2

microstructure.

WHAT IS CLAIMED IS:

1	1.	An alloy carbon steel comprising iron and a maximum of 0.35% by	
2	weight of carbon,	said alloy carbon steel having a triple-phase microstructure comprising	
3	ferrite crystals fur	sed with martensite-austenite crystals, said martensite-austenite crystals	
4	comprising laths	of martensite alternating with thin films of austenite.	
1	2.	An alloy carbon steel in accordance with claim 1 in which said	
2	martensite-austen	ite crystals are devoid of carbide precipitates at interfaces between	
3	phases.		
1	3.	An alloy carbon steel in accordance with claim 1 in which	
2	martensite-austen	ite crystals constitute from about 5% to about 95% by weight of said	
3	triple-phase microstructure.		
1	4.	An alloy carbon steel in accordance with claim 1 in which said	
2		ite crystals constitute from about 15% to about 60% by weight of said	
3	triple-phase microstructure.		
1	~	A 11 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	5.	An alloy carbon steel in accordance with claim 1 in which said	
2	martensite-austenite crystals constitute from about 20% to about 40% by weight of said		
3	triple-phase micro	ostructure.	
1	6.	An alloy carbon steel in accordance with claim 1 in which said	
2	carbon constitutes from about 0.01% to about 0.35% by weight of said triple-phase		
3	microstructure.		
1	7.	An alloy carbon steel in accordance with claim 1 in which said	
2	carbon constitute	s from about 0.03% to about 0.3% by weight of said triple-phase	
3	microstructure.		
1	8.	An alloy carbon steel in accordance with claim 1 in which said	
r	o.	An arroy carbon steer in accordance with claim 1 in which said	

carbon constitutes from about 0.05% to about 0.2% by weight of said triple-phase

15

1	9.	An alloy carbon steel in accordance with claim 1 further			
2	comprising silicon at a concentration of from about 0.1% to about 3% by weight of said				
3	alloy composition.				
1	10.	An alloy carbon steel in accordance with claim 1 further			
2	comprising silicon at a concentration of from about 1% to about 2.5% by weight of said				
3	alloy composition.				
1	11.	An alloy carbon steel in accordance with claim 1 in which said			
2	carbon constitutes from about 0.03% to about 0.3% by weight of said triple-phase				
3	microstructure, said alloy carbon steel further comprising silicon at a concentration of				
4	from about 0.1% to a	about 3% by weight of said alloy composition.			
1	12.	An alloy carbon steel in accordance with claim 1 in which said			
2	carbon constitutes from about 0.05% to about 0.2% by weight of said triple-phase				
3	microstructure, said alloy carbon steel further comprising silicon at a concentration of				
4	from about 1% to about 2.5% by weight of said alloy composition, and containing				
5	substantially no carbides.				
. 1	13.	A process for manufacturing a high-strength, corrosion-resistant			
2	2 tough alloy carbon steel, said process comprising:				
• 3	(a)	forming an alloy composition comprising iron and at least one			
4		alloying element comprising a maximum of about 0.35% by weight			
5		of carbon in proportions selected to provide said alloy composition			
6		with a martensite transition range having a martensite start			
7		temperature of at least about 300°C;			
8	(b)	heating said alloy composition to a temperature sufficiently high to			
9		cause austenitization thereof, under conditions causing said alloy			
10		composition to assume a homogeneous austenite phase with all			
11		alloying elements in solution;			
12	(c)	cooling said homogeneous austenite phase sufficiently to transform			
13		a portion of said austenite phase to ferrite crystals, thereby forming			
14		a two-phase microstructure comprising ferrite crystals fused with			

austenite crystals; and

16	(d)	cooling said two-phase microstructure through said martensite
17		transition range under conditions causing conversion of said
18		austenite crystals to a microstructure containing laths of martensite
19		alternating with films of retained austenite.
1	14.	A process in accordance with claim 13 in which step (d) comprises
2	cooling said two-pha	ase microstructure at a rate sufficiently fast to avoid the occurrence of
3	autotempering.	
1	15.	A process in accordance with claim 13 in which step (d) comprises
2	cooling said two-pha	ase microstructure by contact of said two-phase crystal structure with
3	water.	
1	16.	A process in accordance with claim 13 in which step (c) comprises
2	cooling said homoge	eneous austenite phase to a temperature of from about 750°C to about
3	950°C.	
1	17.	A process in accordance with claim 13 in which step (c) comprises
2	cooling said homogo	eneous austenite phase to a temperature of from about 775°C to about
3	900°C.	
1	18.	A process in accordance with claim 13 in which said carbon
2	constitutes from abo	out 0.01% to about 0.35% by weight of said alloy composition.
1	19.	A process in accordance with claim 13 in which said carbon
2	constitutes from abo	out 0.03% to about 0.3% by weight of said alloy composition.
1	20.	A process in accordance with claim 13 in which said carbon
2	constitutes from abo	out 0.05% to about 0.2% by weight of said alloy composition.
1	21.	A process in accordance with claim 13 in which said alloy
2	composition further	comprises silicon at a concentration of from about 0.1% to about 3%
3	by weight.	
1	22.	A process in accordance with claim 13 in which said alloy
2	composition further	comprises silicon at a concentration of from about 1% to about 2.5%
3	by weight.	