2020-06-02

Investigating structural plasticity in brain networks using computational modelling

Ankur Sinha
PhD candidate
Biocomputation Research Group
University of Hertfordshire.
17/01/2020

Investigating structural plasticity in brain networks using computational modelling

networks using computational modelling

Ankur Sinha PhD candidate Biocomputation Research Group University of Hertfordshire. 17/01/2020

Investigating structural plasticity in brain networks using computational modelling

Context: what and why?

Context: what and why?

The plastic—but stable—brain:

The plastic—but stable—brain:

"Neurons that fire together, wire together."

¹Hebb, D. O. The organization of behavior: A neuropsychological theory. 1949

2020-06-02

2/35

-The plastic-but stable-brain:

- "Neurons that fire together, wire together."
- "The more things change, the more they stay the same."2

[.]

 ¹Hebb, D. O. The organization of behavior: A neuropsychological theory. 1949
 ²Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends in neurosciences 22, 221–227 (1999)

—Synaptic plasticity: the popular plasticity

· changes in efficacy of existing synapses,

¹ Even though structural changes in spines and boutons underlie modulation of synaptic efficacy.

- · changes in efficacy of existing synapses,
- changes in structure are ignored¹.

¹Even though structural changes in spines and boutons underlie modulation of synaptic efficacy.

Investigating structural plasticity in brain networks using computational modelling

Context: what and why?

What underlies large scale reorganisation?

• Basmusson D. D. Beorganization of recoord

Rasmusson, D. D. Reorganization of raccoon somatosensory cortex following removal of the fifth digit Journal of Comparative Neurology 205, 313–326 (1982)

What underlies large scale reorganisation?

- Rasmusson, D. D. Reorganization of raccoon somatosensory cortex following removal of the fifth digit. Journal of Comparative Neurology **205**, 313–326 (1982)
- · Wall, J. T. & Cusick, C. G. Cutaneous responsiveness in primary somatosensory (SI) hindpaw cortex before and after partial hindpaw deafferentation in adult rats. The journal of neuroscience 4, 1499-1515 (1984)
- Merzenich, M. M. et al. Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of Comparative Neurology 224, 591-605 (1984)
- · Calford, M. B. & Tweedale, R. Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature 332, 446-448 (1988)
- Heinen, S. J. & Skavenski, A. A. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Experimental Brain Research 83, 670-674 (1991)
- · Rajan, R. et al. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. Journal of Comparative Neurology 338, 17-49 (1993)

Investigating structural plasticity in brain networks using computational modelling -Context: what and why?

-What underlies large scale reorganisation?

What underlies large scale reorganisation?

omatosensory cortex following removal of the fifth digi

Journal of Comparative Neurology 328, 17-49 (1992).

Investigating structural plasticity in brain networks using computational modelling —Context: what and why?

"unmasking" of pre-existing synaptic connections

Two theories:

└─Two theories:

2020-06-02

• "unmasking" of pre-existing synaptic connections,

 $^{^{1}}$ Rasmusson, D. D. Reorganization of raccoon somatosensory cortex following removal of the fifth digit. *Journal of Comparative Neurology* **205**, 313–326 (1982)

-Two theories:

- "unmasking" of pre-existing synaptic connections,
- formation of new synapses (structural plasticity).

 $^{^{1}}$ Rasmusson, D. D. Reorganization of raccoon somatosensory cortex following removal of the fifth digit. *Journal of Comparative Neurology* **205**, 313–326 (1982)

Investigating structural plasticity in brain networks Investigating structural plasticity using computational modelling —Context: what and why?

Darian-Smith1994

Imaging confirms structural plasticity in lesion

Imaging confirms structural plasticity in lesion studies

Darian-Smith1994

- Florence, S. L. et al. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998)
- Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nature neuroscience 11, 1162–1167 (2008)
- Keck, T. et al. Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex. Neuron 71, 869-882.
 ISSN: 0896-6273. http://www.sciencedirect.com/science/article/ pii/S0896627311005642 (2011)
- Marik, S. A. et al. Large-scale axonal reorganization of inhibitory neurons following retinal lesions. Journal of Neuroscience 34, 1625–1632 (2014)

Investigating structural plasticity in brain networks using computational modelling

—Context: what and why?

