Vladimir Petrović

Uticaj početnih koncentracija malonske i sumporne kiseline na vremensku evoluciju jedne varijante sistema Belousov-Žabotinski

Praćene su karakteristike oscilatornog režima jedne varijante sistema BŽ (Belousov-Žabotinski) i njegove evolucije u zavisnosti od početnih koncentracija malonske i sumporne kiseline. Kao karakteristike oscilatornog režima praćeni su vreme ukupnog trajanja evolucije, broj oscilacija i trajanje predoscilatornog perioda. Vremenska evolucija sistema je karakterisana promenom oscilatornog perioda tokom vremena, $\Delta \tau = f(t)$. Oscilacije su praćene vizuelno u otvorenoj čaši na temperaturi (302±1) K i pri brzini mešanja od 600 obrtaja u minuti. Početne koncentracije učesnika su bile: $[KBrO_3]_0 = 0.258$ mol dm⁻³, $[KBr]_0 = 0.075$ mol dm⁻³. Početna koncentracija sumporne kiseline je varirana u opsegu 0.222–1.110 mol dm⁻³ (pet pet različitih vrednosti), a početna koncentracija malonske kiseline u opsegu 0.036–0.129 mol dm⁻³ (tri različite koncentracije). Uočena je zavisnost $\Delta \tau = f(t)$ oblika S krive (u nekim slučajevima deformisane). Uočene su tri kinetičke oblasti kroz koje sistem prolazi. Ove oblasti je moguće kvantitativno opisati preko ekstremnih vrednosti funkcije $\Delta \tau = f(t)$.

Uvod

Reakcija Belousov-Žabotinski (BŽ) predstavlja reakciju oksidacije malonske ili limunske kiseline bromatnim jonom u kiseloj sredini katalizovanu metalnim jonima koji ima više oksidacionih stanja (Belousov 1985, reprint iz1958). Kao katalizator se najčešće upotrebljava Ce³⁺/Ce⁴⁺ ili Fe²⁺/Fe³⁺. Kod BŽ reakcije reaktanti su malonska kiselina i bromatni jon. Intermedijeri su Br⁻, BrO₂', HBrO₂, Ce⁴⁺ itd. Proizvodi su bromomalonska kiselina, ugljendioksid i voda.

Reakcija BŽ se može sumarno predstaviti reakcijom (Field 1985):

$$2BrO_3^- + 3CH_2(COOH)_2 + 2H^+ \rightarrow 2BrCH(COOH)_2 + 3CO_2 + 4H_2O.$$

Mehanizam reakcije je nepoznat. Predloženo je više modela od kojih je najpoznatiji FKN koji su dali Fild, Kereš i Nojes (Field, Körös, Noyes) (Field 1985).

Vladimir Petrović (1978), Apatin, Branka Ćopića 26, učenik 4. razreda Gimnazije Nikola Tesla u Apatinu

MENTOR:

Dr Slobodan Anić, Fakultet za fizičku hemiju Univerziteta u Beogradu BŽ reakcija spada u grupu oscilatornih procesa za koje je karakteristično da se koncentracije reaktanata i produkata periodično-kaskadno, a intermedijera oscilatorno menjaju u vremenu. Oscilatornost se javlja kao posledica multistabilnosti reakcionog sistema, odnosno mogućnosti odigravanja posmatrane reakcije na više alternativnih načina. Tako oscilatornost nije ništa drugo do naizmenična promena načina odvijanja reakcije, odnosno naizmenična promena alternativnih reakcionih puteva (Kolar-Anić i Anić 1997). Sve se to manifestuje preko oblika, strukture, karakterističnih vremenskih i kinetičkih funkcija (predoscilatorni period, dužina oscilograma, broj oscilacija) i drugih kinetičkih parametara kao što su konstante brzina, energije aktivacije procesa, itd. (Anić 1997; Anić i Kolar-Anić 1986; 1988; Anić, Kolar-Anić, Kereš 1997; Kereš 1974). Treba istaći da su karakteristične vremenske funkcije povezane sa konstantom ukupne brzine posmatrane reakcije i sa konstantama brzina alternativnih reakcionih puteva (ibid.).

