

Hadoop大数据处理行为痕迹记录的创新应用

指导老师: 张至柔、吴娟

负责人: 杨秉学 13756697779

组员: 刘俊龙 18072264663

在服务器上成功部署了完全分布式Hadoop平台

4 Web方式检测DataNode运行状况

Overview 'ma	aster:9000' (active)		
Started:	Set Apr 20 00:47:08 CST 2019		
Version:	2.7.7, rc1aad84bd27cd79c3d1a	2.7.7, rclasd84bd27cd79c3d1a7dd58202a8c3eeled3ac	
Compiled:	2018-07-18T22-47Z by stevel fi	on branch-2.7.7	
Cluster ID: CID-797e718c-d18b-4dc8-se8c-s8		s8e73192507s	
Block Poel ID: BP-978475246-202.204.65.41-15557203		555720390591	
	ocks = 7 total filesystem object(s).		
Saferrode is eff.			
	ocks = 7 total thesystem abject(s). MB of 318 MB Heap Memory, Max Heap Men	cools and the	
	7.71 MB of 46.63 MB Committed Non Heap M		
Configured Capacity:		299.05 GB	
DFS Used:		48 828 (0%)	
Non DFS Used:		38.88 68	
DFS Remaining:		260.97 GB (87.03%)	
		48 828 (0%)	
Block Poel Used:			
	tin/Hedian/Max/stdDev/i	0.000.0 1,000.0 1,000.0 1,000.0	

根据实际需求优化部署

记录分析Hadoop的计算和IO开销状况与文件输出时间。

单节点处理 24M用户行为数据用时255s

优化Hadoop计算框架算法

项目目前存在需要解决的主要问题

问题1:现在采用的算法是简单的for循环,没有经过优化

问题2:程序运行时间与空间复杂度比较高

问题3:目前程序读写HDFS文件系统开销较大

项目主要问题解决方案

措施1:算法优化,不断测试以获得满足前端提交速度不同情况下的动态调整Mapper和Reducer数量和处理能力的合适算法,来增强程序的适应性,以满足我们在实际应用场景的需要。

措施2:对用户行为的分片大小进行优化

措施3: 研究视频播放情况结果文件的**压缩方法**,减少程序读写

文件尺寸,从而减少I/O开销

未来可以放到学校网络教学平台进行测试,推广使用。

下阶段主要计划及时间安排

作权

谢谢聆听!

