ECON 712B - Problem Set 2

Alex von Hafften*

11/19/2020

- 1. In class, we only considered the growth model with inelastic labor supply. This problem relaxes that restriction. Consider the benchmark neoclassical growth model, with production function: $Y_t = F(K_t, A_t N_t)$ where Y_t is output, K_t is capital, A_t is technology, and N_t is labor, and F has constant returns to scale and satisfies the usual assumptions. Technology grows exogenously at rate g: $A_{t+1} = (1+g)A_t$. Capital depreciates at rate δ so (imposing the aggregate feasibility condition) we can write the law of motion for the capital stock as: $K_{t+1} = (1-\delta)K_t + Y_t C_t$. The representative household has time additive preferences given by: $\sum_{t=0}^{\infty} \beta^t u(C_t, 1-N_t)$. The population size is fixed, but the labor input $N_t \in [0,1]$ is now endogenous. This problem will consider the existence of a balanced growth path, which is defined as an equilibrium allocation where consumption, capital, wages W_t , and output all grow at the same constant rate, while interest rates r_t and labor N_t are constant.
- (a) From conditions characterizing the equilibrium, find a system of equations that the endogenous variables C_0 , N_0 , W_0 , v_0 must solve in a balanced growth path. (Initial capital K_0 is given.)

In a competitive equilibrium, households optimize, firms optimize, and markets clear.¹

The household problem is

$$\max_{\{(C_t, N_t, K_t, I_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(C_t, 1 - N_t)$$
s.t.
$$\sum_{t=0}^{\infty} p_t(C_t + I_t) = \sum_{t=0}^{\infty} p_t(r_t K_t + W_t N_t) + \pi_t$$

$$K_{t+1} = (1 - \delta)K_t + I_t$$

The firm problem is

$$\max_{\{K_t^d, N_t^d\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} p_t(F(K_t^d, A_t N_t^d) - r_t K_t^d - W_t N_t^d)$$

Transform consumption, capital, investment, and wages by dividing by technology: $c_t = \frac{C_t}{A_t}$, $k_t = \frac{K_t}{A_t}$, $i_t = \frac{I_t}{A_t}$, and $w_t = \frac{W_t}{A_t}$.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

¹Note on notation: The original problem set specifies w_t as the wages that grow over time. Here, W_t is the real wage rate on labor N_t and w_t is the real wage rate on effective labor $A_t N_t$. In addition, r_t is the real rate on capital.

The firm problem becomes:

$$\max_{\{k_t^d, N_t^d\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} p_t(F(A_t k_t^d, A_t N_t^d) - r_t A_t k_t^d - A_t w_t N_t^d)$$

FOC $[k_t^d]$:²

$$p_t F_1(A_t k_t^d, A_t N_t^d) A_t = p_t A_t r_t \implies F_1(A_t k_t^d, A_t N_t^d) = r_t$$

FOC $[N_t^d]$:

$$p_t F_2(A_t k_t^d, A_t N_t^d) A_t = p_t A_t w_t \implies F_2(A_t k_t^d, A_t N_t^d) = w_t$$

Since F has CRS $\implies F(K,N) = KF_1(K,N) + NF_2(K,N)$ by Euler's Theorem. Thus, for all t,

$$\pi_{t} = p_{t}(F(A_{t}k_{t}^{d}, A_{t}N_{t}^{d}) - r_{t}A_{t}k_{t}^{d} - A_{t}w_{t}N_{t}^{d})$$

$$= p_{t}(A_{t}k_{t}^{d}F_{1}(A_{t}k_{t}^{d}, A_{t}N_{t}^{d}) + A_{t}N_{t}^{d}F_{2}(A_{t}k_{t}^{d}, A_{t}N_{t}^{d}) - r_{t}A_{t}k_{t}^{d} - A_{t}w_{t}N_{t}^{d})$$

$$= p_{t}(A_{t}k_{t}^{d}r_{t} + A_{t}N_{t}^{d}w_{t} - r_{t}A_{t}k_{t}^{d} - A_{t}w_{t}N_{t}^{d})$$

$$= 0$$

The household problem becomes:

