2. Estadística descriptiva univariant

Universitat de Barcelona

Classificació

- Variables qualitatives.
 - No tenen caràcter numèric. Etiquetes.
 - Altres noms: categòriques, nominals, factors.
 - Exemples: dades binàries i dades ordinals.
- Variables quantitatives.
 - Discretes
 - Permeten operacions aritmètiques, com calcular el promig.
 - Prenen valors en un conjunt finit.
 - Contínues
 - Permeten operacions aritmètiques, com calcular el promig.
 - Prenen valors en un interval numèric. Qualsevol valor de l'interval és possible.

Com classifiquem aquestes variables?

Quin tipus de variables són?

Números de telèfon, Grup Sanguini, Nivell d'estudis, Talles de roba, Temperatura diària a BCN, Categoria dels Hotels, Classe social, Número de fills, IBEX-35, Opinió sobre el turisme a BCN.

Freqüències

Per variables categòriques i numèriques

- Freqüència absoluta (n_i)
 - Nombre de vegades que apareix aquest valor en determinat conjunt de dades.
 - La suma de les freqüències absolutes és el total n de dades.
- Freqüència relativa (f_i)
 - Resultat de dividir la freqüència absoluta per n.
 - Proporció o tant per u d'un valor en el conjunt de dades. La suma de les frequències relatives és 1.

$$f_i = \frac{n_i}{n}$$

Freqüències acumulades

Per variables numèriques

• Freqüència absoluta acumulada (N_i) (fins un valor donat): La suma de les freqüències absolutes corresponents als valors \leq el valor donat.

$$N_i = n_1 + n_2 + \ldots + n_i$$

• Freqüència relativa acumulada (F_i) (fins un valor donat): La suma de les freqüències relatives corresponents als valors \leq el valor donat.

$$f_i = \frac{N_i}{n} = \frac{n_1 + n_2 + \ldots + n_i}{n} = f_1 + f_2 + \ldots + f_i$$

Què passa si tenim molts valors diferents?

petits $I_i = (L_i, L_{i+1}].$

Dividim l'interval de valors d'una variable contínua en intervals més

- ② Posem una etiqueta a cadascun (per exemple el punt mig $\frac{L_i + L_{i+1}}{2}$). Aquesta etiqueta és la marca de classe.
- Obtenim una nova variable discreta. Podem fer així una taula de freqüències de la nova variable.

Consell: Triar entre 6 i 25 intervals. Normalment, s'agafen tots de la mateixa mida.

Exercici: Temperatures dels últims xx dies.

Núm. vegades	ni	Ni	f _i	Fi
10	2	2	0.05	0.05
13	4	6	0.10	0.15
16	10	16	0.25	0.40
19	15	31	0.375	0.775
22	6	37	0.15	0.925
25	3	40	0.075	1

- Quina és la mida de la mostra?
- Quants de dies hi hagut una temperatura de més de 19 graus? I de 16 o menys graus?
- Quin percentatge de dies hi hagut una temperatura de 22 graus?
- El 77.5% dels dies hem tingut una temperatura de graus.

Gràfics per variables qualitatives

Gràfics per variables quantitatives

Gràfics per variables quantitatives

Gràfics per variables quantitatives

Resums numèrics de dades

Objectiu)

Volem trobar un o uns valors que representin un conjunt de dades donat.

Tenim diferents tipus de mesures

- Mesures de centre
- Mesures de diversitat
- Mesures de posició
- Mesures de forma

La Moda

Definició És el valor més freqüent.

Notació Mo

Tipus de dades Per dades qualitatives o quantitatives discretes.

Observacions

Pot no ser única, si la màxima freqüència correspon amb 2 o més valors.

Exemple càlcul Moda

Exemple (Casaments)

Dades cens EUA 2004. Invididus 20-24 anys. Variable: Número de vegades que han estat casats (en milers).

	Homes	Dones
0	7350	8418
1	2587	1594
2	80	10
Total	10017	10022

La mitjana

Definició) Per obtenir la mitjana de *n* nombres x_1, x_2, \ldots, x_n

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

 $\overline{\text{Notació}}$ \bar{x}

Tipus de dades Per dades quantitatives.

Observacions És sempre representativa?

