Робастная устойчивость ЛОДУ. Определения. І

$$Q(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \ldots + a_n. \tag{1}$$

Полином с вещественными коэффициентами называется устойчи вым полиномом, если все его нули расположены внутри левой комплексной полуплоскости. Введем в рассмотрение (n+1)-вектор $a=(a_0,a_1,\ldots,a_n)$. Пусть в (n+1)-мерном пространстве коэффициентов задано множество A $(A\subset \mathbb{R}^{n+1})$.

Полином (1) называется робастно устойчивым или робастно устойчивым в A, если он является устойчивым при любых значениях коэффициентов $a_i\ (i=0,1,\dots,n)$ из множества $A\ (a\in A)$.

Система называется робастно устойчивой или робастно устойчи вой на множестве A, если ее характеристический полином является робастно устойчивым полиномом в A.

Полиномы Харитонова. Определения. V

Выпишем коэффициенты при λ в порядке возрастания степени λ всех четырех полиномов:

$$Q_1(\lambda): \bar{a}_n, \underline{a}_{n-1}, \underline{a}_{n-2}, \bar{a}_{n-3}, \bar{a}_{n-4}, \underline{a}_{n-5}, \dots,$$
 (5a)

$$Q_2(\lambda): \bar{a}_n, \bar{a}_{n-1}, \underline{a}_{n-2}, \underline{a}_{n-3}, \bar{a}_{n-4}, \bar{a}_{n-5}, \dots,$$
 (5b)

$$Q_3(\lambda): \underline{a}_n, \overline{a}_{n-1}, \overline{a}_{n-2}, \underline{a}_{n-3}, \underline{a}_{n-4}, \overline{a}_{n-5}, \dots,$$
 (5w)

$$Q_4(\lambda): \underline{a}_n, \underline{a}_{n-1}, \overline{a}_{n-2}, \overline{a}_{n-3}, \underline{a}_{n-4}, \underline{a}_{n-5}, \dots$$
 (5g)

Полиномы $Q_1(\lambda)$, $Q_2(\lambda)$, $Q_3(\lambda)$ и $Q_4(\lambda)$ называются полиномами Харитонова.

Необходимое условие. І

Необходимое условие робастной устойчивости. Так как при робастной устойчивости в параллелепипеде (2) должны быть устойчивыми характеристические полиномы при всех значениях коэффициентов из этого параллелепипеда, необходимо, чтобы был устойчивым характеристический полином при $a_i=\underline{a}_i$ $(i=0,1,\ldots,n)$. Поэтому для робастной устойчивости в параллелепипеде (2) необходимо, чтобы при $\underline{a}_0>0$ выполнялось условие

$$\underline{a}_0 > 0, \quad \underline{a}_1 > 0, \quad \dots, \quad \underline{a}_n > 0.$$
 (6)

Теорема Харитонова. І

Теорема Харитонова (1978). Для того чтобы система с характеристическим полиномом $Q(\lambda)=a_0\lambda^n+a_1\lambda+\ldots+a_n$ была робастно устойчива в параллелепипеде

$$A = \{a : \underline{a}_i \le a_i \le \bar{a}_i, \quad i = 0, 1, \dots, n\},\$$

необходимо и достаточно, чтобы все полиномы Харитонова были устойчивыми.

Следствие. 1

Случай n=1,2. Как известно, для полиномов первого и второго порядков положительность его коэффициентов является достаточным условием устойчивости. Поэтому в случае n=1,2, очевидно, для робастной устойчивости в параллелепипеде необходимо и достаточно, чтобы выполнялось необходимое условие робастной устойчивости (6).

Следствие (результат Андерсена Б., Джури Э.И., Мансура М., 1987). Для того чтобы система с характеристическим полиномом $Q(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \ldots + a_n$ была робастно устойчива в параллелепипеде при выполнении необходимого условия робастной устойчивости (6), необходимо и достаточно, чтобы были устойчивыми:

- а) в случае n = 3 полином Харитонова $Q_1(\lambda)$;
- б) в случае n=4 полиномы Харитонова $Q_1(\lambda)$ и $Q_2(\lambda)$;
- в) в случае n=5 полиномы Харитонова $Q_1(\lambda)$, $Q_2(\lambda)$ и $Q_3(\lambda)$.

