Interpolation

Motivation: Consider

$$A_1,\ldots,A_n\models C$$
,

where C is some mathematical theorem and the A_i are specific axioms, definitions, lemmas, or other theorems.

(Let
$$A = A_1 \wedge \cdots \wedge A_n$$
.)

 ${\cal A}$ may contain symbols that do not occur in ${\cal C}$, and vice versa.

Can we find a sentence \boldsymbol{B} , such that

$$A \models B$$
 and $B \models C$

where B contains only symbols occurring in both: A <u>and</u> C? As stated above, the answer is <u>no</u>.

68

Proof of Craig's Interpolation Theorem

Degenerate case: A and C are valid or unsatisfiable.

Let A be $\exists x F(x) \land \forall x \neg F(x)$ and let C be $\exists u P(u)$.

 $\exists x \, x \neq x \text{ may serve as interpolant.}$

 \Rightarrow We may have to use '=' in the interpolant B, even if it neither occurs in A or nor in C:

Other ways deal to with this case:

- \diamond Exclude unsatisfiable sentences A and valid sentences C.
- \diamond Include the truth constants \bot, \top as (0-ary) connectives.

For the rest of the proof we may assume that A is satisfiable and that C is not valid.

Example: (Failure of interpolation)

Let A be $\exists x F(x) \land \neg \forall x F(x)$ and let C be $\exists u \exists v \ u \neq v$. $A \models C$, but there are no common symbols (except \exists and \neg).

Focussing on more modest requirements we can state:

Proposition: (Interpolation w.r.t. constants)

If $A \models C$ then there is a B such that $A \models B$ and $B \models C$, where B contains only constants that occur in A as well as in C.

<u>Proof:</u> Take $\exists v_1 \ldots \exists v_n A^*$ for B, where A^* results from A by replacing the constants $c_1, \ldots c_n$, that do not occur in C by the new variables $v_1, \ldots v_n$. It is easy to check q.e.d.

More interestingly, let L(F) denote all non-logical symbols in F:

Theorem: (Craig's Interpolation Theorem)

If $A \models C$ then there is a B such that $A \models B$ and $B \models C$, where $L(B) \subseteq L(A) \cap L(C)$.

B is called interpolant from A to C.

39

Note:

- $\overline{-A \models C}$ iff $\{A, \neg C\}$ is unsatisfiable.
- B is an interpolant of A to C iff $A \models B$, $\neg C \models \neg B$, and $L(B) \subseteq L(A) \cap L(C)$.

We proceed indirectly and show:

If there is no interpolant of A to C, then $\{A, \neg C\}$ is satisfiable.

We use the model existence lemma, i.e.: appeal to (S0)-(S8).

Some useful terminology:

- \diamond B is said to separate Γ_L from Γ_R iff $\Gamma_L \models B$, $\Gamma_R \models \neg B$, and $L(B) \subseteq L(\Gamma_L) \cap L(\Gamma_R)$.
- \diamond Γ is called divisible (without separation) if it can be written as $\Gamma = \Gamma_L \cup \Gamma_R$, where Γ_L and Γ_R are satisfiable, and no sentence separates Γ_L from Γ_R .

B is an interpolant of A to C iff B separates $\{A\}$ from $\{\neg C\}$.

Proof without identity and function symbols

Let S be the set of <u>divisible</u> L-sets. It remains to establish (S0)–(S6) for S.

- (S0) trivial [why?]
- (S1): Suppose $\Gamma = \Gamma_L \cup \Gamma_R$ is divisible, and $D, \neg D \in \Gamma$. Since Γ_L and Γ_R are satisfiable we conclude w.l.o.g.: $D \in \Gamma_L$, $\neg D \in \Gamma_R$. But this means that D separates Γ_L from Γ_R , in contradiction to the assumption of divisibility.
- (S2): Suppose $\Gamma = \Gamma_L \cup \Gamma_R$ is divisible, and $\neg \neg D \in \Gamma$. W.l.o.g., $\neg \neg D \in \Gamma_L$ and hence $\Gamma_L \models D$. This implies that also $(\Gamma_L \cup \{D\}) \cup \Gamma_R$ divisible, and thus that $\Gamma \cup \{D\} \in S$.
- (S4)-(S6): Analogous to (S2). [[Blackboard, if needed]]

72

Adding identity and function symbols

The case with identity (but without function symbols) is $\underline{\text{reduced}}$ to the case without identity by replacing = with a non-logical predicate symbol \equiv .

Terminology:

Let E_A $[E_C]$ be the conjunction of the equivalence axioms and the congruence axioms for the predicates in A [C] (using \equiv for the congruence relation).

 $F^* \ldots F$, where = is replaced by \equiv .

Fact:

Any interpolant B^* from $E_A \wedge A^*$ to $E_C \to C^*$ can be re-translated into an interpolant B from A to C.

Similarly, appropriate 'definitions' of functions by predicates allow to reduce the case with function symbols to the case without function symbols. [[Detais in [BBJ]]]

(S3): Suppose $\Gamma = \Gamma_L \cup \Gamma_R$ is divisible, and $D_1 \vee D_2 \in \Gamma$. W.I.o.g., $D_1 \vee D_2 \in \Gamma_L$. If $\Gamma_L \cup \{D_1\}$ is unsatisfiable (i.e., if $\Gamma_L \models \neg D_1$), then (since $\Gamma_L \models D_1 \vee D_2$) we have $\Gamma_L \models D_2$. Hence we can argue like for (S2). (Analogously, if $\Gamma_L \cup \{D_2\}$ is unsatifiable.)

