历届试卷中有关中值问题的应用

一、利用零点定理:

将要证明的等式改写成 $\varphi(\xi)=0$, 然后找出区间内存在两点异号的点 , 再用零点定理证明存在一点 ξ , 使得 $\varphi(\xi)=0$.

二、利用罗尔定理

将要证明的结论写成 $\varphi'(\xi)=0$ 的情形,然后找处区间内函数值相等的两个点,再利用罗尔定理证明.

例 1. 设函数 f(x) 在 [0,n] 上连续 (n 为自然数, $n \ge 2$), f 》 f 》 . 证明: 存在 ξ , $\xi+1 \in [0,n]$, 使得 $f(\xi) = f(\xi+1)$. (2016—2017)

分析: 将要证明的式子改写成 $f(\xi) - f(\xi+1) = 0$,故可设辅助函数为 F(x) = f(x) - f(x+1).

证明: 由已知条件,可得 $F(0) + F(1) + \cdots + F(n-1) = f(0) - f(n) = 0$.

如果 $F(0) = F(1) = \cdots = F(n-1) = 0$, 则可取 $\xi = k(k = 0, 1, \dots, n-1)$.

如果存在某个整数 $k(0 \le k \le n-1)$,使得 $F(k) \ne 0$,由 $F(0) + F(1) + \cdots + F(n-1) = 0$ 知,一定能找到 另一个整数 $l(0 \le l \le n-1)$,使得 F(k)F(l) < 0 .

由于 f(x) 在 [0,n] 上连续,由零点定理,在 k 和 l 之间必存在点 ξ ,使得 $F(\xi)=0$,即 $f(\xi)=f(\xi+1)$. 显然, $\xi \in [0,n-1]$, $\xi+1 \in [0,n]$.

例 2. 设函数 f(x) 在[0,3]上连续,在(0,3)内可导,且有 f(0) = 0 , f(1) + f(2) = 2 , f(3) = 4 证明:

(1) 至少存在一点 $\xi \in [1,2]$, 使得 $f(\xi) = 1$; (2) 至少存在一点 $\eta \in (0,3)$, 使得 $f'(\eta) = 1$. (2018—2019)

分析: (1) 将 $f(\xi) = 1$ 改写成 $f(\xi) - 1 = 0$, 作辅助函数 $\varphi(x) = f(x) - 1$.

(2) 将 $f'(\eta) = 1$ 改写成 $f'(\eta) - 1 = 0$,即 $(f(x) - x)'|_{x=\eta} = 0$.作辅助函数 F(x) = f(x) - x.

证明: (1) 作辅助函数 $\varphi(x) = f(x) - 1$.

容易得到, $\varphi(1) + \varphi(2) = f(1) + f(2) - 2 = 0$, 即 $\varphi(1)\varphi(2) \le 0$.

如果 $\varphi(1) = 0$,即f(1) = 1,取 $\xi = 1$.

如果 $\varphi(1) \neq 0$,则 $\varphi(1)\varphi(2) < 0$,由零点定理,存在 $\xi \in (1,2)$,使得 $\varphi(\xi) = 0$,即 $f(\xi) = 1$.

(2) 作辅助函数 F(x) = f(x) - x,

由 (1) 知, $\xi \in [1,2]$, $f(\xi) = 1$. 于是, $F(\xi) = f(\xi) - \xi = 1 - \xi \le 0$, 而 F(3) = f(3) - 3 - 4 - 3 - 9 ,由零点定理,存在 $c \in [\xi,3]$,使得 F(c) = 0.

因为函数 f(x) 在[0,3]上连续,在(0,3)内可导,则函数 F(x) 在[0,c]上连续,在(0,c)内可导,且 F(c) = F(0) = 0.

由罗尔定理,存在 $\eta \in (0,c) \subset (0,3)$,使得 $F'(\eta) = 0$,即 $f'(\eta) = 1$.

三、常见中值问题类型: $f'(\xi) + g'(\xi)f(\xi) = 0$.

将式子改写成 $f'(\xi)e^{g(\xi)} + e^{g(\xi)}g'(\xi)f(\xi) = 0$,由于

$$[f(x)e^{g(x)}]' = f'(x)e^{g(x)} + f(x)e^{g(x)}g'(x)$$

故可设辅助函数 $F(x) = f(x)e^{g(x)}$.

例 1. 设函数 f(x) 在[0,2] 上连续,在(0,2) 内可导,且 $f(0) \cdot f(2) > 0$, $f(0) \cdot f(1) < 0$. 证明:存在 $\xi \in (0,2)$,使得 $f'(\xi) = 2f(\xi)$. (2016—2017)

分析: 要证的式子改写为 $f'(\xi) - 2f(\xi) = 0$. 这里的 g'(x) = -2 , 所以, 取 g(x) = -2x .

