AKLT state

The AKLT state is a translationally invariant matrix product state in which the same rank-3 tensor B is repeated. Here we consider a chain of length L with periodic boundary conditions. In this case, the AKLT state $|\psi\rangle$ is written as

$$|\psi\rangle = \sum_{\sigma_1, \dots, \sigma_L} |\sigma_L \sigma_{L-1} \dots \sigma_2 \sigma_1\rangle \text{Tr}[B^{\sigma_L} B^{\sigma_{L-1}} \dots B^{\sigma_2} B^{\sigma_1}],$$

$$B^1 = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}, \quad B^2 = \sqrt{\frac{1}{3}} \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}, \quad B^3 = \sqrt{\frac{2}{3}} \begin{pmatrix} 0 & 0\\ -1 & 0 \end{pmatrix},$$
(1)

where $\sigma = 1, 2, 3$ are the indices for the $S_z = +1, 0, -1$ states at each chain site, respectively.

(a) Verify that the tensor B is both left- and right-normalized.

[Solution] B is left-normalized since

$$\sum_{\sigma} (B^{\sigma})^{\dagger} B^{\sigma} = \begin{pmatrix} 0 & 0 \\ 0 & 2/3 \end{pmatrix} + \begin{pmatrix} 1/3 & 0 \\ 0 & 1/3 \end{pmatrix} + \begin{pmatrix} 2/3 & 0 \\ 0 & 0 \end{pmatrix} = I, \tag{2}$$

and right-normalized since

$$\sum_{\sigma} B^{\sigma} (B^{\sigma})^{\dagger} = \begin{pmatrix} 2/3 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1/3 & 0 \\ 0 & 1/3 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 2/3 \end{pmatrix} = I. \tag{3}$$

(b) Compute the transfer operator $T^{(\alpha,\alpha')}_{(\beta,\beta')} = \sum_{\sigma} B^{\dagger\beta'}_{\alpha'\sigma} B^{\alpha}_{\beta}{}^{\sigma} = \sum_{\sigma} B^{*\beta'}_{\alpha'\sigma} B^{\alpha}_{\beta}{}^{\sigma}$ without local operators. Verify that the eigenvalues of T are (1, -1/3, -1/3, -1/3). Note that the arrows for the left and right legs of B^{\dagger} , indexed by α' and β' , respectively, are implicitly flipped.

[Solution]

$$T = (B^{1})^{*} \otimes B^{1} + (B^{2})^{*} \otimes B^{2} + (B^{3})^{*} \otimes B^{3}$$

$$= \frac{2}{3} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}, \tag{4}$$

where the rows of the 4×4 matrices are indexed in the order of $(\alpha, \alpha') = (1, 1), (1, 2), (2, 1), (2, 2),$ and the columns likewise. T is real symmetric, so the left and right eigenvectors are equivalent. From $\det(T - \lambda I) = (1/3 - \lambda)^2(-1/3 - \lambda)^2 - (4/9)(-1/3 - \lambda)^2 = (\lambda - 1)(\lambda + 1/3)^3 = 0$, we identify four eigenvalues $\lambda_1 = 1$ and $\lambda_2 = \lambda_3 = \lambda_4 = -1/3$. The corresponding eigenvectors are

$$\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \quad \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad \vec{v}_4 = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad (5)$$

respectively.

(c) A transfer operator involving a local operator \hat{O} acting on the physical legs of B and B^{\dagger} is defined as

$$[T_{\hat{O}}]^{(\alpha,\alpha')}_{(\beta,\beta')} = \sum_{\sigma,\sigma'} B^{\dagger\beta'}_{\alpha'\sigma'} [\hat{O}]^{\sigma'}_{\sigma} B^{\alpha}_{\beta}^{\sigma}.$$

$$(6)$$

Obtain the transfer operators for $\hat{O} = \hat{S}_z$ and for $\hat{O} = \exp(i\pi \hat{S}_z)$.

[Solution]

$$T_{\hat{S}_{z}} = (B^{1})^{*} \otimes B^{1} - (B^{3})^{*} \otimes B^{3}$$

$$= \frac{2}{3} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{pmatrix},$$

$$T_{e^{i\pi}\hat{S}_{z}} = -(B^{1})^{*} \otimes B^{1} + (B^{2})^{*} \otimes B^{2} - (B^{3})^{*} \otimes B^{3}$$

$$= -\frac{2}{3} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 1 & -2 \\ -1 & -1 \\ -2 & 1 \end{pmatrix}.$$

$$(7)$$

In the eigenbasis $\{\vec{v}_i\}$ of T, those transfer operators are given by

$$V^{\dagger} T_{\hat{S}_z} V = \frac{2}{3} \begin{pmatrix} 0 & -1 & \\ 1 & 0 & \\ & & 0 \\ & & & 0 \end{pmatrix}, \quad V^{\dagger} T_{e^{i\pi \hat{S}_z}} V = \text{diag}([-1; 3; -1; -1])/3, \tag{8}$$

where $V = (\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4)$.

(d) Derive the asymptotic (i.e., $\lim_{|m-n|\to\infty} \lim_{L\to\infty}$) behaviors of

$$\chi_{zz}(m-n) = \langle \psi | \hat{S}_{z[m]} \hat{S}_{z[n]} | \psi \rangle,
\chi_{\text{string}}(m-n) = \langle \psi | \hat{S}_{z[m]} e^{i\pi \hat{S}_{z[m-1]}} e^{i\pi \hat{S}_{z[m-2]}} \cdots e^{i\pi \hat{S}_{z[n+2]}} e^{i\pi \hat{S}_{z[n+1]}} \hat{S}_{z[n]} | \psi \rangle.$$
(9)

Check whether you get $\chi_{zz} \sim e^{-|m-n|/\xi}$ with $\xi = 1/\log 3$ and $\chi_{\text{string}} = -4/9$.

[Solution] We first compute χ_{zz} . Here $V^{\dagger}T_{\hat{S}_z}V$ is finite only in the \vec{v}_1 and \vec{v}_2 bases. Then we get

$$\chi_{zz}(m-n) = \frac{4}{9} \begin{pmatrix} 0 & -1 \end{pmatrix} \begin{pmatrix} 1^{|m-n|} & \\ & (-1/3)^{|m-n|} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{-4(-1)^{|m-n|}}{9} e^{-(\log 3)|m-n|}.$$
 (10)

Similarly, we compute χ_{string} ,

$$\chi_{\text{string}}(m-n) = \frac{4}{9} \begin{pmatrix} 0 & -1 \end{pmatrix} \begin{pmatrix} (-1/3)^{|m-n|} & \\ & 1^{|m-n|} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -4/9. \tag{11}$$