Package 'simCAT'

September 19, 2022
Title What the Package Does (One Line, Title Case)
Version 0.0.0.9000
Description What the package does (one paragraph).
License `use_mit_license()`, `use_gpl3_license()` or friends to pick a license
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Imports dplyr
URL https://github.com/alexandrejaloto/simCAT BugReports https://github.com/alexandrejaloto/simCAT/issues R topics documented:
calc.info calc.prob cat.evaluation content.balancing eap exposure.rate gen.resp rmse select.item simCAT stop.cat
Index 1

2 calc.prob

calc.info

Compute item information

Description

Calculate information of each item in the bank for a theta

Usage

```
calc.info(bank, theta)
```

Arguments

bank matrix with item parameters (a, b, c)

theta current theta

Value

A vector with the information of each item

Author(s)

Alexandre Jaloto

calc.prob

Compute probability

Description

Calculate probability of observing certain answer to a dicotomic item, given a theta

Usage

```
calc.prob(theta, bank, u = 1)
```

Arguments

theta theta

bank matrix with item parameters (a, b, c)

u 1 for rigth, 0 for wrong

Value

A vector with the probability of seein determined responsein each item

Author(s)

cat.evaluation 3

cat.evaluation CAT Evaluation

Description

Evaluate a CAT simulation

Usage

```
cat.evaluation(results, true.scores, item.name, rmax)
```

Arguments

results list with restults of a CAT simulation from simCAT

true.scores true scores

item. name vector with the name of all items in the bank

rmax item maximum exposure rate

Value

a list with two elements. evaluate is a data. frame with the following variables:

rmse root mean square error between true and estimated score correlation correlation between true and estimated score bias bias between true and estimated score overlap overlap rate min_exp minimum exposure rate max_exp maximum exposure rate n_exp0 number of items not administered n_exp_rmax number of items with exposure rate higher than rmax length_mean average mean of test length length_median average median of test length min_length minimum test length max_length maximum test length

conditional is a data.frame with the same variables conditioned to the true scores. The colnames are the thetas in each decil, that is, quantile(true.scores,probs = seq(.1,1,length.out = 10)).

Author(s)

Alexandre Jaloto

content.balancing Content balancing

Description

Constricts the selection with content balancing (CCAT or MCCAT)

4 eap

Usage

```
content.balancing(
  bank,
  administered = NULL,
  content.names,
  content.props,
  content.items,
  met.content = "MCCAT"
)
```

Arguments

bank matrix with item parameters (a, b, c)

administered vector with administered items, NULL if it is the first item (default)

content.names vector with the contents of the test

content.props desirable proportion of each content in test, in the same order of content.names

content.items vector indicating the content of each item

met.content content balancing method

- MCCAT (default): the function picks all subgroups with proportions most distant from desirable.
- CCAT: if there is any subgroup without administered item, the function will
 randomly pick one. If all subgroups has at least one applied item, the function randomly picks one from those with the proportions most distant from
 desirable.

Value

A numeric vector with the items that will be excluded for selection. That is, it returns the unavailable items. If all items are available, it returns NULL.

Author(s)

Alexandre Jaloto

eap	EAP estimation

Description

Estimates theta with Expected a Posteriori

Usage

```
eap(pattern, bank)
```

Arguments

pattern response pattern (0 and 1) with the number of columns corresponding to the

number of items

bank data.frame with item parameters (a, b, c)

exposure.rate 5

Details

40 quadrature points, ranging from -4 to 4. Priori with normal distribution (mean = 0, sd = 1).

Value

data.frame with estimated theta and SE.

Author(s)

Alexandre Jaloto

exposure.rate

Compute exposure rates

Description

Calculate exposure rate of items in a bank

Usage

```
exposure.rate(previous, item.name)
```

Arguments

previous list with previous responses. Each element corresponds to a person and has the

names of the applied items.

item.name vector with the name of all items in the bank

Value

data.frame with

items name of the items $\ensuremath{\operatorname{\textbf{Freq}}}$ exposure rate

Author(s)

6 rmse

gen.resp

Generate response pattern

Description

Generate response pattern based on probability of answering correct a dicotomic item, given a theta and an item bank

Usage

```
gen.resp(theta, bank)
```

Arguments

theta theta

bank matrix with item parameters (a, b, c)

Value

A vector with the probability of seein determined responsein each item

Author(s)

