biofundamentals

A year-long introduction to the core concepts of evolutionary, molecular, cellular, developmental systems & their genetic basis

Michael W. Klymkowsky & Melanie M. Cooper

Molecular, Cellular & Developmental Biology, University of Colorado Boulder Chemistry, Michigan State University

You know how it is.

You pick up a book, flip to the dedication & find that, once again, the author has dedicated a book to someone else & not to you.

Not this time.

Because we haven't yet met/have only a glancing acquaintance/are just crazy about each other/haven't seen each other in much too long/are in some way related/will never meet, but will, I trust, despite that, always think fondly of each other....

This one's for you.

for the explorer inside all of us

courtesy of Neil Gaiman

To the gentle reader. If when reading, you find a mistake or significant omission, please let us know. In the life of the mind, there is no more valuable friend or ally than the engaged & critical reader.

- M.K. but I am sure someone has already captured the sentiment.

version: Friday, June 21, 2019

Acknowledgements 7	
Preface: A biofundamentalist's approach to teaching & learning biology	y 8
How biology differs from physics and chemistry 9	
Your background and our (Socratic) teaching approach 11	
PART I - Foundations 14	
Chapter 1: Understanding (biological) science & thinking scientifically	15
The interconnectedness (self-consistency) of science 17	.0
Models, hypotheses, and theories 18	
Knowing what you know: constructing models, answers, explanations	& critiques 19
Science is social 21	& chiliques 19
Teaching and learning science 22	
Understanding scientific ideas 23	
Distinguishing the scientific from the trans-scientific 24	
Chapter 2: Life and its origins 26	
What is life, exactly? 27	
The cell theory and the continuity of life 29	
The organization of organisms 30	
Spontaneous generation and the origin of life 31	
The death of vitalism 34	
Thinking about life's origins 35	
Experimental studies on the origins of life 35	
Mapping the history of life on earth 37	
Fossil evidence for the history of life on earth 38	
Life's impact on the earth 40	
Chapter 3: Evolutionary mechanisms and the diversity of life 43	
•	
Organizing organisms, hierarchically 45 Natural and un-natural groups 47	
Natural and un-natural groups 47 Evolution: making theoretic sense of Linnaean classification 47	
Fossils and family relationships: introducing cladistics (briefly)	Ω
Evolution theory's core concepts 50	J
So what do we mean by genetic factors? 51	
Limits on populations 52	
The conceptual leap made by Darwin and Wallace 54	
Mutations and the origins of genotype-based variation 55	
Genotype-phenotype relationships: discrete and continuous traits 57	7
Variation, selection, and speciation 59	
Types of (simple) selection 60	
Considering stochastic processes 63	
Population size, founder effects and population bottlenecks 65	
A reflection on the complexity of phenotypic traits 71	
Gene linkage: one more complication 72	
Speciation & extinction 74	
Mechanisms of speciation 76	
Signs of evolution: homology and convergence 80	
Homologies provide evidence for a common ancestor 84	
Anti-evolution arguments 84	
Chapter 4: Social evolution and sexual selection 86	
Selecting social (cooperative) traits 88	
Community behaviors & quorum sensing 89	
Active (altruistic) cell death and survivors 91	
Inclusive fitness, kin and group selection, and social evolution 92	2
Group selection 94	
Defense against social cheaters 95	
Driving the evolutionary appearance of multicellular organisms 97	7
Origins and implications of sexual reproduction 98	

biofundamentals™ Klymkowsky & Cooper - copyright 2010-2020

page 3 of 305

version: Friday, June 21, 2019

Sexual dimorphism 99	
Sexual selection 102	
Curbing runaway selection 106	
Chapter 5: Molecular interactions, thermodynamics & reactions	on coupling 108
A very little thermodynamics 108	
Thinking entropically (and thermodynamically) 111	
Reaction rates 113	
Coupling reactions 115	
Inter- and Intra-molecular interactions 117	
Covalent bonds 118	
Bond stability and thermal motion (a non-biological moment)	119
Bond polarity, inter- and intramolecular interactions 122	
The implications of bond polarity 122	
Interacting with water 124	
Turning to entropy 125	
Chapter 6: Membrane boundaries and capturing energy	127
Defining the cell's boundary 127	
The origin of biological membranes 130	
Transport across membranes 131	
Channels and carriers 134	
Generating gradients: using coupled reactions and pumps	136
Simple Phototrophs 137	
Chemo-osmosis (an overview) 140	
Oxygenic photosynthesis 140	
Chemotrophs 142	
Using the energy stored in membrane gradients 144	
Osmosis and living with and without a cell wall	4.40
An evolutionary scenario for the origin of eukaryotic cells	146
Making a complete eukaryote 147 Chapter 7: The malecular nature of the beredity material	151
Chapter 7: The molecular nature of the heredity material	
Discovering how nucleic acids store genetic information	153
Locating hereditary material within the cell 155	
Identifying DNA as the genetic material 156	
Unraveling Nucleic Acid Structure 158	
DNA, sequences & information 161	
Discovering RNA: structure and some functions 162	
DNA replication 163 Replication machines 166	
Replication machines 166 Accuracy and error in DNA synthesis 167	
Further replication complexities in eukaryotes: telomeres	168
Topoisomerases 169	100
Mutations, deletions, duplications & repair 170	
A step back before going forward: what, exactly, is a gene a	anvway? 171
Alleles, their origins and their impact on evolution 173	anyway. II i
DNA repeat diseases and genetic anticipation 175	
Chapter 8: Peptide bonds, polypeptides, proteins, and molec	ular machines 177
Specifying a polypeptide's sequence 179	
Protein synthesis: transcription (DNA to RNA) 181	
Ribosomes 184	
The translation (polypeptide synthesis) cycle 185	
Effects of point mutations on polypeptides and proteins	187
Mutations influencing splicing 189	•
Non-sense mediated RNA decay 190	
Alarm generation 192	
Turning polypeptides into proteins 193	
Factors influencing polypentide folding and structure 194	

