

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра суперкомпьютеров и квантовой информатики

Вариант 1 по заданию 3-й поток по курсу «Суперкомпьютерное моделирование и технологии»

Работу выполнил: Юань Дунлян Группа: 623

Москва 2024

Содержание

 Численный метод решения задачи Разностная схема Инициализация и алгоритм решения Параллельная реализация MPI + OpenMP и тестиров Тестирование на Polus Параметры тестовой задачи Вычисление погрешности δ Зал.3. Результаты расчетов на IBM Polus для программы	ание на Polus 6
 2.1. Разностная схема 2.2. Инициализация и алгоритм решения 3. Параллельная реализация MPI + OpenMP и тестиров 3.1. Тестирование на Polus 3.1.1. Параметры тестовой задачи 3.1.2. Вычисление погрешности δ 3.1.3. Результаты расчетов на IBM Polus для программы 3.1.4. Результаты расчетов на IBM Polus для программы 3.1.5. Результаты расчетов на IBM Polus для гибритной прерсии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Пестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. MPI версия 4.2.3. MPI + OpenMP версия 	ание на Polus 6
 3. Параллельная реализация MPI + OpenMP и тестиров 3.1. Тестирование на Polus 3.1.1. Параметры тестовой задачи 3.1.2. Вычисление погрешности δ 3.1.3. Результаты расчетов на IBM Polus для программы 3.1.4. Результаты расчетов на IBM Polus для программы 3.1.5. Результаты расчетов на IBM Polus для гибритной прерсии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Тестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. МРІ версия 4.2.3. МРІ + OpenMP версия 	ание на Polus 6
 3.1. Тестирование на Polus 3.1.1. Параметры тестовой задачи 3.1.2. Вычисление погрешности δ 3.1.3. Результаты расчетов на IBM Polus для программы 3.1.4. Результаты расчетов на IBM Polus для программы 3.1.5. Результаты расчетов на IBM Polus для гибритной прерсии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Тестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. МРІ версия 4.2.3. МРІ + ОрепМР версия 	
 3.1. Тестирование на Polus 3.1.1. Параметры тестовой задачи 3.1.2. Вычисление погрешности δ 3.1.3. Результаты расчетов на IBM Polus для программы 3.1.4. Результаты расчетов на IBM Polus для программы 3.1.5. Результаты расчетов на IBM Polus для гибритной прерсии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Тестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. МРІ версия 4.2.3. МРІ + ОрепМР версия 	
 3.1.1. Параметры тестовой задачи	6
 3.1.2. Вычисление погрешности δ 3.1.3. Результаты расчетов на IBM Polus для программы 3.1.4. Результаты расчетов на IBM Polus для программы 3.1.5. Результаты расчетов на IBM Polus для гибритной пр версии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Тестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. МРІ версия 4.2.3. МРІ + ОрепМР версия 	
 3.1.3. Результаты расчетов на IBM Polus для программы 3.1.4. Результаты расчетов на IBM Polus для программы 3.1.5. Результаты расчетов на IBM Polus для гибритной прерсии 4. Параллельная реализация МРІ + СUDA и тестирован 4.1. Тестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. МРІ версия 4.2.3. МРІ + ОрепМР версия 4.2.3. 	л OpenMP версии 7 л MPI версии 9 рограммы MPI+OpenM
 3.1.4. Результаты расчетов на IBM Polus для программы 3.1.5. Результаты расчетов на IBM Polus для гибритной пр версии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Тестирование на Polus	я MPI версии 9 рограммы MPI+OpenM
3.1.5. Результаты расчетов на IBM Polus для гибритной пр версии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Тестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. MPI версия 4.2.3. MPI + OpenMP версия	рограммы MPI+OpenM
версии 4. Параллельная реализация MPI + CUDA и тестирован 4.1. Тестирование на Polus 4.1.1. Параметры тестовой задачи 4.2. Команды компиляции и скрипты запуска 4.2.1. Последовательная версия 4.2.2. MPI версия 4.2.3. MPI + OpenMP версия	лие на Polus 11
4.1. Тестирование на Polus	
4.1. Тестирование на Polus	
4.1.1. Параметры тестовой задачи	
4.2. Команды компиляции и скрипты запуска	
4.2.1. Последовательная версия	11
4.2.2. MPI версия	
4.2.3. MPI + OpenMP версия	
4.3. Проверка корректности MPI+GPU реализации	
4.3.1. Результаты проверки для одного МРІ процесса и с	
4.3.2. Результаты проверки для двух МРІ процессов и д	
4.4. Результаты расчетов на IBM Polus для программы MPI+	
4.5. Сравнение производительности на основе общего времени	-
4.6. Сравнение производительности на основе времени вычисл	
4.7. Анализ масштабируемости и эффективности параллельн	
4.8. Исходный код	· · · · · · · · · · · · · · · · · · ·
5. Компиляция и выполнение программы (на этапах 1 2	3) 20
5.1. Последовательная Вресия	
5.1.1. Команда компиляции	
5.1.2. Команда выполнения	
5.1.3. Параметры командной строки	
5.1.4. Скрипт для системы Polus	
5.2. OpenMP Вресия	
5.2.1. Команда компиляции	
5.2.2. Команда выполнения	
5.2.3. Параметры командной строки	
5.2.4. Скрипт для системы Polus	
5.3. MPI Версия	
5.3.1. Команда компиляции	
5.3.2. Команда выполнения	

	5.3.4.	Скрипт для системы Polus	22
5.4.	MPI +	OpenMP Версия	24
	5.4.1.	Команда компиляции	24
	5.4.2.	Команда выполнения	24
	5.4.3.	Скрипт для системы Polus	24
Списо	к лите	ратуры	26

1. Постановка задачи

В данной работе требуется численно решить трехмерное гиперболическое уравнение:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u$$

в области $\Omega = [0 \leqslant x \leqslant L_x] \times [0 \leqslant y \leqslant L_y] \times [0 \leqslant z \leqslant L_z]$ для времени $(0 < t \leqslant T]$ с начальными условиями:

$$u|_{t=0} = \varphi(x, y, z),$$

 $\frac{\partial u}{\partial t}\Big|_{t=0} = 0$

и граничными условиями первого рода.

