CEG 7450: (IP Multicast Routing)

Multicast: one sender to many receivers

- Multicast: act of sending datagram to multiple receivers with single "transmit" operation
- Question: how to achieve multicast

Multicast: one sender to many receivers

- Multicast: act of sending datagram to multiple receivers with single "transmit" operation
- Question: how to achieve multicast

Network multicast

 Router actively participate in multicast, making copies of packets as needed and forwarding towards multicast receivers

Motivation

- Many applications requires one-to-many communication
 - E.g., video/audio conferencing, news dissemination, file updates, etc.
- Using unicast to replicate packets not efficient → thus, IP multicast needed
 - What about the e2e arguments?

Multicast: one sender to many receivers

- Multicast: act of sending datagram to multiple receivers with single "transmit" operation
- Question: how to achieve multicast

Application-layer multicast

 end systems involved in multicast copy and forward unicast datagrams among themselves

Internet Multicast Service Model

multicast group concept: use of indirection

- hosts addresses IP datagram to multicast group
- routers forward multicast datagrams to hosts that have "joined" that multicast group

Multicast groups

□ class D Internet addresses reserved for multicast:

1110 Multicast Group ID

✓ 28 bits →

- □ host group semantics:
 - o anyone can "join" (receive) multicast group
 - o anyone can send to multicast group
 - o no network-layer identification to hosts of members
- <u>needed:</u> infrastructure to deliver multicast-addressed datagrams to all hosts that have joined that multicast group

Semantic

- Open group semantic
 - A group is identified by a location-independent address
 - Any source (not necessary in the group) can multicast to all members in a group
- Advantages:
 - Query an object/service when its location is not known
- Disadvantage
 - Difficult to protect against unauthorized listeners

Problem

- Multicast delivery widely available on individual LANs
 - Example: Ethernet multicast
- But not across interconnection of LANs
 - I.e., can't do Internet multicast

Three Approaches [Deering & Cheriton '90]

- Single spanning-tree (SST)
- Distance-vector multicast (DVM)
- Link-state multicast (LSM)
- Also: hierarchical multicast

Multicast Service Model

- Built around the notion of group of hosts:
 - Senders and receivers need not know about each other
- Sender simply sends packets to "logical" group address
- No restriction on number or location of receivers
 - Applications may impose limits
- Normal, best-effort delivery semantics of IP
 - Same recovery mechanisms as unicast

Multicast Service Model (cont'd)

- Dynamic membership
 - Hosts can join/leave at will
- No synchronization or negotiation
 - Can be implemented at a higher layer if desired

Key Design Goals

- 1. Delivery efficiency as good as unicast
- 2. Low join latency
- 3. Low leave latency

Network Model

- Interconnected LANs
- LANs support link-level multicast
- Map globally unique multicast address to LAN-based multicast address

Distance Vector Multicast Routing

- An elegant extension to DV routing
- Source based routing tree: source as the root of the multicast routing tree
- Each source must use a different tree
- Use shortest path DV routes to determine if link is on the source-rooted spanning tree
- Based on Reverse Path Multicast (RPM)

Reverse Path Flooding (RPF)

- A router forwards a broadcast packet from source (S) iff it arrives via the shortest path from the router back to S
- Packet is replicated out all but the incoming interface

Reverse shortest paths easy to compute → just use info in DV routing tables

- DV gives shortest reverse paths
- Works if costs are symmetric

Problem

Flooding can cause a given packet to be sent multiple times

over the same link

- Solution: Reverse Path Broadcasting
 - broadcast: send one copy to each receiver, avoid duplicate

Reverse Path Broadcasting (RPB)

- Basic idea: forward a packet from S only on child links for S
- Child link of router R for source S: link that has R as parent on the shortest path from the link to S

Identify Child Links

- Routing updates identify parent
- Since distances are known, each router can easily figure out if it's the parent for a given link
- In case of a tie, lower address wins

Problem

- This is still a broadcast algorithm the traffic goes everywhere
- First order solution: Truncated RPB

Truncated RPB

- Don't forward traffic onto network with no receivers
 - 1. Identify leaves
 - 2. Detect group membership in leaf

Solution

Identify leaves

- Leaf links are the child links that no other router uses to reach source S
- Use periodic updates of form: "this is my next link to source S"
- Detect group membership
 - Hosts periodically multicast group membership (multicast allows to suppress duplicate membership reporting)
 - IGMP: Internet group management protocol

Reverse Path Multicast (RPM)

- Prune back transmission so that only absolutely necessary links carry traffic
- Use on-demand pruning so that router group state scales with number of active groups

Basic RPM Idea

- Prune (Source, Group) at leaf if no members
 - Send Non-Membership Report (NMR) up tree
- If all children of router R prune (S,G)
 - Propagate prune for (S,G) to parent R
- On timeout:
 - Prune dropped
 - Flow is reinstated
 - Down stream routers re-prune
- Note: again a soft-state approach

Details

- How to pick prune timers?
 - Too long → large join time
 - Too short → high control overhead
- What do you do when a member of a group (re)joins?
 - Issue prune-cancellation message (grafts)
- Both NMR and graft messages are positively acknowledged

RPM Scaling

- State requirements:
 - O(Sources × Groups) active state
- How to get better scaling?
 - Hierarchical Multicast
 - Core-based Trees

Core Based Trees (CBT)

- Ballardie, Francis, and Crowcroft,
 - "Core Based Trees (CBT): An Architecture for Scalable Inter-Domain Multicast Routing", SIGCOMM 93
- Similar to Deering's Single-Spanning Tree
- Unicast packet to core and bounce it back to multicast group
- Tree construction is receiver initiated
 - One tree per group
 - Only nodes on tree involved
- Reduce routing table state from O(S x G) to O(G)

Example

- Group members: M1, M2, M3
- M1 sends data

control (join) messagesdata

Disadvantages

- Sub-optimal delay
- Single point of failure
 - Core goes out and everything lost until error recovery elects a new core
- Small, local groups with non-local core
 - Need good core selection
 - Optimal choice (computing topological center) is NP complete

IP Multicast Revisited

 Despite many years of research and many compelling applications, and despite the fact that many of today routers implement IP multicast, this is still not widely deployed

Possible Explanations [Holbrook & Cheriton '99]

- Violates ISP input-rate-based billing model
 - No incentive for ISPs to enable multicast!
- No indication of group size (again needed for billing)
- Hard to implement sender control → any node can send to the group (remember open group semantic?)
- Multicast address scarcity

Solution: EXPRESS

- Limit to single source group
- Use both source and destination IP fields to define a group
 - Each source can allocate 16 millions channels (i.e., multicast groups)
- Use RPM algorithm
- Add a counting mechanism
 - Use a recursive CountQuery message
- Use a session relay approach to implement multiple source multicast trees

Summary

- Deering's DV-MRP an elegant extension of DV routing
- CBT addresses some of the DV-MRP scalability concerns but is sub-optimal and less robust
- Protocol Independent Multicast (PIM)
 - Sparse mode similar to CBT
 - Dense mode similar to DV-MRP
- Lesson: economic incentives plays a major role in deploying a technical solution
 - See EXPRESS work