Computer Graphics

Prof. Jibum Kim

Department of Computer Science & Engineering Incheon National University

Parametric surfaces

- Our programs so far have been simple from the point of view of specifying the texture map
- The surfaces textured were all polygons, so that all we had to was specify texture coordinates at the corners
- How about more complicated surfaces?
- It is actually surprisingly straightforward if the surface is parametried

- 곡면에 texture mapping을 수행하는 일반적인 방법은 곡면의 parametric form을 이용하는 것이다. 아래와 같이 평면에 있는 2차원의 Texture를 매개 변수를 이용하여 곡면에 texture mapping을 하는 방법에 대하여 공부해 보자
- 먼저, 곡면을 매개 변수 (u,v)로 표현할 수 있는 경우에 대해서 살펴보자
- 이를 곡면의 parametric form (매개변수)을 이용한 표현이라고 한다
- 이러한 경우 비교적 손쉽게 texture space와 곡면을 mapping 시킬 수 있다

인천대학교

- Cylindrical coordinate (원통 좌표계), Cartesian coordinate (직각 좌표계)
- 원기둥 표면 상의 점 P (x, y, z)는 parametric form으로 P (r, u, v) 로 표현 가능
- r은 원기등의 반지름으로 고정된 값이면 P(u, v) ↔ P(x, y, z)로 mapping
- u: 점 P를 x-y평면에 투영시 양의 x축 방향에서 반 시계 방향으로 측정한 각 u
- v: 점 P의 양의 z축에 대한 높이

$$x = r \cos u, y = r \sin u, z = v$$

인천대학교

- Texture space에서 s: [0, 1] , t: [0, 1] 에서 정의됨. u: [0, 2π], v: [0, 1] 정의
- 즉, s가 0에서 1로 갈 때, u는 0에서 2π 각도를 커버해야 한다
- t가 0에서 1로 갈 때, v는 0에서 1로 가면 된다
- $u = 2\pi s$, v = t, 앞에서 $x = r \cos u$, $y = r \sin u$, z = v

$$x = r \cos 2\pi s$$
, $y = r \sin 2\pi s$, $z = t$

■ 즉, Texture space 상의 (s, t)를 원통 표면의 (x, y, z)로 mapping 가능

- 이와 같은 곡면의 parametric form을 이용한 texture mapping은 비슷한 방법으로 구 (sphere)에도 적용 가능하다
- 지구를 구라고 생각하면 지구 표면 위의 어떤 위치를 위도와 경도로 나타내는 것과 유사하다
- 구 표면 상의 점 P (x, y, z)는 P (r, u, v) 로 표현 가능
- r은 원기둥의 반지름으로 고정된 값이면
- P(u, v) ↔ P(x, y, z)로 mapping
- v: 선분 OP와 z축의 양의 방향이 이루는 각
- lacksquig u: P를 x-y 평면에 투영했을 y축의양의 방향과 이루는 각 $ilde{ ilde{x}}$

Spherical coordinates, Cartesian coordinates

- 구 표면 상의 점 P (x, y, z)는 P (u, v) 로 표현 가능
- r: 구의 반지름 (고정 값)
- v: 선분 OP와 z축의 양의 방향이 이루는 각
- u: P를 x-y 평면에 투영했을 y축의
- 양의 방향과 이루는 각

인천대학교

$$z = r \cos v$$
 $y = r \sin v \cos u$
 $x = r \sin v \sin u$

- Texture space에서 s: [0, 1], t: [0, 1] 에서 정의됨
- u: [0, 2π], v: [0, 2π]에서 정의
- 즉, s가 0에서 1로 갈 때 u는 0에서 2π 각도를 커버
- t가 0에서 1로 갈 때 ν는 0에서 2π 각도를 커버
- $u=2\pi s$, $v=2\pi t$ 이 식들을 앞에 식에 대입

