

1 **CLAIMS:**

2 1. A method of forming an isolation trench in a semiconductor
3 comprising:

4 forming a first isolation trench portion having a first depth and
5 having a first sidewall intersecting a surface of the semiconductor at a
6 first angle;

7 forming a second isolation trench portion within and extending
8 below the first isolation trench portion, the second isolation trench
9 portion having a second depth and including a second sidewall intersecting
10 the first sidewall at an angle with respect to the surface that is greater
11 than the first angle; and

12 filling the first and second isolation trench portions with dielectric
13 material.

14
15 2. The method of claim 1, wherein forming a second isolation
16 trench portion includes forming the second angle to be between eighty
17 and ninety degrees.

18
19 3. The method of claim 1, wherein forming a first isolation
20 trench portion includes forming the first angle to be in a range of from
21 about thirty degrees to about seventy degrees and forming a second
22 isolation trench portion includes forming the second angle to be more
23 than eighty degrees.

1 4. The method of claim 1, wherein forming an isolation trench
2 in a semiconductor comprises forming an isolation trench in silicon.

3

4 5. The method of claim 1, wherein forming a first isolation
5 trench portion comprises:

6 forming a silicon nitride layer on the semiconductor surface;
7 forming a masking layer having an opening disposed therein atop
8 the silicon nitride layer, the opening including sidewalls;

9 plasma etching through the silicon nitride layer using conditions that
10 also deposit a polymer on the sidewalls;

11 continuing etching for a predetermined time interval after the
12 silicon nitride layer has been broached and continuing to deposit polymer
13 on the sidewalls; and

14 stopping the etching and depositing at the end of the
15 predetermined time interval.

16

17 6. The method of claim 5, wherein etching and depositing
18 comprises:

19 providing a mixture of gasses chosen from a group consisting of
20 CF₄, CHF₃, CH₂F₂ and C₂F₈; and

21 supplying radio frequency excitation to the mixture.

1 7. The method of claim 5, wherein etching and depositing
2 comprises:

3 providing fluorocarbon gases; and
4 supplying radio frequency excitation to the mixture.

5

6 8. The method of claim 1, wherein forming the first isolation
7 trench portion comprises plasma etching the first isolation trench portion
8 using gases including CF_4 and CHF_3 in a ratio of $\text{CF}_4/\text{CHF}_3 = 0.11$
9 to 0.67.

10

11 9. The method of claim 1, wherein forming the first isolation
12 trench portion comprises:

13 forming a silicon nitride layer on the semiconductor surface;
14 forming a masking layer having an opening disposed therein atop
15 the silicon nitride layer, the opening including sidewalls;
16 plasma etching through the silicon nitride layer using gases including
17 CF_4 and CHF_3 in a ratio of $\text{CF}_4/\text{CHF}_3 = 0.11$ to 0.67;
18 depositing a polymer on the sidewalls during plasma etching;
19 continuing etching for a predetermined time after the silicon nitride
20 layer has been broached and continuing depositing polymer on the
21 sidewalls; and
22 stopping etching and depositing when the predetermined interval
23 ends.

1 10. The method of claim 1, wherein forming a first isolation
2 trench portion comprises forming a first isolation trench portion having
3 a first depth of between five and fifty percent of a total trench depth.

4

5 11. The method of claim 1, further comprising planarizing the
6 dielectric material filling the first and second isolation trench portions.

7

8 12. The method of claim 1, wherein forming a first isolation
9 trench portion comprises forming a first isolation trench portion including
10 a sidewall at least some of which forms a substantially straight linear
11 segment.

12

13 13. A method of forming an isolation trench in a surface of a
14 silicon wafer comprising:

15 forming a mask on the surface, the mask including an opening and
16 sidewalls; and

17 etching the silicon surface using gases including CF_4 and CHF_3 in
18 a ratio of $\text{CF}_4/\text{CHF}_3 = 0.11$ to 0.67 to form a first isolation trench
19 portion.

1 14. The method of claim 13, wherein etching the silicon surface
2 includes forming a first isolation trench portion having a first sidewall
3 that intersects the silicon surface at an angle in a range of from about
4 thirty degrees to about seventy degrees.

5

6 15. The method of claim 14, wherein forming a first isolation
7 trench portion comprises forming a first isolation trench portion including
8 a sidewall at least some of which forms a substantially straight linear
9 segment.

