Frühjahr 12 Themennummer 2 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei
$$A := \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix}, \quad x_0 = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}.$$

- a) Berechnen Sie die Lösung des Anfangswertproblems $\dot{x} = Ax$, $x(0) = x_0$.
- b) Zeigen Sie, dass 0 eine stabile stationäre Lösung des Systems $\dot{x} = Ax$ ist.
- c) Geben Sie eine beliebig oft differenzierbare Funktion $f: \mathbb{R}^3 \to \mathbb{R}^3$ mit folgenden Eigenschaften an:
 - i) $\dot{x} = Ax$ ist die Linearisierung der Gleichung $\dot{x} = f(x)$ um x = 0.
 - ii) 0 ist eine instabile stationäre Lösung der Differentialgleichung $\dot{x} = f(x)$.

Lösungsvorschlag:

- a) Die ersten beiden Gleichungen $x_1'(t) = x_2(t); x_2'(t) = -x_1(t)$ hängen nicht von x_3 ab. Es ist leicht zu sehen, dass die allgemeine Lösung die Form $(a\cos(t) + b\sin(t), b\cos(t) a\sin(t))$ für $a, b \in \mathbb{R}$ ist, und dass die Anfangsbedingung genau für a = 0, b = 2 gelöst wird.

 Die Lösung hat also die Form $(2\sin(t), 2\cos(t), x_3(t))$, wobei $x_3'(t) = 2\sin(t) x_3(t)$ und $x_3(0) = -1$ erfüllt. Wir probieren den Ansatz $x_3(t) = a\cos(t) + b\sin(t)$ und erhalten aus der Differentialgleichung, dass b = -a und -a = 2 b gelten, woraus a = -1 und b = 1 folgen. Tatsächlich ist $x_3(t) = \sin(t) \cos(t)$ auch eine Lösung des Hilfsproblems. Die Lösung des gestellten Anfangswertproblems ist daher $x(t) = (2\sin(t), 2\cos(t), \sin(t) \cos(t))$.
- b) Die charakteristische Gleichung von A lautet $0 = (-1 \lambda)(\lambda^2 + 1)$, was genau die Lösungen $\lambda = -1$, $\lambda = i$ und $\lambda = -i$ besitzt. Jeder Eigenwert hat also nichtpositiven Realteil und bei denjenigen Eigenwerte deren Realteil 0 ist, stimmen algebraische und geometrische Vielfachheit überein (beide bei beiden 1). Aus der allgemeinen Theorie folgt die Stabilität der Nulllösung. Dass 0 eine stationäre Lösung ist, ist klar. (Weil $\pm i$ verschwindende Realteile haben, ist 0 nicht attraktiv und nicht asymptotisch stabil.)
- c) Wir betrachten die Funktion $f(x,y,z):=\begin{pmatrix} x^3+y\\y^3-x\\x-z \end{pmatrix}$. Als Polynomfunktion ist diese unendlich oft differenzierbar. Man erkennt sofort, dass f(0,0,0)=(0,0,0) ist, die 0 also eine Ruhelage ist. Die Jacobimatrix von f ist $Jf(x,y,z)=\begin{pmatrix} 3x^2&1&0\\-1&3y^2&0\\1&0&-1 \end{pmatrix}$, was für (x,y,z)=(0,0,0) mit A übereinstimmt. Also ist x'=Ax die Linearisierung von x'=f(x) um 0. Es verbleibt einzig die Instabilität der 0 zu zeigen.

Wir betrachten zunächst das System $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x^3 + y \\ y^3 - x \end{pmatrix}$ und werden zeigen, dass 0 eine instabile Ruhelage ist. Die Funktion $L(x,y) := -x^2 - y^2$ ist wegen $\nabla V(x,y) \cdot \begin{pmatrix} x^3 + y \\ y^3 - x \end{pmatrix} = -2x^4 - 2y^4 < 0$ für $(x,y) \neq (0,0)$ eine strikte Lyapunovfunktion. (0,0) ist kein Minimum von L, weil L(0,0) = 0 > L(x,y) für alle $(x,y) \neq (0,0)$ gilt. Also ist (0,0) instabil nach der Direkten Methode von Lyapunov.

Per Definitionem bedeutet das, dass es ein $\varepsilon > 0$ gibt, sodass für alle $\delta > 0$ ein $x^0 \in \mathbb{R}^2$ existiert, das $\sqrt{(x_1^0)^2 + (x_2^0)^2} < \delta$ erfüllt, sodass für die Lösung $x(t) = (x_1(t), x_2(t))$ des Systems zur Anfangsbedingung $0 \mapsto x^0$ ein $t^0 > 0$ mit $\sqrt{x_1(t^0)^2 + x_2(t^0)^2} \ge \varepsilon$ existiert.

Wir können nun zeigen, dass 0 auch eine instabile Ruhelage von x' = f(x) ist. Sei $\varepsilon > 0$ wie gerade und $\delta > 0$ beliebig. Betrachte den Punkt $(x_1^0, x_2^0, 0) \in \mathbb{R}^3$ mit $\sqrt{(x_1^0)^2 + (x_2^0)^2 + 0^2} < \delta$. Die Lösung des Problems x' = f(x) zur Anfangsbedingung $x(0) = (x_1^0, x_2^0, 0)$ hat die Form $x(t) = (x_1(t), x_2(t), e^{-t} \int_0^t x_1(s)e^s \, ds)$, wie man leicht verifiziert. Mit obigem $t^0 > 0$ gilt $\sqrt{x_1(t^0)^2 + x_2(t^0)^2 + e^{2t^0}(\int_0^{t^0} x_1(s)e^s \, ds)^2} \ge \varepsilon$; Per Definitionem ist 0 also instabil.

Per Definitionem könnte es auch passieren, dass die Lösung x anstatt die Bedingung $|x(t)|<\varepsilon$ zu verletzen eine endliche Entweichzeit aufweist. Weil die Strukturfunktion aber global definiert ist, kann nach der Charakterisierung vom Randverhalten dieser Fall nur auftreten, wenn die Lösung betragsmäßig gegen ∞ divergiert. Dann wird aber auch die Bedingung $|x(t)|<\varepsilon$ irgendwo verletzt und wir können ohne Einschränkung wie zuvor argumentieren.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$