le	e 1)	Используя метод определить периметры правильных п – угольников (10 –
		угольника, 50 – угольника, 100 – угольника), вписанных в окружность
		заданного радиуса R.
		Назначение метода: Вычисление стороны правильного п-угольника
		180°

a = 2 · R · Sin 180/n; вычисление периметра n- угольника p = n · a
Используя метод определить длины всех медиан треугольника, заданного длинами сторон a,b,c.

Назначение метода: Вычисление медианы, проведенной к стороне **a**: $m_a = 0.5\sqrt{2b^2 + 2c^2 - a^2}.$

Успользуя метод определить углы между тремя векторами, направленными из общей начальной точки с координатами (0,0) в конечные точки: точку (2;5); точку (7;6); точку (9;3).

Назначение метода: Вычисление угла между 2-мя векторами, проведенными из точки (0, 0) в точки (x1, y1) и (x2, y2) по формуле

$$Cos\alpha = \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}};$$

4) Используя метод вычислить и вывести площадь пятиугольника, заданного прямоугольными координатами своих вершин: A1(3;2), A2(9;6), A3(14;2), A4(10;-3), A5(7;-2)

Использовать формулу площади треугольника:

$$S = \frac{1}{2} \cdot |(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|$$

Назначение метода: Вычисление площади треугольника по заданным координатам его вершин: (x1;y1), (x2;y2), (x3;y3)

Управов В 10 год 1 год 1 год 1 год 2 год

Назначение метода: Вычисление биссектрисы угла α

$$La = \frac{\sqrt{bc((b+c)^2 - a^2)}}{b+c}.$$

6) Используя метод вычислить и вывести R - расстояние между двумя точками A и B, заданными сферическими координатами. Соотношение между сферическими координатами и декартовыми

$$x = r \cdot \sin \theta \cdot \cos \varphi$$
;

$$y = r \cdot \sin \theta \cdot \sin \varphi$$
;

$$z = r \cdot \cos \theta;$$

$$0 \le r < \infty; -\pi < \phi \le \pi; 0 \le \theta \le \pi;$$

$$R = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Назначение метода: Вычисление декартовых координат точки по заданным сферическим координатам

7)	Используя метод вычислить значение площади полной поверхности
	треугольной пирамиды, если известны длины всех ребер:
	$ AB = 3$; $ AD = 5$; $ DB = 4$; $ DC = \sqrt{35}$; $ BC = \sqrt{19}$; $ AC = 5$.
	Для вычисления площади треугольника использовать формулу Герона:
	$S = \sqrt{p(p-a)(p-b)(p-c)};$ $p = \frac{a+b+c}{2},$ где a , b , c - длины сторон
	треугольника.

Назначение метода: Вычисление площади треугольника по формуле Герона

8) Используя метод определить высоту, на которой будет мяч, подброшенный вертикально вверх с высоты $y_0=1$ м и начальной скоростью $V_0=20$ м/сек через время t=1сек, 3сек и 4сек

Назначение метода: Вычисление высоты в момент t: $y(t) = y_0 + v_0 \cdot t - g \cdot t^2 / 2$, где $\gamma g = 9.8 \, \text{м/сек} \gamma =$

- 9) Используя метод определить площади правильных n угольников (10-угольника; 50-угольника; 100-угольника), вписанных в окружность радиуса R Назначение метода: Вычисление стороны правильного n-угольника $a = 2R S in \frac{180^{\circ}}{n}$; где $r = R C os \frac{180^{\circ}}{n}$ радиус вписанной окружности; площадь n-угольника $S = \frac{1}{2}a \times n \times r$.
- 10) Используя метод определить площадь кольца, внутренний радиус которого равен R1; а внешний R2 (R2>R1).

Назначение метода: Вычисление площади круга радиуса R: $S = \pi R^2$

11) Используя метод вычислить и вывести полярные координаты 3-х точек, заданных прямоугольными координатами в правой полуплоскости. Формулы преобразования координат: $r = \sqrt{x^2 + y^2}$; $\phi = arctg \frac{y}{x}$.

Назначение метода: Вычисление полярных координат по заданным прямоугольным координатам точки правой полуплоскости

12) Используя метод определить площадь каждого из 3-х секторов с радиусами R1, R2, R3 и с центральными углами α, β, γ.

Назначение метода: Площадь сектора радиуса R с центральным углом α (в градусах) равна $S = \pi R^2 \cdot \frac{\alpha}{360}$.

13) Используя метод определить стороны треугольника, заданного величинами своих углов и радиусом описанной окружности.

Назначение метода: Применить теорему синусов

$$\frac{a}{S \ln \alpha} = \frac{b}{S \ln \beta} = \frac{c}{S \ln \gamma} = 2R \qquad \alpha + \beta + \gamma = 180^{\circ}) .$$

14) Используя метод определить площадь каждого из 3-х кругов, ограниченных тремя окружностями, длины которых L1,L2,L3 известны.

Назначение метода: Вычислить площадь круга $S = \pi R^2$, предварительно вычислив R по формуле $L = 2\pi R$.

15)	Используя метод определить углы треугольника, длины сторон которого а, b,
	с заданы.
	Назначение метода: Применить теорему половинного угла
	$tg\frac{\gamma}{2} = \sqrt{\frac{p-a)(-p-b)}{p(-p-c)}}$, где $p = \frac{a+b+c}{2}$, γ -угол, противолежащий стороне c
16)	Используя метод вычислить определенный интеграл $y = \int_{a}^{b} f(x) dx$ для
	функции $f(x) = \sqrt{2x+1}$
	$y \cong \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{6}) + f(b) \right].$
17)	Используя метод вычислить площадь трех кругов S1, S2 и S3 с заданными диаметрами d1, d2 и d3.
	Назначение метода: Вычисление $S = \pi \times d^2/4$