DEFINIZIONE

Due o più componenti si dicono in serie quando sono attraversati dalla stessa corrente.

METODO DI RICONOSCIMENTO

Due o più componenti si riconoscono essere in serie se tra di loro non ci sono nodi.

Componenti in serie

Regola generale con n resistori

$$R_{eq} = \sum_{i=1}^{n} R_i$$

Regola per 2 resistori

$$R_{eq} = R_1 + R_2$$

Scorciatoia con n resistori uguali

$$R_{eq} = nR$$

DEFINIZIONE

Due o più componenti si dicono in parallelo quando sono sottoposti alla stessa differenza di potenziale.

METODO DI RICONOSCIMENTO

Due o più componenti si riconoscono essere in parallelo se i loro estremi confluiscono negli stessi nodi.

Componenti in parallelo

Regola generale con n resistori

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}$$

Regola per 2 resistori

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Scorciatoia con n resistori uguali

$$R_{eq} = \frac{R}{n}$$

ESERCIZI

http://www.edutecnica.it/elettrotecnica/resx/resx.htm

Nel circuito di figura con R_1 =1 Ω R_2 =2 Ω ed R_3 =3 Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3. .

[Risp.:1)R=1 Ω 2)R=2,2 Ω 3)R=4 Ω]

Esercizio 3

Della rete illustrata in figura, si vuole conoscere la resistenza fra i morsetti A-B e tra i nodi A-C; con R_1 =3k Ω R_2 =1,2k Ω R_3 =22k Ω R_4 =400 Ω :

 $[Risp.: R_{AB}=1,04 k\Omega 2 R_{AC}=0,9 k\Omega]$

Esercizio 4

Nella rete illustrata, calcola la resistenza vista fra i morsetti M-N. Si consideri: R_1 =1,2k Ω , R_2 =3k Ω , R_3 =170 Ω , R_4 =2k Ω , R_5 =85k Ω :

 $\left[\mathrm{Risp.:}\,\mathrm{R}_{\mathrm{MN}}\text{=-}680\Omega\,\right]$

Esercizio 5

Nel circuito illustrato, calcola la resistenza vista tra i morsetti A-B,

Essendo i valori delle tre resistenze R_1 =25 Ω R_2 =8 Ω R_3 =14 Ω . Si ripetano i calcoli nel caso in cui la R_2 si interrompe e nel caso in cui R_2 vada in corto circuito.

 $\left[\text{Risp.: R}_{AB} \text{=-30,1} \Omega \text{ R}_{AB} \text{=-39 R}_{AB} \text{=-25} \Omega \right]$

Esercizio 6

Il parallelo di tre resistenze illustrato presenta una R_{AB} =2k Ω con R_1 =8k Ω ed R_3 =20k Ω . Calcola la resistenza R_2 -

Volendo poi abbassare il valore complessivo della resistenza R_{AB} a 1,4 $k\Omega$ calcola il valore della nuova resistenza da sostituire ad R_1 per realizzare quanto sopra.

[Risp.: R_2 =3,077 $k\Omega R_1$ =2,94 $k\Omega$]

Esercizio 7

Nella rete riportata si ha $R_1{=}80\Omega\,R_2{=}20\Omega\,R_3{=}2k\Omega.$ Calcola: .

A] La RAB con Taperto

B] La R_{AB} con T chiuso

C] il valore della R_x da sostituire alla R_3 affinché R_{AB} =96 Ω .

 $\left[\text{Risp.: R}_{AB}\text{=}100\Omega \text{ T aperto; R}_{AB}\text{=}19,8\Omega \text{ T chiuso; R}_{x}\text{=}80\Omega \right]$

Esercizio 8

Nella rete illustrata si supponga ha $R_1 + R_2 = 200\Omega$.

Esercizio 9

Nel circuito disegnato dove: $R_1=R_2=50\Omega$ $R_3=R_4=200\Omega$ $R_5=R_6=100\Omega$, calcola R_{AB} nelle seguenti condizioni: .

- A] T₁ e T₂ aperti
- B] T₁ aperto e T₂ chiuso
- C] T₁ chiuso e T₂ aperto
- $D]\,T_1\,e\,T_2\,chiusi$

 $\left[\text{Risp.: A)250}\Omega \, \text{B)127,27}\Omega \text{? C) 250}\Omega \, \text{D) 100}\Omega \, \right]$

Esercizio 10

Nel circuito di figura sono note: R_1 =2,7k Ω R_2 =8k Ω R_3 =400 Ω R_4 =6k Ω R_5 =1k Ω

Calcola la resistenza vista ai nodi A-B con:

- A] T_1 aperto T_2 chiuso
- B] T_1 chiuso T_2 aperto
- C] T₁ e T₂ chiusi
- D] T₁ e T₂ aperti

[Risp.: A) 3,95k Ω B) 3,89k Ω C) 3,78k Ω D) 4,1k Ω]