Scilab Textbook Companion for Elements Of Electrical Science by P. Mukhopadhyay, A. K. Pant, D. S. Chitore And V. Kumar¹

Created by
Ankit Kumar
B.TECH
Electrical Engineering
Krishna Institute Of Engineering And Technology
College Teacher
Swati
Cross-Checked by
Prathan Mehta

June 3, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements Of Electrical Science

Author: P. Mukhopadhyay, A. K. Pant, D. S. Chitore And V. Kumar

Publisher: Nem Chand & Bros, Roorkee

Edition: 2

Year: 1997

ISBN: 81-85240-65-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	ELECTRIC CIRCUITS	5
3	MAGNETIC CIRCUITS	17
4	TRANSFORMERS	21
5	ELECTRICAL MEASUREMENTS	30
6	ROTATING ELECTRICAL MACHINE	39
7	ELECTROTHERMAL ENERGY CONVERSION	50

List of Scilab Codes

Exa 2.1	current
Exa 2.2	current
Exa 2.3	current
Exa 2.4	current
Exa 2.5	Norton and Thevenine Euivalent Components
Exa 2.6	current
Exa 2.7	Nortoan Euivalent Components
Exa 2.8	current equation and time
Exa 2.9	time
Exa 2.10	current
Exa 2.11	average and rms value of current
Exa 2.12	circuit elements
Exa 2.13	voltmeter reading
Exa 2.14	circuit elements
Exa 2.15	circuit constants
Exa 3.1	ampere turns
Exa 3.2	kb and ke and hysteresis and eddy current loss 18
Exa 3.3	hysteresis loss
Exa 3.4	ampere turns
Exa 4.1	number of turns
Exa 4.2	two components of no load current and magnetising and
	working components of esciting current
Exa 4.3	current
Exa 4.4	core losses
Exa 4.5	efficiency and percentage of full load
Exa 4.6	all day efficiency
Exa 4.7	iron losses

Exa 4.8	equivalent value of resistances reactances and impedances	
	and total copper losses	26
Exa 4.9	equivalent circuit components regulation of transformer	
	and efficiency	27
Exa 5.1	resistance	30
Exa 5.2	resistance	31
Exa 5.3	power factor	31
Exa 5.4	current	32
Exa 5.5	resistance and readings	33
Exa 5.6	multiplier resistance and voltmeter sensivity	33
Exa 5.7	apparent resistance actual resistance and error	34
Exa 5.8	resolution	35
Exa 5.9	resolution	35
Exa 5.10	true resistance of the unknown resistor percentage error	
	and reading voltmeter	36
Exa 5.11	resistance	36
Exa 5.12	load	37
Exa 6.1	terminal voltage	39
Exa 6.2	induced emf	40
Exa 6.3	speed torque and efficiency	40
Exa 6.4	speed	41
Exa 6.5	power absorbed	42
Exa 6.6	emf generated copper losses output and commercial me-	
	chanical and electrical efficiencies	43
Exa 6.7	resistance	44
Exa 6.8	resistance and speed	44
Exa 6.9	speed	45
Exa 6.10	speed and frequency	46
Exa 6.11	current per phase and power factor	47
Exa 6.12	emf	47
Exa 7.1	length and width	50
Exa 7.2	power required	51
Exa 7.3	voltage and current	51

Chapter 2

ELECTRIC CIRCUITS

Scilab code Exa 2.1 current

```
1 // Example 2.1 : current
2 clc;
3 close;
4 clear;
5 format('v',7)
6 // given :
7 / 15*I1-5*I2=10 loop 1 equation
8 //20*I2-5*I1-5*I3=0 loop 2 equation
9 //10*I3-5*I2=0 loop 3 equation
10 vs=10; //voltage in volts
11 R1=10; // resistance in ohm
12 R2=5; //resistance in ohm
13 R3=10; // resistance in ohm
14 R4=5; //resistance in ohm
15 R5=4; // resistance in ohm
16 Ra=1; //resistance in ohm
17 A = [R1+R2 R2-R1 0; R2-R1 R2+R3+R4 -R4; R4-(R5+Ra) -R4]
     R4+R5+Ra]; // making equations
18 nb=7; //number of branches
19 nn=5;//number of nodes
20 nl=nb-(nn-1); // number of loops
```

Scilab code Exa 2.2 current

```
1 // Example 2.2 :current
2 clc;
3 close;
4 clear;
5 // given :
6 vs1=72; //voltage in volts
7 vs2=40; // voltage in volts
8 R1=36; //resistance in ohm
9 R2=10; // resistance in ohm
10 ig=2; //current in amperes
11 Rx=8; // resistance in ohm
12 / (va-72)/36+(va-40)/10 -2 +va/8=0 node equation at
13 va=((R2*Rx*vs1)+(R1*Rx*vs2)+(R1*R2*Rx*ig))/((R2*Rx)
      +(R1*Rx)+(R1*R2));//voltage in volts
14 ix1=va/Rx; //current in amperes
15 / (R1+R2)*I1-R2*I2+vs2=vs1 loop equation 1
16 / R2*I2-R2*I1+Ix*Rx=vs2 loop equation 2
17 / Ix = I2 + 2
18 A = [R1+R2 -R2; -R2 R2+Rx]; // making equations
19 B=[vs1-vs2; vs2-2*Rx]; //making equations
20 X=A\setminus B; //solving equations
21 ix2=X(2,1)+ig;//current in amperes
```

Scilab code Exa 2.3 current

```
1 // Example 2.3 :current
2 clc;
3 close;
4 clear;
5 format('v',7)
6 // given :
7 vs1=10; // voltage in volts
8 i5=2;//current in amperes
9 i2=i5;//current
10 r1=1; // resistance in ohms
11 r2=5; // resistance in ohms
12 r3=5; // resistance in ohms
13 rl=10; //resistance in ohms
14 r4=5; // resistance ohms
15 / (r1+r2+r3)*i1-r2*i2-r3*i3=vs1 loop equaion 1
16 //-r2*i1-(r1+r2)*i2+(r1+r2+r3)*i3=0 loop equation 2
17 A = [4*(r1+r2+r3) -r2*4; -r2 (r1+r2+r3)]; // making
      equations
18 B=[4*(vs1+r2*i2) ; i2*(r2+r3)]; // making equations
19 X=A\setminus B; //solving equations
20 il=i2-X(2,1); // calculating current
21 disp(il, "current through Rl is (from b to a), (A)=")
```

Scilab code Exa 2.4 current

```
1 // Example 2.4 : current
```

```
2 clc;
3 close;
4 clear;
5 format('v',7)
6 // given :
7 vs1=72; // voltage in volts
8 vs2=40; // voltage in volts
9 R1=36; //resistance in ohms
10 R2=10; //resistance in ohms
11 ig=2; //current in amperes
12 Rx=8; // resistance in ohms
13 disp("Applying Thevenins Theorem")
14 / (vs1-voc)/R1+(v40-voc)/R2 +2 =0 node equation at 1
15 voc=(R2*vs1+R1*vs2+R1*R2*ig)/(R1+R2);/voltage in
      volts
16 req=(R1*R2)/(R1+R2);//resistance in ohms
17 ix1=(voc)/(req+Rx);//resistance in ohms
18 disp(ix1, "current through Rx is, (A)")
19 disp("Applying Nortons Theorem")
20 Is=(vs1/R1)+(vs2/R2)+ig;//current in amperes
21 ix2=(req*(Is/(Rx+req)));//current in amperes
22 disp(ix2,"current through Rx is, (A) =")
```

