Funzioni

Il concetto di funzione è molto importante in matematica: vediamo come si definisce una funzione.

Definizione : $f: A \rightarrow B$ con A e B insiemi è una legge che associa ad ogni elemento di A uno ed un solo elemento di B.

Osservazione: perché $f: A \rightarrow B$ sia una funzione da ogni elemento di A deve partire una ed una sola "freccia".

Esempio

Consideriamo come insieme A l'insieme degli studenti della 1A liceo classico del nostro istituto nell'anno scolastico in corso e come insieme B i comuni del Valdarno Superiore (Montevarchi, Terranuova, ecc.) e consideriamo la legge che associa ad ogni studente il proprio comune di residenza

$$f$$
: $studente o comune _ residenza$

Poiché ad ogni studente è associata una e una sola località, f è una funzione (nel disegno abbiamo riportato solo qualche ipotetico studente).

Se per esempio avessimo considerato come insieme B l'insieme degli sport (nuoto, basket, pallavolo, tennis, calcio, ecc) ed avessimo considerato $f:A\to B$ come la legge che associa ad ogni studente gli sport praticati, f poteva non risultare una funzione nel caso in cui ci fossero stati studenti che non praticano nessuno sport o ne praticano più di uno.

In figura sono rappresentate due situazioni in cui la legge che associa gli elementi di A a quelli di B **non è una funzione**: nel primo caso c'è un elemento di A da cui partono due frecce, mentre nel secondo disegno c'è un elemento di A da cui non parte nessuna freccia.

Nota

In genere l'elemento dell'insieme di partenza viene indicato con x e l'elemento dell'insieme di arrivo con y = f(x): f(x) si legge "f di x" e rappresenta l'elemento corrispondente a x secondo la funzione f e y = f(x) si chiama anche "immagine" di x.

Proprietà di una funzione

Funzione iniettiva

Diciamo che una funzione $f: A \rightarrow B$ è iniettiva se ad elementi distinti di A vengono associati elementi distinti di B.

Possiamo scrivere: $f: A \to B$ è iniettiva quando $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

Per capire meglio questa definizione consideriamo il nostro primo esempio la funzione $f: A \to B$ che associa ad uno studente della 1A del liceo classico dell'anno in corso la località dove vive: questa funzione non risulterà iniettiva nel caso (molto probabile) in cui ci siano almeno due studenti che vivono nella stessa località.

Per esempio la funzione rappresentata in figura f non è iniettiva.

Funzione suriettiva

Diciamo che $f: A \rightarrow B$ è una funzione suriettiva se ogni elemento di B è immagine di almeno un elemento di A.

Nell' esempio seguente fè suriettiva ma non è iniettiva.

Funzione biunivoca

Diciamo che $f: A \rightarrow B$ è una funzione biunivoca se è iniettiva e suriettiva.

In questo caso si parla anche di **corrispondenza uno-a-uno** perché non solo ad ogni elemento $x \in A$ corrisponde uno ed un solo elemento di B ma vale anche il viceversa, cioè ad ogni elemento di B corrisponde uno ed un solo elemento di A.

Le funzioni numeriche

Se gli insiemi A e B sono sottoinsiemi dell'insieme dei numeri reali R , le funzioni si dicono **numeriche.**

Definizione : si chiama dominio della funzione numerica f l'insieme dei numeri reali per i quali la funzione ha significato.

Definizione: si chiama codominio della funzione f l'insieme delle immagini di f.

Nota: x viene detta **variabile indipendente**, y = f(x) viene detta **variabile dipendente** dal momento che il suo valore dipende dal valore assegnato alla x.

Definizione: si chiama **grafico** di una funzione numerica f l'insieme delle coppie (x, f(x)) in un sistema di riferimento cartesiano ortogonale con $x \in D_f$.

Esempi

1)
$$f: x \to 2x$$

 $D_f = R$, $C_f = R$

x	y = f(x)
-1	-2
0	0
1	2
2	4

Possiamo scrivere anche f(x) = 2x o y = 2x: abbiamo già incontrato questa equazione quando abbiamo studiato la retta nel piano cartesiano ed infatti il grafico risulta una retta passante per l'origine ed inclinazione m = 2.

$$2) \quad f: x \to x^2$$

 $D_f = R$ poiché posso sempre calcolare il quadrato di un numero $x \in R$;

 $C_f = R_0^+$ cioè i numeri reali $y \ge 0$ poiché un quadrato è sempre positivo o nullo.

x	y = f(x)
-2	4
-1	1
0	0
1	1
2	4

Abbiamo già incontrato l'equazione $y = x^2$ quando abbiamo studiato la parabola nel piano cartesiano: il grafico risulta infatti quello di una parabola con il vertice nell'origine, rivolta verso l'alto e asse di simmetria coincidente con l'asse y.

Vediamo che **la funzione non è iniettiva** poiché valori diversi hanno la stessa immagine $-2 \rightarrow 4$, $2 \rightarrow 4$ ecc.: infatti se tagliamo il grafico con una retta parallela all'asse x (vedi figura) troviamo due punti e quindi per una data y ci sono due x che hanno quel valore y come immagine.

Infatti, in generale, se tagliando il grafico con rette parallele all'asse x troviamo sempre al massimo un punto di intersezione allora fè iniettiva, altrimenti non lo è.

3)
$$f: x \to \frac{1}{x}$$

 D_f (dominio di f): $x \neq 0$ cioè $D_f = R \setminus \{0\}$ poiché non posso calcolare $\frac{1}{0}$;

 C_f (codominio di f): $y \neq 0$

x	y = f(x)
-1	-1
$\frac{1}{2}$	2
1	1
2	$\frac{1}{2}$

Si tratta di un'iperbole equilatera riferita ai suoi asintoti.