PEC1

Laura Sudupe

13/10/2020

EJERCICIO 1. Resuelve las siguientes cuestiones, mostrando las instrucciones de código utilizadas así como el resultado de la ejecución de dicho código. 1.1. Importa los datos del fichero Health_heart.csv correspondientes a la probabilidad de sufrir un ataque al corazón. Guarda estos datos en un data frame llamado health_heart y muestra los primeros y últimos registros del conjunto de datos.

```
health_heart <- read.csv("/Users/lsudu/code/rlab/PEC1/heart.csv")
head(health_heart)</pre>
```

```
##
     i..age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
## 1
          63
                1
                   3
                            145
                                  233
                                         1
                                                  0
                                                          150
                                                                   0
                                                                          2.3
                                                                                    0
                                                                                       0
                                                                                             1
## 2
          37
                1
                    2
                            130
                                  250
                                         0
                                                  1
                                                          187
                                                                   0
                                                                          3.5
                                                                                    0
                                                                                       0
                                                                                             2
                                                                                    2
                                                                                       0
                                                                                             2
## 3
          41
                0
                                  204
                                                  0
                                                          172
                                                                   0
                                                                          1.4
                   1
                            130
                                         0
                                                                                             2
## 4
          56
                            120
                                  236
                                         0
                                                          178
                                                                   0
                                                                          0.8
                                                                                    2
                                                                                       0
                1
                    1
                                                   1
                                                                                             2
## 5
                                                                                    2
          57
                0
                    0
                            120
                                  354
                                         0
                                                   1
                                                          163
                                                                   1
                                                                          0.6
                                                                                       0
## 6
          57
                1
                    0
                            140
                                  192
                                         0
                                                   1
                                                          148
                                                                   0
                                                                          0.4
                                                                                    1
                                                                                       0
                                                                                             1
##
     target
## 1
           1
## 2
           1
## 3
           1
## 4
           1
## 5
           1
## 6
           1
```

tail(health_heart)

```
##
        i..age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
## 298
             59
                                                             90
                                                                     0
                                                                            1.0
                                                                                      1
                  1
                      0
                              164
                                    176
                                           1
                                                    0
                                                                                               3
##
   299
            57
                  0
                      0
                              140
                                    241
                                           0
                                                    1
                                                            123
                                                                     1
                                                                            0.2
                                                                                      1
                                                                                         0
   300
             45
                  1
                      3
                                    264
                                           0
                                                     1
                                                                     0
                                                                            1.2
                                                                                      1
                                                                                         0
                                                                                               3
##
                              110
                                                            132
## 301
             68
                      0
                              144
                                    193
                                           1
                                                     1
                                                                     0
                                                                            3.4
                                                                                      1
                                                                                         2
                                                                                               3
                  1
                                                            141
## 302
                                                                            1.2
                                                                                               3
            57
                  1
                      0
                              130
                                    131
                                           0
                                                     1
                                                            115
                                                                     1
                                                                                      1
                                                                                         1
                                                                            0.0
## 303
             57
                  0
                      1
                              130
                                    236
                                           0
                                                     0
                                                            174
                                                                     0
                                                                                      1
                                                                                         1
                                                                                               2
##
        target
## 298
              0
   299
##
              0
##
   300
              0
## 301
              0
## 302
              0
## 303
              0
```

1.2. A partir del data frame definido, health_heart, muestra algunas características como: a) Nombre de las variables que forman el conjunto de datos.

```
names(health_heart)
```

```
## [1] "i..age" "sex" "cp" "trestbps" "chol" "fbs"
## [7] "restecg" "thalach" "exang" "oldpeak" "slope" "ca"
## [13] "thal" "target"
```

b) Estructura del conjunto de datos

```
str(health_heart)
```

```
'data.frame':
                    303 obs. of 14 variables:
                     63 37 41 56 57 57 56 44 52 57 ...
   $ i..age : int
   $ sex
                     1 1 0 1 0 1 0 1 1 1 ...
   $ cp
                     3 2 1 1 0 0 1 1 2 2 ...
              : int
##
   $ trestbps: int
                     145 130 130 120 120 140 140 120 172 150 ...
##
   $ chol
                     233 250 204 236 354 192 294 263 199 168 ...
              : int
##
   $ fbs
              : int
                     1 0 0 0 0 0 0 1 0 ...
##
                     0 1 0 1 1 1 0 1 1 1 ...
   $ restecg : int
##
   $ thalach : int
                     150 187 172 178 163 148 153 173 162 174 ...
##
                     0 0 0 0 1 0 0 0 0 0 ...
   $ exang
              : int
##
   $ oldpeak : num
                     2.3 3.5 1.4 0.8 0.6 0.4 1.3 0 0.5 1.6 ...
##
   $ slope
                     0 0 2 2 2 1 1 2 2 2 ...
              : int
##
                     0 0 0 0 0 0 0 0 0 0 ...
   $ ca
              : int
##
   $ thal
              : int
                     1 2 2 2 2 1 2 3 3 2 ...
   $ target : int 1 1 1 1 1 1 1 1 1 ...
```

c) Tamaño de la muestra y número de variables

```
dim(health_heart)
```

```
## [1] 303 14
```

d) ¿Existen valores nulos en el conjunto de datos?

```
table(is.null(health_heart))
```

```
##
## FALSE
## 1
```

e) ¿Existen datos perdidos (missing values) en la tabla?

```
table(is.na(health_heart))
```

```
##
## FALSE
## 4242
```

EJERCICIO 2. Definid un data frame, dataHealthHeart_w, y otro data frame, dataHealthHeart_m, que corresponderán a los conjuntos de datos de las mujeres y de los hombres, respectivamente. Posteriormente, exportad ambos data frame a dos ficheros (HealthHeart_w,HealthHeart_m) de tipo csv.

