Lecture1_BeKo

Introduction

The "Hello World" - Problem

- Goal: Develop a Program E with the following specs:
 - Input: Program P
 - Output: Print: "Top", when P contains the string "Hello, World", else print: "Flop"
- Remark: E has "A type of higher order",(which means that the input is text from a program
 P)
- Ex:

```
main() {
   printf("Hello, world");
}
```

- Does there exist a program E for a special input P? -> Yes
- Does there exist a program E for every program P? -> Not possible

Finite Automata

- A deterministic finite automata (DFA) is a quintuple M = $\{Z, \Sigma, \delta, z_0, E\}$ with:
 - · Z is a non empty, finate group of states
 - Σ is a non empty, finite alphabet of input characters with $Z\cap E=0$
 - $\delta: Z \times \Sigma$ -> Is a partial transfer function
 - For M we define a partial function $\delta: Z \times \Sigma^*$ -> Z is inductive for all $z \in Z$:
 - $\delta(z,\epsilon) := z$
 - $orall x \epsilon \Sigma^*$ $\delta(z,ax) := \hat{\delta}(\delta(z,a),x)$ in case $\delta(z,a)! = \bot$
 - A DFA M = $\{Z, \Sigma, \delta, z_0, E\}$ accepts a word $W \epsilon E$ if $\hat{\delta}(z_0, w) \epsilon E$
 - The words from M are an accepted language:
 - T(M):= $\{x \in \Sigma^* \mid \hat{\delta}(z_0, x) \in E\}$

Example:

•
$$M = (\{z_0, z_1, z_2\}, \{0, 1\}, \delta, z_0, \{z_2\})$$

$$egin{array}{c|cccc} \delta & z_0 & z_1 & z_2 \ \hline 0 & z_0 & z_1 & z_2 \ 1 & z_0 & z_1 & z_2 \ \hline \end{array}$$

- Boundaries of Finite Automata
 - 1. $\{w\epsilon\{0,1\}^*|w$ is a binary representation of a even number $\}$ -> Is Finite due to there the language being limited by the amount of 0 and 1
 - 2. $\{ a^n b^n \mid 0 <= n <= 1000 \}$ -> I True because there is a boundary from 0 to 1000
 - 3. $\{ a^n \ b^n \ | \ n>=0 \}$ -> Is False finite because the automata can not count the amount of a's and b's because there is no boundary to m
 - 4. $\{(abc)^n \mid n>=0\}$ -> Is True because the automata can count all be counted due to all nodes being counted at the same time # 1.1
 - 5. $\{a^nb^mc^k\mid n,m,k>=1\}$ -> Is True because #TODO: Ask tutor 1.2
 - 6. $\{a^nb^nc^n \mid n>=0\}$ -> False for same reason as 2.

Turing Machines

- A Turing Machine (DTM) is a septuple group M = $(Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ with:
 - Z is a non empty, finate group of states
 - Σ is a non empty, finite alphabet of input characters with $Z \cap E = 0$
 - $\Gamma \supseteq \Sigma$ is a Work and/or ribbon alphabet with $\Gamma \cap Z = 0$
 - $\delta: (Z \backslash E) imes \Gamma -> Z imes \{L,R,N\}$ is the partial transfer function
 - This is the most important aspect of the Turing machine
 - $\delta:(Zackslash E)$ Is the NON-end state of the Turing machine
 - Γ : This is the current read state of the Turing machine (what is currently read)
 - Z defines the start of a new state
 - Γ is the new symbol that will be written in the ribbon (We are overwriting the currently written symbol)
 - $\{L,R,N\}$ is the possibility of movement after the machine is finished writing
 - $z_0 \epsilon Z$ is the start state
 - $\Box \epsilon \Gamma \setminus \Sigma$ is the blank symbol (its the current symbol)
 - $E \subseteq Z$ is a group of end states

Interpreting the actions of a Turing machine

- When M reads a while in state z we get $\delta(z, a) = (z', a', p)$ so that:
 - M goes to state z'
 - We overwrite a with a'
 - The Head of moves to p (Left, Right or Neutral)

Turing Machine Configuration

- M = $(Z, \Sigma, \Gamma, \delta, z_0, \Gamma, E)$ is a TM. A configuration M is a word azb with a,b $\epsilon\Gamma$ and z ϵZ
- A start configuration of a word $x \in \Sigma^*$ is $z_0 x$
- Let $k = a_1 \dots a_m z b_1 \dots b_n$ be a configuration (if n = 0, then $b_1 := \square$) Then the following is true:
 - $k \vdash_M^0 k$
 - $k \vdash_M^1 a_1 \ldots a_m \mathbf{z}' c b_2 \ldots b_n$ if $\delta(z,b_1) = (z',c,N)$
 - $k \vdash_M^1 a_1 \ldots a_m \mathbf{z}' b_2 \ldots b_n$ if $\delta(z, b_1) = (z', c, R)$
 - $kdash_M^1a_1.\ldots a_m-1\mathbf{z}'a_mcb_2\ldots b_n$ if $\delta(z,b_1)=(z',c,L)$ and m>0
 - $k dash_M^1 \mathbf{z}' \Box c b_2 \ldots b_n$ if $\delta(z,b_1) = (z',c,L)$ and m=0
- k is holding (meaning it doesn't have a vaild configuration) if $\delta(z,b_1)=ot$
- k is accepted if $z \epsilon E$
- Furthermore let $k\vdash_M^i+1k'<=>\exists_q k\vdash_M^1 q\vdash_M^i k'$ for all i and k $k\vdash_M^* k'<=>\exists_{i\in N} k\vdash_M^i k'$

Turing Machine example

Look 1.5

1.1:

1.2:

Arbeitsweise einer Turing-Maschine

 $\delta(z_0, 0) = (z_0, 0, R)$ $\delta(z_0, 1) = (z_1, 0, L)$ $\delta(z_1, 0) = (z_0, 1, R)$

1.3

1.4

1.5