This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed is:

- 1. (Withdrawn, Currently amended) A method of coating the internal surface of a device with a polymer, wherein the device is a microfabricated device or a reaction vessel with an internal diameter of less than about 2mm, the process method comprising the steps of:
- (i) introducing into the device a solution of one or more monomers in a suitable solvent;
- (ii) introducing a flow of an inert gas through the device; and
- (iii) initiating polymerisation of the monomer solution.

wherein polymerisation of the one or more monomers leads to a ROMP polymer of Formula (I):

wherein:

X is either a C_{4-6} cycloalkyl or C_{4-6} heterocyclyl moiety;

L is a C_1 to C_{20} linker group comprising one or more alkyl, alkenyl, alkynyl, C_{4-10} cycloalkyl, C_4 10 heterocyclyl, C_{4-10} aryl, C_{4-10} heteroaryl, ether, PEG, sulphide, amide, sulphamide or a combination thereof; any of which may be substituted with one or more groups R^2

 R^1 is hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{4-12} cycloalkyl, C_{4-12} heterocyclyl, aryl, heteroaryl, $C(O)R^3$, C_{1-20} alkyl- $C(O)R^3$, C_{2-20} alkenyl- $C(O)R^3$, C_{2-20} alkynyl- $C(O)R^3$, nitro, isocyanate, C_{1-10} alkyl-C(O)- $C(R^4)_2$ -C(O)- C_{1-10} alkyl, aminooxy, nitrile, phosphorus chloride,

Application No. 10/583,647 Attorney Docket No. PH03104

succinimide, sulphonyl chloride, halogen, tosylate, mesylate, triflate, nonaflate, silane, OR^4 , SR^4 , $N(R^4)_2$, $N^+(R^4)_3$, quaternary phosphorous, C_{1-20} alkyl- R^5 , C_{2-20} alkenyl- R^5 or C_{2-20} alkynyl- R^5 or a group comprising an enzyme or a catalyst.

 R^2 is $C(O)R^3$, C_{1-20} alkyl- $C(O)R^3$, C_{2-20} alkenyl- $C(O)R^3$, C_{2-20} alkynyl- $C(O)R^3$, nitro, isocyanate, C_{1-10} alkyl-C(O)- $C(R^4)_2$ -C(O)- C_{1-10} alkyl, aminooxy, nitrile, phosphorus chloride, succinimide, sulphonyl chloride, halogen, tosylate, mesylate, triflate, nonaflate, silane, OR^4 , SR^4 , $N(R^4)_2$, $N^+(R^4)_3$, quaternary phosphorous, C_{1-20} alkyl- R^5 , C_{2-20} alkenyl- R^5 or C_{2-20} alkynyl- R^5 .

$$R^3$$
 is H, OH, C_{1-20} alkyl, OC_{1-20} alkyl, $N(R^4)_2$, $N^+(R^4)_3$;

each R⁴ is independently H or C₁₋₁₀ alkyl;

 $\underline{R^5}$ is OR^4 , SR^4 , $N(R^4)_2$, $N^+(R^4)_3$, $\underline{C_{4-10}}$ cycloalkyl, $\underline{C_{4-10}}$ heterocyclyl, aryl or heteroaryl.

- 2. (cancelled)
- 3. (Withdrawn) A method as claimed in claim 1, wherein the inert gas is nitrogen or argon.
- 4. (Withdrawn) A method as claimed in claim 1, wherein the device is a microfabricated device or a loop from 1 to 100 cm in length.
- 5. (Withdrawn) A method as claimed in claim 1, wherein the device is adapted to carry out a solid-phase radiochemical process.
- 6-10. (Cancelled)

11. (Withdrawn, Currently amended) A <u>process</u> <u>method</u> as claimed in claim 1 wherein polymerisation of the one or more monomers leads to a ROMP polymer of Formula (II):

wherein:

-L -, R¹ and n are as defined above for Formula (I).

12. (Withdrawn, Currently amended) A <u>process</u> <u>method</u> as claimed in claim 1 wherein polymerisation of the one or more monomers leads to a ROMP polymer of Formula (III):

wherein:

R¹ and n are as defined above for Formula (I);

 \boldsymbol{R}^2 is an optional group as defined above for -L- of Formula (I); and,

q = 1-4.

13. (Withdrawn, Currently amended) A <u>process method</u> as claimed in claim 12, wherein, in the ROMP polymer of Formula (III), R^1 is trialkylammonium, R^2 is absent, q = 3 and n = number of polymer units.

14. (Withdrawn, Currently amended) A process method as claimed in claim 1, wherein each monomer is present in the starting solution in a concentration of from about 0.1 to 5M.

15. (Withdrawn, Currently amended) A process method as claimed in claim 1 wherein, in the monomer solution, the solvent is a polar aprotic solvent.

16. (Withdrawn, Currently amended) A process method as claimed in claim 1 wherein polymerisation is initiated by heating.

17. (Withdrawn, Currently amended) A process method as claimed in claim1 wherein polymerisation occurs spontaneously.

18. (Withdrawn, Currently amended) A <u>process method</u> as claimed in claim 1, wherein the device is a microfabricated device and, the process of the invention comprises the initial step of creating a defined network of channels within the device.