$$\max_{\{(c_t, N_t, i_t, k_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(A_t c_t, 1 - N_t)$$
s.t.
$$\sum_{t=0}^{\infty} p_t (A_t c_t + A_t i_t) = \sum_{t=0}^{\infty} p_t (r_t A_t k_t + w_t A_t N_t) + (0)$$

$$A_{t+1} k_{t+1} = (1 - \delta) A_t k_t + A_t i_t$$

$$\implies \max_{\{(c_t, N_t, i_t, k_t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(A_t c_t, 1 - N_t)$$
s.t.
$$\sum_{t=0}^{\infty} p_t (c_t + (1 + g) k_{t+1} - (1 - \delta) k_t - r_t k_t - w_t N_t) = 0$$

Define Legrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(A_t c_t, 1 - N_t) + \lambda \left[\sum_{t=0}^{\infty} p_t (c_t + (1+g)k_{t+1} - (1-\delta)k_t - r_t k_t - w_t N_t) \right]$$

²Note on notation: F_1 is the derivative with respect to the first argument of F and F_2 is the derivative with respect to the second argument of F.

FOC $[c_t]$:³

$$0 = \beta^t u_1(A_t c_t, 1 - N_t) A_t + \lambda p_t$$

$$\implies -\lambda = \frac{\beta^t u_1(A_t c_t, 1 - N_t) A_t}{p_t}$$

FOC $[N_t]$:

$$0 = \beta^t u_2(A_t c_t, 1 - N_t)(-1) - \lambda p_t w_t$$

$$\implies -\lambda = -\frac{\beta^t u_2(A_t c_t, 1 - N_t)}{p_t w_t}$$

Combining the FOCs with respect to c_t and N_t , we get the following relationship:

$$\begin{split} \frac{\beta^t u_1(A_t c_t, 1 - N_t) A_t}{p_t} &= -\frac{\beta^t u_2(A_t c_t, 1 - N_t)}{p_t w_t} \\ \Longrightarrow & u_1(A_t c_t, 1 - N_t) = -\frac{1}{A_t w_t} u_2(A_t c_t, 1 - N_t) \end{split}$$

In equilibrium, markets clear:

$$k_t = k_t^d$$
 (Capital Market)
 $N_t = N_t^d$ (Labor Market)
 $F(A_t k_t, A_t N_t) = (c_t + k_t) A_t$ (Goods Market)

Finally, the law of capital can be rewritten with our transformed variables:

$$k_{t+1}A_{t+1} = (1 - \delta)k_t A_t + F(A_t k_t, A_t N_t) A_t - c_t A_t$$

$$\implies k_{t+1}(1 + g) = (1 - \delta)k_t + F(A_t k_t, A_t N_t) - c_t$$

On a balanced growth path, we know that $k_{t+1} = k_t$:

$$k_t(q + \delta) + c_t = F(A_t k_t, A_t N_t)$$

At t = 0, there are four equations that characterize the four unknown variables (C_0, N_0, W_0, r_0) :

$$F_1(K_0, A_0 N_0) = r_0 \tag{1}$$

$$F_2(K_0, A_0 N_0) = \frac{W_0}{A_0} \tag{2}$$

$$u_1(C_0, 1 - N_t) = -\frac{1}{W_0} u_2(C_0, 1 - N_0)$$
(3)

$$K_0(g+\delta) + C_0 = A_0 F(K_0, A_0 N_0)$$
(4)

³Note on notation: u_1 is the derivative with respect to the first argument of u and u_2 is the derivative with respect to the second argument of u.

(b) Show that if preferences are of the form: $u(C, 1 - N) = \begin{cases} \frac{C^{1-\gamma}}{1-\gamma} h(1-N), & \gamma > 0, \gamma \neq 1 \\ \log C + h(1-N), & \gamma = 1 \end{cases}$ for some function h, then there will be a balanced growth path.

The FOCs with respect to c_t and c_{t+1} of the Legrangian to solve the household problem imply a consumption Euler equation:

$$\frac{\beta^t u_1(A_t c_t, 1 - N_t) A_t}{p_t} = \frac{\beta^{t+1} u_1(A_{t+1} c_{t+1}, 1 - N_{t+1}) A_{t+1}}{p_{t+1}}$$

$$\implies u_1(A_t c_t, 1 - N_t) = \frac{\beta(1+g)}{q_{t+1}} u_1(A_{t+1} c_{t+1}, 1 - N_{t+1})$$

where $q_{t+1} = \frac{p_{t+1}}{p_t}$.

