чётной, следовательно, ограничимся рассмотрением только неотрицательных значений x, при этом $0 \le \arctan|x| < \pi/2$. Поэтому $\inf_{x \in X} f(x) = \min_{x \in X} f(x) = 0$, $\sup_{x \in X} f(x) = \pi/2$, а $\max_{x \in X} f(x)$ не существует. \blacktriangleleft

Пример 8.4. Дана функция $y=1-3|\sin 5x|$. Найти её период и E(y).

► D(y)=**R**. Период функции $y = |\sin x|$ равен π (пример 7.1), поэтому

1—3 $|\sin 5x|$ =1−3 $|\sin (5x+\pi)|$ и 1−3 $|\sin 5x|$ =1−3 $|\sin 5(x+\pi/5)|$ для $\forall x \in \mathbb{R}$

и период данной функции $T=\pi/5$. Для отыскания E(y) рассмотрим неравенство $0 \le |\sin 5x| \le 1$, вытекающее из свойств функции синус и справедливое при $\forall x \in \mathbb{R}$. Умножим все его члены на (-3), при этом знак неравенства изменится на противоположный: $0 \ge -3 \mid \sin 5x \mid \ge -3$. Прибавив теперь ко всем членам неравенства по 1, получим: $1 \ge 1 - 3 \mid \sin 5x \mid \ge -2$. Из последнего неравенства следует, что E(y) = [-2, 1].

Рис. 8.11. К примеру 8.5. График функции f(x) = 1/(x-1)

Рис. 8.12. К примеру 8.6. График функции y = [x]

Пример 8.5. Построить график функции $y = \frac{x}{x-1}$.

►Имеем $\frac{x}{x-1} = \frac{(x-1)+1}{x-1} = 1 + \frac{1}{x-1}$, следовательно, $y = 1 + \frac{1}{x-1}$. График данной функции построим путём параллельного переноса центра симметрии

O(0, 0) графика функции $y = \frac{1}{x}$ в точку A(1,1). На рисунке 8.11 график функции $y = \frac{1}{x}$ изображён пунктирной линией. ◀

Пример 8.6. Построить график функции $y=[x], x \in \mathbf{R}$ — целой части числа x.

▶ y = k, $x \in [k, k+1)$, $k \in \mathbb{Z}$, график данной функции является объединением тех частей прямых y = k, абсциссы точек которых удовлетворяют неравенству $k \le x < k+1$ (рис. 8.12). ◀