Лекция 3. Комплексная производная

Теория функций комплексного переменного

Определение производной

Определение 2.1. Пусть $U \subset \mathbb{C}$ — открытое подмножество. Функция $f: U \to \mathbb{C}$ называется комплексно дифференцируемой в точке $a \in U$, если существует предел

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$
 (2.1)

Если предел (2.1) существует, он называется *производной* функции f в точке a и обозначается f'(a).

Линейное приближение:

$$f(a+h) = f(a) + f'(a)h + o(h)$$

Вещественная vs. комплексная дифференцируемость

- Вещественно-линейное отображение искажает пропорции.
- Комплексно линейное отображение сохраняет пропорции и углы. Окружности переводит в окружности. Это поворот с растяжением.
- Комплексно дифференцируемое отображение в первом приближении сохраняет пропорции и углы (если $f'(a) \neq 0$).

Теорема о дифференцировании сложной функции

Предложение 2.5. Пусть $U \subset \mathbb{C}$ — открытое множество, $f: U \to \mathbb{C}$ — функция, для которой $f(U) \subset V$, где $V \subset \mathbb{C}$ — открытое множество, и $g: V \to \mathbb{C}$ — еще одна функция. Если функция f комплексно дифференцируема g точке $g \in U$ и функция g комплексно дифференцируема g точке $g \in V$ то композиция $g \circ f$ комплексно дифференцируема $g \in V$ точке $g \in V$ точке

Альтернативное доказательство использует теорему о дифференцировании сложной функции от нескольких вещественных переменных. Оператор умножения на $g'(f(a)) \cdot f'(a)$ – композиция умножения на f'(a) и умножения на g'(f(a)).

Голоморфные функции

Определение 2.6. Пусть $U \subset \mathbb{C}$ — открытое множество. Функция $f: U \to \mathbb{C}$ называется *голоморфной на U*, если она комплексно дифференцируема в каждой точке $a \in U$.

Предложение 2.7. Функция $z \mapsto e^z$ голоморфна на всем \mathbb{C} ; при этом ее производная в точке а равна e^a . Иными словами, $(e^z)' = e^z$.

Предложение 2.9. Функции синус и косинус голоморфны на всей комплексной плоскости; при этом $(\sin z)' = \cos z$ и $(\cos z)' = -\sin z$.

Примеры голоморфных функций: многочлены, e^z , $\sin z$, $\cos z$. Преобразование Мебиуса голоморфно за исключением максимум одной точки (в которой знаменатель обращается в 0)

Теорема об обратной функции («костыль»)

Предложение 2.10. Пусть $U, V \subset \mathbb{C}$ — открытые подмножества, и пусть $f: U \to V$ — биективное отображение со следующими свойствами:

- (1) f голоморфная функция на U;
- (2) производная функции f не обращается в нуль ни в одной точке множества U;
 - (3) обратное отображение $g = f^{-1}: V \to U$ непрерывно.

Тогда обратное отображение $g: V \to U$ — голоморфная функция на V и для всякой точки $b \in V$ имеем g'(b) = 1/f'(g(b)).

Замечание 2.11. На самом деле верно гораздо более сильное утверждение: из голоморфности и биективности отображения f условия (2) и (3) следуют автоматически. Мы установим это в главе 9.

Теорема об обратной функции (альтернативный «костыль»)

Теорема. Пусть $f: U \to V$ — голоморфная функция, причем f' непрерывна. Если точка $a \in U$ такова, что $f'(a) \neq 0$, то в окрестности точки b = f(a) существует обратная функция g, причем g'(b) = 1/f'(a).

Доказательство: многомерная вещественная теорема об обратной функции.

Замечание: зеленое предположение излишне (вытекает из голоморфности).

Ветви логарифма

Рис. 2.1. Экспонента задает биекцию между полосой высоты 2π и комплексной плоскостью, разрезанной вдоль луча. Горизонтальные прямые на левом рисунке переходят в лучи на правом рисунке. Пунктирные линии в множества не входят.

Ветви логарифма

Предложение 2.12. На множестве V_{α} , получаемом удалением из комплексной плоскости луча, выходящего из нуля под углом α к действительной оси, можно для каждого целого п определить голоморфную функцию \ln по формуле

$$\ln(re^{it}) = \ln r + it, \quad \alpha + 2\pi n < t < \alpha + 2\pi (n+1).$$

 Имеем $e^{\ln z} = z \ u \ (\ln z)' = 1/z.$

Через границу области V_{α} функцию $\ln z$ продолжить нельзя (не только как голоморфную, но даже как непрерывную функцию!).

