Local Variable Selection and Parameter Estimation of Spatially Varying Coefficient Regression Models

Wesley Brooks

1. Simulation

Results from the simulation were summarized at five locations on the simulated grid (see Figure 2). The five key locations were chosen because they represent interesting regions of the β_1 coefficient surfaces. The results of variable selection and coefficient estimation are presented in the tables below.

- 1.1. Tables
- 1.1.1. Selection
- 1.1.2. Estimation

Preprint August 30, 2013

Figure 1: The actual β_1 coefficient surface used in the simulation.

Figure 2: Locations where the variable selection and coefficient estimation of GWL were summarized.

Setting	function	ρ	σ^2
1	step	0	0.25
2	step	0	1
3	step	0.5	0.25
4	step	0.5	1
5	gradient	0	0.25
6	gradient	0	1
7	gradient	0.5	0.25
8	gradient	0.5	1
9	parabola	0	0.25
10	parabola	0	1
11	parabola	0.5	0.25
12	parabola	0.5	1

Table 1: Simulation parameters for each setting.

	step				gradient				parabola			
	e	enet	gl	mnet	e	enet		glmnet		enet		.mnet
location	β_1	β_2 - β_5	β_1	eta_2 - eta_5								
1	0.80	0.02	0.80	0.02	0.77	0.05	0.74	0.04	0.00	0.00	0.00	0.00
1	0.80	0.04	0.80	0.04	0.69	0.07	0.69	0.07	0.03	0.01	0.03	0.01
2	0.97	0.00	0.98	0.00	0.80	0.01	0.80	0.00	0.51	0.01	0.49	0.01
4	0.96	0.01	0.96	0.01	0.63	0.04	0.64	0.03	0.46	0.01	0.46	0.01
3	0.31	0.00	0.32	0.00	0.43	0.01	0.50	0.02	0.69	0.01	0.69	0.00
9	0.36	0.02	0.36	0.02	0.35	0.04	0.36	0.04	0.53	0.03	0.54	0.03
4	0.00	0.00	0.00	0.00	0.24	0.01	0.26	0.01	0.56	0.00	0.59	0.00
4	0.07	0.01	0.07	0.01	0.23	0.01	0.35	0.01	0.51	0.03	0.51	0.03
5	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
9	0.03	0.01	0.03	0.01	0.02	0.03	0.04	0.03	0.03	0.03	0.02	0.03

Table 2: Selection frequency for the simulation experiment

function	location	enet	glmnet	u.enet	u.glmnet	oracular	gwr
	1	0.241	0.239	0.520	0.520	0.514	0.020
	1	0.289	0.287	0.781	0.780	0.899	0.047
	2	0.062	0.054	0.048	0.040	0.030	0.027
	2	0.080	0.078	0.064	0.064	0.049	0.031
ston	3	0.122	0.121	0.125	0.124	0.026	0.008
step	J	0.126	0.126	0.135	0.135	0.063	0.017
	4	0.005	0.005	0.005	0.005	0.037	0.026
	4	0.015	0.015	0.018	0.018	0.075	0.035
	5	0.002	0.002	0.007	0.007	0.000	0.026
	Э	0.008	0.008	0.033	0.033	0.000	0.056
	1	0.317	0.321	0.599	0.573	0.291	0.051
	1	0.376	0.360	0.550	0.558	0.615	0.072
	2	0.319	0.277	0.251	0.250	0.115	0.116
		0.438	0.396	0.383	0.365	0.153	0.154
oma diame	3	0.106	0.096	0.112	0.104	0.027	0.016
gradient		0.125	0.129	0.138	0.138	0.054	0.027
	4	0.038	0.056	0.058	0.074	0.138	0.132
		0.053	0.079	0.083	0.122	0.164	0.150
	5	0.000	0.000	0.000	0.000	0.000	0.041
		0.006	0.022	0.024	0.113	0.000	0.061
	1	1.000	1.000	1.000	1.000	1.373	0.751
		1.018	1.018	1.063	1.063	1.670	0.726
	2	0.179	0.184	0.173	0.180	0.035	0.026
	2	0.197	0.197	0.199	0.199	0.056	0.024
manah ala	3	0.077	0.077	0.083	0.082	0.018	0.007
parabola	3	0.127	0.125	0.144	0.142	0.047	0.012
	4	0.084	0.078	0.095	0.089	0.030	0.009
	4	0.111	0.112	0.129	0.129	0.062	0.017
	E	0.006	0.006	0.005	0.005	0.261	0.046
	5	0.011	0.008	0.029	0.027	0.538	0.079

