Matemáticas Discretas II

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- Alfabetos, palabras y lenguajes
- Operadores sobre palabras y lenguajes
- Lenguajes regulares
- Expresiones regulares

Patrons (

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	$A \rightarrow \gamma$
3	Regulares	Autómata finito	A → αB A → α

El alfabeto es el conjunto de símbolos que podrán aparecer en la entrada de la máquina

Alfabeto

· Un alfabeto es cualquier conjunto de símbolos no vacío

$$\Sigma$$
={0,1,2,3,4,5,6,7,8,9}

$$\Sigma$$
={a,b}

Alfabeto

· Un alfabeto es cualquier conjunto de símbolos no vacío

$$\Sigma$$
={0,1,2,3,4,5,6,7,8,9}
 Σ ={a,b}

Alfabeto latino:

$$\Sigma$$
={a,b,c,d,e,f,g,h,i,j,k,l,m,n,ñ,o,p,q,r,s,t,u,v,w,x,y,z}

Alfabeto griego:

$$\Sigma = \{\alpha, \beta, \gamma, \delta, \varepsilon, \ldots, \Psi, \Omega\}$$

Las palabras o cadenas son secuencias finitas de símbolos

· Dado el alfabeto usado en español:

```
Σ={a,b,c,d,e,f,g,h,i,j,k,l,m,n,ñ,o,p,q,r,s,t,u,v,w,x,y,z}

se pueden crear palabras:

colina

puente

dardo

fdkfjk
```

La noción de palabra no tiene asociada semántica

Cadena o palabra

- Una palabra es una secuencia finita de símbolos de un determinado alfabeto
 - Si Σ ={0,1,2,3,4,5,6,7,8,9}, entonces 431, 021, ϵ son palabras de Σ
 - Si Σ ={a,b}, entonces ab, ba, aaab, ϵ , son palabras de Σ

La cadena vacía ϵ representa una palabra que tiene 0 símbolos, esto es, una cinta vacía

Una máquina acepta un conjunto de palabras específico que se puede generar a partir de un alfabeto

Lenguaje

• Un lenguaje es un conjunto de palabras particular

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos
 - L2: conjunto de palabras que tienen al menos una a

a ab 69 99669 6669

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos
 - L2: conjunto de palabras que tienen al menos una a
 - L_3 : conjunto de palabras que tienen un número par de símbolos

Lenguaje

- Un lenguaje es un conjunto de palabras particular
- Muestre los siguientes lenguajes definidos sobre Σ ={a,b}
 - L₁: conjunto de palabras que tienen exactamente 3 símbolos
 - L2: conjunto de palabras que tienen al menos una a
 - L₃: conjunto de palabras que tienen un número par de símbolos
 - L₄: conjunto de todas las posibles palabras

Lenguaje universal sobre Σ

- Se denota como Σ^* y se conoce también como cerradura
- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ

Lenguaje universal sobre Σ

- Se denota como Σ^* y se conoce también como cerradura
- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ
- Muestre el lenguaje universal Σ^* para los siguientes alfabetos:
 - $\Sigma = \{a,b,c\}$
 - $\Sigma = \{1\}$

Lenguaje universal sobre Σ

- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ
- Para Σ ={a,b,c}, Σ *={ ϵ } a, b, c, aa, ab, ac, ba, bb, bc, ...}
- Para Σ={1}, Σ*={ε) 1, 11, 111, 1111,...}

 Co υίπο
 Γη Είπιτο

Lenguaje universal sobre Σ

- Σ^* es el lenguaje formado por todas las cadenas sobre el alfabeto Σ
- Para Σ ={a,b,c}, Σ *= $\{\epsilon\}$ a, b, c, aa, ab, ac, ba, bb, bc, ...} Para Σ ={1}, Σ *= $\{\epsilon\}$ 1, 11, 111, 1111,...}
- - ϵ siempre está en Σ^* porque la cadena vacía se puede obtener de cualquier alfabeto

Para cualquier alfabeto Σ , se tiene que Σ^* es infinito ya que Σ no puede ser vacío

Lenguaje

• Un lenguaje L sobre un alfabeto Σ es un subconjunto de Σ^{*} , es decir, L= Σ^{*}

Potencia de una cadena

• Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

Potencia de una cadena

• Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

· es el operador concatenación

Potencia de una cadena

Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

Potencia de una cadena

Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

- $(aab)^3 = aab \cdot (aab)^2$
 - =aab·aab· aab1
 - =aab·aab·aab·aab⁰
 - =aab·aab·aab·e=aabaabaab

