

US10575505 revised
SEQUENCE LISTING

<110> Helmholtz-Institut fuer Infektionsforschung GmbH
Ferrer, Manuel
Chernikova, Tatjana
Golyshin, Peter
Timmis, Kenneth
Yakimov, Michail

<120> Transgenic organisms with lower growth temperatures

<130> FERRER ET AL-1

<150> EP 03023032.0

<151> 2003-10-13

<160> 28

<170> PatentIn version 3.5

<210> 1

<211> 97

<212> PRT

<213> artificial sequence

<220>

<223> Cpn10 of Oleispira antarctica

<400> 1

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu
1 5 10 15

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala
20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile
35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val
50 55 60

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly
65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu
85 90 95

Ala

<210> 2
<211> 548
<212> PRT
<213> artificial sequence

US10575505 revised

<220>

<223> Cpn60 of oleispira antarctica

<400> 2

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met
1 5 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile
35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp
50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln
65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Ala Thr Val Leu Ala
85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn
100 105 110

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val
115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile
130 135 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg
145 150 155 160

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr
165 170 175

Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly
180 185 190

Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln
195 200 205

Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp
210 215 220

Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val
225 230 235 240

US10575505 revised

Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly
245 250 255

Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys
260 265 270

Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met
275 280 285

Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu
290 295 300

Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala
305 310 315 320

Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala
325 330 335

Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu
340 345 350

Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg
355 360 365

Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly
370 375 380

Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu
385 390 395 400

His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly
405 410 415

Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn
420 425 430

Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala
435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Glu Gly Ser Val Val
450 455 460

Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser
465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala
Page 3

485

US10575505 revised

490

495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu
500 505 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly
515 520 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Gly Met
530 535 540

Pro Gly Met Met
545

US10575505 revised

ggatctaaa cgtggtattg ataaagctac ggctgctgtt gttgccgcca ttaaaagaaca	1200
agctcagcct tgcttgata caaaagcaat cgctcaggta gggacaatct ctgccaatgc	1260
cgatgaaacg gttggtcgtt taattgctga agcgatggaa aaagtccgtt aagaagggtgt	1320
gattaccgtt gaagaaggca aaggccttga agacgagctt gatgtttagt aaggcatgca	1380
gttcgatcgc gttacttgt ctccgtactt catcaacaac caaaaaaaa tgaccgtaga	1440
aatggaaaat ccattaattc tattgggttga taagaaaatt gataacccttc aagagctgtt	1500
gccattctt gaaaacgtcg ctaaatcagg tcgtccatta ttgatcgttgc ctgaagatgt	1560
tgaaggccaa gcactagcaa cattggtagt aaacaacttg cgccgcacat tcaagggtgc	1620
agcggtaaaa gcccctggtt ttggcgatcg tcgtaaagcg atgttgcagg atcttgcac	1680
cttgcacgggt ggtcagggtt tttctgaaga gctaggatg tctttagaaa ctgcggatcc	1740
ttcttcttg ggtacggcaa gcaagggtgt tatcgataaaa gaaaacaccg tgattgttga	1800
tggcgcaagg actgaagcaa gcgttaatac tcgttttgc cagatccgtt ctgaaatcga	1860
aagctcgact tctgattacg acatcgaaaa gttacaagaa cgcgttgcta agcttgcggg	1920
cggcgttgcc gtgattaagg ttggcgccc ttctgaaatg gaaatgaaag agaagaaaga	1980
ccgtgttgac gatgcacttc atgcaactcg cgcaacgtt gaagaagggtt ttgttgcggg	2040
tggtgggttt gctttgattc gcgcactctc ttcagtaacc gttgttgggtt ataacgaaga	2100
tcaaaacgtc ggtattgtcat tggcacttcg tgcatggaa gctcctatcc gtcaaatcgc	2160
ggtaacgca ggtgctgaag ggtcagtggt tggtataaaa gtgaaatctg gcacaggtt	2220
ctttggttt aacgccagca caggtgagta tggcgatatg attgcgtatgg gtatttttaga	2280
ccctgcaaaa gtcacgcgtt catctctaca agccgcggcg tctatcgcag gtttgcgtt	2340
cacaaccgaa gccatggttt cggatgcgc tggtaagaa ggcgttgcgtt gtatgcctga	2400
tatggcgcc atgggtggaa tggcggtat gcctggcatg atgtaatcac tttgttattc	2460
attgtcctga tctgcttacc gtgtaaaaag atcaggctca aggctgtctc tataaaaagc	2520
cgtatcttg atgagtgttgc tctttctgtt gaaaacgaca ttcttggagt gcggcttttt	2580
ttgatttgg tcataaaatt cagaatatttgc tgtaatttttgc tgtaacttagc tggcctataa	2640
tgttggatcc ctctgggtgg catgatctca tggtacttca cttaaggcttgc attcactgcg	2700
gctttaacag taaaataata acgcaacgtt gaaacataat aagcgtatgg cattaatgaa	2760
gacggctgca tttaatttgc atc	2783

<210> 4
<211> 333
<212> PRT
<213> Oleispira antarctica

<400> 4

US10575505 revised

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu
1 5 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr
20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg
35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn
50 55 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser
65 70 75 80

Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu
85 90 95

Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu
100 105 110

Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu
115 120 125

Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val
130 135 140

Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala
145 150 155 160

Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile
165 170 175

Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val
180 185 190

Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe
195 200 205

Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp
210 215 220

Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile
225 230 235 240

Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly
245 250 255

US10575505 revised

Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro
260 265 270

Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val
275 280 285

Ser Ala Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His
290 295 300

Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu
305 310 315 320

Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys
325 330

<210> 5
<211> 3939

<212> DNA

<213> artificial sequence

<220>

<223> DNA fragment from plasmid pBK1Est coding for esterase of
Oleispira antarctica

<400> 5
acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaaggaa 60
caaaagctgg agctcgcgcg cctgcaggc gacactagtg gatcaacggc gttcatggta 120
ctggctgagt tcagcgtcat aatgccatg cgatactggc cgtcatgact gagtacttct 180
tctgcttagca ccgatttttc taatagcgca gcttctttta tttctgaacg ggcaactgat 240
gtagttttt tactaaccgg cttttaggc atggtaaact cttcgatatt caaaattatt 300
actgttcata ttacaatcat agtacaggct agaggccaa aattgcagct gatattcacc 360
tttattattc taagcattat tacactcatc gcgggtttat taatttgct aaataaaaat 420
acccgtagcg gaaaaattca gcaaatagcc aaagaaaacg attggcaata ccaagaattc 480
atcgattttg atgatgacat taagcaggca aactttggcc tattaaacta cagtcaaat 540
gcaattttta gacatctcat tcaagcaact gacgaacact atggcttagc gtttaagacc 600
tttgactgtc gagcgttaga accttcaggt attcacaata gcagtcttat tttatttacc 660
ctcgactaa agactgaatt caataaccta cacattgct taagtcgaca tattcaagat 720
aaagatgcct tcactgacat cagtcaccaa caatcaatca aacaccaata ccaatcgcaa 780
aaactcataa aactagccga tcacccaaatc ccaaaagcgt tcaaaaatga aacgagcacg 840
tcacacaaaa tcaatttata cgctaacgaa ccaggtcaa cttatcgaaa tttttagcac 900
gtttgttcca ctaatgaaag agaaaagtgc ttaattcact ggctttggc gtatccgcac 960

