- 5. Show that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.
- 7. Show that if a, b, and c are integers, where $a \neq 0$ and $c \neq 0$, such that $ac \mid bc$, then $a \mid b$.
- 17. Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that
 - a) $c \equiv 9a \pmod{13}$.
 - **b**) $c \equiv 11b \pmod{13}$.
 - **c)** $c \equiv a + b \pmod{13}$.
 - **d)** $c \equiv 2a + 3b \pmod{13}$.
 - e) $c \equiv a^2 + b^2 \pmod{13}$.
 - **f**) $c \equiv a^3 b^3 \pmod{13}$.
- **21.** Let *m* be a positive integer. Show that $a \equiv b \pmod{m}$ if $a \mod m = b \mod m$.
- **27.** Evaluate these quantities.
 - **a)** 13 **mod** 3
- **b)** -97 **mod** 11
- **c)** 155 **mod** 19
- **d)** $-221 \mod 23$
- 31. Find the integer a such that
 - a) $a \equiv -15 \pmod{27}$ and $-26 \le a \le 0$.
 - **b**) $a \equiv 24 \pmod{31}$ and $-15 \le a \le 15$.
 - c) $a \equiv 99 \pmod{41}$ and $100 \le a \le 140$.
- **41.** Show that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.
- **47.** Show that if a, b, k, and m are integers such that $k \ge 1$, $m \ge 2$, and $a \equiv b \pmod{m}$, then $a^k \equiv b^k \pmod{m}$.

*HINT:

$$a^{k} - b^{k} = (a - b)(a^{k-1} + a^{k-2}b + a^{k-3}b^{2} + \dots + b^{k-1}).$$