

(11) EP 3 889 256 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 06.10.2021 Bulletin 2021/40

(21) Application number: 18941327.1

(22) Date of filing: 30.11.2018

(51) Int Cl.:

C12N 15/09 (2006.01) C12N 15/53 (2006.01) C12N 1/21 (2006.01) C12P 7/56 (2006.01)

(86) International application number:

PCT/JP2018/044226

(87) International publication number:

WO 2020/110300 (04.06.2020 Gazette 2020/23)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

Designated Validation States:

KH MA MD TN

(71) Applicant: Utilization of Carbon Dioxide Institute Co.,Ltd.

Tokyo, 108-0014 (JP)

(72) Inventors:

 YUKAWA Hideaki Tokyo 108-0014 (JP)

 OHTANI Naoto Tokyo 108-0014 (JP)

(74) Representative: Lederer & Keller Patentanwälte

Partnerschaft mbB Unsöldstraße 2

80538 München (DE)

(54) LACTIC ACID-PRODUCING TRANSFORMANT OF BACTERIUM OF GENUS HYDROGENOPHILUS

(57) A transformant obtained by introducing (a) a lactate dehydrogenase gene and/or (b) a malate/lactate dehydrogenase gene into a *Hydrogenophilus* bacterium efficiently produces lactic acid through use of carbon dioxide as a sole carbon source. *Parageobacillus thermoglucosidasius* ldh gene, *Geobacillus kaustophilus* ldh gene

and *Thermus thermophilus* ldh gene of lactate dehydrogenases, and *Thermus thermophilus* mldh gene and *Meiothermus ruber* mldh-1 and mldh-2 genes of malate/lactate dehydrogenases are preferable in that they have good lactic acid production efficiency.

Description

Technical Field

⁵ **[0001]** The present invention relates to a *Hydrogenophilus* bacterium transformant harboring the ability to produce lactic acid, and to a method for producing lactic acid using the same.

Background Art

15

30

35

50

55

Production of chemical products using microorganisms

[0002] The Paris Agreement, which was adopted in 2015, provides that global emissions of greenhouse gases should be promptly reduced. Under the Agreement, Japan set the goal of reducing her emission of greenhouse gases such as carbon dioxide and methane by 26% compared with year 2013 levels, by the year 2030.

[0003] Worldwide, the majority of the production of chemicals depends on petroleum resources, exacerbating the problem of increased greenhouse gas emissions. Accordingly, departure from petroleum dependency is a desirable strategy for the production of chemicals, and research and development of biorefineries that produce green chemicals from biomass is being earnestly carried out in various countries. However, the saccharification of biomass for use as raw materials of microbial fermentation necessitates complex processes, beside being costly.

[0004] As part of research geared towards departure from petroleum dependency, gases such as carbon dioxide, methane, and carbon monoxide have attracted attention as more sustainable carbon sources, and techniques for producing valuable chemicals and biofuels using microorganisms that utilize these gases are the subject of intense interest. In particular, carbon fixation of carbon dioxide and efficient utilization of carbon dioxide, a significant contributor to global warming, is highly anticipated.

[0005] Biodegradable plastics, which are eventually decomposed to water and carbon dioxide by microorganisms in nature, have attracted attention in light of the problems of sea pollution by plastic garbage, etc. Biodegradable plastics are categorized into bacterial products series, natural products series and chemical synthetic series according to method of manufacture. Polylactic acid (lactic acid resin), of which research and practical realization has proceeded the fastest of all biodegradable plastics, is regarded as an intermediate biodegradable plastic between bacterial products series and chemical synthetic series since its raw material is lactic acid, a product of the glycolysis system, an intravital metabolic pathway. That is, polylactic acid is produced by the purification of lactic acid produced by microbial fermentation and chemical polycondensation. Current polylactic acid production uses biomass as a raw material, the conversion of biomass into saccharides requires complicated steps, as aforementioned, and therefore, current polylactic acid production has a ploblem of a high cost.

[0006] Accordingly, a practicable method which is able to produce lactic acid in simpler steps is required. In particular, a practicable method which is able to produce lactic acid by carbon dioxide fixation.

[0007] Lactic acid is produced from pyruvic acid, intravital important metabolic product. That is, lactic acid is produced by catalytic activity of lactate dehydrogenase.

