- Tseitin transformation: For every propositional logic formula ϕ , there is a propositional logic formula ψ in CNF s.t. ϕ and ψ are equisatisfiable.
 - For every non-atomic subformula α , define C_{α} as follows:
 - Let $\psi = x_{\phi} \wedge \bigwedge \{C_{\alpha} | \alpha \text{ is a non-atomic subformula of } \phi \}$. Then ϕ and ψ are equisatisfiable.

α	C_{lpha}	Remark
¬β	$(x_{\alpha} \vee x_{\beta}) \wedge (\neg x_{\alpha} \vee \neg x_{\beta})$	$x_{\alpha} \Leftrightarrow \neg x_{\beta}$
$\beta_0 \vee \beta_1$	$(x_{\alpha} \vee \neg x_{\beta_0}) \wedge (x_{\alpha} \vee \neg x_{\beta_1}) \wedge (\neg x_{\alpha} \vee x_{\beta_0} \vee x_{\beta_1})$	$x_{\alpha} \Leftrightarrow x_{\beta_0} \vee x_{\beta_1}$
$\beta_0 \wedge \beta_1$	$(\neg x_{\alpha} \lor x_{\beta_0}) \land (\neg x_{\alpha} \lor x_{\beta_1}) \land (x_{\alpha} \lor \neg x_{\beta_0} \lor \neg x_{\beta_1})$	$x_{\alpha} \Leftrightarrow x_{\beta_0} \wedge x_{\beta_1}$

- SAT algorithms: backtracking-based v.s. stochastic local search algorithms.
- Davis-Putnam-Logemann-Loveland (DPLL) algorithm (backtracking-based):
 - $\bullet \ \ \textbf{Resolution} \colon \tfrac{\varphi_1 \vee \psi \ \varphi_2 \vee \neg \psi}{\varphi_1 \vee \varphi_2} \ . \ \varphi_1 \vee \varphi_2 \ \ \text{is called a } \textbf{conflict-driven learned clause}.$
 - **Non-chronological backtracking**: When a learned clause is generated, backtrack to the next-to-the-last variable in the clause to prevent the conflict from reoccurring.
 - Unique implication point (UIP): Given a cut in an implication graph, an internal node causing a conflict is called a *UIP* if it is one and the only one node in the same level as the conflict.
 - Emperically, the first UIP is the best.
- Examples of UIP. Cut 1: no UIP. Cut 2: c_0 is the UIP. Cut 3: c_1 is the UIP.

- MiniSet: http://minisat.se/Main.html (http://minisat.se/Main.html)
- Informally, a **predicate** is a function from objects to truth values.
- Example: every student is younger than some instructor.
 - S(x) means x is a student; I(y) means y is an instructor; Y(x, y) means x is younger than y.
 - $\quad \quad \circ \quad \forall x (S(x) \Rightarrow (\exists y (I(y) \land Y(x,y))))$
- Symbols in predicate logic: **predicate symbols** *P*, **function symbols** *F*, **constant symbols** *C*.
- $C \subseteq F$: **0-arity** (or **nullary**) function is in fact a constant.
- **Terms**: $t ::= x \mid c \mid f(t,...,t)$, where x is a variable, $c \in F$ a nullary function symbol, and $f \in F$.
- Formulae: $\varphi ::= P(t_1, \dots, t_n) \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\forall x \varphi) \mid (\forall x \varphi) \mid (\exists x \varphi), \text{ where } x \text{ is a variable, } t_1, \dots, t_n \text{ are}$

terms over F, and $P \in P$ is a predicate symbol of arity n.

• Free and bound variables:

- Free variables: An occurrence of x in φ is *free* in φ if it is a leaf node without ancestor nodes $\forall x$ or $\exists x$ in the parse tree of φ .
- **Bound** variables: Otherwise, the occurrence of *x* is *bound*.

• Substitution rules:

- Variables can be replaced by terms (but not formulae).
- Given a variable x, a term t and a formula φ . Define $\varphi[t/x]$ to be the formula obtained by replacing each *free* variable x in φ with t.
- Let t be a term, x a variable, and φ a formula. t is *free for x* in φ if no free x in φ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.
- Bound variables can always be renamed for substitution.