Probleme de transport meechili brate

1) Metoda diaganatei

	Cn	C_{λ}	$C_{\mathfrak{P}}$	
DI	3		2	10
P	2,	4	Í	25
	૨૦	10	10	

Pasulo

oferda:
$$\underset{i=1}{\overset{2}{\ge}}$$
 ai = 10+215 = 35

covera: $\underset{j=1}{\overset{2}{\ge}}$ bj = 20+10+10=40

=>7.7.N.

· Echilibram PTN.

-> fransformain 7TN. in 7.T.E. prim introducirea unui mon deposit de desfacre, 1, 5, ce va avea costuvile de transport egale ou tere.

Pasul 2

$$S_{12} = -1 + 4 - 2 + 3 = 4 > 0$$

$$S_{13} = -1 + 4 - 2 + 3 = 4 > 0$$

$$S_{31} = -0 + 2 - 1 + 0 = 1 > 0$$

$$S_{32} = -0 + 4 - 1 + 0 = 3 > 0$$

792

$$\begin{cases} 10 \\ (1,1) \\ (2,1) \\ (2,1) \\ (3,1) \\ (3,2)$$

$$\Theta = \min \left\{ (1,1); (2,2) \right\} = (1,1) = 1 \times 11 \Rightarrow$$

! verificare!

Pasul 5

3	1	2	
*	10	*	10
2	4	1	
20	0	5	25
0	0	0	
*	*	5	5
20	10	10	l

Pasul s

7g3

$$\int_{31}^{31} = -3 + 1 - 4 + 2 = -4$$

$$\int_{31}^{31} = -3 + 1 - 4 + 2 = -4$$

$$\int_{31}^{31} = -0 + 2 - 1 + 0 = 1 > 0$$

$$\int_{31}^{31} = -0 + 4 - 1 + 0 = 3 > 0$$

Pasul 9

$$\Theta = \min \left\{ (2,2); (3,3) \right\} = (2,2) = 2(2,2) = 222 \Rightarrow 0$$

$$\Theta = 0$$

Pay

Pasul 11

$$f(x_2) = 10.1 + 20.2 + 5.1 + 0.5.0 = 55(u.u.) \le f(x_1)? Da$$

Pasul R

$$311 = -3 + 1 - 0 + 0 - 1 + 2 = -1$$

$$313 = -2 + 1 - 0 + 0 = -1$$

$$322 = -4 + 0 - 0 + 1 = -3$$

$$312 = -4 + 0 - 0 + 1 = -3$$

$$313 = -4 + 0 - 0 + 1 = -3$$

$$313 = -4 + 0 - 0 + 1 = -3$$

$$313 = -4 + 0 - 1 + 2 = 120$$

P95

$$\Theta = mim\{(3,3);(3,1)\} = (3,3) => \times 33 ->$$

Pasul 15

3	1	12		
*	lo	*	10	
2	4	1	25	! voificare!
LS	*	10	25	in africa d.
(O)	0	0		
5		*	5	
20	10	10	→	

$$\bar{x}_3 = (0, 10, 0, 15, 0, 10, 5, 0, 0) \in \mathbb{R}^3 - S.B. \text{Leg},$$

$$f(\bar{x}_3) = 10 + 30 + 10 = 50 \ (u.m.) \le f(\bar{x}_2)? \Delta$$

Q

Thobleme de transport meechilibrate

2) elletoda costului minimu

Pasul o

ofeda:
$$\sum_{i=1}^{n} a_i = 10+20+20=50$$

ofuda:
$$\underset{j=1}{\overset{\sim}{\ge}} a_i = 10+20+20=50$$

cerusa: $\underset{j=1}{\overset{\sim}{\ge}} b_j = 10+25=35$
 $= 10+20+20=50$
 $= 10+20+20=50$

· Echilibrau 7.T.N.

> Lyansformain 7.7.N. W. 7.7.E. Frim introducina unui nou centru de desfacua fichir, est, ce va avea costunile de transport egale en jero.

To = (0,0,10,10,5,5,0,20,0) ER9-S.B. Ned.

f(xo) = 10.0+10.1+5.4+5.0+20.1=50/w.w.)

$$\int_{12} = -3 + 1 - 0 + 0 = -2$$

$$\int_{12} = -2 + 4 - 0 + 0 = 2 > 0$$

$$\int_{33} = -0 + 1 - 4 + 0 = -3$$

$$\begin{cases} 31 = -2 + 4 - 0 + 0 = 2 > 0 \\ 31 = -2 + 1 - 4 + 1 = -4 \end{cases} \Rightarrow J dij > 0 \Rightarrow nu esk optima$$

$$\Theta = mim \{(2,2); (1,3)\} = (2,2) => \times 22^{->}$$
 $\Theta = 5$

Pasul 5	CA	ርي	cst	
Di	*	5	5	10
Du	10	¥	10	20 ! reificare!
$b_{\mathfrak{p}}$	¥ <u></u>	20	*	20
	10	25	15	

Pasuls X1 = (0,5,5,10,0,10,0,20,0) ER2-S.B.Ned. 1(x1) = 10+10+20 = 4qu,m) = f(x0)? Da Pasulx du=-2+1-0+0=-2 $\int_{11}^{1} = -2+1 - 0+0 = -2i$ $\int_{22}^{1} = -2+1 - 0+0 = -2i$ $\int_{31}^{1} = -2+1 - 0+0 - 2+1 = -2i$ $\int_{31}^{1} = -2+1 - 0+0 - 2+1 = -2i$ $\int_{31}^{1} = -2+1 - 0+0 - 2+1 = -2i$ 1- = -0+1-2+0= -1 Concluzio pt. P.T.E.) echilibrat xoptim = (0,5,5,10,0,10,0,20,0) wint = 40(u.u.)

Conclusia pt. P.T.N. $\begin{cases} xeechilibrat \\ xoptime = (\frac{0.5 \times 10.0010}{0.5 \times 10.0010}) \end{cases}$