Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Смирнов Сергей Ниполневичистерство науки и высшего образования Российской Федерации

Должность: врио ректора

Дата подписания: 28.09.2023 14:30:56 ФГБОУ ВО «Тверской государственный университет»

Уникальный программный ключ:

69e375c64f7e975d4e8830e7b4fcc2ad1bf35f08

Утверждаю:

Руководитель ООП

Феофанова М.А.

27 июня 2023 г

Рабочая программа дисциплины (с аннотацией)

Физическая органическая химия

Специальность

04.05.01 Фундаментальная и прикладная химия

Специализация

Химия функциональных материалов

Для студентов 4 курса очной формы обучения

Составитель: д.х.н., профессор Ворончихина Л.И.

І. Аннотация

1. Цель и задачи дисциплины:

Цель освоения курса заключается в изучении студентами вопросов строения и реакционной способности органических соединений и формирование у них целостного представления о проблемах теоретической органической химии.

Основные задачи курса заключаются в углубленном освоении студентами понятийного аппарата, базовых положений и понятий теоретической органической химии, закреплении навыков поиска, анализа и обобщения научных данных и формировании представлений о направлениях развития современной теоретической органической химии.

Изучение дисциплины предполагает предшествующее успешное освоение соответствующих дисциплин базовой и специализированной подготовки. Курс опирается на базовые знания, полученные в ходе изучения органической химии и физической химии. Однако основная часть материала, химической касающихся природы связи, структуры органических соединений и некоторых проблем реакционной способности происходит более детально и глубоко. Чтение данного курса предусмотрено для формирования у студентов умения свободно владеть вопросами, связанными с изучением структуры органических соединений, связи между строением и реакционной способностью, механизмов органических реакций.

2. Место дисциплины в структуре ООП

Дисциплина «Физическая органическая химия» входит в Элективные дисциплины 3 Части, формируемой участниками образовательных отношений Блока 1. «Дисциплины» учебного плана.

Курс опирается на такие ранее изученные дисциплины, такие как неорганическая химия, органическая химия, аналитическая химия, физическая химия. Знания и навыки, полученные студентами в результате изучения дисциплины, необходимы для формирования ее связи с другими дисциплинами. Изучение данного курса благоприятствует успешному изучению последующих дисциплин.

3. Объем дисциплины: 5 зачетных единиц, **180** академических часов, **в том** числе:

контактная аудиторная работа: лекции **28** часов, лабораторные работы **56** часов, в т.ч. лабораторная практическая подготовка - **56** часов;

самостоятельная работа: 42 часа, контроль 54 часа.

4. Планируемые результаты обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемые результаты освоения образовательной	Планируемые результаты обучения по дисциплине
программы (формируемые компетенции)	
ПК-1 Способен выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации	ПК-1.1 Планирует отдельные стадии исследования при наличии общего плана НИР ПК-1.2 Выбирает технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач НИР ПК-1.3 Готовит объекты исследования
ПК-2 Способен оказывать информационную поддержку специалистам, осуществляющим научно-исследовательские работы	ПК-2.1 Проводит первичный поиск информации по заданной тематике (в т.ч., с использованием патентных баз данных) ПК-2.2 Анализирует и обобщает результаты патентного поиска по тематике проекта в выбранной области химии (химической технологии)

5. Форма промежуточной аттестации и семестр прохождения: экзамен в 8-м семестре.

6. Язык преподавания русский.

II. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

y leonbix sannini					
Учебная программа –	Всего	Конта	актная рабо	та (час.)	Самостоятел
наименование разделов и тем	(час.)	Лекции	91	й ле)	ьная работа,
			эрные тавит эе)	ьной числ ота)	в том числе
			рные павип 1e)		Контроль
			раторн (остс) жное,		(час.)
			gc) 14) 15	СОНТ СТОЯ Ы (В '	
			a(O		
			Л	само абот куро	
			₽.	þs	

Тема 1. Введение.	11	2		4	5
Проблема химической					
связи. Основы волновой					
механики. Молекулярные					
орбитали. Состояние связей у					
углерода. Особенности					
сопряженных связей.					
Тема 2. Распределение	41	6	15	12	8
электронной плотности в	11	o o	13	12	O
органических молекулах					
Строение и реакционная					
способность. Индуктивный					
эффект. Мезомерный эффект.					
Ароматическое состояние. О					
сверхсопряжении.					
Количественный анализ.					
Корреляционные уравнения.					
Индукционные константы					
заместителей. Электрофильные					
(σ^+) и нуклеофильные (σ^-)					
константы заместителей.	10		1 ~	10	
Тема 3. Общие данные о	42	6	15	12	9
протекании органических					
реакций					
Классификация реакций и					
реагентов. Кинетика реакций.					
Теория переходного состояния.					
Кинетические изотопные					
эффекты. Элементарные акты					
реакции.	40	0	1.5	1.5	10
Тема 4. Нуклеофильное	48	8	15	15	10
замещение у насыщенного					
атома углерода					
Мономолекулярное замещение.					
Бимолекулярное замещение.					
Влияние растворителя на ход					
реакции. Многоцентровые					
механизмы. Влияние					
нуклеофила. Эффекты соседних					
групп.	20		1.1	1.1	10
Тема 5. Радикальные реакции	38	6	11	11	10
Получение и обнаружение					
свободных радикалов. Теория					
свободных радикалов. Типы					
реакций. Радикальное					
замещение. Радикальные реакции					
присоединения. Радикальная					
цепная полимеризация.	100	•0			
ИТОГО	180	28	56	54	42

