CMIP6 Model Documentation

Institute: CNRM-CERFACS Model: CNRM-CM6-1

Topic: ocean

Doc. Generated:2020-04-08Doc. Seeded From:Spreadsheet

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	13
4	Advection	16
5	Lateral Physics	19
6	Vertical Physics	24
7	Uplow Boundaries	29
8	Boundary Forcing	31

1 Key Properties

Ocean key properties

1	.1	L.1	. T	qo	level	$^{ m l}$ pro	pert	ies
---	----	-----	-----	----	-------	---------------	------	-----

Ocean	key	properties
-------	-----	------------

1.1.1.1 Name *

 $Name\ of\ ocean\ model\ code$

Nucleus for European Modelling of the Ocean version $3.2~(\mathrm{OPA})$

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ ocean\ model\ code$

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of ocean model.

Enter TEXT:

1.1.1.4 Model Family *

 $Type\ of\ ocean\ model.$

\boxtimes	OGCM
	Slab ocean
	Mixed layer ocean
	Other - please specify:

1.1.1.5 Basic Approximations *

Basic approximations made in the ocean.

\boxtimes	Primitive equations
	Non-hydrostatic
\boxtimes	Boussinesq
	Other - please specify:

1.1.1.6 l	Prognostic Variables *
List of pro	$gnostic\ variables\ in\ the\ ocean\ component.$
\boxtimes	Potential temperature
	Conservative temperature
\boxtimes	Salinity
\boxtimes	U-velocity
\boxtimes	V-velocity
	W-velocity
	SSH - Sea Surface Height
	Other - please specify:
	eawater Properties properties of seawater in ocean
1.2.1.1 l	Eos Type *
Type of E	OS for sea water
Select	SINGLE option:
	Linear
	Wright, 1997
	Mc Dougall et al.
	Jackett et al. 2006
	TEOS 2010
	Other - please specify:
	Eos Functional Temp * re used in EOS for sea water
Select	SINGLE option:
	Potential temperature
	Conservative temperature
	Eos Functional Salt * sed in EOS for sea water
Select	SINGLE option:

	Practical salinity Sp
	Absolute salinity Sa
	Eos Functional Depth * pressure used in EOS for sea water ?
Selec	et SINGLE option:
	Pressure (dbars)
	Depth (meters)
1.2.1.5	Ocean Freezing Point *
	used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure
	TEOS 2010
	Other - please specify:
	eat in ocean (cpocean) in $J/(kg\ K)$ r FLOAT value:
1.2.1.7	Ocean Reference Density *
Boussines	sq reference density (rhozero) in kg / m3
Ente	r FLOAT value:
	Bathymetry jes of bathymetry in ocean
1.3.1.1	Reference Dates *
Reference	date of bathymetry
\boxtimes	Present day
	21000 years BP
	6000 years BP
	LGM - Last Glacial Maximum
	Pliocene
	Other - please specify

1.3.1.2 Type *
Is the bathymetry fixed in time in the ocean?
☐ False
1.3.1.3 Ocean Smoothing *
$Describe \ any \ smoothing \ or \ hand \ editing \ of \ bathymetry \ in \ ocean$
Enter TEXT:
1.3.1.4 Source *
Describe source of bathymetry in ocean
Enter TEXT:

1.4.1 Nonoceanic Waters

Non oceanic waters treatement in ocean

1.4.1.1 Isolated Seas

Describe if/how isolated seas is performed

Yes

1.4.1.2 River Mouth

Describe if/how river mouth mixing or estuaries specific treatment is performed

Kz increase near river mouth (top 20 m)

1.5.1 Software Properties

 $Software\ properties\ of\ ocean\ code$

1.5.1.1 Repository

Location of code for this component.

Enter TEXT:

1.5.1.2 Code Version

 $Code\ version\ identifier.$

Enter TEXT:

1.5.1.3 Code Languages

 $Code\ language(s).$

Enter COMMA SEPARATED list:

1.6.1 Resolution

Resolution in the ocean grid

1.6.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

1.6.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

Enter TEXT:

1.6.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.

Enter TEXT:

1.6.1.4 Number Of Horizontal Gridpoints *

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

Enter INTEGER value:

1.6.1.5 Number Of Vertical Levels *

Number of vertical levels resolved on computational grid.

