Name:	Student code:

Laboratory Task I

50 points

RESULTS SHEET

A. Standardisation of Iodine Solution

Concentration of standard Na₂S₂O₃ in bottle: 0.01970........... M

	Volume		
Titration Number	1	2	3
aliquot of I ₂ (mL)	5.00	5.00	5.00
initial buret reading (mL)	0.00	0.00	0.00
final buret reading (mL)	10.00	10.05	9.95
standard Na ₂ S ₂ O ₃ (mL)	10.15	10.10	10.05

The value of titre =
$$10.10$$
 mL

Calculation for iodine concentration:

mol ratio of I₂: S₂O₃²⁻ = 1:2

I₂ + 2 S₂O₃²⁻
$$\longrightarrow$$
 2I⁻ + S₄O₆²⁻

[I₂].V_{I₂} = $\frac{[S_2O_3^{2-}].V_{S_2O_3^{2-}}}{2}$

[I₂] = $\frac{0.01970 \times 10.10}{2 \times 5.00}$ = 0.0199 M

1 mark for correct mol ratio.

max 2 marks for correct calculation.

-1 mark for less than 2 or more than 3 significant figures.

Concentration of I₂

0.0199 M

Accuracy (max 7 marks)-recalculated using student's data Sliding scale 7 marks for 0 to 0.5 % deviation.

0 mark for greater than 3.0 % deviation.

7 marks

Task I Page 1 of 7

Name: Student code:

Laboratory Task I

B. A kinetic study of the acid catalyzed reaction between acetone and iodine in aqueous solution

B-1. Calculation for initial concentrations (M) in the solution mixtures

	Concentration			
Flask No.	I	II	III	IV
[I ₂], M	0.00498	0.00998	0.00498	0.00498
[acetone], M	1.69	1.69	3.39	1.69
[HCl], M	0.0250	0.0250	0.0250	0.0500

^{0.25} mark for each correct concentration of I₂ and HCl.

B-2. Calculation for the concentration (M) of iodine remaining in Flasks I to IV at 7 minutes.

		Volume		
Flask No.	I	II	III	IV
initial buret reading (mL)	0.00	0.00	0.00	0.00
final buret reading (mL)	8.35	18.55	6.75	6.85
standard Na ₂ S ₂ O ₃ (mL)	8.35	18.55	6.75	6.85

[I ₂] remaining at 7 minutes (M)	0.00412	0.00914	0.00332	0.00338

^{0.5} mark for each correct calculation of remaining iodine.

B-3. Calculation for initial rate of disappearance of I₂ at 7 minutes for Flasks I to IV (in M s⁻¹)

Initial rate of disappearance of iodine (M s⁻¹) =
$$-\frac{d[I_2]}{dt}$$

Flask No.	I	II	III	IV
Calculation for rate	0.00498-0.00412 7 x 60	0.00997-0.00914 7 x 60	0.00498-0.00333 7 x 60	0.00498-0.00338 7 x 60
Initial rate	2.05 x 10 ⁶	1.98 x 10 ⁶	3.95 x 10 ⁶	3.811 x 10 ⁶

⁴ marks for correct calculation.

B-4. Calculation for the kinetic orders x, y and z

Task I Page 2 of 7

^{0.5} mark for each correct concentration of acetone.

Name: Student code:

Laboratory Task I

rate =
$$-\frac{d[I_2]}{dt}$$
 = $k[CH_3COCH_3]^X [I_2]^Y [H^+]^Z$

Calculation for x	Calculation for y	Calculation for z
$\frac{\text{Rate (III)}}{\text{Rate (I)}} = \frac{3.95 \times 10^{-6}}{2.05 \times 10^{-6}}$	$\frac{\text{Rate (II)}}{\text{Rate (I)}} = \frac{1.98 \times 10^{-6}}{2.05 \times 10^{-6}}$	$\frac{\text{Rate (IV)}}{\text{Rate (I)}} = \frac{3.81 \times 10^{-6}}{2.05 \times 10^{-6}}$
$2^{X} = 1.93$	$2^{y} = 0.965$	2 ^z = 1.86
x = 0.95	y = -0.051	z = 0.90
x = 1 (integer)	y = 0 (integer)	z = 1 (integer)

max 1 mark for each correct calculation

Write rate equation or rate law

Rate =
$$k[CH_3COCH_3][H^+]$$

2 marks

B-5. Calculation for the rate constant, k, for Flasks I to IV with proper unit.

Flask No.	I	II	III	IV
Calculation	$\frac{2.05 \times 10^{-6}}{(1.69)(0.0250)}$	$\frac{1.98 \times 10^{-6}}{(1.69)(0.0250)}$	$\frac{3.95 \times 10^{-6}}{(3.39)(0.0250)}$	$\frac{3.81 \times 10^{-6}}{(1.69)(0.0500)}$
Rate Constant k =	4.85 x 10 ⁻⁵	4.68 x 10 ⁻⁵	4.66 x 10 ⁻⁵	4.51 x 10 ⁻⁵
Unit	M ⁻¹ s ⁻¹	M ⁻¹ s ⁻¹	$M^{-1} s^{-1}$	M ⁻¹ s ⁻¹

Max 0.5 mark for each correct calculation.

1 mark for correct unit.

B-6. Mean value of rate constant =
$$\boxed{ 4.68 \times 10^{-5} }$$
 22 marks

Accuracy: (max 22 marks)-recalculated using student's data.

Sliding scale 22 marks for 0 to 6% deviation.

0 mark for greater than 18% deviation.

0 mark for greater than $\pm 10\%$ deviation.

Task I Page 3 of 7