제 10장 자기상관(autocorrelation)

- 1. 자기상관의 성격과 문제점
- 자기상관(autocorrelation) 의 성격
- → 고전적 회귀모형의 기본가정중에 오차항(εᵢ)들은 서로 (1차함수적) 상관관계에 있지않다(E[εᵢ εᵢ] =0, i ≠j)라고 하는 가정이 성립되지 않은 현상, 따라서 E[εᵢ εᵢ] ≠ 0 (i ≠j)의 경우 자기상관(autocorrelation) 또는 계열상관(serial correlation) 이라한다
- → 자기상관 현상은 연속적인 일련의 관측치들이 서로 상관되어 있을 때, 하나의 잔차항의 크기가 이웃하는 다른 잔차항의 크기와 서로 일정한 관련이 있을 때 일어난다.
 - → 자기상관 현상은 주로 시계열 데이터에서 발생한다
 - 자기상관 현상의 발생요인
 - a) 지속적인 습관을 갖는 행태(habit resistent behavior): 한 시점의 행태가 다음시점에서의 행태와 밀접한 관계를 갖는 경우
 - □ Duesenberry의 상대소득가설(relative incone hypothsis)에 의하면, 소비자들의 지속적인 소비행태로 인해 소득이 줄어도 소비는 급 격하게 줄지 않는다

- b) 외부충격이나 정책의 변화로 인한 효과가 점차 감소하나 상당기간 지속되는 경우
- c) 거미집 현상(cobweb phenomenon) 의 경우: 농산물의 공급변화가 시장가 격에 일정한 시차를 가지며 조정되는 경우
- d) 이전의 종속변수값을 설명변수로 활용하는 자기회귀 모형(autoregressive model)에서 시차(time lag)가 포함되는 경우
 - \Rightarrow $C_t = \alpha + \beta_1 Y_t + \beta_2 C_{t-1} + \epsilon_t$: 현재의 소비(C)가 이전의 소비(C_{t-1})에 의존한다
- e) 시계열 데이터를 집계할 때 관측치의 평균값을 이용하는 경우
 - ⇨ 일간자료 30 일간을 평균하여 월간 자료로 사용하는 경우
- f) 모형설정오류에 의해 자기상관현상이 발생하는 경우가 있다
 - ⇒ 부당하게 제외된 설명변수의 영향이 오차항에 남아 반영됨으로써마치 오차항끼리 자기상관이 존재하는 것 처럼 보인다
 - ⇒ 회귀함수를 잘못 설정하여 자기상관 현상이 나타난다: 비선형함수를 선형함수로 모형을 설정 한 경우
- 자기상관 현상에 의한 문제점
- a) 자기상관이 발생할 경우 최소자승추정량(OLS estimator)은 더 이상 BLUE

가 되지 못한다: OLS 추정량은 불편성(unbiasedness) 은 유지하나 효율성 (efficiency)은 상실하게 된다

- b) 자기상관현상을 무시한 OLS 추정량이 갖는 분산은 하향편의(downward bias)를 갖게 되어 추정량의 신뢰구간을 위축시키고 유의성 검증 통계량(t-통계량)이 부당하게 커짐에 따라 귀무가설(H₀: β = 0)을 부당하게 기각시킬 가능성이 높다
- c) 자기상관현상을 무시한 채 OLS 를 적용하여 오차항의 분산값을 산출한 경우 실제 분산값 보다 작게 나타나게 되어 결정계수인 R² 값은 커지게 된다.
- 자기회귀 모형 (autoregressive model)
- → 자기상관을 나타내는 오차항의 구조로 1차자기회귀모형(first-order autoregressive model)dl 가장 많이 사용된다.

$$\rightarrow$$
 ε_t = ρε_{t-1} + μ_t, (-1<ρ<1, μ_t~ N(0, σ_u²))

- \Rightarrow E[ϵ_t] = 0
- ⇒ $Var(\epsilon_t) = \sigma_{\epsilon}^2$ (동분산 가정은 성립: homoskedacity)
- ⇒ $Cov(\epsilon_t \ \epsilon_{t-k}) = \rho^k \sigma_u^2$ (자기공분산: autocovariance): $\rho \neq 0$ 인 이상 항상 자기상관을 갖는다.

2. 자기상관 여부의 검정

- 1) 잔차항의 그래프를 이용한 방법
- 실제 확인하고자 하는 것은 모회귀모형의 확률오차항 (&)이 자기상관현 상이 있는 것인지 여부이나 오차항(&)을 실제로 관측 할 수 없으므로 가 장 적절한 추정량인 OLS 추정량 et 를 활용한다
- 회귀식에서 도출된 잔차항 (e_t)에 상관관계가 나타나는지를 그래프를 통해 살펴본다
- → 서로 이웃하는 잔차항사이에 같이 움직이는 경향이 있으면 자기상관 현상이 있는 것으로 판단되며,
- → 잔차항이 고르게 분포되어 있으면, 자기상관현상이 없는 것으로 판단된다.
- → 그림10.1 (교과서 218)
- 2) Durbin-Watson 검정법(DW 검정법)
- 자기상관은 오차항 (ϵ_t) 이 일차자기회귀 함수, $\epsilon_t = \rho \epsilon_{t-1} + \mu_t$ 의 형태를 갖는 것으로 가정하고 귀무가설 H_0 : $\rho=0$ 여부를 검정함으로써 자기상관현상의 여부를 판정하는 방법
- 검정 통계치 $d = \sum_{t=2,n} (e_t e_{t-1})^2 / \sum_{t=1,n} (e_t)^2$, e_t 는 원래의 모형을 이용하

여 OLS 에의해 추정된 잔차항

→ 상관관계의 정도를 나나태는 p값에 대한 추정치는,

$$\rho^{\wedge} = \sum_{t=2,n} (e_t e_{t-1}) / \sum_{t=2,n} (e_{t-1})^2$$

- \rightarrow d \approx 2(1- ρ^{\wedge})
 - \Rightarrow d \rightarrow 2 이면 $\rho^{\wedge} \rightarrow$ 0: 자기상관이 없다
 - ⇒ d→ 0 이면 ρ[^] → 1: (+)의 자기상관
 - ⇒ d→ 4 이면 ρ[^] → -1: (-)의 자기상관
- → d-검정통계량의 정의식에서 이용된 잔차항(et-1)값이 설명변수 값에 의해 달라지기 때문에 그 분포는 모형에 포함된 설명변수에 따라 달라질 수 있다
 - ⇒ d의 분포가 일정한 범위내(최저한계값 d_L 과 최고 한계값 d_U 사이) 에서 만 변화한다
 - ⇒ 이러한 분포를 이용하여 범위검정(bounds test)방법을 적용하여 자기상관 여부를에 대한 가설검정을 시행한다.
 - a) d < dL: (+)의 자기상관 존재
 - b)d_∪ < d < (4-d_u): 자기상관이 없다는 귀무가설 채택
 - c) (4-d_u) < d: (-)의 자기상관 관계 존재
 - d)d_L < d < d_u, (4-d_u) < d < (4-d_L) : 검정결과 미정
 - ⇒ d-통계치를 이용하기위해서는 회귀모형에 상수항이 포함되어야

하고, 설명변수에는 종속변수의 과거값이 포함되지 않아야 한다.