HIERACHICAL ACTIVE LEARNING BIOINFORMATICS APPLICATION

by

James D. Duin

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Stephen Scott

Lincoln, Nebraska March, 2017 HIERACHICAL ACTIVE LEARNING BIOINFORMATICS APPLICATION

James D. Duin, M.S.

University of Nebraska, 2017

Adviser: Stephen Scott

This study investigates an application of the Support Vector Machine and Logistic Regression machine learning algorithms to a protein dataset labeled according to a proteins location of origin in a cell. The dataset is labeled according to a hierarchical scheme, at the root level the protein is from the mitochondria or not, then the hierarchy breaks down further into specific target compartments at the leaf nodes. Our investigation shows that Leveraging separate fine grained classifiers for each of the target compartments produces a higher performing classifer at the highest level in the hierarchy according to the Precision-Recall curves area under the curve. Furthermore, new approach in the Active Learning setting termed active over-labeling is applied to this dataset. The approach solicits labels at a finer level of grainularity than the target concept. We show that purchasing fine grained labels in each round of active learning produces a higher performing classifier than purchasing coarse labels, and in both cases purchasing labels actively by selecting only the most uncertain labels outperforms purchasing labels passively, i.e. at random. The fine grained labels also incur a higher cost than coarse grained labels for this dataset, so multiple cost ratios ran

and an optimal Fixed Fine ratio purchasing strategy is determined for each fine cost.

DEDICATION

This thesis is dedicated to my parents Paul and Vicki Duin and fiancée Anna Spady.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Stephen Scott for guidance in selecting this research topic, Yugi Mo for his work in developing the HAL methodology, and Dr. Douglas Downey for his work on this topic. I would like to thank Juan Cui, Jiang Shu, Kevin Chiang for assistance accessing and understanding the protein dataset that is the subject of the paper.

Contents

C	onten	ıts			V	7
1	Intr	oductio	on		1	Ĺ
	1.1	Mach	ine Learn	ning	. 1	1
	1.2	Hiera	rchical Bi	ioinformatics Data Set	. 1	1
	1.3	Coars	e Graine	d vs Fine Grained Trade Off	. 2	2
2	Bac	kgroun	d and Re	elated Work	4	ļ
	2.1	Active	e Learnin	ıg	. 4	ŀ
	2.2	Hiera	rchical A	ctive Learning	. 5	5
	2.3	Appli	cation to	Dispatch Dataset	. 5	5
3	Exp	erimen	tal Setup	,	7	7
	3.1	Traini	ng and T	esting Coarse Grain and Fine Grain Classifiers	. 7	7
		3.1.1	Varying	g SVM Scaling Methods	. 11	1
		3.1.2	Varying	g SVM Kernels	. 11	Ĺ
		3.1.3	Varying	g SVM Feature Selection	. 12	<u>,</u>
		3.1.4	Varying	g Logistic Regression Scaling	. 13	3
		3.1.5	Varying	g Logistic Regression Feature Selection	. 14	ł
		3.1.6	Varying	g Logistic Regression Postive Class Weight and Cost	. 15	5
		3.1.7	Varying	g Logistic Regression Tune Fine Class Weights	. 16	ó
			3.1.7.1	Fine Tune Class 1 Weights	. 17	7
			3.1.7.2	Fine Tune Class 2 Weights	. 17	7
			3.1.7.3	Fine Tune Class 3 Weights	. 18	3

Bi	bliog	raphy			47
5	Con	clusion	s and Fu	ture Work	46
	4.3	Plots f	or FFR ex	xperiments	37
		4.2.2	Plots for	SVM Active vs Passive curves	34
		4.2.1	Plots for	Logistic Regression Active vs Passive curves	31
	4.2	Active	vs Passiv	ve curves	30
	4.1	SVM a	and LogR	eg Classifier Performance	28
4	Res	ults and	d Analysi	s	28
		3.1.12	Varying	SVM Cost	26
		3.1.11	Varying	SVM Gamma	25
		3.1.10	Varied L	ogistic Regression Positive Class Weight For Full Dataset	24
		3.1.9	Varied S	ample Weight On Test Set and Dropping Intermediate ROC Curve Values .	23
		3.1.8	Varying	Logistic Regression Tolerance	23
			3.1.7.8	Fine Tune Class 8 Weights	22
			3.1.7.7	Fine Tune Class 7 Weights	21
			3.1.7.6	Fine Tune Class 6 Weights	21
			3.1.7.5	Fine Tune Class 5 Weights	19
			3.1.7.4	Fine Tune Class 4 Weights	19

Chapter 1

Introduction

1.1 Machine Learning

Machine Learning algorithms are defined as computer programs that learn from experience E with respect to some class of tasks T and performance measure P, if their performance at tasks in T, as measured by P, improves with experience E [1]. In the context of this paper, the machine learning algorithms that are used include a support vector machine (SVM) implementation, and a Logistic Regression (LogReg) implementation by the sci-kit learn python library [2]. The performance measure is the classification of protein instances according to a label, for example, originated in the mitochondria or not. The experience is the number of training instances in the training set. The dataset is initially partitioned into training and test sets. The algorithm improves its classifier structure based on the features of each instance by iterating through all instances in the training set. When training has been completed, the classifier is then tested on the test set and the number of instances that the classifier correctly or incorrectly labels determines its accuracy, precision and recall scores. In our protein dataset there are 20,098 proteins with 449 features each relating to their structure. In our experiments an SVM classifier is applied to the dataset with the goal of achieving high precision scores for the label mitochondrion, that is, if the protein originates in the mitochondria or not.

1.2 Hierarchical Bioinformatics Data Set

The protein dataset is labeled according to where it originates in the cell. At the root is mitochondrion, then there is the sub level labels for if its native to the mitochondria or if it has a separate target compartment specification. The complete tree along with the number of instances belonging to the each label is included in *Figure 1.1*.

Figure 1.1: The protein dataset is labeled according to where it originates in the cell. At the root is mitochondrion, then there is the sub level labels for if its native to the mitochondria or if it has a separate target compartment specification. The complete tree along with the number of instances belonging to the each label is included in this figure.

1.3 Coarse Grained vs Fine Grained Trade Off

The classifier that does not take advantage of any of the fine grained labels works off of the root labels for each instance and does not train separate classifiers for the fine grained labels. This classifier is referred to as the coarse grained classifier. The classifier that does use fine grained labels, and trains a separate classifier for each label, then combines them to generate a root level label is referred to as the fine grained classifier. It can be demonstrated through a dummy example that for certain datasets, a fine grained approach to the root level classifier can achieve higher levels of precision for the same level of recall. Such a dataset is shown in *Figure 1.2*. The classifiers for this dataset can be thought of as a function of axis parallel rectangular boxes. For the course grained to have high recall and return all of the positive circle instances, it must encompass the entire dataset and incidentally return all of the negative diamond instances as positive also. A fine grained approach is preferable for the dummy dataset pictured. It is the intention of this study to demonstrate that the fine grained classification approach for a root level classifier will achieve higher levels of precision for the same level of recall when applied to the protein dataset.

