10.15 Exercice

$$x\mapsto x^{-1}$$
 est un morphisme de $G\Leftrightarrow \forall (x,y)\in G^2, (xy)^{-1}=x^{-1}y^{-1}$

 ${\rm Or}:$

$$(xy)^{-1} = y^{-1}x^{-1}$$

 $\Leftrightarrow x^{-1}y^{-1} = y^{-1}x^{-1}$

Donc G est commutatif.

11.1 Exercice

$$AB$$
 est symétrique $\Leftrightarrow AB=^t(AB)$
$$\Leftrightarrow AB=^tB\times^tA$$

$$\Leftrightarrow AB=BA$$

11.4 Exercice

Analyse:

 $\overline{\text{On suppose que}}$:

$$X + tr(X)A = B$$
 Donc $X = B - tr(X)A$ Donc $tr(X) = tr(B) - tr(X)tr(A)$ Donc $tr(X) = \begin{cases} \frac{tr(B)}{1 + tr(A)} & \text{si } tr(A) \neq -1 \\ tr(X) + tr(B) & \text{si } tr(A) = -1 \end{cases}$ Donc $X = B - \frac{tr(B)}{1 + tr(A)}A$

Synthèse :

$$\overline{\text{On pose } X} = B - \frac{tr(B)}{1 + tr(A)} A$$

11.15 Exercice

$$MX = 0 \Leftrightarrow \exists (x, y, z) \in \mathbb{R}^3, \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 3 \\ -1 & 4 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 0 \\ y + 3z = 0 \\ -x + 4y + 7z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 0 \\ y + 3z = 0 \\ 2y + 8z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + z = 0 \\ y + 3z = 0 \\ 2z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

12.1 Exercice

On remarque que
$$2^{10} \equiv 1 \pmod{11}$$
 et que $3^5 \equiv 1 \pmod{11}$.
Donc $2^{123} \equiv 2^3 \equiv 8 \pmod{11}$ et $3^{121} \equiv 3^1 \equiv 3 \pmod{11}$.
Donc $\boxed{2^{123} + 3^{121} \equiv 0 \pmod{11}}$.

12.2 Exercice

On raisonne par disjonction de cas :

$n \pmod{6}$	$n+2 \pmod{6}$	$7n-5 \pmod{6}$	$n(n+2)(7n-5) \pmod{6}$
0	2	1	0
1	3	2	0
2	4	3	0
3	5	4	0
4	0	5	0
5	1	0	0

Donc $\forall n \in \mathbb{Z}, n(n+2)(7n-5) \equiv 0 \pmod{6}$

12.3 Exercice

1. On cherche une puissance cyclique de 3 (mod 25).

$$3 \equiv 3 \pmod{25}$$

 $3^2 \equiv 9 \pmod{25}$
 $3^3 \equiv 2 \pmod{25}$
 $3^4 \equiv 6 \pmod{25}$
 $3^5 \equiv 18 \pmod{25}$
 $3^6 \equiv 4 \pmod{25}$
 $3^7 \equiv 12 \pmod{25}$
 $3^8 \equiv 11 \pmod{25}$
 $3^9 \equiv 8 \pmod{25}$
 $3^{10} \equiv 24 \equiv -1 \pmod{25}$

Donc
$$3^{2189} \equiv 3^{2180} \times 3^9 \equiv (3^{10})^{218} \times 3^9 \equiv (-1)^{218} \times 8 \equiv 8 \pmod{25}$$

2. On cherche une puissance cyclique de 55 (mod 8).

$$55 \equiv 7 \pmod{8}$$
$$55^2 \equiv 1 \pmod{8}$$

Donc
$$55^{970321} \equiv 55^1 \equiv 7 \pmod{8}$$

3. On cherche une puissance cyclique de $1234^{4312} \pmod{7}$ et de $4321^{1234} \pmod{7}$.

$$1234^1 \equiv 2 \pmod{7}$$
 et $4321^1 \equiv 2 \pmod{7}$
 $1234^2 \equiv 4 \pmod{7}$ et $4321^2 \equiv 4 \pmod{7}$
 $1234^3 \equiv 1 \pmod{7}$ et $4321^3 \equiv 1 \pmod{7}$

Donc $1234^{4312} \equiv 1234^{3\times 1437+1} \equiv 2 \pmod{7}$ et $4321^{1234} \equiv 4321^{3\times 411+1} \equiv 2 \pmod{7}$.

Donc
$$1234^{4321} + 4321^{1234} \equiv 4 \pmod{7}$$

12.4 Exercice

1. Soit $n \in \mathbb{N}$.

On remarque que 4|100, donc $\forall k \geq 2 \in \mathbb{N}, 4|a_k$.

$$4|n \Leftrightarrow k| \sum_{k=0}^{r} a_k \times 10^k$$
$$\Leftrightarrow k| \sum_{k=2}^{r} (a_k \times 10^k) + a_1 \times 10 + a_0$$

Or comme on sait que $k | \sum_{k=2}^{r} (a_k \times 10^k)$, nécessairement, $k | (a_0 + a_1 \times 10)$.

12.8 Exercice

1.

$$a^{n} - 1 = (a - 1) \sum_{n=1}^{k=0} a^{k}$$