1 Functorial Factorizations

Now let ID be a cyclic double category, and assume it has arrow objects in the sense of Section ??. Let us spell out what this means for the single variable case:

• For every object *C* there is a diagram

$$C^2 \xrightarrow{\text{dom} \atop \text{cod}} C.$$

• Any 2-cell

$$A \underbrace{\downarrow \downarrow \alpha \atop d_0}^{d_1} C$$

uniquely factors through κ , as

$$A \xrightarrow{\hat{\alpha}} C^2 \xrightarrow{\text{dom}} C.$$

• For every vertical 1-cell $F: C \to D$ there is a vertical 1-cell $\hat{F}: C^2 \to D^2$ and 2-cells

$$\begin{array}{cccc}
C^2 & \xrightarrow{\text{dom}} & C & & C^2 & \xrightarrow{\text{cod}} & C \\
\hat{F} \downarrow & & \downarrow \gamma_1 & \downarrow F & & \hat{F} \downarrow & & \downarrow \gamma_0 & \downarrow F \\
D^2 & \xrightarrow{\text{dom}} & D & & D^2 & \xrightarrow{\text{cod}} & D
\end{array}$$

such that

$$C^{2} \xrightarrow{\text{dom}} C \qquad C^{2} \xrightarrow{\downarrow \kappa} C$$

$$\downarrow \uparrow \qquad \downarrow \gamma_{1} \qquad \downarrow_{F} = \downarrow f \qquad \downarrow \gamma_{0} \qquad \downarrow_{F}$$

$$D^{2} \xrightarrow{\text{dom}} D \qquad D^{2} \xrightarrow{\text{cod}} D$$

• Given any 2-cells

$$A \xrightarrow[d_0]{d_1} C \qquad B \xrightarrow[d'_0]{d'_1} D$$

and

$$\begin{array}{cccc}
A & \xrightarrow{d_1} & C & & A & \xrightarrow{d_0} & C \\
G \downarrow & \Downarrow \lambda_1 & \downarrow F & & G \downarrow & \Downarrow \lambda_0 & \downarrow F \\
B & \xrightarrow{d'_1} & D & & B & \xrightarrow{d'_0} & D
\end{array}$$

such that

$$A \xrightarrow{d_1} C \qquad A \xrightarrow{\downarrow \lambda_1} C$$

$$G \downarrow \qquad \downarrow \lambda_1 \qquad \downarrow_F = G \downarrow \qquad \downarrow \lambda_0 \qquad \downarrow_F$$

$$B \xrightarrow{d_1'} D \qquad B \xrightarrow{d_0'} D$$

there is a unique 2-cell

$$\begin{array}{ccc}
A & \xrightarrow{\hat{\alpha}} & C^2 \\
G \downarrow & & \downarrow \theta & \downarrow \hat{F} \\
B & \xrightarrow{\hat{\alpha}'} & D^2
\end{array}$$

such that the horizontal composition of θ with γ_0 and γ_1 is respectively equal to λ_0 and λ_1 .

Remark 1.1 (TODO: Remark that this generalizes the 2-dimensional part of the usual universal property in 2-categories.).

We will now define a 2-fold double category $\mathbb{F}F(\mathbb{D})$ of functorial factorizations in \mathbb{D} , as follows:

- The objects and vertical 1-cells are the same as in D.
- Horizontal 1-cells $C \to C$ in $\mathbb{F}F(\mathbb{D})$ are tuples (E, η, ϵ) , where $E: C^2 \to C$ is a horizontal 1-cell in \mathbb{D} , and

$$C^{2} \underbrace{\downarrow \eta}_{E} C \qquad C^{2} \underbrace{\downarrow \varepsilon}_{cod} C$$

are 2-cells in $\mathbb D$ such that

$$C^{2} \xrightarrow{\psi \varepsilon} C = C^{2} \xrightarrow{\text{dom}} C.$$

By the universal property of C^2 , this also determines horizontal 1-cells $L, R: C^2 \to C^2$ such that dom $\circ L = \operatorname{dom}, \operatorname{cod} \circ R = \operatorname{cod}, \operatorname{cod} \circ L = \operatorname{dom} \circ R = E, \kappa \circ L = \eta$, and $\kappa \circ R = \epsilon$, and 2-cells

$$C^2 \xrightarrow{id} C^2$$
. $C^2 \xrightarrow{id} C^2$.

such that dom $\circ \vec{\epsilon} = \mathrm{id}_{\mathrm{dom}}$, $\mathrm{cod} \circ \vec{\epsilon} = \epsilon$, dom $\circ \vec{\eta} = \eta$, and $\mathrm{cod} \circ \vec{\eta} = \mathrm{id}_{\mathrm{cod}}$.

