

Міністерство освіти і науки України Національний технічний університет України «КПІ імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

3BIT

лабораторної роботи №4 з курсу «Мережеве управління та протоколи»

Перевірила:

Зенів І. О.

Виконав:

Студент Гр. ІП-01

Пашковський €. С.

Лабораторна робота № 4.

Cisco Server. Типи серверів.

Практична робота 6-1-1.

Налаштовуємо WEB сервер

Завдання: налаштувати роботу WEB сервера у програмі Cisco Packet Tracer.

Топологія для наших досліджень приведена на рис. 1.

Рис. 1. Схема мережі для виконання завдання

1. Створюємо WEB-документ на сервері

Для створення HTTP-сервера відкриваємо на сервері вкладку HTTP і редагуємо першу сторінку сайту з назвою **index.html.** Включаємо службу HTTP перемикачем On і налаштовуємо файл index.html (рис. 2).

Рис. 2. Вкладка Config, служба сервера HTTP

У вікні html коду створюємо текст першої сторінки сайту **index.html** (рис. 3).

<html>
<body>
<h1>Welcome to WEB-Server CISCO!</h1>
Server working: OK!
</body>
</html>

Рис. 3. Текст web-сторінки

Для того, щоб перевірити працездатність нашого сервера, відкриваємо клієнтську машину (10.0.0.2 або 10.0.0.3) і на вкладці **Desktop** (Робочий стіл) запускаємо додаток **Web Browser**. Після чого набираємо адресу нашого **WEB**сервера 10.0.0.1 і натискаємо на кнопку **GO**. Переконуємося, що наш вебсервер працює (рис. 4).

Рис. 4. Перевірка роботи веб-сервера

Висновки: під час виконання цієї практичної роботи було досліджено роботу веб сервера у Cisco Packet Tracer.

Практична робота 6-1-2.

Налаштування мережевих сервісів DNS, DHCP і Web

Завдання: налаштувати Server0 як DNS і Web-сервер, а Server1 як DHCP сервер, ознайомитись з принципом мережевих сервісів.

Створимо схему мережі, представлену на рис. 5.

Рис. 5. Схема мережі для виконання завдання

1. Налаштовуємо ІР адреси серверів і DHCP на ПК

Увійдемо в конфігурацію PC0 і PC1 і встановімо налаштування IP через DHCP сервер (рис. 6).

Рис. 6. Налаштування IP для роботи через DHCP сервер

Задаємо в конфігурації серверів налаштування IP: Server0-10.0.0.1 (рис. 7), Server1-10.0.0.2 (рис. 8). Маска підмережі встановиться автоматично як 255.0.0.0.

Рис. 7. Конфігурація IP Server0 – 10.0.0.1

Рис. 8. Конфігурація IP Server1 – 10.0.0.2

2. Налаштування служб DNS і HTTP на Server0

У конфігурації Server1 увійдіть вкладку DNS і задайте дві ресурсні записи (Resource Records) в прямій зоні DNS.

Спочатку в ресурсному записі типу **A Record** зв'яжемо доменне ім'я комп'ютера **server1.google.ua** з його **IP адресою 10.0.0.1** і натиснемо на кнопку **Add** (рис. 9).

Рис. 9. Ввід ресурсного запису типу A Record

Далі в ресурсному записі типу **CNAME** зв'яжемо назву сайту з сервером і натисніть на кнопку **Add**. В результаті має вийти наступне (рис. 10).

Рис. 10. Налаштована служба DNS

Тепер налаштуємо службу НТТР. У конфігурації Server0 увійдемо вкладку НТТР і створімо стартову сторінку сайту (рис. 11).

Рис. 11. Стартова сторінка сайту

Увімкнемо командний рядок на Server1 і перевіримо роботу служби DNS. Для перевірки правильності роботи прямої зони DNS сервера введемо команду *SERVER> nslookup*. Якщо все правильно налаштовано, то отримаємо

відгук на запит із зазначенням доменного імені DNS сервера в мережі і його IP адреси (рис. 12).

