Summary for Introduction to Set Theory

SEUNGWOO HAN

Hrbacek, Karel, and Thomas J. Jech. *Introduction to Set Theory, Revised and Expanded*. 3rd ed., CRC Press, 1999.

CONTENTS

CHAPTER	Sets	Page 2
1.	1 Introduction to Sets	2
1	2 Properties	2
1.3	3 Axioms	2
1.	4 Elementary Operations on Sets	5

Chapter 1

Sets

1.1 Introduction to Sets

Definition 1.1.1: Set

Every object in the universe of discourse is called a set.

1.2 Properties

Definition 1.2.1: Property

Any mathematical sentence^a is called a *property*. If X, Y, \dots, Z are free variables of a property \mathbf{Q} , we write $\mathbf{Q}(X, Y, \dots, Z)$ and say $\mathbf{Q}(X, Y, \dots, Z)$ is a property of X, Y, \dots, Z .

^aRefer to mathematical logic textbook for detailed discussion.

1.3 Axioms

Axiom I The Axiom of Existence

There exists a set which has no elements.

$$\exists A \ \forall x \ \neg(x \in A)$$

Note:-

The Axiom of Existence guarantees that the universe of discourse is not void.

Axiom II The Axiom of Extensionality

If every element of X is an element of Y and every element of Y is an element of X, then X = Y.

$$\forall X \ \forall Y \ [\forall x \ (x \in X \iff x \in Y) \implies X = Y]$$

🛉 Note:- 🛉

The Axiom of Extensionality defines the equality relation with the containment relation (\in) .

Lemma 1.3.1

There exists only one set with no elements.

Proof. Let *A* and *B* are sets such that $\forall x \neg (x \in A)$ and $\forall x \neg (x \in B)$. Then, we have $\forall x (x \in A \iff x \in B)$. Therefore, by The Axiom of Extensionality, A = B is guaranteed.

Definition 1.3.2: Empty Set

The unique set with no elements is called the *empty set* and is denoted \emptyset .

Note:-

Definition 1.3.2 is justified by Lemma 1.3.1.

Axiom III The Axiom Schema of Comprehension

Let P(x) be a property of x. For any set A, there exists a set B such that $x \in B$ if and only if $x \in A$ and P(x).

$$\forall A \exists B (x \in B \iff x \in A \land \mathbf{P}(x))$$

🛉 Note:- 🛉

Axiom III is a axiom schema since it provides unlimited amount of axioms for varying P.

Lemma 1.3.3

Let P(x) be a property of x. For any set A, there uniquely exists a set B such that $x \in B$ if and only if $x \in A$ and P(x).

Proof. Let B' be another set such that $x \in B'$ if and only if $x \in A$ and P(x). Then, for any x, we have $x \in B' \iff x \in A \land P(x) \iff x \in B$. Hence, by The Axiom of Extensionality, we have B = B'.

Notation 1.3.4: Set-Builder Notation

Let P(x) be a property of x. Let A be a set. The unique set B such that $x \in B$ if and only if $x \in A$ and P(x) is denoted $\{x \in A \mid P(x)\}$.

Note:-

Notation 1.3.4 is justified by Lemma 1.3.3.

Axiom IV The Axiom of Pair

For any A and B, there exists C such that $x \in C$ if and only if x = A or x = B.

$$\forall A \forall B \exists C (x \in C \iff x = A \lor x = B)$$

Note:-

Similarly, the set C such that $x \in C \iff x = A \lor x = B$ is unique by The Axiom of Extensionality.

Notation 1.3.5

Let *A* and *B* be sets. The unique set *C* such that $x \in C$ if and only if x = A or x = B is denoted $\{A, B\}$. In particular, if A = B, we write $\{A\}$ instead of $\{A, A\}$.

Axiom V The Axiom of Union

For any *S*, there exists *U* such that $x \in U$ if and only if $x \in A$ for some $A \in S$.

$$\forall S \exists U (x \in U \iff \exists A x \in A \land A \in S)$$

Definition 1.3.6: The Union of System of Sets

Let *S* be a set. The unique set *U* such that $x \in U$ if and only if $x \in A$ for some $A \in S$ is denoted $\bigcup S$.

Definition 1.3.7: The Union of Two Sets

Let *A* and *B* be sets. Then, $A \cup B$ denotes the unique set $\bigcup \{A, B\}$.

Definition 1.3.8: Subset

Let *A* and *B* sets. *B* is said to be a *subset* of *A* if $\forall x (x \in B \implies x \in A)$. If *B* is a subset of *A*, then we write $B \subseteq A$.

Axiom VI The Axiom of Power Set

For any *S*, there exists *P* such that $X \in P$ if and only if $X \subseteq S$.

Note:-

Similarly, the set *P* is unique by The Axiom of Extensionality.

Definition 1.3.9: Power Set

Let *S* be a set. The unique set *P* such that $X \in P$ if and only if $X \subseteq S$ is called the *power* set of *S* and is denoted $\mathcal{P}(S)$.

