THE DOLD-KAN CORRESPONDENCE

ARPON RAKSIT

1. Introduction

1.1. **Definition.** A simplicial object in a category \mathcal{C} is a contravariant functor $\Delta \to \mathcal{C}$. We denote the category $\operatorname{Fun}(\Delta^{\operatorname{op}}, \mathcal{C})$ of simplicial objects in \mathcal{C} by s \mathcal{C} . E.g., s \mathcal{S} et is the category of simplicial sets and s \mathcal{A} b is the category of simplicial abelian groups.

Recall we have a functor Sing : $\operatorname{Top} \to \operatorname{sSet}$, sending $X \mapsto \operatorname{Hom}_{\operatorname{Top}}(|\Delta^{\bullet}|, X)$. Lately we've been talking about Sing for two reasons:

- (1) It's a right adjoint to geometric realisation |-|: sSet \to Top.
- (2) $\operatorname{Sing}(X)$ is a Kan complex for all $X \in \operatorname{Top}$. In this sense, "Kan complexes are like spaces".

But this isn't the first place one sees Sing, probably. Indeed, the singular homology functors are essentially defined by a composition

$$\mathrm{H}_n(-;\mathbb{Z}) \coloneqq \mathrm{Top} \xrightarrow{\mathrm{Sing}} \mathrm{sSet} \xrightarrow{\mathbb{Z}} \mathrm{sAb} \xrightarrow{\sum (-1)^i d_i} \mathrm{Ch}_{\geq 0} \xrightarrow{\mathrm{H}_n} \mathrm{Ab}.$$

Here \mathbb{Z} denotes the functor which takes free abelian groups level-wise, from which we get the *singular chain complex* by letting the boundary map be given by $\partial := \sum (-1)^i d_i$.

This was just to remind us that we've seen a natural functor $sAb \rightarrow Ch$ relating simplicial abelian groups and chain complexes. We'll look at it a bit more carefully in a second, and develop this relationship much further.

2. Stating the correspondence

We fix \mathcal{A} any abelian category—but we'll probably be imagining $\mathcal{A} = \mathcal{A}$ b or $\mathcal{A} = R$ -Mod (for some commutative ring R).

2.1. **Notation.** We denote the category of nonnegatively graded chain complexes in \mathcal{A} (and chain maps) by $\operatorname{Ch}_{>0}(\mathcal{A})$.

Let's now make precise the $\partial := \sum (-1)^i d_i$ business with which we started this discussion.

2.2. **Definition.** Let $A \in sA$ a simplicial object in A (e.g., a simplicial abelian group). We define the associated chain complex $C(A) \in Ch_{>0}(A)$ by

$$C_n(A) := A_n$$
 and $\partial_n := \sum_{i=0}^n (-1)^i d_i : C_n(A) \to C_{n-1}(A)$

for $n \geq 0$. Note that the simplicial identities clearly imply $\partial^2 = 0$, so C(A) is indeed a chain complex. Moreover, this evidently defines a functor $C : sA \to \mathcal{C}h_{\geq 0}(A)$.

This is perhaps the most natural—or familiar, at least—functor $sA \to Ch_{\geq 0}(A)$, but it turns out not to be the cleanest to use when discussing the relationship between the two categories. In fact, we will want to use the following alternative.

Date: October 23, 2013.

2.3. **Definition.** Again let $A \in sA$ a simplicial object in A. We define the normalised chain complex $N(A) \in \mathfrak{Ch}_{>0}(A)$ by

$$N_n(A) := \bigcap_{i=0}^{n-1} \ker(d_i) \subseteq A_n$$
 and $\partial_n := (-1)^n d_n : N_n(A) \to N_{n-1}(A)$

for $n \geq 0$. Again the simplicial identities imply $\partial^2 = 0$, and we have a functor $N : sA \to \mathcal{C}h_{\geq 0}(A)$.

What is this unmotivated nonsense? Have no fear, for C and N are intimately related! For instance we can note immediately from the definitions that the natural inclusion $N(A) \to C(A)$ is in fact a chain map for $A \in \mathcal{SA}$. But there's more!

2.4. **Definition.** Let $A \in sA$. We define the degenerate subcomplex D(A) of C(A) by

$$D_0(A) := 0$$
 and $D_n(A) := \sum_{i=0}^{n-1} \operatorname{im}(s_i)$

for $n \geq 1$. That is, D(A) is generated by the images of the degeneracy maps. Note that by the simplicial identities

$$\partial s_j = \sum_{i=0}^n (-1)^i d_i s_j = \sum_{i=0}^{j-1} (-1)^i s_{j-1} d_i + \sum_{i=j+2}^n (-1)^i s_j d_i,$$

so D(A) is indeed a subcomplex.

2.5. **Proposition.** Let $A \in sA$. For $n \geq 0$ the natural map

$$\phi: N_n(A) \oplus D_n(A) \to A_n = C_n(A)$$

induced by the inclusions is an isomorphism. Therefore we have a natural isomorphism

$$N(A) \simeq C(A)/D(A)$$
.

