EN-2416 Energia e meio ambiente e sociedade

Efeito estufa e destruição da camada de ozônio

Prof. Dr. João Manoel Losada Moreira Universidade Federal do ABC

Baseado nos livros:

- Global warming, J. Houghton, Cambridge Univ. Press, 2009
- Energia e meio ambiente, R. A. Hinrichs e M. Kleinbach, Ed. Thomson, 2004

Planeta laboratório

- O planeta Terra pode ser considerado um grande laboratório onde ocorrem fenômenos que alteram o clima.
- As perturbações que ocorrem podem ser irreversíveis.
- Evidências indicam que as emissões de CO₂ dos combustíveis fósseis podem alterar o clima do planeta.
 - Áreas agrícolas podem virar desertos.
 - Regiões costeiras podem ser inundadas
 - Florida e Bangladesh podem ser inundadas e provocar migrações de milhões de pessoas.

IPCC - ONU

- IPCC (International Panel on Climate Change) registra que há nítida influência humana sobre o clima na atualidade por meio dos gases do efeito estufa.
- IPCC foi criado em 1988 pela Organização Meteorológica Mundial e pelo Programa da ONU para o Meio Ambiente.
 - É formado por cientistas de várias áreas de conhecimento de todo o mundo.
- Protocolo de Kioto.

Emissões de CO₂ ao longo do tempo

Efeito estufa

- A radiação emitida pela Terra na faixa do infravermelho é absorvida pelo CO₂, vapor d'água e outros compostos presentes na atmosfera.
- Estas substâncias absorvem a radiação nestes comprimentos de onda:

$$7 \, \mu \text{m} < \lambda < 12 \, \mu \text{m}$$

- A temperatura da Terra permanece constante devido a irradiação da Terra para o espaço.
- O aumento da concentração de CO₂ na atmosfera absorve parte desta irradiação, que se transforma em calor, e promove o aquecimento do planeta.

Gases do efeito estufa

- Poder de aquecimento global PAG
 - Os gases contribuem de forma diferente para o aquecimento global.
 - Define-se como PAG a razão entre a absorção que um dado faz da radiação solar e aquela feita pelo CO₂.
- Gases do efeito estufa e o PAG
 - CO2 PAG = 1
 - CH4 PAG = 21-23
 - N2O 310
 - Clorofluorcarbonos, CFC PAG = 1300-12000

Ciclo do carbono na Terra

Emissões: plantas, combustíveis fósseis, etc

Remoção: absorção pelas plantas e oceanos

Balanço de carbono na Terra, atmosfera e oceanos

- \circ Massa de ar na atmosfera $\sim 2,17 \times 10^{18} \text{ kg}$
- Estoque de carbono na atmosfera ~7,6x10¹⁴ kg
- Concentração de C na atmosfera =

$$= \frac{7,6x10^{14} \text{ kg}}{2,17x10^{18} \text{ kg}} = 350x10^{-6} \text{ ou } 350 \text{ ppm}$$

- Emissão de combustíveis fósseis e produção de cimento: ~ (6,3+0,6)x10¹² kg/ano
- Troca de carbono entre Terra e atmosfera (fotossíntese, respiração, incêndios): ~6x10¹³ kg/ano
- Troca de carbono entre oceanos e atmosfera (fotossíntese e respiração):~9x10¹³ kg/ano

Fluxos de calor (energia) entre o espaço, atmosfera e superfície da Terra

Aquecimento global da superfície terrestre

Evidências do aquecimento global

- Diminuição das geleiras fora das áreas polares
- Diminuição das áreas cobertas de neve na Europa
- Ocorrência de primaveras e invernos tardios nas áreas de latitude elevada no hemisfério norte
- Migração de pássaros

Consequências do aquecimento global

- Aumento das temperaturas globais diminuição em alguns locais devido a efeitos de realimentação
 - Derretimento das geleiras e dilatação da água dos oceanos fará com que o nível do mar se eleve de 0,3 a 7 m.
 - Pode cobrir de água vários portos do mundo.
 - Esfriamento da região européia.
- Mudanças nos regimes de precipitação sobre o planeta.
 - Afeta a agricultura mundial
- Aquecimento do continente africano
 - Afeta sua agricultura (fortemente dependente das estações chuvosas – sem irrigação, correção do solo, etc.)
 - Maiores dificuldades para as populações que vivem em estado de baixo desenvolvimento humano
 - Favorece a degradação ambiental.

