卷A试题参考解答

- 一. 填空题 (每空3分,共15题)(请将答案直接填写在横线上!)
- 1. 判断级数 $\sum_{n=1}^{+\infty} \frac{1}{1000n+1}$ 的敛散性(收敛或发散)<u>发散</u>。

解: 由于 $\frac{\frac{1}{n}}{\frac{1}{1000n+1}} = \frac{1000n+1}{n} \to 1000$, $(n \to +\infty)$ 。根据比较判别法的极限形式可知级数

$$\sum_{n=1}^{+\infty} \frac{1}{1000n+1}$$
 发散。

2. 幂级数 $\sum_{n=1}^{+\infty} \frac{3^n + (-2)^n}{n} (x+1)^n$ 的收敛域为开区间 $(-\frac{4}{3}, -\frac{2}{3})$ 。

解: 由于
$$\sqrt[n]{\frac{3^n+(-2)^n}{n}}=3\frac{\sqrt[n]{1+(-\frac{2}{3})^n}}{\sqrt[n]{n}}\to 3$$
, $n\to +\infty$,因此 $\sum_{n=1}^{+\infty}\frac{3^n+(-2)^n}{n}t^n$ 的收敛半径

为 $R = \frac{1}{3}$, 并且级数 $\sum_{n=1}^{+\infty} \frac{3^n + (-2)^n}{n} t^n$ 在右端点 $t = \frac{1}{3}$ 处发散,在左端点 $t = -\frac{1}{3}$ 处收敛。由

此可知级数
$$\sum_{n=1}^{+\infty} \frac{3^n + (-2)^n}{n} (x+1)^n$$
 的收敛域为区间 $[-1-\frac{1}{3},-1+\frac{1}{3}) = [-\frac{4}{3},-\frac{2}{3})$ 。

3. 设 $D = \{(x, y), 0 \le x, y \le 1\}$, 函数f(x, y)在D上有一阶连续的偏导数, f(x, 1) = 0,

$$\forall x \in [0,1], \ \boxplus \iint_D f(x,y) dx dy = 2, \ \iiint_D y \frac{\partial f(x,y)}{\partial y} dx dy = \underline{-2}.$$

$$= -\int_{0}^{1} dx \int_{0}^{1} f(x, y) dy = -\iint_{D} f(x, y) dx dy = -2.$$

4. 设函数 |x| 在闭区间 $[-\pi,\pi]$ 上的 Fourier 级数为 $\frac{a_0}{2}+\sum_{n=1}^{+\infty}a_n\cos nx$,其和函数记作 S(x),

则 S(x) 在点 $x = 3\pi$ 处的值为 $S(3\pi) = \underline{\pi}$ 。

解: 注意到和函数 S(x) 是以 2π 为周期的周期函数。因此 $S(3\pi) = S(\pi)$ 。根据 Dirichlet 点

态收敛性定理可知,函数|x|在闭区间 $[-\pi,\pi]$ 上的 Fourier 级数 $\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos nx$ 处处收敛,

S(x) 在 $x = \pi$ 处的值为 $S(\pi) = [f(-\pi^+) + f(\pi^-)]/2 = [|-\pi| + |\pi|]/2 = \pi$ 。 因此 $S(3\pi) = \pi$ 。

5. 级数
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+x)^p}$$
 $(x \ge 0)$ 为条件收敛的充分必要条件是 p 的取值范围为 $0 。$

解:显然当 $p \le 0$ 时,级数的一般项不趋向零,故级数不可能收敛。

当 p > 0 时,级数为 Leibniz 型级数,故收敛。而 p > 1 时,级数绝对收敛。因此级数

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+x)^p} (x \ge 0) 为条件收敛的充分必要条件是 p 的取值范围为 $0 。$$$

6. 函数 $\sin^2 x$ 以 2π 为周期的 Fourier 级数为 $\frac{1}{2} - \frac{1}{2}\cos 2x$ 。

解:由于三角多项式的 Fourier 级数就是其自身。因此为求函数 $\sin^2 x$ 的 Fourier 级数,只需要将函数 $\sin^2 x$ 展开成三角多项式。因此 $\sin^2 x$ 的 Fourier 级数为 $\frac{1}{2} - \frac{1}{2}\cos 2x$ 。

