

Listado 4: Conjuntos li y ld, base y dimensión de espacios vectoriales. Los problemas marcados con (P) serán resueltos en práctica.

- 1. Encuentre un número $a \in \mathbb{R}$ de modo que el siguiente conjunto de vectores del e.v. real \mathbb{R}^3 sea ld $\{(1,2,3)^{\mathrm{T}},(3,2,1)^{\mathrm{T}},(5,1,a)^{\mathrm{T}}\}.$
- 2. Demuestre que los siguientes conjuntos son li (considere como cuerpo a \mathbb{R}).
 - (a) **(P)** $B = \{x^3, x^2 1, x 1\}$

(c) (es ld) $B = \{(1,0,0)^{\mathrm{T}}, (0,1,1)^{\mathrm{T}}, (1,1,1)^{\mathrm{T}}\},\$

(b) $B = \{(2, 1, 3)^{\mathrm{T}}, (2, 1, -2)^{\mathrm{T}}\}\$

(d) $B = \{1, x - 1, (x - 1)(x - 2)\}.$

¿Es el primero una base de $\mathcal{P}_3(\mathbb{R})$? ¿Son el segundo y el tercero bases de \mathbb{R}^3 ? ¿Es el último una base de $\mathcal{P}_2(\mathbb{R})$? Justifique sus respuestas. Si su respuesta es negativa, complete los conjuntos a bases de los espacios correspondientes.

- 3. Considere los siguientes espacios vectoriales V sobre el cuerpo \mathbb{K} indicado. Determine una base para cada uno de los siguientes subespacios vectoriales U de V.
 - (a) $V = \mathbb{R}^3$, $\mathbb{K} = \mathbb{R}$, $U = \{(x, y, z) \in V : x = y\}$,
 - (b) $V = \mathbb{C}^2$, $\mathbb{K} = \mathbb{R}$, $U = \{(x, y) \in V : x + \overline{y} = 0\}$,
 - (c) $V = \mathbb{C}^2$, $\mathbb{K} = \mathbb{R}$, $U = \{(x, y) \in V : \operatorname{Re}(x) = \operatorname{Re}(y)\}$,

Determine las coordenadas de los siguientes vectores de cada s.e.v. U con respecto a la base encontrada

(a)
$$u = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$
, (b) $u = \begin{pmatrix} i \\ i \end{pmatrix}$, (c) $u = \begin{pmatrix} i \\ -i \end{pmatrix}$.

- 4. Muestre que el conjunto de vectores de \mathbb{R}^2 $\left\{ \left(2 + \sqrt{3}, 1 + \sqrt{3}\right)^T, \left(1, -1 + \sqrt{3}\right)^T \right\}$ es ld si se considera a \mathbb{R}^2 un e.v. real, pero es li si se considera a \mathbb{R}^2 un e.v. sobre \mathbb{Q} .
- 5. Demuestre que los siguientes conjuntos son ld y encuentre en cada caso un conjunto li que genere el mismo subespacio (considere como cuerpo a \mathbb{R}).
 - (a) $B = \{x^3 + x^2 + x, x^2 + 1, x 1, x^3\},\$
 - (b) **(P)** $B = \{(1,1,0)^{\mathrm{T}}, (0,1,1)^{\mathrm{T}}, (1,1,1)^{\mathrm{T}}, (2,5,3)^{\mathrm{T}}, (5,3,1)^{\mathrm{T}}\}.$
- 6. Demuestre que el conjunto $B = \{2 i, 1 2i\}$ es li considerando a \mathbb{C} como e.v. sobre \mathbb{R} , pero es ld considerando a \mathbb{C} como e.v. sobre \mathbb{C} .
- 7. Demuestre que los siguientes pares de conjuntos generan el mismo subespacio vectorial.

