

DRHMC: Delayed Rejection Hamiltonian Monte-Carlo

Chirag Modi

Center for Computational Astrophysics (CCA) Center for Computational Mathematics (CCM) Flatiron Institute StanCon 2023

w/ Alex Barnett, Bob Carpenter arXiv:2110.00610

Q: Researcher is interested in learning the mean SAT score (μ). **Data**: Collect students' scores for SAT exams from 5 schools.

Q: Researcher is interested in learning the mean SAT score (μ). **Data**: Collect students' scores for SAT exams from 5 schools.

Hierarchical model with partial pooling

$$\mu, \sigma \sim \pi(\mu, \sigma); \quad \mu_j \sim \mathbb{N}(\mu, \sigma);$$

$$Y_{ij} \sim \mathbb{N}(\mu_j, \sigma_j)$$

Q: Researcher is interested in learning the mean SAT score (μ). **Data**: Collect students' scores for SAT exams from 5 schools.

Hierarchical model with partial pooling

$$\begin{split} \mu\,,\,\sigma &\sim \pmb{\pi}(\mu\,,\,\sigma); \quad \mu_{j} \sim \mathbb{N}(\mu\,,\,\sigma); \\ Y_{ij} &\sim \mathbb{N}(\mu_{j}\,,\,\sigma_{j}) \end{split}$$

Degeneracies of hierarchical model

- small σ results in μ_i concentrating around μ
- large σ results in μ_i varying wider range of values

Q: Researcher is interested in learning the mean SAT score (μ). **Data**: Collect students' scores for SAT exams from 5 schools.

Hierarchical model with partial pooling

$$\begin{split} \boldsymbol{\mu}, \boldsymbol{\sigma} &\sim \boldsymbol{\pi}(\boldsymbol{\mu}, \boldsymbol{\sigma}); \quad \boldsymbol{\mu}_j \sim \mathbb{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}); \\ & \quad \boldsymbol{Y}_{ij} \sim \mathbb{N}(\boldsymbol{\mu}_j, \boldsymbol{\sigma}_j) \end{split}$$

Degeneracies of hierarchical model

- small σ results in μ_i concentrating around μ
- large σ results in μ varying wider range of values

Strong coupling of the individual parameters (μ_j) to the population parameters $(\mu,\sigma)\to \text{Funnel degeneracy}$

$$\beta \sim \mathcal{N}(0, \sigma^2)$$

 $\alpha_i \sim \mathcal{N}(0, e^\beta),$

$$eta \sim \mathcal{N}(0, \sigma^2)$$
 $lpha_i \sim \mathcal{N}(0, e^{eta}),$

- Need very different step-sizes in different regions
 - Small steps to probe the neck

$$eta \sim \mathcal{N}(0, \sigma^2)$$
 $lpha_i \sim \mathcal{N}(0, e^{eta}),$

- Need very different step-sizes in different regions
 - Small steps to probe the neck

$$\beta \sim \mathcal{N}(0, \sigma^2)$$
 $\alpha_i \sim \mathcal{N}(0, e^\beta),$

- Need very different step-sizes in different regions
 - Small steps to probe the neck
 - Large steps to probe the mouth

$$\beta \sim \mathcal{N}(0, \sigma^2)$$
 $\alpha_i \sim \mathcal{N}(0, e^{\beta}),$

- Need very different step-sizes in different regions
 - Small steps to probe the neck
 - Large steps to probe the mouth
- Constant mass matrix is insufficient
 - **Multiscale!** condition number changes
 - Very badly conditioned away from origin

Motivation for DRHMC

For the distributions that do not have globally optimal configurations for the transition kernel, can we still benefit from different locally optimized transition kernels.*

(*when continuous adaptation is not feasible)

HMC

Delayed Rejection HMC

Standard HMC

- Transition kernel \mathbf{F}_1 : `n' leapfrog steps with step size ` ε '

HMC

Delayed Rejection HMC

 $x \bullet \xrightarrow{F_1} y$

When faced with a rejection, make another proposal with a **different transition kernel** that has a better chance of getting accepted

Standard HMC

- Transition kernel \mathbf{F}_1 : `n' leapfrog steps with step size ` ε '

