Modelling Tomorrow's Energy Needs

Team: Totoro

Data Features - Italy

Mean values of the columns

Distribution of the sparsity of columns

Data Features - Spain

Mean values of the columns

Distribution of the sparsity of columns

Imputation Techniques

- Basic Techniques: Mean Imputation, KNN Imputation
- Customised Hot Deck Imputation:

Naive models

- Linear Regression
- (S)ARIMA: no stationarity, even by difference of predictions
- Gaussian Processes
- Exponential Smoothing

XGB Boost Approach

Feature Engineering

Hour Encoding:

$$ext{hour_sin} = \sin\left(rac{2\pi \cdot ext{hour}}{24}
ight)$$

$$ext{hour_cos} = \cos\left(rac{2\pi \cdot ext{hour}}{24}
ight)$$

Day of the Week:

$$day_of_week_sin = sin\left(\frac{2\pi \cdot day_of_week}{7}\right)$$

$$ext{day_of_week_cos} = \cos\left(rac{2\pi \cdot ext{day_of_week}}{7}
ight)$$

Temperature:

$$TMP_squared = TMP^2$$

Heating:

$$heating_degree = max(18 - TMP, 0)$$

 $cooling_degree = max(TMP - 18, 0)$

Season, Weekend, Business Hours:

$$\mathrm{season} = \left\lfloor \frac{(\mathrm{month} \; \mathrm{mod} \; 12) + 3}{3} \right\rfloor$$

$$ext{is_weekend} = egin{cases} 1, & ext{if day_of_week} \in 5, 6 \ 0, & ext{otherwise} \end{cases}$$

$$is_business_hours = egin{cases} 1, & if \ 9 \leq hour \leq 17 \ and \ is_weekend = 0 \ 0, & otherwise \end{cases}$$

XGB Results

Thanks for the attention!

Questions?