四川师范大学本科毕业论文

微扰引起的能级劈裂——SO(3)到 32 个点群和母群到子群的能级劈裂

学生姓名	罗言
院系名称。	物理与电子工程学院
专业名称。	物理学
班级	20级5班
学 号	2020070526
指导教师	程才
完成时间	2024年 4月7日

四川师范大学学位论文原创性声明

本人声明: 所呈交学位论文 微扰引起的能级劈裂——SO(3)到 32 个点群和母群到子群的能级劈裂 ,是本人在指导老师 程才 指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本声明的法律结果由本人承担。

本人承诺:已提交的学位论文电子版与论文纸本的内容一致。如因不符而引起的学术声誉上的损失由本人自负。

学位论文作者: 罗言 签字日期: 2024 年 5 月 19 日

四川师范大学学位论文版权使用授权书

本人同意所撰写学位论文的使用授权遵照学校的管理规定:

学校作为申请学位的条件之一,学位论文著作权拥有者须授权所在大学拥有学位论文的部分使用权,即:1)已获学位的学生必须按学校规定提交印刷版和电子版学位论文,可以将学位论文的全部或部分内容编入有关数据库供检索;2)为教学、科研和学术交流目的,学校可以将公开的学位论文或解密后的学位论文作为资料在图书馆、资料室等场所或在有关网络上供阅读、浏览。

学位论文作者签名: 罗言 指导老师签名: 程才

签字日期: 2024 年 5 月 19 日 签字日期: 2024 年 5 月 19 日

微扰引起的能级劈裂 ——S0(3)到 32 个点群和母群到子群的能级劈裂

物理学专业

学生姓名:罗言 指导教师:程才

摘要:对称性是自然界中普遍存在的一种现象,也是物理学中的一个核心概念。在物理学的各个领域,对称性都起到了至关重要的作用,尤其是量子力学中的能级简并度等方面。本文首先介绍了微扰导致对称性降低从而引起的能级劈裂,以及如何使用群论来解决能级劈裂问题。本文紧接着详细介绍了群论的基本概念,如群的定义、子群、同构、线性表示、表示理论、特征标表、分导表示等,进而导出群论与量子力学的联系。这个联系就是量子系统的基函数可作为该系统哈密顿群的基函数,哈密顿群的不可约表示与系统的能级一一对应。当哈密顿群的对称性下降时,其所在的对称群变为原来群的子群,不可约表示也变为可约表示,而可约表示可以约化为子群不可约表示的直和,可约表示分解为不可约表示的过程对应了原哈密顿量的简并能级发生分裂。

在介绍了本文的大致理论后,本文详细介绍了母群到子群的能级分裂的计算过程,并给出了一些具体的计算例子,比如 SO(3) 群到 32 个点群,以及 32 个点群中母群到子群的情况。最后本文将几个计算结果应用到实际例子中,如原子轨道在晶体场的劈裂,晶体场发生扭曲引起的劈裂,以及硅晶体能带的分裂。本文绘制了所有的约化表格和能级劈裂图,为未来学习微扰引起的能级劈裂等相关内容提供参考和便捷查阅。

关键词:对称性 微扰 不可约表示 能级劈裂 特征标表

Energy level splitting induced by perturbation -- SO(3) to 32 point groups and parent group to subgroup

Specialty: Physics

Undergraduate: Yan Luo Supervisor: Cai Cheng

ABSTRACT: Symmetry is a ubiquitous phenomenon in nature and a core concept in physics. It plays a crucial role in various fields of physics, especially in aspects such as energy level degeneracy in quantum mechanics. This article first introduces the energy level splitting caused by perturbation due to reduced symmetry, and how group theory is used to address this issue. It then details the basic concepts of group theory, such as the definition of a group, subgroups, isomorphisms, linear representations, representation theory, character tables, and projective representations, leading to the connection between group theory and quantum mechanics. The base functions of a quantum system can serve as the base functions for the Hamiltonian group of the system, with the irreducible representations of the Hamiltonian group decreases, the corresponding symmetry group becomes a subgroup of the original group, the irreducible representations become reducible, and the reducible representations can be reduced to the direct sum of the irreducible representations of the subgroup. This corresponds to the splitting of the degenerate energy levels of the original Hamiltonian.

Subsequently, we provide a detailed introduction to the calculation of energy level splitting from the parent group to the subgroup, along with some specific computational examples, such as the SO(3) group to the 32 point groups, and the situation of the parent group to the subgroup within the 32 point groups. Finally, we apply the theory to practical examples, such as the splitting of atomic orbitals in a crystal field and the splitting of the silicon crystal energy band. We also draw all the reduction tables and energy level splitting diagrams, hoping to provide a reference and convenient consultation for future studies related to energy level splitting caused by perturbation.

Keywords: Symmetry Perturbation Irreducible Representation Energy Level Splitting Character Table

目 录

摘要	I
ABSTRACT	II
目 录	1
1 引言	3
2 理论部分	6
2.1 群的基本概念	6
2.2 群的线性表示	7
2.3 群论与晶体的联系	10
2.4 群论在量子力学中的应用	11
2.5 计算方法	13
3 SO(3)群到 32 个点群	16
3.1 SO(3) 群到 O, T 群	16
3.2 SO(3) 群到 C ₁ , C ₂ , C ₃ , C ₄ , C ₆ 群	19
3.3 SO(3) 群到 D ₂ , D ₃ , D ₄ , D ₆ 群	23
4 32 个点群中母群到子群	28
4.1 O _h 群到 D _{4h} , T _d , T _h , D _{3d} , O 群	28
4.2 D _{4h} 群到 C _{4h} , C _{4v} , D _{2h} , D _{2d} , D ₄ 群	35
4.3 D _{6h} 群到 D _{2h} , D _{3h} , D ₆ , D _{3d} , C _{6v} , C _{6h} 群	40
4.4 T _d 群到 D _{2d} , T, C _{3v} 群	48
4.5 T _h 群到 D _{2h} , T, S ₆ 群	50
4.6 O 群到 D ₃ , D ₄ , T 群	54
4.7 D _{2d} 群到 S ₄ , C _{2v} , D ₂ 群	56
4.8 C _{4v} 群到 C _{2v} , C ₄ 群	58
4.9 D ₄ 群到 D ₂ , C ₄ 群	60
4.10 C _{4h} 群到 S ₄ , C ₄ , C _{2h} 群	61
4.11 T 群到 D ₂ , C ₃ 群	63
4.12 C _{6v} 群到 C _{2v} , C _{3v} , C ₆ 群	65
$4.13 \ D_{3h}$ 群到 $C_{2v}, \ C_{3v}, \ D_{3}, \ C_{3h}$ 群	67
4.14 D ₆ 群到 D ₂ , D ₃ , C ₆ 群	70
4.15 C _{6h} 群到 C _{2h} , S ₆ , C _{3h} , C ₆ 群	72
4.16 D _{3d} 群到 C _{2h} , C _{3v} , D ₃ , S ₆ 群	76

	4.17 S ₄ 群到 C ₂ 群	79
	4.18 C ₄ 群到 C ₂ 群	80
	4.19 C _{3v} 群到 C _{1h} , C ₃ 群	80
	4.20 D ₃ 群到 C ₂ ,C ₃ 群	81
	4.21 S ₆ 群到 C _i , C ₃ 群	83
	4.22 C _{3h} 群到 C _{1h} , C ₃ 群	84
	4.23 C ₆ 群到 C ₂ , C ₃ 群	85
	4.24 C ₃ 群到 C ₁ 群	86
	$4.25 \ C_{1h}, \ C_{2h}, \ C_{2}, \ C_{i}, \ C_{1}, \ D_{2}, \ D_{2h}$ 群	87
5	应用部分	88
	5.1 原子处于晶体场中的能级分裂	88
	5.2 晶体拉伸发生的能级分裂	90
	5.3 晶体能带的分裂	91
6	结论与展望	94
参	考文献	95
陈	录	96
郅	(谢	101

微扰引起的能级劈裂

—— SO(3) 到 32 个点群和母群到子群的能级劈裂

1 引言

日常生活中一直都有对称性,例如蝴蝶对称的翅膀,以身体为对称轴的轴对称, 雪花以三条夹角为 60°的对称轴的轴对称。几何学让我们知道,正方形的对称性比三 角形的对称性好,正五边形比正方形对称性好,而圆形比这些图形的对称性都要好, 雪花的对称性就比蝴蝶对称性好。

图 1.1 蝴蝶的对称性

图 1.2 雪花的对称性

我们是如何感受到正方形的对称性比三角形的对称性好,正五边形比正方形对称性好,而圆形比这些图形的对称性都要好的呢?不难可以得出这样的规律,N+1 边形要比 N 边形的对称性好。而 4>3, 5>4, $\infty>n$ (任意有限正整数),于是得知以上结论。同时 N 越大,旋转后保持不变的角度越多,多边形的旋转对称性越好。

几何图形的对称性会带来美感,而在物理学中,对称性不仅是一种美学上的特征,也是一种深刻的物理原理。起初物理学家研究对称性只是将其当作一个解决问题的技巧,随着物理学的发展,研究物理系统的对称性在物理研究中起到了重要作用。

考虑一系列变换 T_1 , T_2 , ..., 这些变换让物理系统保持不变。比较抽象的有物理定律在变换后的不变,比较形象是物理系统中的各种物理量在变换后不变。例如动量守恒的系统在空间平移后哈密顿量不变,角动量守恒的系统在空间旋转后哈密顿量不变。更加形象的是晶体的几何结构具有对称性,如图 1.3,除了这些 24 种变换以外,还有中心反演和上述的 24 种变换组合而来的新变换,总共得到的 48 种变换。这些 48 种变换构成一个群,称为 O_h 群。晶体点群总共有 32 个,不同的晶体对应不同的点群。

群论是代数的一个分支, 19 世纪初, 拉格朗日研究高次方程的解时, 就一次提出方程的根的排列与置换关系。而在 1830 年, 伽罗瓦首次提出"群"的概念, 但此时的

群是置换群。而具有一般性的群是由英国数学家凯莱提出的,让群论向着更宽广的领域发展.随后德国数学家戴德金也给出了抽象群的定义,提出了有限群的抽象定义。群论在近代数学中占据重要地位,但是起初没人会想到群论会在物理学中发挥重要作用,作为一门极其抽象的学科,在当时更是几乎没有物理学家去学习群论.

图 1.3 某个单胞的对称性变换(除中心反演变换)

在当时,量子力学也逐步发展起来,诺特就一个物理系统的对称性与它的守恒量之间关系的认识,引起了物理学家对于群论的兴趣。1925 年,量子力学建立后,马克斯·冯·劳厄率先意识到群论是量子力学问题的自然工具。1929 年,贝特利用点群理论研究了晶体场对原子能级的影响。外尔 1928 年出版了《群论和量子力学》,维格纳1931 年用德语写了《群论及其量子力学和原子光谱中的应用》,范·德·瓦尔登 1932年出版了《量子力学中的群论方法》,罗伯特·穆利肯等人运用群论方法探讨了原子和分子的结构和光谱规律。[1] 人们发现,量子力学系统的对称性可以解释几乎所有的原子光谱规律。这一过程,从对称性的直观理解到群的抽象表示理论,展现了群论在物理学中的一次重大进展。

在量子力学中,我们时常会解薛定谔方程,但是绝大多数薛定谔方程总是过于复杂,无法得到解析解。于是物理学家发明了各种近似的方法得到薛定谔方程的解,这些方法有微扰法,变分法等。在使用微扰法的过程中,首先会把要解决的量子系统的

哈密顿量分成两个部分,有解析解的 H_0 部分,以及微小的,代表微扰的 H' 部分。 如果 H_0 部分的能量本征值,也就是能级,是非简并,那么使用微扰法只需使用非简并的微扰法,这是十分简单的。如果 H_0 部分的能量本征值是简并的,在加入微扰后,某些简并能级将会分裂,见图 1.4。 E_3^0 能级在加入微扰后,发生了分裂,同时随着微扰越来越强,能级分裂越严重。

微扰会引起能级分裂的原因在于,大部分能级简并是由于系统拥有对称性导致的,而微扰的加入就破坏了对称性,使得能级不再简并。图中 E_4^0 没有发生分裂,说明和该能级简并相关的对称性没有被破坏。但是图中 E_3^0 能级分裂后在某个点与 E_2^0 能级发生了重叠,这就不是由于对称性引起的简并,仅仅是由于偶然性引起的简并,称之为偶然简并。

图 1.4 微扰引起能级分裂示意图[2]

这时首先应该找到零级近似本征态,寻找这个本征态的方法,是通过解一个久期方程来求得,而求解这个久期方程,要将微扰哈密顿量矩阵对角化。由于这个矩阵很大,通常情况这个对角化的过程并不是很容易,但是如果选取的表象合适,那么微扰哈密顿量矩阵的将会变为分块对角化,这可以极大的降低计算的复杂度。

而群论与对称性密切相关,利用群论解决微扰引起的能级分裂也会使部分计算简 化,本论文将会阐述如何利用群论解决该问题。

2 理论部分

2.1 群的基本概念

在规定了元素的"乘积"法则后,元素的集合 G 如果满足下面四个条件,则称为群。

(1) 集合对乘积的封闭性。集合中任意两元素的乘积仍属此集合: [3]

$$RS \in G, \quad \forall R \ \text{n} \ S \in G.$$
 (2.1)

(2) 乘积满足结合律:[3]

$$R(ST) = (RS)T, \quad \forall R, S \text{ fit } T \in G. \tag{2.2}$$

(3)集合中存在恒元 E,用它左乘集合中的任意元素,保持该元素不变:[3]

$$E \in G, \quad ER = R, \quad R \in G.$$
 (2.3)

(4) 任何元素 R 的逆存在于集合中,满足: [3]

$$\forall R \in \mathcal{G}, \quad \exists R^{-1} \in \mathcal{G}, \ \notin R^{-1}R = E. \tag{2.4}$$

群是一个抽象的概念,群的元素可以是任何客体,而群元素之间的乘法也可以是任何规则。群元素之间的乘法规则可以用一张表来表示,称为群的乘法表。以 D_3 群为例,它的群乘法表为:

	E	D	F	A	В	C
E	E	D	F	A	В	C
D	D	F	E	B	C	A
F	F	E	D	C	A	B
A	A	C	B	E	F	D
B	B	A	C	D	E	F
C	C	B	A	F	D	E

表 2.1 正三角形对称群 D₃ 的乘法表

其中 A , B , C代表绕正三角形三个顶点到中心的轴(称为二重轴)转动 π 角,如图 2.1。而 D , F 代表过三角形中心并垂直三角形平面的轴(称为三重轴)转动 $2\pi/3$, $4\pi/3$ 角,如图 2.2。 而 E 代表不变。可以看到两个元素的乘积不一定是代数上的乘法,其可以是任何规则,在这个群中乘法代表两个转动的组合。一般来说中的两个元素 R 和 S 的乘积 $RS \neq SR$,如 D_3 群中的 $FA = B \neq AF = C$,意味着先绕二重轴转动 π 角,再绕三重轴转动 $4\pi/3$ 角的结果与先绕三重轴转动 $4\pi/3$ 角,再绕二重轴转动 π 角的结果不同。而乘法结果不受群元素顺序影响的群称为阿贝尔群,而 D_3 群就是最小的非阿贝尔群.

图 2.2 三角形三重轴示意图

从上面 D_3 的乘法表中可以看到,任意两个元素的乘积仍然是群中的元素,同时任意一个元素的逆仍然存在于该群中。例如元素 F 的逆是元素 D,元素 A,B,C,E 的逆为自身.

R, R' 是群 G 中的两个元素,如果存在 $S \in G$ 使 $R' = SRS^{-1}$,则称 R 和 R' 是共轭的,一个群中所有互相共轭的元素构成一个类。

从群 G 中提取一些元素,如果这些元素构成一个新的群 G',那么群 G' 称为群 G 的子群。进一步,如果群 G' 的元素都来源于群 G 完整的类,那么群 G' 称为群 G 的不变子群(正规子群)。

如果群 G 与群中的所有元素——对应,并且这些元素的乘法关系——对应,则这两个群同构。用符号表述就是,若 R 和 $S \in G, R'$ 和 $S' \in G'$, $R \leftrightarrow R'$, $S' \leftrightarrow S$,必有 $R'S' \leftrightarrow RS$,则 $G' \approx G$,其中符号 " \leftrightarrow " 代表——对应, " \approx " 代表同构。例如三阶对称群和正三角形对称群同构。两个同构的群,它们的性质是完全相同的,于是只要研究互相同构的群中的某一个群的性质,就可以了解其余与之同构的群的性质.

