Autoencoder Architectures

Kate Farrahi

ECS Southampton

March 25, 2019

Autoencoder

The aim of an autoencoder is to learn a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore signal noise.

¹Image taken from Deep Learning book by Goodfellow et al.

Deep Autoencoder

²Image taken from wikipedia

▶ Denoising autoencoders take a partially corrupted input and train to recover the original undistorted input.

- ▶ Denoising autoencoders take a partially corrupted input and train to recover the original undistorted input.
- ▶ To train an autoencoder to denoise data, it is necessary to perform a preliminary stochastic mapping to corrupt the data $(x \to \tilde{x})$.

- ▶ Denoising autoencoders take a partially corrupted input and train to recover the original undistorted input.
- ▶ To train an autoencoder to denoise data, it is necessary to perform a preliminary stochastic mapping to corrupt the data $(x \to \tilde{x})$.
- ▶ A normal autoencoder is used with \tilde{x} is used as input and x as output.

- ▶ Denoising autoencoders take a partially corrupted input and train to recover the original undistorted input.
- ▶ To train an autoencoder to denoise data, it is necessary to perform a preliminary stochastic mapping to corrupt the data $(x \to \tilde{x})$.
- ▶ A normal autoencoder is used with \tilde{x} is used as input and x as output.
- In a denoising autoencoder, the loss should be computed on $\mathcal{L}(x,\hat{x})$ as opposed to $\mathcal{L}(\tilde{x},\hat{x})$.

Sparse Autoencoder

▶ In a sparse autoencoder, there are more hidden units than inputs, but only a small number of the hidden units are allowed to be active at the same time.

▶ Any basic AE (or its variant) is used to learn a compact representation of data.

- ▶ Any basic AE (or its variant) is used to learn a compact representation of data.
- ➤ You can learn automatic features from data. E.g. HAR with sensor data.

- ▶ Any basic AE (or its variant) is used to learn a compact representation of data.
- You can learn automatic features from data. E.g. HAR with sensor data.
- Denoising can help generalise over the test set since the data is distorted by adding noise.

- ▶ Any basic AE (or its variant) is used to learn a compact representation of data.
- You can learn automatic features from data. E.g. HAR with sensor data.
- Denoising can help generalise over the test set since the data is distorted by adding noise.
- Pretraining networks by learning your network weights using a stacked AE.

Variational Autoencoders (VAEs)

Variational Autoencoder

Minimize: $D_{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})]$

Intractable:
$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{p_{\theta}(\mathbf{x})}$$

3

³Slide taken from

Variational Autoencoder

▶ In VAEs, data is generated by a directed graphical model p(x|z).

Variational Autoencoder

- ▶ In VAEs, data is generated by a directed graphical model p(x|z).
- ► The encoder is learning an approximation $q_{\phi}(z|x)$ to the posterior distribution $p_{\theta}(x|z)$, where ϕ and θ denote the parameters of the encoder and decoder, respectively.

Variational Autoencoder

- ▶ In VAEs, data is generated by a directed graphical model p(x|z).
- ▶ The encoder is learning an approximation $q_{\phi}(z|x)$ to the posterior distribution $p_{\theta}(x|z)$, where ϕ and θ denote the parameters of the encoder and decoder, respectively.
- ► The objective of the VAE has the following form $\mathcal{L} = D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) \mathbb{E}_{q_{\phi}}(logp_{\theta}(x|z))$