Problema 1. Să se determine mulțimile X, Y a.î.

(i) $X \cup Y = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, (ii) $X \cap Y = \{4, 6, 9\}$, (iii) $X \cup \{3, 4, 5\} = \{1, 3, 4, 5, 6, 8, 9\}$, (iv) $Y \cup \{2, 4, 8\} = \{2, 4, 5, 6, 7, 8, 9\}$.

Soluție: Din (ii) avem $\{4,6,9\} \subset X,Y$. Trebuie să vedem care sunt elementele ce trebuiesc adăugate la mulțimea $\{4,6,9\}$ pentru a fi îndeplinite condițiile condițiile (iii) și (iv).

$$\underbrace{X \cap Y = \{4,6,9\}}_{X \cup \{3,5\}} \underbrace{Y \cup \{2,8\}}_{\{2,4,5,6,7,8,9\}} \quad \text{4 este în } X \neq Y$$

Obţinem $X = \{1, 4, 6, 8, 9\}$ şi $Y = \{4, 5, 6, 7, 9\}$. Vedem că acestea verifică toate condiţiile.

Problema 2. Fie funcția $f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}, f(x,y) = x^2 - y^2$. Arătați că $\text{Im}(f) = \mathbb{Z} \setminus \{4k + 2 | k \in \mathbb{Z}\}$. Cu Im(f) am notat imaginea funcției f. $\text{Im}(f) = \{z \in \mathbb{Z} \mid (\exists)(x,y) \in \mathbb{Z} \times \mathbb{Z} \text{ a. î. } f(x,y) = z\}$.

Soluţie: Notăm clasele de resturi modulo 4 cu: $\hat{0} = \{4k \mid k \in \mathbb{Z}\}$, $\hat{1} = \{4k+1 \mid k \in \mathbb{Z}\}$, $\hat{2} = \{4k+2 \mid k \in \mathbb{Z}\}$, $\hat{3} = \{4k+3 \mid k \in \mathbb{Z}\}$. După cum se știe din clasa a XII-a acestea se pot aduna și înmulți. Astfel avem $\hat{0}^2 = \hat{0}$, $\hat{1}^2 = \hat{1}$, $\hat{2}^2 = \hat{0}$, $\hat{3}^2 = \hat{1}$. De exemplu considerăm $(4k+3) \in \hat{3}$. $(4k+3)^2 = 16k^2 + 24k + 9 = 4(4k^2 + 6k + 2) + 1 \in \hat{1}$. Deci pentru $x \in \mathbb{Z} \Rightarrow \hat{x}^2 \in \{\hat{0}, \hat{1}\}$. Pentru $x, y \in \mathbb{Z}$ avem $x^2 - y^2 \in \{\hat{0}, \hat{1}, -\hat{1} = \hat{3}\}$. Acest calcul arată că $\nexists z \in \mathbb{Z}$. a.î. $z^2 \in \hat{2}$. Deci avem incluziunea " \subseteq ".

"⊇": Pentru numerele de tipul $4k, 4k+1, 4k+3, k \in \mathbb{Z}$ arătăm că sunt diferențe de pătrate de numere întregi.

$$4k = (k+1)^2 - (k-1)^2 = (k+1+k-1)(k+1-k+1) = 2k \cdot 2 = 4k$$

$$4k+1 = (2k+1)^2 - (2k)^2 \text{ si } 4k+3 = (2k+2)^2 - (2k+1)^2$$

Problema 3. Fie funcția $f: \longrightarrow \mathbb{R}$, $f(x,y) = (x-\sqrt{2})^2 + (y-\frac{1}{3})^2$. Arătați că f este injectivă. $(\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}.)$

Soluție: f(x,y) este pătratul distanței în plan de la (x,y) la $(\sqrt{2},\frac{1}{3})=\omega$. Din definiție f este injectivă $\Leftrightarrow [(\forall)(x,y)\neq(x',y')\in\mathbb{Z}^2\Rightarrow f(x,y)\neq f(x',y').$

Fie $f(x,y) = f(x',y') \Leftrightarrow (x-\sqrt{2})^2 + (y-\frac{1}{3})^2 = (x'-\sqrt{2})^2 + (y'-\frac{1}{3})^2$. Desfacem pătratele, reducem termenii asemenea și obținem

$$x^2 - x'^2 + y^2 - y'^2 - \frac{2}{3}(y - y') = 2\sqrt{2}(x - x')$$

Ştim că $x,y,x',y' \in \mathbb{Z}$. Dacă $x \neq x'$ atunci $\sqrt{2} = \frac{x^2 - x'^2 + y^2 - y'^2 - \frac{2}{3}(y-y')}{2(x-x')} \in \mathbb{Q}$, ceea ce este absurd. Deci x = x'. Egalitatea devine $y^2 - y'^2 - \frac{2}{3}(y-y') = 0 \Leftrightarrow (y-y')(y+y'-\frac{2}{3}) = 0$. Dacă $y \neq y'$ atunci $y + y' = \frac{2}{3} \in \mathbb{Z}$, ceea ce este o contradinție. Deci avem și y = y'. Am obținut: $f(x,y) = f(x',y') \Rightarrow (x,y) = (x',y')$, adică f este injectivă.

Problema 4. Considerăm funția $f: \mathcal{P}(\{1,2,3,4\}) \longrightarrow \mathcal{P}(\{1,2\}) \times \mathcal{P}(\{1,3\})$, definită prin $f(A) = (A \cap \{1,2\}, A \cap \{1,3\})$. Să se expliciteze f și să se verifice dacă este injectivă sau surjectivă.

1

Soluție: $|\mathcal{P}(\{1,2,3,4\})| = 2^4$. În general numărul submulțimilor mulțimii $[n] = \{1,2,\ldots,n\}$ este 2^n . Deci numărul elementelor mulțimii $\mathcal{P}(\{1,2\}) \times \mathcal{P}(\{1,3\})$ este $2^2 \cdot 2^2 = 2^4 = 16$.

De exemplu $f(\emptyset) = (\emptyset, \emptyset) = f(\{4\}), f(\{1\}) = (\{1\}, \{1\}) = f(\{1, 4\})$. Deci f nu este injectivă. Cum f o funcție între mulțimi de același cardinal și f nu este injectivă, atunci nu poate fi nici surjectivă.

De exemplu ($\{1\},\emptyset$) \notin Im(f). $\{1\}$ pe prima componentă se obține din intersecția mulțimii $\{1,2\}$ cu $\{1\}$, $\{1,3\}$, $\{1,4\}$ sau cu $\{1,3,4\}$. Dar pe a două poziție avem intersecția dintre $\{1,3\}$ și una dintre aceste mulțimi iar această intersecție este diferită de \emptyset . Similar(\emptyset , $\{1\}$) \notin Im(f).

Problema 5. Fie $a, b \in \mathbb{N}^*$, $A = [a] = \{1, 2, ..., a\}$, $B = [b] = \{1, 2, ..., b\}$. Arătați că:

- (i) Numărul funcțiilor $f: A \longrightarrow B$ este b^a .
- (ii) Dacă $a \leq b$, numărul funcțiilor injective $A \longrightarrow B$ este $\frac{b!}{(b-a)!}$.
- (iii) Numărul funcțiilor strict crescătoare $A \longrightarrow B$ este $C_b^a = \binom{b}{a}$. (iv) Numărul funcțiilor crescătoare $A \longrightarrow B$ este $C_{a+b-1}^a = \binom{a+b-1}{a}$.

Solutie:

- (i) Pentru (\forall) $j \in [a], f(j) \in [b]$. Deci f(j) poate lua oricare dintre cele b valori. O funcție între două mulțimi finite este caracterizată de mulțimea valorilor sale, adică de imagine, care în acest caz este $f(1), f(2), \ldots, f(a)$, sau fără virgule $f(1)f(2) \ldots f(a)$. Deci fiecare funcție de la A la B poate fi gândită ca un cuvânt de lungime a cu litere în alfabetul [b]. Astfel numărul funcțiilor de la A la B este egal cu numărul cuvintelor de lungime a cu litere în alfabetul [b]. Cum fiecare literă a cuvântului poate lua b valori, numărul acestor cuvinte este b^a , care este și numărul tuturor funcțiilor de la A la B.
- (ii) Funcțiile injective $f:A\longrightarrow B$ se identifică cu acele cuvinte lungime a cu litere distincte în alfabetul [b]. Deci prima literă poate lua b valori, dar odatfixată această literă următoarea literă poate fi oricare dintre cele b elemente, mai puțin cea aleasă pe prima poziție, deci pentru a doua poziție avem la dispoziție b-1 alegeri. Similar, pentru a treia poziție, odată fixate valorile primelor două poziții, vom avea b-2 alegeri. În sfârșit pentru ultima vom avea b-a+1 alegeri. Deci mulțimea funcțiilor injective $f:A\longrightarrow B$ este $b(b-1)(b-2)\dots(b-a+1)=\frac{b!}{(b-a)!}$.
- (iii) Fie $f: A \longrightarrow B$, f strict crescătoare $\Leftrightarrow 1 \leq f(1) = x_1 < f(2) = x_2 < \ldots < f(a) = x_a \leq b$. Deci a da o funcție strict crescătoare de la A la $B \Leftrightarrow$ a da un șir de elemente $1 \leqslant x_1 < x_2 <$ $\dots x_a \leq b \Leftrightarrow$ a da o submulțime cu a elemente a lui B. Numărul acestor submulțimi, prin definiție este C_b^a , în notație anglo-americană $\binom{b}{a}$.
- (iv) Fie $f:A\longrightarrow B$, f crescătoare. Imaginea unei astfel de funcții este $1\leqslant f(1)=x_1\leqslant$ $f(2) = x_2 \leqslant \ldots \leqslant f(a) = x_a \leqslant b \Leftrightarrow 1 \leqslant x_1 < x_2 + 1 < x_3 + 2 < \ldots x_a + a - 1 \leqslant b + a - 1.$ Deci a da o funcție crescătoare este echivalent cu a da o submulțime de cardinal a din mulțimea $\{1, 2, \dots, b+a-1\}$. Numărul acestor submulțimi este prin definiție $C_{b+a-1}^a = {b+a-1 \choose a}$.

Problema 6. (Principiul includerii-excluderii) Pentru orice mulțime finită X notăm cu |X|cardinalul acesteia, adică numărul de elemente. Fie A_1, \ldots, A_n mulțimi finite. Atunci

$$|\bigcup_{i=1}^{n} A_i| = \sum_{K \subset [n]} (-1)^{|K|+1} |\bigcap_{i \in K} A_i|.$$

Pentru n=2, avem formula binecunoscută $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$.

Soluție: Pentru n=2 formula de mai sus se demonstrază ușor și foarte intuitiv cu diagrame Venn. De fapt, orice element din $A_1 \cup A_2$ este sau din A_1 sau din A_2 , cele din intersecția $A_1 \cap A_2$ fiind numărate și în A_1 și în A_2 . Deci trebuie să le scădem o dată.

Se face inducție după n. Să demonstrăm $P2 \longrightarrow P3$: Avem trei mulțimi finite, A_1, A_2, A_3 și vom considera $A_1 \cup A_2$ o mulțime și A_3 a doua mulțime. APlicăm P2. Deci

$$\begin{split} |A_1 \cup A_2 \cup A_3| &= |(A_1 \cup A_2) \cup A_3| = |A_1 \cup A_2| + |A_3| - |(A_1 \cup A_2) \cap A_3|, \text{folosind } P2 \text{ obţinem} = \\ &= |A_1| + |A_2| - |A_1 \cap A_2| + |A_3| - |(A_1 \cap A_3) \cup (A_2 \cap A_3)| = \\ &= |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3| \\ \text{Temă Demonstrați} \ P3 \longrightarrow P4 \text{ şi } Pn \longrightarrow P(n+1). \end{split}$$

Problema 7. Să se determine numărul funțiilor surjective $[k] \longrightarrow [n]$, unde $k \ge n$.

Soluție: Numărul funcțiilor surjective este n^k minus numărul funcțiilor ce nu sunt surjective. O funcție $f:[k] \longrightarrow [n]$ dacă există cel puțin $i \in [n]$ a.î. $i \notin \text{Im}(f)$.

Notăm cu $N_i = \{f : [k] \longrightarrow [n] | i \notin \operatorname{Im}(f) \}$. Funcțiile ce nu sunt surjective sunt cele din $\bigcup_{i=1}^n N_i$, iar numărul acestora, folosind principiul includerii-excluderii este $|\bigcup_{i=1}^n N_i| = \sum_{K \subset [n]} (-1)^{|K|+1} |\bigcap_{i \in K} N_i|$. $|N_i| = (n-1)^k$, pentru că N_i este mulțimea funcțiilor de la mulțimea [k] la mulțimea $[n] \setminus \{i\}$ de cardinal n-1. Similar pentru o mulțime de indici $K \subset [n]$, de cardinal p, avem avem $|\bigcap_{i \in K} N_i| = (n-p)^k$.

Deci numărul funcțiilor surjective este $n^k - |\bigcup_{i=1}^n N_i| = n^k - \sum_{K \subset [n]} (-1)^{|K|+1} |\bigcap_{i \in K} N_i| = n^k + \sum_{K \subset [n]} (-1)^{|K|} |\bigcap_{i \in K} N_i| = n^k + \sum_{p=1, K \subset [n], |K|=p} (-1)^{|K|} |\bigcap_{i \in K} N_i| = n^k + \sum_{p=1}^n (-1)^p C_n^p (n-p)^k = n^k - C_n^1 (n-1)^k + C_n^2 (n-2)^k - \dots (-1)^{n-1} C_n^{n-1} 1^k.$

Problema 1. Fie multimile $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$ și funcția $f: A \longrightarrow B$ dată prin

$$1 \mapsto a, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$$

Pentru orice $X \subset A$ și orice $Y \subset B$, calculați f(X) și respectiv $f^{-1}(Y)$.

Soluție: Submulțimile mulțimii A sunt în număr de $2^4 = 16$. Acestea sunt \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}.$

Imaginea directă a acestor multimi este $f(\emptyset) = \emptyset, f(\{1\}) = \{a\}, f(\{2\}) = \{b\}, f(\{3\}) = \{b\}, f(\{3\})$ $\{c\}, f(\{4\}) = \{d\}, f(\{1,2\}) = \{a,b\}, f(\{1,3\}) = \{a,c\}, f(\{1,4\}) = \{a,d\}, f(\{2,3\}) = \{b,c\}, f(\{1,4\}) = \{a,b\}, f(\{1,4\})$ $f(\{2,4\}) = \{b,d\}, f(\{3,4\}) = \{c,d\}, f(\{1,2,3\}) = \{a,b,c\}, f(\{1,2,4\}) = \{a,b,d\},$ $f(\{1,3,4\}) = \{a,c,d\}, f(\{2,3,4\}) = \{b,c,d\}, f(\{1,2,3,4\}) = \{a,b,c,d\}.$

Imaginile inverse ale submulțimilor mulțimii $\{a, b, c, d\}$ sunt

 $f^{-1}(\emptyset) = \emptyset, f^{-1}(\{a\}) = \{1\}, f^{-1}(\{b\}) = \{2\}, f^{-1}(\{c\}) = \{3\}, f^{-1}(\{d\}) = \{4\}, f^{-1}(\{a,b\}) = \{4\},$ $\{1,2\}, f^{-1}(\{a,c\}) = \{1,3\}, f^{-1}(\{a,d\}) = \{1,4\}, f^{-1}(\{b,c\}) = \{2,3\}, f^{-1}(\{b,d\}) = \{2,4\},$ $f^{-1}(\{c,d\}) = \{3,4\}, f^{-1}(\{a,b,c\}) = \{1,2,3\}, f^{-1}(\{a,b,d\}) = \{1,2,4\}, f^{-1}(\{a,c,d\}) = \{1,3,4\}, f^{-1}(\{a,b,d\}) = \{1,2,4\}, f^{-1}(\{a,c,d\}) = \{1,3,4\}, f^{-1}(\{a,b,d\}) = \{1,2,4\}, f^{-1}(\{a,c,d\}) = \{1,2,$ $f^{-1}(\{b,c,d\}) = \{2,3,4\}, f^{-1}(\{a,b,c,d\}) = \{1,2,3,4\}.$

Problema 2. Pentru orice mulțimi X, Y notăm cu H(X, Y) mulțimea funcțiilor de la X la Y. Fie A, B, C trei mulțimi nevide și fie funcția

$$\alpha: H(A, H(B, C)) \to H(A \times B, C)$$

definită prin $\alpha(f)(a,b) = f(a)(b)$ pentru orice $f \in H(A,H(B,C)), a \in A, b \in B$.

- (i) Arătați că α este bijectivă,

(ii) Explicitați
$$\alpha(f)$$
 pentru $f \in H(\{1,2,3\}, H(\{4,5,6\}, \{a,b,c,d\}))$, dată prin $f(1) = \begin{pmatrix} 4 & 5 & 6 \\ a & b & d \end{pmatrix}, f(2) = \begin{pmatrix} 4 & 5 & 6 \\ b & a & c \end{pmatrix}, f(3) = \begin{pmatrix} 4 & 5 & 6 \\ c & c & a \end{pmatrix}.$

Solutie:

(i) Fig $f,g \in H(A,H(B,C))$, a.î. $\alpha(f) = \alpha(g) \Leftrightarrow (\forall)(a,b) \in A \times B$, $\alpha(f)(a,b) = \alpha(g)(a,b) \Leftrightarrow (\forall)(a,b) \in A \times B$ f(a)(b) = g(a)(b), egaltate valabilă pentru orice $b \in B \Rightarrow f(a) = g(a)$, egaltate valabilă pentru orice $a \in A \Rightarrow f = g$. Deci α este injectivă.

Considerăm o funcție $F: A \times B \longrightarrow C$. Definim $f: A \longrightarrow H(B,C)$ prin f(a)(b) := F(a,b). Prin definiția lui f, avem $\alpha(f) = F$. Deci α este surjectivă.

(ii)
$$\alpha(f)(1,4) = f(1)(4) = a, \alpha(f)(1,5) = f(1)(5) = b, \alpha(f)(1,6) = f(1)(6) = d, \alpha(f)(2,4) = f(2)(4) = b, \alpha(f)(2,5) = f(2)(5) = a, \alpha(f)(2,6) = f(2)(6) = c, \alpha(f)(3,4) = f(3)(4) = c, \alpha(f)(3,5) = f(3)(5) = c, \alpha(f)(3,6) = f(3)(6) = a.$$

Problema 3. Arătați că mulțimea \mathbb{Q} a numerelor raționale este numărabilă.

Soluție: \mathbb{Z}, \mathbb{N} sunt mulțimi numărabile. Folosind un rezultat din curs $\Rightarrow \mathbb{Z} \times \mathbb{N}^*$ este numărabilă iar \mathbb{Q} se identifică cu mulțimea claselor de echivalență $\mathbb{Z} \times \mathbb{N}^* / \sim$, unde $(x,y) \sim (p,q) \Leftrightarrow xq = yp$. Deci \mathbb{Q} este numărabilă.

1

Problema 4. Fie A o mulțime nevidă și $f: \mathcal{P}(A) \longrightarrow A$ o funcție. Notăm cu

$$B := A \setminus \{ f(X) \mid X \subseteq A, f(X) \in X \}$$

- (i) Arătați că există $D \in \mathcal{P}(A) \setminus \{B\}$ cu f(D) = f(B).
- (ii) Găsiți un D în cazul $A = \{1, 2, 3\}$ și

Soluție: (i) Fie f(B) = b. Dacă $b \in B$, atunci $f(B) = b \notin B$. O contradicție.

Deci $b \notin B \Leftrightarrow (\exists)D \subset A$ a.î. $f(D) = b \in D$. $D \neq B$ pentru că $b \in D \setminus B$ și f(D) = f(B).

Rezultă că nu există funcții injective de la mulțimea părților unei mulțimi $\mathcal{P}(A)$, la mulțimea nevidă A.

(ii) Pentru exemplul dat $\{f(X) \mid X \subseteq A, f(X) \in X\} = \{1\}, (X = A) \text{ iar } B = A \setminus \{1\} = \{2, 3\}.$ $f(\emptyset) = f(\{3\}) = f(A) = f(B) = 1$. Avem deci în acest caz trei exemple de mulţimi $D \neq B$ pentru care f(D) = f(B).

Problema 5. Fie A, B, C trei mulţimi. Arătaţi că $A\Delta(B\Delta C) = (A\Delta B)\Delta C$ unde $X\Delta Y = (X\backslash Y) \cup (Y\backslash X)$ este diferenţa simetrică a mulţimilor X, Y.

Soluție: $A\Delta(B\Delta C)=A\Delta B\Delta C=(A\Delta B)\Delta C$ este reprezentată în figura de mai jos de regiunea colorată cu albastru.

Figura 1: $A\Delta B\Delta C$

Problema 1. Fie $n \ge 1$ și notăm cu $\varphi(n)$ numărul întregilor pozitivi $\le n$ primi cu n (funcția φ se numește indicatorul lui Euler). Să se arate că

$$\varphi(n) = n(1 - \frac{1}{p_1})\dots(1 - \frac{1}{p_s})$$

unde $p_1, p_2, \dots p_s$ sunt factorii primi ai lui n.

Soluție: Un număr prim cu n este un număr k pentru care cel mai mare divizor comun (c. m. m. d. c.) al numerelor n și k este 1. Notația consacrată pentru c.m.m.d.c. $\{n,k\}$ este (n,k).

Considerăm descompunerea în factori primi ai lui $n = p_1^{r_1} p_2^{r_2} \dots p_s^{r_s}$.

