Topology

枫聆

2020年12月7日

目录

1	写在	最前面	1
2	Top	ology Space	1
	2.1	Definition of Topology Space	1
	2.2	Properties of Topology Space	5
	2.3	Potency of Set and countable set	8

写在最前面

拓扑对我来说是新名字,我对它几乎一无所知,虽然我嘴上总是吵吵着代数拓扑是我的终极目标(~o~)~zZ,终于今天抱着巨大的勇气翻开了包志强老师的《点集拓扑和代数拓扑引论》,被文中老师幽默的行文,深深折服了,似乎拓扑也并没有想象中那么难,我想这是还不错的开始,我的第一直观感受拓扑也是给定一堆对象,在上面用一些公理弄些不一样的结构,似乎和代数一样,但是我暂时还不知道这堆结构要拿来干什么?有什么有趣的性质?

好吧,前面的路还很长,路漫漫,不过一想到前路那些绮丽的景色,多少还是有些兴奋的!虽然这路上没有一起分享喜悦的人...

2020年11月29日23:12:17

Topology Space

Definition of Topology Space

预备知识

• 子集族是指 X 幂集的子集, 所有子集族构成的集合则是 $2^{(2^X)}$

拓扑定义的直觉来自于微积分中连续函数的" $\varepsilon - \delta$ "语言定义。

Definition 2.1. 如果函数 $f: \mathbb{R} \to \mathbb{R}$ 满足: 任取 $\varepsilon > 0$, 存在 $\delta > 0$ 使得 $|x - x_0| < \delta$, 对 $|f(x) - f(x_0)| < \varepsilon$ 成立。

这个定义需要 $|x-x_0|<\delta$ 和 $|f(x)-f(x_0)|<\varepsilon$ 这样的度量关系来定义,但是对于抽象的结构,不需要这样具体的度量关系,所以我们抽象的"邻域"来描述两点之前的具体,把所有接近 x_0 程度为 δ 的点记做 $B_\delta(x_0)$,这就是邻域的形式化表示,然后对于各种稀奇古怪的接近标准都可以用这个形式来表示。于是乎上面的连续定义可以稍微变一下了

Proposition 2.2. 如果函数 $f: \mathbb{R} \to \mathbb{R}$ 满足对任意的 $\varepsilon > 0$, 存在 $\delta > 0$ 有 $x \in B_{\delta}(x_0)$, 使得 $f(x) \in B_{\varepsilon}(f(x_0))$, 即 $B_{\delta}(x_0) \subseteq f^{-1}(B_{\varepsilon}(f(x_0)))$

完美的略掉了度量关系,在这里 $B_\delta(x_0)$ 表示 $\{x\in\mathbb{R}|\ |x-x_0|<\delta\}$,最后那个包含关系是指 $f(x_0)$ 的任何 ε 程度下的原像包含 x_0 的某个 δ 邻域.

是否我们可以通过上面这种定义邻域的方式去把度量空间变成一般拓扑空间呢? 当然是可以的,但是我们现在还没有给出邻域的一般定义。那邻域是什么? 在邻域之前,应该先理解基准开邻域结构 (base open neighborhood),像定义代数结构一样,基准开邻域结构是一个映射 (算子) $\mathcal{N}\colon X\to 2^{(2^X)}$,把每一个点 $x\in X$ 对应到一个子集族 $\mathcal{N}(x)$ 上,满足下面几条公理

- $\forall x \in X, \mathcal{N}(x) \neq \emptyset, \text{ } \exists \exists \forall U \in \mathcal{N}(x), x \in U$
- 若 $U, V \in \mathcal{N}(x)$, 则存在 $W \in \mathcal{N}(x)$, 使得 $W = U \cap V$
- 若 $y \in U \in \mathcal{N}(x)$, 则存在 $V \in \mathcal{N}(y)$, 使得 $V \subseteq U$