Enter INTEGER value:

1.6.1.6 Is Adaptive Grid *

Default is False. Set true if grid resolution changes during execution.

1.6.1.7 Thickness Level 1 *

 $Thickness\ of\ first\ surface\ ocean\ level\ (in\ meters)$

Enter FLOAT value:

1.7.1 Tuning Applied

Tuning methodology for ocean component

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ (e.g\ THC,\ AABW,\ regional\ means\ etc)\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.7.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

1.8.1 Conservation

Conservation in the ocean component

1.8.1.1 Description *

Brief description of conservation methodology

Enter TEXT:

1.8.1.2 Scheme *

Pr

operties	s conserved in the ocean by the numerical schemes		
Select MULTIPLE options:			
	Energy		
	Enstrophy		
	Salt		
	Volume of ocean		
	Momentum		
	Other - please specify:		

1.8.1.3 Consistency Properties
$Any \ additional \ consistency \ properties \ (energy \ conversion, \ pressure \ gradient \ discretisation, \ \ldots)?$
Enter COMMA SEPARATED list:
1.8.1.4 Corrected Conserved Prognostic Variables
Set of variables which are conserved by *more* than the numerical scheme alone.
Enter COMMA SEPARATED list:
1.8.1.5 Was Flux Correction Used
Does conservation involve flux correction ?
Select either TRUE or FALSE:
☐ True ☐ False

2 Grid

 $Ocean\ grid$

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ ocean\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ ocean\ model.$

Enter TEXT:

2.1.2 Vertical

Properties of vertical discretisation in ocean

2.1.2.1 Coordinates *

Type of vertical coordinates in ocean

Select SINGLE option:		
	Z-coordinate	
	Z*-coordinate	
	S-coordinate	
	Isopycnic - sigma 0 - Density referenced to the surface	
	Isopycnic - sigma 2 - Density referenced to 2000 m $$	
	Isopycnic - sigma 4 - Density referenced to 4000 m $$	
	Isopycnic - other - Other density-based coordinate	
	Hybrid / $Z+S$	
	Hybrid / Z+isopycnic	
	Hybrid / other	
	Pressure referenced (P)	
	P*	
	Z**	

	Other - please specify:
2.1.2.2	Partial Steps *
Using pa	rtial steps with Z or Z^* vertical coordinate in ocean \S
Sele	ct either TRUE or FALSE:
	True False
2.1.3	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizont	al grid type
Sele	ct SINGLE option:
	Lat-lon
	Rotated north pole
	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizont	al grid staggering type
Sele	ct SINGLE option:
	Arakawa B-grid
	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
Horizont	al discretisation scheme in ocean
Sele	ct SINGLE option:
	Finite difference
	Finite volumes
	Finite elements

Unstructured grid
Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

Commonly used name for the timestepping framework in ocean model.

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Enter TEXT:

3.1.1.3 Diurnal Cycle *

 $Diurnal\ cycle\ type$

Select SINGLE option:		
	None - No diurnal cycle in ocean	
	Via coupling - Diurnal cycle via coupling frequency	
	Specific treatment - Specific treament	
	Other - please specify:	

3.2.1 Tracers

 $Properties \ of \ tracers \ time \ stepping \ in \ ocean$

3.2.1.1 Scheme *

 ${\it Tracers\ time\ stepping\ scheme}$

$\label{lem:leap-frog} \mbox{Leap-frog + Asselin filter - Leap-frog scheme with Asselin filter}$
Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler
Predictor-corrector - Predictor-corrector scheme
Runge-Kutta 2 - Runge-Kutta 2 scheme
AM3-LF - AM3-LF such as used in ROMS
Forward-backward - Forward-backward scheme
Forward operator - Forward operator scheme