The FOCs with respect to N_t and N_{t+1} of the Legrangian to solve the household problem imply a labor supply Euler equation:

$$\frac{\beta^t u_2(A_t c_t, 1 - N_t)}{p_t w_t} = \frac{\beta^{t+1} u_2(A_{t+1} c_{t+1}, 1 - N_{t+1})}{p_{t+1} w_{t+1}}$$

$$\implies u_2(A_t c_t, 1 - N_t) = \frac{\beta}{q_{t+1} v_{t+1}} u_2(A_{t+1} c_{t+1}, 1 - N_{t+1})$$

where $v_{t+1} = \frac{w_{t+1}}{w_t}$.

The Legrangian also implies a no arbitrage condition, by taking the derivative with respect to k_{t+1} :

$$0 = \lambda p_t(1+g) - \lambda p_{t+1}(1-\delta) - \lambda p_{t+1}r_{t+1}$$

$$\implies \frac{p_{t+1}}{p_t} = \frac{1+g}{(1-\delta) + r_{t+1}}$$

- (c) Can we characterize the qualitative dynamics using a phase diagram in the same way that we did in the case of inelastic labor supply? For example, suppose $u(C, 1 N) = \log C + h(1 N)$, that we are on a balanced growth path and then there is an increase in the rate of depreciation δ . Can you say what happens both upon impact of the shock and in the long run?
- (d) Now suppose that h is a constant function, so that labor is inelastically supplied, and suppose $\gamma > 1$. Show that we can summarize the equilibrium as a system of equations governing the evolution of consumption and capital per unit of effective labor: $c_t = C_t/A_t$ and $k_t = K_t/A_t$. Find the balanced growth path levels of c_t and k_t .
- (e) Now suppose the economy is on the balanced growth path, and then there is a fall in the rate of technological change g. By analyzing the qualitative dynamics of the economy, discuss what happens to c_t and k_t at the time of the change and in the long run.
- (f) For a marginal change in g, find an expression showing how the fraction of output saved on the balanced growth path changes. Does savings increase or decrease? Consider first a general production function, and then specialize to Cobb-Douglas production: $F(K, N) = K^{\alpha}N^{1-\alpha}$.

- 2. At any date t, a consumer has x_t units of a non-storable good. He can consume $c_t \in [0, x_t]$ of this stock, and plant the remaining $x_t c_t$ units. He wants to maximize: $E \sum_{t=1}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma}$ where $0 < \gamma < 1$ and $0 < \beta < 1$. Goods planted at date t yield $A_t(x_t c_t)$ as of the beginning of period t+1, where A_t is a sequence of i.i.d. random variables that take the values of $0 < A_h < 1/\beta$ with probability π and $A_l \in (0, A_h)$ with probability $1-\pi$.
- (a) Formulate the consumer's utility maximization problem in the space of shock contingent consumption sequences. Exactly what is this space? Exactly what does the expectations operator $E(\cdot)$ mean here? Be explicit.

$$E_0 \left[\sum_{t=0}^{\infty} \frac{\beta^t}{1-\gamma} (A_{t-1} S_{t-1} - S_t)^{1-\gamma} \right]$$

(b) State the Bellman equation for this problem. It is easiest to have the consumer choose savings $s_t = x_t - c_t$. Argue that the relevant state variable for the problem is the cum-return wealth $A_{t-1}s_{t-1}$. Prove that the optimal value function is continuous, increasing, and concave in this state. How can you handle the unboundedness of the utility function?

$$V(A_{t-1}, S_{t-1}) = \max_{s_t} \frac{(A_{t-1}s_{t-1} - s_t)^{1-\gamma}}{1-\gamma} + \beta [\pi V(A_h s_t) + (1-\pi)V(A_l s_t)]$$

- (c) Solve the Bellman equation and obtain the corresponding optimal policy function. (Hint: guess that the optimal function consists of saving a constant fraction of wealth.)
- (d) How do you know that the consumption sequence generated by this policy function is the unique solution of the original sequence problem?

