Experiment 3: Email Spam or Ham Classification using Naive Bayes, KNN, and SVM

Moogambigai A

August 2025

1 Aim

To classify emails as spam or ham using Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM), and evaluate their performance using accuracy, precision, recall, F1-score, and K-fold cross-validation.

2 Libraries USed

• Pandas: Data manipulation

• NumPy: Numerical operations

• Scikit-learn: Model building, preprocessing, classification report, confusion matrix and evaluation

• Matplotlib and Seaborn: Data visualization

3 Objective

- The primary goal is to use three specific machine learning models—Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—to categorize emails.
- To Evaluate Performance Metrics: The models' performance will be measured and compared using key metrics such as accuracy, precision, recall, and F1-score.
- To Use K-Fold Cross-Validation: This technique will be applied to get a more robust evaluation of the models' performance by testing them on different subsets of the data.
- To Compare Model Effectiveness: The assignment aims to determine which classifier and its specific hyperparameters are most effective for this email classification task.

4 Python Code

```
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score
   , ConfusionMatrixDisplay
import matplotlib.pyplot as plt
import seaborn as sns
# Load dataset
df = pd.read_csv("/content/drive/MyDrive/spambase.csv")
# Features and labels
X = df.drop("class", axis=1)
y = df["class"]
# Check for missing values
missing_values = df.isnull().sum().sum()
# Separate features and labels
X = df.drop(columns=['class'])
y = df['class']
# Normalize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
missing_values
# Class\ distribution\ (0 = ham, 1 = spam)
class_counts = y.value_counts()
# Plot class balance
plt.figure(figsize=(6, 4))
sns.barplot(x=class_counts.index, y=class_counts.values, palette='viridis')
plt.xticks([0, 1], ['Ham<sub>\(\pi\)</sub>(0)', 'Spam<sub>\(\pi\)</sub>(1)'])
plt.title('Class_Distribution')
plt.ylabel('Number_of_Emails')
plt.xlabel('Email_Type')
plt.tight_layout()
plt.show()
# ------
# Feature Distributions
# -----
# 1. Histogram for a few important features
selected_features = ['word_freq_free', 'word_freq_money', 'char_freq_%21', '
   capital_run_length_total']
plt.figure(figsize=(12, 8))
for i, feature in enumerate(selected_features):
   plt.subplot(2, 2, i + 1)
    sns.histplot(df[feature], bins=30, kde=True, color='teal')
   plt.title(f'Distribution of {feature}')
   plt.xlabel(feature)
   plt.ylabel("Frequency")
plt.tight_layout()
plt.show()
# -----
# 3. Splitting the Dataset
```

```
# -----
# Use the normalized dataset
X_train, X_test, y_train, y_test = train_test_split(
    X_scaled, y, test_size=0.2, random_state=42, stratify=y
print("Train uset usize:", X_train.shape)
print("Test_{\sqcup}set_{\sqcup}size:", X_test.shape)
# -----
# 4. Model Building: Na ve Bayes & KNN
# -----
import time
# ----- 1. Prepare Scaled and Raw Versions -----
X_raw = df.drop('class', axis=1)
y = df['class']
# Scaled version for GaussianNB & KNN
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_raw)
\# Train-test split (same random state for consistency)
X_train_scaled, X_test_scaled, y_train, y_test = train_test_split(X_scaled, y,
   test_size=0.2, stratify=y, random_state=42)
X_train_raw, X_test_raw, _, _ = train_test_split( X_raw, y, test_size=0.2,
   stratify=y, random_state=42)
# ----- 2. Naive Bayes Models -----
nb_results = []
# GaussianNB (use scaled data)
gnb = GaussianNB()
gnb.fit(X_train_scaled, y_train)
y_pred = gnb.predict(X_test_scaled)
print("\nGaussianNB ∪ Classification ∪ Report:\n")
print(classification_report(y_test, y_pred, digits=4))
nb_results.append({
    "Model": "GaussianNB",
    "Accuracy": gnb.score(X_test_scaled, y_test),
    "Precision": classification_report(y_test, y_pred, output_dict=True)['1']['
       precision'],
    "Recall": classification_report(y_test, y_pred, output_dict=True)['1']['recall
    "F1_{\sqcup}Score": classification_report(y_{\perp}test, y_{\perp}pred, output_{\perp}dict=True)['1']['f1-
       score']
})
