Rajalakshmi Engineering College

Name: Jaidev Arunachalam

Email: 241801099@rajalakshmi.edu.in

Roll no: 241801099 Phone: 9940254113

Branch: REC

Department: I AI & DS FB

Batch: 2028

Degree: B.E - AI & DS

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
 Input: 3
 5 10 15
Output: 15 10 5
The minimum value in the BST is: 5
 Answer
 #include <stdio.h>
 #include <stdlib.h>
 struct Node {
   int data:
   struct Node* left;
   struct Node* right;
struct Node* createNode(int data) {
   struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
   newNode->left = newNode->right = NULL;
   return newNode;
}
 // Function to insert data into the BST
struct Node* insert(struct Node* root, int data) {
   if (root == NULL) {
     return createNode(data);
   if (data < root->data) {
```

```
241801099
      root->left = insert(root->left, data);
} else {
       root->right = insert(root->right, data);
     return root;
   // Function to display tree in post-order traversal
  void displayTreePostOrder(struct Node* root) {
     if (root == NULL) {
       return;
     displayTreePostOrder(root->left);
     displayTreePostOrder(root->right);
     printf("%d ", root->data);
   // Function to find the minimum value in BST
   int findMinValue(struct Node* root) {
     struct Node* current = root;
     while (current && current->left != NULL) {
       current = current->left;
     }
     return current->data;
  int main() {
     struct Node* root = NULL;
     int n. data:
     scanf("%d", &n);
     for (int i = 0; i < n; i++) {
       scanf("%d", &data);
       root = insert(root, data);
     }
     displayTreePostOrder(root);
     printf("\n");
  int minValue = findMinValue(root);
     printf("The minimum value in the BST is: %d", minValue);
```

241801099

##1801099

##1801099

##1801099

24,180,1099

24/80/1099

Marks: 10/10

24,180,1099

24,180,1099

24,180,100,0

24,180,100,0

24,180,1090

24,180,1099

241801099

241801099

241801099

241801099