Implementação de um controlador PID para aplicação no modelo do pêndulo invertido em uma base móvel

Amita Muralikrishna, Marcelo Henrique Essado de Morais

Programa de Pós graduação em Computação Aplicada, CAP, INPE, 12201-970, São José dos Campos, SP E-mail: marceloessado@gmail.com, amitamkrishna@yahoo.com.br,

Ricardo Bravo, Lamartine Nogueira Frutuoso Guimarães

Instituto de Estudos Avançados – Divisão de Informática – IEAv, CTA 12228-840 – São José dos Campos, SP E-mail: rbravo@ieav.cta.br, guimarae@ieav.cta.br

Introdução

A teoria de controles automáticos está cada vez mais integrada a área da computação. Cada vez mais novos algoritmos e recursos computacionais estão sendo utilizados a fim de realizar os mais diversos tipos de controle. Os sistemas de controle automático são encontrados em abundância em setores da indústria, tais como controle qualidade e fabricação de produtos, linha de montagem automática, controle de ferramentas, tecnologia espacial e de armamento, sistemas de transporte, sistemas de potência, robôs e muitos outros. Dentro deste contexto, o presente trabalho procura desenvolver um sistema de controle de um Pêndulo Invertido utilizando um algoritmo largamente empregado na Indústria e comprovado matematicamente – o PID, devido simplicidade de implementação.

Esses controladores são geralmente projetados para um determinado ponto de operação (*set point*) e normalmente apresentam bom desempenho em condições operacionais semelhantes àquela do projeto. Porém, quando ocorrem mudanças maiores no ponto de operação do sistema, o controlador pode não mais apresentar um desempenho satisfatório diante da nova condição operacional.

Dessa forma, para manter um bom desempenho numa ampla faixa de operação é necessário que, diante de uma mudança no ponto de operação, o controlador possa ter seus parâmetros automaticamente ajustados para o novo estado do sistema adaptando-se às alterações que ocorrem no sistema.

O sistema pêndulo invertido é constituído por uma base móvel sobre a qual existe uma haste articulada, ver **Figura 1**. Enfatiza-se que a haste articulada é o pêndulo. Através do deslocamento da base pretende-se manter a haste na posição vertical. O comportamento oscilante da haste tenta reproduzir o problema de estabilização existente em situações típicas tais como o controle da trajetória de um projétil, ou do movimento de equilíbrio de um bastão sobre o dedo indicador.

O objetivo, então, é equilibrar a haste na posição vertical, utilizando um controlador PID, o qual aplica uma força horizontal sobre a base. Os ganhos do controlador são então ajustados a fim de obter-se o equilíbrio.

Neste trabalho é apresentado o resultado de sintonia deste controlador PID acoplado ao modelo de um pêndulo invertido.

Pêndulo Invertido

O Pêndulo Invertido é um processo mecânico absolutamente instável, ou seja, está sujeito a cair em qualquer direção a menos que uma força adequada seja aplicada ao carro de suporte da base pêndulo acelerando-o em uma determinada direção.

O Pêndulo foi construído de forma a ter apenas um grau de liberdade, considera-se aqui o problema bidimensional, no qual o pêndulo se move somente no plano da página. As variáveis e constantes do sistema são descritas na **Tabela 1**.

Figura 1: Sistema do Pêndulo Invertido em uma base móvel

Símbolo	Descrição	Valor
l	Metade do comprimento da haste do pêndulo e centro de massa	0,3m
m_p	Massa da haste	0,5kg
m_c	Massa do carrinho	0,5kg
b	Coeficiente de força viscosa	0,1 Ns/m
\boldsymbol{g}	Aceleração da gravidade	9.8 m/s^2
heta	Ângulo do pêndulo	radianos
ω	Velocidade angular do pêndulo	rad/s
I	Momento de inércia do pêndulo	0.06kg/m ²
$\boldsymbol{\mathcal{X}}$	Posição do carrinho	metros
v	Velocidade do carrinho	m/s
$k_{_{p}}$	Ganho Potencial	N/rd
k_{i}	Ganho integral	1/s
k_{\perp}	Ganho derivativo	s

