Einfache Varianzanalyse

Peter Büchel

HSLU I

Stoc: Block 09

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 1/45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 2/

Beispiel: Reissfestigkeit von Papier

- Papierhersteller, der Einkaufs-Papiertragtaschen herstellt, interessiert sich für die Verbesserung der Reissfestigkeit seines Produkts
- Vermutung: Reissfestigkeit hängt von Hartholz-Konzentration im Papierbrei ab
- Üblicherweise: Konzentrationen liegen in Bereich von 5 % bis 20 %
- Die Produktionsingenieure beschlossen, die Reissfestigkeit bei vier Hartholzkonzentrationsstufen mit einem vollständig randomisierten Versuchsplan zu untersuchen: bei 5 %, 10 %, 15 % und 20 %
- Für jede Konzentrationsstufe werden sechs Versuchsproben in einer Pilotanlage erstellt
- Die resultierenden 24 Papierproben werden in zufälliger Reihenfolge im Labor auf ihre Reissfestigkeit getestet

Einfache Varianzanalyse

- Ungepaarter *t*-Test: Vergleich von 2 Mittelwerten
- Einfache Varianzanalyse: Vergleich von mehreren Mittelwerten
- Beispiel:
 - ► Man will 3 Diäten auf ihre Wirksamkeit testen
 - ▶ Man wählt je 10 Personen zufällig aus
 - ► Misst den Gewichtsverlust nach 2 Monaten
 - Vergleicht die durchschnittlichen Gewichtsverluste
 - ▶ Wie bei t-Test: Sind Unterschiede statistisch signifikant?
 - Wieder Hypothesentest für Entscheid

• Die gemessenen Reissfestigkeiten (in psi) sind in Tabelle festgehalten

	Versuchsprobe					
Hartholz-Konzentration [%]	1	2	3	4	5	6
5	7	8	15	11	9	10
10	12	17	13	11 18 17	19	15
15	14	18	19	17	16	18
20	19	25	22	23	18	20

- Bei Durchführung von Messungen darauf achten, dass Messumfeld so homogen wie möglich gehalten wird (möglichst gleiche Versuchsbedingungen)
- Falls wichtige Grössen ändern können, müssen sie miterfasst werden

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 3/45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 4/45

- Weil man nie sicher ist, ob das gelingt, werden Messungen in zufälliger Reihenfolge durchgeführt
- Laborproben werden zufällig aus den 24 Proben gewählt, ohne Rücksicht auf die Hartholzkonzentration oder Fertigstellung der Probe
- Frage nach den Einflüssen der unterschiedlichen Behandlungen kann man zunächst untersuchen, indem man jede Gruppe durch einen Zwei-Stichproben-Test (d.h. z. B. durch den Rangsummen-Test von Wilcoxon, den t-Test von Student oder den Vorzeichen-Test) mit jeder anderen vergleicht
- Resultate für einen bestimmten Test in einer symmetrischen Matrix von *p*-Werten zusammenfassen

- Beispiel: Reissfestigkeit
- Tabelle: *P*-Werte für den Zwei-Stichproben *t*-Test für die Reissfestigkeit von Papier

٠	Hartholz-Konzentration [%]	5 %	10 %	15 %	20 %
	5 %	_			
	10 %	- 0.0010	_		
	15 %	0.00076	0.38	_	
	20 %	0.00	0.006	0.010	_

Vergleichen wir z.B. die Werte für 10 % und 20 %, so erhalten wir einen p-Wert von 0.006

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 5/45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 6/48

Python

Code:

```
from pandas import DataFrame
import scipy.stats as st
import numpy as np
import seaborn as sns

rf = DataFrame({
   "HC": np.repeat(["5%", "10%", "15%", "20%"], [6, 6, 6, 6]),
   "Strength":[7, 8, 15, 11, 9, 10, 12, 17, 13, 18, 19, 15, 14, 18, 19, 17,
   16, 18, 19, 25, 22, 23, 18, 20]
})

per5 = rf.loc[rf["HC"]=="5%", "Strength"]
per10 = rf.loc[rf["HC"]=="10%", "Strength"]
per15 = rf.loc[rf["HC"]=="15%", "Strength"]
per20 = rf.loc[rf["HC"]=="20%", "Strength"]
st.ttest_ind(per10,per20)

## Ttest_indResult(statistic=-3.4979930040209894, pvalue=0.00574574017074254)
```

