전력 품질 개선을 통한 비용 절약 및 장비 수명 연장

2021.09

정상훈

목차

- 1. 프로젝트 일정관리
- 2. 프로젝트 목적
- 3. 프로젝트 데이터 및 개발환경
- 4. 프로젝트 수행
- 5. 결론

1. 프로젝트 일정 관리

4.1 일정

일정

2. 프로젝트 목적

전력품질 관리

- 전력 품질의 중요성
 - 좋지않은 품질의 전력 -> 설비에 고조파 발생 -> 기기 고장 -> -> 설비 수명감소, 설비 고장시간 증가, 작업장 안정도 감소
 - 좋은 품질의 전력 -> <mark>공장의 효율성 극대화</mark>

^{*} 고조파 : 고조파(harmonics)는 기본 진동수를 기준으로 그 진동수의 정수배가 되는 파동들을 의미한다.

전기 비용 절감

- 한전의 전기공급약관 제5장 43조

: 시간대별 역률에 따른 요금의 추가 또는 감액 규정

ex) 09시 ~ 23시 : 90% -95% 사이일 경우 1%당 0.2%감액

: 60% - 90% 사이일 경우 1%당 0.2% 가액

23시 ~ 다음날 09시 : 95%이하의 경우 1%당 0.2%가액

• 역률: 유효전력/피상전력

3. 프로젝트 데이터 및 개발환경

데이터(AI HUB 학습용 데이터)

- 데이터를 센서를 통해 1분 간격으로 설비 데이터 약 4개월간 수집

	220v 직기 1 열~5 개수	3호기 S EC 1 개수	3호기 S EC2 개수	3호기 SEC3 개 수	4호기 SEC1 개 수	4호기 S EC 2 개수	4호기 SEC3 개 수	AC motor PLC part 개수	A동-A직 기 Main 개수	B동 Main 개수	B동 축 소기 개 수	B등 검사 기 개 수	C동 MAIN 개수	세정기 26K-160 개수
0	37	28	28	28	28	28	28	16	14	27	12	14	19	15
1	TENTER1호 개수	TENTER3호 개수	TENTER4호 개수	TR7 MAIN 575V 개 수	가스스크 러버 개 수	검단기 개 수	직기3 개 수	직기4 개수	직기5 개 수	직기6 개수	직기7호 기하 개 수	직기8 호기 상 개 수	직기8호기 하 개수	수분제 거기_1 개수
2	16	16	16	35	7	34	32	32	32	32	23	23	23	30
3	겐트리 개수	고주파발생 기_1 개수	고주파발생 기_2 개수	교정기 개 수	니더기1 호 개수	다이아1,2,3 호기 냉각 수 개수	다이아코 팅 냉각수 2 개수	드라이기 개수	믹서기_2 개수	믹서기 _3 개수	버닝수 세기 개 수	사처 리 개 수	서포트 라 인 로봇메 인 개수	수분제 거기_2 개수
4	27	44	30	31	24	15	15	32	30	30	19	27	25	30
5	용접라인 메 인 개수	우측메인 개 수	인버터 개수	인버터1 동력 개수	인쇄실 Main 개 수	자동창고 개수	정수기펌 핑 개수	좌측메인 개수	지거7호승 무상압지 거 개수	직기 1 개수	및기1호 기상 개 수	직기1 호기 하 개 수	직기2 개수	스카챠1 호 개수
6	25	12	32	17	14	33	32	11	19	32	23	23	32	15
7	C동라인 설비 SL-1 개수	NO1 정유기 개수	NO2 정유기 개수	NO3 정유 기 개수	NO4 정 유기 개 수	NO5 정유 기 개수	쿨링타워 개수	크레인 전 원 개수	퍼블기 개 수	펌프 개 수	폐수 Main 개 수	호이 스트 개수	세정기 26K-070 개수	스카챠2 호 개수
8	9	16	16	16	16	16	20	25	17	63	20	32	15	10

개발환경

	OS	Window 10 Pro
7UHF	Language	Python 3.9.6
개발 환경	Tool	Anaconda jyputer notebook
	Open Source	Tensorflow 2.5.0, Selenium 3.3.4, Matplotlib 3.3.4 Seaborn

4. 프로젝트 수행

- 가동비가동구분 및시각화
- 전력품질 데이터 머신러닝
- 설비역율개선시효과

4-1 가동 비가동 구분 및 시각화

가동, 대기, 비가동 구분의 원칙적 기준

가동

전류 정격의 80% 이상

대기

전류 정격의 10% - 80%

비가동

전류 정격의 10% 이하

가동 비가동 시간대 임의 구분 근거

- 261번 설비의 전류평균 그래프(2021-01-22)

측정전류 = 24A 정격전류 = 56.67A (38000/(1.7*380))

히스토그램을 사용해 임의로 구분하기로 함

가동 비가동 시간대 구분(히스토그램)