	Other - please specify:	
3.2.1.2	Γime Step *	
Tracers tin	me step (in seconds)	
Enter	INTEGER value:	
3.3.1 E	Baroclinic Dynamics	
Baroclin	ic dynamics in ocean	
3.3.1.1	Гуре *	
Baroclinic	dynamics type	
Select	single option:	
	Preconditioned conjugate gradient	
	Sub cyling - Sub cycling relative to tracers	
	Other - please specify:	
3.3.1.2	Scheme *	
Baroclinic	dynamics scheme	
Select	t SINGLE option:	
	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ - \mbox{Leap-frog scheme with Asselin filter}$	
	$\label{eq:Leap-frog} \mbox{Leap-frog scheme with Periodic Euler} - \mbox{Leap-frog scheme with Periodic Euler}$	
	Predictor-corrector - Predictor-corrector scheme	
	Runge-Kutta 2 - Runge-Kutta 2 scheme	
	AM3-LF - AM3-LF such as used in ROMS	
	${\bf Forward\text{-}backward\ -\ Forward\text{-}backward\ scheme}$	
	Forward operator - Forward operator scheme	
	Other - please specify:	
22197	Timo Stop	
3.3.1.3 Time Step Baroclinic time step (in seconds)		

Enter INTEGER value:

3.4.1 Barotropic

 $Barotropic\ time\ stepping\ in\ ocean$

3.4.1.1 Splitting *

 $Time\ splitting\ method$

Select SINGLE option: None Split explicit Implicit Other - please specify:

3.4.1.2 Time Step

 $Barotropic\ time\ step\ (in\ seconds)$

Enter INTEGER value:

3.5.1 Vertical Physics

Vertical physics time stepping in ocean

3.5.1.1 Method *

 $Details\ of\ vertical\ time\ stepping\ in\ ocean$

Enter TEXT:

4 Advection Ocean advection 4.1.1 Top level properties $Ocean\ advection$ 4.1.1.1 Name Commonly used name for the advection in ocean model. 4.1.1.2 Overview Overview of ocean advection in ocean model. Enter TEXT: 4.2.1 Momentum Properties of lateral momentum advection scheme in ocean 4.2.1.1 Type * Type of lateral momentum advection scheme in ocean Flux form \boxtimes Vector form 4.2.1.2 Scheme Name * $Name\ of\ ocean\ momentum\ advection\ scheme$

Select either TRUE or FALSE: True

4.2.1.3 ALE

4.3.1 Lateral Tracers

Properties of lateral tracer advection scheme in ocean

☐ False

Energy and Enstrophy conserving second order centered

Using ALE for vertical advection? (if vertical coordinates are sigma)

Order of lateral tracer advection scheme in ocean
Enter INTEGER value:
4.3.1.2 Flux Limiter *
Monotonic flux limiter for lateral tracer advection scheme in ocean ?
True
4.3.1.3 Effective Order *
Effective order of limited lateral tracer advection scheme in ocean
Enter FLOAT value:
4.3.1.4 Name *
$Descriptive\ text\ for\ lateral\ tracer\ advection\ scheme\ in\ ocean\ (e.g.\ MUSCL,\ PPM-H5,\ PRATHER,)$
Total Variance Dissipation (TVD)
4.3.1.5 Passive Tracers
Passive tracers advected
Select MULTIPLE options:
☐ Ideal age
CFC 11
CFC 12
SF6
Other - please specify:
4.3.1.6 Passive Tracers Advection
Is advection of passive tracers different than active ? if so, describe.
Enter TEXT:
4.4.1 Vertical Tracers
Properties of vertical tracer advection scheme in ocean
•
4.4.1.1 Name *
$Descriptive\ text\ for\ vertical\ tracer\ advection\ scheme\ in\ ocean\ (e.g.\ MUSCL,\ PPM-H5,\ PRATHER, \dots PRATHER, not be a substitution of the property of$
TVD

4.3.1.1 Order *

4.4.1.2 Flux Lim	iter *
Monotonic flux limiter	for vertical tracer advection scheme in ocean ?
Select either TF	UE or FALSE:
True	☐ False

5 Lateral Physics

Ocean lateral physics

5.	1.1	Top	level	pro	perties

Ocean lateral physics

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

Enter TEXT:

5.1.1.2 Overview

Overview of ocean lateral physics in ocean model.

