

Predicting House Prices

Agenda

- 1. Purpose of project
- 2. Data
- 3. Problem
- 4. Prediction
- 5. Conclusion
- 6. Git merge (minwu3/RR Project (github.com))

Purpose of project (main idea)

- In our project we will reproduce the result of initial work which was done in R language. (Previous work of my colleque)
- We transfer the code from R to Python.
- Add 2 more models.
- Analysing and choosing one which fits the most our data.

Problem of initial work

Price Prediction Relevance

prediction_rf <- predict(rf_mod,test)
getTrainPerf(rf_mod)</pre>

TrainRMSE TrainRsquared TrainMAE method ## 1 11075.28 0.9986855 676.8045 rf

rse(test\$price, prediction_rf)

[1] 0.0001274139

Problem of initial work

• The RMSEs for the train and test subsets are completly different, which suggests that the model will perform differently on different data. We cannot trust the estimates.

Model Validation

- Important step was missing in evaluating the quality of the model.
- Cross-validation, which gives us an idea of how the model would perform with new data for the same variables.

Here are some more reasons why it is a necesity of usage cross-validation:

- It Lets them use all of the data without sacrificing any subset (not valid for the holdout method)
- Reveals the consistency of the data and the algorithm
- Helps avoid overfitting and underfitting

Data

- You can find the dataset on Kaggle page: https://www.kaggle.com/harlfoxem/housesalesprediction
- https://kingcounty.gov/services/gis/PropResearch.aspx

 This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015.

Dataset

/ Οθοιβ/ Jeunik + 1 Δθ/ Φοθκτορ/ κο_πουθο_αυταίουν

In [2]:

df = pd.read_csv('C:/Users/tetiana.heorhiichuk/Desktop/RR_project_new/RR_Project/kc_house_data.csv', index_col = 0) df.head()

Out[2]: price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode

long sqft_living15 sqft_lot15 id 7129300520 20141013T000000 221900.0 1.00 1180 5650 1.0 1180 1955 98178 47.5112 -122.257 1340 5650 6414100192 20141209T000000 538000.0 3 2.25 2570 7242 2.0 0 0 3 2170 400 1951 98125 47.7210 -122.319 1690 7639 **5631500400** 20150225T000000 180000.0 2 1.00 770 10000 1.0 0 0 6 770 0 1933 98028 47.7379 -122.233 2720 8062 2487200875 20141209T000000 604000.0 1.0 5 1965 98136 47.5208 -122.393 3.00 5000 0 0 1050 910 1360 5000 1954400510 20150218T000000 510000.0 3 2.00 1680 8080 1.0 0 0 8 1680 0 1987 98074 47.6168 -122.045 1800 7503

Dataset

2.1 Definitions of the Variables

- id Unique ID for each home sold
- · date Date of the home sale
- · price Price of each home sold
- · bedrooms Number of bedrooms
- · bathrooms Number of bathrooms, where .5 accounts for a room with a toilet but no shower
- sqft_living Square footage of the apartments interior living space
- sqft_lot Square footage of the land space
- floors Number of floors
- · waterfront A dummy variable for whether the apartment was overlooking the waterfront or not
- view An index from 0 to 4 of how good the view of the property was
- · condition An index from 1 to 5 on the condition of the apartment,
- grade An index from 1 to 13, where 1-3 falls short of building construction and design, 7 has an average level of construction and design, and 11-13 have a high quality level of construction and design
- sqft_above The square footage of the interior housing space that is above ground level
- sqft_basement The square footage of the interior housing space that is below ground level
- yr_built The year the house was initially built
- yr_renovated The year of the house's last renovation
- zipcode What zipcode area the house is in
- lat Lattitude
- long Longitude
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Data Visualization