2-stage DRHMC

(a) 2-stage DRHMC

When faced with a rejection, make another proposal with a **different transition kernel** that has a better chance of getting accepted

Standard HMC

$$\alpha(x,y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$$

2-stage DRHMC

HMC

$$x \bullet \xrightarrow{F_1} \bullet y$$

(a) 2-stage DRHMC

Detailed balance:

the probability of transitioning from \mathbf{x} to \mathbf{y} is the same as the probability of transitioning from \mathbf{y} to \mathbf{x}

When faced with a rejection, make another proposal with a **different transition kernel** that has a better chance of getting accepted

Standard HMC

$$\alpha(x,y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$$

2-stage DRHMC

HMC

$$x \bullet \xrightarrow{F_1} \bullet y$$

(a) 2-stage DRHMC

$$F_{1}^{-1} = F_{1}$$

$$\downarrow g$$

$$F_{2}$$

$$X \bullet \longrightarrow S$$
(rejected)

Detailed balance:

the probability of transitioning from \mathbf{x} to \mathbf{y} is the same as the probability of transitioning from \mathbf{y} to \mathbf{x}

When faced with a rejection, make another proposal with a **different transition kernel** that has a better chance of getting accepted

Standard HMC

$$\alpha(x,y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$$

2-stage DRHMC

$$\alpha_2(x, F_1(x), y) = \min\left(1, \frac{\pi(y)}{\pi(x)} \frac{1 - \alpha_1(y, F_1(y))}{1 - \alpha_1(x, F_1(x))}\right)$$

HMC

$$x \bullet \xrightarrow{F_1} \bullet y$$

(a) 2-stage DRHMC

Detailed balance:

the probability of transitioning from **x** to **y** is the same as the probability of transitioning from **y** to **x**

When faced with a rejection, make another proposal with a **different transition kernel** that has a better chance of getting accepted

Standard HMC

$$\alpha(x,y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$$

2-stage DRHMC

$$\alpha_2(x, F_1(x), y) = \min\left(1, \frac{\pi(y)}{\pi(x)} \frac{1 - \alpha_1(y, F_1(y))}{1 - \alpha_1(x, F_1(x))}\right)$$

HMC

(a) 2-stage DRHMC

(rejected)

Detailed balance:

the probability of transitioning from x to y is the same as the probability of transitioning from y to x

When faced with a rejection, make another proposal with a **different transition kernel** that has a better chance of getting accepted

Standard HMC

$$\alpha(x, y) = \min\left(\frac{\pi(y)}{\pi(x)}, 1\right)$$

2-stage DRHMC

$$\alpha_2(x, F_1(x), y) = \min\left(1, \frac{\pi(y)}{\pi(x)} \frac{1 - \alpha_1(y, F_1(y))}{1 - \alpha_1(x, F_1(x))}\right)$$

3-stage DRHMC

$$\widetilde{lpha}_3(x) = \min \left[rac{\pi(y)[1-\widetilde{lpha}_1(y)][1-\widetilde{lpha}_2(y)]}{\pi(x)[1-\widetilde{lpha}_1(x)][1-\widetilde{lpha}_2(x)]}, 1
ight]$$

HMC

(a) 2-stage DRHMC

Delayed proposals with reduced step size:

- Starting step size: ε_0 Step size decreases with factor 'a' $\varepsilon_0, \varepsilon_0/a, \varepsilon_0/a^2, ..., \varepsilon_0/a^k...$

Two hyperparameters:

- a: factor of reduction
- *k*: number of delayed rejections

Delayed proposals with reduced step size:

- Starting step size: ε_0 Step size decreases with factor 'a' $\varepsilon_0, \varepsilon_0/a, \varepsilon_0/a^2, ..., \varepsilon_0/a^k...$

Two hyperparameters:

- a: factor of reduction
- *k*: number of delayed rejections

DRHMC requires ~5-10x less gradient evaluations vs standard HMC

Similar gains for other hard problems

Lower is better

Delayed proposals with reduced step size:

- Starting step size: ε_0
- Step size decreases with factor 'a' ε_0 , ε_0 /a, ε_0 /a, ε_0 /a ε_0 /a...

Two hyperparameters:

- a: factor of reduction
- k: number of delayed rejections

DRHMC requires ~5-10x less gradient evaluations vs standard HMC

- Similar gains for other hard problems

Delayed proposals made as we move into the neck of the funnel.

