姓名 学院 专业 年级 学号 共3页 第1页

2020~2021 学年第一学期期末考试试卷

《高等数学 2A》(A 卷, 共 3 页) 参考答案

(考试时间: 2020年12月25日,14:00-16:00)

题号	_	=	=	四	五	六	成绩	核分人签字
满分	15	15	6	35	24	5	100	
得分								

一、选择题(共15分,每小题3分)

- 1. 下列反常积分发散的是(C

- (A) $\int_0^{+\infty} \frac{1}{x^2 + 1} dx$ (B) $\int_1^{+\infty} \frac{\ln x}{x^2} dx$ (C) $\int_0^1 \frac{1}{x \sqrt{x^2 + 1}} dx$ (D) $\int_0^1 \frac{1}{\sqrt{1 x^2}} dx$
- 2. 微分方程 $y'' + 2y' + 5y = e^x \sin x$ 的特解 y^* 的形式是 (A).
- (A) $e^x [A \sin x + B \cos x]$
- (B) $(Ax+B)e^x \cos x$
- (C) $e^x [Ax \sin x + Bx \cos x]$ (D) $(Ax + B)e^x \sin x$
- 3. 曲线 $y = \sqrt{1-x^2} + \arccos x$ 与 x 轴, x = -1 所围图形的面积等于(B
- (A) $\frac{\pi}{2} + 2$ (B) $\int_{-1}^{1} \left(\sqrt{1 x^2} + \arccos x \right) dx$ (C) π (D) $2 \int_{0}^{1} \left(\sqrt{1 x^2} + \arccos x \right) dx$
- 4. 下列命题正确的是 (D).
- (A) 若在(a,b)内 f''(x) > 0, 则 f(x)在(a,b)内一定有极小值点
- (B) 若在(a,b)内 f''(x) > 0,则 f(x)在(a,b)内一定有极大值点
- (C) 若在 $(x_0 \delta, x_0)$ 上f''(x) > 0,在 $(x_0, x_0 + \delta)$ 上f''(x) < 0,则 $(x_0, f(x_0))$ 一定是 *f*(*x*)的拐点
- (D) 若 f(x) 在[a,b]上可微,则 f(x) 在[a,b]上一定取得最大值和最小值

- 5. 设 f(x) 和 g(x) 在 $(-\infty, +\infty)$ 上可导,且 f(x) < g(x),则必有(
- (A) $\lim_{t \to x} f(t) < \lim_{t \to x} g(t)$
- (B) f'(x) < g'(x)
- (C) f(-x) > g(-x) (D) $\int_0^x f(t) dt < \int_0^x g(t) dt$

二、填空题(共15分,每小题3分)

- 1. 函数 $y = 4\sqrt{x} \ln x$ 的凹区间是_____(0,1) 或 (0,1]_____.
- 3. $\lim_{n \to \infty} n \int_0^{\frac{1}{n}} e^{-x^2} dx = \underline{1}$.
- 4. 设函数 $f(x) = \left\{ \frac{1 \cos x}{3x^2 + 5x^3}, x > 0, (a > 0)$ 连续,则常数 $a = \underline{e^6}$ $\ln(a-x), x \leq 0$
- 5. $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \right) = \underline{2}$ (用数值作答).

三、计算题(共6分)

设f(x)在 $(-\infty, +\infty)$ 连续,满足 $\int_0^x (x-t) f(t) dt = e^x (x^2 - 2x) + 2x$,求f(x)的表达式.

解: 原方程等价于 $x \int_0^x f(t) dt - \int_0^x t f(t) dt = e^x (x^2 - 2x) + 2x$,

两边对 x 求导, 得: $\int_0^x f(t) dt + x f(x) - x f(x) = e^x (x^2 - 2) + 2,$

整理得: $\int_0^x f(t) dt = e^x (x^2 - 2) + 2$,

两边再对 x 求导,得: $f(x) = e^x(x^2 + 2x - 2)$.

专业

班

及 学·

姓名

共3页 第2页

四、计算题(共35分,每小题7分)

1. 设
$$\begin{cases} x = t^2 + 1, \\ y = \int_0^{\sin t} (1 + e^{u^2}) du \end{cases} (t > 0), \ \ \vec{x} \frac{dy}{dx}$$
 及曲线 $y = y(x)$ 在 $t = \pi$ 处的切线方程.

