

## TCP Usage Model

- Connection setup
  - 3-way handshake
- Data transport
  - Sender writes data
  - TCP
    - Breaks data into segments
    - Sends each segment over IP
    - Retransmits, reorders and removes duplicates as necessary
  - Receiver reads some data
- Teardown
  - 4 step exchange



# TCP ConnectionEstablishment

- 3-Way Handshake
  - Sequence Numbers
    - J,K
  - Message Types
    - Synchronize (SYN)
    - Acknowledge (ACK)
  - Passive Open
    - Server listens for connection from client
  - Active Open
    - Client initiates connection to server





# Purpose of the handshake

- Why use a handshake before sending / processing data?
- Suppose we don't wait for the handshake
  - send data (e.g., HTTP request) along with SYN
  - deliver to application
  - send some results (e.g., index.html) along with SYN ACK
- What could go wrong?
  - Hint: remember packets can be delayed, dropped, duplicated, ...



#### Purpose of the handshake

- Why use a handshake before sending / processing data?
- Duplicated packet causes data to be sent to application twice
- Why does handshake fix this?





#### Purpose of the handshake

If server receives
 request a second time,
 it responds with SYN
 ACK a second time

But sender will not subsequently respond with ACK ("what is this garbage I just received??") results

1st Connection closed results



Client

Server

# -Another purpose of the handshake

- No handshake == security hole
  - Attacker sends request
  - ...but spoofs source address, using address of a victim (C)
  - Server happily sends massive amounts of data to victim
  - Attacker repeats for 10,000 web servers
  - Massive denial of service attack, almost free and anonymous for the attacker!
- Used in the largest distributed denial of service (DDoS) attacks in 2008, 2009, and 2010
  - Use services that lack handshake (e.g., DNS over UDP)
  - Amplification factor 1:76 in 2008!



# -Another purpose of the handshake

Handshake lets server verify source address is real



**Q:** does this prevent reflection attack?

**A:** No, but at least it prevents amplification



#### Handshaking

- Internet was not designed for accountability
  - Hard to tell where a packet came from
  - ISPs filter suspicious packets: sometimes easy, sometimes hard, and sometimes not done
    - And the Internet is not secure until everyone filters
- More generally, Internet was not designed for security
  - Vulnerabilities in most of the core protocols
  - Even with handshake, early designs are vulnerable
    - Had predictable Initial Sequence Number (why's that bad?)
    - Because security was not initial goal of the handshake



### TCP Data Transport

- Data broken into segments
  - Limited by maximum segment size (MSS)
  - Defaults to 352 bytes
  - Negotiable during connection setup
  - Typically set to
    - MTU of directly connected network size of TCP and IP headers
- Three events cause a segment to be sent
  - ≥ MSS bytes of data ready to be sent
  - Explicit PUSH operation by application
  - Periodic timeout



#### TCP Byte Stream





# TCP Connection Termination

- Two generals problem
  - Enemy camped in valley
  - Two generals' hills separated by enemy
  - Communication by unreliable messengers
  - Generals need to agree whether to attack or retreat



#### Two generals problem

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
  - No, even if all messages get through



No way to be sure last message gets through!



### TCP Connection Termination

- Message Types
  - Finished (FIN)
  - Acknowledge (ACK)
- Active Close
  - Sends no more data
- Passive close
  - Accepts no more data





| 0                   | 8 |       | 16                | 31 |
|---------------------|---|-------|-------------------|----|
| Source Port         |   |       | Destination Port  |    |
| Sequence Number     |   |       |                   |    |
| ACK Sequence Number |   |       |                   |    |
| Header Length       | 0 | Flags | Advertised Window |    |
| TCP Checksum        |   |       | Urgent Pointer    |    |
| Options             |   |       |                   |    |





16-bit source and destination ports





32-bit send and ACK sequence numbers



# ACKing and Sequence Numbers

- Sender sends packet
  - Data starts with sequence number X
  - Packet contains B bytes
    - X, X+1, X+2, ....X+B-1



