Introducción a la Inteligencia Artificial Facultad de Ingeniería Universidad de Buenos Aires

Índice

Clase 5

- Clasificación Binaria
 - a. Motivación
 - b. Regresión Logística Ejercicio de Aplicación
 - c. Regresión Logística Teoría
- 2. Clasificación Multiclase
 - a. Motivación
 - b. Softmax
 - c. Ejercicio de Aplicación
- 3. Ejercicio integrador

Clasificación

Clasificación

Clasificación

Clasificación binaria

$$f(x_i) = \begin{cases} 1 & \text{sin } y_i \in C_1 \\ 0 & \text{o. } \omega. \end{cases}$$

Clasificación Binaria

Clasificación Binaria - Ejemplos

Clasificación Binaria

Clasificación Binaria - Diagnóstico médico

Clasificación Binaria

Clasificación Binaria - Spam detection

FACULTAD DE INGENIERÍA

en clasif. no podemos usor la gue veniamos usambo MSE (gato, perro)? no en clasif. usamos la matriz de confusión. real T F = proeliction . Specificity = TN (TN cale) TN+FP y=IC=K = { 2 & y;= K O & yi= K precision = TP . recall = * G.L. Grolden Label

F1 = 2. Precision, recall = T?

precision + recall = T? + 1 (FP+FN)

 $F_p = (1+p)^2 \frac{prec. recall}{p^2 prec + recall} \qquad (F_{0.25})$

Formas de clasificar:

+ Définimos un proc. de svoring -> como resolvemos una closif. 1 complej idael => 1 computo => mejor models

1. Modelos generativos: modelor las elistrils. de I/o mo generor la solida (permite generar información sintética) -> 6AN'S

2. Models discriminantes: planteor $\mathbb{P}(C_K|\bar{X})$ us utilizer nétodos de inferencia (bayesiana) para estimar \mathbb{P} .

modelos de función discriminadora: buscamos f: RNM LD {C4, ..., Ck} La Regresión logistica (la usamos porque queremos explotor lo conocido). $E(y) = \pi i$ partimos de suponer y n Bermuille (1, Ti) -s Var(4) = Ti. (1-Ti)

me gustorion poder obtener algo así: Ti~ xt. p ; xenuxp, pe Rxxp Ni 6 [0,1], pero xt. B ER = D tenyo que plantear una fr. buseauros $f: [0,1] \mapsto R_{70} \mod \text{odd}_i = \frac{\pi_i}{1 - \pi_i}$ probabilidad $1-\pi_i \text{ ocld}_i = P(4)$ vanos a tomor el log de odds, esto ne permite definir P(A) una función biyectiva IR20 +0 IR. Esta transf. se llama logit (log odds catio) $N_i = logit(\pi_i) = \bar{x}^t \bar{\beta}$ existe antilogit: $\pi_i = antilogit(N_i) = e^{N_i}$ the logistica the logistica

Logistic function

$$S(x)=rac{1}{1+e^{-x}}=rac{e^x}{e^x+1}=1-S(-x).$$
 S,O: IR \longrightarrow [0,1]

Modelo de regresión logistica:

Sean 91,..., 9n realizaciones ele un proc Bernocille (1, Ti), assuminos que existe una reloción lineal entre ti (datos), el logit ele la razón de prob. de Ti:

$$logit(\pi i) = po + \sum_{j=0}^{r} p_j \cdot \pi i$$

Este models es parte de la familia de models lineals generalizades

- D Es equivalente a decir modelo lineal generalizado con respuesta
binomial y fin. ele enloce logit.

$$g(E(Y/X)) = \beta 0 + \geq \beta i \times i$$

y n f; f distrib. de la respuesta n g es la función de linuer

Regresión Logística

Class-conditional - P(x|Cn)

Posterior - P(Cn|x)

averenos mapear
$$G(x) = G(w^{t}x)$$
 prop $G(x) = G(x)(1-C(x))$
 $G(x) = G(w^{t}x)(1-G(w^{t}x))$

planteamos la fin. de vecosimilituel: $P(y/x) = \prod_{i=1}^{N} \hat{g}_{i}^{y_{i}}(1-\hat{g}_{i})^{t-y_{i}} = \int_{1}^{N} \int_{1}^{\infty} \hat{g}_{i}^{y_{i}}(1-\hat{g}_{i})^{t-y_{i}} = \int_{1}^{N} \int_{1}^{N} \hat{g}_{i}^{y_{i}}(1-\hat{g}_{i})^{t-y_{i}} = \int_{1}^{N} \int_{1}^{N$

