MA268 Algebra 3, Assignment 1

Dyson Dyson

Question 1

Let

$$G = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}, \qquad H = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : z \in \mathbb{R} \right\}.$$

Note that G is a subgroup of $GL_3(\mathbb{R})$.

(i) Let

$$\phi: G \to \mathbb{R}^2, \qquad \phi \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = (x, y).$$

Show that ϕ is a homomorphism.

- (ii) Show that H is a normal subgroup of G.
- (iii) Show that the only element of G of finite order is I_3 , the identity matrix. **Hint**: This is easier if you use ϕ .

Q1 (i)

Let

$$A = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, \qquad X = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

be elements of G. Then $\phi(A) = (a, b), \phi(X) = (x, y),$ and

$$\phi(AX) = \phi \begin{pmatrix} \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix}$$
$$= \phi \begin{pmatrix} 1 & a+x & z+ay+c \\ 0 & 1 & b+y \\ 0 & 0 & 1 \end{pmatrix}$$
$$= (a+x, b+y)$$

And $\phi(A) + \phi(X) = (a + x, b + y)$, so $\phi(AB) = \phi(A)\phi(B)$ and therefore ϕ is a homomorphism.

Q1 (ii)

For H to be a normal subgroup, we need to have $gHg^{-1}=H$ for all $g\in G$, or equivalently, $ghg^{-1}=h$ for all $g\in G,h\in H$.

Let

$$g = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in G, \qquad h = \begin{pmatrix} 1 & 0 & w \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in H$$

Then

$$M_{g} = \begin{pmatrix} \begin{vmatrix} 1 & y \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & y \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \\ \begin{vmatrix} x & z \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & z \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & x \\ 0 & 0 \end{vmatrix} \\ \begin{vmatrix} x & z \\ 1 & y \end{vmatrix} & \begin{vmatrix} 1 & z \\ 0 & y \end{vmatrix} & \begin{vmatrix} 1 & x \\ 0 & 1 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ xy - z & y & 1 \end{pmatrix}$$

$$C_{g} = \begin{pmatrix} 1 & 0 & 0 \\ -x & 1 & 0 \\ xy - z & -y & 1 \end{pmatrix}$$

$$C_{g}^{T} = \begin{pmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}$$

$$\det g = 1 \begin{vmatrix} 1 & y \\ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} x & z \\ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} x & z \\ 1 & y \end{vmatrix}$$

$$= 1$$

$$\therefore g^{-1} = \frac{1}{\det g} C_{g}^{T}$$

$$= \begin{pmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}$$

And then we get

$$ghg^{-1} = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & w \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & x & w + z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & x - x & xy - z - xy + w + z \\ 0 & 1 & y - y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & w \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= h$$

Q1 (iii)

Let $g = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in G$ and suppose g has finite order n > 0, so $g^n = I_3$.

This means that $\phi(g^n) = \phi(g)^n = \phi(I_3) = (0,0)$. We can easily see that this requires x and y in q to be 0, so q has the form of an element of H.

Let $h = \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in H$ and suppose h has finite order m > 0. Trivially, $h^m = \begin{pmatrix} 1 & 0 & mz \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, so to get $h^m = I_3$, we need mz = 0. Since m > 0, this

means the only elements of H that have finite order are those with z=0. That is, the only element of finite order is I_3 .

Now we return to g and observe further that z must be 0 in g. Therefore the only element of G that has finite order is I_3 .

Question 2

Let

$$V_4 = {id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}.$$

You may assume V_4 is a normal subgroup of S_4 .

- (i) Explain why V_4 must be a normal subgroup of A_4 .
- (ii) Let σ be a 3-cycle. Show that

$$A_4/V_4 = \langle \sigma V_4 \rangle.$$

(iii) Show that S_4/V_4 is a non-cyclic group of order 6.

Q2 (i)

 A_4 is a subgroup of S_4 and V_4 is a normal subgroup of S_4 which also fits the restrictions of A_4 (every element is even). Therefore V_4 is a subgroup of A_4 .

To show that V_4 is normal in A_4 , we can show that $vav^{-1} = a$ for all $v \in V_4$ and $a \in A_4$. This is clearly true for v = id. We can imagine v^{-1} as relabelling all the elements of whatever we're permuting. Then we apply a, and then v does the relabelling in reverse, so doing vav^{-1} has the effect of just doing a. Therefore V_4 is normal in A_4 .

Q2 (ii)

Any 3-cycle σ has order 3 since $\sigma^3 = \mathrm{id}$, therefore $\langle \sigma V_4 \rangle$ has order 3. That means we should be able to divide A_4 into 3 classes, each of which can be mapped to a power of σ .

Note that every non-identity element of V_4 is two disjoint swaps. Every element of A_4 is either a product of two disjoint swaps (or the identity), or it is a product of two non-disjoint swaps with two disjoint swaps. The first class are the ones that map to σ^0 , since they don't need to be changed, and the second group can be split into two halves which map to σ and σ^2 respectively.

Therefore $A_4/V_4 = \langle \sigma V_4 \rangle$.

Q2 (iii)

 S_4/V_4 is, in a way, 2-cyclic. So we have the cyclic subgroup A_4/V_4 from part (ii), and another cyclic almost-subgroup¹ formed of the odd permutations from S_4 .

We know $\#(A_4/V_4) = \#\langle \sigma V_4 \rangle = 3$, and by a similar argument to that in part (ii), the 'order' of the almost-subgroup is also 3, since it will contain 3 unique elements. Therefore $\#(S_4/V_4) = 6$ and it is not cyclic.

 $^{^1\}mathrm{It}$ can't be a proper subgroup because it doesn't contain the identity element.