ICC309 Redes de Computadores

Prof. Dr.-Ing. Edjair Mota

Redes de Computadores e a Internet

Alguns componentes da Internet

- ☐ Milhões de dispositivos de computação (hospedeiros / sistemas finais) conectados através de enlaces de comunicação (fibra, cobre, rádio, satélite)
- □rodando aplicações de rede.
- □Taxa de transmissão = largura de banda (bandwidth)
- □ Roteadores (comutadores de pacotes): encaminham pacotes (pedaços de dados)

Dispositivos conectados à Internet

O que é um protocolo?

Protocolos humanos

- "que horas são?"
- "tenho uma dúvida"
- apresentações
- → Mensagens específicas são enviadas
- → Ações específicas são realizadas quando as mensagens são recebidas
- → ou acontecem outros eventos

Protocolos de rede

- máquinas ao invés de pessoas
- todas as atividades de comunicação na Internet são governadas por protocolos

Protocolos definem

- → o formato das msgs,
- → a ordem das msg enviadas e recebidas,
- → as ações tomadas quando da transmissão ou recepção de msgs

Protocolo humano

Protocolo de rede

Interação entre sistemas finais

• Borda da rede

- hospedeiros (hosts)/sistemas finais: clientes e servidores
- Servidores frequentemente em Data Centers

• Redes de acesso, meio físico

- enlaces de comunicação
- cabeados ou sem fio

Núcleo da rede

- Roteadores interconectados
- rede de redes

Redes de acesso

P: Como conectar os sistemas finais aos roteadores de borda?

- redes de acesso residencial
- redes de acesso corporativo (escola, empresa)
- redes de acesso sem fio

Questões a serem consideradas:

- largura de banda (bits por segundo) da rede de acesso.
- compartilhada ou dedicada?

Redes de acesso híbrida: fibra-coaxial

Redes de acesso por Ethernet

Redes de acesso doméstica

O núcleo da rede

- Malha de roteadores interconectados
- Comutação de pacotes hospedeiros quebram em pacotes as mensagens da camada de aplicação
 - Repassa os pacotes de um roteador para o próximo, através de enlaces no caminho da origem até o destino
 - cada pacote é transmitido na capacidade máxima do enlace.

Função de Transmissão do Hospedeiro

- □ pega mensagem da aplicação
- quebra em pequenos pedaços,
 conhecidos como pacotes, cada um com
 L bits de comprimento
- ☐ transmite o pacote pela rede de acesso a uma taxa de transmissão R bits/s.
 - taxa de transmissão do canal = capacidade
 do canal = largura de banda do canal

atraso de transmissão do pacote do pacote do pacote do pacote no canal $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Atraso no roteador A

Atraso no roteador

- □ leva L/R seg para transmitir (colocar no canal) um pacote de L-bits num enlace a R bps
- armazena e repassa: o pacote deve chegar todo ao roteador antes que possa ser transmitido no próximo enlace
 - A atraso fim-a-fim = 2L/R (desprezando o atraso de propagação)

Exemplo numérico para um salto:

L = 7,5 Mbits

R = 1.5 Mbps

Atraso de transmissão em um salto = 5 seg

Comutação de pacotes

Funções do núcleo da rede

roteamento: determina a rota origem-destino tomada pelos pacotes

repasse: move pacotes da entrada do roteador para a saída apropriada do roteador

Comutação de circuitos

Comutação de circuitos

Comutação de pacotes vs Comutação de circuitos

- Enlace de 1 Mbit
- cada usuário:
 - 100kbps quando "ativo"
 - ativo 10% do tempo
- comutação por circuitos:
 - 10 usuários
- comutação por pacotes:
 - 35 usuários
 - probabilidade de mais que 10 usuários ativos, ao mesmo tempo, é menor que 0,004

Atraso no roteador A

Enfileiramento e perdas

- □ Se a taxa de chegadas (em bits) no enlace exceder a taxa de transmissão do canal num certo intervalo de tempo:
 - o pacotes irão enfileirar, esperar para serem transmitidos no enlace
 - o pacotes poderão ser descartados (perdidos) se a memória (buffer) encher

Quatro fontes de atrasos dos pacotes

d_{proc} : processamento no nó

- verifica erros de bit
- determina enlace de saída
- Tipicamente < mseg

d_{enfil}: atraso de enfileiramento

- tempo esperando no enlace de saída pela vez de transmitir
- depende do nível de congestionamento do roteador

Quatro fontes de atrasos dos pacotes

d_{trans} : atraso de transmissão:

- L: comprimento do pacote (bits)
- R: largura de banda do enlace (bps)

$$- d_{trans} = L/R$$

d_{trans} e d_{prop} muito diferentes

d_{prop} : atraso de propagação

- d: comprimento do enlace físico
- s: velocidade de propagação no meio (~2x10⁸ m/seg)
- $d_{prop} = d/s$

Analogia do comboio

- Os carros se "propagam" a 100 km/h
- O pedágio leva 12 seg para atender um carro (tempo de transmissão)
- Carro ~ bit; caravana ~ pacote

P: Quanto tempo leva até que a caravana esteja enfileirada antes do segundo pedágio?