Proof. Fix $n \geq 0$. For $0 \leq i \leq n-1$, the simplicial identity $d_i s_i = \text{id}$ implies that we have a canonical splitting $A_n \simeq \ker(d_i) \oplus \operatorname{im}(s_i)$. It follows easily that $N_n(A) \cap D_n(A) \simeq 0$, so we're just left to show that ϕ is surjective. We prove by downward induction on $0 \leq j \leq n-1$ that

$$\operatorname{im}(\phi) \supseteq N_j := \bigcap_{i=0}^j \ker(d_i).$$

The base case j = n - 1 is tautological and the final case j = 0 will finish the proof. Now consider the map $\psi := \operatorname{id} - s_j d_j : C_n \to C_n$. Observe by the simplicial identities that

$$d_i \psi = d_i - d_i s_i d_i = d_i - d_i = 0$$
 and $d_i \psi = d_i - d_i s_i d_i = d_i - s_{i-1} d_{i-1} d_i$

for i < j, implying that $\psi(N_j) \subseteq N_{j+1}$. By induction $\operatorname{im}(\phi) \supseteq N_{j+1}$, and since $\operatorname{im}(s_j d_j) \supseteq D_n(A)$ it follows that $\operatorname{im}(\phi) \supseteq N_j$.

So there's the relationship between C and N. With these definitions in hand, we can now state our main goal, the Dold-Kan correspondence.

2.6. **Theorem** (Dold-Kan). The functor $N : sA \to Ch_{>0}(A)$ is an equivalence of categories.

3. Proving the correspondence

3.1. **Definition.** Let $C \in \operatorname{Ch}_{>0}(\mathcal{A})$. Define

$$\Gamma_n(C) \coloneqq \bigoplus_{[n] \to [k]} C_k,$$

where the direct sum is over all surjections $\sigma:[n] \rightarrow [k]$ in the category Δ .

Let $\nu:[m]\to[n]$ a morphism in Δ . Let $\tau:[n]\twoheadrightarrow[k]$ an indexing surjection. We can factor $\tau\nu$ as a composition $[m]\twoheadrightarrow[j]\hookrightarrow[k]$ of a surjection σ and an injection ι . Then we define a map¹

$$C_k \to C_j$$
 as
$$\begin{cases} \mathrm{id}_{C_n}, & \text{if } j = k; \\ (-1)^n \partial_n, & \text{if } j = k-1 \text{ and } \iota = d^k; \\ 0, & \text{otherwise.} \end{cases}$$

Then composition with the inclusion $C_j \to \Gamma_m(C)$ of the factor with index $\sigma : [m] \twoheadrightarrow [j]$ gives a map $C_k \to \Gamma_m(C)$. Finally, the direct sum of these maps gives us an induced morphism $\nu^* : \Gamma_n(C) \to \Gamma_m(C)$.

Suppose $\mu:[l] \to [m]$ is another morphism in Δ . Factoring $\sigma\mu$ as $\rho\theta:[l] \twoheadrightarrow [i] \hookrightarrow [j]$, we have a commutative diagram

$$\begin{bmatrix} l \end{bmatrix} \xrightarrow{\mu} \begin{bmatrix} m \end{bmatrix} \xrightarrow{\nu} \begin{bmatrix} n \end{bmatrix}$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\sigma} \qquad \qquad \downarrow^{\tau}$$

$$[i] \xleftarrow{\theta} \begin{bmatrix} j \end{bmatrix} \xleftarrow{\iota} \begin{bmatrix} k \end{bmatrix}.$$

It's easy to see then that $(\nu \mu)_* = \mu_* \nu_*$.

It is also evident that a chain map $C \to D$ in $\operatorname{Ch}_{\geq 0}(\mathcal{A})$ gives rise to a simplicial map $\Gamma(C) \to \Gamma(D)$ in $s\mathcal{A}$ via factor-wise application. So finally we have constructed a functor

$$\Gamma: \operatorname{Ch}_{>0}(\mathcal{A}) \to s\mathcal{A},$$

which to each chain complex in A gives an associated simplicial object in A.

To prove Dold-Kan, we're going to show that Γ is a quasi-inverse to $N: sA \to \mathcal{C}h_{>0}(A)$.

3.2. **Definition.** Observe that there is a natural transformation $\Phi: \Gamma \circ N \to \mathrm{id}_{s\mathcal{A}}$ defined by the maps

$$\Phi_n(A): \Gamma_n(N(A)) = \bigoplus_{[n] \to [k]} N_k(A) \to A_n$$

for $A \in s\mathcal{A}$ and $n \geq 0$, which restrict to the factor indexed by $\sigma : [n] \twoheadrightarrow [k]$ as the composition

$$N_k(A) \hookrightarrow A_k \xrightarrow{\sigma^*} A_n.$$

(It is clear this defines a simplicial map $\Gamma(N(A)) \to A$ which is natural in A.)

3.3. **Lemma.** In fact $\Phi: \Gamma \circ N \to id_{s,A}$, defined above, is a natural isomorphism.

