CEE 697M: Probabilistic Machine Learning M4 Nonparametric Methods: L4a: Exemplar-based methods

Jimi Oke

UMassAmherst

College of Engineering

Wed, Apr 19, 2023

Outline

- Introduction
- KNN
- Metric learning
- 4 Density kernels
- **6** Kernel smoothing
- 6 Local regression
- Outlook

Nonparametric modeling

•0

Parametric models seek to estimate $p(y|\theta)$ (unconditional case) or $p(y|x,\theta)$ (conditional case).

- $oldsymbol{ heta}$ is a fixed-dimensinoal vector of **parameters**
- Estimation is performed using a dataset $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n) : n = 1 : N\}$
- There is an assumed functional form: $\mathbf{y} \sim f_{\mathbf{ heta}}(\mathbf{x})$

Nonparametric models are defined based on similarity between a test input x at each training input x_n : $d(x, x_n)$

- No assumption of functional form on model parameters
- ullet Effective number of parameters can grow with size of dataset $|\mathcal{D}|$
- Known as exemplar-based models (as training samples are used to make each future prediction)
- Other names: instance-based learning, memory-based learning

Exemplar-based models

00

We will consider the following exemplar approaches:

- K-nearest neighbors (KNN)
- Kernel density estimation
- Kernel [local] regression

K nearest neighbor classifier

Basic idea: classify new/test input x by assigning to most probable (majority) label in the neighborhood of x (closest examples) from the training set. Thus, we estimate:

$$p(y=c|\mathbf{x},\mathcal{D}) = \frac{1}{K} \sum_{n \in N_K(\mathbf{x},\mathcal{D})} \mathbb{I}(y_n=c)$$
 (1)

- c class label
- K: number of training samples in neighborhood
- $N_K(x, \mathcal{D})$: neighborhood of x (size K) based on dataset \mathcal{D}

Illustration of KNN

Figure: Illustration of the KNN approach on a training set of 12 observations and the resulting decision boundary. (ESL Fig 2.14)

Bias-variance trade-off in KNN

Figure: Comparing decision boundaries K=1 and K=100 for a dataset of 100 observations. Which model has lower bias? Which one gives a higher variance? The Bayes decision boundary is the purple dashed line (ESL Fig 2.16)

Jimi Oke (UMass Amherst) Léa: Exemplar-Based Methods Wed, Apr 19, 2023 7

oduction KNN Metric learning Density kernels Kernel smoothing Local regression Outlook
OOO●OOO OOO OOO OOO OOOOOO

Approximating Bayes decision boundary with KNN

Figure: KNN decision boundary with K=10 on the same training data set. (ESL Fig 2.15)

roduction KNN Metric learning Density kernels Kernel smoothing Local regression Outlook

O OOO OO OO OO OOO OOOOO O

Training and test error rates for KNN

Figure: KNN training error rate (blue, 200 observations) and test error rate (orange, 5000 observations). Flexibility increases as K decreases. Which K should you choose?

KNN considerations

- To find the points in the neighborhood N_K , we need to determine the K-closest points to input x. This is done via a specified distance metric: $d(x, x') \in \mathbb{R}^+$ (e.g. Euclidean, Mahalanobis)
- K=1 induces a Voronoi tessellation: partitioning of input sapce such that all points $\mathbf{x} \in V(\mathbf{x}_n)$ are closer to \mathbf{x}_n than to any other point (From a modeling perspective, this is overfitting)

Source: https://package.elm-lang.org/packages/ianmackenzie/elm-geometry/latest/VoronoiDiagram2d

- Suffers under high dimensionality
- Memory intensive

KNN extension: open set recognition

KNN is readily applicable to open set recognition (set of classes $\mathcal C$ not fixed).

Novelty/out-of-distribution/anomaly detection

Source: https://www.intechopen.com/chapters/74393

- Incremental/online/life-long/continual learning: any potentially new label is added to new class C_{t+1} ; dataset augmented
- Few-shot classification (for person re-identification or face verification)

Distance metrics

The [semantic] distance between points x and x' is specified by a distance metric $d(x, x') \in \mathbb{R}^+$.

