(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-219540

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl.6		識別記号	FΙ		
G11B	7/135		G11B	7/135	Z
	7/00			7/00	A

審査請求 未請求 請求項の数23 OL (全 38 頁)

(21)出願番号	特顯平10-21023	(71)出願人 000002185
(22)出魔日	平成10年(1998) 2月2日	東京都品川区北品川6丁目7番35号
(cc) mast	1,220 (1000) = 70 = 2	(72)発明者 堀米 秀嘉 東京都港区高輪4丁目24-40-101
		(72)発明者 斎藤 公博 東京都品川区北品川 6 丁目 7 番35号 ソニ 一株式会社内
		(74)代理人 弁理士 藤島 洋一郎

(54) 【発明の名称】 光情報記録装置および方法ならびに光情報記録再生装置および方法

(57)【要約】

【課題】 ホログラフィを利用して情報が記録される光 情報記録媒体に対して、より高密度に情報を記録するこ とができるようにする。

【解決手段】 記録時に、レーザカプラ20から出射さ れたレーザ光は、ビームスプリッタ16によって分離さ れ、一方の光は、空間光変調器15を通過して情報光と なり、この情報光は、対物レンズ13Aによって集光さ れて、ソリッドイマージョンレンズ12Aを通過して、 光情報記録媒体1に照射される。ビームスプリッタ16 によって分離された他方の光は、プリズム51,52、 凸レンズ53、凹レンズ54およびシリンドリカルレン ズ55を通過して、扁平な形状の記録用参照光となっ て、ソリッドイマージョンレンズ12Aを通過して、光 情報記録媒体1に照射される。情報光と記録用参照光 は、情報記録層2内で交差して、情報記録層2内に体積 ホログラムよりなる記録領域59が層状に形成される。

【特許請求の範囲】

【請求項1】 ホログラフィを利用して、情報を担持した情報光と記録用参照光との干渉による干渉パターンによって情報が記録される情報記録層を備えた光情報記録 媒体に対して情報を記録するための光情報記録装置であって、

情報を担持した情報光および記録用参照光を生成する記録用光生成手段と、

前記情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域が 10 層状に形成されるように、情報光と記録用参照光のうちの一方の光束を扁平な形状とし、情報記録層内で交差するように情報光および記録用参照光を情報記録層に対して照射するための記録光学系とを備えたことを特徴とする光情報記録装置。

【請求項2】 前記光情報記録媒体に対する情報光および記録用参照光の位置を制御する位置制御手段を備えたことを特徴とする請求項1記載の光情報記録装置。

【請求項3】 前記光情報記録媒体として、情報光および記録用参照光の位置決めのための情報が記録される位 20 置決め領域を備えたものを用い、前記位置制御手段は、前記位置決め領域に記録された情報を用いて、光情報記録媒体に対する情報光および記録用参照光の位置を制御することを特徴とする請求項2記載の光情報記録装置。

【請求項4】 前記位置制御手段は、情報記録層内に、 互いに重なることなく複数の記録領域が形成されるよう に、光情報記録媒体に対する情報光および記録用参照光 の位置を制御することを特徴とする請求項2記載の光情 報記録装置。

【請求項5】 前記記録光学系は、情報光および記録用 参照光を、それぞれの中心が互いに直交するように、情 報記録層に対して照射することを特徴とする請求項1記 載の光情報記録装置。

【請求項6】 前記記録光学系は、光情報記録媒体に対向するように配置されて情報光および記録用参照光が通過するソリッドイマージョンレンズを有することを特徴とする請求項1記載の光情報記録装置。

【請求項7】 ホログラフィを利用して、情報を担持した情報光と記録用参照光との干渉による干渉パターンによって情報が記録される情報記録層を備えた光情報記録 媒体に対して情報を記録するための光情報記録装置であって、

情報を担持した情報光および記録用参照光を生成する記 録用光生成手段と、

前記情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光を情報記録層に対して照射するための記録用光照射手段と、

前記情報記録層内に、前記干渉パターンによって情報が ーンが形成された領域の一部を通過するように照射する 記録され且つ情報が定着された記録領域が層状に形成さ 50 ことによって、情報記録層内に、干渉パターンによって

れるように、情報記録層内において前記干渉パターンが 形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の光束の定着用光 を、干渉パターンが形成された領域の一部を通過するように照射するための定着用光照射手段とを備えたことを 特徴とする光情報記録装置。

【請求項8】 前記光情報記録媒体に対する情報光および記録用参照光の位置を制御する位置制御手段を備えたことを特徴とする請求項7記載の光情報記録装置。

【請求項9】 前記光情報記録媒体として、情報光および記録用参照光の位置決めのための情報が記録される位置決め領域を備えたものを用い、前記位置制御手段は、前記位置決め領域に記録された情報を用いて、光情報記録媒体に対する情報光および記録用参照光の位置を制御することを特徴とする請求項8記載の光情報記録装置。

【請求項10】 前記位置制御手段は、情報記録層内に、互いに重なることなく複数の記録領域が形成されるように、光情報記録媒体に対する情報光および記録用参照光の位置を制御することを特徴とする請求項8記載の光情報記録装置。

【請求項11】 前記記録光学系は、光情報記録媒体に 対向するように配置されて情報光および記録用参照光が 通過するソリッドイマージョンレンズを有することを特 徴とする請求項7記載の光情報記録装置。

【請求項12】 ホログラフィを利用して、情報を担持した情報光と記録用参照光との干渉による干渉パターンによって情報が記録される情報記録層を備えた光情報記録媒体に対して情報を記録するための光情報記録方法であって、

60 情報を担持した情報光および記録用参照光を生成し、 情報光と記録用参照光のうちの一方の光束を扁平な形状 とし、情報記録層内で交差するように情報光および記録 別参照光を情報記録層に対して照射することによって、 情報記録層内に、情報光と記録用参照光との干渉による 干渉パターンによって情報が記録される記録領域を層状 に形成することを特徴とする光情報記録方法。

【請求項13】 ホログラフィを利用して、情報を担持した情報光と記録用参照光との干渉による干渉パターンによって情報が記録される情報記録層を備えた光情報記録媒体に対して情報を記録するための光情報記録方法であって

情報を担持した情報光および記録用参照光を生成し、 前記情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録 用参照光を情報記録層に対して照射し、

情報記録層内において前記干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の光束の定着用光を、干渉パターンが形成された領域の一部を通過するように照射する ことによって、情報記録層内に、干渉パターンによって

20

情報が記録され且つ情報が定着された記録領域を層状に 形成することを特徴とする光情報記録方法。

【請求項14】 ホログラフィを利用して、情報を担持 した情報光と記録用参照光との干渉による干渉パターン によって情報が記録される情報記録層を備えた光情報記 録媒体に対して情報を記録すると共に、光情報記録媒体 より情報を再生するための光情報記録再生装置であっ て、

情報を担持した情報光および記録用参照光を生成する記 録用光生成手段と、

前記情報記録層内に、情報光と記録用参照光との干渉に よる干渉パターンによって情報が記録される記録領域が 層状に形成されるように、情報光と記録用参照光のうち の一方の光束を扁平な形状とし、情報記録層内で交差す るように情報光および記録用参照光を情報記録層に対し て照射するための記録光学系と、

情報記録層に、記録時における記録用参照光に対応する 再生用参照光を照射すると共に、再生用参照光が照射さ れることによって情報記録層より発生される再生光を収 集するための再生光学系と、

この再生光学系によって収集された再生光を検出する検 出手段とを備えたことを特徴とする光情報記録再生装

【請求項15】 前記光情報記録媒体に対する情報光、 記録用参照光および再生用参照光の位置を制御する位置 制御手段を備えたことを特徴とする請求項14記載の光 情報記録再生装置。

【請求項16】 前記光情報記録媒体として、情報光、 記録用参照光および再生用参照光の位置決めのための情 報が記録される位置決め領域を備えたものを用い、前記 位置制御手段は、前記位置決め領域に記録された情報を 用いて、光情報記録媒体に対する情報光、記録用参照光 および再生用参照光の位置を制御することを特徴とする 請求項15記載の光情報記録再生装置。

【請求項17】 前記記録光学系は、光情報記録媒体に 対向するように配置されて情報光および記録用参照光が 通過するソリッドイマージョンレンズを有し、前記再生 光学系は、光情報記録媒体に対向するように配置されて 再生光が通過するソリッドイマージョンレンズを有する ことを特徴とする請求項14記載の光情報記録再生装 置。

ホログラフィを利用して、情報を担持 【請求項18】 した情報光と記録用参照光との干渉による干渉パターン によって情報が記録される情報記録層を備えた光情報記 録媒体に対して情報を記録すると共に、光情報記録媒体 より情報を再生するための光情報記録再生装置であっ て、

情報を担持した情報光および記録用参照光を生成する記 録用光生成手段と、

る干渉パターンが形成されるように、情報光および記録 用参照光を情報記録層に対して照射するための記録用光 照射手段と、

前記情報記録層内に、前記干渉パターンによって情報が 記録され且つ情報が定着された記録領域が層状に形成さ れるように、情報記録層内において前記干渉パターンが 形成された領域に対して、干渉パターンによって記録さ れる情報を定着するための扁平な形状の光束の定着用光 を、干渉パターンが形成された領域の一部を通過するよ うに照射するための定着用光照射手段と、

情報記録層に、記録時における記録用参照光に対応する 再生用参照光を照射すると共に、再生用参照光が照射さ れることによって情報記録層より発生される再生光を収 集するための再生光学系と、

この再生光学系によって収集された再生光を検出する検 出手段とを備えたことを特徴とする光情報記録再生装

【請求項19】 前記光情報記録媒体に対する情報光、 記録用参照光および再生用参照光の位置を制御する位置 制御手段を備えたことを特徴とする請求項18記載の光 情報記録再生装置。

【請求項20】 前記光情報記録媒体として、情報光、 記録用参照光および再生用参照光の位置決めのための情 報が記録される位置決め領域を備えたものを用い、前記 位置制御手段は、前記位置決め領域に記録された情報を 用いて、光情報記録媒体に対する情報光、記録用参照光 および再生用参照光の位置を制御することを特徴とする 請求項19記載の光情報記録再生装置。

【請求項21】 前記記録光学系は、光情報記録媒体に 対向するように配置されて情報光および記録用参照光が 通過するソリッドイマージョンレンズを有し、前記再生 光学系は、光情報記録媒体に対向するように配置されて 再生光が通過するソリッドイマージョンレンズを有する ことを特徴とする請求項18記載の光情報記録再生装

【請求項22】 ホログラフィを利用して、情報を担持 した情報光と記録用参照光との干渉による干渉パターン によって情報が記録される情報記録層を備えた光情報記 録媒体に対して情報を記録すると共に、光情報記録媒体 より情報を再生するための光情報記録再生方法であっ て、

情報の記録時には、情報を担持した情報光および記録用 参照光を生成し、情報光と記録用参照光のうちの一方の 光束を扁平な形状とし、情報記録層内で交差するように 情報光および記録用参照光を情報記録層に対して照射す ることによって、情報記録層内に、情報光と記録用参照 光との干渉による干渉パターンによって情報が記録され る記録領域を層状に形成し、

情報の再生時には、情報記録層に、記録時における記録 前記情報記録層内に情報光と記録用参照光との干渉によ 50 用参照光に対応する再生用参照光を照射すると共に、再

生用参照光が照射されることによって情報記録層より発生される再生光を収集し、収集した再生光を検出することを特徴とする光情報記録再生方法。

【請求項23】 ホログラフィを利用して、情報を担持した情報光と記録用参照光との干渉による干渉パターンによって情報が記録される情報記録層を備えた光情報記録媒体に対して情報を記録すると共に、光情報記録媒体より情報を再生するための光情報記録再生方法であって、

情報の記録時には、情報を担持した情報光および記録用参照光を生成し、情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光を情報記録層に対して照射し、情報記録層内において前記干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の光束の定着用光を、干渉パターンが形成された領域の一部を通過するように照射することによって、情報記録層内に、干渉パターンによって情報が記録され且つ情報が定着された記録領域を層状に形成し、

情報の再生時には、情報記録層に、記録時における記録 用参照光に対応する再生用参照光を照射すると共に、再 生用参照光が照射されることによって情報記録層より発 生される再生光を収集し、収集した再生光を検出するこ とを特徴とする光情報記録再生方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ホログラフィを利用して光情報記録媒体に対して情報を記録する光情報記録装置および方法、ならびにホログラフィを利用して光 30情報記録媒体に対して情報を記録すると共に光情報記録媒体から情報を再生する光情報記録再生装置および方法に関する。

[0002]

【従来の技術】ホログラフィを利用して記録媒体に情報を記録するホログラフィック記録は、一般的に、イメージ情報を持った光と参照光とを記録媒体の内部で重ね合わせ、そのときにできる干渉縞を記録媒体に書き込むことによって行われる。記録された情報の再生時には、その記録媒体に参照光を照射することにより、干渉縞によ 40る回折によりイメージ情報が再生される。

【0003】近年では、超高密度光記録のために、ボリュームホログラフィ、特にデジタルボリュームホログラフィが実用域で開発され注目を集めている。ボリュームホログラフィとは、記録媒体の厚み方向も積極的に活用して、3次元的に干渉縞を書き込む方式であり、厚みを増すことで回折効率を高め、多重記録を用いて記憶容量の増大を図ることができるという特徴がある。そして、デジタルボリュームホログラフィとは、ボリュームホログラフィと同様の記録媒体と記録方式を用いつつも、記 50

録するイメージ情報は2値化したデジタルパターンに限定した、コンピュータ指向のホログラフィック記録方式である。このデジタルボリュームホログラフィでは、例えばアナログ的な絵のような画像情報も、一旦デジタイズして、2次元デジタルパターン情報に展開し、これをイメージ情報として記録する。再生時は、このデジタルパターン情報を読み出してデコードすることで、元の画像情報に戻して表示する。これにより、再生時にSN比(信号対雑音比)が多少悪くても、微分検出を行った

り、2値化データをコード化しエラー訂正を行ったりすることで、極めて忠実に元の情報を再現することが可能 になる。

【0004】図26は、従来のデジタルボリュームホログラフィにおける記録再生系の概略の構成を示す斜視図である。この記録再生系は、2次元デジタルパターン情報に基づく情報光102を発生させる空間光変調器101と、この空間光変調器101からの情報光102を集光して、ホログラム記録媒体100に対して照射するレンズ103と、ホログラム記録媒体100に対して情報光102と略直交する方向から参照光104を照射する参照光照射手段(図示せず)と、再生された2次元デジタルパターン情報を検出するためのCCD(電荷結合素子)アレイ107と、ホログラム記録媒体100から出射される再生光105を集光してCCDアレイ107上に照射するレンズ106とを備えている。ホログラム記録媒体100には、LiNbO3等の結晶が用いられる。

【0005】図26に示した記録再生系では、記録時に は、記録する原画像等の情報をデジタイズし、その0か 1かの信号を更に2次元に配置して2次元デジタルパタ ーン情報を生成する。一つの2次元デジタルパターン情 報をページデータと言う。ここでは、#1~#nのペー ジデータを、同じホログラム記録媒体100に多重記録 するものとする。この場合、まず、ページデータ#1に 基づいて、空間光変調器101によって画素毎に透過か 遮光かを選択することで、空間的に変調された情報光1 02を生成し、レンズ103を介してホログラム記録媒 体100に照射する。同時に、ホログラム記録媒体10 0に、情報光102と略直交する方向θ1から参照光1 04を照射して、ホログラム記録媒体100の内部で、 情報光102と参照光104との重ね合わせによってで きる干渉縞を記録する。なお、回折効率を高めるため に、参照光104は、シリンドリカルレンズ等により偏 平ビームに変形し、干渉縞がホログラム記録媒体100 の厚み方向にまで渡って記録されるようにする。次のペ ージデータ#2の記録時には、 $\theta1$ と異なる角度 $\theta2$ か ら参照光104を照射し、この参照光104と情報光1 02とを重ね合わせることによって、同じホログラム記 録媒体100に対して情報を多重記録することができ る。同様に、他のページデータ#3~#nの記録時に

は、それぞれ異なる角度 θ 3 \sim θ n から参照光 1 0 4 を 照射して、情報を多重記録する。このように情報が多重記録されたホログラムをスタックと呼ぶ。図 2 6 に示した例では、ホログラム記録媒体 1 0 0 は複数のスタック (スタック 1, スタック 2, …, スタック m, …) を有している。

【0006】スタックから任意のページデータを再生するには、そのページデータを記録した際と同じ入射角度の参照光104を、そのスタックに照射してやればよい。そうすると、その参照光104は、そのページデー 10夕に対応した干渉縞によって選択的に回折され、再生光105が発生する。この再生光105は、レンズ106を介してCCDアレイ107に入射し、再生光の2次元パターンがCCDアレイ107によって検出される。そして、検出した再生光の2次元パターンを、記録時とは逆にデコードすることで原画像等の情報が再生される。【0007】

【発明が解決しようとする課題】しかしながら、図26を用いて説明したような従来のボリュームホログラフィでは、ホログラム記録媒体100内において、情報光102と参照光104が重なる部分に、ブロック状に1単位の記録領域(体積ホログラム)が形成される。そのため、1単位の記録領域が比較的大きくなり、高密度記録が困難であるという問題点がある。なお、図26を用いて説明したような従来のボリュームホログラフィでは、参照光の角度を変えることで情報を多重記録することができるが、多重記録する情報の数を多くするほど各情報の分離が難しくなるため、多重記録による高密度記録化にも限界がある。

【0008】本発明はかかる問題点に鑑みてなされたもので、その目的は、ホログラフィを利用して情報が記録される光情報記録媒体に対して、より高密度に情報を記録することができるようにした光情報記録装置および方法ならびに光情報記録再生装置および方法を提供することにある。

[0009]

【課題を解決するための手段】請求項1記載の光情報記録装置は、情報を担持した情報光および記録用参照光を生成する記録用光生成手段と、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域が層状に形成されるように、情報光と記録用参照光のうちの一方の光束を扁平な形状とし、情報記録層内で交差するように情報光および記録用参照光を情報記録層に対して照射するための記録光学系とを備えたものである。

【0010】請求項7記載の光情報記録装置は、情報を担持した情報光および記録用参照光を生成する記録用光生成手段と、情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光を情報記録層に対して照射するための50

8

記録用光照射手段と、情報記録層内に、干渉パターンによって情報が記録され且つ情報が定着された記録領域が層状に形成されるように、情報記録層内において干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の光束の定着用光を、干渉パターンが形成された領域の一部を通過するように照射するための定着用光照射手段とを備えたものである。

【0011】請求項12記載の光情報記録方法は、情報を担持した情報光および記録用参照光を生成し、情報光と記録用参照光のうちの一方の光束を扁平な形状とし、情報記録層内で交差するように情報光および記録用参照光を情報記録層に対して照射することによって、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域を層状に形成するものである。

【0012】請求項13記載の光情報記録方法は、情報を担持した情報光および記録用参照光を生成し、情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光を情報記録層に対して照射し、情報記録層内において干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の光束の定着用光を、干渉パターンが形成された領域の一部を通過するように照射することによって、情報記録層内に、干渉パターンによって情報が記録され且つ情報が定着された記録領域を層状に形成するものある。

