

Principi della conversione analogico/digitale (A/D)

- Segnali analogici vs sequenze digitali
 - Le grandezze fisiche in misura sono analogiche
 - ✓ Possono essere rappresentate mediante funzioni continue di variabili continue

- Segnali analogici vs sequenze digitali
 - Nel mondo digitale (numerico o numerale) si manipolano sequenze di numeri
 - Queste sequenze sono solitamente rappresentate mediante funzioni discrete di variabili discrete

$$x[k] = f[kT_c]$$

- Minori informazioni rispetto al segnale analogico
 - Possono essere rappresentati solo un numero finito di valori (quantizzazione)
 - ✓ La sequenza esiste solo in istanti di tempo discreti (campionamento)

Perché impiegare sequenze digitali?

- Rispetto ai segnali analogici, le sequenze digitali:
 - ✓ sono facilmente elaborabili mediante diversi dispositivi, quali microprocessori, microcontrollori e *Digital Signal Processor* (DSP)
 - ✓ possono essere memorizzate più facilmente, in volumi ridotti ed in modo più stabile nel tempo
 - ✓ presentano una migliore reiezione al rumore
 - ✓ possono essere facilmente trasmesse a distanza

- Come si ottiene la versione digitale di un segnale analogico?
 - Attraverso il processo di <u>conversione analogico/digitale</u>, che può essere suddiviso in tre fasi distinte:
 - 1) campionamento del segnale nel dominio del tempo
 - discretizzazione (quantizzazione) del segnale nel dominio dell'ampiezza
 - 3) codifica

- La fase di campionamento
 - Dal segnale analogico si estraggono campioni in determinati istanti (di campionamento)

NOTA: il segnale è ancora continuo in ampiezza

La fase di quantizzazione

Il campo continuo FR (Full Range) dei valori assunti dal segnale analogico è suddiviso in stati discreti e ciascun campione (-) è associato allo stato più vicino (-)

La fase di codifica

- Si associa un codice numerico a ciascuno stato discreto in cui è stato suddiviso il campo FR dei valori assunti dal segnale analogico
 - ✓ Suddivisione dell'intervallo FR in B^N stati discreti
 - B: base numerica
 - N: numero dei caratteri
- Solitamente si utilizza il formato binario, ossia B = 2
 - ✓ Ciascun carattere (bit) può assumere i valori 0 e 1
 - ✓ Se, ad esempio, N = 8, si possono rappresentare $2^8 = 256$ stati discreti

La fase di codifica

- Codifiche binarie più diffuse
 - ✓ Binario puro (campi di misura unipolari):
 - 0: 000...000; ≈ FR: 111...111
 - ✓ Binario con offset (campi di misura bipolari):
 - - FR/2: 000...000; ≈ FR/2: 111...111
 - ✓ Binario con complemento a 2 (campi bipolari):
 - - FR/2: 100...000; ≈ FR/2: 011...111

II campionamento

Se il campionamento non è sufficientemente "fitto", la sequenza digitale non rappresenta "bene" il segnale analogico

Il campionamento

- Da un punto di vista matematico
 - ✓ Nel dominio del tempo, la sequenza digitale $x[kT_C]$ può essere espressa come il prodotto tra il segnale x(t) ed un treno di impulsi s(t) di durata infinitesima e periodo T_C

 T_C è detto periodo di campionamento

Il campionamento

Da un punto di vista matematico (dominio del tempo)

$$x[kT_{\rm C}] = x(t) \cdot \sum_{k=-\infty}^{+\infty} \delta(t - kT_{\rm C})$$

II campionamento

- Da un punto di vista matematico
 - ✓ Nel dominio della frequenza, la sequenza digitale $x[kT_C]$ può essere espressa come il prodotto di convoluzione tra le trasformate di Fourier di x(t) ed s(t)

$$S(\omega) = \omega_C \cdot \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_C); \, \omega_C = \frac{2\pi}{T_C}$$

$$X_{C}(\omega) = X(\omega) * S(\omega) = \omega_{C} \cdot \sum_{k=-\infty}^{+\infty} X(\omega - k\omega_{C})$$

- II campionamento
 - Da un punto di vista matematico
 - ✓ IPOTESI: Segnale a banda limitata $\omega_{max} = 2\pi f_{max}$

