!!Capstone Project!!

BY

- 1. Vignya Durvasula 20P61A6615
- 2. Shreejit Cheela 20P61A6647

Import Library

```
import pandas as pd#for data manipulation
import numpy as np#for working with arrays in the dataset
import seaborn as sns#for dtatistical data visualisation
import matplotlib.pyplot as plt#for dynamic data visualisation
```

Import Dataset

df=pd.read_csv('https://github.com/ybifoundation/Dataset/blob/main/Melbourne%20Housing%20Market.csv?raw=true')#importing the dataset

df#displaying the dataframe

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Postcode	 Bathroom	Car	Lands
0	Abbotsford	85 Turner St	2	h	1480000.0	S	Biggin	3/12/2016	2.5	3067.0	 1.0	1.0	20
1	Abbotsford	25 Bloomburg St	2	h	1035000.0	S	Biggin	4/02/2016	2.5	3067.0	 1.0	0.0	15
2	Abbotsford	5 Charles St	3	h	1465000.0	SP	Biggin	4/03/2017	2.5	3067.0	 2.0	0.0	13
3	Abbotsford	40 Federation La	3	h	850000.0	Pl	Biggin	4/03/2017	2.5	3067.0	 2.0	1.0	ξ
4	Abbotsford	55a Park St	4	h	1600000.0	VB	Nelson	4/06/2016	2.5	3067.0	 1.0	2.0	12
13575	Wheelers Hill	12 Strada Cr	4	h	1245000.0	S	Barry	26/08/2017	16.7	3150.0	 2.0	2.0	65
13576	Williamstown	77 Merrett Dr	3	h	1031000.0	SP	Williams	26/08/2017	6.8	3016.0	 2.0	2.0	33
13577	Williamstown	83 Power St	3	h	1170000.0	S	Raine	26/08/2017	6.8	3016.0	 2.0	4.0	43
13578	Williamstown	96 Verdon St	4	h	2500000.0	PI	Sweeney	26/08/2017	6.8	3016.0	 1.0	5.0	86

Data Preprocessing

df.shape#shape built-in function is used to know the total number of rows and columns in the dataset

(13580, 21)

df.nunique()#represents the number of unique values under each attribute

```
Suburb
                        314
     Address
                      13378
     Rooms
                          9
                          3
     Type
     Price
                       2204
     Method
                          5
     SellerG
                        268
     Date
                         58
     Distance
                        202
     Postcode
                        198
     Bedroom2
                         12
                          9
     Bathroom
     Car
                         11
     Landsize
                       1448
     BuildingArea
                        602
     YearBuilt
                        144
     CouncilArea
                         33
     Lattitude
                       6503
     Longtitude
                       7063
     Regionname
                          8
     Propertycount
                        311
     dtype: int64
df.columns#displaying column names
     Index(['Suburb', 'Address', 'Rooms', 'Type', 'Price', 'Method', 'SellerG',
            'Date', 'Distance', 'Postcode', 'Bedroom2', 'Bathroom', 'Car',
            'Landsize', 'BuildingArea', 'YearBuilt', 'CouncilArea', 'Lattitude',
            'Longtitude', 'Regionname', 'Propertycount'],
           dtype='object')
df.info()#displays the basic information of the dataset
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 13580 entries, 0 to 13579
```

```
Data columns (total 21 columns):
    Column
                  Non-Null Count Dtype
                  _____
    Suburb
                  13580 non-null object
   Address
                  13580 non-null object
    Rooms
                  13580 non-null int64
                  13580 non-null object
   Type
    Price
                  13580 non-null float64
   Method
                  13580 non-null object
   SellerG
                  13580 non-null object
   Date
                  13580 non-null object
   Distance
                  13580 non-null float64
9 Postcode
                  13580 non-null float64
10 Bedroom2
                  13580 non-null float64
11 Bathroom
                  13580 non-null float64
12 Car
                  13518 non-null float64
13 Landsize
                  13580 non-null float64
14 BuildingArea
                  7130 non-null float64
15 YearBuilt
                  8205 non-null float64
16 CouncilArea
                  12211 non-null object
17 Lattitude
                  13580 non-null float64
18 Longtitude
                13580 non-null float64
19 Regionname
                  13580 non-null object
20 Propertycount 13580 non-null float64
dtypes: float64(12), int64(1), object(8)
memory usage: 2.2+ MB
```

df['Date']=pd.to_datetime(df['Date'])#converting the date attribute from object datatype to date datatype

