

hysicsaholics

DPP - 6

- A projectile is projected upward with speed 2 m/s on an incline plane of inclination 30^o Q 1. at an angle of 150 from the plane. Then the distance along the plane where projectile will fall is:
 - (a) $\frac{4}{15}$

(c) $\frac{4}{5} \left(\frac{1}{\sqrt{3}} - \frac{1}{3} \right)$

- (b) $\frac{4}{5} \left(\frac{1}{\sqrt{3}} + \frac{1}{3} \right)$ (d) $\frac{4}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \frac{1}{3} \right)$
- A projectile is projected with speed u at an angle of 60° with horizontal from the foot Q 2. of an inclined plane. If the projectile hits the inclined plane horizontally, the range on inclined plane will be:
 - $(a) \frac{u^2(\sqrt{21})}{2g}$

(c) $\frac{u^2}{2a}$

- (b) $\frac{3u^2}{4g}$ (d) $\frac{u^2(\sqrt{21})}{8g}$
- Find time of flight of the projectile along the inclined plane as shown in figure: Q 3. $(g = 10 \, m/s^2)$

(a) 2 sec

(b) 1.69 sec

(c) 2.69 sec

- (d) 1 sec
- An inclined plane makes an angle $\theta_o = 30^\circ$ with the horizontal. A particle is projected from this plane with a speed of 5 m/s at an angle of elevation $\beta = 30^\circ$ with the horizontal as shown in Fig. Find the range of the particle on the plane when it strikes the plane: $(g = 10 m/s^2)$

(a) 5 m

(c) $\frac{5}{2}$ m

- Q 5. Find time of flight of the projectile along the inclined plane as shown in figure: $(g = 10 \, m/s^2)$

hysicsaholics

- (a) 5 *sec*
- (c) 3.31 sec

- (d) 2.21 sec
- Q 6. A particle is projected with a velocity of 30 m/s at an angle 60° above the horizontal on a slope of inclination 30°. Find its range and time of flight: $(g = 10 \text{ m/s}^2)$
 - (a) 30 m, $\sqrt{3}$ s

(b) 30 m, $2\sqrt{3}$ s

(c) 60 m, $2\sqrt{3}$ s

- (d) $60\sqrt{3} \, m$, 2 s
- A particle is projected with a velocity of 30 m/s at an angle 60° above the horizontal on Q 7. a slope of inclination 30°. Find its angle of hit: $(g = 10 \text{ m/s}^2)$
 - (a) 30°

(b) 60°

(c) 90^{0}

- (d) 45^{0}
- A projectile is fired horizontally from an inclined plane (of inclination 45° with Q 8. horizontal) with speed = 50 m/s, if $g = 10 m/s^2$, the range measured along the incline is:
 - (a) 500 m

(b) $500\sqrt{2} m$

(c) $200\sqrt{2} m$

- (d) none of these
- Q 9. An inclined plane is making an angle β with horizontal. A projectile is projected from the bottom of the plane with a speed u at an angle α with horizontal then its maximum range R_{max} is:
 - (a) $R_{max} = \frac{u^2}{g(1-\sin\beta)}$ (c) $R_{max} = \frac{u^2}{g(1-\sin\beta)}$
- (b) $R_{max} = \frac{u^2}{g(1+\sin\beta)}$ (d) $R_{max} = \frac{u}{g(1+\sin\beta)}$

- Q 10. A particle is projected from the bottom of an inclined plane of inclination 30° . At what angle α (from the horizontal) should the particle be projected to get the maximum range on the inclined plane.
 - (a) 15°

(b) 30°

(c) 45°

(d) 60°

Solution on Website:-

https://physicsaholics.com/home/courseDetails/41

Solution on YouTube:-

https://youtu.be/j4jjZ_XFZgA

