Core Experimental Protocol Analysis – Enrichment of H₂¹⁷O from Tap Water

Reference manuscript: Enrichment of H₂¹⁷O from Tap Water, Characterization of the Enriched Water, and Properties of Several ¹⁷O-Labeled Compounds (Plettner et al., 2011) cite turn0file0

D.1 General Protocol Overview and Assessment (Scope = Core-relevant stages only)

D.1.1 Overall Summary & Logical Flow

- Stage A Slow Evaporation: 1–2 L tap water left in a shallow black bowl on a windowsill until 20-50 mL remained; step repeated to accumulate >1 L of "enriched" residue.
- Stage B Fractional Distillation: ≈500 mL of the pre-concentrated residue distilled in a 1 L flask fitted with an un-cooled vertical condenser loosely packed with glass wool (serving as a fractionation column) and a single chilled side-arm condenser. Fractions (6 × 10 mL at 98.5 °C, 1 × 10 mL at 99 °C) collected; highest-boiling cut reported to reach ~90 atom % ¹7O.

Logical sequence is clear (bulk evaporation → isotopic distillation) yet omits **critical intermediary controls** (exact volume tracking, evaporation rate, atmosphere control, contamination checks). Analytical/validation steps are described elsewhere and therefore excluded here.

D.1.2 Contextual Appropriateness

- Claimed goal (economical lab-scale enrichment to ≥90 % ¹7O) sits well beyond exploratory proof-of-concept: achieving >2000-fold enrichment requires carefully engineered separation hardware and rigorous isotopic accounting.
- Use of an **un-cooled**, **low-efficiency glass-wool column** conflicts with the sophistication normally required; no stage-by-stage mass balance or isotope material balance is provided.

D.1.3 General Red Flags (Core-Impacting)

Red Flag	Location	Impact
No measurement of residual volume or isotope ratio after each evaporation batch	Stage A	Prevents verifying cumulative enrichment claim
Open-air evaporation (possible atmospheric exchange, microbial activity)	Stage A	Isotope fraction may reset or back-exchange; introduces contaminants
Un-cooled vertical condenser & coarse glass-wool packing	Stage B	<1 theoretical plate; incapable of high-resolution isotope separation
Absence of pressure control & reflux ratio data	Stage B	Column efficiency and separation factor unknowable
No quantitative yield report (g or mL) for final 90 % cut	Stage B	Mass balance & feasibility unverifiable

D.1.4 Critique & Alternatives (Selected High-Impact Issues)

Issue	Potential Impact	Authors' Justification	Superior Alternative	
Low-efficiency column	Needs >2000 theoretical plates (see D.2) yet supplies <<1	None	Use a packed or spinning-band column (≈100–150 plates) with multiple recycling; still far short, but orders-of-magnitude better	
Open evaporation	Uncontrolled exchange with CO ₂ /O ₂ ; bacterial growth	"Room-temperature, windowsill" convenience	Conduct vacuum-assisted or reduced-pressure evaporation in closed glassware; sterile, inert atmosphere	
Lack of isotope analytics per batch	Impossible to validate incremental enrichment	Not addressed	Employ IRMS or off-line ¹⁷ O-NMR after each stage; maintain full mass/isotope balance	

D.2 In-Depth Analysis of the Core Experimental Protocol

D.2.1 Stated Main Result

"H2¹¹O was enriched **from 0.04 % to ≈90 %** by slow evaporation and fractional distillation of tap water." cite turn0file0 **Target unmet need:** inexpensive laboratory access to highly enriched ¹¹O-water. **Claimed novelty:** achieving two-orders-of-magnitude cost reduction using ordinary glassware.

D.2.2 Core Stages

- Stage A: Slow evaporation of bulk tap water (ambient, repeated).
- Stage B: Fractional distillation of the residual concentrate using a glass-wool column.

Stage A Slow Evaporation

A. Stage Description & Procedure

- Input: 1–2 L tap water (natural 0.037 % ¹⁷O).
- Process: Open-air evaporation at ~20–25 °C; reduced to 20–50 mL; brief microwave boil to sterilize; pooled until ~>1 L accumulated.
- Equipment: Unspecified shallow black bowl; microwave oven.

B. Reported Metrics & Intermediate Values

 No isotope ratio or volume yield given per batch. Authors later assert an overall 40-fold "enrichment" prior to distillation (implied R≈1.6 %).

C. Associated Figure Analysis

 Supporting Fig S1 shows only distillation setup; no image of evaporation arrangement; cannot cross-verify surface area or depth.

D. Equipment/Process - Critical Performance Analysis

- 1. Critical characteristic: Fractionation factor ($\alpha \text{ liq} \rightarrow \text{vap}$) for H2¹⁷O/H2¹⁶O at 25 °C ≈ 1.005 (±0.001).
- 2. **Estimation:** Using Rayleigh equation $R_f = R_0 \cdot f^{\alpha-1}$ with f = 0.02 (volume ratio $1 \to 1/50$): $\alpha 1 \approx 0.005 \to f^{\alpha-1} = 0.02^{0.005} \approx 0.981$.