Pentru fiecare $1 \leq j \leq s$ notăm cu $A_j = \{1 \leq k \leq n \mid p_j | k\}$ muțimea numerelor naturale cel mult egale cu n ce se divid cu p_i .

Dorim să calculăm numărul elementelor mulțimii $A_1 \cup A_2 \cup \ldots \cup A_n$. Numărul căutat este cardinalul complementarei acestei mulţimi, deci $\varphi(n) = n - |A_1 \cup A_2 \cup \dots A_n|$.

Pentru calculul $|A_1 \cup A_2 \cup \dots A_n|$ folosim principiul includerii-excluderii şi avem

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{L \subset [s]} (-1)^{|L|+1} |\cap_{i \in L} A_i|$$

Avem $A_j = \{p_j \cdot 1, p_j \cdot 2, p_j \cdot \frac{n}{p_j}\}$. Deci $|A_j| = \frac{n}{p_j}$.

$$A_{i_1} \cap A_{i_2} = \{1 \le k \le n \mid p_{i_1} \mid k \text{ si } p_{i_2} \mid k \} \text{ si } |A_{i_1} \cap A_{i_2}| = \frac{n}{p_{i_1} p_{i_2}}.$$

Similar pentru mulţimea de indici
$$L = \{i_1, i_2, \dots, i_l\}$$
, avem $A_{i_1} \cap \dots \cap A_{i_l} = \{1 \leq k \leq n \mid p_{i_1} | k , \dots , p_{i_l} | k \}$ ce are cardinalul $|A_{i_1} \cap \dots \cap A_{i_l}| = \frac{n}{p_{i_1} \dots p_{i_l}}$.

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^s (-1)^2 |A_i| + \sum_{1 \le i_1 < i_2 \le s} (-1)^3 |A_{i_1} \cap A_{i_2}| + \ldots + \sum_{1 \le i_1 < \ldots < i_l \le s} (-1)^{l+1} |A_{i_1} \cap \ldots \cap A_{i_l}| + \cdots + (-1)^{s+1} |A_1 \cap A_2 \cap \ldots A_s| = 0$$

$$=\sum_{i=1}^{s}\frac{n}{p_{i}}-\sum_{1\leqslant i_{1}\leqslant i_{2}\leqslant s}\frac{n}{p_{i_{1}}p_{i_{2}}}+\ldots+(-1)^{l+1}\frac{n}{p_{i_{1}}\ldots p_{i_{l}}}+(-1)^{s+1}\frac{n}{p_{i_{1}}\ldots p_{i_{s}}}.$$

Deci $\varphi(n) = n - |A_1 \cup A_2 \cup \ldots \cup A_n|$. Dând factor comun pe n şi schimbând semnele în suma de mai sus obținem

$$\varphi(n) = n\left(1 - \sum_{i=1}^{s} \frac{1}{p_i} + \sum_{1 \leq i_1 < i_2 \leq s} \frac{1}{p_{i_1} p_{i_2}} + \ldots + (-1)^l \frac{1}{p_{i_1} \dots p_{i_l}} + (-1)^s \frac{1}{p_{i_1} \dots p_{i_s}}\right) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_s}\right)$$

Problema 2. Arătați că numărul permutărilor fără puncte fixe ale mulțimii [n] este

$$n!(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!})$$

Soluție: Notăm cu $A_i = \{ \sigma \mid \sigma(i) = i \}$ mulțimea tuturor permutărilor lui [n] ce au pe i ca punct fix. Atunci $A_1 \cup A_2 \cup \ldots \cup A_n$ reprezintă toate permutările ce au puncte fixe. Trebuie să aflăm $|A_1 \cup A_2 \cup \ldots \cup A_n|$, iar numărul permutărilor fără puncte fixe este $n! - |A_1 \cup A_2 \cup \ldots \cup A_n|$, unde după cum bine se știe numărul permutărilor este n!.

Folosim din nou principiul includerii-excluderii

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{K \subset [n]} (-1)^{|K|+1} |\cap_{i \in K} A_i|$$

Pentru $K = \{i_1, i_2, \dots i_k\}$, avem $A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k} = \{\sigma \mid \sigma(i_j) = i_j, (\forall) 1 \leq j \leq k\} = \{\sigma : [n] \setminus K \longrightarrow [n] \setminus K \mid \sigma \text{ permutare} \}$. Deci $|A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| = (n-k)!$. Vedem că acest număr este același pentru toate mulțimile $K \subset [n]$ cu |K| = k. Avem $C_n^k = \binom{n}{k}$ submulțimi de cardinal k ale mulțimii [n].

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{K \subset [n], |K| = k} |\cap_{i \in K} A_i| = \sum_{k=1}^n (-1)^{k+1} C_n^k \cdot (n-k)! = \sum_{k=1}^n (-1)^{k+1} C$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k!(n-k)!} \cdot (n-k)! = \sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k!} = n! \sum_{k=1}^{n} (-1)^{k+1} \frac{1}{k!}$$

Numărul permutărilor fără puncte fixe este $n! - \sum_{k=1}^n (-1)^{k+1} \frac{1}{k!} = n! (1 + \sum_{k=1}^n (-1)^{k+2} \frac{1}{k!}) = n!$

$$= n!(1 + \sum_{k=1}^{n} (-1)^k \frac{1}{k!}) = n!(\sum_{k=0}^{n} (-1)^k \frac{1}{k!}).$$

Problema 3. Folosind definiția arătați că relația de congruență modulo n este relație de echivalență pe \mathbb{Z} .

Soluție: Pentru un $n \in \mathbb{N}, n \ge 2$ definim $x \equiv y \pmod{n} \Leftrightarrow n \mid (x-y) \Leftrightarrow x-y = n \cdot k, k \in \mathbb{Z}$. Arătăm că relația definită mai sus este reflexivă simetrică și tranzitivă.

- Reflexivitatea: $x x = 0 = n \cdot 0 \Rightarrow x \equiv x \pmod{n}$.
- Simetria: Fie $x \equiv y \pmod{n} \Leftrightarrow x y = n \cdot k \Rightarrow y x = n \cdot (-k)$. Cum $k \in \mathbb{Z} \Rightarrow (-k) \in \mathbb{Z}$. Deci $y \equiv x \pmod{n}$
- Tranzitivitatea: Fie $x \equiv y \pmod{n}$ și Fie $y \equiv z \pmod{n}, x-y=n \cdot p, y-z=n \cdot q$ cu $p,q \in \mathbb{Z}$. Atunci $x-z=x-y+y-z=n \cdot (p+q)$ și $p+q \in \mathbb{Z}$.

Problema 4. Considerăm relațiile α și β pe \mathbb{R} .

 $x\alpha y$ dacă $x-y\in\mathbb{Z}$ dacă $x-y\in\mathbb{Z}$ și $x\beta y$ dacă |x-y|<2. Să se studieze care din aceste relații sunt relații de echivalență.

Soluţie:

Relatia α :

- Reflexivitatea: $x x = 0 \in \mathbb{Z} \Rightarrow x\alpha x$
- Simetria: dacă $x y = k \in \mathbb{Z} \Rightarrow y x = -(x y) = -k \in \mathbb{Z}$. Deci $x\alpha y \Rightarrow y\alpha x$.
- Tranzitivitatea: dacă $x-y=p\in\mathbb{Z}$ și $y-z=q\in\mathbb{Z}$, atunci $x-z=x-y+y-z=p+q\in\mathbb{Z}$. Deci $x\alpha y$ și $y\alpha z\Rightarrow x\alpha z$.

Așadar α este relație de echivalență.

SEMINAR 3 3

Relația β :

• Reflexivitatea: $|x - x| = 0 < 2 \Rightarrow x\beta x$.

• Simetria: dacă $|x-y| < 2 \Rightarrow |-(y-x)| < 2 \Rightarrow |-1||(y-x)| < 2 \Rightarrow |y-x| < 2$, deci $x \ni y \Rightarrow y \ni x$.

• Tranzitivitatea: Relația β nu este tranzitivă: de exemplu |0-1,3|=1,3<2,|1,3-2,2|=0,9<2, dar |0-2,2|=2,2>2.

Deci relația β nu este o relație de echivalență pe \mathbb{R} .

Problema 5. Să se studieze injectivitatea și surjectivitatea funcției $f: \mathbb{R} \longrightarrow \mathbb{R}$ definită prin $f(x) = x^2 + 2x + 2$.

Soluţie: Vedem că $f(x) = (x+1)^2 + 1$.

- Injectivitatea: fie $x_1, x_2 \in \mathbb{R}$ a.î. $f(x_1) = f(x_2) \Leftrightarrow x_1^2 + 2x_1 = x_2^2 + 2x_2 \Leftrightarrow (x_1 x_2)(x_1 + x_2 + 2) = 0 \Rightarrow x_1 = x_2$ sau $x_1 = -x_2 2$. Deci f nu este injectivă pentru că f(-x 2) = f(x), şi $-x 2 \neq x$, $(\forall) x \in \mathbb{R} \setminus \{-1\}$.
- Surjectivitatea: trebuie să verificăm că pentru $(\forall)y \in \mathbb{R}, (\exists)x \in \mathbb{R}$ a.î. $f(x) = y \Leftrightarrow x^2 + 2x + 2 y = 0$. Soluțiile sunt $x_{1,2} = -1 \pm \sqrt{1 (2 y)} = -1 \pm \sqrt{y 1}$. Vedem că dacă y < 1 atunci soluțiile $x_{1,2} \notin \mathbb{R}$.

Funcția $f(x) = x^2 + 2x + 2 = (x+1)^2 + 1$ este bijectivă dacă considerăm $f: [-1, \infty) \longrightarrow [1, \infty)$, iar inversa este $f^{-1}: [1, \infty) \longrightarrow [-1, \infty), f^{-1}(x) = -1 + \sqrt{x-1}$. Verificați că $f \circ f^{-1} = \mathrm{id}_{[1,\infty)}$ și $f^{-1} \circ f = \mathrm{id}_{[-1,\infty)}$

Problema 6. Studiaţi dacă funţia $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \frac{x^3 + 3x}{2}$ este bijectivă şi inversa este

$$g: \mathbb{R} \longrightarrow \mathbb{R}, g(x) = \sqrt[3]{x + \sqrt{x^2 + 1}} + \sqrt[3]{x - \sqrt{x^2 + 1}}$$

Solutie:

- Injectivitatea: fie $x_1, x_2 \in \mathbb{R}$ a.î. $f(x_1) = f(x_2) \Leftrightarrow x_1^3 + 3x_1 = x_2^3 + 3x_2 \Leftrightarrow (x_1 x_2)(x_1^2 + x_1x_2 + x_2^2 + 3) = 0$. $x_1^2 + x_1x_2 + x_2^2 \ge 0$ pentru $(\forall)x_1, x_2 \in \mathbb{R}$. (Pentru $x_1 = x_2 = 0 \Rightarrow x_1^2 + x_1x_2 + x_2^2 = 0$. Pentru $(x_1, x_2) \ne (0, 0)$, $x_1^2 + x_1x_2 + x_2^2 = x_2^2((\frac{x_1}{x_2})^2 + \frac{x_1}{x_2} + 1)$. Trinomul din ultima paranteză este strict pozitiv pentru toate valorile reale ale fracției $\frac{x_1}{x_2}$). Deci $(x_1^2 + x_1x_2 + x_2^2 + 3) > 0$ pentru $(\forall)x_1, x_2 \in \mathbb{R}$. Astfel, $(x_1 x_2)(x_1^2 + x_1x_2 + x_2^2 + 3) = 0 \Rightarrow x_1 = x_2$, deci funcția este injectivă.
- Surjectivitatea: Menționez soluția ecuației de gradul 3. Fiecare ecuație de grad 3 se poate reduce printr-o schimbare de variabile la o ecuație de forma $x^3 + qx + r = 0$. Se caută rădăcină de forma $u = \alpha + \beta$. Avem $\alpha\beta = -\frac{q}{3}$ iar $\alpha^3 = \frac{1}{2}\left(-r + \sqrt{r^2 + \frac{4q^3}{27}}\right)$.

Fie $y \in \mathbb{R}$, dorim să găsim $x \in \mathbb{R}$ a.î. $f(x) = y \Leftrightarrow x^3 + 3x - 2y = 0$.

Căutăm soluție de tipul $\alpha + \beta$, unde $\alpha^3 = \frac{1}{2} \left(2y + \sqrt{(4y)^2 + \frac{4 \cdot 27}{27}} \right) = y + \sqrt{y^2 + 1}$, de unde $\alpha = \sqrt[3]{y + \sqrt{y^2 + 1}}$. Cum $y^2 + 1 > 0$ pentru $(\forall)y \in \mathbb{R}$, avem $\alpha \in \mathbb{R}$.

$$\beta = -\frac{1}{\alpha} = -\sqrt[3]{\frac{1}{y + \sqrt{y^2 + 1}}} = -\sqrt[3]{\frac{y - \sqrt{y^2 + 1}}{y^2 - (y^2 + 1)}} = \sqrt[3]{y - \sqrt{y^2 + 1}}.$$

Deci soluția ecuației f(x) = y este $u = \sqrt[3]{y + \sqrt{y^2 + 1}} + \sqrt[3]{y - \sqrt{y^2 + 1}} \in \mathbb{R}$, de unde tragem concluzia că f este surjectivă.

Deci funcția f este bijectivă. Verificați faptul că funcția g(x) dată în enunț (care vedeți că provine din rezolvarea ecuației f(x) = y) este inversa funcției f.

Problema 1. Considerăm relațiile γ și δ pe \mathbb{R} .

- (i) $x\gamma y$ dacă $x + y \in \mathbb{Z}$
- (ii) $x\delta y$ dacă $x + y\sqrt{2} \in \mathbb{R}\backslash\mathbb{Q}$.

Să se studieze dacă γ , δ sunt reflexive, simetrice, tranzitive.

Solutie:

(i) $\exists x \in \mathbb{R}$ pentru care $x + x \notin \mathbb{Z}$, de exemplu $1, 2 + 1, 2 \notin \mathbb{Z}$, sau $\sqrt{2} + \sqrt{2} = 2\sqrt{2} \notin \mathbb{Z}$. Deci γ nu este reflexivă.

Este simetrică: dacă $x\gamma y \Leftrightarrow x+y \in \mathbb{Z}. \ y+x=x+y \in \mathbb{Z} \Rightarrow y\gamma x.$

Nu este tranzitivă: $1, 3 + 0, 7 = 2 \in \mathbb{Z}$; $0, 7 + 2, 3 = 3 \in \mathbb{Z}$, dar $1, 3 + 2, 3 = 3, 6 \notin \mathbb{Z}$.

(ii) $x + x\sqrt{2} = x(1 + \sqrt{2})$. Dacă $\exists x \in \mathbb{R}$ a.î. $x(1 + \sqrt{2}) \in \mathbb{Q}$, atunci γ NU este reflexivă.

 $x(1+\sqrt{2}) = \frac{p}{q} \Leftrightarrow x = \frac{p}{q(1+\sqrt{2})} = \frac{p(1-\sqrt{2})}{q(-1)} = \frac{p}{q}(\sqrt{2}-1) \in \mathbb{R}. \text{ Deci } \delta \text{ NU este reflexivă. NU este nici simetrică. De exemplu } \sqrt{2}\delta 1 \text{ pentru că } \sqrt{2}+1\cdot\sqrt{2} \in \mathbb{R}\backslash\mathbb{Q}, \text{ dar } 1+\sqrt{2}\cdot\sqrt{2}=3 \in \mathbb{Z} \subset \mathbb{Q}, \text{ deci 1 nu este în relația } \delta \text{ cu } \sqrt{2}. \delta \text{ NU verifică nici axioma tranzitivității. De exemplu } \sqrt{2}\delta 1, 1\delta(\sqrt{2}-1), \text{ (avem } 1+(\sqrt{2}-1)\cdot\sqrt{2})=1+2-\sqrt{2}=3-\sqrt{2}\in\mathbb{R}\backslash\mathbb{Q}), \text{ dar } \sqrt{2}+(\sqrt{2}-1)\cdot\sqrt{2})=\sqrt{2}+2-\sqrt{2}=2\in\mathbb{Z}\subset\mathbb{Q}.$ Deci $\sqrt{2}$ nu este în relația δ cu $\sqrt{2}-1$.

Problema 2. Pe mulțimea numerelor complexe \mathbb{C} definim relația $z \sim w \Leftrightarrow z - w \in \mathbb{R}$. Arătați că \sim este relație de echivalență, determinați clasele de echivalență și un sistem de reprezentanți.

Solutie:

- (i) reflexivitatea: $z-z=0 \in \mathbb{R}$ pentru $\forall z \in \mathbb{C}$, deci $z \sim z$.
- (ii) simetria: dacă $z w \in \mathbb{R}$, atunci $w z = -(z w) \in \mathbb{R}$, de unde $w \sim z$.
- (iii) tranzitivitatea: dacă $z-w\in\mathbb{R}$ şi $w-u\in\mathbb{R}$, atunci $z-u=z-w+w-u\in\mathbb{R}$, adică $z\sim u$. Avem astfel o relație de echivalență.

Fie $z \in \mathbb{C}$, clasa de echivalență a lui $z, [z] = \{z + x \mid x \in \mathbb{R}\}$ ceea ce reprezintă o dreaptă orizontală ce trece prin z. Ecuația acesteia este $y = \operatorname{Im}(z)$. Sistemul de reprezentanți este axa imaginară.

Problema 3. Fie X o mulţime infinită. Pe $\mathcal{P}(X)$ definim relaţia $A \sim B \Leftrightarrow A\Delta B$ este finită. (Δ reprezintă diferența simetrică a mulţimilor). Arătaţi că \sim este o relaţie de echivalență.

Soluţie: $A\Delta A = \emptyset$, $|\emptyset| = 0$, deci $A \sim A$. $B\Delta A = A\Delta B$, deci $A \sim B \Rightarrow B \sim A$. Fie $A \sim B$ şi $B \sim C$. $A\Delta C \subset (A\Delta B) \cup (B\Delta C)$, care este o mulţime finită, fiind reuniune de două mulţimi finite.

Problema 4. Considerăm operațiile algebrice pe \mathbb{N} :

- (i) x * y = x + 1,
- (ii) x * y = x,
- (iii) x * y = xy + 1,
- (iv) x * y = 0,
- $(v) x * y = \max\{x, y\}.$

Precizați dacă sunt asociative, comutative sau posedă element neutru.

1

Solutie:

(i) (x*y)*z = (x+1)*z = x+1. x*(y*z) = x*(y+1) = x+1. Operația este asociativă. Avem $x*y = x+1 \neq y+1 = y*x$. Deci operația nu este comutativă. Nu are nici element neutru pentru că $x*e = x \Leftrightarrow x+1 = x \Leftrightarrow 1 = 0$, ceea ce este fals.

- (ii) (x*y)*z = x*z = x, x*(y*z) = x*y = x. De aici (x*y)*z = x*(y*z). $x*y = x \neq y = y*x \Rightarrow$ operația nu este comutativă. $x*e = x \Leftrightarrow x = x$. $e*x = x \Leftrightarrow e = x$ ptr. $\forall x \in \mathbb{N}$. Deci nu există un element neutru.
- (iii) (x*y)*z = (xy+1)*z = (xy+1)z+1 = xyz+z+1. Pe de altă parte x*(y*z) = x*(yz+1) = x(yz+1)+1 = xyz+x+1. Cele două cantități nu sunt egale pentru $\forall x,y,z\in\mathbb{N}$, deci operația nu este asociativă. Este comutativă pentru că x*y = xy+1 = yx+1 = y*x. Elementul neutru trebuie să satisfacă $x*e = x \Leftrightarrow xe+1 = x \Leftrightarrow x(e-1) = -1$ pentru $\forall x\in\mathbb{N} \Rightarrow \nexists e\in\mathbb{N}$ cu această proprietate.
- (iv) Operația este asociativă (x*y)*z=0=x*(y*z), comutativă x*y=0=y*x, și nu are element neutru.
- (v) Este asociativă: $(x*y)*z = \max\{\max\{x,y\},z\} = \max\{x,y,z\} = \max\{x,\max\{y,z\}\} = x*(y*z)$. Este comutativă $x*y = \max\{x,y\} = \max\{y,x\} = y*x$. Elementul neutru este 0, (dacă $0 \in \mathbb{N}$), altfel 1.

Problema 5. Fie $a,b,c \in \mathbb{Z}, b \neq 0$. Pe \mathbb{Z} definim operația x*y = axy + b(x+y) + c. Arătați că $M_{a,b,c} = (\mathbb{Z},*)$ este monoid $\Leftrightarrow b = b^2 - ac$ și b|c. Mai mult, pentru $a \neq 0$, avem izomorfismele de monoizi $M_{a,b,c} \simeq M_{a,1,0} \simeq K_a$, unde K_a este monoidul multiplicativ $\{am+1 \mid m \in \mathbb{Z}\}$.

Soluție: Impunând condiția de asociativitate care trebuie să fie adevărată pentru $\forall x,y,z\in\mathbb{Z}$ și făcând socotelile elementare găsim $b^2-b-ac=0$. Pentru elementul neutru e avem x*e=x pentru $(\forall)x\in\mathbb{Z}.\ x*e=x\Leftrightarrow x(ae+b-1)+be+c=0, (\forall)x\in\mathbb{Z}\Rightarrow be+c=0$ și ae+b-1=0, deci $e=-\frac{c}{b}\in\mathbb{Z}\Leftrightarrow b|c$. Cu această expresie a lui e și înmulțind cu b ecuația ae+b-1=0 devine $b^2-b-ac=0$.

