Modelling Fluid Dynamics $u_x = \frac{\partial u}{\partial x}$ Using Wavelet-PDE Hybrid $u_{xy} = \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial y} \left(\frac{\partial u}{\partial x}\right)$ Technique

By Team 4, Abdul Hakkim S [CCE21002] Anirudh B Varma [CCE21007] Arnav Purohit [CCE21008] **Modelling fluid dynamics using a Wavelet-PDE hybrid technique** involves solving partial differential equations (PDEs) while employing wavelet transforms.

Navier-Stokes equations (fundamental PDE in fluid dynamics)

The Navier-Stokes equations describe the motion of viscous fluid substances and are represented as

$$\underbrace{\frac{\partial \mathbf{u}}{\partial t}}_{\text{Variation}} + \underbrace{(\mathbf{u} \cdot \nabla)\mathbf{u}}_{\text{Convective acceleration}} = \underbrace{\frac{Divergence \text{ of stress}}{-\nabla w + \nu \nabla^2 \mathbf{u}}}_{\text{Internal source}} + \underbrace{\mathbf{g}}_{\text{Diffusion}}.$$

Why are we using wavelets for this

ANS:

- Wavelets are introduced here as a powerful tool for spatial decomposition and denoising.
- Wavelets excel in capturing local, multi-scale phenomena (e.g., turbulence).

By the way, why PDEs

ANS: Partial Differential Equations (PDEs) are fundamental to modelling physical phenomena like fluid dynamics.

Tools Used:-

Python

- Numpy library
- Scipy library
- Pywt library
- Matplotlib / Seaborn library
- Fipy / Fenics library

Problem Statement and Objectives

Simulating fluid behavior with accuracy and efficiency for complex scenarios like vortices.

Objective of This Project:

- Use a wavelet-PDE hybrid approach to simulate fluid dynamics.
- Apply wavelet transforms for spatial filtering and denoising in Navier-Stokes simulations.

Methodology Overview

Define Computational Grid:

> A 2D grid representing the fluid domain.

Initialize Velocity and Pressure Fields:

> Set initial conditions (e.g., a vortex).

Wavelet Transform:

- > Decompose velocity fields into spatial-frequency components.
- > Apply denoising or compression.

Solve Navier-Stokes Equations:

- > Update velocity and pressure using finite-difference schemes.
- > Reapply wavelets at each time step for efficiency.

Visualize Results:

> Plot velocity fields and flow patterns.

Compared with previous works

Wavelet-Galerkin Methods:

Our technique: Uses wavelet transforms for spatial filtering and noise reduction but retains finite-difference schemes to solve PDEs..

This technique: Projects the PDE directly onto a wavelet basis, using wavelets as basis functions in the numerical solution

Adaptive Wavelet Collocation Methods:

Our technique: Applies wavelet transforms globally for spatial decomposition and denoising.

This technique: Dynamically refines the grid using wavelets, focusing computational resources on high-gradient regions.

Wavelet Transform for Data Compression:

Our technique: Uses wavelets to denoise velocity fields and improve computational stability.

This technique: Focuses on reducing the size of simulation datasets while retaining critical flow features.

CODE:

Defining the Grid

nx, ny = 64, 64 # Grid size
u = np.zeros((nx, ny)) # X-direction velocity
v = np.zeros((nx, ny)) # Y-direction velocity

Add a smooth initial vortex as a test case

u = np.sin(np.pi * X) * np.cos(np.pi * Y)

v = -np.cos(np.pi * X) * np.sin(np.pi * Y)

CODE:

Applying Wavelet Transform

Update velocity fields using the Navier-Stokes equations

u = u_filtered + dt * (-u * dudx - v * dudy + (1 / Re) * laplacian_u)
v = v_filtered + dt * (-u * dvdx - v * dvdy + (1 / Re) * laplacian_v)

Enforce boundary conditions (no-slip walls)

$$u[:, 0] = u[:, -1] = u[0, :] = u[-1, :] = 0$$

 $v[:, 0] = v[:, -1] = v[0, :] = v[-1, :] = 0$

Applications and Future Scope

•Applications:

- > Turbulence modeling.
- > Weather forecasting.
- > Aerodynamic simulations.

•Future Improvements:

- > Extend to 3D simulations.
- > Include additional phenomena like heat transfer or compressibility.
- > Optimize wavelet thresholding for different Reynolds numbers.

Challenges

•Challenges:

- > Balancing accuracy with computational efficiency.
- > Fine-tuning wavelet parameters to preserve critical flow details.

•Insights:

- > Wavelets significantly reduce noise and improve computational performance.
- > Hybrid techniques provide a scalable approach for fluid simulations.

Conclusion

- > The hybrid wavelet-PDE approach enhances fluid simulation accuracy and efficiency.
- > Navier-Stokes equations remain the cornerstone of fluid dynamics modeling.
- > Wavelets enable multi-scale analysis, critical for turbulent flows.

Thank-Youuuuu