Image Processing and Computer Vision Joachim Weickert, Summer Term 2019	M I ∰ A
Lecture 11:	1 2
Linear Filters I:	3 4
	5 6
System Theory	7 8
	9 10
Contents	11 12
1. Motivation	13 14
2. Linear System Theory	15 16
	17 18
3. Lowpass Filters	19 20
4. Highpass Filters	21 22
5. Bandpass Filters	23 24
	25 26
	27 28
	29 30
© 2000–2019 Joachim Weickert	31 32

Motivation	M	I A
Motivation	1	2
	3	4
◆ In the previous lecture we have considered filters based on point operations.	5	6
They ignore the neighbourhood structure of each pixel.	7	8
◆ Let us now study filters that can take into accout the spatial context of the pixels.	9	10
 The simplest of these filters are linear and shift invariant. 	11	12
One can show that they can be described by convolutions.	13	14
◆ The behaviour of these filters can be nicely analysed in the Fourier domain:	15	16
This turns convolutions into simple multiplications.	17	18
◆ Thus, linear shift invariant filters are elegant and transparent in theory and practise.	19	20
Thus, inical sint invariant inters are cregarit and transparent in theory and practise.	21	22
	23	24
	25	26
	27	28
	29	30

7 8

21 22

23 24

25 26

31 | 32

3

5 6

7 8

10 9

12 11

13 14

15 16

17 18

19 20

21 | 22

23 24

25 26

29 30

27 28

Linear System Theory

Linear Filter

A filter L is called *linear*, if it satisfies the superposition principle

$$L(\alpha f + \beta g) = \alpha L f + \beta L g$$

for all (continuous or discrete) images f, g, and for all real numbers α , β .

Linear Shift Invariant (LSI) System

- A shift (translation) invariant filter acts identically at all locations.
- More formally, a shift-invariant filter L satisfies

$$LT_bf = T_bLf$$

for all translations T_b with $(T_b f)(x) := f(x - b)$.

A filter that is both linear and shift invariant is also called an *LSI system*.

Linear System Theory (2)

Impulse Response of a Discrete LSI System

The impulse response (Impulsantwort) of a discrete LSI filter L is the result of filtering a discrete Dirac delta impulse:

$$\boldsymbol{h} = \boldsymbol{L} \boldsymbol{\delta}_0$$

where $oldsymbol{\delta}_0 = (\delta_{0,i})$ with the Kronecker symbol

$$\delta_{i,j} \,:=\, \left\{ egin{array}{ll} 1 & & {
m for} \; i=j, \\ 0 & & {
m else}. \end{array}
ight.$$

Since every discrete signal $oldsymbol{f} = (f_1,...,f_N)^ op$ can be represented as linear combination of N unit impulses $\delta_1,...,\delta_N$, linearity and shift invariance imply

$$\boldsymbol{L}\boldsymbol{f} = \boldsymbol{L}\sum_{i=1}^{N}f_{i}\boldsymbol{\delta}_{i} = \sum_{i=1}^{N}f_{i}\boldsymbol{L}\boldsymbol{\delta}_{i} = \sum_{i=1}^{N}f_{i}\boldsymbol{L}\left(\boldsymbol{T}_{i}\boldsymbol{\delta}_{0}\right) = \sum_{i=1}^{N}f_{i}\boldsymbol{T}_{i}\left(\boldsymbol{L}\boldsymbol{\delta}_{0}\right).$$

This shows: Any LSI system L is fully characterised by its impulse response $L\delta_0$.

Linear System Theory (3)

Example: Stock Market Price Averaged over the Last 200 Days

$$u_i := \frac{1}{200} \sum_{k=0}^{199} f_{i-k} \,.$$

◆ This averaging can be represented as a discrete convolution (cf. Lecture 2):

$$u_i = \sum_{k=-\infty}^{\infty} f_{i-k} w_k = (\boldsymbol{f} * \boldsymbol{w})_i$$

with the convolution mask

$$w_k := \left\{ \begin{array}{ll} \frac{1}{200} & \text{for } k \in \{0,...,199\}, \\ 0 & \text{else}. \end{array} \right.$$