$$z = r\cos 2\pi t$$

$$y = r\sin 2\pi t \cos 2\pi s$$

$$x = r\sin 2\pi t \sin 2\pi s$$

■ 2-stage mapping을 이용한 곡면의 texture mapping

- 많은 경우에 곡면이 원기둥이나, 구가 아니다. 이러한 경우에는 어떻게 texture mapping을 진행해야 하나?
- 이러한 경우에는 2단계 mapping (2-stage mapping)을 이용한다
- 1단계 mapping: Texture를 중개면 (intermediate surface)에 입힌다 (이를 S-mapping이라 무른다)
- 중개면으로는 앞에서 배운 구와 cylinder 등이 흔히 사용된다

- 2단계 mapping: O mapping
- 물체를 중개면 내부에 넣고 물체면에 texture를 입히는 작업이다
- 중개면으로는 구, cylinder등을 사용한다
- 여러가지 O mapping 방법이 있는데 한가자 방법은 물체면의 법선 벡터가 중개면과 만나는 점 (위치)를 구한 뒤, 그 점의 texture값을 해당 물체면의 texture로 사상한다

주전자 (곡면)에 대한 2단계 mapping (2-stage mapping)의 예

- Parametric form을 이용한 torus로의 texture mapping 예
- https://www.dropbox.com/s/r8sos7h02urxjty/t exture_2.txt?dl=0

Bump mapping

Bump mapping

- It is a highly effective method for adding complex texture to objects without having to alter their underlying geometry
- For example, the below figure shows a close-up view of an orange with a rough pitted surface
- However, the actual geometry of the orange is a smooth sphere, and the texture has been painted on it
- At each point, the texture perturbs (교란?) the natual normal vector to the surface and consequently perturbs the normal direction that is so important in the calculation of each specular highlight

Unity bump mapping

Unity - Manual: Normal map (Bump mapping) (unity3d.com)

- Blinn developed a method called bump mapping to give the illusion of geometric detail on a surface by means of perturbing the surface normal, but without actually changing any geometry
- The idea is to re-align the normal to the original surface so that light reflects from it as if it were detailed
- A one-dimensional example will make matters clear

Bump mapping

Chapter 13/BumpMapping

- 다음은 plane에 bump mapping을 적용 전 후의 비교이다
- 'space' 키로 bump mapping 전, 후를 비교해 보자

Curves and surfaces

Until now we have worked with flat entities such as lines and flat polygons

- Fit well with graphics hardware
- Mathematically simple

But the world is not composed of flat entities

Need curves and curved surfaces

- 1D objects are unions of straight and curved segments
- Parts composed of straight segments can be drawn exactly in an OpenGL environement – one would invoke the GL_LINES, GL_LINE_STRIP and GL_LINE_LOOP primitives.
- Curved segments, on the other hand, have to be approximated

Figure 10.1: One-dimensional objects.

- Three major types of object representation
- Explicit
- Implicit
- Parametric
- Consider the advantages and disadvantages of each form

Explicit representation

- The explicit form of a curve in 2D gives the value of one variable, the dependent variable (종속 변수), in terms of the other, the independent variable (독립 변수).
- In x, y space, we might write

$$y = f(x)$$
 or $x = g(y)$

- There is no guarantee that either form exists for a given curve
- For the line, we write the equation as y = mx + h

- The problem of explicit representation is it cannot represent all curves
- 예: circles
- It write one equation for half of it
- $y = \sqrt{r^2 x^2}$ and a secand equation,
- $y = -\sqrt{r^2 x^2}$ for the other half
- In addition, we must also specify that these equations hold only if $0 \le |x| \le r$

Implicit representation

- Most of the curves and surfaces with which we work have implicit representations
- In 2D, an implicit curve can be represented by the equation

$$f(x,y)=0$$

Line: ax+by+c=0

Circles: $x^2 + y^2 - r^2 = 0$

- In 3D, the implicit form
- f(x, y, z) = 0 describes a surface
- Plane: ax + by + cz + d = 0
- Sphere: $x^2+y^2+z^2-r^2=0$
- An implicit equation gives a Boolean condition for points on the curve to satisfy: a point lies on the curve f(x, y) = 0; it doesn't if $f(x, y) \neq 0$
- However, it gives us no analytic way to find a value u
 on the curve that corresponds to a given x

