DILLAN MARROQUIN MATH 331.1001 SCRIBING WEEK 7 Due. 11 October 2021

Lecture 16

Proposition (16.1). Let φ be a group homomorphism.

- 1. $im \varphi$ is a subgroup of H.
- 2. $\ker \varphi$ is a subgroup of *G*.

Proof. (1.) Use Proposition 8.3, which tells how to find a subgroup, and Proposition 7.1 (which states that for $\varphi: G \to H$, $\varphi(e_G) = e_H$ and $\varphi(x^{-1}) = \varphi(x)^{-1} \, \forall x \in G$). Since $\varphi(e_G) = e_H$, we have $e_H \in \operatorname{im} \varphi \neq \emptyset$ and so $\operatorname{im} \varphi$ is not empty. Let $a,b \in \operatorname{im} \varphi$. We want to show that $ab^{-1} \in \operatorname{im} \varphi$. By definition of $\operatorname{im} \varphi$, $\exists x,y \in G$ such that $\varphi(x) = a$ and $\varphi(y) = b$. Then $ab^{-1} = \varphi(x)\varphi(y)^{-1} = \varphi(x)\varphi(y^{-1}) = \varphi(xy^{-1})$ by definition of group homomorphism. Thus, $ab^{-1} \in \operatorname{im} \varphi$.

(2.) We will use the same previous propositions. By Proposition 7.1, $\varphi(e_G) = e_H$ which implies that $e_H \in \ker \varphi \neq \emptyset$. Let $x,y \in \ker \varphi$. We want to show $xy^{-1} \in \ker \varphi$. Note that $\varphi(y) = e_H$ which implies $\varphi(y)^{-1} = e_H$. Then by definition of group homomorphism, $\varphi(xy^{-1}) = \varphi(x)\varphi(y^{-1})$, and since $x \in \ker \varphi$, $\varphi(x)\varphi(y^{-1}) = e_H\varphi(y^{-1}) = e_H^2 = e_H$. Thus $\varphi(xy^{-1}) = e_H \in \ker \varphi$.

Lecture 17

Proposition (17.1). Let $\varphi : G \to H$ be a group homomorphism. Then φ is injective iff $\ker \varphi = \{e_G\}$, i.e. iff $\ker \varphi$ is the trivial subgroup.

Proof. Suppose φ is injective. We want to show $x = e_G$. Let $x \in \ker \varphi$. Then $\varphi(x) = e_H$ by definition, and by Proposition 7.1, $\varphi(e_G) = e_H$. Since φ is injective, $\varphi(x) = e_H$ and $\varphi(e_G) = e_H$ implies $e_G = x$ and thus $\ker \varphi = \{e_G\}$. Conversely, suppose $\ker \varphi = \{e_G\}$. Assume $\varphi(x) = \varphi(y)$. Then $\varphi(x)\varphi(y)^{-1} = e_H$. By Proposition 7.1, $\varphi(x)\varphi(y)^{-1} = \varphi(x)\varphi(y)^{-1}$ and by definition of group homomorphism $= \varphi(xy^{-1}) = e_H$. Thus $xy^{-1} \in \ker \varphi$, but since $\ker \varphi = \{e_G\}$, $xy^{-1} = e_G$ and by multiplying each side by y on the right, we obtain x = y as desired.

Corollary (17.2). Let $\varphi : G \to H$ be a group homomorphism. Then φ is a group isomorphism iff $\ker \varphi = \{e_G\}$ and $\operatorname{im} \varphi = H$.

Normal Subgroups

(Which, by the way, the term "normal" sucks!)

<u>Idea:</u> Recall given a subgroup $H \le G$, we can define an equivalence relation on G, $x \sim_H y$, iff $x^{-1}y \in H$. The equivalence classes are the left cosets of H: $[x] = xH := \{xh|h \in H\}$. We denote the set of lefts cosets as $G/H = \{xH|x \in G\}$. Consider the groups $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Q}/\mathbb{Z} .

Remark (17.3). In the above groups, *G* induces a group operation (and identity) on *G/H* such that the function $\pi: G \to G/H$, $x \mapsto [x] = xH$ is a group homomorphism!

