NTIN071 A&G: CVIČENÍ 8 – PUMPING LEMMA PRO BEZKONTEXTOVÉ JAZYKY

Cíle výuky: Po absolvování student umí

- uvést formální znění Pumping lemmatu pro bezkontextové jazyky
- vysvětlit důkaz Pumping lemmatu pro bezkontextové jazyky
- použít Pumping Lemma k důkazu, že daný jazyk není bezkontextový

PŘÍKLADY NA CVIČENÍ

Příklad 1 (Pumping lemma: formulace a důkaz). (a) Zformulujte Pumping lemma pro bezkontextové jazyky (bez nahlížení do poznámek).

- (b) Srovnejte formulaci s verzí pro regulární jazyky.
- (c) Vysvětlete myšlenku důkazu.
- (d) Demonstrujte pumpování na jazyce $L = \{ww^R \mid w \in \{a, b\}^*\}.$

Příklad 2 (Pumping lemma: aplikace). Rozhodněte, zda jsou následující jazyky bezkontextové. Dokažte správnost vaší odpovědi.

- (a) $L = \{0^i 1^j 0^i \mid i, j \ge 0\}$
- (b) $L = \{0^i 1^j 0^i \mid 0 \le i \le j\}$
- (c) $L = \{0^i 1^j 2^k \mid 0 \le i \le j \le k\}$
- (d) $L = \{ww \mid w \in \{0, 1\}^*\}$
- (e) $L = \{ww^R \mid w \in \{0, 1\}^*, |w|_0 = |w|_1\}$
- (f) $L = \{1^{n^2+n+1} \mid n \ge 0\}$

K procvičení a k zamyšlení

Příklad 3 (Pumpování a pravé lineární gramatiky). Uveďte alternativní důkaz Pummping lemmatu pro regulární jazyky, který je založený na derivacích z pravé lineární gramatiky.

Příklad 4 (Pumpování lineárních jazyků). Připomeňme, že gramatika je *lineární*, pokud obsahuje pouze pravidla tvaru $A \to uBw$ a $A \to w$, kde $A, B \in V$ a $u, w \in T^*$.

- (a) Zformulujte Pumping lemma pro lineární jazyky.
- (b) Dokažte toto tvrzení pomocí odvození (redukovanou) lineární gramatikou.
- (c) Jak souvisí n z tvrzení s lineární gramatikou pro daný jazyk?
- (d) Ukažte, že jazyk $L = \{w \in \{0,1\}^* \mid |w|_0 = |w|_1\}$ není lineární.
- (e) Zařaďte jazyk L do Chomského hierarchie.

Příklad 5 (Pumping lemma: aplikace). Rozhodněte, zda jsou následující jazyky bezkontextové. Dokažte správnost vaší odpovědi.

- (a) $L = \{0^i 1^i \mid i \ge 0\}$
- (b) $L = \{0^i 1^j 0^i \mid 0 \le j \le i\}$
- (c) $L = \{0^i 1^i 2^i \mid i \ge 0\}$
- (d) $L = \{0^{2i}1^{3i}0^i \mid i \ge 0\}$
- (e) $L = \{ww^R \mid w \in \{0, 1\}^*\}$
- (f) $L = \{1^{n^2} \mid n \ge 0\}$
- (g) $L = \{1^p \mid p \text{ je prvočíslo}\}$
- (h) $L = \{0^i 1^j \mid 0 \le i \le j^2\}$