Задача должна быть реализована с использованием:

- Блочного разбиения расчетной области между процессами
- Явной разностной схемы для аппроксимации уравнения
- Параллельных вычислений на суперкомпьютере IBM Polus

Требуется:

- 1. Реализовать параллельный алгоритм решения задачи
- 2. Провести расчеты с различными параметрами сетки
- 3. Исследовать точность полученного численного решения
- 4. Оценить эффективность параллельной реализации

В данном варианте задачи аналитическое решение имеет вид:

$$u_{analytical} = \sin\left(\frac{\pi x}{L_x}\right) \cdot \sin\left(\frac{\pi y}{L_y}\right) \cdot \sin\left(\frac{\pi z}{L_z}\right) \cdot \cos(a_t t)$$

где

$$a_t = \pi \sqrt{\frac{1}{L_x^2} + \frac{1}{L_y^2} + \frac{1}{L_z^2}}$$

Легко проверить, что данное решение удовлетворяет граничным условиям первого рода:

$$u(0, y, z, t) = 0, \quad u(L_x, y, z, t) = 0,$$

 $u(x, 0, z, t) = 0, \quad u(x, L_y, z, t) = 0,$
 $u(x, y, 0, t) = 0, \quad u(x, y, L_z, t) = 0$

и начальным условиям:

$$\begin{aligned} u|_{t=0} &= \sin\left(\frac{\pi x}{L_x}\right) \cdot \sin\left(\frac{\pi y}{L_y}\right) \cdot \sin\left(\frac{\pi z}{L_z}\right) \\ \frac{\partial u}{\partial t}\bigg|_{t=0} &= 0 \end{aligned}$$

Данное аналитическое решение будет использоваться для оценки точности численного метода.

2. Численный метод решения задачи

Для численного решения поставленной задачи используем метод конечных разностей на равномерной сетке. Введем пространственно-временную сетку:

$$\bar{\omega}_h = \{ (x_i = ih_x, y_j = jh_y, z_k = kh_z), i = 0, \dots, N_x, j = 0, \dots, N_y, k = 0, \dots, N_z \},$$

$$h_x = \frac{L_x}{N_x}, \quad h_y = \frac{L_y}{N_y}, \quad h_z = \frac{L_z}{N_z},$$

$$\omega_\tau = \{ t_n = n\tau, n = 0, 1, \dots, K, \tau K = T \},$$

где ω_h - множество внутренних узлов сетки, γ_h - множество граничных узлов.

2.1. Разностная схема

Для аппроксимации уравнения используем явную схему:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u_{ijk}^n,$$

где Δ_h - семиточечный разностный оператор Лапласа:

$$\begin{split} \Delta_h u_{ijk}^n = & \frac{u_{i+1,j,k}^n - 2u_{i,j,k}^n + u_{i-1,j,k}^n}{h_x^2} + \\ & \frac{u_{i,j+1,k}^n - 2u_{i,j,k}^n + u_{i,j-1,k}^n}{h_y^2} + \\ & \frac{u_{i,j,k+1}^n - 2u_{i,j,k}^n + u_{i,j,k-1}^n}{h_z^2} \end{split}$$

2.2. Инициализация и алгоритм решения

Для начала расчета необходимо задать значения решения на первых двух временных слоях.

1. На нулевом слое используем начальное условие:

$$u_{ijk}^{0} = \sin\left(\frac{\pi x_i}{L_x}\right) \sin\left(\frac{\pi y_j}{L_y}\right) \sin\left(\frac{\pi z_k}{L_z}\right)$$

2. Для первого временного слоя используем аппроксимацию второго порядка:

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{\tau^{2}}{2} \Delta_{h} u_{ijk}^{0}$$

3. Для последующих временных слоев используем явную схему:

$$u_{ijk}^{n+1} = 2u_{ijk}^n - u_{ijk}^{n-1} + \tau^2 \Delta_h u_{ijk}^n$$

3. Параллельная реализация MPI + OpenMP и тестирование на Polus

3.1. Тестирование на Polus

Тестирование проводилось на вычислительном комплексе Polus $\mathrm{M}\Gamma\mathrm{Y}$ со следующими характеристиками:

• Процессоры: IBM POWER8

• Число ядер на узел: 20

• Объём оперативной памяти: 256GB на узел

3.1.1. Параметры тестовой задачи

 $\bullet \;$ Временной интервал: T

• Шаг по времени: τ

ullet Число шагов по времени: K

3.1.2. Вычисление погрешности δ

$$\delta = \|e\|_{L^2} = \left(\sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \sum_{k=1}^{N_z} |u_{i,j,k}^{numerical} - u_{i,j,k}^{exact}|^2 \Delta x \Delta y \Delta z\right)^{\frac{1}{2}}$$

