Álgebra I: Teoría de Grupos Examen parcial 1. Soluciones

Universidad de El Salvador. Ciclo impar 2018

Problema 1 (1 punto). Consideremos los grupos simétricos S_n y grupos alternantes A_n . ¿Para cuáles valores de n son abelianos? Cuando no son abelianos, encuentre un par de permutaciones específicas σ , τ tales que $\sigma \circ \tau \neq \tau \circ \sigma$.

Solución. El grupo S_n no es abeliano para $n \ge 3$. En este caso tenemos, por ejemplo,

$$(1\ 2)\circ(2\ 3)=(1\ 2\ 3),\quad (2\ 3)\circ(1\ 2)=(1\ 3\ 2).$$

El grupo A_n no es abeliano para $n \ge 4$. Por ejemplo,

$$(1\ 2\ 3)\circ (1\ 2\ 4)=(1\ 3)\circ (2\ 4),\quad (1\ 2\ 4)\circ (1\ 2\ 3)=(1\ 4)\circ (2\ 3).$$

El grupo

$$A_3 = \{id, (123), (132)\}$$

es abeliano.

Problema 2 (1 punto). Demuestre que un grupo G es abeliano si y solamente si para cualesquiera $g,h\in G$ se cumple

$$(gh)^2 = g^2 h^2.$$

Solución. Si G es abeliano, entonces

$$(gh)^2 = ghgh = gghh = g^2 h^2.$$

En la otra dirección, si en G se cumple

$$ghgh = (gh)^2 = g^2 h^2 = gghh$$

para cualesquiera $g, h \in G$, entonces, podemos cancelar g en la izquierda y h en la derecha y obtener

$$hg = gh$$
.

Problema 3 (2 puntos). Supongamos que $\sigma=(i_1 \cdots i_k)$ y $\tau=(j_1 \cdots j_\ell)$ son dos ciclos *disjuntos* en el grupo simétrico S_n ; es decir,

$$\{i_1,\ldots,i_k\}\cap\{j_1,\ldots,j_\ell\}=\emptyset.$$

Demuestre que el mínimo exponente $m=1,2,3,\ldots$ tal que $(\sigma \circ \tau)^m=$ id es igual a mcm (k,ℓ) .

Solución. Dado que los ciclos disjuntos conmutan entre sí, para cualquier $m = 1, 2, 3, \dots$ se cumple

$$(\sigma \circ \tau)^m = \sigma^m \circ \tau^m$$
.

De hecho, podemos notar que las potencias σ^i y τ^j son disjuntas para todo i, j. Luego,

$$k = \min\{m = 1, 2, 3, \dots \mid \sigma^m = id\}, \quad \ell = \min\{m = 1, 2, 3, \dots \mid \tau^m = id\}$$

y la división con resto de m por k y ℓ respectivamente demuestra que

$$\sigma^m = \mathrm{id} \iff k \mid m, \quad \tau^m = \mathrm{id} \iff \ell \mid m.$$

Ahora

$$(\sigma \circ \tau)^m = \sigma^m \circ \tau^m = \mathrm{id} \iff \sigma^m = \mathrm{id} \ \mathrm{y} \ \tau^m = \mathrm{id} \iff k \mid m \ \mathrm{y} \ \ell \mid m.$$

Entonces.

$$\min\{m = 1, 2, 3, \dots \mid (\sigma \circ \tau)^m = \mathrm{id}\} = \min\{m = 1, 2, 3, \dots \mid k \mid m \ y \ \ell \mid m\} =: \mathrm{mcm}(k, \ell).$$

Problema 4 (2 puntos). Para el grupo simétrico S_5 calcule cuántas diferentes permutaciones $\sigma \in S_5$ satisfacen la propiedad $\sigma \circ \sigma = \mathrm{id}$.