Scilab code Exa 2.5 Norton and Thevenine Euivalent Components

```
// Example 2.5 : Thevenin's and Norton's Equivalent
clc;
close;
format('v',7)
clear;
// given :
vs1=10;//voltage in volts
R1=50;//resistance in ohms
R2=50;//resistance in ohms
R3=25;//resistance in ohms
```

```
disp("(a) Applying Thevenins Theorem ")
voc=(R1/(R1+R2))*vs1;//voltage in volts
req=((R1*R2)/(R1+R2))+R3;//resistance in ohms
disp(voc, "Thevenin equivalent open circuit voltage is, (V)=")
disp(t=req, "Thevenin equivalent resistance is, (Ohm)= ")
disp("(b) Applying Nortons Theorem ")
Isc=((vs1)/(R1+(R1*R3)/(R1+R3)))*(R1/(R1+R3));//
req=((R1*R2)/(R1+R2))+R3;//resistance in ohms
disp(Isc, "Norton short circuit current is, (A)=")
disp(t=req, "Norton equivalent resistance is, (Ohm)=")
```

Scilab code Exa 2.6 current

```
1 // Example 2.6 : current
2 clc:
3 close;
4 format('v',7)
5 clear;
6 // given :
7 vs1=10;//voltage volts
8 r1=100; //resistance in ohms
9 r2=600; //resistance in ohms
10 r3=150; //resistance in ohms
11 r4=850; //resistance in ohms
12 rx=50; //resistance in ohms
13 voc=vs1*((r3/(r1+r3))-(r4/(r2+r4)));//open circuit
      voltage in volts
14 \text{ req} = ((r1*r3)/(r1+r3)) + ((r2*r4)/(r2+r4)); // \text{equivalent}
       resistance in ohms
15 ix=voc/(req+rx)*10^3;//current in amperes
16 disp(ix, "current through Rx is (from A to B), (mA)=")
```

Scilab code Exa 2.7 Nortoan Euivalent Components

```
1 // Example 2.7 : Norton's Equivalent
2 clc;
3 close;
4 clear;
5 // given :
6 vs1=40; // volts
7 vs2=20; //volts
8 r1=2; //resistance in ohms
9 r2=6;//resistance in ohms
10 r3=2; //resistance in ohms
11 r4=2; // resistance in ohms
12 iab=((r1*vs1)/(r2+(r1/2))*((r1+(r3/2))/(r1+r3)));
     current in amperes
13 iab1=-vs2/r1;//current amperes
14 it=iab+iab1;//current amperes
15 req1=r1+((r1*r2)/(r1+r2)); // equivalent resistance in
16 req=(req1*r3)/(req1+r3);//equivalent resistance in
17 disp(it, "current is, (A)")
18 disp(req, "equivalent resistance is, (ohm)=")
```

Scilab code Exa 2.8 current equation and time

```
1 // Example 2.8: equation of current and time
2 clc;
3 close;
4 clear;
5 format('v',6)
6 // given :
```

```
7 v=100; // voltage in volts
8 r=100; // resistance in ohms
9 l=0.2; // inductance in henrty
10 T=1/(1/r); // calculating time in seconds
11 t=500; // time in micro seconds
12 i1=1-exp(-T*t*10^-6); // current in amperes
13 disp(i1, "current is (when t=500 micro seconds), (A)=")
14 v2=50; // voltage in volts
15 x=v2/r; // variab; e
16 x1=x*((v2/r)+i1); // variable
17 t1=t+(10^6*(x1/500)); // time in seconds
18 disp(ceil(t1), "time at which current will be zero is , (micro-seconds)=")
19 // time is caluclated wrong in the textbook as they had not added the values
```

Scilab code Exa 2.9 time

```
1 // Example 2.9 : time
2 clc;
3 close;
4 format('v',6)
5 clear;
6 // given :
7 v=10; //voltage in volts
8 r1=500; // resistance in ohms
9 is=0;//current in amperes
10 r=700; // resistance in ohms
11 c=100; //capacitance in micro farads
12 x=1/(r*c*10^-6); // variable
13 i=30; //current in mA
14 y=(i*10^-3)-(v/r1);//variable
15 t=-((log(y*(r/v))));//time in seconds
16 t1=t/x;//time in seconds
```

```
17 disp(t1,"time is ,(seconds)=")
```

Scilab code Exa 2.10 current

```
1 // Example 2.10 : current equation
2 clc;
3 close;
4 clear;
5 // given :
6 format('v',5)
7 v = 100; // volts
8 \text{ r=50;} //\text{in ohms}
9 1=0.1; //henry
10 c=50; //mf
11 d=poly(0,"d")
12 p=2*10^5+500*d+d^2;
13 x = roots(p)
14 c1=0; // at t=0 i=0
15 c2=1000/imag(x(1,1));//
16 disp("it= "+string(c2)+"*e^"+string(real(x(1,1)))+"t
      *sin"+string(imag(x(1,1)))+"t A")
```

Scilab code Exa 2.11 average and rms value of current

```
// Example 2.11 :average & rms value
clc;
close;
format('v',6)
clear;
// given :
vm=10;//voltage in volts
e=vm/2;//voltage in volts
t=0:2;//time range
```

```
10 x=intsplin(t,(5*t)^2);//variab;e
11 rms = sqrt(x/2); //rms value of voltage in volts
12 av=vm/2; //average value of voltage in volts
13 disp("parts (a) saw tooth wave")
14 disp(rms, "rms value of e is (V)=")
15 disp(av, "average value of e is (V)=")
16 t1=0; //initial time in seconds
17 t2=%pi; // final time in seconds
18 t3=2*%pi;//time interval
19 x=integrate('(sin(t))^2', 't', t1, t2); // variable
20 rms = sqrt((1/(2*\%pi))*x*vm^2); //rms value of voltage
     in volts
21 av=(10/(2*%pi))*integrate('sin(t)','t',t1,t2);//
      average value of voltage in volts
22 disp("parts (b) half wave rectified sine wave form")
23 disp(rms, "rms value of e is (V)=")
24 disp(av, "average value of e is (V)=")
```

Scilab code Exa 2.12 circuit elements

```
// Example 2.12 : Circuit constants
clc;
close;
format('v',6)
clear;
// given :
//v=194*cos(800*t+150)V Voltage equation
//I=11.6*cos(800*t+140)A Current equation
vm=194/sqrt(2);//voltage in volts
va=150;//angle in degree
im=11.6/sqrt(2);//current in amperes
ia=140;//angle in degree
zm=vm/im;//resistance in ohms
za=va-ia;//resistance in ohms
z1=zm*cosd(za);//reactance in ohms
```

```
16 z2=zm*sind(za);//reactance in ohms
17 z=z1+%i*z2; //resistance in ohms
18 disp("part (a)")
19 disp(z, "Impedance is ,(Ohm)=")
20 disp("part (b)")
21 / v = 6 \cdot \sin(1000 \cdot t + 45)V Voltage equation
\frac{1}{2} / I = 12 * \cos(1000 t - 90) A current equation
23 \text{ vm1=60/sqrt(2);}//\text{voltage in volts}
24 va1=45; //angle in degree
25 im1=12/sqrt(2);//current in amperes
26 ia1=0; //angle in degree
27 zm1=vm1/im1;//resistance in ohms
28 za1=va1-ia1; //resistance in ohms
29 z11=zm1*cosd(za1);//reactance in ohms
30 z21=zm1*sind(za1);//reactance in ohms
31 z22=z11+%i*z21;//impedance in ohms
32 disp(z22, "Impedance is ,(Ohm)=")
```