2.2 群的线性表示

2.2.1 线性表示的定义

每一个给定群 G 都可以找到行列式不为零的 $m \times m$ 矩阵集合构成的群同构,这个由矩阵集合构成的群称为群 G 的线性表示,简称表示,把这个群记为 D(G)。例如正三角形对称群 D_3 群 m=2 的表示,即二维表示,

$$\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix} \qquad
\begin{pmatrix}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{pmatrix} \quad
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{pmatrix} \quad
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}$$

再例如正三角形对称群 D_3 群 m=3 的表示,即三维表示,

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}$$

$$C \qquad D \qquad F$$

$$\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

由于同构的两个群性质相同,而矩阵更容易研究,那么只要研究矩阵群的性质,就可以知道要研究的群的性质。在群 D(G) 中,与群 G 中的元素 R 对应的矩阵 D(G) 称为元素 R 在 D(G) 中的表示矩阵。矩阵 D(R) 的迹,即矩阵对角线之和

$$\chi(R) = \operatorname{Tr} D(R), \tag{2.5}$$

称为元素 R 在表示 D(G) 中的特征标,同一类元素的特征标在一个表示中相同,把每个类在每一个不可约表示中的特征标用一个表来表示,如表 2.2。表中 A 代表一维表示,E 代表二维表示,T 代表三维表示。

表 2.2 D3 群的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

SO(3)群的表示 $D^{\ell}(\alpha)$ 特征标可此公式计算[4],

$$\chi^{\ell}(\alpha) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\alpha]}{\sin(\alpha/2)} \ . \tag{2.6}$$

其中 α 表示绕轴转动的角度, ℓ 的值取 0, 1, 2,。对应的表示的维度分别是 1, 3, 5,。

2.2.2 可约表示与等价表示

如果群 G 表示 D(G) 的每一个表示矩阵 D(R) 都能通过同一个相似变换 X 化成同一形式的矩阵:

$$X^{-1}D(R)X = \begin{pmatrix} D^{(1)}(R) & 0 \\ 0 & D^{(2)}(R) \end{pmatrix} \tag{2.7}$$

则此表示称为可约表示,否则称为不可约表示。例如上述的 D_3 群 的三维表示,它的每个元素的表示矩阵都是一个形如 (2.7) 的矩阵,每个对角块上的矩阵其实都是 D_3 群的另一个表示,所以说它是可约的。

如果群 G 的 D(R) 表示与 D'(R) 表示的特征标对于每一个 $R \in G$ 相同,那么群 G 的 D(R) 表示与 D'(R) 表示为等价表示。

2.2.3 群的特征标表

群 G 有多个不可约表示, 其数量等于群 G 的类的个数。将群 G 每个类在每个不可约表示的特征标列成一张表, 称为群 G 的特征标表, 如表 3.2。

-	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

表 2.3 O 群的特征标表

表中 A, B 代表一维表示, E 代表二维表示, T 代表三维表示。

2.2.4 分导表示

子群 G' 的元素在母群 G 中的不可约表示 $D^j(R)$ 同样满足子群的乘法法则,于是 $D^j(R)$ 也是子群的表示,但这个表示对于子群来说通常是可约表示,于是它可以写成 子群不可约表示 $\overline{D}^i(R)$ 的直和,类 \mathcal{C}_β 的特征标记为 $\chi^i(\mathcal{C}_\beta)$ 和 $\overline{\chi}^i(\mathcal{C}_\beta)$,类中的元素 数量记为 $\bar{n}(\mathcal{C}_\beta)$ 。约化系数如下,

$$D^{j}(R) = \bigoplus_{i} a_{i} \overline{D}^{i}(R) \,, \tag{2.8}$$

$$a_{ij} = \frac{\sum_{R \in G'} \chi^j(R)^* \overline{\chi}^i(R)}{\sum_{R \in G'} (\overline{\chi}^i(R))^2} = \frac{\sum_{\beta} \overline{n}(\mathcal{C}_{\beta}) \chi^j(\mathcal{C}_{\beta})^* \overline{\chi}^i(\mathcal{C}_{\beta})}{\sum_{\beta} \overline{n}(\mathcal{C}_{\beta}) (\overline{\chi}^i(R))^2}.$$
 (2.9)

2.3 群论与晶体的联系

晶体具有平移对称性和宏观对称性,在宏观对称性中,晶体经过一些变化而保持不变,这些变换就可以组成一个群,不同的晶体对应不同的群,而这样的群一共有 32 个,称为点群。下面举一些晶体对应的点群。

表 2.4 32 个点群对应的晶系以及晶体[5]

晶系	点群	晶体
三斜晶系	C_1	
二計田尔	\mathbf{C}_i	$\mathrm{Al_2SiO_5}$
	\mathbf{C}_i	KNO_2
单斜晶系	C_2	
	C_{2h}	
	C_{2v}	
正交晶系	D_2	
	D_{2h}	I, Ga
	C_4	
	S_4	
	C_{4h}	CaWO_4
四角晶系	\mathbf{D}_{2d}	
	C_{4v}	
	D_4	
	D_{4h}	TiO_2 , In, β -Sn
	C_3	AsI_3
→ <i>b</i> . □ ₹	C_{3i}	$FeTiO_3$
三角晶系	C_{3v}	a
	D_3	Se B: A GI ALO
	D_{3d}	Bi, As, Sb, Al ₂ O ₃
	C_{3h}	
	C_6	
六角晶系	C_{6h}	
八川田水	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	ZnO, NiAs
	$\mathrm{D}_{6}^{c_{6v}}$	CeF_3
		Mg, Zn, graphite
	D_{6h} T	NaClO ₃
	T_h	$ m FeS_2$
立方晶系	T_d	m ZnS
/7 111/3/	O	β -Mn
	O_h	NaCl, diamond, Cu
	\smile_h	riaci, diamond, Cu

2.4 群论在量子力学中的应用

以上都是群论的相关概念,如何在物理学中使用群论,而量子力学在近代物理学中处于基础地位。量子力学研究的系统有诸多对称性,例如氢原子具有绕任意过原点的轴旋转任意角度不变的对称性,动量守恒的系统具有空间平移不变性,能量守恒的系统具有时间平移不变性。这一点与群论有巨大联系,接下来将会阐述如何在量子力学中应用群论。

2.4.1 能级简并

哈密顿算符 H 有本征函数 ψ^{α} ,以及对应的本征值 ε^{α} ,指标 α 可能有无限多个值,

$$H\psi^{\alpha} = \varepsilon^{\alpha}\psi^{\alpha}. \tag{2.10}$$

在量子力学中, ψ^{α} 称为本征态,对应于量子系统中的一个量子态, ε^{α} 称为能级。一般来说,对于 $\alpha \neq \beta$, $\varepsilon^{\alpha} \neq \varepsilon^{\beta}$,但是经常有许多不同的 ψ^{α} 有相同的本征值,在这里称它为E,而这种情况就称之为能级E是简并的,而具有相同能量的本征态的数目g称为该能级的简并度,

$$H\psi^{\alpha} = E\psi^{\alpha}, \quad \alpha = 1, \cdots, g. \tag{2.11}$$

简并固然有一个自然的解释。在量子力学中,变换是作为酉算符 T 实现的。假设一组变换使 H 不变,有:

$$T^{\dagger}HT = H, \tag{2.12}$$

这代表着,哈密顿量 H 在 T变换下保持不变,也就是说这个量子力学系统具有该对称性。将这个式子左乘 T 得到:

$$HT = TH, (2.13)$$

表明算符 T 和哈密顿量 H 对易。可以证明对称性会引起简并,

$$H(T\psi^{\alpha}) = HT\psi^{\alpha} = TH\psi^{\alpha} = TE\psi^{\alpha} = E(T\psi^{\alpha}), \tag{2.14}$$

于是 ψ^{α} 与 $T\psi^{\alpha}$ 具有相同的本征值,于是能级简并。但是 ψ^{α} 和 $T\psi^{\alpha}$ 可能是同一个本征函数,这种情况也就不构成简并,一个量子力学系统具有多种不同的对称性,如果找到另一个与算符 T 不对易的算符 R,即 $TR \neq RT$ 在算符 R 的变换下,哈密顿量 H 也保持不变。这时, ψ^{α} 与 $T\psi^{\alpha}$ 是两个不同的本征态。于是引起能级简并的原因就

是因为体系具有对称性,也可能是另一种特殊情况,两个能级的能量恰巧相等,这种情况称为偶然简并,此简并与对称性无关。

2.4.2 哈密顿算符的群

在一个量子力学系统中,对于该系统的哈密顿量 H 有多个使它保持不变的变换 R,而这些变换的集合构成群,称为哈密顿算符的群,记为

$$G_H = \{R | H(Rx) = H(x)\}.$$
 (2.15)

由于变换 R 与算符 P_R 一一对应,所以 P_R 的集合也构成群,称为哈密顿算符群,记为

$$P_{G_H} = \{ P_R | R \in G_H \}. \tag{2.16}$$

固体物理中,主要研究电子在晶体中的行为。单电子在晶体中的的哈密顿算符写为,

$$H(\mathbf{r}) = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + V(\mathbf{r}). \tag{2.17}$$

其中 $V(\mathbf{r})$ 是势能项,它是有离子实和其他电子产生的市场的和,由于 $V(\mathbf{r})$ 是十分难以精确确定的函数,所以直接计算非常困难。但是, $V(\mathbf{r})$ 的对称性可以很好的确定,就是电子所在晶体的对称性。在对称性群的操作下, $V(\mathbf{r})$ 是不变的,同时 ∇^2 算符也是不变的,所以哈密顿算符群与晶体的对称群是相同的.

要真正把群论应用于量子力学,离不开群的表示理论,以下将会说明群表示与量子力学的重要联系。

- (1)哈密顿量算符 H(x) 的具有相同本征能量的本征函数,构成哈密顿算符群表示的基函数。
 - (2) 承载哈密顿算符群同一不可约表示的本征函数必属于同一能级。

知道上面两条后,就可以知道,每一个不可约表示对应于薛定谔方程的一个能级, 而不可约表示的维度就代表这个能级的简并度。

2.4.3 分导表示, 微扰与能级分裂

一个量子系统加入一个微扰后的哈密顿量写为,

$$H = H_0 + H'. (2.18)$$

 H_0 表示原系统的哈密顿量,H' 表示微扰。若 H 对应哈密顿算符群 G,H' 对应哈密顿算符群 G'。如果群 G' 是群 G 的子群,那么 H 的对称性就会下降,变成与 H' 相

同的对称性,即它对应的哈密顿算符群就变成了群 G。群 G 的不可约表示关于子群 G' 的分导表示 $D^{j}(G)$,可以写成子群 G' 的不可约表示的直和,

$$X^{-1}D^j(\mathbf{G})X = \bigoplus_i a_i D^i(\mathbf{G}') \tag{2.19}$$

 a_i 代表群 G' 中指标为 i 的不可约表示的数量,而每一个不可约表示都对应于薛定谔方程的一个能级,则原系统 $D^j(G)$ 对应的能级就会分裂成 l_i 个,

$$l_j = \sum_i a_i , \qquad (2.20)$$

其每个能级的简并度就是对应不可约表示的维度。

2.5 计算方法

列出原哈密顿量 H_0 对应群 G。对于 SO(3)群或者 O(3)群,运用公式 (2.6) 计算 群 G 的特征标表,这时群 G 中的元素为绕某个轴旋转某个角度,不可约表示用 D^ℓ 表示,这里的 ℓ 可以看作这时哈密顿量 H_0 的 s, p, d, f 能级,前文说到每个不可约表示对应一个基函数,每个基函数对应一个能级,于是上面的对应是可行的。例如计算 SO(3)群中绕 z 轴旋转 $\frac{\pi}{3}$, π , $\frac{2\pi}{3}$ 元素的特征标,

$$\chi^{\ell}\left(\frac{\pi}{3}\right) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\frac{\pi}{3}\right]}{\sin\frac{\pi}{3}/2} = \begin{cases} 2 & \ell = 1, 7, \dots \\ 1 & \ell = 0, 6, \dots \\ -1 & \ell = 3, 5, \dots \end{cases},$$

$$\chi^{\ell}(\pi) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi\right]}{\sin\pi/2} = (-1)^{\ell},$$

$$\chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}\right]}{\sin\frac{2\pi}{3}/2} = \begin{cases} 1 & \ell = 0, 3, \dots \\ 0 & \ell = 1, 4, \dots \\ -1 & \ell = 2, 5, \dots \end{cases}$$

对于点群,它的特征标表可以通过查表得到,其具体计算方法不是本论文的重点。

写出 H_0 对应的群 G 及它的特征标表后,列出加入微扰后,总哈密顿量 H 对应的群 G' ,通过上述计算或者查表的方式列出群 G' 的特征标表。接下来计算群 G' 在群 G 中的分导表示,计算分导表示时,要找到群 G' 中的元素在群 G 中的特征标,并列成一个表。由于群 G' 是群 G 的子群,G' 中的元素一定可以在群 G 中找到,这时用上文列出的群 G 的特征标表可以知道这些元素的特征标。例如群 G 是 G 群, 列出 G 群的特征标表,见表 G 2.4,列出 G 群的特征标表,见表 G 2.5。

表 2.5 O 群的特征标表

	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$
$\overline{A_1}$	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

表 2.6 C3 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

 C_3 群中的 E 元素就是 O 群中的 E 元素,属于 C_3 群 C_3 类的元素就是在 O 群中属于 C_3 类中的元素。将这两类元素从 C_3 群中提出来,得到 C_3 群中的元素在 O 群中的特征标表,过程见表 2.6 和表 2.7。

表 2.7 O 群的特征标表

表 2.8 C₃ 群中的元素在 O 群 中的特征标表

	E	$2C_3$
A_1	1	1
$egin{array}{c} A_2 \ E \end{array}$	1	1
E	2	-1
T_1	3	0
T_{2}	3	0

在得到 G' 群中的元素在 G 群中的特征标表后,就可以计算群 G' 在群 G 中的分导表示。运用公式 (2.9) 计算分导表示的约化系数,例如计算 G 群到 G 群的分导表示的约化系数,以 T_1 不可约表示为例,

$$\begin{array}{ll} A\colon & a_1=1\div 3\times (3\times 1\times 1+0\times 1\times 2)=3,\\ E\colon & a_2=1\div 6\times (3\times 2\times 1+0\times (-1)\times 2)=6. \end{array}$$

得到约化矩阵系数,将其列为一个表,如表 2.8。纵列代表 G 群的不可约表示,横列代表 G' 群的不可约表示,其中的值就代表 G' 群用 G 群的不可约表示(对于 G' 群一般是可约表示)写成 G' 群的不可约表示的直和时,每个 G' 群的不可约表示有多少个。例如表 2.8,

表 2.9 O 群关于 C₃ 群的分导表示的约化系数

	A	E
A_1	1	0
A_2	1	0
E	0	1
T_1	1	1
T_{2}	1	1

$$A_1$$
 , 写为 $A_1 = A$, A_2 , 写为 $A_2 = T$, E , 写为 $E = E$, T_1 , 写为 $T_1 = A \oplus E$, T_2 , 写为 $T_2 = A \oplus E$.

分导表示也就代表了,G群的不可约表示对应的能级分裂为 G' 群不可约表示对应的能级。表 2.8 画成能级分裂图,见图 2.3。

TT.	(9)	E (2)
T_2	(3)	A (1)
m.	(0)	E (2)
T_1	(3)	A (1)
$_E$	(2)	E (2)
A_2	(1)	A (1)
A_1	(1)	A (1)
		C_3

图 2.3 SO3 到 T 群的能级分裂示意图

3 SO(3)群到 32 个点群

3.1 SO(3) 群到 O, T 群

3.1.1 SO(3) 群到 O 群

首先计算 O 群中的元素对应的在 SO(3)群中的特征表, C_2 , C_3 , C_4 转动的角度分别是 π , $2\pi/3$, $\pi/2$,用公式 (2.6) 计算对应的特征标,

$$\begin{split} \chi^{\ell}(\mathbf{E}) &= 2\ell + 1 \\ \chi^{\ell}(C_2) &= \chi^{\ell}(\pi) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\pi]}{\sin \pi/2} = (-1)^{\ell} \\ \chi^{\ell}(C_3) &= \chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}]}{\sin\frac{2\pi}{3}/2} = \begin{cases} 1 & \ell = 0, \ 3, \ \dots \\ 0 & \ell = 1, \ 4, \ \dots \\ -1 & \ell = 2, \ 5, \ \dots \end{cases} \\ \chi^{\ell}(C_4) &= \chi^{\ell}\left(\frac{\pi}{2}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{\pi}{2}]}{\sin\frac{\pi}{2}/2} = \begin{cases} 1 & \ell = 0, \ 1, \ 4, \ 5 \dots \\ -1 & \ell = 2, \ 3, \ 6, \ 7 \dots \end{cases} \end{split}$$

写在表 3.1 中。

表 3.1 SO(3) 群中 O 群元素的特征标表

	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$
D^0	1	1	1	1	1
D^1	3	0	-1	1	-1
D^2	5	-1	1	-1	1
D^3	7	1	-1	-1	-1

再列出 O 群的特征标表,在表 3.2 中。

表 3.2 O 群的特征标表

	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

利用公式 (2.9) 以及表 3.1 和表 3.2 计算 SO(3) 群关于 O 群的分导表示,计算约 化系数,例如,对于 $\ell=2$ 的不可约表示,

$$\begin{split} A_1 \colon & a_1 = \frac{1}{24} \times (5 \times 1 \times 1 + (-1) \times 1 \times 8 + 1 \times 1 \times 3 + (-1) \times 1 \times 6 + 1 \times 1 \times 6) = 0, \\ A_2 \colon & a_2 = \frac{1}{24} \times (5 \times 1 \times 1 + (-1) \times 1 \times 8 + 1 \times 1 \times 3 + (-1) \times (-1) \times 6 \\ & \qquad + 1 \times (-1) \times 6) = 0, \end{split}$$

$$E: \quad a_3 = \frac{1}{24} \times (5 \times 2 \times 1 + (-1) \times (-1) \times 8 + 1 \times 2 \times 3 + (-1) \times 0 \times 6 + 1 \times 0 \times 6)$$

$$= 1,$$

$$T_1: \quad a_4 = \frac{1}{24} \times (5 \times 3 \times 1 + (-1) \times 0 \times 8 + 1 \times (-1) \times 3 + (-1) \times 1 \times 6$$

$$\quad + 1 \times (-1) \times 6) = 0,$$

$$T_2: \quad a_5 = \frac{1}{24} \times (5 \times 3 \times 1 + (-1) \times 0 \times 8 + 1 \times (-1) \times 3 + (-1) \times (-1) \times 6$$

$$\quad + 1 \times 1 \times 6) = 1,$$

用同样的方法计算其他的约化系数, 结果放入表 3.3.

