

INPUT SET: S13874.raw

This Raw Listing contains the General Information Section and up to the first 5 pages.

SEQUENCE LISTING

3 (1) General Information:

(i) APPLICANT: Friedman, Jeffrey M.
Lee, Gwo-Hua
Proenca, Ricardo

(ii) TITLE OF INVENTION: DB, THE RECEPTOR FOR LEPTIN, NUCLEIC ACIDS ENCODING THE RECEPTOR, AND USES THEREOF

12 (iii) NUMBER OF SEQUENCES: 54

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: David A. Jackson, Esq.
- (B) STREET: 411 Hackensack Ave, Continental Plaza, 4th Floor
- (C) CITY: Hackensack
- (D) STATE: New Jersey
- (E) COUNTRY: USA
- (F) ZIP: 07601

23 (v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

29 (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/586,594
(B) FILING DATE:
(C) CLASSIFICATION:

34 (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Jackson Esq., David A.
- (B) REGISTRATION NUMBER: 26,742
- (C) REFERENCE/DOCKET NUMBER: 600-1-162

39 (ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 201-487-5800
(B) TELEFAX: 201-343-1684

44 (2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

INPUT SET: S13874.raw

47 (A) LENGTH: 2529 base pairs
48 (B) TYPE: nucleic acid
49 (C) STRANDEDNESS: double
50 (D) TOPOLOGY: linear

51 (ii) MOLECULE TYPE: cDNA

53 (iii) HYPOTHETICAL: NO

55 (iv) ANTI-SENSE: NO

58 (vii) IMMEDIATE SOURCE:

59 (B) CLONE: A15 (OB-Ra)

60

61

62

63

64 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

65	GGGCTCAGGT CGGCAGTCGTA CCAGCCGCTG AAGCGGTTCT CCAGGTTCCA GGCGCTCTCG	60
66	CCATGCCGGA TCAGCACCAAG CTTGTAGCTC GTGCCGAATT CGGCACGAGG TTGCTTTGGG	120
67	AATGAGCAAG GTCAAAACTG CTCTGCACTC ACAGACAACA CTGAAGGGAA GACACTGGCT	180
68	TCAGTAGTGA AGGCTTCAGT TTTTCGCCAG CTAGGTGTAA ACTGGGACAT AGAGTGCTGG	240
69	ATGAAAGGGG ACTTGACATT ATTCACTCTGT CATATGGAGC CATTACCTAA GAACCCCTTC	300
70	AAGAATTATG ACTCTAAGGT CCATCTTTA TATGATCTGC CTGAAGTCAT AGATGATTG	360
71	CCTCTGCCCC CACTGAAAGA CAGCTTCAG ACTGTCCAAT GCAACTGCAG TCTTCGGGGA	420
72	TGTGAATGTC ATGTGCCGGT ACCCAGAGCC AAACCTCAACT ACGCTCTTCT GATGTATTG	480
73	GAAATCACAT CTGCCGGTGT GAGTTTCAG TCACCTCTGA TGTCACTGCA GCCCATGCTT	540
74	GTTGTGAAAC CCGATCCACC CTTAGGTTTG CATATGGAAG TCACAGATGA TGGTAATTAA	600
75	AAGATTCTT GGGACAGCCA AACAAATGGCA CCATTCCGC TTCAATATCA GGTGAAATAT	660
76	TTAGAGAATT CTACAATTGT AAGAGAGGCT GCTGAAATTG TCTCAGCTAC ATCTCTGCTG	720
77	GTAGACAGTG TGCTTCCTGG ATCTTCATAT GAGGTCCAGG TGAGGAGCAA GAGACTGGAT	780
78	GGTCAGGAG TCTGGAGTGA CTGGAGTTCA CCTCAAGTCT TTACCAACACA AGATGTTGTG	840
79	TATTTTCCAC CCAAAATTCT GACTAGTGTG GGATCGAATG CTTCTTTCA TTGCATCTAC	900
80	AAAAACGAAA ACCAGATTAT CTCCTCAAAA CAGATAGTTT GGTGGAGGAA TCTAGCTGAG	960
81	AAAATCCCTG AGATAACAGTA CAGCATTGTG AGTGACCGAG TTAGCAAAGT TACCTCTCC	1020
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		