It remains to investigate the case where $\Gamma_L \cup \{D_i\}$ is satisfiable for both i:

In this case, $(\Gamma_L \cup \{D_i\}) \cup \Gamma_R$ is divisible unless there is a B_i separating $\Gamma_L \cup \{D_i\}$ from Γ_R , for $i \in \{1,2\}$, respectively. But $\Gamma_L \cup \{D_1\} \models B_1$, $\Gamma_L \cup \{D_2\} \models B_2$, and $D_1 \vee D_2 \in \Gamma_L$ implies $\Gamma_L \models B_1 \vee B_2$. Moreover, $\Gamma_R \models \neg B_i$ for $i \in \{1,2\}$ implies $\Gamma_R \models \neg (B_1 \vee B_2)$.

 $L(B_i)\subseteq L(\Gamma_L)\cap L(\Gamma_R)$, for both i, therefore also $L(B_1\vee B_2)\subseteq L(\Gamma_L)\cap L(\Gamma_R)$. This means that $B_1\vee B_2$ separates Γ_L from Γ_R , contrary to the assumption that Γ is divisible without separation. Q.e.d..

73

Combining theories — joint consistency

DEF:

A <u>theory</u> T (in L) is a set of sentences (over L) that is closed w.r.t. logical consequence: $T \models F$ implies $F \in T$. F is also called a theorem of T.

<u>Combining theories</u> is an important and practically relevant topic in software verification.

[Can you explain why?]

Note:

For satisfiable theories T_1 , T_2 , in general:

- \diamond $T_1 \cup T_2$ is <u>not</u> a theory
- \diamond the theory $\{F: T_1 \cup T_2 \models F\}$ is not satisfiable

even if the languages $L(T_1)$ and $L(T_2)$ are disjoint.

Lemma:

Let T_1 , T_2 be theories. $T_1 \cup T_2$ is satisfiable iff there is no sentence $A \in T_1$, where $\neg A \in T_2$.

Note:

- The lemma expresses the following:
 joint satisfiability = joint consistency
 (Note that this is a kind of completeness statement!)
- ♦ The lemma is wrong for many non-classical logics.

Proof: The 'only if' part is trivial.

The 'if' part follows from compactness and interpolation: Suppose $T_1 \cup T_2$ is unsatisfiable, then already some finite $S_0 \subseteq T_1 \cup T_2$ is unsatisfiable.

We will show that there is an $A \in T_1$, where $\neg A \in T_2$.

76

Joint consistency (ctd.)

DEF: Theory T' is a <u>conservative extension</u> of theory T if $T \subseteq T'$ and every $F \in T'$ over L(T) is already in T.

Theorem: (Joint conservative extensions theorem)

For i=0,1,2 let T_i be a theory over L_i , where $L_0=L_1\cap L_2$. Let T_3 consist of the consequences of $T_1\cup T_2$ over $L_1\cup L_2$. If T_1 and T_2 are conservative extensions of T_0 , then so is T_3 .

<u>Proof:</u> We have to show: $B \in T_3$ for B in L_0 implies $B \in T_0$. $B \in T_3$ implies $T_1 \cup T_2 \cup \{\neg B\}$ is unsatisfiable.

By the above Lemma, for some $D \in T_1$: $\neg D \in T_2 \cup \{\neg B\}$, where D is in L_0 . Hence also $\neg B \to \neg D$ is in L_0 . $T_2 \cup \{\neg B\} \models \neg D$, $\neg B \to \neg D \in T_2$. Since T_2 is a conservative extensions of T_0 , we conclude $\neg B \to \neg D \in T_0$. Since T_1 is a conservative extensions of T_0 , we have $D \in T_0$. But

 $\{D, \neg B \to \neg D\} \models B$, and therefore $B \in T_0$. Q.e.d..

Let $\{F_1, \ldots, F_m\} = S_0 \cap T_1$ and $\{G_1, \ldots, G_n\} = S_0 \cap T_2$.

Note: If one of these two sets is empty, then already T_1 or T_2 is unsatisfiable. In that case, we may take $A = \forall x \, x = x$ or $A = \neg \forall x \, x = x$, respectively.

Let $A = F_1 \wedge ... \wedge F_m$ and $C = \neg (G_1 \wedge ... \wedge G_n)$. $\{A, \neg C\}$ is unsatisfiable, therefore $A \models C$.

Consider the interpolant B from A to C:

 $A \in T_1$ and $A \models B$, therefore $B \in T_1$. Similarly, $\neg C \in T_2$ and $\neg C \models \neg B$, therefore $\neg B \in T_2$.

Thus B is the required $A \in T_1$, where $\neg A \in T_2$. Q.e.d..

77

Joint consistency (ctd.)

Corollary: (Robinson's joint consistency theorem)

For i=0,1,2 let T_i be a theory over L_i , where $L_0=L_1\cap L_2$. If T_0 is complete, and $T_1\supseteq T_0$ as well as $T_2\supseteq T_0$ are satisfiable, then $T_1\cup T_2$ is satisfiable.

Proof:

Any satisfiable extension of a complete theory is conservative. Any conservative extension of a satisfiable theory is satisfiable. Thus if the T_i are as specified, then we may apply the joint conservative extensions theorem to conclude that the theory consisting of all consequences of $T_1 \cup T_2$ is satisfiable. Therefore $T_1 \cup T_2$ itself is satisfiable. Q.e.d.

Note:

We have proved Robinson's joint consistency theorem using Craig's interpolation theorem.

Also the converse is possible. (See [BBJ], page 265.)

In any case:

the <u>(term) model existence lemma</u> is essentially involved in proving all of the following:

- ♦ Compactness theorem
- ♦ Löwenheim-Skolem theorem
- **⋄** Completeness (in different versions)
- ⋄ Craig's interpolation theorem
- ♦ Robinson's joint consistency theorem
- ♦ Beth's definability theorem

80