- Il campionamento
 - Da un punto di vista matematico
 - ✓ IPOTESI: Segnale a banda limitata $\omega_{max} = 2\pi f_{max}$
 - ✓ Ricostruzione del segnale analogico

 f_C è detta frequenza di campionamento

In linea teorica, il segnale analogico può essere ricostruito fedelmente se vale la relazione

$$\omega_c \ge 2\omega_{\max} \rightarrow f_c \ge 2f_{\max}$$

II campionamento

- Da un punto di vista matematico
 - ✓ IPOTESI: Segnale a banda limitata $\omega_{max} = 2\pi f_{max}$
 - ✓ La condizione $f_c \ge 2f_{\text{max}}$ è nota come teorema di Shannon (o del campionamento)
 - ✓ La condizione di uguaglianza non ha interesse pratico

Il campionamento

- Da un punto di vista matematico
 - ✓ IPOTESI: Segnale a banda limitata $\omega_{max} = 2\pi f_{max}$
 - ✓ La condizione $f_c = 2f_{\text{max}}$ non ha interesse pratico
 - Nel dominio del tempo, il filtro passa-basso ideale corrisponde alla funzione sync ...

🦴 ... ma non è possibile disporre di infiniti campioni

- II campionamento
 - Ricostruzione del segnale tramite funzione sync

- II campionamento
 - Ricostruzione del segnale tramite funzione sync

Funzioni sync centrate intorno agli istanti di campionamento

In ciascun istante di campionamento, tutte le funzioni sync sono nulle, tranne quella centrata in quell'istante

> In ciascun istante di campionamento, il segnale ricostruito è uguale al campione in quell'istante

Il campionamento

- Da un punto di vista matematico
 - ✓ IPOTESI: Segnale a banda limitata $\omega_{max} = 2\pi f_{max}$
 - ✓ In pratica, la condizione per la corretta ricostruzione del segnale analogico dipende dalla tecnica di interpolazione utilizzata

$$10 > \frac{f_{c}}{f_{max}} > 2.5$$
 Interpolazione sync (troncata)
$$20 > \frac{f_{c}}{f_{max}} > 10$$
 Interpolazione lineare
$$\frac{f_{c}}{f_{max}} > 20$$
 Nessuna interpolazione (dots mode)

- II campionamento
 - Da un punto di vista matematico
 - ✓ IPOTESI: Segnale a banda limitata $\omega_{max} = 2\pi f_{max}$
 - ✓ Se la condizione $f_c \ge 2f_{\text{max}}$ non è soddisfatta
 - Non è possibile ricostruire il segnale analogico a partire dalla sequenza digitale

- II campionamento
 - Da un punto di vista matematico
 - ✓ Se il segnale x(t) non è a banda limitata?
 - Impiego di filtri passa-basso (anti-aliasing)

La quantizzazione

 Operazione eseguita grazie alla caratteristica ingresso/uscita di un convertitore analogico-digitale (ADC)

Numero di caratteri (bit) impiegati per codificare la parola digitale di uscita

La quantizzazione

Caratteristica ingresso/uscita *n* (LSB) ideale di un convertitore bipolare a 3 bit (quantizzazione uniforme) 010 001 000 111 Codifica binaria in 110 complemento a Campo di misura 101 (tensione di *Full Range*) due 100

La quantizzazione

 Caratteristica ingresso/uscita ideale di un convertitore bipolare a 3 bit (quantizzazione uniforme)

Tensione di

$$V_{\rm q} = \frac{V_{\rm FR}}{2^{Nb}}$$

La quantizzazione

 Caratteristica ingresso/uscita ideale di un convertitore bipolare a 3 bit (quantizzazione uniforme)

 $oldsymbol{V}_{min}$

- Funzione di taratura di un ADC
 - Necessaria per risalire al valore analogico dei vari campioni a partire dai corrispondenti codici numerici
 - La caratteristica ingresso/uscita non è invertibile

- Funzione di taratura di un ADC
 - Caratteristica uscita/ingresso nominale di un convertitore bipolare a 3 bit

$$V_{\text{in}}^{\wedge} = f^{-1}(n) = n \cdot V_{q}$$

Esempio

- $V_{FR} = 5 \text{ V}$; $N_b = 8 \Rightarrow V_q = 0.0195 \text{ V}$
- n = -53

♦ tensione di ingresso stimata: - 1.035 V

Non può essere corretto, in quanto $V_{\rm in}$ non è nota

- Errore di quantizzazione
 - Rappresenta un contributo di incertezza (di quantizzazione)
 - ✓ Modello deterministico

$$\Leftrightarrow \delta e_{q} = 0.5 \cdot V_{q}$$

✓ Modello probabilistico

$$\Rightarrow u(e_q) = 0.5 \cdot V_q / \sqrt{3}$$

Esempio: $V_{FR} = 5 \text{ V}$

•
$$N_{\rm b}$$
 = 4 \Rightarrow $V_{\rm q}$ = 0.3125 V; $\delta e_{\rm q} \approx$ 156 mV

