Mathematica commands summary (cheat sheet) Abbreviations approx Approximation **Hugo Touchette** Argument arg char Character National Institute for Theoretical Physics (NITheP), Stellenbosch, South Africa Counter cnt Last updated: May 18, 2016 cond Condition See last page for *Mathematica* 8 updates dist Distribution elem Element eqn Equation Equalities, assignments [DC] eval Evaluation expr Expression Assign value = Function Delayed eval Also used for repeated eval := Image img Equality patt Pattern == Random rand Clear value Same as Clear str String Boolean test Same as SameQ val Value $f[x_{-}] := f[x] = ...$ Remember computed vals var Variable Rules and replacements [DC, Tut] Transformation rule Can be assigned to names patt->expr patt:->expr Delayed rule Same as :> Replacement Same as ReplaceAll expr/.rule 1+2 x/.x->3Output: 7 expr/.{rule1,rule2} Multiple replacements expr//.rule Replace until no changes Same as ReplaceRepeated

Applications, functions and maps [DC, Tut] f@expr Prefix form f[expr] expr//f Postfix form f[expr] x^f Infix form f[x,y]f@@expr Replaces the head of expr by f Same as Apply[f,expr] Plus@@{1,2} Output: 1 + 2 = 3Similar to: f[x]/.f->qOutput: q[x] f/@list Map f on list Same as Map[f,list] f/@expr Map f on parts of expr Map[f,a+b] Output: f[a]+f[b] Function[x,body] Function with arg x Same as pure functions Function $[x,x^2][n]$ Output: n^2 Output: $a^2 + b^2$ $Map[Function[x,x^2],a+b]$ Function[{vars},...] Many args Pure (anonymous) function body& $(\#^2\&)[5]$ Output: 25 Output: $a^2 + b^2$ $Map[\#^2\&, a+b]$ $(1+g[#])&/@{1,2}$ Output: $\{1+q[1], 1+q[2]\}$ #n nth arg in pure function ## Seq of all args

Formatting [DC]		Shortcuts [DC]	
FullForm MatrixForm Column TableForm TreeForm	Display full head form Display in matrix form Display in column form Display in tabular form Display in tree structure	Ctrl-@ Ctrl-/ Ctrl-^ Ctrl Ctrl-Enter Ctrl-,	√. Fraction Superscript Subscript New row New column

```
Patterns [DC, Tut]
                        Blank: any expr
                        Double blank: any seq of expr
 --
                        Triple blank: zero or more args
                        Any expr named x
 \mathbf{X}_{-}
                        Expr named x with head h
 x_h
                        Exact matching x
 х
                        x+2/.x->2
                                                                  Output: 4
                        Named expr matching patt
 x:patt
                        f[a^b]/.f[x:_^]->p[x]
                                                                  Output: p[a^b]
                        Optional arg with default val v
 x_:v
                        Typed arg with optional val v
 x_h:v
 f[n_l
                        f with any named arg n
 f[n_{-},n_{-}]
                        f with identical args
 x^n_-
                        x to any named power n
 x_^ n_
                        Any expr to any power
 a +b
                        Sum of two named exprs
                        List of two named exprs
 \{a1_{-}, a2_{-}\}
 patt/;cond
                        Pattern with cond
                                                                  Read: patt such that cond
                        (x_{-}/;NumberQ[x]&&Im[x]==0)
                                                                  Any real number
 rule/;cond
                        Rule with cond
 patt?test
                        Pattern matching boolean test
                        f[x_?NumberQ] := x+2
 (patt1|patt2|...)
                        patt1 or patt2 or ...
                                                                  Output: \{1,q,q,y^3\}
                         \{1,x,x^2,y^3\}/.(x|x^n_-)->q
                        Replacement in expr with rule
 expr/.rule
                        x+2/.x->2
                                                                  Output: 4
                        f[a]+f[b]/.f[x_-]->x^2
                                                                  Output: a^2+b^2
                                                                  Output: {{1}, {2}}
                        Position[f[a],g[b],f[b],f[x_]]
                        \{1,x,x^2,x^3\}/.x^n_->r[n]
                                                                  Output: \{1,x,r[2],r[3]\}
 Except[c]
                        Anything except c
 Except[c,patt]
                        Pattern patt except c
Ty
```