Adjusting Missing Values

```
df.drop('CouncilArea',axis='columns', inplace=True)#Because its of object datatype moreover we already many other attributes that ref

df['BuildingArea'].fillna(df.groupby(['Type'])['BuildingArea'].transform('mean'), inplace=True)#filling the missing values in a parti

df['YearBuilt'].fillna(df.groupby(['Type'])['YearBuilt'].transform('mean'), inplace=True)
```

```
df['Car'].fillna(df.groupby(['Type'])['Car'].transform('mean'), inplace=True)
df.info()#One can observe that the missing values are all now filled up
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 13580 entries, 0 to 13579
    Data columns (total 20 columns):
       Column
                       Non-Null Count Dtvpe
     --- -----
                       _____
        Suburb
                       13580 non-null object
                       13580 non-null object
         Address
     1
         Rooms
                       13580 non-null int64
     3
        Type
                       13580 non-null object
     4
         Price
                       13580 non-null float64
        Method
                       13580 non-null object
     5
        SellerG
                       13580 non-null object
     7
         Date
                       13580 non-null datetime64[ns]
         Distance
                       13580 non-null float64
         Postcode
                       13580 non-null float64
     10 Bedroom2
                       13580 non-null float64
     11 Bathroom
                       13580 non-null float64
     12 Car
                       13580 non-null float64
     13 Landsize
                       13580 non-null float64
     14 BuildingArea 13580 non-null float64
     15 YearBuilt
                       13580 non-null float64
     16 Lattitude
                     13580 non-null float64
     17 Longtitude
                     13580 non-null float64
     18 Regionname
                      13580 non-null object
     19 Propertycount 13580 non-null float64
    dtypes: datetime64[ns](1), float64(12), int64(1), object(6)
    memory usage: 2.1+ MB
```

df.describe()#displaying description of the data in the DataFrame

	Rooms	Price	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	BuildingAr
count	13580.000000	1.358000e+04	13580.000000	13580.000000	13580.000000	13580.000000	13580.000000	13580.000000	13580.0000
mean	2.937997	1.075684e+06	10.137776	3105.301915	2.914728	1.534242	1.610716	558.416127	152.4892
std	0.955748	6.393107e+05	5.868725	90.676964	0.965921	0.691712	0.960511	3990.669241	392.9573
min	1.000000	8.500000e+04	0.000000	3000.000000	0.000000	0.000000	0.000000	0.000000	0.0000
25%	2.000000	6.500000e+05	6.100000	3044.000000	2.000000	1.000000	1.000000	177.000000	96.7500
50%	3.000000	9.030000e+05	9.200000	3084.000000	3.000000	1.000000	2.000000	440.000000	159.0000
75%	3.000000	1.330000e+06	13.000000	3148.000000	3.000000	2.000000	2.000000	651.000000	176.8662
	40 000000	0.000000000	40 400000	0077 00000	00 000000	0.000000	40 000000	400044 000000	44545 0000

df.nunique()

Suburb	314
Address	13378
Rooms	9
Туре	3
Price	2204
Method	5
SellerG	268
Date	58
Distance	202
Postcode	198
Bedroom2	12
Bathroom	9
Car	13
Landsize	1448
BuildingArea	605
YearBuilt	147
Lattitude	6503
Longtitude	7063
Regionname	8
Propertycount	311
dtype: int64	

Encoding

Converting the object or human readable values to numeric or machine readable form.

```
df['Method'].value counts()#displaying the number of unique values under each label of the attribute
     S
           9022
     SP
           1703
     PΙ
           1564
     VB
           1199
     SA
             92
     Name: Method, dtype: int64
df.replace({'Method':{'S':1,'SP':2,'PI':2,'VB':2,'SA':2}},inplace=True)#grouping
df['Method'].value_counts()#one can observe the change in label and value count
          9022
     1
          4558
     Name: Method, dtype: int64
df['Type'].value_counts()
          9449
          3017
          1114
     Name: Type, dtype: int64
df.replace({'Type':{'h':1,'u':2,'t':2}},inplace=True)
df['Type'].value counts()
```

```
9449
          4131
     Name: Type, dtype: int64
df['Regionname'].value counts()
     Southern Metropolitan
                                    4695
     Northern Metropolitan
                                    3890
     Western Metropolitan
                                    2948
     Eastern Metropolitan
                                    1471
     South-Eastern Metropolitan
                                    450
     Eastern Victoria
                                      53
     Northern Victoria
                                      41
     Western Victoria
                                      32
     Name: Regionname, dtype: int64
df.replace({'Regionname':{'Southern Metropolitan':1,'Northern Metropolitan':2,'Western Metropolitan':3,'Eastern Metropolitan':3,'Sout
df['Regionname'].value_counts()
          4995
          4695
          3890
```

