

Modular Flows: Differential Molecular Generation

Yogesh Verma, Samuel Kaski, Markus Heinonen and Vikas Garg

36th Conference on Neural Information Processing Systems (NeurIPS 2022) New Orleans, USA

Challenge of Molecular Generation

- Molecular generation is fundamental for drug discovery, material synthesis, etc.
- · Challenge: Generate valid molecules with various criteria

Challenge of Molecular Generation

- Molecular generation is fundamental for drug discovery, material synthesis, etc.
- · Challenge: Generate valid molecules with various criteria
- Can generative models can learn to achieve high generative validity intrinsically ??

Challenge of Molecular Generation

- Molecular generation is fundamental for drug discovery, material synthesis, etc.
- · Challenge: Generate valid molecules with various criteria
- Can generative models can learn to achieve high generative validity intrinsically ??
- We resolve this dilemma, by proposing a method inspired by graph PDEs to reconcile local densities ⇒ globally aligned densities

Representation

• Given a molecule, represent as a graph G = (V, E), where vertex corresponds to atoms : $v \in \mathcal{A}$, while edges are bonds. We assume the following decomposition as

$$p(G) := p(V|E, \{z\}) = \prod_{i=1}^{M} \mathsf{Cat}(v_i|\sigma(\mathbf{z}_i))$$
 (1)

Representation

• Given a molecule, represent as a graph G = (V, E), where vertex corresponds to atoms : $v \in A$, while edges are bonds. We assume the following decomposition as

$$p(G) := p(V|E, \{z\}) = \prod_{i=1}^{M} \operatorname{Cat}(v_i | \sigma(\mathbf{z}_i))$$
 (1)

 Tree representation by decomposing a molecular graph into a tree, as in JT-VAE, but restricting these clusters to ring substructures.

Differential Modular Flows

• Model the node scores \mathbf{z}_i as a CNF over time $t \in \mathbb{R}_+$, with $\mathbf{z}_i(0) \sim \mathcal{N}(0, I)$. The dynamics are parameterized by a coupled ODE, jointly represented as, where \mathcal{N}_i is the set of neighbors, **x** is the spatial information.

$$\dot{\mathbf{z}}_{i}(t) = \begin{pmatrix} \dot{\mathbf{z}}_{i}(t) \\ \vdots \\ \dot{\mathbf{z}}_{M}(t) \end{pmatrix} = \begin{pmatrix} f_{\theta}(t, \mathbf{z}_{1}(t), \mathbf{z}_{\mathcal{N}_{1}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \\ \vdots \\ f_{\theta}(t, \mathbf{z}_{M}(t), \mathbf{z}_{\mathcal{N}_{M}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{M}}) \end{pmatrix}$$
(2)

Differential Modular Flows

• Model the node scores \mathbf{z}_i as a CNF over time $t \in \mathbb{R}_+$, with $\mathbf{z}_i(0) \sim \mathcal{N}(0, I)$. The dynamics are parameterized by a coupled ODE, jointly represented as, where \mathcal{N}_i is the set of neighbors, **x** is the spatial information.

$$\dot{\mathbf{z}}_{i}(t) = \begin{pmatrix} \dot{\mathbf{z}}_{i}(t) \\ \vdots \\ \dot{\mathbf{z}}_{M}(t) \end{pmatrix} = \begin{pmatrix} f_{\theta}(t, \mathbf{z}_{1}(t), \mathbf{z}_{\mathcal{N}_{1}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{i}}) \\ \vdots \\ f_{\theta}(t, \mathbf{z}_{M}(t), \mathbf{z}_{\mathcal{N}_{M}}(t), \mathbf{x}_{i}, \mathbf{x}_{\mathcal{N}_{M}}) \end{pmatrix}$$
(2)

• Equivariant Local differential: To respect the natural equivariances of the molecule, we choose to use E(3)-Equivariant Graph Neural Networks as choice for f_{θ}

Training Objective

· We maximizing the score cross-entropy $\mathbb{E}_{\hat{p}_{\text{data}}(\mathbf{z}(T))}[\log p_{\theta}(\mathbf{z}(T))]$, where we map the set of graphs $\{G_n\}$ into a set of scores $\{z_n\}$ via:

$$\mathbf{z}_{n}(G_{n};\epsilon) = (1 - \epsilon) \text{ onehot}(G_{n}) + \frac{\epsilon}{|\mathcal{A}_{f}|} \mathbf{1}_{M(n)} \mathbf{1}_{|\mathcal{A}_{f}|}^{\top}$$
(3)

Training Objective

• We maximizing the score cross-entropy $\mathbb{E}_{\hat{p}_{\text{data}}(\mathbf{z}(T))}[\log p_{\theta}(\mathbf{z}(T))]$, where we map the set of graphs $\{G_n\}$ into a set of scores $\{\mathbf{z}_n\}$ via:

$$\mathbf{z}_n(G_n; \epsilon) = (1 - \epsilon) \text{ onehot}(G_n) + \frac{\epsilon}{|\mathcal{A}_f|} \mathbf{1}_{M(n)} \mathbf{1}_{|\mathcal{A}_f|}^{\top}$$
 (3)

 We exploit the (non-reversible) composition of the argmax and softmax operations short-circuit in reverse direction as shown. This short-circuiting allows keep the forward and backward aligned.