	<pre>Cases[{1,0,2},Except[Cases[{1,x,0},Except[</pre>	. ==	,	
Type specification		Files [DC]		
Integer Real Complex Rational List Symbol String Head	<pre>N Esc_dsN-Esc R Esc_dsR-Esc C Esc_dsC-Esc Z Esc_dsZ-Esc List type or head Any symbol String type of head Type Head MatchQ[x^2, Power]</pre>	<pre>Import["file"] Export["file",expr] ImageResolution->pts ReadList["file"] <<file'< pre=""></file'<></pre>	Import file or url Export expr in file Image resolution in pts Returns list from file Load content of file	

Lists [DC, Tut]		
$\{i,imax\}$	Simple counter from 1 to imax	
$\{i,imin,imax,di\}$	Counter with step di	
Table[expr,cnt]	Generate list	Multiple counters possible
list[[i]]	<i>i</i> th elem (list or expr)	Same as Part[list,i] or list[[i]]
list[[i,j]]	(i,j) elem	Same as list[[i]][[j]]
list[[i;;j]]	Range i to j	Same as Part[list,i;;j]
<pre>Drop[list,n]</pre>	First n elems dropped	Last if -n
<pre>Drop[list,{n}]</pre>	nth elem dropped	
Extract[expr,list]	Extract in expr at pos list	
Array[f,n]	$\{f(1), f(2), \dots, \hat{f}(n)\}$	
	Array[1+#^2&,2]	Output: $\{2,5\}$
Range[n]	$\{1,2,3,\ldots,n\}$	Same as Array[#&,n]
Range[nmin,nmax,dn]	Full syntax	- · · ·
Position[expr,patt]	List matching positions	
Count[list,patt]	Number of matches	
Min[list], Max[list]	Min, max of list	Same as: Min[i,j,]
Append[expr,elem]	expr with elem added at end	2,3,
AppendTo[expr,elem]	Append and update expr	Same as expr=Append[expr,elem]
Prepend[expr,elem]	Inset at beginning	See also: PrependTo
<pre>Insert[list,elem,n]</pre>	Insert elem in list at pos n	
Delete[expr,elem,n]	Delete elem in list at pos n	
ReplacePart[expr,i->new]	Replaces expr[[i]] by new	
ReplaceList[expr,rule]	Replace according to rule	
Flatten[list]	Flattens nested lists	
Flatten[list,n]	Flattens to level n	
Take[list,n]	Take first n elem	
14.10[1100,11]	Take[#,1]&/@{{1,2},{3,1}}	Output: {{1},{3}}
Cases[list,patt]	Elems of list matching patt	
, p	Cases[{2,x^2},x^n_]	Output: x^2
<pre>Cases[list,patt,n]</pre>	First <i>n</i> matching patt	
Cases[list,rule]	Results for which rule applies	
Select[list,boolean]	Boolean selection in list	
Position[expr,patt]	Pos where patt appears	
Join[11,12,]	Join lists	
Union[11,12,]	Set union	Same as ∪
Riffle[{e1,e2,},x]	{e1,x,e2,x,}	
Intersection[11,12,]	Set intersection	Same as ∩
Subsets[list]	All subsets of list	
DeleteDuplicates	Delete duplicates from list	
Thread[f[{a,b,c}]]	{f[a],f[b],f[c]}	
Sort[list]	Sorts list	
Reverse[list]	list in reverse order	
PadLeft[list,n,x]	Add \mathbf{x} n times left of list	Pad with 0 if no x
PadRight[list,n,x]	Add x n times right of list	
Partition[list,n]	Partition list in n sublists	
Split[list]	Splits list in identical elems	
Tuples[list,n]	n-tuples of list	
Permutations[list]	Permutations	
Outer[f,11,12]	Outer (cartesian) product	
	(emission) product	

Boolean functions [DC]	Programming [DC, Tut1, Tut2]			
SameQ[x,y] OrderedQ[list] IntegerQ[x] MemberQ[list,patt] MatchQ[expr,patt] ValueQ[expr] AtomQ[expr] FreeQ[expr,patt] EvenQ[n] OddQ[n] PrimeQ[n] NumberQ[expr] NumericQ[expr] PolynomialQ[expr,var] VectorQ[expr] MatrixQ[expr] DigitQ[str] LetterQ[str]	Same? (x===y) list ordered? x integer? Elems match patt? expr matches patt? expr has value? expr is atomic? expr free of patt? n even integer? n odd integer? n prime integer? expr a number? expr a number? expr a polynomial? expr 1D array (list)? All digits in str? All letters in str?	Do[exp While[If[con Return Module Block[With[{ Trace[r,cnt] test,body] d,t,f] [expr] [{x,},expr] {x,},expr] x=x0,},expr]	Do loop While loop If statement Output expr and stop Proc with local vars (vars localization) Eval with global vars Local constants Trace eval of expr Compiled expr
Strings [DC, Tut]				