Учебная программа –	Вид занятия	Образовательные технологии
наименование разделов и		
тем (в строгом		
соответствии с разделом		
ІІ РПД)		
Тема 1. Введение.	Лекция	Традиционные (фронтальная лекция)
Тема 2. Распределение	Лекция	Традиционные (фронтальная
электронной плотности в		лекция)
органических молекулах		,
	Лабораторная работа	Технология проблемного обучения
		Групповая работа
Тема 3. Общие данные о	Лекция	Традиционные (фронтальная
протекании органических		лекция)
реакций		
	Лабораторная работа	Технология проблемного обучения
		Групповая работа
Тема 4. Нуклеофильное	Лекция	Традиционные (фронтальная
замещение у		лекция)
насыщенного атома		
углерода	Лабораторная работа	Технология проблемного обучения
		Групповая работа
Тема 5. Радикальные	Лекция	Традиционные (фронтальная
реакции		лекция)
	Лабораторная работа	Технология проблемного обучения
		Групповая работа

IV. Оценочные материалы для проведения текущей и промежуточной аттестации

Оценочные материалы (фонд оценочных средств) для проведения диагностической работы в рамках аккредитационных показателей по образовательным программам высшего образования

04.05.01 Фундаментальная и прикладная химия.

Химия функциональных материалов

<u>ПК-1.</u> Способен выбирать и использовать технические средства и методы испытаний для решения исследовательских задач химической направленности, поставленных специалистом более высокой квалификации.

(код, наименование компетенции)

Номер	Правильный ответ		Критерии
задания	(ключ)		оценивания заданий
		Содержание вопроса/задания	

		Задания закрытого типа	
1	Б	Какие связи существуют в молекуле хлорэтана? А. Водородные. Б. Ковалентные. В. Ионные. Г. Семиполярные.	1 балл за правильный ответ
2	Химическая связь — повышенная электронная плотность в пространстве между ядрами, возникающая при перекрывании электронных орбиталей.	Дать определение химической связи.	1 балл за правильный ответ
3	В	Какое соединение является более сильной кислотой? А. СН ₃ ОН. Б. СН ₃ NH ₂ . В. С ₆ H ₅ COOH. Г. С ₂ H ₅ OH.	1 балл за правильный ответ
4	Энергия связи — количество теплоты, выделяющееся при образовании 1 моля вещества.	Дать определение энергии связи.	1 балл за правильный ответ
5	А	Какое соединение имеет более полярные С-Н-связи:? А. 1-Нитропропен-1. Б. 1-Нитропропан. В. 1-Бромпропан. Г. 3-Бромпропен-1.	1 балл за правильный ответ
6		Задания открытого типа слоты по возрастанию константы ксусная, циануксусная, овая.	3 балла
 Запиша) СН₃–С Оцени в этих со Самой 	ный ответ (ключ): лем формулы кисло СООН; б) CN–CH ₂ — лм влияние замести рединениях.	т: СООН; в) CN–CH ₂ –CH ₂ –COOH. геля: CN-группа проявляет -I–эффект будет CN–CH ₂ –COOH, т.к.	1 балл 1 балл 1 балл Итого: 3 балла

7	Изобразите химические связи в молекуле	3 балла		
	хлорэтана.			
Правильн	ый ответ (ключ):			
1. Запише	ем формулу: Cl-CH ₂ -CH ₃ .	1 балл		
2. Оценив	ваем перекрывание орбиталей в молекуле:	1 балл		
C – H 5 o	рбиталей			
sp ³ xs;				
C-C1o	рбиталь			
sp^3xsp^3 ;				
C - Cl 1 c	орбиталь	1 балл		
sp^3xp .		1 Gain		
3. Изобра	зим перекрывание орбиталей:	Итого: 3 балла		
$C - H sp^3x$	$KS; C - C sp^3 x sp^3; C - Cl sp^3 xp.$			
8	Определите наиболее основное соединение в ряду:	3 балла		
	этиламин, виниламин, фениламин.			
-	ный ответ (ключ):			
	ем формулы соединений:	1 балл		
a) CH ₃ –Cl	· · · · · · · · · · · · · · · · · · ·			
б) CH ₂ =C	•			
B) C_6H_5-N		1 балл		
	ваем величину электронной плотности на атоме азота:			
	льшая в этиламине, т.к. алкил проявляет +I-эффект.			
	ениях б) и в) система сопряженная и электронная	1 балл		
	ь на азоте понижена.			
	ее основное соединение – этиламин.	Итого: 3 балла		
9	Какое соединение имеет наибольшую электронную	3 балла		
	плотность на ароматическом кольце: толуол,			
	фенол, нитробензол?			
	ый ответ (ключ):	1 балл		
	ем формулы соединений: H ₃ C-C ₆ H ₅ ; HO-C ₆ H ₅ ;	Гоалл		
$O_2N-C_6H_5$		1 балл		
	ваем влияние заместителей:			
	$_{5}$ (+I); HO–C ₆ H ₅ (+M); O ₂ N–C ₆ H ₅ (-M).	1 балл		
	ьшая электронная плотность на кольце в феноле, т.к.	Итого: 3 балла		
	а донорная.			
10	Какая связь возникает при образовании	3 балла		
	четвертичных аммониевых соединений, и			
	определите наиболее прочную связь в молекулах:			
	тетраэтиламмоний бромистый;			
	триметилвиниламмоний бромистый;			
П.,	триметиламмоний бромистый?			
Правильный ответ (ключ):		1 балл		
	ем формулы соединений:	2 540301		
a) [(C ₂ H ₅)				
, - ,	CH=CH ₂ N]Br;	1.5		
B) [(CH ₃) ₃		1 балл		
_	гая связь при атоме азота – это ковалентная связь, а	1 балл		
	сду катионом аммония и галоидом – семиполярная.	2 540101		
	3. Наиболее прочная семиполярная связь в соединении а), т.к. на			
,	нор) наибольшая электронная плотность за счет +I—	Итого: 3 балла		
эффекта 3	эффекта этильных групп.			