- Unterschied zwischen 5 % und 10 % Hartholz-Konzentration mit einem p-Wert von 0.0010 signifikant
- Unterschied zwischen 10 % und 15 % Hartholz-Konzentration mit einem *p*-Wert von 0.35 *nicht* signifikant

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 7/45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 8/45

• Unterschiede können graphisch mit Hilfe von Stripcharts

Code:

```
sns.stripplot(x="HC", y="Strength", data=rf)
plt.xlabel("Hartholzkonzentration")
plt.ylabel("Reissfestigkeit")
plt.show()
```

Peter Büchel (HSLU I)

Stoc: Block 09

• Oder Boxplot:

25.0

22.5 ₩ 20.0

夢 17.5 15.0 ام 12.5 10.0

10% 15% 20%

Hartholzkonzentration

Code:

```
sns.boxplot(x="HC", y="Strength", data=rf)
plt.xlabel("Hartholzkonzentration")
plt.ylabel("Reissfestigkeit")
plt.show()
```

Peter Büchel (HSLU I)

Einfache Varianzanalyse

Stoc: Block 09

Vorsicht bei Paarvergleichen

- Vielzahl von Paar-Vergleichen problematisch von der Grundidee des statistischen Hypothesentests her
- Bsp: 7 Gruppen werden miteinander verglichen
- Anzahl Paarvergleich-Tests:

$$\frac{7\cdot 6}{2}=21$$

- Haben 7 Mittelwerte: μ_1, \ldots, μ_7
- Annahme: Es gibt keinen wahren Unterschied zwischen den Mittelwerten
- D. h.: Alle Nullhypothesen sollten beibehalten werden

$$\mu_1 = \mu_2, \quad \mu_1 = \mu_3, \quad \dots \quad , \quad \mu_6 = \mu_7$$

• p-Werte von Paar-Vergleichen:

	1	2	3	4	5	6	7
1							
2	0.22						
3	0.22 0.42 0.71	0.53					
4	0.71	0.09	0.74				
5	0.31	0.55	0.21	0.89	0.67 0.27		
6	0.38	0.03	0.91	0.44	0.67		
7	0.23	0.43	0.10	0.15	0.27	0.39	

• Hier: Unterschied zwischen zwei Gruppen wird angezeigt:

$$\widehat{\mu}_2 \neq \widehat{\mu}_6$$

• $\widehat{\mu}_2$, $\widehat{\mu}_6$: Gemessene Mittelwerte

Einfache Varianzanalyse Stoc: Block 09 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 11 / 45 Peter Büchel (HSLU I) 12 / 45

- Aber: Kein wahrer Unterschied vorhanden
- Problematik: Konstruktion Hypothesentest
- Zeigt Unterschied nur mit einer bestimmten Wahrscheinlichkeit an
- Werden sehr viele Hypothesentest gemacht, wird zu einer Wahrscheinlichkeit von 5 % Nullhypothese verworfen, obwohl keine Unterschied vorhanden ist

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 13 / 45 Peter Büchel (HSLU I)

- Wie kann man das vermeiden?
- Eine konsequente Antwort heisst: Wir dürfen nur *eine* Frage stellen, die wir mit einem Test beantworten
- Die sinnvolle Frage lautet: "Gibt es überhaupt Unterschiede zwischen den Gruppen?"
- Oder anders gesagt: "Unterscheidet sich wenigstens eine der Gruppen von einer andern?"
- Nullhypothese: "Alle Gruppen folgen dem gleichen Modell."

Theoretische Überlegung, wie Resultate dieser Tests aussehen können

- Aufgrund der Irrtums-W'keit von 5 % ist es anschaulich klar, dass ab und zu unter 21 Tests eine "Fehlentscheidung 1. Art", nämlich dass die Nullhypothese fälschlicherweise verworfen wird, auftritt
- Bei 21 Tests ist die erwartete Anzahl Fehlentscheide 1. Art:

 $21 \cdot 0.05 \sim 1$

- D.h.: Im Mittel 1 Hypothesentest wird fälschlicherweise verworfen
- Die Nullhypothese, "alle Gruppen gehorchen dem gleichen Modell", wird also viel zu oft verworfen, wenn die Regel lautet:
- ullet "Die Nullhypothese wird verworfen, wenn der extremste Unterschied auf dem Niveau lpha= 5 % signifikant ist"

