Fibra ottica

github.com/asdrubalini

September 27, 2021

1 Teoria

1.1 Utilizzo

La fibra ottica è un mezzo vetroso che convoglia un raggio luminoso al suo interno. Il raggio può essere trasmesso solo se il materiale di cui è composto la fibra ha delle caratteristiche tali da risultare in una riflessione totale.

1.2 Legge di Snell

Esiste una relazione tra l'angolo di incidenza, l'angolo con cui viene rifratto il raggio nel secondo mezzo e gli indici di rifrazione dei due mezzi. La relazione è descritta dalla legge di Snell:

$$\frac{sen(\phi i)}{sen(\phi R)} = \frac{n_2}{n_1} \tag{1}$$

Dalla formula si capisce che, aumentando l'angolo di incidenza, aumenta anche quello di rifrazione. Quando l'angolo di rifrazione raggiunge i 90 gradi, il segnale viene riflesso completamente. L'angolo di incidenza necessario per questa evenienza si chiama angolo limite ϕL e si trova con la formula inversa della legge di Snell:

$$sen(\phi L) = \frac{n_2}{n_1} \tag{2}$$

1.3 Apertura numerica

L'apertura numerica è un parametro che caratterizza l'accoppiamento della fibra con la sorgente di radiazione.

$$NA = n_1 sin(\phi M) = \sqrt{n_1^2 - n_2^2}$$
 (3)

1.4 Angolo di accettazione

Il segnale deve entrare nella fibra con un certo angolo, definito angolo di accettazione. L'angolo di accettazione si può ricavare dall'apertura numerica:

$$\phi M = \arcsin(NA) \tag{4}$$

1.5 Modi di propagazione

Dati i parametri della fibra, possono esistere diversi raggi luminosi che la attraversano con percorsi diversi, distanze diverse e tempi diversi. Il numero di questi raggi è definito come modi di propagazione e si calcola con la seguente equazione:

$$M = \frac{1}{2} \left(\frac{\pi \cdot d \cdot NA}{\lambda}\right)^2 \tag{5}$$

1.6 Banda di una fibra

La banda di una fibra si può calcolare sapendo la banda modale B_m e la banda cromatica B_c .

$$B = \frac{1}{\sqrt{\frac{1}{B_m}^2 + \frac{1}{B_c}^2}} \quad [MHz] \tag{6}$$

Banda modale:

$$\Delta t m_o = 3333 \cdot \frac{n_1}{n_2} \cdot (n_1 - n_2) \quad \left[\frac{ns}{km}\right] \tag{7}$$

$$Bm_0 = \frac{0.44 \cdot 10^3}{\Delta t m_0} \quad [MHz \cdot km] \tag{8}$$

$$Bm = \frac{Bm_0}{l^{0.85}} \qquad [MHz] \tag{9}$$

Banda cromatica:

$$\Delta t c_o = \mu \cdot \Delta \lambda \quad \left[\frac{ps}{km}\right] \tag{10}$$

$$Bc_0 = \frac{0.44 \cdot 10^6}{\Delta t c_0} \quad [MHz \cdot km] \tag{11}$$

$$Bc = \frac{Bc_0}{l} \quad [MHz] \tag{12}$$