EJERCICIO 3. Considerando el data frame health_heart, resolver las siguientes cuestiones: a) ¿Cuál es la media de edad, que definiremos como age_mean, de los pacientes de la muestra de datos?

```
#health_heart <- read.csv("/Users/lsudu/code/rlab/LAB2/PEC1/heart.csv")

#primero voy a renombrar la columna 'ï..age'
#install.packages("tidyverse")
library(plyr)
health_heart <- rename(health_heart, c("ï..age" = "age" ))

age_mean <- mean(health_heart$age)</pre>
```

b) Definid una variable, age_max_trestbps, que guarde la edad del paciente que registra el máximo valor de presión arterial.

```
age_max_trestbps <- health_heart$age[max(health_heart$trestbps)]
```

c) Mostrad los/as pacientes cuya probabilidad de tener un ataque al corazón (target=0(menor probabilidad), target=1 (mayor probabilidad)) considerando aquellos/as pacientes con presión arterial (trestbps) superior a la media.

d) Definid un data frame, heartAttack_chance_0, que contenga los/as pacientes cuya probabilidad de sufrir un ataque al corazón sea baja (target=0). A partir de este data frame, definid un vector que contenga los valores máximos de las variables edad "age", colesterol "chol" y pulsaciones "thalach".

##		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
	166	67	${\tt female}$	0	160	286	0	0	108	1	1.5	1	3	2
##	167		female	0	120	229	0	0	129	1	2.6	1	2	3
##	168	62	male	0	140	268	0	0	160	0	3.6	0	2	2
##	169		female	0	130	254	0	0	147	0	1.4	1	1	3
##	170		female	0	140	203	1	0	155	1	3.1	0	0	3
##	171		female	2	130	256	1	0	142	1	0.6	1	1	1
##	172		female	1	110	229	0	1	168	0	1.0	0	0	3
	173		female	1	120	284	0	0	160	0	1.8	1	0	2
	174		female	2	132	224	0	0	173	0	3.2	2	2	3
	175		female	0	130	206	0	0	132	1	2.4	1	2	3
##	176		female	0	110	167	0	0	114	1	2.0	1	0	3
##	177		female	0	117	230	1	1	160	1	1.4	2	2	3
##	178		female	2	140	335	0	1	158	0	0.0	2	0	2
	179		female	0	120	177	0	0	120	1	2.5	1	0	3
	180		female	0	150	276	0	0	112	1	0.6	1	1	1
	181		female	0	132	353	0	1	132	1	1.2	1	1	3
	182	65	male	0	150	225	0	0	114	0	1.0	1	3	3
	183	61	male	0	130	330	0	0	169	0	0.0	2	0	2
	184		female	2	112	230	0	0	165	0	2.5	1	1	3 3
	185		female female	0	150	243	0	0	128	0	2.6	1	0	3 2
	186			0	112	290	0	0	153	0	0.0	2 2	1	
	187 188		female female	0	130 124	253 266	0	1	144 109	1 1	1.4 2.2	1	1	3 3
	189		female	2	140	233	0	1	163	0	0.6	1	1	3
	190		female	0	110	172	0	0	158	0	0.0	2	0	3
	190	51	male	0	130	305	0	1	142	1	1.2	1	0	3
	192		female	0	128	216	0	0	131	1	2.2	1	3	3
	193		female	0	120	188	0	1	113	0	1.4	1	1	3
	194		female	0	145	282	0	0	142	1	2.8	1	2	3
	195		female	2	140	185	0	0	155	0	3.0	1	0	2
	196		female	0	170	326	0	0	140	1	3.4	0	0	3
	197		female	2	150	231	0	1	147	0	3.6	1	0	2
	198		female	0	125	254	1	1	163	0	0.2	1	2	3
	199		female	0	120	267	0	1	99	1	1.8	1	2	3
	200		female	0	110	248	0	0	158	0	0.6	2	2	1
	201		female	0	110	197	0	0	177	0	0.0	2	1	2
##	202	60	female	0	125	258	0	0	141	1	2.8	1	1	3
	203	58	female	0	150	270	0	0	111	1	0.8	2	0	3
##	204	68	female	2	180	274	1	0	150	1	1.6	1	0	3
##	205	62	male	0	160	164	0	0	145	0	6.2	0	3	3
##	206	52	female	0	128	255	0	1	161	1	0.0	2	1	3
##	207	59	${\tt female}$	0	110	239	0	0	142	1	1.2	1	1	3
##	208	60	male	0	150	258	0	0	157	0	2.6	1	2	3
##	209	49	${\tt female}$	2	120	188	0	1	139	0	2.0	1	3	3
##	210	59	${\tt female}$	0	140	177	0	1	162	1	0.0	2	1	3
	211	57	${\tt female}$	2	128	229	0	0	150	0	0.4	1	1	3
	212	61	${\tt female}$	0	120	260	0	1	140	1	3.6	1	1	3
	213		${\tt female}$		118	219	0	1	140	0	1.2	1	0	3
##	214	61	male	0	145	307	0	0	146	1	1.0	1	0	3