Eksperimentalni deo

Vremenska evolucija sistema, tj. promena boje reakcionog rastvora u vremenu, je praćena vizuelno. Reakcioni rastvor se nalazio u otvorenoj čaši. Brzina mešanja je bila konstantna, 600 obrtaja u minuti. Početne koncentracije kalijumbromata i kalijumbromida su bile konstantne $[KBrO_3]_0 = 0.258 \text{ mol dm}^{-3}, [KBr]_0 = 0.075 \text{ mol dm}^{-3}, \text{ dok je kon-}$ centracija sumporne kiseline varirana: $[H_2SO_4]_{o1} = 0.222 \text{ mol dm}^{-3}$ $[H_2SO_4]_{02} = 0.444 \text{ mol dm}^{-3}, [H_2SO_4]_{03} = 0.666 \text{ mol dm}^{-3},$ $[H_2SO_4]_{04} = 0.888 \text{ mol dm}^{-3}, [H_2SO_4]_{05} = 1.110 \text{ mol dm}^{-3}. \text{ Takođe},$ pri svakoj od ovih početnih koncentracija sumporne kiseline varirana je početna koncentracija malonske kiseline: $[MA]_{01} = 0.129 \text{ mol dm}^{-3}$, $[MA]_{02} = 0.072 \text{ mol dm}^{-3}, [MA]_{03} = 0.036 \text{ mol dm}^{-3}.$ Eksperimenti su izvođeni u izotermskim uslovima, T = (302±1)K tj. (29±1)°C. Kao indikator stanja sistema, koji je omogućavao uočavanje oscilacija, korišćen je feroin, kompleks 1,10 fenantrolin gvožđa(II), koji je crvenomrke boje. Kompleks menja boju u zavisnosti od oksidacionog stanja gvožđa, od crvene (feroin) do plave (feriin).

Praćene su sledeće karakteristike oscilatornog režima, odnosno vremenske funkcije:

- vreme ukupnog trajanja oscilatorne evolucije (τ_{end})
- ukupan broj oscilacija (n)
- trajanje predoscilatornog perioda (τ₁)
- period oscilovanja, $\Delta \tau = \tau_{i+1} \tau_i$, gde je τ_i vreme pojavljivanja date oscilacije i

Merenje je ponavljano tri puta za iste početne uslove.

Rezultati i diskusija

Pri razmatranjima se polazi od pretpostavke da se variranjem jednog parametra i zadržavanjem svih ostalih parametara konstantnim obezbeđuje izolovano dejstvo samo tog parametra na tok BŽ reakcije.

Uočeno je povećavanje predoscilatornog perioda sa smanjenjem početne koncentracije sumporne kiseline (sl. 1 levo). U slučaju početne koncentracije sumporne kiseline [H_2SO_4]_{o1} = 0.222 mol dm⁻³nisu uočene oscilacije (ili je predoscilatorni period veoma dug). Oscilacije nisu uočene ni pri [H_2SO_4]_{o5} = 1.110 mol dm⁻³ u slučaju [MA]_{o3} = 0.036 mol dm⁻³

Po podacima iz literature τ_1 se u oblastima bliskim granici oblasti oscilatorne evolucije izrazito, a u središtu oblasti veoma malo menja sa promenom početne koncentracije malonske kiseline (Žabotinski 1978). Kako je u opsegu koncentracija u kom je istraživanje rađeno uočena blaga promena predoscilatornog perioda sa promenom početne koncentracije malonske kiseline (sl. 1 desno), može se zaključiti da se ovaj opseg nalazi

Slika 1 (dole).
Zavisnost
predoscilatornog
perioda od početnih
koncentracija
sumporne kiseline
(levo) i malonske
kiseline (desno).

Figure 1 (down).
The effect of the initial concentration of sulfuric acid (left) and malonic acid (right) on the induction period.

u oblasti udaljenoj od granice oscilatorne oblasti.