-Imaging confirms structural plasticity in lesion

naging confirms structural plasticity in lesion studies

· Darian-Smith1994

 Florence, S. L. et al. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998)

 Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nature neuroscience

1162-1167 (2008)

Keck, T. et al. Loss of sensory input causes rapid structural changes of

inhibitory neurons in adult mouse visual cortex. Neuron 71, 869–882. 1650: 0896-0273. http://www.nciencedirect.com/science/articlpii/90896627311005642 (2011) - Marik S. B. et al. Lampacola appeal pagenagination of inhibitors.

larik, S. A. et al. Large-scale axonal reorganization of inhibitory neuror flowing retinal lesions. Journal of Neuroscience 34, 1625–1632 (201-

Also confirms structural plasticity in the unlesioned adult brain

• Holtmaat, A. J. G. D. et al. Transient and Persistent Dendritic Spines in the Neocortex In Vivo. Neuron 45. 279-291. ISSN: 0896-6273. http://www.sciencedirect. com/science/article/pii/S0896627305000048 (2005)

Investigating structural plasticity in brain networks using computational modelling —Context: what and why?

-Also confirms structural plasticity in the

com/science/article/pii/S0896627305000048 (2005)

Also confirms structural plasticity in the unlesioned adult brain

- Holtmaat, A. J. G. D. et al. Transient and Persistent Dendritic Spines in the Neocortex In Vivo. Neuron 45. 279-291. ISSN: 0896-6273. http://www.sciencedirect. com/science/article/pii/S0896627305000048 (2005)
- Stettler, D. D. et al. Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex. Neuron 49, 877-887. ISSN: 0896-6273. http:// www.sciencedirect.com/science/article/pii/S0896627306001358 (2006)
- Marik, S. A. et al. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biology 8, e1000395 (2010)
- · Chen, J. L. et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron **74**, 361–373 (2012)
- Villa, K. L. et al. Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent Sites In Vivo. Neuron 89, 756-769. ISSN: 1097-4199 (4 2016)

Investigating structural plasticity in brain networks using computational modelling -Context: what and why?

-Also confirms structural plasticity in the

Holtmaat, A. J. G. D. et al. Transient and Persistent Dendritic Spines in the Neocortex In Vivo. Neuron 45

279-291. ISSN: 0896-6273. http://www.sciencedirect com/science/article/pii/S0896627305000048 (2005) Stattler, D. D. et al. Axons and Synaptic Boutons Are Highly Dynamic i www.sciescedirect.com/sciesce/article/sii/S08966273060013

Chen, J. L. et al. Clustered dynamics of inhibitory synapses and

dendritic spines in the adult neocortex. Neuron 74, 361-373 (2012) Villa, K. L. et al. Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent Sites In Vivo. Neuron 89, 756-769, ISSN:

- Investigating structural plasticity in brain networks using computational modelling
 —Context: what and why?

whole synapses are formed and removed

└─So:

- · not only do the strengths of existing synapses change,
- whole synapses are formed and removed.

- Investigating structural plasticity in brain networks using computational modelling

 Context: what and why?
- · not only do the strengths of existing synapses change, · whole synapses are formed and removed · How? Why?

└─So:

- · not only do the strengths of existing synapses change,
- · whole synapses are formed and removed.
- · How? Why?

using computational modelling
Context: what and why?

study the reorganisation process.

Simulate a computational model of peripheral lesioning to

-Aim

- · A computational model allows us to:
 - investigate every entity in the network: variables from neurons, their neurites, all synapses,
 - modify any parameters to analyse changes in network behaviour: neuronal parameters, synaptic parameters, other network parameters,
 - · run multiple analyses in parallel,
 - do it in less time than biological experiments¹.

Investigating structural plasticity in brain networks using computational modelling

Context: what and why?

-Aim

Simulate a computational model of peripheral lesioning to study the reorganisation process.

A computational model allow

neurons, their neurites, all synapses, - modify any parameters to analyse changes in network

behaviour: neuronal parameters, synaptic parameters, other

network parameters, - run multiple analyses in parallel,

run multiple analyses in parallel,
 do it in less time than biological experiments

¹Simulations take a week each, but that's still faster than a multi-month laboratory experiment.

Methods: How?

