

第二单元 物理层

- □通信系统
- □正弦波信号
- □频移键控
- □曼彻斯特编码
- □物理介质
- ■多路复用和电路交换

2020.4.24

通信系统(Communication System)

Information(信息) can be interpreted as a message(data), recorded as signs(符号), transmitted as signals(信号), measured as the entropy(熵)。 $\frac{1}{100}$ $\frac{1}{100}$

- 信号(signal): optical signal, electronic signal, radio signal
- 模拟信号(analog signal): 传输模拟数据(例如,声音)的信号
- 数字信号(digitial signal): 传输数字数据(例如, 网页数据)的信号
- 模拟传输(analog transmission): 模拟信号(analog signal), 放大器(amplifier)
- 数字传输(digital transmission): 数字信号(digital signal), 中继器(repeater)
 - *模拟信号为连续取值的信号,数字信号用离散值表示的信号(跳变信号)。

注: 这句话不大对, 应该说数字信号是经过采样得到的。

正弦波信号(Sinusoidal signal)

载波信号(Carrier)一般采用正弦波信号 电台信号: 通常是声音信号和载波信号一起传的。

时钟漂移:由于两边的时间不同,测错了。可以用时钟信号指示when测电平。(若是在两个点测,则依靠跳变的时候去对时)

(Non-Return-to-Zero,NRZ或NRZ-L)

? 注: 若是长时间全0或者全1,则两种漂 移都不可避免。但如果一段1一段0,则

(其实有什么区别和上面的归零)

★ 区别在于: NRZ有正有负

不归零编码是一种双极编码(bipolar encoding)。双极编码的波形就是二 进制符号,0、1分别与正、负电位相对应。它的电脉冲之间也无间隔。 RS-232C的接口电压就是采用双极编码。

(Non-Return-to-Zero Inverted, NRZI)

不归零反转采用差分码波形,相邻码元的电位改变表示1,而电位不改 变表示0。当然,也可以反过来。 该表示方法与码元本身电位或极性无关 , 而仅与相邻码元的电位变化有关。

曼彻斯特编码(Manchester Encoding)

注意: 这是以太网的规则,也有相反的规则,所以题目要交代清楚。(老师布置的默认是以太网)

差分曼彻斯特编码

(Differential Manchester Encoding)

差分曼彻斯特码是一种差分双相码,先把输入的NRZ波形变换成差分波形,再用绝对双相码(第一个规则)编码,即,"1"起始不跳变,"0"起始跳变,再用Manchester编码第一规则按当前电平进行编码。简单描述:起始是否跳变确定是否0或1,中间一定跳变。

株一本 Masil □ 14/56

4B/5B编码

用5比特表示4比特。每个编码没有多于1个的前导零和多于2个的末端 零。如果结合NRZI编码,就可以既防止跳变过多,又消除基线漂移和 时钟漂移。其它编码用于控制,如,11111表示空闲。

4比特数据符号	5比特编码
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110

1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

注: "前事"和"后导"指的是最前 面和最后面。

所以,最多只有3个连续零 (中间的3 个为0,两边各1个1)。这样防止了 跳变过多 (像曼~, 差曼~都是跳变 的太多了), 也解决了时钟漂移和基 线漂移。

物理介质(Physical Media)

非屏蔽双绞线 (Unshielded Twisted Pair)

注:现在的网线就是用这种。

尼龙线

>四对线:绿绿白,橙橙白,蓝蓝白,棕棕白

>每对线先逆时针绞在一起,然后所有线对再逆时针绞在一起

▶标准568A: 绿白 1, 绿 2, 橙白 3, 蓝 4, 蓝白 5, 橙 6, 棕白 7, 棕 8

▶标准568B: 橙白 1, 橙 2, 绿白 3, 蓝 4, 蓝白 5, 绿 6, 棕白 7, 棕 8

UTP Categories

UTP Category	Max Speed Rating	Description
1	_	Used for telephones, and not for data
2	4 Mbps	Originally intended to support Token Ring over UTP
3	10 Mbps	Can be used for telephones as well; popular option for Ethernet in years past, if Cat 3 cabling for phones was already in place
4	16 Mbps	Intended for the fast Token Ring speed option
5	1 Gbps	Very popular for cabling to the desktop
5e	1 Gbps	Added mainly for the support of copper cabling for Gigabit Ethernet
6	1 Gbps+	Intended as a replacement for Cat 5e, with capabilities to support multigigabit speeds

屏蔽双绞线 (Shielded Twisted Pair)

STP

STP是每一对线都加了屏蔽层,外部也加了屏蔽层。

同轴电缆(Coaxial Cable)

e.g. 电视线

A: 外层塑料护套 B: 铜网屏蔽层(接地)

C: 内绝缘体 D: 铜芯(信号)

光导纤维 (Optical Fiber)

□ 在玻璃纤维传输光脉冲,每个脉冲一比特

利用全反射实现。 (折射refraction会消耗)

单根光纤

光缆

Total reflection

□ 全反射条件: 入射角大于临界角

- □ 一条典型单模光纤的结构
 - 1. 纤芯: 直径8 μm
 - 2. 覆层:直径125 μm
 - 3. 缓冲层:直径250 μm
 - 4. 护套:直径400 μm

多模光纤:传送速率受限,且距离较短,但是

- 这个多模渐变的中间二极管密度高, 两边 低, 所以会出现弧线信号。 (比阶跃的有 所提升)

单模光纤: 里面的二极管窄, 所以信号更尖。

- 性能最好!!!

