MIT 6.1100 Specifying Languages with Regular **Expressions and Context-Free Grammars**

- Martin Rinard
- Massachusetts Institute of Technology

Language Definition Problem

- How to precisely define language
- Layered structure of language definition

 - Start with a set of letters in language
 Lexical structure identifies "words" in language (each word is a
 - sequence of letters)
 Syntactic structure identifies "sentences" in language (each sentence is a sequence of words)
 - Semantics meaning of program (specifies what result should be for each input)
 - Today's topic: lexical and syntactic structures

Specifying Formal Languages

- Huge Triumph of Computer Science
 - Beautiful Theoretical Results
 - Practical Techniques and Applications
- Two Dual Notions
 - Generative approach expression)

(grammar or regular

- Recognition approach (automaton)
- Lots of theorems about converting one approach automatically to another

Specifying Lexical Structure Using Regular Expressions

- Have some alphabet Σ = set of letters
- Regular expressions are built from:
 - ε empty string

 - Any letter from alphabet ∑
 r₁r₂ regular expression r₁ followed by r₂ (sequence)
 - $r_1 | r_2$ either regular expression r_1 or r_2 (choice)
 - r* iterated sequence and choice ε | r | rr | ...
 - Parentheses to indicate grouping/precedence

Concept of Regular Expression Generating a String

Rewrite regular expression until have only a sequence of letters (string) left

General Rules 1) $r_1 | r_2 \rightarrow r_1$

2)
$$r_1 | r_2 \rightarrow r_2$$

3) $r^* \rightarrow rr^*$

4)
$$r^* \rightarrow \epsilon$$

Nondeterminism in Generation

- Rewriting is similar to equational reasoning
- But different rule applications may yield different final results

Example 2 (0|1)*.(0|1)* (0|1)(0|1)*.(0|1)* 0(0|1)*.(0|1)* 0.(0|1)*

Concept of Language Generated by Regular Expressions

- Set of all strings generated by a regular expression is language of regular expression
- In general, language may be (countably) infinite
- String in language is often called a token

Examples of Languages and Regular Expressions

- $\begin{array}{l} \bullet \quad \sum = \{ \text{ 0, 1, .} \} \\ \bullet \quad (0|1)^*.(0|1)^* \text{ Binary floating point numbers} \\ \bullet \quad (00)^* \text{ even-length all-zero strings} \\ \bullet \quad 1^*(01^*01^*)^* \text{ strings with even number of zeros} \end{array}$
- $\Sigma = \{ a,b,c, 0, 1, 2 \}$
 - (a|b|c)(a|b|c|0|1|2)* alphanumeric identifiers
 (0|1|2)* trinary numbers

Alternate Abstraction Finite-State Automata

- Alphabet ∑
- Set of states with initial and accept states
- Transitions between states, labeled with letters

$$(0|1)*.(0|1)*$$

$$0$$
Start state
$$0$$
Accept state

Automaton Accepting String

Conceptually, run string through automaton

- Have current state and current letter in string
- Start with start state and first letter in string
- At each step, match current letter against a transition whose label is same as letter
- Continue until reach end of string or match fails
- If end in accept state, automaton accepts string
- Language of automaton is set of strings it accepts

DFA − only one possible transition at each state NFA − may have multiple possible transitions 2 or more transitions with same label Transitions labeled with empty string Rule − string accepted if any execution accepts Angelic vs. Demonic nondeterminism Angelic − all decisions made to accept Demonic − all decisions made to not accept NFA uses Angelic nondeterminism

Generative Versus Recognition

- Regular expressions give you a way to generate all strings in language
- Automata give you a way to recognize if a specific string is in language

 - Philosophically very different
 Theoretically equivalent (for regular expressions and automata)
- Standard approach

 - Use regular expressions when define language
 Translated automatically into automata for implementation

From Regular Expressions to Automata

- Construction by structural induction
- Given an arbitrary regular expression r
- Assume we can convert r to an automaton with
 - One start stateOne accept state
- Show how to convert all constructors to deliver an automaton with
 - One start state
 - One accept state

Conversions

- Our regular expression to automata conversion produces an NFA
- Would like to have a DFA to make recognition algorithm simpler
- Can convert from NFA to DFA (but DFA may be exponentially larger than NFA)

NFA to DFA Construction

- DFA has a state for each subset of states in NFA
 - DFA start state corresponds to set of states reachable by following ε transitions from NFA start state
 - DFA state is an accept state if an NFA accept state is in its set of NFA states
- To compute the transition for a given DFA state D and letter a

 - Set S to empty set
 Find the set N of D's NFA states

 For all NFA states n in N

 Compute set of states N' that the NFA may be in after matching
 - Set S to S union N'
 - If S is nonempty, there is a transition for a from D to the DFA state that has the set S of NFA states
 Otherwise, there is no transition for a from D

Lexical Structure in Languages

Each language typically has several categories of Words. In a typical programming language:

Keywords (if, while)

Arithmetic Operations (+, -, *, /)

Integer numbers (1, 2, 45, 67)

Floating point numbers (1.0, .2, 3.337)

Identifiers (abc, i, j, ab345)

- Typically have a lexical category for each keyword and/or each category
- Each lexical category defined by regexp

Lexical Categories Example

- IfKeyword = if
- WhileKeyword = while
- Operator = +|-|*|/
- Integer = [0-9] [0-9]*
- Float = [0-9]*. [0-9]*
- Identifier = [a-z]([a-z]|[0-9])*
- Note that [0-9] = (0|1|2|3|4|5|6|7|8|9)[a-z] = (a|b|c|...|y|z)
- Will use lexical categories in next level

Programming Language Syntax

- Regular languages suboptimal for specifying programming language syntax
- Why? Constructs with nested syntax

 - (a+(b-c))*(d-(x-(y-z)))
 if (x < y) if (y < z) a = 5 else a = 6 else a = 7
- Regular languages lack state required to model
- Canonical example: nested expressions
- No regular expression for language of parenthesized expressions

Solution – Context-Free Grammar

 Set of terminals { Op, Int, Open, Close } Each terminal defined by regular expression

 Set of nonterminals { Start, Expr }

Set of productions

Single nonterminal on LHS

· Sequence of terminals and nonterminals on RHS

Op = +|-|*|/Int = [0-9][0-9]*Open = <

Start → Expr

Close = >

Expr → Expr Op Expr

Expr \rightarrow Int

Expr → Open Expr Close

Production Game

have a current string start with Start nonterminal

loop until no more nonterminals

choose a nonterminal in current string choose a production with nonterminal in LHS replace nonterminal with RHS of production

substitute regular expressions with corresponding strings

generated string is in language

Note: different choices produce different strings

Sample Derivation

Op = +|-|*|/Int = [0-9][0-9]*

Start Expr

Open = < Expr Op Expr

Close = > Open Expr Close Op Expr

> Open Expr Op Expr Close Op Expr Open Int Op Expr Close Op Expr Open Int Op Expr Close Op Int Open Int Op Int Close Op Int

2) Expr → Expr Op Expr < 2 - 1 > + 1

3) Expr \rightarrow Int

1) Start → Expr

4) Expr → Open Expr Close

Parse Tree

• Internal Nodes: Nonterminals

• Leaves: Terminals

Edges:

From Nonterminal of LHS of production
 To Nodes from RHS of production

Captures derivation of string

Parse Tree for <2-1>+1

Ambiguity in Grammar

Grammar is ambiguous if there are multiple derivations (therefore multiple parse trees) for a single string

Derivation and parse tree usually reflect semantics of the program

Ambiguity in grammar often reflects ambiguity in semantics of language (which is considered undesirable)

Ambiguity Example

Two parse trees for 2-1+1

Tree corresponding

to <2-1>+1

Start

|
Expr

Expr

Op Expr

+ |
Int

Expr Op Expr

1
- |
Int
Int
2
1

Eliminating Ambiguity

Solution: hack the grammar

Original Grammar Hacked Grammar

Start → Expr Start → Expr

 $\mathsf{Expr} \to \mathsf{Expr} \; \mathsf{Op} \; \mathsf{Expr} \; \to \mathsf{Expr} \; \mathsf{Op} \; \mathsf{Int}$

 $Expr \rightarrow Int$ $Expr \rightarrow Int$

Expr → Open Expr Close Expr → Open Expr Close

Conceptually, makes all operators associate to left

Parse Trees for Hacked Grammar

Only one parse tree for 2-1+1!

Valid parse tree

Start

Expr

Expr

Op Int

+ 1

Expr Op Int

- 1

Int

Precedence Violations

• All operators associate to left

Violates precedence of * over +
 2-3*4 associates like <2-3>*4

Hacking Around Precedence

Original Grammar Hacked Grammar

Op = +|-|*|/ AddOp = +|- Int = [0-9][0-9]* MulOp = *|/ Open = < Int = [0-9][0-9]* Close = > Open = <

Close = >
Start → Expr Start → Expr

 $Expr \rightarrow Expr Op Int$ $Expr \rightarrow Expr AddOp Term$

Expr \rightarrow Int Expr \rightarrow Term

Expr → Open Expr Close Term → Term MulOp Num

Term → Num Num → Int

Num → Open Expr Close

General Idea

- Group Operators into Precedence Levels

 - * and / are at top level, bind strongest
 + and are at next level, bind next strongest
- Nonterminal for each Precedence Level
 - Term is nonterminal for * and /
 Expr is nonterminal for + and -
- Can make operators left or right associative within each level
- Generalizes for arbitrary levels of precedence

Parser

- Converts program into a parse tree
- Can be written by hand
- Or produced automatically by parser generator
 - Accepts a grammar as input
 - Produces a parser as output
- Practical problem
 - Parse tree for hacked grammar is complicated
 - Would like to start with more intuitive parse tree

Solution

- Abstract versus Concrete Syntax
 - Abstract syntax corresponds to "intuitive" way of thinking of structure of program
 - Omits details like superfluous keywords that are there to make the language unambiguous
 - Abstract syntax may be ambiguous
 - Concrete Syntax corresponds to full grammar used to parse the
- Parsers are often written to produce abstract syntax trees.

