Beetle Kill Data Example

jdt

3/10/2021

Contents

ckground	
gistic Models	
GLM for Binary Data	
Linear Model	
Logistic Model	
Probit Model	
Complementary Log-Log Model	
${f s}$	
Code	
Output	

Background

In this document, I use the GLM for binary data to model a dose response result. The example uses the Dobson Beetle Kill Data where increasing levels of a pesticide is studied. Historically, the probit function was used to model data of this type. In this example, the model is compared using the linear, probit, logit, and cloglog links.

Logistic Models

GLM for Binary Data

Let Y be a binary response variable where $\Pr[Y=1\mid \mathbf{x}]=\pi(\mathbf{x})$ and $\Pr[Y=0\mid \mathbf{x}]=1-\pi(\mathbf{x})$ with covariates $\mathbf{x}=(x_1,x_2,\ldots,x_p)$. There are several potential approaches to this modeling problem.

Linear Model

One could use the ordinary least squares approach, called the Linear Probability model, given as,

$$\pi(\mathbf{x}) = \alpha + \beta' \mathbf{x}. \tag{1}$$

This model has a structural defect since $\pi(x)$ is not restricted to the interval [0, 1] for all x.

Logistic Model

A better model is the Logistic Regression Model given as,

$$y = log\left[\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right] = (\alpha + \beta'\mathbf{x}), \tag{2}$$

where y is the log odds and $\pi(\mathbf{x})$ is the probability of the event of interest for the covariate x. It follows that,

$$\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})} = exp(\alpha + \beta'\mathbf{x}),$$

and

$$\pi(\mathbf{x}) = \frac{exp(\alpha + \beta'\mathbf{x})}{1 + exp(\alpha + \beta'\mathbf{x})}.$$

Probit Model

Historically, toxicological experiments often measure dosage as the log concentration where the tolerance distribution for the dosage is assumed to be approximately $N(\mu, \sigma^2)$ for unknown μ and σ^2 . In which case, the **Probit Model** is given as

$$\pi(x) = \Phi(\alpha + \beta x) \tag{3}$$

where Φ is the standard normal cdf, $\alpha = -\mu/\sigma$ and $\beta = 1/\sigma$.

Complementary Log-Log Model

The complementary log-log model provides an alternative model to the logit and probit that is asymmetric about 0.5 where the **Complementary Log-Log Model** is

$$\pi(x) = 1 - \exp[-\exp(\alpha + \beta x)],\tag{4}$$

and

$$\log[-\log(1 - \pi(x))] = \alpha + \beta x.$$

Let x_1 and x_2 denote two values of the covariate, then

$$\log[-\log(1-\pi(x_2))] - \log[-\log(1-\pi(x_1))] = \beta(x_2 - x_1),$$

or

$$\frac{\log[1 - \pi(x_2)]}{\log[1 - \pi(x_1)]} = \exp[\beta(x_2 - x_1)].$$

In which case, one has

$$1 - \pi(x_2) = [1 - \pi(x_1)]^{\exp[\beta(x_2 - x_1)]}.$$

R

Needed Packages

```
if(!require(FSA)) {install.packages("FSA")}
if(!require(ggplot2)) {install.packages("ggplot2")}
if(!require(car)) {install.packages("car")}
if(!require(multcompView)) {install.packages("multcompView")}
if(!require(lsmeans)) {install.packages("lsmeans")}
if(!require(grid)) {install.packages("grid")}
if(!require(nlme)) {install.packages("nlme")}
if(!require(lme4)) {install.packages("lme4")}
if(!require(Rmisc)) {install.packages("Rmisc")}
if(!require(FSA)) {install.packages("FSA")}
#if(!require(lmeTest)) {install.packages("lmeTest")}
#if(!require(rcompanion)) {install.packages("rcompanion")}
```

Read data from SAS input file

```
### -----
### Two-way anova, SAS example Activity by Genotype
### ------
Input = ("
logdose nbeetles nkilled
1.691 59 6
1.724 60 13
1.755 62 18
1.784 56 28
1.811 63 52
1.837 59 53
1.861 62 61
1.884 60 60
")
beetle = read.table(textConnection(Input), header=TRUE)
beetle = data.frame(beetle)
logdose = beetle$logdose
nbeetles = beetle$nbeetles
nkilled = beetle$nkilled
nsurvive=nbeetles-nkilled;
per.killed = nkilled/nbeetles
```

Descriptive Statistics

```
library(Rmisc)
sum = summary(beetle)
sum
##
       logdose
                                        nkilled
                       nbeetles
##
   Min.
         :1.691
                    Min.
                          :56.00
                                    Min.
                                            : 6.00
##
   1st Qu.:1.747
                    1st Qu.:59.00
                                    1st Qu.:16.75
##
   Median :1.798
                    Median :60.00
                                    Median :40.00
##
   Mean
           :1.793
                    Mean
                           :60.12
                                    Mean
                                            :36.38
    3rd Qu.:1.843
                    3rd Qu.:62.00
                                     3rd Qu.:54.75
##
##
   Max.
          :1.884
                          :63.00
                                    Max.
                                           :61.00
                    Max.
Descriptive Plots
```

```
boxplot (nkilled ~ logdose,
        data = beetle,
        xlab = "Log Dose",
        ylab = "number killed")
```


