Solutions of exercises in Chapter 5

E5.1] Suppose that \overline{A} is an \mathcal{L} -structure. Let F be a nonprincipal ultrafilter on a set I. For each $a \in A$ let $f(a) = [\langle a : i \in I \rangle]_F$. Show that f is an embedding of \overline{A} into ${}^I \overline{A}/F$, and \overline{A} is elementarily equivalent to ${}^I \overline{A}/F$.

For brevity let $\overline{B} = {}^{I}\overline{A}$ and $\overline{C} = \overline{B}/F$. See the definition of \overline{C} following Theorem 1.15.

Suppose that f(a) = f(b). Then $[\langle a : i \in I \rangle]_F = [\langle b : i \in I \rangle]_F$, hence $\{i \in I : a = b\} \in F$. Since the empty set is not in F, it follows that a = b. So f is one-one.

If k is an individual constant, obviously $f(k^{\overline{A}}) = k^{\overline{B}}$.

Suppose that G is an m-ary function symbol. Then

$$f(G^{\overline{A}}(a^0, \dots, a^{m-1})) = [\langle G^{\overline{A}}(a^0, \dots, a_{m-1})]_F$$
$$= [G^{\overline{B}}(\langle a^0 : i \in I \rangle, \dots, \langle a^{m-1} : i \in I \rangle)]_F$$
$$= G^{\overline{C}}(f(a^0), \dots, f(a^{m-1})).$$

If R is an m-ary relation symbol, then

$$\langle f(a^0), \dots, f(a^{m-1}) \rangle \in R^{\overline{C}} \quad \text{iff} \quad \{ i \in I : \langle a^0, \dots, a^{m-1} \rangle \in R^{\overline{A}} \} \in F$$

$$\quad \text{iff} \quad \langle a^0, \dots, a^{m-1} \rangle \in R^{\overline{A}}.$$

Hence f is an isomorphism of \overline{A} into \overline{C} . The last statement of the exercise is true by Corollary 5.2.

5.2 We work in the language for ordered fields; see Chapter 1. In general, an element $a \in M$ is definable iff there is a formula $\varphi(x)$ with one free variable x such that $\{b \in M : \overline{M} \models \varphi[b]\} = \{a\}$.

- (i) Show that 1 is definable in \mathbb{R} .
- (ii) Show that every positive integer is definable in \mathbb{R} .
- (iii) Show that every positive rational is definable in \mathbb{R} .
- (iv) If \overline{M} is an extension of \mathbb{R} , an element ε of M is infinitesimal iff $0 < \varepsilon < r$ for every positive rational r. Let \overline{M} be an ultrapower of \mathbb{R} using a nonprincipal ultrafilter on ω . Thus \overline{M} is isomorphic to an extension of \mathbb{R} by exercise 5.1. Show that \overline{M} has an infinitesimal.
- (v) Use the compactness theorem to show the existence of an ordered field \overline{M} which has an infinitesimal, and is elementarily equivalent to \mathbb{R} .
- (i): Let $\varphi(x)$ be the formula $\forall y[x \cdot y = y]$.
- (ii): Let φ be as in (i). By induction we define a formula ψ_m which defines m, for each positive integer m. Let ψ_1 be φ . Having defined ψ_m , let ψ_{m+1} be the formula $\exists y \exists z [\psi_m(y) \land \varphi(z) \land x = y + z]$.
- (iii) Let r be a positive rational. Say r = m/n with m and n positive integers. Let χ_r be the formula $\exists y \exists z [\psi_m(y) \land \psi_n(z) \land y = x \cdot z]$.
- (iv) Let F be a nonprincipal ultrafilter on ω . Define $e \in {}^{\omega}\mathbb{R}$ by setting e(n) = 1/(n+1) for every $n \in \omega$. We claim that [e] is an infinitesimal. To prove this, take any positive

rational r. Choose $p \in \omega$ with $\frac{1}{p} < r$. Let x(m) = r for all $m \in \omega$. Thus [x] is the image of r under the isomorphism of exercise 5.1, so it suffices to show that [0] < [e] < [r]. We have

$$\{m \in \omega : 0 < e(m)\} = \omega \in F$$

and

$$\{m \in \omega : e(m) < r\} \supseteq \{m \in \omega : m \ge p\} \in F;$$

hence [0] < [e] < [r].

(v) Adjoin a new individual constant ${\bf c}$ to our language, and consider the following set of sentences:

$$\{\varphi : \varphi \text{ is a sentence and } \mathbb{R} \models \varphi\}$$

 $\cup \{0 < \mathbf{c}\} \cup \{\forall x [\mathbf{c} < \chi_r(x)] : r \text{ a positive rational}\}.$

Clearly every finite subset of this set has a model; the compactness theorem gives a model of the whole set, and this give the desired conclusion. (The denotation of the constant \mathbf{c} is ignored in order to make the final model an ordered field with no extra fundamental constant.)