Pokazuje se i u slučaju BŽ oscilatora da se $\tau_{\rm end}$ i n mogu smatrati kinetičkim funkcijama koje zavise od početnih uslova. Na sl. 2 (gore) prikazane su zavisnosti $\tau_{\rm end}$ i n od početne koncentracije malonske kiseline. Ako se posmatra zavisnost $\tau_{\rm end}$ od [MA] $_{\rm o}$, tj. n i [MA] $_{\rm o}$, očigledno je da pseudored reakcije u odnosu na malonsku kiselinu nije 1 jer $\tau_{\rm end} = f(\ln [MA]_{\rm o})$ i $n = f(\ln [MA]_{\rm o})$ ne ispoljava linearnost očekivanu za reakcije prvog reda.

Na sl. 2 (dole) su prikazane zavisnosti τ_{end} i n od početne koncentracije sumporne kiseline. Linearna zavisnost se ne uočava ni između τ_{end} odnosno n, i $[H_2SO_4]^{-1}$. Zato se može zaključiti da BŽ reakcija nije prvog reda u odnosu na početnu koncentraciju sumporne kiseline.

Slika 2 (naspr. strana).

Gore: uticaj početne koncentracije malonske kiseline na ukupno vreme oscilovanja (levo) i broj oscilacija (desno)

Dole: uticaj početne koncentracije sumporne kiseline na ukupno vreme oscilovanja (levo) i broj oscilacija (desno).

Dalje, kako je vremenski period između pojave dve uzastopne oscilacije ($\Delta \tau$) funkcija početnih uslova, njegova promena tokom evolucije sistema je korišćena za karakterisanje kinetičkog razvoja sistema. Funkcija $\Delta \tau = f(t)$ pokazuje karakterističan S oblik koji je manje ili više prisutan i razvijen u zavisnosti od početnih koncentracija sumporne i malonske kiseline (tabla 1).

Oscilacije pri $[H_2SO_4]_0 = 1.110 \text{ mol dm}^{-3}$ su bile dovoljno visokih frekvencija da se pojedinačna vremena njihovih pojavljivanja nisu mogla vizuelno pratiti.

Primećeno je da povećanje početne koncentracije $[H_2SO_4]$ dovodi do deformisanja S krive. U slučajevima gde je S kriva razvijena moguće je uočiti tri kinetička domena kroz koja sistem prolazi tokom vremenske evolucije. Uočeno je da su infleksione tačke, odnosno vrednosti vremena u kojima dolazi do promene $\Delta \tau$, zavisne od kiselosti sistema.

Kako je malonska kiselina reaktant, njena koncentracija tokom evolucije sistema mora da opada. Može se pretpostaviti da sistemi sa početnom

Figure 2

Upper: The effect of the initial concentration of malonic acid on the overall time of evolution (left) and the number of oscillations (right)

Lower: The effect of the initial concentration of sulfuric acid on the overall time of evolution (left) and the number of oscillations (right).

koncentracijom malonske kiseline od 0.129 mol dm⁻³ posle nekog vremena stižu u stanje posle koga sledi razvoj koji je sličan razvoju koji sistemi sa početnom koncentracijom od 0.072 mol dm⁻³ imaju od početka. Na isti način su razvoji sistema sa početnom koncentracijom malonske kiseline 0.036 mol dm⁻³ slični završnoj fazi razvoja sa početnom koncentracijom malonske kiseline 0.072 mol dm⁻³. Na taj način promena oscilatornog perioda tokom vremena predstavlja, u stvari, promenu oscilatornog perioda sa smanjivanjem koncentracije malonske kiseline. Prema tome S kriva ukazuje na promenu pseudoreda sumarne reakcije razlaganja malonske kiseline u odnosu na početnu koncentraciju malonske kiseline tokom samog razvoja.

Primećuje se da je pojava ekstremnih vrednosti, maksimuma i minimuma, karakteristična za sve razvoje (maksimuma nema u dva slučaja a minimuma u jednom slučaju . Ako se pokušaju uporediti parametri koji ih karakterišu (vreme i broj oscilacija pre i posle maksimuma i minimuma), i naći zavisnosti logaritama njihovih odnosa od logaritama odnosa koncentracija, ne uočava se pravilnost.