- Such a convolution filter is linear and shift invariant (Assignment H1, Problem 3).
- lacktriangle Its impulse response $m{h} = m{L} m{\delta}_0 = m{\delta}_0 * m{w}$ is given by the convolution mask:

$$h_i = \sum_{k=-\infty}^{\infty} \delta_{0,i-k} w_k = w_i \quad \forall i.$$

Linear System Theory (4)

Repetition from Lecture 2: Convolution

discrete convolution in 1-D:

$$(\boldsymbol{f} * \boldsymbol{w})_i := \sum_{k=-\infty}^{\infty} f_{i-k} w_k$$

discrete convolution in 2-D:

$$(oldsymbol{f} * oldsymbol{w})_{i,j} \,:=\, \sum_{k=-\infty}^\infty \sum_{\ell=-\infty}^\infty f_{i-k,\,j-\ell}\, w_{k,\ell}$$

√ | I

1	
-	

MI

Linear System Theory (5)

continuous convolution in 1-D:

$$(f * w)(x) := \int_{-\infty}^{\infty} f(x-x') w(x') dx'$$

5

7

10

11 | 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 | 32

3

5 | 6

7 8

9 10

13 14

17 18

21 | 22

15 16

19 20

23 24

25 26

29 30

27 28

11|12

continuous convolution in 2-D:

$$(f * w)(x,y) := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-x', y-y') w(x', y') dx' dy'$$

Signals with finite extension can be mirrored and extended periodically.

Linear System Theory (6)

Important Properties of the Convolution

(cf. Homework H1, Problem 3, and Lecture 4)

Linearity:

$$(\alpha f + \beta g) * w = \alpha (f * w) + \beta (g * w)$$

for all signals/images f, g and all real numbers α , β .

♦ Shift Invariance:

$$T_b(f * w) = (T_b f) * w$$

for all translations T_b .

Commutativity:

$$f * w = w * f.$$

Function and convolution kernel play an equal role.

Associativity:

$$(f*v)*w = f*(v*w).$$

Successive convolution with kernels v and w comes down to a single convolution with the kernel $v \ast w$.

Linear System Theory (7)

Distributivity:

$$(f+g)*w = f*w + g*w.$$

Differentiation:

$$(f * w)' = f' * w = f * w'.$$

Thus, either the signal or the kernel is differentiated.

Differentiability:

Convolving with a smooth kernel makes a signal smoother: If $f \in C^0(\mathbb{R})$ and $w \in C^n(\mathbb{R})$, then $(f * w) \in C^n(\mathbb{R})$.

Convolution Theorem of the Fourier Transform:

$$\mathcal{F}[f * w] = \mathcal{F}[f] \cdot \mathcal{F}[w].$$

This allows an efficient convolution if the kernels have a large support region.

Linear System Theory (8)

Importance of Convolutions in Linear System Theory

- Any convolution is linear and shift invariant, i.e. it creates an LSI system.
- More importantly, it can be shown that even the reverse is true:
 An LSI system always performs a convolution!
- ◆ The convolution mask is given by the impulse response.

Importance of the Fourier Transform in Linear System Theory

- ♦ We have seen that LSI systems are fully characterised by convolutions.
- Convolutions in the spatial domain become multiplications in the Fourier domain.
 Thus, Fourier analysis is perfectly suited for LSI filters.
- For large convolution kernels, it is more efficient to perform the computation in the Fourier domain.
- LSI filters are often studied in the Fourier domain, in order to understand their frequency behaviour.
- Often one even starts designing LSI filters in the Fourier domain. Afterwards one transforms them back to the spatial domain.

M	
	A
1	2

5

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

L	2
	4

5	6

7	8
---	---

9	10

11	12
13	14

15	16

17	18

21	22
41	22

)3	2/

23	24

Linear System Theory (9)

Basic Types of LSI Filters

Top: Basic types of convolution kernels in the Fourier domain. **Bottom:** Corresponding kernels in the spatial domain. Author: T. Schneevoigt.

Linear System Theory (10)

Often one uses the following taxonomy to characterise LSI filters:

- ◆ Lowpass filters: Low frequencies are less attenuated than high ones.
- ◆ *Highpass filters:* High frequencies are less attenuated than low ones.
- ◆ Bandpass filters: A specific frequency band is hardly attenuated.

