Introduction to Diffusion Models

Lecture 8

18-789

Recap: Normalizing Flows

- Training: Maximum likelihood
 - Encode data to latent (Gaussian/Normal distribution)
 - Compute loss (negative log-likelihood) and backpropagate

•
$$\log p_x(x;\theta) = \log p_z \left(f_{\theta}^{-1}(x) \right) - \sum_{i=1}^K \log \left| \det \frac{\partial f_i}{\partial z_{i-1}} \right|$$

Recap: Normalizing Flows

- Generation: iterative transformation
 - Decode data from latent (Gaussian/Normal distribution)

Continuous Normalizing Flows (CNFs)

- Normalizing Flows consist of K discrete transformations
 - $z_i = f_i(z_{i-1}), \ z_K = f_K \circ f_{K-1} \circ \cdots \circ f_2 \circ f_1(z_0)$
- Generalize to continuous case
 - ODE: $\frac{\partial z_t}{\partial t} = f(z_t, t), 0 < t < 1$
 - $z_{t+\nabla t} \approx f(z_t, t) \nabla t + z_t$, $z_1 = z_0 + \int_0^1 f(z_t, t) dt$

Continuous Normalizing Flows (CNFs)

- Normalizing Flows consist of K discrete transformations
 - $z_i = f_i(z_{i-1}), \ z_K = f_K \circ f_{K-1} \circ \cdots \circ f_2 \circ f_1(z_0)$
- Generalize to continuous case
 - ODE: $\frac{\partial z_t}{\partial t} = f(z_t, t), 0 < t < 1$
 - $z_{t+\nabla t} \approx f(z_t, t) \nabla t + z_t$, $z_1 = z_0 + \int_0^1 f(z_t, t) dt$
- Training objective
 - $\log p(z_1) = \log p(z_0) \int_0^1 \operatorname{Trace}\left(\frac{\partial f}{\partial z_t}\right) dt$
 - Assume z_0 is noise and z_1 is data

Continuous Normalizing Flows (CNFs)

- Network
 - A neural network $f(z_t, t)$ conditioned on data z_t and time t
 - Unrestricted architecture
- Training
 - $\log p(z_1) = \log p(z_0) \int_0^1 \operatorname{Trace}\left(\frac{\partial f}{\partial z_t}\right) dt$
 - Solve the forward **ODE** to compute log-likelihood
 - Backpropagate through the ODE
- Sampling
 - Solve the backward ODE
 - $z_1 = z_0 + \int_0^1 f(z_t, t) dt$

Pros and Cons

- (Discrete) Normalizing Flows
 - Different parameters at different steps
 - Restricted (invertible) architecture
- Continuous Normalizing Flows
 - Same parameters at different steps
 - Unrestricted architecture

Diffusion is a CNF at inference time! (but trained in a more efficient way)

Small f (e.g., single layer) -> not expressive

Large f (e.g., a large network) -> slow training

Diffusion Models

A group of students are sitting in the classroom. The lecturer writes "Deep Generative Models" on the blackboard.

Image Generation

Diffusion Models – Video Generation

Adobe Firefly Video

Diffusion Models – Text Generation

Text Generation

Perspectives on Diffusion Models

"Deep Unsupervised Learning using Nonequilibrium Thermodynamics" 2015 "Denoising Diffusion Probabilistic Models" 2020

"Deep Unsupervised Learning using Nonequilibrium Thermodynamics" 2015 "Denoising Diffusion Probabilistic Models" 2020

"Score-Based Generative
Modeling through Stochastic
Differential Equations"
2021

"Deep Unsupervised Learning using Nonequilibrium Thermodynamics" 2015 "Denoising Diffusion Probabilistic Models" 2020 "Score-Based Generative Modeling through Stochastic Differential Equations" 2021 "Flow Matching for Generative Modeling" 2023

Refresh: properties of Gaussian

Let $x \sim N(\mu_x, \sigma_x^2)$ and $y \sim N(\mu_y, \sigma_y^2)$ be two Gaussian random variables

Sum of two Gaussians is a Gaussian

$$x + y \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

KL Divergence between Gaussians

$$KL(p(x)|p(y)) = \frac{\sigma_x^2 + (\mu_x - \mu_y)^2}{2\sigma_y^2} + \log\frac{\sigma_y}{\sigma_x} - \frac{1}{2}$$
L2 distance between mean
$$= \frac{(\mu_x - \mu_y)^2}{2} - \frac{1}{2} \text{ (if } \sigma_x = \sigma_y)$$

- Product of two Gaussians PDFs is a Gaussian
 - Why? Gaussian $\Leftrightarrow \log p(x)$ has quadratic form!

