Université Pierre et Marie Curie - LM223 - Année 2012-2013

Fiche d'exercices n° 2

1 Valeurs propres.

Ex 1.1 Soit E un espace vectoriel de dimension $n, n \ge 1$, et soient u, v deux endomorphismes de E.

- 1. Montrer que si 0 est valeur propre de $u \circ v$ alors 0 est aussi valeur propre de $v \circ u$.
- 2. Montrer que $u \circ v$ et $v \circ u$ ont le même ensemble de valeur propre.

Ex 1.2 Soit E un espace vectoriel de dimension $n, n \ge 1$, et soit u un endomorphisme nilpotent (i.e $\exists k \in \mathbb{N}$, tel que $u^k = 0$) non nul de E.

- 1. On note Sp_u l'ensemble des valeurs propres de u.
 - (a) Montrer que $0 \in Sp_u$, puis que $Sp_u = \{0\}$.
 - (b) u est-il diagonalisable?
- 2. On considère maintenant l'endomorphisme id u.
 - (a) En utilisant le fait que $u^k = 0$ et une identité remarquable, montrer que id u est inversible et donner son inverse.
 - (b) Quelles sont les valeurs propres de id u?
 - (c) id u est-il diagonalisable?

Ex 1.3 Soit E un \mathbb{C} -espace vectoriel de dimension $n, n \geq 1$.

- 1. Montrer que tout endomorphisme de E possède au moins une valeur propre.
- 2. Soient u, v deux endomorphismes de E tels que $u \circ v = v \circ u$.
 - (a) Soit λ une valeur propre de u et soit E^u_{λ} le sous espace propre de u associé à la valeur propre λ . Montrer que E^u_{λ} est stable par v.
 - (b) En déduire qu'il existe dans E^u_{λ} un vecteur propre de v.
 - (c) On suppose que u possède n valeurs propres distinctes. Montrer que u et v sont tous deux diagonalisables, et qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(u)$ et $\operatorname{Mat}_{\mathcal{B}}(v)$ sont diagonales.

2 Diagonalisation.

Ex 2.1 Pour les matrices réelles suivantes, trouver les valeurs propres, déterminer si la matrice est diagonalisable et dans ce cas donner une base de vecteurs propres :

$$\left(\begin{array}{ccc} 0 & 1 & 2 \\ -1 & 2 & 2 \\ 1 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 2 & 0 & 0 \\ -3 & -1 & 3 \\ 3 & 3 & -1 \end{array}\right), \left(\begin{array}{ccc} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & 2 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{array}\right)$$

Ex 2.2 On considère :

$$A = \left(\begin{array}{ccc} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{array}\right)$$

Calculer A^n pour tout $n \in \mathbb{N}$.

Ex 2.3 Soit A la matrice $n \times n$ dont tous les coefficients valent 1.

- 1. Calculer A^2 . En déduire que si λ est une valeur propre de A, alors λ vaut 0 ou n.
- 2. Déterminer la dimension des espaces propres de A:A est-elle diagonalisable?

Ex 2.4 Soit $\Phi : \mathbb{R}_2[X] \to \mathbb{R}_2[X]$, l'application qui à tout polynôme $P \in \mathbb{R}_2[X]$ associe le reste de la division euclidienne de (X+1)P(X) par X^3+1 .

- 1. Justifier que Φ est bien définie et montrer que Φ est linéaire.
- 2. Ecrire la matrice M de Φ dans la base canonique $(1, X, X^2)$.
- 3. Quelles sont les valeurs propres de M? M est-elle diagonalisable?

Ex 2.5 On considère l'application linéaire suivante :

$$\begin{array}{cccc} \Phi: & \mathcal{M}_2(\mathbb{R}) & \longrightarrow & \mathcal{M}_2(\mathbb{R}) \\ & M & \longmapsto & AM \end{array} \quad \text{où } A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right)$$

- 1. Ecrire la matrice de Φ dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- 2. Est-ce que Φ est diagonalisable? Si oui donner la base de $\mathcal{M}_2(\mathbb{R})$ dans laquelle la matrice de Φ est diagonale.