故可设辅助函数 $F(x) = f(x)e^{-2x}$.

证明: 因为函数 f(x) 在[0,2] 上连续,且 $f(0) \cdot f(2) > 0$, $f(0) \cdot f(1) < 0$,由零点定理,存在 $x_1 \in (0,1)$, $x_2 \in (1,2)$,使得 $f(x_1) = 0$, $f(x_2) = 0$.

作辅助函数 $F(x) = f(x)e^{-2x}$, 则 $F'(x) = f'(x)e^{-2x} - 2f(x)e^{-2x}$.

因为 f(x) 在[0,2]上连续,在(0,2)内可导知,F(x) 在[x_1,x_2]上连续,在(x_1,x_2)内可导,且 $f(x_1)=f(x_2)=0$.

由罗尔定理,存在 $\xi \in (x_1,x_2) \subset (0,2)$,使得 $F'(\xi) = 0$,即

$$f'(\xi)e^{-2\xi} - 2f(\xi)e^{-2\xi} = 0$$

移项后可得 $f'(\xi) = 2f(\xi)$.

例 2. 设函数 f(x) 在 [1,2] 上连续,在 (1,2) 内可导,且 f(2) = 2f(1). 证明:存在 $\xi \in (1,2)$,使得 $\xi f'(\xi) - f(\xi) = 0$. (2017—2018)

分析: $\xi f'(\xi) - f(\xi) = 0$ 可改写成 $f'(\xi) - \frac{1}{\xi} f(\xi) = 0$. 这里的 $g'(x) = -\frac{1}{x}$, 故 $g(x) = -\ln x$, 于是作辅

助函数 $F(x) = f(x)e^{-\ln x} = \frac{f(x)}{x}$.

证明:作辅助函数 $F(x) = \frac{f(x)}{x}$,于是, $F'(x) = \frac{xf'(x) - f(x)}{x^2}$.

由于函数 f(x) 在[1,2]上连续,在(1,2)内可导,则函数 F(x) 在[1,2]上连续,在(1,2)内可导.

因为
$$f(2) = 2f(1)$$
, 故 $F(1) = \frac{f(1)}{1} = f(1) = \frac{f(2)}{2} = F(2)$.

由罗尔定理知,存在 $\xi \in (1,2)$,使得 $F'(\xi) = 0$,即 $\frac{\xi f'(\xi) - f(\xi)}{\xi^2} = 0$,也即 $\xi f'(\xi) - f(\xi) = 0$.

例 3. 设 f(x) 在 [0,2] 上连续,在 (0,2) 内可导,且 f(1)+f(2)=0. 证明存在一点 $\xi \in (0,2)$,使得 $f(\xi)+\xi f'(\xi)=0$. (2020—2021)

分析: $f(\xi) + \xi f'(\xi) = 0$ 可改写成 $f'(\xi) + \frac{1}{\xi} f(\xi) = 0$. 此时 $g'(x) = \frac{1}{x}$, 即 $g(x) = \ln x$, 于是作辅助函

数 $F(x) = f(x)e^{\ln x} = xf(x)$.

注意到F(0) = 0,于是只要找到另一个零点即可.

证明: 首先证明在[1,2]中存在一点c, 使得f(c) = 0.

如果 f(1) = f(2) = 0 , 则取 c = 1或 c = 2.

如果 $f(1) \neq 0$,因为 f(1) + f(2) = 0 ,则 f(1) f(2) < 0 ,由 f(x) 的连续及零点定理,存在 $c \in (1,2)$,使 得 f(c) = 0.

作辅助函数F(x) = xf(x).

由于 f(x) 在[0,2] 上连续,在(0,2) 内可导,可得 F(x) 在[0,c] 上连续,在(0,c) 内可导,且

$$F(0) = 0$$
, $F(c) = cf(c) = 0$.

由罗尔定理,存在 $\xi \in (0,c) \subset (0,2)$,使得 $F'(\xi) = 0$,即 $f(\xi) + \xi f'(\xi) = 0$.

例 4. 设函数 f(x) 在 [0,2] 上连续,在 (0,2) 内可导,且有 f(0)=0 , f(1)=1 , f(2)=-1 . 证明:至少存在一点 $\xi \in (0,2)$,使得 $f'(\xi)=f(\xi)$. (2021—2022)

分析: $f'(\xi) = f(\xi)$ 可改写成 $f'(\xi) - f(\xi) = 0$. g'(x) = -1 可取 g(x) = -x, 于是作辅助函数 $F(x) = f(x)e^{-x}$.

