Projectile Motion 12PHYS - Mechanics

Finn LeSueur

2019

Do Now: Vector Recap

- 1. Yssy travels 30km south and then 20km west. Draw a vector diagram to show her total displacement.
- 2. Max and Lena are pushing a box. Max is pushing it with force 500N to the right, and Lena is pushing it with force 400N up. Draw a vector diagram to show the net force.
- 3. Phoebe is flying at $7ms^{-1}$ east. Phoebe changes direction so she flying at $7ms^{-1}$ south. Draw a vectoer diagram to show the change in velocity of Phoebe.

Projectile Motion

Projectile motion can be thought of as motion under gravity.

Step 1: Describing Velocity

To get into projectile motion we first need to correctly describe the velocity and acceleration of an object in motion.

A ball is thrown vertically upwards. Describe the direction of the ball's velocity when:

- 1. It is going up,
- 2. it is going down,
- 3. it is at the highest point.

Describe the direction of the ball's acceleration when it is:

- 1. Going up,
- 2. going down,
- 3. at the highest point.

Forces on The Ball

We assume that friction force is negligible (we ignore it).

Therefore, the only force acting upon the ball while in the air is the **weight** force.

$$F_{net} = F_{weight} \tag{1}$$

The ball experiences a constant downwards acceleration $(-9.8ms^{-2})$ at all times.

Acceleration Due to Gravity

$$g = 9.8ms^{-2} (2)$$

The acceleration of any object in the air without its own power source.

So, Projectile Motion

- An object what moves through the air without its own power source,
- only force acting upon it is the weight force,
- always experiencing downward acceleration of $9.8ms^{-2}$.

Question

A ball is thrown upwards with an inital speed of 161.3km/hr $(44.8ms^{-1})$.

- 1. How long does it take for the ball to reach its highest point?
- 2. How high does the ball rise?

Remember: Knowns, Unknowns, Formula, Substitute, Solve

Question

Lachie kicks a rugby ball straight upwards. It is in the air for ${\bf 10.6s}$ before it hits the ground.

- 1. What is the inital velocity of the ball?
- 2. How high does the ball rise?

Remember: Knowns, Unknowns, Formula, Substitute, Solve

Question

Angus is going cliff diving. He jumps and falls for $\bf 3.4s$ before hitting the water below.

- 1. What is his **initial velocity**?
- 2. What is his acceleration?
- 3. What is his **final velocity** (as he hits the water)?
- 4. How **high** is the cliff?

Remember: Knowns, Unknowns, Formula, Substitute, Solve

A Classic: The Cannon Ball Question

A cannon ball is fired horizontally from the top of a hill. The velocity of the cannon ball is split into two components:

- 1. Vertical motion, and
- 2. horizontal motion.

Note: These motions are **independent of each other**. That is, they do not affect each other.

Vertical Motion

Recall: once in motion, the only force acting upon the cannon ball is the **weight** force. We are assuming friction is negligible.

Therefore:

The cannon ball is experiencing a constant downward acceleration of $g = -9.8ms^{-2}$.

Horizontal Motion

Recall: once in motion, the only force acting upon the cannon ball is the **weight** force. We are assuming friction is negligible.

Therefore, the cannon ball does not experience any forces in the horizontal direction. Therefore it does not accelerate in the horizontal direction.

Summary

ProjectileMotion = VertialMotion + HorizontalMotion (3)

Vertical Motion

Constant downwards acceleration of $-9.8ms^{-2}$.

Horizontal Motion

No acceleration, therefore constant speed. $v_i = v_f$

Thought Experiment

If the cannon ball is fired with a **greated horizontal velocity** will it take longer to hit the ground?

Question

A marble rolls of a desk of height 1.25m and with $v_x = 1.6ms^{-1}$.

- 1. Calculate the duration of the fall
- 2. During the fall, how far does the marble travel **horizontally**?
- 3. How far does the marble travel if $v_x = 3ms^{-1}$?