

Amendments to the Specification:

Please replace paragraph [0026] with the following amended paragraph:

In one preferred aspect, the exendin or exendin agonist used in the methods of the present invention is exendin-4. In another preferred aspect, the exendin is exendin-3. In other preferred aspects, the exendin or exendin agonist is a compound of the formula (I) [SEQ ID NO. 4]:

Xaa₁ Xaa₂ Xaa₃ Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀
Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀
Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁; wherein
Xaa₁ is His, Arg or Tyr;
Xaa₂ is Ser, Gly, Ala or Thr;
Xaa₃ is Asp, Ala or Glu;
Xaa₅ is Ala or Thr;
Xaa₆ is Ala, Phe, Tyr or naphthylalanine;
Xaa₇ is Thr or Ser;
Xaa₈ is Ala, Ser or Thr;
Xaa₉ is Asp or Glu;
Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met;
Xaa₁₁ is Ala or Ser;
Xaa₁₂ is Ala or Lys;
Xaa₁₃ is Ala or Gln;
Xaa₁₄ is Ala, Leu, Ile, pentylglycine, Val or Met;
Xaa₁₅ is Ala or Glu;
Xaa₁₆ is Ala or Glu;
Xaa₁₇ is Ala or Glu;
Xaa₁₉ is Ala or Val;
Xaa₂₀ is Ala or Arg;
Xaa₂₁ is Ala or Leu;
Xaa₂₂ is Phe, Tyr or naphthylalanine;

Xaa₂₃ is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met;

Xaa₂₄ is Ala, Glu or Asp;

Xaa₂₅ is Ala, Trp, Phe, Tyr or naphthylalanine;

Xaa₂₆ is Ala or Leu;

Xaa₂₇ is Ala or Lys;

Xaa₂₈ is Ala or Asn;

Z₁ is -OH,

-NH₂,

Gly-Z₂,

Gly Gly-Z₂,

Gly Gly Xaa₃₁-Z₂,

Gly Gly Xaa₃₁ Ser-Z₂,

Gly Gly Xaa₃₁ Ser Ser-Z₂,

Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,

Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,

Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,

Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂,

Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂, or

Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈ Xaa₃₉-Z₂;

wherein Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently

selected from the group consisting of Pro,

homoproline, 3Hyp, 4Hyp, thioproline,

N-alkylglycine, N-alkylpentylglycine and

N-alkylalanine; Xaa₃₉ is Ser, Thr or Tyr; and

Z₂ is -OH or -NH₂; and pharmaceutically acceptable salts thereof;

provided that no more than three of Xaa₃, Xaa₅, Xaa₆, Xaa₈, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄,

Xaa₁₅, Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇, and Xaa₂₈ are Ala; and

provided also that the compound is not exendin-3 [SEQ ID NO. 1] or exendin-4 [SEQ ID NO. 2].

In other aspects of the invention, the increase in urine flow is accompanied by an increase in sodium excretion in said individual. In most preferred aspects, the increase in urine flow does not increase urinary potassium concentration in said individual.

Please replace paragraph [0085] with the following amended paragraph:

Exendin agonist compounds include those described in U.S. Provisional Patent Application Nos. 60/055,404; 60/066,029; and 60/065,442. Preferred exendin agonist compounds include peptide compounds of the formula (I) [SEQ ID NO. 4]:

Xaa₁ Xaa₂ Xaa₃ Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀
Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa₁₅ Xaa₁₆ Xaa₁₇ Ala Xaa₁₉ Xaa₂₀
Xaa₂₁ Xaa₂₂ Xaa₂₃ Xaa₂₄ Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈-Z₁; wherein
Xaa₁ is His, Arg or Tyr;
Xaa₂ is Ser, Gly, Ala or Thr;
Xaa₃ is Asp, Ala or Glu;
Xaa₅ is Ala or Thr;
Xaa₆ is Ala, Phe, Tyr or naphthylalanine;
Xaa₇ is Thr or Ser;
Xaa₈ is Ala, Ser or Thr;
Xaa₉ is Asp or Glu;
Xaa₁₀ is Ala, Leu, Ile, Val, pentylglycine or Met;
Xaa₁₁ is Ala or Ser;
Xaa₁₂ is Ala or Lys;
Xaa₁₃ is Ala or Gln;
Xaa₁₄ is Ala, Leu, Ile, pentylglycine, Val or Met;
Xaa₁₅ is Ala or Glu;
Xaa₁₆ is Ala or Glu;
Xaa₁₇ is Ala or Glu;
Xaa₁₉ is Ala or Val;
Xaa₂₀ is Ala or Arg;