# -ACKing and Sequence Numbers

- Upon receipt of packet, receiver sends an ACK
  - If all data prior to X already received:
    - ACK acknowledges X+B (because that is next expected byte)





# -ACKing and Sequence Numbers

- Upon receipt of packet, receiver sends an ACK
  - If highest byte already received is some smaller value Y
    - ACK acknowledges Y+1
    - Even if this has been ACKed before





- 4-bit header length in 4-byte words
  - Minimum 5 bytes
  - Offset to first data byte





- Reserved
  - Must be 0



| 0                   | 8 |       | 16                      | 31 |
|---------------------|---|-------|-------------------------|----|
| Source Port         |   |       | <b>Destination Port</b> |    |
| Sequence Number     |   |       |                         |    |
| ACK Sequence Number |   |       |                         |    |
| Header Length       | 0 | Flags | Advertised Window       |    |
| TCP Checksum        |   |       | Urgent Pointer          |    |
| Options             |   |       |                         |    |

#### 6 1-bit flags

URG: Contains urgent data RST: Reset connection

ACK: Valid ACK seq. number SYN: Synchronize for setup

PSH: Do not delay data delivery FIN: Final segment for teardown



- 16-bit advertised window
  - Space remaining in receive window



| 0                   | 8 |       | 16                      | 31 |
|---------------------|---|-------|-------------------------|----|
| Source Port         |   |       | <b>Destination Port</b> |    |
| Sequence Number     |   |       |                         |    |
| ACK Sequence Number |   |       |                         |    |
| Header Length       | 0 | Flags | Advertised Window       |    |
| TCP Checksum        |   |       | Urgent Pointer          |    |
| Options             |   |       |                         |    |

#### 16-bit checksum

- Uses IP checksum algorithm
- Computed on header, data and pseudo header

| 0                      | 8 |          | 16                 | 31 |
|------------------------|---|----------|--------------------|----|
| Source IP Address      |   |          |                    |    |
| Destination IP Address |   |          |                    |    |
| 0                      |   | 16 (TDP) | TCP Segment Length |    |



- 16-bit urgent data pointer
  - If URG = 1
  - Index of last byte of urgent data in segment



# TCP Options

- Negotiate maximum segment size (MSS)
  - Each host suggests a value
  - Minimum of two values is chosen
  - Prevents IP fragmentation over first and last hops
- Packet timestamp
  - Allows RTT calculation for retransmitted packets
  - Extends sequence number space for identification of stray packets
- Negotiate advertised window granularity
  - Allows larger windows
  - Good for routes with large bandwidth-delay products



# TCP State Descriptions

| CLOSED      | Disconnected                                         |
|-------------|------------------------------------------------------|
| LISTEN      | Waiting for incoming connection                      |
| SYN_RCVD    | Connection request received                          |
| SYN_SENT    | Connection request sent                              |
| ESTABLISHED | Connection ready for data transport                  |
| CLOSE_WAIT  | Connection closed by peer                            |
| LAST_ACK    | Connection closed by peer, closed locally, await ACK |
| FIN_WAIT_1  | Connection closed locally                            |
| FIN_WAIT_2  | Connection closed locally and ACK' d                 |
| CLOSING     | Connection closed by both sides simultaneously       |
| TIME_WAIT   | Wait for network to discard related packets          |

















#### Questions

- State transitions
  - Describe the path taken by a server under normal conditions
  - Describe the path taken by a client under normal conditions
  - Describe the path taken assuming the client closes the connection first















#### TCP State Transition Diagram





### TCP State Transition Diagram





## TCP TIME\_WAIT State

- What purpose does the TIME\_WAIT stae serve?
- Problem
  - What happens if a segment from an old connection arrives at a new connection?
- Maximum Segment Lifetime
  - Max time an old segment can live in the Internet
- TIME\_WAIT State
  - Connection remains in this state from two times the maximum segment lifetime



