1 Généralités sur les fonctions numériques

1.1 Vocabulaire

- \rightarrow Domaine de définition Notion d'intervalle de \mathbb{R}
- → Sens de variation fonction (strictement) (dé-)croissante, monotone
- \rightarrow Limites En un point, à droite ou à gauche, en $\pm \infty$. Asymptotes horizontales/verticales.
- \rightarrow Notation de Landau On note o(1) pour « quelque chose qui tend vers 0 » (en $x_0, \pm \infty$)

1.2 « Calculus »

- \rightarrow Continuité en un point : $\lim_{x\to x_0} f(x) = f(x_0)$, écriture $f(x_0 + o(1)) = f(x_0) + o(1)$.
- \rightarrow **Dérivabilité**: équation de tangente, écriture $f(x) = f(x_0) + f'(x_0)(x x_0) + o(x x_0)$.
- → Justification de routine : Continuité, dérivation de $\lambda u + \mu v$, uv, $u \circ v$, $u^v = e^{v \ln(u)}$ fonctions usuelles.
- ightharpoonup Fonctions de classe \mathcal{C}^p : justification, convexité, tangentes d'inflexion.

1.3 Continuité, dérivabilité et variations

- → Théorème des valeurs intermédiaires : Une fonction continue qui change de signe sur un intervalle s'annule.
- → Inégalité des accroissements finis, signe de la dérivée ~ sens de var. sur un intervalle
- → Obtention d'inégalités par études de fonctions
- → Théorème de la bijection

2 Suites numériques

2.1 Généralités

- \rightarrow Sens de variations Critère $u_{n+1}-u_n$ et $\frac{u_{n+1}}{u_n}$ (mais attention aux signes!)
- → Notion de bornes, de limites Formes indéterminées
- → Suites de références Arithmétiques, géométriques, arith-géométriques, leurs limites
- → Théorème du point fixe Pour (u_n) définie par $u_{n+1} = f(u_n)$, avec f continue, $\underline{\mathbf{si}}$ (u_n) converge, c'est vers un point fixe de $f: f(\ell) = \ell$. Étude graphique.

2.2 Les 3 critères de convergence

- → Théorème de la limite monotone : une suite croissante majorée converge. Suites ∕ non majorées.
- \rightarrow Théorème d'encadrement (théorème des gendarmes). Version $|u_n \ell| \leq \epsilon_n \rightarrow 0$.
- \rightarrow Théorème des suites adjacentes. Exemple de l'algorithme de dichotomie : résolution approchée de f(x) = 0.

Relations de comparaison, développements limités, applications aux formes indéterminées

1 Les relations \sim (équivalent à) et o (négligeable devant)

On parle ici de suites, mais tout s'adapte aux fonctions en $\pm \infty$, en x_0 .

- → Négligeabilité Notation $u_n = o(v_n)$ pour $u_n = \epsilon_n v_n$ avec $\epsilon_n \to 0$.
- \rightarrow Autres définitions : $o(v_n) = v_n.o(1)$, et $\frac{o(v_n)}{v_n} \rightarrow 0$.
- → Équivalence Notation $u_n \sim v_n$ pour $u_n = (1 + \epsilon_n)v_n$ avec $\epsilon_n \to 0$.
- \rightarrow Autres définitions : $u_n = (1 + o(1))v_n = v_n + o(v_n)$, et $\frac{u_n}{v_n} \rightarrow 1$.
- → Interprétation graphique Allure de deux suites équivalentes, d'une suite nég. devant une autre. Conjecturer un résultat d'après un affichage Scilab.
- \rightarrow Linéarité $\lambda o(v_n) + \mu o(v_n) = o(v_n)$, mais on n'additionne pas des équivalents!

	Multiplicativité	Transitivité
\rightarrow	$o(u_n).o(v_n) = o(u_n v_n)$	Si $u_n = o(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$.
	si $a_n \sim a_n'$ et $b_n \sim b_n'$, alors $a_n b_n \sim a_n' b_n'$.	Si $u_n \sim v_n$ et $v_n \sim w_n$, alors $u_n \sim w_n$.

2 Développements limités à l'ordre 2

 \rightarrow Formule de Taylor Si $f: I \to \mathbb{R}$ est C^2 au voisinage de x_0 , alors $x \to x_0$, et $h \to 0$:

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + o(x - x_0)^2$$

$$f(x_0 + h) = f(x_0) + f'(x_0) h + \frac{f''(x_0)}{2} h^2 + o(h^2)$$

- → Cas des trinômes du second degré : La formule est alors exacte!
- Formulaire pour $x \to 0$ $e^{x} \qquad \ln(1+x) \qquad (1+x)^{a}, \ a \in \mathbb{R}$ $1+x+\frac{x^{2}}{2}+o(x^{2}) \quad x-\frac{x^{2}}{2}+o(x^{2}) \quad 1+ax+\frac{a(a-1)}{2}x^{2}+o(x^{2})$
- \rightarrow Cas particuliers pour $(1+x)^a$: On reconnaît le début de :
 - $\star~a=n\in\mathbb{N}$: la formule du binôme de Newton pour $x\in\mathbb{R}$:

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{1 \times 2 \times 3}x^3 + \dots + \binom{n}{k}x^k + \dots + nx^{n-1} + x^n$$

 $\star a = -1$: la somme des termes d'une suite géométrique :

$$\frac{1}{1-q} = 1 + q + q^2 + \ldots + q^n + \underbrace{\frac{q^{n+1}}{1-q}}_{=o_{q\to 0}(q^n)}, \quad \text{où } q = -x \neq 1$$

3 Application aux formes indéterminées

- → Principe des croissances comparées
 - * La limite des monômes en $r^n n^{\alpha} (\ln(n))^{\beta}$, pour $n \to \infty$. Variante pour les fonctions.
 - * Principe des comparaisons entre monômes de ce type.
 - * Trouver un équivalent d'une comb. lin. de tels monômes : le terme prépondérant.
- → Utiliser les dév. lim. pour lever des FI simples. Interprétation de taux d'accroissement.
- → Exemple archiclassique : Pour $x \in \mathbb{R} : \left(1 + \frac{x}{n}\right)^n \to e^x$ (Euler ca.1730).