7. 对积分
$$\int_{0}^{2} dx \int_{0}^{x} f(\sqrt{x^2 + y^2}) dy$$
 作极坐标变换,所得的累次积分为 $\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{\frac{2}{\cos\theta}} rf(r) dr$ 。

解: 不难看出积分区域 D 为三角闭域 $D=\{(x,y),0\leq x\leq 2,0\leq y\leq x\}$ 。 在极坐标 $x=r\cos\theta$, $y=r\sin\theta$ 下闭域 D 的原象为 $D_0=\{(r,\theta),0\leq r\leq \frac{2}{\cos\theta},0\leq \theta\leq \pi/4\}$ 。因

- 8. 设平面闭域 $D = \{(x, y), |x| + |y| \le 1\}$,则积分 $\iint_D x^{2015} \sin(x^4 y^2) dx dy = \underline{0}$ 。解:由于积分区域 D 关于 y 轴对称,被积函数 $x^{2015} \sin(x^4 y^2)$ 关于 x 是奇函数。所以积分为零。
- 9. 设曲线 L 为函数 $y=e^{x^2}$ 在闭区间 [0,1] 上的图像,起点为 (0,1) ,终点为 (1,e) ,则第二型曲线积分 $\int_{L^2}xdx+ydy=\underline{e^2/2}$ 。

解:由于场(x,y)是梯度场,对应的势函数为 $\phi(x,y)=(x^2+y^2)/2$,故积分与路径无关。 因此所求积分为 $\phi(1,e^2)-\phi(0,1)=e^2/2$ 。

10. 设S为 R^3 中的闭圆盘: $x^2+y^2\leq 1$, z=0。规定S的正法向向下,则第二型曲面积分 $\iint_{S^+}(x^2+y^2)dx\wedge dy=\underbrace{(-\frac{\pi}{2})}_{S}$ 。

解:
$$\iint_{S^+} (x^2 + y^2) dx \wedge dy = -\iint_{x^2 + y^2 \le 1} (x^2 + y^2) dx dy \quad (二重积分) = -\frac{\pi}{2}.$$

11. 全微分方程 (x+2y)dx + (2x-y)dy = 0 的通解为 $2xy + x^2/2 - y^2/2 = c$.

解:对微分式(x+2y)dx+(2x-y)dy=0重新组合如下

(xdx - ydy) + 2ydx + 2xdy = 0

由此可以立刻看出,上式的左边是函数 $2xy + x^2/2 - y^2/2$ 的全微分。因此方程的通解为 $2xy + x^2/2 - y^2/2 = c$ 。

12. 设S 为单位球面: $(x-a)^2 + (y-b)^2 + (z-c)^2 = 1$, 外法向为正, 则第二型曲面积分 $\iint_{S^+} x dy \wedge dz + y dz \wedge dx + z dx \wedge dy = \underline{4\pi}.$

解: 利用 Gauss 公式得
$$\iint_{S^+} x dy \wedge dz + y dz \wedge dx + z dx \wedge dy = \iiint_{(x-a)^2 + (y-b)^2 + (z-c)^2 \le 1} 3 dx dy dz = 4\pi$$
。

13. 函数
$$\frac{1}{4-x}$$
 在点 $x = 2$ 处的 Taylor 级数展开式为 $\sum_{n=0}^{+\infty} \frac{(x-2)^n}{2^{n+1}}$ 。

解:根据以下方式展开比较简单

$$\frac{1}{4-x} = \frac{1}{2-(x-2)} = \frac{1}{2} \cdot \frac{1}{1-\frac{x-2}{2}} = \frac{1}{2} \left(1 + \left(\frac{x-2}{2} \right) + \left(\frac{x-2}{2} \right)^2 + \cdots \right) = \sum_{n=0}^{+\infty} \frac{(x-2)^n}{2^{n+1}} \circ \frac{1}{2^{n+1}} = \frac{1}{2^{n+1}} \left(\frac{x-2}{2} \right)^{n+1} = \frac{1}{2^{n+1}}$$