(a)
$$A = \{(1, 2, 0)^{\mathrm{T}}, (2, 1, 2)^{\mathrm{T}}\}\ y\ B = \{(3, 3, 2)^{\mathrm{T}}, (-1, 1, -2)^{\mathrm{T}}, (1, 5, -2)^{\mathrm{T}}\}.$$

(b)
$$A = \{x^2 + 1, 1 + x, x^3\}$$
 y $B = \{x^3 + x^2 + 1, x^3 + x + 1, x^3\}$.

En ambos casos el conjunto A es li. Reduzca, de ser necesario, a B a una base C de $\langle A \rangle$ y complete ambos conjuntos $(A \ y \ C)$ a una base de \mathbb{R}^3 y $\mathcal{P}_3(\mathbb{R})$ respectivamente.

- 8. Considere los subespacios vectoriales W_1 y W_2 de los espacios vectoriales V indicados. De cada uno de ellos
 - determine base y dimensión,
 - analice si $W_1 + W_2 = V$ y, de no cumplirse la igualdad, determine W_3 de modo que $(W_1 + W_2) + W_3 = V$,
 - determine si $W_1 + W_2$ es suma directa.

(a) (P)
$$V = \mathcal{P}_3(\mathbb{R})$$
 sobre \mathbb{R} , $W_1 = \{ p \in V : p \text{ es par } \}, W_2 = \{ p \in V : p(1) = 0 \},$

(b)
$$V = \mathbb{R}^3$$
 sobre \mathbb{R} , $W_1 = \{(x, y, z)^T \in V : 2x + z = 0\}, W_2 = \langle \{(1, 0, 0)^T\} \rangle$.

9. Considere el espacio vectorial real \mathbb{C}^2 . Sean

$$\mathcal{B}_U = \{(-i, 2+2i)^{\mathrm{T}}, (-2+i, 0)^{\mathrm{T}}\}$$
 y $\mathcal{B}_W = \{(-1, 1+i)^{\mathrm{T}}, (i, -i)^{\mathrm{T}}\},$

bases de los subespacios vectoriales de \mathbb{C}^2 , U y W, respectivamente.

- (a) Encuentre una base para U + W.
- (b) ¿Es $U + W = \mathbb{C}^2$? Justifique su respuesta.
- (c) ¿Es U+W una suma directa? Justifique su respuesta.
- 10. (P) Sean V un \mathbb{K} -e.v., $B = \{v_1, v_2, v_3, v_4\}$, un conjunto li de vectores en V y $w \in V$. Demuestre que si el conjunto $\{v_1 + w, v_2 + w, v_3 + w, v_4 + w\}$ es ld entonces $w \in \langle B \rangle$.
- 11. Sean V un \mathbb{K} -e.v. y $B=\{v_1,v_2,v_3,v_4\}$, un conjunto li de vectores de V. Demuestre que el conjunto $\{v_1-2v_2,v_2,v_3,v_4\}$ es li.
- 12. Sean V un \mathbb{K} -e.v. y $B = \{v_1, v_2, v_3, v_4\}$, un conjunto li de vectores de V. Demuestre que el conjunto $\{v_1 v_2, v_2 v_3, v_3 v_4, v_4\}$ es li.
- 13. Sean V un \mathbb{K} -e.v. y $B=\{v_1,v_2,v_3\}$, un conjunto li de vectores de V. ¿Para qué valores de $\alpha\in\mathbb{K}$ se cumple que el conjunto $\{v_2-v_1,\alpha v_3-v_2,v_1-v_3\}$ es li? Justifique su respuesta.
- 14. Sean V un \mathbb{K} -e.v., $\{v_1, v_2, v_3\}$, un conjunto ld de vectores de V y $\{v_2, v_3, v_4\}$, un conjunto li de vectores de V. Muestre que entonces v_1 es combinación lineal de v_2 y v_3 . Muestre también que v_4 no es combinación lineal de v_1 , v_2 y v_3 .
- 15. Sea $B = \{p_0, p_1, p_2, p_3\} \subset \mathcal{P}_3(\mathbb{R})$ tal que $p_j(5) = 0$ para todo $j \in \{0, 1, 2, 3\}$. Demuestre que B es ld.
- 16. Suponga que $S = \{v_1, \dots, v_n\}$ es un conjunto li de vectores en un \mathbb{K} -espacio vectorial V. Decida si los siguientes conjuntos son li. Justifique sus respuestas.