- Alternately, the similarity s(x, x') can be computed
- Distance/similarity required for KNN, unsupervised learning (e.g. clustering) among other tasks
- Common metrics:
 - Euclidean distance:

$$d_{E}(x,x') = \sqrt{(x-x')^{\top}(x-x')}$$
 (2)

Mahalanobis distance:

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^{\top} \mathbf{M}(\mathbf{x} - \mathbf{x}')}$$
(3)

where M is the Mahalanobis distance matrix

Distance metrics

The process of finding the optimal M is called **metric learning**

- When D is large, we typically learn an embedding (mapping): $\mathbf{e} = f(\mathbf{x})$ and then compute $d_{\mathbf{M}}(\mathbf{e}, \mathbf{e}')$ instead.
- When f is a deep neural network, this process is termed deep metric learning

KNN Metric learning Density kernels Kernel smoothing Local regression Outlook 0000000 000 0000000 0

Methods for estimating *M*

- Large margin nearest neighbors (LMNN)
- Neighborhood component analysis (NCA)
- Latent coincidence analysis (LCA)
- Minimization of classification and ranking losses (with mining techniques and proxy methods):
 - Pairwise/contrastive loss
 - Triplet loss
 - N-pairs loss

Density kernel

A density kernel $\mathcal{K}(x)$ is a weighting function that specifies a mapping or transformation of an input $x \colon \mathcal{K} : \mathbb{R} \to \mathbb{R}_+$.

Density kernels have two important properties:

Normalization:

$$\int x\mathcal{K}(x)dx = 0 \tag{4}$$

Symmetry:

$$\mathcal{K}(-x) = \mathcal{K}x \tag{5}$$

Kernels have several uses, e.g.

- density function estimation
- local regression (our focus)
- smoothing time series

Kernel functions

Figure: Popular kernel functions

- Triangular: $\mathcal{K}(x) = (1 |x|)$
- Epanechnikov: $\mathcal{K}(x) = \frac{3}{4}(1-x^2)$
- Triweight: $K(x) = \frac{35}{32}(1-x^2)^3$
- Tricube: $K(x) = \frac{70}{81}(1 |x|^3)^3$
- Gaussian: $\mathcal{K}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$

roduction KNN Metric learning Density kernels Kernel smoothing Local regression Outlook

O 000000 000 000 000 000 000 00000000 0

Radial basis function

The radial basis function (RBF) kernel is a generalization of a density kernel to an input vector \mathbf{x} :

$$\mathcal{K}_h(\mathbf{x}) \propto \mathcal{K}_h(||\mathbf{x}||)$$
 (6)

where h is the bandwidth parameter:

The RBF Gaussian kernel is thus given by:

$$\mathcal{K}_{h}(\mathbf{x}) = \frac{1}{h^{D}(2\pi)^{D/2}} \prod_{d=1}^{D} \exp\left[-\frac{1}{2h^{2}} x_{d}^{2}\right]$$
 (7)

Bandwidth parameter

Specifies the width of the kernel:

$$\mathcal{K}_h := \frac{1}{h} \mathcal{K} \left(\frac{x}{h} \right) \tag{8}$$

K-nearest neighbor smoother

In the simple case of the KNN kernel, we use the neighborhood average:

$$\hat{f}(x_0) = \frac{1}{k} \sum_{i \in N_K(x_0)} y_i \tag{9}$$

where $N_K(x_0)$ is the K-nearest neighborhood of x_0 .

- All points in the neighborhood are equally weighted
- The resulting $\hat{f}(x)$ is not smooth
- To achieve smoothness, we weight observations by distance to the target point

Figure: KNN equally-weighted kernel

roduction KNN Metric learning Density kernels Kernel smoothing Local regression Outlook

O 000000 00 00 000 000 000000 0

Nadaraya-Watson smoother

Nadaraya-Watson kernel-weighted average implements distance-based weighting:

$$\mathbb{E}[y|\mathbf{x},\mathcal{D}] = \hat{f}(x_0) = \frac{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i)y_i}{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i)}$$
(10)

where K_{λ} can be any kernel function.

If we use the popular **Epanechnikov** (quadratic) kernel, then:

$$K_{\lambda}(x_o, x_i) = D\left(\frac{|x_i - x_0|}{\lambda}\right)$$
 (11)

where

$$D(t) = \begin{cases} \frac{3}{4} \left(1 - t^2 \right) & |t| \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (12)

In D, the half-width (or bandwidth) of the neighborhood is given by λ .