Solución. El grupo S_5 tiene S_5 ti

$$1+1+1+1+1\longleftrightarrow \mathrm{id},$$

$$1+1+1+2\longleftrightarrow (\bullet\bullet),$$

$$1+1+3\longleftrightarrow (\bullet\bullet\bullet),$$

$$1+2+2\longleftrightarrow (\bullet\bullet)(\bullet\bullet),$$

$$1+4\longleftrightarrow (\bullet\bullet\bullet\bullet),$$

$$2+3\longleftrightarrow (\bullet\bullet\bullet)(\bullet\bullet),$$

$$5\longleftrightarrow (\bullet\bullet\bullet\bullet\bullet).$$

Solamente las permutaciones id, $(\bullet \bullet)$ y $(\bullet \bullet)$ ($\bullet \bullet$) satisfacen la condición $\sigma^2 = id$:

$$id^2 = id$$
, $(a \ b)^2 = id$, $((a \ b) \circ (c \ d))^2 = (a \ b)^2 \circ (c \ d)^2 = id$.

Para las demás permutaciones se tiene

$$(a \ b \ c)^2 = (a \ c \ b) \neq id, \quad (a \ b \ c \ d)^2 = (a \ c) \circ (b \ d) \neq id,$$

 $((a \ b \ c) \circ (d \ e))^2 = (a \ b \ c)^2 \circ (d \ e)^2 = (a \ c \ b) \neq id,$
 $(a \ b \ c \ d \ e)^2 = (a \ c \ b \ d) \neq id.$

Entonces, necesitamos contar cuántas permutaciones de la forma $(a\ b)\ y\ (a\ b)\circ (c\ d)$ hay en S_5 . Para las transposiciones, es fácil: necesitamos escoger un par de índices diferentes $a,b\in\{1,2,3,4,5\}$ y estos definen una transposición $(a\ b)=(b\ a)$. Tenemos

$$\binom{5}{2} = \frac{5!}{2! \cdot 3!} = \frac{4 \cdot 5}{2} = 10$$

posibilidades. Para contar las permutaciones de la forma $(a\ b)\circ (c\ d)$ (productos de dos transposiciones disjuntas), podemos escribirlas como $(a\ b)\circ (c\ d)\circ (e)$. Hay 5! posibilidades de poner números diferentes en lugar de a,b,c,d,e. Luego, ya que $(a\ b)=(b\ a)\ y\ (c\ d)=(d\ c)$, tenemos que dividir 5! por $2\cdot 2$. De la misma manera, el orden de múltiplos $(a\ b)\ y\ (c\ d)$ no cambia el resultado, y hay que dividir todo por 2. Entonces, hay

$$\frac{5!}{2\cdot 2\cdot 2} = \frac{2\cdot 3\cdot 4\cdot 5}{2\cdot 2\cdot 2} = 15$$

diferentes permutaciones de la forma $(a\ b)\circ (c\ d)$.

Podemos concluir que en S_5 hay precisamente

$$1 + 10 + 15 = 26$$

permutaciones que satisfacen $\sigma \circ \sigma = id$.

Problema 5 (2 puntos).

- 1) Para un grupo G demuestre que el centro Z(G) es un subgrupo de G.
- 2) Sea G un grupo y H su subgrupo. ¿Es cierto que Z(H) es un subgrupo de Z(G)? (Demuéstrelo o encuentre un contraejemplo.)

Solución. Recordemos la definición del centro:

$$Z(G) := \{ g \in G \mid gh = hg \text{ para todo } h \in G \}.$$

Primero, $1 \in Z(G)$, puesto que para todo $h \in G$ se cumple

$$1 \cdot h = h \cdot 1 = h$$
.

