Ejercicio: modelo de inventarios EOQ multiproducto

Rodrigo Maranzana

Enunciado

Se desea conocer la cantidad óptima de pedido y el costo total esperado en la gestión de inventario de dos productos. Se supone que sus cantidades son independientes y no existen restricciones adicionales.

	Producto 1	Producto 2
Costo unitario	30 \$/u	40 \$/u
Costo administrativo de compra	100 \$/pedido	150 \$/pedido
Costo de calidad y recepción	200 \$/pedido	150 \$/pedido
Demanda anual	300 u	430 u
Interés	10% anual	

Se trabaja 30 días al mes.

Enunciado

Parámetros:

	Producto 1	Producto 2
Costo unitario (b_j)	30 \$/u	40 \$/u
Costo administrativo de compra	100 \$/pedido	150 \$/pedido
Costo de calidad y recepción	200 \$/pedido	150 \$/pedido
Costo de pedido (k_j)	300 \$/pedido	300 \$/pedido
Demanda anual (D_j)	300 u	430 u
Interés (i)	10% anual	

Modelo seleccionado

Modelo EOQ multiproducto:

•
$$CTE(q_j) = b_j . D_j + k_j . \frac{D_j}{q_j} + \frac{1}{2} . q_j . i. b_j$$

$$q_{opt_j} = \sqrt{\frac{2.D_j.k_j}{b_j.i}}$$

Siendo $j = \{1, 2\}$

Cálculo de lote óptimo por producto

$$q_{opt_j} = \sqrt{\frac{2.D_j.k_j}{b_j.i}}$$

Producto 1:

$$q_{opt_1} = \sqrt{\frac{2.D_1.k_1}{b_1.i}} = \sqrt{\frac{2(300 \, u)(300\frac{\$}{p})}{\left(30\frac{\$}{u}\right)0.01}} = 244,95 \frac{u}{pedido} = 245 \frac{u}{pedido}$$

Producto 2:

$$q_{opt_2} = \sqrt{\frac{2.D_2.k_2}{b_2.i}} = \sqrt{\frac{2(430 u)(300\frac{\$}{p})}{\left(40\frac{\$}{u}\right)0.01}} = 293,26 \frac{u}{pedido} = 294 \frac{u}{pedido}$$

Cálculo de Costo Total Esperado óptimo por producto

$$CTE^*(q_{opt_j}) = b_j.D_j + k_j.\frac{D_j}{q_{opt_j}} + \frac{1}{2}.q_{opt_j}.i.b_j$$

Producto 1:

$$CTE^*(q_{opt_1}) = b_1 \cdot D_1 + k_1 \cdot \frac{D_1}{q_{opt_1}} + \frac{1}{2} \cdot q_{opt_1} \cdot i \cdot b_1$$

$$CTE^*(q_{opt_1}) = 30 \frac{\$}{u} 300 \ u + 300 \frac{\$}{pedido} \cdot \frac{300u}{245 \ u/pedido} + \frac{1}{2} \cdot 245 \ u/pedido(0.01) 30\$/u$$

$$CTE^*(q_{opt_1}) = $9.735$$

Cálculo de Costo Total Esperado óptimo por producto

$$CTE^*(q_{opt_j}) = b_j.D_j + k_j.\frac{D_j}{q_{opt_j}} + \frac{1}{2}.q_{opt_j}.i.b_j$$

Producto 2:

$$CTE^*(q_{opt_2}) = b_2.D_2 + k_2.\frac{D_2}{q_{opt_2}} + \frac{1}{2}.q_{opt_2}.i.b_2$$

$$CTE^*(q_{opt_2}) = 40\frac{\$}{u}430 u + 300\frac{\$}{pedido}.\frac{430u}{294 u/pedido} + \frac{1}{2}.294u/pedido(0.01)40\$/u$$

$$CTE^*(q_{opt_2}) = $18.373$$

Cálculo de Costo Total Esperado óptimo

$$CTE_{TOT}^* = \sum_{j} CTE^*(q_{opt_j})$$

$$CTE_{TOT}^* = CTE_1^* + CTE_2^*$$

$$CTE_{TOT}^* = \$9.735 + \$18.373$$

$$CTE_{TOT}^* = $28.108$$

Representación