【0013】請求項14記載の光情報記録再生装置は、情報を担持した情報光および記録用参照光を生成する記録用光生成手段と、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域が層状に形成されるように、情報光と記録用参照光のうちの一方の光束を扁平な形状とし、情報記録層内で交差するように情報光および記録用参照光を情報記録層に対して照射するための記録光学系と、情報記録層に、記録時における記録用参照光に対応する再生用参照光を照射すると共に、再生用参照光が照射されることによって情報記録層より発生される再生光を収集するための再生光学系と、この再生光学系によって収集された再生光を検出する検出手段とを備えたものである。

【0014】請求項18記載の光情報記録再生装置は、情報を担持した情報光および記録用参照光を生成する記録用光生成手段と、情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光を情報記録層に対して照射するための記録用光照射手段と、情報記録層内に、干渉パターンによって情報が記録され且つ情報が定着された記録領域が層状に形成されるように、情報記録層内において干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の

光束の定着用光を、干渉パターンが形成された領域の一部を通過するように照射するための定着用光照射手段と、情報記録層に、記録時における記録用参照光に対応する再生用参照光を照射すると共に、再生用参照光が照射されることによって情報記録層より発生される再生光を収集するための再生光学系と、この再生光学系によって収集された再生光を検出する検出手段とを備えたものである。

【0015】請求項22記載の光情報記録再生方法は、情報の記録時には、情報を担持した情報光および記録用参照光を生成し、情報光と記録用参照光のうちの一方の光束を扁平な形状とし、情報記録層内で交差するように情報光および記録用参照光を情報記録層に対して照射することによって、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域を層状に形成し、情報の再生時には、情報記録層に、記録時における記録用参照光に対応する再生用参照光を照射すると共に、再生用参照光が照射されることによって情報記録層より発生される再生光を収集し、収集した再生光を検出するものである。

【0016】請求項23記載の光情報記録再生方法は、 情報の記録時には、情報を担持した情報光および記録用 参照光を生成し、情報記録層内に情報光と記録用参照光 との干渉による干渉パターンが形成されるように、情報 光および記録用参照光を情報記録層に対して照射し、情 報記録層内において干渉パターンが形成された領域に対 して、干渉パターンによって記録される情報を定着する ための扁平な形状の光束の定着用光を、干渉パターンが 形成された領域の一部を通過するように照射することに よって、情報記録層内に、干渉パターンによって情報が 30 記録され且つ情報が定着された記録領域を層状に形成 し、情報の再生時には、情報記録層に、記録時における 記録用参照光に対応する再生用参照光を照射すると共 に、再生用参照光が照射されることによって情報記録層 より発生される再生光を収集し、収集した再生光を検出 するものである。

【0017】請求項1記載の光情報記録装置または請求項12記載の光情報記録方法では、情報光と記録用参照光のうちの一方の光束が扁平な形状とされ、情報記録層内で交差するように情報光および記録用参照光が情報記録層に対して照射されて、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域が層状に形成される。

【0018】請求項7記載の光情報記録装置または請求項13記載の光情報記録方法では、情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光が情報記録層に対して照射され、情報記録層内において干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の光束の定着用光 50

が、干渉パターンが形成された領域の一部を通過するように照射されて、情報記録層内に、干渉パターンによって情報が記録され且つ情報が定着された記録領域が層状 に形成される。

【0019】請求項14記載の光情報記録再生装置または請求項22記載の光情報記録再生方法では、情報の記録時には、情報光と記録用参照光のうちの一方の光束が扁平な形状とされ、情報記録層内で交差するように情報光および記録用参照光を情報記録層に対して照射されて、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域が層状に形成され、情報の再生時には、情報記録層に、記録時における記録用参照光に対応する再生用参照光が照射され、情報記録層より発生される再生光が収集され、検出される。

【0020】請求項18記載の光情報記録再生装置または請求項23記載の光情報記録再生方法では、情報の記録時には、情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光が情報記録層に対して照射され、情報記録層内において干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための扁平な形状の光束の定着用光が、干渉パターンが形成された領域の一部を通過するように照射されて、情報記録層内に、干渉パターンによって情報が記録され且つ情報が定着された記録領域が層状に形成され、情報の再生時には、情報記録層に、記録時における記録用参照光に対応する再生用参照光が照射され、情報記録層より発生される再生光が収集され、検出される。

[0021]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して詳細に説明する。

【0022】始めに、図1を参照して、本実施の形態における光情報記録媒体の構成について説明する。図1は、本発明の第1の実施の形態に係る光情報記録再生装置におけるピックアップと光情報記録媒体の構成を示す説明図である。本実施の形態における光情報記録媒体1は、ボリュームホログラフィを利用して、情報を担持した情報光と記録用参照光との干渉による干渉パターンによって情報が記録されると共に、再生用参照光が照射されたときに、記録されている情報に対応した再生光を発生するための情報記録層2と、この情報記録層2の一方の面側に設けられた透明基板3と、情報記録層2の他方の面側に設けられた透明な位置決め層4と、この位置決め層4の外側に設けられた透明な保護層5とを備えている。光情報記録媒体1全体は、円板状に形成されている。

【0023】情報記録層2は、光が照射されたときに光 の強度に応じて屈折率、誘電率、反射率等の光学的特性 が変化するホログラム材料によって形成されている。ホ

ログラム材料としては、例えば、デュポン(Dupont)社製フォトポリマ(photopolymers)HRF-600(製品名)等が使用される。

11

【0024】光情報記録媒体1には、半径方向に線状に延びる複数のアドレス・サーボエリアが所定の角度間隔で設けられている。このアドレス・サーボエリアは、本発明における位置決め領域に対応する。光情報記録媒体1において、隣り合うアドレス・サーボエリア間の扇形の区間がデータエリアになっている。アドレス・サーボエリアにおける位置決め層4の保護層5側の面には、サンプルドサーボ方式によってフォーカスサーボおよびトラッキングサーボを行うための情報とアドレス情報とが、予めエンボスピット等によって記録されている。なお、フォーカスサーボは、位置決め層4と保護層5との境界面を反射面として、後述するピックアップより照射され、反射面で反射された光に基づいて行うことができる。トラッキングサーボを行うための情報としては、例えばウォブルピットを用いることができる。

【0025】次に、図5を参照して、本実施の形態に係 る光情報記録再生装置の構成について説明する。なお、 本実施の形態に係る光情報記録装置は、この光情報記録 再生装置に含まれる。この光情報記録再生装置10は、 光情報記録媒体1が取り付けられるスピンドル81と、 このスピンドル81を回転させるスピンドルモータ82 と、光情報記録媒体1の回転数を所定の値に保つように スピンドルモータ82を制御するスピンドルサーボ回路 83とを備えている。光情報記録再生装置10は、更 に、光情報記録媒体1に対して情報光と記録用参照光と を照射して情報を記録すると共に、光情報記録媒体1に 対して再生用参照光を照射し、再生光を検出して、光情 報記録媒体1に記録されている情報を再生するためのピ ックアップ11と、このピックアップ11における光の 入出射位置を光情報記録媒体1の半径方向に移動可能と する駆動装置84とを備えている。ピックアップ11 は、例えば、所定の回動軸を中心として光の入出射部が 回動するアーム状に形成され、この場合には、駆動装置 84は、ピックアップ11を回動する装置となる。

【0026】光情報記録再生装置10は、更に、ピックアップ11の出力信号よりフォーカスエラー信号FE、トラッキングエラー信号TEおよび再生信号RFを検出 40するための検出回路85と、この検出回路85によって検出されるフォーカスエラー信号FEおよび後述するコントローラからの指令に基づいて、ピックアップ11内のアクチュエータを駆動して対物レンズを光情報記録媒体1の厚み方向に移動させてフォーカスサーボを行うフォーカスサーボ回路86と、検出回路85によって検出されるトラッキングエラー信号TEに基づいてピックアップ11内のアクチュエータを駆動して対物レンズを光情報記録媒体1の半径方向に移動させてトラッキングサーボを行うトラッキングサーボ回路87と、トラッキン 50

グエラー信号 T E および後述するコントローラからの指令に基づいて駆動装置 8 4 を制御してピックアップ 1 1 における光の入出射位置を光情報記録媒体 1 の半径方向に移動させるシークの制御を行うシーク制御回路 8 8 とを備えている。

【0027】光情報記録再生装置10は、更に、ピックアップ11内の後述するCCDアレイの出力データをデコードして、光情報記録媒体1のデータエリアに記録されたデータを再生したり、検出回路85からの再生信号RFより基本クロックを再生したりアドレスを判別したりする信号処理回路89と、光情報記録再生装置10の全体を制御するコントローラ90とを備えている。コントローラ90は、信号処理回路89より出力される基本クロックやアドレス情報を入力すると共に、ピックアップ11,スピンドルサーボ回路83は、信号処理回路89より出力される基本クロックを入力するようになっている。スピンドルサーボ回路83は、信号処理回路89より出力される基本クロックを入力するようになっている。

【0028】検出回路85,フォーカスサーボ回路86,トラッキングサーボ回路87およびシーク制御回路88は、本発明における位置制御手段に対応する。

【0029】次に、図1を参照して、ピックアップ11の構成について説明する。ピックアップ11は、スピンドル81に光情報記録媒体1が固定されたときに光情報記録媒体1の透明基板3側の面に対向するように配置されたソリッドイマージョンレンズ(以下、SILと記す。)12Aと、このSIL12Aにおける光情報記録媒体1とは反対側に設けられた対物レンズ13Aと、スピンドル81に光情報記録媒体1が固定されたときに光情報記録媒体1の保護層5側の面に対向するように配置されたSIL12Bと、このSIL12Bにおける光情報記録媒体1とは反対側に設けられた対物レンズ13Bとを備えている。本実施の形態では、対物レンズ13Aと対物レンズ13Bは、これらの光軸が同一線上にあり、且つこれらの光軸が光情報記録媒体1の面に対して60°の角度をなすように配置されている。

【0030】ピックアップ11は、更に、対物レンズ13Aを光軸方向および光情報記録媒体1の半径方向に移動可能なアクチュエータ14Aと、対物レンズ13Bを光軸方向および光情報記録媒体1の半径方向に移動可能なアクチュエータ14Bとを備えている。

【0031】ピックアップ11は、更に、対物レンズ13Aにおける光情報記録媒体1とは反対側に、対物レンズ13A側から順に配設された空間光変調器15、ビームスプリッタ16、コリメータレンズ17およびレーザカプラ20と、対物レンズ13Bにおける光情報記録媒体1とは反対側に設けられたCCDアレイ19とを備えている

【0032】空間光変調器15は、格子状に配列された 多数の画素を有し、各画素毎に光の透過状態(以下、オ

ンとも言う。)と遮断状態(以下、オフとも言う。)とを選択することによって、光強度によって光を空間的に変調することができるようになっている。空間光変調器 15としては、例えば液晶表示素子を用いることができる。なお、空間光変調器 15の制御は、図5におけるコントローラ90の制御の下で、図示しない駆動回路によって行われるようになっている。また、CCDアレイ19は、格子状に配列された多数の画素を有している。

13

【0033】ビームスプリッタ16は、その法線方向が、コリメータレンズ17と空間光変調器15の間にお 10 ける光軸方向に対して45°傾けられて配置された半反射面16aを有している。そして、コリメータレンズ17側よりビームスプリッタ16に入射する光は、光量の一部が半反射面16aを透過して空間光変調器15に入射し、光量の一部が半反射面16aで反射されるようになっている。

【0034】ピックアップ11は、更に、コリメータレ ンズ17側よりビームスプリッタ16に入射する光のう ち半反射面 1 6 a で反射される光の進行方向に配設さ れ、半反射面16aと平行な全反射面51aを有するプ リズム51と、このプリズム51の全反射面51aで反 射される光の進行方向に配設され、全反射面51aに直 交する全反射面 5 2 a を有するプリズム 5 2 と、全反射 面52aで反射される光の進行方向に、プリズム52側 より順に配設された凸レンズ53、凹レンズ54および シリンドリカルレンズ55とを備えている。シリンドリ カルレンズ55より出射される光は、その中心(光軸) が、情報記録層2内において、対物レンズ13Aより出 射される光の中心(光軸)と直交するように、情報記録 層2に対して照射されるようになっている。従って、シ リンドリカルレンズ55より出射される光は、光情報記 録媒体1の面に対して30°の角度をなすように、光情 報記録媒体1に対して照射されるようになっている。

【0035】なお、図1において、符号57は光情報記録媒体1の回転方向を示し、符号58はピックアップ1 1のシーク方向を示している。

【0036】図1に示したピックアップ11では、レーザカプラ20はレーザ光を出射し、このレーザ光は、コリメータレンズ17によって平行光束とされ、ビームスプリッタ16に入射し、光量の一部が半反射面16aを透過し、光量の一部が半反射面16aで反射されるようになっている。半反射面16aを透過した光は、空間光変調器15を通過し、対物レンズ13Aによって集光され、SIL12Aを通過して、光情報記録媒体1に照射されるようになっている。この光は、位置決め層4と保護層5との境界面上で最も小径となるように収束するようになっている。

【0037】一方、半反射面16aで反射された光は、 プリズム51の全反射面51aとプリズム52の全反射 面52aで順に反射され、凸レンズ53と凹レンズ54 50 を順に通過して、光束の径が縮小されるようになっている。 凹レンズ 5 4 の出射光は、シリンドリカルレンズ 5 5 によって、対物レンズ 1 3 A の光軸方向のみについて収束されて扁平な形状の光束とされ、 S I L 1 2 A を通過して、光情報記録媒体 1 に照射されるようになっている。

【0038】対物レンズ13A側からの光とシリンドリカルレンズ55側からの光は、各光の中心が直交するように、情報記録層2内で交差するようになっている。また、シリンドリカルレンズ55側からの光は、対物レンズ13A側からの光の中心とシリンドリカルレンズ55側からの光の中心が交わる点を通る紙面に垂直な方向の直線上で最も薄くなるようになっている。

【0039】情報の記録時には、対物レンズ13A側からの光が情報光となり、シリンドリカルレンズ55側からの光が記録用参照光となり、情報記録層2内に、これらの情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域59が層状に形成されるようになっている。この記録領域59は、円錐を、その中心軸に直交する方向にスライスして形成されるような円板状の形状となる。

【0040】光情報記録媒体1から対物レンズ13A側へ向かう光は、対物レンズ13Aと空間光変調器15を順に通過し、光量の一部がビームスプリッタ16の半反射面16aを透過し、コリメータレンズ17によって集光されて、レーザカプラ20に入射するようになっている。

【0041】光情報記録媒体1から対物レンズ13B側へ向かう光は、対物レンズ13Bによって平行光束とされて、CCDアレイ19に入射するようになっている。情報の再生時には、シリンドリカルレンズ55側からの光が再生用参照光となり、この再生用参照光が記録領域59に照射されることにより、記録領域59より再生光が生成され、この再生光が対物レンズ13Bを経て、CCDアレイ19に入射するようになっている。

【0042】ここで、図2を参照して、SIL12A、12Bについて詳しく説明する。まず、SIL12Aは、光情報記録媒体1の透明基板3側の面が平面に形成されている。SIL12Aにおける透明基板3とは反対側の面は、2つの球面部分12Aa、12Abを有している。球面部分12Aaは、対物レンズ13A側からの光が入射する位置に形成され、対物レンズ13A側からの光が最も小径となる点61を中心とする球面形状に形成されている。球面部分12Abは、シリンドリカルレンズ55側からの光が入射する位置に形成され、対物レンズ13A側からの光の中心とシリンドリカルレンズ55側からの光の中心が交わる点62を中心とする球面形状に形成されている。また、SIL12Aの屈折率は、透明基板3の屈折率と略等しくなっている。

【0043】対物レンズ13A側からの光は、SIL1

2 Aの球面部分12 A a に対して垂直に入射し、この球面部分12 A a で屈折することなく進行し、点61で最も小径となるように収束する。シリンドリカルレンズ55側からの光は、SIL12 A の球面部分12 A b に対して垂直に入射し、この球面部分12 A b で屈折することなく進行し、点62を通る紙面に垂直な方向の直線上で最も薄くなるように収束する。

【0044】本実施の形態では、光情報記録媒体1に対して、対物レンズ13A側からの光とシリンドリカルレンズ55側からの光を、それぞれ斜め方向から入射させ 10 るため、SIL12Aを設けない場合には、これらの光が光情報記録媒体1を通過する際に、これらの光に収差が発生する。本実施の形態では、SIL12Aを設けたことにより、対物レンズ13A側からの光とシリンドリカルレンズ55側からの光が、それぞれSIL12Aに垂直に入射するので、これらの光の収差を大幅に低減することができる。

【0045】SIL12Bは、光情報記録媒体1の保護層5側の面が平面に形成されている。SIL12Bにおける保護層5と反対側の面は、対物レンズ13A側からの光が最も小径となる点61を中心とする球面形状に形成されている。また、SIL12Bの屈折率は、保護層5の屈折率と略等しくなっている。

【0046】再生時において記録領域59で生成される 再生光は、SIL12Bを通過して対物レンズ13Bに 入射するようになっている。従って、本実施の形態で は、SIL12Bを設けたことにより、再生光の収差も 大幅に低減することができる。

【0047】図3は、SIL12A, 12Bの支持機構 の一例を示す断面図である。この例では、対物レンズ1 3 Aが支持部材 9 1 によって支持されている。対物レン ズ13AのSIL12A側には、必要に応じて、収差等 の光学特性を補正するための補正レンズ92が設けら れ、この補正レンズ92も支持部材91によって支持さ れるようになっている。支持部材91の外周側には、ア クチュエータ14Aの一部を構成するマグネット95が 取り付けられいてる。このマグネット95の周囲には、 マグネット95に対して所定の間隔を開けて、アクチュ エータ14Aの一部を構成するコイル96が設けられて いる。支持部材91の光情報記録媒体1側には、サスペ 40 ンション93を介して、スライダ94が取り付けられて いる。SIL12Aは、このスライダ94によって支持 されている。スライダ94は、光情報記録媒体1の透明 基板3上を滑るようになっている。なお、スライダ94 には、対物レンズ13A側からの光が通過する部分に開 口部94aが設けられていると共に、シリンドリカルレ ンズ55側からの光が通過する部分に開口部94bが設 けられている。

【0048】一方、SIL12Bは、スライダ97によって支持されている。スライダ97は、光情報記録媒体 50

16

1の保護層5上を滑るようになっている。スライダ97は、サスペンション98を介して、支持部材99に取り付けられている。図示しないが、支持部材99には対物レンズ13Bが取り付けられている。なお、支持部材99の周辺の構成は、支持部材91の周辺の構成と同様である。

【0049】なお、光情報記録媒体1の交換等を可能とするために、支持部材91、99は、図示しない駆動機構によって、光情報記録媒体1に対して近接離間可能になっている。

【0050】図4は、SIL12A、12Bの支持機構の他の例を示す側面図である。この例では、SIL12A、12Bは、それぞれ、フライングヘッド型の支持部材61、62によって支持されている。支持部材61、62は、光情報記録媒体1の回転に伴って、光情報記録媒体1に対して所定のエアギャップを開けて対向するように浮上するようになっている。なお、この例でも、光情報記録媒体1の交換等を可能とするために、支持部材61、62は、図示しない駆動機構によって、光情報記録媒体1に対して接近離間可能になっている。

