Advanced analytics per la gestione dei processi di distribuzione gas

Progetto a cura di Emanuela Elli

O1 INTRODUZIONE

Tirocinio Curriculare

Società di consulenza informatica focalizzata sul mercato **Energy & Utilities**.

Progetto finalizzato a raccogliere automaticamente specifiche informazioni nel settore della **finanza sostenibile**.

Contesto di ricerca

La **finanza sostenibile** è la pratica finanziaria che considera i fattori ESG, incarnando così il concetto di <u>sviluppo</u> sostenibile nell'ambito finanziario.

Gli investitori sono attenti alla reputazione delle aziende in cui investono: dimostrare impegno verso i criteri ESG <u>consolida la fiducia e la reputazione dell'azienda</u>.

Obiettivo

ESG reports

Raccolta ed analisi di **documenti ESG** pubblicati dalle aziende di interesse.

Obiettivo

ESG reports

Generative AI models

In particolare **Large Language Models** (LLM), algoritmi di Deep Learning che utilizzando enormi quantità di dati, di diversi formati, producono <u>output testuali</u> coerenti e significativi.

Obiettivo

ESG reports

Generative AI models

Benchmarking

Creare **misure di confronto** per valutare le prestazioni dell'azienda, rispetto ad entità simili o al mercato nel suo complesso.

02 IMPLEMENTAZIONE

DATA ACQUISITION

I report analizzati sono presenti sul sito **CDP** (Carbon Disclosure Project) ed acquisiti tramite **web scraping**, in conformità con le politiche della piattaforma.

Aziende considerate:

Italgas, Snam, Enagas, Naturgy Energy Group SA, A2A, ENEL SpA, Iren SpA, ACEA SpA, Korea Gas Corp, Nippon Gas Co Ltd, EDF, Hera.

Search and view past CDP responses

12.460 results

Name	Response	<u>Year</u> ∨	Status	Score
(ACIP) Alexandria Company for Industrial Packages	Climate Change 2023	2023	Submitted	Not Available
(Sichuan) Tiangi Lithium Corporation	Climate Change 2023	2023	Submitted	В
1&1 AG	Climate Change 2023	2023	Submitted	D
1000mercis SA (holding of Numberly)	Climate Change 2023	2023	Submitted	Not Available
16 POINTS CONSULTING LLC	Climate Change 2023	2023	Submitted	Not Available

Note: Not all companies requested to respond to CDP do so. Companies who are requested to disclose their data and fail to do so, or fail to provide sufficient information to CDP to be evaluated will receive an F. An F does not indicate a failure in environmental stewardship.

DATA PREPARATION

Viene costruito il set di dati contenente la lista di KPI da estrarre ed un **algoritmo di indicizzazione** per individuare le pagine corrispondenti al nome ed al contesto di ogni KPI richiesto.

MODEL & PROMPT

Vengono implementati e testati diversi modelli presenti nel panorama tecnologico.

Company	Modello	Numero di parametri	Context window	Dati di training
OpenAl	gpt-3.5-tur bo-0125	175 miliardi	16k	Multi-genere da fonti pubbliche (Common Crawl, libri, Wikipedia)
Databricks	dolly-v2-7b	7 miliardi	2k	Coppie domande e risposta dai dipendenti Databricks
Meta	llama-2-7b- chat-hf	7 miliardi	4k	Materiali pubblici (Common Crawl, Wikipedia, libri da Project Gutenberg)
Google	gemini	100 miliardi	1 milione	Dati multimodali e multilingue dal Web, libri e dati interni

PROMPT ENGINEERING

INSTRUCTION PROMPT

Per specificare il contesto di ricerca e fornire delle linee guida specifiche per il compito assegnato.

USER INPUT

Contiene le **istruzioni** per guidare il modello nell'estrazione del KPI considerato.

Viene incluso anche il **testo completo** delle pagine selezionate e il KPI di riferimento.

CHECK INPUT

Viene richiesto al modello di esaminare ulteriormente il testo e verificare la correttezza dell'output fornito

nella fase precedente.

POST PROCESSING

Correzione degli output in formato JSON, eliminando commenti verbali aggiuntivi, e trasformazione dei risultati in Dataframe.

DATA STORAGE

Salvataggio dei risultati in file CSV all'interno dell'ambiente Azure Blob Storage.

DATA COMPARISON

Creazione di un dataset "**ground truth**", contenente i valori veri presenti nei report. Dopodiché vengono uniti i risultati dei modelli per un confronto diretto.

- model_name: nome del modello LLM utilizzato (stringa);
- company_name: nome della compagnia a cui fa riferimento il report (stringa);
- year: anno di riferimento del report (integer);
- context: contesto del KPI analizzato (stringa);
- kpi_name: nome del KPI analizzato (stringa);
- value_model: valore estratto dal modello (float);
- value_gt: valore vero presente nel report (float);
 - in_report: indica se il KPI analizzato è presente
 nel report considerato (boolean);
- kpi_found: indica se il KPI analizzato è stato trovato dal modello (boolean);
- is_correct: indica se il valore estratto dal modello, value_model, coincide col valore reale, value_gt (boolean).

03 VALUTAZIONE

Considerazioni

GPT3.5

- + Stabilità e affidabilità.
 - Pochi commenti aggiuntivi, output non valido per valori nulli.

LLAMA

- Rigoroso nel fornire output idonei.
- Scarsa capacità di comprensione del testo.

DOLLY

 Instabilità, incapacità di strutturare l'output come JSON.

GEMINI

- Capacità nel comprendere il testo.
- Risposte troppo prolisse.

