Podstawy kryptografii

Andrzej M. Borzyszkowski

Instytut Informatyki Uniwersytet Gdański

sem. letni 2023/2024

inf.ug.edu.pl/~amb/

Integralność danych: MAC i funkcje skrótu

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2023/2024

Podstawy kryptografii

sem. letni 2023/2024

Integralność a prywatność

- Prywatność: Ewa nie potrafi odczytać wiadomości m z kryptogramu c – czy potrafi go zmienić złośliwie? (integralność)
- Szyfr strumieniowy
 - $-c = m \oplus G(k)$, zmiana bitu w c zmienia ten sam bit w m
- Szyfr blokowy w trybach OFB oraz CTR
 - zasada szyfrowania jest podobna
 - zmiana bitu w c zmienia ten sam bit w m
- Szyfr blokowy w trybie ECB
 - zmiana bitu w c zmienia cały blok w wiadomości m
 - można bezkarnie zmienić kolejność bloków
- Szyfr blokowy w trybie CBC
 - zmiana bitu w IV zmienia bit w pierwszym bloku m
 - nagłówek pliku często ma ważne informacje

Andrzej Borzyszkowski (Instytut Informatyki l

Integralność – definicja

- MAC (message authentication code)
 - algorytm generowania klucza k (np. losowy wybór)
 - algorytm obliczania MAC(k, m) dla klucza i wiadomości m
 - algorytm weryfikacji dla klucza k, wiadomości m oraz kodu uwierzytelniającego t
- Alicja i Bolek uzgodnili klucz k
 - Alicja przesyła wiadomość m oraz kod uwierzytelniający t = MAC(k, m)
 - Bolek otrzymuje wiadomość m' oraz kod t' i weryfikuje prawidłowość otrzymanych danych
 - w praktyce sprawdza czy t' = MAC(k, m')
 - na pewno warunek zajdzie jeśli nie było zmian w przesyłanych komunikatach

Funkcje skrótu

- Dowolna funkcja $h: [*] \rightarrow [n]$
 - dziedzina: ciągi bitów dowolnej (dużej) długości
 - przeciwdziedzina: ciągi bitów długości ustalonej i niedużej
- Przykład $h: [n+n] \rightarrow [n], h(x,y) = x \oplus y$
 - funkcję tę można iterować i przetwarzać ciągi dowolnej długości: $H(x, \langle y, Z \rangle) = H(h(x, y), Z)$
 - dla dowolnego ciągu bitów trzeba jeszcze uzupełnić ostatni niepełny blok
- Własności takiej funkcji H
 - łatwo się oblicza (w przykładzie jest to po prostu suma)
 - łatwo znaleźć dwa ciągi t.ż. H(x) = H(y)

ndrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

5 / 25

Podstawy kryptografii

sem. letni 2023/2024

Własności kryptograficznych funkcji skrótu

- Dana wiadomość m oraz skrót h(m)
 - zmieniona wiadomość m_1 oraz $h(m_1)$
 - jeśli $h(m) = h(m_1)$ to nie ma sposobu wykrycia zmiany
 - w.p.p. atakujący musi przekazać inny skrót
- Postulowane własności:
 - łatwo obliczyć (MAC wymaga hasła, z hasłem ma byc łatwy)
 - trudno jest znaleźć jakiekolwiek m t.ż. h(m) = y (funkcja jednokierunkowa, problem 1. przeciwobrazu)
 - trudno jest znaleźć m_1 t.ż. $h(m_1) = h(m)$ dla danego m (słaba bezkolizyjność, problem 2. przeciwobrazu)
 - trudno jest znaleźć jakiekolwiek dwie wiadomości m oraz m_1 takie że $h(m) = h(m_1)$ (silna bezkolizyjność)

Zastosowania funkcji skrótu

- Nie kryptograficzne:
 - znajdowanie indeksów tablic dla argumentów ze zbioru [*] albo zbioru [N] dla dużego N (tablice mieszające)
 - wykrywanie przypadkowych błędów transmisji: przesyłane są wiadomość m oraz skrót h(m), odczytywane są m_1 oraz h_1 , jeśli $h(m_1) \neq h_1$, to znaczy, że wystąpił błąd
- Kryptograficzne:
 - wykrywanie celowych i złośliwych zmian dokumentów
 - w szczególności zobowiązanie bitowe
 - skrócenie wiadomości dla kryptografii asymetrycznej (podpis)
- Inne nazwy:
 - hash, odcisk palca (fingerprint), message digest
 - MAC (dla funkcji z hasłem)

