A Book of Abstract Algebra (2nd Edition)

. .			
Chapter	AA.	Problem	17E

Bookmark

Show all steps: ON

Problem

If S is a set, and A is a subset of S, then the *complement* of A in S is the set of all the elements of S which are not in A. The complement of A is denoted by A':

$$A' = \{x \in S : x \not\in A\}$$

Prove the following'.

$$(A')' = A$$
.

Step-by-step solution

Step 1 of 2

Objective:-

The objective is to prove (A')' = A.

Comment

Step 2 of 2

Proof:-

Let A and B are two sets.

If S is a set and A is a subset of S, then complementary of set A is defined as:-

$$A' = \left\{ x \in S : x \notin A \right\}$$

Let S is a set and A is a subset of S. Let $x \in (A')'$. $x \in (A')'$ $\Rightarrow x \notin A'$ $\Rightarrow x \in A$ So, $(A')' \subseteq A$ (1)

Let $x \in A$. $x \in A$ $\Rightarrow x \notin A'$ $\Rightarrow x \in (A')'$ So, $A \subseteq (A')'$ (2)

Let us consider the equation (1) and (2).

$$(A')' = A$$

Proved

Comment