MATH-331 Introduction to Real Analysis
Homework 02

Victor Ho Fall 2021

Due date: 20-09-2021 1:20pm Total: \checkmark 70.

Exercise	1	2	3	4	5	6	7	8	9	10
	(10)	(5)	(5)	(5)	(5)	(10)	(5)	(10)	(5)	(10)
Score	6	15	5	4	١	O	5	P	5	10

Table 1: Scores for each exercises

Instructions: You must answer all the questions below and send your solution by email (to parisepo@hawaii.edu). If you decide to not use LaTeX to hand out your solutions, please be sure that after you scan your copy, it is clear and readable. Make sure that you attached a copy of the homework assignment to your homework. No late homework will be accepted. No format other than PDF will be accepted. Name your file as indicated in the syllabus.

WRITING PROBLEMS

For each of the following problems, you will be asked to write a clear and detailed proof. You will have the chance to rewrite your solution in your semester project after receiving feedback from me.

Exercise 1. (10 pts)

- a) Let $\{[a_n, b_n] : n \ge 1\}$ be a family of closed intervals such that $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$. Show that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for all $n \ge \mathbb{N}$. Follow the following steps to prove it:
 - (i) Prove that for any $n, m \ge 1$, $a_n \le b_m$. [hint: put $M := \max\{n, m\}$.]
 - (ii) Show that $\sup\{a_n : n \ge 1\}$ exists.
 - (iii) Show that $c = \sup\{a_n : n \ge 1\}$ satisfies the requirement.
- b) Use this last result to prove that the set \mathbb{R} is uncountable. [Hint: Show that any function $f: \mathbb{N} \to \mathbb{R}$ can't be surjective. To do so, construct a sequence of closed intervals such that $f(n) \notin [a_n, b_n]$ with $a_n < b_n$.]

Solution: a. Note that a_n will increase and b_n will decrease for larger values of n as $[a_n, b_n]$ is a subset of $[a_{n-1}, b_{n-1}]$, so $[a_n, b_n]$ is between the closed interval of $[a_{n-1}, b_{n-1}]$ so it must be the case that $a_n \geq a_{n-1}$ and $b_n \leq b_{n-1}$. Consider three cases, n = m, n < m, and m > n. If n = m, then $a_n \leq b_n$ because in the closed bound $[a_n, b_n]$, b_n is the upper bound and a_n is the lower bound so $a_n \leq b_n$. If n < m, then as mentioned earlier, $a_n < a_m$ so $a_n \leq a_m \leq b_m$, so $a_n \leq b_m$. Now assume towards a contradiction that if n > m, $a_n > b_m$. Note that $a_n \leq b_n$ due to our previous conclusion

when n = m. Therefore we'll have $b_n > a_n > b_m$, which is impossible because if n > m, $b_n < b_m$ due to b_n shrinking for higher values of n, therefore if n < m it must be the case that $a_n \le b_m$. Since we have shown that $a_n \leq b_m, \forall n, m \geq 1$, we can say that a_n is bounded from above by $b_m, \forall n, m \geq 1$. Therefore by the axiom of completeness, a_n has a supremum for $n \geq 1$. Now I will claim that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ where $c = \sup\{a_n : n \ge 1\}$. Note that c is an upper bound of a_n as $c \in [a_n, b_n]$. Let $x = \sup(a_n)$. For $c \in \mathbb{R}, c \in [a_n, b_n]$, we either have c < x, c = x, x < c. If c < x, then we have a contradiction as x is supposed to be the least upper, but c will also an upper bound and less than it. If we have x < c, $x \ne c$, then it must be outside the interval $[a_n, b_n]$ as c can take any value inside that interval. However being outside the interval means that either $x < a_n$, which is impossible as $x = \sup(a_n)$, or $x > b_n$, which is impossible as b_n is also an upper bound of a_n . Therefore we have a contradiction if x < c, so it has to be the case that $x = \sup(a_n) = c$.