# MultinomialNB (use raw data)
mnb = MultinomialNB()
mnb.fit(X_train_raw, y_train)
y_pred = mnb.predict(X_test_raw)
print("\nMultinomialNB_{\sqcup}Classification_{\sqcup}Report:\n")
print(classification_report(y_test, y_pred, digits=4))
nb_results.append({
    "Model": "MultinomialNB",
```

```
"Accuracy": mnb.score(X_test_raw, y_test),
    "Precision": classification_report(y_test, y_pred, output_dict=True)['1']['
        precision'],
    "Recall": classification_report(y_test, y_pred, output_dict=True)['1']['recall
        '],
    "F1_Score": classification_report(y_test, y_pred, output_dict=True)['1']['f1-
})
# BernoulliNB (use raw data)
bnb = BernoulliNB()
bnb.fit(X_train_raw, y_train)
y_pred = bnb.predict(X_test_raw)
print("\nBernoulliNB<sub>||</sub>Classification<sub>||</sub>Report:\n")
print(classification_report(y_test, y_pred, digits=4))
nb_results.append({
    "Model": "BernoulliNB",
    "Accuracy": bnb.score(X_test_raw, y_test),
    "Precision": classification_report(y_test, y_pred, output_dict=True)['1']['
    "Recall": classification_report(y_test, y_pred, output_dict=True)['1']['recall
        '],
    "F1_{\sqcup}Score": classification_report(y_{\perp}test, y_{\perp}pred, output_{\perp}dict=True)['1']['f1-
        score']
})
# 3. KNN
               Varying k
k_{values} = [1, 3, 5, 7]
knn_results = []
for k in k_values:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train_scaled, y_train)
    y_pred = knn.predict(X_test_scaled)
    print(f"\nKNN_{\sqcup}(k=\{k\})_{\sqcup}Classification_{\sqcup}Report:\n")
    print(classification_report(y_test, y_pred, digits=4))
    knn_results.append({
        "k": k,
         "Accuracy": knn.score(X_test_scaled, y_test),
        "Precision": classification_report(y_test, y_pred, output_dict=True)['1'][
            'precision'],
        "Recall": classification_report(y_test, y_pred, output_dict=True)['1']['
            recall'],
        "F1uScore": classification_report(y_test, y_pred, output_dict=True)['1']['
            f1-score']
    })
# 4. KNN with KDTree vs BallTree
for algorithm in ['kd_tree', 'ball_tree']:
    knn = KNeighborsClassifier(n_neighbors=5, algorithm=algorithm)
    start = time.time()
    knn.fit(X_train_scaled, y_train)
    elapsed = time.time() - start
    y_pred = knn.predict(X_test_scaled)
    print(f"\nKNN_{\sqcup}with_{\sqcup}\{algorithm.upper()\}_{\sqcup}Report:\n")
    print(classification_report(y_test, y_pred, digits=4))
```

```
print(f"Training utime: u{elapsed:.4f} useconds \n")
# 4. Model Building: Support Vector Machine (SVM)
from sklearn.svm import SVC
svm_results = []
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
# Store fitted models in variables for later use
svm_model_linear = None
svm_model_poly = None
svm_model_rbf = None
svm_model_sigmoid = None
for kernel in kernels:
    print(f"\nTraining_\SVM\\with\\kernel.upper()}\\kernel\\\")
    svm_model = SVC(kernel=kernel, random_state=42, probability=True) #
        probability=True for ROC AUC
    start_time = time.time()
    svm_model.fit(X_train_scaled, y_train)
    end_time = time.time()
    training_time = end_time - start_time
    y_pred = svm_model.predict(X_test_scaled)
    report = classification_report(y_test, y_pred, digits=4, output_dict=True)
    svm_results.append({
        "Kernel": kernel.upper(),
        "Accuracy": report['accuracy'],
        "Precision": report['1']['precision'],
        "Recall": report['1']['recall'],
         "F1<sub>□</sub>Score": report['1']['f1-score'],
        "Training \Box Time \Box (s)": training \bot time
    })
    print(f"Classification_{\sqcup}Report_{\sqcup}for_{\sqcup}\{kernel.upper()\}_{\sqcup}kernel:")
    print(classification_report(y_test, y_pred, digits=4))
    print(f"Training_{\sqcup}Time:_{\sqcup}\{training_{\_}time:.4f\}_{\sqcup}seconds")
    # Assign the fitted model to the corresponding variable
    if kernel == 'linear':
        svm_model_linear = svm_model
    elif kernel == 'poly':
        svm_model_poly = svm_model
    elif kernel == 'rbf':
         svm_model_rbf = svm_model
    elif kernel == 'sigmoid':
        svm_model_sigmoid = svm_model