<u>ПК-2. Способен оказывать информационную поддержку специалистам,</u> осуществляющим научно-исследовательские работы.

(код, наименование компетенции)

Номер задания	Правильный ответ (ключ)	Содержание вопроса/задания	Критерии оценивания заданий	
		Задания закрытого типа		
1	Правило	Дайте определение правилу	1 балл за правильный ответ	
	Льюиса — при	Льюиса.		
	образовании			
	ковалентной			
	связи вокруг			
	каждого атома			
	должна			
	реализовыватьс			
	Я			
	восьмиэлектро			
	нная (октетная)			
	оболочка.			
2	В	Какой заместитель понижает	1 балл за правильный ответ	
		плотность бензольного кольца?		
		А. Метил.		
		Б. Гидроксил.		
		В. Нитро-группа.		
		Г. Галоид.		
3	Длина связи.	Какая характеристика	1 балл за правильный ответ	
		химической связи обладает		
		свойством аддитивности?		
4	Б	При каких условиях при разрыве	1 балл за правильный ответ	
		химических связей – С-Х,		
		образуется карбкатион?		
		А. Если ЭО C > ЭО X.		
		Б. Если ЭО C < ЭО X.		
		В. Если ЭО С = ЭО Х.		
		Г. При облучении.		
5	Семиполярная	Какая связь существует в		
		молекуле гидробромида		
		трифенилфосфония между		
		катионом и анионом?		
	Задания открытого типа			
6	Как изменится в	величина электронной плотности в	3 балла	
	молекуле бензол	а при введении ниро-группы?		
Правильн	ый ответ (ключ):			
1. Запише	ем формулу: O ₂ N–0	C_6H_5 — нитробензол.	1 балл	
		природу заместителя: это акцептор	1 балл	
по -М-эф	фекту.		1 балл	

орбиталь	онная плотность бензола стягивается на вакантную азота в группе NO ₂ . В связи с этим электронная в кольца понижается.	Итого: 3 балла
7	При растворении фенола в диоксане возникает прочная водородная связь между фенолом и диоксаном. Почему?	3 балла
Правильн	ый ответ (ключ):	
1. Запише	ем формулы: OH–C ₆ H ₅ , C ₄ H ₈ O ₂ .	1 балл
2. В фено	ле есть подвижный водород в ОН-группе.	1 балл 1 балл
3. В моле	куле диоксана максимальная электронная плотность на	1 Gassi
кислород		Итого: 3 балла
8	Расположите кислоты в порядке возрастания Ka: а) бензойная; б) п-нитробензойная; в) м-аминобензойная.	3 балла
-	ый ответ (ключ): ем формулы соединений: а) С ₆ H ₅ –COOH;	1 балл
б) п-О2N-	-C ₆ H ₄ -COOH; в) м-H ₂ N-C ₆ H ₄ -COOH. ваем тип заместителя: NO ₂ имеет -М-эффект; NH ₂	1 балл
имеет +М	–эффект.	1 балл
3. Кислот	ность возрастает при введении акцепторных	
заместите	елей: \mathbf{B}) $<$ \mathbf{a}) $<$ $\mathbf{\delta}$).	Итого: 3 балла
9	Какие заместители необходимо ввести в молекулу	3 балла
	бензола, чтобы повысить скорость	
TT.	электрофильного бромирования: NO2; Br; OH?	
1. Запише	ый ответ (ключ): ем реакцию:	1 балл
	$+$ Br \rightarrow C ₆ H ₅ –Br. ваем заместители по эффектам:	1 балл
NO ₂ (-M-	эффект); Br (+M-эффект); ОН (+М-эффект).	1 балл
3. Донорные заместители повышают общую электронную плотность кольца и повышают скорость электрофильного замещения.		Итого: 3 балла
10	Какая ОН-кислота является более сильной: вода, метанол или 2-хлорэтанол?	3 балла
Правильн	ый ответ (ключ):	
1. Запишем формулы: H ₂ O; CH ₃ OH; ClCH ₂ CH ₂ OH.		1 балл
2. Донорн	ные заместители понижают силу кислоты, акцепторные	1 балл
– повыша		1 балл
	ильная ОН-кислота – 2-хлорэтанол, т.к. заместитель	
ClCH ₂ CH	₂ – проявляет -I–эффект.	Итого: 3 балла

