آمار و احتمال مهندسی

نیمسال اول ۱۳۹۹–۱۴۰۰ مدرس: سید ابوالفضل مطهری

پاسخ تمرین ششم

پاسخ سوال اول

$$\begin{split} \mathbb{E}[Y_i] &= \mathbb{E}[X_i] + q \\ Var[Y_i] &= Var[X_i] = \mathbf{f} \\ Y &= Y_{\mathbf{1}} + Y_{\mathbf{f}} + \dots + Y_n \\ \Rightarrow \mathbb{E}[Y] &= nq, \quad Var[Y] = \mathbf{f} n \\ \Rightarrow Y &\sim \mathcal{N}(nq, \mathbf{f} n) \Rightarrow Z = \frac{Y - nq}{\mathbf{f} \sqrt{n}} \sim \mathcal{N}(\boldsymbol{\cdot}, \mathbf{1}) \end{split}$$

تعریف می کنیم:

$$M_n = \frac{Y_1 + Y_2 + \dots Y_n}{n}$$

حال داريم:

$$\mathbb{P}[q - \cdot \cdot \cdot) \leqslant M_n \leqslant q + \cdot \cdot \cdot \cdot] = \mathbb{P}[q - \cdot \cdot \cdot \cdot) \leqslant \frac{Y_1 + Y_2 + \dots Y_n}{n} \leqslant q + \cdot \cdot \cdot \cdot]$$

$$= \mathbb{P}[qn - \cdot \cdot \cdot \cdot n \leqslant Y \leqslant qn - \cdot \cdot \cdot \cdot n]$$

$$= \mathbb{P}[\frac{qn - \cdot \cdot \cdot n - nq}{2\sqrt{n}} \leqslant \frac{Y - nq}{2\sqrt{n}} \leqslant \frac{qn + \cdot \cdot \cdot n - nq}{2\sqrt{n}}]$$

$$= \mathbb{P}[-\cdot \cdot \cdot \delta \sqrt{n} \leqslant \frac{Y - nq}{2\sqrt{n}} \leqslant \cdot \cdot \cdot \delta \sqrt{n}]$$

$$= \mathbb{P}[-\cdot \cdot \cdot \delta \sqrt{n} \leqslant Z \leqslant \cdot \cdot \cdot \delta \sqrt{n}]$$

$$= \mathcal{Q}(-\cdot \cdot \cdot \delta \sqrt{n}) - \mathcal{Q}(\cdot \cdot \cdot \delta \sqrt{n})$$

$$= 1 - 2\mathcal{Q}(\cdot \cdot \cdot \delta \sqrt{n}) \geqslant \cdot \cdot 2\delta$$

و لذا داريم:

$$\begin{split} \mathcal{Q}(\cdot_{/} \cdot \Delta \sqrt{n}) &\leqslant \cdot_{/} \cdot \mathsf{Y} \Delta \\ \Rightarrow \cdot_{/} \cdot \Delta \sqrt{n} \geqslant \mathsf{1}_{/} \mathsf{9} \mathsf{9} \\ \Rightarrow n \geqslant \mathsf{1} \Delta \mathsf{T} \mathsf{Y} \end{split}$$

$$\widehat{\mu}_{ML} = \arg\max f_{(X_1,...,X_n)|\mu}((x_1,...,x_n)|\mu)$$

داریم:

$$f_{(X_1,...,X_n)|\mu}((x_1,...,x_n)|\mu) = \prod_{i=1}^n \frac{1}{\sqrt{\mathsf{Y}\pi\sigma_v^{\mathsf{Y}}}} \exp\left[\frac{-(x_i-\mu)^{\mathsf{Y}}}{\mathsf{Y}\sigma_v^{\mathsf{Y}}}\right]$$
$$= \left(\frac{1}{\sqrt{\mathsf{Y}\pi\sigma_v^{\mathsf{Y}}}}\right)^n \exp\left[\frac{-\sum_{i=1}^n (x_i-\mu)^{\mathsf{Y}}}{\mathsf{Y}\sigma_v^{\mathsf{Y}}}\right]$$

