3 Vlastnosti celých čísel (dělitelnost, prvočísla) a Eukleidův algoritmus. Binární relace, zejména ekvivalence a uspořádání, a jejich reprezentace. Počítání modulo. (A4B01DMA)

3.1 Vlastnosti celých čísel

- celá čísla Z se skládají z přirozených čísel, nuly a záporných celých čísel
- množina je uzavřena na operaci sčítání, odčítání a násobení

3.1.1 Dělitelnost

- Definice: Nechť a, b∈ Z. Řekneme, že a dělí b, značeno a|b, jestliže existuje k ∈ Z takové, že b = k · a. V takovém případě říkáme, že a je faktor b a že b je násobek a. Také říkáme, že b je dělitelné číslem a. Pokud toto není pravda, tak píšeme a∤b.
- Číslo deN je **společný dělitel** (common divisor) čísel a, b, jestliže dla a dlb.
- největší společný dělitel (greatest common divisor), značeno gcd(a, b) je největší prvek množiny jejich společných dělitelů, pokud je alespoň jedno z a,b nenulové.
- Číslo $d \in \mathbb{N}$ je **společný násobek** (common multiple) čísel a, b, jestliže a|d a b|d.
- nejmenší společný násobek (least common multiple), značeno lcm(a, b) je nejmenší prvek množiny jejich společných násobků, pokud jsou obě a,b nenulové.
- lcm(a, 0) = lcm(0, b) = 0
- gcd(0, 0) = 0
- $lcm(a, b) \cdot gcd(a, b) = |a| \cdot |b|$
- čísla a, $b \in Z$ jsou **nesoudělná**, jestliže gcd(a, b) = 1

3.1.2 Prvočíslo

- je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy 1 není prvočíslo)
- Přirozená čísla různá od jedné, která nejsou prvočísla, se nazývají složená čísla.

3.1.3 Eukleidův algoritmus

Lze jím vypočítat největšího společného dělitele dvou přirozených čísel.

- vychází z lemmatu: Nechť a, b \in N, nechť q, r \in N₀ splňují a = qb + r a 0 \le r < b. Pak platí následující: d \in N je společný dělitel a, b právě tehdy, když je to společný dělitel b, r.
- gcd(a, b) = gcd(b, r)
- opakovaně hledáme gcd pro dvojici b, r místo a, b

3.1.3.1 příklad: Chceme najít gcd(408, 108)

```
Máme 408 = 3 \cdot 108 + 84 (408 mod 108 = 84), proto \gcd(408, 108) = \gcd(108, 84).

Máme 108 = 1 \cdot 84 + 24, proto \gcd(408, 108) = \gcd(108, 84) = \gcd(84, 24).

Máme 84 = 3 \cdot 24 + 12, proto \gcd(408, 108) = \gcd(108, 84) = \gcd(84, 24) = \gcd(24, 12).

Máme 24 = 2 \cdot 12 + 0, proto \gcd(408, 108) = \gcd(108, 84) = \gcd(84, 24) = \gcd(24, 12) = \gcd(12, 0) = 12.
```

3.2 Binární relace

Definice: Nechť A,B jsou množiny. Libovolná podmnožina $R \subseteq A \times B$ se nazývá relace z A do B. Jestliže $(a, b) \in R$, pak to značíme aRb a řekneme, že a je v relaci s b vzhledem k R. Jestliže $(a, b) / \in R$, pak řekneme, že a není v relaci s b vzhledem k R.

Druhy relací:

- R je reflexivní, jestliže pro všechna a ∈ A platí aRa. např. "je stejný"
- R je symetrická, jestliže pro všechna a, $b \in A$ platí (aRb $\Rightarrow bRa$). "je sourozencem"
- R je antisymetrická, jestliže pro všechna a, $b \in A$ platí ([aRb \land bRa] \Rightarrow a = b).
- R je tranzitivní, jestliže pro všechna a, b, c \in A platí ([aRb \land bRc] \Rightarrow aRc). "je vyšší; A je vyšší než B, B je vyšší než C \Rightarrow A je vyšší než C"

3.2.1 Ekvivalence

Definice: Nechť R je relace na nějaké množině A. Řekneme, že R je ekvivalence, jestliže je **reflexivní**, **symetrická a tranzitivní**.

3.2.1.1 Třída ekvivalence

Každá ekvivalence rozdělí množinu A na systém disjunktních množin, které pak nazýváme třídy ekvivalence.

Definice: Nechť R je relace ekvivalence na nějaké množině A. Pro a \in A definujeme třídu ekvivalence prvku a (equivalence class of a) vzhledem k R jako [a]_R = {b \in A; aRb}.

Příklad: Mějme ekvivalenci R na množině celých číslech Z definovanou takto: $[a, b] \in R$ právě tehdy, když |a| = |b|. Pak:

```
Z[0] = \{0\}. Nula je v relaci pouze s nulou.
```

 $Z[1] = \{-1, 1\}$. Jednička je v relaci s jedničkou a s minus jedničkou, protože |1| = |-1|.

 $Z[2] = \{-2, 2\}$. Dvojka je v relaci s dvojkou a s minus dvojkou.

 $Z[3] = \{-3, 3\}...$

3.2.2 Částečné uspořádání

Definice: Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je **reflexivní**, **antisymetrická a tranzitivní**. V tom případě řekneme, že dvojice (A, R) je částečně uspořádaná množina.

Příklad: Relace \leq je uspořádání na přirozených, celých, racionálních i reálných číslech. Relace \subseteq je uspořádání na třídě všech množin (na univerzální třídě).

Relace dělitelnosti | (a dělí b) je uspořádáním na přirozených číslech

Relace "Být potomkem" je uspořádáním na množině osob.

3.2.2.1 Hasseův diagram

- Uspořádané množiny můžeme zakreslit pomocí Hasseova diagramu.
- vrcholy představují prvky množiny
- hrana mezi vrcholy (a, b) nám říká, že a < b a zároveň neexistuje c takové, že a < c < b. Tedy mezi prvky a a b už žádný jiný prvek není. Přitom musí platit, že v grafu je vrchol a níže než vrchol b.

Příklad: Dělitelé čísla 60: $A = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$. Uspořádání podle dělitelnosti:

3.3 Počítání modulo

Definice Nechť $n \in \mathbb{N}$. Řekneme, že čísla a, $b \in \mathbb{Z}$ jsou **kongruentní modulo** n, značeno $a \equiv b \pmod{n}$, jestliže $n \mid (a-b)$.

Nechť n \in N. Pro čísla a, b \in Z jsou následující podmínky ekvivalentní:

- $a \equiv b \pmod{n}$
- $\bullet\,$ existuje k \in Z takové, že a = b + kn
- $\bullet \mod n = b \mod n,$ tj. jsou si rovny zbytky po dělení číslem n.

3.3.1 vlastnosti

Nechť $n \in N,$ uvažujme a, b, u, $v \in Z$ takové, že a $\equiv u \pmod n$ a b $\equiv v \pmod n$:

- $\bullet \ a+b \equiv u+v \ (mod \ n)$
- $\bullet \ a-b \equiv u-v \ (mod \ n)$
- $ab \equiv uv \pmod{n}$