##	215	56	female	0	125	249	1	0	144	1	1.2	1	1	2
##	216	43	${\tt male}$	0	132	341	1	0	136	1	3.0	1	0	3
##	217	62	male	2	130	263	0	1	97	0	1.2	1	1	3
##	218	63	female	0	130	330	1	0	132	1	1.8	2	3	3
##	219		female	0	135	254	0	0	127	0	2.8	1	1	3
##	220		female	0	130	256	1	0	150	1	0.0	2	2	3
##	221	63			150	407	0	0	154	0	4.0	1	3	3
			male	0										
##	222		female	0	140	217	0	1	111	1	5.6	0	0	3
##	223		female	3	138	282	1	0	174	0	1.4	1	1	2
##	224	56	\mathtt{male}	0	200	288	1	0	133	1	4.0	0	2	3
##	225	54	female	0	110	239	0	1	126	1	2.8	1	1	3
##	226	70	female	0	145	174	0	1	125	1	2.6	0	0	3
##	227	62	female	1	120	281	0	0	103	0	1.4	1	1	3
##	228	35	female	0	120	198	0	1	130	1	1.6	1	0	3
##	229	59	female	3	170	288	0	0	159	0	0.2	1	0	3
##	230	64	female	2	125	309	0	1	131	1	1.8	1	0	3
##	231	47	female	2	108	243	0	1	152	0	0.0	2	0	2
##	232		female	0	165	289	1	0	124	0	1.0	1	3	3
##	233		female	0	160	289	0	0	145	1	0.8	1	1	3
##	234		female	0	120	246	0	0	96	1	2.2	0	1	2
##	235		female	0	130	322	0	0	109	0	2.4	1	3	2
##	236		female	0	140	299	0	1	173	1	1.6	2	0	3
##	237		female	0	125	300	0	0	173	0		2	2	3
											0.0			
##	238		female	0	140	293	0	0	170	0	1.2	1	2	3
##	239		female	0	125	304	0	0	162	1	0.0	2	3	2
##	240		female	0	126	282	0	0	156	1	0.0	2	0	3
##	241		female	2	160	269	0	1	112	1	2.9	1	1	3
##	242	59	\mathtt{male}	0	174	249	0	1	143	1	0.0	1	0	2
##	243	64	female	0	145	212	0	0	132	0	2.0	1	2	1
##	244	57	female	0	152	274	0	1	88	1	1.2	1	1	3
##	245	56	female	0	132	184	0	0	105	1	2.1	1	1	1
##	246	48	female	0	124	274	0	0	166	0	0.5	1	0	3
##	247	56	male	0	134	409	0	0	150	1	1.9	1	2	3
##	248	66	female	1	160	246	0	1	120	1	0.0	1	3	1
##	249		female	1	192	283	0	0	195	0	0.0	2	1	3
##	250		female	2	140	254	0	0	146	0	2.0	1	3	3
##	251		female	0	140	298	0	1	122	1	4.2	1	3	3
##			female	0	132	247	1	0	143	1	0.1	1	4	3
	253	62	male	0	138	294		1	106	0	1.9	1	3	2
						299	1	0	125		0.9		2	2
	254		female	0	100		0			1		1		
	255		female	3	160	273	0	0	125	0	0.0	2	0	2
	256		female	0	142	309	0	0	147	1	0.0	1	3	3
	257		female	0	128	259	0	0	130	1	3.0	1	2	3
	258		female	0	144	200	0	0	126	1	0.9	1	0	3
	259	62	male	0	150	244	0	1	154	1	1.4	1	0	2
	260	38	female	3	120	231	0	1	182	1	3.8	1	0	3
	261	66	male	0	178	228	1	1	165	1	1.0	1	2	3
##	262	52	female	0	112	230	0	1	160	0	0.0	2	1	2
##	263	53	female	0	123	282	0	1	95	1	2.0	1	2	3
##	264	63	male	0	108	269	0	1	169	1	1.8	1	2	2
##	265	54	female	0	110	206	0	0	108	1	0.0	1	1	2
	266		female	0	112	212	0	0	132	1	0.1	2	1	2
	267	55	male	0	180	327	0	2	117	1	3.4	1	0	2
	268		female	2	118	149	0	0	126	0	0.8	2	3	2
				_			-	-		•		_	-	_

