Instructions: All assignments are due by midnight on the due date specified. Assignments should be typed and submitted as a PDF in Canvas.

Every student must write up their own solutions in their own manner.

You should complete all problems, but only a subset will be graded (which will be graded is not known to you ahead of time).

Sets

1. Ungraded For each of the following sets, shade the corresponding region of the Venn diagram.

Due: Tue. 02/04/20

2. (4 points) Graded (a,b) For each of the following sets, shade the corresponding region of the Venn diagram.

(b)
$$(C - B) \cup (B - C)$$

(c)
$$(A - C) \cup ((B \cap C) - A)$$

3. **Ungraded** For each of the following sets, state what the corresponding shaded region of the Venn diagram represents.

(c) $(A \cap B) \cup (B \cap C)$

- 4. Ungraded Show the following sets are equal, $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$, using
 - (a) set membership table
 - (b) set identities

	A	$B C \mid B \cap C$		$B \cap C$	$A \cup (B \cap C)$	$\overline{A \cup (B \cap C)}$	\overline{A}	$\overline{B\cap C}$	$(\overline{C} \cup \overline{B}) \cap \overline{A}$
(a)	1	1	1	1	1	0	0	0	0
	1	1	0	0	1	0	0	1	0
	1	0	1	0	1	0	0	1	0
	1	0	0	0	1	0	0	1	0
	0	1	1	1	1	0	1	0	0
	0	1	0	0	0	1	1	1	1
	0	0	1	0	0	1	1	1	1
	0	0	0	0	0	1	1	1	1
74 3									

(b)

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{B \cap C}$$
 (DeMorgan's set identities)

$$= \overline{A} \cap (\overline{B} \cup \overline{C})$$
 (DeMorgan's set identities)

$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$
 (Commutative)

$$= (\overline{C} \cup \overline{B}) \cap \overline{A}$$
 (Commutative)

- 5. (4 points) Graded (all) Show the following sets are equal, $A \cap (\overline{A} \cup B) = A \cap B$, using
 - (a) set membership table
 - (b) set identities

	A	B	$ar{A}$	$\bar{A} \cup B$	$A \cap (\bar{A} \cup B)$	$A \cap B$
	1	1	0	1	1	1
(a)	1	0	0	0	0	0
	0	1	1	1	0	0
	0	0	0	1 0 1 0	0	0

(b)

$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B)$$
 (Distributive)
 $= \emptyset \cup (A \cap B)$ (Complement)
 $= (A \cap B) \cup \emptyset$ (Commutative)
 $= A \cap B$ (Identity)

6. (3 points) Graded (d-f) Consider a collection of books in the library. The universal set U refers to all books in the library. In addition, books are classified by their subject (each book may receive more than one classification) into the following sets: F - fiction, B - biography, H - historical, P - poetry, N - non-fiction, S - scientific, E - English, O - other language, L - literary, T - travel, R - reference. Each set is a subset of U.

Express each of the following statements using set expressions, e.g., set operators $(\cup, \cap, \neg, \overline{A}, \text{ etc.})$, relations $(=, \subseteq, \subset)$, etc.:

- (a) $S \cap R$ The set of scientific references.
- (b) $F \cap N = \emptyset$ No book is both fiction and non-fiction.
- (c) $S \cap L = \emptyset$ A scientific book is not literary.
- (d) $(H \cap F) O$ The set of historical fiction books excluding those in other languages.
- (e) $B \subseteq H$ Any biography is also a historical book.
- (f) $\overline{R \cup L \cup P} = \emptyset$ All books are either reference, literary, or poetry.
- (g) $T \subseteq R$ All travel books are reference books.
- (h) $P \cap O \subseteq L$ All poetry in other languages are literary works.

Function

- 7. (6 points) **Graded (all)** Let $S = \{a, b, c, d, e\}$ and $T = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Determine whether the following are functions (Yes / No).
 - (a) Yes, a function $f: S \to T, f = \{(a,5), (b,4), (c,1), (d,3), (e,2)\}$
 - (b) Not a function $g: S \to T, g = \{(a, 4), (d, 3), (c, 3), (b, 5)\}$
 - (c) Not a function $h: S \to T, h = \{(a,7), (b,4), (c,1), (d,2), (e,3), (b,3)\}$
 - (d) Yes, a function $i: S \to T, i = \{(a, 2), (b, 2), (c, 1), (d, 5), (e, 8)\}$
 - (e) Not a function $j: \mathbb{Z} \to \mathbb{Z} = \{(x, y) \mid 3x + y^2 = 8\}$
 - (f) Yes, a function $k: \mathbb{R} \to \mathbb{R} = \{(x, x^2) \mid x \in \mathbb{R}\}$
- 8. (2 points) Graded (a-b) Rosen, Ch 2.3 # 6 (a-d), p. 152. (p. 161 for 8th ed)
 - (a) the domain is $\mathbb{Z}^+ \times \mathbb{Z}^+$, the range is \mathbb{Z}^+
 - (b) the domain is \mathbb{Z}^+ , the range is $\{1,2,3,4,5,6,7,8,9\}$
 - (c) the domain is the set of all bit strings, the range is \mathbb{Z}
 - (d) the domain is \mathbb{Z}^+ , the range is \mathbb{Z}^+
- 9. Ungraded Find these values:
 - (a) [8.6] = 8
 - (b) [4.3] = 5
 - (c) [-3.6] = -4
 - (d) $\lfloor 10.5\overline{3} \rfloor = 10$
 - (e) [-2.1] = -2
 - $(f) \left\lfloor \frac{-3}{4} \right\rfloor = -1$
 - (g) $\left\lceil \frac{13}{3} + \left\lfloor \frac{-5}{4} \right\rfloor \right\rceil = 3$
 - (h) $|3.2 \lceil 10.4 \rceil| = -8$
- 10. (6 points) **Graded (c-e)** Determine whether each of the following functions are (i) one-to-one and (ii) onto.

