Práctica 6

1. Probar que $\|\cdot\|_1, \|\cdot\|_2$ y $\|\cdot\|_\infty$ definen normas en \mathbb{R}^n , donde

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2} \quad \text{y} \quad ||x||_\infty = \max_{1 \le i \le n} |x_i|.$$

- **2.** Sea $(E, \|\cdot\|)$ un espacio normado. Probar que se verifican:
 - (a) Las operaciones $+: E \times E \to E$ y $\times: \mathbb{R} \times E \to E$ son continuas.
 - (b) Si $x \in E$ y r > 0, $\overline{B(x,r)} = \overline{B}(x,r)$ (es decir, la clausura de la bola abierta es la bola cerrada).
 - (c) diam(B(x,r)) = 2r.
 - (d) Si $y, z \in B(x, r)$ entonces para todo $t \in [0, 1], ty + (1 t)z \in B(x, r)$ (es decir, la bola es convexa).
- **3.** Sea $(E, \|\cdot\|)$ un espacio normado. Sean $(x_n)_{n\in\mathbb{N}}\subseteq E$ y $x_0\in E$ tales que $\lim_{n\to\infty}x_n=x_0$.

Probar que si definimos $(y_n)_{n\in\mathbb{N}}\subseteq E$ por

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n},$$

entonces $\lim_{n\to\infty} y_n = x_0$.

- **4.** Sea $(E, \|\cdot\|)$ un espacio normado y $S \subseteq E$ un subespacio (vectorial). Probar que:
 - (a) \overline{S} también es un subespacio.
 - (b) Si $S \neq E$, entonces $S^{\circ} = \emptyset$.
 - (c) Si $\dim(S) < \infty$, entonces S es cerrado.
 - (d) Si S es un hiperplano (o sea: $\exists x \neq 0$ tal que $S \oplus \langle x \rangle = E$), entonces S es o bien denso o bien cerrado en E.
- **5.** Sea $\mathbb{R}_n[t]$ el conjunto de los polinomios de grado menor o igual que n con coeficientes en \mathbb{R} . Consideremos para $p \in \mathbb{R}_n[t]$ las normas

$$||p||_{\infty} = \max_{0 \le t \le 1} |p(t)|$$
 y $||p||_1 = \int_0^1 |p(t)| dt$.

- (a) ¿Son $(\mathbb{R}_n[t], \|\cdot\|_{\infty})$ y $(\mathbb{R}_n[t], \|\cdot\|_1)$ espacios de Banach? ¿Por qué?
- (b) Justificar por qué ambas normas resultan equivalentes en $\mathbb{R}_n[t]$ para todo $n \in \mathbb{N}$.

- (c) Si $\mathbb{R}[t]$ denota el conjunto de todos los polinomios con coeficientes en \mathbb{R} , probar que ahí las normas $\|\cdot\|_{\infty}$ y $\|\cdot\|_{1}$ no son equivalentes. ¿Hay alguna contradicción con el item anterior, que afirma que las normas son equivalentes para polinomios de grado hasta n para todo $n \in \mathbb{N}$?
- 6. Definimos ℓ^{∞} como el espacio de todas las sucesiones acotadas de números reales:

$$\ell^{\infty} = \left\{ a = (a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : \sup_{n \in \mathbb{N}} |a_n| < +\infty \right\}$$

con la norma

$$||a||_{\infty} = \sup_{n \in \mathbb{N}} |a_n|.$$

- (a) Probar que la bola cerrada de centro 0 y radio 1 de ℓ^{∞} no es compacta.
- (b) Probar que no hay ningún conjunto numerable denso en ℓ^{∞} .
- 7. Sean E y F espacios normados. Sea $T:E\to F$ un operador lineal. Probar que son equivalentes:
 - (a) T es continuo en 0.
 - (b) Existe $x_0 \in E$ tal que T es continuo en x_0 .
 - (c) T es continuo.
 - (d) T es uniformemente continuo.
 - (e) Existe M > 0 tal que $||Tx|| \le M||x||$ para todo $x \in M$ (T es acotada).
 - (f) Para todo $A \subseteq E$ acotado, T(A) es acotado.
- **8.** Sean $(E, \|\cdot\|_E), (F, \|\cdot\|_F)$ y sea $T: E \to F$ lineal y continuo. Verificar las siguientes fórmulas:

$$||T|| = \sup_{\|x\|_E \le 1} ||Tx||_F = \sup_{\|x\|_E = 1} ||Tx||_F = \sup_{x \ne 0} \frac{||Tx||_F}{\|x\|_E} = \inf \left\{ M > 0 : ||Tx||_F \le M ||x||_E \right\}.$$

9. Sea $k:[0,1]\times[0,1]\to\mathbb{R}$ continua y sea $K:C([0,1])\to C([0,1])$ dada por

$$(Kf)(x) = \int_0^1 k(x, y) f(y) \, dy.$$

Probar que si consideramos en C([0,1]) la norma infinito definida como $||f||_{\infty} = \max_{0 \le t \le 1} |f(t)|$, entonces K es lineal y continua. Acotar su norma.