- 5.3 Consider the structure $\overline{N} = (\omega, +, \cdot, 0, 1, <)$. We look at models of $\Gamma = {\varphi : \varphi \text{ is a sentence and } \overline{N} \models \varphi}$.
- (i) For every $m \in \omega$ there is a formula φ_m with one free variable x such that $\overline{N} \models \varphi_m[m]$ and $\overline{N} \models \exists! x \varphi_m(x)$.
 - (ii) \overline{N} can be embedded in any model of Γ .
- (iii) Show that Γ has a model with an infinite element in it, i.e., an element greater than each $m \in \omega$.
- (i): We define φ_m by recursion; clearly the ones defined work: φ_0 is x = 0. Having defined φ_m , φ_{m+1} is the formula $\exists y [\varphi_m(y) \land x = y + 1]$.
- (ii) For each $m \in \omega$, let f(m) be the unique $a \in M$ such that $\overline{M} \models \varphi_m[a]$. If $m \neq n$, then $\overline{N} \models \neg(\varphi_m(x) \land \varphi_n(x))$, so also $\overline{m} \models \neg(\varphi_m(x) \land \varphi_n(x))$, hence $f(m) \neq f(n)$.
- Next, $\overline{N} \models \forall x \forall y [\varphi_m(x) \land \varphi_n(y) \rightarrow \varphi_{m+n}(x+y)$, so also $\overline{M} \models \forall x \forall y [\varphi_m(x) \land \varphi_n(y) \rightarrow \varphi_{m+n}(x+y)$. Now $\overline{M} \models \varphi_m[f(m)]$ and $\overline{M} \models \varphi_m[f(n)]$, so $\overline{M} \models \varphi_{m+n}[f(m)+f(n)]$. Hence f(m+n) = f(m) + f(n).

Similarly for \cdot .

If m < n, then $\overline{N} \models \forall x \forall y [\varphi_m(x) \land \varphi_n(y) \to x < y$, so $\overline{M} \models \forall x \forall y [\varphi_m(x) \land \varphi_n(y) \to x < y$, so f(m) < f(n). It follows that m < n iff f(m) < f(n).

This finishes the proof of (ii).

For (iii), adjoin a new individual constant c and consider the set

$$\Gamma = \{ \varphi : \varphi \text{ is a sentence and } \overline{N} \models \varphi \}$$

 $\cup \{ \forall x [\varphi_m(x) \to x < \mathbf{c}] : m \in \omega \}.$

By the compactness theorem, Γ has a model, which gives the desired conclusion.

- 5.4 (Continuing exercise 5.3.) An element p of a model \overline{M} of Γ is a prime iff p > 1 and for all $a, b \in M$, if $p = a \cdot b$ then a = 1 or a = p.
- (i) Prove that if \overline{M} is a model of Γ with an infinite element, then it has an infinite prime element.
- (ii) Show that the following conditions are equivalent:
- (a) There are infinitely many (ordinary) primes p such that p+2 is also prime. (The famous twin prime conjecture, unresolved at present.)
- (b) There is a model \overline{M} of Γ having at least one infinite prime p such that p+2 is also a prime.
- (c) For every model \overline{M} of Γ having an infinite element, there is an infinite prime p such that p+2 is also a prime.
- (i): The sentence $\forall m \exists p [m Applying this with <math>m$ an infinite element yields an infinite prime.
- (ii): (a) \Rightarrow (c): Assume (a), and let \overline{M} be any model of Γ having an infinite element e. Now $\forall m \exists p[p]$ "is a prime, and also p+2 is a prime] holds in \overline{N} , and hence also in \overline{M} . Applying this with m an infinite element gives the desired conclusion.
- (c) \Rightarrow (b): By exercise 5.3, there is a model \overline{M} of Γ having an infinite element. Hence (c) gives the conclusion of (b).
- (b) \Rightarrow (a): Suppose that (a) is false. Choose $m \in \omega$ such that if p and p+2 are primes, then p < m. Then the sentence

$$\forall x [\varphi_m(x) \to \forall p [p \text{ "is a prime, and also } p+2 \text{ is a prime"} \to p < x]]$$

holds in \overline{N} , and hence also in \overline{M} . But then there cannot exist an infinite prime p of \overline{M} such that p+2 is also a prime.

5.5 Let G be a group which has elements of arbitrarily large finite order. Show that there is a group H elementarily equivalent to G which has an element of infinite order.

Add an individual constant \mathbf{c} to our language. Then the set

$$\{\varphi : \varphi \text{ is a sentence and } G \models \varphi\} \cup \{\neg(\mathbf{c} = e) \cup \{\neg(\mathbf{c}^m = e) : m \in \omega \setminus 1\}$$

has a model by the compactness theorem, giving the desired result.

Suppose that Γ is a set of sentences, and φ is a sentence. Prove that if $\Gamma \models \varphi$, then $\Delta \models \varphi$ for some finite $\Delta \subseteq \Gamma$.

We prove the contrapositive: Suppose that for every finite subset Δ of Γ , $\Delta \not\models \varphi$. Thus every finite subset of $\Gamma \cup \{\neg \varphi\}$ has a model, so $\Gamma \cup \{\neg \varphi\}$ has a model, proving that $\Gamma \not\models \varphi$.