Материалы для проведения текущей аттестации

Вопросы для самопроверки и повторения

Тема 1. Введение

- 1. Учитывая форму и пространственную направленность орбиталей атомов в молекуле, изобразите схему электронного строения σ и π связей в бутадиене -1,3.
- 2. Учитывая форму и пространственную направленность орбиталей атомов углерода и кислорода, изобразите графически электронное строение фурана. Сколько электронов образуют сопряженную π-систему?
- 3. Учитывая форму и пространственную направленность орбиталей атомов углерода, графически изобразите схему электронного строения σ- и π-связей в бутадиене -1,2.
- 4. Учитывая форму и пространственную направленность орбиталей атомов углерода и серы, графически изобразите электронное строение тиофена. Сколько и какие электроны образуют сопряженнуюπ-систему.
- 5. Учитывая форму и пространственную направленность орбиталей атомов углерода, графически изобразите схему электронного строения σ- и π-связей в антрацене. Чему равно п и сколько электронов образуют сопряженную π-систему?
- 6. Учитывая форму и пространственную направленность орбиталей атомов углерода и азота, графически изобразите схему электронного строения пиримидина.
- 7. Учитывая форму и пространственную направленность орбиталей атома углерода, изобразите схему электронного строения σ- и π-связей в фенантрене. Чему равно п и сколько электронов образуют сопряженную π-систему?
- 8. Учитывая форму и пространственную направленность орбиталей атомов углерода и азота, графически изобразите схему электронного строения имидазола.

Тема 2. Распределение электронной плотности в органических молекулах

- 2. Электронодонорное или электроноакцепторное влияние оказывают на электронную плотность бензольного кольца каждая из функциональных групп в молекуле:
- 3. Какое соединение является более сильным основанием: 2,4,6тринитроанилин или 2,4,6-тринитро-N,N-диметиланилин.
- 4. Изобразите строение предложенных ниже соединений в виде набора резонансных структур. Покажите при помощи стрелок, как можно преобразовать одни предельные структуры в другие: *м*-NO₂C₆H₄F; *n*-COCH₃C₆H₄F.
- 5. Какое влияние электронодонорное или электроноакцепторное он он он он оказывают функциональные группы в молекуле норадреналина:
- 6. Определите, какое из соединений в каждой паре имеет больший дипольный момент. В какой паре соединений I-II или III-IV больше разность дипольных моментов?
- 7. а) Анилин (I) -2,4,6-триметиланилин (II);
- 8. б) N,N-Диметиланилин (III) -2,4,6-триметил- N,N-диметиланилин (IV).
- 9. Изобразите строение предложенных ниже соединений в виде набора резонансных структур. Покажите при помощи кривых стрелок, как можно преобразить одни предельные структуры в другие: *n*-CONH₂C₆H₄F; *м*-FC₆H₄F.
- 10.Какие
 электронные

 эффекты
 проявляют
 CI
 OH
 $CI_3C C CI_3$

 одинаковые
 ОН

функциональные группы в соединениях:

- 11. Расположите в ряд в порядке уменьшения полярности связи C=O следующие соединения: трифторацетон, хлорацетон, гексафторацетон, ацетон.
- 12.Изобразите строение предложенных ниже соединений в виде набора резонансных структур. Покажите при помощи кривых стрелок, как можно преобразить одни предельные структуры в другие: n- $NH_2C_6H_4F$; m- $HC\equiv C$ - C_6H_4F .
- 13. Электронодонорное или электроноакцепторное характер проявляют аминогруппа и карбоксильная группа в соединениях: NH₂CH₂CH₂COOH и NH₂C₆H₄COOH.
- 14. Расположите в порядке возрастания констант диссоциации следующие кислоты: цианоуксусную, β -цианопропионовую, α цианопропионовую. Будут ли эти кислоты сильнее уксусной.
- 15.Изобразите строение предложенных ниже соединений в виде набора резонансных структур. Покажите при помощи кривых стрелок, как можно преобразить одни предельные структуры в другие: *n*-NO₂C₆H₄F; *м*-H₂C=C-C₆H₄F.
- 16. Определите виды гибридизации атомов углерода в молекуле пентен-3-ина-1 и расположите атомы в ряд по уменьшению электротрицательности.

Тема 3. Общие данные о протекании органических реакций

- Учитывая форму и пространственную направленность орбиталей атома углерода, графически изобразите схему электронного строения σ- и πсвязей в молекуле пропена.
- 2. Определите вид сопряжения в молекуле простейшего непредельного альдегида —пропеналя акролеина и схематически изобразите перекрывание *p*-орбиталей в сопряженной системе.

- 3. Многие природные соединения, используемые в фармации, являются производными фенантрена. Определите, является ли фенантрен ароматическим соединением.
- 4. Изобразить схематически перекрывание p-орбиталей сопряженной системы в молекуле кротоновой ((Е)-бутен-2-вой) кислоты, содержащейся в кротоновом масле).
- 5. Покажите графически, как распределена электронная плотность в молекуле кротоновой ((Е)-бутен-2-вой) кислоты. Укажите виды сопряжения и сравните электроотрицательность атомов в сопряженном фрагменте.

Примерные варианты контрольных работ

<u>Контрольная работа № 1</u> Классификация, номенклатура и структурная изомерия

Билет № ...

- 1. Приведите все структурные изомеры ациклических соединений состава C_3H_8O и назовите их по заместительной номенклатуре и радикалофункциональной номенклатуре. К каким классам относятся эти соединения? Отметьте в них первичные, вторичные и третичные атомы углерода.
- 2. Приведите структурную формулу 2-амино-3-{4-[бис(2-хлорэтил) амино] фенил} пропановая кислота.

<u>Контрольная работа № 2</u>Пространственное строение и стереоизомерия **Билет №** ...

