ISTx1002 Usikkerhet og støy i målinger

Feilforplantning i målesysemer; Kalibrering

Stefanie Muff, Institutt for matematiske fag, NTNU Trondheim

Oktober 24 og 30, 2023

Plan for i dag (15:15-16:00) og mandag 15:15-16:00

- Tema 1: Feilforplantning i målesystemer
- Tema 2: Kalibrering

Pensum og læringsressurser

Husk lenken til den eksterne modulsiden:

https://wiki.math.ntnu.no/istx1002/2023h/start

Pensum del 2:

- Korte videoer: (by Charles H. A. Curry)
 - Målefunksjoner og kombinert standardavvik (7:08)
 - Kalibrering (5:06)
- Denne forelesningen
- Disse slides med alle notater og beregninger som er vist fram

Målesystemer

Et **målesystem** beskriver en sammenheng mellom én eller flere inngangsstørrelser og den størrelsen vi egentlig vi måle.

Eksempel:

• Vi skal måle volumet til en gjenstand som er en sylinder med høyde h og diameter d. Volumet er gitt ved

$$V(d,h) = \pi d^2 h \ .$$

• Målefunksjonen defineres som V(d,h) og ses som funksjon av variablene d og h.

Feilforplantning i målesystemer

$$u(X) = 3(X)$$

Vi har sett på standard usikkerhet i en eneste variabel. Nå skal vi gjøre ting litt mer kompliserte:

- Usikkerhet i en lineær målefunksjon av flere variabler
- 2) Usikkerhet i en ikke-lineær målefunksjon av en variabel $f(X) = \chi^2$
- 3) Usikkerhet i en ikke-lineær målefunksjon av flere variabler f(X,Y) for ukorrelerte X,Y
- Usikkerhet i en ikke-lineær målefunksjon av flere variabler f(X,Y) for korrelerte X,Y

Kombinert standard usikkerhet (eller "feilforplantning")

Eksempler:

• Mål summen av flere deler $(X_1, X_2,...)$, slik at du tar $X_1 + X_2 + ... + X_n$ (oppgave 3a og b i prosjektet).

• Mål lengde (l) og bredde (b) til en rektangel og beregn arealet $A = f(l, b) = l \cdot b$ (oppgave 3c-e i prosjektet).

- Mål en størrelse X, men så er du interessert i en transformert versjon, for eksempel X^2 (tenk at du vil måle arealeat til en firkant).
- Mål masse m og hastighet v av et objekt og beregn bevegelsesenergi $f(m,v) = \frac{1}{2}mv^2$.

Og alle størrelser vi måler har forskjelle grader av usikkerhet som "forplanter" seg videre til den endelige størrelsen vi egentlig vil måle.

1) Lineære kombinasjoner av variabler

Problemstilling: Vi har to variabler, X_1 og X_2 , som måler steglengden til to forskjellige personer. Vi vet at de typiske steglengdene er $\mu_1 = 75 \text{cm}$ og $\mu_2 = 82 \text{cm}$ med standard usikkerhet $u(X_1) = 6$ og $u(X_2) = 9 \text{cm}$. Vi antar steglengdene er uavhengige $(\text{Cov}(X_1, X_2) = 0)$.

a) Hva er forventningsverdien og standard usikkerheten i summen av 5 uavhengige steg gått av person 1?

$$f(X_{\Lambda}) = 5 \cdot X_{\Lambda} \quad u(f(X_{\Lambda})) = ?$$

b) Hva er standard usikkerheten i gjennomsnittig steglengde til de to personene?

$$f(X_{1}, X_{2}) = \frac{X_{1} + X_{2}}{2} \quad u(f(X_{1}, X_{2})) = ?$$

Generell regel:

For en kombinert størrelse

$$Y=f(X_1,\dots,X_n)= \underbrace{a_1X_1+a_2}_{n}X_2+\dots+a_nX_n$$

kan vi beregne variansen som

$$\begin{aligned} & \text{Var}(Y) = & a_1^2 \text{Var}(X_1) + a_2^2 \text{Var}(X_2) + \ldots + a_n^2 \text{Var}(X_n) \\ & + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \overline{\text{Cov}(X_i, X_j)} \cdot \\ & =_7 \text{ så kan in glemme den delen .} \end{aligned}$$

linear kandinasjan

Husk: $Var(X) = u^2(X)$, fordi standard usikkerheten er bare standardavviket av størrelsen.

