

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- ✓ • BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Verfahren zur Hemmung der Expression eines Zielgens

Die Erfindung betrifft ein Verfahren, eine Verwendung und ein Medikament zur Hemmung der Expression eines Zielgens.

5

Aus der WO 99/32619 sowie der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe einer doppelsträngigen Ribonukleinsäure (dsRNA) bekannt. Die bekannten Verfahren sind zwar 10 hoch effektiv. Es besteht gleichwohl das Bedürfnis, deren Effizienz weiter zu steigern.

Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere 15 ein Verfahren, eine Verwendung und ein Medikament angegeben werden, mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.

Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 41 und 20 81 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 40, 42 bis 80 und 82 bis 120.

Mit den erfindungsgemäß beanspruchten Merkmalen wird überraschenderweise eine drastische Erhöhung der Effektivität der 25 Hemmung der Expression eines Zielgens *in vitro* und *in vivo* erreicht. Durch die besondere Ausbildung der Enden der dsRNA kann sowohl deren Effizienz bei der Vermittlung der hemmenden Wirkung auf die Expression eines Zielgens als auch deren Stabilität gezielt beeinflusst werden. Durch die Vergößerung der 30 Stabilität wird die wirksame Konzentration in der Zelle erhöht.

Unter einem "Zielgen" im Sinne der Erfindung wird der DNA-Strang der doppelsträngigen DNA in der Zelle verstanden, welcher kopolmentär zu einem bei der Transkription als Matritze dienenden DNA-Strang einschließlich aller transkribierten Be-

reiche ist. Bei dem "Zielgen" handelt es sich also im allgemeinen um den Sinnstrang. Der eine Strang bzw. Antisinnstrang (as1) kann komplementär zu einem bei der Expression des Zielgens gebildeten RNA-Transkript oder deren Prozessierungsprodukt, z.B. eine mRNA, sein. Unter "Einführen" wird die Aufnahme in die Zelle verstanden. Die Aufnahme kann durch die Zelle selbst erfolgen; sie kann auch durch Hilfsstoffe oder Hilfsmittel vermittelt werden. Unter einem "Überhang" wird ein endständiger einzelsträngiger Überstand verstanden, welcher nicht nach Watson & Crick gepaarte Nukleotide aufweist. Unter einer "doppelsträngigen Struktur" wird eine Struktur verstanden, bei der die Nukleotide der Einzelstränge im Wesentlichen nach Watson & Crick gepaart sind. Im Rahmen der vorliegenden Erfindung kann eine doppelsträngige Struktur auch einzelne Fehlpaarungen ("Mismatches") aufweisen.

Nach einer besonderen vorteilhaften Ausgestaltung weist die dsRNA I den Überhang am 3'-Ende des einen Strangs bzw. Antisinnstrangs as1 und/oder am 3'-Ende des anderen Strangs bzw. Sinnstrang ss1 auf. Die dsRNA I kann auch an einem Ende glatt ausgebildet sein. In diesem Fall befindet sich das glatte Ende vorteilhaftweise auf der Seite der dsRNA I, die das 5'-Ende des einen Strangs (Antsinnstrang; as1). In dieser Ausbildung zeigt die dsRNA I einerseits eine sehr gute Effektivität und andererseits eine hohe Stabilität im lebenden Organismus. Die Effektivität insgesamt *in vivo* ist hervorragend. Der Überhang ist zweckmäßigerweise aus 1 bis 4 Nukleotiden, vorzugsweise aus 1 oder 2 Nukleotiden, gebildet.

30 Nach einem weiteren Ausgestaltungsmerkmal kann die Effektivität des Verfahrens weiter erhöht werden, wenn zumindest eine entsprechend der erfindungsgemäßen dsRNA I ausgebildete weitere dsRNA II in die Zelle eingeführt wird, wobei der eine Strang oder zumindest ein Abschnitt des einen Strangs der 35 doppelsträngigen Struktur der dsRNA I komplementär zu einem ersten Bereich des Sinnstrangs des Zielgens ist, und wobei

ein weiterer Strang oder zumindest ein Abschnitt des weiteren Strangs der doppelsträngigen Struktur der weiteren dsRNA II komplementär zu einem zweiten Bereich des Sinnstrangs des Zielgens ist. Die Hemmung der Expression des Zielgens ist in 5 diesem Fall deutlich gesteigert. Der erste und der zweite Bereich können abschnittsweise überlappen, aneinander grenzen oder auch voneinander beabstandet sein.

Es hat sich weiter als vorteilhaft erwiesen, wenn die dsRNA I 10 und/oder die weitere dsRNA II eine Länge von weniger als 25 aufeinander folgenden Nukleotidpaaren aufweisen. Als besonders effektiv hat sich eine Länge im Bereich zwischen 19 und 23 Nukleotidpaaren erwiesen. Die Effizienz kann weiter gesteigert werden, wenn an den vorzugsweise aus 19 bis 23 Nu- 15 kleotidpaaren gebildeten Doppelsträngen einzelsträngige Überhänge von 1 bis 4 Nukleotiden vorhanden sind.

Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal 20 eine der in dem anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Prionen, Gene zur Expression von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie Apoptose- und Zellzyklus-regulierende Molekülen sowie Gene zur Expression des EGF-Rezeptors. Beim Zielgen kann es sich insbesondere um das MDR1-Gen handeln. Es kann in diesem Zusammenhang eine der Sequenzen SQ141 - 173 bestehende bzw. ein aus jeweils zusammengehörenden Antisinn (as)- und Sinnsequenzen (ss) kombinierte 25 30 dsRNA I/II verwendet werden.

Nach einem weiteren vorteilhaften Ausgestaltungsmerkmal wird 35 die Expression nach dem Prinzip der RNA-Interferenz gehemmt.

Das Zielgen wird zweckmäßigerweise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viroids, sein. Das Virus oder Viroid kann auch ein 5 tier- oder pflanzenpathogenes Virus oder Viroid sein.

Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind.

10

Zumindest ein Ende der dsRNA I/II kann modifiziert werden, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken. Vorteilhafterweise wird dazu der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt 15 der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet werden. Es hat sich weiter als 20 zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen Endes gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 24 bis 30 entnommen werden, ohne dass es dafür einer näheren Erläuterung bedarf.

Die dsRNA I/II kann dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird. Zum Transport der dsRNA I/II in die Zelle hat es sich auch als vorteilhaft erwiesen, dass diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein 35

1 und/oder das Virus-Protein 2 des Polyomavirus enthalten.
Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei
Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
5 sidartigen Gebildes gewandt ist. Ferner ist es von Vorteil,
dass der eine Strang der dsRNA I/II (as1/2) zum primären oder
prozessierten RNA-Transkript des Zielgens komplementär ist.
Die Zelle kann eine Vertebratenzelle oder eine menschliche
Zelle sein.

10

Weiterhin hat es sich gezeigt, dass die dsRNA I/II vorteil-
hafterweise bereits in einer Menge von höchstens 5 mg/kg Kör-
pergewicht pro Tag einem Säugetier, vorzugsweise einem Men-
schen, verabreicht werden kann. Bereits in dieser geringen
15 Dosis wird eine ausgezeichnete Effektivität erzielt.

Überraschenderweise hat sich gezeigt, dass die dsRNA I/II zur
Applikation in eine Pufferlösung aufgenommen und dann oral
oder mittels Injektion oder Infusion intravenös, intratumo-
ral, inhalativ, intraperitoneal verabreicht werden kann.
20

Erfindungsgemäß ist weiterhin die Verwendung einer doppel-
strängigen Ribonukleinsäure (dsRNA I) zur Hemmung der Express-
sion eines Zielgens in einer Zelle vorgesehen, wobei die
25 dsRNA I eine doppelsträngige aus höchstens 49 aufeinander
folgenden Nukleotidpaaren gebildete Struktur aufweist, und
wobei ein Strang (Antisinnstrang; as1) oder zumindest ein Ab-
schnitt des einen Strangs (as1) der doppelsträngigen Struktur
komplementär zum Sinnstrang des Zielgens ist, und wobei die
30 dsRNA I zumindest an einem Ende einen aus 1 bis 4 Nukleotiden
gebildeten Überhang aufweist.

Nach weiterer Maßgabe der Erfindung ist ein Medikament zur
Hemmung der Expression eines Zielgens in einer Zelle vorgese-
35 hen, enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA
I) in einer zur Hemmung der Expression des Zielgens ausrei-

chenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur 5 komplementär zum Sinnstrang des Zielgens ist, und wobei die dsRNA I zumindest an einem Ende einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

Wegen der weiteren vorteilhaften Ausgestaltung der dsRNA I/II 10 wird auf die vorangegangenen Ausführungen verwiesen.

Die Erfindung wird nachfolgend anhand der Zeichnungen und Ausführungsbeispiele beispielhaft erläutert. Es zeigen:

15 Fig. 1a, b schematisch eine erste und zweite doppelsträngige RNA und

Fig. 2 schematisch ein Zielgen,

20 Fig. 3 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (erstes Experiment),

25 Fig. 4 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (zweites Experiment),

30 Fig. 5 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (drittes Experiment),

Fig. 6 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (viertes Experiment),

Fig. 7 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in HeLa-S3-Zellen (fünftes Experiment),

5 Fig. 8 fluoreszenzmikroskopische Aufnahmen von NIH/3T3-Zellen nach Transfektion mit pcDNA-YFP bzw nach Kotransfektion mit pcDNA-YFP und verschiedenen dsRNAs,

10 Fig. 9 fluoreszenzmikroskopische Aufnahmen von HeLa-S3-Zellen nach Transfektion mit pcDNA-YFP bzw. nach Kotransfektion mit pcDNA-YFP und verschiedenen dsRNAs,

15 Fig. 10 gelelektrophoretische Auftrennung von S1 nach Inkubation in Maus-Serum,

Fig. 11 gelelektrophoretische Auftrennung von S1 nach Inkubation in humanem Serum,

20 Fig. 12 gelelektrophoretische Auftrennung von S7 nach Inkubation in Maus-Serum,

Fig. 13 gelelektrophoretische Auftrennung von S7 nach Inkubation in humanem Serum,

25 Fig. 14 gelelektrophoretische Auftrennung von K3 nach Inkubation in Maus-Serum,

30 Fig. 15 gelelektrophoretische Auftrennung von PKC1/2 nach Inkubation in Maus-Serum,

Fig. 16 gelelektrophoretische Auftrennung von S1A/S4B nach Inkubation in humanem Serum,

Fig. 17 gelelektrophoretische Auftrennung von K2 nach Inkubation in humanem Serum und

5 Fig. 18 GFP-spezifische Immunoperoxidase-Färbung an Nieren-Paraffinschnitten transgener GFP-Mäuse,

Fig. 19 GFP-spezifische Immunoperoxidase-Färbung an Herz-Paraffinschnitten transgener GFP-Mäuse,

10 Fig. 20 GFP-spezifische Immunoperoxidase-Färbung an Pankreas-Paraffinschnitten transgener GFP-Mäuse,

15 Fig. 21 Western-Blot-Analyse der GFP-Expression im Plasma,

Fig. 22 Western-Blot-Analyse der GFP-Expression in der Niere,

20 Fig. 23 Western-Blot-Analyse der GFP-Expression im Herz,

25 Fig. 24 Western-Blot-Analyse der EGFR-Expression in U-87 MG Glioblastom-Zellen,

Fig. 25a Northern-Blot-Analyse des MDRI mRNA-Niveaus in der Kolonkarzinom-Zelllinie LS174T, wobei die Zellen nach 74 Stunden geerntet wurden,

30 Fig. 25b Quantifizierung der Banden nach Fig. 25a, wobei die Mittelwerte aus zwei Werten dargestellt sind,

35 Fig. 26a Northern-Blot-Analyse des MDRI mRNA-Niveaus in der Kolonkarzinom-Zelllinie LS174T, wobei die Zellen nach 48 Stunden geerntet wurden,

Fig. 26b Quantifizierung der Banden nach Fig. 26a, wo-
bei die Mittelwerte aus zwei Werten darge-
stellt sind,

5

Fig. 27 vergleichende Darstellung einer durchlicht-
und fluoreszenzmikroskopischen Aufnahme einer
Transfektion mit 175 nM dsRNA (Sequenz R1 in
Tabelle 4).

10

Die in den Fig. 1a und 1b schematisch gezeigten doppelsträn-
gigen Ribonukleinsäuren dsRNA I und dsRNA II weisen jeweils
ein erstes Ende E1 und ein zweites Ende E2 auf. Die erste und
die zweite Ribonukleinsäure dsRNA I/dsRNAlI weisen an ihren
15 beiden Enden E1 und E2 einzelsträngige, aus etwa 1 bis 4 un-
gepaarten Nukleotiden gebildete Abschnitte auf. Es sind zwei
mögliche Varianten dargestellt (Variante 1 und 2), wobei Va-
riante 2 ein glattes Ende (E2) aufweist. Das glatte Ende kann
jedoch auch in einer weiteren Variante am anderen Ende (E1)
20 liegen.

In Fig. 2 ist schematisch ein auf einer DNA befindliches
Zielgen gezeigt. Das Zielgen ist durch einen schwarzen Balken
kenntlich gemacht. Es weist einen ersten Bereich B1 und einen
25 zweiten Bereich B2 auf.

Jeweils der eine Strang der ersten dsRNA I (as1) bzw. der
zweiten dsRNA II (as2) ist komplementär zum entsprechenden
Bereich B1 bzw. B2 auf dem Zielgen.

30

Die Expression des Zielgens wird dann besonders wirkungsvoll
gehemmt, wenn die dsRNA I/dsRNA II an ihren Enden E1, E2 ein-
zelsträngige Abschnitte aufweist. Die einzelsträngigen Ab-
schnitte können sowohl am Strang as1 oder as2 als auch am Ge-
35 genstrang (ss1 bzw. ss2) oder am Strang as1, as2 und am Ge-
genstrang ausgebildet sein.

Die Bereiche B1 und B2 können, wie in Fig. 2 gezeigt, von einander beabstandet sein. Sie können aber auch aneinander grenzen oder überlappen.

5

I. Hemmung der Expression des YFP-Gens in Fibroblasten:

Es wurden aus Sequenzen des Yellow Fluorescent Proteine (YFP), einer Variante des GFP (Grün-fluoreszierendes Protein) der Alge *Aequoria victoria* abgeleitete doppelsträngige RNAs (dsRNAs) hergestellt und zusammen mit einem YFP-kodierenden Plasmid in Fibroblasten mikroinjiziert. Anschließend wurde die Fluoreszenzabnahme gegenüber Zellen ohne dsRNA ausgewertet.

15 Versuchsprotokoll:

Mittels eines RNA-Synthesizer (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen SQ148, 149 und SQ159 ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung mit Hilfe der HPLC. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur. Die so erhaltenen dsRNAs wurden in die Testzellen mikroinjiziert.

Als Testsystem für diese Zellkultur-Experimente diente die murine Fibroblasten-Zelllinie NIH/3T3, ECACC No. 93061524 (European Collection of Animal Cell Culture). Für die Mikroinjektionen wurde das Plasmid pcDNA-YFP verwendet, das ein 800bp großes Bam HI/Eco RI-YFP-Fragment in den entsprechenden Restriktionsschnittstellen des Vectors pcDNA3 enthält. Die Expression des YFP wurde unter dem Einfluß gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Die Auswer-

tung unter dem Fluoreszenzmikroskop erfolgte frühestens 3 Stunden nach Injektion anhand der grünen Fluoreszenz.

Vorbereitung der Zellkulturen:

5 Die Kultivierung der Zellen erfolgte in DMEM mit 4,5 g/l Glu-
cose, 10 % fötalem Kälberserum (FCS), 2 mM L-Glutamin, Peni-
cillin/Streptomycin (100 IE/100 µg/ml, Biochrom) im Brut-
schränke unter 5 % CO₂-Atmosphäre bei 37°C. Die Zellen wurden
alle 3 Tage passagiert, um sie in der exponentiellen Wachs-
10 tumsphase zu halten. Einen Tag vor der Durchführung der
Transfektion wurden die Zellen trypsinisiert (10x Tryp-
sin/TEDTA, Biochrom) und mit einer Zelldichte von 0,3 x 10⁵
Zellen in beschichteten Petrischalen (CORNING® Cell Culture
Dish, 35 mm, Corning Inc., Corning, USA) ausgesät. Die Petri-
15 schalen wurden mit 0,2 % Gelatine (Biochrom) für mindestens
30 Minuten bei 37°C inkubiert, einmal mit PBS gewaschen und
sofort für die Aussaat der Zellen verwendet. Um ein Wieder-
finden individueller Zellen zu ermöglichen, wurden CELLocate
Coverslips der Fa. Eppendorf (Square size 55 µm) verwendet.
20

Mikroinjektion:

Zur Durchführung der Mikroinjektion wurden die Petrischalen ca. 10 Minuten aus dem Brutschrank genommen. Pro Schale und Ansatz wurden ca. 50 Zellen mikroinjiziert (FemtoJet; Mikro-
25 manipulator 5171, Eppendorf). Für die Mikroinjektion wurden Glaskapillaren (FemtoTip) der Firma Eppendorf mit einem Spitzendurchmesser von 0,5 µm verwendet. Die Injektionsdauer betrug 0,8 Sekunden und der Druck 30 hPa. Durchgeführt wurden die Mikroinjektionen an einem Olympus IX50 Mikroskop mit
30 Fluoreszenzeinrichtung. Als Injektionspuffer wurde 14 mM NaCl, 3 mM KCl, 10 mM KH₂PO₄, pH 7,0 verwendet, der 0,01 µg/µl pcDNA-YFP enthielt. Zur Überprüfung einer erfolgreichen
Mikroinjektion wurde der Injektionslösung jeweils 0,08% (w/v)
an Dextran-70000 gekoppeltes Texas-Rot (Molecular Probes,
35 Leiden, Niederlande) zugesetzt. Um die Inhibition der YFP-Expression mit spezifischer dsRNA zu untersuchen, wurden der

Injektionslösung dsRNAs zugegeben: Ansatz 1: 0,1 µM dsRNA (Sequenzprotokoll SQ148/149); Ansatz 2: 0,1 µM dsRNA (Sequenzprotokoll SQ148/159); Ansatz 3: ohne RNA. Nach der Mikroinjektion wurden die Zellen für mindestens drei weitere 5 Stunden im Brutschrank inkubiert. Danach wurden die intrazelluläre YFP-Fluoreszenz am Mikroskop ausgewertet: gleichzeitig rot und grün-fluoreszierende Zellen: Mikroinjektion war erfolgreich, es wird keine Inhibition der YFP-Expression durch dsRNA beobachtet; bzw. es handelt sich um 10 Kontrollzellen, in die keine dsRNA injiziert wurde; nur rot-fluoreszierende Zellen: Mikroinjektion war erfolgreich, die dsRNA inhibiert YFP-Expression.

Ergebnisse:

15 Bei einer dsRNA-Konzentration von 0,1 µM konnte beim Einsatz der dsRNA mit den an beiden 3'-Enden um je zwei Nukleotide überstehenden Einzelstrangbereichen (Sequenzprotokoll SQ148/159) eine merklich erhöhte Hemmung der Expression des YFP-Gens in Fibroblasten beobachtet werden im Vergleich zur 20 dsRNA ohne überstehende Einzelstrangenden (Tabelle 1).

Die Verwendung von kurzen, 19-25 Basenpaare enthaltenden, 25 dsRNA-Molekülen mit Überhängen aus wenigen, vorzugsweise 1 bis 3 nicht-basengepaarten, einzelsträngigen Nukleotiden ermöglicht somit eine vergleichsweise stärkere Hemmung der Genexpression in Säugerzellen als die Verwendung von dsRNAs mit derselben Anzahl von Basenpaaren ohne die entsprechenden Einzelstrangüberhänge bei jeweils gleichen RNA-Konzentrationen.

Ansatz	Name	Sequenzprotokoll-Nr.	0.1 µM
1	S1A/ S1B	SQ148 SQ149	+
2	S1A/ S4B	SQ148 (überstehende Enden) SQ159	+++
3		ohne RNA	-

Tabelle 1: Die Symbole geben den relativen Anteil an nicht oder schwach grün-fluoreszierenden Zellen an (+++ > 90%; ++ 60-90%; + 30-60%; - < 10%).

5

II. Hemmung der Genexpression eines Zielgens in kultivierten HELA-S3-Zellen und Mausfibroblasten durch dsRNA:

10 Die Effektivität der Inhibition der YFP-Expression nach transienter Transfektion eines YFP-codierenden Plasmids auf der Basis der RNA-Interferenz mit dsRNAs lässt sich durch Gestaltung der 3'-Enden und der Länge des basengepaarten Bereichs modulieren.

15

Ausführungsbeispiel:

Zum Wirksamkeitsnachweis der dsRNA bei der spezifischen Inhibition der Genexpression wurden transient transfizierte
 20 NIH/3T3-Zellen (Fibroblasten aus NIH Swiss Mausembryo, ECCAC (European collection of animal cell culture) Nr. 93061524) und HELA-S3 (humane cervikale Karzinomzellen, DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) Nr. ACC 161) verwendet. Für die Transfektion wurde das Plasmid pcDNA-YFP
 25 verwendet, das ein 800 bp großes Bam HI /Eco RI-YFP-Fragment in den entsprechenden Schnittstellen des Vektors pcDNA3 enthält. Aus der Sequenz des gelb-fluoreszierenden Proteins (YFP) abgeleitete doppelsträngige RNAs (dsRNAs) wurden herge-

stellt und zusammen mit dem Plasmid pcDNA-YFP transient in die Fibroblasten transfiziert (Die verwendeten spezifischen dsRNAs sind in ihren Antisinn-Strängen komplementär zu entsprechenden Abschnitten der Gensequenzen von sowohl YFP als 5 auch GFP). Nach 48 Stunden wurde die Fluoreszenzabnahme quantifiziert. Als Kontrollen fungierten Zellen, die entweder nur mit pcDNA-YFP oder mit pcDNA-YFP und einer Kontroll-dsRNA (nicht aus der YFP-Sequenz abgeleitet) transfiziert wurden.

10 Versuchsprotokoll:

dsRNA-Synthese:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; 15 als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/ Minute. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 25 6 Stunden auf Raumtemperatur.

Aussaat der Zellen:

30 Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der NIH/3T3-Zellen und der HELA-S3 erfolgte im Brutschrank (CO₂-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO₂ und gesättigter

Luftfeuchtigkeit in DMEM (Dulbecco's modified eagle medium, Biochrom), für die Mausfibroblasten, und Ham's F12 für die HELA-Zellen mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom) und Penicillin/Streptomycin (100 IE/100 µg/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passiert. 24 Stunden vor der Durchführung der Transfektion wurden die Zellen trypsinisiert (10x Trypsin/EDTA, Biochrom, Deutschland) und mit einer Zelldichte von $1,0 \times 10^4$ Zellen/Vertiefung in einer 96-Loch-Platte (Multiwell Schalen 96-Well Flachboden, Labor Schubert & Weiss GmbH) in 150 µl Wachstumsmedium ausgesät.

15

Durchführung der transienten Transfektion:

Die Transfektion wurde mit Lipofectamine Plus™ Reagent (Life Technologies) gemäß den Angaben des Herstellers durchgeführt. Pro Well wurden 0,15 µg pcDNA-YFP-Plasmid eingesetzt. Das Gesamt-Transfektionsvolumen betrug 60 µl. Es wurden jeweils 3-fach-Proben angesetzt. Die Plasmid-DNA wurde zuerst zusammen mit der dsRNA komplexiert. Dazu wurde die Plasmid-DNA und die dsRNA in serumfreiem Medium verdünnt und pro 0,1 µg Plasmid-DNA 1 µl PLUS Reagent eingesetzt (in einem Volumen von 10 µl) und nach dem Mischen für 15 Minuten bei Raumtemperatur inkubiert. Während der Inkubation wurde pro 0,1 µg Plasmid-DNA 0,5 µl Lipofectamine in insgesamt 10 µl serumfreiem Medium verdünnt, gut gemischt, zu dem Plasmid/dsRNA/PLUS-Gemisch zugegeben und nochmals 15 Minuten inkubiert. Während der Inkubation wurde ein Mediumwechsel durchgeführt. Die Zellen wurden dazu 1 x mit 200 µl serumfreiem Medium gewaschen und danach mit 40 µl serumfreiem Medium bis zur Zugabe von DNA/dsRNA/PLUS/Lipofectamine weiter im Brutschrank inkubiert. Nach der Zugabe von 20 µl DNA/dsRNA/PLUS/Lipofectamine pro

Well wurden die Zellen für 2,5 Stunden im Brutschrank inkubiert. Anschließend wurden die Zellen nach der Inkubation 1 x mit 200 µl Wachstumsmedium gewaschen und für 24 Stunden bis zur Detektion der Fluoreszenz in 200 µl Wachstumsmedium im
5 Brutschrank inkubiert.

Detection der Fluoreszenz:

24 Stunden nach dem letzten Mediumwechsel wurde die Fluoreszenz der Zellen am Fluoreszenz-Mikroskop (IX50-S8F2, Fluoreszenz-Einheit U-ULS100Hg, Brenner U-RFL-T200, Olympus) mit einer USH-I02D-Quecksilber-Lampe (USHIO Inc., Tokyo, Japan), ausgestattet mit einem WIB-Fluoreszenz-Würfel und einer digitalen CCD-Kamera (Orca IIIm, Hamamatsu) und C4742-95 Kamera-Controller) photographiert. Die Auswertung der Fluoreszenzaufnahmen erfolgte mit der analysis-Software 3.1 (Soft Imaging System GmbH, Deutschland). Um die YFP-Fluoreszenz in Relation zur Zelldichte zu setzen, wurde eine Zellkernfärbung (Hoechst-Staining) durchgeführt. Dazu wurden die Zellen in 100 µl Methylcarnoy (75% Methanol, 25% Eisessig) zuerst für 5 und danach nochmals für 10 Minuten in Methylcarnoy fixiert.
Nach dem Lufttrocknen wurden die fixierten Zellen für 30 Minuten im Dunkeln mit 100 µl pro Well Hoechst-Farbstoff (75 ng/ml) inkubiert. Nach 2maligem Waschen mit PBS (PBS Dulbecco w/o Ca²⁺, Mg²⁺, Biochrom) wurden die Hoechst-gefärbten Zellen unter dem Fluoreszenz-Mikroskop (Olympus, WU-Fluoreszenz-Würfel für Hoechst) photographiert.

In den Fig. 3 bis 9 sind die Ergebnisse zur Inhibition der YFP-Expression durch dsRNA in kultivierten Zellen zusammengefasst:

30

In Fig. 3, 4, 5 und 6 sind die Effekte von YFP-spezifischen dsRNAs und von Kontroll-dsRNAs auf die YFP-Expression in NIH/3T3-Mausfibroblasten nach transiente Transfektion zusammengefasst. Die Experimente wurden wie im Versuchsprotokoll

beschrieben durchgeführt. Die Konzentration der dsRNA bezieht sich auf die Konzentration im Medium während der Transfektionsreaktion. Die Bezeichnungen für die dsRNAs sind der Tabelle 2 zu entnehmen. Dargestellt ist die relative Fluoreszenz 5 pro Bildausschnitt in Flächenprozent. Pro Well wurden 3 verschiedene Bildausschnitte ausgewertet. Die Mittelwerte ergeben sich aus den 3-fach-Ansätzen.

In den Fig. 7 und 9 ist die spezifische Inhibition der YFP-Genexpression durch dsRNAs in HELA-S3-Zellen dargestellt.

10 In Fig. 7 ist die hemmende Wirkung unterschiedlich gestalteter dsRNA-Konstrukte (Tabelle 2) in verschiedenen Konzentrationen auf die Expression von YFP in HeLa-Zellen dargestellt. Fig. 8 zeigt repräsentative fluoreszenzmikroskopische Aufnahmen von transient mit YFP transfizierten NIH/3T3-Mausfibroblasten ohne dsRNA und mit spezifisch gegen YFP gerichteten dsRNAs (x 100 Vergrößerung).

15 8A: YFP-Kontrolle

8B: S1, 10 nM

8C: S4, 10 nM

20 8D: S7, 10 nM

8E: S7/S11, 1 nM

8F: S7/S12, 1 nM

Fig. 9 zeigt repräsentative fluoreszenzmikroskopische Aufnahmen von transient mit YFP transfizierten HELA-3S-Zellen ohne dsRNA und mit spezifisch gegen YFP gerichteten dsRNAs (x 100 Vergrößerung).

25 9A: K2-Kontrolle, 10 nM

9B: S1, 10 nM

30 9C: S4, 10 nM

9D: S7, 10 nM

9E: S7/11, 1 nM

9F: S7/12, 1 nM

9G: S1A/S4B, 10 nM

9H: YFP-Kontrolle

Ergebnisse:

5 Fig. 3 zeigt, dass die YFP-Expression nach transienter Kotransfektion von Mausfibroblasten mit dem YFP-Plasmid und spezifisch gegen die YFP-Sequenz gerichteten dsRNAs dann besonders wirkungsvoll gehemmt wird, wenn die 3'-Enden der 22 und 19 Basenpaare enthaltenden Bereiche der dsRNAs einzelsträngige Abschnitte von 2 Nukleotiden (nt) aufweisen. Während die dsRNA S1 mit glatten 3'-Enden bei einer Konzentration von 1 nM (bezogen auf die Konzentration im Zellkultur-Medium während der Durchführung der Transfektion) keine inhibitorischen Effekte auf die YFP-Expression zeigt, inhibieren 10 die dsRNAs S7 (19 Nukleotidpaare) und S4 (22 Nukleotidpaare) mit jeweils 2nt Überhängen an beiden 3'-Enden die YFP-Expression um 50 bzw. um 70% im Vergleich zu den entsprechenden Kontroll-dsRNAs K3 und K2. Bei einer Konzentration von 10 nM inhibiert die als S1 bezeichnete dsRNA mit glatten Enden 15 die YFP-Expression um ~65%, während die Inhibition der YFP-Expression durch die S4 dsRNA ~93% beträgt (Fig. 4). Der inhibitorische Effekt der mit S4 und S7 bezeichneten dsRNAs ist konzentrationsabhängig (Fig. 3 und 4, siehe auch Fig. 7).

20 die YFP-Expression um ~65%, während die Inhibition der YFP-Expression durch die S4 dsRNA ~93% beträgt (Fig. 4). Der inhibitorische Effekt der mit S4 und S7 bezeichneten dsRNAs ist konzentrationsabhängig (Fig. 3 und 4, siehe auch Fig. 7).

25 Fig. 4 zeigt, dass für die effiziente Unterdrückung der YFP-Genexpression die einzelsträngige Ausbildung nicht an beiden 3'-Enden (auf Sinn- und Antisinn-Strang) notwendig ist. Um eine möglichst effektive Inhibition der YFP-Expression zu erreichen, ist lediglich der 2nt-Überhang am 3'-Ende auf dem 30 Antisinn-Strang notwendig. So liegt die Inhibition der YFP-Expression bei einer Konzentration von 1 nM bei den beiden dsRNAs S4 (mit 2nt-Überhängen auf beiden 3'-Enden) und S1A/S4B (mit einem 2nt-Überhang auf dem 3'-Ende des Antisinn-Stranges) bei ~70%. Befindet sich dagegen der 2nt-Überhang

auf dem 3'-Ende des Sinn-Stranges (und das 3'-Ende des Anti-sinn-Stranges trägt keinen einzelsträngigen Bereich), so liegt die Inhibition der YFP-Genexpression lediglich bei 50%. Analog ist die Inhibition bei höheren Konzentrationen deutlich besser, wenn mindestens das 3'-Ende des Antisinn-Stranges einen 2nt-Überhang trägt.

Eine deutlichere Hemmung der YFP-Expression wird erreicht, wenn der basengepaarte Bereich 21 Nukleotid-Paare statt 22 (S1 und S4), 20 (S13 bzw. S13/14) oder 19 (S7) umfasst (Fig. 5, 6 und 7). So beträgt die Inhibition der YFP-Expression durch S1 (22 Basenpaarungen mit glatten Enden) in einer Konzentration von 5 nM ~40%, während die Inhibition durch S7/S12 (21 Basenpaarungen mit glatten Enden), ebenfalls mit 5 nM bei ~92% liegt. Weist die dsRNA mit 21 Basenpaarungen noch einen 2nt-Überhang am Antisinnstrang-3'-Ende (S7/S11) auf, so liegt die Inhibition bei ~ 97% (verglichen mit ~73% Inhibition durch S4 und ~70% Inhibition durch S7).

20

III. Untersuchung der Serumstabilität der doppelsträngigen RNA (dsRNA):

Ziel ist es, die in den Zellkulturen gefundene Effektivität der durch dsRNAs vermittelten Hemmung der Genexpression von Zielgenen für den Einsatz *in vivo* zu steigern. Dies wird durch eine verbesserte Stabilität der dsRNAs im Serum und durch eine daraus resultierende verlängerte Verweilzeit des Moleküls im Kreislauf bzw. die damit verbundenen erhöhte-wirksame-Konzentration des funktionellen Moleküls erreicht.

Ausführungsbeispiel:

~

Die Serumstabilität der die GFP-Expression hemmenden dsRNAs wurde *ex vivo* in murinem und humanem Serum getestet.

Versuchsprotokoll:

5

Die Inkubation mit humanem bzw. murinem Serum mit der entsprechenden dsRNA erfolgte bei 37°C. Es wurden je 85 µl Serum mit 15 µl 100µM dsRNA inkubiert. Nach bestimmten Inkubationszeiten (30 min, 1h, 2h, 4h, 8h, 12h, 24h) wurden die Proben 10 bei -80°C eingefroren. Als Kontrolle wurde dsRNA ohne Serum (+85 µl ddH₂O) und dsRNA mit Serum zum Zeitpunkt 0 verwendet.

Für die Isolierung der dsRNA aus dem Inkubationsansatz, die auf Eis erfolgte, wurden jeweils 400 µl 0,1% SDS zu den An-15 sätzen gegeben und diese einer Phenolextraktion unterzogen: Pro Ansatz wurden 500 µl Phenol : Chloroform : Isoamylalkohol (IAA, 25:24:1, Roti®-Phenol, Roth, Karlsruhe) zugegeben und für 30 sec auf höchster Stufe gevortext (Vortex Genie-2; Scientific Industries). Nach 10minütiger Inkubation auf Eis 20 erfolgte die Phasentrennung durch Zentrifugation bei 12.000xg, 4°C, für 10 min (Sigma 3K30, Rotor 12131-H). Die obere wässrige Phase (ca. 200 µl) wurde abgenommen und zuerst einem DNase I- und danach einem Proteinase K - Verdau unterzogen: Zugabe von 20 µl 10xfach DNaseI-Puffer (100 mM Tris, 25 pH 7,5, 25 mM MgCl₂, 1 mM CaCl₂) und 10 U DNase I (D7291, Sigma-Aldrich), 30 min Inkubation bei 37°C, erneute Zugabe von 6 U DNase I und Inkubation für weitere 20 min bei 37°C, Zugabe von 5 µl Proteinase K (20 mg/ml, 04-1075, Peqlab, Deutschland) und 30 min Inkubation bei 37°C. Danach wurde eine 30 Phenolextraktion durchgeführt. Dazu wurde 500 µl Phenol : Chloroform : IAA (25:24:1) zugegeben, 30 sec auf höchster Stufe gevortext, 10 min bei 12.000xg, 4°C, zentrifugiert, der Überstand abgenommen und nacheinander mit 40 µl 3 M Na-Ac (Natriumacetat), pH 5,2, und 1 ml 100% EtOH versetzt, dazwi-

schen gut gemischt und für mindestens 1 h bei -80°C gefällt. Das Präzipitat wurde durch Zentrifugation bei 12.000xg für 30 min und 4°C pelletiert, mit 70% EtOH gewaschen und erneut zentrifugiert (10 min, 12.000xg, 4°C). Das luftgetrocknete
5 Pellet wurde in 30 µl RNA-Gelauftragspuffer (7 M Harnstoff, 1 x TBE (0,09 M Tris-Borat, 0,002 M EDTA (Ethylendiamintetraacetat), 0,02% (w/v) Bromphenolblau, 0,02% (w/v) Xylencyanol) aufgenommen und bis zum Gelauftrag bei -20°C gelagert.

10 Zur Charakterisierung der dsRNA wurde eine analytische, denaturierende Polyacrylamid-Gelelektrophorese (analytische PAGE) durchgeführt. Die Harnstoffgele wurden kurz vor dem Lauf hergestellt: 7M Harnstoff (21g) wurde in 25 ml 40% wässrige Acrylamid/Bisacrylamid Stammlösung (Rotiphorese-Gel, A515.1,
15 Roth) und 5 ml 10 x TBE (108 g Tris, 55 g Borsäure, 9,3 g EDTA pro L Aqua dest.) unter Rühren gelöst und auf 50 ml mit Aqua dest. aufgefüllt. Kurz vor dem Gießen wurden 50 µl TEMED (N,N,N',N'-Tetramethylethyldiamin) und 500 µl 10% APS (Ammoniumperoxidisulfat) zugesetzt. Nach dem Auspolymerisieren
20 wurde das Gel in eine vertikale Elektrophorese-Apparatur (Merck, Darmstadt) eingesetzt und ein Vorlauf für 30 min bei konstant 40 mA Stromstärke durchgeführt. Als Laufpuffer wurde 1 x TBE-Puffer verwendet. Vor dem Auftrag auf das Gel wurden die RNA-Proben für 5 min bei 100°C erhitzt, auf Eis abgekühlt
25 und für 20 sec in einer Tischzentrifuge (Eppendorf, minispin) abzentrifugiert. Es wurden je 15 µl auf das Gel aufgetragen. Der Lauf erfolgte für ca. 2h bei einem konstanten Stromfluß von 40 mA. Nach dem Lauf wurde das Gel 30 min bei RT (Raumtemperatur) mit Stains all-Färbelösung (20 ml Stains all
30 Stammlösung (200 mg Stains all in 200 ml Formamid gelöst) mit 200 ml Aqua dest. und 180 ml Formamid versetzt) gefärbt und die Hintergrundfärbung danach durch Spülen in Aqua dest. für 45 min entfernt. Die Gele wurden mit dem Photodokumentationsystem Image Master VDS von Pharmacia photographiert.

Die Fig. 10 bis 17 zeigen die Serumstabilität der dsRNA nach Inkubation mit humanem bzw. murinem Serum und nachfolgender elektrophoretischer Auftrennung im 20%igem 7M Harnstoffgel.

5 **Fig. 10: Inkubation von S1 (0-22-0) in Maus-Serum**

1. zum Zeitpunkt 0 (ohne Serum)
2. zum Zeitpunkt 0
3. für 30 Minuten
4. für 1 Stunde
- 10 5. für 2 Stunden
6. für 4 Stunden
7. für 12 Stunden
8. 2 μ l 100 μ M S1 ohne Inkubation
- S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
- 15 S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 11: Inkubation von S1 (0-22-0) in humanem Serum

1. 2 μ l 100 μ M S1 unbehandelt (ohne Inkubation)
2. für 30 Minuten
3. für 2 Stunden
- 20 4. für 4 Stunden
5. für 6 Stunden
6. für 8 Stunden
7. für 12 Stunden
8. für 24 Stunden
- 25 S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
- S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 12: Inkubation von S7 (2-19-2) in Maus-Serum

1. zum Zeitpunkt 0 (ohne Serum)
2. für 30 Minuten
- 30 3. für 4 Stunden
4. für 12 Stunden

Fig. 13: Inkubation von S7 (2-19-2) in humanem Serum

1. Sinnstrang S7 (10 μ l 20 μ M S7A)

2. Antisinnstrang S7 (10 µl 20 µM S7B)
3. für 30 Minuten
4. für 1 Stunde
5. für 2 Stunden
5. für 4 Stunden
7. für 6 Stunden
8. für 12 Stunden
9. für 24 Stunden
10. zum Zeitpunkt 0 (ohne Serum)

10 Fig. 14: Inkubation von K3 (2-19-2) in Maus-Serum

1. Sinnstrang K3 (10 µl 20 µM K3A)
2. Antisinnstrang K3 (10 µl 20 µM K3B)
3. zum Zeitpunkt 0 (ohne Serum)
4. zum Zeitpunkt 0 (mit Serum)
- 15 5. für 30 Minuten
6. für 1 Stunde
7. für 2 Stunden
8. für 4 Stunden
9. für 12 Stunden

20 Fig. 15: Inkubation von PKC1/2 (0-22-2) in Maus-Serum

1. für 30 Minuten
2. für 1 Stunde
3. für 2 Stunden
4. für 4 Stunden
- 25 5. für 12 Stunden
6. 2 µl 100 µM PKC1/2 (unbehandelt)

Fig. 16: Inkubation von S1A/S4B (0-22-2) in humanem Serum

1. zum Zeitpunkt 0 (ohne Serum)
2. für 24 Stunden
- 30 3. für 12 Stunden
4. für 8 Stunden
5. für 6 Stunden
6. für 4 Stunden

7. für 2 Stunden
8. für 30 Minuten
9. Sinnstrang S1A (10 µl 20 µM S1A)
10. Antisinnstrang S4B (10 µl 20 µM S4B)

5 Fig. 17: Inkubation von K2 (2-22-2) in humanem Serum

1. Sinnstrang K2 (10 µl 20 µM K2A)
2. Antisinnstrang K2 (10 µl 20 µM K2B)
3. zum Zeitpunkt 0 (ohne Serum)
4. für 30 Minuten
- 10 5. für 2 Stunden
6. für 4 Stunden
7. für 6 Stunden
8. für 8 Stunden
9. für 12 Stunden
- 15 10. für 24 Stunden

Ergebnisse:

dsRNAs ohne einzelsträngige Bereiche an den 3'-Enden sind im
20 Serum sowohl von Mensch und Maus wesentlich stabiler als
dsRNAs mit einzelsträngigen 2nt-Überhängen an den 3'-Enden
(Fig. 10 bis 14 und 17). Nach 12 bzw. 24 Stunden Inkubation
von S1 in murinem bzw. humanem Serum ist noch immer eine Ban-
de in der ursprünglichen Größe fast vollständig erhalten. Da-
gegen nimmt bei dsRNAs mit 2nt-Überhängen an beiden 3'-Enden
25 die Stabilität in humanem als auch im murinen Serum deutlich
ab. Bereits nach 4 Stunden Inkubation von S7 (Fig. 12 und 13)
oder K3 (Fig. 14) ist keine Bande in der Originalgröße mehr
detektierbar.

30

Um die Stabilität von dsRNA im Serum zu erhöhen, ist es aus-
reichend, wenn die dsRNA ein glattes Ende besitzt. Im Maus-
Serum ist nach 4 Stunden Inkubation (Fig. 15, Bahn 4) die

Bande in der Originalgröße kaum abgebaut im Vergleich zu S7 (nach 4 Stunden vollständiger Abbau; Fig. 12, Bahn 3).

Als optimaler Kompromiß hinsichtlich der biologischen Wirk-

5 samkeit von dsRNA kann die Verwendung von dsRNA mit einem glatten Ende und einem einzelsträngigem Bereich von 2 Nukleo-

tiden angesehen werden, wobei sich der einzelsträngige Über-

hang am 3'-Ende des Antisinn-Stranges befinden sollte.

10 Die hier verwendeten Sequenzen sind aus der nachstehenden Ta-

belle 2 und den Sequenzprotokollen SQ148-151 und 153-167 er-

sichtlich.

Name	Sequenz- proto- koll-Nr.	dsRNA-Sequenz	
S1	SQ148	(A) 5' - CCACAUAGAAGCAGCACGACUUC -3'	0-22-0
	SQ149	(B) 3' - GGUGUACUUCGUCGUGCUGAAG -5'	
S7	SQ150	(A) 5' - CCACAUAGAAGCAGCACGACUU -3'	2-19-2
	SQ151	(B) 3' - CUGGUGUACUUCGUCGUGCUG -5'	
K1	SQ153	(A) 5' - ACAGGAUGAGGAUCGUUUCGCA -3'	0-22-0
	SQ154	(B) 3' - UGUCCUACUCCUAGCAAAGCGU -5'	
K3	SQ155	(A) 5' - GAUGAGGAUCGUUUCGCAUGA -3'	2-19-2
	SQ156	(B) 3' - UCCUACUCCUAGCAAAGCGUA -5'	
K2	SQ157	(A) 5' - ACAGGAUGAGGAUCGUUUCGCAUG -3'	2-22-2
	SQ158	(B) 3' - UCUGGUCCUACUCCUAGCAAAGCGU -5'	
S1A/ S4B	SQ148	(A) 5' - CCACAUAGAAGCAGCACGACUUC -3'	0-22-2
	SQ159	(B) 3' - CUGGUGUACUUCGUCGUGCUGAAG -5'	

PKC 1/2	SQ160 SQ161	(A) 5'- CUUCUCCGCCUCACACCGCUGCAA -3' (B) 3'- GAAGAGGCAGGAGUGUGGGCGACG -5'	2-22-0
S7/S12	SQ150 SQ162	(A) 5'- CCACAUGAAGCAGCACGACUU -3' (B) 3'- GGUGUACUUCGUCGUGCUGAA -5'	0-21-0
S7/S11	SQ150 SQ163	(A) 5'- CCACAUGAAGCAGCACGACUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAA -5'	0-21-2
S13	SQ164 SQ165	(A) 5'- CCACAUGAAGCAGCACGACU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGA -5'	0-20-2
S13/14	SQ164 SQ166	(A) 5'- CCACAUGAAGCAGCACGACU -3' (B) 3'- GGUGUACUUCGUCGUGCUGA -5'	0-20-0
S4	SQ167 SQ159	(A) 5'- CCACAUGAAGCAGCACGACUUUCUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	2-22-2
K1A/ K2B	SQ153 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3' (B) 3'- UCUGUCCUACCUUAGCAAAGCGU -5'	0-22-2
K1B/ K2A	SQ154 SQ157	(A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3'- UGUCCUACCUUAGCAAAGCGU -5'	2-22-0
S1B/ S4A	SQ149 SQ167	(A) 5'- CCACAUGAAGCAGCACGACUUUCUU -3' (B) 3'- GGUGUACUUCGUCGUGCUGAAG -5'	2-22-0

Tabelle 2

IV. In vivo-Studie:

5

Es wurde „GFP-Labormäusen“, die das Grün-fluoreszierende Protein (GFP) in allen Proteinbiosynthese betreibenden Zellen exprimieren, doppelsträngige RNA (dsRNA), die aus der GFP-Sequenz abgeleitet wurde, bzw. unspezifische dsRNA intravenös in die Schwanzvene injiziert. Am Versuchsende wurden die Tie-

10

re getötet und die GFP-Expression in Gewebeschnitten und im Plasma analysiert.

Versuchsprotokoll:

5

Synthese der dsRNA:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung der rohen Syntheseprodukte mit Hilfe der HPLC. Als Säulen wurden NucleoPac PA-100, 9x250 mm der Fa. Dionex, verwendet; als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/Minute. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur.

Versuchstierhaltung und Versuchsdurchführung:

Es wurde der transgene Labormausstamm TgN(GFPU) 5Nagy (The Jackson Laboratory, Bar Harbor, ME, USA) verwendet, der GFP (mit einem beta-Aktin-Promotor und einem CMV intermediate early enhancer) in allen bisher untersuchten Zellen exprimiert (Hadjantonakis AK et al., 1993, Mech. Dev. 76: 79-90; Hadjantonakis AK et al., 1998 Nature Genetics 19: 220-222). GFP-transgene Mäuse lassen sich eindeutig anhand der Fluoreszenz (mit einer UV-Handlampe) von den entsprechenden Wildtypen (WT) unterscheiden. Für die Zucht wurde jeweils der entsprechende WT mit einem heterozygotem GFP-Typ verpaart.

Die Versuchsdurchführung erfolgte gemäß den deutschen Tier-
schutzbestimmungen. Die Tiere wurden unter kontrollierten Um-
weltbedingungen in Gruppen von 3-5 Tieren in Typ III Makro-
lon-Käfigen der Fa. Ehret, Emmendingen, bei einer konstanten
5 Temperatur von 22°C und einem Hell-Dunkel-Rhythmus von 12h
gehalten. Als Sägemehleinstrye wurde Weichholzgranulat 8/15
der Fa. Altromin, Lage, verwendet. Die Tiere erhielten Lei-
tungswasser und Standardfutter Altromin 1324 pelletiert (Al-
tromin) ad libitum.

10

Für die Versuchsdurchführung wurden die heterozygoten GFP-
Tiere zu je 3 Tieren gruppenweise in Käfigen wie oben be-
schrieben gehalten. Die Injektionen der dsRNA-Lösung erfolg-
ten intravenös (i.v.) in die Schwanzvene im 12h-Turnus (zwi-
15 schen 5³⁰ und 7⁰⁰ sowie zwischen 17³⁰ und 19⁰⁰ Uhr) über 5 Tage
hinweg. Das Injektionsvolumen betrug 60 µl pro 10 g Körperge-
wicht und die Dosis betrug 2,5 mg dsRNA bzw. 50 µg pro kg
Körpergewicht. Die Einteilung in die Gruppen war wie folgt:

20 Gruppe A: PBS (phosphate buffered saline) je 60 µl pro
10 g Körpergewicht,

Gruppe B: 2,5 mg pro kg Körpergewicht einer unspezifi-
schen Kontroll-dsRNA (K1-Kontrolle mit glatten
25 Enden und einem Doppelstrangbereich von 22 Nu-
kletidpaaren),

Gruppe C: 2,5 mg pro kg Körpergewicht einer weiteren un-
spezifischen Kontroll-dsRNA (K3-Kontrolle mit
30 2nt-Überhängen an beiden 3'-Enden und einem
Doppelstrangbereich von 19 Nukletidpaaren),

Gruppe D: 2,5 mg pro kg Körpergewicht dsRNA (spezifisch
gegen GFP gerichtet, im weiteren als S1 be-

zeichnet, mit glatten Enden und einem Doppelstrangbereich von 22 Nukleotidpaaren),

Gruppe E: 2,5 mg dsRNA pro kg Körpergewicht (spezifisch
5 gegen GFP gerichtet, im Weiteren als S7 bezeichnet, mit 2nt-Überhängen an den 3'-Enden beider Stränge und einem Doppelstrangbereich von 19 Nukleotidpaaren)

10 Gruppe F: 50 µg S1-dsRNA pro kg Körpergewicht (also 1/50 der Dosis der Gruppe D).

Nach der letzten Injektion von insgesamt 10 Injektionen wurden die Tiere nach 14-20h getötet und Organe und Blut wie beschrieben entnommen.
15

Organentnahme:

Sofort nach dem Töten der Tiere durch CO₂-Inhalation wurden Blut und verschiedene Organe entnommen (Thymus, Lunge, Herz,
20 Milz, Magen, Darm, Pankreas, Gehirn, Niere und Leber). Die Organe wurden kurz in kaltem, steriles PBS gespült und mit einem sterilen Skalpell zerteilt. Ein Teil wurde für immunhistochemische Färbungen in Methyl Carnoys (MC, 60% Methanol, 30% Chloroform, 10% Eisessig) für 24h fixiert, ein Teil für
25 Gefrierschnitte und für Proteinisolierungen sofort in flüssigem Stickstoff schockgefroren und bei -80°C gelagert und ein weiterer, kleinerer Teil wurde für RNA-Isolierungen in RNAeasy-Protect (Qiagen) bei -80°C eingefroren. Das Blut wurde sofort nach der Entnahme 30 min auf Eis gehalten, gemixt,
30 5 min bei 2000 rpm (Mini spin, Eppendorf) zentrifugiert, der Überstand abgenommen und bei -80°C gelagert (hier als Plasma bezeichnet).

Prozessieren der Biopsien:

Nach 24h Fixierung der Gewebe in MC wurden die Gewebestücke in einer aufsteigenden Alkoholreihe bei RT (Raumtemperatur) dehydriert: je 40 min 70% Methanol, 80% Methanol, 2 x 96% Methanol und 3 x 100% Isopropanol. Danach wurden die Gewebe 5 in 100% Isopropanol auf 60°C im Brutschrank erwärmt, nachfolgend für 1h in einem Isopropanol/Paraffin-Gemisch bei 60°C und 3 x für 2h in Paraffin inkubiert und sodann in Paraffin eingebettet. Für Immunperoxidase-Färbungen wurden mit einem Rotationsmikrotom (Leica) Gewebeschnitte von 3 µm Schnittdicke angefertigt, auf Objektträger (Superfrost, Vogel) aufgezogen und für 30 min bei 60°C im Brutschrank inkubiert.

Immunperoxidase-Färbung gegen GFP:

Die Schnitte wurden 3 x 5 min in Xylol deparaffiniert, in einer absteigenden Alkoholreihe (3 x 3 min 100% Ethanol, 2 x 2 min 95% Ethanol) rehydriert und danach 20 min in 3% H₂O₂/Methanol zum Blocken endogener Peroxidasesen inkubiert. Alle Inkubationsschritte wurden im Folgenden in einer feuchten Kammer durchgeführt. Nach 3 x 3 min Waschen mit PBS wurde 20 mit dem 1. Antikörper (goat anti-GFP, sc-5384, Santa Cruz Biotechnology) 1:500 in 1% BSA/PBS über Nacht bei 4°C inkubiert. Die Inkubation mit dem biotinyliertem Sekundärantikörper (donkey anti-goat; Santa Cruz Biotechnology; 1:2000 Verdünnung) erfolgte für 30 min bei RT, danach wurde für 30 min 25 mit Avidin D Peroxidase (1:2000-Verdünnung, Vector Laboratories) inkubiert. Nach jeder Antikörperinkubation wurden die Schnitte 3 x 3 min in PBS gewaschen und Pufferreste mit Zellstoff von den Schnitten entfernt. Alle Antikörper wurden in 1% Rinderserumalbumin (BSA)/PBS verdünnt. Die Färbung mit 30 3,3'-Diaminobenzidin (DAB) wurde mit dem DAB Substrat Kit (Vector Laboratories) nach Herstellerangaben durchgeführt. Als nukleäre Gegenfärbung wurde Hämatoxylin III nach Gill (Merck) verwendet. Nach der Dehydrierung in einer aufsteigenden Alkoholreihe und 3 x 5 min Xylol wurden die Schnitte mit

Entellan (Merck) eingedeckt. Die mikroskopische Auswertung der Färbung erfolgte mit dem IX50 Mikroskop von Olympus, ausgestattet mit einer CCD-Camera (Hamamatsu).

5 Proteinisolierung aus Gewebestücken:

Zu den noch gefrorenen Gewebestücken wurden jeweils 800 µl Isolierungspuffer (50 mM HEPES, pH 7,5; 150 mM NaCl; 1 mM EDTA; 2,5 mM EGTA; 10% Glycerol; 0,1% Tween; 1 mM DTT; 10 mM β-Glycerol-Phosphat; 1 mM NaF; 0,1 mM Na₃VO₄ mit einer Protease-Inhibitor-Tablette „Complete“ von Roche) zugegeben und 10 2 x 30 Sekunden mit einem Ultraturrax (DIAx 900, Dispergierwerkzeug 6G, Heidolph) homogenisiert, dazwischen auf Eis abgekühlt. Nach 30 Minuten Inkubation auf Eis wurde gemischt und für 20 Minuten bei 10.000xg, 4°C, zentrifugiert (3K30, 15 Sigma). Der Überstand wurde erneut 10 Minuten auf Eis inkubiert, gemischt und 20 Minuten bei 15.000xg, 4°C, zentrifugiert. Mit dem Überstand wurde eine Proteinbestimmung nach Bradford, 1976, modifiziert nach Zor & Selinger, 1996, mit dem Roti-Nanoquant-System von Roth nach den Angaben des Herstellers durchgeführt. Für die Protein-Eichgerade wurde BSA (bovines Serumalbumin) in Konzentrationen von 10 bis 100 µg/ml eingesetzt.

20 SDS-Gelelektrophorese:

25 Die elektrophoretische Auftrennung der Proteine erfolgte in einer Multigel-Long Elektrophoresekammer von Biometra mit einer denaturierenden, diskontinuierlichen 15% SDS-PAGE (Polyacrylamid Gelelektrophorese) nach Lämmli (Nature 277: 680-685, 1970). Dazu wurde zunächst ein Trenngel mit 1,5 mm Dicke 30 gegossen: 7,5 ml Acrylamid/Bisacrylamid (30%, 0,9%), 3,8 ml 1,5 M Tris/HCl, pH 8,4, 150 µl 10% SDS, 3,3 ml Aqua bidest., 250 µl Ammoniumpersulfat (10%), 9 µl TEMED (N,N,N',N'-Tetramethylendiamin) und bis zum Auspolymerisieren mit 0,1%

SDS überschichtet. Danach wurde das Sammelgel gegossen: 0,83 µl Acrylamid/Bisacrylamid (30%/0,9%), 630 µl 1 M Tris/HCl, pH 6,8, 3,4 ml Aqua bidest., 50 µl 10% SDS, 50 µl 10% Ammoniumpersulfat, 5 µl TEMED.

5

Vor dem Auftrag auf das Gel wurden die Proteine mit einer entsprechenden Menge an 4fach Probenpuffer (200 mM Tris, pH 6,8, 4% SDS, 100 mM DTT (Dithiotreithol), 0,02% Bromphenolblau, 20% Glycerin) versetzt, für 5 min im Heizblock bei 10 100°C denaturiert, nach dem Abkühlen auf Eis kurz abzentrifugiert und auf das Gel aufgetragen. Pro Bahn wurde die gleichen Plasma- bzw. Proteinmengen eingesetzt (je 3µl Plasma bzw. 25 µg Gesamtprotein). Die Elektrophorese erfolgte wasergekühlt bei RT und konstant 50 V. Als Längenstandard wurde 15 der Proteingelmarker von Bio-Rad (Kaleidoscope Prestained Standard) verwendet.

Western Blot und Immundetektion:

Der Transfer der Proteine vom SDS-PAGE auf eine PVDF (Polyvinylidifluorid)-Membran (Hybond-P, Amersham) erfolgte im semi-dry Verfahren nach Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) bei RT und einer konstanten Stromstärke von 0,8 mA/cm² für 1,5 h. Als Transferpuffer wurde ein Tris/Glycin-Puffer eingesetzt (39 mM Glycin, 46 mM Tris, 0,1 % SDS und 20% Methanol). Zum Überprüfen des elektrophoretischen Transfers wurden sowohl die Gele nach dem Blotten als auch die Blotmembranen nach der Immundetektion mit Coomassie gefärbt (0,1% Coomassie G250, 45% Methanol, 10% Eisessig). Zum Absättigen unspezifischer Bindungen wurde die Blotmembran 30 nach dem Transfer in 1% Magermilchpulver/PBS für 1h bei RT inkubiert. Danach wurde je dreimal für 3 min mit 0,1% Tween-20/PBS gewaschen. Alle nachfolgenden Antikörperinkubationen und Waschschrifte erfolgten in 0,1% Tween-20/ PBS. Die Inkubation mit dem Primärantikörper (goat anti-GFP, sc-5384, San-

ta Cruz Biotechnology) in einer Verdünnung von 1:1000 erfolgte für 1h bei RT. Danach wurde 3 x 5 min gewaschen und für 1h bei RT mit dem Sekundärantikörper (donkey anti-goat IgG H-
5 seradish Peroxidase gelabelt, Santa Cruz Biotechnology) in einer Verdünnung von 1 : 10.000 inkubiert. Die Detektion erfolgte mit dem ECL-System von Amersham nach den Angaben des Herstellers.

In den Fig. 18 bis 20 ist die Inhibition der GFP-Expression
10 nach intravenöser Injektion von spezifisch gegen GFP gerichteter dsRNA mit Immunperoxidase-Färbungen gegen GFP an 3 µm Paraffinschnitten dargestellt. Im Versuchsverlauf wurde gegen GFP gerichtete dsRNA mit einem doppelsträngigen Bereich von 22 Nukleotid-(nt)paaren ohne Überhänge an den 3'-Enden (D)
15 und die entsprechende unspezifische Kontroll-dsRNA (B) sowie spezifisch gegen GFP gerichtete dsRNA mit einem 19 Nukleotidpaare umfassenden Doppelstrangbereich mit 2nt-Überhängen an den 3'-Enden (E) und die entsprechende unspezifische Kontroll-dsRNA (C) im 12 Stunden-Turnus über 5 Tage hinweg
20 appliziert. (F) erhielt 1/50 der Dosis von Gruppe D. Als weitere Kontrolle wurden Tiere ohne dsRNA-Gabe (A) bzw. WT-Tiere untersucht. Die Fig. 18 zeigt die Inhibition der GFP-Expression in Nierenschnitten, Fig. 19 in Herz- und Fig. 20 in Pankreasgewebe. In den Fig. 21 bis 23 sind Western Blot-Analysen der GFP-Expression in Plasma und Geweben dargestellt. In der Fig. 21 ist die Inhibition der GFP-Expression im Plasma, in Fig. 22 in der Niere und in Fig. 23 in Herz gezeigt. In Fig. 23 sind Gesamtproteinisolate aus verschiedenen Tieren aufgetragen. Es wurden jeweils gleiche Gesamtproteinkonzentrationen pro Bahn aufgetragen. In den Tieren, denen unspezifische Kontroll-dsRNA verabreicht wurde (Tiere der Gruppen B und C), ist die GFP-Expression gegenüber Tieren, die keinerlei dsRNA erhielten, nicht reduziert. Tiere, die spezifisch gegen GFP gerichtete dsRNA mit 2nt-Überhängen an den 3'-Enden
25
30

beider Strände und einen 19 Nukleotidpaare umfassenden Doppelstrangbereich erhielten, zeigten eine signifikant inhibierte GFP-Expression in den untersuchten Geweben (Herz, Niere, Pankreas und Blut), verglichen mit unbehandelten Tieren
5 (Fig. 18 bis 23). Bei den Tieren der Gruppen D und F, denen spezifisch gegen GFP gerichtete dsRNA mit glatten Enden und einem 22 Nukleotidpaare umfassenden Doppelstrangbereich appliziert wurde, zeigten nur jene Tiere, die die dsRNA in einer Dosis von 50 µg/kg Körpergewicht pro Tag erhielten, ei-
10 ne spezifische Inhibition der GFP-Expression, die allerdings weniger deutlich ausgeprägt war als die der Tiere in Gruppe E.

Die zusammenfassende Auswertung von GFP-Inhibition in den Ge-
webeschnitten und im Western Blot ergibt, dass die Inhibition
15 der GFP-Expression im Blut und in der Niere am stärksten ist
(Fig. 18, 21 und 22).

V. Hemmung der Genexpression des EGF-Rezeptors mit dsRNA
als therapeutischer Ansatz bei Krebsformen mit EGFR-
20 Überexpression oder EGFR-induzierter Proliferation:

Der Epidermal Growth Factor (=EGF)-Rezeptor (=EGFR) gehört zu den Rezeptor-Tyrosinkinasen, transmembranen Proteinen mit einer intrinsischen Tyrosinkinase-Aktivität, die an der Kon-
25 trolle einer Reihe von zellulären Prozessen wie Zellwachstum, Zelldifferenzierungen, migratorischen Prozessen oder der Zellvitalität beteiligt sind (Übersicht in: Van der Geer et al. 1994). Die Familie der EGFR besteht aus 4 Mitgliedern, EGFR (ErbB1), HER2 (ErbB2), HER3 (ErbB3) und HER4 (ErbB4) mit
30 einer transmembranen Domäne, einer cysteinreichen extrazellu-
lären Domäne und einer intrazellullären katalytischen Domäne. Die Sequenz des EGFR, einem 170 kDa Protein, ist seit 1984 bekannt (Ullrich et al., 1984).

Aktiviert wird der EGFR durch Peptid-Wachstumsfaktoren wie EGF, TGF α (transforming growth factor), Amphiregulin, Beta-cellulin, HB-EGF (heparin-binding EGF-like growth factor) und Neureguline. Ligandenbindung induziert die Bildung von Homo- oder Heterodimeren mit nachfolgender Autophosphorylierung zytoplasmatischer Tyrosine (Ullrich & Schlessinger, 1990; Alroy & Yarden, 1997). Die phosphorylierten Aminosäuren bilden die Bindungsstellen für eine Vielzahl von Proteinen, die an den proximalen Schritten der Signalweiterleitung in einem komplexen Netzwerk beteiligt sind. Der EGFR ist an den verschiedensten Tumorerkrankungen beteiligt und damit ein geeignetes Target für therapeutische Ansätze (Huang & Harari, 1999). Die Mechanismen, die zu einer aberranten EGFR-Aktivierung führen, können auf Überexpression, Amplifikation, konstitutiver Aktivierung mutanter Rezeptor-Formen oder autokrinen Loops beruhen (Voldborg et al., 1997). Eine Überexpression des EGFR wurde für eine Reihe von Tumoren beschrieben, wie z.B. Brustkrebs (Walker & Dearing, 1999), Nicht-Klein-Lungenkarzinom (Fontanini et al., 1998), Pankreaskarzinom, Kolonkarzinom (Salomon et al., 1995) und Glioblastomen (Rieske et al., 1998). Insbesondere für maligne Glioblastome sind bisher keine effizienten und spezifischen Therapeutika verfügbar.

25 Ausführungsbeispiel:

Zum Nachweis der Wirksamkeit der dsRNA bei der spezifischen Inhibition der EGFR-Genexpression wurden U-87 MG-Zellen (humane Glioblastomzellen), ECCAC (European collection of animal cell culture) Nr. 89081402, verwendet, die mit spezifisch gegen den EGF-Rezeptor (Sequenzprotokoll SQ 51) gerichteten dsRNA transfiziert wurden. Nach ca. 72 Stunden Inkubation wurden die Zellen geerntet, Protein isoliert und im Western Blot Verfahren die EGFR-Expression untersucht.

