Tree Model for Prediction

川田恵介

Table of contents

1		Regression Tree
1	1.1	動機
1	1.2	実例: 価格予測
1	1.3	実例: VS OLS
1	1.4	(伝統的) サブグループ法
1	1.5	データ主導のサブグループ設定 4
1	1.6	"貪欲な"予想木アルゴリズム
1	1.7	停止条件の設定
1	1.8	性質
1	1.9	実例: 浅い木
1	1.10	実例: 深い木
1	1.11	実例: VS
1	1.12	ສະວ່ອ ϵ
2		Bootstrap Model Averaging
2	2.1	予測木への応用 7
4	2.2	解決策
2	2.3	Bootstrap model averaging
4	2.4	例: 4つのモデルの集計
4	2.5	擬似的なモデル複製 8
4	2.6	ブートストラップ 8
4	2.7	理想のモデル集計 9
2	2.8	Bootstrap Model Averaging
4	2.9	De-correlation
4	2.10	Random Forest
4	2.11	性質
2	2.12	実例: VS Tree
3		Boosting 11

3.1	Algorithm: アイディア	11
3.2	性質	11
3.3	Tuning Parameter	12
3.4	"ゆっくり学ぶ"	12
3.5	まとめ	12
Refere	ence	12

1 Regression Tree

- 一般に線形モデルとは大きく異なるモデルを構築
- サブグループの平均値を予測値とする
 - 伝統的方法: 人間がサブグループを決定
 - 本講義: データがサブグループを決定

1.1 動機

- Social Outcome の平均値を良く近似するモデルを、"安定して生み出せるアルゴリズム"は、(知る限り)存在しない
 - 複数のアルゴリズムの予測結果を集計することが実践的
- Linear Model とは、異なるモデルを生み出すアルゴリズムも用いることが必要
 - Tree Model は重要な要素

1.2 実例: 価格予測

1.3 **実例**: VS OLS

1.4 (伝統的) サブグループ法

- 1. Y, X を指定する
- 2. **研究者が** X についてサブグループを定義する
- 3. Yのサブグループ平均を計算する

1.5 データ主導のサブグループ設定

- 1. Y, X を指定する
- 2. **データによって** X についてサブグループを定義する
- 3. Yのサブグループ平均を計算する

1.6 "貪欲な" 予想木アルゴリズム

- 2.1. 分割の停止条件 (最大分割数、サブグループの最小サンプル数など)を設定
- 2.2. データへの適合度が最大(平均二乗誤差が最小)になるように最初の分割を決定
- 2.3. 停止条件に達するまで、分割を繰り返す

1.7 停止条件の設定

- 停止条件さえ設定すれば、予測木はデータに適合するように自動構築できる
 - 停止条件をどのように設定する?
- 停止条件を"緩く"すれば、分割は永遠と進む
 - 予測モデルが複雑化し、データと完全に適合する
 - * 各サブグループは、1事例のみになるため
 - 一般に過剰適合し、予測性能が悪化

1.8 性質

• "深い木"(最大分割数多い/最小事例数が少ない)を生成すると

 $Y - g_{Y}\!(X) = \underbrace{Y - E[Y|X]}_{Irreducible\ Error}$

$$+\underbrace{E[Y|X]-g_{Y,\infty}^*(X)}_{Approximation\ Error\to \not \boxtimes \not } +\underbrace{g_{Y,\infty}^*(X)-g_Y(X)}_{Estimation\ Error\to \not \boxtimes \not }$$

1.9 実例: 浅い木

1.10 実例: 深い木

1.11 実例: VS

1.12 まとめ

- データ主導の変数選択を導入
 - 停止条件の設定に強く依存
- 対策としては
 - LASSO と同様に、複雑なモデル (巨大な決定木) を推定し、単純化する (剪定 ISL Chap 8.1 参照)
 - 本講義では、モデル集計を紹介
 - * 上手くいくことが多いため

2 Bootstrap Model Averaging

- データ分析の基本アイディア: 事例を集計することで、母集団の特徴を捉える
- 予測モデル自体も集計できる
 - シンプルかつ強力な戦略

2.1 予測木への応用

- 分割回数を増やすと
 - 母平均が大きく乖離しているサブグループへの分割が期待できる
 - サブグループの事例数が増え、データに含まれるハズレ値の影響を強く受けやすい