Scilab code Exa 2.13 voltmeter reading

```
1 // Example 2.13 :reading
2 clc;
3 close;
4 format('v',8)
5 clear;
6 // given :
7 v1=230; // voltage in volts
8 v2=100; // voltage in volts
9 v2=sqrt(v1^2-v2^2); // voltage in volts
10 v3=300; // voltage in volts
11 disp(v2, "reading V2 is, (V)")
12 disp("reading V4 is "+string(v3+v2)+" V or "+string(v3-v2)+" V")
```

Scilab code Exa 2.14 circuit elements

```
1 // Example 2.14 : circuit elements
2 clc;
3 close;
4 format('v',6)
5 // given :
6 //v=311*\sin(2500*t+170) V voltage equation
7 //I = 15.5 * \sin(2500 * t - 145)A current equation
8 vm=311/sqrt(2);//voltage in volts
9 va=170;//angle in degree
10 im=15.5/sqrt(2);//current in amperes
11 ia=-145; //angle in degree
12 zm=vm/im; // resistance in ohms
13 za=(va-ia)-360; // resistance ohms
14 z1=zm*cosd(za);//resistance in ohms
15 z2=zm*sind(za);//resistance in ohms
16 z=z1+%i*z2;//resistance in ohms
17 t=2500; //time in seconds
18 c=(1/(real(z)*t)); // capacitance in farads
19 disp(z, "Impedance is ,(Ohm)=")
20 disp(c*10^6, "capacitance is , (micro-farads)=")
```

Scilab code Exa 2.15 circuit constants

```
1 // Example 2.15 : parameters
2 clc;
3 close;
4 format('v',6)
5 // given :
6 z=40+%i*30;//resistance in ohms
7 zph=sqrt(real(z)^2+imag(z)^2);//resistance in ohms
```

```
8 pf=real(z)/zph;//power factor
9 v=400; //voltage in volts
10 vp=v/(sqrt(3));//voltage in volts
11 pc=vp/zph;//current in amperes
12 lv=v; // voltage in volts
13 lc=pc; //current om amperes
14 p=sqrt(3)*v*lc*pf;//power in watts
15 disp("part (a) Star")
16 disp(round(vp), "phase voltage, (V)=")
17 disp(round(pc), "phase current,(A)=")
18 disp(lv, "line voltage (V)=")
19 disp(lc, "line current, (A)=")
20 \operatorname{disp}(p, "power, (W)=")
21 z1 = 40 + \%i * 30; //ohms
22 zph1=sqrt(real(z1)^2+imag(z1)^2);//ohms
23 pf1=real(z1)/zph1;//power factor
24 \text{ v1} = 400; //\text{volts}
25 vp1=v1; //volts
26 pc1=vp1/zph1; //amperes
27 \text{ lv1=v1;}//\text{volts}
28 lc1=pc1*sqrt(3);//amperes
29 p1=sqrt(3)*v1*lc1*pf1;//watts
30 disp("part (b) Delta")
31 disp(round(vp1), "phase voltage, (V)=")
32 disp(round(pc1), "phase current, (A)=")
33 disp(lv1, "line voltage (V)=")
34 disp(lc1,"line current,(A)=")
35 disp(p1, "power, (W)=")
```

Chapter 3

MAGNETIC CIRCUITS

Scilab code Exa 3.1 ampere turns

```
1 // Example 3.1; amper-turns
2 clc;
3 close;
4 clear;
5 // given :
6 format('v',7)
7 bt=[2;2.5;3.0];//making equations from Table
8 H=[400;600;800];//making equations from Tble
9 fsl=10^-3; //Flux in Wb
10 cal=4*10^-4; // area in m^2
11 fdl=fsl/cal;//magnetic field in Tesla
12 hl=H(2); //AT/m
13 pll=0.57; //lenth in meter (path length 2345)
14 at2345=pll*hl;//ampere turns
15 fcl=2*10^-3; // magnetic field in Wb
16 fdcl=fcl/cal;//in Tesla
17 hcl=H(1); //in AT/m
18 lcl=169; //length in mm
19 atcl=(lcl*10^-3)*hcl;//ampere turns
20 l=1; //length mm
21 Hl = ((4*\%pi))*10^-7; //AT/m
```

```
22 atrg=fcl/H1;//AT
23 tat=at2345+atcl+atrg;//total ampere turns
24 disp(tat,"total ampere-turns required is, (AT)=")
```

Scilab code Exa 3.2 kb and ke and hysteresis and eddy current loss

```
1 // Example 3.2; Kb , Ke and hystresis and eddy
      current loss
2 clc:
3 close;
4 clear;
5 // given :
6 format('v',7)
7 f1=50; //frequency in Hz
8 f2=25; //frequency in Hz
9 p1=30.1; //power in W
10 p2=12.4; //power in W
11 A=[f1 f1^2; f2 f2^2]; // making equations
12 B=[p1;p2];///making equations
13 X=A\setminus B; // calculating parameters
14 disp("part (a) Kb and Ke")
15 disp(X(1,1), "Kh is")
16 disp(X(2,1), "Ke is")
17 h25=X(1,1)*f2;//calculating parameters
18 e25=X(2,1)*f2^2; // calculating parameters
19 h50=X(1,1)*f1;//calculating parameters
20 e50=X(2,1)*f1^2;//calculating parameters
21 disp("part (b) hystresis and eddy current loss")
22 disp(h25," hysteresis loss at 25 Hz is , (W)=")
23 disp(e25,"eddy current loss at 25 Hz is (W)=")
24 disp(h50," hysteresis loss at 50 Hz is (W)=")
25 disp(e50, "eddy current loss at 50 Hz is ,(W)=")
26 \text{ W} = 40; //\text{kg}
27 h50=X(1,1)*f1;//calculating parameters
28 e50=X(2,1)*f1^2;//calculating parameters
```

```
29 disp("part (c) hystresis and eddy current loss")
30 disp(h50/W," hysteresis loss per kg at 50 Hz is ,(W)=
    ")
31 disp(e50/W,"eddy current loss per kg at 50 Hz is ,(W
    )=")
```

Scilab code Exa 3.3 hysteresis loss

```
1 // Example 3.3; hystresis loss per Kg
2 clc;
3 close;
4 clear;
5 // given :
6 format('v',7)
7 l=10; //lengh in mm
8 atm = 200; //AT/m
9 a=4800; // area in m^2
10 loss=atm*(1*10^-2)*(a/100); //loss in J/m^3/cycle
11 d=7.8*10^3; //kg/m^3
12 vikg=1/d; //m^3
13 loss1=loss*vikg;//J/cycle
14 f=50; //Hz
15 tl=loss1*f;//J/s
16 disp(t1, "hystersis loss is (W/kg)=")
```

Scilab code Exa 3.4 ampere turns

```
1  // Example 3.4; amper-turns
2  clc;
3  close;
4  clear;
5  // given :
6  format('v',7)
```

```
7 r=150; // length in mm
8 t=12; // torque in N-m
9 f=t/(r*10^-3); // force in N
10 np=2; //no. of poles
11 fp=f/np; // force per pole in N
12 A=400; // area mm^2
13 mu=4*%pi*10^-7; //
14 b=sqrt((fp*2*mu)/(A*10^-6)); // magnetic field in Tesla
15 H=b/mu; // in AT/m
16 tar=2*0.6*10^-3; // length in meter
17 atr=H*tar; // AT
18 disp(atr, "ampere turn required is, (AT)=")
19 // answer is wrong in the textbook
```