用文字来叙述就是

- 每一个 x 都一定有基准开邻域,并且是其任意基准开邻域的元素
- x 的任意两个基准开邻域的交是 x 的邻域
- 任意基准开邻域是其所含每个元素 y 的邻域

如果 $U \neq x$ 的一个邻域,则 U 包含了某个 x 基准开邻域,在这里其实我们又可以在基准开邻域的基础上,把邻域也公理化,需要加上一个公理,如果 $U \neq x$ 的一个领域,则 U 的任意超集也是 x 的一个邻域。

我们现在可以用邻域的公理来定义拓扑空间,用 \mathbf{N} 表示一个邻域拓扑,即 \mathbf{N} 表示一个所有非空的 $\mathbf{N}(x)$ 构成的邻域族,最后 (X,\mathbf{N}) 表示一个拓扑空间,这种构造方式是 Hausdorff 提出来的,但是一般地经常用开集的公理来定义领域。

用 (X,τ) 表示一个拓扑空间,其中 τ 表示X的一个子集族,并且满足下面公理:

- $\emptyset \in \tau, X \in \tau$
- τ 中任意两个元素的交集仍属于 τ
- τ 中任意多个元素的并集仍属于 τ

则称 τ 里面的元素为开集, τ 表示 X 上的一个拓扑结构

开集定义的拓扑空间看起来要比邻域定义,要稍微简洁那么一点,两个定义都是等价的,你可以用邻域的推到开集。在邻域上基础上我们定义如果 U 是 X 的一个子集,且 U 是每一个 $x \in U$ 的领域,则称 U 是一开集。基准开邻域的第三条公理告诉我们基准开邻域肯定是一个开集,然后我们给出一个命题

Proposition 2.3. 一个集合是开集当且仅当它是若干个基准开领域的并集

证明. 如果当一个集合是开集时,根据开集的定义,它里面每个元素都有一个邻域,而每个邻域至少包含一个基准开邻域,因此所有基准开邻域的并构成了这个开集。反之若干个基准开领域的并,还是一个基准开领域,前面说过基准开领域是一个开集。

注意、空集也是一族基准开领域的并、只不过这个集合族是空族。

这个命题证明以后,现在来看看我们用邻域定义得到的开集是否遵循开集的基本公理?很显然地,当并集是 基准开领域并的情况下,是满足上诉的开集公理的。回顾前面的定义,基准开邻域在这里起了不小作用,那为什 么不一开始使用基准开邻域来定义开集呢?而是使用邻域?下面引用一段包老师的话,写的真好!

基准开邻域结构(三条公理)和邻域结构(四条公理)都能刻画连续性。通常邻域结构很多,并不方便写出来,而基准邻域结构则是比较容易写出的,但它的缺点是:同一种连续性可以用不同的基准开邻域来描述。打个比方,邻域结构就是一个线性空间里面所有的向量,而基准开邻域相对于一个线性空间里面的基,所以很显然,在定义拓扑概念时,我们是希望从具有确定性的邻域结构出发去定义,等到具体计算的时候再用基准开邻域,而不是从基准开邻域结构出发去写一个表达式,用不那么确定的公式作为定义。当然邻域结构里面仍然包含很多冗余信息,因此我们最终选择另一套与之相互唯一确定的,更加简洁齐整的东西,把它称为拓扑结构(开集族)

当我们把一个拓扑空间当一个整体去研究的时候,用开集公理要比邻域的公理更加方便,领域公理似乎更强调"*x*点附近"会怎么样了?但是开集要更抽象一点,需要花些时间去理解,好吧我已经花了不少时间了!!!

Example 2.4. 集合 X 上的一个平凡拓扑为 $\{X,\emptyset\}$, 形象一点说就是"在 X 上无论怎么着都算充分接近",即取一个 X 作为 x 的基准开邻域,平凡拓扑是 X 上最小的拓扑结构。

Example 2.5. 集合 X 上的一个离散拓扑为 $\{X,2^X\}$, 形象一点说就是"在 X 上只有等于 x 才算是和 x 充分接近", 离散拓扑是 X 上最大的拓扑结构。暂时不理解为什么是等于,而不是包含,但是最大的子集族确实是 2^X

