AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

CREDIT HOURS ENGINEERING PROGRAMS SOPHOMORE (All Programs)

(.....)

Fall 2022 Major Task (Part 1) Total: 15 marks

PHM111: Probability and Statistics 1/18 ID: **Deadline: Week 7** Name: Please. Solve each problem in its assigned place ONLY (the empty space below it) **Statistics** Part I 1. Name and define the two areas of statistics. 2. Why are samples used in statistics? 3. In each of these statements, tell whether descriptive or inferential statistics have been used: a. In the year 2030, 148 million Americans will be enrolled in an HMO. (......) b. Nine out of ten on-the-job fatalities are men. c. The median household income for people aged 25–34 is \$35,888. (.....) **4.** Classify each variable as qualitative or quantitative: b) Classification of children in a day care center (infant, toddler, preschool) (......) c) Weights of fish caught in Lake George. (.....) d) Marital status of faculty members in a large university. (.....) **5.** Classify each variable as discrete or continuous: a) Water temperatures of six swimming pools in Pittsburgh on a given day. (......) b) Weights of cats in a pet shelter. (......) c) Number of cheeseburgers sold each day by a hamburger stand on a college campus.

d) Number of DVDs rented each day by a video store. (......)

_			PHN	1111: F	Proba	ability	y and Statistics	
_	Name:						ID:	2/18
6.	Name the	four bas	ic samplir	_				
				••••	•••••	••••••		
7.	a) In a	large sch	nool area,	all teacl	hers fr	om tw	tified, or cluster: o buildings are interviewed t ss homework to do now thar	
	b) Eve	=	th custom (_	ing a s	shoppii	ng mall is asked to select her	or his favorite
					<u>P</u>	art II		
1.	Name the	three typ	oes of fre	quency (distrib	utions	and explain when each shou	ld be used.
2.	The follow	_			utions	are inc	orrectly constructed. State tl	ne reason why.
	a.	Class		equency				
		27–32		1				
		33–38		(
		39–44		6				
		45–49		4				
		50–55		2	2			
		•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		
	b.	Class	•••••	Frea	uency	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	ν.	123-12	7	3	acney			
		128-13		7				
				2				
		138-14		_				
		138–142 143–14		19				
				19				
3.		143–14 ⁻ 	7 e number	of inche	es of ra		eived in 1 year in 25 selected	
3.	United Sta	143–14 re are the ates. Cons	7 e number struct a g	of inche	es of ra		eived in 1 year in 25 selected stribution and a cumulative f	
3.	United Sta distribution	143–14 re are the ates. Cons	7 e number struct a gi classes.	of inche	es of ra	ncy dis	stribution and a cumulative f	
3.	United Sta	143–14 ire are the ates. Cons on with 6	7 e number struct a g	of inche	es of ra		•	

Name:	ID:	3/18
		•••••

Class	Class limits	Class boundaries	Frequency	Cumulative Frequency
1				
2				
3				
4				
5				
6				

4. Do Students Need Summer Development? For 108 randomly selected college applicants, the following frequency distribution for entrance exam scores was obtained. Construct a histogram, frequency polygon, and ogive for the data.

Class	Class limits	Class boundaries	Frequency	Cumulative Frequency
1	90–98		6	
2	99–107		22	
3	108–116		43	
4	117–125		28	
5	126–134		9	

Applicants who score above 107 need not enroll in a summer developmental program. In this group, how many students do not have to enroll in the developmental program?

Histogram:

PHM111: Probability and Statistics						
Name:	ID:	4/18				
Frequency Polygon:						
requestey rotygom.						

Ogive:

Name: ID: 5/18

5. The math and reading achievement scores from the National Assessment of Educational Progress for selected states are listed below. Construct a back-to back stem and leaf plot with the data.

Math								Rea	ding	
5 2	66	60	62	64		65	7.0	7.0	66	67
52	66	69	62	61		65	76	76	66	67
63	57	59	59	55		71	70	70	66	61
55	59	74	72	73		61	69	78	76	77
68	76	73				77	77	80		

Stem	Leaf

6. The state gas tax in cents per gallon for 25 states is given below. Construct a grouped frequency distribution and a cumulative frequency distribution with 5 classes.

7.5	16	23.5	17	22
21.5	19	20	27.1	20
22	20.7	17	28	20
23	18.5	25.3	24	31
14.5	25.9	18	30	31.5

Class	Class limits	Class boundaries	Frequency	Cumulative Frequency
1				
2				
3				
4				
5				

	PHM111: Probability and Statistics									
Name	:				ID:	6/18				
			Ē	Part III						
	erage und s is listed	•	grade point	average (GPA	A) for the 25 top-ran	ked medical				
	3.80	3.77	3.70	3.74	3.70					
	3 86	3 76	3 68	3 67	2 57					

3.74

3.65

3.73

3.67

3.66

3.64.

