(4)

AV213: Network Analysis

Total Marks 15. Approach towards solving a problem is as important as the final answer. Each step should be shown clearly. All the best

1) Prove the following theorems of Laplace Transforms:

$$\lim_{s \to \infty} sF(s) = \lim_{t \to 0+} f(t) \quad \text{and} \quad \lim_{s \to 0} sF(s) = \lim_{t \to \infty} f(t)$$

2) Find out Laplace transform of f(t), a periodic waveform, shown in Figure 1. (5)

Figure 1: Part of a periodic waveform.

- 3) For the network shown in Figure 2, the Sw (after being closed for a long time) is opened at t=0. Given: $I_{in}=2\cos t$ A, $L_1=1$ H, $R_1=1\Omega$, $R_2=1\Omega$ and $C_1=0.5$ F. Find the expression of $i_{load}(t)$ for $t\geq 0$ and evaluate its value at $t=\pi$ secs for the following two cases:
 - Z_{load} being a resistance (R_{load}) of 1Ω .
 - Z_{loud} being a parallel combination of resistance (R_{load}) and inductance (L_{load}) of 1Ω and 1H respectively.

Figure 2: Switched RLC network.