Figure 1.2: Demonstration of a dataset that would benefit from multiple fine grained learners for each circle type. In order for the coarse grain learner to have high recall, precision must be scarified and a large amount of false positives returned. By combining fine grained classifiers the same level of recall can be achieved with a higher level of precision because none of the false positive diamonds will be returned

Chapter 2

Background and Related Work

2.1 Active Learning

Active Learning relates to the coarse grained vs fine grained tradeoff because it is reasonable to assume that fine grained labels may not be as readily available as coarse grained labels, and thus have a higher cost. An active learning approach is used to determine how many fine grained labels to purchase in order to minimize the total cost to train the algorithm an maximize the precision and recall scores. The following equations for precision, recall, and a weighted F score are shown below in equations 1 through 3.

Precisionean

Recallegn

F05eqn

The goal in an active learning approach is to maximize the F measure where equals 0.5 [2]. The F-0.5 measure gives more weight to precision, as opposed to recall, so it gives incentive to purchase enough fine grained labels to increase the F-0.5 measure. The coarse grained labels will cost less than fine grained labels, but the increase in the F-0.5 measure justifies the increase in cost up to a certain point. The F-0.5 measure is used in the results section of this paper. ... That's why we use PRauc in the results. Describe some of the other papers that Yugi cited.

2.2 Hierarchical Active Learning

The Hierarchical Active Learning algorithm (HAL) is shown diagrammatically in Figure 3. Multiple fine grained classifiers are trained at each level of the Hierarchy of the dataset. Queries to the oracle are performed purchase the most cost effective labels to add to the training sets of the classifiers. The active learning cycle continues until a cost budget has been reached. The benefit of an active learning approach is to maximize the F-o.5 measure for a given cost budget. It was the goal of this study to apply the HAL algorithm to the protein dataset, however this is not achieved at this time. An existing application of HAL is briefly discussed in the following section.

Figure 2.1: Diagram of HAL approach

2.3 Application to Dispatch Dataset

HAL was applied to a Dispatch dataset. This dataset contains 375,026 manually labeled hierarchical names across 1,384 newspaper articles [2]. This is a clear example where fine grained labels have a higher cost since it is easier for a person to manually determine if the article pertains to an organization or not, rather than if it pertains to a railroad or a zoo, which would be sub labels of the organization root. The first analysis step was to determine that the F-0.5 measure is increased by using fine grained classifiers. The results are shown in Figure 4. The highest F-0.5 measure for a given iteration of purchases of training instances is obtained by using the active learning approach with all fine-grained labels. The passive learning curves were generated by selecting batches of instances randomly rather than querying the oracle for a specific

label type that offers that most gain in classifier accuracy. The active learning curves did take advantage of querying for specific labels in order to maximize gain in classifier accuracy. ... add other data sets.

Figure 2.2: Application of HAL demonstrating the benefit of Actively selecting the type of labels to purchase for instances rather than randomly selecting labels to purchase, as in the Passive curves.

The next analysis step is to apply a given ratio of fine grained vs coarse grained labels to purchase at each batch request to the oracle. The results of varying the percentage of fine grained labels purchased are shown in Figure 5. The figure shows that even a small amount of fine grained labels purchased, that is, 20perc provides a significant increase in the F-0.5 measure for a given iteration. ... pr auc results. Add explanation of Bandit approach and results.

Chapter 3

Experimental Setup

3.1 Training and Testing Coarse Grain and Fine Grain Classifiers

The bioinformatics dataset is composed of 9 classes as shown in *Figure 1.1* on *page 2*. The coarse level concept is whether or not the protein resides within the mitochondria. The negative case of not residing within the mitochondria is class o. The positive case of residing within the mitochondria corresponds to any of the 8 target compartment classes, numbered 1 through 8. Since the negative case has no fine grained labels, the fine grained classifier is composed of separate classifiers for each of the fine grained labels. The 8 fine grained classifiers are trained such that only the instances of the class corresponding to that classifier's target compartment are marked as positive, all the others are treated as negative. The coarse level classifier treats all fine grained target compartment instances as members of a single positive class. For all classifiers the non mitochondrian instances are treated as negative or o labeled. The totals for each class type is shown in *Table 3.1a*. Throughout this experiment a 10 folds cross validation strategy is used, an example partitioning in shown in *Table 3.1b*.

Classes	Count
О	19136
1	13
2	185
3	324
4	190
5	11
6	104
7	59
8	76
Tot All	20098
Tot Coarse	19136
Tot Fine	962
Features	449

Folds	All	О	1	2	3	4	5	6	7	8
1	2010	1914	1	19	32	19	1	11	6	7
2	2010	1914	1	19	32	19	1	11	6	7
3	2010	1914	1	19	32	19	1	11	5	8
4	2010	1914	1	19	32	19	1	10	6	8
5	2010	1914	1	18	33	19	1	10	6	8
6	2010	1914	1	18	33	19	1	10	6	8
7	2010	1913	2	18	33	19	1	10	6	8
8	2010	1913	2	18	33	19	1	10	6	8
9	2009	1913	2	18	32	19	2	10	6	7
10	2009	1913	1	19	32	19	1	11	6	7
Total	20098	19136	13	185	324	190	11	104	59	76

(b) Folds

(a) Classes

Table 3.1: This dataset contains 20098 instances total with 449 features each. An example partitioning is shown, some classes like 1 and 5 contain only 1-2 instances in a given test set. Note there is a heavy class imbalance with approx. 20 negative instances for each positive instance.

Each partition contains a representative portion of each class, the instances are randomly distributed between partitions. The train set is composed of joining 9 of the partitions together holding 1 fold out for the test set. An example of the totals for a Train and Test set is shown on *Table 3.2*.

Train All 0 Total 18088 17222	1 2 3 12 166 2	92 4 5	6 7 93 53	8 69
Test All 0	1 2 3	2 4 5	6 7	8
Total 2010 1914	1 19 3		11 6	7

Table 3.2: Example of totals for the Train and Test corresponding to when the first fold is held out to be the test set.

Because the experiment will involve running multiple rounds iteratively increasing the number of instances on which the classifiers are trained and tested, a subset was used to tune the parameters of the classifiers. This allowed variations of the classifier parameters to be ran rapidly and for the class weight parameter to be tuned for various round sizes. The reduced subset contains a randomly chosen group of approximately $1/5^{th}$ of the negatives. The class totals and example partitioning for the reduced subset is shown in *Table 3.3*.

Classes	Count
0	3827
1	13
2	185
3	324
4	190
5	11
6	104
7	59
8	76
Tot All	4789
Tot Coarse	3827
Tot Fine	962
Features	449

Folds	All	0	1	2	3	4	5	6	7	8
1	479	383	1 1	19	32	19	1 1	11	6	7
2	479	383	1	19	32	19	1	11	6	7
3	479	383	1	19	32	19	1	11	6	7
4	479	383	1	19	32	19	1	11	5	8
5	479	383	1	19	32	19	1	10	6	8
6	479	383	1	18	33	19	1	10	6	8
7	479	383	1	18	33	19	1	10	6	8
8	479	382	2	18	33	19	1	10	6	8
9	479	382	2	18	33	19	1	10	6	8
10	478	382	2	18	32	19	2	10	6	7
Total	4789	3827	13	185	324	190	11	104	59	76

(b) Folds Subset

Table 3.3: The subset of instances used for tuning classifier paramters contains approximately $1/5^{th}$ and retains all postive instances.