Number of proposals (density evaluations) for kth order grows as 2^{k-1}

Number of proposals (density evaluations) for kth order grows as 2^{k-1} **But**, the dominant cost in HMC is number of gradient evaluations, leapfrog steps!

Number of proposals (density evaluations) for kth order grows as 2^{k-1}

But, the dominant cost in HMC is number of gradient evaluations, leapfrog steps!

DRHMC

- Starting step size: ε
- Step size decreases with factor 'α'
- $\varepsilon, \varepsilon/a, \varepsilon/a^2, ..., \varepsilon/a^k$

HMC

Largest **stable** step size: ε_0 $\varepsilon_0 \sim \varepsilon / \alpha^{k-1}$

Number of proposals (density evaluations) for kth order grows as 2^{k-1}

But, the dominant cost in HMC is number of gradient evaluations, leapfrog steps!

DRHMC

- Starting step size: ε
- Step size decreases with factor 'α'
- $\varepsilon, \varepsilon/a, \varepsilon/a^2, ..., \varepsilon/a^k$

HMC

- Largest **stable** step size: ε_0 $\varepsilon_0 \sim \varepsilon / \alpha^{k-1}$

Integration time for every proposal: $T = n\varepsilon$

- Total number of leapfrog steps for HMC $\sim T/\epsilon_0 \sim na^{k-2}$

Number of proposals (density evaluations) for kth order grows as 2^{k-1}

But, the dominant cost in HMC is number of gradient evaluations, leapfrog steps!

DRHMC

- Starting step size: ε
- Step size decreases with factor 'a'
- ε , ε / α , ε / α ² ,..., ε / α ^k

HMC

Largest **stable** step size: ε_{0} $\varepsilon_0 \sim \varepsilon / a^{k-1}$

 (ε/a^k)

Integration time for every proposal: $T = n\varepsilon$

Total number of leapfrog steps for HMC $\sim T/\epsilon_0 \sim na^{k-2}$: $n \times 2^{k-1} + na \times 2^{k-2} + ... + na^{k-1} \times 1$ (GP) Total number of leapfrog steps for DRHMC* (*in the worst case) (ε/a)

Number of proposals (density evaluations) for kth order grows as 2^{k-1}

But, the dominant cost in HMC is number of gradient evaluations, leapfrog steps!

DRHMC

- Starting step size: ε
- Step size decreases with factor 'a'
- $\varepsilon, \varepsilon/a, \varepsilon/a^2, ..., \varepsilon/a^k$

HMC

Largest **stable** step size: $\boldsymbol{\varepsilon}_{0}$ $\varepsilon_0 \sim \varepsilon / a^{k-1}$

(b) 3-stage DRHMC

Integration time for every proposal: $T = n\varepsilon$

- Total number of leapfrog steps for HMC $\sim T/\varepsilon_0 \sim na^{k-2}$
- Total number of leapfrog steps for DRHMC* (*in the worst case)

$$\sim na^{k-2}$$

:
$$n \times 2^{k-1} + na \times 2^{k-2} + ... + na^{k-1} \times 1$$
 (GP)

if
$$a = 2$$

= $nk\alpha^{k-1}$ if a = 2 \rightarrow O(ak) more expensive than HMC

$$= O(a^{k-1}n)$$
 if $a > 2$

if
$$a > 2$$

 \rightarrow O(a) more expensive than HMC, Independent of k!

Say you reject a proposal when α = 0.9 Should you make a delayed proposal?

Say you reject a proposal when α = 0.9 Should you make a delayed proposal? Not all rejections are bad

Say you reject a proposal when α = 0.9 Should you make a delayed proposal? Not all rejections are bad

Probabilistic DRHMC: Make the next proposal with probability

$$p_{j+1}(x) = 1 - \tilde{\alpha}_j(x)$$

$$\widetilde{lpha}_2(x) = \min \left[rac{\pi(y)[1-\widetilde{lpha}_1(y)]p_2ig(y,F_1(y)ig)}{\pi(x)[1-\widetilde{lpha}_1(x)]p_2ig(x,F_1(x)ig)},1
ight]$$

Say you reject a proposal when α = 0.9 Should you make a delayed proposal? Not all rejections are bad

Probabilistic DRHMC: Make the next proposal with probability

$$p_{j+1}(x) = 1 - \tilde{\alpha}_j(x)$$

$$\widetilde{lpha}_2(x) = \min \left[rac{\pi(y)[1-\widetilde{lpha}_1(y)]p_2ig(y,F_1(y)ig)}{\pi(x)[1-\widetilde{lpha}_1(x)]p_2ig(x,F_1(x)ig)}, 1
ight]$$

- Reduces the cost of DRHMC by only making delayed proposals only when needed
- Increases robustness to fitting step-size!

