МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ІКНІ Кафедра **ПЗ**

3BIT

до лабораторної роботи № 1 на тему: "Моделювання логічних елементів в середовищі системи Proteus. Синтез та моделювання простих логічних схем" з дисципліни: "Архітектура комп'ютера"

Лектор: доцент кафедри ПЗ Крук О.Г.

Виконав: студент групи Π 3-22

Коваленко Д.М.

Прийняв: доцент кафедри ПЗ Крук О.Г.

Тема. Моделювання логічних елементів в середовищі системи Proteus. Синтез та моделювання простих логічних схем.

Мета. Набути практичних навиків моделювання логічних елементів та схем в середовищі системи програм Proteus; закріпити вміння складати за таблицею істиності логічні функції в досконалій диз'юнктивній та кон'юнктивній нормальній формі; опанувати синтез простих комбінаційних схем за логічними функціями.

Індивідуальне завдання

Для групи ПЗ-22

Am Ipyim IIO 22																																			
Значення аргументів				Значення функції																															
x ₂ x ₁ x ₀		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	10	20	21	22	23	24	25	26	27	28	20	30	31	32	33	
_	_		-		_	-	5	0	/	O	1	10	11		13	14	-	-	1 /	10	19	-	21	-	23		23	20	21	20	-	-	51	-	33
0	0	0	1	1	0	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1
0	0	1	1	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0
0	1	0	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	1	1	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1
0	1	1	1	1	1	0	0	1	1	0	0	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0
1	0	0	1	1	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	0	0	0	1	0	1	1	1	1	1
1	0	1	0	1	1	0	1	1	1	0	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	1	1
1	1	0	0	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0
1	1	1	1	0	0	1	1	0	1	1	1	1	0	1	1	0	0	1	1	1	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1
	Частота f, КГц		16	18	26	28	36	38	46	48	56	58	99	89	92	78	98	88	96	86	106	108	116	118	126	128	136	138	146	148	156	158	166	168	176

Теоретичні відомості

Логічний елемент - це електронне коло, що реалізує одну з елементарних логічних операцій.

Логічна операція ϵ елементарною якщо її можна описати булевою функцією одного або двох аргументів.

Основні логічні операції, визначені аксіомами алгебри логіки можна реалізувати основними логічними елементами - інвертор ($\rm HE/NOT$), диз'юнктор ($\rm ABO/OR$), кон'юнктор ($\rm I/AND$).

З принципу двоїстості слідує, що будь-яку логічну функцію можна задати лише двома основними операціями: АБО та НЕ або ж І та НЕ. На практиці замість елементів АБО та НЕ використовують елемент Пірса, що є їх поєднанням, а замість елементів І та НЕ використовують елемент Шеффера.

Proteus - це САПР для проектування найрізноманітніших електронних пристроїв. Інтерфейс програми є дуже подібним до класичного графічного інтерфейсу найбільш поширених програм.

Хід роботи

Період цифрового сигналу

$$T = \frac{1}{f};$$
 $T = \frac{1}{48 \kappa \Gamma \Pi} = \frac{1}{48000 \Gamma \Pi} = 0.0000208 c$

Кінцевий момент часу моделювання

$$t_{\rm K} = 2T;$$
 $t_{\rm K} = 2 \cdot 0.0000208 = 0.0000416c$

ДДНФ заданої функції

$$F_1 = \overline{x_2}\overline{x_1}\overline{x_0} + \overline{x_2}\overline{x_1}\overline{x_0} + \overline{x_2}\overline{x_1}\overline{x_0} + x_2\overline{x_1}\overline{x_0} + x_2\overline{x_1}\overline{x_0}$$

ДКНФ заданої функції

$$F_2 = (x_2 + \overline{x_1} + \overline{x_0})(\overline{x_2} + x_1 + x_0)(\overline{x_2} + x_1 + \overline{x_0})$$

Рис. 1: Схема 1

Рис. 2: Графік "Inventory"

Рис. 3: Графік "Dyzjunktory"

Рис. 4: Графік "Konjunktory"

Рис. 5: Схема 2

Рис. 6: Графік "Syntez"

На графіку "Syntez"
криві $G22_8_F1$ та $G22_8_F2$ повністню співпадають, тому можна зробити висновок, що ДДНФ та ДКНФ мають один результат при поданні логічної функції.

Висновки

Під час виконання лабораторної роботи я навчився моделювати логічні елементи та схеми в середовищі системи програм Proteus; закріпив вміння складати за таблицею істиності логічні функції в досконалій диз'юнктивній та кон'юнктивній нормальній формі; синтезував прості схеми ДДНФ та ДКНФ логічної функції. Змоделював графіки цих функцій, що співпадають, тому можна зробити висновок, що моделювання виконано правильно.