Xaa₂₁ is Ala or Leu;
Xaa₂₂ is Phe, Tyr or naphthylalanine;
Xaa₂₃ is Ile, Val, Leu, pentylglycine, tert-butylglycine
or Met;
Xaa₂₄ is Ala, Glu or Asp;
Xaa₂₅ is Ala, Trp, Phe, Tyr or naphthylalanine;
Xaa₂₆ is Ala or Leu;
Xaa₂₇ is Ala or Lys;
Xaa₂₈ is Ala or Asn;
Z₁ is -OH,

-NH₂,
Gly-Z₂,
Gly Gly-Z₂,
Gly Gly Xaa₃₁-Z₂,
Gly Gly Xaa₃₁ Ser-Z₂,
Gly Gly Xaa₃₁ Ser Ser-Z₂,
Gly Gly Xaa₃₁ Ser Ser Gly-Z₂,
Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂,
Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂,
Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇-Z₂,
Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂, or
Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈ Xaa₃₉-Z₂;
wherein Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ are independently
selected from the group consisting of Pro,
homoprolidine, 3Hyp, 4Hyp, thioprolidine,
N-alkylglycine, N-alkylpentylglycine and
N-alkylalanine; Xaa₃₉ is Ser, Thr or Tyr; and
Z₂ is -OH or -NH₂; and pharmaceutically acceptable salts thereof;

provided that no more than three of Xaa₃, Xaa₅, Xaa₆, Xaa₈, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇, and Xaa₂₈ are Ala; and provided also that the compound is not exendin-3 or exendin-4.

Please replace paragraph [0096] with the following amended paragraph:

According to an especially preferred aspect, especially preferred compounds include those of formula (I) wherein: Xaa₁ is His or Arg; Xaa₂ is Gly or Ala; Xaa₃ is Asp, Ala or Glu; Xaa₅ is Ala or Thr; Xaa₆ is Ala, Phe or naphthylalaine; Xaa₇ is Thr or Ser; Xaa₈ is Ala, Ser or Thr; Xaa₉ is Asp or Glu; Xaa₁₀ is Ala, Leu or pentylglycine; Xaa₁₁ is Ala or Ser; Xaa₁₂ is Ala or Lys; Xaa₁₃ is Ala or Gln; Xaa₁₄ is Ala, Leu or pentylglycine; Xaa₁₅ is Ala or Glu; Xaa₁₆ is Ala or Glu; Xaa₁₇ is Ala or Glu; Xaa₁₉ is Ala or Val; Xaa₂₀ is Ala or Arg; Xaa₂₁ is Ala or Leu; Xaa₂₂ is Phe or naphthylalanine; Xaa₂₃ is Ile, Val or tert-butylglycine; Xaa₂₄ is Ala, Glu or Asp; Xaa₂₅ is Ala, Trp or Phe; Xaa₂₆ is Ala or Leu; Xaa₂₇ is Ala or Lys; Xaa₂₈ is Ala or Asn; Z₁ is -OH, -NH₂, Gly-Z₂, Gly Gly-Z₂, Gly Gly Xaa₃₁-Z₂, Gly Gly Xaa₃₁ Ser-Z₂, Gly Gly Xaa₃₁ Ser Ser-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly Ala-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆-Z₂, Gly Gly Xaa₃₁ Ser Ser Gly Ala Xaa₃₆ Xaa₃₇ Xaa₃₈-Z₂; Xaa₃₁, Xaa₃₆, Xaa₃₇ and Xaa₃₈ being independently Pro homoproline, thioproline or N-methylalanine; and Z₂ being -OH or -NH₂; provided that no more than three of Xaa₃, Xaa₅, Xaa₆, Xaa₈, Xaa₁₀, Xaa₁₁, Xaa₁₂, Xaa₁₃, Xaa₁₄, Xaa₁₅, Xaa₁₆, Xaa₁₇, Xaa₁₉, Xaa₂₀, Xaa₂₁, Xaa₂₄, Xaa₂₅, Xaa₂₆, Xaa₂₇ and Xaa₂₈ are Ala. Especially preferred compounds include those having the amino