Συναρτήσεις Παράγωγος

Κωνσταντίνος Λόλας

10° ΓΕΛ Θεσσαλονίκης

Αν είσαι τεμπέλης!

Γιατί να ψάχνουμε την κλίση σε κάθε σημείο ξεχωριστά?

Ας τη βρούμε για όλα και ΜΕΤΑ να κάνουμε αντικατάσταση

Αν είσαι τεμπέλης!

Γιατί να ψάχνουμε την κλίση σε κάθε σημείο ξεχωριστά? Ας τη βρούμε για όλα και ΜΕΤΑ να κάνουμε αντικατάσταση

Συνάρτηση παράγωγος

Παράγωγος

Εστω μια συνάρτηση f. Η συνάρτηση παράγωγος της f θα είναι η συνάρτηση που απεικονίζει το x_0 στο $f'(x_0)$

Συναρτήσεις 3/35

Παράδειγμα

Ας παίξουμε:

$$f(x) = c$$

c' = 0

$$f(x) = x$$

$$x' = 1$$

$$f(x) = x^2$$

$$(x^2)' = 2x$$

Παράδειγμα

Ας παίξουμε:

$$f(x) = c$$

$$c' = 0$$

$$f(x) = x$$

$$x' = 1$$

$$f(x) = x^2$$

$$(x^2)' = 2x$$

Παράδειγμα

Ας παίξουμε:

$$f(x) = c$$
$$c' = 0$$

$$f(x) = x$$

x' = 1

$$f(x) = x^2$$
$$(x^2)' = 2x$$

$$(x^2)' = 2x$$

Αποδείξεις (άθροισμα - διαφορά)

$$f + g$$

 $(f(x) + g(x))' = f'(x) + g'(x)$

$$f - g$$

 $(f(x) - g(x))' = f'(x) - g'(x)$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5/35

Αποδείξεις (άθροισμα - διαφορά)

$$f + g$$

 $(f(x) + g(x))' = f'(x) + g'(x)$

$$f - g$$

 $(f(x) - g(x))' = f'(x) - g'(x)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5/35

Αποδείξεις (γινόμενο - πηλίκο)

$$f \cdot g$$
$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$(f(x)/g(x))' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Λόλας (10° ΓΕΛ) Συναρτήσεις 6/35

Αποδείξεις (γινόμενο - πηλίκο)

$$f \cdot g$$
$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$f/g$$

$$(f(x)/g(x))' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Συναρτήσεις 6/35

Αποδείξεις (σύνθεση)

$$\begin{split} f(g) \\ (f(g(x)))' &= f'(g(x))g'(x) \end{split}$$

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 7/35

Και μια εξτρά!

Τι γίνεται με την

$$(f^{-1})'$$

- ① Γιατί?
- ② Πώς? Υπάρχει σαν ασκηση πιο κάτω!

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

Να βρείτε την παράγωγο της συνάρτησης f στο x_0 , όταν:

$$2 f(x) = \sigma v \nu x, x_0 = \frac{3\pi}{4}$$

Να βρείτε την παράγωγο της συνάρτησης f στο x_0 , όταν:

1
$$f(x) = x^5$$
, $x_0 = -1$

$$2 \ f(x) = \sigma v \nu x \text{, } x_0 = \frac{3\pi}{4}$$

Να βρείτε την παράγωγο των συναρτήσεων:

$$(x) = \ln x + \sqrt{x} + \alpha^2$$

3
$$f(x) = x^3 + \eta \mu x + \ln 2$$

Να βρείτε την παράγωγο των συναρτήσεων:

$$(x) = e^x + x + \sigma v \nu x$$

2
$$f(x) = \ln x + \sqrt{x} + \alpha^3$$

3
$$f(x) = x^3 + \eta \mu x + \ln 2$$

Να βρείτε την παράγωγο των συναρτήσεων:

