CLAIMS

What is claimed is:

1	1.	A method for fabricating a memory device, the method comprising the steps
2	of:	
3	(a)	providing a portion of a dual gate oxide in a periphery area of the memory
4	device;	
5	(b)	simultaneously providing a dual gate oxide in a core area of the memory
б	device and c	ompleting the dual gate oxide in the periphery area; and
7	(c)	providing a nitridation process in both the core area and periphery area of the
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	memory dev	ice subsequent to steps (a) and (b).
1	2.	The method of claim 1 further comprising:
2	(d)	depositing a layer of type-1 polysilicon in both the core area and periphery
3	area of the m	nemory device;
13 14 14 15	(e)	depositing a layer of oxide nitride oxide over the layer of type-1 polysilicon;
- 5	and	
6	(f)	removing the layer of oxide nitride oxide and a portion of the layer of type-1
7	polysilicon f	rom the periphery area of the memory device.
1	3.	The method of claim 2 wherein step (f) further includes removing
2 ,	approximatel	y half the layer of type-1 polysilicon from the periphery area of the memory
3	device.	

1

1	4.	The method of claim 3 further comprising:	
2	(g)	depositing a layer of type-2 polysilicon in both the core and periphery areas of	
3	the memory area.		
1	5.	A flash memory device, comprising;	
2	a core	area having a plurality of memory transistors comprising an oxide layer, a first	
3	poly layer, an	interpoly dielectric layer, and a second poly layer; and	
4	a perip	ohery area having a plurality of transistors comprising an oxide layer, a portion	
5	of the first pol	ly layer, and the second poly layer.	
1	6.	The flash memory device of claim 5 wherein the interpoly dielectric layer	
2	comprises oxi	de nitride oxide.	
1	7.	The flash memory device of claim 6 wherein the portion of the first poly	
2	layer in the pe	riphery area comprises one half the first poly layer in the core area.	
ı			
1	8.	The flash memory device of claim 7 wherein the first poly layer comprises a	
2	type-1 polysili	con.	
1	9.	The flash memory device of claim 8 wherein the second poly layer comprises	
2	a type-2 polysi	ilicon.	

10.

A method for fabricating a memory device, the method comprising the steps

	of:		
	(a)	providing a portion of a dual gate oxide in a periphery area of the memory	
•	device;		
	(b)	simultaneously providing a dual gate oxide in a core area of the memory	
	device and	completing the dual gate oxide in the periphery area;	
	(c)	providing a nitridation process in both the core area and periphery area of the	
memory device subsequent to steps (a) and (b);			
	(d)	depositing a layer of type-1 polysilicon in both the core area and periphery	
	area of the memory device;		
	(e)	depositing a layer of oxide nitride oxide over the layer of type-1 polysilicon;	
	and		
	(f)	removing the layer of oxide nitride oxide and a portion of the layer of type-1	
	polysilicon from the periphery area of the memory device.		
	. ^		

- 11. The method of claim 10 wherein step (f) further includes removing approximately half the layer of type-1 polysilicon from the periphery area of the memory device.
 - 12. The method of claim 11 further comprising:
- (g) depositing a layer of type-2 polysilicon in both the core and periphery areas of the memory area.