幂集 P(A的基数定理及几种证法

戴红兵

(思茅师范高等专科学校数学系,云南 普洱 665000)

[摘 要] 用组合论、二进制编码、建立一一对应、数学归纳法、ω的归纳原理等知识. 对 I元有限集合的幂集 P(A)的基数定理给出了六种证法。

[**关键词**] 幂集基数定理:组合论:二进制编码:--对应: ω 归纳原理 [中图分类号] O(144) [文献标识码] A [文章编号] 1008-8059(2008)06-0038-02

集合论是数学中最基本的内容, 也是离散数 学的基础。本文用到离散数学多个章节的知识对 幂集的基数定理进行证明。从多个视角对这一问 题剖析,揭示问题的本质及各部分知识间的内在 联系。

定理 若 A为 n元的有限集合,A的所有子 集构成集合 P(A) 则 P(A)的基数为 2^{n}

证法一: 由幂集的定义: $P(A) = \{ x \mid x \subseteq A \}$ 我们自然想到直接计算 A的子集的个数,即从 $A = \{a, a, \dots a\}$ 中抽出 0个元数的集合 ϕ 共 个 ^C, 抽出一个元素的集合如 { ^a }, { ^a }等共 个 C₄ …抽出 1个元素的集合 { q, q, ... q_n}共 $1)^{n} = 2^{n}$

证法二:由上面的证明我们确信 |P(A)|= 2^{1} , 既然基数为 2^{1} , 那么, 我们能否用组合的乘法 原理直接构造 $|P(A)| = 2 \times 2 \times \dots \times 2 = 2^n$ 来证明 之?

由 $P(A) = \{ x \mid x \subseteq A \}$, %是 P(A)的任意元素, x

又是 A的任一个子集。于是有 $a \in x$ 或 $a \notin x$ (i=1 2···, n), 两种情况, 由乘法原理 $|P(A)|=2\times 2$ $\times \cdots \times 2 = 2^n$

证法三: 在证法二中用到 高是否属于集合 🗴 若 $a \in X$ 则可在相应的位置用 1表示, 若 $a \notin X$ 则可相应的位置用 0表示,记 $\Phi = B_{0,0}$, $\{A\} =$

于是
$$|P(A)| = (11 \cdots 11)_{\text{进制数}} + 1 = 2^{n-1} + 2^{n-2} + \cdots + 2^{\circ} + 1 = \frac{1-2^{n}}{1-2} + 1 = 2^{n}$$

幂集可表示为 $P(A) = \{B_i \mid \mathcal{B}_i = \mathcal{B}_i \mid \mathcal{B}_i = \mathcal{B}_i \}$ 0€ € 1...1}

证法四:由 A={ 4, 4, ..., 4,}考虑全体 n位 二进制串组成的集合 $B = \{ i, j, ..., i \mid i=0 \}$ 或 1, $= 1, 2, \cdots, n$ 由乘法原理 $|B| = 2^n,$ 当然也 由证法三可得 $|B| = 2^n$, 另外, 可在 P(A)与 B间

[【]收稿日期】2008-11-10

[【]作者简介】戴红兵(1966~)男,湖南祁东人,思茅师范高等专科学校数学系讲师,主要从事数学教学及研究工作。

建立一一对应, $i : \dots : i \leftrightarrow X \times P(A)$, $a \in X \mapsto i =$ 1. $a \notin x \rightarrow i = 0$

如约定 000…0 1010↔{ a, a, a, a, b, },

f $P(A) = 2^n$

证法五:由|A|=n n为自然数,我们理所当 然的想到用数学归纳法证之。

引理 若 A是一个 1元集合, 日) A $\Leftrightarrow C = A \setminus \{b\}, \mathbb{N} \mid P(C) \mid = 2 \mid P(A) \mid$

证明:把 A的每一个子集都添入一个 1元素, 这样得到的所有新集合的个数恰为 P(A)的个 数。而 C的所有子集就是由 A的所有子集及在 A 每一个子集中都添入「元素的集合构成、

原命题的证明. (1)当 n=0时. 今 $A=\Phi$. $P(A_s) = \{\Phi\}_s$

即 $2^{\circ} = 1$ 故命题成立:

即 | P(C) | = 2 | P(A) |

(2)当时 n= k时, 令 A={ a, ..., a_k}, $|P(A_i)| = 2^k$

(3)当时 n=k+1时, 令 $A_{k+1}=\{a_1, ..., a_k, b_k\}$ 中引理知 $|P(A_{+1})|=2|P(A_{+1})|=2^{k}=2^{k+1}$

由(1)、(2)、(3)知 ⁿ为全体自然数都成立。 即 $|P(A)|=2^n$

证法六:

 $证: 用 \omega$ 的归纳原理证明之。

对于 p设 ϕ (n)是命题: 对任意集合 A若 A有 n 个元,则 P (A)有 2 个元。本定理证明化为. (∀ n)(n∈ ω→φ(n), 也即要证.

 $T = \{ n \mid n \in \omega \land \varphi(n) \}$ 是个归纳集。

因此。(1)证 φ (0). 今 A= Φ , 则 $P(A)=\{\Phi\}$ 即 $2^0 = 1$ 故有 $\varphi(0)$ 成立。

(2) if $(\forall k) (k \omega \land \varphi(k) \rightarrow \varphi(k+1), i \forall k$ $\in \omega$,且 $\varphi(k)$ 即若 A有 k个元,则知 P(A)有 2^k 个 元。

今证 $\varphi(k+1)$, 设 B有 k+1 个元的集合, C \in B且 A=B-{ ς ,则 A有 k个元,故 P(A)有 2^k 个子集,由引理知 P(B)的子集个数是 P(A)的子 集个数的二倍, 即有 P(B)有 $2\times 2^{k}=2^{k+1}$ 个子集。 证毕。

[参考文献]

[1]耿素云, 屈婉玲. 离散数学 (第二版) [M. 北京. 高等教育出版社, 2004.