• The horizontal composition $(E_1, \eta_1, \epsilon_1) \otimes (E_2, \eta_2, \epsilon_2)$ of two horizontal 1-cells

$$C \xrightarrow{(E_1,\eta_1,\epsilon_1)} C \xrightarrow{(E_2,\eta_2,\epsilon_2)} C$$

in $\mathbb{F}F(\mathbb{D})$ is a horizontal 1-cell $(E_{1\otimes 2}, \eta_{1\otimes 2}, \epsilon_{1\otimes 2})$, where

$$E_{1\otimes 2} = C^2 \xrightarrow{R_1} C^2 \xrightarrow{E_2} C$$

$$\eta_{1\otimes 2} = C^2 \underbrace{\downarrow \vec{\eta_1}}_{R_1} C^2 \underbrace{\downarrow \eta_2}_{E_2} C$$

$$\epsilon_{1\otimes 2} = C^2 \xrightarrow{R_1} C^2 \xrightarrow{\epsilon_2} C$$

which also determines that $R_{1\otimes 2} = R_2 \circ R_1$.

- The horizontal unit I_C for \otimes is (dom,id, κ).
- The second horizontal composition $(E_1, \eta_1, \epsilon_1) \odot (E_2, \eta_2, \epsilon_2)$ is a horizontal 1-cell $(E_{1\odot 2}, \eta_{1\odot 2}, \epsilon_{1\odot 2})$, where

$$E_{1 \odot 2} = C^2 \xrightarrow{L_1} C^2 \xrightarrow{E_2} C$$

$$\eta_{1\odot 2} = C^2 \xrightarrow{L_1} C^2 \xrightarrow{\text{dom}} C$$

$$\epsilon_{1\odot 2} = C^2 \underbrace{\downarrow \epsilon_1}_{\text{id}} C^2 \underbrace{\downarrow \epsilon_2}_{\text{dom}} C$$

which also determines that $L_{1 \odot 2} = L_2 \circ L_1$.

• The horizontal unit \bot_C for \odot is (cod, κ, id) .

• 2-cells

$$\begin{array}{c}
C \xrightarrow{(E_1, \eta_1, e_1)} C \\
\downarrow F \downarrow \qquad \downarrow \theta \qquad \downarrow F \\
D \xrightarrow{(E_2, \eta_2, e_2)} D
\end{array}$$

in $\mathbb{F}F(\mathbb{D})$ are given by 2-cells

$$\begin{array}{ccc}
C^2 & \xrightarrow{E_1} & C \\
\hat{F} \downarrow & & & \downarrow F \\
D^2 & \xrightarrow{E_2} & D
\end{array}$$

in D such that

$$C^{2} \xrightarrow{E_{1}} C \qquad C^{2} \xrightarrow{\psi \epsilon_{1}} C$$

$$\uparrow \qquad \psi \theta \qquad \downarrow_{F} = \uparrow \qquad \psi \gamma_{0} \qquad \downarrow_{F}$$

$$D^{2} \xrightarrow{E_{2}} D \qquad D^{2} \xrightarrow{\operatorname{cod}} D$$

$$C^{2} \xrightarrow{\psi \epsilon_{2}} D \qquad D^{2} \xrightarrow{\operatorname{cod}} D$$

$$C^{3} \xrightarrow{\psi \epsilon_{1}} C \qquad C^{4} \xrightarrow{\psi \epsilon_{1}} C \qquad C^{4} \xrightarrow{\operatorname{cod}} C \qquad C^$$

and

$$C^{2} \xrightarrow{\text{dom}} C \qquad C^{2} \xrightarrow{\psi \eta_{1}} C$$

$$\hat{f} \downarrow \psi \gamma_{1} \downarrow_{F} = \hat{f} \downarrow \psi \theta \downarrow_{F}$$