Diffusion Model is Iterative Denoising

- Forward process (diffusion):
 - Iteratively inject Gaussian noise into clean data, until it's pure noise
 - Markovian: $q(x_{0:T}) = q(x_0) \prod_{t=1}^{T} q(x_t | x_{t-1})$

 $q(x_t|x_{t-1}) = N(\sqrt{1-\beta_t}x_{t-1},\sqrt{\beta_t}I)$ Reparameterization (like VAE): $x_t = \sqrt{1-\beta_t}x_{t-1} + \sqrt{\beta_t}\epsilon_{t-1},\epsilon_{t-1}{\sim}N(0,I)$

 β_t : Noise schedule How much noise to add at each step?

T is usually very large (e.g., 1000) $q(x_T) = N(0, I)$ regardless of input

Diffusion Model is Iterative Denoising

- Forward process (diffusion):
 - Iteratively inject Gaussian noise into clean data, until it's pure noise
 - Markovian: $q(x_{0:T}) = q(x_0) \prod_{t=1}^{T} q(x_t | x_{t-1})$
- Reverse process (denoising):
 - Train a model θ to iteratively remove noise, starting from pure noise

x_0 x_1

A neural network!

Diffusion Model is Iterative Denoising

- Forward process (diffusion):
 - Iteratively inject Gaussian noise into clean data, until it's pure noise
 - Markovian: $q(x_{0:T}) = q(x_0) \prod_{t=1}^{T} q(x_t | x_{t-1})$
- Reverse process (denoising):
 - Train a model θ to iteratively remove noise, starting from pure noise
 - Markovian: $p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$

 $p_{\theta}(x_{t-1}|x_t) = N(\mu_{\theta}(x_t), \sigma_t^2 I)$

How to train it?

Diffusion Model is a VAE

- ELBO in VAE: $\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] KL\left(q_{\phi}(z|x) \parallel p(z)\right)$ $= \mathbb{E}_{z \sim q_{\phi}(Z|X)}\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)}$
- Assume the latent consists of **all** noisy images: $z=(x_1,x_2,...,x_T)$

•
$$\log p_{\theta}(x_{0}) \geq \mathbb{E}_{z \sim q} \log \frac{p_{\theta}(x_{0}, x_{1}, x_{2}, \dots, x_{T})}{q(x_{1}, x_{2}, \dots, x_{T}|x_{0})}$$

$$= \mathbb{E}_{z \sim q} \log \frac{p_{\theta}(x_{0}|x_{1})p_{\theta}(x_{1}|x_{2})\dots p_{\theta}(x_{T-1}|x_{T})p_{\theta}(x_{T})}{q(x_{1}|x_{0})q(x_{2}|x_{1})\dots q(x_{T}|x_{T-1})} \text{ (Markovian)}$$

$$= \mathbb{E}_{z \sim q} \log p_{\theta}(x_{T}) + \log \prod_{t=2}^{T} \left(\frac{p_{\theta}(x_{t-1}|x_{t})}{q(x_{t}|x_{t-1})}\right) + \log \left(\frac{p_{\theta}(x_{0}|x_{1})}{q(x_{1}|x_{0})}\right)$$

Diffusion Model is a VAE

•
$$\log p_{\theta}(x_0) \ge \mathbb{E}_{z \sim q} \log p_{\theta}(x_T) + \log \prod_{t=2}^{T} \left(\frac{p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1})} \right) + \log \left(\frac{p_{\theta}(x_0|x_1)}{q(x_1|x_0)} \right)$$

Diffusion Model is a VAE

$$\begin{split} \tilde{x}_{t-1} &= \frac{1}{\sqrt{\alpha_t}} \bigg(x_t - \frac{\beta_t}{\sqrt{1 - \overline{\alpha}_t}} \, \epsilon \bigg) \text{ is the mean of } q(x_{t-1} | x_t, x_0) \\ \sigma_t &: \text{ standard deviation of } q(x_{t-1} | x_t, x_0) \end{split}$$

•
$$-\log p_{\theta}(x_0) \le \frac{KL(q(x_T|x_0)||p(x_T))}{L2 \text{ distance}} + \sum_{t>1} KL(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t)) - E_q[\log p_{\theta}(x_0|x_1)]$$

• $q(x_{t-1}|x_t,x_0)$ is a Gaussian distribution!