【0051】図6は図1におけるレーザカプラ20の構 成を示す斜視図、図7はレーザカプラ20の側面図であ る。これらの図に示したように、レーザカプラ20は、 フォトディテクタ25,26が形成された半導体基板2 1と、この半導体基板21上においてフォトディテクタ 25, 26を覆うように配置され、半導体基板21上に 接合されたプリズム22と、半導体基板21上において フォトディテクタ25,26が形成された位置と異なる 位置に配置され、半導体基板21上に接合された半導体 素子23と、この半導体素子23上に接合された半導体 レーザ24とを備えている。半導体レーザ24は、プリ ズム22側に向けて水平方向に前方レーザ光を出射する と共に、前方レーザ光と反対方向に後方レーザ光を出射 するようになっている。プリズム22の半導体レーザ2 4側には斜面が形成され、この斜面は、半導体レーザ2 4からの前方レーザ光の一部を反射して、半導体基板2 1に対して垂直な方向に出射すると共に、光情報記録媒 体1からの戻り光の一部を透過する半反射面22aにな っている。また、プリズム22の上面は、図7に示した ようにプリズム22内を通過する光を全反射する全反射 面22bになっている。半導体素子23には、半導体レ ーザ24からの後方レーザ光を受光するフォトディテク タ27が形成されている。このフォトディテクタ27の 出力信号は、半導体レーザ24の出力を自動調整するた めに用いられるようになっている。半導体基板21に は、各種のアンプやその他の電子部品が内蔵されてい る。半導体素子23には、半導体レーザ24を駆動する アンプ等の電子部品が内蔵されている。

【0052】図6および図7に示したレーザカプラ20では、半導体レーザ24からの前方レーザ光は、一部が

プリズム22の半反射面22aで反射されて、図1にお けるコリメータレンズ17に入射するようになってい る。また、コリメータレンズ17によって集光された光 情報記録媒体1からの戻り光は、一部がプリズム22の 半反射面22aを透過して、プリズム22内に導かれ、 フォトディテクタ25に向かうようになっている。フォ トディテクタ25上には半反射膜が形成されており、プ リズム22内に導かれた光の一部は、フォトディテクタ 25上の半反射膜を透過してフォトディテクタ25に入 射し、残りの一部はフォトディテクタ25上の半反射膜 10 で反射され、更にプリズム22の全反射面22bで反射 されてフォトディテクタ26に入射するようになってい

【0053】ここで、図7に示したように、プリズム2 2内に導かれた光は、フォトディテクタ25, 26間の 光路の途中で一旦最も小径となるように収束するように なっている。そして、レーザカプラ20からの光が光情 報記録媒体1における位置決め層4と保護層5との境界 面上で最も小径となるように収束する合焦状態のときに はフォトディテクタ25、26に対する入射光の径が等 20 しくなり、合焦状態から外れたときにはフォトディテク タ25,26に対する入射光の径が異なるようになって いる。フォトディテクタ25、26に対する入射光の径 の変化は、互いに逆方向になるため、フォトディテクタ 25,26に対する入射光の径の変化に応じた信号を検 出することによってフォーカスエラー信号を得ることが できる。図6に示したように、フォトディテクタ25, 26は、それぞれ3分割された受光部を有している。フ オトディテクタ25における受光部をA1, C1, B 1、フォトディテクタ26における受光部をA2, C 2, B2とする。C1, C2は、それぞれ、A1, B1 間、A2, B2間の中央部分の受光部である。また、各 受光部間の分割線は、光情報記録媒体1におけるトラッ ク方向に対応する方向と平行になるように配置されてい る。従って、受光部A1, B1間およびA2, B2間の 出力の差から、プュッシュプル法によってトラッキング エラー信号を得ることができる。

【0054】なお、レーザカプラ20内の半導体レーザ 24の出力の制御は、図5におけるコントローラ90の. 制御の下で、図示しない駆動回路によって行われるよう 40 になっている。

【0055】図8は、フォトディテクタ25,26の出 力に基づいて、フォーカスエラー信号、トラッキングエ ラー信号および再生信号を検出するための検出回路85 の構成を示すブロック図である。この検出回路85は、 フォトディテクタ25の受光部A1、B1の各出力を加 算する加算器31と、この加算器31の出力の利得を調 整する利得調整アンプ32と、フォトディテクタ25の 受光部 C 1 の出力の利得を調整する利得調整アンプ33

18

出力との差を演算する減算器34と、フォトディテクタ 26の受光部A2, B2の各出力を加算する加算器35 と、この加算器35の出力の利得を調整する利得調整ア ンプ36と、フォトディテクタ26の受光部C2の出力 の利得を調整する利得調整アンプ37と、利得調整アン プ36の出力と利得調整アンプ37の出力との差を演算 する減算器38と、減算器34の出力と減算器38の出 力との差を演算してフォーカスエラー信号 FEを生成す る減算器39とを備えている。

【0056】検出回路85は、更に、フォトディテクタ 25の受光部 A1の出力と受光部 B1の出力との差を演 算する減算器40と、フォトディテクタ26の受光部A 2の出力と受光部B2の出力との差を演算する減算器4 1と、減算器40の出力と減算器41の出力との差を演 算してトラッキングエラー信号TEを生成する減算器4 2とを備えている。検出回路85は、更に、加算器31 の出力と受光部 C1の出力とを加算する加算器 43と、 加算器35の出力と受光部C2の出力とを加算する加算 器44と、加算器43の出力と加算器44の出力とを加 算して再生信号RFを生成する加算器45とを備えてい る。

【0057】なお、本実施の形態では、再生信号RF は、光情報記録媒体1におけるアドレス・サーボエリア に記録された情報を再生した信号である。信号処理回路 89は、PLL(位相同期化ループ)回路によって、基 本クロックの位相を、再生信号RFの位相に同期させる ようになっている。

【0058】次に、本実施の形態に係る光情報記録再生 装置の作用について、サーボ時、記録時、再生時に分け て、順に説明する。以下の説明は、本実施の形態に係る 光情報記録方法および光情報記録再生方法の説明を兼ね ている。なお、サーボ時、記録時、再生時のいずれのと きも、光情報記録媒体1は規定の回転数を保つように制 御されてスピンドルモータ82によって回転される。

【0059】まず、サーボ時の作用について説明する。 サーボ時には、空間光変調器15の全画素がオンにされ る。レーザカプラ20の出射光の出力は、再生用の低出 力に設定される。なお、コントローラ90は、再生信号 RFより再生された基本クロックに基づいて、対物レン ズ13Aの出射光がアドレス・サーボエリアを通過する タイミングを予測し、対物レンズ13Aの出射光がアド レス・サーボエリアを通過する間、上記の設定とする。 【0060】サーボ時には、レーザカプラ20から出射 されたレーザ光は、コリメータレンズ17によって平行 光束とされ、ビームスプリッタ16に入射し、光量の一 部が半反射面 1 6 a を透過し、光量の一部が半反射面 1 6 a で反射される。半反射面 1 6 a を透過した光は、空 間光変調器15を通過し、対物レンズ13Aによって集 光され、SIL12Aを通過して、光情報記録媒体1に と、利得調整アンプ32の出力と利得調整アンプ33の 50 照射される。この光は、位置決め層4と保護層5との境

界面上で最も小径となるように収束し、位置決め層4と 保護層5との境界面で反射され、その際、アドレス・サ ーボエリアにおけるエンボスピットによって変調され て、対物レンズ13A側に戻ってくる。この戻り光は、 対物レンズ13Aで平行光束とされ、空間光変調器15 を通過して、ビームスプリッタ16に入射し、光量の一 部が半反射面16aを透過する。この半反射面16aを 透過した戻り光は、コリメータレンズ17によって集光 されて、レーザカプラ20に入射し、フォトディテクタ 25、26によって検出される。そして、このフォトデ 10 ィテクタ25、26の出力に基づいて、図8に示した検 出回路85によって、フォーカスエラー信号FE,トラ ッキングエラー信号 TE および再生信号 RF が生成さ れ、これらの信号に基づいて、フォーカスサーボおよび トラッキングサーボが行われると共に、基本クロックの 再生およびアドレスの判別が行われる。

【0061】なお、本実施の形態では、アクチュエータ14A、14Bは、各対物レンズ13A、13Bを通過する光の収束位置(光束が最も小径となる位置)が共に位置決め層4と保護層5との境界面上にくるように、フォーカスサーボ回路86によって連動するように制御されるようになっている。

【0062】次に、記録時の作用について説明する。記録時には、空間光変調器15は、記録する情報に応じて各画素毎にオンとオフとが選択される。レーザカプラ20の出射光の出力は、再生信号RFより再生された基本クロックに基づいて、パルス的に記録用の高出力にされる。なお、コントローラ90は、再生信号RFより再生された基本クロックに基づいて、対物レンズ13Aの出射光がデータエリアを通過するタイミングを予測し、対30物レンズ13Aの出射光がデータエリアを通過する間、上記の設定とする。対物レンズ13Aの出射光がデータエリアを通過する間は、フォーカスサーボおよびトラッキングサーボは行われず、対物レンズ13A,13Bは固定されている。

【0063】記録時には、レーザカプラ20から出射されたレーザ光は、コリメータレンズ17によって平行光束とされ、ビームスプリッタ16に入射し、光量の一部が半反射面16aを透過し、光量の一部が半反射面16aで反射される。半反射面16aを透過した光は、空間光変調器15を通過し、記録する情報に応じて空間的に変調されて情報光となる。この情報光は、対物レンズ13Aによって集光され、SIL12Aを通過して、光情報記録媒体1に照射される。なお、この情報光は、その中心が光情報記録媒体1の面に対して60°の角度をなすように、光情報記録媒体1に照射される。

【0064】一方、半反射面16aで反射された光は、 記録用参照光となり、プリズム51の全反射面51aと プリズム52の全反射面52aで順に反射され、凸レン ズ53と凹レンズ54を順に通過して光束の径が縮小さ 50 れ、シリンドリカルレンズ55によって、対物レンズ13Aの光軸方向のみについて収束されて扁平な形状の光 ホレされ、SIL12Aを通過して、光標報記録機体1

東とされ、SIL12Aを通過して、光情報記録媒体1 に照射される。なお、この記録用参照光は、その中心が 光情報記録媒体1の面に対して30°の角度をなすよう

20

に、光情報記録媒体 1 に照射される。

【0065】対物レンズ13A側からの情報光とシリンドリカルレンズ55側からの記録用参照光は、各光の中心が直交するように、情報記録層2内で交差する。そして、これらの情報光と記録用参照光が交差する部分に、これらの光の干渉による干渉パターンが形成され、レーザカプラ20の出射光の出力が高出力になったときに、情報光と記録用参照光による干渉パターンが情報記録層2内に体積的に記録されて、透過型(フレネル型)の体積ホログラムからなる記録領域59が層状に形成される。この記録領域59は、円板状の形状となる。

【0066】図9は、光情報記録媒体1の情報記録層2に形成される記録領域59を概念的に表したものである。この図において、符号63はアドレス・サーボエリアを示し、符号64はデータエリアを示している。また、符号65はトラックを示している。図9に示した例では、隣接する2つのアドレス・サーボエリア63間のデータエリア64に、等間隔に5つの記録領域59を形成するようにしている。また、アドレス・サーボエリア63には、エンボスピット66が形成されている。なお、図9では、記録領域59やエンボスピット66を実際よりもかなり大きく表している。

【0067】図10は、光情報記録媒体1の情報記録層2内における記録領域59を表したものである。なお、この図は、光情報記録媒体1の半径方向に沿った情報記録層2の断面を表している。この図に示したように、情報記録層2内には、層状の複数の記録領域59が、積層されるように形成される。各記録領域59は、その法線方向が情報記録層2の法線方向に対して30°傾いた状態に形成される。

【0068】なお、本実施の形態では、情報記録層2内に、互いに重なることなく複数の記録領域59が形成されるように、光情報記録媒体1に対する情報光および記録用参照光の位置を制御するようにする。

【0069】次に、再生時の作用について説明する。再生時には、空間光変調器 15は、全画素がオフにされる。また、レーザカプラ20の出射光の出力は、再生用の低出力にされる。なお、コントローラ90は、再生信号RFより再生された基本クロックに基づいて、対物レンズ13Aの出射光がデータエリアを通過するタイミングを予測し、対物レンズ13Aの出射光がデータエリアを通過する間、上記の設定とする。対物レンズ13Aの出射光がデータエリアを通過する間は、フォーカスサーボおよびトラッキングサーボは行われず、対物レンズ1

50 3 A, 1 3 B は固定されている。

【0070】再生時には、レーザカプラ20から出射さ れたレーザ光は、コリメータレンズ17によって平行光 束とされ、ビームスプリッタ16に入射し、光量の一部 が半反射面 1 6 a を透過し、光量の一部が半反射面 1 6 aで反射される。半反射面 1 6 aを透過した光は、空間 光変調器15によって遮断される。一方、半反射面16 a で反射された光は、記録用参照光に対応した再生用参 照光となり、プリズム51の全反射面51aとプリズム 52の全反射面52aで順に反射され、凸レンズ53と 凹レンズ54を順に通過して光束の径が縮小され、シリ ンドリカルレンズ55によって、対物レンズ13Aの光 軸方向のみについて収束されて扁平な形状の光束とさ れ、SIL12Aを通過して、光情報記録媒体1に照射 される。

21

【0071】情報記録層2における記録領域59に再生 用参照光が照射されると、この記録領域59より再生光 が生成される。この再生光は、位置決め層4と保護層5 との境界面上で最も小径となるように収束した後、拡散 しながら、保護層 5 側より、光情報記録媒体 1 外へ出射 される。この再生光は、SIL12Bを通過し、対物レ 20 ンズ13Bを経て、CCDアレイ19に入射する。この ようにしてCCDアレイ19上では、記録時に空間光変 調器15においてオンであった画素に対応する部分のみ が明るく照射され、その2次元パターンがCCDアレイ 19によって検出され、情報の再生が行われる。

【0072】なお、再生時には、再生用参照光を、連続 的に光情報記録媒体1に対して照射してもよいし、記録 領域59が通過するタイミングに合わせて、間欠的に照 射するようにしてもよい。なお、この場合、再生用参照 光を照射するタイミングは、記録時にレーザカプラ20 の出射光の出力を高出力にするタイミングと同じであ り、基本クロックに基づいて判断される。このように、 再生用参照光を間欠的に照射した場合には、連続的に照 射する場合に比べて、SN比を向上させることができる と共に、光情報記録媒体1の温度上昇を抑えることがで きる。

【0073】ところで、ССDアレイ19によって、再 生光の2次元パターンを検出する場合、再生光とССD アレイ19とを正確に位置決めするか、CCDアレイ1 9の検出データから再生光のパターンにおける基準位置 40 を認識する必要がある。本実施の形態では、後者を採用 する。ここで、図11および図12を参照して、ССD アレイ19の検出データから再生光のパターンにおける 基準位置を認識する方法について説明する。図11に示 したように、ピックアップ11におけるアパーチャは、 空間光変調器15によって、複数の画素72に分けられ る。この画素72が、2次元パターンデータの最小単位 となる。本実施の形態では、2画素で1ビットのデジタ ルデータ"0"または"1"を表現し、1ビットの情報 に対応する2画素のうちの一方をオン、他方をオフとし 50 78Dを合わせて矩形の領域を形成し、2つの矩形の領

ている。2 画素が共にオンまたは共にオフの場合はエラ ーデータとなる。このように、2画素で1ビットのデジ タルデータを表現することは、差動検出によりデータの 検出精度を上げることができる等のメリットがある。図 12(a)は、1ビットのデジタルデータに対応する2 画素の組73を表したものである。この組73が存在す る領域を、以下、データ領域と言う。本実施の形態で は、2画素が共にオンまたは共にオフの場合はエラーデ ータとなることを利用して、再生光のパターンにおける 基準位置を示す基準位置情報を、情報光に含ませるよう にしている。 すなわち、図12(b)に示したように、 アパーチャの中心を通る2画素の幅の十文字の領域74 に、故意に、エラーデータを所定のパターンで配置して いる。このエラーデータのパターンを、以下、トラッキ ング用画素パターンと言う。このトラッキング用画素パ ターンが基準位置情報となる。なお、図12(b)にお いて、符号75はオンの画素、符号76はオフの画素を

22

【0074】トラッキング用画素パターンと、記録する データに対応するパターンとを合わせると、図13 (a) に示したような2次元パターンとなる。本実施の 形態では、更に、データ領域以外の領域のうち、図にお ける上半分をオフにし、下半分をオンにすると共に、デ ータ領域においてデータ領域以外の領域に接する画素に ついては、データ領域以外の領域と反対の状態、すなわ ちデータ領域以外の領域がオフであればオン、データ領 域以外の領域がオンであればオフとする。これにより、 CCDアレイ19の検出データから、データ領域の境界 部分をより明確に検出することが可能となる。

表している。また、中心部分の4画素の領域77は、常

にオフにしておく。

【0075】記録時には、図13(a)に示したような 2次元パターンに従って空間変調された情報光と記録用 参照光との干渉パターンが情報記録層2に記録される。 再生時に得られる再生光のパターンは、図13(b)に 示したように、記録時に比べるとコントラストが低下 し、SN比が悪くなっている。再生時には、CCDアレ イ19によって、図13(b)に示したような再生光の パターンを検出し、データを判別するが、その際、トラ ッキング用画素パターンを認識し、その位置を基準位置 としてデータを判別する。

【0076】図14(a)は、再生光のパターンから判 別したデータの内容を概念的に表したものである。図中 のA-1-1 等の符号を付した領域がそれぞれ 1 ビットのデ ータを表している。本実施の形態では、データ領域を、 トラッキング用画素パターンが記録された十文字の領域 74で分割することによって、4つの領域78A,78 B. 78C. 78Dに分けている。そして、図14 (b) に示したように、対角の領域78A, 78Cを合 わせて矩形の領域を形成し、同様に対角の領域78B,

域を上下に配置することでECCテーブルを形成するよ うにしている。ECCテーブルとは、記録すべきデータ にCRC(巡回冗長チェック)コード等のエラー訂正コ ード(ECC)を付加して形成したデータのテーブルで ある。なお、図14(b)は、n行m列のECCテープ ルの一例を示したものであり、この他の配列も自由に設 計することができる。また、図14(a)に示したデー タ配列は、図14(b)に示したECCテーブルのうち の一部を利用したものであり、図14(b)に示したE C C テーブルのうち、図14(a)に示したデータ配列 10 に利用されない部分は、データの内容に関わらず一定の 値とする。記録時には、図14(b)に示したようなE CCテーブルを図14(a)に示したように4つの領域 78A, 78B, 78C, 78Dに分解して光情報記録 媒体1に記録し、再生時には、図14(a)に示したよ うな配列のデータを検出し、これを並べ替えて図14 (b) に示したような E C C テーブルを再生し、この E CCテーブルに基づいてエラー訂正を行ってデータの再 生を行う。

【0077】上述のような再生光のパターンにおける基 20 準位置(トラッキング用画素パターン)の認識や、エラー訂正は、図5における信号処理回路89によって行われる。