Example. Let $G = S_3$, $H = \langle \sigma \rangle$, $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Note that |G/H| = [G:H] = 2 by Lagrange's Theorem.

Then $G/H = \{eH, \tau H\} = \{H, \tau H\}$ for $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. The goal is to put a group structure on G/H as in Remark 17.3.

That is, we want $xH \cdot yH \stackrel{?}{=} xyH$ and $e_{G/H} \stackrel{?}{=} e_{S_3}H = H$. This works! Verify by hand: e.g. $\tau H \cdot \tau H = \tau^2 H = eH = H$. $\tau H = \{\tau, \tau\sigma, \tau\sigma^2\} = \tau\sigma H$.

Example. Let $G = S_3$, $H = \langle \tau \rangle$. Then $G/H = \{H, \sigma H, \sigma^2 H\}$ (we can verify this is correct by hand). Again, we want to define a group operation on G/H. BUUUT it does not work!

Lecture 18

Example (Non-Example). (Continuation from last lecture) Let $G = S_3$, $H = \langle \tau \rangle$, where $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Then $G/H = \{eH = H, \sigma H, \sigma^2 H\}$ and $\sigma H = \{\sigma e = \sigma, \sigma \tau\}$.

If G/H is indeed a group, we must have that $\sigma H * \tau H = \sigma H$ and $\tau H * \sigma H = \sigma H$ because $\tau H = H$ is our identity element.

- 1. By definition of *, $\sigma H * \tau H = \sigma \tau H = \{\sigma \tau, \sigma \tau \circ \tau = \sigma\} = \sigma H$. Therefore, 1. is true. Note: $xH \cap yH \neq \emptyset$ implies xH = yH because left cosets are equivalence classes of an equivalence relation.
- 2. $\tau H * \sigma H = \tau \sigma H = \{\tau \sigma, \tau \sigma \tau\}$ by definition of *. But $\tau \sigma \neq \sigma$ and $\tau \sigma \neq \sigma \tau$, therefore $\tau \sigma H \neq \sigma H$ and thus we conclude $G/H = S_3 \langle \tau \rangle$ is not a group.

But what went wrong?? We will see that this happened because $\langle \tau \rangle$ is not a normal subgroup.

Definition (18.1). A subgroup $H \le G$ is <u>normal</u> iff for all $g \in G$, the set $gHg^{-1} := \{ghg^{-1} | h \in H\}$ is equal to H. We write $G \le H$

Remark. If $H \subseteq G$, then

- 1. For all $g \in G$ and for all $h \in H$, $ghg^{-1} \in H$. i.e. $\exists h' \in H$ such that $ghg^{-1} = h'$ (since $gHg^{-1} \subseteq H$), but in general $h' \neq h$.
- 2. Let $h \in H$. Then $\forall g \in G$, $\exists h' \in H$ such that $h = gh'g^{-1}$ (since $H \subseteq gHg^{-1}$.

Proposition (18.2 USEFUL). Let $H \le G$ be a subgroup. Assume $\forall g \in G, \forall h \in H$, we have $ghg^{-1} \in H$. Then

- 1. $\forall g \in G, gHg^{-1} \leq H$ and
- 2. $\forall g \in G, H \leq gHg^{-1}$.

i.e. H is normal.

1st Examples/Non-Examples

Proposition (18.3). Let *G* be abelian. Then every subgroup of *G* is normal.

Proof. Let H be a subgroup, $g \in G$, and let $h \in H$. Since G is abelian, $ghg^{-1} = hgg^{-1}$. Therefore, $ghg^{-1} = h \in H$.

Proposition (18.4). A subgroup $H \le G$ is normal iff $\forall x \in G$, xH = Hx.

Corollary (18.5). If $H \le G$ is a subgroup and [G:H] = 2, then H is normal.

Example. $H = \langle \sigma \rangle$ is normal in $G = S_3$ since $[S_3 : H] = 2$.

Example (Non-Example). $H := \langle \tau \rangle$ is not normal in $G = S_3$. Observe that $\sigma \tau \sigma^{-1} \notin H$.