ℓ	A_1	A_2	E	T_1	T_2
0	1	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	1	0	1	1

表 3.3 SO(3) 群关于 O 群的分导表示的约化系数

从这个表中可以得到,原来的能级在加入微扰后发生的能级分裂, $\ell=n$ 的能级简并度是 2n+1,A 表示对应的能级简并度是 1,E 表示对应的能级简并度是 2,T 表示对应的能级简并度是 3。画出能级分裂是示意图,(1),(2),(3)…代表 1,2,3… 重简并。

图 3.1 SO₃到 O 群的能级分裂示意图

3.1.2 SO(3) 群到 T 群

首先计算 T 群中的元素对应的在 SO(3)群中的特征表, C_2 , C_3 转动的角度分别是 π , $2\pi/3$,用公式 (2.6) 计算对应的特征标,列出特征标表,

$$\chi^{\ell}(\mathbf{E}) = 2\ell + 1$$

$$\chi^{\ell}(C_2) = \chi^{\ell}(\pi) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\pi]}{\sin \pi/2} = (-1)^{\ell}$$

$$\chi^{\ell}(C_3) = \chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}]}{\sin\frac{2\pi}{3}/2} = \begin{cases} 1 & \ell = 0, 3, \dots \\ 0 & \ell = 1, 4, \dots \\ -1 & \ell = 2, 5, \dots \end{cases}$$

表 3.4 SO(3) 群中 T 群元素的特征标表

	E	$8C_3$	$3C_2$
D^0	1	1	1
D^1	3	0	-1
D^2	5	-1	1
D^3	7	1	-1

表 3.5 T 群的特征标表

	E	$8C_3$	$3C_2$
A	1	1	1
E^*	2	-1	2
T	3	0	-1

列出 T 群的特征标表,表中 E^* 是一个可约表示,但是通常情况下可以看作为一个不可约表示,它可以分解为两个二维不可约表示的直和,它的阶是原来的阶的两倍,计算约化系数时,需要把原来的阶换成两倍的阶。利用公式 (2.9) 以及表 3.4 和表 3.5 计算 SO(3) 群关于 O 群的分导表示,计算约化系数,以 $\ell=2$ 不可约表示为例,

$$\begin{split} A: \quad & a_1 = \frac{1}{12} \times (5 \times 1 \times 1 + (-1) \times 1 \times 8 + 1 \times 1 \times 3) = 0, \\ E: \quad & a_2 = \frac{1}{24} \times (5 \times 2 \times 1 + (-1) \times (-1) \times 8 + 2 \times 1 \times 3) = 1, \\ T: \quad & a_3 = \frac{1}{12} \times (5 \times 3 \times 1 + (-1) \times 0 \times 8 + 1 \times (-1) \times 3) = 1, \end{split}$$

写入表 3.6。画出能级分裂示意图, 见图 3.2。

表 3.6 SO(3) 群关于 T 群的分导表示的约化系数

ℓ	A	E	T
0	1	0	0
1	0	0	1
2	0	1	1
3	1	0	2

图 3.2 SO₃ 到 T 群的能级分裂示意图

3.2 SO(3) 群到 C₁, C₂, C₃, C₄, C₆ 群

3.2.1 SO(3) 群到 C₁群

可以预见的是由于 C_1 群仅有不变对称性,于是 SO(3) 群到 C_1 群的能级会完全分裂。

3.2.2 SO(3) 群到 C₂群

 C_2 转动的角度是 π , 计算 C_2 群中的元素在 SO(3) 群中的特征标。

$$\begin{split} \chi^{\ell}(\mathbf{E}) &= 2\ell + 1 \\ \chi^{\ell}(C_2) &= \chi^{\ell}(\pi) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\pi]}{\sin\pi/2} = (-1)^{\ell} \end{split}$$

表 3.7 SO(3) 群中 C_2 群元素的特征标表

	E	C_2
D^0	1	1
D^1	3	-1
D^2	5	1
D^3	7	-1

表 $3.8 C_2$ 群的特征标表

	E	C_2
A	1	1
B	1	-1

图 3.3 SO(3) 群到 C₂ 群的能级分裂示意图

3.2.3 SO(3) 群到 C3群

 C_3 转动的角度是 $2\pi/3$, 计算 C_3 群中的元素在 SO(3) 群中的特征标。

$$\chi^{\ell}(\mathbf{E}) = 2\ell + 1$$

$$\chi^{\ell}(C_3) = \chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}]}{\sin\frac{2\pi}{3}/2} = \begin{cases} 1 & \ell = 0, 3, \dots \\ 0 & \ell = 1, 4, \dots \\ -1 & \ell = 2, 5, \dots \end{cases}$$

表 3.9 SO(3) 群中 C_3 群元素的特征标表

	E	C_3
D^0	1	1
D^1	3	0
D^2	5	-1
D^3	7	1

表 $3.10~\mathrm{C_3}$ 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

图 3.4 SO(3) 群到 C3 群的能级分裂示意图

3.2.4 SO(3) 群到 C4群

 C_2 , C_4 转动的角度分别是 π , $\pi/2$,计算 C_4 群中的元素在 SO(3) 群中的特征标。

$$\begin{split} &\chi^{\ell}(\mathbf{E}) = 2\ell + 1 \\ &\chi^{\ell}(C_2) = \chi^{\ell}(\pi) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\pi]}{\sin\pi/2} = (-1)^{\ell} \\ &\chi^{\ell}(C_4) = \chi^{\ell}\left(\frac{\pi}{2}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{\pi}{2}]}{\sin\frac{\pi}{2}/2} = \left\{ \begin{matrix} 1 & \ell = 0 \text{, 1, 4, 5...} \\ -1 & \ell = 2 \text{, 3, 6, 7...} \end{matrix} \right. \end{split}$$

表 3.11 SO(3) 群中 C_4 群元素的特征标表

	E	$2C_4$	C_2
D^0	1	1	1
D^1	3	1	-1
D^2	5	-1	1
D^3	7	-1	-1

表 $3.12~C_4$ 群的特征标表

	E	$2C_4$	C_2
A	1	1	1
B	1	-1	1
E	2	0	-2

图 3.5 SO(3) 群到 C4 群的能级分裂示意图

3.2.5 SO(3) 群到 C₆群

 C_2 , C_3 , C_6 转动的角度分别是 π , $2\pi/3$, $\pi/3$ 计算 C_6 群中的元素在 SO(3) 群中的特征标。

$$\begin{split} \chi^{\ell}(\mathbf{E}) &= 2\ell + 1 \\ \chi^{\ell}(C_2) &= \chi^{\ell}(\pi) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi\right]}{\sin\frac{\pi}{2}} = (-1)^{\ell} \\ \chi^{\ell}(C_3) &= \chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}\right]}{\sin\frac{2\pi}{3}} = \begin{cases} 1 & \ell = 0, \ 3, \ \dots \\ 0 & \ell = 1, \ 4, \ \dots \\ -1 & \ell = 2, \ 5, \ \dots \end{cases} \end{split}$$

$$\chi^{\ell}(C_{6}) = \chi^{\ell}\left(\frac{\pi}{3}\right) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi/3\right]}{\sin\frac{\pi}{3}/2} = \begin{cases} 1 & \ell = 0, \ 2, \ \dots \\ 2 & \ell = 1, \ 7, \ \dots \\ -1 & \ell = 3, \ 5, \ \dots \\ -2 & \ell = 4, \ 10, \ \dots \end{cases}.$$

表 3.13 SO(3) 群中 C_6 群元素的特征标表

表 $3.14~C_6$ 群的特征标表

	E	$2C_6$	$2C_3$	C_2
D^0	1	1	1	1
D^1	3	2	0	-1
D^2	5	1	-1	1
D^3	7	-1	1	-1

	E	$2C_6$	$2C_3$	C_2
A	1	1	1	1
B	1	-1	1	-1
E_1^*	2	1	-1	-2
E_2^*	2	-1	-1	2

图 3.6 SO(3) 群到 C₆ 群的能级分裂示意图

3.3 SO(3) 群到 D₂, D₃, D₄, D₆群

3.3.1 SO(3) 群到 D2群

 C_2 转动的角度是 π , 计算 D_2 群中的元素在 SO(3) 群中的特征标。

$$\begin{split} \chi^{\ell}(\mathbf{E}) &= 2\ell + 1, \\ \chi^{\ell}(C_2) &= \chi^{\ell}(\pi) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi\right]}{\sin\frac{\pi}{2}} = (-1)^{\ell}. \end{split}$$

表 3.15 SO(3) 群中 D_2 群元素的特征标表

表 $3.16~D_2$ 群的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
D^0	1	1	1	1
D^1	3	-1	-1	-1
D^2	5	1	1	1
D^3	7	-1	-1	-1

	E	C_2	C_2'	$C_2^{\prime\prime}$
A	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	-1	1
B_3	1	-1	1	-1

图 3.7 SO(3) 群到 D₂ 群的能级分裂示意图

3.3.2 SO(3) 群到 D₃群

 C_2 , C_3 转动的角度是 $2\pi/3$, 计算 D_3 群中的元素在 SO(3) 群中的特征标。

$$\begin{split} \chi^{\ell}(\mathbf{E}) &= 2\ell + 1, \\ \chi^{\ell}(C_2) &= \chi^{\ell}(\pi) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi\right]}{\sin\frac{\pi}{2}} = (-1)^{\ell}, \end{split}$$

$$\chi^{\ell}(C_3) = \chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}]}{\sin\frac{2\pi}{3}/2} = \begin{cases} 1 & \ell = 0, \ 3, \ \dots \\ 0 & \ell = 1, \ 4, \ \dots \\ -1 & \ell = 2, \ 5, \ \dots \end{cases}$$

表 3.17 SO(3) 群中 D_3 群元素的特征标表

	E	$2C_3$	$3C_2$
D^0	1	1	1
D^1	3	0	-1
D^2	5	-1	1
D^3	7	1	-1

表 $3.18~D_3$ 群的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

图 3.8 SO(3) 群到 D₃ 群的能级分裂示意图

3.3.3 SO(3) 群到 D4群

 C_2 , C_4 转动的角度是 $2\pi/3$,计算 D_6 群中的元素在 SO(3) 群中的特征标。

$$\begin{split} \chi^{\ell}(\mathbf{E}) &= 2\ell + 1, \\ \chi^{\ell}(C_2) &= \chi^{\ell}(\pi) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi\right]}{\sin\frac{\pi}{2}} = (-1)^{\ell}, \\ \chi^{\ell}(C_3) &= \chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}]}{\sin\frac{2\pi}{3}/2} = \begin{cases} 1 & \ell = 0, \ 3, \ \dots \\ 0 & \ell = 1, \ 4, \ \dots \\ -1 & \ell = 2, \ 5, \ \dots \end{cases} \end{split}$$

表 3.19 SO(3) 群中 D_4 群元素的特征标表

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
D^0	1	1	1	1	1
D^1	3	1	-1	-1	-1
D^2	5	-1	1	1	1
D^3	7	-1	-1	-1	-1

表 3.20 D_3 群的特征标表

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

图 3.9 SO(3) 群到 C₃ 群的能级分裂示意图

3.3.4 SO(3) 群到 D₆群

 C_2 , C_3 , C_6 转动的角度是 $2\pi/3$,计算 D_6 群中的元素在 SO(3) 群中的特征标。 $\chi^\ell(E)=2\ell+1$

$$\begin{split} \chi^{\ell}(C_2) &= \chi^{\ell}(\pi) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi\right]}{\sin\frac{\pi}{2}} = (-1)^{\ell} \\ \chi^{\ell}(C_3) &= \chi^{\ell}\left(\frac{2\pi}{3}\right) = \frac{\sin[\left(\ell + \frac{1}{2}\right)\frac{2\pi}{3}]}{\sin\frac{2\pi}{3}/2} = \begin{cases} 1 & \ell = 0, \ 3, \ \dots \\ 0 & \ell = 1, \ 4, \ \dots \\ -1 & \ell = 2, \ 5, \ \dots \end{cases} \\ \chi^{\ell}(C_6) &= \chi^{\ell}\left(\frac{\pi}{3}\right) = \frac{\sin\left[\left(\ell + \frac{1}{2}\right)\pi/3\right]}{\sin\frac{\pi}{3}/2} = \begin{cases} 1 & \ell = 0, \ 3, \ \dots \\ 0 & \ell = 1, \ 4, \ \dots \\ -1 & \ell = 2, \ 5, \ \dots \\ 2 & \ell = 1, \ 7, \ \dots \\ -1 & \ell = 3, \ 5, \ \dots \\ -2 & \ell = 4, \ 10, \ \dots \end{cases} \end{split}$$

表 3.21 SO(3) 群中 D_4 群元素的特征标表

	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2^{\prime\prime}$
D^0	1	1 2 1	1	1	1	1
D^1	3	2	0	-1	-1	-1
D^2	5	1	-1	1	1	1
D^3	7	-1	1	-1	-1	-1

表 3.22 D₆ 群的特征标表

	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2^{\prime\prime}$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	1	-1	-2	0	0
E_2	2	-1	-1	2	0	0

图 3.10 SO(3) 群到 C3 群的能级分裂示意图

432个点群中母群到子群

在晶体中的电子,由于微扰引起的能级分裂主要是由于电子所在晶体的对称群变化引起的,所以这一章将会阐述 32 个点群中,母群到子群的能级分裂。

图 4.1 32 个点群,它们的阶数和它们的子群结构[6]

以下将会从SO(3)群出发,参照图 4.1 逐步阐述母群到子群的能级分裂。为了直观展现能级分裂,本文仅在 3.1 节进行详细阐述,后面将只有必要文字,表格和图,详细过程与 3.1 类似。

$4.1 O_h$ 群到 D_{4h} , T_d , T_h , D_{3d} , O 群

首先列出 O_h群的特征标表。

	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$	i	$8S_6$	$3\sigma_h$	$6S_4$	$6\sigma_d$
A_{1g}		1								1
A_{2g}		1							-1	-1
E_g	2	-1	2	0	0	2	-1	2	0	0
T_{1g}	3	0	-1	1	-1	3	0	-1	1	-1
T_{2g}	3	0	-1	-1	1	3	0	-1	-1	1
A_{1}	1	1	1	1	1	-1	-1	-1	-1	-1

表 4.1 O_b 群的特征标表

A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1 0 1 -1
E_u	2	-1	2	0	0	-2	1	-2	0	0
T_{1u}	3	0	-1	1	-1	-3	0	1	-1	1
T_{2u}	3	0	-1	-1	1	-3	0	1	1	-1

4.1.1 O_h群到 D_{4h}群

从 O_h 群的特征标表中挑选出 D_{4h} 群的元素,组成特征标表,其中 D_{4h} 群的元素 σ_v 来自 O_h 群的 σ_h 。 C_2 和 C_2' 来自 O_h 群的 C_2 。 C_2'' 来自 O_h 群的 C_2' 。

				,,	270					
	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	-1	1	1	-1	1	-1	1	1	-1
E_g	2	0	2	2	0	2	0	2	2	0
T_{1g}	3	1	-1	-1	-1	3	1	-1	-1	-1
T_{2g}	3	-1	-1	-1	1	3	-1	-1	-1	1
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	-1	1	1	-1	-1	1	-1	-1	1
E_u	2	0	2	2	0	-2	0	-2	-2	0
T_{1n}	3	1	-1	-1	-1	-3	-1	1	1	1

表 $4.2 O_h$ 群中 O_{4h} 群元素的特征标表

列出 D_{4h} 群的特征标表,计算约化系数,画出能级分裂图,见图 4.2。

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1
E_g	2	0	-2	0	0	2	0	-2	0	0
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1
E_u	2	0	-2	0	0	-2	0	2	0	0

表 $4.3~D_{4h}$ 群的特征标表

T.	(2)	E_u (2)
T_{2u}	(3)	B_{2u} (1)
		E_u (2)
T_{1u}	(3)	A_{2u} (1)

E_u	(2)	B_{1u} (1)
		A_{1u} (1)
A_{2u}	(1)	B_{1u} (1)
A_{1u}	(1)	A_{1u} (1)
TI.	(0)	E_g (2)
T_{2g}	(3)	B_{2g} (1)
æ.	(0)	E_g (2)
T_{1g}	(3)	A_{2g} (1)
	(2)	B_{1g} (1)
E_g	(2)	A_{1g} (1)
A_{2g}	(1)	B_{1g} (1)
$\overline{A_{1g}}$	(1)	A_{1g} (1)
O ₁	1	$\mathrm{D}_{4\mathrm{h}}$

图 4.2 O_h 到 D_{4h} 群的能级分裂示意图

$4.1.2 O_h$ 群到 T_d 群

从 $\mathcal{O}_{\scriptscriptstyle h}$ 群的特征标表中挑选出 $\mathcal{T}_{\scriptscriptstyle d}$ 群的元素,组成特征标表,见表 4.4。

表 4.4 \mathcal{O}_h 群中 \mathcal{T}_d 群元素的特征标表

	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$
A_{1g}	1	1	1	1	1
A_{2g}	1	1	1	-1	-1
E_g	2	-1	2	0	0
T_{1g}	3	0	-1	1	-1
T_{2g}	3	0	-1	-1	1
A_{1u}	1	1	1	-1	-1
A_{2u}	1	1	1	1	1
E_u	2	-1	2	0	0
T_{1u}	3	0	-1	-1	1
T_{2u}	3	0	-1	1	-1

列出 \mathbf{T}_d 群的特征标表,计算约化系数,画出能级分裂图,见图 4.3。

表 4.5 T_d 群的特征标表

	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

T_{2u}	(3)	T_1 (3)
T_{1u}	(3)	T_2 (3)
$_E_u$	(2)	E (2)
A_{2u}	(1)	A_1 (1)
A_{1u}	(1)	A_2 (1)
T_{2g}	(3)	T_2 (3)
T_{1g}	(3)	T_1 (3)
$_E_g$	(2)	E (2)
A_{2g}	(1)	A_2 (1)
A_{1g}	(1)	A_1 (1)
Oı	h	$\mathrm{T_{d}}$

图 4.3 O_h 到 T_d 群的能级分裂示意图

$4.1.3 O_h$ 群到 T_h 群

从 \mathcal{O}_h 群的特征标表中挑选出 \mathcal{T}_h 群的元素,组成特征标表,见表 4.2。

表 4.6 O_h 群 T_h 群元素中的特征标表

	E	$8C_3$	$3C_2$	i	$8S_6$	$3\sigma_h$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	1	1	1	1
E_g	2	-1	2	2	-1	2
T_{1g}	3	0	-1	3	0	-1
T_{2g}	3	0	-1	3	0	-1
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	1	-1	-1	-1
E_u	2	-1	2	-2	1	-2
T_{1u}	3	0	-1	-3	0	1

T_{2u} 3 0 -1 -3 0 1

列出 T_h 群的特征标表,计算约化系数,画出能级分裂图,见图 4.4。

表 $4.7~T_h$ 群的特征标表

	E	$8C_3$	$3C_2$	i	$8S_6$	$3\sigma_h$
A_g	1	1	1	1	1	1
E_g	2	-1	2	2	-1	2
T_g	3	0	-1	3	0	-1
A_u	1	1	1	-1	-1	-1
E_u	2	-1	2	-2	1	-2
T_u	3	0	-1	-3	0	1

T_{2u}	(3)	T_u (3)
T_{1u}	(3)	T_u (3)
E_u	(2)	E_u (2)
A_{2u}	(1)	A_u (1)
A_{1u}	(1)	A_u (1)
T_{2g}	(3)	T_g (3)
T_{1g}	(3)	T_g (3)
E_g	(2)	E_g (2)
A_{2g}	(1)	A_g (1)
A_{1g}	(1)	A_g (1)
0	h	$\mathrm{T_{h}}$

图 4.4 \mathcal{O}_h 到 \mathcal{T}_h 群的能级分裂示意图

4.1.4 O_h群到 D_{3d} 群

从 \mathcal{O}_h 群的特征标表中挑选出 \mathcal{D}_{3d} 群的元素,组成特征标表,见表 4.8。

表 4.8 O_h 群中 D_{3d} 群元素的的特征标表

	E	$2C_3$	$3C_2'$	i	$2S_6$	$3\sigma_d$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	-1	1	1	-1
E_g	2	-1	0	2	-1	0
T_{1g}	3	0	-1	3	0	-1
T_{2g}	3	0	1	3	0	1
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	1
E_u	2	-1	0	-2	1	0

T_{1u}	3	0	-1	-3	0	1
T_{2u}	3	0	1	-3	0	-1

列出 \mathbf{D}_{3d} 群的特征标表,计算约化系数,画出能级分裂图,见图 4.5.