Andrzej Borzyszkowski (Instytut Informatyki l

Model losowej wyroczni – atak egzystencjalny

- Wartości funkcji skrótu są nieprzewidywalne
- Założenie: $h: \mathcal{X} \to \mathcal{Y}$
 - znamy wartości h(x) dla podzbioru $x \in \mathcal{X}_0$
 - dla każdego innego argumentu $P(h(x) = y_0) = \frac{1}{|y|}$
- Odporność na atak
 - wybrany jest pewien klucz k
 - Ewa ma dostęp do wyroczni obliczającej MAC(k,)
 - Ewa wygrywa jeśli znajdzie prawidłowy skrót dla jakiejkolwiek nowej wiadomości
- Atak przez powtórzenie (Ewa kopiuje wiadomość ze skrótem)
 - nie jest objęty tą definicją
 - wymaga pojęcia stanu
 - np. uzgodniony zegar, albo licznik

Atak urodzinowy

- Jakie jest prawdopodobieństwo, że dwie osoby spośród *n* mają urodziny tego samego dnia?
 - dla n=2, prawd. $\approx \frac{1}{366}$
 - dla n = 367, prawd. = 1
 - dla n = 23, prawd. $> \frac{1}{2}$
- Prawdopodobieństwo kolizji $\approx 1 exp(-n^2/2N)$
 - jest znacznie większe niż żądanie, by zachodziła równość
 - z konkretną wartością
 - dla dwóch zestawów liczb < N o wielkości \sqrt{N} elementów jest duża szansa na wspólny element
 - np. dla ${\it N}=2^{56}$ wystarczy zgromadzić zestawy po 2^{28} elementów, czyli gigabajty
- Szukanie kolizji: próbka możliwych skrótów wielkości \sqrt{N} ma znaczące prawdopodobieństwo kolizji
 - wnosek: funkcja skrótu musi dawać w wyniku co najmniej 160 bitów, raczej więcej

ndrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2023/2024

9 / 25

MAC dla ciagów dowolnej długości

- Pomysły nieprawidłowe:
- Obliczyć ⊕ dla wszystkich bloków i wtedy MAC tej sumy
 - łatwo zmienić wiadomość zachowując sumę
- Obliczyć MAC dla każdego bloku osobno
 - można zmienić kolejność bloków
 - wiadomość można po prostu uciąć
 - można sklejać fragmenty różnych wiadomości
- Obliczyć MAC dla bloków numerowanych
 - nadal wiadomość można uciąć
 - nadal można sklejać fragmenty różnych wiadomości
- Obliczyć MAC dla bloków numerowanych i posiadających informację o łącznej długości
 - nadal można sklejać fragmenty różnych wiadomości zachowując długość

Funkcja pseudolosowa jako MAC

- Dana funkcja pseudolosowa $F:[n] \times [n] \to [n]$
- MAC(k, m) = F(k, m)- weryfikacja: t = MAC(k, m)
- Twierdzenie: jest to bezpieczny algorytm uwierzytelniania dla ciągów ustalonej długości
 - dla funkcji losowej wartości f(x) oraz f(y) są niezależne,
 - funkcja pseudolosowa jest PPT nieodróżnialna od losowej
 - więc znajomość wielu wartości nie pomaga w znalezieniu nowej
- Problemem jest nadal funkcja $MAC: [n] \times [*] \rightarrow [*]$ dla ciągów dowolnej długości
 - a w praktyce będziemy żądać by $MAC: [n] \times [*] \rightarrow [\ell]$, stała długość

Andrzej Borzyszkowski (Instytut Informatyki I

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2023/2024

10 / 2

MAC dla ciągów dowolnej długości c.d.

- Rozwiązanie: każdy blok zawiera:
 - numer bloku (uniemożliwia przestawienie)
 - długość pliku (np. liczbę bloków, uniemożliwia ucięcie)
 - liczbę jednorazową (uniemożliwia sklejanie wiadomości)
 - oraz fragment wiadomości
 - MAC jest zestawem: liczba jednorazowa i ciąg MAC bloków
- Rozwiązanie to jest całkowicie niepraktyczne
 - numer bloku i długość pliku zajmą co najmniej po 32 bity lub więcej
 - liczba jednorazowa nawet 64 bitowa może być niewystarczająca
 - bloku musiałby być wielkości znacznie większej niż 128 bitów
 - MAC byłby co najmniej dwa razy dłuższy niż sama wiadomość

