Лабораторная работа №5

Модель хищник-жертва

Белов Максим Сергеевич, НПИбд-01-21

Содержание

Цель работы	4
Задание	5
еоретическое введение	
Моде́ль Лотки — Вольтерры	. 6
Выполнение лабораторной работы	7
Моделирование на Julia	. 7
Моделирование на Modelica	. 12
Вывод	15

Список иллюстраций

1	Зависимость численности хищников от численности жертв)	9
2	Зависимость численности хищников от численности жертв при х0=3, у0=8	10
3	Стационарное состояние	12
4	Стационарное состояние	14

Цель работы

Построить модель хищник-жертва

Задание

33 вариант ((1032219262 % 70) + 1)

Для модели «хищник-жертва»:

$$\begin{cases} dx/dt = -0.22x(t) + 0.044x(t)y(t) \\ dy/dt = 0.33y(t) - 0.022x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=3, y_0=8.$ Найдите стационарное состояние системы.

Теоретическое введение

Моде́ль Лотки — Вольтерры

Модель Лотки — Вольтерры (модель Лотки — Вольтерра) — модель взаимодействия двух видов типа «хищник — жертва», названная в честь своих авторов (Лотка, 1925; Вольтерра 1926), которые предложили модельные уравнения независимо друг от друга.

Такие уравнения можно использовать для моделирования систем «хищник — жертва», «паразит — хозяин», конкуренции и других видов взаимодействия между двумя видами.

Выполнение лабораторной работы

Моделирование на Julia

• 1. Построим графики зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=3, y_0=8$

Исходный код:

```
using Plots
using DifferentialEquations

x0 = 3
y0 = 8

a = 0.22
b = 0.044
c = 0.33
d = 0.022

function ode_fn(du, u, p, t)
    x, y = u
    du[1] = -a*u[1] + b * u[1] * u[2]
    du[2] = c * u[2] - d * u[1] * u[2]
end
```

```
v\theta = [x\theta, y\theta]
tspan = (0.0, 60.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
X = [u[1] \text{ for } u \text{ in } sol.u]
Y = [u[2] \text{ for } u \text{ in } sol.u]
T = [t for t in sol.t]
plt = plot(
    dpi=300,
    legend=false
)
plot!(
    plt,
    Χ,
    Υ,
    label="Зависимость численности хищников от численности жертв",
    color=:blue
     )
savefig(plt, "lab5_1.png")
plt2 = plot(
    dpi=300,
    legend=true)
```

```
plot!(
    plt2,
    T,
    X,
    label="Численность жертв"
)

plot!(
    plt2,
    T,
    Y,
    label="Численность хищников"
)

savefig(plt2, "lab5_2.png")
```

Получившиеся графики:

Рис. 1: Зависимость численности хищников от численности жертв)

Рис. 2: Зависимость численности хищников от численности жертв при х0=3, у0=8

• 2. Найдем стационарное состояние системы. В стационарном случае (положение равновесия, не зависящее от времени решение) будет достигаться в точке $x_0 = c/d \text{ и } y_0 = a/b.$

Исходный код:

using Plots
using DifferentialEquations

a = 0.22

b = 0.044

c = 0.33

d = 0.022

x0 = c/d

y0 = a/b

function ode_fn(du, u, p, t)

```
x, y = u
    du[1] = -a*u[1] + b * u[1] * u[2]
    du[2] = c * u[2] - d * u[1] * u[2]
end
v\theta = [x\theta, y\theta]
tspan = (0.0, 60.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
X = [u[1] \text{ for } u \text{ in } sol.u]
Y = [u[2] \text{ for } u \text{ in } sol.u]
T = [t for t in sol.t]
plt2 = plot(
    dpi=300,
    legend=true)
plot!(
    plt2,
    Τ,
    Χ,
    label="Численность жертв"
)
plot!(
    plt2,
    Τ,
    Υ,
```

```
label="Численность хищников"
)
savefig(plt2, "lab5_3.png")
```

Получившийся график:

Рис. 3: Стационарное состояние

Как видим, из определения стационарного состояния, график не будет изменяться.

Моделирование на Modelica

• 1. Построим графики зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=3, y_0=8$. Теперь будем использовать Modelica.

Исходный код:

```
model lab5_1
Real a = 0.22;
```

```
Real b = 0.044;
Real c = 0.33;
Real d = 0.022;
Real x;
Real y;
initial equation
    x = 3;
    y = 8;
equation
    der(x) = -a*x + b*x*y;
    der(y) = c*y - d*x*y;
    annotation(experiment(StartTime = 0, StopTime = 60, Tolerance = 1e-6, Intervalend lab5_1;
```

Графики (Modelica):

• 2. Стационарное состояние

Исходный код:

```
model lab5_2
Real a = 0.22;
Real b = 0.044;
Real c = 0.33;
Real d = 0.022;
```

```
Real x;
Real y;
initial equation
  x = c/d;
  y = a/b;
equation
  der(x) = -a*x + b*x*y;
  der(y) = c*y - d*x*y;
  annotation(experiment(StartTime = 0, StopTime = 60, Tolerance = 1e-6, Interval end lab5_2;
```

График:

Рис. 4: Стационарное состояние

Как видно, реализовав модель на Modelica, мы получаем аналогичные графики

Вывод

В ходе работы я построил модель хищник-жертва.