Impacto ambiental

Consequências no Brasil sobre o plantio de soja devido ao aquecimento de 3 °C

Evolução dos modelos climáticos e meteorológicos

- Os modelos exigem a solução de equações de conservação de massa (evaporação), energia e momento (vento)
- Variações espaciais e temporais
 - exigem grande capacidade computacional

Pouco detalhado espacialmente

Mais detalhado espacialmente devido avanço dos computadores

Modelo simplificado de mudanças climáticas

O modelo tem vários elementos:

- Troca de energia e massa entre atmosfera, superfície da Terra e espaço
- Balanço de fluxo de calor na atmosfera e na superfície da Terra
- Estimativa da evolução da concentração de CO₂ na atmosfera
- Relação entre concentração de CO₂ e amento no fluxo de calor emitido para a superfície da Terra

Temperatura na atmosfera em função da altura

Emissão de terrestre ou solar aproximada por um corpo negro

- Emissões estimadas por meio do modelo do corpo negro
- $o q = \sigma T^4 em Wm^{-2}$
- o onde $\sigma = 5,67x10^{-8} \text{ Wm}^{-2}\text{K}^{-4}$ (constante de Stefan-Boltzmann) e T é a temperatura em K
- Temperaturas do Sol e da Terra e respectivas emissões
- \circ Sol: T = 5800 K, q_{Sol} = 6,42x107 Wm⁻²
- O Terra: $T = (14.5 + 273.2) = 287.7 \text{ K}, q_{Terra} = 384 \text{ Wm}^{-2}$
- Fluxo solar na parte externa da atmosfera:

$$q = q_{Sol} \frac{4\pi r^2}{4\pi d^2} = 6.42x10^7 \frac{4\pi 6.9x10^8}{4\pi 1.5x10^{11}} = 1379 Wm^{-2}$$

Onde r é o raio do sol e d é a distância Sol - Terra em m

Trocas de energia e massa na atmosfera com o espaço e a superfície da Terra

Balanço de fluxo de calor na atmosfera e na superfície da Terra

Regime permanente

q_{abs} = radiação emitida pela Terra absorvida na atmosfera

Atmosfera: $q_a + q_f + q_g + q_c = q_e + q_d$

Superfície da Terra: $q_h + q_d = q_f + q_g + q_i$

Efeito da adição de CO₂ na atmosfera

- O aumento da concentração de CO₂ na atmosfera aumenta a absorção de radiação emitida pela Terra na atmosfera
- A atmosfera é aquecida e emite mais radiação de volta à Terra
- Eventualmente alcança-se novo equilíbrio com mais emissão da atmosfera para a Terra e da Terra para a atmosfera
- Consequentemente, as temperaturas ficam mais elevadas

Modelo simples de acumulação de CO₂ na atmosfera

- Seja C(t) a concentração de CO₂ na atmosfera no instante t
- o λ probabilidade por unidade de tempo de absorção de CO_2 da atmosfera pelos mares, florestas, solo, etc.
- Assuma que o comportamento de C(t) possa ser aproximado por

$$\frac{dC(t)}{dt} = R(t) - \lambda C(t)$$

onde R(t) é a taxa de liberação de CO₂ na atmosfera expressa em [ppm/dia].

Dados do modelo de acumulação de CO₂ na atmosfera

- $\circ \lambda = 0.01 \text{ ano}^{-1}$,
- Isto é, demora cerca de 70 anos para que a concentração de CO₂ decaia pela metade na atmosfera
- \circ C(2000) = 350 ppm
- \circ R(t) = 4,5 ppm/dia

Relação entre CO₂ e absorção de radiação emitida pela Terra na atmosfera

 O aumento da concentração de CO₂ na atmosfera aumenta a absorção de radiação emitida pela Terra na atmosfera

$$q_{abs} = \alpha \ C$$

$$onde \ \alpha = 0.413 \ Wm^{-2} \ ppm^{-1}$$

A emissão absorvida pela atmosfera é correlacionada com a concentração de CO₂. O coeficiente α é determinado a partir das condições de emissão na atmosfera e a concentração de CO₂.

