

pyop3: A new domain-specific language for automating high-performance mesh-based simulation codes

Connor Ward January 2023 Motivation

pyop3 interface

Final bits

Appendix

Motivation

Stencil computations

Introducing pyop3

- Domain-specific language embedded in Python for automating stencil computations
- Uses code generation to produce fast code

Stencil library wishlist

Features:
□ Map composition
□ Nesting loops (e.g. PCPATCH)
□ Orientation (e.g. unstructured hexes)
□ p-adaptivity
□ Mixed meshes
Performance:
□ Mesh partial structure (e.g. extruded)¹
□ Mesh numbering (e.g. DoFs up extruded columns) ¹

¹Achievable in PyOP2 but very complicated and hard to extend

Claim: pyop3's new data layout abstraction enables all of these.

Starting simple: P1

Adding shape: vector P1


```
root = (
2   MultiAxis()
3   .add_part(AxisPart(nverts))
4   .add_subaxis(AxisPart(2))
5  )
```

Multiple entities: P2

 V_0

 e_{m}


```
root = (
    MultiAxis()
3    .add_part(AxisPart(nedges))
4    .add_part(AxisPart(nverts))
5 )
```

 e_0

Now with renumbering

e₁

 e_0

 V_4

V₂

```
root = (
    MultiAxis()
    .add_part(AxisPart(
    nedges,
    numbering=[4,2,5,...],
    ))
    .add_part(AxisPart(
    nverts,
    numbering=[3,0,1,...],
    ))
    )
)
```

 e_2

 V_7

More complicated inner shape: P3


```
root = (
    MultiAxis()
    .add_part(AxisPart(ncells, "cells"))
    .add_part(AxisPart(nedges, "edges"))
    .add_part(AxisPart(nverts, "verts"))
    .add_subaxis("edges", AxisPart(2))
    )
```


Sparse matrices

Unoriented P3

Unoriented RT

Something really crazy

pyop3 interface

...

Some examples: FE residual assembly

Some examples: Interior facet integrals

Some examples: Patches

Final bits

Things I missed

Summary

Appendix

Partially-structured meshes: extruded

Partially-structured meshes: refined

Axis swapping

