Reg. No.								

B.Tech. DEGREE EXAMINATION, DECEMBER 2022

Fourth and Fifth Semester

18EEO301T - SUSTAINABLE ENERGY

(For the candidates admitted from the academic year 2020-2021 and 2021 -2022)

Note:

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B should be answered in answer booklet.

ime	: 21/	2 Hours		Max.	Mai	rks:	75
		$PART - A (25 \times 1 = 25)$		Marks	BL	со	PO
	1.	Answer ALL Quest Diffused radiation	tions	1	1	1	1
		(A) Has no unique direction (B) (C) Has short wavelength as (D) compared to beam radiation					
	2.	What is the standard value of solar const	tant?	1	1	1	1
		(A) $1kW.m^2$ (B)	3) $1.367 kW / m^2$				
		(C) $1.5 kW.m^2$ (D)	$) 5kWm^2$				
	3.	A vertical angle between suns rays horizontal plane through the pint is	and a line perpendicular to the	1	1	1	1
		(A) Zenith angle (B	B) Solar azimuth angle D) Altitude angle				
	4.		cell is B) 1 V D) 0.5 V	1	1	1	1
	5.	In India the standard meridian crosses	<u> </u>	1	1	1	1
		(11) Denn	B) Calcutta D) Alagabhat				
	6.	(A) 0.55	ient of a wind turbine is 3) 0.59 0) 0.95	1	1	2	1
	7.	Wind turbine intended for generating states		1	1	2	1
		(A) Small rotor and be located in (E)					
		(C) Large rotor diameter and be (I mounted on the lower tower	D) Large rotor and be located in areas of high wind speed				

		1		1	2
	Darrieus type wind turbine is an example of (A) Vertical axis wind turbine (C) Radial turbine (B) Horizontal axis wind turbine (D) Axial wind turbine				
9.	How does the output power vary between cut in speed and the rated speed? (A) Cubically (B) Square (C) Linearly (D) Exponentially	1		1	2 1
10.	A wind turbine extracts maximum power from wind when the downstream wind speed reduces to	1	1	2	1
	(A) One third that of upstream (B) Half that of upstream wind wind (C) True third that of upstream (D) Zero		-		
11	(C) Two third that of upstream (D) Zero wind The composition of carbon dioxide in biogas is	1	1	3	1
11.	(A) $(10-30)\%$ (B) $(35-65)\%$				
	(C) (70-80)% (D) (0-5)%				
12.	digestion?	1	1	3	1
	(A) High temperature (B) Oxygen (C) pH value (Acidic) (D) Uniform feed rate				
13.	the absence of oxygen.	2	1	3	1
	(A) Pyrolysis (B) Energy forming (C) Photosynthesis (D) Cofiring				
14.	Biodiesel is (A) Obtained from formentation of (B) Obtained from purelysis	1	1	3	1
	 (A) Obtained from fermentation of (B) Obtained from pyrolysis sugars process (C) Exudates of plants (D) An upgraded vegetable oil 				
15.	Liquefiction of biomass is carried out at	1	1	3	1
	(A) High temperature and low (B) Relatively low temperature and pressure high pressure				
	(C) Relatively low temperature (D) Room temperature and high and normal pressure pressure				
16.	Difference in water levels between consecutive high tide and low tide is (A) Tidal movement (B) Tidal range (C) Tidal basin (D) Ebb tide	1	1	3	1
	The kinetic energy that results from the oscillation of water is called (A) Wave energy (B) Tidal energy (C) Ocean thermal energy (D) Hydro energy	1	1	3	1
18.	Compared to an open cycle system a closed cycle OTEC system (A) Has higher working pressure in (B) Has lower working pressure in boiler/turbine and lower boiler/turbine and higher specific volume of working fluid	1	1	4	1

	(C) Has higher working pressure in (D) Has boiler/turbine and higher boile specific volume of working specific fluid	er/turbine and lower rific volume of working				
19.	(A) 80°C (B) 40°C (C) 17°C (D) 27°C		1	1	4	1
20.	The minimum temperature difference between a practical heat engine is (A) 540°C (B) 120°		1	1	4	1
	(C) 10°C (D) 20°C					
21.	Which fuel cell has the lowest operating temper (A) PAFC (B) PEM (C) SOFC (D) MCF	IFC	1	1	5	1
22.	. For proper operation of a fuel cell the operating of the VI characteristics		1	1	5	1
	(A) In the low load region (B) In the (C) In the high load region (D) In a load	e middle near flat region ny region irrespective of				
23.	 (A) As primary energy source only (B) As an (C) Both as primary energy source (D) Neith as well as energy carrier source 	n energy carrier only ner as primary energy ne nor as energy carrier	1	1	5	1
24.	The most mature technology available for hydrogan (A) Liquid hydrogen storage at low (B) Meta		1	1	5	1
	temperature (C) Carbon nano tubes (D) Composteel	oressed hydrogen gas in tank or cylinder				
25.	Which one of the following is supplied to the cat (A) Hydrogen (C) Oxygen (D) Chlor		1	1	5	1
	PART – B (5 × 10 = 50 Marks) Answer ALL Questions		Marks	BL	co	PO
6. a.	A solar cell having an area of 100 cm^2 gives 3 power point and 0.5 V at maximum power at S short circuit current and 0.6 V open circuit volta power point of the solar cell? Also, find out the e	ge What is the maximum	10	3	1	2

b.	Explain the solar grid connected photovoltaic system for large scale power plant.	10	2		1
27. a.	Prove that the maximum power is generated from ideal horizontal axis	10	1	2	1
	wind turbine system is equal to $P_{\text{max}} = \frac{1}{2} [0.59] \rho A V i^3$.				
b.	(OR) With neat sketch, explain the types of generators used in HAWT.	10	1	2	1
28. a.	With neat sketch, explain how the power is generated in variable dome type gas plant.	10	1	3	1
b	(OR) With neat sketch, explain the various types of biomass plant.	10	1	3	1
29. a	Draw and explain with neat sketch about single basin tidal power plant.	10	1	4	1
	(OR)	10	1	4	Y
ь	Explain about the ocean thermal energy conversion with neat sketch.	10			
30. a	Describe with a neat sketch the fuel cell power plant.	10	1	5	1
	(OR)				
b	(i) Challenges and trends in fuel cell (ii) Applications of fuel cell	5 5	1	5	1