b. Assume towards a contradiction that \mathbb{R} is countable. Therefore there is a bijective function $f: \mathbb{N} \to \mathbb{R}$. Therefore for all $c \in \mathbb{R}$, $n \in \mathbb{N}$, c = f(n). Let $\{[a_n, b_n] : n \geq 1\}$ be a family of closed intervals that contains such that $[a_1, b_1] \supset [a_2, b_2] \supset \cdots \supset [a_n, b_n], a_n < b_n$. Therefore $f(n) \in [a_n, b_n]$ for some $n \in \mathbb{N}$. We can then construct another closed interval, $[a_{n+1}, b_{n+1}]$ such that $[a_n, b_n] \supset [a_{n+1}, b_{n+1}]$, where $f(n) \not\in [a_{n+1}, b_{n+1}]$. From the results in 1a, we know that there is a $c \in \mathbb{R}$ where $c \in [a_{n+1}, b_{n+1}]$. However since we have made $[a_{n+1}, b_{n+1}]$ to not include f(n), we have $f(n) \neq c$, which means that there exists a real number that is outside the range of f. Therefore $f: \mathbb{N} \to \mathbb{R}$ is not surjective, so f is not bijective, which contradicts our claim that \mathbb{R} is You have to construct explicitly the intervals parish. countable, so \mathbb{R} must be uncountable.

Exercise 2. (5 pts) Prove that if $a_n \to A$, then $|a_n| \to |A|$.

Solution: Since $a_n \to A$, $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that for $n \geq N, |a_n - A| < \epsilon$. Note that $||a_n|-|A|| \le |a_n-A|$ by the triangle inequality. Therefore we have $||a_n|-|A|| \le |a_n-A| < \epsilon$ for $n \geq N$, so by order axioms $||a_n| - |A|| < \epsilon$ for $n \geq N$. Therefore by the definition of convergence, $|a_n| \to |A|$.

Exercise 3. (5 pts) Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Prove that if $a_n \to L$,

Solution: Since $a_n \to L$ and $b_n \to L$, we have $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that for $n \geq N, |a_n - L| < \epsilon$ and $|b_n - L| < \epsilon$. This is equivalent to $-\epsilon < a_n - L < \epsilon$ and $-\epsilon < b$ add L to both sides to get $-\epsilon + L < a_n < \epsilon + L$ and $-\epsilon + L < b_n < \epsilon + L$. Since $a_n \leq c_n$, we have $-\epsilon + L < a_n \le c_n$, which by order axioms implies $-\epsilon + L < c_n$. Also since $c_n \le b_n$, we have $c_n \leq b_n < \epsilon + L$, which by order axioms imply $c_n < \epsilon + L$. Now we have $-\epsilon + L < c_n < \epsilon + L$, which is equal to $-\epsilon < c_n - L < \epsilon$, which implies $|c_n - L| < \epsilon$. Since $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that for $n \geq N$ implies that $|c_n - L| < \epsilon$, by the definition of convergence we can say that $c_n \to L$.

Exercise 4. (5 pts) Prove that if $a_n \to A$ and $a_n \ge 0$ for all $n \ge 1$, then $\sqrt{a_n} \to \sqrt{A}$. Follow the following steps to prove it:

1. Consider the case A=0.

- 2. Suppose that $A \neq 0$. Show that there is a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $\sqrt{a_n} \geq \sqrt{|A|/2}$. [Hint: use the definition of convergence of $(a_n)_{n\geq 0}$ with a clever choice of ε and use the properties of the absolute value.]
- 3. Use the convergence of (a_n) again to find a N_2 such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$.
- 4. Express $\sqrt{a_n} A$ as $\frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and put $N = \max\{N_1, N_2\}$. Conclude.

Solution: First consider A=0. Note that $\sqrt{A}=\sqrt{0}=0$. If A=0, then by the definition of convergence, we can let ϵ be arbitrary and take ϵ^2 so that $|a_n-0|<\epsilon^2$ for $N\in\mathbb{N}$ such that if $n\geq N$. Therefore we can simplify the expression to get $|a_n|<\epsilon^2$, and since $a_n\geq 0$, $a_n<\epsilon^2$. Then we can square root both sides of the inequality to get $\sqrt{a_n}<\sqrt{\epsilon^2}=\epsilon$. Since $\sqrt{a_n}<\epsilon$, and $a_n\geq 0$, we can say that $|\sqrt{a_n}|<\epsilon$, which is equivalent to saying $|\sqrt{a_n}-0|<\epsilon$. Since ϵ is arbitrary, by the definition of convergence we can say that for A=0, if $a_n\to A$, then $\sqrt{a_n}\to 0=\sqrt{A}$. Now if $A\neq 0$ then let $\epsilon=\frac{|A|}{2}$, $\exists N_1\in\mathbb{N}$ such that if $n\geq N_1$ then $|a_n-A|<\frac{|A|}{2}$. With the properties of absolute values we can then get $|A-a_n|<\frac{|A|}{2}$, where we can use the triangle inequality to get $|A|-|a_n|\leq |A-a_n|<\frac{|A|}{2}$, which implies by the order axioms that $|A|-|a_n|<\frac{|A|}{2}$. We can then add $|a_n|$ and subtract $\frac{|A|}{2}$ to both sides to get $|A|-\frac{|A|}{2}<|a_n|$, which can be simplified to $\frac{|A|}{2}<|a_n|$ Now we can square root both sides to get $\sqrt{\frac{|A|}{2}}<\sqrt{a_n}$ for $n\geq N_1$.