Proof. Fix $A \in sA$. We will prove by induction on $n \geq 0$ that $\Phi_n(A) : \Gamma_n(N(A)) \to A_n$ is an isomorphism, and then we will be done. Since the only surjection $[0] \twoheadrightarrow [k]$ in Δ is $\mathrm{id}_{[0]}$, and the inclusion $N_0(A) \hookrightarrow A_0$ is an isomorphism, the base case n = 0 is tautological.

First, surjectivity. Recall from Proposition 2.5 that we have a splitting $A_n \simeq N_n(A) \oplus D_n(A)$. From the factor $\mathrm{id}_{[n]} : [n] \twoheadrightarrow [n]$ of $\Gamma_n(N(A))$ we $\mathrm{im}(\Phi_n(A)) \supseteq N_n(A)$. By induction $\Phi_{n-1}(A)$ is surjective, so by definition we must have $\mathrm{im}(\Phi_n(A)) \supseteq D_n(A)$. Hence $\Phi_n(A)$ is surjective.

Next, injectivity. Assume we have $(x_{\sigma}) \in \ker(\Phi_n(A))$. Fix $0 \le k < n$. Observe that to each surjection $\sigma : [n] \to [k]$ we can assign a section of σ ,

$$\nu_\sigma: [k] \hookrightarrow [n], \quad \nu_\sigma(i) \coloneqq \max\{j \in [n] \mid \sigma(j) = i\}.$$

If we have $\sigma, \sigma' : [n] \twoheadrightarrow [k]$, we say

$$\sigma \leq \sigma' \iff \nu_{\sigma}(i) \leq \nu_{\sigma'}(i) \text{ for all } i \in [k].$$

 $^{^{1}}$ This definition is not so random: compare it with our definition of the normalised chain complex N.

In particular, $\sigma'\nu_{\sigma} = \mathrm{id}_{[k]} \implies \sigma \leq \sigma'$. If there exists $\tau : [n] \twoheadrightarrow [k]$ such that $x_{\tau} \neq 0$, choose a maximal such τ (with respect to the ordering just defined). By definition of the simplicial structure on $\Gamma(N(A))$, it follows that the component of $v_{\tau}^*(x_{\sigma})$ in the factor of $\Gamma_k(N(A))$ indexed by $\mathrm{id}_{[k]}$ is precisely x_{τ} . But then, by induction,

$$(x_{\sigma}) \in \ker(\Phi_n(A)) \implies v_{\tau}^*(x_{\sigma}) \in \ker(\Phi_k(A)) \implies x_{\tau} = 0,$$

contradiction.

So we must have $x_{\sigma} = 0$ for all $\sigma \neq \operatorname{id}_{[n]}$. But the restriction of $\Phi_n(A)$ to the factor indexed by $\operatorname{id}_{[n]}$ is just the inclusion $N_n(A) \hookrightarrow A_n$. So then $x_{\operatorname{id}_{[n]}} = 0$ too, and hence $\Phi_n(A)$ is injective.

3.4. **Lemma.** Let $C \in \mathfrak{C}h_{\geq 0}(\mathcal{A})$. For $n \geq 0$, the natural inclusion

$$\Psi_n(C): N_n(\Gamma(C)) \hookrightarrow C_n(\Gamma(C)) = \Gamma_n(C) = \bigoplus_{[n] \to [k]} C_k$$

has image the factor C_n indexed by $id_{[n]}$. This of course gives a natural isomorphism

$$\Psi: N \circ \Gamma \to \mathrm{id}_{\mathfrak{Ch}_{>0}(\mathcal{A})}$$
.

Proof. By definition of the simplicial structure on $\Gamma(C)$ we have $C_n \subseteq \bigcap_{i=0}^{n-1} \ker(d_i) = \operatorname{im}(\Psi_n(C))$. Now note for $\sigma : [n] \twoheadrightarrow [k]$ with k < n, we must have a factorisation of σ as a composition

$$[n] \xrightarrow{s^i} [n-1] \longrightarrow [k],$$

so it follows that the factor of $\Gamma_n(C)$ indexed by σ lies in the image of the degeneracies $D_n(\Gamma(C))$. Then we're done, since by Proposition 2.5 we have a splitting

$$\Gamma_n(C) \simeq N_n(\Gamma(C)) \oplus D_n(\Gamma(C)).$$

Proof of Theorem 2.6. The natural isomorphisms $\Phi: \Gamma \circ N \to \mathrm{id}_{s,\mathcal{A}}$ and $\Psi: N \circ \Gamma \to \mathrm{id}_{\mathfrak{Ch}_{\geq 0}(\mathcal{A})}$ of Lemmas 3.3 and 3.4 exhibit N (and Γ) as an equivalence of categories, thus proving the Dold-Kan correspondence.

4. Applying the correspondence

4.1. **Proposition.** The natural inclusion $N(A) \to C(A)$ for $A \in sA$ gives a natural chain homotopy equivalence.

References

- 1. Paul G. Goerss and John F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag, 1999.
- 2. Akhil Mathew, The Dold-Kan correspondence, people.fas.harvard.edu/~amathew/doldkan.pdf.
- 3. Emily Riehl, A leisurely introduction to simplicial sets, www.math.harvard.edu/~eriehl/ssets.pdf.
- 4. Charles A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.