2º curso / 2º cuatr.

Grado en Ing. Informática

Arquitectura de Computadores

Presentación

Material elaborado por los profesores responsables de la asignatura: Mancia Anguita - Julio Ortega

Licencia Creative Commons @000

Organización de la Asignatura y Evaluación (criterios y valoración)

AC MATC

- Horas de trabajo semanal (6 crts. = 4 horas/semana presencial + 4horas/semana no presen.):
 - > Teoría (3 crts. = 2 horas/semana presencial en grupo amplio + 2 horas/semana no presencial) +
 - > Seminarios/Prácticas (3 crts. = 2 h/s presencial en grupo reducido + 2 h/s no presencial)
- <u>Calificación final</u> (10 puntos):
 - > Puntuación del examen final (hasta 6 puntos) +
 - > Puntuación de seminarios/prácticas (hasta 4 puntos) +
 - Puntuación extra (2 puntos):
 - Puntuación pruebas escritas opcional es (una por tema), otras tareas propuestas por el profesorado durante el curso.

Actividades Formativas

Parte práctica/seminarios

Parte teórica

Ponderación

60%

40%

- Bloques prácticos (Seminarios + Prácticas) (4 puntos):
 - > Evaluación continua (50%: 2 puntos) : entregas cuaderno de trabajo + al menos una defensa en clase
 - Examen (50%: 2 puntos)
- > Para aprobar se necesita:
 - Calificación final igual o superior a 5
 - > Prácticas con puntuación de al menos 1,6 (40% de la puntuación máxima)
 - > Examen final de teoría de al menos 2,4 (40% de la puntuación máxima)
 - > Observe que 1,6+2,4+puntuación extra puede ser mayor o igual que 5

Contexto de la asignatura

Curso 1º

Cuatr. 1 - Básicas

- Algebra Lineal y Estructuras Matemáticas
- Cálculo
- Fundamentos Físicos y Tecnológicos
- Fundamentos del Software
- Fundamentos de Programación

Cuatr. 2 - Básicas

- Lógica y Métodos Discretos
- Estadística
- Tecnología y Organización de Computadores
- Metodología de la Programación
- Ingeniería, Empresa y Sociedad

rso 2º

Cuatr. 3 -Rama

- Estructura de Computadores
- Estructuras de Datos
- Sistemas Operativos
- Programación y Diseño Orientado a Objetos
- Sistemas Concurrentes y Distribuidos

Cuatr. 4 - Rama

- Arquitectura de Computadores
- Algorítmica
- Inteligencia Artificial
- Fundamentos de Bases de Datos
- Fundamentos de Ingeniería del Software

Contexto de la asignatura

Curso 3º

Cuatr. 5 - Rama

- Ingeniería de Servidores
- Fundamentos de Redes
- Modelos de Computación
- Informática Gráfica
- Diseño y Desarrollo de Sistemas de Información

Cuatr. 6 - Obligatorias especialidades

- Computación y Sistemas Inteligentes
- Ingeniería de Computadores
- **S**ist. de **C**ómp. para **A**plicaciones **E**specíficas (IC.SCAE)
- Sist. de Cómp. de Altas Prestaciones (IC.SCAP)
- Ingeniería del Software
- Sistemas de Información
- Tecnologías de la Información

Curso 4º

Cuatr. 7 - Obligatorias especialidades

- Computación y Sistemas Inteligentes
- Ingeniería de Computadores
- Ingeniería del Software
- Sistemas de Información
- Tecnologías de la Información

Cuatr. 8 - Optativas especialidades

- Computación y Sistemas Inteligentes
- Ingeniería de Computadores
- Ingeniería del Software
- Sistemas de Información
- Tecnologías de la Información