Chapter 4

TRANSFORMERS

Scilab code Exa 4.1 number of turns

```
1 // Example 4.1; NUMBER OF TURNS
2 clc;
3 close;
4 clear;
5 // given :
6 format('v',7)
7 e1=2200; //voltage in volts
8 f=50; //frequency in Hz
9 e2=220;//voltage in volts
10 fd=1.6; //magnetic field in Tesla
11 a=3600; //area in mm^2
12 n1=(e1/(4.44*f*fd*a*10^-6)); //number of turns
13 n2=(e2/(4.44*f*fd*a*10^-6));/number of turns
14 disp(round(n1), "number of primary winding turns are"
15 disp(round(n2), "number of secondary winding turns
     are")
```

Scilab code Exa 4.2 two components of no load current and magnetising and working components of esciting current

```
1 // Example 4.2; components of no load currents,
     magnetising and working components of exciting
     current
2 clc;
3 close;
4 clear;
5 // given
6 format('v',6)
7 disp("part (a)")
8 nlw=2000; //no load input watts
9 pv=11000;//primary voltage
10 Iw=nlw/pv;//current in amperes
11 Io=0.6; //current in amperes
12 Imu=sqrt(Io^2-Iw^2);//current in amperes
13 disp(Iw, "iron loss current is, (A)=")
14 disp(Imu, "magnetising component is, (A)=")
15 pf=0.2;//power factpr
16 Io=0.5; //current in amperes
17 Iw=Io*(pf);//current in amperes
18 Imu=Io*sqrt(1-pf^2);//magnetising component in
     amperes
19 disp(" part (b)")
20 disp(Iw, "iron loss current is, (A)=")
21 disp(Imu, "magnetising component is, (A)=")
```

Scilab code Exa 4.3 current

```
1 // Example 4.3; current
2 clc;
3 close;
4 clear;
5 // given
```

```
format('v',6)
pf1=0.866;//power factor
pf2=0.1736;//power factor
ph1=acosd(pf1);//phase angle in degree
ph2=acosd(pf2);//phase angle in degree
ir=120;//current in amperes
n2=110;//number of turns
n1=440;//number of turns
i2d=(n2/n1)*ir;//current in amperes
io=5;//current in amperes
aioi2=ph2-ph1;//change in angle in degree
i1=sqrt(io^2+i2d^2+(2*io*i2d*cosd(aioi2)));//current in amperes
disp(i1,"current is, (A)=")
```

Scilab code Exa 4.4 core losses

```
1 // Example 4.4; core losses
2 clc;
3 close;
4 clear;
5 format('v',6)
6 // given
7 f=50; // frquency in Hz
8 hl=650; // hystresis loss
9 edl=400; // eddy current loss
10 A=hl/f; // parameter
11 B=edl/f^2; // parameter
12 Ph=A*2*f; // loss in watts
13 Pe=B*(2*f)^2; // loss in watts
14 pt=Ph+Pe; // total loss in watts
15 disp(pt," total core losses is, (W)")
```

Scilab code Exa 4.5 efficiency and percentage of full load

```
1 // Example 4.5; efficiency and load for maximum
      efficiency
2 clc;
3 close;
4 clear;
5 format('v',5)
6 // given
7 cl=125; //copper losses
8 fcl=2^2*cl;//full load copper losses
9 il=457; //iron losses
10 pf=0.8; //power factor
11 kba=30; //loss
12 disp("part (a)")
13 fle=((kba*pf)/((kba*pf)+(fcl+il)*10^-3))*100; // full
     load efficiency in %
14 disp(fle, "full load efficiency at 0.8 pf is, (\%)=")
15 lme=kba*sqrt(il/fcl);//variable
16 pfl=(lme/kba)*100;//percentage of full load on which
       efficiency will be maximum
17 disp("part (b)")
18 disp(pfl," percentage of full load on which
      efficiency will be maximum is (\%)=")
```

Scilab code Exa 4.6 all day efficiency

```
1 // Example 4.6; all day efficiency
2 clc;
3 close;
4 clear;
5 //given
6 format('v',5)
7 ef=0.98;//efficiency in %
8 kva=15;//kVA
```

```
9 pf=1;//power factor
10 op=kva*pf;//output power in kW
11 ip=op/ef;//input power in kW
12 loss=ip-op; //loss in kW
13 cl=(loss*10^3)/2;//copper loss in W
14 il=cl;//iron loss in W
15 t1=12; //time in hours
16 p1=2; //power in kW
17 pf1=0.5; //power factor
18 y1=(p1)/pf1; //kVA
19 il1=il*t1; //\log s in Wh
20 cl1=cl*((y1)/kva)^2*t1;//copper loss in Wh
21 top1=p1*t1; //kWht1=12; //time in hours
22 t2=6; //time in hours
23 p2=12; //power in kW
24 pf2=0.8; //power factor
25 y2=(p2)/pf2;/kVA
26 il2=il*t2;//iron loss in Wh
27 \text{ cl2=cl*((y2/kva)^2)*t2;//copper loss in Wh}
28 top2=p2*t2; //kWh
29 t3=6; //time in hours
30 il3=il*t3; //iron loss Wh
31 tol=top1+top2; //iron loss kWh
32 \text{ til} = (il1+il2+il3)*10^-3; // total iron loss in kWh
33 tcl=(cl1+cl2)*10^-3; // total copper loss in kWh
34 ade=((tol)/(tol+til+tcl))*100;//efficiency in \%
35 disp(ade," all day efficiency is (\%)=")
```

Scilab code Exa 4.7 iron losses

```
1 // Example 4.7; iron losses
2 clc;
3 close;
4 clear;
5 // given
```

```
6 format('v',6)
7 kva=200; //kVA
8 pf=0.8;//power factor
9 rflo=kva*pf; /kW
10 ef = 0.96; // efficiency
11 ip=rflo/ef;/kW
12 tl=ip-rflo;/kW
13 e2=800; // volts
14 e1=6600; // volts
15 n21=((e2/sqrt(3))/e1);//turn ratiom
16 r1=4; //ohms
17 r2=0.05; //ohms
18 roe=(r1)*n21^2+r2;//ohms
19 fli=((kva*10^3)/(sqrt(3)*e2));//amperes
20 fcl=3*fli^2*roe; //kW
21 il=tl-(fcl)*10^-3; //kW
22 disp(il, "iron losses is,(kW)=")
```