US10575505 revised

cttcacatag aaattagtaa tggcatgcta ctggcctta aaaagaatca gttaattgaa	1020
gaaacctcgc ttatctcagc cattaccgct gtagccaat ttgcgcttat cctcagccat	1080
gattaaactg acgccaatta atataagaca tactaattaa taactccctt aattgagaag	1140
aataatgaaa aacacactca aatcctcatc acgttttagt ctgaaacaac tcggcaccgg	1200
cgctctgatt atctccagtt tgttcttcgg tggttgcacc acaacacaac aagataattt	1260
atacacaggg gttatgtctc ttgcgagaga cagcgctggc ctagaagtta aaacagcctc	1320
tgccggtgac gtcaatctta cttatatgga acgccaaggc agtgacaaag ataatgccga	1380
aagcgttatt ttattacacg gtttctctgc tgataaagat aactggattc ttttaccaa	1440
agaattcgat gaaaaatatc atgttatcgc tgtcgattta gcgggacatg gcgattcaga	1500
acaattatta acgactgatt acggtctcat aaaacaagcc gagcgtttag atatcttctt	1560
atctggctta ggggttaact cattcacat cgccgtaat tcaatggggg gggctatcag	1620
cgcaatctac agttttagtc acccagagaa agttaaaagt cttacattga tcgatgcagc	1680
aggtgtcgat ggcgatactg aaagcgaata ctacaaagtt ttggcagaag gtaagaatcc	1740
tttaattgca actgatgaag caagtttga ataccgcatg ggtttcacca tgactcagcc	1800
tccttccta ccttggccac taagaccttc tttattacgt aaaacgctag cccgtgccga	1860
gatcaataac aaaattttt ccgatatgct gaaaacccaa gaacgtttag gaatgactaa	1920
cttcaacag aaaattgaag tgaaaatggc tcaacatcca ttgccaacac tgattatgt	1980
gggcaaagaa gatcgcttc ttgacgtatc cgtagcagcg gccttcaaaa aaataattcc	2040
acaagcaact gttcatattt ttcctgaagt aggccaccta cctatggtag aaattcctag	2100
tgaaagcgct aaagtttag aagagtttt gtcctctatt aaataagagc acataatcat	2160
gactgactta taaacagcca agcattaaa atgcttggct gtttattta atggccaaat	2220
tattcaacga ccaagctctg cgtaaaatc gcagtgggtt tcttgtttc atcaacagca	2280
acaaacgtga aataccccgt aatcgcatat ttctgattat caaaatacat acttccacc	2340
agcatattaa cttcaacttt taaactcgtc cgccctacct ctataacact ggcagtcaat	2400
tcgacaatgg tacctgcggg aacaggatgc ttaaaatcga ttgcatcact gctgacgggt	2460
acgatgctt gtcgagaaaa acgagtcgct gcaataaaag aaacctcatc catccactgc	2520
attgcagtgc caccgaataa cgtatcatga tgatttggtg tctctggaaa taccgcttta	2580
gaaatagtgg ttttgatac gcgcttcgc tgcgcaataa tatcttctct gctaagagtt	2640
gcggatggca tacataaact cgcttgatta agattaataa taaatagtta acagtatatt	2700
gaactgaggg tctgaagaac tctaatacct ctgaagaact ttgaggccgc tagagagaaa	2760
agaccagtga taatatttca tcttgccatg agagcttac atgaaagcct gtgcttaaaa	2820

US10575505 revised

tcaatcatta tatttattca tcttaattg aaataatacc aatatatttc atatataatt	2880
tcacactacc cttatctcac tagacttccc gcgcataaggc gcaaacaatc aacgcaagtt	2940
cacaataaag cggttcgctg caacacatgc cctagcgtct aaagttagcac gcacaacact	3000
ggccagtcgt actagccct ttgcgattcg tgcagacgag caacaagcgc tattaaactt	3060
acctaaattt ctaaccacca ccattggttc tttccacaa actaaaaaaa ctcgtcaa	3120
ccgcttgcaa tttaaacgcg atgacataga tctaattcgat tatcaaaccgcattcaagc	3180
gctcattaaa aacgcaccac tggcaagaag ttctacctgc actgaccaat atgcaagcgg	3240
cggcggaga gctgccttg atcgatcaag aagaagggag cagcaaagag gaaaacaatc	3300
aaaaagagga gagcaatcaa ataaaaacga gttattgagg attttaaattt taaaacaggt	3360
atattaatac cctctctcg agtaaacaat gactgtattt acacaaaaat aaatagaggt	3420
ataccatgtc aaacatctgg tttgaagtac caaagattga agtattaaac cgtcaa	3480
aaaactgc ctgcagcaac ttaggcattc aaattacaga aattggcgat gattatata	3540
ctggcacaat gccagcagat gcacgtaccc tccagccat gggactgatt catggcggct	3600
caaatgtatt gctggcagaa acactggca gcatggcagc taactgctgt attaatttgc	3660
ctcaagaata ttgtgttggc caagaaatta acgccaacca catacgcggt gttcg	3720
gcatagtgac tggcacagca acgctagtagtac acaaaggaag aacctcccag atttggaaa	3780
ttcgcatcgtaacgatcca aagaattcaa aaagcttctc gagagtactt ctagagcggc	3840
cgcgggccccca tcgattttcc acccgggtgg ggtaccaggt aagtgtaccc aattcgccct	3900
atagtgagtc gtattacaat tcactggccg tcgttttac	3939

<210> 6
<211> 97
<212> PRT
<213> artificial sequence

<220>
<223> cpn10 of oleispira antarctica

<400> 6

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu
1 5 10 15

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala
20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile
35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val
50 55 60

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly
65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu
85 90 95