14. 设幂级数 $\sum_{n=0}^{+\infty} a_n (x-2)^n$ 在 x=0 处收敛,而在 x=4 处发散,则该幂级数的收敛域为

[0,4) 。

解:由于幂级数 $\sum_{n=0}^{+\infty} a_n (x-2)^n$ 在 x=0 处收敛,即级数 $\sum_{n=0}^{+\infty} a_n (-2)^n$ 收敛,这表明幂级数

$$\sum_{n=0}^{+\infty}a_nt^n$$
的收敛半径 $R\geq 2$ 。而幂级数 $\sum_{n=0}^{+\infty}a_n(x-2)^n$ 在 $x=4$ 处发散,即级数 $\sum_{n=0}^{+\infty}a_n2^n$ 发散。

这表明收敛半径 $R \leq 2$ 。因此幂级数 $\sum_{n=0}^{+\infty} a_n t^n$ 的收敛半径 R=2,且左端点 t=-2 收敛,右

端点
$$t=2$$
 发散。因此,幂级数 $\sum_{n=0}^{+\infty} a_n(x-2)^n$ 的收敛域为 $[2-2,2+2)=[0,4)$ 。

15. 交换累次积分
$$\int_{1}^{e} dx \int_{0}^{\ln x} f(x,y) dy$$
 次序后,所得的积分为 $\int_{0}^{1} dy \int_{e^{y}}^{e} f(x,y) dx$ 。

解: 积分
$$\int_{1}^{e} dx \int_{0}^{\ln x} f(x, y) dy$$
 的区域为 $D = \{(x, y), 1 \le x \le e, 0 \le y \le \ln x\}$ 。 区域 D 还可以表

为
$$D = \{(x, y), 0 \le y \le 1, e^y \le x \le e\}$$
。因此交换累次积分 $\int_1^e dx \int_0^{\ln x} f(x, y) dy$ 次序后,所得的

积分为
$$\int_{0}^{1} dy \int_{e^{y}}^{e} f(x, y) dx$$
。

二. 计算题 (每题 10 分,共 4 题) (请写出详细的计算过程和必要的根据!)

1. 设 S 为空间立体
$$\sqrt{x^2+y^2} \le z \le 1$$
 的边界曲面,求第一类曲面积分 $\iint_S (x^2+y^2) dS$ 。

解: 曲面S由两部分 S_1 和 S_2 组成:

 S_1 是锥面的一部分,其方程为 $z = \sqrt{x^2 + y^2}$, $x^2 + y^2 \le 1$,其面积元素为

$$dS = \sqrt{1 + z_x^2 + z_y^2} = \sqrt{2}$$
。于是积分

$$\iint_{S_1} (x^2 + y^2) dS = \iint_{x^2 + y^2 \le 1} (x^2 + y^2) \sqrt{2} dx dy = \sqrt{2} \int_{0}^{1} r^2 r dr \int_{0}^{2\pi} d\theta = \frac{\pi}{\sqrt{2}}$$

 S_2 平面 z = 1上的闭圆盘 $x^2 + y^2 \le 1$ 。其面积元素为

$$dS = \sqrt{1 + z_x^2 + z_y^2} = 1$$
。于是积分

$$\iint_{S_2} (x^2 + y^2) dS = \iint_{x^2 + y^2 \le 1} (x^2 + y^2) dx dy = \int_0^1 r^2 r dr \int_0^{2\pi} d\theta = \frac{\pi}{2} .$$

由此得积分
$$\iint_{S} (x^2 + y^2) dS = \iint_{S_2} + \iint_{S_2} = \frac{\pi}{\sqrt{2}} + \frac{\pi}{2} = \frac{\pi(1 + \sqrt{2})}{2}$$
。

解答完毕。

2. 求幂级数 $\sum_{n=1}^{+\infty} n^2 x^{n-1}$ 的和函数.