Find the mean, the median, the mode, and the midrange.

3.80

3.73

3.78

3.70

3.74

3.64

Data in ascending order

3.83

3.78

3.75

Mean =		
Median =		
Mode =	Midrange =	

2. For the following data, construct a grouped frequency distribution with six classes then find the mean and modal class.

1013 1867 1268 1666 2309 1231 3005 2895 2166 1136

1532 1461 1750 1069 1723 1827 1155 1714 2391 2155

1412 1688 2471 1759 3008 2511 2577 1082 1067 1062

1319 1037 2400.

Class	Class limits	Class boundaries	Frequency	Cumulative Frequency
1				
2				
3				
4				
5				
6				

Τŀ	ne mean =			
	ic ilicali –	 	 	

The modal class =.....

Name: 1D: 7/18

Price

3. Find the weighted mean price of three models of automobiles sold. The number and price of each model sold are shown in this list.

Wioaci	Namber	11166	
Α	8	\$10,000	
В	10	12,000	
С	12	8,000.	

.....

Model

4. An instructor grades exam, 20%; term paper, 30%; final exam, 50%. A student had grades of 83, 72, and 90, respectively, for exams, term paper, and final exam. Find the student's final average. Use the weighted mean.

.....

5. Calculate the median from the following data:

Number

Group	Frequency		
60 – 64	1		
65 – 69	5		
70 – 74	9		
75 – 79	12		
80 – 84	7		
85 – 89	2		

6. Calculate the mode from the following data:

Group	Frequency		
150 - 154	5		
155 - 159	2		
160 - 164	6		
165 - 169	8		
170 - 174	9		
175 - 179	11		
180 - 184	6		
185 - 189	3		

	•
	Name: ID: 8/18
7	
/.	For these situations, state which measure of central tendency (mean, median, or mode) should be used.
	a) The most typical case is desired. ()
	b) The data are categorical. ()
	c) The values are to be divided into two approximately equal groups, one group containing
	the larger values and one containing the smaller values. ()
8.	Describe which measure of central tendency—mean, median, or mode—was probably used in each situation
	in each situation.
	a) The average number of children per family in the Plaza Heights Complex is 1.8. ()
	b) Most people prefer red convertibles over any other color. ()
	c) The average age of college professors is 42.3 years

Part IV

1. Find the range, variance, and standard deviation. Assume the data represent samples, and use the shortcut formula for the unbiased estimator to compute the variance and standard deviation:

The normal daily high temperatures (in degrees Fahrenheit) in January for 10 selected cities are as follows:

The normal monthly precipitation (in inches) for these same 10 cities is listed here:

Which set is more variable?

For normal daily high temperatures:

	of normal daily high temperatures.						
n	X						
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

			ID-	0/4
ame:			ID:	9/1
For normal m	onthly precipit	ation:		
	Υ			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
•••••	•••••	•••••		
••••••	•••••	•••••		
••••••				
	 la cat ic			
ie iliole valiab				

NL		AL	
0.252-0.256	4	0.256-0.261	2
0.257-0.261	6	0.262-0.267	5
0.262-0.266	1	0.268-0.273	4
0.267-0.271	4	0.274-0.279	2
0.272-0.276	1	0.280-0.285	1

me:			ID:		10/18
For NL:					
Class limits	Class boundaries				
		••••••	•••••	••••••••••	••••••
		••••••	•••••	••••••	
or AL:					
Class limits	Class boundaries				
•••••		•••••••	••••••	••••••	
 average age of	senators in the 108th	n Congress w	as 50 5 vears	: If the standa	ard deviation
	d the z scores corres	-	=		
bert C. Byrd (D,	, WV), 86, and John S	-		, ,	
r Robert C. Byrd	<u>d:</u>				
		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
• • • • • • • • • • • • • • • • • • • •					
r John Sununu:					

3.

PHM111: Probability	and Statistics
---------------------	----------------

Name:		ID:	11/18			
1. The average tea	cher's salary in a partic	ular state is \$54,166. If the standar	d deviation is			
\$10,200, find the salaries corresponding to the following z scores.						
a. 2	<i>b.</i> -1	<i>c</i> . 0				
a						
b						
C						
billions of dollars	ile rank for each value i s of the damage of 10 h , 2.2, 2.5, 3.3, 6.2, 6.8, 2		the values in			
1.1 is						
1.7 is						
1.9 is						
2.1 is						
2.2 is						
2.5 is						
3.3 is						
6.2 is						
6.8 is						
20.3 is						
	ta set for outliers.					
a. 24, 32, 54, 3	31, 16, 18, 19, 14, 17, 20)				
b. 321, 343, 35						
7. identify the five 19, 16, 48,	•	d find the interquartile range.				

