Lecture 8. Perceptron & ANNs

COMP90051 Statistical Machine Learning

Semester 1, 2021 Lecturer: Trevor Cohn

This lecture

- Perceptron
 - Introduction to Artificial Neural Networks
 - The perceptron model
 - Stochastic gradient descent
- Multiple layer networks
 - Model structure
 - Universal approximation
 - Training preliminaries

The Perceptron Model

A building block for artificial neural networks, yet another linear classifier

Biological inspiration

- Humans perform well at many tasks that matter
- Originally neural networks were an attempt to mimic the human brain

Artificial neural network

- As a crude approximation, the human brain can be thought as a mesh of interconnected processing nodes (neurons) that relay electrical signals
- Artificial neural network is a network of processing elements
- Each element converts inputs to output
- The output is a function (called activation function) of a weighted sum of inputs

Outline

- In order to use an ANN we need (a) to design network topology and (b) adjust weights to given data
 - * In this subject, we will exclusively focus on task (b) for a particular class of networks called feed forward networks
- Training an ANN means adjusting weights for training data given a pre-defined network topology
- First we will turn our attention to an individual network element, before building deeper architectures

Perceptron model

Compare this model to logistic regression

- x_1 , x_2 inputs
- w_1 , w_2 synaptic weights
- w_0 bias weight
- f activation function

Perceptron is a linear binary classifier

Perceptron is a binary classifier:

Predict class A if $s \ge 0$ Predict class B if s < 0where $s = \sum_{i=0}^{m} x_i w_i$

Perceptron is a <u>linear classifier</u>: *s* is a linear function of inputs, and the decision boundary is linear

Exercise: find weights of a perceptron capable of perfect classification of the following dataset

x_1	x_2	y
0	0	Class B
0	1	Class B
1	0	Class B
1	1	Class A

Loss function for perceptron

- "Training": finds weights to minimise some loss. Which?
- Our task is binary classification. Encode one class as +1 and the other as -1. So each training example is now $\{x, y\}$, where y is either +1 or -1
- Recall that, in a perceptron, $s = \sum_{i=0}^{m} x_i w_i$, and the sign of s determines the predicted class: +1 if s > 0, and -1 if s < 0
- Consider a single training example.
 - * If y and s have same sign then the example is classified correctly.
 - st If y and s have different signs, the example is misclassified

Loss function for perceptron

- The perceptron uses a loss function in which there is no penalty for correctly classified examples, while the penalty (loss) is equal to s for misclassified examples*
- Formally:
 - * L(s, y) = 0 if both s, y have the same sign
 - * L(s, y) = |s| if both s, y have different signs
- This can be re-written as $L(s,y) = \max(0,-sy)$

^{*} This is similar, but not identical to another widely used loss function called *hinge loss*

Stochastic gradient descent

Randomly shuffle/split all training examples in B batches

- For j from 1 to B
- Do gradient descent update <u>using data from batch j</u>

 Advantage of such an approach: computational feasibility for large datasets

Perceptron training algorithm

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For i from 1 to T (epochs)

For j from 1 to N (training examples)

Consider example $\{x_j, y_j\}$

$$\underline{\mathsf{Update}}^*: \boldsymbol{w}^{(k++)} = \boldsymbol{w}^{(k)} - \eta \nabla L(\boldsymbol{w}^{(k)})$$

$$L(\mathbf{w}) = \max(0, -sy)$$

$$s = \sum_{i=0}^{m} x_i w_i$$

$$\eta \text{ is learning rate}$$

*There is no derivative when s=0, but this case is handled explicitly in the algorithm, see next slides

Perceptron training rule

- We have $\frac{\partial L}{\partial w_i} = 0$ when sy > 0
 - * We don't need to do update when an example is correctly classified
- We have $\frac{\partial L}{\partial w_i} = -x_i$ when y = 1 and s < 0
- We have $\frac{\partial L}{\partial w_i} = x_i$ when y = -1 and s > 0

• $s = \sum_{i=0}^{m} x_i w_i$

Perceptron training algorithm

When classified correctly, weights are unchanged

When misclassified:
$$\mathbf{w}^{(k+1)} = -\eta(\pm \mathbf{x})$$

($\eta > 0$ is called *learning rate*)

$$\begin{array}{ll} \underline{\text{If } y = 1, \, \text{but } s < 0} & \underline{\text{If } y = -1, \, \text{but } s \geq 0} \\ w_i \leftarrow w_i + \eta x_i & w_i \leftarrow w_i - \eta x_i \\ w_0 \leftarrow w_0 + \eta & w_0 \leftarrow w_0 - \eta \end{array}$$

Convergence Theorem: if the training data is linearly separable, the algorithm is guaranteed to converge to a solution. That is, there exist a finite K such that $L(\mathbf{w}^K) = 0$

Pros and cons of perceptron learning

- If the data is linearly separable, the perceptron training algorithm will converge to a correct solution
 - * There is a formal proof ← good!
 - * It will converge to some solution (separating boundary), one of infinitely many possible ← bad!
- However, if the data is not linearly separable, the training will fail completely rather than give some approximate solution
 - * Ugly 🕾

Basic setup

Start with random weights

Consider training example 1

Update weights

Consider training example 2

Update weights

Further examples

Further examples

Mini Summary

- Perceptron
 - Introduction to Artificial Neural Networks
 - * The perceptron model
 - Stochastic gradient descent

Multilayer Perceptron

Modelling non-linearity via function composition

Limitations of linear models

Some problems are linearly separable, but many are not

Possible solution: composition

$$x_1 \text{ XOR } x_2 = (x_1 \text{ OR } x_2) \text{ AND not}(x_1 \text{ AND } x_2)$$

We are going to compose perceptrons ...