Let us now study these three LSI filter types in more detail.

M	
	A
1	2
3	4
5	6
7	8
9	1(
11	12
13	14
15	10 12 14 16 18
17	18
19	
21	22
23	24
25	26
27	28
29	28 30 32
31	32

3

5 | 6

7 | 8

9 | 10

11 12

13 14

15 16

17 18

19 20

23 24

25 26

27 28

29 30

31 32

21 | 22

Lowpass Filters (1)

Lowpass Filters

Goals

- ◆ smooth an image by eliminating noise and unimportant small-scale details
- design in the spatial domain: convolution with a weighted averaging mask
- design in the Fourier domain: attenuate high frequencies

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

3

5 | 6

7 | 8

9 | 10

13 14

15|16

17|18

21 | 22

19|20

23|24

25 26

29|30

27 | 28

11|12

5

7

9 | 10

11 | 12

Lowpass Filters (2)

Design in the Spatial Domain: Box Filters

- uses convolution mask of size $(2m+1) \times (2m+1)$ with weights $\frac{1}{(2m+1)^2}$
- can also be implemented efficiently for large masks in the spatial domain:
 - filter is separable
 - Shifting the 1-D mask by one pixel to the right removes one grey value at the left end, and it adds one at the right end:

$$u_{i+1} = \frac{1}{2m+1} \sum_{k=-m}^{m} f_{i+1-k}$$

$$= \frac{1}{2m+1} \left(f_{i+m+1} - f_{i-m} + \sum_{k=-m}^{m} f_{i-k} \right)$$

$$= \frac{1}{2m+1} \left(f_{i+m+1} - f_{i-m} \right) + u_i$$

• total complexity is linear and independent (!) of the mask size: 1 addition, 1 subtraction, 1 multiplication per pixel (in 1-D)

Lowpass Filters (3) Often results with a single box filter do not look too convincing: 3 • not rotationally invariant: 5 - prefers horizontal and vertical structures 7 • not satisfactory in the frequency domain: 9 10 - continuous FT of a box function is a sinc function (Lecture 4) 11 12 - nonmonotone behaviour: Fourier spectrum has multiple extrema - attenuation of high frequencies only with 1/|u|13 14 15 16 However, we will see later that iterated box filtering can be useful. 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Lowpass Filters (4)

Optimality in the Fourier Domain: The Ideal Lowpass

- All frequency components (u, v) with $u^2 + v^2 > T^2$ are set to 0.
- not satisfactory in the spatial domain:
 - sinc-like rotation invariant convolution kernel in the spatial domain
 - creates visible ringing artifacts

	NΛ	
	IVI	A
Ī	1	2
	3	4
	5	6
ĺ	7	8
	9	10
	11	12
	13	14
	15	16
	17	18
	19	20
	21	22
	23	24
	25	26
	27	28
	29	30
	31	32

Gaussian Convolution Kernels

m-dimensional Gaussian:

$$K_{\sigma}(\boldsymbol{x}) := \frac{1}{(2\pi\sigma^2)^{m/2}} \exp\left(-\frac{|\boldsymbol{x}|^2}{2\sigma^2}\right).$$

The "width" σ is called *standard deviation*, σ^2 is the *variance*.

- creates Gaussian with reciprocal variance in Fourier domain (Lecture 4)
- good compromise: one maximum in both spatial and frequency domain
- the only convolution kernel that is both separable and rotationally invariant
- Iterated Gaussian convolution creates a new Gaussian where the variances sum up.
- Gaussian convolution can be implemented efficiently in numerous ways.

Lowpass Filters (6)

Top left: Noisy original image. **Top right:** Filtering with a 11×11 box filter creates horizontal and vertical artifacts. **Bottom left:** The ideal lowpass with $T^2 = 500$ suffers from ringing artifacts. **Bottom right:** Smoothing with a Gaussian with $\sigma=3$ gives better results. Author: J. Weickert.