Potencia de una cadena

• Sea x una cadena, se define la potencia de x como:

$$x^{n} = \begin{cases} \varepsilon, \sin n = 0 \\ x \cdot x^{n-1}, \sin n \ge 1 \end{cases}$$

· Muestre

```
Σ={a},L={a, aa, aaa, aaaa,...}
```

• Σ ={a}, L={a, aa, aaa, aaaa,...}={aⁿ | n≥1}

• $\Sigma = \{a\}$,

L= $\{a, aa, aaa, aaaa,...\}$ = $\{a^n \mid n \ge 1\}$, cadenas de una ó más a's

• Σ ={a}, L={a, aa, aaa, aaaa,...}={aⁿ | n>1}, cadenas de una ó más a's

•
$$\Sigma = \{a,b\}$$
,

L={ab, aabb, aaabbb,...}=
$$\{q^{n}b^{n} \mid n > 1\}$$

```
    Σ={a},
    L={a, aa, aaa, aaaa,...}={a<sup>n</sup> | n≥1}, cadenas de una ó más a's
    Σ={a,b},
    L={ab, aabb, aaabbb,...}={a<sup>n</sup>b<sup>n</sup> | n≥1}
```

- Σ ={a}, L={a, aa, aaa, aaaa,...}={a^n | n \ge 1}, cadenas de una ó más a's
- $\Sigma = \{a,b\}$,

L={ab, aabb, aaabbb,...}={ $a^nb^n \mid n\geq 1$ }, cadenas con igual cantidad de a's que b's, donde las a's están a la izquierda de las b's

- $\Sigma=\{a\}$, $L=\{a, aa, aaa, aaaa,...\}=\{a^n\mid n\geq 1\}, cadenas de una ó más a's$ $\Sigma=\{a,b\},$
- L={ab, aabb, aaabbb,...}={ $a^nb^n \mid n \ge 1$ }, cadenas con igual cantidad de a's que b's, donde las a's están a la izquierda de las b's

•
$$\Sigma = \{0,1\},\$$
L= $\{\epsilon,0\},10,0011,0101,1100,1001,...\}$

• $\Sigma=\{a\}$, L={a, aa, aaa, aaaa,...}={a^n \mid n\geq 1}, cadenas de una ó más a's

• $\Sigma = \{a,b\}$,

L={ab, aabb, aaabbb,...}={ $a^nb^n \mid n\geq 1$ }, cadenas con igual cantidad de a's que b's, donde las a's están a la izquierda de las b's

• $\Sigma = \{0,1\},$

L= $\{\epsilon$, 01, 10, 0011, 0101, 1100, 1001,...}= $\{w \in \{0,1\}^* \mid \text{tienen la misma cantidad de 0's que 1's}\}$, cadenas con igual cantidad de 0's que 1's

Longitud de una cadena

• Sea x una cadena que pertenece a un lenguaje L, su longitud se denota por |x| y se define como:

$$|x| = \begin{cases} 0, & \text{si } x = \varepsilon \\ n, & \text{si } x = \alpha_1 \alpha_2 \dots \alpha_n \end{cases}$$

Longitud de una cadena

 Sea x una cadena que pertenece a un lenguaje L, su longitud se denota por |x| y se define como:

$$|x| = \begin{cases} 0, si x = \varepsilon \\ n, si x = a_1 a_2 ... a_n \end{cases}$$

- |E|=0
- |ababaa|=6

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

•
$$A=\{a,ab,ac\}, B=\{b,b^2\} = \begin{cases} 966 \\ 9666 \\ 9666 \end{cases}$$
• $A\cdot B$

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- $A = \{a,ab,ac\}, B = \{b,b^2\}$
- $A \cdot B = \{ab, abb, acb, ab^2, abb^2, acb^2\} = \{ab, ab^2, acb, ab^2, ab^3, acb^2\}$

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- A={a,ab,ac}, B={b,b²}
- $A \cdot B = \{ab,abb,acb,ab^2,abb^2,acb^2\} = \{ab,ab^2,acb,ab^2,acb^3,acb^2\}$ = $\{ab,ab^2,acb,ab^3,acb^2\}$

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- $A = \{a, ab, ac\}, B = \{b, b^2\}$
- A·B={ab,abb,acb,ab²,abb²,acb²}={ab,ab²,acb,ab²,acb³,acb²}
- · B· A=? {69,696, boc,639,620, 620c}

