HOMEWORK 8

(1) Show the lemma that we mentioned in class: Namely, Let $f: X \to Y$ be a surjective function. Define an equivalence relation \sim on X by declaring $x \sim x'$ if and only if f(x) = f(x'). There is an induced bijection

$$(X/\sim) \to Y$$

given by h([x]) = f(x). Its inverse is h^{-1} takes y to $f^{-1}(y)$, which equals [x] for any choice of x such that f(x) = y. The surjection $f: X \to Y$ thus factors as the canonical surjection $\pi: X \to (X/\sim)$ and a bijection $h: (X/\sim) \to Y$.

- (2) Show that topologically the real plane and the complex plane are the same.
- (3) Show that if X is second countable, then X is separable.
- (4) Show that a countable topological space X (that is, X is countable as a set) is second countable if and only if it is first countable.
- (5) Find an example of a second countable space X which has a quotient that is not second countable.
- (6) Show that there exists a topological space X that is countable but not first countable.
- (7) Let $X = \mathbb{R} \times \{1,2\}$, where $\{1,2\}$ is equipped with the discrete topology, and consider the equivalence relation given by $(x,1) \sim (x,2)$ for all $x \neq 0$ (but $(0,1) \not\sim (0,2)$). Show that the quotient topology on X/\sim is not Hausdorff.
- (8) Let R denote an equivalence relation on X and let S denote an equivalence relation on Y. Show that $R \times S$ is an equivalence relation on $X \times Y$. Show that it is not necessary that $(X/R) \times (Y/S)$ is homeomorphic to $(X \times Y)/(R \times S)$.
- (9) Topology (Munkres), Chapter 2, Section 22, Exercise (2).
- (10) Topology (Munkres), Chapter 2, Section 22, Exercise (3).
- (11) Topology (Munkres), Chapter 4, Section 31, Exercise (2).
- (12) Topology (Munkres), Chapter 4, Section 31, Exercise (12).
- (13) Topology (Munkres), Chapter 4, Section 31, Exercise (13).