# Display results in a table
print("\nSVM_{\sqcup}Kernel-wise_{\sqcup}Results_{\sqcup}")
svm_results_df = pd.DataFrame(svm_results)
```

```
display(svm_results_df)
# 5. Performance Analysis
# -----
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, roc_curve,
import matplotlib.pyplot as plt
def plot_conf_matrix_and_roc(model, X, y_true, title="Model"):
         y_pred = model.predict(X)
         y_proba = model.predict_proba(X)[:, 1]
         # Confusion Matrix
         cm = confusion_matrix(y_true, y_pred)
        disp = ConfusionMatrixDisplay(confusion_matrix=cm)
        disp.plot()
        plt.title(f"Confusion_Matrix:_{\psi}{title}}")
        plt.show()
         # ROC Curve
        fpr, tpr, _ = roc_curve(y_true, y_proba)
        roc_auc = auc(fpr, tpr)
        plt.figure()
        plt.plot(fpr, tpr, label=f"{title}_{\sqcup}(AUC_{\sqcup}=_{\sqcup}{roc_auc:.4f})")
        plt.plot([0, 1], [0, 1], linestyle="--", color="gray")
        plt.xlabel("False_Positive_Rate")
        plt.ylabel("True_Positive_Rate")
        plt.title("ROC Curve")
        plt.legend(loc="lower_right")
        plt.grid()
        plt.show()
# Na ve Bayes
plot_conf_matrix_and_roc(gnb, X_test_scaled, y_test, "GaussianNB")
plot_conf_matrix_and_roc(mnb, X_test_raw, y_test, "MultinomialNB")
plot_conf_matrix_and_roc(bnb, X_test_raw, y_test, "BernoulliNB")
# KNN: Different k values
for k in [1, 3, 5, 7]:
         knn = KNeighborsClassifier(n_neighbors=k)
         knn.fit(X_train_scaled, y_train)
        plot\_conf\_matrix\_and\_roc(knn, X\_test\_scaled, y\_test, f"KNN_{\sqcup}(k=\{k\})")
# KNN: KDTree and BallTree
for algo in ['kd_tree', 'ball_tree']:
         knn_tree = KNeighborsClassifier(n_neighbors=5, algorithm=algo)
         knn_tree.fit(X_train_scaled, y_train)
        \verb|plot_conf_matrix_and_roc(knn_tree, X_test_scaled, y_test, f"KNN_{\sqcup}(\{algo.upper(), y_test, f"KN
                 })")
\# Plot ROC and AUC for each trained SVM model
\verb|plot_conf_matrix_and_roc(svm_model_linear, X_test_scaled, y_test, "SVM_{\sqcup}(Linear)")|
\verb|plot_conf_matrix_and_roc(svm_model_poly, X_test_scaled, y_test, "SVM_{\sqcup}(Poly)")| \\
\verb|plot_conf_matrix_and_roc(svm_model_rbf, X_test_scaled, y_test, "SVM_{\sqcup}(RBF)")| \\
\verb|plot_conf_matrix_and_roc(svm_model_sigmoid, X_test_scaled, y_test, "SVM_{\sqcup}(Sigmoid)"|
# -----
# Plotting ROC and AUC for SVM Models
```

```
# Plot ROC and AUC for each trained SVM model
\verb|plot_conf_matrix_and_roc(svm_model_linear, X_test_scaled, y_test, "SVM_{\sqcup}(Linear)")|
\verb|plot_conf_matrix_and_roc(svm_model_poly, X_test_scaled, y_test, "SVM_{\sqcup}(Poly)")|
plot_conf_matrix_and_roc(svm_model_rbf, X_test_scaled, y_test, "SVM_(RBF)")
plot_conf_matrix_and_roc(svm_model_sigmoid, X_test_scaled, y_test, "SVM_(Sigmoid)"
 # -----
# 6. K-Fold Cross-Validation
 # ------
from sklearn.model_selection import cross_val_score, KFold
models = {
    "Na ve_Bayes_(Gaussian)": gnb,
    "Na ve,,Bayes,,(Multinomial)": mnb,
    "Na ve,Bayes, (Bernoulli)": bnb,
    "KNN_{\sqcup}(k=7)": knn,
    "SVM_{\sqcup}(Linear)": svm_model_linear
}
data_for_cv = {
    "Na ve,,Bayes,,(Gaussian)": (X_scaled, y),
    "Na ve_Bayes_(Multinomial)": (X_raw, y),
    "Na ve_{\square}Bayes_{\square}(Bernoulli)": (X_raw, y),
    "KNN_{\perp}(k=7)": (X_scaled, y),
    "SVM_{\sqcup}(Linear)": (X_{\perp}scaled, y)
 # Perform K-Fold Cross-Validation (K=5)
 n_splits = 5
 kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
 cv_results = {}
 for name, model in models.items():
    X_cv , y_cv = data_for_cv[name]
    print(f"\nPerforming_{n_splits}-Fold_Cross-Validation_for_{name}...")
    scores = cross_val_score(model, X_cv, y_cv, cv=kf, scoring='accuracy')
    cv_results[name] = scores
    print(f"Scores: [scores]")
    \verb|print(f"Average_{\square}Accuracy:_{\square}\{scores.mean():.4f\}")|
 # Display results in a table
 print("\n--- \LK-Fold \LCross-Validation \LResults \L(K=5) \L---")
 cv_results_df = pd.DataFrame(cv_results)
 cv_results_df.index = [f"Fold_{\sqcup}{i+1}" for i in range(n_splits)]
 cv_results_df.loc["Average"] = cv_results_df.mean()
 display(cv_results_df)
```