Ala

<210> 7
<211> 548
<212> PRT
<213> artificial sequence

<220>
<223> Cpn10 of oleispira antarctica

<400> 7

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met
1 5 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile
35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp
50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln
65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala
85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn
100 105 110

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val
115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile
130 135 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg
145 150 155 160

US10575505 revised

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr
165 170 175

Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly
180 185 190

Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln
195 200 205

Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp
210 215 220

Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val
225 230 235 240

Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly
245 250 255

Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys
260 265 270

Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met
275 280 285

Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu
290 295 300

Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala
305 310 315 320

Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala
325 330 335

Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu
340 345 350

Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg
355 360 365

Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly
370 375 380

Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu
385 390 395 400

His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly
405 410 415

US10575505 revised

Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn
420 425 430

Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala
435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Glu Gly Ser Val Val
450 455 460

Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser
465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala
485 490 495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu
500 505 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly
515 520 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Met
530 535 540

Pro Gly Met Met
545

<210> 8
<211> 333
<212> PRT
<213> Oleispira antarctica

<400> 8

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu
1 5 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr
20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg
35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn
50 55 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser
65 70 75 80

US10575505 revised

Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu
85 90 95

Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu
100 105 110

Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu
115 120 125

Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val
130 135 140

Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala
145 150 155 160

Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile
165 170 175

Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val
180 185 190

Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe
195 200 205

Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp
210 215 220

Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile
225 230 235 240

Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly
245 250 255

Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro
260 265 270

Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val
275 280 285

Ser Ala Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His
290 295 300

Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu
305 310 315 320

Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys
Page 13

<210> 9
<211> 5373
<212> DNA
<213> artificial sequence

<220>
<223> fusion of native chaperonin-coding fragments with esterase of *Oleispira antarctica*

<400> 9
acagggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaaggaa 60
caaaaagctgg agctccta atctgggatc caacagttgg agagtctagc aaatgaaaat 120
ccgtccatta catgatcgta ttgttgttcg ccgtaaagaa gaagagaccg caactgcggg 180
tggttattttt ttaccggcg ctgcggcaga aaaaccaa at caaggtgttgc ttatctctgt 240
gggtactggc cgtattcttgc ataatggttc agtgcagcg ctggcggtt acgaaggcga 300
tggtgtcggtt tttggtaat actcaggtca aaatactatc gatatcgatg gtgaagaatt 360
attgattttt aatgaaagtg atatctacgg cgtttagaa gcttaatttat tacactcact 420
tttttattta acctacaaaaa tttaaggaaa gatcatggct gctaaagacg tattatttgg 480
tgatagcgca cgcgcacaaaaa tggtgttagg tgtaaacatt ttagccgacg cagtaagagt 540
taccttagga cctaaaggcgtc gtaacgttgt tatagaaaaa tcatttggtg caccgatcat 600
caccaaaagat ggtgtttctg ttgcgcgtga aatcgaaattt aaagacaaat tcgaaaacat 660
ggcgacacag atggtaagg aagttgttc tcaagccaac gaccaagccg gtgacggcac 720
aacgacacacg actgtactag cacaggcgat tatcagcgaa ggcttggaaat ctgttgcggc 780
tggcatgaat ccaatggatc tttaacgtgg tattgataaa gctacggctg ctgttgttgc 840
cgccattttaa gaacaagctc agccttgctt ggataaaaaa gcaatcgctc aggttagggac 900
aatctctgcc aatgccgatg aaacggttgg tcgtttaattt gctgaagcga tggaaaaagt 960
cggttaaaaaa ggtgtgatta ccgttgaaga aggcaaaggc cttgaagacg agcttgcgt 1020
tgtagaaggc atgcagttcg atcgcggtt cttgtctccg tacttcatca acaaccaaga 1080
aaaaatgacc gttagaaatgg aaaatccatt aattctattt gttgataaga aaattgataa 1140
ccttcaagag ctgttgc当地 ttcttggaaa cgtcgctaaa tcaggtcgctc cattattgt 1200
cggtgtgaa gatgttgaag gccaagcact agcaacattt gtagtaaaca acttgcgcgg 1260
cacattcaag gttgcagcgg tttaagcccc tgggtttggc gatcgctgt aagcgatgtt 1320
gcaagatctt gccatcttga cgggtggtaa ggttattttctt gaagagctag ggatgtcttt 1380
agaaaactgcg gatccttctt ctttgggtac ggcaagcaag gttgttatcg ataaaagaaaa 1440
caccgtgatt gttgatggcg caggtactga agcaagcgat aataactcgatg ttgaccagat 1500

US10575505 revised

ccgtgctgaa atcgaaagct cgacttctga ttacgacatc gaaaagttac aagaacgcgt	1560
tgctaagctt gcgggcggcg ttgccgtat taaggttgtt gcgggttctg aaatggaaat	1620
gaaagagaag aaagaccgtg ttgacgatgc acttcatgca actcgcgtag cggttgaaga	1680
aggtgttgtt gcgggtggtg gtgttgctt gattcgca ctctcttcag taaccgttgt	1740
tggtgataac gaagatcaa acgtcggtat tgcattggca cttcgtaga tgaaagctcc	1800
tatccgtcaa atcgcggtta acgcaggtagc tgaagggtca gtgggttgtt ataaagtcaa	1860
atctggcaca gtagcttg gtttaacgc cagcacaggt gagtatggcg atatgattgc	1920
gatgggtatt ttagaccctg caaaagtcac gcgttcatct ctacaagccg cggcgcttat	1980
cgcaggtagt atgatcacaa ccgaagccat gttgcggat ggcctgttg aagaaggcgc	2040
tggtggtatg cctgatatgg gcggcatggg tggatggc ggtatgcctg gcatgatgt	2100
atcactttgt gattcattgt cctgatctgc ttaccgtgtc gacatattca agataaagat	2160
gccttcactg acatcagtca ccaacaatca atcaaacacc aataccaatc gcaaaaactc	2220
ataaaaactag ccgatcacca aatccccaaa gcgttcaaaa atgaaacgag cacgtcacac	2280
aaaatcaatt tatacgctaa cgaaccaggt caaacttac gttttttga gcacgttgt	2340
tccactaatg aaagagaaaaa gtcgttaatt cactggctt tggcgatcc gcaccttcac	2400
atagaaatta gtaatggcat gctactggcc tttaaaaaga atcagttat tgaagaaacc	2460
tcgcttatct cagccattac cgctgttagcc gaattgcgc ttatcctcag ccatgattaa	2520
actgacgcca attaatataa gacatactaa ttaataactc ccttaattga gaagaataat	2580
aaaaaacaca ctcaaattct catcacgtt tagtctgaaa caactcgca cggcgctct	2640
gattatctcc agttgttct tcgggttgtt caccacaaca caacaagata atttatacac	2700
aggggttagt tctcttgcga gagacagcgc tggcctagaa gttaaaacag cctctgccgg	2760
tgacgtcaat cttacttata tggAACGCCA aggcaatgtc aaagataatg ccgaaagcgt	2820
tatTTTATTA cacggtttct ctgctgataa agataactgg attctttta ccaaagaatt	2880
cgatgaaaaaa tatcatgtt tcgctgtcgat tttAGCGGGAA catggcgatt cagaacaatt	2940
attaacgact gattacggtc tcataaaaca agccgagcgt ttagatatct tcttatctgg	3000
cttaggggtt aactcatttc acatcgccgg taattcaatg gggggggcta tcagcgcaat	3060
ctacagttt agtcacccag agaaagttaa aagtcttaca ttgatcgatg cagcaggtgt	3120
cgatggcgat actgaaagcg aataactacaa agttttggca gaaggtaaga atcccttaat	3180
tgcaactgat gaagcaagtt ttgaataccg catgggtttc accatgactc agcctcctt	3240
cctaccttgg ccactaagac cttcttatt acgtaaaacg ctagccgtg ccgagatcaa	3300
taacaaaatt tttccgata tgctgaaaac caaagaacgt ttaggaatga ctaactttca	3360
acagaaaaatt gaagtgaaaaa tggctcaaca tccattgcca acactgatta tgtggggcaa	3420