10

11 16. The method of claim 13, further comprising forming a second
12 isolation trench portion within and extending below the first isolation
13 trench portion, the second isolation trench portion including a second
14 sidewall intersecting the first sidewall at an angle with respect to the
15 surface that is greater than the first angle.

16

17 17. The method of claim 16, wherein forming a first isolation
18 trench portion comprises forming a first isolation trench portion having
19 a first depth of between five and fifty percent of a total trench depth.

20

21

22

23

1 18. The method of claim 17, further comprising:
2 filling the first and second isolation trench portions with dielectric
3 material; and
4 planarizing the dielectric material filling the first and second
5 isolation trench portions.

6

7 19. The method of claim 13, wherein forming a mask comprises:
8 forming a silicon nitride layer on the semiconductor surface; and
9 forming a masking layer having an opening disposed therein atop
10 the silicon nitride layer, the opening including sidewalls.

11

12 20. The method of claim 19, wherein etching the surface
13 comprises:

14 plasma etching through the silicon nitride layer;
15 continuing etching for a predetermined time interval after the
16 silicon nitride layer has been broached and continuing to deposit polymer
17 on the sidewalls; and
18 stopping the etching and depositing at the end of the
19 predetermined time interval.

1 21. The method of claim 19, further comprising forming a second
2 isolation trench portion within and extending below the first isolation
3 trench portion, the second isolation trench portion having a second depth
4 and including a second sidewall intersecting the first sidewall at an angle
5 with respect to the surface that is greater than the first angle.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1 22. A method of forming an isolation trench-isolated transistor
2 comprising:

3 forming first and second isolation trenches disposed to a respective
4 side of a portion of silicon, forming the first and second isolation
5 trenches comprising:

6 forming a mask on the surface, the mask including first and
7 second openings corresponding to the first and second isolation
8 trenches;

9 forming a first isolation trench portion in each of the first
10 and second openings, each first isolation trench portion having a
11 first depth and having a first sidewall intersecting a surface of the
12 semiconductor at a first angle; and

13 forming a second isolation trench portion within and
14 extending below each of the first isolation trench portions, the
15 second isolation trench portions having a second depth and
16 including a second sidewall intersecting a respective one of the first
17 sidewalls at an angle with respect to the surface that is greater
18 than the first angle; the method further comprising:

19 filling the first and second isolation trench portions with dielectric
20 material;

21 forming a gate extending across the silicon portion from the first
22 isolation trench to the second isolation trench; and

23 forming source and drain regions extending between the first and

1 second isolation trench portions, the source region being disposed adjacent
2 one side of the gate and the drain region being disposed adjacent
3 another side of the gate that is opposed to the one side.

4

5 23. The method of claim 22, wherein forming a first isolation
6 trench portion comprises etching the silicon surface using gases including
7 CF_4 and CHF_3 in a ratio of $\text{CF}_4/\text{CHF}_3 = 0.11$ to 0.67 .

8

9 24. The method of claim 22, wherein forming a mask comprises:
10 forming a silicon nitride layer on the semiconductor surface; and
11 forming a masking layer having an opening disposed therein atop
12 the silicon nitride layer, the opening including sidewalls.

13

14 25. The method of claim 22, wherein forming a first isolation
15 trench portion comprises:

16 plasma etching through the silicon nitride layer using conditions that
17 also deposit a polymer on the sidewalls;
18 continuing etching for a predetermined time after the silicon nitride
19 layer has been broached and continuing to deposit polymer on the
20 sidewalls; and
21 stopping the etching and depositing at the end of the
22 predetermined interval.

1 26. The method of claim 25, wherein plasma etching comprises
2 etching using gases including CF₄ and CHF₃ in a ratio of
3 CF₄/CHF₃ = 0.11 to 0.67.

4

5 27. The method of claim 22, wherein forming a first isolation
6 trench portion comprises forming a first isolation trench portion having
7 a first sidewall intersecting a surface of the semiconductor at an angle
8 in a range of from about thirty degrees to about seventy degrees.

9

10 28. The method of claim 22, wherein forming a first isolation
11 trench portion comprises forming a first isolation trench portion including
12 a sidewall at least some of which forms a substantially straight linear
13 segment.