Scilab code Exa 4.8 equivalent value of resistances reactances and impedances and total copper losses

```
14 i2 = (kva*10^3)/e2; //in amperes
15 k=e2/e1; //transformation ratio
16 ro1=r1+(r2/k^2); //ohms
17 xo1=x1+(x2/k^2); //ohms
18 ro2=r2+(k^2*r1); //ohms
19 xo2=k^2*xo1; //ohms
20 zo1=sqrt(ro1^2+xo1^2);//ohms
21 zo2=sqrt(ro2^2+xo2^2);//ohms
22 disp("part (a) ")
23 disp(ro1, "equivalent resistance referred to the
      primary is , (Ohm)=")
24 disp(xo1, "equivalent reactance referred to the
      primary is ,(Ohm)=")
  disp(ro2, "equivalent resistance referred to the
      secondary is , (Ohm)=")
  disp(xo2, "equivalent reactance referred to the
      secondary is , (Ohm)=")
  disp(zo1, "equivalent impedance referred to the
      primary is , (Ohm)=")
  disp(zo2, "equivalent impedance referred to the
28
      secondary is ,(Ohm)=")
29 disp("part (b) ")
30 tcl=i1^2*r1+i2^2*r2; //in watts
31 tcl1=i1^2*ro1; //in watts
32 tcl2=i2^2*ro2; //in watts
33 disp(tcl,"total copper losses considering individual
       resistance is (W)=")
34 disp(tcl1," total copper losses consdering equivalent
       resistance (for primary) is ,(W)=")
35 disp(tcl2," total copper losses consdering equivalent
       resistance (for secondary) is, (W)=")
36 //copper losses are caculated wrong in the textbook
```

Scilab code Exa 4.9 equivalent circuit components regulation of transformer and efficiency

```
1 // Example 4.9; parameter of primary side , regulation
       and efficiency
2 \text{ clc};
3 close;
4 clear;
5 //given
6 format('v',6)
7 po=100; // watts
8 v1 = 200; // volts
9 io=1; // amperes
10 ocpf=po/(v1*io);//open circuit power factor
11 sinpf=sqrt(1-ocpf^2);//
12 im=io*sinpf;//in amperes
13 iw=io*ocpf;//current in amperes
14 rm=v1/iw; //ohms
15 \text{ xm}=\text{v1/im};//\text{in ohms}
16 vs=15; // volts
17 ia=10; //amperes
18 zo2=vs/ia;//in ohms
19 wa=85; // watts
20 ro2=wa/(ia)^2;//ohms
21 e2=400; // volts
22 e1=200; // volts
23 k=e2/e1;//transformation ratio
24 zo1=zo2/k^2; //ohms
25 ro1=ro2/k^2; //ohms
26 xo1=sqrt(zo1^2-ro1^2);//ohms
27 disp(" part (a)")
28 disp(im, "magnetising component of no load current (
      Im) is (A)=")
  disp(iw, "working component of no load current (Iw)
      is (A)=")
30 disp(rm," resistance for primary side
                                             (Rm) is (Ohm)=
31 disp(xm, "reactance for primary ohms (Xm) is, (Ohm)=")
32 disp(xo1, "impedence for primary side (X01) is, (Ohm)=
      ")
33 disp("part (b)")
```

```
34 \text{ kva} = 4000; //\text{kVA}
35 i2=kva/e2;//in amperes
36 \text{ xo2=sqrt}(zo2^2-ro2^2); //ohms
37 pf=0.8; // power factor
38 \text{ vlag}=i2*(ro2*pf+xo2*sqrt(1-pf^2)); //in volts
39 prld=(vlag*po)/e2;//
40 vlag1=i2*(ro2*pf-xo2*sqrt(1-pf^2)); //in volts
41 prld1=(vlag1*po)/e2;//
42 disp(prld," percentage regulation on lagging load is
      ,(\%)=")
43 disp(prld1," percentage regulation on leading load is
      , (\%) = ")
44 disp("part (c)")
45 cl=85; // copper losses
46 nloss=100; //no load losses
47 fll=cl+nloss;//full load losses
48 pf=0.8; //power factor
49 flo=kva*pf;//efficiency
50 effl=flo/(flo+fll); // efficiency
51 hll=(1/2)^2*cl+nloss; //loss in watts
52 op=(1/2)*kva*pf;//ouput power in watts
53 efhl=op/(hll+op);//efficiency at half load
54 disp(effl*100, "efficiency at full load is, (\%)=")
55 disp(efhl*100, "efficiency at half load is, (\%)=")
```

Chapter 5

ELECTRICAL MEASUREMENTS

Scilab code Exa 5.1 resistance

```
1 // Example 5.1 : resistance
2 clc;
3 clear;
4 // given :
5 format('v',9)
6 n=50; //number of turns
7 B=1; //magnetic field in tesla
8 I=1;//current in amperes
9 L=4; //length in cm
10 d=3;//dia in cm
11 Td=n*B*I*L*d*10^-4; //torque in N-m
12 cd1=2.4*10^-4; //controlling torque
13 id=cd1/Td;//current in amperes
14 fsv=100; // full scale voltage
15 trv=fsv/id;//ohms
16 adr=10000; //ohms
17 r=trv-adr;//ohms
18 disp(r, "required resistance is, (ohm)=")
```

Scilab code Exa 5.2 resistance

```
1 // Example 5.2 : resistance
2 clc;
3 clear;
4 // given :
5 format('v',9)
6 fsf=20; // full scale deflection current in mA
7 v=200; // voltage in mV
8 ri=v/fsf;//resistance in ohms
9 x=199.98; //current in amperes
10 rsh=(v*10^-3)/x; //ohms
11 fs2=1000; // volts
12 trv=fs2/(fsf*10^-3);//ohms
13 rse=trv-ri; //reqquired resistance in ohms
14 disp(rse," total resistance of the voltmeter is, (ohm)
15 //in the text book approximately value of resistance
      is taken as 50000 ohm
```

Scilab code Exa 5.3 power factor

```
1 // Example 5.3 : power factor
2 clc;
3 clear;
4 // given :
5 format('v',6)
6 w1=2000;//power in watts
7 w2=500;//power in watts
8 an=atand(sqrt(3)*(((w1-w2)/(w1+w2))));//angle in degree
9 disp("part (a)")
```

```
10 pf=cosd(an);//power factor
11 disp(pf, "power factor is ,=")
12 disp("part (b)")
13 w1=2000;//power in watts
14 w2=-500;//power in watts
15 an=atand(sqrt(3)*(((w1-w2)/(w1+w2))));//angle in degree
16 pf=cosd(an);//power factor
17 disp(pf, "power factor is ,=")
```

Scilab code Exa 5.4 current

```
1 // Example 5.4; reading
2 clc;
3 clear;
4 disp("part (i)")
5 // given :
6 format('v',6)
7 vm = 100; //volts
8 \text{ rc=10; //ohms}
9 im=vm/rc;//amperes
10 t=0:2*%pi;//time rane
11 x=intsplin(t,(sin(t))^2);//variable
12 Irms = sqrt((1/(2*\%pi))*im^2*x); //current in amperes
13 disp(Irms," indication of moving iron instrument is,(
     A)=")
14 disp("part (ii)")
15 t1=0; //time interval
16 t2=%pi; //time inerval
17 x=integrate('sin(t)', 't', t1, t2); // variable
18 Iav=(1/\%pi)*x*(im/2);//current in amperes
19 disp(Iav," indication of moving coil instrument is, (A
      )=")
20 //answer of part a is calculated wrong in the
      textbook
```

