Codes Cycliques

Tarik Ouadjou

35114

2022/2033

Contexte

Exemple de l'alphabet phonétique

On considère le message : **TIPE**

Encodage:

TANGO

INDIA

PAPA

ECHO

Le message est altéré :

TAMGO

INPIA

PEPA

ECHO

 $https://fr.wikipedia.org/wiki/Code_correcteur$

Correction:

On renvoie le mot TIPE

Mise en situation

Communication satellites:

- Téléphonie
- Télévision / Radio
- Internet : Starlink
- GPS

Problèmes:

- Interférences
- Distance

https://www.journaldunet.com/economie/services/1424539-les-satellites-nouvelle-source-de-donnees-pour-les-smart-cities/

<u>Problématique</u>: Comment corriger les erreurs de transmission de façon efficace?

Cahier des charges

Modèle:

Probabilité d'erreur : une lettre sur 30 est modifiée On travaille sur les **écritures binaires**

On cherche une structure qui vérifie :

- Conserve 99% des données en moyenne
- Impact la mémoire d'au plus un facteur
 2
- Décodage efficace, pouvoir décoder une image de taille standard en un temps raisonnable

Définitions élémentaires

Lettre : Un élément de \mathbb{F}_2

Mot : Un mot de taille n est un élément de \mathbb{F}_2^n

<u>Distance de Hamming</u>:

d(x,y) est le nombre de lettres qui diffèrent entre les mots x et y

Propriété:

La distance de Hamming est une distance

Distance minimale:

$$dC = \min\{d(x,y)|(x,y) \in C^2 \ x \neq y\}$$

Poids d'un mots:

Nombre de composantes non nulles du mot, on note cette fonction w

Définitions

Un Code Linéaire C de paramètres (n,k) est un sous-espace vectoriel de \mathbb{F}_2^n de dimension k

Fonction d'encodage
$$arphi$$
 linéaire injective Mot de \mathbb{F}_2^k — Mot de \mathbb{F}_2^n

Remarque:
$$dC = \min\{w(m)|m \in C \ m \neq 0\}$$

Un Code Cyclique C est un code linéaire vérifiant de plus :

$$\forall m = (m_0, ... m_{n-1}) \in C \implies (m_{n-1}, m_0 ... m_{n-2}) \in C$$

Exemple:

 $C = \{000, 011, 101, 110\}$ est un code cyclique

Analogie entre \mathbb{F}_2^n et $\mathbb{F}_2[X]/(X^n-1)$

Stabilité de C:

$$X \times m(X) = m_{n-1}X^n + \sum_{i=0}^{n-1} m_i X^i := (m_{n-1}, m_0, ... m_{n-2})$$

Ainsi C est stable par produit par tout polynôme

Propriété:

C est un idéal de $\mathbb{F}_2[X]/(X^n-1)$

Polynôme minimal

On appelle **polynôme minimal g** de C l'unique polynôme tel que :

$$C = \{g(X) * h(X) | h \in \mathbb{F}_2[X]/(X^n - 1)\}$$

Propriété:

$$(g(X),Xg(X),X^2g(X),...,X^{n-1-deg(g)}g(X))$$
 est une base de C

Ainsi k = n - deg(g)

Théorème:

On a $g|X^n-1$ et réciproquement tout diviseur g de X^n-1 engendre un code cyclique de paramètre (n,n-deg(g))

Encodage

On fixe:

- n = 15
- $g = X^8 + X^7 + X^6 + X^4 + 1$ $g|(X^{15} 1)$
- \bullet k = 7

Proposition:

La distance minimale du code engendré par g est 5

Encodage:

Soit $m=\left(m_0,..m_{k-1}\right)\in\mathbb{F}^k$ l'encodage de m est : $m(X)*g(X)=(\sum_{i=0}^{k-1}m_iX^i)*g(X)$

Syndrome

Définition:

On définit le $\underline{{\rm Syndrome}}$ d'un mot m $\,S(m)\,{\rm qui}$ est le reste de la division euclidienne de m par g pour un mot m

Remarque:

La fonction S est bien définie :

$$\forall a,v \in \mathbb{F}_2[X]S(a(X^n-1)+v) = S(v)\operatorname{carg}(X) \mid X^n-1$$

Proposition:

$$S(Xm) = XS(m) \text{ si deg(m) < n-k-1}$$

$$S(Xm) = XS(m) - g(X) \text{ si deg(m) = n-k-1}$$

Propriétés

Proposition:

La fonction S vérifie les propriétés suivantes :

- S est linéaire
- S(m) = 0 si et seulement si $m \in C$
- $\forall m \in C \ S(m+e) = S(e)$
- ullet Si $w(e) < \lfloor rac{d-1}{2}
 floor$ alors $S(e) = S(e') \implies e = e'$

Preuve:

Supposons S(e) = S(e') ainsi $e - e' \in C$

$$w(e - e') \le w(e) + w(e') \le dC - 1 \implies e - e' = 0$$

Décodage de Meggitt

Algorithme de décodage :

<u>Etape 1</u>:

Calcul de : S(e(X)) avec e de poids 2 et $e_{n-1} \neq 0$ et les introduits dans un tableau

Etape 2:

Posons y = m + e avec $m \in C$, si S(y) = 0 alors $y \in C$ sinon on a S(y) = S(e)

<u>Etape 3</u>:

Si S(y) appartient au tableau calculé alors on a trouvé l'erreur e(x) et on renvoie y-e

Etape 4:

On calcul $\,S(X^iy)$ jusqu'à avoir un élément du tableau, on renvoie alors $y-x^{n-i}e$

Proposition:

S'il y a une erreur de poids inférieur à 2 l'algorithme la détecte et la corrige

Exemple

Table des syndromes:

e(X)	S(e(X))	e(X)	S(e(X))	e(X)	S(e(X))
X^{14}	$X^7 + X^6 + X^5 + X^2$	$X^{14} + X^9$	$X^7 + X^4 + X^3 + X + 1$	$X^{14} + X^4$	$X^{7} + X^{6}$
$X^{14} + X^{13}$	$X^7 + X^4 + X^3 + X^2$	$X^{14} + X^8$	$X^5 + X^4 + X^3 + 1$	$X^{14} + X^3$	$X^7 + X^6$
$X^{14} + X^{12}$	$X^7 + X^6 + X^4 + X$	$X^{14} + X^7$	$X^6 + X^5 + X^3$	$X^{14} + X^2$	$X^7 + X^6$
$X^{14} + X^{11}$	$X^7 + X^6 + X^5 + X^4 + X^2 + 1$	$X^{14} + X^6$	$X^7 + X^5 + X^3$	$X^{14} + X$	$X^7 + X^6$
$X^{14} + X^{10}$	$X^3 + X^2 + X$	$X^{14} + X^5$	$X^7 + X^6 + X^3$	$X^{14} + 1$	$X^7 + X^6$

Exemple:

Soit m(X) =
$$1 + X^2 + X^4$$
 l'encodage de m est y(X) = $1 + X^2 + X^7 + X^8 + X^9 + X^{11} + X^{12}$

introduisons l'erreur e(X) =
$$X^3 + X^{12}$$
 ainsi y(X) = $1 + X^2 + X^3 + X^7 + X^8 + X^9 + X^{11}$

$$S(y) = X^5 + X^4 + X$$
, $S(Xy) = XS(y) = X^6 + X^5 + X^2$, $S(X^2y) = XS(Xy) = X^7 + X^6 + X^3$

On trouve l'erreur
$$e(X) = X^{15-2}(X^{14} + X^5) = X^{12} + X^3$$

Implémentation par liste

Un **pixel** est un triplet de nombre entre 0 et 255 (p1,p2,p3)

https://fr.science-questions.org/comment_ca_marche/162/Les _pixels_de_la_television_en_couleur/

$$p = \sum_{i=0}^{7} a_i 2^i$$
 $p = (a_7, ...a_1) \in \mathbb{F}_2^k$

On représente le polynôme associé au message transmis par une liste

Résultats

Image initiale

Image déformée

Image corrigée

Implémentation par bit

On travail sur les polynômes de manière implicite :

- L'addition de 2 polynômes : Xor des 2 entiers associés
- Multiplication par X :

```
def decalage(p, d):
    d=d%n
    nombre = (p << d)|(p >> (n - d))
    return nombre % (1<<n)</pre>
```

Complexité

ALAS 200 1000 200 1000

Algorithme par bit et Algorithme par liste

Représentation par liste

Représentation par bit

Coefficient directeur: 8000 Pixels par minute

Coefficient directeur: 45700 Pixels par minute

Analyse probabiliste

Nombre erreurs:

On appelle nombre d'erreurs X la variable aléatoire qui compte le nombre d'erreurs d'un mot m,

Proposition:

Le nombre d'erreurs d'un mot m suit une loi de Bernoulli de paramètre (n,p) lorsque les erreurs sont introduites selon une loi uniforme sur chacun des bits

Conséquence:

L'algorithme est capable de retrouver le message initial dans au moins 98.75% des cas

Conclusion

Respect des conditions imposées :

- L'algorithme corrige une grande partie des erreurs
- Nécessite deux fois plus de mémoire
- Inutilisable en pratique : environ 25 minutes pour décoder une image en HD (1280 * 720 pixels)

Modèle simpliste :

- Erreurs viennent par blocs
- Suppression de bits

Annexes

```
def decalage(p, d):
    d=d%n
    nombre = (p << d)|(p >> (n - d))
    return nombre % (1<<n)
def multiplication(p,q):
    s = 0
   j = len(bin(p))
   for i in range(j-2):
        if(bin(p)[j-i-1]=='1'):
            s = s \wedge (q < < i)
    return s
def deg(n):
    return len(bin(n))-3
def division euclid(a,b): # a = bq+r
    r = a
    q = 0
   while(deg(r) > = deg(b)):
        q=q+2**(deg(r)-deg(b))
        t=b << (deg(r)-deg(b))
        r=r ^ t
    return (q,r)
```

```
def reste(a,b):
    (q,r) = division euclid(a,b)
    return r
def quotient(a,b):
    (q,r) = division euclid(a,b)
    return q
def poids(w):
    total = 0
    j = len(bin(w))
    for i in range(j-2):
        if(bin(w)[j-i-1]=='1'):
            total = total+1
    return total
def encodage(m,g):
    return multiplication(m,g)
```

Annexes

```
def calcul(g,s):
    if (deg(s) < n-k-1):
        return decalage(s,1)
    else:
        a = decalage(s,1)
        return a^g
def decodage naif(w,g):
    (a,s) = division euclid(w,g)
    if(poids(s)==0):
        return a
    return 0
T = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
for i in range(14):
    nombre = 2^{**}14 + 2^{**}i
    T[i]=reste(nombre,g)
T[14] = reste(2**14,g)
```

```
def decodage(w,g):
    (a,s) = division_euclid(w,g)
    if(s==0):
        return a
    for i in range(n):
        if(s in T):
            k = T.index(s)
            erreur = 2**14+2**k
            if (k == 14):
                erreur = 2**14
            erreur = decalage(erreur,n-i)
            m = w^erreur
            return quotient(m,g)
        else:
            s=calcul(g,s)
    return a
def ajout erreur(w):
    D=W
    for k in range(n):
        if(random.randint(0,29)==0):
            p = p \wedge (1 < < k)
    return p
```