解: 设幂级数 $\sum_{n=1}^{+\infty} n^2 x^{n-1}$ 的和函数为 S(x) , 即 $S(x) := \sum_{n=1}^{+\infty} n^2 x^{n-1}$ 。显然级数的收敛域为

|x|<1。根据幂级数逐项积分定理,我们有 $\int_0^x S(t)dt = \sum_{n=1}^{+\infty} nx^n$, $\forall x \in (-1,1)$ 。由此我们进

一步得到
$$\frac{1}{x}\int_{0}^{x}S(t)dt=\sum_{n=1}^{+\infty}nx^{n-1}$$
, $\forall x\in(-1,1)$, $x\neq0$ 。再次逐项积分得

$$\int_{0}^{x} \frac{1}{t} \left(\int_{0}^{t} S(s) ds \right) dt = \sum_{n=1}^{+\infty} x^{n} = \frac{x}{1-x} = \frac{1}{1-x} - 1, \quad \forall x \in (-1,1), \quad x \neq 0.$$

于是
$$\frac{1}{x} \int_{0}^{x} S(t) dt = \left(\frac{1}{1-x} - 1\right)^{x} = \frac{1}{(1-x)^{2}}$$
或

$$\int_{0}^{x} S(t)dt = \frac{x}{(1-x)^{2}}, \quad \forall x \in (-1,1), \quad x \neq 0.$$

显然, 当
$$x = 0$$
 时, 式 $\int_{0}^{x} S(t)dt = \frac{x}{(1-x)^{2}}$ 也成立。故

$$\int_{0}^{x} S(t)dt = \frac{x}{(1-x)^{2}}, \quad \forall x \in (-1,1).$$

于上式两边再次求导得

$$S(x) = \left(\frac{x}{(1-x)^2}\right)' = \frac{1+x}{(1-x)^3}$$
。解答完毕。

3. 求第二型曲线积分 $I=\int\limits_{\Gamma^+}xdy-ydx$, 其中定向曲线 Γ^+ 为球面 $x^2+y^2+z^2=1$ 和柱面 $x^2+y^2=x$ 的交线,逆着正 z 轴朝下看, Γ^+ 的正向是逆时针方向。

(注:球面和柱面的交线有两个部分,它们关于Oxv平面上对称,分别位于Oxv

平面上方和下方。这里 Γ^+ 指的是位于Oxv平面上方的那个部分闭曲线。)

解法一:利用 Stokes 公式计算比较简单。记球面上由闭曲线 Γ^+ 所围的(较小的)部分为 S^+ ,

法规定 S^+ 的正法向向上。这样 S^+ 与其边界 Γ^+ 的定向协调。记向量场 $\overrightarrow{F} \coloneqq (-y, x, 0)$,则 所求积分可写作 $I = \int_{\Gamma^+} \overrightarrow{F}(r) \cdot \overrightarrow{\tau}(r) dl$, $\overrightarrow{\tau}(r)$ 为 Γ^+ 上的单位正切向。 简单计算得 $rot \overrightarrow{F} \coloneqq (0,0,2)$ 。于是根据 Stokes 公式我们有

$$I = \int_{\Gamma^+} \vec{F}(r) \cdot \vec{\tau}(r) dl = \iint_{S^+} rot \vec{F}(r) \cdot \vec{n}(r) dS = \iint_{S^+} 2dx \wedge dy,$$

这里 $\vec{n}(r)$ 为 S^+ 上的单位正法向。注意到 S^+ 在Oxy平面上的投影为闭圆盘 $x^2+y^2 \le x$,其面积为 $\pi/4$ 。由此我们得到 $I=\iint\limits_{x^2+y^2\le x}2dxdy=\frac{\pi}{2}$ 。

解法二: 仍利用 Stokes 公式计算。记柱面位于上半球面内的那个部分为 S^+ , 其边界由两条闭曲线, Γ^+ 和位于 Oxy 平面上的圆周 L^+ : $x^2+y^2=x$,这里 L^+ 的正向仍为逆时针(逆着正 z 轴朝下看)。于是根据 Stokes 定理知

$$\iint_{\Gamma^+ \cup L} \vec{F}(r) \cdot \vec{\tau}(r) dl = \iint_{S^+} rot \vec{F}(r) \cdot \vec{n}(r) dS,$$

