Fallstudien der math. Modellbildung

Manuela Lambacher, Dominik Otto, Andreas Wiedemann

4. März 2014

Inhaltsverzeichnis

1	Wittaker-Shannon-Sampling Theorem		
	1.1	The Wittaker-Shannon-Sampling Theorem	
	1.2	Proof of the Theorem	
	1.3	Meaning, real-life applications and limitations	,
2	Das Marchenko-Pastur-Gesetz		
	2.1	Das Marchenko-Pastur-Gesetz	4

1 Wittaker-Shannon-Sampling Theorem

- 1.1 The Wittaker-Shannon-Sampling Theorem
- 1.2 Proof of the Theorem
- 1.3 Meaning, real-life applications and limitations

2 Das Marchenko-Pastur-Gesetz

2.1 Das Marchenko-Pastur-Gesetz

Manuela Lambacher, Dominik Otto, Andreas Wiedemann

Sei Y_N eine $N \times M(N)$ -Matrix mit unabhängigen zentrierten Einträgen mit Varianz 1,

$$\sup_{j,k,N} \mathbb{E}\left[|Y_N(j,k)|^q\right] = C_q < \infty \qquad \forall q \in \mathbb{N}$$

und $M(N) \in \mathbb{N}$ so, dass

$$\lim_{N \to \infty} \frac{M(N)}{N} = \alpha \in [1, \infty).$$

Sei weiterhin die Wishart-Matrix gegeben als

$$W_N = \frac{1}{N} Y_N Y_N^T,$$

und habe die empirische Eigenwertverteilung

$$L_N = \frac{1}{n} \sum_{j=1}^{N} \delta_{\lambda_j}$$

und das Zustandsdichtemaß $\overline{L_N} = \mathbb{E}[L_N].$ Dann gilt die Konvergenz

$$\overline{L_N} \xrightarrow{\mathrm{w}} f_{\alpha}(x) dx \quad (N \to \infty)$$

im Raum der Wahrscheinlichkeitsmaße auf \mathbb{R} , wobei

$$f_{\alpha}(x) = \frac{1}{2\pi x} \sqrt{(x - (1 - \sqrt{\alpha})_{+}^{2} ((1 + \sqrt{\alpha})_{+}^{2})^{2})}$$