

A JOURNAL OF SPACE AND TIME IN ECOLOGY

NetLogoR: a package to build and run spatially explicit agent-based models in R

Sarah/Bauduin , Eliot J. B. McIntire, Alex M. Chubaty

First published: 10 August 2019 | https://doi.org/10.1111/ecog.04516

= Traduction de NetLogo sur R

Les modèles individu-centrée

Individual-based models (IBM)

Modèles de simulation Modèles « bottom-up »

> Règles de simulation (décisions) à l'échelle de l'individu Résultats du modèle à l'échelle de la population Individus = entités uniques et autonomes Interactions possibles entre individus Individus avec comportement adaptable

Modèles individu-centré spatialement explicites (SE-IBM)
Influences/interactions des individus avec l'environnement

Railsback and Grimm, 2012

Exemple d'IBM : Envolée d'oiseaux

Reproduire des observations/patrons de populations à partir de règles individuelles simples

Vol de chaque oiseau = 3 règles simples

Séparation : s'éloigner des individus trop proches

Alignement : se diriger dans le sens général de la marche

Cohésion : se rapprocher des individus trop éloignés

Reynolds, 1986

Avantages de NetLogo

- Structure efficace
- Apprentissage facile et rapide

Avantages de R

- Gestion de données (inputs), création de l'IBM, simulations, analyses des résultats (outputs)
 - = tout sur R!
- Objets de classes différentes :

4

Avantages de R

- Simulations en parallèle
- Nombreux packages
- Statistiques complexes
- Nombreuses possibilités de visuels

Avantages de R

 Réutilisation de fonctions et paramètres

- initParam
- R run
- submodels

NetLogoR function	Description	NetLogo equivalents
bk	Move the individuals backward of their heading's directions	back jump
canMove	Indicate if an individual can move a given distance without leaving the world's extent	can-move?
cellFromPxcorPycor	Report the cell numbers as defined for Raster* object for the given patch coordinates	NA
clearPatches	Reset all patches' value	clear-patches
createOTurtles	Create individuals and place them at the center of the world with their headings evenly distributed	<pre>create-ordered-turtles create-ordered<breeds></breeds></pre>
createTurtles	Create individuals with a set of defined variables	<pre>create-turtles create-<breeds></breeds></pre>
createWorld	Create a world of patches	NA
die	Kill selected individuals	die
diffuse	Diffuse values among patches where each patch give an equal share of a portion of its value to its neighboring patches	diffuse diffuse4
downhill	Move the individuals to their neighboring patch with the lowest value	downhill
	0 01	downhill4
dx	Report the amount by which the individual's x-coordinate would change if it would move forward the given distance with its current heading	dx
dy	Report the amount by which the individual's y-coordinate would change if it would move forward the given distance with its current heading	dy
face	Set the individuals' heading towards the given agents	face facexy
fd	Move the individuals forward with their headings as directions	forward jump

Modèle d'un vol de papillons (SE-IBM)

Modèle d'un vol de papillons (SE-IBM)


```
for (time in 1:100) {
  if (runif(n = 1, min = 0, max = 1) < 0.5) {
    # Vol en altitude
   b3 <- uphill (world = hill, turtles = b3, nNeighbors = 8)
  } else {
    # Vol aléatoire
    allNeighbors <- neighbors (world = hill, agents = b3,
                                 nNeighbors = 8)
    oneNeighbor <- oneOf(allNeighbors)</pre>
   b3 <- moveTo(turtles = b3, agents = oneNeighbor)
```


Le choix dépends de vos objectifs!

NetLogo

• Rapide et facile à prendre en main

NetLogoR

- Séquence de la gestion des données, la modélisation puis l'analyse des résultats sur R
- Puissance de R

install_github("PredictiveEcology/NetLogoR")
(En mise à jour sur CRAN)

Merci de votre attention! sarah.bauduin@ofb.gouv.fr