1. Illustrate:

这是崔连山和小伙伴们的机器学习拓展包,代有浓厚的社会主义开源分享精神,极富创造力和战斗力。在这里让我们为他们鼓掌 &

1.1 Spend

测试集数据位置: {Example}

配置如下:

	Windows	Windows	MacOS	Linux
型号	i7-9750H	i7-9750H	M1	E5-2640 V4
核心	6核心12线程	6核心12线程	8核心	20核心40线程
频率	2.67GHz	3.2GHz		2.40GHz

运行速度对比结果如下:

未集成	Windows1	Windows2	MacOS	Linux
ALL_FUNCTION	47.364	43.681	34.013	<mark>27.282</mark>
binary_ROC()	45.809	42.964	32.751	<mark>32.143</mark>
auto_model()	53.498	48.649	<mark>38.267</mark>	40.794
estimator_violion()	1.191	1.021	1.678	2.395

集成	Windows1	Windows2	MacOS	Linux
binary_ROC()	46.2 s	43.2 s	CPU times: user 4.82 s, sys: 365 ms, total: 5.18 s Wall time: 32.9s	CPU times: user 9.59 s, sys: 3.89 s, total: 13.5 s Wall time: 33.3 s
auto_model()	50.4 s	47.1 s	CPU times: user 9.75 s, sys: 247 ms, total: 10 s Wall time: 38.1 s	CPU times: user 15.1 s, sys: 1.68 s, total: 16.8 s Wall time: 41.1 s
estimator_violion()	1.16 s	Wall time: 1.01 s	CPU times: user 2.02 s, sys: 70.1 ms, total: 2.09 s Wall time: 1.69 s	CPU times: user 3.85 s, sys: 2.32 s, total: 6.17 s Wall time: 2.23 s

1.2 Request_install

可以参考学习当前目录下的环境备份: Auto_ML_C.yaml

主要是涉及到的软件如下:

Package	最低版本——待检测
python=3.8.10	
seaborn=0.11.2	
pandas=1.3.3	
matplotlib=3.4.2	
numpy=1.20.3	

2. Content:

该包是基于Sklearn, imblance等机器学习拓展包之上的Package, 共计划分为两个部分,

- 分类任务
 - 1. binary_classfication.py
 内部可用函数如下

函数名	功能	返回值
cal_add_1(num1,num2) 🖏	简单的欢迎函数	num1,num2
LogisticRegressionCV_mdoel(X, Y,cv)		
SGDClassifier_model(X,Y,cv)		
LinearDiscriminantAnalysis_model(X, Y,cv)		
LinearSVC_model(X, Y,cv)		
SVC_model(X, Y,cv)		
DecisionTreeClassifier_model(X,Y,cv)		
AdaBoostClassifier_model(X,Y,cv)		
BaggingClassifier_model(X, Y,cv)		
GradientBoostingClassifier_model(X, Y,cv)		
RandomForestClassifier_model(X, Y,cv)		
KNeighborsClassifier_model(X, Y,cv)		
BernoulliNB_model(X, Y,cv)		
GaussianNB_model(X,Y,cv)		
下面是总函数		
binary_ROC(X,Y,k,fig_name)	绘制标量超参数搜索下 最佳的ROC	fig
auto_model(X, Y, k)	模型的标量超参数搜索结果	Auc_data, Acc_data, Recall_data, Precision_data
estimator_violion(df1,df2,fig_name)	为auto_model结果的 Dataframe绘制小提琴 图	fig

2. 多分类函数

等待

3. 特征筛选函数Feature_struction

4. waited

3. How to Use

3.1 Installation

```
1 # Method 1
   # Create a new environment, here is conda as an example
    conda create --name Auto_ML_C python=3.8.10
 5
    # Activate the newly created environment
   conda activate Auto_ML_C
 6
7
   # Installation package
8
9
    pip install Auto_ML_C==0.0.11
10
   pip install imblearn
11
   # Suggest the pipeline of Jupyter notebook [optional, recommended]
12
13
    conda install jupyter notebook
    conda install ipykernel
14
15
    python -m ipykernel install --user --name Auto_ML_C --display-name
    "Auto_ML_C"
   # Install Sklearn 0.6. this will fixed next version
16
17
    conda install -c conda-forge sklearn-contrib-lightning
18
19
   # Method2
    # Use the yaml environment file on the GitHub homepage to directly copy the
20
    current environment
21
    conda env create -n Auto_ML_C -f Auto_ML_C.yaml
22
23
    # Activate the newly created environment
    conda activate
24
25
26 | # Suggest the pipeline of Jupyter notebook [optional, recommended]
27
    conda install jupyter notebook
28 | conda install ipykernel
    python -m ipykernel install --user --name Auto_ML_C --display-name
29
    "Auto_ML_C"
```

3.2 Feature_struction

```
1 import auto_ml_c.Feature_structure as fs
   import pandas as pd
   df = pd.read_csv("1_23肽全部的构效数据.csv")
   X = df.iloc[:,2:]
4
   Y = df[["Taste"]]
5
   Y["Taste_num"] = 10
6
7
   for i in range(Y.shape[0]):
       if Y["Taste"].iloc[i] == "Umami":
8
9
           Y["Taste_num"].iloc[i] = 1
        elif Y["Taste"].iloc[i] == "Bitter":
10
11
           Y["Taste_num"].iloc[i] = 0
12
   # Function 1: Use a variety of visualization methods to reduce
    dimensionality to visualize the data to be enhanced
```

```
# 函数1: 采用多种可视化方法进行降维可视化待增强数据
15
    location = ""
    tmp = fs.data_enhance_show(X,Y[["Taste_num"]],location,kind="SMOTE")
16
17
18
    # Function 2: Using multiple indicators to evaluate the results of different
19
    enhancement methods
    # 函数2: 采用多指标评价不同增强方法后的结果
20
    tmp1 = fs.data_enhance(X.iloc[:,:-1],Y[["Taste_num"]])
21
22
    tmp1
23
    # Function 3: Visualize the return result of function 2
24
25
    # 函数3: 可视化函数2的返回结果
   location = ""
26
    name="Test"
27
    tmp2 = fs.data_enhance_compare(tmp1, location, name)
28
29
    tmp2
```


3.3 Binary Classication

```
# Here is an example of the function binary_classfication_ws
    # 这里以函数binary_classfication_ws举例
 3
   # 开始加载环境
 5
    import pandas as pd
    import numpy as np
    import auto_ml_c.binary_classfication as abc
7
8
    # 读取测试数据
9
10
    df = pd.read_csv("2_data_deal_smote.csv")
11
    X = df.iloc[:,:-1]
12
    Y = df["label"]
13
    score = 'accuracy'
14
15
    # The first function, draw ROC image
16
    tmp_a = abc.binary_ROC(X,Y,cv,"111","accuracy")
17
18
    # The second function, get Auc_data, Acc_data, Recall_data, Precision_data
    tmp_b1, tmp_b2, tmp_b3, tmp_b4 = abc.auto_model(X,Y,cv,"accuracy")
19
20
21
    # The third function, draw the evaluation graph obtained by function 2
    auto_model
    tmp_c = abc.estimator_violion(tmp_b1,tmp_b2,"Violionplot")
```


4. ConTact

VX: Cuizy13390906310_ic

QQ: 1776228595

E-mail: <u>1776228595@qq.com</u>

GitHub: 地址待填写