

Eder Samir Correa Acosta

Introducció

Problem

Estado del Ai

Resultad

Selección de

característic

selección de clus

A 711 1 1 1

entrenamiento

Datos de prueba

Majoras Obtanid

Bibliografía

Eder Samir Correa Acosta

Grupo de Investigación en Telecomunicaciones Aplicadas, GITA

30 de mayo de 2020

Índice

Trabajo final de Aprendizaje no Supervisado

Eder Samir Correa Acosta

Introducció

Estado del Al

Resultado

característi

Entronomio

seleccion de

Análisis del

Datos de prueba

Mejoras Obtenid

Bibliogra

1 Introducción

- 2 Problema
- 3 Estado del Arte
- 4 Resultados

Selección de características Entrenamiento y selección de clusters Análisis del entrenamiento Datos de prueba

Mejoras Obtenidas

6 Bibliografía

Introducción

Trabajo final de Aprendizaje no Supervisado

Eder Samir Correa Acosta

Introduccio

Problema

Estado del Ar

Resultados

Selección de

Entrenamiento

selección de clusters

Análisis del

D-4-- d- ----b

Mejoras Obtenidas

Bibliografía

Problema

Trabajo final de Aprendizaje no Supervisado

Eder Samir Correa Acosta

Introducció

Estado del Al

Resultados

Selección de característica

Entrenamiento y selección de clusters

Análisis del

entrenamien

Datos de prueba Mejoras Obtenidas

Ribliografía

Eder Samir Correa Acosta

Introducció

Problem

Estado del Arte

Resultado

Selección o

Entrenamiento y

selección de cluste

entrenamier

Datos de prueba

Ribliografía

Estado del Arte

Objetivo:

 Desarrollar un modelo predictivo usando el aprendizaje no supervisado, que evidencie los factores determinantes en la deserción estudiantil, en los programas presenciales de la sede Medellin de la facultad de ingeniería de la UdeA.

• Útil:

- Para la creación de un sistema de alertas para prevenir la deserción.
- Para construir perfiles de los estudiantes.

Eder Samir Correa Acosta

Introducció

FIODICITIA

Estado del Ari

Resultado

Selección de

característ

Entrenamier

selección de clusters

Análicie dol

entrenamiento

Datos de prueba

Mejoras Obtenidas

Bibliografía

Base de datos

 Base de datos de la Facultad de ingeniería del pregrado (UdeA) 2019-2.

N° Registros Inicial	Enfoque	Descartados		Distribución de los registros
Registros:8289.	Sede Medellín v	Promedios 9.99 .	Total= 7293	Entrenamiento= 5105
	Colombianos	Promedios 9,99 .	No desertores= 6347	Prueba = 1458
Caracterizticas: 59	Colombianos		desertores = 946	Validación = 729

	C	ARACTERÍSTICAS					
(CATEGÓRICAS	NUMÉRICAS					
TIPO DOC	NATURALEZA COLE	PROMEDIO SEMESTRE	SEMESTRE INICIA PROGRAMA				
SEXO	PROGRAMA	PROMEDIO PROGRAMA	ULTIMO SEMESTRE TERMINADO				
TIPO PROGRAMA	DEPARTAMENTO NACE	ESTRATO	CREDITOS VALIDOS UDEA				
SEDE	COD DEPTO NACE	PERIODOS PRUEBA PROGRAMA	CREDITOS APROBADOS UDEA				
COD PROGRAMA	COD MUNI NACE	RANGO	CRED CURS PROG				
FECH NACE	COD DEPTO VIVE	EDAD	CRED APROB PROG				
COD PAIS	COD MUNI VIVE	VERSION	TERCIO				
PAIS NACE	CREDITOS ULTIM SEMEST MATRIC		NIVEL PREGRADO				
ULTIMO SEMESTRE MATRIC	TIPO ACEPTACIÓN						
NOMBRE MUNI NACE	COD PAIS VIVE	ETIQUETAS A PREDECIR (ESTADO)					
PAIS VIVE	NOMBRE MUNI VIVE	NO DESERTOR					
DEPARTAMENTO VIVE		DESERTOR					