3.1.3. Результаты расчетов на IBM Polus для программы OpenMP версии

Область: $[0,1]\times[0,1]\times[0,1]$, $\tau=0.001$, K=20

Число OpenMP	Число точек сетки N^3	Время решения $T/(s)$	Ускорение S	Погрешность δ
потоков N_p				
1	128^{3}	0.46	1.00	1.00e-07
2	128^{3}	0.28	1.64	1.00e-07
4	128^{3}	0.14	3.29	1.00e-07
8	128^{3}	0.07	6.57	1.00e-07
10	128^{3}	0.06	7.67	1.00e-07
16	128^{3}	0.04	11.50	1.00e-07
20	128^{3}	0.03	15.33	1.00e-07
32	128^{3}	0.043	10.70	1.00e-07
40	128^{3}	0.036	12.78	1.00e-07
64	128^{3}	0.034	13.53	1.00e-07
120	128^{3}	0.032	14.38	1.00e-07
160	128^{3}	0.029	15.86	1.00e-07
1	256^{3}	3.75	1.00	2.12e-08
2	256^{3}	2.33	1.61	2.12e-08
4	256^{3}	1.175	3.19	2.12e-08
8	256^{3}	0.593	6.32	2.12e-08
10	256^{3}	0.491	7.64	2.12e-08
16	256^{3}	0.302	12.42	2.12e-08
20	256^{3}	0.243	15.43	2.12e-08
32	256^{3}	0.484	7.75	2.12e-08
40	256^{3}	0.279	13.44	2.12e-08
64	256^{3}	0.267	14.04	2.12e-08
120	256^{3}	0.227	16.52	2.12e-08
160	256^{3}	0.219	17.12	2.12e-08
1	512^{3}	30.08	1.00	1.40e-09
2	512^{3}	18.79	1.60	1.40e-09
4	512^{3}	9.52	3.16	1.40e-09
8	512^{3}	4.83	6.23	1.40e-09
10	512^{3}	3.92	7.67	1.40e-09
16	512^{3}	2.48	12.13	1.40e-09
20	512^{3}	2.01	14.96	1.40e-09
32	512^{3}	2.81	10.70	1.40e-09
40	512^{3}	2.27	13.25	1.40e-09
64	512^{3}	2.20	13.67	1.40e-09
120	512^{3}	1.79	16.80	1.40e-09
160	512^{3}	1.73	17.39	1.40e-09

Область: $[0,\pi]\times[0,\pi]\times[0,\pi]$, $\tau=0.001$, K=20

Число OpenMP	Число точек сетки N^3	Время решения $T/(s)$	Ускорение <i>S</i>	Погрешность δ
потоков N_p			-	
1	128^{3}	0.45	1.00	1.07e-08
2	128^{3}	0.28	1.57	1.07e-08
4	128^{3}	0.14	3.14	1.07e-08
8	128^{3}	0.07	6.29	1.07e-08
10	128^{3}	0.05	8.80	1.07e-08
16	128^{3}	0.037	11.89	1.07e-08
20	128^{3}	0.031	14.19	1.07e-08
32	128^{3}	0.044	10.00	1.07e-08
40	128^{3}	0.036	12.22	1.07e-08
64	128^{3}	0.034	12.94	1.07e-08
120	128^{3}	0.032	13.75	1.07e-08
160	128^{3}	0.029	15.17	1.07e-08
1	256^{3}	3.79	1.00	2.62e-09
2	256^{3}	2.33	1.55	2.62e-09
4	256^{3}	1.175	3.06	2.62e-09
8	256^{3}	0.593	6.07	2.62e-09
10	256^{3}	0.491	7.33	2.62e-09
16	256^{3}	0.302	11.92	2.62e-09
20	256^{3}	0.243	14.81	2.62e-09
32	256^{3}	0.484	7.44	2.62e-09
40	256^{3}	0.279	12.90	2.62e-09
64	256^{3}	0.267	13.48	2.62e-09
120	256^{3}	0.227	15.86	2.62e-09
160	256^{3}	0.219	16.44	2.62e-09
1	512^{3}	29.57	1.00	6.14e-10
2	512^{3}	18.75	1.54	6.14e-10
4	512^{3}	9.52	3.03	6.14e-10
8	512^{3}	4.81	6.00	6.14e-10
10	512^{3}	3.91	7.39	6.14e-10
16	512^{3}	2.49	11.60	6.14e-10
20	512^{3}	2.01	14.37	6.14e-10
32	512^{3}	2.82	10.24	6.14e-10
40	512^{3}	2.27	12.72	6.14e-10
64	512^{3}	2.23	12.95	6.14e-10
120	512^{3}	1.81	15.96	6.14e-10
160	512^{3}	1.74	16.60	6.14e-10

3.1.4. Результаты расчетов на IBM Polus для программы MPI версии

Область: $[0,1]\times[0,1]\times[0,1]$, $\tau=0.001$, K=20

Число МРІ	Число точек сетки N^3	Время решения Т	Ускорение <i>S</i>	Погрешность δ
процессов N_p		/(s)		
1	128^{3}	0.46	1.00	1.00e-07
2	128^{3}	0.29	1.59	1.00e-07
4	128^{3}	0.14	3.29	1.00e-07
8	128^{3}	0.12	3.83	1.00e-07
10	128^{3}	0.09	5.11	1.00e-07
16	128^{3}	0.11	4.18	1.00e-07
20	128^{3}	0.14	3.29	1.00e-07
32	128^{3}	0.08	5.75	1.00e-07
1	256^{3}	3.75	1.00	2.12e-08
2	256^{3}	2.35	1.60	2.12e-08
4	256^{3}	1.17	3.21	2.12e-08
8	256^{3}	0.61	6.15	2.12e-08
10	256^{3}	0.53	7.08	2.12e-08
16	256^{3}	0.70	5.36	2.12e-08
20	256^{3}	0.51	7.35	2.12e-08
32	256^{3}	0.28	13.39	2.12e-08
1	512^{3}	30.08	1.00	1.40e-09
2	512^{3}	19.34	1.56	1.40e-09
4	512^{3}	9.67	3.11	1.40e-09
8	512^{3}	7.34	4.10	1.40e-09
10	512^3	4.71	6.39	1.40e-09
16	512^3	4.06	7.41	1.40e-09
20	512^{3}	3.14	9.58	1.40e-09
32	512^{3}	1.29	23.31	1.40e-09