Product of two Gaussians PDFs is a Gaussian!

• $p_{\theta}(x_{t-1}|x_t) = N(\mu_{\theta}(x_t), \sigma_t^2 I)$ is also Gaussian!

KL divergence between Gaussians = L2 distance between mean!

• Loss: predict x_{t-1} from x_t

$$L = \frac{1}{2\sigma_t^2} \sum_{t=1}^{T} \|\mu_{\theta}(x_{t-1}|x_t) - \tilde{x}_{t-1}\|^2$$

T is very large (e.g., 1000)... Do we have to compute 1000 loss terms in one training iteration? **NO**

Training: One step at a time

• Add Gaussian noise many times = Add one (larger) Gaussian noise. Why?

Sum of two Gaussians random variables is still a Gaussian!

•
$$q(x_t|x_{t-1}) = N(\sqrt{1-\beta_t}x_{t-1}, \sqrt{\beta_t}I) \Longrightarrow q(x_t|x_0) = (\sqrt{\alpha_t}x_0, \sqrt{1-\alpha_t}I)$$

• $\alpha_t = \prod_{s=1}^t (1 - \beta_s)$: How much of the signal still remains?

$$\begin{cases}
\tilde{x}_{t-1} = \frac{1}{\sqrt{1-\beta_t}} (x_t - \frac{\beta_t}{\sqrt{1-\alpha_t}} \epsilon) \\
x_t = \sqrt{\alpha_t} x_0 + \sqrt{1-\alpha_t} \epsilon
\end{cases}$$

2 equations, 3 unknown variables (x_t is known)

- All below targets are equivalent:
 - The slightly less noisy image: \tilde{x}_{t-1}
 - Clean image: x_0
 - The added noise: ϵ Anything else?
 - Any linear combination of the above three (e.g., $x_0 \epsilon$)!
- In other words, the below loss functions are the same (with different w(t), w'(t), w''(t))

•
$$\sum_{t=1}^{T} w(t) \| \mu_{\theta}(x_{t-1}|x_t) - \tilde{x}_{t-1} \|^2$$

•
$$\sum_{t=1}^{T} w'(t) \|\epsilon_{\theta}(x_t) - \epsilon\|^2$$

•
$$\sum_{t=1}^{T} w''(t) \|\hat{x}_0(x_t; \theta) - x_0\|^2$$

- All below targets are **equivalent**:
 - The slightly less noisy image: \widetilde{x}_{t-1}
 - Clean image: x_0
 - The added noise: ϵ

- All below targets are **equivalent**:
 - The slightly less noisy image: \tilde{x}_{t-1}
 - Clean image: x_0
 - The added noise: ϵ

$$L = \mathbb{E}_{x_0, t, \epsilon} w(t) \|\hat{x}_0(x_t; \theta) - x_0\|^2$$

- All below targets are **equivalent**:
 - The slightly less noisy image: \tilde{x}_{t-1}
 - Clean image: x_0
 - The added noise: ϵ

Convert back to \tilde{x}_{t-1} prediction during sampling!

$$L = \mathbb{E}_{x_0, t, \epsilon} w'(t) \|\epsilon_{\theta}(x_t) - \epsilon\|^2$$

Sampling

repeat T times...

repeat

Training: Denoising objective

Training: Denoising objective

• Inference: Starting from pure noise, iteratively remove noise

- Training: Denoising objective
- Inference: Starting from pure noise, iteratively remove noise
- Connection to VAE
 - A Hierarchical VAE with a fixed encoder (so less expressive), BUT:
 - Much easier to optimize (just one level at each iteration)

- Training: Denoising objective
- Inference: Starting from pure noise, iteratively remove noise
- Connection to VAE
 - A Hierarchical VAE with a fixed encoder (so less expressive), BUT:
 - Much easier to optimize (just one level at each iteration)
- Three equivalent prediction targets
 - \tilde{x}_{t-1} , x_0 , ϵ

Diffusion Models

Is it the full story?

Diffusion Models (continue...)

5 Minute Quiz

• On Canvas

• Passcode: crocodile

