Clase Practica 4 : Sistemas Deductivos

Tomás Felipe Melli

July 9, 2025

$\acute{\mathbf{I}}\mathbf{ndice}$

1	Lógica Proposicional	2
2	Sistemas deductivos	2
	2.1 Reglas básicas	2
	2.2 Ejercicio de la guía	3
	2.3 Último ejercicio	4

1 Lógica Proposicional

Sintaxis

$$\varphi ::= P \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi$$

Donde P representa una variable proposicional.

Valuaciones

Una valuación es una función: $v: V \to \{V, F\}$

Una valuación v satisface una proposición φ (y se escribe $v \models \varphi$) cuando:

- $v \models P \iff v(P) = V$
- $v \models \neg \varphi \iff v \not\models \varphi$
- $v \models \varphi \lor \psi \iff v \models \varphi \circ v \models \psi$
- $v \models \varphi \land \psi \iff v \models \varphi \lor v \models \psi$
- $v \models \varphi \rightarrow \psi \iff v \not\models \varphi \circ v \models \psi$

Equivalencia

 $\varphi \equiv \psi$ cuando $v \models \varphi \iff v \models \psi$ para toda valuación v.

2 Sistemas deductivos

Están definidos por un conjunto de reglas donde cada una de estas tiene la forma

Intuitivamente podemos pensar que Premisa-1,...,Premisa-n⇒ Conclusión.

Secuentes

Por ejemplo,

$$P,Q \vdash P \land Q$$

Demostración de un secuente \rightarrow árbol

$$\frac{\overline{\mathtt{P},\mathtt{Q}\vdash\mathtt{Q}}\ ^{\mathrm{ax}}\ \ \overline{\mathtt{P},\mathtt{Q}\vdash\mathtt{P}}\ ^{\mathrm{ax}}}{\mathtt{P},\mathtt{Q}\vdash\mathtt{P}\ \land\ \mathtt{Q}}\wedge_{i}$$

2.1 Reglas básicas

Dásicas
$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_{i} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau \land \sigma} \land_{e_{1}} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \sigma} \land_{e_{2}} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \sigma} \land_{e_{2}} \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \sigma} \Rightarrow_{e} \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \Rightarrow_{e} \qquad \frac{\Gamma \vdash \tau \lor \sigma}{\Gamma \vdash \tau \lor \sigma} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \sigma}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \sigma}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \downarrow_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau \lor \tau}{\Gamma \vdash \tau} \lor_{e} \qquad \frac{\Gamma \vdash \tau}{\Gamma} \lor_{e} \qquad \frac{\Gamma \vdash \tau}{\Gamma} \lor_{e} \qquad \frac{\Gamma}{\Gamma} \lor_{e} \qquad \frac{\Gamma$$

De estas reglas se derivan :

Las reglas $\neg \neg_e$, PBC y LEM son equivalentes.

$$\neg \neg_e \rightsquigarrow \mathbf{PBC}$$

Asumimos que $\Gamma, \neg \tau \vdash \bot$ y queremos ver que $\Gamma \vdash \tau$

$$\frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \neg \neg \tau} \neg_i \\ \frac{\Gamma \vdash \neg \neg \tau}{\Gamma \vdash \tau} \neg_e$$

 $PBC \rightsquigarrow LEM$

$$\frac{\frac{\Gamma' \vdash \tau}{\Gamma' \vdash \tau \lor \neg \tau} \lor_{i_{2}}}{\frac{\Gamma' \vdash \tau \lor \neg \tau}{\Gamma' \lor \neg \tau} \lor_{i_{1}}} \underbrace{\frac{\Gamma'' \vdash \tau}{\Gamma'' \vdash \tau \lor \neg \tau} \lor_{i_{1}}}_{\neg_{e}} \underbrace{\frac{\Gamma'' \vdash \tau}{\Gamma'' \vdash \tau} \lor_{\neg \tau}}_{\neg_{e}} \lor_{i_{1}}}_{\neg_{e}} \underbrace{\frac{\Gamma'' \vdash \tau}{\Gamma'' \vdash \tau \lor \neg \tau} \lor_{i_{1}}}_{\neg_{e}} \underbrace{\frac{\Gamma, \neg(\tau \lor \neg \tau) \vdash \bot}{\Gamma, \neg(\tau \lor \neg \tau) \vdash \neg \tau}}_{\neg_{e}} \neg_{e}}_{\neg_{e}}$$

LEM $\leadsto \neg \neg_e$

Asumimos $\neg \neg \tau$ queremos probar τ . En este caso vemos la demo sin weakening

$$\frac{\frac{\Gamma', \neg \tau \vdash \neg \tau}{\Gamma', \neg \tau \vdash \neg \tau} \operatorname{ax} \frac{\frac{\Gamma', \neg \tau \vdash \neg \tau}{\Gamma', \neg \tau \vdash \neg \tau} \operatorname{ax}}{\frac{\Gamma', \neg \tau \vdash \tau}{\Gamma', \neg \tau \vdash \tau} \frac{1}{\neg e}} \xrightarrow{\neg e} \frac{\frac{\Gamma', \neg \tau \vdash \tau}{\Gamma', \neg \tau \vdash \tau} \rightarrow e}{\frac{\Gamma, \neg \tau \vdash \tau}{\Gamma \vdash \neg \neg \tau \Rightarrow \tau} \Rightarrow_{e}}$$
scio de la guía

2.2 Ejercicio de la guía

Absurdo clásico

2.3 Último ejercicio

Demostrar en deducción natural que vale

$$\vdash (\rho \lor \tau) \land (\sigma \lor \tau) \Rightarrow \tau \lor (\rho \land \sigma)$$

$$\frac{\Gamma \vdash (\rho \lor \tau) \land (\sigma \lor \tau)}{\Gamma \vdash \rho \lor \tau} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho \land \sigma} \xrightarrow{\text{ax}} \frac{\Gamma \vdash \rho \land \sigma}{\Gamma \vdash \rho$$