INF2499M: NATURAL LANGUAGE PROCESSING OVERVIEW

Hrishikesh Terdalkar hrishikesh.terdalkar@univ-lyon1.fr

Laboratoire d'InfoRmatique en Image et Systèmes d'information Université Claude Bernard Lyon 1 https://moodle.univ-lyon1.fr/course/view.php?id=9902

> 2024-2025 Tue 0945-1300 at Nautibus TD001 (RDC)

Rules

- "Prerequisites"
 - Proficiency in Python (or the willingness to acquire it)
 - Understanding of Linear Algebra and Probability is helpful
 - Familiarity with basic ML algorithms (e.g. Regression, SVM)
- Participate
 - Attend classes on time
 - Ask and answer questions
- Do assignments individually unless asked otherwise
- Discussion with peers is allowed
 - However, copying is not allowed
- Email: hrishikesh.terdalkar@univ-lyon1.fr
- Subject must start with [INF2499M] to avoid landing in spam

Grading Policy

- Assignment: 20%
 - Mid-term individual coding assignment(s)
- Project: 80%
 - Groups of at most two
 - Form your own idea and get it approved
 - Just implementation or survey will not be enough
 - Proposal (10), Implementation (40-50), Presentation (10), Report (10-20)
- Evaluation Criteria
 - Clarity of proposals
 - Implementation effort
 - Robustness of methodology
 - Presentation of results

Project Deliverables

- Proposal (10%)
 - Presentation in the class
 - 5 min per group
 - Outline the project, dataset, and proposed approach
- Implementation (40-50%)
 - Functional implementation pipeline
 - Well documented code
- Final Presentation (10%)
 - Presentation in the class
 - 10 min presentation + 2 min questions
 - Explain the problem, approach, results and key takeaways
- Final Report (10-20%)
 - Introduce and motivate the problem
 - Describe methodology, challenges, solutions
 - Results and ethical considerations

Course Material

- Slides
- Books
 - Speech and Language Processing. Daniel Jurafsky and James H. Martin. https://web.stanford.edu/~jurafsky/slp3.
- Documentation of standard python libraries
- Research articles from journals/conferences
 - ACL, NAACL, EACL, EMNLP, CL, COLING, WWW, etc.
- References mentioned in classes

Course Contents I

- 1. Introduction to NLP
 - What is NLP?
 - Linguistic concepts: syntax, semantics, rule-based NLP
 - Text preprocessing: tokenization, stemming, lemmatization, stopwords
 - Regular expressions, Edit distance
 - Classical models for NLP: Naive Bayes for Classification
- 2. Word Embeddings and Feature Representations
 - Introduction to word embeddings: Word2Vec, GloVe, FastText
 - Vector representation of words and phrases
 - Importance of context in embeddings: ELMo

Course Contents II

3. Language Models and Sequence Modeling

- Introduction to Language Models
- Statistical n-gram models, Markov Models
- Recurrent Neural Networks (RNN)
- Gated Recurrent Units (GRU)
- Long Short-Term Memory (LSTM) Networks
- Language generation
- Sequence-to-sequence modeling

4. Transformer Architecture and Attention Mechanism

- Limitations of RNNs/LSTMs
- Motivation behind Transformers
- Breakdown of Transformer architecture
- Attention mechanism

Course Contents III

5. BERT and Transfer Learning in NLP

- Introduction to BERT (Bidirectional Encoder Representation from Transformers)
- Pre-training and fine-tuning: Transfer learning in NLP
- Applications of BERT in tasks such as sentiment analysis, question answering

6. Large Language Models (LLMs) and Generative Al

- Overview of Large Language Models: GPT-2, GPT-3, GPT-4, Multimodal LLMs, Gemini, Claude, Llama, etc.
- Text generation, few-shot learning, and applications in real-world scenarios
- Ethical considerations: Bias, fairness, and safety in LLMs

7. Special Topics in NLP

- Multilingual NLP and Machine Translation
- Low-resource NLP tasks and Zero-shot learning
- Explainability in NLP: Making models more transparent

Course Schedule

Tentative

Date	Туре	
7 Jan	CM + TP	Introduction
14 Jan	CM + TP	Embeddings
20 Jan	CM + TP	Language Models
21 Jan	CM + TP	Sequence Modeling
		Project Proposal
28 Jan	CM + CM	Transformers
		Assignment Due
4 Feb	CM + TP	Transfer Learning
11 Feb	CM + TP	LLMs
18 Feb	CM + TP	LLMs
25 Feb	CM + TP	Special Topics
4 Mar	TP + TP	Project Presentation