

Quantum Machine Learning An Introduction

By Jack Streeter

What is Machine Learning?

Classical vs Quantum

Type of Algorithm

Type of Data

Workflow

Supervised Learning

$$\hat{y} = h(x)$$

Credit Score =

f(Total Credit, Short Term Loan, Credit Utilisation, Missing Payments)

Classical Algorithm: Regression

Input x / independent variable

Model Function

Hypothesis function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Output y / dependant variable

Instance	X	у
1	x_1	y_1
2	<i>x</i> ₂	y_2
i	x_i	y_i
		•••
m	x_m	\mathcal{Y}_m

x – input

y – output

m – number of instances

Cost Function

$$J = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$$

Multivariable Regression

Instance	x_1	x_2	x_3	x_4	у
1					
2					
i					
m					

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

Polynomial Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \dots + \theta_n x^k$$

Bayesian Information Criterion

$$BIC_k =$$

$$m * ln(SS_{\epsilon}) + k * ln(m)$$

Quantum Machine Learning

Parametrised Quantum Circuits

$$|\psi_{\theta}\rangle = U_{\theta}|\phi_{0}\rangle$$

Training Parametrised Quantum Circuits

$$\vec{ heta}_n$$

Update Parameters

$$\vec{\theta}_n \rightarrow \vec{\theta}_{n+1}$$

$$\langle \Psi(\vec{\theta}) | \widehat{H} | \Psi(\vec{\theta}) \rangle$$

Function Value

Training Parametrised Quantum Circuits

$$\vec{\theta}_{n+1} = \vec{\theta}_n - \eta \nabla f(\vec{\theta}_n)$$

Data Encoding

$$Data\ set\ Y = (x^{(1)}, ..., x^{(m)}, ..., x^{(M)})$$

Where

$$x^{(m)} = (b_1, b_2, ..., b_N)$$

Data Encoding

$$x^{(m)} = (b_1, b_2, ..., b_N)$$

Where $b_N = 0$ or 1

$$|x^{(m)}\rangle = |b_1, b_2, \dots, b_N\rangle$$

Data Encoding

$$|Y\rangle = \frac{1}{\sqrt{N}} \sum_{m=1}^{M} |x^{m}\rangle$$

Variational Classification

Variational Classification

$$|\psi(\vec{x}_i)\rangle = U_{W(\vec{\theta})}U_{\Phi\vec{x}_i}|0\rangle$$