Application: Floating Ship - Model Description

- Water and air domains are initialized with hydrostatic pressure.
- A "ship" (closed shell container) containing a liquid and a gas floats via buoyancy force on the surface of the water.
- Then artificial wave is generated (LHS) and the wave interacts with the external surface of the ship while the internal fluids interact with the internal surface of the ship.

Application: Floating Ship – Model Setup 1

*ALE_STRUCTURED_MESH							
MSHID	PID	NBID	EBID				
1	11	300001	300001				
CPIDX	CPIDY	CPIDZ	NID0	LCSID			
1001	1002	1003					

MSHID: Mesh ID (for future use)

PID: Part ID assigned to the mesh NO NEED to define *PART card

NBID: Starting Node ID

EBID: Starting Element ID

NID0: Origin Node ID

LCSID: Local Coordinate System ID

*ALE_STRUCTURED_ME	ESH_CONTROL_POINTS
1002	
1	0.
41	200.

Application: Floating Ship – Model Setup 2

*ALE_MULTI-MAT	TERIAL_GROUP
PID	PTYPE
1	1
3	1
7	1
10	1

*PART				
PID	SECID	MID	EOSID	HGID
1	1	1	1	1
3	1	3	3	1
7	1	7	7	1
10	1	3	3	1

PID	MATERIAL	AMMG
1	Water	1
3	Air	2
7	Fluid inside	3
10	Air inside	4

- *SECTION should always be 11. Same SECID OK.
- *HOURGLASS form and coefficient should always be 1 and 1.0e-6. Same HGID OK.
- PIDs not used elsewhere. Only to be put into *ALE_MULTI-MATERIAL_GROUP card.

Application: Floating Ship – Model Setup 3

*INITIAL_\						
SID	IDTYP	BAMMG				
11	1	1				
TYPE	FILLOPT	FAMMG				"3 = Plane"
3	0	2				
XO	YO	ZO	XCOS	YCOS	ZCOS	
10.0	100.0	0.0	0.0	0.0	1.0	
TYPE	FILLOPT	FAMMG				"1 = PART/PSET"
1	0	3				
SETID	SETTYP	NORMD	XOFF			
5	1					
TYPE	FILLOPT	FAMMG				"1 = PART/PSET"
1	0	4				
SETID	SETTYP	NORMD	XOFF			
6	1					

1. All to "water"; 2. Above the plane to "air"; 3. Inside PART 5 to "fluid inside"; 4. Inside PART 6 to "air inside"

Application: Floating Ship – Hydrostatic Pressure 1

*ALE_AMBIENT_HYDROSTATIC						
SID	STYPE	VECID	GRAV	PBASE		
101	2	1	9.80665	101325.		
NID	MMGB					
20002	2					
20001	1					

*BOUNDARY_PRESCRIBED_MOTION_NODE						
SID	DOF	VAD	LCID			
20001	2	2	6			

SID	STYPE	VECID	GRAV	PBASE		
102	2	1	9.80665	101325.		
NID	MMGB					
20002	2					
20000	1					

LCID	SIDR	SFA	SFO	
6			35.	
TIM	E	Y=SIN(T)		
0.0		0.0		
4.5		1.0		
50.0	O	0.0		

Apply hydrostatic pressure on a collection of solid elements at the mesh boundary. A moving node will create waves.

Application: Floating Ship – Hydrostatic Pressure 2

*SET_SOLIE	*SET_SOLID_GENERAL						
SID					Two layers	of ele m e nts	at—X face
101							
OPTION	MSHID	XMIN	XMAX	YMIN	YMAX	ZMIN	ZMAX
SALECPT	1	1	3	1	41	1	2

*SET_SOLID_GENERAL							
SID Two layers of elements at X face					s at X face		
102							
OPTION	MSHID	XMIN	XMAX	YMIN	YMAX	ZMIN	ZMAX
SALECPT	1	99	101	1	41	1	2

*BOUNDARY_SPC_NODE										
SID	CID	DOFX	DOFY	DOFZ						
20000	0	1	1	1						
20002	0	1	1	1						

*LOAD_BODY_Y								
LCID	SF							
1	9.80665							

Application: Floating Ship – Hydrostatic Pressure 3

*INITIAL_HYDROSTATIC_ALE										
SID	STYPE	VECID	GRAV	PBASE						
1	2	1	9.80665	101325.						
NID	MMGB									
20002	2									
30500	4									
20164	3									
20001	1									

To apply initial hydrostatic pressure on all the fluids inside the S-ALE mesh

*SET_SOLID_GENERAL									
SID	Two layers of elements at X face								
1									
OPTION	MSHID	XMIN	XMAX	YMIN	YMAX	ZMIN	ZMAX		
SALECPT	1	1	101	1	41	1	2		

Application: Floating Ship - Boundary Condition 1

All ALE nodes constrained at Z direction

*BOUNDAR							
NSID	CID	DOFX	DOFY	DOFZ	DOFRX	DOFRY	DOFRZ
1				1			

-Y surface nodes constrained at all directions

*								
	NSID	CID	DOFX	DOFY	DOFZ	DOFRX	DOFRY	DOFRZ
	2		1	1	1			

3 layers of nodes at -X face with a prescribed X velocity

>	*BOUNDARY_PRESCRIBED_MOTION_SET								
	NSID	DOF	VAD	LCID					
	4	1	0	3					

Application: Floating Ship – Boundary Condition 2

*SET_NODE_GENERAL										
SID All Nodes of S-ALE mesh										
1										
OPTION	MSHID	XMIN	XMAX	YMIN	YMAX	ZMIN	ZMAX			
SALECPT	1	1	101	1	41	1	2			

*SET_NODE_GENERAL										
SID	SID -Y face Nodes									
2										
OPTION	MSHID	XMIN	XMAX	YMIN	YMAX	ZMIN	ZMAX			
SALEFAC	1			1						

*SET_NODE_GENERAL										
SID 3 layers of -X face Nodes										
4										
OPTION	MSHID	XMIN	XMAX	YMIN	YMAX	ZMIN	ZMAX			
SALECPT	1	1	3	1	41	1	2			

Application: Floating Ship – Result

S-ALE: 699s; ALE: 806s 1 CPU LSDYNA dev.106021 single precision