Réduction

Martin Andrieux

1 Éléments propres

Définition

Soit f dans $\mathcal{L}(E)$, x est un vecteur propre pour f si $x \neq 0$ et si $f(x) \in \mathrm{Vect}(x)$. Si x est un vecteur propre pour f, il existe un unique λ dans K tel que $f(x) = \lambda x$.

On note Sp(f) l'ensemble des valeurs propres de f, appelé *spectre* de f.

Définition

On pose $\chi_f(\lambda) = \det(\lambda \cdot \operatorname{Id} - f)$. χ_f est appelé polynôme caractéristique de f. Avec A la matrice de f, χ_A est de la forme suivante :

$$\chi_f(\lambda) = \lambda^n - \operatorname{tr}(A) \cdot \lambda^{n-1} + \dots + (-1)^n \det A$$

Sous-espaces propres

On pose $E_{\lambda_i} = \ker(f - \lambda_i Id)$ le sous-espace propre associé à λ_i .

$$E = \bigoplus_{i=0}^k E_{\lambda_i}$$

Les dimensions des sous-espaces propres sont inférieures aux ordre de multiplicité des λ_i en tant que racines de χ_f .

Première CNS de diagonalisabilité

f est diagonalisable si et seulement si χ_f est scindé et si pour chaque λ dans $\mathrm{Sp}(f),\; E_\lambda$ est de dimension l'ordre de multiplicité de λ dans $\chi_f.$

Trigonalisabilité

f est trigonalisable si et seulement si χ_f est scindé.

Sur \mathbb{C} , toute matrice est trigonalisable.

2 Polynômes d'endomorphismes

Commutativité -

Soient P et Q deux polynômes, comme PQ = QP, on a $P(f) \circ Q(f) = Q(f) \circ P(f)$.

Définition

L'ensemble $I_f = \{P \in K[X]/P(f) = 0\}$ est un idéal de K[X] non réduit à $\{0\}$. Son générateur normalisé est le *polynôme minimal* de f, noté π_f .

Lemme de décompasition des noyaux

Si $P \wedge Q = 1$, alors :

 $\ker (QF)(f) = \ker P(f) \oplus \ker Q(f)$

Théorème de Cayley-Hamilton

Le polynôme minimal π_f divise χ_f :

- $\pi_f | \chi_f$
- $\chi_f(f) = 0$
- $\bullet \ \chi_f \in I_f$

Seconde CNS de diagonalisabilité

f est diagonalisable si et seulement si π_f est scindé à racines simples.