MINIMAX THEOREM AND LINEAR PROGRAMMING

1. SION'S MINIMAX THEOREM

For reader's convenience we recall few notions.

Definition 1.1. Let *X* be a topological space and let $f: X \to \mathbb{R}$ be a function. Then *f* is *lower-semicontinuous* if for every $r \in \mathbb{R}$ the set

$$\{x \in X \mid f(x) \le r\}$$

is closed. We say that f is *upper-semicontinuous* if -f is lower-semicontinuous.

Definition 1.2. Let X be a convex subset of a linear space over \mathbb{R} and let $f: X \to \mathbb{R}$ be a function. Then f is *convex* if for every $x_1, x_2 \in X$ and $t \in [0,1]$ we have

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

We say that f is *concave* if -f is convex.

Definition 1.3. Let X be a convex subset of a linear space over \mathbb{R} and let $f: X \to \mathbb{R}$ be a function. Then f is *quasiconvex* if for every $x_1, x_2 \in X$ and $t \in [0,1]$ we have

$$f(tx_1 + (1-t)x_2) \le \max\{f(x_1), f(x_2)\}$$

We say that f is *quasiconcave* if -f is quasiconvex.

Fact 1.4. Every convex function is quasiconvex.

Proof. We left the proof to the reader.

Proposition 1.5. Let X be a convex subset of a linear space over \mathbb{R} . Suppose that $f: X \to \mathbb{R}$ is a function. Then the following are equivalent.

- (1) f is quasiconvex.
- **(2)** For every $r \in \mathbb{R}$ the set $\{x \in X \mid f(x) \le r\}$ is convex.

Proof. We prove (1) \Rightarrow (2). Pick $r \in \mathbb{R}$, $x_1, x_2 \in X$ and assume that $f(x_1), f(x_2)$ are both less or equal to r. Then

$$f(tx_1 + (1-t)x_2) \le \max\{f(x_1), f(x_2)\} \le r$$

for every $t \in [0,1]$ by (1). Thus the set $\{x \in X \mid f(x) \le r\}$ contains line segment joining x_1 with x_2 and hence it is convex. This is (2).

We prove (2) ⇒ (1). Pick $x_1, x_2 \in X$ and $t \in [0,1]$. Let $r = \max\{f(x_1), f(x_2)\}$. Then by (2) we deduce that the set $\{x \in X \mid f(x) \le r\}$ is convex. Hence $f(tx_1 + (1-t)x_2) \le r$. This shows (1).

Theorem 1.6 (Sion's theorem). Let X be a convex, compact subset of a topological vector space over \mathbb{R} and let Y be a convex subset of a topological vector space over \mathbb{R} . Suppose that $f: X \times Y \to \mathbb{R}$ is a function such that the following assertions hold.

- (1) f_x is upper-semicontinuous and quasiconcave for every x in X.
- **(2)** f_y is lower-semicontinuous and quasiconvex for every y in Y.

Then we have

$$\inf_{x \in X} \sup_{y \in Y} f(x, y) = \sup_{y \in Y} \inf_{x \in X} f(x, y)$$

For every $y \in Y$ and $r \in \mathbb{R}$ we denote

$$L_{f,r,y} = \left\{ x \in X \mid f(x,y) \le r \right\}$$

Note that for each $r \in \mathbb{R}$ the family $\{L_{f,r,y}\}_{y \in Y}$ consists of convex, compact subsets of X.

Lemma 1.6.1. Let X be a convex, compact subset of a topological vector space over \mathbb{R} and let Y be a convex subset of a topological vector space over \mathbb{R} . Suppose that $f: X \times Y \to \mathbb{R}$ is a function such that the following assertions hold.

- **(1)** f_x is upper-semicontinuous and quasiconcave for every x in X.
- (2) f_y is lower-semicontinuous and quasiconvex for every y in Y.