[0008] As a technology which manufactures lactic acid using a recombinant microorganism, Patent Literature 1 describes a method for producing lactic acid using a transformant obtained by introducing the lactate dehydrogenase gene of *Lactobacillus helvetics* or *Bacillus megaterium* into a yeast strain.

[0009] Patent Literature 2 describes a method for producing lactic acid using a transformant obtained by introducing *Lactobacillus pentosus* LDH gene as a lactate dehydrogenase gene into *Schizosaccharomyces pombe*.

[0010] Patent Literature 3 describes a method for producing lactic acid using a transformant obtained by introducing *Thermoanaerobacter pseudethanolicus* ldh gene as a lactate dehydrogenase gene into *Moorella thermoacetica*.

[0011] Patent Literature 4 describes a method for producing lactic acid using a transformant obtained by introducing *Lactobacillus delbrueckii* hdhD gene or ldhA gene as a lactate dehydrogenase gene into *Geobacillus thermoglucosidans*.

[0012] Non Patent Literature 1 describes a method for producing lactic acid using a transformant obtained by introducing

the lactate dehydrogenase gene of Lactobacillus casei into Escherichia coli.

[0013] However, all these methods are methods for producing lactic acid using sugar as a carbon source, and not methods for producing lactic acid using carbon dioxide as a carbon source.

[0014] Non Patent Literature 2 describes a method for producing lactic acid using a transformant obtained by introducing the lactate dehydrogenase gene of *Bacillus subtilis* into *Synechocystis sp.* PCC6803 strain. This method is for producing lactic acid using Cyanobacterium, which is a photosynthetic bacterium, as a host and using sodium hydrogen carbonate as a carbon source.

[0015] Cyanobacteria have a higher carbon fixation ability of carbon dioxide as compared to that of plants. However, the method of using Cyanobacterium as a host has not been put into practical use as an industrial method for producing lactic acid since carbon dioxide fixation ability of Cyanobacteria is insufficient.

[0016] Patent Literature 5 describes a method for producing lactic acid using a transformant obtained by introducing *Thermus thermophilus* IdhA gene as a lactate dehydrogenase gene into *Hydrogenobacter thermophilus*.

[0017] Hydrogenobacter thermophilus is a hydrogen oxidizing bacterium which grows twofold in 1.5 hours. However, to apply current is necessary in order to produce sufficient amounts of lactic acid, and therefore, the method using Hydrogenobacter thermophilus as a host has not been put into practical use as an industrial method for producing lactic acid

Citation List

Patent Literatures

[0018]

15

25

30

35

50

[Patent Literature 1] JP2005-528106A [Patent Literature 2] JP2014/030655A1 [Patent Literature 3] JP2015-023854A [Patent Literature 4] JP2017-523778A [Patent Literature 5] JP2017-093465A

20 Non Patent Literatures

[0019]

[Non Patent Literature 1] Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Chang DE, Jung HC, Rhee JS, Pan JG. Appl. Environ. Microbiol. (1999) 65:1384-1389 [Non Patent Literature 2] Engineering a cyanobacterial cell factory for production of lactic acid. Angermayr SA, Paszota M, Hellingwerf KJ. Appl. Environ. Microbiol. (2012) 78:7098-7106

Summary of Invention

Technical Problem

[0020] The objective of the present invention is to provide a transformant of a *Hydrogenophilus* bacterium that is capable of efficiently producing lactic acid utilizing carbon dioxide as a sole carbon source, and a method for efficiently producing lactic acid using this transformant.

Solution to Problem

[0021] Hydrogenophilus bacteria are hydrogen oxidizing bacteria which grow by producing organic substances from carbon dioxide by utilizing hydrogen energy. The growth rate of hydrogen-oxidizing bacteria is generally extremely slow, however, the growth rate of Hydrogenophilus bacteria is fast, and their carbon fixation ability of carbon dioxide is remarkably higher than that of plants and photosynthetic bacteria.

[0022] Hydrogenophilus bacteria do not have a lactate dehydrogenase gene and a malate/lactate dehydrogenase gene, which are known to encode an enzyme catalyzing the reaction of producing lactic acid from pyrubic acid. In order to provide the bacteria with an ability to produce lactic acid at an industrial scale, there is a need to introduce genes of enzymes that catalyze the reaction of producing lactic acid.

[0023] The inventors of the present invention have found that when a heterologous gene is introduced into *Hydrogenophilus* bacteria using a vector that functions within the *Hydrogenophilus* bacteria, a functioning protein often is not produced or is insufficiently produced. Genes which bring about high activity within bacteria other than the genus *Hydrogenophilus* often do not, or insufficiently, bring about activity.