Fit Linear Regression Model

```
mod1 = lm( per.killed ~ logdose, data=beetle)
mod1
##
## Call:
```

```
## lm(formula = per.killed ~ logdose, data = beetle)
##
## Coefficients:
## (Intercept)
                    logdose
##
        -8.948
                      5.325
Fit Logistic Model with PROBIT link
mod2 = glm( nkilled/nbeetles ~ logdose,
            family = "binomial"(link="probit"),
            data=beetle)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
mod2
##
## Call: glm(formula = nkilled/nbeetles ~ logdose,
family = binomial(link = "probit"),
##
       data = beetle)
##
## Coefficients:
## (Intercept)
                   logdose
    -34.82
                     19.67
##
## Degrees of Freedom: 7 Total (i.e. Null); 6 Residual
## Null Deviance:
                        4.712
## Residual Deviance: 0.1676 AIC: 8.094
#plot (mod1)
Fit Logistic Model with LOGIT link
mod3 = glm( nkilled/nbeetles ~ logdose,
            family = "binomial"(link="logit"),
            data=beetle)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
mod3
##
## Call: glm(formula = nkilled/nbeetles ~ logdose,
family = binomial(link = "logit"),
      data = beetle)
##
##
## Coefficients:
## (Intercept)
                    logdose
##
       -60.48
                      34.14
##
## Degrees of Freedom: 7 Total (i.e. Null); 6 Residual
```

```
4.712
## Null Deviance:
## Residual Deviance: 0.1867 AIC: 8.03
#plot (mod1)
Fit Logistic Model with Cloglog link
mod4 = glm( nkilled/nbeetles ~ logdose,
            family = "binomial"(link="cloglog"),
            data=beetle)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
mod4
##
## Call: glm(formula = nkilled/nbeetles ~ logdose,
family = binomial(link = "cloglog"),
      data = beetle)
##
## Coefficients:
## (Intercept)
                    logdose
##
        -39.48
                      21.99
##
## Degrees of Freedom: 7 Total (i.e. Null); 6 Residual
## Null Deviance:
                        4.712
## Residual Deviance: 0.05737
                               AIC: 7.759
#plot (mod2)
List of Predictive Probabilities
\#temperature = runif(100, 45, 85)
#temperature = order(temperature)
p_{linear} = -8.95 + 5.33 * logdose
p_{probit} = pnorm((-34.82 + 19.82 * logdose), 0, 1)
p_logit = exp(-60.48 + 34.14 * logdose) / (1 + exp(-60.48 + 34.14 * logdose))
p_{cll} = 1 - exp(-exp(-39.48 + 21.99*logdose))
cbind(logdose, per.killed, p_linear,p_probit, p_logit, p_cll)
        logdose per.killed p_linear p_probit p_logit
## [1,] 1.691 0.1016949 0.06303 0.09605203 0.06012846 0.09585946
        1.724 0.2166667 0.23892 0.25774277 0.16484110 0.18795811
## [2,]
## [3,] 1.755 0.2903226 0.40415 0.48568105 0.36255311 0.33745254
## [4,] 1.784 0.5000000 0.55872 0.70501517 0.60486074 0.54110112
## [5,] 1.811 0.8253968 0.70263 0.85859314 0.79372716 0.75596008
## [6,] 1.837 0.8983051 0.84121 0.94400817 0.90336450 0.91777934
```

[7,] 1.861 0.9838710 0.96913 0.98053945 0.95497813 0.98552060 ## [8,] 1.884 1.0000000 1.09172 0.99414691 0.97895371 0.99910866

SAS

Code

```
title1 'Dobson Table 7.2 Beetle mortality';
data beetle; SET SASUSER.dobson_beetle; RUN;
data beetle; set beetle; rate=kill/number;
run;
title2 'GLM Model for Rate';
title2 'Linear';
proc reg data=beetle plots=observedbypredicted;
 model rate = dose;
title2 'PROBIT';
proc logistic data=beetle plots=effect;
model kill/number = dose/link=probit cl ;
run;
title2 'LOGIT';
proc logistic data=beetle plots=effect;
 model kill/number = dose/link=logit expb cl ;
run;
title2 'CLOGLOG';
proc logistic data=beetle plots=effect;
  model kill/number = dose/link=cloglog cl ;
run;
```

Output

Dobson Table 7.2 Beetle mortality Linear

The REG Procedure

Model: MODEL1

Dependent Variable: rate

Number of Observations Read	8
Number of Observations Used	8

Analysis of Variance					
Source DF Sum of Squares Mean Square F Value Pr					
Model	1	0.90318	0.90318	120.18	<.0001
Error	6	0.04509	0.00752		
Corrected Total	7	0.94827			

Root MSE	0.08669	R-Square	0.9524
Dependent Mean	0.60203	Adj R-Sq	0.9445
Coeff Var	14.39951		

