Superstore Performance Dataset – Exploratory and Descriptive Analysis

In this notebook, we focus on the **exploratory and descriptive analysis** of the cleaned version of the **Superstore Performance Dataset**, a popular dataset often used for practicing data analysis, visualization, and business intelligence tasks. The dataset contains retail transaction records, customer details, product categories, and regional performance data.

Effective exploratory analysis is crucial for uncovering patterns, trends, and potential issues in the data, which guides further analysis and decision-making. Here, we examine key metrics such as sales, profit, discount, and quantity, as well as their distribution across categories, regions, and time periods.

We start by importing essential Python libraries for data handling, analysis, and visualization:

- pandas for structured data operations.
- numpy for numerical operations.
- os for interacting with the operating system and directory structures.

```
# Import libraries
import pandas as pd
import numpy as np
import os
```

Define and Create Directory Paths

To ensure reproducibility and organized storage, we programmatically create directories for:

- raw data
- processed data
- results

documentation

These directories will store intermediate and final outputs for reproducibility.

```
# Get working directory
current_dir = os.getcwd()
# Go one directory up to the root directory
project_root_dir = os.path.dirname(current_dir)
# define paths to the data files
data_dir = os.path.join(project_root_dir, 'data')
raw dir = os.path.join(data dir, 'raw')
processed_dir = os.path.join(data_dir, 'processed')
# Define paths to the results folder
results_dir = os.path.join(project_root_dir, 'results')
# Define paths to the docs folder
docs_dir = os.path.join(project_root_dir, 'docs')
# create directories if they do not exist
os.makedirs(raw_dir, exist_ok = True )
os.makedirs(processed dir, exist ok = True )
os.makedirs(results_dir, exist_ok = True)
os.makedirs(docs dir, exist ok = True)
```

Read in the data

We load the **Superstore Performance Dataset** as an Excel file (Superstore.xlsx). The dataset consists of multiple sheets: Orders, Returns, and People. These sheets are read separately and then merged to form a comprehensive dataset for analysis.

Key considerations

- **File structure:** The dataset is stored in a multi-sheet Excel file. It's important to read each sheet carefully and ensure the correct relationships between them.
- Merging data:
 - The Orders and Returns sheets are merged using Order ID to identify which orders were returned. We use a left join to keep all orders and add return information where available.
 - The People sheet is merged on Region to associate each order with the responsible regional manager.

- Data integrity: The merge operations may introduce missing values (e.g., orders that weren't returned or regions with no associated manager). These should be handled carefully in later analysis.
- File path handling: The use of os.path.join ensures that file paths are constructed dynamically, improving portability across different systems and directory structures.
- Previewing the data: Displaying the first 10 rows (head(10)) helps confirm that the data has been loaded and merged as expected before further analysis.

```
store_data_filename = os.path.join(raw_dir, "Superstore.xlsx")

# Load the sheets
orders_df = pd.read_excel(store_data_filename, sheet_name='Orders')
returns_df = pd.read_excel(store_data_filename, sheet_name='Returns')
people_df = pd.read_excel(store_data_filename, sheet_name='People')

# Merge orders with returns on Order ID
orders_with_returns = pd.merge(orders_df, returns_df, on='Order ID', how='left')

# Merge with people on Region
merged_store = pd.merge(orders_with_returns, people_df, on='Region', how='left')

# Show first 10 rows
merged_store.head(10)
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name
0	1	CA-2016-152156	2016-11-08	2016-11-11	Second Class	CG-12520	Claire Gute
1	2	CA-2016-152156	2016-11-08	2016-11-11	Second Class	CG-12520	Claire Gute
2	3	CA-2016-138688	2016-06-12	2016-06-16	Second Class	DV-13045	Darrin Van Huff
3	4	US-2015-108966	2015-10-11	2015-10-18	Standard Class	SO-20335	Sean O'Donnell
4	5	US-2015-108966	2015-10-11	2015-10-18	Standard Class	SO-20335	Sean O'Donnell
5	6	CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	Brosina Hoffman
6	7	CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	Brosina Hoffman
7	8	CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	Brosina Hoffman
8	9	CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	Brosina Hoffman
9	10	CA-2014-115812	2014-06-09	2014-06-14	Standard Class	BH-11710	Brosina Hoffman

```
merged_store.shape
```

(9994, 23)

merged_store.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 23 columns):
```

