PROJECT 1-2 PHASE 3

Group 17: Alexandra Afanasiuc, Anna Balañá Zemanaj, Jakub Bujak, Olaf Deckers, Przemysław Grudka, Jagoda Jakuczun and Nina Żórawska

PLAN OF THE PRESENTATION

- 1. Recap Phase 1 and Phase 2
- **2.** Research Questions
- **3.** ODE Solvers Experiments
- **4.** Rule-Based Bot vs AI Bot Experiments
- **5.** A* Algorithm
- **6.** A* Algorithm Experiments
- **7.** GUI
- 8. Conclusion
- 9. Outlook

RECAP

- Phase 1
 - o ODE solvers Euler and Runge-Kutta 4th order method
- Phase 2
 - Implementing our ODE solvers into physics engine
 - Creating a golf simulation with water and sand pits
 - Creating the Rule Based bot and AI bot

RESEARCH QUESTIONS

- **1.** How can we accurately simulate the physics of a golf ball on a sloping course with obstacles using differential equations?
- **2.** What are the optimal numerical methods for solving these ordinary differential equations in the context of this problem?
- **3.** How can we design and implement an AI system capable of navigating the simulated courses to reach the goal in one shot and handling complex maze-like courses?

ODE SOLVERS EXPERIMENTS

Root Mean Squared Error and Computation Time of Euler and RK4 methods

System of differential equations used:

$$da/dt = b$$

$$db/dt = 6a - b$$

with initial conditions: a(0.0) = 1, b(0.0) = 0on the time interval t = [0.0,1.0]

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

ODE SOLVERS EXPERIMENTS

Computation Time vs RMSE for both Euler and RK4 methods

System of differential equations used:

da/dt = b

db/dt = 6a - b

with initial conditions: a(0.0) = 1, b(0.0) = 0

on the time interval t = [0.0,1.0]

AI BOT VS RULE-BASED BOT EXPERIMENTS

Number of Shots Taken to Reach Target

Comparison of Time to Reach Target

AI BOT VS RULE-BASED BOT EXPERIMENTS

Test conditions:

Test	Terrain	X	Y	Radius	Initial position	Initial position
number	function	coordinate	coordinate	target	of the ball on	of the ball on
		target	target		the x-axis	the y-axis
1	5	0	0	0.5	25	25
2	sqrt ((sin (0.1	4	1	0.5	15	20
	$* x) + \cos ($					
	0.1 * y)) ^ 2)					
	+ 0.5 * sin (
	0.3 * x) * cos (
	0.3 * y)					
3	0.4 * cos x +	0	0	0.5	10	10
	10					
4	0.4 * cos x +	0	0	0.5	10	10
	$0.6 * \sin y +$					
	10					

AI BOT VS RULE-BASED BOT EXPERIMENTS

AI Bot vs Rule-Based Bot - Time to Reach Target from Different Distances

function: "5"; target position: (0,0); target radius: 0.5; initial ball coordinates: (10,10), (20,20), (30,30), (40,40)

Exact Results for the bots for Function 2					
Number of the AI Bot Time in		Rule-Based Bot			
Test	Milliseconds	Time in			
		Milliseconds			
Test 1	13235	14787			
Test 2	19905	-			
Test 3	14104	-			

CREATING MAZES

- The maze consists of walls stored in a list, defining its boundaries and pathways
- A 2D array represents the maze's structure, with each element indicating a wall (1) or open space (0)
- A small buffer around walls accounts for minor position inaccuracies, ensuring reliable collision detection
- We handle detecting collisions between a golf ball and maze walls, and calculate the new velocity of the ball after it bounces off a wall.

A STAR SEARCH ALGORITHM FOR IMPROVED AI BOT

Purpose: Efficiently navigate maze-like

courses

Mechanism: Combines actual cost from start to node and heuristic estimate to goal.

Heuristic Function: Prioritizes nodes closer to the goal

Process:

- Grid of nodes representing the course.
- Select node with the lowest f(n)f(n)f(n) from the open set.
- Examine and update neighbors.
- Reconstruct path from goal to start once the target is reached

$$f(n) = g(n) + h(n)$$

Cost Function

$$d_{\mathrm{T}}(\mathbf{p},\mathbf{q}) = \left\lVert \mathbf{p} - \mathbf{q}
ight
Vert_{\mathrm{T}} = \sum_{i=1}^{n} \leftert p_i - q_i
ight
Vert_{\mathrm{T}}$$

Manhattan Distance (Heuristic Function)

A-STAR ALGORITHM EXPERIMENTS

A Star Algorithm - Time to Reach Target in Different Maze

Performance of Different Bots on Maze-Like Courses

Maze	Rule Based Bot	AI Bot	A Star Bot
1.	Fail	Fail	Win
2.	Fail	Fail	Win
3.	Fail	Fail	Win
4.	Win	Fail	Win

GUI

CONCLUSION

- RK4 exceeds in accuracy over the Euler method, but requires more computational time.
- AI bots that use advanced algorithms like A* significantly outperform simple Rule-Based bots.
- AI methods can be extremely useful for designing autonomous decision-making systems.

OUTLOOK

- Expanding our simulation to incorporate more complex environmental factors and real-world physics
- Enhancement of the RK4 method
- Development of an approach to combine RK4's accuracy and Euler's speed
- Further development of the AI bots

THANK YOU FOR YOUR ATTENTION

UML DIAGRAMS - APPENDIX

UML DIAGRAMS - APPENDIX

OVERVIEW

Student name	Coding Tasks Phase 3	
Nina	GUI (80%), Experiments (25%)	
Kuba	GUI (20%), Experiments (25%)	
Jagoda	Correcting Runge Kutta solver (50%), Experiments (25%)	
Olaf	UML Model(100%), Refactoring(100%)	
Anna	Correcting Runge Kutta solver (50%), Experiments (25%)	
Alexa	Maze (50%), A* Algorithm (50%)	
Przemysław	Maze (50%), A* Algorithm (50%)	

OVERVIEW

Highlevel Task	
Coding	Jagoda(14%), Przemek(25%), Nina(10%), Jakub(10%), Alexa(25%), Olaf(10%), Anna(6%)
Presentation	Nina(14%), Jagoda(14%), Anna(14%), Alexa(14%), Przemysław(14%), Jakub(14%), Olaf(14%)
Report	Anna(25%),Nina(5%), Jagoda(25%), Jakub(5%), Przemysław(5%), Alexa(5%), Olaf(30%)
Project management tasks	Jagoda(20%), Nina(20%), Jakub(12%), Anna(12%), Przemysław(12%), Olaf(12%), Alexa(12%)