Calculation of CCT and Duv and Practical Conversion Formulae

Yoshi Ohno

Group Leader, NIST Fellow

Optical Technology Division

National Institute of Standards and Technology

Gaithersburg, Maryland USA

White Light Chromaticity

Duv often missing

Lighting Facts Label

CCT and CRI do not tell the whole story of color quality

CCT and CRI do not tell the whole story

Duv defined in ANSI standard

Closest distance from the Planckian locus on the (u', 2/3 v') diagram, with + sign for above and - sign for below the Planckian locus. (ANSI C78.377-2008)

Symbol: D_{uv}

CCT and Duv can specify the chromaticity of light sources just like (x, y).

The two numbers (CCT, Duv) provides color information intuitively. (x, y) does not.

Duv needs to be defined by CIE.

ANSI C78.377-2008 Specifications for the chromaticity of SSL products

(2700 - 6500 K)

0.006

±

 $\pm \Delta T^{(3)}$

CCT- Duv chart

Correlated Color Temperature (CCT)

Temperature [K] of a Planckian radiator whose chromaticity is closest to that of a given stimulus on the CIE $(u', 2/3 \ v')$ coordinate.

CCT is based on the CIE 1960 (*u*, *v*) diagram, which is now obsolete.

CCT is valid within distance 0.05 from the Planckian locus on the $(u', 2/3 \cdot v')$ diagram. (CIE 15: 2004)

CIE 15:2004 Colorimetry, 3rd Edition

APPENDIX E. INFORMATION ON THE USE OF PLANCK'S EQUATION FOR STANDARD AIR

According to the Planck's law, the spectral radiance of a blackbody at thermodynamic temperature T[K] in a medium having index of refraction n is given by

$$L_{e,\lambda}(\lambda,T) = \frac{c_1 n^{-2} \lambda^{-5}}{\pi} \left[\exp\left(\frac{c_2}{n\lambda T}\right) - 1 \right]^{-1}$$
 (E.1)

where $c_1 = 2\pi hc^2$, $c_2 = hc/k$, h is Planck's constant, c is the speed of light in vacuum, k is the

T should follow the current International Temperature Scale (ITS-90), therefore,

$$c_2$$
 = 1,4388 x 10⁻² m K.

.

Therefore, in the current recommendation in CIE 15:2004, colour temperature and correlated colour temperature are calculated using Equ. E.1 with n = 1 (exactly 1), thus no change from the previous practice. This recommendation may be subject to change in the future.

Robertson (1968)

Computation of Correlated Color Temperature and Distribution Temperature, Journal of the Optical Society of America, 58-11, 1968

Fig. 1. Method of interpolation to find correlated color temperature.

TABLE III. Maximum errors of computed values of correlated color temperature, based on use of the 31 isotemperature lines listed in Table II.

	Range	· Maximum error				
μrd	K	μrd	K			
1-10	1 000 000-100 000	0.11				
10-20	100 000-50 000	0.09	450			
20-30	50 000-33 333	0.08	140			
30-40	33 333-25 000	0.08	65			
40-50	25 000-20 000	0.07	36			
50-60	20 000-16 667 .	0.05	18			
60-70	16 667-14 286	0.04	9.			
70-80	14 286-12 500	0.03	5.			
80-90-	12 500-11 111	0.03	3.			
90-100	11 111-10 000	0.03	2.			
100-125	10 000-8 000	0.07	5.			
125-150	8 000-6 667	0.03	.1.			
150-175	6 667-5 714	0.05	1.			
175-200	5 714-5 000	0.03	1.			
200-225	5 000-4 444	0.04	1.			
225-250	4 444-4 000	0.05	0.			
250-275	4 000-3 636	0.05	0.			
275-300	3 636-3 333	0.04	. 0.			
300-325	3 333-3 077	0.03	0,			
325-350	3 077-2 857	0.03	0.			
350-375	2 857-2 667	0.02	0.			
375-400	2 667-2 500	0.03	. 0.			
400-425	2 500-2 353	0.04	0.			
425-450	2 353-2 222	0.04	· 0.			
450-475	2 222-2 105	0.05	0.			
475-300	. 2 105-2 000	0.04	0.			
500-525	2 000-1 905	0.04	0.			
525-550	1 905-1 818	0,05	0.			
550-575	1 818-1 739	0.05	0.			
575-600	1 739-1 667	0.06	0.			

