CS 4803 | PSZ Reagan Kan | Vkan 3 | 903 404 746 TOTO O Reno-perd 5172

×22

1-2 | Wshape = (2,2) Xshape = (2,2). Strick 2, no pad

So a forward convolution takes (r, c), close strade 2 V/ 2x2el kernel, no parol, to get 2x2 output.

Must use some kernel and structe to convert

$$4 = ((2+2p') - 2)/2 + 1$$
 from $((W+2P) - F)/S + 1$

y = Convolve 2x2, 1/2 stride on the following;

Now A has shape (16 x 4)

Meed to find A sit. Jow = A | XOI -

 $W_{OR} = \begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix} \quad b_{OR} = -1.0$

$$W_{1}(0) + W_{2}(0) \ge -b \longrightarrow 0 \ge -b \longrightarrow b \ge 0$$
 (a)
 $W_{1}(1) + W_{2}(1) \ge -b \longrightarrow W_{1} + W_{2} \ge -b \times 0$
 $W_{1}(1) + W_{2}(0) < -b \longrightarrow W_{1} < -b \times 0$
 $W_{1}(0) + W_{2}(1) < -b \longrightarrow W_{2} < -b \times 0$

from
$$**$$
, $**$,

from *, $w_1+w_2+b\geq 0$ Let $X=w_1+w_2+b$, then $X\geq 0$. (c) from (b), $(w_1+w_2+b)+b<0$, $\Rightarrow (X+b<0)$

from (a),(b), we know \$20, b20, so \$\text{\$\chi \text{\$\gentleft}}\$ this contradicts (b) (x+b<0)

So " (=> " cannot be represented using linear model of given form

3-1]
$$\sigma(\cdot) = f_1(\cdot) = \left|\overrightarrow{W}^{(1)}\overrightarrow{X} + \overrightarrow{b}\right| = \left|2 \cdot \overrightarrow{X} + \overrightarrow{b}\right|$$

Luck at each element in $\left|2 \cdot \overrightarrow{X} + \overrightarrow{b}\right|$

Call it $\left|\left(2(1) \times i + b_i\right)\right| \forall i \in \{1 - d\}$.

bi =-1. (this is given).

We only care about $0 = (0, 1)$ open range

So $\left|2 \times i - 1\right| < 1$.

So, for each element, (0, 1) is the only input region that can be mapped to output region (0,1) with given $W^{(1)}$, $b^{(1)}$, each element of $\sigma(\cdot)$ has 1 input regions.

So, total of 1 mput regrous = 1 mput regrow

 $\sigma(0)$ is a bijection, since $\sigma'(0)$ exists. $\sigma^{-1}(\cdot) = \frac{1}{2} I(\vec{x} - \vec{b}).$

 $\frac{9}{2}$ $\langle \frac{2x}{2} \rangle$ $\langle \frac{2}{3} \rangle$

3.2] fog (0) identifies ng ont ryrons onto (0,1)d

3.3] from the explanation at the top of section 3-Depth,
each layer h(1) has of elements, each of which
identifies 2 region inputs, so each layer has 2 regions
that are identified.

Some the entire net has L, layers, and
from the result of 3.2, composition of functions
identifies a number of regions equal to the
product of the number of regions identified by each
composed function,