	(0)	E_u (2)
T_{2u}	(3)	A_{1u} (1)
		E_u (2)
T_{1u}	(3)	A_{2u} (1)
E_u	(2)	E_u (2)
$\overline{A_{2u}}$	(1)	A_{2u} (1)
$\overline{A_{1u}}$	(1)	A_{1u} (1)
T_{2g}	(3)	E_g (2)
$\frac{I_{2g}}{}$	(3)	A_{1g} (1)
T	(2)	E_g (2)
T_{1g}	(3)	A_{2g} (1)
E_g	(2)	E_g (2)
$\overline{A_{2g}}$	(1)	A_{2g} (1)
A_{1g}	(1)	A_{1g} (1)
0	h	D_{3d}

图 4.5 O_h 到 D_{3h} 群的能级分裂示意图

表 $4.9~\mathrm{D}_{3d}$ 群的特征标表

	E	$2C_3$	$3C_2'$	i	$2S_6$	$3\sigma_d$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	-1	1	1	-1
E_g	2	-1	0	2	-1	0
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	1
E_u	2	-1	0	-2	1	0

4.1.5 O_h群到 O 群

从 O_h群的特征标表中挑选出 O 群的元素,组成特征标表,见表 4.10。

表 4.10 \mathcal{O}_h 群中 \mathcal{O} 群元素的特征标表

	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$
A_{1g}	1	1	1	1	1
A_{2g}	1	1	1	-1	-1
E_g	2	-1	2	0	0
T_{1g}	3	0	-1	1	-1
T_{2g}	3	0	-1	-1	1
A_{1u}	1	1	1	1	1
A_{2u}	1	1	1	-1	-1
E_u	2	-1	2	0	0
T_{1u}	3	0	-1	1	-1
T_{2u}	3	0	-1	-1	1

列出 O 群的特征标表, 计算约化系数, 画出能级分裂图,见图 4.6.

表 4.11 O 群的特征标表

	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E_g	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_{2}	3	0	-1	-1	1

T_{2u}	(3)	T_2 (3)
T_{1u}	(3)	T_1 (3)
E_u	(2)	E (2)
A_{2u}	(1)	A_2 (1)
A_{1u}	(1)	A_1 (1)
T_{2g}	(3)	T_2 (3)
T_{1g}	(3)	T_1 (3)
$_E_g$	(2)	E (2)
A_{2g}	(1)	A_2 (1)
A_{1g}	(1)	A_1 (1)
O	h	О

图 4.6 O_h 到 O 群的能级分裂示意图

为了节约篇幅,后文不在用文字阐述,只阐述子群中的元素是如何来源于母群的.

4.2 D_{4h} 群到 C_{4h}, C_{4v}, D_{2h}, D_{2d}, D₄ 群

首先列出 D4h 群的特征标表。

表 4.12 D_{4h} 群的特征标表

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1
E_g	2	0	-2	0	0	2	0	-2	0	0
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1
E_u	2	0	-2	0	0	-2	0	2	0	0

4.2.1 D_{4h}群到 C_{4h}群

表 $4.13~D_{4h}$ 群中 C_{4h} 群元素的特征标表

	E	$2C_4$	C_2	i	$2S_4$	σ_h
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	1	1	1	1
B_{1g}	1	-1	1	1	-1	1
B_{2g}	1	-1	1	1	-1	1
E_g	2	0	-2	2	0	-2
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	1	-1	-1	-1
B_{1u}	1	-1	1	-1	1	-1
B_{2u}	1	-1	1	-1	1	-1
E_u	2	0	-2	-2	0	2

表 4.14 C4h 群的特征标表

	E	$2C_4$	C_2	i	$2S_4$	σ_h
A_g	1	1	1	1	1	1
B_g	1	-1	1	1	-1	1
E_g^*	2	0	-2	2	0	-2
A_u	1	1	1	-1	-1	-1
B_u	1	-1	1	-1	1	-1
E_u^*	2	0	-2	-2	0	2

$\underline{\hspace{1cm}} E_u$	(2)	E_u (2)
B_{2u}	(1)	B_u (1)
B_{1u}	(1)	B_u (1)
A_{2u}	(1)	A_u (1)
A_{1u}	(1)	A_u (1)
E_g	(2)	E_g (2)
B_{2g}	(1)	B_g (1)
B_{1g}	(1)	B_g (1)
A_{2g}	(1)	A_g (1)
A_{1g}	(1)	A_g (1)
D.	4h	$\mathrm{C}_{4\mathrm{h}}$

图 4.7 D_{4h} 到 C_{4h} 的能级分裂示意图

$4.2.2~\mathrm{D}_{4h}$ 群到 C_{4v} 群

表 $4.15~D_{4h}$ 群中 C_{4v} 群元素的特征标表

	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_{1g}	1	1	1	1	1
A_{2g}	1	1	1	-1	-1
B_{1g}	1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1
E_g	2	0	-2	0	0
A_{1u}	1	1	1	-1	-1
A_{2u}	1	1	1	1	1
B_{1u}	1	-1	1	-1	1
B_{2u}	1	-1	1	1	-1
E_u	2	0	-2	0	0

表 $4.16~C_{4v}$ 群的特征标表

	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

E_u	(2)	E (2)
B_{2u}	(1)	B_1 (1)
B_{1u}	(1)	B_2 (1)
A_{2u}	(1)	A_1 (1)
A_{1u}	(1)	A_2 (1)
E_g	(2)	E (2)
B_{2g}	(1)	B_2 (1)
B_{1g}	(1)	B_1 (1)
A_{2g}	(1)	A_2 (1)
A_{1g}	(1)	A_1 (1)
D	4h	$\mathrm{C}_{4\mathrm{v}}$

图 $4.8~3.3.2~D_{4h}$ 群到 C_{4v} 群的能级分裂示意图

$4.2.3~\mathrm{D}_{4h}$ 群到 D_{2h} 群

表 4.17

	E	C_2	C_2'	$C_2^{\prime\prime}$	i	σ_h	σ_v	σ_d
A_{1g}	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	-1	-1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{2g}	1	1	1	1	1	1	1	1
E_g	2	-2	0	0	2	-2	0	0
A_{1u}	1	1	1	1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	-1	1	1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2u}	1	1	1	1	-1	-1	-1	-1
E_u	2	-2	0	0	-2	2	0	0

表 4.18

	E	C_2	C_2'	$C_2^{\prime\prime}$	i	σ_h	σ_v	σ_d
A_g	1	1	1	1	1	1	1	1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{2g}	1	-1	-1	1	1	-1	1	-1
B_{3g}	1	-1	1	-1	1	-1	-1	1
A_u	1	1	1	1	-1	-1	-1	-1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2u}	1	-1	-1	1	-1	1	-1	1

B_{\circ}	1	-1	1	-1	-1	1	1	-1

T.	(2)	B_{3u} (1)
$\underline{\hspace{1cm}}^{E_u}$	(2)	B_{2u} (1)
B_{2u}	(1)	A_u (1)
B_{1u}	(1)	B_{1u} (1)
A_{2u}	(1)	B_{1u} (1)
A_{1u}	(1)	A_u (1)
	(2)	B_{3g} (1)
E_g	(2)	B_{2g} (1)
B_{2g}	(1)	A_g (1)
$\overline{}B_{1g}$	(1)	B_{1g} (1)
$\overline{A_{2g}}$	(1)	B_{1g} (1)
$\overline{A_{1g}}$	(1)	A_g (1)
D	4h	${ m D}_{2{ m h}}$

图 $4.9~D_{4h}$ 群到 C_{4v} 群的能级分裂示意图

$4.2.4~\mathrm{D}_{4h}$ 群到 D_{2d} 群

表 4.19 D_{4h} 群中 D_{2h} 群元素的特征标表

	E	$2S_4$	C_2	$2C_2'$	$2\sigma_d$
A_{1g}	1	1	1	1	1
A_{2g}	1	1	1	-1	-1
B_{1g}	1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1
E_g	2	0	-2	0	0
A_{1u}	1	-1	1	1	-1
A_{2u}	1	-1	1	-1	1
B_{1u}	1	1	1	1	1
B_{2u}	1	1	1	-1	-1
E_u	2	0	-2	0	0

表 4.20 D_{2d} 群的特征标表

	E	$2S_4$	C_2	$2C_2'$	$2\sigma_d$
A_1	1	1	1	1	1

$\overline{A_2}$	1	1 -1 -1 0	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

E_u	(2)	E (2)
B_{2u}	(1)	A_2 (1)
B_{1u}	(1)	A_1 (1)
$\overline{A_{2u}}$	(1)	B_2 (1)
$\overline{A_{1u}}$	(1)	B_1 (1)
E_g	(2)	E (2)
B_{2g}	(1)	B_2 (1)
B_{1g}	(1)	B_1 (1)
$\overline{A_{2g}}$	(1)	A_2 (1)
A_{1g}	(1)	A_1 (1)
D	4h	$ m D_{2d}$

图 $4.10~D_{4h}$ 群到 D_{2d} 群的能级分裂示意图

4.2.5 D_{4h}群到 D₄群

表 4.21 D_{4h} 群中 D_4 群元素的特征标表

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
A_{1g}	1	1	1	1	1
A_{2g}	1	1	1	-1	-1
B_{1g}	1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1
E_g	2	0	-2	0	0
A_{1u}	1	1	1	1	1
A_{2u}	1	1	1	-1	-1
B_{1u}	1	-1	1	1	-1
B_{2u}	1	-1	1	-1	1
E_u	2	0	-2	0	0

表 $4.22~D_4$ 群的特征标表

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1

B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0
E_u	(2)			E	(2)
B_{2u}	(1)			B_2	(1)
B_{1u}	(1)			B_1	(1)
A_{2u}	(1)			A_2	(1)
A_{1u}	(1)			A_1	(1)
E_g	(2)			E	(2)
B_{2g}	(1)			B_2	(1)
B_{1g}	(1)			B_1	(1)
A_{2g}	(1)			A_2	(1)
A_{1g}	(1)			A_1	(1)
I	$D_{4\mathrm{h}}$				D_4

图 $4.11 D_{4h}$ 群到 D_4 群的能级分裂示意图

$4.3~D_{6h}$ 群到 $D_{2h},~D_{3h},~D_{6},~D_{3d},~C_{6v},~C_{6h}$ 群

表 4.23 D_{6h} 群的特征标表

	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2^{\prime\prime}$	i	$2S_6$	$2S_3$	σ_h	$3\sigma_v$	$3\sigma_d$
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1
B_{1g}	1	-1	1	-1	1	-1	1	1	-1	-1	-1	1
B_{2g}	1	-1	1	-1	-1	1	1	1	-1	-1	1	-1
E_{1g}	2	1	-1	-2	0	0	2	-1	1	-2	0	0
E_{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A_{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1
B_{1u}	1	-1	1	-1	1	-1	-1	-1	1	1	1	-1
B_{2u}	1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
E_{1u}	2	1	-1	-2	0	0	-2	1	-1	2	0	0
E_{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0

$4.3.1~D_{6h}$ 群到 D_{2h} 群

表 4.24 D_{6h} 群中 D_{2h} 群元素的特征标表

E	C_{\circ}	C'_{\circ}	$C_{\circ}^{\prime\prime}$	i	σ_{ι}	$\sigma_{\cdot \cdot \cdot}$	σ_{J}

A_{1g}	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	-1	-1
B_{1g}	1	-1	1	-1	1	-1	-1	1
B_{2g}	1	-1	-1	1	1	-1	1	-1
E_{1g}	2	-2	0	0	2	-2	0	0
E_{2g}	2	2	0	0	2	2	0	0
A_{1u}	1	1	1	1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	-1	1	1
B_{1u}	1	-1	1	-1	-1	1	1	-1
B_{2u}	1	-1	-1	1	-1	1	-1	1
E_{1u}	2	-2	0	0	-2	2	0	0
E_{2u}	2	2	0	0	-2	-2	0	0

表 4.25 D_{2h} 群的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$	i	σ_h	σ_v	σ_d
A_g	1	1	1	1	1	1	1	1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{2g}	1	-1	-1	1	1	-1	1	-1
B_{3g}	1	-1	1	-1	1	-1	-1	1
A_u	1	1	1	1	-1	-1	-1	-1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2u}	1	-1	-1	1	-1	1	-1	1
B_{3u}	1	-1	1	-1	-1	1	1	-1

T.	(0)	B_{1u} (1)
E_{2u}	(2)	A_u (1)
		B_{3u} (1)
$\underline{\hspace{1cm}}^{E_{1u}}$	(2)	B_{2u} (1)
B_{2u}	(1)	B_{2u} (1)
$\overline{}_{B_{1u}}$	(1)	B_{3u} (1)
A_{2u}	(1)	B_{1u} (1)
$\overline{A_{1u}}$	(1)	A_u (1)
	(-)	B_{1g} (1)
E_{2g}	(2)	A_g (1)
		B_{3g} (1)
$-E_{1g}$	(2)	B_{2g} (1)
B_{2g}	(1)	B_{2g} (1)
$\overline{}_{B_{1g}}$	(1)	B_{3g} (1)
A_{2g}	(1)	B_{1g} (1)
A_{1g}	(1)	A_g (1)
D	õh	$ ho_{2h}$

图 $4.12~D_{6h}$ 群到 D_{2h} 群的能级分裂示意图

$4.3.2~D_{6h}$ 群到 D_{3h} 群

表 4.26 D_{6h} 群中 D_{3h} 群元素的特征标表

	E	$2C_3$	$3C_2'$	σ_h	$2S_3$	$3\sigma_v$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	-1	1	1	-1
B_{1g}	1	1	1	-1	-1	-1
B_{2g}	1	1	-1	-1	-1	1
E_{1g}	2	-1	0	-2	1	0
E_{2g}	2	-1	0	2	-1	0
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	1
B_{1u}	1	1	1	1	1	1
B_{2u}	1	1	-1	1	1	-1
E_{1u}	2	-1	0	2	-1	0
E_{2u}	2	-1	0	-2	1	0

表 4.27 D_{3h} 群的特征标表

	E	$2C_3$	$3C_2'$	σ_h	$2S_3$	$3\sigma_v$
A_1'	1	1	1	1	1	1
$A_2^{\prime\prime}$	1	1	1	-1	-1	-1
A_2'	1	1	-1	1	1	-1
$A_2^{\prime\prime}$	1	1	-1	-1	-1	1
E'	2	-1	0	2	-1	0
$E^{\prime\prime}$	2	-1	0	-2	1	0

E_{2u}	(2)	$E^{''}$ (2)
E_{1u}	(2)	$E^{'}$ (2)
B_{2u}	(1)	$A_{2}^{'}$ (1)
B_{1u}	(1)	$A_{1}^{'} (1)$
A_{2u}	(1)	$A_2^{''}$ (1)
A_{1u}	(1)	$A_2^{''}$ (1)
E_{2g}	(2)	$E^{'}$ (2)
E_{1g}	(2)	$E^{''}$ (2)
B_{2g}	(1)	$A_2^{''}$ (1)
B_{1g}	(1)	$A_2^{''}$ (1)
A_{2g}	(1)	$A_{2}^{'}$ (1)
A_{1g}	(1)	$A_{1}^{'}$ (1)
D	6h	${ m D}_{3{ m h}}$

图 $4.13~D_{6h}$ 群到 D_{3h} 群的能级分裂示意图

4.3.3 D_{6h}群到 D₆群

表 4.28 D_{6h} 群中 D_6 群元素的特征标表

	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2^{\prime\prime}$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	1	1	-1	-1
B_{1g}	1	-1	1	-1	1	-1
B_{2g}	1	-1	1	-1	-1	1
E_{1g}	2	1	-1	-2	0	0
E_{2g}	2	-1	-1	2	0	0
A_{1u}	1	1	1	1	1	1

A_{2u}	1	1 -1 -1 1 -1	1	1	-1	-1
B_{1u}	1	-1	1	-1	1	-1
B_{2u}	1	-1	1	-1	-1	1
E_{1u}	2	1	-1	-2	0	0
E_{2u}	2	-1	-1	2	0	0

表 4.29 D₆ 群的特征标表

	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2^{\prime\prime}$
A_1		1	1	1		1
A_2	1	1			-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1		-1	1
E_1	2	1	-1	-2	0	0
E_2	2	-1	-1	2	0	0

E_{2u}	(2)	E_2 (2)
E_{1u}	(2)	E_1 (2)
B_{2u}	(1)	B_2 (1)
B_{1u}	(1)	B_1 (1)
A_{2u}	(1)	A_2 (1)
A_{1u}	(1)	A_1 (1)
E_{2g}	(2)	E_2 (2)
E_{1g}	(2)	E_1 (2)
$\overline{B_{2g}}$	(1)	B_2 (1)
B_{1g}	(1)	B_1 (1)
$\overline{A_{2g}}$	(1)	A_2 (1)
$\overline{A_{1g}}$	(1)	A_1 (1)
D.	5h	D_6

图 4.14 D_{6h}群到 D₆群的能级分裂示意图

$4.3.4~\mathrm{D}_{6h}$ 群到 D_{3d} 群

表 4.30 \mathcal{D}_{6h} 群中 \mathcal{D}_{3d} 群元素的特征标表

	E	$2C_3$	$3C_2'$	i	$2S_6$	$3\sigma_d$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	-1	1	1	-1

