

Anterior

Siguiente

 ✓ Volver a la semana 6

X Lecciones

Evaluating a Learning Algorithm

Bias vs. Variance

0	Diagnosing Bias vs. Variance	7 min

- Diagnosing Bias vs. 3 min Variance
- Regularization and 11 min Bias/Variance
- Regularization and 3 min Bias/Variance
- Learning Curves 11 min
- Learning Curves 3 min
- Deciding What to Do Next Revisited
- Deciding What to do Next Revisited

Review

Building a Spam Classifier

Handling Skewed Data

Using Large Data Sets

Review

Diagnosing Bias vs. Variance

In this section we examine the relationship between the degree of the polynomial d and the underfitting or overfitting of our hypothesis.

- We need to distinguish whether bias or variance is the problem contributing to bad predictions.
- High bias is underfitting and high variance is overfitting. Ideally, we need to find a golden mean between these two.

The training error will tend to decrease as we increase the degree d of the polynomial.

At the same time, the cross validation error will tend to decrease as we increase d up to a point, and then it will increase as d is increased, forming a convex curve.

High bias (underfitting): both $J_{train}(\Theta)$ and $J_{CV}(\Theta)$ will be high. Also, $J_{CV}(\Theta) \approx J_{train}(\Theta)$.

 $\textbf{High variance (overfitting)}: J_{train}(\Theta) \text{ will be low and } J_{CV}(\Theta) \text{ will be much greater than } J_{train}(\Theta).$

The is summarized in the figure below:

Marcar como completo

