ECEN 5053-002

Developing the Industrial Internet of Things

Week 1

Expectations and Course Overview Dave Sluiter - Spring 2018

Expectations and Course Overview

Who Am I?

- 30+ year chip design engineer
- Unisys (Sperry Univac) Mainframe floating point unit
- Artist Graphics 3D graphics chips
- LSI Logic -
 - North American Field Coreware Manager MIPS CPUs, CoreWare Methodology
 - Lead hardware architect for satellite set-top box decoder chips
- Seagate/Micron Hardware architect for enterprise solid state drives

Logistics

- Communication:
 - D2L
 - Email

Expectations

- You are Graduate students!
- Attendance/Participation is important
- Honor Code Violations:
 - Do not represent someone else's work as your own
 - I do want collaboration and exchange of ideas
 - I do not want copying Do your own work!
 - As graduate students, you will not be given a 2nd chance

Where does this course fit?

ESE Core and Elective Courses

Many new topic areas

Course Overview

- Format
 - Traditional lecture
- Survey Course
 - Intention is to introduce you to a wide set of subject matter
 - Broaden your scope/viewpoint/vocabulary
- Assessments
 - Attendance/Participation
 - Small number of projects easy, provides hands-on experience
 - Midterm exam
 - Final exam
- No homework

Course Overview (con't)

- Primary focus
 - Emerging trends: Market and Technical
 - Key business concepts for engineers
 - Key skills to develop
 - Understanding the "big picture", how these systems are built and the value propositions they offer
 - Your role in DIIoT Show you how your ESE core and elective courses intersect with IIoT

Course Overview (con't)

What is Industrial IoT?

Topic Areas

What will be covered

- An inside look at markets; size and \$ estimates
- Platforms, IBM Bluemix + Watson
- Networks, NFV and SDN
- Security
- Project planning, staffing and execution
- Sensors, file systems
- Machine learning
- Big data analytics
- SystemC
- Debugging deeply embedded systems
- Guest speakers

Security

What does it mean to be secure?

What does it mean to be secure?

- Caesar Cipher, named after Julius Caesar
- Substitution cipher, based on a shift

- One time pad (OTP)
- So-called "perfect" encryption
- Impractical for real-world

A=0, B=1, C=2, Z=25											
Plain text	М	Е	Е	Т	Т	0	N	I	G	Н	Т
	12	4	4	19	19	14	13	8	6	7	19
Key	D	Z	Н	S	U	I	М	W	Е	K	С
	3	25	7	18	20	8	12	22	4	10	2
Sum	15	29	11	37	39	22	25	30	10	17	21
Sum mod 26	15	3	11	11	13	22	25	4	10	17	21
Cipher Text	Р	D	L	L	N	W	Z	Е	K	R	V
Cipher text	Р	D	L	L	N	W	Z	С	K	R	V
	15	3	11	11	13	22	25	4	10	17	21
Key	D	Z	Н	S	U	I	М	W	Е	K	С

18

-7

19

19

-22

Ε

Μ

12

13

22

-18

8

8

14

14

0

G

10

7

Н

19

19

Diff

Sum mod 26

Plain text

AES (Advanced Encryption Standard)

- Established by US NIST (National Institute of Standards)
- Block cipher: 16-bytes in, 16-byte out
- 3 key lengths: 128-, 192-, 256-bits
- High-level description
 - 1) With N=number of rounds, round keys are extracted from the cipher key (where N = 10, 12, 14, for 128-, 192- or 256-bits)
 - 2) Round 0
 - 3) Rounds 1 to N-2
 - 4) Final round N-1
- Believed to be secure, but we don't how to prove it.

Asymmetric Encryption

Diffie-Hellman

A method to securely establish a known secret (a "key") between 2 parties over an insecure channel.

Source: https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Uses for Hash Functions

Login: UserName

Password: Xh8_i27vZ

 See also the SHA-2 family of hash functions as per FIPS 180-4

 Well studied, haven't spotted a problem yet Are there weaknesses?

Hash ()

Password Table

0xF1324578

 What about dictionary attacks?

20

Same?

Yes / No

Take Aways

- Security Mind-set
- Data Integrity
- Authentication
- Encryption
- Will look at few "security blunders"

Machine Learning

- We have some example data
 - Training data
- Each row is an example from real sales data
- Contains a number of features, x_n
 - x_1 is square footage
 - x_2 is number of bedrooms
- And output y, the price
 - Is what we are trying to predict, also known as the **target value**

```
train_data = np.array(
  # sqft, #bedrooms, price
   [1500, 2, 60000],
   [1800, 2, 70000],
   [1900, 2, 80000],
   [2000, 3, 90000],
   [2200, 3, 95000],
  [2300, 2, 100000],
  [2350, 3, 110000],
  [2500, 3, 112000],
   [2800, 4, 120000],
  [2900, 3, 135000],
   [3000, 4, 140000],
   [3100, 4, 145000],
  [3300, 5, 162000],
  [3400, 4, 157000],
   [3600, 5, 167000],
   [3900, 5, 178000]
) # end training data
```


Training Data

of bedrooms is not plotted

We can manually draw a best-fit curve

- We want to create a hypothesis function h() that will make predictions
- To perform supervised learning, we have to decide how we will represent the hypothesis function h()
- As an initial choice, let's say we decide to approximate h() as a linear combination of features x and weights θ , so we have:
 - $\bullet h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2$
 - where we set $x_0 = 1$, and θ_0 becomes the intercept term
 - like in the equation for a line y = ax + b, b is the intercept term

- m = number of training examples, 16
- n = number of features, 2
- We can rewrite $h_{\theta}(x)$ as :

•
$$h_{\theta}(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$

- How do we pick/calculate/learn the values for the θ_i 's?
 - As a starting point, we can make $h() \sim = y$
- We can define a cost function:
 - $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
 - The superscript i's refer to training examples, not raise to a power!
- We want to choose θ to minimize $J(\theta)$
- To do so, let's use a search algorithm that starts with some initial guess for θ , and repeatedly changes θ to make $J(\theta)$ smaller, until we converge at a minimum $J(\theta)$ value.

- Search algorithm = Gradient Descent
 - Start with some initial guess at θ
 - and then repeatedly perform the update:
 θ_j = θ_j α ∂/∂θ_j J(θ), j = 0...n
 - - this rule is called the LMS update rule (least mean squares rule)
 - α (alpha) is the learning rate
 - Great care needs to be taken choosing alpha

Gradient Descent

- Calculating the derivative, $\frac{\partial}{\partial \theta_j} J(\theta)$ and for all n, we get: repeat until convergence $\{$

$$\theta_{j} = \theta_{j} + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_{j}^{i}, j = 0...n$$

- for each θ_i cycle through all m training examples
- This method is called batch gradient descent
- This $J(\theta)$ equation is a convex quadratic function, and has only a global minimum. Beware of functions that may have local minima, because gradient descent could get "stuck" in a local minima.

- Gradient Descent
 - Test for convergence is a user defined function
 - Downside to batch gradient descent is that every θ update needs to run through all m training samples
 - Computationally expensive for large training sets

IIoT Intro

Source: World Economic Forum: https://www.youtube.com/watch?v=8NGzrtK7eV0

End