B_{1g}	1	1	1	1	1	1
B_{2g}	1	1	-1	1	1	-1
E_{1g}	2	-1	0	2	-1	0
E_{2g}	2	-1	0	2	-1	0
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	1
B_{1u}	1	1	1	-1	-1	-1
B_{2u}	1	1	-1	-1	-1	1
E_{1u}	2	-1	0	-2	1	0
E_{2u}	2	-1	0	-2	1	0

表 4.31 D_{3d} 群的特征标表

	E	$2C_3$	$3C_2'$	i	$2S_6$	$3\sigma_d$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	-1	1	1	-1
E_g	2	-1	0	2	-1	0
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	1
E_u	2	-1	0	-2	1	0

E_{2u}	(2)	E_u (2)
E_{1u}	(2)	E_u (2)
B_{2u}	(1)	A_{2u} (1)
B_{1u}	(1)	A_{1u} (1)
A_{2u}	(1)	A_{2u} (1)
A_{1u}	(1)	A_{1u} (1)
E_{2g}	(2)	E_g (2)
E_{1g}	(2)	E_g (2)
B_{2g}	(1)	A_{2g} (1)
B_{1g}	(1)	A_{1g} (1)
$\overline{A_{2g}}$	(1)	A_{2g} (1)
$\overline{A_{1g}}$	(1)	A_{1g} (1)
D	õh	$ m D_{3d}$

图 4.15 D_{6h}群到 D_{3d}群的能级分裂示意图

$4.3.5~\mathrm{D}_{6h}$ 群到 C_{6v} 群

表 4.32 D_{6h} 群中 C_{6v} 群元素的特征标表

	E	$2C_6$	$2C_3$	C_2	$3\sigma_v$	$3\sigma_d$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	1	1	-1	-1
B_{1g}	1	-1	1	-1	-1	1
B_{2g}	1	-1	1	-1	1	-1
E_{1g}	2	1	-1	-2	0	0
E_{2g}	2	-1	-1	2	0	0
A_{1u}	1	1	1	1	-1	-1
A_{2u}	1	1	1	1	1	1
B_{1u}	1	-1	1	-1	1	-1
B_{2u}	1	-1	1	-1	-1	1
E_{1u}	2	1	-1	-2	0	0
E_{2u}	2	-1	-1	2	0	0

表 4.33 C_{6v}群的特征标表

	E	$2C_6$	$2C_3$	C_2	$3\sigma_v$	$3\sigma_d$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	1	-1	-2	0	0
E_2	2	-1	-1	2	0	0

E_{2u}	(2)	E_2 (2)	
E_{1u}	(2)	E_1 (2)	
B_{2u}	(1)	B_2 (1)	
B_{1u}	(1)	B_1 (1)	
$\overline{A_{2u}}$	(1)	A_1 (1)	
$\overline{A_{1u}}$	(1)	A_2 (1)	
E_{2g}	(2)	E_2 (2)	
E_{1g}	(2)	E_1 (2)	
$\overline{}_{B_{2g}}$	(1)	B_1 (1)	
$\overline{B_{1g}}$	(1)	B_2 (1)	
$\overline{A_{2g}}$	(1)	A_2 (1)	
$\overline{A_{1g}}$	(1)	A_1 (1)	
D	6h	C_{6v}	

图 $4.16~D_{6h}$ 群到 C_{6v} 群的能级分裂示意图

4.3.6 D_{6h}群到 C_{6h}群

表 4.34 D_{6h} 群中 C_{6h} 群元素的特征标表

	E	$2C_6$	$2C_3$	C_2	i	$2S_6$	$2S_3$	σ_h
A_{1g}	1	1	1	1	1	1	1	1
A_{2g}	1	1	1	1	1	1	1	1
B_{1g}	1	-1	1	-1	1	1	-1	-1
B_{2g}	1	-1	1	-1	1	1	-1	-1
E_{1g}	2	1	-1	-2	2	-1	1	-2
E_{2g}	2	-1	-1	2	2	-1	-1	2
A_{1u}	1	1	1	1	-1	-1	-1	-1
A_{2u}	1	1	1	1	-1	-1	-1	-1
B_{1u}	1	-1	1	-1	-1	-1	1	1
B_{2u}	1	-1	1	-1	-1	-1	1	1
E_{1u}	2	1	-1	-2	-2	1	-1	2
E_{2u}	2	-1	-1	2	-2	1	1	-2

表 4.35 C6h 群的特征标表

								σ_h
A_g	1	1	1	1	1	1	1	1
B_g	1	-1	1	-1	1	1	-1	-1

E_{1g}	2	1	-1	-2 2 1 -1 -2 2	2	-1	1	-2
E_{2g}	2	-1	-1	2	2	-1	-1	2
A_u	1	1	1	1	-1	-1	-1	-1
B_u	1	-1	1	-1	-1	-1	1	1
E_{1u}	2	1	-1	-2	-2	1	-1	2
E_{2u}	2	-1	-1	2	-2	1	1	-2

E_{2u}	(2)	E_{2u} (2)
E_{1u}	(2)	E_{1u} (2)
B_{2u}	(1)	B_u (1)
B_{1u}	(1)	B_u (1)
$\overline{A_{2u}}$	(1)	A_u (1)
A_{1u}	(1)	A_u (1)
E_{2g}	(2)	E_{2g} (2)
E_{1g}	(2)	E_{1g} (2)
B_{2g}	(1)	B_g (1)
$\overline{}_{B_{1g}}$	(1)	B_g (1)
$\overline{A_{2g}}$	(1)	A_g (1)
$\overline{A_{1g}}$	(1)	A_g (1)
D	6h	$ m C_{6h}$

图 $4.17~D_{6h}$ 群到 C_{6h} 群的能级分裂示意图

$4.4 \, \mathrm{T}_d$ 群到 $\mathrm{D}_{2d}, \, \mathrm{T}, \, \mathrm{C}_{3v}$ 群

表 4.36 T_d 群的特征标表

	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

$4.4.1~\mathrm{T}_d$ 群到 D_{2d} 群

表 4.37 T_d 群中 D_{2d} 群元素的特征标表

	E	$2S_4$	C_2	$2C_2'$	$2\sigma_d$
A_1	1	1	1	1	1

A_2	1	-1	1	1	-1
E	2	0	2	2	0
T_1	3	1	-1	-1	-1
T_2	3	-1	-1	-1	1

表 4.38 D_{2d} 群的特征标表

	E	$2S_4$	C_2	$2C_2'$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

T	(9)	E (2)
T_2	(3)	B_2 (1)
/TI	(a)	E (2)
T_1	(3)	A_2 (1)
	(0)	B_1 (1)
	(2)	A_1 (1)
A_2	(1)	B_1 (1)
A_1	(1)	A_1 (1)
T	d	D_{2d}

图 4.18 T_d 群到 D_{2d} 群的能级分裂示意图

4.4.2 T_d群到 T 群

表 4.39 $\mathbf{T}_{\boldsymbol{d}}$ 群中 T 群元素的特征标表

	E	$8C_3$	$3C_2$
A_1	1	1	1
A_2	1	1	1
E	2	-1	2
T_1	3	0	-1
T_2	3	0	-1

表 4.40 T 群的特征标表

	E	$8C_3$	$3C_2$
A	1	1	1
E^*	2	-1	2
T	3	0	-1

T_2	(3)	T	(3)
T_1	(3)	T	(3)
E	(2)	E	(2)
A_2	(1)	A	(1)
A_1	(1)	A	(1)
	$\mathrm{T_{d}}$	T	1

图 4.19 \mathbf{T}_d 群到 T 群的能级分裂示意图

$4.4.3~\mathrm{T}_d$ 群到 C_{3v} 群

表 4.41 $\mathbf{T}_{\boldsymbol{d}}$ 群中 $\mathbf{C}_{3\boldsymbol{v}}$ 群元素的特征标表

	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
T_1	3	0	-1
T_2	3	0	1

表 $4.42~\mathrm{C}_{3v}$ 群的特征标表

	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

ØT.	(0)	E (2)
T_2	(3)	A_1 (1)
T	(9)	E (2)
T_1	(3)	E_2 (1)
E	(2)	E (2)
A_2	(1)	E_2 (1)
A_1	(1)	A_1 (1)
T	d	$\mathrm{C}_{3\mathrm{v}}$

图 4.20 \mathbf{T}_d 群到 \mathbf{C}_{3v} 群的能级分裂示意图

$4.5~T_h$ 群到 $D_{2h},~T,~S_6$ 群

表 $4.43~T_h$ 群的特征标表

E	$8C_3$	$3C_2$	i	$8S_6$	$3\sigma_h$

A_g	1	1	1	1 2 3 -1 -2 -3	1	1
E_g	2	-1	2	2	-1	2
T_g	3	0	-1	3	0	-1
A_u	1	1	1	-1	-1	-1
E_u	2	-1	2	-2	1	-2
T_u	3	0	-1	-3	0	1

$4.5.1~\mathrm{T}_h$ 群到 D_{2h} 群

表 4.44 T_h 群中 D_{2h} 群元素的特征标表

	E	C_2	C_2	C_2	i	σ_h	σ_v	σ_d
A_g	1	1	1	1	1	1	1	1
E_g	2	2	2	2 -1	2	2	2	2
T_g						-1	-1	-1
A_u				1	-1	-1	-1	-1
E_u	2	2	2	2	-2	-2	-2	-2
T_u	3	-1	-1	-1	-3	1	1	1

表 4.45 D_{2h} 群的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$	i	σ_h	σ_v	σ_d
A_g	1	1	1	1	1	1	1	1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{2g}	1	-1	-1	1	1	-1	1	-1
B_{3g}	1	-1	1	-1	1	-1	-1	1
A_u	1	1	1	1	-1	-1	-1	-1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2u}	1	-1	-1	1	-1	1	-1	1
B_{3u}	1	-1	1	-1	-1	1	1	-1

图 4.21 T_h 群到 D_{2h} 群的能级分裂示意图

$4.5.2~\mathrm{T}_{\it h}$ 群到 T 群

表 4.46 $\mathbf{T}_{\scriptscriptstyle h}$ 群中 T 群元素的特征标表

	E	$8C_3$	$3C_2$
A_g	1	1	1
$A_g \\ E_g$	2	-1	2
T_g	3	0	-1
A_u	1	1	1
$egin{aligned} A_u \ E_u \end{aligned}$	2	-1	2
T_u	3	0	-1

表 4.47 T 群的特征标表

	E	$8C_3$	$3C_2$
A	1	1	1
E^*	2	-1	2
T	3	0	-1

T_u	(3)	T	(3)
E_u	(2)	E	(2)
A_u	(1)	A	(1)
T_g	(3)	T	(3)
E_g	(2)	E	(2)
$\overline{A_g}$	(1)	\overline{A}	(1)
T	h]

图 4.22 T_h 群到 T 群的能级分裂示意图

$4.5.3~T_h$ 群到 S_6 群

表 4.48 T_h 群中 S_6 群元素的特征标表

	E	$2C_3$	i	$2S_6$
A_g	1	1	1	1
E_g	2	-1	2	-1
T_g	3	0	3	0
A_u	1	1	-1	-1
E_u	2	-1	-2	1
T_u	3	0	-3	0

表 $4.49~\mathrm{S_6}$ 群的特征标表

	E	$2C_3$	i	$2S_6$
A_g	1	1	1	1
E_g	2	-1	2	-1
A_u	1	1	-1	-1
E_u	2	-1	-2	1

/TI	(9)	E_u (2)
T_u	(3)	A_u (1)
E_u	(2)	E_u (2)
A_u	(1)	A_u (1)
	(2)	E_g (2)
T_g	(3)	A_g (1)
E_g	(2)	E_g (2)
A_g	(1)	A_g (1)
Т	h	S_6

图 4.23 \mathbf{T}_h 群到 \mathbf{S}_6 群的能级分裂示意图

4.6 O 群到 D₃, D₄, T 群

表 4.50 O 群的特征标表

	E	$8C_3$	$3C_2$	$6C_4$	$6C_2'$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_{2}	3	0	-1	-1	1

4.6.1 O 群到 D₃群

表 4.51 O 群中 D_3 群元素的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0
T_1	3	0	-1
T_2	3	0	1

表 $4.52~D_3$ 群的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

ØT.	(9)	E (2)
T_2	(3)	A_1 (1)
T	(9)	E (2)
T_1	(3)	A_2 (1)
$_E$	(2)	E (2)
A_2	(1)	A_2 (1)
A_1	(1)	A_1 (1)
O		D_3

图 4.24 O 群到 D_3 群的能级分裂示意图

4.6.2 O 群到 D4群

表 4.53 O 群的特征标表

	E	$2C_4$	C_2	$2C_2$	$2C_2'$
A_1	1	1	1	1	1
A_2	1	-1	1	1	-1
E	2	0	2	2	0

T_1	3	1	-1	-1	-1
T_2	3	-1	-1	-1	1

表 $4.54~D_4$ 群的特征标表

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

/TI	(2)	E (2)
T_2	(3)	B_2 (1)
T	(2)	E (2)
T_1	(3)	A_2 (1)
_	(2)	B_1 (1)
	(2)	A_1 (1)
A_2	(1)	B_1 (1)
A_1	(1)	A_1 (1)
O		D_4

图 4.25 O 群到 D_4 群的能级分裂示意图

4.6.3 O 群到 T 群

表 4.55 O 群中 T 群元素的特征标表

	E	$8C_3$	$3C_2$
A_1	1	1	1
A_2	1	1	1
E	2	-1	2
T_1	3	0	-1
T_2	3	0	-1

表 4.56 T 群的特征标表

	E	$8C_3$	$3C_2$
A	1	1	1
E^*	2	-1	2
T	3	0	-1

T_2	(3)	T	(3)
T_1	(3)	T	(3)
E	(2)	E	(2)
A_2	(1)	A	(1)
A_1	(1)	A	(1)
		Т	

图 4.26 O 群到 T 群的能级分裂示意图

$4.7~D_{2d}$ 群到 $S_4,~C_{2v},~D_2$ 群

表 $4.57D_{2d}$ 群的特征标表

	E	$2S_4$	C_2	$2C_2'$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

$4.7.1~\mathrm{D}_{2d}$ 群到 S_4 群

表 4.58 D_{2d} 群中 S_4 群元素的特征标表

	E	$2S_4$	C_2
A_1	1	1	1
A_2	1	1	1
B_1	1	-1	1
B_2	1	-1	1
E	2	0	-2

表 $4.59 S_4$ 群的特征标表

	E	$2S_4$	C_2
A	1	1	1
B	1	-1	1
E	2	0	-2

E	(2)	E	(2)
B_2	(1)	B	(1)
B_1	(1)	В	(1)
A_2	(1)	A	(1)
A_1	(1)	A	(1)
	D_{2d}	S	4

图 4.27 \mathbf{D}_{2d} 群到 \mathbf{S}_4 群的能级分裂示意图

$4.7.2~\mathrm{D}_{2d}$ 群到 C_{2v} 群

表 4.60 \mathcal{D}_{2d} 群中 \mathcal{C}_{2v} 群元素的特征标表

	E	C_2	σ_v	σ_d
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	1	-1	-1
B_2	1	1	1	1
E	2	-2	0	0

示表 _		表 4.61 (C _{2v} 群的	特征标表	Ē
		E	C_2	σ_v	σ_d
	A_1	1	1	1	1
	A_2	1	1	-1	-1
	B_1	1	-1	1	-1
	B_2	1	-1	-1	1

T.	(2)		B_2	(1)
	(2)	2)	B_1	(1)
B_2	(1)		A_1	(1)
B_1	(1)		A_2	(1)
A_2	(1)		A_2	(1)
A_1	(1)		A_1	(1)
	$ m O_{2d}$		C	$2_{ m 2v}$

图 4.28 \mathbf{D}_{2d} 群到 \mathbf{C}_{2v} 群的能级分裂示意图

$4.7.3~\mathrm{D}_{2d}$ 群到 D_2 群

表 4.62 T_h 群中 D_{2d} 群元素的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	1	1	1
B_2	1	1	-1	-1
E	2	-2	0	0

表 $4.63~\mathrm{D}_{3d}$ 群的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
A_1	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	-1	1
B_3	1	-1	1	-1

T.	(0)	B_3 (1)
	(2)	B_2 (1)
B_2	(1)	B_1 (1)
B_1	(1)	A_1 (1)
A_2	(1)	B_1 (1)
A_1	(1)	A_1 (1)
) _{2d}	D_2

图 4.29 T 群到 \mathbf{D}_{2d} 群的能级分裂示意图

$4.8~\mathrm{C}_{4v}$ 群到 $\mathrm{C}_{2v},~\mathrm{C}_{4}$ 群

表 4.64 C_{4v} 群的特征标表

	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

4.8.1 С4v 群到 С2v 群

表 4.65 C_{4v} 群中 C_{2v} 群元素的特征标表

	E	C_2	σ_v	σ_d
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	1	1	1
B_2	1	1	-1	-1
E	2	-2	0	0

表 4.66 C_{2v} 群的特征标表

	E	C_2	σ_v	σ_d
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

	(0)	B_2 (1)
	(2)	B_1 (1)
B_2	(1)	A_2 (1)
B_1	(1)	A_1 (1)
A_2	(1)	A_2 (1)
A_1	(1)	A_1 (1)
	4v	C_{2v}

图 4.30 C_{4v} 群到 C_{2v} 群的能级分裂示意图

$4.8.2~\mathrm{C}_{4v}$ 群到 C_4 群

表 4.67 C_{4v} 群中 C_4 群元素的特征标表

	E	$2C_4$	C_2
A_1	1	1	1
A_2	1	1	1
B_1	1	-1	1
B_2	1	-1	1
E	2	0	-2

表 4.68 C_4 群的特征标表

	E	$2C_4$	C_2
A_1	1	1	1
B	1	-1	1
E^*	2	0	-2

$_E$	(2)	E (2)
B_2	(1)	B (1)
B_1	(1)	B (1)
$\overline{A_2}$	(1)	A_1 (1)
$\overline{A_1}$	(1)	A_1 (1)
	4v	C_{4}

图 4.31 C_{4v} 群到 C_4 群的能级分裂示意图

4.9 D₄群到 D₂, C₄群

表 4.69

	E	$2C_4$	C_2	$2C_2'$	$2C_2^{\prime\prime}$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