Tabela 1: Descrição de variáveis e constantes

A modelagem dinâmica do sistema foi obtida com o uso da Mecânica Lagrangeana [1]. Aqui é apresentado apenas o resultado final da modelagem. A forma final do modelo do pêndulo invertido é apresentada abaixo. Estas equações foram programadas no MATLAB.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{\left(\left(m_p \times l\right)^2 \times sen\theta \times \cos\theta \times \omega\right)}{\det 0} & 0 & \frac{m_p \times l \times b \times \cos\theta}{\det 0} \\ 0 & 0 & 0 & 1 \\ 0 & \frac{\left(m_p \times l^2 + I\right) \times m_p \times l \times sen\theta \times \omega}{\det 0} & 0 & -\frac{b \times \left(m_p \times l^2 + I\right)}{\det 0} \end{pmatrix}$$

$$(1)$$

$$vet = \begin{pmatrix} 0 \\ -\frac{m_p \times l \times \cos \theta \times F}{\det} + \frac{(m_c + m_p) \times m_p \times g \times l \times sen\theta}{\det} \\ 0 \\ \frac{(m_p \times l^2 + I)}{\det} \times F - \frac{(m_p \times l)^2 \times g \times sen\theta \times \cos \theta}{\det} \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} \theta \\ \omega \\ x \\ v \end{pmatrix} = A \times \begin{pmatrix} \theta \\ \omega \\ x \\ v \end{pmatrix} + vet$$
(3)

Controlador PID

O controlador PID é bastante difundido na indústria de modo geral. O seu nome é uma abreviatura referente as primeiras letras das palavras proporcional, integral e diferencial, respectivamente. O significado destas palavras está assim relacionado: proporcional a um erro, proporcional à integral no tempo deste erro e proporcional à derivada no tempo deste erro.

A equação fundamental do controlador PID pode ser escrita da seguinte forma:

$$u(t) = k_p \times e(t) + k_p \times k_i \times \int_0^{t_f} e(t) dt + k_p \times k_d \times \frac{de(t)}{dt}$$
(4)

onde:

u(t): é o sinal de controle,

e(t): é o erro que vem do sistema,

 k_n : o ganho proporcional;

 k_d : o ganho derivativo e

 k_i : o ganho integral.

Pela simples inspeção da equação acima, percebe-se que a primeira parcela do lado direito da mesma está relacionada com o controle proporcional, a segunda com o integral e a terceira com o diferencial.

No caso do pêndulo invertido suponha-se que seja realizada uma medida do ângulo θ que o pêndulo faz com a vertical. E que o erro seja produzido com relação a um valor de demanda θ_D , fixo pelo usuário. Este erro é dado por:

$$e(t) = (\theta(t) - \theta_D). (5)$$

Considerando que para a integral, tem-se:

$$i(t) = \int_{0}^{t} e(t)dt, (6)$$

e tomando a sua derivada, tem-se:

$$\frac{di(t)}{dt} = e(t), \text{ ou } \frac{di(t)}{dt} = (\theta(t) - \theta_D)$$
 (7)

Para a parte derivativa tem-se:

$$\frac{de(t)}{dt} = \frac{d(\theta(t) - \theta_D)}{dt} = \theta^{8} = \omega. (8)$$

Assim, a equação fundamental pode ser escrita da forma:

$$u(t) = k_p \times e(t) + k_p \times k_i \times i(t) + k_p \times k_d \times \omega(t)$$
(9)

No caso particular do pêndulo a ser equilibrado $\theta_D = 0 r d$, a força restauradora é a força de controle do sistema. Desta forma tem-se: F(t) = u(t).