Table 3: Mean squared error of $\hat{\beta_1}$ (minimum, $next\ best$).

function	location	enet	glmnet	u.enet	u.glmnet	oracular	gwr
	1	-0.221	-0.214	-0.052	-0.053	0.062	0.014
	1	-0.250	-0.242	-0.017	-0.016	0.139	0.024
	2	-0.129	-0.121	-0.063	-0.057	-0.033	-0.129
	2	-0.142	-0.137	-0.042	-0.042	0.001	-0.135
aton	3	-0.263	-0.257	-0.251	-0.247	-0.011	0.016
step	3	-0.231	-0.231	-0.193	-0.192	0.002	0.019
	4	-0.069	-0.069	-0.069	-0.069	0.083	0.132
	4	-0.038	-0.037	-0.034	-0.034	$\boldsymbol{0.024}$	0.130
	5	0.005	0.005	0.009	0.009	0.000	-0.013
	9	0.002	0.002	0.005	0.005	0.000	-0.018
	1	-0.334	-0.286	-0.148	-0.169	0.011	-0.054
	1	-0.414	-0.351	-0.135	-0.135	0.050	-0.054
	2	-0.514	-0.464	-0.420	-0.418	-0.317	-0.320
		-0.597	-0.545	-0.514	-0.494	-0.342	-0.364
gradient	3	-0.221	-0.166	-0.178	-0.131	0.061	0.066
gradient		-0.238	-0.212	-0.197	-0.184	0.033	0.051
	4	0.037	0.058	0.060	0.077	0.335	0.348
		0.049	0.108	0.079	0.151	0.329	0.353
	5	0.000	0.000	0.000	0.000	0.000	0.018
		0.009	0.019	0.015	0.042	0.000	0.066
	1	-1.000	-1.000	-1.000	-1.000	-1.066	-0.851
		-0.998	-0.998	-1.004	-1.004	-0.974	-0.823
	2	-0.331	-0.335	-0.298	-0.308	-0.105	-0.132
	4	-0.357	-0.354	-0.320	-0.320	-0.136	-0.128
parabola	3	-0.129	-0.128	-0.087	-0.086	0.041	0.031
parabola	J	-0.187	-0.181	-0.122	-0.115	0.042	0.027
	4	-0.137	-0.124	-0.092	-0.079	0.085	0.052
	4	-0.135	-0.136	-0.081	-0.082	0.067	0.048
	5	0.008	0.008	0.007	0.007	0.101	0.159
	Э	0.018	0.013	0.024	0.019	0.102	0.171

Table 4: Bias of $\hat{\beta}_1$ (**minimum**, next best).