这里 $\vec{F}\coloneqq (-y,x,0)$ 。简单计算知其旋度为 rot $\vec{F}\coloneqq (0,0,2)$ 。另一方面,柱面 S^+ 的单位法向量具有形式 $\vec{n}(r)=(*,*,0)$ 。因此 $\iint rot \vec{F}(r) \cdot \vec{n}(r) dS=0$ 。于是我们得到

$$\int_{\Gamma^+} \vec{F}(r) \cdot \vec{\tau}(r) dl = \int_{\Gamma^+} \vec{F}(r) \cdot \vec{\tau}(r) dl .$$

上式右边线积分为平面线积分。利用 Green 公式得

$$I = \int_{L^+} x dy - y dx = \iint_{x^2 + y^2 \le x} 2 dx dy = 2\pi (\frac{1}{2})^2 = \frac{\pi}{2} .$$

解法三:写出 Γ ⁺的参数方程。然后直接计算。

注意到柱面 $x^2+y^2=x$ 与 Oxy 平面的交线为圆周 $(x-\frac{1}{2})^2+y^2=\frac{1}{4}$ 。它的参数方程为

 $x = \frac{1}{2} + \frac{1}{2}\cos t$, $y = \frac{1}{2}\sin t$, $0 \le t \le 2\pi$ 。将这两个参数方程代入球面方程 $x^2 + y^2 + z^2 = 1$

得
$$z = \sqrt{1 - x(t)^2 - y(t)^2} = \sqrt{1 - x(t)} = \sqrt{\frac{1}{2} - \frac{1}{2}\cos t} = \sin \frac{t}{2}$$
。(实际上由于线积分

 $I = \int_{\Gamma^+} x dy - y dx$ 中不显含 z ,我们并不需要关于分量 z = z(t) 的参数方程)。再注意到参数 t 增加的方向与 Γ^+ 的正向一致。因此

$$I = \int_{\Gamma^+} x dy - y dx = \int_{0}^{2\pi} \frac{1}{2} (1 + \cos t) \frac{1}{2} \cos t dt - \frac{1}{2} (\sin t) \frac{1}{2} (-\sin t) dt = \frac{1}{4} \int_{0}^{2\pi} (\cos t + 1) dt = \frac{\pi}{2} \cos t dt$$

解答完毕。

4. 计算第二型曲面积分 $I = \iint_{S^+} x^2 y dy \wedge dz - xy^2 dz \wedge dx + 3z dx \wedge dy$,其中定向曲面 S^+ 为 球面 $x^2 + y^2 + z^2 = 2z$ 在平面 z = 1下方的部分,正法向向下。

解:利用 Gauss 定理来计算面积分 I 比较方便。为此我们记 S_1^+ 为平面 z=1 上的闭圆盘 $\mathbf{x}^2+\mathbf{y}^2\leq 1$, 正法向向上, 记 Ω 为 S 和 S_1 所包围的下半球体。 记向量场 $\vec{\mathbf{F}}=(x^2y,-xy^2,3z)$ 。于是根据 Gauss 定理得

$$\iint_{S^+ \cup S_1^+} \vec{F}(r) \vec{n}(r) dS = \iint_{\Omega} div \vec{F} dV = \iint_{\Omega} 3dV = 3 \mid \Omega \mid = 2\pi$$
。 另一方面,

$$\iint_{S_1^+} \vec{F}(r) \vec{n}(r) dS = \iint_{x^2 + y^2 \le 1} 3 dx dy = 3\pi$$
。 由此得

$$I = \iint_{S^+} \vec{F}(r) \vec{n}(r) dS = \iint_{\Omega} div \vec{F} dV - \iint_{S_1^+} \vec{F}(r) \vec{n}(r) dS = 2\pi - 3\pi = -\pi .$$

解答完毕。

三. 证明题(请写出详细的证明过程!)

