Rendu réaliste en temps réel de la peau

Tiago Lobato Gimenes, El Rhaffouli Hamza

Différence

Méthode naïve Méthode avancée

Pourquoi?

- -Reflectance (spécularité)
- -Subsurface Scattering: Transluminescence

Modélisation la peau

Kelemen/Szirmay-Kalos (terme spéculaire)

$$f_{r,spec} = P_{\vec{H}}(\vec{H}).F(\lambda, \vec{H}.\vec{L}).G(\vec{N}, \vec{L}, \vec{V})$$

$$P_{\vec{H}}(\vec{H}) = \frac{\exp\left(-\frac{\tan\alpha}{m}\right)^2}{m^2 \cdot \left(\vec{N} \cdot \vec{H}\right)^4},$$

$$G(\vec{N}, \vec{L}, \vec{V}) = (\vec{L} + \vec{V})^2 = \vec{h}.\vec{h},$$

$$F(\lambda, \vec{H}.\vec{L}) = \left(1 - \vec{V}.\vec{H}\right)^5 + F_0 \left(1 - \left(1 - \vec{V}.\vec{H}\right)^5\right)$$

Subsurface Scattering (Transluminescence)

Profile de diffusion:

A Sum-of-Gaussians Diffusion Profile

$$R(r) \approx \sum_{i=1}^{k} w_i G(v_i, r),$$

Minimiser l'erreur
$$\int_{0}^{\infty} r \left(R(r) - \sum_{i=1}^{k} w_{i} G(v_{i}, r) \right)^{2} dr.$$

$$G(v,r) := \frac{1}{2\pi v} e^{-r^2/(2v)}.$$

Résultats

	Variance (mm^2)	Red	Blur Weights Green	Blue
	0.0064	0.233	0.455	0.649
	0.0484	0.100	0.336	0.344
*	0.187	0.118	0.198	0
	0.567	0.113	0.007	0.007
	1.99	0.358	0.004	0
	7.41	0.078	0	0

Final Pass: Combine Blurs + Specular

$$I * \left(\sum_{i=1}^{k} w_i G\left(v_i, r\right)\right) = \sum_{i=1}^{k} w_i I * G\left(v_i, r\right).$$

Post-Scatter Texturing

Résultats