- 1. Учитывая форму и пространственную направленность орбиталей атомов в молекуле, изобразите схему электронного строения σ- и π- связей в бутадиене -1,3.
- 2. Учитывая форму и пространственную направленность орбиталей атомов углерода и кислорода, изобразите графически электронное

строение фурана. Сколько электронов образуют сопряженную π -систему?

Контрольная работа № 3Взаимное влияние атомов в молекуле

Билет № ...

- 1. Электронодонорное (ЭД) или электроноакцепторное (ЭА) влияние оказывают на электронную плотность бензольного кольца каждая из функциональных групп в молекуле 3-метилокси- 4-гидроксибензойной кислоты?
- 2. С помощью набора резонансных структур изобразите влияние заместителей в следующих соединениях: *п*-хлорбензальдегид, акрилонитрил, салицилловая кислота.

<u>Контрольная работа № 4</u>*Кислотность и основностьорагнических* соединений

Билет № ...

- 1. При нагревании смеси диэтилового эфира и диэтилсульфида с бромоводородной кислотой расщеплению подвергается более основное соединение. Определите его.
- 2. Расположите в порядке уменьшения кислотных свойств, следующие кислоты: 1) гликолевую, 2) уксусную, 3) молочную, 4) масляную, 5) β-оксипропионовую.
- 3. Расположите приведенные ниже соединения в порядке уменьшения основных свойств: 1) анилин, 2) ацетанилид, 3) бензиламин, 4) *п*-аминофенол.

2. Материалы для проведения промежуточной аттестации

Результат	Типовые контрольные	Показатели и
(индикатор)	задания для оценки	критерии
	знаний, умений, навыков	оценивания
		компетенции, шкала

		оценивания
ПК-1.1	1. Какие факторы	Ответ
	сказываются на силе <i>n</i> -	правильный с
	этилбензойной кислоты по	объяснением и
	сравнению с бензойной.	примерами – 3 балла
	2. Какое соединение является	(отлично)
	более сильным основанием:	Ответ верный
	2,4,6-тринитроанилин или	без примеров – 2 балла
	2,4,6-тринитро-N,N-	(хорошо)
	диметиланилин.	Ответ верный
		без объяснений – 1
		балл
		(удовлетворительно)
ПК-1.2	1.Расположите в ряд в	Ответ
	порядке уменьшения	правильный с
	полярности связи С=О	объяснением и
	следующие соединения:	примерами – 3 балла
	трифторацетон, хлорацетон,	(отлично)
	гексафторацетон, ацетон.	Ответ верный
	Определите виды	
	гибридизации атомов	(хорошо)
	углерода в молекуле пентен-	Ответ верный
	3-ина-1 и расположите атомы	_
	в ряд по уменьшению	балл
	электротрицательности.	(удовлетворительно)
пис 1 2	1 Decrease 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Omnan
ПК-1.3	1. Расположите в порядке	Ответ
	возрастания констант	1 2
	диссоциации следующие	
	кислоты: цианоуксусную, β -	
	цианопропионовую, α -	(отлично)
	цианопропионовую. Будут ли	Ответ верный
	эти кислоты сильнее	без примеров – 2 балла
	уксусной.	(хорошо) Ответ верный
	2.Подобрать посуду для	
	синтеза тетрафенилфосфат	балл
	бромида	(удовлетворительно)
ПК-2.1	1. Какие факторы	Ответ
1111-4.1	1. Какие факторы сказываются на силе <i>n</i> -	
		1 =
	сравнению с бензойной.	примерами – 3 балла
	2. Какое соединение является	,
	более сильным основанием:	Ответ верный
	2,4,6-тринитроанилин или	без примеров – 2 балла

	2,4,6-тринитро-N,N-	(хорошо)
	диметиланилин.	Ответ верный
		без объяснений – 1
		балл
		(удовлетворительно)
ПК-2.2	1. Основные хромофо-ры	Ответ
	в УФ-спектроскопии.	правильный с
	2. Расположите в	объяснением и
	порядке уменьшения	примерами – 3 балла
	кислотных свойств	(отлично)
	следующие кислоты:	Ответ верный
	гликолевую, уксусную,	без примеров – 2 балла
	молочную, цианоуксусную.	(хорошо)
		Ответ верный
		без объяснений – 1
		балл
		(удовлетворительно)

РУБЕЖНЫЙ КОНТРОЛЬ

1 модуль:

Сравнительная характеристика различных видов молекулярной спектроскопии. Общие сведения о спектрах. Инфракрасная спектроскопия. Новые возможности исследовании органических соединений: В фотоэлектронная и рентгеноэлектронная спектроскопии. Спектроскопия ядерного магнитного резонанса. Основы метода ЯМР. Химический сдвиг и его измерение. Использование химических сдвигов в структурном анализе. Спин-спиновое взаимодействие.

Решение задач – 10 баллов

Контрольная работа – 10 баллов

Тестовый контроль – 10 баллов

I контрольная точка – 30 баллов.

2 модуль

Электронные спектры органических молекул. Классификация электронных переходов. Термины И обозначения электронной спектроскопии. Эмпирические правила. Электронный парамагнитный резонанс. Рефрактометрические методы. Комплексная оценка структуры молекул по данным. Масс-спектроскопия. спектральным Молекулярная масса определение молекулярной формулы. Масс-спектрометрический распад. Происхождение и интерпретация масс-спектров.

Тестовый контроль – 10 баллов

Работа со спектрами – 10 баллов

Индивидуальные задания – 10 баллов

II контрольная точка – 30 баллов.

