

Lecture 2 : Performance Metrics

Hema Murthy Professor Dept. of CSE, IIT Madras

Short Term Course on "Teaching Computer Networks Effectively". Sponsored by AICTE.

Measures of Performance

- Bandwidth
 - Aka throughput
 - Number of bits that can be transmitted
 - In a certain period
 - eg 100 Mbps, Gigabit ethernet
 - Sometimes, think of how long to transmit data
 - eg Gigabit ethernet takes 1 ns for each bit

Latency

- Time taken by a bit from end to another
- Aka delay
- Sometimes RTT is required
- eg ping times

Width of Bit and Bandwidth

Each bit $-1 \mu s$ wide

1 sec

Each bit $-0.5 \mu s$ wide

⇒ Large Bandwidth

Bandwidth and Throughput

- Confusing and (ab)used interchangeably
 - Number of bits/sec that can be sent = Bandwidth
 - Number of bits that are sent = Throughput
 - What's possible vs what's measured
- Bandwidth Requirements
 - Whatever network can give...
 - Fixed Number

Latency

- Three components
 - Speed of light propagation delay
 - Can be different in different media
 - eg only 2*10^8 m/s in fiber
 - Time taken to transmit a unit of data
 - f(network bandwidth, packet size)
 - Queue delays
- Propagation + Transmit + Queue delay = Latency
 - Propagation = Distance / Speed of light
 - Transmit = Size of packet/bandwidth

Performance Characteristics

- channel could be 1 Mbps / 100 Mbps
- Applications behave differently
 - across the continent
 - across the room
- Round trip time:
 - 1 Mbps 100ms
 - 100 Mbps 1ms

Performance Characteristics

- Example:
 - Channel Capacity: 1x10 Mbps
 - Datalength: 10 bits
 - Transmit time = 10 *microseconds*
 - Channel = 100 Mbps bits / sec
 - Transmit time = 0.010 *microseconds*

Performance Characteristics

- RTT = 100 *ms*, 1 *ms*
- Latency = $100+10 \times 10^{-3}$
- = 100.010 ms
- Latency = $1+10 \times 10^{-3}$
- = 1.001 ms
 - Latency dominated by RTT.

Performance Metrics

- Large files
 - Image of size 25x10⁶x8 bits
 - Channel Capacity 10x10⁶ bits/s
 - Time taken to transmit image 20 s
 - Suppose RTT = 1 ms
 - Latency = 20.001 sec
 - Suppose RTT = 100 ms
 - Latency = 20.1 sec
 - Bandwidth dominates latency

Bandwidth vs Latency

- What is more important?
 - Latency is more important than bandwidth at times
 - eg: Downloading files, course material
 - Bandwidth is also important at times
 - More bandwidth required to get images

Another Metric

- Computation is getting faster and faster
- Should computers wait for data?
- Instructions per mile

- Large Latency
 - Example: CPU = 200x10⁶ instructions/s
 - Latency 100ms, for 5000 miles

$$\begin{array}{rcl}
200 \times 10^{6} & -1 \\
? & -0.1 \\
\hline
\frac{200 \times 10^{6} \times 0.1}{1} & = 20 \times 10^{6} \text{ instr / sec} \\
\Rightarrow \frac{20 \times 10^{6}}{5 \times 10^{3}} & = 4000 \text{ instr /mile}
\end{array}$$

Performance Metrics

- 4000 instr / mile is lost
 - Is it worth going across network?
 - Ramification
 - Data centers, geographical spread, redundancy
- Bandwidth wasted
 - Solution
 - Treat the channel as pipe

Delay x Bandwidth Product

Analogy :

- Product = Volume of the pipe
- Useful for :
 - Given the latency and the bit width (units of time), how many bits can the network hold?

Network as a Pipe

- Example
 - Latency 50 ms
 - BW 50 Mbps
- Pipe can hold
 - 50×10⁻³×50×10⁶ bits of data
 - Bandwidth wasted if sender does not fill the pipe

Inflight Data

- Useful for high speed networks
- Sender can send Bandwidth x Latency data before the first bit arrives at receiver
- Sender can send another Bandwidth x
 Latency data for the receiver to respond back all is well
- Total data in-flight = 2 * Bandwidth * Latency
- If the receiver says stop
 - expect latency * bandwidth data anyway to come in

High Speed Networks

- Eternally connected world
- Bandwidth is increasing continuously
 - Lay more cable!
- Latency is harder to improve though
 - Laws of physics

Eg: Let RTT = 100ms

Bandwidth vs Latency (contd.)

- Infinite bandwidth
 - In a single RTT, more data can be pushed across
- RTT itself becomes a problem now
 - 100 vs 101 RTTs
 - 1 vs 2 RTTs

Throughput

- Throughput:
 - Transfer Size / Transfer Time
- Transfer Time
 - RTT + (Transfer Size / BW)
- If RTT large, increase in BW does not reduce transfer time

Throughput

- Example:
 - Latency: 100ms
 - Channel Capacity: 1 Mbps, 1 Gbps
 - Data: 10 MB
 - On 1 Mbps channel
 - Time taken = 80.1s
 - On 1 Gbps channel
 - Time taken = 0.180s

Throughput

- Throughput for 1 Mbps channel
 - 80/80.1 Mbps = 99.87 Mbps → very efficient → reaches channel capacity
- Throughput for 1 Gbps channel
 - 80/0.180 Mbps =444.4 Mbps → very inefficient → very low compared to channel capacity

Application Performance Needs

- Whatever you can give vs. fixed bandwidth requirement
- Average requirement is not a good metric
 - Bursts of requirements from the application
- Characterizing burst
 - Can I sustain peak rate for a fixed time
 - Number of bytes I can send at peak requirement before reverting back to average rate

Application Performance Needs (contd.)

- Delay can also be similar to bandwidth
 - As little delay as possible vs a fixed delay requirement
- Sometimes the one-way latency does not matter
 - Latency variation from packet to packet is a concern though
- Variation is called jitter
 - Can be concern to certain kinds of applications

Jitter

- Packets are generated every so many time units
 - Difference is called the inter-packet gap

- Fixed inter-packet gaps are good
- Variations can be a problem
 - Usually single links do not create considerable jitter
 - Multi-hop networks are the worst affected

Jitter Case Study

- Video 30 frames a sec.
 - => a packet every 33 ms
- Receiver's side: You need atleast one packet every 33 ms
- Two scenarios
 - Frame arrives early: Buffer it and play
 - Frame arrives late : Bad Quality video
- Should you remove jitter?
 - No
 - If jitter is known, you can work around it
 - Unknown jitter is the problem