RAW SEQUENCE LISTING
PATENT APPLICATION US/08/586,594BDATE: 11/19/96
TIME: 11:49:57**INPUT SET: S13874.raw**

100	AACCTGAAAG CCACCAGACC TCGAGGGAAG TTTACCTATG ACGCAGTGT A CTGCTGCAAT	1080
101		
102	GAGCAGGC GT GCCATCACCG CTATGCTGAA TTATACTGTA TCGATGTCAA TATCAATATA	1140
103		
104	TCATGTGAAA CTGACGGGTA CTTAACTAAA ATGACTTGCA GATGGTCACC CAGCACAATC	1200
105		
106	CAATCACTAG TGGGAAGCAC TGTGCAGCTG AGGTATCACA GGCGCAGCCT GTATTGTCCT	1260
107		
108	GATAGTCCAT CTATTCATCC TACGTCTGAG CCCAAAAACT GCGTCTTACA GAGAGACGGC	1320
109		
110	TTTTATGAAT GTGTTTCCA GCCAATCTT CTATTATCTG GCTATACAAT GTGGATCAGG	1380
111		
112	ATCAACCATT CTTTAGGTT TC ACTTGACTCG CCACCAACGT GTGTCCTTCC TGACTCCGTA	1440
113		
114	GTAAAACCAC TACCTCCATC TAACGTAAAA GCAGAGATTA CTGTAAACAC TGGATTATTG	1500
115		
116	AAAGTATCTT GGGAAAAGCC AGTCTTCCG GAGAATAACC TTCAATTCCA GATTGATAT	1560
117		
118	GGCTTAAGTG GAAAAGAAAT ACAATGGAAG ACACATGAGG TATTGATGC AAAGTCAAAG	1620
119		
120	TCTGCCAGCC TGCTGGTGT AGACCTCTGT GCAGTCTATG TGGTCCAGGT TCGCTGCCGG	1680
121		
122	CGGTTGGATG GACTAGGATA TTGGAGTAAT TGGAGCAGTC CAGCCTATAC GCTTGTATG	1740
123		
124	GATGTAAAAG TTCCTATGAG AGGGCCTGAA TTTTGGAGAA AAATGGATGG GGACGTTACT	1800
125		
126	AAAAAGGAGA GAAATGTCAC CTTGCTTGG AAGCCCCTGA CGAAAAATGA CTCACTGTGT	1860
127		
128	AGTGTGAGGA GGTACGTGGT GAAGCATCGT ACTGCCACAC ATGGGACGTG GTCAGAAGAT	1920
129		
130	GTGGGAAATC GGACCAATCT CACTTCCTG TGGACAGAAC CAGCGCACAC TGTTACAGTT	1980
131		
132	CTGGCTGTCA ATTCCCTCGG CGCTTCCCTT GTGAATTCTA ACCTTACCTT CTCATGGCCC	2040
133		
134	ATGAGTAAAG TGAGTGCTGT GGAGTCACTC AGTGCTTATC CCCTGAGCAG CAGCTGTGTC	2100
135		
136	ATCCTTCCT GGACACTGTC ACCTGATGAT TATAGTCTGT TATATCTGGT TATTGAATGG	2160
137		
138	AAGATCCTTA ATGAAGATGA TGGAATGAAG TGGCTTAGAA TTCCCTCGAA TGTAAAAAG	2220
139		
140	TTTTATATCC ACGATAATTT TATTCCCATC GAGAAATATC AGTTTAGTCT TTACCCAGTA	2280
141		
142	TTTATGGAAG GAGTTGGAAA ACCAAAGATA ATTAATGGTT TCACCAAAGA TGCTATCGAC	2340
143		
144	AAGCAGCAGA ATGACGCAGG GCTGTATGTC ATTGTACCCA TAATTATTTC CTCTTGTGTC	2400
145		
146	CTACTGCTCG GAACACTGTT AATTACACAC CAGAGAATGA AAAAGTTGTT TTGGGACGAT	2460
147		
148	GTTCCAAACC CCAAGAATTG TTCCCTGGCA CAAGGACTGA ATTTCAAAAA GAGAACGGAC	2520
149		
150	ACTCTTGA	2529
151		
152	(2) INFORMATION FOR SEQ ID NO:2:	