【0078】以上説明したように、本実施の形態に係る 光情報記録再生装置10によれば、光情報記録媒体1の 情報記録層2内に、層状の記録領域59を形成するよう にしたので、情報記録層内にブロック状の記録領域を形 成する場合に比べて、より高密度に情報を記録すること が可能となる。また、本実施の形態によれば、多重記録 を行わなくとも高密度に情報を記録することができるの で、情報の高密度化を実現しながら、各情報の分離も容 易に行うことができるようになる。

【0079】また、本実施の形態に係る光情報記録再生装置10によれば、位置決め層3に記録された情報を用いて、情報光、記録用参照光および再生用参照光の位置を制御するようにしたので、これらの光の位置決めを精度良く行うことができ、その結果、リムーバビリティが良く、ランダムアクセスが容易になると共に、記録容量および転送レートを大きくすることができる。

【0080】また、本実施の形態に係る光情報記録再生 40 装置10によれば、情報光および記録用参照光を、それ ぞれの中心が互いに直交するように、情報記録層2に対 して照射するようにしたので、干渉縞のピッチを小さく でき、より高密度の記録が可能となる。

【0081】また、本実施の形態に係る光情報記録再生装置10によれば、情報光、記録用参照光および再生用参照光が通過するSIL12Aと、再生光が通過するSIL12Bとを設けたので、情報光、記録用参照光、再生用参照光および再生光に発生する収差を大幅に低減することができる。

24

【0082】また、本実施の形態によれば、再生光のパターンにおける基準位置を示す基準位置情報を、情報光に含ませるようにしたので、再生光のパターンの認識が容易になる。

【0083】以下、本実施の形態におけるいくつかの変形例について説明する。まず、上記実施の形態では、アドレス・サーボエリアにおける位置決め層4に、予めエンボスピットによってアドレス情報等を記録しておく例を挙げたが、エンボスピットを含む位置決め層4を有しない光情報記録媒体を用い、その光情報記録媒体に対して、アドレス・サーボエリアにおいて、情報記録層2の一方の面に近い部分に選択的に高出力のレーザ光を照射して、その部分の屈折率を選択的に変化させることによってアドレス情報等を記録してフォーマッティングを行うようにしてもよい。

【0084】また、光情報記録媒体1におけるアドレス・サーボエリアに、アドレス情報等をエンボスピットによって記録しておく代わりに、予め、データエリアにおけるホログラフィを利用した記録と同様の方法で、所定のパターンのアドレス情報等を、ホログラムとして記録しておいてもよい。図15は、このように、アドレス・サーボエリア63に、アドレス情報等を表すホログラム67を記録した光情報記録媒体1を概念的に示したものである。

【0085】このように、アドレス・サーボエリア63 に、アドレス情報等を表すホログラム67を記録した場 合には、サーボ時にもピックアップ11を再生時と同じ 状態にして、ホログラム67より生成される再生光のパ ターンをCCDアレイ19によって検出するようにす る。この場合、基本クロックおよびアドレスは、CCD アレイ19の検出データから直接得ることができる。ト ラッキングエラー信号は、ССDアレイ19上の再生光 のパターンの位置の情報から得ることができる。また、 フォーカスサーボは、ССDアレイ19上の再生パター ンのコントラストが最大になるように対物レンズ13 A, 13Bを駆動することで行うことができる。また、 再生時においても、フォーカスサーボを、CCDアレイ 19上の再生パターンのコントラストが最大になるよう に対物レンズ13A、13Bを駆動することで行うこと が可能である。

【0086】なお、上述のように、アドレス情報等をホログラム67として記録した場合には、ホログラム67からの再生光に対する処理を速やかに行う必要があるので、CCDアレイ19の代わりに、MOS型固体撮像素子と信号処理回路とが1チップ上に集積されたスマート光センサ(例えば、文献「Oplus E,1996年9月,No.202,第93~99ページ」参照。)を用いてもよい。このスマート光センサは、転送レートが大きく、高速な演算機能を有するので、このスマート光センサを用いることにより、高速な再生が可能とな

り、例えば、Gビット/秒オーダの転送レートで再生を 行うことが可能となる。

【0087】また、予めアドレス情報等を表すホログラム67が記録されていない光情報記録媒体を用い、その光情報記録媒体に対して、アドレス情報等を表すホログラム67を記録するフォーマッティングを行うようにしてもよい。

【0088】また、実施の形態では、図1に示したように、情報光の出射部(対物レンズ13A)と記録用参照光の出射部(シリンドリカルレンズ55)を、シーク方向58に沿って配置した例を挙げたが、図16に示したように、情報光の出射部(対物レンズ13A)と記録用参照光の出射部(シリンドリカルレンズ55)を、トラック方向68に沿って配置してもよい。この場合には、情報記録層2におけるトラック方向68に沿った断面において、図10に示したように記録領域59が配置されることになる。

【0089】また、実施の形態では、図1に示したよう に、情報光の中心が光情報記録媒体1の面に対して60 。の角度をなし、記録用参照光の中心が光情報記録媒体 20 1の面に対して30°の角度をなすように、情報光と記 録用参照光を光情報記録媒体1に照射する例を挙げた が、情報光の中心および記録用参照光の中心が光情報記 録媒体1の面に対してなす角度は、上記の例に限定され ない。図17は、他の例として、情報光の中心が光情報 記録媒体1の面に対して45°の角度をなし、記録用参 照光の中心が光情報記録媒体 1 の面に対して 9 0°の角 度をなすように、情報光と記録用参照光を光情報記録媒 体1に照射するようにしたピックアップ70の構成を示 している。この図に示したピックアップ70では、対物 30 レンズ13Aと対物レンズ13Bは、これらの光軸が同 一線上にあり、且つこれらの光軸が光情報記録媒体1の 面に対して45°の角度をなすように配置されている。 また、ピックアップ70では、凸レンズ53、凹レンズ 54およびシリンドリカルレンズ55は、これらの光軸 が光情報記録媒体1の面に対して垂直になるように配置 されている。また、ピックアップ70では、図1におけ るプリズム51,52の代わりに、ミラー71を設け、 ビームスプリッタ16の半反射面16aで反射された光 を、ミラー71によって全反射させて、凸レンズ53に 40 導くようにしている。ピックアップ70におけるその他 の構成は、図1に示したピックアップ11と同様であ

【0090】図17に示したピックアップ70を用いた場合には、情報記録層2内には、層状の記録領域59が、光情報記録媒体1の面に対して垂直に形成される。【0091】次に、本発明の第2の実施の形態について説明する。本実施の形態は、反射型のホログラムを形成するようにした例である。なお、本実施の形態では、第1の実施の形態と同様の光情報記録媒体1を使用する。

26

また、本実施の形態に係る光情報記録再生装置の全体構成は、ピックアップの構成が異なる点を除いて、図5と同様である。

【0092】図18は、本実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図であ る。なお、以下、図1に示したピックアップ中の部材と 同じ部材には同じ符号を付し、詳しい説明を省略する。 本実施の形態におけるピックアップ111は、スピンド ル81に光情報記録媒体1が固定されたときに光情報記 録媒体1の透明基板3側の面に対向するように配置され たSIL12Aと、このSIL12Aにおける光情報記 録媒体1とは反対側に設けられた対物レンズ113A と、スピンドル81に光情報記録媒体1が固定されたと きに光情報記録媒体1の保護層5側の面に対向するよう に配置されたSIL12Bと、このSIL12Bにおけ る光情報記録媒体1とは反対側に設けられた対物レンズ 113Bとを備えている。本実施の形態では、対物レン ズ113Aと対物レンズ113Bは、これらの光軸が同 一線上にあり、且つこれらの光軸が光情報記録媒体1の 面に対して60°の角度をなすように配置されている。 【0093】ピックアップ111は、更に、対物レンズ 113Aを光軸方向および光情報記録媒体1の半径方向 に移動可能なアクチュエータ114Aと、対物レンズ1 13Bを光軸方向および光情報記録媒体1の半径方向に 移動可能なアクチュエータ114Bとを備えている。 【0094】ピックアップ111は、更に、対物レンズ 113Bにおける光情報記録媒体1とは反対側に、対物 レンズ113B側から順に配設された空間光変調器1 5、ビームスプリッタ116、コリメータレンズ17お よびレーザカプラ20と、対物レンズ113Aにおける

【0095】ビームスプリッタ116は、その法線方向が、コリメータレンズ17と空間光変調器15の間における光軸方向に対して45°傾けられて配置された半反射面116aを有している。そして、コリメータレンズ17側よりビームスプリッタ116に入射する光は、光量の一部が半反射面116aで反射されるようになっている。

光情報記録媒体1とは反対側に設けられたCCDアレイ

19とを備えている。

【0096】ピックアップ111は、更に、コリメータレンズ17側よりビームスプリッタ116に入射する光のうち半反射面116aで反射される光の進行方向に配設され、半反射面116aと平行な全反射面121aを有するプリズム121と、このプリズム121の全反射面121aに直交する全反射面122aを有するプリズム122と、全反射面122aで反射される光の進行方向に、プリズム122側より順に配設された凸レンズ5053、凹レンズ54およびシリンドリカルレンズ55と

を備えている。シリンドリカルレンズ55より出射される光は、その中心(光軸)が、情報記録層2内において、対物レンズ113Bより出射される光の中心(光軸)と直交するように、情報記録層2に対して照射されるようになっている。従って、シリンドリカルレンズ55より出射される光は、光情報記録媒体1の面に対して30°の角度をなすように、光情報記録媒体1に対して照射されるようになっている。

【0097】本実施の形態におけるピックアップ111では、レーザカプラ20より出射されるレーザ光は、コ 10リメータレンズ17によって平行光束とされ、ビームスプリッタ116に入射し、光量の一部が半反射面116 aを透過し、光量の一部が半反射面116 aを透過した光は、空間光変調器15を通過し、対物レンズ113Bによって集光され、SIL12Bを通過して、光情報記録媒体1に照射されるようになっている。この光は、位置決め層4と保護層5との境界面上で最も小径となるように収束するようになっている。

【0098】一方、半反射面116aで反射された光は、プリズム121の全反射面121aとプリズム122の全反射面122aで順に反射され、凸レンズ53と凹レンズ54を順に通過して、光束の径が縮小されるようになっている。凹レンズ54の出射光は、シリンドリカルレンズ55によって、対物レンズ113Bの光軸方向のみについて収束されて扁平な形状の光束とされ、SIL12Aの球面部12Abを通過して、光情報記録媒体1に照射されるようになっている。

【0099】対物レンズ113B側からの光とシリンドリカルレンズ55側からの光は、各光の中心が直交する 30ように、情報記録層2内で交差するようになっている。また、シリンドリカルレンズ55側からの光は、対物レンズ113B側からの光の中心とシリンドリカルレンズ55側からの光の中心が交わる点を通る紙面に垂直な方向の直線上で最も薄くなるようになっている。

【0100】情報の記録時には、対物レンズ113B側からの光が情報光となり、シリンドリカルレンズ55側からの光が記録用参照光となり、情報記録層2内に、これらの情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域123が層状に形が成されるようになっている。この記録領域123は、第1の実施の形態における記録領域59と同様に、円錐を、その中心軸に直交する方向にスライスして形成されるような円板状の形状となる。

【0101】光情報記録媒体1から対物レンズ113B 側へ向かう光は、対物レンズ113Bと空間光変調器1 5を順に通過し、光量の一部がビームスプリッタ116 の半反射面116aを透過し、コリメータレンズ17に よって集光されて、レーザカプラ20に入射するように なっている。 28

【0102】光情報記録媒体1から対物レンズ113A側へ向かう光は、SIL12Aの球面部12Aaを通過し、対物レンズ113Aによって平行光束とされて、CCDアレイ19に入射するようになっている。情報の再生時には、シリンドリカルレンズ55側からの光が再生用参照光となり、この再生用参照光が記録領域123に照射されることにより、記録領域123より再生光が生成され、この再生光が対物レンズ113Aを経て、CCDアレイ19に入射するようになっている。

【0103】次に、本実施の形態に係る光情報記録再生 装置の作用について、サーボ時、記録時、再生時に分け て、順に説明する。

【0104】まず、サーボ時の作用について説明する。サーボ時には、空間光変調器15の全画素がオンにされる。レーザカプラ20の出射光の出力は、再生用の低出力に設定される。なお、コントローラ90は、再生信号RFより再生された基本クロックに基づいて、対物レンズ113Bの出射光がアドレス・サーボエリアを通過するタイミングを予測し、対物レンズ113Bの出射光がアドレス・サーボエリアを通過する間、上記の設定とする。

【0105】サーボ時には、レーザカプラ20から出射 されたレーザ光は、コリメータレンズ17によって平行 光束とされ、ビームスプリッタ116に入射し、光量の 一部が半反射面116aを透過し、光量の一部が半反射 面116aで反射される。半反射面116aを透過した 光は、空間光変調器 15を通過し、対物レンズ 113B によって集光され、SIL12Bを通過して、光情報記 録媒体1に照射される。この光は、位置決め層4と保護 層5との境界面上で最も小径となるように収束し、位置 決め層4と保護層5との境界面で反射され、その際、ア ドレス・サーボエリアにおけるエンボスピットによって 変調されて、対物レンズ113B側に戻ってくる。この 戻り光は、対物レンズ113Bで平行光束とされ、空間 光変調器15を通過して、ビームスプリッタ116に入 射し、光量の一部が半反射面116aを透過する。この 半反射面 1 1 6 a を透過した戻り光は、コリメータレン ズ17によって集光されて、レーザカプラ20に入射 し、フォトディテクタ25、26によって検出される。 そして、このフォトディテクタ25、26の出力に基づ いて、図8に示した検出回路85によって、フォーカス エラー信号 FE, トラッキングエラー信号 TE および再 生信号RFが生成され、これらの信号に基づいて、フォ ーカスサーボおよびトラッキングサーボが行われると共 に、基本クロックの再生およびアドレスの判別が行われ る。

【0106】なお、本実施の形態では、アクチュエータ 114A, 114Bは、各対物レンズ113A, 113 Bを通過する光の収束位置(光束が最も小径となる位 置)が共に位置決め層4と保護層5との境界面上にくる

29 ように、フォーカスサーボ回路86によって連動するように制御されるようになっている。

【0107】次に、記録時の作用について説明する。記録時には、空間光変調器15は、記録する情報に応じて各画素毎にオンとオフとが選択される。レーザカプラ20の出射光の出力は、再生信号RFより再生された基本クロックに基づいて、パルス的に記録用の高出力にされる。なお、コントローラ90は、再生信号RFより再生された基本クロックに基づいて、対物レンズ113Bの出射光がデータエリアを通過するタイミングを予測し、対物レンズ113Bの出射光がデータエリアを通過するオミングを予測し、対物レンズ113Bの出射光がデータエリアを通過するおし、フォーカスサーボおよびトラッキングサーボは行われず、対物レンズ113A、113Bは固定されている。

【0108】記録時には、レーザカプラ20から出射さ

れたレーザ光は、コリメータレンズ17によって平行光束とされ、ビームスプリッタ116に入射し、光量の一部が半反射面116aを透過し、光量の一部が半反射面116aを透過した光 20 は、空間光変調器15を通過し、記録する情報に応じて空間的に変調されて情報光となる。この情報光は、対物レンズ113Bによって集光され、SIL12Bを通過して、光情報記録媒体1に照射される。なお、この情報光は、その中心が光情報記録媒体1の面に対して60°の角度をなすように、光情報記録媒体1に照射される。【0109】一方、半反射面116aで反射された光は、記録用参照光となり、プリズム121の全反射面121aとプリズム122の全反射面122aで順に反射され、凸レンズ53と凹レンズ54を順に通過して光束 30の径が縮小され、シリンドリカルレンズ55によって、

21aとプリズム122の全反射面122aで順に反射され、凸レンズ53と凹レンズ54を順に通過して光束 30の径が縮小され、シリンドリカルレンズ55によって、対物レンズ113Bの光軸方向のみについて収束されて扁平な形状の光束とされ、SIL12Aの球面部12Abを通過して、光情報記録媒体1に照射される。なお、この記録用参照光は、その中心が光情報記録媒体1の面に対して30°の角度をなすように、光情報記録媒体1に照射される。

【0110】対物レンズ113B側からの情報光とシリンドリカルレンズ55側からの記録用参照光は、各光の中心が直交するように、情報記録層2内で交差する。そ40して、これらの情報光と記録用参照光が交差する部分に、これらの光の干渉による干渉パターンが形成され、レーザカプラ20の出射光の出力が高出力になったときに、情報光と記録用参照光による干渉パターンが情報記録層2内に体積的に記録されて、反射型(リップマン型)の体積ホログラムからなる記録領域123が層状に形成される。この記録領域123は、円板状の形状となる

【0111】なお、本実施の形態では、情報記録層 2内 であるが、情報記録層 2が、波長の異なる 2つの光の照に、互いに重なることなく複数の記録領域 123が形成 50 射により屈折率が変化する材料によって形成されたもの

されるように、光情報記録媒体1に対する情報光および 記録用参照光の位置を制御するようにする。光情報記録 媒体1の情報記録層2内における記録領域123の状態 は、図9および図10に示した第1の実施の形態におけ る記録領域59と同様である。

【0112】次に、再生時の作用について説明する。再生時には、空間光変調器15は、全画素がオフにされる。また、レーザカプラ20の出射光の出力は、再生用の低出力にされる。なお、コントローラ90は、再生信号RFより再生された基本クロックに基づいて、対物レンズ113Bの出射光がデータエリアを通過するタイミングを予測し、対物レンズ113Bの出射光がデータエリアを通過する間は、フォーカスサーボおよびトラッキングサーボは行われず、対物レンズ113A、113Bは固定されている。

【0113】再生時には、レーザカプラ20から出射されたレーザ光は、コリメータレンズ17によって平行光束とされ、ビームスプリッタ116に入射し、光量の一部が半反射面116aを透過し、光量の一部が半反射面116aを透過した光は、空間光変調器15によって遮断される。一方、半反射面116aで反射された光は、記録用参照光に対応した再生用参照光となり、プリズム121の全反射面121aとプリズム122の全反射面122aで順に反射され、凸レンズ53と凹レンズ54を順に通過して光束の径が縮小され、シリンドリカルレンズ55によって、対物レンズ113Bの光軸方向のみについて収束されて扁平な形状の光束とされ、SIL12Aの球面部12Abを通過して、光情報記録媒体1に照射される。

【0114】情報記録層2における記録領域123に再生用参照光が照射されると、この記録領域123より再生光が生成される。この再生光は、拡散しながら、透明基板3側より、光情報記録媒体1外へ出射される。この再生光は、SIL12Aの球面部12Aaを通過し、対物レンズ113Aを経て、CCDアレイ19に入射する。このようにしてCCDアレイ19上では、記録時に空間光変調器15においてオンであった画素に対応する部分のみが明るく照射され、その2次元パターンがCCDアレイ19によって検出され、情報の再生が行われる。

【0115】本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。

【0116】次に、本発明の第3の実施の形態について 説明する。本実施の形態に係る光情報記録再生装置の全 体構成は、ピックアップの構成が異なる点を除いて、図 5と同様である。なお、本実施の形態における光情報記 録媒体1としては、その構造は第1の実施の形態と同様 であるが、情報記録層2が、波長の異なる2つの光の照 財により同様変が変化する材料によって形成されたもの

