1. (6 valores)

- a) Mostre que o momento dipolar de uma distribuição de cargas não depende da origem das coordenadas se e só se a carga total dessa distribuição for nula.
- b) Seis cargas pontuais estão colocadas nos vértices de um hexágono de lado a, no plano z=0, como se ilustra na figura. O valor absoluto das cargas é o mesmo, mas os sinais de cargas adjacentes são opostos. Determine, para pontos no plano xy, os três primeiros termos do desenvolvimento multipolar do potencial desta distribuição de cargas (termos monopolar, dipolar e quadripolar), em relação à origem do sistema de eixos mostrado na figura.

- **2.** (8 *valores*) Considere uma esfera condutora de raio *R*, eletrizada com carga total *Q*, positiva, em equilíbrio eletrostático.
- a) Pretende-se determinar a força total, \vec{F} , que é exercida sobre o hemisfério superior (z > 0, ver figura) usando o tensor de Maxwell. Para o fazer considere os seguintes passos:
 - a.1) Indique qual é a direção e sentido dessa força. Justifique a sua resposta utilizando argumentos de simetria.
 - a.2) Determine as componentes (relevantes para o cálculo) do tensor de Maxwell na superfície fechada constituída pelo plano xy e pela superfície da semiesfera superior (z>0) de raio infinito (basta determinar as componentes do tensor que são necessárias para o cálculo da força). Calcule \vec{F} .

b) Seguidamente liga-se a esfera à terra através de um fio condutor muito fino (de resistência desprezável), durante o intervalo de tempo suficiente para que a esfera se descarregue totalmente. Determine a energia eletromagnética que flui através da superfície da esfera nesse intervalo de tempo. Indique, justificando, se essa energia entra ou sai da esfera.

3. (6 valores) Quando na superfície de separação entre dois meios transparentes, isotrópicos, lineares e homogéneos incide radiação eletromagnética com polarização p (ou TM), do meio 1 para o meio 2, as amplitudes dos campos elétricos das ondas incidente (\widetilde{E}_{0_I}), refletida (\widetilde{E}_{0_R}) e transmitida (\widetilde{E}_{0_T}) relacionam-se pelas seguintes equações de Fresnel:

$$\widetilde{E}_{0_R} = \left(\frac{\alpha - \beta}{\alpha + \beta}\right) \widetilde{E}_{0_I}; \quad \widetilde{E}_{0_T} = \left(\frac{2}{\alpha + \beta}\right) \widetilde{E}_{0_I}$$

onde

$$\alpha = \frac{\cos \theta_T}{\cos \theta_I}; \qquad \beta = \frac{\mu_1 n_2}{\mu_2 n_1}$$

 n_1 e n_2 representam os índices de refração; μ_1 e μ_2 representam as permeabilidades magnéticas.

- a) Escreva as equações de Fresnel para o caso de incidência normal entre dois meios não magnéticos. Justifique por que razão não faz sentido, neste caso, distinguir entre polarização p e polarização s.
- b) Ainda para este caso, considere as duas situações $n_1 < n_2$ e $n_1 > n_2$ e utilize as equações de Fresnel para determinar, para cada situação:
- i) a diferença de fase entre a onda refletida e transmitida;
- *ii*) se a amplitude da onda transmitida é maior ou menor que a amplitude da onda incidente;
- *iii*) se a intensidade da onda transmitida é maior ou menor que a intensidade da onda incidente.