Nå kan vi beregne løsningen for problemstillingen ovenfor:

$$\mu_{\Lambda} = 75 \text{cm} \quad \mu(X_{\Lambda}) = 6 \text{cm} = 9 \quad \text{vor}(X_{\Lambda}) = 36$$
 $\mu_{\Lambda} = 82 \text{cm}, \quad \mu(X_{\Lambda}) = 9 \text{cm} = 9 \quad \text{vor}(X_{\Lambda}) = 81$

a) $f(X_{\Lambda}) = 5 \cdot X_{\Lambda} = 9 \quad E(f(X_{\Lambda})) = 5 \cdot E(X_{\Lambda}) = 5 \cdot 75 = 875 \text{cm}$
 $Var(f(X_{\Lambda})) = 25 \cdot \text{vor}(X_{\Lambda}) = 25 \cdot 36$

=> $u(f(X_{\Lambda})) = \sqrt{25 \cdot 36} = 5 \cdot 6 = 30 \text{ cm}$

b) $f(X_{\Lambda} \mid X_{\Lambda}) = \frac{1}{2} \cdot X_{\Lambda} + \frac{1}{2} \cdot X_{\Lambda} = \frac{1}{2} \cdot (f(X_{\Lambda}, X_{\Lambda})) = \frac{1}{2} \cdot 75 + \frac{1}{2} \cdot 82 = 78.5 \text{ cm}$
 $Var(f(X_{\Lambda}, X_{\Lambda})) = \frac{1}{2} \cdot Var(X_{\Lambda}) + \frac{1}{2} \cdot Var(X_{\Lambda}) = \frac{1}{4} \cdot (36 + 81)$

=> $u(f(X_{\Lambda}, X_{\Lambda})) = \frac{1}{2} \cdot Var(X_{\Lambda}) = \frac{1}{2} \cdot (36 + 81) = \frac{1}{2}$

2) Transformert versjon av en variabel

Problemstilling: Du måler lengden X til en firkant med 55cm (nøyaktigheten er bare 1cm), og så vil du beregne arealet til firkanten. Hva er standard usikkerheten i arealmålingen?

• 55cm med en standard usikkerhet (standardavvik) som er firkantfordelt, og derfor...

$$\frac{1}{54} = \frac{0.5}{55} = 0.289$$

• Men hvordan bruker vi det når vi må gange X med seg selv...?

Usikkerheten i en transformert variabel f(X)

Generell regel:

Når vi har en variabel X som vi kan måle og vet usikkerheten u(X), men vi er interessert i en transformert version f(X) (for eksempel $f(X) = X^2$, $\log(X)$,...), kan vi bruke det følgende:

Trick: Taylor approximasjon

For en gitt måleverdi μ har vi omtrent

$$\underbrace{\mathrm{Var}(f(X))}_{b^2} = \underbrace{f'(\mu)^2 \cdot \mathrm{Var}(X)}_{u^2(X)}.$$
 Eller: $u(f(X)) = \sqrt{f'(\mu)^2 \cdot u^2(X)}$.

$$= \beta_5 \cdot \text{var}(x)$$

Visualisering: Taylor approximasjon i 1 dimension:

f'(a) heter følsomhet eller følsomhetsfaktor.

Nå kan vi beregne arealet og approximert usikkerhet til arealet for firkanten:

Relativ usikkethet

$$\frac{u(f(x))}{f(x)} = \frac{31.75}{55^2} = 0.0105$$

$$x=55$$

$$x=55$$

Ikke-lineær kombinasjon av flere variabler $f(X_1, X_2)$, med ukorrelerte X_1, X_2

Problemstilling: Vi vil beregne bevegelsesenergi til et objekt og måler

- masse $m_0 = 0.45, u(m) = 0.01kg$
- has tighet $v_0=10.8, u(v)=0.05m/s$

Hva er usikkerheten i den beregnete begevelsesenergien?

$$f(m, \mathbf{v}) = \frac{1}{2}mv^2$$

Hvordan går vi frem i flere dimensioner?

Generell regel:

Trick: Taylor approximasjon (igjen) for flere dimensioner

For gitte måleverdier μ_1 og μ_2 av en funksjon $f(X_1, X_2)$ har vi omtrent

$$\sqrt{\alpha} \left(\begin{array}{c} \gamma \\ \underline{f(X_1, X_2)} \\ + \underbrace{\frac{\partial f}{\partial X_1}(\mu_1, \mu_2)(X_1 - \mu_1)}_{a} + \underbrace{\frac{\partial f}{\partial X_2}(\mu_1, \mu_2)(X_2 - \mu_2)}_{b} \\ \underline{u(X_1)} \quad \underline{u(X_2)} \quad \underline{u(X_2)} \quad \underline{u(X_2)}_{b} \right)$$

Visualisering: Taylor approximasjon 2 dimensioner:

 $\frac{\partial f}{\partial x}(a,b)$ og $\frac{\partial f}{\partial y}(a,b)$ heter følsomhet eller følsomhetsfaktorer.