Concatenación entre lenguajes

$$A \cdot B = \{u \cdot v \mid u \in A \land v \in B\}$$

- A={a,ab,ac}, B={b,b²}
- A·B={ab,abb,acb,ab²,abb²,acb²}={ab,ab²,acb,ab²,acb³,acb²}
- B·A={ba,bab,bac,b²a,b²ab,b²ac}

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

$$A^{n} = \begin{cases} \{\varepsilon\}, \text{ si } n=0 \\ A \cdot A^{n-1}, \text{ si } n \ge 1 \end{cases}$$

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

$$A^{n} = \begin{cases} \{\varepsilon\}, \text{ si } n=0 \\ A \cdot A^{n-1}, \text{ si } n \ge 1 \end{cases}$$

Calcule A^3 para $A=\{ab,b\}$

$$A^3=A\cdot A\cdot A=\{ab,b\}\{ab,b\}\{ab,b\}$$

 $={ab,b}{abab,bab,abb,bb}$

Potencia de un lenguaje

• Dado un lenguaje A sobre Σ se define la potencia como:

$$A^{n} = \begin{cases} \{\varepsilon\}, \text{ si } n=0 \\ A \cdot A^{n-1}, \text{ si } n \ge 1 \end{cases}$$

Calcule A³ para A={ab,b}

$$A^3=A\cdot A\cdot A=\{ab,b\}\{ab,b\}\{ab,b\}$$

 $={ab,b}{abab,bab,abb,bb}$

Cadenas formadas usando 3 concatenaciones sobre A

Dado
$$A=\{ab,ca,ad\}$$
,

 $\ciabcaab\in A^3?$
 $\ciabcaaa\in A^2?$
 $\ciabcaaa\in A^3?$
 $\ciabcaaa\in A^3?$
 $\ciabcaaab\in A^3?$
 $\ciabcaaab\in A^3?$
 $\ciabcaaab\in A^3?$
 $\ciabcaaab\in A^3?$

Dado
$$A=\{ab, c, ac\}$$
, c adcab A^3 ? c abacca a ab

Dado A={a,b,ab} calcule

• $A^0 \cup A^1 \cup A^2$

Dado A={a,b,ab} calcule

- $A^0 \cup A^1 \cup A^2$
- $-A^0=\{\varepsilon\}$
- $A^1 = A = \{a,b,ab\}$
- A^2 = $A \cdot A$ ={aa,ab,aab,ba,bb,bab,aba,abb,abab}

Por lo tanto $A^0 \cup A^1 \cup A^2 = \{\varepsilon, a, b, ab, aa, aab, ba, bb, bab, aba, abb, abab\}$

Cerradura de Kleene

 La cerradura de Kleene de un lenguaje A es la unión de las potencias, se denota por A*

$$A^* = A^0 \cup A^1 \cup A^2 \cup \dots$$

Cerradura de Kleene

 La cerradura de Kleene de un lenguaje A es la unión de las potencias, se denota por A*

$$A^* = A^0 \cup A^1 \cup A^2 \cup \dots$$

- · También se conoce como cerradura estrella
- A* es el conjunto de posibles concatenaciones sobre A

Stephen Kleene

- Creador de las expresiones regulares
- Enunció la cerradura de Kleene, A*

Pasamos de lenguajes de maquina a lenguajes de alto nivel

ASM

(1909 - 1994)

Cerradura de Kleene

Calcule A* para A={a, ab}

$$A^* = A^\circ \cup A^1 \cup A^2 \cup A^3 \cup \dots$$

$$A^* = \{ \in, \alpha, 46, \alpha 9, 99696, 9696, 96969, 969696, 969696, 969696, 969696, 969696, 969696, 969696, 969696, 969696, 969696, 969696$$

Cerradura de Kleene

```
    A={a, ab}
    A<sup>0</sup>={ε}
    A<sup>1</sup>={a,ab}
    A<sup>2</sup>={aa,aab, aba,abab}
    ...
    A*={ε,a,aa,ab,aab,aba,abab,...}
```

Cerradura de Kleene

```
• A={a, ab}
      A^0=\{\varepsilon\}
      A^1=\{a,ab\}
      A^2=\{aa,aab,aba,abab\}
                                       A = $ 9, 96 }
A^*=\{\varepsilon,a,aa,ab,aba,aba,abab,...\}
¿ababab∈A*? S∵
¿abbbb∈A*?
¿abaaaaaa∈A*? 5
```