Действие логарифма

```
Map[ContourPlot[#[[1]], {x, #[[2]], #[[3]]}, {y, -Pi, Pi},
PlotLegends \rightarrow Automatic] &, {{x, -7, 7}, {Re[Exp[x + I y]], -1, 2}}]
```


Действие логарифма

```
Map[ContourPlot[#[[1]], \{x, -1, 2\}, \{y, \#[[2]], \#[[3]]\},
PlotLegends \rightarrow Automatic] &, \{\{y, -7, 7\}, \{Im[Exp[x + Iy]], -Pi, Pi\}\}]
```


Действие логарифма

```
Show[\{DensityPlot[Sin[4x]Sin[4y], \{x, -2, 2\}, \{y, -2, 2\}, \\ PlotLegends \rightarrow Automatic], \\ ContourPlot[Sin[4x]Sin[4y] == 0, \{x, -2, 2\}, \{y, -2, 2\}]\}]
```


 $f1[x_{, y_{,}}] := Module[\{w\}, w = Exp[x + Iy]; Sin[4Re[w]] Sin[4Im[w]]];$ $Show[\{DensityPlot[f1[x, y], \{x, -2, 2\}, \{y, -2, 2\}, PlotLegends \rightarrow Automatic],$ $ContourPlot[f1[x, y] = 0, \{x, -2, 2\}, \{y, -2, 2\}]\}]$

Ветви корня

Рис. 2.2. Отображение $z\mapsto z^n$ (в нашем случае n=5) переводит открытый сектор раствором $2\pi/n$ в плоскость с разрезом по лучу. Лучи, выходящие из нуля, переходят в лучи, выходящие из нуля.

Ветви корня

Предложение 2.13. Пусть n > 1 — натуральное число, и пусть через V_{α} , где $\alpha \in \mathbb{R}$, обозначено то же открытое множество, что в предложении 2.12. Тогда для каждого целого $k \in [0; n-1]$ можно определить на V_{α} голоморфную функцию $\sqrt[n]{z}$ по формуле

$$\sqrt[n]{re^{i\varphi}} = \sqrt[n]{r}e^{i(\varphi+2\pi k)/n}, \quad \alpha < \varphi < \alpha + 2\pi.$$

Имеем
$$(\sqrt[n]{z})^n = z$$
, $(\sqrt[n]{z})' = \frac{1}{n(\sqrt[n]{z})^{n-1}}$.

Действие квадратного корня

```
Map[ContourPlot[#[[1]], \{x, \#[[2]], \#[[3]]\}, \{y, -2, 2\},
PlotLegends \rightarrow Automatic] &, \{\{x, -4, 4\}, \{Re[(x+Iy)^2], -2, 2\}\}]
```


Действие квадратного корня

```
Map[ContourPlot[#[[1]], \{x, -2, 2\}, \{y, \#[[2]], \#[[3]]\},
PlotLegends \rightarrow Automatic] &, \{\{y, -7, 7\}, \{Im[(x+Iy)^2], -2, 2\}\}]
```


Действие квадратного корня

```
Show[\{DensityPlot[Sin[4x]Sin[4y], \{x, -2, 2\}, \{y, -2, 2\}, f1[x_{y}] := Module[\{w\}, w = (x + Iy)^2; Sin[4Re[w]] Sin[4Im[w]]]\};
   PlotLegends → Automatic],
                                                                       Show[{DensityPlot[f1[x, y], {x, -2, 2}, {y, -2, 2}, PlotLegends \rightarrow Automatic],
  ContourPlot[Sin[4x] Sin[4y] == 0, \{x, -2, 2\}, \{y, -2, 2\}]\}] \quad ContourPlot[f1[x, y] == 0, \{x, -2, 2\}, \{y, -2, 2\}, MaxRecursion \rightarrow 3]\}]
                                                             0.75
                                                                                                                                    -0.75
                                                             0.50
                                                                                                                                    0.50
                                                             0.25
                                                                                                                                    0.25
                                                                                                                                    0
                                                                                                                                    -0.25
                                                             -0.25
                                                                                                                                    -0.50
                                                             -0.50
                                                                                                                                    -0.75
                                                             -0.75
  -2
```

Действие кубического корня

```
Map[ContourPlot[#[[1]], \{x, \#[[2]], \#[[3]]\}, \{y, -2, 2\},\PlotLegends \rightarrow Automatic] &, \{\{x, -20, 20\}, \{Re[(x+Iy)^3], -2, 2\}\}]
```


В лекции использованы иллюстрации и материалы из следующих источников:

- https://www.hse.ru
- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- Wolfram Mathematica

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