Deci $M_{a,b,c} = (\mathbb{Z}, *)$ este monoid $\Leftrightarrow b = b^2 - ac \neq b|c$.

Presupunem acum că $a \neq 0$ şi $M_{a,b,c}$ este monoid, deci b|c şi deci $d = \frac{c}{b} \in \mathbb{Z}$, de unde c = bd. Din $b^2 = b + ac$ împărțind cu b şi înlocuind obținem b = 1 + ad. c = bd = (1 + ad)d. Următoarele corespondențe sunt izomorfisme de monoizi. $f: M_{a,b,c} \longrightarrow M_{a,1,0}, f(x) = x + d$ şi $g: M_{a,1,0} \longrightarrow K_a, g(x) = ax + 1$.

Soluții probleme temă

Problema 1. În primul rând $(\mathbb{N}, +)$, (\mathbb{N}, \max) , $(\mathbb{N}, \operatorname{c.m.m.m.c})$ sunt monoizi. Notăm cu c.m.m.m.c $\{a,b\}=[a,b]$. Elementul neutru pentru adunare este 0, ca și pentru operația max. Pentru $[\ ,\]$ elementul neutru este 1. Adunarea este asociativă. Pentru a două operație pe \mathbb{N} avem $\max\{\max\{a,b\},c\}=\max\{a,b,c\}=\max\{a,\max\{b,c\}\}\}$. Similar pentru operația de luare a c.m.m.m.c. Avem deci trei monoizi.

Dacă presupunem că $f:(\mathbb{N},+) \longrightarrow (\mathbb{N},\max)$ este izomorfism atunci $f(2a)=f(a+a)=\max\{f(a),f(a)\}=f(a),$ pentru orice $a\in\mathbb{N}^*$. Deci f nu este injectiv. Contradicție.

Similar, dacă presupunem că $g:(\mathbb{N},+)\longrightarrow(\mathbb{N},\text{c.m.m.m.c})$ este izomorfism, atunci g(2a)=g(a+a)=[g(a),g(a)]=g(a), pentru orice $a\in\mathbb{N}^*$. Deci g nu este injectiv. Contradicție.

Doi monoizi izomorfi trebuie să aibă proprietăți similare. Pentru orice $a, b \in \mathbb{N} \Rightarrow \max\{a, b\} \in \{a, b\}$, dar $[a, b] \notin \{a, b\}$ în general. Deci nici ultimii doi monoizi nu sunt izomorfi.

Problema 2. $(\mathbb{N}, +)$ este monoidul liber generat de un element, acesta fiind 1.

Considerăm $f:(\mathbb{N},+)\longrightarrow (\mathbb{N},+)$ morfism. Atunci f(0)=0 și $f(1)=a\in\mathbb{N}.$ f(2)=f(1+1)=f(1)+f(1)=2a. Se demonstrează foarte uor prin inducție că $f(n)=n\cdot a.$ Deci $\mathrm{End}(\mathbb{N},+)=\{f:\mathbb{N}\longrightarrow\mathbb{N}\mid f\mathrm{morfism}\}=\mathbb{N}.$

Fie acum $g:(\mathbb{N},\max) \longrightarrow (\mathbb{N},\max)$ morfism. Pentru $i < j; i, j \in \mathbb{N}^*$ avem $g(\max\{i,j\}) = \max\{g(i),g(j)\} \Leftrightarrow g(j) = \max\{g(i),g(j)\} \Rightarrow g(i) \leqslant g(j)$.

Am obținut $\operatorname{End}(\mathbb{N}, \max) = \{g : \mathbb{N} \longrightarrow \mathbb{N} \mid g \text{ crescătoare}\}.$

Fie $h:(\mathbb{N},+)\longrightarrow (\mathbb{N},\max)$ morfism. $h(1)=a,h(2)=h(1+1)=\max\{h(1),h(1)\}=h(1).$ Se demonstrează h(n)=h(1).

Deci Hom $((\mathbb{N}, +), (\mathbb{N}, \max)) = \{h : \mathbb{N} \longrightarrow \mathbb{N} \mid h(0) = 0, h(n) = a, \forall n \in \mathbb{N}^*\}$

Fie $k: (\mathbb{N}, \max) \longrightarrow (\mathbb{N}, +)$ morfism, atunci $k(\max\{i, i\}) = k(i) + k(i) \Leftrightarrow k(i) = k(i) + k(i), \forall i \in \mathbb{N} \Rightarrow k(i) = 0.$

Deci $\operatorname{Hom}((\mathbb{N}, \max), (\mathbb{N}, +)) = \{0\}, \text{ morfismul nul.}$

Problema 3. Dacă $f: (\mathbb{N}, \max) \longrightarrow (\mathcal{P}(\mathbb{N}), \cup)$ este morfism de monoizi atunci $f(0) = \emptyset$ şi $f(i) = A_i \subset \mathbb{N}$. Mai mult pentru $i < j; i, j \in \mathbb{N}^*, f(\max\{i, j\}) = f(i) \cup f(j) \Leftrightarrow f(i) = f(i) \cup f(j) \Leftrightarrow A_i = A_i \cup A_j \Rightarrow A_i \subseteq A_j$. Dar f dorim să fie injectiv deci pentru $i \neq j \Rightarrow A_i \neq A_j$. Avem astfel pentru $i < j, A_i \subsetneq A_j$.

Putem lua $f: \mathbb{N} \longrightarrow \mathbb{N}, f(n) = [n] = \{1, 2, \dots, n\}.$

Probleme seminar

 $U(\mathbb{Z}_n,\cdot)=\{\hat{x}\mid x\in\mathbb{Z},(x,n)=1\}=\{\hat{x}\mid \exists\hat{y}\in\mathbb{Z}\text{ cu }\hat{x}\hat{y}=\hat{1}\},$ grupul unităților din $(\mathbb{Z}_n,\cdot).$ $U(\mathbb{Z}_n,\cdot)$ este subgrup al monoidului $(\mathbb{Z}_n,\cdot).$ $|U(\mathbb{Z}_n)|=\varphi(n)=n(1-\frac{1}{p_1})\dots(1-\frac{1}{p_s}),$ unde descompunerea în factori primi a numărului n este $p_1^{r_1}\cdots p_s^{r_s}.$

1

Problema 0. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_6,\cdot)$.

Soluție: $U(\mathbb{Z}_6) = \{\hat{1}, \hat{5}\}$. $6 = 2 \cdot 3$, deci $|U(\mathbb{Z}_6)| = 6 \cdot (1 - \frac{1}{2})(1 - \frac{1}{3}) = 2$. Tabla legii de compoziție este:

$$\begin{array}{c|cccc} \cdot & \hat{1} & \hat{5} \\ \hline \hat{1} & \hat{1} & \hat{5} \\ \hat{5} & \hat{5} & \hat{1} \end{array}$$

Vedem că aceasta este similară cu tabla adunării lui $(\mathbb{Z}_2,+)$. $\mathbb{Z}_2=\{\hat{0},\hat{1}\}$ și avem $\begin{array}{c|c} + & \hat{0} & \hat{1} \\ \hline & \hat{0} & \hat{1} & \hat{1} \\ \hat{1} & \hat{1} & \hat{0} \end{array}$

Problema 1. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_8,\cdot)$.

Soluție: $U(\mathbb{Z}_8) = \{\hat{1}, \hat{3}, \hat{5}, \hat{7}\}$. $8 = 2^3$, deci $|U(\mathbb{Z}_8)| = 8 \cdot (1 - \frac{1}{2}) = 4$. Tabla legii de compoziție este:

Problema 2. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_{10},\cdot)$.

Soluție: $U(\mathbb{Z}_{10}) = \{\hat{1}, \hat{3}, \hat{7}, \hat{9}\}$. $10 = 2 \cdot 5$, deci $|U(\mathbb{Z}_{10})| = 10 \cdot (1 - \frac{1}{2})(1 - \frac{1}{5}) = 4$. Tabla legii de compoziție este:

Se vede că tabla înmulțirii grupului $U(\mathbb{Z}_8,\cdot)$ este diferită de tabla grupului $U(\mathbb{Z}_{10},\cdot)$.

Problema 3. Să se scrie tabla legii de compoziție a grupului $U(\mathbb{Z}_{12},\cdot)$.

Soluție: $U(\mathbb{Z}_{12}) = \{\hat{1}, \hat{5}, \hat{7}, \hat{11}\}$. $12 = 2^2 \cdot 3$, deci $|U(\mathbb{Z}_{12})| = 12 \cdot (1 - \frac{1}{2})(1 - \frac{1}{3}) = 4$. Tabla legii de compoziție este:

Se vede că tabla înmulțirii grupului $U(\mathbb{Z}_8,\cdot)$ este similară cu tabla grupului $U(\mathbb{Z}_{12},\cdot)$.

Problema 4. Să se scrie tabla legii de compoziție $(\mathbb{Z}_4, +)$.

Soluţie: $\mathbb{Z}_4 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}\}$. Tabla adunării este:

Se vede că această tablă este similară cu tabla în mulțirii pe $U(\mathbb{Z}_{10})$.

Problema 5. Să se scrie tabla legii de compoziție a grupului diedral D_3 .

Soluție: $D_3 = \{1 = \mathrm{id}_{\triangle}, \rho, \rho^2, s_1, s_2, s_3\}$, unde ρ este rotația în sens antiorar cu 120° în jurul centrului triunghiului echilateral, iar s_j reprezintă reflecția față de mediatoarea l_j care trece prin vârful j al triunghiului echilateral 123. Operația \circ este compunerea funcțiilor care sunt și izometrii ale planului, compunere care este asociativă și are ca element neutru $1 = \mathrm{id}_{\triangle}$. De exemplu $\rho s_1 = \rho \circ s_1$, prima dată aplicăm s_1 și apoi ρ .

0	1	ho	ρ^2	s_1	s_2	s_3
			0			
1	1	ρ	ρ^2	s_1	s_2	s_3
ρ	ρ	$ ho^2$	1		$\rho s_2 = s_1$	$\rho s_3 = s_2$
$ ho^2$	ρ^2	1	ho		$\rho^2 s_2 = s_3$	$\rho^2 s_3 = s_1$
s_1	s_1			$s_1^2 = 1$		$s_1 s_3 = \rho^2$
s_2	s_2				$s_2^2 = 1$	
s_3	s_3	$s_3 \rho = s_1$	$s_3 \rho^2 = s_2$	$s_3s_1=\rho$	$s_3 s_2 = \rho^2$	$s_3^2 = 1$
				2		

0	1	ρ	$ ho^2$	s_1	s_2	s_3
			0			
1	1	ρ	ρ^2	s_1	s_2	s_3
ρ	ρ	$ ho^2$	1	s_3	s_1	s_2
$ ho^2$	$\begin{vmatrix} 1 \\ \rho \\ \rho^2 \\ s_1 \\ s_2 \\ s_3 \end{vmatrix}$	1	ρ	s_2	s_3	s_1
s_1	s_1	s_2	s_3	1	ρ	$ ho^2$
s_2	s_2	s_3	s_1	$ ho^2$	1	ρ
s_3	s_3	s_1	s_2	ho	ρ^2	1

Problema 6. Să se demonstreze că orice grup G în care $x^2 = 1$ pentru orice $x \in G$ este abelian.

Soluție: Dacă în grupul G avem $x^2=1$, înmulțind această relație cu x^{-1} obținem $x^2x^{-1}=1\cdot x^{-1}\Leftrightarrow 1\cdot x=x^{-1}\Leftrightarrow x=x^{-1}$. Scriem relația din ipoteză pentru xy, unde x,y sunt arbitrare în G. Avem $(xy)^2=1\Leftrightarrow (xy)(xy)=1$. Înmulțim la stânga cu x^{-1} și la dreapta cu y^{-1} și obținem $yx=x^{-1}y^{-1}=xy$. Deci grupul este abelian (comutativ).

Problema 7. Pe mulțimea (-1, 1) considerăm operația $x * y = \frac{x+y}{1+xy}$. Să se demonstreze că ((-1,1),*) este grup.

Soluție: Arătăm că (-1, 1) este parte stabilă pentru *. $x \in (-1,1) \Leftrightarrow |x| < 1$. Deci pentru |x| < 1 şi $|y| < 1 \Rightarrow |x| \cdot |y| < 1 \Leftrightarrow |xy| < 1 \Leftrightarrow -1 < xy < 1 \Leftrightarrow 0 < 1 + xy < 2$. În particular $1 + xy \neq 0$.

Arătăm că x*y+1>0. $x*y+1=\frac{x+y}{1+xy}+1=\frac{x+y+1+xy}{1+xy}=\frac{(1+x)(1+y)}{1+xy}$. Fiecare paranteză a numărătorului cât și numitorul sunt pozitive, deci $x*y+1>0 \Leftrightarrow -1 < x*y$. Pentru x*y-1<0 avem: $x*y+1=\frac{x+y}{1+xy}-1=\frac{x+y-1-xy}{1+xy}=-\frac{(1-x)(1-y)}{1+xy}$. Fiecare paranteză a numărătorului este strict pozitivă, ca și numitorul. Deci fracția este strict negativă. Astfel x * y < 1.

Asociativitate: $(x*y)*z = \frac{\frac{x+y}{1+xy}+z}{1+\frac{x+y}{1+xy}z} = \frac{x+y+z+xyz}{1+xy+xz+yz} = x*(y*z)$. Elementul neutru este 0.

Inversul fiecărui element $x \in (-1,1)$ este -x.

Cu toate acestea ((-1,1),*).

Problema 1. Să se arate că $((-1,1),*) \simeq ((0,\infty),\cdot)$, unde $x*y = \frac{x+y}{1+xy}$.

Soluţie: Considerăm $f: (-1,1) \longrightarrow (0,+\infty), f(x) = \frac{1-x}{1+x}$. Este clar că $\lim_{x\to -1} f(x) = +\infty$ şi $\lim_{x\to 1} f(x) = 0$. Trebuie să demonstrăm că f este morfism şi este funcție bijectivă.

• morfism:

$$f(x*y) = \frac{1-x*y}{1+x*y} = \frac{1-\frac{x+y}{1+xy}}{1+\frac{x+y}{1+xy}} = \frac{1-x-y+xy}{1+x+y+xy} = \frac{(1-x)(1-y)}{(1+x)(1+y)} = \frac{1-x}{1+x} \cdot \frac{1-y}{1+y} = f(x) \cdot f(y).$$

- f injectivă: $f(x_1) = f(x_2) \Leftrightarrow \frac{1-x_1}{1+x_1} = \frac{1-x_2}{1+x_2} \Leftrightarrow (1-x_1)(1+x_2) = (1-x_2)(1+x_1) \Leftrightarrow -x_1+x_2 = x_1 x_2 \Leftrightarrow 2x_2 = 2x_1 \Leftrightarrow 2x_2 = 2x_1 \Leftrightarrow x_1 = x_2$
- f surjectivă: fie $y \in (0, +\infty)$, trebuie să rezolvăm ecuația f(x) = y. Avem $\frac{1-x}{1+x} = y \Leftrightarrow 1-x = y + xy \Leftrightarrow 1-y = x(1+y) \Rightarrow x = \frac{1-y}{1+y} \in (-1,1)$.

Decif este izomorfism.

Definiție: Fie G un grup și $x \in G$ un element al lui G.

Dacă $x^n \neq 1$ pentru $\forall n > 0$, atunci spunem că ordinul lui x și notăm ord(x), este ∞ .

Dacă $\exists k > 0$ cu $x^k = 1$, atunci $\operatorname{ord}(x) = \min\{k \in \mathbb{N}^* \mid x^k = 1\}$.

Problema 2. Fie G un grup şi $a,b\in G$ elemente de ordin finit, m şi n. Presupunem că ab=ba şi că (m,n)=1. Arătaţi că ab are ordinul mn.

Problema 3. Demonstrați că grupurile $(\mathbb{Z}_4, +)$ și $(U(\mathbb{Z}_{10}), \cdot)$ sunt izomorfe.

Tabla adunării pe \mathbb{Z}_4 este:

_+	Ô	î	$\hat{2}$	$\hat{3}$
$\hat{0}$ $\hat{1}$ $\hat{2}$ $\hat{3}$	0 1 2 3	î 2 3 0	2 3 0 1	$\hat{3}$ $\hat{0}$ $\hat{1}$ $\hat{2}$

Să precizăm ordinele elementelor grupului \mathbb{Z}_4 . Avem:

$$\hat{1} + \hat{1} + \hat{1} + \hat{1} = \hat{0} \Leftrightarrow 4 \cdot \hat{1} = \hat{0} \Rightarrow \operatorname{ord}(\hat{1}) = 4,$$

$$\hat{2} + \hat{2} = \hat{0} \Leftrightarrow 2 \cdot \hat{2} = \hat{0} \Rightarrow \operatorname{ord}(\hat{2}) = 2,$$

$$\hat{3} + \hat{3} + \hat{3} + \hat{3} = \hat{0} \Leftrightarrow 4 \quad \hat{3} = \hat{0} \Rightarrow \operatorname{ord}(\hat{3}) = 4.$$

 $U(\mathbb{Z}_{10}) = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$ și tabla înmulțirii este:

	1	$\overline{3}$	$\overline{7}$	$\overline{9}$
$\frac{\overline{1}}{\overline{3}}$ $\overline{7}$ $\overline{9}$	$\begin{bmatrix} \frac{1}{3} \\ \frac{7}{9} \end{bmatrix}$	$\frac{\overline{3}}{\overline{9}}$ $\frac{\overline{1}}{7}$	$\frac{\overline{7}}{\overline{1}}$ $\frac{\overline{9}}{\overline{3}}$	$\begin{array}{c} \overline{9} \\ \overline{7} \\ \overline{3} \\ \overline{1} \end{array}$

Ordinele elementelor grupului $U(\mathbb{Z}_{10})$ sunt:

- $\overline{3} \cdot \overline{3} \cdot \overline{3} \cdot \overline{3} = \overline{1} \Rightarrow \operatorname{ord}(\overline{3}) = 4,$
- $\overline{7} \cdot \overline{7} \cdot \overline{7} \cdot \overline{7} = \overline{1} \Rightarrow \operatorname{ord}(\overline{7}) = 4,$
- $\overline{9} \cdot \overline{9} = \overline{1} \Rightarrow \operatorname{ord}(\overline{9}) = 2.$

Astfel un izomorfism trebuie să transforme un element de un anumit ordin într-un element de același ordin. Avem $\hat{0} \mapsto \overline{1}, \hat{2} \mapsto \overline{9}, \hat{1} \mapsto \overline{3}, \hat{3} \mapsto \overline{7}$ sau $\hat{0} \mapsto \overline{1}, \hat{2} \mapsto \overline{9}, \hat{1} \mapsto \overline{7}, \hat{3} \mapsto \overline{3}$. se verifică ușor că acestea sunt izomorfisme.

Produsul direct a două grupuri G_1, G_2 este $G_1 \times G_2$, operația este produsul pe componente. Elementele din G_1 comută cu cele din G_2 .

Problema 4. Să se scrie tabla grupului $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$. Să se demonstreze că $(U(\mathbb{Z}_8), \cdot)$ este izomorf cu grupul $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$.

Soluție: Notăm elementele din $\mathbb{Z}_2 \times \mathbb{Z}_2$: $0 = (\hat{0}, \hat{0}), a = (\hat{1}, \hat{0}), b = (\hat{0}, \hat{1}), a+b = (\hat{1}, \hat{1})$. Adunarea se face pe componente. Avem a+b=b+a pentru că adunăm pe fiecare componentă cu $\hat{0}$. Tabla adunării este

Vedem că $\operatorname{ord}(a) = \operatorname{ord}(b) = \operatorname{ord}(a+b) = 2$.

Pentru $U(\mathbb{Z}_8) = \{\hat{1}, \hat{3}, \hat{5}, \hat{7}\}$ avem ord $(\hat{3}) = \text{ord}(\hat{5}) = \text{ord}(\hat{7}) = 2$. Cele două grupuri sunt izomorfe. Sunt grupuri cu doi generatori şi orice izomorfism este determinat de valorile pe generatori. De exemplu $0 \mapsto \hat{1}, a \mapsto \hat{3}, b \mapsto \hat{5}, a + b \mapsto \hat{3} \cdot \hat{5} = \hat{7}$.

Grupul $\mathbb{Z}_2 \times \mathbb{Z}_2$ se numețe grupul lui Klein.

Problema 5. Orice grup cu 4 elemente este izomorf sau cu $(\mathbb{Z}_4, +)$ sau cu $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$.

Soluție: Ordinul grupului este numărul de elemente al acestuia. Se știe că pentru orice $x \in G$, ord(x) | |G|. Deci pentru un grup G cu 4 elemente, orice element $1 \neq x \in G \Rightarrow \operatorname{ord}(x) \in \{2, 4\}$.