Now use the definition of convergence for $\epsilon = \frac{\epsilon}{\sqrt{2}}$, $\exists N_2 \in \mathbb{N}$ such that $n \geq N_2$ implies $|a_n - A| < \frac{\epsilon \sqrt{A}}{\sqrt{2}}$.

First note that we can write $|\sqrt{a_n} - \sqrt{A}|$ as $|\frac{a_n - A}{\sqrt{a_n + \sqrt{A}}}|$, which is equal to $\frac{|a_n - A|}{\sqrt{a_n + \sqrt{A}}}$ as $\sqrt{a_n} + \sqrt{A}$ is always positive. Now take $N = \max\{N_1, N_2\}$. Therefore for $n \geq N$ we have $\sqrt{a_n} \geq \frac{\sqrt{A}}{\sqrt{2}}$, which implies by the order axioms $\frac{1}{\sqrt{a_n}} \leq \frac{\sqrt{2}}{\sqrt{A}}$. Since $\sqrt{A} > 0$, we have $\frac{1}{\sqrt{a_n + \sqrt{A}}} < \frac{\sqrt{2}}{\sqrt{A}}$, so by order axioms $\frac{1}{\sqrt{a_n} + \sqrt{A}} \leq \frac{\sqrt{2}}{\sqrt{A}}$. We can then multiply both sides by $|a_n - A|$ to get $\frac{|a_n - A|}{\sqrt{a_n + \sqrt{A}}} \leq \frac{\sqrt{2}|a_n - A|}{\sqrt{A}}$. Since $n \geq N \geq N_2$, we know that $|a_n - A| < \frac{\epsilon\sqrt{A}}{\sqrt{2}}$, so $\frac{\sqrt{2}|a_n - A|}{\sqrt{A}} \leq \frac{\sqrt{2}\sqrt{A\epsilon}}{\sqrt{2}\sqrt{A}} = \epsilon$. We can then combine the inequalities to get $\frac{|a_n - A|}{\sqrt{a_n + \sqrt{A}}} \leq \frac{\sqrt{2}|a_n - A|}{\sqrt{A}} < \epsilon$, which by order axioms imply that $\frac{|a_n - A|}{\sqrt{a_n + \sqrt{A}}} < \epsilon$ for all $n \geq N$. Since $\frac{|a_n - A|}{\sqrt{a_n + \sqrt{A}}} = |\sqrt{a_n} - \sqrt{A}|$ we can write $|\sqrt{a_n} - \sqrt{A}| < \epsilon$ for all $n \geq N$, so by the definition of convergence $\sqrt{a_n} \to \sqrt{A}$.

Exercise 5. (5 pts) For each sequence $(a_n)_{n=1}^{\infty}$, define the sequence $(\sigma_n)_{n=1}^{\infty}$ by

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \ge 1).$$

Prove that if $a_n \to A$, then $\sigma_n \to A$. Find an example of a divergent sequence (a_n) such that $(\sigma_n)_{n=1}^{\infty}$ converges.

you started to want want sources.

Solution: If $\sigma_n \to A$, then by the definition of convergence, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that for $n \geq N, |\sigma_n - A| < \epsilon$. Therefore $|\frac{a_1 + \ldots + a_n}{n} - A| < \epsilon$. We can simplify the left side of the inequality to get $\frac{a_1 + \ldots + a_n - nA}{n} < \epsilon$ to $\frac{a_1 - A + \ldots + a_n - nA}{n} < \epsilon$. By the triangle inequality, $\frac{a_1 - A + \ldots + a_n - nA}{n} \leq \frac{|a_1 - A| + \ldots |a_n - A|}{n}$. Since we know that $a_n \to A$, by the definition of convergence, $|a_n - A| < \epsilon$. Therefore $|a_1 - A| + \ldots + a_n - A| < n\epsilon$. We can then divide both sides by n to get $\frac{|a_1 - A| + \ldots |a_n - A|}{n} < \frac{n\epsilon}{n} = \epsilon$. Therefore we have $|\frac{a_1 + \ldots + a_n}{n} - A| \leq \frac{|a_1 - A| + \ldots |a_n - A|}{n} < \epsilon$, so by order axioms $|\frac{a_1 + \ldots + a_n}{n} - A| < \epsilon$. Since ϵ is arbitrary, by the definition of convergence, $\sigma_n = \frac{a_1 + \ldots + a_n}{n} \to A$ if $a_n \to A$.