- Tempo para "atravessar" toda a caravana através do pedágio para a estrada = 12*10 = 120 seg
- Tempo para que o último carro se propague do primeiro para o segundo pedágio: 100km/(100km/h)= 1 h
- R: 62 minutos

Analogia do comboio

- Os carros agora se "propagam" a 1000 km/h
- Os pedágios agora levam em torno de 1 min para atender um carro.
- P: Os carros chegarão ao segundo pedágio antes que todos os carros tenham sido atendidos no primeiro pedágio?

- □ Sim!
- Após 7 min, o 1o. Carro chega ao
 2o. Pedágio e ainda há 3 carros no
 1o. pedágio.
- □ O 10. bit do pacote pode chegar ao 20. Roteador antes que o pacote tenha sido totalmente transmitido no 10. roteador!

Atraso vs intensidade de tráfego

- □ R=largura de banda do enlace (bps)
- □ L=compr. do pacote (bits)
- a=taxa média de chegada de pacotes

intensidade de tráfego = La/R

- □ La/R ~ 0: pequeno atraso de enfileiramento
- □ La/R -> 1: grande atraso
- □ La/R > 1: chega mais "trabalho" do que a capacidade de atendimento. Atraso médio infinito!

Atrasos e rotas "reais" da Internet

Como são os atrasos e as perdas reais da Internet?

O programa <u>traceroute</u> fornece medições de atraso da fonte até os diversos roteadores ao longo do caminho fim-a-fim até o destino. Para cada *i*:

- Envia três pacotes que alcançarão o roteador i no caminho até o destino.
- O roteador i devolverá os pacotes ao transmissor
- O transmissor calcula o intervalo de tempo decorrido entre a transmissão e a chegada da resposta.

Atrasos e rotas "reais" da Internet

traceroute: gaia.cs.umass.edu para www.eurocom.fr

```
Três medições de atraso de
                                          gaia.cs.umass.edu p/cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 1 link trans-
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
                                                                   oceânico
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                   * sem resposta (pacote perdido, roteador não responde)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Perda de pacotes

- la fila (buffer) anterior a um canal possui capacidade finita
- quando um pacote chega numa fila cheia, o pacote é descartado (perdido)
- o pacote perdido pode ser retransmitido pelo nó anterior, pelo sistema origem, ou não ser retransmitido

Vazão

Vazão fim a fim

Enlace de gargalo de capacidade R 10 clientes

10 servidores

O cliente faz o download de um arquivo do servidor

10 clientes fazem o download de 10 servidores

Arquitetura de camadas

Uma viagem de aviões: ações

Passagem (comprar)

Passagem (reclamar)

Bagagem (despachar)

Bagagem (recuperar)

Portões (embarcar)

Portões (desembarcar)

Decolagem

Aterrissagem

Roteamento da aeronave

Roteamento da aeronave

Roteamento da aeronave

Funcionalidade de uma linha aérea em camadas

Porque dividir em camadas?

Lidar com sistemas complexos:

- ✓ Estrutura explícita permite a identificação e relacionamento entre as partes do sistema complexo
 - modelo de referência em camadas para discussão
- ✓ Modularização facilita a manutenção e atualização do sistema
 - mudança na implementação do serviço da camada é transparente para o resto do sistema
 - Ex: mudança no procedimento no portão não afeta o resto do sistema
- ✓ Divisão em camadas é considerada prejudicial?

A pilha de protocolos da Internet

- Aplicação: dá suporte a aplicações de rede
 - FTP, SMTP, HTTP
- □ Transporte: transferência de dados processo a processo
 - TCP, UDP
- □ Rede: repasse (encaminhamento) de datagramas da origem até o destino
 - IP, protocolos de roteamento
- Enlace: transferência de dados entre elementos de rede vizinhos
 - Ethernet, 802.11
- ☐ Física: bits "no fio"

Aplicação Transporte Rede Enlace Física

Encapsulamento