- pentru orice $1 \neq x$, ord $(x) = 2 \Leftrightarrow x^2 = 1 \Leftrightarrow x = x^{-1}$. Considerăm $1 \neq y \neq x$, şi $y^2 = 1$ de unde $y^{-1} = y$. xy este un alt element. Am demonstrat în seminarul 5 că orice grup pentru care orice $x \in G, x^2 = 1$ este abelian. Deci yx = xy. Astfel elementele grupului sunt 1, x, y, xy, cele diferite de 1 de ordin 2. Acesta este grupul Klein.
- $\exists x \in G$, $\operatorname{ord}(x) = 4$. Deci avem $x^4 = 1$ şi elementele grupului $G = \{1, x, x^2, x^3\}$. Să vedem că acestea sunt distincte. $1 \neq x$ pentru că $\operatorname{ord}(x) = 4$ iar $\operatorname{ord}(1) = 1$. Dacă $x^2 = 1$ atunci $\operatorname{ord}(x) = 2 < 4$, ceea ce contrazice ipoteza. Deci $x^2 \neq 1$. Dacă $x^2 = x \Rightarrow x = 1$, ceea ce este fals. Deci $1 \neq x^2 \neq x$. Similar se arată că $1 \neq x^3 \neq x$ şi $x^3 \neq x^2$. Deci $(G, \cdot) \simeq (Z_4, +)$. Acesta este de fapt grupul ciclic cu 4 elemente scris multiplicativ sau aditiv.

SEMINAR 6 3

Problema 6. Să se arate că $D_3 \simeq S_3$.

Soluție: D_3 este generat de ρ rotația cu 120° în sens antiorar în jurul centrului și s oricare dintre cele trei simetrii. Vom considera $s=s_3$, simetria față de mediatoarea l_3 ce trece prin vârful 3. Acțiunea rotației ρ pe vârfurile 1, 2, 3 ale triunghiului este : $(1,2,3) \mapsto (2,3,1)$. Ac ciunea simetriei $s=s_3$ pe vârfurile triungiului este $(1,2,3) \mapsto (2,1,3)$. ρ și s sunt generatorii grupului D_3 , adică fiecare element se poate scrie ca un cuvânt în puterile lui ρ și ale lui s. Ca mulțime $D_3=\{1,\rho,\rho^2,s,\rho s,\rho^2 s\}$. Corespondența $\rho\mapsto a=\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}$ și $s\mapsto b=\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$

definește un izomorfism între D_3 și S_3 . În ambele grupuri operația este compunerea aplicațiilor care se face de la dreapta la stânga.

Problema 7. Orice grup cu 6 elemente este izomorf sau cu \mathbb{Z}_6 sau cu grupul permutărilor S_3 .

Soluție: Folosim din nou faptul că pentru orice $x \in G$, ord(x) |G|.

- $\sharp x \in G$, ord(x) = 6. Atunci $(\forall)x \neq 1$ poate avea ordinul 2 sau 3. Aplicând teorema Cauchy rezultă că există în G un element x, ord(x) = 3 și un element y, ord(y) = 2. Bineînțeles $x \neq y$, pentru că au ordine diferite. Avem $1 \neq x \neq x^2 \neq 1$. Putem avea $y = x^2$? Dacă ar fi adevărat atunci $1 = y^2 = (x^2)^2 = x^4$. Deci $x^4 = 1 = x^3(\operatorname{ord}(x) = 3) \Rightarrow x = 1$, ceea ce este fals. Deci $y \notin \{1, x, x^2\}$. În G avem elementele $\{1, x, x^2, y, xy, x^2y\}$.
 - dacă $yx = 1 \Rightarrow x = y^{-1} = y$ fals
 - dacă $yx = x \Rightarrow y = 1$ fals
 - dacă $yx = x^2 \Rightarrow y = x$ fals
 - dacă $yx = y \Rightarrow x = 1$ fals
 - dacă yx = xy nu avem o contradicție, grupul care se obține este abelian
 - o altă variantă este ca $yx = x^2y \Leftrightarrow yxy^{-1} = x^2 \Leftrightarrow yxy = x^2$.
- 1: yx = xy. Notăm xy = a. $a^2 = (xy)^2 = xyxy = xyyx = x^2$, $a^3 = aa^2 = (xy)x^2 = yxx^2 = y$, $a^4 = x^4 = xx^3 = x$, $a^5 = a^2a^3 = x^2y$, $a^6 = (a^3)^2 = y^2 = 1$. Am obținut un element de ordin 6, deci o contradicție.
- **2.** $yx = x^2y$. În acest caz avem $yx^2 = yxx = x^2yx = x^2x^2y = x^4y = xy$. Deci în acest caz $G = \{1, x, x^2, y, xy, x^2y\}$, iar $yx = x^2y$ şi $yx^2 = xy$. Acesta este grupul $S_3 \simeq D_3$.
 - $\exists x \in G, \operatorname{ord}(x) = 6$, atunci

 $G = \{1, x, x^2, x^3, x^4, x^5\}$, adică grupul ciclic cu 6 elemente. Similar cu demonstrația din problema 5, aceste elemente sunt distincte. Deci $(G, \cdot) \simeq (\mathbb{Z}_6, +)$.

Să se determine subgrupurile și să se descrie laticea acestora pentru grupurile, \mathbb{Z}_p cu p prim, $\mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_4 , \mathbb{Z}_6 , D_3 , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times Z_4$, \mathbb{Z}_8 , D_4 , Q grupul cuarternionilor.

Determinați subgrupurile normale ale grupurilor D_3 , D_4 , Q.

• Grupuri \mathbb{Z}_p cu p prim

 $\mathbb{Z}_p = \{\hat{0}, \hat{1}, \dots, \widehat{p-1}\}. \ p \text{ prim} \Rightarrow \operatorname{ord}(\hat{j}) = \frac{p}{(p,j)} = p, \ (\forall) 1 \leq j \leq p-1.$ Deci $\mathbb{Z}_p = \langle \hat{1} \rangle = \langle \hat{2} \rangle = \dots = \langle \widehat{p-1} \rangle$, adică poate fi generat de oricare dintre elementele $\hat{1}, \ldots, \widehat{p-1}$.

Teorema Lagrange ne spune că într-un grup finit G, pentru orice subgrup H < G, avem |H||G|. În cazul de față pentru $G=\mathbb{Z}_p$, dacă $H<\mathbb{Z}_p$, atunci |H||p, dar p este prim și deci $|H| \in \{1, p\}$, deci $H = \hat{0}$ sau $H = \mathbb{Z}_p$. Deci \mathbb{Z}_p cu p prim nu are subgrupuri proprii adică $\sharp H$ a.î. $1 \leq H \leq \mathbb{Z}_p$.

În fiecare dintre figurile următoare segmentul ce unește două subgrupuri reprezintă incluziunea subgrupului scris mai jos în cel scris mai sus.

Pentru \mathbb{Z}_p laticea subgrupurilor este

• Grupul Klein $\mathbb{Z}_2 \times \mathbb{Z}_2$.

 $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(\hat{0}, \hat{0}), (\hat{1}, \hat{0}), (\hat{0}, \hat{1}), (\hat{1}, \hat{1})\}$. Ordinul oricărui element diferit de $(\hat{0}, \hat{0})$ este 2. Fiecare dintre aceste elemente generează un subgrup de ordin 2.

Astfel $H_1 = \langle (\hat{1}, \hat{0}) \rangle = \{(\hat{0}, \hat{0}), (\hat{1}, \hat{0})\}, H_2 = \langle (\hat{0}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1$ $\{(\hat{0},\hat{0}),(\hat{1},\hat{1})\}.$

 $|H_1| = |H_2| = |H_3| = 2$. Laticea subgrupurilor este următoarea

• Grupul \mathbb{Z}_4 .

 $\mathbb{Z}_4 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}\}.$ Avem $\operatorname{ord}(\hat{0}) = 1$, $\operatorname{ord}(\hat{1}) = 4 = \operatorname{ord}(\hat{3})$ şi $\operatorname{ord}(\hat{2}) = \hat{2}$. Deci $\mathbb{Z}_4 = \langle \hat{1} \rangle = \langle \hat{3} \rangle$. Avem un subgrup propriu $\langle \hat{2} \rangle = \{\hat{0}, \hat{2}\}$.

Laticea subgrupurilor pentru \mathbb{Z}_4 este

• Grupul \mathbb{Z}_6 .

 $\mathbb{Z}_6 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}\}.$ Avem $\operatorname{ord}(\hat{0}) = 1$, $\operatorname{ord}(\hat{1}) = 6 = \operatorname{ord}(\hat{5})$, $\operatorname{ord}(\hat{2}) = \operatorname{ord}(\hat{4}) = \frac{6}{(2.6)} = 1$

 $\frac{6}{(4,6)} = \frac{6}{2} = 3.$ Deci $\mathbb{Z}_6 = \langle \hat{1} \rangle = \langle \hat{5} \rangle$, $H = \langle \hat{2} \rangle = \langle \hat{4} \rangle = \{\hat{0}, \hat{2}, \hat{4}\}$ iar $K = \langle \hat{3} \rangle = \{\hat{0}, \hat{3}\}$. |H| = 3

Laticea subgrupurilor pentru \mathbb{Z}_6 este:

Până aici toate grupurile prezentate sunt abeliene și deci subgrupuriloe acestora sunt în fiecare caz este normale.

• Grupul $D_3 \simeq S_3$.

Acesta este primul grup din lista celor propuse spre studiu care nu este abelian. Voi folosi permutări.

 $S_3 = \{ id_{[3]}, a = (123), a^2 = (132), b = (12), ab = (123)(12) = (13), a^2b = (132)(12) = (23) \}.$ În scrierea uzuală $a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ și $b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. În scrierea folosită anterior se scriu de fapt imaginile elementelor prin permutarea respectivă. Mai mult, în această scriere a unei permutări elementele fixate de permutare NU sunt menționate. Astfel, a(1) = 2, a(2) = 3, a(3) = 1. As a apare scrierea compactă a = (123). Pentru b

avem b(1)=2,b(2)=1,b(3)=3, de unde b=(12). Pentru grupul S_3 avem $a^3=\mathrm{id}_{[3]},b^2=(ab)^2=(a^2b)^2=\mathrm{id}_{[3]}$. Mai avem relația $ba = a^2b$. Deci ord(a) = ord(a²) = 3, ord(b) = ord(ab) = ord(a²b) = 2.

Subgrupurile grupului S_3 , primul neabelian pe care-l studiem, sunt:

 $K = \langle a \rangle = \langle a^2 \rangle = \{ id_{[3]}, a, a^2 \}$, $H_1 = \langle b \rangle = \{ id_{[3]}, b \}$, $H_2 = \langle ab \rangle = \{ id_{[3]}, ab \}$, $H_3 = \langle a^2b \rangle = \{ id_{[3]}, a^2b \}.$

K este un subgrup de index 2, deci normal. H_1, H_2, H_3 sunt de index 3. Din teorie nu reiese că sunt normale.

Să facem o verificare pentru unul dintre acestea.

Elementul $b \in H_1$ îl vom conjuga cu $a^2 \in S_3$. $a^3 = \mathrm{id}_{[3]} \Rightarrow a^{-1} = a^2$ și $(a^2)^{-1} = a$. Avem $a^2b(a^2)^{-1}=a^2ba=baa=ba^2\notin H_1$. Deci conjugarea lui $b\in H_1$ cu un element din S_3 NU este un element din H_1 , deci H_1 nu este normal.

Nici subgrupurile H_2 și H_3 nu sunt normale.

Laticea subgrupurilor în acest caz este

• Grupul $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Toate elementele diferite de identitate sunt de ordin 2. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 = \{(\hat{0}, \hat{0}, \hat{0}), (\hat{1}, \hat{0}, \hat{0}), (\hat{0}, \hat{1}, \hat{0}), (\hat{0}, \hat{0}, \hat{1}), (\hat{1}, \hat{1}, \hat{0}), (\hat{1}, \hat{0}, \hat{1}), (\hat{0}, \hat{1}, \hat{1}), (\hat{1}, \hat{1}, \hat{1})\}$ Laticea subgrupurilor este

Toate subgrupurile sunt normale, grupul $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ fiind abelian.

• Grupul \mathbb{Z}_8 .

$$\mathbb{Z}_8 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}, \hat{7}\}.$$

Elementele nenule au ordinele: $\operatorname{ord}(\hat{1}) = \operatorname{ord}(\hat{3}) = \operatorname{ord}(\hat{5}) = \operatorname{ord}(\hat{7}) = 8$, $\operatorname{ord}(\hat{2}) =$ $\operatorname{ord}(\hat{6}) = 4 \operatorname{si} \operatorname{ord}(\hat{4}) = 2.$

$$\mathbb{Z}_8 = <\hat{1}> = <\hat{3}> = <\hat{5}> = <\hat{7}>,$$

 $<\hat{2}> = <\hat{6}> = {\hat{0}, \hat{2}, \hat{4}, \hat{6}} \simeq \mathbb{Z}_4,$

$$<\hat{2}> = <\hat{6}> = \{\hat{0}, \hat{2}, \hat{4}, \hat{6}\} \simeq \mathbb{Z}_4,$$

$$<\hat{4}>=\{\hat{0},\hat{4}\}\simeq \mathbb{Z}_2.$$

Toate subgrupurile sunt normale pentru că \mathbb{Z}_8 este abelian.

Laticea subgrupurilor este

• Grupul diedral \mathcal{D}_4 .

Grupul simetriilor pătratului este generat de R, rotația cu 90° în sens antiorar în jurul centrului pătratului și s una din cele patru simetrii ale pătratului. Avem relațiile R^4 $s^2 = id si R^3 s = sR$. Alte relații care se deduc din acestea sunt $R^2 s = sR^2$, $Rs = sR^3$. Grupul nu este abelian.

$$D_4 = \{ \text{id}, R, R^2, R^3, s, Rs, R^2s, R^3s \}.$$

$$\operatorname{ord}(R) = \operatorname{ord}(R^3) = 4 = \frac{4}{(3,4)} = 4.$$

$$\operatorname{ord}(R^2) = \operatorname{ord}(s) = \operatorname{ord}(Rs) = \operatorname{ord}(R^2s) = \operatorname{ord}(R^3s) = 2.$$
De exemplu $(R^2s)^2 = R^2sR^2s = sR^2R^2s = sR^4s = s \operatorname{id} s = s^2 = \operatorname{id} \Rightarrow \operatorname{ord}(R^2s) = 2.$

 $\langle R^2 \rangle \triangleleft \langle R \rangle \triangleleft D_4$. Nu rezultă imediat că $\langle R^2 \rangle \triangleleft D_4$. Trebuie să facem conjugarea. Este suficient cu generatorii grupului D_4 . Conjugarea lui R^2 cu R ne dă R^2 , fiind puteri ale lui R. $sR^2s^{-1} = sR^2s = ssR^2 = idR^2 = R^2$. Conjugarea păstrează subgrupul $\langle R^2 \rangle$, deci acesta este

Nu același lucru se întâmplă pentru subgrupurile $\langle s \rangle$, $\langle Rs \rangle$, $\langle R^2s \rangle$, $\langle R^3s \rangle$.

Voi face conjugarea cu generatorii R și s pentru subgrupul $\langle Rs \rangle$. $R^4 = \mathrm{id} \Rightarrow R^{-1} = R^3$.

Avem $R(Rs)R^{-1} = RRsR^3 = sR^2R^3 = sR^5 = sR = R^3s \notin Rs > .$ Deci < Rs > nu este normal în D_4 .

Vedem că $\langle Rs \rangle \triangleleft \langle R^2, Rs \rangle \triangleleft D_4$, dar $\langle Rs \rangle$ nu este subgrup normal în D_4 .

• Fie G un grup și $\operatorname{Aut}(G) = \{f: G \longrightarrow G \mid f \text{ automorfism}\}$. Este ușor de văzut că $\operatorname{Aut}(G)$ este grup: compunerea morfismelor este asociativă, id $_G$ este elementul neutru la compunere iar fiecare automorfism (morfism bijectiv) are un invers.

Considerăm $\text{Inn}(G) = \{\varphi_g : G \longrightarrow G \mid \varphi_g(x) = gxg^{-1}, \forall x \in G\}$ subgrupul automorfismelor interioare.

Demonstrăm că φ_g este automorfism al grupului G.

- φ_g morfism: $\varphi_g(xy) = g(xy)g^{-1} = gxyg^{-1} = gxg^{-1}gyg^{-1} = \varphi_g(x)\varphi_g(y)$. φ_g injectiv: $\varphi_g(x) = \varphi_g(y) \Leftrightarrow gxg^{-1} = gyg^{-1}$. Înmulțind la stânga cu g^{-1} și la dreapta
- φ_q surjectiv: Fie $y \in G$. Trebuie să rezolvăm ecuația $\varphi_q(x) = y$ în funție de x. $\varphi_q(x) = y$ $y \Leftrightarrow gxg^{-1} = y \Leftrightarrow x = g^{-1}yg$. Deci pentru $\forall y \in G, \exists x = g^{-1}yg \in G$ a.î. $\varphi_g(x) = y$.

Considerăm aplicația $F: G \longrightarrow \text{Inn}(G)$ definită prin $F(g) = \varphi_g$. Demonstrăm că F este morfism. Trebuie arătat că $F(g_1g_2) = F(g_1) \circ F(g_2)$.

 $F(g_1g_2) = \varphi_{g_1g_2}. \ \varphi_{g_1g_2}(x) = g_1g_2x(g_1g_2)^{-1} = g_1g_2xg_2^{-1}g_1^{-1} = g_1(g_2xg_2^{-1})g_1^{-1} = \varphi_{g_1}(g_2xg_2^{-1}) = \varphi_{g_1}(\varphi_{g_2}(x)) = (\varphi_{g_1} \circ \varphi_{g_2})(x) \Rightarrow \varphi_{g_1g_2} = \varphi_{g_1} \circ \varphi_{g_2}, \text{ adică } F(g_1g_2) = F(g_1) \circ F(g_2).$

Tema 7 Problema 1. Voi descrie subgrupurile grupului abelian $\mathbb{Z}_2 \times \mathbb{Z}_4$.

 $\mathbb{Z}_2 \times \mathbb{Z}_4 = \{e = (\hat{0}, \overline{0}), (\hat{0}, \overline{1}), (\hat{0}, \overline{2}), (\hat{0}, \overline{3}), (\hat{1}, \overline{0}), (\hat{1}, \overline{1}), (\hat{1}, \overline{2}), (\hat{1}, \overline{3})\}.$ ord(e) = 1, ord $((\hat{0}, \overline{1})) = 4$, ord $((\hat{0}, \overline{2})) = 2$, ord $((\hat{0}, \overline{3})) = 4$, ord $((\hat{1}, \overline{0})) = 2$, ord $((\hat{1}, \overline{1})) = 4$.

Subgrupuri: e,

 $\langle (\hat{0}, \overline{2}) \rangle = \{e, (\hat{0}, \overline{2})\}$ subgrup de ordin 2,

 $\langle (\hat{1}, \overline{0}) \rangle = \{e, (\hat{1}, \overline{0})\}$ subgrup de ordin 2,

 $\langle (\hat{1}, \overline{2}) \rangle = \{e, (\hat{1}, \overline{2})\}$ subgrup de ordin 2,

 $<(\hat{0}, \overline{1})>=\{e, (\hat{0}, \overline{1}), (\hat{0}, \overline{2}), (\hat{0}, \overline{3})\}=<(\hat{0}, \overline{3})>$ subgrup de ordin 4

 $<(\hat{1}, \overline{1})>=\{e, (\hat{1}, \overline{1}), (\hat{0}, \overline{2}), (\hat{1}, \overline{3})\}=<(\hat{1}, \overline{3})>$ subgrup de ordin 4.

 $Dar (\hat{0}, \overline{2}) + (\hat{1}, \overline{0}) = (\hat{1}, \overline{2}), (\hat{1}, \overline{0}) + (\hat{1}, \overline{2}) = (\hat{0}, \overline{2}) \text{ si } (\hat{1}, \overline{2}) + (\hat{0}, \overline{2}) = (\hat{1}, \overline{0}).$

Deci $\{e, (\hat{0}, \overline{2}), (\hat{1}, \overline{0}), (\hat{1}, \overline{2})\}$ formează un subgrup de ordin 4, izomorf cu grupul Klein. Laticea subgrupurilor este:

Toate subgrupurile sunt normale pentru că grupul $\mathbb{Z}_2 \times \mathbb{Z}_4$ este abelian.

Tema 7 Problema 3. Considerăm morfismul $F:G \longrightarrow \operatorname{Inn}(G)$ definit prin $F(g) = \varphi_g$. Arătăm că $\operatorname{Inn}(G) \lhd \operatorname{Aut}(G)$. Considerăm $f \in \operatorname{Aut}(G)$ și $\varphi_g \in \operatorname{Inn}(G)$. $f \circ \varphi_g \circ f^{-1} \in \operatorname{Aut}(g)$. Avem $(f \circ \varphi_g \circ f^{-1})(x) = f(\varphi_g(f^{-1}(x))) = f(gf^{-1}(x)g^{-1}) = f(g)f(f^{-1}(x))(f(g))^{-1} = f(g)(f \circ f^{-1})(x)(f(g))^{-1} = f(g)\operatorname{id}_G(x)(f(g))^{-1} = f(g)x(f(g))^{-1} = \varphi_{f(g)}(x) \Rightarrow f \circ \varphi_g \circ f^{-1} = \varphi_{f(g)} \in \operatorname{Inn}(G)$. Deci conjugarea unui element din $\operatorname{Inn}(G)$ cu un element arbitrar din $\operatorname{Aut}(G)$ ne dă un element din $\operatorname{Inn}(G)$. Astfel $\operatorname{Inn}(G)$ este subgrup normal în $\operatorname{Aut}(G)$.