$$D^{2} \xrightarrow{\text{dom}} D \qquad D^{2} \xrightarrow{E_{2}} D$$

$$(2)$$

This also determines unique 2-cells

$$C^{2} \xrightarrow{R_{1}} C^{2} \qquad C^{2} \xrightarrow{L_{1}} C^{2}$$

$$\hat{f} \downarrow \qquad \downarrow \theta^{R} \qquad \downarrow \hat{f} \qquad \text{and} \qquad \hat{f} \downarrow \qquad \downarrow \theta^{L} \qquad \downarrow \hat{f}$$

$$D^{2} \xrightarrow{R_{2}} D^{2} \qquad D^{2} \xrightarrow{L_{2}} D^{2}$$

such that composing horizontally with γ_0 or γ_1 gives γ_0 , γ_1 , or θ as

1. FUNCTORIAL FACTORIZATIONS

5

appropriate. For instance:

$$C^{2} \xrightarrow{R_{1}} C^{2} \xrightarrow{\text{dom}} C \qquad C^{2} \xrightarrow{E_{1}} C$$

$$\downarrow \hat{f} \qquad \downarrow \hat{f} \qquad \downarrow \gamma_{1} \qquad \downarrow F = \hat{f} \qquad \downarrow \theta \qquad \downarrow F$$

$$D^{2} \xrightarrow{R_{2}} D^{2} \xrightarrow{\text{dom}} D \qquad D^{2} \xrightarrow{E_{2}} D$$

• Given a pair of composable 2-cells in $\mathbb{F}F(\mathbb{D})$ as in

$$\begin{array}{ccc}
C & \xrightarrow{(E_1, \eta_1, \epsilon_1)} & C & \xrightarrow{(E_2, \eta_2, \epsilon_2)} & C \\
\downarrow & & & \downarrow \theta_1 & \downarrow F & \downarrow \theta_2 & \downarrow F \\
D & \xrightarrow{(E'_1, \eta'_1, \epsilon'_1)} & D & \xrightarrow{(E'_2, \eta'_2, \epsilon'_2)} & D
\end{array}$$

the composite $\theta_1 \otimes \theta_2$ is given by

$$\begin{array}{ccc}
C^2 & \xrightarrow{R_1} & C^2 & \xrightarrow{E_2} & C \\
\hat{f} \downarrow & & \downarrow \theta_1^R & \downarrow \hat{f} & \downarrow \theta_2 & \downarrow F \\
D^2 & \xrightarrow{R'_1} & D^2 & \xrightarrow{E'_2} & D
\end{array}$$

while the composite $\theta_1 \odot \theta_2$ is given by

$$C^{2} \xrightarrow{L_{1}} C^{2} \xrightarrow{E_{2}} C$$

$$\uparrow \downarrow \qquad \downarrow \theta_{1}^{L} \qquad \downarrow \hat{r} \qquad \downarrow \theta_{2} \qquad \downarrow F$$

$$D^{2} \xrightarrow{L'_{1}} D^{2} \xrightarrow{E'_{2}} D$$

It is a straightforward exercise to check that these definitions satisfy equations (1) and (2). To illustrate, we will demonstrate that $\theta_1 \otimes \theta_2$

satisfies (1):

$$C^{2} \xrightarrow{E_{1 \otimes 2}} C \qquad C^{2} \xrightarrow{R_{1}} C^{2} \xrightarrow{E_{2}} C$$

$$\hat{f} \downarrow \qquad \downarrow \theta_{1} \otimes \theta_{2} \qquad \downarrow F \qquad = \qquad \hat{f} \downarrow \qquad \downarrow \theta_{1}^{R} \qquad \hat{f} \downarrow \qquad \downarrow \theta_{2} \qquad \downarrow F$$

$$D^{2} \xrightarrow{E_{1' \otimes 2'}} D \qquad D^{2} \xrightarrow{R'_{1}} D^{2} \xrightarrow{E'_{2}} D$$

$$= \qquad C^{2} \xrightarrow{R_{1}} C^{2} \xrightarrow{\downarrow \epsilon_{2'}} C$$

$$= \qquad \hat{f} \downarrow \qquad \downarrow \theta_{1}^{R} \qquad \hat{f} \downarrow \qquad \downarrow \gamma_{0} \qquad \downarrow F$$

$$D^{2} \xrightarrow{R'_{1}} D^{2} \xrightarrow{cod} C$$

$$= \qquad \hat{f} \downarrow \qquad \downarrow \gamma_{0} \qquad \downarrow F$$

$$D^{2} \xrightarrow{cod} D$$

It is straightforward to check that \otimes and \odot are each associative and unital. It takes more work to provide the compatibility between \otimes and \odot , which is the content of the proof of the next proposition.

