

ATTACHMENT A

Claims 1 - 11: (Cancelled)

12. (Currently Amended) A process for preparing cyclopentadienyl system anions of the formula (VII),

$$A \xrightarrow{R^{4B}} R^{1A}$$

$$R^{4B}$$

$$R^{4B}$$

$$R^{3A}$$

$$R^{3A}$$

where the variables have the following meanings:

 $R^{1A}-R^{4A}$ are each, independently of one another, hydrogen, C_1-C_{20} -alkyl, C_2-C_{20} -alkenyl, C_6-C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_2 , $N(SiR^{6A}_3)_2$, OR^{6A} , $OSiR^{6A}_3$, or SiR^{6A}_3 where the organic radicals $R^{1A}-R^{4A}$ may also be substituted by halogens and two vicinal radicals $R^{1A}-R^{4A}$ may also be joined to form a five- or sixmembered ring, and/or two vicinal radicals $R^{1A}-R^{4A}$ are joined to form a heterocycle which contains at least one atom selected from the group consisting of N, P, O and S,

 R^{6A} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_6\text{-}C_{20}\text{-}aryl$, or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

A is an unsubstituted, substituted or fused, heteroaromatic ring system,

 R^{4B} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_6\text{-}C_{20}\text{-}aryl$, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_3 , where the organic radicals R^{4B} may also be substituted by halogens and two geminal or vicinal radicals R^{4B} may also be joined to form a five- or six-membered ring and

 R^{3B} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_6\text{-}C_{20}\text{-}aryl$ or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

which comprises the step a) or a'), where, in step a), an A heteroaromatic ring system anion comprising a negative charge on a carbon atom adjacent to a heteroatom in the A heteroaromatic ring system is reacted with a fulvene of the formula (VIIIa)

$$R^{4B}$$
 R^{4B}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4A}

or,

in step a'), an organometallic compound $R^{4B}M^BX^B_b$ where M^B is a metal of group 1 or 2 of the Periodic Table of the Elements,

U.S. Patent Application Serial No. 10/539,342

 X^B is halogen, C_1 - C_{10} -alkyl, alkoxy having from 1 to 20 carbon atoms in the alkyl radical and/or from 6 to 20 carbon atoms in the aryl radical, or R^{4B} and

0

b is 0 when M^B is a metal of group 1 of the Periodic Table of the Elements, and is 1 when M^B is a metal of group 2 of the Periodic Table of the Elements, is reacted with a fulvene of the formula (VIIIb):

$$R^{4B}$$
 R^{4A}
 R^{3A}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4A}

13. (Previously Presented) A process for preparing cyclopentadiene systems of the formula (VIIa)

$$A = C = E^{10A} = E^{10A$$

where the variables have the following meanings: $E^{6A}-E^{10A} \quad \text{are each carbon, where in each case four} \\ \quad \text{adjacent } E^{6A}-E^{10A} \quad \text{form a conjugated diene system} \\ \quad \text{and the remaining } E^{6A}-E^{10A} \quad \text{additionally bears a} \\ \quad \text{hydrogen atom,} \\$

U.S. Patent Application Serial No. 10/539,342

- R^{1A}-R^{4A} are each, independently of one another, hydrogen, C_1-C_{20} -alkyl, C_2-C_{20} -alkenyl, C_6-C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_{2} , $N(SiR^{6A}_{3})_{2}$, OR^{6A} , $OSiR^{6A}_{3}$, or SiR^{6A}_{3} , where the organic radicals $R^{1A}-R^{4A}$ may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or sixmembered ring, and/or two vicinal radicals $R^{1A}-R^{4A}$ are joined to form a heterocycle which contains least one atom selected from the group at consisting of N, P, O and S,
- R^{6A} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_6\text{-}C_{20}\text{-}aryl$, or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,
- A is an unsubstituted, substituted or fused, heteroaromatic ring system,
- $\rm R^{2B}$ are each, independently of one another, hydrogen, $\rm C_1\text{-}C_{20}\text{-}alkyl$, $\rm C_2\text{-}C_{20}\text{-}alkenyl$, $\rm C_6\text{-}C_{20}\text{-}aryl$, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or $\rm SiR^{3B}_3$, where the organic radicals $\rm R^{2B}$ may also be substituted by halogens and $\rm R^{2B}$ and A may also be joined to form a five- or six-membered ring,
- R^{3B} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_6\text{-}C_{20}\text{-}aryl$ or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part

and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

which comprises the following step:

a'') reaction of an A-CR^{2B}R^{2B-} anion with a cyclopentenone system of the formula (IX)

- 14. (Cancelled)
- 15. (Cancelled)
- 16. (Cancelled)
- 17. (Previously Presented) The process as claimed in claim 12, wherein A has the formula (III):

$$\begin{array}{c|c}
R_{p}^{2C} \\
R_{p}^{1C} & P_{p}^{2C} \\
R_{p}^{1C} & R_{p}^{3C} \\
R_{p}^{1C} & R_{p}^{4C}
\end{array}$$
(III)

wherein

 $E^{1C}-E^{4C}$ are each carbon or nitrogen;

 $R^{1C}-R^{4C}$ are each, independently of one another, hydrogen, C_1-C_{20} -alkyl, C_2-C_{20} -alkenyl, C_6-C_{20} -aryl, alkylaryl

U.S. Patent Application Serial No. 10/539,342

comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, or SiR^{5C}_3 , wherein $R^{1C}-R^{4C}$ are optionally substituted by at least one halogen, nitrogen, C_1-C_{20} -alkyl group, C_2-C_{20} -alkenyl group, C_6-C_{20} -aryl group, alkylaryl group comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 , and two vicinal $R^{1C}-R^{4C}$ or R^{1C} and Z are optionally joined to form a five- or six-membered ring;

 R^{5C} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl comrising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, and two R^{5C} are optionally joined to form a five- or six-membered ring; and

p is 0 when $E^{1C}-E^{4C}$ is nitrogen, and is 1 when $E^{1C}-E^{4C}$ is carbon.