

RF - Network 使用手册vo.7

南京大台鲨智能科技

Jaws Technology

目录

1	简介	. 3
	引脚分布	
3	引脚分布	. 4
4	飞控参数配置	. 6
5	应用场景	12
6	FAQ	16

简介

为解决市场上单一、低效率的无线数据传输。我公司推出一款具有网络组结构特性的多用户的无线调制解调器。

RF-Network 保留了单用户数传的特点,组建成的网络结构具有长距离、高灵敏度、高效率的特点。通过设立一个主设备,来控制 主一从、从一从设备之间的数据通信。如下是一简单的通信方式

特征

- 开箱即用.
- 空速高达 500kbps.
- 通信距离 >=40km。
- 接收灵敏度> 121 dBm
- 自适应带宽分配
- 跳频扩频。
- ECC数据纠错.
- 工作频率 902 ~ 928MHZ.
- 自动温度调节.
- 透明串行链路.
- 仅重15克.

工作环境

- 工作电压: 5V, I/O (3.3V)
- 工作温度: 38°C to + 83°C
- 尺寸: 30mm x 57.7mm x 12.8mm •

应用

- 遥测数据
- 无人机控制
- 气象监测
- 长距 RC

特征参数

4

性能	
空速	12, 56, 64, 100, 125, 200, 224, 500 750 kbps
室内距离	500m - 1km
室外距离	40km或更远,取决于天线和设置
发射功率	0~30dbm,1dbm可调
接收灵敏度	.>113
低噪放大器	>20dB

特征		
串行电平	+3.3V 标准, 5V 最高	
调试方法	RF 调制工具v1.5	
频率	902MHz - 928MHz	
扩频技术	FHSS (扩频跳频)	
串行速率	2400, 4800, 9600, 19200, 38400, 57600,	
	115200, 460kbps	
天线	八木,%波偶极子,%波单极天线	

网络安全	
寻址方式	Network ID: 0 –255
跳频	多至50跳频通道
功能支持	点对点通信,网络多点通信, PPM 与 SBUS 信号传输

电源	
供电电压	+5V 额定
发射电流	~1A 最大功率
接收电流	~60mA

引脚分布

915 - network 版数传。可以实现星型网络组。一对多控制。

引脚分布

5

引脚	名称	
1	GND	0V
2	GND	VO
3	CTS	3.3V
4	Vcc	5V
5	*	5V
6	*	5V
7	RX	3.3V
8	GPIO	3.3V
9	TX	3.3V
10	GPIO	3.3V
11	RTS	3.3V
12	GPIO	3.3V
13	GPIO0	3.3V
14	GPIO	3.3V
15	GPIO	3.3V
16	GND	OV

Ardupilot固件配置 —ID

一、915-network 进行多飞行器控制,需要对每个飞控分配唯一ID。如控制三个飞行器,ID可以设置为1、2、3等。地面站使用 MissionPlaner。完成后即可连接。连接后主设备会根据各个节点发来的数据量进行计算,为每个节点分配重新数据带宽

视频教程: https://v.youku.com/v_show/id_XNDI5MTY2NTY1Mg==.html?spm=a2h4v.8841035.uerCenter.5!3~5~5!2~DL~DD!2~A&firsttime=330.73

1、配置飞控ID。飞控通过USB与地面站建立连接,找到 "调试与配置" 选择 "全部参数表"。如下图

Ardupilot固件配置 —ID

在 1 处输入 "SYSID" 找到 "SYSID_THISMAV" 在值的一项点击输入 ID 值,然后 "写入参数"保存。 所有飞控依此法更改。

Ardupilot固件配置 —ID

ID设置完成,进行飞行器控制切换。对<mark>飞控设置的ID号码请记住,</mark>以便用以区分飞行器。如下图是控制两架飞行器,如 1 "COM-12-QUADROTOR" 是飞控ID编号为2的无人机。点击即可切换控制。2是ID编号为5的飞控。

