# Network Flow Extensions and Applications

### Multiple Sources / Multiple Sinks

### Computing Maximum Flow

- Given a graph with multiple sources and multiple sinks, how to compute maximum flow
  - Ford-Fulkerson assumes single source / sink and looks for s-t paths in the residual graph



### Finding a Min-Cut

- Use Ford-Fulkerson algorithm to determine the max-flow
- Do BFS / DFS on residual graph to determine the set of reachable nodes



Disjoint path problem. Given a directed graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.



Disjoint path problem. Given a directed graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.



Max flow formulation: assign unit capacity to every edge.



Theorem. Max number edge-disjoint s-t paths equals max flow value.

Pf. ≤

- Suppose there are k edge-disjoint paths  $P_1, \ldots, P_k$ .
- Set f(e) = 1 if e participates in some path  $P_i$ ; else set f(e) = 0.
- Since paths are edge-disjoint, f is a flow of value k.

Max flow formulation: assign unit capacity to every edge.



Theorem. Max number edge-disjoint s-t paths equals max flow value.

Pf. ≥

- Suppose max flow value is k.
- Integrality theorem  $\Rightarrow$  there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
  - by conservation, there exists an edge (u, v) with f(u, v) = 1
  - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles to get simple paths if desired

### Network Connectivity

Network connectivity. Given a directed graph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges  $F \subseteq E$  disconnects t from s if all s-t paths use at least one edge in F.



# Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

#### Pf. ≤

- Suppose the removal of  $F \subseteq E$  disconnects t from s, and |F| = k.
- All s-t paths use at least one edge of F. Hence, the number of edgedisjoint paths is at most k.



### Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

#### Pf. ≥

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut  $\Rightarrow$  cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s. ■



### Bipartite Matching

### Bipartite matching.

- Input: undirected, bipartite graph  $G = (L \cup R, E)$ .
- $M \subseteq E$  is a matching if each node appears in at most 1 edge in M.
- Max matching: find a max cardinality matching.



### Bipartite Matching

### Bipartite matching.

- Input: undirected, bipartite graph  $G = (L \cup R, E)$ .
- $M \subseteq E$  is a matching if each node appears in at most 1 edge in M.
- Max matching: find a max cardinality matching.



### Bipartite Matching

#### Max flow formulation.

- Create directed graph  $G' = (L \cup R \cup \{s, t\}, E')$ .
- Direct all edges from L to R, and assign unit capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.



## Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf.  $\leq$ 

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has cardinality k.



G

### Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf.  $\geq$ 

- Let f be a max flow in G' of value k.
- Integrality theorem  $\Rightarrow$  k is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
  - each node in L and R participates in at most one edge in M
  - |M| = k: consider cut  $(L \cup s, R \cup t)$



### Perfect Matching

Def. A matching  $M \subseteq E$  is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|.
- What other conditions are necessary?
- What conditions are sufficient?

### Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. A bipartite graph  $G = (L \cup R, E)$ , has a perfect matching iff  $|N(S)| \ge |S|$  for all subsets  $S \subseteq L$ .

