Brainstorm & Idea Prioritization Template

2 Date: 26 June 2025

2 Team ID: LTVIP2025TMID42022

2 Project Name: Hematovision: Advanced Blood Cell Classification using Transfer Learning

2 Maximum Marks: 4 Marks

1. Project Goal

"To automate and enhance the accuracy of blood cell classification using transfer learning and deep neural networks, aiding pathologists in early detection of blood disorders while ensuring medical data integrity."

2. 2 Brainstorming: Key Feature Ideas

Feature Idea	Problem Solved	AI/Tech Used Notes	
Blood Cell Image	Automates	CNN-based Transfer	Reduces diagnostic
Classifier	classification of	Learning (ResNet)	errors
	WBCs, RBCs, etc.		
Anomaly Detection	Detects	Autoencoders + TL	Useful for rare
Engine	rare/abnormal cells		disease cases
Dataset	Handles class	Image	Boosts model
Augmentation	imbalance	transformations,	accuracy on
Utility		GANs	minority classes
Explainable AI	Improves trust in AI	Grad-CAM, SHAP	Visual heatmaps for
Visualizer	decisions		transparency
Report Generation	Saves pathologist	NLG, Template-	Auto-generates PDF
Module	time	based	or EHR-compatible
		summarization	reports
Real-time	Live prediction	Edge AI + Transfer	Portable diagnostic
Microscopy Scanner	during slide analysis	Learning	support
Mobile App	Brings AI to mobile	Flutter +	Remote diagnosis
Interface	pathologists	TensorFlow Lite	potential

3. 2 Evaluation Criteria

- Impact: How beneficial is this to pathologists/lab technicians?
- Feasibility: Can we implement this using transfer learning + medical images?
- Compliance: Can it meet medical data handling and privacy standards?
- Differentiation: Is it unique vs traditional/manual blood analysis systems?
- Time to Market: Can we build a working prototype quickly?

4. Prioritization Matrix

Feature	Impact (×2)	Feasibility	Compliance	Differentiation	Time to Market
Blood Cell Classifier	10	4	4	5	3
Anomaly Detection Engine	8	3	5	5	2
Data Augmentation Utility	8	5	5	3	4
Explainable AI Visualizer	10	4	4	5	2
Report Generator	8	4	5	4	3
Real-time Scanner	10	3	4	5	2
Mobile Interface	6	4	4	4	5

√Top Priorities: Blood Cell Classifier, Explainable AI Visualizer, Data Augmentation Utility

High Potential But Needs Effort: Real-time Scanner, Anomaly Detection Engine

5. 2 Next Steps

- 1. Select top 3 ideas: Blood Cell Classifier, Explainable AI, Data Augmentation
- 2. Define MVP boundaries for each
- 3. Collect annotated blood cell image datasets
- 4. Evaluate data governance and compliance with medical standards
- 5. Prototype using PyTorch or TensorFlow + pre-trained models (ResNet, EfficientNet)

6. 2 Resources

- NIH Blood Cell Dataset
- TensorFlow Hub / PyTorch Hub
- Grad-CAM & SHAP Documentation
- WHO Classification Guidelines
- HIPAA & Medical Imaging Compliance Toolkit