Généralités sur les sommes/séries et les intégrales

Sommes/séries classiques

▶ Sommes
$$\sum_{k=0}^{n} k^0 = n+1$$
, $\sum_{k=0}^{n} k^1 = \frac{n(n+1)}{2}$, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$,

▶ Sommes géométriques
$$\forall q \neq 1, \ \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$
, et si $|q| < 1, \ \sum_{k=0}^{\infty} q^k = \frac{1}{1 - q}$.

- ▶ Loi géométrique
 - \star Modélisation du rang d'apparition du premier succès à la répétition de $\mathcal{B}(p)$.

* Pour
$$X \hookrightarrow \mathcal{G}(p)$$
, on a $X(\Omega) = \mathbb{N} \setminus \{0\}$, et $\forall k \geqslant 1$, $\mathbb{P}(X = k) = pq^{k-1}$,

* Interprétation du reste $\sum_{k=N+1}^{+\infty} \mathbb{P}(X=k) = q^N$ comme fonction d'anti-répartition $\mathbb{P}(X>N)$.

Manipulation de sommmes/séries

- ▶ Pratique du changement d'indice Dans $\sum_{k=0}^{N} u_{k+1}$, on pose i = k+1, et on substitue dans le t.g. et les bornes.
- ▶ Sommation télescopique

* Formule
$$\sum_{k=n}^{p} (u_{k+1} - u_k) = u_{p+1} - u_n$$
.

- \star Exemples d'application de la décomposition en éléments simples.
- ▶ Séries à termes positifs : les sommes partielles ∕, donc convergent ssi elles sont majorées.

Intégration

Cadre théorique cette semaine : On intégre une fonction continue sur un segment, puis passage à la limite aux bornes.

- ▶ Propriétés générales Linéarité, Chasles, positivité.
- ▶ Intégrales et primitives $\int_a^b f(t)dt = F(b) F(a)$ si F est C^1 sur [a,b] et F' = f.
- ▶ Primitives usuelles

* Fonctions puissances: pour
$$a \neq -1$$
: $\int x^a dx = \frac{1}{a+1} x^{a+1}$, et $\int \frac{dx}{x} = \ln(x)$.

* Exponentielles: pour
$$a \neq 0$$
: $\int e^{ax} dx = \frac{1}{a} e^{ax}$.

▶ Intégration par parties pour
$$u, v$$
 de classe $C^1 : \int_a^b u'v = [uv]_a^b - \int_a^b uv'$

* Exemple de
$$\int_1^x \ln(t) dt = x \ln(x) + 1 - x$$
, pour $x > 0$.

- ▶ Pratique du changement de variables sur un segment
 - \otimes Hypothèses $\varphi:[a,b]\to\mathbb{R}$ de classe $\mathcal{C}^1,\,f$ continue sur $\varphi([a,b])$.

$$\circledast$$
 Formule $\int_a^b f(\varphi(t)) \, \varphi'(t) \, dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \, dx$

 \circledast Notation : on a posé $x = \varphi(t)$ et $dx = \varphi'(t) dt$. Alors $t = a \leadsto x = \varphi(a) \dots$

Séries et intégrales convergentes : justification « directe » et calculs

- → Convergence de série : c'est la convergence des sommes partielles.
- → Exemple de convergences : télescopage, séries classiques.
- \rightarrow Intégrales convergentes : étude en $\pm \infty$, en un point x_0^{\pm} .
- → Techniques de calcul d'∫: trois techniques sur un segment puis passage à la limite
 - * Primitivation à vue de l'intégrande : $\int_a^b f(t)dt = F(b) F(a) \text{ si } F \text{ est } \mathcal{C}^1 \text{ sur } [a,b] \text{ et } F' = f.$
 - \star Intégration par parties : pour u,v \mathcal{C}^1 on a : $\int_a^b u'v = [uv]_a^b \int_a^b uv'$
 - * Changement de variables : pour φ \mathcal{C}^1 on a $\int_a^b f(\varphi(t)) \, \varphi'(t) \, dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \, dx$
- → Extension de la notion d'intégrale aux fonctions admettant un nombre fini de points de discontinuité sur un intervalle. On étudie chaque « problème », puis Chasles
- → Fonction densité : une fonction $f: \mathbb{R} \to \mathbb{R}$, *) continue sauf évt. en un nb. fini de points, *) $f \geq 0$ et *) $\int_{-\infty}^{\infty} f = 1$, fonction de répartition associée.

Convergence absolue, utilisation des relations de comparaisons à la CA

- → Convergence d'une SATP :
 - * Une **série à termes positifs** converge *ssi* la suite de ses sommes partielles est majorée (*c'est le th. de cv. mononotone!*)
 - \star si $(u_n) \geqslant 0$, alors la série $\sum_{n\geqslant 0} u_n$ est **convergente** $ssi \ \exists A \geqslant 0, \forall N, \sum_{n=0}^N u_n \leqslant A$.
 - * Critère analogue pour les intégrales.
- → Notion de convergence absolue :
 - * On dit qu'une série converge si la SATP des valeurs absolues de ses termes converge.
 - * La série $\sum_{n\geq 0} u_n$ est absolument convergente $ssi \sum_{n\geq 0} |u_n|$ converge.
 - * Analogue pour les intégrales : $\int_I f$ est absolument convergente ssi $\int_I |f|$ converge. On parle alors de fonction intégrable.
- → La convergence absolue implique la convergence
- → Relations de comparaison :
 - \star La convergence **absolue** se transfert par équivalence, et par prépondérance.
 - * Si v_n est le tg d'une série **absolument convergente** et si $u_n \sim v_n$ ou $u_n = o(v_n)$, alors (u_n) aussi
 - * Même critère pour les intégrales en $\pm \infty$, en x_0^{\pm} .
- → Intégrales, séries de référence :
 - * Séries géométriques q^n , intégrale des fonctions exponentielles e^{-ax}
 - * Séries de Riemann : $\sum \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.
 - $\star \text{ En } +\infty: \int_{1}^{+\infty} \frac{dt}{t^{\alpha}} \text{ converge } ssi \ \alpha > 1.$
 - \star En $0^+:\int_{0^+}^1 \frac{dt}{t^{\alpha}}$ converge ssi $\alpha<1$. Attention au retournement de l'inéquation!
- $\boldsymbol{\rightarrow}$ Application à la convergence absolue : on compare judicieus ement à une référence, souvent :
 - $\star \frac{1}{n^2}$, pour une série , et $\frac{1}{t^2}$ pour une intégrale en $+\infty$.
 - $\star \frac{1}{\sqrt{t}}$ pour une intégrale en 0^+ .