Экзамен – 40 баллов

Всего: 100 баллов

V. Учебно-методическое и информационное обеспечение дисциплины

1) Литература

а) Основная литература:

1. Ким А.М. Органическая химия [Электронный ресурс] : учебное пособие для вузов / А.М. Ким. — Электрон. текстовые данные. — Новосибирск: Сибирское университетское издательство, 2017. — 844 с. — 978-5-379-02004-0. — Режим доступа: http://www.iprbookshop.ru/65281.html

б) Дополнительная литература:

- 1. Орлова А.М. Органическая химия [Электронный ресурс] : учебное пособие / А. М. Орлова; А.М. Орлова. Москва : Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2016. 230 с. Электронный ресурс. Режим доступа: http://www.iprbookshop.ru/48034.html
- 2) Программное обеспечение
 - а) Лицензионное программное обеспечение
 - б) Свободно распространяемое программное обеспечение
- 3) Современные профессиональные базы данных и информационные справочные системы
- 4) Перечень ресурсов информационно-телекоммуникационной сети «Ин-тернет», необходимых для освоения дисциплины
 - 1. http://www.xumuk.ru/
 - 2. http://nehudlit.ru/books/subcat283.html
 - 3. http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/BIOHIMIYA.html
 - 4. http://elibrary.ru/
 - 5. http://www.medbook.net.ru/23.shtml
 - 6. http://www.chem.msu.su/rus/teaching/kolman/index.htm

VI. Методические материалы для обучающихся по освоению дисциплины Примерный перечень тем курсовых работ

- 1. Доструктурные теории органической химии
- 2. Теория химического строения А.М. Бутлерова
- 3. Типы химических связей
- 4. Характерные свойства ковалентной связи
- 5. Ароматические связи
- 6. Соединения без химической связи
- 7. Развитие представлений о взаимном влиянии атомов

- 8. Сопряженные связи
- 9. Стереохимия органических соединений
- 10. Ион-дипольные и диполь-дипольные взаимодействия
- 11.Свойства ковалентных связей
- 12. Учение о химической связи (в развитии)
- 13.Симметрия и химическая связь
- 14. Свойства сопряженных ароматических связей
- 15. Резонанс в органической химии
- 16.Семиполярная связь. Особенности молекул
- 17. Полярность. Поляризуемость молекул
- 18.Способы образования химической связи

Экзаменационные тестовые задания

<u>Инструкция к вопросам 1-5:</u> За вопросом или незаконченным утверждением следует пять или более ответов. Выберите один наиболее правильный ответ.

1. Расположите следующие кислоты — бромуксусная, йодуксусная, хлоруксусная, фтроуксусная и γ-хлормасляная - в порядке убывания значений индуктивного эффекта:

D CH₂F-COOH >CH₂Cl-COOH >CH₂Br-COOH

- - 2. Электронодонорное (ЭД) или электроноакцепторное (ЭА) влияние оказывают на электронную плотность бензольного кольца каждая из функциональных групп в молекуле ванилина (3-метилокси- 4-гидроксибензальдегид)?

$$oxed{A}$$
 OH – ЭА; CH₃O – ЭД; CHO – ЭД

3. 2-(Диэтиламино)этиламид*п*-аминобензойной кислоты применяется в

медицинской практике в виде гидрохлорида под названием

новокаинамид.

Определите место протонирования в исходной молекуле.

- А Только атом кислорода
- В Только три атома азота
- С Атом кислорода и атом азота в незамещенной аминогруппе

D Атом кислорода, атом азота в незамещенной аминогруппе и атом азота в				
монозамещенной аминогруппе				
Е Атом кислорода, атом азота в незамещенной аминогруппе, атом азота в монозамещенной аминогруппе и атом азота в дизамещенной аминогруппе 4. Назовите изображенное в виде проекционной формулы Ньюмена следующее соединение по заместительной номенклатуре IUPAC А 1-карбокси-2-метилпропандиол-1,3 В 3-метилбутандиол-2,4-овая кислота кислота С 2,4-дигидрокси-3-метилбутановая кислота В 1-карбокси-1,3-дигидрокси-2-метилпропан				
5. Какое количество изомеров существует для ациклических соединений				
состава $C_4H_{10}O$.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Инструкция к вопросам 6-10: Вставьте пропущенное слово.				
6. Способность атомов в молекуле притягивать валентные, связывающие его с другими атомами, называют				

7.	Кова	алентная связь это хими 	ческая связь, образованная за счет электронов связываемых
8.	Кова	 алентная связь, образующа ы одного атома и вакан	аяся за счет нтной орбитали другого, называется
	орби прям .Част	италей с расположением ма мой, соединяющей ть пространства, в которо	ная при осевом перекрывании атомных аксимума на связываемых атомов. м вероятность нахождения электрона орбиталью.
Инстр			перечнем пронумерованных цифрами
вопро	осов	(формул, рисунков и т.п.)	следует список ответов, обозначенных
буква	ими.	Для каждого вопроса (фор	мулы, рисунка и т.п.) надо подобрать
соотв	етстн	зующий ответ, обозначеннь	ій буквенным индексом. Каждый ответ
може	т быт	гь использован один раз, нес	сколько раз или не использован совсем.
	Уках	жите, какие типы связи име	отся в следующих соединениях:
1	1.	CH ₃ -CH ₃	А Ковалентная неполярная
12	2.	C_2H_5I	В Ковалентная полярная
1.	3.	NH ₄ Cl	С Семиполярная
14	4.	$[(CH_3)_3N]Br$	D Ионная
1:	5.	CH ₃ NO ₂	Е Донорно-акцепторная
10	6.	CH ₃ OH	
1′	7.	HNO_3	
18	8.	$ m N_2O_4$	

Какие продукты образуются в результате представленных последовательных реакций?

