Arun Pankajakshan

Mobile: +44 7783630093

Email: arun.pankajakshan.16@ucl.ac.uk

LinkedIn: Arun-Pankajakshan

BIOGRAPHY

Arun Pankajakshan is a final year Ph.D. candidate in Galvanin System Identification group at the Department of Chemical Engineering, University College London. His Ph.D. project focuses on developing a software framework for identification of kinetic models with special interests to automated model identification and identification of dynamic models.

Research interests

Process modelling • Design of Experiments • Model-based design • Numerical optimization • Statistical tools for modelling • Data analysis • Adaptive frameworks for model identification • Data-driven modelling

EDUCATION

University College London

London, UK 2017-present

Ph.D. Candidate

Department of Chemical Engineering

Ph.D. research topic: Building computational frameworks for kinetic model identification

Indian Institute of Technology Roorkee

Roorkee, India

2013-2015

Master of Technology in Chemical Engineering

Specialization: Computer Aided Process Plant Design

Department of Chemical Engineering

TKM College of Engineering

Kollam, India

2009–2013

Bachelor of Technology in Chemical Engineering Department of Chemical Engineering

Industrial Experience

BPCL (Bharat Petroleum Corporation Limited), Kochi Refinery

Kochi, India

Graduate Apprentice

2016

- Trainee Engineer at Crude Distillation Unit and Aromatic Recovery Unit

Technical Skills

• Programming Languages

Python (Pyomo, Casadi, Scikit-learn, Scipy, Numpy), Matlab, LATEX, Colab

• Software Skills

gPROMS, JMP, OriginPro, GitHub, LabVIEW (basic knowledge)

PROJECTS

• Kinetic modelling of HMF (hydroxymethylfurfural) oxidation

Collaboration project involving UCL, Cardiff Catalysis Institute and University of Liverpool Project goal: To develop and identify realiable kinetic model for gold catalysed HMF oxidation Contribution: Model development, analysis and validation

• Optimal Design of Experiments in Microreactor Platform

Collaboration project within Department of Chemical Engineering UCL

Project goal: To develop an automated microreactor platform for rapid and optimal kinetic study

Contribution: Development of methods and algorithms that controls the platform

• Adaptive experimental design methods for online parameter estimation

Project goal: Improving the existing online model-based redesign of experiments methods by adding a self-adaptive branch between inference and new information [Colab tutorial]

SCHOLARSHIPS AND AWARDS

• Doctoral Scholarship Award
Department of Chemical Engineering, UCL

• Post Graduate Scholarship Award

2013

GATE (Graduate Aptitude Test in Engineering) scholar and recipient of MHRD scholarship by Government of India for pursuing post-graduation studies

Academic Excellence Award

2009

for securing highest mark in Chemistry in AISSCE (All India Senior School Certificate Examination)

TEACHING

• Post Graduate Teaching Assistant at UCL Process Systems Modelling and Design (MEng) (CENG0025) 2018 - 2019

- Post Graduate Teaching Assistant at UCL

2018

Process Systems Modelling and Design (MSc) (CENG0025-A7P-T1)

PUBLICATIONS

- [1] **A. Pankajakshan**, P. Petsagkourakis, and F. Galvanin, "A framework for adaptive online model-based redesign of experiments in dynamic systems", in *Computer Aided Chemical Engineering*, vol. 50, Elsevier, 2021, pp. 1293–1298.
- [2] C. Waldron, A. Pankajakshan, M. Quaglio, E. Cao, F. Galvanin, and A. Gavriilidis, "Model-based design of transient flow experiments for the identification of kinetic parameters", *Reaction Chemistry & Engineering*, vol. 5, no. 1, pp. 112–123, 2020.
- [3] A. Pankajakshan, C. Waldron, M. Quaglio, A. Gavriilidis, and F. Galvanin, "A Multi-Objective Optimal Experimental Design Framework for Enhancing the Efficiency of Online Model Identification Platforms", *Engineering*, vol. 5, no. 6, pp. 1049–1059, 2019.
- [4] M. Quaglio, C. Waldron, A. Pankajakshan, E. Cao, A. Gavriilidis, E. S. Fraga, and F. Galvanin, "On the use of online reparametrization in automated platforms for kinetic model identification", *Chemie Ingenieur Technik*, vol. 91, no. 3, pp. 268–276, 2019.
- [5] M. Quaglio, C. Waldron, A. Pankajakshan, E. Cao, A. Gavriilidis, E. S. Fraga, and F. Galvanin, "An online reparametrisation approach for robust parameter estimation in automated model identification platforms", Computers & Chemical Engineering, vol. 124, pp. 270–284, 2019.

- [6] C. Waldron, A. Pankajakshan, M. Quaglio, E. Cao, F. Galvanin, and A. Gavriilidis, "An autonomous microreactor platform for the rapid identification of kinetic models", *Reaction Chemistry & Engineering*, vol. 4, no. 9, pp. 1623–1636, 2019.
- [7] C. Waldron, A. Pankajakshan, M. Quaglio, E. Cao, F. Galvanin, and A. Gavriilidis, "Closed-loop model-based design of experiments for kinetic model discrimination and parameter estimation: Benzoic acid esterification on a heterogeneous catalyst", *Industrial & Engineering Chemistry Research*, vol. 58, no. 49, pp. 22165–22177, 2019.
- [8] A. Pankajakshan, S. M. Pudi, and P. Biswas, "Acetylation of glycerol over highly stable and active sulfated alumina catalyst: reaction mechanism, kinetic modeling and estimation of kinetic parameters", *International Journal of Chemical Kinetics*, vol. 50, no. 2, pp. 98–111, 2018.
- [9] **A. Pankajakshan**, M. Quaglio, and F. Galvanin, "Experimentally Driven Guaranteed Parameter Estimation: a Way to Speed up Model-Based Design of Experiments Techniques", in *Computer Aided Chemical Engineering*, vol. 43, Elsevier, 2018, pp. 355–360.
- [10] A. Pankajakshan, M. Quaglio, C. Waldron, E. Cao, A. Gavriilidis, and F. Galvanin, "Online model-based redesign of experiments for improving parameter precision in continuous flow reactors", IFAC-PapersOnLine, vol. 51, no. 15, pp. 359–364, 2018.
- [11] A. Pankajakshan, E. Cao, M. Sankar, G. Hutchings, A. Gavriilidis, and F. Galvanin, "A robust model-based experimental design approach towards modeling reaction kinetics of Au catalyzed HMF oxidation under parametric uncertainty", 2017.
- [12] A. Pankajakshan, E. Cao, M. Sankar, G. J. Hutchings, A. Gavriilidis, and F. Galvanin, "A model-based experimental design approach for the identification of kinetic models of Au catalysed HMF oxidation in a micropacked bed reactor", International Conference on Mathematics in (bio) Chemical Kinetics and …, 2017.
- [13] P. Arun, S. M. Pudi, and P. Biswas, "Acetylation of glycerol over sulfated alumina: reaction parameter study and optimization using response surface methodology", *Energy & Fuels*, vol. 30, no. 1, pp. 584–593, 2016.