Exemples càlcul Mitjana

Exemple (Cereals)

	Sodium(mg)	Sugar(g)	Туре
Frosted Mini Wheats	0	11	Α
Raisin Bran	340	18	Α
All Bran	70	5	Α
Apple Jacks	140	14	С
Cap'n Crunch	200	12	С
Cheerios	180	1	С
Cinnamon Toast Crunch	210	10	С
Crackling Oat Bran	150	16	Α
Fiber One	100	0	Α
Frosted Flakes	130	12	С
Froot Loops	140	14	С
Honey Bunches of Oats	180	7	Α
Honey Nut Cheerios	190	9	С
Life	160	6	С
Rice Krispies	290	3	С
Honeys Śmacks	50	15	Α
Special K	220	4	Α
Wheaties	180	4	Α
Corn Flakes	200	3	Α
HoneyComb	210	11	С

$$\bar{x} = \frac{1}{20}(0 + 340 + 70 + 140 + 200 + 180 + 210 + 150 + 100 + 130 + 140 + 180 + 190 + 160 + 290 + 50 + 220 + 180 + 200 + 210) = 167$$

Exemples càlcul Mitjana

Exemple (Casaments)

Homes

$$\bar{x}_h = \frac{7350 \cdot 0 + 2587 \cdot 1 + 80 \cdot 2}{10017} = 0.2742338$$

Dones

$$\bar{x}_d = \frac{8418 \cdot 0 + 1594 \cdot 1 + 10 \cdot 2}{10022} = 0.1610457$$

Per tant, si les dades estan agrupades en freqüències

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i \cdot n_i = \sum_{i=1}^{k} x_i \cdot f_i$$

Exemples càlcul Mitjana

Exemple (Sous)

Hi ha una empresa amb 4 programadors que cobren 1000 euros i el propietari que cobra 6000 euros.

Si calculem la mitjana

$$\bar{x} = \frac{4 \cdot 1000 + 1 \cdot 6000}{5} = 2000$$

Ens serveix en aquest cas la mitjana per fer-nos una idea del que es cobra en aquesta empresa?

La Mediana

Definició És el valor que queda al centre una vegada s'ha ordenat la llista de més petit a gran.

Per calcular-la tenim casos diferents:

- Si n és senar: agafem el valor central.
- Si *n* és parell: agafem els dos valors centrals i fem el promig.
- Si les dades estan agrupades per intervals $(L_i, L_{i+1}]$

$$Me = L_i + (L_{i+1} - L_i)^{\frac{n}{2}} - N_{i-1}$$

Notació Me

Tipus de dades Per dades quantitatives o qualitatives ordinals.

Exemples càlcul Mediana

Exemple (Casaments)

La mediana del nombre de casaments tant per homes com per dones és 0.

Exemple (Cereals)

Per calcular la mediana hauríem d'ordenar totes les dades segons els mil·ligrams de sodi. I mirem les dades que ocupen les posicions 10 i 11. En els dos llocs tenim 180, per tant la mediana és 180.

Exemple (Sous)

La mediana dels sous és 1000 euros.

Què opineu quan comparem aquestes medianes amb les mitjanes?

Altres mesures de centralitat

Mitjana retallada al 5% S'eliminen el 5% de les observacions més grans i el 5% de les més petites i es calcula la mitjana amb el 90% restant.

Mitjana harmònica El recíproc de la mitjana aritmètica dels recíprocs.

$$H_{x} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}$$

o bé

$$H_{x} = \frac{n}{\sum_{i=1}^{k} \frac{n_{i}}{x_{i}}}$$

si tenim les dades agrupades en freqüències.

Exemple

Exemple

Un cotxe va tots els dies de la setmana (excepte diumenge) de BCN a Castelldefels (20km). El dissabte va a 70 km/h i els dies laborables a 40 km/h. Quina és la velocitat mitjana d'una setmana?

$$H_{\rm x} = \frac{6}{\frac{5}{40} + \frac{1}{70}} = 43.07 \, km/h$$

Variància i desviació típica

Definició

Variància

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

Variància corregida

$$\widetilde{s_{x}}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Desviació típica

$$s_x = \sqrt{s_x^2}$$

Tipus de dades Per dades quantitatives.

Per dades agrupades

$$s_x^2 = \frac{1}{n} \sum_{i=1}^k n_i (x_i - \bar{x})^2 = \sum_{i=1}^k f_i (x_i - \bar{x})^2$$

(Alternativa)

$$s_x^2 = \left(\frac{1}{n} \sum_{i=1}^n x_i^2\right) - (\bar{x})^2$$

Propietats

• Translació de les dades: $y_i = x_i + a$

$$\bar{y} = \bar{x} + a, \qquad s_v^2 = s_x^2$$

• Canvi d'escala: $y_i = bx_i$

$$\bar{y} = b\bar{x}, \qquad s_y^2 = b^2 s_x^2 \qquad s_y = |b| s_x$$

Dispersió Relativa

Objectiu Comparar la dispersió de dues variables. Obtenir mesures que no tinguin unitats.