19. Бензол
$$\frac{\text{CH}_3\text{Cl}}{\text{AlCl}_3.0}$$
 ... $\frac{\text{H}_2\text{SO}_4}{100^0\text{C}}$... $\frac{\text{Br}_2/\text{FeBr}_3}{120^0\text{C}}$... $\frac{\text{H}_2\text{O}}{130^0\text{C}}$?

20.
$$CH_3^-CH^=CH_2 \dots HNO_3 t^0 \dots KMnC_4 t^0 ?$$

21.
$$\begin{array}{c} CH_3 \\ \hline \\ H_2SO_4 \end{array} \qquad \begin{array}{c} KMnO_4, t^0 \\ \hline \\ \end{array} \qquad \begin{array}{c} [H] \\ \hline \\ \end{array} \qquad \begin{array}{c} C_2H_5OF, H^+, t^0 \\ \hline \\ \end{array} \qquad \begin{array}{c} C_2H_5OF, H^+, t^0 \\ \hline \end{array}$$

22.
$$C_6H_5CH_3 \xrightarrow{KMnO_4} SOCl_2 \xrightarrow{CH_3ONa} NH_2CH_3 ?$$

- **А** 4-Гидроксибензолсульфокислота
- В N-Метиламид бензойной кислоты
- С 3-Гидрокси-*n*-толуолсульфокислота
- **D** Этиловый эфир *n*-аминобензойной кислоты *n*-Нитробензойная кислота
- **E** *n*-Нитробензойная кислота

Методические рекомендации по организации самостоятельной работы студентов

Самостоятельная работа является необходимой и важной частью учебной деятельности студента по изучаемой дисциплине и включает:

- поиск и систематизация литературных данных по изучаемой теме (конспект, реферат, базы данных научно-образовательных порталов);
- изучение теоретического материала по учебнику при подготовке к контрольным и практическим работам (конспекты);

 решение задач и упражнений по изучаемым разделам (письменный отчет).

Особое внимание следует уделять овладению основными теоретическими понятиями, законами, методами, правилами и т.д. Для этого необходимо работать систематически, не пропускать лекционные и практические занятия, тщательно прорабатывать теоретический материал по учебнику, не оставлять невыясненными трудные вопросы, работать над ошибками.

Ниже представлены задания и вопросы для контроля самостоятельной работы студентов для более детального и глубокого освоения материала по данной учебной дисциплине.

Задания для самостоятельной работы

Классификация, номенклатура и структурная изомерия

- 1. Приведите все структурные изомеры циклических соединений состава C_6H_{12} и назовите их по заместительной и радикально-функциональной номенклатурам. К каким классам относятся эти соединения? Отметьте в них первичные, вторичные и третичные атомы углерода.
- 2. Приведите все структурные изомеры ациклических соединений состава $C_4H_{10}O$ и назовите их по заместительной и радикальнофункциональной номенклатурам. К каким классам относятся эти соединения? Отметьте в них первичные, вторичные и третичные атомы углерода.
- 3. В алкалоиде атропине в виде сложного эфира содержится троповая кислота. Выделите в ее молекуле родоначальную структуру и назовите троповую кислоту по заместительной номенклатуре. Какие функциональные группы

содержатся в ее молекуле?

- 4. В молекуле алкалоида эфедрина выделите родоначальную структуру, функциональные группы и назовите это соединение по заместительной номенклатуре.
- 5. В состав коры входит хинная кислота. Выделите в ее молекуле родоначальную структуру и функциональные группы. Назовите хинную кислоту по заместительной номенклатуре.
- 6. Назовите цитраль $(CH_3)_2C=CHCH_2CH_2C(CH_3)=CH-CH=O$ по заместительной номенклатуре. К какому классу относится это соединение?
- 7. Ацетилацетон представляет собой равновесную смесь двух таутомерных форм:

$$CH_3$$
— CO — CH_2 — CO — CH_3 — $C(OH)$ = CH — CO — CH_3

Выделите в них функциональные группы и назовите каждую форму по заместительной номенклатуре.

8. В молекуле ванилина выделите функциональные группы

OMe OH

CH=O

- и назовите это соединение по заместительной ^{ОН} номенклатуре. Приведите структуры 3-4 ароматических альдегидов изомерных ванилину.
- 9. Систематическое название лекарственного средства терпина 4-(1-гидрокси-1-метилэтил)-1-метилциклогексанол. Приведите его структуру и отметьте в ней первичный, вторичный и третичный атомы углерода. К какому классу относится терпин?
- 10.Основу сульфамидных препаратов составляет сульфаниловая кислота. Назовите ее по заместительной номенклатуре. Приведите структуры еще трех ароматических соединений этого же состава $C_6H_7NO_3S$.

Пространственное строение и стереоизомерия

11.Сколько плоскостей симметрии имеет молекула каждого из следующих соединений: этанола, хлороформа, бромхлорметана, этилена, пропена, *цис*-бутена-2?