Zapaženo je pomeranje maksimuma i minimuma ka manjim vremenima sa smanjenjem početne koncentracije malonske kiseline (u svim slučajevima) i sa povećanjem početne koncentracije sumporne kiseline (u svim slučajevima sem u slučaju početne koncentracije malonske kiseline od 0.072 mol dm⁻³ kada se minimum pomera ka manjim vremenima, ali se maksimum pomera ka većim vremenima).

Posmatranjem promena ekstremnih vrednosti $\Delta \tau$ (u maksimumu i minimumu) sa promenama početnih koncentracija malonske i sumporne kiseline (tabela 1) uočeno je da su ekstremne vrednosti funkcije početne koncentracije sumporne kiseline i da ne zavise od početne koncentracije malonske kiseline. Zavisnosti ekstremnih vrednosti $\Delta \tau_{maks}$ i $\Delta \tau_{min}$ (izražene u sekundama) od početne koncentracije sumporne kiseline (izražene u mol dm⁻³) formalno se mogu predstaviti izrazima:

$$\Delta \tau_{\text{maks}} = 14.480 [\text{H}_2\text{SO}_4]_0^{-2} - 1.080$$

 $\Delta \tau_{\text{min}} = 10.271 [\text{H}_2\text{SO}_4]_0^{-2} + 3.842$

Tako se sada kontrakcija S krive u odnosu na kiselost sistema može opisati zavisnošću:

$$\Delta = \Delta \tau_{\text{maks}} - \Delta \tau_{\text{min}} = 4.209 [H_2 SO_4]_{\text{o}}^{-2} - 4.922$$

Odavde se dobija da $\Delta \to 0$ kada [H₂SO₄]_o $\to 0.925$ mol dm⁻³ (\approx 1 mol dm⁻³), što je u dobroj saglasnosti sa eksperimentalnim rezulta-

Tabla 1 Zavisnost ekstremnih vrednosti funkcije $\Delta \tau = f(t)$ od početnih koncentracija sumporne i malonske kiseline

Table 1
Different forms of the function $\Delta \tau = f(t)$ as a result of the variation of the initial concentrations of sulfuric and malonic acid

tima. Dalje, $\Delta \tau_{min}$ i $\Delta \tau_{maks}$ su nezavisni od [MA]_o i zavise samo od [H2SO4]_o, što znači da je kinetika svih posmatranih sistema u okolini ekstremnih vrednosti nezavisna od početne koncentracije malonske kiseline i određena je samo početnom koncentracijom sumporne kiseline.

Zaključak

U posmatranom domenu početnih koncentracija vrsta BŽ sistema, prema ponašanju funkcije $\Delta \tau = f(t)$ kao kinetičkog reprezenta sistema koji ispoljava formu S krive, zaključuje se da BŽ sistem prolazi kroz tri definisana kinetička stanja. Kinetička stanja je moguće kvantitativno opisati preko infleksionih vrednosti koncentracija i odgovarajućih vrednosti $\Delta \tau_{\min}$ i $\Delta \tau_{\max}$.

Literatura

Anić, S. 1997. Relation between the Number of Oscillations and the Activacion Energy of an Oscillatory Process. *Journal of Serbian Chemical Society*, **62**: 65

Anić, S., Kolar-Anić, Lj. 1986. Some New Details in the Kinetic Considerations of Hydrogen Peroxide. Berichte der Bunsen Gesselschaft, 90: 539

Anić, S., Kolar-Anić, Lj. 1988. Kinetic Aspects of the Bray-Liebhafsky reaction. *Journal of the Chemical Society Faraday Transactions I*, **84**: 3413

Anić, S., Kolar-Anić, Lj., Körös, E. 1997. Methods to Determine Activation Energies for the two Kinetic States of the Oscillatory Bray-Liebhafsky Reaction. *Reaction Kinetics and Catalysis Letters*, **61**: 111