Train Total	All 4310	o 3444	1 12	2 166	3 292	4 171	5 10	6 93	7 53	8 69
Test Total	All 479	o 383	1 1	2 19	3 32	4 19	5	6	7 6	8 7

Table 3.4: Example totals for the train and test set for the subset of data. The subset of data is used for the majority of the parameter search.

Throughout this project the python library sci-kit learn library is used for the implementation of the classification, preprocessing, and evaluation algorithms [2]. The Support Vector Machine (SVM) supervised learning algorithm is used on the un-scaled subset of the data to obtain the base results shown in 3.5. The coarse and the fine algorithm performance is shown for each of the 10 folds along with the average performance across the 10 folds. Also the Reciever Operator Characteristic and Precision Recall curves are calculated with fine instances weighted according to the number of of instances in the test set divided by the number of positive instances in the test set which is a value of 4.99 for the data subset.

⁽a) Classes Subset

coarse-pr	fine-pr	coarse-roc	fine-roc	coarse-acc	fine-acc	coarse-f1	fine-f1
0.807	0.796	0.779	0.768	0.816	0.802	0.214	0.021
0.848	0.822	0.828	0.790	0.825	0.804	0.263	0.041
0.846	0.821	0.810	0.765	0.818	0.802	0.243	0.021
0.860	0.832	0.826	0.775	0.831	0.802	0.319	0.021
0.859	0.829	0.828	0.783	0.833	0.804	0.298	0.041
0.796	0.763	0.748	0.715	0.816	0.806	0.214	0.061
0.838	0.825	0.797	0.792	0.818	0.800	0.243	0.020
0.836	0.816	0.803	0.770	0.823	0.800	0.309	0.020
0.863	0.845	0.833	0.805	0.829	0.797	0.305	0.000
0.844	0.806	0.806	0.758	0.836	0.807	0.339	0.061
avg 0.840	avg 0.815	avg o.806	avg 0.772	avg 0.825	avg 0.802	avg 0.275	avg 0.031

Table 3.5: SVM default results without parameter selection or preprocessing. Where Precision Recall area under the curve is (pr), Reciever Operator Characteristic area under the curve is (roc), Accuracy is (acc), F1-measure is (f1).

coarse-tn	fine-tn	coarse-fp	fine-fp	coarse-fn	fine-fn	coarse-tp	fine-tp
379	383	4	О	84	95	12	1
380	383	3	0	81	94	15	2
378	383	5	0	82	95	14	1
379	383	4	0	77	95	19	1
382	383	1	0	79	94	17	2
379	383	4	0	84	93	12	3
378	382	5	1	82	95	14	1
375	382	7	0	78	96	19	1
379	382	3	0	79	97	18	0
379	382	3	О	75	92	20	3
avg 378.8	avg 382.6	avg 3.9	avg 0.1	avg 80.1	avg 94.6	avg 16.0	avg 1.5

Table 3.6: SVM default results confusion matrix. Where True Negatives is (tn), False Positives is (fp), False Negatives (fn), True Positives is (tp).

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.840	0.806 0.772	0.825	0.275	(378.8 / 80.1) (382.6 / 94.6)	(3.9 / 16.0)

Table 3.7: SVM default condensed view of summary performance metrics, each value is the average of 10 folds.

The primary metric used to make decisions between alternative parameter choices is the PR-AUC and ROC-AUC. The f-measure and accuracy metrics can be shown to be correlated to a chosen point on the ROC or PR curves. As shown in *Figure 4.1* on *page 29*, each point on the ROC curve has an associated chosen accuracy point, both the coarse and fine classifiers have similar sets of accuracy and f-measure

points. The chosen threshold used to output the accuracy, f-measure and confusion matrices varies between the coarse and fine classifier, so at a first glance it appears as if fine out performs coarse in these metrics but an alternative threshold could be selected for the coarse classifier to obtain metrics matching the fine output. Alternatively, the PR-AUC and ROC-AUC compare the correctness of the entire ranking of the instances in the test set by the classifier, and thus eliminate the need to consider the dynamic tuning of the threshold used by the classifier to output a given confusion matrix, accuracy, and f-measure score.

3.1.1 Varying SVM Scaling Methods

Different scaling methods were used to preprocess the data [2]. The standard scaling (std-scaler) strategy centers all features around zero and have variance in the same order, it outputs the features with a mean of zero and a unit variance. The minimum maximum scaling (minmax-scaler) strategy scales features between a minimum and maximum value, which is o and 1. The normalization scaling (norm-scaler) strategy scales individual samples to have a unit norm. Each preprocessing strategy is applied on the entire dataset before training and testing is performed. Prepocessing was performed with a radial basis function kernel.

title	pr	roc	acc	f1	\parallel conf (tn/fn)	\parallel conf (fp/tp) \parallel
coarse fine	0.881	0.855	0.799	0.000	(382.7 / 96.1) (382.7 / 96.1)	(0.0 / 0.0)

Table 3.8: SVM minmax-scaler results.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.801	0.791	0.799	0.000	(382.7 / 96.1) (382.7 / 96.1)	(0.0 / 0.0)

Table 3.9: SVM norm-scaler results.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.912	0.882	0.881	0.631	(372.7 / 47.1 (382.7 / 91.3) (10.0 / 49.0)) (0.0 / 4.8)

Table 3.10: SVM std-scaler results. This option is chosen.

3.1.2 Varying SVM Kernels

Different kernel functions were used in the SVM classifier including: Radial Basis Function (RBF), Polynomial Degree 3 and 6 (Poly), Linear, and Sigmoid [2]. The chosen preprocessing strategy of std-scaler is

used for these results. As parameter selection is elicited the choices from previous sections are used in any sections that follow.

title	pr	roc	acc	f1	\parallel conf (tn/fn)	conf (fp/tp)
coarse fine	0.867	0.841	0.853	0.599	(355.5 / 43.4 (351.1 / 50.8	4) (27.2 / 52.7) 8) (31.6 / 45.3)

Table 3.11: Linear kernel results.

title p	or	roc	acc	f1	\parallel conf (tn/fn)	\parallel conf (fp/tp) \parallel
coarse c	0.816	0.817 0.743	o.807 o.801	0.169	(376.9 / 86.7) (380.3 / 92.9)	(5.8 / 9.4)

Table 3.12: Poly degree 3 kernel results.

title	pr	roc	acc	l f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.659	0.637 0.584	0.797 0.794	0.037	(379.5 / 94.2) (379.0 / 95.1)	(3.2 / 1.9) (3.7 / 1.0)

Table 3.13: Poly degree 6 kernel results.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.703	0.693	0.773	0.405	(333.0 / 59.0 (370.3 / 88.7)) (49.7 / 37.1)) (12.4 / 7.4)

Table 3.14: Sigmoid kernel results.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.912	0.882	0.881	0.630	(372.6 / 47.1 (382.7 / 91.3) (10.1 / 49.0)) (0.0 / 4.8)

Table 3.15: RBF kernel results. This option is chosen.

