Riemannian Geometry

for Dummies

Colin Roberts

Introduction

Riemannian geometry is the study of a **smooth** $manifold\ M$ along with a $metric\ tensor\ field\ g$.

The point of Riemmannian geometry is to generalize the differentiable and metric structure of \mathbb{R}^n .

We generalize to spaces that have interesting topology and geometry.
and geometry.

This will require us to rethink some notions we found	
"easy" in \mathbb{R}^n .	

But we will gain a very general framework for working with differentiable objects.

Motivation

V	Why study this	in the first	place?	

Example: Partial differential equations (PDEs) on spaces that are not flat.

Example: Partial differential equations (PDEs) on spaces that are not flat.

■ Fluid flow on Earth:

Example: Partial differential equations (PDEs) on spaces that are not flat.

■ Electrical Impedence Tomography (EIT);

- Fluid flow on Earth;

Example: Partial differential equations (PDEs) on spaces that are not flat.

■ Electrical Impedence Tomography (EIT);

- Fluid flow on Earth;
- Fluid flow off Earth

■ General relativity.

Example: Optimization in interesting spaces.

■ Grassmannians;

Example: Optimization in interesting spaces.

- Grassmannians;
- Flags.

Preliminaries

These sets satisfy

These sets satisfy

 \blacksquare \emptyset , $M \in \mathcal{O}$;

These sets satisfy

- \blacksquare \emptyset , $M \in \mathcal{O}$;
- Arbitrary unions of open sets are open;

These sets satisfy

- \blacksquare \emptyset , $M \in \mathcal{O}$;
- Arbitrary unions of open sets are open;
- Finite intersections of open sets are open.

■ A *homeomorphism* is a continuous bijection $f: M \to N$ with continuous inverse f^{-1} .

- A *homeomorphism* is a continuous bijection
- $f: M \to N$ with continuous inverse f^{-1} .

 We say M and N are homeomorphic.

A <i>manifold</i> (with boundary) is a space that locally
looks like \mathbb{R}^n (or \mathbb{R}^{n^+}).

A *manifold* (with boundary) is a space that locally looks like \mathbb{R}^n (or \mathbb{R}^{n^+}).

A *manifold* M (with boundary) is a topological space such that each open set in \mathcal{O} is homeomorphic to \mathbb{R}^n (or \mathbb{R}^{n^+} .

Manifolds

Applications

Conclusions