	Parameter Estimates						
Variable DF Parameter Estimate Standard Error t Value Pr							
Intercept	1	-8.94784	0.87166	-10.27	<.0001		
dose	1	5.32494	0.48573	10.96	<.0001		

Dobson Table 7.2 Beetle mortality Linear

Dobson Table 7.2 Beetle mortality PROBIT

The LOGISTIC Procedure

Model Information				
Data Set	WORK.BEETLE			
Response Variable (Events)	kill			
Response Variable (Trials)	number			
Model	binary probit			
Optimization Technique	Fisher's scoring			

Number of Observations Read	8
Number of Observations Used	8
Sum of Frequencies Read	481
Sum of Frequencies Used	481

Response Profile			
Ordered Value	Binary Outcome	Total Frequency	
1	Event	291	
2	Nonevent	190	

Model Convergence Status			
Convergence criterion (GCONV=1E-8) satisfied.			

Model Fit Statistics					
Criterion Intercept Only Intercept and Covariates					
	Log Likelihood Full Log Likelihood				
AIC	647.441	375.358	40.318		
SC	651.617	383.710	48.670		
-2 Log L	645.441	371.358	36.318		

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr > ChiSq					
Likelihood Ratio	274.0827	1	<.0001		
Score	227.5801	1	<.0001		
Wald	175.9559	1	<.0001		

Analysis of Maximum Likelihood Estimates						
Parameter	rameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq					
Intercept	1	-34.9348	2.6479	174.0679	<.0001	
dose	1	19.7277	1.4872	175.9559	<.0001	

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	87.0	Somers' D	0.802	
Percent Discordant	6.8	Gamma	0.856	
Percent Tied	6.3	Tau-a	0.384	
Pairs	55290	С	0.901	

Parameter Estimates and Wald Confidence Intervals					
Parameter	Estimate 95% Confidence Limits				
Intercept	-34.9348	-40.1246	-29.7451		
dose	19.7277	7 16.8128 22.6426			

Dobson Table 7.2 Beetle mortality LOGIT

The LOGISTIC Procedure

Model Information			
Data Set WORK.BEETL			
Response Variable (Events)	kill		
Response Variable (Trials)	number		
Model	binary logit		
Optimization Technique	Fisher's scoring		

Number of Observations Read	8
Number of Observations Used	8
Sum of Frequencies Read	481
Sum of Frequencies Used	481

Response Profile			
Ordered Value Binary Outcome Total Frequence			
1	Event	291	
2	Nonevent	190	

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion Intercept Only Intercept and Covariates				
Log Likelihood Full Log Likelihood				
AIC	647.441	376.471	41.430	
SC	651.617	384.823	49.782	
-2 Log L	645.441	372.471	37.430	

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	272.9702	1	<.0001	
Score	227.5801	1	<.0001	
Wald	138.4876	1	<.0001	

Analysis of Maximum Likelihood Estimates						
Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq Exp(Est						Exp(Est)
Intercept	1	-60.7114	5.1802	137.3557	<.0001	0.000
dose	1	34.2669	2.9118	138.4876	<.0001	7.619E14

Odds Ratio Estimates			
Effect	Effect Point Estimate 95% Wald Confidence Limits		
dose	>999.999	>999.999	>999.999

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	87.0	Somers' D	0.802	
Percent Discordant	6.8	Gamma	0.856	
Percent Tied	6.3	Tau-a	0.384	
Pairs	55290	С	0.901	

Parameter Estimates and Wald Confidence Intervals				
Parameter	Parameter Estimate 95% Confidence Limits			
Intercept	-60.7114	-70.8644	-50.5584	
dose	34.2669	28.5597	39.9740	

Dobson Table 7.2 Beetle mortality CLOGLOG

The LOGISTIC Procedure

Model Information			
Data Set WORK.BEETLI			
Response Variable (Events)	kill		
Response Variable (Trials)	number		
Model	binary cloglog		
Optimization Technique	Fisher's scoring		

Number of Observations Read	8
Number of Observations Used	8
Sum of Frequencies Read	481
Sum of Frequencies Used	481

Response Profile			
Ordered Value Binary Outcome Total Frequency			
1	Event	291	
2	Nonevent	190	

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	iterion Intercept Only Intercept and Covariates			
Log Likelihood Full Log Likelihood				
AIC	647.441	368.685	33.644	
SC	651.617	377.037	41.996	
-2 Log L	645.441	364.685	29.644	

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	280.7560	1	<.0001	
Score	227.5801	1	<.0001	
Wald	150.0498	1	<.0001	

Analysis of Maximum Likelihood Estimates					
Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq					
Intercept	1	-39.5725	3.2403	149.1487	<.0001
dose	1	22.0412	1.7994	150.0498	<.0001

Association of Predicted Probabilities and Observed Responses			
Percent Concordant	87.0	Somers' D	0.802
Percent Discordant	6.8	Gamma	0.856
Percent Tied	6.3	Tau-a	0.384
Pairs	55290	С	0.901

Parameter Estimates and Wald Confidence Intervals				
Parameter	Estimate	95% Confidence Limits		
Intercept	-39.5725	-45.9233	-33.2216	
dose	22.0412	18.5146	25.5679	

