SOAR SeaFET Quality Control Script

Version 1.0 | July 15, 2024

Taylor Wirth - Scripps Institution of Oceanography | twirth@ucsd.edu

User instructions:

- Data file types are csv, with 'comma' delimiter
- Look at example files to ensure the four sensor variable headers are included and the same:
- DTUTC, VINT, TEMPC (datetime in UTC timezone, internal voltage, temperature in celsius)
- Look at bottle file to ensure four variable headers are included and the same:
- DT, pH, spectTC, DIC, TA, Sal, QC (datetime local timezone (PST/PDT), pH from spec, temp from spec, ...
- DIC, TA, salinity from bottle and QC flag)
- · Row comments begin with '#'

Step 1: Load sensor data files and bottle files

Select SeaFET and discrete bottle/tris files using the buttons below.

Provide the folder path for CO2SYS (v3.1.2).

```
File start time = 02/01/2024 01:00:00 File end time = 04/17/2024 06:20:00
```

Step 2: Enter start and end datetimes (UTC) to trim the deployment (mm/dd/yyyy hh:mm:ss)

Use the fields below to edit the start and end datetimes of the deployment.

A plot of the raw data will open in a separate window. The user can "brush" bad data to NaN if desired.

Leave the figure window open and move on to the next step. The window will automaticall close.

```
Trimmed start time = 02/01/2024 01:00:00
Trimmed end time = 04/17/2024 06:20:00
```


Number of discrete samples = 2

	DTUT	2	PHSP	EC TCSPEC	DIC	TA	SAL	QC
	16-Feb-2024	20:40:00	8.00	86 20	1981.4	2211.5	33.127	1
	18-Mar-2024	18:45:00	8.04	47 20	1968.4	2212.7	33.269	1
	TCINSITU	VINT	PHIN	SITU				
	15.676	0.062377	8.0	742				
	16.299	0.061225		101				
Num	ber of tris :	iniections	= 7					
11011	DTUT	9	у́С	TCINSITU	VINT	PHINSITU		
	16-Feb-2024	20:50:00	2	15.816	0.077229	8.3873		
	16-Feb-2024	20:55:00	1	15.776	0.077365	8.3886		
	16-Feb-2024	21:00:00	1	15.736	0.077686	8.3899		
	18-Mar-2024	18:50:00	2	16.502	0.075748	8.3648		
	18-Mar-2024	18:55:00	1	16.43	0.075907	8.3672		
	18-Mar-2024	19:00:00	1	16.344	0.076026	8.37		
	18-Mar-2024	19:05:00	2	16.316	0.075889	8.3709		

Apply quality control flags to discrete samples in a nx1 array, where n is the number of samples for each validation method:

Each QC flag is to be bracketed and split by a semicolon. Example: [1; 2; 1; 1; 2; 2]

QC =1 : good

QC = 2 : bad

QC = 3 : questionable

QC = 4: no sensor data

Original bottle QC flags:

[1; 1]

Original tris QC flags:

[2; 1; 1; 2; 1; 1; 2]

Copy and paste these array outputs into the boxes below to edit QC flags:

DTU	DTUTC		TCSPEC	DIC	TA	SAL	QC
16-Feb-202	4 20:40:00	8.0086	20	1981.4	2211.5	33.127	1
18-Mar-202	4 18:45:00	8.0447	20	1968.4	2212.7	33.269	1
TCINSITU	VINT	PHINSIT	ΓU				
			_				
15.676	0.062377	8.0742	<u>)</u>				
16.299	0.061225	8.101	L				
DTUTC		r og	CINSITU	VINT	PHINSITU		

16-Feb-2024	20:55:00	1	15.776	0.077365	8.3886
18-Mar-2024	19:00:00	1	16.344	0.076026	8.37

Step 3: Calculate k0 using k2 for bottle and tris measurements

Default k2 is from Martz et al. 2010: -0.00125 V/C for internal reference. Option to use an alternate value.

using k2int from Martz

Step 4: Calculate corrected pH using k0

Choose k0 option to use or enter a value for each coefficient (default values shown):

k0int option used: tris mean

Final notes and export

Enter QC notes here:

Operator: TW
Data gap Apr 1-2 due to cable issues and deployment being restarted. Sensor did not leave the water.
Removed all tris samples exept for last reading.
Tris mean k0, <= 0.0003 V std
Potential for bottle samples to be during biofouling.
Negligable change removing initial tris readings.