HW5 - Theory + SVM - Solutions Machine Learning from Data

Question 1

a. VC(H) is equal to 2.

Given any two points $P_1=(x_1, y_1)$ and $P_2=(x_2, y_2)$, and WLOG $x_1^2+y_1^2 \le x_2^2+y_2^2$. We have four possible dichotomies, and we will show that we can find r_1 and r_2 for each:

- 1. $P_1 \rightarrow -, P_2 \rightarrow -: r_1 \le r_2 < x_1^2 + y_1^2 \ OR \ x_2^2 + y_2^2 < r_1 \le r_2$
- 2. $P_1 \rightarrow +, P_2 \rightarrow -: r_1 \le x_1^2 + y_1^2 \le r_2 < x_2^2 + y_2^2$
- 3. $P_1 \rightarrow -, P_2 \rightarrow +: x_1^2 + y_1^2 < r_1 \le x_2^2 + y_2^2 \le r_2$
- 4. $P_1 \rightarrow +, P_2 \rightarrow +: r_1 \le x_1^2 + y_1^2 \le x_2^2 + y_2^2 \le r_2$

Meaning we have proved that $VC(H) \ge 2$. Let's show that VC(H) < 3:

Let
$$P_1=(x_1, y_1)$$
, $P_2=(x_2, y_2)$ and $P_3=(x_3, y_3)$ and WLOG $x_1^2 + y_1^2 \le x_2^2 + y_2^2 \le x_3^2 + y_3^2$

Now, let $P_1 \to +$, $P_2 \to -$, $P_3 \to +$: Since P_1 is positive it enforces $r_1 \le x_1^2 + y_1^2$. In addition, since P_3 is also positive we must conclude that $x_3^2 + y_3^2 \le r_2$.

Since we have set WLOG $x_1^2 + y_1^2 \le x_2^2 + y_2^2 \le x_3^2 + y_3^2$, it means that $r_1 \le x_2^2 + y_2^2 \le r_2$ which would make P₂ positive in contradiction to the dichotomy. This proves VC(H) < 3 and determines that VC(H) = 2.

b. A possible polynomial sample complexity algorithm L that learns C using H is an algorithm that would find the smallest ring which contains all the positive points.

Let $\Delta = \Delta^m = (x_i, y_i)_{i=1}^m$ be a set of points, labeled positive and negative. Our algorithm seeks to return a hypothesis $h \in H$ and it would do it in the following steps:

- I. Initialize $r_1' = r_2' = 0$
- II. For every point in Δ^m :
 - i. if the point is positive compute $x_2^2 + y_2^2$.
 - 1. If $x_i^2 + y_i^2 > r_2'$ update $r_2' = x_i^2 + y_i^2$
 - 2. If $r_1' < x_i^2 + y_i^2$ update $r_1' = x_i^2 + y_i^2$

III. Return the ring with r'_1 as the internal radius and r'_2 as the external radius.

Hence the learning algorithm will produce the inner and outer radiuses: $L(\Delta) = h(r_1', r_2')$

Proof the algorithm is consistent:

Since we iterate over all the points in Δ^m and adjust the radiuses according to the positive points, we create two circles that are centered over the same point that would form a ring we would know contains all the positive points.

Sample Complexity:

Consider $c \in C$ and let $\Delta^m(c) = (x_i(c), y_i(c))_{i=1}^m$ training data generated from c without errors and by drawing m independent points according to a probability distribution π .

Given $\varepsilon > 0$ and $\delta > 0$ we will now compute a number $m(\varepsilon, \delta)$ so that:

$$m \ge m(\varepsilon, \delta) \Rightarrow \pi^m(err_\pi(L(\Delta^m(c)), c) > \varepsilon) \le \delta$$

Let $C = h(r_1, r_2)$ the concept we are trying to estimate. We will define two area so that the probability to be in those areas would be defined as $\frac{\varepsilon}{2}$:

$$S_1(\varepsilon) = \{(x, y): r_1 \le x^2 + y^2 \le r_1 + \alpha\}$$

$$S_2(\varepsilon) = \{(x, y): r_2 - \beta \le x^2 + y^2 \le r_2\}$$

And α , β are chosen so that $\pi(S_1(\varepsilon)) = \pi(S_2(\varepsilon)) = \frac{\varepsilon}{2}$.

