DESENVOLVIMENTO DE UMA BIBLIOTECA COMPUTACIONAL PARA SISTEMAS DE RECOMENDAÇÃO DE LOJAS DE COMÉRCIO ONLINE

Escola Politécnica da Universidade de São Paulo

Antônio Viggiano agfviggiano@gmail.com

Fernando Fochi fernando.fochi@gmail.com

Prof. Dr. Fábio Gagliardi Cozman

18 de novembro de 2014

Sumário

- Introdução
- Objetivos
- Stado da Arte
- Metodologia
- 6 Requisitos
- Síntese de Soluções
- Avaliação de Desempenho
- Resultados
- Oronograma

Introdução

Importância econômica

Figura 1: Vendas de varejo atribuídas a lojas online nos EUA (STATISTA, 2014)

Figura 2: Percentual de vendas de varejo atribuídas a lojas online nos EUA por categoria (SMITH, 2014)

Introdução Aplicação

Relações de amizade

Músicas

Livros **35 %** (MARSHALL, 2006)

Notícias **38 %** (DAS et al., 2007)

Filmes **75 %** (AMATRIAIN, 2012)

Introdução

O que são Sistemas de Recomendação?

Definição

"São ferramentas e técnicas de software destinadas a prover sugestões de itens para usuários" (RICCI; SHAPIRA, 2011)

Etapas principais

- Aquisição dos dados de entrada
- Determinação das recomendações
- Apresentação dos resultados ao usuário

Objetivos

- Sistema de recomendação de produtos para e-commerces
 - Propostas de diferentes algoritmos
- Análise de desempenho das recomendações
 - Validação cruzada
 - Acurácia e Precisão

Estado da Arte

Problema

- *U* Conjunto dos usuários *u*
- Conjunto dos itens i
- rui Histórico avaliações
 - ℓ Função de utilidade
 - $\ell: \mathcal{U} \times \mathcal{I} \to \mathcal{R}$ p.ex. $\{-1,0,+1\}$ ou [1,5]

Objetivo

Determinar o item $\tilde{\imath}_u$ que maximize a utilidade ℓ_{ui} do usuário u:

$$\forall u \in \mathcal{U}, \ \tilde{\imath}_u = \underset{i \in \mathcal{I}}{\operatorname{arg\,max}} \ \ell_{ui}$$

Problema

ℓ desconhecida

Estado da Arte Soluções

Estratégias de recomendação

- Colaborativas
- Conteúdo
- Híbridas

Utilização comercial

(CHIANG, 2012)

Netflix Filtragem colaborativa

Amazon Filtragem baseada em conteúdo

Pandora Experts + votos

positivos/negativos

YouTube Contagem de visitas mútuas

Estado da Arte

Soluções

Filtragem colaborativa (CF)

- Usuário-usuário
- Item-item

Filtragem de conteúdo (CB)

Métodos híbridos (H)

• CF + CB

Tabela 1: Avaliações r_{ui}

	<i>i</i> ₁	i ₂	i ₃	<i>i</i> ₄
<i>u</i> ₁	-	4	3	-
<i>u</i> ₂	-	4	3	5
u_3	2	5	-	1

Tabela 2: Atributos a_{if}

		<i>f</i> ₁	f_2	f_3	f_4
Ī	<i>i</i> ₁	1	50	0.8	Р
ĺ	i ₂	0	75	0.3	М
ĺ	<i>i</i> ₃	1	30	0.4	G

Estado da Arte

Desafios

Filtragem colaborativa (CF)

- Cold start
- Esparsidade

Filtragem de conteúdo (CB)

- Excesso de especialização
- Análise "superficial" do conteúdo

Todos os métodos (CF, CB, H)

Escalabilidade

Tabela 3: Avaliações r_{ui}

	<i>i</i> ₁	i ₂	 i ₁₀₀
u_1	-	4	 -
u_2	-	2	 -
u_3	5	-	 -

Tabela 4: Atributos aif

	f_1	f_2	f_3
<i>i</i> ₁	1	50	0.8
i ₂	1	50	0.8
i ₃	0	75	0.3

Metodologia

- Definição de necessidades
- Definição dos parâmetros de sucesso
- Proposição de soluções
- Implementação e testes em bancos de dados simples
- Teste em bancos de dados reais

Requisitos

Requisitos funcionais

- EMA máximo:
- 20% para Precisão
- 20% para Abrangência
- Throughput mínimo
 - 100 mil recomendações por hora

Requisitos não funcionais

- Escalabilidade
- Sistema genérico
 - Padronização dos dados de entrada/saída
- Código aberto

Síntese de Soluções

Ponderação de Atributos

$$s_{ij} = \sum_{f} w_f \left(1 - d_{fij}\right)$$

Perfil de Usuários

$$s_{uv} = \frac{\sum\limits_{f \in \mathcal{F}_{uv}} w_{uf} \ w_{vf}}{\sqrt{\sum\limits_{f \in \mathcal{F}_{uv}} w_{uf}^2} \sqrt{\sum\limits_{f \in \mathcal{F}_{uv}} w_{vf}^2}}$$

Tabela 5: Medidas de distância entre alguns atributos

Atributo f	Domínio F	Distância d _f
Marca	Literal	$1-\delta_{ij}^f$
Cor	$(\mathbb{N}\backslash\mathbb{N}_{256})^3$	$\frac{\ a_{if} - a_{jf}\ _2}{\max_{i,j} \ a_{if} - a_{jf}\ _2}$
Preço	\mathbb{R}	$\frac{\left a_{if}-a_{jf}\right }{\max_{i,j}\left a_{if}-a_{jf}\right }$

Avaliação de Desempenho

- Distância entre recomendações
 - $EMA = |\hat{\mathbf{i}} \hat{\mathbf{i}}|$
- Desempenho mediante a mudança nas variáveis
 - Quantidade de atributos utilizados
- Tempo de execução
 - Em função do algoritmo
 - Em função do tamanho do banco de dados

Tabela 6: Avaliação de sistemas de predição

Medida	Fórmula	Significado	
Precisão	VP VP+FP	% Predições corretas de	
		casos positivos	
Acurácia	VP+VN VP+VN+FP+FN	% Predições corretas	

Resultados

Primeiros testes

Pesos unitários

$$s_{ij} = \sum_{f} (1 - d_{fij})$$

13 s Tempo de inicialização para $|\mathcal{R}| = 100$ mil

8 min Cálculo de s_{ij} para $|\mathcal{I}| = 1000$

100% CPU 2.80GHz × 4

420 MB Memória

60 dias Para $|\mathcal{I}|$ = 100 mil

Figura 3: Tempo de processamento em função do número de itens em $\mathcal{O}(n^2)$

Resultados Aquisição de dados

Figura 4: Banco de dados de um e-commerce de passagens de ônibus

Cronograma

12/11 Melhorias incrementais

09/07	Pré-tratamento do banco de dados
16/07	Programação do método Ponderação de Atributos
23/07	Programação do método Perfil de Usuários
30/07	Análise comparativa dos dois algoritmos
13/08	Relatório de atividades de implementação
27/08	Primeiros testes com o sistema
	(precisão e acurácia para uma base de testes)
03/09	Testes com o sistema (validação cruzada)
24/09	Melhorias incrementais e relatório de atividades
15/10	Relatório aprofundado de atividades
05/11	Elaboração da apresentação e finalização dos relatórios

Bibliografia I

- ►AMATRIAIN, X. *Netflix Recommendations: Beyond the 5 stars*. 2012. Disponível em: http://techblog.netflix.com/2012/04/ netflix-recommendations-beyond-5-stars.html>.
- ►CHIANG, M. *Networked Life: 20 Questions and Answers*. Cambridge University Press, 2012. (BusinessPro collection). ISBN 9781107024946. Disponível em: http://books.google.com.br/books?id=N5DJJXoLPDQC.
- ▶DAS, A. S. et al. Google news personalization: scalable online collaborative filtering. In: ACM. *Proceedings of the 16th international conference on World Wide Web*. [S.I.], 2007. p. 271–280.

Bibliografia II

- ►MARSHALL, M. Aggregate Knowledge raises \$5M from Kleiner, on a roll. 2006. Disponível em: http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/>.
- ▶RICCI, L. R. F.; SHAPIRA, B. Introduction to recommender systems handbook. In: *Recommender Systems Handbook*. [S.I.]: Springer, 2011. p. 1–35.
- SMITH, C. *E-COMMERCE AND THE FUTURE OF RETAIL: 2014 [SLIDE DECK]*. 2014. Disponível em: http://www.businessinsider.com/ the-future-of-retail-2014-slide-deck-sai-2014-3?nr_email_referer=1&utm_source=Triggermail&utm_medium=email&utm_content=emailshare>.

Bibliografia III

►STATISTA. Annual B2C e-commerce sales in the United States 2002-2013. 2014. Disponível em: http://www.statista.com/statistics/271449/ annual-b2c-e-commerce-sales-in-the-united-states/>.