•
$$N_{\rm b} = 8 \Rightarrow V_{\rm q} = 0.0195 \text{ V}; \ \delta e_{\rm q} \approx 9.8 \text{ mV}$$

Principi della conversione AD

Errore di quantizzazione

- L'incertezza di quantizzazione è, in valore assoluto, costante su tutto il campo di misura
 - ✓ L'incertezza relativa aumenta al diminuire di V_{in}

$$\varepsilon e_{q} = \frac{\delta e_{q}}{V_{in}} = \frac{0.5 \cdot V_{q}}{V_{in}}$$

Conviene lavorare il più possibile vicino alla portata del convertitore

Esempio: $V_{FR} = 5 \text{ V}$; $N_b = 8$; $\delta e_q \approx 9.8 \text{ mV}$

•
$$V_{\text{in}} = 4 \text{ V} \Rightarrow \varepsilon e_{\text{q}\%} \approx 0.24 \%$$

•
$$V_{\text{in}} = 0.1 \text{ V} \Rightarrow \epsilon e_{\text{q}\%} \approx 9.8 \%$$

•
$$V_{\rm in} = 0.01 \text{ V} \Rightarrow \varepsilon e_{\rm q\%} \approx 98 \% \text{ !!!}$$

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE Alessio Carullo – 2018/2019

Principi della conversione AD

Tempo di conversione

Intervallo di tempo che intercorre tra l'istante in cui si preleva un campione del segnale e l'istante in cui il codice numerico associato al campione è disponibile all'uscita del convertitore

ATTENZIONE

Durante il tempo di conversione, il segnale all'ingresso del convertitore deve rimanere costante

In pratica, NON deve cambiare di una quantità superiore a $\pm \frac{1}{2} V_{\alpha}$

Principi della conversione AD

Tempo di conversione

Pone un limite alla massima frequenza del segnale da convertire (indipendentemente dal teorema del campionamento)

Esempio

Convertitore con tempo di conversione $\Delta t = 10 \mu s$,

Full Range: 10 V, Nb = 12 bit ($V_q \approx 2.5 \text{ mV}$)

Conversione di un segnale sinusoidale

$$v(t)$$
 = A sen (ωt); A = 5 V; ω = $2\pi f$

Imponendo $\Delta v_{MAX} \le 1.25$ mV nell'intervallo Δt , si ottiene $f_{MAX} \le 4$ Hz!!!

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE

Alessio Carullo - 2018/2019

Principi della conversione AD

Tempo di conversione

Per garantire che i campioni da convertire si mantengano entro ±½ V_q durante il tempo di conversione, si ricorre ad un circuito di *Sample-and-Hold* (solitamente interno al convertitore)

Principi della conversione AD

Tempo di conversione

Impiego del circuito di Sample-and-Hold

Esempio

ADC con tempo di conversione $\Delta t = 10 \mu s$,

Full Range: 10 V, Nb = 12 bit ($V_q \approx 2.5 \text{ mV}$)

Conversione di un segnale sinusoidale

$$v(t) = A \text{ sen } (\omega t); A = 5 \text{ V}; \omega = 2\pi f; f = 10 \text{ kHz}$$

Tempo di carica del condensatore:

$$\Delta t_C = \frac{1/2 \, LSB}{2\pi f A} \approx 4 \text{ ns}$$

Tempo di scarica maggiore di 10 μs

Caratteristica di trasferimento reale

- Le non idealità che influenzano la caratteristica ingresso/uscita reale di un convertitore analogico/digitale sono classificate in:
 - ✓ Errore di fuori zero
 - Errore di guadagno
 - ✓ Errore di linearità

Caratteristica di trasferimento reale

Caratteristica di trasferimento reale

Errore di fuori zero (offset) n (LSB) $V_{\underline{mi}}$

- Caratteristica di trasferimento reale
 - Errore di **fuori zero** (*offset*)
 - ✓ Il costruttore fornisce solitamente l'errore di fuori zero espresso in LSB nella forma $\pm E_{0max}$
 - Massimo errore di fuori zero ammesso per tutti i dispositivi dello stesso tipo
 - ✓ Incertezza corrispondente (modello deterministico):

$$\delta V_{in}^{E_0} = E_{0 \max} \cdot V_{q}$$

- Caratteristica di trasferimento reale
 - Errore di fuori zero (offset)