Stochastic Volatility

(a) Delayed Rejection

(b) Probabilistic Delayed Rejection

Variants of DRHMC

Does not necessarily need to reduce step size

- Different integrators (higher order leapfrog, implicit midpoint)
- Different kinetic energy
- Different mass matrix

Variants of DRHMC

Does not necessarily need to reduce step size

- Different integrators (higher order leapfrog, implicit midpoint)
- Different kinetic energy
- Different mass matrix

Extensions for DRHMC

WIP with Gilad Turok and Bob Carpenter

- Auto-tuning DRHMC hyper-parameters
- Continuous adaptation: Combine DR + Generalized HMC (partial momentum refresh)

Takeaways

- Delayed rejection HMC for pathological distributions (multiscale distributions like funnel)
 - benefit from multiple, locally optimized transition kernels
- Unlike DR for Metropolis Hastings, cost of a well-tuned DRHMC is a constant factor more than a stable HMC
 - if adapting step size
- Probabilistic DRHMC makes proposals probabilistically, and reduces the cost of DRHMC
- More stable to tuning parameters of HMC (for e.g. step size)
- Any valid transition kernels can be combined into delayed proposals

Takeaways

- Delayed rejection HMC for pathological distributions (multiscale distributions like funnel)
 - benefit from multiple, locally optimized transition kernels
- Unlike DR for Metropolis Hastings, cost of a well-tuned DRHMC is a constant factor more than a stable HMC
 - if adapting step size
- Probabilistic DRHMC makes proposals probabilistically, and reduces the cost of DRHMC
- More stable to tuning parameters of HMC (for e.g. step size)
- Any valid transition kernels can be combined into delayed proposals

Thank you

Extra slides

Other experiments

No ideal global proposal!

Mixture of 2 Gaussians with different scales (σ = 0.1, 1) $^{\sim}$ 2x gains

Eight school model- hierarchical, mildly multi-scale ~3x gains

Gull's lighthouse: poor data, ill-defined prior, Cauchy posterior ~5x gains

Delayed proposals with reduced step size:

- Starting step size: ε_0
- Step size decreases with factor 'a' ε_0 , ε_0 / a, ε_0 / a^2 ,..., ε_0 / a^k

Two hyperparameters:

- a: factor of reduction
- *k*: number of delayed rejections

Similar gains for other hard problems

Comparing cost of DRHMC vs standard HMC ~5-10x gains

Delayed Rejections (DR)

Delayed Rejection: when faced with a rejection, delay it. Try to make more proposals which might get accepted

Well studied in the context of random-walk Metropolis sampling Mira 1998, Mira & Tierney 99, Greene & Mira 2001

$$K(x, dy) = \alpha(x, y)Q(x, dy) + r(x)\delta_x(dy)$$

$$\alpha(x, y) = \min\left(\frac{\pi(y) q(y, x)}{\pi(x) q(x, y)}, 1\right)$$

$$K(x,dy) = Q_1(x,dy)\alpha_1(x,y)$$

+
$$\int_{s \in S} Q_1(x,ds)[1 - \alpha_1(x,s)][Q_2(x,s,dy)\alpha_2(x,s,y) + r_2(x,s)\delta_x(dy)],$$

$$\alpha_2(x, s, y) = \min\left(\frac{\pi(y)q_2(y, s, x)q_1(y, s)[1 - \alpha_1(y, s)]}{\pi(x)q_2(x, s, y)q_1(x, s)[1 - \alpha_1(x, s)]}, 1\right)$$

Other DR methods in the literature

Extra Chance HMC: when turned down, keep moving on *Sohl-Dickstein et al., 2014; Campos and Sanz-Serna, 2015*