を用いる。

【0117】図19および図20は、本実施の形態に係 る光情報記録再生装置におけるピックアップの構成を示 す説明図である。なお、以下、図1に示したピックアッ プ中の部材と同じ部材には同じ符号を付し、詳しい説明 を省略する。本実施の形態におけるピックアップ211 は、スピンドル81に光情報記録媒体1が固定されたと きに光情報記録媒体1の透明基板3側の面に対向するよ うに配置されたSIL12Aと、このSIL12Aにお ける光情報記録媒体1とは反対側に設けられた対物レン 10 ズ212Aと、スピンドル81に光情報記録媒体1が固 定されたときに光情報記録媒体1の保護層5側の面に対 向するように配置されたSIL12Bと、このSIL1 2 Bにおける光情報記録媒体 1 とは反対側に設けられた 対物レンズ212Bとを備えている。本実施の形態で は、対物レンズ212Aと対物レンズ212Bは、これ らの光軸が同一線上にあり、且つこれらの光軸が光情報 記録媒体1の面に対して60°の角度をなすように配置 されている。

31

【0118】ピックアップ211は、更に、対物レンズ 20 212Aを光軸方向および光情報記録媒体1の半径方向 に移動可能なアクチュエータ213Aと、対物レンズ2 12Bを光軸方向および光情報記録媒体1の半径方向に 移動可能なアクチュエータ213Bとを備えている。

【0119】ピックアップ211は、更に、対物レンズ 212Aにおける光情報記録媒体1とは反対側に、対物 レンズ212A側から順に配設された2分割旋光板21 4 A、プリズムブロック222,223、空間光変調器 216、コリメータレンズ217およびレーザカプラ2 0を備えている。プリズムブロック222, 223間に 30 は、凸レンズ224が配設されている。

【0120】ピックアップ211は、更に、対物レンズ 212Bにおける光情報記録媒体1とは反対側に、対物 レンズ212B側から順に配設された2分割旋光板21 4C, プリズムブロック215, 216およびCCDア レイ219Bを備えている。プリズムブロック225. 226間には、2分の1波長板227と凸レンズ228 が配設されている。プリズムブロック226の側方に は、CCDアレイ219Aが配設されている。

【0121】2分割旋光板214A,214Cは、それ 40 ぞれ、図19および図20において光軸の上側部分に配 置された旋光板214AR、214CRと、図19およ び図20において光軸の下側部分に配置された旋光板2 14AL、214CLとを有している。各旋光板214 AR, 214CR, 214AL, 214CLは、それぞ れ例えば2枚の透明電極基板間に液晶を封入して構成さ れている。旋光板214ARは、2枚の透明電極基板間 に電圧を印加しない (以下、オフにすると言う。) と入 射光の偏光方向を一45°回転させ、2枚の透明電極基 板間に電圧を印加する(以下、オンにすると言う。)と 50 が、対物レンズ212Bおよび2分割旋光板214Cに

入射光の偏光方向を回転させないようになっている。旋 光板214ALは、オフにすると入射光の偏光方向を+ 45°回転させ、オンにすると入射光の偏光方向を回転 させないようになっている。旋光板214CRは、オフ にすると入射光の偏光方向を+45°回転させ、オンに すると入射光の偏光方向を回転させないようになってい る。旋光板214CLは、オフにすると入射光の偏光方 向を-45°回転させ、オンにすると入射光の偏光方向 を回転させないようになっている。

【0122】プリズムブロック223は、その法線方向 が、2分割旋光板214Aと空間光変調器216の間に おける光軸方向に対して45°傾けられて配置された偏 光ビームスプリッタ面223aと、空間光変調器216 側からの光が偏光ビームスプリッタ面223aで反射さ れる方向に配置され、偏光ビームスプリッタ面223a に平行な反射面223bとを有している。

【0123】プリズムブロック222は、その法線方向 が、2分割旋光板214Aと空間光変調器216の間に おける光軸方向に対して45°傾けられ、且つプリズム ブロック223の偏光ビームスプリッタ面223aに対 して90°傾けられて配置された偏光ビームスプリッタ 面222aと、プリズムブロック223の反射面223 bからの光が入射する位置に配置され、偏光ビームスプ リッタ面222aに平行な反射面222bとを有してい る。凸レンズ224は、プリズムブロック223の反射 面223bとプリズムブロック222の反射面222b との間に配置されている。

【0124】空間光変調器216は、格子状に配列され た多数の画素を有し、各画素毎に出射光の偏光方向を選 択することによって、偏光方向の違いによって光を空間 的に変調することができるようになっている。空間光変 調器216は、具体的には、例えば、液晶の旋光性を利 用した液晶表示素子において偏光板を除いたものと同等 の構成である。ここでは、空間光変調器216は、各画 素毎に、オフにすると偏光方向を+90°回転させ、オ ンにすると偏光方向を回転させないようになっている。 空間光変調器216における液晶としては、例えば、応 答速度の速い (μ秒のオーダ) 強誘電液晶を用いること ができる。これにより、高速な記録が可能となり、例え ば、1ページ分の情報を数μ秒以下で記録することが可 能となる。

【0125】プリズムブロック225は、その法線方向 が、対物レンズ212Bおよび2分割旋光板214Cに おける光軸方向に対して45°傾けられて配置された偏 光ビームスプリッタ面225aと、2分割旋光板214 C側からの光が偏光ビームスプリッタ面225aで反射 される方向に配置され、偏光ビームスプリッタ面225 aに平行な反射面225bとを有している。

【0126】プリズムブロック226は、その法線方向

おける光軸方向に対して45°傾けられ、且つプリズム ブロック225の偏光ビームスプリッタ面225aに対 して90°傾けられて配置された偏光ビームスプリッタ 面226aと、プリズムブロック225の反射面225 bからの光が入射する位置に配置され、偏光ビームスプ リッタ面226aに平行な反射面226bとを有してい る。2分の1波長板227は、プリズムブロック225 の偏光ビームスプリッタ面225aとプリズムブロック 226の偏光ビームスプリッタ面226aとの間に配置 されている。凸レンズ228は、プリズムブロック22 5の反射面225bとプリズムブロック226の反射面 226 bとの間に配置されている。

【0127】CCDアレイ219A, 219Bは、それ ぞれ、格子状に配列された多数の画素を有している。C CDアレイ219Aは、2分の1波長板227を通過し た光がプリズムブロック226の偏光ビームスプリッタ 面226aで反射される方向に配置され、CCDアレイ 219 Bは、凸レンズ228を通過した光がプリズムブ ロック226の反射面226bで反射され、更に偏光ビ ームスプリッタ面226aで反射される方向に配置され 20 ている。

【0128】ピックアップ211は、更に、定着用光を 出射する光源231と、この光源231より出射される 定着用光の光路上に光源231側より順に配設されたコ リメータレンズ232、凸レンズ53、凹レンズ54お よびシリンドリカルレンズ55とを備えている。シリン ドリカルレンズ55より出射される光は、その中心(光 軸)が、情報記録層2内において、対物レンズ212A より出射される光の中心(光軸)と直交するように、情 報記録層2に対して照射されるようになっている。従っ て、シリンドリカルレンズ55より出射される光は、光 情報記録媒体1の面に対して30°の角度をなすよう に、光情報記録媒体1に対して照射されるようになって いる。

【0129】図19および図20に示したピックアップ 211において、レーザカプラ20は、S偏光(偏光方 向が入射面(図19の紙面)に垂直な直線偏光)のレー ザ光を出射し、このレーザ光は、コリメータレンズ21 7によって平行光束とされ、空間光変調器216を通過 してプリズムブロック223の偏光ビームスプリッタ面 223aに入射するようになっている。ここで、空間光 変調器216のオフの画素を通過した光は、P偏光(偏 光方向が入射面に平行な直線偏光)となり、偏光ビーム スプリッタ面223aを透過し、プリズムブロック22 2に入射し、偏光ビームスプリッタ面222aを透過 し、2分割旋光板214Aを通過し、対物レンズ212 Aによって、光情報記録媒体1内で最も小径となるよう に収束されて、SIL12Aの球面部21Aaを通過し て、光情報記録媒体1に照射されるようになっている。 一方、空間光変調器216のオンの画素を通過した光

34

は、 S 偏光のままであり、 偏光ビームスプリッタ面 2 2 3 a で反射され、更に反射面 2 2 3 b で反射され、凸レ ンズ224によって集光された後、プリズムブロック2 22に入射し、反射面222b、偏光ビームスプリッタ 面222aで順に反射され、2分割旋光板214Aを通 過し、対物レンズ212Aによって、光情報記録媒体1 内において空間光変調器216のオフの画素を通過した 光よりも手前側の位置で最も小径となるように収束され て、SIL12Aの球面部12Aaを通過して、光情報 記録媒体1に照射されるようになっている。

【0130】光情報記録媒体1から対物レンズ212A 側への戻り光は、対物レンズ212A、2分割旋光板2 14Aを順に通過し、プリズムブロック222の偏光ビ ームスプリッタ面222aに入射するようになってい る。この戻り光のうちのP偏光の光は、偏光ビームスプ リッタ面222aを透過して、更にプリズムブロック2 23の偏光ビームスプリッタ面223aを透過し、空間 光変調器216を通過し、コリメータレンズ217によ って集光されて、レーザカプラ20に入射するようにな

【0131】光情報記録媒体1より対物レンズ212B 側に出射される再生光は、対物レンズ212B、2分割 旋光板214Cを順に通過してプリズムブロック225 の偏光ビームスプリッタ面225aに入射するようにな っている。この再生光のうちのP偏光の光は、偏光ビー ムスプリッタ面225aを透過して、2分の1波長板2 27によって偏光方向が90°回転されて5偏光の光と なり、プリズムブロック226の偏光ビームスプリッタ 面226aで反射されて、CCDアレイ219Aに入射 するようになっている。一方、再生光のうちのS偏光の 光は、偏光ビームスプリッタ面225aで反射され、更 に反射面225bで反射され、凸レンズ228によって 集光されて平行光束とされた後、プリズムブロック22 6に入射し、反射面226b、偏光ビームスプリッタ面 226 aで順に反射され、CCDアレイ219 Bに入射 するようになっている。

【0132】本実施の形態における情報記録層2を形成 する材料としては、例えば、米国特許第5,268,8 62号に示されるような、2波長感光フォトクロミック 物質をドーピングしたプラスチック材料(PMMA)を 用いることができる。この材料は、例えば、波長が53 2 nmの光と波長が1064nmの光が同時に照射され ると、最初はスピロピラン(spiropyran)に 変化し、次に安定した分子形態であるメロシアニン(m erocyanine)に変化して、屈折率が変化す る。

【0133】以下、情報記録層2を形成する材料として 上記プラスチック材料を用いた場合を例にとって説明す る。この場合には、例えば、情報光および記録用参照

光、すなわちレーザカプラ20より出射される光を、波

長532nmの光とし、光源231より出射される定着 用光を、波長1064nmの光とする。なお、波長1064nmの光とする。なお、波長1064nmの光としては、例えばネオジウム・ヤグ(Nd:YAG)レーザの基本波を用いることができる。波長532nmの光としては、例えばネオジウム・ヤグレーザの基本波を非線形光学媒質を通して得られる第2高調波を用いることができ、この第2高調波を用いる場合には、レーザカプラ20における半導体レーザ24の代わりに、この第2高調波を発生させる光源装置を使用する。

35

【0134】次に、本実施の形態に係る光情報記録再生 装置の作用について、サーボ時、記録時、再生時に分け て、順に説明する。

【0135】まず、サーボ時の作用について説明する。サーボ時には、空間光変調器216の全画素がオフにされ、2分割旋光板214A,214Cの各旋光板214AR,214CLは、全てオンにされる。レーザカプラ20の出射光の出力は、再生用の低出力に設定される。また、光源231は定着用光を出射しない。なお、コントローラ90は、再生信号RFより再生された基本クロックに基づいて、対物レンズ212Aの出射光がアドレス・サーボエリアを通過するタイミングを予測し、対物レンズ212Aの出射光がアドレス・サーボエリアを通過する間、上記の設定とする。

【0136】サーボ時には、レーザカプラ20から出射 された S 偏光のレーザ光は、コリメータレンズ 2 1 7 に よって平行光束とされ、空間光変調器216に入射す る。ここで、空間光変調器216の全画素がオフにされ ているので、空間光変調器216を通過した後の光は、 偏光方向が+90°回転されてP偏光となる。このP偏 光の光は、プリズムブロック223の偏光ビームスプリ ッタ面223aとプリズムブロック222の偏光ビーム スプリッタ面222aを順に透過し、2分割旋光板21 4 Aに入射する。ここで、2分割旋光板214Aの旋光 板214AR、214ALは共にオンにされているの で、光は何ら影響を受けずに2分割旋光板214Aを通 過する。2分割旋光板214Aを通過した光は、対物レ ンズ212Aによって集光され、情報記録媒体1におけ る位置決め層4と保護層5との境界面上で最も小径とな るように収束されて、情報記録媒体1に照射される。こ の光は、情報記録媒体1における位置決め層4と保護層 5との境界面で反射され、その際、アドレス・サーボエ リアにおけるエンボスピットによって変調されて、対物 レンズ212A側に戻ってくる。この戻り光は、対物レ ンズ212Aで平行光束とされ、何ら影響を受けずに2 分割旋光板214Aを通過し、プリズムブロック222 の偏光ビームスプリッタ面222aとプリズムブロック 223の偏光ビームスプリッタ面223aを順に透過し

*回転されて再び S 偏光とされ、レーザカプラ 2 0 に入 射し、フォトディテクタ 2 5, 2 6 によって検出され る。そして、このフォトディテクタ 2 5, 2 6 の出力に 基づいて、検出回路 8 5 によって、フォーカスエラー信 号 F E, トラッキングエラー信号 T E および再生信号 R F が生成され、これらの信号に基づいて、フォーカスサーボおよびトラッキングサーボが行われると共に、基本 クロックの再生およびアドレスの判別が行われる。

36

【0137】本実施の形態では、アクチュエータ213 A、213Bは、フォーカスサーボ回路86によって連動するように制御され、対物レンズ212A、212Bを通過する各光の収束位置(光束が最も小径となる位置)が、所定の位置関係を保ちながら移動するようになっている。そして、情報記録層2に対して情報の記録または再生を行う場合には、対物レンズ212Aからの光が、情報記録媒体1における位置決め層4と保護層5との境界面上で、最も小径となるように収束し、対物レンズ212Bが、透明基板3の表面上で最も小径となる発散光を平行光束とする状態に、フォーカスサーボを行う ようになっている。

【0138】次に、記録時の作用について説明する。記 録時には、空間光変調器216は、記録する情報に応じ て各画素毎にオン(0°)とオフ(+90°)を選択す る。本実施の形態では、2画素で1ビットの情報を表現 する。この場合、必ず、1ビットの情報に対応する2画 素のうちの一方をオン、他方をオフとする。また、2分 割旋光板214A、214Cの各旋光板214AR, 2 14AL, 214CR, 214CLは、全てオフにされ る。レーザカプラ20の出射光の出力は、パルス的に記 録用の高出力にされる。また、光源231は、レーザカ プラ20の出射光の出力が高出力となるタイミングに合 わせて、間欠的に定着用光を出射する。なお、コントロ ーラ90は、再生信号RFより再生された基本クロック に基づいて、対物レンズ212Aの出射光がデータエリ アを通過するタイミングを予測し、対物レンズ212A の出射光がデータエリアを通過する間、上記の設定とす る。対物レンズ212Aの出射光がデータエリアを通過 する間は、フォーカスサーボおよびトラッキングサーボ は行われず、対物レンズ212A、212Bは固定され ている。

【0139】ここで、後の説明で使用するA偏光および B偏光を以下のように定義する。本実施の形態では、図 21に示したように、A偏光は、対物レンズ212A側 から見て、S偏光を-45°またはP偏光を+45°偏 光方向を回転させた直線偏光とし、B偏光は、対物レン ズ212A側から見て、S偏光を+45°またはP偏光 を-45°偏光方向を回転させた直線偏光とする。A偏 光とB偏光は、互いに偏光方向が直交している。

223の偏光ビームスプリッタ面 223 a を順に透過し 【01.40】記録時には、レーザカプラ 20 から出射さて、空間光変調器 216 を通過して、偏光方向が +90 50 れた S 偏光のレーザ光は、コリメータレンズ 217 によ

って平行光束とされ、空間光変調器216に入射する。 ここで、空間光変調器216のうちオンにされている画 素を通過した光は偏光方向が回転されずにS偏光のまま となり、オフにされている画素を通過した光は偏光方向 が+90°回転されてP偏光となる。

【0141】空間光変調器216からのP偏光の光は、 プリズムブロック223の偏光ビームスプリッタ面22 3 a とプリズムブロック222の偏光ビームスプリッタ 面222aを順に透過して、2分割旋光板214Aに入 射する。ここで、2分割旋光板214Aの旋光板214 AR、214ALは共にオフにされているので、旋光板 214ARを通過した光は、偏光方向が一45°回転さ れて、B偏光となり、旋光板214ALを通過した光 は、偏光方向が+45°回転されて、A偏光となる。こ の光は、位置決め層4と保護層5との境界面上で、最も 小径となるように収束する。

【0142】空間光変調器216からのS偏光の光は、 プリズムブロック223の偏光ビームスプリッタ面22 3 a で反射され、更に反射面 2 2 3 b で反射され、凸レ ンズ224で集光された後、プリズムブロック222に 20 入射し、反射面222b、偏光ビームスプリッタ面22 2 a で順に反射され、2分割旋光板214Aに入射す る。ここで、2分割旋光板214Aの旋光板214A R. 214ALは共にオフにされているので、旋光板2 14ARを通過した光は、偏光方向が-45°回転され て、A偏光となり、旋光板14ALを通過した光は、偏 光方向が+45°回転されて、B偏光となる。この光 は、透明基板3の表面で、最も小径となるように収束す る。

【0143】情報記録層2では、旋光板214ARから のB偏光の光と旋光板214ALからのB偏光の光とが 干渉し、旋光板214ARからのA偏光の光と旋光板2 14ALからのA偏光の光とが干渉し、レーザカプラ2 0の出射光の出力が高出力になったときに、これらの光 による干渉パターンが情報記録層2内に体積的に記録さ れ、透過型(フレネル型)の体積ホログラムが形成され る。なお、A偏光の光とB偏光の光は、互いに偏光方向 が直交するため、干渉しない。このように、本実施の形 態では、光束を2分割し、各領域毎の光の偏光方向を直 交させているので、余分な干渉縞の発生を防止して、S N比の低下を防止することができる。

【0144】また、本実施の形態では、情報記録層2の 奥側で最も小径となるように収束する光と、情報記録層 2の手前側で最も小径となるように収束する光は、互い に相補的なパターンを有しており、いずれも、情報記録 層2に記録すべき情報を担持した情報光と見ることがで きる。情報記録層2の奥側で最も小径となるように収束 する光を情報光として見た場合には、情報記録層2の手 前側で最も小径となるように収束する光が記録用参照光 ように収束する光を情報光として見た場合には、情報記 録層2の奥側で最も小径となるように収束する光が記録 用参照光となる。

