Proyecto Global Integrador: Control de Accionamiento de CA con Motor Sincrónico de Imanes Permanentes

1. Objetivo y Alcances

Proyecto didáctico con el objetivo de integrar los conocimientos y competencias de la asignatura en una aplicación concreta simplificada.

Modelado, simulación, diseño y análisis de desempeño de un sistema de control automático de posición y movimientos para un accionamiento electromecánico de 4 cuadrantes, compuesto por: máquina eléctrica de corriente alterna (CA) trifásica sincrónica con excitación por imanes permanentes (PMSM), alimentada por inversor trifásico desde fuente de CC; reductor de velocidad planetario de salida hacia la carga mecánica; y realimentación con 1 sensor de posición (encoder) en el eje del motor, más 3 sensores de corriente instantánea de fases en la salida del inversor al estator.

2. Lineamientos

- Trabajo en grupo de dos (2) alumnos. Horario de Consulta semanal.
- Modelado, simulación, análisis y diseño (Matlab/Simulink). Respetar nomenclatura indicada.
- Presentación de Informe Técnico, completo y breve, cumpliendo lo pedido a continuación e incluyendo: Resumen. Introducción. Desarrollo: modelado y esquemas conceptuales; análisis; diseño; simulación; resultados. Conclusiones. Referencias consultadas. (Ver Guía de Informe.)
- Exposición presencial y demostración breve mediante simulación (Matlab/Simulink).
- Plazo de presentación: Marzo-Abril de 2018 (fecha a coordinar).

3. Datos del Sistema dinámico físico (Accionamiento) a controlar

Convención de signos y sentidos de torque electromagnético y velocidad angular de rotor: iguales (++ \acute{o} --) \rightarrow motorización (cuadrantes I y III); opuestos (+- \acute{o} -+) \rightarrow frenado regen. (cuadrantes II y IV).

Componentes: los componentes del accionamiento se especifican a continuación (modelos básicos equivalentes, parámetros y especificaciones de operación).

3.1 Carga mecánica

<u>Aplicación simplificada de referencia</u>: control de 1 eje (desacoplado) para articulación "hombro" de Robot SCARA, referido a base inercial (1 grado de libertad rotacional de eje vertical, con parámetros equivalentes variables según sea la posición angular instantánea de la articulación "codo").

Robot SCARA

<u>IMPORTANTE</u>: NO es parte de este trabajo modelar o simular la dinámica No Lineal (NL) acoplada del robot. Sólo se considera la dinámica "vista" desde la articulación "hombro".

Modelo simplificado equivalente, referido al eje de salida del tren de transmisión: coordenada q(t)

$$J_l. \ddot{q}(t) = T_q(t) - b_l. \dot{q}(t) - T_l(t)$$
 (Ec. 1.1)

Parámetros equivalentes variables (valor nominal ± variación máx.):

• Momento de inercia: $J_l \approx (0.2520 \pm 0.1260) \text{ kg. m}^2$

• Amortiguamiento viscoso: $b_l \approx (0 \pm 0.0630) \frac{\text{N.m.}}{\text{rad/s}}$

Especificaciones de operación (carga o perturbación, valor límite requerido):

• Torque de carga: $T_l(t) \approx (0 \pm 1.57) \text{ N. m}$ (suponer función escalón)

3.2 Tren de Transmisión

Caja reductora reversible con sistema de engranajes planetarios (asumiendo acoplamiento rígido, sin elasticidad torsional y sin juego o "backlash"):

Modelo equivalente (rígido): $\dot{q}(t) = \frac{1}{r} \cdot \omega_m(t); \quad T_q(t) = r \cdot T_d(t)$ (Ec. 2.1 / 2.2)

Parámetro (constante):

• Relación de reducción total: r = 314.3008 : 1

Especificaciones de operación (valores límite, no sobrepasar):

• Velocidad nominal (salida): $n_{q \, nom} = 21 \, rpm \, (\dot{q}_{nom} = 2.2 \, \frac{rad}{s})$

• Torque nominal (salida): $T_{a nom} = 7.26 N.m$ (régimen continuo o rms)

• Torque pico (salida): $T_{q max} = 29.42 N.m$ (corta duración, aceleración)

3.3 Máquina Eléctrica

Máquina eléctrica de CA trifásica sincrónica con excitación por imanes permanentes (**PMSM**) y estator conectado en estrella (simétrico y equilibrado) con centro de estrella flotante (accesible en bornes de fases *abcs*).