برای ماکسیم شدن $f_{(X_1,...,X_n)|\mu}((x_1,...,x_n)|\mu)$ باید داشته باشیم:

$$\frac{\partial}{\partial \mu} f_{(X_1,...,X_n)|\mu}((x_1,...,x_n)|\mu)$$

$$\frac{\partial}{\partial \mu} \left(\frac{-\sum_{i=1}^n (x_i - \mu)^{\mathsf{r}}}{\mathsf{r}\sigma_v^{\mathsf{r}}}\right) = \frac{\mathsf{r}}{\sigma_v^{\mathsf{r}}} \sum_{i=1}^n (x_i - \mu)$$

$$= \frac{\mathsf{r}}{\sigma_v^{\mathsf{r}}} \left[\sum_{i=1}^n x_i - n\mu\right]$$

در نتیجه:

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

پاسخ سوال سوم ا: تست Z استفاده می کنیم. داریم:

$$W = rac{ar{X} -]\mu}{\sigma/\sqrt{n}} = rac{\mathbf{r} \, \mathbf{r} \, \mathbf{r} \, \mathbf{r} - \mathbf{r} \, \mathbf{r}}{\sqrt{\mathbf{r} \, \mathbf{r}/\mathbf{r}}/\sqrt{\mathbf{r} \, \mathbf{r}}} = \mathbf{r}/\Delta \mathbf{r}$$

داشتیم $\alpha = \cdot / \cdot \Delta$ پس:

$$z_{\alpha}=z_{\cdot,\cdot,\delta}=1/8$$
 by

در نتیجه داریم:

$$W > z_{\alpha}$$

بنابراین ما H. ارد می کنیم و H ا قبول می کنیم.

پاسخ سوال چهارم از آنجا که می توان تابع جرم احتمال یک متغیّر تصادفی برنولی با پارامتر p را به صورت $P_X(x)=p^x(x)=p^x(x)$ در نظر گرفت، نسبت بخت برای این مسئله،، برابر است با:

$$\Lambda = \frac{\mathbb{P}[X_{1} = x_{1}, ..., X_{n} = x_{n} | p = p.]}{\mathbb{P}[X_{1} = x_{1}, ..., X_{n} = x_{n} | p = p.]} = \frac{\prod_{i=1}^{n} \mathbb{P}[X_{i} = x_{i} | p = p.]}{\prod_{i=1}^{n} \mathbb{P}[X_{i} = x_{i} | p = p.]}$$

$$= \frac{\prod_{i=1}^{n} p_{o}^{x_{i}} (1 - p_{o})^{1 - x_{i}}}{\prod_{i=1}^{n} p_{o}^{x_{i}} (1 - p_{o})^{1 - x_{i}}} = \frac{p_{o}^{\sum_{i=1}^{n} x_{i}} (1 - p_{o})^{n - \sum_{i=1}^{n} x_{i}}}{p_{1}^{\sum_{i=1}^{n} x_{i}} (1 - p_{1})^{n - \sum_{i=1}^{n} x_{i}}}$$

$$=\frac{p_o^y(\mathbf{1}-p_o)^{n-y}}{p_{\mathbf{1}}^y(\mathbf{1}-p_{\mathbf{1}})^{n-y}}$$

که در آن $y = \sum_{i=1}^{n}$ این تابع را می توان به فرم

$$\Lambda(x_1, x_2, ..., x_n) = a^n r^y$$

بازنویسی کرد، که در آن $r < \frac{p_o(1-p_1)}{p_1(1-p_o)}$ است و $a = \frac{1-p_o}{p_1(1-p_o)} > \cdot$ در نتیجه، نسبت بخت $a = \frac{1-p_o}{1-p_1} > \cdot$ در نتیجه، نسبت بخت تابعی نزولی برحسب y است. y است. خوت تابعی نزولی برحسب y است و مقدار مشاهده شده \hat{y} از y ، نست فرضیه ی y را رد کند. این بدین حناست که y ناحیه ردّ فرضیه، عددی ست که بر حسب y تعیین شده است. در این صورت برای هر $y > \hat{y}$ داریم:

$$\Lambda(y) < \Lambda(\hat{y}) \leqslant c_{\alpha}$$

 H_o در نتیجه باز هم این تست فرضیه

پاسخ سوال پنجم

$$\mathbb{E}(\hat{\theta_{\mathbf{1}}}) = \mathbb{E}(\mathbf{T}\bar{Y}) = \mathbf{T}\mathbb{E}(\bar{Y}) = \mathbf{T}\mu = \theta$$

