Loss function landscape. Part 2

Theories of Deep Learning

Eugene Golikov

MIPT, spring 2019

Neural Networks and Deep Learning Lab., MIPT

Deep linear net:

$$\mathcal{L}_{net}(W) = \|Y - W_H W_{H-1} \dots W_1 X\|_F^2
ightarrow \min_W.$$

All local minima are global.

1

Deep linear net:

$$\mathcal{L}_{net}(W) = \|Y - W_H W_{H-1} \dots W_1 X\|_F^2
ightarrow \min_W.$$

All local minima are global.

However, there exist "bad saddles" with no negative values of the Hessian (Kawaguchi, 2016), e.g.:

$$\nabla \mathcal{L}_{net}(\mathbf{0}) = 0$$
 and $\nabla^2 \mathcal{L}_{net}(\mathbf{0}) = 0$ for $H \geq 3$.

1

Let
$$d_0 = d_1 = \ldots = d_H$$
;
Let $y = Rx + \xi$, where $\xi \sim \mathcal{N}(0, I)$.

Let's reparameterize our linear net as a ResNet:

$$\mathcal{L}_{\textit{resnet}}(W) = \mathbb{E}\|y - (I + W_H)(I + W_{H-1})\dots(I + W_1)x\|_2^2 \rightarrow \min_{W}.$$

¹https://arxiv.org/abs/1611.04231

Let
$$d_0 = d_1 = \ldots = d_H$$
;
Let $y = Rx + \xi$, where $\xi \sim \mathcal{N}(0, I)$.

Let's reparameterize our linear net as a ResNet:

$$\mathcal{L}_{resnet}(W) = \mathbb{E}\|y - (I + W_H)(I + W_{H-1})\dots(I + W_1)x\|_2^2 \to \min_{W}.$$

Theorem 1 (Hardt & Ma, 2016¹):

Any critical point of $\mathcal{L}_{resnet}(W)$ for which $\max_{k=1,...,H} \|W_k\| < 1$ is a global minimum.

¹https://arxiv.org/abs/1611.04231

Let
$$d_0 = d_1 = \ldots = d_H$$
;
Let $y = Rx + \xi$, where $\xi \sim \mathcal{N}(0, I)$.

Let's reparameterize our linear net as a ResNet:

$$\mathcal{L}_{resnet}(W) = \mathbb{E}\|y - (I + W_H)(I + W_{H-1})\dots(I + W_1)x\|_2^2 \to \min_{W}.$$

Theorem 1 (Hardt & Ma, 2016¹):

Any critical point of $\mathcal{L}_{resnet}(W)$ for which $\max_{k=1,...,H} \|W_k\| < 1$ is a global minimum.

Theorem 2 (Hardt & Ma, 2016):

There is a sequence $\{W^{(H)}\}_{H=1}^{\infty}$ of global minima with $\lim_{H\to\infty}\max_{k=1,...,H}\|W_k^{(H)}\|=0$.

¹https://arxiv.org/abs/1611.04231

The simplest non-linear net:

$$\hat{y}(x, w) = \sigma(w^T x);$$

$$\mathcal{L}(w) = \mathbb{E}_{x, y \sim \mathcal{D}}(y - \sigma(w^T x))^2.$$

²https://papers.nips.cc/paper/

 $^{{\}tt 1028-exponentially-many-local-minima-for-single-neurons}$

³https://arxiv.org/abs/1703.00560

The simplest non-linear net:

$$\hat{y}(x, w) = \sigma(w^T x);$$

$$\mathcal{L}(w) = \mathbb{E}_{x, y \sim \mathcal{D}}(y - \sigma(w^T x))^2.$$

Some known results:

• Auer et al. $(1995)^2$: if $\sigma(z) = (1 + \exp(-z))^{-1}$, then there exists a finite dataset, for which there are multiple local minima of \mathcal{L} ;

²https://papers.nips.cc/paper/

¹⁰²⁸⁻exponentially-many-local-minima-for-single-neurons

³https://arxiv.org/abs/1703.00560

The simplest non-linear net:

$$\hat{y}(x, w) = \sigma(w^T x);$$

$$\mathcal{L}(w) = \mathbb{E}_{x, y \sim \mathcal{D}}(y - \sigma(w^T x))^2.$$

- Auer et al. $(1995)^2$: if $\sigma(z) = (1 + \exp(-z))^{-1}$, then there exists a finite dataset, for which there are multiple local minima of \mathcal{L} ;
- Tian $(2017)^3$: if $\sigma(z) = [z]_+$, $x \sim \mathcal{N}(0, I)$, $y(x) = \sigma(w_*^T x)$, then $w = w_*$ is a unique minimum of $\mathcal{L}(w)$.

