ECSE 6810 Assignment 2

Shiuli Subhra Ghosh

1. Given The BN below,

All the nodes are binary and their CPTs are given below,

P(A = 1)	P(A=2)
0.5	0.5

A	$P(B = 1 \mid A)$	$P(B = 2 \mid A)$
A = 1	0.5741	0.4259
A=2	0.1379	0.8621

A	$P(C = 1 \mid A)$	$P(C = 2 \mid A)$
A = 1	0.8321	0.1679
A=2	0.0346	0.9654

С	$P(E = 1 \mid C)$	$P(E = 2 \mid C)$
C = 1	0.0496	0.9504
C=2	0.8243	0.1757

вс	$P(D = 1 \mid B,C)$	$P(D = 2 \mid B,C)$
1 1	0.8	0.2
2 1	0.3	0.7
1 2	0.6	0.4
2 2	0.1	0.9

(a)
$$P(A \mid B=1, C=2, D=1, E=2) = \frac{P(A, B=1, C=2, D=1, E=2)}{P(B=1, C=2, D=1, E=2)}$$

$$= \frac{P(A=1)P(B=1 \mid A=1)P(C=2 \mid A=1)P(D=1 \mid B=1, C=2)P(E=2 \mid C=2)}{\sum_a P(A=a, B=1, C=2, D=1, E=2)}$$

$$P(A=1) = 0.5$$

$$P(B=1 \mid A=1) = 0.5741$$

$$P(C=2 \mid A=1) = 0.1679$$

$$P(D=1 \mid B=1, C=2) = 0.6$$

$$P(E=2 \mid C=2) = 0.1757$$

Also,

$$P(A = 2) = 0.5$$

$$P(B = 1 \mid A = 2) = 0.1379$$

$$P(C = 2 \mid A = 2) = 0.9654$$

$$P(D = 1 \mid B = 1, C = 2) = 0.6$$

$$P(E = 2 \mid C = 2) = 0.1757$$

$$P(A = 1 \mid B = 1, C = 2, D = 1, E = 2)$$

$$=\frac{0.5\times0.5741\times0.1679\times0.6\times0.1757}{(0.5\times0.5741\times0.1679\times0.6\times0.1757)+(0.5\times0.1379\times0.9654\times0.6\times0.1757)}\\=0.4199$$

$$P(A=2 \mid B=1, C=2, D=1, E=2) = 1 - P(A=1 \mid B=1, C=2, D=1, E=2)$$

= 1 - 0.4199
= 0.5801

$$\begin{split} P(D=1 \mid A=1, B=2) &= \sum_{c} P(D=1, C=c \mid A=1, B=2) \\ &= \sum_{c} P(C=c \mid A=1, B=2) P(D=1 \mid A=1, B=2, C=c) \\ &= \sum_{c} P(C=c \mid A=1) P(D=1 \mid B=2, C=c) \\ &= 0.8231 \times 0.3 + 0.1679 \times 0.1 \\ &= 0.26372 \end{split}$$

2. For the BN below,

(a) Give the factorized joint probability distribution.

So, the joint probability distribution is,

 $P(A,B,C,D,E,F,G,H) = P(A)P(D)P(B \mid A)P(C \mid A)P(E \mid C,D)P(F \mid E)P(G \mid F,B)P(H \mid F)$

(b) $B \perp C$ - False.

There are two paths from B to C.

First path - $B \leftarrow A \rightarrow C$. So, A is the confounder in the path and hence B is independent on C given A. But in this path, the given set is Φ . Hence the path is active.

Second path - Another path from B to C is $B \to G \leftarrow F \leftarrow E \leftarrow C$. So, there is one collider in the path that is G. So, This path is blocked given the set Φ .

(c) $B \perp C \mid A$ - True.

There are two paths from B to C.

First path - $B \leftarrow A \rightarrow C$. So, A is the confounder in the path and hence B is independent on C given A.

Second path - Another path from B to C is $B \to G \leftarrow F \leftarrow E \leftarrow C$. So, there is one collider in the path that is G. So, This path is blocked given the set Φ hence, $B \perp C \mid A$.

(d) $B \perp C \mid A, G$ - False. There are two paths from B to C.

First path - $B \leftarrow A \rightarrow C$. So, A is the confounder in the path and hence B is independent on C given A.

3

Second path - Another path from B to C is $B \to G \leftarrow F \leftarrow E \leftarrow C$. So, there is one collider in the path that is G. So, This path is active given the set G. Hence, according to the d-separation criteria, B and C are not deseperated because, second path from B to C is not blocked given the nodes A and G because, in this path there is a common effect G in the given set.

(e) $A \perp D \mid H$ - False

There is a path from A to D, $A \to C \to E \leftarrow D$. But H is a descendent of the common effect(collider) E in the path. Hence, the path is active given H.

- (f) List all variables that are independent of A given evidence on G.

 I didn't find any set. All off the variables are dependent on A given evidence on G. In any path from A to any other node G appears to be either a collider or a descendent of a collider. Hence, There are no such variables which is independent of A given evidence on G.
- 3. For two BNs below, consider if there are any other BNs that are I-equivalent to either of them.

