Academia Sabatina de Jóvenes Talento

Ecuaciones funcionales I

Encuentro: 08 Curso: Álgebra

Semestre: I

Nivel: Preolímpico IMO Fecha: 07 de junio de 2025 Instructor: Kenny Jordan Tinoco Instructor Aux: Jonathan Gutiérrez

Índice

1	Fundamentos	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2	Problemas																																					1

1. Fundamentos

Loading ...

2. Problemas

Ejercicio 1. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que 2f(x) - 5f(y) = 8 para todo los números reales x y y.

Ejercicio 2. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) + xf(1-x) = x para todo número real x.

Ejercicio 3. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tal que f(x-y) = f(x) + f(y) - 2xy se cumple para todo número real x y y.

Ejercicio 4. Determinar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x+y) + f(x)f(y) = x^2y^2 + 2xy,$$

para todo número real x y y.

Ejercicio 5. Determina todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$2f(x+y) + 6y^3 = f(x+2y) + x^3,$$

para cualesquiera números reales x, y.

Ejercicio 6. Determina todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(x - y) = f(x)f(y)$$

para todos los números reales x, y.

Ejercicio 7. Determina todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(f(x+y)) = x + f(y)$$

para todos los números x, y.

Ejercicio 8. Hallar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ con f(0) = 1 que satisfacen

$$f(f(n)) = f(f(n+2) + 2) = n,$$

para todo entero n.

Ejercicio 9. Encontrar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que

$$f(x+f(y))=f(x)+y$$
, para todo $x,y\in\mathbb{Z}$

Ejercicio 10. Hallar todas las funciones $f, g : \mathbb{R} \to \mathbb{R}$ tales que g es inyectiva y

$$f(g(x) + y) = g(x + f(y))$$
, para todo $x, y \in \mathbb{R}$.

Ejercicio 11. Hallar todas las funciones f de reales a reales tales que

$$f(f(x) + y) = 2x + f(f(y) - x)$$

para todo $x, y \in \mathbb{R}$.

Ejercicio 12. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tal que para cualesquieras $x, y \in \mathbb{R}$,

$$(y+1)f(x)f(xf(y) + f(x+y)) = y.$$

Ejercicio 13. Sea $f:(0,\infty)\to\mathbb{R}$ una función tal que

- i) f es estrictamente decreciente,
- ii) $f(x) > -\frac{1}{x}$ para todo x > 0 y
- iii) $f(x)f(f(x) + \frac{1}{x}) = 1$ para todo x > 0.

Hallar f(1).

Ejercicio 14. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f\left(f(x)^2 + f(y)\right) = xf(x) + y$$

para todo $x, y \in \mathbb{R}$.

Problema 1 (India, 2010). Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x+y) + xy = f(x)f(y)$$
, para todo $x, y \in \mathbb{R}$.

Problema 2 (IMO, 2002). Hallar todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que, para cualesquiera x, y, u, v reales, se cumple

$$[f(x) + f(y)][f(u) + f(v)] = f(xu - yv).$$

Problema 3 (Korea, 2000). Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x^2 - y^2) = (x - y) \left(f(x) + f(y) \right), \text{ para todo } x, y \in \mathbb{R}.$$

Problema 4 (Lista corta IMO, 1988). Sea $f: \mathbb{N} \to \mathbb{N}$ una función que cumple

$$f(f(m) + f(n)) = m + n$$
, para todos m, n .

Hallar los posibles valores de f(1988).

Problema 5 (Lista corta IMO, 2002). Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(f(x) + y) = 2x + f(f(y) - x)$$
, para todos $x, y \in \mathbb{R}$.

Problema 6 (Ibero, 1993). Encontrar todas las funciones estrictamente crecientes $f: \mathbb{N} \to \mathbb{N}$ que satisfacen

$$f(nf(m)) = m^2 f(mn)$$
, para todos $m, n \in \mathbb{R}$.

Problema 7 (Italia, 1999). Encontrar todas las funciones estrictamente monótonas $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x+f(y)) = f(x) + y$$
, para $x, y \in \mathbb{R}$.