Probability-3 Lecture-13

20 September 2024 11:23

Classical SLLN:

Again, full respect to A.N. Kolmogorov {xn3-sequence of i.i.d r.vs with finite common mean u. Then, $X_1 + \cdots + X_n \xrightarrow{a.s.} \mu$

 $() (x_{1}-\mu) + (x_{2}-\mu) + \cdots + (x_{n}-\mu) \xrightarrow{a.s.} 0$

Los we'll prove, if {Xn} - sequence of i.i.d rivs with common mean, EX, = 0 then, $\frac{X_1 + \cdots + X_n}{n} \xrightarrow{a.s.} 0$

Hare, 4 2>0, $\sum_{n} P\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}\right| > \varepsilon\right) < \infty$ ie, to show that, this series

converges [which ix stronger]

than WLLN []

Kronecker's hemma:

a result on real sequences.

Let {xn} be any real sequence. Then, if the series $\sum \frac{\kappa_n}{n}$ converges, then

 $\frac{1}{n}\left(x_1+\cdots+x_n\right)\longrightarrow 0.$

Proof:
Let
$$b_n = \sum_{k=1}^n x_k$$
, $n=1,2,3,...$

bo = 0. Hypot

Hypothesis: k_n converges. Say, $k_n \longrightarrow k$.

$$\begin{array}{l} (++++),1, \quad k_{k}-b_{k-1}=k^{k}+k^{k}+k^{k}-1) \\ \Rightarrow x_{k}=k\left(b_{k}-b_{k-1}\right) \\ \Rightarrow x_{k}=k\left(b_{k}-b_{k-1}\right) \\ = \sum_{k=1}^{n}k.b_{k}-\sum_{k=1}^{n}(k-1).b_{k-1}-\sum_{k=1}^{n}b_{k-1} \\ = \sum_{k=1}^{n}k.b_{k}-\sum_{j=1}^{n}j.b_{j}-\sum_{k=1}^{n-1}b_{k} \\ = \sum_{k=1}^{n}k.b_{k}-\sum_{j=1}^{n-1}j.b_{k}-1 \\ \Rightarrow k.b_{k}-\sum_{k=1}^{n-1}b_{k}. \end{array}$$

$$= nb_n - \sum_{k=1}^{N} b_k$$

$$= nb_n - \sum_{k=1}^{N-1} b_k$$

back to SLLN ...

By kronekar's lemme, its enough to show, (ie, sufficient)
this "random series"

 $\frac{\sum_{n} \frac{X_n}{n}}{n}$ converges a.s.

4. So, what should I prove to get that $\sum \frac{x_n}{n}$ converges a.s.??

het {yn} be a real sequence.

the series I yn converges iff the segnence of partial sums are cauchy.

ie, \fint \frac{1}{3}, \frac{1}{3}n\frac{1}{3}\langle s.t \frac{1}{3} m'>m\frac{1}{3}n,

$$\left| \sum_{k=1}^{m'} y_k - \sum_{k=1}^{m} y_k \right| \leq \frac{1}{3}.$$

So, back again...

[Yn]- sequence of real r.vs, then the series

I'yn converges a.s.

to he complement
$$\Rightarrow P\left(\bigcap_{j \geq 1} \bigcup_{n \geq 1} \bigcap_{m' > m > n} \left\{ \omega : \left| \sum_{k = m \neq 1}^{m'} Y_k(\omega) \right| \leq \frac{1}{j} \right\} = 1$$

$$\Rightarrow P\left(\bigcup_{j \geq 1} \bigcap_{n \geq 1} \bigcup_{m' > m > n} \left\{ \omega : \left| \sum_{k = m \neq 1}^{m'} Y_k(\omega) \right| > \frac{1}{j} \right\} = 0$$

$$\Leftrightarrow P\left(\bigcup_{j \geqslant 1} \bigcap_{n \geqslant 1} \bigcup_{m' > m > n} \sum_{k = m + 1} Y_{k}(\omega) \Big| > \frac{1}{j} \right) = 0$$

$$\Leftrightarrow P\left(\bigcup_{j \geqslant 1} \bigcap_{n \geqslant 1} \sum_{m' > m > n} \sum_{k = m + 1} Y_{k}(\omega) \Big| > \frac{1}{j} \right) = 0$$