Determinăm acum subgrupul $\operatorname{Ker}(F) = \{g \in G \mid F(g) = \operatorname{id}_G\} = \{g \in G \mid \varphi_g = \operatorname{id}_G\}.$

 $\varphi_g = \operatorname{id}_G \Leftrightarrow \varphi_g(x) = \operatorname{id}_G(x), (\forall) x \in G \Leftrightarrow gxg^{-1} = x, (\forall) x \in G \Leftrightarrow gx = xg, (\forall) x \in G.$ Deci $\operatorname{Ker}(F) = \{g \in G \mid gx = xg, (\forall) x \in G\}.$ Acest subgrup normal (nucleul oricărui morfism este un subgrup normal) în G se numețe centrul grupului G și se notează cu Z(G). Este subgrupul elementelor care comută cu toate elementele grupului G.

1

Problema 1. Demonstrați că orice subgrup finit generat al grupului $(\mathbb{Q}, +)$ este ciclic.

Soluţie: Considerăm $H = \langle \frac{p_1}{q_1}, \dots, \frac{p_n}{q_n} \rangle \langle \mathbb{Q}$, unde $q_j \in \mathbb{N}^*$ pentru orice $1 \leqslant j \leqslant n$. Considerăm $s = [q_1, q_2, \dots, q_n]$, c.m.m.m.c. al numitorilor și fractiile echivalente $\frac{p_1}{q_1} = \frac{p'_1}{s}, \dots \frac{p_n}{q_n} = \frac{p'_n}{s}$. Atunci $H = \langle \frac{p_1}{q_1}, \dots, \frac{p_n}{q_n} \rangle = \langle \frac{p'_1}{s}, \dots, \frac{p'_n}{s} \rangle = \langle \frac{1}{s} \rangle$ pentru că oricare dintre generatorii $\frac{p'_j}{s} = \frac{1}{s} + \dots + \frac{1}{s}$ sumă cu p'_j termeni dacă $p'_j > 0$ și opusul acestei sume dacă $p'_j < 0$.

Problema 2. Determinați morfismele între grupurile aditive \mathbb{Z}_{12} și \mathbb{Z}_{18} .

Soluție: Fie $f: \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{18}$, f morfism. Întrucât $\mathbb{Z}_{12} = <\hat{1}>$, grup ciclic generat de $\hat{1}$, este suficient să dăm valoarea lui f pe generatorul $\hat{1}$

(pentru fiecare $\hat{g} \in \mathbb{Z}_{12}$, $f(\hat{g}) = f(\hat{1} + ... + \hat{1})$, cu g termeni în sumă, $= f(\hat{1}) + ... + f(\hat{1}) = gf(\hat{1})$). Fie așadar $f(\hat{1}) = \overline{k} \in \mathbb{Z}_{18}$. Știm că ordinul elementului divide ordinul grupului, deci ord (\overline{k}) |18.

 $\mathrm{Dac\Break} \ \mathrm{ord}(\overline{k}) = 1 \Rightarrow \overline{k} = \overline{0} \ \mathrm{si} \ f_{\overline{0}} \ \mathrm{este} \ \mathrm{morfismul} \ \mathrm{nul}, \ \mathrm{Im}(f_{\overline{0}}) = \{\overline{0}\},$

dacă ord $(\overline{k}) = 2 \Rightarrow \overline{k} = \overline{9}, f_{\overline{9}}(\hat{1}) = \overline{9}, \operatorname{Im}(f_{\overline{9}}) = {\overline{0}, \overline{9}}$

 $\operatorname{dac\check{a}}\operatorname{ord}(\overline{k}) = 3 \Rightarrow \overline{k} \in \{\overline{6}, \overline{12}\}, \, f_{\overline{6}}(\hat{1}) = \overline{6}, \, \operatorname{Im}(f_{\overline{6}}) = \{\overline{0}, \overline{6}, \overline{12}\} = \operatorname{Im}(f_{\overline{12}}); f_{\overline{12}}(\hat{1}) = \overline{12},$

 $\operatorname{dac\check{a}} \operatorname{ord}(\overline{k}) = 6 \Rightarrow \overline{k} \in \{\overline{3}, \overline{15}\}, \ f_{\overline{3}}(\hat{1}) = \overline{3}, \ \operatorname{Im}(f_{\overline{6}}) = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}\} = \operatorname{Im}(f_{\overline{15}}); f_{\overline{15}}(\hat{1}) = \overline{15},$

Aceste morfisme se pot și aduna și avem $\operatorname{Hom}(\mathbb{Z}_{12},\mathbb{Z}_{18}) \simeq \mathbb{Z}_6$. Tabla adunării este

Cum adunăm în general două funcții $f, h: A \longrightarrow (B, +)$, unde pe B avem o operație de adunare. $f + h: A \longrightarrow B$ este o altă funcție și aceasta este definită (f + h)(a) = f(a) + h(a). În acest fel adunăm și morfismele între \mathbb{Z}_{12} și \mathbb{Z}_{18} .

Să exemplificăm pentru două morfisme. Să vedem că $f_{\overline{9}} + f_{\overline{6}} = f_{\overline{15}}$.

$$(f_{\overline{9}} + f_{\overline{6}})(\hat{1}) = f_{\overline{9}}(\hat{1}) + f_{\overline{6}}(\hat{1}) = \overline{9} + \overline{6} = \overline{15} = f_{\overline{15}}(\hat{1}).$$

Mai mult pentru orice $\hat{k} \in \mathbb{Z}_{12}$, $(f_{\overline{9}} + f_{\overline{6}})(\hat{k}) = f_{\overline{9}}(\hat{k}) + f_{\overline{6}}(\hat{k}) = f_{\overline{9}}(k\hat{1}) + f_{\overline{6}}(k\hat{1}) = kf_{\overline{9}}(\hat{1}) + kf_{\overline{6}}(\hat{1}) = k(f_{\overline{9}}(\hat{1}) + f_{\overline{6}}(\hat{1})) = k(\overline{9} + \overline{6}) = k\overline{15} = kf_{\overline{15}}(\hat{1}) = f_{\overline{15}}(k\hat{1}) = f_{\overline{15}}(\hat{k})$. Deci $f_{\overline{9}} + f_{\overline{6}} = f_{\overline{15}}$. Vedem că este suficient să verificăm egalitatea pe generatorul $\hat{1}$.

In general avem $\operatorname{Hom}(\mathbb{Z}_p,\mathbb{Z}_q) \simeq \mathbb{Z}_{(p,q)}$.

Problema 3. Arătați că singurul morfism de grupuri de la $(\mathbb{Q},+)$ la $(\mathbb{Z},+)$ este cel nul.

Soluție: Fie $f:(\mathbb{Q},+)\longrightarrow (\mathbb{Z},+)$ morfism de grupuri. Deci f(0)=0 și $f(1)=k\in\mathbb{Z}$. Dar $1\in\mathbb{Q}$ se poate scrie ca fracție $\frac{p}{p}=1, (\forall)p\in\mathbb{N}^{\star}$. $k=f(1)=f(\frac{p}{p})=pf(\frac{1}{p})\Rightarrow p|k$ pentru $(\forall)p\in\mathbb{N}^{\star}$.

De aici k = 0. Dar f este morfism deci $f(n) = nf(1) = n \cdot 0 = 0$, $(\forall) n \in \mathbb{N}$. Dacă $m \in \mathbb{Z}$, m < 0,, atunci $0 = f(0) = f(m - m) = f(m) + f(-m) = f(m) + 0 \Rightarrow f(m) = 0$. $0 = f(\frac{p}{p}) = pf(\frac{1}{p}) \Rightarrow f(\frac{1}{p}) = 0 \Rightarrow f(\frac{1}{p}) = rf(\frac{1}{p}) = r \cdot 0 = 0$.

Problema 4. Calculați tabla de înmulțire a grupului factor $Q/\{\pm 1\}$ unde Q este grupul cuaternionilor.

Soluție: Notăm $H = \{\pm 1\}$, unde $1 = I_2$. $< \mathbf{j} > \cap < \mathbf{k} >= \{\pm I_2\}$. H fiind intersecție de subgrupuri normale este un subgrup normal al grupului Q, deci Q/H este grup. Elementele sunt \overline{H} pe care o vom nota cu $\overline{I_H}$.

$$\frac{\ddot{\mathbf{j}}}{\mathbf{j}} = \{\pm \mathbf{j}\}, \ \overline{\mathbf{k}} = \{\pm \mathbf{k}\}, \ \overline{\mathbf{j}}\overline{\mathbf{k}} = \{\pm \mathbf{j}\mathbf{k}\}.$$

$$\ddot{\mathbf{j}}^{2} = \overline{\mathbf{j}^{2}} = \overline{I_{2}} = \overline{I_{H}}.$$

$$\overline{\mathbf{k}}^{2} = \overline{\mathbf{k}^{2}} = \overline{I_{2}} = \overline{I_{H}}.$$

$$\overline{\mathbf{j}}\overline{\mathbf{k}}^{2} = (\overline{\mathbf{j}}\mathbf{k})^{2} = \overline{\mathbf{j}}\overline{\mathbf{k}}\overline{\mathbf{j}}\overline{\mathbf{k}} = \overline{I_{2}}(-I_{2}) = \overline{I_{2}} = \overline{I_{H}}.$$
Table framulting a graphy in factor $O((+1)$ acts.

Tabla înmulțirii a grupului factor $Q/\{\pm 1\}$ este

Problema 5. Arătați că funcția

$$f: (\mathbb{Z} \times \mathbb{Z}, +) \longrightarrow (\mathbb{Z} \times \mathbb{Z}_2, +), \ f(a, b) = (a - b, \hat{a})$$

este morfism de grupuri. Deduceți că grupul factor $\mathbb{Z} \times \mathbb{Z}/<(2,2)>$ este izomorf cu $\mathbb{Z} \times \mathbb{Z}_2$.

Soluţie $f((a,b) + (c,d)) = f(a+c,b+d) = (a+c-(b+d), \widehat{a+c}) = (a-b+c-d, \hat{a}+\hat{c}) = (a-b,\hat{a}) + (c-d,\hat{c}) = f(a,b) + f(c,d)$. Deci f este morfism.

Identificăm $\operatorname{Ker}(f) = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid f(a,b) = (0,\hat{0})\}.$ $f(a,b) = (0,\hat{0}) \Leftrightarrow (a-b,\hat{a}) = (0,\hat{0}) \Rightarrow a-b=0 \text{ si } \hat{a}=\hat{0} \Rightarrow a=b \text{ si } a=2k.$ Deci $\operatorname{Ker}(f) = \{(2k,2k) \mid k \in \mathbb{Z}\} = \langle (2,2) \rangle.$

Să demonstrăm că f este surjectiv. Considerăm $(x,\hat{y}) \in \mathbb{Z} \times \mathbb{Z}_2$ și trebuie să găsim $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ a.î. $f(a,b) = (x,\hat{y}) \Leftrightarrow (a-b,\hat{a}) = (x,\hat{y}) \Leftrightarrow a-b=x$ și a=y+2k (luăm k=0). Deci b=a-x=y-x, a=y. Deci pentru orice $(x,\hat{y}) \in \mathbb{Z} \times \mathbb{Z}_2$ am găsit $(y,y-x) \in \mathbb{Z} \times \mathbb{Z}$ a.î. $f(y,y-x) = (y-y+x,\hat{y}) = (x,\hat{y}) \in \mathbb{Z} \times \mathbb{Z}_2$. Deci $\mathrm{Im}(f) = \mathbb{Z} \times \mathbb{Z}_2$.

Din teorema fundamentală de izomorfism avem $\mathbb{Z} \times \mathbb{Z}/\operatorname{Ker}(f) \simeq \mathbb{Z} \times \mathbb{Z}_2$.

Problema 6. Considerăm grupul produs semidirect $\mathbb{Z} \rtimes \mathbb{Z}_2$ cu operația dată prin

$$(x,\hat{a})(y,\hat{b}) = (x + (-1)^a y, \widehat{a+b}) \operatorname{pentru}(x,\hat{a}) \operatorname{si}(y,\hat{b}) \in \mathbb{Z} \times \mathbb{Z}_2$$

- (i) Calculați ordinul fiecărui element
- (ii) Găsiți două elemente de ordin doi cu produsul de ordin infinit.

Soluție: (i) Considerăm elementele de tip $(x,\hat{0}), x \in \mathbb{Z}$. $(x,\hat{0})^2 = (x,\hat{0}) \cdot (x,\hat{0}) = (x + (-1)^0 x, \widehat{0+0}) = (2x,\hat{0})$. Pentru $p \in \mathbb{N}^*$ avem $(x,\hat{0})^p = (px,\hat{0})$ (se demonstrează prin inducție). Deci avem $\operatorname{ord}((x,\hat{0})) = \infty$.

Elementele $(x, \hat{1}), x \in \mathbb{Z}$. $(x, \hat{1})^2 = (x, \hat{1}) \cdot (x, \hat{1}) = (x + (-1)^1 x, \widehat{1+1}) = (0, \hat{0})$, unde $(0, \hat{0})$ este elementul neutru pentru operația dată $((x, \hat{y})(0, \hat{0}) = (x + (-1)^y 0, \widehat{y+0}) = (x, \hat{y})$). Deci ord $((x, \hat{1})) = 2$.

(ii) Avem $(x, \hat{1}) \cdot (0, \hat{1}) = (x, \hat{0})$. Fiecare din elementele membrului stâng sunt de ordin 2, iar elementul din membrul drept este de ordin infinit.

Problema 7. Arătați că grupul $(\mathbb{C}^{\star}, \cdot)$ este izomorf cu $(\mathbb{R}, +) \times (\mathbb{R}, +)/\mathbb{Z}$.

Soluție: Orice număr $z \in \mathbb{C}$ se scrie $z = |z|(\cos(t) + i\sin(t))$, unde |z| > 0 și $t = \arg(z) \in [0, 2\pi)$ și $i = \sqrt{-1}$. Ştim că $|z_1 z_2| = |z_1| \cdot |z_2|$ și $\arg(z_1 z_2) \equiv \arg(z_1) + \arg(z_2) \pmod{2k\pi}, k \in \mathbb{Z}$.

Grupurile $((0, +\infty), \cdot) \simeq (\mathbb{R}, +)$ sunt izomorfe via izomorfismul $\ln, (\ln(x_1 \cdot x_2) = \ln(x_1) + \ln(x_2))$. Aplicația $(\mathbb{R}, +) \longrightarrow (\mathbb{S}^1, \cdot), t \mapsto (\cos(2\pi t) + i\sin(2\pi t))$ este un morfism cu nucleul \mathbb{Z} . Deci din teorema fundamentală de izomorfism rezultă că $(\mathbb{R}, +)/\mathbb{Z} \simeq (\mathbb{S}^1, \cdot)$.

Izomorfismul cerut este $f: \mathbb{C}^* \longrightarrow \mathbb{R} \times \mathbb{R}/\mathbb{Z}$, $f(z) = (\ln(|z|), \arg(z))$. Este un morfism pentru că $f(z_1 \cdot z_2) = (\ln(|z_1z_2|), \arg(z_1z_2)) = (\ln(|z_1|) + \ln(|z_2|), \arg(z_1) + \arg(z_2)) = (\ln(|z_1|), \arg(z_1)) + (\ln(|z_2|), \arg(z_2)) = f(z_1) + f(z_2)$. Este ușor de văzut că f este bijectivă. Deci f este un izomorfism.

Problema 1. Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 9 & 8 & 6 & 5 & 4 & 1 & 3 & 7 \end{pmatrix} \in S_9.$

- (i) Scrieți pe σ ca produs de cicli disjuncți.
- (ii) Calculați ordinul permutării σ .
- (iii) Calculați signatura permutării σ .

Solutie

- (i) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 9 & 8 & 6 & 5 & 4 & 1 & 3 & 7 \end{pmatrix} = (1297)(38)(47)$. Reamintesc că 5 nu se scrie pentru că este element fixat de σ . Cicli disjuncți permută.
- (ii) Pentru un produs de cicli disjuncți $c_1c_2 \dots c_p$, ord $(c_1c_2 \dots c_p) = [\text{ord}(c_1), \text{ord}(c_2), \dots, \text{ord}(c_p)]$, unde $[,, \dots]$ reprezintă c.m.m.c. al numerelor dintre parantezele drepte.

Deci ord $(\sigma) = [4, 2, 2, 1] = 4$.

- (iii) Signatura unei transpoziții este -1. Deci $\operatorname{sgn}(\sigma) = (-1)^{\operatorname{numărul de transpoziții}}$.
- (1297) = (12)(29)(97), (în general un ciclu de lungime k este produsul unui ciclu a k-1 transpoziții).

Deci $\sigma = (1297)(38)(47) = (12)(29)(97)(38)(47)$, deci $sgn(\sigma) = -1$.

Problema 2. Scrieți grupul diedral D_6 ca un subgrup al lui S_6 .

Soluție: Este sufiecient să scriem generatorii R, s, unde R este rotația în sens antiorar cu 60° , iar s este simetria în dreapta ce unește mijlocul a două muchii.

 $R \rightsquigarrow (123456)$ iar $s \rightsquigarrow (16)(25)(34)$. R este un element de ordin 6 iar s are ordinul 2.

 $R^2 \leadsto (135)(246), R^3 \leadsto (14)(25)(36), R^4 \leadsto (153)(246), R^5 \leadsto (165432).$

Vă rămâne să scrieți celelalte elemente de ordin 2, care corespund simetriilor Rs, R^2s , R^3s , R^4s , R^5s .

Problema 3. Listați elementele subgrupului lui S_8 generat de (1256)(3478) și (1357)(2864) (prezentarea prin permutări a grupului cuternionilor).

Soluție: Notăm j = (1256)(3478) și k = (1357)(2864). Vedem că și pentru j și pentru k cei doi 4 cicli comută fiind pe mulțimi diferite de indici.

1

Astfel $j^2 = (15)(26)(37)(48) = (15)(37)(26)(84) = k^2$.

 $j^3 = (1256)^3 (3478)^3 = (1652)(3874), k^3 = (1357)^3 (2864)^3 = (1753)(2468), j^4 = k^4 = e.$

jk = (1256)(3478)(1357)(2864) = (1458)(2367),

 $kj = (1357)(2864)(1256)(3478) = (1854)(2763) = (jk)^3$

 $(jk)^2 = (15)(48)(26)(37) = (kj)^2 = j^2 = k^2.$

Deci $\langle j, k \rangle = \{e, j, k, j^3, k^3, jk, kj = (jk)^3, j^2 = k^2 = (jk)^2 = (kj)^2 \}.$

Problema 4. Listați subgrupurile lui A_4 precizând care sunt normale.

Soluție: A_4 este subgrupul altern al grupului S_4 , format din permutările pare. Am precizat mai sus că un ciclu de lungime k este produsul unui ciclu a k-1 transpoziții, deci signatura unui ciclu de lungime k este $(-1)^{k-1}$. Elementele grupului A_4 sunt:

```
(12)(34), (13)(24), (14)(23),
          (123), (132), (124), (142), (134), (143), (234), (243).
         \{e, (14)(23)\},\
          <(12)(34),(13)(24)>=\{e,(12)(34),(13)(24),(14)(23)\},
          \langle (123) \rangle = \{e, (123), (132)\}, \langle (124) \rangle = \{e, (124), (142)\}, \langle (134) \rangle = \{e, (134), (143)\}, \langle (124) \rangle = \{e, (124), (142)\}, \langle (134) \rangle = \{e, (124), (142)\}, \langle (134), (142)\}, \langle (134), (142)\}, \langle (134), (142)\}, \langle (134), (142), (142)\}, \langle (134), (142), (142), (142)\}, \langle (134), (142), (142), (142), (142)\}
          <(234)>=\{e,(234),(243)\}\ și bineînțeles A_4.
```

Dintre acestea, conjugând cu elemente din A_4 vedem că în afară de e și A_4 subgrupul < $(12)(34), (13)(24) >= \{e, (12)(34), (13)(24), (14)(23)\}$ este normal în A_4 .

