Ema's Supercomputer

Ema built a quantum computer! Help her test its capabilities by solving the problem below.

Given a grid of size \$N \times M\$, each cell in the grid is either \$good\$ or \$bad\$.

A *valid* plus is defined here as the crossing of two segments (horizontal and vertical) of equal lengths. These lengths must be odd, and the middle cell of its horizontal segment must cross the middle cell of its vertical segment.

In the diagram below, the blue pluses are *valid* and the orange ones are *not valid*.

Find the \$2\$ *valid* pluses that can be drawn on \$good\$ cells in the grid, and print maximum the product of their areas.

Note: The two pluses *cannot* overlap, and the product of their areas should be maximum.

Input Format

The first line contains two space-separated integers, \$N\$ and \$M\$.

The N subsequent lines contains M characters, where each character is either G (good) or B (good). If the y^{th} character in the x^{th} line is G, then (x,y) is a good cell (otherwise it's a good).

Constraints

\$2 \le N \le 15\$

\$2 \le M \le 15\$

Output Format

Find \$2\$ pluses that can be drawn on \$good\$ cells of the grid, and print maximum the product of their areas as an integer.

Sample Input 1

Sample Output 1

5

Sample Input 2

Sample Output 2

25

Explanation

Here are two *possible solutions* for **Sample 1** (left) and **Sample 2** (right):

Explanation Key:

• Green: \$good\$ cell

• Red: \$bad\$ cell

• Blue: possible \$pluses\$.

For the explanation below, we will refer to a plus of length \$i\$ as \$P_i\$.

Sample 1

There is enough good space to color one P_3 plus and one P_1 plus. $Area(P_3) = 5 \$ units, and $Area(P_1) = 1 \$ units. The product of their areas is \$5 \times 1 = 5\$, so we print \$5\$.

Sample 2

There is enough good space to color two P_3 pluses. $Area(P_3) = 5 \setminus P_3$. The product of the areas of our two P_3 pluses is $5 \in 5$, so we print 25.