Prof.: Ing. Gabriel L. Julián

Rev.0: 02/11/2017

Subsistema mecánico (Rotor, referido a Estator estacionario = sistema *inercial* de referencia):

Modelo equivalente: $J_m.\dot{\omega}_m(t) = T_m(t) - b_m.\omega_m(t) - T_d(t)$ (Ec. 3.1)

$$\underline{\dot{\theta}_m(t)} \equiv \omega_m(t) \iff \theta_m(t) = \int_0^t \omega_m(\xi) . \, d\xi + \theta_m(0)$$
 (Ec. 3.2)

Subsistema electromagnético (modelo idealizado equivalente en coordenadas *eléctricas* de entrehierro *qd0* fijas a rotor, a partir de Transformación de Park¹ del circuito de estator estacionario):

a) **Directa**: coord. trifásicas de fase estator ("estacionarias"): $f_{abcs}(t) \rightarrow$ coord. qd0 fijas a rotor (eléctricas="sincrónicas"): $f_{qd0s}^r(t)$

$$\begin{bmatrix} f_{qs}^r(t) \\ f_{ds}^r(t) \\ f_{0s}(t) \end{bmatrix} = \frac{2}{3} \cdot \begin{bmatrix} \cos \theta_r(t) & \cos \left(\theta_r(t) - \frac{2\pi}{3}\right) & \cos \left(\theta_r(t) + \frac{2\pi}{3}\right) \\ \sin \theta_r(t) & \sin \left(\theta_r(t) - \frac{2\pi}{3}\right) & \sin \left(\theta_r(t) + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} f_{as}(t) \\ f_{bs}(t) \\ f_{cs}(t) \end{bmatrix}$$

b) Inversa: $f_{qd0s}^r(t) \rightarrow f_{abcs}(t)$

$$\begin{bmatrix} f_{as}(t) \\ f_{bs}(t) \\ f_{cs}(t) \end{bmatrix} = \begin{bmatrix} \cos \theta_r(t) & \sin \theta_r(t) & 1 \\ \cos \left(\theta_r(t) - \frac{2\pi}{3}\right) & \sin \left(\theta_r(t) - \frac{2\pi}{3}\right) & 1 \\ \cos \left(\theta_r(t) + \frac{2\pi}{3}\right) & \sin \left(\theta_r(t) + \frac{2\pi}{3}\right) & 1 \end{bmatrix} \cdot \begin{bmatrix} f_{qs}^r(t) \\ f_{ds}^r(t) \\ f_{0s}(t) \end{bmatrix}$$

donde $f_x(t)$ puede representar: tensión $v_x(t)$, corriente $i_x(t)$, flujo concatenado $\lambda_x(t)$, etc..

¹ Transformación de Park: (forma invariante en módulo de resultante vectorial de variables base f)

Coordenadas eléctricas de entrehierro qd0 fijas a rotor (marco de referencia ~sincrónico, ver Ec. 5.1):

Mendoza - Argentina

$$\dot{\theta}_r(t) \equiv \omega_r(t) \iff \theta_r(t) = \int_0^t \omega_r(\xi) . d\xi + \theta_r(0)$$
 (Ec. 3.3)

Prof.: Ing. Gabriel L. Julián

Rev.0: 02/11/2017

$$\theta_r(t) \equiv P_p.\,\theta_m(t) \ \therefore \ \omega_r(t) = P_p.\,\omega_m(t)$$
 (Ec. 3.4)

 $T_m(t) = \frac{3}{2}.P_p.\left[\lambda_m^{r_r} + (L_d - L_q).i_{ds}^r(t)\right].i_{qs}^r(t)$ Torque electromagnético: (Ec. 3.5)