1 Généralités sur les variables aléatoires discrètes

- ▶ Pour X v.a.à valeurs entières $X(\Omega) \subseteq \mathbb{Z}$: probabilités élémentaires $\mathbb{P}(X = k) = p_k$.
- ▶ Probabilité d'un événement $\mathbb{P}{X \in A} = \sum_{k \in A} p_k$,
- ▶ Fonction de répartition (définie sur \mathbb{R} par) $\forall N$: $F_X(N) \stackrel{\text{(def)}}{=} \mathbb{P}(X \leqslant N) = \sum_{k \leqslant N} p_k$
- ▶ Espérance : moyenne (des valeurs) de X (pondérée par ses proba élémentaires) : $\mathbb{E}[X] = \sum_{k \in X(\Omega)} kp_k$
- Variance
 - Définition $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2]$
 - ▶ König-Huygens (Orthographe!) $Var(X) = \mathbb{E}[X^2] \mathbb{E}[X]$) et l'astuce de calcul : $\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X]$.
- ▶ Définition sous réserve Si $X(\Omega)$ est infini $(p. ex. X(\Omega) = \mathbb{N})$, alors $\mathbb{E}[X]$ et $\mathrm{Var}(X)$ sont définies sous réserve de convergence absolue des séries $\sum_{k=0}^{\infty} kp_k$, $\sum_{k=0}^{\infty} k^2p_k$ (Moments d'ordre 1 et 2)

2 Lois discrètes usuelles au programme d'Ece

Le processus de Bernoulli

- ▶ Il décrit la répétition d'une épreuve de Bernoulli à 2 issues : Échec / Succès
- ▶ modélisée par des v.a. indépendantes et identiquement distribuées $\epsilon_1 \dots \epsilon_n \hookrightarrow \mathcal{B}(p)$.
- Résultat codé par une suite de **bit** (chiffres binaires 0 ou 1) (exemple : 0010011101)

Définitions associées

- Le coefficient binomial $\binom{n}{k}$ dénombre ces suites pour longueur = n , nb. de succès = k
- Loi binomiale $\mathcal{B}(n,p)$: modélise le nombre de succès après cette répétition. (ici : 5)
- Loi géométrique G(p): rang d'apparition du 1^{er} succès (répétition infinie). (ici : 3)

Sommes et séries usuelles en probabilités

- Formule du binôme et dérivées $\forall a, b \in \mathbb{R}, n \in \mathbb{N}, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- Série géométrique et dérivées Les séries suivantes convergent ssi |q| < 1, et l'on a alors :

$$\sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} \qquad \sum_{k=1}^{+\infty} kq^{k-1} = \frac{1}{(1-q)^2} \qquad \sum_{k=2}^{+\infty} k(k-1)q^{k-2} = \frac{2}{(1-q)^3}$$

▶ Définitions de l'exponentielle Pour $\lambda \in \mathbb{R}$ (convergence $\forall \lambda$)

$$\exp(\lambda) = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!}$$
 $\exp(\lambda) = \lim_{n \to \infty} \left(1 + \frac{\lambda}{n}\right)^n.$

1 Modélisation d'une expérience aléatoire

→ Vocabulaire

L'univers Ω est l'ensemble des issues ω (une issue décrit complètement le résultat de l'expér.) Evénement $A \subset \Omega$ (condition qui peut être satisfaite ou pas), sa probabilité (ne pas confondre!) Équiprobabilité : formule $\mathbb{P}(A) = \frac{\text{nb d'issues favorables}}{\text{nb d'issues possibles}} = \frac{\text{Card}(A)}{\text{Card}(\Omega)}$.

- → Exemples de problèmes de dénombrement :
 - *) Produit cartésien : (ensemble rectangulaire) $\sharp (X \times Y) = \sharp X \times \sharp Y$.
 - *) Tirage sans remise : de k objets parmi nModèle des **combinaisons** sans ordre $C_n^k = \binom{n}{k} = \frac{n!}{k! (n-k)!}$ Modèle des **arrangements** avec ordre $A_n^k = \binom{n}{k} \times k! = n(n-1) \dots (n-k+1)$
 - *) Techniques : Passage à l'événement contraire
 Décomposition en réunion disjointe (formule des probabilités totales)
 Présentation en arbre (formule des probabilités composées)

2 Lois d'un couple aléatoire discret

- ightharpoonup Loi d'une variable aléatoire discrète X en ligne : $x \in X(\Omega)$ x_1 x_2 \dots x_i \dots x_n $\mathbb{P}(X=x)$ p_1 p_2 \dots p_i \dots p_n
 - *) Espérance et variance : $\mathbb{E}[X] = \sum_{i \in I} x_i p_i$
 - $\star)\ \textit{Probabilit\'e d'un \'ev\'enement}:\ E=\{X\in A\},\ \text{formule}\ \mathbb{P}(E)=\sum_{x\in A}\mathbb{P}(X=x).$
- ightharpoonup Couple de variables aléatoires Notation V=(X,Y) (c'est un vecteur aléatoire) X et Y sont les variables marginales (composantes)
- → Loi conjointe d'un couple, écriture en tableau à double entrée

$X \downarrow Y$	y_1	y_2	 y_j	 y_m	Loi de X
$\overline{x_1}$	p_{11}	p_{12}	 p_{1j}	 p_{1m}	$p_{1.}$
x_2	p_{21}	p_{22}	 p_{2j}	 p_{2m}	$p_{2.}$
÷	÷	÷	:	÷	:
x_i	p_{i1}	p_{i2}	 p_{ij}	 p_{im}	$p_{i.}$
:	÷	÷	:	:	:
x_n	p_{n1}	p_{n2}	 p_{nj}	 p_{nm}	p_{n} .
Loi de Y	$p_{.1}$	$p_{.2}$	 $p_{.j}$	 $p_{.m}$	1

(Savoir lire le tableau et calculer des probabilités à partir de celui-ci)

- → Loi marginale obtention depuis la loi conjointe en sommant les lignes ou les colonnes
- → Loi conditionnelle on extrait une ligne (ou une colonne) du tableau, on divise par la probabilité marginale associée (On peut aussi obtenir la loi conjointe en partant des conditionnelles)
- → Notion de variables indépendantes :

X et Y sont **indépendantes** si : (La loi conjointe est alors le produit des lois marginales)

$$\forall (x,y) \in X(\Omega) \times Y(\Omega) : \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x) \times \mathbb{P}(Y=y)$$