3.1.3 Varying SVM Feature Selection

I tried different feature selection percentages. The Select Percentile library was used from sci-kit learn [2]. This is a univariate feature selection strategy that ranks the features usability for classification according to a statistical measure, then keeps a certain percentage of the features. The 100% example is the option chosen in the previous section.

title pr	\parallel roc \parallel acc	\parallel f1 \parallel conf (tn/fn)	conf (fp/tp)
coarse 0.907	0.875 0.877	0.623 (370.7 / 47.1) (12.0 / 49.0)
fine 0.854	0.823 0.806	0.068 (382.7 / 92.7) (0.0 / 3.4)

Table 3.16: SVM select percentile, keep 25% of features.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.913	0.885	0.879	0.632	(371.3 / 46.4 (382.7 / 91.2) (11.4 / 49.7)) (0.0 / 4.9)

Table 3.17: SVM select percentile, keep 50% of features.

title	pr	roc	acc	f1	conf (tn/fn)	\parallel conf (fp/tp)
coarse fine	0.913	0.883	0.878	0.622	(372.1 / 47.9) (382.7 / 91.6)	(10.6 / 48.2)

Table 3.18: SVM select percentile, keep 75% of features. This option is chosen.

Note that leveraging the fine grained labels did not improve classifier performance relative to the coarse classifier. An alternative classifier strategy Logistic Regression (LogReg) is investigated.

3.1.4 Varying Logistic Regression Scaling

Tested out the same options for preprocessing scaling, that were tried for SVM.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.887	0.862	0.867	0.615	(364.1 / 45.0) (372.8 / 69.9)	(18.6 / 51.1) (9.9 / 26.2)

Table 3.19: Logistic Regression - No scaling.

title p	or roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse coarse coarse	0.864 0.84 0.833 0.81	9 0.846 6 0.831	0.583	(353.8 / 44.8) (362.0 / 60.2)	(28.7 / 51.3) (20.5 / 36.0)

Table 3.20: Logistic Regression standard scaling.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.790	0.761	0.799 0.799	0.000	(382.7 / 96.1) (382.7 / 96.1)	(0.0 / 0.0)

Table 3.21: Logistic Regression normalization scaling.

title p	or ro	ос асс	f1	conf (tn/fn)	conf (fp/tp)
coarse coarse coarse	0.891 0. 0.888 0.	.867 0.864 .862 0.812	0.581 0.130	(368.6 / 50.9) (382.1 / 89.3)	(14.1 / 45.2) (0.6 / 6.8)

Table 3.22: Logistic Regression MinMax scaling. This option is chosen.

3.1.5 Varying Logistic Regression Feature Selection

Tested out the same options for feature selection that were tried for SVM.

title pr	roc acc	f1 conf (tn/fn)	conf (fp/tp)
coarse 0.87	72 0.848 0.84 69 0.845 0.80	9 0.497 (370.8 / 60.4 0.052 (382.2 / 93.4 0.052 (382.2 / 93.4 0.052 0.	.3) (11.9 / 35.8) .5) (0.5 / 2.6)

Table 3.23: Logistic Regression select percentile 25%.

title pr	roc acc	f1 conf (tn/fn)	conf (fp/tp)
coarse 0.875	0.849 0.849	0.497 (370.8 / 60.3) (11.9 / 35.8)
fine 0.872	0.846 0.803	0.050 (382.2 / 93.6) (0.5 / 2.5)

Table 3.24: Logistic Regression select percentile 50%.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.871 0.869	o.847 o.845	0.848 0.803	0.493 0.048	(370.6 / 60.6) (382.0 / 93.7)	(12.1 / 35.5) (0.7 / 2.4)

Table 3.25: Logistic Regression select percentile 75%.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.891	0.867	0.864	0.581	(368.6 / 50.9) (382.1 / 89.3)	(14.1 / 45.2) (0.6 / 6.8)

Table 3.26: Logistic Regression select percentile 100%. This option is chosen.

3.1.6 Varying Logistic Regression Postive Class Weight and Cost

Since there is a class imbalance in the dataset, see *Table 3.1a* on *page 8*, class weight and cost parameter pairs are varied. The cost default value is 1.0, and the class weight default value is 1.0. The original value for weighting the fine training instance is the number of instances in the train set divided by the number of postive instances, this is 4.977. The negative instance train weight is always 1.0.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.886 0.885	0.868	0.787 0.857	0.606	(298.7 / 17.9) (361.7 / 47.3)	(84.0 / 78.2) (21.0 / 48.8)

Table 3.27: LogReg weight 4.977, cost 1.0

title	pr	roc	acc	f1	\parallel conf (tn/fn)	conf (fp/tp)
coarse fine	0.880	0.861 0.856	0.755 0.851	0.579	(280.7 / 15.4 (374.2 / 62.7) (102.0 / 80.7)) (8.5 / 33.4)

Table 3.28: LogReg weight 4.977, cost 0.1

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.876	0.855	0.793	0.603	(304.6 / 21.1)) (78.1 / 75.0)) (37.9 / 55.2)

Table 3.29: LogReg weight 4.977, cost 10.0

title pr	roc acc f:	$\parallel conf (tn/fn) \parallel conf (fp/tp)$
coarse 0.883 fine 0.880	0.865 0.690 0 0.859 0.822 0	536 (245.4 / 10.9) (137.3 / 85.2) 620 (324.2 / 26.7) (58.5 / 69.4)

Table 3.30: LogReg weight 10.0, cost 1.0

title pr	roc acc	f1	conf (tn/fn)	conf (fp/tp)
coarse 0.879 fine 0.881	0.863 0.609 0.859 0.834	0.486	(203.6 / 7.9) (334.5 / 31.1)	(179.1 / 88.2) (48.2 / 65.0)

Table 3.31: LogReg weight 10.0, cost 0.1

title pr	roc acc	$\mid f_1 \mid \mid conf (tn/fn) \mid \mid conf (fp/tp)$
coarse 0.871 fine 0.861	0.851 0.723 0.837 0.792	0.554 (264.1 / 13.9) (118.6 / 82.2) 0.585 (309.3 / 26.2) (73.4 / 69.9)

Table 3.32: LogReg weight 10.0, cost 10.0

title pr	roc acc	f1 conf (tn/fn)	conf (fp/tp)
coarse 0.884	0.867 0.732	4 0.566 (268.8 / 13.5) (113.9 / 82.6)
fine 0.882	0.861 0.846	6 0.624 (343.4 / 34.6) (39.3 / 61.5)

Table 3.33: LogReg weight 7.5, cost 1.0

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.880	0.862	0.668 0.859	0.517	(234.8 / 11.1 (357.3 / 42.3) (147.9 / 85.0)) (25.4 / 53.8)

Table 3.34: LogReg weight 7.5, cost 0.1. This option is chosen due to showing advantage for the fine classifier compared to the coarse classifier.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.873	0.852	0.757	0.578 0.588	(283.2 / 16.7) (323.3 / 31.4)	(99.5 / 79.4) (59.4 / 64.7)

Table 3.35: LogReg weight 7.5, cost 10.0

3.1.7 Varying Logistic Regression Tune Fine Class Weights

The weight for each of the separate fine classes is tuned by multiplying, the class weight of 7.5, determined in the previous section by a fixed ratio. A weight ratio of 1.0 would output a fine class weight of 7.5. A weight ratio of 0.5 would output a fine class weight of 3.75. Subsections showing the tuning results for each of the 8 fine grained classes follow. The confusion matrices and output metrics for the individual fine class are shown in order to demonstrate how well the classifier is learning that fine grained class. These metrics are the average of 10 folds. The coarse classifier output is not shown as it will not vary or be dependent upon the fine class weight tuning.