由于 f(0) = 0 , 则 F(0) = f(0) = 0 , 只需再找一个零点即可.

证明:作辅助函数 $F(x) = f(x)e^{-x}$.

由 f(1)=1 , f(2)=-1 , 即 f(1)f(2)<0 . 有连续函数的零点定理,存在 $c\in(1,2)$, 使得 f(c)=0 . 因为函数 f(x) 在 [0,2] 上连续,在 (0,2) 内可导,则函数 F(x) 在 [0,c] 上连续,在 (0,c) 内可导,且 F(0)=F(c)=0 . 由罗尔定理,存在 $\xi\in(0,c)\subset(0,2)$,使得 $F'(\xi)=f'(\xi)e^{-\xi}+f(\xi)(-e^{-\xi})=0$,即 $f'(\xi)=f(\xi)$.

四、拉格朗日中值定理的应用

(1) 证明不等式; (2) 中值问题的应用

例 1. 设
$$a > b > 0$$
, 证明: $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$. (2020—2021)

解:利用拉格朗日中值定理, $\ln \frac{a}{b} = \ln a - \ln b = \frac{1}{\xi}(a-b)$,其中 $b < \xi < a$.

由
$$\frac{1}{a} < \frac{1}{\xi} < \frac{1}{b}$$
,得 $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$.

例 2. 设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=1 ,f(1)=0 . 试证: (1) 存在 $x_0 \in (0,1)$,使得 $f(x_0)=x_0$; (2) 存在不同的 $\xi,\eta\in(0,1)$,使得 $f'(\xi)f'(\eta)=1$. (2019—2020)

分析: (1) 要证明的式子 $f(x_0) = x_0$ 改写成 $f(x_0) - x_0 = 0$,作辅助函数 F(x) = f(x) - x,用零点定理证明;

(2) 一般情况下, (2) 证明需要用到 (1) 的结论, 即 $f(x_0) = x_0$.

证明: 作辅助函数 F(x) = f(x) - x, 显然 F(x) 在 [0,1] 上连续, 且

$$F(0) = f(0) = 1 > 0$$
, $F(1) = f(1) - 1 = -1 < 0$.

由零点定理,存在 $x_0 \in (0,1)$,使得 $F(x_0) = 0$,即 $f(x_0) = x_0$.

(2) 因为 f(x) 在[0,1] 上连续,在(0,1) 内可导,由拉格朗日中值定理,存在 $\xi \in (0,x_0)$, $\eta \in (x_0,1)$

$$f(x_0) - f(0) = f'(\xi)(x_0 - 0)$$
, $\mathbb{P}(x_0 - 1) = f'(\xi)x_0$,

$$f(1) - f(x_0) = f'(\eta)(1 - x_0)$$
, $\mathbb{P} - x_0 = f'(\eta)(1 - x_0)$.

两式相乘,可得 $-x_0(x_0-1) = f'(\eta)(1-x_0)f'(\xi)x_0$,即 $f'(\xi)f'(\eta) = 1$.

五、泰勒中值定理的应用

如果要证明的结论涉及到高阶导数,一般用泰勒公式.

(1) 展开的项数: 取决于题目告诉你导数的阶数.

例如,已知条件说函数 f(x) 具有三阶导数,那么就应展成如下形式:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \frac{1}{3!}f'''(\xi)(x - x_0)^3,$$

其中 ξ 介于 x_0 和x之间.

(2) 常见的展开点 (即上式中的 x_0):

导数值已知的点(包括极值点,极值点导数为0);中点,边界点.

如果是估计函数导数值,有时用以下展开式

$$f(t) = f(x) + f'(x)(t-x) + \frac{1}{2!}f''(x)(t-x)^2 + \frac{1}{3!}f'''(\xi)(t-x)^3, \quad \xi \uparrow \exists x \text{ at } \lambda = 0.$$

(3) 代入点, 常常是已知函数值的点,

例 1. 设函数 f(x) 在 \mathbb{R} 上三阶可导,并且满足 $\forall x \in \mathbb{R}$, $\left| f(x) \right| \le 1$, $\left| f'''(x) \right| \le 1$.证明: $\forall x \in \mathbb{R}$,

$$|f'(x)|^3 \le \frac{9}{8}$$
. (2016—2017)

分析: 本题提到高阶导数, 需要泰勒公式.