Область: $[0,\pi]\times[0,\pi]\times[0,\pi]$, $\tau=0.001$, K=20

Число МРІ	Число точек сетки N^3	Время решения $T/(s)$	Ускорение <i>S</i>	Погрешность δ
процессов N_p				
1	128^{3}	0.45	1.00	1.07e-08
2	128^{3}	0.28	1.61	1.07e-08
4	128^{3}	0.15	3.00	1.07e-08
8	128^{3}	0.12	3.75	1.07e-08
10	128^{3}	0.05	9.00	1.07e-08
16	128^{3}	0.11	4.09	1.07e-08
20	128^{3}	0.08	5.63	1.07e-08
32	128^{3}	0.073	6.16	1.07e-08
1	256^{3}	3.79	1.00	2.62e-09
2	256^{3}	2.32	1.63	2.62e-09
4	256^{3}	1.20	3.16	2.62e-09
8	256^{3}	0.62	6.11	2.62e-09
10	256^{3}	0.47	8.06	2.62e-09
16	256^{3}	0.81	4.68	2.62e-09
20	256^{3}	0.30	12.63	2.62e-09
32	256^{3}	0.379	10.00	2.62e-09
1	512^{3}	29.57	1.00	6.14e-10
2	512^{3}	18.57	1.59	6.14e-10
4	512^{3}	9.38	3.15	6.14e-10
8	512^{3}	4.77	6.20	6.14e-10
10	512^{3}	4.78	6.19	6.14e-10
16	512^{3}	2.54	11.64	6.14e-10
20	512^{3}	2.11	14.01	6.14e-10
32	512^{3}	1.27	23.28	6.14e-10

3.1.5. Результаты расчетов на IBM Polus для гибритной программы MPI+OpenMP версии

Область: $[0,1]\times[0,1]\times[0,1]$, $\tau=0.001$, K=20

Число МРІ	Число	Число то-	Время ре-	Ускорение	Погрешность δ
процессов N_p	OpenMP	чек сетки	шения Т	S	
	нитей в	N^3			
	процессе				
1	4	128^{3}	0.16	2.88	1.00e-07
2	4	128^{3}	0.08	5.75	1.00e-07
4	4	128^{3}	0.04	11.50	1.00e-07
8	4	128^{3}	0.076	6.05	1.00e-07
1	4	256^{3}	1.30	2.88	2.12e-08
2	4	256^{3}	0.64	5.86	2.12e-08
4	4	256^{3}	0.33	11.36	2.12e-08
8	4	256^{3}	0.238	15.76	2.12e-08
1	4	512^{3}	10.36	2.90	1.40e-09
2	4	512^{3}	5.62	5.35	1.40e-09
4	4	512^{3}	2.65	11.35	1.40e-09
8	4	512^{3}	1.38	21.80	1.40e-09

Область: $[0,\pi]\times[0,\pi]\times[0,\pi]$, $\tau=0.001$, K=20

Число МРІ	Число	Число то-	Время ре-	Ускорение	Погрешность δ
процессов N_p	OpenMP	чек сетки	шения Т	S	
	нитей в	N^3			
	процессе				
1	4	128^{3}	0.16	2.81	1.07e-08
2	4	128^{3}	0.08	5.63	1.07e-08
4	4	128^{3}	0.04	11.25	1.07e-08
8	4	128^{3}	0.063	7.14	1.07e-08
1	4	256^{3}	1.30	2.92	2.62e-09
2	4	256^{3}	0.64	5.92	2.62e-09
4	4	256^{3}	0.48	7.90	2.62e-09
8	4	256^{3}	0.22	17.23	2.62e-09
1	4	512^{3}	10.42	2.84	6.14e-10
2	4	512^{3}	5.19	5.70	6.14e-10
4	4	512^{3}	2.63	11.24	6.14e-10
8	4	512^{3}	1.36	21.74	6.14e-10

4. Параллельная реализация MPI + CUDA и тестирование на Polus

4.1. Тестирование на Polus

Тестирование проводилось на вычислительном комплексе Polus $\mathrm{M}\Gamma\mathrm{Y}$ со следующими характеристиками:

• Графические ускорители: NVIDIA Tesla P100-SXM2-16GB

 \bullet Процессоры: IBM POWER8

• Число ядер на узел: 20

4.1.1. Параметры тестовой задачи

• Сетка: $512 \times 512 \times 512$

• Временной шаг: $\tau = 0.001$

• Число временных шагов: K=20

4.2. Команды компиляции и скрипты запуска

4.2.1. Последовательная версия

Команда компиляции:

g++-03 wave.cpp -o wave -std=c++11

Скрипт запуска:

```
#!/bin/bash
#BSUB -J "Sequential"
#BSUB -o "Sequential %J.out"
#BSUB -e "Sequential %J.err"
#BSUB -n 1
#BSUB -W 0:30
#BSUB -R "span[hosts=1]"
#BSUB -m "polus-c3-ib"
export OMP NUM THREADS=1
GRID SIZES=(512)
for grid in "${GRID SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3"
    ./wave $grid 0.001 20
done
4.2.2. MPI версия
Команда компиляции:
g++ -03 mpi.cpp -o mpi -std=c++11
module load SpectrumMPI/10.1.0 mpicxx -O3 mpi.cpp -o mpi -std=c++11 Скрипты запуска
для различных конфигураций:
   Один процесс на узле:
#!/bin/bash
#BSUB -n 1
#BSUB -W 0:30
#BSUB -o n1.%J.out
#BSUB -e n1.%J.err
#BSUB -R "span[ptile=1]"
#BSUB -m "polus-c3-ib"
GRID SIZES=(512)
for grid in "${GRID SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 1 processes"
    mpirun -np 1 ./mpi $grid 0.001 20
done
   Десять процессов на узле:
#!/bin/bash
#BSUB -n 10
#BSUB -W 0:30
#BSUB -o n10.%J.out
#BSUB -e n10.%J.err
#BSUB -R "span[ptile=10]"
#BSUB -m "polus-c3-ib"
GRID_SIZES=(512)
for grid in "${GRID_SIZES[@]}"; do
```

echo "Running test with grid size \${grid}^3 and 10 processes"