Versuchsprotokoll:dsRNA-Synthese:

5 Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reini-
10 gung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/Minute.
15 Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemischs der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur.

20

Aussaat der Zellen:

Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der U-87 MG-Zellen erfolgte im Brutschrank (CO₂-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO₂ und gesättigter Luftfeuchtigkeit in DMEM (Dulbecco`s modified eagle medium, Biochrom) mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom), 1 mM Natrium-Pyruvat (Biochrom), 1xNEAA (Non-
25 essetial Aminoacids, Biochrom) und Penicillin/Streptomycin (100 IE/100 µg/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passagiert. 24 Stunden vor der Applikation der dsRNA mittels Transfektion wurden die Zellen trypsinisiert (10x Trypsin/EDTA,

Biochrom, Deutschland) und mit einer Zelldichte von 5×10^5 Zellen/Vertiefung in einer 6-Well-Platte (6-Well Schalen, Labor Schubert & Weiss GmbH) in 1,5 ml Wachstumsmedium ausgesät.

5

Applikation der dsRNA in kultivierte U-87 MG-Zellen:

Die Applikation der dsRNA erfolgte mittels Transfektion mit dem OLIGOFECTAMINE™ Reagent (Life Technologies) gemäß den Angaben des Herstellers. Das Gesamt-Transfektionsvolumen betrug 10 1 ml. Zuerst wurde die dsRNA in serumfreiem Medium verdünnt: Dazu wurden pro Well 0,5 μ l einer 20 μ M Stammlösung spezifisch gegen EGFR gerichteten dsRNA und 9,5 μ l einer 20 μ M Stammlösung unspezifischer dsRNA (K1A/K2B) mit 175 μ l serumfreiem Medium verdünnt (200 nM dsRNA im Transfektionsansatz 15 bzw. 10 nM spezifische EGFR-dsRNA). Das OLIGOFECTAMINE™ Reagent wurde ebenfalls in serumfreien Medium verdünnt: pro Well 3 μ l mit 12 μ l Medium und danach 10 min bei Raumtemperatur inkubiert. Danach wurde das verdünnte OLIGOFECTAMINE™ Reagent zu den in Medium verdünnten dsRNAs gegeben, gemischt und für 20 weitere 20 min bei RT inkubiert. Während der Inkubation wurde ein Mediumwechsel durchgeführt. Die Zellen wurden dazu 1 x mit 1 ml serumfreiem Medium gewaschen und mit 800 μ l serumfreiem Medium bis zur Zugabe von dsRNA/OLIGOFECTAMINE™ Reagent weiter im Brutschrank inkubiert. Nach der Zugabe von 200 μ l 25 dsRNA/OLIGOFECTAMINE™ Reagent pro Well wurden die Zellen bis zur Proteinisolierung weiter im Brutschrank inkubiert.

Proteinisolierung:

Ca. 72 Stunden nach der Transfektion wurden die Zellen geerntet und eine Proteinisolierung durchgeführt. Dazu wurde das 30 Medium abgenommen und das Zellmonolayer 1 x mit PBS gewaschen. Nach Zugabe von 200 μ l Proteinisolierungspuffer (1x Protease-Inhibitor „Complete“, Roche, 50 mM HEPES, pH 7,5,

150 mM NaCl, 1 mM EDTA, 2,5 mM EGTA, 10% Glyzerin, 0,1% Tween-20, 1 mM DTT, 10 mM β -Glycerinphosphat, 1 mM NaF, 0,1 mM Na₃VO₄) wurden die Zellen mit Hilfe eines Zellschabers abgelöst, 10 min auf Eis inkubiert, in ein Eppendorf-

5 Reaktionsgefäß überführt und bei -80°C für mindestens 30 min gelagert. Nach dem Auftauen wurde das Lysat für 10 sec mit einem Dispergierer (DIAx 900, Dispergierwerkzeug 6G, Heidolph-Instruments GmbH & Co KG, Schwabach) auf Stufe 3 homogenisiert, für 10 min auf Eis inkubiert und für 15 min bei

10 14.000xg, 4°C (3K30, Sigma) zentrifugiert. Mit dem Überstand wurde eine Proteinbestimmung nach Bradford mit dem Roti®-Nanoquant-System von Roth (Roth GmbH & Co., Karlsruhe) nach Angeben des Herstellers durchgeführt. Dazu wurden je 200 µl Proteinlösung in geeigneter Verdünnung mit 800 µl 1x Arbeits-

15 lösung gemischt und die Extinktion in Halbmikroküvetten bei 450 und 590 nm gegen Aqua dest. in einem Beckman-Spektralphotometer (DU 250) gemessen. Für die Eichgerade wurden entsprechende BSA-Verdünnungen verwendet (perliertes BSA, Sigma).

20

SDS-Gelelektrophorese:

Die elektrophoretische Auftrennung der Proteine erfolgte in einer Multigel-Long Elektrophoresekammer von Biometra mit einer denaturierenden, diskontinuierlichen 7,5% SDS-PAGE (Polyacrylamid Gelelektrophorese) nach Lämmli (Nature 277: 680-685, 19970). Dazu wurde zunächst ein Trenngel mit 1,5 mm Dicke gegossen: 3,75 ml Acrylamid/Bisacrylamid (30%, 0,9%), 3,8 ml 1 M Tris/HCl, pH 8,4, 150 µl 10% SDS, 7,15 ml Aqua bidest., 150 µl Ammoniumpersulfat (10%), 9 µl TEMED (N,N,N',N'-Tetramethylendiamin) und bis zum Auspolymerisieren mit 0,1% SDS überschichtet. Danach wurde das Sammelgel gegossen: 0,83 ml Acrylamid/Bisacrylamid (30%/0,9%), 630 µl 1 M Tris/HCl, pH 6,8, 3,4 ml Aqua bidest., 50 µl 10% SDS, 50 µl 10% Ammoniumpersulfat, 5 µl TEMED.

Für den Auftrag auf das Gel wurden die Proteinproben 1:3 mit
4x Probenpuffer (200 mM Tris, pH 6,8, 4% SDS, 100 mM DTT
(Dithiotreithol), 0,02% Bromphenolblau, 20% Glycerin) ver-
5 setzt, für 5 min bei 100°C denaturiert, nach dem Abkühlen auf
Eis kurz abzentrifugiert und auf das Gel aufgetragen. Pro
Bahn wurden 35 µg Gesamtprotein aufgetragen. Der Gelauf er-
folgte wassergekühlt bei RT und konstant 50 V. Als Längen-
standard wurde der Kaleidoskop-Proteingelmarker (BioRad))
10 verwendet.

Western Blot und Immundetektion:

Der Transfer der Proteine vom SDS-PAGE auf eine PVDF (Polyve-
nyldifluorid)-Membran (Hybond-P, Amersham) erfolgte im semi-
15 dry Verfahren nach Kyhse-Anderson (J. Biochem. Biophys. Me-
thods 10: 203-210, 1984) bei RT und einer konstanten Strom-
stärke von 0,5 mA/cm² für 1,5 h. Als Transferpuffer wurden
verwendet: Kathodenpuffer (30 mM Tris, 40 mM Glycin, 10%
Methanol, 0,01% SDS; pH 9,4), Anodenpuffer I (300 mM Tris, pH
20 10,4, 10% Methanol) und Anodenpuffer II (30 mM Tris, pH 10,4,
10% Methanol). Vor dem Zusammensetzen des Blotstapels mit 3MM
Whatman-Papier (Schleicher & Schüll) wurden das Gel in Katho-
denpuffer und die PVDF-Membran (zuvor 30 sec in 100% Methyl-
anol) in Anodenpuffer II inkubiert (5 min): 2 Lagen 3MM-Papier
25 (Anodenpuffer I), 1 Lage 3MM-Papier (Anodenpuffer II), PVDF-
Membran, Gel, 3 Lagen 3MM-Papier (Kathodenpuffer). Zum Über-
prüfen des elektrophoretischen Transfers wurden sowohl die
Gele nach dem Blotten als auch die Blotmembranen nach der Im-
mundetektion mit Coomassie gefärbt (0,1% Coomassie G250, 45%
30 Methanol, 10% Eisessig).

Die Blotmembran wurde nach dem Transfer in 1% Magermilchpul-
ver/PBS/0,1% Tween-20 für 1h bei RT inkubiert. Danach wurde
dreimal für 3 min mit 0,1% Tween-20/PBS gewaschen. Alle nach-

folgenden Antikörperinkubationen und Waschschritte erfolgten in 0,1% Tween-20/ PBS. Die Inkubation mit dem Primärantikörper (human EGFR extracellular domain, specific goat IgG, Cat-Nr. AF231, R&D Systems) erfolgte auf einem Schüttler für 2h bei RT in einer Konzentration von 1,5 µg/ml. Danach wurde 3 x 5 min gewaschen und für 1h bei RT mit dem Sekundärantikörper (donkey anti-goat IgG Horseradish Peroxidase gelabelt, Santa Cruz Biotechnology) inkubiert (1:10.000 verdünnt). Nach dem Waschen (3 x 3min in PBS/0,1% Tween-20) erfolgte sofort die Detektion mittels ECL-Reaktion (enhanced chemiluminescence): Zu 18 ml Aqua dest. wurden 200 µl Lösung A (250 mM Luminol, Roth, gelöst in DMSO), 89 µl Lösung B (90 mM p-Coumarsäure, Sigma, gelöst in DMSO) und 2 ml 30% H₂O₂-Lösung pipettiert. Je nach Membrangröße wurden 4-6 ml direkt auf die Membran pipettiert, 1 min bei RT inkubiert und danach sofort ein Röntgenfilm (Biomax MS, Kodak) aufgelegt.

Die hier verwendeten Sequenzen sind in der nachstehenden Tabelle 3 sowie in den Sequenzprotokollen SQ153, 157, 158, 168-173 wiedergegeben.

ES-7	SQ168 SQ169	(A) 5' - AACACCGCAGCAUGUCAAGAU -3' (B) 3' - UUUUGUGGCGUCGUACAGUUC -5'	2-19-2
ES-8	SQ170 SQ171	(A) 5' - AAGUUAAAUAUCCCGUCGCUAU -3' (B) 3' - CAAUUUUAAGGGCAGCGAUAGU -5'	2 ⁵ -19-2 ⁵
ES2A/ ES5B	SQ172 SQ173	(A) 5' - AGUGUGAUCCAAGCUGUCCCAA -3' (B) 3' - UUUCACACUAGGUUCGACAGGGUU -5'	0-22-2
K2	SQ157 SQ158	(A) 5' - ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3' - UCUGUCCUACUCCUAGCAAAGCGU -5'	2-22-2

K1A/ K2B	SQ153 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3' (B) 3'- UCUGUCCUACUCCUAGCAAAGCGU -5'	0-22-2
---------------------	----------------	--	--------

Tabelle 3

Inhibition der EGFR-Expression in U-87 MG Glioblastom-Zellen:

5 24 Stunden nach dem Aussäen der Zellen wurden diese mit 10 nM dsRNA wie angegeben (Oligofectamine) transfiziert. Nach 72 Stunden wurden die Zellen geerntet und Protein isoliert. Die Auftrennung der Proteine erfolgte im 7,5% SDS-PAGE. Pro Bahn wurden je 35 µg Gesamtprotein aufgetragen. In Fig. 24 ist die 10 entsprechende Western Blot-Analyse gezeigt, aus der hervorgeht, dass sich mit der spezifisch gegen das EGFR-Gen gerichteten dsRNA mit einem 2nt-Überhang am 3'-Ende des Antisinn-Strangs die EGFR-Expression nach Transfektion in U-87 MG-Zellen signifikant gegenüber den entsprechenden Kontrollen 15 inhibieren lässt. Diese Inhibition der Expression eines endogenen Gens durch spezifische dsRNA bestätigt somit die in Ausführungsbeispiel II angeführten Ergebnisse zur Inhibition der Expression eines nach transakter Transfektion in die Zelle eingebrachten artifiziellen Gens. Die durch ES-7 bzw. 20 ES-8 vermittelte Inhibition der EGFR-Expression ist deutlich geringer. Die in Fig. 24 verwendeten dsRNAs sind Tabelle 3 zu entnehmen.

25 VI. Hemmung der Expression des Multidrug resistance Gens 1 (MDR1) :

Versuchsprotokoll:

Der *in vitro* Nachweis für das Blockieren der MDR1-Expression 30 wurde in der Kolonkarzinom-Zelllinie LS174T (ATCC - American Type Culture Collection; Tom et al., 1976) durchgeführt. Von

dieser Zelllinie ist bekannt, daß die Expression von MDR1 durch Zugabe von Rifampicin zum Kulturmedium induzierbar ist (Geick et al., 2001). Transfektionen wurden mit verschiedenen käuflichen Transfektions-Kits (Lipofectamine, Oligofectamine, 5 beide Invitrogen; TransMessenger, Qiagen) durchgeführt, wobei der TransMessenger Transfektions-Kit sich als für diese Zelllinie am geeignetsten herausstellte.

Zur Durchführung der RNA-Interferenz-Experimente wurden 4
10 kurze doppelsträngige Ribonukleinsäuren R1-R4 eingesetzt, deren Sequenzen in Tabelle 4) gezeigt sind. Die Ribonukleinsäuren sind mit Abschnitten der kodierenden Sequenz von MDR1 (Sequenzprotokoll SQ 30) homolog. Die Sequenzen R1 - R3 bestehen aus einem 22-mer Sinn- und einem 24-mer Antisinn-Strang,
15 wobei der entstehende Doppelstrang am 3'-Ende des Antisinn-Stranges einen 2-Nukleotid-Überhang aufweist (0-22-2). Die Sequenz R4 entspricht R1, jedoch besteht sie aus einem 19-mer Doppelstrang mit je 2-Nukleotid-Überhängen an jedem 3'-Ende (2-19-2).

20

<u>Name</u>	<u>Sequenz- proto- koll-Nr.</u>	<u>Sequenz</u>	<u>Position in Daten- bank-#</u>
			<u>AF016535</u>
Seq	SQ141	5' - CCA UCU CGA AAA GAA GUU AAG A-3'	1320-1342
R1	SQ142	3' -UG GGU AGA GCU UUU CUU CAA UUC U-5'	1335-1318
Seq	SQ143	5' - UAU AGG UUC CAG GCU UGC UGU A-3'	2599-2621
R2	SQ152	3' -CG AUA UCC AAG GUC CGA ACG ACA U-5'	2621-2597
Seq	SQ144	5' - CCA GAG AAG GCC GCA CCU GCA U-3'	3778-3799
R3	SQ145	3' -UC GGU CUC UUC CGG CGU GGA CGU A-5'	3799-3776
Seq	SQ146	5' - CCA UCU CGA AAA GAA GUU AAG-3'	1320-1341
R4	SQ147	3' -UG GGU AGA GCU UUU CUU CAA U -5'	1339-1318

			<u>Position in Daten- bank-#</u>
			<u>AF402779</u>
K1A/ K2B	SQ153 SQ158	5' - ACA GGA UGA GGA UCG UUU CGC A-3' 3' - UC UGU CCU ACU CCU AGC AAA GCG U-5'	2829-2808 2808-2831

Tabelle 4

Die in Tabelle 4 gezeigten Sequenzen sind nochmals im Sequenzprotokoll als Sequenzen SQ141-147, 152, 153, 158 wieder-gegeben. Die dsRNAs wurden in einer Konzentration von 175 nM jeweils als doppelte Ansätze in die Zellen transfiziert, welche am Tag zuvor in 12-Loch-Platten à $3,8 \times 10^5$ Zellen/Vertiefung ausgesät wurden. Dazu wurden pro Transfektionsansatz 93,3 µl EC-R-Puffer (TransMessenger Kit, Qiagen, Hilden) mit 3,2 µl Enhancer-R vermenkt und danach 3,5 µl der jeweiligen 20 µM dsRNA zugegeben, gut gemischt und 5 Minuten bei Raumtemperatur inkubiert. Nach Zugabe von jeweils 6 µl TransMessenger Transfection Reagent wurden die Transfektionsansätze 10 Sekunden kräftig gemischt und 10 Minuten bei Raumtemperatur inkubiert. In der Zwischenzeit wurde das Medium von den Zellen abgesaugt, einmal mit PBS (Phosphate buffered saline) gewaschen und 200 µl frisches Medium ohne FCS pro Vertiefung auf die Zellen gegeben. Nach Ablauf der 10-minütigen Inkubationszeit wurden je 100 µl FCS-freies Medium zu den Transfektionsansätzen pipettiert, gemischt, und die Mischung tropfenweise zu den Zellen pipettiert (die dsRNA-Konzentration von 175 µM bzieht sich auf 400 µl Medium Gesamtvolumen). Die dsRNA/Trans-Messenger-Komplexe wurden 4 Stunden bei 37°C mit den Zellen in FCS-freiem Medium inkubiert. Danach wurde ein Mediumwechsel durchgeführt, wobei das frische Medium 10 µM Rifampicin und 10% FCS enthielt. Als

Kontrolle wurde eine unspezifische dsRNA-Sequenz, die keinerlei Homologie mit der MDR1-Gensequenz aufweist,eingesetzt (K) und eine MOCK-Transfektion durchgeführt, die alle Reagenzien außer dsRNA enthielt.

5

Die Zellen wurden nach 24, 48 und 72 Stunden geerntet und die Gesamt-RNA mit dem RNeasy-Mini-Kit von Qiagen extrahiert. 10 µg Gesamt-RNA jeder Probe wurden auf einem 1%igen Agarose-Formaldehyd-Gel elektrophoretisch aufgetrennt, auf eine Ny-
10 lon-Membran geblottet und mit 5'-α³²P-dCTP random-markierten, spezifischen Sonden zuerst gegen MDR1 und nach dem Strippen des Blots gegen GAPDH als interne Kontrolle hybridisiert und auf Röntgenfilmen exponiert.

15 Die Röntgenfilme wurden digitalisiert (Image Master, VDS Pharmacia) und mit der Image-Quant-Software quantifiziert. Dabei wurde ein Abgleich der MDR1-spezifischen Banden mit den entsprechenden GAPDH-Banden durchgeführt.

20 Ergebnisse:

Die Fig. 25 und 26 zeigen Northern-Blots (Fig. 25a, 26a) mit quantitativer Auswertung der MDR1-spezifischen Banden nach Abgleich mit den entsprechenden GAPDH-Werten (Fig. 25b, 26b). Es konnte eine Reduktion der MDR1-mRNA um bis zu 55 % im Vergleich zur MOCK-Transfektion und um bis zu 45 % im Vergleich 25 zur unspezifischen Kontroll-Transfektion beobachtet werden. Nach 48 h ist eine signifikante Reduktion des MDR1-mRNA-Niveaus mit den als R1, R2, R3 (Tabelle 4) bezeichneten dsRNA-Konstrukten erreicht worden. Mit den R4-dsRNA-Konstrukten wurde nach 48 h keine signifikante Reduktion gegenüber den Kontrollen beobachtet (Fig. 26a und 26b). Nach 72 h war eine deutlich stärkere Reduktion des MDR1-mRNA-Levels mit R1, R2 und R3 gegenüber den Kontrollen im Vergleich zu den 48 h-Werten zu beobachten (Fig. 25a und 25b).

Mit R4 konnte zu diesem Zeitpunkt ebenfalls eine signifikante Verringerung des MDR1-mRNA-Niveaus erzielt werden. Somit reduzieren die Konstrukte mit einem 2nt-Überhang am 3'-Ende des Antisinnstrangs und einem doppelsträngigen Bereich aus 22 Nukleotidpaaren, relativ unabhängig von dem jeweiligen zum MDR1-Gen homologen Sequenzbereich (nach 48 h; Fig. 26b) das MDR1-mRNA-Level effizienter als die Konstrukte mit mit 2nt-Überhängen an den 3'-Enden beider Stränge (Antisinn- und Sinnstrang) und einem Doppelstrangbereich von 19 Nukleotidpaaren. Die Ergebnisse bekräftigen damit die in Ausführungsbeispiel IV beschriebene Inhibition der EGFR-Genexpression durch spezifische dsRNAs nach Transfektion in U-87 MG-Zellen.

Die Transfektionseffizienz wurde in einem getrennten Experiment mit Hilfe eines Texas-Red-markierten DNA-Oligonukleotids (TexRed-A(GATC)₅T; ebenfalls 175 nM transfiziert) ermittelt (Fig. 27a, 27b; 400fache Vergrößerung, 48h nach Transfektion). Sie betrug etwa 50% auf der Grundlage der rot fluoreszierenden Zellen im Vergleich zur Gesamzellzahl. Berücksichtigt man die Transfektionsrate der Zellen von etwa 50%, so liegt die beobachtete Verringerung des MDR1-mRNA-Niveaus um ca. 45-55% liegt (verglichen mit den Kontrollen), den Schluss nahe, dass in allen Zellen, die mit spezifischer dsRNA erfolgreich transfiziert werden konnten, die MDR1-mRNA nahezu vollständig und spezifisch abgebaut wurde.

Literatur:

Alroy I & Yarden Y (1997): The Erb signalling network in embryogenesis and oncogenesis: signal diversification through 5 combinatorial ligand-receptor interactions. FEBS Letters 410: 83-86.

Bass,B.L., 2000. Double-stranded RNA as a template for gene silencing. Cell 101, 235-238.

Bosher,J.M. and Labouesse,M., 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2, E31-E36.

Bradford MM (1976): Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

Caplen,N.J., Fleenor,J., Fire,A., and Morgan,R.A., 2000. dsRNA-mediated gene silencing in cultured *Drosophila* cells: a 20 tissue culture model for the analysis of RNA interference. Gene 252, 95-105.

Clemens,J.C., Worby,C.A., Simonson-Leff,N., Muda,M., Maelama,T., Hemmings,B.A., and Dixon,J.E., 2000. Use of double-stranded RNA interference in *Drosophila* cell lines to dissect signal transduction pathways. Proc.Natl.Acad.Sci.USA 97, 6499-6503.

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fe-30 hrenbacher L, Wolter JM, Paton V, Shak S, Liebermann G & Slamon DJ (1999): Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that

has progressed after chemotherapy for metastatic disease.

Journal of Clinical Oncology 17: 2639-2648.

Ding,S.W., 2000. RNA silencing. Curr. Opin. Biotechnol. 11,
5 152-156.

Fire,A., Xu,S., Montgomery,M.K., Kostas,S.A., Driver,S.E.,
and Mello,C.C., 1998. Potent and specific genetic interfer-
ence by double-stranded RNA in *Caenorhabditis elegans*. Nature
10 391, 806-811.

Fire,A., 1999. RNA-triggered gene silencing. Trends Genet.
15, 358-363.

15 Freier,S.M., Kierzek,R., Jaeger,J.A., Sugimoto,N., Caruth-
ers,M.H., Neilson,T., and Turner,D.H., 1986. Improved free-
energy parameters for prediction of RNA duplex stability.
Proc. Natl. Acad. Sci. USA 83, 9373-9377 .

20 Geick, A., Eichelbaum, M., Burk, O. (2001). Nuclear receptor
response elements mediate induction of intestinal MDR1 by ri-
fampin. J. Biol. Chem. 276 (18), 14581-14587.

Fontanini G, De Laurentiis M, Vignati S, Chine S, Lucchi M,
25 Silvestri V, Mussi A, De Placido S, Tortora G, Bianco AR,
Gullick W, Angeletti CA, Bevilaqua G & Ciardiello F (1998):
Evaluation of epidermal growth factor-related growth factors
and receptors and of neoangiogenesis in completely resected
stage I-IIIA non-small-cell lung cancer: amphiregulin and mi-
30 crovessel count are independent prognostic factors of sur-
vival. Clinical Cancer Research 4: 241-249.

Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* 404, 293-296.

5 Higgins, C.F. (1995). The ABC of channel regulation. *Cell*, 82, 693-696.

Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1993): Generating green fluorescent mice by germline transmission of green fluorescent ES cells. *Mech. Dev.* 76: 79-90.

10 Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1998): Non-invasive sexing of preimplantation mammalian embryos. *Nature Genetics* 19: 220-222.

15 Kyhse-Anderson J (1984): Electroblotting of multiple gels: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. *J. Biochem. Biophys. Methods* 10: 203-210.

20 Lämmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 277: 680-685.

25 Loo, T.W., and Clarke, D.M. (1999) *Biochem. Cell Biol.* 77, 11-23.

Huang SM & Harari PM (1999): Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. *Investigational New Drugs* 17: 259-269.

30 Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and

stability of the aminoacyl acceptor stem. Proc. Natl. Acad. Sci. USA 90 , 6199-6202.

Montgomery,M.K. and Fire,A., 1998. Double-stranded RNA as a
5 mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14, 255-258.

Montgomery,M.K., Xu,S., and Fire,A., 1998. RNA as a target of
double-stranded RNA-mediated genetic interference in *Caeno-*
10 *rhabditis elegans*. Proc. Natl. Acad. Sci. USA 95, 15502-
15507.

Rieske P, Kordek R, Bartkowiak J, Debiec-Rychter M, Bienhat W
& Liberski PP (1998): A comparative study of epidermal growth
15 factor (EGFR) and mdm2 gene amplification and protein immuno-
reactivity in human glioblastomas. Polish Journal of Pathology 49: 145-149.

Robert, J. (1999). Multidrug resistance in oncology: diagnostic and therapeutic approaches. Europ J Clin Invest 29, 536-
20 545.

Stavrovskaya, A.A. (2000) Biochemistry (Moscow) 65 (1), 95-
106.

25

Salomon DS, Brandt R, Ciardiello F & Normanno N (1995): Epidermal growth factor related peptides and their receptors in human malignancies: Critical Reviews in Oncology and Haematology 19: 183-232.

30

Tom, B.H., Rutzky, L.P., Jakstys, M.M., Oyasu, R., Kaye, C.I., Kahan, B.D. (1976), In vitro, 12, 180-191.

Tsuruo, T., Iida, H., Tsukagoshi, S., Sakurai, Y. (1981). Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. *Cancer Res*, 41, 1967-72.

5

Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. *FEBS Lett.* 479, 79-82.

10

Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Liebermann TA, Schlessinger J et al. (1984): Human epidermal growth factor receptor cDNA sequences and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. *Nature* 309: 418-425.

15

Ullrich A & Schlessinger J (1990): Signal transduction by receptors with tyrosine kinase activity. *Cell* 61: 203-212.

20

Van der Geer P, Hunter T & Linberg RA (1994): Receptor protein-tyrosine kinases and their signal transduction pathways. Annual review in Cell Biology 10: 251-337.

25

Voldborg BR, Damstrup L, Spang-Thopmsen M & Poulsen HS (1997): Epidermal growth factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. *Annals of Oncology* 8: 1197-1206.

30

Walker RA & Dearing SJ (1999): Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. *Breast Cancer Research Treatment* 53: 167-176.

Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., 2000.
RNAi: double-stranded RNA directs the ATP-dependent cleavage
of mRNA at 21 to 23 nucleotide intervals. Cell 101 , 25-33.

5 Zor T & Selinger Z (1996): Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236: 302-308.

Patentansprüche

1. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:

5

Einführen mindestens einer doppelsträngigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

10 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

15

und wobei die dsRNA zumindest an einem Ende (E1, E2) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

20 2. Verfahren nach Anspruch 1, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

25 3. Verfahren nach Anspruch 1 oder 2, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

4. Verfahren nach Anspruch 3, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

30 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eine entsprechend der dsRNA I nach einem der vorhergehenden Ansprüche ausgebildete weitere doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird,
5 wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein weiterer Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des
10 Zielgens ist.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.
15

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

20 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabsintet sind.

25 10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,
30 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Ge-

ne von Proteinasen sowie Apoptose- und Zellzyklus-regulierenden Molekülen.

12. Verfahren nach einem der vorhergehenden Ansprüche, wobei
5 das Zielgen das MDR1-Gens ist.

13. Verfahren nach einem der vorhergehenden Ansprüche, wobei
als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus
zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnse-
10 quenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen
SQ141 - 173 verwendet wird.

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei
die Expression nach dem Prinzip der RNA-Interferenz gehemmt
15 wird.

15. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen in pathogenen Organismen, vorzugsweise in Plasmo-
dien, exprimiert wird.

20 16. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen Bestandteil eines Virus oder Viroids ist.

25 17. Verfahren nach Anspruch 16, wobei das Virus ein humanpa-
thogenes Virus oder Viroid ist.

18. Verfahren nach Anspruch 16, wobei das Virus oder Viroid
ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

30 19. Verfahren nach einem der vorhergehenden Ansprüche, wobei
ungepaarte Nukleotide durch Nukleosidthiophosphate substitu-
iert sind.

20. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende (E1, E2) der dsRNA I/II modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

5

21. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

10

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

15

23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

20

24. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

25

25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

30

26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloga gebildet wird.

27. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

5 28. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio-
nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-
acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psora-
10 len.

29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-
15 Gruppen gebildet wird.

30. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
E2) befindliche Tripelhelix-Bindungen hergestellt wird.

20 31. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

25 32. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

30 33. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

34. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

5 35. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

10 36. Verfahren nach einem der vorhergehenden Ansprüche, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

15 37. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

20 38. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

25 39. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

40. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verab-
30 reicht wird.

41. Verwendung einer die doppelsträngigen Ribonukleinsäure (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle,

wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

10

42. Verwendung nach Anspruch 41, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

15

43. Verwendung nach Anspruch 41 oder 42, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

44. Verwendung nach Anspruch 43, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

20

45. Verwendung nach einem der Ansprüche 41 bis 44, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

25

46. Verwendung nach einem der Ansprüche 41 bis 45, wobei zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 41 bis 45 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird, wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Sinn-Strangs des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

47. Verwendung nach einem der Ansprüche 41 bis 47, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren 5 aufweist/en.

48. Verwendung nach einem der Ansprüche 41 bis 47, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

10 49. Verwendung nach einem der Ansprüche 41 bis 48, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.

15 50. Verwendung nach einem der Ansprüche 41 bis 49, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

51. Verwendung nach einem der Ansprüche 41 bis 50, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, 20 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

25 52. Verwendung nach einem der Ansprüche 41 bis 51, wobei das Zielgen das MRD1-Gens ist.

30 53. Verwendung nach einem der Ansprüche 41 bis 52, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

54. Verwendung nach einem der Ansprüche 41 bis 53, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

5 55. Verwendung nach einem der Ansprüche 41 bis 54, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.

10 56. Verwendung nach einem der Ansprüche 41 bis 55, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

57. Verwendung nach Anspruch 56, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

15 58. Verwendung nach Anspruch 56, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

20 59. Verwendung nach einem der Ansprüche 41 bis 58, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

25 60. Verwendung nach einem der Ansprüche 41 bis 59, wobei zumindest ein Ende (E1, E2) der dsRNA modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstrände entgegenzuwirken.

30 61. Verwendung nach einem der Ansprüche 41 bis 60, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

62. Verwendung nach einem der Ansprüche 41 bis 61, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwir-

kungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

63. Verwendung nach einem der Ansprüche 41 bis 62, wobei die
5 chemische Verknüpfung in der Nähe des einen Endes (E1, E2)
gebildet ist.

64. Verwendung nach einem der Ansprüche 41 bis 63, wobei die
chemische Verknüpfung mittels einer oder mehrerer Verbin-
10 dungsgruppen gebildet wird, wobei die Verbindungsgruppen vor-
zugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder
Oligoethylenglycol-Ketten sind.

65. Verwendung nach einem der Ansprüche 41 bis 64, wobei die
15 chemische Verknüpfung durch anstelle von Nukleotiden benutzte
verzweigte Nukleotidanaloga gebildet wird.

66. Verwendung nach einem der Ansprüche 41 bis 65, wobei die
chemische Verknüpfung durch Purinanaloga gebildet wird.

20 67. Verwendung nach einem der Ansprüche 41 bis 66, wobei die
chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

68. Verwendung nach einem der Ansprüche 41 bis 67, wobei zur
25 Herstellung der chemischen Verknüpfung mindestens eine der
folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle
Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-
(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

30 69. Verwendung nach einem der Ansprüche 41 bis 68, wobei die
chemische Verknüpfung durch in der Nähe der Enden (E1, E2)
des doppelsträngigen Bereichs angebrachte Thiophosphoryl-
Gruppen gebildet wird.

70. Verwendung nach einem der Ansprüche 41 bis 69, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

5 71. Verwendung nach einem der Ansprüche 41 bis 70, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

10 72. Verwendung nach einem der Ansprüche 41 bis 71, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

15 73. Verwendung nach einem der Ansprüche 41 bis 72, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

20 74. Verwendung nach einem der Ansprüche 41 bis 73, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

25 75. Verwendung nach einem der Ansprüche 41 bis 74, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

76. Verwendung nach einem der Ansprüche 41 bis 75, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

30

77. Verwendung nach einem der Ansprüche 41 bis 76, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

78. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

79. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

10 80. Verwendung nach einem der Ansprüche 41 bis 79, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

15 81. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

20 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist,

25 und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30

82. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

83. Medikament nach Anspruch 81 oder 82, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

84. Medikament nach Anspruch 83, wobei das glatte Ende (E1, 5 E2) das 5'-Ende des einen Strangs (as1) enthält.

85. Medikament nach einem der Ansprüche 81 bis 84, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

10

86. Medikament nach einem der Ansprüche 81 bis 85, enthaltend zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 81 bis 85 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II), wobei der eine Strang (as1) oder 15 zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

20

87. Medikament nach einem der Ansprüche 81 bis 86, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.

25

88. Medikament nach einem der Ansprüche 81 bis 87, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

30

89. Medikament nach einem der Ansprüche 81 bis 88, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

90. Medikament nach einem der Ansprüche 81 bis 89, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,

Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

91. Medikament nach einem der Ansprüche 81 bis 90, wobei das Zielgen das MRD1-Gen ist.

10

92. Medikament nach einem der Ansprüche 81 bis 91, wobei als dsRNA eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

15

93. Medikament nach einem der Ansprüche 81 bis 92, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

20

94. Medikament nach einem der Ansprüche 81 bis 93, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimierbar ist.

25

95. Medikament nach einem der Ansprüche 81 bis 94, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

96. Medikament nach Anspruch 95, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

30

97. Medikament nach Anspruch 95, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

98. Medikament nach einem der Ansprüche 81 bis 97, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

5 99. Medikament nach einem der Ansprüche 81 bis 98, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert ist, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

10 100. Medikament nach einem der Ansprüche 81 bis 99, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht ist.

15 101. Medikament nach einem der Ansprüche 81 bis 100, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet
20 ist.

102. Medikament nach einem der Ansprüche 81 bis 101, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

25 103. Medikament nach einem der Ansprüche 81 bis 102, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder
30 Oligoethylenglycol-Ketten sind.

104. Medikament nach einem der Ansprüche 81 bis 103, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

105. Medikament nach einem der Ansprüche 81 bis 104, wobei die chemische Verknüpfung durch Purinanaloge gebildet ist.

5 106. Medikament nach einem der Ansprüche 81 bis 105, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

10 107. Medikament nach einem der Ansprüche 81 bis 106, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoraleen.

15 108. Medikament nach einem der Ansprüche 81 bis 107, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.

20 109. Medikament nach einem der Ansprüche 81 bis 108, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.

25 110. Medikament nach einem der Ansprüche 81 bis 109, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen ist.

30 111. Medikament nach einem der Ansprüche 81 bis 110, wobei die dsRNA I an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist/sind.

112. Medikament nach einem der Ansprüche 81 bis 111, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

113. Medikament nach einem der Ansprüche 81 bis 112, wobei
5 das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-
Protein 2 (VP2) des Polyomavirus enthält.

114. Medikament nach einem der Ansprüche 81 bis 113, wobei
bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
10 Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
sidartigen Gebildes gewandt ist.

115. Medikament nach einem der Ansprüche 81 bis 114, wobei
der eine Strang (as1, as2) der dsRNA I zum primären oder pro-
15 zessierten RNA-Transkript des Zielgens komplementär ist.

116. Medikament nach einem der Ansprüche 81 bis 115, wobei
die Zelle eine Vertebratenzelle oder eine menschliche Zelle
ist.

20 117. Medikament nach einem der Ansprüche 81 bis 116, wobei
der erste (B1) und der zweite Bereich (B2) voneinander beab-
standet sind.

25 118. Medikament nach einem der Ansprüche 81 bis 117, wobei
die dsRNA in einer Menge von höchstens 5 mg pro Verabrei-
chungseinheit enthalten ist.

119. Medikament nach einem der Ansprüche 81 bis 118, wobei
30 die dsRNA in eine Pufferlösung aufgenommen ist.

120. Medikament nach einem der Ansprüche 81 bis 119, wobei
die dsRNA oral oder mittels Injektion oder Infusion intrave-
nös, intratumoral, inhalativ, intraperitoneal verabreicht
ist.

121. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:

5

Einführen mindestens einer doppelsträngigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

10 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

15

und wobei die dsRNA zumindest an einem Ende (E1, E2) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

20 122. Verfahren nach Anspruch 1, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

25 123. Verfahren nach Anspruch 1 oder 2, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

124. Verfahren nach Anspruch 3, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

30 125. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

126. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eine entsprechend der dsRNA I nach einem der vorhergehenden Ansprüche ausgebildete weitere doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird,
5 wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein weiterer Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des
10 Zielgens ist.

127. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.
15

128. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.
20

129. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabsandet sind.
25

130. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

131. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,
30 Cytokin-Gen, Id-Protein-Gen, Priogenen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Ge-

ne von Proteinasen sowie Apoptose- und Zellzyklus-regulierenden Molekülen.

132. Verfahren nach einem der vorhergehenden Ansprüche, wobei
5 das Zielgen das MDR1-Gens ist.

133. Verfahren nach einem der vorhergehenden Ansprüche, wobei
als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus
zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnse-
10 quenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen
SQ141 - 173 verwendet wird.

134. Verfahren nach einem der vorhergehenden Ansprüche, wobei
die Expression nach dem Prinzip der RNA-Interferenz gehemmt
15 wird.

135. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen in pathogenen Organismen, vorzugsweise in Plasmo-
dien, exprimiert wird.

20 136. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen Bestandteil eines Virus oder Viroids ist.

137. Verfahren nach Anspruch 16, wobei das Virus ein humanpa-
25 thogenes Virus oder Viroid ist.

138. Verfahren nach Anspruch 16, wobei das Virus oder Viroid
ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

30 139. Verfahren nach einem der vorhergehenden Ansprüche, wobei
ungepaarte Nukleotide durch Nukleosidthiophosphate substitu-
iert sind.

140. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende (E1, E2) der dsRNA I/II modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

5

141. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

10

142. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

15

143. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

20

144. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

25

145. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

30

146. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloga gebildet wird.

147. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

5 148. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio-
nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-
acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psora-
10 len.

149. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
15 E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-
Gruppen gebildet wird.

150. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
20 E2) befindliche Tripelhelix-Bindungen hergestellt wird.

151. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

25 152. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

30 153. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

154. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

5 155. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

10 156. Verfahren nach einem der vorhergehenden Ansprüche, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

157. Verfahren nach einem der vorhergehenden Ansprüche, wobei
15 die Zelle eine Vertebratenzelle oder eine menschliche Zelle
ist.

158. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm
20 Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

159. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.
25

160. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.
30

161. Verwendung einer die doppelsträngigen Ribonukleinsäure (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle,

wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

10

162. Verwendung nach Anspruch 41, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

15

163. Verwendung nach Anspruch 41 oder 42, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

164. Verwendung nach Anspruch 43, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

20

165. Verwendung nach einem der Ansprüche 41 bis 44, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

25

166. Verwendung nach einem der Ansprüche 41 bis 45, wobei zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 41 bis 45 ausgebildete doppelsträngige Ribonukleinäure (dsRNA II) in die Zelle eingeführt wird, wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen

30

Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Sinn-Strangs des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

167. Verwendung nach einem der Ansprüche 41 bis 47, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren 5 aufweist/en.

168. Verwendung nach einem der Ansprüche 41 bis 47, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

10 169. Verwendung nach einem der Ansprüche 41 bis 48, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.

15 170. Verwendung nach einem der Ansprüche 41 bis 49, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

171. Verwendung nach einem der Ansprüche 41 bis 50, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, 20 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

25 172. Verwendung nach einem der Ansprüche 41 bis 51, wobei das Zielgen das MRD1-Gens ist.

30 173. Verwendung nach einem der Ansprüche 41 bis 52, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

174. Verwendung nach einem der Ansprüche 41 bis 53, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

5 175. Verwendung nach einem der Ansprüche 41 bis 54, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.

10 176. Verwendung nach einem der Ansprüche 41 bis 55, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

177. Verwendung nach Anspruch 56, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

15 178. Verwendung nach Anspruch 56, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

179. Verwendung nach einem der Ansprüche 41 bis 58, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

20 180. Verwendung nach einem der Ansprüche 41 bis 59, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstrände entgegenzuwirken.

25 181. Verwendung nach einem der Ansprüche 41 bis 60, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

30 182. Verwendung nach einem der Ansprüche 41 bis 61, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwir-

kungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

183. Verwendung nach einem der Ansprüche 41 bis 62, wobei die
5 chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

184. Verwendung nach einem der Ansprüche 41 bis 63, wobei die
10 chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

185. Verwendung nach einem der Ansprüche 41 bis 64, wobei die
15 chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

186. Verwendung nach einem der Ansprüche 41 bis 65, wobei die
20 chemische Verknüpfung durch Purinanaloga gebildet wird.

187. Verwendung nach einem der Ansprüche 41 bis 66, wobei die
25 chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

188. Verwendung nach einem der Ansprüche 41 bis 67, wobei zur
25 Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(*p*-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

30 189. Verwendung nach einem der Ansprüche 41 bis 68, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

190. Verwendung nach einem der Ansprüche 41 bis 69, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

5 191. Verwendung nach einem der Ansprüche 41 bis 70, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

10 192. Verwendung nach einem der Ansprüche 41 bis 71, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

15 193. Verwendung nach einem der Ansprüche 41 bis 72, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

194. Verwendung nach einem der Ansprüche 41 bis 73, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

20 195. Verwendung nach einem der Ansprüche 41 bis 74, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

25 196. Verwendung nach einem der Ansprüche 41 bis 75, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

30

197. Verwendung nach einem der Ansprüche 41 bis 76, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

198. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

199. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

10 200. Verwendung nach einem der Ansprüche 41 bis 79, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

15 201. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

20 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist,

25 und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30.

202. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

203. Medikament nach Anspruch 81 oder 82, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

204. Medikament nach Anspruch 83, wobei das glatte Ende (E1, 5 E2) das 5'-Ende des einen Strangs (as1) enthält.

205. Medikament nach einem der Ansprüche 81 bis 84, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

10

206. Medikament nach einem der Ansprüche 81 bis 85, enthaltend zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 81 bis 85 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II), wobei der eine Strang (as1) oder 15 zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

20

207. Medikament nach einem der Ansprüche 81 bis 86, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.

25

208. Medikament nach einem der Ansprüche 81 bis 87, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

30 209. Medikament nach einem der Ansprüche 81 bis 88, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

210. Medikament nach einem der Ansprüche 81 bis 89, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,

Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

211. Medikament nach einem der Ansprüche 81 bis 90, wobei das Zielgen das MRD1-Gen ist.

10

212. Medikament nach einem der Ansprüche 81 bis 91, wobei als dsRNA eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

15

213. Medikament nach einem der Ansprüche 81 bis 92, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

20

214. Medikament nach einem der Ansprüche 81 bis 93, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimierbar ist.

25

215. Medikament nach einem der Ansprüche 81 bis 94, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

216. Medikament nach Anspruch 95, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

30

217. Medikament nach Anspruch 95, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

218. Medikament nach einem der Ansprüche 81 bis 97, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

5 219. Medikament nach einem der Ansprüche 81 bis 98, wobei zumindest ein Ende (E1, E2) der dsRNA modifiziert ist, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

10 220. Medikament nach einem der Ansprüche 81 bis 99, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht ist.

15 221. Medikament nach einem der Ansprüche 81 bis 100, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet
20 ist.

222. Medikament nach einem der Ansprüche 81 bis 101, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

25 223. Medikament nach einem der Ansprüche 81 bis 102, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder
30 Oligoethylenglycol-Ketten sind.

224. Medikament nach einem der Ansprüche 81 bis 103, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

225. Medikament nach einem der Ansprüche 81 bis 104, wobei die chemische Verknüpfung durch Purinanaloga gebildet ist.

5 226. Medikament nach einem der Ansprüche 81 bis 105, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

10 227. Medikament nach einem der Ansprüche 81 bis 106, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoraleen.

15 228. Medikament nach einem der Ansprüche 81 bis 107, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.

20 229. Medikament nach einem der Ansprüche 81 bis 108, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.

25 230. Medikament nach einem der Ansprüche 81 bis 109, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen ist.

30 231. Medikament nach einem der Ansprüche 81 bis 110, wobei die dsRNA I an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hülpprotein gebunden, damit assoziiert oder davon umgeben ist/sind.

232. Medikament nach einem der Ansprüche 81 bis 111, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

233. Medikament nach einem der Ansprüche 81 bis 112, wobei
5 das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-
Protein 2 (VP2) des Polyomavirus enthält.

234. Medikament nach einem der Ansprüche 81 bis 113, wobei
bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
10 Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
sidartigen Gebildes gewandt ist.

235. Medikament nach einem der Ansprüche 81 bis 114, wobei
der eine Strang (as1, as2) der dsRNA I zum primären oder pro-
15 zessierten RNA-Transkript des Zielgens komplementär ist.

236. Medikament nach einem der Ansprüche 81 bis 115, wobei
die Zelle eine Vertebratenzelle oder eine menschliche Zelle
ist.

20 237. Medikament nach einem der Ansprüche 81 bis 116, wobei
der erste (B1) und der zweite Bereich (B2) voneinander beab-
standet sind.

25 238. Medikament nach einem der Ansprüche 81 bis 117, wobei
die dsRNA in einer Menge von höchstens 5 mg pro Verabrei-
chungseinheit enthalten ist.

239. Medikament nach einem der Ansprüche 81 bis 118, wobei
30 die dsRNA in eine Pufferlösung aufgenommen ist.

240. Medikament nach einem der Ansprüche 81 bis 119, wobei
die dsRNA oral oder mittels Injektion oder Infusion intrave-

nös, intratumoral, inhalativ, intraperitoneal verabrechbar ist.

1/20

Fig. 1a**Fig. 1b****Fig. 2**

2/20

Fig. 3

Fig. 4

3/20

Fig. 5

Fig. 6

4/20

Fig. 7

5/20

Fig. 8

6/20

Fig. 9

7/20

Fig. 10

Fig. 11

8/20

Fig. 12**Fig. 13****Fig. 14**

9/20

Fig. 15

Fig. 16

10/20

Fig. 17

11/20

Fig. 18

12/20

Fig. 19

13/20

Fig. 20

14/20

Fig. 21

Fig. 22

15/20

Fig. 23

Fig. 24

16/20

Fig. 25a

17/20

Fig. 25b

18/20

Fig. 26a

19/20

Fig. 26b

20/20

Fig. 27

ttcactaccg agatccatcc atcctgtgtc actcgccaga aggtgatcgg agcaggagag 1980
 tttggggagg tgtacaaggg catgctgaag acatcctcgg ggaagaagga ggtgcgggtg 2040
 gccatcaaga cgctgaaagc cggctacaca gagaagcgc gagtggactt ctcggcgag 2100
 gccggcatca tggccagtt cagccaccac aacatcatcc gcctagaggg cgtcatctcc 2160
 5 aaatacaagg ccatgatgat catcaactgag tacatggaga atggggccct gacaaggatcc 2220
 ctccgggaga aggatggcga gttcagcgtg ctgcagctgg tggcagatgct gcggggcattc 2280
 gcagctggca tgaagtacct ggcacacatg aactatgtgc accgtgacct ggctgcccgc 2340
 aacatcctcg tcaacagcaa cctggctgtc aagggtgtctg acttggcct gtcccgctgt 2400
 ctggaggacg acccccggg cactacacc accagtggcg gcaagatccc catccgttgt 2460
 10 accggccccgg aggccatttc ctaccggaa ggcattgtca tggggaggt gatgacatctt ccaccccttg ccagcgttgcgtt 2520
 ggcattgtca tggggaggt gatgacatctt ccaccccttg ccagcgttgcgtt 2580
 caccagggtgta taaaagccat caatgatggc ttccggctcc ccacacccat gactgcccc 2640
 tccgccatct accagctcat gatgcgtgc tggcagcagg agcgtgcccc cggccccaag 2700
 ttcgctgaca tcgtcagcat cctggacaag ctcattctgt cccctgactc cctcaagacc 2760
 15 ctggctgact ttgaccggcg cgtgtctatc gtgcgttccca gcacgagcgg ctggaggggg 2820
 gtgccttcc gcacgggtgc ctagtggctg gagtccatca agatgcagca gtatacggag 2880
 cacttcatgg cggccggcta cactgccatc gagaagggtgg tgcaagatgac caacgacgac 2940
 atcaagagga ttggggtgcg gctgcccggc caccagaagc gcatgccta cagcctgctg 3000
 20 ggactcaagg accaggtgaa cactgtgggg atccccatct ga 3042

 <210> 3
 <211> 2953
 <212> DNA
 25 <213> Homo sapiens

 <300>
 <302> ephrin A3
 <310> NM005233

 30 <400> 3
 atggattgtc agctctccat cctcctcctt ctcagctgtc ctgttctcga cagcttcggg 60
 gaactgattc cgcagocctt caatgaagtc aatctactgg attcaaaaaac aattcaagg 120
 35 gagctgggt ggtatcttta tccatcacat ggggtggaaag agatcgtgg tttggatgaa 180
 cattcacac ccatcaggac ttaccagggtg tcaatgtca tggaccacatc tcaaaaatc 240
 tggctggaaa caaaactgggt ccccagggaa tcagctcaga agatttatgt ggagctcaag 300
 ttcactctac gagactgcaaa tagcattcca ttggtttttag gaacttgc当地 ggagacattc 360
 aacctgtact acatggagtc tggatgtatgat catgggtga aatttcgaga gcatcgttt 420
 acaaagattt acaccatttc acgtgtatgaa agtttcaactt aatggatct tggggaccgt 480
 40 attctgaagg tcaacactga gattagagaa gtaggtctgt tcaacaagaa gggattttat 540
 ttggcatttc aagatgttgg tgcttgtgtt gccttgggt ctgtgaggt atacttcaaa 600
 aagtgc当地 ttacagtgaa gaatctggct atgtttccatg acacgggtacc catggactcc 660
 cagtcctgg tggagggttag agggcttgcgt gtcaacaattt ctaaggagga agatcctcca 720
 45 aggtatgtact gcaatcacaaggagg tttatgtgc caagctgtc gaccagggtt ttctgtcaat 780
 gctggctatg aagaaagagg tttatgtgc caagctgtc gaccagggtt ttctgtcaat 840
 ttggatggta atatggatgt tgctaaatgc cccctcaca gtttactca ggaagatgtt 900
 tcaatgactt gcaatcacaaggagg ttccggc当地 acaaagaccc tccatccatg 960
 gtttgc当地 gacccatccatc ttccatccatc aatgttatct ctaatataaa cgagaccc 1020
 50 gttatcctgg actggatgtt gcccctggac acaggaggcc gaaagatgtt taccttcaac 1080
 atcatatgtt aaaaatgtgg gtggatataaa aacagtgtg agccatgc当地 cccaaatgtc 1140
 cgcttc当地 ctcgacatgtt tgactcacc aacaccacgg tgacagtgc当地 agaccc 1200
 gcacatactt actacacccat tggatgtatg gccgttaatg ggggtgc当地 gctgagctcc 1260
 ccaccaagac agtttgc当地 ggtcagcatc acaactaattc aggtgctcc atcacctgtc 1320
 55 ctgacgatca agaaagatcg gacccatccatc aatagcatct ctttgc当地 gcaagaacct 1380
 gaacatccatc atggatcat atggactac gaggtcaat actatggaaa gcaaggaaaca 1440
 gaaaacaaggat ataccatttctt gagggtcaaga ggcacaaaatg ttaccatcatc tagccctcaag 1500
 cctgc当地 tatacgatccatc cccaaatccatc gccc当地 gaccc 1560
 agccgc当地 aggttgc当地 aactatgtcc gacttccatc ccattctgtt gtaaaatgtc 1620
 caatgtgtca tgatccttccatc ttccatccatc gtagcaatccatc ttccatccatc tggggatgg 1680
 60 tatgtttgtt gttggaggtt ctgtggctat aagtcaaaaatc atggggcaga tgaaaaaaga 1740
 cttcatccatc gcaatggc当地 ttccatccatc ccaggatgtcc ggacttcatc tgacc 1800
 acatatgttccatc acccttccatc agtgc当地 ggttgc当地 aggttgc当地 aggttgc当地 tgccaccaac 1860

	atatccattg	ataaaagggt	tggagcagg	gaatttggag	aggtgtcag	tggtcgctt	1920
	aaacttcctt	caaaaaaaga	gatttcagt	gccattaaaa	ccctgaaaag	tggctacaca	1980
	gaaaagcaga	ggagagactt	cctggggagaa	gcaagcatta	tggacagtt	tgaccacccc	2040
5	aatatcattc	gactggaagg	agttgttacc	aaaagtaagc	cagttatgat	tgtcacagaa	2100
	tacatggaga	atggttcctt	ggatagttc	ctacgtaaac	acgatgccc	gtttactgtc	2160
	attcagctag	tggggatgct	tcgagggata	gcacatcgca	tgaagtacct	gtcagacatg	2220
	ggctatgttc	accgagacct	cgctgctcg	aacatctga	tcaacagtaa	cttgggtgtt	2280
	aagggttctg	atttcgact	ttcgcgtgc	ctggaggatg	acccagaage	tgcttataca	2340
10	acaagaggag	ggaagatccc	aatcagggtgg	acatcaccag	aagctatagc	ctaccgcaag	2400
	ttcacgtcag	ccagcgtatgt	atggagttat	gggattttc	tctgggaggt	gatgtcttat	2460
	ggagagagac	catactggga	gatgtccat	caggatgtaa	ttaaagctgt	agatgagggc	2520
	tatcgactgc	caccccccat	ggactgccc	gctgcctgt	atcagctgtat	gctggactgc	2580
	tggcagaaag	acaggaacaa	cagacccaag	tttgagcaga	tttgttagtat	tctggacaag	2640
15	cttattccgga	atcccgccag	ccttaagatc	atcaccagt	cagccgcaag	gccatcaa	2700
	cttcttctgg	accaaagcaa	tgtggatatac	tctaccttc	gcacaacagg	tgactggctt	2760
	aatgggtgtcc	ggacagcaca	ctgcaaggaa	atcttcacgg	gcgtggagta	cagttcttgt	2820
	gacacaatag	ccaagatttc	cacagatgac	atgaaaaagg	ttggtgtcac	cgtggttggg	2880
	ccacagaaga	agatcatcag	tagcattaaa	gctctagaaa	cgcaatcaaa	gaatggccca	2940
20	gttcccgtgt	aaa					2953
	<210>	4					
	<211>	2784					
	<212>	DNA					
25	<213>	Homo sapiens					
	<300>						
	<302>	ephrin A4					
	<310>	XM002578					
30	<400>	4					
	atggatgaaa	aaaatacacc	aatccgaacc	taccaagtgt	gcaatgtat	ggaacccagc	60
	cagaataat	ggctacgaac	tgattggatc	acccgagaag	gggtctcagag	ggtgtatatt	120
	gagatttaat	tcaccttgag	ggactgtat	agtcttcgg	gcgtcatgg	gacttgcag	180
35	gagacgttta	acctgtatca	ctatgaatca	gacaacgaca	aagagcgtt	catcagagag	240
	aaccaggttt	tcaaaattga	caccattgt	gctgtatgaga	gccttcacca	agtggacatt	300
	ggtgacagaa	tcatgaagct	gaacaccgag	atccggatg	tagggccatt	aagcaaaaag	360
	gggttttacc	tggctttca	ggatgtgggg	gcctgcac	ccctggatc	agtcgtgtg	420
40	ttctataaaaa	agtgtccact	cacagtccgc	aatctggcc	agttcctgt	caccatcaca	480
	ggggctgata	cgtctccct	ggtggaaagt	cgaggctcct	gtgtcaacaa	ctcagaagag	540
	aaagatgtgc	aaaaatgt	ctgtggggca	gatggtaat	ggctggtacc	cattggcaac	600
	tgcctatgc	acgctggca	tgaggagcgg	agcggagaat	gccaagctt	caaatttgg	660
	tattacaagg	ctctctccac	ggatgccacc	tgtgccaat	gcccacccca	cagctactct	720
45	gtctggaaag	gagccacctc	gtgcacctgt	gaccgagct	ttttcagagc	tgacaacgt	780
	gctgcctcta	tcccgtc	ccgtccacca	tctgctccc	tgaactgtat	ttcaaatgtc	840
	aacgagacat	ctgtgaactt	ggaatggag	agcccteaga	atacagggtt	ccggccaggac	900
	attttctata	atgggtatg	caaaaatgt	ggagctgtt	accccagcaa	gtgcccggcc	960
	tgtgaaagt	gggtcoacta	cacccacac	cagaatgtt	tgaagaccac	caaagtcttc	1020
50	atcactgacc	tcctagctca	taccaattac	acctttgaaa	tctgggtgt	gaatggagt	1080
	tccaaatata	accctaacc	agaccaatca	gtttctgtca	ctgtgaccac	caaccaagca	1140
	gcaccatcat	ccattgttt	ggtccaggct	aaagaagtca	caagatacac	tgtggcact	1200
	gcttggctgg	aaccagatcg	gcccaatggg	gtaatctgg	aatatgaatg	caagtattat	1260
	gagaaggatc	agaatgagcg	aagctatcg	atagttcg	cagctgccc	gaacacagat	1320
55	atcaaaggcc	tgaaccctt	cacttctat	gtttccac	tgcgagccag	gacagcagct	1380
	ggctatggag	acttcagt	gcccttggag	gttacaacca	acacagtgc	ttcccgatc	1440
	attggagatg	gggctaact	cacagtccct	ctggctctgt	tctggccag	tgtgggtgt	1500
	gtggtaattc	tcattgc	tttgtcata	agccggagac	ggagtaataa	cagtaaagcc	1560
	aaacaagaag	cggatagaag	gaaacattt	aatcaagggt	taagaacata	tgtggacccc	1620
60	tttacgtac	aaatcccaaa	ccaaagcgt	cgagatgtt	ccaaagaaat	tgacgcata	1680
	tgcattaaaga	ttgaaaaagt	tataggagt	ggtgaat	gtgaggtat	cagtggcgt	1740
	ctcaaagtgc	ctggcaagag	agagatctgt	gtggctatca	agactctgaa	agctggat	1800
	acaqacaaac	aqaggqaqqa	cttcctqat	gaggcccaqca	tcatggaca	gtttgaccat	1860

	ccgaacatca	ttcacttgg	aggcgtggc	actaaatgta	aaccagtaat	gatcataaca	1920
	gagtagatgg	agaatggctc	cttgatgca	ttcctcgagg	aaaatgatgg	cagattaca	1980
	gtcattcagc	tggggcat	gttcgtggc	atgggtctg	ggatgaagta	tttatctgat	2040
5	atgagctatg	tgcatcgta	tctgccgc	cgaaacatcc	tggtaacag	caacttggc	2100
	tgcaaagtgt	ctgattttgg	catgtcccga	gtgcttgagg	atgatccgga	agcagcttac	2160
	accaccaggg	gtggcaagat	tcctatccgg	tggactgcgc	cagaagcaat	tgccatcg	2220
	aaattcacat	cagcaagtga	tgtatggagc	tatggaatcg	ttatgtggg	agtgatgtcg	2280
	tacggggaga	ggcccttattg	ggatatgtcc	aatcaagatg	tgattaaagc	cattgaggaa	2340
	ggctatcggt	tacccctcc	aatggactgc	cccattgcgc	tccaccagct	gatgctagac	2400
10	tgctggcaga	aggagaggag	cgacaggcct	aaatttggc	agattgtcaa	catgttggac	2460
	aaactcatcc	gcaacccaa	cagcttgaag	aggacaggga	cggagagctc	cagacctaac	2520
	actgccttgt	tggatccaag	ctccctgaa	ttctctgtcg	tggtatcg	gggcgattgg	2580
	ctcaggccca	ttaaaatgga	ccggataaag	gataacttca	cagctgctgg	ttataccaca	2640
	ctagaggctg	tggtcacgt	gaaccaggag	gacctggcaa	gaattgttat	cacagccatc	2700
15	acgaccacaga	ataagattt	gaggactgtc	caggcaatgc	gaacccaa	gcagcagatg	2760
	cacggcagaa	tggttcccg	ctga				2784
	<210>	5					
20	<211>	2997					
	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
25	<302>	ephrin A7					
	<310>	XM004485					
	<400>	5					
30	atggtttttc	aaactcggt	cccttcatgg	attatttat	gctacatctg	gctgctccgc	60
	tttgcacaca	caggggaggc	gcaggctgcg	aaggaagtac	tactgctgg	ttctaaagca	120
	caacaaacag	agttggagt	gattccctt	ccacccaatg	ggtggaaaga	aattagtgg	180
	ttggatgaga	actatacccc	gatacgaaca	taccagggt	gccaagtcat	ggagcccaac	240
	caaaacaact	ggctgcggac	taactggatt	tccaaaggca	atgcacaaag	gattttgt	300
	gaattgaaat	tcaccctgg	ggattgttaa	agtcttctg	gagtaactgg	aacttgc	360
35	gaaacatcta	atttgtacta	ttatgaaaca	gactatgca	ctggcaggaa	tataagagaa	420
	aacctctatg	taaaaataga	caccattgt	cgatgtggaa	gttttaccca	aggtagac	480
	ggtgaaagaa	agatgaagct	taacactgag	gtgagagaga	ttggac	gtccaaaaaag	540
	ggattctatc	ttgccttca	ggatgttaggg	gcttgcata	ctttgtt	tgtcaaaatg	600
	tactacaaga	agtgcgtggc	cattattgag	aacttagct	tctttccaga	tacagtgtact	660
40	ggttcagaat	tttcctctt	agtcgagg	cgaggacat	gtgtcagc	tgcagaggaa	720
	gaagcggaaa	acgccccag	gatgcactgc	agtgcagaag	gagaatgg	agtgcatt	780
	ggaaaatgta	tctgcaaa	aggotaccag	caaaaaggag	acacttgta	accctgtggc	840
	cgtgggttct	acaagtctt	ctctcaagat	cttcgtgt	ctcggtt	aactcacat	900
	tttctgtat	aagaaggctc	ctccagatgt	gaatgtgaag	atgggtatta	cagggttca	960
45	tctgacccac	catacg	atgcacaagg	cctccatctg	caccac	cctcattttc	1020
	aacatcaacc	aaaccacagt	aaatgggaa	tggatcc	ctgcagacaa	tggggaaaga	1080
	aacatgtgt	cctcaga	aaatgtgt	cgggtcagg	gggagcagg	cgaatgtgtt	1140
	ccctgtggg	gtAACATGG	atacatgccc	cagcagactg	gattaggg	taactatgtc	1200
	actgtcatgg	acctgctac	ccacgctaa	tatactttt	aaatgg	tgtaaatgg	1260
50	gtttctgtact	taagccgatc	ccagaggctc	tttgcgtct	tcagtatcac	cactggtaa	1320
	gcagctccct	cgcaagtgt	tggatata	aaggagag	tactgc	gagtgtcg	1380
	ctttcctggc	aggaaccaga	gcatccaa	ggatgtatca	cagaatatg	aatcaatgt	1440
	tacgagaaag	atcaaaggga	acggac	tcaacagtaa	aaaccaatgc	tacttcagcc	1500
	tccattaata	atctgaaacc	aggaaacagt	tatgtttcc	agattcggc	ttttactgt	1560
55	gctggttatg	gaaattacag	tcccagactt	gtatgttgc	cactag	agctacagg	1620
	aaaatgtttt	aagtcac	tgtctcc	gaacagaatc	ctgttattat	cattgtgt	1680
	gttgcgtgt	ctgggaccat	cattttgg	ttcatgtt	ttggcttcat	cattgggaga	1740
	aggcactgt	gttatagca	agctgacca	gaaggcgt	aagagcttta	ctttcat	1800
	aaatttccag	gcaccaaa	ctacattgac	cctgaaact	atgaggaccc	aatagagct	1860
60	gtccatcaat	tgc	actatgtcc	tcctgtat	aaatgg	tgtgattgg	1920
	gcaggagaat	tgg	actgtgt	cggtt	ttccagg	aaagatgtt	1980
	gcagtagcca	taaaaaccct	gaaatgtt	tacacagaaa	aacaaaggag	agactttt	2040

5 tgtgaagcaa gcatcatggg gcagtttgcac cacccaaatg ttgtccattt ggaaggggtt 2100
 gttacaagag ggaaaccagt catgatagta atagagttca tggaaaatgg agccctagat 2160
 gcatttctca ggaaacatgta tggcaattt acagtcatc agtttaggg aatgctgaga 2220
 ggaattgctg ctggaatgag atattggct gatatggat atgttcacag ggaccttgca 2280
 10 gctcgcaata ttcttgc当地 cagcaatctc gtttgtaaag tgtcagattt tgccctgtcc 2340
 cgagttatag aggatgatcc agaagctgtc tatacaacta ctgtggaaa aattccagta 2400
 aggtggacag caccgc当地 catccagttc cggaaattca catcagccag tggatgtatgg 2460
 agctatggaa tagtcatgtg ggaagttatg tcttatggag aaagaccta ttgggacatg 2520
 tcaaatcaag atgttataaa agcaatagaa gaaggttac gtttaccacg acccatggac 2580
 15 tgcccagctg gccttc当地 gctaatgtt gattgttgc aaaaggagcg tgctgaaagg 2640
 caaaaatttg aacagatagt tggattcta gacaaaatga ttcgaaaccc aaatagtctg 2700
 aaaactcccc tgggaaactt tagtaggcca ataagccctc ttctggatca aaacactct 2760
 gatttacta ccttttgc当地 agttggagaa tggctacaag ctattaatg gggaaagat 2820
 aaagataatt tcacggcagc tggctacaat tcccttgaat ctagtagccag gatgactatt 2880
 20 gaggatgtga tgagtttagg gatcacactg gttgtcattt aaaagaaaat catgagcagc 2940
 attcagacta tgagagcaca aatgtcatat ttacatggaa ctggcattca agtgtga 2997

