CS557: Cryptography

Modern Ciphers

S. Tripathy IIT Patna

Previous Class

- Cryptology
 - Cryptography and Cryptanalysis
 - Classical Ciphers

Some Security Definitions

computational security

 given limited computing resources, the cipher cannot be broken

unconditional security

 no matter how much computer power is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

Provable Security

 Provide evidence of security by reducing the security of the cryptosystem into a well studied problem

An unconditionally Secure Cipher

- Vernam Cipher
 - Gilbert Vernam invented and patented his cipher in 1917 while working at AT&T
 - also known as the one-time-pad.
- Encryption
 - plaintext + key = ciphertext
- Decryption
 - ciphertext key = plaintext
- Veernam's One-Time Pad
 - A truly random key as long as the message is used called a One-Time pad
 - is unbreakable since ciphertext bears no statistical relationship to the plaintext
 - since for <u>any plaintext</u> & <u>any ciphertext</u> there exists a key mapping one to other
 - can only use the key <u>once</u> though
- have problem of safe distribution of key

Perfect Secrecy

<u>Definition</u>: A Cryptosystem has <u>perfect secrecy</u> if
 P(E(k,m1)=c) = P(E(k,m2)=c)

 Shanon's secret cipher
 p(M=m|C=c) = p(M=m) for all plaintexts m and all ciphertexts c.

Lemma: Assume the cryptosystem is perfectly secure, then $|K| \ge |C| \ge |M|$,

where |X| denotes the size of the set of possible x

NB: The concept of perfect secrecy is restricted to a situation where key is used for only one encryption. Entropy: Measure of uncertainty concept (shanon 1948)

Ex: Shift cipher (with length=1) maintains perfect secrecy?

- $Pr(m \mid c) = pr(m) pr(c \mid m) / pr[c]$
- $pr[c] = \sum pr(k=K)pr(m=d_k(c))$
- = $\sum 1/26 \text{ pr}(m=c-k) = 1/26 \sum pr(m=c-k) = 1/26$
 - Since for each k there would be one and only one m to c i.e. $\sum pr(m=c-k) = 26 (1/26) = 1 \text{ so } pr[c] = 1/26$
- Again $pr(c|m) = pr(k = c m \pmod{26}) = 1/26$
- $Pr(m \mid c) = pr(m) pr(c \mid m) / pr[c] = (pr(m). 1/26)$
- =pr(m)

Product Ciphers

- Uses a sequence of substitutions and transpositions
 - Harder to break than just substitutions or transpositions
- This is a bridge from classical to modern ciphers.

Modern Ciphers

- We design one relatively simple scrambling method (called a round) and repeat it many times
 - One round may be easy to break, but when you put them all together it becomes very hard
- Almost all ciphers follow one of two structures
 - SPN (Substitution Permutation Network)
 - Feistel Network (basis for DES)
 - These describe the basic structure of a round

Block cipher

- An encryption function: $E = \{E_k\}$ is a family of 2^l permutations on n bits indexed by K, where K is I bits
- A decryption function: $D = \{D_k\}$ is a family of 2^l permutations on n bits indexed by k such that D_k is the inverse of E_k .
- Given a n-bit plaintext, P, and key, k, if $C = E_k(P)$ then $P = D_k(C)$.

Ideal Block Cipher

2-bit Block cipher

- Consider a block of size 2-bit.
- 24 different permutations
 - so 5-bit keys

Block cipher

- Length of the key?
- # n-bit permutations in block cipher: 2ⁿ!
- Design aim: choose the 2¹ permutations uniformly at random from the set of all 2ⁿ! Permutations
- Aim of Cryptanalysis:
 - find key k, or find (m, c) such that ek (m) = c for unknown k, or
 - distinguish member of block cipher from randomly chosen permutation

Block cipher Design Principle

Confusion:

 The relation between the statistics of cipher text and plain texts must be complex

Diffusion:

 Every bit of the cipher text should depend on the every bit of key and plain text

Ex.: Suppose encrypting plaintext 11111111111111 produces ciphertext 0110110000101001

Then encrypt 11111110111111111, can't predict anything about ciphertext

- These two important properties can be achieved by repeatedly using of keyed substitutions and permutations.
 - Block cipher in this principle is called Iterated Block cipher

Iterative Block cipher

Iterated Block cipher

```
    E(K, p)

• (K1, ... KNr) <-- Ks(K)
• w0 <-- p

 for i <-- 1 to Nr do</li>

       wi \leftarrow F(wi-1,Ki-1)
• C <-- W<sub>Nr</sub>

    Return (c)
```

```
    D(K, c)

• (K1, ... KNr) <-- Ks(K)
w0 <-- p</li>
• for i <-- 1 to Nr do
• wi <-- F<sup>-1</sup>(wi-1,Ki-1)

    c <-- wNr</li>

    Return (c)
```

Common Building Blocks

Substitution-Permutation Network (SPN)

 General term for sequence of operations that performs substitutions and permutations on bits

Feistel Network (will see example later)

- For input $L_0 \mid\mid R_0$ and any function F
- $L_i = R_{i-1}$
- $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$
- K_i = other input to F, (ex. key material)

Whitening

- XOR data with key material $(X \oplus K)$
- Helps break relationship between output of one round and input to next round

• Thanks