mpirun -np 10 ./mpi \$grid 0.001 20

done

```
Двадцать процессов на узле:
```

```
#!/bin/bash
#BSUB -n 20
#BSUB -W 0:30
#BSUB -o n20.%J.out
#BSUB -e n20.%J.err
#BSUB -R "span[ptile=20]"
#BSUB -m "polus-c3-ib"
GRID_SIZES=(512)
for grid in "${GRID_SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 20 processes"
    mpirun -np 20 ./mpi $grid 0.001 20
done
4.2.3. 	ext{ MPI} + 	ext{OpenMP} версия
Команда компиляции:
mpicxx -fopenmp -03 mpiomp.cpp -o mpiomp -std=c++11
   Скрипт запуска для одного МРІ процесса:
#!/bin/bash
#BSUB -n 1
#BSUB -W 0:30
#BSUB -o mpiomp.%J.out
#BSUB -e mpiomp.%J.err
#BSUB -R "affinity[core(20)]"
#BSUB -R "span[ptile=1]"
#BSUB -m "polus-c3-ib"
export OMP_NUM_THREADS=20
for grid in 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 20
done
export OMP_NUM_THREADS=40
for grid in 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 40
done
export OMP_NUM_THREADS=80
for grid in 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 80
done
export OMP_NUM_THREADS=160
```

```
for grid in 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 160
done
   Скрипт запуска для двух МРІ процессов:
#!/bin/bash
#BSUB -n 2
#BSUB -W 0:30
#BSUB -o mpiomp.%J.out
#BSUB -e mpiomp.%J.err
#BSUB -R "affinity[core(10)]"
#BSUB -R "span[ptile=2]"
#BSUB -m "polus-c3-ib"
export OMP_NUM_THREADS=20
for grid in 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 20
done
export OMP_NUM_THREADS=40
for grid in 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 40
done
export OMP_NUM_THREADS=80
for grid in 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 80
done
4.2.4. \text{ MPI} + \text{GPU} версия
Файл Makefile:
# Обязательные переменные
ARCH = sm 60
HOST COMP = mpicc
# Компилятор и флаги
NVCC = nvcc
NVCC_FLAGS = -03 - std = c ++ 11 - arch = $(ARCH)
MPI FLAGS = -I/opt/ibm/spectrum mpi/include
MPI_LIBS = -L/opt/ibm/spectrum_mpi/lib -lmpi_ibm -lmpiprofilesupport
EXTRA_FLAGS = -Xcompiler -fopenmp
# Имя исполняемого файла
TARGET = mpigpu-1
```

```
# Исходный файл
SRC = mpigpu-1.cu
# Цель по умолчанию
all: $(TARGET)
# Правило компиляции
$(TARGET): $(SRC)
    $(NVCC) $(NVCC FLAGS) $(MPI FLAGS) $(EXTRA FLAGS) -0 $0 $< $(MPI LIBS)
# Правило очистки
clean:
    rm -f $(TARGET)
   Скрипт запуска для одного МРІ процесса и одного GPU:
#!/bin/bash
#BSUB -n 1
#BSUB -q normal
#BSUB -W 0:30
#BSUB -gpu "num=1:mode=exclusive process"
#BSUB -o job_%J.out
#BSUB -e job_%J.err
mpirun -np 1 ./mpigpu-1 512 0.001 20 1
   Скрипт запуска для двух МРІ процессов и двух GPU:
#!/bin/bash
#BSUB -n 2
#BSUB -q normal
#BSUB -W 0:30
#BSUB -gpu "num=2:mode=exclusive_process"
#BSUB -o job %J.out
#BSUB -e job_%J.err
mpirun -np 2 ./mpigpu-1 512 0.001 20 1
```

4.3. Проверка корректности MPI+GPU реализации

Для проверки корректности параллельной реализации MPI+GPU было проведено сравнение результатов с последовательной версией программы. Тестирование проводилось для двух конфигураций: с одним MPI процессом и одним GPU, а также с двумя MPI процессами и двумя GPU.

4.3.1. Результаты проверки для одного МРІ процесса и одного GPU:

```
Step 2, t = 0.002000, Max Error = 3.967859e-11, L2 Error = 1.406978e-11
Step 4, t = 0.004000, Max Error = 1.587058e-10, L2 Error = 5.627573e-11
Step 6, t = 0.006000, Max Error = 3.570526e-10, L2 Error = 1.266079e-10
Step 8, t = 0.008000, Max Error = 6.346724e-10, L2 Error = 2.250497e-10
Step 10, t = 0.010000, Max Error = 9.915001e-10, L2 Error = 3.515776e-10
```

```
Step 12, t = 0.012000, Max Error = 1.427449e-09, L2 Error = 5.061618e-10 Step 14, t = 0.014000, Max Error = 1.942419e-09, L2 Error = 6.887656e-10 Step 16, t = 0.016000, Max Error = 2.536286e-09, L2 Error = 8.993458e-10 Step 18, t = 0.018000, Max Error = 3.208909e-09, L2 Error = 1.137852e-09 Step 20, t = 0.020000, Max Error = 3.960129e-09, L2 Error = 1.404229e-09
```

4.3.2. Результаты проверки для двух MPI процессов и двух GPU:

```
Step 2, t = 0.002000, Max Error = 3.967859e-11, L2 Error = 1.406978e-11
Step 4, t = 0.004000, Max Error = 1.587058e-10, L2 Error = 5.627573e-11
Step 6, t = 0.006000, Max Error = 3.570526e-10, L2 Error = 1.266079e-10
Step 8, t = 0.008000, Max Error = 6.346724e-10, L2 Error = 2.250497e-10
Step 10, t = 0.010000, Max Error = 9.915001e-10, L2 Error = 3.515776e-10
Step 12, t = 0.012000, Max Error = 1.427449e-09, L2 Error = 5.061618e-10
Step 14, t = 0.014000, Max Error = 1.942419e-09, L2 Error = 6.887656e-10
Step 16, t = 0.016000, Max Error = 2.536286e-09, L2 Error = 8.993458e-10
Step 18, t = 0.018000, Max Error = 3.208909e-09, L2 Error = 1.137852e-09
Step 20, t = 0.020000, Max Error = 3.960129e-09, L2 Error = 1.404229e-09
```

Как видно из результатов, погрешность вычислений MPI+GPU версии находится в пределах допустимых значений (порядка 10^{-9}) и полностью соответствует погрешности последовательной версии, а также версиям OpenMP и MPI+OpenMP. Это подтверждает корректность работы параллельной реализации как для одного, так и для двух GPU.

