Multidimensional Arrays

Copyright © 2024 Pearson Education, Inc. All Rights Reserved

Motivations (1 of 2)

Thus far, you have used one-dimensional arrays to model linear collections of elements. You can use a two-dimensional array to represent a matrix or a table. For example, the following table that describes the distances between the cities can be represented using a two-dimensional array.

Distance Table (in miles)

-	Chicago	Boston	New York	Atlanta	Miami	Dallas	Houston
Chicago	0	983	787	714	1375	967	1087
Boston	983	0	214	1102	1763	1723	1842
New York	787	214	0	888	1549	1548	1627
Atlanta	714	1102	888	0	661	781	810
Miami	1375	1763	1549	661	0	1426	1187
Dallas	967	1723	1548	781	1426	0	239
Houston	1087	1842	1627	810	1187	239	0

Pearson

Copyright $\ensuremath{@}$ 2024 Pearson Education, Inc. All Rights Reserved

Motivations (2 of 2)

```
double[][] distances = {
    {0, 983, 787, 714, 1375, 967, 1087},
    {983, 0, 214, 1102, 1763, 1723, 1842},
    {787, 214, 0, 888, 1549, 1548, 1627},
    {714, 1102, 888, 0, 661, 781, 810},
    {1375, 1763, 1549, 661, 0, 1426, 1187},
    {967, 1723, 1548, 781, 1426, 0, 239},
    {1087, 1842, 1627, 810, 1187, 239, 0},
};
```

Pearson

Copyright © 2024 Pearson Education, Inc. All Rights Reserved

Objectives (1 of 2)

- **8.1** To give examples of representing data using two-dimensional arrays (§8.1).
- **8.2** To declare variables for two-dimensional arrays, create arrays, and access array elements in a two-dimensional array using row and column indexes (§8.2).
- **8.3** To program common operations for two-dimensional arrays (displaying arrays, summing all elements, finding the minimum and maximum elements, and random shuffling) (§8.3).
- 8.4 To pass two-dimensional arrays to methods (§8.4).

Pearson

Copyright $\ensuremath{\text{@}}$ 2024 Pearson Education, Inc. All Rights Reserved

Declare/Create Two-dimensional Arrays

```
// Declare array ref var
dataType[][] refVar;
// Create array and assign its reference to
variable
refVar = new dataType[10][10];
// Combine declaration and creation in one
statement
dataType[][] refVar = new dataType[10][10];
// Alternative syntax
dataType refVar[][] = new dataType[10][10];
```


Copyright © 2024 Pearson Education, Inc. All Rights Reserved

Declaring Variables of Two-dimensional Arrays and Creating Two-dimensional Arrays

```
int[][] matrix = new int[10][10];
or
int matrix[][] = new int[10][10];
matrix[0][0] = 3;
for (int i = 0; i < matrix.length; i++)
    for (int j = 0; j < matrix[i].length; j++)
    matrix[i][j] = (int) (Math.random() *
    1000);
double[][] x;</pre>
```

Pearson

Copyright @ 2024 Pearson Education, Inc. All Rights Reserved

Lengths of Two-dimensional Arrays (1 of 2)

int[][] x = new int[3][4];

Pearson

Copyright © 2024 Pearson Education, Inc. All Rights Reserved

Lengths of Two-dimensional Arrays (2 of 2)

int[][] array = { array.length

{1, 2, 3}, array[0].length

{4, 5, 6}, array[1].length

 $\{7, 8, 9\},$ array[2].length

{10, 11, 12} array[3].length

};

array[4].length ArrayIndexOutOfBoundsException

Pearson

Copyright $\ensuremath{\text{@}}$ 2024 Pearson Education, Inc. All Rights Reserved

Ragged Arrays (1 of 2)

Each row in a two-dimensional array is itself an array. So, the rows can have different lengths. Such an array is known as a **ragged array**. For example,

```
int[][] matrix = {
{1, 2, 3, 4, 5},
{2, 3, 4, 5},
{3, 4, 5},
{4, 5},
{5}
```

matrix.length is 5

matrix[0].length is 5

matrix[1].length is 4

matrix[2].length is 3

matrix[3].length is 2

matrix[4].length is 1

Pearson

Copyright © 2024 Pearson Education, Inc. All Rights Reserved

Ragged Arrays (2 of 2)

Pearson

Copyright @ 2024 Pearson Education, Inc. All Rights Reserved

Processing Two-Dimensional Arrays

See the examples in the text.

- 1. (Initializing arrays with input values)
- 2. (Printing arrays)
- 3. (Summing all elements)
- 4. (Summing all elements by column)
- 5. (Summing all elements by column)
- 6. (Which row has the largest sum)
- 7. (Finding the smallest index of the largest element)
- 8. (Random shuffling)

Copyright © 2024 Pearson Education, Inc. All Rights Reserved

Passing Tow-Dimensional Arrays to Methods

PassTwoDimensionalArray

Copyright © 2024 Pearson Education, Inc. All Rights Reserved