Name: Regionname, dtype: int64

Explaining why these Attributes are droped while defining our dependent and independent variable

```
Barry
                      1011
     Ray
                       701
     Prowse
                         1
                         1
     Luxe
     Zahn
                         1
                         1
     Homes
     Point
                         1
     Name: SellerG, Length: 268, dtype: int64
df['Suburb'].value_counts()
     Reservoir
                       359
     Richmond
                       260
     Bentleigh East
                       249
     Preston
                       239
     Brunswick
                       222
     Sandhurst
                         1
     Bullengarook
                         1
     Croydon South
                         1
     Montrose
                         1
     Monbulk
                         1
     Name: Suburb, Length: 314, dtype: int64
df['Address'].value_counts()
     36 Aberfeldie St
                         3
     2 Bruce St
                         3
     5 Charles St
                         3
     53 William St
     14 Arthur St
                         3
     16 Alleford St
                         1
     2/1073 Centre Rd
                         1
     14 Columbia St
                         1
     21 Hardy Ct
                         1
     6 Agnes St
                         1
     Name: Address, Length: 13378, dtype: int64
```

Explaination:

Clearly, the lenght or the number of Categories of these Attributes is large and nearly impossible to Encode.

Representating Encoded dataset and information

df

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Postcode	Bedroom2	Bathroom	Car	Lands
0	Abbotsford	85 Turner St	2	1	1480000.0	1	Biggin	2016- 03-12	2.5	3067.0	2.0	1.0	1.0	21
1	Abbotsford	25 Bloomburg St	2	1	1035000.0	1	Biggin	2016- 04-02	2.5	3067.0	2.0	1.0	0.0	1:
2	Abbotsford	5 Charles St	3	1	1465000.0	2	Biggin	2017- 04-03	2.5	3067.0	3.0	2.0	0.0	1;
		40						2∩17_						

df.describe()

	Rooms	Туре	Price	Method	Distance	Postcode	Bedroom2	Bathroom	Car
count	13580.000000	13580.000000	1.358000e+04	13580.000000	13580.000000	13580.000000	13580.000000	13580.000000	13580.000000
mean	2.937997	1.304197	1.075684e+06	1.335641	10.137776	3105.301915	2.914728	1.534242	1.610716
std	0.955748	0.460084	6.393107e+05	0.472231	5.868725	90.676964	0.965921	0.691712	0.960511
min	1.000000	1.000000	8.500000e+04	1.000000	0.000000	3000.000000	0.000000	0.000000	0.000000
25%	2.000000	1.000000	6.500000e+05	1.000000	6.100000	3044.000000	2.000000	1.000000	1.000000
50%	3.000000	1.000000	9.030000e+05	1.000000	9.200000	3084.000000	3.000000	1.000000	2.000000
75%	3.000000	2.000000	1.330000e+06	2.000000	13.000000	3148.000000	3.000000	2.000000	2.000000
max	10.000000	2.000000	9.000000e+06	2.000000	48.100000	3977.000000	20.000000	8.000000	10.000000
4									•

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 13580 entries, 0 to 13579 Data columns (total 20 columns):

	cordinis (corar	*	
		Non-Null Count	Dtype
0	Suburb	13580 non-null	object
1	Address	13580 non-null	object
2	Rooms	13580 non-null	int64
3	Туре	13580 non-null	int64
4	Price	13580 non-null	float64
5	Method	13580 non-null	int64
6	SellerG	13580 non-null	object
7	Date	13580 non-null	datetime64[ns]
8	Distance	13580 non-null	float64
9	Postcode	13580 non-null	float64
10	Bedroom2	13580 non-null	float64
11	Bathroom	13580 non-null	float64
12	Car	13580 non-null	float64
13	Landsize	13580 non-null	float64
14	BuildingArea	13580 non-null	float64
15	YearBuilt	13580 non-null	float64
16	Lattitude	13580 non-null	float64
17	Longtitude	13580 non-null	float64
18	Regionname	13580 non-null	int64
19	Propertycount	13580 non-null	float64
dtype	es: datetime64[r	ns](1), float64(1	12), int64(4), object(3)
memoi	ry usage: 2.1+ N	ИВ	

df.nunique()

