Programming in Prolog Search Space, Unification, Recursion

Claudia Schulz

Logic and Al Programming (Course 518)

What you will learn in this lecture

How does Prolog generate answers?

How does recursion work in Prolog?

How does Prolog generate answers?

A query with various calls

```
?- person(ada), quit(bob), quit(B), B \setminus= bob
```

- try to prove person(ada), then try to prove quit(bob), ...
 - ⇒ try to prove every call **from left to right**
 - ⇒ depth-first search
- try to match (unify) current call with head of a clause, then replace it with body of chosen clause
 - ⇒ try clauses from top to bottom
- call succeeds if it is unified with a fact or it evaluates to true
 (5 = 5); fails otherwise
- query succeeds ("yes") if every call succeeds; fails otherwise ("no")

Unification

match a call in a query to the head of a clause

- easy for constants, e.g. sunny
- variables can be matched with other variables or constants, e.g. X matches sunny
- what about compound terms?
 e.g. father(person(X), john)

Prolog terms

- constant: starts with lower case letter sunny
- number: 5
- variable: starts with upper case letter Sunny
- compound term: function name(term 1, ..., term n) father(person(X), john)
 note: this has nothing to do with functions in mathematics!

Unification Rules

two terms unify (=) if and only if

- 1 two constants/numbers: if and only if they are the same
 - bill = bill
 - **7** = 7
 - bill \= 7
 - note: 'bill'= bill
 - note: '7'\= 7

Unification Rules

two terms unify (=) if and only if

- 2 a constant/number and a variable: always unify ⇒ variable is instantiated with constant/number
 - X = 7 X instantiated with 7
 - bill = X X instantiated with bill
- 3 two variables: always unify
 - \Rightarrow variables are considered the same, i.e. have same value
 - X = Y
 X and Y are the same: X = _154, Y = _154

 \Rightarrow instantiation of variables is sometimes called **variable binding**

Unification Rules

two terms unify (=) if and only if

- two compound terms: if and only if
 - 1 same function name
 - 2 same number of arguments
 - 3 all corresponding arguments unify
 - 4 variable instantiations are compatible
 - ⇒ variables are instantiated with unified constants/numbers
 - k(X,p) = k(Y,Mp) instantiation: X = Y, Mp = p
 - k(X,p) = k(f(1,p),Mp)
 instantiation: X = f(1,p), Mp = p
 - $\mathbf{k}(X,p) = \mathbf{k}(f(1,p),1)$
 - k(X,p) \= k(f(1,p),Mp,Y)
 - $\mathbf{k}(X,p,m(Y)) = k(t(Z), Z, X)$
 - $\mathbf{k}(X,p,t(Y)) = k(t(Z), Z, X)$

Unification - Try it yourself

Do these terms unify? If so, what is the instantiation of the variables?

- m(X,Y) and p(Y,X)
- mia(X) and 'mia'(f(a))
- \bullet t(X,Y) and t(Y,Z)
- p(1,Y,f(a)) and p(X,m,Z)
- k(X,m(Y)) and k(p,X)
- k(X,m(Y)) and k(m(5),X)
- s(X,Y) and s(Y,f(X))

- = Do two terms unify?
- == Are two terms identical?

$$X = Y, X == Y$$

$$\Rightarrow$$
 if term1 == term2 then term1 = term2

Note the difference to the is and the $=:= (=\=)$ predicates

■ X is
$$5+7$$
 X =\= $5+7$ X = $5+7$ X \== $5+7$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

```
Query: p(ada), q(bob), q(B), B \setminus = bob
```

Solution:

```
cl_1: p(bob).
cl_2: p(X).
cl_3: q(X): -u(X), p(X).
cl_4: q(bob).
cl_5: u(ada).
cl_6: u(sam)
```



```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution: $? - p(ada), q(bob), q(B), B \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$? - p(ada), q(bob), q(B), B \setminus = bob$$

$$cl_2$$
 (ada = $_{-}123$)

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

 $? - p(ada), q(bob), q(B), B \setminus = bob$ cl_2 (ada = .123) $? - q(bob), q(B), B \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$

$$cl_2$$

$$(ada = _123)$$

$$?-q(bob), q(B), B \setminus = bob$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$

$$cl_2 \\ (ada = .123)$$

$$?-q(bob), q(B), B \setminus = bob$$
Choice Point

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = _123)$
 $?-q(bob), q(B), B \setminus = bob$
 cl_3
 $(bob = _436)$

Choice
Point

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$\begin{array}{c|c} ?-p(ada), q(bob), q(B), B \setminus = bob \\ \hline cl_2 \\ (ada = .123) \\ \hline ?-q(bob), q(B), B \setminus = bob \\ \hline cl_3 \\ (bob = .436) \\ \hline ?-u(bob), p(bob), q(B), B \setminus = bob \\ \hline \end{array}$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$\begin{array}{c|c} ?-p(ada), q(bob), q(B), B \setminus = bob \\ \hline & cl_2 \\ (ada = .123) \\ \hline ?-q(bob), q(B), B \setminus = bob \\ \hline & cl_3 \\ (bob = .436) \\ \hline ?-u(bob), p(bob), q(B), B \setminus = bob \\ \hline \end{array}$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution:

$$\begin{array}{c|c} ?-p(ada), q(bob), q(B), B \setminus = bob \\ \hline cl_2 \\ (ada = _123) \\ \hline ?-q(bob), q(B), B \setminus = bob \\ \hline cl_3 \\ (bob = _436) \\ \hline ?-u(bob), p(bob), q(B), B \setminus = bob \\ \hline \text{no applicable} \\ \end{array}$$

clause

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

