平成28年度 大阪大学基礎工学部編入学試験

[知能システム学コース専門科目] 試験問題

受	験	番	号	志	望	学	科	コ	- :	ス
									学	科
							N.		٦-	ース

[知シ専門-1]

問題 1

以下の設問(1),(2)に答えよ.

- (1) C言語で書かれたプログラム 1 は、配列を昇順に並べ替えるマージソートを実装したものである.以下の小問 $(a) \sim (c)$ に答えよ.
 - (a) プログラム 1 を実行したときの標準出力結果を記せ、ただし、スペースは $_$, 改行は \lrcorner として必ず解答に含めること、
 - (b) プログラム1に示すマージソートが、安定なソートアルゴリズムかどうか答えよ. また、その理由 も示せ.
 - (c) マージソートの時間計算量を, データ数nを用いたオーダー表記で答えよ.
- (2) 図1に示す回路Kは、あるハフマン符号を復号する. 以下の小問 (a) \sim (e) に答えよ. ただし、 $\log_2 3 = 1.58$ とせよ.
 - (a) 記号A, B, C, D, Eが, それぞれ1/8, 3/8, 3/8, 1/16, 1/16の確率で生起する情報源がある. この情報源のエントロピーを求めよ.
 - (b) ハフマン符号化を行い, 小問 (a) のA~Eの各記号と得られた符号との対応を示せ.
 - (c) 小問(b) で求めた符号の平均符号長を求めよ.
 - (d) 回路Kへは、小問(b) で求めたハフマン符号の連なるビット列から、1クロック毎に1ビットxが入力される. 回路Kは、1クロック毎に復号結果を3ビット{y₁y₂y₃}で出力する. 記号A, B, C, D, Eが復号されると、それぞれ{001}、{010}、{011}、{100}、{101}が出力される. また、復号が完了していない場合は{000}が出力される. 回路Kの状態遷移表を示せ. ただし、内部状態を表現するための変数を定義すること.
 - (e) AND, OR, NOTの3種類の論理回路記号, および, 図1に示すD形フリップフロップを用いて, 回路 Kの回路図を示せ.

```
#include <stdio.h>
int b[10];
void merge sort(int a[], int low, int high){
   int mid, i, j, k;
   if (low >= high) { return; }
   mid = (low + high) / 2;
   merge_sort (a, low, mid);
   merge_sort (a, mid + 1, high);
   for (i = low; i <= mid; i++){
      b[i] = a[i];
   j = high;
   for (i = mid+1; i <= high; i++){
      b[i] = a[j--];
   i = low; j = high;
   for (k = low; k \le high; k++){
       if (b[i] \le b[j]){
          a[k] = b[i++];
      }else{
          a[k] = b[j--];
   for (k = low; k \le high; k++){
      printf("%d ",a[k]);
   printf("\n");
int main(){
   int a[3]={80,10,21};
   merge_sort(a,0,2);
   return 1;
```

プログラム1

平成28年度 大阪大学基礎工学部編入学試験

[知能システム学コース専門科目] 試験問題

受	験	番	号	志望学科・コース
				学 科
				コース

[知シ専門-2]

問題 2

以下の設問 (1) と (2) に答えよ. いずれの問題も導出の過程も示せ. ただし, オペアンプについては入力インピーダンスと電圧増幅率が ∞ , 出力インピーダンスが 0 であるとする.

- (1) オペアンプの出力電圧は飽和しないとする. このとき, 以下の小問(a)と(b)に答えよ.
 - (a) 図1の回路において, $v_i(t)$ と $v_O(t)$ の関係を示せ.
 - (b) 図 1 の回路において、 $v_i(t)$ が以下で与えられたとき、 $v_O(t)$ を求めよ.

$$v_i(t) = \left\{ egin{array}{ll} E & nT \leq t < (n+0.5)\,T$$
 のとき $-E & (n+0.5)\,T \leq t < (n+1)\,T$ のとき

ただし, E > 0, T > 0, n = 0, 1, 2, ... とし, $v_O(0) = v_0$ とする.

- (2) オペアンプの出力電圧が正の飽和電圧 E>0 と負の飽和電圧 -E で飽和するとする. このとき、以下の小問 (a) \sim (c) に答えよ.
 - (a) 図 2 の回路において、 $v_{O2}(t)=E$ のとき、 $v_+(t)>0$ である条件を求めよ. また、 $v_{O2}(t)=-E$ のとき、 $v_+(t)<0$ である条件を求めよ.
 - (b) 図 2 の回路において, $R_1=1$ k Ω , $R_2=2$ k Ω , E=10 V とする. $v_{i2}(t)$ が図 3 で与えられたとき, $0 \le t \le T$ の範囲で $v_{O2}(t)$ の時間変化のグラフを描け.
 - (c) 図 4 の回路において, $R_1=1$ k Ω , $R_2=2$ k Ω , E=10 V とし, r=100 k Ω , C=1 μ F とする. また, $v_i(0)=10$ V と $v_O(0)=5$ V が成り立つとする. このとき, $v_O(t)$ を求めよ.

 $v_{+}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$ $v_{i}(t)$

図 4

平成28年度 大阪大学基礎工学部編入学試験 「知能システム学コース専門科目] 試験問題

受	験	番	号	志	望	学	科	コ	_	ス
									学	科
									コ	ース

[知シ専門-3]

問題3

以下の設問(1)と(2)に答えよ.

(1) 伝達関数 G(s) が次式で表されるシステムを考える.

$$G(s) = \frac{s + \alpha}{s(0.5s + 1)(0.1s + 1)}$$

ただし、 α は実数定数である. 以下の小問 (a) \sim (c) に答えよ.

- (a) $\alpha = 1$ のときのインパルス応答を求めよ.
- (b) $\alpha = 1$ のときのボード線図のゲイン曲線を描け、折れ線近似で描いてよい、
- (c) 入力 $u(t) = e^{2t} (t \ge 0)$ を印加したとき、出力が発散しないような α を求めよ.
- (2) 伝達関数 P(s) が次式で表される制御対象を考える.

$$P(s) = \frac{1}{s^3 + as^2 + bs + c}$$

ただし、a, b, c は実数定数である。また、本設問では、任意の有界な入力に対して出力が有界であるとき、システムは安定であると呼ぶ。a, b, c を用いて、以下の小問 (a) と (b) に答えよ。

- (a) 制御対象が安定であるための必要十分条件を示せ.
- (b) K>0 を正のゲイン定数とおく、図1 に示すゲイン補償によるフィードバック制御システムが安定であるような K が存在するための必要十分条件を示せ、さらに、このような K が存在するとき、安定化できる K の範囲を求めよ、

図 1: ゲイン補償によるフィードバック制御システム (K は正のゲイン定数, P(s) は制御対象の伝達関数, R(s) は目標信号のラプラス変換, Y(s) は制御対象の出力のラプラス変換を表す。)