Representation Group

Alexandre Charland

April 27, 2025

Chapter 1

Module

Lemma 1 (HomAeM). Soit A un anneau unitaire, M un A-module et e un idempotant de A.

$$\forall \phi \in \mathit{Hom}_A(Ae,M), \exists m \in eM, \phi(e) = m$$

Proof. Soit $n \in M$ to $\phi(e) = n$

$$\phi(e) = n \Rightarrow e\phi(e) = \phi(e) = en \Rightarrow n = en$$

Donc $n \in eM$

Lemma 2 (HomAeMisoeM). Soit A un anneau unitaire, M un A-module et e un idempotant de A.

$$Hom_A(Ae, M) \cong eM$$

Proof. Soit $\phi: \operatorname{Hom}_A(Ae, M) \to M$ tq $\phi(\psi) = \psi(e)$

Il faut mq ϕ est un homomorphisme.

Soit $\psi, \sigma \in \text{Hom}_A(Ae, M)$.

$$\phi(\psi + \sigma) = (\psi + \sigma)(e) = \psi(e) + \sigma(e) = \phi(\psi) + \phi(\sigma)$$

Soit $a \in A$

$$a \cdot \phi(\psi) = a \cdot \psi(e) = \phi(a \cdot \psi)$$

Comme ${\rm Hom}_A(Ae,M)$ est un module, par le premier théorème d'isomorphisme, $\frac{{\rm Hom}_A(Ae,M)}{\ker(\phi)}\cong {\rm Im}(\phi)$

Le noyau de ϕ est trivial, car un unique homomorphisme peut être défini tq $\sigma(e)=0$, car tous éléments du domaine sont de la forme ae.

Il ne reste plus qu'a montré que l'image est eM.

Par le lemme HomAeM, on a que $\text{Im}(\phi) \subset eM$.

Soit $m \in eM$. Considérons $\psi(e) = m \operatorname{tq} \psi(ae) = am$.

Il s'agit d'un homomorphisme de $Ae \to M$.

Donc
$$Im(\phi) = eM$$

Chapter 2

YoungTableau

Definition 3 (YoungTableau). Un YoungTableau est une fonction des cellules d'un YoungDegram de taille n et retourne un naturel de 0 à n-1	ia-
Lemma 4 (injYu). Un YoungTableau est injectif sur les entrés qui sont dans le YoungDiagra	am
Proof. Par définition d'un YoungTableau	
Lemma 5 (bijYu). Un YoungTableau est une bijection entre les case de son YoungDiagram les naturels de 0 à n -1	et
<i>Proof.</i> Comme il est injectif et le domaine et codomaine sont fini et ont la même cardinalité. La fonction doit être bijective	
Lemma 6 (preImYu). Tous nombre de θ à n -1 possède une unique case associé dans μ par Σ	Y_{μ}
<i>Proof.</i> Trivial sachant que Y_{μ} est bijectif	
Definition 7 (Pu). P_{μ} est un sous groupe de S_n , défini de la façon suivante: Un élément de P_{μ} permute les entré du YoungDiagram s'ils sont sur la même rangé.	
Proof. Il y a trois choses à vérifier. Le sous-groupe est fermé sous la composition de fonction Preuve: Soit $\alpha, \beta \in P_{\mu}$, mq $\alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j}) \to \mathbf{i}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ Comme Y_{μ} est une bijection, $\exists k \in \mu$ tq $Y_{\mu}(\mathbf{k}) = \beta(Y_{\mu}(\mathbf{j}))$ Comme $\beta \in P_{\mu}$ on a que $\mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ De plus on a que $\alpha(Y_{\mu}(\mathbf{k})) = \alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j})$ On peut déduire que $\mathbf{i}.\mathbf{y} = \mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$	
L'élement neutre est élément de P_{μ} La preuve découle de l'injectivité de Y_{μ}	
L'inverse est élément de P_{μ} Soit $\alpha \in P_{\mu}$, mq $\alpha^{-1} \in P_{\mu}$ Comme alpha est une bijection, on a que $\alpha^{-1}(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j}) \Leftrightarrow Y_{\mu}(\mathbf{i}) = \alpha(Y_{\mu}(\mathbf{j}))$	
Definition 8 (PuCard). Le nombre d'élément de P_{μ} est fini.	
<i>Proof.</i> Comme P_{μ} est un sous-groupe d'un groupe fini, il a un nombre fini d'élément.	