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

Peripheral lesion protocol I: topographic mapping

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

Peripheral lesion protocol I: topographic

1. The protocol is pretty standard. Here, for a study in the visual cortex, the retinal field of a rat or a mouse is mapped.

 $^{^{1}}$ Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nature neuroscience 11, 1162–1167 (2008)

Peripheral lesion protocol II: after peripheral lesion

- Dotted region encloses the Lesion Projection Zone (LPZ)
- · Inward "repair".

Investigating structural plasticity in brain networks using computational modelling

—Methods: How?

Peripheral lesion protocol II: after peripheral

- Then, a part of the retina is lesioned. This cuts off inputs to a part of the visual cortex, as shown in the first figure. This forms the Lesion Projection Zone (LPZ). By repeated imaging of the region over months, the reorganisation of the network is tracked.
- 2. Other lesion studies use similar methods: digit removal, whisker trimming, and so on—anything that cuts off projecting activity on to a set of neurons.

 $^{^{1}}$ Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nature neuroscience 11. 1162–1167 (2008)

Data gathered from these experiments: summary

Investigating structural plasticity in brain networks using computational modelling
—Methods: How?

—Data gathered from these experiments:

1. So, if this a simple schematic, of the regions around the LPZ, this is what we know from these studies.

Data gathered from these experiments: summary

- · Inward repair of network.
- Gradual ingrowth of excitatory synapses from the peri-LPZ to the LPZ.
- Gradual outgrowth of inhibitory synapses from the LPZ to the peri-LPZ.

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

I INWARD repair of network

I Inward repair of network

Gradual ingrowth of excitatory synapses from the peri PPZ to the peri PPZ.

Gradual outgrowth of exhibitor synapses from the LPZ to the peri PPZ.

–Data gathered from these experiments:

1. So, if this a simple schematic, of the regions around the LPZ, this is what we know from these studies.

Cortical spiking network model: 8000 E, 2000 I neurons

Exhibits cortical Asynchronous Irregular (AI) firing.

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

—Cortical spiking network model: 8000 E, 2000 I

¹Vogels, T. P. et al. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569-1573. http://www.sciencemag.org/content/334/6062/1569.short (2011)

- Single compartment, point "leaky integrate and fire neurons"1,
- Host neurites (z).

-Neuron model

¹ Meffin, H. et al. An analytical model for the 'large, fluctuating synaptic conductance state' typical of neocortical neurons in vivo. Journal of computational neuroscience 16, 159-175. https://link.springer.com/article/10.1023/B:JCNS.0000014108.03012.81(2004)

Modelling synapse formation and removal

•
$$z_{post}^{E} + z_{pre}^{E}$$

•
$$z_{post}^{I} + z_{pre}^{I}$$

- New synapses form when free partner neurites are available.
- Synapses are deleted if neurites are retracted by the neuron.

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

• $\frac{d_{max}}{d_{max}} + \frac{d_{max}}{d_{max}}$ • $\frac{d_{max}}{d_{max}} + \frac{d_{max}}{d_{max}}$ • $\frac{d_{max}}{d_{max}} + \frac{d_{max}}{d_{max}}$ • New grouppose form when free partner resonates are outsidely are retracted by the neuron.

-Modelling synapse formation and removal

Neurite growth (z) as a function of neuronal activity

http://www.sciencedirect.com/science/article/pii/016622368990026X(1989)

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

 \square Neurite growth (z) as a function of neuronal

 $^{^1}$ Lipton, S. A. & Kater, S. B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. *Trends in neurosciences* 12, 265–270. ISSN: 0166-2236.

Neurite growth (z) as a function of neuronal activity

- [Ca²⁺] correlates with neuronal activity,
- serves a homeostatic function.

http://www.sciencedirect.com/science/article/pii/016622368990026X(1989)

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

* Lighter, R. A. & Kinder, D. B. Storenhammerliller regulation of neuronal uniquently, planticity and savoind. Tree mentioners VI, 2016–2021. doi:10.1016/20214. https://doi.org/10.1016/20214.0016/20214. https://doi.org/10.1016/20214.0016/20214.0016/20214.0016/20214.

 \square Neurite growth (z) as a function of neuronal

¹Lipton, S. A. & Kater, S. B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. *Trends in neurosciences* 12, 265–270. ISSN: 0166-2236.