Alexandre Jaloto

rmse

Root Mean square Error

Description

Calculate the root mean square error

Usage

```
rmse(true, estimated)
```

Arguments

true true values
estimate estimated values

Value

A numeric vector

Author(s)

select.item 7

select.item Select next item

Description

Select next item to be administered

Usage

```
select.item(
  bank,
  theta,
  administered = NULL,
  sel.method = "MFI",
  stop.type = "precision",
  threshold = 0.3,
  SE,
  acceleration = 1,
  max.items = 45,
  content.names = NULL,
  content.props = NULL,
  content.items = NULL,
  met.content = "MCCAT"
)
```

Arguments

bank matrix with item parameters (a, b, c)

theta current theta

administered vector with administered items, NULL if it is the first item

sel.method selection method

stop.type type of stopping rule (precision or length). Necessary only for progressive

method.

threshold threshold for stop. type Necessary only for progressive method.

SE current standard error Necessary only for progressive method, with stop.type

= "precision"

acceleration acceleration parameter #' Necessary only for progressive method.

max.items maximum number of items to be administered Necessary only for progressive

method, with stop.type = "precision"

content.names vector with the contents of the test

content.props desirable proportion of each content in test, in the same order of content.names

content.items vector indicating the content of each item

 $\begin{tabular}{ll} met.content & content balancing method: MCCAT (default) or CCAT \\ \end{tabular}$

Value

A list with two elements

item the number of the selected item in item bank name name of the selected item (row name)

8 simCAT

Author(s)

Alexandre Jaloto

simCAT CAT simulation

Description

A CAT simulation with dicotomic items.

Usage

```
simCAT(
  resps,
  bank,
  start.theta = 0,
  sel.method = "MFI",
  stop.type = "precision",
  acceleration = 1,
  threshold = 0.3,
  rmax = 1,
  content.names = NULL,
  content.treps = NULL,
  content.items = NULL,
  met.content = "MCCAT",
  stop = list(se = 0.3, hypo = 0.015, hyper = Inf)
)
```

Arguments

resps response matrix (0 and 1) with the number of columns corresponding to the

number of items

bank matrix with item parameters (a, b, c)

start.theta first theta

sel.method item selection method

stop.type type of stopping rule (precision or length). Necessary only for progressive

method.

acceleration acceleration parameter #' Necessary only for progressive method. threshold threshold for stop. type Necessary only for progressive method.

rmax item maximum exposure rate

content.names vector with the contents of the test

content.props desirable proportion of each content in test, in the same order of content.names

content.items vector indicating the content of each item

met.content content balancing method: MCCAT (default) or CCAT

stop list with stopping rule and thresholds #'

• se minimum standard error

stop.cat 9

 delta.theta minimum absolute difference between current and previous theta

- hypo minimum standard error reduction
- hyper minimum standard error reduction after achieving se
- info maximum information of an available item
- max.items maximum number of items
- min.items maximum number of items
- fixed fixed number of items

Author(s)

Alexandre Jaloto

stop.cat

Check if the CAT ended

Description

Check if any stopping rule has been achieved

Usage

```
stop.cat(
  rule = list(se = NULL, delta.theta = NULL, hypo = NULL, hypor = NULL, info = NULL,
    max.items = NULL, min.items = NULL, fixed = NULL),
  current = list(se = NULL, delta.theta = NULL, info = NULL, applied = NULL, delta.se =
    NULL)
)
```

Arguments

rule

list with stopping rules

- se minimum standard error
- delta.theta minimum absolute difference between current and previous theta
- hypo minimum standard error reduction
- hyper minimum standard error reduction after achieving se
- info maximum information of an available item
- max.items maximum number of items
- min.items maximum number of items
- fixed fixed number of items

current

list with current values

- se current standard error
- delta.theta absolute difference between current and previous theta
- info maximum information of an available item for current theta
- applied quantitative of applied items
- delta.se standard error reduction

stop.cat

Value

A list with two elements: stop TRUE if any stopping rule has been achieved convergence logical. FALSE if the CAT stopped because it achieved the maximum number of items. TRUE for any other case.

Author(s)

Index

```
calc.info, 2
calc.prob, 2
cat.evaluation, 3
content.balancing, 3
eap, 4
exposure.rate, 5
gen.resp, 6
rmse, 6
select.item, 7
simCAT, 8
stop.cat, 9
```