3 5 6

15|16 18 17

19 20

21

23 24

25 26

28 27

Lowpass Filters (7) **Approximation Possibility 1: Sampling in the Spatial Domain** 3 exploit separability and symmetry in order to achieve high efficiency 5 6 7 8 ullet restrict sampling to interval $[-k\sigma, k\sigma]$ (high accuracy for $k \geq 3$) 9 10 renormalise sum of coefficients to 1 11 12 Advantage: simple and flexible (σ can be tuned continuously) 13 14 15 16 ullet Disadvantage: computational complexity increases with σ 17 18 good for small values of σ 19 20 21 22 23 24 25 26 27 28 29 30

31 32

Lowpass Filters (8) Approximation Possibility 2: Multiplication in the Fourier Domain 3 4 cf. Lecture 5: 5 6 • use FFT to transform the image into the Fourier domain 7 8 • multiply with the Fourier transform of the Gaussian 9 10 (a Gaussian with inverse variance) 12 11 use FFT for backtransformation 13 14 Advantages: 15 16 • almost linear complexity: $\mathcal{O}(N^2 \log N)$ for an $N \times N$ image 17 18 ullet computational complexity does not increase with σ 19 20 21 22 Disadvantages: 23 24 wraparound errors (unless image is mirrored) 25 26 • standard FFT requires image sizes of powers of 2 27 28 good for large values of σ 29 30

Lowpass Filters (9)

Approximation Possibility 3: Binomial Kernels

Binomial kernels and the variance of the approximated Gaussians.

Normalisation	Filter Coefficients	Variance σ^2
1	1	0
1/2	1 1	1/4
1/4	1 2 1	1/2
1/8	1331	3/4
1/16	1 4 6 4 1	1
1/32	1 5 10 10 5 1	5/4
1/64	1 6 15 20 15 6 1	3/2
1/128	1 7 21 35 35 21 7 1	7/4
1/256	1 8 28 56 70 56 28 8 1	2

- Binomial kernels approximate Gaussians.
- Separability and symmetry can be exploited.
- ◆ Iterated binomial kernels create binomial kernels.

Lowpass Filters (10)

- Advantage:
 - even possible in integer arithmetics: division by powers of 2 comes down to bit shifts
- Disadvantages:
 - \bullet computational complexity increases with σ
 - \bullet σ cannot be tuned continuously

35.36	
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
M	

M	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

Lowpass Filters (11)

Approximation Possibility 4: Iterated Box Filters

Illustration of the central limit theorem of statistics. **Left:** Iterated box filters approximate a Gaussian. The graph shows the box filter (black) and the results after 1 (red), 2 (green), and 5 (blue) iterations. **Right:** Iterating a more complicated filter also approximates a Gaussian, but the convergence is slower. The graph shows a parabola-shaped filter (black) and the results after 1 (red), 2 (green), and 10 (blue) iterations. Author: T. Schneevoigt.

Lowpass Filters (12)

- central limit theorem of statistics: iterated averaging kernels (symmetric, normalised, nonnegative) converge to Gaussians
- Iterating a box filter three times is already a reasonable approximation.
- It can be shown that n iterations of a box filter $(b_i)_{i\in\mathbb{Z}}$ of length $2\ell+1$,

$$b_i = \left\{ egin{array}{ll} rac{1}{2\ell+1} & ext{for } -\ell \leq i \leq \ell, \\ 0 & ext{else,} \end{array}
ight.$$

approximate a Gaussian with variance

$$\sigma^2 = n \cdot \frac{\ell^2 + \ell}{3}.$$

- lacktriangle Advantage: linear complexity, independent of σ
- lacktriangle Disadvantage: σ cannot be tuned continuously

5 7 10 12 1113 14 15 16 17 18 19 20 22 21 23 24 25 26 27 28 29 30 32 3 5 6 7 8 9 10 12 11 13 14

15 16

17|18

19 20

25 26

27|28

21

23 24

29|30

Highpass Filters (1)

Highpass Filters

Goals

- remove low-frequent background perturbations
- perhaps even sharpen blurry image structures by enhancing high frequencies

Remarks

- ◆ An important class of highpass filters consists of derivative filters. They are useful for detecting edges (next lecture).
- While lowpass filters act stabilising, highpass filters may act destabilising, if they enhance high frequencies.