Concatenazione output (Gemini + LLAMA)

GEMINI

You have to print only the part of text that contain in the title the "context _name_example" and then the value of the string "kpi name example".

PORZIONE DI TESTO

LLAMA

Find in the input the value of the KPI contained in the list.

Store the found KPI names exactly as they appear in the input and their value in a dictionary JSON-like.

POST PROCESSING

DIZIONARIO JSON

KPI presenti nel report, estratti dal modello ma errati oppure allucinazioni del modello.

KPI presenti nel report, individuati dal modello e correttamente estratti.

0.				
†	KPI matrix	in_report	kpi_found	is_correct
	True Positive (TP)	TRUE	TRUE	TRUE
	False Positive (FP)	TRUE FALSE	TRUE TRUE	FALSE FALSE
,	True Negative (TN)	FALSE	FALSE	FALSE
	False Negative (FN)	TRUE	FALSE	FALSE

KPI non presenti nel report, non individuati dal modello.

KPI presenti nel report ma non individuati dal modello.

KPI matrix	in_report	kpi_found	is_correct
True Positive (TP)	TRUE	TRUE	TRUE
False Positive (FP)	TRUE FALSE	TRUE TRUE	FALSE FALSE
True Negative (TN)	FALSE	FALSE	FALSE
False Negative (FN)	TRUE	FALSE	FALSE

L'**accuracy** è la percentuale di predizioni corrette fatte dal modello rispetto al totale delle predizioni eseguite.

$$Accuracy = \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$

KPI matrix	in_report	kpi_found	is_correct
True Positive (TP)	TRUE	TRUE	TRUE
False Positive (FP)	TRUE FALSE	TRUE TRUE	FALSE FALSE
True Negative (TN)	FALSE	FALSE	FALSE
False Negative (FN)	TRUE	FALSE	FALSE

Precision indica la proporzione di predizioni positive correttamente identificate rispetto al totale delle predizioni positive fatte dal modello.

$$Accuracy = \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$

$$Precision = \frac{\text{TP}}{predicted\ true}$$

KPI matrix	in_report	kpi_found	is_correct
True Positive (TP)	TRUE	TRUE	TRUE
False Positive (FP)	TRUE FALSE	TRUE TRUE	FALSE FALSE
True Negative (TN)	FALSE	FALSE	FALSE
False Negative (FN)	TRUE	FALSE	FALSE

Recall (o **sensitivity**) indica la capacità del modello di identificare accuratamente i casi positivi rispetto al totale dei casi positivi.

$$Accuracy = \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$
 $Precision = \frac{\text{TP}}{predicted\ true}$
 $Recall = \frac{\text{TP}}{real\ true}$

KPI matrix	in_report	kpi_found	is_correct
True Positive (TP)	TRUE	TRUE	TRUE
False Positive (FP)	TRUE FALSE	TRUE TRUE	FALSE FALSE
True Negative (TN)	FALSE	FALSE	FALSE
False Negative (FN)	TRUE	FALSE	FALSE

Specificity (o **True Negative Rate**) indica la percentuale di predizioni negative correttamente identificate rispetto al totale delle predizioni negative.

$$Accuracy = \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$
 $Precision = \frac{\text{TP}}{predicted\ true}$
 $Recall = \frac{\text{TP}}{real\ true}$
 $Specificity = \frac{\text{TN}}{real\ false}$

KPI matrix	in_report	kpi_found	is_correct
True Positive (TP)	TRUE	TRUE	TRUE
False Positive (FP)	TRUE FALSE	TRUE TRUE	FALSE FALSE
True Negative (TN)	FALSE	FALSE	FALSE
False Negative (FN)	TRUE	FALSE	FALSE

F1 measure è la media armonica tra precision e recall. Utile per trovare un equilibrio tra le due metriche, offendo valutazione complessiva delle performance.

$$Accuracy = \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$

$$Precision = \frac{\text{TP}}{predicted true}$$

$$Recall = \frac{TP}{real \ true}$$

$$Specificity = \frac{TN}{real\ false}$$

$$F1 \ measure = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Accuracy

Precision

RecallSpecificity

Risultati

- **GPT3.5** è il più affidabile, con elevati valori di *accuracy*, *precision* e *recall*.
- La combinazione di **Gemini** e **LLAMA2** offre prestazioni bilanciate, migliorando sia la *recall* di **Gemini** che la *precision* di **LLAMA2**.
- Gemini e LLAMA2 offrono un equilibrio tra precision e recall, con LLAMA2 adatto per situazioni in cui la specificità non è cruciale.
- Dollyv2, eccelle nella recall identificando molti veri positivi a discapito di tanti falsi positivi.

F1 Measure per ogni modello

Grafico Precision e Recall

Spazio ROC puntiforme

04

CONCLUSIONE E SVILUPPI FUTURI

Conclusioni

- ☐ GPT3.5 risulta il più affidabile nell'individuare correttamente i casi positivi, necessita di migliorie per il controllo dei falsi positivi.
- Dolly ha una sensibilità elevata ma alti falsi positivi. Poco utilizzabile.
- Gemini e LLAMA, singolarmente offrono prestazioni moderate, con possibilità di miglioramento per sensibilità e falsi positivi.
- La concatenazione dei modelli sembra migliorare le criticità dei singoli, suggerendo che tale approccio possa portare a progressi significativi.

- → Standardizzare la procedura per favorire l'adattamento a ulteriori report e requisiti.
- → Utilizzare metodi di messa a punto come **fine-tuning** e **RAG**.
- → Merge di layer dei modelli (es. mergekit).

• • •

GRAZIE PER L'ATTENZIONE!