还有两个比较重要的拓扑结构

Example 2.6. 设 X 含有无穷多个元素,定义

$$\tau_f = \{ A \subseteq X \mid A = \emptyset$$
 或者 A^c 有限 $\}$

则 τ_f 是一个拓扑结构,称为 X 上的余有限拓扑 (cofinite topology)

Example 2.7. 设 X 含有不可数无穷多个元素,定义

$$\tau_c = \{ A \subseteq X \mid A = \emptyset \text{ 或者} A^c \text{ 可数} \}$$

则 τ_c 也是一个拓扑结构,称为 X 上的余可数拓扑 (cocountable topology)

Properties of Topology Space

一般的基本定义都会从开集出发,如何从开集出发去定义邻域呢?

Proposition 2.8. 一个子集 $A \in \mathcal{X}$ 的邻域当且仅当存在开集 U, 使得 $x \in U \subseteq A$.

证明. 只需要证明这样定义出来的邻域是满足上面那 4 条公理的就行,除了第三条其他的都比较显然,怎么证明第三条呢? U 是一个开集,U 自己包含自己,任意 $x \in U$,根据开集给出的邻域定义,U 是 x 的邻域,这样第三条我们也证明了,哈哈,包老师在这里的证明似乎循环论证了 lol

Definition 2.9. 如果 A 是 x 的邻域,则称 x 为 A 的**内点** (interior point). 全体内点构成的集合称为**内部** (interior point), 记做 A°

内点和内部的概念、需要建立在具体的拓扑结构上、取不同的拓扑结构会得到完全不同的结论。

Proposition 2.10. 集合的内部具有以下基本性质:

- $A^{\circ} = A$ 当且仅当 A 是开集;
- A° 是 A 包含的所有开集的并集, 也是 A 中最大的开集;
- $\not\exists A \subseteq B$, $\not\cup A^{\circ} \subseteq B^{\circ}$;
- $(A_1 \cap \ldots \cap A_n)^{\circ} = A_1^{\circ} \cap \ldots \cap A_n^{\circ};$
- $\left(\bigcup_{i\in n}A_i\right)^{\circ}\supseteq\bigcup_{i\in n}A_i^{\circ}$

证明. 1. 这个性质根据开集的定义很显然。

2. 如果 A 的子集是一个开集,这个子集很显然也是属于 A° ,所以 A 里面的所有开集含于 A° ,如何证明 A° 是一个开集呢? 任取 A° 中一点 x,A 是 x 的邻域,那么一定存在一个包含 x 的基准开邻域,我们最大基准 开邻域是一个并集,根据基准开邻域的定义,这个基准邻域肯定也是属于 A° ,所以 A° 是其每个点 x 的邻域,所以 A° 是一个开集,同时也证明了它是所有这样点 x 的基准开邻域的并。再来证明它是 A 内最大的

开集,假设如果它不是 A 内最大的开集,那么存在 A' 包含 A° ,但是呢 A' 是其所有点的邻域 (根据开集 定义),所有 A' 属于 A° ,这样产生了矛盾,所以 A° 是最大的开集。

- 3. 根据邻域的最后一条公理、邻域的超集还是邻域、所以 B 是 A° 中所有点的邻域、所以很自然的 $A^{\circ} \subseteq B^{\circ}$
- 4. 等式的左边表示,所有集合的交的内部,等式的右边表示,所有集合的内部的交,这里为什么等价呢? 这个关系用图来说是非常明显的,怎么用文字呢? 应该用数学归纳法来证明,我先证明对两个集合是成立的,首先利用第 2 个性质, $(A_1 \cap A_2)^\circ = U_1 \cup ... \cup U_n$,其中 $U_1, ..., U_n \in A_1 \cap A_2$,很显然它们也属于 A_1° 和 A_2° ,即 $(A_1 \cap A_2)^\circ \subseteq A_1^\circ \cap A_2^\circ$,反过来 $A_1^\circ \cap A_2^\circ$ 是一个开集,并且属于 $(A_1 \cap A_2)$,所以 $A_1^\circ \cap A_2^\circ \subseteq (A_1 \cap A_2)^\circ$,两边一夹所以, $(A_1 \cap A_2)^\circ = A_1^\circ \cap A_2^\circ$,再用一下数学归纳法,即可。
- 5. 这个也需要数学归纳法来证明,这里只证明两个集合的情况下, $A_1^\circ \cup A_2^\circ \subseteq (A_1 \cup A_2)^\circ$ 这还是显然的,用第三条性质就可以知道。但是反过来不一样成立, A_1 和 A_2 的"公共边界"上的点,完全有可能变成 $A_1 \cup A_2$ 内部的点。