- (a) $\{v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n, v_n v_1\},\$
- (b) $\{v_1, v_1 + v_2, v_1 + v_2 + v_3, \dots, v_1 + v_2 + \dots + v_{n-1}, v_1 + v_2 + \dots + v_n\},\$
- (c) $S \setminus \{v_i\}$, siendo v_i un elemento cualquiera de S.
- 17. Suponga que $S = \{v_1, \dots, v_n\}$ es base de un \mathbb{K} -espacio vectorial V. Decida si los siguientes conjuntos son base de V. Justifique sus respuestas.
 - (a) $\{v_1-v_2, v_2-v_3, \dots, v_{n-1}-v_n, v_n-v_1\},\$
 - (b) $\{v_1, v_1 + v_2, v_1 + v_2 + v_3, \dots, v_1 + v_2 + \dots + v_{n-1}, v_1 + v_2 + \dots + v_n\},\$
 - (c) $S \setminus \{v_i\}$, siendo v_i un elemento cualquiera de S.

En los casos en que el conjunto sea base de V determine las coordenadas de $u, v \in V$ con respecto a él siendo u y v los vectores que satisfacen

$$[u]_S = \begin{pmatrix} 1\\1\\\vdots\\1\\1 \end{pmatrix}, \qquad [v]_S = \begin{pmatrix} 1\\0\\\vdots\\0\\0 \end{pmatrix}$$

18. Considere el espacio vectorial real $\mathcal{P}_{2n}(\mathbb{R})$ de los polinomios de grado menor o igual que 2n, $n \in \mathbb{N}$, con coeficientes reales con las operaciones usuales de suma de polinomios y producto por un escalar real. Sea además U el subespacio vectorial de $\mathcal{P}_{2n}(\mathbb{R})$ que satisface

$$U = \left\{ p \in \mathcal{P}_{2n}(\mathbb{R}) : p(x) = \sum_{i=0}^{n-1} a_i x^i + a_n x^n + \sum_{i=0}^{n-1} a_i x^{2n-i} \right\}.$$

Note que los polinomios en U son tales que $\forall j \in \{0, 1, \dots, n-1\}$ el coeficiente de x^j es igual al de x^{2n-j} , es decir, el término independiente es igual al coeficiente de x^{2n} , el coeficiente de x es igual al de x^{2n-1} y así sucesivamente.

- (a) Determine ua base para U.
- (b) Muestre que $U \oplus \mathcal{P}_{n-1}(\mathbb{R}) = \mathcal{P}_{2n}(\mathbb{R})$.
- 19. Analice si las siguientes afirmaciones son verdaderas o falsas. Justifique sus respuestas.
 - Si V es un \mathbb{K} -e.v. de dimensión n, entonces todo conjunto li con n vectores de V es base de V.
 - Si V es un \mathbb{K} -e.v. de dimensión n, y S es un conjunto con n vectores de V que genera a V, entonces S es base de V.
 - (P) Si $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ es base de V, entonces $\langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle = V$.
 - (P) Si \mathcal{B} es base de V y $\mathcal{B}_1 \subseteq \mathcal{B}$, entonces $\langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B} \setminus \mathcal{B}_1 \rangle = V$.
- 20. Muestre que si $\mathcal{B}_1 = \{v_1, v_2, \dots, v_n\}$ es una base de un \mathbb{K} -espacio vectorial V, entonces $\mathcal{B}_2 = \{a_1v_1, a_2v_2, \dots, a_nv_n\}$ también lo es si y solo si a_1, a_2, \dots, a_n son escalares distintos de cero. Determine las coordenadas de $v_1 + 2v_2 + \dots + nv_n$ con respecto a \mathcal{B}_1 y con respecto a \mathcal{B}_2 .