Scilab code Exa 5.5 resistance and readings

```
1 // Example 5.5; reading
2 clc;
3 clear;
4 format('v',5)
5 // given :
6 fsd=100; //full scale division in amperes
7 fsd1=100; // full scale division in mA
8 csh=fsd-(fsd*10^-3); // difference in currents in
     amperes
9 rx=0.8; //resistance in ohms
10 r1=((fsd1*10^-3*rx)/csh);//resistance in ohms
11 rx1=1; // resistance in ohms
12 r2=((fsd1*10^-3*rx1)/csh);//resistance in ohms
13 em1=((rx*r1)/(rx+r1)); //resistance in ohms
14 em2=((rx1*r2)/(rx1+r2));//resistance in ohms
15 crm1=((em2*10^4*fsd)/((em2*10^4)+(em1*10^4)));//
     current in amperes
16 crm2 = ((em1*10^4*fsd)/((em1*10^4)+(em2*10^4))); //
     current in amperes
17 disp(crm1, "current read by meter 1 is ,(A)=")
18 disp(crm2, "current read by meter 2 is, (A)=")
```

Scilab code Exa 5.6 multiplier resistance and voltmeter sensivity

```
1 // Example 5.6; multiplier and sensivity
2 clc;
3 clear;
4 // given :
5 format('v',6)
```

```
6 rm=50; //resistance in ohms
7 rsh=rm; //shunt resistance in ohms
8 it=2; //current in mA
9 erms=10; //rms voltage in volts
10 ede=0.45*erms; // voltage in volts
11 rd1=400; //resistance in ohms
12 x=(rm*rsh)/(rm+rsh); //resistance in ohms
13 r1=ede/(it*10^-3); //resistance in ohms
14 rs=r1-x-rd1; //resistance in ohms
15 disp("part (a)")
16 disp(rs," multiplier resistance Rs is, (Ohm)=")
17 S=r1/erms; // sensivity in ohms/V
18 disp("part (b)")
19 disp(S," sensivity is, (Ohm/V)=")
```

Scilab code Exa 5.7 apparent resistance actual resistance and error

```
1 // Example 5.7; apparent resistance of the unknown
     resistor, actual resistance of the unknown
      resistor and percentage error
2 clc;
3 clear;
4 // given :
5 format('v',7)
6 v=200; //voltage in volts
7 i=5; //current in mA
8 tr=v/i;//resistance in kilo ohms
9 disp("part (a)")
10 disp(tr, "apparent resistance of unknown resistor is
      (kilo -Ohm)=")
11 S=1000; //sensivity in ohms/V
12 V1=250; // voltage in volts
13 rv=V1*S*10^-3; //resistance in kilo ohms
14 rx=(V1*tr)/(V1-tr);//resistance in kilo ohms
15 disp("part (b)")
```

Scilab code Exa 5.8 resolution

```
// Example 5.8; resolution
clc;
clear;
format('v',6)
// given :
fsr=200; // full scale reading in volts
d=100; // number of divisions
sc=1/10; // scale
sd1=fsr/d; // one sccale divisions
R=sc*sd1; // resolution
disp(R," resolution is , (V)=")
```

Scilab code Exa 5.9 resolution

```
1 // Example 5.9; resolution
2 clc;
3 clear;
4 format('v',6)
5 // given :
6 fsr=9.999; // full scale reading in volts
7 d=9999; // number of divisions
8 R=(1/d)*fsr*10^3; // resolution
9 disp(R," resolution is ,(mV)=")
```

Scilab code Exa 5.10 true resistance of the unknown resistor percentage error and reading voltmeter

```
1 // Example 5.10; true resistance of the unknown
      resistor, percentage error and reading
      voltmeter
2 clc;
3 clear;
4 // given :
5 format('v',7)
6 disp("part (i)")
7 \text{ ra=0.1; } //\text{ohms}
8 vr=18;//voltage in volts
9 am=0.2; //current in amperes
10 apr=vr/am; //in ohms
11 rv=5000; //ohms
12 im=vr/rv; //amperes
13 rxi=am-(im);//in amperes
14 rx=vr/rxi; //ohms
15 disp(rx, "true value of resistance is, (Ohm)=")
16 per=((rx-apr)/rx)*100;//percentage error
17 disp("part (ii)")
18 disp(per, "percentage error is, (\%)=")
19 rvv=am*(ra+rx);//reading of voltmeter
20 disp("part (iii)")
21 disp(rvv, "reading of voltmeter is, (V)=")
```

Scilab code Exa 5.11 resistance

```
1 // Example 5.11; resistance
2 clc;
3 clear;
```

```
4 // given :
5 format('v',6)
6 im=10; //mA
7 i = 100; /mA
8 m=i/im;//multiplying factor
9 rm=50; //ohms
10 rsh=rm/(m-1); //in ohms
11 disp("part (i)")
12 disp(rsh, "resistance of shunt (range 0-100mA) Rsh1
      is (Ohm)=")
13 i1=500; //mA
14 m1=i1/im; // multiplying factor
15 rm1 = 50; //ohms
16 rsh1=rm1/(m1-1); //in ohms
17 disp("part (ii)")
18 disp(rsh1, "resistance of shunt (range 0-500mA) Rsh2
      is (Ohm)=")
19 im2=1; //A
20 i2=100; //A
21 m2=i2/im2;//multiplying factor
22 \text{ rm}2=50; //\text{ohms}
23 rsh2=rm2/(m2-1); // in ohms
24 disp("part (iii)")
25 disp(rsh2," resistance of shunt (range 0-1A) Rsh2 is
      (Ohm)=")
26 \text{ im} 3 = 1; //A
27 i3=500; //A
28 m3=i3/im3;//multiplying factor
29 rm3=50;//ohms
30 \text{ rsh3=rm3/(m3-1); //in ohms}
31 disp("part (iv)")
32 disp(rsh3," resistance of shunt (range 0-5A) Rsh2 is
      (Ohm)=")
```

Scilab code Exa 5.12 load

```
1  // Example 5.12; load power
2  clc;
3  clear;
4  format('v',6)
5  // given :
6  k=600; // in rev./kwh.
7  nr=5; // number of revolutions
8  t=20; // time in seconds
9  lp=(1/k)*nr*((60*60)/t); // power in kW
10  disp(lp," load power is ,(kW)=")
```

Chapter 6

ROTATING ELECTRICAL MACHINE

Scilab code Exa 6.1 terminal voltage

```
1 //Example 6.1// Terminal voltage
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',7)
7 Z=440; // number of lap
8 N=900; // revolutions in rpm
9 fi=0.07; // fluxin Wb
10 P=4; // number of pole
11 A=4; //constant
12 Ia=50; // armature current in Amperes
13 E=462; // voltage in V
14 E=(P*fi*Z*N)/(60*A);//general voltage in volts
15 R=0.002; // resistance in ohm
16 C=110; // conductors
17 Re=C*R; // resistance of each path in ohm
18 Ra=Re/A; //armature resistance in ohm
19 V=E-(Ia*Ra);//terminal voltage in volts
```

Scilab code Exa 6.2 induced emf

```
//Example 6.2// e.m.f
clc;
clc;
clear;
close;
format('v',6)
//given data:
V=200;//voltage
Ra=0.1;//resistance in ohm
Ia=50;//armature current in Amperes
E=V+(Ia*Ra);//generator voltage in volts
Eb=V-(Ia*Ra);//motor voltage in volts
disp(E, "emf when machine acts as generator, (V) = ")
disp(Eb, "emf when machine acts as motor, (V) = ")
```