Stoc: Block 09

Gruppenmittel-Modell

- Beispiel zum Datensatz Reissfestigkeit von Papier, lässt sich durch ein lineares Modell (oder als Verallgemeinerung des Zwei-Stichproben-Modells) festhalten
- Wir wollen g Gruppen vergleichen, wobei in jeder Gruppe gerade m Beobachtungen gemacht werden
- Datensatz Reissfestigkeit:
 - ightharpoonup 4 unterschiedliche Hartholzkonzentrationen verwendet, also ist g=4
 - ightharpoonup für jede Hartholzkonzentration m=6 Messungen für Reissfestigkeit
- Ziel ist es, ein Modell zu entwickeln, dass die Reissfestigkeit in Abhängigkeit der Hartholzkonzentrationsstufen beschreibt

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 15 / 45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 16 / 4

Allgemeines Modell

• Einfachstes Modell: Einzelne Beobachtungen innerhalb einer Gruppe streuen um einen gemeinsamen Wert:

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$
 $i = 1, 2, ..., g;$ $j = 1, 2, ..., m$

wobei Y_{ij} die j-te Beobachtung in der i-ten Gruppe ist

- Grösse μ_i : "Mittelwert" der *i*-ten Gruppe
- Annahme: Fehlerterme ε_{ii} unabhängig identisch normalverteilt sind
- Alle Gruppen dieselbe Standardabweichung des Fehlerterms in diesem Modell

Peter Büchel (HSLU I)

Stoc: Block 09

17 / 45

Peter Büchel (HSLU I)

Stoc: Block 09

- \bullet Lineare Regression: Y_{ij} ist die Zielgrösse (die wir vorhersagen möchten), die Behandlungsart μ_i ist eine Faktorvariable (zu variierende Grösse)
- Äquivalente Modellformulierung:

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
 $i = 1, 2, \dots, g;$ $j = 1, 2, \dots, m$

mit dem Fehler

$$\varepsilon_{ii} \sim \mathcal{N}(0, \sigma^2)$$

- ullet Parameter μ haben also alle Beobachtungen gemeinsam ("globaler Mittelwert")
- Parameter τ_i (i = 1, ..., g) behandlungsspezifische Abweichungen von diesem globalen Mittelwert
- Beispiel: Spezifisch für jede Hartholz-Konzentration

Beispiel

• Datensatz Reissfestigkeit:

Beispiel

• Datensatz Reissfestigkeit:

Peter Büchel (HSLU I)

Einfache Varianzanalyse

Stoc: Block 09

19 / 45

Peter Büchel (HSLU I)

Einfache Varianzanalyse

Stoc: Block 09

20 / 45

- Diese Parameter heissen auch Behandlungseffekte (eng. treatment effects)
- Parameter in diesem Modell nicht mehr eindeutig identifizierbar, da g+1 Parameter $\mu, \tau_1, \ldots, \tau_g$ für g unterschiedliche Gruppenmittelwerte vorhanden
- Benötigen Nebenbedingung, wobei es deren mehrere gibt
- Beispiel:

$$\mu = \mu_1$$

und folglich

$$\tau_1 = 0$$
, $\tau_2 = \mu_2 - \mu$, $\tau_3 = \mu_3 - \mu$

- Gruppe 1 bildet hier die Referenz, oder die sogenannte Baseline
- Nur g-1 der Behandlungseffekte τ_i frei variierbar

Peter Büchel (HSLU I)

Einfache Varianzanalyse

Stoc: Block 09

Stoc: Block 09

23 / 45

21 / 45

 Konkret mit Peter Büchel (HSLU I)

Df Residuals:

Intercept

HC[T.15%]

HC[T.20%]

HC[T.5%]

Omnibus:

Prob(Omnibus):

Peter Büchel (HSLU I)

Output:

Beispiel: Reissfestigkeit Papier

- Koeffizienten des Gruppenmittel-Modells für Reissfestigkeit
- Code:

```
from pandas import DataFrame
import pandas as pd
import numpy as np
import scipy.stats as st
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
rf = DataFrame({
"HC": np.repeat(["5%","10%","15%","20%"], [6, 6, 6, 6]),
"Strength": [7, 8, 15, 11, 9, 10, 12, 17, 13, 18, 19, 15, 14, 18, 19, 17,
16, 18, 19, 25, 22, 23, 18, 20]
})
fit = ols("Strength~HC",data=rf).fit()
fit.summary()
```