Problema 5. În S_7 considerăm subgrupul C = <(123), (12)(4567) >. Listați elementele lui Cștiind că |C| = 12.

```
Soluție: Fie a = (123), b = (12)(4567). a^2 = (132), a^3 = e = b^4. b^2 = (46)(57), b^3 = (12)(4765).
ab = (123)(12)(4567) = (12)(23)(12)(4567) = (13)(4567),
ba = (12)(4567)(123) = (12)(4567)(12)(23) = (12)(12)(23)(4567) = (23)(4567).
Se vede că (ab)^2 = (ba)^2 = b^2 = (46)(57), (ab)^3 = (13)(4765), (ba)^3 = (23)(4765).
a^2b = (132)(12)(4567) = (23)(4567) = (13)(4567) = ba,
ba^2 = (12)(4567)(132) = (12)(132)(4567) = (13)(4567) = ab.
ab^2 = b^2a = (123)(46)(57), a^2b^2 = b^2a^2 = (132)(46)(57).
Deci C = \{e, a, a^2, b, b^2, b^3, ab, ba, (ab)^3, (ba)^3, ab^2, a^2b^2\}.
```

Problema 6. Examinând ordinul elementelor, arătați că grupurile D_6 , A_4 și C nu sunt izomorfe.

```
Soluție: Considerăm numai elementele netriviale
```

```
D_6:
2 elemente de ordin 6: R, R^5
2 elemente de ordin 3: R^2, R^4.
7 elemente de ordin 2: R^3, s, Rs, R^2s, R^3s, R^4s, R^5s.
   A_4:
8 elemente de ordin 3: (123), (132), (124), (142), (134), (143), (234), (243)
3 elemente de ordin 2: (12)(34), (13)(24), (14)(23).
2 elemente de ordin 6: ab^2, a^2b^2.
6 elemente de ordin 4: b, b^3, ab, ba, (ab)^3, (ba)^3.
2 elemente de ordin 3: a, a^2
1 element de ordin 2: b^2 = (ab)^2 = (ba)^2.
  Problema 7. Fie K = \{id, (12)(34), (13)(24), (14)(23)\}. Arătaţi că:
```

- (i) K este subgrup normal în S_4 .
- (ii) Scrieţi clasele lui S_4 modulo K.
- (iii) S_4/K este izomorf cu S_3 .

```
Soluție: (i) Ştim că S_4 = < (12), (23), (34) >. Deci va trebui să verificăm conjugarea ele-
mentelor din K cu acești generatori.
(12)(12)(34)(12) = (34)(12) = (12)(34), (12)(13)(24)(12) = (14)(23), (12)(14)(23)(12) = (13)(24),
(23)(12)(34)(23) = (13)(24), (23)(13)(24)(23) = (12)(34), (23)(14)(23)(23) = (23)(14) = (14)(23),
(34)(12)(34)(34) = (34)(12) = (12)(34), (34)(13)(24)(34) = (14)(23), (34)(14)(23)(34) = (13)(24).
     Vedem că toate elementele din K conjugate cu generatorii lui S_4 ne dau elemente din K. Deci
K este normal.
(ii) Voi scrie elementele grupului S_4.
     (12), (13), (14), (23), (24), (34),
     (12)(34), (13)(24), (14)(23),
     (123), (132), (124), (142), (134), (143), (234), (243),
     (1234), (1243), (1324), (1342), (1423), (1432).
    Trebuie să vedem care sunt mulțimile \sigma K cu \sigma \in S_4.
    Prima clasă a lui S_4 modulo K este chiar K. Considerăm \sigma transpoziție.
(1324)K = (1423)K,
(1234)K = (1432)K,
(14)K = \{(14), (14)(12)(34), (14)(13)(24), (14)(14)(23)\} = \{(14), (1243), (1342), (23)\} = (23)K = (2
(1243)K = (1342)K
(243)K = (142)K,
(124)K = (143)K.
    Acestea sunt cele sase clase modulo K.
(iii) f: S_4 \longrightarrow S_3 decriem un morfism pe generatori. (12) \mapsto (12), (23) \mapsto (23), (34) \mapsto (12). Este
clar că (12)(34) \mapsto (12)^2 = e.
     (13) = (12)(23)(12) = (23)(12)(23) iar (24) = (23)(34)(23), de unde
     (13)(24) \mapsto (23)(12)(23)(23)(12)(23) = e.
    Am demonstrat că (12)(34) și (13)(24) \in \text{Ker}(f), deci și produsul acestora (14)(23) \in \text{Ker}(f).
    Deci Ker(f) = K și f este surjectiv. Folosind teorema fundamentală de izomorfism rezultă că
S_4/K \simeq S_3.
    Problema 8. Fie D_5 subgrupul lui S_5 generat de (12345) și (25)(34).
(i) Scrieti elementele lui D_5.
(ii) Listați subgrupurile lui D_5 precizând care sunt normale.
    Soluție: (i) Fie r = (12345) și s = (25)(34).
     D_5 = \{e, r, r^2 = (13524), r^3 = (14253), r^4 = (15432), s, rs = (12)(35), r^2s, r^3s, r^4s\}
(ii) < (12345) > este normal. Mai sunt subgrupuri de ordin 2 generate fiecare de câte o simetrie.
Acestea nu sunt normale.
```

Problema 1. Arătați că $A = \{\frac{a+b\sqrt{5}}{2} \mid a,b \in \mathbb{Z}, a \equiv_2 b\}$ este subinel al lui \mathbb{R} cu o infinitate de elemente inversabile.

Soluție: • Arătăm că (A, +) este subgrup în $(\mathbb{R}, +)$.

Fie $\frac{a+b\sqrt{5}}{2}$, $\frac{c+d\sqrt{5}}{2} \in A$; $a,b,c,d \in \mathbb{Z}$, a și b au aceeași paritate, c și d sunt de aceeași paritate. $\frac{a+b\sqrt{5}}{2} - \frac{c+d\sqrt{5}}{2} = \frac{(a-c)+(b-d)\sqrt{5}}{2}$. Este clar că $a-c,b-d \in \mathbb{Z}$ și pentru că a și b au aceeași paritate şi respectiv c şi d aŭ aceeaşi paritate, atunci a-c şi b-d aŭ aceeaşi paritate.

• A este parte stabilă în raport cu înmulțirea.

$$\frac{a+b\sqrt{5}}{2} \cdot \frac{c+d\sqrt{5}}{2} = \frac{(ac+5bd)+(ad+bc)\sqrt{5}}{4} = \frac{\frac{(ac+5bd)}{2}+\frac{(ad+bc)\sqrt{5}}{2}}{2}.$$

Considerăm cazul a și b impare și c și d tot impare, a=2p+1, b=2q+1, c=2x+1, d=2y+1.

$$\frac{(ac+5bd)}{2} = \frac{4px + 2p + 2x + 1 + 20qy + 10q + 10y + 5}{2} = 2px + p + x + 10qy + 5q + 5y + 3 = 2px + 10qy + p + x + 4(q+y) + q + y + 3 \in \mathbb{Z}$$

Mai mult $\frac{(ac+5bd)}{2} \equiv_2 p + x + q + y + 1.$

$$\frac{(ad+bc)}{2} = \frac{4py + 2p + 2y + 1 + 4qx + 2q + 2x + 1}{2} = 2py + p + y + 2qx + q + x + 1 \in \mathbb{Z}.$$

$$\frac{(ad+bc)}{2} = 2py + p + y + 2qx + q + x + 1 \equiv_2 p + y + q + x + 1 \equiv_2 p + x + q + y + 1 \equiv_2 \frac{(ac+5bd)}{2}.$$

Făcând calcule similare pentru celelate parități rezultă că $\frac{a+b\sqrt{5}}{2} \cdot \frac{c+d\sqrt{5}}{2} \in A$, deci A este parte stabilă față de " ".

A este inel cu unitate, unitatea fiind $1=\frac{2+0\sqrt{5}}{2},\,2,\,0\in\mathbb{Z},2\equiv_20.$

• $\frac{1+\sqrt{5}}{2}$ este inversabil, inversul acestuia este $\frac{-1+\sqrt{5}}{2}$ pentru că $\frac{1+\sqrt{5}}{2} \cdot \frac{-1+\sqrt{5}}{2} = \frac{-1^2+(\sqrt{5})^2}{4} = \frac{-1^2+(\sqrt{5})^2}{4}$ $\frac{-1+5}{4} = 1.$

Toate elementele $(\frac{1+\sqrt{5}}{2})^k, k \in \mathbb{N}$ sunt inversabile cu inversele $(\frac{-1+\sqrt{5}}{2})^k$.

Problema 2. Arătați că $A = \{\frac{a+b\sqrt{7}}{2} \mid a,b \in \mathbb{Z}, a \equiv_2 b\}$ nu este subinel în \mathbb{R} .

Soluție: \bullet (A, +) este subgrup al lui \mathbb{R} .

• A NU este parte stabilă față de . Voi da un exemplu: $\frac{1+\sqrt{7}}{2}\cdot\frac{3+\sqrt{7}}{2}=\frac{3+7+\sqrt{7}+3\sqrt{7}}{4}=\frac{10+4\sqrt{7}}{4}=\frac{5+2\sqrt{7}}{2}.\ 5,2\in\mathbb{Z},\ \mathrm{dar}\ 5\not\equiv_2 2.\ \mathrm{Deci\ produsul\ elementelor}$ NU este în A.

Problema 3. Fie A un inel şi $x \in A$ cu $x^n = 0$ pentru un anume $n \ge 1$ (un astfel de element se numeşte element nilpotent). Arătați că x este zero-divizor şi 1 + x este element inversabil.

Soluție: Cel mai mic $n \ge 1$ cu proprietatea că $x^n = 0$ se numește ordin de nilpotență. Deci pentru n ordinul de nilpotență a lui x avem $x \cdot x^{n-1} = x^n = 0$. Deci $x \in Z(A)$, unde Z(A) sunt divizorii lui 0 din inelul A.

 $(1+x)(1-x+x^2-\ldots\pm x^{n-1})=1\pm x^n=1,$ (+ pentru n impar şi – pentru n par) pentru că $x^n=0.$

Problema 4. Determinați elementele nilpotente din inelul \mathbb{Z}_{12} . Dați un exemplu de zero-divizor care nu este nilpotent.

Soluție: $Z(\mathbb{Z}_{12}) = \{\hat{k} \in \mathbb{Z}_{12} \mid (k, 12) \neq 1\} = \{\hat{2}, \hat{2}, \hat{3}, \hat{4}, \hat{6}, \hat{8}, \hat{9}, \hat{10}\}.$ $\hat{4}^2 = \hat{4} \Rightarrow \hat{4}^k = 4, (\forall) k \in \mathbb{N}$ este un zero-divizor care NU este nilpotent.

Problema 5. Fie $n \ge 2$. Arătați că $\hat{a} \in \mathbb{Z}_n$ este nilpotent dacă și numai dacă a se divide cu toți factorii primi ai lui n.

Soluţie: Vedem că se verifică afirmaţia din acestă problemă pentru $\hat{6} \in \mathbb{Z}_{12}$. $12 = 2^2 \cdot 3$ şi $6 = 2 \cdot 3$.

Considerăm descompunerea în factori primi ai lui $n, n = p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}, s_j \geqslant 1.$

"⇒" Fie $\hat{a} \in \mathbb{Z}_n$ nilpotent. Deci există $t \geq 2$ a.î. $\hat{a}^t = \hat{0} \Leftrightarrow a^t = q \cdot n$ pentru un $q \in \mathbb{N}$. Deci pentru $\forall 1 \leq j \leq k, p_j \mid a^t$, dar p_j este prim, de unde rezultă $p_j \mid a$.

" \Leftarrow " $a = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ cu $a_j \leqslant s_j$, $(\forall) j, 1 \leqslant j \leqslant k$. $a^u = (p_1^{a_1} p_2^{a_2} \dots p_k^{a_k})^u = p_1^{ua_1} p_2^{ua_2} \dots p_k^{ua_k}$. \hat{a} este nilpotent cu ordinul de nilpotență cel mai mic u a.î. $ua_j \geqslant s_j$, (\forall) $j, 1 \leqslant j \leqslant k$.

Problema 6. Arătați că

$$A = \left\{ \left(\begin{array}{cc} a & 0 \\ b & a \end{array} \right) \mid a, b \in \mathbb{Z} \right\}$$

este un subinel în $\mathcal{M}_2(\mathbb{R})$.

Soluţie: • (A, +) este subgrup al $(\mathcal{M}_2(\mathbb{R}), +)$. Fie $\begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$, $\begin{pmatrix} c & 0 \\ d & c \end{pmatrix} \in A$. $\begin{pmatrix} a & 0 \\ b & a \end{pmatrix} - \begin{pmatrix} c & 0 \\ d & c \end{pmatrix} = \begin{pmatrix} a-c & 0 \\ b-d & a-c \end{pmatrix}$ cu $a-c, b-d \in \mathbb{Z}$.

• A parte stabilă față de " ".

$$\begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \cdot \begin{pmatrix} c & 0 \\ d & c \end{pmatrix} = \begin{pmatrix} ac & 0 \\ bc + ad & ac \end{pmatrix}, ac, bc + ad \in \mathbb{Z}.$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in A.$$

Problema 7. Fie A inelul din problema precedentă. Determinați U(A) și Z(A).

•
$$U(A)$$
: Căutăm $\begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$ a.î. $\exists \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}$ cu proprietatea $\begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$ · $\begin{pmatrix} x & 0 \\ y & x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} ax & 0 \\ bx + ay & ax \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{cases} ax & = 1 \\ bx + ay & = 0 \end{cases}$. Din prima ecuație, pentru că $a, x \in \mathbb{Z} \Rightarrow a = x \in \{\pm 1\}$ iar a doua ecuație devine $a(b+y) = 0 \Rightarrow a$

$$U(A) = \{ \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ b & -1 \end{pmatrix} \mid b \in \mathbb{Z} \}. \text{ De menționat că inversa matricei} \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \text{ este } \begin{pmatrix} 1 & 0 \\ -b & 1 \end{pmatrix}, \text{ iar inversa matricei} \begin{pmatrix} -1 & 0 \\ b & -1 \end{pmatrix} \text{ este } \begin{pmatrix} -1 & 0 \\ -b & -1 \end{pmatrix}.$$

$$Z(A): Căutăm \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} a.î. \exists \begin{pmatrix} x & 0 \\ y & x \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ cu proprietatea}$$

$$\begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \cdot \begin{pmatrix} x & 0 \\ y & x \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} ax & 0 \\ bx + ay & ax \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} ax & = 0 \\ bx + ay & = 0 \end{cases}$$

Presupunem $a \neq 0$, deci din prima ecuație rezultă x = 0. A doua ecuație devine ay = 0, de

A rezultat x = y = 0, deci matricea 0_2 , dar trebuie ca $\begin{pmatrix} x & 0 \\ y & x \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Deci a = 0. A doua ecuație devine bx = 0. a, b nu pot fi simultan nule, deci x = 0.

$$Z(A) = \{ \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} \mid b \in \mathbb{Z} \}.$$

Problema 8. Arătati că

$$F = \{ \left(\begin{array}{cc} a & b \\ b & a+b \end{array} \right) \mid a, b \in \mathbb{Z}_2 \}$$

este un subinel în $\mathcal{M}_2(\mathbb{Z}_2)$. Este F corp?

Soluţie: • (F, +) este subgrup al $(\mathcal{M}_2(\mathbb{Z}_2), +)$

$$\left(\begin{array}{cc} a & b \\ b & a+b \end{array}\right) - \left(\begin{array}{cc} c & d \\ d & c+d \end{array}\right) = \left(\begin{array}{cc} a-c & b-d \\ b-d & a+b-c-d \end{array}\right) \text{ cu } a-c, b-d \in \mathbb{Z}_2.$$

 \bullet Feste parte stabilă în raport cu "."

$$\left(\begin{array}{cc} a & b \\ b & a+b \end{array}\right) \cdot \left(\begin{array}{cc} c & d \\ d & c+d \end{array}\right) = \left(\begin{array}{cc} ac+bd & ad+bc+bd \\ bc+ad+bd & bd+ac+ad+bc+bd \end{array}\right) \in F.$$

Considerăm $\begin{pmatrix} a & b \\ b & a+b \end{pmatrix} \in F \setminus \{0_2\}$, deci a,b nu sunt simultan $\hat{0}$.

$$\det \begin{pmatrix} a & b \\ b & a+b \end{pmatrix} = a(a+b) - b^2 = a^2 + ab + b^2 \text{ (lucrăm peste } \mathbb{Z}_2\text{). Cantitatea } a^2 + ab + b^2 = a^2 + ab + b^2$$

 $\hat{0} \Leftrightarrow a = b = \hat{0}$, ceea ce nu este adevărat. Astfel det $\neq \hat{0}$, adică det $\begin{pmatrix} a & b \\ b & a+b \end{pmatrix} = \hat{1}$ și deci matricea este inversabilă. Deci F este corp. Elementele lui F sunt:

$$F = \{ \left(\begin{array}{cc} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{array} \right), \left(\begin{array}{cc} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{array} \right), \left(\begin{array}{cc} \hat{0} & \hat{1} \\ \hat{1} & \hat{1} \end{array} \right), \left(\begin{array}{cc} \hat{1} & \hat{1} \\ \hat{1} & \hat{0} \end{array} \right) \}.$$

Problema 1. Determinați idealele inelului \mathbb{Z}_{12} .

Soluţie: $\mathbb{Z}_{12} = \mathbb{Z}/12\mathbb{Z}$. Din teorema de corespondenţă idealele \overline{J} ale inelului \mathbb{Z}_{12} sunt în bijecţie cu idealele J, $12\mathbb{Z} \subset J \subset \mathbb{Z}$. Dintr-un rezultat de la curs ştim că toate idealele inelului \mathbb{Z} sunt de forma $n\mathbb{Z}$. Incluziunea $12\mathbb{Z} \subset n\mathbb{Z}$ implică n|12, de unde $n \in \{1, 2, 3, 4, 6, 12\}$.

Deci idealele $\overline{J} \subset \mathbb{Z}_{12}$ sunt $\mathbb{Z}/12\mathbb{Z}, 2\mathbb{Z}/12\mathbb{Z}, 3\mathbb{Z}/12\mathbb{Z}, 4\mathbb{Z}/12\mathbb{Z}, 6\mathbb{Z}/12\mathbb{Z}, 12\mathbb{Z}/12\mathbb{Z}$.

Problema 2. Determinați idealele (stângi/drepte/bilaterale) ale inelului de matrice $\mathcal{M}_2(\mathbb{Z}_2)$.

Soluţie: $\mathbb{Z}_2 = \{\hat{0}, \hat{1}\}, |\mathbb{Z}_2| = 2 \text{ de unde } |\mathcal{M}_2(\mathbb{Z}_2)| = 16.$ Voi scrie tabla înmulţirii pe $\mathcal{M}_2(\mathbb{Z}_2)$. Elementele inelului $\mathcal{M}_2(\mathbb{Z}_2)$ sunt $0 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, A_1 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, A_2 = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{0} \end{pmatrix}, A_3 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix}, A_4 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}, A_5 = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{0} \end{pmatrix}, A_6 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix}, I = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}, A_7 = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix}, A_8 = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}, A_9 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{1} \end{pmatrix}, A_{10} = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}, A_{11} = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{1} & \hat{1} \end{pmatrix}, A_{12} = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}, A_{13} = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}, 1 = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}.$

Tabla înmulțirii este:

	0	A_1	A_2	A_3	A_4	A_5	A_6	I	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A_1	0	A_1	A_2	0	0	A_5	A_1	A_1	A_2	A_2	0	A_2	A_1	A_5	A_5	A_5
A_2	0	0	0	A_1	A_2	0	A_1	A_2	A_1	A_2	A_5	A_5	A_5	A_2	A_1	A_5
A_3	0	A_3	A_4	0	0	A_9	A_3	A_3	A_4	A_4	0	A_4	A_3	A_9	A_9	A_9
A_4	0	0	0	A_3	A_4	0	A_3	A_4	A_3	A_4	A_9	A_9	A_9	A_4	A_3	A_9
A_5	0	A_1	A_2	A_1	A_2	A_5	0	A_5	A_5	0	A_5	A_1	A_2	A_1	A_2	0
A_6	0	A_6	A_8	0	0	1	A_6	A_6	A_8	A_8	0	A_8	A_6	1	1	1
I	0	A_1	A_2	A_3	A_4	A_5	A_6	I	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	1
A_7	0	A_3	A_4	A_1	A_2	A_9	A_6	A_7	I	A_8	A_5	A_{12}	A_{13}	A_{10}	A_{11}	1
A_8	0	0	0	A_6	A_8	0	A_6	A_8	A_6	A_8	1	1	1	A_8	A_6	1
A_9	0	A_3	A_4	A_3	A_4	A_9	0	A_9	A_9	0	A_9	A_3	A_4	A_3	A_4	0
A_{10}	0	A_3	A_4	A_6	A_8	A_9	A_1	A_{10}	A_{11}	A_2	1	A_{13}	A_{12}	A_7	I	A_5
A_{11}	0	A_6	A_8	A_3	A_4	1	A_1	A_{11}	A_{10}	A_2	A_9	A_7	I	A_{13}	A_{12}	A_5
A_{12}	0	A_1	A_2	A_6	A_8	A_5	A_3	A_{12}	A_{13}	A_4	1	A_{11}	A_{10}	I	A_7	A_9
A_{13}	0	A_6	A_8	A_1	A_2	1	A_3	A_{13}	A_{12}	A_4	A_5	I	A_7	A_{11}	A_{10}	A_9
1	0	A_6	A_8	A_6	A_8	1	0	1	1	0	1	A_6	A_8	A_6	A_8	0

Ideale la dreapta: $\{0, A_1, A_2, A_5\}$, $\{0, A_3, A_4, A_9\}$, $\{0, A_6, A_8, 1\}$ Ideale la stânga: $\{0, A_1, A_3, A_6\}$, $\{0, A_2, A_4, A_8\}$, $\{0, A_5, A_9, 1\}$ Singulerele ideale bilaterale sunt 0 și inelul $\mathcal{M}_2(\mathbb{Z}_2)$.

Problema 3. Arătați că idealul generat de 2 și X în $\mathbb{Z}[X]$ nu este principal.

Soluție: Un ideal principal este un ideal generat de un singur element. Idealul generat de 2 și X, I = <2, X> este diferit de tot inelul $\mathbb{Z}[X]$ (1 nu se scrie ca o combinație de 2 și X cu coeficienți polinoame).

Presupunem că I = <2, X> = <f>, deci în particular $<2, X> = <f> \Rightarrow f|X$ și f|2. Din $f|X \Rightarrow f = \pm 1$ sau $f = \pm X$. Dar cum $I \neq \mathbb{Z}[X]$, $f \neq \pm 1$, deci $f = \pm X$. Relația f|2 devine $\pm X|2$, ceea ce este o contradicție. Deci I nu este principal.

Problema 4. Fie A și B două inele comutative. Arătați că idealele inelului produs direct $A \times B$ sunt de forma $I \times J$ cu I ideal al lui A și J ideal a lui B.

Soluție: Demonstrăm că $I \times J$ este ideal în inelul $A \times B$.