Og derfor er

$$\begin{aligned} \operatorname{Var}(f(X_1, X_2)) &\approx \underbrace{\left(\frac{\partial f}{\partial (X_1)}(\mu_1, \mu_2)\right)^2 \operatorname{Var}(X_1) + \underbrace{\left(\frac{\partial f}{\partial (X_2)}(\mu_1, \mu_2)\right)^2}_{\left(b^2\right)} \operatorname{Var}(X_2)}_{\Rightarrow u(f(X_1, X_2)) \approx \sqrt{a^2 \operatorname{Var}(X_1) + b^2 \operatorname{Var}(X_2)} \end{aligned}$$

Nå kan vi beregne bevegelsesenergien og approximert usikkerhet:

$$m_0 = 0.45$$
, $u(m) = 0.01 kg$
 $v_0 = 10.8 \frac{m}{5}$, $u(v) = 0.05 \frac{m}{5}$

$$f(m_0, v_0) = \frac{1}{2} m_0 v_0^2 = \frac{1}{2} 0.45 10.8 = \frac{26.24}{52} \frac{km^2}{52}$$
Vi thenser: $\frac{\partial f}{\partial m} = \frac{1}{2} v_0^2 = 58.32$

$$\frac{\partial f}{\partial m} \Big|_{m_0, v_0} = \frac{1}{2} v_0^2 = 58.32$$

$$\frac{\partial f}{\partial m} \Big|_{m_0, v_0} = \frac{1}{2} v_0^2 = 58.32$$

=> Kombinert standardrusikkerhet:

$$\frac{u(f(m_{01}v_{0}))}{2} = \frac{2}{2} \cdot u^{2}(m) + \left(\frac{\partial f}{\partial v} \Big|_{m_{01}v_{0}}\right)^{2} \cdot u^{2}(v)$$

$$= \sqrt{58.32^2 \cdot 0.01^2 + 4.86^2 \cdot 0.5^2} = 2.50 \frac{\text{kgm}^2}{\text{s}^2}$$

$$k=2$$
 $f(m_0,v_0) = 26.24 \frac{kgmL}{82}$

4) Ikke-lineær kombinasjon av flere variabler f(X, Y), med korrelerte X, Y

Generell regel:

$$\operatorname{Var}(f(X_1,X_2)) \approx \left(\frac{\partial f}{\partial X_1}(\mu_1,\mu_2)\right)^2 \operatorname{Var}(X_1) \\ + \left(\frac{\partial f}{\partial X_2}(\mu_1,\mu_2)\right)^2 \operatorname{Var}(X_2) \\ + 2 \cdot \frac{\partial f}{\partial X_1} \frac{\partial f}{\partial X_2} u(X_1,X_2) ,$$
 hvor $u(X_1,X_2) = u(X_1)u(X_2)\operatorname{Cor}(X_1,X_2).$ Det må dere ikke lære utenat.

Men husk: sterkere korrelasjoner mellom X_1 og X_2 betyr større avvik fra tilfelle 3) hvor vi hadde uavhengige variabler.

Kalibrering – grunnlegende idé

- Prosessen hvor vi presiserer forhold mellom målte og ekte verdier (eller nominell og ekte verdi).
- Retting av **systematisk feil**, for eksempel i et måleinstrument.
- For å kalibrere, sammenligner vi resultatene av målinger fra et instrument med verdier fra en annen kilde som vi vet er mer nøyaktig (3-5 ganger nøyaktigere).
- Eksempler: Mål en kjent kilde på 100V, en kjent lengde på 10m eller en kjent vekt på 1kg.

