Ciencias de la Computación I

Gramáticas Regulares

Ciencias de la Computación I - Filminas de Clase - Fac. Cs. Exactas- UNCPBA - 2013

Gramáticas

- Intuitivamente una gramática es un conjunto de reglas para formar correctamente las frases de un lenguaje.
- Por ejemplo, la gramática del castellano (o de cualquier idioma) nos permite:
 - Identificar cuándo una frase es sintácticamente correcta "JUAN CORRE RAPIDO" "RAPIDO JUAN CAMINA"
 - · Generar todas las posibles frases sintácticamente correctas

En esta materia estudiaremos

Gramáticas Formales ⇒ GENERADORAS de Lenguajes Formales

Gramáticas Formales

Una gramática formal se define como una cuadrupla G = <N, T, P,S >

N = conjunto finito de símbolos no terminales

T = conjunto finito de símbolos terminales $N \cap T = \emptyset$

S = símbolo distinguido o axioma S \notin (N \cup T)

P = conjunto finito de reglas de producción (permiten generar cadenas a partir de S)

 $\alpha \rightarrow \beta$

donde:

 $\alpha = \phi A \rho$ $A \in N \cup \{S\}$

 $\beta = \phi \mathbf{w} \rho$ $\phi, \rho, \mathbf{w} \in (\mathsf{N} \cup \mathsf{T})^*$

De acuerdo al formato de las reglas se pueden definir 4 tipos de gramáticas y sus correspondientes lenguajes

Gramática Regular

Ejemplo de Reglas de producción

- 1) $S \longrightarrow aA$
- 2) A → aA
- 3) A—→b
- •S es el símbolo distinguido, comienza a generar
- •A es un símbolo no terminal
- a,b son símbolos terminales
- S se reemplaza por aA ó
- A se reemplaza por aA ó
- A se reemplaza por b

Derivaciones

$$S\Rightarrow aA\Rightarrow ab$$
 $ab\in L$ $S\Rightarrow aA\Rightarrow aaA\Rightarrow aaaA\Rightarrow aaab$ $aab\in L$ $L=\{a^nb/n>0\}$ $S\Rightarrow aA\Rightarrow aaA\Rightarrow aaaA\Rightarrow aaab\in L$ Se pueden generar infinitas cadenas

Ciencias de la Computación I - Filminas de Clase - Fac. Cs. Exactas- UNCPBA - 2012

Gramáticas Regulares (Tipo 3)

- · Generan los lenguajes regulares (reconocidos por Autómatas Finitos)
 - Se definen como una cuadrupla G = <N, T, P, S>

N = conjunto finito de símbolos no terminales

T = conjunto finito de símbolos terminales

S = símbolo distinguido o axioma $S \notin (N \cup T)$

P = conjunto finito de reglas de producción

Formato reglas de producción de Gramáticas Regulares

Lineal a derecha Lineal a izquierda

 $A \rightarrow aB$ $A \rightarrow Ba$

 $A \rightarrow a$ $A \rightarrow a$

 $S \to \epsilon$ (para generar la cadena vacía) $S \to \epsilon$ (para generar la cadena vacía)

 $A \in N \cup \{S\}$ $a \in T$ $B \in N$ $A \in N \cup \{S\}$ $a \in T$ $B \in N$

Gramática Regular (Tipo 3)

Ejemplos:

Sea
$$G_1$$
 = <{A}, {a, b}, P₁ , S > donde P_1 = { S \rightarrow aA, A \rightarrow aA, A \rightarrow b }

G₁ es una gramática Lineal a Izquierda o Lineal a Derecha?

G₁ es una gramática regular lineal a derecha que genera el lenguaje:

$$L = \{a^n b / n > 0 \}$$

Ciencias de la Computación I - Filminas de Clase - Fac. Cs. Exactas- UNCPBA - 2012

Gramáticas Regulares

Ejemplo 2

Sea
$$G_2 = \langle A \rangle$$
, $\{a, b\}$, P_2 , $S > donde$ $P_2 = \{S \rightarrow Ab, A \rightarrow Aa, A \rightarrow a\}$

Derivaciones

$$\begin{array}{lll} S \Rightarrow Ab \Rightarrow ab & ab \in L \\ S \Rightarrow Ab \Rightarrow Aab \Rightarrow aab & aab \in L \\ S \Rightarrow Ab \Rightarrow Aab \Rightarrow Aaab \Rightarrow aaab & aaab \in L \end{array}$$

Se pueden generar infinitas cadenas

 ${\sf G_2}$ es una gramática regular lineal a izquierda que genera:

Gramáticas Regulares (Tipo 3)

Derivación inmediata (lineal a derecha):

 $\omega \Rightarrow \beta$ La cadena β se obtiene de la cadena ω en <u>un paso</u> usando las reglas de P. Si $\omega = \alpha A$ y $\beta = \alpha \delta$ entonces:

Cuando A = S puede ser $\delta = \varepsilon$

$$\label{eq:eigenvalues} Ejemplo \qquad \text{Si } G = <\{A\}, \ \{a,b\}, \ P_1, \ S> \quad donde \quad P_1 = \{\ S \rightarrow aA, \ A \rightarrow aA, \ A \rightarrow b\ \}$$

$$S \Rightarrow aA \Rightarrow \underbrace{aaA}_{\alpha} \Rightarrow \underbrace{aaaA}_{\alpha} \Rightarrow aaab$$

$$aaab$$

Ciencias de la Computación I - Filminas de Clase - Fac. Cs. Exactas- UNCPBA - 2012

Gramáticas Regulares (Tipo 3)

Derivación: La cadena β se obtiene de la cadena ω en cero o más pasos usando las reglas de P. Se define la clausura reflexiva y transitiva de \Rightarrow

