

Universidade Federal de Pernambuco Centro de Informática

Cálculo Numérico (IF215)

Profa. Maíra Santana

Objetivos

 Compreender como os números são representados no computador;

• Tipos e análise de erros numéricos.

- Nos computadores, os números são armazenados utilizando uma base binária;
- Usualmente utilizamos a base decimal:

$$245 = 2 \cdot 10^2 + 4 \cdot 10^1 + 5 \cdot 10^0$$

• Um número com **n** dígitos na **base** β pode ser representado na forma:

$$(d_{n-1}d_{n-2}\cdots d_1d_0)_{\beta}$$

$$= d_{n-1}\cdot\beta^{n-1} + d_{n-2}\cdot\beta^{n-2} + \dots + d_1\cdot\beta^1 + d_0\cdot\beta^0$$

onde
$$0 \le d_i < \beta$$

Ou seja, os dígitos são representados como potências da base.

•
$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

•
$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$$

•
$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$$

•
$$(312)_8 = 3 \cdot 8^2 + 1 \cdot 8^1 + 2 \cdot 8^0$$

•
$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$$

•
$$(312)_8 = 3 \cdot 8^2 + 1 \cdot 8^1 + 2 \cdot 8^0 = 202$$

Exemplos:

•
$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$$

•
$$(312)_8 = 3 \cdot 8^2 + 1 \cdot 8^1 + 2 \cdot 8^0 = 202$$

•
$$(12E)_{16} =$$

na base hexadecimal:

Α	10
В	11
C	12
D	13
Е	14
F	15

Exemplos:

•
$$(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13$$

•
$$(312)_8 = 3 \cdot 8^2 + 1 \cdot 8^1 + 2 \cdot 8^0 = 202$$

•
$$(12E)_{16} = 1 \cdot 16^2 + 2 \cdot 16^1 + 14 \cdot 16^0 = 302$$

na base hexadecimal:

Α	10
В	11
C	12
D	13
Е	14
F	15

Conversão de decimal para binário

• Considere o número 347 e seja $\left(d_j d_{j-1} \cdots d_1 d_0\right)_2$ representação dele na base 2.

$$(347)_{10} = d_j \cdot 2^j + d_{j-1} \cdot 2^{j-1} + \dots + d_1 \cdot 2^1 + d_0 \cdot 2^0$$

Conversão de decimal para binário

• Considere o número 347 e seja $\left(d_j d_{j-1} \cdots d_1 d_0\right)_2$ a representação dele na base 2.

$$(347)_{10} = d_j \cdot 2^j + d_{j-1} \cdot 2^{j-1} + \dots + d_1 \cdot 2^1 + d_0 \cdot 2^0$$

Colocando o 2 em evidência, temos:

$$(347)_{10} = 2 (d_i \cdot 2^{j-1} + d_{i-1} \cdot 2^{j-2} + \dots + d_1) + d_0$$

Conversão de decimal para binário

• Considere o número 347 e seja $\left(d_j d_{j-1} \cdots d_1 d_0\right)_2$ representação dele na base 2.

$$(347)_{10} = d_j \cdot 2^j + d_{j-1} \cdot 2^{j-1} + \dots + d_1 \cdot 2^1 + d_0 \cdot 2^0$$

Colocando o 2 em evidência, temos:

$$(347)_{10} = 2 (d_j \cdot 2^{j-1} + d_{j-1} \cdot 2^{j-2} + \dots + d_1) + d_0$$

Como 347 é um número **ímpar** e na base binária apenas os dígitos o (zero) e 1 (um) são possíveis, então, necessariamente $d_0=1$.

Conversão de decimal para binário

$$(347)_{10} = 2 (d_i \cdot 2^{j-1} + d_{i-1} \cdot 2^{j-2} + \dots + d_1) + d_0$$

Como 347 é um número **ímpar** e na base binária apenas os dígitos o (zero) e 1 (um) são possíveis, então, necessariamente $d_0 = 1$.

- d_0 também pode ser interpretado como o resto da divisão inteira de 347 por 2;
- A divisão inteira de 347 por 2 é 173, portanto:

$$\frac{347}{2} = 173 = d_j \cdot 2^{j-1} + d_{j-1} \cdot 2^{j-2} + \dots + d_1$$

• Colocando 2 em evidência novamente podemos, agora, encontrar o valor de d_1 .