INPUT SET: SI3874.raw

153
154 (i) SEQUENCE CHARACTERISTICS:
155 (A) LENGTH: 842 amino acids
156 (B) TYPE: amino acid
157 (C) STRANDEDNESS: Not Relevant
158 (D) TOPOLOGY: Not Relevant
159
160 (ii) MOLECULE TYPE: protein
161
162 (iii) HYPOTHETICAL: NO
163
164 (iv) ANTI-SENSE: NO
165
166
167 (vii) IMMEDIATE SOURCE:
168 (B) CLONE: OB-Ra
169
170
171
172 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
173
174 Gly Leu Arg Ser Ala Ser Tyr Gln Pro Leu Lys Arg Phe Ser Arg Phe
175 1 5 10 15
176
177 Gln Ala Leu Ser Pro Cys Arg Ile Ser Thr Ser Leu Xaa Leu Val Pro
178 20 25 30
179
180 Asn Ser Ala Arg Gly Cys Phe Gly Asn Glu Gln Gly Gln Asn Cys Ser
181 35 40 45
182
183 Ala Leu Thr Asp Asn Thr Glu Gly Lys Thr Leu Ala Ser Val Val Lys
184 50 55 60
185
186 Ala Ser Val Phe Arg Gln Leu Gly Val Asn Trp Asp Ile Glu Cys Trp
187 65 70 75 80
188
189 Met Lys Gly Asp Leu Thr Leu Phe Ile Cys His Met Glu Pro Leu Pro
190 85 90 95
191
192 Lys Asn Pro Phe Lys Asn Tyr Asp Ser Lys Val His Leu Leu Tyr Asp
193 100 105 110
194
195 Leu Pro Glu Val Ile Asp Asp Ser Pro Leu Pro Pro Leu Lys Asp Ser
196 115 120 125
197
198 Phe Gln Thr Val Gln Cys Asn Cys Ser Leu Arg Gly Cys Glu Cys His
199 130 135 140
200
201 Val Pro Val Pro Arg Ala Lys Leu Asn Tyr Ala Leu Leu Met Tyr Leu
202 145 150 155 160
203
204 Glu Ile Thr Ser Ala Gly Val Ser Phe Gln Ser Pro Leu Met Ser Leu
205 165 170 175

INPUT SET: SI3874.raw

206
207 Gln Pro Met Leu Val Val Lys Pro Asp Pro Pro Leu Gly Leu His Met
208 180 185 190
209
210 Glu Val Thr Asp Asp Gly Asn Leu Lys Ile Ser Trp Asp Ser Gln Thr
211 195 200 205
212
213 Met Ala Pro Phe Pro Leu Gln Tyr Gln Val Lys Tyr Leu Glu Asn Ser
214 210 215 220
215
216 Thr Ile Val Arg Glu Ala Ala Glu Ile Val Ser Ala Thr Ser Leu Leu
217 225 230 235 240
218
219 Val Asp Ser Val Leu Pro Gly Ser Ser Tyr Glu Val Gln Val Arg Ser
220 245 250 255
221
222 Lys Arg Leu Asp Gly Ser Gly Val Trp Ser Asp Trp Ser Ser Pro Gln
223 260 265 270
224
225 Val Phe Thr Thr Gln Asp Val Val Tyr Phe Pro Pro Lys Ile Leu Thr
226 275 280 285
227
228 Ser Val Gly Ser Asn Ala Ser Phe His Cys Ile Tyr Lys Asn Glu Asn
229 290 295 300
230
231 Gln Ile Ile Ser Ser Lys Gln Ile Val Trp Trp Arg Asn Leu Ala Glu
232 305 310 315 320
233
234 Lys Ile Pro Glu Ile Gln Tyr Ser Ile Val Ser Asp Arg Val Ser Lys
235 325 330 335
236
237 Val Thr Phe Ser Asn Leu Lys Ala Thr Arg Pro Arg Gly Lys Phe Thr
238 340 345 350
239
240 Tyr Asp Ala Val Tyr Cys Cys Asn Glu Gln Ala Cys His His Arg Tyr
241 355 360 365
242
243 Ala Glu Leu Tyr Val Ile Asp Val Asn Ile Asn Ile Ser Cys Glu Thr
244 370 375 380
245
246 Asp Gly Tyr Leu Thr Lys Met Thr Cys Arg Trp Ser Pro Ser Thr Ile
247 385 390 395 400
248
249 Gln Ser Leu Val Gly Ser Thr Val Gln Leu Arg Tyr His Arg Arg Ser
250 405 410 415
251
252 Leu Tyr Cys Pro Asp Ser Pro Ser Ile His Pro Thr Ser Glu Pro Lys
253 420 425 430
254
255 Asn Cys Val Leu Gln Arg Asp Gly Phe Tyr Glu Cys Val Phe Gln Pro
256 435 440 445
257
258 Ile Phe Leu Leu Ser Gly Tyr Thr Met Trp Ile Arg Ile Asn His Ser