"chars"	String	
ToString[expr]	Transforms expr to string	
<pre>StringJoin[str1,str2,]</pre>	Join strings	Same as <>
StringLength[str]	Number of chars in str	
<pre>StringTake[str,n]</pre>	n first chars of str	Last if -n
<pre>StringDrop[str,n]</pre>	First n chars dropped	Last if -n
<pre>StringInsert[str1,str2,n]</pre>	Insert str2 at pos n	
StringPosition[str,substr]	Start and end of substr in str	
<pre>StringCount[str,substr]</pre>	Number of occurrences of substr	
<pre>StringReplace[str,rule]</pre>	Replace with rule	
<pre>StringMatchQ[str,patt]</pre>	patt appears in str?	
<pre>StringFreeQ[str,patt]</pre>	str free of patt?	
<pre>StringSplit[str]</pre>	Split where whitespace	
<pre>StringSplit[str,patt]</pre>	Split according to patt	
Sort	Alphabetical (canonical) sort	
<pre>DateString["elem"]</pre>	String version of date	
Characters[str]	List of chars	
ToUpperCase[str]	Capitalize	
ToLowerCase[str]	Lower case	
CharacterRange["char1","char2"]	List from char1 to char2	
patt	patt followed by symbols	
Whitespace	White space	

Dynamic objects [DC, Tut2]

<pre>Dynamic[expr]</pre>	Dynamically updated expr
$DynamicModule[{vars},]$	Module with dynamical vars
<pre>Manipulate[expr,{u,}]</pre>	Interactive widget

Useful functions

Sum[f,{i,imin,imax,di}] Sum
Product[f,{i,imin,imax,di}] Product

ComplexExpand[expr] Expand expression (takes care of complex conjugates)

Factor[p] Factorize p

Length[expr] Number of elems in expr
Numerator[expr] Numerator of expr
Denominator[expr] Denominator of expr
Options[cmd] Display options for cmd
SetOptions[cmd] Set options for cmd
Evaluate[expr] Explicit eval

Piecewise[{{val,test},...}] Piecewise definition

InverseFunction[f][x]
Inverse fct

 $\begin{array}{ll} {\rm Nest}[{\rm f},{\rm x},{\rm n}] & n\text{-fold fct composition} \\ {\rm NestList}[{\rm f},{\rm x},{\rm n}] & {\rm List \ of \ compositions} \\ {\rm FixedPoint}[{\rm f},{\rm x}] & {\rm Iterate \ until \ fixed \ point} \\ \end{array}$

FixedPointList[f,x] Iteration list
NestWhile[f,x,test] While iteration
NestWhileList While iteration list
LinearModelFit Linear model
NonlinearModelFit Nonlinear model

GraphPlot[m] Graph (network) for adjacency m

GraphData["name"] Graph with name

FinancialData["tag", "date"] Financial data from date

CountryData["tag","prop"] Country data
WeatherData["tag","prop"] Weather data

Probability and statistics [DC]

RandomReal [$\{a,b\}$] Uniform rand real in [a,b] From [0,1] if no arg

RandomReal[dist] Rand real from dist

RandomInteger [$\{i,j\}$] Uniform integer in [i,j]

RandomInteger[dist] Rand integer from dist
RandomSample[list,n] n samples from list

RandomSeed[] Reset seed

PDF[dist,x] Density fct of dist

CDF[dist,x] Cumulant density fct of dist

 $\begin{tabular}{ll} Histogram [list,w] & Histogram (bin width w) & Option: "Probability" \\ & "ProbabilityDensity" \\ \end{tabular}$

BinCounts[list,w] Counting dist of list (bin width w)

Mean[list] Also Mean[dist]

Variance[list]

StandardDeviation[list]
ChiSquareDistribution[ν]
ExponentialDistribution[λ]
NormalDistribution[μ , σ]
BinomialDIstribution[n,p]
BernoulliDistribution[p]