Balance de tensiones eléctricas equivalentes de estator (referido a coordenadas qd0 fijas en rotor)²:

$$v_{qs}^{r}(t) = R_{s}.i_{qs}^{r}(t) + L_{q}.\frac{di_{qs}^{r}(t)}{dt} + [\lambda_{m}^{r} + L_{d}.i_{ds}^{r}(t)].\omega_{r}(t)$$
 (Ec. 3.6)

$$v_{ds}^{r}(t) = R_{s} \cdot i_{ds}^{r}(t) + L_{d} \cdot \frac{di_{ds}^{r}(t)}{dt} - L_{q} \cdot i_{qs}^{r}(t) \cdot \omega_{r}(t)$$
 (Ec. 3.7)

$$v_{0s}(t) = R_s \cdot i_{0s}(t) + L_{ls} \cdot \frac{di_{0s}(t)}{dt}$$
 (Ec. 3.8)

Subsistema térmico (modelo simplificado equivalente de primer orden, considerando sólo pérdidas resistivas por efecto Joule (calor) en bobinado de estator, despreciando pérdidas magnéticas y en rodamientos; transferencia de calor por conducción y convección natural, sin ventilador):

Potencia de pérdidas calóricas:
$$P_{s perd}(t) = R_s \cdot \left(i_{as}^2(t) + i_{bs}^2(t) + i_{cs}^2(t)\right)$$
 (Ec. 3.9)

O, equivalentemente:
$$= \frac{3}{2} R_s (i_{qs}^{r^2}(t) + i_{ds}^{r^2}(t) + 2 i_{0s}^{r^2}(t))$$

Balance térmico de estator:
$$P_{s \ perd}(t) = C_{ts} \cdot \frac{dT_s^{\circ}(t)}{dt} + \frac{1}{R_{ts-amb}} \cdot \left(T_s^{\circ}(t) - T_{amb}^{\circ}(t)\right)$$
 (Ec. 3.10)

Parámetros (valores nominales medidos, tolerancia error +/- 1%; salvo aclaración específica):

- $J_m \approx 3.1 \times 10^{-6} \text{ kg. m}^2$ • Momento de inercia (motor y caja):
- $b_m \approx 1.5 \times 10^{-5} \frac{\text{N.m}}{\text{rad/s}}$ Coef. de fricción viscosa (motor y caja):
- $P_p = 3$ pares (i. e. 6 polos) Pares de Polos magnéticos:
- Flujo magnético equivalente de imanes concatenado por espiras del bobinado de estator:

$$\lambda_m^{\prime r} \approx 0.01546 \text{ Wb} - \text{t, } \text{\'o} \left(\frac{\text{V}}{rad/s} \right)$$

- Inductancia de estator (eje en cuadratura): $L_q \approx 5.8 \text{ mH}$
- Inductancia de estator (eje directo): $L_d \approx 6.6 \text{ mH}$
- $L_{ls} \approx 0.8 \text{ mH}$ Inductancia de dispersión de estator:
- $R_{\rm s} \approx 1.02 \,\Omega \,(@40^{\circ}{\rm C}) \rightarrow 1.32 \,\Omega \,(@115^{\circ}{\rm C})$ Resistencia de estator, por fase:

Nota:
$$R_s$$
 depende de $T_s^{\circ}(t)$: $R_s = R_{sREF} \cdot \left(1 + \alpha_{Cu} \cdot \left(T_s^{\circ}(t) - T_{sREF}^{\circ}\right)\right)$; $\alpha_{Cu} = 3.9 \times 10^{-3} \frac{1}{^{\circ}C}$

- $C_{ts} \approx 1.091 \text{ W/(°C/s)}$ (\rightarrow almacenamiento interno) Capacitancia térmica de estator:
- $R_{ts-amb} \approx 55 \, ^{\circ}\text{C/W}$ (\rightarrow disipación al ambiente) Resistencia térmica estator-ambiente:

Especificaciones de operación, en bornes de fases abcs de estator (valores límite, no sobrepasar):

- Velocidad nominal rotor: $n_{m \, nom} = 6600 \, rpm \, (\omega_{m \, nom} = 691.15 \, \frac{rad}{s})$
- Tensión nominal de línea: $V_{sl\ nom}=24\ V_{ca\ rms}$ (tensión nominal de fase: $V_{sf\ nom}=\frac{V_{sl\ nom}}{\sqrt{3}}$)

² Para un sistema de tensiones y corrientes trifásicas equilibrado, la Ec. 3.8 no influye: $i_{0s}(t)\equiv 0$; $v_{0s}(t)\equiv 0$.