##	269	54	female	0	122	286	0	0	116	1	3.2	1	2 2
##	270	56	female	0	130	283	1	0	103	1	1.6	0	0 3
##	271	46	female	0	120	249	0	0	144	0	0.8	2	0 3
##	272	61	female	3	134	234	0	1	145	0	2.6	1	2 2
##	273	67	female	0	120	237	0	1	71	0	1.0	1	0 2
##	274		female	0	100	234	0	1	156	0	0.1	2	1 3
##	275		female	0	110	275	0	0	118	1	1.0	1	1 2
##	276		female	0	125	212	0	1	168	0	1.0	2	2 3
##	277		female	0	146	218	0	1	105	0	2.0	1	1 3
##	278		female	1	124	261	0	1	141	0	0.3	2	0 3
##	279	58	male	1	136	319	1	0	152	0	0.0	2	2 2
##	280	61	female	0	138	166	0	0	125	1	3.6	1	1 2
##	281	42	female	0	136	315	0	1	125	1	1.8	1	0 1
##	282	52	female	0	128	204	1	1	156	1	1.0	1	0 0
##	283	59	female	2	126	218	1	1	134	0	2.2	1	1 1
##	284		female	0	152	223	0	1	181	0	0.0	2	0 3
##	285		female	0	140	207	0	0	138	1	1.9	2	1 3
##	286			0			0		120			1	2 3
			female	3	140	311 204		1 1	162	1 0	1.8	2	2 2
	287		female		134		0				0.8		
	288		female	1	154	232	0	0	164	0	0.0	2	1 2
	289		female	0	110	335	0	1	143	1	3.0	1	1 3
	290	55	male	0	128	205	0	2	130	1	2.0	1	1 3
	291		female	0	148	203	0	1	161	0	0.0	2	1 3
	292		female	0	114	318	0	2	140	0	4.4	0	3 1
##	293	58	\mathtt{male}	0	170	225	1	0	146	1	2.8	1	2 1
##	294		female	2	152	212	0	0	150	0	0.8	1	0 3
##	295	44	female	0	120	169	0	1	144	1	2.8	0	0 1
##	296	63	female	0	140	187	0	0	144	1	4.0	2	2 3
##	297	63	male	0	124	197	0	1	136	1	0.0	1	0 2
##	298	59	female	0	164	176	1	0	90	0	1.0	1	2 1
##	299	57	male	0	140	241	0	1	123	1	0.2	1	0 3
##	300	45	female	3	110	264	0	1	132	0	1.2	1	0 3
##	301	68	female	0	144	193	1	1	141	0	3.4	1	2 3
	302		female	0	130	131	0	1	115	1	1.2	1	1 3
	303	57	male	1	130	236	0	0	174	0	0.0	1	1 2
##		targ		_				_		-		_	
	166	0 42 6	0										
	167		0										
	168		0										
	169		0										
	170		0										
	171		0										
	172												
			0										
	173		0										
	174		0										
	175		0										
	176		0										
	177		0										
	178		0										
	179		0										
##	180		0										
##	181		0										
##	182		0										
##	183		0										

```
## 184
            0
## 185
            0
## 186
             0
## 187
            0
## 188
            0
## 189
            0
## 190
            0
## 191
             0
## 192
            0
## 193
            0
## 194
            0
## 195
             0
## 196
            0
## 197
             0
## 198
            0
## 199
             0
## 200
            0
## 201
            0
## 202
            0
## 203
            0
## 204
            0
## 205
            0
## 206
            0
## 207
            0
## 208
            0
## 209
            0
## 210
            0
## 211
            0
## 212
             0
## 213
            0
## 214
             0
## 215
            0
## 216
             0
## 217
            0
## 218
            0
## 219
            0
## 220
            0
## 221
            0
## 222
            0
## 223
            0
## 224
            0
## 225
            0
## 226
            0
## 227
            0
## 228
            0
## 229
             0
## 230
            0
## 231
            0
## 232
            0
## 233
            0
## 234
            0
## 235
            0
## 236
            0
## 237
             0
```

##	238	0
##	239	0
##	240	0
##	241	0
##	242	0
##	243	0
##	244	0
##	245	0
##	246	0
##	247	0
##	248	0
##	249	0
##	250 251	0
##	251	0
##	252	0
##	253 254	0
##	255	0
##	256	0
##	257	0
##	258	0
##	259	0
##	260	0
##	261	0
##	262	0
##	263	0
##	264	0
##	265	0
##	266	0
##	267	0
##	268	0
##	269	0
##	270	0
##	271	0
##	272	0
##	273	0
##	274	0
##	275	0
##	276	0
##	277	0
##	278	0
##	279	0
##	280	0
##	281	0
##	282	0
##	283	0
##	284	0
##	285	0
##	286	0
##	287	0
##	288	0
##	289	0
##	290	0
##	291	0

```
## 292
## 293
             0
## 294
             0
## 295
             0
## 296
             0
## 297
             0
## 298
## 299
             0
## 300
             0
## 301
             0
## 302
             0
## 303
             0
vector <- c(max(heartAttack_chance_0$age), max(heartAttack_chance_0$chol),</pre>
             max(heartAttack_chance_0$thalach))
vector
## [1] 77 409 195
  e) Definid una matriz que muestre las columnas "age" y "sex".
matrix_health <- matrix(c(health_heart$age, health_heart$sex), ncol=2)</pre>
head(matrix_health)
##
         [,1] [,2]
## [1,]
           63
## [2,]
                 2
           37
## [3,]
          41
## [4,]
                 2
           56
## [5,]
           57
                 1
## [6,]
           57
matrix_hearAttack <- matrix(c(heartAttack_chance_0$age,</pre>
                                heartAttack_chance_0$sex), ncol=2)
head(matrix_hearAttack)
##
         [,1] [,2]
## [1,]
           67
                 2
## [2,]
           67
## [3,]
           62
                 1
## [4,]
           63
                 2
## [5,]
           53
                 2
## [6,]
           56
                 2
```

