Appendix A

Total Orthogonal Families in Hilbert Spaces

A.1 Total Orthogonal Families (Hilbert Bases), Fourier Coefficients

We conclude our quick tour of Hilbert spaces by showing that the notion of orthogonal basis can be generalized to Hilbert spaces. However, the useful notion is not the usual notion of a basis, but a notion which is an abstraction of the concept of Fourier series. Every element of a Hilbert space is the "sum" of its Fourier series.

Definition A.1. Given a Hilbert space E, a family $(u_k)_{k \in K}$ of nonnull vectors is an orthogonal family iff the u_k are pairwise orthogonal, i.e., $\langle u_i, u_j \rangle = 0$ for all $i \neq j$ $(i, j \in K)$, and an orthonormal family iff $\langle u_i, u_j \rangle = \delta_{i,j}$, for all $i, j \in K$. A total orthogonal family (or system) or Hilbert basis is an orthogonal family that is dense in E. This means that for every $v \in E$, for every e > 0, there is some finite subset $I \subseteq K$ and some family $(\lambda_i)_{i \in I}$ of complex numbers, such that

$$\left\|v - \sum_{i \in I} \lambda_i u_i\right\| < \epsilon.$$

Given an orthogonal family $(u_k)_{k \in K}$, for every $v \in E$, for every $k \in K$, the scalar $c_k = \langle v, u_k \rangle / ||u_k||^2$ is called the k-th Fourier coefficient of v over $(u_k)_{k \in K}$.

Remark: The terminology Hilbert basis is misleading because a Hilbert basis $(u_k)_{k \in K}$ is not necessarily a basis in the algebraic sense. Indeed, in general, $(u_k)_{k \in K}$ does not span E. Intuitively, it takes linear combinations of the u_k 's with infinitely many nonnull coefficients to span E. Technically, this is achieved in terms of limits. In order to avoid the confusion between bases in the algebraic sense and Hilbert bases, some authors refer to algebraic bases as $Hamel\ bases$ and to total orthogonal families (or Hilbert bases) as $Schauder\ bases$.