Considerăm morfismul de inele $\varphi: A \times B \longrightarrow A/I \times B/J, \varphi(a,b) = (a+I,b+J)$. Este un morfism surjectiv de inele, iar $\operatorname{Ker}(\varphi) = I \times J$, este ideal în $A \times B$ (ca nucleul unui morfism de inele).

Demonstrăm acum că orice ideal din inelul $A \times B$ este produs direct de ideale din cele două inele. Fie $K \subset A \times B$, ideal. Considerăm morfismele proiecție pe cei doi factori $p: A \times B \longrightarrow A$ și $q: A \times B \longrightarrow B$.

Arătăm că $K = p(K) \times q(K)$.

Fie $(x, y) \in K$, (x, y) = (x, 0) + (0, y), deci $K \subset p(K) \times q(K)$.

Fie $(x, y), (x', y') \in K$, arbitrare și deci $(x, y') \in p(K) \times q(K)$ un element arbitrar.

 $(x, y') = (1, 0)(x, y) + (0, 1)(x', y') \in K$. De aici egalitatea $K = p(K) \times q(K)$.

Problema 5. Determinanți idealele inelului produs direct $\mathbb{Z} \times \mathbb{Q}$.

Soluţie: Singurele ideale ale unui corp k sunt 0 şi k. Deci, folosind **problema 4** idealele inelului $\mathbb{Z} \times \mathbb{Q}$ sunt $0, n\mathbb{Z} \times \mathbb{Q}, n \geqslant 1$.

Problema 6. Arătați că nu există morfisme de inele între $\mathbb{Z}[i]$ și \mathbb{Q} . $(i = \sqrt{-1})$.

Soluție: $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ este inelul întregilor lui Gauss.

Un morfism de inele $f: \mathbb{Z}[i] \longrightarrow \mathbb{Q}$ are proprietatea f(1) = 1 (1 este unitatea față de înmulțire atât în Z[i] cât și în \mathbb{Q}). f(2) = f(1+1) = f(1) + f(1) = 2.

Fie $f(i) = x \in \mathbb{Q}$, valoarea elementului i prin morfismul f.

Dar 2 = (1+i)(1-i). De aici $2 = f(2) = f((1+i)(1-i)) = f(1+i)f(1-i) = (f(1)+f(i))(f(1)-f(i)) = (1+x)(1-x) = 1-x^2$. Deci $x^2 = -1$ cu $x \in \mathbb{Q}$. Absurd.

Deci nu există morfism de inele $f: \mathbb{Z}[i] \longrightarrow \mathbb{Q}$.

Problema 7. Calculați tablele de adunare și înmulțire ale inelului factor $\mathbb{Z}[i]/<2>$. Câte ideale are acest inel?

Soluție: Avem următoarele clase în $\mathbb{Z}[i]/\langle 2 \rangle$.

- $a = 2p, b = 2q, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \widehat{0},$
- $a = 2p + 1, b = 2q, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \hat{1},$
- $a = 2p, b = 2q + 1, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \widehat{i},$
- $a = 2p + 1, b = 2q + 1, p, q \in \mathbb{Z}; \quad \widehat{a + bi} = \widehat{1 + i}.$

Tabla adunării:

+	$\hat{0}$	î	\hat{i}	$\widehat{1+i}$
$ \begin{array}{c} $	$ \begin{array}{c} \hat{0} \\ \hat{1} \\ \hat{i} \\ 1+i \end{array} $			$ \begin{array}{c} \widehat{1+i} \\ \widehat{i} \\ \widehat{1} \\ \widehat{0} \end{array} $

Tabla înmulțirii:

Idealele inelului $\mathbb{Z}[i]/\langle 2 \rangle$ sunt $\hat{0}$, $\mathbb{Z}[i]/\langle 2 \rangle = \{\hat{0}, \hat{1}, \hat{i}, \widehat{1+i}\}$ şi $\langle 1+i \rangle = \{\hat{0}, \widehat{1+i}\}$. Deci inelul are trei ideale, toate bilaterale, inelul fiind comutativ.

Problema 8. Arătați că

- (i) funcția $f: \mathbb{Z}[i] \longrightarrow \mathbb{Z}_5, f(a+bi) = a+2b$ este morfism de inele.
- (ii) Inelul factor $\mathbb{Z}[i]/\langle 2-i \rangle$ este izomorf cu \mathbb{Z}_5 .

Solutie

$$\underbrace{(i)}_{a+2b} f((a+bi) + (c+di)) = f((a+c) + (b+d)i) = (a+c) + 2(b+d) = a + 2b + c + 2d = a + 2b + 2d =$$

$$f((a+bi)\cdot(c+di)) = f((ac-bd) + (ad+bc)i) = (ac-bd)+2(ad+bc) = (ac+4bd)+2(ad+bc)$$
(în $\mathbb{Z}_5, -1 \equiv_5 4$) = $(a+2b)(c+2d) = (a+2b)\cdot(c+2d) = f(a+bi)\cdot f(c+di)$.
$$f(0) = \hat{0}, f(1) = \hat{1}.$$

(ii) Morfismul este surjectiv deoarece pentru $(\forall)\hat{x} \in \mathbb{Z}_5, (\exists)x + 0i \in \mathbb{Z}[i], \text{ a.i. } f(x+0i) = \widehat{x+2\cdot 0} = \widehat{x}.$

"
$$Ker(f) = <2-i>$$
"

"
$$\subseteq$$
 " Fie $a + bi \in \mathbb{Z}[i] \Leftrightarrow \widehat{a + 2b} = \widehat{0} \in \mathbb{Z}_5 \Leftrightarrow a + 2b = 5k, k \in \mathbb{Z} \Leftrightarrow a = 5k - 2b.$

Deci un element arbitrar din Ker(f) este de forma $(5k-2b)+bi,b,k \in \mathbb{Z}$. Pentru a arăta incluziunea trebuie să vedem că $(5k-2b)+bi \in (2-i)$, adică trebuie să găsim $m,n \in \mathbb{Z}$ a.î. $(5k-2b)+bi=(m+ni)(2-i) \Leftrightarrow (5k-2b)+bi=(2m+n)+(-m+2n)i$.

Sistemul $\begin{cases} 2m+n &= 5k-2b \\ -m+2n &= b \end{cases}$. Înmulțim cu 2 ecuația a doua și adunăm cele două ecuații. Obținem n=k. Introducând în prima ecuație obținem m=2k-b.

Deci
$$(5k - 2b) + bi = ((2k - b) + ki)(2 - i) \in (2 - i)$$
.

"
$$\supseteq$$
" Este suficient să verificăm că $(2-i) \in \text{Ker}(f)$. $f(2-i) = 2 + 2(-1) = \widehat{2-2} = \widehat{0}$.

Din teorema fundamentală de izomorfism pentru inele rezultă că $\mathbb{Z}[i]/\langle 2-i \rangle \simeq \mathbb{Z}_5$.

Problema 9. Arătați că inelul factor $\mathbb{Z}[i]/\langle 2+2i\rangle$ nu este izomorf cu \mathbb{Z}_8 .

Soluție: Inelul \mathbb{Z}_8 are zero-divizori $\{\hat{2}, \hat{4}, \hat{6}\}$, dar și elementele nilpotente $\hat{2}$ cu ordinul de nilpotență 3 și $\hat{4}$ cu ordinul de nilpotență 2.

Arătăm că în $\mathbb{Z}[i]/\langle 2+2i\rangle$ nu există nilpotenți de ordin 2.

Considerăm $a+bi \notin (2+2i) \Leftrightarrow a,b$ nu sunt simultan pare (adică $a+bi \neq 0 \in \mathbb{Z}[i]/(2+2i)$). Arătăm că $(a+bi)^2 \neq 0$ în $\mathbb{Z}[i]/(2+2i)$.

Presupunem că $(a+bi)^2 = 0 \in \mathbb{Z}[i]/\langle 2+2i \rangle \Leftrightarrow (\exists)m, n \in \mathbb{Z} \text{ a.î. } (a+bi)^2 = (2+2i)(m+ni) \Leftrightarrow (a^2-b^2) + 2abi = 2(m-n) + 2(m+n)i.$

Cum a, b nu sunt simultan pare avem trei cazuri:

- a = 2p + 1, b = 2q
- $a^2 b^2 = 4p^2 + 4p + 1 4q^2$ este impar deci nu poate fi egal cu 2(m-n).
- a = 2p, b = 2q + 1

 $a^2 - b^2$ este impar (similar calcului de mai sus).

• a = 2p + 1, b = 2q + 1

$$a^2 - b^2 = 4p^2 + 4p + 1 - 4q^2 - 4q - 1 = 4(p^2 - q^2) + 4(p - q) = 4(p - q)(p + q + 1),$$

 $2ab = 2(2p + 1)(2q + 1).$

$$\begin{array}{lll} \text{Obţinem sistemul} \left\{ \begin{array}{lll} 2(m-n) & = & 4(p-q)(p+q+1) \\ 2(m+n) & = & 2(2p+1)(2q+1) \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ \text{Adunând cele două ecuații obţinem } 2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \\ \Leftrightarrow 2m - 2(p-q)(p+q+1) + (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ \text{Adunând cele două ecuații obţinem } 2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \\ \Leftrightarrow 2m - 2(p-q)(p+q+1) + (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ \text{Adunând cele două ecuații obţinem } 2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \\ \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+1)(2q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & (2p+q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)(p+q+1) \end{array} \right. \\ = \left\{ \begin{array}{lll} m-n & = & 2(p-q)(p+q+1) \\ m+n & = & 2(p-q)($$

Adunând cele două ecuații obținem $2m = 2(p-q)(p+q+1) + (2p+1)(2q+1) \Leftrightarrow 2m-2(p-q)(p+q+1) = (2p+1)(2q+1)$, adică un număr par este egal cu un număr impar, ceea ce este absurd.

Deci $\mathbb{Z}[i]/<2+2i>$ nu are nilpotenți de ordin 2, deci nu poate fi izomorf cu \mathbb{Z}_8 , care elementul $\hat{4}$ nilpotent de ordin 2.

Problema 1. Arătați că inelul \mathbb{Z}_{1001} este izomorf cu un produs direct de corpuri.

Soluție: Se aplică Corolarul 2 din Cursul 12 pentru inelul $A = \mathbb{Z}$, și elementele 7, 11, 13 \in $\mathbb{Z}\setminus\{\pm 1\}$, care sunt prime şi deci coprime.

 $1001=7\cdot 11\cdot 13$ și deci $\mathbb{Z}_{1001}\simeq \mathbb{Z}_7\times \mathbb{Z}_{11}\times \mathbb{Z}_{13}.$ 7, 11, 13 fiind numere prime rezultă că $\mathbb{Z}_7, \mathbb{Z}_{11}, \mathbb{Z}_{13}$ sunt corpuri.

Problema 2. Arătați că:

- (i) 77 este element nilpotent în inelul \mathbb{Z}_{847} ,
- (ii) inelul \mathbb{Z}_{847} nu este izomorf cu un produs direct de corpuri.

Solutie:

(i) 847 = $7 \cdot 11^2$. Problema 5 din Seminar 10 spune că $\hat{x} \in \mathbb{Z}_n$ este nilpotent dacă și numai dacă x se divide cu toți factorii primi ai lui n. 77 = 7 · 11 se divide cu 7 și 11, factorii primi ai numărului 847. Deci $\widehat{77}$ este nilpotent.

$$\widehat{77}^2 = \widehat{77^2} = \widehat{7^2 \cdot 11^2} = \widehat{7 \cdot 7 \cdot 11^2} = \widehat{7} \cdot \widehat{7 \cdot 11^2} = \widehat{7} \cdot \widehat{0} = \widehat{0}$$
. Deci ordinul de nilpotență este 2.

(ii) Aplicând acelaşi Corolar 2 din Curs 12, $\mathbb{Z}_{847} \simeq \mathbb{Z}_7 \times \mathbb{Z}_{121}$, dar \mathbb{Z}_{121} nu este corp ($\widehat{11}$ este nilpotent, $\widehat{11}^2 = \widehat{0}$).

Problema 3. Rezolvați sistemul de congruențe în \mathbb{Z} :

$$x \equiv 3 \pmod{5}, x \equiv 7 \pmod{11}, x \equiv 8 \pmod{13}$$

Soluție: Sistemul de nilpotențe se rezolvă conform algoritmului din Curs 12.

$$a = a_1 \cdot a_2 \cdot a_3 = 5 \cdot 11 \cdot 13 = 715$$
. $b_1 = \frac{a}{a_1} = \frac{715}{5} = 143$, $b_2 = \frac{a}{a_2} = \frac{715}{11} = 65$, $b_3 = \frac{a}{a_3} = \frac{715}{13} = 55$. $b_1 \equiv_5 3$; c_1 inversul lui 3(mod 5) este 2.

 $b_2 \equiv_{11} 10$; c_2 inversul lui $10 \pmod{11}$ este 10.

 $b_3 \equiv_{13} 3$, c_3 inversul lui $3 \pmod{13}$ este 9.

$$x = 143 \cdot 2 \cdot 3 + 65 \cdot 10 \cdot 7 + 55 \cdot 9 \cdot 8 = 9368 \equiv_{715} 73.$$

Deci soluția este $x = 73 + 715k, k \in \mathbb{Z}$.

Se verifică imediat că $73 \equiv 3 \pmod{5}$, $73 \equiv 7 \pmod{11}$ şi $73 \equiv 8 \pmod{13}$.

Problema 4. Arătați că numerele

- (i) numerele 2+i, 2-i sunt comaximale în $\mathbb{Z}[i]$,
- (ii) inelul factor $\mathbb{Z}[i]/\langle 5\rangle$ este izomorf cu $\mathbb{Z}_5\times\mathbb{Z}_5$. (folosiți **problema 8** din seminarul 11).

Solutie:

- (i) Arătăm că idealele generate de cele elemente sunt comaximale.
- $(2+i)\cdot(-1)+(2-i)(1+i)=-2-i+(2+1+2i-i=-2-i+3+i=1)$. Deci cele două ideale generate de (2+i) și (2-i) sunt comaximale.
- (ii) Aplicăm Corolar 1 din Cursul 12 pentru inelul $\mathbb{Z}[i]$ și elementele (2+i), (2-i) și obținem $\mathbb{Z}[i]/(2+i)(2-i)\mathbb{Z}[i] \simeq \mathbb{Z}[i]/(2+i)\mathbb{Z}[i] \times \mathbb{Z}[i]/(2-i)\mathbb{Z}[i]$
 - (2+i)(2-i) = 5 și izomorfismul de mai sus se scrie

$$\mathbb{Z}[i]/<5> \simeq \mathbb{Z}[i]/<(2+i)> \times \mathbb{Z}[i]/<(2-i)>$$

Pentru a termina trebuie să demonstrăm că cele dpuă inele factor din membrul drept sunt fiecare izomorfe cu \mathbb{Z}_5 . În Problema 8 din Seminar 11 am arătat că $\mathbb{Z}[i]/<(2-i)>\simeq \mathbb{Z}_5$.

Similar vom demonstra că $\mathbb{Z}[i]/\langle (2+i) \rangle \simeq \mathbb{Z}_5$.

Considerăm $\alpha : \mathbb{Z}[i] \longrightarrow \mathbb{Z}_5, \alpha(a+bi) = a-2b.$

• Arătăm că α este morfism.

$$\frac{\alpha((a+bi)+(c+di))}{\alpha-2b+c-2d} = \alpha((a+c)+(b+d)i) = (a+c)-2(b+d) = (a-2b)+(c-2d) = (a-2b)+(c-2d)+(a-$$

$$\alpha((a+bi)\cdot (c+di)) = \alpha((ac-bd) + (ad+bc)i) = (ac-bd) - 2(ad+bc) = (ac+4bd) - 2(ad+bc)$$
 (în $\mathbb{Z}_5, -1 \equiv_5 4$) = $(a-2b)(c-2d) = (a-2b)\cdot (c-2d) = \alpha(a+bi)\cdot \alpha(c+di)$. $\alpha(0) = \hat{0}, \alpha(1) = \hat{1}.$

- α este surjectiv pentru că $(\forall)\hat{a} \in \mathbb{Z}_5$, $(\exists)a + 0i \in \mathbb{Z}[i]$ a.î. $\alpha(a + 0i) = \hat{a}$.
- $Ker(\alpha) = <(2+i)>$.

" \subseteq " Fie $a + bi \in \mathbb{Z}[i] \Leftrightarrow \widehat{a - 2b} = \widehat{0} \in \mathbb{Z}_5 \Leftrightarrow a - 2b = 5k, k \in \mathbb{Z} \Leftrightarrow a = 2b + 5k.$

Deci un element arbitrar din Ker(f) este de forma $(2b+5k)+bi, b, k \in \mathbb{Z}$. Pentru a arăta incluziunea trebuie să vedem că $(5k+2b)+bi \in (2+i)$, adică trebuie să găsim $m, n \in \mathbb{Z}$ a.î. $(5k+2b)+bi=(m+ni)(2+i) \Leftrightarrow (5k+2b)+bi=(2m+n)+(-m+2n)i$.

Sistemul $\left\{ \begin{array}{lll} 2m-n&=&5k+2b\\ m+2n&=&b \end{array} \right.$. Înmulțim cu 2 prima ecuație și adunăm cele două ecuații.

Obţinem m = 2k + b. Introducând în a doua ecuaţie obţinem n = -k.

Deci $(5k + 2b) + bi = ((2k + b) - ki)(2 + i) \in \{2 + i\}$.

" \supseteq " Este suficient să verificăm că $2+i \in \text{Ker}(\alpha)$. $\alpha(2+i) = 2 - 2 \cdot 1 = 2 - 2 = 0$.

Din teorema fundamentală de izomorfism pentru inele rezultă că $\mathbb{Z}[i]/<2-i>\simeq \mathbb{Z}_5$.

Deci $\mathbb{Z}[i]/<5>\simeq\mathbb{Z}_5\times\mathbb{Z}_5$.

Problema 5. Aplicați Lema Chineză a Resturilor pentru idealele $I=<2,1+\sqrt{-5}>$, $J=<3,1+\sqrt{-5}>$ în inelul $\mathbb{Z}[\sqrt{-5}]$ pentru a deduce că inelul factor $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>$ este izomorf cu $\mathbb{Z}_2\times\mathbb{Z}_3$.

Soluţie: Pentru a aplica LCR trebuie să demonstăm că $I+J=\mathbb{Z}[\sqrt{-5}]$. Avem $2\cdot (-1)+3\cdot 1=1$. Deci I și J sunt comaximale.

Din LCR rezultă că $\mathbb{Z}[\sqrt{-5}]/(I \cap J) \simeq \mathbb{Z}[\sqrt{-5}]/I \times \mathbb{Z}[\sqrt{-5}]/J$.

Trebuie să arătăm că: $I \cap J = <1+\sqrt{-5}>$, $\mathbb{Z}[\sqrt{-5}]/I \simeq \mathbb{Z}_2$ și $\mathbb{Z}[\sqrt{-5}]/J \simeq \mathbb{Z}_3$.

- $I \cap J = <1 + \sqrt{-5} >$.
- " \supseteq " $1 + \sqrt{-5} \in I$, $1 + \sqrt{-5} \in J \Rightarrow <1 + \sqrt{-5} > \subseteq I \cap J$.
- " \subseteq " Fie $u \in I \cap J$. $u = 2p + (1 + \sqrt{-5})q; p, q \in \mathbb{Z}[\sqrt{-5}]$ şi $u = 3s + (1 + \sqrt{-5})t; s, t \in \mathbb{Z}[\sqrt{-5}]$. Deci $u = 2(a + b\sqrt{-5}) + (1 + \sqrt{-5})(c + d\sqrt{-5}); a, b, c, d \in \mathbb{Z}$ şi

 $u = 3(x + y\sqrt{-5}) + (1 + \sqrt{-5})(z + w\sqrt{-5}); x, y, z, w \in \mathbb{Z}.$

Făcând calculele si adunând termenii asemenea va rezulta sistemul

$$\begin{cases} 2a+c-5d = 3x+z-5w \\ 2b+c+d = 3y+z+w \end{cases}$$

Scădem ecuația a doua din prima și obținem $2(a-b)-6d=3(x-y)-6w\Leftrightarrow 2(a-b)=3[(x-y)+2(d-w)]$, toate numerele fiind în \mathbb{Z} . De aici $(a-b)=3k, k\in\mathbb{Z}$, deci a=3k+b.

Am obținut $u = 2(3k + b + b\sqrt{-5}) + (1 + \sqrt{-5})q = 6k + 2b(1 + \sqrt{-5}) + (1 + \sqrt{-5})q = (1 + \sqrt{-5})(1 - \sqrt{-5})k + 2b(1 + \sqrt{-5}) + (1 + \sqrt{-5})q = (1 + \sqrt{-5})[(1 - \sqrt{-5})k + 2b + q]$. Paranteza dreaptă reprezintă un element din $\mathbb{Z}[\sqrt{-5}]$.

Deci am arătat că $u \in <1+\sqrt{-5}>$.

SEMINAR 12 3

•
$$\mathbb{Z}[\sqrt{-5}]/I \simeq \mathbb{Z}_2$$
.