• Corriente nominal: $I_{s nom} = 0.4 A_{ca rms}$ (régimen continuo)

• Corriente máxima: $I_{s max} = 2.0 A_{ca rms}$ (corta duración, aceleración)

• Temperatura máxima de bobinado estator: $T_{s max}^{\circ} = 115 \, {}^{\circ}C$

• Temperatura ambiente máxima: $T_{amh\ max}^{\circ} = 40 \, ^{\circ}\text{C}$

3.4 Inversor trifásico de alimentación (modulador de tensión)

Inversor trifásico de 4 cuadrantes (regenerativo), consistente en puente trifásico con llaves electrónicas semiconductoras (ej. transistores MOSFETs / IGBTs de potencia) alimentado desde fuente ideal de CC, conmutado con modulación de ancho de pulso, PWM (existen distintas configuraciones y métodos, con ventajas y desventajas).

<u>Nota</u>: NO es parte de este proyecto el análisis de detalle de operación PWM del inversor. Para este trabajo, considerar al inversor trifásico como *Modulador idealizado de tensión trifásico (vectorial)* para alimentación al estator de la Máq. Eléctrica sincrónica → modelo promediado a continuación.

Modelo promediado equivalente de *tensiones sintetizadas de salida* (componente *fundamental*, sin armónicos): sistema trifásico de tensiones de fase senoidales de secuencia positiva *abc*, equilibrado o balanceado (igual módulo, desfasaje 120° eléctricos), *variable* en Módulo $V_{sl}(t)$ y Frecuencia $\omega_e(t)$:

$$v_{as}(t) \cong \sqrt{2} \cdot \frac{V_{sl}(t)}{\sqrt{3}} \cdot cos(\theta_{ev}(t))$$
 (Ec. 4.1)

Prof.: Ing. Gabriel L. Julián

Rev.0: 02/11/2017

$$v_{bs}(t) \cong \sqrt{2} \cdot \frac{V_{sl}(t)}{\sqrt{3}} \cdot \cos\left(\theta_{ev}(t) - \frac{2\pi}{3}\right)$$
 (Ec. 4.2)

$$v_{cs}(t) \cong \sqrt{2} \cdot \frac{V_{sl}(t)}{\sqrt{3}} \cdot \cos\left(\theta_{ev}(t) + \frac{2\pi}{3}\right)$$
 (Ec. 4.3)

$$\underline{\omega_e(t)} \equiv \dot{\theta}_{ev}(t) \iff \theta_{ev}(t) = \int_0^t \omega_e(\xi) . d\xi + \theta_{ev}(0)$$
 (Ec. 4.4)

Parámetros variables:

 $V_{sl}(t)$ y $\omega_e(t) \equiv 2\pi$. $f_e(t)$ pueden variarse a voluntad (dentro de ciertos límites) a partir del control de la modulación PWM.

Especificaciones de operación (valores límite, no sobrepasar):

• Módulo de tensión de línea: $V_{sl} = [0.0 ... 24] V_{ca rms}$

• Frecuencia sincrónica: $f_e = [-330.0 ... 0.0 ... + 330.0] Hz$

Signo \pm de f_e : determina sentido de giro de campo magnético rodante.

Nota: Ángulo de carga del rotor, o "ángulo (eléctrico) de rotor" $\delta(t)$: desfasaje o desplazamiento angular instantáneo relativo entre la coordenada eléctrica qd0 fija a rotor y la coordenada eléctrica sincrónica (tensión de fase a del estator), depende del torque instantáneo erogado (acoplamiento "elástico" equivalente entre rotor y campo rodante de estator debido a torque electromagnético):

$$\delta(t) \equiv \theta_r(t) - \theta_{ev}(t) = \int_0^t [\omega_r(\xi) - \omega_e(\xi)] d\xi + \theta_r(0) - \theta_{ev}(0)$$
 (Ec. 5.1)

3.5 Sensores de realimentación

El sistema cuenta con los siguientes dispositivos físicos de medición:

- **1 sensor de posición (encoder)**, montado en el eje de motor \rightarrow variable medida: $\theta_m(t)$;
- **3 sensores de corriente** instantánea de fase, montados en salida trifásica de inversor a estator \rightarrow variables medidas: $i_{as}(t)$, $i_{bs}(t)$, $i_{cs}(t)$.
- 1 sensor de temperatura (ej. RTD) en bobinado de estator: $T_s^{\circ}(t)$, para monitoreo solamente.