4.4. Результаты расчетов на IBM Polus для программы MPI+CUDA версии

Область: $[0,1] \times [0,1] \times [0,1]$

Число МРІ	Число	Общее	Время	Время	Время обменов	Ускорение	Ускорение
процессов	GPU	время	вычислений	копирования	MPI	(общее)	(вычисления)
N_p		(s)	(s)	$\mathrm{H2D/D2H}$ (s)	(s)	S_{total}	S_{comp}
1	1	0.752	0.655	0.087	0.007	29.23	32.65
2	2	0.505	0.344	0.135	0.054	43.52	63.38

Версия	Конфигурация	Общее	Время	Время	Время обработки	Время
программы		время	инициализации	вычислений	границ	обменов
		(s)	(s)	(s)	(s)	(s)
Последовательная	1 процесс	21.98	0.32	21.55	0.11	-
MPI	1 процесс	39.21	0.34	31.71	6.95	0.21
MPI	10 процессов	6.40	0.08	5.17	1.09	2.22
MPI	20 процессов	2.73	0.08	1.88	0.57	0.62
MPI+OpenMP	1×20	3.00	0.25	2.60	0.01	0.14
MPI+OpenMP	1×40	2.41	0.25	2.01	0.02	0.14
MPI+OpenMP	1×80	2.39	0.25	1.96	0.01	0.17
MPI+OpenMP	1×160	2.54	0.25	2.04	0.01	0.24
MPI+OpenMP	2×20	1.81	0.13	1.60	0.01	0.09
MPI+OpenMP	2×40	1.56	0.13	1.33	0.01	0.10
MPI+OpenMP	2×80	1.83	0.13	1.56	0.01	0.13

4.5. Сравнение производительности на основе общего времени выполнения

Версия	Конфигурация	Время	Ускорение	Эффективность
программы		выполнения (s)	S	E
Последовательная	1 процесс	21.98	1.00	1.00
MPI	1 процесс	39.21	0.56	0.56
MPI	10 процессов	6.40	3.43	0.34
MPI	20 процессов	2.73	8.05	0.40
MPI+OpenMP	1 MPI процесс × 20 ОрепМР потоков	3.00	7.33	0.37
MPI+OpenMP	1 MPI процесс × 40 ОрепМР потоков	2.41	9.12	0.23
MPI+OpenMP	1 MPI процесс × 80 ОрепМР потоков	2.39	9.20	0.12
MPI+OpenMP	1 MPI процесс × 160 OpenMP потоков	2.54	8.65	0.05
MPI+OpenMP	2 MPI процесса \times 20 OpenMP потоков	1.81	12.14	0.30
MPI+OpenMP	2 MPI процесса \times 40 OpenMP потоков	1.56	14.09	0.18
MPI+OpenMP	2 MPI процесса \times 80 OpenMP потоков	1.83	12.01	0.08
MPI+CUDA	$1 ext{ MPI процесс} + 1 ext{ GPU}$	0.75	29.23	29.23
MPI+CUDA	$2 ext{ MPI процесса} + 2 ext{ GPU}$	0.50	43.52	21.76

4.6. Сравнение производительности на основе времени вычислений

Версия	Конфигурация	Время	Ускорение	Эффективность
программы		вычислений (s)	S	E
Последовательная	1 процесс	21.55	1.00	1.00
MPI	1 процесс	31.71	0.68	0.68
MPI	10 процессов	5.17	4.17	0.42
MPI	20 процессов	1.88	11.46	0.57
MPI+OpenMP	1 MPI процесс \times 20 OpenMP потоков	2.60	8.29	0.41
MPI+OpenMP	1 MPI процесс × 40 ОрепМР потоков	2.01	10.72	0.27
MPI+OpenMP	1 MPI процесс × 80 ОрепМР потоков	1.96	11.00	0.14
MPI+OpenMP	1 MPI процесс × 160 OpenMP потоков	2.04	10.56	0.07
MPI+OpenMP	2 MPI процесса \times 20 OpenMP потоков	1.60	13.47	0.34
MPI+OpenMP	2 MPI процесса \times 40 OpenMP потоков	1.33	16.20	0.20
MPI+OpenMP	2 MPI процесса \times 80 OpenMP потоков	1.56	13.81	0.09
MPI+CUDA	$1 ext{ MPI процесс} + 1 ext{ GPU}$	0.66	32.65	32.65
MPI+CUDA	$2 \mathrm{\ MPI} \mathrm{\ процессa} + 2 \mathrm{\ GPU}$	0.34	63.38	31.69

4.7. Анализ масштабируемости и эффективности параллельных реализаций

(а) Сравнение ускорения и эффективности для разных реализаций

(b) Сравнение ускорения и эффективности по группам реализаций

Рисунок 4.1. Анализ производительности параллельных реализаций

Анализ производительности различных параллельных реализаций показал существенные различия в эффективности и масштабируемости рассмотренных подходов.

МРІ реализация: При использовании чистого МРІ наблюдается значительное увеличение производительности с ростом числа процессов. На 20 процессах достигается ускорение в 11.46 раз при вычислительной эффективности 0.57, что демонстрирует хорошую масштабируемость для данного типа задачи. Однако, следует отметить снижение эффективности с увеличением числа процессов, что объясняется ростом накладных расходов на межпроцессное взаимодействие.

