

Similarity on Graphs & Hypergraphs

Filip Moons
2th Master of Mathematics - Option: Eduction
Promotor: Prof. Dr. P. Cara
Presentation Master Thesis

Friday 19 April, 2013

Content

- Order theory
 - Directed sets
 - ► The "Way Below"-relation
 - **Domains**
- Scott Convergence
 - S-limits
 - Introducing the Scott topology
- Scott-Continuous functions
 - Definition
 - Kleene Fixed Point Theorem.
- ► A categorical conclusion: injective spaces

Order theory

Preordered & partially ordered sets

Definition: Directed sets

Let L be a preordered set. A subset D of L is directed provided it is nonempty and every finite subset of D has an upper bound in D.

Definition: Lower sets

$$\downarrow X = \{ y \in L : y \le x \text{ for some } x \in X \}$$

X is an *lower set* if $X = \downarrow X$.

Definition: Dcpo

A poset is complete with respect to directed sets if every directed set has supremum. A **dcpo** is a **d**irected **c**omplete **po**set.

16848 - 1355 N

•00

The "Way Below"-relation

Definition

Let L be a poset. x is way below y, in symbols $x \ll y$, iff for all directed subsets $D \subseteq L$, for which sup D exists, the relation $y \leq \sup D$ always implies the existence of a $d \in D$ with $x \leq d$.

$$\downarrow x = \{u \in L : u \ll x\}$$

The "Way Below"-relation

The "Way Below"-relation

Definition

Let L be a poset. x is way below y, in symbols $x \ll y$, iff for all directed subsets $D \subset L$, for which sup D exists, the relation $y < \sup D$ always implies the existence of a $d \in D$ with x < d.

$$L = [0, 1]^2$$

The "Way Below"-relation

The "Way Below"-relation

Definition

Let L be a poset. x is way below y, in symbols $x \ll y$, iff for all directed subsets $D \subset L$, for which $\sup D$ exists, the relation $y \leq \sup D$ always implies the existence of a $d \in D$ with $x \leq d$.

Example

Let X be a topological space and $\mathcal{O}(X)$ the complete lattice of open sets in X. Suppose $U, V \in \mathcal{O}(X)$ and define the order \leq as the inclusion relation \subseteq .

$$U \ll V \Leftrightarrow \forall \mathcal{G} \text{ open cover of } V,$$

$$\exists \mathcal{G}' \subseteq \mathcal{G} \text{ finite cover of } U.$$

PASS 13SSU

V/NCERE 1

Domains

Order theory

Domains

Definition: Continuous posets

A poset *L* is called *continuous* if $\downarrow x$ is directed with supremum *x* for all $x \in L$.

Definition: Domain

A dcpo which is continuous as a poset will be called a domain.

Example

Let M be a set and $L = 2^M$, then 2^M is a continuous lattice and thus a domain.

VIERSITE

\mathcal{S} -limits on complete semilattices

Definition: Lower limit

Let L be a complete semilattice. For any net $(x_j)_{j \in J}$ we write

$$\liminf_{j} x_{j} = \sup_{i \ge j} \inf_{i \ge j} x_{i},$$

and call $\liminf_{i \to j} x_i$ the *lower limit* or *liminf* of the net.

Definition: S-limit

Let $\mathcal S$ denote the class of the pairs $((x_j)_{j\in J},x)$ such that $x\leq \liminf_j x_j$ ($\mathcal S=\{((x_j)_{j\in J},x)|x\leq \liminf_j x_j\}$). For each such pair we say that x is an $\mathcal S-limit$ of $(x_j)_{j\in J}$ and we write briefly $x\equiv_{\mathcal S}\lim x_j$.

The Scott Topology

Theorem: The general relation between convergence & topology

Let \mathcal{L} be a class of pairs $((x_j)_{j\in J}, x)$ consisting of a net and an element of L, then

$$\mathcal{O}(\mathcal{L})=\{U\subseteq L| \text{ if } ((x_j)_{j\in J},x)\in \mathcal{L} \text{ and } x\in U \text{ then eventually } x_j\in U\}$$

is a topology.

Definition: The Scott topology

Take $\mathcal{L} = \mathcal{S}$, then $\mathcal{O}(\mathcal{S})$ is the *Scott topology*.