One example of a divergent series is $a_n = -1$. We know that -1 is divergent from 8a since it'll oscillate between 1 and -1 for even and odd powers of n. However if $\sigma_n = \frac{a_1 + \ldots + a_n}{n}$, then $\sigma_n = \frac{-1 + 1 + \ldots - 1^n}{n}$. If n is even this will equal to 0 as there will be equal amounts of -1 and 1 that will cancel each other out to get $\frac{0}{n} = 0$. If n is odd, then there will be an extra -1 in the sequence that isn't canceled out, so we're left with $\frac{-1}{n}$, which will converge to 0 as $\frac{1}{n} \to 0$, so $\frac{-1}{n} \to -0 = 0$. Therefore since σ_n will converge to 0 for even and odd values of n, $\sigma_n \to 0$.

HOMEWORK PROBLEMS

Exercise 6. (10 pts) Use the definition of convergence to prove that each of the following sequences converges.

- a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + 1/n$ for $n \ge 1$.
- **b)** $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$.

Solution: a. I will claim that $a_n \to 5$. Therefore by the definition of convergence, $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $n \geq N$ implies $|5+\frac{1}{n}-5| < \epsilon$. This can be simplified to $|\frac{1}{n}| < \epsilon$. Note that $\frac{1}{n} \to 0$. This is because if $\frac{1}{n} \to 0$, then $|\frac{1}{n}-0| = \frac{1}{n} < \epsilon$ for all $n \geq N$. By AP with $x = \epsilon, y = 1, \exists N \in \mathbb{N}$ such that $N\epsilon > 1$, which simplifies to $N > \frac{1}{\epsilon}$. Therefore by order axioms $\frac{1}{N} < \epsilon$. If we have $n \geq N$, we'll then have $\frac{1}{n} \leq \frac{1}{N} < \epsilon$. Therefore we have $\frac{1}{n} < \epsilon$ for all $n \geq N$, so by the definition of convergence, $\frac{1}{n} \to 0$. Therefore $a_n = 5 + \frac{1}{n} \to 5$, so $a_n \to 5$.

b. First we let $\epsilon > 0$. I will now claim that $a_n \to \frac{3}{2}$. Therefore by the definition of convergence, $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $n \geq N$ implies $|\frac{3n}{2n+1} - \frac{3}{2}| < \epsilon$. We can simplify the inside of the absolute value function to $|\frac{6n}{2(2n+1)} - \frac{3(2n+1)}{2(2n+1)}|$ into $|\frac{6n-6n-3}{2(2n+1)}|$. Since $n \in \mathbb{N}, |\frac{3}{4n+2}| = \frac{3}{4n+2}$. We can then use AP with $x = \epsilon, y = 1, \exists N \in \mathbb{N}$ such that $N\epsilon > 1$, which simplifies to $N > \frac{1}{\epsilon}$. Therefore by order axioms $\frac{1}{N} < \epsilon$. If we have $n \geq N$, we'll then have $\frac{1}{n} \leq \frac{1}{N} < \epsilon$. We can then multiply all elements of the inequality by $\frac{3}{4}$ to get $\frac{3}{4n} \leq \frac{3}{4N} < \frac{3\epsilon}{4}$. Note that $\frac{3}{4n+2} < \frac{3}{4n}$ and $\frac{3\epsilon}{4} < \epsilon$. Therefore we have $\frac{3}{4n+2} < \frac{3}{4n} \leq \frac{3}{4N} < \frac{3\epsilon}{4} < \epsilon$. Since ϵ is arbitrary, $a_n \to \frac{3}{2}$.