$$\text{this set is decreasing in } n$$

$$\text{ie, as } n \neq \text{this set shrinks.}$$

$$\Leftrightarrow P\left(\bigcup_{j \geqslant 1} \bigcap_{n \geqslant 1} \sum_{k = m + 1} Y_{k}(\omega) \Big| > \frac{1}{j} \right) = 0$$

$$\Leftrightarrow P\left(\bigcup_{j \geqslant 1} \bigcap_{n \geqslant 1} \sum_{m' > m > n} \sum_{k = m + 1} Y_{k}(\omega) \Big| > \frac{1}{j} \right) = 0$$

$$\Leftrightarrow P\left(\bigcup_{j \geqslant 1} \bigcap_{n \geqslant 1} \sum_{m' > m > n} \sum_{k = m + 1} Y_{k}(\omega) \Big| > \frac{1}{j} \right) = 0$$

$$\iff \forall j \geqslant 1, \ P\left(\left\{\omega: \sup_{m > n} \left| \sum_{k=n+1}^{m} Y_{k}(\omega) \right| > \frac{1}{j}\right\}\right) \xrightarrow{\infty} 0$$

$$\sup_{m>n} \left| \sum_{k=n+1}^{m} Y_{k} \right| = \lim_{m\to\infty} \int_{n< k \leq m} \left| \sum_{k=n+1}^{k} Y_{k} \right|$$

$$\begin{array}{c|c}
\cdot & \sup & \sum_{k=n+1}^{m} Y_{k} > \varepsilon \\
\end{array}$$

myn | k=n+1 |

\(\) max. \(\) \(\) \(\) \(\) \(\) \(\) for some m\rangle n. \(\)

Kolmogorov's Maximal Inequality G1, G2, ..., Gn - independent r.vs with 0 means 4 finite variances $P \left(\begin{array}{c|c} Max & \sum_{i=1}^{k} \zeta_{i} \\ 1 \leqslant k \leqslant n & \sum_{i=1}^{k} \zeta_{i} \\ \end{array} \right) \approx \left(\begin{array}{c|c} Var \left(\begin{array}{c} \sum_{i=1}^{n} \zeta_{i} \\ \end{array} \right) \\ \in \mathcal{E}^{2} \end{array} \right)$ $\text{Chehyshev } \left(\begin{array}{c} \sum_{i=1}^{n} \zeta_{i} \\ \end{array} \right) \approx \left(\begin{array}{c} \sum_{i=1}^{n} \zeta_{i} \\ \end{array} \right) \approx \left(\begin{array}{c} \sum_{i=1}^{n} \zeta_{i} \\ \end{array} \right) = \left(\begin{array}{c} \sum_{i=1}^{n} \zeta_{i} \\ \end{array} \right) = \left(\begin{array}{c} \sum_{i=1}^{n} \zeta_{i} \\ \end{array} \right)$ But yes, Chebysher doesn't need independence, but Kolmogorov's Maximal inter assumes independence. Proof: "Think" of this as a random walk. Gi- increment in the

Here,
$$k$$
 $a = \sum_{i=1}^{n} s_i$
 $b = \sum_{i=1}^{n} s_i$

Now, last term: (ie, 3rd term)

 $-2\sum_{k=1}^{n} E\left(\left(\sum_{i=k}^{n} s_i\right) \cdot \left(\sum_{i=1}^{k} s_i\right) \cdot 1\right) A_k$

depends
on rest
on rest
 s_i :

Independent

 s_i :

 s_i :

... Again, back to SLLN:

Have b $Y \in >0$, $P\left(\sup_{m>n} \left| \sum_{k=n+1}^{m} \frac{X_k}{k} \right| > \epsilon \right) \longrightarrow 0$.

from Kolmogorovis maximal inequality,

 $P\left(\max_{1\leq k\leq m}\left|\frac{X_{k}}{X_{k}}\right|>\epsilon\right)\leq \frac{1}{\epsilon^{2}}. Var\left(\sum_{k=n+1}^{\infty}\frac{X_{k}}{k}\right)$

= 1 2. \(\frac{1}{\x2} \) \(\text{Var}(\text{X}_{k}) \)

 $\leq \frac{1}{\epsilon^2} \sum_{k^2} \frac{1}{Var} (X_k)$

to say, this ,

(next week) to show is that,

if X1, X2, iid with O common mean, then $\sum_{k=1}^{\infty} \frac{\operatorname{Var}(X_k)}{k^2} < \infty$

(ie, only then, the tail

∑ Var (Xn) →0,

and that's precisely what we need.