Incertezza assoluta costante su tutto il campo di misura

- Caratteristica di trasferimento reale
 - Errore di guadagno

È dovuto alla differenza tra l'intervallo di quantizzazione reale (V'_q) e quello nominale (V_q)

Caratteristica di trasferimento reale

- Errore di guadagno
 - ✓ Il costruttore fornisce solitamente l'errore di guadagno valutato all'estremo del campo di misura ed espresso in LSB nella forma $\pm E_{\text{amax}}$

Massimo errore di guadagno ammesso per tutti i dispositivi dello stesso tipo

Caratteristica di trasferimento reale

Errore di guadagno

L'incertezza
dovuta all'errore
di guadagno è
proporzionale
alle tensione in
misura

- Caratteristica di trasferimento reale
 - Errore di guadagno
 - ✓ Incertezza corrispondente (modello deterministico):
 - ♦ Campo di misura unipolare

$$\delta V_{\text{in}}^{E_g} = E_{\text{gmax}} \cdot \frac{n}{2^{Nb}} \cdot V_{q}$$

♦ Campo di misura bipolare

$$\delta V_{\text{in}}^{E_g} = E_{\text{gmax}} \cdot \frac{n}{2^{Nb-1}} \cdot V_{q}$$

Caratteristica di trasferimento

- Errore di linearità
 - ✓ È dovuto alla non uniformità degli intervalli di quantizzazione
 - ✓ È espresso mediante due parametri:
 - Errore di linearità integrale E_1
 - Errore di linearità differenziale E_{D}

NOTA

- Non si tratta di due contributi di incertezza differenti
- Nelle misure assolute di tensione si utilizza E_I, mentre E_D deve essere considerato nel caso di metodi basati sul trasferimento della riferibilità

- Caratteristica di trasferimento
 - Errore di linearità integrale

- Caratteristica di trasferimento reale
 - Errore di linearità integrale
 - ✓ Il costruttore fornisce solitamente l'errore di linearità integrale espresso in LSB nella forma $\pm E_{lmax}$
 - Massimo errore di linearità integrale per tutti i dispositivi dello stesso tipo
 - ✓ Incertezza corrispondente (modello deterministico):

$$\delta V_{in}^{E_{I}} = E_{Imax} \cdot V_{q}$$

Caratteristica di trasferimento reale

- Errore di linearità differenziale
 - ✓ Indica la differenza tra l'intervallo di quantizzazione reale associato al generico codice k e la tensione di quantizzazione ideale $V_{\rm q}$
 - ✓ È generalmente espresso in forma relativa rispetto alla tensione di quantizzazione ideale:

$$E_{D}(k) = \frac{A(k) - V_{q}}{V_{q}}$$

Caratteristica di trasferimento reale

Errore di linearità differenziale

VS

Errore di linearità integrale

- ✓ E_D indica lo scostamento dalla linearità di un particolare gradino della caratteristica del convertitore analogico/digitale
- ✓ E_I rappresenta la somma (integrale) degli errori di linearità
 differenziale lungo la caratteristica del convertitore

Caratteristica di trasferimento reale – Un esempio

Incertezza e numero di bit effettivi

Se la tensione applicata all'ingresso del convertitore è stimata mediante la funzione di taratura:

$$V_{\text{in}}^{\hat{}} = n \cdot V_{\text{q}} = n \cdot \frac{V_{\text{FR}}}{2^{\text{Nb}}}$$

i contributi di incertezza da considerare sono quelli dovuti agli errori:

- √ di quantizzazione
- √ di fuori zero
- ✓ di guadagno
- √ di linearità integrale

Incertezza e numero di bit effettivi

Stima con modello deterministico:

$$\delta V_{\text{in}} = \delta e_{q} + \delta V_{\text{in}}^{E_{0}} + \delta V_{\text{in}}^{E_{g}} + \delta V_{\text{in}}^{E_{I}}$$

$$\delta V_{\text{in}} = 0.5 \cdot V_{q} + E_{0} \cdot V_{q} + E_{g} \cdot \frac{n}{2^{\text{Nb}}} \cdot V_{q} + E_{I} \cdot V_{q} =$$

$$= V_{q} \cdot (0.5 + E_{0} + E_{I}) + \frac{E_{g}}{2^{\text{Nb}}} \cdot (n \cdot V_{q})$$

$$V_{\text{in}}$$

- Incertezza e numero di bit effettivi
 - Stima con modello deterministico:

$$(\delta V_{in}) = V_{FR} \cdot \underbrace{\begin{pmatrix} 0.5 + E_0 + E_I \\ 2^{Nb} \end{pmatrix}}_{A} + \underbrace{\begin{pmatrix} E_g \\ 2^{Nb} \end{pmatrix}}_{B} \cdot V_{in}$$