Definition 2.11. 如果在拓扑空间 (X,τ) 中,子集 A 的余集 A^c 是开集,则称 A 为**闭集** $(closed\ set)$

其中余集 $A^c = X \setminus A$, 在平凡拓扑中,闭集就是 \emptyset 和 X; 在离散拓扑中,任何子集都是闭集; 闭集和开集互为余集,也可以从闭集出发定义拓扑结构:

Definition 2.12. X 的子集族 σ 是某个拓扑结构下全体闭集构成的集合当且仅当它满足下述三条公理:

- $X \in \sigma, \emptyset \in \sigma$;
- σ 中任意多个元素的交集仍属于 σ ;
- σ 中任意两个元素的并集仍属于 σ ;

我们尝试来推一下开集公理,第一个公理很显然,主要看第二个和第三个,开集和闭集互为余集,如果 A 和 B 为闭集,则 A^c 和 B^c 为开集,根据 De Morgan 定律

$$A^c \cup B^c = (A \cap B)^c, A^c \cap B^c = (A \cup B)^c$$

,根据闭集公理,上面两个等式结果都是开集。

Definition 2.13. 如果 x 每个邻域中都含有 $A \setminus \{x\}$ 中的点,则称 x 为 A 的聚点或者极限点 (limit point 或 cluster point 或 point of accumulation),全体聚点构成的集合 A' 称之为 A 的导集 (derived set), $\overline{A} = A \cup A'$ 称为 A 的闭包 (closure). 换言之, $x \in \overline{A}$ 当且仅当 x 的每个邻域中都含有 A 中的点。

突然多了很多定义,让人触不及防,因为一开始不知道它们的深刻含义。这个定义感觉很模糊,因为没有给 A 到底是什么东西,x 和 A 关系是什么?

假设 A 是任意给定一个 X 的子集,那么 x 也是任意取的,所以两者并没有直接关系,而是靠上面刻画的几个关系,首先把用聚点的定义,把 x 和 A 联系起来,然后把这样的 x 都找出来,于是就有全体聚点这个概念,再给它一个定义为导集,把导集和 A 本身并起来,再给一个定义就是闭包。

上面重新解读了一下定义,那么再研究一下这个闭包有什么性质?闭包 \overline{A} 中任意一点x,如果 $x \in A'$,则x的每个邻域都含有x4中的点。如果 $x \in A$ 4,怎么推出和前面一样的结论呢?注意这样好像只需要含有就行,不需要全含,所以x4中的点。如果x5年是天然成立的。

Proposition 2.14. 设 $A \in X$ 的一个子集,则 $(A^c)^\circ = (\overline{A})^c$.

证明. 这个命题在说明内部和闭包的关系,从右边出发好像简单一点,A 的闭包的余集,是指那些点 x 的邻域都不包括 A 中的点。换句话说就是指点 x 有一个邻域都只包含 A^c 的点,则这个邻域是含于 A^c ,根据内点的定义,点 x 是 A^c 的内点,所有这样的点,就是 $(A^c)^c$. 总结一下就是 A 的闭包和 A^c 的开集互为余集。

于是, 所有关于内部的性质都可以用 De Morgan 定律翻译成闭包的性质。

- $\overline{A} = A$, 当且仅当 A 是闭集。
- \overline{A} 是包含 A 的所有闭集的交集,也是包含 A 的最小闭集。
- 若 $A \subseteq B$, 则 $\overline{A} \subseteq \overline{B}$
- $\bullet \ (A_1 \cup \ldots \cup A_n)^\circ = A_1^\circ \cup \ldots \cup A_n^\circ;$