Definition 9 (Qu). Q_{μ} est un sous groupe de S_n , défini de la façon suivante: Un élément de Q_{μ} permute les entré du Young Diagram s'ils sont sur la même colonne.

Proof. La même preuve que Pu

Definition 10 (QuCard). Le nombre d'élément de Q_{μ} est fini.

Proof. Comme Q_{μ} est un sous-groupe d'un groupe fini, il a un nombre fini d'élément.

Lemma 11 (sectPuQu). Pour un même YoungTableau, l'intersection de P_{μ} et Q_{μ} est 1

Proof. Il faut mq $P_{\mu} \cap Q_{\mu} \subseteq 1$

Soit $\alpha \in P_{\mu} \cap Q_{\mu}$ et $\mathbf{i} \in \mu$ Comme Y_{μ} est bijectif, $\exists \ \mathbf{j} \in \mu$, $\alpha(Y_{\mu}(i)) = Y_{\mu}(j)$

 $\alpha \in P_{\mu} \cap Q_{\mu}$ donc i.x = j.x et i.y = j.y

Donc $i=j \to \alpha(Y_{\mu}(i)) = Y_{\mu}(i)$

Donc alpha est la fonction id

Definition 12 (PuQu). $P_{\mu}Q_{\mu} := \{g : [0, n-1] \to [0, n-1] | \exists p \in P_{\mu} \land \exists q \in Q_{\mu}, g = pq \}$

Definition 13 (rowToCol). Soit g est une permutation de [0, n-1]. Elle est rowToCol si

$$\forall i,j,k,l \in \mu, ((i \neq j) \land (g \circ Y_{\mu}(i) = Y_{\mu}(k)) \land (g \circ Y_{\mu}(j) = Y_{\mu}(l))) \rightarrow ((i.x \neq j.x) \lor (k.y \neq l.y))$$

Definition 14 (YuInv). Y_{μ}^{-1} est une l'inverse de Y_{μ}

Lemma 15 (staysInY). Soit q une permutation rowToCol,

$$\forall m \in [0,n-1], (Y_{\mu}^{-1}(m).x,Y_{\mu}^{-1}(g(m)).y) \in \mu$$

Proof. No idea... TODO Figure it out

Definition 16 (qu). Soit g une permutation rowToCol, q_{μ} est une permutation de [0, n-1] défini comme

$$q_{\mu}(m) = Y_{\mu}((Y_{\mu}^{-1}(m)).x, (Y_{\mu}^{-1} \circ g(m)).y)$$

Proof. Par le lemme staysInY, on sait que la fonction q_{μ} est bien défini.

Il ne reste plus qu'a montré que q_{μ} est une bijection.

Comme le domaine et codomaine sont de même taille, il suffit de montrer que q_u est injectif.

Supposons le contraire, $\exists m, m' \in [0, n-1]$ tq $q_u(m) = q_u(m') \land m \neq m'$.

 $\exists i,j \in \mu, \; \mathrm{tq} \; Y_{\mu}(i) = m \text{ et } Y_{\mu}(j) = m'.$

Comme Y_{μ} est injective, on a que $i \neq j$.