Рис. 12. Служба DNS в прямий зоні DNS на Server1 налаштована правильно

3. Налаштування служби DHCP на Server1

Увійдемо в конфігурацію Server1 і на вкладці DHCP налаштуємо службу DHCP. Для цього наберемо нові значення пулу, встановимо перемикач **On** і натиснемо на кнопку **Save** (рис. 13).

Рис. 13. Налаштування DHCP сервера.

4. Перевірка роботи клієнтів

Увійдемо в конфігурації хоста РС0 і РС1 та в командному рядку налаштуємо протокол ТСР/ІР. Для цього командою РС> ipconfig /release скинемо старі параметри ІР адреси (рис. 14).

Рис. 14. Видалення конфігурації ІР-адрес для всіх адаптерів

Тепер командою PC> ipconfig /renew отримаємо нові параметри від DHCP сервера (рис. 15).

Рис. 15. Конфігурація протоколу TCP/IP клієнта від DHCP сервера Аналогічно зробимо для PC1 (рис. 16).

Рис. 16. PC1 отримав IP адрес від DHCP сервера Server1

Залишилося перевірити роботу WEB сервера Server1 і відкрити сайт в браузері на PC0 або PC1 (рис. 17).

Рис. 17. Перевірка роботи служби HTTP на Server0

Висновки: під час виконання цієї практичної роботи, було створено мережу та налаштовану роботу сервісів DNS, HTTP та DHCP, а також перевірено та досліджено їх роботу.

Практична робота 6-2-1а.

Конфігурування DHCP сервера на маршрутизаторі

Завдання: виконати конфігурацію DHCP сервера на маршрутизаторі та перевірити його роботу.

Схема мережі для виконання завдання приведена на рис. 18.

Рис. 18. Схема мережі для виконання завдання

Зробимо налаштування Router0:

Router (config)#ip dhcp pool TST створюємо *пул IP* адресів для *DHCP* сервера з іменем *TST*

Router (**dhcp-config**)#**network 192.168.1.0 255.255.255.0** вказуємо з якої мережі ми будемо роздавати *IP* адреса (перший *параметр - адрес* данної мережі, а другий *параметр* її *маска*)

Router (dhcp-config)#default-router 192.168.1.1 вказуємо адресу основного шлюзу, котрий буде розсилатись в повідомленнях *DHCP*

Router (dhcp-config)#dns-server 5.5.5.5 вказуємо адресу DNS сервера, котрий також буде розсилатись хостам в повідомленнях DHCP

Router (dhcp-config)#exit

Router (config)#ip dhcp excluded-address 192.168.1.1 цей *хост* виключений з пула, тобто, ні один з хостів мережі не отримає від *DHCP* сервера цю *адресу*.

Повний лістинг цих команд наведено на рис. 19.

```
Router0
                                                                                                   ×
   Outer reconstruction
  Router(config)#
  Router(config)#
  Router(config) #
  Router(config)#
  Router(config)#
  Router(config)#
  Router(config)#
  Router(config)#
  Router(config)#
  Router(config)#
  Router(config)#
  Router(config)#
  Router(config) #ip dhcp tool TST
   % Invalid input detected at '^' marker.
  Router(config) #ip dhcp pool TST
  Router(dhcp-config) #network 192.168.1.0 255.255.255.0
  Router(dhcp-config) #default-router 192.168.1.1
  Router(dhcp-config) #dns-server 5.5.5.5
  Router (dhcp-config) #exit
  Router(config) #ip dhcp excluded-address 192.168.1.1
   Router(config)#
                                                                              Сору
                                                                                          Paste
□ Top
```

Рис. 19. Команди для конфігурування Router0

Перевіримо результат отримання динамічних параметрів для PC0 (рис. 20).

Рис. 20. DHCР працює на РС0

Перевіримо працездатність DHCP сервера на хості PC0 командою **ipconfig /all** (рис. 21).