Kalibrering eksempel: Voltmeter

Vi måler en kjent kilde på 100V med to voltmetere, 10 ganger hver:

J	T I			5
		A	В	
	1	100,5	90,0	
	2	95,5	92,0	
	3	101,5	91,5	
	4	104,0	90,5	
	5	100,5	89,5	
	6	103,0	90,0	
	7	99,5	91,0	
	8	101,0	89,5	
	9	98,5	88,5	
	10	103,0	92,0	
	gjennomsnitt	100,7	90,45	-+ 9.55
	standardavvik	2,49	1,17	

-0.7

- Hva vet vi nå om de to voltmetere? Hva ville du gjort hvis du må bruke en av disse to voltmetere?
 - Tille bruke B, fordi det har lart standardarvik!
- Hva er *usikkerheten* i de to estimatene av systematisk feil?
- Hvilket voltmeter vil du heller bruke, og hvorfor?
- Hvordan går du frem hvis du egentlig vil måle en spenning på omtrent 200V eller 25V med en av de to voltmetere?

Vanskelij å si => Vi trenger en ny kalibrenny på 200 V 25 V

Kalibreringskurver

- Det er mulig at samme voltmeter som underestimerer når den skulle måle 100V, er mye nærmere den ekte verdien når den skulle måle 200V.
- Mer generelt måler vi en størrelse R som har en lineær sammenheng med en størrelse x vi er interessert i.

• Kalibreringskurven kan beskrives som

$$R = k \cdot x$$
,

hvor k skal estimeres, eller

$$R = a + k \cdot x$$

hvis response ikke kan antas a være lik når x = 0.

• Når vi kan anta at R er normalfordelt, kan vi bruke minste kvadratsumme (lineær regresjon) for å finne k.

Eksempel 1: Kalibrering av et lodd

Her regner vi eksempelet for kalibrering av et lodd:

Et lodd med ukjent masse M_x på ca 10g skal kalibreres mot et 10g referanselodd.

- 1. Referanseloddet hadde ved siste kalibreringen massen $M_r = 10.005g$ og er antatt normalfordelt med standardavvik av 22.5mg.
- 2. Mulig drift i referanseloddets masse siden kalibreringen: $\delta M_r = 0$ med maksimal $\pm 15.5 mg$.
- 3. Målt differanse: Ukjent lodd referanselodd: Ved 20 gjennomtatte målinger er gjennomsnitt $M_{diff} = 20mg$ med standardavvik S = 64.6mg, og derfor er standardavviket for middelverdien $S/\sqrt{20} = 14.4mg$.

n (daily)

Oppgave: Angi et godt estimat for verdien av det ukjente loddet og standard usikkerheten til den verdien.

Løsning: Målefurksjonen er
$$M_x = M_r + SM_r + Mdiff = 10.00Sg + 0 + 0.020g$$

$$u(M_r) = 22.5mg$$

$$u(SM_r) = \frac{15.5}{13} = 8.95mg$$

$$u(Mag) = 14.4mg$$

C Tadan (Y)

Eksempel 2: Kalibreringskurve

Vi er interessert i konsentrasjonen C av en radioaktiv stoff i en bergart. Siden det er vanskelig å måle den direkte, kan vi måle radon (en radioaktiv gass) som dannes av stoffen i bergarten. For å finne ut på relasjonen mellom konsentrasjon i steinen (C) og radon i luften (Y), måler vi åtte ganger strålingsintensiteten i tre kjente konsentrasjoner av uran:

		ØV	Will Day
prøve	Y_i	C_i	·
1	0.64	0.0036	_
2	0.67	0.0036	
3	2.19	0.0036	
4	20.35	0.53	
5	20.80	0.53	
6	539.4	12.5	
7	560.2	12.5	
8	562.4	12.5	_

Vi kan tilpasse en lineær regresjonslinje:

$$Y = k \cdot C$$

med estimert $\hat{k} = 44.36$ og $sd(\hat{k}) = u(\hat{k}) = 0.45$.

Anta vi har målt en spesifisk stråleintensitet $\underline{y=120}$ i luften. Så vil vi vite to ting:

- 1) Hva er den estimerte konsentrasjonen i bergarten?
- 2) Hva er standard usikkerheten i estimatet?

Løsning:

1)

$$\hat{c} = \frac{y}{\hat{k}} = \frac{120}{44.36} = 2.71$$

2) Usikkerheten er litt mer vanskelig å bestemme, og det finnes mer teoretiske og mer empiriske måter. Her gjør vi det empirisk og beregner forskjellen mellom de estimerte C_i verdiene med de observerte (det er et slags "residual", men for x-variablen istendenfor y)

$$W_i = \frac{Y_i}{\hat{k}} - C_i \ ,$$

og så tar vi standardavviket av alle $W_i, s = \sqrt{\frac{(W_i - \overline{W})^2}{n-1}} = 0.16$