 $\exists k,l \in \mu, \; \mathrm{tq} \; Y_{\mu}(k) = g(Y_{\mu}(i)) \; \mathrm{et} \; Y_{\mu}(l) = g(Y_{\mu}(j)).$

$$\begin{split} q_{\mu}(Y_{\mu}(i)) &= q_{\mu}(Y_{\mu}(j)) \Rightarrow \\ Y_{\mu}((Y_{\mu}^{-1}(Y_{\mu}(i))).x, (Y_{\mu}^{-1} \circ g(Y_{\mu}(i))).y) &= Y_{\mu}((Y_{\mu}^{-1}(Y_{\mu}(j))).x, (Y_{\mu}^{-1} \circ g(Y_{\mu}(j))).y) \\ i.x &= j.x \wedge Y_{\mu}^{-1} \circ g(Y_{\mu}(i)).y = Y_{\mu}^{-1} \circ g(Y_{\mu}(j)).y \Rightarrow Y_{\mu}^{-1} \circ Y_{\mu}(k).y = Y_{\mu}^{-1} \circ Y_{\mu}(l).y \\ i.x &= j.x \wedge k.y = l.y \end{split}$$

Donc comme g est rowToCol $i \neq j \land Y_{\mu}(k) = g(Y_{\mu}(i)) \land Y_{\mu}(l) = g(Y_{\mu}(j))$ on a que $i.x \neq j.x \lor k.y \neq j.x \lor k.y \neq j.x \lor k.y \neq j.x \lor k.y$

Contradiction, donc q_{μ} est injectif et donc bijectif.

Lemma 17 (quInQu).

$$q_{\mu} \in Q_{\mu}$$

Proof. Par construction de $q_{\mu},$ la valeur en x ne change pas après l'application.

Definition 18 (quInv). q_{μ}^{-1} est la fonction inverse de q_{μ}

Lemma 19 (staysInX). Soit g une permutation rowToCol,

$$\forall m \in [0,n-1], ((Y_{\mu}^{-1} \circ g \circ q_{\mu}^{-1}(m)).x, (Y_{\mu}^{-1}(m)).y) \in \mu$$

Proof. No idea... TODO Figure it out

Definition 20 (pu). Soit g une permutation rowToCol, p_{μ} est une permutation de [0, n-1] défini comme

$$p_{\mu}(m) = Y_{\mu}((Y_{\mu}^{-1} \circ g \circ q^{-1}(m)).x, (Y_{\mu}^{-1}(m)).y)$$

Proof. La preuve de la bijection requiert un lemme avant

Lemma 21 (puqug). Soit g une permutation rowToCol,

$$g = p_{\mu} \circ q_{\mu}$$

Proof. Soit $m\in[0,n-1]$, on cherche a montré que $p_{\mu}\circ q_{\mu}(m)=g(m)$ Soit $i,j\in\mu$ tq $Y_{\mu}(i)=m$ et $Y_{\mu}(j)=g(Y_{\mu}(i))$

$$q_{\mu}(Y_{\mu}(i)) = Y_{\mu}((Y_{\mu}^{-1}(Y_{\mu}(i))).x, (Y_{\mu}^{-1} \circ g(Y_{\mu}(i))).y) = Y_{\mu}(i.x, Y_{\mu}^{-1}(Y_{\mu}(j)).y) = Y_{\mu}(i.x, j.y)$$

On a donc

$$p_{\mu} \circ q_{\mu}(Y_{\mu}(i)) = Y_{\mu}(Y_{\mu}^{-1}(g \circ q_{\mu}^{-1} \circ q_{\mu} \circ Y_{\mu}(i)).x, Y_{\mu}^{-1}(q_{\mu}(Y_{\mu}(i))).y)$$

$$Y_{\mu}(Y_{\mu}^{-1}(g\circ Y_{\mu}(i)).x,Y_{\mu}^{-1}(Y_{\mu}(i.x,j.y)).y)=Y_{\mu}(Y_{\mu}^{-1}(Y_{\mu}(j)).x,j.y)=Y_{\mu}(j.x,j.y)=Y_{\mu}(j)=g(Y_{\mu}(i))$$

Lemma 22 (bijpu). Soit g une permutation rowToCol, p_{μ} est une bijection

Proof. Par puque, on a $p_{\mu} \circ q_{\mu} = g \Rightarrow p_{\mu} = g \circ q_{\mu}^{-1}$ Comme g et q_{μ}^{-1} sont des bijections, p_{μ} en est une aussi.