$4.9.1~D_4$ 群到 D_2 群

表 4.70 $\mathrm{D_4}$ 群中 $\mathrm{D_2}$ 群元素的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	1	1	1
B_2	1	1	-1	-1
E	2	-2	0	0

表 $4.71~D_2$ 群的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
A	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	-1	1
B_3	1	-1	1	-1

E	(0)	B_3 (1)
	(2)	B_2 (1)
B_2	(1)	B_1 (1)
B_1	(1)	A (1)
A_2	(1)	B_1 (1)
A_1	(1)	A (1)
Г		D_2

图 4.32 D_4 群到 D_2 群的能级分裂示意图

4.9.2 D4群到 C4群

表 4.72 D_4 群中 C_4 群元素的特征标表

	E	$2C_4$	C_2
A_1	1	1	1
A_2	1	1	1
B_1	1	-1	1
B_2	1	-1	1
E	2	0	-2

表 $4.73~\mathrm{C_4}$ 群的特征标表

	E	$2C_4$	C_2
A	1	1	1
B	1	-1	1
E^*	2	0	-2

$_E$	(2)	E	(2)
B_2	(1)	В	(1)
B_1	(1)	В	(1)
$\overline{A_2}$	(1)	A	(1)
$\overline{A_1}$	(1)	A	(1)
I) ₄	(\mathbb{S}_4

图 4.33 D_4 群到 C_4 群的能级分裂示意图

$4.10~C_{4h}$ 群到 $S_4,~C_4,~C_{2h}$ 群

表 4.74 C4h 群的特征标表

	E	$2C_4$	C_2	i	$2S_4$	σ_h
A_g	1	1	1	1	1	1
B_g	1	-1	1	1	-1	1
E_g^*	2	0	-2	2	0	-2
A_u	1	1	1	-1	-1	-1

B_u	1	-1	1	-1	1	-1
E_u^*	2	0	-2	-2	0	2

$4.10.1~\mathrm{C}_{4h}$ 群到 S_4 群

表 4.75 C_{4h} 群中 S_4 群元素的特征标表

	E	$2S_4$	C_2
A_g	1	1	1
B_g	1	-1	1
E_g^*	2	0	-2
A_u	1	-1	1
B_u	1	1	1
E_u^*	2	0	-2

表 $4.76~\mathrm{S_4}$ 群的特征标表

	E	$2S_4$	C_2
A	1	1	1
B	1	-1	1
E	2	0	-2

E_u	(2)	E	(2)
B_u	(1)	A	(1)
A_u	(1)	В	(1)
E_g	(2)	\overline{E}	(2)
B_g	(1)	В	(1)
$\overline{A_g}$	(1)	A	(1)
	4h		S_4

图 4.34 C_{4h} 群到 S_4 群的能级分裂示意图

4.10.2 C_{4h} 群到 C₄ 群

表 4.77 C_{4h} 群中 C_4 群元素的特征标表

	E	$2C_4$	C_2
A_g	1	1	1
B_g	1	-1	1
E_g^*	2	0	-2
A_u	1	1	1
B_u	1	-1	1
E_u^*	2	0	-2

表 4.78 C_4 群的特征标表

	E	$2C_4$	C_2
A	1	1	1
B	1	-1	1
E^*	2	0	-2

E_u	(2)	E	(2)
B_u	(1)	A	(1)
A_u	(1)	B	(1)
E_g	(2)	E	(2)
B_g	(1)	В	(1)
A_g	(1)	\overline{A}	(1)
C	4h		S_4

图 4.35 C_{4h} 群到 C_4 群的能级分裂示意图

4.10.3 C_{4h}群到 C_{2h}群

表 4.79 C_{4h} 群中 C_{2h} 群元素的特征标表

	E	C_2	i	σ_h
A_g	1	1	1	1
B_g	1	1	1	1
E_g^*	2	-2	2	-2
A_u	1	1	-1	-1
B_u	1	1	-1	-1
E_u^*	2	-2	-2	2

表 4.80 C_{2h} 群的特征标表

	E	C_2	i	σ_h
A_g	1	1	1	1
B_g	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

T.	(0)		B_u	(1)
$\underline{E_u}$	(2)	=======================================	B_u	(1)
B_u	(1)		A_u	(1)
A_u	(1)		A_u	(1)
	(2)		B_g	(1)
E_g	(2)	=======================================	B_g	(1)
B_g	(1)		A_g	(1)
A_g	(1)		A_g	(1)
C	4h		C	2h

图 4.36 C_{4h} 群到 C_{2h} 群的能级分裂示意图

4.11 T 群到 D₂, C₃群

表 4.81 T 群的特征标表

	E	$8C_3$	$3C_2$
\overline{A}	1	1	1
E^*	2	-1	2
T	3	0	-1

4.11.1 T 群到 D₂群

表 4.82 T 群中 D_2 群元素的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
\overline{A}	1	1	1	1
E^*	2	2	2	2
T	3	-1	-1	-1

表 $4.83~D_2$ 群的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
A_1	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	-1	1
B_3	1	-1	1	-1

图 4.37 T 群到 \mathbf{D}_2 群的能级分裂示意图

4.11.2 T 群到 C₃群

表 4.84 T 群中 C_3 群元素的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1
T	3	0

表 $4.85~C_3$ 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

/TI	(9)	E	(2)
	(3)	 A	(1)
E	(2)	 E	(2)
A	(1)	A	(1)
	T	(\mathbb{C}_3

图 4.38 T 群到 C_3 群的能级分裂示意图

$4.12~C_{6v}$ 群到 $C_{2v},~C_{3v},~C_{6}$ 群

表 4.86 C_{6v}群的特征标表

	E	$2C_6$	$2C_3$	C_2	$3\sigma_v$	$3\sigma_d$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	1	-1	-2	0	0
E_2	2	-1	-1	2	0	0

$4.12.1 C_{6v}$ 群到 C_{2v} 群

表 4.87 C_{6v} 群中 C_{2v} 群元素的特征标表

	E	C_2	σ_v	σ_d
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1
E_1	2	-2	0	0
E_2	2	2	0	0

表 4.88 C_{2v} 群的特征标表

	E	C_2	σ_v	σ_d
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

T.	(9)		A_2	(1)
$\underline{E_2}$	(2)		A_1	(1)
	(2)		B_2	(1)
$\underline{\hspace{1cm}}^{E_1}$	(2)		B_1	(1)
B_2	(1)		B_2	(1)
B_1	(1)		B_1	(1)
A_2	(1)	_	A_2	(1)
A_1	(1)		A_1	(1)
C	6v			C_{2v}

图 4.39 C_{6v} 群到 C_{2v} 群的能级分裂示意图

$4.12.2~C_{6v}$ 群到 C_{3v} 群

表 4.89 C_{6v} 群中 C_{3v} 群元素的特征标表

	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
B_1	1	1	1
B_2	1	1	-1
E_1	2	-1	0
E_2	2	-1	0

表 4.90 C_{3v} 群的特征标表

	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

E_2	(2)	E (2)
E_1	(2)	E (2)
B_2	(1)	A_2 (1)
B_1	(1)	A_1 (1)
A_2	(1)	A_2 (1)
A_1	(1)	A_1 (1)
		$\mathrm{C}_{3\mathrm{v}}$

图 4.40 C_{6v} 群到 C_{3v} 群的能级分裂示意图

$4.12.3~\mathrm{C}_{6v}$ 群到 C_6 群

表 4.91 C_{6v} 群中 C_6 群元素的特征标表

 $2C_6$ E $2C_3$ C_2 A_1 1 1 1 1 A_2 1 1 1 1 B_1 1 -1 1 -1 B_2 1 -1 -1 E_1 2 1 -1 -2 2 E_2 -1 -1 2

表 $4.92~C_6$ 群的特征标表

	E	$2C_6$	$2C_3$	C_2
A_1	1	1	1	1
B	1	-1	1	-1
E_1^*	2	1	-1	-2
E_2^*	2	-1	-1	2

E_2	(2)	E_2 (2)
E_1	(2)	E_1 (2)
B_2	(1)	B (1)
B_1	(1)	B (1)
A_2	(1)	A_1 (1)
$\overline{A_1}$	(1)	A_1 (1)
	6v	C_{6}

图 4.41 C_{6v} 群到 C_6 群的能级分裂示意图

$4.13~D_{3h}$ 群到 $C_{2v},~C_{3v},~D_{3},~C_{3h}$ 群

表 4.93 D_{3h} 群的特征标表

	E	$2C_3$	$3C_2'$	σ_h	$2S_3$	$3\sigma_v$
A_1'	1	1	1	1	1	1
$A_1^{\prime\prime}$	1	1	1	-1	-1	-1
A_2'	1	1	-1	1	1	-1
$A_2^{\prime\prime}$	1	1	-1	-1	-1	1
E'	2	-1	0	2	-1	0
$E^{\prime\prime}$	2	-1	0	-2	1	0

$4.13.1~\mathrm{D}_{3h}$ 群到 C_{2v} 群

表 4.94 \mathbf{D}_{3h} 群中 \mathbf{C}_{2v} 群元素的特征标表

	E	C_2	σ_v	σ_h
A_1'	1	1	1	1
$A_1^{\prime\prime}$	1	1	-1	-1
A_2'	1	-1	-1	1
$A_2^{\prime\prime}$	1	-1	1	-1
E'	2	0	0	2
$E^{\prime\prime}$	2	0	0	-2

表 4.95 C_{2v} 群的特征标表

	E	C_2	σ_v	σ_d
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

$E^{''}$	(9)	B_1 (1	.)
E	(2)	A_2 (1	.)
/	(2)	B_2 (1	
$\underline{E^{'}}$	(2)	A_1 (1	
$A_2^{''}$	(1)	B_1 (1	_)
$A_{2}^{'}$	(1)	B_2 (1	.)
$A_{1}^{''}$	(1)	A_2 (1	.)
$A_{1}^{'}$	(1)	A_1 (1	.)
D	3h	C_{2v}	

图 4.42 D_{3h} 群到 C_{2v} 群的能级分裂示意图

4.13.2 D_{3h}群到 C_{3v}群

表 4.96 D_{3h} 群中 C_{3v} 群元素的特征标表

	E	$2C_3$	$3\sigma_v$
A'_1	1	1	1
$A_1^{\prime\prime}$	1	1	-1
A_2'	1	1	-1
$A_2^{\prime\prime}$	1	1	1
E'	2	-1	0
$E^{\prime\prime}$	2	-1	0

表 4.97 C_{3v} 群的特征标表

	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

$E^{''}$	(2)	E	(2)
$E^{'}$	(2)	E	(2)
$A_2^{''}$	(1)	A_1	(1)
$A_{2}^{'}$	(1)	A_2	(1)
$A_{1}^{''}$	(1)	A_2	(1)
$\overline{A_{1}^{'}}$	(1)	A_1	(1)
	3h	C_{3}	<i>v</i>

图 4.43 \mathbf{D}_{3h} 群到 \mathbf{C}_{3v} 群的能级分裂示意图

4.13.3 D_{3h}群到 D₃群

表 4.98 D_{3h} 群中 D_3 群元素的特征标表

	E	$2C_3$	$3C_2'$
A_1'	1	1	1
$A_1^{\prime\prime}$	1	1	1
A_2'	1	1	-1
A_2' A_2''	1	1	-1
E'	2	-1	0
$E^{\prime\prime}$	2	-1	0

表 4.99 D_3 群的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

$E^{''}$	(2)	E	(2)
$E^{'}$	(2)	E	(2)
$\overline{A_2^{''}}$	(1)	A_2	(1)
$\overline{A_{2}^{'}}$	(1)	A_2	(1)
$A_{1}^{''}$	(1)	A_1	(1)
$\overline{A_{1}^{'}}$	(1)	A_1	(1)
	3h	D	9

图 4.44 D_{3h} 群到 D_3 群的能级分裂示意图

$4.13.4~D_{3h}$ 群到 C_{3h} 群

表 4.100 D_{3h} 群中 C_{3h} 群元素的特征标表

	E	$2C_3$	σ_h	$2S_3$
A_1'	1	1	1	1
$A_1^{\prime\prime}$	1	1	-1	-1
A_2'	1	1	1	1
$A_2^{\prime\prime}$	1	1	-1	-1
E'	2	-1	2	-1
$E^{\prime\prime}$	2	-1	-2	1

表 $4.101 \, C_{3h}$ 群的特征标表

	E	$2C_3$	σ_h	$2S_3$
A'	1	1	1	1
$A^{\prime\prime}$	1	1	-1	-1
E'	2	-1	2	-1
$E^{\prime\prime}$	2	-1	-2	1

$_E^{''}$	(2)	$E^{''}$ (2)
$E^{'}$	(2)	$E^{'}$ (2)
$A_2^{''}$	(1)	$A^{''}$ (1)
$\overline{A_{2}^{'}}$	(1)	$A^{'}$ (1)
$\overline{A_1^{''}}$	(1)	$A^{''}$ (1)
$\overline{A_{1}^{'}}$	(1)	$A^{'}$ (1)
) _{3h}	$\mathrm{C}_{3\mathrm{h}}$

图 4.45 D_{3h} 群到 C_{3h} 群的能级分裂示意图

$4.14~D_6$ 群到 $D_2,~D_3,~C_6$ 群

表 4.102 D₆ 群的特征标表

	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2^{\prime\prime}$
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	1	-1	-2	0	0
E_2	2	-1	-1	2	0	0

$4.14.1~D_6$ 群到 D_2 群

表 4.103 D_6 群中 D_2 群元素的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1
E_1	2	-2	0	0
E_2	2	2	0	0

表 $4.104~D_2$ 群的特征标表

	E	C_2	C_2'	$C_2^{\prime\prime}$
A_1	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	-1	1
B_3	1	-1	1	-1

77	(9)	B_1	(1)
$-E_2$	(2)	 A_1	(1)
		B_3	(1)
$-\frac{E_1}{}$	(2)	 B_2	(1)
B_2	(1)	B_2	(1)
B_1	(1)	B_3	(1)
A_2	(1)	B_1	(1)
A_1	(1)	A_1	(1)
	16	 D	9

图 4.46 D_6 群到 D_2 群的能级分裂示意图

4.14.2 D₆群到 D₃群

表 $4.105 D_6$ 群中 D_3 群元素的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
B_1	1	1	1
B_2	1	1	-1
E_1	2	-1	0
E_2	2	-1	0

表 $4.106~D_3$ 群的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

E_2	(2)	E	(2)
E_1	(2)	E	(2)
B_2	(1)	A_2	(1)
B_1	(1)	A_1	(1)
A_2	(1)	A_2	(1)
A_1	(1)	A_1	(1)
	6	Γ) ₃

图 4.47 D_6 群到 D_3 群的能级分裂示意图

4.14.3 D₆群到 C₆群

表 4.107 D_6 群中 C_6 群元素的特征标表

	E	$2C_6$	$2C_3$	C_2
A_1	1	1	1	1
A_2	1	1	1	1
B_1	1	-1	1	-1
B_2	1	-1	1	-1
E_1	2	1	-1	-2
E_2	2	-1	-1	2

表 $4.108~C_6$ 群的特征标表

	E	$2C_6$	$2C_3$	C_2
A_1	1	1	1	1
B	1	-1	1	-1
E_1^*	2	1	-1	-2
E_2^*	2	-1	-1	2

E_2	(2)	E_2 (2)
E_1	(2)	E_1 (2)
B_2	(1)	B (1)
B_1	(1)	B (1)
A_2	(1)	A_1 (1)
A_1	(1)	A_1 (1)
Г	6	C_6

图 4.48 $\mathrm{D_6}$ 群到 $\mathrm{C_6}$ 群的能级分裂示意图

$4.15~C_{6h}$ 群到 $C_{2h},~S_{6},~C_{3h},~C_{6}$ 群

表 4.109 C_{6h} 群的特征标表

	E	$2C_6$	$2C_3$	C_2	i	$2S_6$	$2S_3$	σ_h
A_g	1	1	1	1	1	1	1	1
B_q	1	-1	1	-1	1	1	-1	-1

E_{1g}	2	1	-1	-2 2 1 -1 -2 2	2	-1	1	-2
E_{2g}	2	-1	-1	2	2	-1	-1	2
A_u	1	1	1	1	-1	-1	-1	-1
B_u	1	-1	1	-1	-1	-1	1	1
E_{1u}	2	1	-1	-2	-2	1	-1	2
E_{2u}	2	-1	-1	2	-2	1	1	-2

$4.15.1~C_{6h}$ 群到 C_{2h} 群

表 4.110 C_{6h} 群中 C_{2h} 群元素的特征标表

	E	C_2	i	σ_h
A_g	1	1	1	1
B_g	1	-1	1	-1
E_{1g}	2	-2	2	-2
E_{2g}	2	2	2	2
A_u	1	1	-1	-1
B_u	1	-1	-1	1
E_{1u}	2	-2	-2	2
E_{2u}	2	2	-2	-2

表 4.111 C_{2h} 群的特征标表

	E	C_2	i	σ_h
A_g	1	1	1	1
B_g	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

77	(9)	A_u (1)
E_{2u}	(2)	A_u (1)
		B_u (1)
E_{1u}	(2)	B_u (1)
B_u	(1)	B_u (1)
A_u	(1)	A_u (1)
	(2)	A_g (1)
E_{2g}	(2)	A_g (1)
_	(2)	B_g (1)
E_{1g}	(2)	B_g (1)
B_g	(1)	B_g (1)
$\overline{A_g}$	(1)	A_g (1)
\mathbf{C}_{i}	5h	$ m C_{2h}$

图 4.49 C_{6h} 群到 C_{2h} 群的能级分裂示意图

4.15.2 C_{6h}群到 S₆群

表 4.112 C_{6h} 群中 S_6 群元素的特征标表

	E	$2C_3$	i	$2S_6$
A_g	1	1	1	1
B_g	1	1	1	1
E_{1g}	2	-1	2	-1
E_{2g}	2	-1	2	-1
A_u	1	1	-1	-1
B_u	1	1	-1	-1
E_{1u}	2	-1	-2	1
E_{2u}	2	-1	-2	1

表 4.113 S_6 群的特征标表

	E	$2C_3$	i	$2S_6$
A_g	1	1	1	1
E_g	2	-1	2	-1
A_u	1	1	-1	-1
E_u	2	-1	-2	1

E_{2u}	(2)	E_u (2)
E_{1u}	(2)	E_u (2)
B_u	(1)	A_u (1)
A_u	(1)	A_u (1)
E_{2g}	(2)	E_g (2)
E_{1g}	(2)	E_g (2)
B_g	(1)	A_g (1)
A_g	(1)	A_g (1)
	6h	S_{6}