US10575505 revised

agaagatgc gttcttgc acg tatccgc agcggc ttcaaaaataa ttccacaagg	3480
aactgttcat attttcctg aagttaggcca cctacctatg gtagaaattc ctagtgaag	3540
cgctaaagtt tatgaagagt tttgtc ctc tattaaataa gagcacataa tcataactga	3600
cttataaaca gccaaggcatt taaaatgctt ggctgtttat tttaatggcc aaattattca	3660
acgaccaagc tctgcggtaa aatgcagtg ggtttcttgtt tttcatcaac agcaacaaac	3720
gtgaaatacc ccgtaatgc attttctga ttatcaaatacataacttc caccagcata	3780
ttaacttcaa cttttaact cgtccgcctt acctctataa cactggcagt caattcgaca	3840
atgg tacctg cggaacagg atgctaaaa tcgattcgat cactgctgac ggtagat	3900
ctttgtcgag aaaaacgagt cgctgcaataa aagaaacct catccatcca ctgcattgca	3960
gtgccaccga ataacgtatc atgatgattt gttgtctctg gaaataccgc tttagaaata	4020
gtggttttg atacgcgctt tcgctgcga ataataatctt ctctgctaag agttgcggat	4080
ggcatacata aactcgctt attaagatta ataataataa gttaacagta tattgaactg	4140
agggtctgaa gaactctaattt acctctgaag aactttgagg ccgctagaga gaaaagacca	4200
gtgataatat ttcatcttgc catgagagct tatcatgaaa gcctgtgctt aaaatcaatc	4260
attatattta ttcatcttta attgaaataa taccaatata tttcatatat aatttcacac	4320
tacccttatac tcactagact tcccgcgcattt aggccaaac aatcaacgca agttcacaat	4380
aaagcggttc gctgcaacac atgccc tagc gtctaaagta gcacgcacaa cactggccag	4440
tcgtactagc cccttgcga ttcgtcaga cgagcaacaa gcgttattaa acttacctaa	4500
atttctaacc accaccattt gttctttcc acaaactcaa aaaactcgatc aaatccgctt	4560
gcaatttaaa cgcatgaca tagatctaattt cgattatcaa acccgattt aagcgctcat	4620
taaaaacgca ccactggcaa gaagttctac ctgcactgac caatatgcaa gcggcggcgg	4680
aagagctgcc tttgatcgat caagaagaag ggagcagcaa agagaaaaac aatcaaaaag	4740
aggagagcaa tcaaataaaa acgagttattt gaggattta attttaaaac aggtatatta	4800
ataccctctc tcgttagataa caatgactgt atttacacaa aaataaatag aggtatacca	4860
tgtcaaacat ctggtttgc gtaaaaaaaa ttgaagtattt aaaccgtcaa atggaaaata	4920
ctgcctgcag caacttaggc attcaaattt cagaaattgg cgatgattat atcactggca	4980
caatgccagc agatgcacgt accttccagc caatggact gattcatggc ggctcaaatg	5040
tattgctggc agaaacactg ggcagcatgg cagctaactg ctgttataat ttgtctcaag	5100
aatattgtgt tggccaagaa attaacgcca accacatacg cggtgttcgt tccggcatag	5160
tgactggcac agcaacgcta gtacacaaag gaagaacctc ccagatttg gaaattcgca	5220
tcgttaacga tccaaagaat tcaaaaagct tctcgagatc acttcttagag cggccgcgg	5280

US10575505 revised
cccatcgatt ttccacccgg gtgggttacc aggtaagtgt acccaattcg ccctatagtg 5340
agtcgtatta caattcactg gccgtcgtt tac 5373

<210> 10
<211> 97
<212> PRT
<213> artificial sequence

<220>
<223> fusion protein

<400> 10

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu
1 5 10 15

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala
20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile
35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val
50 55 60

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly
65 70 75 80

Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu
85 90 95

Ala

<210> 11
<211> 548
<212> PRT
<213> artificial sequence

<220>
<223> mutant protein

<400> 11

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met
1 5 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile
35 40 45

US10575505 revised

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp
50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln
65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Ala Thr Val Leu Ala
85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn
100 105 110

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val
115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile
130 135 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg
145 150 155 160

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr
165 170 175

Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly
180 185 190

Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln
195 200 205

Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp
210 215 220

Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val
225 230 235 240

Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly
245 250 255

Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys
260 265 270

Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met
275 280 285

Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu
Page 18

290

295

300

Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala
 305 310 315 320

Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala
 325 330 335

Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu
 340 345 350

Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg
 355 360 365

Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly
 370 375 380

Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu
 385 390 395 400

His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly
 405 410 415

Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn
 420 425 430

Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala
 435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Ala Gly Ala Val
 450 455 460

Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser
 465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala
 485 490 495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu
 500 505 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly
 515 520 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Gly Met
 530 535 540

Pro Gly Met Met
545

<210> 12
<211> 333
<212> PRT
<213> Oleispira antarctica

<400> 12

Met Lys Asn Thr Leu Lys Ser Ser Ser Arg Phe Ser Leu Lys Gln Leu
1 5 10 15

Gly Thr Gly Ala Leu Ile Ile Ser Ser Leu Phe Phe Gly Gly Cys Thr
20 25 30

Thr Thr Gln Gln Asp Asn Leu Tyr Thr Gly Val Met Ser Leu Ala Arg
35 40 45

Asp Ser Ala Gly Leu Glu Val Lys Thr Ala Ser Ala Gly Asp Val Asn
50 55 60

Leu Thr Tyr Met Glu Arg Gln Gly Ser Asp Lys Asp Asn Ala Glu Ser
65 70 75 80

Val Ile Leu Leu His Gly Phe Ser Ala Asp Lys Asp Asn Trp Ile Leu
85 90 95

Phe Thr Lys Glu Phe Asp Glu Lys Tyr His Val Ile Ala Val Asp Leu
100 105 110

Ala Gly His Gly Asp Ser Glu Gln Leu Leu Thr Thr Asp Tyr Gly Leu
115 120 125

Ile Lys Gln Ala Glu Arg Leu Asp Ile Phe Leu Ser Gly Leu Gly Val
130 135 140

Asn Ser Phe His Ile Ala Gly Asn Ser Met Gly Gly Ala Ile Ser Ala
145 150 155 160

Ile Tyr Ser Leu Ser His Pro Glu Lys Val Lys Ser Leu Thr Leu Ile
165 170 175

Asp Ala Ala Gly Val Asp Gly Asp Thr Glu Ser Glu Tyr Tyr Lys Val
180 185 190

Leu Ala Glu Gly Lys Asn Pro Leu Ile Ala Thr Asp Glu Ala Ser Phe
195 200 205

us10575505 revised
Glu Tyr Arg Met Gly Phe Thr Met Thr Gln Pro Pro Phe Leu Pro Trp
210 215 220

Pro Leu Arg Pro Ser Leu Leu Arg Lys Thr Leu Ala Arg Ala Glu Ile
225 230 235 240

Asn Asn Lys Ile Phe Ser Asp Met Leu Lys Thr Lys Glu Arg Leu Gly
245 250 255

Met Thr Asn Phe Gln Gln Lys Ile Glu Val Lys Met Ala Gln His Pro
260 265 270

Leu Pro Thr Leu Ile Met Trp Gly Lys Glu Asp Arg Val Leu Asp Val
275 280 285

Ser Ala Ala Ala Ala Phe Lys Lys Ile Ile Pro Gln Ala Thr Val His
290 295 300

Ile Phe Pro Glu Val Gly His Leu Pro Met Val Glu Ile Pro Ser Glu
305 310 315 320

Ser Ala Lys Val Tyr Glu Glu Phe Leu Ser Ser Ile Lys
325 330

<210> 13
<211> 5373
<212> DNA
<213> artificial sequence

<220>
<223> expression cassette for fusion protein

<400> 13
acaggaaaca gctatgacct tgattacgcc aagctcgaaa ttaaccctca ctaaaggaa 60
caaaagctgg agtcctaatt acttggatc caacagttgg agagtcttagc aaatgaaaat 120
ccgtccatta catgatcgta ttgttgcgtc ccgtaaagaa gaagagaccg caactgcggg 180
tggtattatt ttaccggcgc ctgcggcaga aaaaccaaatt caaggtgttg ttatctctgt 240
gggtactggc cgtattcttgc ataatggttc agtgcagcg ctggcggtta acgaaggcga 300
tgttgcgtt tttggtaaat actcaggatca aaatactatc gatatcgatg gtgaagaatt 360
attgattttg aatgaaagtg atatctacgg cgtttttagaa gcttaattat tacactcact 420
tttttattta acctacaaaa tttaaggaaa gatcatggct gctaaagacg tattattgg 480
tgatagcgca cgcgcacaaa tggtggtagg tgtaaacatt ttagccgacg cagtaagagt 540
taccttagga cctaaaggtc gtaacgttgt tatagaaaaa tcattggtg caccgatcat 600
caccaaagat ggtttctg ttgcgcgtga aatcgaattt aaagacaaat tcgaaaacat 660

US10575505 revised

gggcgcacag atggtaagg aagttgttc	tcaagccaac gaccaagccg gtgacggcac	720
aacgacagcg actgtactag cacaggcgat	tatcagcgaa ggcttgaat ctgttgcggc	780
tggcatgaat ccaatggatc taaaacgtgg	tattgataaa gctacggctg ctgttgttgc	840
cgccattaaa gaacaagctc agccttgctt	ggatacaaaa gcaatcgctc agtagggac	900
aatctctgcc aatgccgatg aaacggttgg	tcgtttaatt gctgaagcga tggaaaaagt	960
cgttaaagaa ggtgtgatta ccgttgaaga	aggcaaaggc cttgaagacg agcttgatgt	1020
tgtagaaggc atgcagttcg atcgcggtt	cttgtctccg tacttcatca acaaccaaga	1080
aaaaatgacc gtagaaatgg aaaatccatt	aattctattt gttgataaga aaattgataa	1140
ccttcaagag ctgttccaa ttcttggaaa	cgtcgctaaa tcaggtcgctc cattattgt	1200
cgttgctgaa gatgttgaag gccaagcact	agcaacattt gtagtaaaca acttgcgcgg	1260
cacattcaag gttgcagcgg taaaagcccc	tggtttggc gatcgctgt aagcgatgtt	1320
gcaagatctt gccatcttga cgggtggtca	ggttatttct gaagagctag ggatgtctt	1380
agaaaactgct gatccttctt ctttgggtac	ggcaagcaag gttgttatcg ataaagaaaa	1440
caccgtgatt gttgatggcg caggtactga	agcaagcggtt aataactcgat ttgaccagat	1500
ccgtgctgaa atcgaaagct cgacttctga	ttacgacatc gaaaagttac aagaacgcgt	1560
tgctaagctt gcgggcccgg	ttgccgtat taaggttggc gcgggttctg aaatggaaat	1620
gaaagagaag aaagaccgtg ttgacgatgc	acttcatgca actcgccgag cggttgaaga	1680
aggtgttgc	gcgggtggc gtgttgcctt gattcgca ctctttcag taaccgttgc	1740
tggtgataac gaagatcaa acgtcggtat	tgcattggca cttcgatcgat tggaagctcc	1800
tatccgtcaa atcgcggtt acgcagggtgc	tgcaggggca gcgggttgcg ataaagtgaa	1860
atctggcaca ggttagtttgc	gttttaacgc cagcacaggt gagtagggcg atatgattgc	1920
gatgggtatt ttagaccctg caaaagtcac	gcgttcatct ctacaagccg cggcgatctat	1980
cgcaggtttgc	atgatcacaa ccgaagccat ggttgcggat gcgcctgttgc	2040
tggtggtatg cctgatatgg gcggcatggg	tggatgggc ggtatgcctg gcatgtatgtat	2100
atcactttgt gattcattgt cctgatctgc	ttaccgtgtc gacatattca agataaagat	2160
gccttcactg acatcgtca ccaacaatca	atcaaacacc aataccaatc gcaaaaactc	2220
ataaaaactag ccgatcacca aatccaaaaa	gcgttcaaaa atgaaacgag cacgtcacac	2280
aaaatcaatt tatacgctaa cgaaccaggt	caaacttac gtttttttgc gcacgtttgt	2340
tccactaatg aaagagaaaaa gtcgttaatt	caactggctt tggcgatcc gcacccatcac	2400
atagaaatta gtaatggcat gctactggcc	tttaaaaaaga atcagttat tgaagaaacc	2460
tcgcttatct cagccattac cgctgttagcc	gaattgcgc ttatcctcag ccatgattaa	2520
actgacgcca attaatataa gacataactaa	ttaataactc ccttaattga gaagaataat	2580

US10575505 revised

gaaaaacaca	ctcaaatcct	catcacgtt	tagtctgaaa	caactcgca	ccggcgctct	2640
gattatctcc	agtttgttct	tcggtggttg	caccacaaca	caacaagata	atttatacac	2700
aggggttatg	tctcttgcga	gagacagcgc	tggcctagaa	gttaaaacag	cctctgccgg	2760
tgacgtcaat	cttacttata	tggaacgcca	aggcagtgac	aaagataatg	ccgaaagcgt	2820
tatTTtatta	cacggtttct	ctgctgataa	agataactgg	attctttta	ccaaagaatt	2880
cgatgaaaaa	tatcatgtta	tcgctgtcga	tttagcggga	catggcgatt	cagaacaatt	2940
attaacgact	gattacggtc	tcataaaaaca	agccgagcgt	ttagatatct	tcttatctgg	3000
cttaggggtt	aactcatttc	acatcgccgg	taattcaatg	gggggggcta	tcagcgcaat	3060
ctacagtttgc	agtcacccag	agaaagttaa	aagtcttaca	ttgatcgatg	cagcaggtgt	3120
cgatggcgat	actgaaagcg	aatactacaa	agttttggca	gaaggtaaga	atcccttaat	3180
tgcaactgat	gaagcaagtt	ttgaataaccg	catgggtttc	accatgactc	agcctccttt	3240
cctaccttgg	ccactaagac	cttcttatt	acgtaaaacg	ctagcccgtg	ccgagatcaa	3300
taacaaaatt	tttccgata	tgctgaaaac	caaagaacgt	tttagaatga	ctaactttca	3360
acagaaaaatt	gaagtgaaaaa	tggctcaaca	tccattgcca	acactgatta	tgtggggcaa	3420
agaagatcgc	gttcttgacg	tatccgcagc	agcggccttc	aaaaaaaataa	ttccacaagc	3480
aactgttcat	attttcctg	aagtaggcca	cctacctatg	gtagaaattc	ctagtgaaag	3540
cgctaaagtt	tatgaagagt	ttttgtcctc	tattaaataa	gagcacataa	tcatgactga	3600
cttataaaaca	gccaaagcatt	taaaatgctt	ggctgtttat	tttaatggcc	aaattattca	3660
acgaccaagc	tctgcggtaa	aatcgcatgt	ggtttcttgt	tttcatcaac	agcaacaaac	3720
gtgaaatacc	ccgtaatcgc	attttctga	ttatcaaaat	acatacttcc	caccagcata	3780
ttaacttcaa	cttttaact	cgtccgcct	acctctataa	cactggcagt	caattcgaca	3840
atggtacctg	cggaaacagg	atgcttaaaa	tcgattcgat	cactgctgac	ggttacgatg	3900
cttgcgag	aaaaacgagt	cgctgcaata	aaagaaacct	catccatcca	ctgcattgca	3960
gtgccaccga	ataacgtatc	atgatgattt	gttgtctctg	gaaataccgc	tttagaaata	4020
gtggttttg	atacgcgctt	tcgctgcgca	ataatatctt	ctctgctaag	agttgcggat	4080
ggcatacata	aactcgcttgc	attaagatta	ataataaata	gttaacagta	tattgaactg	4140
agggtctgaa	gaactctaatt	acctctgaag	aactttgagg	ccgctagaga	gaaaagacca	4200
gtgataatat	ttcatcttgc	catgagagct	tatcatgaaa	gcctgtgctt	aaaatcaatc	4260
attatattta	ttcatcttta	attgaaataa	taccaatata	tttcatatat	aatttcacac	4320
tacccttatac	tcactagact	tcccgcgcat	aggcgcaaac	aatcaacgca	agttcacaat	4380
aaagcggttc	gctgcaacac	atgccctagc	gtctaaagta	gcacgcacaa	caactggccag	4440

US10575505 revised

tcgtactgc ccctttgcga ttcgtgcaga cgagcaacaa gcgcattaa acttaccaa	4500
atttctaacc accaccattg gttctttcc acaaactcaa aaaactcgac aaatccgctt	4560
gcaatttaaa cgcgatgaca tagatctaattcgattatcaa acccgcatc aagcgctcat	4620
taaaaaacgca ccactggcaa gaagttctac ctgcactgac caatatgcaa gcggcggcgg	4680
aagagctgcc tttgatcgat caagaagaag ggagcagcaa agagaaaaac aatcaaaaag	4740
aggagagcaa tcaaataaaa acgagttatt gaggattttt attttaaaac aggtatatta	4800
ataccctctc tcgttagtaaa caatgactgt atttacacaa aaataaatag agtatacca	4860
tgtcaaacat ctggtttcaa gtaccaaaga ttgaagtatt aaaccgtcaa atggaaaata	4920
ctgcctgcag caacttaggc attcaaatta cagaaattgg cgatgattat atcactggca	4980
caatgccagc agatgcacgt accttccagc caatggact gattcatggc ggctcaaatg	5040
tattgctggc agaaaacactg ggcagcatgg cagctaactg ctgtattaaat ttgtctcaag	5100
aatattgtgt tggccaagaa attaacgcca accacatacg cggtttcggtccggcatag	5160
tgactggcac agcaacgcta gtacacaaag gaagaacctc ccagatttg gaaattcgca	5220
tcgttaacga tccaaagaat tcaaaaagct tctcgagagt acttcttagag cggccgcggg	5280
cccatcgatt ttccacccgg gtgggtacc aggttaagtgt acccaattcg ccctatagtg	5340
agtcgtatta caattcactg gccgtcggtt tac	5373

<210> 14
<211> 97
<212> PRT
<213> artificial sequence

<220>
<223> Cpn10 of *oleispira antarctica*, nucleotides 458 - 751

<400> 14

Met Lys Ile Arg Pro Leu His Asp Arg Ile Val Val Arg Arg Lys Glu
1 5 10 15

Glu Glu Thr Ala Thr Ala Gly Gly Ile Ile Leu Pro Gly Ala Ala Ala
20 25 30

Glu Lys Pro Asn Gln Gly Val Val Ile Ser Val Gly Thr Gly Arg Ile
35 40 45

Leu Asp Asn Gly Ser Val Gln Ala Leu Ala Val Asn Glu Gly Asp Val
50 55 60

Val Val Phe Gly Lys Tyr Ser Gly Gln Asn Thr Ile Asp Ile Asp Gly
65 70 75 80

US10575505 revised
Glu Glu Leu Leu Ile Leu Asn Glu Ser Asp Ile Tyr Gly Val Leu Glu
85 90 95

Ala

<210> 15
<211> 548
<212> PRT
<213> artificial sequence

<220>
<223> Cpn60 of oleispira antarctica, nucleotides 458 - 751

<400> 15

Met Ala Ala Lys Asp Val Leu Phe Gly Asp Ser Ala Arg Ala Lys Met
1 5 10 15

Leu Val Gly Val Asn Ile Leu Ala Asp Ala Val Arg Val Thr Leu Gly
20 25 30

Pro Lys Gly Arg Asn Val Val Ile Glu Lys Ser Phe Gly Ala Pro Ile
35 40 45

Ile Thr Lys Asp Gly Val Ser Val Ala Arg Glu Ile Glu Leu Lys Asp
50 55 60

Lys Phe Glu Asn Met Gly Ala Gln Met Val Lys Glu Val Ala Ser Gln
65 70 75 80

Ala Asn Asp Gln Ala Gly Asp Gly Thr Thr Thr Ala Thr Val Leu Ala
85 90 95

Gln Ala Ile Ile Ser Glu Gly Leu Lys Ser Val Ala Ala Gly Met Asn
100 105 110

Pro Met Asp Leu Lys Arg Gly Ile Asp Lys Ala Thr Ala Ala Val Val
115 120 125

Ala Ala Ile Lys Glu Gln Ala Gln Pro Cys Leu Asp Thr Lys Ala Ile
130 135 140

Ala Gln Val Gly Thr Ile Ser Ala Asn Ala Asp Glu Thr Val Gly Arg
145 150 155 160

Leu Ile Ala Glu Ala Met Glu Lys Val Gly Lys Glu Gly Val Ile Thr
165 170 175

Val Glu Glu Gly Lys Gly Leu Glu Asp Glu Leu Asp Val Val Glu Gly
Page 25

US10575505 revised
180 185 190

Met Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asn Gln
195 200 205

Glu Lys Met Thr Val Glu Met Glu Asn Pro Leu Ile Leu Leu Val Asp
210 215 220

Lys Lys Ile Asp Asn Leu Gln Glu Leu Leu Pro Ile Leu Glu Asn Val
225 230 235 240

Ala Lys Ser Gly Arg Pro Leu Leu Ile Val Ala Glu Asp Val Glu Gly
245 250 255

Gln Ala Leu Ala Thr Leu Val Val Asn Asn Leu Arg Gly Thr Phe Lys
260 265 270

Val Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Ala Met
275 280 285

Leu Gln Asp Leu Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu
290 295 300

Leu Gly Met Ser Leu Glu Thr Ala Asp Pro Ser Ser Leu Gly Thr Ala
305 310 315 320

Ser Lys Val Val Ile Asp Lys Glu Asn Thr Val Ile Val Asp Gly Ala
325 330 335

Gly Thr Glu Ala Ser Val Asn Thr Arg Val Asp Gln Ile Arg Ala Glu
340 345 350

Ile Glu Ser Ser Thr Ser Asp Tyr Asp Ile Glu Lys Leu Gln Glu Arg
355 360 365

Val Ala Lys Leu Ala Gly Gly Val Ala Val Ile Lys Val Gly Ala Gly
370 375 380

Ser Glu Met Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu
385 390 395 400

His Ala Thr Arg Ala Ala Val Glu Glu Gly Val Val Ala Gly Gly Gly
405 410 415

Val Ala Leu Ile Arg Ala Leu Ser Ser Val Thr Val Val Gly Asp Asn
420 425 430

US10575505 revised
Glu Asp Gln Asn Val Gly Ile Ala Leu Ala Leu Arg Ala Met Glu Ala
435 440 445

Pro Ile Arg Gln Ile Ala Gly Asn Ala Gly Ala Ala Gly Ala Ala Val
450 455 460

Val Asp Lys Val Lys Ser Gly Thr Gly Ser Phe Gly Phe Asn Ala Ser
465 470 475 480

Thr Gly Glu Tyr Gly Asp Met Ile Ala Met Gly Ile Leu Asp Pro Ala
485 490 495

Lys Val Thr Arg Ser Ser Leu Gln Ala Ala Ala Ser Ile Ala Gly Leu
500 505 510

Met Ile Thr Thr Glu Ala Met Val Ala Asp Ala Pro Val Glu Glu Gly
515 520 525

Ala Gly Gly Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Met
530 535 540

Pro Gly Met Met
545

<210> 16
<211> 2783
<212> DNA
<213> artificial sequence

<220>
<223> coding sequence encoding mutant protein

<400> 16
atcaaaaaat gcagcaagga cagattcctg cccaagaatt agcagaagg ttcttgtag 60
cactggccgg cgctttatta ttaacgccgg gtttgcac tgatgcgtg ggttttacat 120
tactcgcccc cgcgacgcgt aaagcggtgg tccataaggt gattgcattt attaccctc 180
gcatgatgac tgcaaggcgc tttcaagcga cggtagtt tcaggaaggc tcgtttaaag 240
atgtacattc gcacactgac tcgcaaagca gtcataaaaa aatcacaatt gaaggcgaat 300
ataccaaaga cgataagtag gtatTTTC ggctagccgt tgaaatccta gtaaaagccc 360
cgataaaatta accatctatt tttcacagag gcaatttagc ctTGTttac ctTATTGATC 420
ctaatacttg ggatccaaca gttggagagt ctagcaaAtg aaaatccgtc cattacatga 480
tcgtatttgtt gttcgccgt aagaagaaga gaccgcaact gcgggtggta ttatTTacc 540
ggcgctgctg gcagaaaaac caaatcaagg tgTTGTTAtc tctgtggta ctggccgtat 600
tcttgataat gttcagtgc aagcgctggc ggttaacgaa ggcgatgttgc tcgtttttgg 660