Motivación I

AC A PTC

- ¿Cuál es el mejor microprocesador del mercado y por qué? ¿Tiene sentido hablar del mejor microprocesador del mercado?
- ¿Cómo puedo aprovechar mejor las capacidades de mi computador para generar aplicaciones eficientes? ¿qué puedo aprovechar?
- ¿Qué herramientas puedo utilizar para programar mi computador de sobremesa o mi portátil?
- ¿En qué se diferencia un procesador Core i7 de Intel de un Phenom X4 de AMD, y de un Itanium 2 de Intel? ¿Y un NUMA de un UMA?
- ¿Cuántas instrucciones por segundo pueden ejecutar los microprocesadores actuales? ¿Pueden llegar a los 50 GIPS? ¿Se puede esperar que lleguen a esas velocidades? ¿Y los computadores actuales? ¿Qué consecuencia tiene esto sobre mis aplicaciones?
- ¿Puedo comprimir mi fichero multimedia en menos de 3 segundos en un Intel Core i7 a 3 GHz? ¿Cómo puedo hacer que mi compresor vaya más rápido en ese computador?
- ¿Qué características deben tener los equipos que tengo que adquirir para satisfacer las necesidades de mi empresa en los próximos 5 años?

Motivación II

- Desarrollo de códigos que usen el hardware más eficientemente
- Mejorar el hardware

Motivación III

Optimización de JPEG

Es posible obtener prestaciones comparables (en incluso mejores) en plataformas con recursos menos avanzados tecnológicamente si se aprovechan esos recursos de forma óptima

Motivación III

AC A PIC

- Versiones de código
 - > V1
 - V2: utiliza optimizaciones clásicas y multithread (Bloque pract. 4 de AC)
 - V3: utiliza ensamblador (EC) y multithread (Bloques pract. 1,2 y 3 de AC)

Processor (release date)	Cores	L1 data cache	L1 inst. cache	L2 cache	Mem- ory	Fre- quency	FSB ¹
Core 2 Duo T7500 (Q2'2007)	2	32 KB	32 KB	4 MB shared	2 GB	2.2 GHz	800 MHz
Core 2 Duo E6750 (Q3'2007)	2	64 KB	64 KB	4 MB shared	2 GB	2.66 GHz	1333 MHz
Core 2 Quad Q9550 (Q1'2008)	4	32 KB	32 KB	2 of 6 MB. Each shared by 2 cores	4 GB	2.83 GHz	1333 MHz

1. FSB: Front-Side Bus

Objetivos de la Asignatura (resumidos)

AC SO PIC

- Distinguir entre los distintos tipos de arquitecturas más utilizadas actualmente, evaluar sus prestaciones y explicar a qué se deben las prestaciones que ofrecen
- Analizar la interacción entre tecnología, arquitectura y aplicaciones, ilustrando la influencia de la tecnología, la forma en que los elementos de una arquitectura afectan a sus prestaciones y limitan su aplicabilidad
- Programar código que aproveche las características de la arquitectura
- Identificar las fuerzas que condicionan la evolución de la arquitectura para adquirir visiones plausibles del futuro y de la longevidad de un computador

Planificación aproximada

AC S PTC				
Grupo reducido		Grupo amplio (14 semanas aprox.:1-14)		
(14 semanas aprox.:	2-15)	Clases de paralelismo	Tema 1. Arquitecturas paralelas: clasificación	
Bloque 0. Entorno de Prog.	S0 P0	Clases arq., prestaciones	y prestaciones	
	S1 P1	Herram., estilos, estruct.	Tema 2. Programación	
Bloque 1. Directivas OpenMP	S1 P1 E0:5%	Proceso paralelización	paralela	
	P1 E0	Evaluación prestaciones		
	S2 P2	Arquitecturas TLP		
Bloque 2. Cláusulas OpenMP	S2 P2 E1:20%	Coherencia	Tema 3. Arquitecturas con paralelismo a nivel	
	P2 E1	Consistencia	de threac	
Bloque 3. Interacción con el	S3 P3	Sincronización		
entorno en OpenMP	S3 P3 E2:25%	Microarq. ILP. Cauces		
	P3 E2	Consistencia procesador	Tema 4. Arquitecturas con paralelismo a nivel	
	S4 P4	Saltos	de instrucción (ILP)	
Bloque 4. Optimización de	S4 P4 E3:25%	VLIW		
código Cada fila es una semana (15 filas) (S)eminario (P)ráctica (E)valuación	P4 E3 E4:25%	SIMD, GPU y proc. de red	Tema 5. Arquitecturas de propósito específico	