1. $(8 \, \beta)$ 设数列 $\{a_n\}$ 满足条件 $a_n > 0$, $\forall n \geq 1$ 且 a_n 单调下降。证明,若级数 $\sum_{n=1}^{+\infty} \frac{a_n - a_{n+1}}{a_n}$ 发散,则 $\lim_{n \to +\infty} a_n = 0$ 。

证:由于 a_n 单调下降且大于零,故数列 $\{a_n\}$ 必有极限。设 $\lim_{n\to+\infty}a_n=a$,则极限 $a\geq 0$ 。

假设 a>0。往下我们来导出矛盾。记 $b_n\coloneqq \frac{a_n-a_{n+1}}{a_n}\geq 0$, $\forall n\geq 1$ 。 由于 $a_n\geq a$,故 $b_n=\frac{a_n-a_{n+1}}{a_n}\leq \frac{a_n-a_{n+1}}{a}$, $\forall n\geq 1$ 。 考虑级数 $\sum_{n=1}^{+\infty}\frac{a_n-a_{n+1}}{a}$ 。 其前 n 项的部分和为 $S_n=\frac{a_1-a_{n+1}}{a}$ 。 显然 $S_n=\frac{a_1-a_{n+1}}{a}\to \frac{a_1-a}{a}$,即级数 $\sum_{n=1}^{+\infty}\frac{a_n-a_{n+1}}{a}$ 收敛。根据级数的比较定理知 $\sum_{n=1}^{+\infty}b_n$ 收敛。此与题目的条件 $\sum_{n=1}^{+\infty}b_n$ 发散相矛盾。证毕。

注: 实际上级数 $\sum_{n=1}^{+\infty} \frac{a_n - a_{n+1}}{a_n}$ 发散是 $\lim_{n \to +\infty} a_n = 0$ 的充分必要条件。上面我们已经证明了充分性。以下我们来证必要性。设 $\lim_{n \to +\infty} a_n = 0$,我们来证明级数 $\sum_{n=1}^{+\infty} b_n$ 发散。对于 $\forall n \geq 1$,

$$\forall p \geq 1, \quad \sum_{k=n+1}^{n+p} b_k = \sum_{k=n+1}^{n+p} \frac{a_k - a_{k+1}}{a_k} \geq \sum_{n+1}^{n+p} \frac{a_k - a_{k+1}}{a_{n+1}} = \frac{a_{n+1} - a_{n+p+1}}{a_{n+1}} = 1 - \frac{a_{n+p+1}}{a_{n+1}} \circ \frac{a_{n+1} - a_{n+p+1}}{a_{n+1}} = \frac{a_{n+1} - a_{n+p+1}}{a_{n+1}} = 1 - \frac{a_{n+p+1}}{a_{n+1}} \circ \frac{a_{n+1} - a_{n+p+1}}{a_{n+1}} = \frac{a$$

由于 $\lim_{n\to +\infty}a_n=0$, 可取 p 充分大使得 $\frac{a_{n+p+1}}{a_{n+1}}<\frac{1}{2}$ 。此时

$$\sum_{k=n+1}^{n+p} b_k \geq 1 - \frac{a_{n+p+1}}{a_{n+1}} \geq \frac{1}{2} \text{ 。根据 Cauchy 收敛准则知级数} \sum_{n=1}^{+\infty} b_n ~ 发散。注毕。$$

2. (7分) 设 S 为单位球面 $x_1^2 + x_2^2 + x_3^2 = 1$, $A = (a_{ij})$ 为 3×3 的实对称矩阵, ${\rm tr}(A)$ 表示矩阵 A 的迹,即 A 的对角元素之和。分两个步骤: (i) A 为对角阵; (ii) A 为一般对称阵,证明第一型曲面积分 $\iint_S (x^T A x) dS = \frac{4\pi}{3} {\rm tr}(A)$, 这里 $x^T A x = \sum_{i,j=1}^3 a_{ij} x_i x_j$ 。

证法一: 情形(i): A 为对角阵: $A = diag(\lambda_1, \lambda_2, \lambda_3)$ 。此时 $x^T A x = \sum_{i=1}^3 \lambda_i x_i^2$ 。

$$\oint_{S} (x^{T} A x) dS = \oint_{S} \left(\sum_{i=1}^{3} \lambda_{i} x_{i}^{2} \right) dS = \sum_{i=1}^{3} \lambda_{i} \oint_{S} x_{i}^{2} dS \circ$$