```
Query: p(ada), q(bob), q(B), B \setminus = bob Solution:
```

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$\begin{array}{c|c} ?-p(ada), q(bob), q(B), B \setminus = bob \\ \hline cl_2 \\ (ada = _123) \\ \hline ?-q(bob), q(B), B \setminus = bob \\ \hline cl_3 \\ (bob = _436) \\ \hline ?-u(bob), p(bob), q(B), B \setminus = bob \\ \hline no applicable \\ clause \\ \hline \end{array}$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution:

$$\begin{array}{c|c} ?-p(ada), q(bob), q(B), B \setminus = bob \\ \hline cl_2 \\ (ada = .123) \\ \hline ?-q(bob), q(B), B \setminus = bob \\ \hline cl_3 \\ (bob = .436) \\ \hline ?-u(bob), p(bob), q(B), B \setminus = bob \\ \hline no applicable \\ clause \\ \end{array}$$

fail

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$

$$cl_2 \\ (ada = _123)$$

$$?-q(bob), q(B), B \setminus = bob$$

$$cl_3$$

$$fail$$
Choice
Point

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```



```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = .123)$
 $?-q(bob), q(B), B \setminus = bob$
 cl_3
 cl_4

fail

 $?-q(B), B \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = .123)$
 $?-q(bob), q(B), B \setminus = bob$
 cl_3
 cl_4

fail

 $?-q(B), B \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = .123)$
 $?-q(bob), q(B), B \setminus = bob$
 cl_3
 cl_4
 $fail$
 $?-q(B), B \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = .123)$
 $?-q(bob), q(B), B \setminus = bob$
 cl_3
 cl_4
 cl_4
 cl_4
 cl_4
 cl_4

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```



```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$(P, p(ada), q(bob), q(B), B = bob)$$

$$cl_2$$

$$(ada = .123)$$

$$Point$$

$$cl_3$$

$$cl_4$$

$$fail$$

$$CP$$

$$Point$$

$$cl_3$$

$$(B = .824)$$

$$Point$$

$$cl_3$$

$$(B = .824)$$

$$Point$$

$$cl_3$$

$$(B = .824)$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

?
$$-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = .123)$
? $-q(bob), q(B), B \setminus = bob$
 cl_3
 cl_4

fail

 CP
? $-q(B), B \setminus = bob$
 cl_3
 $(B = .824)$
? $-u(.824), p(.824), .824 \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$\begin{array}{c|c} ?-p(ada), q(bob), q(B), B \setminus = bob \\ \hline cl_2 \\ (ada = .123) \\ \hline ?-q(bob), q(B), B \setminus = bob \\ \hline cl_3 \\ (B = .824) \\ \hline \\ CP \hline ?-u(.824), p(.824), .824 \setminus = bob \\ \hline \end{array}$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

CP
$$?-q(B), B = bob$$

$$cl_3 \\ (B = .824)$$

$$?-u(.824), p(.824), .824 = bob$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

CP
$$?-q(B), B \setminus = bob$$
 cl_3
 $(B = .824)$

CP $?-u(.824), p(.824), .824 \setminus = bob$
 cl_5
 $(.824 = ada)$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

CP
$$\boxed{?-q(B), B \setminus = bob}$$

$$cl_3$$

$$(B = .824)$$
CP $\boxed{?-u(.824), p(.824), .824 \setminus = bob}$

$$cl_5$$

$$(.824 = ada)$$

$$\boxed{?-p(ada), ada \setminus = bob}$$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution:

(ada = .581)

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution:

CP
$$?-q(B), B = bob$$
 cl_3
 $(B = .824)$

CP $?-u(.824), p(.824), .824 = bob$
 cl_5
 $(.824 = ada)$
 $?-p(ada), ada = bob$
 cl_2
 $(ada = .581)$

 $|?-ada \rangle = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution:

 $? - ada \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution:

CP
$$? - q(B), B \setminus = bob$$
 cl_3
 $(B = .824)$

CP $? - u(.824), p(.824), .824 \setminus = bob$
 cl_5
 $(.824 = ada)$
 $? - p(ada), ada \setminus = bob$
 cl_2
 $(ada = .581)$

 $? - ada \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

Query: p(ada), q(bob), q(B), $B \setminus = bob$ Solution:

 $|?-ada \rangle = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

CP
$$? - q(B), B \setminus = bob$$
 cl_3
 $(B = .824)$

CP $? - u(.824), p(.824), .824 \setminus = bob$
 cl_5
 $(.824 = ada)$
 $? - p(ada), ada \setminus = bob$
 cl_2
 $(ada = .581)$
 $? - ada \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

CP
$$?-q(B), B \setminus = bob$$
 cl_3
 $(B = .824)$

CP $?-u(.824), p(.824), .824 \setminus = bob$
 cl_5
 $(.824 = ada)$
 $?-p(ada), ada \setminus = bob$
 cl_2
 $(ada = .581)$
 $?-ada \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

CP
$$?-q(B), B \setminus = bob$$
 cl_3
 $(B = .824)$

CP $?-u(.824), p(.824), .824 \setminus = bob$
 cl_5
 $(.824 = ada)$
 $?-p(ada), ada \setminus = bob$
 cl_2
 $(ada = .581)$
 $?-ada \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

CP
$$?-q(B), B \setminus = bob$$
 cl_3
 $(B = .824)$

CP $?-u(.824), p(.824), .824 \setminus = bob$
 cl_5
 $(.824 = ada)$
 $?-p(ada), ada \setminus = bob$
 cl_2
 $(ada = .581)$
 $?-ada \setminus = bob$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```