price	1	0.31	0.53	0.7	0.09	0.26	0.27	0.4	0.036	0.67	0.61	0.32	0.054	0.13	-0.053	0.31	0.022	0.59	0.082
bedrooms	0.31	1	0.52		0.032	0.18	-0.0066	0.08	0.028	0.36	0.48	0.3	0.15	0.019	-0.15	-0.0089	0.13	0.39	0.029
bathrooms	0.53	0.52	1	0.75	0.088		0.064	0.19	-0.12	0.66	0.69	0.28	0.51	0.051	-0.2	0.025	0.22	0.57	0.087
sqft_living	0.7		0.75	1	0.17	0.35	0.1	0.28	-0.059	0.76	0.88	0.44	0.32	0.055	-0.2	0.053	0.24	0.76	0.18
sqft_lot	0.09	0.032	0.088	0.17	1	-0.0052	0.022	0.075	-0.009	0.11	0.18	0.015	0.053	0.0076	-0.13	-0.086	0.23	0.14	0.72
floors	0.26	0.18	0.5	0.35	-0.0052	1	0.024	0.029	-0.26	0.46		-0.25	0.49	0.0063	-0.059	0.05	0.13	0.28	-0.011
waterfront	0.27	-0.0066	0.064	0.1	0.022	0.024	1	0.4	0.017	0.083	0.072	0.081	-0.026	0.093	0.03	-0.014	-0.042	0.086	0.031
view	0.4	0.08	0.19	0.28	0.075	0.029	0.4	1	0.046	0.25	0.17	0.28	-0.053	0.1	0.085	0.0062	-0.078	0.28	0.073
condition	0.036	0.028	-0.12	-0.059	-0.009	-0.26	0.017	0.046	1	-0.14	-0.16	0.17	-0.36	-0.061	0.003	-0.015	-0.11	-0.093	-0.0034
grade	0.67	0.36	0.66	0.76	0.11	0.46	0.083	0.25	-0.14	1	0.76	0.17	0.45	0.014	-0.18	0.11	0.2	0.71	0.12
sqft_above		0.48	0.69	0.88	0.18	0.52	0.072	0.17	-0.16	0.76	1	-0.052	0.42	0.023	-0.26	-0.00082	0.34	0.73	0.19
sqft_basement	0.32	0.3	0.28	0.44	0.015	-0.25	0.081	0.28	0.17	0.17	-0.052	1	-0.13	0.071	0.075	0.11	-0.14	0.2	0.017
yr_built	0.054	0.15	0.51	0.32	0.053	0.49	-0.026	-0.053	-0.36	0.45	0.42	-0.13	1	-0.22	-0.35	-0.15	0.41	0.33	0.071
yr_renovated	0.13	0.019	0.051	0.055	0.0076	0.0063	0.093	0.1	-0.061	0.014	0.023	0.071	-0.22	1	0.064	0.029	-0.068	-0.0027	0.0079
zipcode	-0.053	-0.15	-0.2	-0.2	-0.13	-0.059	0.03	0.085	0.003	-0.18	-0.26	0.075	-0.35	0.064	1	0.27	-0.56	-0.28	-0.15
lat	0.31	-0.0089	0.025	0.053	-0.086	0.05	-0.014	0.0062	-0.015	0.11	-0.00082	0.11	-0.15	0.029	0.27	1	-0.14	0.049	-0.086
long	0.022	0.13	0.22	0.24	0.23	0.13	-0.042	-0.078	-0.11	0.2	0.34	-0.14	0.41	-0.068	-0.56	-0.14	1	0.33	0.25
sqft_living15	0.59	0.39	0.57	0.76	0.14	0.28	0.086	0.28	-0.093	0.71	0.73	0.2	0.33	-0.0027	-0.28	0.049	0.33	1	0.18
sqft_lot15	0.082	0.029	0.087	0.18	0.72	-0.011	0.031	0.073	-0.0034	0.12	0.19	0.017	0.071	0.0079	-0.15	-0.086	0.25	0.18	1
	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	wew	condition	grade	sqft_above	qff_basement	yr_built	y_renovated	apcode	bit	bud	sqft_living15	sqft_lot15

- 0.6

Building a model

In this process, we are going to build and train five different types of linear regression models:

- - OLS model,
- -Ridge regression model,
- -Lasso regression model,
- -Bayesian regression model,
- -Elastic Net regression model.