Prof.: Ing. Gabriel L. Julián Rev.0: 02/11/2017

Nota: para este trabajo, se asume que los sensores tienen **respuesta ideal** en tiempo continuo (transferencia = 1: filtro con ancho de banda infinito o "pasatodo", de ganancia unitaria).

4. Tareas a desarrollar

4.1 Modelado, Análisis y Simulación dinámica a Lazo Abierto (sin control realimentado)

Considerando las siguientes especificaciones:

- a) Corriente nula en eje d: $\underline{i_{ds}^r(t)} \equiv 0$ (estrategia de Control Vectorial con campo orientado \rightarrow desacoplamiento de canales de flujo y torque en el controlador).
- b) Excitaciones (entradas) externas:
 - Variable manipulada (vectorial): sistema trifásico de tensiones de estator $v_{abcs}(t)$, con $V_{st}(t)$ y $\omega_e(t)$ ajustables (a través de manipulación de la modulación PWM del inversor) $\rightarrow v_{ados}^r(t)$ equivalente (transformación de Park).
 - Nota: considerar la restricción sobre $v^r_{qd0s}(t) \rightarrow v_{abcs}(t)$ a imponer para cumplir la especificación a) $i^r_{ds}(t) \equiv 0$.
 - Variables de **perturbación**: torque de carga mecánica $T_l(t)$, del lado de la carga; temperatura ambiente $T_{amb}^{\circ}(t)$ (sólo para monitoreo de temperatura de estator).
- c) **Respuesta** (salida) medida para realimentación: posición angular de eje del motor $\theta_m(t)$; respuesta no medida (efector final): posición angular de eje de la carga q(t).
- d) **Estado interno**: posición $\theta_m(t)$ y velocidad $\omega_m(t)$ en eje del motor, corrientes de estator $\boldsymbol{i}_{qd0s}^r(t)$ (donde $i_{ds}^r(t) \equiv 0$) $\rightarrow \boldsymbol{i}_{abcs}(t)$ equivalente (transformación de Park inversa); temperatura de estator $T_s^\circ(t)$ (sólo para monitoreo).
- e) Estado inicial nulo (cero). Temperatura inicial de estator=Temperatura ambiente máxima=40°C.
- f) Valores nominales de inercia y amortiguamiento de la carga mecánica: $J_{l\,nom} \approx 0.2520 \, \mathrm{kg.} \, \mathrm{m}^2$; $b_{l\,nom} \approx 0 \, \frac{\mathrm{N.m}}{\mathrm{rad/s}}$.

Realizar:

- 1) Modelo matemático *equivalente* (1 grado de libertad) del subsistema mecánico del motor (Ec. 3.1 / 3.2) + transmisión *rígida* (Ec. 2.1 / 2.2) + carga (Ec. 1.1), *referido al eje del motor*.
- 2) **Modelo dinámico** del sistema físico *completo*, incorporando el subsistema electromagnético y térmico:
 - a) Modelo **global** *no lineal* (NL), para $i_{ds}^r(t)$ <u>genérica</u>: I) Diagrama de bloques de estado (forma desagregada o escalar); II) Ecuaciones vectoriales de estado y de salida (con estado inicial genérico).
 - b) Modelo **simplificado lineal invariante (LTI)**, considerando directamente la restricción $i\frac{r}{ds}(t) \equiv 0$, a partir de modelo NL (sin tener en cuenta el subsistema térmico): I) Diagrama de bloques de estado (forma desagregada o escalar); II) Ecuaciones vectoriales/matriciales de estado y de salida (con estado inicial genérico) \rightarrow matrices del modelo LTI.
 - Determinación de la restricción sobre la variable manipulada: $v_{qd0s}^r(t) \rightarrow v_{abcs}(t)$ para cumplir la especificación a) $i_{ds}^r(t) \equiv 0$ (\rightarrow realimentación directa no lineal de estado parcial impuesta al modelo NL), y su efecto sobre $i_{abcs}(t)$.
 - c) Modelo **global linealizado con parámetros variables (LPV)**, para $i_{ds}^r(t)$ <u>genérica</u>, a partir de modelo NL mediante aproximación de Taylor de 1° orden en punto genérico de operación \rightarrow

Prof.: Ing. Gabriel L. Julián **Rev.0**: 02/11/2017

Ecuaciones: a) *Espacio de operación* global NL (cuasi-estacionario) + b) *Modelo dinámico LPV* (pequeñas variaciones locales), función de parámetros variables según el punto de operación. Indicar estado inicial genérico.