پس مقدار بایاس $\hat{\theta}_1$ صفر میباشد. تابع چگالی $Y_{(n)}$ به صورت زیر هست:

$$g_{(n)}(y) = n[F_Y(y)]^{n-1} f_Y(y) = n(\frac{y}{\theta})^{n-1} \frac{1}{\theta}, \quad \cdot \leqslant y \leqslant \theta$$

$$\mathbb{E}(Y_{(n)}) = \frac{n}{\theta^n} \int_{\cdot}^{\theta} y^n dy = \frac{n}{n+1} \theta$$

$$\mathbb{E}(\hat{\theta}_{\mathsf{Y}}) = \mathbb{E}([\frac{n}{n+1}]Y_{(n)}) = \mathsf{Y}\mathbb{E}(\bar{Y}) = \mathsf{Y}\mu = \theta$$

پس مقدار بایاس $\hat{\theta}_{\mathsf{T}}$ نیز صفر میباشد.

 $Var(\hat{\theta_1}) = Var(\mathbf{Y}\bar{Y}) = \mathbf{Y}Var(\bar{Y}) = \mathbf{Y}\frac{\sigma^{\mathbf{Y}}}{n} = \frac{\theta^{\mathbf{Y}}}{\mathbf{Y}n}$ $\mathbb{E}(Y_{(n)}^{\mathsf{Y}}) = \frac{n}{\theta^n} \int_{-n}^{n+1} dy = \frac{n}{n+\mathsf{Y}} \theta^{\mathsf{Y}}$ $Var(Y_{(n)}) = \mathbb{E}(Y_{(n)}^{\mathsf{r}}) - \mathbb{E}(Y_{(n)})^{\mathsf{r}} = \frac{n}{n+\mathsf{r}}\theta^{\mathsf{r}} - (\frac{n}{n+\mathsf{r}}\theta)^{\mathsf{r}} = \frac{n}{(n+\mathsf{r})(n+\mathsf{r})^{\mathsf{r}}}\theta^{\mathsf{r}}$ $Var(\hat{\theta_{\mathbf{Y}}}) = Var(\frac{n+1}{n}Y_{(n)}) = (\frac{n+1}{n})^{\mathbf{Y}}[\frac{n}{(n+1)(n+1)^{\mathbf{Y}}}\theta^{\mathbf{Y}}] = \frac{1}{n(n+1)}\theta^{\mathbf{Y}}$

پاسخ سوال ششم

الّف از آزمون تی برای دو نمونه مستقل می توان استفاده کرد و برای نشان دادن متفاوت بودن یا نبودن باید از آزمون دو طرفه استفاده کرد زیرا فرضهای آزمون به این صورت است:

$$\begin{cases} H_{\cdot}: \bar{X}_{\cdot} = \bar{X}_{\cdot}, \\ H_{\cdot}: \bar{X}_{\cdot} \neq \bar{X}_{\cdot} \end{cases}$$

ب آماره مورد استفاده در این آزمون برابر است با:

$$t = \frac{\bar{X}_{\rm N} - \bar{X}_{\rm Y}}{s_d}$$

$$s_d = \sqrt{\frac{s_1^{\mathsf{Y}}}{n_1} + \frac{s_1^{\mathsf{Y}}}{n_1}}$$

با جایگذاری داریم:

$$t = \frac{\mathsf{I}\,\mathsf{Y} - \mathsf{I}\,\mathsf{Y},\mathsf{Y}}{\sqrt{\frac{\mathsf{I}}{\mathsf{I}\cdot} + \frac{\mathsf{Y}}{\mathsf{Y}\cdot}}} = -\mathsf{Y},\mathsf{P}$$

که با مقایسه این مقدار با مقدار متناظر ۹۵ درصد (محاسبه درجه آزادی مناسب) در جدول توزیع تی (۲/۰۴۸) فرض تاثیرگذار نبودن تراشه رد می شود.

بری کر بری کر بری کر بری کر بری کر بری کرد کند (البته این جبا توجه به جدول توزیع تی شاکی قلی خان حداکثر تا ۹۸ درصد سطح اهمیت میتواند فرض یکسان بودن را رد کند (البته این مقدار دقیقی نیست ولی میدانیم با سطح اهمیت ۹۹ درصد نمیتوان فرض را رد کرد با توجه به جدول. مقدار دقیق را میتوان با محاسبه p-value بدست آورد)

موفق باشید.