Perceptron is sort of a building block for ANN

- ANNs are not restricted to binary classification
- Nodes in ANN can have various activation functions

$$f(s) = \begin{cases} 1, & if \ s \ge 0 \\ 0, & if \ s < 0 \end{cases}$$

$$f(s) = \begin{cases} 1, & if \ s \ge 0 \\ -1, & if \ s < 0 \end{cases}$$

Logistic function

$$f(s) = \frac{1}{1 + e^{-s}}$$

Many others: *tanh*, rectifier, etc.

Feed-forward Artificial Neural Network

 x_i are inputs, i.e., attributes

note: here x_i are components of a single training instance x

a training dataset is a set of instances

z_i are outputs, i.e., predicted labels

note: ANNs naturally handle multidimensional output

e.g., for handwritten digits recognition, each output node can represent the probability of a digit

ANN as function composition

$$z_k = h(s_k)$$

$$s_k = w_{0k} + \sum_{j=1}^p u_j w_{jk}$$

note that z_k is a function composition (a function applied to the result of another function, etc.)

here g, h are activation functions. These can be either same (e.g., both sigmoid) or different

you can add bias node $x_0 = 1$ to simplify equations: $r_j = \sum_{i=0}^m x_i v_{ij}$

similarly you can add bias node $u_0 = 1$ to simplify equations: $s_k = \sum_{j=0}^p u_j w_{jk}$

ANN in supervised learning

- ANNs can be naturally adapted to various supervised learning setups, such as univariate and multivariate regression, as well as binary and multilabel classification
- Univariate regression y = f(x)
 - e.g., linear regression earlier in the course
- Multivariate regression y = f(x)
 - predicting values for multiple continuous outcomes
- Binary classification
 - e.g., predict whether a patient has type II diabetes
- Multiclass classification
 - * e.g., handwritten digits recognition with labels "1", "2", etc.

The power of ANN as a non-linear model

- ANNs are capable of approximating plethora non-linear functions, e.g., $z(x) = x^2$ and $z(x) = \sin x$
- For example, consider the following network. In this example, hidden unit activation functions are tanh

The power of ANN as a non-linear model

• ANNs are capable of approximating various non-linear functions, e.g., $z(x) = x^2$ and $z(x) = \sin x$

Blue points are the function values evaluated at different x. Red lines are the predictions from the ANN.

Dashed lines are outputs of the hidden units

• Universal approximation theorem (Cybenko 1989): An ANN with a hidden layer with a finite number of units, and mild assumptions on the activation function, can approximate continuous functions on compact subsets of \mathbb{R}^n arbitrarily well

Mini Summary

- Multiple layer networks
 - * Model structure
 - * Universal approximation

Training ANNs

Using iterative SGD technique

How to train your dragon network?

 You know the drill: Define the loss function and find parameters that minimise the loss on training data

Adapted from Movie Poster from Flickr user jdxyw (CC BY-SA 2.0)

 In the following, we are going to use stochastic gradient descent with a batch size of one. That is, we will process training examples one by one

Training setup: univariate regression

- Consider regression
- Moreover, we'll use identity output activation function $z = h(s) = s = \sum_{j=0}^{p} u_j w_j$
- This will simplify description of backpropagation. In other settings, the training procedure is similar

Loss function for ANN training

- Need loss between training example $\{x, y\}$ & prediction $\hat{f}(x, \theta) = z$, where θ is parameter vector of v_{ij} and w_j
- As regression, can use squared error

$$L = \frac{1}{2} (\hat{f}(x, \theta) - y)^2 = \frac{1}{2} (z - y)^2$$

(the constant is used for mathematical convenience, see later)

- Decision-theoretic training: minimise L w.r.t $oldsymbol{ heta}$
 - * Fortunately $L(\theta)$ is differentiable
 - Unfortunately no analytic solution in general

Stochastic gradient descent for ANN

Choose initial guess $\boldsymbol{\theta}^{(0)}$, k=0

Here $oldsymbol{ heta}$ is a set of all weights form all layers

For i from 1 to T (epochs)

For j from 1 to N (training examples)

Consider example $\{x_j, y_j\}$

Update: $\theta^{(k+1)} = \theta^{(k)} - \eta \nabla L(\theta^{(k)}); k \leftarrow k+1$

$$L = \frac{1}{2} \left(z_j - y_j \right)^2$$

Need to compute partial derivatives $\frac{\partial L}{\partial v_{ij}}$ and $\frac{\partial L}{\partial w_{i}}$

Summary

- Perceptron
 - Introduction to Artificial Neural Networks
 - The perceptron model
 - Training algorithm
- Multiple layer networks
 - Model structure
 - Universal approximation
 - Training preliminaries
- Next lecture: Backprop training