Practice 2 (Supplemental notes)

1. Linear Transformation and Examples

Def: Linear maps are transformations from one vector space to another that have the property of preserving vector addition and scalar multiplication:

$$\mathcal{A}: V \to W$$

Example 1:

Let's check, is it really linear map?

1. Pick two vectors, $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$. Then $u + v = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} - x_1$. And $cv = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} v_$

Applying the linear map:
$$\mathcal{A}(u+v) = \begin{pmatrix} u_2 + v_2 \\ u_1 + v_1 + u_2 + v_2 \\ u_1 + v_1 - u_2 - v_2 \end{pmatrix} = \begin{pmatrix} u_2 \\ u_1 + u_2 \\ u_1 - u_2 \end{pmatrix} + \begin{pmatrix} v_2 \\ v_1 + v_2 \\ v_1 - v_2 \end{pmatrix} = \mathcal{A}(u) + \mathcal{A}(v).$$

2. Pick the vector and the scalar $c \in \mathbb{R}$:

Applying the linear map:

$$\mathcal{A}(cv) = \begin{pmatrix} cv_2 \\ c(v_1 + v_2) \\ c(v_1 - v_2) \end{pmatrix} = c \begin{pmatrix} v_2 \\ v_1 + v_2 \\ v_1 - v_2 \end{pmatrix} = c\mathcal{A}(v).$$

These two properties help us to qualify transformation as linear. So, we will use them as the two requirements that must be satisfied in order to be a linear map.

Example 2: Let $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ be projection onto the x_1 -axis:

Let's check, is it really linear map?

1. Pick two vectors, $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$. Then $u + v = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} - x_1$. And $cv = \begin{pmatrix} cv_1 \\ cv_2 \end{pmatrix}$.

Applying the linear map:

$$\mathcal{A}(u+v) = \begin{pmatrix} u_1 + v_1 \\ 0 \end{pmatrix} = \begin{pmatrix} u_1 \\ 0 \end{pmatrix} + \begin{pmatrix} v_1 \\ 0 \end{pmatrix} = \mathcal{A}(u) + \mathcal{A}(v).$$

2. Pick the vector and the scalar $c \in \mathbb{R}$: Applying the linear map:

$$\mathcal{A}(cv) = \begin{pmatrix} cv_1 \\ c \cdot 0 \end{pmatrix} = c \begin{pmatrix} v_1 \\ 0 \end{pmatrix} = c\mathcal{A}(v).$$

Example 3: Let $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ be 90-degree counterclockwise rotation:

Let's check, is it really linear map?

1. Pick two vectors,
$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
, $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$. Then $u + v = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} - x_1$. And $cv = \begin{pmatrix} cv_1 \\ cv_2 \end{pmatrix}$.

Applying the linear map:
$$\mathcal{A}(u+v) = \begin{pmatrix} -u_2 - v_2 \\ u_1 + v_1 \end{pmatrix} = \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix} + \begin{pmatrix} -v_2 \\ v_1 \end{pmatrix} = \mathcal{A}(u) + \mathcal{A}(v).$$

2. Pick the vector and the scalar $c \in \mathbb{R}$:

Applying the linear map:

$$\mathcal{A}(cv) = {-cv_2 \choose cv_1} = c {-v_2 \choose v_1} = c\mathcal{A}(v).$$

2. Kernel, Range (image), Rank and Nullity

Def: The range of \mathcal{A} is defined by: $ran(\mathcal{A}) = im(\mathcal{A}) = \{\mathcal{A}(v): v \in V\}$.

Def: The *kernel* of \mathcal{A} is defined by: $ker(\mathcal{A}) = \{v \in V : \mathcal{A}(v) = 0\}$.

Def: Given a linear map $A: V \to W$. Then

- dim $(ker(\mathcal{A}))$ is called the *nullity* of \mathcal{A} : $null(\mathcal{A})$.
- dim $(ran(\mathcal{A}))$ is called the rank of \mathcal{A} : $rank(\mathcal{A})$.

Kernel

Problem 2

Def: Let A be an $m \times n$ matrix. The function $\mathcal{A}: V \to W$ defined by $\mathcal{A}(x) = Ax$

is linear.

The function \mathcal{A} is called the linear function corresponding to the matrix A.

Problem 3

Problem 4