

PROJECT DEFINITION:

The project involves integrating IoT sensors into public transportation vehicles to monitor ridership, track locations, and predict arrival times. The goal is to provide real-time transit information to the public through a public platform, enhancing the efficiency and quality of public transportation services. This project includes defining objectives, designing the IoT sensor system, developing the real-time transit information platform, and integrating them using IoT technology and Python.

DESIGN THINKING:

1. Project Objectives

•

2. IoT Sensor Design

.

3. Real-Time Transit Information Platform

•

4. Integration Approach

.

PROJECT OBJECTIVES

1 REAL-TIME TRANSIT INFORMATION:

•Objective: Provide passengers with real-time information about the current location and status of public transportation vehicles.

•Purpose: To enhance passenger convenience, reduce wait times, and improve the overall public transportation experience by allowing passengers to plan their trips more effectively.

2. ARRIVAL TIME PREDICTION:

•Objective: Predict and display estimated arrival times for public transportation vehicles at various stops.

•Purpose: To enable passengers to plan their journeys more accurately and reduce uncertainty about when the next vehicle will arrive, thereby improving the reliability of public transportation.

3. RIDERSHIP MONITORING:

•Objective: Collect data on the number of passengers boarding and alighting at each stop and on each vehicle.

•Purpose: To gather valuable insights into ridership patterns, demand, and peak hours, which can inform service optimization, scheduling, and resource allocation.

4. ENHANCED PUBLIC TRANSPORTATION SERVICES:

•Objective: Improve the overall quality and efficiency of public transportation services.

•Purpose: By integrating IoT sensors and providing realtime information, the project aims to enhance the public transportation experience, increase ridership, reduce congestion, and contribute to sustainable urban mobility.

IOT SENSOR DESIGN

1. IOT SENSORS AND HARDWARE:

- GPS Sensors
- **A** Passenger Counting Sensors
- Communication Modules
- Microcontrollers/Embedded Systems
- Power Supply Units

2. DATA PROCESSING AND STORAGE:

- Server/Cloud Infrastructure
- Database
- Data Processing Software

REAL-TIME TRANSIT INFORMATION PLATFORM

REAL-TIME TRANSIT INFORMATION PLATFORM:

Web Development Tools: Such as Python for backend development and HTML/CSS/JavaScript for the front-end user interface.

(OR)

Mobile App Development Tools: If you plan to offer a mobile app for passengers.

INTEGRATION APPROACH

INTEGRATION APPROACH

- Choose the required sensor and install it.
- Data Collection and Transmission: Collect the data from the microcontrolled and export through a interface by using some of the protocols
- Real-Time Transit Information Platform:
 Retrieve the exploited data and integrate in the platform like mobile or web