Lemma 1.3.10

Let P(x) be a property of x. Let A and A' be sets such that $P(x) \implies x \in A \land x \in A'$. Then, $\{x \in A \mid P(x)\} = \{x \in A' \mid P(x)\}$.

Proof. For all x, we have $x \in A \land P(x) \iff P(x) \iff x \in A' \land P(x)$. Therefore, by The Axiom of Extensionality, the result follows.

Notation 1.3.11

Let P(x) be a property of x. If there exists a set A such that P(x) implies $x \in A$, we write $\{x \mid P(x)\} \triangleq \{x \in A \mid P(x)\}$, and it is called the set of all x with the property P(x).

Note:-

Notation 1.3.11 is justified by Lemma 1.3.10.

Selected Problems

Exercise 1.3.1

The set of all x such that $x \in A$ and $x \notin B$ exists.

Proof. We have $x \in A \land x \notin B \implies x \in A$. Hence, the set exists and is equal to $\{x \in A \mid x \in A \land x \notin B\}$.

Exercise 1.3.2

Prove The Axiom of Existence only from The Axiom Schema of Comprehension and The Weak Axiom of Existence.

Weak Axiom of Existence Some set exists.

Proof. Let *A* be a set known to exist. Then, there exists $B = \{x \in A \mid x \neq x\}$ by The Axiom Schema of Comprehension. Since $\forall x (x = x), \forall x (x \notin B)$.

Exercise 1.3.3

- (a) Prove that a set of all sets($\{x \mid \top\}$) does not exist.
- (b) Prove that $\forall A \exists x (x \notin A)$.

Proof.

- (a) Suppose $V = \{x \mid T\}$ exists. Then, by The Axiom Schema of Comprehension, $R = \{x \in V \mid x \notin x\}$ exists. However, we have $R \in R \iff R \notin R$ by definition of R. Hence, V does not exist.
- (b) Suppose $\exists A \forall x (x \in A)$ for the sake of contradiction. Then, *A* is the set of all sets, which is impossible by (a).

Exercise 1.3.6

Prove $\forall X \neg (\mathcal{P}(X) \subseteq X)$.

Proof. Let $Y = \{u \in X \mid u \notin u\}$. Then, by definition, $Y \subseteq X$, and thus $Y \in \mathcal{P}(X)$. Now, suppose $Y \in X$ for the sake of contradiction. Then, $Y \in Y \iff Y \in X \land Y \notin Y \iff Y \notin Y$, which is a contradiction. Hence, $Y \notin X$.

1.4 Elementary Operations on Sets

Definition 1.4.1: Proper Subset

Let *A* and *B* sets. *B* is said to be a *proper subset* of *A* if $B \subseteq A$ and $B \neq A$. If *B* is a proper subset of *A*, we write $B \subseteq A$.

Definition 1.4.2: Elementary Operations on Sets

- (i) Intersection
 - The intersection of *A* and *B*, $A \cap B$, is the set $\{x \mid x \in A \land x \in B\}$.
- (ii) Union
 - The *union* of *A* and *B*, $A \cup B$, is the set $\{x \mid x \in A \lor x \in B\}$.
- (iii) Difference
 - The difference of A and B, $A \setminus B$, is the set $\{x \mid x \in A \land x \notin B\}$.
- (iv) Symmetric Difference
 - The symmetric difference of *A* and *B*, $A \triangle B$, is the set $(A \setminus B) \cup (B \setminus A)$.

Lemma 1.4.3 Simple Properties of Elementary Operations

- (i) Commutativity
 - $A \cap B = B \cap A$
 - $A \cup B = B \cup A$
 - $A \triangle B = B \triangle A$
- (ii) Associativity
 - $(A \cap B) \cap C = A \cap (B \cap C)$
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \triangle B) \triangle C = A \triangle (B \triangle C)$
- (iii) Distributivity
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (iv) De Morgan's Laws
 - $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$
 - $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$
- (v) Miscellaneous
 - $A \cap (B \setminus C) = (A \cap B) \setminus C$
 - $A \setminus B = \emptyset \iff A \subseteq B$
 - $A \triangle B = \emptyset \iff A = B$

Definition 1.4.4: Intersection of System of Sets

Let *S* be a nonempty set. Then, the *intersection* $\bigcap S$ is the set $\{x \mid \forall A \in S \ (x \in A)\}$.

Note:-

Note that $\bigcap S$ exists for all nonempty S since $\forall A \in S \ (x \in A) \implies x \in A_1$ where A_1 is any set such that $A_1 \in S$.

Definition 1.4.5: System of Mutually Disjoint Sets

We say the sets A and B are disjoint if $A \cap B = \emptyset$. A set S is a system of mutually disjoint sets if $\forall A, B \in S$, $(A \neq B \implies A \cap B = \emptyset)$.

Selected Problems

Exercise 1.4.4

For any set *A*, prove that a "complement" of *A* ($\{x \mid x \notin A\}$) does not exist.

Proof. Let *B* be the complement of *A* for the sake of contradiction. Then, $A \cup B$ is the set of all sets, which is impossible by Exercise 1.3.3. □