Highpass Filters (2)

Design in the Spatial Domain

- ◆ Example: highpass filter as difference between identity and a lowpass filter
- lacktriangle Using e.g. a 3×3 box filter as lowpass filter creates the highpass stencil

$$\begin{array}{c|ccccc}
 & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
 & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\hline
 & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\end{array}$$

where the *stencil notation* depicts the weights in the pixels

i-1, j+1	i, j+1	i+1, j+1
i-1, j	i,j	i+1, j
i-1, j-1	i, j-1	i+1, j-1

VΙ	
	A

1 2

3 4

5 6

7 8

9 | 10

11 12 13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

M I ∰ A

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29|30

Highpass Filters (3)

- Displaying the filtered image often requires an affine rescaling of the grey values (cf. Lecture 10):
 - For many of these filters, the average grey value becomes 0 (e.g. if the lowpass filter preserves the average grey value).
 - Thus, negative values are common.

13 14 15 16 19 20 23 24 25 26 27 28 29 30

Highpass Filters (4)

Left: Vessel structure of the background of the eye. **Right:** Elimination of low-frequent background structures by subtracting a Gaussian-smoothed version from the original image. The greyscale range [-94, 94] has been rescaled to [0, 255] by an affine rescaling. Author: J. Weickert.

Bandpass Filters (1)

Bandpass Filters

- useful for extracting interesting image structures on certain scales
- ◆ Example: assessing the cloudiness of fabrics (Lecture 6)
- can be created by subtracting two lowpass filters
- ◆ If the lowpass filters are Gaussians, the resulting bandpass is called DoG (difference of Gaussians).

Bandpass Filters (2)

(a) Top left: Fabric, 257×257 pixels. (b) Top right: After lowpass filtering with a Gaussian with $\sigma=10$. (c) Bottom left: Lowpass filtering with $\sigma=15$. (d) Bottom right: Subtracting (b) and (c) gives a bandpass filter that visualises cloudiness on a certain scale. The greyscale range has been affinely rescaled from [-13,13] to [0,255]. Author: J. Weickert.

M I

17 18

19 20

21 22

23 24

25 26

27 28

29 30

Summary	M	
Summary	1	
 Linear shift invariant (LSI) filters are fully characterised by their impulse response. 	3	╀
· , , , , , , , , , , , , , , , , , , ,	5 7	╁
can always be represented as convolutions		+
◆ impulse response: given by convolution mask	11	. 1
◆ The Fourier transform is very important for designing LSI filters.	13]
◆ Lowpass filters are useful for smoothing data:	15	╁
 most important example: Gaussian convolution 	17	╫
 Gaussian convolution can be implemented in many ways, e.g. in the spatial domain, in the Fourier domain, via binomial filters, via iterated box filters 	19 21	╁
◆ Highpass filters eliminate low-frequent perturbations and/or sharpen image	23	╀
structures.	25	╁
◆ Bandpass filters are mainly used for extracting features at certain scales.	27	╫
	29 31	Ŧ

References

References

- ◆ K. R. Castleman: Digital Image Processing. Prentice Hall, Upper Saddle River, 1996.
 (a text book that focuses on LSI filters)
- ◆ R. C. Gonzalez, R. E. Woods: *Digital Image Processing*. Pearson, Upper Saddle River, Global Edition, 2017.

(see in particular Sections 3.5–3.7 and Chapter 4)

- A. V. Oppenheim, R. W. Schafer: Discrete-Time Signal Processing. Prentice Hall, Englewood Cliffs, Third Edition, 2013.
 - (Signal processing books usually provide an exhaustive treatment of LSI filters. This volume is one of the classical text books on signal processing.)
- W. M. Wells: Efficient synthesis of Gaussian filters by cascaded uniform filters. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, Vol. 8, pp. 234–239, 1986. (Gaussian approximation by iterated box filters)
- ◆ P. Getreuer: A survey of Gaussian convolution algorithms. *Image Processing On Line*, Vol. 3, pp. 286–310, 2013.

(https://www.ipol.im/pub/art/2013/87/)
(compares many algorithms for Gaussian convolution)

31	
M	I
1	1 A 2
3	4
5	6
7	8
9	10
9 11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32