Exemplo de estimativa de aquecimento global

- Dois estados perturbação
 - Estado 0 concentração $C_0 = 375 \text{ ppm}$, $T_0 = 287,7 \text{ K}$, $q_{abs0} = 155 \text{ Wm}^{-2} \text{ e } q_{i0} = 390 \text{ Wm}^{-2}$
 - Estado 1 Concentração $C_1 = 400 \text{ ppm e } q_{abs1} = 165 \text{ Wm}^{-2}$
- Considera-se que somente aumenta a absorção de radiação na atmosfera e as outras absorções fiquem inalteradas. Então na atmosfera temos:

Estado 0:
$$q_{a0} + q_{f0} + q_{g0} + q_{abs0} = q_{d0}$$

Estado 1:
$$q_{a0} + q_{f0} + q_{g0} + q_{abs1} = q_{d1}$$

Fazendo a diferença das duas equações temos

$$q_{abs1} - q_{abs0} = q_{d1} - q_{d0}$$
 ou $\Delta q_d = \Delta q_{abs} = 10 \text{ Wm}^{-2}$

Estimativa do aquecimento da Terra

- O fluxo de radiação da atmosfera para a Terra é considerado totalmente absorvido pela Terra.
- Dois estados na superfície da Terra. Considera-se qu somente q_d é alterado.
 - Estado 0: $q_{h0} + q_{d0} = q_{f0} + q_{g0} + q_{j0}$
 - Estado 1: $q_{h0} + q_{d1} = q_{f0} + q_{g0} + q_{j1}$
- Fazendo a diferença das duas equações obtemos:

$$\begin{split} q_{j1} - q_{j0} &= q_{d1} - q_{d0} \quad \text{ou} \quad \Delta q_j = \Delta q_d = \Delta q_{abs} \\ q_{j1} &= q_{j0} + \Delta q_{abs} \quad \text{ou} \quad q_{j1} = 400 \ Wm^{-2} \end{split}$$

Então
$$T_1^4 = \frac{q_{j1}}{\sigma}$$
 ou $T_1 = 289,8$ K ou $\Delta T = 2,1$ K

Incertezas nas estimativas de aquecimento global

- Modelos matemáticos
 - Simplificações para representar processos muito complexos de várias variáveis
- Interação entre oceano, terra, ar, radiação solar, etc
- Realimentação (feedback) dos fenômenos ainda não entendidas
- Dilema causado pela incerteza (debate internacional)
 - Não fazer nada já que o aquecimento pode não ocorrer!
 - Fazer algo já que o aquecimento pode ocorrer!

Mecanismos de realimentação (feedback)

Causam incertezas sobre os impactos no clima

Emissões de carbono considerando efeitos de feedback

Sem feedback

Com feedback aumenta a variação dos resultados

Mitigação da emissão de carbono

- Impostos sobre a emissão de C
 - Taxação proporcional a intensidade de emissão
- Redução do uso de energias fósseis
- Maior uso de fontes alternativas (solar, eólica, biomassa etc)
- Maior conservação de energia
- Substituição de usinas a carvão por outras menos emissoras
 - Gás natural que emite menos
- Maior uso de energia nuclear

Sequestro de carbono

- Capturar o carbono na fonte emissora e direcioná-los para drenos não atmosféricos.
 - Absorção do CO2 diretamente da corrente de gases pelo contato com um solvente.
 - Injeção dos gases em velhos poços de petróleo.
 - Bombeamento do CO2 diretamente no oceano para que este seja absorvido por sedimentos em suspensão.
 - Direcionamento mais eficientes para ecossistemas terrestres como florestas, etc.
 - Injeção de carbono em reservas de sal no fundo do mar.
- Há muitas propostas e pesquisa nesta área.