(1) 已知函数三阶可导, 所以展开到三阶导数出现;

(2) 展开点是要估计一阶导数的值,就在 x 处展开,即

$$f(t) = f(x) + f'(x)(t-x) + \frac{1}{2!}f''(x)(t-x)^2 + \frac{1}{3!}f'''(\xi)(t-x)^3$$

(3) 已知条件有函数和三阶导数的的估计式,没有二阶导数的估计式,所以可以使 *x* 成为中点,通过两式相减消掉中点的函数值.

证明: 由已知条件和泰勒公式, 有

$$f(t) = f(x) + f'(x)(t-x) + \frac{1}{2!}f''(x)(t-x)^2 + \frac{1}{3!}f'''(\xi)(t-x)^3,$$

其中 ξ 介于x和t之间.

任取h>0,分别将t=x+h及t=x-h代入上式,得

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2!}f''(x)h^2 + \frac{1}{3!}f'''(\xi_1)h^3,$$

$$f(x-h) = f(x) - f'(x)h + \frac{1}{2!}f''(x)h^2 - \frac{1}{3!}f'''(\xi_2)h^3.$$

其中 $x-h < \xi_2 < x < \xi_1 < x+h$.

两式相减,有

$$f(x+h) - f(x-h) = 2f'(x)h + \frac{1}{3!}f'''(\xi_2)h^3 + \frac{1}{3!}f'''(\xi_1)h^3,$$
即,
$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{1}{3!}f'''(\xi_2)h^2 - \frac{1}{3!}f'''(\xi_1)h^2.$$
于是,
$$|f'(x)| \le \frac{|f(x+h)| + |f(x-h)|}{2h} + \frac{1}{2 \cdot 3!}|f'''(\xi_2)|h^2 + \frac{1}{2 \cdot 3!}|f'''(\xi_1)|h^2$$

$$\le \frac{2}{2h} + \frac{1}{2 \cdot 3!}h^2 + \frac{1}{2 \cdot 3!}h^2 = \frac{1}{h} + \frac{1}{6}h^2.$$
令 $\frac{1}{2h} = \frac{1}{6}h^2$ (或令 $(\frac{1}{h} + \frac{1}{6}h^2)' = 0$), 有 $h = \sqrt[3]{3}$, 则有 $|f'(x)| \le \frac{6 + h^3}{6h} \le \frac{9}{8}$.

例 2. 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内具有连续的二阶导数. 证明:存在 $\xi \in (a,b)$,使得

$$f(b) - 2f(\frac{a+b}{2}) + f(a) = \frac{(b-a)^2}{4}f''(\xi)$$
. (2017—2018)

分析: 展开到二阶导数, 展开点应该是中点。

证明: 由泰勒公式,

$$f(x) = f(\frac{a+b}{2}) + f'(\frac{a+b}{2})(x - \frac{a+b}{2}) + \frac{f''(\xi)}{2!}(x - \frac{a+b}{2})^2, \quad \xi \uparrow \exists x \text{ and } \frac{a+b}{2} \text{ in } 2.$$

分别取x=a, x=b, 得

$$f(a) = f(\frac{a+b}{2}) - f'(\frac{a+b}{2})\frac{b-a}{2} + \frac{f''(\xi_1)}{2!}\frac{(b-a)^2}{4},$$

$$f(b) = f(\frac{a+b}{2}) + f'(\frac{a+b}{2})\frac{b-a}{2} + \frac{f''(\xi_2)}{2!}\frac{(b-a)^2}{4}$$
,

其中
$$a < \xi_1 < \frac{a+b}{2} < \xi_2 < b$$
.

两式相加,得

$$f(a) + f(b) = 2f(\frac{a+b}{2}) + \frac{f''(\xi_1)}{2!} \frac{(b-a)^2}{4} + \frac{f''(\xi_2)}{2!} \frac{(b-a)^2}{4}$$
$$= 2f(\frac{a+b}{2}) + \frac{(b-a)^2}{8} [f''(\xi_1) + f''(\xi_2)],$$

因为 f(x) 在 (a,b) 内具有连续的二阶导数,所以, f''(x) 在 $[\xi_1,\xi_2]$ 上连续,故 f''(x) 在 $[\xi_1,\xi_2]$ 上取得最大值 M 和最小值 m .

于是,
$$m \le \frac{1}{2} [f''(\xi_1) + f''(\xi_2)] \le M$$
.

由连续函数的介值定理,存在 $\xi \in [\xi_1, \xi_2]$,使得 $f''(\xi) = \frac{1}{2} [f''(\xi_1) + f''(\xi_2)]$.

故
$$f(b)-2f(\frac{a+b}{2})+f(a)=\frac{(b-a)^2}{4}f''(\xi).$$