20 <210> 6
 <211> 3217
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> ephrin A8
 <310> XM001921

30 <400> 6
 ncbnncvrb mdnctdrtnm nmstrctrst tanmymmssar chbmdrtnnc tdstrctrng 60
 mstmmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsmdatv washtmantt 120
 hdbrandnb arggnbankh msanshahar tntanmycsm bmrnarnvdn tnhsansha 180
 hamrnaaccs snmvrnsnmga tggcccccgc cggggccgc ctgccccctg cgctctgggt 240
 cgtcacggcc gcccggccgg cggccacctg cgtgtccgc ggcgcggccg aagtgaattt 300
 gctggacacg tcgaccatcc acggggactg gggctggctc acgtatccgg ctcatgggt 360
 35 ggactccatc aacgagggtgg acgactcctt ccagccatc cacaacgttcc aggtttgcaa 420
 cgtcatgagc cccaaaccgg acaactggc ggcacggc tgggtccccc gagacggccg 480
 cccgcgcgtc tatgtgaga tcaagttac ctgcgcgc tgcaacacgca tgcctgggt 540
 gctgggacc tgcaggaga ccttcaacct ctactactt gatcggacc ggcacctggg 600
 ggcagcaca caagaaagcc agttctcaa aatcgacacc attgcggccg acgagagctt 660
 40 cacaggtgcc gaccttggc tgccgcgtct caagctcaac acggagggtgc gcaagtgtggg 720
 tccctcage aagcgcggct tctacctggc cttccaggac ataggtgcct gcctggccat 780
 cctctcttc cgcacatctact ataagaagtg ccctgcctatg tgcccaatc tggctgcctt 840
 ctccggaggca gtgacggggg ccgactcgcc ttcactggc gaggtgaggg gccagtgccgt 900
 gccgcactca gaggagccgg acacacccaa gatgtactgc agcgcggagg ggcagtgccgt 960
 45 cgtccccatc ggcaaatgc tgcgtcgtgc cggctacggc gagcggccggg atgcctgtgt 1020
 ggcctgtgag ctgggctct acaagtgcgc ccctggggac cagctgtgtg cccgcgtccccc 1080
 tccccacagc cactccgcag ctccaggccg ccaagccgc cactgtgacc tcagctacta 1140
 ccgtcgccgc ctggacccgc cgctccatgc ctgcacccgg ccacccctgg caccaggaa 1200
 cctgatctcc agtgtgaatg ggacatcgt gactctggag tggggccctc ccctggaccc 1260
 50 agggtggccgc agtgacatca cctacaatgc cgtgtccgc cgctccccct gggcactgag 1320
 ccgcgtcgag gcatgtggg gccgcacccgg ctttggccc cagcagacaa gcctgggtca 1380
 ggcagcctg ctggggcca acctgtggc ccacatgaac tactccctt ggatcgaggc 1440
 cgtcaatggc gtgtccgacc tgagcccgaa gccccggccgg gccgctgtgg tcaacatcac 1500
 cacaaaccag gcagccccgt cccagggtggt ggtgatccgt caagagccgg cggggccagac 1560
 55 cagcgtctcg ctgcgtgtgc aggagccgg gcaagccgaaac ggcacatcc tgaggatgatg 1620
 gatcaagtac tacgagaagg acaaggagat gcaagactac tccacccctca agggccgtcac 1680
 caccagagcc accgtctccg gcctcaagcc gggcaccggc tacgttcc aggtccgaggc 1740
 cccgacccctca gcaggctgtg gccgttccg ccaggccatg gaggtggaga cccggaaacc 1800
 cccggcccccgc tatgacacca ggaccattgt ctggatctgc ctgacgctca tcaacggccct 1860
 60 ggtgtgtctt ctgccttc当地 tcatctgaa gaagaggccac tgggttaca gcaaggccctt 1920
 ccaggactcg gacgaggaga agatgcacta tcagaatggc caggcaccgg cacctgtctt 1980
 cctgcctctg catcaccggcc cgggaaagct cccagagccc cagttctatg cggaaacccca 2040

cacctacgag gagccaggcc gggcgcccg cagttcact cgggagatcg aggcctctag 2100
 gatccacatc gagaaaatca tcggctctgg agactccggg gaagtctgtc acgggaggct 2160
 gcgggtgcca gggcagcggg atgtgccgtt gccatcaa gcccctaaag ccggctacac 2220
 ggagagacag aggccggact tcctgagcga ggcgtccatc atggggcaat tcgaccatcc 2280
 5 caacatcatc cgcctcgagg gtgtcgtcac ccgtggccgc ctggcaatga ttgtgactga 2340
 gtacatggag aacggctctc tggacacctt cctgaggacc cacgacgggc agttcaccat 2400
 catcagctg gtgggcattc tgagaggat ggggtccggc atgcgtacc ttcagacct 2460
 gggctatgtc caccggaccc tggccggccg caacgtcctg ttgcacgca acctggctg 2520
 caagggtgtc gacttcgggc tctcacgggt gctggaggac gacccggatg ctgcctacac 2580
 10 caccacgggc gggaaagatcc ccatccgctg gacggcccca gaggccatcg cttccgcac 2640
 cttctctcg gccagcgcacg tgtggagctt cggcgtggc atgtgggagg tgctggcta 2700
 tggggagcgg ccctactgga acatgaccaa cccggatgtc atcagctctg tgaggagggg 2760
 gtaccgcctg cccgcaccca tgggctgccc ccacgcctg caccagctca tgctcgactg 2820
 ttggcacaag gaccgggcgc agcggcctcg cttctccca attgtcagtg tcctcgatgc 2880
 15 gctcatccgc agccctgaga gtctcagggc caccgcacca gtcagcagggt gcccaccccc 2940
 tgccttcgtc cggagctgtt ttgacccctcg agggggcagc ggtggcgggtg ggggcctcac 3000
 cgtgggggac tggctggact ccatccgcat gggccggtaa cgagaccact tcgctgcggg 3060
 cggatactcc tctctggca ttggctactg catgaacgcg caggacgtgc ggcctggg 3120
 catcaccctc atggggccacc agaagaagat cttggccagc attcagacca tgcgggccc 3180
 20 gctgaccagc acccaggggc cccgcggca cctctga 3217

<210> 7
 <211> 1497
 25 <212> DNA
 <213> Homo sapiens

 <300>
 <308> U83508
 30 <300>
 <302> angiopoietin 2
 <310> U83508

 35 <400> 7
 atgacagttt tccttcctt tgcttcctc gctgccattc tgactcacat agggtgcagc 60
 aatcagcgcc gaagtccaga aaacagtggg agaagatata accggattca acatgggcaa 120
 tggcctaca ctttcatttt tccagaacac gatggcaact gtcgtgagag tacgacagac 180
 cagataaca caaacgcctc gcagagatg gtcacacacg tggAACGGG ttctcttcc 240
 40 cagaaaacttc aacatctgg aacatgtat gaaattata ctcagtggtc gaaaaactt 300
 gagaattaca ttgtggaaaa catgaagtgc gagatggccc agatacgcga gaatgcagtt 360
 cagaaccaca cggctaccat gctggagata gaaaccagcc tcctctctca gactgcagag 420
 cagaccagaa agctgacaga ttgttgagacc caggtactaa atcaaacttc tcgactttgag 480
 atacagctgc ttggagaattc attatccacc tacaagctag agaagaact tcctcaacag 540
 45 acaaataaaaa tcttgaagat ccataaaaaa aacagtttat tagaacataa aatcttagaa 600
 atgaaaggaa aacacaagga agagttggac accttaaagg aagagaaaaga gaaccttcaa 660
 ggcttggta ctcgtcaaac atatataatc caggagctgg aaaagcaatt aaacagagct 720
 accaccaaca acagtgtcct tcagaagcag caactggcgc tgatggacac agtccacaac 780
 50 cttgtcaatc ttggactaa agaagggttt ttaataaagg gaggaaaaag agaggaagag 840
 aaaccattta gagactgtgc agatgtatataa caagctggtt ttaataaagg tgaaatctac 900
 actatttata ttaataatataa gccagaaccc aaaaagggtt ttaataaagg tgaaatctac 960
 gggggaggtt ggactgtaat acaacatcgt gaagatggaa gtcttagattt ccaaagaggc 1020
 tggaaaggaaat ataaaaatggg ttttggaaat ccctccgggt aatattggct gggaaatgag 1080
 55 tttatTTTGT ccatttaccat tcagaggcag tacatgttataa gaatttgatggtt aatggactgg 1140
 gaagggaaacc gagccttattc acagatgtac agattccaca taggaatga aaagaaaaac 1200
 tataagggtt atttaaaagg tcacactggg acagcaggaa aacagacgac cctgatctta 1260
 cacgggtctg atttcagcac taaagatgtc gataatgaca actgtatgtc caaatgtgcc 1320
 ctcataatgtt caggaggatg gtgggttgc gttgtggcc cctccaatct aaatggaaatg 1380
 ttctataactg cgggacaaaaa ccatggaaaaa ctgaatggga taaatggca ctacttcaaa 1440
 60 gggcccaatggt actccttacg ttccacaact atgatgattc gacccctttaga ttttga 1497

```

<210> 8
<211> 3417
<212> DNA
<213> Homo sapiens
5
<300>
<310> XM001924

<300>
10 <302> Tie1

<400> 8
atggctggc ggggccccc ttcttgcct cccatccct tcttgcttc tcatgtggc 60
gccccgtgg acctgacgt gctggccaa ctgcggctca cggacccca gcgcttctt 120
15 ctgacttgcg tgcgtggga ggcggggcg gggaggggct cggacccctg gggcccgccc 180
ctgtctgtgg agaaggacga ccgtatcgta cgacccccc cccggccacc cctgcgcctg 240
gcccccaacg gttcgcacca ggtcacgtt cgcggcttc ccaagccctc ggacctcgta 300
ggcgtttctt cctgcgtggg cgggtctggg ggcggccgca cgcgcgtcat ctacgtgcac 360
aacagccctg gagcccacct gcttccagac aaggtcacac acactgtgaa caaagggtac 420
20 accgctgtac ttctgcacg tgcgtacaag gagaagcaga cagacgttat ctggaaagagc 480
aaggatcct acttctacac cctggactgg catgaagccc aggatggcg gttcctgtc 540
cagctccaa atgtgcagcc accatcgagc ggcacatcaca gtgcactta ccttggaaagcc 600
agccccctgg gcagcgcctt ctgcgtggc atcgtgtggg gttgtgggc tggcgctgg 660
ggcccggtt gtaccaagga gtgcggcagg tgccatcatc gagggtgtcg ccacgaccat 720
25 gacggcgaat gtgtatggcc ccctggctt actggcaccc gctgtgaaca ggcctgcaga 780
gaggccgtt ttgggcagag ctgcaggag cagtggccag gcatatcagg ctgcccggggc 840
ctcaccttgc gcctcccaaa cccctatggc tgctttgtt gatctggctg gagaggaagc 900
cagtgcacaa aagcttgtgc ccctgtcat ttggggctt attgcgact ccagtgcac 960
tgtcagaatg gtggcactt tgaccgggtc agtgggtgtg tctgccttc tgggtggcat 1020
30 ggagtgcact gtgagaagtc agaccggatc ccccaagatcc tcaacatggc ctcagaactg 1080
gaggtaact tagagacat gccccggatc aactgtgcag ctgcaggaa ccccttccccc 1140
gtgcggggca gcatagagct acgcaagcca gacggcactg tgctctgtc caccaggcc 1200
attgtggagc cagagaagac cacagctgag ttcgagggtgc cccgcttggt tcttgcggac 1260
40 agtgggttct gggagtggcg tgcgtccaca tctggccggcc aagacagccg ggcgttcaag 1320
gtcaatgtga aagtggccccc cgtccccctg gtcgcaccc ggctctgtc caagcagagc 1380
cgccagctt tggctccccc gtcgtctcg ttctctgggg atggacccat cttccactgtc 1440
cgctgcact accggccccc ggacagtacc atggactgtt cgaccattgt gttggacccc 1500
agtgagaacg tgacgttaat gaacctgagg ccaaagacag gatacagtgt tcgtgtgcag 1560
ctgagccggc caggggaagg aggagagggg gcttggggcc ctccacccct catgaccaca 1620
gactgtcctg agcccttgcg gcaggcgtgg ttggaggggct ggcatgtgaa aggactgac 1680
cggtgcgag tgagctggc cttggccctt gtcggccggc cactgggtttc cgacggttt 1740
ctgtctgcgc tggggacgg gacacggggg caggagccggc gggagaacgt ctcatcccc 1800
cagggccgca ctggcccttc gacgggactc acgcctggca cccactacca gctggatgtg 1860
cagctctacc actgcacccct cttggggcccg gcttgcggcc ctgcacacgt gtttctgccc 1920
45 cccagtgggc ctccagccccc cgcacaccc tccgcggccagg ccctctcaga cttccgagatc 1980
cagctgacat ggaaggccccc ggacgtctcg cttggggccaa tatccaaatgta cttgtggag 2040
gtgcagggtgg ctgggggtgc aggacacca ttgtggatag acgtggacag gcctggaggag 2100
acaaggacca tcatccgtgg cttcaacggcc acgcacggct acctttccg catggggcc 2160
agcattcagg ggctcgggga ctggggcaac acagtagaaat agtccacccct gggcaacggg 2220
50 ctgcaggctg agggccctgt ccaagagagc cggggcagctg aagaggccctt ggtcagcag 2280
ctgatcctgg cgggtggggg ctccgtgtct gccacctggc tcaccatctt ggtgcctt 2340
ttaaccctgg tgcgtatccg cagaagctgc ctgcacatggc gacgcacccctt cacctaccag 2400
tcaggctcg gcgaggagac catcctgcag ttcaagctcag ggaccccttgc acttaccgg 2460
cgccaaaaac tgcagccgaa gcccgtggc tacccagtgc tagagtggga ggacatcacc 2520
55 tttgaggacc tcatcgggga ggggaaacttc ggcggggctca tccggccat gatcaagaag 2580
gacgggctga agatgaacgc agccatcaaa atgctgaaag agtacgtctc tggaaatgac 2640
catcgact tgcggggaga actggaaattt ctgtgcataat tggggcatca ccccaacatc 2700
atcaaccctcc tggggccctg taagaacccga ggttacttgtt atatcgat tgaatatgcc 2760
ccctacggga acctgctaga ttttgcggg aaaaggccggg tccttagagac tgacccagct 2820
60 tttgctcgag agcatgggac agcctctacc tttagctccc ggcagctgtc gctttcgcc 2880
agtatgcgg ccaatggcat gcagttacccg agtggaaagc agttcatcca cagggacctg 2940
gctggccggaa atgtgtttttt cggagagaac ctggccctcca agattgcaga cttcgccctt 3000

```

5 tctcggggag aggaggtta tgtgaagaag acgatggggc gtctccctgt gcgcgtggatg 3060
 gccattgagt ccctgaacta cagtgtctat accaccaaga gtatgtctg gtccctttgga 3120
 gtccttctt gggagatagt gagccttggc ggtacaccct actgtggcat gacctgtgcc 3180
 gagctatcg aaaagctgcc ccaggctac cgcatggagc agcctcgaaa ctgtgacgat 3240
 gaagtgtacg agtgtatcg tcagtgctgg cgggaccgtc cctatgagcg acccccccttt 3300
 gcccagatg cgctacagct aggccgcatg ctggaaagcca ggaaggccta tgtgaacatg 3360
 tcgctgtttg agaacttcac ttacgcgggc attgatgcca cagctgagga ggcctga 3417

10 <210> 9
 <211> 3375
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> TEK
 <310> L06139

20 <400> 9
 atggactctt tagccagctt agttctctgt ggagtcagct tgctcccttc tggaaactgtg 60
 gaaggtgcca tggacttgat cttgatcaat tccctacctc ttgtatctga tgctgaaaca 120
 tctctcacct gcattgcctc tgggtggcgc cccatgagc ccatcaccat aggaaggggac 180
 tttgaaggct taatgaacca gcaccaggat cgcgtggaaat ttactcaaga tggaccaga 240
 gaatgggcta aaaaagtgtt ttggaaagaga gaaaaggctt gtaagatcaa tgggtcttat 300
 25 ttctgtgaag ggcgagttcg aggagaggc atcaggatac gaaccatgaa gatgcgtcaa 360
 caagcttccctt ctttaccaggc tactttaact atgactgtgg acaaggggaga taacgtgaac 420
 atatcttca aaaaggatg tattaaagaa gaagatgcg tgatttacaa aaatggttcc 480
 ttcatccatt cagtgccccg ccatggatc cctgtatattc tagaagtaca cctgectcat 540
 gctcagccccc agatgtctgg agtgtactcg gccaggatata taggaggaaa cctcttcacc 600
 30 tcggccttca ccaggctgtat agtccggaga tggaaagccc agaagtgggg acctgaatgc 660
 aaccatctctt gtactgtttt tatgaaacaat ggtgtctgcc atgaagatac tggagaatgc 720
 atttgccttc ctgggtttat gggaaaggacg tggaaaggaggctt gcaacacgttt 780
 ggcagaacctt gtaaaagaaag gtgcgtggaa caagagggtt gcaagtctta tggaaactgtt 840
 ctccttgacc cctatgggtt ttcctgtgcc acaggctggaa agggctgtca gtgcaatgaa 900
 35 gcattgcacc ctggtttttta cggggccagat tgtaagctt ggtgcagctg caacaatggg 960
 gagatgtgtg atcgcttcca aggatgtctc tgctctccag gatggcagggg gctccagtg 1020
 gagagagaag gcataccggat gatgacccca aagatgtgg atttggccaga tcatatagaa 1080
 gtaaacatgt gtaaaatttttcccttgc aaagatcttgc gtcggccgtt acctactaat 1140
 gaagaatgtt ccctgggtt ggcggatggg acatgtctcc atccaaatgaa cttaaccat 1200
 40 acggatcatt ttcctgtatc catattcacc atccacccggc tcctcccccc tggaaactgtt 1260
 gtttgggtctt gcaatgttgc cacatggctt gggatgggttggaaaaggccctt caacattttctt 1320
 gttaaagtttcccttgc ccttgcatttgc ccaaaatgttgc ttgcacactgg acataactttt 1380
 gctgtcatca acatcagtc tggatgttttgc ttggggatg gccaatcaa atccaaatgaa 1440
 ctttatacata aacccgttta tcaatgttgc gtttggcaac atattcaatg gacaaatgtt 1500
 45 attgttacac tcaactatggaaacccctggc acagaatatg aactctgtgt gcaactggc 1560
 cgtcgtggag agggtggggg aggacccctt gggatgggttggaaaaggccctt caacattttctt 1620
 atccggactcc ctcctccaaatgggttgc atccatgttgc aaatgttgc gacatgttgc 1680
 ttgaccccttgc aacccatatttcccttgc gggatgggttggaaaaggccctt caacattttctt 1740
 aggttgcgttgc aaaaaatgttgc tggatgttttgc gggatgggttggaaaaggccctt caacattttctt 1800
 50 ctacttaaca acttacatcc caggaggcag tacgtggccat gggatgggttggaaaaggccctt caacattttctt 1860
 gcccagggggg aatggatgttgc agatcttgc gggatgggttggaaaaggccctt caacattttctt 1920
 caaccagaaa acatcaatgttgc tggatgttttgc gggatgggttggaaaaggccctt caacattttctt 1980
 atattggatgttgc gggatgggttggaaaaggccctt caacattttctt 2040
 gaagaccaggc acgttgcgttgc gggatgggttggaaaaggccctt caacattttctt 2100
 55 ggccttagagc ctggaaacccatggc ataccaggatggc gacatgttgc gggatgggttggaaaaggccctt caacattttctt 2160
 agcaacccatggc cttttcttgc tggatgttttgc gggatgggttggaaaaggccctt caacattttctt 2220
 ctcggagggggg gggatgggttggaaaaggccctt caacattttctt 2280
 actgtgttgc tggatgttttgc gggatgggttggaaaaggccctt caacattttctt 2340
 atggcccaatggc cttttccatggc gggatgggttggaaaaggccctt caacattttctt 2400
 60 ctggcccttgc acatggatgttgc gggatgggttggaaaaggccctt caacattttctt 2460
 tggaaatgttgc tggatgttttgc gggatgggttggaaaaggccctt caacattttctt 2520
 ggcgcgttgc agaaggatgttgc gggatgggttggaaaaggccctt caacattttctt 2580

	gcctccaaag	atgatcacag	ggactttgca	ggagaactgg	aagtctttg	taaacttggg	2640
	caccatccaa	acatcatcaa	tctcttagga	gcatgtgaac	atcgaggcta	ttgtacctg	2700
	gccattgagt	acgcgcwww	tgaaaacctt	ctggacttcc	ttcgaagag	ccgtgtgctg	2760
5	gagacggacc	cagcatattgc	cattgccaat	agcaccgcgt	ccacactgtc	ctcccagcag	2820
	ctccttca	tcgctgccga	cgtggcccg	ggcatggact	acttgagcca	aaaacagtt	2880
	atccacaggg	atctggctgc	cagaaacatt	ttagttggtg	aaaactatgt	ggcaaaaata	2940
	gcagattttg	gattgtcccc	aggtcaagag	gtgtacgtga	aaaagacaat	ggaaaggctc	3000
10	ccagtgcgt	ggatggccat	cgagtcaactg	aattacagt	tgtacacaac	caacagtgt	3060
	gtatggtctt	atggtgtgtt	actatggggag	attgttagct	taggaggcac	accctactgc	3120
	gggatgactt	gtcagaact	ctacgagaag	ctgcccagg	gctacagact	ggagaagccc	3180
	ctgaactgtg	atgatgaggt	gtatgatcta	atgagacaat	gctggcggga	gaagccttat	3240
15	gagaggccat	catttgc	gatattgggt	tccttaaaca	gaatgttaga	ggagcgaag	3300
	acctacgtga	ataccacgct	ttatgagaag	tttactttag	caggaattga	ctgttctgt	3360
	gaagaagcgg	cctag					3375
	<210>	10					
	<211>	2409					
	<212>	DNA					
20	<213>	Homo sapiens					
	<300>						
	<300>						
25	<302>	beta5 integrin					
	<310>	X53002					
	<400>	10					
30	ncbsncvwwr	tgccgcgggc	cccgccgcgg	ctgtacgcct	gcctcctggg	gctctgcgcg	60
	cttcgtcccc	ggctcgagg	tctcaacata	tgcactagt	gaagtgcac	ctcatgtgaa	120
	aatgtctgc	taatccaccc	aaaatgtgcc	ttgtgctcca	aagaggactt	cggaagccca	180
	cggtccatca	cctctcggt	tgtatcgagg	gcaaacctt	tcaaaaatgg	ctgtggaggt	240
	gagatagaga	gcccagccag	cagttccat	gtcctgagga	gcctgcccct	cagcagcaag	300
35	ggttcgggct	ctgcaggctg	ggacgtcatt	catatgacac	cacaggagat	tgccgtgaac	360
	ctccggcccg	gtgacaagac	cacccattcag	ctacaggttc	gccagggtga	ggactatct	420
	gtggacctgt	actacctgat	ggacctctcc	ctgtccatga	aggatgactt	ggacaatatc	480
	cggagcctgg	gcaccaaact	cgcgaggag	atgaggaagc	tcaccagcaa	cttccgggt	540
	ggatttgggt	cttttggta	taaggacatc	tctccttct	cctacacggc	accgggtac	600
40	cagaccaatc	cgtgcatttg	ttacaagttt	tttccaaatt	gcgtccctc	cttgggtt	660
	cggcatctgc	tgcccttcac	agacagagtg	gacacgttca	atgaggaat	tcggaaacag	720
	agggtgtccc	ggaaccgaga	tgccccctgag	gggggcttt	atgcagttact	ccaggcaggc	780
	gtctgcaagg	agaagattgg	ctggcgaaag	gtgcactgc	atttgtctgt	gttcacaaca	840
	gatgtatgtc	cccacatcgc	attggatgg	aaattgggg	gcctgggtca	gccacacgat	900
45	ggccagtgc	acctgaacga	ggccaacag	tacacagcat	ccaaccagat	ggactatcca	960
	tcccctgcct	tgcttgaga	gaaattggca	gagaacaaca	tcaacctcat	cttgcagt	1020
	acaaaaaacc	attatatgt	gtacaagaat	tttacagccc	tgatacctgg	aacaacgggt	1080
	gagattttag	atggagactc	aaaaatatt	attcaactga	tttaaatgc	atacaataatg	1140
	atccggctca	aagtggagtt	gtcagtctgg	gatcagcctg	aggatctta	tctcttcctt	1200
50	actgtacatc	gccaagatgg	ggtacccat	cttggtca	ggaatgtgt	gggtctgaag	1260
	attggggaca	cggcatctt	tgaagtatca	ttggaggccc	gaagctgtcc	cacgacacat	1320
	acggagcatg	tgttgcctt	gcccgggtg	ggattccgg	acagcctgg	ggtgggggtc	1380
	acctacaact	gcacgtcg	ctgcagcgt	gggctggaa	ccaaacagcgc	caggtgcaac	1440
	gggagcggga	cctatgtctg	cgccctgtgt	gagtgcagcc	ccggcttac	gggcaccagg	1500
55	tgcgagtgc	aggatgggaa	gaaccagagc	gtgttaccaga	acctgtccg	ggaggcagag	1560
	ggcaagccac	tgtgcagcg	ggcgtggggac	tgcagctgc	accagtgtc	ctgcttcgag	1620
	agcgagttt	gcaagatcta	tggcccttc	tgtgagtg	acaacttctc	ctgtgcccgg	1680
	aacaaggagg	tcctctgtc	aggccatggc	gagtgtca	ggggggat	caagtgcacat	1740
	gcagggttaca	tgggggacaa	ctgtactgc	tgcacagaca	tgcacatgt	ccggggcaga	1800
60	gatggccca	tctgcagcg	ggcgtggggac	tgtctctgt	ggcagtgc	atgcacggag	1860
	ccgggggcct	tgggggagat	gtgtgagaag	tgcccccac	ggccggatgc	atgcagcggc	1920
	aagagagatt	gcgtcgagtg	cctgctgtc	cactctgg	aacctgacaa	ccagacactc	1980
	cacaqcctat	qcaqqqatqa	qqtqatcaca	tqqtqatqaca	ccatcqgtqaa	aqatqaccag	2040

gaggtgtgc tatgtttcta caaaaaccgcc aaggactgog tcatgatgtt cacctatgtg 2100
 gagctccccca gtgggaagtc caacctgacc gtcctcaggg agccagagtg tgaaaacacc 2160
 cccaaacgcca tgaccatct cctggctgtg gtcggtagca tcctccttgt tggtgtcg 2220
 ctccctggcta tcttggaaact gcttgcacc atccacgacc ggagggagtt tgcaaagttt 2280
 5 cagagcgagc gatccaggc ccgcattgaa atggcttcaa atccattata cagaaaggct 2340
 atctccacgc acactgtgga cttcacccaa aacaagttca acaaattctca caatggact 2400
 gtggactga 2409

10 <210> 11
 <211> 2367
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> beta3 integrin
 <310> NM000212

<400> 11

20 atgcgagcgc ggccgcggcc ccggccgctc tggcgactg tgctggcgct gggggcgctg 60
 gcggggcggtg gcgttaggagg gcccaacatc tgtaccacgc gaggtgtgag ctccctgccc 120
 cagtgcctgg ctgtgagcc catgtgtgcc tgggtctctg atgaggccct gctctggc 180
 tcacccctcggt gtgacccatgaa ggagaatctg ctgaaggatctg actgtggccc agaatccatc 240
 gagttcccgagtg tgagtggc ccgactacta gaggacaggc ccctcagcga caagggtct 300
 25 ggagacagct cccaggcgtcac tcaactgatg ccccaaggatctg ggccagggtgg aggattaccc ttgactcccg 360
 gatgattcga aagatcttc catccaatgtt gggcagggtgg ttgactcccg 420
 tactacttga tggacctgtc ttactccatg aaggatgtatct tggggagcat ccagaacctg 480
 ggtaccaagc tggccaccca gatgogaaag ctcaccaggta acctgcggat tggcttcggg 540
 gcatttgggaca acaaggctgt gtcaccatac atgttatatct ccccaaccaga ggccttcgaa 600
 30 aaccctgtt atgatatgaa gaccacctgc ttgcccattt ttggctacaa acacgtgtg 660
 acgctaactg accagggtgac ccgttcaat gaggaaatgtt agaaggcagag tgggtcacgg 720
 aaccgagatg ccccaaggagg tggctttgat gccatcatgc aggctacagt ctgtgtatgaa 780
 aagattggctt ggaggaatgtt tgcattccac ttgctgggtt ttaccactgtt tgccaaagact 840
 catatagcat tggacccggag gctggcaggc attgtccaggc ctaatgacgg gcaagtgtcat 900
 35 gttggtagt gcaatcattt ctctgcctcc actaccatgg attatccctc ttgggggtgt 960
 atgactgaga agtataccca gaaaaacatc aatttgcattt ttgactgtac tgaaaaatgtt 1020
 gtcaatctt atcagaacta tagtgactc atcccaaggaa ccacagttgg ggttctgtcc 1080
 atggatttcca gcaatgttcc ccagcttattt gttgtatgtt atggggaaat ccgttctaaa 1140
 40 gtagagctgg aagtgcgtga cctccctgaa gagttgtctc tatttttttttccatccatcc 1200
 ctcacaatg aggtcatccc tggctcaag tcttgcattt gactcaagat tggagacacg 1260
 gtgagcttca gcattggaggc caaggtgcga ggctgtcccc aggagaagga gaagtcctt 1320
 accataaaagc ccgtgggctt caaggacacg ctgatgttcc aggtcacctt tgattgtac 1380
 tggccctgccc agggccaaacg tgaacccat agccatctgt gcaacaatgg caatgggacc 1440
 tttggatgtt gggatgttccctt ggtgtggctt gatccctgtt tgactgttca 1500
 45 gaggaggact atcgccccc ccagcaggac gaatgcggcc cccggggaggc tcagcccg 1560
 tgcaggccgc gggggcgatgtt cctctgtgtt caatgtgtt gtcacacgc tgactttggc 1620
 aagatcacgg gcaagtactg ccgtgtgc gacttctt gttgttgcata caagggggag 1680
 atgtgtctcg gccatggccca gtgcagctgtt ggggactgccc tgggtactc cgactggacc 1740
 ggttactact gcaactgtac cacgcgtact gacacccatca tggccaccaa tgggtgtgt 1800
 50 tgcagccggcc gcccggatgtt tgaatgttgc agtgcgtt gatccaccc gggcttctat 1860
 ggggacaccc tggagaatgtt ccccaacctgc ccagatgtt gcaacccatggaa gaaagaatgt 1920
 tggggatgtt agaagttgtt ccggggagcc tacatgaccg aaaataccatg caaccgttac 1980
 tggccgtaccc agattggatgtt agtggaaatgtt ctttggacca ctggcaagga tgcgtgtat 2040
 tggatgttca agaattggatgtt tgactgtgtt gtcagatccc agtactatgtt agattcttagt 2100
 55 gggaaatgttcc tcctgtatgtt ggtggaaatgtt ccagatgtt gcaaggggccc tgacatccctg 2160
 tgggtccctgc tctcgtatgtt gggggccattt ctgttccatgtt gcttgcctcc cctgttccatc 2220
 tggaaatccatcc tcatcacccat ccacgaccga aaagaattgtt ctttttttttggaa gaaagaacgc 2280
 gccagagccaa aatggggacac agccaaacaac ccactgtata aagaggccac gtcacccatc 2340
 accaaatatca cgttccgggg cacttta 2367

60 <210> 12

<211> 3147
 <212> DNA
 <213> Homo sapiens
 5 <300>
 <302> alpha v intergrin
 <310> NM0022210
 10 <400> 12
 atggctttc cgccgccccg acggctgcgc ctcggcccc gcggccccc gcttcttc 60
 tcgggactcc tgctacccct gtgccgcgc ttcaacccat acgtggacag tcctgcgag 120
 tactctggcc ccgaggaaag ttactccggc ttccggctgg atttcttcgt gcccagcg 180
 tcttcccgga tggttcttct cgtgggagct cccaaagcaa acaccaccca gcctggatt 240
 15 gtggaaaggag ggcagggtcct caaatgtgac tggcttcta cccggccgtg ccagccaatt 300
 gaatttgatg caacaggcaa tagagattat gccaaggatg atccatttgc attaagtcc 360
 catcagtggt ttggagcatc tggaggtcgt aaacaggata aaattttggc ctgtgcaca 420
 ttgttaccatt ggagaactga gatgaaaacag gaggcggacg ctgttggaaat atgcttctt 480
 caagatggaa caaagactgt tgagtatgct ccatgttagat cacaagatat tgatgtcat 540
 ggacaggggat ttgtcaagg aggattcagc attgattttt ctaaagctga cagagtactt 600
 20 cttgggtggtc ctggtagctt ttattggcaa ggtcagctt tttcgatca agtggcagaa 660
 atcgtatcta aatacggaccc caatgtttac agcatcaagt ataataacc attagcaact 720
 cggactgcac aagctttt tgatgacage tatttgggtt atttgcgtc tgcggat 780
 ttcaatgggtt atggcataga tgactttgtt tcaggatcc caagagcagc aaggacttt 840
 25 ggaatggttt atattnatga tggagaagac atgtcctctt tatacaattt tactggcgag 900
 cagatggctg catatttccg attttctgtt gctgccactg acattaatgg agatgattat 960
 gcagatgtgt ttattggagc acctcttc gatggatctg gctctgtatgg caaactccaa 1020
 gaggtggggc aggtctcagt gtctctacag agagcttcg gagacttcca gacgacaaag 1080
 ctgaatggat ttgaggctt tgacccgggtt ggcagtgcac tagtccttt gggagatctg 1140
 30 gaccaggatg gtttcaatga tatttgcatt gctgctccat atgggggtga agataaaaaaa 1200
 ggaattgtttt atatcttcaa tggaaagatca acaggcttg acgcagttccc atctcaaattc 1260
 cttgaagggc agtgggctgc tcgaagcatg ccaccaagct ttggctattc aatgaaagga 1320
 gccacagata tagacaaaaaa tggatattcca gacttaattt taggagcttt tggtgttagat 1380
 cgagctatct tatacaggc cagaccaggat atcaactgtt atgcggatctc tgaagtgtac 1440
 35 ccttagattt taaatcaaga caataaaaacc tgctcaactg ctggacacgc tctcaaaagtt 1500
 tcctgtttta atgttaggtt ctgtttaaag cagatggca aaggagact tcccaggaaa 1560
 cttaatttcc aggtggaaact tcttttggat aaactcaagc aaaaggggagc aattcgcacga 1620
 gcactgtttc tctacacgc gttcccaagt cactccaaga acatgactat ttcaaggggg 1680
 ggactgtatgc agtgtgagga attgatagcg tatctgcggg atgaatctga atttagagac 1740
 40 aaactcactc caattactat ttttatggaa tatcggttgg attatagaac agtgcgtat 1800
 acaacaggct tgcaacccat tcttaaccag ttcacgcctg ctaacattag tcgacaggct 1860
 cacattctac ttgactgtgg tgaagacaat gtctgttaaac ccaagctgg agettctgt 1920
 gatagtgtatc aaaagaagat ctatattggg gatgacaacc ctctgacatt gattgttaag 1980
 gctcagaatc aaggagaagg tgccctacgaa gctgagctca tcgttccat tccactgcag 2040
 45 gctgatttca tcgggggtgt ccgaaacaat gaagccttag caagactttc ctgtgcattt 2100
 aagacagaaaa accaaactcg ccaggtggta tgcgtacccat gaaacccat gaaggctgga 2160
 actcaactt tagctgttct tcgtttcgt gtgcaccaggc agtcaactt ggataacttct 2220
 gtgaaatttgc acttacaaat ccaaagctca aatcttattt acaaagtaag cccagttgtt 2280
 50 tctcacaaag ttgatcttgc tgggtttagt gcagttgaga taagaggagt ctgcgttctt 2340
 gatcatatct ttcttccat tccaaactgg gaggcacaagg agaaccctga gactgaagaa 2400
 gatgtggggc cagttgtca gcacatctat gagctgagaa acaatggtc aagttcattc 2460
 agcaaggcaa tgctccatct tcagtggcct tacaatata ataataacac tctgttgtat 2520
 atccttcattt atgatattga tgaccaatg aactgcactt cagatatgg gatcaaccct 2580
 ttgagaattt agatctcattt tttgcaaaactt actgaaaaaga atgacacggt tgccggccaa 2640
 55 ggtgagcggg accatctcat cactaaggcg gatcttgcctc tcagtgaagg agatattc 2700
 actttgggtt gtggagttgc tcagtgcctt aagattgtct gccaaggatgg gagatttagac 2760
 agagggaaaga gtgcaatctt gtacgtaaag tcattactgt ggactgagac ttttatgaat 2820
 aaagaaaaatc agaatttcattt ctattctctg aagtgcgttgc ctccattaa tgcatacgat 2880
 tttccattata agaatttcc aatttggatgat atcacaact ccacattggt taccactaat 2940
 gtcacccggg gcattcagcc agcggccatg cctgtgcctg tgggttgcattttagca 3000
 60 gttcttagcag gattgttgc actggctgtt ttggatttgc taatgtacag gatgggctt 3060
 tttaaacggg tccggccacc tcaagaagaa caagaaaggagc agcagttca acctcatgaa 3120
 aatggtgaag qaaactcaga aactttaa 3147

<210> 13
 <211> 402
 <212> DNA
 <213> Homo sapiens

 <300>
 <302> CaSm (cancer associated SM-like oncogene)
 <310> AF000177

 <400> 13
 atgaactata tgcctggcac cgccagcctc atcgaggaca ttgacaaaaaa gcacttgggtt 60
 ctgcttcgag atggaaggac acttataggc ttttaagaa gcattgatca atttgcaaac 120
 15 ttagtgctac atcagactgt ggagcgtatt catgtggca aaaaataacgg tgatattcct 180
 cgagggattt ttgtggtcag aggagaaaat gtggcctac taggagaaat agacttggaa 240
 aaggagagtg acacaccct ccagcaagta tccattgaag aaattctaga agaacaaagg 300
 gtggaacagc agaccaagct ggaagcagag aagttgaaag tgcaggccct gaaggaccga 360
 ggtcttcca ttcctcgagc agatactt gatgagtact aa 402

 20

 <210> 14
 <211> 1923
 <212> DNA
 25 <213> Homo sapiens

 <300>
 <302> c-myb
 <310> NM005375

 30 <400> 14
 atggcccgaa gaccccccga cagcatatat agcagtgacg aggatgatga ggacttttag 60
 atgtgtgacc atgactatga tggctgtt cccaaagtctg gaaagcgtca cttggggaaa 120
 acaagggtgga cccgggaaaga ggtaaaaaa ctgaagaagc tggtggaaaca gaatggaaaca 180
 35 gatgactgga aagttattgc caattatctc ccgaatcgaa cagatgtgc tgcccgac 240
 cgatggcaga aagtactaaa ccctgagctc atcaagggtc cttggaccaa agaagaagat 300
 cagagagtga tagagcttgt acagaaaatac ggtccgaaac gttgtctgt tattgccaag 360
 cacttaaagg ggagaattgg aaaacaatgt agggagaggt ggcataacca cttgaatcca 420
 gaagttttaga aaacctctg gacagaagag gaagacagaa ttatttacca ggcacacaag 480
 40 agacttggga acagatgggc agaaaatcgca aagctactgc ctggacgaac tgataatgt 540
 atcaagaacc actggaaattc tacaatgcgt cggaaggctc aacaggaagg ttatctcgag 600
 gagtcttcaa aagccagcca gccagcagtg gccacaagct tccagaagaa cagtcatttg 660
 atgggttttg ctcaggtctc gcctacagct caactccctg ccactggcca gcccactgtt 720
 aacaacgact attccttata ccacatttct gaagcacaaa atgtctccag tcatgttcca 780
 45 taccctgttag cgttacatgt aaatatagtcc aatgtccctc agccagctgc cgcagccatt 840
 cagagacact ataatgtatc agacccctgt aaggaaagc gaataaagga attagaatttg 900
 ctcctaatgtt caaccggaaa tgactttaaa ggacagcagg tgcttaccaac acagaaccac 960
 acatgcgtt accccgggtt gcacagcacc accattggcc accacaccag acctcatgga 1020
 50 gacagtgcac ctgtttctg tttggagaa caccacttca ctccatctt gccagcggat 1080
 cctggctccc tacctgaaga aagccctcg ccagcaaggt gcatgtatcg ccaccaggc 1140
 accattctgg ataatgttaa gaacctttaa gaatttgcag aaacacttca atttatagat 1200
 tctttcttaa acacttccag taaccatgaa aactcagact tggaaaatgcc ttctttaact 1260
 tccacccccc tcattggtca caaattgact gttacaacac catttcatag agaccagact 1320
 gtgaaaactc aaaaggaaaa tactgtttt agaaccccg ctatcaaaag gtcaatctt 1380
 55 gaaagctctc caagaactcc tacaccattc aaacatgcac ttgcagctca agaaattaaa 1440
 tacggtcccc tgaagatgtt acctcagaca ccctctcatc tagtagaaga tctgcaggat 1500
 gtgtatcaaac aggaatctga tgaatctgg tttgttgcgt agttcaaga aaatggacca 1560
 cccttactga agaaaatcaa acaagaggtt gaatctccaa ctgataaaatc agggaaactc 1620
 ttctgtcacc accactggga agggagagtt ctgaatacc aactgttccac gcagacccctg 1680
 60 cctgtgcagatcgtt acgaccggaa tattcttaca agtcccggtt taatggcacc agcatcagaa 1740
 gatgaagaca atgttctcaa agcatttaca gtacctaaaa acaggtccctt ggcgagcccc 1800
 ttqcaqcctt gtagcgtac ctqqqaacct qcatccttgc gaaagatgga ggagcagatg 1860

acatcttcca gtcaagctcg taaatacgtg aatgcattct cagcccgac gctggtcatg 1920
tga 1923

5 <210> 15
<211> 544
<212> DNA
<213> Homo sapiens

10 <300>
<302> c-myc
<310> J00120

<400> 15
15 gacccccc gag ctgtgctgt cgccggcc accggggc cccggccgtc cctggctccc 60
ctcctgcctc gagaaggca gggcttctca gaggcttggc gggaaaaaga acggagggag 120
ggatcgcgtc gagtataaaa gccggtttc ggggctttat ctaactcgct gttagtaattc 180
cagcgagagg cagaggggagc gacggggcgg ccggctaggg tggaagagcc gggcgagcag 240
agctgcgtc cggcgctctt gggaaaggag atccggagcg aatagggggc ttgcctctg 300
20 gcccagccct cccgctgatc ccccagccag cgggtccgcaa cccttgcgc attcacgaaa 360
ctttggccat agcagcgggc gggcactttg cactggaact tacaacaccc gagcaaggac 420
gcgactctcc cgacgcgggg aggctattct gcacatttgg ggacacttcc ccggcgctgc 480
caggaccgc tcctctgaaa ggctctcctt gcagctgctt agacgctgga ttttttcgg 540
gtag 544

25 <210> 16
<211> 618
<212> DNA
30 <213> Homo sapiens

<300>
<302> ephrin-A1
<310> NM004428

35 <400> 16
atggagttcc tctggcccc tctcttggtt ctgtgctgca gtctggccgc tgctgatcgc 60
cacaccgtct tctggAACAG ttcaaatccc aagtccgga atgaggacta caccatacat 120
gtgcagctga atgactacgt ggacatcatc tgtccgact atgaagatca ctctgtggca 180
40 gacgctgcca tggagcagta catactgtac ctgggtggagc atgaggagta ccagctgtgc 240
cagcccccagt ccaaggacca agtccgctgg cagtgcAACCCGGCCAGTGC caagcatggc 300
ccggagaagc tgcgtggaaa gttccagcgc ttacacaccc tcaccctggg caaggaggatc 360
aaagaaggac acagctacta ctacatctcc aaacccatccc accagcatga agacccgctgc 420
ttgaggttga aggtgactgt cagtggcaaa atcactcaca gtcctcaggc ccatgtcaat 480
45 ccacaggaga agagacttgc agcagatgac ccagagggtgc gggttctaca tagcatcggt 540
cacagtctg ccccacgcct cttcccactt gcctggactg tgctgctctt ccacttctg 600
ctgctgcaaa ccccggtca 618

50 <210> 17
<211> 642
<212> DNA
<213> Homo sapiens

55 <400> 17
atggcgcccc cgccagcgccc gctgtccccc ctgtgctcc tgctgttacc gctgccggcc 60
ccgccttcg cgccgcggca ggacgcccggcc cgcccaact cggaccgcta cgccgtctac 120
tggaaaccgca gcaaccccgat gtcccacgca ggccgggggg acgacggcgg gggctacacg 180
gtggaggtga gcatcaatgatc acactggac atctactgcc cgcactatgg gggcgccgtc 240
60 ccgcggcccg agcgcatggc gcactacgt ctgtacatgg tcaacccggca gggccacgc 300
tcttcgcacc accggccagcg cggcttcaag cgctggggagt gcaacccggcc cgccggccccc 360
ggggggccgc tcaagttctc ggagaagttc cagctttca cgcccttc cctgggcttc 420

gagttccggc ccggccacga gtattactac atctctgcc a cgcctccaa tgctgtggac 480
cggccctgcc tgcgactgaa ggtgtacgtg cggccgacca acgagaccct gtacgaggct 540
cctgagccca tcttcaccag caataactcg tgttagcagcc cgggcggctg ccccttcc 600
ctcagcacca tccccgtgct ctggaccctc ctgggttccct ag 642

5

<210> 18
<211> 717
<212> DNA
10 <213> Homo sapiens

<300>
<302> ephrin-A3
<310> XM001787

15

<400> 18
atggcggcgg ctccgctgct gctgctgctg ctgctcgatcc cggtgccgt gctgccgtg 60
ctggcccaag ggccggagg ggcgctggaa aaccggcatg cggtgtactg gaacagctcc 120
aaccaggcacc tgcggcgaga gggctacacc gtgcaggtga acgttaacga ctatctggat 180
20 attactgccc cgcactacaa cagctcgaaaa gtggggcccg gggcgggacc gggggccggaa 240
ggccggggcag agcagtacgt gctgtacatg gtgagccgca acggctaccg cacctgcaac 300
gccagccagg gcttcaagcg ctggagtgcc aaccggccgc acgccccgca cagccccatc 360
aaggctcgg agaaggccca ggcgtacagc gccttctctc tgggtacgaa gtccacgccc 420
ggccacgagt actactacat ctccacgccc actcacaacc tgcactggaa gtgtctgagg 480
25 atgaagggtgt tcgtctgctg cgcctccaca tcgcactccg gggagaagcc ggtccccact 540
ctcccccaact tcacatggg ccccaatatg aagatcaacg tgctggaaga ctttggggaa 600
gagaaccctc aggtgcccaa gcttgagaag agcatcagcg ggaccagccc caaacgggaa 660
cacctgcccc tggccgtggg catgccttc ttccatgatcg cgttcttggc ctccttag 717

30

<210> 19
<211> 606
<212> DNA
35 <213> Homo sapiens

<300>
<302> ephrin-A3
<310> XM001784

40 <400> 19
atgcggctgc tgccccctgct gggactgtc ctctggccg cgttcctcggtt ctccttc 60
cgcggggctt ccagcctccg ccacgtatgc tactggaaact ccagtaaccc cagggtgtt 120
cgaggagacg ccgtgggtgg a gctggccctc aacgattacc tagacattgt ctgccccac 180
tacgaaggcc caggggccccc tgagggccccc gagacgtttg ctttgcataat ggtggactgg 240
45 ccaggctatg agtcctgcca ggcagagggc cccgggcct acaagcgctg ggtgtgtcc 300
ctgccttttgc gccatgttca atttcagag aagattcagc gcttcacacc ctctccctc 360
ggcttgagt tcttacatgg agagacttac tactacatct ccgtggccac tccagagagt 420
tctggccatgt gcttgaggct ccagggtgtc gtctgctgca aggagaggaa gtctgagtc 480
50 gcccatctgg tggggggcc tggagagatggc acatcg ggtggcgagg gggggacact 540
cccagccccc tctgtctttt gctattactg ctgcttctga ttcttgcgtt tctgcgaaatt 600
ctgtga 606

55

<210> 20
<211> 687
<212> DNA
55 <213> Homo sapiens

<300>
<302> ephrin-A5
<310> NM001962

5 <400> 20
 atgttgcacg tggagatgtt gacgctggtg tttctggtgc tctggatgtg tgtgttcagc 60
 caggaccgg gctccaaggc cgtcggccac cgctacgctg tctactggaa cagcagcaac 120
 cccagatcc agaggggtga ctaccatatt gatgtctgtt tcaatgacta cctggatgtt 180
 ttctggccctc actatgagga ctccgtccca gaagataaga ctgagcgcta tgcctctac 240
 atggtaact ttgatggcta cagtgcctgc gaccacactt ccaaagggtt caagagatgg 300
 gaatgttaacc ggcctactc tccaaatggc ccgctgaagt tctctgaaaa attccagctc 360
 ttcaactccct ttctcttagg atttgaattt aggccaggcc gagaatattt ctacatctcc 420
 tctgcaatcc cagataatgg aagaagggtcc tgcctaaagc tcaaagtctt tgcgagacca 480
 10 acaaaatagct gtatgaaaac tataggtgtt catgatgtt tttcgatgt taacgacaaa 540
 gtagaaaattt cattagaacc agcagatgac accgtacatg agtcagccga gccatcccgc 600
 ggcgagaacg cggcacaaac accaaggata cccagccgcc ttttggcaat cctactgttc 660
 ctccctggcga tgcttttgcg attataag 687

 15 <210> 21
 <211> 2955
 <212> DNA
 <213> Homo sapiens

 20 <400> 21
 atggccctgg attatctact actgctcctc ctggcatccg cagtggctgc gatggaagaaa 60
 acgttaatgg acaccagaac ggctactgca gagctgggtt ggacggccaa tcctgcgtcc 120
 ggggtggaaag aagtcaatgg ctacatgtt aacatgttccaa ccatccgcac ctaccagggtt 180
 25 tgcataatgtt tcgagcccaa ccagaacaaat tggctgttccaa ccacccatcat caaccggcgg 240
 gggggccatc gcatcttacac agatgtgcgc ttcaactgtt gagaactgtcag cagcctccct 300
 aatgtcccag gatcctgcaaa ggagacccctt aacttgttattt actatgagac tgcactctgtc 360
 attgcccacca agaagtcaacg ctctctgtt gaggccccctt accttcaaaatg agacaccattt 420
 gtcgcagatg agagcttctt ccaggtggac tttgggggaa ggctgtatgaa ggtaaacacaa 480
 30 gaagtcaacca gctttggcc tcttactcgg aatggttttt acctcgcttt tcaggattat 540
 ggagcctgtt tgccttctt ttctgtccgt gtcttcttca aaaatgttcc cagcattgtt 600
 caaaaatttt cagtgttcc agagactatg acaggggcag agagoacatc tctgggtattt 660
 gctcgccggca catgcatccc caacgcagag gaaatgttccg tgcccatcaaa actctactgc 720
 aacggggatg gggaaatggat ggtccattt gggcgatgca cctgcaagcc tggctatgaa 780
 35 cctgagaaca gcgtggcatg caaggcttgc cctgcaggga catcaaggc cagccaggaa 840
 gtcggaggct gtccttccatg ccccttcaac agccgttcc ctgcaggaggc gtctccatc 900
 tgcacctgtc ggacccgttta ttaccggatcg gactttgacc ctcccaaaatg ggcatgcact 960
 agcgtcccat caggccccccg caatgttattt tccatgttca atgagacgtc catcattctg 1020
 gagtggcacc ctccaaaggaa gacagggtggg cgggatgtt gtagcttacaa catcatctgc 1080
 40 aaaaaatgttcc gggcagaccg ccggagctgc tcccgttgc acgacaatgtt ggagttgtt 1140
 ccaggccatg tgggcctgac ggagtgcgc gtctccatca gcagctgtt ggcacacacc 1200
 ccctacaccc ttgacatcca ggcacatcaat ggagtcttca gcaagatgtcc cttccccccca 1260
 cagcacgtct ctgtcaacat caccacaaac caagccgccc cctccaccgt tcccatcatg 1320
 caccacgtca gtggccactat gaggagcatc accttgcattt ggcacacaggcc ggagcagccc 1380
 45 aatggcatca tcctggacta tgagatccgg tactatgaga aggaacacaaa tgagttcaac 1440
 tcctccatgg ccaggaggatca gaccaacacaa gcaaggatgtt atgggcttgcg gcctggcatg 1500
 gtatgttgg tacagggtgc tgccgcact gttgttgcg acggcaatgtt cagtggcaag 1560
 atgtgttcc agactctgtac tgacgtatgtt tacaatgtt gactgtggaa gcaagcttgc 1620
 ctgttgcgtt gtcggccatc ggcgggggtt gtgttgcgtt tgcccttgggtt ggccatctt 1680
 50 atcgatgttca gcaaggaaatcg ggcttatacg aaagaggctg tgcacatgtt gtagctccatg 1740
 cattacagca caggccgagg ctccccaggg atgaagatctt acattgttccctt cttcaacttat 1800
 gaggatccca acgaagctgtt ccgggatgtt gccaaggaga ttgtatgttcc ttttggaaatgg 1860
 attgaagagg tcatcggttcc aggggatgtt ggagaatgtt acaaggggatgg tttgaaatgtt 1920
 ccaggcaaga gggaaatcta cgtggccatc aagaccctgtt ggcagggtt ctcggagaag 1980
 55 cagcgtccggg actttctgtt tgaggcgatc atcatggggc agttcgatcc tcctaaatcc 2040
 attcgcctgg aggggtgtt caccatgtt cggccgttca tgatcatcactt aggttcatg 2100
 gagaatgggtt cattggatcc ttctctgtt caaaatgttcc ggcaggatccatc cgtgttccatg 2160
 ctgttgggtt tgctcaggatcc ctcgttgcgtt ggcatgtt gactgtggatgtt gatgttattt 2220
 gtcgcacatggg acctggctgc tagaaacattt ctggatgttca gtaacctgtt gtcgagatgg 2280
 60 tcggacttttgc ggcctccctt ctacatgttcc gatgacatgtt cagatccac ctacaccaggc 2340
 tccttggggat ggaagatccc tgcgttggatgg acagatccatc gggccatccgc ctaccggcaag 2400
 ttcacttccatc ccaatgttccatc ggcgttgcgtt ggcgttgcgtt gatgttattt 2460

ggagagagac cctattggga tatgtccaac caagatgtca tcaatgccat cgagcaggac 2520
 taccggctgc ccccacccat ggactgtcca gctgctctac accagactcat gctggactgt 2580
 tggcagaagg acccgaaacag ccggccccgg tttgcggaga ttgtcaacac cctagataag 2640
 atgatccgga acccggcaag tctcaagact gtggcaacca tcacccggcgt gccttcccag 2700
 5 cccctgctcg acccgctccat cccagacttc acggccttta ccaccgtgga tgactggctc 2760
 agcgccatca aaatggtcca gtacaggac acgttccctca ctgctggct cacctccctc 2820
 cagctgtca cccagatgac atcagaagac ctccctgagaa taggcattcac ctggcaggc 2880
 catcagaaga agatctgaa cagcattcat tctatgaggg tccagataag tcagtcacca 2940
 acgcaatgg catga 2955
 10
 <210> 22
 <211> 3168
 <212> DNA
 15 <213> Homo sapiens
 <400> 22
 atgctctgc ggaggctggg ggccgcgtg ctgctgtgc cgctgctgc cgccgtggaa 60
 gaaacgctaa tggactccac tacagcact gctgagctgg gctggatggt gcatcctcca 120
 20 tcaggggtggg aagaggttag tggctacgt gagaacatga acacgatccg cacgtaccag 180
 gtgtcaacg tgtttgagtc aagccagaac aactggctac ggaccaagtt tatccggcgc 240
 cgtggcgccc accgcattca cgtggagatg aagtttccgg tgcgtactg cagcagcato 300
 cccagcgtgc ctggctctg caaggagacc ttcacacctt attactatga ggctgacttt 360
 gactcggcca ccaagaccc tcccaactgg atggagaatc catgggtgaa ggtggatacc 420
 25 attgcagccg acgagagctt ctcccaagggtg gacctgggtg gccgcgtcat gaaaatcaac 480
 accgagggtgc ggagcttcgg acctgtgtcc cgcagcggct tctacccggc cttccaggac 540
 tatggcggtc gcatgtccct catgcggcgtg cgtgtctttt accgcagaatg ccccccgcate 600
 atccagaatg ggcgcattt ccagaaaaacc ctgtcggggg ctgagagcac atcgctggtg 660
 gctgccccgg gcaagatgcg gaagaggttg atgtacccat caagctctac 720
 30 tgtaaacgggg acggcgagtg gctgtgccc atcgggcgt gcatgtgcaa agcaggcttc 780
 gagggcggtg agaatggcac cgtctgccc ggttgtccat ctggacttt caaggccaac 840
 caaggggatg aggccgtac ccactgtccc atcaacagcc ggaccacttc tgaaggggcc 900
 accaactgtg tctgcccaca tggctactac agagcagacc tggacccctt ggacatgccc 960
 tgcacaacca tccccctccgc gccccaggct gtgatttcca gtgtcaatga gaccccttc 1020
 35 atgctggagt ggacccctcc cgcgactcc ggaggccgag aggacctcg tctacaacatc 1080
 atctgcaaga gctgtggctc gggccgggt gcctgcaccc gctgcgggaa caatgtacag 1140
 tacgcaccac gccagctagg cctgaccggag ccacgcattt acatcaatgt cctgctggcc 1200
 cacacccagt acacccctcgat gatccaggct gtgaacccggc ttactgtacca gagcccccctt 1260
 tcgcctctgt tgcctctgtt gaacatcacc accaaccagg cagctccatc ggcagtgcc 1320
 40 atatgcattc aggtgaggcc cacccgtggac agcattaccc tgcgtggc ccagccagac 1380
 cagcccaatg cgcgtatcc ggactatgag ctgcgtact atgagaagga gtcagtgag 1440
 tacaacgcaca cagccataaa aagccccacc aacacggcgtca ccgtgcaggg cctcaaaagcc 1500
 ggcgcctctt atgtcttcca ggtgcgggca cgcaccgtgg caggctacgg ggcgtacagc 1560
 ggcaagatgt acttccagac catgacagaa gccgagtacc agacaagcat ccaggagaag 1620
 45 ttgccactca tcatcggtc ctcggccgtt ggcctggct tcctcattgc tgggttggc 1680
 atcgccatcg tggtaacag acgggggtt gaggctgtg actcggagta cacggacaag 1740
 ctgcaacact acaccagggtt ccacatgacc ccaggcatga agatctacat cgatcccttc 1800
 acctacgagg acccccaacga ggcagtgcgg gagtttgcga agggaaattga catctccctgt 1860
 gtcaaaattt agcagggtat cggaggccggg gagtttggcg aggtctgcag tggccacctg 1920
 50 aagctgccag gcaagagaga gatctttgtt gccatcaaga cgctcaagtc gggctacacg 1980
 gagaaggcgc gcccggactt ctcggccgtt gctgcgttgc acggccatccc 2040
 aacgtcatcc acctggaggg tgcgtgttca aagagcacac ctgtgtatgtt catcaccgg 2100
 ttcatggaga atggctccctt ggactccctt ctccggcaaa acgatggcgtt gttcacagtc 2160
 atccagctgg tggccatgtt tcggggccatc gcagctggca tgaagtaccc ggcagacatg 2220
 55 aactatgttc accgtgaccc ggctgcccgc aacatccctcg tcaacagcaa cctggctctgc 2280
 aagggtgtcg accctgggtt ctcacgtttt cttagggacg atacccatcaga ccccccaccc 2340
 accagtgcaccc tggggcgaaa gatccccatc cgctggacag ccccgaaagc catccagttac 2400
 cggaaatgtca ctcggcccgat tggatgtgtgg agctacggca ttgtcatgtt ggaggtgtatg 2460
 tcctatgggg agcggccatc ctggggacatg accaaccagg atgtaaatcaa tgccatttgag 2520
 60 caggactatc ggctgcccacc gcccattggac tgccggagcg ccctgcacca actcatgtctg 2580
 gactgttggc agaaggaccc gcaaccacccgg cccaaatgtt gccaaatgtt caacacgcata 2640
 gacaagatga tccgcaatcc caacagcctc aaagccatgg cggcccttc ctctggcattc 2700

aacctgccgc tgctggaccg cacgatcccc gactacacca gctttaacac ggtggacgag 2760
 tggctggagg ccatcaagat gggcagtagc aaggagagct tcgccaatgc cggttcacc 2820
 tccttgacg tcgtgtctca gatgatgatg gaggacattc tccgggttgg ggtcaacttg 2880
 gctggccacc agaaaaaaat cctgaacagt atccaggtga tgccggcgca gatgaaccag 2940
 5 attcagtctg tggagggcca gccactcgcc aggaggccac gggccacggg aagaaccaag 3000
 cggtgccagc caccgagact caccagaaa acatgcact caaacgacgg aaaaaaaaaag 3060
 ggaatggaa aaaagaaaaac agatctggg agggggcggg aaatacagg aatattttt 3120
 aaagaggatt ctcaataagg aagcaatgac tgttcttgcg gggataa 3168

10 <210> 23
 <211> 2997
 <212> DNA
 <213> Homo sapiens

15 <400> 23
 atggccagag cccgcccgc gcccggccg tcgcccggc cggggcttct gccgctgctc 60
 cctccgctgc tgctgtgcc gctgctgctg ctgcccggc gctgcccggc gctggaaagag 120
 accctcatgg acacaaaatg ggttaacatct gagttggcgt ggacatctca tccagaaagt 180
 20 gggtggaaag aggtgagtgg ctacgatgag gccatgaatc ccatccgcac ataccaggtg 240
 tgaatgtgc gcgagtcaag ccagaacaac tggcttcgca cggggttcat ctggcgccgg 300
 gatgtgcagc gggtctacgt ggagctcaag ttcaactgtgc gtgactgcaa cagcatcccc 360
 aacatccccg gtcctgc当地 ggagacccctt aacctttt actacgaggc tgacagcgat 420
 gtggcctcag ctcctccccc cttctggatg gagaacccct acgtgaaagt ggacaccatt 480
 25 gcaccccgatg agagcttctc gcggtctggat gccggccgtg tcaacaccaa ggtgcgcagc 540
 tttggccac tttccaaggc tggcttctac ctggccttcc aggaccaggc cgccctgc当地 600
 tcgctcatct cctgtcgccg ctttacaaag aagtgtgc当地 ccaccacccgc agcttcgc当地 660
 ctctcccccgg agaccctcac tggggcgagg cccacccctc tggtcattgc tcttggcacc 720
 30 tgcacccatgc acggcgttgg ggtgtcggtg ctaactcaacgg tctactgcaa cggcgatggg 780
 gagttggatgg tgcctgtggg tgcctgc当地 tggccaccg gccatgagcc agctgccaag 840
 gagtcccagt gcccggccctg tccccctggg agctacaagg cgaaggaggc agagggggccc 900
 tgctcccat gtcctcccaa cagccgtacc acctcccccag cggccagcat ctgcacctgc 960
 cacaataact tctaccgtgc agactcggac tctcgccgaca gtgcctgtac caccgtgcca 1020
 tctccacccc gaggtgtgtat ctccaatgtg aatgaaaccc cactgatctc cgagtggagt 1080
 35 gagcccccggg acctgggtgt cgggatgac ctccatgtaca atgtcatctg caagaagtgc 1140
 catggggctg gaggggctc agcctgctca cgctgtgatc acaacgtgg a gtttgtgc当地 1200
 cggcagctgg gcctgtcgga gccccggc当地 cacaccaggc atctgtgc当地 ccacacgc当地 1260
 tacacccccc aggtgc当地 ggtcaacggt gtctcgccg当地 agacccctc gccgcctcg 1320
 tatgcggccg tgaatatac cacaacccag gtcggccctg ctgaaatgc当地 cacactacgc 1380
 40 ctgcacacca gtcaggccg cggccatcc ctatctggg caccggccaggc gccggcccaac 1440
 ggagtcatcc tggactacga gatgaagtac ttgagaaga gcgaggccat cgccctccaca 1500
 gtgaccagcc agatgaactc cgtgcagctg gacgggctt ggcctgacgc cgctatgtg 1560
 gtcagggtcc gtgcccggc当地 agtagctggc tatgggc当地 acagccccc tgccgaggtt 1620
 gagaccacaa gtgagagagg ctctggggcc cagcgttcc aggacccatc tccctcatc 1680
 45 gtgggctccg ctacagctgg gcttgc当地 gtgggtggctg tcgtgtcat cgctatcg 1740
 tgcctcaggc agcagc当地 cggcgtctgat tcggagtaca cggagaagct gaaaggactac 1800
 attgctctg gaatgaaggt ttatattgac ctctttactt acggaggaccc taatgaggct 1860
 gttcggggat ttgccaaggc gatcgc当地 tcttgc当地 agatcgaggc ggtgatcg 1920
 gctggggat ttggggatgt gtggcgctgg ctagtggaaac agccctggcc cogagagggt 1980
 50 tttgtggcca tcaagacgt gaaaggggcc tacaccggaa ggcagggccg ggacttc当地 2040
 agcgaggccct ccatcatggg tcagttgtat caccggccata taatccggct cgagggcg 2100
 gtcacccaaa gtcggccaggc tatgatccctc actgaggatca tggaaaactg cggccctggac 2160
 tccttccctcc ggctcaacgg tggcgatcc acggc当地 agctggggcc catgttgc当地 2220
 ggcattgctg cccggatggaa gtacctgtcc gagatgaaat atgtgc当地 cggacccctg 2280
 55 gctcgcaaca tccttgc当地 cagcaacccgt gtc当地 gaaat tctc当地 gagcttcc 2340
 cgcttccctgg agatgaccc ctc当地 gatccct acctacccca gttccctggg cggaaagatc 2400
 cccatcccgct ggactgc当地 agaggccata gcttacccgaa agttcactt tgc当地 tagtgc当地 2460
 gtc当地 ggactc acggaaatgt catgtggggag gtc当地 gagact atggaggaccc accctactgg 2520
 gacatgacca accaggatgt catcaatgc当地 gtggaggccg attacccggct gccaccaccc 2580
 60 atggactgtc ccacacccact gcaccaggctc atgctggact gtc当地 ggacccggaaac 2640
 ctcaggccca aattctccca gattgtcaat accctggacca agctcatccg caatgctgc当地 2700
 agcctcaagg tcattgc当地 cgtctc当地 ggc当地 atgtc当地 agccctccctt ggaccgc当地 2760

gtcccagatt acacaacctt cacgacagt ggtgattggc tggatgccat caagatgggg 2820
 cggtaacaagg agagcttcgt cagtggggg tttgcattt ttgacccatggg gccccagatg 2880
 acggcagaag acctgctccg tattgggtc accctggccg gccaccagaa gaagatcctg 2940
 agcagtatcc aggacatgcg gctcagatg aaccagacgc tgcctgtca ggtctga 2997
 5