EJERCICIO 4. a) Realizad un resumen estadístico de health_heart que muestre los parámetros básicos más importantes.

```
health_heart_num <- read.csv("/Users/lsudu/code/rlab/PEC1/heart.csv")
head(health_heart) #observamos que columnas tenemos</pre>
```

```
sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
                             233
                                                                2.3
## 1 63 female 3
                        145
                                   1
                                            0
                                                  150
                                                          0
                                                                        0
                                                                                 1
## 2 37 female 2
                        130
                             250
                                            1
                                                  187
                                                                3.5
                                                                        0
                                                                           0
                             204
                                                                        2 0
                                                                                 2
## 3 41
           male 1
                        130
                                            0
                                                  172
                                                          0
                                                                1.4
                                   0
## 4
     56 female
                        120
                             236
                                   0
                                            1
                                                  178
                                                          0
                                                                0.8
                                                                        2 0
                                                                                 2
## 5
     57
                        120
                             354
                                                  163
                                                                0.6
                                                                        2 0
                                                                                 2
           male 0
                                   0
                                            1
                                                          1
    57 female 0
                        140 192
                                            1
                                                  148
                                                                0.4
                                   0
##
     target
## 1
          1
## 2
          1
## 3
          1
## 4
          1
## 5
          1
## 6
          1
```

summary(health_heart) #nos da un vistazo de la descripcion estadistica

```
##
                                                   trestbps
                                                                     chol
         age
                        sex
                                      ср
##
          :29.00
                   male : 96
                                       :0.000
                                                       : 94.0
                                                                       :126.0
  Min.
                                Min.
                                                Min.
                                                                Min.
                                                1st Qu.:120.0
   1st Qu.:47.50
                   female:207
                                1st Qu.:0.000
                                                                1st Qu.:211.0
  Median :55.00
                                Median :1.000
                                                Median :130.0
                                                                Median :240.0
   Mean :54.37
                                Mean
                                       :0.967
                                                Mean
                                                      :131.6
                                                                Mean
                                                                       :246.3
                                3rd Qu.:2.000
                                                3rd Qu.:140.0
                                                                3rd Qu.:274.5
##
   3rd Qu.:61.00
##
   Max.
          :77.00
                                Max.
                                       :3.000
                                                Max.
                                                       :200.0
                                                                Max.
                                                                       :564.0
##
         fbs
                       restecg
                                        thalach
                                                         exang
##
   Min.
          :0.0000
                    Min.
                           :0.0000
                                     Min.
                                            : 71.0
                                                     Min.
                                                            :0.0000
                                     1st Qu.:133.5
   1st Qu.:0.0000
                    1st Qu.:0.0000
                                                     1st Qu.:0.0000
                    Median :1.0000
   Median :0.0000
                                    Median :153.0
                                                     Median :0.0000
##
   Mean
         :0.1485
                    Mean
                           :0.5281
                                     Mean
                                            :149.6
                                                     Mean
                                                           :0.3267
##
   3rd Qu.:0.0000
                    3rd Qu.:1.0000
                                     3rd Qu.:166.0
                                                     3rd Qu.:1.0000
##
   Max.
           :1.0000
                    Max.
                           :2.0000
                                     Max.
                                            :202.0
                                                     Max.
                                                           :1.0000
##
       oldpeak
                      slope
                                                        thal
                                        ca
##
   Min.
          :0.00
                          :0.000
                                         :0.0000
                                                          :0.000
                  Min.
                                  Min.
                                                   Min.
   1st Qu.:0.00
                                                   1st Qu.:2.000
##
                  1st Qu.:1.000
                                  1st Qu.:0.0000
   Median:0.80
                  Median :1.000
                                  Median :0.0000
                                                   Median :2.000
   Mean :1.04
                  Mean :1.399
                                  Mean :0.7294
                                                   Mean :2.314
   3rd Qu.:1.60
                  3rd Qu.:2.000
                                  3rd Qu.:1.0000
                                                   3rd Qu.:3.000
##
   Max.
                  Max. :2.000
                                  Max. :4.0000
##
          :6.20
                                                   Max. :3.000
       target
##
  Min.
          :0.0000
##
   1st Qu.:0.0000
  Median :1.0000
## Mean :0.5446
##
   3rd Qu.:1.0000
   Max. :1.0000
```