### TCP State Transition Diagram





#### TCP State Transition Diagram





### TCP Sliding Window Protocol

- Sequence numbers
  - Indices into byte stream
- ACK sequence number
  - Actually next byte expected as opposed to last byte received



### TCP Sliding Window Protocol

- Initial Sequence Number
  - Why not just use 0?
- Practical issue
  - IP addresses and port #s uniquely identify a connection
  - Eventually, though, these port #s do get used again
  - ... small chance an old packet is still in flight
  - ... and might be associated with new connection
- TCP requires (RFC793) changing ISN
  - Set from 32-bit clock that ticks every 4 microseconds
  - only wraps around once every 4.55 hours
- To establish a connection, hosts exchange ISNs



### TCP Sliding Window Protocol

- Advertised window
  - Enables dynamic receive window size
- Receive buffers
  - Data ready for delivery to application until requested
  - Out-of-order data to maximum buffer capacity
- Sender buffers
  - Unacknowledged data
  - Unsent data out to maximum buffer capacity



## TCP Sliding Window ProtocolSender Side

- LastByteAcked <= LastByteSent</p>
- LastByteSent <= LastByteWritten</pre>
- Buffer bytes between LastByteAcked and LastByteWritten





## TCP Sliding Window ProtocolReceiver Side

- LastByteRead < NextByteExpected</p>
- NextByteExpected <= LastByteRcvd + 1</p>
- Buffer bytes between NextByteRead and LastByteRcvd





# Flow Control vs. Congestion Control

- Flow control
  - Preventing senders from overrunning the capacity of the receivers
- Congestion control
  - Preventing too much data from being injected into the network, causing switches or links to become overloaded
- Which one does TCP provide?
- TCP provides both
  - Flow control based on advertised window
  - Congestion control discussed later in class



## -Advertised Window Limits Rate

- W = window size
  - Sender can send no faster than W/RTT bytes/sec
  - Receiver implicitly limits sender to rate that receiver can sustain
  - If sender is going too fast, window advertisements get smaller & smaller



### TCP Flow Control: Receiver

- Receive buffer size
  - o = MaxRcvBuffer
  - o LastByteRcvd LastByteRead < = MaxRcvBuf</p>
- Advertised window
  - o = MaxRcvBuf (NextByteExp NextByteRead)
  - Shrinks as data arrives and
  - Grows as the application consumes data



### TCP Flow Control: Sender

- Send buffer size
  - o = MaxSendBuffer
  - o LastByteSent LastByteAcked < = AdvertWindow</pre>
- Effective buffer
  - o = AdvertWindow (LastByteSent LastByteAck)
  - EffectiveWindow > 0 to send data
- Relationship between sender and receiver
  - o LastByteWritten LastByteAcked < =
     MaxSendBuffer</pre>
  - o block sender if (LastByteWritten LastByteAcked) + y > MaxSenderBuffer



### TCP Flow Control

- Problem: Slow receiver application
  - Advertised window goes to 0
  - Sender cannot send more data
  - Non-data packets used to update window
  - Receiver may not spontaneously generate update or update may be lost

#### Solution

- Sender periodically sends 1-byte segment, ignoring advertised window of 0
- Eventually window opens
- Sender learns of opening from next ACK of 1-byte segment



### TCP Flow Control

- Problem: Application delivers tiny pieces of data to TCP
  - Example: telnet in character mode
  - Each piece sent as a segment, returned as ACK
  - Very inefficient
- Solution
  - Delay transmission to accumulate more data
  - Nagle's algorithm
    - Send first piece of data
    - Accumulate data until first piece ACK' d
    - Send accumulated data and restart accumulation
    - Not ideal for some traffic (e.g., mouse motion)



### TCP Flow Control

- Problem: Slow application reads data in tiny pieces
  - Receiver advertises tiny window
  - Sender fills tiny window
  - Known as silly window syndrome

#### Solution

- Advertise window opening only when MSS or ½ of buffer is available
- Sender delays sending until window is MSS or ½ of receiver's buffer (estimated)



## TCP Bit Allocation Limitations

- Sequence numbers vs. packet lifetime
  - Assumed that IP packets live less than 60 seconds
  - Can we send 2<sup>32</sup> bytes in 60 seconds?
  - Less than an STS-12 line
- Advertised window vs. delay-bandwidth
  - Only 16 bits for advertised window
  - Cross-country RTT = 100 ms
  - Adequate for only 5.24 Mbps!