Suburb	314
Address	13378
Rooms	9
Туре	2
Price	2204
Method	2
SellerG	268
Date	58
Distance	202
Postcode	198
Bedroom2	12

Bathroom	9
Car	13
Landsize	1448
BuildingArea	605
YearBuilt	147
Lattitude	6503
Longtitude	7063
Regionname	3
Propertycount	311
dtype: int64	

df.groupby(['Type','Method']).count()#grouping categorical variables for feature selection

		Suburb	Address	Rooms	Price	SellerG	Date	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	BuildingArea
Тур	e Method													
1	1	6507	6507	6507	6507	6507	6507	6507	6507	6507	6507	6507	6507	6507
	2	2942	2942	2942	2942	2942	2942	2942	2942	2942	2942	2942	2942	2942
2	1	2515	2515	2515	2515	2515	2515	2515	2515	2515	2515	2515	2515	2515
	2	1616	1616	1616	1616	1616	1616	1616	1616	1616	1616	1616	1616	1616
4														•

Data Visualisation

sns.pairplot(df)#visualisation study

Part 1: Regression Analysis

Step 1: Define X and y

```
y=df['Price']#'Price' is our Regression target
np.log(y)#for increasing efficiency
             14.207553
     1
             13.849912
             14.197366
             13.652992
             14.285514
              . . .
     13575
             14.034646
     13576
             13.846040
     13577
            13.972514
     13578
             14.731801
     13579
             14.066269
     Name: Price, Length: 13580, dtype: float64
y.shape
     (13580,)
X=df.drop(['Suburb','Address','SellerG','Date', 'Price'],axis=1)#defining X
X.shape
     (13580, 15)
```

Dealing with Oversampling Data

```
'Price'
```

from imblearn.over_sampling import RandomOverSampler

r=RandomOverSampler(random_state=2408)

Before Oversampling

```
X.shape, y.shape
     ((13580, 15), (13580,))
y.value_counts()
     1100000.0
                  113
     1300000.0
                  109
     650000.0
                  109
     800000.0
                  109
     600000.0
                  104
                  . . .
     1928000.0
                    1
     2236000.0
     601500.0
                    1
     550500.0
                    1
     1323000.0
                    1
     Name: Price, Length: 2204, dtype: int64
```

X.value_counts()

Rooms	Туре	Method	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	BuildingArea	YearBuilt	Lattitude	Longtitude	R
2	2	1	3.3	3141.0	2.0	2.0	2.0	17200.0	80.737121	2000.000000	-37.83610	144.99660	1
1	2	1	3.3	3141.0	1.0	1.0	1.0	0.0	80.737121	2000.000000	-37.83610	144.99660	1
3	1	1	7.5	3123.0	3.0	2.0	2.0	431.0	120.000000	1950.000000	-37.82690	145.04960	1
		2	9.2	3146.0	3.0	2.0	1.0	704.0	134.000000	1940.000000	-37.85200	145.09420	1

2, 12:15 PM	Capstone Project.ipynb - Colaboratory												
2	2	1	6.5	3071.0	2.0	1.0	1.0	0.0	80.737121	1970.000000	-37.75610	145.00670	2
3	1	1	3.8	3207.0	3.0	1.0	0.0	153.0	109.000000	1880.000000	-37.83820	144.94690	1
								171.0	167.000000	1890.000000	-37.83850	144.94090	1
								184.0	100.000000	1905.000000	-37.83480	144.94430	1
								197.0	176.866248	1954.081176	-37.83430	144.93620	1
10	1	2	12.1	3083.0	10.0	3.0	2.0	313.0	176.866248	2006.000000	-37.71098	145.05381	2
Length		13, dtype	e: int64										

After Oversampling

```
X, y = r.fit_resample(X,y)
X.shape, y.shape
     ((249052, 15), (249052,))
y.value_counts()
     1480000.0
                  113
     978500.0
                  113
     920500.0
                  113
     2633000.0
                  113
     760500.0
                  113
     2220000.0
                  113
     667000.0
                  113
     2105000.0
                  113
     2177000.0
                  113
     1323000.0
                  113
     Name: Price, Length: 2204, dtype: int64
X.value_counts()
```