²https://papers.nips.cc/paper/

¹⁰²⁸⁻exponentially-many-local-minima-for-single-neurons

³https://arxiv.org/abs/1703.00560

A bit more complex non-linear net:

$$\mathcal{L}(W) = \mathbb{E}_{x,y \sim \mathcal{D}} \left(y - \sum_{k=1}^{K} \sigma(w_k^T x) \right)^2.$$

Consider
$$\sigma(z) = [z]_+$$
, $x \sim \mathcal{N}(0, I)$, $y(x) = \sum_{k=1}^K \sigma(w_{*,k}^T x)$;

⁴https://openreview.net/forum?id=B14uJzW0b

⁵https://arxiv.org/abs/1712.08968

A bit more complex non-linear net:

$$\mathcal{L}(W) = \mathbb{E}_{x,y \sim \mathcal{D}} \left(y - \sum_{k=1}^{K} \sigma(w_k^T x) \right)^2.$$

Some known results:

Consider
$$\sigma(z) = [z]_+$$
, $x \sim \mathcal{N}(0, I)$, $y(x) = \sum_{k=1}^K \sigma(w_{*,k}^T x)$;

• Tian (2017): for K = 1 $W = W_*$ is a unique minimum of $\mathcal{L}(W)$.

⁴https://openreview.net/forum?id=B14uJzW0b

⁵https://arxiv.org/abs/1712.08968

A bit more complex non-linear net:

$$\mathcal{L}(W) = \mathbb{E}_{x,y \sim \mathcal{D}} \left(y - \sum_{k=1}^{K} \sigma(w_k^T x) \right)^2.$$

Consider
$$\sigma(z) = [z]_+$$
, $x \sim \mathcal{N}(0, I)$, $y(x) = \sum_{k=1}^K \sigma(w_{*,k}^T x)$;

- Tian (2017): for K = 1 $W = W_*$ is a unique minimum of $\mathcal{L}(W)$.
- Wu et al. $(2018)^4$: for K=2, if $w_{*,1} \perp w_{*,2}$, $||w_{*,1}|| = ||w_{*,2}|| = 1$, $W=W_*$ is a unique minimum of $\mathcal{L}(W)$ of norm 1;

⁴https://openreview.net/forum?id=B14uJzW0b

⁵https://arxiv.org/abs/1712.08968

A bit more complex non-linear net:

$$\mathcal{L}(W) = \mathbb{E}_{x,y \sim \mathcal{D}} \left(y - \sum_{k=1}^{K} \sigma(w_k^T x) \right)^2.$$

Consider
$$\sigma(z) = [z]_+$$
, $x \sim \mathcal{N}(0, I)$, $y(x) = \sum_{k=1}^K \sigma(w_{*,k}^T x)$;

- Tian (2017): for K = 1 $W = W_*$ is a unique minimum of $\mathcal{L}(W)$.
- Wu et al. $(2018)^4$: for K=2, if $w_{*,1} \perp w_{*,2}$, $||w_{*,1}|| = ||w_{*,2}|| = 1$, $W=W_*$ is a unique minimum of $\mathcal{L}(W)$ of norm 1;
- Safran & Shamir (2017)⁵: for 6 ≤ K ≤ 20 there are multiple non-global minima of L.

⁴https://openreview.net/forum?id=B14uJzW0b

⁵https://arxiv.org/abs/1712.08968

A non-linear net with one hidden layer:

$$\mathcal{L}(W) = \|Y - W_2 \sigma(W_1 X)\|_F^2,$$

where $X \in \mathbb{R}^{d_0 \times m}$, $W_1 \in \mathbb{R}^{d_1 \times d_0}$, $W_2 \in \mathbb{R}^{d_2 \times d_1}$ and $Y \in \mathbb{R}^{d_2 \times m}$.