Parametric form

- The parametric form of a curve expresses the value of each spatial variable for points on the curve in terms of an independent variable, t, the parameter.
- Here are parametrizations of the curves
- Line
- Parametric: x = t, $y = -\frac{a}{b}t \frac{c}{b}$, $t \in (-\infty, \infty)$
- Implicit: ax + by + c = 0
- Drawing a curve from its parametric equations is straightforward. This is a major advantage of the parametric for

Circle

■ Parametric: x = rcos(t), y = rsin(t), $t \in [-\infty, \infty]$

• Implicit: $x^2 + y^2 = r^2$

Drawing curves

- Suppose a curve C has the parametric representation P(t) = (x(t), y(t)) as t varies from 0 to T as shown below
- Take samples of P(t) at closely spaced instants
- The curve P(t) is then approximated by the polyline

- $x^2 + y^2 = 1$ 인 원을 앞의 방법으로 그려보자
- $x = cos(t), y = sin(t), 0 \le t \le 2\pi, N=100$
- #define TWOPI 2*3.141592
- double t=0; // 각도
- int N=100; // 100개의 sample 사용
- glBegin(GL_LINE_STRIP);
- for(t=0; t<= 2*PI; t+=2*PI/N)</pre>
- •
- glVertex2f(cos(t), sin(t));

- 예: LINE_STRIP을 사용하여 원을 근사화한 예
- https://www.dropbox.com/s/snvp0ldza01m4dg/circle.t xt?dl=0

Astroid

- Implicit: $x^{2/3} + y^{2/3} 1 = 0$
- Parametric: $x = cos^3t$, $y = sin^3t$, $0 \le t \le 2\pi$

Chapter 10/astroid.cpp

Astroid

■ Interactive한 곡선 및 곡면 설계

 자동차, 비행기의 외형, 로고 등을 설계할 때에도 곡선, 곡면이 필요하다

curve 를 이용한 차 디자인

인천대학교

- 곡선 (curve)
- 곡선의 모양을 제어 및 결정하는 특징적인 점들을 control points (제어점) 이라고 한다
- 사용자는 이러한 제어점을 추가, 삭제, 위치 변경들을 통해 곡선의 모습을 제어할 수 있다
- 예; https://www.youtube.com/watch?v=GC0OK8j7-B8

- Interpolating curve (보간 커브)
- (a) shows an algorithm that generates a curve P(t) that interpolates the control points and forms a smooth curve for points in between
- Approximating curve (근사 커브)
- (b) uses an algorithm that generates a curve R(t) that approximates the control points
- R(t) is attracted toward each control point in turn, but doesn't actually pass through all of them

- In our study of various algorithms, we will see that each kind of algorithm has advantages and disadvantages
- This scenario of iterative curve design is a staple in the field of computer-aided design (CAD) and is often used when designing an item to be manufactured

- Interactive design process
- 1. Lay down the initial control points
- 2. Use the algorithm to generate the curve
- 3. If the curve is satisfactory, stop
- 4. Adjust some control points
- 5. Go to step 2

A curve design scenario

왼쪽: desired curve

인천대학교

■ 가운데: control points

■ 오른쪽: 알고리즘과 approximating curve로 만들어진 curve 결과

■ Bézier curve (베지에 곡선)

- *Bé*zier (베지에) curve
- Suppose a programmer specifies P₀, P₁,...,P_n of n+1 control points, asking for a curve not necessarily passing through them, but whose shape is molded by the control points
- The generated curve is said to approximate the control points
- Below figure is a curve approximating five control points
- Bezier and de Casteljau independently invented a particular method to approximate a sequence of control points

Figure 18.1: A curve approximating five control points.