Coeficient de variació

$$CV_X = \frac{s_X}{\bar{x}}$$

S'acostuma a demanar que $\bar{x} > 0$.

Problema

Quan \bar{x} és molt propera a 0, CV_x perd significat.

Altres mesures de dispersió

Rang

$$Rang_x = \max(x_1, \ldots, x_n) - \min(x_1, \ldots, x_n).$$

Desviació mitjana

$$D_m = \frac{1}{n} \sum_{i=1}^n |x_i - \bar{x}|$$

Desviació mediana

$$D_{Me} = \frac{1}{n} \sum_{i=1}^{n} |x_i - Me|$$

Estandardització d'una variable

Objectiu Poder comparar dos valors de dues mostres diferents.

Per qualsevol conjunt de dades x_1, \ldots, x_n amb mitjana \bar{x} i desviació típica s_x , la **mostra estandaritzada** és

$$z = (z_1, \ldots, z_n)$$
 on $z_i = \frac{x_i - \overline{x}}{s_x}$, $1 \le i \le n$.

La mostra z té mitjana 0 i desviació típica 1.

Desigualtat de Txebitxev

Per qualsevol conjunt de dades x_1, \ldots, x_n amb mitjana \bar{x} i desviació típica s_x , aleshores per K > 0

$$[\bar{x} - K \cdot s_x, \bar{x} + K \cdot s_x]$$

conté el $\left(1-\frac{1}{K^2}\right)\cdot 100\%$ o més de les dades.

Exemple

Suposem que tenim unes dades amb mitjana 72.1 i desviació típica 8.3. Aleshores,

- Quin és el % d'observacions que trobarem a l'interval [30.6, 113.6]?
- 2 Entre quins valors trobem el 85% de les observacions?

Estadístic Ordinal

Donades unes dades $x = (x_1, \ldots, x_n)$, la llista ordenada

$$X_{(1)}, \ldots, X_{(n)}$$

s'anomena **estadístic ordinal** de x.

Exemple (Emissions CO2)

Dades de l'emissions de CO2 en tonelades per càpita en 27 països d'Europa.

Dades originals x_1, \ldots, x_{27}

Llista ordenada $x_{(1)}, \ldots, x_{(27)}$

Mínim, màxim, mediana i rang interquartílic

(Minim)

 $X_{(1)}$

Màxim

 $X_{(n)}$

(Mediana) Valor situat al centre de la llista ordenada, $x_{(n/2)}$

Quartils

- Primer quartil: $Q_1 = x_{(n/4)}$
- Segon quartil: $Q_2 = Me$
- Tercer quartil: $Q_3 = x_{(3n/4)}$

Rang Interquartílic Mesura de dispersió

$$IQR = Q_3 - Q_1$$

Quantils i percentils

Per cada valor q entre 0 i 1, el quantil q de les dades és aquell valor situat en la posició qn de la llista ordenada. Aquest valor també s'anomena el percentil 100q. Denotarem per $Pe_X(q)$.

Percentils per dades agrupades

$$Pe_{x}(q) = L_{i} + (L_{i+1} - L_{i}) \frac{qn - N_{i-1}}{n_{i}}$$

Exemple (Emissions CO2)

Els quartils

Alguns quantils

Boxplot o Diagrama de caixa

Coeficient d'asimetria

$$\frac{\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^3}{s_x^3}$$

- Asimetria positiva (cap a la dreta): més proporció de valors petits.
- Asimetria negativa (cap a l'esquerra): més proporció de valors grans.
- Si les dades són simètriques val 0.

Gràfics amb asimetria positiva As = 1.073313

Gràfics amb asimetria negativa As = -0.9086109

Coeficient de curtosi o mesura d'apuntament

$$\frac{\frac{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{4}}{s_{x}^{4}}-3$$

- Indica el grau d'apuntament de les nostres dades.
- Dades normals valor 0.
- Si la corba és més plana que una campana de Gauss serà inferior a 0.
- Si la corba és més apuntada que una campana de Gauss serà superior a 0.
- Només vàlid per a dades simètriques.

Gràfics exemple curtosi ($Cu_1 = 0.01978$ i $Cu_2 = 8.8324$)

Diagrama de tija i fulles

Exercici

Per qualsevol conjunt de dades x_1, \ldots, x_n amb mitjana \bar{x} i desviació típica s_x , si considerem $y_i = K_1 \cdot x_i + K_2$, com queden modificats els següents estadístics:

mitjana, mediana, moda, variància, desviació típica, percentils, coeficient de curtosi i coeficient d'asimetria.