There are two possible cases:

- The dataset visit $S_1(\varepsilon)$ and/or $S_2(\varepsilon)$. The probability in that case is at most ε from the way we have constructed the areas, so that means the error is bounded by ε .
- No samples are inside the $S_1(\varepsilon)$ or $S_2(\varepsilon)$. In that case the probability is:

$$\left(1 - \frac{\varepsilon}{2}\right)^m + \left(1 - \frac{\varepsilon}{2}\right)^m = 2\left(1 - \frac{\varepsilon}{2}\right)^m \le 2e^{-\frac{\varepsilon m}{2}}$$

We wish for the probability for error to be bounded by δ :

$$2e^{-\frac{\varepsilon m}{2}} \le \delta \to e^{-\frac{\varepsilon m}{2}} \le \frac{\delta}{2} \to \frac{-\varepsilon m}{2} < \ln\left(\frac{\delta}{2}\right) \to m \ge \frac{2}{\varepsilon}\ln\left(\frac{2}{\delta}\right)$$

Time complexity:

Our algorithm initializes the radiuses (O(1)), goes over all the samples (O(m)) and computes the size for the positive points $(O(m^+))$. Overall, the time complexity is:

$$O(1) + O(m) + O(m^+) \approx O(m)$$
.

- c. Using $\varepsilon=0.05$ and $\delta=1-0.95=0.05$ in both the expression found in b and in the general formula for infinitie |H|:
 - Formula found in $b: m \ge \frac{2}{0.05} \ln \left(\frac{2}{0.05} \right) = 147.55 \rightarrow 148 \text{ samples}$
 - Formula for infinite |H|:

$$m \ge \frac{1}{0.05} \left(4 \log_2 \left(\frac{2}{0.05}\right) + 8 * 2 * \log_2 \left(\frac{13}{0.05}\right)\right) = 2992.9 \approx 2993 \text{ samples}$$

We have received a tighter bound using the formula from b since the equation for the general infinite |H| makes no assumptions on the data besides VC(H). On the contrary, in b we have utilized the known information to find a better bound.

Question 2

- a. From the definition, the number of nodes in decision trees with m=3 can be:
 - $n = 1: 2^1 1 = 1$
 - $n = 2: 2^2 1 = 4 1 = 3$
 - $n = 3: 2^3 1 = 8 1 = 7$

First, let's show $VC(H3) \ge 4$:

 H_3 has at most $2^{n-1}=2^2=4$ leaves. Let's define a dataset of points $\{x_1,x_2,x_3,x_4\}$. WLOG let's assume $x_1 < x_2 < x_3 < x_4$. A possible tree from H_3 would be:

We can see that regardless of the dichotomy, we can separate any 4 points dataset to different leaves using $h \in H_3$ meaning $VC(H3) \ge 4$.

However, since we will have at most 4 leaves, we will now show that $VC(H_3) < 5$:

Let's define a dataset of points $\{x_1, x_2, x_3, x_4, x_5\}$. WLOG let's assume $x_1 < x_2 < x_3 < x_4 < x_5$ and we will choose the following dichotomy: $c(x_1) = c(x_3) = c(x_5) = 0$, $c(x_2) = c(x_4) = 1$.

Since this is a binary search tree, we know that two points must go to the same leaf. WLOG let's assume the points who share the leave are $x_i < x_i$:

- Option 1: the points are consecutive points, meaning $c(x_i) \neq c(x_j)$ that were labeled to the same leave.
- Option 2: the points are not consecutive, so they share the same label. However, this implies there is at least one point x_{i+1} between the two points with different label than them. From the behavior of decision trees, we know x_{i+1} must also be labeled to the same leaf once again we have two labels in one leaf.

Therefore, we must conclude $VC(H_3) = 4$.

b. H_m has at most 2^{m-1} leaves. Therefore, like shown for H_4 we can conclude that a data set of $2^{m-1}+1$ points would have for sure two points at the same leaf, and we would be able to find a dichotomy that cannot be separated using $h \in H_m$. Meaning $VC(H_m) < 2^{m-1}+1$.

However, since H_m has at most 2^{m-1} leaves, for any dataset of 2^{m-1} points we can generalize the way we have built the tree in (a) to ensure each data point is classified to a different leaf and we would be able to choose the label of the leaf according to the point.

That way for each possible dichotomy we would be able to find a hypothesis $h \in H_m$ meaning $VC(H_m) \ge 2^{m-1}$.

In conclusion, we must conclude $VC(H_m) = 2^{m-1}$.

Question 3

$$K(x,y) = (x \cdot y + 1)^3 = (x_1y_1 + x_2y_2 + 1)^3 = ((x_1y_1 + x_2y_2 + 1)(x_1y_1 + x_2y_2 + 1))(x_1y_1 + x_2y_2 + 1) = (x_1^2y_1^2 + x_1x_2y_1y_2 + x_1y_1 + x_1x_2y_1y_2 + x_2^2y_2^2 + x_2y_2 + x_1y_1 + x_2y_2 + 1)(x_1y_1 + x_2y_2 + 1) = (x_1^2y_1^2 + 2x_1x_2y_1y_2 + x_2^2y_2^2 + 2x_1y_1 + 2x_2y_2 + 1)(x_1y_1 + x_2y_2 + 1) = x_1^3y_1^3 + x_1^2x_2y_1^2y_2 + x_1^2y_1^2 + 2x_1^2x_2y_1^2y_2 + 2x_1x_2^2y_1y_2^2 + 2x_1x_2y_1y_2 + x_1x_2^2y_1y_2^2 + x_2^3y_2^3 + x_2^2y_2^2 + 2x_1^2y_1^2 + 2x_1x_2y_1y_2 + 2x_1x_2y_1y_2 + 2x_2^2y_2^2 + 2x_2y_2 + x_1y_1 + x_2y_2 + 1 = x_1^3y_1^3 + 3x_1^2x_2y_1^2y_2 + 3x_1x_2^2y_1y_2^2 + 6x_1x_2y_1y_2 + 3x_2^2y_2^2 + 3x_1^2y_1^2 + 3x_1y_1 + 3x_2y_2 + x_2^3y_2^3 + 1 = x_1^3y_1^3 + x_2^3y_2^3 + 3x_1^2x_2y_1^2y_2 + 3x_1x_2^2y_1y_2^2 + 6x_1x_2y_1y_2 + 3x_2^2y_2^2 + 3x_1^2y_1^2 + 3x_1y_1 + 3x_2y_2 + 1$$