14

15 29. The method of claim 27, wherein forming a second isolation
16 trench portion comprises forming a second isolation trench portion having
17 a second sidewall forming an angle of more than eighty degrees with the
18 surface.

19

20 30. The method of claim 22, wherein forming a first isolation
21 trench portion comprises forming a first isolation trench portion having
22 a first depth of between five and fifty percent of a total trench depth.

23

31. The method of claim 30, further comprising planarizing the dielectric material filling the first and second isolation trench portions.

32. The method of claim 22, wherein forming a gate comprises forming a gate comprising polysilicon.

1 33. A trench-isolated transistor comprising:

2 first and second isolation trenches each disposed on a respective
3 side of a portion of silicon, the first and second isolation trenches each
4 comprising:

5 a first isolation trench portion having a first depth and
6 having a first sidewall intersecting a surface of the silicon at a first
7 angle;

8 a second isolation trench portion within and extending below
9 the first isolation trench portion, the second isolation trench portion
10 having a second depth and including a second sidewall intersecting
11 the first sidewall at an angle with respect to the surface that is
12 greater than the first angle; and

13 a dielectric material filling the first and second isolation
14 trench portions, the transistor further comprising:

15 a gate extending across the silicon portion from the first
16 isolation trench to the second isolation trench; and

17 source and drain regions extending between the first and
18 second isolation trench portions and across the silicon portion, the
19 source region being disposed adjacent one side of the gate and the
20 drain region being disposed adjacent another side of the gate that
21 is opposed to the one side.

1 34. The trench-isolated transistor of claim 33, wherein the first
2 isolation trench portion comprises a sidewall at least some of which forms
3 a substantially straight linear segment.

4

5 35. The trench-isolated transistor of claim 33, wherein the second
6 angle is between eighty and ninety degrees.

7

8 36. The trench-isolated transistor of claim 33, wherein the first
9 angle is in a range of from about thirty degrees to about seventy degrees
10 and the second angle is more than eighty degrees.

11

12 37. The trench-isolated transistor of claim 33, wherein the first
13 isolation trench portion has a first depth of between five and fifty
14 percent of a total trench depth.

15

16 38. The trench-isolated transistor of claim 33, wherein the
17 dielectric material filling the first and second isolation trench portions has
18 a planar surface.

19

20 39. The trench-isolated transistor of claim 33, wherein the first
21 angle is in a range of from about thirty degrees to about seventy
22 degrees.

1 40. The trench-isolated transistor of claim 39, wherein the second
2 angle is in a range of from eighty to ninety degrees.

3

4 41. The trench-isolated transistor of claim 33, wherein the
5 transistor is formed as a part of a memory integrated circuit.

6

7 42. A trench isolation structure formed in a semiconductor
8 comprising:

9 a first isolation trench portion having a first depth and having a
10 first sidewall intersecting a surface of the semiconductor at a first angle;

11 a second isolation trench portion within and extending below the
12 first isolation trench portion, the second isolation trench portion having
13 a second depth and including a second sidewall intersecting the first
14 sidewall at an angle with respect to the surface that is greater than the
15 first angle; and

16 a dielectric material filling the first and second isolation trench
17 portions.

18

19 43. The trench isolation structure of claim 42, wherein the first
20 isolation trench portion comprises a sidewall at least some of which forms
21 a substantially straight linear segment.

1 44. The trench isolation structure of claim 42, wherein the first
2 angle is in a range of from about thirty degrees to about seventy degrees
3 and the second angle is more than eighty degrees.

4

5 45. The trench isolation structure of claim 42, wherein the first
6 angle is in a range of from about thirty degrees to about seventy
7 degrees.

8

9 46. The trench isolation structure of claim 42, wherein the first
10 isolation trench portion has a first depth of between five and fifty
11 percent of a total trench depth.

12

13 47. The trench isolation structure of claim 42, wherein the trench
14 isolation structure is formed in a memory integrated circuit.