【0145】光源231から出射された定着用光は、コ リメータレンズ232によって平行光束とされた後、凸 レンズ53と凹レンズ54を順に通過して光束の径が縮 小され、シリンドリカルレンズ55によって、対物レン ズ212Aの光軸方向のみについて収束されて扁平な形 状の光束とされ、SIL12Aの球面部12Abを通過 して、光情報記録媒体1に照射される。なお、この定着 用光は、その中心が光情報記録媒体1の面に対して30 。の角度をなすように、光情報記録媒体1に照射され る。この定着用光は、情報記録層2内で干渉パターンが 形成された領域の一部を通過し、その結果、定着用光が 通過した部分の情報が定着され、干渉パターンによって 情報が記録され且つ情報が定着された記録領域259が 層状に形成される。情報の定着は、具体的には、以下の ようにして行われる。すなわち、情報記録層2において 例えば波長532nmの情報光と記録用参照光との干渉 による干渉パターンが形成された領域に対して、例えば 波長1064mmの定着用光が照射されると、情報記録 層2において干渉パターンに応じて部分的に分子形態が 変化して、その結果、干渉パターンに応じた屈折率分布 が生じ、情報が定着される。

【0146】次に、再生時の作用について説明する。再 生時には、空間光変調器216は、必要に応じて全画素 がオフ(+90°)の状態と全画素がオン(0°)の状 態とが選択される。また、2分割旋光板214A,21 4 Cの各旋光板214AR, 214AL, 214CR, 214 C L は、全てオフにされる。レーザカプラ20の 出射光の出力は、再生用の低出力にされる。また、光源 231は定着用光を出射しない。なお、コントローラ9 0は、再生信号RFより再生された基本クロックに基づ いて、対物レンズ212Aの出射光がデータエリアを通 過するタイミングを予測し、対物レンズ212Aの出射 光がデータエリアを通過する間、上記の設定とする。対 物レンズ212Aの出射光がデータエリアを通過する間 は、フォーカスサーボおよびトラッキングサーボは行わ れず、対物レンズ212A、212Bは固定されてい

【0147】空間光変調器216の全画素がオフの状態 のときには、レーザカプラ20から出射されたS偏光の レーザ光は、コリメータレンズ217によって平行光束 とされ、空間光変調器216によって偏光方向が+90 。回転されてP偏光となる。空間光変調器216からの P偏光の光は、プリズムブロック223の偏光ビームス プリッタ面223aとプリズムブロック222の偏光ビ ームスプリッタ面222aを順に透過し、2分割旋光板 214Aに入射する。ここで、2分割旋光板214Aの となり、逆に、情報記録層2の手前側で最も小径となる 50 旋光板214AR, 214ALは共にオフにされている

40

-20-

ので、旋光板214ARを通過した光は、偏光方向が-45°回転されて、B偏光となり、旋光板214ALを通過した光は、偏光方向が+45°回転されて、A偏光となる。この光は、位置決め層4と保護層5との境界面上で、最も小径となるように収束する。

【0148】情報記録層2における記録領域259から は、情報記録層2の奥側で最も小径となるように収束す る光を記録用参照光と見た場合の再生光が発生される。 この場合の再生光は、情報記録層2の手前側で最も小径 となる発散光である。より詳しく説明すると、記録領域 259の上半分の領域では、旋光板214ARからのB 偏光の光が照射されて、記録時において2分割旋光板2 14Aの旋光板214ALから照射され、情報記録層2 の手前側で最も小径となる光に対応する再生光が発生さ れる。この再生光は、B偏光の光であり、対物レンズ2 12Bで集光されて平行光束となり、2分割旋光板21 4 Cの旋光板214CRを通過してP偏光の光となる。 同様に、記録領域259の下半分の領域では、旋光板2 14ALからのA偏光の光が照射されて、記録時におい て2分割旋光板214Aの旋光板214ARから照射さ れ、情報記録層2の手前側で最も小径となる光に対応す る再生光が発生される。この再生光は、A偏光の光であ り、対物レンズ212Bで集光されて平行光束となり、 2分割旋光板214Cの旋光板214CLを通過してP 偏光の光となる。これらのP偏光の再生光は、プリズム ブロック225の偏光ビームスプリッタ面225aを透 過し、2分の1波長板227によって偏光方向が90° 回転されてS偏光の光となり、プリズムブロック226 の偏光ビームスプリッタ面226aで反射されて、CC Dアレイ229A上に結像する。このようにしてCCD アレイ219A上では、記録時に空間光変調器216に おいてオンであった画素に対応する部分のみが明るく照 射され、その2次元パターンがCCDアレイ219Aに よって検出され、情報の再生が行われる。

【0149】一方、空間光変調器216の全画素がオン の状態のときには、レーザカプラ20から出射されたS 偏光のレーザ光は、コリメータレンズ17によって平行 光束とされ、空間光変調器216によって偏光方向が回 転されずにS偏光のままとなる。空間光変調器216か **らのS偏光の光は、プリズムブロック223の偏光ビー** ムスプリッタ面223aで反射され、更に反射面223 bで反射され、プリズムブロック222に入射し、反射 面222b、偏光ビームスプリッタ面222aで順に反 射され、2分割旋光板214Aに入射する。ここで、2 分割旋光板214Aの旋光板214AR, 214ALは 共にオフにされているので、旋光板214ARを通過し た光は、偏光方向が-45°回転されて、A偏光とな り、旋光板214ALを通過した光は、偏光方向が+4 5°回転されて、B偏光となる。この光は、透明基板3 の表面上で、最も小径となるように収束する。

40

【0150】情報記録層2における記録領域259から は、情報記録層2の手前側で最も小径となるように収束 する光を記録用参照光と見た場合の再生光が発生され る。この場合の再生光は、情報記録層2の奥側で最も小 径となる発散光である。より詳しく説明すると、記録領 域259の上半分の領域では、旋光板214ALからの B偏光の光が照射されて、記録時において2分割旋光板 214Aの旋光板214ARから照射され、情報記録層 2の奥側で最も小径となる光に対応する再生光が発生さ れる。この再生光は、B偏光の光であり、対物レンズ2 12Bで集光されて若干拡散する光束となり、2分割旋 光板2140の旋光板2140Lを通過してS偏光の光 となる。同様に、記録領域259の下半分の領域では、 旋光板214ARからのA偏光の光が照射されて、記録 時において2分割旋光板214Aの旋光板214ALか ら照射され、情報記録層2の奥側で最も小径となる光に 対応する再生光が発生される。この再生光は、A偏光の 光であり、対物レンズ212Bで集光されて若干拡散す る光束となり、2分割旋光板214Cの旋光板214C Rを通過してS偏光の光となる。これらのS偏光の再生 光は、プリズムブロック225の偏光ビームスプリッタ 面225aで反射され、更に反射面225bで反射さ れ、凸レンズ228によって集光されて平行光束とな り、プリズムブロック226の反射面226b、偏光ビ ームスプリッタ面226aで順に反射されて、CCDア レイ229B上に結像する。このようにしてCCDアレ イ229B上では、記録時に空間光変調器216におい てオフであった画素に対応する部分のみが明るく照射さ れ、その2次元パターンがCCDアレイ229Bによっ て検出され、情報の再生が行われる。

【0151】本実施の形態では、空間光変調器216の 全画素がオフの状態としてCCDアレイ219Aによっ て情報の再生を行ってもよいし、空間光変調器216の 全画素がオンの状態としてССDアレイ219Bによっ て情報の再生を行ってもよい。更に、本実施の形態で は、1単位の記録領域259につき、空間光変調器21 6の全画素がオフの状態と空間光変調器216の全画素 がオンの状態とを切り換えて2種類の再生用参照光を時 分割的に照射したり、あるいは、例えば空間光変調器2 16の全画素の半数をオフ、半数をオンとして2種類の 再生用参照光を同時に照射したりして、 CCDアレイ2 19A, 219Bの双方を用いて情報の再生を行うこと もできる。この場合には、1単位の記録領域259につ いてCCDアレイ219A、219Bで得られる2つの 再生光は、互いに相補的なパターンを有しているので、 2つの再生光の差を求めることにより、いわゆる差動検 出によって、情報を再生することができる。このように 差動検出によって情報を再生する場合、具体的には、図 5における信号処理回路89によって、ССDアレイ2 19A,219Bの各出力信号に対して、ССDアレイ

219A, 219Bによって検出される各パターンの大きさ、位置や信号レベルを合わせる補正を行い、補正後の各信号の差を演算して、情報を再生する。

【0152】本実施の形態に係る光情報記録再生装置によれば、光情報記録媒体1に対して情報を随時記録し且つ定着することができ、光情報記録媒体1を、追記型(ライトワンス型)の記録媒体として利用することが可能となる。

【0153】なお、本実施の形態では、干渉パターンによって情報が記録された情報記録層2に対して、例えば、波長1064nmの光を照射すると、メロシアニンが波長532nmの蛍光を発する。そこで、この蛍光を観察することにより、干渉パターンを観察でき、干渉パターンの有無の確認等が可能となる。

【0154】本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。

【0155】次に、本発明の第4の実施の形態について 説明する。本実施の形態に係る光情報記録再生装置の全 体構成は、ピックアップの構成が異なる点を除いて、図 5と同様である。なお、本実施の形態における光情報記 20 録媒体1としては、第3の実施の形態と同様に、情報記 録層2が、波長の異なる2つの光の照射により屈折率が 変化する材料によって形成されたものを用いる。

【0156】図22および図23は、本実施の形態に係る光情報記録再生装置におけるピックアップの構成を示す説明図である。なお、以下、図1、図19および図20に示したピックアップ中の部材と同じ部材には同じ符号を付し、詳しい説明を省略する。本実施の形態におけるピックアップ311は、第3の実施の形態と同様のSIL12A、12B、対物レンズ212A、212B、アクチュエータ213A、アクチュエータ213Bおよび2分割旋光板214Aを備えている。また、ピックアップ311は、第3の実施の形態における2分割旋光板214Bを備えている。また、ピックアップ311は、第3の実施の形態と同様の光源231、コリメータレンズ232、凸レンズ53、凹レンズ54およびシリンドリカルレンズ55を備えている。

【0157】ピックアップ311は、更に、2分割旋光板214Aにおける光情報記録媒体1とは反対側に、2分割旋光板214A側から順に配設されたプリズムブロック315A、空間光変調器216、コリメータレンズ217およびレーザカプラ20と、プリズムブロック315Aの側方に配設された凸レンズ318AおよびCCDアレイ219Aを備えている。

【0158】ピックアップ311は、更に、2分割旋光板214Bにおける光情報記録媒体1とは反対側に、2分割旋光板214B側から順に配設されたプリズムプロック315B、凸レンズ318BおよびCCDアレイ219Bを備えている。

【0159】2分割旋光板214Bは、図23において光軸の上側部分に配置された旋光板214BRと、図23において光軸の下側部分に配置された旋光板214BLとを有している。各旋光板214BR,214BLは、それぞれ例えば2枚の透明電極基板間に液晶を封入して構成されている。旋光板214BRは、オフにする入射光の偏光方向を回転させないようになっている。一方、旋光板214BLは、オフにすると入射光の偏光方向を回転させないようになっている。一方、旋光板214BLは、オフにすると入射光の偏光方向を中45°回転させ、オンにすると入射光の偏光方向を回転させないようになっている。

42

【0160】プリズムブロック315Aは、2分割旋光板214Aと空間光変調器216の間において、その法線方向が、2分割旋光板214Aと空間光変調器216の間における光軸方向に対して45°傾けられて配置された偏光ビームスプリッタ面315Aaと、空間光変調器216側からの光が偏光ビームスプリッタ面315Aaに平行な反射面315Abとを有している。

【0161】プリズムブロック315Bは、2分割旋光板214Bと凸レンズ318Bの間において、プリズムブロック315Aにおける偏光ビームスプリッタ面315Aaに対して平行に配置された偏光ビームスプリッタ面315Baと、プリズムブロック315Aにおける反射面315Abからの光が入射する位置に配置され、偏光ビームスプリッタ面315Baに垂直な反射面315Bbとを有している。

【0162】プリズムブロック315A、315Bにおける各反射面315Ab、315Bbは、光情報記録媒体1の側方に配置され、反射面315Abから反射面315Bbへ向かう光は、光情報記録媒体1の側方を通過するようになっている。なお、反射面315Abから反射面315Bbへ向かう光の光路は、定着用光の光路と重ならないように配置されている。

【0163】ピックアップ311において、レーザカプラ20は、S偏光のレーザ光を出射し、このレーザ光は、コリメータレンズ217によって平行光束とされ、空間光変調器216を通過してプリズムプロック31540Aの偏光ビームスプリッタ面315Aaに入射するようになっている。ここで、空間光変調器216のオフの画素を通過した光は、P偏光となり、偏光ビームスプリッタ面315Aaを透過し、2分割旋光板214Aを通し、対物レンズ212Aによって集光されて、光情報記録媒体1に照射されるようになっている。一方、空間光変調器216のオンの画素を通過した光は、S偏光のままであり、偏光ビームスプリッタ面315Aaで反射され、プリズムブロック315Bに入射し、反射面315Bb、偏光ビームスプリッタ面315Bb、偏光ビームスプリッタ面315Bb、偏光ビームスプリッタ面315Bb、偏光ビームスプリッタ面315Bb、偏光ビームスプリッタ面315Bb、偏光ビームスプリッタ面315Bb、偏光ビームスプリッタ面315Bb、偏光ビームス

14 Bを通過し、対物レンズ212 Bによって集光され て、光情報記録媒体1に照射されるようになっている。 【0164】光情報記録媒体1から対物レンズ212A 側へ向かう光は、対物レンズ212A、2分割旋光板2 14Aを順に通過してプリズムブロック315Aの偏光 ビームスプリッタ面315Aaに入射するようになって いる。この光のうちのS偏光の光は、偏光ビームスプリ ッタ面315Aaで反射され、凸レンズ318Aで集光 されて、CCDアレイ219Aに入射するようになって いる。一方、光情報記録媒体1から対物レンズ212A 側へ向かう光のうちのP偏光の光は、偏光ビームスプリ ッタ面315Aaを透過して、空間光変調器216を通 過し、コリメータレンズ217によって集光されて、レ ーザカプラ20に入射するようになっている。

【0165】光情報記録媒体1から対物レンズ212B 側へ向かう光は、対物レンズ212B、2分割旋光板2 14 Bを順に通過してプリズムブロック315 Bの偏光 ビームスプリッタ面315Baに入射するようになって いる。この光のうちのS偏光の光は、偏光ビームスプリ ッタ面315Baで反射され、P偏光の光は、偏光ビー 20 ムスプリッタ面315Baを透過して、凸レンズ318 Bで集光されて、CCDアレイ219Bに入射するよう になっている。

【0166】次に、本実施の形態に係る光情報記録再生 装置の作用について、サーボ時、記録時、再生時に分け て、順に説明する。

【0167】まず、サーボ時の作用について説明する。 サーボ時には、空間光変調器216の全画素がオフにさ れ、2分割旋光板214A、214Bの各旋光板214 AR, 214AL, 214BR, 214BLは、全てオ 30 ンにされる。レーザカプラ20の出射光の出力は、再生 用の低出力に設定される。また、光源231は定着用光 を出射しない。なお、コントローラ90は、再生信号R Fより再生された基本クロックに基づいて、対物レンズ 212Aの出射光がアドレス・サーボエリアを通過する タイミングを予測し、対物レンズ212Aの出射光がア ドレス・サーボエリアを通過する間、上記の設定とす

【0168】サーボ時には、レーザカプラ20から出射 された S 偏光のレーザ光は、コリメータレンズ 2 1 7 に 40 よって平行光束とされ、空間光変調器216に入射す る。ここで、空間光変調器216の全画素がオフにされ ているので、空間光変調器216を通過した後の光は、 偏光方向が+90°回転されてP偏光となる。このP偏 光の光は、プリズムブロック315Aの偏光ビームスプ リッタ面315Aaを透過して、2分割旋光板214A に入射する。ここで、2分割旋光板214Aの旋光板2 14AR、214ALは共にオンにされているので、光 は何ら影響を受けずに2分割旋光板214Aを通過す

44

212Aによって集光され、位置決め層4と保護層5と の境界面上で最も小径となるように収束されて、情報記 録媒体1に照射される。この光は、位置決め層4と保護 層5との境界面で反射され、その際、アドレス・サーボ エリアにおけるエンボスピットによって変調されて、対 物レンズ212A側に戻ってくる。この戻り光は、対物 レンズ212Aで平行光束とされ、何ら影響を受けずに 2分割旋光板214Aを通過し、プリズムブロック31 5 A の偏光ビームスプリッタ面315 A a を透過して、 空間光変調器216を通過して、偏光方向が+90°回 転されて再びS偏光とされ、レーザカプラ20に入射 し、フォトディテクタ25、26によって検出される。 そして、このフォトディテクタ25、26の出力に基づ いて、検出回路85によって、フォーカスエラー信号F E. トラッキングエラー信号TEおよび再生信号RFが 生成され、これらの信号に基づいて、フォーカスサーボ およびトラッキングサーボが行われると共に、基本クロ ックの再生およびアドレスの判別が行われる。

【0169】次に、記録時の作用について説明する。記 録時には、空間光変調器216は、記録する情報に応じ て各画素毎にオン(0°)とオフ(+90°)を選択す る。また、2分割旋光板214A,214Bの各旋光板 214AR, 214AL, 214BR, 214BLは、 全てオフにされる。レーザカプラ20の出射光の出力 は、パルス的に記録用の高出力にされる。また、光源2 31は、レーザカプラ20の出射光の出力が高出力とな るタイミングに合わせて、間欠的に定着用光を出射す る。なお、コントローラ90は、再生信号RFより再生 された基本クロックに基づいて、対物レンズ212A, 212Bの出射光がデータエリアを通過するタイミング を予測し、対物レンズ212A, 212Bの出射光がデ ータエリアを通過する間、上記の設定とする。対物レン ズ212A、212Bの出射光がデータエリアを通過す る間は、フォーカスサーボおよびトラッキングサーボは 行われず、対物レンズ212A、212Bは固定されて いる。

【0170】記録時には、レーザカプラ20から出射さ れたS偏光のレーザ光は、コリメータレンズ217によ って平行光束とされ、空間光変調器216に入射する。 ここで、空間光変調器216のうちオンにされている画 素を通過した光は偏光方向が回転されずにS偏光のまま となり、オフにされている画素を通過した光は偏光方向 が+90°回転されてP偏光となる。

【0171】空間光変調器216からのP偏光の光は、 プリズムブロック315Aの偏光ビームスプリッタ面3 15Aaを透過して、2分割旋光板214Aに入射す る。ここで、2分割旋光板214Aの旋光板214A R, 214ALは共にオフにされているので、旋光板2 14ARを通過した光は、偏光方向が一45°回転され る。2分割旋光板214Aを通過した光は、対物レンズ 50 て、B偏光となり、旋光板214ALを通過した光は、

偏光方向が+45°回転されて、A偏光となる。この光 は、位置決め層4と保護層5との境界面上で、最も小径 となるように収束する。

【0172】空間光変調器216からの5偏光の光は、 プリズムブロック315Aの偏光ビームスプリッタ面3 15Aaで反射され、更に反射面315Abで反射さ れ、プリズムブロック315Bに入射し、反射面315 Bb、偏光ビームスプリッタ面315Baで順に反射さ れ、2分割旋光板214Bに入射する。ここで、2分割 旋光板214Bの旋光板214BR,214BLは共に オフにされているので、旋光板214BRを通過した光 は、偏光方向がー45°回転されて、B偏光となり、旋 光板14BLを通過した光は、偏光方向が+45°回転 されて、A偏光となる。この光は、透明基板3の表面 で、最も小径となるように収束する。

