

Sistemas Operativos

Docente: Ing. Washington Loza H. Mgs.

Departamento de Ciencias de la Computación

Segundo Parcial

Contenido

- 2. Administración de Recursos de los Sistemas Operativos
 - 2.1. Gestión de Procesos
 - 2.1.1. Modelos de Procesos
 - 2.1.2. Concurrencia e Interbloqueo de procesos
 - 2.2. Planificación de Procesos
 - 2.2.1. Algoritmos de Planificación de procesos
 - 2.2.2. Comunicación entre procesos
 - 2.3. Gestión de Memoria
 - 2.3.1. Organización de la memoria, Memoria Virtual
 - 2.3.1. Algoritmo de paginación y reemplazo
 - 2.4. Gestión de dispositivos de entrada y salida
 - 2.4.1. Organización de sistemas E/S
 - 2.4.2. Interfaz de aplicaciones
 - 2.5. Evaluación de la Unidad
 - 2.5.1. Examen de la Unidad
 - 2.5.2. Proyecto de la Unidad

Gestión de Dispositivos de E/S

La gestión de dispositivos de entrada y salida (E/S) es una de las responsabilidades clave del sistema operativo para permitir la interacción entre el hardware y los procesos del sistema.

Jesús Carretero enfatiza que la gestión eficiente de E/S es crucial debido a las **diferencias de velocidad** entre los **dispositivos** de hardware (discos, teclados, impresoras) y el **procesador**.

Tanenbaum complementa que el sistema operativo debe proporcionar un nivel de abstracción para que las aplicaciones no necesiten preocuparse por las complejidades del hardware.

2.1 Componentes Clave

Controladores de Dispositivo:

- Software que gestiona la comunicación entre el sistema operativo y un dispositivo específico.
- Ejemplo: Un controlador para una impresora convierte comandos del sistema operativo en señales entendibles para la impresora.

Colas de Solicitudes:

- Los dispositivos de E/S utilizan colas para gestionar múltiples solicitudes de procesos.
- Ejemplo: Un disco duro almacena solicitudes de lectura y escritura en una cola y las procesa por orden o según una política específica (como SCAN o C-SCAN).

Spooling:

- El spooling (Simultaneous Peripheral Operations On-Line) permite que un dispositivo lento como una impresora almacene trabajos en un área temporal antes de procesarlos.
- Ejemplo: En un entorno de oficina, las solicitudes de impresión se almacenan en una cola mientras la impresora imprime trabajos en curso.

2.2. Políticas de Organización

Acceso Secuencial:

- Los datos se procesan en el orden en que están almacenados.
- Ejemplo: Lectura de archivos de una cinta magnética.

Acceso Aleatorio:

- Los datos se acceden directamente en una posición específica.
- Ejemplo: Un disco duro que busca un sector específico para leer/escribir datos.

Programación de E/S:

- Determina el orden en el que las solicitudes de E/S se procesan.
- Ejemplo: Uso de algoritmos como **FCFS** (First Come, First Served) o **SCAN** para manejar solicitudes de disco.

2.2. Políticas de Organización

Ejemplo Práctico:

Un sistema de cajeros automáticos (ATM) requiere gestionar múltiples dispositivos de E/S:

- Entrada: Lectura de la tarjeta, teclado para ingresar el PIN.
- Salida: Impresión de recibos, visualización en pantalla. El sistema organiza las solicitudes de E/S en colas para evitar conflictos y utiliza controladores específicos para cada dispositivo.

Capa de Aplicación: Representa las aplicaciones del usuario, como programas de texto o herramientas gráficas, que generan solicitudes de entrada/salida.

Capa del Sistema Operativo: Gestiona las solicitudes de E/S provenientes de la capa superior. Incluye colas para organizar las solicitudes y coordinar el acceso a los dispositivos.

Controladores de Dispositivo: Interfazan entre el sistema operativo y los dispositivos físicos como teclados, impresoras y discos.

Hardware: Dispositivos reales que ejecutan las operaciones de entrada/salida.

Interfaz de Aplicaciones

La interfaz con aplicaciones permite que las aplicaciones se comuniquen con los dispositivos de hardware a través de llamadas al sistema.

Según **Jesús Carretero**, esta interfaz abstrae los detalles del hardware para facilitar el desarrollo de aplicaciones.

Tanenbaum añade que las llamadas al sistema proporcionan una API (Interfaz de Programación de Aplicaciones) estándar para interactuar con dispositivos.

3.2. Llamadas al Sistema más comunes read():

- Lee datos desde un dispositivo de entrada.
- Ejemplo: Leer caracteres desde un teclado.

write():

- Escribe datos en un dispositivo de salida.
- Ejemplo: Enviar datos a una impresora.

open() y close():

- Abren y cierran la conexión con un dispositivo.
- Ejemplo: Abrir un archivo para lectura/escritura.

ioctl():

- Proporciona control avanzado sobre un dispositivo.
- Ejemplo: Cambiar la configuración de una tarjeta de red.

Interfaz de Aplicaciones

3.3. Capas de Abstracción

Capas Superiores:

- Interactúan con el software del usuario.
- Ejemplo: Un programa de edición de texto utiliza la función write() para guardar datos en un archivo.

Capas Intermedias:

- Traducen las llamadas al sistema en comandos de hardware.
- Ejemplo: Un sistema de archivos convierte una solicitud de escritura en bloques en el disco.

Capas Inferiores:

Comunican directamente con el hardware mediante controladores.

Ejemplo Práctico:

Una aplicación de reproducción de música utiliza la interfaz de E/S para comunicarse con los altavoces:

open(): Abre el dispositivo de audio.

write(): Envía los datos de la canción al hardware de audio.

close(): Libera el dispositivo al terminar.

Interfaz de Aplicaciones

Aplicaciones: Generan solicitudes como lectura, escritura o apertura de archivos.

Llamadas al Sistema: Como read(), write(), y open(), actúan como puentes entre las aplicaciones y el hardware.

Capas de Abstracción: El sistema operativo oculta las complejidades del hardware y proporciona una API estándar para simplificar la interacción.

Dispositivos: Incluyen teclados, discos, impresoras, entre otros, que reciben las solicitudes y ejecutan las operaciones necesarias.

Gestión de Dispositivos de E/S

Deber: Instalación y configuración de dispositivos administrados sus interfaces E/S Plataforma Windows y Linux