Exercise 7. (5 pts) Prove that the sequence $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Solution: Note that $a_n \to 2$. This is because $a_n = \frac{2n+1}{n} = \frac{2n}{n} + \frac{1}{n} = 2 + \frac{1}{n}$. We know that if $a_n \to A$ and $b_n \to B$ then $a_n + b_n \to A + B$. Therefore we can take $b_n = 2$ and $c_n = \frac{1}{n}$ so that $a_n = b_n + c_n$. Since 2 is a constant, $b_n \to 2$, and from my work done in 6a, we know that $\frac{1}{n} \to 0$. Therefore $a_n = b_n + c_n \to 2 + 0$, so $a_n \to 2$. Finally, from theorem 1.3 in the textbook, we know that any convergent sequence is a Cauchy sequence, and since $a_n \to 2$, a_n is a Cauchy sequence.

Exercise 8. (10 pts) Prove that each of the following sequence diverges.

a)
$$(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$$
.

b)
$$(a_n)_{n=1}^{\infty} = (\sin(\frac{2n+1}{2}\pi))_{n=1}^{\infty}$$
.

Solution: a. Note that is n is even, $-1^n = 1$, and if n is odd, $-1^n = -1$. Now assume towards a contradiction that a_n converges. Therefore $\forall \epsilon > 0$, $\exists N$ such that $\forall n, n \geq N, |a_n - A| < \epsilon$. Let $\epsilon = 1$. When n is even, $-1^n = 1$, so |1 - A| < 1, so -1 < 1 - A < 1. We can subtract one to both sides to get -2 < -A < 0. When n is odd, $-1^n = -1$, so |-1 - A| < 1, so -1 < -1 - A < 1. We can add one to both sides to get 0 < -A < 2. Therefore we have -A < 0 but also 0 < -A. This contradicts our claim that $\forall \epsilon > 0$, $\exists N$ such that $\forall n, n \geq N, |a_n - A| < \epsilon$, so a_n diverges. b. Note that $sin(\frac{2n+1}{2}\pi) = sin(\frac{2n\pi}{2} + \frac{\pi}{2}) = sin(n\pi + \frac{\pi}{2})$. Also note that sin(x) has a period of 2π . Therefore if n is even, $sin(n\pi + \frac{\pi}{2}) = sin(\frac{\pi}{2})$ as adding $n\pi$ when n is even is the same as adding multiples of 2π , which will not change the sin function as it has a period of 2π . Also note that if n is odd, then $sin(n\pi + \frac{\pi}{2}) = sin(\pi + \frac{\pi}{2}) = sin(\frac{3\pi}{2})$. This if $n\pi$ is odd, we can treat it as $m\pi + \pi$ where m is even, which will mean that we're adding multiples of 2π to $\frac{3\pi}{2}$), which will cause no change to the sin function as it has a period of 2π . Also note that $sin(\frac{\pi}{2}) = 1$, and $sin(\frac{3\pi}{2}) = -1$. We can then use a similar argument to 8a to prove that a_n diverges. ——— Now assume towards a contradiction that a_n converges. Therefore $\forall \epsilon > 0, \exists N \text{ such that } \forall n, n \geq N, |a_n - A| < \epsilon$. Let $\epsilon = 1$. When n is even, $sin(\frac{2n+1}{2}\pi) = 1$, so |1-A| < 1, so -1 < 1 - A < 1. We can subtract one to both sides to get -2 < -A < 0. When n is odd, $sin(\frac{2n+1}{2}\pi) = -1$, so |-1-A| < 1, so -1 < -1 - A < 1. We can add one to both sides to get $0 < -\tilde{A} < 2$. Therefore we have -A < 0but also 0 < -A. This contradicts our claim that $\forall \epsilon > 0, \exists N \text{ such that } \forall n, n \geq N, |a_n - A| < \epsilon$ so a_n diverges.

Exercise 9. (5 pts) Give an examples of two sequences (a_n) and (b_n) such that (a_n) and (b_n) converge, but $(a_n + b_n)$ converge.

Solution: Let $a_n = -1^n$, $b_n = -1^{n+1}$. We know from 8a that a_n diverges, and we can use a similar argument to show that b_n will diverge. However $a_n + b_n$ will converge as when n is even, $a_n = 1$, $b_n = -1$ so $a_n + b_n = 0$. Similarly, when n is odd, $a_n = -1$, $b_n = 1$ so $a_n + b_n = 0$. Therefore for all values of n $a_n + b_n = 0$. Since $0 \to 0$, $a_n + b_n \to 0$.

Exercise 10. (10 pts) With the limit operations and the writing problems, find the limit of the following sequence with general term

a)
$$\frac{n^2+4n}{n^2-5}$$
.

b)
$$\frac{n}{n^2-3}$$
.

c)
$$\frac{\cos n}{n}$$
. [You can use what you know on the cosine function.]

d)
$$(\sqrt{4-\frac{1}{n}}-2)n$$
.