【0173】情報記録層2では、旋光板214ARから の B 偏光の光と旋光板 2 1 4 B R からの B 偏光の光とが 干渉し、旋光板214ALからのA偏光の光と旋光板2 14 B L からの A 偏光の光とが干渉して干渉パターンが 形成され、定着用光が、情報記録層2内で干渉パターン 20 が形成された領域の一部を通過し、その結果、定着用光 が通過した部分の情報が定着され、干渉パターンによっ て情報が記録され且つ情報が定着された記録領域260 が層状に形成される。本実施の形態では、記録領域26 0は、反射型(リップマン型)の体積ホログラムとな

【0174】本実施の形態では、情報記録層2に対して 互いに反対方向から照射される2分割旋光板214Aか らの光と2分割旋光板214Bからの光は、互いに相補 的なパターンを有しており、いずれも、情報記録層2に 記録すべき情報を担持した情報光と見ることができる。 2分割旋光板214Aからの光を情報光として見た場合 には2分割旋光板214Bからの光が記録用参照光とな り、逆に、2分割旋光板214Bからの光を情報光とし て見た場合には2分割旋光板214Aからの光が記録用 参照光となる。

【0175】次に、再生時の作用について説明する。再 生時には、空間光変調器216は、必要に応じて全画素 がオフ (+90°) の状態と全画素がオン (0°) の状 態とが選択される。また、2分割旋光板214A,21 4Bの各旋光板214AR, 214AL, 214BR, 214 B L は、全てオフにされる。レーザカプラ20の 出射光の出力は、再生用の低出力にされる。なお、コン トローラ90は、再生信号RFより再生された基本クロ ックに基づいて、対物レンズ212Aの出射光がデータ エリアを通過するタイミングを予測し、対物レンズ21 2A, 212Bの出射光がデータエリアを通過する間、 上記の設定とする。対物レンズ212A、212Bの出 射光がデータエリアを通過する間は、フォーカスサーボ

2A、212Bは固定されている。

【0176】空間光変調器216の全画素がオフの状態 のときには、レーザカプラ20から出射されたS偏光の レーザ光は、コリメータレンズ217によって平行光束 とされ、空間光変調器216によって偏光方向が+90 。回転されてP偏光となる。空間光変調器216からの P偏光の光は、プリズムブロック315Aの偏光ビーム スプリッタ面315Aaを透過して、2分割旋光板21 4Aに入射する。ここで、2分割旋光板214Aの旋光 板214AR、214ALは共にオフにされているの で、旋光板214ARを通過した光は、偏光方向がー4 5°回転されて、B偏光となり、旋光板214ALを通 過した光は、偏光方向が+45°回転されて、A偏光と なる。この光は、位置決め層4と保護層5との境界面上 で、最も小径となるように収束する。

【0177】情報記録層2における記録領域260から は、対物レンズ212Aから見て情報記録層2の奥側で 最も小径となるように収束する光を記録用参照光と見た 場合の再生光が発生される。この場合の再生光は、情報 記録層2の手前側で最も小径となる発散光である。より 詳しく説明すると、記録領域260の上半分の領域で は、旋光板214ARからのB偏光の光が照射されて、 記録時において2分割旋光板214Bの旋光板214B Rから照射された光に対応する再生光が発生される。こ の再生光は、B偏光の光であり、対物レンズ212Aで 集光され、2分割旋光板214Aの旋光板214ALを 通過してS偏光の光となる。同様に、記録領域260の 下半分の領域では、旋光板214ALからのA偏光の光 が照射されて、記録時において2分割旋光板214Bの 旋光板214BLから照射された光に対応する再生光が 発生される。この再生光は、A偏光の光であり、対物レ ンズ212Aで集光され、2分割旋光板214Aの旋光 板214ARを通過してS偏光の光となる。これらのS 偏光の再生光は、プリズムブロック315Aの偏光ビー ムスプリッタ面315Aaで反射され、凸レンズ318 Aで集光されて、CCDアレイ219A上に結像する。 このようにしてCCDアレイ219A上では、記録時に 空間光変調器216においてオンであった画素に対応す る部分のみが明るく照射され、その2次元パターンがC CDアレイ219Aによって検出され、情報の再生が行 われる。

【0178】一方、空間光変調器216の全画素がオン の状態のときには、レーザカプラ20から出射されたS 偏光のレーザ光は、コリメータレンズ217によって平 行光束とされ、空間光変調器216によって偏光方向が 回転されずに S 偏光のままとなる。空間光変調器 2 1 6 からのS偏光の光は、プリズムブロック315Aの偏光 ビームスプリッタ面315Aaで反射され、更に反射面 315Abで反射され、プリズムブロック315Bに入 およびトラッキングサーボは行われず、対物レンズ21 50 射し、反射面315Bb、偏光ビームスプリッタ面31

5 B a で順に反射され、2分割旋光板214 Bに入射す る。ここで、2分割旋光板214Bの旋光板214B R, 214BLは共にオフにされているので、旋光板2 14BRを通過した光は、偏光方向が-45°回転され て、B偏光となり、旋光板214BLを通過した光は、 偏光方向が+45°回転されて、A偏光となる。2分割 旋光板214Bからの光は、透明基板3の表面で、最も 小径となるように収束する。

47

【0179】情報記録層2における記録領域260から は、2分割旋光板214Bからの光を再生用参照光と見 た場合の再生光が発生される。より詳しく説明すると、 記録領域260の上半分の領域では、旋光板214BR からのB偏光の光が照射されて、記録時において2分割 旋光板214Aの旋光板214ARから照射された光に 対応する再生光が発生される。この再生光は、B偏光の 光であり、対物レンズ212Bで集光され、2分割旋光 板214Bの旋光板214BLを通過してP偏光の光と なる。同様に、記録領域260の下半分の領域では、旋 光板214BLからのA偏光の光が照射されて、記録時 において2分割旋光板214Aの旋光板214ALから 照射された光に対応する再生光が発生される。この再生 光は、A偏光の光であり、対物レンズ212Bで集光さ れ、2分割旋光板214Bの旋光板214BRを通過し てP偏光の光となる。これらのP偏光の再生光は、プリ ズムブロック315Bの偏光ビームスプリッタ面315 Baを透過して、凸レンズ318Bで集光されて、CC Dアレイ219B上に結像する。このようにしてCCD アレイ219B上では、記録時に空間光変調器216に おいてオフであった画素に対応する部分のみが明るく照 射され、その2次元パターンがCCDアレイ219Bに よって検出され、情報の再生が行われる。

【0180】本実施の形態では、第3の実施の形態と同 様に、空間光変調器216の全画素がオフの状態として 情報の再生を行ってもよいし、空間光変調器216の全 画素がオンの状態として情報の再生を行ってもよい。

【0181】本実施の形態におけるその他の構成、作用 および効果は、第3の実施の形態と同様である。

【0182】なお、第3および第4の実施の形態におい て、定着用光として紫外線を用いてもよい。この場合に は、情報記録層2にはフォトポリマを使用する。情報記 録層2における情報の記録と定着は、以下のように進行 する。すなわち、情報記録層2を構成するフォトポリマ は、バインダポリマ中に光重合性モノマを分散させたも のである。この情報記録層2において干渉パターンが形 成されると、干渉パターンの明部において光重合性モノ マの重合が進み、モノマの濃度勾配が生じ、重合が進ん でいない部分から進んだ部分へモノマが拡散する。その 結果、重合の進んだポリマ部分と、モノマが減少してバ インダポリマの割合が増えた部分が生じ、屈折率分布が 生じ、この屈折率分布によって情報が記録される。この 50 の中心(光軸)が、情報記録層 2 内において、対物レン

48 状態で、紫外線を照射すると、未反応のモノマの重合が 完了し、記録が定着することになる。

【0183】次に、本発明の第5の実施の形態について 説明する。本実施の形態に係る光情報記録再生装置の全 体構成は、ピックアップの構成が異なる点を除いて、図 5と同様である。

【0184】図24は、本実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図であ る。なお、以下、図1に示したピックアップ中の部材と 同じ部材には同じ符号を付し、詳しい説明を省略する。 本実施の形態に係る光情報記録再生装置で使用する光情 報記録媒体401は、情報記録層2の両側に、透明な保 護層402、402を設けた構成になっている。

【0185】本実施の形態におけるピックアップ411 は、スピンドル81に光情報記録媒体401が固定され たときに光情報記録媒体401の一方の面に対向するよ うに配置された対物レンズ412と、光情報記録媒体4 01を挟んで対物レンズ412と対向する位置に配設さ れたミラー418と、対物レンズ412における光情報 記録媒体401とは反対側に、対物レンズ412側から 順に配設された空間光変調器413、ビームスプリッタ 414およびССDアレイ19とを備えている。ピック アップ411は、更に、ビームスプリッタ414の側方 に配設されたコリメータレンズ415およびレーザカプ ラ20を備えている。

【0186】対物レンズ412は、その光軸が光情報記 録媒体401の面に対して60°の角度をなすように配 置されている。ビームスプリッタ414は、その法線方 向が、対物レンズ412の光軸方向に対して45°傾け られて配置された半反射面4 1 4 a を有している。そし て、レーザカプラ2.0側よりビームスプリッタ414に 入射する光は、光量の一部が半反射面414aで反射さ れて空間光変調器413に入射し、光量の一部が半反射 面414aを透過するようになっている。

【0187】空間光変調器413は、格子状に配列され た多数の画素を有し、各画素毎に光の透過状態と遮断状 態とを選択することによって、光強度によって光を空間 的に変調することができるようになっている。

【0188】ピックアップ411は、更に、レーザカプ ラ20側よりビームスプリッタ414に入射し、半反射 面414aを透過する光の進行方向に配設され、半反射 面1414aと平行な全反射面416aを有するプリズ ム416と、このプリズム416の全反射面416aで 反射される光の進行方向に配設され、全反射面 4 1 6 a に直交する全反射面417aを有するプリズム417 と、全反射面 4 1 7 a で反射される光の進行方向に、プ リズム417側より順に配設された凸レンズ53、凹レ ンズ54およびシリンドリカルレンズ55とを備えてい る。シリンドリカルレンズ55より出射される光は、そ

ズ412より出射される光の中心(光軸)と直交するように、情報記録層2に対して照射されるようになっている。従って、シリンドリカルレンズ55より出射される光は、光情報記録媒体401の面に対して30°の角度をなすように、光情報記録媒体401に対して照射されるようになっている。また、シリンドリカルレンズ55より出射される光は、情報記録層2内で最も薄くなるようになっている。

【0189】本実施の形態におけるピックアップ411では、レーザカプラ20より出射されるレーザ光は、コ 10リメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aを透過するようになっている。半反射面414aで反射された光は、空間光変調器413を通過し、対物レンズ412によって集光され、光情報記録媒体401に照射されるようになっている。この光は、ミラー418の面上で最も小径となるように収束するようになっている。

【0190】一方、半反射面414aを透過した光は、プリズム416の全反射面416aとプリズム417の 20全反射面417aで順に反射され、凸レンズ53と凹レンズ54を順に通過して、光束の径が縮小されるようになっている。凹レンズ54の出射光は、シリンドリカルレンズ55によって、対物レンズ412の光軸方向のみについて収束されて扁平な形状の光束とされ、光情報記録媒体401に照射されるようになっている。対物レンズ412側からの光とシリンドリカルレンズ55側からの光は、各光の中心が直交するように、情報記録層2内で交差するようになっている。

【0191】情報の記録時には、対物レンズ412側からの光が情報光となり、シリンドリカルレンズ55側からの光が記録用参照光となり、情報記録層2内に、これらの情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域420が層状に形成されるようになっている。本実施の形態では、図24に示したように、情報記録層2内では、対物レンズ412側からの光のうちの図における左半分の部分とシリンドリカルレンズ55側からの扁平な形状の光とが交差するようになっている。従って、情報記録層2内に形成される記録領域420の形状は、半円形の板状となる。

【0192】光情報記録媒体401から対物レンズ41 2側へ向かう光は、対物レンズ412と空間光変調器4 13を順に通過し、光量の一部がビームスプリッタ41 4の半反射面414aを透過して、CCDアレイ19に 入射するようになっている。

【0193】次に、本実施の形態に係る光情報記録再生 装置の作用について説明する。本実施の形態に係る光情 報記録再生装置では、光情報記録媒体401の情報記録 層2に、透過型のホログラムと反射型のホログラムのい ずれをも形成することが可能である。 50

【0194】始めに、情報記録層2に透過型のホログラムを形成する場合について説明する。この場合、記録時には、空間光変調器413の図における右半分の領域413Rでは全ての画素を遮断状態とし、左半分の領域413Lでは記録する情報に応じて各画素毎に透過状態と遮断状態とを選択する。また、レーザカプラ20の出射光の出力は、パルス的に記録用の高出力にされる。

【0195】レーザカプラ20から出射されたレーザ光は、コリメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aを透過する。半反射面414aで反射された光は、空間光変調器413に入射し、左半分の領域413Lより、記録する情報に応じて変調された光が出射される。この光を情報光とする。この情報光は、対物レンズ412によって集光され、光情報記録媒体401に照射される。【0196】一方、半反射面414aを透過した光は、プリズム416の全反射面414aを透過した光は、プリズム416の全反射面416aとプリズム417の全反射面417aで順に反射され、凸レンズ53、凹レンズ54およびシリンドリカルレンズ55を順に通過して、扁平な形状の光束とされ、光情報記録媒体401に照射される。この光を記録用参照光とする。

【0197】対物レンズ412側からの情報光とシリンドリカルレンズ55側からの記録用参照光は、各光の中心が直交するように、情報記録層2内で交差する。そして、これらの情報光と記録用参照光が交差する部分に、これらの光の干渉による干渉パターンが形成され、レーザカプラ20の出射光の出力が高出力になったときに、情報光と記録用参照光による干渉パターンが情報記録層2内に体積的に記録されて、透過型の体積ホログラムからなる記録領域420が層状に形成される。

【0198】再生時には、空間光変調器413の右半分の領域413Rでは全ての画素を透過状態とし、左半分の領域413Lでは全ての画素を遮断状態とする。また、レーザカプラ20の出射光の出力は、記録用の低出力にされる。

【0199】レーザカプラ20から出射されたレーザ光は、コリメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aを透過する。半反射面414aを透過した光は、プリズム416の全反射面414aを透過した光は、プリズム416の全反射面416aとプリズム417の全反射面417aで順に反射され、凸レンズ53、凹レンズ54およびシリンドリカルレンズ55を順に通過して、扁平な形状の光束とされ、光情報記録媒体401に照射される。この光を再生用参照光とする。この再生用参照光が情報記録層2内の記録領域420に照射されると、記録領域420より、記録時における情報光に対応する再生光が発生される。この再生光は、収束しながらミラー418側に進行し、ミラー418上で最も小径となるよ

うに収束すると共にミラー418で反射されて、拡散しながら対物レンズ412側に進行し、対物レンズ412によって平行光束とされ、空間光変調器413の右半分の領域413Rを通過し、光量の一部がビームスプリッタ414の半反射面414aを透過してCCDアレイ19に入射する。そして、CCDアレイ19によって再生光の2次元パターンを検出することによって、情報の再生が行われる。

51

【0200】なお、再生時に、レーザカプラ20から出射されたレーザ光が空間光変調器413の右半分の領域 10413Rを通過して光情報記録媒体401に照射されるが、この光は、ミラー418で反射され、対物レンズ412を通過した後、空間光変調器413の左半分の領域413Lで遮断される。

【0201】次に、本実施の形態において、情報記録層2に反射型のホログラムを形成する場合について説明する。この場合、記録時には、空間光変調器413の左半分の領域413Lでは全ての画素を遮断状態とし、右半分の領域413Rでは記録する情報に応じて各画素毎に透過状態と遮断状態とを選択する。また、レーザカプラ20の出射光の出力は、パルス的に記録用の高出力にされる。

【0202】レーザカプラ20から出射されたレーザ光は、コリメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aを透過する。半反射面414aで反射された光は、空間光変調器413に入射し、右半分の領域413Rより、記録する情報に応じて変調された光が出射される。この光は、対物レンズ412によって集光され、光情報記録 30 媒体401に照射され、光情報記録媒体401を通過し、ミラー418上で最も小径となるように収束すると共にミラー418で反射されて、拡散しながら再び光情報記録媒体401に入射する。この光を情報光とする。

【0203】一方、半反射面414aを透過した光は、プリズム416の全反射面416aとプリズム417の全反射面417aで順に反射され、凸レンズ53、凹レンズ54およびシリンドリカルレンズ55を順に通過して、扁平な形状の光束とされ、光情報記録媒体401に照射される。この光を記録用参照光とする。

【0204】ミラー418側からの情報光とシリンドリカルレンズ55側からの記録用参照光は、各光の中心が直交するように、情報記録層2内で交差する。そして、これらの情報光と記録用参照光が交差する部分に、これらの光の干渉による干渉パターンが形成され、レーザカプラ20の出射光の出力が高出力になったときに、情報光と記録用参照光による干渉パターンが情報記録層2内に体積的に記録されて、反射型の体積ホログラムからなる記録領域420が層状に形成される。

【0205】再生時には、空間光変調器413の左半分 50 における光情報記録媒体501とは反対側に、対物レン

の領域 4 1 3 L では全ての画素を透過状態とし、右半分の領域 4 1 3 R では全ての画素を遮断状態とする。また、レーザカプラ 2 0 の出射光の出力は、記録用の低出力にされる。

52

【0206】レーザカプラ20から出射されたレーザ光 は、コリメータレンズ415によって平行光束とされ、 ビームスプリッタ414に入射し、光量の一部が半反射 面414aで反射され、光量の一部が半反射面414a を透過する。半反射面414aを透過した光は、プリズ ム416の全反射面416aとプリズム417の全反射 面417aで順に反射され、凸レンズ53、凹レンズ5 4およびシリンドリカルレンズ55を順に通過して、扁 平な形状の光束とされ、光情報記録媒体401に照射さ れる。この光を再生用参照光とする。この再生用参照光 が情報記録層2内の記録領域420に照射されると、記 録領域420より、記録時における情報光に対応する再 生光が発生される。この再生光は、拡散しながら対物レ ンズ412側に進行し、対物レンズ412によって平行 光束とされ、空間光変調器413の左半分の領域413 Lを通過し、光量の一部がビームスプリッタ414の半 反射面414aを透過してCCDアレイ19に入射す る。そして、CCDアレイ19によって再生光の2次元 パターンを検出することによって、情報の再生が行われ

【0207】なお、再生時に、レーザカプラ20から出射されたレーザ光が空間光変調器413の左半分の領域413Lを通過して光情報記録媒体401に照射されるが、この光は、ミラー418で反射され、対物レンズ412を通過した後、空間光変調器413の右半分の領域413Rで遮断される。

【0208】本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。

【0209】次に、本発明の第6の実施の形態について 説明する。本実施の形態に係る光情報記録再生装置の全 体構成は、ピックアップの構成が異なる点を除いて、図 5と同様である。