- 12.Изобразите с помощью формул Ньюменаконформации бутанола-1, возникающие при вращении связи C-1-C-2. Укажите вырожденные конформации.
- 13. Назовите по заместительной номенклатуре соединение (1), изображенное в виде формулы Ньюмена. Имеет ли молекула этого соединения плоскость симметрии? Существует ли более выгодная по сравнению с приведенной конформация этого соединения?

$$\begin{array}{c|c} H & C_2H_5 \\ H & H \\ CH_3 & H \end{array}$$

- 14. Приведите наиболее выгодные конформации*цис* и *транс*—1- изопропил-3-метилциклогенксана и изобразите их с помощью формул Ньюмена.
- 15.Приведите структуры изомерных кислот $CH_3CH=C(CH_3)COOH$ и дайте им систематические названия с учетом пространственного строения. Различаются ли эти H СООН стереоизомеры по физическим свойствам?
- 16. Назовите изображенное в виде формулы Ньюмена соединение (2) по заместительной номенклатуре.

 Хиральна ли его молекула?
- 17.Можно ли только с помощью метода поляриметрии идентифицировать изомеры в следующих парах (R)- и (S)-глицериновые альдегиды; (R)- и (S)-молочные кислоты; (S)-аланин и β -аланин; (+) и (-)-валины; (R)- и (S)-бута-нолы-2?

Взаимное влияние атомов в молекуле

- 18.Учитывая форму и пространственную направленность орбиталей атома углерода, графически изобразите схему электронного строения σ и π связей в молекуле пропена.
- 19.Определите вид сопряжения в молекуле простейшего непредельного альдегида —пропеналя акролеина и схематически изобразите перекрывание *p*-орбиталей в сопряженной системе.

- 20.Многие природные соединения, используемые в фармации, являются производными фенантрена. Определите, является ли фенантрен ароматическим соединением.
- 21.Изобразить схематически перекрывание p-орбиталей сопряженной системы в молекуле кротоновой ((E)-бутен-2-вой) кислоты, содержащейся в кротоновом масле).
- 22.Покажите графически, как распределена электронная плотность в молекуле кротоновой ((Е)-бутен-2-вой) кислоты. Укажите виды сопряжения и сравните электроотрицательность атомов в сопряженном фрагменте.
- 23.Укажите вид и знак электронных эффектов алкильных групп в следующих ионах: $(C_2H_5)_2NH_2^+$, $C_2H_5O^-$, $(CH_3)_2O^+H$, $CH_3O^+H_2$, $CH_3CH_2CH_2^-$, $CH_3CH_2CH_2^+$.
- 24. Как различаются по электронной плотности бензольные кольца в молекулах тирозина [2-амино-3-(*n*-гидроксифенил)пропановой кислоты] и фенилаланина (2-амино-3-фенилпропановой кислоты)?
- 25. Проявляют ли одинаковые функциональные группы одни и те же электронные эффекты в молекулах 2-аминоэтансульфоновой кислоты (таурина) и *n*-аминобензолсульфоновой (сульфаниловой) кислоты?
- 26. Расположите в ряд по увеличению электронной плотности в бензольном кольце следующие соединения: фенол, 4-гидрокси-3нитробензолсульфоновая кислота, бензол.
- 27. Какой из диеновых фрагментов в молекулах пентадиена-1,3 или сорбиновой кислоты CH₃-CH=CH-CH=CH-COOH имеет большую электронную плотность?
- 28.Электронодонорное или электроноакцепторное влияние оказывают на электронную плотность бензольного кольца каждая из функциональных групп в молекуле ванилина?

29.В каком из двух карбанионов (1) или (2) более

- эффективно делокализуется отрицательный заряд под влиянием заместителей, связанных с анионным центром?
- 30.Изобразите строение предложенных ниже соединений в виде набора резонансных структур. Покажите при помощи кривых стрелок, как можно преобразить одни предельные структуры в другие: *n*-NO₂C₆H₄F; *м*-H₂C=C-C₆H₄F.
- 31.Определите виды гибридизации атомов углерода в молекуле пентен-3ина-1 и расположите атомы в ряд по уменьшению электротрицательности.

VII. Материально-техническое обеспечение

Столы, стулья, доска ученическая Весы лабораторные ВЛ-120 с гирей калибровочной 100гЕ2

Весы лабораторные ВЛТЭ-1100г с гирей калибровочной 1кг F1

Доска классная большая

Лаборатория подготовительная

Горелка (М082-06990)

Спиртовка СЛ с металлической оправой

Сушилка для пипеток

Шкаф вытяжной

Шкаф сушильный

VIII. Сведения об обновлении рабочей программы дисциплины

№п.п.	Обновленный раздел	Описание внесенных	Реквизиты документа,
	рабочей программы	изменений	утвердившего изменения
	дисциплины		
1.	Раздел I Аннотация.	Измены часы лекций и	Протокол №11 от 28.04.21г.
		практических занятий	заседания ученого совета
		согласно учебному плану на	химико-технологического
		2021-2022 уч. год	факультета
2.	Раздел V. Учебно-	Дополнен список основной и	Протокол №11 от 28.04.21г.
	методическое и	дополнительной литературы	заседания ученого совета
	информационное		химико-технологического
	обеспечение		факультета
	дисциплины		
3.	Раздел IV	Разработаны фонды	Протокол №1 от
	Оценочные	оценочных средств по каждой	31.08.22г. заседания ученого
	материалы для	компетенции	совета химико-
	проведения текущей и		технологического
	промежуточной		факультета
	аттестации		