cor(health_heart_num) #vemos que dependencia tienen las variables entre si. Baja

```
## chol
            0.21367796 -0.19791217 -0.07690439 0.12317421
                                                             1.000000000
## fbs
            0.013293602
## restecg
            -0.11621090 -0.05819627
                                    0.04442059 -0.11410279 -0.151040078
## thalach
           -0.39852194 -0.04401991
                                    0.29576212 -0.04669773 -0.009939839
## exang
            0.09680083
                        0.14166381 -0.39428027
                                                0.06761612
                                                            0.067022783
                        0.09609288 -0.14923016
##
  oldpeak
            0.21001257
                                                0.19321647
                                                            0.053951920
## slope
            -0.16881424 -0.03071057
                                    0.11971659 -0.12147458 -0.004037770
## ca
            0.27632624
                        0.11826141 -0.18105303
                                                0.10138899
                                                            0.070510925
## thal
            0.06800138
                        0.21004110 -0.16173557
                                                0.06220989
                                                            0.098802993
##
  target
            -0.22543872 -0.28093658 0.43379826 -0.14493113 -0.085239105
##
                    fbs
                             restecg
                                          thalach
                                                                   oldpeak
                                                        exang
##
  ï..age
            0.121307648 -0.11621090 -0.398521938
                                                  0.09680083
                                                               0.210012567
            0.045031789 -0.05819627 -0.044019908
                                                               0.096092877
##
  sex
                                                  0.14166381
  ср
            0.094444035 0.04442059 0.295762125 -0.39428027 -0.149230158
## trestbps
            0.177530542 -0.11410279 -0.046697728
                                                  0.06761612
                                                               0.193216472
  chol
            0.013293602 -0.15104008 -0.009939839
                                                  0.06702278
                                                               0.053951920
##
            1.000000000 -0.08418905 -0.008567107
                                                  0.02566515
                                                               0.005747223
## fbs
           -0.084189054
                         1.00000000
                                     0.044123444 -0.07073286 -0.058770226
## restecg
           -0.008567107
                         0.04412344
                                     1.000000000 -0.37881209 -0.344186948
## thalach
## exang
            0.025665147 -0.07073286 -0.378812094
                                                  1.00000000
                                                               0.288222808
## oldpeak
            0.005747223 -0.05877023 -0.344186948
                                                  0.28822281
                                                               1.000000000
## slope
            -0.059894178 0.09304482 0.386784410 -0.25774837 -0.577536817
            0.137979327 -0.07204243 -0.213176928
                                                  0.11573938
                                                               0.222682322
## ca
## thal
            -0.032019339 -0.01198140 -0.096439132
                                                  0.20675379
                                                               0.210244126
## target
            -0.028045760 0.13722950 0.421740934 -0.43675708 -0.430696002
##
                 slope
                                          thal
                                                     target
                                 ca
  ï..age
##
            -0.16881424
                        0.27632624
                                    0.06800138 -0.22543872
## sex
            -0.03071057
                        0.11826141
                                    0.21004110 -0.28093658
##
            0.11971659 -0.18105303 -0.16173557 0.43379826
  ср
## trestbps -0.12147458
                        0.10138899
                                    0.06220989 -0.14493113
## chol
            -0.00403777
                        0.07051093
                                    0.09880299 -0.08523911
## fbs
            -0.05989418
                        0.13797933 -0.03201934 -0.02804576
            0.09304482 -0.07204243 -0.01198140
                                                0.13722950
## restecg
            0.38678441 -0.21317693 -0.09643913
## thalach
                                                0.42174093
                        0.11573938
                                    0.20675379 -0.43675708
## exang
            -0.25774837
## oldpeak
           -0.57753682 0.22268232
                                    0.21024413 -0.43069600
## slope
            1.00000000 -0.08015521 -0.10476379
                                               0.34587708
## ca
            -0.08015521
                        1.00000000
                                    0.15183213 -0.39172399
## thal
            -0.10476379
                        0.15183213
                                    1.00000000 -0.34402927
            0.34587708 -0.39172399 -0.34402927 1.00000000
## target
```

sapply(health_heart_num, mean) #echamos un vistazo a la media de todas las variables.

```
##
                                              trestbps
                                                                              fbs
        ï..age
                         sex
                                       ср
                                                                chol
##
    54.3663366
                  0.6831683
                                0.9669967 131.6237624 246.2640264
                                                                       0.1485149
##
                                               oldpeak
       restecg
                     thalach
                                    exang
                                                               slope
                                                                               ca
##
     0.5280528 149.6468647
                                0.3267327
                                             1.0396040
                                                          1.3993399
                                                                       0.7293729
##
           thal
                      target
##
     2.3135314
                  0.5445545
```

b) Definid un vector con la probabilidad de sufrir un ataque (target).

Etiquetad la variable "target" con "Menor" si el valor es 0 y "Mayor" si el valor es 1.

c) Definid un vector con los niveles de colesterol (chol) de los/as pacientes, después ordenad dicho vector, calculad la media, la varianza y desviación estándar.

```
chol_patient <- c(health_heart$chol)
chol_patient <- sort(chol_patient)
chol_patient_mean <- mean(chol_patient)
chol_patient_var <- var(chol_patient)
chol_patient_sd <- sd(chol_patient)</pre>
```

d) Mostrad las tablas de frecuencias relativas y absolutas de los vectores de la edad (age) y la probabilidad (target). Posteriormente representad una tabla de frecuencias relativas cruzadas, de manera que podamos visualizar cuántos/as pacientes según edad, tiene una probabilidad mayor o menor.

```
age_patient <- c(health_heart$age)
target_patient <- c(health_heart$target)
prop.table(table(age_patient, target_patient))</pre>
```

```
##
              target_patient
##
                                    2
   age_patient
            29 0.00000000 0.00330033
##
            34 0.00000000 0.00660066
##
            35 0.00660066 0.00660066
##
##
            37 0.00000000 0.00660066
##
            38 0.00330033 0.00660066
            39 0.00330033 0.00990099
##
            40 0.00660066 0.00330033
##
            41 0.00330033 0.02970297
##
##
            42 0.00330033 0.02310231
##
            43 0.00990099 0.01650165
##
            44 0.00990099 0.02640264
##
            45 0.00660066 0.01980198
            46 0.00990099 0.01320132
##
##
            47 0.00660066 0.00990099
            48 0.00990099 0.01320132
##
##
            49 0.00660066 0.00990099
            50 0.00990099 0.01320132
##
            51 0.00990099 0.02970297
##
            52 0.01320132 0.02970297
##
            53 0.00660066 0.01980198
##
            54 0.01980198 0.03300330
##
##
            55 0.01650165 0.00990099
            56 0.01980198 0.01650165
##
##
            57 0.03300330 0.02310231
            58 0.03960396 0.02310231
##
##
            59 0.02970297 0.01650165
            60 0.02640264 0.00990099
##
```

```
##
            61 0.02310231 0.00330033
##
            62 0.02310231 0.01320132
##
            63 0.01980198 0.00990099
##
            64 0.01320132 0.01980198
##
            65 0.01320132 0.01320132
            66 0.00990099 0.01320132
##
            67 0.01980198 0.00990099
##
##
            68 0.00660066 0.00660066
##
            69 0.00330033 0.00660066
            70 0.00990099 0.00330033
##
##
            71 0.00000000 0.00990099
            74 0.00000000 0.00330033
##
            76 0.00000000 0.00330033
##
            77 0.00330033 0.00000000
##
```

