Student Name: Student Number:

Foundations of Computing II Assignment 6

The Halting Problem, Complexity Theory

Distributed: 07.12.2020 - Due Date: 18.12.2020

Upload your solutions to the OLAT system.

6.1 The Halting Problem

In the lecture, we reduced the universal language $L_{\rm U}$ to the halting problem $L_{\rm H}$. Using a similar approach, now reduce $L_{\rm H}$ to $L_{\rm U}$.

6.2 Closure Properties of Languages in \mathcal{P}

Show that the languages in \mathcal{P} are closed under the following operations. Argue on an intuitive, but exact level.

- a) Union, that is, if $L_1, L_2 \in \mathcal{P}$, then $L_1 \cup L_2 \in \mathcal{P}$,
- **b) Intersection**, that is, if $L_1, L_2 \in \mathcal{P}$, then $L_1 \cap L_2 \in \mathcal{P}$,
- c) Complement, that is, if $L \in \mathcal{P}$, then $\overline{L} \in \mathcal{P}$.

Hint: In the lecture, we have seen that the regular languages are closed under quite a number of operations. This was done by starting with the DFAs for the given languages and then modifying them. Use an analogous approach to answer the above questions.

6.3 Polynomial-Time Reductions

In complexity theory, SAT plays the same role for us as L_{diag} in computability theory. To show that a problem is \mathcal{NP} -hard, we can reduce SAT to it.

In the lecture, we have introduced the satisfiability problem (SAT and 3SAT), the independent set problem IND-SET, the clique problem CLIQUE, and the vertex cover problem VC; then we proved SAT \leq_p 3SAT, 3SAT \leq_p IND-SET, IND-SET \leq_p CLIQUE, and IND-SET \leq_p VC, which implies that all of them are \mathcal{NP} -hard.

Here, we introduce three other problems which we prove to be \mathcal{NP} -hard by polynomial-time reductions.

a) The set cover problem SC is defined as follows. An input is triple (X, \mathcal{S}, k) with

- $X = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}^+$,
- $S = \{S_1, S_2, \dots, S_m\}$ with $S_i \subseteq X$ for some $m \in \mathbb{N}^+$ and $X = \bigcup_{j=1}^m S_j$, and
- $k \in \mathbb{N}^+$.

The question is whether there is a set cover of X of size (at most) k, that is, a selection of (at most) k sets from S such that every element from X is contained in at least one of the selected sets, that is, whether there exist $S_{i_1}, S_{i_2}, \ldots, S_{i_k}$ with $i_j \in \{1, 2, \ldots, m\}$ and

$$X = \bigcup_{j=1}^{k} S_{i_j} .$$

Formally,

 $SC = \{(X, S, k) \mid X \text{ has a set cover from } S \text{ of size } k\}$.

As an example, the instance $(X_1, S_1, 3)$ with $X_1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and

$$S_1 = \{\{1,3\},\{1,2,5\},\{1,4\},\{3,4,6\},\{5,6,8\},\{5,7,8\}\}$$

is a "yes" instance, because there is a set cover

$$\{1,2,5\} \cup \{3,4,6\} \cup \{5,7,8\} = X_1$$

of size 3. Conversely, the instance $(X_2, S_2, 4)$ with $X_2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and

$$S_2 = \{\{1,2\},\{2,3\},\{2,4,6\},\{4,5,6\},\{6,7\},\{7,9\},\{8,9\}\}.$$

is a "no" instance.

Reduce VC to SC.

b) A dominating set in a graph G = (V, E) is a set D of vertices such that every vertex from V is either in D or has an edge to at least one vertex in D; we call such a vertex "dominated."

An instance of the dominating set problem DOM-SET is a pair (G, k) where G is a graph and the question is whether G contains a dominating set of size $k \in \mathbb{N}^+$ (or smaller).

Formally,

DOM-SET = $\{(G, k) \mid G \text{ contains a dominating set of size } k\}$.

Reduce SC to DOM-SET.

c) A half-clique is a clique that contains exactly half of the vertices of a given graph. An instance of HALF-CLIQUE is a graph G and the question is whether G contains a half-clique.

Formally,

$$HALF-CLIQUE = \{G \mid G \text{ contains a half-clique}\}$$
.

Note that, if G contains a clique with more than half of its vertices, it also contains a half-clique.

Reduce CLIQUE to HALF-CLIQUE.