Math 110A, Winter 2018 Problem Set 7: Abstract Algebra Homework Due 2018-03-06

David Akeley 504953375

1 Some problem

Let f(x) be a monic polynomial in $\mathbb{R}[x]$ of degree 3 that has 1+2i and 2 as roots. Then $\overline{1+2i}=1-2i$ is a root as well as f(x) has real coefficients. f(x) has degree 3, so these three roots are all the roots of f(x). $f(x) = 1(x-2)(x-(1+2i))(x-(1-2i)) = x^3-4x^2+9x-10$ then, which has constant term 10 = (1-2i)(1+2i)(2).

2 Monic polynomials of degree 2 in $\mathbb{Z}_{11}[x]$

Monic polynomials of degree 2 in $\mathbb{Z}_{11}[x]$ are of the form

$$f(x) = 1x^2 + bx + c : b, c \in \mathbb{Z}_{11}$$

There are 11 choices each for b and c, so there are 121 such polynomials in all.

3 Monic degree 2 irreducible polynomials in $\mathbb{Z}_3[x]$

There's only 9 such unique polynomials and 3 possible roots in \mathbb{Z}_3 , so I can just make a table to find out how many irreducible ones there are. (Here I use the fact that irreducible \equiv no roots).

f(x)	f(0)	f(1)	f(2)
x^2	0	1	1
$x^2 + 1$	1	1	2
$x^2 + 2$	2	2	0
$x^2 + x$	0	2	0
$x^2 + x + 1$	1	0	1
$x^2 + x + 2$	2	1	2
$x^2 + 2x$	0	0	2
$x^2 + 2x + 1$	1	1	0
$x^2 + 2x + 2$	2	2	1

So there's 3 irreducible polynomials: $x^2 + 1$, $x^2 + x + 2$, and $x^2 + 2x + 2$.

4 $\mathbb{Z}_3[x]/(x^2+1)$ is an integral domain

This is because the modulus $x^2 + 1$ is irreducible in $\mathbb{Z}_3[x]$ as shown earlier.

5 Polynomial roots of Unity

I will find $\omega \in \mathbb{Z}_2[x]/(x^2+x+1)$ such that $\omega \neq 1$ and $\omega^3 = 1$. $\omega = [x+1]$.

$$(x+1)^3 = x^3 + 3x^2 + 3x + 1 = x(x^2 + x + 1) + 1 \ (1 \equiv 3 \text{ in } \mathbb{Z}_2)$$

so
$$\omega^3 \equiv (x+1)^3 \equiv 1 \mod (x^2 + x + 1)$$