Lemma 23 (puInPu).

$$p_u \in P_u$$

Proof. Par construction de p_{μ} , la valeur en y ne change pas après l'application.

Lemma 24 (gInPuQu). Soit g une permutation rowToCol

$$g \in P_{\mu}Q_{\mu}$$

Proof. Il s'agit d'une conséquence directe des lemmes: puqug, puInPu et quInQu

Definition 25 (IneqYoungDiagram). Soit μ et λ deux YoungDiagram de même cardinalité. On dit que $\mu > \lambda$ si $\exists i \in \mathbb{N}$ tq $\mu_i > \lambda_i$ et $\forall j \in \mathbb{N}_{< i}, \, \mu_j = \lambda_j$.

Chapter 3

SpechtModules

Definition 26 (YoungProjectors). Un Young projector est défini par un YoungDiagram μ

$$a_{\mu} := \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g$$

$$b_\mu:=\frac{1}{|Q_\mu|}\sum_{g\in Q_\mu}(-1)^gg$$

Où $(-1)^g$ est le signe de g

Definition 27 (Young Symmetriser). Un Young symmetriser est défini par un Young Diagram μ $c_{\mu} := a_{\mu}b_{\mu}$

Definition 28 (SpechtModules). Soit μ un YoungDiagram.

$$V_{\mu} := \mathbb{C}[S_n]c_{\mu}$$

 V_{μ} est appelé un Specht modules. Il est un sous-espace de $\mathbb{C}[S_n].$

Lemma 29 (Linear Transformation). $\exists l_{\mu}\ une\ fonction\ linéaire\ tq$ $\forall x \in \mathbb{C}[S_n], \ a_{\mu}xb_{\mu} = l_{\mu}(x)c_{\mu}$

Proof. Soit $\mathbf{x} \in \mathbb{C}[S_n]$.

x est de la forme $\sum_{g \in S_n} a_g g$. Examinons se qu'il se passe pour différent g. Si $g \in P_\mu Q_\mu$, alors $\exists p \in P_\mu$ et $q \in Q_\mu$ tq g=pq

$$a_{\mu}gb_{\mu} = \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g \, pq \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^{h}$$

$$1 \sum_{g \in P_{\mu}} 1 \sum_{h \in Q_{\mu}} (-1)^{h}$$

$$\frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} gp = \frac{1}{|P_{\mu}|} \sum_{g' \in P_{\mu}} g'$$

On peut faire le changement de variable en posant g' = gp et en utilisant le fait que $\phi(g) = gp$ est un isomorphisme de groupe. Ainsi les deux sommes sont équivalantes à un réordenement près.

$$\frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h qh = \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h qh = (-1)^{q^{-1}} \frac{1}{|Q_{\mu}|} \sum_{h' \in Q_{\mu}} (-1)^{h'} h'$$

$$a_\mu g b_\mu = (-1)^q c_\mu$$

Il ne reste plus à montrer que si g $\notin P_\mu Q_\mu$ alors $l_\mu(g)$ =0, car g ne peut pas être exprimer par c_μ Donc il faut mq $a_\mu g b_\mu$ =0 ou de façon équivalente $a_\mu g b_\mu = -a_\mu g b_\mu$

Il suffit de trouver $t \in P_{\mu}$ tq $g^{-1}tg \in Q_{\mu}$ et $(-1)^t = -1$, car

$$a_{\mu}gb_{\mu}=a_{\mu}tgb_{\mu}=a_{\mu}(gg^{-1})tgb_{\mu}=a_{\mu}g(g^{-1}tg)b_{\mu}=(-1)^{g^{-1}tg}a_{\mu}gb_{\mu}=-a_{\mu}gb_{\mu}$$