#	Column	Non-Null Count	Dtype
0	Row ID	9994 non-null	int64
1	Order ID	9994 non-null	object
2	Order Date	9994 non-null	datetime64[ns]
3	Ship Date	9994 non-null	datetime64[ns]
4	Ship Mode	9994 non-null	object
5	Customer ID	9994 non-null	object
6	Customer Name	9994 non-null	object
7	Segment	9994 non-null	object
8	Country	9994 non-null	object
9	City	9994 non-null	object
10	State	9994 non-null	object
11	Postal Code	9994 non-null	int64
12	Region	9994 non-null	object
13	Product ID	9994 non-null	object
14	Category	9994 non-null	object
15	Sub-Category	9994 non-null	object
16	Product Name	9994 non-null	object
17	Sales	9994 non-null	float64
18	Quantity	9994 non-null	int64
19	Discount	9994 non-null	float64
20	Profit	9994 non-null	float64
21	Returned	800 non-null	object
22	Person	9994 non-null	object
dtyp	es: datetime64[ns](2), float64(3), int64(3), object(15)

memory usage: 1.8+ MB

Data Cleaning

1. Understanding the Dataset

Before proceeding with data cleaning, it is essential to understand the variables in the Superstore dataset. This helps us determine appropriate cleaning and transformation strategies. The table below summarizes the types, descriptions, and typical values or ranges of the variables in our dataset.

Table 1: Summary of variables in the dataset

			Example Values /
Variable	Type	Description	Range
Customer ID	Categorical	Unique identifier for each customer	CG-12520,
			TB-20145
Customer	Categorical	Full name of the customer	Claire Gute, Sean
Name			Miller
Segment	Categorical	Market segment the customer belongs	Consumer,
		to	Corporate, Home
			Office
Country	Categorical	Country of transaction	United States
City	Categorical	City where the order was placed	Los Angeles, New
			York
State	Categorical	State where the order was placed	California, Texas
Postal Code	Categorical/I	Nulla straice code of customer location	90036, 10024
Region	Categorical	Regional division of the business	West, East,
			Central, South
Product ID	Categorical	Unique identifier for product	FUR-B0-10001798
Category	Categorical	Product category	Furniture, Office
			Supplies,
			Technology
Sub-Category	Categorical	Product sub-category	Bookcases, Chairs,
			Phones
Product Name	Categorical	Name of the product	Bush Somerset
			Collection
			Bookcase
Sales	Numeric	Dollar amount of sales	$2.99 - 22{,}638.48$
Quantity	Numeric	Number of units sold	1 - 14
Discount	Numeric	Discount applied to sale (0 to 1)	0.0 - 0.8
Profit	Numeric	Profit amount in dollars	-6599.98 - 8399.98
Returned	Categorical	Indicates if product was returned	Yes, No, (can be
			missing)
Person	Categorical	Salesperson or handler	Cassandra
			Brandow, Anna
			Andreadi

merged_store.columns

2. Deal with missing values

To ensure the quality of our dataset, we performed an initial check for missing values in the merged dataset merged_store. The following code was used to identify any null values across all columns:

merged_store.isnull().sum()

Row ID	0
Order ID	0
Order Date	0
Ship Date	0
Ship Mode	0
Customer ID	0
Customer Name	0
Segment	0
Country	0
City	0
State	0
Postal Code	0
Region	0
Product ID	0
Category	0
Sub-Category	0
Product Name	0
Sales	0
Quantity	0
Discount	0
Profit	0
Returned	9194
Person	0
dtype: int64	

Using the .isnull().sum() function, we identified columns with missing values in the Superstore dataset. The analysis revealed:

• Returned has 9,194 missing values

To handle this, we applied the following data cleaning approach:

• Imputed missing values in the Returned column with "NO" to indicate that these transactions are considered not returned, in the absence of return info].fillna('NO')

```
merged_store['Returned'] = merged_store['Returned'].fillna('NO')
```

merged_store.isnull().sum()

Row ID	0
Order ID	0
Order Date	0
Ship Date	0
Ship Mode	0
Customer ID	0
Customer Name	0
Segment	0
Country	0
City	0
State	0
Postal Code	0
Region	0
Product ID	0
Category	0
Sub-Category	0
Product Name	0
Sales	0
Quantity	0
Discount	0
Profit	0
Returned	0
Person	0
dtype: int64	

3. Removing Duplicates

Duplicates can distort statistical summaries and model performance. Using .duplicated().sum(), we count duplicate records.

We confirm that we have no duplicates in the dataset.

```
merged_store.duplicated().sum()
```

0

We also examined the current structure of the dataset and confirmed that it contains **9,994** rows and **23** columns, representing a comprehensive collection of retail transaction records.

```
merged_store.shape
```

```
(9994, 23)
```

Finally, we save the clean, processed dataset as a CSV file in our processed directory for future modelling and analysis.

```
merged_store.to_csv('SuperStore-Cleaned.csv', index=False)
```