由对称性知 $\iint_{\mathcal{S}} x_1^2 dS = \iint_{\mathcal{S}} x_2^3 dS = \iint_{\mathcal{S}} x_3^2 dS$ 。 因此

$$\iint_{S} x_{i}^{2} dS = \frac{1}{3} \iint_{S} (\sum_{i=1}^{3} x_{i}^{2}) dS = \frac{1}{3} \iint_{S} dS = \frac{|S|}{3} = \frac{4\pi}{3}.$$
 由此得

$$\oint_{S} (x^{T} A x) dS = \sum_{i=1}^{3} \lambda_{i} \oint_{S} x_{i}^{2} dS = \frac{4\pi}{3} \sum_{i=1}^{3} \lambda_{i} = \frac{4\pi}{3} tr(A) \text{ .} \quad \text{ fix } \exists \text{ in } A \text{ in }$$

情形(ii): A 为一般对称阵。根据实对称矩阵的性质,存在正交矩阵 \mathbb{Q} ,使得

 $\mathbf{Q}^{\mathrm{T}}AQ=\Lambda=diag(\lambda_1,\lambda_2,\lambda_3)$ 为对角矩阵,其对角元素为矩阵 A 的三个特征值。对于面积 分 $\iint_S (x^TAx)dS$,我们考虑正交变换 $\mathbf{y}=\mathbf{Q}^{\mathrm{T}}x$ 或 $\mathbf{x}=\mathbf{Q}\mathbf{y}$ 。根据面积元素关于正交变换的不变性(见下面的 lemma)可知

$$\oint_{\mathbf{x}_{1}^{2}+\mathbf{x}_{2}^{2}+\mathbf{x}_{2}^{3}=1} (\mathbf{x}^{T} A \mathbf{x}) dS = \oint_{\mathbf{y}_{1}^{2}+\mathbf{y}_{2}^{2}+\mathbf{y}_{3}^{2}=1} (\mathbf{y}^{T} A Q \mathbf{y}) dS = \oint_{\mathbf{y}_{1}^{2}+\mathbf{y}_{2}^{2}+\mathbf{y}_{3}^{2}=1} (\mathbf{y}^{T} \Lambda \mathbf{y}) dS \circ \mathbf{y} dS = \mathbf{y}_{1}^{2} + \mathbf{y}_{2}^{2} + \mathbf{y}_{3}^{2} = 1 + \mathbf{y}_{3}^{2} + \mathbf{y}_{3}^{2} + \mathbf{y}_{3}^{$$

根据情形(i)的结论得

$$\oint_{\mathbf{y}_1^2 + \mathbf{y}_2^2 + \mathbf{y}_2^2 = 1} (\mathbf{y}^T \Lambda \mathbf{y}) \ dS = \frac{4\pi}{3} \operatorname{tr}(\Lambda) \, .$$

由于矩阵的迹在正交变换下是不变的。因此

$$\oint_{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_2^3 = 1} (\mathbf{x}^T A \mathbf{x}) dS = \oint_{\mathbf{y}_1^2 + \mathbf{y}_2^2 + \mathbf{y}_3^2 = 1} (\mathbf{y}^T \Lambda \mathbf{y}) dS = \frac{4\pi}{3} tr(\Lambda) = \frac{4\pi}{3} tr(\Lambda) \cdot i\mathbb{E}^{\frac{1}{2}}.$$

Lemma (面积元素关于正交变换的不变性):

设 Σ 是一个正则的参数曲面。记 Σ '是 Σ 在一个正交变换(正交矩阵)P下的象,

即
$$\Sigma' = P(\Sigma)$$
 。 记 $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $U = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$, 则对任何 Σ 上连续函数 $g(x, y, z)$, 我们有

$$\iint_{\Sigma} g(X)dS = \iint_{\Sigma'} g(P^T U)dS .$$

证明:由假设
$$\Sigma$$
有正则的参数表示 $X(s,t)=\begin{pmatrix}x(s,t)\\y(s,t)\\z(s,t)\end{pmatrix}$, $(s,t)\in D$, D 为平面有界闭域。

