

# Apache HBase Application Archetypes

Lars George | @larsgeorge | Cloudera EMEA Chief Architect | HBase PMC Jonathan Hsieh | @jmhsieh | Cloudera HBase Tech lead | HBase PMC HBaseCon 2014

May 5<sup>th</sup>, 2014

5/5/14 HBase Con 2014; Lars George,

#### About Lars and Jon

#### **Lars George**

- EMEA Chief Architect
   @Cloudera
  - Apache HBase PMC
  - O'Reilly Author of HBase The Definitive Guide
- Contact
  - lars@cloudera.com
  - @larsgeorge



#### Jon Hsieh

- Tech Lead HBase Team
   @Cloudera
  - Apache HBase PMC
  - Apache Flume founder
- · Contact:
  - jon@cloudera.com
  - @jmhsieh

#### About Supporting HBase at Cloudera

- Supporting Customers using HBase since 2011
  - HBase Training
  - Professional Services
- Team has experience supporting and running HBase since 2009
  - 8 committers on staff
  - 2 HBase book authors
- As of Jan 2014, ~20,000 HBase nodes (in aggregate) under management
- Information in this presentation is either aggregated customer data or from public sources.

## An Apache HBase Timeline



# Apache HBase "Nascar" Slide



#### Outline

- Definitions
- Archetypes
  - The Good
  - The Bad
  - The Maybe
- Conclusion

## Definitions

A vocabulary for HBase Archetypes

# **Defining HBase Archetypes**

- There are a lot of HBase applications
  - Some successful, some less so
  - They have common architecture patterns
  - They have common tradeoffs
- Archetypes are common architecture patterns
  - Common across multiple use-cases
  - Extracted to be repeatable



 Our Goal: Define patterns à la "Gang of Four" (Gamma, Helm, Johnson, Vlissides)

#### So you want to use HBase?

- What data is being stored?
  - Entity data
  - Event data
- Why is the data being stored?
  - Operational use cases
  - Analytical use cases
- How does the data get in and out?
  - Real time vs. Batch
  - Random vs. Sequential

#### What is being stored?

There are primarly two kinds of big data workloads. They have different storage requirements.



#### **Entity Centric Data**

- Entity data is information about current state
  - Generally real time reads and writes
- Examples:
  - Accounts
  - Users
  - Geolocation points
  - Click Counts and Metrics
  - Current Sensors Reading
- Scales up with # of Humans and # of Machines/Sensors
  - Billions of distinct entities



#### **Event Centric Data**

- Event centric data are time-series data points recording successive points spaced over time intervals.
  - Generally real time write, some combination of real time read or batch read
- Examples:
  - Sensor data over time
  - Historical Stock Ticker data
  - Historical Metrics
  - Clicks time-series



 Scales up due to finer grained intervals, retention policies, and the passage of time

#### **Events about Entities**

- Majority Big Data use cases are dealing with event-based data
  - |Entities| \* |Events| = Big data

- When you ask questions, do you hone in on entity first?
- When you ask questions, do you hone in on time ranges first?

 Your answer will help you determine where and how to store your data.

#### Why are you storing the data?

- So what kind of questions are you asking the data?
- Entity-centric questions
  - Give me everything about entity e
  - Give me the most recent event v about entity e
  - Give me the n most recent events V about entity e
  - Give me all events V about e between time [t1,t2]
- Event and Time-centric questions
  - Give me an aggregates on each entity between time [t1,t2]
  - Give me an aggregate on each time interval for entity e
  - Find events V that match some other given criteria

# How does data get in and out of HBase?



#### How does data get in and out of HBase?



#### What system is most efficient?

- It is all physics
- You have a limited I/O budget
  - Use all your I/O by parallelizing access and read/write sequentially.
  - Choose the system and features that reduces I/O in general



IOPs/s/disk

Pick the systems best for your workload

## The physics of Hadoop Storage Systems

| Workload    | HBase         | HDFS                          |
|-------------|---------------|-------------------------------|
| Low latency | ms, cached    | mins, MR seconds, Impala      |
| Random Read | primary index | ⚠ index?, small files problem |

## The physics of Hadoop Storage Systems

| Workload    | HBase                        | HDFS                          |
|-------------|------------------------------|-------------------------------|
| Low latency | • ms, cached                 | mins, MR seconds, Impala      |
| Random Read | primary index                | ⚠ index?, small files problem |
| Short Scan  | ◆ sorted                     | partition                     |
| Full Scan   | live table (MR on snapshots) | MR, Hive, Impala              |

# The physics of Hadoop Storage Systems

| Workload         | HBase                            | HDFS                        |
|------------------|----------------------------------|-----------------------------|
| Low latency      | ms, cached                       | mins, MR seconds, Impala    |
| Random Read      | primary index                    | index?, small files problem |
| Short Scan       | ◆ sorted                         | partition                   |
| Full Scan        | ☐ live table ⚠ (MR on snapshots) | MR, Hive, Impala            |
| Random Write     | ● log structured                 | ■ not supported             |
| Sequential Write | HBase overhead  bulk load        | minimal overhead            |
| Updates          | <b>⊕</b> log structured          | ■ not supported             |