# Light Curve Analysis of Type II SNe KSP-ZN7090

Patrick Sandoval & Dr. Dae-Sik Moon



### **First Detection**

- First detected by KMTNet on 2022-10-12 14:44 UTC
- Young Type II SNe detected 1 day after explosion
- Multiband observation (BVi)

$$\alpha = 21^h 31^m 3.05$$
 $\delta = -53^o 55' 49.91''$ 





### Korean Microlensing Telescope Network

- Network of three 1.6m wide field telescopes
- Locates in Australia, Chile and South Africa
- Provide 24hr of continuous sky survey



### Mathew Leung Photometry Work

- Image Subtraction
- PSF Photometry
- Discarding Bad Quality Images
- Light Curve Binning & Image
   Stacking
- Colour Corrections
- Extinction Correction



## Creating Bolometric Light Curve for KSP-ZN7090

Bolometric light curves can be though as the light curves that account for all E&M radiation emitted at all wavelengths

Method: 1

- Direct integration of SED through multiple band photometry observations
- We only have 3 bands

Method: 2

- Apply bolometric corrections derived from well studied SNe
- We must properly classify and understand powering mechanism of ZN7090

## Stage 1: Preliminary Analysis on Light Curves

### Classifying our SN

- A rough inspection on the host galaxy's spectrum indicated
   P-Cygni profile for H-alpha (Hint towards Type II SNe)
- Subdivision within Type II SNe
  - o Type II-P
  - Type II-L
- Difference between division lies on the morphology of light curve

- Type II-L
  - Linear decline post peak
  - Decline rate is greater than0.01 mag/day
- Type II-P
  - Plateau phase post peak
  - Attributed to hydrogen recombination on the ejecta

### **High Order Polynomial Monte-Carlo Fitting**

- Constrain epoch of peak magnitude
- Fitted a polynomials of degree 7 for light curves
- We can see certain regions are more tightly constrained than others
- V-band decline rate:

$$\Delta m = 3.84 \pm 0.01 \frac{mag}{100 \, day}$$



### **Light Curve Powering Mechanism**

- Two main mechanisms could dominate a CCSNe
  - Shock breakout
  - Radioactive decay
- Difference lies on the light curve's rise time

#### **Constrain Epoch of First Light**

Perform simultaneous power fitting on different models

$$f(t) = C_{\lambda}(t - t_0)^n$$



## Stage 2: Applying Bolometric Corrections

#### **Bolometric Corrections**

- Bolometric corrections are polynomial which provide a key for a conversion between bolometric magnitude and apparent magnitudes
- The methods for finding these correction vary between literature

$$BC_x = \Sigma_{k=0}^n c_k (m_x - m_y)^k \qquad \qquad BC_x = m_{bol} - m_x$$

## Interpolation of Optical Light Curves

- To apply the bolometric corrections we need all magnitudes to be in same epochs
- We chose spline linear interpolation



### **Bolometric Corrections Used**

Martinez et al. 2022, Colors: (B-V)

Layman et al. 2014, Colors: (B - V)

Layman et al. <u>2016</u>, Colors: (B - i) (V-i)

Table 1: Martinez et al. 2022 bolometric correction coefficients for polynomial of degree 4 specific to the shock cooling phase.

| Color | Phase   | Range        | <i>C</i> 0 | $c_1$ | $c_2$  | <i>c</i> <sub>3</sub> | C4     | σ    |
|-------|---------|--------------|------------|-------|--------|-----------------------|--------|------|
| B - V | Cooling | (-0.10,1.16) | -0.740     | 4.472 | -9.637 | 9.075                 | -3.290 | 0.12 |

Note—BC =  $\sum_{k=0}^{n} c_k (color)^k$  where color is taken from column 1.  $\sigma$  is the standard deviation about the fit.

### **Monte-Carlo Gaussian Sampling for Corrections**

Sampled 1000 points from each magnitude data point assuming a normal distribution.

Monte Carlo Gaussian Sampling for Sample Data Point



### Martinez et al. Bolometric Light Curve



### Layma et al. 2014 & 2016 Corrections

Layman provides a correction for a combination between Sloan and Johnson Cousin filters, and just Johnson magnitudes.

Table 3: Lyman, Bersier, James, Mazzali, et al. 2016b bolometric correction coefficients for polynomial of degree 2 specific to the shock cooling phase.

| Color | Phase   | Range           | $c_0$  | $c_1$  | $c_2$  | σ     |
|-------|---------|-----------------|--------|--------|--------|-------|
| B-V   | Cooling | (-0.2, 0.5)     | -0.393 | 0.786  | -2.124 | 0.089 |
| B - i | -       | (-0.392, 2.273) | -0.155 | -0.450 | -0.167 | 0.023 |
| V - i | 923     | (-0.391, 0.658) | 0.181  | -0.212 | -1.137 | 0.044 |

### Layman et al. 2014



### Layman et al. 2016



#### **Smooth Color Evolution**

- Color is a temperature indicator for a SNe
- All color evolutions plot indicate a transition from blue to red
  - Due to the cooling of the ejecta
- We expect this cooling to be a smooth monotonic function

#### Gaussian Sampling on Color Evolution



### **Applying Simulated Color Evolution to Bolometric Correction**

Outlier bolometric magnitude in light curve has been 'corrected'

