

第8章 单片机串行数据通信

- 8.1 串行通信基础知识
- 8.2 MCS-51串行口及控制寄存器
- 8.3 MCS-51单片机串行通信工作方式

8.1 串行通信基础知识

一、基本原理

数据传输的2种方式:

并行传输: 各数据位同时传输,速度快,线多,适合于近距离。

串行传输:按位传输,速度慢,线少,距离远。

串行数据传输的2种方式:

同步传送数据场同步发送、接收、需同步时钟。

异步传送:每个字符需起始位、停止位作标志。

单片

机基

础

图 8.1 异步串行通信的字符格式

串行通信的传送速率:1波特(baud)= 1位/秒(bps)

单片机基础

异步通信的信号形式

近程通信采用数字信号直接传送形式。

图 8.2 近程串行通信

远程通信采用调制解调器将电平信号变 换为频率信号。

图 8.3 远程串行通信

串行通信的通路形式

单工形式:单向传送,一方固定发送,另一方固定接收。

双工形式:双向传送,可以同时发送,同时接收。

半双工形式:双向传送,一方发送,另一方接收。

图 8.4 单工形式串行通信

图 8.5 全双工形式串行通信

图 8.6 半双工形式串行通信

二、RS-232C总线标准

表 8-1 RS-232C 信号引脚定义

DB-25插头座

引脚	定义	引脚	定义
1	保护地(PG)	14	辅助通道发送数据
2	发送数据(TXD)	15	发送时钟(TXC)
3	接收数据(RXD)	16	辅助通道接收数据
4	请求发送(RTS)	17	接收时钟(RXC)
5	清除发送(CTS)	18	未定义
6	数据通信设备准备就绪(DSR)	19	辅助通道请求发送
7	信号地(SG)	20	数据终端准备就绪(DTR)
8	接收线路信号检测(DCD)	21	信号质量检测
9	接收线路建立检测	22	音响指示
10	线路建立检测	23	数据信号速率选择
11	未定义	24	发送时钟
12	辅助通道接收线信号检测	25	未定义
13	辅助通道清除发送		

电平标准: -3V~-25V: 1; +3V~+25V: 0

速率标准: 50、75、110、150、300、600、1200、2400、4800、9600、19200波特

8.2 MCS-51串行口及控制寄存器

图 8.7 MCS-51 串行口寄存器结构

行口寄存器结构

串

单

机

础

串行口控制寄存器SCON

与串行通信有关的控制寄存器共有3个

位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H
位符号	SM_0	SM_1	SM_2	REN	TB_8	RB_8	TI	RI

方式2 00 方式3

否则不接收 不管RB8 RB8

接收数据位8

件复位 标志位 口 以中断或查询 以中断或查询 硬件置 硬件置位 软

机

电源控制寄存器PCON

不能进行位寻址

位序	B ₇	B_{6}	B_5	$\mathrm{B}_{\!\scriptscriptstyle{4}}$	B_3	B_2	B_{i}	B_0
位符号	SMOD	/	/	/	GF ₁	GF_{o}	PD	ID

·不加倍 波特率倍增位,1:加倍;

通用标志位

通用标志位

掉电方式位**,1:**进入掉电方式

单

片

机

基

础

中断允许寄存器IE

位地址	0AFH	0AEH	0ADH	0ACH	0ABH	0AAH	0A9H	0A8H
位符号	EA		/	ES	ET ₁	EX ₁	ET ₀	EX ₀

中断允许总控制位总允许1,总禁止0

串行中断允许位允许1,禁止0

T1中断允许位

外中断1允许位

允许1,禁止0允许1,禁止0

允许1,禁止O

8.3 MCS-51单片机串行通信工作方式

共有4种方式

波特率 固定

SM ₀ SM ₁	工作方式	功能简述	波特率
0 0	方式 0	8位同步移位寄存器	fosc/12
0 1	方式 1	10 位 UARS	可变
1 0	方式2	11 位 UARS	fosc/32 或 fosc/64
1 1	方式3	11 位 UARS	可变

通用异 步接收 发送器

波特率 固定

单片机

基础

単

机

础

串行工作方式0:同步移位寄存器

RXD(P3.0):数据入口或出口

TXD(P3.1): 移位脉冲

8位为一帧,无起停位,低位在前。

串行口变为并行输出口:

图 8.8 串行口与 CD4094 配合

串行口变为并行输入口

图 8.9 串行口与 CD4014 配合

单片机基

础

应用举例

用串口控制8个发光二极管,从左向右依次点亮,并

反复循环。

图 8,10 串行移位输出电路连接

MOV SCON, #00H

CLR ES

MOV A, #80H

 $CLR \qquad P_{1.0}$

MOV SBUF, A

JNB TI,\$

SETB P_{1.0}

ACALL DELAY

CLR TI

RR A

AJMP DELR

;串行口方式 0 工作

;禁止串行中断

;发光管从左边亮起

;关闭并行输出

;串行输出

;状态查询

;开启并行输出

;状态维持

;清发送中断标志

;发光组合右移

;继续

串行工作方式1: 10位UART

起始 D_0 D_1 D_2 D_3 D_4 D_5 D_6 D_7 停止

TXD输出,发完一帧TI置1; RXD接收,负跳变为起始位,收完一帧RI置1。

波特率设定:由定时器1作波特率发生器,选用方式2(8位自动加载),设初始值为X,则波特率为

波特率=
$$\frac{2^{s \mod}}{32} \times \frac{f_{osc}}{12 \times (256 - X)}$$

$$X = 256 - \frac{f_{osc} \times 2^{s \mod}}{384 \times 波特率}$$

单

厅机

基础

甲机发送,数据在外部RAM4000H~401FH中,乙机接收,首末地址和数据存入外部RAM中,从5000H开始。通信波特率为1200。设晶振为6MHz,则定时初值为 X=0F3H

甲机发送主程序:

ORG 0023H AJMP ACINT

8030H

MOV TMOD, # 20 H

MOV $TL_1, \sharp 0F3H$

 $MOV TH_1, #0F3H$

SETB EA

ORG

CLR ES

MOV PCON, # 00H

SETB TR_1

MOV SCON, #40H

MOV SBUF, # 40H

串行中断人口

;设置定时器1工作方式2

;定时器1计数初值

;计数重装值

;中断总允许

;禁止串行中断

;波特率不倍增

;启动定时器1

;设置串行口方式 1,REN=0

;发送数据区首地址高位

单片

机 基

础

	SOUT1: JNB	TI, \$;等待一帧发送完毕
	CLR	TI	;清发送中断标志
	MOV	SBUF, #00H	;发送数据区首地址低位
	SOUT2: JNB	TI, \$;等待一帧发送完毕
	CLR	TI	
	MOV	SBUF, #40H	;发送数据区末地址高位
	SOUT3: JNB	TI, \$;等待一帧发送完毕
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CLŖ	TI	;清发送中断标志
单	MOV	SBUF, #1FH	;发送数据区末地址低位
片	MOV	DPTR, # 4000 H	;数据区地址指针
机	MOV	R_7 , #20H	;数据个数
	SETB	ES	;开放串行中断
基	AHALT:AJMP	\$;等待中断
础	甲机中断服务程序:		
	ORG	8100H	
	ACINT: MOVX	A,@DPTR	;读数据
	CLR	TI	;清发送中断
	MOV	SBUF, A	;发送字符
	DJNZ	R ₇ , AEND	;没发送完转 AEND

		CLR	ES	;禁止串行中断
		CLR	TR_1	;定时器1停止计数
	AEND:	INC	DPTR	
		RETI		;中断返回
乙	机接收主	程序:		
		ORG	0023H	
单		AJMP	BCINT	
· 片		ORG	8030H	
		MOV	TMOD, # 20H	;设置定时器1工作方式2
机		MOV	TH ₁ ,#0F3H	;定时器1计数初值
基		MOV	TL_1 , #0F3H	;计数重装值
础		SETB	EA	;中断总允许
		CLR	ES	;禁止串行中断
		MOV	PCON, #00H	;波特率不倍增
		SETB	TR_1	;启动定时
		MOV	SCON, #50H	;设置串行口方式 1,REN=1
		MOV	DPTR, # 5000H	;数据存放首地址

;接收数据个数(中部)经 MOV R_7 , #(24)F SIN1: JNB RI, \$:等待 CLR RI;清接收中断标志 MOV A, SBUF ;接收数据区首地址高位 MOVX @DPTR, A ;存首地址高位 INC DPTR ;地址指针增量 SIN2: JNB RI, \$ CLR RI MOV A, SBUF ;接收数据区首地址低位 MOVX @DPTR, A ;存首地址低位 INC DPTR SIN3: JNB RI, \$ CLR RIMOV A, SBUF ;接收数据区末地址高位 MOVX @DPTR, A ;存末地址高位 INC DPTR 础 SIN4: JNB RI, \$ CLR RIMOV A, SBUF ;接收数据区末地址低位 MOVX @DPTR, A ;存末地址低位 **INC** DPTR SETB ES ;开放串行中断 \$ BHALT: AJMP ;等待中断

乙机中断服务程序:

ORG 8100H

BCINT: MOV A, SBUF

MOV @DPTR, A

CLR RI

DJNZ R_7 , BEND

CLR ES

CLR TR_1

INC DPTR

BEND: RETI

;接收数据

;存数据

;清接收中断标志

;没接收完转 BEND

;禁止串行中断

;定时器1停止计数

;中断返回

单片机基

础

串行工作方式2: 11位UART

起始 D_0 D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 停止

第9位在TB8/RB8,TB8/RB8可作奇偶校验位,也可作控制位使用。方式2的发送接收过程与方式1基本相同。波特率固定为

$$\frac{2^{s \bmod}}{64} \times f_{osc}$$

★利用串行口工作方式2 ,单片机可以进行 多机通信。

单片机

单

机

串行方式3

通信过程与方式2完全相同,不同 之处在于:波特率可设定,设定方 法与方式1相同。