가동기간 선간전압 평균 그래프

가동기간 전압고조파평균 그래프

가동기간 전류고조파평균 그래프

가동기간 유효전력평균 그래프

가동기간 무효전력평균 그래프

가동기간 주파수그래프

4-2 전력품질 데이터 머신러닝

전력품질 데이터 머신러닝 Y축 기준

정상 역률 80% 이상 주의 역률 60% - 80% 경고 역률 60% 이하

*정상: 전력 품질 데이터가 정상인 상태

주의: 전력 품질데이터가 한전기준 이상으로 높아지거나 낮아질 경우 경고: 전력 품질데이터가 한전기준 보다 과도하게 높아지거나 낮은 경우

전력품질 데이터 머신러닝 X축 기준

x축 기준	근거
전압	전기사업법시행규칙 제18조(우리나라의 전기 품질 기준) 110±6V, 220±13V, 380±38V
주파수	전기사업법시행규칙 제18조(우리나라의 전기 품질 기준) 60±0.2Hz
전압고조파	전압 전류 왜형률에 따른 분류(슈나이더 일렉트릭)
전류고조파	전압 전류 왜형률에 따른 분류(슈나이더 일렉트릭)
유효전력	역률
무효전력	역률

* 왜형률 $THD = \frac{\sqrt{{V_2}^2 + {V_2}^2 + \dots + {V_n}^2}}{V_1}$

^{*} 역률 ->유효/피상 전력

머신러닝 결과

X = 유효전력, 무효전력, 주파수, 전압, 전류고조파, 전압고조파 Y = 정상, 주의, 경고

epochs

정확도: 0.9518

^{0.75} Val_loss: 1.6054

4-3 설비 역률 개선시 효과

역률 그래프(2021-01-22)

전기요금 계산

261번 설비의 데이터는 한달정도 -> 추가적인 가정을 통해 계산 진행

간편한 요금절감 계산을 위한 가정

가정1

요금용 전력을 측정기간동안의 최대 수요전력이라 가정

가정2

요금계산용 역률을 측정기간 동안의 평균역률이라 가정

가정3

공장내 이 설비 외 전기를 소비하는 다른 제품들이 없다고 가정

가정4

제 5장 43조와 무관하게 모든 시간에 09-23시 사이 규정 적용

가정5

경부하 중간부하 최대부하는 총부하에서 그 시간의 비를 이용

가정6

계약전력 초과 부분은 고려하지 않음

최대수요전력, 전력량, 역률

히	목	값
구	분	산업용(을)2 고압A(날짜: 1월로 간주)
최대수	요전력	약 240kw(12kw)
	총합	5929kwh
거려라	경부하	2470kwh
전력량	중간부하	1976kwh
	최대부하	1482kwh
역	물	0.597

- 모든 계산 과정은 소수점 절삭
- 최대수요전력: 15분 평균전력 중 가장 높은 전력
- 12월 1월

경부하 23:00~09:00 (10)

중간부하 09:00~10:00 12:00~17:00 20:00~22:00(8)

최대부하 10:00~12:00 17:00~20:00 22:00~23:00(6)

전기요금표

산업용(을)

광업, 제조업 및 기타사업에 전력을 사용하는 계약전력 300kW 이상의 고객에게 적용

7	ы	기본요금 (원/kW)	전력량 요금(원/kWh)						
7	분		시간대	여름철(6~8월)	봄·가을철(3~5,9~10월)	겨울철(11~2월)			
		7,220	경부하	56,6	56,6	63,6			
	선택 1		중간부하	109,5	79,1	109.7			
			최대부하	191,6	109,8	167.2			
	선택 II	8,320	경부하	51,1	51,1	58.1			
고압A			중간부하	104,0	73,6	104.2			
			최대부하	186,1	104,3	161.7			
	선택 III	9,810	경부하	50,2	50,2	57.5			
			중간부하	103,4	72,3	103,6			
			최대부하	173,7	96,0	150,5			

전기요금 계산

ō	목	값
기본요금		8320 * 240 = 1,996,800 원
	경부하	2470 * 58.1 = 143,507 원
전력량	중간부하	1976 * 104.2 = 205,899원
요금	최대부하	1482 * 161.7 = 239,639원
	총합	2,585,845 원
역률로 인한 추가요금		2,585,845(1+0.06) = 2,740,995원 (155,150원 추가)
역률조정시	절감비용	2,585,845*0.07 = <mark>181,009 원(7%절감)</mark>

• 역률 계산(추가요금용) : (90-60)*0.2 = 6%

• 95% 유지시 절감 : (95-60)*0.2 = 7%

5. 결론

프로젝트 결론

프로젝트	결 론
전력품질	머신러닝 정확도: 95% 기준이 존재하는 데이터들에 머신러닝을 활용해 아쉬움이 남음
역률개선	(가동중일 경우) - 계약전력을 낮출 필요가 있다 추가적인 개선을 위해 설비가 사용하는 전력의 낮은 역률을 보상하기 위한 동기전동기, SVC, 전력용 커패시터 등이 필요 - 역률 개선을 위한 장비 추가 최적점을 계산하고 싶었으나 데이터의 한계로 수행하지 못함 (가동중이 아닐 경우) - 설비를 대기상태로 둘 필요가 없으니 off하는 것이 설비수명과 비용면에서 좋을 것이다

출처

- -https://cyber.kepco.co.kr/ckepco/front/jsp/CY/D/C/CYDCHP00105.jsp
- -https://blog.kepco.co.kr/1825
- -https://www.youtube.com/watch?v=b84pRtFbXbc&t=944s
- -https://naverkpsdictionary.miraheze.org/wiki/%EA%B3%A0%EC%A1%B0%ED%8C%8C
- -https://ko.wikipedia.org/wiki/%EC%97%AD%EB%A5%A0
- -https://gritmind.blog/2020/12/21/python_technique/
- -https://junpyopark.github.io/Jupyter_Extension/
- -https://gammabeta.tistory.com/1434

감사합니다