Chaperones 196	
Regulating protein activity, concentrations and stability (half-life)) 198
Allosteric and post-translational regulation 199	
Diseases of folding and misfolding 200	
Molecular machines 202	works 202
Chapter 9: Organizing and expressing genes in regulatory network and information within DNA 205	WOIRS 203
Locating information within DNA 205	
Interaction networks and model systems 209 E. coli as a model system 210	
=: 00:: 40 4: :::040: 0/010::: = :0	211
Adaptive behavior and gene networks (the lac response) 2 Final thoughts on (molecular) noise, for now 215	211
	216
Targeting proteins to where they need to be: membrane proteins	
Nuclear targeting and nuclear exclusion in eukaryotes 218	5 211
Intercellular signaling: signals, receptors & responses 219	
Signaling molecules and receptors 220	
Cellular reprogramming: embryonic and induced pluripotent ster	m cells221
Part II: From molecular biology to genetics and genetic techno	
A brief review of concepts with which we hope you should alre	adv be familiar with 224
Words, terms, and processes we (really) need to understand: 2	
Where do genes, alleles, and mutations come from? 226	 -
Alleles 226	
Phenotypes 227	
Muller's Morphs 228	
Chapter 11: Reproduction in prokaryotes and horizontal gene t	ransfer 232
Asexual reproduction in bacteria and archaea 232	
Conjugation: what counts as sex in prokaryotes 233	
Other naturally occurring horizontal gene transfer mechanisms 2	235
Transformation 235	
Viruses moving genes: transduction 236	200
	238
Asexual reproduction in a eukaryote: making a (somatic) clone 2	238
Ploidy during the cell cycle 239	
Molecular choices and checkpoints 240	
Meiosis, fertilization, and embryogenesis 244 Steps in meiosis: from diploid to haploid 245	
Recombination & independent segregation 246	
Linkage & haplotypes 249	
X-inactivation and sex-linked traits 250	
X-linked diseases and mono-allelic gene expression 251	
	253
Mutations into alleles 253	
Luria & Delbrück: Discovering the origin of mutations254	
Forward and reverse genetics 256	
Generating mutations rationally - CRISPR CAS9 and related ted	chnologies 259
Longer term mutation / evolution studies 260	
Chapter 14: Genome dynamics and pathogenic somatic mutati	ons 262
Rates and effects of somatic mutation 263	
Non-disjunction: a disease of aberrant chromosome segregation	n meiosis 264
Genome dynamics 265	
Gene duplications and deletions 266	
Orthologs and paralogs 267 Transposons: moving DNA within a gonome (and woird gonetics)	268
Transposons: moving DNA within a genome (and weird genetics) Chapter 15: Becoming Mendelian: analyzing alleles in terms of	
Chapter 15: Becoming Mendelian: analyzing alleles in terms of	
Chi square analysis, hypothesis testing, and numbers that ar	re less than infinity 274

 $biofundamentals^{\scriptscriptstyle \mathsf{TM}}$

page 5 of 305

version: Friday, June 21, 2019

Dihybrid crosses and linkage 276

Using web-based bioinformatic tools: Genomicus 278

Genetic complementation 280

Interacting traits: synthetic lethality and co-dominance 282

Interacting traits: epistasis 283
Temperature sensitive alleles 285

Measuring evolution's impact on allele frequencies: Hardy-Weinberg 285

The persistence of deleterious alleles 286

Chapter 16: Germ line alleles and human pathologies 288

Developing multicellular organisms: from egg to embryo and more 288

Maternal and paternal effects 290

Conflicts between mother and fetus: imprinting 290

Genetic analysis of developmental processes: maternal and zygotic effect mutations 291

Mitochondrial inheritance 292

Traits and the number of genes involved 293

Where is a gene expressed? 294
Back to Mendelian determinants 297

Disease-associated alleles 298

Concordance between monozygotic twins and genetic influence on a trait 298

Using web-based bioinformatic tools: Exac Browser 299

Using web-based bioinformatic tools: BLAST 301

Genetic anticipation 301

Conclusions, good bye and good luck 304 Considering embryonic development 305

Coming in Spring of 2020 305

biofundamentalsTM

Klymkowsky & Cooper - copyright 2010-2020