- $(x) = e^x + x + \sigma v \nu x$
- **2** $f(x) = \ln x + \sqrt{x} + \alpha^3$
- $f(x) = x^3 + \eta \mu x + \ln 2$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $f(x) = 2 \ln x$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $f(x) = 2 \ln x$
- 2 $f(x) = 4x^3$

Να βρείτε την παράγωγο των συναρτήσεων:

- 2 $f(x) = 4x^3$
- $f(x) = -\frac{5}{3}x^3 + \frac{1}{2}x^2 + 2x 3$

Συναρτήσεις 11/35

Να βρείτε την παράγωγο των συναρτήσεων:

- 2 $f(x) = 4x^3$
- $f(x) = -\frac{5}{3}x^3 + \frac{1}{2}x^2 + 2x 3$

Να βρείτε την παράγωγο των συναρτήσεων:

- 2 $f(x) = 4x^3$
- $f(x) = -\frac{5}{3}x^3 + \frac{1}{2}x^2 + 2x 3$
- $f(x) = x^3(2x^2 5)$

Να βρείτε την παράνωνο των συναρτήσεων:

- **1** $f(x) = 2 \ln x$
- 2 $f(x) = 4x^3$
- $f(x) = -\frac{5}{3}x^3 + \frac{1}{2}x^2 + 2x 3$
- **4** $f(x) = \frac{3}{4}x^4 \alpha \ln x \beta$
- $f(x) = x^3(2x^2 5)$
- **6** $f(x) = \ln \frac{e^x}{x} + \ln \frac{1}{x} + e^{\ln x}$

Συναρτήσεις 11/35

Να βρείτε την παράγωγο των συναρτήσεων:

- $(x) = e^x \sigma v \nu x$

Να βρείτε την παράγωγο των συναρτήσεων:

- $(x) = e^x \sigma v \nu x$
- ② $f(x) = 3x^2 \ln x$

Να βρείτε την παράγωγο των συναρτήσεων:

- ② $f(x) = 3x^2 \ln x$
- $f(x) = (x^2 + 1)e^x$

Να βρείτε την παράγωγο των συναρτήσεων:

- ② $f(x) = 3x^2 \ln x$
- $f(x) = (x^2 + 1)e^x$

Να βρείτε την παράγωγο της συνάρτησης $f(x) = \sqrt{x} \eta \mu x$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 13/35

Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις οι οποίες είναι παραγωγίσιμες στο 0 με f(0) = g(0) = 1 kal f'(0) = 2, g'(0) = 3.

- Nα βρείτε την $(f \cdot q)'(0)$

Εστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις οι οποίες είναι παραγωγίσιμες στο 0 με f(0) = g(0) = 1 kal f'(0) = 2, g'(0) = 3.

- **1** Να βρείτε την $(f \cdot q)'(0)$
- ② Aν $h(x) = \eta \mu x \cdot f(x)$, $x \in \mathbb{R}$, να βρείτε την h'(0)

Να βρείτε την παράγωγο των συναρτήσεων:

- $\ln x$ 1 \boldsymbol{x}

Λόλας (10^o ΓΕΛ) 15/35 Συναρτήσεις

Να βρείτε την παράγωγο των συναρτήσεων:

- $\ln x$ 1 \boldsymbol{x}
- $\frac{1}{x^2+1}$

Λόλας (10^o ΓΕΛ) 15/35 Συναρτήσεις

Να βρείτε την παράγωγο των συναρτήσεων:

- $\ln x$ 1 \boldsymbol{x}
- $\overline{x^2+1}$

Λόλας (10^o ΓΕΛ) 15/35 Συναρτήσεις

Να βρείτε την παράγωγο των συναρτήσεων:

- $\ln x$ 1 \boldsymbol{x}
- \boldsymbol{x} $\frac{1}{x^2+1}$
- 3
- $\eta \mu x$ $1 + \sigma v \nu x$

Να βρείτε την παράγωγο των συναρτήσεων:

- $\ln x$ 1 \boldsymbol{x}
- \boldsymbol{x} $\frac{1}{x^2+1}$
- 3
- $\eta \mu x$ $1 + \sigma v \nu x$
- $\varepsilon \varphi x x$

Να βρείτε την παράγωγο των συναρτήσεων:

Να βρείτε την παράγωγο των συναρτήσεων:

Να βρείτε την παράγωγο των συναρτήσεων:

- $2 \ln x$
- $x^2 + 2x 3$ x

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $\eta \mu (2x-5)$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $\eta \mu (2x-5)$
- \circ $\sigma v \nu (2x)$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $\eta \mu (2x-5)$
- \circ $\sigma v \nu (2x)$
- e^{-x}

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $\eta \mu (2x-5)$
- \circ $\sigma v \nu (2x)$
- e^{-x}
- $e^{\frac{1}{x}}$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $\eta \mu (2x-5)$
- \circ $\sigma v \nu (2x)$
- e^{-x}
- $e^{\frac{1}{x}}$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $\ln \sqrt{x^2 + 1}$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $\ln \sqrt{x^2 + 1}$

Να βρείτε την παράγωγο των συναρτήσεων:

- $(x^2+2)^3$

Να βρείτε την παράγωγο των συναρτήσεων:

- $(x^2+2)^3$
- $2 \eta \mu^3 x$

Να βρείτε την παράγωγο των συναρτήσεων:

- $(x^2+2)^3$
- $2 \eta \mu^3 x$
- $\ln^2(x^2+2)$

Να βρείτε την παράγωγο των συναρτήσεων:

- $(x^2+2)^3$
- $2 \eta \mu^3 x$
- $\ln^2(x^2+2)$

Να βρείτε την παράγωγο της συνάρτησης:

$$f(x) = x^{\frac{1}{x}}$$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση που είναι παραγωγίσιμη. Να βρείτε την παράγωγο της συνάρτησης g όταν:

- ② $g(x) = f^2(-x)$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση που είναι παραγωγίσιμη. Να βρείτε την παράγωγο της συνάρτησης g όταν:

- $g(x) = f(x + \eta \mu x)$
- ② $g(x) = f^2(-x)$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $f(x) = x^{\frac{2}{3}}$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $f(x) = x^{\frac{2}{3}}$
- ② $f(x) = \sqrt[4]{x^5}$

Να βρείτε την παράγωγο των συναρτήσεων:

- **1** $f(x) = x^{\frac{2}{3}}$
- ② $f(x) = \sqrt[4]{x^5}$
- 3 $f(x) = \sqrt[3]{x^2}$

Να βρείτε την δεύτερη παράγωγο των συναρτήσεων:

$$f(x) = \frac{1}{x^2 + 1}$$

Να βρείτε την δεύτερη παράγωγο των συναρτήσεων:

$$(x) = x^3 + 5x^2 - 3x + 1$$

2
$$f(x) = \frac{1}{x^2 + 1}$$

Δίνεται η συνάρτηση
$$f(x)=\begin{cases} x^3, & x\leq 0\\ x^2, & x>0 \end{cases}$$
 Να βρείτε την $f''(x)$

Εστω $x, y, \theta: [0, +\infty) \to \mathbb{R}$ τρεις συναρτήσεις με μεταβλητή το χρόνο t, οι οποίες είναι παραγωγίσιμες. Να βρείτε τις παραγώγους των συναρτήσεων:

- **1** $f(t) = t^2 + x(t)y(t)$

Εστω $x, y, \theta: [0, +\infty) \to \mathbb{R}$ τρεις συναρτήσεις με μεταβλητή το χρόνο t, οι οποίες είναι παραγωγίσιμες. Να βρείτε τις παραγώγους των συναρτήσεων:

- **1** $f(t) = t^2 + x(t)y(t)$
- $f(t) = \ln x(t) + x^2(t)$

Εστω $x, y, \theta: [0, +\infty) \to \mathbb{R}$ τρεις συναρτήσεις με μεταβλητή το χρόνο t, οι οποίες είναι παραγωγίσιμες. Να βρείτε τις παραγώγους των συναρτήσεων:

- **1** $f(t) = t^2 + x(t)y(t)$
- 2 $f(t) = \ln x(t) + x^2(t)$

Αν η συνάρτηση x(t) είναι παραγωγίσιμη στο $[0,+\infty)$ και ισχύουν $y(t)=x^2(t)$, y'(t)=2x'(t) και x'(t)>0, για κάθε $t\geq 0$, να δείξετε ότι x(t)=1 για κάθε $t\geq 0$.

