Two hours

THE UNIVERSITY OF MANCHESTER

RIEMANNIAN GEOMETRY. MOCK EXAMINATION

XX May—XX June 2017 XX:00 – XX:00

Answer **ALL FIVE** questions in Section A (50 marks in total). Answer **TWO** of the THREE questions in Section B (30 marks in total). If more than TWO questions in Section B are attempted, the credit will be given for the best TWO answers.

Electronic calculators may <u>not</u> be used.

Throughout the paper, where the index notation is used, the <u>Einstein summation convention</u> over repeated indices is applied if it is not explicitly stated otherwise.

SECTION A

Answer **ALL** FIVE questions

A1.

- (a) Explain what is meant by saying that G is a Riemannian metric on a manifold M.
- (b) Consider the upper half plane (y > 0) in \mathbf{R}^2 equipped with the Riemannian metric $G = \sigma(x, y)(dx^2 + dy^2)$.

Explain why $\sigma(x, y) > 0$.

Consider in this Riemannian manifold a curve C such that

C:
$$\begin{cases} x = 1 \\ y = a + t \end{cases}, \quad 0 \le t \le 1, \ (a > 0).$$

Find the length of this curve in the case if $\sigma(x,y) = \frac{1}{y^2}$ (the Lobachevsky metric).

[10 marks]

A2.

- (a) Explain what is meant by saying that a Riemannian manifold is locally Euclidean.
- (b) Consider a surface (the upper sheet of a cone) in \mathbf{E}^3

$$\mathbf{r}(h,\varphi): \begin{cases} x = 2h\cos\varphi \\ y = 2h\sin\varphi \\ z = h \end{cases}, \quad h > 0, 0 \le \varphi < 2\pi.$$

Calculate the Riemannian metric on this surface induced by the canonical metric on Euclidean space \mathbf{E}^3 .

Show that this surface is locally Euclidean.

[10 marks]

A3.

- (a) Explain what is meant by an affine connection on a manifold. Give the definition of the canonical flat connection on the Euclidean space \mathbf{E}^n .
- (b) Calculate the Christoffel symbols Γ^r_{rr} and $\Gamma^r_{\varphi\varphi}$ of the canonical flat connection in the Euclidean space \mathbf{E}^2 , where r, φ are polar coordinates $(x = r \cos \varphi, y = r \sin \varphi)$.

[10 marks]

A4.

(a) Let M be a surface embedded in the Euclidean space \mathbf{E}^3 . Let $\mathbf{e}, \mathbf{f}, \mathbf{n}$ be three vector fields defined on the points of this surface such that they form an orthonormal basis at any point, so that the vectors \mathbf{e}, \mathbf{f} are tangent to the surface and the vector \mathbf{n} is orthogonal to the surface. Consider the derivation formula

$$d\begin{pmatrix} \mathbf{e} \\ \mathbf{f} \\ \mathbf{n} \end{pmatrix} = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \\ \mathbf{n} \end{pmatrix},$$

where a, b and c are 1-forms on the surface M.

Express the mean curvature and the Gaussian curvature of M in terms of these 1-forms and vector fields.

(b) Show that Gaussian curvature vanishes in the case if 1-forms b and c vanish on vector field \mathbf{e} .

[10 marks]

A5.

- (a) State the relation between the Riemann curvature tensor of the Levi-Civita connection of a surface in \mathbf{E}^3 and its Gaussian curvature K.
- (b) Let M be a surface $\mathbf{r} = \mathbf{r}(u, v)$ in \mathbf{E}^3 , such that at the given point \mathbf{p} Gaussian curvature K = 1, and the induced Riemannian metric is equal to $G = du^2 + dv^2$ at this point.

Calculate all components of the Riemannian curvature tensor R_{ikmn} in coordinates u, v at the point \mathbf{p} .

Show that induced Riemannian metric cannot be equal identically to $du^2 + dv^2$ in a vicinity of the point **p**.

[10 marks]

SECTION B

Answer $\underline{\mathbf{TWO}}$ of the THREE questions

B6.

(a) Consider the plane ${\bf R}^2$ with standard coordinates (x,y) equipped with the Riemannian metric

 $G = \frac{dx^2 + dy^2}{(1 + x^2 + y^2)^2} \ .$

Calculate the area S_a of the domain $x^2 + y^2 \le a^2$.

(b) Find the limit S_a when $a \to \infty$.

Show that there is no isometry between the plane with this Riemannian metric and the Euclidean plane \mathbf{E}^2 .

[15 marks]

B7.

(a) Consider the open disc $u^2 + v^2 < 1$ with the Riemannian metric

$$G = \frac{4(du^2 + dv^2)}{(1 - u^2 - v^2)^2},$$

(Poincaré disc).

Show that all Christoffel symbols of the Levi-Civita connection of this Riemannian manifold vanish at the point u = v = 0.

(b) Let ∇' be a symmetric connection on the Poincaré disc such that all Christoffel symbols of this connection in coordinates (u, v) vanish identically (at all points). Show that the connection ∇' does not preserve the metric of the Poincaré disc.

[15 marks]

B8.

(a) Consider the Lobachevsky plane as an upper half plane (y>0) in ${\bf R}^2$ equipped with the metric $G=\frac{dx^2+dy^2}{y^2}$.

Consider a vertical ray $C: x(t) = 1, y(t) = 1 + t, 0 \le t < \infty$ on the Lobachevsky plane.

Find the parallel transport $\mathbf{X}(t)$ of the vector $\mathbf{X}_0 = \partial_y$ attached at the initial point (1,1) along the ray C at an arbitrary point of the ray.

Find the parallel transport $\mathbf{Y}(t)$ of the vector $\mathbf{Y}_0 = \partial_x + \partial_y$ attached at the same initial point (1,1) along the ray C at an arbitrary point of the ray.

(You may use the fact that the vertical ray C is a geodesic in the Lobachevsky plane.)

[15 marks]