Linear algebra [DC]		Parallel computation [DC, Tut]	
a.b	Dot or matrix product	Parallelize[expr]	Direct parallelization
Cross[a,b]	Cross product	ParallelEvaluate[expr]	Eval on kernels
Norm[a]	Euclidean norm	DistributeDefinitions	Put def on kernels
<pre>IdentityMatrix[n]</pre>	$n \times n$ identity matrix	ParallelNeeds	Package on kernels
Diagonal[m]	Diagonal of m	ParallelMap	Parallel Map
Diagonal[m,k]	kth elem in diagonal of m	ParallelSum	Parallel Sum
Dimensions[m]	Dimensions of m	ParallelProduct	Parallel Product
Inverse[m]	Inverse square matrix m	ParallelTable	Parallel Table
Det[m]	Determinant square matrix	ParallelDo	Parallel Do
Tr[m]	Trace matrix or tensor m	ParallelSubmit	Submit to kernel
Transpose[1]	Transpose first two levels		Collect with WaitAll
Eigenvalues[m]	Eigenvals square matrix	WaitAll	Results from kernels
Eigenvectors	Eigenvects square matrix		

Numerical routines [DC, Tut]

	rumerical routines [DC, rut]		
	N[expr]	Numerical eval of expr	
	SetPrecision[expr,n]	Precision to n digits	<pre>\$Pre=SetPrecision[#,n]&</pre>
			Set session precision to n digits
	NSolve[eqn,var]	Approx polynomial eqn	
	FindRoot[eqn, $\{x,x0\}$]	Approx eqn in var x with seed x0	
	<pre>FindRoot[eqn,{x,x0,a,b}]</pre>	Approx eqn in $[a, b]$	
	<pre>NDSolve[eqn,y,{x,a,b}]</pre>	Solve differential eqn	Initial cond specified in eqn
	$NIntegrate[f, \{x,a,b\}]$	Numerical integration. Methods:	
		"SymbolicProcessing"->0	Fully numerical eval
		"GlobalAdaptive"	Default
		"LocalAdaptive"	
		"Oscillatory"	1D integrals; automatic detection
		"PrincipalValue"	Cauchy principal value
		"MonteCarlo"	Random sampling
		"AdaptiveMonteCarlo"	
FindMinimum[f,x,x0] NMinimize[f,x]		Find local min with seed x0	
		Find global min. Methods:	
		"DifferentialEvolution"	Option: "SearchPoints"
		"NelderMead"	
		"RandomSearch"	Option: "SearchPoints"
		"SimulatedAnnealing"	Option: "SearchPoints"
	NumericalCalculus package:		
		nerical limit	
	[[, , ,]	nerical D at x0	
$NSeries[f, \{x, x0, n\}]$ Numerical series			

Other

Uniform 0 or 1 if no arg

\$Pre Pre-processing var\$Post Post-processing var

Some new/updated in Mathematica 8

Free form input

WolframAlpha["query"]

RandomVariate[dist] Probability[pred,x≈dist]

NProbability

Expectation[expr,x≈dist]

NExpectation

EstimatedDistribution[data,dist] EmpiricalDistribution[data] HistorgramDistributon Distributed[x,dist]

Conditioned[expr,cond]

Cumulant[dist,r]

MomentGeneratingFunction[dist,t] StableDistribution[type, α , β , μ , σ] TransformedDistribution[trans,dist]

GraphPlot GraphStyle AdjacencyGraph IncidenceGraph GridGraph RandomGraph ButterflyGRaph HighlightGraph

BetweennessCentrality

PageRankCentrality

GraphQ

ConnectedGraphQ

SmoothHistogram

SmoothDensityHistogram

Type = then input

Query to WolframAlpha server

Merges RandomReal and RandomInteger Probability of predicate with distribution dist

Expected value with distribution dist

Fit dist to data Distribution for data Similar to Histogram

x≈dist. Same as Esc dist-Esc

expr conditioned on cond. Same as Esc-cond-Esc

 $r^{\rm th}$ cumulant of dist Moment function in var tStable (Lévy) distribution

Use image for plot rendering Text recognition from image

Speak content

Open camera utility Returns current image Returns image with edges

Graph AdjacencyMatrix VertexDegree ClosenessCentrality

SmoothHistogram3D DensityHistogram

Texture TextRecognize

Speak SpokenString

ImageCapture[] CurrentImage[] EdgeDetect[img] Notes

Copyright © 2014 Hugo Touchette Available at: http://www.physics.sun.ac.za/~htouchette Mathematica is a trademark of Wolfram Research