```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = .123)$
 $?-q(bob), q(B), B \setminus = bob$
 cl_3
 cl_4
 $fail$
 CP
 $?-q(B), B \setminus = bob$
 $B = ada$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$?-p(ada), q(bob), q(B), B \setminus = bob$$
 cl_2
 $(ada = .123)$
 $?-q(bob), q(B), B \setminus = bob$
 cl_3
 cl_4
 $fail$
 CP
 $?-q(B), B \setminus = bob$
 $B = ada$

```
cl_1 : p(bob).

cl_2 : p(X).

cl_3 : q(X) : -u(X), p(X).

cl_4 : q(bob).

cl_5 : u(ada).

cl_6 : u(sam)
```

$$B = ada$$

The whole search tree

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query: p(ada), q(bob), $q(B), B \setminus = bob$ Solution:

B = ada

Are there any other solutions to the query?

Prolog: Are there any choice points left that might lead to further solutions?

starting from the last choice point

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query: p(ada), q(bob), $q(B), B \setminus = bob$ Solution:

 $\mathbf{B} = \mathbf{ada}$

 $cl_1: p(bob).$ $cl_2: p(X).$ $cl_3: q(X):$ -u(X), p(X). $cl_4: q(bob).$ cl_5 : u(ada). $cl_6: u(sam)$

Query: p(ada), q(bob), $q(B), B \setminus = bob$

Solution:

B = ada

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query: $p(ada), q(bob), q(B), B \setminus = bob$

Solution:

 $\mathbf{B} = \mathbf{ada}$

 $cl_1: p(bob).$ $cl_2: p(X).$ $cl_3: q(X):$ -u(X), p(X). $cl_4: q(bob).$ cl_5 : u(ada). $cl_6: u(sam)$

Query: p(ada), q(bob), $q(B), B \setminus = bob$

Solution:

B = ada

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query: $p(ada), q(bob), q(B), B \setminus = bob$

Solution:

B = ada

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query: $p(ada), q(bob), q(B), B \setminus = bob$

Solution:

 $\mathbf{B} = \mathbf{ada}$

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query: $p(ada), q(bob), q(B), B \setminus = bob$

Solution:

B = ada

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query:

p(ada), q(bob), $q(B), B \setminus = bob$

Solution:

 $\mathbf{B} = \mathbf{ada}$

 $cl_1 : p(bob).$ $cl_2 : p(X).$ $cl_3 : q(X) :$ -u(X), p(X). $cl_4 : q(bob).$ $cl_5 : u(ada).$ $cl_6 : u(sam)$

Query: $p(ada), q(bob), q(B), B \setminus = bob$

Solution:

 $\mathbf{B} = \mathbf{ada}$

 $cl_1: p(bob).$ $cl_2: p(X).$ $cl_3: q(X):$ -u(X), p(X). $cl_4: q(bob).$ $cl_5: u(ada).$ $cl_6: u(sam)$

Query:

p(ada), q(bob), $q(B), B \setminus = bob$

Solution:

 $\mathbf{B} = \mathbf{ada}$

 $cl_1: p(bob).$ $cl_2: p(X).$ $cl_3: q(X):$ -u(X), p(X). $cl_4: q(bob).$ cl_5 : u(ada). $cl_6: u(sam)$

Query: p(ada), q(bob), $q(B), B \setminus = bob$

Solution:

B = ada

B = sam

No more

solutions

trace

To see how this looks in Prolog:

```
trace.
:
notrace.
```

Summary – How does Prolog generate answers?