5 Output Screenshots

Figure 1: Class Distribution of Dataset

GaussianNB Cl	assification	Report:		
	precision	recall	f1-score	support
0	0.9654	0.7509	0.8448	558
1	0.7146	0.9587	0.8188	363
accuracy			0.8328	921
macro avg	0.8400	0.8548		921
weighted avg	0.8666	0.8328		921
weighted avg	0.0000	0.0320	0.0545	721
MultinomialNB	Classificat	ion Renor	+•	
Marcinomiaino	Classificat	топ керог		
	precision	recall	f1-score	support
	pi ccision	rccarr	II SCOLC	Suppor C
0	0.8121	0.8208	0.8164	558
1	0.7199	0.7080		363
-	0.7133	017000	0.,133	303
accuracy			0.7763	921
macro avg	0.7660	0.7644		921
weighted avg		0.7763		921
	01.737	311103	011100	321
BernoulliNB C	lassificatio	n Renort:		
Del Hodilino e	103311100010	п перогет		
	precision	recall	f1-score	support
	pi ccision	rccuii	11 30010	Suppor C
0	0.8788	0.9229	0.9003	558
1	0.8716	0.8044		363
_	0.0710	0.00	0.0307	303
accuracy			0.8762	921
macro avg	0.8752	0.8637		921
weighted avg	0.8760	0.8762	0.8753	921
werbusen asp	0.0700	010/02	0.0733	321