Comparación del modelo global LPV con el modelo simplificado LTI para $\underline{i_{ds}^r(t)} \equiv 0$; evaluación para otras condiciones: $i_{ds}^r(t) < 0$ (debilitamiento de campo), $\overline{i_{ds}^r(t)} > 0$ (reforzamiento de campo), etc..

- d) Funciones de Transferencia de ambas entradas $v_{qs}^r(t)$ y $T_l(t)$ a la salida $\theta_m(t)$, para el caso simplificado lineal (LTI) considerando $i_{ds}^r(t) \equiv 0$.
- 3) Análisis de **Estabilidad** a lazo abierto (para $i_{ds}^{r}(t) \equiv 0$):
 - a) Determinar autovalores=polos y ceros (valores numéricos y mapa en plano s);
 - b) Evaluar estabilidad. Determinar frecuencia natural y amortiguamiento.
- 4) **Respuesta dinámica** en DT (principio de superposición, para $i_{ds}^r(t) \equiv 0$):
 - a) Respuesta del estado interno $\{\theta_m(t); \ \omega_m(t); \ i_{qs}^r(t)\}\$ (y $\ v_{ds}^r(t)$ requerida) a escalón de tensión de estator $\ v_{qs}^r(t) = 0 \rightarrow V_{qs\,nom}^r = +19.596\ V_{cc}$ en $t_{step1} = 0.1\$ s seguido de escalón de torque de carga $\ T_l(t) = 0 \rightarrow T_{l\,max} = +1.57\$ N. m en $t_{step2} = 0.3\$ s. Graficar (considerar coordenadas $\ qd0 \leftarrow \rightarrow \ abcs$).
 - b) Determinar velocidad y corriente final de establecimiento, tiempos de crecimiento (10% al 90% de velocidad final), tiempo de establecimiento (±1%), sobrepico de corriente, etc.. ¿Qué influencia relativa tienen cada una de las dos acciones externas? ¿A qué se debe?

Nota: considerar rta. en velocidad para escalón de tensión; rta. en corriente para escalón de torque de carga.

- 5) Análisis de **Controlabilidad** completa de estado (para $i_{ds}^r(t) \equiv 0$) desde entrada manipulada $v_{ds}^r(t)$, sin considerar la perturbación de la carga mecánica.
- 6) Análisis de **Observabilidad** completa de estado (para $i_{ds}^r(t) \equiv 0$) desde salida medida $\theta_m(t)$. Alternativa: ¿medir velocidad con tacogenerador, en vez de medir posición con encoder?

4.2 Diseño, Análisis y Simulación de Controlador de Movimiento en Cascada con Modulador de Torque equivalente (Control Vectorial)

Considerando las siguientes especificaciones:

- a) Corriente nula en eje d: $\underline{i_{ds}^r(t)} \equiv 0$ (estrategia de **Control Vectorial con campo orientado** \rightarrow desacoplamiento de canales de flujo y torque en el controlador).
- b) Diseño en tiempo continuo $t \in \mathbb{R}$.
- c) Acceso a todas las variables de estado para realimentación (luego reemplazado por estimación mediante Observador de estado reducido a partir de salida medida [ítem 3 abajo]).
- d) Valores nominales de inercia y amortiguamiento de la carga mecánica: $J_{l\,nom} \approx 0.2520~{\rm kg.\,m^2}$; $b_{l\,nom} \approx 0~\frac{{\rm N.m}}{{\rm rad/s}}$.

<u>Nota</u>: En los **diagramas de bloques**, separar claramente el sistema físico del sistema de control. Indicar las transformaciones de Park necesarias (directas y/o inversas) con todas sus señales involucradas, tanto virtuales en el sistema físico como a implementar concretamente en el sistema de control. Indicar dónde se implementan los desacoplamientos, representar el "modulador de tensión trifásico" de ganancia unitaria (inversor) y los elementos sensores de corriente y posición/velocidad. No repetir diagramas de bloques innecesariamente; sintetizar información.