(a) one-to-one onto Rosen Ch 2.3, #10(a), p. 153 (p. 162 for 8th ed)
(b) not one-to-one not onto Rosen Ch 2.3, #10(b), p. 153 (p. 162 for 8th ed)

(c) not one-to-one not onto $f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2 - 5x + 5$.

(d) one-to-one not onto $g: \mathbb{N} \to \mathbb{N}$ where g(n) = n+1(e) not one-to-one onto $h: \mathbb{N} \to \mathbb{N}$ where $h(n) = \lfloor \frac{n}{2} \rfloor$

(f) not one-to-one not onto $i: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ where i(m,n) = 2n - 4m

(g) not one-to-one not onto $j: \mathbb{R} \to \mathbb{R}$ where $j(x) = \sqrt{x}$

- 11. (4 points) **Graded (all)** Let A and B be finite sets, and f be a function is $f: A \to B$. Determine which of the following statements are true.
 - (a) False If $f:A\to B$ is onto, then the domain and range are not only the same size, but the same set.
 - (b) True If $f: A \to B$ is both one-to-one and onto, then A and B have the same cardinality.
 - (c) True If $f: A \to B$ is one-to-one, then $|A| \le |B|$.
 - (d) True If $f: A \to B$ is onto, then $|A| \ge |B|$.
- 12. (8 points) **Graded (c-f)** Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, d, f, g\}$. Let $f : A \to B$ and $g : B \to B$ with

$$f = \{(a,b), (b,d), (c,g), (d,a), (e,b)\} \text{ and } g = \{(a,f), (b,d), (d,a), (f,g), (g,b)\}$$

For each of the following compositions, define the function or explain why it is not defined.

- (a) $f \circ g$ (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$
- (e) Find f^{-1} if it exists. If it doesn't, explain why not. (f) Find g^{-1} if it exists. If it doesn't, explain why not.
- (a) $f \circ g$ is not defined, the range of g is not a subset of the domain of f
- (b) $g \circ f = \{(a, d), (b, a), (c, b), (d, f), (e, d)\}$
- (c) $f \circ f$ is not defined, the range of f is not a subset of the domain of f
- (d) $g \circ g = \{(a,g), (b,a), (d,f), (f,b), (g,d)\}$
- (e) f^{-1} does not exists, f is not one-to-one and not onto
- (f) g^{-1} does exist, = {(f, a), (d, b), (a, d), (g, f), (b, g)}
- 13. **Ungraded** Let f, g, and h all be functions mapping from A to \mathbb{R} where $A = \{x \in \mathbb{R} \mid x > 0\}$,

$$f(x) = \frac{1}{x+1}$$
, $g(x) = \frac{x+1}{x}$, and $h(x) = x-1$.

Compute (a) $(f \circ g)(x)$, (b) $(g \circ f)(x)$, (c) $(h \circ g \circ f)(x)$, (d) $(f \circ g \circ h)(x)$

(a)
$$(f \circ g)(x) = f(g(x)) = f(\frac{x+1}{x}) = \frac{1}{(\frac{x+1}{x}) + 1}$$

(b)
$$(g \circ f)(x) = g(f(x)) = g(\frac{1}{x+1}) = \frac{\left(\frac{1}{x+1}\right) + 1}{\left(\frac{1}{x+1}\right)}$$

(c)
$$(h \circ g \circ f)(x) = h(g(f(x))) = h\left(g\left(\frac{1}{x+1}\right)\right) = h\left(\frac{\left(\frac{1}{x+1}\right)+1}{\left(\frac{1}{x+1}\right)}\right) = \frac{\left(\frac{1}{x+1}\right)+1}{\left(\frac{1}{x+1}\right)} - 1$$

(d)
$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x-1)) = f\left(\frac{(x-1)+1}{(x-1)}\right) = \frac{1}{\left(\frac{(x-1)+1}{(x-1)}\right) + 1}$$

14. (3 points) **Graded (a)** Let *P*, be a set of *Patients* who have ever been admitted to the hospital at some time, *B*, be a set *Beds* available for patients.

The function *currentBed* maps *Patients* to *Beds*. The function relates a patient to the bed that he/she is currently occupying in the hospital.

The function date1stAdmitted that maps Patients to Dates, relating a patient to the date he/she was first admitted to the hospital.

- (a) function, $currentBed : Patients \rightarrow Beds$
 - (a) No, the function is not total; not every patient is currently occupying a bed.
 - (b) Yes, no two patients may occupy the same bed.
 - (c) No, there may be beds that are not occupied.
- (b) function $date1stAdmitted : Patients \rightarrow Dates$
 - (a) Yes, the function is total; every patient admitted to the hospital has a date of first admittance.
 - (b) No, the function is not one-to-one, multiple patients may be admitted on the same day.
 - (c) No, the function is not onto, there may be a day with no patients admitted.

Bonus

15. (1 point (bonus)) For the following sets, state what the corresponding shaded region of the Venn diagram represents.

 $(A-B)\cup (B\cap C)$ or $(A\cap \overline{B})\cup (B\cap C)$