CSC3001: Discrete Mathematics Assignment 2

Instructions:

- 1. Print out this question paper (**two-sided**) and write down your full working on the blank area.
- 2. You can have discussions with your classmates. However, make sure all the solutions you submit are your own work. Any plagirism will be given **ZERO** mark.
- 3. Submission of this assignment should **NOT** be later than **5pm on 8th of November**.
- 4. Before your submission, please **make a softcopy** of your work for further discussion in a tutorial.
- 5. After making your softcopy, submit your assignment to the dropbox located on the 4th floor in Chengdao Building.

Student Number:	Name:	

1. (20 points) Let p be an odd prime. Prove that there are exactly $\frac{p-1}{2}$ integers $a \in \{1, \dots, p-1\}$ such that $x^2 \equiv a \pmod{p}$ for some x.

2. (20 points) Suppose that n^3 unit cubes are stacked into a large $n \times n \times n$ cube. Let $x, y, z \in \mathbb{Z}_n$ and label each unit cube by (x, y, z) with respect to its location (see the picture for n = 3).

The unit cubes (x, y, z) and (x', y', z') are adjacent if one of the following conditions holds:

- $x' x \equiv \pm 1 \pmod{n}$ and y' = y, z' = z; or
- $|y' y| \equiv 1 \pmod{n}$ and x' = x, z' = z; or
- $|z'-z| \equiv 1 \pmod{n}$ and x'=x, y'=y.

For each $n \in \mathbb{Z}^+$, provide an ordering of all the unit cubes satisfying the following:

- every two consecutive cubes are adjacent;
- the last cube and the first cube in the list are adjacent.

(Note: You may draw pictures to demonstrate your idea.)

3. (20 points) Let $n \in \mathbb{N}$ be with $n \geq 2$. Let $k \in \{1, 2, \dots, n-1\}$ be a fixed number such that $\gcd(k, n) = 1$. Given the balls labeled by $1, 2, \dots, n-1$, we try to color each ball black or white such that

- (1) i and n i are of the same color;
- (2) for each $i \neq k$, we have i and |i k| are of the same color.

Prove that all the balls are of the same color.

4. (20 points) Let T_n denote the number of different ways that a convex polygon with n+2 sides can be cut into triangles by connecting vertices with non-crossing line segments. (For example, $T_n=14$ for n=4 as shown below)

Find the recurrence relation of T_n and hence find the closed form of T_n using generating functions.

5. (20 points) Consider the linear congruence

$$17x \equiv 9 \pmod{276}$$

- (a) Show that this congruence has a unique solution.
- (b) Show that the given congruence and the following system have the same solution.

$$\begin{cases} x \equiv 0 \pmod{3} \\ x \equiv 1 \pmod{4} \\ 17x \equiv 9 \pmod{23} \end{cases}$$

(c) Solve the original congruence without assistance of calculator.

6. (10 points) [bonus question] "A computer is to a number theorist, like a telescope is to an astronomer. It would be a shame to teach an astronomy class without touching a telescope; likewise, it would be a shame to teach this class without telling you how to look at the integers through the lens of a computer." - William Stein, Number Theorist

Consider a perfect number, defined as a positive integer n such that it is equal to the sum of all its positive divisors, excluding n itself. Denoting the sum of positive divisors of n by $\sigma(n)$, then a perfect number has the property that

$$\sigma(n) - n = n$$

Denoting the k-th perfect number by P_k , we have

$$P_1 = 6$$
, $P_2 = 28$, $P_3 = 496$, $P_4 = 8128$

Based on the above patterns, there were some early conjectures regarding perfect numbers:

- A. the n-th perfect number contains exactly n digits; and
- B. the even perfect numbers end, alternately, in 6 and 8; and
- C. there is no odd perfect number.

By means of a computer program, disprove the first two of these conjectures by finding and examining the fifth and the sixth perfect number. The third conjecture remains an open problem.

(**Note:** You will need to provide pseudocodes, and you may just concentrate on disproving (A) by actually running your program.)