1 Lois d'un couple aléatoire discret

- ▶ Loi d'une variable aléatoire discrète X en ligne : $x \in X(\Omega)$ x_1 x_2 ... x_i ... x_n $\mathbb{P}(X = x)$ p_1 p_2 ... p_i ... p_n
 - *) Espérance et variance : $\mathbb{E}[X] = \sum_{i \in I} x_i p_i$
 - *) Probabilité d'un événement : $E = \{X \in A\}$, formule $\mathbb{P}(E) = \sum_{x \in A} \mathbb{P}(X = x)$.
- ▶ Loi conjointe d'un couple, écriture en tableau à double entrée
- ightharpoonup Exploitation du tableau Représentation d'événements définis comme conditions sur (X,Y).
- Notion de variables indépendantes :

X et Y sont **indépendantes** si : (La loi conjointe est alors le produit des lois marginales)

$$\forall (x,y) \in X(\Omega) \times Y(\Omega) : \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x) \times \mathbb{P}(Y=y)$$

2 Problème de transfert

- **Exemples simples de transfert de loi** Z = f(X, Y). On calcule une par une les probabilités des valeurs de Z en utilisant le tableau de la loi conjointe. Exemples :
 - \otimes Z = X + Y
 - \otimes Z = XY
- Cas du max $M = \max(X, Y)$
 - \otimes Slogan Dire : « le plus grand de deux nombres est plus petit que n » c'est dire : « ces deux nombres sont plus petits que n »
 - \bullet soit $\forall n, \ \mathbb{P}(M \leqslant n) = \mathbb{P}(X \leqslant n, Y \leqslant n)$
 - \otimes Cas où $X,\,Y$ sont indépendantes. $\forall n,\,\,\mathbb{P}(M\leqslant n)=\mathbb{P}(X\leqslant n)\times\mathbb{P}(Y\leqslant n)$
 - \odot On passe de la fonction de répartition à la loi $\mathbb{P}(M=n)=\mathbb{P}(M\leqslant n)-\mathbb{P}(M\leqslant n-1)$
- ▶ Principe de transfert pour l'espérance (sous réserve de convergence)

$$\mathbb{E}[f(X)] = \sum_{x \in X(\Omega)} f(x) \, \mathbb{P}(X = x)$$

▶ Moments (sous réserve de convergence)

$$\forall n \in \mathbb{N}, \ \mu_n(X) = \mathbb{E}[X^n] = \sum_{x \in X(\Omega)} x^n \, \mathbb{P}(X = x)$$

3 Lois discrètes au programme

« Tout savoir » (valeurs prises, loi, fonction de répartition, espérance et variance) sur

▶ Loi uniforme discrète

▶ Loi de Poisson

Loi binomiale

Loi géométrique

1 Covariance d'un couple de variables aléatoires

▶ Linéarité de l'espérance

(sous rés. de cv.) $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ où $a, b \in \mathbb{R}$ (constantes déterministes)

• Espérance du produit indépendant

Si X, Y sont indépendantes, alors (sous réserve de convergence) $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[X]$.

Notion de variance

Par définition : $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$ Kœnig-Huygens : $\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

Écart-type : $\sigma(X) = \sqrt{\operatorname{Var}(X)}$

Homogénéité : $\operatorname{Var}(\lambda X) = \lambda^2 \operatorname{Var}(X), \ \sigma(\lambda X) = |\lambda| \sigma(X), \ \text{pour } \lambda \in \mathbb{R}.$

Notion de covariance

Par définition : $\operatorname{Cov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\right]$

Kænig-Huygens : $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Lien à la variance : Cov(X, X) = Var(X)

Bilinéarité-symétrie « mêmes règles de calcul pour Cov(X, Y) que pour xy ».

Décorrélation X, Y sont **décorrélées** si Cov(X, Y) = 0

Deux variables indépendantes sont décorrélées (décorrélation = « indépendance en moyenne »)

Corrélation linéaire, principe de la régression linéaire

Coefficient de corrélation linéaire $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$ Cauchy-Schwarz $-1 \leqslant \rho(X,Y) \leqslant 1.$

Corrélation totale : pour $\rho(X,Y) = \pm 1$, alors on peut écrire Y = aX + b, où $a,b \in \mathbb{R}$. Principe de la régression linéaire On minimise le trinôme $T(\lambda) = \text{Var}(Y - \lambda X)$,

(aux limites du programme Ece) où X est la variable explicative Y est la variable expliquée

2 Un peu d'algèbre linéaire

Pratique du pivot de Gauss

Système linéaire système homogène associé, second membre générique

Matrice du système matrice augmentée

Conclusion de la résolution Notion de système compatible, de condition de compatibilité

▶ Application à l'inversion d'une matrice carrée

▶ Notion d'espace vectoriel

C'est un ensemble E dont les éléments sont des « vecteurs » $\overrightarrow{u} \in E$:

- ► Il y a un « vecteur nul » $\overrightarrow{0}$.
- On peut y faire des **combinaisons linéaires** de \overrightarrow{u} , \overrightarrow{v} : $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$.
- ... avec les règles de calcul usuelles sur les combinaisons linéaires

▶ Savoir reconnaître le vocabulaire sur les exemples au programme :

- \otimes Les espaces cartésiens \mathbb{R}^n
- \otimes Les espaces de matrices $\mathcal{M}_{n,p}(\mathbb{R})$
- \otimes Les espaces de polynômes $\mathbb{R}[X]$, $\mathbb{R}_n[X]$
- \otimes L'espace des applications $\mathcal{F}(D,\mathbb{R})$, où $D\subseteq\mathbb{R}$.
- \otimes L'espace des suites réelles $\mathbb{R}^{\mathbb{N}}$.