<210> 24
 <211> 2964
 <212> DNA
 10 <213> Homo sapiens

<400> 24
 atggagctcc gggtgctgt ctgtgggt tcgttggccg cagcttggg agagaccctg 60
 ctgaacacaa aattggaaac tgctgatctg aagtgggtga cattccctca ggtggacggg 120
 15 cagtgggagg aactgagccg cctggatggc gaacagcaca gcgtgcgcac ctacgaagt 180
 tgtgaagtgc agcgccccc gggccaggcc cactggcttc gcacagggtg gttcccacgg 240
 cggggcggcg tccacgtta cgccacgctg cgcttcacca tgctcagtg cctgtccctg 300
 cctcgggctg ggccgtcctg caaggagacc ttcaccgtct tctactatga gaggcgtgcg 360
 gacacggcca cggccctcac gccagcctgg atggagaacc cctacatcaa ggtggacacg 420
 20 gtggccgcgg agcatctcac cggaaagcgc cctggggccg aggccaccgg gaaggtgaat 480
 gtcaagacgc tgcgtctgg accgctcagc aaggctggc tctacttgc ctccaggac 540
 cagggtgcct gcatggccct gctatccctg caccttctt acaaaaagtgc cggccagctg 600
 actgtgaacc tgactcgatt cccggagact tgccctcggt agctgggtg gcccgtggcc 660
 25 ggttagctcg gttgtggatgc cgtccccggc cctggggccca gccccagccct ctactgcgcgt 720
 gaggatggcc agtggggccg acagccggc acgggctgca gctgtgcctc ggggttcgag 780
 gcaagtcggg ggaacacaa gtgcggagcc tggcccccgg gcacccatcaa gcccctgtca 840
 ggagaagggt ctgcggccat ggcacttccgg gcacgcacag accccccggg tgatctgca 900
 gtctggccat ggcgcgtcgg ggacttccgg gcacgcacag accccccggg tgacccctgc 960
 30 accacccctc cttcggctcc gcgagcgtg gtttcccggc tgaacggctc ctccctgcac 1020
 ctggaatggc gtgccccctt ggagtctggt ggccgagagg acctcaccta cgccctccgc 1080
 tgccgggagt ggcgacccgg aggctctgt ggcgcctgcg ggggagacct gactttgac 1140
 cccggccccc gggaccttgtt ggagccctgg tggtgtgtc gagggtctacg tccggacttc 1200
 acctatacct ttgaggtcac tgcattgaac ggggtatctt ctttagccac gggggccgtc 1260
 35 ccatttgagc ctgtcaatgt caccactgac cgagaggta ctcctgcagt gtctgacatc 1320
 cgggtgaecg ggtcctcacc cagcagctt ggcctggct ggggtgttcc cggggcaccc 1380
 agtggggcggt ggctggacta cgaggtcata taccatgaga agggccgcg ggggtcccg 1440
 agcgtgcggg tccctgaagac gtcagaaaaac cgggcagagc tgccggggct gaagggggga 1500
 gccagctacc tggtcaggt acggggccgc tctgaggccg gtcacggccctt cttcggccag 1560
 gaacatcaca gccagacca actggatgag agcggggct ggcggggaca gtcggccctg 1620
 40 attgcgggca cggcagtcgt ggggtgtggc ctggtcctgg tggtcattgt ggtcgcagtt 1680
 ctctgcctca ggaaggcagag caatgggaga gaagcagaat attcggacaa acacggacag 1740
 tatctcatcg gacatggta taaggctcac atcgcaccct tcacttatga agacccta 1800
 gaggctgtga gggaaattgc aaaagagatc gatgtctct acgtcaagat tgaagaggta 1860
 attggtgccag gtgagtttgg cgaggtgtgc cggggccgc tcaaggcccc agggaaagaag 1920
 45 gagagctgtg tggcaatcaa gaccctgaag ggtggctaca cggagccgcg gccggcgtgag 1980
 tttctgagcg aggcctccat catggggccat tgccggccat ccaatatcat cccgcctggag 2040
 ggcgtggtca ccaacacgt gcccgtcatg attctcacag agtccatgga gaacggccgc 2100
 ctggactctt tccctggggc aaacacgcca cagttcacat tcatccagct cttcggccatg 2160
 ctgcggggca tccctcgatg catcggtac tttggccgaga tgagctacgt ccaccgagac 2220
 50 ctggctgctc gcaacatctt agtcaacagc aacctcgct gcaaaatgtc tgactttggc 2280
 ctttcccgat tcctgggggaa gaaacttccat gatcccaccc acacgagctc cctggggagga 2340
 aagattccca tccgatggac tgccccggag gccattgcct tccggaaatg cacttccgc 2400
 agtgatgcct ggagttacgg gattgtgtatg tggggggatg tgcattttgg ggagaggccg 2460
 tactgggaca tgagcaatca ggacgtgatc aatgcattt aacaggacta cccggctgccc 2520
 55 cccggcccccact gactgtccac cttccctccac cagctcatgc tggactgttgc gcagaaaagac 2580
 cggaaatgccc gggcccccgtt ccccccgggt gtcagccgc tggaccaagat gatccggaaac 2640
 cccggccagcc tcaaaaatcg gggccgggg aatggggggg cctcacaccc ttcctggac 2700
 cagccggcagc ctcactactc agctttggc tttgtggccg agtggcttcg ggcacatcaa 2760
 atgggaagat acgaaggccg tttcgccatc gctggctttg gtccttcga gtcggccatc 2820
 60 cagatctctg ctgaggaccc gctccgaatc ggagtcaactc tggccggaca ccagaagaaa 2880
 atcttggcca gtgtcccgatc catgaagtcc caggccaagc cggggaaacccc gggtgggaca 2940
 ggaggaccgg ccccgccatc ctga 2964

5 <210> 25
 <211> 1041
 5 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> ephrin-B1
 10 <310> NM004429

15 <400> 25
 atggctcggc ctgggcagcg ttggctcgge aagtggcttg tggcgatggc cgtgtggcg 60
 ctgtccggc tcgccacacc gctggccaag aacctggagc ccgtatcctg gagctccctc 120
 15 aaccccaagt tcctgagttt ggaggcattt gtatctatc cgaaaattgg agacaagctg 180
 gacatcatct gccccccgagc agaagcaggc cggccctatg agtactacaa gctgtacctg 240
 gtgcggctg agcaggcagc tgcctgttagc acaggctctg accccaaacgt gttggtcacc 300
 tgcaataggc cagagcagga aatacgtttt accatcaagt tccaggagtt cagccccaaac 360
 tacatgggcc tggagttcaa gaagcaccat gattactaca ttacctaaca atccaatgga 420
 20 agcctggagg ggctggaaaa ccggggaggc ggtgtgtgcc gcacacgcac catgaagatc 480
 atcatgaagg ttgggcagaag tcccaatgtct gtgacgcctg agcagctgac taccagcagg 540
 cccagcaagg aggcagacaa cactgtcaag atggccacac aggcccctgg tagtcggggc 600
 tcctctgggtg actctgtatgg caagcatggc actgtgaacc aggaagagaa gagtgcccca 660
 25 ggtgcaagtg gggggcagcg cggggaccct gatggcttct tcaactccaa ggtggcattt 720
 ttcgcggctg tcgggtcgcc ttgcgtcatc ttccctgctca tcatacatctt cctgacggtc 780
 ctactactga agtacgcaaa gcccggaccgc aagcacacac agcagcgggc ggctgcctc 840
 tcgctcaatgtt ccctggccagg tcccaagggg ggcagtggca cagcgggcac cgagcccaac 900
 gacatcatca ttcccttacg gactacagag aacaactact gccccacta tgagaagggt 960
 30 agtggggact acgggcaccc tgcgttacatc gtccaaagaga tgccggccca gagccggcg 1020
 aacatctact acaaggctcg a 1041

35 <210> 26
 <211> 1002
 35 <212> DNA
 <213> Homo sapiens

40 <300>

40 <400> 26
 atggctgtga gaaggggactc cgtgtggaaag tactgctggg gtgttttatgc 60
 agaactgcga tttccaaatc gatagttta gaggctatct attggaaattc ctcgaactcc 120
 aaatttctac ctggacaagg actggacta tacccacaga taggagacaa attggatatt 180
 attggcccca aagtggactc taaaactgtt ggccagttatg aatattataa agtttatatg 240
 45 gttgtatcaaag accaaggcaga cagatgcact attaagaagg aaaataccctt ttcctcaac 300
 tgtgccaaac cagaccaaga tatcaaattc accatcaagt ttcaagaattt cagccctaaac 360
 ctctggggtc tagaatttca gaagaacaaa gattattaca ttatattctac atcaaattgg 420
 tctttggagg gcctggataa ccaggaggga ggggtgtgcc agacaagagc catgaagatc 480
 50 ctcatgaaag ttggacaaga tgcgttacatc gctggatcaa ccaggaataa agatccaaca 540
 agacgtccag aactagaagc tggtaaaaaat ggaagaagtt cgacaacaag tccctttgt 600
 aaaccaaatac caggttctag cacagacggc aacagcgccg gacattcggtt gaacaacatc 660
 ctcggttccg aagtggcctt attgcaggg attgttccat gatgcattat cttcatcgtc 720
 atcatcatca cgctgggtgtt cctttgtcg aagtaccggc ggagacacag gaagcactcg 780
 55 ccgcagcaca cgaccacgct gtcgttcagc acactggcaca caccacagcg cagcggcaac 840
 aacaacggct cagagccag tgacattatc atcccgctaa ggactgcggc cagcgttcc 900
 tgccctcaatc acgagaaggc tgcggcgcac tacgggcacc cgggtgtatc cgtccaggag 960
 atgccccccgc agagccggc gaacatttac tacaagggtt ga 1002

60 <210> 27
 <211> 1023
 60 <212> DNA

<213> Homo sapiens

<400> 27

```

5    atggggcccc cccattctgg gccggggggc gtgcgagtcg gggccctgct gctgctgggg 60
     gtttgggc tggtgtctgg gtcagecctg gagcctgtct actgaaactc ggcgaataag 120
     aggttccagg cagagggtgg ttatgtctg taccctcaga tcgggaccg gctagacctg 180
     ctctgcccccc gggcccgcc tcctggccct cactcctctc ctaattatga gttctacaag 240
     ctgtacctgg taggggggtgc tcagggccgg cgctgtgagg cacccctgc cccaaacctc 300
     ctctcaatt gtatcgccc agacctggat ctccgcttca ccatcaagtt ccaggagttat 360
10   agccctaatt tctggggca cgagttccgc tcgcaccacg attactacat cattgccaca 420
     tcggatggga cccgggaggg cctggagagc ctgcagggag gtgtgtgcct aaccagagc 480
     atgaaggtgc ttctccgagt gggacaaagt ccccgaggag gggctgtccc ccgaaaacct 540
     gtgtctgaaa tgccatgga aagagaccga ggggcagccc acagcctgga gcctggaaag 600
     gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgctga aggccccctg 660
15   cccctccca gcatgcctgc agtggctggg gcagcagggg ggctggcgct gctcttgctg 720
     ggcgtggcag gggctgggg tgccatgtgt tggcggagac ggcggccaa gcctteggag 780
     agtcgcacc cttggcttggg ctccctcggg aggggagggg ctctggcct ggggggtgga 840
     gttggatgg gacctcgggg ggctgagcct ggggagctag ggatagtctt ggggggtggc 900
     gggctgcag atccccctt ctgcacccac tatgagaagg tgagtgtga ctatggcat 960
20   cctgtgtata tcgtgcagga tggggggggc cagaccctc caaacatcta ctacaaggta 1020
     tga                                         1023

```

<210> 28

```

25   <211> 3399
     <212> DNA
     <213> Homo sapiens

```

<300>

```

30   <302> telomerase reverse transcriptase
     <310> AF015950

```

<400> 28

```

35   atgcgcgcgc ctccccgtg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
     gtgtgcgcgc tggccacgtt cgtgcggcgc ctggggccccc agggctggcg gctgggtgcag 120
     cggggggacc cggcggttt cggcgcgctg gtggcccaat gcctgggtgt cgtccccctgg 180
     gacgcacggc cgcggccccc ctcccccctcc tcccgccagg tgccctgcct gaaggagctg 240
     gtggcccgag tgctgcagag gctgtgcgag cgcggcgca agaacatgtct ggcccttcggc 300
     ttccgcgtgc tggacggggc cgcggggggc ccccccgggg cttcacccac cagcgtgcgc 360
40   agtacactgc ccaacacggt gaccgacgca ctgcgggggaa gcggggcggt ggggtgctg 420
     ctgcgcgcgc tgggcgacga cgtgtgggtt cacctgtctt caccgtgcgc gctctttgtg 480
     ctggtggtctc ccagctgcgc ctaccagggtg tgccggccgc cgctgtacca gtcggcgct 540
     gcaactcagg cccggccccc gccacacgct agtggacccc gaaggcgctt gggatgcgaa 600
     cgggcctggg accatagcgt caggaggccc ggggtcccccc tgggcctgcg agccccgggt 660
45   gcgaggaggc gcggggggcag tgccagccga agtctggcg tggccaaagag gcccaggcg 720
     ggcgtgccc ctgaggccga gcggacgcgg gttggccagg ggtccctgggc ccacccgggc 780
     aggacgcgtg gaccgagtg ccgtgtttt tggatgtgtt caccgtcccg acccgcccgaa 840
     gaagccaccc ctgggggggg tgccgtcttc ggcacgcgcg actcccaccc atccgtggc 900
     cgcagcacc acgcggggccc cccatccaca tgccggccac cacttcctgc ggacacgcct 960
50   tggcccccgg tgcgtgcgcg gaccaagcac ttccctact cctcaggcga caaggagcag 1020
     ctgcggccct ctttcctact cagctctctg aggcccaggcc tgactggcgc tcggaggctc 1080
     gtggagacca tctttctggg ttccaggccc tggatgcac ggactccccg cagggtgccc 1140
     cgcctgcccc agcgtactg gcaaatgcgg cccctgttcc tggagctgt tggaaaccac 1200
     ggcgtgtcc cctacgggt gtcctcaag acgcactgcc cgctgcgagc tgccgtcacc 1260
55   ccagcagccg gtgtctgtgc ccgggagaag ccccgagggt ctgtggcgcc ccccgaggag 1320
     gaggacacag accccctgcg cctggtgcag ctgcctccgc agcacagcag cccctggcag 1380
     gtgtacggct tcgtgcgggc ctgcctgcgc cggctgggtc ccccgaggct ctggggctcc 1440
     aggacacaacg aacggccgtt cctcaggaaacc aacaagaatgt tcatttcctt ggggaaggcat 1500
     gcaagctct cgcgtcgagg gtcgacgtgg aagatgagcg tgccggactg cgcttggctg 1560
60   cgcaaggagcc cagggttgg ctgtgttccg gccgcagagc accgctctgc tgaggagatc 1620
     ctggccaagt tcctgcactg gtcgtatgatgt tggatgtgtc tgagctgtc caggctttc 1680
     ttttatgtca cggagaccac gtttcaaaag aacaggctt ttttctaccg gaagagtg 1740

```

	tggagcaagt	tgcaaaggcat	tggaatcaga	cagcaattga	agagggtgc	gctgcgggag	1800
	ctgtcgaaag	cagaggctcg	gcagcatcg	gaagccaggc	ccgcctcg	gacgtccaga	1860
	ctccgcttca	tccccaaagcc	tgacgggctg	cggccgattt	tgaacatgga	ctacgtcg	1920
	ggagccagaa	cgttcccgag	agaaaaagagg	gcccagcgtc	tcacctcgag	ggtaaggca	1980
5	ctgttcagcg	tgctcaacta	cgagcggg	cgccgcccc	gcctctgg	cgcctctgt	2040
	ctggggcttgg	acgatatcca	cagggcctgg	cgcaccc	tgctcg	gcggggcc	2100
	gaccggccgc	ctgagctgt	cttgc	gtggatgt	cgggcg	cgacaccatc	2160
	ccccaggaca	ggctcacgg	ggtcata	agcatcatca	aacccc	cacgtactc	2220
	gtgcgtcggt	atgcgttgtt	ccagaagg	gcccattgg	acgtccg	ggccttca	2280
	agccacgtc	ctacgttgc	agac	ccgtatgc	gacat	ggctcaccc	2340
	caggagacca	gcccgtg	ggat	gtcata	agag	cctgaat	2400
	gccagcgtg	gcctttc	cg	cgcttcat	gc	cgtgcgc	2460
	aggggcaagt	cctacgttca	gtg	atcccgc	atcc	ctccacgc	2520
	ctctgcagcc	tgtgtacgg	cgacat	aacaag	ttgc	tcggcg	2580
	gggctgctcc	tgcgtttgg	ggatgattt	ttgttgg	ca	cacccac	2640
	aaaaccttcc	tcaggacc	gttcc	gtcc	atgg	gttca	2700
	cggaaagacag	tggtgaactt	ccctgt	gacgagg	ttgg	atgg	2760
	cagatgccc	cccacgg	attt	tgcgg	tgct	ccggac	2820
	gaggtgcaga	gcgacta	cag	cgac	tcag	tctcac	2880
	aaccggcg	tcaagg	gag	tcgca	tctt	tttgcg	2940
	aagtgtcaca	gcctgtt	gat	gtgaac	tcc	gtgcac	3000
	atcttcaaga	tc	gcagg	agg	cat	gcagtc	3060
	tttcatc	aat	gtac	tttt	gtc	tgacac	3120
	tc	ccatc	ctt	ttt	gcgt	ggca	3180
	gcccggcc	ctctgc	cgagg	cgt	gc	caagg	3240
	aagctgactc	gacacc	gtt	ccact	tg	gacag	3300
	acgcagctg	gtcgg	ccgg	ctt	gtc	ggc	3360
	ccggactg	cctc	gac	gg	act	ccac	3399
30	<210>	29					
	<211>	567					
	<212>	DNA					
	<213>	Homo sapiens					
35	<300>						
	<302>	K-ras					
	<310>	M54968					
40	<400>	29					
	atgactgaat	ataaaactt	gttagtt	gctt	gtgg	tgccttg	60
	atcacgtca	tgc	aat	aat	ca	ttc	120
	aggaagcaag	tagt	ttt	ttt	at	ccat	180
	caagaggagt	atgc	ttt	ttt	ttt	ttt	240
	gtatttgc	taataa	atc	ttt	ttt	ttt	300
	aaaagagtta	aggact	tgt	ttt	ttt	ttt	360
	ccttctagaa	c	at	ttt	ttt	ttt	420
	tttattgaaa	atc	atc	atc	atc	atc	480
	cgagaaattc	gaa	aa	ttt	ttt	ttt	540
	tcaaagacaa	atc	atc	atc	atc	atc	567
55	<210>	30					
	<211>	3840					
	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
	<302>	mdr-1					
60	<310>	AF016535					
	<400>	30					

	atggatcttg	aaggggaccg	caatggagga	gcaaagaaga	agaactttt	taaactgaac	60
	aataaaagtg	aaaaagataa	gaagggaaag	aaaccaactg	tcaatgttatt	ttcaatgttt	120
	cgctattcaa	attggcttga	caagttgtat	atgggtgttg	gaactttggc	tgccatcatc	180
5	catggggctg	gacttcctct	catgtatctg	gtgttggag	aatgacaga	tatctttgca	240
	aatgcaggaa	atttagaaga	tctgtatgtca	aacatcaacta	atagaagtga	tatcaatgtat	300
	acagggttct	tcatgaatct	ggaggaagac	atgaccagggt	atgccttatta	ttacagtggaa	360
	attgggtctg	gggtgtgtgt	tgctgtttac	attcagggtt	cattttgggt	cctggcagct	420
10	ggaagacaaa	tacacaaaat	tagaaaacag	ttttttcatg	ctataatgcg	acaggagata	480
	ggctggtttg	atgtgcacga	tgttggggag	cttaacaccc	gacttacaga	tgtatgtctcc	540
	aagattaatg	aaggaaatgg	tgacaaaattt	ggaatgttct	ttcagtcaat	gccaacattt	600
	ttcactgggt	ttatagtagg	atttacacgt	gttggaaagc	taacccttgt	gattttggcc	660
	atcagtccctg	ttcttggact	gtcaatgtct	gtctgggcaa	agatactatc	ttcattttact	720
15	gataaagaac	tcttagcgta	tgcaaaaagct	ggagcagtag	ctgaagaggt	cttggcagca	780
	attagaactg	tgattgtcc	tggggacaaa	aagaaagaac	ttgaaaggt	caacaaaaat	840
	ttagaagaag	ctaaaagaat	tggggaaag	aaagcttata	cagccaatat	ttctataggt	900
	gctgtttcc	tgctgtatct	tgcatcttat	gctctggct	tctggatgg	gaccacccctg	960
	gtctctctcg	ggaaatattc	tattggacaa	gtactactg	tattttctgt	attaatttggg	1020
	gcttttagtg	ttggacagggc	atcttcaagc	attgaagcat	ttgcaatgc	aaggaggagca	1080
20	gcttatgaaa	tcttcaagat	aattgataat	aagccaagta	ttgacagcta	ttcgaagaggt	1140
	gggcacaaaac	cagataatat	taagggaaat	ttggaattca	gaaatgttca	cttcagttac	1200
	ccatctcgaa	aagaagttaa	gatcttgaag	ggtctgaacc	tgaaggtgc	gagtggcag	1260
	acggtggccc	tgggtggaaa	cagtgctgt	gggaagagca	caacagtcca	gctgatgcag	1320
	aggtctatg	accccacaga	ggggatggtc	agtgttgcgt	gacaggatgt	taggaccata	1380
	aatgtaaagg	ttctacggg	aatcattgtt	gtgggtggc	aggaacctgt	attgtttgcc	1440
25	accacgatag	ctgaaaacat	tcgctatggc	cgtggaaaat	tcaccatgg	tgagatttag	1500
	aaagctgtca	aggaaagccaa	tgccctatgc	tttcatatga	aactgcctca	taaatttgc	1560
	accctgggt	gagagagagg	ggccctgggt	agtgggtggc	agaaggcagag	gatcgccatt	1620
	gcacgtgccc	tgggtcgaa	ccccaaagtc	ctcctgtgg	atgaggccac	gtcagccctg	1680
30	gacacagaaa	gcgaagcagt	ggttcagggt	gctctggata	aggccagaaa	aggtcgacc	1740
	accattgtga	tagctcatcg	tttgcatac	gttcgtatg	ctgacgtcat	cgctggttc	1800
	gatgatggag	tcattgttga	gaaaggaaat	catgtatga	tcatgaaaga	gaaaggcatt	1860
	tacttcaaac	ttgtcacaat	gcagacagca	gaaaatgaag	ttgaattaga	aatgcagct	1920
	gatgaatcca	aaagtgaat	tgatgcctt	gaaatgtctt	caaatgattc	aagatccagt	1980
	ctaataagaa	aaagatcaac	tcgttaggat	gtccctggat	cacaagccca	agacagaaaag	2040
35	cttagtacca	aagggtct	ggatgaaagt	ataccctccag	tttcccttttgc	gaggattatg	2100
	aagcttaaat	taactgaatg	gccttattttt	gttgggtgtt	tattttgtgc	cattataat	2160
	ggaggccctgc	aaccaggcatt	tgcaataataa	ttttcaaaa	ttttaggggt	ttttacaaga	2220
	attgtatgtc	ctgaaaacaaa	acgacagaat	agtaacttgt	tttctactatt	gtttctagcc	2280
40	cttggatttta	tttcttttat	tacatttttc	cttcagggtt	tcacatttgg	caaagctgg	2340
	gagatcctca	ccaagcgct	ccgatacatg	gtttccgtat	ccatgctcag	acaggatgtg	2400
	agttgggttgc	atgaccctaa	aaacaccact	ggagcatttg	ctaccaggct	cgc当地atgt	2460
	gctgtctcaag	ttaaaggggc	tataggttcc	aggcttgcgt	taatttccca	gaatatacg	2520
	aatcttggga	caggaataat	tatacttcc	atctatgtt	ggcaactaac	actgttactc	2580
	ttagcaatttgc	taccatcat	tgcaatagca	ggagttgttgc	aatgaaaat	gttgcgttgc	2640
45	caagcactga	aagataagaa	agaactagaa	ggtgctggg	agatgcgtac	tgaagcaata	2700
	gaaaacttcc	gaaccgtgt	ttctttgtact	caggagcaga	agtttgaaca	tatgtatgt	2760
	cagagtttgc	aggttccat	cagaaaactct	ttggggaaag	cacacatctt	tggatttaca	2820
	ttttcttca	cccaggcaat	gtatgtttt	tcctatgtct	gatgtttccg	gtttggagcc	2880
	tacttgggttgc	cacataaact	catgagcttt	gaggatgttgc	tgtttagtatt	ttcagctgtt	2940
50	gtctttgggt	ccatggccgt	ggggcaagtc	agttcatttg	ctcctgtacta	tgccaaagcc	3000
	aaaatatacg	cagcccacat	catcatgtatc	attgaaaaaa	ccctttgtat	tgacagctac	3060
	agcacggaa	gcctaatttcc	gaacacatttgc	gaaggaaaat	tcacatttgg	tgaagtttgc	3120
	ttcaactatc	ccacccgacc	ggacatccca	gtgcttcagg	gactgagct	ggaggtgaag	3180
	aaggggccaga	cgctggctt	ggtggggcagc	agtggctgt	ggaagagcac	agtggccag	3240
55	ctccctggagc	ggttctacga	cccccttggca	ggggaaagtgc	tgcttgcatt	caaagaaaata	3300
	aagcgactga	atgttcactgt	gtcccgagca	cacctgggca	tcgtgtccca	ggagcccatc	3360
	ctgtttgact	gcagcatgtc	tgagaacattt	gcctatggag	acaacagccg	gggtgggttca	3420
	caggaaagaga	ttgtgagggt	agcaaaggag	gccaacatata	atgccttcat	cgagtactg	3480
60	cctaataaaat	atagcactaa	agtaggagac	aaaggaactc	agtccttgc	tggccagaaa	3540
	caacgcatttgc	ccatagctcg	tgcccttgc	agacagccct	atattttgc	tttggatgaa	3600
	gccacgtcag	ctctggatatac	agaaagtgc	aaagggttgc	aagaagccct	ggacaaagcc	3660
	agagaaggcc	gcacactgc	tgtgatttgc	caccgcctgt	ccaccatcca	aatgcagac	3720

ttaatagtgg tgtttcagaa tggcagagtc aaggagcatg gcacgcata gcagctgctg 3780
gcacagaaaag gcatctattt ttcaatggtc agtgtccagg ctggaacaaa gcgccagtga 3840

5 <210> 31
<211> 1318
<212> DNA
<213> Homo sapiens

10 <300>
<302> UPAR (urokinase-type plasminogen activator receptor)
<310> XM009232

15 <400> 31
atgggtcacc cggcgctgct gcccgtctg ctgctgtcc acacctgcgt cccagccctct 60
tggggcctgc ggtgcgtca gtgtaaagacc aacggggatt gcccgtgttga agagtgcgc 120
ctggacagg acctctgcag gaccacgatc gtgcgttggt gggagaagg agaagagctg 180
gactgtgtgg aaaaaagctg taccactca gagaagacca acaggaccct gagctatcg 240
actggcttga agatcaccag ccttaccgag gttgtgttg gtttagactt gtgcaaccag 300
20 ggcactctg gccgggctgt cacatttcc cgaagccgtt acctcgaatg catttcctgt 360
ggctcatcag acatgagctg tgagaggggc cggcaccaga gcctgcagtgc cgcagccct 420
gaagaacagt gcctggatgt ggtgaccac tggatccagg aaggtaaga agggtgtcca 480
aaggatgacc gccacctccg tggctgtggc taccttccc gctgcccggg ctccaatgg 540
ttccacaaca acgacacccctt ccacttcctg aaatgctgca acaccaccaa atgcaacgag 600
25 ggcaccaatcc tggagcttga aaatctggcg cagaatggcc gccagtgttgc cagctgc 660
ggaaacagca cccatggatg ctcctctgaa gagactttcc tcatttgcgtt cggaggcccc 720
atgaatcaat gtctggtagc caccggcact cacaatggcccaaaaacaaatggta 780
agaggctgtg caaccgcctc aatgtgccaa catggccacc tgggtgacgc cttcagcatg 840
aaccacattt atgtctctgt ctgtactaaa aatggctgtt accaccacca cttggatgtc 900
30 cagttccgcgtt gttggggctgc tcctcagccct gcccctgcacc atctcagccctt caccatcacc 960
ctgtcaatgtt ctggccagact gttggggaggtt actcttcctt ggacctaacc ctgaaatccc 1020
cctctctgccc ctggctggat cggggggacc ctttgcctt tccctcggtt cccagcccta 1080
cagacttgcgtt gtgtgacccctt agggcactgtt gcccacccctt ctgggcctca gttttcccg 1140
ctatgaaaac agtatctca caaagttgtt tgaaggcagaa gagaaaaagctt ggaggaaggc 1200
35 cgtggggccaa tgggagagctt ctttttatttttta tacttacata aagatttttt accagtgg 1318
tattaatttttatttttta tacttacata aagatttttt accagtgg 1318

40 <210> 32
<211> 636
<212> DNA
<213> Homo sapiens

45 <300>
<302> Bak
<310> U16811

50 <400> 32
atgggttcgg ggcaaggccc aggttcctccc aggcaggagt gcccgttgc 60
tctgtttctg aggacgggtt agccaggac acagaggagg tttccgcag ctacgttttt 120
taccgccttc agcaggaaca ggaggctgaa ggggtggctg cccctgcga cccagagatg 180
gtcaccttac ctctgcacc tagcagcacc atggggcagg tgggacggca gtcgccttc 240
atcggggacg acatcaaccc acgttatgtac tcagatgttcc agaccatgtt gcagcaccc 300
cagcccacgg cagagaatgc ctatgatgttcc ttccaccaaaa ttgcacccag cctgttttag 360
55 agtggcatca attggggccg tgggtggctt ctctgggtt tcggcttccctt cttggcccta 420
cacgtctacc agcatggccctt gactggcttc ctggccagg tgacccgtt cgtggcgtac 480
ttcatgttgc atcaactgttcc ttccgggtgg attgcacaga ggggtggctg ggtggcagcc 540
ctgaacttgg gcaatggtcc catccgttac gtgtggctt ttctgggtt ggttctgtt 600
ggccagtttgg tggtaacgttacaaat tcatgtt 636

60

<210> 33

<211> 579
<212> DNA
<213> Homo sapiens

5 <300>
<302> Bax alpha
<310> L22473

<400> 33

10 atggacgggt ccggggagca gcccagaggc ggggggcccc caagctctga gcagatcatg 60
aagacagggg ccctttgtc tcagggttc atccaggatc gagcaggcg aatgggggg 120
gaggcacccg agctggccct ggaccgggtg ctcaggatg cgtccaccaa gaagctgagc 180
gagtgtctca agcgcatecg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
ggccggctgg acacagactc ccccgagag gtcttttcc gagtggcagc tgacatgttt 300
15 tctgacggca acttcaactg gggccgggtt gtcccccctt tctactttgc cagcaaactg 360
gtgctcaagg ccctgtgcac caagggtcccg gaactgtatca gaaccatcat gggctggaca 420
ttgacttcc tccgggagcg gctgtgggc tggatccaag accagggtgg ttgggacggc 480
ctctctct actttggac gcccacgtgg cagaccgtga ccatcttgtt ggcgggagtg 540
20 ctcaccgcct cgctcaccat ctggaagaag atggctga 579

<210> 34
<211> 657
<212> DNA
25 <213> Homo sapiens

<300>
<302> Bax beta
<310> L22474

30 <400> 34

atggacgggt ccggggagca gcccagaggc ggggggcccc caagctctga gcagatcatg 60
aagacagggg ccctttgtc tcagggttc atccaggatc gagcaggcg aatgggggg 120
gaggcacccg agctggccct ggaccgggtg ctcaggatg cgtccaccaa gaagctgagc 180
35 gagtgtctca agcgcatecg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
ggccggctgg acacagactc ccccgagag gtcttttcc gagtggcagc tgacatgttt 300
tctgacggca acttcaactg gggccgggtt gtcccccctt tctactttgc cagcaaactg 360
gtgctcaagg ccctgtgcac caagggtcccg gaactgtatca gaaccatcat gggctggaca 420
40 ttgacttcc tccgggagcg gctgtgggc tggatccaag accagggtgg ttgggtgaga 480
ctctcaagg ctctcaccc ccaccaccgc gcccctacca cggccctgc cccaccgtcc 540
ctgccccccg ccactcctct gggaccctgg gccttctggc gcaggtcaca gtgggtgcct 600
ctccccatct tcagatcatc agatgtggtc tataatgcgt ttcccttagc tgtctga 657

45 <210> 35
<211> 432
<212> DNA
<213> Homo sapiens

50 <300>
<302> Bax delta
<310> U19599

<400> 35

55 atggacgggt ccggggagca gcccagaggc ggggggcccc caagctctga gcagatcatg 60
aagacagggg ccctttgtc tcagggatg attgccgcgg tggacacaga ctccccccga 120
gaggctttt tccgagtggc agctgacatg tttctgacg gcaacttcaa ctggggccgg 180
gttgtcgccc ttttctactt tgccagcaaa ctgggtgcata aggccctgtg caccagggtg 240
ccggaactga tcagaaccat catgggctgg acattggact tcctccggga gcccgtgtg 300
60 ggctggatcc aagaccaggg tgggtggac ggcctctct cctactttgg gacgccccacg 360
tggcagaccc tgaccatctt tgtggggga gtgctcaccg ctcgctcac catctggaaag 420
aagatgggct ga 432

5 <210> 36
 <211> 495
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> Bax epsilon
 <310> AF007826

15 <400> 36
 atggacgggt ccggggagca gcccagaggc ggggggcccc caagctctga gcagatcatg 60
 aagacagggg ccctttgct tcagggttc atccaggatc gagcaggcg aatgggggg 120
 20 gaggcacccg agctggccct ggaccgggt cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca agcgcatcgg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gccgcgtgg acacagactc ccccccggag gtcttttcc gagtggcagc tgacatgttt 300
 tctgacggca acttcaactg gggccgggtt gtgccttctt tctactttgc cagcaaactg 360
 25 gtgctcaagg ctggcgtaaa atggcgtat ctgggctcac tgcaacctct gcctcctggg 420
 ttcAACGAT tcacctgcct cagcatccca aggagctggg attacaggcc ctgtgcacca 480
 aggtgccgga actga 495

25 <210> 37
 <211> 582
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> bcl-w
 <310> U59747

35 <400> 37
 atggcgaccc cagcctcgcc cccagacaca cgggctctgg tggcagactt ttaggttat 60
 aagctgaggc agaagggtta tgtctgtgg gctggcccg gggagggccc agcagctgac 120
 ccgtgcacc aagccatgcg ggacgttgg gatgagttcg agacccgctt ccggcgcacc 180
 ttctctgatc tggcgctca gtcgtatgtg accccaggtt cagcccagca acgcttcacc 240
 40 caaggctccg acgaactttt tcaagggggc cccaaactggg gccccttgc agccttcattt 300
 gtccttgggg ctgcactgtg tgctgagagt gtcaacaagg agatggaaacc actgggtggg 360
 caagtgcagg agtggatggg ggcttacctg gagacgcggc tggctgactg gatccacagc 420
 agtgggggct gggcgagtt cacagctcta tacggggac gggcccttgg gggggcggg 480
 cgtctcgccgg aggggaactg ggcatacgatg aggacagtgc tgacggggc cgtggcactg 540
 gggggcccttgg taactgttagg ggcctttttt gctagcaagt ga 582

45 <210> 38
 <211> 2481
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> HIF-alpha
 <310> U22431

55 <400> 38
 atggaggggcg ccggcgccgc gaacgacaag aaaaagataa gttctgaacg tcgaaaagaa 60
 aagtctcgag atgcaggccag atctcgccga agtaaaagaat ctgaagttt ttatgagctt 120
 gtcatcatgt tgccacttcc acataatgtt agttcgcatt ttgataaggc ctctgtatg 180
 aggcttacca tcaatgtt gctgtgttggg aaacttctgg atgttgtga ttggatatt 240
 60 gaagatgaca tgaaagcaca gatgtttttt gtttatttga aagccttggg tggttttgtt 300
 atggctctca cagatgtatgg tgacatgtt tacattttctt gataatgtt gaaatataatgtt 360
 qgattaaactc aqtttqaact aactqqacac aqgtgttttq atttactca tccatgtgac 420

5 catgaggaaa tgagagaaaat gcttacacac agaaaatggcc ttgtaaaaaa gggtaaagaa 480
 caaaacacac agcgaagctt ttttctcaga atgaagtgt ccctaactag ccgaggaaga 540
 actatgaaca taaagtctgc aacatggaa gtattgcact gcacaggcca cattcacgt 600
 tatgatacca acagtaacca acctcagtgt gggtataaga aaccacctat gacctgctt 660
 5 gtgctgattt gtgaaccat tcctcaccca tcaaattatgg aaatttcctt agatagcaag 720
 actttcctca gtcgacacag cctggatatg aaattttctt atttgtatga aagaattacc 780
 gaattgatgg gatatgagcc agaagaactt tttaggccgt caatttatga atattatcat 840
 gctttggact ctgatcatct gaccaaaact catcatgata tgtttactaa aggacaagtc 900
 accacaggac agtacaggat gcttgccaaa agagggtggat atgtctgggt tgaaactcaa 960
 10 gcaactgtca tatataaacac caagaattct caaccacagt gcattgtatg tgtgaattac 1020
 gttgtgagtg gtattattca gcacgactt attttctccc ttcaacaaac agaatgtgtc 1080
 cttaaacccgg ttgaatctt agatatgaaa atgactcagc tattcacca agttgaatca 1140
 gaagatacaa gtagcctt tgacaaactt aagaaggaaac ctgatgctt aactttgctg 1200
 15 gcccccagccg ctggagacac aatcatatct ttagatttg gcagcaacga cacagaaaact 1260
 gatgaccagc aacttggaga agtaccatta tataatgtatg taatgtcccc ctcacccaaac 1320
 gaaaattttac agaataaaaa tttggcaatg tctccattac ccaccgctga aacgccaaag 1380
 ccacttcgaa gtagtgcgtg ccctgcactc aatcaagaag ttgcattaaa attagaacca 1440
 aatccagagt cactggaaat ttcttttacc atgccccaga ttcagatca gacacctagt 1500
 ccttccgatg gaagcactt acaaagttca cctgaggcta atagtcccag tgaatattgt 1560
 20 ttttatgtgg atagtatgat ggtcaatgaa ttcaagtttg aattggtaga aaaacttttt 1620
 gctgaagaca cagaagcaaa gaacccattt tctactcagg acacagattt agacttggag 1680
 atgttagctc cctatatccc aatggatgt gacttccagt tacgttccctt cgatcagttg 1740
 tcaccattag aaagcagttc cgcaagccct gaaagcgc当地 gtcctcaaag cacagttaca 1800
 25 gtattccagc agactcaaat acaagaacct actgctaatg cgtatggaa acattaaaat attgattgca 1920
 tctccatctc ctacccacat acataaagaa actactatgtt ccacatcatc accatataga 1980
 gatactaaa gtcggacagc ctcaccaaaac agagcaggaa aaggagtcat agaacagaca 2040
 gaaaatttc gatccaaagag ccctaacgtg ttatctgtcg ctttgagtca aagaactaca 2100
 30 gttcctgagg aagaactaaa tccaaagata cttagtttc agaatgtca gagaaagcga 2160
 aaaatggAAC atgatggttc acttttcaa gcagtaggaa ttggAACattt attacagcag 2220
 ccagacgatc atgcagctac tacatcaatttcttggaaac gtgtaaaagg atgcaatct 2280
 agtgaacaga atggaatgga gcaaaagaca attattttaa taccctctga tttagcatgt 2340
 agactgtgg ggcaatcaat ggatgaaagt ggattaccac agctgaccag ttatgattgt 2400
 gaagttaatg ctccatataca aggacgaga aacctactgc agggtgaaga attactcaga 2460
 35 gcttggatc aagttaactg a 2481

40 <210> 39
 <211> 481
 <212> DNA
 <213> Homo sapiens

<300>
 <302> ID1
 45 <310> X77956

<400> 39
 ataaaagtcg ccagtggcag caccgcccacc gcccggccgg gccccagctg cgcgcgtgaag 60
 gccggcaaga cagcgagcgg tgccccggcag gtgggtgcgt gtctgtctga gcagagcgtg 120
 50 gccccatctcgc gctggggggcgcg cgcctgcctg ccctgctgga cgagcagcag 180
 gtaaacgtgc tgctctacga catgaacggc tgttactac gcctcaagga gctgggtgcc 240
 accctgcccc agaaccgcaa ggttggagcaag gtggagatc tccagcacgt catcgactac 300
 atcaggggacc ttcaagttggc gctgaactcg gaatccgaag ttgggacccc cggggggccga 360
 55 ggggctggccgg tccggggtctc gctcagcacc ctcaacggcg agatcagcgc cctgacggcc 420
 gaggcggcat gctgttccctgc ggacgatcgc atcttgttgc gctgaatggt gaaaaaaaaaa 480
 a 481

60 <210> 40
 <211> 110
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> ID2B
 <310> M96843

10 <400> 40
 tgaaaggcctt cagtcgggtg aggtccatta ggaaaaacag cctgttggac caccgcctgg 60
 gcatctccca gagcaaaacc ccggatg acctgatgag cctgctgtaa 110

15 <210> 41
 <211> 486
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> ID4
 <310> Y07958

25 <400> 41
 atgaaggcgg tgagccccgt ggcgcctcg ggccgcagg cgccgtcggg ctgcggcggc 60
 ggggagctgg cgctgcgtg cctggccag cacggccaca gcctgggtgg ctccgcagcc 120
 gcggcggcgg cggcggcggc agcgcgtgt aaggcggccg aggccggcgc cgacgagccg 180
 gcgtgtgcc tgcagtgcga tatgaacgac tgctatagcc gcctgcggag gctgggtgcc 240
 accatcccgc ccaacaagaa agtcagcaaa gtggagatcc tgcagcacgt tataactac 300
 atccctggacc tgcagctggc gctggagacg caccggccc tgctgaggca gecaccaccg 360
 cccgccgcgc cacaccaccc ggccgggacc tgccagecg cgccgcgcg gaccccgctc 420
 actgcgtca acaccgaccc ggccggcgcg gtgaacaagc agggcgacag cattctgtc 480
 cgctga 486
30
35 <210> 42
 <211> 462
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> IGF1
 <310> NM000618

45 <400> 42
 atggaaaaaa tcagcagtct tccaacccaa ttatTTAAGT gctgttttg tgatttcttg 60
 aaggTGAAGA tgcacaccat gtcctcctcg catctcttct acctggcgct gtgcctgctc 120
 accttacca gctctgccc ggctggaccc gagacgtct gcggggctga gctgggtggat 180
 gctttcagt tcgtgtgtgg agacaggggc ttTTATTCa acaagccac agggatggc 240
 tccagcagtc ggagggcgc tcagacaggc atcgtggatg agtgcgtctt ccggagctgt 300
 gatctaagga ggctggagat gtattgcgc cccctcaagc ctgccaagtc agtcgctct 360
 gtccgtgcc agcgccacac cgacatgccc aagacccaga aggaagtaca ttGAAGAAC 420
 gcaagttagag ggagtgcagg aaacaagaac tacaggatgt ag 462
50
55 <210> 43
 <211> 591
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> PDGFA
 <310> NM002607

65 <400> 43
 atgaggacct tggcttgcct gctgttcctc ggctgcggat acctcgccca tggctggcc 60

5 gaggaagccg agatcccccg cgaggtgate gagaggctgg ccgcgcgtca gatccacago 120
 atccggacc tccagcgact cctggagata gactccgtag ggagttaga ttctttggac 180
 accagcctga gagctcacgg ggtccacgccc actaagcatg tgcccggaaa gcggcccccgt 240
 cccattcggaa ggaagagaag catcgaggaa gctgtcccgct ctgtctgcaa gaccaggacg 300
 gtcatttacg agattcctcg gagtcaggc gaccccacgt ccgcacaactt cctgatctgg 360
 ccccccgtcg tggaggtgaa acgctgcacc ggctgctgca acacgagcag tgtcaagtgc 420
 cagccctccc gcgtccacca ccgcagcgcc aagggtggcca aggtgaaata cgtcaggaag 480
 aagccaaaat taaaagaagt ccaggtgagg ttagaggagc atttggatg cgcctgcgcg 540
 accacaagcc tgaatccgga ttatcggaa gaggacacgg atgtgaggtg a 591
 10

<210> 44
 <211> 528
 <212> DNA
 15 <213> Homo sapiens

<300>
 <302> PDGFRA
 <310> XM003568

20

<400> 44
 atggccaagc ctgaccacgc taccagtgaa gtctacgaga tcatggtaa atgctggAAC 60
 agtgagccgg agaagagacc ctccctttac cacctgagtg agattgtgaa gaatctgctg 120
 cctggacaat ataaaaaagag ttatgaaaaaa attcacctgg acttcctgaa gagtgaccat 180
 25 cctgctgtgg cacgcacatcg tggactca gacaatgcacat atattgggtt cacctacaaa 240
 aacgaggaag aacaatcgaa ggactgggag ggtggctctgg atgagcagag actgagcgt 300
 gacagtggct acatcatcc tctgcctgac attgaccctg tccctgagga ggaggacctg 360
 ggcaagagga acagacacag ctcgcagacc tctgaagaga gtgcatttgc gacgggttcc 420
 30 agcagtccca ccttcatcaa gagagaggac gagaccattt aagacatcgacatgtggat 480
 gacatcgccca tagactcttc agacctggtg gaagacagct tcctgtaa 528

<210> 45
 <211> 1911
 35 <212> DNA
 <213> Homo sapiens

<300>
 <302> PDGFRB
 40 <310> XM003790

<400> 45
 atgcggcttc cgggtgcgtat gccagctctg gcccctaaag gcgagctgt gttgtgtct 60
 ctctgtttac ttctggaaacc acagatctct caggccctgg tcgtcacacc cccggggcca 120
 45 gagctgttcc tcaatgttcc cagcaccttc gttctgaccc gtcgggttc agctccgggt 180
 gtgtggaaac ggtatgtccca ggagccccca caggaaatgg ccaaggccca ggatggcacc 240
 ttctccagcg tgctcacact gaccaacccctc actgggtctag acacgggaga atactttgc 300
 acccacaatg actccccgtgg actggagacc gatgagcggaa acgggtctca catctttgtg 360
 ccagatccccca ccgtgggtt cctccctaat gatgccgagg aactattcat ctttctcaccg 420
 50 gaaataactg agatcaccat tccatgccga gtaacagacc cacagctggt ggtgacactg 480
 cacgagaaga aaggggacgt tgcaactgcct gtcccctatg atcaccacgc tggctttct 540
 ggtatcttg aggacagaag ctacatctgc aaaaccacca ttggggacag ggaggtggat 600
 tctgtatgcct actatgtcta cagactccag gtgtcatccca tcaacgtctc tgtgaacgca 660
 gtgcagactg tggtccggca ggggtggaaac atcaccctca tggcattgt gatcgggaaat 720
 55 gaggtggta acttcgagtg gacatacccc cgccaaagaaa gtggggggct ggtggagccg 780
 gtgactgact tcctcttggaa tatgccttac cacatcccgct ccatcctgca catccccagt 840
 gccgagtttag aagactcgcc gacccatccca tgcaatgtga cggagagtgt gaatgaccat 900
 caggatgaaa aggccatcaa catcacccgtg gttggagacg gctacgtcg gtcctggaa 960
 gaggtggca cactacaatt tgctgagctg catcgagcc ggacactgca ggttagtgg 1020
 60 gaggcctacc caccggccac tgcctgtgg ttcaaaagaca accgcaccct gggcgactcc 1080
 agcgctggcg aaatcgccct gtccacgcgc aacgtgtcg agaccggta tgtgtcagag 1140
 ctgacactgg ttgcgtgaa ggtggcagag gtcggccact acaccatcgcc ggccttccat 1200

5 gaggatgctg aggtccagct ctcccttccag ctacagatca atgtccctgt ccgagtgctg 1260
 gagctaagtg agagccaccc tgacagtggg gaacagacag tccgctgtcg tggccggggc 1320
 atgcccccagc cgaacatcat ctggctgtcc tgcagagacc tcaaaaaggtg tccacgttag 1380
 ctgcccccac cgctgctggg gaacagttcc gaagaggaga gccagctgga gactaacgtg 1440
 acgtactggg aggaggagca ggagttttag gttgttagca cactgcgtct gcagcacgtg 1500
 gatcgccac tgcgggtcgctg ctgcacgtcg cgcaacgtcg tggccagga cacgcaggag 1560
 gtcatctgtgg tgccacactc cttgccttt aaggtgggtg tgatctcagc catcctggcc 1620
 ctgggtgtgc tcaccatcat ctcccttatac atcctcatca tgcttggca gaagaagcca 1680
 cgttacgaga tccgatgaa ggtgattttag tctgtgagct ctgacggcca tgagtacatc 1740
 10 tacgtggacc ccatgcagct gcccotatgac tccacgtggg agctgccg 1800
 gtgctgggac gcaccctcg ctctggggcc tttggccagg ttgtggaggc cacgggtcat 1860
 ggcctgagcc atttcaagc cccaaatgaaa gtggccgtca aaaaatgttta a 1911

15 <210> 46
 <211> 1176
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> TGFbeta1
 <310> NM000660

25 <400> 46
 atgcccgcctt ccgggctgctg gctgctgccc ctgctgctac cgctgctgtg gctactgggt 60
 ctgacgcctg gccccggcccg cgcgggacta tccacctgca agactatcgca catggagctg 120
 gtgaagcgga agcgcatcgca ggccatccgc ggccagatcc tgcgttccatcgat gccggctcgcc 180
 agcccccccgaa gccagggggg ggtgcccggcc ggcccgctgc cccggggccgt gctcgccctg 240
 tacaacagca cccgcgaccg ggtggccggg gagagtgcag aaccggagcc cgagccttag 300
 30 gccgactact acgccaaggg ggtcaccggc gtgctaattgg tggaaacccca caacgaaatc 360
 tatgacaagt tcaaggcagag tacacacacgc atatatatgt tcttcaacac atcagagctc 420
 cgagaagcggt tacctgaacc cgtgttgc tcccgccggcag agctgcgtct gctgaggagg 480
 ctcaagttaa aagtggagca gcaacgtggag ctgttaccaga aatacagcaa caattccctgg 540
 cgatcacctca gcaaccggct gctggccaccc acgcactgc cagagtgggtt atcttttgat 600
 35 gtcaccggag ttgtgcggca gtgggttggc cgtgggggg aaatttgggg ctggccctt 660
 agccccccact gtcctgttgc cagcaggat aacacactgc aagtggacat caacgggttc 720
 actaccggcc gccgagggttgc cctggccacc attcatggca tgaacccggcc ttccctgttt 780
 ctcatggcca ccccgctggc gaggggcccg catctgcggaa gctccggca cccggcggcc 840
 ctggacacca actattgtt cagctccacg gagaagaact gtcgtgtcg gcaagctgtac 900
 40 attgacttcc gcaaggaccc tgggttggaa tggatccacg agcccaagggtt ctaccatgccc 960
 aacttctgcc tcggccctgt cccctacatt tggagcctgg acacgcgttca cagcaagggtc 1020
 ctggccctgtt acaaccagca taacccgggc gcttcggccgg cggcgctgtc cgtgcccggc 1080
 gcgctggagcc cgctgcccatt cgtgtactac gtggggccca agcccaagggtt ggagcagctg 1140
 tccaacatga tcgtgcgtct ctgcacgtgc agctga 1176

45 <210> 47
 <211> 1245
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> TGFbeta2
 <310> NM003238

55 <400> 47
 atgcactact gtgtgctgag cgctttctg atcctgcattc tggtcacgggt cgcgctcagg 60
 ctgtctaccc tgcacactt cgtatggac cagttcatgc gcaagaggat cgaggcgatc 120
 cgcggccaga tcctgagca gctgaagctc accagtcggcc cagaagacta tcctgagccc 180
 60 gaggaagtcc ccccgagggtt gattccatc tacaacagca ccagggtt gctccaggag 240
 aaggcgagcc ggagggccggc cgcctgcgtt cgcgagagga ggcacgaaaga gtactacgccc 300
 aaggagggttt aaaaaataga catggccccc ttcttccctt ccgaaaatgtc catccggccc 360

actttctaca gaccctactt cagaattgtt cgatttgacg ttcagcaat ggagaagaat 420
 gctccaatt tggtaaagc agagttcaga gtcttcgtt tgcagaaccc aaaagccaga 480
 gtgcctgaac aacggatga gcttatcatcg attctcaagt ccaaagattt aacatctcca 540
 acccagcgct acatcgacag caaagttgtg aaaacaagag cagaaggcga atggctctcc 600
 5 ttcatgtaa ctgatgtgt tcataaatgg cttcaccata aagacaggaa cctgggattt 660
 aaaataagct tacactgtcc ctgctgact tttgtaccat ctaataatta catcatccca 720
 aataaaagtg aagaactaga agcaagattt gcaggttattt atggcaccc cacatatacc 780
 agtggtgatc agaaaactat aaagtcact aggaaaaaaaaa acagtggaa gaccccacat 840
 ctcctgctaa tgttattgcc ctcctacaga cttgagtcac aacagaccaa ccggcggaag 900
 10 aacgtgctt tggatcgcc ctattgttt agaaatgtgc aggataattt ctgcctacgt 960
 ccactttaca ttgatttcaa gaggatcta ggggtggaaat ggatacacga acccaaagg 1020
 tacaatgcca acttctgtgc tggagcatgc ccgtattttat ggagttcaga cactcagcac 1080
 agcagggtcc tgagttata taataccata aatccagaag catctgttc tccttgctc 1140
 gtgtcccaag atttagaacc tctaaccatt ctctactaca ttggccaaac acccaagatt 1200
 15 gaacagcttt ctaatatgtat tgtaaagtct tgcaaatgca gctaa 1245

<210> 48
 <211> 1239
 20 <212> DNA
 <213> Homo sapiens

<300>
 <302> TGFbeta3
 25 <310> XM007417

<400> 48
 atgaagatgc acttgcaaa ggctctgggt gtcctggccc tgctgaacctt tgccacggc 60
 agcctctc tgcacttgc caccacccgt gacttcggcc acatcaagaa gaagagggtg 120
 30 gaagccatta ggggacagat cttgagcaag ctcaggctca ccagcccccc tgagccaacg 180
 gtgtatggcc acgtccctta tcaggtccctg gcccttaca acagcacccgg ggagctgctg 240
 gaggagatgc atggggagag ggaggaaggc tgcacccagg aaaacaccga gtcggaatac 300
 tatgccaaag aaatccataa attcgacatg atccagggggc tggcgagca caacgaactg 360
 gctgtctgcc ctaaaggaaat tacatccaaat gtttccgtt tcaatgtgtc ctcagtggag 420
 35 aaaaatagaa ccaacctatt ccggcagaa ttccgggtt tgcgggtccc caacccccc 480
 tctaagcgga atgagcaggc gatcgagtc ttccagatcc ttccggcaga tgagcacatt 540
 gccaaacacgc gctatatacg tggcaagaat ctggccacac ggggcactgc cgagtggctg 600
 tccttgatg tcactgacac tgcgttgc tggctgttga gaagagagtc caacttaggt 660
 ctagaaatca gcattcaatc tccatgtcaca acctttcagc ccaatggaga tattctggaa 720
 40 aacattcacg aggtgatgaa aatcaaattt aaaggcgtgg acaatgagga tgaccatggc 780
 cgtggagatc tggggcgcc caagaagcag aaggatcacc acaaccctca tctaattctc 840
 atgatgatc ccccacaccc gctcgacaaac ccggggccagg ggggtcagag gaagaagcgg 900
 gctttggaca ccaattactg cttccgcaac ttggaggaga actgctgtgt ggcggccctc 960
 tacattgact tccgacagga tctggctgg aagtgggtcc atgaacctaa ggctactat 1020
 45 gccaacttct gctcaggccc ttgcccatac ctccgcgtt cagacacaaac ccacagcacg 1080
 gtgtgggac tgcataaacac tctgaaccctt gaagcatctg ctcgcctt ctgcgtgccc 1140
 caggacctgg agccccctgac catcctgtac tatgttggga ggaccccaa agtggagcag 1200
 ctctccaaca tgggtgttaaa gtctgtaaa tgtagctga 1239

50 <210> 49
 <211> 1704
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> TGFbetaR2
 <310> XM003094

60 <400> 49
 atgggtcggtt ggctgctcag gggcctgtgg ccgtgcaca tcgttctgtg gacgcgtatc 60
 gccagcacga tcccacccgca cgttcagaag tcggtaata acgacatgtat agtcaactgac 120

aacaacggtg cagtcaagtt tccacaactg tgtaaatttt gtgatgttag atttccacc 180
 tgtgacaacc agaaatccctg catgagcaac tgcagcatca cctccatctg tgagaagcca 240
 cagaaggctcgt atggagaaag aatgacgaga acataacact agagacagtt 300
 tgcctatgacc ccaagctccc ctaccatgac tttattctgg aagatgctgc ttctccaaag 360
 5 tgcatatga aggaaaaaaa aaaggctggt gagactttct tcattgttc ctgtagctct 420
 gatgagtgca atgacaacat catcttctca gaagaatata acaccagcaa tcctgacttg 480
 ttgctagtca tatttcaagt gacaggcatc agcctcttc caccactggg agttgccata 540
 tctgtcatca tcatcttcta ctgcaccgc gttAACCGGC agcagaagct gagttcaacc 600
 tggaaaccg gcaagacgca gaagctcatg gagttcagcg agcactgtgc catcatcctg 660
 10 gaagatgacc gctctgacat cagctccacg tggccaaaca acatcaacca caacacagag 720
 ctgctccca tttagtggc caccctggc gggaaagggtc gtttgcgtga ggtctataag 780
 gccaaagctga agcagaacac ttcaagcag ttttagacag tggcgtcaaa gatcttccc 840
 tatgaggagt atgccttgcgaaagacatc tctcagacat caatctcaag 900
 catgagaaca tactccatg cctgcacggc gaggagcggg agacggagtt gggaaacaa 960
 15 tactggctga tcaccgcctt ccacgcacg ggcaacactac aggagttacct gacgcggcat 1020
 gtaatcagct gggaggaccc gcgcacgtg ggcagctccc tcgccccggg gattgctcac 1080
 ctccacagtg atcacactcc atgtgggagg ccaagatgc ccatcgtca cagggacctc 1140
 aagagctcca atatcctctg gaagaacgac ctaacctgct gcctgtgtga ctttgggctt 1200
 tccctgcgtc tggaccctac tctgtctgtg gatgacctgg ctaacagtgg gcaagggtggg 1260
 20 actgcaagat acatggctcc agaagtccta gaatccagga tgaatttggaa gaatgttgag 1320
 tccttcaagc agaccgatgt ctactccatg gtcctgtgc tctggaaat gacatctcgc 1380
 tgtaatgcag tgggagaagt aaaagattt gaggcctccat ttgggtccaa ggtgcgggag 1440
 caccctgtg tcgaaagcat gaaggacaac gtgttgagag atcgaggcg accagaaatt 1500
 25 ccaagcttgcgctt ggctcaacca ccaggccatc cagatgggtgt gtgagacgtt gactgagtgc 1560
 tgggaccacg accccagggc ccgtctcaca gcccagtgtg tggcagaacg cttcagtgag 1620
 ctggagcatc tggacaggct ctcggggagg agctgctgg aggagaagat tcctgaagac 1680
 ggctccctaa acactaccaa atag 1704

30 <210> 50
 <211> 609
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> TGFbeta3
 <310> XM001924

<400> 50

40 atgtctcatt acaccattat tgagaatatt tgcctaaag atgaatctgt gaaattctac 60
 agtcccaaga gaggactt tcctatcccg caagctgaca tggataagaa gcgattcagc 120
 tttgtcttc agcctgtttt caacacctca ctgctttt tacagtgtga gtcgacgctg 180
 tgtaacgaga tggagaagca ccccccaagttgccttaagt gtgtgcctcc tgacgaagcc 240
 45 tgacccctcg tggacgcctc gataatctgg gccatgtatc agaataagaa gacgttact 300
 aagccccctt ctgtgatecca ccatgaagca gaatctaaag aaaaagggtcc aagcatgaag 360
 gaaccaaaatc caattttctcc accaatttttc catggctgg acaccctaac cgtgatgggc 420
 attgcgtttt cagcctttgtt gatggagca ctccgtacgg gggccttggt gtacatctat 480
 ttcacacacag gggagacagc aggaaggcag caagtccccca cctcccccgc agcctcggaa 540
 50 aacagcgtg ctgcccacag catggcagc acgcagagca cgcctgtctc cagcagcagc 600
 acggccttag 609