Abstract Syntax Trees

- Start with intuitive but ambiguous grammar
- Hack grammar to make it unambiguous
 - Concrete parse treesLess intuitive
- Convert concrete parse trees to abstract syntax trees
 - Correspond to intuitive grammar for language
 - Simpler for program to manipulate

Hacked Unambiguous Grammar

AddOp = +|-MulOp = *|/

Int = [0-9][0-9]*

Open = < Close = >

Start → Expr

Expr → Expr AddOp Term

Expr → Term

Term → Term MulOp Num

Term → Num

 $Num \rightarrow Int$

Num → Open Expr Close

Example

Intuitive but Ambiguous Grammar

Op = *|/|+|-

Int = [0-9][0-9]*

Start → Expr

Expr → Expr Op Expr

Expr \rightarrow Int

- Uses intuitive grammar
- Eliminates superfluous terminals
 - Open
 - Close

Summary

- Lexical and Syntactic Levels of Structure
 - Lexical regular expressions and automata
 Syntactic grammars
- Grammar ambiguities

 - Hacked grammars Abstract syntax trees
- Generation versus Recognition Approaches
 - Generation more convenient for specification
 Recognition required in implementation

Handling If Then Else

Start → Stat

Stat → if Expr then Stat else Stat

Stat → if Expr then Stat

Stat → ...

Parse Trees

• Consider Statement if e₁ then if e₂ then s₁ else s₂

Alternative Readings

• Parse Tree Number 1

if e₁ if $e_2 s_1$

else s₂

• Parse Tree Number 2

if $e_2 s_1$

else s₂

Grammar is ambiguous

Hacked Grammar

Goal → Stat

Stat → WithElse

Stat → LastElse

WithElse → if Expr then WithElse else WithElse

WithElse → <statements without if then or if then else>

LastElse → if Expr then Stat

LastElse → if Expr then WithElse else LastElse

Hacked Grammar

- Basic Idea: control carefully where an if without an else can occur

 - Either at top level of statement
 Or as very last in a sequence of if then else if then ... statements

Grammar Vocabulary

- Leftmost derivation
 - Always expands leftmost remaining nonterminalSimilarly for rightmost derivation
- Sentential form
 - Partially or fully derived string from a step in valid derivation
 0 + Expr Op Expr
 0 + Expr 2

Defining a Language

- Grammar
 - Generative approach
 - All strings that grammar generates (How many are there for grammar in previous example?)
- Automaton
 - Recognition approach
- All strings that automaton accepts
- · Different flavors of grammars and automata
- In general, grammars and automata correspond

Regular Languages

- Automaton Characterization
 - (S,A,F,s₀,s_F)

 - Finite set of states S
 Finite Alphabet A
 Transition function F: S ×A → S
 - Start state s₀
 - Final states s_F
- Lanuage is set of strings accepted by Automaton

Regular Languages

- Regular Grammar Characterization

 - (T,NT,S,P)
 Finite set of Terminals T
 Finite set of Nonterminals NT

 - Start Nonterminal S (goal symbol, start symbol)
 Finite set of Productions P: NT → T U NT U T NT
- Language is set of strings generated by grammar

Grammar and Automata Correspondence

Grammar Regular Grammar Context-Free Grammar **Context-Sensitive Grammar**

Automaton Finite-State Automaton Push-Down Automaton Turing Machine

Context-Free Grammars

- Grammar Characterization

 - (T,NT,S,P)Finite set of Terminals TFinite set of Nonterminals NT
 - Start Nonterminal S (goal symbol, start symbol) Finite set of Productions P: $NT \rightarrow (T \mid NT)^*$
- RHS of production can have any sequence of terminals or nonterminals

Push-Down Automata

- DFA Plus a Stack
 - (S,A,V, F,s₀,s_F)

 - Finite set of states S
 Finite Input Alphabet A, Stack Alphabet V
 Transition relation F: S ×(A U{ε})×V → S × V*
 - Start state s₀
 - Final states s
- Each configuration consists of a state, a stack, and remaining input string

CFG Versus PDA

- CFGs and PDAs are of equivalent power
- Grammar Implementation Mechanism:
 - Translate CFG to PDA, then use PDA to parse input string
 - Foundation for bottom-up parser generators

Context-Sensitive Grammars and Turing Machines

- Context-Sensitive Grammars Allow Productions to **Use Context**
 - P: (T.NT)+ → (T.NT)*
- Turing Machines Have

 - Finite State ControlTwo-Way Tape Instead of A Stack