1

ASSIGNMENT 1

Valli Devi Bolla

Download all python codes from

https://github.com/Vallidevibolla/vallidevi/blob/main/Collinear.py

and latex-tikz codes from

https://github.com/Vallidevibolla/vallidevi/blob/main/no.tex

1 Question No.14

Find the value of k, if the points $\binom{k}{3}$, $\binom{6}{-2}$ and $\binom{-3}{4}$ are collinear.

2 Solution

Let

$$\mathbf{A} = \begin{pmatrix} k \\ 3 \end{pmatrix} \tag{2.0.1}$$

$$\mathbf{B} = \begin{pmatrix} 6 \\ -2 \end{pmatrix} \tag{2.0.2}$$

$$\mathbf{C} = \begin{pmatrix} -3\\4 \end{pmatrix} \tag{2.0.3}$$

As, given that the points are collinear,

$$\left((A-B) (B-C) \right)^T$$
 (2.0.5)

$$\begin{pmatrix} k-6 & 3-(-2) \\ 6-(-3) & -2-4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} k-6 & 5 \\ 9 & -6 \end{pmatrix} \stackrel{R_2 \to R_1}{\longleftrightarrow} \begin{pmatrix} 9 & -6 \\ k-6 & 5 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 9 & -6 \\ 0 & 9 \times 5 - (-6 \times (k-6)) \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 9 & -6 \\ 0 & 9+6k \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2/6} \longrightarrow \begin{pmatrix} 9 & -6 \\ 0 & \frac{3}{2} + k \end{pmatrix}$$

Equalising
$$R_2 to 0 \implies k + \frac{3}{2} = 0$$

 $\implies k = \frac{-3}{2}$

 \therefore Finally the value of k is $\frac{-3}{2}$

Fig. 0: collinear