MTH 470/570 Winter 2021 Assignment 3 key

p.62, #3.1. Show that if $f(z) = \frac{az+b}{cz+d}$ is a Mobius transformation, then $f^{-1}(z) = \frac{dz-b}{-cz+a}.$

Solve the equation f(w) = z for w: $\frac{aw + b}{cw + d} = z \iff aw + b = cwz + dz \iff w(-cz + a) = dz - b \iff w = \frac{dz - b}{-cz + a}$. We know from class that f is one-to-one, so we are done.

#3.7. Show that the Mobius transformation $f(z) = \frac{1+z}{1-z}$ maps the unit circle (minus the point z = 1) onto the imaginary axis.

A typical point on the unit circle is $z = \cos \theta + i \sin \theta$, so $f(z) = \frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta}$ $\frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta} \cdot \frac{1 - \cos \theta + i \sin \theta}{1 - \cos \theta + i \sin \theta} = \frac{1 - \cos^2 \theta - \sin^2 \theta + 2i \sin \theta}{(1 - \cos \theta)^2 + \sin^2 \theta} = \frac{2i \sin \theta}{(1 - \cos \theta)^2 + \sin^2 \theta}$ This is a pure imaginary number. Since the image of a circle is either a circle or a line, it must be the entire imaginary axis.

- #3.14. Find Mobius transformations satisfying each of the following. Write your answers in standard form, as $\frac{az+b}{cz+d}$. (It's worth noting that the coefficients are not uniquely determined, since, for example, $\frac{az+b}{cz+d} = \frac{2az+2b}{2cz+2d}$.)
- (a) $1 \to 0$ implies a = -b, $3 \to \infty$ implies d = -3c, and $2 \to 1$ implies 2a + b = 2c + d implies a = -c. Setting c = 1, we have $\frac{az + b}{cz + d} = \frac{-z + 1}{z 3}$. You should check that this satisfies all of the given conditions (for our answers to (b) and (c), as well).
- (b) $1 \to 0$ implies b = -a, $2 \to \infty$ implies d = -2c, and $1 + i \to 1$ implies a(1 + i) + b = c(1 + i) + d implies ai = c(-1 + i). Setting c = 1, we have $a = \frac{-1+i}{i} = 1 + i$, so $\frac{az + b}{cz + d} = \frac{(1+i)z + (-1-i)}{z 2}$.
- (c) $0 \to i$ implies b = di, $\infty \to -i$ implies a = -ci, and $1 \to 1$ implies a + b = c + d implies -ci + di = c + d. Setting c = 1, we have d(-1+i) = 1+i, so $d = \frac{1+i}{-1+i} \cdot \frac{-1-i}{-1-i} = -i$. Therefore $\frac{az+b}{cz+d} = \frac{-iz+1}{z-i}$.

3.30. Prove that $\overline{\sin(z)} = \sin(\overline{z})$ and $\overline{\cos(z)} = \cos(\overline{z})$.

First, let's evaluate $\sin z$ for complex z, Let z = x + yi. By definition of $\sin z$,

$$\sin(z) = \frac{1}{2i} \left(e^{i(x+yi)} - e^{-i(x+yi)} \right) = \frac{1}{2i} \left(e^{-y+xi} - e^{y-xi} \right)$$

$$= \frac{1}{2i} \left(e^{-y} (\cos x + i \sin x) - e^{y} (\cos x - i \sin x) \right)$$

$$= \frac{1}{2} \left(e^{-y} (-i \cos x + \sin x) + e^{y} (i \cos x + \sin x) \right)$$

$$= \frac{1}{2} \left((e^{y} + e^{-y}) \sin x + i (e^{y} - e^{-y}) \cos x \right),$$

so $\sin \overline{z} = \frac{1}{2}(e^y + e^{-y})\sin x + i(e^{-y} - e^y)\cos x) = \overline{\sin z}.$ Similarly for $\cos z$: By definition of $\cos z$,

$$\cos(z) = \frac{1}{2} \left(e^{i(x+yi)} + e^{-i(x+yi)} \right) = \frac{1}{2} \left(e^{-y+xi} + e^{y-xi} \right)$$
$$= \frac{1}{2} \left(e^{-y} (\cos x + i \sin x) + e^{y} (\cos x - i \sin x) \right)$$
$$= \frac{1}{2} \left((e^{y} + e^{-y}) \cos x + i (-e^{y} + e^{-y}) \sin x \right),$$

so $\cos \overline{z} = \frac{1}{2}(e^y + e^{-y})\sin x + i(e^y - e^{-y})\sin x = \overline{\cos z}$.

3.32. Prove that the zeros of $\sin z$ are all real numbers. Conclude that they are precisely the integer multiples of π .

Suppose that $\sin z = \frac{1}{2i}(e^{iz} - e^{-iz}) = 0$, where z = x + yi. Multply both sides by $2i(e^{iz})$, to obtain $e^{2iz} = 1$. Now $e^{2iz} = e^{-2y+2ix} = 1$. Therefore $|e^{-2y+2ix}| = e^{-2y} = 1$, which implies that y = 0, that is, z is a real number. We know from trigonometry that the real zeros of sin are the integer multiples of π .

Problem I. Let C be the circle with center a and radius r. Suppose that 0 does not lie on C. (In other words, 0 could be inside or outside of the circle.) Show that the image of C under the function f(z) = 1/z is the circle with center $\frac{\overline{a}}{|a|^2 - |r|^2}$ and radius $\frac{\overline{r}}{|a|^2 - r^2|}$. Circle C has equation |z - a| = r, that is, $(z - a)(\overline{z - a}) = r^2$, or

(*)
$$z\overline{z} - (a\overline{z} + \overline{a}z) + |a|^2 = r^2.$$

The complex number 1/z lies on the second circle (call it C_2) if

$$\left| \frac{1}{z} - \frac{\overline{a}}{|a|^2 - r^2} \right| = \frac{r}{|a|^2 - r^2|}, \text{ that is, } \left(\frac{1}{z} - \frac{\overline{a}}{|a|^2 - r^2} \right) \left(\frac{1}{\overline{z}} - \frac{a}{|a|^2 - r^2} \right) = \left(\frac{r}{|a|^2 - r^2|} \right)^2,$$

$$(**) \qquad \frac{1}{z\overline{z}} - \frac{(a/z) + (\overline{a}/\overline{z})}{|a|^2 - r^2} + \frac{|a|^2}{(|a|^2 - r^2)^2} = \frac{r^2}{(|a|^2 - r^2)^2}.$$

We complete the problem by showing that (*) and (**) are equivalent. Start by clearing fractions from (**) to obtain

$$(|a|^2 - r^2)^2 - (a\overline{z} + \overline{a}z)(|a|^2 - r^2)z\overline{z} + |a|^2z\overline{z} = r^2z\overline{z}$$

which factors as

$$(|a|^2 - r^2) (|a|^2 - r^2 - (a\overline{z} + \overline{a}z) + z\overline{z}) = 0$$

If |a| = r, then 0 lies on the circle |z - a| = r, which by hypothesis it does not – so the first factor above is not 0. Therefore the second factor is 0, which in fact is equivalent to equation (*). We are done.