<210> 51
 <211> 3633
 55 <212> DNA
 <213> Homo sapiens

<300>

<302> EGFR

60 <310> X00588

<400> 51

	atgcgaccct	ccgggacggc	cggggcagcg	ctcctggcgc	tgctggctgc	gctctgccc	60
	gcgagtccgg	ctctggagga	aaagaaaagtt	tgccaaggca	cgagtaacaa	gctcacgcag	120
	ttgggactt	ttgaagatca	ttttctcage	ctccagagga	tgttcaataa	ctgtgaggtg	180
5	gtccttggga	atttggaaat	tacctatgtg	cagaggaatt	atgatcttc	cttcttaaag	240
	accatccagg	aggtggctgg	ttatgcctc	attggccctca	acacagtgg	gCGAATTCT	300
	ttggaaaacc	tgcagatcat	cagaggaat	atgtactacg	aaaattccta	tgccttagca	360
	gtcttatcta	actatgatgc	aaataaaaacc	ggactgaaagg	agctgccc	gagaatttta	420
10	cagaaatcc	tgcatggcgc	cgtgcgggtc	agcaacaacc	ctgcccgtg	caacgtggag	480
	agcatccagt	ggcgggacat	agtca	gacttctca	gcaacatgtc	gatggacttc	540
	cagaaccacc	tgggcagctg	ccaaaagtgt	gatccaagct	gtcccaatgg	gagctgctgg	600
	ggtgtcaggag	aggagaactg	ccagaaaactg	acccaaatca	tctgtccca	gcagtgc	660
	gggcgctgcc	gtggcaagtc	ccccagtgac	tgctgcccaca	accagtgtg	tgcaggctg	720
	acaggcccccc	gggagagcga	ctgcctggc	tgccgcaaat	tccgagacga	agccacgtg	780
15	aaggacaccc	gccccccact	catgtctac	aacccca	cgtaccagat	gatgtgaac	840
	cccgaggggca	aatacagctt	tgggcccacc	tgctgtgaa	agtgtcc	taattatgtg	900
	gtgacagatc	acggctcgt	cgtccgagcc	tgtggggccg	acagctatga	gatggaggaa	960
	gacggcg	gcaagtgtaa	aaagtgcgaa	gggccttgc	gcaaaatgtg	taacggata	1020
	gttattgggt	aatttaaaga	ctcactctcc	ataatgtct	cgaatattaa	acacttcaaa	1080
20	aactgcaccc	ccatcagttg	cgatctccac	atcctggccc	ttggcatttgc	gggtgactcc	1140
	ttcacacata	ctccctct	ggatccacag	gaactggata	ttctgaaaac	cgtaaaggaa	1200
	atcacagggt	ttttgctgtat	tcaggcttgg	cctgaaaaca	ggacggac	coatgcctt	1260
	gagaacctag	aaatcatacg	cgccaggacc	aagcaacatg	gtcagtttc	tettgcagtc	1320
	gtcagcctga	acataacatc	cttgggatta	cgccatcc	aggagataag	tgtggagat	1380
25	gtgataattt	caggaaacaa	aaatttgc	tatgcaaata	caataactg	aaaaaaactg	1440
	tttgggactt	ccggtcagaa	aacccaaatt	ataagcaaca	gagggtaaaa	cagctgcaag	1500
	gcacacaggcc	aggtctgca	tgccttgc	tcccccagg	gctgtgggg	cccgagccc	1560
	aggactgcg	tctcttgc	gaatgtc	cgaggcagg	aatgcgtg	caagtgc	1620
	cttctggagg	gtgagccaa	ggagttgtg	gagaactctg	agtgcataca	gtgccaccca	1680
30	gagtgcgtgc	ctcaggccat	gaacatcacc	tgccacaggac	ggggaccaga	caactgtatc	1740
	cagtgtgccc	actacattga	cgccccccac	tgctgtcaaga	cctgccc	aggagtcatg	1800
	ggagaaaaaca	acaccctgtt	ctggaa	gtac	gcagacgc	gccatgtgt	1860
	catccaaact	gcacctacgg	atgactggg	ccaggcttgc	aaggctgtc	aacgaatggg	1920
	cctaagatcc	cgtccatcgc	cactggatg	gtggggccc	tcctcttgc	gtgggtgt	1980
	gccttggga	tcggcctt	catgcgaagg	cgccacatc	ttcggaa	acgcgtgc	2040
35	aggctgctgc	aggagaggg	gtttgtggag	cctcttacac	ccagtggaga	agctccaaac	2100
	caagctctt	tgaggatctt	gaagaaaact	gaatcaaaa	agatcaaa	gttgggtc	2160
	ggtgcgttc	gcacgggt	taagggactc	tggatccc	aagggtg	agttaaaatt	2220
	cccgctgcta	tcaaggaa	aagagaagca	acatctccg	aagccaa	ggaaatcctc	2280
	gatgaagcc	acgtgtatgc	cagcgtggc	aacccca	tgtgcgc	gtgggc	2340
40	tgccctcacct	ccaccgtgca	actcatc	cagctatgc	ccttcggct	cctcctggac	2400
	tatgtccggg	aacacaaga	caatattggc	tcccagtacc	tgctcaactg	gtgtgtgc	2460
	atcgaaagg	gcatgaa	cttggaggac	cgtcgcttgc	tgcacgc	cctggcagcc	2520
	aggaacgtac	tggtaaaac	accgcagcat	gtcaagatca	cagat	tttgc	2580
	ctgctgggt	cggaagagaa	agaataccat	gcagaaggag	gcaaa	gtg	2640
45	atggcattgg	aatcaattt	acacagaatc	tataccc	agagtatgt	ctggagctac	2700
	gggggtgaccg	tttgggagtt	gatgac	ttt	ggatcca	catatgc	2760
	agcgagatct	cctccatct	ggagaaaagg	gaacgc	ctcc	catatgtac	2820
	atcgatgtct	acatgtatc	ggta	actgc	atgt	tgcc	2880
	ttccgtgagt	tgatcatcg	atttccaa	atggcc	ccag	ctac	2940
50	attcaggggg	atgaaagaa	gtatttgc	acttc	actcoa	ctaccgtgc	3000
	ctgatggatg	aagaagac	ggac	acgt	actcc	cc	3060
	cagggcttct	tcagcagcc	ctccacgt	cg	act	ccat	3120
	accagcaaca	attccac	ggcttgc	at	ggct	ccat	3180
	aaggaagaca	gcttgc	gc	at	cc	ct	3240
55	agcatagacg	acac	cc	at	cc	cc	3300
	cccgctggct	ctgtgc	ag	at	cc	cc	3360
	agagacc	actacc	ggcc	act	cc	cc	3420
	actgtcc	ccac	cttgc	ca	ac	cc	3480
	ggcagcc	aaat	ttgc	ac	gg	cc	3540
60	gcaagccaa	atggc	atgg	ggct	ac	gtc	3600
	gcccacaaa	gca	gt	gaa	at	cc	3633

<210> 52
<211> 3768
<212> DNA
5 <213> Homo sapiens

<300>
<302> ERBB2
<310> NM004448

10 <400> 52
atggagctgg cggccttgtg ccgcgtgggg ctcctcctcg ccctcttgcc ccccgaggcc 60
gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccag 120
accacacctgg acatgctccg ccacactctac cagggctgcc aggtggtgca gggaaacctg 180
15 gaactcacct acctgccccac caatgccagc ctgtccttcc tgcaggatata ccaggagggt 240
cagggctacg tgctcatcg tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
attgtgcgag gcacccagct ctttggggac aactatgccc tggccgtgtc agacaatgga 360
gaccggctga acaataccac ccctgtcaca ggggcctccc caggaggcct gcgggagctg 420
cagcttcgaa gcctcacaga gatcttggaaa ggagggtct tgatccagcg gaaccccccag 480
20 ctctgttacc aggacacat ttttgtggaa gacatcttcc acaagaacaa ccagctggct 540
ctcacactga tagacaccaa ccgcgtctcg gcctgcacc cctgttctcc gatgtgttaag 600
ggctcccgct gctggggaga gaggcttgcg gattgtcaga gcctgacgcg cactgtctgt 660
gcccgtggct gtggccgtg caagggggcc caagcactt ctggccactg actgtgcaca tgagcagtgt 720
25 agtggcatct gtgagctgca ctggccagcc ctgtcactt acaacacaga cacgttttag 840
tccatgccccatcccgaggg ccggtataca ttccggccca gctgtgtgac tgcctgtccc 900
tacaactacc ttctacggg cgtgggatcc tgccacccctg tctggcccccgcacaacacaa 960
gaggtgacag cagaggatgg aacacagccg tttgagaagt gcagcaagcc ctgtgcccga 1020
gtgtgttatg gtctgggcat ggagcaactt cgagagggtga gggcagttac cagtgc当地 1080
30 atccaggagt ttgtctggctt caagaagatc tttggggatcc tggcatttctt gccggagagc 1140
ttttagtgggg acccagccctt caacactgccc ccgcgtccagc cagagcagct ccaagtgttt 1200
gagactctgg aagagatcac agtttaccta tacatctcg catggccggc cagcctgcct 1260
gacccatcgcc ttttccagaa cctgtcaagta atccggggac gaattctgca caatggccgc 1320
35 tactcgctga ccgtcaagg gctggggatcc agctggctt ggctgcgcct actgaggaa 1380
ctggggcagtt gactggccctt catccacatc aacacccccc tctgttctgt gcacacgggt 1440
ccctgggacc agcttctcg gaacccggcc caagctctgc tccacactgc caacccggcca 1500
gaggacgagt gtgtggccga gggcctggcc tgccaccaggc tgtgcgcctt agggcactgc 1560
tggggtccag ggccccccca gtgtgtcaac tgccaggactt tccttggggcc ccaggagggtc 1620
40 gtggaggaat gccgagttact gcagggggctt cccaggaggat atgtgaatgc caggcactgt 1680
ttggccgtgcc accctgagtt tcagccccag aatggctcag tgaccctgtt tggaccggag 1740
gctgaccagt gtgtggctt tgcccaactt aaggaccctc ccttctgcgt ggcccgcgtc 1800
cccagccgtg taaaaacccatc cctctcttac atggccatctt ggaagttcc agatgaggaa 1860
ggcgcatgcc agccttggcc catcaactgc acccactctt gtgtggccat ggatgacaag 1920
45 ggctggcccg ccgagcagag agccaggccct ctgacgtcca tctgttctgc ggtgggtggc 1980
attctgtccgg tcgtggctt ggggggtgtc tttgggatcc tcatcaagcg acggcagcag 2040
aagatccggg agtacacatc ggcggagactt ctgcaggaaaa cggagcttgtt ggagccgcgt 2100
acacacttagcg gagcgatgcc caaccaggcg cagatgcggaa tcctgaaaaga gacggagctg 2160
agaagggtga aggtgttttgc atctggcgtt tttggcactt tctacaagggg catctggatc 2220
50 cctgtatgggg agaatgtgaa aattccatgt gccatcaaag tggttggggaa aaacacatcc 2280
cccaaagccca acaaagaaaat ctttagacgaa gcatacgtga tggctgggtt gggctccca 2340
tatgtctccc geccctctggg catctgcctt acatccacgg tgcaactgtt gacacagctt 2400
atgcctatg gctgcctt agaccatgtc cggggaaaacc gccggacccctt gggctccca 2460
gacctgtgtt actgggtgtt gcaatttgc aaggggatgtt gctaccttggaa ggtatgtgcgg 2520
ctcgatcacaca gggacttggc cgctcgaaac gtgtgttgcg agatgtccaa ccatgtcaaa 2580
55 attacagact tcggggcttcc tcggctgttgc gacattgttgc agatgtccaa ccatgtcaaa 2640
ggggcaagg tgcccatcaa gtggatggcg ctggaggatcc ttctccgcgg ggggttcacc 2700
caccaggatgtt atgtgtggat ttatgtgttgc actgtgttttttggggcc 2760
aaaccttacgtt atgggatccc agcccgaggatcc tccctgttgcg tgctggaaaa gggggagcgg 2820
ctggcccccggc ccccccattgtt caccattgtt gtcataatgttca tcatgttgc当地 atgttggatgtt 2880
60 attgactctgtt aatgtcgcc aagattccgg gatgtttgtt ctgaatttctt cccatgtggcc 2940
aggggcccccc agcgctttgtt ggtcatccatgtt gatgtggact tggggccaggc cagtccttgc 3000
gacagcacctt tctaccgttcc actgtgttttttggatgtt gacgtatgttgc ggtggatgtt 3060

5 gaggagtatc tggtacccca gcagggcttc ttctgtccag accctgcccc gggcgctggg 3120
 ggcatggtcc accacaggca ccgcagctca tctaccagga gtggcggtgg ggacctgaca 3180
 ctagggctgg agccctctga agaggaggcc cccaggtctc cactggcacc ctccgaagggg 3240
 gctggctcg atgtatttga tggtgacctg ggaatggggg cagccaagggg gctgcaaaggc 3300
 10 ctcccccacac atgaccccg ccctctacag cggtagtacgt aggacccac agtacccctg 3360
 ccctctgaga ctgatggta cggtggggcc ctgacctgca gccccagcc tgaatatgtg 3420
 aaccagccag atgttcggcc ccagggccct tcgccccagag agggccctct gcctgctgcc 3480
 cgacctgctg gtgccactct gaaaaggggc aagactctct ccccaaggaa gaatggggtc 3540
 gtcaaagacg tttttgcctt tgggggtgcc gtggagaacc ccgagtagt gacacccac 3600
 15 ggaggagctg cccctcagcc ccaccctctt cctgccttca gcccagcctt cgacaacctc 3660
 tattactggg accaggaccc accagagcgg ggggctccac ccagcacctt caaaggggaca 3720
 cctacggcag agaaccaga gtacctgggt ctggacgtgc cagtgta 3768

20 <210> 53
 <211> 1986
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> ERBB3
 <310> XM006723

30 <400> 53
 atgcacaact tcagtgttt ttccaaattt acaaccattg gaggcagaag cctctacaac 60
 cggggctct cattgttgat catgaagaac ttgaatgtca catctctggg ctccgatcc 120
 ctgaaggaaa ttagtgcgg gcttatctat ataagtgcata ataggcagct ctgctaccac 180
 cactcttga actggaccaa ggtgttcgg gggcctacgg aagaggcact agacatcaag 240
 cataatcggc cgcgacaga ctgcgtggca gagggcaaaag tgggtgaccc actgtgctcc 300
 35 tctggggat gctggggcc agggcctggg cagtgtttt cctgtcgaaa ttatagccga 360
 ggaggtgtct gtgtgacca ctgcaacttt ctgaatgggg agcctcgaga atttgccat 420
 gaggccgaat gcttctctg ccacccggaa tgccaaacca tggaggcac tgccacatgc 480
 aatggctcg gctctgatac ttgtgctcaa tggccattt ttcgagatgg gccccactgt 540
 gtgagcagct gccccatgg agtccctaggt gccaaggggc caatctacaa gtacccagat 600
 40 gttcagaatg aatgtcgcc ctgcctatgg aactgcaccc aggggtgtaa aggaccagag 660
 cttcaagact gtttaggaca aacactgtt ctgcggca aaaccatct gacaatggct 720
 ttgacagtgta tagcaggatt ggttagtatt ttcatgatgc tggcgccac ttttctctac 780
 tggcggtggc gccggattca gaataaaaagg gctatgaggc gatacttggaa acgggggtgag 840
 agcatagagc ctctggaccc cagtgagaag gctaacaag tcttggccag aatcttcaaa 900
 45 gagacagagc taaggaagct taaagtgcctt ggctcggtt tcttggaaac tggcaca 960
 ggagtgtgga tccctgaggg tgaatcaatc aagattccag tctgcattaa agtcattgag 1020
 gacaagagtg gacggcagag ttttcaagct gtgcacatc atatgtggc cattggcagc 1080
 ctggaccatg cccacatgt aaggctgtg ggactatgcc cagggtcatc ttcgcagctt 1140
 gtcactcaat atttgcctct gggttctctg ctggatcatg tgagacaaca cggggggggca 1200
 50 ctggggccac agtgcgtct caactggggg gtaaaaaatg ccaaggaaat gtactacctt 1260
 gaggaacatg gtatggtgc tagaaacactg gctggccaa acgtgtact caagtcaccc 1320
 agtcagggttcc aggtggcaga tttttgtgtg tgcacatc tggccctctga tgataaggag 1380
 ctgctataca gtgaggccaa gactccaatt aagtggatgg cccttggagag tatccacttt 1440
 gggaaataca cacaccagag tgatgtctgg agctatggg tgacagttt gggatgtatg 1500
 55 accttcgggg cagggcccta tgcaggcata cgattggctg aagtaccaga cctgcttagag 1560
 aagggggagc ggttggcaca gccccagatc tgccacaattt atgtctacat ggtgtatggtc 1620
 aagtgttggg tgattgtatc gaacattcgc ccaaccttta aagaactagc caatgagttc 1680
 accaggatgg cccgagaccc accacggat tggatcataa agagagagag tggggcttgg 1740
 atagcccccctg ggccagagcc ccatggctg acaaacaaga agctagagga agtagagctg 1800
 60 gagccagaac tagacctaga cctagacttg gaaggcaggg aggacaacct ggcaaccacc 1860
 acactgggttcc ccccccctcag cctaccatgtt ggaacactta atcggccacg tggggccac 1920
 agcctttaa gtccatcatc tggatcatg cccatgaacc agggtaatct tggggttctt 1980
 ctttag

<210> 54
 <211> 1437

<212> DNA

<213> Homo sapiens

<300>

5 <302> ERBB4

<310> XM002260

<400> 54

atgatgtacc tggaaagaaaag acgactcggtt catcgggatt tggcagcccg taatgtctta 60
10 gtgaaatctc caaacatgt gaaaatcaca gattttgggc tagccagact ctggaaagga 120
gataaaaaag agtacaatgc tgatggagga aagatgccaa taaaatggat ggctctggag 180
tgatacatt acaggaaatt caccatcag agtgcacgttt ggagctatgg agttactata 240
tgggaactga tgaccccttgg agggaaaaccc tatgtatggaa ttccaacgcg agaaatccct 300
gatttttag agaaaggaga acgttgcct cagcctccca tctgcacat tgacgtttac 360
15 atggcatgg tcaaattgtt gatgtatggat gtcgacgatg gacctaatt taaggaactg 420
gctgctgagt tttcaaggat ggctcgagac cctcaaatg acctagttat tcagggtgat 480
gatcgatga agctcccg tccaaatgac agcaagttct ttcaaatct ctggatgaa 540
gaggatttgg aagatatgat ggatgctgag gaggacttgg tccctcaggc tttcaacatc 600
ccaccccttca tctatacttc cagagcaaga attgactcga ataggagtga aattggacac 660
20 agcccttcctc ctgcctacac ccccatgtca ggaaaccagt ttgtataccg agatggaggt 720
tttgcgtctg aacaaggagt gtctgtccc tacagagccc caactagcac aattccagaa 780
gctccctgtgg cacaggggtgc tactgctgag atttttgatg actcctgctg taatggcacc 840
ctacgcaagc cagtgccacc ccatgtccaa gaggacagta gcacccagag gtacagtgt 900
gaccggcccg tggttgccttcc agaacggagc ccacggaggag agctggatga ggaagggtac 960
25 atgacttcata tgcgagacaa accccaaacaa gaataacctga atccatggg ggagaaccct 1020
tttgttctc ggagaaaaaa tggagacctt caagcatgg ataatcccgaa atatcacaat 1080
gcatccaatg gtccacccaa ggccggaggat gaggatgtg atgagccact gtacctcaac 1140
accttgccca acacccctggg aaaagctgag tacctgaaga acaacatact gtcacatgcca 1200
gagaaggccca agaaagcggtt tgacaaccct gactactgga accacagcc gccacccctgg 1260
30 agcacccttc agcaccctaga ctacctgcag gaggatcaga caaaatattt ttataaacag 1320
aatggggcgggatccggcttat tggcagag aatccctgaat acctctctga gttctccctg 1380
aaggccaggca ctgtgctgcc gcctccaccc tacagacacc ggaatactgt ggtgtaa 1437

35 <210> 55

<211> 627

<212> DNA

<213> Homo sapiens

40 <300>

<302> FGF10

<310> NM004465

<400> 55

45 atgtggaaaat ggatactgac acattgtgcc tcagccttc cccacctgcc cggctgctgc 60
tgctgctgtctttttgtgt gttcttgggt tcttccgtcc ctgtcacccgtt ccaagccctt 120
ggtcaggaca tgggtgtcacc agaggccacc aactcttctt cctccctt ctcctctccct 180
tccagcgcgg gaaaggcatgt gcggagctac aatcaccttc aaggagatgt ccgctggaga 240
aagctattct ctttccaccaaa gtatcttc aagattgaga agaacgggaa ggtcagcggg 300
50 accaagaagg agaactgccc gtacagcatc ctggagataa catcagtaga aatcgaggat 360
gttgcgtca aagccattaa cagcaactat tacttagcca tgaacaagaa ggggaaactc 420
tatggctcaa aagaatttaa caatgactgt aagctgaagg agaggataga ggaaaaatgga 480
tacaataacct atgcatttcaactggcag cataatggga ggcaaatgtt tggcatttgc 540
55 aatggaaaag gagctccaaag gagaggacag aaaacacgaa ggaaaaacac ctctgctcac 600
tttcttccaa tgggtgtaca ctcatag 627

<210> 56

<211> 679

60 <212> DNA

<213> Homo sapiens

<300>
<302> FGF11
<310> XM008660

5 <400> 56
aatggccgcg ctggccagta gcctgatccg gcagaaggcg gagggtccgcg agccccgggg 60
cagccggccg gtgtccgcg acgcggcggt gtgtccccgc ggcaccaagt cccttgcga 120
gaagcagctc ctcatcctgc tgtccaaggt gcgactgtgc gggggccgc cccgcggcc 180
ggaccgcggc cccggagcctc agctcaaagg catcgtaacc aaactgttct gccgcccagg 240
10 tttctacctc caggcgaatc ccgcacggaaag catccagggc accccagagg ataccagctc 300
cttcacccac ttcaacctga tccctgtggg cttccgtgtg gtcaccatcc agagcgccaa 360
gctgggtcac tacatggcca tgaatgtga gggactgctc tacagttcgc cgcatttcac 420
agctgagtgt cgctttaagg agtgtgttct tgagaattac tacgtccctgt acgcctctgc 480
tctctaccgc cagcgtcggt ctggccgggc ctgttacctc ggcttgaca aggaggggca 540
15 ggtcatgaag ggaaccggg ttaagaagac caaggcagct gcccacttcc tgcccaagct 600
cctggagggtg gccatgtacc aggagccttc tctccacagt gtccccgagg cctcccccttc 660
cagtcggccctt gccccctga 679

20 <210> 57
<211> 732
<212> DNA
<213> Homo sapiens

25 <300>
<302> FGF12
<310> NM021032

 <400> 57
30 atggctgcgg cgatagccag ctccctgatc cggcagaagc ggcaggcgag ggagtccaaac 60
agcgaccgag tgcggccctc caagcggccg tccagccccca gcaaagacgg ggcgtccctg 120
tgcgagaggc acgtccctcg ggtttcagc aaagtgcgt tctgcagcg ggcgaagagg 180
ccgggtgggc ggagaccaga accccagctc aaagggtt tgacaaggtt attcagccag 240
cagggatact tcctcgagat gcacccagat ggtaccattt atgggaccaa ggacgaaaaac 300
35 agcactaca ctctcttcaa tctaattccc gtgggcctgc gtgttagtgc catccaagga 360
gtgaaggctt gcctctatgt ggccatgaat ggtgaaggctt atctctacag ttcatgttt 420
ttcactccag aatgcaaattt caaggaatct gtgtttggaaa actactatgt gatctattct 480
tccacactgt accgcccagca agaattcaggc cgagcttggt ttctggact caataaaagaa 540
ggtcaaattt tgaaggggaa cagagtgaag aaaaccaagc cctcatcaca ttttgtaccg 600
40 aaaccttattt aagtgtgtat gtacagagaa ccatcgctac atgaaattgg agaaaaacaa 660
ggcggttcaa ggaaaaggttc tggaacacca accatgaatg gaggcaaagt tgtgaatcaa 720
gattcaacat ag 732

45 <210> 58
<211> 738
<212> DNA
<213> Homo sapiens

50 <300>
<302> FGF13
<310> XM010269

 <400> 58
55 atggccggccg ctatcgccag ctgcgtcatc cgtcagaaga ggcaagcccc cgagcgcgag 60
aaatccaaacg cctgcaagtg tgcagcgc cccagcaag gcaagaccag ctgcgacaaa 120
aacaagttaa atgtctttc ccgggtcaaa ctcttcggct ccaagaagag ggcgagaaga 180
agaccagagc ctcaagctaa gggtagatgtt accaagctat acagccgaca aggctaccac 240
ttgcagctgc aggcggatgg aaccattgtt ggcaccaaaat atgaggacag cacttacact 300
60 ctgtttaacc tcataccctgt gggctgcga gtgttggcta tccaaaggagt tcaaaccaag 360
ctgtacttgg caatgaacag tgagggatac ttgtacactt cggaaactttt cacaccttag 420
tgcaattca aagaatcaat gtttggaaat tattatgtga catattcatc aatgtatatac 480

cgtcagcgc agtcaggccg agggtgttat ctgggtctga acaaagaagg agagatcatg 540
 aaaggcaacc atgtgaagaa gaacaagcct gcagctatt ttctgcctaa accactgaaa 600
 gtggccatgt acaaggagcc atcaactgcac gatctcacgg agtttcccgg atctggaaac 660
 gggaccccaa ccaagagcag aagtgtctt ggcgtgctga acggaggcaaa atccatgac 720
 5 cacaatgaat caacgtag 738

<210> 59
 <211> 624
 10 <212> DNA
 <213> Homo sapiens

<300>
 15 <302> FGF16
 <310> NM003868

<400> 59
 atggcagagg tggggggcgt ctgcgttcc ttggactggg atctacacgg cttctcctcg 60
 tctctgggaa acgtgcctt agctgactcc ccaggtttc tgaacgagcg cctggccaa 120
 20 atcgagggaa agctgcageg tggtcaccc acagacttcg cccacctgaa ggggatcctg 180
 cgccgcgcgc agctctactg ccgcacccggc ttccacctgg agatctccc caacggcagc 240
 gtgcacggaa cccgccccgca ccacagccgc ttccggatcc tggagttat cagcctggct 300
 gtggggctga tcagcatccg gggagtggac tctggcctgt accttaggaat gaatgagcga 360
 25 ggagaactct atgggtcgaa gaaactcaca cgtgaatgtg tttccggaa acagttgaa 420
 gaaaaactggt acaacaccta tgcccaacc ttgtacaaac attccgactc agagagacag 480
 tattacgtgg ccctgaacaa agatggctca ccccgggagg gatacaggac taaacgcac 540
 cagaaattca ctcactttt acccaggcct gttagatcctt ctaagttgcc ctccatgtcc 600
 agagacctct ttcactatag gtaa 624

30 <210> 60
 <211> 651
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> FGF17
 <310> XM005316

40 <400> 60
 atgggagccg cccgcctgct gcccaacctc actctgtgct tacagctgct gattctctgc 60
 tgtcaaactc agggggagaa tcacccgtct cctaattttt accagtagt gagggaccag 120
 ggcgcctatga cccgaccagct gagcaggccg cagatccgcg agtaccaact ctacagcagg 180
 45 accagtggca agcacgtgca ggtcaccggg cgtcgcatct ccgcacccgc cgaggacggc 240
 aacaacttgc ccaagctcat agtggagacg gacacgtttg gcagccgggt tcgcataaaa 300
 ggggctgaga gtgagaacta catctgtatg aacaagaggg gcaagctcat cgggaagccc 360
 agccggaaaga gcaaagactg cgtgttcacg gagatcgatc tggagaacaa ctatacggcc 420
 50 ttcctggaaacg cccggcacgaa gggctgggtt atggccttca cgcggcagggg gggggccccc 480
 caggctccc gcagcccca gaaccagcgc gagggccact tcatacaagcg cctctaccaa 540
 ggcctggctgc cttcccaa ccacggccgag aagcagaacg agttcgagtt tggggctcc 600
 gccccccaccc gcccggacccaa gcccggacacgg cggcccccagc ccctcacgtatg 651

55 <210> 61
 <211> 624
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> FGF18
 <310> AF075292

<400> 61
 atgtatttcg cgccctccgc ctgcacttgc ctgtgtttac acttcctgct gctgtgcttc 60
 caggtacagg tgctgggtc cgaggagaac gtggacttcc gcatccacgt ggagaaccag 120
 5 acgcgggctc gggacgatgt gagccgtaag cagctgcggc tgtaccagct ctacagccgg 180
 accagtggga aacacatcca ggtcctgggc cgcaggatca gtgcggcg 240
 gacaagtatg cccagctctt agtgagaca gacacccctcg gtagtcaagt ccggatcaag 300
 ggcaggaga cggaaatcta cctgtgcatt aaccgc 360
 gatggcacca gcaaggagtg tgggttcatc gagaagggtt tggagaacaa ctacacggc 420
 ctgatgtcg 240
 ctaagtactc cggctggta 480
 aaggccccca agacccggga gaaccaggag 540
 gggcagccgg agttcagaa gccctcaag tacacgacgg tgaccaagag gtcccgtegg 600
 atccggccca cacacctcgc ctag 624

15 <210> 62
 <211> 651
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF19
 <310> AF110400

25 <400> 62
 atgcggagcg ggtgtgtgg ggtccacgta tggatcctgg ccggcctctg gctggccgt 60
 gccggggcgcc ccctcgccctt ctggacg 120
 cccatccgccc tgcggcacct gtacacccctt 180
 cgcacccgtt ccgacggcgt cgtggactgc 240
 30 gagatcaagg cagtcgtctt gggaccgtt 300
 ctctgcattt ggcggacgg caagatgcag 360
 gtttcgagg aggagatccg cccagatggc tacaatgtt 420
 ctcccggtctt ccctggcag tggcaaacag 480
 ccactctctt atttccttcc catgtgc 540
 35 gggcacttgg aatctgacat gttctttcg cccctggaga 600
 gggcttgtca cggacttgg 651
 gggcttgagg agtcccaact ttgagaagta a

<210> 63
 <211> 468
 <212> DNA
 <213> Homo sapiens

40 <400> 63
 atggctgaag gggaaatcac cacccatcaca gccctgaccc agaagtttaa tctgcctcca 60
 45 gggaaatata agaagccaa actcctctac tgtacacg gggccactt cctgaggatc 120
 cttccggatg gcacagtgg tggacaagg gacaggacg accacgacat tcagctc 180
 ctcagtgcgg aaagcgtggg ggaggtgtat ataaagagta ccgagactgg ccagtactt 240
 gccatggaca ccgacgggct tttatacggc tcacagacac 300
 50 ctggaaaggc tggaggagaa ccattacaac acctatataat ccaagaagca tgcagagaag 360
 aattggtttgg tggctcaa gaagaatggg agctgcaac 420
 ggccagaaaac caatctgtt tctccccctg ccagtctttt ctgattaa 468

55 <210> 64
 <211> 636
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> FGF20
 <310> NM019851

<400> 64
 atggctccct tagccgaagt cggggcctt ctggggcgcc tggaggcgtt gggccagcag 60
 gtgggttcgc atttcctgtt gcctcctgcc ggggagcgcc cgccgcgtgt gggcgagcgc 120
 aggagcgcgg cggagcggag cgcccgccgc gggccggggg ctgcgcagct ggccacactg 180
 5 cacggcatcc tgccgcgcgc gcagcttat tgccgcaccc gttccacctt gcagatcctg 240
 cccgacggca gcgtgcaggg caccggcag gaccacagcc tcttcggat ctttgaattc 300
 atcagtgtgg cagtggactt ggtcgttatt agaggtgtgg acagtggctt ctatcttgg 360
 atgaatgaca aaggagaact ctatggatca gagaaactta cttccgaatg catctttagg 420
 gagcagttt aagagaactg gtataaacacc tattcatcta acatatataa acatggagac 480
 10 actggccgca ggtatttgt ggcacttaac aaagacggaa ctccaagaga tggcgccagg 540
 tccaaagaggc atcagaattt tacacatttc ttaccttagac cagtggatcc agaaaagagtt 600
 ccagaattgt acaaggaccc actgatgtac acttga 636

15 <210> 65
 <211> 630
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF21
 <310> XM009100

<400> 65
 25 atggactcgg acgagacccg gttcgagcac tcaggactgt gggttctgt gctggctgg 60
 cttctgtgg gaggctggca ggcacacccc atccctgact ccagtcctt cctgcaattc 120
 gggggccaaag tccggcagcg gtacccctac acagatgtat cccagcagac agaagcccc 180
 ctggagatca gggaggatgg gacgggtggg ggcgtgctg accagagccc cggaaagtctc 240
 ctgcagctga aaggcttgaa gcccggagtt attcaaatct tgggagtcgaa gacatccagg 300
 30 ttctctgtgcc aegggccaga tggggccctg tatggatcgc tccacttgc ccctgaggcc 360
 tgcagcttcc gggagctgtct tcttgaggac ggatacaatg tttaccatgc cgaagcccc 420
 ggcctcccgcc tgccacccgtcc agggaaacaag tccccacacc gggaccctgc accccgagga 480
 ccagctcgct tcctgcccact accaggccctg ccccccgcac tcccgagcc acccgaaatc 540
 ctggccccccca agccccccca tgtggctcc tgggaccctc tgagcatgtt gggaccttcc 600
 35 caggccgaa gccccagcta cgcttcctga 630

<210> 66
 <211> 513
 40 <212> DNA
 <213> Homo sapiens

<300>
 <302> FGF22
 <310> XM009271

<400> 66
 atgcggccgc gcctgtggct gggcctggcc tggctgtgc tggcgccggc gcccggacgcc 60
 45 gggggaaacc cggcgccgtc ggggggaccg cgccgttacc cgccacttggg gggcgacgtg 120
 cgctggccgc gcctcttctc ctccactcacc ttcttcgtgc gcgtggatcc cggccggccgc 180
 gtgcaggccca cccgctggcg ccacggccag gacagcatcc tggagatcc ctctgtacac 240
 gtggggcgctg tggatcatca agcagtgtcc tcaggcttct acgtggccat gaaccggccgg 300
 ggcgcctct acgggtcgcc actctacacc gtggactgca gttccggga gcccatcgaa 360
 50 gagaacggcc acaacacca cgcctcacag cgctggccgc gcccggccca gcccatttcc 420
 ctggcgctgg acaggagggg gggggcccccgg ccaggccggc ggacgcggcg gtaccacactg 480
 tccggccact tcctgcccgt cctggcttcc tga 513

<210> 67
 60 <211> 621
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> FGF4
 <310> NM002007
 10 5 <400> 67
 atgtcggggc cccgggacggc cgccggtagcg ctgctcccg cggtcctgct ggccttgctg 60
 gcgccttggg cgggcccagg gggcccgcc gcacccactg caccacaacgg cacgctggag 120
 gccagactgg agcgccgctg ggagagcctg gtggcgctt cgttggcgcg cctgccccgtg 180
 15 10 gcaaggaggg ccaaggaggg ggcgtccag agcggcgccg gcaactacccgtt gtcgggcatc 240
 aagcggtgc ggcggctcta ctgcaacgtg ggcacatcggt tccaccccca ggcgtcccccc 300
 gacggccgca tcggccggc gcacggccgac accccggcaca gcctgcttgg gctctegccc 360
 gtggagccggg gcgtggtag catcttcggc gtggccggcggc ggttcttgcgt ggcattgagc 420
 20 15 agcaaggggca agcttatgg ctgcggcccttc ttaccatgt agtgcacgtt caaggagatt 480
 ctccttccca acaactacaa cgcotacggag ttctacaagt accccggcat gttcatcgcc 540
 ctgagcaaga atggaaagac caagaagggg aaccggatgtt cgccaccat gaagggtcacc 600
 cacttcctcc ccaggctgtg a 621
 25 20 <210> 68
 <211> 597
 <212> DNA
 <213> Homo sapiens
 30 25 <300>
 <302> FGF6
 <310> NM020996
 35 30 <400> 68
 atgtcccggtt gggcaggacg tctgcagggtt acgctgttggg ctctcgttctt cctaggcatc 60
 ctatgtggca tgggtgggttcc ctgcctgtca ggcacccgtt ccaacaacac gctgctggac 120
 tcgaggggctt ggggcacccctt gctgtccagg tctcgccgg ggctagctgg agagattgcc 180
 ggggttggact gggaaagtgg ctatgggttgg gggatcaagc ggcagccggag gctctactgc 240
 40 35 aacgtggggca tcggctttca cctccagggtt ctcccccggacg gccggatcatc cgggacccac 300
 gaggagaacc cctacaggctt gctggaaattt tccactgtgg agcggaggcgt ggtgagtctc 360
 tttggatgttga aaatgtttcc ctgcgttgc atgaacatgtt aaggaagattt gtacgcaacg 420
 cccagcttcc aagaagaatgtt caagttcaga gaaaccctcc ttcccaacaa ttacaatgcc 480
 tacgagttagt acttgttacca agggacccat attggcccttga gcaaatacgg acgggtaaag 540
 cggggcagca aggtgtcccc gatcatgact gtcacttattt tccttccctt gatctaa 597
 45 40 <210> 69
 <211> 150
 <212> DNA
 <213> Homo sapiens
 50 45 <300>
 <302> FGF7
 <310> XM007559
 55 50 <400> 69
 atgtcttggc aatgcacttc atacacaatgtt actaatctat actgtgtatgtt tttgactcaa 60
 aaggagaaaaaaa gaaattatgtt agtttcaat tctgatttccatttccatctttt tgtttatgaa 120
 tggaaagctt tgtgcaaaat atacatataaa 150
 60 55 <210> 70
 <211> 628
 <212> DNA
 <213> Homo sapiens
 <300>

<302> FGF9
<310> XM007105

<400> 70
5 gatggctccc ttaggtgaag ttgggaacta ttcgggtgtg caggatgcgg taccgtttgg 60
gaatgtgcccg gtgttgcggg tggacagccc ggaaaaatgttta agtgcaccacc tggttcagtc 120
cgaaggcaggc gggctccca ggggacccgc agtcacggac ttggatcatt taaaggggat 180
tctcaggcgg aggcatatat actgcaggac tggatttcac ttagaaatct tccccaatgg 240
tactatccag ggaaccagga aagaccacag ccgatttggc attctggat ttatcagtat 300
10 agcagtgggc ctggtcagca ttcgaggcgt ggacagtggc ctctacccctcg gnatgaatga 360
gaagggggag ctgtatggat cagaaaaact aacccaagag tggatcataa gagaacagtt 420
cgaagaaaac tggtataata cgtactcatc aaacccatata aagcacgtgg acactggaaag 480
gcgatactat gttgcattaa ataaagatgg gaccccgaga gaaggacta ggactaaacg 540
gcaccagaaa ttccacacatt ttttacctag accagtggac ccgcacaaag tacctgaact 600
15 gtataaggat attctaagcc aaaggta 628

<210> 71
<211> 2469
20 <212> DNA
<213> Homo sapiens
<300>
<302> FGFR1
25 <310> NM000604

<400> 71
atgtggagct ggaagtgcct cctttctgg gctgtgtgg tcacagccac actctgcacc 60
30 gctaggccgt ccccgacccctt gcctgaacaa gcccagccct ggggagcccc tggtaagtgc 120
gagtccttcc tggtccaccc cggtgacccctg ctgcagccctc gctgtcggct gccggacgat 180
gtgcagagca tcaactggct gccccacggg gtgcagctgg cggaaagcaa ccgcacccgc 240
atcacagggg aggagggtgga ggtgcaggac tccgtgcccc cagactccgg cctctatgct 300
tgcgttaacca gcagccccctc gggcgttgac accacccatc tctccgtcaa tggttcagat 360
gctctccctt cctcggagga tggatgtatc gtatgtact cctcttcaga ggagaaagaaa 420
35 acagataaca ccaaaacccaa ccgtatggcc tggatccat attggacatc cccagaaaaag 480
atggaaaaga aattgcatgc agtggccggc gcaagacagc tgaaggtaaa atggcccttcc 540
agtgggaccc caaacccccac actgcgttgg ttgaaaaatg gcaaaagaatt caaacctgac 600
cacaagaattt gaggctacaa ggtccgttat gccaccttgg gcatcataat ggactctgtg 660
40 gtgcctctg acaagggcaa ctacacccctgc attgtggaga atgagatcgg cagcatcaac 720
cacacataacc agctggatgt cgtggagccg tcccttcacc gcccattctt gcaagcagg 780
ttgcccggca acaaaacagt gcccctgggt agcaacgtgg agttcatgtg taaggtgtac 840
agtgcacccgc agccgcacat ccagtggctt aagcacatcg aggtgaatgg gagcaagatt 900
ggcccagaca acctgccttca tggccatgtc ttgaagactg ctggagttaa taccacccgc 960
aaagagatgg aggtgttca cttaaagaaat gtctccctttt aggacccgg ggagtataacg 1020
45 tgcttggcggt gtaactcttcc cggactctcc catcaactctg catgggttgc ctttctggaa 1080
gccctggaaag agggccggc agtgcgttgc tggcccttgc acctggagat catcatctat 1140
tgcacagggg ctttccttcat cttctgtat gttgggttgc tcatgtcta caagatgaag 1200
agtggatcca agaagatgtt cttccacacgc cagatggctg tgcacaagct gcccaagagc 1260
atccctctgc gcaagacaggat aacagtgtct gtcgtactcca gtgcattccat gaactctggg 1320
50 gttttcttgg ttcggccatc acggcttcc tccagttggg ctcccatgtc agcagggttc 1380
tctgagttat agttccccca agaccctcgcc tggagactgc ctgggacacg actggcttta 1440
ggcaaaccccc tgggagaggg ctgttttggg cagggtgggtt tggcagaggc tatcgggttg 1500
gacaaggaca aacccaaaccc tggatgttca gatgttggaa gtcggacgc 1560
acagagaaag acttgtcaga cctgtatctca gaaatggaga tgatgttgc gatcggaaag 1620
55 cataagaata tcatcaacct gtcggggcc tgcacgcagg atggccctt gtatgtcattc 1680
gtggatgttgc cttccaaaggc caacccgtgg gaggatctgc agggccggag gccccccagg 1740
ctggatataact gtcataaccc cagccacaaac ccaggaggc agtctccctc caaggacctg 1800
gtgttcttgcg cttaccagggt ggcccgaggc atggatgttgc tggcccttca gaagtgcata 1860
60 caccggagacc tggcggccatc gaatgttgc tggcagaggc acaatgttgc gatgttgc 1920
gactttggcc tcgcacggga catttccacac atgcactact ataaaaagac aaccaacccgc 1980
cgactgcctg tggatgttgc ggcacccggag gcattatttgc accggatctt caccacccag 2040
agtgtatgttgc ggttcccttgc tggatgttgc tcaactctggg cggctccca 2100

<210> 73
 <211> 1695
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> MT2MMP
 <310> D86331

10 <400> 73
 atgaagcggc cccgctgtgg ggtgccagac cagttcgffff tacgagtgaa agccaaacctg 60
 cggcggcgtc ggaagcgta cgcgcctcacc gggaggaaat ggaacaacca ccatctgacc 120
 ttttagcatcc agaactacac ggagaagttt ggctggtacc actcgatgaa ggcgggtgcgc 180
 agggccttcc gcgtgtggga gcaggccacg cccctggctc tccaggaggt gcccttatgag 240

15 gacatccggc tgccggcaca gaaggaggcc gacatcatgg tactcttgc ctctggcttc 300
 cacggcgaca gctcgccgtt tgatggcacc ggtggctttc tggcccacgc ctatcccct 360
 ggccccggcc taggcggggga caccatccc gacgcagatg agccctggac ctctccagc 420
 actgacactgc atggaaacaa cctcttccctg gtggcagtgc atgagctggg ccacgcgctg 480
 gggctggago actccagcaa ccccaatgcc atcatggcgc cggttctacca gtggaaaggac 540

20 gttgacaact tcaagctgcc cgaggacgat ctccgtggca tccagcagct ctacggtaacc 600
 ccacacggc agccacaccc tacccttgcct ctcccccactg tgacggccacg gcccggcaggg 660
 cggcctgacc acggggccccc cccggctccc cagccacccac ccccagggtgg gaagccagag 720
 cggggcccaa agccggggccc cccatcccg ccccgagccaa cagacggcc cgaccatgt 780
 ggcccccaaca tctggcgcagg ggacttttgc acatggcca tgcttcgcgg ggagatgttc 840

25 gtgttcaagg gccgctgggtt ctggcgagtc cggcacaacc cgcgtcttgc caactatccc 900
 atgcccattcg ggcacttctg gcgtgttgc cccggatgaca tcagtgtctgc ctacgagcgc 960
 caagacggc gttttgttctt ttccaaaggt gaccgtact ggcttcttgc agaagcgaac 1020
 ctggagcccg gctacccaca gccgctgacc agctatggcc tgggcataccc ctatgaccgc 1080
 attgacacgg ccattctggt ggagccaca ggccacaccc tcttcttcca agaggacagg 1140

30 tactggcgt tcaacgggaga gacacagcgt ggagaccctg ggtaccccaa gcccattcgt 1200
 gtctggcagg ggatccctgc ctcccttaaa gggggcttcc tgagcaatga cgcagcctac 1260
 acctacttctt acaaggggcac caaatactgg aaatttcgaca atgagcgcct gccgatggag 1320
 cccggctacc ccaagtccat cctggggac ttcatgggc gccaggagca cgtggagcc 1380
 ggccccccatg ggcccgacgt ggccggggccg cccttcaacc cccacgggggg tgcagagccc 1440

35 gggccggaca ggcgcagaggg cgacgtgggg gatggggatg gggactttgg gggccggggtc 1500
 aacaaggaca ggggcagccg cgtgggtgtt cagatggggg aggtggcacc gacgggtgaac 1560
 gtggtgatgg tgctggtgc actgtctgc ctgctctgc tcctggccct cacctacgcg 1620
 ctggtgacca tgcagcgcac gggtgccca cgtgtcctgc tttactgcaaa ggcgtcgctg 1680
 caggagtggg tctga 1695

40 <210> 74
 <211> 1824
 <212> DNA
 <213> Homo sapiens

45 <300>
 <302> MT3MMP
 <310> D85511

50 <400> 74
 atgatcttac tcacatttcag cactggaaaga cgggtggatt tcgtgcata ttcgggggtg 60
 tttttcttgc aaaccttgc ttggattttt tgcgtacatc tctgcggaaac ggaggcgtat 120
 ttcaatgtgg aggtttgggtt acaaaagttac ggcttacccctt caccgactga ccccaatg 180

55 tcagtgtgc gctctgcaga gaccatgc tctggccctt ctgcctatgc gcaggatctat 240
 ggcattaaca tgacaggaaaa agtggacaga aacacaattt actggatgaa gaagccccga 300
 tgcgggtgtac ctgaccacac aagaggtagc tccaaatattt atattcgtcg aaagcgatat 360
 gcattgtacac gacagaaaatg gcacgcacaaac cacatcaattt acagtataaa gaacgttaact 420
 cccaaatgtt gagacccttgc gactcgtaaa gtttgcgc tgccttgc tgcgtggcag 480

60 aatgttaactc ctctgtacatt tgaagaagtt ccctacagtg aatttagaaaa tggcaaacgt 540
 gatgtggata taaccattat ttttgcattt gtttccatg gggacagctc tccctttgat 600
 ggagagggag gatTTTGGC acatgcctac ttcctggac caggaattgg aggagatacc 660

	cattttgact	cagatgagcc	atggacacta	ggaaatccta	atcatgatgg	aatatgactta	720
	tttctttag	cagtccatga	actggggacat	gctctggat	tggagcattc	caatgacc	780
	actgccatca	tggctccatt	ttaccagtgac	atggaaacag	acaacttcaa	actaccta	840
	gatgatttac	agggcattca	gaagatata	ggtccac	acaagattcc	tccacctaca	900
5	agaccttac	cgacagtgc	cccacaccgc	tctattc	cggctgaccc	aaggaaaaat	960
	gacaggccaa	aacctctcg	gcctccaacc	ggcagac	cctatcccg	agccaaaccc	1020
	aacatctgt	atgggaactt	taacactcta	gctattc	gtcgagat	gtttgtt	1080
	aaggaccagt	ggttttggcg	agtgagaaac	aacagggt	tggatggata	cccaatgca	1140
10	attacttac	tctgggggg	cttgcctc	atgtatcg	cagttatg	aatatgcac	1200
	gggaattttt	tgttcttaa	aggttaacaaa	tattgggt	tcaaggata	aactcttcaa	1260
	cctggattac	ctcatgactt	gataaccctt	ggaagtgg	ttccccctca	tggtattgat	1320
	tca	gg	cg	ac	t	ca	1380
15	aaaggatcc	ctgaatctcc	tcagggagca	tttgtacaca	aagaaaatgg	cttacgtat	1440
	ttctacaaag	gaaaggagta	ttggaaattc	aacaaccaga	tactcaaggt	agaacctgga	1560
	tatccaagat	ccatcctcaa	ggattttatg	ggctgtat	gaccaacaga	cagagttaa	1620
	gaaggacaca	gcccaccaga	tgatgtagac	attgtatca	aactggacaa	cacagccacg	1680
20	actgtgaaag	ccatagctat	tgtcattccc	tgcattctgg	cattatgcct	cattgtattt	1740
	gtttacactg	tgttccagtt	caagaggaaa	ggaacacccc	gccacatact	gtactgtaaa	1800
	cgctctatgc	aagagtgggt	gtga				1824
	<210> 75						
25	<211> 1818						
	<212> DNA						
	<213> Homo sapiens						
	<300>						
30	<302> MT4MMP						
	<310> AB021225						
	<400> 75						
35	atgcggcgcc	g	gg	cc	ca	actctcg	60
	ctggcgctgc	t	g	cc	tc	gg	120
	ggccgcgg	a	cc	cg	cc	gg	180
	agg	tt	cg	gt	gg	gt	240
40	ctgtctaagg	c	at	cc	at	cc	300
	gacgaggc	cc	ct	gg	cc	ca	360
	ctgacc	c	tc	cg	gg	aa	420
45	ctgtcg	gg	tt	cc	ac	gg	480
	g	a	c	c	cc	gt	540
	gtggcg	g	c	ac	cc	ca	600
	taccc	c	at	cc	gg	ac	660
50	gcccgg	cc	ca	ct	cc	cc	720
	ggatgg	t	tt	tg	cc	cc	780
	gtggcg	c	ac	ct	cc	cc	840
	cgctac	t	cc	ct	cc	gg	900
55	tctgt	c	ca	cc	cc	gg	960
	cggtcc	cc	cc	cc	cc	cc	1020
	gtggcc	t	cc	gg	cc	cc	1080
	cg	gg	ac	cc	cc	cc	1140
60	ccgctg	t	gg	ac	cc	cc	1200
	ttctttaa	g	ag	ac	cc	cc	1260
	cgccccgt	c	cg	ac	cc	cc	1320
	cacaatg	g	g	at	cc	cc	1380
	aggc	cc	cc	tt	cc	cc	1440
	ctggac	g	at	cc	cc	gg	1500
	tggaa	t	gg	at	cc	cc	1560
	gactgg	t	gt	gg	cc	cc	1620
	gcagaggg	cc	cc	gg	cc	cc	1680
	gagg	tt	gt	gg	cc	cc	1740
	gctgcc	cc	cc	at	cc	cc	1800

caggccctga cgctatga

1818

5 <210> 76
 <211> 1938
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> MT5MMP
 <310> AB021227

15 <400> 76
 atgccgagga gcccggggcg ccgcgcggcg cggggggccgc cgccgcgcgc gcccgcgcgc 60
 ggccaggccc cgcgctggag ccgcgtggcg gtccctgggc ggctgctgt gctgctgtg 120
 cccgcgctct gtcgcctccc gggcgcccg cggggcgccgg cgccgcgcgc gggggcagg 180
 aacccgggcag cggtgtggcg ggcgggtggcg cggggcgacg aggccggaggc gcccttcgccc 240
 ggccagaact gttaaagtct ctatggctat tgccttccct atgactcacg ggcatactgcg 300
 ctgcactcag cgaaggcctt gcagtcggca gtctccacta tgcagcagtt ttacgggatc 360
 ccggtcaccg gtgtgttgg aaccccaactt aagccgtagg cggagaaaaca agcgctatgc cctgactgg 420
 gtccctgatc accccccactt aagccgtagg cggagaaaaca agcgctatgc cctgactgg 480
 cagaagtgg aggccaaaaaca catcacatc acgattcaca actatacccc aaaagtgggt 540
 gagcttagaca cgcggaaagc tattcggcag gctttcgatg tggggcagaa ggtgacccca 600
 ctgacccctt aagagggtgg attaccatgg atcaaaaatgg accggaaagg ggcagacatc 660
 25 atgatctttt ttgcttctgg tttccatggc gacagctccc catttatgg agaagggggg 720
 ttcctggccc atgcctactt ccctggccca gggattggag gagacaccca ctttgactcc 780
 gatgagccat ggacgctaagg aaaccccaac catgacggga acgacctt cctgggtggct 840
 gtgcattgagc tggggccacgc gctgggactg gagcactcca gcgcacccag cgccatcatg 900
 gcgccttctt accagtacat ggagacgcac aacttcaagc tgccccagga cgatctccag 960
 30 ggcatccaga agatctatgg accccccagcc gaggctctgg agcccacaag gccactccct 1020
 acactccccg tccgcaggat ccactcacca tggagagagga aacacgagcg ccagcccccagg 1080
 ccccctcgcc cgccccctcg ggacccggcca tccacaccag gcaccaaacc caacatctgt 1140
 gacggcaact tcaacacagt gggcccttcc cggggcgaga tggggatgtt taaggatcgc 1200
 35 tgggtctggc gtctgcgcaaa taaccggatg caggagggtt accccatgca gatcgagcag 1260
 ttctggaaagg gcgcgccttc cccgcacgc gaggctatgg aaaggccga tggggatatt 1320
 gtcttcttca aagggtacaa gtatgggtt ttaaggagg tgacgggtt gctgggttac 1380
 ccccacagcc tggggggagct gggcagctgt ttgccccgtt aaggcattga cacagctctg 1440
 cgctggaaac ctgtgggcaaa gacctacttt ttcaaaaggcg agcggtaactg gcgcctacagc 1500
 40 gaggagcggc gggccacggc ccctggctac cctaagccca tcaccgtgt gaagggcatc 1560
 ccacaggctc cccaaaggagc ttcatcagc aaggaaggat attacaccta ttctacaag 1620
 ggccggact actggaaatt tgacaaccag aaactgagcg tggagccagg ctacccgcgc 1680
 aacatcttcgtc gtgactggat gggctgcaac cagaaggagg tggagccgcg gaaggagcgg 1740
 cgctggcccc aggacgcacgt ggacatcatg gtgaccatca acgatgtgcc gggctccgtg 1800
 45 aaccgcgtgg ccgtggatc cccctgcaccc ctgtccctt gcatccgtt gctggcttac 1860
 accatcttcc agttcaagaa caagacaggc ctcagccctg tcacctacta taagccggcca 1920
 gtccaggaat ggggtgtt 1938

50 <210> 77
 <211> 1689
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> MT6MMP
 <310> AJ27137

60 <400> 77
 atgcggctgc ggctccggct tctggcgctg ctgcttctgc tgctggcacc gcccgcgcgc 60
 gccccgaagc cctcggcgca ggacgtggac ctggggcggtt actggctgac tcgctatgg 120
 tacctggcgc caccggccccc tgcccaaggcc cagctgcaga gcccgtggaa gttgcgcgc 180
 gcatcaaaag tcacgtggatc gttcgggggg ctgcgggaga cggccgcgc 240

	acagtggcca	ccatgcgttaa	gccccgtgc	tccctgcctg	acgtgttggg	ggtggcgffff	300
	ctggtcaggc	ggcgtcgccg	gtacgctctg	agcggcagcg	tgtggaaagaa	gccaaccctg	360
	acatggaggg	tacgttccctt	cccccaagac	tcccagctga	gccaggagac	cgtgcgggtc	420
5	ctcatgagct	atgcccgtat	ggcctggggc	atggagtcag	gcctcacatt	tcatgaggtg	480
	gattcccccc	agggccagga	gccccacatc	ctcatcgact	ttgcccgcgc	cttccaccag	540
	gacagctacc	ccttcgacgg	gttggggggc	acccttagccc	atgccttctt	ccctggggag	600
	caccccatct	ccggggacac	tcactttgac	gatgaggaga	cctggacttt	tgggtcaaaa	660
10	gacggcgagg	ggaccgaccc	gtttccgtg	gctgtccatg	agtttgccca	cggccctgggc	720
	ctgggcaact	cctcagcccc	caactccatt	atgaggccct	tctaccaggg	tccgggtggc	780
15	gaccctgaca	agtaccgcct	gtctcaggat	gaccgcgatg	gcctgcagca	actctatggg	840
	aaggcgcccc	aaacccata	tgacaagccc	acaaggaaac	ccctggctcc	tccgccccag	900
	ccccccggct	cggccacaca	cagccatcc	tteccccatcc	ctgatcgatg	tgagggcaat	960
	tttgcacgca	tcgccaacat	ccggggggaa	actttcttct	tcaaaggccc	ctgggtctgg	1020
20	cgccctccagg	cctccggaca	gctgggtgt	ccgcgacccc	cacgggtgca	ccgcttctgg	1080
25	gaggggctgc	ccggccagg	gagggtggt	caggccgcct	atgctcgca	ccgagacggc	1140
	cgaatcctcc	tctttagcg	gccccagttc	tgggtgttcc	aggaccggca	gctggagggc	1200
	ggggcgccgc	cgctcacgga	gctggggctg	cccccgggag	aggaggtgga	cggcgtgttc	1260
	tcgtggccac	agaacgggaa	gacctacctg	gtcccgccgc	ggcagtaactg	gcgctacgac	1320
	gaggcgccgg	cgcgccccga	ccccggctac	cctcgcgacc	tgagccctctg	ggaaggcgcg	1380
30	ccccccctcc	ctgacgatgt	caccgtcagc	aacgcagggt	acacctactt	cttcaaggcc	1440
	gcccactact	ggcgcttccc	caagaacagc	atcaagaccg	agccggacgc	cccccagccc	1500
	atggggccca	actggctgga	ctgccccgcc	ccgagctctg	gtccccgcgc	cccccaggccc	1560
	cccaaagcga	cccccggtgc	cgaaacctgc	gattgtcagt	gcgagctcaa	ccaggccgca	1620
	ggacgttgc	ctgctccat	cccgtgctc	ctcttgcccc	tgctgggtgg	gggtgttagcc	1680
35	tcccgctga						1689

	<210>	78					
	<211>	1749					
30	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
35	<302>	MTMMP					
	<310>	X90925					
	<400>	78					
	atgtctcccg	ccccaaagacc	ctcccggtgt	tccctgctcc	ccctgctcac	gctcgccacc	60
	gcgcgtcgct	ccctcggtc	ggcccaaagc	agcagcttca	gccccgaagc	ctggctacag	120
40	caatatggct	acctgcctcc	cggggaccta	cgtacccaca	cacagcgctc	accccagtca	180
	ctctcagcgg	ccatcgctc	catcgagaag	ttttacggct	tgcaagtaac	aggcaaagct	240
	gatgcagaca	ccatgaaggc	catgaggcgc	ccccgatgt	gtgttccaga	caagtttggg	300
	gctgagatca	aggccaatgt	tcgaaggaag	cgctacgcca	tccagggtct	caaatggcaa	360
	cataataaaa	tcaactttctg	catccagaat	tacacccccc	aggtggcga	gtatgccaca	420
45	tacggggcca	ttcgcaaggc	gttccgcgt	ttggagagtg	ccacacact	gcgttccgc	480
	gaggtggccct	atgcctacat	ccgtgaggggc	catgagaagc	aggccgacat	catgatctt	540
	tttgcggagg	gtttccatgg	cgacacgc	cccttcgtat	gtgaggggcg	cttcctggcc	600
	catgcctact	tcccaggcccc	caacattgga	ggagacaccc	actttgactc	tgccgagcc	660
	tggactgtca	ggaatgagga	tctgaatgg	aatgacatct	tcctgggtgg	tgtgcacgag	720
50	ctggggccatg	ccctggggct	cgagcattcc	agtgacccct	cgcccatatcat	ggcacccctt	780
	taccagtgg	tggacacgg	gaattttgt	ctgccccat	atgaccgccc	gggcacatccag	840
	caactttatg	gggggtgagtc	agggttcccc	accaagatgc	ccctctaacc	caggactacc	900
	tcccgccctt	ctgttccat	taaacccaaa	aacccaccc	atggggccaa	catctgtac	960
	ggaaactttg	acaccgtggc	catgtccga	ggggagatgt	ttgtctcaa	ggagcgctgg	1020
55	ttctggcgcc	tgaggaataa	ccaaatgtat	gatggatacc	caatgcccatt	tggccagttc	1080
	tggcgccggc	tgcctgcgtc	catcaacact	gcctacgaga	ggaaggatgg	caaattcg	1140
	ttcttcaaaag	gagacaagca	ttgggtgttt	gatggggcg	ccctgaaacc	tggctacccc	1200
	aagcacattt	aggacgtgg	ccgagggtctg	cctaccgaca	agatgtatgc	tgcgttcttc	1260
60	tggatgcccc	atggaaagac	ctacttctt	cgtggaaaca	agtactaccg	tttcaacgaa	1320
	gagctcagg	cagtggatag	cgagttccccc	aagaacatca	aagtctggga	aggatccct	1380
	gagctccca	gagggtcatt	catgggcagc	gatgaagtct	tcaacttactt	ctacaagggg	1440
	aacaaatact	ggaaattcaa	caaccagaag	ctgaaggtag	aaccgggcta	ccccaaagcga	1500

5 gcctgaggg actggatggg ctgccccatcg ggaggccggc cggatgaggg gactgaggag 1560
gagacggagg tgatcatat tgaggtggac gaggagggcg gcggggcggt gagcgcggct 1620
gccgtggtc tgccctgtct gctgtgtc ctggtgctgg cggtggccct tgcaagtttc 1680
ttcttcagac gccatgggac ccccaggcga ctgctctact gccagcgttc cctgctggac 1740
5 aaggctcta 1749

10 <210> 79
 <211> 744
10 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> FGF1
15 <310> XM003647

20 <400> 79
 atggccgcgg ccatcgctag cggcttgate cgccagaagc ggcaggcgcg ggagcagcac 60
 tgggaccggc cgtctgccag caggaggcg agcagcccc gcaagaaccg cgggctctgc 120
20 aacggcaacc tggtgatata ttctccaaa gtgcgcatct tcggcctcaa gaagcgcagg 180
 ttgcggcgcc aagatcccc gctcaagggt atagtgcacca gtttatattt caggcaaggc 240
 tactacttgc aaatgcaccc cgtggagct ctgcgtggaa ccaaggatga cagcactaat 300
 tctacacttca accagtggga ctacgtgtt ttgcacatcca gggagtgaaa 360
 acagggttgt atatagccat gaatggagaa gtttacatct accccatcaga actttttacc 420
25 cctgaatgca agtttaaaaatc atctgtttt gaaaattttt atgtaatcta ctcatccatg 480
 ttgttacagac aacaggaatc tggtagagcc tggtttttgg gattaaataa ggaaggccaa 540
 gctatgaaag ggaacagagt aaagaaaaacc aaaccagca gtcattttt acccaagcc 600
 ttgaaagttt ccatgtaccg agaaccatct ttgcgtatgt ttggggaaac ggtcccgaag 660
 cctgggtgtaa cgccaaatgaa aagcacaatg gcgtctgcaa taatgaatgg aggcaaacc 720
30 gtcaacaaga gtaagacaac atag 744

35 <210> 80
 <211> 468
35 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> FGF2
40 <310> NM002006

45 <400> 80
 atggcagccg ggagcatcac cacgtgccc gccttgcggc aggtggcg cagcggcgcc 60
 ttcccgcccg gcccacttcaa ggacccccaa cggctgtact gcaaaaacgg gggcttcttc 120
45 ctgcgcatcc accccgcacgg ccgagttgac ggggtccggg agaagagcga ccctcacatc 180
 aagctacaac ttcaagcaga agagagagga gttgtgtcta tcaaaggagt gtgtgctaac 240
 cgtttcttgg ctatcagaaga agatggaaata ttactggctt ctaaatgtt tacggatgag 300
 tggggatgtt ttgaacgatt ggaatctaat aactacaata cttaccggc aaggaaatac 360
 accagttgtt atgtggcact gaaacgaact gggcagtata aacttggatc caaaacagga 420
50 cctggcaga aagctataact ttttcttcaa atgtctgcta agagctga 468

55 <210> 81
 <211> 756
55 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> FGF23
60 <310> NM020638

 <400> 81

atgttggggg cccgcctcag gctctggtc tgcgccttg gtgcgtctg cagcatgac 60
 gtctcagag cctatccaa tcgcctcccc ctgcctcggt ccagctggg tgccctgatc 120
 cacctgtaca cagccacaggc caggaacacg taccacactgc agatccacaa gaatggccat 180
 gtggatggcg caccatctac agtgcctgtg tgatcagatc agaggatgct 240
 5 ggctttgtgg tgattacagg tgcgtatggc agaagatacc tctgcattgg tttcagaggc 300
 aacattttg gatcacacta ttgcaccccg gagaactgca ggttccaaca ccagacgctg 360
 gaaaacgggt acgacgtcta ccactctct cagtatcact tccctggctg tctggggccgg 420
 gcgaagagag ctttcctgtcc aggcatgaac ccaccccccgt actccctgtt cctgtcccg 480
 10 aggaacgaga tccccctaat tcacttcaac acccccatac cacggggca caccggagc 540
 gccgaggacg actcgaggcg ggacccctg aacgtgtga agccccggc cccgatgacc 600
 ccggccccgg ccttcctgttc acaggagctc ccgagcggcc aggacaacag cccgatggcc 660
 agtacccat taggggttgtt cagggggcggt cgagtgaaca cgcacgctgg gggAACGGGC 720
 ccgaaggctt ccgcacatgtt atctag 756

15 <210> 82
 <211> 720
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF3
 <310> NM005247

25 <400> 82
 atgggcctaa tctggctgt actgctcagc ctgcgtggac ccggctggcc cgcacggggc 60
 cttggggcgc ggttgcggcg cgatgcgggc ggccgtggcg gcgtctacga gcaccttggc 120
 gggcgcccccc ggcgcgccaa gctctactgc gocacgaagt accacccatc gctgcaccccg 180
 30 agccggccgcg tcaacggcag cctggagaac agcgcctaca gtattttgg aataacggca 240
 gtggaggtgg gcattgtggc catcagggtt ctcttctcg ggcggtaacct ggccatgaac 300
 aagaggggac gactctatgc ttgcggacac tacagcggc agtgcgagtt tttggagcgg 360
 atccacgagc tgggtataaa tacgtatgcc tcccggtgtt accggacggt gtctagtacg 420
 cttggggcccc gccggcagcc cagcgcggag agactgtgtt acgtgtctgt gaaacggcaag 480
 35 ggcggcccccc gcaggggtt caagacccgc cgcacacaga agtccctccct gtccctgccc 540
 cgcgtgtgg accacagggc ccacggatg gtgcggcagc tacagagtgg gtcgtccca 600
 cccctgtta aggggggttcca gccccgacgg cggcggcaga agcagagccc ggataacctg 660
 gagccctctc acgttcagggc ttgcagactg ggctcccagc tggaggccag tgcgcactag 720

