CT248 Assignment 6

Exploring Flights Data

Consider the following data set (Flights.csv), and generate the following analysis. When processing the day, make sure to remove records with missing values.

1. Read in the file, and confirm the number of records (336,766)

>> flights

flights =

336776×9 table

YearDay	Month	Day	origin	dest	hour	minute	dep_delay	distance
1	1	1	{ 'EWR' }	{ 'IAH'}	5	15	2	1400
1	1	1	{ 'LGA'}	{ 'IAH'}	5	29	4	1416
1	1	1	{ 'JFK' }	{ 'MIA' }	5	40	2	1089
1	1	1	{ 'JFK' }	{ 'BQN'}	5	45	-1	1576
1	1	1	{ 'LGA'}	{ 'ATL'}	6	0	-6	762
:	:	:	:	:	:	:	:	:
273	9	30	{ 'JFK' }	{ 'DCA' }	14	55	NaN	213
273	9	30	{ 'LGA'}	{ 'SYR'}	22	0	NaN	198
273	9	30	{ 'LGA'}	{ 'BNA' }	12	10	NaN	764
273	9	30	{ 'LGA'}	{ 'CLE'}	11	59	NaN	419
273	9	30	{ 'LGA'}	{ 'RDU'}	8	40	NaN	431

2. Convert "origin" and "dest" to strings (from cell type)

>> flights

flights =

336776×9 table

YearDay	Month	Day	origin	dest	hour	minute	dep_delay	distance
1	1	1	"EWR"	"IAH"	5	15	2	1400
1	1	1	"LGA"	"IAH"	5	29	4	1416
1	1	1	"JFK"	"MIA"	5	40	2	1089
1	1	1	"JFK"	"BQN"	5	45	-1	1576
1	1	1	"LGA"	"ATL"	6	0	-6	762
:	:	:	:	:	:	:	:	:
273	9	30	"JFK"	"DCA"	14	55	NaN	213
273	9	30	"LGA"	"SYR"	22	0	NaN	198
273	9	30	"LGA"	"BNA"	12	10	NaN	764
273	9	30	"LGA"	"CLE"	11	59	NaN	419
273	9	30	"LGA"	"RDU"	8	40	NaN	431

3. Check the number of missing values for the departure time.

dep_delay: 336776×1 double

Values:

Min -43
 Median -2
 Max 1301
 NumMissing 8255

4. Filter all the missing values from the departure delay. Use the MATLAB function **isnan()** to help with this. Check the difference in the number of records.

>> flights_clean
flights_clean =
 328521×9 table

YearDay	Month	Day	origin	dest	hour	minute	dep_delay	distance
1	1	1	"EWR"	"IAH"	5	15	2	1400
1	1	1	"LGA"	"IAH"	5	29	4	1416
1	1	1	"JFK"	"MIA"	5	40	2	1089
1	1	1	"JFK"	"BQN"	5	45	-1	1576
1	1	1	"LGA"	"ATL"	6	0	-6	762
:	:	:	:	:	:	:	:	:
273	9	30	"JFK"	"SYR"	22	45	-5	209
273	9	30	"JFK"	"BUF"	22	50	-10	301
273	9	30	"JFK"	"ROC"	22	46	-5	264
273	9	30	"JFK"	"BOS"	22	55	12	187
273	9	30	"JFK"	"PSE"	23	59	-10	1617

Display all 328521 rows.

5. Confirm the difference in records between the two tables

>> height(flights) - height(flights_clean)
ans =
 8255

6. Remove any departure delay greater than 2 hours (120 minutes). This leaves 318,798 observations.

flights_final =

318798×9 table

YearDay	Month	Day	origin	dest	hour	minute	dep_delay	distance
1	1	1	"EWR"	"IAH"	5	15	2	1400
1	1	1	"LGA"	"IAH"	5	29	4	1416
1	1	1	"JFK"	"MIA"	5	40	2	1089
1	1	1	"JFK"	"BQN"	5	45	-1	1576
1	1	1	"LGA"	"ATL"	6	0	-6	762
:	:	:	:	:	:	:	:	:
273	9	30	"JFK"	"SYR"	22	45	-5	209
273	9	30	"JFK"	"BUF"	22	50	-10	301
273	9	30	"JFK"	"ROC"	22	46	- 5	264
273	9	30	"JFK"	"BOS"	22	55	12	187
273	9	30	"JFK"	"PSE"	23	59	-10	1617

Display all 318798 rows.

7. Generate the following table and graph, showing the average delay per month.

res1 =

12×2 table

Month	AvrDelayMonth
1	6.1014
2	6.7335
3	7.8451
4	7.8675
5	7.8998
6	11.172
7	12.076
8	7.8246
9	2.5813
10	3.5686
11	3.4567
12	10.91
12	10.91

8. Generate the following table and graph, showing the average delay per hour.

res2 =

19×2 table

Hour	AvrDelayHour
5	-0.013953
6	0.077367
7	0.45981
8	1.6756
9	2.1263
10	3.2408
11	3.9218
12	5.3017
13	7.433
14	8.4813
15	10.481
16	11.357
17	12.161
18	12.39
19	14.412
20	15.083
21	16.472
22	13.287
23	9.8507

9. Generate the following table and graph, showing the average delay by month and by origin

res1 = 36×3 table

Month	Origin	AvrDelayMonthOrigin
1	"EWR"	9.5572
1	"JFK"	5.0003
1	"LGA"	3.1567
2	"EWR"	8.4617
2	"JFK"	7.3617
2	"LGA"	3.9428
3	"EWR"	11.433
3	"JFK"	6.777
3	"LGA"	4.8108
4	"EWR"	10.543
4	"JFK"	6.9087
4	"LGA"	5.6536
5	"EWR"	10.588
5	"JFK"	7.4736
5	"LGA"	5.1239
6	"EWR"	12.665
6	"JFK"	11.592
6	"LGA"	8.9138
7	"EWR"	13.049
7	"JFK"	13.387
7	"LGA"	9.4009
8	"EWR"	8.8749
8	"JFK"	8.4828
8	"LGA"	5.8566
9	"EWR"	3.0154
9	"JFK"	3.2613
9	"LGA"	1.4469
10	"EWR"	5.1424
10	"JFK"	2.8182
10	"LGA"	2.6456
11	"EWR"	4.5897
11	"JFK"	2.5788
11	"LGA"	3.0805
12	"EWR"	14.079
12	"JFK"	10.033
12	"LGA"	8.4138