【0210】図25は、本実施の形態に係る光情報記録再生装置におけるピックアップの構成を示す説明図である。なお、以下、図24に示したピックアップ中の部材と同じ部材には同じ符号を付し、詳しい説明を省略する。本実施の形態に係る光情報記録再生装置で使用する光情報記録媒体501は、情報記録層2の一方の両側に透明基板502を設け、他方の面側に透明な保護層503を設けた構成になっている。透明基板502の外側の面は反射面504になっている。

【0211】本実施の形態におけるピックアップ511は、スピンドル81に光情報記録媒体501が固定されたときに光情報記録媒体501の一方の面に対向するように配置された対物レンズ412と、対物レンズ412における光情報記録媒体501とは反対側に、対物レン

ズ412側から順に配設された空間光変調器413、ビームスプリッタ414およびCCDアレイ19とを備えている。ピックアップ511は、更に、ビームスプリッタ414の側方に配設されたコリメータレンズ415およびレーザカプラ20を備えている。本実施の形態では、対物レンズ412は、その光軸が光情報記録媒体501の面に対して垂直になるように配置されている。

53

【0212】ピックアップ411は、更に、レーザカプラ20側よりビームスプリッタ414に入射し、半反射面414aを透過する光の進行方向に配設されたミラー 10512と、このミラー512で反射される光の進行方向に、ミラー512側より順に配設された凸レンズ53、凹レンズ54およびシリンドリカルレンズ55とを備えている。本実施の形態では、シリンドリカルレンズ55より出射される光は、その中心(光軸)が、光情報記録媒体501の面に対して45°の角度をなすように、光情報記録媒体501に対して照射され、情報記録層2内において、対物レンズ412側からの光と交差するようになっている。また、シリンドリカルレンズ55より出射される光は、情報記録層2内で最も薄くなるようになっている。

【0213】本実施の形態におけるピックアップ511では、レーザカプラ20より出射されるレーザ光は、コリメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aを透過するようになっている。半反射面414aで反射された光は、空間光変調器413を通過し、対物レンズ412によって集光され、光情報記録媒体501に照射されるようになっている。この光は、情報記録媒体501の反30射面504上で最も小径となるように収束するようになっている。

【0214】一方、半反射面414aを透過した光は、ミラー512で反射され、凸レンズ53と凹レンズ54を順に通過して、光束の径が縮小されるようになっている。凹レンズ54の出射光は、シリンドリカルレンズ55によって扁平な形状の光束とされ、光情報記録媒体501に照射され、情報記録層2内で、対物レンズ412側からの光と交差するようになっている。

【0215】情報の記録時には、対物レンズ412側からの光が情報光となり、シリンドリカルレンズ55側からの光が記録用参照光となり、情報記録層2内に、これらの情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域520が層状に形成されるようになっている。本実施の形態では、図25に示したように、情報記録層2内では、対物レンズ412側からの光のうちの図における右半分の部分とシリンドリカルレンズ55側からの扁平な形状の光とが交差するようになっている。従って、情報記録層2内に形成される記録領域420の形状は、半円形の板状となる。

【0216】光情報記録媒体501から対物レンズ41 2側へ向かう光は、対物レンズ412と空間光変調器4 13を順に通過し、光量の一部がビームスプリッタ41 4の半反射面414aを透過して、CCDアレイ19に

54

入射するようになっている。

【0217】次に、本実施の形態に係る光情報記録再生装置の作用について説明する。本実施の形態に係る光情報記録再生装置では、光情報記録媒体501の情報記録層2に、透過型のホログラムと反射型のホログラムのいずれをも形成することが可能である。

【0218】始めに、情報記録層2に透過型のホログラムを形成する場合について説明する。この場合、記録時には、空間光変調器413の図における左半分の領域413Lでは全ての画素を遮断状態とし、右半分の領域413Rでは記録する情報に応じて各画素毎に透過状態と遮断状態とを選択する。また、レーザカプラ20の出射光の出力は、パルス的に記録用の高出力にされる。

【0219】レーザカプラ20から出射されたレーザ光は、コリメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aを透過する。半反射面414aで反射された光は、空間光変調器413に入射し、右半分の領域413Rより、記録する情報に応じて変調された光が出射される。この光を情報光とする。この情報光は、対物レンズ412によって集光され、光情報記録媒体501に照射される。【0220】一方、半反射面414aを透過した光は、ミラー512で反射され、凸レンズ53、凹レンズ54およびシリンドリカルレンズ55を順に通過して、扁平な形状の光束とされ、光情報記録媒体501に照射される。この光を記録用参照光とする。

【0221】対物レンズ412側からの情報光とシリンドリカルレンズ55側からの記録用参照光は、情報記録層2内で交差する。そして、これらの情報光と記録用参照光が交差する部分に、これらの光の干渉による干渉パターンが形成され、レーザカプラ20の出射光の出力が高出力になったときに、情報光と記録用参照光による干渉パターンが情報記録層2内に体積的に記録されて、透過型の体積ホログラムからなる記録領域520が層状に形成される。

【0222】再生時には、空間光変調器413の右半分の領域413Rでは全ての画素を遮断状態とし、左半分の領域413Lでは全ての画素を透過状態とする。また、レーザカプラ20の出射光の出力は、記録用の低出力にされる。

【0223】レーザカプラ20から出射されたレーザ光は、コリメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aで反射され、光量の一部が半反射面414aを透過した光は、ミラーを透過する。半反射面414aを透過した光は、ミラー

512で反射され、凸レンズ53、凹レンズ54および シリンドリカルレンズ55を順に通過して、扁平な形状 の光束とされ、光情報記録媒体501に照射される。こ の光を再生用参照光とする。この再生用参照光が情報記 録層2内の記録領域520に照射されると、記録領域5 20より、記録時における情報光に対応する再生光が発 生される。この再生光は、収束しながら反射面504側 に進行し、反射面504上で最も小径となるように収束 すると共に反射面504で反射されて、拡散しながら対 物レンズ412側に進行し、対物レンズ412によって 平行光束とされ、空間光変調器413の左半分の領域4 13 Lを通過し、光量の一部がビームスプリッタ 4 1 4 の半反射面414aを透過してCCDアレイ19に入射 する。そして、CCDアレイ19によって再生光の2次 元パターンを検出することによって、情報の再生が行わ れる。

【0224】なお、再生時に、レーザカプラ20から出射されたレーザ光が空間光変調器413の左半分の領域413Lを通過して光情報記録媒体501に照射されるが、この光は、反射面504で反射され、対物レンズ412を通過した後、空間光変調器413の右半分の領域413Rで遮断される。

【0225】次に、本実施の形態において、情報記録層2に反射型のホログラムを形成する場合について説明する。この場合、記録時には、空間光変調器413の右半分の領域413Rでは全ての画素を遮断状態とし、左半分の領域413Lでは記録する情報に応じて各画素毎に透過状態と遮断状態とを選択する。また、レーザカプラ20の出射光の出力は、パルス的に記録用の高出力にされる。

【0226】レーザカプラ20から出射されたレーザ光は、コリメータレンズ415によって平行光束とされ、ビームスプリッタ414に入射し、光量の一部が半反射面414aを透過する。半反射面414aで反射された光は、空間光変調器413に入射し、左半分の領域413Lより、記録する情報に応じて変調された光が出射される。この光は、対物レンズ412によって集光され、光情報記録媒体501に照射され、情報記録層2を通過し、反射面504上で最も小径となるように収束すると共に反射面504で反射されて、拡散しながら再び情報記録層2に入射する。この光を情報光とする。

【0227】一方、半反射面414aを透過した光は、ミラー512で反射され、凸レンズ53、凹レンズ54 およびシリンドリカルレンズ55を順に通過して、扁平な形状の光束とされ、光情報記録媒体501に照射される。この光を記録用参照光とする。

【0228】反射面504側からの情報光とシリンドリカルレンズ55側からの記録用参照光は、情報記録層2内で交差する。そして、これらの情報光と記録用参照光

が交差する部分に、これらの光の干渉による干渉パターンが形成され、レーザカプラ 2 0 の出射光の出力が高出

力になったときに、情報光と記録用参照光による干渉パターンが情報記録層2内に体積的に記録されて、反射型の体積ホログラムからなる記録領域520が層状に形成

56

される。

【0229】再生時には、空間光変調器413の右半分の領域413Rでは全ての画素を透過状態とし、左半分の領域413Lでは全ての画素を遮断状態とする。また、レーザカプラ20の出射光の出力は、記録用の低出力にされる。

【0230】レーザカプラ20から出射されたレーザ光 は、コリメータレンズ415によって平行光束とされ、 ビームスプリッタ414に入射し、光量の一部が半反射 面414aで反射され、光量の一部が半反射面414a を透過する。半反射面414aを透過した光は、ミラー 512で反射され、凸レンズ53、凹レンズ54および シリンドリカルレンズ55を順に通過して、扁平な形状 の光束とされ、光情報記録媒体501に照射される。こ の光を再生用参照光とする。この再生用参照光が情報記 録層2内の記録領域520に照射されると、記録領域5 20より、記録時における情報光に対応する再生光が発 生される。この再生光は、拡散しながら対物レンズ41 2側に進行し、対物レンズ412によって平行光束とさ れ、空間光変調器413の右半分の領域413Rを通過 し、光量の一部がビームスプリッタ414の半反射面4 14 aを透過してCCDアレイ19に入射する。そし て、ССDアレイ19によって再生光の2次元パターン を検出することによって、情報の再生が行われる。

30 【0231】なお、再生時に、レーザカプラ20から出射されたレーザ光が空間光変調器413の右半分の領域413Rを通過して光情報記録媒体501に照射されるが、この光は、反射面504で反射され、対物レンズ412を通過した後、空間光変調器413の左半分の領域413Lで遮断される。

【0232】本実施の形態におけるその他の構成、作用および効果は、第5の実施の形態と同様である。

【0233】なお、本発明は、上記各実施の形態に限定されず、例えば、各実施の形態では、情報記録層2内に、互いに重なることなく複数の記録領域を形成するようにしたが、各記録領域毎の情報を分離可能な範囲内で、隣接する記録領域同士が一部重なるように多重記録するようにしてもよい。

【0234】また、記録する情報に応じて光束を変調する場合、各実施の形態では偏光の違いや光の強度によって変調するようにしたが、この他、位相差等で変調するようにしてもよい。

【0235】また、第1、第2、第5および第6の各実施の形態では、情報光と記録用参照光のうちの記録用参 50 照光の光束を扁平な形状としたが、情報光の光束を扁平 な形状としてもよい。

【0236】また、光情報記録媒体の形態は、円板状に限らず、カード状や、テープ状等でもよい。

57

[0237]

【発明の効果】以上説明したように、請求項1ないし6のいずれかに記載の光情報記録装置または請求項12記載の光情報記録方法によれば、情報光と記録用参照光のうちの一方の光束を扁平な形状とし、情報記録層内で交差するように情報光および記録用参照光を情報記録層に対して照射して、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が記録される記録領域を層状に形成するようにしたので、ホログラフィを利用して情報が記録される光情報記録媒体に対して、より高密度に情報を記録することが可能となるという効果を奏する。

【0238】また、請求項3記載の光情報記録装置によれば、光情報記録媒体として、情報光および記録用参照光の位置決めのための情報が記録される位置決め領域を備えたものを用い、位置決め領域に記録された情報を用いて、光情報記録媒体に対する情報光および記録用参照光の位置を制御するようにしたので、更に、記録のための光の位置決めを精度よく行うことができるという効果を奏する。

【0239】また、請求項6記載の光情報記録装置によれば、記録光学系が、光情報記録媒体に対向するように配置されて情報光および記録用参照光が通過するソリッドイマージョンレンズを有するようにしたので、更に、情報光および記録用参照光の収差を低減することができるという効果を奏する。

【0240】請求項7ないし11のいずれかに記載の光情報記録装置または請求項13記載の光情報記録方法によれば、情報記録層内に情報光と記録用参照光との干渉による干渉パターンが形成されるように、情報光および記録用参照光を情報記録層に対して照射し、情報記録層内において干渉パターンが形成された領域に対して、干渉パターンによって記録される情報を定着するための高平な形状の光束の定着用光を、干渉パターンが形成された領域の一部を通過するように照射して、情報記録層内に、干渉パターンによって情報が記録され且つ情報が定着された記録領域を層状に形成するようにしたので、ホログラフィを利用して情報が記録される光情報記録媒体に対して、より高密度に情報を記録することが可能となると共に、光情報記録媒体に対して情報を随時記録し且つ定着することができるという効果を奏する。

【0241】また、請求項9記載の光情報記録装置によれば、光情報記録媒体として、情報光および記録用参照光の位置決めのための情報が記録される位置決め領域を備えたものを用い、位置決め領域に記録された情報を用いて、光情報記録媒体に対する情報光および記録用参照光の位置を制御するようにしたので、更に、記録のため

58 の光の位置決めを精度よく行うことができるという効果 を奏する。

【0242】また、請求項11記載の光情報記録装置によれば、記録光学系が、光情報記録媒体に対向するように配置されて情報光および記録用参照光が通過するソリッドイマージョンレンズを有するようにしたので、更に、情報光および記録用参照光の収差を低減することができるという効果を奏する。

【0243】請求項14ないし17のいずれかに記載の 光情報記録再生装置または請求項22記載の光情報記録 再生方法によれば、情報の記録時には、情報光と記録用 参照光のうちの一方の光束を扁平な形状とし、情報記録 層内で交差するように情報光および記録用参照光を情報 記録層に対して照射して、情報記録層内に、情報光と記録用参照光との干渉による干渉パターンによって情報が 記録される記録領域を層状に形成し、情報の再生時に は、情報記録層に、記録時における記録用参照光に対応 する再生用参照光を照射して、情報記録層より発生され る再生光を収集して、検出するようにしたので、ホログ ラフィを利用して情報が記録される光情報記録媒体に対 して、より高密度に情報を記録し、且つ光情報記録媒体 に記録された情報を適切に再生することが可能となると いう効果を奏する。

【0244】また、請求項16記載の光情報記録再生装置によれば、光情報記録媒体として、情報光、記録用参照光および再生用参照光の位置決めのための情報が記録される位置決め領域を備えたものを用い、位置決め領域に記録された情報を用いて、光情報記録媒体に対する情報光、記録用参照光および再生用参照光の位置を制御するようにしたので、更に、記録および再生のための光の位置決めを精度よく行うことができるという効果を奏する。

【0245】また、請求項17記載の光情報記録再生装置によれば、記録光学系が、光情報記録媒体に対向するように配置されて情報光および記録用参照光が通過するソリッドイマージョンレンズを有し、再生光学系が、光情報記録媒体に対向するように配置されて再生光が通過するソリッドイマージョンレンズを有するようにしたので、更に、情報光、記録用参照光および再生光の収差を低減することができるという効果を奏する。

【0246】請求項18ないし21のいずれかに記載の 光情報記録再生装置または請求項23記載の光情報記録 再生方法によれば、情報の記録時には、情報記録層内に 情報光と記録用参照光との干渉による干渉パターンが形 成されるように、情報光および記録用参照光を情報記録 層に対して照射し、情報記録層内において干渉パターン が形成された領域に対して、干渉パターンによって記録 される情報を定着するための扁平な形状の光束の定着用 光を、干渉パターンが形成された領域の一部を通過する ように照射して、情報記録層内に、干渉パターンによっ て情報が記録され且つ情報が定着された記録領域を層状に形成し、情報の再生時には、情報記録層に、記録時における記録用参照光に対応する再生用参照光を照射して、情報記録層より発生される再生光を収集して、検出するようにしたので、ホログラフィを利用して情報が記録される光情報記録媒体に対して、より高密度に情報を記録することが可能となると共に、光情報記録媒体に対して情報を随時記録し且つ定着することができ、また、光情報記録媒体に記録された情報を適切に再生することが可能となるという効果を奏する。

【0247】また、請求項20記載の光情報記録再生装置によれば、光情報記録媒体として、情報光、記録用参照光および再生用参照光の位置決めのための情報が記録される位置決め領域を備えたものを用い、位置決め領域に記録された情報を用いて、光情報記録媒体に対する情報光、記録用参照光および再生用参照光の位置を制御するようにしたので、更に、記録および再生のための光の位置決めを精度よく行うことができるという効果を奏する。

【0248】また、請求項21記載の光情報記録再生装 20 置によれば、記録光学系が、光情報記録媒体に対向するように配置されて情報光および記録用参照光が通過するソリッドイマージョンレンズを有し、再生光学系が、光情報記録媒体に対向するように配置されて再生光が通過するソリッドイマージョンレンズを有するようにしたので、更に、情報光、記録用参照光および再生光の収差を低減することができるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係る光情報記録再生装置におけるピックアップおよび光情報記録媒体の構 30成を示す説明図である。

【図2】図1におけるSILについて詳しく説明するための説明図である。

【図3】図1におけるSILの支持機構の一例を示す断 面図である。

【図4】図1におけるSILの支持機構の他の例を示す 側面図である。

【図5】本発明の第1の実施の形態に係る光情報記録再 生装置の全体構成を示すブロック図である。

【図6】図1におけるレーザカプラの構成を示す斜視図 40 である。

【図7】図1におけるレーザカプラの側面図である。

【図8】図5における検出回路の構成を示すブロック図 である。

【図9】本発明の第1の実施の形態において光情報記録 媒体の情報記録層に形成される記録領域を示す説明図で ある。

【図10】本発明の第1の実施の形態において光情報記録媒体の情報記録層に形成される記録領域を示す説明図である。

【図11】図1におけるCCDアレイの検出データから 再生光のパターンにおける基準位置を認識する方法につ いて説明するための説明図である。

【図12】図1におけるCCDアレイの検出データから 再生光のパターンにおける基準位置を認識する方法につ いて説明するための説明図である。

【図13】図1に示したピックアップにおける情報光のパターンと再生光のパターンを示す説明図である。

【図14】図1に示したピックアップによって検出する 10 再生光のパターンから判別するデータの内容とこのデー タに対応するECCテーブルとを示す説明図である。

【図15】アドレス・サーボエリアにアドレス情報等を表すホログラムを記録した光情報記録媒体を概念的に示す説明図である。

【図16】本発明の第1の実施の形態の変形例における ピックアップの構成を示す説明図である。

【図17】本発明の第1の実施の形態の他の変形例におけるピックアップの構成を示す説明図である。

【図18】本発明の第2の実施の形態に係る光情報記録 の 再生装置におけるピックアップの構成を示す説明図である。

【図19】本発明の第3の実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図である。

【図20】本発明の第3の実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図である。

【図21】本発明の第3の実施の形態において使用する 偏光を説明するための説明図である。

30 【図22】本発明の第4の実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図であ

【図23】本発明の第4の実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図である。

【図24】本発明の第5の実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図である。

【図25】本発明の第6の実施の形態に係る光情報記録 再生装置におけるピックアップの構成を示す説明図である。

【図26】従来のデジタルボリュームホログラフィにおける記録再生系の概略の構成を示す斜視図である。

【符号の説明】

1 ····光情報記録媒体、2 ···情報記録層、3 ···位置決め層、10 ···光情報記録再生装置、11 ···ピックアップ、12A、12B ···SIL、13A、13B ···対物レンズ、14A、14B ···アクチュエータ、15 ···空間光変調器、19 ···CCDアレイ、20 ···レーザカプラ。

50

【図14】

[図 1 5] 67 65

【図20】

[図22]

【図23】

【図24】

【図25】

[図26]