Cerradura de Kleene

```
• A={a, ab}
         A^0=\{\varepsilon\}
         A^1=\{a,ab\}
         A^2=\{aa,aab,aba,abab\}
```

 $A^*=\{\varepsilon,a,aa,ab,aba,aba,abab,...\}$

```
• ¿Qué relación tiene A^* con \Sigma^*?
• Calcule \Sigma^* sobre \Sigma={a,b}
```

Cerradura de Kleene

```
• A={a, ab}
        A^0=\{\varepsilon\}
        A^1=\{a,ab\}
        A^2=\{aa,aab,aba,abab\}
                                                   A*C 5
A^*=\{\varepsilon,a,aa,ab,aba,aba,abab,...\}
\Sigma*={\epsilon,a,b,aa,ab,ba,bb,aaa,aab,...}
```

Cerradura de Kleene A^* y Cerradura Σ^*

- Σ^* se define sobre el alfabeto y corresponde a todas las cadenas que se pueden crear sobre un alfabeto Σ
- A* se define sobre un lenguaje A y consiste en todas las concatenaciones posibles

Cerradura de Kleene A^* y Cerradura Σ^*

- Σ^* se define sobre el alfabeto y corresponde a todas las cadenas que se pueden crear sobre un alfabeto Σ
- A* se define sobre un lenguaje A y consiste en todas las concatenaciones posibles

```
A={a, ab} está definido sobre \Sigma={a,b}

A* = {\epsilon,a,ab,aa,aab,aba,abab,...}

\Sigma* = {\epsilon,a,b,aa,bb,ab,ba,aaa,aab,aba, ...}
```

• En general se cumple que $A^*\subseteq\Sigma^*$

Cerradura positiva de Kleene A+

• La cerradura positiva de Kleene de un lenguaje A es la unión de las potencias sin incluir $A^0=\{\epsilon\}$,

$$A^+ = A^1 \cup A^2 \cup A^3 \cup \dots$$

Cerradura positiva Σ^+

• Es el conjunto de palabras que se pueden formar sobre Σ sin incluir la cadena vacía

- Sea A={a,b,ab}, muestre A* y A+. Indique si abba = A*, bba
 Sea A={a,aa,ac} y B={b,ba}, muestre A·B, B·A y B*
- 2) $A^* = \{ \epsilon, 0, 96, 96, 09, 996, 69, 66, 606... \}$ $A^+ = \{ 0, 96, 96, 09, 996, 69, 66, 606... \}$
- A.B = {ab, aba, aab, aaba, acb, acba} B.A = {ba, baa, bac, baaa, baac} $B^* = \{e,b,ba,bb,bba,bab,baba,....$

Sea A={a,b,ab}, muestre A* y A*

$$A^* = A^0 \cup A^1 \cup A^2 \cup ...$$

 $= \{\varepsilon\} \cup \{a,b,ab\} \cup \{aa,ab,aab,ba,bb,bab,aba,abb,abab,abab\} \cup ...$
 $= \{\varepsilon,a,b,ab,aa,aab,ba,bb,bab,aba,abb,abab,...\}$
 $A^+ = A^1 \cup A^2 \cup ...$
 $= \{a,b,ab,aa,aab,ba,bb,bab,aba,abb,abab,...\}$

Sea A={a,aa,ac} y B={b,ba}, muestre A·B, B·A y B*

$$A \cdot B = \{ab, aba, aaba, aaba, aaba, aaba\}$$

$$B^*=\{\varepsilon,b,ba,bba,bab,bbba,babb,...\}$$

• Muestre cadenas que pertenezcan a los siguientes lenguajes. Indique si la cadena vacía ϵ pertenece a los lenguajes y exprese de forma general (en palabras) el tipo de cadenas que pertenecen a cada uno.