3.1.7.1 Fine Tune Class 1 Weights

title	pr	roc	acc	f1	$\parallel conf (tn/fn) \parallel conf (fp/tp) \parallel$
fine	0.881	0.858	0.859	0.613	(357.3 / 42.3) (25.4 / 53.8) (4297.7 / 7.7) (0.8 / 4.0) (477.4 / 1.2) (0.1 / 0.1)
trainCls-1	0.995	0.999	0.998	0.477	
testCls-1	0.722	0.996	0.997	0.100	

Table 3.36: LogReg Class 1 weight ratio 1.0

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.880	0.856	0.859	0.613	(357.4 / 42.3)	(25.3 / 53.8)
trainCls-1	0.994	0.998	0.997	0.142	(4298.5 / 10.8)	(0.0 / 0.9)
testCls-1	0.696	0.995	0.997	0.000	(477.5 / 1.3)	(0.0 / 0.0)

Table 3.37: LogReg Class 1 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.882	0.860	0.859	0.617	(357.1 / 41.7)	(25.6 / 54.4)
trainCls-1	0.995	1.000	0.999	0.854	(4295.8 / 1.0)	(2.7 / 10.7)
testCls-1	0.722	0.997	0.998	0.400	(477.1 / 0.7)	(0.4 / 0.6)

Table 3.38: LogReg Class 1 weight ratio 3.0. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.881	0.859	0.860	0.618	(357.0 / 41.5)	(25.7 / 54.6)
trainCls-1	0.995	1.000	0.999	0.850	(4294.3 / 0.0)	(4.2 / 11.7)
testCls-1	0.722	0.997	0.998	0.513	(476.9 / 0.5)	(0.6 / 0.8)

Table 3.39: LogReg Class 1 weight ratio 5.0

3.1.7.2 Fine Tune Class 2 Weights

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.882	0.860	0.859	0.617	(357.1 / 41.7)	(25.6 / 54.4)
trainCls-2	0.800	0.804	0.952	0.200	(4076.9 / 140.5)	(66.8 / 26.0)
testCls-2	0.655	0.689	0.944	0.081	(450.7 / 17.3)	(9.6 / 1.2)

Table 3.40: LogReg Class 2 weight ratio 1.0. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.882	0.857	0.862	0.618	(359.1 / 42.5) (4139.4 / 161.9) (459.4 / 18.4)	(23.6 / 53.6)
trainCls-2	0.785	0.787	0.961	0.052	(4139.4 / 161.9)	(4.3 / 4.6)
testCls-2	0.656	0.694	0.960	0.009	(459.4 / 18.4)	(0.9 / 0.1)

Table 3.41: LogReg Class 2 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.877	0.857	0.855	0.620	(352.5 / 39.3)	(30.2 / 56.8)
trainCls-2	0.806	0.814	0.924	0.263	(3924.1 / 108.1)	(219.6 / 58.4)
testCls-2	0.652	0.684	0.914	0.123	(434.8 / 15.6)	(25.5 / 2.9)

Table 3.42: LogReg Class 2 weight ratio 1.5

3.1.7.3 Fine Tune Class 3 Weights

title pr	r roc	acc f1	conf (tn/fn)	conf (fp/tp)
fine 0. trainCls-3 0. testCls-3 0.	.882 0.860 .846 0.852 .795 0.803	0.859 0.617 0.882 0.401 0.873 0.360	(357.1 / 41.7) (3628.6 / 120.7) (401.2 / 15.4)	(25.6 / 54.4) (390.0 / 170.9) (45.2 / 17.0)

Table 3.43: LogReg Class 3 weight ratio 1.0. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.870	0.852	0.839	0.445	(370.9 / 65.1)	(11.8 / 31.0)
trainCls-3	0.838	0.838	0.929	0.288	(3942.0 / 229.7)	(76.6 / 61.9)
testCls-3	0.792	0.798	0.925	0.246	(437.2 / 26.5)	(9.2 / 5.9)

Table 3.44: LogReg Class 3 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.879	0.855	0.832	0.626	(331.2 / 28.9)	(51.5 / 67.2)
trainCls-3	0.849	0.859	0.813	0.351	(3288.4 / 74.5)	(730.2 / 217.1)
testCls-3	0.795	0.805	0.804	0.318	(363.3 / 10.6)	(83.1 / 21.8)

Table 3.45: LogReg Class 3 weight ratio 1.5

3.1.7.4 Fine Tune Class 4 Weights

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.882	0.860	0.859	0.617	(357.1 / 41.7)	(25.6 / 54.4)
trainCls-4	0.937	0.942	0.960	0.531	(4038.6 / 72.9)	(100.6 / 98.1)
testCls-4	0.882	0.902	0.952	0.433	(447.1 / 10.2)	(12.7 / 8.8)

Table 3.46: LogReg Class 4 weight ratio 1.0

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.875	0.852	0.855	0.590	(359.2 / 45.9)	(23.5 / 50.2)
trainCls-4	0.928	0.932	0.965	0.397	(4108.1 / 120.9)	(31.1 / 50.1)
testCls-4	0.878	0.898	0.962	0.320	(456.0 / 14.6)	(3.8 / 4.4)

Table 3.47: LogReg Class 4 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.861	0.856	0.624	(352.4 / 38.8)	(30.3 / 57.3)
trainCls-4	0.941	0.947	0.936	0.462	(3918.1 / 53.2)	(221.1 / 117.8)
testCls-4	0.886	0.903	0.926	0.382	(432.5 / 8.0)	(27.3 / 11.0)

Table 3.48: LogReg Class 4 weight ratio 1.5. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.880	0.859	0.853	0.627	(348.9 / 36.7)	(33.8 / 59.4)
trainCls-4	0.943	0.950	0.917	0.429	(3817.7 / 36.5)	(321.5 / 134.5)
testCls-4	0.886	0.903	0.906	0.352	(421.8 / 6.8)	(38.0 / 12.2)

Table 3.49: LogReg Class 4 weight ratio 2.0

3.1.7.5 Fine Tune Class 5 Weights

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.861	0.856	0.624	(352.4 / 38.8)	(30.3 / 57.3)
trainCls-5	0.940	0.941	0.998	0.000	(4300.2 / 10.0)	(0.0 / 0.0)
testCls-5	0.393	0.681	0.998	0.000	(477.8 / 1.0)	(0.0 / 0.0)

Table 3.50: LogReg Class 5 weight ratio 1.0

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.861	0.856	0.624	(352.4 / 38.8)	(30.3 / 57.3)
trainCls-5	0.911	0.912	0.998	0.000	(4300.2 / 10.0)	
testCls-5	0.389	0.672	0.998	0.000	(477.8 / 1.0)	

Table 3.51: LogReg Class 5 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.861	0.856	0.624	(352.4 / 38.8)	(30.3 / 57.3)
trainCls-5	0.957	0.958	0.998	0.000	(4300.2 / 10.0)	(0.0 / 0.0)
testCls-5	0.396	0.687	0.998	0.000	(477.8 / 1.0)	(0.0 / 0.0)