Direct approach (1) to calculate CCT and Duv

- (1) Create a table of CCT vs distance d_i to BB locus on (u,v) coodinate.
- (2) Find the closest point in the table.
- (3) Solve the triangle for the neighboring 2 points

$$x = \frac{d_{m-1}^2 - d_{m+1}^2 + l^2}{2l}$$

$$T_x = T_{m-1} + (T_{m+1} - T_{m-1}) \bullet \frac{x}{I}$$

$$D_{uv} = [\pm sign] (d_{m-1}^2 - x^2)^{1/2}$$

Use Planck's equation and color matching functions at 1 nm interval.

3078

3109

3140

0.24788

0.24686

0.24585

0.24486

0.34653

0.34611

0.34569

0.34526

0.00776

0.00885

0.00994

0.01101

CCT Error in Triangular Solution

Error increases when the point is far from Planckian locus.

Direct approach (2) to calculate CCT and Duv

Parabolic solution

- (1) Create a table of CCT vs distance d_i to BB locus on (u,v) coodinate.
- (2) Find the closest point in the table.
- (3) Parabolic fit for the neighboring 3 points.

$$d(T) = aT^2 + bT + C$$

$$d(T)' = 2aT_{x} + b = 0 \qquad \because T_{x} = \frac{-b}{2a}$$

$$D_{uv} = [\pm sign] \left(aT_x^2 + bT_x + C \right)$$

CCT Error in Parabolic Solution

Much better, but the problem is on or very close to Planckian locus.

Combined Solution

Use Parabolic solution but, take the CCT of Triangular solution for

$$|D_{\rm uv}| < 0.002$$

Error in Combined solution (1 % step table)

Most Accurate Version (cascade expansion)