	\AM@currentdocname .png
	(Arrectification of the control of t
.png	

1 Espaces vectoriels de dimension finie

- ▶ Base d'un espace vectoriel E : c'est une famille finie \mathcal{B} à la fois
 - ▶ libre (pas de relation de dépendance linéaire non-triviale entre les vecteurs de 𝔞)
 - génératrice : $Vect(\mathcal{B}) = E$ (tout entier)
- ▶ Dimension finie
 - \star) Définition : Un espace vectoriel E est de dimension finie s'il admet une base finie
 - *) Propriété: Toutes les bases de E ont alors le même nombre $n \in \mathbb{N}$ de vecteurs (cardinal)
 - *) Dimension d'un ev : Cet entier n (card. d'une base) est la dimension de E : notée dim(E)
 - *) Vocabulaire en petite dimension :

$$n=0$$
 1 2 3
$$E \text{ est ... le singleton } \left\{ \vec{0} \right\} \text{ une droite un plan } \text{ "l'espace physique "}$$

- \star) Dimension d'un sous-ev : si $F \subseteq E$ avec E de dim. finie, alors :
 - F est de dim. finie aussi, et $\dim(F) \leq \dim(E)$
 - ightharpoonup il y a égalité $ssi\ F = E\ (tout\ entier)$.
- ▶ Rang d'une famille de vecteurs $\mathcal{F} = (\vec{v}_1, \dots, \vec{v}_p)$ de E où dim(E) = n.
 - *) $D\acute{e}finition:$ le rang de la fam. est la dimension du sous-ev engendré: $rg(\mathcal{F}) = dim(Vect(\mathcal{F}))$.
 - *) Calcul dans \mathbb{R}^n : rg(\mathcal{F}) = **nb de pivots**, une fois la matrice de la fam. \mathcal{F} échelonnée.
 - \star) Majorations: on a à la fois $\operatorname{rg}(\mathcal{F}) \leqslant p$ (nb de vecteurs) et $\operatorname{rg}(\mathcal{F}) \leqslant n$ (dimension)
 - *) Famille libre, génératrice, base :
 - La famille \mathcal{F} est libre $ssi \operatorname{rg}(\mathcal{F}) = p$ (nb de vecteurs)
 - La famille \mathcal{F} est **génératrice** $ssi \operatorname{rg}(\mathcal{F}) = n \ (dimension)$
 - La famille \mathcal{F} est une base ssi p = n (bon nb de vecteurs) et $\operatorname{rg}(\mathcal{F}) = p = n$
 - Si p = n, il suffit d'avoir \mathcal{F} libre ou génératrice pr déduire que \mathcal{F} est une base

Suites de variables aléatoires

- Notion d'indépendance pour un couple
 - *) d'événements : A, B indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$
 - *) de va discrètes :

X,Y indép. si $\forall (x,y) \in (X,Y)(\Omega), \ \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x) \times \mathbb{P}(Y=y)$ (la loi conjointe est le produit des deux marginales)

- Généralisation : l'indépendance mutuelle d'une suite $(X_1,...,X_n)$
 - *) Définition par l'ensemble de conditions : $\forall (x_1, ..., x_n) \in (X_1, ..., X_n)(\Omega), \ \mathbb{P}\left(\bigcap_{i=1}^n [X_i = x_i]\right) = \prod_{i=1}^n \left[\mathbb{P}\left(X_i = x_i\right)\right]$ soit $\mathbb{P}(X_1 = x_1, ..., X_n = x_n) = \mathbb{P}(X_1 = x_1) \times ... \times \mathbb{P}(X_n = x_n)$
 - *) Variables indépendantes et identiquement distribuées : modélisation d'une suite de lancers de « dés/pièces/tirages avec remise etc. »
- ▶ Le principe des coalitions

Si $X_1...X_r, X_{r+1}...X_{r+n}$ sont mutuellement indépendantes, alors deux variables s'écrivant $Y = f(X_1, ..., X_r)$ et $Z = g(X_{r+1}, ..., X_{r+n})$ sont indépendantes (Y et Z coalitions disjointes)

Exemples et transfert de lois

- ▶ Espérance et variance d'une somme
 - On a toujours (sous réserve de convergence) $\mathbb{E}[X_1 + ... + X_n] = \mathbb{E}[X_1] + ... + \mathbb{E}[X_n]$
 - Pour des va. indépendantes, (s. rés. de cv.) $Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$
- ▶ Le processus de Bernoulli Cas particulier important (explicitement tractable)
 - ▶ modélise la répétition d'une épreuve de Bernoulli à 2 issues : Échec (0) / Succès (1)
 - ▶ toutes de loi $\forall i, \epsilon_i \hookrightarrow \mathcal{B}(p), 0 (la « même » épreuve à chaque rép.)$
 - elles sont mutuellement indépendantes (processus sans mémoire)
- ▶ Loi binomiale $\mathcal{B}(n,p)$
 - *) elle modélise le nb. de succès : parmi n essais d'un processus de Bernoulli $\epsilon_1, ..., \epsilon_n \hookrightarrow \mathcal{B}(p)$ sans mémoire (iid)
 - \star) Stabilité en loi par la somme indépendante : Soient X_1, X_2 va. On suppose :
 - $X_1 \hookrightarrow \mathcal{B}(n_1, p)$ et $X_2 \hookrightarrow \mathcal{B}(n_2, p)$
 - X_1, X_2 indépendantes

Alors $X_1 + X_2 \hookrightarrow \mathcal{B}(n_1 + n_2, p)$ (Lemme des coalitions aux sommes des n_1 premiers/ n_2 derniers tirages)

- Loi géométrique $\mathcal{G}(p)$
 - *) elle modélise le rang d'apparition T du premier succès : dans un processus de Bernoulli $\epsilon_1, \epsilon_2, ... \hookrightarrow \mathcal{B}(p)$ sans mémoire (iid)
 - *) Fonction d'anti-répartition : $\mathbb{P}(T > n) = q^n$.
 - *) Min de 2 géométriques indépendantes : Savoir retrouver :
 - ightharpoonup pour $T_1 \hookrightarrow \mathcal{G}(p_1)$ et $T_2 \hookrightarrow \mathcal{G}(p_2)$
 - T_1, T_2 indépendantes et $I = \min(T_1, T_2)$

alors: $\mathbb{P}(I > n) = \mathbb{P}(T_1 > n) \times \mathbb{P}(T_2 > n) = (q_1 q_2)^n$, d'où $I \hookrightarrow \mathcal{G}(1 - q_1 q_2)$.

