Studentpad

K-CET CHEMISTRY PAPER 2022-23

Time: 120 Min Chem: Full Portion Paper Marks: 60

Hints and Solutions

01) Ans: **B)** coagulates.

02) Ans: **D)**
$$\left[\text{Cr} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+}$$

Sol:
$$\left[Cr(H_2O)_6 \right]^{3+}$$

Sol:
$$2KClO_3 + I_2 \rightarrow 2KlO_3 + Cl_2$$

04) Ans: **A)** increasing of pressure.

Sol: In this reaction, ΔH is negative, thus reaction moves forward by decreasing temperature while value of $\Delta n = 2 - 3 = -1$ i.e. negative, hence the reaction moves forward by increasing pressure.

05) Ans: **B)** Yes

Sol: As,
$$E^{\circ}$$
 for Fe / Fe²⁺ = 0.44 V.

06) Ans: **C)** In acidic solutions protons coordinate with ammonia molecules forming NH_4^+ ions and NH_3 molecules are not available.

Sol: In acidic solutions protons coordinate with ammonia molecules forming NH₄⁺ ions and NH₃ molecules are not available.

07) Ans: **B)**
$$8.3 \text{ J} \text{ mol}^{-1}\text{K}^{-1}$$

08) Ans: A) enzymes

09) Ans: **A)** concentration of the solution decrease.

Sol: As acetic acid gets adsorbed on charcoal, concentration of the solution decreases.

10) Ans: C) gluconic acid.

Sol: Glucose on reaction with bromine water followed by oxidation yields gluconic acid.

$$\begin{array}{c} C_6H_{12}O_6 + (O) \xrightarrow{\quad \operatorname{Br}_2/\operatorname{H}_2O\quad} CH_2OH(CHOH)_4COOH \\ \text{Glucose} \end{array}$$

11) Ans: **B)** Ca^+ ions form ccp and F^- ions are present in all the tetrahedral voids Sol: In fluorite structure (CaF_2) , Ca^{2+} form ccp

while F⁻ ions are present in all available tetrahedral sites.

12) Ans: **A)** HN₃

Sol: HN₃

13) Ans: **A)** H₂S gas

14) Ans: **A)** Ethanol

Sol: Because of hydrogen bonding.

15) Ans: B) eight chloride ions.

Sol: Each Cs^+ in CsCl is surrounded by eight Cl^- while each Cl^- in CsCl is surrounded by eight Cs^+ .

16) Ans: A) hydrogen cyanide.

17) Ans: B) complex forming behavior.

18) Ans: A) salicylic acid.

Sol: Treatment of sodium salt of phenol with ${\rm CO_2}$ under pressure will substitute the carbonyl group $-{\rm COOH}$, for the hydrogen of the ring. This is known as Kolbe's reaction.

$$\begin{array}{c} \text{OH} & \text{ONa} & \text{OH} \\ & \text{CO}_2 \\ \hline & 140^{\circ}\text{C (4-7 atm)} \end{array} \\ \text{Phenol} & \begin{array}{c} \text{Sodium salt} \\ \text{of phenol} \end{array} \\ \text{Solicylic acid} \\ \end{array}$$

19) Ans: **A)** CaH₂

Sol:
$$CaH_2^{+2} \Rightarrow 2 + 2x = 0$$
 i.e. $x = -1$

20) Ans: **D)** +1

21) Ans: C) Covalent

Sol: Covalent bond is formed by similar atoms.

22) Ans: **C)** 8 g

Sol: Here,
$$CH_4$$
 required = $\frac{445.15 \times 16}{890.3}$ = 8 gm

23) Ans: D) 2-acetoxy benzoic acid.

24) Ans: **A)** inversely proportional to the square root of its molecular mass.

25) Ans: D) none of these.

Sol: $H_2S + 2HNO_3 \rightarrow 2NO_2 + S + 2H_2O$

26) Ans: A) Carbon dioxide

Sol: Because carbon dioxide is necessary for photosynthesis in plants and non-harmful for human beings

27) Ans: B) sym-trinitrobenzene.

28) Ans: **A)** It is highly inflammable.

29) Ans: **D)** All of these.

Sol: Fuel cells run till reactants are active, are more efficient, and also they free from pollution.

30) Ans: A) benzoic acid.

31) Ans: **D)** Both (2) and (3).

Sol: New carbon-carbon bond formation occurs in Friedel Craft's alkylation and Reimer-Tiemann reaction. In Friedel Craft's alkylation, following mechanism is involved.

$$R-Cl+AlCl_3 \rightleftharpoons \underset{Alkyl\ carbonium\ ion}{R^{\oplus}} + AlCl_4^{\odot} + HCl_4^{\odot}$$

Here new C-C bond formed between carbon of benzene ring and alkyl group.

Similarly in Reimer-Tiemann reaction,

$$\begin{array}{c} \text{OH} \\ + \text{CHCl}_3 + 3\text{NaOH} \rightarrow \\ \text{Salicylaldehyde} \end{array} \\ \begin{array}{c} \text{OH} \\ + 3\text{NaCl} + 2\text{H}_2\text{O} \\ \text{CHO} \\ \text{Salicylaldehyde} \end{array}$$

Here, new C-C bond is formed between carbon of benzene ring and -CHO group.