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 26/35

Εστω οι παραγωγίσιμες συναρτήσεις $x,y:[0,+\infty)\to\mathbb{R}$ με μεταβλητή το χρόνο t, για τις οποίες ισχύει $y^2(t)=3+x^2(t)$, για κάθε $t\in[0,+\infty)$. Αν τη χρονική στιγμή $t_0=1$ είναι x(1)=1, x'(1)=4 και y(1)>0, να βρείτε το y'(1).

- Φ Να βρείτε πολυώνυμο f(x) δευτέρου βαθμού, για το οποίο ισχύουν f(0)=1, f'(2)=7 και f''(2016)=6
- ② Να βρείτε πολυώνυμο P(x), για το οποίο ισχύουν: P(0)=4 και $8P(x)=(P'(x)\cdot P''(x))$, για κάθε $x\in\mathbb{R}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 28/35

- Φ Να βρείτε πολυώνυμο f(x) δευτέρου βαθμού, για το οποίο ισχύουν f(0)=1, f'(2)=7 και f''(2016)=6
- ② Να βρείτε πολυώνυμο P(x), για το οποίο ισχύουν: P(0)=4 και $8P(x)=(P'(x)\cdot P''(x))$, για κάθε $x\in\mathbb{R}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 28/35

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση. Αν η f είναι παραγωγίσιμη, να δείξετε ότι:

$$\text{ } \lim_{h \to 0} \frac{f(x+ah) - f(x)}{h} = af'(x) \text{, } a \in \mathbb{R}^*$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{h} = 2f'(x)$$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση. Αν η f είναι παραγωγίσιμη, να δείξετε ότι:

$$\label{eq:limits} \text{ } \lim_{h \to 0} \frac{f(x+ah) - f(x)}{h} = af'(x) \text{, } a \in \mathbb{R}^*$$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία παραγωγίσιμη συνάρτηση, για την οποία ισχύει

$$f(x)+e^{f(x)}=x$$
, για κάθε $x\in\mathbb{R}$

- Να δείξετε ότι η f είναι δύο φορές παραγωγίσιμη

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία παραγωγίσιμη συνάρτηση, για την οποία ισχύει

$$f(x)+e^{f(x)}=x$$
, για κάθε $x\in\mathbb{R}$

- Να δείξετε ότι η f είναι δύο φορές παραγωγίσιμη
- Nα δείξετε ότι f'(x) < 1 για κάθε $x \in \mathbb{R}$

Συναρτήσεις 30/35

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία παραγωγίσιμη συνάρτηση, για την οποία ισχύουν f'(0)=1

$$f(x)\cdot f'(-x)=1$$
, για κάθε $x\in\mathbb{R}$

- $oldsymbol{1}$ Να δείξετε ότι η παράγωγος της συνάρτησης f είναι συνεχής
- ② Να δείξετε ότι f'(x)>0 για κάθε $x\in\mathbb{R}$
- ③ Αν $g(x)=f(x)\cdot f(-x)$, για κάθε $x\in\mathbb{R}$, να δείξετε ότι g'(x)=x, για κάθε $x\in\mathbb{R}$

