

skguptadsc@gmail.com ▼

Variables Announcements Forum Progress Mentor

Course outline

How to access the portal

WEEK- 1:

WEEK- 2:

WEEK 3

WEEK 4

Assignment 3

Due on 2016-04-06, 22:00 IST

Submitted assignment

1) Consider PDE: $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$; Subject to at x=0, $u=u_0$; x=1, u=0; y=0, u=0; y=1, u=0;

The eigen functions are

(a) $\sin(n\pi x)$

(b) $\sin(n\pi y)$

(c) $\cos[(2n-1)\frac{\pi}{2}\ y]$

3 points

2) Consider PDE: $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$; subject to at x=0, $u=u_0$; x=1, u=0; y=0, $\frac{\partial u}{\partial y}=0$; y=1, u=0;

The eigen functions are

(a) $\sin(n\pi x)$

(b) $\sin(n\pi y)$

(c) $\cos[(2n-1)\frac{\pi}{2} \ x]$

(d) $\cos[(2n-1)\frac{\pi}{2}y]$

3 points

- 3) An elliptical PDE physically models a system:
 - (a) At steady state
 - (b) at unsteady state

) ((c)	at	the	start	up	of	the	plant

1 point

4) A hyperbolic PDE must contain

- (a) Dirichlet B.C
- (b) Neumann B.C
- (c) Robin-mixed B.C
- (d) Cauchy B.C

1 point

⁵⁾Consider hyperbolic PDE: $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ The BCs on x are homogeneous. The BCs on t cannot be:

(a) At t=0,
$$u=u_{01}$$
, $\frac{\partial u}{\partial t}=u_{02}$

(b) At t=0,u=0,
$$\frac{\partial u}{\partial t}=0$$

(c) At t=0,u=0,
$$\frac{\partial u}{\partial t}=u_{02}$$

(d) At t=0,
$$u=u_{01}$$
, $rac{\partial u}{\partial t}=0$

3 points

6) Bessel functions are orthogonal to each w.r.t weight function

- (a) r
- (b) r^2
- o sin r
- exp (r)

2 points

7) For one dimensional transient heat conduction in a solid cylinder, where wall temperature is kept at constant temperature, the boundary condition at centreline of cylinder at r=0 is an example of:

- (a) Dirichlet B.C
- (b) Neumann B.C
- (c) Physical B.C
- (d) None of the above

3 points

8) What is BC at r=0 in problem 7:

(a) T=infinite

- (b) $T = T_{ambient}$
- (c) $T = T_{wall}$

2 points

- 9) For Bessel function $J_0(x)$, it is
 - (a) An exponential function of x
 - (b) It is an oscillatory function about x axis with diminishing magnitude
 - (c) It is a linear function in x through origin

3 points

10For Bessel function $Y_0(x)$ is

- (a) 0 at x=0
- (b) ∞ I at x=0
- (c) $-\infty$ at x=0
- \bigcirc (d) 1 at x=0

3 points

11) m^{th} order Bessel function $J_m(\lambda x)$ are

- (a) Orthogonal functions
- (b) Non-Orthogonal functions

3 points

12For 2 dimensional transient heat conduction problem in a cylinder without θ symmetry the BCs on θ are

(a)
$$T|_{\pi}=T|_{-\pi}|$$
 & $rac{\partial T}{\partial t}|_{\theta=\pi}=rac{\partial T}{\partial t}|_{\theta=-\pi}|$

(b) T=0 at
$$heta=\pi |\& rac{\partial T}{\partial t}\mid_{ heta=\pi}=0$$
 at $heta=-\pi |$

(c) T=1 at
$$\theta=\pi$$
 | & $\frac{\partial T}{\partial t}$ | $_{\theta=\pi}=0$ | at $\theta=-\pi$ |

(d) T=0 at
$$heta=\pi$$
 & $rac{\partial T}{\partial t}\mid_{ heta=\pi}=1$ at $heta=-\pi$

3 points

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - G+1 0

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