- 10. Sea $(\mathbb{R}[t], \|\cdot\|_{\infty})$ el espacio de polinomios definido en el Ejercicio 5. Sea $\delta : \mathbb{R}[t] \to \mathbb{R}[t]$ dado por $(\delta p)(t) = p'(t)$, donde p' denota el derivado de p. Probar que δ es un operador lineal que no es continuo.
- 11. Sea $\mathcal{E}: C([0,1]) \to \mathbb{R}$ definida por $\mathcal{E}f = f(0)$. Probar que si consideramos en C([0,1]) la norma infinito, entonces \mathcal{E} es un funcional lineal continuo.

12. Sea $w = (w_1, \dots, w_n) \in \mathbb{R}^n$ tal que $w_i > 0$ para todo $i = 1, \dots, n$. Se define $(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ como

$$(x,y) := \sum_{i=1}^{n} w_i x_i y_i.$$

Probar que (\cdot, \cdot) define un producto interno en \mathbb{R}^n .

13. Sea $(E, \|\cdot\|)$ un espacio de Banach cuya norma satisface la regla del paralelogramo:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2) \quad \forall x, y \in E.$$

Definimos la función $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ como

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2), \quad \forall x, y \in E.$$

Probar que $\langle \cdot, \cdot \rangle$ es un producto interno y que $(E, \langle \cdot, \cdot \rangle)$ es un espacio de Hilbert.

14. Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno y sean $f, g \in H$. Probar que $\langle f, g \rangle = 0$ si y sólo si

$$||f + g||^2 = ||f||^2 + ||g||^2.$$

¿Qué diría Pitágoras sobre esto?

- **15.** Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio con producto interno. Sean $(x_n)_{n \in \mathbb{N}} \subseteq H$ una sucesión y $x_0 \in H$. Probar que si $\lim_{n \to \infty} \langle x_n, x_0 \rangle = \langle x_0, x_0 \rangle$ y $\lim_{n \to \infty} \|x_n\| = \|x_0\|$, entonces $\lim_{n \to \infty} x_n = x_0$ en H.
- 16. Sea ℓ^2 el espacio vectorial de todas las sucesiones de cuadrado sumable:

$$\ell^2 = \left\{ a = (a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \colon \sum_{n=1}^{\infty} |a_n|^2 < +\infty \right\}.$$

Para $a, b \in \ell^2$ definimos

$$\langle a, b \rangle = \sum_{n \in \mathbb{N}} a_n \, b_n.$$

- (a) Probar que $\langle \cdot, \cdot \rangle$ es un producto interno. ¿Cuál es la norma que define?
- (b) ¿Es compacta la bola cerrada de centro 0 y radio 1 de ℓ^2 ?
- (c) Probar que $\gamma: \ell^2 \to \mathbb{R}$ dada por

$$\gamma(a) = \sum_{n=1}^{\infty} \frac{a_n}{n}$$

es una funcional lineal continua.

17. Para $f, g \in C([0,1])$ definimos

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt.$$

- (a) Comprobar que $\langle \cdot, \cdot \rangle$ es un producto interno. ¿Cuál es la norma que define?
- (b) Probar que con esta norma, la funcional definida en el Ejercicio 11 no es continua.

(c) Probar que la funcional lineal

$$I(f) = \int_0^1 f(t)dt$$

es continua con la norma dada por el producto interno.

(d) Probar que la funcional lineal

$$\gamma(f) = \int_0^{1/2} f(t)dt - \int_{1/2}^1 f(t)dt$$

es continua con la norma dada por el producto interno. Se puede ver que no existe $g \in C([0,1])$ tal que $\gamma(f) = \langle f,g \rangle$ para todo $f \in C([0,1])$ (convencerse, no hace falta demostrarlo). ¿Contradice esto el teorema de representación de Riesz enunciado en la teórica?

- 18. Sea ℓ^2 el espacio definido en el Ejercicio 16. Hallar el complemento ortogonal del subespacio de ℓ^2 generado por e_1, e_2 y $e_3 + e_4$, donde para cada $j \in \mathbb{N}$, $e_j \in \ell^2$ es la sucesión que tiene un 1 en el lugar j y 0 en los demás.
- **19.** Sea $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert y $X \subseteq H$ un subespacio cerrado de H. Sea $P_X : H \to H$ la proyección ortogonal de H sobre X. Probar que:
 - (a) $P_X^2 = P_X;$
 - (b) $P_{X^{\perp}} = I P_X$, donde I denota la identidad en H;
 - (c) $\langle P_X(y), z \rangle = \langle y, P_X(z) \rangle$, para todos $y, z \in H$.