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n \quad \text{decimos que } \alpha_1 \stackrel{*}{\Rightarrow} \alpha_n \qquad \text{para } \alpha_i \in (\mathsf{N} \cup \mathsf{T})^*$$

Ejemplo

$$\boxed{S \Rightarrow aA \Rightarrow aaA \Rightarrow aaaA \Rightarrow aaab} \xrightarrow{En \ varios \ pasos} S \stackrel{*}{\Rightarrow} aaab$$

Lenguaje generado por una gramática regular G = <N, T, P, S>:

$$L(G) = \{ x / x \in T^* y \mid S \stackrel{*}{\Longrightarrow} x \}$$

Es decir, una cadena $\in L(G)$ si:

- 1) La cadena está formada por símbolos terminales únicamente
- 2) La cadena puede ser derivada a partir de S

Pasaje de Autómata Finito a Gramática Regular

1) e₀ S

Nombrar S si tiene solo arcos salientes

Nombrar S y un no terminal A si tiene arcos salientes, y entrantes

 (e_i) B

Para el resto de los estados asociar un no terminal

3) e_i e_j C

Agregar la regla $B \rightarrow aC$

4) **e**_i **a e**_j **C**

Agregar la reglas $B \to aC$ $B \to a$

5) **e**₀

Agregar la regla $S \rightarrow \epsilon$

Ciencias de la Computación I - Filminas de Clase - Fac. Cs. Exactas- UNCPBA - 2012

Ciencias de la Computación I

Expresiones Regulares

Expresiones Regulares

Se denominan Expresiones Regulares (ER) sobre un alfabeto A, a las expresiones que se pueden construir a partir de las siguientes reglas:

- Ø es ER que describe el lenguaje vacío
- ε es ER que describe el lenguaje (ε) (el lenguaje que contiene sólo la cadena vacía)
- -Para cada símbolo $a \in A$, a es ER que describe el lenguaje $\{a\}$
- Si r y s son ER que describen los lenguajes L(r) y L(s) respectivamente:
 - r + s es ER que describe el lenguaje $L(r) \cup L(s)$
 - r.s es ER que describe el lenguaje L(r). L(s)
 - r* es ER que describe el lenguaje L(r)*
 - Precedencia de operadores (de mayor a menor): *, . , +
 - · Se pueden usar paréntesis

Ciencias de la Computación I - Filminas de Clase – Fac. Cs. Exactas- UNCPBA - 2012

Expresiones Regulares

Las ER describen a los lenguajes regulares (aquellos reconocidos por autómatas finitos y generados por gramáticas regulares).

Ejemplos:

Dado el alfabeto $A = \{a, b\}$

ER	Lenguaje que describe
r = a + b	$L(r) = \{a, b\}$
r = ab	$L(r) = \{ab\}$
$r = a^*b$	$L(\mathbf{r}) = \{a^n b / n \ge 0 \}$
$r = (a + b)^*b$	$L(r) = \{ x / x \in \{a, b\}^* \text{ y x termina en b} \}$
$r = (a + b)^* ab (a + b)^*$	$L(r) = \{ x / x \in \{a, b\}^* \text{ y x contiene ab} \}$

Expresiones Regulares

Ejemplos:

- 1) ¿Qué lenguaje describe ER r_1 = digito . dig*? donde digito = {1, 2, 3, 4, 5, 6, 7, 8, 9} y dig = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- 2) ¿Qué lenguaje describe ER r_2 = letra. (letra + dig)*? donde letra = {a, b, ..., z} y dig = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- 3) ¿Qué lenguaje describe ER $r_3 = ab^* + a$?
- 4) ¿Qué lenguaje describe ER $r_4 = ab^*$?
- 5) ¿Qué puede decirse de r₃ y r₄?

Ciencias de la Computación I - Filminas de Clase - Fac. Cs. Exactas- UNCPBA - 2012

Expresiones Regulares

Expresiones regulares equivalentes:

Dos ER r_1 y r_2 son equivalentes $r_1 = r_2$ si $L(r_1) = L(r_2)$

(es decir, r₁ y r₂ describen el mismo conjunto de cadenas)

Leyes algebraicas para expresiones regulares

Sean r, s y t expresiones regulares:

1)
$$r + \emptyset \equiv \emptyset + r \equiv r$$

7)
$$r.(s+t) \equiv r.s + r.t$$

2)
$$r \cdot \epsilon = \epsilon \cdot r = r$$

8)
$$(s + t) \cdot r \equiv s \cdot r + t \cdot r$$

3)
$$r \cdot \emptyset \equiv \emptyset \cdot r \equiv \emptyset$$

9)
$$r + r \equiv r$$

$$4) r + s \equiv s + r$$

10)
$$\emptyset^* \equiv \varepsilon$$

5)
$$(r + s) + t \equiv r + (s + t)$$

11)
$$r \cdot r^* \equiv r^* \cdot r$$

6)
$$(r.s).t = r.(s.t)$$

12)
$$r \cdot r^* + \varepsilon \equiv r^*$$

13)
$$(r^* \cdot s^*)^* \equiv (r + s)^*$$

Aplicación de Leyes Algebraicas para ER

Ejemplo

$$r = a \cdot b^* + a$$
 Aplica ley

$$a \cdot b^* + a \equiv a \cdot (b^* + \epsilon)$$
 (7)

$$\equiv a \cdot (\epsilon + b \cdot b^* + \epsilon)$$
 (12)

$$\equiv$$
 a . ($\varepsilon + \varepsilon + b.b^*$) (4)

$$\equiv$$
 a . (ε + b.b*) (9)

$$\equiv a \cdot b * \tag{12}$$

$$a \cdot b^* + a \equiv a \cdot b^*$$
 son ER equivalentes