Theorem Yu & Chen (1995)⁶:

⁶https://ieeexplore.ieee.org/document/410380

A non-linear net with one hidden layer:

$$\mathcal{L}(W) = \|Y - W_2 \sigma(W_1 X)\|_F^2,$$

where $X \in \mathbb{R}^{d_0 \times m}$, $W_1 \in \mathbb{R}^{d_1 \times d_0}$, $W_2 \in \mathbb{R}^{d_2 \times d_1}$ and $Y \in \mathbb{R}^{d_2 \times m}$.

Theorem Yu & Chen (1995)⁶:

Suppose

- 1. $\sigma(z) = (1 + \exp(-z))^{-1}$,
- 2. all columns of X are distinct,
- 3. $d_1 = m$.

⁶https://ieeexplore.ieee.org/document/410380

A non-linear net with one hidden layer:

$$\mathcal{L}(W) = \|Y - W_2\sigma(W_1X)\|_F^2,$$

where $X \in \mathbb{R}^{d_0 \times m}$, $W_1 \in \mathbb{R}^{d_1 \times d_0}$, $W_2 \in \mathbb{R}^{d_2 \times d_1}$ and $Y \in \mathbb{R}^{d_2 \times m}$.

Theorem Yu & Chen (1995)6:

Suppose

- 1. $\sigma(z) = (1 + \exp(-z))^{-1}$,
- 2. all columns of X are distinct,
- 3. $d_1 = m$.

Then all local minima of \mathcal{L} are global.

 $^{^6 {\}rm https://ieeexplore.ieee.org/document/410380}$

Deep non-linear nets

A non-linear net with multiple hidden layers:

$$\mathcal{L}(W_{1:H}) = \|Y - W_H \sigma(W_{H-1} \dots \sigma(W_1 x) \dots)\|_F^2,$$

where $X \in \mathbb{R}^{d_0 \times m}$, $\forall k \ W_k \in \mathbb{R}^{d_k \times d_{k-1}}$ and $Y \in \mathbb{R}^{d_H \times m}$.

Theorem (Nguyen & Hein $(2017)^7$):

Suppose $\sigma(z) = (1 + \exp(-z))^{-1}$ and all columns of X are distinct.

⁷https://arxiv.org/abs/1704.08045

Deep non-linear nets

A non-linear net with multiple hidden layers:

$$\mathcal{L}(W_{1:H}) = \|Y - W_H \sigma(W_{H-1} \dots \sigma(W_1 x) \dots)\|_F^2,$$

where $X \in \mathbb{R}^{d_0 \times m}$, $\forall k \ W_k \in \mathbb{R}^{d_k \times d_{k-1}}$ and $Y \in \mathbb{R}^{d_H \times m}$.

Theorem (Nguyen & Hein (2017)⁷):

Suppose $\sigma(z) = (1 + \exp(-z))^{-1}$ and all columns of X are distinct. Let $W_{1:H}^*$ be a local minimum; if following conditions hold:

- 1. $\exists k: d_k \geq m, \forall l > k+1 \text{ rk } W_l = d_l,$
- 2. hessian of $\mathcal L$ wrt $W_{k+1:H}$ is non-degenerate at $W_{1:H}^*$,

⁷https://arxiv.org/abs/1704.08045

Deep non-linear nets

A non-linear net with multiple hidden layers:

$$\mathcal{L}(W_{1:H}) = \|Y - W_H \sigma(W_{H-1} \dots \sigma(W_1 x) \dots)\|_F^2,$$

where $X \in \mathbb{R}^{d_0 \times m}$, $\forall k \ W_k \in \mathbb{R}^{d_k \times d_{k-1}}$ and $Y \in \mathbb{R}^{d_H \times m}$.

Theorem (Nguyen & Hein $(2017)^7$):

Suppose $\sigma(z) = (1 + \exp(-z))^{-1}$ and all columns of X are distinct. Let $W_{1:H}^*$ be a local minimum; if following conditions hold:

- 1. $\exists k: d_k \geq m, \forall l > k+1 \quad \text{rk } W_l = d_l,$
- 2. hessian of \mathcal{L} wrt $W_{k+1:H}$ is non-degenerate at $W_{1:H}^*$,

then $W_{1:H}^*$ is a global minimum.

⁷https://arxiv.org/abs/1704.08045