Solution: a. If we divide the fraction by n^2 we have $\frac{1+\frac{4}{n}}{1-\frac{5}{n^2}}$, which is equal to $\frac{1+\frac{4}{n}}{1-(\frac{5}{n}(\frac{5}{n}))}$. Note that since $4\to 4$. From 6a we know that $\frac{1}{n}\to 0$, and since $a_nb_n\to AB$, we can take 4 as a_n and $\frac{1}{n}$ as b_n to have $\frac{4}{n}\to 4(0)=0$. Since $a_n+b_n\to A+B$, and $1\to 1$, we can take $a_n=1,b_n=\frac{4}{n}$ to get $1+\frac{4}{n}\to 1+0=1$. Similarly $\frac{5}{n}\to 5$ since we can take $a_n=5,b_n=\frac{1}{n}$ and $5\to 5$. Since $a_nb_n\to AB$, we can take $a_n=b_n=\frac{5}{n}$ to get $\frac{5}{n}\times\frac{5}{n}\to 0\times 0$. Therefore since $1\to 1,1-(\frac{5}{n}(\frac{5}{n}))\to 1-0$. Finally we know that $\frac{a_n}{b_n}\to \frac{4}{B}$, so we can take $a_n=1+\frac{4}{n},b_n=1-(\frac{5}{n}(\frac{5}{n}))$. Since $a_n\to 1$, and $b_n\to 1$, $\frac{a_n}{b_n}\to 1$. Therefore we can say that $\frac{n^2+4n}{n^2-5}\to 1$.

b. We can divide the fraction by n^2 to get $\frac{1}{1-\frac{3}{n}}$ which is equal to $\frac{1}{1-(\frac{3}{n}(\frac{3}{n}))}$. We know that $\frac{1}{n}\to 0$. Since $a_nb_n\to AB$, we can take 3 as a_n and $\frac{1}{n}$ as b_n , so $\frac{3}{n}\to 3(0)=0$. We can then take $a_n=b_n=\frac{3}{n}$ so that $a_nb_n=\frac{3}{n}(\frac{3}{n})\to 0(0)=0$. Therefore since $1\to 1,1-(\frac{3}{n}(\frac{3}{n}))\to 1-0=1$. Finally since $\frac{a_n}{n}\to\frac{A}{B}$, we can take $a_n=\frac{1}{n},b_n=1-(\frac{3}{n}(\frac{3}{n}))$ so $\frac{a_n}{n}\to \frac{0}{1}=0$. Therefore $\frac{n}{n^2-3}\to 0$.

c. Note that $\frac{\cos(n)}{n}=\frac{1}{n}(\cos(n))$. Also note that $\cos(n)$ is bounded by -1 and 1. By theorem 1.13 in the textbook, if $a_n\to 0$ and b_n is bounded, then $a_nb_n\to 0$. Therefore we can take $a_n=\frac{1}{n},b_n=\cos(n)$, and since $\frac{1}{n}\to 0$ and $\cos(n)$ is bounded, $\frac{\cos(n)}{n}=\frac{1}{n}(\cos(n))\to 0$.

d. $(\sqrt{4-\frac{1}{n}}-2)n=\frac{(\sqrt{4-\frac{1}{n}}-2)(\sqrt{4-\frac{1}{n}}+2)n}{\sqrt{4-\frac{1}{n}}+2}}=\frac{(4-\frac{1}{n}-4)n}{\sqrt{4-\frac{1}{n}}+2}}=\frac{4n-\frac{n}{n}-4n}{\sqrt{4-\frac{1}{n}}+2}}=\frac{-1}{\sqrt{4-\frac{1}{n}}+2}}$. Since $4\to 4$, $\frac{1}{n}\to 0$, $4-\frac{1}{n}\to 4-0=4$. Since $4-\frac{1}{n}\to 4$, $\sqrt{4-\frac{1}{n}}\to \sqrt{4}=2$. Since $2\to 2$, $\sqrt{4-\frac{1}{n}}+2\to 2+2=4$. Since $-1\to -1$, $\frac{-1}{\sqrt{4-\frac{1}{n}}+2}}\to \frac{-1}{4}$. Therefore $(\sqrt{4-\frac{1}{n}}-2)n\to \frac{-1}{4}$.