Einfache Varianzanalyse

• ols: ordinary least square

Peter Büchel (HSLU I)

Details (mühsam): siehe Skript Einfache Varianzanalyse Stoc: Block 09 OLS Regression Results ## Dep. Variable: Strength R-squared: ## Model: OLS Adj. R-squared:
Method: Least Squares F-statistic:
Date: Mon, 20 Apr 2020 Prob (F-statistic):
Time: 11:19:09 Log-Likelihood: Mon, 20 Apr 2020 Prob (F-statistic): ## No. Observations: 24 AIC: 20 BIC: coef std err t P>|t| [0.025 15.6667 1.041 15.042 1.473 0.905 1.473 3.734 1.3333 -1.7395.5000 1.473 -3.847 -5.6667 0.001 0.929 Durbin-Watson: 0.628 Jarque-Bera (JB): 0.248 Prob(JB): 2.215 Cond. No.

 μ , τ_1 , ..., τ_{σ}

 $\sum_{i=1}^{g} \sum_{i=1}^{m} (Y_{ij} - \widehat{\mu} - \widehat{\tau}_i)^2$

 $\widehat{\mu}_i = \frac{1}{m} \sum_{i=1}^m Y_{ij}$

so dass das Modell möglichst gut zu den Daten passt?

• Kriterium: Summe der quadrierten Residuen minimieren:

Parameterschätzung

Wie schätzen wir nun die Parameter

Es kann gezeigt werden, dass

Einfache Varianzanalyse

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Stoc: Block 09 24 / 45 Kürzer:

```
## Intercept 15.666667
## HC[T.15%] 1.333333
## HC[T.20%] 5.500000
## HC[T.5%] -5.666667
## dtype: float64
```

- Beachte: Output der Parameter für HC10 % fehlt
- Der ist aber, da er zuerst auftritt, gleich 0 (Baseline)

- ullet Python-Befehl ols: Globaler Mittelwert geschätzt durch $\widehat{\mu}=15.66$
- ullet Parametrisierung $\mu=\mu_1$

Peter Büchel (HSLU I)

• Die geschätzten Gruppenmittelwerte lauten somit:

$$\widehat{\mu}_{5\%} = 15.7 - 5.7 = 10$$
 $\widehat{\mu}_{10\%} = 15.7 + 0 = 15.7$
 $\widehat{\mu}_{15\%} = 15.7 + 1.3 = 17$
 $\widehat{\mu}_{20\%} = 15.7 + 5.5 = 21.2$

Einfache Varianzanalyse

Stoc: Block 09

95 %-Vertrauensintervalle

• Code:

Peter Büchel (HSLU I

```
fit_pred = fit.get_prediction()
fit_pred.conf_int()
## [[ 7.8274691 12.1725309 ]
    [ 7.8274691 12.1725309 ]
    [ 7.8274691 12.1725309 ]
    [ 7.8274691 12.1725309 ]
    [ 7.8274691 12.1725309 ]
    [ 7.8274691 12.1725309 ]
    [13.49413576 17.83919757]
    [13.49413576 17.83919757]
    [13.49413576 17.83919757]
    [13.49413576 17.83919757]
    [13.49413576 17.83919757]
    [13.49413576 17.83919757]
    [14.8274691 19.1725309]
    [14.8274691 19.1725309]
    [14.8274691 19.1725309]
    Γ14.8274691 19.1725309
    [14.8274691 19.1725309]
Peter Büchel (HSLU I)
```

Stoc: Block 09

25 / 45

ullet Somit ist zum Beispiel das 95 %-Vertrauensintervall für $\mu_{5\,\%}$

Einfache Varianzanalyse Stoc: Block 09 27 / 45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 28 / 45