40 <210> 83
 <211> 807
 <212> DNA
 <213> Homo sapiens

45 <300>
 <302> FGF5
 <310> NM004464

<400> 83

50 atgagttgt ctttccttcct cctccttc ttcagccacc tgatccttag cgccctgggt 60
 cacggggaga agcgtctcg cccaaaaggc caacccggac cgcgtccac tgataggaac 120
 cctataggct ccagcagcag acagagcgc agtagcgta tgccttcctc ttctgcctcc 180
 tcctcccccg cagttctct gggcagccaa ggaagtggct tggaggcagag cagtttccag 240
 tggagccctt cggggcggccg gacoggcgc ctctactgca gagtggccat cggtttccat 300
 55 ctgcagatct acccggtatgg caaagtcaat ggatcccacg aagccaatat gtaagtgtt 360
 ttggaaatat ttgcgtgtc tcaggggatgtt taggaatac gaggagttt cagcaacaaa 420
 ttttagcga tgtcaaaaaa agggaaaactc catgcaagtg ccaagttcac agatgactgc 480
 aagttcaggg agcgtttca agaaaaatgc tataactact atgcctcagc aatacataga 540
 actgaaaaaaaaa cagggcggga gtggatgtt gcccgtaa aagaggaaa agccaaacga 600
 60 ggggtcagcc cccgggttaa accccagcat atctctaccctt attttcttcc aagattcaag 660
 cagtcggagc agccagaact ttcttcacg gttactgttc ctgaaaagaa aaatccaccc 720
 agccctatca agtcaaagat tcccccttct gcacccctcgaa aaaataccaa ctcagtggaa 780

tacagactca agtttcgctt tggataa

807

5 <210> 84
 <211> 649
 <212> DNA
 <213> Homo sapiens

10 <300>
 10 <302> FGF8
 <310> NM006119

15 <400> 84
 atggccagcc cccgcgtccgc gctgagctgc ctgctgttgc acttgctggc cctctgcctc 60
 caagcccagg taactgttca gtcctcacct aattttacac agcatgttag ggagcagagc 120
 ctgggtacgg atcagctcg ccgcggccctc atccggaccc accaactcta cagccgcacc 180
 agccggaaaggc acgtgcaggt cctggccaac aagcgcatac acgccccatggc agaggacggc 240
 gacccttcg caaagctcat cgtggagacg gacacctttg gaagcagagt tcgagtcgc 300
 ggagccgaga cgggcctcta catctgcatac aacaagaagg ggaagctgtat cgccaaagagc 360
 20 aacggcaaag gcaaggactg cgtttcacg gagattgtgc tggagaacaa ctacacagcg 420
 ctgcagaatg ccaagtacga gggctggta atggccttca cccgcaaggg cccggccccgc 480
 aagggtctca agacgcggca gcaccagcgt gaggtccact tcatgaagcg gctgccccgg 540
 ggccaccaca ccaccgagca gagcctgcgc ttcgagttcc tcaactaccc gcccttcacg 600
 cgcagcctgc gcgccagcca gaggacttgg gccccggaaac cccgatagg 649

25 .
 <210> 85
 <211> 2466
 <212> DNA
 30 <213> Homo sapiens

35 <300>
 <302> FGFR2
 <310> NM000141

40 <400> 85
 atggtcagct ggggtcggtt catctgcctg gtcgtggta ccatggcaac cttgtccctg 60
 gcccgccct ctttcagttt agttgaggat accacattag agccagaaga gccaccaacc 120
 aaataccaaa tctctcaacc agaagtgtac gtggctgcgc cagggggatc gctagaggtg 180
 cgctgcctgt tgaaagatgc cggcgatgc agttggacta agatgggggt gcaacttgggg 240
 cccaacaata ggacagtgtt tattggggag tacttgcaaa taaaggcgcc cacgcctaga 300
 gactccggcc tctatgttt tactggcgtt aggactgtat acagtggaaac ttggtaacttc 360
 atggtaatg tcacagatgc catctcatcc ggagatgtat agatggacac cgatggtgcc 420
 gaagattttg tcagtggaaa cagaataacaac aagagagcac catactggac caacacagaa 480
 45 aagatggaaa agcggtttca tgctgtgcg gggcccaaca ctgtcaagtt tcgctgccc 540
 gccccggggaa accaatggcc aaccatgcgg tggctgaaaa acggaaaggaa gttaaggcag 600
 gagcatcgca ttggaggcta caaggatcg aaccaggact ggagctcat tatggaaagt 660
 gtggtcccat ctgacaaggaa aaattatacc tttgtgggtt agaataataa cgggtccatc 720
 aatcacacgt accaccttgg ttttgtggag cgatgcctc accggcccat cttccaagcc 780
 50 ggactgcccgg caaatgcctc cacagtggtc ggaggagacg tagagttgt ctgcaagggtt 840
 tacagtgtatg cccagccca catccatgtt atcaagcact tggaaaagaa cggcagtaaa 900
 tacggggcccg acgggtctcc ctactcaag gttctcaagg ccggccgtt taacaccacg 960
 gacaaagaga ttgagggttctt ctatatttgcg aatgttaactt ttgaggacgc tggggatata 1020
 acgtgtttgg cgggttaattt tattggata tcctttcaact ctgcattgtt gacagttctg 1080
 55 ccagcgccctg gaagagaaaa ggagattaca gttcccccag actaccttgc gatagccatt 1140
 tactgcatacg ggggtttttt aatccctgtt atgggtgtttaa cagtcattt gtggccaaatg 1200
 aagaacacgca ccaagaaggcc agacttcgcg agccagccgg ctgtgcacaa gttggccaaa 1260
 cgatcccccc tggggagaca ggttaacaggat tgggtgttgcg ccagcttgc catgaactcc 1320
 60 aacacccccc tgggtggatg aacaacacgc ctctcttcaaa cggcagacac ccccatgctg 1380
 gcagggtctt ccgagttatgaa actttccagag gacccaaat gggagttcc aagagataag 1440
 ctgacactgg gcaaggccctt gggagaagggt tgctttgggc aagtggcat ggccggaaagca 1500
 gtggaaatgg acaaagacaa gccccaggag gcggttcaccc tggccgtgaa gatgttggaaa 1560

	gatgtatgcca	cagagaaaaga	cctttctgat	ctggtgtca	agatggagat	gatgaagatg	1620
	atggggaaac	acaagaatata	cataaatctt	cttgaggact	gcacacagga	tgggcctctc	1680
	tatgtcatag	ttgagtatgc	ctctaaaggc	aaccctccgag	aataacctcg	agccccggagg	1740
	ccacccggga	tggagtagtc	ctatgacatt	aaccgtgttc	ctgaggagca	gatgaccttc	1800
5	aaggacttgg	tgtcatgcac	ctaccagctg	gccagaggca	tggagtagctt	ggcttcccaa	1860
	aaatgtattc	atcgagattt	agcagccaga	aatgttttgg	taacagaaaa	caatgtgatg	1920
	aaaatagcag	actttggact	cgccagagat	atcaacaata	tagactatta	caaaaagacc	1980
	accaatgggc	ggcttccagt	caagtggatg	gctccagaag	ccctgtttga	tagagtatac	2040
	actcatcaga	gtgatgtctg	gtccttcggg	gtgttaatgt	gggagatctt	cacttttaggg	2100
10	ggctcgccct	acccaggat	tcccgtggag	gaactttta	agctgctgaa	ggaaggacac	2160
	agaatggata	agccagccaa	ctgcaccaac	gaactgtaca	tgatgatgag	ggactgttgg	2220
	catgcagtgc	cctcccaagag	accaacgttc	aagcagtttg	tagaagactt	ggatcgaatt	2280
	ctcactctca	caaccaatga	ggaatacttg	gacctcagcc	aacctctcga	acagtattca	2340
	cctagtttca	ctgacacaag	aagttttgt	tcttcaggag	atgatctgt	tttttctcca	2400
15	gaccccatgc	cttacgaacc	atgccttcct	cagtatccac	acataaaacgg	cagtgttaaa	2460
	acatga						2466
	<210>	86					
20	<211>	2421					
	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
25	<302>	FGFR3					
	<310>	NM000142					
	<400>	86					
	atggggcccc	ctgcctgcgc	cctcgcgctc	tgcgtggccg	tggccatctg	ggccggcgcc	60
30	tcctcgagt	ccttggggac	ggagcagcgc	gtcgtggggc	gagcggcaga	agtcccccggc	120
	ccagagcccg	gccagcagga	gcagttggc	ttcggcagcg	gggatctgt	ggagctgagc	180
	tgtccccccgc	ccgggggtgg	tccatgggg	cccactgtct	gggtcaagga	tggcacaggg	240
	ctgggtccct	cgagcgtgt	cctgggtgggg	ccccagcgc	tgcaggtgt	gaatgcctcc	300
	cacgaggact	ccggggccta	cagtcgcgg	cagcgcgtca	cgcagcgcgt	actgtgcccac	360
35	ttcagtgtgc	gggtgacaga	cgctccatcc	tcgggagatg	acgaagacgg	ggaggacgag	420
	gtcaggagca	cagggtgtga	cacggggcc	ccttaactgga	cacggggccg	gcccggatggac	480
	aagaagctgc	tggccgtgcc	ggccgcacac	accgtccgt	tccgtgtccc	agccgctggc	540
	aaccccaactc	cctccatctc	ctggctgaag	aacggcaggg	agttccggg	cgagcaccgc	600
	attggaggca	tcaagctgcg	gcatcagcag	tggagcctgg	tcatggaaag	cgtggtgccc	660
40	tcggaccgcg	gcaactacac	ctgcgtcg	gagaacaagt	ttggcagcat	ccggcagacg	720
	tacacgctgg	acgtgctgga	gcgcgtcccc	caccggccca	tcctgcaggc	ggggctgccc	780
	gccaaccaga	cgccgggtgt	ggcagcgcac	gtggagttcc	actgcaaggt	gtacagtgac	840
	gcacagcccc	acatccagtg	gctcaagcac	gtggaggtga	acggcagcaa	ggtggggccc	900
	gacggcacac	cctacgttac	cgtgtcaag	acggcggggcg	ctaaccacac	cgacaaggag	960
45	ctagagggtt	tctcccttgc	caacgtcacc	tttgaggacg	ccggggagta	cacctgcctg	1020
	gcccccaatt	ctatggggtt	ttctcat	tctcgctggc	ttgtgggtgt	gccagccgaa	1080
	gaggagctgg	tggaggctga	cgaggcgggc	agtgtgtat	caggcatct	cagctacggg	1140
	gtgggcttct	tcctgttcat	cctgggtgg	cgccgtgtga	cgctctgcgc	cctgcgcagc	1200
	ccccccaaga	aaggcttggg	ctccccacc	gtgcacaaga	tctcccgctt	cccgctcaag	1260
50	cgacagggtgt	ccctggagtc	caacgcgtcc	atgagctcca	acacaccact	ggtgcgcatc	1320
	gcaaggctgt	cctcaggggaa	ggggcccacg	ctggcaatg	tctcccgat	cgagctgcct	1380
	gccgacccca	aatggggact	gtctcgggcc	cggctgaccc	tggcaagcc	ccttggggag	1440
	ggctgtttcg	gccagggtgt	catggcggag	gccatcgcca	ttgacaagga	ccggggccgccc	1500
	aaggctgtca	cgctagccgt	gaagatgtcg	aaagacgtg	ccactgacaa	ggacactgtcg	1560
55	gaccctgggt	ctgagatgga	gatgtatgaa	atgatcgaaa	aacacaaaaa	catcatcaac	1620
	ctgctggggcg	cctgcacgca	ggggggggcc	ctgtacgtgc	ttgtggagta	cgcggccaaag	1680
	ggttaacctgc	gggagtttct	gccccggcgg	cggccccccgg	gcctggacta	cctccttcgac	1740
	acctgcaago	cgccccggaga	gcagtcacc	ttcaaggacc	ttgtgtctg	tgccttaccag	1800
	gtggcccccgg	gcatggagta	cttggcctcc	cagaagtgc	tccacaggga	cctggctgccc	1860
60	cgaatgtgc	ttgtgaccga	ggacaacgtg	atgaagatcg	cagacttcgg	gctggcccccgg	1920
	gacgtgcaca	acctcgacta	ctacaagaag	acaaccaacg	gcccggctgccc	cgtgaagtgg	1980
	atggcgctg	aggccttgg	tgaccgagtc	tacactcacc	agagtgcacgt	ctggtccttt	2040

ggggtcttcgc tctgggagat cttcacgctg gggggctccc cgtaccccg catccctgtg 2100
 gagggactct tcaagctct gaaggagggc caccgcattt acaagccgc caactgcaca 2160
 cacgacctgt acatgatcat gcgggagtgc tggcatgccg cgccctcca gaggcccacc 2220
 ttcaaggcgc tggtggagga cctggaccgt gtccttaccc tgacgtccac cgacgagta 2280
 5 ctggacctgt cggcgcctt cgagcagtac tccccgggtg gccaggacac ccccagctcc 2340
 agtcctcag gggacgactc cgttttgcc caccgactgc tgccccggc cccacccagc 2400
 agtgggggct cgcggacgtg a 2421

10 <210> 87
 <211> 2102
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> HGF
 <310> E08541

20 <400> 87
 atgcagaggg acaaaggaaa agaagaataa caattcatga attcaaaaaa tcagcaaaga 60
 ctaccctaat caaaatagat ccagcactga agataaaaaac caaaaaaaaa aatactgcag 120
 accaaatgtc taatagatgt actaggaata aaggacttcc attcacttgc aaggctttt 180
 ttttataaa agcaagaaaa caatgcctt gttccccctt caatagcatg tcaagtgag 240
 taaaaaaaaga atttggccat gaattgacc tctatgaaaaa caaagactac attagaaact 300
 25 gcatcattgg taaaggacgc agctacaagg gaacagtatc tatcactaag agtggcatca 360
 aatgtcagcc ctggagttcc atgataaccac acgaacacag cttttgcct tcgagctatc 420
 gggtaaaaga cctacaggaa aactactgtc gaaatctcg agggaaagaa gggggaccct 480
 ggtgtttcac aagcaatcca gaggtacgct acgaagtcg tgacattctt cagtgttcag 540
 aagttgaatg catgacctgc aatggggaga gttatcgagg tctcatggat catacagaat 600
 30 caggcaagat ttgtcagcgc tggatcatc agacaccaca cccgcacaaa ttcttgct 660
 aaagatatacc cgacaaggcc tttgtatgata attattgcgc caatccgc ggcagccga 720
 ggcatggtg ctatactctt gaccctcaca cccgcgtggg gtactgtgc attaaaacat 780
 ggcgtgacaa tactatgaaat gacatgtgc ttcccttggg aacaactgaa tgcattcaag 840
 35 gtcaaggaga aggctacagg ggcactgtca ataccattt gaatgaaattt ccatgtcagc 900
 gttgggattc tcgtatctt cagcagcatg acatgactcc tgaaaaatttca aagtgcagg 960
 acctacgaga aaattactgc cgaaatccag atgggtctga atcacccctgg ttgtttacca 1020
 ctgatccaaa catccgagtt ggctactgct cccaaattcc aaactgtgtat atgtcacatg 1080
 gacaagattg ttatcggtgg aatggaaaaa attatatggg caacttatcc caaacaagat 1140
 40 ctggactaac atgttcaatg tggacaaga acatggaaga cttacatcgat catatcttct 1200
 gggaccacaga tgcaagtaag ctgaatgaga attactgcgc aaatcccgat gatgtgtc 1260
 atggaccctg gtgcacacgc gggaaatccac tcattccctt ggattattgc cctatttctc 1320
 gttgtgaagg tgataccaca cctacaatag tcaattttaga ccattccgtt atatcttgc 1380
 cccaaaggaa acaattgcga gttgtaatgc ggattccaaac acgaacaaac ataggatgg 1440
 45 tggtagttt gagatcaga aataaacata ttcggggggg atcatgtata aaggagagg 1500
 gggttcttac tgacgcacag tggtccctt ctcgagactt gaaagattt gaaacctggc 1560
 ttgaaattca tgatgtccac ggaaggaggatgagaaatgc caaacaggat ctcataatgtt 1620
 cccagctgggt atatggccctt gaaaggatcag atctgggtt aatgaagctt gccaggccctg 1680
 ctgtcctggc tgattttgtt agtacgattt attacctaa ttatggatgc acaattccctg 1740
 50 aaaagaccag ttgcagttt tatggctggg gctacactgg attgtacaaatc tatgtatggcc 1800
 tattacgagt ggcacatctc tatataatgg gaaatgagaa atgcagccat catcatcgag 1860
 ggaaggtgac tctgaatgag tctgaaatat gtgctggggc tgaaaagattt ggtatcaggac 1920
 catgtgaggg ggattatgtt ggcccaacttg tttgtgagca acataaaatg agaatggttc 1980
 ttgggtgtcat tgttcctggc cgtggatgtt ccattccaaatc tgcgtctggat atttttgcc 2040
 55 gagtagcata ttatgcaaaa tggatcaca aaattatgtt aacatataag gtaccacag 2100
 ca 2102

60 <210> 88
 <211> 360
 <212> DNA
 <213> Homo sapiens

<300>
<302> ID3
<310> XM001539

5 <400> 88
atgaaggcgc tgagcccggt ggcggctgc tacgaggcgg tgcgtgcct gtcggAACGC 60
agtctggcca tcgccccggg ccgagggaaag ggcccggcaag ctgaggagcc gctgagcttg 120
ctggacgaca tgaaccactg ctactcccgc ctgcgggaac tggtacccgg agtcccggaga 180
ggcaactcaggc tttagccaggt ggaaatccta cagcgcgtca tcgactacat tctcgacctg 240
10 cagtagtcc tggccgagcc agccctgga cccctgatg gcccccacct tcccatccag 300
acagccgagc tcactccggaa acttgtcatc tccaacgaca aaaggagctt ttgccactga 360

15 <210> 89
<211> 743
<212> DNA
<213> Homo sapiens

20 <300>
<302> IGF2
<310> NM000612

<400> 89
atggaaatcc caatggggaa gtcgatgctg gtgcttctca ctttcttggc cttcgccctcg 60
25 tgctgcattt ctgttaccgg ccccagttag accctgtggc gggggggagct ggtggacacc 120
ctccagttcg tctgtggggc ccgcggcttc tacttcagca ggcccggcaag ccgtgtgagc 180
cgtcgccggcc gtggcatcggt tgaggaggatc tgtttccggc gctgtgaccc gggccctctg 240
gagacgtact gtgcttaccccg cgccaaagtcc gagaggggacg tgtcgaccgg tccgaccgtg 300
30 cttccggaca acttccccag ataccccgatc ggcaagttct tccaatatga caccctggaaag 360
cagtccaccc agcgccctgcg caggggcctg cttgccttc tgctgtggccg cccgggtcac 420
gtgtcgccca aggagctcga ggcgttcagg gaggccaaac gtcaccgtcc cctgattgtct 480
ctacccaccc aagaccccccgc ccacgggggc gcccccccaag agatggccag caatcggaag 540
tgagcaaaaac tgccgcaagt ctgcagcccg ggcacccat cctgcacgcct cctcctgacc 600
35 acgacgttt ccatcagggtt ccatccggaa aatctctcggt ttccacgtcc ccctggggct 660
tctcttgacc cagttccccgtt gccccggcctc cccgaaacag gctactctcc tcggccccct 720
ccatcgggctt gaggaaagcac agc 743

40 <210> 90
<211> 7476
<212> DNA
<213> Homo sapiens

45 <300>
<302> IGF2R
<310> NM000876

<400> 90
atggggggccg ccgcggcccg gagcccccac ctggggcccg cgcccccccg ccgcggccag 60
50 cgctctctgc tcctgtca gctgtgtcg ctgcgtcgctg ccccggggtc cacgcaggcc 120
caggccgccc cgttccccca gctgtgcagt tatacatggg aagctgttga taccaaaaat 180
aatgtacttt ataaaatcaa catgtgtgg agtgtggata ttgtccagtg cggggccatca 240
agtgtgtttt gtatgcacga cttgaagaca cgcacttattc attcagtggg tgactctgtt 300
ttgagaagtg caaccagatc tctctggaa ttcacaccaa cagttagctg tgaccagcaa 360
55 ggcacaaatc acagagtccaa gagcagcatt gccttcctgt gtggggaaac cctggaaact 420
cctgaatttg taactgcac agaatgtgtg ctaactttt agtggaggac cactgcaccc 480
tgcaagaaag acatatttaa agcaaaatag gaggtgcatt gctatgttt tgatgaagag 540
ttgaggaagc atgatctcaa tcctctgtatc aagcttagtg gtgcctactt ggtggatgac 600
60 tccgatccgg acacttctt attcatcaat gttttagag acatagacac actacgagac 660
ccaggttccac agctgcgggc ctgtcccccc ggcactgcgg cctgcctggt aagaggacac 720
caggcgtttt atgttggca gccccggac ggactgaagc tggtgccaa ggacaggctt 780
gtcctgagtt acgtgagggaa agaggcagga aagcttagact tttgtatgg tcacagccct 840

5 gcggtgacta ttacatttgc ttgcccgtcg gagcggagag agggcaccat tcccaaactc 900
 acagctaaat ccaactgccg ctatgaaatt gagtggatta ctgagtatgc ctgccacaga 960
 gattacctgg aaagtaaaaac ttgttctctg acggcgagc agcagatgt ctccatagac 1020
 ctcacaccac ttgcccagag cgagggttca tcctatattt cagatggaaa agaatattt 1080
 ttttatttga atgtctgtgg agaaactgaa atacagttct gtaataaaaa acaagctgca 1140
 gtttgcgaag tgaaaaagag cgataacctc caagtcaag cagcaggaag ataccacaat 1200
 cagaccctcc gatattcggg tggagacctc accttgatat attttggagg tcatgaatgc 1260
 agctcagggt ttcagcggat gaggcgtata aactttgagt gcaataaaa cgcaggtaac 1320
 gatgggaaag gaactccgtt attcacaggg gaggttgact gcacctactt cttcacatgg 1380
 10 gacacggaat acgcctgtgt taaggagaag gaagacctcc tctgcgggtc caccgacggg 1440
 aagaagcgc aatgacctgtc cgcgcgtggc cgccatgcag aaccagagca gaattggaa 1500
 gctgtggatg gcagtcaagc gggaaacagag aagaaggcatt ttttcatcaa tatttgcac 1560
 agagtgcgc aggaaggcgg ggcacgaggg tgtcccgagg acgcggcgt gtgtgcagtg 1620
 gataaaaaatg gaagaaaaaa tctggggaaa ttatatttgc ctccccatgaa agagaaaagga 1680
 15 aacatccaac tctcttattt agatgtgtt gatttgcggc atggcaagaa aattaaaaact 1740
 aatatcacac ttgtatgcaaa gccagggtat ctggaaatgg caccagtgtt gagaacttct 1800
 ggggaaggcg gttgctttt tgagggttag tggcgcacag ctgcggcctg tttgctgtct 1860
 aagacagaag gggagaactg cacggctttt gactcccagg cagggtttt ttttgcactt 1920
 tcacctctca caaagaaaaa tgggcctat aaagttgaga caaagaagta tgactttat 1980
 20 ataaatgtgt gtggcccggt gtctgtgac ccctgtcagc cagactcagg agcctgccc 2040
 gtggcaaaaaa gtgatgagaa gacttggaaac ttgggtctga gtaatgcga gcttcataat 2100
 tatgatggga tcatccaactt gaactacaga ggcggcacac cctataacaa taaaagacac 2160
 acaccgagag ctacgctcat caccccttc ttttgcggat acgcgggagt gggcttccct 2220
 gaatatcagg aagaggataa ctccacatc aacttccggg ggtacaccag ctatgcctgc 2280
 25 ccggaggagc ccctggatc cgtatgtacc gacccttcc cgttggagca gtacgaccc 2340
 tccatgttgg caaaatctga aggtggccctt ggaggaaact ggtatccat ggacaactca 2400
 ggggaacatg tcacgtggag gaaatactac attaacgtgt ttttgcggctt gatccatgt 2460
 ccgggctgca accgatatgc atcgcttgc cagatgaagt ataaaaaaga tcagggtctt 2520
 ttcaactgaag tggttccat cagtaacttgc ggaatggcaa agacggccc ggtgggttag 2580
 30 gacagcggca gcctccttctt ggaatacgtg aatgggtcgg cctgcaccac cagcgtatggc 2640
 agacagacca catataccac gaggatccat ttttgcggatgtt gtttgcggaa cacagggct 2700
 caccccatct ttttgcggatgtt gtttgcggatgtt ttttgcggaa cacagggct 2760
 gcctgtccca ttcagacaac gacggataca gaccaggctt gctctataag ggtatccaaac 2820
 35 agttggattt ttttgcggatgtt taatccgtca aacagttcgc aaggatataa cgtctctggc 2880
 atttggaaaga ttttgcggatgtt taatccgtca ggcacaatgc ctgttgcgg gaccatccctg 2940
 gggaaacatg ctttgcggatgtt tgaggcagaa accccaaactt aagagatcaaa gatttggaaag 3000
 ccagcaaggc cagtcggatgtt tgaggaaactt ctccatgtt ccacaggggg ctcatcaact 3060
 ctgacctaca aagggtccctt ctgttgcggaa ggttccatgtt atgctttat cgtccgcctt 3120
 gtttgcggat atgatgttta ctcaggccc ttcggatgtt ttttgcggatgtt ttttgcggatgtt 3180
 40 gggcaaggga tccgaaacac ttactttgc ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3240
 ccagtggact gccaagtcac cgacccgttgc gggaaatggat acgacttcac ttttgcggatgtt 3300
 acagtcggat aacccgttgc ggttccatgtt accttcgttgc atggggatggaa gggactttt 3360
 tatttgcggat ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3420
 ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3480
 45 gccggccgca atggatcttccatgtt gggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3540
 cggatgttccatgtt ccaggatgttccatgtt gggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3600
 ctttgcggatgtt gggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3660
 agagttggaaag gggacaacttgc ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3720
 aaggccctgg gcttcaacca caccatgttgc agccgtggc aataacttca ttttgcggatgtt ttttgcggatgtt 3780
 50 gtttgcggatgtt agccgtggc aaccatgttgc ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3840
 ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3900
 ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 3960
 aagcttaactt atgaaaatgg ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4020
 aagtttatac agccgtggc aaccatgttgc ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4080
 gtatccatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4140
 55 tgcccacccatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4200
 ctctcgatccatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4260
 gaggacttccatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4320
 ctttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4380
 60 ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4440
 gtgaacttccatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4500
 cccacagccatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt ttttgcggatgtt 4560

	ccaaaggcacag	gacaccctgtt	tgtatctgagc	tcctttaagtgc	gcaggggcggg	atttcacagct	4620
5	gcttacagcg	agaaggggtt	ggtttacatg	agcatctgtg	gggagaatga	aaactgcct	4680
	cctggcgtgg	gggcctgtt	tggacagacc	aggattagcg	tggcaaggc	caacaagagg	4740
	cttagatatacg	tggaccagggt	cctgcagctg	gtgtacaagg	atgggtcccc	ttgtccctcc	4800
	aaatccggcc	tgagctataa	gagtgtgatc	agtttcgtgt	gcaggcctga	ggccgggcca	4860
	accaataaggc	ccatgcgtat	ctccctggac	aagcagacat	gcactcttct	tttctctgg	4920
	cacacgcgc	tggcctgcga	gcaagcgcacc	aatgttccg	tgaggaatgg	aagctctatt	4980
10	gttgacttgt	ctccccctat	tcatcgact	ggtggttatg	aggctttaga	tgagagttag	5040
	gtatgtgcct	ccgatataaa	ccctgatttc	tatcatcaata	tttgcagcc	actaaatccc	5100
	atgcacgcag	tggccctgtcc	tgccggagcc	gctgtgtcga	aaggctctat	tgatgttccc	5160
	cccatagata	tcggccgggt	agcaggacca	ccaataactca	atccaatagc	aatagagatt	5220
15	tacttgaatt	ttgaaagcag	tactccttgc	ttagcggaca	agcatttcaa	ctacacctcg	5280
	ctcatcgctg	ttcactgtaa	gagaggtgtg	agcatggaa	cgccctaagct	gttaaggacc	5340
	agcggagtgcg	actttgttgc	cgaatgggag	actcctgtcg	tctgtcttga	tgaagttagg	5400
	atggatggct	gtaccctgac	agatgagcag	ctccctctaca	gcttcaactt	gtccagccct	5460
	tccacgagca	ccttaaggt	gactcgcgcac	tcgcgcaccc	acagcgttgg	ggtgtgcacc	5520
20	tttgcagtcg	ggccagaaaca	aggaggctgt	aaggacggag	gagtctgtct	gtctcaggc	5580
	accaagggggg	catccttgg	acggctgcac	tcaatgaaac	tggattacag	gcaccaggat	5640
	gaagcggctcg	ttttaagttt	cgtgaatgg	gatcgttgc	ctccagaaac	cgatgcggc	5700
	gtcccccgtg	tctccccc	catattcaat	gggaagagct	acgaggagtg	catcatagag	5760
25	agcaggggcga	agctgtgtgc	tagcacaact	gcccgcactcg	acagagacca	cgagtggggc	5820
	tttcgcagac	actcaaacag	ctaccggaca	tccagcatca	tatttaagtg	tgatgaagat	5880
	gaggacattg	ggaggccaca	agtttgcgt	gaagtgcgtg	gggtgtatgt	gacatttgag	5940
	tggaaaacaa	aagttgtctg	ccctccaaag	aagttggagt	gc当地attcg	ccagaaacac	6000
30	aaaacctacg	acctgcggct	gctctctct	ctcaccgggt	cctggccct	gtccacaaac	6060
	ggagtctcg	actatataaa	tctgtgccag	aaaatatata	aaggggccct	gggctgctct	6120
	gaaaggggca	gcatttgcag	aaggaccaca	actggtgcac	tccaggctt	gggactcg	6180
	cacacgcaga	agctgggtgt	cataggtgac	aaagttgtt	tcacgtactc	caaaggattat	6240
35	ccgtgtggtg	gaaataagac	cgcatctcc	gtgatagaat	tgacctgtac	aaagacggtg	6300
	ggcagacactg	cattcaagag	gtttgatatac	gacagctgca	cttactactt	cagctggac	6360
	tcccgggctg	cctgcggcgt	gaaggcctcag	gaggtgcaga	tggtaatgg	gaccatcacc	6420
	aaccctataa	atggcaagag	cttcagccct	ggagatattt	attttaagct	gttcagagcc	6480
40	tctggggaca	tgaggaccaa	tggggacaac	tacctgtatg	agatccaaact	tttctccatc	6540
	acaagactcca	gaaaccggc	gtgtcttgg	gccaacat	gccaggtaa	gcccacacat	6600
	cagcaactca	gtcgaaagg	tggaacccct	gacaagacca	agtactacat	tc当地agggc	6660
	gatctcgat	tcgtgtttgc	ctcttccct	aagtgcggaa	aggataagac	caagtctgt	6720
45	tcttccacca	tcttcttca	ctgtgaccct	ctgggtggagg	acgggatccc	cgagttcagt	6780
	cacgagactg	ccgactgcac	gtacctctt	tcttggtaca	cctcagccgt	gtgtctctg	6840
	gggggtggct	ttgacagcga	gaatcccccgg	gacgacgggc	agatgcacaa	ggggctgtca	6900
50	gaacggagcc	aggcagtcgg	cgcgggtctc	agcctgtcg	tggggcgt	cacctgtcg	6960
	ctgctggccc	tgttgccta	caagaaggag	aggagggaaa	cagtgataag	taagctgacc	7020
	atttgcgtat	ggagaagttc	caacgtgtcc	tacaatact	caaaggtaa	taaggaagaa	7080
	gagacagatg	agaatgaaac	agagtggctg	atggaaagaga	tccagctgc	tcctccacgg	7140
55	cagggaaagg	aaggcggacg	gaacggccat	attaccacca	agtcaagtga	agccctcagc	7200
	tccctgcatg	gggatgacca	ggacagttag	gatgagggttc	tgaccatccc	agaggtgaaa	7260
	gttcaactcg	gcagggggac	tggggcagag	agctcccccacc	cagttagaaaa	cgcacacagc	7320
	aatgccttc	aggagcgtga	ggacgatagg	gtggggctgg	tcaggggtga	gaaggcgagg	7380
	aaagggaaat	ccagctctgc	acagcagaag	acagttagct	ccaccaagct	gtgtcccttc	7440
	catgacgaca	gcgacgagga	cctcttacac	atctga			7476
60	<210> 91						
	<211> 4104						
	<212> DNA						
	<213> Homo sapiens						
	<300>						
	<302> IGF1R						
	<310> NM000875						
60	<400> 91						
	atgaagtctg	gtccggagg	agggtcccccg	acctcgctgt	gggggtctct	gtttctctcc	60

	gccgcgctc	cgctctggcc	gacgagtggaa	gaaatctgcg	ggccaggcat	cgacatccgc	120
	aacgactata	agcagctgaa	gcccctggag	aactgcacgg	tgatcgaggg	ctacctccac	180
	atccctgtca	tctccaaggc	cgaggactac	cgcagctacc	gcttcccaa	gtcacacggtc	240
5	attaccgagt	acttgcgtct	gttccgagtg	gctggcctcg	agagcctcg	agaccttttc	300
	ccccaaacctca	cggtcatccg	cggctggaaa	cttcttaca	actaccccct	ggtcatacttc	360
	gagatgacca	atctcaagga	tattgggctt	tacaacctga	ggaacattac	tcggggggcc	420
	atcaggattg	agaaaaatgc	tgacctctgt	tacctctcca	ctgtggactg	gtccctgtatc	480
	ctggatgcgg	tgtccaataa	ctacattgtg	gggaataagc	ccccaaagga	atgtggggac	540
10	ctgtgtccag	ggaccatggaa	ggagaagccg	atgtgtgaga	agaccaccat	caacaatgag	600
	tacaactacc	gctgcgtggac	cacaaaccgc	tgccagaaaa	tgtcccaag	cacgtgtggg	660
	aaggcgccgt	gcaccgagaa	caatgagtgc	tgccaccccg	agtgcctggg	cagctgcagc	720
	gcccctgaca	acgacacggc	ctgtgttagct	tgccgccact	actactatgc	cgtgtctgt	780
	gtgcctgcct	gcccccccaa	cacccatcagg	tttggggct	ggcgcgtgtgt	ggaccgtgac	840
15	ttctgcgcca	acatccctcg	cgccgagagc	agcgaactcg	agggggttgt	gatccacgac	900
	ggcgagtgc	tgcaggatgt	ccccctcggg	ttcatccgc	acggcagcca	gagcatgtac	960
	tgcattccctt	gtgaagggtcc	tttggccaa	gtctgtgagg	aaaaaaagaa	aacaaagacc	1020
	attgattctg	ttacttctgc	tcagatgctc	caaggatgca	ccatcttcaa	ggcaatttg	1080
	ctcattaaca	tccgacgggg	gaataaacatt	gcttcagagc	tggagaactt	catggggctc	1140
20	atcgagggtgg	tgacgggcta	cgtgaagatc	cgccattctc	atgccttgg	ctccttgc	1200
	ttcctaaaaaa	accttcgcct	catccatgg	gaggagcagc	tagaaggaa	ttactccttc	1260
	tacgtcctcg	acaaccagaa	cttgcagcaa	ctgtggact	gggaccaccg	caacctgacc	1320
	atcaaagcag	ggaaaaatgt	ctttgtttc	aatcccaa	tatgttgc	cgaaatttac	1380
	cgcacgggg	aagtgacggg	gactaaaggg	cgccaaagca	aaggggacat	aaacaccagg	1440
25	aacaacgggg	agagagccct	ctgtgaaatg	gacgtctgc	atttcaccc	caccaccacg	1500
	tgcagaatac	gcatcatcat	aacatggcac	cggttaccggc	ccccctgacta	cagggtatctc	1560
	atcagcttca	ccgtttaact	caaggaagca	cccttttaa	atgtca	gtatgtggg	1620
	caggatgcct	cgggctccaa	cagctggaa	atggtggac	tggacccccc	gccccacaag	1680
	gacgtggagc	ccggcatctt	actacatggg	ctgaaggcct	ggactcagta	cgccgtttac	1740
30	gtcaaggctg	tgaccctcac	catgggtgg	aacgaccata	tccgtggggc	caagagtgg	1800
	atcttgtaca	ttcgacccaa	tgcttcagtt	ccttccattc	ccttggacgt	tctttcagca	1860
	tgcgaactcct	tttctcagtt	aatcgtgaa	tggaaaccctc	cctctctgc	caacggcaac	1920
	ctgagttact	acattgtgc	ctggcagcg	cagcctcagg	acggctaccc	ttaccggcac	1980
	aattactgtc	ccaaagacaa	aatccccatc	aggaagtatg	ccgacccgc	catcgacatt	2040
35	gaggaggtca	cagagaaccc	caagactgg	gtgtgtgg	gggagaaagg	gccttgcgtgc	2100
	gcctggccca	aaactgaagc	cgagaagcg	gccggagaagg	aggaggtcga	ataccgcaaa	2160
	gtcttggaga	atttctgc	caactccatc	ttcgtgccc	gacctgaaag	gaagcggaga	2220
	gatgtcatgc	aagtggccaa	caccacatc	tccaggccaa	gcaggaacac	cacggccgc	2280
	gacacctaca	acatcaccgc	ccccggagag	ctggagacag	agtaccctt	ctttgagac	2340
40	agagtggata	acaaggagag	aactgtcatt	tctaaccctc	ggccttcc	attgtaccgc	2400
	atcgatatacc	acagctgaa	ccacgaggct	gagaagctgg	gctgcagcgc	ctccaacttc	2460
	gtcttgc	ggactatgc	cgcagaagga	gcagatgaca	ttcctggggc	agtgaccc	2520
	gagccaaggc	ctgaaaactc	catcttttta	aatggccgg	aacctgagaa	tcccaatgg	2580
	ttgattctaa	tgtatgaaat	aaaatacgg	tcacaagtt	aggatcagcg	agaatgtgt	2640
	tccagacagg	aatacaggaa	gtatggaggg	gccaagctaa	accggctaaa	cccggggaaac	2700
45	tacacagccc	ggatttcaggc	cacatctctc	tctggaaatg	ggtcgtggac	agatccgtgt	2760
	ttcttctatg	tccaggccaa	aacaggat	aaaaacttca	tccatctgtat	catcgctctg	2820
	cccgctgtcg	tcctgttgat	cgtggggaggg	ttggtgat	tgctgtacgt	tttccataga	2880
	aagagaaatc	acaggagct	ggggatgg	gtgtgtatg	cctctgtaa	cccggagatc	2940
	ttcagcgtcg	ctgtatgt	cgttccgtat	gagtgggg	tggctgggg	gaagatcacc	3000
50	atagccggg	aacttggca	ggggtcgtt	gggatggct	atgaaggagt	tgccaagggt	3060
	gtgggtaaag	atgaacctga	aaccagatgt	gccattaaaa	cagtgaacga	ggccgcaagc	3120
	atgcgtgaga	ggatttgat	tctcaacgaa	gcttctgt	tgaaggagt	caattgtc	3180
	catgtggtgc	gattgttgg	tgtgtgtcc	caaggcc	caacactgtt	catcatggaa	3240
	ctgatgacac	ggggcgatct	aaaaagttat	ctccgg	tgaggccaga	aatggagaat	3300
55	aatccagtcc	tagcacctcc	aaggctgagc	aagatgattc	agatggccgg	agagattgc	3360
	gacggcatgg	catacctca	cgccaaataag	ttcgtccaca	gagaccc	tgcccgaaat	3420
	tgcgtgttag	ccgaagat	cacagtcaaa	atcgagat	ttggat	tgac	3480
	tatgagacag	acttaccg	gaaaggaggc	aaagggtgc	tgccctgtgc	ctggatgt	3540
60	cctgagtc	tcaaggatgg	agtcgttcc	acttactcg	acgttgc	ttcgggggtc	3600
	gtcctctggg	agatccac	actggccgag	cagccctacc	agggctgtc	caacgagca	3660
	gtccttcgtct	tgcgtatgg	ggggggccct	ctggaca	cagacaactg	tcctgacatg	3720
	ctgtttgaac	tgtatgcgt	gtgtggcag	tataacc	agatgaggcc	ttccttc	3780

gagatcatca gcagcatcaa agaggagatg gagcctggct tccgggaggt ctcccttctac 3840
 tacagcgagg agaacaagct gcccggccg gaggagctgg acctggagcc agagaacatg 3900
 gagagcgtcc ccctggaccc ctcggctcc tcgtccctccc tgccactgcc cgacagacac 3960
 5 tcaggacaca aggccgagaa cggccccggc cttgggggtgc tggtcctccg cgccagcttc 4020
 gacgagagac agcctaagc ccacatgaac gggggccgca agaacggagcg ggcccttgccg 4080
 ctgccccagt cttcgacctg ctga 4104

10 <210> 92
 <211> 726
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PDGFB
 <310> NM002608

20 <400> 92
 atgaatcgct gctggggcgt cttcctgtct ctctgctgtc acctgcgtct ggtcagcgcc 60
 gagggggacc ccattcccgaa ggagctttat gagatgtca gtgaccactc gatccgctcc 120
 tttatgtatc tccaacgcct gctgcacggaa gaccccgagg aggaagatgg gggcgagttg 180
 gacctgaaca tgacccgctc ccactctggaa ggcgagctgg agagcttgc tcgtgaaaga 240
 aggagcctgg gttccctgac cattgctgag cggccatgaa tcgcccggatg caagacgcgc 300
 accggagggtgt tcgagatctc ccggcgcctc atagaccgca ccaacgccaa ctccctgggt 360
 25 tggccgcctt gtgtggaggt gcagcgctgc tccggctgtc gcaacaaccc caacgtgcag 420
 tgccggccca cccagggtca gctgcgaccc ttccagggtga gaaagatcga gatttgtcg 480
 aagaagccaa tctttaaaga ggccacgggtg acgctggaa accacctggc atgcaagtgt 540
 gagacagtgg cagctgcacg gcctgtgacc cgaagcccg gggttccca ggagcagcga 600
 30 gccaaaacgc cccaaactcg ggtgaccatt cggacgggtgc gagtccggcgg gccccccaag 660
 gcaagcacc ggaaattcaa gcacacgcat gacaagacgg cactgaagga gacccttggaa 720
 gccttag 726

35 <210> 93
 <211> 1512
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> TGFbetaR1
 <310> NM004612

45 <400> 93
 atggaggcgcc cggtcgctgc tccgcgtccc cggctgtcc tcctcggtct ggccggccgg 60
 gccggccggcgg cggccggcgt gctcccgggg ggcacggcgct tacagtgttt ctgccaccc 120
 tgtacaaaaag acaattttac ttgtgtgaca gatggggctct gctttgtctc tgcacagag 180
 accacagaca aagtataaca caacacgtg tgcatacgaa aaattgactt aattccctcgaa 240
 gataggccgt ttgtatgtc acccttctca aaaactgggt ctgtgactac aacatattgc 300
 tgcacatcagg accattgcaaaaatgaa cttccaaactc ctgtaaagtgc atcacctggc 360
 50 ctgggtcctg tggaaactggc agctgtcatt gctggaccag tggcttcgt ctgcacatc 420
 ctcatgttgc tggcttatat ctgcacaaac cgcactgtca ttccacatcg agtgcacaaat 480
 gaagaggacc cttcatttgc tggccctttt atttcagagg gtactacgtt gaaagactta 540
 atttatgata tgacaacgtc aggttctggc tgggtttac cattgttgc tcaagagaaca 600
 attgcgagaa ctattgttt acaagaaagc attggcaaaat gtcgattttgg agaagttgg 660
 55 agaggaaagt ggcggggaga agaagttgtc gttaaagatat tctccctctag agaagaacgt 720
 tcgtggttcc gtgaggcaga gatttatcaa actgtaatgt tacgtcatga aacatccctg 780
 ggatttatag cagcagacaa taaagacaat ggtacttggc ctcagctgt gttgggtgtca 840
 gattatcatg agcatggatc cctttgtat tacttaaaca gatacagat tactgtggaa 900
 ggaatgataa aacttgctc gtccacggcg agcgggttttgc cccatctca catggagatt 960
 60 gttggtaccc aaggaaagcc agccattgtc catagagatt tggaaatcaaa gaatatcttgc 1020
 gtaaagaaga atggaaacttg ctgtattgca gacttaggac tggcgttaaag acatgattca 1080
 gccacagata ccattgatata tgccttcaac cacagagtgg gaacaaaaag gtacatggcc 1140

cctgaagttc tcgatgattc cataaatatg aaacattttg aatcccaa acgtgctgac 1200
 atctatcaa tggccttagt attctggaa attgtcgac gatgtccat tggtaatt 1260
 catgaagatt accaactgcc ttattatgtat ctgtacctt ctgaccatc agttaagaa 1320
 atgagaaaag ttgttgtga acagaagtta aggccaaata tcccaaacag atggcagac 1380
 5 ttgtaaggcct tgagagtaat ggctaaaatt atgagagaat gttgttatgc caatggagca 1440
 gctaggctt cagcattgcg gattaagaaa acattatgc aactcagtca acaggaaggc 1500
 atcaaaaatgt aa 1512

10 <210> 94
 <211> 4044
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> Flk1
 <310> AF035121

<400> 94

20 atgcagagca aggtgctgct ggcgcgtcgcc ctgtggctt gcgtggagac ccggggccgccc 60
 tctgtgggtt tgcctagtgt ttctcttgat ctgcccaggc tcagcataca aaaagacata 120
 cttacaatta aggctaatac aactcttcata attacttgc ggggacagag ggacttggac 180
 tggctttggc ccaataatca gagttggcagt gaggcaaggg tggaggtgac tgagtgcgc 240
 gatggcctct tctgttaagac actcacaatt cccaaatgtga tcggaaatga cactggagcc 300
 25 tacaagtgtct tctaccggga aactgacttg gcctcggtca tttatgtcta tggtaagat 360
 tacagatctc catttattgc ttctgttagt gaccaacatg gagtcgtgtt cattacttag 420
 aacaaaaaca aaactgtgtt gattccatgt ctgggtcca tttcaatctt caacgtgtca 480
 ctttgtgcaaa gatacccgaa aaagagattt gttcctgtat gtaacagaat ttcttggtt 540
 agcaagaagg gctttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600
 30 gaagaaaaaa ttaatgtat aagttaccag tctattatgt acatagttgt cggtgttaggg 660
 tataggattt atgatgtgtt tctgagtcgt tctcatggaa ttgaactatc tggtaagaa 720
 aagcttgcct taaattgtac agcagaactt gaaactaaatg tggggattgtt ctcaactgg 780
 gaataccctt ctgcgaagca tcagcataag aaactgttta accgagaccc taaaacccagg 840
 tctggaggtt agatgaagaa attttgagc accttaacta tagatgtgtt aacccggagt 900
 35 gaccaaggat tgtcacatcg tgcacatcc agtggctgt tgaccaagaa gaacagcaca 960
 tttgtcagggg tccatggaaa acctttgtt gctttggaa gtggcatggaa atctctgggt 1020
 gaagccacgg tggggagcg tgcacatcc cctgcgtt accttggta cccaccccca 1080
 gaaataaaaat ggtataaaaaa tggaaatacccc cttgactgttca atcacacaat taaagcgggg 1140
 catgtactga cgattatggaa agtggatgtt agagacacag gaaattacac tgcacatcc 1200
 40 accaatccccca ttccaaaggaa gaagcagacg catgtggctt ctctgggtt gatatgtccca 1260
 ccccagattt gtgagaatac tctaattctt cctgtggatt cctaccatg cggcaccact 1320
 caaacgcgtt catgtacgtt ctatgccatt cctccccccgc atcacatcca ctggatattgg 1380
 cagttggagg aagagtgcgc caacgagccc agccaagctg tctcagtgtt aacccatcac 1440
 ccttgtgaaatggggaaatggggatgttggaggatccctggggag gaaataaaaat tgaagttat 1500
 45 aaaaatcaat ttgcctcaat tgaagggaaa aacaaaacttgc taatgttccct tggtaatccaa 1560
 gggccaaatgt tgcacatgtt tgcacatgtt gaaacgggtca aacaaatgtt gggggaggg 1620
 agggtgatctt ctttccacgtt gacccgggtt cctgaaatgtt ctttgcaccc tgcacatgtt 1680
 cccactgagc agggagccgtt gtctttgtgg tgcactgttgc acagatcttac gtttggaaac 1740
 ctcacatgggtt acaagcttgg cccacacccct ctgcacatcc atgtgggaga gttggccaca 1800
 50 cctgtttgca agaacttggaa tactctttgg aaattgtatg ccaccatgtt ctctaatgc 1860
 acaaatacgaca ttttgatcat gtagctttagt aatgcacatcc tgcaggacca aggagactat 1920
 gtctgccttgc ctcaagacag gaagaccaag aaaagacattt gctgtgttgc gcaatgcaca 1980
 gtccctagatgc gtgtggcacc cacgatcaca gggaaacctgg agaattcagac gacaaggatt 2040
 gggggaaagca tgcacatgtt atgcacggca tctggaaatc cccctccaca gatcatgtgg 2100
 55 tttaaaatgtt atgagacccatgtt tgcacatgtt gacccgggtt tgcacatgtt gggggacccgg 2160
 aacccctacta tcccgacatgtt gacccgggtt tgcacatgtt gacccgggtt tgcacatgtt 2220
 agtgttcttgc gctgtgttgc aaatgttggggatgtt gacccgggtt tgcacatgtt gggggacccgg 2280
 acgaacttggaaatgtt gacccgggtt tgcacatgtt gacccgggtt tgcacatgtt gggggacccgg 2340
 cttcttgcatacttgc gacccgggtt tgcacatgtt gacccgggtt tgcacatgtt gggggacccgg 2400
 60 tacttgttca tgcacatgtt gacccgggtt tgcacatgtt gacccgggtt tgcacatgtt gggggacccgg 2460
 cttatgtatgc gacccgggtt tgcacatgtt gacccgggtt tgcacatgtt gggggacccgg 2520
 gggccgtgttgc gctttggca agtggattgtt gacccgggtt tgcacatgtt gggggacccgg 2580

acttgcagga cagtagcagt caaaatgtt aaagaaggag caacacacag tgagcatcg 2640
 gctctcatgt ctgaactcaa gatcttcatt catattggtc accatctcaa tgggtcaac 2700
 cttctaggtg cctgtaccaa gccaggaggg ccactcatgg tgattgtgga attctgcaa 2760
 ttggaaacc tgtccactta cctgaggagc aagagaatg aatttgtccc ctacaagacc 2820
 5 aaaggggcac gattccgtca agggaaagac tacgttggag caatccctgt ggatctgaaa 2880
 cggcgcttgg acagcatcac cagtagccag agctcagcca gctctggatt tggaggag 2940
 aagtccctca gtgtatgaga agaagaggaa gtcctgaaag atctgtataa ggacttcctg 3000
 accttggagc atctcatctg ttacagcttc caagtggcta agggcatgga gttcttggca 3060
 tcgcgaaagt gtatccacag ggacctggcg gcacgaaata tcctttatc ggagaagaac 3120
 10 gtgtttaaaa tctgtgactt tggcttggcc cggatattt ataaagatcc agattatgtc 3180
 agaaaaggag atgctcgct cccttggaaa tggatggccc cagaacaat ttttgacaga 3240
 gtgtacacaa tccagatgt cgtctggct tttgtgttt tggatgggaa aatattttcc 3300
 ttaggtgctt ctccatatcc tgggtaaag attgtgaaag aattttgtg gcgattgaaa 3360
 gaaggacta gaatgagggc ccctgattt actacacccg aatgtacca gaccatgtc 3420
 15 gactgctggc acggggagcc cagtcagaga cccacgtttt cagagggtt ggaacattt 3480
 gaaaaatctct tgcaagctaa tgctcagcag gatggcaaaag actacattgt tcttccgata 3540
 tcagagactt tgagcatgga agaggattct ggactctctc tgcctacctc acctgttcc 3600
 tgtatggagg aggaggaaatg atgtgacccc aaattccatt atgacaacac accaggaatc 3660
 20 agtcagtatc tgcagaacag taagcgaaag agccggcctg tgagttaaa aacattt 3720
 gatatccctgt tagaagaacc agaagtaaaa gtaatcccaat atgacaacca gacggacagt 3780
 ggtatggttc ttgcctcaga agagctgaaa actttggaaag acagaaccaa attatctcca 3840
 tctttggtg gaatggtgcc cagcaaaagc agggagtc tggatctga aggctcaa 3900
 cagacaagcg gctaccatgc cggatatcac tccgatgaca cagacaccac cgtgtactcc 3960
 agtgaggaag cagaactttt aaagctgata gagattggag tgcaaacccg tagcacagcc 4020
 25 cagattctcc agcctgactc gggg 4044

<210> 95
 <211> 4017
 30 <212> DNA
 <213> Homo sapiens

<300>
 <302> Flt1
 35 <310> AF063657

<400> 95
 atggtcagct actgggacac cggggcctg ctgtgcgcgc tgctcagctg tctgcttc 60
 acaggatcta gttcagggttcaaaa gatcctgaac tgagttaaa aggcacccag 120
 40 cacatcatgc aaggccca gacactgcatttctcaatgca gggggaaagc agccataaa 180
 tggctttgc ctgaaatgtt gatgtggaa agcggaaaggc tgagcataac taaatctgc 240
 tggatggaa atggcaaaaca attctgcgtt actttaccc tgaacacagc tcaagcaac 300
 cacactggct tctacagctg caaatatcta gctgtaccta cttcaagaa gaaggaaaca 360
 gaatctgcaa tctatataatt tattgtatgacatggtagac ctttgcgtgaa gatgtacagt 420
 45 gaaatccctg aaattatatacatgactgaa ggaaggggagc tgcgttcc ctggccgggtt 480
 acgtcacatc acatcactgt tactttaaa aagttccac ttgacattt gatccctgtat 540
 ggaaaacgca taatctggaa cagtagaaag ggcttcatac tatcaatgc aacgtacaaa 600
 gaaataggcc ttctgacccg tgaagcaaca gtcaatgggc attttataa gacaaactat 660
 ctcacacatc gacaaaccaa tacaatcata gatgtccaaa taagcacacc acgcccagtc 720
 50 aaattactta gaggccatac tcttgcctc aattgtactg ctaccactcc cttgaacacg 780
 agagttcaaa tgacctggag ttaccctgat gaaaaaaaaa agagagcttc cgtaaaggcga 840
 cgaattgacc aaagcaattt ccatgccaac atattctaca gtgttcttac tattgacaaa 900
 atgcagaaca aagacaagg actttataact tgctgtttaa ggagttggacc atcattcaaa 960
 tctgtttaaca cctcagtgca tataatgtat aagcattca tcactgtgaa acatcgaaaa 1020
 55 cagcagggtgc ttgaaaccgt agctggcaag cgggttccacc ggctctctat gaaagtgaag 1080
 gcattttccct cgccggaaagt tggatggttt aagatgggt tacctgcgcac tgagaaatct 1140
 gctcgctatt tgactcggtt ctactcggtt attatcagg acgttaactga agaggatgca 1200
 gggaaattata caatcttgct gagataaaaa cagtcataatg tgttttaaaaa cctcactgca 1260
 actctaatttgc tcaatgtgaa accccagatt tacgaaaagg ccgtgtcattc gtttccagac 1320
 60 ccggctctct acccactggg cagcagacaa atcctgactt gtaccgcata tggatccct 1380
 caacctacaa tcaagtgggt ctggccaccc tggataccata atcattccga agcaagggtgt 1440
 gactttttgtt ccaataatgaa agatctttt atcctggatc ctgacagca catggaaac 1500

agaattgaga gcatcactca gcgcatggca ataatagaag gaaagaataa gatggctago 1560
 accttggttg tggctgactc tagaatttct ggaatctaca ttgcatacg ttccaataaa 1620
 gttggactg tgggaagaaa cataagctt tatatcacag atgtccaaa tggtttcat 1680
 gttaacttgg aaaaaatgcc gacggaagg gaggacctga aactgtctt cacagttaac 1740
 5 aagttttat acagagacgt tactggatt ttactgcggc cagttataa cagaacaatg 1800
 cactacaga ttagcaagca aaaaatggcc atactaagg agcactccat cactttaat 1860
 cttaccatca tgaatgtttc cctgcaagat tcaggcacct atgcctgcag agccaggaat 1920
 gtatacacag gggaaagaaat cctccagaag aaagaaatta caatcagaga tcaggaagca 1980
 ccatacctcc tgcgaaacct cagtgatcac acagtggcca tcagcagttc caccactta 2040
 10 gactgtcatg ctaatggtgt ccccgaggct cagatcactt ggttaaaaaa caaccacaaa 2100
 atacaacaag agcctggaat tatttttagga ccaggaaagca gcacgctgtt tattgaaaga 2160
 gtcacagaag aggatgaagg tgtctatcac tgcaaagcca ccaaccagaa gggctctgtg 2220
 gaaagtttag cataccctac tggtaagga acctcggaca agtctaattct ggagctgatc 2280
 actctaatacat gcacctgtgt ggctgcgact ctcttctggc tccttattaa cctcttttac 2340
 15 cgaaaaatga aaaggcttc ttctgaaata aagactgaat acctataat tataatggac 2400
 ccagatgaag ttcccttggg tgagcagtgt gagcggctcc cttatgatgc cagcaagtgg 2460
 gagtttggccccc gggagagact taaaatgggg aaatcacttga agaagggggc ttttggaaaaa 2520
 gtggttcaag catcagcatt tggcattaaag aaatcacttgc cgtgcggac tggtgtgtg 2580
 aaaatgtga aagagggggc cacggccagc gaggatcataa ctctgatgac tgagctaaaaa 2640
 20 atcttgaccac acattggca ccatttgcac gtggtaacc tgctggagc ctgcaccaag 2700
 caaggagggc ctctgatggt gattttggaa tactgcaaat atggaaatct ctccaaactac 2760
 ctciaagagca aacgtgactt atttttctc aacaaggatg cagcactaca catggagcct 2820
 aagaagaaaaaa aaatggagcc aggcctggaa caaggcaaga aaccaagact agatagcgtc 2880
 accagcagcg aaagcttgc gagctccggc tttcaggaaat ataaaagtct gagtgtgtt 2940
 25 gaggaaagagg aggattctga cgggttctac aaggagccca tcactatggc agatctgatt 3000
 ttttacagtt ttcaagtggc cagaggcatg gagttctgt cttccagaaa gtgcattcat 3060
 cgggacactgg cagcgaaaaa catttttttca tctgagaaca acgtgtgaa gatttggat 3120
 tttggccctt cccggatattataagaac cccgattatg tgaaaaagg agataactcga 3180
 cttectctga aatggatggc tccttgcattct attttgcataa aatctacag caccagagc 3240
 30 gacgtgttgtt ctacggagt attgtgtgg gaaatctt ccttaggtgg gtcctccat 3300
 ccaggaggtac aaatggatga ggacttttgc agtcgcctga gggaaaggcat gaggatgaga 3360
 gctctgagt actctactcc tgaaatctat cagatcatgc tggactgctg gcacagagac 3420
 caaaaagaaaaaa ggccaagatt tgccagaactt gtggaaaaac taggtgattt gttcaagca 3480
 aatgtacaac agatgtttaa agactacatc ccaatcaatg ccatactgac agggaaatagt 3540
 35 gggtttacat actcaactcc tgccttctt gaggacttct tcaaggaaag tatttcagct 3600
 ccgaagttta attcaggaaag ctctgatgat gtcagatatg taaatgcttt caagttcatg 3660
 agcctggaaa gaatcaaaac ctttgaagaa cttttaccga atgcacacccatgtttgat 3720
 gactaccagg gcgacagcag cactctgttgc gctctccca tgctgaagcg cttcacctgg 3780
 actgacagca aacccaaggc ctgcgtcaag attgacttgc gatgttggc taaaagtaag 3840
 40 gagtcggggc tgcgtgtgtt cagcaggcccc agtttctggc attccagctg tgggcacgtc 3900
 agcgaaggca agcgcaggtt cacctacgac cacgctgagc tggaaaggaa aatcgcgtgc 3960
 tgctccccgc ccccaagacta caactcggtt gtcctgtact ccaccccccaccatctag 4017

45 <210> 96
 <211> 3897
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> Flt4
 <310> XM003852

<400> 96

55 atgcagcggg ggcggcgct gtgcctgcga ctgtggctct gcctggact cctggacggc 60
 ctggtgagtg gctactccat gaccccccgg accttgaaca tcacggagga gtcacacgtc 120
 atcgacaccg gtgacagcct gtcacatctcc tgcaggggac agcacccccct cgagtggct 180
 tggccaggag ctcaggaggc gcccaggccacc ggagacaagg acagcggagga cacgggggtg 240
 gtgcgagact gcgaggggc acagccagg ccctactgca aggtgttgc gtcgcacgag 300
 60 gtacatggca acgacacagg cagttacgtc tgctactaca agtacatcaa ggcacgcate 360
 gagggccacca cggccggccag ctcttacgtt ttcgttagag actttggagca gccattcata 420
 aacaaggctg acacgctttt ggtcaacagg aaggacgcga tgggggtgccc tggctgtgtt 480

	tccatccccg	gcctcaatgt	cacgctgcgc	tgcggaaagct	cgggtcgctg	gccagacggg	540
	caggaggtgg	tgtgggatga	ccggcgaaaa	atgctcggt	ccacgcact	gtgcacgat	600
	gccctgtacc	tgcagtgcga	gaccacctgg	ggagaccagg	acttccccc	caacccttc	660
	ctggtgacaca	tcacagcaa	cgagcttat	gacatccacg	tgttgcacag	gaagtgcctg	720
5	gagctgctgg	tagggagaa	gctggctctg	aactgcacccg	tgtggctga	gtttaactca	780
	ggtgtcacct	ttgactggg	ctaccccgagg	aaggcaggcag	agcggggtaa	gtgggtgc	840
	gagcgcacgt	cccagcacac	ccacacagaa	ctctccagca	tcctgaccat	ccacaacgtc	900
	accagcacg	acctggcgc	gtatgtgtgc	aaggccaaca	acggcatcca	gcatgttcgg	960
	gagagcacgg	aggctattgt	gcatgaaaat	cccttcatac	gctcgagtg	gtctaaagga	1020
10	cccatcctgg	aggccacggc	aggagacgag	ctggtaaagc	tgccctgaa	gtggcagcg	1080
	taccccccgc	ccgagttca	gtggtacaag	gatggaaagg	cactgtccgg	gcccacagt	1140
	ccacatgccc	tgggtctaa	ggaggtgaca	gaggccagca	caggcaccta	caccctcgcc	1200
	ctgttggact	ccgctgctgg	cctgaggcgc	aacatcagcc	tggagctgg	gttgaatgt	1260
	cccccccaaga	tacatgagaa	ggaggccctcc	tcccccagca	tctactcg	tcacagccgc	1320
15	caggccctca	cctgcacccgc	ctacgggggtg	ccctgcctc	tcagcatcca	gtggacttgg	1380
	cggccctgg	caccctgca	gatgtttggc	cagcgtagtc	tccggcggcg	gcagcagcaa	1440
	gacctatgc	cacagtgcg	tgactggagg	gcggtgaccg	cgcaggatgc	cgtgaacccc	1500
	atcgagagcc	tggacacctg	gaccgagtt	gtggagggaa	agaataagac	tgtgagcaag	1560
	ctgggtatcc	agaatgcca	cgtgtctgg	atgtacaatg	gtgtggctc	caacaagggt	1620
20	ggccaggatg	agcggctcat	ctacttctat	gtgaccacca	tcccccacgg	cttccacatc	1680
	gaatccaaag	catcccgagga	gctacttagag	ggccagccgg	tgctctctag	ctgccaaggg	1740
	gacagctaca	agtacgacga	tctcgctgg	taccgcctc	acctgtccac	gtgcacgat	1800
	gcccacggg	accgcgttct	gctcactgc	aagaacgtgc	atctgttgc	caccctctg	1860
	gcccgcagcc	tggaggaggt	ggcacctggg	gcgcgcacag	ccacgctcg	cctgagttatc	1920
25	ccccgcgtcg	cggccgagca	cgagggccac	tatgtgtcg	aagtgcaga	ccggcgcagc	1980
	catgacaagg	actgccccaa	gaagtacctg	tcggtgca	cccttggaa	ccctcggtc	2040
	acgcagaact	tgaccgacct	cctggtaac	gtgagcgact	cgctggagat	gcagtgcctg	2100
	gtggccggag	cgcacgcg	cagcatctg	tggtacaaag	acgagaggct	gttggaggaa	2160
	aagtctggag	tcgacttggc	ggacttcca	cagaagctga	gcattccacg	cgtgcgcgag	2220
30	gaggatgcgg	gacgctatct	gtgcacgcgt	tgcaacgca	agggctgcgt	caactccccc	2280
	gccagcgtgg	ccgtgaaagg	ctcccgaggat	aagggcagca	tggagatcg	gatccttgc	2340
	gttaccggcg	tcatcgctgt	cttcttctgg	gtccctcc	tcctccatctt	ctgtaaatcg	2400
	aggaggccgg	cccacgcaga	catcaagac	ggctacccgt	ccatccatcat	ggaccccccgg	2460
	gaggtgcctc	tggaggagca	atgcgatatac	ctgtccatcg	atgcagcca	gttggaaatc	2520
35	ccccggagac	ggctgcaccc	ggggagagtg	ctcgctca	ggcccttcgg	gaagggtgtt	2580
	gaagcctccg	cttgcgc	ccacaaggggc	agcagctgt	acaccgtgg	cgtaaaatg	2640
	ctgaaaaggag	gcccacggc	cagcgagcg	cgcgcgctg	tgtcgagct	caagatcc	2700
	attcacatcg	gcaaccac	caacgtgg	aacctcc	gggcgtgcac	caagccgcag	2760
	ggccccctca	tggtgatcg	ggagttctgc	aagtacgg	acctctccaa	cttccctgc	2820
40	gccaagcggg	acgccttc	ccccgtcg	gagaagtctc	ccgacgcacg	cggacgc	2880
	cgcgcctatgg	tggagctcg	caggctggat	cgaggcg	cggggagcag	cgacagggtc	2940
	ctttcgcgc	ggttctcg	gaccgagggg	ggagcgaggc	ggggcttctcc	agaccaagaa	3000
	gctgaggacc	tgtggctg	cccgctgacc	atggaaatc	ttgtctgt	cagttccag	3060
	gtggcccgag	ggatggagg	cctggcttc	cgaaagtgc	tccacagaga	cctggctgt	3120
45	cggAACACCTT	tgcgtcg	aagcgacgt	gtgaagatct	gtgactttgg	ccttgc	3180
	gacatctaca	aagaccccg	ctacgtccgc	aagggcacgt	cccgctg	cttgc	3240
	atggcccctg	aaagcatctt	cgacaaagg	tacaccacgc	agatgtacgt	gttgc	3300
	gggggtcttc	tctggggat	cttctctctg	ggggcctcc	cgtaccctgg	gttgc	3360
	aatgaggag	tctgcacgc	gctgagagac	ggcacaagg	tgagggcccc	ggagctggcc	3420
50	actccgc	tacgcgc	catgtcg	tgctgg	gagacccaa	ggcgagact	3480
	gcattctcg	agctgg	gatcc	gac	agggcagg	cctgcaagag	3540
	gaagaggagg	tctgc	cccgc	tct	cagaagagg	cagttctcg	3600
	cagggtgtcc	ccatgg	acacatcg	caggctg	ctgaggacag	cccgcca	3660
	ctgcagcgcc	acagc	cgcc	tacaact	tgttcttcc	cgggtgc	3720
55	gccagagggg	ctgagaccc	tgg	aggat	cattgagga	attccccat	3780
	accccaacga	cctaca	agg	aacc	acag	gttgc	3840
	tcggaggag	ttgagc	agag	catag	acag	cagg	3897
60	<210>	97					
	<211>	4071					
	<212>	DNA					