Гибридная реализация MPI+OpenMP: Использование гибридного подхода демонстрирует такие результаты:

- При одном MPI процессе увеличение числа OpenMP потоков с 20 до 80 приводит к росту ускорения с 8.29 до 11.00, однако дальнейшее увеличение числа потоков до 160 не даёт существенного прироста производительности.
- Конфигурация с двумя МРІ процессами показывает лучшие результаты, достигая максимального ускорения в 16.20 раз при использовании 40 потоков на процесс.

Однако эффективность при этом снижается до 0.20, что указывает на значительные накладные расходы при большом количестве потоков.

Реализация MPI+**CUDA:** Наиболее эффективным оказалось использование графических ускорителей:

- На одном GPU достигается ускорение в 32.65 раз с эффективностью 32.65, что значительно превосходит результаты CPU-ориентированных реализаций.
- Использование двух GPU позволяет получить почти линейное масштабирование, увеличивая ускорение до 63.38 раз при сохранении высокой эффективности (31.69).

Сравнительный анализ: При сопоставлении различных подходов можно сделать следующие выводы:

- Для систем без GPU оптимальной является гибридная конфигурация с 2 MPI процессами и 40 OpenMP потоками на процесс.
- CUDA-реализация демонстрирует существенное преимущество над CPU-версиями, обеспечивая как высокое ускорение, так и эффективность использования вычислительных ресурсов.
- Масштабируемость MPI+CUDA решения близка к линейной, что указывает на эффективное распределение вычислительной нагрузки между GPU.

На основе проведённого анализа можно рекомендовать использование GPU-ускорителей как наиболее эффективного способа повышения производительности для данной задачи. При отсутствии доступа к GPU, оптимальным выбором является гибридная MPI+OpenMP реализация с умеренным количеством потоков на каждый MPI процесс.

4.8. Исходный код

Исходный код проекта доступен в репозитории: https://github.com/AICCer1/MPI-CUDA

Репозиторий содержит:

- Последовательную версию в ветке sequential
- МРІ версию в ветке мрі
- MPI+OpenMP версию в ветке mpi_omp
- MPI+CUDA версию в ветке mpi_cuda
- Скрипты для запуска на кластере Polus

5. Компиляция и выполнение программы (на этапах 1 2 3)

5.1. Последовательная Вресия

5.1.1. Команда компиляции

```
>_ Команда компиляции
g++ -02 wave.cpp -o wave
```

5.1.2. Команда выполнения

```
>_ Команда запуска
./wave 64 0.001 20
```

5.1.3. Параметры командной строки

- ullet 64 --- размер сетки (N): количество точек в каждом измерении трехмерной сетки
- 0.001 --- шаг по времени (τ) : временной интервал между итерациями
- 20 --- количество временных шагов (K): общее число итераций по времени

5.1.4. Скрипт для системы Polus

```
#!/bin/bash
#BSUB -J "Sequential"
#BSUB -o "Sequential_%J.out"
#BSUB -e "Sequential_%J.err"
#BSUB -n 1
#BSUB -N 0:30
#BSUB -R "span[hosts=1]"
#BSUB -R "affinity[core(1)]"
#BSUB -m "polus-c3-ib"
GRID_SIZES=(128 256 512)
for grid in "${GRID_SIZES[@]}"; do
echo "Running test with grid size ${grid}^3"
./wave $grid 0.001 20
done
```

5.2. ОренМР Вресия

5.2.1. Команда компиляции

```
>_ Команда компиляции
g++ -fopenmp -02 openmpwave.cpp -o openmpwave
```

5.2.2. Команда выполнения

```
>_ Команда запуска
./wave3d0MP 64 0.001 20 4
```

5.2.3. Параметры командной строки

- \bullet 64 --- размер сетки (N): количество точек в каждом измерении трехмерной сетки
- 0.001 --- шаг по времени (τ) : временной интервал между итерациями
- \bullet 20 --- количество временных шагов (K): общее число итераций по времени
- 4 --- количество потоков OpenMP: число параллельных потоков для вычислений

5.2.4. Скрипт для системы Polus

Скрипт выполняет тестирование программы с различным количеством потоков (1, 2, 4, 8, 16, 32, 64) и различными размерами сетки (128, 256, 512).

5.3. МРІ Версия

5.3.1. Команда компиляции

```
>_ Команда компиляции

module load SpectrumMPI/10.1.0

mpicxx -02 onlyMPI.cpp -o onlyMPI -std=c++11
```

5.3.2. Команда выполнения

>_ Kоманда запуска mpirun -np 16 ./onlyMPI 512 0.001 20

5.3.3. Параметры командной строки

- 512 --- размер сетки (N): количество точек в каждом измерении трехмерной сетки
- 0.001 --- шаг по времени (τ) : временной интервал между итерациями
- 20 --- количество временных шагов (K): общее число итераций по времени