•
$$\left(\bigcap_{i\in n}A_i\right)^\circ\subseteq\bigcap_{i\in n}\overline{A_i}$$

证明. 我尝试用 $(A^c)^\circ = (\overline{A})^c$,来简单证明一下第一条,若 $\overline{A} = A$,则 $(\overline{A})^c = A^c = (A^c)^\circ$,后面这个根据内部的性质则 A^c 是开集,所以 A 为闭集 (开集和闭集互为余集)。

Definition 2.15. 如果 $\overline{A} = X$, 则称 A 在 X 中稠密 (dense)。如果 X 有只含有可数多个元素的稠密子集,则 称 X 可分 (separable).

这个定义有点抽象,第一个话是指,定义 X 某个子集 A,如果对 X 中任意的点 x,要么属于 A 或者是 A 的一个聚点,则称 A 在 X 中是稠密的。非正式说法是,对于 X 中任意的点 x,要么属于 A 或者 "任意接近" A 中的某个点。

Example 2.16. 有理数集是实数集一个稠密集,因为每一个实数,可能是一个有理数或者存在一个任意接近它的有理数 (丢番图近似)。

Example 2.17. 用 τ_f 表示 \mathbb{R} 上的余有限拓扑,则 (\mathbb{R}, τ_f) 可分, \mathbb{N} 就是它的一个可数稠密子集。但是为什么呢?首先 \mathbb{N} 可数就不用说了,那么为什么 \mathbb{N} 是稠密的呢?根据闭包的性质, \mathbb{N} 等于所有包含 \mathbb{N} 闭集的交集。再根据余有限拓扑的定义,其闭集是有限的,但是不存在包含 \mathbb{N} 的有限闭集,那包含 \mathbb{N} 只有 \mathbb{R} 了,所以 $\mathbb{N} = \mathbb{R}$.

Example 2.18. 用 τ_c 表示 \mathbb{R} 上的余可数拓扑,则 (\mathbb{R}, τ_c) 不可分。任意的 \mathbb{R} 的可数子集 U,在余可数拓扑上都是闭集,而闭集的闭包是自己, $U \neq \mathbb{R}$,所以不存在这样的可数子集。

Potency of Set and countable set

对于一个空间来说,比拓扑性质和概念更基本的是它作为集合的那些性质和概念。

Definition 2.19. 设 A,B 是两个集合。如果存在双射 $f: A \rightarrow B$,则称 A 和 B 的基数 (cardinality) 或者势 (potency) 相等, 记做 ||A|| = ||B||.

Lemma 2.20. 如果 A,B 是有限集,则 ||A|| = ||B|| 当且仅当它们所含的元素相等.

Lemma 2.21. 如果 A 是无限集,则它必有一个可数无限集

证明. 按顺序每次取一个就行。

Proposition 2.22. 集合 A 无限当且仅当它与一个真子集基数相等.

证明. 这个命题值得证明一下, 从前面第一个 lemma 我们知道, 如果 A 和真子集基数相等, 那它肯定不是有限集。反过来 A 如果不是有限集,则它是无限集,第二 lemma 可知,我们可以构造一个可数无限集 $S = \{a_1, a_2, ...\}$,然后对它再分一个类:

$$S_1 = \{a_1, a_3, a_5, \ldots\}, S_2 = \{a_2, a_4, a_6, \ldots\}$$

再建立一个 S 和 S_1 之间的双射 $a_n \leftrightarrow a_{2n-1}$,然后再把这个双射扩展到 $S \cup (A \setminus S) = T$ 和 $S_1 \cup (A \setminus S) = A \setminus S_2$,都并上了 $A \setminus S$,所以把 $a \in A \setminus S$ 映到它自己就行,还是维持 S 和 S_1 的映射。所以现在建立了一个 A 与 $A \setminus S_1$ 的双射。这个证明看起来就没有那么违反直觉,不错不错。