解:
$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t, \frac{\mathrm{d}y}{\mathrm{d}t} = \left(1 + \mathrm{e}^{\sin^2 t}\right) \cos t, \quad \text{則} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(1 + \mathrm{e}^{\sin^2 t}\right) \cos t}{2t}.$$

$$\stackrel{\text{def}}{=} t = \pi \text{ iff}, \quad x(\pi) = \pi^2 + 1, \quad y(\pi) = \int_0^{\sin \pi} \left(1 + e^{u^2} \right) du = 0, \quad \frac{dy}{dx} \bigg|_{t=\pi} = -\frac{1}{\pi},$$

则曲线 y = y(x) 在 $t = \pi$ 处的切线方程为 $y = -\frac{1}{\pi}(x - \pi^2 - 1)$.

2. 计算不定积分
$$\int \left(\frac{\sqrt{x}}{\sqrt{1-x}} + \frac{\sqrt{1-x}}{\sqrt{x}} \right) dx$$
.

解: 方法一
$$\int \left(\frac{\sqrt{x}}{\sqrt{1-x}} + \frac{\sqrt{1-x}}{\sqrt{x}}\right) dx = \int \frac{1}{\sqrt{x(1-x)}} dx$$
$$= \int \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 - \left(x - \frac{1}{2}\right)^2}} dx = \arcsin(2x - 1) + C.$$

3. 计算定积分
$$\int_{-1}^{1} \left[\frac{x}{1+x^6} + \ln(2-x) \right] dx$$
.

解:因为
$$\frac{x}{1+x^6}$$
是奇函数,所以 $\int_{-1}^{1} \frac{x}{1+x^6} dx = 0$.

$$\int_{-1}^{1} \left[\frac{x}{1+x^6} + \ln(2-x) \right] dx = \int_{-1}^{1} \ln(2-x) dx = x \ln(2-x) \Big|_{-1}^{1} - \int_{-1}^{1} \frac{x}{x-2} dx$$

$$= \ln 3 - \int_{-1}^{1} \frac{x - 2 + 2}{x - 2} dx = \ln 3 - \left(x + 2 \ln |x - 2| \right) \Big|_{-1}^{1} = 3 \ln 3 - 2.$$

4. 计算定积分
$$\int_0^{2\pi} x |\sin x| dx$$
.

$$\Re : \int_0^{2\pi} x |\sin x| dx = \int_0^{\pi} x \sin x dx - \int_{\pi}^{2\pi} x \sin x dx
= \left(-x \cos x \Big|_0^{\pi} + \int_0^{\pi} \cos x dx \right) - \left(-x \cos x \Big|_{\pi}^{2\pi} + \int_{\pi}^{2\pi} \cos x dx \right)
= 4\pi + \sin x \Big|_0^{\pi} - \sin x \Big|_{\pi}^{2\pi} = 4\pi.$$

5. 设函数
$$f(x)$$
 在[0,2]上可导,且满足 $f'(x)\int_0^2 f(x)dx = 8$, $f(0) = 0$, $f(2) = 4$, 求 $\int_0^2 f(x)dx$ 及 $f(x)$.

解: 令
$$A = \int_0^2 f(x) dx$$
, 则有 $Af'(x) = 8$, 即 $f'(x) = \frac{8}{A}$, 则

$$f(x) = f(x) - f(0) = \int_0^x f'(t) dt = \int_0^x \frac{8}{A} dt = \frac{8}{A}x,$$

由
$$f(2) = 4$$
, 得 $4 = \frac{16}{A}$, $A = 4$. 所以 $\int_0^2 f(x) dx = 4$, $f(x) = 2x$.

五、解答题(共24分,每小题8分)

- 1. 设函数 y(x) 是一阶微分方程 $y' + xy = e^{-\frac{1}{2}x^2}$ 满足 y(0) = 0 的特解.
- (1) 求 y(x); (2) 求 y(x) 的极值.

解: (1)由微分方程得
$$y(x) = e^{\int -x dx} \left(\int e^{-\frac{x^2}{2}} e^{\int x dx} dx + C \right)$$
,

于是
$$y(x) = e^{-\frac{x^2}{2}} \left(\int dx + C \right) = e^{-\frac{x^2}{2}} (x + C).$$

由
$$y(0) = 0$$
, 得 $C = 0$, 故 $y = xe^{-\frac{x^2}{2}}$.

(2)
$$y'(x) = e^{-\frac{x^2}{2}} + xe^{-\frac{x^2}{2}} \cdot (-x) = e^{-\frac{x^2}{2}} (1 - x^2),$$

令 y' = 0, 得驻点 x = -1 和 x = 1.

