

Automatic Detection of Cerebral Microbleeds: A Clinically Robust Deep Learning Framework

jl@cerebriu.com

Jorge del Pozo Lérida, Mathias Perslev, Veronika Cheplygina, Silvia Ingala, Aksha

Cerebral Microbleeds (CMBs)

CMBs are small, round hypointensities detected on GRE T2* and SWI MRI sequences, under 10 mm in diameter, with associated blooming artefact

- CMBs are associated with over 30 medical conditions
- Crucial diagnostic and prognostic imaging biomarkers
- Radiological assessment is time-consuming and error-prone

Figure 1: (A) Axial SWI with four CMBs; (B) 3D reconstruction with CMBs.

Challenges in Automatic CMB Detection

- Presence of several mimics that closely resemble CMBs
- Small size (*i.e.*, huge class imbalance)
- Scarcity of publicly available data with annotated CMBs
- Lack of benchmark dataset and standardized evaluation

Figure 2: Axial slices showing: (A, B) CMBs on SWI and T2*; (C, D) Mimics: basal ganglia calcification on SWI and calcified choroid plexus on T2*.

Our Approach

- 3D U-Net based segmentation network
- MRI sequence agnostic (GRE T2* or SWI)
- Standardization of 7 different datasets (public & private)
- Transfer Learning from thousands of clinical studies
- Intense and diverse data augmentation
- Pretrain on a large dataset of synthetic CMBs and negative scans with wide range of acquisition parameters
- Location-based post-processing (SynthSeg)
- Comprehensive evaluation on 2 unbiased datasets (Table 2) and 3 tasks: segmentation, detection & classification
- Performance analysis by CMB features and MRI acquisition parameters

Results

Table 1: **Detection** performance computed per scan and averaged. **DOU** is a public dataset with 20 scans and 74 CMBs. **CRB** is an internally curated dataset with 18 scans and 127 CMBs, representing high clinical variability.

Dataset	Precision	Recall	F1	FPcmb
CRB Test Set	0.78 ± 0.25	0.34 ± 0.32	0.43 ± 0.19	0.35 ± 0.95
DOU Test Set	0.91 ± 0.18	0.79 ± 0.34	0.87 ± 0.18	0.15 ± 0.46
Valid Set	0.50 ± 0.45	0.81 ± 0.30	0.80 ± 0.20	0.43 ± 0.75

Table 2: Detection performance on DOU test compared to other methods. Metrics are computed globally for all CMB detections. FPscan is n_{FP}/n_{scans} .

Method	Precision	Recall	F1	FPscan
Sundaresan et al.	0.89	0.87	0.88	0.5
Ferrer et al.	1.00	0.50	0.67	0.0
Dou et al.	0.49	0.80	0.61	7.7
Our Approach	0.84	0.69	0.76	0.13

Discussion

- Higher slice thickness and elongated CMBs shape are associated with lower model performance
- Detection of lobar CMBs is hindered by the presence of adjacent blood vessels
- False Negative detections are more prevalent than False Positives, not in line with literature
- Comparing performance across CMB detection studies is challenging without a standardized evaluation framework