Ahora supongamos que $g_1, g_2 \in Z(G)$. Entonces, para todo $h \in G$ se cumple

$$(g_1g_2)h \stackrel{\text{asoc.}}{=} g_1(g_2h) \stackrel{g_1 \in Z(G)}{=} (g_2h)g_1 \stackrel{\text{asoc.}}{=} g_2(hg_1) \stackrel{g_2 \in Z(G)}{=} (hg_1)g_2 \stackrel{\text{asoc.}}{=} h(g_1g_2).$$

Ahora si $g \in Z(G)$, entonces para todo $h \in G$ tenemos

$$g^{-1}h = (h^{-1}g)^{-1} \stackrel{g \in Z(G)}{=} (gh^{-1})^{-1} = hg^{-1}.$$

Esto demuestra la primera parte (de hecho, ya lo habíamos hecho en clase). La segunda parte es totalmente falsa. Por ejemplo, como vimos en clase,

$$Z(S_n) = \{id\}$$
 para $n \ge 3$,

pero S_n puede contener subgrupos abelianos

$$\{id\} \subsetneq H \subsetneq S_n$$

para los cuales Z(H) = H. El ejemplo mínimo es el de S_3 donde tenemos cuatro subgrupos propios

$$\{id, (12)\}, \{id, (13)\}, \{id, (23)\}, A_3 = \{id, (123), (132)\}.$$

Todos estos subgrupos son abelianos.

Problema 6 (2 puntos). Se dice que un número complejo $z \in \mathbb{C}$ es una **raíz** n-**ésima de la unidad** si $z^n = 1$.

- 1) Demuestre que todas las raíces n-ésimas de la unidad forman un grupo abeliano respecto a la multiplicación compleja. Denotémoslo por $\mu_n(\mathbb{C})$.
- 2) Demuestre que todas las raíces de la unidad

$$\mu_{\infty}(\mathbb{C}) := \bigcup_{n \geq 1} \mu_n(\mathbb{C})$$

también forman un grupo.

Solución. Sabemos que los números complejos no nulos $\mathbb{C}\setminus\{0\}$ forman un grupo abeliano respecto a la multiplicación, así que será suficiente ver que $\mu_n(\mathbb{C})$ es un subgrupo. Obviamente, 1 es una raíz n-ésima de la unidad para cualquier n: tenemos $1^n=1$. Luego, si z y w son raíces n-ésimas de la unidad, entonces su producto zw es también una raíz n-ésima de la unidad:

$$(zw)^n = z^n w^n = 1.$$

Por fin, si z es una raíz n-ésima de la unidad, entonces $z \neq 0$ y z es invertible: existe z^{-1} tal que $z^{-1}z = 1$. Luego,

$$(z^{-1})^n = (z^n)^{-1} = 1.$$

así que z^{-1} es también una raíz n-ésima de la unidad.

De la misma manera, podemos ver que todas las raíces de la unidad forman un subgrupo

$$\mu_{\infty}(\mathbb{C}) := \bigcup_{n \geq 1} \mu_n(\mathbb{C}) \subset \mathbb{C} \setminus \{0\}.$$

Obviamente, $1 \in \mu_{\infty}(\mathbb{C})$. Luego, si $z \in \mu_{\infty}(\mathbb{C})$, entonces $z \in \mu_n(\mathbb{C})$ para algún n y, como acabamos de ver, $z^{-1} \in \mu_n(\mathbb{C})$. Finalmente, si $z, w \in \mu_{\infty}(\mathbb{C})$, esto quiere decir que $z^m = 1$ y $w^n = 1$ para algunos m y n. Sea ℓ algún número tal que $m \mid \ell$ y $n \mid \ell$. En particular, podemos tomar $\ell = \text{mcm}(m, n)$. Luego, $\ell = am = bn$ para algunos a y b y tenemos

$$(zw)^{\ell} = z^{am} w^{bn} = (z^m)^a (w^n)^b = 1,$$

así que zw es una raíz ℓ -ésima de la unidad.

(Esencialmente, acabamos de ver que $m \mid \ell$ implica $\mu_m(\mathbb{C}) \subset \mu_\ell(\mathbb{C})$; en particular, $\mu_m(\mathbb{C}), \mu_n(\mathbb{C}) \subset \mu_\ell(\mathbb{C})$ donde $\ell = \text{mcm}(m, n)$.)