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία παραγωγίσιμη συνάρτηση, για την οποία ισχύουν f'(0)=1

$$f(x)\cdot f'(-x)=1$$
, για κάθε $x\in\mathbb{R}$

- $oldsymbol{1}$ Να δείξετε ότι η παράγωγος της συνάρτησης f είναι συνεχής
- ② Να δείξετε ότι f'(x)>0 για κάθε $x\in\mathbb{R}$
- ③ Αν $g(x)=f(x)\cdot f(-x)$, για κάθε $x\in\mathbb{R}$, να δείξετε ότι g'(x)=x, για κάθε $x\in\mathbb{R}$

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία παραγωγίσιμη συνάρτηση, για την οποία ισχύουν f'(0) = 1

$$f(x)\cdot f'(-x)=1$$
, για κάθε $x\in\mathbb{R}$

- Να δείξετε ότι η παράγωγος της συνάρτησης f είναι συνεχής
- Nα δείξετε ότι f'(x) > 0 για κάθε $x \in \mathbb{R}$
- 3 Αν $g(x) = f(x) \cdot f(-x)$, για κάθε $x \in \mathbb{R}$, να δείξετε ότι g'(x) = x, για κάθε $x \in \mathbb{R}$

Συναρτήσεις 31/35

ότι:

Εστω $f: \Delta \to \mathbb{R}$ μία συνάρτηση με $f(\Delta) \subseteq \Delta$, για την οποία ορίζεται η συνάρτηση $f^{-1}: f(\Delta) \to \mathbb{R}$ με $f'(x) \neq 0$, $x \in \Delta$. Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι παραγωγίσιμη στο $f(\Delta)$, να δείξετε

- ① $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ ② $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$

Εστω $f: \Delta \to \mathbb{R}$ μία συνάρτηση με $f(\Delta) \subseteq \Delta$, για την οποία ορίζεται η συνάρτηση $f^{-1}: f(\Delta) \to \mathbb{R}$ με $f'(x) \neq 0$, $x \in \Delta$.

Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι παραγωγίσιμη στο $f(\Delta)$, να δείξετε ότι:

- ① $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ ② $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$

Δίνεται η συνάρτηση $f(x) = x^5 + x^3$

- Να βρείτε το σύνολο τιμών της f

Συναρτήσεις 33/35

Δίνεται η συνάρτηση $f(x) = x^5 + x^3$

- $\ensuremath{\text{\textbf{0}}}$ Να βρείτε το σύνολο τιμών της f
- ② Να δείξετε ότι υπάρχει η συνάρτηση f^{-1} και να βρείτε το πεδίο ορισμού της
- $oxed{3}$ Να δείξετε ότι η f^{-1} δεν παραγωγίζεται στο $x_0=0$

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 33/35

Δίνεται η συνάρτηση $f(x) = x^5 + x^3$

- Να βρείτε το σύνολο τιμών της f
- Να δείξετε ότι υπάρχει η συνάρτηση f^{-1} και να βρείτε το πεδίο ορισμού της
- 3 Να δείξετε ότι η f^{-1} δεν παραγωγίζεται στο $x_0 = 0$

Συναρτήσεις 33/35

Δίνεται η συνάρτηση $f(x)=e^x+x$, $x\in\mathbb{R}$

- f 1 Να δείξετε ότι υπάρχει η συνάρτηση f^{-1}
- ② Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι παραγωγίσιμη στο $f(\mathbb{R})=\mathbb{R}$, να βρείτε την $(f^{-1})'(1)$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 34/35

Δίνεται η συνάρτηση $f(x) = e^x + x$, $x \in \mathbb{R}$

- Να δείξετε ότι υπάρχει η συνάρτηση f^{-1}
- Αν θεωρήσουμε γνωστό ότι η f^{-1} είναι παραγωγίσιμη στο $f(\mathbb{R})=\mathbb{R}$, να βρείτε την $(f^{-1})'(1)$

Συναρτήσεις 34/35

Εστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση που είναι παραγωγίσιμη και ισχύει

$$f(x\cdot y)=yf(x)+xf(y)\text{, }x\text{, }y>0$$

Nα δείξετε ότι
$$f'(x)=rac{f(x)}{x}+f'(1)$$
 , $x>0$