Ardupilot固件配置—串口波特率

note: 如果收到的数传串口默认值为 57600 这一项就不需要更改。其它的波特率需要更改

因为大于三个飞控的数据的传输,57600波特率传输不了,因此需要提高为 115200波特率

例更改串口 1的 波特率

9

更改波特率: 调试/配置 => 全部参数表 => 搜索 "serial1"

=> "SERIAL1_BAUD "57" 修改为 "115" => 写入参数保存

命令 Δ	值	单位	选项	描述
SERIAL1_BAUD	57	~	1:1200 2:2400 4:4800 9:9600 19:19200 38:38400 57:57600 11:11100 115:115200 520.51 0000 921:921600 1500:1500000	The baud rate used on the Tele The PX4 can support rates of u your board you should load a fir
SERIAL1_PROTOCOL	1		-1:None 1:MAVLink1 2:MAVLink2 3:Frsky D 4:Frsky SPort 5:GPS 7:Alexmos Gimbal Serial 8:SToRM32 Gimbal Serial 9:Lidar 10:FrSky SPort Passthrough (OpenTX) 11:Lidar360 12:Aerotenna uLanding 13:Beacon	Control what protocol to use on the wiki for details.
			1:1200 2:2400 4:4800 9:9600	The haud rate of the Telem? no

PX固件配置--ID

PX4固件的飞控需要 确认三个三个参数 飞控ID 、串口波特率、mavlink使用版本 (ardupilot默认为 mavlink1 所以不需要更改)

配置视频教:

https://v.youku.com/v_show/id_XNDI5MTY3NDQ5Mg==.html?spm=a2h0z.8244218.uerCenter.5!3~5~5!2~DL~DD!2~A&firsttime=177.93

飞控的ID与 mavlink版本 参数都 在"mavlink"参数项中,

- "MAV PROTO VER" 修改为 "Alway use version 1"
- "MAV SYS ID" 在网络中的飞控的ID 不重复即可。例如3个飞行器,ID可分别为 1,2,3

11

PX固件配置一串口波特率

NOTE: 如果收到的数传串口默认值为 57600 这一项就不需要更改。其它的波特率需要更改因为大于三个飞控的数据的传输,57600波特率传输不了,因此需要提高为 115200波特率更改波特率:修改 "SER_TEL1_BAUD" 为 "115200",保存后重启。

1、1~3用户应用

相比普通单一用户数传,网络结构的数传可以进行 >40KM的长距离数据传输,和较强的接收灵敏度。

双用户模式下,地面基站(地面站)可以同时控制两架无人机,进行同时作业。可以大大节约时间,提高工作效率。

我们提供两种常见的工作场景。

1、同步作业。

同步作业场景下,只使用同一个地面站控制,两架无人机按照预先规划的路径同时作业互不干扰。情景示意及数据传输方式如下图。

2、循环作业。

12

双用户模式下,在一架无人机需要返回 Home 进行补给时,另一架无人机可以及时赶往进行替换。保证作业进行,且不会相互干扰。如下图。

13

2、 四用户和五用户

我们可以提供四到五个用户的网络数传,如有需求请联系我们。

3、差分GPS组网

可以组网数传可以实现,以一个地面基准站 上传给送多路 的差分数据 至天空流动站。

15

4、携带差分gps的飞机

网络数传可以进行两组网络匹配。无人机与差分GPS. 分别使用两组网络。分别传送飞空数据、地面基准站数据。提高了地面基准站的使用效率。

FAQ

- 1、收到的数传都是已经进行过网络测试的,只需要对飞控进行一点参数配置即可。
- 2、收到数传后,数传指示灯显示已连接,但地面站接收不到数据。 可能是数传的与飞控串口的波特率不一致,需要把飞控的串口波特率 更改为和数传一致。
- 3、地面站可以收到多个飞控的数据,但数据连接质量一直下降。 可能时飞控的 ID重复,需要检查飞控id数值。