INPUT	х	0.3127		CCT	6503.0											
	у	0.3290		Duv	0.0032											
	u	0.1978														
	V	0.3122						1		1		1	1			
15 %	step ta	ble			1.5 % s	step tab	le		0.15	% step t	able		0.015	% step	table	
Color Te			Distance			u	v	distances		u	v	Distance	1	u	v	Distanc
	0.44801	0.35462	0.2537	0	/ 5350.3	0.20813	0.31972	0.012732	6429.		0.31086	0.003279	6494.3	0.20048	0.31040	0.0
	0.41559	0.35725	0.2224		5430.5		0.31898	0.011750	∫ 6438.			0.003263	6495.2		0.31040	0.0
1323	0.38439	0.35927	0.1924	0.2	5510.8		0.31825	0.010802	6448.			0.003250	6496.1	0.20047	0.31039	0.0
1521	0.35512	0.36039	0.1645		5591.0		0.31754	0.009886	6457.		0.31066		6497.0		0.31038	0.0
1749	0.32827	0.36036	0.1390		5671.3	0.20556	0.31684	0.009005	6466.			0.003229	6498.0		0.31038	0.0
2011	0.30412	0.35898	0.1161	0,5	5751.5		0.31616	0.008158	6475.			0.003222	6498.9		0.31037	0.0
		0.35620	0.0957	0/6	5831.8		0.31549	0.007350	6485.			0.003216	6499.8		0.31036	0.0
2660	0.26431	0.35208	0.0775		5912.0		0.31483	0.006582	6494.			0.003213	6500.7		0.31036	0.0
3059	0.24853	0.34679	0.0614	0.8	5992.3		0.31418	0.005860	6503.			0.003213	6501.7		0.31035	0.0
3518	0.23527	0.34060	0.0470		6072.5 6152.8		0.31354	0.005191	6512.		0.31027		6502.6		0.31034	0.0
4046 4652	0.22430	0.33382	0.0342		6245.1		0.31292	0.004588	6522.6 6531.1		0.31021		6503.5 6504.4		0.31034	0.0
5350	0.20813	0.32677	0.0228		6337.4	0.20183	0.31222	0.003997	6540.			0.003222	6505.3		0.31033	0.0
6153	0.20237	0.31292	0.0046		6429.7		0.31086	0.003348	6549.		0.31001		6506.3		0.31032	0.0
7076	0.19781	0.30655	0.0057	0.4	6522.0		0.31021	0.003217	6558.5			0.003250	6507.2		0.31032	0.0
8137	0.19423	0.30073	0.0120		6614.2		0.30956	0.003356	6568.			0.003263	6508.1	0.20041	0.31030	0.0
9358	0.19143	0.29552	0.0179		6706.5		0.30894	0.003659	6577.3		0.30982		6509.0		0.31030	0.0
10761	0.18923	0.29093	0.0230		6798.8		0.30832	0.004077	6586.0			0.003295	6510.0		0.31029	0.0
12375	0.18751	0.28694	0.0273		6891.1	0.19859	0.30772	0.004571	6595.			0.003313	6510.9		0.31028	0.0
14232	0.18615	0.28350	0.0310		6983.4		0.30713	0.005109	6605.6			0.003334	6511.8		0.31028	0.0
16367	0.18507	0.28056	0.0341	1.0		0.19781	0.30655	0.005672	6614.			0.003356	6512.7		0.31027	0.0
18822	0.18420	0.27806	0.0368		minimum	0.003217			minimum	0.0032125			minimum	0.0032125		
21645	0.18351	0.27593	0.0390		match	15			match	9			match	10		
24891	0.18295	0.27412	0.0409		T(m-1)	6429.7	0.00328		T(m-1)	6494.3	0.00321		T(m-1)	6501.7	0.00321	
	0.18249	0.27259	0.0425		T(m)	6522.0	0.00322		T(m)	6503.5	0.00321		T(m)	6502.6	0.00321	
	0.18211	0.27129	0.0438		T(m+1)	6614.2	0.00336		T(m+1)	6512.7	0.00321		T(m+1)	6503.5	0.00321	
min	0.00459					Parabolic so				Parabolic so				Parabolic sol		
match	14					a	1.925E-07			а	1.886E-05		_	a	0.001886	
Tr. 45		distance				b	-3.78E-07			ь	-3.77E-05	-		b	-0.003772	
T(m-1)	5350.25	0.01273				C	1.97E-07			C	1.886E-05	-	-	C	0.001886	
T(m)	6152.79	0.00459				A	1.181E-08			A B	1.223E-08			A B	1.22E-08	
T(m+1)	7075.71	0.00567				B C	-0.000154			C	-0.000159 0.5202378		-	C	-0.000159	
						ССТ	0.502682 6504.39			ССТ	6503.05	- 1		CCT	0.520744 6503.03	
						duv	0.00321		-	duv	0.00321	-	-	duv	0.00321	
					_	Triangular s			-1	Triangular s				Triangular so		
						T(m-1) u	0.20082			T(m-1) u	0.20048			T(m-1) u	0.20044	
\sim	e th	e ref	oron	CC		T(m+1) u	0.19988			T(m+1) u	0.20038	1		T(m+1) u	0.20043	
JU d	อ แ	C C	CICII		,	T(m-1) v	0.31086			T(m-1) v	0.31040			T(m-1) v	0.31035	
						T(m+1) v	0.30956			T(m+1) v	0.31027	-		T(m+1) v	0.31034	
accuracy rification.					d	0.00			d	0.00			ď	0.00		
					×	0.00			X	0.00			X	0.00		
					CCT	6503.70			CCT	6503.03			CCT	6503.05		
					duv	0.00322			duv	0.00321			duv	0.00321		
					CCT	6504.39			CCT	6503.05			Final CCT	6503.03		
						0.2004	0.3103			0.2004	0.3103			0.2004	0.3103	
						Sign of Duv	1			Sign of Duv	1			Sign of Duv	1	
						Duv	0.00322			Duv	0.00321			Final Duv	0.00001	