Kolar-Anić, Lj., Anić, S. 1997. Autokataliza i autoinhibicija. Oscilatorne reakcije. U *Novi izazovi u katalizi* (ur. P. Putanov). Novi Sad: SANU – ogranak Novi Sad, str. 139-62

Körös, E. 1974. Monomolecular Treatment of Chemical Oscillations. *Nature*, **251**: 703

Vladimir Petrović

Effect of the Initial Concentrations of Malonic and Sulfuric Acid on the Characteristics of the Evolution of one Variant of Belousov-Zhabotinsky Oscillatory reaction

Belousov-Zhabotinsky reaction represents an oxidation of malonic or limonic acid by bromate ions in an acid medium, catalyzed by metal ions which can have several different oxidation states (Belousov 1985, reprinted from 1958). In BZ reaction, reactants are malonic acid and bromate ions. Intermediers are Br⁻, BrO₂⁻, HBrO₂, Ce₄⁺, etc. Products are bromomalonic acid, carbon-dioxide and water. The reaction mechanism is yet unknown. The best-known of a lot of suggested models is FKN which is proposed by Field, Koros and Noyes (Field 1985).

BZ reaction belongs to a group of oscillatory processes, for which are characteristic periodic-cascade change of the reactant and product concentration and an oscillatory change of the intermediate concentration in time. Oscillatory state appears as a result of the multistability of the reaction system, in other words the possibility of running the reaction in several alternative ways. It is manifested through form, structure, characteristic temporal and kinetic parameters, such as velocity constants, activation energies, etc. Characteristic temporal functions are connected with the velocity constant of the overall reaction and velocity constants of alternative reaction pathways (Kolar-Anić and Anić 1997).

This paper presents the results of the monitoring of the oscillatory regime characteristics in one variant of BZ reaction in respect to the initial concentrations of malonic and sulfuric acid. The oscillatory regime characteristics observed were the time of overall oscillatory evolution (τ_{end}), the number of oscillations (n) and the lasting of initial period (τ_1) . Temporal evolution of the system, in other words the change in color of reaction mixture in time were followed visually. The reaction mixture was located in an open vessel. Stirring velocity was constant, 600 rpm. The initial concentrations of the reaction substances were: $[KBrO_3]_0 = 0.258$ mol dm⁻³, $[KBr]_0 = 0.075$ mol dm⁻³. Initial concentration of the slfuric acid was varied for a range of 0.222-1.110 mol dm⁻³ (five different values), and the initial concentration of malonic acid was varied in range 0.036-0.129 mol dm⁻³ (three different values). The experiments were carried out in isothermal conditions (T = 302 ± 1 K). Ferroin (complex of 1.10 phenantroline and iron(II)) was used as a system state indicator, which enabled the following of oscillations. Measurements were repeated three times for every set of the initial conditions. The temporal evolution was characterized by the change of oscillatory period in time $\Delta \tau = \tau_{i+1} - \tau_i = f(t)$ (where τ_i stands for the time of appearing of a given oscillation i). The observed dependence $\Delta \tau = f(t)$ was "S"-shaped. It suggests three kinetic domains through which the system passes during the temporal evolution. These domains can be quantitatively described using the extreme values of the function $\Delta \tau = f(t)$. Observing the change of extreme values $\Delta \tau$ (in maximum and minimum) with the initial malonic and sulfuric concentration changes, it was noticed that the extreme values are the function of the sulfuric acid initial concentration and that they are independent of the malonic acid initial concentration. Thus, the contraction of "S"-curve (Δ) can be empirically described by the relation:

$$\Delta = \Delta \, \tau_{max} - \Delta \, \tau_{min} = 4.209 \times [H_2SO_4]_o - 4.922. \label{eq:delta_tau}$$

In this way, when $[H_2SO_4]$ approaches 0.925 mol dm⁻³ (≈ 1 mol dm⁻³) the difference between maximum and minimum approaches zero, which is manifested like a plateau on the picture. It agrees with the experimental results.