图 4.50 C_{6h} 群到 S_6 群的能级分裂示意图

$4.15.3~\mathrm{C}_{6h}$ 群到 C_{3h} 群

表 4.114 C_{6h} 群中 C_{3h} 群元素的特征标表

	E	$2C_3$	σ_h	$2S_3$
A_g	1	1	1	1
B_g	1	1	-1	-1
E_{1g}	2	-1	-2	1
E_{2g}	2	-1	2	-1
A_u	1	1	-1	-1
B_u	1	1	1	1
E_{1u}	2	-1	2	-1
E_{2u}	2	-1	-2	1

表 $4.115 C_{3h}$ 群的特征标表

	E	$2C_3$	σ_h	$2S_3$
A'	1	1	1	1
$A^{\prime\prime}$	1	1	-1	-1
E'	2	-1	2	-1
$E^{\prime\prime}$	2	-1	-2	1

E_{2u}	(2)	$E^{''}$ (2)
E_{1u}	(2)	$E^{'}$ (2)
B_u	(1)	$A^{'}$ (1)
A_u	(1)	$A^{''}$ (1)
$\overline{E_{2g}}$	(2)	$E^{'}$ (2)
$\overline{E_{1g}}$	(2)	$E^{''}$ (2)
B_g	(1)	$A^{''}$ (1)
A_g	(1)	$A^{'}$ (1)
C	6h	$ m C_{3h}$

图 4.51 C_{6h} 群到 C_{3h} 群的能级分裂示意图

4.15.4 C_{6h}群到 C₆群

表 4.116 C_{6h} 群中 C_6 群元素的特征标表

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		E	$2C_6$	$2C_3$	C_2
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	A_g	1	1	1	1
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	B_g	1	-1	1	-1
$egin{array}{c cccccc} A_u & 1 & 1 & 1 & 1 & 1 \\ B_u & 1 & -1 & 1 & -1 \\ E_{1u} & 2 & 1 & -1 & -2 \\ \end{array}$	E_{1g}	2	1	-1	-2
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	E_{2g}	2	-1	-1	2
E_{1u} 2 1 -1 -2	A_u	1	1	1	1
	B_u	1	-1	1	-1
E_{2u} 2 -1 -1 2	E_{1u}	2	1	-1	-2
	E_{2u}	2	-1	-1	2

表 4.117 C_6 群的特征标表

	E	$2C_6$	$2C_3$	C_2
A_1	1	1	1	1
B	1	-1	1	-1
E_1^*	2	1	-1	-2
E_2^*	2	-1	-1	2

E_{2u}	(2)	E_2 (2)
E_{1u}	(2)	E_1 (2)
B_u	(1)	B (1)
A_u	(1)	A_1 (1)
E_{2g}	(2)	E_2 (2)
E_{1g}	(2)	E_1 (2)
$\overline{B_g}$	(1)	B (1)
$\overline{A_g}$	(1)	A_1 (1)
C	6h	C_6

图 4.52 C_{6h} 群到 C_6 群的能级分裂示意图

$4.16~D_{3d}$ 群到 $C_{2h},~C_{3v},~D_3,~S_6$ 群

表 4.118 D_{3d}群的特征标表

	E	$2C_3$	$3C_2'$	i	$2S_6$	$3\sigma_d$
A_{1g}	1	1	1	1	1	1
A_{2g}	1	1	-1	1	1	-1
E_g	2	-1	0	2	-1	0
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	1	-1	-1	-1	1
E_u	2	-1	0	-2	1	0

$4.16.1~\mathrm{D}_{3d}$ 群到 C_{2h} 群

表 4.119 \mathbf{D}_{3d} 群中 $\mathbf{C}_{2\mathbf{h}}$ 群元素的特征标表

	E	C_2	i	σ_h
A_{1g}	1	1	1	1
A_{2g}	1	-1	1	-1
E_g	2	0	2	0
A_{1u}	1	1	-1	-1
A_{2u}	1	-1	-1	1
E_u	2	0	-2	0

表 4.120 C_{2h} 群的特征标表

	E	C_2	i	σ_h
A_g	1	1	1	1
B_g	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

77	(2)	B_u (1)
$-\frac{E_u}{}$	(2)	A_u (1)
A_{2u}	(1)	B_u (1)
A_{1u}	(1)	A_u (1)
T.	(2)	B_g (1)
E_g	(2)	A_g (1)
A_{2g}	(1)	B_g (1)
A_{1g}	(1)	A_g (1)
D	3d	$\mathrm{C}_{2\mathrm{h}}$

图 4.53 D_{3d} 群到 C_{2h} 群的能级分裂示意图

$4.16.2~D_{3d}$ 群到 C_{3v} 群

表 4.121 \mathbf{D}_{3d} 群中 \mathbf{C}_{3v} 群元素的特征标表

	E	$2C_3$	$3\sigma_v$
A_{1g}	1	1	1
$A_{1g} \\ A_{2g} \\ E_g$	1	1	-1
E_g	2	-1	0
A_{1u}	1	1	-1
A_{2u}	1	1	1
E_u	2	-1	0

表 4.122 C_{3v} 群的特征标表

	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

E_u	(2)	E (2)
A_{2u}	(1)	A_1 (1)
A_{1u}	(1)	A_2 (1)
E_g	(2)	E (2)
$\overline{A_{2g}}$	(1)	A_2 (1)
$\overline{A_{1g}}$	(1)	A_1 (1)
D	3d	$\mathrm{C}_{3\mathrm{v}}$

图 4.54 \mathcal{D}_{3d} 群到 \mathcal{C}_{3v} 群的能级分裂示意图

$4.16.3~\mathrm{D}_{3d}$ 群到 D_{3} 群

表 4.123 \mathbf{D}_{3d} 群中 \mathbf{D}_3 群元素的特征标表

	E	$2C_3$	$3C_2'$
A_{1g}	1	1	1
A_{2g}	1	1	-1
E_g	2	-1	0
A_{1u}	1	1	1
A_{2u}	1	1	-1
E_u	2	-1	0

表 $4.124~D_3$ 群的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

E_u	(2)	E (2)
A_{2u}	(1)	A_2 (1)
A_{1u}	(1)	A_1 (1)
E_g	(2)	E (2)
$\overline{A_{2g}}$	(1)	A_2 (1)
$\overline{A_{1g}}$	(1)	A_1 (1)
D	3d	D_3

图 4.55 \mathbf{D}_{3d} 群到 \mathbf{D}_3 群的能级分裂示意图

4.16.4 D_{3d}群到 S₆群

表 4.125 D_{3d} 群中 S_6 群元素的特征标表

	E	$2C_3$	i	$2S_6$
A_{1g}	1	1	1	1
A_{2g}	1	1	1	1
E_g	2	-1	2	-1
A_{1u}	1	1	-1	-1
A_{2u}	1	1	-1	-1
E_u	2	-1	-2	1

表 $4.126~S_6$ 群的特征标表

	E	$2C_3$	i	$2S_6$
A_g	1	1	1	1
E_g	2	-1	2	-1
A_u	1	1	-1	-1
E_u	2	-1	-2	1

E_u	(2)	E_u (2)
A_{2u}	(1)	A_u (1)
A_{1u}	(1)	A_u (1)
E_g	(2)	E_g (2)
$\overline{A_{2g}}$	(1)	A_g (1)
A_{1g}	(1)	A_g (1)
D	3d	$ m S_6$

图 4.56 \mathbf{D}_{3d} 群到 \mathbf{S}_6 群的能级分裂示意图

4.17 S₄ 群到 C₂ 群

表 4.127 S₄ 群的特征标表

	E	$2S_4$	C_2
A	1	1	1
B	1	-1	1
E	2	0	-2

4.17.1 S4群到 C2群

表 4.128 S_4 群中 C_2 群元素的特征标表

	E	C_2
\overline{A}	1	1
B	1	1
E	2	-2

表 4.129 C_2 群的特征标表

	E	C_2
A	1	1
B	1	-1

E	(5	.)		B	(1)
	(2	-===	 	B	(1)
В	(1	.)		A	(1)
A	(1	.)		A	(1)
	S_4			(\mathbb{C}_2

图 4.57 S_4 群到 C_2 群的能级分裂示意图

4.18 C₄群到 C₂群

表 4.130 C4群的特征标表

	E	$2C_4$	C_2
A_1	1	1	1
B	1	-1	1
E^*	2	0	-2

$4.18.1~\mathrm{C_4}$ 群到 $\mathrm{C_2}$ 群

表 4.131 C_4 群中 C_2 群元素的特征标表

	E	C_2
A_1	1	1
B	1	1
E^*	2	-2

表 4.132 C_2 群的特征标表

	E	C_2
A	1	1
B	1	-1

Γ	(2)	_	B	(1)
E	(2)		B	(1)
В	(1)		A	(1)
A_1	(1)		A	(1)
(\mathbb{S}_4		(\mathbb{C}_2

图 4.58 C_4 群到 C_2 群的能级分裂示意图

$4.19~\mathrm{C}_{3v}$ 群到 $\mathrm{C}_{1h},~\mathrm{C}_3$ 群

表 4.133 C_{3v}群的特征标表

	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

$4.19.1~C_{3v}$ 群到 C_{1h} 群

表 4.134 C_{3v} 群中 C_{1h} 群元素的特征标表

	E	σ_h
A_1	1	1
A_2	1	-1
E	2	0

表 4.135 C_{1h} 群的特征标表

	E	σ_h
A'	1	1
$A^{\prime\prime}$	1	-1

	(2)	$B^{''}$ (1)
	(2)	$A^{'}$ (1)
A_2	(1)	$B^{''}$ (1)
A_1	(1)	$A^{'}$ (1)
	$\frac{1}{2}3v$	C_{1h}

图 4.59 C_{3v} 群到 C_{1h} 群的能级分裂示意图

$4.19.2~\mathrm{C}_{3v}$ 群到 C_3 群

表 4.136 C_{3v} 群中 C_3 群元素的特征标表

	E	$2C_3$
A_1	1	1
A_2	1	1
E	2	-1

表 $4.137~C_3$ 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

$\underline{\hspace{1cm}}E$	(2)	E	(2)
A_2	(1)	A	(1)
A_1	(1)	A	(1)
	C_{3v}	(\mathbb{C}_3

图 4.60 C_{3v} 群到 C_3 群的能级分裂示意图

4.20 D₃群到 C₂, C₃群

表 4.138 D₃ 群的特征标表

	E	$2C_3$	$3C_2'$
A_1	1	1	1

A_2	1	1	-1
E	2	-1	0

4.20.1 D₃群到 C₂群

表 4.139 D_3 群中 C_2 群元素的特征标表

	E	C_2
A_1	1	1
A_2	1	-1
E	2	0

表 4.140 C_2 群的特征标表

	E	C_2
A	1	1
B	1	-1

<i>T</i> .	(2)		B	(1)
$\frac{E}{}$	(2)	=======================================	A	(1)
A_2	(1)		В	(1)
A_1	(1)		A	(1)
	D_3		(\mathbb{C}_2

图 4.61 D_3 群到 C_2 群的能级分裂示意图

4.20.2 D₃群到 C₃群

表 4.141 D_3 群中 C_3 群元素的特征标表

	E	$2C_3$
A_1	1	1
A_2	1	1
E	2	-1

表 $4.142~\mathrm{C_3}$ 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

$_E$	(2)	E	(2)
A_2	(1)	A	(1)
$\overline{A_1}$	(1)	A	(1)
	D_3	(\mathbb{D}_3

图 4.62 D_3 群到 C_3 群的能级分裂示意图

$4.21~\mathrm{S}_6$ 群到 $\mathrm{C}_i,~\mathrm{C}_3$ 群

表 4.143 S₆ 群的特征标表

	E	$2C_3$	i	$2S_6$
A_g	1	1	1	1
E_g	2	-1	2	-1
A_u	1	1	-1	-1
E_u	2	-1	-2	1

$4.21.1 S_6$ 群到 C_i 群

表 4.144 \mathbf{S}_{6} 群中 \mathbf{C}_{i} 群元素的特征标表

	E	i
A_g	1	1
$A_g \\ E_g$	2	2
A_u	1	-1
E_u	2	-2

表 4.145 C_i 群的特征标表

	E	i
A_g	1	1
A_u	1	-1

T.	(9)	A_u (1)
$\underline{E_u}$	(2)	A_u (1)
A_u	(1)	A_u (1)
-	(2)	A_g (1)
E_g	(2)	A_g (1)
A_g	(1)	A_g (1)
S	3	C_i

图 4.63 \mathbf{S}_{6} 群到 \mathbf{C}_{i} 群的能级分裂示意图

4.21.2 S₆群到 C₃群

表 4.146 S_6 群中 C_3 群元素的特征标表

	E	$2C_3$
A_g	1	1
$A_g \\ E_g$	2	-1
A_u	1	1
E_u	2	-1

表 $4.147~C_3$ 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

E_u	(2)	E	(2)
A_u	(1)	A	(1)
E_g	(2)	E	(2)
A_g	(1)	A	(1)
S	3	(7,9

图 4.64 S_6 群到 C_3 群的能级分裂示意图

4.22 C_{3h}群到 C_{1h}, C₃群

表 4.148 C3h 群的特征标表

	E	$2C_3$	σ_h	$2S_3$
A'	1	1	1	1
$A^{\prime\prime}$	1	1	-1	-1
E'	2	-1	2	-1
$E^{\prime\prime}$	2	-1	-2	1

$4.22.1 \ C_{3h}$ 群到 C_{1h} 群

表 4.149 C_{3h} 群中 C_{1h} 群元素的特征标表

	E	σ_h
A'	1	1
$A^{\prime\prime}$	1	-1
E'	2	2
$E^{\prime\prime}$	2	-2

表 4.150 C_{1h} 群的特征标表

	E	σ_h
A'	1	1
$A^{\prime\prime}$	1	-1

$E^{''}$	(0)	$A^{''}$ (1)
	(2)	$A^{''}$ (1)
\mathbf{r}'	(0)	$A^{'}$ (1)
$\underline{\hspace{1cm}}^{E'}$	(2)	$A^{'}$ (1)
$A^{''}$	(1)	$A^{''}$ (1)
\overline{A}'	(1)	$A^{'}$ (1)
	3h	C _{1h}

图 4.65 C_{3h} 群到 C_{1h} 群的能级分裂示意图

4.22.2 C_{3h} 群到 C_3 群

表 4.151 C_{3h} 群中 C_3 群元素的特征标表

	E	$2C_3$
A'	1	1
$A^{\prime\prime}$	1	1
E'	2	-1
$E^{\prime\prime}$	2	-1

表 4.152 C_3 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

$E^{''}$	(2)	E	(2)
$\underline{}E^{'}$	(2)	E	(2)
$A^{''}$	(1)	A	(1)
\overline{A}'	(1)	A	(1)
	C_{3h}	(\mathcal{I}_3

图 4.66 C_{3h} 群到 C_3 群的能级分裂示意图

4.23 C6 群到 C2, C3 群

表 4.153 C₆ 群的特征标表

	E	$2C_6$	$2C_3$	C_2
A	1	1	1	1
B	1	-1	1	-1
E_1^*	2	1	-1	-2
E_2^*	2	-1	-1	2

4.23.1 C₆群到 C₂群

表 4.154 C_6 群中 C_2 群元素的特征标表

	E	C_2
A_1	1	1
B	1	-1
E_1^*	2	-2
E_2^*	2	2

表 4.155 C_2 群的特征标表

	E	C_2
\overline{A}	1	1
B	1	-1

T.	(0)	A	(1)
$\underline{\hspace{1cm}}^{E_2}$	(2)	 A	(1)
T.	(2)	B	(1)
$\frac{E_1}{}$	(2)	 В	(1)
B	(1)	В	(1)
\overline{A}	(1)	A	(1)
C	6	 (\mathbb{C}_2

图 4.67 C_6 群到 C_2 群的能级分裂示意图

4.23.2 C₆群到 C₃群

表 4.156 C_6 群中 C_3 群元素的特征标表

	E	$2C_3$
A	1	1
B	1	1
E_1^*	2	-1
E_2^*	2	-1

表 4.157 C_3 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

E_2	(2)	E	(2)
$_E_1$	(2)	E	(2)
B	(1)	A	(1)
\overline{A}	(1)	A	(1)
	C_6	(

图 4.68 C_6 群到 C_3 群的能级分裂示意图

4.24 C₃ 群到 C₁ 群

表 $4.158 C_3$ 群的特征标表

	E	$2C_3$
A	1	1
E^*	2	-1

拥有 C_1 群对称性的哈密顿量的能级不简并,于是从 C_3 群到 C_1 群的能级完全分裂。

T.	(0)	A	(1)
$\underline{}$	(2)	A	(1)
A	(1)	\overline{A}	(1)
	C_3	C	1

图 4.69 C_3 群到 C_1 群的能级分裂示意图

$4.25\ C_{1h},\ C_{2h},\ C_{2},\ C_{i},\ C_{1},\ D_{2},\ D_{2h}$ 群

从这些群的特征标表可以看出,拥有这些对称性的哈密顿量的能级不简并,在此 不再赘述其能级分裂情况。

5 应用部分

在该部分,我将应用上述的群论方法于一些具体的量子力学问题中。例如原子处于晶体场中的能级分裂,对晶体拉伸发生的能级分裂,晶体能带的分裂。

5.1 原子处于晶体场中的能级分裂

5.1.1 氯化钠晶体

把晶体场看作微扰,原子在自由空间时,不考虑反演对称,同时忽略自旋轨道耦合,其哈密顿量 H_0 具有所有的旋转对称性,于是 H_0 属于 SO(3) 群。这时将原子放于氯化钠晶体场中,电子就会收到氯化钠晶体场 V 的影响,如图 5.1,不考虑中心反演,V 具有 O 群的对称性,所以 $H=H_0+V$ 就具有 O 的对称性。此时的问题就变为了,对于 l 态的电子来说,SO(3) 群的不可约表示 D^j 关于 O 群的分导表示。

图 5.1 氯化钠晶体示意图

按照前面的计算方法,3.1.1 节的过程得到图 5.2。如图所示, $\ell=0$ 的能级由于没有简并,不发生分裂。 $\ell=1$ 的能级也不发生分裂,同时其能级此时对应与 A_1 不可约表示。 $\ell=2$ 的能级分裂为两个能级,一个三重简并,一个二重简并,表示为 $T_2\oplus E$ 。 $\ell=3$ 的能级分裂为三个能级,两个三重简并和一个非简并能级,表示为 $T_2\oplus T_1\oplus A_2$ 。

图 5.2 SO₃到 O 群的能级分裂示意图

5.1.2 硒晶体

如前面所说,原子在自由空间时,其哈密顿量 H_0 具有 SO(3) 群对称性,当原子处于硒晶体场中时,由于硒晶体场具有 D_3 群对称性,总的哈密顿量就具有了 D_3 群对称性。

图 5.3 SO(3) 群到 D₃ 群的能级分裂示意图

按照 SO(3) 群到 D₃ 群 3.3.2 节得到图 5.3。如图所示, $\ell=0$ 的能级由于没有简并,不发生分裂。 $\ell=1$ 的能级分裂为一个二重简并能级和一个非简并能级,表示为 $E\oplus A_2$ 。 $\ell=2$ 的能级分裂为两个二重简并能级和一个非简并能级,表示为 $2E\oplus A_1$ 。 $\ell=3$ 的能级分裂为两个二重简并能级和三个非简并能级,表示为 $2E\oplus 2A_2\oplus A_1$.