5 ttaggtgctt ctccatatcc tgggttaaag attgatgaag aattttgttag gcgattgaaa 3360
 gaaggaacta gaatgagggc ccctgattat actacaccag aaatgtacca gaccatgctg 3420
 gactgctggc acggggagcc cagtccagaga cccacgtttt cagagtttgtt ggaacatttg 3480
 gaaatctct tgcaagctaa tgctcagcag gatggcaaag actacattgt tcttccgata 3540
 tcagagactt tgacatgga agaggattct ggactctctc tgcctacctc acctgtttcc 3600
 tgtatggagg aggaggaagt atgtgacccc aaattccatt atgacaacac agcaggaatc 3660
 agtcaagtatc tgcaaacag taagcgaaag agccggcctg tgagtgtaaa aacatttcaa 3720
 gatatcccgt tagaagaacc agaagtaaaa gtaatcccaag atgacaacca gacggacagt 3780
 ggtatggttc ttgcctcaga agagctgaaa actttggaaag acagaaccaa attatctcca 3840
 10 tctttgggtg gaatggtgc cagcaaaagc agggagtcgt tggcatctga aggctcaaac 3900
 cagacaagcgc gctaccatgc cgatccatcac tccgatgaca cagacaccac cgtgtactcc 3960
 agtggaggaag cagaactttt aaagctgata gagattggag tgcaaaccgg tagcacagcc 4020
 cagattctcc agcctgactc gggaccaca ctgagctctc ctctgttta a 4071

15 <210> 98
 <211> 1410
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> MMP1
 <310> M13509

25 <400> 98
 atgcacacgt ttcctccact gctgctgctg ctgttctggg gtgtgggtgc tcacagcttc 60
 ccagcgactc tagaaacaca agagcaagat gtggacttag tccagaaata cctggaaaaaa 120
 taatcacaacc tgaagaatga tgggaggcaaa gttgaaagc ggagaaatag tggcccgatg 180
 gttggaaaaat tgaagcaaat gcagaaattc tttggctgtg aagtgtactgg gaaaccagat 240
 30 gctgaaaccc tgaagggtat gaaggcagccc agatgtggag tgcctgtatgtt ggtctcgttt 300
 gtcctcactg agggaaacccc tcgctgggag caaacacatc tgaggtacag gattggaaaat 360
 tacacgcccag atttgcaag agcagatgtg gaccatgcca ttgagaaagc cttccaaactc 420
 tggagtaatg tcacacccct gacattcacc aaggctctgtt aggtcaagc agacatcatg 480
 atatcttttgc tcaggggaga tcatcgggac aactctccctt ttgtatggacc tggagggaaat 540
 35 ctggctcatg ctttcaacc aggcccaggat attggagggg atgctcattt tgatgaagat 600
 gaaagggtggc ccaacaattt cagaggtac aacttacatc gtgttgcggc tcatgaactc 660
 ggccatttc ttggactctc ccattctact gatatcgggg ctttgcgtt ccctagctac 720
 accttcactg gtgtatgtca gctagctcag gatgcatttgc atggcatccaa agccatataat 780
 ggacggttccc aaaatccgtt ccagccccatc ggccccacaaa ccccaaaagc gtgtgacagt 840
 40 aagcttaacct ttgtatgtat aactacgatt cgggggagaag tgatgttctt taaagacaga 900
 ttctacatgc gcacaaatcc ctttaccccg gaagttgagc tcaatttcat ttctgttttc 960
 tggccacaac tgccaaatgg gcttgaagct gtttacgat ttgcccacag agatgaagtc 1020
 cggttttca aagggaataa gtactgggtt gttcaggac agaatgtgtt acacggatac 1080
 cccaaggaca tctacagtc ctttgcgttc cctagaactt gtaagcatat cgatgtgtct 1140
 45 ctttctgagg aaaacactgg aaaacactac ttctttgtt ctaacaaata ctggaggat 1200
 gatgaatata aacgatctat ggatccaagt tatcccaaaa tgatagcaca tgactttctt 1260
 ggaattggcc acaaaggatgtt gtcgatccatc atgaaagatg gatgtttctt tttcttcat 1320
 ggaacaagac aatacaaattt tgatcctaaa acgaagagaa ttgtactct ccagaaagct 1380
 aatagctggt tcaactgcag gaaaaattga 1410

50 <210> 99
 <211> 1743
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> MMP10
 <310> XM006269

60 <400> 99
 aaagaaggta agggcagtga gaatgatgca tcttgcattc cttgtgtgt tttgtctgcc 60

	agtctgctct	gcctatcctc	ttagtggggc	agcaaaaagag	gaggactcca	acaaggatct	120
	tgcccagcaa	tacctagaaa	agactactaa	cctcgaaaag	gatgtgaaac	agtttagaag	180
	aaaggacagt	aatctcattg	ttaaaaaaaat	ccaaggaatg	cagaagttcc	ttgggttsga	240
	ggtgacaggg	aagctagaca	ctgacactct	ggaggtatg	cgcaagcccc	ggtgtggagt	300
5	tctgtacgtt	ggtcaactca	gctcccttcc	tggcatgccg	aagtggagga	aaaccacact	360
	tacatacagg	attgtgaatt	atacaccaga	tttgc当地	gatgtgttg	attctgccc当地	420
	ttagaaagct	ctgaaagtct	ggaaagaggt	gactccactc	acattctcca	ggctgtatga	480
	aggagaggct	gatataatga	tctctttgc	agttaaagaa	catggagact	tttactctt	540
10	tgtatggccca	ggacacagtt	tggctcatgc	ctaccaccc	ggacctgggc	tttatttgaga	600
	tattcacttt	gatgtatgt	aaaaatggac	agaagatca	tcaggcacca	attttactcct	660
	cgttgcgtct	catgaacttg	gcaactccct	ggggcttcc	cactcagcca	acactgaagc	720
	tttgc当地	ccactctaca	actcattcac	agagctcgcc	cagttccgccc	tttgc当地	780
	tgtatgtgaat	ggcattcagt	ctotctacgg	acctccccct	gccttactg	aggaaccct	840
15	ggtgcccaca	aaatctgttc	cttcgggatc	tgagatgcca	gccaagtgtg	atcctgctt	900
	gtccttc当地	gccatcagca	ctctgagggg	agaatatctg	ttctttaaag	acagatattt	960
	tttgc当地	tcccacttgg	accctgaacc	tgaatttcat	ttgatttctg	cattttggcc	1020
	ctcttcttcca	tcatatttgg	atgctgcata	tgaagttaac	agcagggaca	ccgttttat	1080
	ttttaaagga	aatgaggttt	gggcatcag	aggaaatgag	gtacaaggcag	gttatccaag	1140
20	aggcatccat	accctgggtt	ttcccttcaac	cataaggaaa	attgtatgcag	ctgtttctg	1200
	caaggaaaag	aagaaaacat	acttctttgc	agcggacaaa	tactggagat	ttgatgaaaa	1260
	tagccagtc	atggagcaag	gctcccttag	actaataagct	gatgactttc	caggagttga	1320
	gctctaagggt	gatgtgtat	taaggcatt	tggattttc	tacttcttca	gtggatcatc	1380
	acagtttag	tttgc当地	atgc当地	gttgacacac	atattaaaga	gtaacagctg	1440
25	gttacattgc	taggc当地	aggggaaaaga	cagatatggg	tgtttttaat	aatctaata	1500
	attatttc当地	taatgtatta	tgagccaaaa	tggtaattt	ttcctgcatg	ttctgtact	1560
	gaagaagatg	agccttgcag	atatctgc当地	gtgtcatgaa	gaatgtttct	ggaatttctc	1620
	acttgc当地	gaattgcact	gaacagaatt	aagaatact	catgtgcaat	aggtgagaga	1680
	atgtattttgc	atagatgtgt	tattacttcc	tcaataaaaa	gttttatttt	gggc当地	1740
30	ctt						1743
	<210> 100						
	<211> 1467						
	<212> DNA						
35	<213> Homo sapiens						
	<300>						
	<302> MMP11						
	<310> XM009873						
40	<400> 100						
	atggctccgg	ccgc当地	cgc当地	gccgc当地	ccctctg	cccgatgotg	60
	ctgctgctgc	tccagccgca	gccc当地	gccc当地	tgccg	cccccacac	120
	ctccatgccc	agaggagggg	gca	tggcatgcag	ccctgccc	tagccggca	180
45	cctggccctg	ccacgc当地	aggccccccc	cctgca	gcctcaggcc	tccccctgt	240
	ggcgtgccc	accatctga	tggctgag	gccc当地	gacagaagag	gttctgt	300
	tctggc当地	gctgggaa	gacggc当地	actacagga	tcctc当地	ccatggcag	360
	ttggc当地	agcagg	gca	gc当地	taaaaggat	gagc当地	420
	acgc当地	ccttactga	ggtgc当地	ggccgtctg	acatcatgat	cgacttgc当地	480
50	aggta	atgggacga	c当地	gatgggc当地	ggggcatcct	ggcccatg	540
	ttcttccca	agactcacc	agaaggggat	gtccacttgc	actatgatg	gacctggact	600
	atcg	accagg	agac	cagg	ccc当地	tggccacgt	660
	ctggg	agcaca	agcag	gc当地	taaaaggat	caccttgc当地	720
55	tacccactga	gtctc当地	gaccc	agggg	aa	tggccagccc	780
	tggcccactg	tcac	gaccc	ctggg	agg	agacaccaat	840
	gagat	tc当地	gaccc	ccagat	gtgagg	cttgc当地	900
	gttcc	tccg	gaccc	gtct	ggctc	gccc当地	960
	ggggcc	tgca	ccat	ttcaaa	gtt	ggact	1020
60	agccctgtgg	acg	cgaggat	ttggc	ccact	ccaagg	1080
	cagta	tgtac	gacgg	gttcc	ggcc	cac	1140
	ggc当地	ggttcc	ccat	gttcc	ccgc	ggag	1200
	tacttcttcc	gagg	ca	tttgc当地	gtcc	aa	1260

cccgtgcccc gcagggccac tgactggaga ggggtgcct ctgagatcga cgctgcctc 1320
 caggatgctg atggctatgc ctacttcctg cgccggccgc tctactggaa gtttgcacct 1380
 gtgaaggtga aggctctgga aggctccccc cgtctcgta gtcctgactt ctttggctgt 1440
 gccgagcctg ccaacactt cctctga 1467
 5
 <210> 101
 <211> 1653
 <212> DNA
 10 <213> Homo sapiens
 <300>
 <302> MMP12
 <310> XM006272
 15
 <400> 101
 atgaagtttc ttcttaatact gtcctgcag gccactgctt ctggagctct tcccctgaac 60
 agotctacaa gcctggaaaa aaataatgtg ctatttggtg agagatactt agaaaaaattt 120
 tatggccttg agataaaca acttccagtg acaaaaatga aatatagtgaa aacttaatg 180
 20 aaggaaaaaaa tccaagaaat gcagcacttc ttgggtctga aagtgcaccc gcaactggac 240
 acatctaccct tggagatgt gcacgcaccc cgatgtggag tcccccgtatgt ccatcatttc 300
 agggaaatgc caggggggcc cgtatggagg aaacattta tcacccatag aatcaataat 360
 tacacacctg acatgaaccc tgaggatgtt gactacgaa tccggaaagc ttccaagta 420
 25 tggagtaatg ttaccctt gaaattcagc aagattaaca caggcatggc tgacattttg 480
 gtggtttttg cccgtggagc tcatggagac ttccatgctt ttgatggcaa aggtgaaatc 540
 cttagcccatg cttttggacc tggatctggc attggagggg atgcacattt cgatgaggac 600
 gaattctgga ctacacattt cagggnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 660
 nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 720
 nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 780
 30 nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 840
 nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 900
 ccccacctac 960
 nnnnnnnnnnnn nnnnnnnnnnnn nnnnnngagag gatccaaagg ccgtaatgtt cattcagttc 1020
 aaatatgtt acatcaacac atttcgcctc tctgtgtatg acatacgtgg agraccaatc 1080
 35 ctgtatggag accaaaaaga gaaccaacgc ttgccaattt ctgacaattt gatctttt 1140
 ctgttgacc ccaatttgatg ttttgatgtt gtcaactaccg tgggaaataa ttgttaattt 1200
 ttcaaagaca ggttctctg gctgaagggtt tctgagagac caaagaccag aattgaagcc 1260
 atttcttc tatggccaac ctggccatct ggcatgtt ctgcattatga ttaagacca 1320
 agaaatcaag tttttcttt taaagatgac aaatactgtt taatttagcaa gagccaaatt 1380
 40 atcccaagag catacatttct tttggttttc ctaactttgt gaaaaaatt taaccagtat 1440
 gatgcagctg ttttaaccc acgttttat aggacctact tctttgtaga tggaggtatg atcccaact 1500
 aacttccaag gaatcggcc taaaattgtat gcaagtcttct actctaaaaa caaatactac 1560
 tattttcttc aaggatctaa ccaatttgaa tatgacttcc tactccaacg tatcaccaa 1620
 45 acactgaaaa gcaatagctg gtttggttgt tag 1653
 <210> 102
 <211> 1416
 <212> DNA
 50 <213> Homo sapiens
 <400> 102
 atgcattccag gggtcctggc tgccttcctc ttcttgagct ggactcatttgc 60
 ccccttccca gtggtgttga tgaagatgtt ttgtctgagg aagacccatca 120
 55 cgctacttgc gatcatacta ccatcctaca aatctcgccg gaatctcgaa ggagaatgca 180
 gcaagctcca tgactggag gtcggagaa atgcagtctt tcttcggctt agaggtgact 240
 gggcaacttgc acgataacac cttagatgtc atggaaaaggc caagatcgcc 300
 gtgggtgaat acaatgtttt ccttcgtactt cttaaatgtt cccaaatgtt gtttacccat 360
 agaattgtga attacaccccc tgatgtactt cattctgttgc tggaaaaggc attcaaaaaaa 420
 60 gccttcaag tttggccgatc tggacttcctt ctgaaatttta ccagacttca cgatggcatt 480
 gctgacatca tgatctttt tggatgttgc gggatggccg acatttcaccc 540
 ccctctggcc tgcgtggctca tgcctttctt cctggccaa attatggagg agatggccat 600

	tttgatgatg	atgaaacctg	gacaaggtagt	tccaaaggct	acaacttgg	tcttgggt	660
	gcgcatgagt	tcggccactc	cttaggtctt	gaccactcca	aggaccctgg	agcactcatg	720
	tttccttatct	acacctacac	cggcaaaagc	cactttatgc	ttcctgatga	cgatgtacaa	780
	gggatccagt	ctctctatgg	tccaggagat	gaagacccca	accctaaaca	tccaaaaacg	840
5	ccagacaaat	gtgacccttc	cttataccctt	gatgccatta	ccagttcccg	aggagaaaaca	900
	atgatcttta	aagacagatt	cttctggcgc	ctgcacatc	agcaggttga	tgcggagctg	960
	ttttaacga	aatcatttt	gcccagaacct	cccaacccta	ttgatgctgc	atatgagcac	1020
	ccttctcatg	acctcatctt	catcttcaga	ggtagaaaaat	tttgggtct	taatggttat	1080
	gacattctgg	aaggttatcc	caaaaaaata	tctgaactgg	gtcttccaaa	agaagttaa	1140
10	aagataagtg	cagctgtca	ctttgaggat	acaggcaaga	ctctccgtt	ctcaggaac	1200
	caggctgg	gatatgtatg	tactaaccat	attatggata	aagactatcc	gagactataa	1260
	gaagaagact	tcccagaat	tggtgataaa	gttagatgctg	tctatgagaa	aatggttat	1320
	atctatttt	tcaacgacc	catacagttt	gaatacagca	tctggagtaa	ccgtattgtt	1380
	cgcgtcatgc	cagcaaattc	cattttgtgg	tgttaa			1416
15							
	<210>	103					
	<211>	1749					
	<212>	DNA					
20	<213>	Homo sapiens					
	<300>						
	<302>	MMP14					
	<310>	NM004995					
25							
	<400>	103					
	atgtctcccg	ccccaaagacc	cccccggtgt	ctccctgctcc	ccctgctcac	gctcggcacc	60
	gcgctcgcc	ccctcggtc	ggcccaaagc	agcagctca	gccccgaagc	ctggctacag	120
	caatatggct	acctgcctcc	cggggaccta	cgtacccaca	cacagcgctc	accccagtca	180
30	ctctcagcgg	ccatcgctgc	catgcagaag	ttttacgct	tgcaagtaac	aggcaaagct	240
	gatgcagaca	ccatgaaggc	catgaggcgc	ccccgatgtg	gtgttccaga	caagtttggg	300
	gtcgagatca	aggccaaatgt	tgcgaaggaa	cgctacgcca	tccagggtct	caaatggcaa	360
	cataatggaa	tcacttctcg	catccagaat	tacaccccca	agggtggcga	gtatgcccaca	420
	tacgaggcct	ttcgcaaggc	gttccgcgtg	tgggagatgt	ccacaccact	gcgcgtccgc	480
35	gaggtggccc	atgcctacat	ccgtgagggc	catgagaagc	aggccgcacat	catgatctc	540
	tttgcgagg	gtttccatgg	cgacagcacg	cccttcgatg	gtgagggcgg	cttcctggcc	600
	catgcctact	tcccagcccc	caacatttgg	ggagacaccc	actttgactc	tgccgagctt	660
	tggactgtca	ggaatgagga	tctgaatgg	aatgacatct	tccttggtgc	tgtgcacgag	720
40	ctggggccatg	ccctggggct	cgagcattcc	agtgaccct	cgcccatcat	ggcacccctt	780
	taccagtgg	tggacacgg	gaattttgt	ctgcccgtat	atgaccggcg	gggcacatccag	840
	caactttatg	ggggtgagtc	agggttcccc	accaagatgc	ccccca	caggactacc	900
	tcccggccct	ctgttccatg	taaaccctaaa	aacccca	atgggccccaa	catctgtgac	960
	ggaaactttt	acaccgtgg	catgtccga	ggggagatgt	ttgtcttcaa	ggagcgctgg	1020
45	ttctggcgcc	tgaggataaa	ccaaatgtat	gttggatacc	caatgtccat	tggccagttc	1080
	ttggcgccgg	tgcctcgct	catcaacact	gcctacgaga	ggaaggatgg	caaattcgatc	1140
	tttttccaaag	gagacaagca	tgggtgttt	gttggatcc	cccttggaaacc	tggtctacccc	1200
	aagcacatta	aggagctgg	ccgagggctg	cctaccgaca	agattgtatc	tgctctcttc	1260
	tggatggcca	atggaaagac	ctacttctt	cgatggaaaca	agtactaccg	tttcaacgaa	1320
50	gagctcagg	cagtggatag	cgagtacccc	aagaacatca	aagtctggga	agggatccct	1380
	gagtctccca	gagggtcatt	catgggcagc	gttggatct	tcacttactt	ctacaagggg	1440
	aacaaatact	ggaaattcaa	caaccagaag	ctgaaggtag	aaccgggcta	ccccaaatgtca	1500
	gccctgaggg	actggatgg	ctgcccattcg	ggaggccggc	cggtgaggg	gactgaggag	1560
	gagacggagg	tgatcatcat	tgggtggac	gaggaggcgc	ggggggcggt	gagcgcggct	1620
55	gccgtgtgc	tgcccgtct	gtctgctgc	ctgggtctgg	cggtggccct	tgcaagtcttc	1680
	ttcttcagac	gcccattgg	ccccaggcga	ctgctctact	gccagcgatc	cctgctggac	1740
	aagggtctga						1749
60	<210>	104					
	<211>	2010	.				
	<212>	DNA					
	<213>	Homo sapiens					

<300>
 <302> MMP15
 <310> NM002428

5 <400> 104
 atgggcagcg acccgagcgc gcccggacgg cggggctgga cgggcagcct ctcggcgac 60
 cgggaggagg cggcgccggcc gcgactgctg ccgctgctcc tggcttctt gggctgcctg 120
 ggccttggcg tagcggccga agacgcccggatccatgcca agaactggct gggctttat 180
 10 ggctacctgc ctcagccccag ccggccatatg tccaccatgc gtccggccca gatcttggcc 240
 tcggcccttg cagagatgca gcgcttctac gggatcccaag tcaccgggtgt gctcgacgaa 300
 gagaccaagg agtggatgaa gggcccccgc tgggggtgc cagaccaggat cgggggtacgaa 360
 gtgaaagccca acctgcggcg cgctggaaag cgctacgc ctcaccggag gaagtggaaac 420
 aaccaccata tgaccccttag catccagaac tacacggaga agttgggtgt gtaccactcg 480
 15 atggaggcggg tgccggggc cttccgcgtg tgggagcagg ccaccccccgttcc 540
 gaggtgcctt atgaggacat cggcgccggc cgacagaagg aggccgacat catggtactc 600
 tttgcctctg gcttccacgg cgacagctcg ccgttgcgtg gcacccgggtgg ctttctggcc 660
 caegcctatt tccctggccc cggccctaggc ggggacaccc attttgcacgc agatgagccc 720
 20 tggaccttct ccagcactgaa cctgcattgaa aacaacccctt tcctgggtgc agtgcatgag 780
 ctggggccacg cgctggggct ggagcactcc agcaacccca atgccatcat ggcggccgttc 840
 taccagtggaa aggacgttga caacttcaag ctggccgagg acgatctccg tggcatccag 900
 cagctctacg gtaccccaaga cggtcagcca cagcctaccc agcctctccc cactgtgacg 960
 ccacggcgcc caggccggcc tgaccacccgg ccggcccccgc ctcccccagcc accaccccca 1020
 ggtgggaaagg cagacggccccc cccaaaggccg ggcccccggc tccagcccccgg agccacagag 1080
 25 cgccccggacc agtatggcccc caacatctgc gacggggact ttgacacagt ggccatgttt 1140
 cgccccggaga tggtcggtt caagggccgc tggttctgcg gatccggca caacccggc 1200
 ctggacaact atcccattgc catcgggcac ttctggcgat gtctggccgg tgacatcagt 1260
 gtcgcctacg agcgcaccaaga cggtcgtttt gtcttttca aaggtgaccc ctactggctc 1320
 tttcgagaag cgaacctggaa gcccggctac ccacagccgc tgaccagcta tggcctgggc 1380
 30 atcccattatg accgcattgaa cacggccatc tggggggagc ccacaggcca caccttcttc 1440
 ttccaagagg acaggtactg gcgcttcaac gaggagacac agcgtggaga ccctgggtac 1500
 cccaaaggccca tcagtgtctg gcaggggatc cctgcctccc ctaaaggggc cttcctgagc 1560
 aatgacgcacg cctacaccata cttctacaag ggcaccaaatt actggaaatt cgacaatgag 1620
 cgcctgcggaa tggagccggc ctaccccaag tccatctgc gggacttcat gggctgccc 1680
 35 gacacgtgg agccaggcccc ccatggcccc gacgtggccc ggccggccctt caaccccccac 1740
 ggggggtcgag agccccggggc ggacagcgca gaggggcgaag tggggatgg gatggggac 1800
 tttggggcccg gggtaacaaa ggacgggggc agccgcgttg tggtgcagat ggaggagggtg 1860
 gcaacggacgg tgaacgttgtt gatgggtctg gtgccactgc tgctgtctgt ctgcgtctgt 1920
 ggcttcaccc acgcgttgtt gcagatgcacg cgcaagggtg cgccacgtgt cctgttttac 1980
 40 tgcaagcgct cgctgcagga tgggtctga 2010

<210> 105
 <211> 1824
 45 <212> DNA
 <213> Homo sapiens

<300>
 <302> MMP16
 50 <310> NM005941

<400> 105
 atgatcttac tcacattcag cactggaaaga cggttggatt tcgtgcata ttcgggggtg 60
 ttttcttgc aaaccttgc ttggatttttata tggctacag tctgcggaaac ggagcgtat 120
 55 ttcaatgtgg aggtttgtt acaaaaagtac ggctacccctc caccgactga ccccagaatg 180
 tcagtgtcg gctctgcaga gaccatgc tctgccttag ctgcctatgc gcagttctat 240
 ggcattaaaca tgacagggaaa agtggacaga aacacaatttactggatgaa gaagccccga 300
 tgccgtgtac ctgaccagac aagaggtagc tccaaatttc atattctgcg aaagcgatat 360
 gcattgacag gacagaaatg gcacgacaaag cacatcactt acagtataaa gaacgtaaact 420
 60 ccaaaagtag gagacccctga gactcgtaaa gctattcggc gtgccttta tgggtggcag 480
 aatgtactc ctctgacatt tgaagaagtt ccctacagt aatttagaaaa tggcaaacgt 540
 gatgtggata taaccattat ttttgcatttgc gtttccatg gggacagctc tccctttgat 600

ggagagggag gattttggc acatgcctac ttccctggac caggaatttg aggagatacc 660
 cattttagact cagatgagcc atggacacta gaaatcccta atcatgatgg aaatgactta 720
 tttctttag tagtccatga actggacat gctctggat tggagaccatc caatgacccc 780
 actgccccatca tggctccatt ttaccagtac atggaaacag acaaacttcaa actaccta 840
 5 gatgatttac agggcatcca gaaaatatat ggtccacctg acaagattcc tccacctaca 900
 agacctctac cgacagtgcc cccacaccgc tctattcctc cggctgaccc aaggaaaaat 960
 gacaggccaa aacctccctcg gcctccaacc ggcagaccct cctatcccgg agccaaaccc 1020
 aacatctgtg atggaaactt taacactcta gctattcttc gtcgtgagat gtttggtttc 1080
 aaggaccagt gttttggcg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
 10 attacttaact tctggcgggg cttgcctcct agtacgtc cagtttatga aaatagcgac 1200
 gggaaatttg ttttttttaa aggttaacaaa tattgggtgt tcaaggatc aactcttcaa 1260
 cctggttacc ctcatgactt gataaccctt ggaagtggaa ttccccccta tggatttgat 1320
 tcagccatcc ggtgggagga cgtcgggaaa acctatttct tcaaggaga cagatattgg 1380
 agatatagtg aagaaatgaa aacaatggac cttggctatc ccaagccat cacagtctgg 1440
 15 aaaggatcc ctgaatctcc tcaggagca tttgtacaca aaaaaatgg ctttacgtat 1500
 ttctacaaag gaaaggagta ttggaaatttca aacaaccaga tactcaaggt agaacctgga 1560
 catccaagat ccacccctcaaa ggattttatg ggctgtgatg gaccaacaga cagagttaaa 1620
 gaaggacaca gcccaccaga tgatgttagac attgtcatca aactggacaa cacagccagc 1680
 20 actgtgaaag ccatagctat tgcattcccc tgcattttgg ctttatgcct ctttgtattt 1740
 gtttacactg tttccagtt caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
 cgctctatgc aagagtgggt gtga 1824

<210> 106
 25 <211> 1560
 <212> DNA
 <213> Homo sapiens

<300>
 30 <302> MMP17
 <310> NM004141

<400> 106
 atgcagcagt ttgggtggct ggagggccacc ggcacatctgg acgaggccac cctggccctg 60
 35 atgaaaaccc cacgctgctc cctggccagac ctccctgtcc tgaccggcgc tecggaggaga 120
 cggcaggctc cagccccccac caagtggAAC aagagggAAc ttgcgtggag ggtccggacg 180
 ttcccacggg actcaccact ggggcacgc acgggtgcgtg cactcatgtt ctacccctc 240
 aaggcttggg ggcacatttc gcccctgaac ttccacggg tggcggggcag caccggccac 300
 atccagatcg acttctccaa ggccgaccat aacgacggct acccccttcga cggcccccggc 360
 40 ggcacctgtgg cccacgcctt cttcccccggc caccaccaca cggccggggg caccacttt 420
 gacgatgacg aggccctggac cttccgctcc tcggatgccc acgggatgga cctgtttgca 480
 gtggctgtcc acgagtttg ccacccatt gggtaagcc atgtggccgc tgcacactcc 540
 atcatgcggc cgtactacca gggccgggtg ggtgacccgc tgcgtctacgg getccctac 600
 gaggacaagg tgcgcgtctg gcagctgtac ggtgtgggg agtctgtgtc tcccacggcg 660
 45 cagccccagg agccctccct gtcggggag ccccccggaca accgggtccag cggcccccggc 720
 aggaaggacg tggcccccacag atcagactt cacttgcgtc cgggtggccca gatccgggg 780
 gaagcttct tcttcaaagg caagtttc tggcggctga cggccggaccg gcacctgtgt 840
 tccctgcagc cggcacatgc gcacccgttc tggcggggcc tgcgtctgc cctggacagc 900
 gtggacgccc tgcgtacgg caccacgcac cacaagatcg tcttctttaa aggagacagg 960
 50 tactgggtgt tcaaggacaa taacgttagag gaaggatacc cgcgcggccgt ctccgacttc 1020
 agcctcccgcc ctggccggcat cgacgctgccc ttctctggg cccacaatga caggacttat 1080
 ttctttaagg accagctgtt ctggcgctac gatgaccaca cgaggacat ggaccccccggc 1140
 taccggccccc agagccccctt gtggaggggt gtcccccggaca cgctggacgc cggccatgcgc 1200
 tggtccgacg tgcgtctca cttttccgt ggccaggagt actggaaagt gctggatggc 1260
 55 gagctggagg tggcaccgggt gtacccacag tccacggccc gggactggct ggtgtgtgg 1320
 gactcacagg ccgtatggatc tgcgtgtcg ggcgtggacg cggcagagggg gccccggcc 1380
 cctccaggac aacatgacca gagccgtctg gaggacgggtt acggaggtctg ctcatgcacc 1440
 tctggggcat cctctccccc gggggcccca ggccactgg tggctggccac catgctgtctg 1500
 ctgctggccgc cactgtcacc aggcggccctg tggacagcgg cccaggccct gacgctatga 1560

<210> 107

<211> 1983
<212> DNA
<213> *Homo sapiens*

5 <300>
 <302> MMP2
 <310> NM004530

10 <400> 107
 atggaggcgc taatggcccg gggcgcgctc acgggtcccc tgagggcgc ctgtctcctg 60
 ggctgcctgc tgagccacgc cgccgcgcg ccgtcgcccc tcataagtt ccccgccgat 120
 gtcgcggccaa aaacggacaa agagttggca gtgcaatacc tgaacaccc ttatggctgc 180
 cccaaaggaga gtcgcaacat ttttgtgcg aaggacacac taaaagaat gcaagaatgc 240
 ttttgactgc cccagacagg tgatcttgc cagaataccca tcgagaccat gccgaagcca 300
 cgctgcggca acccagatgt ggccaaactac aacttcttcc tcgcagaccc caagtggac 360
 aagaaccaga tcacatacag gatcattggc tacacacctg atctggaccc agagacagtg 420
 gatgtatgcct ttgctcgctc cttccaagtc tggagcgatg tgacccact gccgtttct 480
 cgaatccatg atggagaggc agacatcatg atcaacttt gccgctggga gcatggcgat 540
 ggataccctt ttgacggtaa ggacggactc ctggctcatg ctttcgcggcc aggcaactgg 600
 gttgggggag actcccat ttgatgacgat gagctatgga ctttgggaga aggccaagtg 660
 gtccgtgtga agtatggca cggccatggg gaggactgca agttccctt ctgttcaat 720
 ggcaggagt acaaagctg cactgatact ggccgcagcg atggcttcct ctgtgtctcc 780
 accacatcaca actttggaa ggtatggcaag tacggcttct gtcggccatgagccctgtt 840
 accatggcg gcaacgcgtg aggacagcccc tgcaagttt cattccgtt ccaggccaca 900
 25 tcctgacaca gtcgaccac tgaggcccgc acggatggctt accgcgtggg cggcaccact 960
 gaggactacg accgcgacaa gaagttatggc ttctggccctg agaccgcattt gtcactgtt 1020
 ggtgggaaact cagaagggtgc cccctgtgtc ttccccttca ctttcttggg caacaaatat 1080
 gagagctgca ccagcgcggg ccgcgtgtac ggaaagatgt ggtgtgcgc acagccaaac 1140
 tacatgacg accgcgaatgt gggcttctgc cctgaccaag ggtacagctt gttcctctgt 1200
 30 gcagcccacg agtttggcca cgcgcatttttgggg ctggagactt cccaaagaccc tggggccctg 1260
 atggcaccata ttacaccta caccatggaaac ttccgtctgt cccaggtgtg catcaaggcc 1320
 attcaggagc tctatggggc ctctcctgtac attgacctt gcaacggccccc caccccccaca 1380
 ctggccctgt tcactccctgaa gatctgcaaa caggacattt tatttgatgg catcgctcag 1440
 atccgtgggt agatcttctt cttaaggac cgggttcattt ggcggactgt gacgccacgt 1500
 35 gacaaggccca tggggccctt gctgtggcc acattctggc ctgagctccc gaaaaagatt 1560
 gatcggtat acggggcccc acaggaggag aagggtgtt tctttcagg gaatgaatac 1620
 tggatctact cagccagcac cctggagcgaa gggtaaaaaa agccactgtac cagccttggg 1680
 ctggccctgt atgtccagcg agtgatgccc gcctttaact ggagcaaaaa caagaagaca 1740
 tacatctttt ctggagacaa attctggaga tacaatgagg tgaagaagaa aatggatcct 1800
 40 ggcttccca agctcatcgc agatgcctgg aatgcctatcc cgcataaccc ggtatggcg 1860
 gtggacctgc agggcggccgg tcacagctac ttcttcaagg gtgccttattt cctgaagctg 1920
 gagaacaaaaa gtctgaagag cgtgaagttt ggaagcatca aatccgactg gtagggctgc 1980
 tga
 45 <210> 108
 <211> 1434
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> MMP2
 <310> XM006271

55 <300>
 <302> MMP3
 <310> XM006271

60 <400> 108
 atgaagagt ttccaatccct actgttgctg tgcgtggcag tttgtcagc ctatccattt 60
 gatggagctg caaggggtga ggacaccacgc atgaaccttgc ttctggaaata tctagaaaaac 120
 tactacgacc tcqaaaaaga tgtgaaacag tttgttagga qaaaggacacg tggctctgtt 180

	gtaaaaaaaaa tccgagaaaat gcagaagttc cttggattgg aggtgacggg gaagctggac 240
	tccgacactc tggaggtgat gcgcaagccc aggtgtggag ttccctgacgt tggtcaacttc 300
	agaacccccc ctggcatccc gaagtggagg aaaacccacc ttacatacag gattgtgaat 360
5	tatacaccag atttgcacaa agatgctgtt gattctgctg ttgagaaaagc tctgaaagtc 420
	tgggaagagg tgactccact cacattctcc aggctgtatg aaggagaggc tgatataatg 480
	atctcttttg cagttagaga acatggagac ttttaccctt ttgatggacc tgaaaaatgtt 540
	ttggccatcg cctatgcccc tggccaggg attaatggag atgcccacctt tgatgtatg 600
	gaacaatgga caaaggatac aacagggacc aatttatttc tcgttgc tcatgaaatt 660
10	ggccactccc tgggtcttct tcactcagcc aacactgaag ctttgatgtt cccactctat 720
	cactcaactca cagacctgtac tcgggtccgc ctgtctcaag atgatataaa tgcatttcag 780
	tcctctatg gacccccc tgactccctt gagacccccc tggtaaccac gaaacctgtc 840
	cctccagaac ctgggaccc agccaaactt gatctgtt tgcctttga tgctgtcagc 900
	actctgaggg gagaatctt gatctttaaa gacaggcact tttggcCAA atccctcagg 960
15	aagttgaac ctgaatttca ttgtatctt tcattttggc catctttcc ttccaggcgtg 1020
	gatccgcatt atgaagttac tagcaaggac ctcgttttca ttttaaagg aaatcaattc 1080
	tggccatca gaggaaatgtt ggtacgagct ggatacccaa gaggcatcca cacccttagt 1140
	ttccctccaa ccgtgaggaa aatcgatgca gccatttctg ataaggaaaa gacaaaaaca 1200
	tatttctttg tagaggacaa atactggaga tttgtatgaga agagaaattc catggagcca 1260
20	ggtttccca agcaaatacg tgaagacttt ccaggattt actcaaagat tgatgtgtt 1320
	tttgaagaat ttgggttctt ttatttctt actggatctt cacagttgga gtttgaccca 1380
	aatgcaaga aagtgcacaca cacttgaag agtaacagct ggcttaattt ttga 1434
	<210> 109
25	<211> 1404
	<212> DNA
	<213> Homo sapiens
	<300>
30	<302> MMP8
	<310> NM002424
	<400> 109
	atgttctccc tgaagacgct tccatttctg ctcttactcc atgtgcagat ttccaaaggcc 60
35	tttctgtat cttctaaaga gaaaaataca aaaactgttc aggactacct gaaaaagttc 120
	taccaattac caagcaacca gtatctgtt acaaggaaaga atggactaa tgatgtgtt 180
	gaaaagctta aagaaatgtt ggcattttt ggggttgaatg tgacggggaa gccaaatgag 240
	gaaactctgg acatgtatgg aaaggctcgc tggatgtgc ctgacagtgg tggtttatg 300
	ttaacccca gaaacccca gttggAACGC actaacttga cctacaggat tcgaaacttat 360
40	accccacagg tgcacaggc tgaggtagaa agagctatca aggtatcctt tgaactctgg 420
	agtgttgcacat caccctctcat cttoaccagg atctcacagg gagaggcaga tatcaacatt 480
	gcttttacc aaagagatca cgggtacaat tctccattt atggacccca tgaatccctt 540
	gctcatgcct ttcagccagg ccaaggattt ggaggagatg ctcatgttga tgccgaagaa 600
	acatggacca acacctcgc aaatttacaac ttgtttctt ttgtatgtca tgaatttggc 660
45	catttttgg ggctgcgtca ctcttotgac cttggcctt tgatgtatcc caactatgt 720
	ttcagggaaa ccagcaacta ctcaacttca caagatgaca tcgatggcat tcaggccatc 780
	tatggactttt caagcaaccc tatccaaccc actggacccaa gcacacccaa accctgtgac 840
	cccaagtttga catttgcgtt tatcaccaca ctccgtggag aaatactttt cttaaagac 900
	aggtacttctt ggagaaggca tcctcagcta caaagactcg aaatgtattt tatttcttca 960
50	ttctggccat cccttccaa tggatacag gctgttatg aagatttga cagagacctc 1020
	attttccatat taaaaggca ccaataactgg gctctgatgt gctatgtat tctgcaaggt 1080
	tatcccaagg atatataaaa ctatggctt cccagcagcg tccaaagcaat tgacgcagct 1140
	gttttctaca gaagttaaaac atacttctt gtaaaatgacc aattctggag atatgataac 1200
	caaagacaaat tcatggaccc aggttatccc aaaagcatat caggtgcctt tccaggaata 1260
55	gagagttaaat ttgtatgcgtt ttccatggcaaa gaacattttt tccatgttca cagttggacca 1320
	agatattacg catttgcgtt tatttgcgtt agagttacca gagttgcaag aggcaataaa 1380
	tggcttaact ttagatatgg ctga 1404
	<210> 110
60	<211> 2124
	<212> DNA

<213> Homo sapiens

<300>

<302> MMP9

5 <310> XM009491

<400> 110

atgagcctct ggcagcccc ggtcctggtg ctccctgggc tgggctgctg ctttgcgtcc 60
cccacacgc gccagtcac ccttgtctc ttccctggag acctgagaac caatctacc 120

10 gacaggcagc tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg 180
cgtggagagt cgaatctct gggcctgcg ctgtgtctt tccagaagca actgtccctg 240

cccagaccc gtgagctgga taggccacg ctgaaggcca tgcgaacccc acgggtgcggg 300
gtcccagacc tggcagatt ccaaaccctt gagggcgacc tcaagtggca ccaccacaac 360

15 atcacctatt ggatccaaa ctactcgaa gacttgcgcg gggcggttat tgacgacgcc 420
tttgcgcgcg ctttcgcact gtggagcgcg gtgcgcgcgc tcacccatc tgcgtgtac 480

agccggacg cagacatcg catcagttt ggtgtcgccg agacacggaga cgggtatccc 540
ttcgcacggc aggacgggc cttgcacac gccttcctc ctggccccgg cattcaggga 600

gaccccatt tcgacgatga cgagttgtgg tccctggca agggcgctgt ggttccaact 660
cggttggaa acgcagatgg cgcgccctgc cacttccct tcacatccga gggccgcctc 720

20 tactctgcct gcaccacccg cggtcgcctc gacggcttgc cttggtcag taccacggcc 780
aactacgaca ccgcacgcgc gtttgcctc tgccccagcg agagactcta caccaggac 840

ggcaatgctg atggaaacc ctgcagttt ccattcatct tccaaggcca atccactcc 900
gcctgcacca cggacggctcg ctccgacggc taccgtgtt ggcacccac cgccaaactac 960

gaccgggaca agcttcccg ctctgcggc acccgagctg actcgacggt gatggggggc 1020
aactcggcg gggagctgtg cgtttccccc ttcactttcc tggtaagga gtaactcgacc 1080

tgtaccagcg aggggccgcg agatgggcgc ctctgtgtcg ctaccaccc gaactttgac 1140
agcacaaga agtgggggtt ctgcggcggc aaaggataca gtttgcctt cgtggccggc 1200

catgatcg gccacgcgt gggcttagat catttcctcag tgccggaggc gtcatgtac 1260
cctatgtacc gtcactga gggggccccc ttgcataagg acgacgtgaa tgcatccgg 1320

30 caccctatg tgcctcgccc tgaacctgag ccacggccctc caaccaccac cacaccgcag 1380
cccacggctc ccccgacggt ctgcggcacc ggaccccccctt ctgtccaccc ctcagagcgc 1440

cccacagctg gccccacagg tccccctca gctggccccc cagggtccccc cactgctggc 1500
ccttctacgg ccactactgt gccttgcgtt ccgggtggacg atgcctgcaa cgtgaacatc 1560

ttcgcacgcca tgcggagat tgggaaaccag otgtatgtt tcaaggatgg gaagtactgg 1620
35 cgattctctg agggcagggg gacccggccg cagggccccc tccttatcgc cgacaagtgg 1680

cccgcgtgc cccgcacgtt ggactcggtc tttgaggagc ggctctccaa gaagctttc 1740
ttttctctg ggcgcgcagg gtgggtgtac acaggcgctg cgggtgtgg cccgaggcgt 1800

ctggacaacg tgggcctggg agccagctg gcccagggtga cggggccctt cgggagtgcc 1860
aggggaaaga tgcgtgtttt cagccggccg cgcctctggg gttcgacgt gaaggcgcag 1920

40 atggtgatc cccggagcgc cagcgagggtt gaccggatgt tccccgggt gcctttggac 1980
acgcacgcgc tcttccagta ccgcagagaaa gcctatccat gccaggacccg cttctactgg 2040

cgcgtgatc cccggaggta gttgaaccag gtggaccaag tggctacgt gacctatgac 2100
atccctcgatc gccctgagga ctatg 2124

45

<210> 111

<211> 2019

<212> DNA

50 <213> Homo sapiens

<300>

<302> PKC alpha

<310> NM002737

55 <400> 111
atggctgacg ttttccccggg caacgactcc acggcgcttc aggacgtggc caaccgtttc 60
gcccccaag gggcgcttag gcaagaagaaac gtgcacgggg tgaaggacca caaatttcattc 120

gccccgttttctc tcaagcagcc cacccttcgc agccactgca ccgacttcattt ctgggggttt 180
gggaaacaag gcttccagtg ccaagtttgc tggtttgtgg tccacaagag gtgcctatgaa 240

60 tttttttttt tttttttttt ggggtcggtt aaggggcccg acactgtatca ccccaggagc 300
aaggcacaatccatca cacttacggc agcccccaccc tctgcgtatca ctgtgggtca 360

ctgcgtatca gacttatccatca tcaaggatgtt aatgtgaca cctgcgtatca gacgtttc 420

	aaggaaatgtt	tccatcaatgtt	ccccagcctt	tgcggaaatgg	atcacactgtt	gaagaggggg	480
	cggattttacc	taaaggctgtt	ggttgtgtat	aaaaagctcc	atgtcacagt	acgagatgca	540
	aaaaaatctaa	tccctatggat	tccaaacggg	ctttcagatc	cttatgtgaa	gctgaaacct	600
	attcctgtatc	ccaagaatgtt	aaggcaagcaa	aaaacccaaa	ccatccgctc	cacactaaat	660
5	coggcagtggat	atgagtcctt	tacattcaaa	ttgaaaacctt	cagacaagaag	ccgacgactg	720
	tctgttagaaa	tctgggactgtt	ggatcgaaaca	acaaggaaatg	acttcatggg	atcccctttcc	780
	tttggagttt	cggagctgtat	gaagatgccc	gccagtggat	ggtacaagtt	gcttaaccctt	840
	gaagaaggtgtt	agtactacaa	cgtaccctt	ccggaaagggg	acgaggaaagg	aaacatggaa	900
	ctcaggcaga	aattcgagaaa	agccaaactt	ggccctgtgt	gcaacaaagt	catcagtccc	960
10	tctgaagaca	ggaaacaacc	ttccaacaac	tttgaccggag	tgaaaactcact	ggacttcaat	1020
	ttcctcatgg	tgttggggaaa	ggggagtttt	ggaaagggtgt	tgcttgcgcg	caggaaggcc	1080
	acagaagaac	tgtatgcata	caaaaatctgt	aagaaggatgt	tggtgattca	ggatgtgac	1140
	gtggagtgca	ccatggtaga	aaagcgagtc	ttggccctgc	ttgacaaaacc	cccgttcttg	1200
15	acgcagctgc	actcctgttt	ccagacagtgtt	gatcggtgt	acttcgtcat	ggaatatgtc	1260
	aacgggtgggg	acctcatgtt	ccacattcag	caagtaggaa	aattaagga	accacaagca	1320
	gtattctatg	cggcagagat	ttccatcgga	ttgttcttc	ttcataaaag	aggaatcatt	1380
	tatagggatc	tgaagtttaga	taacgtcatg	ttggatttcag	aaggacatata	aaaattgtct	1440
	gactttgggtt	tgtgcaagga	acacatgtat	gatggagtc	cgaccaggac	cttctgtggg	1500
20	actccagattt	atatcgcccc	agagataatc	gcttatcagc	cgtatggaaa	atctgtggac	1560
	tggtgtggctt	atggcgctctt	gttgtatgaa	atgcttgcgc	ggcagcctcc	atttgatggt	1620
	gaagatgtttt	acggatctttt	tcagtctatc	atggagcaca	acgtttccata	tccaaaatcc	1680
	ttgttccaaa	aggctgtttt	tatctgcataa	ggactgtatgt	ccaaacaccc	agccaagccg	1740
	ctgggtgtgt	ggctgtgggg	ggagaggggac	gtgagagagc	atgccttctt	ccggaggatc	1800
25	gactttggaaa	aactggagaa	caggagatc	cagccaccat	tcaagccaa	agtgtgtgac	1860
	aaaggagcag	agaactttgtt	caagttctt	acacgaggac	agcccgtttt	aacaccactt	1920
	gatcagctgg	ttattgttaa	catagaccag	tctgatttt	aagggttctt	gtatgtcaac	1980
	ccccagtttgc	tgcacccat	cttacagagt	gcagtatgt			2019
30	<210>	112					
	<211>	2022					
	<212>	DNA					
	<213>	Homo sapiens					
35	<300>						
	<302>	PKC beta					
	<310>	X07109					
40	<400>	112					
	atggctgacc	cggctgcggg	gccgcgcgg	agcgagggcg	aggagagcac	cgtgcgttcc	60
	gcccgcaaa	gcccctcccg	gcagaagaac	gtgcatttgc	tcaagaacca	caaatttcc	120
	gcccgcttct	tcaaggcagcc	cacccctctc	agccacttgc	ccgacttcat	ctggggcttc	180
	ggaaagcagg	gattccaaatgtt	ccaaagtttgc	tgctttgtgg	tgcacaagcg	gtccatgaa	240
	tttgcacat	tccctgtccc	tggcgtgtac	aagggtccat	cctccgatgt	ccccggcagc	300
45	aaacacaatgtt	ttaagatccat	cacgtactcc	agccccacgt	tttgcgttcc	ctgtgggtca	360
	ctgtgtatgtt	gactcatccat	ccaggggatgt	aatatgttgc	cctgtatgt	gaatgtgcac	420
	aagcgctgtgt	tgtatgtatgtt	tccctgtgttgc	tgtgtatgttgc	accacacgg	gcgcggcggc	480
	cgcatctaca	tccaggccca	catcgacagg	gacgttccat	ttgtcctgt	aagagatgt	540
	aaaaacccatgtt	tacctatggat	ccccaaatggc	ctgtcagatc	cctacgtaaa	actgaaactg	600
50	attccccatgtt	ccaaaatgtt	gagcaaaacag	aagacccaaa	ccatcaaattgt	ctccctcaac	660
	cctgagttgtt	atgagacattt	tagatttgc	ctgaaaagaaat	cgagacaaaga	cagaagactg	720
	tcatgtatgtt	tttgggatttgc	ggattttgc	agcaggtatgt	acttcatggg	atctttgtcc	780
	tttgggattttgtt	ctgaacttca	gaaggccatgtt	gttgcgttgc	ggtttaatgtt	actgagccag	840
55	gaggaaggcg	agtacttcaa	tgtgcgtgttgc	ccaccagaag	gaagtggggc	caatgaagaa	900
	ctgcggcaga	aatttggagag	ggccaaagatc	agtcaggaaat	ccaaaggccc	ggaagaaaag	960
	acgaccaaaatgtt	ctgtctccaa	atttgacaaatgtt	aatggcaaca	gagaccggat	gaaactgttcc	1020
	gattttactt	tccatgtgttgc	gttggggaaaatgtt	ggcagtttgc	gcaagggttgc	gttttcagaa	1080
	cgaaaaggca	cagatgtatgttgc	ctatgtgtgttgc	aagatctgttgc	agaaggacatgtt	tgtgtatccaa	1140
	gatgtatgtgttgc	ttggatgtgtatgttgc	tatgtgtgttgc	aaggcgggtgttgc	tggggagccg	ttttgtatgttgc	1200
60	cccttcgttgc	cccagcttca	cttctgttttgc	cagccatgttgc	accgcctgttgc	ttttgtatgttgc	1260
	gagtacgtgttgc	atggggccgttgc	cctcatgtatgttgc	cacatccagc	aagtggccgttgc	tttcaaggatgttgc	1320
	ccccatgtgttgc	tattttacgttgc	tgcqaaaatttgc	qccatcgatgttgc	tgttcttcttgc	acagagtaatgttgc	1380

ggcattcattt accgtgacct aaaacttgac aacgtgatgc tcgattctga gggacacatc 1440
 aagattgccg attttggcat gtgttaaggaa aacatctggg atgggggtgac aaccaagaca 1500
 ttctgtggca ctccagacta catcgcccc gagataattt cttatcagcc ctatggaaag 1560
 tccgtggatt ggtgggcatt tggagtctg ctgtatgaaa tggatggctgg gcaggccccc 1620
 5 tttgaagggg aggatgaaga tgaactcttc caatccatca tggaaacacaa ctagcctat 1680
 cccaaagtcta tgtccaaggaa agctgtggcc atctgcaaag ggctgatgac caaacaccca 1740
 ggcaaaacgtc tgggttgtgg acctgaaggc gaacgtgata tcaaagagca tgcattttc 1800
 cggtatattg attgggagaa acttgaacgc aaagagatcc agccccctta taagccaaaa 1860
 gcttgtgggc gaaatgctga aaacttcgac cgattttca cccgcctac accagtccta 1920
 10 acacctcccc accaggaatg catcaggaat attgaccaat cagaattcga aggattttcc 1980
 tttgttaact ctgaattttt aaaacccgaa gtcaagagct aa 2022

<210> 113
 15 <211> 2031
 <212> DNA
 <213> Homo sapiens

<300>
 20 <302> PKC delta
 <310> NM006254

<400> 113
 atggcgcgt tcctgcgcatt cgccttcaac tccttatgagc tgggtccctt gcaggccgag 60
 25 gacgaggcga accagccctt ctgtgcgtg aagatgaagg aggcgcctcag cacagagcgt 120
 gggaaaacac tgggtcgagaa gaagccgacc atgtatcctg agtggaaagtc gacgttcgt 180
 gccacatctt atgaggggcgt cgtcatcccg atgtgtctaa tggggcagc agaggagcca 240
 gtgtctgagg tggaccgtggg tgggtcggtg ctggccgagc gtcgaagaa gaacaatggc 300
 aaggctgagt tctggctgga cctgcagctt caggccaagg tggatgtgtc tggcgttat 360
 30 ttccctggagg acgtggattt cttttttttt atgcgcgtt aggacgaggc caagttccca 420
 acgatgaacc gccgcggagc catcaaacag gccaaaatcc actacatcaa gaaccatgag 480
 tttatcgcca ccttcttgg gcaacccacc ttctgttctg tggcaaaaga ctttgtctgg 540
 ggcctcaaca agcaaggcta caaatgcagg caatgttaacg ctgcctatcca caagaaatgc 600
 atcgacaaga tcatcgccag atgcactggc accgcggcca acagccggga cactatattc 660
 35 cagaaaagaac gcttcaacat cgacatgccc accgcgttca aggttcacaa ctacatgagc 720
 cccacccttc gtgaccactg cggcaggctt ctctggggac tggtaagggc gggattaaag 780
 tggtaagact gcccgttccat gttgcaccaat atatgcgggg agaaagggtggc caacctctgc 840
 ggcataacc agaagctttt ggctgaggcc ttgaaccaag tcaccagag agcctcccg 900
 agatcagact cggcctctc agagcctgtt gggatataatc agggtttgcg gaagaagacc 960
 40 ggagtgtctg gggaggacat gcaagacaaatc agtggggactt acggcaagat ctggggaggc 1020
 agcagcaagt gcaacatcaa caacttcata ttccacaagg tcctgggcaa aggccgttc 1080
 gggagggtgc tgcttggaga gctgaaggc agaggagat actctgcctt caaggccctc 1140
 aagaaggatg tggctctgtt cgacgcacgc gtggagtgc ccattgttga gaagcgggtg 1200
 ctgacacttg cccgcggccaa tcccttctc acccacctca tctgcaccc ttccatcc 1260
 45 gaccacctgt tctttgtat ggagtccctt aacggggggg acctgatgtt ccacatccag 1320
 gacaaaggcc gctttgaact ctccgtgcc acgttttatg ccgcgtgatg aatgtgtgg 1380
 ctgcagttt tacacagcaa gggcatcatt tacaggacc tccaaatggg caatgtgtctg 1440
 ttggaccggg atggcccat caagatggc gactttggg tggcaaaaga gaacatattc 1500
 gggagagcc gggcggccaa ttctgcggc accccctgact atatgcggcc ttccatcc 1560
 50 caggccctga agtacacatt ctctgtggac tgggtgttcc tcgggggttcc tctgtacgag 1620
 atgctcattt gcccgtcccc cttccatgtt gatgtatggg atgaactttt cgagtcattt 1680
 cgtgtggaca cggccacatta tccccgtgg atcaccatgg agtccaaaggg catcctggag 1740
 aagctctttt aaaggaaacc aaccaagagg ctggaaatga cggggaaacat caaaatccac 1800
 cccttcttca agaccataaa ctggactctg ctggaaaagc ggagggttgg gcccacccctc 1860
 55 agccccaaag tgaagtccacc cagagactac agtaactttt accaggagtt cctgaacgag 1920
 aaggcgcgccc tctcctacag cgacaagaac ctcatcgact ccattggacca gtctgcattt 1980
 gctggcttctt cttttgtgaa cccaaattt cggcacctcc tggaaagattt a 2031

60 <210> 114
 <211> 2049
 <212> DNA

<213> Homo sapiens

<300>

<302> PKC eta

5 <310> NM006255

<400> 114

atgtcgctcg gcaccatgaa gttcaatggc tattttaggg tccgcacatcg 60

gggcgtgcagc ccacccgctg gtccctgcgc cactcgctct tcaagaaggg ccaccagctg 120

10 ctggacccct atctgacggt gagcgtggac caggtgcgcg tggccagac cagcaccaag 180

cagaagagcca acaaaccac gtacaacgag gagtttgcg ctaacgtcac cgacggcggc 240

cacctcgagt tggcgctt ccacgagacc cccctgggt acgacttcgt gccaactgc 300

accctcgagt tccaggagct cgtcggcacg accggcgcct cggacacctt cgagggttgg 360

gtggatctcg agccagaggg gaaagtattt gtggtaataa cccttaccgg gagtttact 420

15 gaagctactc tccagagaga cggatcttc aaacattttt ccaggaagcg ccaaagggt 480

atgcgaaggc gagtccacca gataatggc cacaaggttca tggccacgtt tctgaggc 540

cccacactact gctctcactt caggagttt atctggggag acagggttat 600

cagtgcacag tggcacctt tgctgtccat aaacgctgcc atcatctaattt ttttacagcc 660

tgtacttgcc aaaacaatat taacaaatgt gattcaaaa ttgcagaaca gaggttcggg 720

20 atcaacatcc cacacaagtt cagcatccac aactacaatg tgccaaacatt ctgcgatcac 780

tgtggctcac tgctctgggg aataatgcga caaggacttc agtgtaaaat atgtaaaatg 840

aatgtgcata ttgcgtgtca agcgaacgtg gcccctaact gtggggtaaa tgcgggtggaa 900

cttgccaaga ccctggcagg gatgggtctc caaccggaa atatttctcc aacctcgaaa 960

ctcgtttcca gatcgaccct aagacgacag ggaaaggaga gcagcaaaga agaaatggg 1020

25 attggggtta attcttccaa ccgacttggt atcgacaact ttgaggccat ccgagtggtt 1080

gggaagggggaa gttttgggaa ggtgtatgtt gcaagagttt aagaaacagg agacctctat 1140

gctgtgaagg tgctgaagaa ggacgtgtt ctgctggatg atgatgttga atgcacccat 1200

accgagaaaaa ggatccgttc tctggccgc aatcaccctt tcctcactca ttgttctgc 1260

tgtttcaga cccccatgtc tctgtttttt gtgtggatg ttgtaatgg gggtgacttg 1320

30 atgttccaca ttcaaaatgtc tggcgatgtt gatgaagcac gagctcgctt ctatgtgc 1380

gaaatcattt cggctctcat gttccctccat gataaaaggaa tcatctatag agatctgaaa 1440

ctggacaatg tcctgttggc ccacgagggt cactgttttccat tggcagactt cggaaatgtgc 1500

aaggaggggaa ttgcataatgg tggcaccacg gccacattttt gtggcacgccc agactatatac 1560

gtccagaga tcctccagga aatgtgtac gggcctgcag tagactggg ggcataatggg 1620

35 gtgttgctct atgagatgtt ctgtggtcac ggcgcctttt aggcaagagaa tgaagatgac 1680

ctctttgagg ccatactgaa tggatggatg gtctaccctt cctggctcca tgaagatgcc 1740

acagggtatcc taaaatctttt catgaccaag aaccccaacca tggcgttggg cagcctgact 1800

caggggaggcg agcaccggcat cttggatcat cttttttttt aggaatatgcg ctggggcccg 1860

40 ctgaaccatc gccaaataga accgccttcc agacccagaa tcaaattcccg agaagatgtc 1920

agtaattttgc accctgactt cataaaaggaa gagccagttt taactccat tgatgaggga 1980

catcttccaa tgatgttgc ggtatgtttt agaaactttt cctatgtgtc tccagaattt 2040

caaccatag 2049

atgtatgata agatcctgct ttttcgccat gaccctacact ctgaaaacat ccttcagctg 60
 gtgaaagccg ccagtatat ccaggaaggc gatcttattt aagtggctt gtcagcttc 120
 gccacccccc aagacttca gattcgccc cacgctctt ttgttcattt atacagagct 180
 ccagcttctt ctgtatcaat tggaaaatg ctgtggggc tggtacgtca aggtcttaaa 240
 5 tggtaagggt tggtctgaa ttaccataag agatgtcat taaaataacc caacaattgc 300
 agcgggtgtga ggcggagaag gctctcaaac gtttccctca ctggggtcag caccatccgc 360
 acatcatctg ctgaactctc tacaagtgc cctgatgagc cccttctgca aaaatcacca 420
 tcagagtctg ttattgtcg agagaagagg tcaaattctc aatcatacat tggacgacca 480
 attcacctt acaagattt gatgtctaaa gttaaagtgc cgacacatc tgcacatccac 540
 10 tcctacaccc ggccccacagt gtgccagttc tgcaagaagc ttctgaaggg gcttttcagg 600
 cagggcttgc agtgcacaaa ttgcagattt aactgcccata aacgttgtgc accgaaagta 660
 ccaaacaact gccttggcg agtgaccatt aatggagatt tgcttagccc tggggcagag 720
 tctgatgtgg tcatggaaaga agggagtgtat gacaatgata gtgaaaggaa cagtgggctc 780
 atggatgata tggaaagaagc aatggtccaa gatgcagaga tggcaatggc agagtgcac 840
 15 aacgacatgt gcgagatgca agatccacac ccagaccacg aggacgccaa cagaaccatc 900
 agtccatcaa caagcaacaa tatcccactc atgagggtat tgcatctgt caaacacacg 960
 aagaggaaaaa gcaagcactt catgaaagaa gatgcagaga tggcaatggc agagtgcac 1020
 acgctgcgg aacggacta ttggagattt gatagcaat gtattaccct ctttcagaat 1080
 gacacaggaa gcaggtacta caagggaaatt ctttatctg aaattttgtc tctggaaacc 1140
 20 gtaaaaaactt cagcttaat tcctaattggg gccaatccctt attgtttcgaa aatcactacg 1200
 gcaaatgttag tgtattatgt gggagaaaat gtggtaatc cttccagccc atcaccataat 1260
 aacagtgttc tcaccagtgg cggtgggtca gatgtggcca ggatgtggga gatagccatc 1320
 cagcatgccc ttatgcccgt cattccaaag tcaaattgtc agattcaaga aatatgtggac 1380
 cacagagata tctctgttag tatttcgat gaaatgttag ctatggaaat cattgacaaa 1440
 25 atcagcatcag tatatcgat tttccgtat ggttatggg gaaaacatcg taaaacagga 1500
 ttacgatgttc caacaaaaca agaaagccag ggatgttag ctatggaaat cattgacaaa 1560
 cttcatcacc ctgggtgtgt aaatttggag tttatgttgc agacgctga aagagtgttt 1620
 gttgttatgg aaaaactcca tggagacatg ctggaaatga tcttgtaag tggaaaggac 1680
 30 aggttgcac agcacataac gaagtttttta attactcaga tactcgtggc tttgcggcac 1740
 cttcatttttta aaaatategt tcactgtgac ctcaaaaccatc aaaatgtgtt gctagcctca 1800
 gctgatcctt ttccctcaggta gaaactttgt gattttgggtt ttgcccggat cattggagag 1860
 aagtcttcc ggaggtcagt ggtgggtacc cccgcttacc tggctctgaa ggtcctaagg 1920
 aacaagggtt acaatcgct tctagacatg tggctctgtg gggcatcat ctatgtaaac 1980
 35 ctaagccggca cattcccaatt taatgaagat gaagacatac acgacccaaat tcagaatgca 2040
 gcttcatgt atccacccaa tccctggaaag gaaatatctc atgaagccat tgatcttata 2100
 aacaattatgc tgcaagtaaa aatgagaaaag cgctacatgt tggataagac cttgagccac 2160
 ctttggctca aggactatca gacccgttta gatgtggatg ctttgcggat ctttgcggat 2220
 gaggcgttaca tcaccatgt aagtgtatgc ctgggttggg agaagatgtgc aggcgagcag 2280
 40 gggctgcagt accccacaca cctgtatcaat ccaagtgcgta gccacagtgc cactcctgag 2340
 actgaagaaa cagaaatgaa agccctcggt gagcgtgtca gcatcctatg a 2400
 2451