19. (Currently amended) A device comprising a microfabricated device or a reaction vessel with an internal diameter of less than about 2mm, wherein the internal surface is coated with a polymer substrate for a solid phase physical or chemical process of Formula (I):

wherein:

X is either a C_{4-6} cycloalkyl or C_{4-6} heterocyclyl moiety;

Application No. 10/583,647 Attorney Docket No. PH03104

L is a C_1 to C_{20} linker group comprising one or more alkyl, alkenyl, alkynyl, C_{4-10} cycloalkyl, C_4 10 heterocyclyl, C_{4-10} aryl, C_{4-10} heteroaryl, ether, PEG, sulphide, amide, sulphamide or a combination thereof; any of which may be substituted with one or more groups R^2

 R^1 is hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, C_{4-12} cycloalkyl, C_{4-12} heterocyclyl, aryl, heteroaryl, $C(O)R^3$, C_{1-20} alkyl- $C(O)R^3$, C_{2-20} alkenyl- $C(O)R^3$, C_{2-20} alkynyl- $C(O)R^3$, nitro, isocyanate, C_{1-10} alkyl-C(O)- $C(R^4)_2$ -C(O)- C_{1-10} alkyl, aminooxy, nitrile, phosphorus chloride, succinimide, sulphonyl chloride, halogen, tosylate, mesylate, triflate, nonaflate, silane, OR^4 , SR^4 , $N(R^4)_2$, $N^+(R^4)_3$, quaternary phosphorous, C_{1-20} alkyl- R^5 , C_{2-20} alkenyl- R^5 or R^5 or a group comprising an enzyme or a catalyst.

 R^2 is $C(O)R^3$, C_{1-20} alkyl- $C(O)R^3$, C_{2-20} alkenyl- $C(O)R^3$, C_{2-20} alkynyl- $C(O)R^3$, nitro, isocyanate, C_{1-10} alkyl-C(O)- $C(R^4)_2$ -C(O)- C_{1-10} alkyl, aminooxy, nitrile, phosphorus chloride, succinimide, sulphonyl chloride, halogen, tosylate, mesylate, triflate, nonaflate, silane, OR^4 , SR^4 , $N(R^4)_2$, $N^+(R^4)_3$, quaternary phosphorous, C_{1-20} alkyl- R^5 , C_{2-20} alkenyl- R^5 or C_{2-20} alkynyl- R^5 .

 R^3 is H, OH, C_{1-20} alkyl, OC_{1-20} alkyl, $N(R^4)_2$, $N^+(R^4)_3$;

each R⁴ is independently H or C₁₋₁₀ alkyl;

 \underline{R}^5 is \underline{OR}^4 , \underline{SR}^4 , $\underline{N(R}^4)_2$, $\underline{N}^+(R^4)_3$, \underline{C}_{4-10} cycloalkyl, \underline{C}_{4-10} heterocyclyl, aryl or heteroaryl.

20. (Original) A device as claimed in claim 19 adapted for carrying out a solid phase radiochemical process.

21 - 22. (Cancelled)

23. (Previously presented) An automated synthesis system comprising two or more devices as claimed in claim 19 which are fluidly interconnected.

24. (Withdrawn, Currently amended) A method for recovering of ¹⁸F-fluoride ion from ¹⁸O-enriched water containing ¹⁸F-fluoride ion, the process comprising passing the ¹⁸O-enriched water containing ¹⁸F-fluoride ion through a device as claimed in claim 19 or a system comprising two or more devices as claimed in claim 19 which are fluidly interconnected, in which the polymer coating comprises a ROMP polymer of general formula (III):

$$\begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

in which R^1 is $tri(C_{1^{-6}}$ alkyl)ammonium, with a non-nucleophilic counter-ion, R^2 is absent and q is 3.

- 25. (Withdrawn) A method as claimed in claim 24 which is a step in the synthesis of an ¹⁸F-labelled radiotracer.
- 26. (Withdrawn, Currently amended) A method for the synthesis of an ¹⁸F-labelled radiotracer, the method comprising:
- (i) recovering of ¹⁸F-fluoride ion from ¹⁸O-enriched water containing ¹⁸F-fluoride ion passing the ¹⁸O-enriched water containing ¹⁸F-fluoride ion through a device as claimed in claim 19 or a device comprising two or more devices as claimed in claim 19 which are fluidly interconnected,in which the polymer coating comprises a ROMP polymer of general formula (III):

in which R^1 is $tri(C_{1^{-6}}$ alkyl)ammonium, with a non-nucleophilic counter-ion, R^2 is absent and q is 3; and

- (ii) introducing into the device an unlabelled precursor compound of the ¹⁸F-labelled radiotracer such that ¹⁸F becomes incorporated into the precursor compound *via* nucleophilic substitution to form the ¹⁸F-labelled radiotracer.
- 27. (Withdrawn) A method as claimed in claim 26, wherein the ¹⁸F-labelled radiotracer is:
- $\hbox{2-[$^{18}F$] fluorodeoxyglucose (2-[^{18}F]-FDG);}\\$
- L-6-[18F]fluoro-DOPA;
- 3'-deoxy-3'-fluorothymidine (FLT);
- $2\hbox{-}(1,1\hbox{-}dicyanopropen-2\hbox{-}yl)\hbox{-}6\hbox{-}(2\hbox{-}[^{18}F]fluoroethyl)\hbox{-}methylamino)\hbox{-}naphthalene\ ([^{18}F]FDDNP);$
- 5[18F]fluorouracil; 5[18F]fluorocytosine; or
- [18F]-1-amino-3-fluorocyclobutane-1-carboxylic acid ([18F]-FACBC).