# TCP Sequence Numbers – 32-bit

| Bandwidth | Speed    | Time until wrap around |
|-----------|----------|------------------------|
| T1        | 1.5 Mbps | 6.4 hours              |
| Ethernet  | 10 Mbps  | 57 minutes             |
| Т3        | 45 Mbps  | 13 minutes             |
| FDDI      | 100 Mbps | 6 minutes              |
| STS-3     | 155 Mbps | 4 minutes              |
| STS-12    | 622 Mbps | 55 seconds             |
| STS-24    | 1.2 Gbps | 28 seconds             |



## TCP Advertised Window – 16-bit

| Bandwidth | Speed    | Delay x Bandwidth Product |
|-----------|----------|---------------------------|
| T1        | 1.5 Mbps | 18 KB                     |
| Ethernet  | 10 Mbps  | 122 KB                    |
| Т3        | 45 Mbps  | 549 KB                    |
| FDDI      | 100 Mbps | 1.2 MB                    |
| STS-3     | 155 Mbps | 1.8 MB                    |
| STS-12    | 622 Mbps | 7.4 MB                    |
| STS-24    | 1.2 Gbps | 14.8 MB                   |



#### Reasons for Retransmission









## How Long Should Sender Wait?

- Sender sets a timeout to wait for an ACK
  - Too short
    - wasted retransmissions
  - Too long
    - excessive delays when packet lost



#### TCP Round Trip Time and Timeout

- How should TCP set its timeout value?
  - Longer than RTT
    - But RTT varies
  - Too short
    - Premature timeout
    - Unnecessary retransmissions
  - Too long
    - Slow reaction to segment loss

- Estimating RTT
  - SampleRTT
    - Measured time from segment transmission until ACK receipt
    - Will vary
    - Want smoother estimated RTT
  - Average several recent measurements
    - Not just current SampleRTT



# TCP Adaptive RetransmissionAlgorithm - Original

#### Theory

- Estimate RTT
- Multiply by 2 to allow for variations

#### Practice

- Output Use exponential moving average ( $\alpha$  = 0.1 to 0.2)
- Estimate = (α) \* measurement + (1-α) \* estimate
- Influence of past sample decreases exponentially fast



### TCP Adaptive Retransmission Algorithm - Original

- Problem: What does an ACK really ACK?
  - Was ACK in response to first, second, etc transmission?





# TCP Adaptive RetransmissionAlgorithm – Karn-Partridge

- Algorithm
  - Exclude retransmitted packets from RTT estimate
  - For each retransmission
    - Double RTT estimate
    - Exponential backoff from congestion



# TCP Adaptive RetransmissionAlgorithm – Karn-Partridge

- Problem
  - Still did not handle variations well
  - Did not solve network congestion problems as well as desired
    - At high loads round trip variance is high



#### **Example RTT Estimation**





# TCP Adaptive RetransmissionAlgorithm – Jacobson

#### Algorithm

- Estimate variance of RTT
  - Calculate mean interpacket RTT deviation to approximate variance
  - Use second exponential moving average
  - Dev = (β) \* |RTT\_Est Sample| + (1–β) \* Dev
  - $\beta$  = 0.25, A = 0.125 for RTT\_est
- Use variance estimate as component of RTT estimate
  - Next RTT = RTT Est + 4 \* Dev
- Protects against high jitter



# TCP Adaptive Retransmission Algorithm – Jacobson

#### Notes

- Algorithm is only as good as the granularity of the clock
- Accurate timeout mechanism is important for congestion control



#### **Evolution of TCP**





### TCP Through the 1990s