15

16

17

18

19

20

21

22

23

1 48. A memory cell including:

2 · a capacitor;

3 a trench-isolated transistor having a gate, a drain and a source, the
4 source being coupled to one terminal of the capacitor, the trench-isolated
5 transistor including:

6 first and second isolation trenches each disposed on a respective
7 side of a portion of silicon, the first and second isolation trenches each
8 comprising:

9 a first isolation trench portion having a first depth and
10 having a first sidewall intersecting a surface of the silicon at a first
11 angle;

12 a second isolation trench portion within and extending below
13 the first isolation trench portion, the second isolation trench portion
14 having a second depth and including a second sidewall intersecting
15 the first sidewall at an angle with respect to the surface that is
16 greater than the first angle; and

17 a dielectric material filling the first and second isolation
18 trench portions;

19 the transistor further comprising:

20 a gate extending across the silicon portion from the first
21 isolation trench to the second isolation trench; and

22 source and drain regions extending between the first and
23 second isolation trench portions and across the silicon portion, the

1 source region being disposed adjacent one side of the gate and the
2 drain region being disposed adjacent another side of the gate that
3 is opposed to the one side;

4 the memory cell further including:

5 a bitline coupled to the drain; and
6 a wordline coupled to the gate.

7

8 49. The memory cell of claim 48, wherein the gate comprises
9 polysilicon.

10

11 50. The memory cell of claim 48, wherein the first isolation
12 trench portion comprises a sidewall at least some of which forms a
13 substantially straight linear segment.

14

15 51. The memory cell of claim 48, wherein the first angle is in
16 a range of from about thirty degrees to about seventy degrees and the
17 second angle is more than eighty degrees.

18

19 52. The memory cell of claim 48, wherein the first angle is in
20 a range of from about thirty degrees to about seventy degrees.

1 53. The memory cell of claim 48, wherein the first isolation
2 trench portion has a first depth of between five and fifty percent of a
3 total trench depth.

4

5 54. The memory cell of claim 48, wherein the memory cell is
6 included within a DRAM integrated circuit.

1 55. A DRAM comprising:

2 address decoding circuitry;

3 a group of bitlines coupled to the address decoding circuitry and

4 extending in a first direction;

5 a group of wordlines coupled to the address decoding circuitry and

6 extending in a second direction, each wordline in the group of wordlines

7 intersecting each of the bitlines in the group of bitlines once at an

8 intersection;

9 a plurality of memory cells each disposed at one of the

10 intersections, each memory cell comprising:

11 a capacitor;

12 a trench-isolated transistor having a gate, a drain and a

13 source, the source being coupled to one terminal of the capacitor,

14 the trench-isolated transistor including:

15 first and second isolation trenches each disposed on a

16 respective side of a portion of silicon, the first and second isolation

17 trenches each comprising:

18 a first isolation trench portion having a first depth and

19 having a first sidewall intersecting a surface of the silicon at

20 a first angle;

21 a second isolation trench portion within and extending

22 below the first isolation trench portion, the second isolation

23 trench portion having a second depth and including a second

1 sidewall intersecting the first sidewall at an angle with respect
2 to the surface that is greater than the first angle; and
3 a dielectric material filling the first and second isolation
4 trench portions;

5 the transistor further comprising:

6 a gate extending across the silicon portion from the
7 first isolation trench to the second isolation trench; and

8 source and drain regions extending between the first
9 and second isolation trench portions and across the silicon
10 portion, the source region being disposed adjacent one side
11 of the gate and the drain region being disposed adjacent
12 another side of the gate that is opposed to the one side;

13 each memory cell further including:

14 one bitline of the group of bitlines coupled to the drain; and
15 one wordline of the group of wordlines coupled to the gate.

16
17 56. The DRAM of claim 55, wherein the first isolation trench
18 portion comprises a sidewall at least some of which forms a substantially
19 straight linear segment.

20
21 57. The DRAM of claim 55, wherein the gate comprises
22 polysilicon.

1 58. The DRAM of claim 55, wherein the first angle is in a range
2 of from about thirty degrees to about seventy degrees and the second
3 angle is more than eighty degrees.

4

5 59. The DRAM of claim 55, wherein the first angle is in a range
6 of from about thirty degrees to about seventy degrees.

7

8 60. The DRAM of claim 55, wherein the first isolation trench
9 portion has a first depth of between five and fifty percent of a total
10 trench depth.

11

12 61. The DRAM of claim 55, wherein the dielectric material filling
13 the first and second isolation trench portions includes a planar outer
14 surface.

15
16
17
18
19
20
21
22
23