MAC dla ciągów dowolnej długości w trybie CBC

- Cel:
 - MAC powinien dawać wynik stałej długości
 - powinien stosować się do ciągów naprawdę długich
- MAC działa jak tryb blokowy CBC
 - ale tylko ostatni blok jest zwracany
 - wektor początkowy jest ustalony w definicji algorytmu
 - długość pliku też jest kodowana

andrzej Borzyszkowski (Instytut Informatyki

Podstawy kryptografii

sem. letni 2023/2024

13 / 25

Podstawy kryptografii

sem. letni 2023/2024

Metoda Merkle-Damgarda

- Dana funkcja $h_s: [n+n] \rightarrow [n]$ (funkcja kompresji)
 - (może zależna od dodatkowego parametru s)
 - iteracia dla ciagów dowolnej długości: $H(x, \langle y, Z \rangle) = H(h_s(x, y), Z)$
 - dla dowolnego ciagu bitów trzeba jeszcze uzupełnić ostatni, niepełny blok ciągu
 - na końcu blok kodujący długość pliku
 - wektor początkowy jest ustalony

Szyfrowanie w trybie CBC a MAC - różnice

- Wektor początkowy
 - dla szyfrowania jest niezbędny, zapewnia niedeterminizm
 - niedeterminizm dla obliczania MAC jest szkodliwy, umożliwia zmianę pierwszego bloku wiadomości
- Zestaw wyników funkcji losowej
 - dla szyfrowania jest niezbędny, umożliwia zastosowanie algorytmu odwrotnego (odszyfrowanie)
 - dla MAC jest niepotrzebny
- Kodowanie długości
 - dla szyfrowania jest niepotrzebne, cała wiadomość jest odtwarzana
 - dla MAC nie ma innego sposobu zaznaczenia długości pliku
 - gdyby zwracać wszystkie MAC'i też nie byłoby bezpiecznie
- są powody, by długość kodować jako pierwszy blok

Andrzej Borzyszkowski (Instytut Informatyki I

Metoda Merkle-Damgarda, własności

- Twierdzenie: jeśli funkcja kompresji h_s ma własność bezkolizyjności, to funkcja H też ma taką własność
 - dw. gdyby dwie wiadomości miały ten sam skrót H
 - to albo będą się różnić wielkością (ostatni blok da kontrprzykład dla h_s)
 - albo będą się różnić wcześniej, wcześniejszy blok da kontrprzykład dla he
- MAC w algorytmie Merkle-Damgarda
- NMAC (nested MAC): dla klucza k dodatkowy blok na końcu $h_s(k, H(m))$

Standard SHA-1 (secure hash algorithm)

- Opracowany przez NIST (National Institute of Standards and Technology)
 - pierwsza wersja była niedoskonała, stąd SHA-1
 - produkuje skrót 160 bitowy
- Atak urodzinowy wymaga 2⁸⁰ prób znalezienia kolizji
 - kolizje zostały znalezione nieco mniejszym wysiłkiem
 - co czyni tę funkcję skrótu nieodpowiednią dla podpisy cyfrowego
- Standard określa funkcję kompresji, jest ona iterowana $-m = \{m_0, m_1, m_2, \ldots\}, X_0$ początkowa wartość rejestru, $X_{i+1} = h(X_i, m_i), h(m)$ jest równe ostatniej wartości rejestru - standard określa też początkową wartość rejestru oraz sposób wypełnienia ostatniego bloku: ostatnie 64 bity określają długość m, brakujące są uzupełnione zerami

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

Jedna runda w SHA-1

http://nsfsecurity.pr.erau.ededu/crypto/sha_1.html cytat za Cryptography and Network Security: Principles and Practice William Stallings

SHA-1 dla jednego bloku

• Operacje nieliniowe: 'and', 'or' bitowo

- operacje liniowe: 'not', ⊕ czyli dodawanie modulo 2, dodawanie modulo 2³², przesunięcie bitów w lewo

– definicja funkcji pomocniczych

$$f(B, C, D) = (B \wedge C) \vee ((\neg B) \wedge D), f(B, C, D) = B \oplus C \oplus D, \ldots$$

- definicia 85 stałych 32 bitowych
- Rejestr ma 5 elementów: A, B, C, D, E po 32 bity, inicjalizowanych przez 5 stałych, blok ma 16 fragmentów 32-bitowych - dla 80 rund obliczamy $shift_5(A) + f(B, C, D) + E + W + K \mapsto A$, $A \mapsto B$, $shift_{30}(B) \mapsto C$, $C \mapsto D$, $D \mapsto E$, f są różne dla różnych rund, K kolejną stałą, w jest początkowo fragmentem bloku, później $W_i = shift(W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16})$