Plusieurs changements de variables ont été effectuer pour "faire apparaître et disparaître" des éléments. $(-1)^{g^{-1}tg}=(-1)^{g^{-1}}\cdot(-1)^t\cdot(-1)^g=(-1)^g\cdot(-1)^t\cdot(-1)^g=-1$

Par la contraposé du lemme No2FromSameColToSameRow, on a que

 $\exists i,j,k,l \in \mu \text{ tq } i \neq j, g(Y_{\mu}(i)) = Y_{\mu}(k), g(Y_{\mu}(j)) = Y_{\mu}(l), i.x = j.x \text{ et } k.y = l.y.$

Posons t : $[0,n-1] \to [0,n-1]$

$$t(n) = \begin{cases} Y_{\mu}(k) & \text{si } n = Y_{\mu}(l) \\ Y_{\mu}(l) & \text{si } n = Y_{\mu}(k) \\ n & \text{sinon} \end{cases}$$

Par construction, $t \in P_{\mu}$ et $(-1)^t = -1$. Il suffit de montré que $g^{-1}tg \in Q_{\mu}$

$$g^{-1}\circ t\circ g(Y_{\mu}(i))=g^{-1}\circ t(Y_{\mu}(k))=g^{-1}(Y_{\mu}(l))=Y_{\mu}(j)$$

$$g^{-1}\circ t\circ g(Y_u(j))=g^{-1}\circ t(Y_u(l))=g^{-1}(Y_u(k))=Y_u(i)$$

On remarque que si $m \in \mu \backslash \{i,j\}, g(Y_{\mu}(m)) \notin \{Y_{\mu}(k), Y_{\mu}(l)\}.$ Donc $t(g(Y_{\mu}(m)))$ se comporte de la comporte de l comme la fonction identité. Ainsi $g^{-1}tg \in Q_{\mu}$.

Lemma 30 (SmallerImpZero). $Si \mu > \lambda$, alors

 $a_{\mu}\mathbb{C}[S_n]b_{\lambda}=0$

Proof. Comme $\mu > \lambda$

TODO montré que

Donc, il existe deux éléments de la même colomne que g envoit sur la même rangé

Ainsi un peut construire un t tq t $\in P_{\mu}$ et $g^{-1}tg \in Q_{\lambda}$. Par le même argument que le dernier lemme, $a_{\mu}\mathbb{C}[S_n]b_{\lambda}=0$

Lemma 31 (CuPropIdempotent). c_{μ} est proportionel à un idempotent. De façon mathématique

$$\exists a \in \mathbb{C}, c_{\mu}^2 = a \cdot c_{\mu}$$

Proof. On applique le lemme LinearTransformation avec $x = b_{\mu}a_{\mu} \in \mathbb{C}[S_n]$.

Theorem 32 (IrreductibleRepresentationSn). $\forall \mu$ partition de n, V_{μ} est toute les représentations $irréductibles de <math>S_n$

Proof. Soit μ, λ deux partitions de n et sans perte de généralité, $\mu \geq \lambda$

$$\operatorname{Hom}_{\mathbb{C}[S_n]}(V_\mu,V_\lambda)=\operatorname{Hom}_{\mathbb{C}[S_n]}(\mathbb{C}[S_n]c_\mu,\mathbb{C}[S_n]c_\lambda)\cong c_\mu\mathbb{C}[S_n]c_\lambda$$

Si $\mu > \lambda$ alors $c_{\mu} \mathbb{C}[S_n] c_{\lambda} = 0$

Sinon $\mu = \lambda$ et on a une représentation de dimension 1.

Comme le nombre de partition de n est égale au nombre de classe de conjugaison de S_n on a que tous les représentations de S_n sont atteintes par V_{μ} .