For all the models, we are going to use the pre-built algorithms provided by the scikit-learn package in python. And the process for all the models are the same, first, we define a variable to store the model algorithm, next, we fit the train set variables into the model, and finally make some predictions in the test set.

Evaluating the model

- We can see that, every model while rounding the output values will result in a score of 0.65 (65.1%) or 0.65 (65%) which means our model still have room for improvement on our dataset.
- Let's make a polynomial linear regression model to find out if there are some features with a non-linear relationship

```
# Return the coefficient of determination of the prediction.

ols_r2 = ols.score(X_test, y_test)

ridge_r2 = ridge.score(X_test, y_test)

lasso_r2 = lasso.score(X_test, y_test)

print(cl('R-SQUARED:', attrs = ['bold']))

print('R-Squared of OLS model is {}'.format(ols_r2))

print('R-Squared of Ridge model is {}'.format(ridge_r2))

print('R-Squared of Lasso model is {}'.format(lasso_r2))

R-SQUARED:

R-Squared of OLS model is 0.6515929603856018

R-Squared of Ridge model is 0.651631874284701

R-Squared of Lasso model is 0.6515929794742606
```

Evaluating the model

```
Uniwersytet Warszawski Wydział Nauk Ekonomicznych
```

```
print(cl('EXPLAINED VARIANCE SCORE:', attrs = ['bold']))
print('------')
print(cl('Explained Variance Score of OLS model is {}'.format(evs(y_test, yhat_test_pipe))))
print(cl('Explained Variance Score of Ridge model is {}'.format(evs(y_test, yhat_ridge))))
print(cl('Explained Variance Score of Lasso model is {}'.format(evs(y_test, yhat_lasso))))

EXPLAINED VARIANCE SCORE:

Explained Variance Score of OLS model is 0.7299936095524115
Explained Variance Score of Ridge model is 0.7309164844743152
Explained Variance Score of Lasso model is 0.7314865739973428
```

Cross validation

```
cv_scores = cross_val_score(estimator=best_lasso, X=X, y=y, cv=5)
cv scores
array([0.76065908, 0.74096726, 0.71101414, 0.71707866, 0.73993212])
pd.Series(cv_scores).describe()
         5.000000
count
        0.733930
mean
std
        0.020057
min
        0.711014
25%
        0.717079
50%
        0.739932
75%
        0.740967
        0.760659
max
dtype: float64
cv_scores_ridge = cross_val_score(estimator=best_ridge, X=X, y=y, cv=5)
cv_scores_ridge
array([0.7594072 , 0.74252124, 0.70992529, 0.71228485, 0.73826996])
```


CONCLUSION

• The best model we achieved had a mean cv score of **0.760659** and was a **Lasso Regression model** with as 1000.

Marge Conflict

We occurred a conflict while we were merging branches "master" and "newbranch".

[(base) jhen@Jhens-Air RR % git merge newbranch
Auto-merging ML-Regression_python.ipynb
CONFLICT (content): Merge conflict in ML-Regression_python.ipynb
Automatic merge failed; fix conflicts and then commit the result.
(base) jhen@Jhens-Air RR % ■

\$ git log —oneline —graph — all

check the branch

```
(base) jhen@Jhens-Air RR % git log --oneline --graph --all
* 51f47a6 (HEAD -> newbranch) minor edition
 * b30887b (origin/master) Last check
  * c10de95 Last check, adding comments and explanation
* a5bf303 (master) Add Cross Validation
* 652f86a Added model evaluation
* 120de3c 5.2.2 Ridge Regression
* 3ed513b Added Feature Selection. Builded OLS Regression and Lasso Regression
* 7263366 Add Data Virsualization - heatmap, histogram, etc.
* 2f62518 Basic analysis missing values and data types
* c438714 Add python version file - import libraries and load data
* 640ff06 Add python version file - import libraries and data
* 26ee292 Add the original project and dataset
* f531dab Delete all the test files
* 9f72ac1 Add bbbb file for testing
* 8703b43 This is a second change
* 7d8c35a This is a test change
* 7483937 add words for testing
* 0df0138 add aaa for test
```