Rooms	Type	Method	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	BuildingArea	YearBuilt	Lattitude	Longtitude	R
2	2	1	3.3	3141.0	2.0	2.0	2.0	17200.0	80.737121	2000.000000	-37.83610	144.99660	1
1	2	2	11.8	3204.0	1.0	1.0	1.0	0.0	80.737121	1980.016708	-37.90320	145.04550	1
2	2	2	9.1	3015.0	2.0	1.0	1.0	0.0	80.737121	1970.000000	-37.82880	144.87110	3
3	1	2	7.0	3013.0	3.0	1.0	1.0	248.0	176.866248	1954.081176	-37.81570	144.89250	3
4	1	2	7.7	3015.0	4.0	2.0	0.0	389.0	158.000000	1990.000000	-37.82840	144.88610	3
3	1	1	12.6	3020.0	3.0	1.0	1.0	700.0	145.000000	1960.000000	-37.79330	144.84110	3
4	1	1	15.5	3038.0	4.0	2.0	2.0	713.0	164.000000	1982.000000	-37.72305	144.81074	3
3	1	1	12.6	3020.0	3.0	1.0	1.0	500.0	176.866248	1954.081176	-37.78210	144.84560	3
								0.0	126.000000	1950.000000	-37.77960	144.84550	3
10	1	2	12.1	3083.0	10.0	3.0	2.0	313.0	176.866248	2006.000000	-37.71098	145.05381	2
Length	n: 1351	.3, dtype	e: int64										

Step 2: Splitting the data

```
from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=2529)#since test size is given as 30%, train size is 70

X_train.shape,X_test.shape,y_train.shape,y_test.shape
    ((174336, 15), (74716, 15), (174336,), (74716,))
```

Standard Scaling the dataset

```
from sklearn.preprocessing import StandardScaler
s=StandardScaler()
```

```
X_train_s=s.fit_transform(X_train)#Scaling train data
X_test_s=s.fit_transform(X_test)#Scaling test data
```

Visualisation and Impact of Scaling

Reduced impact of outlier

```
X_train_s=pd.DataFrame(X_train_s,columns=X_train.columns)
X_test_s=pd.DataFrame(X_test_s,columns=X_test.columns)

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5))
ax1.scatter(X_train['YearBuilt'], X_train['Landsize'],color='green')
ax1.set_title("Before Scaling")
ax2.scatter (X_train_s['YearBuilt'], X_train_s['Landsize'],color="red")
ax2.set_title("After Scaling")
plt.show()
```

Trying this code on different attributes will help you understand the impact of scaling

Step 3: Creating Model

```
#from sklearn.linear_model import LinearRegression
#model=LinearRegression()#Linear Regression Model
#from sklearn.neighbors import KNeighborsRegressor
```

```
#model=KNeighborsRegressor()#K-Nearest Neighbour Model
#from sklearn.tree import DecisionTreeRegressor
#model=DecisionTreeRegressor()#Decision tree Model
from sklearn.ensemble import RandomForestRegressor
model=RandomForestRegressor()#Random Forest Model
```

Step 4: Training Model

```
model.fit(X\_train\_s,y\_train) \# model that is used in the previous step is being trained in this step <math display="block">Random Forest Regressor()
```

Step 5: Predicting Model

```
y_pred=model.predict(X_test_s)#Predicting the target for the given data y\_pred array([1.93, 2. , 2. , ..., 2. , 1. , 1. ])
```

Step 6: Accuracy

from sklearn.metrics import mean_absolute_percentage_error, mean_absolute_error, r2_score#checking for the accuracy of the prediction m

Sample Future Predictions Example

df_new=df.sample(1)#taking a sample set from the dataset

df new#displaying sample set

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	Bu
8245	Prahran	303/10 Hillingdon Pl	2	2	645000.0	1	Gary	2017- 05-13	4.5	3181.0	2.0	1.0	1.0	2842.0	
4															•

 $X_{new=df_new.drop(['Suburb','Address','SellerG','Date','Price'], axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ variables \ of \ samole \ set \ Address', axis=1) \# defining \ X \ or \ independent \ of \ axis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ independent \ of \ xis=1) \# defining \ X \ or \ in$

X_new.shape

Part 2: Classification Analysis

Step 1: Define X and y

Dealing with Undersampling Data

```
'Type'
```

X.value_counts()

