Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M3

22 października $2015\,\mathrm{r}.$

 $\mathbf{M3.1.}$ 1 punkt Uproszczonq metodę Newtona

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_0)}$$
 $(n = 0, 1, ...)$

stosujemy do wyznaczenia pojedynczego zera funkcji f. Jaki jest rząd zbieżności tej metody?

- **M3.2.** I punkt Niech α będzie podwójnym zerem funkcji $f \in C^2[a, b]$. Wykazać, że jeśli metoda Newtona jest zbieżna, to wówczas jest zbieżna liniowo.
- **M3.3.** 1,5 punktu Uzasadnić, że odwrotność liczby c można obliczać bez wykonywania dzieleń, za pomocą wzoru $x_{n+1} := x_n(2-c\,x_n) \quad (n=0,1,\ldots)$. Uzasadnić (lokalną?) zbieżność tej metody. Dla jakich wartości x_0 metoda jest zbieżna?
- **M3.4.** 1,5 punktu Załóżmy, że f'(x) > 0 i f''(x) > 0 dla $x \in \mathbb{R}$. Ponadto, niech α będzie pierwiastkiem równania f(x) = 0. Wykazać, że jest to jedyny pierwiastek, a metoda Newtona daje ciąg do niego zbieżny dla dowolnego przybliżenia początkowego x_0 .
- **M3.5.** 1 punkt Niech α będzie r-krotnym zerem funkcji $f \in C^2[a,b]$. Rozważamy zmodyfikowaną metodę Newtona

$$x_{n+1} = x_n - r \frac{f(x_n)}{f'(x_n)}.$$

Wykazać, że jeśli metoda ta jest zbieżna, to wówczas jest zbieżna kwadratowo.

M3.6. 1 punkt Załóżmy, że metoda iteracyjna

$$x_{k+1} = F(x_k)$$
 $(k = 0, 1, ...)$

jest zbieżna do pierwiastka α równania f(x) = 0. Wykazać, że jeśli

$$F(\alpha) = \alpha, \quad F'(\alpha) = F''(\alpha) = \dots = F^{(p-1)}(\alpha) = 0, \quad F^{(p)}(\alpha) \neq 0,$$

to wykładnik zbieżności tej metody jest równy p.

- M3.7. I punkt Równanie $\sin x = 0$ ma dokładnie jeden pierwiastek x = 0 w przedziale $(-\pi/2, \pi/2)$. Stosujemy metodę Newtona zaczynąc od przybliżenia x_0 , o własności $\tan x_0 = 2x_0$. Wykazać, że otrzymany ciąg przybliżeń jest cykliczny.
- **M3.8.** 1 punkt Uzasadnić poprawność następującego schematu Hornera zastosowanego do obliczenia wartości p(z) i p'(z) dla danego wielomianu $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$.
 - Niech $\alpha := a_n \text{ oraz } \beta := 0.$
 - Kolejno dla $k=n-1,n-2,\ldots,0$ wykonaj
 - $-\beta \coloneqq \alpha + z\beta$
 - $-\alpha \coloneqq a_k + z\alpha$
 - Wynik to $p(z) = \alpha$, $p'(z) = \beta$.