US10575505 revised

taaatactca ggtcaaaata ctatcgatat	cgatggtaa gaattattga ttttgaatga	720
aagtgatatac tacggcgaaa	tagaagctta attattacac tcactttttt atttaaccta	780
caaaatttaa ggaaagatca tggctgctaa	agacgtatta tttggtgata gcgcacgcgc	840
aaaaatgtt gtaggtgtaa acattttagc	cgacgcagta agagttacct taggacctaa	900
aggcgtaac gttgttata	aaaaatcatt tggcgcaccg atcatcacca aagatggtgt	960
ttctgttgcg cgtgaaatcg	aattgaaaga caaattcgaa aacatggcg cacagatgg	1020
taaggaagtt gcttctcaag	ccaacgacca agccggtgac ggcacaacga cagcgactgt	1080
actagcacag	gcgattatca gcgaaggctt gaaatctgtt gcggctggca tgaatccat	1140
gatatctaaa cgtggatttg	ataaaagctac ggctgctgtt gttgccgcca ttaaagaaca	1200
agctcagcct tgcttgata	caaaagcaat cgctcaggta gggacaatct ctgccaatgc	1260
cgtgaaacg gttggtcgtt	taattgctga agcgatggaa aaagtcggta aagaagggt	1320
gattaccgtt gaagaaggca	aaggccttga agacgagctt gatgtttag aaggcatgca	1380
gttcgatcgc gttacttgc	ctccgtactt catcaacaac caaaaaaaaaa tgaccgtaga	1440
aatggaaaat ccattaattc	tattgggtga taagaaaatt gataaccttc aagagctgtt	1500
gccaattctt gaaaacgtcg	ctaaatcagg tcgtccatta ttgatcggtt ctgaagatgt	1560
tgaaggccaa gcactagcaa	cattggtagt aaacaacttg cgccgcacat tcaagggtgc	1620
agcggtaaa gcccctggtt	ttggcgatcg tcgtaaagcg atgttcaag atcttgccat	1680
tttgacgggt ggtcaggta	tttctgaaga gctaggatg tctttagaaa ctgcggatcc	1740
ttcttcttg ggtacggcaa	gcaagggtt tatcgataaa gaaaacaccg tgattgttga	1800
tggcgaggt actgaagcaa	gcgttaatac tcgtgttgc cagatccgtg ctgaaatcga	1860
aagctcgact tctgattacg	acatcgaaaa gttacaagaa cgcgttgcta agctgcggg	1920
cggcggtgcc gtgattaagg	ttggtgccgg ttctgaaatg gaaatgaaag agaagaaaga	1980
ccgtgttgcac gatgcacttc	atgcaactcg cgacgggtt gaagaagggtt ttgttgccgg	2040
tgggggtt gcttgattc	gcgcactctc ttcaagtaacc gttgttgggt ataacgaaga	2100
tcaaaacgtc ggtattgcat	tggcacttcg tgcgtatggaa gctccttatcc gtcaaatcgc	2160
ggtaacgca ggtgctgcag	gggcagcggt tttgtataaa gtgaaatctg gcacaggtag	2220
ctttggttt aacgccagca	caggtgagta tggcgatatg attgcgtatgg gtatgtttaga	2280
ccctgcaaaa gtcacgcgtt	catctctaca agccgcggcg tctatcgac gtttgcgtat	2340
cacaaccgaa gccatggtt	cgatgcgc tttgttgggt gttatgcgtatg tttgttgggt	2400
tatggcggtc atgggtggaa	tggcggtat gcctggcatg atgtaatcac tttgttgggt	2460
attgtcctga tctgcttacc	gtgtaaaaag atcaggctca aggctgtctc tataaaaagc	2520
cgtatcttg atgagtgttgc	tctttctgct gaaaacgaca ttcttggagt gcggctttt	2580

US10575505 revised

ttgattttgg tcataaaatt cagaatattg tgtaattta tgtaactagc tggcctataa 2640
tggtaggttc ctctgggtgg catgatctca tggtacttca cttaaggctg attcaactgcg 2700
gctttaacag taaaataata acgcaacgta gaaacataat aagcgatgg cattaatgaa 2760
gacggctgca tttaattcag atc 2783

<210> 17
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> Forward Primer

<220>
<221> misc_feature
<222> (1)..(22)
<223> "n" defines inosine

<400> 17
gcngcngna tgaayccnat gg 22

<210> 18
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> Reverse Primer

<220>
<221> misc_feature
<222> (1)..(23)
<223> residue "n" designates inosine

<400> 18
ccnccnccng cnacnacncc ytc 23

<210> 19
<211> 13
<212> PRT
<213> Oleispira antarctica

<400> 19

Ser Val Ala Ala Gly Met Asn Pro Met Asp Leu Gln Arg
1 5 10

<210> 20
<211> 16
<212> PRT
<213> Oleispira antarctica

<400> 20

US10575505 revised

Val Glu Glu Gly Val Val Ala Gly Gly Gly Val Ala Ala Leu Leu Arg
1 5 10 15

<210> 21
<211> 42
<212> DNA
<213> artificial sequence

<220>
<223> Oligonucleotide

<400> 21
ggtgtcagt gttgtt gatacagtga aatctggcac ag

42

<210> 22
<211> 37
<212> DNA
<213> artificial sequence

<220>
<223> Oligonucleotide

<400> 22
cctgtgccag atttcactgt atcaacaacc actgacc

37

<210> 23
<211> 30
<212> DNA
<213> artificial sequence

<220>
<223> Oligonucleotide

<400> 23
ggtgataaag tgaaaggtag cacaggtac

30

<210> 24
<211> 30
<212> DNA
<213> artificial sequence

<220>
<223> Oligonucleotide

<400> 24
gctacctgtg ccaccttca ctttatcaac

30

<210> 25
<211> 46
<212> DNA
<213> artificial sequence

<220>
<223> Oligonucleotide

<400> 25
ggtcagtgg tttgtataca gtgaaaggtag gcacaggtac ctttgg

46

US10575505 revised

<210> 26
<211> 46
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide

<400> 26
ccaaagctac ctgtgccacc tttcactgta tcaacaacca ctgacc 46

<210> 27
<211> 42
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide

<400> 27
cctaacgcag gtgctgcagg ggcagcggtt gttgataaag tg 42

<210> 28
<211> 42
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide

<400> 28
ctcttatca acaaccgctg cccctgcagc acctgcgtta cc 42