Source: 注入式激光二极管(Injection Laser Diode, ILD)

Single Mode fiber 单模光纤

Step-index fiber 阶跃光纤 graded-index 渐变光纤

激光:下雨或者有雾就看不清了,会有影响。

□ 地面微波

45 Mbps channels

■ WiFI

54 Mbps(802.11g),600Mbps(802.11n),

■ 3G和4G网络

~ 1 Mbps

□ 卫星

1 Kbps ~ 45Mbps 270 msec 延迟

波分多路复用和统计多路复用

- □ 波分复用(Wavelength Division Multiplexing, WDM)是利用多个激光器在单条光纤上同时发送多束不同波长激光的技术。
- □ WDM的每个信号经过数据(文本、语音、视频等)调制后都在它独有的色带内传输。WDM能使电话公司和其他运营商的现有光纤基础设施容量大增。
- □ 制造商已推出了DWDM(Dense Wavelength Division Multiplexing) 系统,也叫密集波分复用系统。DWDM可以支持150多束不同波长的光波同时传输,每束光波最高达到10Gb/s的数据传输率。这种系统能在一条比头发丝还细的光缆上提供超过1Tb/s的数据传输率。 ---维基
- □ 统计多路复用(Statistical Multiplexing)采用动态分配的方法共享通信链路,比如,先到先发送(FIFO)。对于多个可变速率的数据流,统计多路复用可以提高链路利用率。

电路交换技术(Circuit-Switching)采用FDM、TDM、WDM和CDM技术。 包交换技术(Packet-Switching)采用统计多路复用技术。

□ 每条链路端到端的吞吐量是多少?

注意:

- 包交换技术通过的线路是由很多站点传输共享的,例如INT网
- 吞吐量取最小值
- 除内存外,其他1k= 1000.
- 电话用的是电路交换技术

(数据报)交换与电路交换相比有什么特点?

- 答:包交换与电路交换比在以下方面不同
- <1>包交换不使用独占信道,而仅在需要时申请信道带宽,随后释放
- <2>由于包交换一般采用共享信道,传输时延较电路交换大
- min(R_c,R_s,R/10 <3>包交换传输对通信于网不透明,于网解析包地址等通信参数
 - <4>包交换采用存储转发方式通信,对通信有差错及流量控制,而电路交换不实现类似控制
 - <5>各包在交换时其传输路径是不定的。在电路交换中所有数据沿同一路径传输
 - <6>包交换不需连接建立呼叫
 - <7>包交换网有可能产生拥塞,电路交换则不会
 - <8>包交换以通信量计费,电路交换以通信时间计费

10个链接(平均)共享主干链路的带宽R(bits/sec)

- ☐ How long does it take to send a file of 640,000 bits from host A to host B over a circuitswitched network?
 - All links are 1.536 Mbps

TDM将链路link划分为24份。传文件的时候,只通过一条circuit来传!

- Each link uses TDM with 24 slots/sec (24circuits)
- 500 msec to establish end-to-end circuit

Let's work it out!

500ms + 640000bits/(1.536Mbps/24)

- = 500ms + 640000/64000
- = 500ms + 10s
- = 10.5s

1 Tutuadiration 1

1 20

- What is the maximum number of simultaneous connections that can be in progress at any one time in this network? 4n
- Suppose that all connections are between the switch in the upper-lefthand corner and the switch in the lower-right-hand corner. What is the maximum number of simultaneous connections that can be in progress?

注:

- 1.第一个的意思是说,最多可以建立多少个连接?而每一条边都有n个circuit,所以4条边最多4n个连接。
 - 此时假设每一个路由器所连的主机数是不限的,但是路由器之间的链路只包含n个circuit,也就是只能有n个数据流进行传

circuits: channels 输,所以每一条边上的连接数最多为n。

2.如果假设所有的连接都在左上角的switch和
右下角的switch之间发生,则连接的最大数是
n+n=2n。

- 这里的2n是分别走上面和走下面。

Each link consists of n "circuits"

(TDM or FDM)

Host A

circuits: chan between Hosts A and B, using one "circuit" in each of the links

20

总结

- □通信系统
- □正弦波信号
- □频移键控
- □曼彻斯特编码
- □物理介质
- □多路复用和电路交换