EJERCICIO 5. Realizad los siguientes gráficos: a) Diagrama de tallo y hojas de la variable "age".

```
stem(health_heart$age, scale=1, width=80)
```

```
##
##
    The decimal point is at the |
##
##
    28 | 0
##
    30 I
##
    32 |
    34 | 000000
##
##
    36 | 00
##
    38 | 0000000
    40 | 0000000000000
##
##
    42 | 0000000000000000
    44 | 0000000000000000000
##
##
    46 | 000000000000
    48 | 000000000000
##
##
    50 | 000000000000000000
    52 | 000000000000000000000
##
##
    ##
##
    ##
    60 | 000000000000000000
##
    62 | 00000000000000000000
##
    64 | 000000000000000000
    66 | 000000000000000
##
    68 | 0000000
##
    70 | 0000000
##
##
    72 I
##
    74 | 0
##
    76 I 00
```

b) Diagrama de cajas y bigotes de la variable "chol".

```
boxplot(health_heart$chol,main = "Serum cholestoral in mg/dl", col="blue")
```

Serum cholestoral in mg/dl

d) Diagrama de puntos de la variable "thalach" (frecuencia cardíaca máxima alcanzada).

Maximum heart rate

e) Combinad los gráficos anteriores en una representación gráfica común. Podéis utilizar la función layout() para ajustar la distribución de los gráficos si fuera necesario.

```
par(mfrow=c(1,3))
boxplot(health_heart$chol,main = "Serum cholestoral in mg/dl", col="blue")
stem(health_heart$age, scale=1, width=80)
```

```
##
##
    The decimal point is at the |
##
##
    28 | 0
##
    30 |
##
    32 |
    34 | 000000
##
##
    36 | 00
##
    38 | 0000000
    40 | 000000000000
##
##
    42 | 0000000000000000
##
    44 | 0000000000000000000
    46 | 000000000000
##
    48 | 00000000000
##
##
    50 | 000000000000000000
##
    52 | 000000000000000000000
##
    ##
```

```
##
    60 | 0000000000000000000
##
    ##
##
    64 | 000000000000000000
##
    66 | 0000000000000000
##
    68 | 0000000
##
    70 | 0000000
    72 |
##
##
    74 | 0
##
    76 | 00
plot(health_heart$thalach,main= "Maximum heart rate",
    col="blue", xlab="Resting electro", ylab ="Y")
```


EJERCICIO 6. A partir del data frame "health_heart" se pide resolver las siguientes cuestiones. 6.1. Utilizando el paquete de gráficos ggplot2, se pide: a) Realizar un gráfico de tipo qplot de la variable "age" y la variable "chol".

Serum cholestoral vs age

b) Realizar un gráfico de barras para las variables "age" y "trestbps".

```
ggplot(data = health_heart, aes(x=age, y= trestbps)) +
labs(title= "Resting blood pressure vs age", x="Age", y="Pressure") +
geom_col()
```

Resting blood pressure vs age

6.2. Realizad un breve estudio de regresión y correlación lineal, resolviendo las siguientes cuestiones: a) Realizad un diagrama de cajas sobre las variables "age" y "thalach". ¿Qué se puede extraer de este gráfico?

```
ggplot(data = health_heart, aes(x=age, y= thalach, group=1)) +
labs(title= "Maximum heart rate vs age", x="Age", y="Max heart rate") +
geom_boxplot()
```

Maximum heart rate vs age

El grueso de nuestros valores "heart rate" se encuentran entre 125 y 175. Tiene una dispersión equilibrada. Vemos un valor extremo tambien en la parte baja de la grafica.