-
$$L_1=\{w_1cw_2\}|w_1|=|w_2| \text{ donde } w_1,w_2\in\Sigma^*\text{ con }\Sigma=\{a,b\}\}$$

-
$$L_2$$
={ $a^nb^m | n \neq m, n, m \geq 0$ }

$$-L_3 = \{a^n b^{2n} c^n | n \ge 1\}$$

Son aquellas cadenas que contienen una c rodeada de cadenas con a y b del mismo tamaño. aacba

Cadenas con n cantidad de a's seguidas del doble de b's seguidas de n cantidad de c's

• $L_1 = \{w_1 c w_2 | |w_1| = |w_2| \text{ donde } w_1, w_2 \in \Sigma^* \text{ con } \Sigma = \{a, b\}\}$ aca, acb, bca, abbbabcaaaaaa

En general, cadenas que tienen una c en el medio, tal que las subcadenas a sus lados tienen la misma longitud. $\epsilon \not\in L_1$

• $L_2=\{a^nb^m| n\neq m, n,m\geq 0\}$

abb,aab,aabbb,aaabb

En general, cadenas que tienen distinta cantidad de a's que b's donde están a la izquierda las a's de las b's. $\epsilon \notin L_2$

• $L_3 = \{a^nb^{2n}c^n | n \ge 0\}$

abbc, aabbbbcc, aaabbbbbbccc

En general, cadenas que tienen el doble de b's que a's y que c's donde aparecen de izquierda a derecha las a's, b's y luego c's. $\epsilon \in L_3$

- Exprese de manera formal los siguientes lenguajes:
 - L_1 es el conjunto de cadenas del lenguaje universal de $\Sigma = \{a,b,c\}$ que empiezan por a y terminan en a
 - L_2 es el conjunto de cadenas que tienen longitud par definidas sobre el lenguaje universal de $\Sigma = \{a,b\}$

$$L_{1} = \{awa \mid w \in \Sigma^{*}\}$$
 $L_{2} = \{w \mid |w| \% z = 0, w \in \Sigma^{*}\}$
 $\{(990.96009006)^{*}\}$

• L_1 es el conjunto de cadenas del lenguaje universal de Σ ={a,b,c} que empiezan por a y terminan en a

$$L_1 = \{ aw_1 a \mid w_1 \in \Sigma^* \text{ con } \Sigma = \{a,b,c\} \}$$

• L_2 es el conjunto de cadenas que tienen longitud par definidas sobre el lenguaje universal de $\Sigma = \{a,b\}$

$$L_2=\{w_i | |w_i|=2k, \text{ donde existe } k\geq 1, w_i\in \Sigma^* \text{ con } \Sigma=\{a,b\}\}$$

¿Que es la cerradura de un alfabeto? incluyendo la cadena vacia

 \sum^*

Todas las posibles combinaciones del alfabeto

Potencia de una cadena: Concatenar nveces la misma cadena, potencia 0 = cadena vacía

Lenguaje L = Es un conjunto de cadenas subconjunto $\sum_{i=1}^{n}$

Potencia de un lenguaje: Concatenar un lenguaje consigo mismo

$$L = \{1,2\} = L^0 = \{e\}$$

 $L^2 = \{11,12,21,22\}$

Cerradura de Kleene

L*= L20L20L3....

Cerradura positiva

¿Como podemos especificar un lenguaje?

Formal = {wi |} Informal = Las cadenas que cumple xxxx (descripción)

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	$A \rightarrow \gamma$
3	Lenguajes Regulares	Autómata finito	A→aB A→a

Scomputation

Jerarquía de Chomsky

Noam Chomsky

- Definió las gramáticas independientes del contexto
- Creador de la jerarquía de Chomsky. 1956
- Definió la forma normal de Chomsky. 1979

(1928 -)

Lenguajes regulares

Dado un alfabeto Σ , los lenguajes regulares sobre tal alfabeto se definen recursivamente como:

ullet \varnothing es un lenguaje regular

$$\emptyset \neq \{\epsilon\}$$

- $\{\epsilon\}$ es un lenguaje regular
- Para todo símbolo $a \in \Sigma$, {a} es un lenguaje regular
- Si A y B son lenguajes regulares, entonces $A \cup B$, $A \cdot B$ y A^* son lenguajes regulares
- Ningún otro lenguaje es regular

Dado Σ ={a,b}, las siguientes afirmaciones son correctas:

- \varnothing y $\{\epsilon\}$ son lenguajes regulares
- {a} y {b} son lenguajes regulares
- {a,b} es regular porque es la unión de {a} y {b}
- {ab} es regular porque es la concatenación de {a} y {b}
- {a,ab,b} es regular porque es la unión de dos lenguajes regulares
- $\{a^n | n \ge 0\}$ es regular
- $\{a^mb^n|m\geq 0 \land n\geq 0\}$ es regular
- $\{(ab)^n | n \ge 0\}$ es regular

Dado Σ ={a,b,c}, indique si los siguientes lenguajes son regulares:

0 6 mcn / 130 mzo 120 $\{e, a, aa, aaa, ...\}$ $\{e, b, bb, bbb, ...\}$ 90= {E, 9, 99, 099, ...} P30 = { e, 66, 666 ... }

 $\begin{cases} \xi = \{e, b6, bbb, ...\} \\ \xi \in \{b6, bbbb, 9, 9bb, 9bbbb, 99, 99bb, ...\} \end{cases}$

 \times $0^{-} = \{ \in \{0, 99, 999, .\} \}$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc { e, 6, 66, 66, ..., 9, 96, 966, 9666 } 9666 E 9767

Dado Σ ={a,b,c}, indique si los siguientes lenguajes son regulares:

- {a}*
- {a}*∪{b}*
- {a}*·{b}*
- {a,bc}*
- {a}·{b,c,ab}
- $\{a^nb^n|n\geq 0\}$, no es regular
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}$
- $\{a^nb^{2n}|n\geq 0\}$, no es regular

Dado Σ ={a,b,c}, indique si los siguientes lenguajes son regulares:

- {a}*
- {a}*∪{b}*
- {a}*·{b}*
- {a,bc}*
- {a}·{b,c,ab}

- $\{a^n \mid n \geq 0\} = \{\epsilon, a, aa, aaa, ...\}$
- $\{b^n | n \ge 0\} = \{\epsilon, b, bb, bbb, ...\}$

 $aab \in \{\varepsilon, a, aa, aaa, ...\} \cdot \{\varepsilon, b, bb, bb, ...\}$ pero no cumple aⁿbⁿ

- $\{a^nb^n|n\geq 0\}$, no es regular
- { $a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0$ }
- $\{a^nb^{2n}|n\geq 0\}$, no es regular

Desarrolle el lenguaje L={abc,ab,a}+

$$L = \begin{cases} abc, ab, a, abcabc, abcab, abcab, abca, ababc, ... \end{cases}$$
 $L = \begin{cases} 120 & 130 \\ 120 & 130 \end{cases}$

Desarrolle el lenguaje L={abc,ab,a}+

L={abc,ab,a,abcabc,abcab,abca,...}

Desarrolle el lenguaje L={abc,ab,a}⁺

L={abc,ab,a,abcabc,abcab,abca,...}

Compárelo con {abc,ab,a}*

Desarrolle el lenguaje L={abc,ab,a}*

L={abc,ab,a,abcabc,abcab,abca,...}

Compárelo con {abc,ab,a}*

{abc,ab,a}*={\varepsilon,abc,abc,abcab,abca,...} {abc,ab,a}*={abc,ab,a,abcabc,abcab,abca,...}

Desarrolle el lenguaje L={abc,ab,a}*

```
L={abc,ab,a,abcabc,abcab,abca,...}
```

Compárelo con {abc,ab,a}*

```
{abc,ab,a}*={\varepsilon,abc,abc,abcab,abca,...}

{abc,ab,a}*={abc,ab,a,abcabc,abcab,abca,...}

{abc,ab,a}*={abc,ab,a}*.{abc,ab,a}
```

• En general se cumple que $A^{+}=A^{*}\cdot A$

$$A^{+} = AA^{+}$$

$$A^{+} = A^{+} \cup \{e\}$$

Indique si los siguientes lenguajes son regulares:

• {ab^a|n≥0} ← S ← b°= {e}, 66,666, ...} q b°q

• {a^nb^mc^n+m|n,m≥0} ← NO

• {wcw|we{a,b}*} ← S ←

• {we{a,b}*||w|=2k, para k≥0} ←

$$a^2 = \{e, 9, 9, 99, 999 - b\}$$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 999 - b\}$
 $b^* = \{e, 9, 9, 99, 99$

 $K = 0, 1, 2, 3, 4, \dots, 1$ $\begin{cases}
We(9,6) + |W| = 2K, 6>0
\end{cases}$ ΘQ Θ

Indique si los siguientes lenguajes son regulares:

- $\{ab^na \mid n \ge 0\}$
- $\{a^nb^mc^{n+m}|n,m\geq 0\}$
- $\{wcw|w\in\{a,b\}^*\}$
- {w∈{a,b}*| |w|=2k, para k≥0}
 {aa, ab, ba, bb}*

$$d_{\nu}(50)$$

Desarrolle cada uno de estos lenguajes regulares:

```
• {a}* \( \tag{\epsilon} \) \(
                     · {a}*∪{b}* {€,9,09,09,00} ∪ {€, 6,66, ...}={€,9,99, .... 6,66, $/
                     · {a}*·{b}* {e, a, a9, }() {e, 6,66, } = {e, 6,66,...,9,966,...}
                     • {a,bc}* {e, a, bb, obc, bcg, ...}
                    • {a}·{b,c,ab} = { 96, 96, 96}
                     · {(ab)i|i≥0} = { €, 96, 9696, 9696, ...}
                     • {anbm|n≥0, m≥0} = {@, a, a 9, a 99, -} { €, b, b, b 66, ...} - ≥ €, b, 66, .... }
                                                                                                                                                                                                                                                                                        96,966.
                     • \{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}
2=, 9, 99, ...} {e, 6, 66, ...} fe, c, cc,...}
                                                                                                                                                                                                                         all E 9 / [m_ Si
                                                   819 BCCE 916mcn S1-
                                                                                                                                                                                                                                  € € 9 7 6 % _ SI-
```

Desarrolle cada uno de estos lenguajes regulares:

- {a}*
- $\{a\}^* \cup \{b\}^*$ $\forall ab \in \{a\}^* \cup \{b\}^*$?
- $\{a\}^* \cdot \{b\}^*$ $\forall bb \in \{a\}^* \cdot \{b\}^*$?, $\forall baa \in \{a\}^* \cdot \{b\}^*$?
- {a,bc}* ibcbca∈{a,bc}*?, ibaaa∈{a,bc}*?
- {abc,ab,a}+
- {a}·{b,c,ab}
- {(ab)ⁱ|i≥0}
- $\{a^nb^m | n \ge 0, m \ge 0\}$
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}$

Desarrolle cada uno de estos lenguajes regulares:

- {a}*={ε,a,aa,aaa,aaaa,...}
- $\{a\}^* \cup \{b\}^* = \{\epsilon, a, aa, aaa, ...\} \cup \{\epsilon, b, bb, bbb, ...\} = \{\epsilon, a, b, aa, bb, aaa, bbb, ...\}$
- $\{a\}^* \cdot \{b\}^* = \{\varepsilon, a, aa, aaa, \dots, ab, aab, aaab, \dots, b, b, bbb, \dots\}$
- {a,bc}*={ε,a,bc,aa,abc,bca,bcba,aaa,...}
- {abc,ab,a}+={abc,ab,a,abcabc,abcab,abca,...}
- {a}·{b,c,ab}={ab,ac,aab}
- $\{(ab)^i | i \ge 0\} = \{\epsilon, ab, abab, ababab, ...\}$
- $\{a^nb^m|n\geq 0, m\geq 0\}=\{\epsilon,a,b,ab,aab,abb,aaab,...\}$
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}=\{\epsilon,a,b,c,ab,bc,abc,aa,aab,aac,...\}$

Desarrolle cada uno de estos lenguajes regulares:

- {a}*={ε,a,aa,aaa,aaaa,...}
- $\{a\}^* \cup \{b\}^* = \{\epsilon, a, aa, aaa, ...\} \cup \{\epsilon, b, bb, bbb, ...\} = \{\epsilon, a, b, aa, bb, aaa, bbb, ...\}$
- {a}*·{b}*={ ϵ ,a,aa,aaa,...,ab,aab,aaab,...,b,b,bbb,...} \leftarrow
- {a,bc}*={ε,a,bc,aa,abc,bca,bcba,aaa,...}
- {abc,ab,a}+={abc,ab,a,abcabc,abcab,abca,...}
- {a}·{b,c,ab}={ab,ac,aab}
- $\{(ab)^i | i \ge 0\} = \{\varepsilon, ab, abab, ababab, ...\}$
- $\{a^nb^m|n\geq 0, m\geq 0\}=\{\epsilon,a,b,ab,aab,abb,aaab,...\}$
- $\{a^lb^mc^n|l\geq 0, m\geq 0, n\geq 0\}=\{\epsilon,a,b,c,ab,bc,abc,aa,aab,aac,...\}$

Note que el orden importa y que pueden haber cualquier cantidad de a's o de b's

¿Porque (1) & No Es regular 120

Son= {e, 66, 666, 6666, }

E. 66 = 66 E 978 ?

Discuta la pertenencia de las siguientes cadenas dado L={a,bc}*\(-\{ad,d\}*\)