Scilab code Exa 6.3 speed torque and efficiency

```
//Example 6.3// spped ,torque and efficiency
clc;
clear;
close;
format('v',6)
v=200;//voltage in volts
r=100;//resistance in ohms
sish=v/r;//shunt current in amperes
nla=i-ish;//no load armature current in amperes
w=8;//powerin kW
ifl=(w*10^3)/v;//full load current in amperes
fla=ifl-ish;//full load armature current in amperes
```

```
14 r1=0.6; //internal resistance in ohms
15 ebo=(v-(ish*r1));//voltage in volts
16 eb=(v-(fla*r1));//voltage in volts
17 no=700; //number of rpm
18 n=no*(eb/ebo);//number of rpm
19 ta=((eb*fla*60)/(2*n));//armature torque in N-m
20 nlpi=v*i; //no load power input in watts
21 cl=(ish^2*r1);//copper losses in watts
22 cl=nlpi-cl; //total copper lossses in Watts
23 flacl=(fla^2*r1);//full load armmature copper losses
      in Watts
24 tfll=flacl+cl;//total full load losses in Watts
25 flo=(w*10^3)-tfll;//full load output in Watts
26 ef=((flo)/(w*10^3))*100;//efficiency
27 disp(n,"speed is,(rpm)=")
28 disp(ta, "armature torque is, (N-m)=")
29 disp(ef, "full load motor efficiency is (\%)=")
30 //armature torque is calculated wrong in the
     textbook
```

Scilab code Exa 6.4 speed

```
1 //Example 6.4// speed
2 clc;
3 clear;
4 close;
5 //given data:
6 format('v',6)
7 fi=0.02// flux in Wb
8 P=4;// number of poles
9 A=2;//constant
10 Z=151*A;//turns
11 V=200;// in volts
12 Rsh=50;//shunt resistance in ohm
13 Ra=0.01;// armature resistance in ohm
```

```
14 Pr=40000; //power required in Watts
15 Il=Pr/V; //load current in amperes
16 Ish=V/Rsh; //shunt current in amperes
17 Ia=Il+Ish; //armature current in amperes
18 E=V+(Ia*Ra); //generated voltage
19 N=(60*A*E)/(fi*P*Z); //rpm
20 disp(N, "The speed of the machine, (rpm) = ")
21 //answer is wrong in the textbook
```

Scilab code Exa 6.5 power absorbed

```
1 //Example 6.5// Power
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',6)
7 fp=0.024; // flux per pole
8 lf=1.2;// leakage factor
9 fi=fp/lf;// in Wb
10 Z = 756; //turns
11 P=4; // number of pole
12 N = 1000; // in rpm
13 A=4; //constant
14 E=(fi*Z*N*P)/(60*A);//generated voltage
15 il=1/10; //load current in amperes
16 ish=1/100;//shunt current in amperes
17 ra=1; //armature resistance in ohms
18 is=il+ish;//current in amperes
19 v = ((E)/(1+(ra*is))); //volts
20 \text{ r2=10; } //\text{ohms}
21 il=v/r2; //amperes
22 \text{ pc=il*v;} // \text{Watts}
23 disp(pc, "Power consumed is, (W)=")
24 //answer is wrong in the textbook
```

Scilab code Exa 6.6 emf generated copper losses output and commercial mechanical and electrical efficiencies

```
1 //Example 6.6: e.m.f , copper losses , output of the
     prime mover , commercial , mechanical and
      electrical efficiencies
2 clc;
3 clear;
4 close;
5 format('v',6)
6 //given data :
7 Il=190; //load current in Amperes
8 V=250;// voltage in volts
9 Ra=0.02; //armature resistance in ohm
10 Rsh=25; //shunt resistance in ohm
11 Ish=V/Rsh; //shunt current in amperes
12 Ia=Ish+Il;//armature current in amperes
13 E=V+(Ia*Ra);//generated voltage
14 disp("part (a)")
15 disp(E,"emf generated,(V) = ")
16 Cl=(Ia^2*Ra);// armeture copper losses
17 Sl=Ish*V; // shunt copper losses
18 T=(Cl+Sl)*10^-3; //copper losses in k-Watt
19 disp("part (b)")
20 disp(T, "Total copper losses, (kW) = ")
21 Eo=V*I1; //output voltage in volts
22 I_1=950; //iron loss in watt
23 0=E_0+I_1+(T*10^3); //output in watt
24 disp(0, "Output of the prime mover, (W) = ")
25 Ep=0-I_1; // electrical power in W
26 Me=(Ep/O)*100; // Mechanical efficiency
27 disp("part (c)")
28 disp(Me, "Mechanical efficiency, (\%) =")
29 Ee=(Eo/Ep)*100; // Electrical efficiency
```

```
30 disp(Ee, "Electrical efficiency, (%) = ")
31 Ce=(Eo/O)*100; // Commercial efficiency
32 disp(Ce, "Commercial efficiency, (%) = ")
```

Scilab code Exa 6.7 resistance

```
1 //Example 6.7// resistance
2 clc;
3 clear;
4 close;
5 format('v',6)
6 n=1000; //turns in rpm
7 ra=0.3; //armature resistance in ohms
8 rf=40; // field resistance in ohms
9 it=5; // field current in amperes
10 if1=4; // field current in amperes
11 e1=220; //emf in volts
12 \text{ e2=200;} //\text{emf in volts}
13 ia=35; //armature current in amperes
14 eb=(e1-(ia*ra)); //emf in volts
15 x=((eb-e2)/(it*if1)); // additional field current in
      amperes
16 ce=e1-e2;//change in emf in volts
17 ix=if1+x; //total current in amperes
18 rt=(e1/ix);//total resistance in ohms
19 adr=rt-rf; // additional resistance required in ohms
20 disp(adr, "additional resistance required is, (Ohm)=")
```

Scilab code Exa 6.8 resistance and speed

```
1 //Example 6.8// resistance and speed
2 clc;
3 clear;
```

```
4 close;
5 format('v',7)
6 v1=240; //primary voltage
7 r1=0.2; //primary resistance in ohm
8 i1=40; //primary current in volts
9 eb1=(v1-i1*r1); //primary emf
10 n11=1800; //number of turns on primary side in rpm
11 n21=1600; //number of turns on secondary side in rpm
12 i2=10; //secondary current in amperes
13 x=((n21/n11)*(i2/i1)*eb1); // variable
14 r = ((v1 - (i2*r1)) - x)/i2; //resistance in ohm
15 disp("part (a)")
16 disp(r, "resistance to be added is, (Ohm)=")
17 disp("part (b)")
18 n11=1800; //number of turns on primary side
19 n21=900; //number of turns on secondary side in rpm
20 i2=60; //secondary current in amperes
21 x=((n21/n11)*(1.18)*eb1); // variable
22 r=((v1-(i2*r1))-x)/i2;//resistance in ohms
23 disp(r, "resistance to be added is, (Ohm)=")
24 eb2=228; //secondary emf in volts
25 eb1=232; // primary emf in volts
26 p1=100; //primary power in watt
27 p2=118; //secondary power in watt
28 n2=((eb2/eb1)*(p1/p2)*n11);/speed in rpm
29 disp(ceil(n2), "speed is, (rpm)=")
```

Scilab code Exa 6.9 speed

```
1 //Example 6.9// speed
2 clc;
3 clear;
4 close;
5 format('v',6)
6 i1=50;//primary current in amperes
```

```
7 i2=i1/(sqrt(2));//secondary current in amperes
8 r1=0.2;//primary resistance in ohms
9 v1=220;//primary voltage in volts
10 eb1=((v1-(i1*r1)));//primary emf in volts
11 eb2=((v1-(i2*r1)));//secondary emf in volts
12 n1=1000//primary speed in rpm
13 n2=(n1*(eb2/eb1)*(i1/i2));//seconadry speed in rpm
14 disp(n2, "speed is ,(rpm)=")
```