45 <210> 118
 <211> 2673
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> PKC nu
 <310> NM005813

55 <400> 118
 atgtctgcaaa ataattcccc tccatcagcc cagaagtctg tattacccac agctattcc 60
 gctgtgcctt cagctgcctt tccgtgttca agtccataaga cgggactctc tgcccgactc 120
 tctaattggaa gcttcagttgc accatcaactc accaactcca gaggtctgttgc gatcataatgtt 180
 tcattttctac tgcaaaattgg cctcacacgg gaggtgttgc ccatttgcg cccaggactc 240
 tctttatctg ctgtcaagga tcttgcgttgc tccatagttt atcaaaatgtt tccagatgtt 300
 60 ggatttttttgc gcatgtatgtca aaaaatttttctt ctcttcggcc atgacatgtaa ctcagaaaac 360
 atttgcacgc tgattacactc agcagatgtaa atacatgtaa gagacatgtt ggaagtgggt 420
 cttcagctt tagccacactt agaagacttc cagattgttc cacatactct ctatgtacat 480
 tcttacaaag ctcctacttt ctgtgattac tgggtggatc tgctgtgggg attggatgtt 540

	caaggactga	aatgtgaagg	ctgtggatta	aattaccata	aacgatgtgc	cttcaagatt	600
	ccaaataact	gtagtggagt	aagaaaagaga	cgtctgtcaa	atgtatctt	accaggaccc	660
	ggcctctcg	ttccaagacc	cctacagcct	gaatatgtag	cccttcccag	tgaagagtca	720
5	catgtccacc	aggaaccaag	taagagaatt	ccttcttgg	gtggtcgccc	aatctggatg	780
	gaaaagatgg	taatgtcag	agtaaaagg	ccacacacat	ttgtgttca	ctcttacacc	840
	cgtccccacga	tatgtcagta	ctgcaagcgg	ttactgaaag	gcctcttgc	ccaaggaatg	900
	cagtgtaaaag	attgcaattt	caactgccc	aaacgctgt	catcaaaaagt	accaagagac	960
10	tgcccttggag	aggttactt	caatggagaa	ccttccagtc	tggaaacaga	tacagatata	1020
	ccaatggata	ttgacaataa	tgacataaat	agtgtatgt	gtcggggtt	ggatgacaca	1080
	gaagagccat	caccccca	agataagatg	ttcttcttgg	atccatctga	tctcgatgt	1140
	gaaaagagatg	aagaaggcgt	taaaaacaatc	agtccatcaa	caagcaataa	tattccgcgt	1200
	atgagggtt	tacaatccat	caagcacaca	aagaggaaga	gcagcacaat	ggtgaaggaa	1260
	gggtggatgg	tccattacac	cagcagggtat	aacctgagaa	agagggcatta	ttggagactt	1320
15	gacagcaat	gtctaaccatt	atttcagaat	aatctggat	caaagtatta	taaggaaatt	1380
	ccactttcg	aaatttcccg	catacttca	ccacgagatt	tcacaaacat	ttcacaaggc	1440
	agcaatccac	actgtttga	aatcattact	gatactatgg	tatacttcgt	tggtgagaac	1500
	aatggggaca	gctctcataa	tcctgttctt	gctgccactg	gagttggact	tgatgttagc	1560
20	cagagctggg	aaaaagaat	tcgccaagcc	ctcatgcctg	ttactcctca	agcaagtgtt	1620
	tgcacttctc	cagggcaagg	gaaagatcac	aaagatttgt	ctacaagtat	ctctgtatct	1680
	aattgtcaga	ttcaggagaa	tgtggatatac	agtaactgtt	accagatctt	tgcagatgag	1740
	gtgtcttgggt	caggccagg	tggcatcggt	tatggagaa	aacatagaaa	gactggggagg	1800
	gatgtggct	ttaaagtaat	tgataagatg	agattcccc	caaaaacaaga	aagtcaactc	1860
25	cgtaatgaag	tggcttattt	acagaatttg	caccatcctg	ggattgtaaa	ccttggatgt	1920
	atgtttgaaa	ccccagaacg	agtctttgt	gtaatggaaa	agctgcattgg	agatatgtt	1980
	gaaatgattc	tatccagtga	gaaaagtccg	cttccagaac	gaattactaa	attcatggc	2040
	acacagatac	ttgttgcattt	gaggaatctg	cattttaaaga	atattgtca	ctgtgattt	2100
	aagccagaaa	atgtgcgtct	tgcatcagca	gagccatttc	ctcagggtaa	gctgtgtgac	2160
	tttggattt	cacgcatcat	tggtggaaaag	tcatttcagg	gatctgtgtt	aggaactcca	2220
30	gcatacttag	ccccctgaagt	tctccggagc	aaaggttaca	accgtccct	agatatgtgg	2280
	tcaagtggag	ttatcatcta	tgtgagcctc	agtggcacat	ttccctttaa	tgaggatgaa	2340
	gatataaaatg	accaaattca	aaatgctgca	tttatgtacc	caccaaattcc	atggagagaa	2400
	atttctgggt	aagcaattga	tctgtatcac	aatctgcctt	aagtgaagat	gagaaaacgt	2460
	tacagtgtt	acaaaatctct	tagtcatccc	tggctacagg	actatcagac	ttggcttgac	2520
35	cttagagaat	ttgaaactcg	cattggagaa	cgttacatta	cacatgaaag	tgatgtatgt	2580
	cgtctggaaa	tacatgcata	cacacataac	cttgatatacc	caaagcactt	cattatggct	2640
	cctaattccag	atgatatgg	agaagatctt	taa			2673
40	<210>	119					
	<211>	2121					
	<212>	DNA					
	<213>	Homo sapiens					
45	<300>						
	<302>	PKC tau					
	<310>	NM006257					
	<400>	119					
50	atgtcgccat	ttcttcggat	tggcttgc	aactttgact	gcgggtcctg	ccagtcctgt	60
	caggcgagg	ctgttaaccc	ttactgtgc	gtgctgtca	aagagtatgt	cgaatcagag	120
	aacggggcaga	tgtatatacc	gaaaaagcct	accatgtacc	caccctggga	cagcactttt	180
	gatgccata	tcaacaagg	aagagtcatg	cagatcattt	tgaaaggca	aaacgtggac	240
	ctcatctctg	aaaccaccgt	ggagctctac	tgcgtggct	agaggtgcag	gaagaacaac	300
55	gggaagacag	aaatatgtt	agagctaaa	cctcaaggcc	gaatgctaat	aatgcaga	360
	tactttctgg	aatgagtga	cacaaaggac	atgaatgaat	ttgagacgga	aggcttctt	420
	gctttgcattc	agcgccgggg	tgcattcaag	caggcaaaagg	tccaccacgt	caagtgcac	480
	gagtttactg	ccacccctt	cccacagccc	acattttgtt	ctgtctgcca	cgagttgtc	540
	tggggcctga	acaaaacagg	ctaccagtgc	cgacaatgc	atgcagcaat	tcacatagaag	600
60	tgtattgtat	aagttatagc	aaagtgcaca	ggatcagta	tcaatgcacg	agaaaaccat	660
	ttccacaagg	agagatcaa	aatttgatcg	ccacacat	ttaaagtctt	caattacaag	720
	agcccgaccc	tctgtgaaca	ctgtgggacc	ctgtgtgggg	gactggcacc	gcaaggactc	780
	aaqtgtgatq	catgtggcat	qaatgtqcat	catagatgcc	agacaaaagg	ggccaaacctt	840

tggcataa accagaagct aatggctgaa gcgcgtggcca tgattgagag cactcaacag 900
 gctcgctgt taagagatac tgaacagatc ttccagagaag gtccgggttga aattggcttc 960
 ccatgctcca tcaaaaatga agcaaggccg ccatgtttac cgacaccggg aaaaagagag 1020
 cctcaggggca tttccctgggta gtctccgttgc gatggaggtgg ataaaaatgtt ccatcttcca 1080
 5 gaacctgaac tgaacaaaga aagaccatct ctgcagatc aactaaaaat tgaggatttt 1140
 atcttcgcaca aaatgttggg gaaaggaaatgttggcaagg tcttcctggc agaattcaag 1200
 aaaaccaatc aatttttcgc aataaaaggcc ttaaaagaaag atgttgttgc gatggacgt 1260
 gatgttgagt gcacgtatgtt agagaagaga gttcttcctt tggcttgggca gcatccgtt 1320
 ctgacgcaca tggggatgttgc attccagacc aaggaaaacc tctttttgtt gatggagttt 1380
 10 ctcacacgggg gggacttaat gtaccacatc caaagctgcc acaagttcg acaatccaga 1440
 ggcacgtttt atgtgtgtt aatcatttctt ggtctgcagt tccttcattt caaaggaata 1500
 gtctacaggg acctgttgc aatataaggcc ttaaaagaaag atgttgttgc gatggacgt 1560
 gcccggatttt gaaatgttgcggg ggagaacatgtt gtagggatgtt ccaagacgaa taccttctgt 1620
 15 gggacacctg actacatcgcc cccagagatc ttgtgtgggtc agaaatataaa ccaactctgt 1680
 gacttgggtt ctttcgggtt ttcctttat gaaatgttgc tttggctcgttgc gcctttccac 1740
 gggcaggatgtt aggaggagctt ctccactcc atccgcatttgc acaatccctt ttacccacgg 1800
 tggcttgggaa aggaagccaa ggacccctgtt gtagggatgtt cttggggatgtt caacttgggag 1860
 aggttggggcg tgaggggggaa catccgcatttgc acaatccctt gtagggatgtt caacttgggag 1920
 20 gaaatgttgcac ggaaggagat tgaccaccgc ttccggccga aagtgttgc accatccatgtt 1980
 tgcagcaatt tcgacaaaga attcttacccatgtt gagaaggcccc ggctgttgcatt tgccgcac 2040
 gcaactgttgc acagcatgttgc ccagaatatgtt gtagggatgtt ttcccttcattt gaaatccggg 2100
 atggagcgggc tgatatctgtt a 2121

25 <210> 120
 <211> 1779
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> PKC zeta
 <310> NM2744

35 <400> 120
 atgcccagca ggaccgaccc caagatggaa gggagcggcg gccgcgtccg cctcaaggcg 60
 cattacgggg gggacatctt catcaccatgc gtggacgcgg ccacgcaccc cggaggagctc 120
 tggagggaaatgttgc tggatgttgc caccatgcgtt acccgcgtt cctcaagtgg 180
 gtggacagcg aagggtggcc ttgcacgggtt tcctccatggaa tggatgttgc gagggtttt 240
 cgcctggccccc gtcagtgcgtt ggtatgttgc ttcattatccatgttgc gggccatccc 300
 40 ggcgcgttgcgttgc tccggggaa gacaaatctt tctaccgcgg gggagccaga 360
 agatggaggttgc agctgttgc tggatgttgc caccctttcc aagccaaatgcgtt ctttaacagg 420
 agagcgtacttgc gccgttgcgtt caccatgcgtt atatggggcc tggatgttgc gggccatccc 480
 tgcatttttttttgc gcaaaatgttgc ggtccatgttgc cgcgtccaccc gctcgatggcc 540
 aggaagcata tggatgttgc catgcattttcc caagacgcgtt ctttttttttgc gggccatccc 600
 45 gacgcgcgttgc ttccttcgtt gggatgttgc ggtatgttgc gggccatccc acatcccttc atccggaaatgttgc 660
 catgcacatgttgc ttaaaatgttgc ctccgttgcgtt ctttaacagg ttatcgatgg gatggatggaa 720
 atcaaaaatctt ctcagggttgc tggatgttgc gacttttgcgtt taatcgatgttgc gggccatccc 780
 gggatgttgcgttgc ccaatgttgc tggatgttgcgtt gggatgttgc gggccatccc atccggccatccc 840
 50 aaggatgttgcgttgc aaggatgttgc ggtatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 900
 aaggatgttgcgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 960
 ctttttttttgc gggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1020
 ctttttttttgc gggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1080
 55 gggccatccc acatcccttc atccggccatccc acatcccttc atccggccatccc acatcccttc atccggccatccc 1260
 gggatgttgcgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1320
 atggatgttgcgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1380
 aacacagaggatgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1440
 60 ctgtccgttgc aaggatgttgcgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1500
 ctgtccgttgc tggatgttgcgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1560
 atagacttggatgttgc tggatgttgcgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1620
 gacgactacgttgc tggatgttgcgttgc tggatgttgcgttgc tggatgttgc gggatgttgc gggccatccc acatcccttc atccggccatccc 1680

ccagacgatg aggatgccat aaagaggatc gaccagtca agttcgaagg ctttgagtat 1740
atcaacccat tattgctgtc caccgaggag tcggtgta 1779

5 <210> 121
<211> 576
<212> DNA
<213> Homo sapiens

10 <300>
<302> VEGF
<310> NM003376

<400> 121
15 atgaacttgc tgctgtcttg ggtgcattgg agccttgctc tgctgctcta cctccaccat 60
gcacaagggtgtt cccaggctgc acccatggca gaaggaggag ggcagaatca tcacgaagtg 120
gtgaaggttca tggatgtctca tcagcgac tactgcccata caatcgagac cctgggtggac 180
atcttcaggatgttca tgtagatcgatc tacatcttca agccatcctg tggccctctg 240
atgcgtatgcggggctgtca caatgacgag ggcctggagt gtgtgcccac tgaggagtcc 300
20 aacatcca tgcagattat gcggatcaaa cctcaccat ggcagcacat aggagagatg 360
agcttcctac agcacaacaa atgtaatgc agaccaaaga aagatagagc aagacaagaa 420
aatccctgtg ggccttgctc agagcgaga aagcattttt ttgttacaaga tccgcagacg 480
tgtaaatgtt cctgaaaaa cacagactcg cgttgcaagg cgaggcagct tgagttaaac 540
gaacgtactt gcagatgtga caagccgagg cggtga 576

25

<210> 122
<211> 624
<212> DNA
30 <213> Homo sapiens

<300>
<302> VEGF B
<310> NM003377

35 <400> 122
atgagcccttc tgctccggc cctgtgtgtc gccgcactcc tgcagctggc ccccgccccag 60
gcctctgtt cccagctga tgcccttgc caccagagga aagtgggtgc atggatagat 120
gtgtatactc ggcgttacccgc ccagccccgg gaggtgggtgg tgcccttgac tggggatgtc 180
40 atgggcaccc tggccaaaca gctgggtggcc agctgcgtga ctgtgcagcg ctgtgggtggc 240
tgctccctgtt acatggcct ggagtgtgtc cccactgggc agcacaagt cccggatgcag 300
atccctatgtt tccgttaccc gggcgttccatc ctgggggaga tggcccttgc agaacacacg 360
cagtgtgaat gcagacctaa aaaaaggac agtgcgtgtt agccagacag ggctgccact 420
ccccaccacc gtcggccggcc ccgttctgtt ccgggctggg actctggccc cggagcaccc 480
45 tcccccagctg acatcacccca tccactcca gccccagcc cctctggcca cgctgcaccc 540
agcaccacca ggcggctgtac ccccgaccc gccggccggc ctggccgacgc cgcagcttcc 600
tccgttgcca agggcggggc tttag 624

50 <210> 123
<211> 1260
<212> DNA
<213> Homo sapiens

55 <300>
<302> VEGF C
<310> NM005429

60 <400> 123
atgcacttgc tgggtttttt ctctgtggcg tgggtttctgc tggccgttgc gctgtcccg 60
gttctcgcc agggccccgc cggccggcc gccttcgagt ccggactcga cctctcgac 120
gcccggccggc acggcgccgca gcccacggct tatgcaagca aagatctggaa ggagcagtttta 180

cggctctgtgt ccagtgtaga tgaactcatg actgtactct acccagaata ttggaaaatg 240
 tacaagggtgc agctaaggaa aggaggctgg caacataaca gagaacaggc caacctaacc 300
 tcaaggacag aagagactat aaaatttgct gcagcacatt ataatacaga gatcttggaaa 360
 agtattgtata atgagtggag aaagactcaa tgcatgccac gggaggtgt tatagatgtg 420
 5 gggaggagt ttggagtgcg gacaacacc ttcttaaac ctccatgtgt gtccgtctac 480
 agatgtgggg gttgctgca tagtgagggg ctgcagtgc tgaacaccag cacgagctac 540
 ctcagcaaga cgttatttga aattacagtgc cctctctc aaggccccaa accagtaaca 600
 atcagtttg ccaatcacac ttccctgcca tgcatgtcta aactggatgt ttacagacaa 660
 gttcattcca ttattagacg ttccctgcca gcaacactac cacagtgtca ggcagcgaac 720
 10 aagacctgcc ccaccaatta catgtggaat aatcacatct gcagatgcct ggctcaggaa 780
 gattttatgt tttcctcgga tgctggagat gactcaacag atggattcca tgacatctgt 840
 ggaccaaaca aggagctgga tgaagagacc tgctcagtgt tctgcagagc ggggcttcgg 900
 cctgcgcgt gtggaccccc caaagaacta gacagaaaact catgcgcgtg tgtctgtaaa 960
 aacaaactct tccccagcca atgtggggcc aaccgagaat ttgatgaaaa cacatgccaq 1020
 15 tgtgtatgtaa aagaacctg ccccaagaaat caacccctaa atcctggaaa atgtgcctgt 1080
 gaatgtacag aaagtccaca gaaatgcttg ttaaaaggaa agaagttcca ccaccaaaca 1140
 tgcagctgtt acagacgccc atgtacgaaac cgccagaagg cttgtgagcc aggattttca 1200
 tatagtgaag aagtgtgtcg ttgtgtccct tcataattgaa aaagaccaca aatgagctaa 1260

20 <210> 124
 <211> 1074
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> VEGF D
 <310> AJ000185

30 <400> 124
 atattcaaaa tgtacagaga gtgggttagtg gtgaatgttt tcatgatgtt gtacgtccag 60
 ctgggtcagg gtcctggat tgaacatggc ccagtgaagc gatcatctca gtccacattg 120
 gaacgatctg aacagcagat cagggtctgt tctagtttg aggaactact tcgaattact 180
 cactctgagg actggaagct gtggagatgc aggctgaggc tcaaaagttt taccagtatg 240
 35 gactctcgct cagcatccca tgggtccact aggtttgcgg caacttctca tgacattgaa 300
 acactaaag tttagatgaa agaatggcaa agaaatcggt gcagccctag agaaacgtgc 360
 gtggaggtgg ccagtggatg gggaaagagt accaacacat tcttcagcc cccttgggtg 420
 aacgtgttcc gatgtgggtt ctgttgcattt gaaagagggc ttatctgtat gaacaccaggc 480
 acctcgtaa tttccaaaca gcttttgcg atatcagtgc ctttgacatc agtacctgaa 540
 40 ttagtgcctg taaaagtgtc caatcataca gtttgcgtt gcttgcacac agccccccgc 600
 catccataact caattatcg aagatccatc cagatccctg aagaagatcg ctgttccat 660
 tccaaagaaac tctgtccat tgacatgctt tggatagca acaaattgtaa atgtgttttg 720
 caggaggaaa atccacttgc tggaaacagaa gaccactctc atctccaggaa accagctctc 780
 tgtggccac acatgatgtt tgacgaaatg ctttgcgtt gtgtctgtaa aacaccatgt 840
 45 cccaaagatc taatccagca ccccaaaaac tgcagttgtt ttgagtgcaa agaaagtctg 900
 gagacctgtt gccagaagca caagctattt caccctgaca cctgcagctg tgaggacaga 960
 tgccccttcc ataccagacc atgtgcagat ggcggaaacag catgtgcataa gcattgcccgc 1020
 tttccaaagg agaaaaggcc tgccctgggg ccccacagcc gaaagaatcc ttga 1074

50 <210> 125
 <211> 1314
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> E2F
 <310> M96577

60 <400> 125
 atggccttgg cggggggccccc tggggggggc ccatgcgcgc cggcgctggg ggcctgtctc 60
 gggggccggcg cgctgcggct gctcgactcc tcgcagatcg tcatcatctc cggccgcgc 120

	gacgccagcg ccccgccggc tcccaccggc cccgcggcgc cgcggccgg cccctgcgac 180
	cctgacctgc tgctcttcgc cacaccgcag ggcggccggc ccacacccag tgcggccgg 240
	cccgcgctcg gccgcccccc ggtgaaggcg aggctggacc tggaaactga ccatcaagtac 300
5	ctggccgaga gcagtgggcc agctcggggc agaggccggc atccaggaaa aggtgtgaaa 360
	tccccggggg aagaagtcacg ctatgagacc tcactgaatc tgaccaccaa ggcgttctg 420
	gagctgctga gccactcggc tgacgggtgc gtcgacctga actgggctgc cgaggtgctg 480
	aagggtgcaga agcggcgcat ctatgacatc accaacgtcc ttgagggcat ccagctcatt 540
10	gccaagaagt ccaagaacca catccagtgg ctgggcagcc acaccacagt gggcgtcggc 600
	ggacggcttg aggggttgac ccaggaccc cgacagctgc aggagagcga gcagcagctg 660
	gaccacctga tgaatatctg tactacgcag ctgcgcctgc tctccgagga cactgacagc 720
	cagcgccctgg cctacgtgac gtgtcaggac cttcgtagca ttgcagaccc tgcagagcag 780
	atggttatgg tgatcaaagc ccctccttag acccagctcc aagccgtgga ctcttcggag 840
15	aactttcaga tctcccttaa gagcaaacaa ggcccgatcg atgtttctt gtgcctcgag 900
	gagaccgtag gtgggatcg ccctggaaag accccatccc aggaggtcac ttctgaggag 960
	gagaacaggc ccaactgactc tgccaccata gtgtcaccac caccatcatc tccccccctca 1020
	tccttcacca cagatcccg ccagtctcta ctcagcctgg agcaagaacc gctgttgtcc 1080
	cgatggcgc gcctgcgggc tccctggac gaggaccggc tgccccgct gttggcggcc 1140
20	gactcgctcc tggagcatgt gcgggaggac ttctccggcc tcctccctga ggagttcattc 1200
	agcctttccc caccacca cgcctcgac taccacttcg gactcgagga gggcgaggc 1260
	atcagagacc ttttcgactg tgactttggg gacctcaccc ccctggattt ctga 1314
	<210> 126
	<211> 166
25	<212> DNA
	<213> Human papillomavirus
	<300>
	<302> EBER-1
30	<310> Jo2078
	<400> 126
	ggacctacgc tgccctagag gttttgttag ggaggagacg tttgtggctg tagccacccg 60
	tcccggtac aagtccccggg tggtgaggac ggtgtctgtg gttgtcttcc cagactctgc 120
35	tttctgcgtt cttcggtcaa gtaccagctg gtgttccgca tgtttt 166
	<210> 127
	<211> 172
40	<212> DNA
	<213> Hepatitis C virus
	<300>
	<302> EBER-2
45	<310> J02078
	<400> 127
	ggacagccgt tgccctagtg gtttcggaca caccgccaac gtcagtgcg gtgctaccga 60
	cccgaggtca agtccccggg gaggagaaga gaggcttccc gcctagagca tttgcaagtc 120
50	aggattctct aatccctctg ggagaagggt attcggttg tccgtatattt tt 172
	<210> 128
	<211> 651
55	<212> DNA
	<213> Hepatitis C virus
	<300>
	<302> NS2
60	<310> AJ238799
	<400> 128

atggaccggg agatggcagc atcggtcgga ggcgcgggtt tcgttaggtct gatactcttg 60
 accttgtcac cgcaactataa gctgttcctc gctaggctca tatgggtgtt acaaattttt 120
 atcaccaggg ccgaggcaca cttgcaagtg tggatcccccc ccctcaacgt tcggggggggc 180
 cgcgatccg tcatcctctt cacgtgcgcg atccacccag agctaattttt taccatcacc 240
 5 aaaaatcttc tcgcccataact cggttcaactc atgggtcttc aggtctgttat aacccaaagtg 300
 ccgtacttcg tgcgccaca cgggctcatt cgtgcatttca tgctgggtcg gaagggttgc 360
 ggggggtcatt atgtccaaat ggctctcatg aagttggccg cactgacagg tacgtacgtt 420
 ttagaccatc tcacccact gcgggacttgg gcccacgcgg gcctacgaga ccttgcgggtg 480
 10 gcagttgagc cggctgtttt ctctgatatg gagaccaagg ttatcacctg gggggcagac 540
 accgcggcgt gtggggacat catcttgggc ctgcccgtct ccgcccgcag ggggagggag 600
 atacatctgg gaccggcaga cagccttggaa gggcagggtt ggcgactctt c 651

15 <210> 129
 <211> 161
 <212> DNA
 <213> Hepatitis C virus

20 <300>
 <302> NS4A
 <310> AJ238799

25 <400> 129
 gcacacctgggt gctggtaggc ggagtccttag cagctctggc cgcgtattgc ctgacaacag 60
 gcagcgttgtt cattgtgggc aggatcatct tgtccggaaa gccggccatc attcccgaca 120
 gggaaagtccctt ttaccgggag ttcatgatgaga tggaaagatgt c 161

30 <210> 130
 <211> 783
 <212> DNA
 <213> Hepatitis C virus

35 <300>
 <302> NS4B
 <310> AJ238799

40 <400> 130
 gcctcacacc tcccttacat cgaacaggga atgcagctcg ccgaacaatt caaacagaag 60
 gcaatcggtt tgctgcaaac agccaccaag caagcggagg ctgctgctcc cgtgggtggaa 120
 tccaagtggc ggaccctcga agccttctgg gcgaagcata tgtggattt catcagcggg 180
 atacaatatt tagcagggtt gtccactctg cctggcaacc cgcgcataatc atcaactgtt 240
 gcattcacag cctctatcac cagccgcctc accacccaaatc ataccctctt gtttaacatc 300
 ctggggggat ggggtggccgc ccaacttgct cctccagcg ctgcttctgc ttctgttaggc 360
 45 gccggcatcg ctggagcggc tggtggcagc ataggccttg ggaagggtgt tggtggatatt 420
 ttggcagggtt atggagcagg ggtggcaggc ggcgtcggtt cctttaaggtt catgagcggc 480
 gagatggccct ccaccggaga cctggtaac ctactccctc ctatcctctc ccctggcgcc 540
 ctatcgctcg gggctgtgtt cgcgcataatc ctgcgtcgcc acgtggggcc agggggagggg 600
 50 gctgtgcagt ggtgaaaccg gctgatagcg ttctgtgttccggatccca cgtctccccc 660
 acgcactatg tgcctgagag cgacgctgca gcacgtgtca ctcagatctt ctctagtctt 720
 accatcaactc agctgctgaa gaggcttacat cagtgatca acgaggactg ctccacgcac 780
 tgc 783

55 <210> 131
 <211> 1341
 <212> DNA
 <213> Hepatitis C virus

60 <300>
 <302> NSSA
 <310> AJ238799

5 <400> 131
 tccggctcg ggctaagaga tgtttggat tggatatgca cggtgttgc tgatttcaag 60
 acctggctcc agtccaagct cctggcgcga ttggcgggag tcccccttctt ctcatgtcaa 120
 cgtgggtaca agggagtgctg gcccggcgc ggcacatcatgc aaaccacctg cccatgtgga 180
 gcacagatca cccggacatgt gaaaaaacggt tccatgagga tcgtggggcc taggacctgt 240
 agtaaacacgt ggcatggAAC attccccatt aacgcgtaca ccacggggcc ctgcacgccc 300
 tccccggcgc caaattattc tagggcgctg ttggcgggtgg ctgctgagga gtacgtggag 360
 gttacgcggg tgggggattt ccactacgtg acggggcatga ccactgacaa cgtaaaagtgc 420
 10 ccgtgtcagg ttccggcccc cgaattcttc acagaagtgg atggggtgcg gttgcacagg 480
 tacgctccag cgtgcaaaacc cctcttacgg gaggaggtca cattcttgcg cgggctcaat 540
 caatacctgg ttgggtcaca gtccttgcg gagcccgaaac cggacgtacg agtgcact 600
 tccatgctca cccgacccttc ccacattacg gcccggacgg ctaagcgtag gctggccagg 660
 ggatctcccc ccccttgcg cagtcatca gctagccagc tgcgtgcgc ttcccttgaag 720
 15 gcaacatgca ctacccgtca tgactcccc gacgctgacc tcatcgaggc caacccctcg 780
 tggccggcagg agatggggcg gaacatcacc cgcgtggagg cagaaaataa ggttagtaatt 840
 ttggactt ctcggccgtt ccaacggag gaggatgaga gggaaatgtatc cgttccggcg 900
 gagatctgc ggaggtccag gaaattccct cgagcgtacg ccataatggc acgccccggat 960
 20 tacaaccctc cactgttaga gtccttggaa gacccggact acgtccctcc agtggtaacac 1020
 ggggtccat tgccgcgtc caaggccccctt ccgataccac ctccacggag gaagaggacg 1080
 gttgtctgt cagaatctac cgtgtttctt gccttgggg agctgcacc aaaaaccccttc 1140
 ggcagctccg aatcgtcgcc cgtcgacagc ggcacggcaa cggcctctcc tgaccagccc 1200
 tccgacgacg gcgacgggg atccgacgtt gagtcgtact cctccatgcc ccccccggag 1260
 gggagccgg gggatccca tctcagcgac ggggtttgggt ctaccgtaa cgaggaggct 1320
 25 agtgaggacg tcgtctgtc c 1341

30 <210> 132
 <211> 1772
 <212> DNA
 <213> Hepatitis C virus

35 <300>
 <302> NS5B
 <310> AJ238799

40 <400> 132
 tcgatgtcct acacatggac aggcccccgt atcacgcat ggcgtcgga gggaaaccaag 60
 ctgcccattca atgcactgag caactctttt ctccgtcacc acaacttggt ctatgtaca 120
 acatctcgca ggcgaaggct gcccggcagaag aaggtcacct ttgacagact gcaaggctcg 180
 gacgaccact accggggacgt gctcaaggag atgaaggcga aggctccac agttaaggct 240
 aaacttctat ccgtggagga agcctgtaa ctgacggccc cacattggc cagatctaaa 300
 tttggctatg gggcaaaaggc cgtccggaaac ctatccagca agggcgttaa ccacatccgc 360
 tccgtgtgga aggacttgc ggaagacact gagacaccaa ttgacaccac catcatggca 420
 45 aaaaaatgagg ttttctgcgt ccaaccagag aaggggggcc gcaaggccagc tcgccttac 480
 gtattcccgat atttgggggt tcgtgtgtgc gagaaaaatgg ccctttacga tgggtctcc 540
 accctccctc aggccgtat gggcttctca tacggattcc aataacttcc tggacagcgg 600
 gtcgatgtcc tggtaatgc ctggaaaggc aagaaaatgg ctatgggtt cgcataatgc 660
 acccgctgtt ttgactcaac ggtcaactgag atgacatcc gttgttggagga gtcaatctac 720
 50 caatgttgcg acttggcccc cgaaggccaga caggccataa ggtcgctcac agagcggctt 780
 tacatcgcccc gccccctgac taattctaaa gggcagaact ggggtatcg ccgggtccgc 840
 gcgagcgggt tactgacgac cagctcggtt aataaccctca catgttactt gaaggccgct 900
 gcccgtgtc gagctggaa gctccaggac tgcacgatgc tcgtatgcgg agacgacctt 960
 gtcgttatct gtggaaaggc gggacccaa gaggacgagg cgaggctacg ggccttac 1020
 55 gaggctatga ctagataactt tggcccccgtt ggggacccgc ccaaaccaga atacgactt 1080
 gagttgataa catcatgtc ctccaaatgtt tcgtcgccg acgtatgcac tggcaaaagg 1140
 gtgtacttcc tcacccgtga ccccaaccacc ccccttgcgc gggctcggtt ggagacagct 1200
 agacacactc cagtcaattt ctggcttaggc aacatcatca tggatgcgc cacccttgcgg 1260
 gcaaggatga tccgtatgac tcatttcttc tccatccttc tagtcagga acaacttggaa 1320
 60 aaagccctag attgtcaat tcaacggggcc ttgttacttca ttgagccact tgacctac 1380
 cagatcattt aacgacttca tggcccttgc gcatatccac tccatagttt ctctccagg 1440
 gagatcaata ggggtggcttc atgcctcagg aaacttgggg taccggccctt gcgagtctgg 1500

5 agacatcgaa ccagaagtgt ccgcgctagg ctactgtccc agggggggag ggctgccact 1560
 tggcaagt acctcttcaa ctggcagta aggaccaagc tcaaactcac tc当地atcccc 1620
 gctcgccccc agttggattt atccagctgg tt当地tgc当地tgg 1680
 tacacagcc tgc当地tgc当地ccccc tggttcatgt ggtgc当地act 1740
 5 gtaggggtag gcatctatct actccccaaac cg 1772

10 <210> 133
 <211> 1892
 <212> DNA
 <213> Hepatitis C virus

15 <300>
 <302> NS3
 <310> AJ238799

20 <400> 133
 cgc当地tattac ggc当地tactcc caacagacgc gaggc当地tact tggctgc当地tcc actactagcc 60
 tc当地caggccg ggacaggaac caggctgagg gggaggtcca agtggctcc accgcaacac 120
 aatcttccct ggcc当地tctgc gt当地atggcg tggcttggac tggctatcat ggtgccc当地ct 180
 caaaagaccct tgccggccca aaggggccaa tc当地cccaat gtacaccaat gtggaccagg 240
 acctcgctgg ctggcaagcg ccccccgggg cgc当地tccctt gacaccatgc acctgc当地ca 300
 gctcgccactt ttacttggtc acgaggcatg cgc当地tgc当地tcat tccggctgc当地c cggc当地ggc 360
 acagcagggg gaggc当地tactc tccccc当地caggc cccgctccctt ct当地aagggc tttccggc 420
 25 gtccactgt ctggccctcg gggcaacgc当地tgg tggcatctt tggctgc当地c gtgtgc当地cc 480
 gagggggttc gaaggc当地tgg gacttgc当地tcc cccgctggatc tatggaaacc actatgc当地gt 540
 cccggcttcc caggcacaac tggccctcg cggccgtacc gc当地atcc caggctggcc 600
 attacacgc cc当地tactggt agcggcaaga gcaactaagg gggctgc当地c tatgc当地cc 660
 30 aagggtataa ggtgcttgc ct当地aaccctt cccgctgc当地c cacccttaggt tggccggc 720
 atatgtctaa ggc当地atggt atc当地accctt acaatcagaac cggggtaagg accatccatca 780
 cgggtgcccc catcactgtc tccacctatg gcaaggttct tggccacggg ggttgc当地tctg 840
 ggggc当地ctt tgacatcata atatgtatg agtgc当地actc aactgactcg accactatcc 900
 tgggc当地ctt cagactctt gaccaaggcg agacggctgg agcgc当地actc gtc当地tgc当地tctg 960
 35 ccaaccgtac gc当地tccgggta tc当地gtc当地cttcc tggccatatcc aaacatcgag gaggtggctc 1020
 tggccactgtc tggagaaatc cc当地tattatg gcaaggccat ccccatcgag accatcaagg 1080
 gggggaggca cctc当地tatttc tggccatttca agaaggaaatg tgatgagctc gccc当地gaagc 1140
 tggccggccct cggactcaat gctgttagcat attaccgggg cctt当地tgc当地tatac tccgtc当地atcc 1200
 caactagcg agacgtc当地tcc tggccactgtc cggacgctctt aatgc当地ggc tttaccggc 1260
 40 atttc当地actc agt当地tgc当地tcc tgcaactatcat gttc当地atcc gacactcgac tt当地actgtc 1320
 accccgacccctt caccatttgg acgacgaccgg tggccacaaga cggc当地tgc当地tca cgctcgccagg 1380
 gggaggccg gacttggtagg ggc当地tggatgg gcatattacag gttt当地tgc当地tact cc当地ggagaac 1440
 gggccctc当地ggg catgttgc当地tcc tccctccggg tggccactgtc tggccactgtc cggc当地tccatcc 1500
 'ggtaactggactt cacggccccc gagacctcgat tt当地actgtc ggtt当地actgtc aacacaccag 1560
 45 ggtt当地actgtc ctggccaggac catctggact tctgggagag cgtt当地actgtc aacacaccag 1620
 acatagacgc cc当地tatttcc tcccaacttca agcaggccgg agacaacttc cc当地taccctgg 1680
 tagcatacca ggctacgggt tgccggccaggg ct当地actgtcc acctccatcg tgggacccaaa 1740
 tggtaactgt tctc当地atcc ctaaaggctt cggccactgtc gccaacgccc ct当地actgtata 1800
 ggctggggccg cgtt当地actgtc gaggttactt ccacacacc cataacccaaa tacatcatgg 1860
 50 catcactgtc ggctgactt gaggctgtca cg 1892

55 <210> 134
 <211> 822
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> stmn cell factor
 <310> M59964

<400> 134
 atgaagaaga cacaacttgc gatttctact tggccatttac tt当地actgtctt cctt当地ttaat 60

cctctcgtaa aactgaagg gatctgcagg aatcgtgtga ctaataatgt aaaagacgtc 120
actaaattgg tggcaaatct tccaaaagac tacatgataaa ccctcaaata tgccccggg 180
atggatgtt tgccaagtca ttgttgagata agcgagatgg tagtacaatt gtcagacagc 240
ttgactgtat ttctggacaa gtttcaaattt atttctgaag gcttgagtaa ttattccatc 300
5 atagacaaac ttgtgaatat agtcatgtac cttgtggagt gcgtcaaaga aactcatct 360
aagatctaa aaaaatcatt caagagccca gaaccaggc tcttactcc tgaagaattc 420
tttagaattt ttaatagatc cattgtgcc ttcaaggact ttgttagtggc atctgaaact 480
agtgattgtg tggtttctt aacattaagt cctgagaaag attccagagt cagtgtcaca 540
aaaccattna tgttaccccc tggcagcc agctccctta ggaatgacag cagtagcagt 600
10 aataggaagg cccaaaatcc ccctggagac tccagctac actggcagc catggcattg 660
ccagcattgt tttcttatt aattggctt gttttggag ctttatactg gaagaagaga 720
cagccaagtc ttacaaggc agttaaaaat atacaaattt atgaagagga taatgagata 780
agtatgtgc aagagaaga gagagagttt caagaagtgt aa 822

15 <210> 135
<211> 483
<212> DNA
<213> Homo sapiens

20 <300>
<302> TGFalpha
<310> AF123238

25 <400> 135
atggccccct cggctggaca gctcgccctg ttcgctctgg gtattgtgtt ggctgcgtgc 60
caggcattgg agaacagcac gtcccccgtg agtgcagacc cgcccggtgc tgcagcagt 120
gtgtccccatt ttaatgactg cccagattcc cacactcagt tctgcttcca tgaacactgc 180
aggtttttgg tgcaggagga caagccagca tttgtctgcc attctggta ctttggtgca 240
30 cgctgtgagc atgcggaccc tctggccgtg gtggctgc ca gccagaagaa gcaggccatc 300
accgccttgg tggtgtctc catcggtgcc ctggctgtcc ttatcatcac atgtgtgctg 360
atacactgtt gccaggtccg aaaacactgt gagtggtgc gggccctcat ctgcccggcac 420
gagaagccca gccccttcctt gaagggaaaga accgcttgc gccactcaga aacagtggtc 480
tga 483

35 <210> 136
<211> 1071
<212> DNA
<213> Homo sapiens

40 <300>
<302> GD3 synthase
<310> NM003034

45 <400> 136
atagccccct gcgggggggc cggcgacaa acgtccagag gggcoatggc tttactggcg 60
tggaaagtcc cggcgaccccg gctgcccattt ggagccagtgg ccctctgtgt cgtggccctc 120
tggggctctt acatcttccc cgttacccgg ctggccaaacg agaaagagat cgtcaggaaa 180
50 gtgtgtcaac agggcacccgc gtggaggagg aaccagaccc cggccagagc gttcaggaaa 240
caaatggaaag actgtgtcgca ccctgcccattt cttttgcata tgactaaaat gaattccccct 300
atggggaaaga gcatgtggta tgacggggag tttttataact cattcaccat tgacaattca 360
acttactctc tcttccacca ggcacccca ttccagctgc cattgaagaa atgcgcgggt 420
gtggggaaatg gtgggatctt gaagaagagt ggctgtggcc gtcaaataga tgaagcaaat 480
55 tttgtcatgc gatgcaatct ccctcccttgc tcaagtgtt acactaagga tttttttctg 540
aaaagtcaatgt tagtgacagc taatccacgc ataattcgcc aaagggttca gaacccttctg 600
tggccagaa agacatttttgg gacaaacatg aaaatctata accacagtta catctacatg 660
cctgcctttt ctatggaaac aggaacacag ccatcttgc gggtttattt tacactgtca 720
60 gatgttggtg ccaatcaaac agtgcgtttt gccaacccca actttctgcg tagcattgg 780
aagtcttggaa aagtagaggg aatccatgtcc aagcgccctgt ccacaggact ttttctgg 840
agcgccatgtc tgggtctctg tgaagaggtt gccatctatg gcttctggcc cttctgtgt 900
aatatgcatg agcagcccat cagccaccac tactatgaca acgtcttacc cttttctggc 960

ttccatgcca tgccc gagga atttctccaa ctctggtata tcataaaaat cggtgcactg 1020
agaatgcagc tggaccatg tgaagatacc tcactccagc ccacttccta g 1071

5 <210> 137
<211> 744
<212> DNA
<213> Homo sapiens

10 <300>
<302> FGF14
<310> NM004115

<400> 137

15 atggccgcgg ccatcgctag cggcttgatc cgccagaagc ggcaggcgcg ggagcagcac 60
tggaccgcg cgtctgccag caggaggcgg agcagcccc gcaagaaccc cgggctctgc 120
aacggcaacc tggtgttat cttctccaaa gtgcgcattt tcggccctcaa gaagcgcagg 180
ttgcggcgcc aagatccccca gctcaagggt atagtgcacca gtttatattt caggcaaggc 240
tactactgc aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300
20 tctacactct tcaacccat accagtggaa ctacgttgc ttgcacatcca gggagtgaaa 360
acagggttgt atatacgccat gaatggagaa gtttacctt acccatcaga actttttacc 420
cctgaatgca agtttaagaat atctgtttt gaaaattatt atgtaatcta ctcatccatg 480
ttgtacagac aacaggaatc tggtagagcc tggtttttg gattaataaa ggaaggc 540
getatggaaag ggaacagagt aaagaaaaacc aaaccagcag ctcattttct acccaagcca 600
25 ttggaaatgg ccatgtaccg agaaccatct ttgcatgtt gttggggaaac ggtcccgaag 660
cctggggtga cgccaaatgaa aagcacaatg gctgtcgca taatgaatgg aggcaaaacca 720
gtcaacaaga gtaagacaac atag 744

30 <210> 138
<211> 1503
<212> DNA
<213> Human immunodeficiency virus

35 <300>
<302> gag (HIV)
<310> NC001802

<400> 138

40 atgggtgcga gagcgtcagt attaagcggg ggagaattt atcgatggaa aaaaattcgg 60
ttaaggccag gggaaagaa aaaatataaa taaaacata tagtatggc aagcaggag 120
ctagaacatc tcgcagttaa tcctggcctg ttagaaacat cagaaggctg tagacaataa 180
ctgggacagc tacaaccatc cttcagaca ggatcagaag aacttagatc attatataat 240
acatgtacaa ccctctattt tgcatcaa aggatagaga taaaagacac caaggaagct 300
45 ttagacaaga tagaggaaga gcaaaacaaa agtaagaaaa aagcacagca agcagcagct 360
gacacaggac acagcaatca ggtcagccaa aattaccattt tagtgcagaa catccagggg 420
caaattgtac atcaggccat atcaccatg actttaaatg catggtaaa agtagtagaa 480
gagaaggctt tcagcccaaa agtgcatttccatgttccatg cttatcaga aggagccacc 540
ccacaagatt taaacaccat gctaaacaca gtgggggac atcaagcagc catgcaaatg 600
50 taaaagaga ccatcaatga ggaagctgc gaatggata gagtgcattt agtgcattca 660
gggcattttt caccaggcca gatgagagaa ccaaggggaa gtgacatagc aggaactact 720
agtacccttc aggaacaaat aggatggatg acaaataatc cacctatccc agtagggaa 780
atttataaaa gatggataat cctgggatta aataaaatag taagaatgtt tagccctacc 840
agcattctgg acataagaca aggaccaaaag gaacccttta gagactatgt agaccgggttc 900
55 tataaaactc taagagccga gcaagcttca caggaggtaa aaaaattggat gacagaaacc 960
ttgttggtcc aaaatgcgaa cccagattgt aagactattt taaaagcatt gggaccagcg 1020
gctacacttag aagaaatgtt gacagcatgt cagggagtag gaggaccgg ccataaggca 1080
agatgtttgg ctgaagcaat gaggcaagta acaaatttcag ctaccataat gatgcagaga 1140
ggcaattttt ggaaccaaaag aaagattgtt aagtgtttca attgtggcaa agaagggcac 1200
60 acagccagaa attgcaggcgc cccttaggaaa aagggtttttt gggaaatgtgg aaaggaaggaa 1260
caccatgtt aagattgttac tgagagacag gctaattttt tagggaaatgat ctggcccttcc 1320
tacaaggggaa ggccaggaa ttttcttcag agcagaccag agccaacacgcccaccagaa 1380

gagagcttca ggtctgggt agagacaaca actccccctc agaagcagga gccgatagac 1440
aagaactgt atcccttaac ttccctcagg tcactctttg gcaacgaccc ctcgtcacaa 1500
taa 1503

5 <210> 139
<211> 1101
<212> DNA
<213> Human immunodeficiency virus

10 <300>
<302> TARBP2
<310> NM004178

15 <400> 139
atgagtgaag aggagcaagg ctccggcact accacgggt gcgggctgcc tagtatagag 60
caaatgctgg ccgccaaccc aggcaagacc ccgatcagcc ttctgcagga gtatggacc 120
agaataggg a agacgcctgt gtacgacctt ctcggcccg aggcccaagc ccaccagcct 180
aatttcaccc tccgggtcac cggtggcgac accagctgca ctggcaggg ccccagcaag 240

20 aaggcagcca agcacaaggc agctgagggtg gcccctcaaac acctcaaagg ggggagcatg 300
ctggagccgg ccctggagga cagcagttct ttttctcccc tagactcttc actgcctgag 360
gacattccgg tttttactgc tgccggcact gtcggcccg accagctgca ctggcaggg ccccagcaag 420
aggagcccccc ccatggaaact gcagccccct gcgtccccc agcagtctga gtgcaacccc 480
gttggtgctc tgcaggagct ggtggcgtcgg aaaggctggc gtgtggccga gtacacagtg 540

25 acccaggagt ctgggcccac ccacccggaaa gaattccacca tgaccctgtc agtggagcgt 600
ttcatttgaga ttgggagtttgg cacttccaaa aaattggcaa agcggaatgtc ggccggccaaa 660
atgtctgttc gaggcataac ggtggctctg gatggccatgtc atggggatgtc ggtggagcct 720
gatgtatgacc acttctccat tgggtggcc ttccggccctgg atgggtttcg aaaccggggc 780
ccagggttgca cctgggatcc tctacggaaat tcagtaggag agaagatct gtccctccgc 840

30 agttgctccc tgggctccct ggggtccctg gcccctgcct gctggcgtgt ctcactgtgag 900
ctctctgagg agcaggcctt tcacgtcagc tacctggata ttgaggagct gagcctgag 960
ggactctgcc agtgcctgtt ggaactgtcc acccagccgg ccactgtgtc tcatggctct 1020
gcaaccacca gggaggcagc ccgtggtgag gtcggccccc gtgcctgca gtacctcaag 1080
atcatggcag gcagcaagt a 1101

35 <210> 140
<211> 219
<212> DNA
<213> Human immunodeficiency virus

40 <300>
<302> TAT (HIV)
<310> U44023

45 <400> 140
atggagccag tagatccctag cctagagccc tggaaagcatc caggaagtca gcctaagact 60
gcttgtacca cttgttattt taaagagtgt tgcttcatt gccaagtttgc tttcataaca 120
aaaggcttag gcatctctta tggcaggaag aagcggagac agcggacgaa aactcctcaa 180

50 ggtcatcaga ctaatcaagt ttctctatca aagcgtt 219

55 <210> 141
<211> 22
<212> RNA
<213> Künstliche Sequenz

60 <220>
<223> Beschreibung der künstlichen Sequenz: Sense-Strang
(R1A) einer dsRNA, die homolog zur MDR-1-Sequenz
ist

<400> 141
ccaucucgaa aagaaguuaa ga

22

5 <210> 142
<211> 24
<212> RNA
<213> Künstliche Sequenz

10 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R1B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

15 <400> 142
ucuuuacuuc uuuucgagau gggu

24

20 <210> 143
<211> 22
<212> RNA
<213> Künstliche Sequenz

25 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(R2A) einer dsRNA, die homolog zur MDR-1- Sequenz
ist

30 <400> 143
uauagguucc aggcuugcug ua

22

35 <210> 144
<211> 22
<212> RNA
<213> Künstliche Sequenz

40 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(R3A) einer dsRNA, die homolog zur Sequenz des MDR
1-Gens ist

45 <400> 144
ccagagaagg ccgcaccugc au

22

50 <210> 145
<211> 24
<212> RNA
<213> Künstliche Sequenz

55 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R3B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

<400> 145
augcaggugc ggccuucucu ggcu

24

60 <210> 146
<211> 21

zur YFP- bzw. GFP-Sequenz ist 21
 5 <400> 150
 ccacauagaag cagcacgacu u
 <210> 151
 <211> 21
 <212> RNA
 10 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz:
 15 antisense-Strang (S7B) einer dsRNA, die
 komplementär zur YFP- bzw. GFP-Sequenz ist
 <400> 151
 gucgugcugc uucauguggu c 21
 20 <210> 152
 <211> 24
 <212> RNA
 25 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (R2B) einer dsRNA, die
 komplementär zur MDR-1-Sequenz ist
 30 <400> 152
 uacagcaagg cuggaaccua uagc 24
 35 <210> 153
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz
 40 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (K1A) einer dsRNA, die homolog zur 5`-UTR der
 Neomycin-Sequenz ist
 45 <400> 153
 acaggaugag gaucguuuucg ca 22
 50 <210> 154
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz
 55 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (K1B) einer dsRNA, die
 komplementär zur 5`-UTR der Neomycin-Sequenz ist
 60 <400> 154
 uqcgaaacgca uccucauccu gu 22

5 <210> 155
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz
 10 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (K3A) einer dsRNA, die homolog zur 5`-UTR der
 Neomycin-Sequenz ist
 15 <400> 155
 gaugagggaua guuucgcaug a
 20 <210> 156
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz
 25 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (K3B) einer dsRNA, die
 komplementär zur 5`-UTR der Neomycin-Sequenz ist
 30 <400> 156
 augcgaaaacg auccucaucc u
 35 <210> 157
 <211> 24
 <212> RNA
 <213> Künstliche Sequenz
 40 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (K2A) einer dsRNA, die homolog zur 5`-UTR der
 Neomycin-Sequenz ist
 45 <400> 157
 acagggaaugag gaucguuucg caug
 50 <210> 158
 <211> 24
 <212> RNA
 <213> Künstliche Sequenz
 55 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (K2B) einer dsRNA, die
 komplementär zur 5`-UTR der Neomycin-Sequenz ist
 60 <400> 158
 ugcggaaaacg a uccucauccu gucu
 65 <210> 159
 <211> 24
 <212> RNA
 <213> Künstliche Sequenz
 70 <220>

<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S4B) einer dsRNA, die
komplementär zur YFP-bzw. GFP-Sequenz ist

5 <400> 159
gaagucgugc ugcuucaugu gguc

24

10 <210> 160
<211> 24
<212> RNA
<213> Künstliche Sequenz

15 <223> Beschreibung der künstlichen Sequenz: sense-Strang
(PKC1 A) einer dsRNA, die homolog zur
Proteinkinase C-Sequenz ist

20 <400> 160
cuucuccqcc ucacaccgcu gcaa

24

<210> 161
<211> 22
25 <212> RNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
30 antisense-Strang (PKC2 B) einer dsRNA, die
komplementär zur Proteinkinase C-Sequenz ist

<400> 161
gcagcggugu gaggcggaga ag

22

<210> 162
<211> 21
<212> RNA
40 <213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
45 antisense-Strang (S12B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

<400> 162
aagucgugcu gcuucaugug g

21

50 <210> 163
<211> 23
<212> RNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S11B) einer dsRNA, die
komplementär zur VEP bzw. CEP-Sequenz ist

60 <400> 163
aaaccaacaq acuucauaq quc

23

5 <210> 164
 <211> 20
 <212> RNA
 <213> Künstliche Sequenz
 10 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (S13A) einer dsRNA, die homolog zur YFP- bzw.
 GFP-Sequenz ist
 15 <400> 164
 ccacaugaag cagcacgacu
 20 <210> 165
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz
 25 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (S13B) einer dsRNA, die
 komplementär zur YFP- bzw. GFP-Sequenz ist
 30 <400> 165
 agucgugcug cuucaugugg uc
 35 <210> 166
 <211> 20
 <212> RNA
 <213> Künstliche Sequenz
 40 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (S14B) einer dsRNA, die
 komplementär zur YFP- bzw. GFP-Sequenz ist
 45 <400> 166
 agucgugcug cuucaugugg
 50 <210> 167
 <211> 24
 <212> RNA
 <213> Künstliche Sequenz
 55 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (S4A) einer dsRNA, die homolog zur YFP- bzw.
 GFP-Sequenz ist
 60 <400> 167
 ccacaugaag cagcacgacu ucuu
 65 <210> 168
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz

5 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (ES-7A) einer dsRNA, die homolog zur humanen
 EGFR-Sequenz ist

<400> 168
aacaccgcag caugucaaga u

21

10 <210> 169
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz

15 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (ES-7B) einer dsRNA, die
 komplementär zur humanen EGFR-Sequenz ist

20 <400> 169
cuugacauagc ugcgguguuu u

21

25 <210> 170
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz

30 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (ES-8A) einer dsRNA, die homolog zur humanen
 EGFR-Sequenz ist

35 <400> 170
aaguuaaaau ucccgucgcu au

22

40 <210> 171
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz

45 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (ES-8B) einer dsRNA, die
 komplementär zur humanen EGFR-Sequenz ist

50 <400> 171
ugauagcgac gggauuuua ac

22

55 <210> 172
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz

60 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (ES-2A) einer dsRNA, die homolog zur humanen
 EGFR-Sequenz ist

<400> 172
agugugaucc aagcuguccc aa

22

5 <210> 173
<211> 24
<212> RNA
<213> Künstliche Sequenz

10 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (ES-5B) einer dsRNA, die
komplementär zur humanen EGFR-Sequenz ist

15 <400> 173
uugggacagc uuggaucaca cuuu

24

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
18. Juli 2002 (18.07.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/055693 A3

(51) Internationale Patentklassifikation⁷: C12N 15/11,
A61K 31/713, C12N 15/88, A61P 35/00

[DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).
LIMMER, Stephan [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). **ROST, Sylvia** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). **HADWIGER, Philipp** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(21) Internationales Aktenzeichen: PCT/EP02/00152

(22) Internationales Anmeldedatum:
9. Januar 2002 (09.01.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

101 00 586.5	9. Januar 2001 (09.01.2001)	DE
101 55 280.7	26. Oktober 2001 (26.10.2001)	DE
101 58 411.3	29. November 2001 (29.11.2001)	DE
101 60 151.4	7. Dezember 2001 (07.12.2001)	DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): RIBOPHARMA AG [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): KREUTZER, Roland

(74) Anwalt: GASSNER, Wolfgang; Nägelsbachstrasse 49a, 91052 Erlangen (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

(54) Bezeichnung: VERFAHREN ZUR HEMMUNG DER EXPRESSION EINES ZIELGENS

WO 02/055693 A3

(57) Abstract: The invention relates to a method for inhibiting the expression of a target gene in a cell, comprising the following steps: introduction of an amount of at least one dual-stranded ribonucleic acid (dsRNA I) which is sufficient to inhibit the expression of the target gene. The dsRNA I has a dual-stranded structure formed by a maximum of 49 successive nucleotide pairs. One strand (as1) or at least one section of the one strand (as1) of the dual-stranded structure is complementary to the sense strand of the target gene. The dsRNA has an overhang on the end (E1) of dsRNA I formed by 1 - 4 nucleotides.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte: Einführen mindestens einer doppelstängigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Sinn-Strang des Zielgens ist, und wobei die dsRNA am einen Ende (E1) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen

Recherchenberichts: 17. Juli 2003

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 02/00152

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/11 A61K31/713 C12N15/88 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, MEDLINE, BIOSIS, EMBASE, CHEM ABS Data, SEQUENCE SEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00 44895 A (KREUTZER ROLAND ; LIMMER STEPHAN (DE)) 3 August 2000 (2000-08-03) the whole document ---	1-240
Y	WO 98 05770 A (ROTHBARTH KARSTEN ; JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12 February 1998 (1998-02-12) the whole document ---	1-240
Y	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW () 1 July 1999 (1999-07-01) the whole document ---	1-240
Y	WO 00 44914 A (FARRELL MICHAEL J ; LI YIN XIONG (US); KIRBY MARGARET L (US); MEDIC) 3 August 2000 (2000-08-03) the whole document ---	1-240
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
7 January 2003	27/01/2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 310-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016	Authorized officer Armandola, E

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/00152

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	ZAMORE PHILLIP D ET AL: "RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals" CELL, CELL PRESS, CAMBRIDGE, MA, US, vol. 101, no. 1, 31 March 2000 (2000-03-31), pages 25-33, XP002208683 ISSN: 0092-8674 the whole document ---	1-240
Y	BASS BRENDA L: "Double-stranded RNA as a template for gene silencing" CELL, CELL PRESS, CAMBRIDGE, MA, US, vol. 101, no. 3, 28 April 2000 (2000-04-28), pages 235-238, XP002194756 ISSN: 0092-8674 figure 1 ---	1-240
Y	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY, EASTON, US, vol. 90, no. 4, 1 June 1990 (1990-06-01), pages 543-584, XP000141412 ISSN: 0009-2665 the whole document ---	20-30, 60-70, 99-109, 140-150, 180-190, 219-229
Y	PARRISH S., FLEENOR J., ET AL.: "Functional Anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference." MOL. CELL, vol. 6, November 2000 (2000-11), pages 1077-187, XP002226361 the whole document ---	1-240
Y,P	AMBROS VICTOR: "Dicing up RNAs" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 293, no. 5531, 3 August 2001 (2001-08-03), pages 811-813, XP002183122 ISSN: 0036-8075 the whole document ---	1-240
		-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/00152

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y,P	ELBASHIR SAYDA M ET AL: "RNA interference is mediated by 21- and 22-nucleotide RNAs" GENES AND DEVELOPMENT, COLD SPRING HARBOR LABORATORY PRESS, NEW YORK, US, vol. 15, no. 2, 15 January 2001 (2001-01-15), pages 188-200, XP002204651 ISSN: 0890-9369 the whole document ---	1-240
A	WO 94 01550 A (AGRAWAL SUDHIR ;HYBRIDON INC (US); TANG JIN YAN (US)) 20 January 1994 (1994-01-20) ---	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/00152

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0044895	A 03-08-2000	DE AT AU WO DE DE EP EP	19956568 A1 222953 T 3271300 A 0044895 A1 10080167 D2 50000414 D1 1144623 A1 1214945 A2	17-08-2000 15-09-2002 18-08-2000 03-08-2000 28-02-2002 02-10-2002 17-10-2001 19-06-2002
WO 9805770	A 12-02-1998	DE WO EP	19631919 A1 9805770 A2 0918853 A2	12-02-1998 12-02-1998 02-06-1999
WO 9932619	A 01-07-1999	AU AU CA EP JP WO	743798 B2 1938099 A 2311999 A1 1042462 A1 2002516062 T 9932619 A1	07-02-2002 12-07-1999 01-07-1999 11-10-2000 04-06-2002 01-07-1999
WO 0044914	A 03-08-2000	AU EP WO US	2634800 A 1147204 A1 0044914 A1 2002114784 A1	18-08-2000 24-10-2001 03-08-2000 22-08-2002
WO 9401550	A 20-01-1994	AT AU CA CZ DE EP FI HU JP NO NZ PL WO	171210 T 4770093 A 2139319 A1 9403332 A3 69321122 D1 0649467 A1 946201 A 69981 A2 8501928 T 945020 A 255028 A 307025 A1 9401550 A1	15-10-1998 31-01-1994 20-01-1994 12-07-1995 22-10-1998 26-04-1995 30-12-1994 28-09-1995 05-03-1996 28-02-1995 24-03-1997 02-05-1995 20-01-1994

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 02/00152

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C12N15/11 A61K31/713 C12N15/88 A61P35/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C12N

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, MEDLINE, BIOSIS, EMBASE, CHEM ABS Data, SEQUENCE SEARCH

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 00 44895 A (KREUTZER ROLAND ; LIMMER STEPHAN (DE)) 3. August 2000 (2000-08-03) das ganze Dokument ---	1-240
Y	WO 98 05770 A (ROTHBARTH KARSTEN ; JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12. Februar 1998 (1998-02-12) das ganze Dokument ---	1-240
Y	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW ()) 1. Juli 1999 (1999-07-01) das ganze Dokument ---	1-240
Y	WO 00 44914 A (FARRELL MICHAEL J ; LI YIN XIONG (US); KIRBY MARGARET L (US); MEDIC) 3. August 2000 (2000-08-03) das ganze Dokument ---	1-240
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonderes bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder da aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
7. Januar 2003	27/01/2003
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Armando La, E

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 02/00152

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	ZAMORE PHILLIP D ET AL: "RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals" CELL, CELL PRESS, CAMBRIDGE, MA, US, Bd. 101, Nr. 1, 31. März 2000 (2000-03-31), Seiten 25-33, XP002208683 ISSN: 0092-8674 das ganze Dokument ---	1-240
Y	BASS BRENDA L: "Double-stranded RNA as a template for gene silencing" CELL, CELL PRESS, CAMBRIDGE, MA, US, Bd. 101, Nr. 3, 28. April 2000 (2000-04-28), Seiten 235-238, XP002194756 ISSN: 0092-8674 Abbildung 1 ---	1-240
Y	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY, EASTON, US, Bd. 90, Nr. 4, 1. Juni 1990 (1990-06-01), Seiten 543-584, XP000141412 ISSN: 0009-2665 das ganze Dokument ---	20-30, 60-70, 99-109, 140-150, 180-190, 219-229
Y	PARRISH S., FLEENOR J., ET AL.: "Functional Anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference." MOL. CELL, Bd. 6, November 2000 (2000-11), Seiten 1077-187, XP002226361 das ganze Dokument ---	1-240
Y,P	AMBROS VICTOR: "Dicing up RNAs" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, Bd. 293, Nr. 5531, 3. August 2001 (2001-08-03), Seiten 811-813, XP002183122 ISSN: 0036-8075 das ganze Dokument ---	1-240
		-/-

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 02/00152

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y,P	ELBASHIR SAYDA M ET AL: "RNA interference is mediated by 21- and 22-nucleotide RNAs" GENES AND DEVELOPMENT, COLD SPRING HARBOR LABORATORY PRESS, NEW YORK, US, Bd. 15, Nr. 2, 15. Januar 2001 (2001-01-15), Seiten 188-200, XP002204651 ISSN: 0890-9369 das ganze Dokument -----	1-240
A	WO 94 01550 A (AGRAWAL SUDHIR ;HYBRIDON INC (US); TANG JIN YAN (US)) 20. Januar 1994 (1994-01-20) -----	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationaler Aktenzeichen

PCT/EP 02/00152

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0044895	A	03-08-2000		DE 19956568 A1 AT 222953 T AU 3271300 A WO 0044895 A1 DE 10080167 D2 DE 50000414 D1 EP 1144623 A1 EP 1214945 A2		17-08-2000 15-09-2002 18-08-2000 03-08-2000 28-02-2002 02-10-2002 17-10-2001 19-06-2002
WO 9805770	A	12-02-1998		DE 19631919 A1 WO 9805770 A2 EP 0918853 A2		12-02-1998 12-02-1998 02-06-1999
WO 9932619	A	01-07-1999		AU 743798 B2 AU 1938099 A CA 2311999 A1 EP 1042462 A1 JP 2002516062 T WO 9932619 A1		07-02-2002 12-07-1999 01-07-1999 11-10-2000 04-06-2002 01-07-1999
WO 0044914	A	03-08-2000		AU 2634800 A EP 1147204 A1 WO 0044914 A1 US 2002114784 A1		18-08-2000 24-10-2001 03-08-2000 22-08-2002
WO 9401550	A	20-01-1994		AT 171210 T AU 4770093 A CA 2139319 A1 CZ 9403332 A3 DE 69321122 D1 EP 0649467 A1 FI 946201 A HU 69981 A2 JP 8501928 T NO 945020 A NZ 255028 A PL 307025 A1 WO 9401550 A1		15-10-1998 31-01-1994 20-01-1994 12-07-1995 22-10-1998 26-04-1995 30-12-1994 28-09-1995 05-03-1996 28-02-1995 24-03-1997 02-05-1995 20-01-1994