Proposition 1.2. $\mathbb{F}F(\mathbb{D})$ has the structure of a 2-fold double category.

Proof. The primary structure of $\mathbb{F}F(\mathbb{D})$ was given in the first part of this section. What is left is to provide the coherence data (??) and (??).

First, note that I_C is initial in the sense that, given any vertical morphism $F: C \to D$ and any functorial factorization (E, η, ϵ) on D, there is a unique 2-cell

$$\begin{array}{ccc}
C & \xrightarrow{I_C} & C \\
\downarrow F & & \downarrow & \downarrow I \\
D & \xrightarrow{(E,\eta,\epsilon)} & D
\end{array}$$

given by

$$\begin{array}{ccc}
C^2 & \xrightarrow{\text{dom}} & C \\
\hat{F} \downarrow & & \downarrow \gamma_1 & \downarrow F \\
D^2 & \xrightarrow{\text{dom}} & D. \\
\downarrow \eta & & \downarrow E
\end{array}$$

Similarly, \perp_C is terminal. Thus there is only one possible way to define the 2-cells m, c, and j, and naturality and all other coherence equations follows immediately from this uniqueness.

We still need to construct the 2-cell z, which will take some work. We begin by defining 2-cells

for any pair of functorial factorizations. The 2-cell p is given by the underlying 2-cell in $\mathbb D$

$$C^2 \xrightarrow{L_1} C^2 \xrightarrow{E_2} C$$

and i is given by

$$C^2 \xrightarrow{R_1} C^2 \xrightarrow{\text{dom}} C.$$

To illustrate the verification that these give well-defined 2-cells in $\mathbb{F}F(\mathbb{D})$, we will show that i satisfies (1) (keep in mind that when F is an identity, γ_0 and γ_1 are also identities):

$$C^{2} \xrightarrow{L_{1}} C^{2} \xrightarrow{\psi_{1}} C^{2} \xrightarrow{\psi_{2}} C = C^{2} \xrightarrow{L_{1}} C^{2} \xrightarrow{\psi_{1}} C$$

$$= C^{2} \xrightarrow{\psi_{1}} C.$$

Moreover, it is straightforward to check that i and p are natural families

of 2-cells. Specifically, for any pair of 2-cells θ_1 and θ_2

$$\begin{array}{c|cccc}
C & \xrightarrow{E_1 \otimes E_2} & C & C & \xrightarrow{E_1 \otimes E_2} & C \\
\parallel & \downarrow p_{E_1, E_2} & \parallel & \downarrow F & \downarrow & \downarrow \theta_1 \otimes \theta_2 & \downarrow F \\
C & \xrightarrow{E_1} & C & = & D & \xrightarrow{E'_1 \otimes E'_2} & D \\
\downarrow F \downarrow & \downarrow \theta_1 & \downarrow F & \parallel & \downarrow p_{E'_1, E'_2} & \parallel \\
D & \xrightarrow{E'_1} & D & D & \xrightarrow{E'_1} & D
\end{array}$$

$$\begin{array}{c|cccc}
C & \xrightarrow{E_1} & C & C & \xrightarrow{E_1} & C \\
\parallel & \downarrow i_{E_1, E_2} & \parallel & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \xrightarrow{E_1 \otimes E_2} & C & = & D & \xrightarrow{E'_1} & D
\end{array}$$

$$\begin{array}{c|cccc}
F \downarrow & \downarrow \theta_1 & \downarrow F \\
C & \xrightarrow{E_1 \otimes E_2} & \downarrow F & \parallel & \downarrow i_{E'_1, E'_2} & \parallel \\
D & \xrightarrow{E'_1 \otimes E'_2} & D & D & \xrightarrow{E'_1 \otimes E'_2} & D
\end{array}$$