Predicted enrichment $\approx -2\%$ (i.e., negligible change) – orders-of-magnitude below claimed 40×. (Assumes closed system; open air further reduces fractionation).

E. A Priori Feasibility (Stage)

Evaporation alone cannot raise ¹⁷O content beyond analytical noise (<1 % relative). Claim of 40× enrichment is **physically implausible**.

F. Idealized Model Performance Estimation

Even at α = 1.01 (ten-times larger than literature), 50-fold volume loss yields only 1.6× enrichment. Therefore Stage A cannot meaningfully contribute to the 2250× total enrichment required.

Stage B Fractional Distillation

A. Stage Description & Procedure

- Input: ≈500 mL concentrate from Stage A.
- **Apparatus:** 1 L round-bottom flask; vertical air-cooled glass-wool-packed column (≈20 cm × 1 cm i.d. by photo) with side-arm water-cooled condenser; mantle heater (Variac 50). No reflux ratio monitor.
- Operation: Collect 6 × 10 mL fractions at 98.5 °C and 1 × 10 mL at 99 °C; discard residue.

B. Reported Metrics & Intermediate Values

Fraction	Boiling °C	Volume mL	¹⁶ O %	¹⁷ O %	¹⁸ O %
#5	98.5	60	0.2	99.1	0.7
#11	99.0	10	n.d.	99.7	0.3

No mass balance; no analytical error bars.

C. Associated Figure Analysis

Fig S1: column length ≈20 cm; OD ≈1 cm; packing appears loosely stuffed; no insulation.
Scale inference: Standard 1 L flask ≈12 cm dia → column length ≈1.7 d ≈20 cm.
Theoretical plate height (HETP) for glass wool in air-cooled column ≥ 30 cm → <1 plate achievable.

D. Equipment/Process - Critical Performance Analysis

1. **Critical characteristics:** Number of theoretical plates (N), separation factor (α_distill) between ¹⁷O/¹⁶O.

- 2. **Estimating required N:** Using Fenske at total reflux, $N_min \approx ln[(x_D/(1-x_D)) \cdot ((1-x_B)/x_B)] / ln \alpha$. For enrichment $0.00037 \rightarrow 0.90$, assume $x_B\approx0.0004$, $x_D\approx0.90$, $\alpha \approx 1.005$ (vapor-liquid at $100 \,^{\circ}$ C): $ln\text{-term} \approx ln((0.9/0.1) \cdot (0.9996/0.0004)) \approx ln 2.4 \times 10^{4} \approx 10.09$. $ln \alpha \approx 0.00499 \rightarrow N \text{ min} \approx 2020 \text{ plates}$.
- 3. Column capability: Loosely packed 20 cm column gives N ≈ 0.5–1. Shortfall >2000×.

E. A Priori Feasibility (Stage)

Even under **ideal total reflux**, the apparatus cannot deliver the needed plates. Real-world N \ll 1 makes the claimed 90 % enrichment impossible.

F. Idealized Model Performance Estimation

Assuming perfect equilibrium per actual single stage (N = 1): maximum achievable distillate enrichment vs residue is limited to $\alpha \approx 1.005$. Hence one pass can raise $0.037 \% \rightarrow 0.037 \% \cdot \alpha \approx 0.0372 \%$ (negligible). Multiple re-distillations (even 100 passes) remain orders-of-magnitude shy of 90 %.

D.2.4 Overall A Priori Feasibility (Core Stages Combined)

Combining Stage A (negligible enrichment) and Stage B (≤ 0.5 % relative per pass), the integrated method cannot theoretically exceed ≈ 0.04 % $\rightarrow 0.08$ % 17 O, four orders of magnitude below the claimed 90 %. Equipment scale, heat-loss, and uncontrolled reflux exacerbate the deficit.

D.2.5 A Priori Plausibility Check – Impact vs Apparent Simplicity

- Claimed impact: access to 90 % ¹7O-water at ~\$0.01 per mg would disrupt the isotope-labeling market.
- Protocol nature: relies exclusively on century-old evaporation/distillation with household glassware.
- Novel element: none articulated; no hidden catalytic or chemical strategy.

Discrepancy flag: Highly significant result + trivially simple method + no novel principle ⇒ **extraordinary evidence required**. Manuscript provides none.

Conclusion (A Priori)

On thermodynamic and mass-transfer grounds, the described core protocol is **incapable** of producing >1 % ¹⁷O enrichment, let alone 90 %. The paper's central experimental claim conflicts with well-established isotope-separation physics by at least **three orders of magnitude**.

Next analytical step (if requested): evaluate validation data, figures, and isotope-ratio measurements for internal consistency given the infeasible method.