Regularized Regression Models

Data Science Dojo

Linear Regression Fitting Example

Logistic Regression Fitting Example

Overfitting

- Overfitting when:
 - Complex model, too many features, not enough training samples
- How to address overfitting
 - Go through each feature to decide which to keep
 - Use model selection algorithm to automatically choose features

Idea of Regularization

- Keep all the features, but reduce their magnitude of parameter effects in model
- Shrink θ_i parameters

Regularized regression intuition

Close to zero

• Goal: To minimize cost function θ_i

$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + 1000 \theta_{3} + 1000 \theta_{4}$$

• Suppose we penalize and make θ_3 and θ_4 very small

Regularization

- Two common types of regularization in linear regression
 - L2 regularization (a.k.a ridge regression)

$$\sum_{i=1}^{N} (y_{j} - \sum_{i=0}^{d} \theta_{i} \cdot x_{i})^{2} + \lambda \sum_{i=1}^{d} \theta_{i}^{2}$$

• L1 regularization (a.k.a lasso regression)

$$\sum_{i=1}^{N} (y_{j} - \sum_{i=0}^{d} \theta_{i} \cdot x_{i})^{2} + \lambda \sum_{i=1}^{d} |\theta_{i}|$$

Regularized-Ridge Regression

- Regularization by shrink θ_j smaller values, as a result
 - "less complex" hypothesis function without eliminating features
 - More protection from overfitting

■ L2: Ridge regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\theta} J(\theta)$$

Regularized-Ridge Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

- Goal 1: find the best fit
- Goal 2: keep parameter θj small
- λ is regularization parameter to controls a trade off

Regularized-Ridge Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\theta} J(\theta)$$

- If λ is too large, θ j become too small, as if features have no effect in predicting response.
- If λ is too small, θ j are not regularized.

QUESTIONS