For every $y \in Y$ and $r \in \mathbb{R}$ we denote

$$L_{f,r,y} = \left\{ x \in X \mid f(x,y) \le r \right\}$$

If a family $\{L_{f,r,\nu}\}_{\nu \in Y}$ *consists of nonempty sets, then it admits finite intersection property.*

Proof of the lemma. For any such X, Y and f pick $r \in \mathbb{R}$ such that $L_{f,r,y}$ is nonempty for every y in Y. Suppose that $y_1, ..., y_m$ are points in Y. We want to show that

$$\bigcap_{i=1}^{m} L_{f,r,y_i} \neq \emptyset$$

Consider $X' = L_{f,r,y_m}$. This is a convex, compact and nonempty subset of a topological vector space over \mathbb{R} . Next let $f' : X' \times Y \to \mathbb{R}$ be the restriction of f. Then

$$L_{f',r,y} = X' \cap L_{f,r,y} = L_{f,r,y_m} \cap L_{f,r,y}$$

and it suffices to prove that

$$\bigcap_{i=1}^{m-1} L_{f',r,y_i} \neq \emptyset$$

Hence the proof goes on induction on m provided that we prove first that $L_{f,r,y_1} \cap L_{f,r,y_2} \neq \emptyset$ for any $y_1,y_2 \in Y$ and every X,Y,f and $r \in \mathbb{R}$ such that the family $\{L_{f,r,y}\}_{y \in Y}$ consists of nonempty sets. Assume by contradiction that $L_{f,r,y_1} \cap L_{f,r,y_2} = \emptyset$. Suppose that $y \in [y_1,y_2]$ and $x \in L_{f,r,y}$. Since f_x is quasiconcave, we derive that

$$\min\{f(x,y_1),f(x,y_2)\} \le f(x,y) \le r$$

and hence $x \in L_{f,r,y_1} \cup L_{f,r,y_2}$. This implies that for every $y \in [y_1, y_2]$ we have $L_{f,r,y} \subseteq L_{f,r,y_1} \cup L_{f,r,y_2}$. Since sets L_{f,r,y_1}, L_{f,r,y_2} are disjoint, we deduce that either $L_{f,r,y} \subseteq L_{f,r,y_1}$ or $L_{f,r,y_2} \subseteq L_{f,r,y_2}$ for every $y \in Y$. Now we define

$$F_1 = \left\{ y \in [y_1, y_2] \,\middle|\, L_{f,r,y} \subseteq L_{f,r,y_1} \right\}, \, F_2 = \left\{ y \in [y_1, y_2] \,\middle|\, L_{f,r,y} \subseteq L_{f,r,y_2} \right\}$$

We proved that $F_1 \cup F_2 = [y_1, y_2]$ and $F_1 \cap F_2 = \emptyset$. Next fix i = 1, 2 and suppose that $\{z_n\}_{n \in \mathbb{N}}$ is a sequence of points in F_1 convergent to some point $z \in [y_1, y_2]$. Pick $x \in L_{f,r,z}$. Since f_x is upper-semicontinuous, we have

$$\limsup_{n\to+\infty} f(x,z_n) \le f(x,z) \le r$$

Thus there exists $n \in \mathbb{N}$ such that $f(x, z_n) \le r$. This implies that $x \in L_{f,r,y_i}$ and hence $L_{f,r,z}$ intersects with L_{f,r,y_i} . Therefore, we deduce that $L_{f,r,z} \subseteq L_{f,r,y_i}$. This implies that $z \in F_i$. Hence F_1, F_2 are closed subsets of $[y_1, y_2]$, which are disjoint and with union equal to $[y_1, y_2]$. This is contradiction with the fact that $[y_1, y_2]$ is connected. This proves that $L_{f,r,y_1} \cap L_{f,r,y_2} \neq \emptyset$.

Proof of the theorem. We always have

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \le \inf_{x \in X} \sup_{y \in Y} f(x, y)$$

Next pick $r \in \mathbb{R}$ such that

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) < r$$

Then $\{L_{f,r,y}\}_{y\in Y}$ consists of nonempty and compact subsets of X. By Lemma 1.6.1 we deduce that $\{L_{f,r,y}\}_{y\in Y}$ admits finite intersection property. Hence there exists x in X such that

$$x\in \bigcap_{y\in Y} L_{f,r,y}$$

Therefore, $f(x,y) \le r$ for every $y \in Y$. This implies that

$$\inf_{x \in X} \sup_{y \in Y} f(x, y) \le \sup_{y \in Y} f(x, y) \le r$$

This shows that

$$\inf_{x \in X} \sup_{y \in Y} f(x, y) \le \sup_{y \in Y} \inf_{x \in X} f(x, y)$$

2. STRONG DUALITY THEOREM