Production Line Scheduling - Integer Program Model

Summary

Describe the problem briefly

Problem Statement

The above problem can be formulated mathematically as a linear programming problem using the following model.

INPUTS

Symbol Description

n number of batches

 D_i deadline of batch i

 $T_{p,i}$ time needed to produce batch i

 D_s time to start scheduling

 D_l last deadline, max(D_i)

 T_r total time available, $D_l - D_s$

 A_{ij} changeover time between batches i, j due to change in allergens

 K_{ij} changeover time between batches i, j due to kosher status switch

 C_{ij} additional changeover time between batches i, j

VARIABLES

Symbol Description

 $T_{s,i}$ start time of batch i

$$P_{ij}$$

$$\begin{cases} 1 & T_{s,i} < T_{s,j} \\ 0 & T_{s,i} > T_{s,j} \end{cases}$$

 d_i day on which batch i is scheduled

 t_f finish time of all batches $\max(T_{s,i} + T_{p,i})$

Constraints

Deadline and Overlapping

This ensures that the deadline is met for batch i.

$$T_{s,i} + T_{p,i} \le D_i$$
$$0 \le T_{s,i} \le T_r$$

This ensures that any two batches i and j are not separated by more than the total time available for production.

$$-T_r \times P_{ij} \le T_{s,i} - T_{s,j} \le T_r \times (1 - P_{ij})$$

This ensures that the production times of any two batches i and j do not overlap.

$$T_{s,j} - (T_{s,i} + T_{p,i}) \ge T_r \times (P_{ij} - 1)$$

 $(T_{s,j} + T_{p,j}) - T_{s,i} \le T_r \times P_{ij}$

Changeover Period

This ensures that batch j starts only after the various changeover periods of batch i.

$$(T_{s,j} - (T_{s,i} + T_{p,i})) + T_r \times (1 - P_{ij}) \ge C_{ij} + A_{ij} + K_{ij}$$

Shifts

This ensures that no start or finish time lies outside the workday or during the weekends. Here, d_i can only take on values which correspond to valid workdays. For example, if you begin scheduling today (say, a Tuesday) and end on Monday the following week, $d_i \in \{0, 1, 2, 3, 6\}$.

$$24 \cdot d_i + 8 \le T_{s,i} \le 24 \cdot d_i + 16$$
$$24 \cdot d_i + 8 \le T_{s,i} + T_{p,i} \le 24 \cdot d_i + 16$$

OBJECTIVE

minimize t_f