МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ШЕВЧЕНКА ФІЗИЧНИЙ ФАКУЛЬТЕТ

Звіт Про виконання лабораторної роботи №2 з курсу «Сучасна електроніка»

Роботу виконали: Гриценяк Олександра Олександрівна

Мальцева Діана Сергіївна

Викладач: Ермоленко Руслан Вікторович

3MICT

1.	Коротко про головне	3
2.	RC-ланцюжок	6
3.	CR-ланцюжок	8
4.	Висновок	10
5.	Додатки	11

1. Коротко про головне

У даній роботі досліджуються характеристики чотириполюсників: інтегруючого RC-ланцюжка та диференціюючого CR-ланцюжка.

Для цього використовуються осцилографи Tektronix TDS2024C та Tektronix TDS1002B. Сигнал подається з генератора на входи осцилографа двома шляхами: через чотириполюсник та безпосередньо. Таким чином, сигнал, який іде напряму, дорівнює сигналу на вході чотириполюсника, а сигнал, що приходить з чотириполюсника, є відповідно сигналом на виході чотириполюсника. Порівнюючи ці два сигнали, і визначаємо характеристики схеми.

RC-ланцюжок

Частотні характеристики розраховуються наступним чином:

$$K = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$\Phi = -arctg(\omega RC)$$

Очікувана залежність:

Рис. 1. АЧХ RC-ланцюжка

Рис. 2. ФЧХ RC-ланцюжка

Очікувані перехідні характеристики:

Рис. 3. Перехідні характеристики RC-ланцюжка

CR-ланцюжок

Частотні характеристики розраховуються наступним чином:

$$K = \frac{\omega RC}{\sqrt{1 + (\omega RC)^2}}$$

$$\varphi = arctg\left(\frac{1}{\omega RC}\right)$$

Очікувана залежність:

Рис. 4. АЧХ CR-ланцюжка

Рис. 5. ФЧХ СК-ланцюжка

Очікувані перехідні характеристики:

Рис. 6. Перехідні характеристики СR-ланцюжка

2. RC-ланцюжок

Схема RC-ланцюжка зображена на рис. 7.

Рис. 7. RC-ланцюжок

Було проведено порівняння сигналів входу і виходу RC-ланцюжка на 16 різних частотах. З експериментальними даними можна ознайомитися у Додатку 1.

Осцилограма сигналу на виході (рис. 8) співпала з очікуваною (рис. 3).

Рис. 8. Порівняння сигналів на вході та виході RC-ланцюжка

Частотні характеристики також набули передбаченої форми. Коефіцієнт передачі спадає за близьким до обернено пропорційного законом, і при великих частотах прямує до нуля (рис. 9). Отже, такий елемент можна використовувати як фільтр нижніх частот. Різниця фаз при прямуванні частоти до нескінченності прямує до $-\pi/2$ (рис. 10).

Рис. 9. Отримана АЧХ RC-ланцюжка

Рис. 10. Отримана ФЧХ RC-ланцюжка

3. CR-ланцюжок

Схема CR-ланцюжка зображена на рис. 11.

Рис. 11. CR-ланцюжок

Було проведено порівняння сигналів входу і виходу RC-ланцюжка на 16 різних частотах. З експериментальними даними можна ознайомитися у Додатку 2.

Осцилограма сигналу на виході (рис.12) співпала з очікуваною (рис. 6).

Рис. 12. Порівняння сигналів на вході та виході СR-ланцюжка

Частотні характеристики також набули передбаченої форми.

Графік коефіцієнта передачі вийшов не дуже гладким, але має правильну тенденцію до прямування до одиниці при великих частотах (рис. 13). Отже, даний елемент можна

використовувати як фільтр верхніх частот. Залежність різниці фаз (рис. 14) добре нагадує передбачену з прямуванням до нуля на великих частотах та різницею у $\pi/2$ на нульовій частоті.

Рис. 13. Отримана АЧХ СR-ланцюжка $\varphi\left(\omega\right)$

Рис. 14. Отримана ФЧХ СК-ланцюжка

4. Висновок

Ми дослідили роботу RC- та CR-ланцюжків, у процесі чого навчилися збирати відповідні схеми, застосували двоканальність осцилографів, зібрали та записали дані на різних частотах. Після обробки, систематизації та аналізу даних отримали графіки частотної залежності коефіцієнту передачі та різниці фаз на вході та виході чотириполюсників. Отримані форми сигналів, АЧХ та ФЧХ вийшли майже співпадаючими з теоретичними.

Досліджуючи АЧХ та ФЧХ можна легко помітити, що дані схеми можна використовувати як фільтри нижніх (RC) або верхніх (CR) частот.

Коефіцієнт передачі RC-ланцюжка прямує до одиниці при прямуванні ω до нуля, для великих частот – до нуля. При цьому для низьких частот різниця фаз мінімальна. Отже, сигнал низької частоти буде передано майже без спотворень.

Коефіцієнт передачі СR-ланцюжка, навпаки, спадає до нуля для низьких частот, а для великих — прямує до асимптоти K = 1. Різниця фаз зі зростанням ω наближається до нуля, отже, сигнали високих частот передаються майже без спотворень, і даний ланцюжок можна використати як фільтр верхніх частот.

5. Додатки

Додаток 1

		RC		
ω	U1	U2	K	$\boldsymbol{\varphi}$
Hz	mV	mV	1	1
50.3	500	500	1	-0.62832
131.9	500	200	0.4	-1.00531
199.2	500	100	0.2	-1.25664
299	500	100	0.2	-1.3328
398.7	500	50	0.1	-1.40743
500.3	500	50	0.1	-1.41372
599.9	500	50	0.1	-1.4784
757.6	500	50	0.1	-1.54663
902.5	500	20	0.04	-1.5708
1001	500	20	0.04	-1.5708
1662	500	20	0.04	-1.5708
2000	500	10	0.02	-1.44513
2576.49	500	20	0.04	-1.5708
3662	500	10	0.02	-1.37088
3700	500	10	0.02	-1.5708
3999	500	10	0.02	-1.5708

Додаток 2

		CR		
ω	U1	U2	K	$\boldsymbol{\varphi}$
Hz	V	V	1	1
9.98	2	0.5	0.25	1.413717
23.02	2	1	0.5	0.942478
34.01	2	1	0.5	0.903746
45.05	2	1	0.5	0.913918
55	2	1	0.5	0.837758
63.93	2	2	1	0.785398
85.03	2	2	1	0.785398
100	2	2	1	0.628319
179.9	2	2	1	0.571199
310.2	2	2	1	0.431969
501	2	2	1	0.251327
1002	2	2	1	0.125664
5376	2	2	1	0.125664
10300	2	2	1	0.125664
28120	2	2	1	0.125664
100000	2	2	1	0.125664