Circuit astable à AOP

On étudiera le montage suivant à AOP:

On peut dès à présent remarquer que le circuit ne comporte pas d'entrée et une sortie. « *Astable* » signifie « *jamais stable* », le circuit que nous étudierons aura donc un signal de sortie qui changera de lui même et régulièrement sans qu'il y ait à changer un paramètre sur le circuit. Il ne s'agit pas cependant d'un oscillateur dont la théorie sera étudiée ultérieurement.

On supposera qu'à l'instant t = 0, la tension aux bornes de la capacité C est $v_c \neq 0$. Nous allons d'abord analyser le comportement de ce circuit.

1. Dans quel régime est l'AOP? Quelles sont les valeurs possibles de tension de sortie v_{out} et à quelles condition respectives correspondent ces valeurs?

- 2. Au niveau de la réaction positive :
 - (a) Exprimer v_+ en fonction de v_{out} .
 - (b) Déterminer les valeurs possibles de v_+ .
 - (c) Sans se soucier des valeurs numériques, placer sur le chronogramme les droites correspondantes à ces seuils.
- 3. Au niveau de la réaction négative :
 - (a) Exprimer v_{-} en fonction de i_{C} .
 - (b) Exprimer i_R en fonction de v_{out} , R et v_- .
 - (c) Exprimer la relation entre i_C et i_R et en déduire l'équation différentielle gouvernant v_- .
- 4. **1ère phase :** A l'instant t=0 on prend pour hypothèse que $v_c=\alpha \cdot V_{sat}$. Entre cet instant et un temps de basculement t_1 on fait aussi l'hypothèse que $v_{out}=-V_{sat}$, tant que la tension différentielle d'entrée $\epsilon<0$.
 - (a) Trouver la solution de l'équation différentielle $v_{-}(t)$.
 - (b) Lorsque le basculement de v_{out} se produira du niveau bas au niveau haut, isoler t_1 en fonction de R_1 , R_2 , R, C et $-V_{sat}$.
 - (c) Compléter le chronogramme.
- 5. **2ème phase :** Entre l'instant t_1 et le deuxième temps de basculement t_2 , $v_{out} = V_{sat}$, $\underline{\text{tant que}}$ la tension différentielle d'entrée $\epsilon > 0$.
 - (a) Trouver la solution de l'équation différentielle $v_{-}(t)$.
 - (b) Lorsque le basculement de v_{out} se produira du niveau haut au niveau bas, isoler t_2 en fonction de t_1 , R_1 , R_2 , R, C et V_{sat} .
 - (c) Compléter le chronogramme.
- 6. Déterminer le rapport cyclique α et la période T du signal de sortie. Compléter le chronogramme.

