SEQUENT RULES

Throughout: Γ is a set of formulae, φ , ψ , and θ are formulae, t is a term, x and y are variables.

Structural Rules

• (Assumption)
$$\overline{\Gamma \vdash \varphi}$$
 when $\varphi \in \Gamma$

• (Antecedent Rule)
$$\frac{\Gamma \vdash \varphi}{\Gamma' \vdash \varphi}$$
 when $\Gamma \subseteq \Gamma'$

• (Chain)
$$\frac{\Gamma \vdash \varphi \qquad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi}$$

Methods of Proof

• (Proof by Cases)
$$\frac{\Gamma, \psi \vdash \varphi \qquad \Gamma, \neg \psi \vdash \varphi}{\Gamma \vdash \varphi}$$

• (Proof by Contradiction)
$$\frac{\Gamma, \neg \varphi \vdash \psi \qquad \Gamma, \neg \varphi \vdash \psi}{\Gamma \vdash \varphi}$$

• (Modus Ponens)
$$\frac{\Gamma \vdash \varphi \Rightarrow \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

• (Contrapositive)
$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma, \neg \psi \vdash \neg \varphi}$$

Connective Rules

$$\bullet \quad (\lor \text{ Antecedent}) \quad \frac{\Gamma, \psi \vdash \varphi \qquad \Gamma, \theta \vdash \varphi}{\Gamma, \psi \lor \theta \vdash \varphi}$$

• (Right
$$\vee$$
 Succedent) $\frac{\Gamma \vdash \varphi \wedge \psi}{\Gamma \vdash \psi}$

• (Left
$$\vee$$
 Succedent) $\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}$

• (
$$\wedge$$
 Succedent) $\frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi}$

$$\bullet \quad \text{(Right \lor Succedent)} \quad \frac{\Gamma \vdash \varphi}{\Gamma \vdash \psi \lor \varphi}$$

• (Double Negation 1)
$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \neg \neg \varphi}$$

• (
$$\wedge$$
 Antecedent) $\frac{\Gamma, \psi \wedge \theta \vdash \varphi}{\Gamma, \psi, \theta \vdash \varphi}$

• (Double Negation 2)
$$\frac{\Gamma \vdash \neg \neg \varphi}{\Gamma \vdash \varphi}$$

• (Left \vee Succedent) $\frac{\Gamma \vdash \varphi \wedge \psi}{\Gamma \vdash \omega}$

Quantifier Rules

•
$$(\exists \text{ Succ})$$
 $\frac{\Gamma \vdash \varphi \frac{t}{x}}{\Gamma \vdash \exists x \varphi}$

• (
$$\exists$$
 Ante) $\frac{\Gamma, \varphi \frac{y}{x} \vdash \psi}{\Gamma, \exists x \varphi \vdash \psi}$ when y is not free in Γ, φ, ψ

•
$$(\forall \text{ Ante})$$
 $\frac{\Gamma, \varphi \frac{t}{x} \vdash \psi}{\Gamma, \forall x \varphi \vdash \psi}$

$$\bullet \quad (\forall \ \mathrm{Succ}) \quad \frac{\Gamma \vdash \varphi \frac{y}{x}}{\Gamma \vdash \forall x \varphi} \ \mathrm{when} \ y \ \mathrm{is \ not \ free \ in} \ \Gamma, \ \varphi$$

Equality Rules

•
$$(= \text{Refl})$$
 $\Gamma \vdash t = t$

• (= Refl)
$$\frac{\Gamma \vdash t = t}{\Gamma \vdash \varphi \frac{t}{x}}$$
• (= Sub)
$$\frac{\Gamma \vdash \varphi \frac{t'}{x}}{\Gamma, t = t' \vdash \varphi \frac{t'}{x}}$$