Рис. 21. РСО отримав налаштування від DHCP сервера

Отже, PC0 успішно отримав IP адрес і адрес шлюза від DHCP сервера Router0.

Висновки: у межах цієї практичної роботи було налаштовано роботу DHCP сервера на маршрутизаторі та перевірено його роботу.

Практична робота 6-2-1b.

Приклад налаштування інтерфейсу маршрутизатора в якості **DHCP** клієнта

Завдання: налаштувати інтерфейс маршрутизатора в якості DHCP клієнта та перевірити результат.

Схема мережі для виконання цієї роботи показана на рис. 22.

Рис. 22. Схема мережі для виконання завдання

Конфігуруємо *інтерфейс* Fa0/0 для Router0 (рис. 23).

Рис. 23. Конфігуруємо інтерфейс маршрутизатора

Спостерігаємо результат (рис. 24).

Рис. 24. DHCP не працю ϵ

Після налаштування інтерфейсу роутера на отримання налаштувань (настройок) по *DHCP*, *DHCP* клієнт на PC0 перестав отримувати *IP-адресу* - IP з діапазону 169.254.х.х/16 призначається автоматично самим ПК при проблемах з отриманням адреси по *DHCP*. *Інтерфейс* роутера *IP-адреса* так само не отримає тому, що в даній підмережі немає *DHCP* серверів.

Висновки: в рамках цієї практичної роботи було налаштовано інтерфейс маршрутизатора в якості DHCP клієнта та перевірено результат.

Практична робота 6-2-2.

DHCP сервіс на маршрутизаторі 2811

Завдання: налаштувати DHCP сервіс на маршрутизаторі 2811 та протестувати його роботу.

У цьому прикладі ми будемо конфігурувати маршрутизатор 2811, а саме, налаштовувати на ньому DHCP сервер, який буде видавати DHCP адреси для мережі 192.168.1.0 (рис. 25). PC0 і PC1 будуть отримувати налаштування динамічно, а для сервера бажано мати постійну адресу, тобто, коли вона задана статично.

Рис. 25. Схема мережі для виконання роботи

Резервуємо 10 адрес

R1 (config)#ip dhcp excluded-address 192.168.1.1 192.168.1.10

Таким чином, перша DHCP адреса, яка видасть R1 дорівнює 192.168.1.11.

Створюємо пул адрес, які будуть видаватися з мережі 192.168.1.0.

R1 (config)#ip dhcp pool POOL1

R1 (dhcp-config)#network 192.168.1.0 255.255.255.0

R1 (dhcp-config)#default-router 192.168.1.1

R1 (dhcp-config)#domain-name my-domain.com

R1 (dhcp-config)#dns-server 192.168.1.5

Налаштовуємо інтерфейс маршрутизатора

R1 (config)#interfacefa0/0

R1 (config-if)#ip address 192.168.1.1 255.255.255.0

R1 (config-if)#no shutdown

R1 (config-if)#exit

R1(config)#exit

R1#

Повний лістинг команд показаний на рис. 26.

Рис. 26. Налаштування маршрутизатора

Перевірка результату

Тепер обидва ПК отримали налаштування і командою R1#show ip dhcp binding можна подивитися на список виданих роутером адрес (рис. 27).

Рис. 27. Адреси видаються автоматично, починаючи з адресу 192.168.1.11

Отже, ми бачимо, що протокол DHCP дозволяє виробляти автоматичну налаштування мережі на всіх комп'ютерах.

Висновки: в межах цієї практичної роботи було побудовано мережу, налаштовано DHCP сервіс на маршрутизаторі 2811 та перевірено його роботу.

Висновки

Отже, під час виконання лабораторної роботи було досліджено роботу різних мережевих сервісів (на прикладі DNS, HTTP та DHCP), побудовано відповідні мережі для налаштування та тестування цих сервісів у різних умовах, ознайомились з принципами їх роботи.