Figure 2: Naive Bayes Output

KNN (k=1) Cla	assification	Report:		
	precision	recall	f1-score	support
0	0.9113	0.9211	0.9162	558
1	0.8768	0.8623	0.8694	363
1	0.8708	0.8023	0.8034	303
accuracy			0.8979	921
macro avg	0.8940	0.8917	0.8928	921
weighted avg	0.8977	0.8979	0.8978	921
(AB) (1- 2) (1-	:6:	D		
KNN (k=3) Cla	assitication	keport:		
	precision	recall	f1-score	support
	pi cozozon		.1 555.0	одррог с
0	0.9133	0.9247	0.9190	558
1	0.8820	0.8650	0.8734	363
accuracy			0.9012	921
macro avg	0.8976	0.8949	0.8962	921
weighted avg	0.9010	0.9012	0.9010	921
KNN (k=5) Cla	essification	Report:		
(11 3) 525		por cr		
	precision	recall	f1-score	support
0	0.9168	0.9283		558
1	0.8876	0.8705	0.8790	363
accuracy			0.9055	921
macro avg	0.9022	0.8994	0.9008	921
weighted avg	0.9053	0.0055	0.9054	921
KNN (k=7) Cla	essification	Report:		
	precision	recall	f1-score	support
0	0.9156	0.9337	0.9246	558
1		0.8678	0.8811	558 363
1	0.0349	0.0076	0.0011	202
accuracy			0.9077	921
macro avg	0.9053	0.9007	0.9028	921
weighted avg	0.9075	0.9077	0.9074	921

(a)	KNN	Output
-----	-----	--------

KNN with	KD_TI	REE Report:			
		precision	recall	f1-score	support
	0	0.9168	0.9283	0.9225	558
	1	0.8876	0.8705	0.8790	363
accur	acy			0.9055	921
macro	avg	0.9022	0.8994	0.9008	921
		0.9053	0.9055	0.9054	921
5		: 0.0188 seco			
		precision	recall	f1-score	support
	0	0.9168	0.9283	0.9225	558
	1	0.8876	0.8705	0.8790	363
accur	асу			0.9055	921
macro	avg	0.9022	0.8994	0.9008	921
weighted	avg	0.9053	0.9055	0.9054	921
Training	time	: 0.0123 seco	onds		

(b) KDTREE Vs BALLTREE Output

		with LINEAR k			
Classific	catio	n Report for	LINEAR k	ernel:	
		precision	recall	f1-score	support
	0	0.9349	0.9516	0.9432	558
	1	0.9235	0.8981	0.9106	363
accui	acy			0.9305	921
macro	_		0.9248	0.9269	921
weighted	avg	0.9304	0.9305	0.9303	921
Training	Time	: 3.6872 seco	onds		
		with POLY ker			
Classific	catio	n Report for			
		precision	recall	f1-score	support
		0.7776	0 0075		550
	0				
	1	0.9598	0.4601	0.6220	363
				0 7706	024
accui		0.0407	0 7000		921
macro	_				
weighted	avg	0.8252	0.7796	0.7568	921
_					
- -	T2	: 2.8629 seco			

(a) SVM Output

(a) GaussianNB confusion matrix

(b) SVM Output

(b) GaussianNB ROC AUC

(a) MultinomialNB confusion matrix

(b) MultinomialNB ROC AUC

(a) BernoliNB confusion matrix

(b) BernoliNB ROC AUC

(a) KNN (k=1) confusion matrix

ROC Curve

(a) KNN (k=3) confusion matrix

(b) KNN (k=3) ROC AUC

(a) KNN (k=5) confusion matrix

(b) KNN (k=5) ROC AUC

(a) KNN (k=7) confusion matrix

(b) KNN (k=7) ROC AUC

(a) KNN KDTREE confusion matrix

(a) KNN BALLTREE confusion matrix

Predicted label

(b) KNN KDTREE ROC AUC

(b) KNN BALLTREE ROC AUC

(a) SVM Linear confusion matrix

(b) SVM Linear ROC AUC

(a) SVM Poly confusion matrix

(b) SVM Poly ROC AUC

(a) SVM RBF confusion matrix

(b) SVM RBF ROC AUC

(a) SVM sigmoid confusion matrix

(b) SVM sigmoid ROC AUC

	Kernel	Accuracy	Precision	Pecal1	F1 Score	Training Time (s)
	Kerner	Accui acy	11 CC131011	MCCUII	11 50010	Truthing rame (5)
0	LINEAR	0.930510	0.923513	0.898072	0.910615	3.687203
	POLY	0.779587	0.959770	0.460055	0.621974	2.862876
2	RBF	0.927253	0.927746	0.884298	0.905501	1.723683
3	SIGMOID	0.883822	0.853591	0.851240	0.852414	1.848590

(a) SVM Kernel-wise Results

(b) 5-Fold Cross-Validation

6 Observation

- 1) Which classifier had the best average accuracy?
- Based on the 5-fold cross-validation results, the SVM (Linear) classifier achieved the best average accuracy of 0.9274. Other classifiers and their average accuracies were: KNN (k=7) at 0.9068, Naive Bayes (Bernoulli) at 0.8863, Naive Bayes (Gaussian) at 0.8153, and Naive Bayes (Multinomial) at 0.7916.

