Podstawy Mechaniki Komputerowej - Projekt

Imię	Nazwisko	Numer albumu	Numer grupy	Ocena

Treść zadania:

Dla przedstawionego układu w Płaskin Stanie Odkształcenia (PSO) wyznaczyć:

- wartości przemieszczeń poziomych (u_x) w węźle 7 oraz pionowych (v_y) w węźle 8,
- maksymalną bezwzględną wartość naprężeń normalnych $\max(|\sigma_x|)$ oraz ich lokalizację.

Zadanie należy rozwiązać stosując trójkątny element skończony (CST) dla: A) siatki przedstawionej na rysunku, B) siatki wygenerowanej automatycznie przy parametrze $H_{\text{max}} = 0.36 \,\text{m}$.

Konstrukcja ma grubość $t=80\,\mathrm{m}$ i wykonano ją z materiału o parametrach $E=12\,\mathrm{GPa}$ oraz $\nu=0.25.$

Zadany układ podparty jest na krawędzi pomiędzy węzłami: 5 - 6 w obu kierunkach, 10 - 1 w obu kierunkach. Na układ działają obciążenia w postaci sił skupionych: $P_1 = 14400\,\mathrm{kN}$ w węźle 3 na kierunku pionowym, $P_2 = 6400\,\mathrm{kN}$ w węźle 9 na kierunku pionowym.

Schemat układu (wymiary w metrach):

Wymagane elementy opracowania:

	u_x []	v_y []	$\max(\sigma_x)$ []
A)			
B)			_

Uwagi:

- W analizie numerycznej należy wykorzystać bibliotekę CalFEM w środowisku MATLAB.
- Skrypty rozwiązujące zadanie należy przesłać do odpowiedniego modułu na platformie eNauczanie w ramach kursu *Podstawy Mechaniki Komputerowej*.
- Nieprzesłanie skryptów skutkuje przyznaniem 0 punktów za całe zadanie.