As with any 2-cell in $\mathbb{F}F(\mathbb{D})$, p and i induce 2-cells in \mathbb{D}

$$C^2 \underbrace{\downarrow p^R}_{R_1} C^2$$
 and $C^2 \underbrace{\downarrow i^L}_{L_{1 \otimes 2}} C^2$.

such that

$$C^{2} \xrightarrow{R_{1} \odot 2} C^{2} \xrightarrow{\text{dom}} C = C^{2} \xrightarrow{L_{1}} C^{2} \xrightarrow{\epsilon_{2}} C$$

$$C^{2} \xrightarrow{R_{1} \odot 2} C^{2} \xrightarrow{\text{dom}} C \qquad (3)$$

$$C^{2} \xrightarrow{\underset{L_{1\otimes 2}}{\downarrow i^{L}}} C^{2} \xrightarrow{\operatorname{cod}} C = C^{2} \xrightarrow{R_{1}} C^{2} \xrightarrow{\underset{E_{2}}{\downarrow \eta_{2}}} C \tag{4}$$

Now suppose given three functorial factorizations E_1 , E_2 , E_3 on an object C. We define a 2-cell in $\mathbb D$

$$C^{2} \xrightarrow{\psi w} C^{2} \xrightarrow{L_{3}} C^{2}$$

$$\downarrow w \qquad C^{2}$$

$$\downarrow L_{1 \otimes 3} \qquad C^{2} \xrightarrow{R_{2}} C^{2}$$

such that

$$C^{2} \xrightarrow{\downarrow w} C^{2} \xrightarrow{L_{3}} C^{2} \xrightarrow{\text{dom}} C = C^{2} \xrightarrow{\downarrow i^{L}} C^{2} \xrightarrow{E_{2}} C$$

$$C^{2} \xrightarrow{\downarrow w} C^{2} \xrightarrow{R_{2}} C^{2} \xrightarrow{\text{dom}} C = C^{2} \xrightarrow{\downarrow i^{L}} C^{2} \xrightarrow{E_{2}} C$$

$$(5)$$

$$C^{2} \xrightarrow{\downarrow w} C^{2} \xrightarrow{L_{3}} C^{2} \xrightarrow{\operatorname{cod}} C = C^{2} \xrightarrow{R_{1} \odot 2} C^{2} \xrightarrow{E_{3}} C.$$

$$C^{2} \xrightarrow{\downarrow w} C^{2} \xrightarrow{R_{2}} C^{2} \xrightarrow{\operatorname{cod}} C = C^{2} \xrightarrow{R_{1} \odot 2} C^{2} \xrightarrow{E_{3}} C.$$

$$C^{2} \xrightarrow{\downarrow p^{R}} C^{2} \xrightarrow{E_{3}} C.$$

$$C^{2} \xrightarrow{\downarrow p^{R}} C^{2} \xrightarrow{E_{3}} C.$$

$$C^{2} \xrightarrow{R_{1} \odot 2} C^{2} \xrightarrow{R_{2}} C.$$

$$C^{2} \xrightarrow{R_{1} \odot 2} C.$$

Using the universal property for C^2 , it suffices to check that

$$C^{2} \xrightarrow{\lim_{l \to \infty} C^{2}} C^{2} \xrightarrow{\lim_{\epsilon \to \infty} C} C = C^{2} \xrightarrow{\lim_{l \to \infty} C^{2}} C^{2} \xrightarrow{\lim_{k \to \infty} C} C^{2} \xrightarrow{\lim_{k \to \infty} C} C^{2}$$

and a quick check using equations (3) and (4) shows that both are equal to

$$C^{2} \xrightarrow[R_{1}]{L_{1}} C^{2} \xrightarrow[co_{q}]{L_{2}} C$$

$$\downarrow C^{2} \xrightarrow[k_{1}]{L_{1}} C^{2} \xrightarrow[k_{3}]{L_{1}} C$$

where the inner diamond is the equality $\operatorname{cod} L_1 = \operatorname{dom} R_1 = E_1$.