Neurite growth (z) modelled as a Guassian function of activity

http://www.sciencedirect.com/science/article/pii/016622368990026X(1989)

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

Commission

Lipton, E. A. Killer, E. E. Brontomordies registrian of mounted uniquesh, planting sect around Trends in mounted uniquesh, planting sect around Trends in mountements (Lipton, E. A. Killer, E. E. Brontomordies, **Lipton, E. A. Killer, E. E. Brontomordies, **Lipton, E. A. Killer, E. E. Brontomordies, **Lipton, **Lipt

Neurite growth (z) modelled as a Guassian

¹Lipton, S. A. & Kater, S. B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. *Trends in neurosciences* **12**, 265–270. ISSN: 0166-2236.

² Butz, M. & van Ooyen, A. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions. *PLoS Comput Biol* **9**, e1003259 (2013)

Growth curves: possibilities

4 free parameters describe each growth curve. We must determine 6 sets of growth curves: 3 for E, 3 for I neurons.

¹ Sinha, A. et al. Growth Rules for the Repair of Asynchronous Irregular Neuronal Networks after Peripheral Lesions. bioRxiv. eprint: https://www.biorxiv.org/content/early/2019/10/21/810846.full.pdf. https://www.biorxiv.org/content/early/2019/10/21/810846 (2019)

Replicate peripheral lesion protocol

Investigating structural plasticity in brain networks using computational modelling

Methods: How?

Registate peripheral lesion protocol

A Research series

B Require share deafferenession

propage

instances

I structural plasticity one

plasticity

II structural plasticity one

II structural plasticity one

III structural plasticity one

III structural instances

III structural plasticity one

III symptop plasticity one

-Replicate peripheral lesion protocol

Results: a few years later

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

ults: a few years later

Reproduction of deafferentation and repair

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

notation of dealformation and requir

Reproduction of deafferentation and repair

Reproduction of ingrowth of excitatory projections

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

Reproduction of ingrowth of excitatory

Reproduction of outgrowth of inhibitory projections

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

Reproduction of outgrowth of inhibitory

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

Resultant activity dependent growth rules:

- E: formed when activity is less than, removed when more than optimal.
- I: formed when activity is more than, removed when less than optimal.

Investigating structural plasticity in brain networks using computational modelling -Results: a few years later

- E: formed when activity is less than, removed when more than optimal.
- I: formed when activity is more than, removed when less than optimal.

Neurons attempt to stabilise their activity by rebalancing excitatory and inhibitory inputs.

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

- E: formed when activity is less than, removed when more than optimal.
- I: formed when activity is more than, removed when less than optimal.

Neurons attempt to stabilise their activity by rebalancing excitatory and inhibitory inputs.

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

 $^{^1}$ Richards, D. A. et al. Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences 102, 6166–6171 (2005)

 $^{^2}$ Knott, G. W. et al. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002)

using computational modelling

Results: a few years later

Resultant activity dependent growth rules:

- E: formed when activity is more than, removed when less than optimal.
- · I: formed when activity is less than, removed when more than optimal.

-Resultant activity dependent growth rules:

- E: formed when activity is more than, removed when less than optimal.
- I: formed when activity is less than, removed when more than optimal.

Neurons attempt to project their activity on to other neurons in the network.

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

- E: formed when activity is more than, removed when less than optimal.
- · I: formed when activity is less than, removed when more than optimal.

Neurons attempt to project their activity on to other neurons in the network.

Investigating structural plasticity in brain networks using computational modelling -Results: a few vears later

¹ Perez, Y. et al. Axonal Sprouting of CA1 Pyramidal Cells in Hyperexcitable Hippocampal Slices of Kainate-treated Rats. European Journal of Neuroscience 8, 736-748 (1996)

² Schuemann, A. et al. Structural plasticity of GABAergic axons is regulated by network activity and GABAA receptor activation. Frontiers in neural circuits 7, 113 (2013)

Structural and synaptic plasticity are both necessary

· Only synaptic plasticity: no repair.

