4.1.2. Метод золотого сечения

Технология метода золотого сечения применяется для нахождения корней нелинейных уравнений интервальным способом.

Метод основан на делении локализованного отрезка [a, b], на три неравные части, т.е. внутри рассматриваемого интервала появляются две новые точки x_1, x_2 . Для определения координат этих точек применяется правило золотого сечения.

Правило золотого сечения: отношение всего отрезка к большей его части равно отношению большей части отрезка к меньшей. На рис. 12 представлена графическая иллюстрация правила золотого сечения. Математически данное правило можно представить в виде следующих выражений:

$$\frac{b-a}{b-x_1} = \frac{b-x_1}{x_1-a} = \Phi , \frac{b-a}{x_2-a} = \frac{x_2-a}{b-x_2} = \Phi ,$$

где **Ф** – число Фидия, имеющее точное значение в виде математического выражения:

$$\Phi = \frac{1+\sqrt{5}}{2},$$

или приближенное числовое значение 1,618.

Рис. 12 – Визуализация правила золотого сечения

Используя данное правило на рассматриваемом интервале [a, b] определяются две точки x_1, x_2 .

$$x_1 = b - \frac{b-a}{\Phi}, \ x_2 = a + \frac{b-a}{\Phi}.$$

Как видно из рис. 12 и полученных выражений точки x_1 , x_2 являются симметричными относительно как границ, так и середины отрезка [a, b]:

$$a - x_1 = x_2 - b$$
,
 $a - x_2 = x_1 - b$.

Следовательно, зная одну точку (x_1 или x_2) золотого сечения, вторую можно найти, используя одно из выражений:

$$x_1 = a + b - x_2,$$

$$x_2 = a + b - x_1.$$

Во вновь найденных точках x_1 и x_2 вычисляются значения функции $f(x_1)$ и $f(x_2)$. Затем проводится сравнение знаков функций на границах интервала и внутренних точках, в результате определяется новый интервал, на котором содержится искомый корень функции (рис. 13).

Рис. 13 – Первое приближение метода золотого сечения

В процессе сравнения возможна реализация одного из трех случаев:

- 1) если $f(a) \cdot f(x_1) < 0$, то в качестве нового отрезка будет выбран интервал $[a, x_1]$ (рис. 13),
- 2) если $f(x_1) \cdot f(x_2) < 0$, то в качестве следующего интервала выбирается отрезок $[x_1, x_2]$ (рис. 14),
- 3) если $f(x_2) \cdot f(b) < 0$, то новым отрезком становится интервал $[x_2, b]$.

Определенный таким образом новый интервал $[a_1, b_1]$, заключающий в себе решение нелинейного уравнения, заново делится на неравные части согласно правилу золотого сечения, как показано на рис. 14.

Стоит отметить, что в методе золотого сечения, как и в методе половинного деления для выбора нового отрезка нужно знать только знаки функции, а не её значение.

В отличие от метода половинного деления метод золотого сечения сходится быстрее, поскольку на каждом итерационном шаге отрезок уменьшается не в два, а в три раза.

Рис. 14 – Второе приближение метода золотого сечения

<u>Пример.</u> После локализации корня определен конечный интервал [1; 1,5], на котором находится единственный корень нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$
.

Требуется найти приближенное значение корня заданного уравнения с точностью до третьего знака после запятой, используя метод золотого сечения.

<u>Решение.</u> В начале вычисляются координаты двух внутренних точек согласно рассмотренного ранее правила золотого сечения:

$$x_1 = b - \frac{b - a}{\Phi} = 1, 5 - \frac{1, 5 - 1}{1,618} \approx 1,19098,$$

 $x_2 = a + \frac{b - a}{\Phi} = 1 + \frac{1, 5 - 1}{1,618} \approx 1,30902.$

Далее определяются значения функции в найденных точках и на концах заданного интервала

$$f(1) = 1^{3} - \frac{1^{2} + 1}{5} - 1,2 = -0,6,$$

$$f(1,19098) = 1,19098^{3} - \frac{1,19098^{2} + 1,19098}{5} - 1,2 = -0,03257,$$

$$f(1,30902) = 1,30902^{3} - \frac{1,30902^{2} + 1,30902}{5} - 1,2 = 0,43855,$$

$$f(1,5) = 1,5^{3} - \frac{1,5^{2} + 1,5}{5} - 1,2 = 1,425.$$

С помощью найденных значений функций определяется интервала, где функция меняет знак. В рассматриваемом примере функция сменила знак на интервале от x_1 до x_2 . Следовательно, результатом первого приближения является новый интервал, где $a_1 = 1,19098$, $b_1 = 1,30902$, который используется для последующего уточнения решения.

Второе приближение также начинается с определения новых координат на оси абсцисс по правилу золотого сечения:

$$x_1 = 1,30902 - \frac{1,30902 - 1,19098}{1,618} \approx 1,23606,$$

 $x_2 = 1,19098 + \frac{1,30902 - 1,19098}{1,618} \approx 1,26394.$

Во вновь найденных точках вычисляются значения функции f(1,19098) = -0,03257,

$$f(1,23606) = 1,23606^{3} - \frac{1,23606^{2} + 1,23606}{5} - 1,2 = 0,13575,$$

$$f(1,26394) = 1,26394^{3} - \frac{1,26394^{2} + 1,26394}{5} - 1,2 = 0,24688,$$

$$f(1,30902) = 0,43855.$$

Проводится анализ смены знака функции на трех полученных интервалах, из которого видно, что смена знака происходит на первом интервале [1,19098; 1,23606].

Перед переходом к третьему приближению проводится проверка на соответствие вновь полученного интервала требованию точности

$$|b_2 - a_2| < 2\varepsilon$$
,
 $|1,23606 - 1,19098| = 0,04509 < 0,002$.

Как видно необходимо продолжение процесса уточнения искомого решения.

В табл. 8 представлен процесс нахождения решения нелинейного уравнения методом золотого сечения.

Таблица 8 – Решение нелинейного уравнения методом золотого сечения

k	а	f(a)	b	f(b)	x_1	$f(x_1)$	<i>x</i> ₂	$f(x_2)$
0	1	-0,6	1,5	1,425	1,19098	-0,03257	1,30902	0,43855
1	1,19098	-0,03257	1,30902	0,43855	1,23606	0,13575	1,26394	0,24688
2	1,19098	-0,03257	1,23606	0,13575	1,20820	0,03007	1,21884	0,06980
3	1,19098	-0,03257	1,20820	0,03007	1,19755	-0,00888	1,20162	0,00591
4	1,19755	-0,00888	1,20162	0,00591	1,19911	-0,00325	1,20007	0,00025
5	1,19911	-0,00325	1,20007	0,00025				

После нескольких повторений процедуры расчета при k=5 было получено решение, которое удовлетворяет заданной точности

$$|1,20007-1,19911|=0,00096<0,002.$$

Таким образом, полученное решение соответствует середине найденного интервала

$$x = \frac{1,19911+1,20007}{2} = 1,19959$$
.

Напомним, что решаемое нелинейное уравнение имеет точное решение $x^* = 1, 2$.

Ответ. Получено решение x = 1,19959 заданного нелинейного уравнения с требуемой точностью $\varepsilon = 0,001$ за 5 приближений.

Оба рассмотренные метода половинного деления и золотого сечения являются пассивными, так как осуществляются по жестко определенному плану, в котором не учитываются определенные значения функции. Можно предположить, что учет определенных значений функции может улучшить процесс нахождения решения нелинейного уравнения.