function	location	enet	glmnet	u.enet	u.glmnet	oracular	gwr
	1	0.194	0.196	0.523	0.523	0.515	0.020
	1	0.229	0.231	0.788	0.788	0.889	0.046
	2	0.045	0.039	0.044	0.037	0.029	0.011
	2	0.060	0.060	0.063	0.063	0.049	0.013
aton	2	0.054	0.055	0.063	0.063	0.026	0.008
step	2	0.073	0.074	0.099	0.099	0.064	0.017
	2	0.000	0.000	0.000	0.000	0.030	0.009
	2	0.013	0.013	0.017	0.017	0.075	0.019
	2	0.002	0.002	0.007	0.007	0.000	0.027
	2	0.008	0.008	0.033	0.033	0.000	0.056
	1	0.207	0.242	0.583	0.550	0.294	0.049
	1	0.206	0.239	0.537	0.546	0.618	0.070
	2	0.055	0.062	0.076	0.076	0.015	0.014
		0.083	0.100	0.120	0.123	0.036	0.022
	3	0.058	0.069	0.081	0.087	0.023	0.012
gradient		0.069	0.084	0.100	0.105	0.053	0.025
	4	0.037	0.053	0.055	0.069	0.026	0.011
		0.051	0.068	0.078	0.101	0.056	0.026
	5	0.000	0.000	0.000	0.000	0.000	0.041
		0.006	0.022	0.024	0.112	0.000	0.057
	1	0.000	0.000	0.000	0.000	0.238	0.027
	1	0.022	0.022	0.055	0.055	0.729	0.050
	2	0.070	0.073	0.086	0.086	0.025	0.009
	2	0.071	0.072	0.098	0.098	0.037	0.008
n anab ala	3	0.061	0.061	0.076	0.076	0.017	0.006
parabola	3	0.093	0.093	0.130	0.130	0.045	0.011
	4	0.066	0.064	0.088	0.084	0.023	0.007
	4	0.094	0.094	0.123	0.124	0.058	0.015
	E	0.006	0.006	0.005	0.005	0.253	0.021
	5	0.011	0.008	0.029	0.026	0.533	0.050

Table 5: Variance of $\hat{\beta}_1$ (minimum, $next\ best$).

function	location	enet	glmnet	u.enet	u.glmnet	oracular	gwr
	1	0.108	0.108	0.108	0.108	0.101	0.223
	1	0.174	0.174	0.174	0.174	0.146	0.337
	2	0.340	0.341	0.340	0.341	0.291	0.462
	<i>Z</i>	0.564	0.565	0.564	0.565	0.498	0.776
aton	3	0.276	0.274	0.276	0.274	0.138	0.281
step	Э	0.459	0.458	0.459	0.458	0.333	0.492
	4	0.256	0.256	0.256	0.256	0.173	0.307
	4	0.664	0.665	0.664	0.665	0.518	0.722
	5	0.236	0.236	0.236	0.236	0.218	0.227
	9	0.344	0.344	0.344	0.344	0.358	0.382
	1	0.112	0.114	0.112	0.114	0.096	0.217
	1	0.278	0.267	0.278	0.267	0.320	0.558
	2	0.258	0.246	0.258	0.246	0.216	0.353
		0.379	0.386	0.379	0.386	0.413	0.570
gradient	3	0.247	0.203	0.247	0.203	0.181	0.292
gradient		0.455	0.435	0.455	0.435	0.414	0.574
	4	0.317	0.285	0.317	0.285	0.227	0.309
		0.490	0.419	0.490	0.419	0.369	0.532
	5	0.243	0.238	0.243	0.238	0.237	0.259
		0.327	0.305	0.327	0.305	0.414	0.424
	1	0.298	0.297	0.298	0.297	0.128	0.304
		0.365	0.365	0.365	0.365	0.189	0.435
	2	0.326	0.303	0.326	0.303	0.231	0.282
	2	0.606	0.606	0.606	0.606	0.560	0.822
n anabala	3	0.292	0.290	0.292	0.290	0.224	0.332
parabola	3	0.367	0.365	0.367	0.365	0.397	0.629
	4	0.238	0.243	0.238	0.243	0.196	0.295
	4	0.596	0.612	0.596	0.612	0.600	0.811
	E	0.219	0.216	0.219	0.216	0.100	0.306
	5	0.231	0.238	0.231	0.238	0.150	0.385

Table 6: Mean squared error of \hat{Y} (minimum, $next\ best$).