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

-Structural and synaptic plasticity are both

· Only synaptic plasticity: no repair

Structural and synaptic plasticity are both necessary

- Only synaptic plasticity: no repair.
- Only structural plasticity: repair, but network does not stabilise; results in high, epileptic firing rates.

using computational modelling

—Results: a few years later

Structural and synaptic plasticity are both

Structural and synaptic plasticity are both necessary

- · Only synaptic plasticity: no repair.
- Only structural plasticity: repair, but network does not stabilise; results in high, epileptic firing rates.

While structural plasticity is required for large scale reorganisation in synaptic connectivity, synaptic plasticity is required to fine tune the balance between excitation and inhibition to stabilise the network.

Investigating structural plasticity in brain networks using computational modelling

Results: a few years later

reorganisation in synaptic connectivity, synaptic plasticity is required to fine tune the balance between excitation and inhibition to stabilise the network.

Structural and synantic plasticity are both necessary

-Structural and synaptic plasticity are both

- Reproduced peripheral lesion experiments in a computational model.
- Suggested testable hypotheses on the activity dependent growth of all neurites.
- Proposed that individual neurons may stabilise their activities by modifying their input connectivity.
- Indicated that structural and synaptic plasticity both serve distinct roles and are both necessary.

-Results: summarv

Limitations: summary

- Point, single compartment neurons: ignore Calcium compartmentalisation,
- · No growth factors were taken into consideration,
- Other plasticity mechanisms...

27/35

Investigating structural plasticity in brain networks using computational modelling

NeuroFedora: Free Software for Free Neuroscience

NeuroFedora: Free Software for Free Neuroscience

Modern neuroscience

- is heavily software dependent.
- software is frequently complex to install, deploy, maintain, update.
- software is rarely checked for correctness (!).

Investigating structural plasticity in brain networks
using computational modelling

NeuroFedora: Free Software for Free Neuroscience

Modern neuroscience

heavily software dependent. Ifware is frequently complex to install, deploy, maintain date.

Modern neuroscience

- · is heavily software dependent.
- software is frequently complex to install, deploy, maintain, update.
- software is rarely checked for correctness (!).
- · Neuroscientists hail from diverse academic backgrounds.

Investigating structural plasticity in brain networks
using computational modelling

NeuroFedora: Free Software for Free Neuroscience
Modern neuroscience

Modern neuroscience

rily software dependent.

update.

software is rarely checked for correctness (f).
 Neuroscientists half from diverse academic background

Modern neuroscience

- · is heavily software dependent.
- software is frequently complex to install, deploy, maintain, update.
- software is rarely checked for correctness (!).
- Neuroscientists hail from diverse academic backgrounds.
- Scientists are trying to move towards being more Open:
 - data, methods, analysis, simulations, publishing, collaboration...

Investigating structural plasticity in brain networks
using computational modelling
NeuroFedora: Free Software for Free Neuroscience
Modern neuroscience

Modern neuroscience

is heavily software dependent.

update.

Neuroscientists hail from diverse acade

Scientists are trying to move towards being more C data, methods, analysis, simulations, publishing, collaboration...

Free/Open Source Software vs Open Science

Investigating structural plasticity in brain networks using computational modelling

NeuroFedora: Free Software for Free Neuroscience

-Free/Open Source Software vs Open Science

Free Open Source Software vs Open Science

Users should have the freedom to share, study, and mod goftware!

Everyone should have the freedom to share, study, and mod scientific material?

**The should be s

Users should have the freedom to share, study, and modify software¹.

Everyone should have the freedom to share, study, and modify scientific material².

¹Free software foundation: fsf.org

²Open source for neuroscience: opensourceforneuroscience.org

• Enable Free/Open science:

Investigating structural plasticity in brain networks using computational modelling

NeuroFedora: Free Software for Free Neuro science

NeuroFedora: Free Software for Free Neuro-

uroFedora: volunteer driven initiative

NeuroFedora: volunteer driven initiative

science

☐ NeuroFedora: volunteer driven initiative

uroFedora: volunteer driven initiative

- Enable Free/Open science:
 - provide researchers (end-users):
 - ready to use tested tools.

NeuroFedora: volunteer driven initiative

- Enable Free/Open science:
 - provide researchers (end-users):
 - · ready to use tested tools.
 - help developers (upstream)
 - · collect feedback from users.
 - · make software improvements.
 - · implement software development standards.