Beispiel: Fleischverpackung

- Studie: Effekt der Verpackungsart auf das Bakterienwachstum von gelagertem Fleisch untersuchen
- Es wurden vier Verpackungsarten ("Behandlungsarten") untersucht:
 - ► Kommerzielle Plastikverpackung (mit Umgebungsluft)
 - Vakuumverpackung
 - ▶ 1% CO, 40% O₂, 59% N
 - ▶ 100 % CO₂
- Versuchseinheiten besteht aus 12 Rindssteaks von rund 75 g
- Interessieren für die Wirksamkeit einer Verpackungsart, das Bakterienwachstum zu unterdrücken
- Gemessene Zielgrösse: (Logarithmus) Anzahl Bakterien pro Quadratzentimeter

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 29 / 45

• Plot:

Beispiel: Fleischverpackung

- Datensatz Meat graphisch darstellen
- Code:

```
meat = DataFrame({
    "Treatment":
    np.repeat(["Kommerziell","Vakuum","Gemischt","C02"], [3, 3, 3, 3]),
    "meat_id":[7.66, 6.98, 7.80, 5.26, 5.44, 5.80, 7.41, 7.33, 7.04, 3.51, 2.91, 3.66]
})

sns.stripplot(x="Treatment", y="meat_id", data=meat)
    plt.xlabel("Verpackungsmethode")
    plt.ylabel("Logarithmus Bakterienzahl")

plt.show()
```

Stoc: Block 09

- Koeffizienten des Gruppenmittel-Modells für den Datensatz Meat
- Code:

Peter Büchel (HSLU I

• Somit lauten die geschätzten Gruppenmittelwerte

$$\begin{split} \widehat{\mu}_{\text{CO}_2} &= 3.36 - 0 = 3.36 \\ \widehat{\mu}_{\text{Kommerziell}} &= 3.36 + 4.12 = 7.48 \\ \widehat{\mu}_{\text{Gemischt}} &= 3.36 + 3.90 = 7.26 \\ \widehat{\mu}_{\text{Vakuum}} &= 3.36 + 2.14 = 5.50 \end{split}$$

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 31/45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 32/45

- 95 %-Vertrauensintervalle Python wie folgt:
- Code:

```
fit_pred = fit.get_prediction()

fit_pred.conf_int()

## [[7.02684427 7.93315573]

## [7.02684427 7.93315573]

## [5.04684427 7.93315573]

## [5.04684427 5.95315573]

## [5.04684427 5.95315573]

## [6.80684427 7.71315573]

## [6.80684427 7.71315573]

## [6.80684427 7.71315573]

## [2.90684427 3.81315573]

## [2.90684427 3.81315573]
```

ullet 95 %-Vertrauensintervall für $\mu_{\mathsf{Kommerziell}}$

[7.03, 7.93]

Peter Büchel (HSLU I)

Einfache Varianzanalyse

Stoc: Block 09

33 / 45

Peter Büchel (HSLU I)

Einfache Varianzanalyse

Stoc: Block 09

. . . .

Anova-Test

- Anova: Analysis of Variance
- Frage: Gibt es ob überhaupt Unterschiede zwischen den Gruppen?
- Nullhypothese:

$$H_0: \quad \mu_1 = \mu_2 = \ldots = \mu_g$$

- Alternativhypothese: Mindestens zwei Gruppen unterscheiden sich, also $\mu_i \neq \mu_i$ mit mit mindestens einem Paar $i \neq j$
- Bsp: Nullhypothese verwerfen, falls:

$$\mu_3 \neq \mu_5$$

• Gesucht Teststatistik, die extreme Werte annimmt, wenn sich die Gruppen in ihrer Lage unterscheiden

- Wenn sich Gruppenmittelwerte stark unterscheiden
 → Nullhypothese falsch
- Was "stark" heisst, hängt aber auch von der Streuung der Beobachtungen innerhalb der Gruppen ab
- Wie beim t-Test sogenannten F-Wert bilden
- ullet Wenn F gross ullet Nullhypothese verwerfen
- ullet Wenn F klein ullet Nullhypothese beibehalten
- Definition: F-Wert:

$$F = \frac{ \text{Streuung der Gruppenmittelwerte}}{ \text{Mittelwert der Streuungen der Gruppen}}$$

 Technische Details zur Berechnung dieses F-Wertes erheblich (machen das hier nicht)

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 35/45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 36/45

- Graphische Interpretation
- Abbildung:

- Abbildung: auf beiden Seiten Streuung innerhalb der Gruppen gleich
- Mittelwert der Streuungen gleich