Destruição da camada de ozônio

Destruição da camada de ozônio

- Existe ozônio em duas regiões da atmosfera:
 - Baixa troposfera e superfície da Terra
 - Estratosfera (entre 10 e 50 km de altitude)
- Em cada região o problema do O₃ é distinto:
 - Superfície da Terra poluição
 - Estratosfera destruição da camada de O₃
- Não está ligado ao problema do aquecimento global, mas é outro problema ambiental global causado pela ação humana.

Ozônio na estratosfera

- Concentração em torno de 300 ppb (partes por bilhão).
- Função do $_{\rm O3}$ é absorver a radiação solar ultravioleta que é danosa à saúde dos seres vivos.
- Observa-se redução de O₃ de até 9 % em regiões de latitude mais elevada
- Consequências da redução de O₃ e aumento da incidência de radiação UV:
 - Maior incidência de cancer de pele causado pela radiação ultravioleta
 - Redução da capacidade imunológica
 - Danos às colheitas
 - Destruição dos elos iniciais da cadeia alimentar marinha
 - Diminui a capacidade de fotossíntese dos fitoplanctons (vegetais unicelulares) que são alimentos para peixes.

Redução da camada de ozônio na Antártida

Formação da camada de O3 na estratosfera

- Na atmosfera, a radiação
 UV destrói moléculas de O₂
 liberando átomos livres de O.
- Os átomos livres de O reagem com moléculas de O₂ formando moléculas de O₃
- Na atmosfera há um equilíbrio entre O₃, O₂ e O.

Mecanismo de destruição Ozônio na estratosfera

- O mecanismo ainda não está plenamente conhecido.
- O CFC sobe até a estratosfera.
- Reage com radiação UV e libera um átomo de Cl.
- O cloro livre tem uma reatividade elevada com O₃ e perturba o equilíbrio existente.

Mecanismo da destruição da camada de ozônio

- O átomo de cloro livre reage com o O₃ formando O₂ de ClO.
- O oxigênio livre na estratosfera reage com o ClO liberando o átomo de Cl.
- O átomo de cloro livre ataca outra molécula de O₃ e reinicia o processo.
- As reações precisam de escuridão e baixa temperatura (sobre os polos).
- Um átomo de cloro livre pode destruir até 10000 moléculas de O₃.

Produtos químicos que contribuem para a destruição da camada de ozônio

Produto Químico	Emissões em 1985 (mil toneladas)	Vida Média na Atmosfera* (anos)	Aplicações	Taxa de Crescimento Anual (%)	Contribuição Percentual para a Destruição do Ozônio
CFC-11	238	76	Espumas, aerossóis, refrigeração	5	26
CFC-12	412	139	Ar condicionado, refrigeração, espumas, aerossóis	5	45
HCFC-22	72	22	Refrigeração, espumas	11	0
CFC-113	138	92	Solventes	10	12
Halon 1211	3	12	Extintores de incêndio	23	1
Halon 1301	3	101	Extintores de — incêndio	-	4
Tricloroetano	474	8	Solventes	75	5
Tetracloreto de Carbono	66	67	Solventes	1	8

^{*}Tempo necessário para que 63% da concentração do produto químico seja eliminada pela atmosfera. (World Watch Institute [www.worldwatch.org], State of the World, 1989)

Usos do CFC nos produtos e serviços industriais

Proteção da camada de ozônio

- Em 1978 o uso de CFC foi banido nos EUA.
- Em 1985, cientistas observaram uma redução na concentração de ozônio na estratosfera sobre a Antártida.
 - A concentração caía para 50 % durante a primavera.
 - Denominados buracos na camada de ozônio.
- Tal também foi observado na região ártica.
- Protocolo de Montreal em 1987
 - Congelamento da produção de CFCs aos níveis de 1986
 - Redução da produção a 50 % até 1999
 - Completo banimento nos países desenvolvidos de CFC a partir de 2000.
 - Países em desenvolvimento podem ainda utilizar (prazo mais longo para banimento).

Fim