The Scott topology

0.0

Theorem

Let L be dcpo and $U \subset L$. Then $U \in \mathcal{O}(S)$ iff the following two conditions are satisfied:

- (i) $U = \uparrow U$;
- (ii) $\sup D \in U$ implies $D \cap U \neq \emptyset$ for all directed set $D \subseteq L$.

The Scott topology

000

Example: the Sierpinski topology

On the chain $L = \{0, 1\}$, the Scott topology equals the Sierpinski topology.

Example: the unit interval

If L is the unit interval: L = [0, 1], then L is a dcpo. Any Scott open set has the form [x, 1] if $0 \le x \le 1$ or [0, 1].

The Scott topology on domains

The Scott topology on domains

Definition: Topological

If $\mathcal S$ is precisely the class of convergent nets for the Scott topology, then we say that $\mathcal S$ is *topological*.

Theorem

S-convergence is topological \Leftrightarrow L is a domain

Definition

Theorem

For a function $f: S \to T$, with S, T dcpo's, the following conditions are equivalent:

1. f is continuous with respect to the Scott topologies, that is

$$f^{-1}(U) \in \sigma(S), \ \forall U \in \sigma(T),$$

2. f preserves suprema of directed sets, that is, f is order preserving and $f(\sup D) = \sup f(D)$, for all directed subsets D of S.

Definition: Scott-continuous

A function $f: S \to T$ between dcpo's is *Scott-continuous* iff it satisfies the equivalent conditions in the previous theorem.

Kleene Fixed-Point theorem

Theorem: Kleene Fixed-Point theorem

Let L be a dcpo with a least element \bot , then it has the following properties:

- (i) **Existence**: Every Scott-continuous self-map $f: L \to L$ has a least fixed-point, notated by LFP(f).
- (ii) **Construction**: The least fixed-point can be approximated by the recursively defined *Kleene chain*:

$$x_0 = \bot$$
, $x_{n+1} = f(x_n) = f^{n+1}(\bot)$

in the sense that

$$\mathsf{LFP}(f) = \sup_{n} x_n = \sup_{n} f^n(\bot).$$

Kleene Fixed-Point theorem

Example: The factorial function

The definition of factorial as the function that maps $n \in \mathbb{N}$ to f(n) = if n = 0 then 1 else n.f(n-1) is obtained as the least fixed point of the higher-order function F, mapping any function f to the function f' defined by f(n) = if n = 0 then 1 else n.f(n-1).

Category theory

Definitions

Category: CONT

The category whose objects are *continuous lattices* and whose morhpisms are *Scott-continuous maps* will be denoted by *CONT*.

Definition: Σ-functor

Let L be a continuous lattice, we call $\Sigma : CONT \to TOP$ the functor that associates to L its Scott topology $\Sigma(L)$.

Definitions

Definition: Specialization order

The relation

$$x \le y \Longleftrightarrow x \in \overline{\{y\}}$$

is called the specialization order.

Definition: Ω -functor

We denote by $\Omega: TOP \to POSET$ the functor which associates with a space X the poset $\Omega X = (X, \leq)$, where \leq is the specialization order, and with $\Omega f = f$.

Definition: Injective spaces

A T_0 -space Z is called *injective* iff every continuous map $f: X \to Z$ extends continuously to any space Y containing X as a subspace.

Category: INJ

The category INJ is the full subcategory of TOP consisting of injective spaces and all continuous maps.

, MCEKE

Injective spaces

Theorem

- (i) If L is a continuous lattice, then $\Sigma L = (L, \sigma(L))$ is an injective space and $\Omega \Sigma L = L$.
- (ii) If X is an injective T_0 -space, then $\Omega X = (X, \leq)$ is a continuous lattice (with respect to the specialization order) and $\Sigma \Omega X = X$.

- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, Cambridge (2003).
- E. Colebunders, *Topologie*, Vrije Universiteit Brussel, 2012.
- K. Martin, A Foundation for Computation, PhD thesis, Tulane University, Department of Math, July 2000
- J.Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, Cambridge University Press, 2013.
- S. Abramsky, Dov M. Gabbay, T. S. E. Maibaum, Handbook for Logic in Computer Science, Clarendon Press Oxford, 1994.