5.3.4. Скрипт для системы Polus

done

При проведении тестирования использовались два узла Polus (polus-c3-ib и polus-c4-ib). Процессы равномерно распределялись между узлами для обеспечения сбалансированной нагрузки.

```
Для версии с MPI использовались следующие скрипты:
   Для 2 процессов (по 1 процессу на узел):
#!/bin/bash
#BSUB -n 2
#BSUB -W 0:30
#BSUB -o n2.%J.out
#BSUB -e n2.%J.err
#BSUB -R "span[ptile=1]"
#BSUB -m "polus-c3-ib polus-c4-ib"
GRID_SIZES=(128 256 512)
for grid in "${GRID_SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 2 processes"
    mpirun -np 2 ./onlyMPI $grid 0.001 20
done
   Для 4 процессов (по 2 процесса на узел):
#!/bin/bash
#BSUB -n 4
#BSUB -W 0:30
#BSUB -o n4.%J.out
#BSUB -e n4.%J.err
#BSUB -R "span[ptile=2]"
#BSUB -m "polus-c3-ib polus-c4-ib"
GRID_SIZES=(128 256 512)
for grid in "${GRID_SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 4 processes"
    mpirun -np 4 ./onlyMPI $grid 0.001 20
```

```
#!/bin/bash
#BSUB -n 8
#BSUB -W 0:30
#BSUB -o n8.%J.out
#BSUB -e n8.%J.err
#BSUB -R "span[ptile=4]"
#BSUB -m "polus-c3-ib polus-c4-ib"
GRID_SIZES=(128 256 512)
for grid in "${GRID_SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 8 processes"
    mpirun -np 8 ./onlyMPI $grid 0.001 20
done
Для 10 процессов (по 5 процесса на узел):
#!/bin/bash
#BSUB -n 10
#BSUB -W 0:30
#BSUB -o n10.%J.out
#BSUB -e n10.%J.err
#BSUB -R "span[ptile=5]"
#BSUB -m "polus-c3-ib polus-c4-ib"
GRID_SIZES=(128 256 512)
for grid in "${GRID_SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 10 processes"
    mpirun -np 10 ./onlyMPI $grid 0.001 20
done
Для 16 процессов (по 8 процессов на узел):
#!/bin/bash
#BSUB -n 16
#BSUB -W 0:30
#BSUB -o n16.%J.out
#BSUB -e n16.%J.err
#BSUB -R "span[ptile=8]"
#BSUB -m "polus-c3-ib polus-c4-ib"
GRID_SIZES=(128 256 512)
for grid in "${GRID_SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 16 processes"
    mpirun -np 16 ./onlyMPI $grid 0.001 20
done
Для 20 процессов (по 10 процесса на узел):
```

Для 8 процессов (по 4 процесса на узел):

```
#!/bin/bash
#BSUB -n 20
#BSUB -W 0:30
#BSUB -o n20.%J.out
#BSUB -e n20.%J.err
#BSUB -R "span[ptile=10]"
#BSUB -m "polus-c3-ib polus-c4-ib"
GRID SIZES=(128 256 512)
for grid in "${GRID SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 20 processes"
    mpirun -np 20 ./onlyMPI $grid 0.001 20
done
Для 32 процессов (по 16 процессов на узел):
#!/bin/bash
#BSUB -n 32
#BSUB -W 0:30
#BSUB -o n32.%J.out
#BSUB -e n32.%J.err
#BSUB -R "span[ptile=16]"
#BSUB -m "polus-c3-ib polus-c4-ib"
GRID_SIZES=(128 256 512)
for grid in "${GRID_SIZES[@]}"; do
    echo "Running test with grid size ${grid}^3 and 32 processes"
    mpirun -np 32 ./onlyMPI $grid 0.001 20
done
```

$5.4. \ \mathrm{MPI} + \mathrm{OpenMP} \ \mathrm{Bepcus}$

5.4.1. Команда компиляции

```
>_ Команда компиляции

module load SpectrumMPI/10.1.0

mpicxx -fopenmp -O2 mpiomp.cpp -o mpiomp -std=c++11
```

5.4.2. Команда выполнения

```
>_ Команда запуска
mpirun -np 4 ./mpiomp 256 0.001 20 4
```

5.4.3. Скрипт для системы Polus

Для гибридной версии MPI+OpenMP использовались следующие скрипты: Для 1 MPI процесса с 4 потоками OpenMP:

```
#!/bin/bash
#BSUB -n 1
#BSUB -W 0:30
#BSUB -o mpiomp.%J.out
#BSUB -e mpiomp.%J.err
#BSUB -R "affinity[core(4)]"
#BSUB -R "span[ptile=1]"
#BSUB -m "polus-c3-ib"
export OMP_NUM_THREADS=4
for grid in 128 256 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 4
done
   Для 2 МРІ процессов с 4 потоками ОрепМР каждый (по 1 процессу на узел):
#!/bin/bash
#BSUB -n 2
#BSUB -W 0:30
#BSUB -o mpiomp.%J.out
#BSUB -e mpiomp.%J.err
#BSUB -R "affinity[core(4)]"
#BSUB -R "span[ptile=1]"
#BSUB -m "polus-c3-ib polus-c4-ib"
export OMP_NUM_THREADS=4
for grid in 128 256 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 4
done
   Для 4 МРІ процессов с 4 потоками ОрепМР каждый (по 2 процесса на узел):
#!/bin/bash
#BSUB -n 4
#BSUB -W 0:30
#BSUB -o mpiomp.%J.out
#BSUB -e mpiomp.%J.err
#BSUB -R "affinity[core(4)]"
#BSUB -R "span[ptile=2]"
#BSUB -m "polus-c3-ib polus-c4-ib"
export OMP_NUM_THREADS=4
for grid in 128 256 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 4
done
```

Для 8 МРІ процессов с 4 потоками ОрепМР каждый (по 4 процесса на узел):

```
#!/bin/bash
#BSUB -n 8
#BSUB -w 0:30
#BSUB -o mpiomp.%J.out
#BSUB -e mpiomp.%J.err
#BSUB -R "affinity[core(4)]"
#BSUB -R "span[ptile=4]"
#BSUB -m "polus-c3-ib polus-c4-ib"

export OMP_NUM_THREADS=4

for grid in 128 256 512; do
    echo "Running test with grid size ${grid}^3"
    mpiexec ./mpiomp $grid 0.001 20 4
done
```

Параметр span[ptile=N] в скриптах обеспечивает равномерное распределение процессов между узлами, где N - количество процессов на один узел. Для гибридной версии дополнительно используется параметр affinity[core(4)], который выделяет 4 ядра для каждого MPI процесса под потоки OpenMP.

Список литературы

- [1] Задание №1 3-й поток по курсу «Суперкомпьютерное моделирование и технологии», октябрь 2024 декабрь 2024.
- [2] Суперкомпьютер IBM Polus. [Электронный ресурс]. URL: http://hpc.cs.msu.su/polus
- [3] Самарский А.А., Гулин А.В. Численные методы. --- М.: Наука. Гл. ред. физ-мат. лит., 1989.