Training Objective

• We maximizing the score cross-entropy $\mathbb{E}_{\hat{p}_{\text{data}}(\mathbf{z}(T))}[\log p_{\theta}(\mathbf{z}(T))]$, where we map the set of graphs $\{G_n\}$ into a set of scores $\{\mathbf{z}_n\}$ via:

$$\mathbf{z}_{n}(G_{n};\epsilon) = (1 - \epsilon) \text{ onehot}(G_{n}) + \frac{\epsilon}{|\mathcal{A}_{f}|} \mathbf{1}_{M(n)} \mathbf{1}_{|\mathcal{A}_{f}|}^{\top}$$
(4)

- We exploit the (non-reversible) composition of the argmax and softmax operations short-circuit in reverse direction as shown. This short-circuiting allows keep the forward and backward aligned.
- We thus maximize an objective over N training graphs,

$$\underset{\theta}{\operatorname{arg\,max}} \qquad \mathcal{L} = \mathbb{E}_{\hat{p}_{\operatorname{data}}(\mathbf{z})} \log p_{\theta}(\mathbf{z}) \approx \frac{1}{N} \sum_{n=1}^{N} \log p_{T}(\mathbf{z}(T) = \mathbf{z}_{n})$$
 (5)

- We trained the model on QM9 and ZINC250K dataset, and evaluated in terms of:
 - · Validity: Fraction of molecules that satisfy chemical valency rule
 - Uniqueness: Fraction of non-duplicate generations
 - · Novelty: Fraction of molecules not present in training data
 - Reconstruction: Fraction of molecules that can be reconstructed from their encoding

Molecular Experiments

Method	Validity %	Uniqueness %	Novelty %	Reconstruction %
GVAE	60.2	9.3	80.9	96.0
GraphNVP*	83.1	99.2	58.2	100
GRF*	84.5	66	58.6	100
GraphAF*	67	94.2	88.8	100
GraphDF*	82.7	97.6	98.1	100
MoFlow*	89.0	98.5	96.4	100
ModFlow (2D-EGNN)	96.2 ± 1.7	99.5	100	100
ModFlow (3D-EGNN)	98.3 ± 0.7	99.1	100	100
ModFlow (JT-2D-EGNN)	97.9 ± 1.2	99.2	100	100
ModFlow (JT-3D-EGNN)	99.1 \pm 0.8	99.3	100	100

Method	Validity %	Uniqueness %	Novelty %	Reconstruction %
MRNN	65	99.89	100	n/a
GVAE	7.2	9	100	53.7
GCPN	20	99.97	100	n/a
GraphNVP*	42.6	94.8	100	100
GRF*	73.4	53.7	100	100
GraphAF*	68	99.1	100	100
GraphDF*	89	99.2	100	100
MoFlow*	50.3	99.9	100	100
ModFlow (2D-EGNN)	94.8 \pm 1.0	99.4	100	100
ModFlow (3D-EGNN)	95.4 ± 1.2	99.7	100	100
ModFlow (JT-2D-EGNN)	97.4 \pm 1.4	99.1	100	100
ModFlow (JT-3D-EGNN)	98.1 ± 0.9	99.3	100	100

QM9 ZINC250K

Property-targeted Molecular Optimization

• We used a linear regression model g_{σ} to regress the latent embeddings computed via pre-trained ModFlow model, to property scores (y), and interpolate via.

Property-targeted Molecular Optimization

• We used a linear regression model g_{σ} to regress the latent embeddings computed via pre-trained **ModFlow** model, to property scores (y), and interpolate via,

$$Z = f_{\theta}(\mathcal{M}), \ y = g_{\sigma}(Z) \tag{6}$$

$$Z' = Z + \lambda * \frac{dy}{dZ} \tag{7}$$

• Method is conducted for K steps, where λ is the search step and Z' is decoded back into molecule via $\mathcal{M}' = f^{-1}(\mathcal{Z}')$

Property-targeted Molecular Optimization

 We propose Physics-inspired co-evolving continuous-time flows, inspired by graph PDEs ⇒ modular coupled ODE system

Conclusion

- We propose Physics-inspired co-evolving continuous-time flows, inspired by graph PDEs ⇒ modular coupled ODE system
- Resulting in accurate modeling of graph densities and high-quality molecular generation without any validity checks or corrections.

- We propose Physics-inspired co-evolving continuous-time flows, inspired by graph PDEs ⇒ modular coupled ODE system
- Resulting in accurate modeling of graph densities and high-quality molecular generation without any validity checks or corrections.

More information on the website and visit the **poster** for in-person discussion!