Enter TEXT:

5.1.1.3 Scheme *

 ${\it Type~of~transient~eddy~representation~in~ocean}$

Select SINGLE option:		
	None - No transient eddies in ocean	
	Eddy active - Full resolution of eddies	
	Eddy admitting - Some eddy activity permitted by resolution	

5.1.2 Operator

Properties of lateral physics operator for momentum in ocean

5.1.2.1 Direction *

 $Direction\ of\ lateral\ physics\ momentum\ scheme\ in\ the\ ocean$

\boxtimes	Horizontal
	Isopycnal
	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:

5.1.2.2	Order *
$Order\ of$	lateral physics momentum scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretise	ation of lateral physics momentum scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
	Eddy Viscosity Coeff ies of eddy viscosity coeff in lateral physics momentum scheme in the ocean
5.1.3.1	Type *
Lateral p	hysics momentum eddy viscosity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.1.3.2	Constant Coefficient
If constan	nt, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
1000	0
5.1.3.3	Variable Coefficient
If space-v	varying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
Ente	r TEXT:
5.1.3.4	Coeff Background *
Describe	$background\ eddy\ viscosity\ coeff\ in\ lateral\ physics\ momentum\ scheme\ (give\ values\ in\ m2/s)$
Ente	r TEXT:

5.1.3.5	Coeff Backscatter *
Is there be	ackscatter in eddy viscosity coeff in lateral physics momentum scheme?
Selec	t either TRUE or FALSE:
	True
5.2.1	Tracers
Propertie	es of lateral physics for tracers in ocean
5.2.1.1	Mesoscale Closure *
Is there a	mesoscale closure in the lateral physics tracers scheme?
	True
	Submesoscale Mixing * submesoscale mixing parameterisation (i.e Fox-Kemper) in the lateral physics tracers scheme ?
	t either TRUE or FALSE:
	True
	Operator es of lateral physics operator for tracers in ocean
5.2.2.1	Direction *
	of lateral physics tracers scheme in the ocean
	Horizontal
	Isopycnal
\boxtimes	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:
5.2.2.2	Order *
	lateral physics tracers scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:

5.2.2.3	Discretisation *
Discretise	ation of lateral physics tracers scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
5.2.3]	Eddy Diffusity Coeff
Properti	es of eddy diffusity coeff in lateral physics tracers scheme in the ocean
5.2.3.1	Type *
Lateral pl	hysics tracers eddy diffusity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.2.3.2	Constant Coefficient
If constar	nt, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)
1000	
5.2.3.3	Variable Coefficient
If space-v	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme
Ente	r TEXT:
5.2.3.4	Coeff Background *
Describe	background eddy diffusity coeff in lateral physics tracers scheme (give values in $m2/s$)
Ente	r INTEGER value:
5.2.3.5	Coeff Backscatter *
Is there b	ackscatter in eddy diffusity coeff in lateral physics tracers scheme?
Selec	t either TRUE or FALSE:
	True

5.2.4 Eddy Induced Velocity

Properties of eddy induced velocity (EIV) in lateral physics tracers scheme in the ocean

5.2.4.1 Type *
Type of EIV in lateral physics tracers in the ocean
GM - Gent and McWilliams
Other - please specify:
5.2.4.2 Constant Val
If EIV scheme for tracers is constant, specify coefficient value (M2/s)
600
5.2.4.3 Flux Type *
Type of EIV flux (advective or skew)
Advective flux
5.2.4.4 Added Diffusivity *
Type of EIV added diffusivity (constant, flow dependent or none)
Enter TEXT:

6 Vertical Physics

Ocean Vertical Physics

6.1.1 Top level properties

 $Ocean\ Vertical\ Physics$

6.1.1.1 Name

Commonly used name for the vertical physics in ocean model.

Enter TEXT:

6.1.1.2 Overview

Overview of ocean vertical physics in ocean model.

Tidal mixing answers not relevant (to review)] Bottom intensified tidal mixing (Simmons al. 2004) Specific treatment of tidal mixing in Indonesians seas (Koch Larrouy et al. 2007)

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

Is there Langmuir cells mixing in upper ocean?