Investigating structural plasticity in brain networks using computational modelling

NeuroFedora: Free Software for Free Neuroscience

NeuroFedora: volunteer driven initiative

uroFedora: volunteer driven initiative

implement software development standards

- provide researchers (end-users):
- ready to use tested tools.
- help developers (upstream)
- collect feedback from users.
- made software innoverments.

-Current status: software

Current status: software

· Ready to download ISO for computational neuroscience,

https://pagure.io/neuro-sig/NeuroFedora/issues

Current status: software

- · Ready to download ISO for computational neuroscience,
- Plethora of tools ready to install and use:
 - Computational modelling: NEST, Neuron, Genesis, Brian, LEMS, COPASI...
 - Neuroimaging: dicomanonymiser, dipy, fsleyes, jnifti, mne-bids, nilearn, nistats, octave-dicom, pybids, petlink, pynetdicom...
 - Utilities: LaTEX, the Python science stack, daily use productivity tools...

Investigating structural plasticity in brain networks
using computational modelling

NeuroFedora: Free Software for Free Neuroscience

-Current status: software

Current status: software

Ready to download ISO for computational neuroscienc Plethora of tools ready to install and use: • Computational modelling NEST Neuron Genesis Rea

LEMS, COPASI...
Neuroimaging: dicomanonymiser, dipy, faleyes, jnifti, mere bids, nilearn, nistats, octave-dicom, pybids, petlink pynetdicom...

pynetdicom...

- Utilities: liTpX, the Python science stack, daily use productivity tools...

nps://pagare.in/sears.nig/faurofators/inseas

¹https://pagure.io/neuro-sig/NeuroFedora/issues

Current status: software

- Ready to download ISO for computational neuroscience,
- Plethora of tools ready to install and use:
 - Computational modelling: NEST, Neuron, Genesis, Brian, LEMS, COPASI...
 - · Neuroimaging: dicomanonymiser, dipy, fsleyes, jnifti, mne-bids, nilearn, nistats, octave-dicom, pybids, petlink, pynetdicom...
 - Utilities: LATEX, the Python science stack, daily use productivity tools...
- 180 tools in queue¹

Investigating structural plasticity in brain networks using computational modelling —NeuroFedora: Free Software for Free Neuroscience

-Current status: software

Current status: software

mne-bids, nilearn, nistats, octave-dicom, pybids, petlink Utilities: liffeX, the Python science stack, daily use

productivity tools. · 180 tools in queue

https://pagure.io/neuro-sig/NeuroFedora/issues

15 volunteers: mainly Free/Open Source Software enthusiasts.
 Limited domain knowledge.

Current status: team

- 15 volunteers: mainly Free/Open Source Software enthusiasts.
- · Limited domain knowledge.

-NeuroFedora: links

- Documentation: https://seuro.fedoraproject.org
 Blog https://seuroblog.fedoraproject.org
 IBIC channel: #fedoraneuro on Freenode.net'.
 Tetocama channel: #fedoraneuro on Freenode.net'.
 Tetocama channel: #fedoraneuro on Freenode.net'.
 - Mailing list on lists.fedoraproject.org³.
 - lara serus un Pressode euroPedera un Telegorin un sigilitata Relanguagnol any

NeuroFedora: links

- Documentation: https://neuro.fedoraproject.org
- Blog https://neuroblog.fedoraproject.org
- IRC channel: #fedora-neuro on Freenode.net1.
- Telegram channel: @NeuroFedora².
- Mailing list on lists.fedoraproject.org³.

¹#fedora-neuro on Freenode

 $^{^2}$ @NeuroFedora on Telegram

³neuro-sig@lists.fedoraproject.org

Search: NeuroFedora

neuro.fedoraproject.org

Investigating structural plasticity in brain networks using computational modelling

NeuroFedora: Free Software for Free Neuroscience

-Search: NeuroFedora

science

2020-06-0

No Investigating structural plasticity in brain networks using computational modelling NeuroFedora: Free Software for Free Neuro-

-Sources and license

github.com/saniavankur31/20200117-KARMA-presentatio

Sources and license

github.com/sanjayankur31/20200117-KARMA-presentation

Creative Commons Attribution-ShareAlike 4.0 International License

35/35