Statistical Inference for Persistent Homology B. Fasy, F. Lecci - joint work with S. Balakrishnan, F. Chazal, A. Rinaldo, A. Singh, L. Wasserman

CMU TopStat stat.cmu.edu/topstat

Confidence Intervals for Persistence Diagrams

Goal

A 1- α confidence interval for the persistence diagram ${\mathcal P}$ consists of an estimate ${\mathcal P}$ and c > 0 such that

$$\mathbb{P}\left(W_{\infty}(\mathcal{P},\hat{\mathcal{P}}) > c\right) \leq \alpha$$

Distance Diagram with 95% confidence interval

Distance Function

Notation

$$S_n = \{X_1, \dots, X_n\} \subset \mathbb{X}$$

 $\hat{\mathcal{P}}_1 = Dgm_p^-(d_{\mathcal{S}_n})$

Stability Theorem.

 $W_{\infty}(Dgm_p(f), Dgm_p(g)) \le ||f - g||_{\infty}$

Subsampling Method

 $\mathcal{S}_{k}^{1},\ldots,\mathcal{S}_{k}^{N}$ are subsamples of size b.

$$L_b(t) = \frac{1}{N} \sum_{j=1}^{N} I\left(||d\mathcal{S}_b^j - d\mathcal{S}_n||_{\infty} > t\right)$$

Theorem. Almost surely, for all large n,

$$\mathbb{P}\left(W_{\infty}(\mathcal{P}_1,\hat{\mathcal{P}}_1) \ge 2L^{-1}(\alpha)\right) \le \alpha$$

Density Function

Notation

$$p_h = X \star K \qquad \mathcal{P}_2 = Dgm_p^+(p_h)$$

$$\hat{p}_h = KDE(\mathcal{S}_n) \quad \hat{\mathcal{P}}_2 = Dgm_p^+(\hat{p}_h)$$

Bootstrap Method

 $\mathcal{S}_n^1,\ldots,\mathcal{S}_n^N$ are subsamples of size n.

$$\hat{p}_h^i = KDE(\mathcal{S}_n^i)$$

$$c = \inf \left\{ t : \frac{1}{N} \sum_{i=1}^{N} I(\sqrt{nh^D} || \hat{p}_h - \hat{p}_h^i ||_{\infty} > t \right) \le \alpha \right\}$$

Theorem. As $n \to \infty$,

$$\mathbb{P}\left(W_{\infty}(\mathcal{P}_2,\hat{\mathcal{P}}_2) > \frac{c}{\sqrt{nh^D}}\right) \leq \alpha$$

Confidence Bands for Landscapes

Notation

Let
$$(a_i,b_i)\in\mathcal{P}$$
.
$$T_i(t)=(t-a_i)_+\wedge(b_i-t)_+$$

The 1st Persistent Landscape (Bubenik, 2012) is the maximum contour of the triangles:

$$\lambda_j(t) = \max\{T_i(t) : (a_i, b_i) \in \mathcal{P}_j\}$$

Mean Landscape:
$$\mu(t) = \mathbb{E}\left[\lambda_{\mathcal{P}}(t)\right]$$

Sample mean Landscape:
$$\bar{\mathcal{L}}_n(t) = \frac{1}{n} \sum_j \lambda_j(t)$$

We want a confidence band for $\mu(t)$.

$$\mathcal{P}_1,\ldots,\mathcal{P}_n\sim P$$

Define the empirical process $\mathbb{G}_n = \sqrt{n}(\hat{\mathcal{L}}_n(t) - \mu(t))$

Theorem. \mathbb{G}_n converges to a Gaussian process:

$$\mathbb{G}_n \leadsto \mathbb{G}$$

Multiplier Bootstrap

- Compute N copies of

$$\widetilde{\mathbb{G}}_n = \frac{1}{\sqrt{n}} \sum_{j} \xi_j(\lambda_j(t) - \bar{\mathcal{L}}_n(t))$$

- Compute c, the 1-lpha quantile of the bootstrapped $\sup_t |\mathbb{G}_n(t)|$.

$$\mathbb{P}\left(\mu(t) \in \bar{\mathcal{L}}_n(t) \pm \frac{c}{\sqrt{n}} \ \forall t \right) \ge 1 - \alpha$$