N: cont. de muestras

$$S: golden lobel$$
 $S: preel (prob)$

$$l = \sum_{i=1}^{N} ln \left(P_W \left(y = y_i / X = x_i \right) \right)$$
buseaures maximizar l

 $l = \sum_{i=1}^{2} \ln \left(P_{W} \left(y = y_{i} \middle| X = x_{i} \right) \right) \text{ mo buseaums maximizer } l$ $\max_{i} \sum_{i} \ln \left(O\left(w^{t} x \right)^{3i} \cdot \left(1 - O\left(w^{t} x \right) \right)^{7-90} \right)$

max \overline{Z} y: $\ln \mathcal{O}(\omega^{t}x) + (1-yi) \ln (1-\mathcal{O}(\omega^{t}x))$

multiplicar
$$\times$$
 (-1):

mi $y \ge -y_i \ A - (1-y_i) \ B$ my si minimizo l eneventro el optimo

proclemos buscar el mínimo usando la entropia binaria cazada (binary crossentropy):

 $J(w) = \frac{1}{N} \ge -y_i \ A - (1-y_i) \ B$
 $v_i = 1$
 $v_i = 0$
 $v_i = 0$

SGD

GDMB

Función de costo - Binary cross entropy

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

Función de costo - Binary cross entropy

$$\omega_{n+1} = \omega_n + \alpha \nabla \omega$$

$$\nabla \omega$$
?

Regresión Logística

1: Verde, 0: Rojo

Regresión Logística

Regresión Logística

Clasificación

Clasificación multiclase

Clasificación Multiclase

Clasificación Multiclase - Motivación

FACULTAD DE INGENIERÍA

matiz de cont. multilabel:

(eol		los métricos alwira
(lol)		50n por clase:
C_{1}	TPc2 Mczcz	Acecz
	Maca Trans	Δ_{cc}
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · ·		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	TP _e	

Adenos teremos el overolt de [modelo:

ACC mean - promeelio

ACC maero - o n person do por closo

Acc micro - o n n soporte

Softmax

$$P(y_i \mid x_i; W) = rac{e^{f_{y_i}}}{\sum_j e^{f_j}}$$

$$rac{e^{f_{y_i}}}{\sum_{j} e^{f_j}} = rac{C e^{f_{y_i}}}{C \sum_{j} e^{f_j}} = rac{e^{f_{y_i} + \log C}}{\sum_{j} e^{f_j + \log C}}$$

$$H(p,q) = -\sum_x p(x) \log q(x)$$

q(x)

$$odds = \frac{P(A)}{P(\overline{A})}$$

Softmax Forma Gráfica

2 Softmax Visualización 3D

los pesos Wij re obtienen numéricanonse con GD y amiyos.

Softmax

Derivación Softmax

$$p_i = \frac{e^{z_i}}{\sum_{j=1}^{C} e^{z_j}}$$

$$\frac{\partial p_i}{\partial z_k} = \frac{\partial \frac{e^{z_i}}{\sum_{j=1}^C e^{z_j}}}{\partial z_k}$$

$$\frac{\partial p_i}{\partial z_k} = p_i(\delta_{ik} - p_k) \qquad \delta_i k = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}$$

Derivación **Cross-Entropy**

$$\begin{split} L &= -\sum_{i} y_{i} log(p_{i}) \\ \frac{\partial L}{\partial z_{i}} &= -\sum_{j} y_{j} \frac{\partial log(p_{j})}{\partial z_{i}} \\ &= -\sum_{j} y_{j} \frac{\partial log(p_{j})}{\partial p_{j}} \times \frac{\partial p_{j}}{\partial z_{i}} / \\ &= -\sum_{j} y_{j} \frac{1}{p_{j}} \times \frac{\partial p_{j}}{\partial z_{i}} / \\ &= -\sum_{j} y_{j} \frac{1}{p_{j}} \times \frac{\partial p_{j}}{\partial z_{i}} / \\ &= \int_{i} \frac{\partial L}{\partial z_{i}} = p_{i} - y_{i} \end{split}$$

Usar gradiente descendente para actualizar W!!!

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig
- Understanding binary cross-entropy: a visual explanation | Daniel Godoy
- Visual Information Theory | <u>Link</u>
- https://cs231n.github.io/
- Classification and Loss Evaluation-Softmax and Cross Entropy Loss | Paras Dahal

