

# Спецкурс: системы и средства параллельного программирования

## Отчёт № 4 Параллельный алгоритм умножения матрицы на вектор

# Разработка параллельной **МРІ** программы и исследование ее эффективности

Работу выполнил **Чепурнов А. В.** 

### Постановка задачи и формат данных

**Задача:** Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на вектор Ab = c. Провести исследование эффективности разработанной программы на системе Blue Gene/P.

Формат командной строки: <имя файла матрицы A> <имя файла вектора b> <имя файла вектора c>

Формат файла-матрицы: Матрица представляется в виде бинарного файла следующего

формата:

| Тип                      | Значение               | Описание                 |
|--------------------------|------------------------|--------------------------|
| Число типа char          | 'd' – тип double       | Тип элементов матрицы    |
| Число типа int           | N – натуральное число  | Число строк матрицы      |
| Число типа int           | М – натуральное число  | Число столбцов матрицы   |
| Массив чисел типа double | $N \times M$ элементов | Массив элементов матрицы |

**Формат файла-вектора:** Вектор представляется как матрица размера  $N \times 1$ .

## Описание алгоритма

Если N > M, элементы матрицы равномерно распределяются по процессам блоками строк, если  $N \le M$  — блоками столбцов. Каждый процесс перемножает свой участок на вектор b. Вектор c находится как сумма векторов, полученных каждым процессом.

**Аппаратное обеспечение:** Исследования проводились на вычислительном комплексе IBM Blue Gene/P.

**Анализ времени выполнения:** Для оценки времени выполнения программы использовалась функция MPI\_Wtime().

**Анализ ускорения:** Ускорение, получаемое при использовании параллельного алгоритма для p процессоров, высчитывалось как отношение времени выполнения задачи на одном процессоре к времени параллельного выполнения задачи при использовании p процессоров.

#### Основные функции:

- Разбор командной строки. В рамках функции осуществляется анализ и разбор командной строки.
- Параллельное чтение из файла. В рамках функции осуществляется параллельное чтение элементов матрицы из файла с помощью средств MPI, а также анализ совместимости матрицы и вектора.
- **Умножение матрицы на вектор.** В рамках функции осуществляется умножение матрицы на вектор в зависимости от соотношения N и M.

## Результаты выполнения

Проводились умножения матриц  $512 \times 512$ ,  $1024 \times 1024$ ,  $2048 \times 2048$ ,  $4096 \times 4096$ ,  $4096 \times 1024$ ,  $1024 \times 4096$ . Алгоритм запускался на 32, 64, 128, 256 и 512 ядрах. Альтернативный вариант мэппинга для 512 ядер выбирался случайно.

## Среднее время выполнения процесса (в секундах):

| n    | m    | мэппинг | 32          | 64          | 128         | 256         | 512         |
|------|------|---------|-------------|-------------|-------------|-------------|-------------|
| 512  | 512  | XYZT    | 0.000731782 | 0.000374082 | 0.000195124 | 0.000101424 | 5.80804e-05 |
| 512  | 512  | ZXYT    |             |             |             |             | 5.80831e-05 |
| 1024 | 1024 | XYZT    | 0.0028919   | 0.00146165  | 0.000745832 | 0.000388001 | 0.00020282  |
| 1024 | 1024 | YXZT    |             |             |             |             | 0.000202819 |
| 2048 | 2048 | XYZT    | 0.0115113   | 0.00578307  | 0.00292195  | 0.00148927  | 0.000777478 |
| 2048 | 2048 | TYXZ    |             |             |             |             | 0.000777479 |
| 4096 | 4096 | XYZT    | 0.0460203   | 0.0230297   | 0.0115639   | 0.00584081  | 0.00297988  |
| 4096 | 4096 | YZXT    |             |             |             |             | 0.00297988  |
| 4096 | 1024 | XYZT    | 0.0116153   | 0.00581321  | 0.00290454  | 0.00145258  | 0.00072441  |
| 4096 | 1024 | ZXYT    |             |             |             |             | 0.000724408 |
| 1024 | 4096 | XYZT    | 0.0114962   | 0.00575566  | 0.00289182  | 0.00146036  | 0.00074562  |
| 1024 | 4096 | ZYXT    | _           | _           | _           |             | 0.000745617 |



500

## Ускорение работы алгоритма:

| n    | m    | мэппинг | 32      | 64      | 128     | 256     | 512     |
|------|------|---------|---------|---------|---------|---------|---------|
| 512  | 512  | XYZT    | 31.5015 | 61.6234 | 118.141 | 227.285 | 396.902 |
| 512  | 512  | ZXYT    |         |         |         |         | 396.883 |
| 1024 | 1024 | XYZT    | 32.1814 | 63.6715 | 124.781 | 239.859 | 458.858 |
| 1024 | 1024 | YXZT    |         |         |         |         | 458.86  |
| 2048 | 2048 | XYZT    | 32.9309 | 65.5494 | 129.734 | 254.539 | 487.573 |
| 2048 | 2048 | TYXZ    |         |         |         |         | 487.572 |
| 4096 | 4096 | XYZT    | 33.2955 | 66.5345 | 132.505 | 262.339 | 514.205 |
| 4096 | 4096 | YZXT    |         |         |         |         | 514.205 |
| 4096 | 1024 | XYZT    | 32.0495 | 64.0378 | 128.167 | 256.278 | 513.887 |
| 4096 | 1024 | ZXYT    |         |         |         |         | 513.889 |
| 1024 | 4096 | XYZT    | 33.3214 | 66.5552 | 132.466 | 262.311 | 513.759 |
| 1024 | 4096 | ZYXT    |         |         |         |         | 513.761 |



### Основные выводы

Исследования показывают, что с увеличением количества ядер среднее время выполнения процесса уменьшается, а следовательно, ускоряется вся параллельная программа. Это связано с тем, что каждому процессу необходимо произвести меньше вычислений. Наибольшее ускорение наблюдается при распределении элементов матрицы по процессам блоками столбцов (при  $N \leq M$ ). Мэппинг данной параллельной программы не влияет на время её работы.