In this graph, we cannot find any I-equivalent because, there is a very specific V-structure. $A \to B \leftarrow C$. If we reverse the arrow direction in between B and D, it will create another v structure which is not desired.

But for this image,

We can find another I-equivalent by changing the direction of the arrows. In this way, it won't create any extra v structure or impart ant structural change.

So, the I-equivalent is -

4. Given the joint probability distribution P(X,Y,Z) for the three binary random variables X,Y,Z as follows -

X	Y	Z	P(X,Y,Z)
0	0	0	1/12
0	0	1	1/6
0	1	0	1/6
0	1	1	1/12
1	0	0	1/6
1	0	1	1/12
1	1	0	1/12
1	1	1	1/6

(a) Determine I(P), i.e., all independences and conditional independences in P.

To approach this problem we will start trying to find marginal distributions.

X	Y	P(X,Y)
0	0	1/4
0	1	1/4
1	0	1/4
1	1	1/4

Y	Z	P(Y,Z)
0	0	1/4
0	1	1/4
1	0	1/4
1	1	1/4

X	Z	P(X,Z)
0	0	1/4
0	1	1/4
1	0	1/4
1	1	1/4

X	P(X)
0	1/2
1	1/2

Y	P(Y)
0	1/2
1	1/2

Z	P(Z)
0	1/2
1	1/2

Finding Independencies: Basically from the probability distributions, it is very clear that X,Y and Z are pairwise independent because, P(X,Y) = P(X)P(Y), P(Y,Z) = P(Y)P(Z), P(Z,X) = P(Z)P(Z). It is evident from the probability distributions. But $P(X,Y,Z) \neq P(X)P(Y)P(Z)$.

Finding Conditional Independencies: Again we will try to find the distributions from the table. So, $P(X,Y\mid Z)=\frac{P(X,Y,Z)}{P(Z)},\ P(X\mid Y)=\frac{P(X,Y)}{P(Y)}$ and following this equation for all the 3 cases.

X	Y	Z	$P(X, Y \mid Z)$
0	0	0	2/12
0	0	1	2/6
0	1	0	2/6
0	1	1	2/12
1	0	0	2/6
1	0	1	2/12
1	1	0	2/12
1	1	1	2/6

X	Z	$P(X \mid Z)$
0	0	1/2
0	1	1/2
1	0	1/2
1	1	1/2

Y	Z	$P(Y \mid Z)$
0	0	1/2
0	1	1/2
1	0	1/2
1	1	1/2

X	Y	Z	$P(Y,Z \mid X)$
0	0	0	2/12
0	0	1	2/6
0	1	0	2/6
0	1	1	2/12
1	0	0	2/6
1	0	1	2/12
1	1	0	2/12
1	1	1	2/6

Y	X	$P(Y \mid X)$
0	0	1/2
0	1	1/2
1	0	1/2
1	1	1/2

Z	X	$P(Z \mid X)$
0	0	1/2
0	1	1/2
1	0	1/2
1	1	1/2

X	Y	Z	$P(Z, X \mid Y)$
0	0	0	2/12
0	0	1	2/6
0	1	0	2/6
0	1	1	2/12
1	0	0	2/6
1	0	1	2/12
1	1	0	2/12
1	1	1	2/6

X	Y	$P(X \mid Y)$
0	0	1/2
0	1	1/2
1	0	1/2
1	1	1/2

\mathbf{Z}	Y	$P(Z \mid Y)$
0	0	1/2
0	1	1/2
1	0	1/2
1	1	1/2

So, from these tables it is also clear that, X, Y and Z are not conditionally dependent.

(b) Based on I(P), determine a BN G, that is an I-map of P.

(G,P) is a BN representing P. If $I(G) \subseteq I(P)$ holds, we say G is an I-map for P which means, the structural independencies in G is a subset of statistical independencies in P. So, independencies shown in a DAG should be a subset of statistical independencies. In our case $I(P) = \{X \perp Y, Y \perp Z, X \perp Z\}$ So, the I-map of P can be,

This is an I-map and there is not independencies of conditional independencies. So, $\Phi \subset I(P)$.

(c) Determine a G that is the minimum I-map of P. The minimal I-map of P is -

Because, if we remove the edge between X and Y, then it is sill an I-map because, as Z is the collider then $X \perp Y \mid \Phi$.

But if we remove any other edge, it will induce another conditional independencies.

Here. X is a confounder. Hence, $Y \perp Z \mid X$, which is not present in I(P). Also for,

Y is in the path from X to Z. Then, $X \perp Z \mid Y$, which is not present in I(P). Hence, the I-map we produced earlier is the minimal I-map.

(d) Determine a G that is a perfect map of P if it exists.

A BN structure is called Perfect map for distribution P if I(G) = I(P). But in our case, there is no way, we can create a graph which has same independencies equal to P. Also for this case,

there are more additional independencies like $\{X \perp Y \mid Z, Y \perp Z \mid X, Z \perp X \mid Y\} \not\subseteq I(P)$.