由此导出曲面 $\Sigma' = P(\Sigma)$ 的一个参数表示U(s,t) = PX(s,t), $(s,t) \in D$ 。

记两个曲面 Σ 和 Σ' 关于上述参数表示的 Gauss 系数,E,G,F和E',G',F',即

$$E = X_s(s,t)^T X_s(s,t), G = X_t(s,t)^T X_t(s,t), F = X_s(s,t)^T X_t(s,t);$$

$$E' = U_s(s,t)^T U_s(s,t), G' = U_t(s,t)^T U_t(s,t), F' = U_s(s,t)^T U_t(s,t)$$

则
$$E' = U_s(s,t)^T U_s(s,t) = X_s(s,t)^T P^T P X_s(s,t) = X_s(s,t)^T X_s(s,t) = E$$
。

同理可证G'=G,F'=F。因此我们有 $\sqrt{E'G'-F'^2}=\sqrt{EG-F^2}$ 。于是

$$\iint\limits_{\Sigma'} g(P^T U) dS = \iint\limits_{D} g(P^T U(s,t)) \sqrt{E'G' - {F'}^2} \, ds dt =$$

$$= \iint_{D} g(P^{T}U(s,t))\sqrt{EG-F^{2}}dsdt = \iint_{D} g(X(s,t))\sqrt{EG-F^{2}}dsdt = \iint_{\Sigma} g(X)dS$$
 。
证毕。

证法二: (利用 Gauss 定理) 定义线性向量场 $\overrightarrow{F}(x)$ 如下

$$\vec{F}(x) = (\sum_{j=1}^{3} a_{1j} x_{j}, \sum_{j=1}^{3} a_{2j} x_{j}, \sum_{j=1}^{3} a_{3j} x_{j})$$
。 则二次型 $x^{T} A x = \sum_{i,j=1}^{3} a_{ij} x_{i} x_{j}$ 可表示为

 $x^TAx = \overrightarrow{F}(x) \cdot x$ 。注意点 $x = (x_1, x_2, x_3) \in S$ 处的朝外单位法向量为其自身 (x_1, x_2, x_3) 。

因此第一型曲面积分 $\iint_{c} (x^{T}Ax)dS$ 可表示为场 $\overrightarrow{F}(x)$ 的第二型曲面积分

$$\iint_{S} (x^{T} A x) dS = \iint_{S^{+}} \vec{F}(x) \cdot \vec{n}(x) dS .$$

在根据 Gauss 定理得

$$\oint_{S^+} \vec{F}(x) \cdot \vec{n}(x) dS = \iiint_{x_1^2 + x_2^2 + x_3^2 \le 1} div \vec{F}(x) dv = \iiint_{x_1^2 + x_2^2 + x_3^2 \le 1} (a_{11} + a_{22} + a_{33}) dv = \frac{4\pi}{3} tr(A) .$$

这就证明了
$$\iint_S (x^T A x) dS = \frac{4\pi}{3} \operatorname{tr}(A)$$
。 证毕。

证法三: 根据单位球面 $S(x_1^2 + x_2^2 + x_3^2 = 1)$ 的对称性,我们不难看出积分

$$\iint_{S^+} x_i x_j dS = 0, \quad \exists i \neq j \text{ a 由此得}$$

$$\oint_{S} (x^{T} A x) dS = \oint_{S} (\sum_{i,j=1}^{3} a_{ij} x_{i} x_{j}) dS = \oint_{S} (a_{11} x_{1}^{2} + a_{22} x_{2}^{2} + a_{33} x_{3}^{2}) dS .$$

仍根据单位球面S的对称性,我们有

$$\iint\limits_{S} x_1^2 dS = \iint\limits_{S} x_2^3 dS = \iint\limits_{S} x_3^2 dS \ . \ \ \, \Box \text{lt}$$

$$\iint_{S} (x^{T} A x) dS = \iint_{S} (a_{11} x_{1}^{2} + a_{22} x_{2}^{2} + a_{33} x_{3}^{2}) dS = \sum_{i=1}^{3} a_{ii} \iint_{S} x_{i}^{2} dS =$$

$$=\frac{trA}{3} \oiint_{\varsigma} (x_1^2 + x_2^2 + x_3^2) dS = \frac{trA}{3} \oiint_{\varsigma} dS = \frac{trA}{3} \mid S \mid = \frac{(trA)4\pi}{3} \circ \text{ if \sharp}.$$