当
$$x \in (-\infty, -1)$$
及 $x \in (1, +\infty)$ 时 $y'(x) < 0$, 当 $x \in (-1, 1)$ 时 $y'(x) > 0$,

故 y(x) 在 x = -1 处取得极小值 $-e^{-\frac{1}{2}}$,在 x = 1 处取得极大值 $e^{-\frac{1}{2}}$.

2. 求二阶微分方程 y''-4y'=x 的通解.

解:特征方程为 $r^2 - 4r = 0$,解得特征根为 $r_1 = 0$, $r_2 = 4$,

则该方程对应齐次方程的通解为 $y = C_1 + C_2 e^{4x}$.

设该方程的特解为 $y^* = x(ax+b)$,

将 $y^* = x(ax+b)$ 代入微分方程得

$$2a-4(2ax+b)=x$$
, 求得 $a=-\frac{1}{8}$, $b=-\frac{1}{16}$,

故特解
$$y^* = -\frac{1}{16}(2x^2 + x)$$
.

于是微分方程的通解为 $y = C_1 + C_2 e^{4x} - \frac{1}{16} (2x^2 + x)$.

3. 设曲线L的方程为 $y = 2 + x^2$,将曲线L与它在点(1,3)处的法线、x轴和y轴所围成的图形记为D. 求D绕x轴旋转一周而得的旋转体体积.

解: 曲线 L 在点(1,3) 处切线的斜率为 $y'_{1-1} = 2x_{1-1} = 2$, 所以曲线 L 在点(1,3) 处的

法线方程为
$$y-3=-\frac{1}{2}(x-1)$$
, 即 $y=-\frac{1}{2}x+\frac{7}{2}$.

则所求旋转体体积

$$V = \pi \int_0^1 (2 + x^2)^2 dx + \pi \int_1^7 \left(\frac{7 - x}{2} \right)^2 dx$$
$$= \pi \left(4x + \frac{4}{3}x^3 + \frac{x^5}{5} \right) \Big|_0^1 + \frac{\pi}{12} (7 - x)^3 \Big|_1^7 = 4\frac{23}{15}\pi + 18\pi = 23\frac{8}{15}\pi.$$

六、证明题(本题5分)

设函数 f(x) 在[0,1]上连续. 证明: (1) 存在 $\xi \in (0,1)$, 使 $\int_0^{\xi} f(t) dt = (1-\xi) f(\xi)$; (2) 若 f(x) > 0, 且单调减少,则这种 ξ 是唯一的.

证明: (1) 设 $F(x) = (x-1) \int_0^x f(t) dt$, $F'(x) = \int_0^x f(t) dt + (x-1) f(x)$.

已知 f(x) 在[0,1]上连续,所以 F(x) 在[0,1]上可导. 又因为 F(0) = F(1) = 0.

由罗尔定理知,存在 $\xi \in (0,1)$,使 $F'(\xi) = 0$,即 $\int_0^{\xi} f(t) dt = (1-\xi)f(\xi)$.

且单调减少,得 $g(x_2) - g(x_1) = \int_{x_1}^{x_2} f(t) dt + \left[(1 - x_1) f(x_1) - (1 - x_2) f(x_2) \right] > 0$,

即 g(x) = F'(x) 在 (0,1) 内严格单调增加,故 (1) 中的 ξ 是唯一的.

方法二(反证法) 假设 (1)中的 ξ 不唯一. 不妨设存在 $\xi_1, \xi_2 \in (0,1), \xi_1 < \xi_2$,使得 $\int_0^{\xi_1} f(t) dt = (1 - \xi_1) f(\xi_1), \quad \int_0^{\xi_2} f(t) dt = (1 - \xi_2) f(\xi_2).$

则有 $\int_0^{\xi_2} f(t) dt - \int_0^{\xi_1} f(t) dt = \int_{\xi_1}^{\xi_2} f(t) dt = (1 - \xi_2) f(\xi_2) - (1 - \xi_1) f(\xi_1).$

因为 f(x) > 0, $\int_{\xi_1}^{\xi_2} f(t) dt > 0$, 而 f(x) 单调减少,则 $f(\xi_1) \ge f(\xi_2)$,于是 $(1-\xi_2)f(\xi_2) - (1-\xi_1)f(\xi_1) \le 0$. 二者矛盾,所以假设错误,故 (1)中的 ξ 是唯一的.