Rooms	Price	Method	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	BuildingArea	YearBuilt	Lattitude	Longtitu
2	965000.0	1	7.3	3146.0	2.0	2.0	1.0	704.0	140.046323	1998.988189	-37.85698	145.0468
	890500.0	2	2.4	3121.0	2.0	2.0	2.0	180.0	123.000000	1940.000000	-37.81443	144.9907
	435000.0	2	7.8	3124.0	2.0	1.0	1.0	896.0	77.000000	1960.000000	-37.84790	145.0958
4	1817000.0	2	4.2	3031.0	4.0	2.0	1.0	309.0	176.866248	1954.081176	-37.79100	144.9280
3	720000.0	2	7.8	3058.0	3.0	2.0	2.0	531.0	112.000000	2016.000000	-37.74240	144.9571
2	802000.0	1	5.4	3101.0	2.0	1.0	1.0	0.0	80.737121	1980.016708	-37.80456	145.0374
	801250.0	1	11.0	3018.0	2.0	1.0	1.0	245.0	80.737121	1980.016708	-37.87046	144.8348
	801000.0	1	14.5	3188.0	2.0	1.0	1.0	217.0	107.000000	1994.000000	-37.94320	145.0348
			6.9	3039.0	2.0	1.0	0.0	133.0	176.866248	1954.081176	-37.77120	144.9254
8	2950000.0	1	11.0	3147.0	9.0	7.0	4.0	1472.0	618.000000	2009.000000	-37.87290	145.0788
Length	: 8251. dtv	pe: inte	54									

4

Step 2: Splitting the data

```
from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,stratify=y,random_state=2408)

X_train.shape,X_test.shape,y_train.shape,y_test.shape

((5783, 15), (2479, 15), (5783,), (2479,))
```

Standard Scaling the dataset

```
df.describe()
```

		Rooms	Туре	Price	Method	Distance	Postcode	Bedroom2	Bathroom	Car
	count	13580.000000	13580.000000	1.358000e+04	13580.000000	13580.000000	13580.000000	13580.000000	13580.000000	13580.000000
from	from sklearn.preprocessing import StandardScaler									
s=Sta	ndardSc	aler()								
		1.00000	1,00000	0,0000000101	1.00000	0.00000	0000.00000	0.00000	0.00000	0.00000
X_tra	X_train_s=s.fit_transform(X_train)									
	50%	3 000000	1 000000	9 030000e+05	1 000000	9 200000	3084 000000	3 000000	1 000000	2 000000
X_tes	t_s=s.f	it_transform(>	(_test)							

Visualisation and Impact of Scaling

Reduced impact of outlier

```
X_train_s=pd.DataFrame(X_train_s,columns=X_train.columns)
X_test_s=pd.DataFrame(X_test_s,columns=X_test.columns)

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 5))

ax1.scatter(X_train['YearBuilt'], X_train['Price'],color='black')
ax1.set_title("Before Scaling")
ax2.scatter (X_train_s['YearBuilt'], X_train_s['Price'],color="red")
ax2.set_title("After Scaling")
plt.show()
```

Step 3: Creating Model

```
#from sklearn.linear_model import LogisticRegression
#model=LogisticRegression()#Logistic Regression Model

#from sklearn.neighbors import KNeighborsClassifier
#model=KNeighborsClassifier()#K-Nearest Neighbour Model

#from sklearn.tree import DecisionTreeClassifier
#model=DecisionTreeClassifier()#Decision Tree Model

#from sklearn.svm import SVC
#model=SVC() #Support Vector Machine

from sklearn.ensemble import RandomForestClassifier
model=RandomForestClassifier()
```

Step 4: Training Model

Step 5: Predicting Model

```
y_pred=model.predict(X_test_s)
y_pred
```

```
array([2, 2, 2, ..., 2, 1, 1])
```

Step 6: Accuracy

	precision	recall	f1-score	support
1 2	0.97 0.95	0.95 0.97	0.96 0.96	1239 1240
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	2479 2479 2479

Future Predictions Example

```
df_new=df.sample(1)#sample set
df_new
```

11596 Bentleigh Wood St 5 1	1500000.0 2 hockingstuart	2017- 07-22 11.4	3204.0 5.0	2.0 2.0	591
					>

Link of the Colab file:

https://colab.research.google.com/drive/1nZuh04PYrE9kxCzCDbyYsH-b3czkKgpD?usp=sharing