Table 3.52: LogReg Class 5 weight ratio 1.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.861	0.856	0.624	(352.4 / 38.8)	(30.3 / 57.3)
trainCls-5		0.990	0.998	0.374	(4299.8 / 7.6)	(0.4 / 2.4)
testCls-5		0.694	0.998	0.000	(477.7 / 1.0)	(0.1 / 0.0)

Table 3.53: LogReg Class 5 weight ratio 5.0

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.861	0.855	0.623	(352.1 / 38.8)	(30.6 / 57.3)
trainCls-5	0.996	0.997	0.998	0.609	(4293.4 / 2.7)	(6.8 / 7.3)
testCls-5	0.402	0.696	0.996	0.000	(476.8 / 1.0)	(1.0 / 0.0)

Table 3.54: LogReg Class 5 weight ratio 10.0. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.881	0.860	0.854	0.622	(351.6 / 38.7)	(31.1 / 57.4)
trainCls-5	0.998	0.998	0.992	0.355	(4265.8 / 0.5)	(34.4 / 9.5)
testCls-5	0.381	0.616	0.989	0.000	(473.5 / 1.0)	(4.3 / 0.0)

Table 3.55: LogRegCls5-Wt20

3.1.7.6 Fine Tune Class 6 Weights

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.861	0.855	0.623	(352.1 / 38.8)	(30.6 / 57.3)
trainCls-6	0.945	0.962	0.976	0.303	(4182.5 / 70.8)	(34.1 / 22.8)
testCls-6	0.892	0.936	0.972	0.191	(463.9 / 8.8)	(4.5 / 1.6)

Table 3.56: LogReg Class 6 weight ratio 1.0

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.882	0.860	0.855	0.622	(352.1 / 38.9)	(30.6 / 57.2)
trainCls-6	0.938	0.956	0.978	0.006	(4216.5 / 93.3)	(0.1 / 0.3)
testCls-6	0.881	0.928	0.978	0.000	(468.3 / 10.4)	(0.1 / 0.0)

Table 3.57: LogReg Class 6 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.884	0.861	0.855	0.627	(350.8 / 37.6)	(31.9 / 58.5)
trainCls-6	0.950	0.967	0.949	0.380	(4023.8 / 26.4)	(192.8 / 67.2)
testCls-6	0.897	0.939	0.945	0.292	(447.0 / 5.0)	(21.4 / 5.4)

Table 3.58: LogReg Class 6 weight ratio 2.o. This option is chosen.

title	pr	roc	acc	l f1	conf (tn/fn)	conf (fp/tp)
fine	0.884	0.860	0.850	0.629	(346.6 / 35.5)	(36.1 / 60.6)
trainCls-6	0.952	0.969	0.921	0.335	(3885.8 / 8.3)	(330.8 / 85.3)
testCls-6	0.898	0.940	0.915	0.281	(430.5 / 2.6)	(37.9 / 7.8)

Table 3.59: LogReg Class 6 weight ratio 3.0

3.1.7.7 Fine Tune Class 7 Weights

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.884	0.862	0.855	0.628	(350.8 / 37.5)	(31.9 / 58.6)
trainCls-7	0.892	0.893	0.988	0.000	(4257.1 / 53.1)	(0.0 / 0.0)
testCls-7	0.648	0.720	0.988	0.000	(472.9 / 5.9)	(0.0 / 0.0)

Table 3.60: LogReg Class 7 weight ratio 1.0

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.884	0.861	0.855	0.627	(350.8 / 37.6)	(31.9 / 58.5)
trainCls-7	0.859	0.857	0.988	0.000	(4257.1 / 53.1)	(0.0 / 0.0)
testCls-7	0.636	0.708	0.988	0.000	(472.9 / 5.9)	(0.0 / 0.0)

Table 3.61: LogReg Class 7 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.885	0.863	0.855	0.632	(350.1 / 36.7)	(32.6 / 59.4)
trainCls-7	0.930	0.939	0.986	0.344	(4234.1 / 37.3)	(23.0 / 15.8)
testCls-7	0.667	0.739	0.983	0.105	(470.1 / 5.4)	(2.8 / 0.5)

Table 3.62: LogReg Class 7 weight ratio 3.0. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.883	0.860	0.847	0.628	(344.0 / 34.4)	(38.7 / 61.7)
trainCls-7	0.941	0.953	0.956	0.265	(4086.0 / 18.9)	(171.1 / 34.2)
testCls-7	0.674	0.744	0.948	0.099	(452.3 / 4.5)	(20.6 / 1.4)

Table 3.63: LogReg Class 7 weight ratio 5.0

3.1.7.8 Fine Tune Class 8 Weights

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.886	0.864	0.855	0.632	(350.1 / 36.6)	(32.6 / 59.5)
trainCls-8	0.967	0.978	0.982	0.453	(4199.8 / 36.1)	(42.0 / 32.3)
testCls-8	0.896	0.952	0.978	0.308	(465.7 / 5.2)	(5.5 / 2.4)

Table 3.64: LogReg Class 8 weight ratio 1.o. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.885	0.862	0.855	0.630	(350.4 / 37.0)	(32.3 / 59.1)
trainCls-8	0.961	0.972	0.984	0.253	(4229.6 / 56.7)	(12.2 / 11.7)
testCls-8	0.893	0.952	0.982	0.135	(469.5 / 6.8)	(1.7 / 0.8)

Table 3.65: LogReg Class 8 weight ratio 0.5

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
fine	0.886	0.864	0.855	0.632	(349.5 / 36.4)	(33.2 / 59.7)
trainCls-8	0.967	0.980	0.978	0.478	(4169.7 / 24.3)	(72.1 / 44.1)
testCls-8	0.892	0.947	0.973	0.376	(462.2 / 3.9)	(9.0 / 3.7)

Table 3.66: LogReg Class 8 weight ratio 1.5

3.1.8 Varying Logistic Regression Tolerance

There is an additional Logistic parameter for determining a tolerance for the stopping criteria. The default tolerance is 0.0001.

title pr	roc a	cc f1	conf (tn/fn)	conf (fp/tp)
coarse o.8	80 0.863 0 86 0.864 0	.668 0.517 .855 0.632	(234.8 / 11.1)) (147.9 / 85.0)) (32.6 / 59.5)

Table 3.67: LogReg results after fine tuning, effectively had a tolerance of 0.0001

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.880	0.862	0.668	0.518	(234.9 / 11.1 (350.1 / 36.7) (147.8 / 85.0)) (32.6 / 59.4)

Table 3.68: LogReg Tolerance 0.0001, notice that the fine pr and roc decreased by 0.001, and that the coarse roc decreased by 0.001 upon rerunning, there is some statistical variation in these metrics.

title pr	roc acc	f1 conf (tn/fn)	conf (fp/tp)
coarse 0.880	0.863 0.666	8 0.517 (234.7 / 11.1) (148.0 / 85.0)
fine 0.886	0.864 0.85	5 0.632 (350.1 / 36.6) (32.6 / 59.5)