- 3. This problem considers the computation of the optimal growth model. An infinitely lived representative household owns a stock of capital which it rents to firms. The household's capital stock K depreciates at rate δ . Households do not value leisure and are endowed with one unit of time each period with which they can supply labor N to firms. They have standard time additive expected utility preferences with discount factor β and period utility u(c). Firms produce output according to the production function zF(K,N) where z is the level of technology.
- (a) First, write a computer program that solves the planners problem to determine the optimal allocation in the model. Set $\beta = 0.95$, $\delta = 0.1$, z = 1, $u(c) = c^{1-\gamma}/(1-\gamma)$ with $\gamma = 2$, and $F(K, N) = K^{0.35}N^{0.65}$. Plot the optimal policy function for K and the phase diagram with the $\Delta K = 0$ and $\Delta c = 0$ lines along with the saddle path (which is the decision rule c(K)).

The planners problem is very similar to the one discussed in lecture 4:

$$\max_{\{c_t, n_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + k_{t+1} - (1 - \delta)k_t \le zF(k_t, n_t)$

$$0 \le n_t \le 1$$

$$c_t \ge 0$$

It is optimal for households to supply $n_t = 1$ for all t because leisure is not valued. Define $F(k_t, 1) = f(k_t)$. The recursive formulation of the planners problem is

$$V(k) = \max_{k'} \{ u(zf(k) + (1 - \delta)k - k') + \beta V(k') \}$$

FOC [k']:

$$0 = u'(zf(k) + (1 - \delta)k - k')(-1) + \beta V'(k')$$

Envelope condition:

$$V'(k) = u'(zf(k) + (1 - \delta)k - k')(zf'(k) + (1 - \delta))$$

Imply an Euler condition:

$$u'(zf(k) + (1 - \delta)k - k') = \beta u'(zf(k') + (1 - \delta)k' - k'')(zf'(k') + (1 - \delta))$$

The Euler equation and the law of motion of capital are two difference equation for the two unknowns:

$$k' = zf(k) + (1 - \delta)k - c \tag{5}$$

$$u'(c) = \beta u'(c')(zf'(k') + (1 - \delta)) \tag{6}$$

In a steady state $\bar{k} = k = k'$ and $\bar{c} = c = c'$:

$$u'(\bar{c}) = \beta u'(\bar{c})(zf(\bar{k}) + (1 - \delta))$$

$$\implies f'(\bar{k}) = \frac{\beta^{-1} - (1 - \delta)}{z}$$

$$\bar{c} = zf(\bar{k}) - \delta\bar{k}$$

Plugging in the provided functional forms:

$$\bar{k} = \left(\frac{\beta^{-1} - (1 - \delta)}{0.35z}\right)^{(-1/0.65)}$$
$$\bar{c} = z\bar{k}^{0.35} - \delta\bar{k}$$

For $\Delta k = 0$, equation (5) implies:

$$k = zf(k) + (1 - \delta)k - c \implies c = zf(k) - \delta k$$

Plugging in the provided functional forms:

$$c = zk^{0.35} - \delta k$$

For $\Delta c = 0$, equations (5) and (6) imply:

$$f'(zf(k) + (1 - \delta)k - c) = \frac{\frac{1}{\beta} - (1 - \delta)}{z}$$

Plugging in the provided functional forms:

$$0.35(zk^{0.35} + (1-\delta)k - c)^{-0.65} = \frac{\frac{1}{\beta} - (1-\delta)}{z}$$

$$\implies c = zk^{0.35} + (1-\delta)k - \left(\frac{\frac{1}{\beta} - (1-\delta)}{0.35z}\right)^{1/(-0.65)}$$

- (b) Re-do your calculations with $\gamma=1.01$. What happens to the steady state? What happens to the saddle path? Interpret your answer.
- (c) Now with $\gamma=2$ assume that there is an unexpected permanent increase of 20% in total factor productivity, so now z=1.2. What happens to the steady state levels of consumption and capital? Assuming the economy is initially in the steady state with z=1, what happens to consumption and capital after the increase in z?