Descartadas inicialmente	
Descartadas: BoxPlot, Histogramas	

Trabajo final de Aprendizaje no

Eder Samir Correa Acosta

Introducció

Problem

Estado del Ar

Resultad

Selección de características

Entrenamiento y selección de clusters

Análisis del

Datos de prueba

Mejoras Obtenio

Bibliografía

Selección de características

Eder Samir Correa Acosta

Introducció

Problem

Estado del Ar

Resultad

Selección de

Entrenamiento v

selección de clusters

Análisis dol

entrenamien

Datos de prueba

Mejoras Obtenid

Bibliogra

UNIVERSIDAD DE ANTIQUIA

Entrenamiento y selección de clusters

- K-Prototypes (K-Means + K-Modes)[1]
- 5105 instancias (70 % Dataset).
- 13 características (11 numéricas y 2 categóricas)

Cluster	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Error	13,14	13,14	6,07	6,03	6,17	6,31	6,46	6,84	7,13	7,15	7,27	5,72	5,80	5,84	5,82	7,66	5,99	5,84	5,74	5,93

Eder Samir Correa Acosta

Selección de

Entrenamiento v

selección de clusters

Mejoras Obtenidas

No desertores	
Desertores 🗼 🛚	

Eder Samir Correa Acosta

Introducció

Problen

Estado del Ai

Resultad

Selección de

Entrenamier

selección de clusters Análisis del

entrenamiento

Datos de prueba

Mejoras Obtenidas

Bibliografía

Cluster 4

Cluster	SEXO		VALIDOS		CRED CURS PROG	CRED APROBPRO G		PROMEDIO PROGRAMA		ULTIMSEMES	SEMESTRE INICIA PROGRAMA		NIVEL PREGRADO
1	1,00	11,00	0,40	0,26	0,45	0,40	0,86	0,82	1,00	0,58	0,89	0,16	0,43
2	1,00	1,00	0,03	0,03	0,07	0,03	0,18	0,31	0,21	0,33	0,97	0,20	0,02
3	1,00	11,00	0,12	0,09	0,15	0,12	0,67	0,71	0,43	0,48	0,95	0,13	0,09
4	1,00	13,00	0,42	0,28		0,42			0,40	0,49	0,84	0,22	0,47
					Figura: 0	Centroid	es para 4	clusters					

igura. Centroides para 4 ciusters

SEXO - Dist	ribuciór	Por ca	da Clus	ter
luster	1	2	3	4
emenino %	43,8	22,3	33,7	30,3
/lasculino %	56,2	77,7	66,3	69,7

Distribución genero entre los clusters							
	1	2	3	4			
Femenino %	12,5	5,1	53,1	29,3			
Masculino %	7,8	8,7	50,7	32,9			

Programa									
Cluster	1	2	3	4					
BIOINGENIERÍA %	6	4	6	9					
ING AMBIENTAL 1%	1	15	3	2					
ING DE SISTEMAS %	1	14	4	4					
ING INDUSTRIAL %	3	12	6	2					
NG TELECOMUNICACIONES %	2	12	7	5					
NGENIERÍA AMBIENTAL 2%	14	3	8	7					
INGENIERÍA CIVIL %	13	3	8	10					
INGENIERA DE MATERIALES %	5	4	5	7					
NGENIERÍA DE SISTEMAS %	5	4	7	10					
NGENIERÍA ELÉCTRICA %	5	6	7	6					
NGENIERÍA ELECTRÓNICA %	8	7	6	9					
NGENIERÍA INDUSTRIAL %	19	3	9	6					
NGENIERÍA MECÁNICA %	4	5	8	9					
NGENIERÍA QUÍMICA %	6	3	7	11					
NGENIERÍA SANITARIA %	9	5	7	4					

Eder Samir Correa Acosta

Introducción

Estado del Ar

Resulta

Selección de característica:

Entrenamiento y selección de cluster

Análisis del

Datos de prueba

Ribliografía

UNIVERSIDAD DE ANTIOQUIA

Datos de prueba (4 clusters)

1458 instancias (20 % Dataset)

Cluster4v1

Entrenamiento. Error=6.03%

Prueba. Error=5.62%

Bibliografía I

Trabajo final de Aprendizaje no Supervisado Eder Samir Correa

Introducció

Problema

Estado del A

Resulta

Selección de característica

Entrenamiento y

selección de clusters

Analisis del

Datos de prueba Mejoras Obtenidas

Ribliografía

 Z. Huang, "Clustering large data sets with mixed numeric and categorical values," proceedings of 1st pacific-asia conference on knowledge discouvery and data mining," 1997.