Table 3.69: LogReg Tolerance 0.0001. This option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.880	0.862	0.668	0.517	(234.8 / 11.1 (350.1 / 36.7) (147.9 / 85.0)) (32.6 / 59.4)

Table 3.70: LogReg Tolerance 0.000001

3.1.9 Varied Sample Weight On Test Set and Dropping Intermediate ROC Curve Values

The sample weight, as stated previously, weights fine instances in the ROC and PR curves by the ratio of total number of instances in the test set divided by the total number of positives in the test set. This

weighting is performed identically on the coarse and fine classifier. The ROC curve library has a parameter to determine whether or not to drop some suboptimal thresholds which do not appear on a plotted ROC curve [2]. The default setting is to drop intermediate values True, which has the counterintuitive result of a roc curve having on the order of 150 points even though 497 points are passed to the roc curve library method. If drop intermediate values is set to false then the full 497 points are returned in the calculated roc curve.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.880 0.885	0.862	0.668	0.517	(234.8 / 11.1) (350.1 / 36.7)) (147.9 / 85.0)) (32.6 / 59.4)

Table 3.71: LogReg sample weights, drop intermediate values True. The default option is chosen.

title pr	roc acc	f1 conf (tn/fn)	conf (fp/tp)
coarse 0.649 fine 0.663	0.862 0.66 0.863 0.85	8 0.517 (234.8 / 11.1 5 0.632 (350.1 / 36.7	(147.9 / 85.0) (147.9 / 85.0) (147.9 / 85.0)

Table 3.72: LogReg no sample weights, drop intermediate values True

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.880 0.885	0.862	0.668	0.517	(234.8 / 11.1 (350.1 / 36.7) (147.9 / 85.0)) (32.6 / 59.4)

Table 3.73: LogReg sample weights, drop intermediate values False

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.649	0.862	0.668	0.517	(234.8 / 11.1 (350.1 / 36.7) (147.9 / 85.0)) (32.6 / 59.4)

Table 3.74: LogReg no sample weights, drop intermediate values False

3.1.10 Varied Logistic Regression Positive Class Weight For Full Dataset

The fine class weight for the subset of data is determined be to 7.5, this value should change and be linearly dependent upon the number of instances in the training set. The weight for the fine class is tuned using all of the data, the original value is the total number of instances in the train set divided by the total number of positives in the train set, which evaluates to 20.887. The previously determined fine class ratios are used in this analysis. The value selected is 23, this value along with 7.5 and the original values of 20.887 and

4.977 for a line with two points that define a function to map a weight original input to a new tuned weight output for all training set sizes.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.867	o.868 o.868	0.803	0.280	(1537.6 / 19.2) (1792.3 / 41.0)	(376.0 / 76.9) (121.2 / 55.1)

Table 3.75: LogReg entire dataset, weight 20.887

title pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse 0.8 fine 0.8	70 0.871 75 0.871	0.787 0.913	0.268 0.403	(1503.2 / 17.8) (1776.5 / 37.3)	(410.4 / 78.3) (137.1 / 58.8)

Table 3.76: LogReg entire dataset, weight 23.0. This option is chosen.

title	pr	roc	acc	f1	\parallel conf (tn/fn)	conf (fp/tp)
coarse fine	0.867	0.868 0.868	0.772 0.905	0.256	(1473.0 / 17.3 (1758.8 / 35.6) (440.6 / 78.8)) (154.8 / 60.6)

Table 3.77: LogReg entire dataset, weight 25.0.

3.1.11 Varying SVM Gamma

After the LogReg classifier is tuned with class weights, the SVM is ran again with the class weights determined by the LogReg classifier and a slight advantage for the fine grained classifier is demonstrated with the SVM as well. The SVM parameters for the Radial Basis Function kernel of Cost and Gamma are varied. The Cost is related to a penalty parameter for the error term and Gamma is the kernel coefficient and determines the relative size of the kernel. The default gamma setting is 0.002967 or (1/num-features) or (1/337). Default cost is actually 1.0, and the default class weight is balanced which weights each class by the number of instances it has in the train set, the same fine class weights used in the LogReg classifier are used in the SVM classifier instead of the SVM's default balanced option.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse	0.901	0.874	0.846	0.651	(336.0 / 27.2)	(46.7 / 68.9)
fine	0.896	0.865	0.871		(371.1 / 50.1)	(11.6 / 46.0)

Table 3.78: SVM Cost 1.0 Gamma 0.0029674

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.903	0.873	0.866	0.672	2 (348.9 / 30.4 (373.8 / 55.8) (33.8 / 65.7)) (8.9 / 40.3)

Table 3.79: SVM Cost 2.0 Gamma 0.0029674

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse	0.892	0.869	0.664 0.868	0.518	(231.5 / 9.8) (363.5 / 43.8)	(151.2 / 86.3) (19.2 / 52.3)

Table 3.80: SVM Cost 0.1 Gamma 0.0029674

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.883	0.860 0.853	0.591 0.858	0.474	(194.9 / 8.0) (370.1 / 55.5)	(187.8 / 88.1) (12.6 / 40.6)

Table 3.81: SVM Cost 0.05 Gamma 0.0029674

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.896	0.873 0.874	0.714 0.871	0.553	(257.5 / 11.6) (362.1 / 41.1)	(125.2 / 84.5) (20.6 / 55.0)

Table 3.82: SVM Cost 0.15 Gamma 0.0029674. This cost option is chosen.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse	0.899	0.875	0.755 0.871	0.584	(279.6 / 14.0) (362.1 / 41.2)	(103.1 / 82.1) (20.6 / 54.9)

Table 3.83: SVM Cost 0.2 Gamma 0.0029674.

3.1.12 Varying SVM Cost

title pr	roc acc	f1 conf (tn/fn)	conf (fp/tp)
coarse 0.894 fine 0.906	0.871 0.70 0.877 0.86	6 0.545 (253.6 / 11.7 9 0.646 (358.3 / 38.5	(129.1 / 84.4) (129.1 / 84.4) (124.4 / 57.6)

Table 3.84: SVM Cost 0.15 Gamma 0.002. This option for Cost and Gamma is chosen.

title pr	roc acc	f1	conf (tn/fn)	conf (fp/tp)
coarse 0.883	0.864 0.666	4 0.516	(232.1 / 10.3)	(150.6 / 85.8)
fine 0.900		3 0.641	(358.5 / 39.2)	(24.2 / 56.9)

Table 3.85: SVM Cost 0.15 Gamma 0.001

Chapter 4

Results and Analysis

4.1 SVM and LogReg Classifier Performance

Both the SVM and the LogReg classifiers show a slight advantage for the fine classifier over the coarse classifier in terms of the PR-AUC metric. The ROC-AUC metric is identical between fine and coarse for both classifiers or a slight advantage exists on the order of 0.001.

title	pr	roc	acc	f1	conf (tn/fn)	conf (fp/tp)
coarse fine	0.870	0.871	0.787	0.268	(1503.2 / 17.8) (1776.5 / 37.3)	(410.4 / 78.3) (137.1 / 58.8)

Table 4.1: LogReg entire dataset results after parameter tuning

title p	r roc	acc 1	f1	conf (tn/fn)	conf (fp/tp)
coarse of of o	.892 0.880 .898 0.882	0.866 0.942 0	0.347 0.485	(1669.5 / 24.8) (1839.0 / 41.5)	(244.1 / 71.3) (74.6 / 54.6)

Table 4.2: SVM entire dataset results after parameter tuning

The coarse classifier in both the LogReg and SVM classifier has a larger amount of false positives at the default threshold. A further examination of these values is shown in *Table 4.1* and *Table 4.3*. The figures plot the PR and the ROC curves for each of the 10 folds. Also each point on the PR and ROC curve has a corresponding F-measure or Accuracy value, these values are plotted on the graphs as well. The graphs demonstrate that the coarse and fine classifiers are virtually identical and a coarse threshold could be chosen to match the fine output for accuracy or f-measure or vice versa. The PR-AUC does show a slight advantage for Fine, which warrants application of the HAL algorithmn for this dataset.