$$\mathbf{x}_{1} \psi(x) = \left(x_{1}^{3}, x_{2}^{3}, \sqrt{3}x_{1}^{2}x_{2}, \sqrt{3}x_{1}x_{2}^{2}, \sqrt{6}x_{1}x_{2}, \sqrt{3}x_{2}^{2}, \sqrt{3}x_{1}^{2}, \sqrt{3}x_{1}, \sqrt{3}x_{2}, 1\right)$$

- b. Full rational variety.
- c. We have 10 multiplication operations when using $\psi(x) \cdot \psi(y)$.

When using K(x, y) we have only 4 multiplication operations, 2 from the inner product and another 2 from the power calculation.

Hence, by using K(x, y) instead of $\psi(x) \cdot \psi(y)$ we are saving 6 multiplication operations.

Question 4

$$f(x,y) = 2x - y, g(x,y) = \frac{x^2}{4} + y^2 = 1 \Rightarrow g(x,y) = \frac{x^2}{4} + y^2 - 1 = 0$$

$$\mathcal{L}(x,y,\lambda) = 2x - y + \lambda \left(\frac{x^2}{4} + y^2 - 1\right)$$
1.
$$\frac{\partial}{\partial x} \mathcal{L}(x,y,\lambda) = 2 + \frac{2\lambda x}{4}$$
2.
$$\frac{\partial}{\partial y} \mathcal{L}(x,y,\lambda) = -1 + 2\lambda y$$
3.
$$\frac{\partial}{\partial \lambda} \mathcal{L}(x,y,\lambda) = \frac{x^2}{4} + y^2 - 1$$

$$\frac{\text{From 1:}}{2 + \frac{2\lambda x}{4}} = 0 \Rightarrow 2\lambda x = -8 \Rightarrow x = \frac{-4}{\lambda}$$

From 2:

$$-1 + 2\lambda y = 0 \Rightarrow 2\lambda y = 1 \Rightarrow y = \frac{1}{2\lambda}$$

From 1+2+3:

$$\frac{\left(\frac{-4}{\lambda}\right)^2}{4} + \left(\frac{1}{2\lambda}\right)^2 - 1 = 0 \Rightarrow \frac{16}{4\lambda^2} + \frac{1}{4\lambda^2} - 1 = \frac{17}{4\lambda^2} - 1 = 0 \Rightarrow \frac{17}{4\lambda^2} = 1 \Rightarrow \frac{17}{4} = \lambda^2 \Rightarrow \lambda_1, \lambda_2 = \pm \sqrt{\frac{17}{4}} = \lambda^2 \Rightarrow \lambda_2, \lambda_3 = \pm \sqrt{\frac{17}{4}} = \lambda^2 \Rightarrow \lambda_3 = \lambda_3 =$$

Adi Dereviani Prager, 305674731 Nitzan Gov, 203639646

$$x_{1} = \frac{-4}{\sqrt{\frac{17}{4}}} = -\frac{8\sqrt{17}}{17} \quad y_{1} = \frac{1}{\sqrt{\frac{17}{4} \cdot 2}} = \frac{\sqrt{17}}{17} \qquad x_{2} = \frac{-4}{-\sqrt{\frac{17}{4}}} = \frac{8\sqrt{17}}{17}, \quad y_{2} = \frac{1}{-\sqrt{\frac{17}{4} \cdot 2}} = -\frac{\sqrt{17}}{17}$$

$$f(x_{1}, y_{1}) = 2 \cdot -\frac{8\sqrt{17}}{17} - \frac{\sqrt{17}}{17} = -\sqrt{17}$$

$$f(x_{2}, y_{2}) = 2 \cdot \frac{8\sqrt{17}}{17} + \frac{\sqrt{17}}{17} = \sqrt{17}$$

(x1,y1) is the minimum, (x2,y2) is the maximum of the function with the given constraint.

Question 5: The answers for this question are in the Jupyter Notebook.