Nadaraya-Watson smoother (Epanechnikov kernel)

Figure: Nadaraya-Watson estimate of $\hat{f}(x)$ using the Epanechnikov kernel. Half-width is fixed at $\lambda=0.2$

The half-width can be generalized as any function h_{λ} of the target point x_0 :

$$K_{\lambda}(x_0, x_i) = D\left(\frac{|x_i - x_0|}{h_{\lambda}(x_0)}\right) \tag{13}$$

Wed, Apr 19, 2023

Kernels as a localization device

Rather than estimate a regression function f(X) over the entire \mathbb{R}^D , we can estimate the response at each training point using a weighted average:

- ullet only observations close a target point x_0 are used in estimating f at that point
- the function defining how the points in the neighborhood of x_0 are weighted is called a **kernel**: $K_{\lambda}(x_0, x_i)$ where λ controls the width of the neighborhood
- this is a localized/memory-based approach
- ullet the resulting $\hat{f}(X)$ is smooth in \mathbb{R}^D

Using kernel functions, we can estimate $\hat{f}(X)$ in two ways:

- **1 Nonparametric**: define an averaging function (kernel) to estimate y_0 for each point x_0
- **2** Parametric: estimate a linear model for each point x_0

Local linear regression

Using a nonparametric average function produces biased estimates at the boundaries.

Figure: Locally weighted average (Nadaraya-Watson) versus local linear regression.

To correct this, we can estimate a linear model at each point x_0 by solving a weighted least squares:

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^n K_{\lambda}(x_0,x_i) [y_i - \alpha(x_0) - \beta(x_0)x_i]^2$$
 (14)

Local linear regression estimates

Let $b(x)^{T} = (1, x)$ and:

$$\boldsymbol{B} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \quad \boldsymbol{W}(x_0) = \begin{pmatrix} K_{\lambda}(x_0, x_1) & 0 & \cdots & 0 \\ 0 & K_{\lambda}(x_0, x_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & K_{\lambda}(x_0, x_n) \end{pmatrix} \quad (15)$$

Then the solution to the locally weighted regression problem is:

$$\hat{f}(x_0) = b(x_0)^T (\boldsymbol{B}^T \boldsymbol{W}(x_0) \boldsymbol{B})^{-1} \boldsymbol{B}^T \boldsymbol{W}(x_0) \boldsymbol{y}$$
 (16)

$$\hat{f}(x_0) = \sum_{i=1}^{n} \ell_i(x_0) y_i \tag{17}$$

The weights $\ell_i(x_0)$ are called the **equivalent kernel**

Effect of equivalent kernel

The equivalent kernel (local regression) corrects the bias from local average kernel methods to the first order.

Figure: Green points show the weights $\ell_i(x_0)$ (rescaled for display purposes) along with those for the Nadaraya-Watson (N-W) local average (yellow shaded region; also rescaled). The correction effect of local regression can be observed.

Local polynomial regression

- Higher-order terms in $\hat{f}(x)$ are required to reduce bias in curved regions
- Local polynomial regression can correct this at the cost of higher variance
- Given by:

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}_j(x_0) x_0^j$$
 (18)

where $\hat{f}(x_0)$ is the solution to:

$$\min_{\alpha(x_0),\beta(x_0),j=1,...,d} \sum_{i=1}^{n} K_{\lambda}(x_0,x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^{d} \beta_j(x_0) x_i^j \right]^2$$
(19)

Bias correction of local quadratic regression

Figure: The local linear regression estimator is biased in curved regions. A higher-order local fit (in this case, quadratic) can eliminate this.

Local regression algorithms

- LOESS: locally estimated scatterplot smoothing
 - Identical approached earlier developed in 1964 by Savitzky and Golay for smoothing noisy data (known as the Savitzky-Golay filter)
 - "Rediscovered" by William Cleveland in 1979
- LOWESS: locally weighted scatterplot smoothing
 - Extension of LOESS by Cleveland and Susan Devlin (1988)
- LOESS can be considered a generalization of LOWESS, as it fits multivariate data, while LOWESS is for univariate cases

Summary

- Kernel smoothing methods can be used for flexible functional fitting
- Local regression generates a linear/polynomial fit at each target point using a kernel weighted loss function

Reading:

- **PMLI** 16
- **ESL 6.1** One-dimensional Kernel Smoothers (pp. 191–199)
- ISLR 7.6: Local Regression (pp. 280–282)