Lab2 - Assignment 5

Execution time for Insertion Sort and Merge Sort

When should one select merge sort over insertion sort?

Merge sort is more optimal for larger datasets, insertion sort when number of elements is small. Insertion sort can also be useful when input array is almost sorted (partially ordered), and when memory is restricted, as merge sort uses extra space proportional to N (Auxiliary Space Complexity = O(N)).

	Merge Sort	Insertion Sort	
Worst Case	O(N*log(N))	O(N^2)	
Average Case	O(N*log(N))	O(N^2)	
Best Case	O(N*log(N))	O(N)	
Auxiliary Space Complexity	O(N)	O(1)	

Table Execution Time for randomised arrays

Array Size	Insertion Sort	Merge Sort	
10	1ms	3ms	
50	2ms	3ms	
100	2ms	3ms	
500	32ms	7ms	
1 000	44ms	9ms	
5 000	299ms	18ms	
10 000	1s 261ms	78ms	
50 000	16s 547ms	236ms	
100 000		674ms	
500 000		\	
1m 29s 604ms			
	1s 542ms		

