Lecture 3

A. Partition Coefficient (read "Terminology for trace-element partitioning", Beattie et al., Geochim. Cosmochim. Acta, 57, 1603-1606, 1993)). The partition coefficient is the concentration ratio of an element (i) between two phases (α and β) is

$$D_i^{\alpha/\beta} = C_i^{\alpha}/C_i^{\beta}$$

Within the region of Henry's Law behavior, the partition coefficient is independent of the concentration of "i" but it is dependent on temperature, pressure and phase composition.

Nomenclature: for applications to igneous rocks where partitioning of elements between solid phases (s) and melt (ℓ) are important, most papers follow the convention of

$$D_i^{S/\ell} = C_i^S/C_i^{\ell}$$

 $(D_{\hat{1}}^{S/\ell})$ the partition coefficient is also known as the distribution coefficient).

Note that D is commonly used for partition coefficient but if kinetic considerations are combined with studies of trace element partitioning, D has precedence for designating Diffusion Coefficient. Also K designates equilibrium constant, and K_D or K_C are used to designate compound partition coefficients. A common example is $K_D^{Fe/Mg} = \frac{(Fe/Mg)_{olivine}}{(Fe/Mg)_{melt}}$; that is, K_D or K_C are ratios of two partition coefficients.

B. Relationship between partition coefficient and equilibrium constant

Consider partitioning of Ni between forsterite solid (Mg₂SiO₄) and a melt of the same composition:

$$K_{eq} = a_{Ni}^{s} / a_{Ni}^{\ell} = \frac{x_{Ni}^{s} \gamma_{Ni}^{s}}{\frac{\ell}{x_{Ni}} \gamma_{Ni}^{s}}$$

Therefore
$$D = \, x_{Ni}^{s} \, / x_{Ni}^{\,\ell} = K_{\,eq} (\gamma_{Ni}^{\ell} \, / \gamma_{Ni}^{s})$$

i.e., the partition coefficient is related to the equilibrium constant by a ratio of activity coefficients (γ).

C. Formation Reaction

The partitioning of Ni between Mg₂SiO₄ solid and melt can also be described by a formation reaction (see Wood and Fraser, Chapter 6).

$$2NiO_{(l)} + SiO_{2(l)} = Ni_2SiO_{4(s)}$$

$$K_{eq} = \frac{a_{Ni_{2}SiO_{4(s)}}^{ol}}{\left(a_{NiO}^{\ell}\right)^{2}\left(a_{SiO_{2}}^{\ell}\right)} = \frac{(\gamma_{Ni_{2}SiO_{4}}^{ol})(x_{Ni_{2}SiO_{4}}^{ol})}{(\gamma_{NiO}^{\ell}x_{NiO}^{\ell})^{2}a_{SiO_{2}}^{\ell}}$$

Since D = $X_{Ni_2SiO_4}^{ol}/X_{NiO}^{\ell}$ it is clear that D is sensitive to $a_{SiO_2}^{\ell}$.

(We will see later that mineral/melt D's vary with the SiO₂ content of melts).

D. Exchange Reaction

The same partitioning process can be described by

$$2MgO_{(l)} + Ni_2SiO_{4(s)} = 2NiO_{(l)} + Mg_2SiO_{4(s)}$$

$$K_{eq} = \frac{(a_{NiO}^{\ell})^{2} (a_{Mg_{2}SiO_{4}}^{s})}{(a_{MgO}^{\ell})^{2} (a_{Ni_{2}SiO_{4}}^{s})}$$

and

$$K_{eq} = \frac{(\gamma_{NiO}^{\ell} / \gamma_{MgO}^{\ell})^{2}}{(\gamma_{Ni_{2}SiO_{4}}^{\ell} / \gamma_{Mg_{2}SiO_{4}}^{\ell})} \frac{(x_{NiO}^{\ell} / x_{MgO}^{\ell})^{2}}{(x_{Ni_{2}SiO_{4}}^{s} / x_{Mg_{2}SiO_{4}}^{s})}$$

This is a compound partition coefficient involving the ratio of two partition coefficients (Ni and Mg), i.e. $K_D = (X_{Mg_2} SiO_4/X_{Ni_2} SiO_4)^s/(X_{MgO}/X_{NiO})^l$ so that $K_{eq} = K_D$ times a ratio of activity coefficients. If Ni and Mg are non-ideal to similar extents, it might be expected that the ratio of activity coefficients for NiO/MgO is near unity. As a result K_D may be more nearly constant than D. Also note that the $a_{SiO_2}^\ell$ term has cancelled out.

E. Geothermometer/Geobarometer

Since equilibrium constants vary with pressure and temperature, partition coefficients are also a function of pressure and temperature; hence there is the potential of using variations in TE partition coefficients to infer P and T.

$$\begin{split} &\Delta G^{\circ} = \Delta H^{\circ}\text{-}T\Delta S^{\circ} = \Delta U^{\circ}\text{+}P\Delta V^{\circ}\text{-}T\Delta S^{\circ}\text{=-}RTln~K_{eq}\\ &So\\ &Ln~K_{eq} = \frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}\\ &(\frac{\partial ln~K_{eq}}{\partial T})_{P} = \frac{\Delta H}{RT^{2}} \quad or\\ &(\frac{\partial ln~K_{eq}}{\partial T})_{P} = \frac{-\Delta H^{\circ}}{R} \quad so \end{split}$$

a plot of $ln K_{eq}$ (lnD) versus 1/T yields a straight line. Similarly a geobarometer for pressure is

$$(\frac{\delta \ln K}{\partial P})_{T} = \frac{-\Delta V^{O}}{RT}$$

(relatively little is known about D variations versus pressure).

12.479 Trace-Element Geochemistry Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.