2.2 解決策

- 問題: 平均値に近づけたいのに、複雑なモデルは、(平均から大きく乖離した) ハズレ値の影響を受けやすい
- 解決: 大量の提案
 - 代表的な戦略は、モデルの適切な単純化
 - * モデル集計

2.3 Bootstrap model averaging

- 深い決定木は、外れ値に大きな影響を受ける可能性がある
 - 外れ**予測値**が生成される可能性
- 複製データ から大量の決定木を推定し、平均をとる
 - 外れ予測値の影響を緩和する
 - ~ 分散投資で、外れイベントの影響を緩和

2.4 例: 4つのモデルの集計

2.5 擬似的なモデル複製

- 独立して抽出したデータから得られる予測モデルを集計できれば、性能は必ず改善する
 - 現実には不可能
- 擬似的に行う
 - ブートストラップの活用

2.6 ブートストラップ

- データと同じ事例数の複製データを作成
 - 復元抽出 (被りありの抽選) を行う

2.7 理想のモデル集計

2.8 Bootstrap Model Averaging

2.9 De-correlation

- ブートストラップでは、複製データ間で同じ事例が使用されうる
 - データの特徴間に相関が生じる
 - 同じような予測値を集計したとしても、あまり予測精度は改善しない
- 事例数が限られている場合、強力な予測力をもつ変数のみが使用され、そこそこの予測力変数が使用されない
 - 分割に使用する変数もランダムに決める

2.10 Random Forest

- 1. {Y, X} を決める
- 2. ブートストラップにより、データを複製 (可能な限り多く、ranger の default は 500)
- 3. 各複製データについて、Regression Tree を推定
- RandomForest では、分割時に使用できる変数はランダムに選ぶ

2.11 性質

• 深すぎる Regression Tree を集計すると

•

- 注: Tree 系のアルゴリズムについての理論的性質 (大表本性質) は、現状でも盛んに研究されている
 - Klusowski and Tian (2024) など

2.12 **実例**: VS Tree

3 Boosting

- 代替的なモデル集計方法
 - こちらも大人気の手法
- シンプルすぎるモデルを複雑にしていく

3.1 Algorithm: アイディア

- 1. X,Yを指定
- 2. Yを予測する" 浅い木" を推定し、予測誤差 $R=Y-g_0(X)$ を算出
- 3. R を予測する" 浅い木" を推定し、予測モデル g(X)、予測誤差 R=Y-g(X) を更新
- 4.3 を一定回数繰り返し、最終予測モデル g(X) を算出

3.2 性質

• 浅すぎると Regression Tree からスタートするので

$$Y-g_{Y}(X) = \underbrace{Y-E[Y|X]}_{Irreducible\ Error}$$

$$+\underbrace{E[Y|X]-g_{Y,\infty}^{*}(X)}_{Approximation=大→減少} + \underbrace{g_{Y,\infty}^{*}(X)-g_{Y}(X)}_{Estimation\ Error=$^{\bot}$\rightarrow‡!}_{Estimation\ Error=$^{\bot}$\rightarrow‡!!}$$

3.3 Tuning Parameter

- 繰り返す回数 = 多くし過ぎると、データに完全に(過剰)適合する
 - Random Forest との大きな違い
- よく用いられる Tuninging 方法は、Early Stopping
 - データの一部を検証用に分割し、モデルの検証データへの当てはまりが低下したら、停止

3.4 "ゆっくり学ぶ"

- 一回でデータへの当てはまりを大きく改善すると、過剰適合する可能性が高まる
- "学習速度"を落とす
 - Regression Tree の分割回数を減らす
 - 予測モデルの更新速度を落とす

$$* g(X) = g(X) + \lambda g_0(X)$$

3.5 まとめ

- Regression Tree は、Linear Model の有力な代替案
 - Stacking における重要な構成要素
 - Linear Model ほど、Data Clearning が必要ない
 - * とりあえず RandomForest か Boosting を試してみる(人が企業では多いそうです)
- まだまだ理論的によくわかっていないことが多い (そうです)
 - Causal ML (Chap 9) を参照

Reference

Klusowski, Jason M, and Peter M Tian. 2024. "Large Scale Prediction with Decision Trees." *Journal of the American Statistical Association* 119 (545): 525–37.