\$ git checkout master # main branch

```
* 26ee292 Add the original project and dataset

* f531dab Delete all the test files

* 9f72ac1 Add bbbb file for testing

* 8703b43 This is a second change

* 7d8c35a This is a test change

* 7483937 add words for testing

* 0df0138 add aaa for test

[(base) jhen@Jhens-Air RR % git checkout master

Switched to branch 'master'

Your branch is behind 'origin/master' by 2 commits, and can be fast-forwarded.

(use "git pull" to update your local branch)
```


\$ git diff # check which lines are different.

```
RR - less - git diff - 92×34
@@ -24808,8 -24646,19 +24808,15 @@@
    "source": [
     "method_all = [\"OLS\",\"LASSO\",\"RIDGE\"]\n",
"prediction_all = [yhat_test_pipe_df,yhat_lasso_df,yhat_ridge_df]\n",
      "print (yhat_lasso_df.describe())\n"
  "metadata": {
```


\$ git log —oneline —graph — all

check the branch

```
RR — -zsh — 92×34
[master 92aca61] merged newbranch
(base) jhen@Jhens-Air RR % git log --oneline --graph --all
  92aca61 (HEAD -> master) merged newbranch
 * 51f47a6 (newbranch) minor edition
* | b30887b (origin/master) Last check
  c10de95 Last check, adding comments and explanation
* a5bf303 Add Cross Validation
* 652f86a Added model evaluation
* 120de3c 5.2.2 Ridge Regression
* 3ed513b Added Feature Selection. Builded OLS Regression and Lasso Regression
* 7263366 Add Data Virsualization - heatmap, histogram, etc.
* 2f62518 Basic analysis missing values and data types
* c438714 Add python version file - import libraries and load data
* 640ff06 Add python version file - import libraries and data
* 26ee292 Add the original project and dataset
* f531dab Delete all the test files
* 9f72ac1 Add bbbb file for testing
* 8703b43 This is a second change
* 7d8c35a This is a test change
* 7483937 add words for testing
  0df0138 add aaa for test
```


\$ git merge new branch #Merge newbranch to master

```
RR — -zsh — 92×34
* 26ee292 Add the original project and dataset
* f531dab Delete all the test files
* 9f72ac1 Add bbbb file for testing
* 8703b43 This is a second change
* 7d8c35a This is a test change
* 7483937 add words for testing
* 0df0138 add aaa for test
(base) jhen@Jhens-Air RR % git merge newbranch
Auto-merging ML-Regression_python.ipynb
CONFLICT (content): Merge conflict in ML-Regression_python.ipynb
Automatic merge failed; fix conflicts and then commit the result.
(base) jhen@Jhens-Air RR % git add git ML-Regression_python.ipynb
fatal: pathspec 'git' did not match any files
(base) jhen@Jhens-Air RR % git add ML-Regression_python.ipynb
(base) jhen@Jhens-Air RR % git commit -m "merged newbranch"
[master 92aca61] merged newbranch
(base) jhen@Jhens-Air RR % git log --oneline --graph --all
   92aca61 (HEAD -> master) merged newbranch
 * 51f47a6 (newbranch) minor edition
   b30887b (origin/master) Last check
   c10de95 Last check, adding comments and explanation
* a5bf303 Add Cross Validation
* 652f86a Added model evaluation
* 120de3c 5.2.2 Ridge Regression
* 3ed513b Added Feature Selection. Builded OLS Regression and Lasso Regression
* 7263366 Add Data Virsualization - heatmap, histogram, etc.
* 2f62518 Basic analysis missing values and data types
* c438714 Add python version file - import libraries and load data
* 640ff06 Add python version file - import libraries and data
* 26ee292 Add the original project and dataset
* f531dab Delete all the test files
* 9f72ac1 Add bbbb file for testing
```

\$ git commit -m "merge newbranch"