Total unadjusted error

$$\delta V_{\text{in}} = (A \cdot \text{Portata} + B \cdot \text{Lettura}) V$$

Incertezza e numero di bit effettivi

- Un altro modo per esprimere l'incertezza assoluta consiste nel dichiarare il numero di bit effettivi Nb^E:
 - Numero di bit di risoluzione di un convertitore ideale con errore di quantizzazione *E* '_q che, all'estremo del campo di misura, è pari alla somma degli errori del convertitore reale:

$$E_{q}' = E_{q} + E_{0} + E_{g} + E_{I}$$

numero di livelli che il convertitore riesce a distinguere:

$$N_{\rm liv} = \frac{2^{\rm Nb}}{E_{\rm q}}$$

Incertezza e numero di bit effettivi

Il numero di bit effettivi Nb^E è il numero di bit necessari per rappresentare N_{liv} livelli:

$$Nb^{E} = \log_{2}\left(\frac{2^{Nb}}{2 \cdot E_{q}}\right) = Nb - \log_{2}\left(2 \cdot E_{q}\right)$$

Esempio: Nb = 8; $E_1 = 1.5$ LSB

•
$$E'_q = E_q + E_l = 0.5 LSB + 1.5 LSB = 2 LSB$$

4
 $Nb^{E} = 8 - \log_{2}(4) = 6$

Esempio di specifiche di un convertitore AD commerciale

Convertitore AD commerciale

National Semiconductor ADC14L040

Massima frequenza di campionamento: 40 MSa/s

$$T_{\rm C} = 25 \text{ ns}$$

- Bit di risoluzione: Nb = 14
- Campo di misura unipolare o bipolare; Full Range = 2 V
 ♥ V_a = 0.12 mV
- On-chip Sample-and-Hold
- \triangleright Tempo di apertura del convertitore: τ = 2 ns
- Codifica di uscita: binaria con offset o in complemento a 2

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE Alessio Carullo – 2018/2019

Convertitore AD commerciale

Specifiche di un convertitore commerciale

National Semiconductor ADC14L040

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 10)	Units (Limits)
STATIC (CONVERTER CHARACTERISTICS		88		30
	Resolution with No Missing Codes			14	Bits (min)
INL	Integral Non Linearity (Note 11)		±1.5	±3.8	LSB (max)
DNL	Differential Non Linearity		±0.5	±1.0	LSB (max)
PGE	Positive Gain Error		0.3	±3.3	%FS (max)
NGE	Negative Gain Error		0.4	±3.3	%FS (max)
TC GE	Gain Error Tempco	-40°C ≤ T _A ≤ +85°C	2.5		ppm/°C
V_{OFF}	Offset Error (V _{IN} + = V _{IN} -)		-0.06	±1.0	%FS (max)
TC V _{OFF}	Offset Error Tempco	-40°C ≤ T _A ≤ +85°C	1.5		ppm/°C

$$E_{TOT} = Eq + E_I + Eo + Eg \approx 0.5 + 1.5 + \left(\frac{0.06}{100} + \frac{0.3}{100}\right) \cdot 8192 \approx 31 \text{ LSB}$$

Non sono prese in considerazione le derive termiche

Convertitore AD commerciale

Specifiche di un convertitore commerciale

National Semiconductor ADC14L040

$$E_{TOT} = Eq + E_I + Eo + Eg \cong 0.5 + 1.5 + \left(\frac{0.06}{100} + \frac{0.3}{100}\right) \cdot 8192 \cong 31 \text{ LSB}$$

Numero di bit effettivi:

$$Nb^{E} = Nb - \log_{2} (2 \cdot E_{TOT}) \approx 8$$

Se si correggono gli errori di offset e di guadagno:

$$E_{TOT C} = Eq + E_I \cong 0.5 + 1.5 = 2 \text{ LSB}$$

 $Nb_C^E = Nb - \log_2(2 \cdot E_{TOT C}) = 12$