Figure 4.1: Fine has a higher accuracy than coarse at the default threshold for the LogReg classifier.

Figure 4.2: The fine threshold occurs at a point on the pr-curve associated with a higher f-measure than the coarse curves for the LogReg classifier.

Figure 4.3: SVM results are similar between coarse and fine.

Figure 4.4: SVM results for PR-curves and F-measure have coarse and fine picking different parts of the curves for their respective thresholds, showing a slight advantage for fine at the default threshold.

4.2 Active vs Passive curves

The following plots were obtained with a round batch size of 100 and a starter set of 1040 instances out of the total 2098 instances. The plots are the average of 10 folds, for each fold a test set of 2010 containing representatives of each class was held out, out of the remaining 18088, the starter set was selected which again contained representatives of each class. Coarse and fine classifiers share the same starter set. During each round coarse and fine classifiers are trained on their corresponding sets, metrics are outputted on the

held out test set, then confidence estimates are ran on the remaining eligible instances. Eligible instances are kept in separate sets for coarse and fine, 100 of the most uncertain instances are removed from each eligible set and added to its corresponding coarse or fine set to be trained on for the next round.

4.2.1 Plots for Logistic Regression Active vs Passive curves

Figure 4.5: The PR AUC curves for rounds with the Logistic Regression classifier conforms to expectations, with Active-fine having the highest performance, and Active outperforming Passive for both coarse and fine classifier types.

Figure 4.6: The ROC AUC curves for rounds with the Logistic Regression classifier. The active curves beat out the passive curves for both coarse and fine. Note that Active Fine ROC curve doesn't converge to the Active Coarse ROC curve until round 40. This is contrasted to a dominance of the Active Fine PR curve after round 10.

Figure 4.7: The accuracy of the fine classifiers stays at roughly the same rate throughout the rounds, this is due to an effective weighting scheme for the fine grained classifiers. The F-measure also shows a dominance of Fine over Coarse and Active over Passive.

Further analysis is required to justify the difference in the Active Fine PR curve dominating after round 10 while the Active Fine ROC curve is still well below the Active Coarse at that round. The experiment is ran again with the Fine classifier running on the coarse instance set and vice versa, the results are shown in *Figure* ??. These results show that the expected relation of PR curve dominance for Active Fine over Active Coarse on a given instance set correlating to ROC curve dominance for those classifiers when trained on the exact same instance set.

(a) LogReg PR Curve Analysis

(b) LogReg ROC Curve Analysis

Figure 4.8: Note the Active Fine PR curve red line intersects with the Coarse trained on the Active Fine instance set at approximately round 40. This intersection occurs on the Roc curve as well. And similarly for the Active Coarse green line and the Fine trained on the Active Coarse instance set blue line.

4.2.2 Plots for SVM Active vs Passive curves

Figure 4.9: The PR AUC curves for rounds with SVM show little advantage for fine. The results are slightly different than the ones shown on 2/14 due to fixing a bug with the code that wasn't performing the preprocessing scaling for the SVM case at the same stage as it was being done for the logistic regression classifier.

Figure 4.10: The ROC curves show more of an advantage for coarse classifiers.

Figure 4.11: The accuracy for the coarse decreases sharply due to coarse predicting steadily more false positives, behaving similar to the Log Reg case. Fine accuracy is higher due to predicting less false positives than coarse. Fine also predicts less true positives, compare apx. 37 to apx. 60 t.p. for coarse at round 60.

Figure 4.12: The F-measure favors coarse, and trends to the same level for both coarse and fine.

4.3 Plots for FFR experiments

Figure 4.13: The strategy is changed from purchasing a set number of instances per round to having a set budget per round and spending a portion of that budget on fine and coarse grained labels. For this curve the fine and coarse grain labels both have a cost of 1. The purple 1.0 curve shows that if only fine grained labels are purchased, the highest performing PR-AUC can be obtained. The results are an average of 10 folds.

Figure 4.14: The fine cost is increased to 16. The budget for each iteration is 100, and for the case of the 0.5 curve, 50 instances are bought for coarse and 3.125 instances are bought for fine. The remainder 0.125 is then turned into a 0.125 chance for any round to purchase an extra fine label. The round size for the FFR 1.0 curve is very small, with only 7 labels purchased per iteration. The cost is to high for the fine label advantage to offset the decreased number of instances purchased.

Figure 4.15: This shows the iterations continuing through round 500, the curves with the higher fine rates eventually settle to the same end point that the curves with the high rates of coarse labels purchased achieved at previous iterations.

Figure 4.16: At fine cost 8 the FFR 0.0 rate is no longer the best option, 0.1 generally outperforms 0.0 slightly.

Figure 4.17: The extended picture of the FFR cost 8. The round size for FFR 1.0 is small, only 13 instances purchase per iteration.

Figure 4.18: At fine cost 4, FFR 0.3 appears to be the highest performing rate.

Figure 4.19: The fine cost 4 curves shown expanding the rounds 20-60.

Figure 4.20: At fine cost 2, the preferred rate jumps up to 0.8, similar to the cost 1 results.

Figure 4.21: The fine cost 2 curves shown expanding rounds 20-60.

Chapter 5

Conclusions and Future Work

I should probably do the Bandit experiments.

Bibliography

- [1] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997. 1.1
- [2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011. 1.1, 3.1, 3.1.1, 3.1.2, 3.1.3, 3.1.9
- [3] W. Luo, A. Schwing, and R. Urtasun, "Latent structured active learning," in *Advances in Neural Information Processing Systems (NIPS)*, 2013.
- [4] S. Dasgupta and D. Hsu, "Hierarchical sampling for active learning," *Proceedings of the 25th international conference on Machine learning ICML '08*, pp. 208–215, 2008. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1390156.1390183
- [5] A. Merialdo, "Improving Collaborative Filtering For New-Users By Smart Object Selection," In Proceedings of International Conference on Media Features (ICMF), May 2001. [Online]. Available: http://www.eurecom.fr/publication/670/thtps://www.eurecom.fr/fr/publication/670/download/mm-kohrar-010508.pdf
- [6] X. Ling and D. Weld, "Fine-grained entity recognition," *Proceedings of the 26th Conference on Artificial Inteligence*, 2012. [Online]. Available: http://www.cs.washington.edu/ai/pubs/ling-aaai12.pdfhttp://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/download/5152/5124
- [7] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, "API design for machine learning software: experiences from the scikit-learn project," in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 2013, pp. 108–122.