Considerăm morfismul $\beta: \mathbb{Z}[\sqrt{-5}] \longrightarrow \mathbb{Z}_2, \beta(a+b\sqrt{-5}) = \widehat{a+b}$. Trebuie arătat că β este morfism surjectiv de inele și $\operatorname{Ker}(\beta) = I$.

$$\frac{\beta((a+b\sqrt{-5})+(c+d\sqrt{-5}))=\beta((a+c)+(b+d)\sqrt{-5})=(a+c)+(b+d)=(a+b)+(c+d)+(a+b)+(c+d)=(a+b)+(c+d)+(a+b)+(c+d)=(a+b)+(a+b)$$

 $\beta((a+b\sqrt{-5})\cdot(c+d\sqrt{-5})) = \beta((ac-5bd)+(ad+bc)\sqrt{-5}) = (ac-5bd)+(ad+bc) = (-5\equiv_2 1) = (ac+bd)+(ad+bc) = a(c+d)+b(c+d) = (a+b)(c+d) = (a+b)\cdot(c+d) = \beta(a+b\sqrt{-5})\cdot\beta(c+d\sqrt{-5}).$

 $\beta(0) = \hat{0}, \beta(1) = \hat{1}$ ceea ce implică şi faptul că β este surjectiv.

 $Ker(\beta) = I$.

"
$$\supseteq$$
 " $\beta(2) = \hat{2} = \hat{0}, \beta(1 + \sqrt{-5}) = \widehat{1+1} = \hat{2} = \hat{0}.$

" \subseteq " Fie $a+b\sqrt{-5} \in \text{Ker}(\beta) \Leftrightarrow \widehat{a+b} = \widehat{0} \Leftrightarrow a+b=2k \Leftrightarrow a=-b+2k$. Deci un element arbitrar din $\text{Ker}(\beta)$ este de forma $-b+2k+b\sqrt{-5}=-2b+2k+b+b\sqrt{-5}=2(-b+k)+(1+\sqrt{-5})b \in I$. Din teorema fundamentală de izomorfism pentru inele obținem $\mathbb{Z}[\sqrt{-5}]/I \simeq \mathbb{Z}_2$.

•
$$\mathbb{Z}[\sqrt{-5}]/J \simeq \mathbb{Z}_3$$
.

Considerăm morfismul $\gamma: \mathbb{Z}[\sqrt{-5}] \longrightarrow \mathbb{Z}_3, \gamma(a+b\sqrt{-5}) = \widehat{a+2b}.$

Se demonstrează ca și mai sus că γ este morfism surjectiv de inele și $\operatorname{Ker}(\gamma) = J$.

$$\gamma((a+b\sqrt{-5})\cdot(c+d\sqrt{-5})) = \gamma((ac-5bd)+(ad+bc)\sqrt{-5}) = (ac-5bd)+2(ad+bc) = (-5\equiv_3 1\equiv_3 4) = (ac+4bd)+2(ad+bc) = a(c+2d)+2b(c+2d) = (a+2b)(c+2d) = (a+2b)(c+2d) = (a+2b)(c+2d) = \gamma(a+b\sqrt{-5})\cdot\gamma(c+d\sqrt{-5}).$$

Problema 6. Găsiți un idempotent netrivial în inelul $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>$.

Soluție: În problema precedentă am arătat că $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>\simeq \mathbb{Z}_2\times\mathbb{Z}_3$. Un idemponent netrivial în $\mathbb{Z}_2\times\mathbb{Z}_3$ este $(\hat{1},\overline{0})$. Elementul corespunzător perechii $(\hat{1},\overline{0})$ în $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>$ este 3.

Să vedem că este idempotent.

 $3^2 = 9 = 3 + 6$. Dar $6 \equiv_{1+\sqrt{-5}} = 0 (6 = (1 + \sqrt{-5})(1 - \sqrt{-5}))$. Deci $3^2 \equiv_{1+\sqrt{-5}} 3$, adică clasa lui 3 este idempotent.

Problema 7. Aplicați Lema Chineză a Resturilor pentru idealele $I = \langle X \rangle, J = \langle X - 1 \rangle$ în inelul $\mathbb{Z}[X]$ pentru a deduce că inelul factor $\mathbb{Z}[X]/\langle X^2 - X \rangle$ este izomorf cu $\mathbb{Z} \times \mathbb{Z}$.

Soluție: I și J sunt comaximale pentru că $X \cdot 1 + (X - 1) \cdot (-1) = X - X + 1 = 1$. Folosind Corolar 1 din Curs 12 obținem

$$\mathbb{Z}[X]/X(X-1)\mathbb{Z}[X] \simeq \mathbb{Z}[X]/X\mathbb{Z}[X] \times \mathbb{Z}[X]/(X-1)\mathbb{Z}[X]$$

. Trebuie să arătăm izomorfismele $\mathbb{Z}[X]/X\mathbb{Z}[X]\simeq \mathbb{Z}$ și $\mathbb{Z}[X]/(X-1)\mathbb{Z}[X]\simeq \mathbb{Z}.$

•
$$\mathbb{Z}[X]/ < X > \simeq \mathbb{Z}$$
.

Considerăm aplicația $\delta : \mathbb{Z}[X] \longrightarrow \mathbb{Z}, \ \delta(f(X)) = f(0), \ \text{unde } f(X) \in \mathbb{Z}[X].$

Dacă $f(X) = \sum_{i=0}^{n} a_i X^i$, atunci $\delta(f(X)) = a_0$. δ este morfism de inele.

$$\delta(f(X) + g(X)) = \delta(\sum_{i=0}^{n} a_i X^i + \sum_{i=0}^{p} b_i X^i) = \delta(\sum_{i=0}^{\max{\{n,p\}}} (a_i + b_i) X^i) = a_0 + b_0 = \delta(f(X)) + \delta(g(X))$$

$$\delta(f(X)\cdot g(X)) = \delta(\sum_{i=0}^{n+p}(\sum_{h+k=i}a_hb_k)X^i) = a_0b_0 = \delta(f(X))\delta(g(X)).$$

Pentru orice polinom constant c, $\delta(c) = c$. Acest lucru arată că δ este surjectiv. Pentru $\forall c \in \mathbb{Z}, \exists c \in \mathbb{Z}[X]$ a.î. $\delta(c) = c$.

 $\delta(X) = 0 \Rightarrow < X > \subset Ker(\delta).$

Fie $f(X) \in \text{Ker}(\delta)$, deci $\delta(f(X)) = 0 \Leftrightarrow f(0) = 0 \Leftrightarrow X \mid f(X) \Leftrightarrow f(X) = X \cdot g(X)$, cu $g(X) \in \mathbb{Z}[X] \Leftrightarrow f(X) \in X > 0$. Deci $\text{Ker}(\delta) \subset X > 0$.

Din teorema fundamentală de izomorfism obținem $\mathbb{Z}[X]/\langle X \rangle \simeq \mathbb{Z}$.

• $\mathbb{Z}[X]/ < X - 1 > \simeq \mathbb{Z}$.

Se consideră aplicația $\tau : \mathbb{Z}[X] \longrightarrow \mathbb{Z}, \tau(f(X)) = f(1).$

- Fie $c \in \mathbb{Z}$, în acest caz $\tau(c) = c$. Deci τ este surjectiv.
- $\tau(f(X) \cdot g(X)) = \tau(\sum_{k=0}^{n+p} (\sum_{i+j=k} a_i b_j) X^k) = \sum_{k=0}^{n+p} (\sum_{i+j=k} a_i b_j) = (a_0 + a_1 + \ldots + a_n) (b_0 + b_1 + \ldots + b_p) = f(1)g(1) = \tau(f(X))\tau(g(X)).$
 - $Ker(\tau) = < X 1 >$.

 $"\supset"\tau(X-1)=1-1=0 \Rightarrow (X-1) \in \operatorname{Ker}(\tau) \Leftrightarrow < X-1 > \subset \operatorname{Ker}(\tau).$

Din teorema fundamentală de izomorfism rezultă că $\mathbb{Z}[X]/\langle X-1 \rangle \simeq \mathbb{Z}$.

Problema 8. Arătați că inelul factor $\mathbb{Z}[X]/< X^2-1>$ nu este izomorf cu $\mathbb{Z}\times\mathbb{Z}.$

Soluție: În inelul factor $\overline{X^2} = \overline{1}$, deci în acest inel factor polinoamele au cel mult grad 1. Voi lucra cu clase modulo $< X^2 - 1 >$, fără a mai folosi notația bar.

 $\mathbb{Z} \times \mathbb{Z}$ are patru idempotenți (0,0),(1,0),(0,1),(1,1).

Fie $a + bX \in \mathbb{Z}[X] / < X^2 - 1 >$.

Este idempotent dacă verifică relația $(a+bX)^2=a+bX\Leftrightarrow a^2+2abX+b^2=a+bX\Leftrightarrow \begin{cases} a^2+b^2=a\\ 2ab=b \end{cases}$. A doua ecuație este b(2a-1)=0, cu $a,b\in\mathbb{Z}.$ Deci $a\neq\frac{1}{2},$ de unde singura posibilitate este b=0.

Prima ecuație devine $a^2 - a = 0$, adică $a \in \{0, 1\}$. Deci idempotenții din $\mathbb{Z}[X]/\langle X^2 - 1 \rangle$ sunt 0 și 1. Deci $\mathbb{Z}[X]/\langle X^2 - 1 \rangle$ are numai doi idempotenți față de $\mathbb{Z} \times \mathbb{Z}$ care are patru.

Deci inelele nu pot fi izomorfe.

Avem $\mathbb{Z}[X]/\langle X^2-1 \rangle \simeq A = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x-y \text{ par}\}$ izomorfism care se demonstrează folosind aplicația $\tau: \mathbb{Z}[X] \longrightarrow A, \ \tau(f(X)) = (f(1),f(-1))$. Se demonstrează similar ca în **problema 7** că τ este morfism de inele, este surjectiv și $\operatorname{Ker}(\tau) = \langle X^2-1 \rangle$.

Problema 1. Calculați caracteristica inelelor $\mathbb{Z}_2 \times \mathbb{R}$, $\mathbb{Z}_4 \times \mathbb{Z}_6$ și $\mathbb{Z}[i]/\langle 2+2i \rangle$.

Soluţie: $car(\mathbb{Z}_2 \times \mathbb{R}) = 0$.

 $\operatorname{ord}(\widehat{1}, \overline{1}) = [\operatorname{ord}(\widehat{1}), \operatorname{ord}(\overline{1})] = [4, 6] = 12 \Rightarrow \operatorname{car}(\mathbb{Z}_4 \times \mathbb{Z}_6) = 12.$

Notăm $L = \mathbb{Z}[i]/\langle 2+2i \rangle$. car $(L) = \operatorname{ord}(1_L)$ în grupul aditiv (L,+). Deci este cel mai mic număr natural a.î. $n \cdot 1_L = 0 \Leftrightarrow n \cdot 1_L \in \langle 2+2i \rangle$. $1_L = 1$. Vrem să găsim $n \in \mathbb{N} \subset \mathbb{Z} \subset \langle 2+2i \rangle$. Fie $(a+bi) \in \mathbb{Z}[i]$ a.î. $(a+bi)(2+2i) \in \mathbb{Z} \Leftrightarrow 2(a-b+(a+b)i) \in \mathbb{Z} \Leftrightarrow a+b=0 \Leftrightarrow b=-a$. Deci elementele întregi din idealul $\langle 2+2i \rangle$ sunt $2 \cdot (a-(-a)) = 2 \cdot 2a = 4a$.

Deci cel mai mic număr natural care aparține idealului < 2 + 2i > este 4.

Avem $1 + 1 + 1 + 1 = 4 = (1 - i)(2 + 2i) \equiv_{\langle 2+2i \rangle} 0$ şi astfel car(L) = 4.

Problema 2. Fie A un inel și $f:\mathbb{Q}\longrightarrow A$ un morfism de inele. Calculați caracteristica inelului A.

Soluție: Pentru orice morfism de inele Ker(f) este ideal în \mathbb{Q} . \mathbb{Q} este corp deci singurele ideale ale sale sunt 0 si \mathbb{Q} .

- Dacă $Ker(f) = \mathbb{Q}$, atunci f este morfismul nul, dar f este morfism de inele și f(1) = 1. O contradicție.
- Deci varianta posibilă este Ker(f) = 0, adică f este injectivă. Astfel pentru orice $n \in \mathbb{N}^*$ $f(n) = f(1+1+\cdots+1) = f(1)+f(1)+\cdots+f(1) = n\cdot 1_A \neq 0$ (f este injectivă și $n \neq 0$). Deci car(A) = 0.

Problema 3. Presupunem cunoscut faptul că inelul factor

$$L = \mathbb{Z}_2[X] / < X^3 + X + \hat{1} >$$

are ordinul 8. Arătați că L este corp și grupul său multiplicativ este generat de \hat{X} .

Soluție: Putem arăta că L este corp în două moduri.

- \bullet Avem următorul rezultat: Fie K un corp și $f(X) \in K[X]$ un polinom ireductibil. Atunci K[X]/(f) este corp.
- $f(X) = X^3 + X + \hat{1}$ este ireductibil peste $\mathbb{Z}_2[X]$ pentru că $f(\hat{0}) = f(\hat{1}) = \hat{1}$ (nu are rădăcini în \mathbb{Z}_2 deci nu poate fi factorizat peste $\mathbb{Z}_2[X]$.)

• În L avem $\widehat{X^3} = -\widehat{X} - \widehat{1} = \widehat{X} + \widehat{1}$ (lucrăm cu coeficienți \mathbb{Z}_2 și $-\widehat{1} = \widehat{1}$). Deci $L = \{a + b\widehat{X} + c\widehat{X}^2 \mid a, b, c \in \mathbb{Z}_2\} = \{\widehat{0}, \widehat{1}, \widehat{X}, \widehat{X}^2, \widehat{X} + \widehat{1}, \widehat{X}^2 + \widehat{1}, \widehat{X}^2 + \widehat{X}, \widehat{X}^2 + \widehat{X} + \widehat{1}\}.$ Arătăm că orice element nenul este inversabil menționând inverul fiecărui element.

 $\hat{1}$ este propriul invers.

 $\hat{X}\cdot(\hat{X^2}+\hat{\hat{1}})=\hat{X}^3+\hat{X}=\hat{X}+\hat{1}+\hat{X}=2\hat{X}+\hat{1}=\hat{1}. \text{ Deci } \hat{X} \text{ și } \hat{X}^2+\hat{1} \text{ sunt inverse unul altuia.}$ $\hat{X}^4 = \hat{X} \cdot \hat{X}^3 = \hat{X}(\hat{X} + \hat{1}) = \hat{X}^2 + \hat{X}.$

 $\hat{X}^2(\hat{X}^2 + \hat{X} + \hat{1}) = \hat{X}^4 + \hat{X}^3 + \hat{X}^2 = \hat{X}^2 + \hat{X} + \hat{1} + \hat{X}^2 = 2\hat{X}^2 + \hat{X} + \hat{1} = \hat{1}. \text{ Deci } \hat{X}^2 \text{ si}$ $\hat{X}^2 + \hat{X} + \hat{1}$ sunt inverse unul altuia. $(\hat{X} + \hat{1})(\hat{X}^2 + \hat{X}) = \hat{X}^3 + \hat{X}^2 + \hat{X}^2 + \hat{X} = \hat{X} + \hat{1} + 2\hat{X}^2 + \hat{X} = 2\hat{X} + \hat{1} = \hat{1}$. Astfel $\hat{X} + \hat{1}$ și

 $\hat{X}^2 + \hat{X}$ sunt inverse unul altuia.

Deci am toate elementele nenule sunt inversabile si astfel L este corp.

Să vedem acum că $L\setminus\{0\}$ este generat de \hat{X} .

Avem \hat{X}^2 ,

 $\hat{X}^3 = \hat{X} + \hat{1},$

 $\hat{X}^{4} = \hat{X}^{2} + \hat{X},$ $\hat{X}^{5} = \hat{X}\hat{X}^{4} = \hat{X}(\hat{X}^{2} + \hat{X}) = \hat{X}^{3} + \hat{X}^{2} = \hat{X} + \hat{1} + \hat{X}^{2} = \hat{X}^{2} + \hat{X} + \hat{1},$ $\hat{X}^{6} = \hat{X}^{3}\hat{X}^{3} = (\hat{X} + \hat{1})(\hat{X} + \hat{1}) = \hat{X}^{2} + 2\hat{X} + \hat{1} = \hat{X}^{2} + \hat{1},$

 $\hat{X}^7 = \hat{X}\hat{X}^6 = \hat{X}(\hat{X}^2 + \hat{1}) = \hat{X}^3 + \hat{X} = \hat{X} + \hat{1} + \hat{X} = 2\hat{X} + \hat{1} = \hat{1}.$

Deci toate elementele nenule sunt obținute ca puteri ale lui \hat{X} .

Problema 4. Rezolvați în corpul cuaternionilor H ecuația

$$(1+2i+3j+4k)x = -37+4i+9j+8k.$$

Soluție: $\mathbb{H} = \{a + b\underline{i} + cj + dk \mid a, b, c, d \in \mathbb{R}\}$. În această expresie a este coeficientul matricei identitate 2×2 .

 $\underline{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. La seminar am scris ultima intrare din matrice i în loc de -i. Este greşit.

Forma scrisă aici este corectă. Elementul i din matrice este $\sqrt{-1}$. $j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ iar k = 1

 $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Aici $1 = I_2$, este elementul neutru la înmulțirea matricelor. Avem relațiile $\underline{i}^2 = j^2 = I_2$ $k^2 = \underline{i}jk = -1, \ \underline{i}j = k = -\underline{j}\underline{i}, \ jk = \underline{i} = -kj, \ k\underline{i} = \underline{j} = -\underline{i}k.$

De aici voi folosi notația i pentru matricea \underline{i} .

Avem de rezolvat ecuația (1+2i+3j+4k)(a+bi+cj+dk) = -37+4i+9j+8k. făcând înmulțirile conform relațiilor de mai sus și adunând termenii asemenea obținem

(a-2b-3c-4d)+(2a+b-4c+3d)i+(3a+4b+c-2d)j+(4a-3b+2c+d)k=-37+4i+9j+8k.

Egalând coeficienții obținem sistemul de 4 ecuații cu 4 necunoscute:

a - 2b - 3c - 4d = -37 $\begin{cases} 2a+b-4c+3d = 4\\ 3a+4b+c-2d = 9\\ 4a-3b+2c+d = 8 \end{cases}$ care are soluția a = 1, b = 3, c = 4, d = 5.

 $\overrightarrow{\text{Deci}} \ x = 1 + 3i + 4j + 5k \in \mathbb{H}.$

Problema 5. Fie includ factor

$$M = \mathbb{Z}[i]/<3>.$$

Arătați că M este corp și grupul său multiplicativ e generat de $\widehat{1+i}$. În această problemă $i = \sqrt{-1}$.

Solutie: $M = \{\hat{0}, \hat{1}, \hat{2}, \hat{i}, \hat{2i}, \widehat{1+i}, \widehat{1+2i}, \widehat{2+i}, \widehat{2+2i}\}.$

Pentru că $1 + 1 + 1 = 3 \in <3>$, deci car(M) = 3.

Arătăm ca și în **problema 3** că fiecare element nenul este inversabil.

 $\hat{2} \cdot \hat{2} = \hat{4} \equiv_{<3>} \hat{1}$, deci $\hat{2}$ este propriul invers.

 $\hat{i}\cdot\hat{2i}=\widehat{-2}\equiv_{<3>}\hat{1}$, de unde deducem că \hat{i} și $\hat{2i}$ sunt inverse unul altuia.

 $\widehat{(1+i)}\cdot\widehat{(2+i)}=\widehat{2}-\widehat{1}+\widehat{i}+\widehat{2}i=\widehat{1}+\widehat{3}i\equiv_{<3>}\widehat{1}$. Am obținut că $\widehat{1+i}$ și $\widehat{2+i}$ sunt inverse unul

 $\widehat{(1+2i)}\cdot\widehat{(2+2i)}=\widehat{2}-\widehat{4}+\widehat{2}i+\widehat{4}i=-\widehat{2}+\widehat{6}i\equiv_{<3>}\widehat{1}$. Deci $\widehat{1+2i}$ și $\widehat{2+2i}$ sunt inverse unul altuia.

Trebuie sămai arătăm că $M\backslash \{\hat{0}\}$ este generat de $\widehat{1+i}$. $(\widehat{1+i})^2=1+\widehat{2i}-1=\widehat{2i},$ $(\widehat{1+i})^3=1+\widehat{3i-3}-i=\widehat{1+2i},$ $(\widehat{1+i})^4=(\widehat{1+i})^2\cdot(\widehat{1+i})^2=\widehat{2i}\cdot\widehat{2i}=\widehat{-4}=-\widehat{1}=\widehat{2},$ $(\widehat{1+i})^5=(\widehat{1+i})\cdot(\widehat{1+i})^4=(\widehat{1+i})\cdot\widehat{2}=\widehat{2+2i},$ $(\widehat{1+i})^6=(\widehat{(1+i)^2})^3=(\widehat{2i})^3=\widehat{-8i}=\widehat{i},$ $(\widehat{1+i})^7=(\widehat{1+i})\cdot(\widehat{1+i})^6=(\widehat{1+i})\cdot(\widehat{i})=(\widehat{i-1})=(\widehat{2+i}).$ $(\widehat{1+i})^8=(\widehat{(1+i)^4})^2=\widehat{2}^2=\widehat{4}=\widehat{1}.$

Problema 6. Explicitați morfismul lui Frobenius pentru corpul M din exemplul precedent.

Soluţie: Am menţionat că car(M)=3. Morfismul Frobenius este $F:M\longrightarrow M, F(x)=x^3$. Deci pentru orice $\widehat{a+bi}\in M, F(\widehat{a+bi})=\widehat{a+bi}^3=a^3+3a^2b\widehat{i+3ab^2}i^2+b^3i^3=a^{\widehat{3}-\widehat{b}^3}i$.