Select either	TRUE or	FALSE:
True		False

6.1.3 Tracers

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

 ${\it Type~of~boundary~layer~mixing~for~tracers~in~ocean}$

	Constant value
\boxtimes	Turbulent closure - TKE
	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT

	Imbeded as isopycnic vertical coordinate Other - please specify:
If turbule	Closure Order and BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)
Ente	r FLOAT value:
6.1.3.3	Constant
If constant	at BL mixing of tracers, specific coefficient $(m2/s)$
Ente	r INTEGER value:
	Background *
	nd BL mixing of tracers coefficient, (schema and value in m2/s - may by none)
1.2e-	5 m2/s
6.1.4	Momentum
0.1.1	WIOIIICIITUIII
	ies of boundary layer (BL) mixing on momentum in the ocean
Propert	
Properts 6.1.4.1	ies of boundary layer (BL) mixing on momentum in the ocean
Properts 6.1.4.1	ies of boundary layer (BL) mixing on momentum in the ocean Type *
Properts 6.1.4.1	Type * oundary layer (BL) mixing on momentum in the ocean oundary layer mixing for momentum in ocean
Properts 6.1.4.1 Type of t	Type * oundary layer (BL) mixing on momentum in the ocean Constant value
Properts 6.1.4.1 Type of t	Type * constant value Turbulent closure - TKE
Properts 6.1.4.1 Type of t	Type * oundary layer (BL) mixing on momentum in the ocean Constant value Turbulent closure - TKE Turbulent closure - KPP
Properts 6.1.4.1 Type of t	Type * coundary layer (BL) mixing on momentum in the ocean Constant value Turbulent closure - TKE Turbulent closure - Mellor-Yamada
Properts 6.1.4.1 Type of t	Type * coundary layer (BL) mixing on momentum in the ocean Constant value Turbulent closure - TKE Turbulent closure - Mellor-Yamada Turbulent closure - Bulk Mixed Layer
Properts 6.1.4.1 Type of t	Type * coundary layer (BL) mixing on momentum in the ocean Constant value Turbulent closure - TKE Turbulent closure - Mellor-Yamada Turbulent closure - Bulk Mixed Layer Richardson number dependent - PP

If turbulent BL mixing of momentum, specific order of closure (0, 1, 2.5, 3)

Enter FLOAT value:

6.1.4.3 Constant
If constant BL mixing of momentum, specific coefficient $(m2/s)$
Enter INTEGER value:
6.1.4.4 Background *
Background BL mixing of momentum coefficient, (schema and value in $m2/s$ - may by none)
Enter TEXT:
6.1.5 Details
Properties of interior mixing in the ocean
6.1.5.1 Convection Type *
Type of vertical convection in ocean
Non-penetrative convective adjustment
Enhanced vertical diffusion
☐ Included in turbulence closure
Other - please specify:
6.1.5.2 Tide Induced Mixing *
$Describe\ how\ tide\ induced\ mixing\ is\ modelled\ (barotropic,\ baroclinic,\ none)$
Baroclinic tides
6.1.5.3 Double Diffusion *
Is there double diffusion
Select either TRUE or FALSE:
☐ True ☐ False
6.1.5.4 Shear Mixing *
Is interior shear mixing explicitly parameterised?
Select either TRUE or FALSE:
☐ True ☐ False

6.1.6 Tracers

Properties of interior mixing on tracers in the ocean

6.1.6.1	Type *
Type of in	nterior mixing for tracers in ocean
Selec	t SINGLE option:
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6.1.6.2	Constant
If constar	at interior mixing of tracers, specific coefficient (m2/s)
Ente	r INTEGER value:
6.1.6.3	Profile *
Is the bac	kground interior mixing using a vertical profile for tracers (i.e is NOT constant)?
Selec	t either TRUE or FALSE:
	True False
	Background *
Backgrou	nd interior mixing of tracers coefficient, (schema and value in $m2/s$ - may by none)
1.2e-	5 m2/s
6.1.7 I	Momentum
Properti	ies of interior mixing on momentum in the ocean
6.1.7.1	Type *
Type of in	nterior mixing for momentum in ocean
Selec	t SINGLE option:
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada

Ш	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
	$egin{array}{c} {f Constant} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ of\ momentum,\ specific\ coefficient\ (m2/s)} \ & {\it tinterior\ mixing\ mixi$
Ente	r INTEGER value:
6.1.7.3	Profile *
Is the bac	kground interior mixing using a vertical profile for momentum (i.e is NOT constant)?
Ente	r TEXT:
6.1.7.4	Background *
Backgrou	nd interior mixing of momentum coefficient, (schema and value in $m2/s$ - may by none)
Ente	r TEXT:

7 Uplow Boundaries Ocean upper / lower boundaries 7.1.1 Top level properties Ocean upper / lower boundaries

7.1.1.1 Name

Commonly used name for the uplow boundaries in ocean model.