- ▶ Stabilité de la loi de Poisson par somme indépendante
 - $X_1 \hookrightarrow \mathcal{P}(\lambda_1)$ et $X_2 \hookrightarrow \mathcal{P}(\lambda_2)$
 - X_1, X_2 indépendantes

Alors $X_1 + X_2 \hookrightarrow \mathcal{P}(\lambda_1 + \lambda_2)$ (par l'étude de la loi conjointe)

Généralisation pour une somme de « Poisson » mutuellement indépendantes

Rappels sur les systèmes complets d'événements

▶ Système complet d'événements : (principe de la disjonction des cas) famille d'événements $(A_1, \ldots A_n)$ qui sont :

- *) collectivement exhaustifs: $A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$
- ▶ Exemple pour une variable discrète $p.ex.\ X(\Omega) = \{0,...,n\}$ un système complet est formé des év^{ts} : $\forall k = 0...n,\ A_k = [X = k]$ (Conditionnement selon la valeur de X)
- ightharpoonup Formule des probabilités totales qui décompose E dans le système complet :

$$\mathbb{P}(E) = \mathbb{P}(A_1 \cap E) + \mathbb{P}(A_2 \cap E) + \ldots + \mathbb{P}(A_n \cap E)
= \mathbb{P}(A_1) \mathbb{P}_{A_1}(E) + \mathbb{P}(A_2) \mathbb{P}_{A_2}(E) + \ldots + \mathbb{P}(A_n) \mathbb{P}_{A_n}(E)$$

Notion de chaîne de Markov

On considère

- une succession d'épreuves aléatoires $\forall n \in \mathbb{N}$: qui conduit à
- une évolution probabiliste sur un **ensemble fini d'états** (souvent 2 ou 3) : (p.ex.) A, B, C
- décrite par une suite de systèmes complets d'événements

 A_n, B_n, C_n

- l'état probabiliste au temps n est donné par les probabilités de chaque état p_n, q_n, r_n , on pose le vecteur de probabilités $\pi_n = (p_n, q_n, r_n) = (\mathbb{P}(A_n), \mathbb{P}(B_n), \mathbb{P}(C_n))$
- les proba. de transition $(p.ex \mathbb{P}_{A_n}(B_{n+1}))$ forment la matrice de transition P
- ▶ la formule des probabilités totales s'écrit : $\pi_{n+1} = P\pi_n$: il vient donc $\pi_n = P^n\pi_0$.

Matrice de transition

$$P = \begin{bmatrix} p_{A \to A} & p_{B \to A} & p_{C \to A} \\ p_{A \to B} & p_{B \to B} & p_{C \to B} \\ p_{A \to C} & p_{B \to C} & p_{C \to C} \end{bmatrix}$$

Si la chaîne de Markov est décrite par une suite de variables aléatoires discrètes (X_n) , la **matrice** de transition est la matrice de la loi conditionnelle de X_{n+1} sachant X_n .

Rappel sur les suites arithmético-géométriques

Pour étudier une suite arithmético-géométrique de relation $\forall n \in \mathbb{N}, \ u_{n+1} = au_n + b$:

- Résolution de l'équation du point fixe $\ell = a\ell + b$
- ▶ Centrage sur ℓ de (u_n) La suite $(u_n - \ell)$ est géométrique de raison a, car : u_{n+1}

car:
$$u_{n+1} = au_n +b$$

 $\ell = a\ell +b$
 $u_{n+1} - \ell = a(u_n - \ell)$

• Expression du terme général On a donc $u_n - \ell = (u_0 - \ell)a^n$ d'où u_n .

Rappel: représentation matricielle canonique

La « correspondance canonique » : est donnée par : $\left\{ \begin{array}{ll} \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n) & \stackrel{\sim}{\longleftrightarrow} \mathcal{M}_{n,p}(\mathbb{R}) & f(\vec{X}) = A\vec{X} = x_1\vec{C}_1 + x_2\vec{C}_2 + \ldots + x_p\vec{C}_p \\ [f: \mathbb{R}^p \to \mathbb{R}^n] \longleftrightarrow A = \underbrace{\begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{C}_1 & \vec{C}_2 \ldots \vec{C}_p \\ \downarrow & \downarrow & \downarrow \end{bmatrix}}_{n \text{ lignes}} \right\}_{n \text{ lignes}}$ est donnée par : $f(\vec{X}) = A\vec{X} = x_1\vec{C}_1 + x_2\vec{C}_2 + \ldots + x_p\vec{C}_p \\ \vec{C}_1 = f(\vec{e}_1), \\ \vec{C}_2 = f(\vec{e}_2), \\ \vdots \\ \vec{C}_n = f(\vec{e}_n), \\ \vdots \\ \vec{C}_n = f(\vec{e}_n),$

Noyau et image d'une matrice, d'une application linéaire

Deux sous-espaces vectoriels associés à une application linéaire $f: E \to F$ une matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$:

Noyau: (Noté Ker pour « Kernel » (allemand pour « noyau »))

*)
$$D\'{e}finitions:$$
 $Ker(f) = \left\{ \vec{v} \in E \text{ tels que } f(\vec{v}) = \vec{0} \right\}$
 $=$ | $Vector{e}{i}$ | $Vector$

*) Interprétation « vecteurs colonnes » :

Le noyau de A décrit l'ens. des relations de dépendance linéaire entre les \vec{C}_i .

$$(x_1,x_2,...,x_p)_{\mathrm{col.}} \in \mathrm{Ker}(A) \iff x_1\vec{C}_1 + x_2\vec{C}_2 + ... + x_p\vec{C}_p = \vec{0}.$$
(Remarque utile pour | vérifier la résolution d'un système linéaire) trouver le noyau en « calcul mental »

 \star) **Pratique :** Trouver une base du noyau de la matrice A :

- On résout le syst. d'équans $A.\vec{X} = \vec{0}$ pour $\vec{X} = (x_1, ..., x_p)_{\text{col.}}$ (1 équation par ligne)
- ► (Après échelon^{nt} : alg. du pivot de Gauss :) les **inconnues principales** (« à pivot ») s'expriment en fonction des (svt 1 seule) **inc. secondaires** (paramètres)
- On ajoute des éq^{ns} tautologiques pour écrire $A.\vec{X} = \vec{0} \Leftrightarrow \vec{X} = z_1 \vec{v}_1 + ... + z_{\nu} \vec{v}_{\nu}$,
- On conclut : $\operatorname{Ker}(A) = \operatorname{Vect}(\vec{v}_1, \dots, \vec{v}_{\nu})$ et $\nu = \dim[\operatorname{Ker}(A)]$ (= nullité)

Image

Définitions

$$\begin{aligned} \operatorname{Im}(f) &= \{ \vec{v} \in F \text{ tq } \exists \vec{u} \in E, \ f\left(\vec{u}\right) = \vec{v} \} \\ &= \{ f(\vec{u}), \text{ quand } \vec{u} \text{ parcourt } E \} \\ &= \text{ l'ensemble des vecteurs de } F \\ &= \text{ qui sont atteints par } f \end{aligned} \end{aligned} \qquad \begin{aligned} \operatorname{Im}(A) &= \left\{ \vec{Y} \in \mathbb{R}^n \text{ tq } \exists \vec{X} \in \mathbb{R}^p, \ A.\vec{X} = \vec{Y} \right\} \\ &= \left\{ A.\vec{X}, \text{ quand } \vec{X} \text{ parcourt } \mathbb{R}^p \right\} \\ &= \text{ l'ensemble des vecteurs de } \mathbb{R}^n \end{aligned}$$

▶ Interprétation « vecteurs colonnes »

L'image de A décrit l'ens. des combinaisons linéaires entre les \vec{C}_i (sev engendré)

$$\operatorname{Im}(A) = \operatorname{Vect}(\vec{C}_1, \vec{C}_2, \dots, \vec{C}_p)$$

Rang

▶ **Définition** : « le rang, c'est la dimension de l'image »

$$rg(f) = dim(Im(f)), \qquad rg(A) = dim(Im(A)).$$

Formule du rang :

$$\underbrace{\dim(E)}_{\text{dim. de l'esp.}} = \operatorname{rg}(f) + \dim(\operatorname{Ker}(f)), \qquad \underbrace{\text{nb. de col.}}_{=p} = \operatorname{rg}(A) + \dim(\operatorname{Ker}(A)).$$

- Interprétation : chaque rel. de dép. lin. permet d'ôter l'un des \vec{C}_i du Vect.

1 Recherche de valeurs propres

ightharpoonup Spectre d'une matrice carrée A: l'ensemble, noté $\mathrm{Sp}(A)$, des valeurs propres de A

$$\begin{array}{ll} \lambda \in \operatorname{Sp}(A) & (\Leftrightarrow \lambda \ valeur \ propre \ de \ A) \\ ssi & \operatorname{Ker}(A - \lambda I_n) \neq \{\vec{0}\} & (E_{\lambda}(A) \ sous\text{-}espace \ propre \ associ\'e) \\ ssi & A - \lambda I_n \ \text{n'est } \mathbf{pas} \ \text{inversible} & (\Leftrightarrow A - \lambda I_n \ a \ \ du \ noyau \ \ \ \) \end{array}$$

- Vérifier si λ (donnée) \in Sp(A) : (pas difficile) pivot de Gauss (résolution de $A\vec{X} = \lambda \vec{X}$)
 - \longrightarrow Comment réduire le champ d'étude à un petit nombre de λ ?

1.1 Approche directe

(seulement dans quelques cas)

Matrice triangulaire (T triangulaire supérieure si ts ses coefficients sous-diag sont nuls.)

- riversible ssi tous ses coefficients diagonaux sont $\neq 0$.
- ► Valeurs propres d'une matrice triangulaire (Elles sont « déjà » sur sa diagonale)
 - Les valeurs propres d'une matrice triangulaire sont ses coefficients diagonaux.
 - Le spectre d'une matrice triangulaire est l'ensemble de ses coefficients diagonaux

Pivot de Gauss à paramètres

(Approche déconseillée en général!)

On écrit $\lambda \in \operatorname{Sp}(A) \Leftrightarrow (A - \lambda I_n)$ pas inversible (puis pivot de Gauss avec discussion selon λ)

Exemple d'application

(à savoir retrouver sur des exemples par pivot de Gauss à paramètre)

Pour
$$A = \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}$$
 (A: matrice compagnon) Les valeurs propres de A sont les racines du polynôme $R(x) = x^3 + a_2x^2 + a_1x + a_0$.

1.2 Avec un polynôme annulateur

(méthode plus générale)

- **Définition** Un polynôme P est un polynôme annulateur de A si $P(A) = 0_n$.
- ightharpoonup Exemples de recherches de polynômes annulateurs (et application au calcul de A^{-1})
- ▶ Condition nécessaire Si λ est une valeur propre de A, alors $P(\lambda) = 0$.

(En testant toutes les racines λ de P, on est sûr de ne manquer aucune vp de A.)

2 Pratique de la diagonalisation

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable si l'on peut écrire $A = PDP^{-1}$ avec (c'est une formule de changement de base)

- ► D diagonale : « la matrice des valeurs propres » (matrice dans une nouvelle base)
- P inversible : « la matrice des vecteurs propres » (matrice de passage)

Condition nécessaire et suffisante de diagonalisabilité :

La matrice carrée $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable ssi la somme des dimensions de ses sous-espaces propres $E_{\lambda}(A)$ vaut n

Dérivation d'une fonction de deux variables

▶ Exemples fondamentaux

Fonctions coordonnées $(x, y) \mapsto x$ et $(x, y) \mapsto y$, polynomiales (affines, quadratiques)

▶ Régularité

Notion de fonction de deux variables : continue,

de classe \mathcal{C}^1 .

de classe \mathcal{C}^2 .

(Justification semblable au cas des fonctions d'une variable réelle)

- ▶ Dérivées partielles notées $\partial_1(f)(x,y)$ et $\partial_2(f)(x,y)$
- ▶ Champ de gradient (vecteur des dérivées partielles)

$$\left(\nabla f\right)\left(x,y\right) = \begin{pmatrix} \partial_{1}f\\ \partial_{2}f \end{pmatrix}\left(x,y\right) = \begin{pmatrix} \partial_{1}f(x,y)\\ \partial_{2}f(x,y) \end{pmatrix} \in \mathbb{R}^{2}$$

- ▶ Point critique de f: (x_0, y_0) point critique de $f \Leftrightarrow (\nabla f)(x_0, y_0) = \vec{0}$.
- ▶ Champ de Hessienne (matrice des dérivées partielles secondes)

$$(\nabla^2 f)(x,y) = \begin{bmatrix} \partial_{1,1}^2 f & \partial_{1,2}^2 f \\ \partial_{2,1}^2 f & \partial_{2,2}^2 f \end{bmatrix} (x,y) \in \mathcal{M}_{2,2}(\mathbb{R})$$

Propriété de symétrie de Schwarz

La Hessienne de
$$f$$
 de classe \mathcal{C}^2 est **symétrique**, et s'écrit $(\nabla^2 f)(x,y) = \begin{bmatrix} r & s \\ s & t \end{bmatrix}$.