- 2) · ¿aabcadeL? No
- 3) ¿adbc∈L? №°
- 9)· ¿adad∈L? S/
- S)• ¿adddd∈L? S

Lenguajes regulares

Interprete el tipo de palabras que pertenecen al siguiente lenguaje

$$L = \{a\}^* \cup \{b\}^*$$

Lenguajes regulares

Interprete el tipo de palabras que pertenecen al siguiente

lenguaje

L = {a}*∪{b}*

Cadenas que tienen a's o b's. Estos símbolos no aparecen mezclados

Lenguajes regulares

Interprete el tipo de palabras que pertenecen al siguiente lenguaje

$$L = \{a\}^* \cdot \{b\}^*$$

Lenguajes regulares

Interprete el tipo de palabras que pertenecen al siguiente lenguaje

$$L = \{a\}^* \cdot \{b\}^*$$

Cadenas que tienen cero o más a's seguidas de cero o más b's

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje A de todas las palabras que tienen exactamente una a

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje A de todas las palabras que tienen exactamente una a

$$A = \{b\}^* \cdot \{a\} \cdot \{b\}^*$$

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje A de todas las palabras que tienen exactamente una a

$$A = \{b\}^* \cdot \{a\} \cdot \{b\}^*$$

· Desarrolle el lenguaje

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje B de todas las palabras que comienzan con b

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje B de todas las palabras que comienzan con b

$$B = \{b\} \cdot \{\{a\} \cup \{b\}\}^*$$

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje C de todas las palabras que contienen la cadena ba

Lenguajes regulares

Dado Σ ={a,b}, defina el lenguaje C de todas las palabras que contienen la cadena ba

$$C = \{\{a\} \cup \{b\}\} * \cdot \{ba\} \cdot \{\{a\} \cup \{b\}\} *$$

Expresión regular

Una expresión regular es una forma simplificada de representar un lenguaje regular

Lenguaje regular	Expresión regular
{ab}	ab
{a}*	a*
{a} ⁺	a⁺
{a} ∪ {b}	a∪b

Expresión regular

Algunas expresiones regulares:

- b*
- b(a∪b)*
- $(a \cup b)*ba(a \cup b)*$

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que comienzan con b y terminan con a

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que comienzan con b y terminan con a

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen exactamente dos a's

68696*

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen exactamente dos a's

b*ab*ab*

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen un número par de a's

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen un número par de a's

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud par

(abuba uagu bb)

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud par

(aa\ab\ba\bb)*

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud impar

• Indique la expresión regular que denota el lenguaje de todas las palabras sobre Σ ={a,b} que tienen longitud impar a(aa \cup ab \cup ba \cup bb)* \cup b(aa \cup ab \cup ba \cup bb)*

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} que tienen al menos una b

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} que tienen al menos una b

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b,c} que no contienen la subcadena ac

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b,c} que no contienen la subcadena ac

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el penúltimo símbolo es una a

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el penúltimo símbolo es una a

$$(a \cup b)*a(a \cup b)$$

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el antepenúltimo símbolo es una a

(906) q(906) (906)

• Indique la expresión regular que denota el lenguaje de todas las cadenas sobre Σ ={a,b} donde el antepenúltimo símbolo es una a

$$(a \cup b)*a(a \cup b)(a \cup b)$$

Expresiones regulares equivalentes

5.
$$r \cdot \varepsilon = \varepsilon \cdot r = r$$

$$7. (rs)t=r(st)$$

8.
$$r(s \cup t) = rs \cup rt$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$

Expresiones regulares equivalentes

5.
$$r \cdot \varepsilon = \varepsilon \cdot r = r$$

$$7. (rs)t=r(st)$$

8.
$$r(s \cup t) = rs \cup rt$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$

$$\{a\}\cup\{bc\}=\{bc\}\cup\{a\}=\{a,bc\}$$

$$\lambda_{\star} = (\lambda_{\star})_{\times}$$

Expresiones regulares equivalentes

1.
$$r \cup s = s \cup r$$

5.
$$r \cdot \varepsilon = \varepsilon \cdot r = r$$

$$7. (rs)t=r(st)$$

8.
$$r(s \cup t) = rs \cup rt$$

14.
$$s(r \cup \varepsilon)^*(r \cup \varepsilon) \cup s = sr^*$$

10. (r∪s)*=(r*∪s*)*=(r*s*)*

$$\frac{1}{(x \cup S)^{2}} = \frac{1}{(x \cup S)^{2}} \cup (x \cup S)^{2} \cup ($$

Palabras que tiene r o s en cualquier orden y en cualquier cantidad.