2) Which Naive Bayes variant worked best?

• The Bernoulli Naive Bayes variant performed the best among the three Naive Bayes models. It had an average accuracy of **0.8863** from 5-fold cross-validation, a precision of 0.8536, a recall of 0.8512, and an F1 score of 0.8524 on the test set. This was significantly higher than Gaussian Naive Bayes (average accuracy 0.8153) and Multinomial Naive Bayes (average accuracy 0.7916). The Bernoulli model also had the highest AUC score of **0.9496** among the Naive Bayes variants.

3) How did KNN accuracy vary with k and tree type?

- The accuracy of the KNN classifier generally **improved as the value of k increased**. On the test set, the accuracy was 0.9055 for k=5 and 0.9054 for k=7. The Area Under the Curve (AUC) also increased with k, from 0.8917 at k=1, to 0.9378 at k=3, 0.9505 at k=5, and **0.9539** at k=7.
- The choice of tree type (KDTREE vs. BALLTREE) for KNN with k=5 had no impact on accuracy or performance metrics; both models achieved an accuracy of 0.9055 and a near-identical AUC (0.9504 and 0.9505, respectively). The only difference was that the Ball Tree algorithm had a slightly faster training time (0.0123 seconds) compared to the KD Tree algorithm (0.0188 seconds).

4) Which SVM kernel was most effective?

- The linear kernel was the most effective for the SVM classifier. It achieved the highest accuracy of **0.9305** on the test set, followed by the RBF kernel at 0.9273. The linear kernel also had the best overall performance metrics, including an F1 score of 0.9106, while also having the highest AUC of **0.9695**.
- While the RBF kernel had a higher recall for ham emails (class 0) at 0.9552 compared to the linear kernel's 0.9516, the linear kernel's performance for spam emails (class 1) was stronger, with a precision of 0.9235 compared to RBF's 0.9277, and recall of 0.8981 compared to RBF's 0.8843.

5) How did hyperparameters influence performance?

- Hyperparameters significantly influenced the performance of the models.
 - KNN: The hyperparameter k (the number of neighbors) directly affected the model's accuracy, precision, recall, and AUC. A larger k value (up to 7) generally resulted in higher accuracy and AUC, suggesting that considering more neighbors led to a more robust classification. The algorithm hyperparameter had a negligible effect on performance but did influence training time.
 - SVM: The choice of kernel was the most crucial hyperparameter for SVM. The linear and RBF kernels performed best, with the linear kernel having the highest accuracy and AUC. In contrast, the poly (polynomial) kernel performed poorly, with a low accuracy of 0.7796 and a low F1 score of 0.6220 for spam classification. The sigmoid kernel also performed worse than the linear and RBF kernels, with a lower accuracy of 0.8838. This demonstrates that some kernels are better suited for this specific dataset and classification problem.

7 Learning Outcomes

From this assignment,

- We gained practical experience in applying three fundamental machine learning models—Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—to a real-world classification problem.
- We learned the importance of preparing data for machine learning, including handling missing values, standardizing or normalizing features, and splitting the dataset for training and testing.
- We explored how model performance is influenced by different hyperparameters, such as the k value in KNN and the kernel type in SVM.

- We learned to evaluate model effectiveness using a variety of metrics like accuracy, precision, recall, and F1-score. We also learned to visualize performance using confusion matrices and ROC curves to gain a deeper understanding of model behavior.
- We understood the significance of using K-fold cross-validation to get a more reliable estimate of a model's performance and avoid overfitting to a single train-test split.
- We were able to compare the strengths and weaknesses of different algorithms and their variants to determine which one is most suitable for a given dataset.