Conversion from (CCT, Duv) back to (x, y)

Input: CCT T(K)Duv D_{uv}

- Calculate (u_0, v_0) of the Planckian radiator at T(K).
- Calculate (u_1, u_1) of the Planckian radiator at T+T(K). T=0.01(K)
- Calculate

$$du = u_1 - u_0$$

$$dv = v_1 - v_0$$

$$u = u_0 + D_{uv} \cdot \sin \theta$$

$$= u_0 + D_{uv} \cdot dv / \sqrt{du^2 + dv^2}$$

$$v = v_0 + D_{uv} \cdot \cos \theta$$

$$= u_0 + D_{uv} \cdot du / \sqrt{du^2 + dv^2}$$

$$u' = u$$

$$v' = 1.5v$$

$$x = 9u'/(6u' - 16v' + 12)$$

$$y = 2v'/(3u' - 8v' + 6)$$

(Included in Revision draft of C78.377)

Accuracy of Most Accurate Version (4 stage)

Simple calculation from (x,y) or (u',v') to Duv

Duv is normally calculated in the process of calculating CCT. Below is a simple approximation formula, without calculation of CCT.

1) Convert (x, y) or (u', v') to (u, v)

$$u = 4x/(-2x+12y+3)$$

 $v = 6y/(-2x+12y+3)$ or $u = u'$
 $v = 2v'/3$

2) Duv is obtained by

$$L_{\text{FP}} = \sqrt{(u - 0.292)^2 + (v - 0.24)^2}$$

$$a = \arccos\left(\frac{u - 0.292}{L_{\text{FP}}}\right)$$

$$L_{\text{BB}} = k_6 a^6 + k_5 a^5 + k_4 a^4 + k_3 a^3 + k_2 a^2 + k_1 a + k_0$$
$$D_{\text{uv}} = L_{\text{FP}} - L_{\text{BB}}$$

(Included in Revision draft of C78.377)

Simple calculation from (x,y) or (u',v') to Duv

Accuracy of this method

within 0.00001 in the range from 2600 K to 20000 K and Duv 0.000 ± 0.010

within 0.0001 in the range from 2160 K to 20000 K and Duv 0.000 ± 0.010

(Included in Revision draft of C78.377)

Simple calculation from (x,y) or (u',v') to (CCT, Duv)

$$\begin{split} L_{\mathrm{FP}} &= \sqrt{(u - 0.292)^2 + (v - 0.24)^2} \\ a_1 &= \arctan((v - 0.24)/(u - 0.292)), \ if \ a_1 \geq 0, \ a = a_1; \ if \ a_1 < 0, \ a = a_1 + \pi \\ L_{\mathrm{BB}} &= k_{06} \, a^6 + k_{05} \, a^5 + k_{04} \, a^4 + k_{03} \, a^3 + k_{02} \, a^2 + k_{01} \, a + k_{00} \\ D_{\mathrm{uv}} &= L_{\mathrm{FP}} - L_{\mathrm{BB}} \end{split}$$

For
$$a < 2.54$$
; $T_1 = 1/(k_{16} \cdot a^6 + k_{15} \cdot a^5 + k_{14} \cdot a^4 + k_{13} \cdot a^3 + k_{12} \cdot a^2 + k_{11} \cdot a + k_{10})$
For $a \ge 2.54$; $T_1 = 1/(k_{26} \cdot a^6 + k_{25} \cdot a^5 + k_{24} \cdot a^4 + k_{23} \cdot a^3 + k_{22} \cdot a^2 + k_{21} \cdot a + k_{20})$

For
$$a < 2.54$$
; $\Delta T_{c1} = (k_{36} \cdot a^6 + k_{35} \cdot a^5 + k_{34} \cdot a^4 + k_{33} \cdot a^3 + k_{32} \cdot a^2 + k_{31} \cdot a + k_{30}) * (L_{BB} + 0.01) / L_p * D_{uv} / 0.01$

