Solutions Manual for Enderton $Elements\ of\ Set$ Theory

Robin Adams

August 8, 2022

Contents

1	Cha	apter 1	1 —	Intro	dı	ıc	tic	n												:
	1.1	Baby	Set 7	Theor	У															
		1.1.1	Exe	ercise	1															:
		1.1.2	Exe	ercise	2															:
		1.1.3	Exe	ercise	3															
		1.1.4	$\operatorname{Ex}\epsilon$	ercise	4															
	1.2	Sets -	— An	Infor	m	al	Vi	ew	7											
		1.2.1	Exe	ercise	5															
		1.2.2	Exe	ercise	6															
		1.2.3	Exε	ercise	7															

Chapter 1

Chapter 1 — Introduction

1.1 Baby Set Theory

1.1.1 Exercise 1

- $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}\$ true
- $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}\$ true
- $\{\emptyset\} \in \{\emptyset, \{\{\emptyset\}\}\}\$ false
- $\{\emptyset\} \subseteq \{\emptyset, \{\{\emptyset\}\}\}\}$ true
- $\{\{\emptyset\}\}\in\{\emptyset,\{\emptyset\}\}$ false
- $\{\{\emptyset\}\}\subseteq\{\emptyset,\{\emptyset\}\}$ true
- $\{\{\emptyset\}\}\} \in \{\emptyset, \{\{\emptyset\}\}\}\}$ true
- $\{\{\emptyset\}\}\subseteq\{\emptyset,\{\{\emptyset\}\}\}\}$ false
- $\{\{\emptyset\}\}\in\{\emptyset,\{\emptyset,\{\emptyset\}\}\}\}$ false
- $\{\{\emptyset\}\}\subseteq\{\emptyset,\{\emptyset,\{\emptyset\}\}\}\}$ false

1.1.2 Exercise 2

We have $\emptyset \neq \{\emptyset\}$ because $\{\emptyset\}$ has an element (namely \emptyset) while \emptyset has no elements. We have $\emptyset \neq \{\{\emptyset\}\}$ because $\{\{\emptyset\}\}$ has an element (namely $\{\emptyset\}$) while \emptyset has no elements.

We have $\{\emptyset\} \neq \{\{\emptyset\}\}$ because $\emptyset \in \{\emptyset\}$ but $\emptyset \notin \{\{\emptyset\}\}$. This last fact is true because $\emptyset \neq \{\emptyset\}$ as we proved in the first paragraph.

1.1.3 Exercise 3

Assume $B \subseteq C$. Let $A \in \mathcal{P}B$; we must show that $A \in \mathcal{P}C$.

We have $A \subseteq B$ (since $A \in \mathcal{P}B$) and $B \subseteq C$. From this it follows that $A \subseteq C$ (every element of A is an element of B; every element of B is an element of C; therefore every element of A is an element of C). Hence $A \in \mathcal{P}C$ as required.

1.1.4 Exercise 4

Since $x \in B$, we have $\{x\} \subseteq B$ and so $\{x\} \in \mathcal{P}B$.

Since $x \in B$ and $y \in B$, we have $\{x, y\} \subseteq B$ and so $\{x, y\} \in \mathcal{P}B$.

From these two facts, it follows that $\{\{x\},\{x,y\}\}\subseteq \mathcal{P}B$ and so $\{\{x\},\{x,y\}\}\in \mathcal{PP}B$.

1.2 Sets — An Informal View

1.2.1 Exercise 5

We have

$$\begin{split} V_0 &= A \\ V_1 &= V_0 \cup \mathcal{P} V_0 \\ &= A \cup \mathcal{P} A \\ V_2 &= V_1 \cup \mathcal{P} V_1 \\ &= \{\emptyset, \{\emptyset\}\} \\ V_3 &= \mathcal{P} V_2 \\ &= \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \} \end{split}$$

We have $\emptyset \subseteq V_0$ and so $\emptyset \in V_1$. Therefore $\{\emptyset\} \subseteq V_1$ and so $\{\emptyset\} \in V_2$. Hence $\{\{\emptyset\}\} \subseteq V_2$.

We also have $\{\{\emptyset\}\} \nsubseteq V_0$ because $\{\emptyset\}$ is not an atom, and $\{\{\emptyset\}\} \nsubseteq V_1$ since $\{\emptyset\} \notin V_1$ because \emptyset is not an atom.

Thus the rank of $\{\{\emptyset\}\}\$ is 2.

Likewise we have \emptyset and $\{\emptyset\}$ are both subsets of V_1 , hence

$$\emptyset \in V_2, \quad \{\emptyset\} \in V_2$$

Thus $\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\$ are all subsets of V_2 , hence elements of V_3 . Therefore,

$$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\} \subseteq V_3$$

Now, $\{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}\$ is not a subset of V_0 (because \emptyset is not an atom.) It is not a subset of V_1 ($\{\emptyset\} \notin V_1$ because \emptyset is not an atom.) It is not a subset of V_2 (we have $\{\emptyset, \{\emptyset\}\} \notin V_2$ since $\{\emptyset\} \notin V_1$).

Therefore the rank of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ is 3.

1.2.2 Exercise 6

```
\begin{split} V_1 &= V_0 \cup \mathcal{P}V_0 \\ &= A \cup \mathcal{P}V_0 \\ V_2 &= V_1 \cup \mathcal{P}V_1 \\ &= A \cup \mathcal{P}V_0 \cup \mathcal{P}V_1 \\ &= A \cup \mathcal{P}V_1 \\ V_3 &= V_2 \cup \mathcal{P}V_2 \\ &= A \cup \mathcal{P}V_1 \cup \mathcal{P}V_2 \\ &= A \cup \mathcal{P}V_3 \\ &= A \cup \mathcal{P}V_3
```

1.2.3 Exercise 7

In Exercise 5 we calculated $V_3 = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$ Hence

```
V_4 = \mathcal{P}V_3
= \{\emptyset,
          \{\emptyset\},
          \{\{\emptyset\}\},
           \{\{\{\{\emptyset\}\}\}\},\
           \{\{\emptyset,\{\emptyset\}\}\}\},
           \{\emptyset, \{\emptyset\}\},\
           \{\emptyset,\{\{\emptyset\}\}\},
           \{\emptyset, \{\emptyset, \{\emptyset\}\}\},\
          \{\{\emptyset\}, \{\{\emptyset\}\}\},\
           \{\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\},\
           \{\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\},
           \{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\},
           \{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\},
           \{\emptyset,\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\},
          \{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\},\
           \{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}
```