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

18 / 25

MD5

- Autor: Rivest
- Skrót 128 bitowy
 - 4 rejestry 32 bitowe
 - 64 rundy (4 cykle po 16)
 - w każdym cyklu inna funkcja nieliniowa z efektem lawinowym, przesunięcia bitów, dodawanie z bieżącymi danymi
- Pierwsza popularna funkcja skrótu dla której znaleziono kolizje
- MD2, inna funkcja
 - bardzo wolna
 - ale chyba bezpieczniejsza
 - jest używana w protokole PEM, bezpiecznej poczty elektronicznej

Klasyczne skrótu

- Silna bezkolizyjność jest problematyczna
 - znaleziono kolizje dla MD5 i SHA-1
 - -np. można utworzyć dwa certyfikaty X.509 o tej samej wartości funkcji skrótu MD5
 - gdyby jeden był podpisany przez wystawcę certyfikatów, to automatycznie drugi też
 - funkcje skrótu z kolizjami nie mogą być stosowane do podpisu cyfrowego
- Nie ma problemów ze słabą bezkolizyjnością i nieodwracalnością
 gdyby te własności były naruszone, to duża część kryptografii byłaby w kłopocie
- Inne funkcje: ripemd, SHA-2, blake2

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2023/2024

21 / 25

Funkcja skrótu za pomocą szyfrowania

- Dana funkcja szyfrująca $E: [\ell+n] \to [n]$, n długość szyfrowanych bloków, ℓ długość klucza
 - można przerobić ją na funkcję skrótu na wiele sposobów: $h(k,m)=E(k,m)\oplus m$, albo $E(k,m)\oplus m\oplus k$, albo $E(k,k\oplus m)\oplus m$ albo . . .
 - i dalej iterować użycie dla większej liczby bloków
 - jest to równoważne zastosowaniu szyfru symetrycznego w wersji blokowej i przyjęciu ostatniego bloku jako skrótu
- Możliwość ataku urodzinowego wyklucza szyfry o kluczu mniejszym niż np. 128 bitów
 - np. klasyczny DES

Współczesne funkcje skrótu

- Metoda gąbki: dana funkcja $f:\{0,1\}^b \to \{0,1\}^b$, typowe b=1600-b=r+c, typowe $c=256,\ldots,1024$
 - wielokrotne iterowanie $f(x_i \oplus m_{i+1}, y_i)$ wynikiem jest ostatnia wartość x_k
- klasa funkcji SHA-3 o długości 224,256,384 oraz 512 bitów

Źródło: Tiwari, Harshvardhan. (2017). Merkle-Damgård Construction Method and Alternatives: A Review. Journal of Information and Organizational Sciences. 41. 283-304. 10.31341/jios.41.2.9.

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

22 / 2

Szyfrowanie za pomocą funkcji skrótu

- Funkcja skrótu h pozwala wygenerować ciąg pseudolosowy
 - $-x_0$ musi być losowe i przesłane niezależnie jako IV
 - $-x_{j}=8$ bitów z $h(k,x_{j-1}),\ k$ jest kluczem, jest użyte jako ciąg pseudolosowy
 - tzn. $c_j = m_j \oplus x_j$, ciąg x_j jest dodawany do wiadomości w celu zaszyfrowania/odszyfrowania

Szyfrowanie i uwierzytelnianie

- Dane dwa klucze, jak zapewnić poufność i integralność?
 - 1) przesłać $Enc(k_1, m)$ oraz $MAC(k_2, m)$
- ale MAC może ujawnić całą wiadomość
 - a praktycznie zawsze jest deterministyczny: ŹLE
 - 2) przesłać $Enc(k_1, m||MAC(k_2, m))$
- szyfr nie musi być odporny na atak z wybranym kryptogramem
 - być może nawet da się odtworzyć cały tekst jawny: ŹLE PRAWIDŁOWE ROZWIAZANIE:
 - 3) przesłać $Enc(k_1, m)$ oraz $MAC(k_2, Enc(k_1, m))$
- uniemożliwia atak przez modyfikację kryptogramu
- bezpieczeństwo takie same jak dla Enc
- UWAGA: MAC i *Enc* mogą być funkcjami wzajemnie odwrotnymi (szyfry blokowe itp), klucze muszą być różne

andrzej Borzyszkowski (Instytut Informatyki	l Podstawy kryptogra