Conversão de **decimal** para **binário**

• Esse procedimento pode ser repetido para encontrar todos os dígitos d_i . Então:

n	n // 2	n % 2
347	173	1
173	86	1
86	43	0
43	21	1
21	10	1
10	5	0
5	2	1
2	1	0
1	0	1

Logo, a representação binária de 347 é: $(101011011)_2$

Representação de números com parte fracionária

Exemplos:

•
$$(0.234)_{10} = 2 \cdot 10^{-1} + 3 \cdot 10^{-2} + 4 \cdot 10^{-3}$$

•
$$(0.1011)_2 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4} = 0.6875$$

•
$$(0.17)_8 = 1 \cdot 8^{-1} + 7 \cdot 8^{-2} = 0.234375$$

Representação de números com parte fracionária

Conversão de decimal para binário

• O número 0.625 possui uma representação binária $(0.d_1d_2d_3\cdots)_2$.

$$0.625 = d_1 \cdot 2^{-1} + d_2 \cdot 2^{-2} + d_3 \cdot 2^{-3} + \cdots$$

Agora, se **multiplicarmos** os dois lados da equação por 2, temos:

$$1.25 = d_1 + d_2 \cdot 2^{-1} + d_3 \cdot 2^{-2} + \cdots$$

Então, d_1 é a **parte inteira** de 1.25. Portanto, $d_1=1$.

Conversão de decimal para binário

• Esse procedimento pode ser repetido para encontrar todos os dígitos d_j , mas agora realizando uma sequência de multiplicações:

n	2 · n	Parte inteira
0.625	1.25	1
0.25	0.5	0
0.5	1(0)	1

Logo, a representação binária de 0.625 é: $(0.101)_2$

Aritmética de ponto flutuante

 Os números com parte fracionária são representados no computador com o ponto flutuante

$$\pm (d_0.d_1d_2d_3\cdots d_t)\cdot \beta^e$$

- β é a base;
- t é o número de bits da mantissa;
- *e* é o expoente (*offset* binário).
- Sistema de ponto flutuante:

$$F(\beta, t, e_{min}, e_{max})$$

- Menor número de máquina positivo: $x_{min} = 1,00 \dots 0 * \beta^{e_{min}}$
- Maior número de máquina positivo: $x_{max} = (\beta 1), (\beta 1) \dots (\beta 1) * \beta^{e_{max}}$

Aritmética de ponto flutuante

- · Base binária;
- Sinal ocupa 1 bit;
- Mantissa de até 52 bits;
- Expoente de até 11 bits.
- Python:

import sys
print(sys.float_info)

Tipos de erros

- Arredondamento:
 - · Regra geral: número de máquina mais próximo;
 - Precisão dos números de ponto flutuante.
- Truncamento (discretização):

• Ex.:
$$\lim_{n\to 0} (\cdots)$$
 $\lim_{n\to \infty} (\cdots)$

- Modelagem (inerente):
 - · Ao desconsiderar algumas variáveis do problema.
- Entrada (inerente):
 - Possíveis erros de medição.

Representação de erros

- Erro absoluto:
 - É a diferença entre o valor exato (x) e o valor aproximado (\bar{x}):

$$\Delta \bar{x} = x - \bar{x}$$

- Erro relativo:
 - É o quociente entre o erro absoluto e o valor exato:

$$\delta \bar{x} = \frac{\Delta \bar{x}}{x} = \frac{(x - \bar{x})}{x}$$

- Percentual:
 - É o produto do erro relativo por 100:

$$p\bar{x} = 100 \cdot \delta \bar{x} \%$$

Exemplos de erros numéricos

https://colab.research.google.com/drive/1NJsh32cDkbYsfoNT hhDMFBW535Cfh6wh?usp=sharing

$0.1 = d_1 \cdot 2^{-1} + \cdots$

Representação binária do número o.1

n	2 · n	Parte inteira
0.1	0.2	0
0.2	0.4	0
0.4	0.8	0
0.8	1.6	1
0.6	1.2	1
0.2	0.4	0
0.4	0.8	0
0.8	1.6	1
0.6	1.2	1
0.2	0.4	0

d1 = 0
d2 = 0
d3 = 0
d4 = 1
d5 = 1
d6 = o
d7 = 0
d8 = 1
d9 = 1
d10 = 0

Justificativa

- Em base 2, 1/10 e uma fração binária que se repete infinitamente (dízima periódica);
- Não importa quantos dígitos você está disposto a usar, o.1 não pode ser representado exatamente como uma fração de base 2;
- Se limitarmos a representação a qualquer número finito de bits obtemos apenas uma **aproximação**.

Recomendações

- Conhecer o sistema de representação que está sendo utilizado para realizar operações numéricas;
- Cuidado com operações que modificam a ordem de magnitude:
 - · Divisão por valores próximos a zero;
 - Subtração de valores próximos.
- Cuidado com comparação direta de números com expressões:
 - · Uso de operadores lógicos.

Atenção aos arredondamentos!

- Overflow: quando o resultado da operação (\bar{x}) pertence a ($-\infty$, $-x_{m\acute{a}x}$) U ($x_{m\acute{a}x}$, $+\infty$);
- Underflow: quando o resultado da operação (\bar{x}) pertence a ($-x_{min}$, 0) U (0, x_{min}).

Referências

• Métodos Numéricos. José Dias dos Santos e Zanoni Carvalho da Silva. (capítulo 1);

Cálculo Numérico – aspectos teóricos e computacionais.
 Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes.
 (capítulo 1).