Enter TEXT:

7.1.1.2 Overview

 $Overview\ of\ ocean\ upper\ /\ lower\ boundaries\ in\ ocean\ model.$

Enter TEXT:

7.2.1 Free Surface

Properties of free surface in ocean

7.2.1.1 Scheme *

Free surface scheme in ocean

Linear implicit

Linear filtered

Linear semi-explicit

Non-linear implicit

Non-linear filtered

Non-linear semi-explicit

Fully explicit

Other - please specify:

7.2.1.2 Embeded Seaice *

Is the sea-ice embeded in the ocean model (instead of levitating)?

Select either TRUE or FALSE:

True False

7.3.1 Bottom Boundary Layer

Properties of bottom boundary layer in ocean

7.3.1.1 Overview *
Overview of bottom boundary layer in ocean
Enter TEXT:
7.3.1.2 Type Of Bbl *
Type of bottom boundary layer in ocean
Diffusive
☐ Acvective
Other - please specify:
7.3.1.3 Lateral Mixing Coef
If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)
10000
7.3.1.4 Sill Overflow *
Describe any specific treatment of sill overflows
Enter TEXT:

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

Enter TEXT:

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

Enter TEXT:

8.1.1.3 Surface Pressure *

 $Describe\ how\ surface\ pressure\ is\ transmitted\ to\ ocean\ (via\ sea-ice,\ nothing\ specific,...)$

Enter TEXT:

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

No

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

Enter TEXT:

8.1.1.6 Wave Effects *

Describe if/how wave effects are modelled at ocean surface.

Enter TEXT:

8.1.1.7 River Runoff Budget *

Describe how river runoff from land surface is routed to ocean and any global adjustment done.

Enter TEXT:

8.1.1.8	\mathbf{Geot}	hermal	I	Ieating	5 *
Dagamika	:f /L	~ ~ ~ 4 1. ~ ~ ~ ~ ~ ~	1	hantina.	٠

 $Describe\ if/how\ geothermal\ heating\ is\ present\ at\ ocean\ bottom.$

Spatial varying

8.1.2 Bottom Friction

Properties of momentum bottom friction in ocean

1 / op o/ 00	or of momentum voicem y voicem in occur
8.1.2.1	Type *
Type of m	nomentum bottom friction in ocean
	Linear
\boxtimes	Non-linear
	Non-linear (drag function of speed of tides)
	Constant drag coefficient
	None
	Other - please specify:
_	
8.1.3 I	Lateral Friction
Properti	es of momentum lateral friction in ocean
8.1.3.1	Type *
Type of n	nomentum lateral friction in ocean
	None
\boxtimes	Free-slip
	No-slip
	Other - please specify:
8.1.4 \$	Sunlight Penetration
Properti	es of sunlight penetration scheme in ocean
8.1.4.1	Scheme *
Type of se	unlight penetration scheme in ocean
	1 extinction depth
	2 extinction depth
\boxtimes	3 extinction depth
	Other - please specify:

8.1.4.2 Ocean Colour *	
Is the ocean sunlight penetration scheme ocean colour dependent ?	
☐ False	
8.1.4.3 Extinction Depth Description	
Describe extinctions depths for sunlight penetration scheme (if applicable)	١.
Enter TEXT:	
8.1.4.4 Extinction Depths	
List extinctions depths for sunlight penetration scheme (if applicable).	
Enter COMMA SEPARATED list:	
8.1.5 Fresh Water Forcing	
Properties of surface fresh water forcing in ocean	
8.1.5.1 From Atmopshere *	
Type of surface fresh water forcing from atmos in ocean	
Select SINGLE option:	
Freshwater flux	
☐ Virtual salt flux	
Other - please specify:	
8.1.5.2 From Sea Ice *	
Type of surface fresh water forcing from sea-ice in ocean	
Select SINGLE option:	
Freshwater flux	
☐ Virtual salt flux	
Real salt flux	
Other - please specify:	
8.1.5.3 Forced Mode Restoring *	
Type of surface salinity restoring in forced mode (OMIP)	

Enter TEXT: