Math AA HL at KCA - Chapter 3 Notes

 $\operatorname{Tim\ Bao\ } 2023\text{--}2025$

February 24, 2024

1 Laws of Exponents

1.
$$a^m \times a^n = a^{m+n}$$

$$2. \ a^m \div a^n = a^{m-n}$$

3.
$$(a^m)^n = a^{mn}$$

$$4. \ a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

5.
$$a^{-m} = \frac{1}{a^m}$$

6.
$$a^0 = 1, a \neq 0$$

2 Exponential Functions

They take the form of $y = ab^x + c$ and can grow very rapidly.

The graph of exponential functions will be shown later.

3 Logarithms

1.
$$\ln x = \log_e(x)$$

2.
$$\log x = \log_{10}(x)$$

3.
$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)} = \frac{\ln x}{\ln a}$$
, where b can be any real number.

$$4. \ \ln(xy) = \ln x + \ln y$$

$$5. \ln(\frac{x}{y}) = \ln x - \ln y$$

6.
$$\ln(x^k) = k \ln x$$

4 Exponential Growth and Decay

The exponential function in the form

$$y = p \times a^{x-h} + k$$

- will **grow** if a > 1; the function is increasing
- will **decay** if a < 1; the function is decreasing

The following shows an exponentially growing (red) and a decaying (purple) function.

Figure 1: Exponential functions

5 Modeling Exponential and Power functions

- 1. An exponential function in the form of $y=ab^x$ can be modeled using the linear function $\log y=x\log b+\log a$
- 2. Power functions take the form $y = kx^n$ and $\log y = n \log x + \log a$ will be a straight line.