Matematická analýza 2

Písemná část zkoušky (06.06.2023)

Jméno: Podpis:

Příklad	1.	2.	3.	4.	5.	\sum
Body						

Před zahájením práce

- Vyplňte čitelně rubriku "Jméno" a podepište se.
- Během písemné zkoušky smíte mít na lavici pouze zadání písemky, psací potřeby, průkaz totožnosti a papíry, na které zkoušku vypracováváte.
- Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata.
- Veškeré své odpovědi zdůvodněte.

Soupis vybraných vzorců

- $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$ pro každé $\alpha, \beta \in \mathbb{R}$.
- $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ pro každé $\alpha, \beta \in \mathbb{R}$.
- $\sin^2 \alpha = \frac{1-\cos(2\alpha)}{2}$ pro každé $\alpha \in \mathbb{R}$.
- $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$ pro každé $\alpha \in \mathbb{R}$.
- ullet Jakobián transformace do polárních souřadnic: r.
- \bullet Jakobián transformace do válcových souřadnic: r.
- Jakobián transformace do sférických souřadnic: $r^2 \sin \theta$.

Zadání

1. [10 bodů] Je dáno vektorové pole

$$F(x, y, z) = (x - \alpha z e^{2x}, 3y^2, z^2 - e^{2x}),$$

kde $\alpha \in \mathbb{R}$.

- (a) Určete všechny hodnoty parametru α , pro které je vektorové pole F potenciálové.
- (b) Pro hodnoty parametru α z bodu (a) nalezněte potenciál f vektorového pole \mathbf{F} tak, aby f(0,0,1)=0.
- (c) Pro hodnoty parametru α z bodu (a) vypočtěte křivkový integrál vektorového pole \boldsymbol{F} podél kružnice $C = \{(x,y,0) \in \mathbb{R}^3 \mid (x-1)^2 + y^2 = 1\}$ orientované proti směru hodinových ručiček, díváme-li se na ní shora.
- 2. [10 bodů] Jsou dány body $\mathbf{u} = (-2, -1), \mathbf{v} = (0, 1)$ a $\mathbf{w} = (2, 2)$.
 - (a) Formulujte úlohu o proložení přímky body $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ metodou nejmenších čtverců (tj. uveďte, zda hledáte body minima nebo maxima funkce f na M a specifikujte funkci f a množinu M).
 - (b) Vyřešte úlohu z bodu (a).
- 3. [10 bodů] Vypočtěte integrál funkce f(x,y)=y přes kompaktní množinu $M\subseteq\mathbb{R}^2$ ohraničenou křivkami $y=x^2+1$ a $y=3-x^2$.
- 4. [10 bodů] Ať kompaktní množina M je částí kuželu $z \ge \sqrt{x^2+y^2}$ ležící mezi rovinami z=1 a z=2. Pomocí Gaussovy věty vypočtěte plošný integrál vektorového pole

$$\mathbf{F}(x, y, z) = (xy^2, x^2y, e^x - \cos y)$$

přes plochu $S=\partial M$ orientovanou vnějším normálovým polem.

5. [10 bodů] Je dána funkce

$$f(t) = -t, \quad t \in [-\pi, \pi).$$

- (a) Nalezněte Fourierovu řadu funkce f.
- (b) Určete součet Fourierovy řady funkce f na intervalu $[5\pi, 7\pi)$.