We also check that w is natural with respect to 2-cells in $\mathbb{F}F(\mathbb{D})$ in the following sense: given three 2-cells θ_1 , θ_2 , and θ_3 , there is an equality

To verify this equation, it suffices to check equality upon right composition with γ_0 and γ_1 . We will illustrate the γ_1 case, making use of the naturality

of i:

$$C^{2} \xrightarrow{\downarrow w} C^{2} \xrightarrow{\downarrow w} C^{$$

$$C^{2} \xrightarrow{L_{1}} C^{2} \xrightarrow{E_{2}} C$$

$$= \hat{F} \downarrow \psi \theta_{1}^{L} \downarrow \hat{F} \psi \theta_{2} \downarrow F = \hat{F} \downarrow \psi (\theta_{1} \odot \theta_{2})^{R} \downarrow \hat{F} \psi \theta_{3}^{L} \downarrow \hat{F} \psi \gamma_{1} \downarrow F$$

$$D^{2} \xrightarrow{L_{1}^{\prime}} D^{2} \xrightarrow{E_{2}^{\prime}} D$$

$$D^{2} \xrightarrow{L_{1}^{\prime}} D^{2} \xrightarrow{L_{1}^{\prime}} D^{2} \xrightarrow{dom} D.$$

Finally, given four functorial factorizations E_1 , E_2 , E_3 , E_4 on an object C, we define the 2-cell

$$C \xrightarrow{(1 \odot 2) \otimes (3 \odot 4)} C$$

$$\parallel \qquad \downarrow z_{1,2,3,4} \qquad \parallel$$

$$C \xrightarrow{(1 \otimes 3) \odot (2 \otimes 4)} C$$

in $\mathbb{F}F(\mathbb{D})$, where $(1 \odot 2)$ is shorthand for $(E_1, \eta_1, \epsilon_1) \odot (E_2, \eta_2, \epsilon_2)$, to have the underlying 2-cell in \mathbb{D}

$$C^{2} \xrightarrow{W} C^{2} \xrightarrow{L_{3}} C^{2} \xrightarrow{E_{4}} C.$$

The naturality of z follows immediately from that of w, but we still need to check that this satisfies equations (1) and (2). We will leave the details to the reader, but note that (2) comes down to the verification of the equality

$$C^{2} \xrightarrow{R_{1 \otimes 2}} C^{2} \xrightarrow{L_{3}} C^{2} \xrightarrow{\psi \eta_{4}} C = C^{2} \xrightarrow{L_{1 \otimes 3}} C^{2} \xrightarrow{\psi \eta_{2}} C^{2} \xrightarrow{\psi \eta_{4}} C,$$

$$C^{2} \xrightarrow{R_{1 \otimes 2}} C^{2} \xrightarrow{R_{2}} C^{2} \xrightarrow{R_{2}} C^{2} \xrightarrow{\psi \eta_{4}} C,$$

which follows from equation (5) and the fact that dom $\circ i^L = id_{dom}$.

Up to this point, we have demonstrated that given any double category \mathbb{D} having arrow objects, there is a 2-fold double category $\mathbb{F}F(\mathbb{D})$ of functorial factorizations in \mathbb{D} . The last thing we want to say about this construction is that a cyclic action on \mathbb{D} lifts to one on $\mathbb{F}F(\mathbb{D})$, and hence also to one on $\mathbb{B}\mathrm{imon}(\mathbb{F}F(\mathbb{D}))$.

The cyclic action on objects and vertical morphisms is given directly by that on \mathbb{D} . Given a horizontal 1-cell (E, η, ϵ) on an object C, we define the 1-cell $(E, \eta, \epsilon)^{\bullet}$ on C^{\bullet} to be $(E^{\bullet}, \epsilon^{\bullet}, \eta^{\bullet})$. This also implies that the cyclic action swaps L and R for any given functorial factorization.

A quick look at the definitions of the two horizontal compositions is now enough to see that for any two functorial factorizations E_1 and E_2 , we have

$$(E_1 \otimes E_2)^{\bullet} = E_1^{\bullet} \odot E_2^{\bullet}$$
 and $(E_1 \odot E_2)^{\bullet} = E_1^{\bullet} \otimes E_2^{\bullet}$

Similarly, the cyclic action on 2-cells in $\mathbb{F}F(\mathbb{D})$ is given by the cyclic action in \mathbb{D} on the underlying 2-cell. This gives a valid 2-cell in $\mathbb{F}F(\mathbb{D})$ since the cyclic action simply swaps the equations (1) and (2).