b) Realizad un modelo de regresión para las dos variables anteriores y un diagrama de puntos que ajuste al modelo anterior. ¿Qué conclusiones pueden obtenerse?

```
modelo <- lm(health_heart$thalach~health_heart$age, data=health_heart)
summary(modelo)</pre>
```

```
##
## Call:
## lm(formula = health_heart$thalach ~ health_heart$age, data = health_heart)
##
## Residuals:
##
       Min
                1Q
                   Median
                                3Q
                                       Max
##
  -65.949 -11.954
                     3.975 15.921
                                   44.985
##
  Coefficients:
##
##
                    Estimate Std. Error t value Pr(>|t|)
                    204.2892
                                 7.3485 27.800 < 2e-16 ***
## (Intercept)
## health_heart$age
                    -1.0051
                                 0.1333 -7.539 5.63e-13 ***
##
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 21.04 on 301 degrees of freedom
## Multiple R-squared: 0.1588, Adjusted R-squared: 0.156
```

```
## F-statistic: 56.83 on 1 and 301 DF, p-value: 5.628e-13
```

```
plot(health_heart$age, health_heart$thalach)
abline(modelo)
```



```
##
## Pearson's product-moment correlation
##
## data: health_heart$age and health_heart$thalach
## t = -7.5386, df = 301, p-value = 5.628e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4892312 -0.2992831
## sample estimates:
## cor
## -0.3985219
```

Podemos ver que si hay una tendencia, pero hay una correlación baja entre las variables

c) Realizad la matriz de correlación del conjunto de datos health_heart. ¿Qué se puede afirmar?

```
age <- c(health_heart$age)
thalach <- c(health_heart$thalach)
df <- data.frame(age, thalach)
cor(df)</pre>
```

```
## age thalach
## age 1.0000000 -0.3985219
## thalach -0.3985219 1.0000000
```

Reafirmamos en la poca dependencia de una variable respecto a la otra.

d) Calculad los residuos del modelo ajustado anterior y realizad un gráfico de normalidad.

summary(modelo)

```
##
## Call:
## lm(formula = health_heart$thalach ~ health_heart$age, data = health_heart)
## Residuals:
##
      Min
               1Q Median
                               30
## -65.949 -11.954 3.975 15.921 44.985
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   204.2892
                            7.3485 27.800 < 2e-16 ***
## health_heart$age -1.0051
                                0.1333 -7.539 5.63e-13 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 21.04 on 301 degrees of freedom
## Multiple R-squared: 0.1588, Adjusted R-squared: 0.156
## F-statistic: 56.83 on 1 and 301 DF, p-value: 5.628e-13
residuos <- rstandard(modelo)
qqnorm(residuos)
```

Normal Q-Q Plot

e) De los apartados anteriores, ¿qué se puede concluir? No existe correlación directa entre las variables seleccionadas.

EJERCICIO 7. A partir del conjunto de datos "women" del paquete MASS, guardad en un vector la altura (height) de las mujeres cuyo peso (weight) es superior a 131lb e inferior a 150lb.

```
library(MASS) #cargamos el paquete
data("women")
table <- data.frame(women)
height_women <- c() #Creo el vector vacio
j <- 1 #Creo la instancia j que señala al valor 1 que me dara la posición
        #equivalente de la [i] en el vector
F_height <- function(){
                          #creo la función
  for(i in 1:length(women$height)) #hago el bucle
    if (women$weight[i] > 131)
                                    #creo las condiciones
    if (women$weight[i] < 150) {</pre>
      height_women[j] <- women$height[i] #Voy añadiendo los valores al vector
      j <- j + 1 #Asi voy añadiendo en la posición equivalente
  return (height_women)
heigth <- F_height()
heigth
```

```
## [1] 64 65 66 67 68
```

Calculad la media del vector y las posiciones asociadas (del conjunto de datos "women") a los valores incluidos en el nuevo vector creado.

```
mean(heigth)
```

[1] 66

```
match(heigth, women$height) #para encontrar las posiciones asociadas
```

```
## [1] 7 8 9 10 11
```

EJERCICIO 8. A partir del conjunto de datos "BOD" de la libreria RSQLite, realizad un breve estudio utilizando la sintaxis de SQL con R. En concreto, se pide:

a) Una lectura de las 4 primeras líneas del conjunto de datos.

```
library(RSQLite)
```

```
## Warning: package 'RSQLite' was built under R version 4.0.3
```

```
library(sqldf)#carqamos la libreria
```

```
## Warning: package 'sqldf' was built under R version 4.0.3

## Loading required package: gsubfn

## Warning: package 'gsubfn' was built under R version 4.0.3

## Loading required package: proto

## Warning: package 'proto' was built under R version 4.0.3

db <- "RSQLite"::datasetsDb() #accedemos a las bases de datos de uno de los

#ficheros de RSQLite
dbReadTable(db, "BOD")#accedemos a BOD y lo guardamos en db</pre>
```

```
##
     Time demand
## 1
             8.3
        1
        2
## 2
             10.3
## 3
        3
            19.0
## 4
            16.0
## 5
        5
            15.6
## 6
        7
            19.8
```

sqldf("SELECT * FROM BOD LIMIT 4")

```
## Time demand
## 1 1 8.3
## 2 2 10.3
## 3 3 19.0
## 4 4 16.0
```

b) La información de la tabla ordenada de forma descendente de acuerdo a la variable "Demand".

```
sqldf("SELECT * FROM BOD ORDER BY demand DESC")
```

```
##
     Time demand
## 1
        7
             19.8
## 2
        3
             19.0
## 3
        4
             16.0
        5
             15.6
## 5
        2
             10.3
## 6
        1
             8.3
```

c) Los datos de la tabla cuyos valores de la variable "Demand" se encuentran entre 12 y 25.

```
sqldf("SELECT * FROM BOD where demand > 12 AND demand < 25")</pre>
```

```
## Time demand
## 1 3 19.0
## 2 4 16.0
## 3 5 15.6
## 4 7 19.8
```