- Linear (선형) Bezier curves
- Let's start with the simplest case, where there are only two control points P0 and P1
- The Bezier curve c approximating P0 and P1 is simply the straight line segment joining two
- We write the parametric equation of c as follows

•
$$c(u) = (1-u)P_0 + uP_1$$
, 단, $0 \le u \le 1$

- The Bezier curve is said to be linear order
- being the number of control points

- **의**: what is the equation of the linear Bezier curve c with control points $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$?
- What are the points on c corresponding to the values 0, 0.3 and 1 of the parameter u?

Observations

- 1. The parametric equation for c is linear in u, is why it is called a linear Bezier curve
- $c(u) = (1-u)P_0 + uP_1$, 단, $0 \le u \le 1$
- 2. The curve c can be thought of as a weighted sum of P_0 and P_1 . The weights are 1 u and u
- These functions are called the blending (basis) functions of the respective control points
- The blending functions 1-u and u are known as the Bernstein polynomials of degree 1, which is denoted as $B_{0,1}(u)$ and $B_{1,1}(u)$

- $c(u) = (1-u)P_0 + uP_1$, 단, $0 \le u \le 1$
- $c(u) = B_{0,1}(u)P_0 + B_{1,1}(u)P_1$, 단, $0 \le u \le 1$
- The blending function $B_{0,1}(u)$ decreases from 1 to 0 as u goes from 0 to 1, while exactly the opposite is true of that of the second control point
- 3. $B_{0,1}(u)$ and $B_{1,1}(u)$ both lie between 0 and 1

$$B_{0,1}(u) + B_{1,1}(u) = 1$$
 for each u , 단, $0 \le u \le 1$

Quadratic Bezier curve

- Consider next three control points P_0 , P_1 and P_2 .
- We want to construct the Bezier curve approximating these control points
- One possible way is to linearly interpolate between P_0 and P_1 and then between P_1 and P_2
- However the corner at P₁ makes unsatisfactory

- Casteljau resolves the problem by adding a third interpolation step
- 1. First interpolate between P_0 and P_1 to find the point
- $a(u) = (1-u)P_0 + uP_1$
- 2. Next interpolate between P₁ and P₂ to find the point
- $b(u) = (1-u)P_1 + uP_2$
- 3. Finally interpolate between a(u) and b(u) to determine the point
- c(u) = (1-u)a(u) + ub(u)
- 대입하면 $c(u) = (1-u)^2 P_0 + 2u(1-u)P_1 + u^2 P_2$, $0 \le u \le 1$

$$c(u) = (1-u)^2 P_0 + 2u(1-u)P_1 + u^2 P_2, 0 \le u \le 1$$

This describes the quadratic Bezier curve approximating three control points P₀, P₁, and P₂, which is indeed smooth

Figure 18.4: Screenshot of deCasteljau3.cpp.

- Chapter 18: DeCasterlu3.cpp
- Three control points
- Press the left or right arrow keys to decrease or increase the curve parameter u

의: what is the equation of the quadratic Bezier curve c with control points $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ -1 \end{bmatrix}$?

Observations

- 1. c is quadratic in u
- **2.** $c(u) = (1-u)^2 P_0 + 2u(1-u)P_1 + u^2 P_2$, $0 \le u \le 1$
- Blending function은 Berstein polynomials of degree 2
- $c(u) = B_{0,2}(u)P_0 + B_{1,2}(u)P_1 + B_{2,2}(u)P_2$
- 단, 0 ≤ u ≤ 1

■ Bezier curve는 종종 행렬 형태로도 표현되는데

$$c(u) = (1-u)^2 P_0 + 2u(1-u)P_1 + u^2 P_2, 0 \le u \le 1$$

■ 는

•
$$\mathbf{c}(u) = \begin{bmatrix} P_0 & P_1 & P_2 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} u^2 \\ u \\ 1 \end{bmatrix}$$