For
$$a \ge 2.54$$
; $\Delta T_{c1} = 1/(k_{46} \cdot a^6 + k_{45} \cdot a^5 + k_{44} \cdot a^4 + k_{43} \cdot a^3 + k_{42} \cdot a^2 + k_{41} \cdot a + k_{40}) * (L_{BB} + 0.01)/L_p * D_{uv}/0.01$

$$T_2 = T_1 - \Delta T_{c1}, \quad c = \log(T_2)$$

For
$$Duv \ge 0$$
; $\Delta T_{c2} = (k_{56} \cdot c^6 + k_{55} \cdot c^5 + k_{54} \cdot c^4 + k_{53} \cdot c^3 + k_{52} \cdot c^2 + k_{51} \cdot c + k_{50})$

For
$$Duv < 0$$
; $\Delta T_{c2} = (k_{66} \cdot c^6 + k_{65} \cdot c^5 + k_{64} \cdot c^4 + k_{63} \cdot c^3 + k_{62} \cdot c^2 + k_{61} \cdot c + k_{60}) \cdot |D_{uv}/0.03|^2$

$$T_{\text{FINAL}} = T_2 - \Delta T_{\text{c2}}$$

i	ki6	k <i>i</i> 5	ki4	ki3	ki2	k <i>i</i> 1	ki0
0	-3.7146000E-03	5.6061400E-02	-3.307009E-01	9.750013E-01	-1.5008606E+00	1.115559E+00	-1.77348E-01
1	-3.2325500E-05	3.5700160E-04	-1.589747E-03	3.6196568E-03	-4.3534788E-03	2.1595434E-03	5.308409E-04
2	-2.6653835E-03	4.17781315E-02	-2.73172022E-01	9.53570888E-01	-1.873907584E+00	1.964980251E+00	-8.58308927E-01
3	-2.3524950E+01	2.7183365E+02	-1.1785121E+03	2.51170136E+03	-2.7966888E+03	1.49284136E+03	-2.3275027E+02
				6.40976356945E+0			
4	-1.731364909E+06 2	.7482732935E+07	-1.81749963507E+08	8	-1.27141290956E+09	1.34488160614E+09-	·5.926850606E+08
5	-9.4353083E+02	2.10468274E+04	-1.9500061E+05	9.60532935E+05	-2.65299138E+06	3.89561742E+06	-2.3758158E+06
6	5.0857956E+02	-1.321007E+04	1.4101538E+05	-7.93406005E+05	2.48526954E+06	-4.11436958E+06	2.8151771E+06

Simple calculation from (x,y) or (u',v') to (CCT, Duv)

Accuracy of this method

Conclusions

- Practical calculation and conversion formulae for CCT and Duv have been developed.
- Accuracies of some of the formulae will be further improved.
- The use of CCT and Duv (rather than x, y or u', v' chromaticity coordinates) is recommended to specify the chromaticity of lighting sources.

THANK YOU for your attention.

Contact: ohno@nist.gov

Proposed revision of ANSI C78.377

Revision proposal 2

- All center points to be moved onto the Planckian locus.
- This proposal is pending due to a need for vision experiments.
- Anecdotes say people prefer below the Planckian locus.
- NIST is funded by DOE to conduct vision experiments using STLF.

CCT (K) difference between 3rd stage and 5th stage

Summary

- Duv is important for color quality of light sources.
- Duv is often neglected in specifications.
- Parabolic and triangle combined solution works well for CCT calculation.
- 1 % step table provides enough accuracy
 (<1 K for 1000 to 10000 K, <2 K up to 20000 K, Duv± 0.03)
- Most Accurate Version (cascade expansion),
- Conversion from (CCT, Duv) back to (x,y),
- Simple calculation from (x,y) or (u',v') to Duv,
- Simple calculation from (x,y) or (u',v') to (CCT, Duv) have been developed.