Name: ID: 12/18

major	league base	run average	(ERA) leade	the number or trs for the pas 2.	•	•
		 			••••••••	•••••

The Box Plot:

9. Starting teacher salaries (in equivalent U.S. dollars) for upper secondary education in selected countries are listed below. Which set of data is more variable? (The U.S. average starting salary at this time was \$29,641.)

Europe		Asia			
Sweden	\$48,704	Korea	\$26,852		
Germany	41,441	Japan	23,493		
Spain	32,679	India	18,247		
Finland	32,136	Malaysia	13,647		
Denmark	30,384	Philippines	9,857		
Netherlands	29,326	Thailand	5,862		
Scotland	27,789				

PHM111: Probability and Statistics ID: 13/18 Name: **For Europe:** X n 1 2 3 4 5 6 7 For Asia: X n 1 2 3 4 5 6

The more variable set is	

Name: ID: 14/18

Classical Probability, Counting Techniques, Conditional Probability

Part I

1.	An experiment involves tossing a pair of dice, one green and one red, and recording the numbers that come up. If x equals the outcome on the green die and y the outcome on the red die, describe the sample space S (a) by listing the elements (x, y);					
	(b) by using the rule method.					
2.	For the sample space of Exercise 1, (a) list the elements corresponding to the event A that the sum is greater than 8;					
	(b) list the elements corresponding to the event <i>B</i> that a 2 occurs on either die;					
	(c) list the elements corresponding to the event C that a number greater than 4 comes up on the green die;					
	(d) list the elements corresponding to the event A∩C;					
	(e) list the elements corresponding to the event $A \cap B$;					
	(f) list the elements corresponding to the event $B \cap C$;					
	(g) construct a Venn diagram to illustrate the intersections and unions of the events <i>A</i> , <i>E</i> and <i>C</i> .					

Name: ID: 15/18

3.	n experiment consists of tossing a die and then flipping a coin once if the number on the die is even. If the number on the die is odd, the coin is flipped twice. Construct a diagram to show the 18 elements of the sample space S. then:	
	 i) list the elements corresponding to the event A that a number less than 3 occurs one die; 	
	o) list the elements corresponding to the event <i>B</i> that two tails occur;	
) list the elements corresponding to the event A^{\prime} ;	
	I) list the elements corresponding to the event $A' \cap B$;	
	e) list the elements corresponding to the event A UB.	
1.	$S = \{x \mid 0 < x < 12\}, M = \{x \mid 1 < x < 9\}, \text{ and } N = \{x \mid 0 < x < 5\}, \text{ find } M \cup N;}$	
) <i>M</i> ∩ <i>N</i> ;	
	$M' \cap N'$	
5.	How many three-digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, and 6 each digit can be used only once?	if
	How many of these are odd numbers?	
	How many are greater than 330?	
		••••

Name:

ID:

16/18

6.	Three lottery tickets for first, second, and third prizes are drawn from a group of 40 tickets. Find the number of sample points in <i>S</i> for awarding the 3 prizes if each contestant holds only 1 ticket.
7.	How many ways are there to select 3 candidates from 8 equally qualified recent graduates for openings in an accounting firm?
	Part II
1.	A box contains 500 envelopes, of which 75 contain \$100 in cash, 150 contain \$25, and 275 contain \$10. An envelope may be purchased for \$25. What is the sample space for the different amounts of money? Assign probabilities to the sample points and then find the probability that the first envelope purchased contains less than \$100.
2.	A pair of fair dice is tossed. Find the probability of getting (a) a total of 8;
	(b) at most a total of 5.
3.	In a high school graduating class of 100 students, 54 studied mathematics, 69 studied history, and 35 studied both mathematics and history. If one of these students is selected at random, find the probability that: (a) the student took mathematics or history;
	(b) the student did not take either of these subjects;
	(c) the student took history but not mathematics.

Name: ID: 17/18

4. In an experiment to study the relationship of hypertension and smoking habits, the following data are collected for 180 individuals:

Nonsmokers Smokers 30 NH 48 26 19 where H and NH in the table stand for $Hypertension$ and $Non-hypertension$, respect of one of these individuals is selected at random, find the probability that the person (a) experiencing hypertension, given that the person is a heavy smoker;			Moderate	Heavy
 NH 48 26 19 where H and NH in the table stand for Hypertension and Non-hypertension, respect of one of these individuals is selected at random, find the probability that the person is a heavy smoker; (a) experiencing hypertension, given that the person is a heavy smoker; (b) a nonsmoker, given that the person is experiencing no hypertension. Pollution of the rivers in the United States has been a problem for many years. Cothe following events: A: the river is polluted, B: a sample of water tested detects pollution, C: fishing is permitted. Assume P(A) = 0.3, P(B A) = 0.75, P(B A') = 0.20, P(C A ∩ B) = 0.20, P(C A' ∩ B') = 0.90. (a) Find P(A ∩ B ∩ C). (b) Find P(B' ∩ C). (c) Find P(C). (d) Find the probability that the river is polluted, given that fishing is permitted, a 	Nonsi	mokers		-
where H and NH in the table stand for $Hypertension$ and $Non-hypertension$, respect of these individuals is selected at random, find the probability that the person is a heavy smoker;	———— Н	21	36	30
If one of these individuals is selected at random, find the probability that the person (a) experiencing hypertension, given that the person is a heavy smoker; (b) a nonsmoker, given that the person is experiencing no hypertension. Pollution of the rivers in the United States has been a problem for many years. Co the following events: A: the river is polluted, B: a sample of water tested detects pollution, C: fishing is permitted. Assume $P(A) = 0.3, P(B \mid A) = 0.75, P(B \mid A') = 0.20, P(C \mid A \cap B) = 0.20,$ $P(C \mid A' \cap B) = 0.15, P(C \mid A \cap B') = 0.80, P(C \mid A' \cap B') = 0.90.$ (a) Find $P(A \cap B \cap C)$. (b) Find $P(B' \cap C)$. (c) Find $P(C)$.	NH	48	26	19
Pollution of the rivers in the United States has been a problem for many years. Co the following events: A: the river is polluted, B: a sample of water tested detects pollution, C: fishing is permitted. Assume $P(A) = 0.3, \ P(B \mid A) = 0.75, \ P(B \mid A') = 0.20, \ P(C \mid A \cap B) = 0.20, $ $P(C \mid A' \cap B) = 0.15, \ P(C \mid A \cap B') = 0.80, \ P(C \mid A' \cap B') = 0.90.$ (a) Find $P(A \cap B \cap C)$. (b) Find $P(B' \cap C)$. (c) Find $P(C)$. (d) Find the probability that the river is polluted, given that fishing is permitted, a	one of these i	ndividuals is sele	ected at random, find the proven that the person is a heav	bability that the person is y smoker;
C: fishing is permitted. Assume $P(A) = 0.3, \ P(B \mid A) = 0.75, \ P(B \mid A') = 0.20, \ P(C \mid A \cap B) = 0.20, \ P(C \mid A' \cap B) = 0.15, \ P(C \mid A \cap B') = 0.80, \ P(C \mid A' \cap B') = 0.90.$ (a) Find $P(A \cap B \cap C)$. (b) Find $P(B' \cap C)$. (c) Find $P(C)$. (d) Find the probability that the river is polluted, given that fishing is permitted, a	following eve he river is po	ents: lluted,		m for many years. Consid
(a) Find $P(A \cap B \cap C)$. (b) Find $P(B' \cap C)$. (c) Find $P(C)$. (d) Find the probability that the river is polluted, given that fishing is permitted, a	ume		$ A' = 0.20, P(C A \cap B) = 0.20$	20,
(b) Find $P(B'\cap C)$. (c) Find $P(C)$. (d) Find the probability that the river is polluted, given that fishing is permitted, a	$C(A' \cap B) = 0$	$0.15, P(C \mid A \cap B')$	$P(C \mid A' \cap B') = 0.80, P(C \mid A' \cap B') = 0.90$).
(c) Find $P(C)$. (d) Find the probability that the river is polluted, given that fishing is permitted, a	Find $P(A \cap B)$	∩ <i>C</i>).		
(c) Find $P(C)$. (d) Find the probability that the river is polluted, given that fishing is permitted, a				
(c) Find $P(C)$. (d) Find the probability that the river is polluted, given that fishing is permitted, a	-ind $P(B' \mid 0)$	J).		
(d) Find the probability that the river is polluted, given that fishing is permitted, a				
	-	-		ishing is permitted, and t

Name:	ID:			18/18
 6. Police plan to enforce speed limits by using radar traps at each of the location 40%, 30%, 20%, and 30% of the time. If a person whe probabilities of 0.2, 0.1, 0.5, and 0.2, respectively, what is the probability that she will receive a speeding the person received a speeding ticket on her way she passed through the radar trap located at L2? 7. A regional telephone company operates three in locations. During a one-year period, the number of metallic description. 	ons L_1 o is sport of paing tic to wo	cal re	and ng on h throu hat is	L ₄ will be operated her way to work has ugh these locations, the probability that
and the causes are shown below.	ianun	CCIOIIS	тсро	rica by cach station
Station	A	В	C	
Problems with electricity supplied (ES)	2	1	1	
Computer malfunction (CM)	4	3	2	
Malfunctioning electrical equipment (ME)	5	4	2	
Caused by other human errors (H)	7	7	5	
Suppose that a malfunction was reported, and it was errors. What is the probability that it came from sta			e cau	sed by other human