Prof.: Ing. Gabriel L. Julián Rev.0: 02/11/2017

NO se requiere control realimentado de temperatura; incorporar **modelo térmico** sólo para **monitoreo de calentamiento** en bobinados.

Realizar:

- 1) Modulador de Torque equivalente (controlador interno de corriente/torque), con su diagrama de bloques completo y valores de parámetros correspondientes, basado en los siguientes lineamientos:
 - a) Desacoplamiento de todas las realimentaciones físicas naturales de estado hacia la entrada.
 - b) Diseño de **lazos internos de control vectorial de corrientes** $i_{qd0s}^r(t)$ desacoplados de la velocidad (donde $i_{ds}^{r*}(t) \equiv 0$), con control proporcional solamente, con polo en $p_i = -5000 \frac{rad}{s}$ (BW ~ 796 Hz) para ambos casos.
 - c) Incorporación adecuada de consigna de torque (nueva variable manipulada).
- 2) Controlador externo de movimientos: posición/velocidad (con "acceso ~directo" a manipular el torque motor a través de la corriente $i_{qs}^r(t)$) diseñado utilizando el método de sintonía serie con acción integral ("PID"), con n=2.5; $\omega_{pos}=800\frac{rad}{s}$, considerando valores nominales de J_l , b_l ; con su diagrama de bloques completo y valores de parámetros correspondientes.
 - Indicar en el plano s dónde quedan ubicados los polos correspondientes, en comparación con el polo del regulador de corriente y los polos de la planta original (evaluar la influencia de variación extrema de parámetros de carga I_l , $b_l \rightarrow$ migración de polos, etc.).
 - Incorporar entrada de referencia o **setpoint de posición** $q^*(t) \equiv \frac{1}{r} \cdot \theta_m^*(t)$ al diagrama de bloques del sistema.
- 3) Incorporación y diseño de **Observador de Estado de orden reducido** sólo para la parte mecánica de este controlador, que estime la **Posición y Velocidad** a partir de sensor de posición $\theta_m(t)$ (no es necesario estimar la corriente, ya que se dispone de sensores de corriente para el lazo del modulador de torque). Ubicar los dos polos del observador reales iguales en $p_{obs1,2} = -3200 \frac{rad}{s}$, para no interferir demasiado con el controlador de estado. Adecuar las realimentaciones a los valores estimados.
- 4) Simulación en tiempo continuo con modelo completo NL, mostrando:
 - a) Seguimiento de consignas de movimiento $q^*(t) \equiv \frac{1}{r}.\theta_m^*(t)$ con **perfil trapezoidal de posición**: $q^*(t) = 0 \to \left(\Delta t_{ramp} = 5 \text{ s}\right) \to 2.\pi \text{ [rad]} \to \left(\Delta t_{ramp} = 5 \text{ s}\right) \to 0$;
 - b) Rechazo a **perturbaciones**: considerando *valores nominales y variación máx.* de los parámetros de carga mecánica física (cambios en escalón).
- 5) Verificación de desempeño y/o mejoras:
 - a) Verificar si se supera/n alguna/s de las *Especificaciones de operación (valores límite)* de velocidad, torque, corriente y tensión de los componentes del sistema físico (caja reductora, motor, inversor), o si existe margen para aumentar el desempeño del sistema.
 - <u>Nota</u>: En caso de superar los valores límites, determinar qué restricciones es necesario imponer al controlador para respetar dichos límites \rightarrow realizar los ajustes y verificar.
 - b) Observador: Verificar si existe error de estimación de régimen permanente distinto de cero ante perturbaciones constantes, o si en este caso también converge asintóticamente la estimación al valor real no medido.
 - <u>Nota</u>: En caso de tener error de estimación estacionario no nulo, proponer esquema alternativo o agregado para compensar este error y llevarlo a cero (para perturbación constante) → realizar los ajustes y verificar.

UNCUYO – Ing. Mecatrónica Mendoza - Argentina **F**

c) Comportamiento térmico del motor: Verificar si la temperatura del bobinado está dentro de los valores admisibles para operación repetitiva con ciclo de operación especificado.

Prof.: Ing. Gabriel L. Julián

Rev.0: 02/11/2017