32) Ans: **A)** Number of molecules present in one gram molecular mass of a substance

33) Ans: **A)** absorb the heat generated by nuclear fission

Sol: Molten sodium is used as a coolant in nuclear reactors.

34) Ans: **B)** benzoyl Chloride.

Sol: $C_6H_5CHO + Cl_2 \rightarrow C_6H_5COCl + HCl$ Benzaldehyde Benzovl chloride

35) Ans: D) Ionic, ionic

Sol: Lithium oxide as well as calcium fluoride show ionic characters.

36) Ans: **B)** [Cu (NH₃)₄]SO₄

Sol: $\left[\text{Cu}\left(\text{NH}_{3}\right)_{4}\right]\text{SO}_{4}$ is Schweitzer's reagent which is used in the manufacturing of artificial silk.

37) Ans: **A)** 16

Sol: As volume is reduced to $\frac{1}{4}$, the concentration becomes four times.

38) Ans: **D)** 0.07

Sol: For HCl M = N = 0.1

Now, $N_1V_1 = N_2V_2 \implies 25 \times N_1 = 0.1 \times 35$

$$N_1 = \frac{0.1 \times 35}{25}$$
 $\therefore M = \frac{0.1 \times 35}{25 \times 2} = 0.07$

39) Ans: **B)** 5

riess iiquid colou

Sol: PbCl₂ is the most ionic, as on going down the group the metallic character increases and also the inert pair effect predominates.

41) Ans: **D)** SbF₅

40) Ans: **B)** PbCl₂

Sol: $K_2MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}F_2$

Here, the stronger Lewis acid SbF₅ displaces the weaker one, MnF₄ from its salt. MnF₄ is unstable and readily decomposes to produce MnF₃ and fluorine.

42) Ans: **B)** 1.07 V

Sol:
$$E = E^{o} - \frac{0.059}{n} log \frac{[Zn^{++}]}{[Cu^{++}]} = 1.10 - \frac{0.059}{2} log \frac{1}{0.1}$$

 $E = 1.10 - 0.0295 log 10 = 1.07 V$

43) Ans: **A)** Cl – Br

Sol: Cl – Br. Both belong to VII-A group having 7 electrons in valence shell.

44) Ans: C) Nitrobenzene.

45) Ans: **C)** 3

Sol: R = K[A], $1.02 \times 10^{-4} = 3.4 \times 10^{-5} [N_2 O_5]$ $(N_2 O_5) = \frac{1.02 \times 10^{-4}}{3.4 \times 10^{-5}}$, K = 3

46) Ans: **B)** 10.22

$$\begin{array}{c}
OH \\
OH \\
Br \\
+3Br_2
\end{array}$$

$$\begin{array}{c}
Br \\
+3HBr \\
Br \\
-1 \text{ mole}
\end{array}$$

Sol:

1 mole

94 grams of phenol reacts with 480 gm of Br₂

:. 2 gm of phenol -
$$\frac{480}{94} \times 2 = 10.22$$
 gms

47) Ans: **A)** active mass.

Sol: As per the law of mass action.

48) Ans: **D)**
$$\frac{\text{CH}_3}{\text{C}_2\text{H}_5} \rangle \text{CH} - \text{CH.COOH}$$
 Sol:
$$\frac{\text{CH}_3}{\text{C}_2\text{H}_5} \rangle \text{CH} - \text{CH.COOH}$$

49) Ans: A) molecularity

50) Ans: **A)** Spin

Sol: Spin quantum number is not related with Schrodinger equation as they always show +1/2, -1/2 value.

51) Ans: **B)** Wrought iron less than 0.15% carbon; steel 0.15 to 2.0% carbon; and pig iron over 2% carbon.

52) Ans: **A)**
$$CH_3CH_2Cl + HCl + SO_2$$

Sol: $C_2H_5OH + SOCl_2 \xrightarrow{Pyridine} C_2H_5Cl + SO_2 + HCl$

53) Ans: **A)**
$$C_6H_5$$
 - OH and CH_3 - I Sol:

54) Ans: **D)** M/6

Sol: $Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O$ Now, equivalent weight of K₂Cr₂O₇

 $= \frac{\text{Molecular Mass}}{6} = \frac{294.2}{6} = \frac{\overline{M}}{6}$

55) Ans: **B)** 5.91 BM

Sol: Given $K_3[FeF_6]$, $Fe^{3+} = [Ar]3d^54s^0$

So, Number of unpaired electrons = 5

$$\therefore \text{ Magnetic moment } = \sqrt{n(n+2)} = \sqrt{5(5+2)}$$
$$= \sqrt{35} = 5.91 \text{ BM}$$

56) Ans: **A)** $H_2S < SiH_4 < NH_3 < BF_3$

Sol: The correct order of bond angle (Smallest first) is as follows

 $H_2S < NH_3 < SiH_4 < BF_3$

57) Ans: **C)** $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$ Sol: The tetragonal system possesses the unit cell dimension $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$

58) Ans: **B)** ethylene bromohydrin.

Sol:
$$CH_2 = CH_2 \xrightarrow{Br_2, H_2O} CH_2 - CH_2$$

Br OH

Ethylene bromohydrin

Thus, compound A is ethylene bromohydrin.

59) Ans: **D)** none of these.

Sol: Aldehyde and ketone are colourless as well as stable compound.

60) Ans: **D)** HCN.