Week 1

takagishi

予測モデル:

・製品の総量の予測(数値の予測)なので、回帰モデル。

- ✓ 線形回帰系
 - □ 線形回帰
 - Ridge回帰
 - **□** Lasso回帰
 - Elastic Net
- ✓ 決定木(回帰木)系
 - □ 決定木, ランダムフォレスト, 勾配ブースティング回帰木(GBRT), …
- ✓ 時系列系
 - □ AR ··· 自己回帰(Auto Regressive)
 - MA ··· 移動平均(Moving Average)
 - \square ARMA ... AR + MA
 - □ ARIMA ··· ARMA + Integrated(和分[積分])
 - SARIMA ··· ARIMA + Seasonal(季節変動)
- ✓ ニューラルネット系
 - □ NN, RNN(LSTM)

今回はここの

勾配ブースト回帰木

ついかいました。

Python実装

Xaboost

windows anaconda環境の人は

[conda install -c anaconda py-xgboost]

でインストール簡単

Xgboostって:

● 元論文

http://delivery.acm.org/10.1145/2940000/2939785/p785chen.pdf?ip=203.179.35.3&id=2939785&acc=CHORUS&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm_ =1532530471_6d0713472a59a9fb5d642685cbc5c7bf

● 内部は

http://kefism.hatenablog.com/entry/2017/06/11/182959

● 特徴

特徴量のsubsampling データのsubsampling

今までに学習したモデルの情報を使って、

新たなモデルを構築することでデータの学習を進める方法をブースティング(Boosting)と呼び(中略) 1つ前までの決定木の結果を利用して新たな決定木を作る際に、

実測値と予測値との誤差が**ある意味で**最小になるように決定木の<u>アルゴリズム</u>を構築したものがXGBoost

● ハイパーパラメータ

パラメータ名	デフォルト値	パラメータ内容	メモ
eta	0.3	各ステップごとの学習率	低いと過学習抑制に繋がる
max_depth	6	木の深さの上限	深すぎると 過学習を引き起こす
min_child_weight	1	葉の重みの下限	下限が大きいほど 単調な木になり過学習抑制
subsample	1	各ステップの決定木の 構築に用いるデータの割合	ランダムサンプリングすること で過学習抑制
colsample_bytree	1	各ステップの決定木ごとに 用いる特徴量の割合	特徴量間の関係を考慮した形で のモデリング可能
lambda	1	L2正則化項の重み	値を大きくすると 過学習抑制