Global burden of tropospheric ozone:

Effects of particulate nitrate photolysis and assimilation of satellite NO₂ measurements

Viral Shah (NASA GMAO & SSAI),

K. E. Knowland, C. A. Keller, B. Weir (NASA GMAO & Morgan State U),
D. J. Jacob (Harvard)

Tropospheric ozone in GEOS-Chem

GEOS-Chem underestimates free tropospheric ozone concentrations and trends in the Northern midlatitudes

1990-2017 FT ozone trends (ppbv/decade)

Free tropospheric ozone in GEOS-Chem

00-400 hPa mean ozone (ppbv)

GEOS-Chem version 14.0.0 No sea salt bromine source

Offline version: ozone concentrations 5-10 ppbv too low over N. Amer, Europe & E. Asia

Improved summertime ozone in online simulation

Effect of assimilating OMI NO2 observations

3D-Var assimilation of OMI-retrieved NO₂ columns in the online GEOS-Chem model

JJA NO₂ tropospheric columns in online GEOS-Chem

Assimilated NO₂ columns *minus* background NO₂ columns

Significant decreases in NO₂ over equatorial Africa; smaller changes over India and China

Effect of NO₂ assimilation on FT ozone

Seasonal mean 800-400 hPa ozone (2018)

Ozone decreases significantly in SH due to decrease in ozone production over equatorial Africa

Small decreases elsewhere

Ozonesondes

GEOS-Chem (offline)

GEOS-Chem (online)

+ NO2 assimilation

GEOS-Chem underestimates NO in the remote troposphere

ATom flight tracks

GEOS-Chem OK in the upper troposphere, lightning emissions OK

GEOS-Chem HNO₃ and PAN largely consistent with ATom observations

pNO₃ photolysis largely corrects the NO underestimate

pNO₃ photolysis increases global OH and ozone

Including pNO₃ photolysis improves ozone simulation

Seasonal mean 800-400 hPa ozone (2018)

Significant improvement in ozone over the Northern Hemisphere

Ozonesondes

GEOS-Chem (offline)

+ pNO₃ photolysis

+ NO2 assimilation

GEOS-Chem (online)

Including pNO₃ photolysis improves ozone simulation

Emission-driven change in 800-400 hPa ozone from 2008 to 2018

Higher sensitivity of FT ozone to emission changes in the NH; Could explain the observed trends!

Conclusions

- A. GEOS-Chem underestimates ozone in the free troposphere; because of an underestimate in free tropospheric NO₂
- B. Including pNO₃ photolysis improves the simulation of free tropospheric NO₂
- C. pNO₃ photolysis increases concentrations of free tropospheric ozone and its sensitivity to emission changes in the NH