A inclusão da equação de controle na formulação do pêndulo implica em integrar a equação (7). Isto pode ser conseguindo modificando as equações (1) (2) e (3).

$$vet_{c} = \begin{pmatrix} 0 \\ -\frac{m_{p} \times l \times \cos \theta \times F}{\det} + \frac{(m_{c} + m_{p}) \times m_{p} \times g \times l \times sen\theta}{\det} \\ 0 \\ \frac{(m_{p} \times l^{2} + I)}{\det} \times F - \frac{(m_{p} \times l)^{2} \times g \times sen\theta \times \cos \theta}{\det} \\ -\theta_{D} \end{pmatrix}$$
(10)

$$\frac{d}{dt} \begin{pmatrix} \theta \\ \omega \\ x \\ v \\ i \end{pmatrix} = A_c \times \begin{pmatrix} \theta \\ \omega \\ x \\ v \\ i \end{pmatrix} + vet_c$$
(11)

$$A_{c} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & -\frac{\left(\left(m_{p} \times l\right)^{2} \times sen\theta \times \cos\theta \times \omega\right)}{\det} & 0 & \frac{m_{p} \times l \times b \times \cos\theta}{\det} & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \frac{\left(m_{p} \times l^{2} + I\right) \times m_{p} \times l \times sen\theta \times \omega}{\det} & 0 & -\frac{b \times \left(m_{p} \times l^{2} + I\right)}{\det} & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(12)$$

As equações acima são as respectivas: matriz do sistema, o vetor de entradas externas e a equação da dinâmica do pêndulo invertido com controle PID.

Resultados

Foi utilizada para a realização dos testes para o problema do pêndulo invertido, a versão 6.1 do Matlab.

Os ganhos definem a ação do controle e devem ser ajustados de modo que o ângulo do pêndulo estabilize em $\theta=0$ rd.

Os testes realizados neste trabalho consistiram na formação de diversas combinações de valores dos ganhos do modelo. Além destes, outros testes foram realizados variando-se o ângulo inicial θ .

A **Tabela 2** mostra os melhores conjuntos de valores de ganhos obtidos nos testes para 100, 500 e 1000 segundos, respectivamente. Os gráficos das **Figuras 2, 3 e 4** mostram a convergência do sistema, com a devida configuração de parâmetros, com os comportamentos da posição do carrinho, da velocidade do carrinho, do ângulo do pêndulo e da velocidade angular do pêndulo.

	tempo(s	k_p	k_d	k_i
Conjunto 1	500	100	5	500
Conjunto 2	1000	100	20	1000
Conjunto 3	1500	100	50	1000

Tabela 2: Melhores conjuntos de ganhos

Figura 2: Convergência do sistema utilizando o primeiro conjunto de ganhos.

Figura 3: Convergência do sistema utilizando o segundo conjunto de ganhos.

Figura 4: Convergência do sistema utilizando o terceiro conjunto de ganhos.

Conclusões

Nos testes realizados com o controle PID do ângulo, através de várias simulações, obteve-se o melhor conjunto de ganhos: kp=100, kd=20, ki=1000, para o qual o sistema se estabilizava, isto é, o ângulo do pêndulo assumia o valor igual a 0 rd (zero radiano) e o valor obtido para a velocidade do carrinho é muito próximo de zero. Considera-se o resultado satisfatório tendo em vista o objetivo principal.

Referências

- [1] Morais M. H. E., Muralikrishna A., Bravo R., Ferrari A. S., Braz I., *Pêndulo Invertido*, CAP 328 Projeto Final, INPE, 2004.
- [2] Etter D. M., *Engineering problem solving with MATLAB*, Editora Prentice-Hall, 1993.
- [3] Kuo B. C., *Sistemas de Controle Automático*, Editora Prentice-Hall do Brasil, 1982.
- [4] Leech J. W., *Mecânica Analítica*, traduzido por Carlos Campos de Oliveira, Universidade do Estado da Guanabara, Rio de Janeiro, 1971.
- [5] Ogata K., *Modern Control Engineering*, University of Minnesota, Prentice-Hall, Inc, 1970.
- [6] Tsoukalas L.H., Uhrig R. E., Fuzzy and Neural Approaches in Engineering, Editora Jhon Wiley and Sons, Inc, New York, 1997.