

Bauman Moscow State University Th. Computer Science Dept.

Pushdown Machines: Visible and Not

Antonina Nepeivoda a_nevod@mail.ru

Lecture Outline

Finite Automata is Enough?

Real-world machines are finite. Do finite models suffice?

Recall "elevator automaton" with a unique final state on the "ground floor", breaking if asked to reach an non-existing floor:

"up" and "dwn" instructions can be interpreted wrt a parentheses structure. That is, parsing string "((" we move to Lv2, and "(()())" returns us to Lv1.

Real-world nesting depth is limited (even in Lisp-like languages), and linear blow-up in state size seems satisfactory.

Until we decide to use several sorts of brackets...

Myhill-Nerode Congruence for Many-Sorted Brackets

Congruence Table

TWOITED TWOTE							
	ε)	\rangle))	$\rangle)$	\rangle	$\rangle\rangle$
ε	+	_	_	_	_	_	_
(-	+	-	-	-	- - -	-
<	-	-	+	-	-	-	_
((-	-	-	+	-	-	_
((_	_	_	_	+	_	_
((-	_	-	-	-	+	-
$\langle \langle$	-	_	_	_	_	_	+

- *N*-depth balanced sequences of 2 sorts of brackets $\Rightarrow 2^{N+1} 1$ states in a min NFA.
- *N*-depth balanced sequences of *K* sorts of brackets $\Rightarrow \frac{K^{N+1}-1}{K-1}$ states in a min <u>NFA</u>.

Finite automata cannot track nested structures efficiently.

Memoising Counters via Additional Memory

 Queue as a memory — can be considered as an additional tape with the write access, since it can be "re-rolled" to any wanted position with no memory loss.

• Stack as a memory — information given in Q_1 cannot be stored except in states when α is read. More restrictive, natural for tracking nested structures.

Natural Idea: Call-Return Counters

Input alphabet Σ is split into disjoint union $\Sigma_I \cup \Sigma_C \cup \Sigma_R$, where: Σ_I is internal alphabet (symbols not affecting the stack), Σ_C is call alphabet (symbols that push on the stack), Σ_R is return alphabet (symbols that pop from stack).

- We say a word is balanced if every its prefix contains not less symbols from Σ_C than from Σ_R , and the total counts of both coincide.
- Accepting balanced words ⇒ accepting valid parentheses languages.
- Accepting words with the symbols left on the stack ⇒ accepting valid prefixes of balanced words.
- Still allowing "return" symbols when the stack is empty ⇒ accepting valid suffixes of balanced words.