Problèmes d'extrema, étude de points critiques

Vocabulaire topologique

Notion d'ensemble ouvert ou fermé de \mathbb{R}^2 , d'ensemble borné de \mathbb{R}^2

Théorème des bornes

Une fonction continue sur un fermé borné est bornée et atteint ses bornes.

▶ Notion d'extremum, d'extremum local

Un extremum local à l'intérieur du domaine est un point critique

▶ Classification des points critiques selon la Hessienne $q = (\nabla^2 f)(x_0, y_0) = \begin{bmatrix} r & s \\ s & t \end{bmatrix}$

- ▶ Exemples de recherche de points critiques par étude d'une fonction intermédiaire d'une variable, (notamment par le théorème de la bijection)
- Exemples d'études d'extrema sur un domaine à bord

1 Variables à densité usuelles

Pour chacune des lois au programme il faut connaître et (le cas échéant) savoir retrouver :

- les paramètres qui interviennent,
- la densité f_X ,
- ▶ la fonction de répartition $F_X : x \mapsto \mathbb{P}(X \leqslant x)$, (et d'anti- $\mathbb{P}(X > x) = 1 F_X(x)$)
- l'espérance $\mathbb{E}[X]$, moment d'ordre $2 \mathbb{E}[X^2]$,
- la variance Var(X) (par Kænig-Huygens).

Lois usuelles au programme

Loi	uniforme	exponentielle	normale
Notation (référence)	$\mathcal{U}[a;b] \ \mathcal{U}[0;1]$	$egin{aligned} \mathcal{E}(\lambda) \ \mathcal{E}(1) \end{aligned}$	$\mathcal{N}(\mu, \sigma^2)$ $\mathcal{N}(0, 1)$

Exemples usuels d'intervalles de fluctuation à 95%.

2 Formule de transfert pour l'espérance

ightharpoonup Contexte On part d'une $v.a.\ X$ connue

 $(par \ sa \ densit\'e \ f_X)$

- Objet On s'intéresse à une nouvelle $va\ Y = \varphi(X)$ exprimée en fonction de X
- ▶ Formule $\mathbb{E}[Y] = \mathbb{E}[\varphi(X)] = \int \varphi(x) f_X(x) dx$.

(sous réserve de convergence absolue)

- ▶ **Précaution** on intègre sur un intervalle « qui fait sens » $(p.ex. sur \mathbb{R}_+^* pour Y = ln(X)...)$
- Exemple des moments $m_n(X) = \mathbb{E}[X^n] = \int x^n f_X(x) dx$ est le moment d'ordre n de X

3 Vocabulaire de la répartition

- ▶ Quantiles usuels min, max, médiane, quartiles, déciles, centiles
- Avec la fdr Recherche de quantiles par résolution de $F_X(x) = p$

 $(p = 50\%, pour la médiane, 90\% pour D_9)$

- ▶ Fonction « quantiles » c'est la bijection réciproque de la fonction de répartition
- Exemple explicite de la loi exponentielle $\mathcal{E}(\lambda)$.

4 Exemples simples de problèmes de transfert en loi

- ▶ Objectif On s'intéresse cette fois à la loi de $Y = \varphi(X)$.
- Cas le plus simple pour φ bijection croissante

 $(notamment \varphi = \exp)$

- Méthode
 - 1. On traduit la fonction de répartition de Y en termes de celle de X.
 - **2.** On en déduit la fonction densité de Y en dérivant sa fdr.
- ▶ Interprétation du transfert en loi en termes de quantiles

(formulation pas exactement au programme)

1 Variables à densité usuelles

Pour chacune des lois au programme il faut connaître et (le cas échéant) savoir retrouver :

- les paramètres qui interviennent,
- la densité f_X ,
- ▶ la fonction de répartition $F_X : x \mapsto \mathbb{P}(X \leq x)$, (et d'anti- $\mathbb{P}(X > x) = 1 F_X(x)$)
- l'espérance $\mathbb{E}[X]$, moment d'ordre $2 \mathbb{E}[X^2]$,
- la variance Var(X) (par Kænig-Huygens).

Lois usuelles au programme

Loi	uniforme	exponentielle	normale
Notation (référence)	$\mathcal{U}[a;b]$ $\mathcal{U}[0;1]$	$\mathcal{E}(\lambda)$ $\mathcal{E}(1)$	$\mathcal{N}(\mu, \sigma^2)$ $\mathcal{N}(0, 1)$

Exemples usuels d'intervalles de fluctuation à 95%.

2 Formule de transfert pour l'espérance

ightharpoonup Contexte On part d'une $v.a.\ X$ connue

 $(par\ sa\ densit\'e\ f_X)$

- ▶ Objet On s'intéresse à une nouvelle $va\ Y = \varphi(X)$ exprimée en fonction de X
- ▶ Formule $\mathbb{E}[Y] = \mathbb{E}[\varphi(X)] = \int \varphi(x) f_X(x) dx$.

(sous réserve de convergence absolue)

- ▶ **Précaution** on intègre sur un intervalle « qui fait sens » $(p.ex. sur \mathbb{R}_+^* pour Y = ln(X)...)$
- ▶ Exemple des moments $m_n(X) = \mathbb{E}[X^n] = \int x^n f_X(x) dx$ est le moment d'ordre n de X

3 Vocabulaire de la répartition

- ▶ Quantiles usuels min, max, médiane, quartiles, déciles, centiles
- Avec la fdr Recherche de quantiles par résolution de $F_X(x) = p$

 $(p = 50\%, pour la médiane, 90\% pour D_9)$

- ▶ Fonction « quantiles » c'est la bijection réciproque de la fonction de répartition
- Exemple explicite de la loi exponentielle $\mathcal{E}(\lambda)$.

4 Exemples simples de problèmes de transfert en loi

- ▶ Objectif On s'intéresse cette fois à la loi de $Y = \varphi(X)$.
- ightharpoonup Cas le plus simple pour φ bijection croissante

 $(notamment \varphi = \exp)$

- Méthode
- 1. On traduit la fonction de répartition de Y en termes de celle de X.
- **2.** On en déduit la fonction densité de Y en dérivant sa fdr.
- ▶ Interprétation du transfert en loi en termes de quantiles

(formulation pas exactement au programme)

	\AM@currentdocname .png
	(Arrectification of the control of t
.png	