Пример 2. Исследовать устойчивость системы, если передаточная функция системы имеет вид

$$W(p) = 1$$

$$(T^{2}p^{2} + 2\xi p + 1)p + k;$$

$$0, 1 \le k \le 1; \quad 0, 1 \le T \le 0, 5; \quad 0, 1 \le \xi \le 0, 5.$$

Решение. Характеристический полином системы имеет вид

$$Q(\lambda) = a_0 \lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3,$$

где

$$a_0 = T^2$$
, $a_1 = 2\xi$, $a_2 = 1$, $a_3 = k$.

Коэффициенты характеристического полинома удовлетворяют следующим условиям:

$$0, 01 \le a_0 \le 0, 25; \quad 0, 2 \le a_1 \le 1; \quad a_2 = 1; \quad 0, 1 \le a_3 \le 1.$$

Следовательно, в принятых выше обозначениях имеем

$$\underline{a}_0=0,\,01;\,\bar{a}_0=0,\,25;\,\underline{a}_1=0,\,2;\,\bar{a}_1=1;\,\underline{a}_2=\bar{a}_2=1;\,\underline{a}_3=0,\,1;\,\bar{a}_3=1.$$

Необходимое условие робастной устойчивости выполняется. Так как n=3, то для робастной устойчивости достаточно, чтобы полином $Q_1(\lambda)$ был устойчивым.

Из (5а) получаем

$$Q_1(\lambda) = \bar{a}_3 + \underline{a}_2\lambda + \underline{a}_1\lambda^2 + \bar{a}_0\lambda^3 = 1 + \lambda + 0, 2\lambda^2 + 0, 25\lambda^3.$$

Определитель Гурвица

$$\Delta_2 = \begin{vmatrix} \underline{a}_1 & \bar{a}_0 \\ \bar{a}_3 & \underline{a}_2 \end{vmatrix} = \begin{vmatrix} 0, 2 & 0, 25 \\ 1 & 1 \end{vmatrix} =$$

$$= 1 \cdot 0, 2 - 1 \cdot 0, 25 < 0.$$

Поэтому замкнутая система не будет робастно устойчива (т.е. устойчива при всевозможных значениях параметров).

Пример 3. Исследовать устойчивость системы при всевозможных заданных значениях параметров при условии, что передаточная функция системы имеет вид

$$W(p) = \frac{1}{(Tp+1)^3 + k}; \quad 0, 5 \le k \le 2; \quad 1 \le T \le 2.$$

Решение. Характеристический полином системы имеет вид

$$Q(\lambda) = a_0 \lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3,$$

где

$$a_0 = T^3$$
, $a_1 = 3T^2$, $a_2 = 3T$, $a_3 = 1 + k$.

Для граничных значений коэффициентов характеристического полинома имеем

$$\underline{a}_0 = 1; \, \bar{a}_0 = 8; \, \underline{a}_1 = 3; \, \bar{a}_1 = 12; \, \underline{a}_2 = 3; \, \bar{a}_2 = 6; \, \underline{a}_3 = 1, 5; \, \bar{a}_3 = 3.$$

В данном случае коэффициенты характеристического полинома не являются независимыми. Но, тем не менее, воспользуемся сначала теоремой Харитонова.

Так как n=3, достаточно рассмотреть полином (см. (5a))

$$Q_1(\lambda) = \bar{a}_3 + \underline{a}_2 \lambda + \underline{a}_1 \lambda^2 + \bar{a}_0 \lambda^3 = 3 + 3\lambda + 3\lambda^2 + 8\lambda^3.$$

Все коэффициенты больше нуля, но определитель Гурвица

$$\Delta_2 = \begin{vmatrix} \underline{a}_1 & \bar{a}_0 \\ \bar{a}_3 & \underline{a}_2 \end{vmatrix} = \begin{vmatrix} 3 & 8 \\ 3 & 3 \end{vmatrix} = 3 \cdot 3 - 3 \cdot 8 < 0.$$

Следовательно, условие робастной устойчивости не выполняется. Однако, как покажем, система устойчива при всевозможных заданных значениях параметров.

Действительно, при положительных значениях параметров необходимое условие устойчивости выполняется, и определитель Гурвица второго порядка

$$\Delta_2 = \begin{vmatrix} a_1 & a_0 \\ a_3 & a_2 \end{vmatrix} = \begin{vmatrix} 3T^2 & T^3 \\ 1+k & 3T \end{vmatrix} = 3T^2 \cdot 3T - T^3(1+k) = T^3(8-k)$$

будет положительным при k < 8.

Таким образом, система устойчива при любых значениях параметров из области, определяемой неравенствами

$$T > 0, \quad 0 < k < 8.$$

Очевидно, заданные значения параметров принадлежат этой области.