5.2 晶体拉伸发生的能级分裂

将原子放于一个强大的晶体场中,对该晶体拉伸压缩,如图 5.4,也会使原子轨道发生劈裂。以 5.1.1 节氯化钠晶体为例,如果以晶体三重旋转轴拉伸,那么晶体场的对称性就会变成 D_3 群,此时的问题就是计算 O 群的不可约表示关于 D_3 群的分导表示.

图 5.4 拉伸氯化钠晶体示意图

T.	(9)	E (2)
T_2	(3)	A_1 (1)
TT.	(2)	E (2)
T_1	(3)	A_2 (1)
E	(2)	E (2)
A_2	(1)	A_2 (1)
A_1	(1)	A_1 (1)
О		D_3

图 5.5 O 群到 D₃ 群的能级分裂示意图

按照 4.6.1 节的计算,得到图 5.5。此时处于氯化钠晶体场的原子再一次发生分裂, A_1 , A_2 为表示的能级为非简并能级,不发生分裂。E 为表示的能级也不发生分裂。 T_1 为表示的能级分裂为一个二重简并能级和一个非简并能级,表示为 $E \oplus A_2$ 。 T_2 为表示的能级分裂为一个二重简并能级和一个非简并能级,表示为 $E \oplus A_1$.

5.3 晶体能带的分裂

硅的布拉菲格子是面心立方,而其费米面附近的能带如图 5.6 所示,图中有一些高对称点以及它们连线上的点的标记,同时参考硅晶体的布里渊区,见图 5.7。

图 5.6 晶体硅的能带结构示意图[7]

图 5.7 硅晶体的布里渊区[8]

可以看出, Γ 点的点群对称性是 O_h 对称性,K 点的点群对称性是 C_{2v} ,X 点的点群对称性是 D_{4h} ,L 点的点群对称性是 D_{6h} ,U 点的点群对称性是 C_{2v} 。 Γ 点与 X 点连线上的点 Δ 的点群对称性是 C_{4v} , Γ 点与 L 点连线上的点 Λ 的点群对称性是 C_{6v} , Γ 点与 K 点连线上的点 Σ 的点群对称性是 C_{2v} , Σ 点与 Σ 点点 Σ 的点群对称性是 Σ 0.

从 Γ 点到 Δ 点,对称性从 O_h 变成了 C_{4v} ,计算此时的能级分裂。之前的文章中没有直接讨论 O_h 到 C_{4v} 的能级分裂,但是通过图 4.1,可以通过 O_h 到 D_{4h} ,再通过 D_{4h} 到 C_{4v} 。从上文计算得到的图 5.8 和图 5.9。

TT.	(9)	E_u (2)
T_{2u}	(3)	B_{2u} (1)
T	(2)	E_u (2)
T_{1u}	(3)	A_{2u} (1)
E.	(2)	B_{1u} (1)
$\underline{\hspace{1cm}}^{E_u}$	(2)	A_{1u} (1)
A_{2u}	(1)	B_{1u} (1)
A_{1u}	(1)	A_{1u} (1)
T	(9)	E_g (2)
T_{2g}	(3)	B_{2g} (1)
T	(2)	E_g (2)
T_{1g}	(3)	A_{2g} (1)
E	(9)	B_{1g} (1)
E_g	(2)	A_{1g} (1)
A_{2g}	(1)	B_{1g} (1)
A_{1g}	(1)	A_{1g} (1)
O_1	1	$\mathrm{D}_{4\mathrm{h}}$

图 $5.8~O_h$ 到 D_{4h} 群的能级分裂示意图

E_u	(2)	E (2)
B_{2u}	(1)	B_1 (1)
B_{1u}	(1)	B_2 (1)
A_{2u}	(1)	A_1 (1)
A_{1u}	(1)	A_2 (1)
E_g	(2)	E (2)
B_{2g}	(1)	B_2 (1)
B_{1g}	(1)	B_1 (1)
A_{2g}	(1)	A_2 (1)
A_{1g}	(1)	A_1 (1)
D	4h	$\mathrm{C}_{4\mathrm{v}}$

图 5.9 D_{4h} 群到 C_{4v} 群的能级分裂示意图

知道 O_h 群的三重简并能级分裂为一个非简并能级和一个二重简并能级,二重简并分裂能级为两个非简并能级。从图 5.6 可以看出,有与此相同的分裂。

到达 X 点,对称性变成了 D_{4h} ,从图 5.9 可知,对称性从 D_{4h} 变为 C_{4v} 不会发生能级分裂,但是能带图中得知,费米面以下第二个能带在 X 点是一个二重简并,但在 Δ 点,能级是分裂的,所以这时的简并是偶然简并,并不是由于对称性引起的。

接着从 X 点到 K,U 点,此时的对称性从 D_{4h} 变为了 C_{2v} 。 C_{2v} 群只有一维表示,能级没有简并,所以所有的简并消除,发生分裂。

6 结论与展望

本文首先介绍群论的基本概念,以及群的线性表示理论。并用这些理论阐述了如何应用于量子力学中,着重阐述了群论在计算量子力学中微扰引起的能级分裂中的应用。最后,本文详细计算了一些常见的群及其子群的分导表示,以及在微扰下的能级分裂规律。通过这些计算,可以得出一些结论,不是所有的系统在加入微扰,并且对称性降低后,会发生能级分裂。例如,如果加入微扰后系统的哈密顿算符群构成的群是原系统哈密顿算符群的不变子群,那么微扰将不会产生能级分裂。

通过此方法得到了每个能级如何分裂,但是并没有得到这些能级的能量高低无法得到,以及这些能级对应的基函数无法知道。在解决量子力学问题时,通过进一步研究,群论的一个重要作用是确定本征值的简并度以及哪种基函数选择最直接地产生这些本征值,也就是运用微扰法时,可以直接找到零级波函数。这些信息无需对哈密顿算符进行对角化即可获得,使得计算大大简化。通过微扰法就可以计算能级的高低和能级对应的近似波函数。

展望:

- 1. 文章仅讨论了 32 个点群,在晶体场中,自旋轨道耦合也会带来对称性的变化,这时需要用"双群"描述。这时需要计算单群向双群的分解,以及不同的双群之间是如何分解的。
- 2. 结合群论,通过第一性原理计算能级大小,可以具体知道能级的能量高低以及能级对应的波函数。
- 3. 在固体能带结构中,通过群论分析在布里渊区上的点、线、面等的能带如何连接、分裂和能带承载的不可约表示,以及它们遵循的相容性关系。

参考文献

- [1]李群苗. K5, 5-5K2 覆盖变换群为 S4 的正则覆盖的分类[J]. Pure Mathematics, 2023, 13: 297
- [2] Claude Cohen-Tannoudjietal Writed. Quantum Mechanics. Volume II[M]. John Wiley & Sons, 1977.
- [3]马中骐. 物理学中的群论[M]. 科学出版社, 1998.
- [4]Dresselhaus M S, Dresselhaus G, Jorio A. Group theory: application to the physics of condensed matter [M]. Springer Science & Business Media, 2007.
- [5]gernot-katzers-spice-pages. Character Tables for Point Groups used in Chemistry, 德国: http://gernot-katzers-spice-pages.com/character_tables/
- [6]徐婉棠. 群论及其在固体物理中的应用[M]. 高等教育出版社, 2016.
- [7]维基百科. 能带理论, 中国: https://zh.wikipedia.org/zh-cn/%E8%83%BD%E5%B8%A6%E7%90%8 6%E8%AE%BA
- [8]李新征. 群论及其在凝聚态物理中的应用[M]. 北京大学出版社, 2019.
- [9]Zee A. Group theory in a nutshell for physicists[M]. Princeton University Press, 2016.
- [10]陶瑞宝. 物理学中的群论上册[M]. 上海科学技术出版社, 1986.

附录

```
SO(3)到 O 群, 计算以及示意图生成 Python 代码
#0 群的特征标表和 SO3 群中 D 群元素的特征标表
O CharacterTable = np.array(
    [[1,1,1,1,1],
    [1,1,1,-1,-1],
    [2,-1,2,0,0],
    [3,0,-1,1,-1],
    [3,0,-1,-1,1]]
S03_0_CharacterTable = np.array(
    [[1,1,1,1,1],
    [3,0,-1,1,-1],
    [5,-1,1,-1,1],
    [7,1,-1,-1,-1]
)
repretation0=['\ell=0','\ell=1','\ell=2','\ell=3']
repretation1=['A 1','A 2','E','T 1','T 2']
group_name=['S0_3','0']
n=[1,8,3,6,6]#每个类的元素数量
O_CharacterTableO = np.transpose(np.array([O_CharacterTable[:,0]]))
for i in range(len(O_CharacterTable[0,:])-1):
    for j in range(n[i+1]):
       O_CharacterTableO=np.hstack((O_CharacterTableO,np.array([O_Char
acterTable[:,i+1]]).T))
SO3 O CharacterTableO = np.transpose(np.array([SO3 O CharacterTable[:,
0]]))
for i in range(len(SO3_0_CharacterTable[0,:])-1):
    for j in range(n[i+1]):
       SO3 O CharacterTableO=np.hstack((SO3 O CharacterTableO,np.array
([SO3_O_CharacterTable[:,i+1]]).T))
#计算约化系数 a
a=np.multiply(np.dot(SO3_0_CharacterTable0,0_CharacterTable0.T),1/len(S
03_0_CharacterTable0[0])).astype(int)
print("S03 群在 0 群的分导表示的约化系数矩阵: \n",a)
#画能级分裂图
import matplotlib.pyplot as plt
```

```
import matplotlib.font_manager as fm
from matplotlib import rcParams
config = {
    "font.family": 'serif',
    "font.size": 20,
    "mathtext.fontset": 'cm',
    "font.serif": ['SimSun'],
}
rcParams.update(config)
plt.figure(figsize=(5,10))
fd=1
ncount=0
for i in range(len(a[:,0])):
    cs=ncount
    ce=ncount+np.count_nonzero(a[i])-1
    c=(cs+ce)/2
    points0 = [(0, fd*c), (1.5, fd*c)]
    x0 = [p[0] \text{ for } p \text{ in points0}]
    y0 = [p[1] \text{ for } p \text{ in points0}]
    plt.plot(x0, y0, color="black",linewidth=0.75) #SO3 能级
    plt.text(0.15,fd*c+0.25,'$'+repretation0[i]+'$',fontsize='10.5')
    plt.text(1.1,fd*c+0.25,'$('+str(SO3_0_CharacterTable[i,0])+')$',fon
tsize='10.5')
    for j in range(len(a[0,:])):
         if a[i,j]!=0:
             for k in range(a[i,j]):
                 points = [(3, fd*ncount), (4, fd*ncount)]
                  x = [p[0] \text{ for } p \text{ in points}]
                  y = [p[1] \text{ for } p \text{ in points}]
                 plt.plot(x, y, color="black",linewidth=0.75) #0 能级
                 points = [(1.5, fd*c), (3, fd*ncount)]
                 x = [p[0] \text{ for } p \text{ in points}]
                 y = [p[1] \text{ for } p \text{ in points}]
                 plt.plot(x, y, color="black",linestyle='dashed',linewidt
h=0.5)
                 plt.text(3.2,fd*ncount+0.2,'$'+repretation1[j]+'$',font
size='10.5')
                 plt.text(3.6,fd*ncount+0.2,'$('+str(0_CharacterTable[j,
0])+')$',fontsize='10.5')
```

```
ncount=ncount+1
plt.text(0.6,-0.8,'$\mathrm{'+group_name[0]+'}$',fontsize='10.5')
plt.text(3.4,-0.8,'$\mathrm{'+group_name[1]+'}$',fontsize='10.5')
plt.axis("off")
ax=plt.gca()
ax.set aspect(0.34)
plt.savefig(group_name[0]+'_to_'+group_name[1]+'.svg',bbox_inches='tigh
t',pad_inches=0.2)
plt.show()
O 到 D<sub>3</sub> 群, 计算以及示意图生成 Python 代码
import numpy as np
#母群的特征标表和子群中 D 群元素的特征标表
group_character_table0 = np.array([
    [1,1,1],
    [1,1,-1],
    [2,-1,0],
    [3,0,-1],
    [3,0,1]
    ])
group_character_table1 = np.array([
    [1,1,1],
    [1,1,-1],
    [2,-1,0]
    ])
repretation0=["A_1","A_2","E","T_1","T_2"]
repretation1=["A_1","A_2","E"]
group_name=['0','D_3']
n=[1,2,3]#每个类的元素数量
#计算约化系数 a
group_character_table10 = np.repeat(group_character_table1,n,1)
group_character_table00 = np.repeat(group_character_table0,n,1)
g=np.zeros(len(group_character_table10))
for i in range(len(group_character_table10)):
    g[i]=np.sum(np.multiply(group_character_table10,group_character_tab
le10)[i,:])
g=np.array([g])
g=np.repeat(g,len(group_character_table0,),0)
```

```
a=np.divide(np.dot(group_character_table00,group_character_table10.T),
g).astype(int)
print(group_name[0]+"群在"+group_name[1]+"群的分导表示的约化系数矩阵: \n
",a)
#画能级分裂图
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
from matplotlib import rcParams
config = {
    "font.family": 'serif',
    "font.size": 20,
    "mathtext.fontset": 'cm',
    "font.serif": ['SimSun'],
}
rcParams.update(config)
plt.figure(figsize=(5,10))
fd=1
ncount=0
for i in range(len(a[:,0])):
    cs=ncount
    ce=ncount+np.sum(a[i])-1
    c=(cs+ce)/2
    points0 = [(0, fd*c), (1.5, fd*c)]
    x0 = [p[0] \text{ for p in points0}]
    y0 = [p[1] \text{ for } p \text{ in points0}]
    plt.plot(x0, y0, color="black",linewidth=0.75) #母群对应的能级
    plt.text(0.15,fd*c+0.25,'$'+repretation0[i]+'$',fontsize='10.5')
    plt.text(1.1,fd*c+0.25,'$('+str(group_character_table0[i,0])+')$',f
ontsize='10.5')
    for j in range(len(a[0,:])):
        if a[i,j]!=0:
            for k in range(a[i,j]):
                points = [(3, fd*ncount), (4, fd*ncount)]
                x = [p[0] \text{ for } p \text{ in points}]
                y = [p[1] \text{ for } p \text{ in points}]
                plt.plot(x, y, color="black",linewidth=0.75) #子群对应的
能级
                points = [(1.5, fd*c), (3, fd*ncount)]
```

```
x = [p[0] \text{ for p in points}]
                y = [p[1] \text{ for } p \text{ in points}]
                plt.plot(x, y, color="black",linestyle='dashed',linewidt
h=0.5)
                plt.text(3.2,fd*ncount+0.25,'$'+repretation1[j]+'$',fon
tsize='10.5')
                plt.text(3.6,fd*ncount+0.25,'$('+str(group_character_ta
ble1[j,0])+')$',fontsize='10.5')
                ncount=ncount+1
plt.text(0.6,-0.8,'$\mathrm{'+group_name[0]+'}$',fontsize='10.5')
plt.text(3.4,-0.8,'$\mathrm{'+group_name[1]+'}$',fontsize='10.5')
plt.axis("off")
ax=plt.gca()
ax.set_aspect(0.34)
plt.savefig(group_name[0]+'_to_'+group_name[1]+'.svg',bbox_inches='tigh
t',pad_inches=0.2)
plt.show()
```

致谢

几年的学习中,有幸得到很多的帮助,让我体会到了物理学的深刻与快乐。

在我即将毕业的时刻,我怀着无比感激的心情,写下这份诚挚的致谢。这四年的本科生涯,是我人生中难忘的一段时光,而您们的关心、指导和支持,让我能够顺利完成学业,迈向新的人生阶段。

本设计从选题到完成得到程才老师的悉心指导和帮助,您不仅在学术上给予我耐心的指导,还在生活中关心备至。您的严谨治学态度、宽厚胸襟以及对我的悉心培养,让我受益匪浅。感谢您对我学业和人生的引领,我会铭记于心。

其次,我还要感谢四川师范大学。感谢学校给了我一个接受教育的平台,同时这 片净土见证了我四年的成长,塑造了我对知识的渴望和追求。在这里,我结识了优秀 的同学,共同学习、进步,留下了美好的回忆。在这学习的几年里,我成长了很多, 我深刻地知道学校给予我的不仅仅是知识的增长,更多的是综合素养的提高。我真心 地感谢我的母校,是您给了我一个升华自己机会,在这学习的几年时间内,我收到了 来自各方的鼓励以及支持,使得我这条学习之路走得分外温馨,学习的这几年是我人 生中难以忘怀的几年,感谢母校的馈赠。

还要感谢我的同学,他们与我一起奋斗,共同面对学习中的挑战和困难。他们的帮助和支持让我更加专注的学习。

感谢生命中遇到的每一个人,他们的帮助、支持和鼓励都让我更加成长和进步。 我会珍惜这些人和事,继续努力前行,为自己和周围的人创造更多的价值。

最后要感谢我的家人,他们是我的支柱。