EECS151: Introduction to Digital Design and ICs

Lecture 15 – Logical Effort

Bora Nikolić

Samsung Foundry Promises Gate All-Around in '22

October 14, 2021, EETimes - Samsung Foundry recently held its Foundry Forum where it revealed some details of its semiconductor process roadmaps and fab expansion. Samsung is being most aggressive pursuing the next generation of expansion. Sumaning is being most aggressive pursuing time next generation or transistor technology, with plans to reach mass production ahead of TSMC and Intel. Samsung's 3-nanometer process will use the gate-all-around (GAA) transistor structure, which the foundry calls MBCFET (Multi-bridge channel FET) and will be in oduction first half of 2022. TSMC will wait another generation until its N2 occess to deliver GAA some time in 2023.

Review

- Delay is a linear function of R and C
- Delay optimization is critical to improve the frequency of the circuit.
- The dimensions of a transistor affect its capacitance and resistance.
- We use RC delay model to describe the delay of a circuit.

Minimizing Logic Delay

Berkeley ⊚000

How Do We Optimize the Delay?

- How fast can a pipelined processor run?
- What is the fastest adder?

Inverter RC Delay

- $t_p = R_{eq}(C_p + C_L) = Req(Cin/\gamma + C_L)$
 - $\gamma = 1$ (closer to 1.2 in recent processes)
- $t_n = R_{e\alpha}C_{in}(1+C_L/C_{in}) = \tau_{INV}(1+f)$
 - Propagation delay is proportional to fanout
- Normalized Delay = 1 + f

 $t_p = \tau_{INV}(1+f)$

Fanout = $f = C_L/C_{ir}$

Berkeley 6000

Generalizing to Arbitrary Gates

- Delay has two components: d = f + p
- h: effort delay = gh (a.k.a. stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - g = 1 for inverter
- f: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout
- p: parasitic delay

EECS151 L15 LOGICAL EFFORT

- Represents delay of gate driving no load
- Set by internal parasitic capacitance

Inverter Delay

EECS151 L15 LOGICAL EFFORT

- Parasitic p is the ratio of intrinsic capacitance to an inverter
 - p(inverter) =
- Logical Effort g is the ratio of input capacitance to an inverter
 - g(inverter) =
- Electrical Effort h is the ratio of the load capacitance to the input capacitance
 - h(inverter) =
- Delay = p + h = p + g * f = 1 + f

Berkeley @000

NAND2 Gate

EECS151 L15 LOGICAL EFFORT

Logical Effort of NAND2 Gate

NOR2 Gate

- \bullet In velocity-saturated devices Ion of a stack is 2/3 (not a half) of two devices
 - So the correct upsizing factor is 1.5 (not 2)
- We will use 2, as it makes calculations easier

EECS151 L15 LOGICAL EFFORT

Berkeley @000

Berkeley ⊚000

Example: Inverter Chain

Logical Effort:

Electrical Effort: f =

Parasitic Delay: p =

Stage Delay:

Total Delay: d_total =

EECS151 L15 LOGICAL EFFORT

Optimize Delay of an Inverter Chain

How to optimally size inverter chain to minimize delay?

...There are N-1 unknowns: C_2 , C_3 , ... C_N

$$d = (1 + C_2/C_{in}) + (1 + C_3/C_2) + ... + (C_L/C_N)$$

Solution: All delays are equal, $C_2/C_{\rm in} = C_3/C_2 = ...C_{\rm L}/C_{\rm N}$

$$\frac{C_{i+1}}{C_i} = \sqrt[N]{\frac{C_L}{C_{In}}}$$

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort:

Electrical Effort:

Parasitic Delay:

Stage Delay:

Nikolić Fall 2021 13 Berkeley @000

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort:

Electrical Effort: f = 4

Parasitic Delay: p = 1

Stage Delay:

Fanout-of-4 is commonly used to normalize the circuit delay across technologies

Nikolić Fall 2021 14 Berkeley @000

Multi-stage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$G = \left| \begin{array}{c} g_i \end{array} \right|$$

• Path Electrical Effort

$$r = \frac{C_{\text{out-path}}}{C_{\text{in-nath}}}$$

• Path Effort

$$H = \prod h_i = \prod g_i f_i$$

Branching Effect

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}} \qquad B = \prod b_i$$

$$f_1 = (15 + 15) / 5 = 6$$

EECS151 L15 LOGICAL EFFORT

$$F = g_1g_2h_1h_2 = 36 = BGH$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

• Delay is smallest when each stage bears same effort

$$\hat{h} = g_i f_i = H^{\frac{1}{N}}$$

• Thus minimum delay of N stage path is

$$D = NH^{\frac{1}{N}} + P$$

• And we can find the gate sizes that result in optimal delay

EECS151 L15 LOGICAL EFFORT

Berkeley @000

Example: Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Berkeley @000

Example: Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Best Stage Effort

- How many stages should a path use?
 - To drive given capacitance

- Define best stage effort $\rho = F^{\frac{1}{N}}$
- $^{\bullet}$ Neglecting parasitics (p $_{\text{inv}}=$ 0), we find ρ = e = 2.718
- \bullet For p_{inv} = 1, solve numerically for ρ = 3.59
- Choose 4 less stages, less energy

EECS151 L15 LOGICAL EFFORT

Logical Efforts Method

- 1) Compute path effort
- 2) Estimate best number of stages
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort
- $C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$

 $\hat{f} = F^{\frac{1}{N}}$

F = GBH

 $N = \log_4 F$

 $D=NF^{\frac{1}{N}}+P$

6) Find gate sizes

Example: Optimize Delay

Effective fanout, F =

a =

EECS151 L15 LOGICAL EFFORT

Example: What is the fastest NAND8?

Administrivia

- Homework 6 due this week
- Projects (ASIC and FPGA) start this week

Berkeley ©000

Logical Effort Design Examples

• For which F should we buffer?

• Sizing inverter fork

EECS151 L15 LOGICAL EFFORT

Nikolić Fall 202

Berkeley ©000

Berkeley ⊚000

Wires

...........

A modern technology is mostly wires

- Transistors are little things under the wires
- Many layers of wires
- Wires are as important as transistors
 - Speed and power

Wire Resistance

EECS151 L15 LOGICAL EFFORT

• $\rho = resistivity (\Omega^*m)$

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

- R_{\square} = sheet resistance (Ω/\square)
 - □ is a dimensionless unit(!)
- Count number of squares
 - $R = R_{\square} * (\# \text{ of squares})$

EECS151 L15 LOGICAL EFFORT

Nikolić Fall 2021 28 Berkeley @@@

Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below

Wire Delay

EECS151 L15 LOGICAL EFFORT

kolić Fall 2021 29 Berkeley ©000

EECS151 L15 LOGICAL EFFORT

Nikolić Fall 2021

30 Berkeley 0000

Wire RC Model

- Wires are a distributed system
 - Approximate with lumped element models
- 3-segment pi-model is accurate to 3% in simulation

Elmore Delay for RC Tree

$$\begin{split} t_{pd} &\approx \sum_{\text{nodes } i} R_{i-to-source} C_i \\ &= R_1 C_1 + \left(R_1 + R_2\right) C_2 + \ldots + \left(R_1 + R_2 + \ldots + R_N\right) C_N \end{split}$$

Summary

- Two delay components in logical effort:
 - Parasitic delay (p)
 - Effort delay (F)
 - Logical effort (g): intrinsic complexity of the gate
 - Electrical effort (h): load capacitance dependent
- Wires are modelled as RC
 - Most commonly just C for hand analysis

35 Berkeley ⊚000

F-00454 1.45 1.00/041 F-F-07

Nikolić Fall 2021