Scilab code Exa 6.10 speed and frequency

```
1 //Example 6.10// Speed , motor speed , and frequency
2 clc;
3 clear;
4 close;
5 format ('v',8)
6 //given data :
7 disp("part (a)")
8 f=50; //frquency in Hz
9 P=4; // number of pole
10 Ns=(120*f)/P;//speed in rom
11 disp(Ns," The speed of rotating magnetic field, (rpm)
      = ")
12 disp("part (b)")
13 S=0.035; // slip
14 N=Ns*(1-S); //motor speed in rpm
15 disp(N, "Motor speed, (rpm) = ")
16 disp("part (c)")
17 S=0.04; // slip
18 F=S*f; //frequency in Hz
19 disp("Frequency "+string (F)+" Hz or "+string(120)+"
      rpm ")
20 disp("part (d)")
21 f=50; // in Hz
22 F=f; //frequency in Hz
```

Scilab code Exa 6.11 current per phase and power factor

```
1 //Example 6.11// current per phase and power factor
2 clc;
3 clear;
4 close;
5 format('v',6)
6 v1=100; //emf in volts
7 vi=v1/sqrt(3);//induced emf in volts
8 r1=1; //rotor resistance ohms per phase
9 r2=4; //rotor reactance ohms per phase
10 r=sqrt(r1^2+r2^2); //rotor impedence per phase
11 rcp=(vi/r);//rotor current per phase
12 pf = (1/r); //power factor
13 disp("part (a)")
14 disp(rcp, "rotor current per phase is, (A)=")
15 disp(pf, "power factor is,=")
16 r3=3; //ohms
17 r4=r1+r3; //rotor resistance ohms per phase
18 r2=4; //rotor reactance ohms per phase
19 r=sqrt(r4^2+r2^2);//rotor impedence per phase
20 rcp=(vi/r);//rotor current per phase
21 pf = (r4/r); //power factor
22 disp("part (b)")
23 disp(rcp, "rotor current per phase is, (A)=")
24 disp(pf, "power factor is,=")
```

Scilab code Exa 6.12 emf

```
1 //Example 6.12// emf 2 clc;
```

```
3 clear;
4 close;
5 format('v',7)
6 disp("part (a) generator")
7 kva=4; //kVA
8 \text{ v=110;} // \text{volts}
9 re=3;//syncronous reacrance in ohms
10 ip=((kva*10^3)/(sqrt(3)*v));//phase current in
      Amperes
11 ep=v/(sqrt(3));//phase voltage in volts
12 e1=ep+%i*(ip*3);//line voltage in volts
13 e11 = sqrt((real(e1)^2) + imag(e1)^2); //line voltage per
       phase in volts
14 pf=0.8; //power factor
15 e12=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))+
      imag(e1)))^2));//
16 e13=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))-
      imag(e1)))^2));//
17 disp(e11, "emf when the armature current is full
      load unit pf is (V)=")
18 disp(e12, "emf when the armature current is full
      load 0.8 pf (lag) is (V)=")
19 disp(e13, "emf when the armature current is full
      load 0.8 pf (lead) is (V)=")
20 disp("part (b) motor")
21 kva=4; //kVa
v = 110; // volts
23 re=3;//syncronous reacrance in ohms
24 ip=((kva*10^3)/(sqrt(3)*v));//phase current in
      Amperes
25 ep=v/(sqrt(3));//phase voltage in volts
26 e1=ep-%i*(ip*3);//line voltage in volts
27 e11=\operatorname{sqrt}((\operatorname{real}(e1)^2)+\operatorname{imag}(e1)^2);//\operatorname{line} \operatorname{voltage} \operatorname{per}
       phase in volts
28 pf=0.8; //power factor
29 e12=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))-
      imag(e1)))^2));//
30 e13=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))+
```

```
imag(e1)))^2));//
31 disp(e11,"emf when the armature current is full
    load unit pf is,(V)=")
32 disp(e12,"emf when the armature current is full
    load 0.8 pf (lag) is,(V)=")
33 disp(e13,"emf when the armature current is full
    load 0.8 pf (lead) is,(V)=")
```

Chapter 7

ELECTROTHERMAL ENERGY CONVERSION

Scilab code Exa 7.1 length and width

```
1 //Example 7.1// width and length
2 clc;
3 clear;
4 close;
5 format('v',6)
6 vph=400;//phase voltage in volts
7 n=3;//number of phase
8 \text{ kw=36; //power in kW}
9 r=((vph^2)/(n*((kw*10^3)/n)));//resistance in ohms
10 p=1.016*10^-6; // resitivity
11 t=0.3; // thickness in mm
12 x=(((r*t*10^-3)/(p)));//variable
13 t1=1000; //initial temperature in degree celsius
14 t1k=273+t1; //initial temperature in kelvin
15 t2=650; // final temperature in degree celsius
16 t2k=273+t2; //final temperature in kelvin
17 h = ((3*10^4)*((t1k/1000)^4-(t2k/1000)^4));/W/m^2
18 y = ((kw*10^3)/(3*2*h)); // variable
19 l=sqrt(x*y); //length in meter
```

```
20 w=y/l;//width in meter
21 disp(l,"length is ,(m)=")
22 disp(w*10^3,"width is ,(mm)=")
```

Scilab code Exa 7.2 power required

```
1 //Example 7.2// power required
2 clc;
3 clear;
4 close;
5 format('v',6)
6 1=0.2; //length in meter
7 \text{ w=0.1}; // \text{width in meter}
8 th=25; //thickness in mm
9 vw=1*w*th*10^-3; //volume in m^3
10 ww=600; //weight of wood in kg/m^3
11 ww1=vw*ww;//weight of wood kg
12 shw=1500; //specific heat of wood in J/kg/degree
      celsius
13 t=200; //temperature in degree celsius
14 rg=t*shw*ww1; //energy in joules
15 h=(rg/(3.6*10^3));/Wh
16 t=15; //time in minutes
17 pr=h*(60/t);//power required in Watt
18 disp(pr, "power required is, (W)=")
```

Scilab code Exa 7.3 voltage and current

```
1 //Example 7.3// voltage and current
2 clc;
3 clear;
4 close;
5 l=0.2;//length meter
```

```
6 w=0.1; //width in meter
7 th=25; //thickness in mm
8 vw=1*w*th*10^-3; //volume of wood in m^3
9 ww=600; //weight of wood in kg/m^3
10 ww1=vw*ww; //weight of wood kg
11 shw=1500; //specific heat of wood in J/kg/degree
      celsius
12 t=200; //temperature in degree celsius
13 rg=t*shw*ww1; //energy in joules
14 h=(rg/(3.6*10^3));/Wh
15 t=15; //time in minutes
16 pr=h*(60/t);//power required in Watt
17 eo=8.854*10^-12; // permittivity constant
18 er=5; // permittivity of wood
19 c=((eo*er*l*w)/(th*10^-3));//capacitance in Farads
20 f=50; //frequency in MHz
21 pf=0.5; //power factor
22 ph=acosd(pf);//phase angle degree
23 v = sqrt((pr)/(c*2*\%pi*f*10^6*0.05)); // voltage in
      volts
24 disp(round(v), "voltage is ,(V)=")
25 ic=v*2*%pi*f*10^6*c;//current in amperes
26 disp(ic, "current is, (A)=")
```