Peter Büchel (HSLU I)

- Nenner des F-Wertes ist auf beiden Seiten der Abbildung gleich
- Linke Seite Streuung der Mittelwerte kleiner als auf der rechten Seiten
- Zähler des F-Werte auf der linken Seite ist kleiner als der Zähler auf der rechten Seite
- Bei gleichbleibendem Nenner ist der F-Wert auf der linken Seite kleiner als der F-Wert auf der rechten Seiten
- Wenn der F-Wert klein genug \rightarrow Nullhypothese nicht verwerfen

Einfache Varianzanalyse

Stoc: Block 09

Abbildung:

- Abbildung: auf beiden Seiten Streuung der Mittelwerte gleich
- Zähler des F-Wertes auf beiden Seiten der Abbildung gleich
- Auf linker Seite Streuung in den Gruppen grösser als auf der rechten Seiten
- Nenner des F-Werte auf der linken Seite ist grösser als der Zähler auf der rechten Seite
- Bei gleichbleibendem Zähler ist der F-Wert auf der linken Seite kleiner als der F-Wert auf der rechten Seiten
- Wenn F-Wert klein genug \rightarrow Nullhypothese *nicht* verwerfen

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 39 / 45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 40 / 4

- Wie früher Teststatistik-Werte: *F*-Werte in Verteilung der Teststatistik unter der Null-Hypothese in *p*-Werte umrechnen
- *p*-Wert-Skala: Verwerfungsbereiche (unplausible Werte) einfach zu merken
- Bei *p*-Werten kleiner als das Niveau wird die Null-Hypothese verworfen, sonst beibehalten

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 41/45

Bespiel: Papier Reissfestigkeit

• Varianzanalyse-Tabelle: Python

```
rf = DataFrame({
"HC": np.repeat(["5%","10%","15%","20%"], [6, 6, 6, 6]),
"Strength": [7, 8, 15, 11, 9, 10, 12, 17, 13, 18, 19, 15, 14, 18,
19, 17, 16, 18, 19, 25, 22, 23, 18, 20]
})
fit = ols("Strength~HC",data=rf).fit()
anova lm(fit)
                                                         PR(>F)
                       sum_sq
                                  mean_sq
                   382.791667
                              127.597222
                                          19.605207
                                                       0.000004
## Residual 20.0 130.166667
                                  6.508333
                                                            NaN
```

F-Kurve

• Graph einer *F*-Kurve:

Peter Büchel (HSLU I)

• Liegt F-Wert im roten Bereich (Verwerfungsbereich), dann wird H_0 , verworfen

Stoc: Block 09

- 1. Spalte: df sind die Freiheitsgrade (degrees of freedom)
- 2. Spalte: sum_sq die Quadratsummen (Sum of Squares)
- 3. Spalte: mean_sq die mittlere Quadratsumme (Mean Squared)
- 4. Spalte; gefolgt von der Teststatistik F und zuletzt der P-Wert (Pr(>F)).
- Wert der Teststatistik und der entsprechende P-Wert werden auf der Zeile der Behandlung (entspricht hier der Zeile HC) aufgeführt
- \bullet $P\text{-Wert von }4\cdot 10^{-6}$ besagt, dass ein Effekt von unterschiedlichen Hartholz-Konzentrationen signifikant auf dem 5 % Niveau nachgewiesen werden kann
- Die Gruppenmittelwerte unterscheiden sich also signifikant
- Schon aus Boxplots aus ersichtlich

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 43 / 45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 44 / 45

Beispiel: Fleischverpackung

• Varianzanalyse-Tabelle für den Datensatz Meat

- ullet p-Wert von $1\cdot 10^{-6}$ besagt, dass ein Effekt von unterschiedlichen Verpackungsmethoden signifikant auf dem 5 % Niveau nachgewiesen werden kann
- Die Gruppenmittelwerte unterscheiden sich also signifikant
- Diese Feststellung deckt sich mit der Beobachtung in Abbildung

Bemerkung

- Anova: Entscheidet nur, ob es einen Unterschied zwischen Mittelwerten gibt
- Macht keine Aussage, welcher abweicht
- Muss graphisch ermittelt werden

Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 45/45 Peter Büchel (HSLU I) Einfache Varianzanalyse Stoc: Block 09 46/45