A general query Q

?- C1 ..., Cn

- 1 try to prove first call C1
 - by unifying it with next matching head of a clause (top to bottom)
- 2 if unification fails go back to last choice point and retry
- \blacksquare else substitute C_1 in Q with conditions in body of the clause
- 4 repeat 1.) and 2.) until
 - no goals left in query solution found⇒ return all variable bindings
 - goals left in query & no choice points left to retry unification query fails/cannot be proven
 - \Rightarrow return no

Summary – How does Prolog generate answers?

Remember: order matters

- Order of goals in a query first one first
- Order of clauses in a program top one first
- Order of conditions in a clause first one first

What is recursion?

Most powerful technique for programming in Prolog! (in particular for working with lists – more on that later)

 \Rightarrow If you understand recursion, you can program in Prolog

The **idea** of recursion:

- similar to while/for loop: repeat a procedure until some lower/upper bound is reached
- in contrast to while/for loop: a whole function calls itself repeatedly
- in Prolog: a predicate calls itself
 ⇒ one of the conditions in a clause refers to the same predicate as the head of this clause

A recursive predicate

```
 \begin{split} my\_predicate\_name(X,Y) :- \\ check\_first(X), \\ do\_second(Y,Z), \\ my\_predicate\_name(X,Z). \end{split}
```

Ancestor Example

```
is_ancestor_of(Ancestor, Person) :-
human(Person),
human(Ancestor),
is_parent_of(Parent, Person),
is_ancestor_of(Ancestor, Parent).
```

The Ancestor Example corrected

Ancestor Example

```
is_ancestor_of(Parent, Person) :-
    is_parent_of(Parent, Person).

is_ancestor_of(Ancestor, Person) :-
    is_parent_of(Parent, Person),
    human(Person),
    is_ancestor_of(Ancestor, Parent),
    human(Ancestor).
```

Base case & recursive definition

Don't forget the **base case**

⇒ Prolog won't find the correct solutions or even loop forever

Defining a recursive predicate

- **1 base case** most basic case (most basic arguments) which is not recursive; terminates the recursion
- recursive definition one of the conditions is the predicate itself

Order matters – especially for recursion

```
Natural Number Example
Tail1:
                           NoTail1:
natural no(0).
                           natural_no(0).
natural_no(X) :-
                           natural_no(X) :-
   Y is X-1,
                               natural_no(Y),
   natural no(Y).
                               Y is X-1.
Tail2:
                           NoTail2:
natural_no(0).
                           natural_no(0).
natural_no(X) :-
                           natural_no(X) :-
   X is Y+1,
                               natural_no(Y),
   natural no(Y).
                               X is Y+1.
```

Order matters – especially for recursion

	test	generate	reversed, test 0
Tail1	1	Х	loop
Tail2	X	X	no
NoTail1	Х	X	loop
NoTail2	1	✓	loop

- base case (usually) before recursive definition
- think about whether you want to test or generate (or both)
- tail recursion is more efficient!
 - ⇒ but it's not always possible to use it

Prolog versus Logic

The previous examples have the same **declarative** (**logical**) **meaning** but a different **procedural meaning** $\Rightarrow \text{ different behaviour}$

```
p :- p
```

- declarative meaning: "If p holds then p holds"
- in logic: $p \rightarrow p$ ⇒ a tautology – it's always true
- procedural meaning: "To prove p you must prove p" ⇒ ?- p loops forever

So: Prolog is not a full logic programming language! (not fully declarative)

What you should know now

- How does Prolog generate answers?
 - What is unification and how does it work?
 - Why does the order of Prolog clauses matter?
 - What is a choice point?
 - How can trace be used for debugging?
- How does recursion work in Prolog?
 - Why is the base case important?
 - What is tail recursion?
 - What is the difference between the declarative and the procedural meaning of a recursive program?

Useful reading/resources

Introductory Book:

- "Learn Prolog Now!" Blackburn, Bos, Striegnitz
 - ⇒ A free online version is also available

Prolog Manual

- HTML: https://sicstus.sics.se/sicstus/docs/ latest4/html/sicstus.html/
- PDF: https://sicstus.sics.se/sicstus/docs/ latest4/pdf/sicstus.pdf