[0024] Faced with such a situation, the inventors of the present invention have found that when a lactate dehydrogenase gene and/or a gene encoding a malate/lactate dehydrogenase which has lactate dehydrogenase activity is/are introduced into *Hydrogenophilus* bacteria, the gene(s) function(s) and bring(s) about high activity within the *Hydrogenophilus* bacteria.

[0025] The inventors of the present invention have also found that a transformant obtained by introducing a lactate dehydrogenase gene and/or a malate/lactate dehydrogenase gene into a *Hydrogenophilus* bacterium, efficiently produces lactic acid using carbon dioxide as a sole carbon source.

[0026] Further, the inventors of the present invention have found that Idh gene of Parageobacillus thermoglucosidasius,

Geobacillus kaustophilus or Thermus thermophilus of the lactate dehydrogenase genes and mldh gene of Thermus thermophilus and mldh-1 and mldh-2 genes of Meiothermus ruber of the malate/lactate dehydrogenase genes bring about higher enzymatic activity expression especially in Hydrogenophilus bacteria.

[0027] The present invention has been completed based on the above-mentioned findings, and provides the following transformants and methods for producing lactic acid.

- Aspect 1. A transformant obtained by introducing (a) a lactate dehydrogenase gene and/or (b) a malate/lactate dehydrogenase gene into a *Hydrogenophilus* bacterium.
- Aspect 2. The transformant according to aspect 1, wherein (a) the lactate dehydrogenase gene is the following DNA (a1), (a2), (a3), (a4), (a5) or (a6):
 - (a1) DNA which consists of a base sequence of SEQ ID NO: 1, 2 or 3;
 - (a2) DNA which consists of a base sequence having 90% or more identity to SEQ ID NO: 1, 2 or 3, the DNA encoding a polypeptide having lactate dehydrogenase activity;
 - (a3) DNA which hybridizes with a DNA consisting of a base sequence complementary to SEQ ID NO: 1, 2 or 3 under stringent conditions, and which encodes a polypeptide having lactate dehydrogenase activity;
 - (a4) DNA which encodes a polypeptide consisting of an amino acid sequence of SEQ ID NO: 4, 5 or 6;
 - (a5) DNA which encodes a polypeptide consisting of an amino acid sequence having 90% or more identity to SEQ ID NO: 4, 5 or 6, the polypeptide having lactate dehydrogenase activity; (a6) DNA which encodes a polypeptide consisting of an amino acid sequence having a deletion, substitution, or addition of one or a plurality of amino acids in an amino acid sequence of SEQ ID NO: 4, 5 or 6, the polypeptide having lactate dehydrogenase activity.
- Aspect 3. The transformant according to aspect 1 or 2, wherein (b) the malate/lactate dehydrogenase gene is the following DNA (b1), (b2), (b3), (b4), (b5) or (b6):
 - (b1) DNA which consists of a base sequence of SEQ ID NO: 7, 8 or 9;
 - (b2) DNA which consists of a base sequence having 90% or more identity to SEQ ID NO: 7, 8 or 9, the DNA encoding a polypeptide having lactate dehydrogenase activity;
 - (b3) DNA which hybridizes with a DNA consisting of a base sequence complementary to SEQ ID NO: 7, 8 or 9 under stringent conditions, and which encodes a polypeptide having lactate dehydrogenase activity;
 - (b4) DNA which encodes a polypeptide consisting of an amino acid sequence of SEQ ID NO: 10, 11 or 12;
 - (b5) DNA which encodes a polypeptide consisting of an amino acid sequence having 90% or more identity to SEQ ID NO: 10, 11 or 12, the polypeptide having lactate dehydrogenase activity;
 - (b6) DNA which encodes a polypeptide consisting of an amino acid sequence having a deletion, substitution, or addition of one or a plurality of amino acids in the amino acid sequence of SEQ ID NO: 10, 11 or 12, the polypeptide having lactate dehydrogenase activity.
- Aspect 4. The transformant according to any one of aspects 1-3, wherein the *Hydrogenophilus* bacterium is *Hydrogenophilus* thermoluteolus.
- Aspect 5. A method for producing lactic acid comprising a step of culturing the transformant according to any one of aspects 1-4 through use carbon dioxide as a substantially sole carbon source.

Advantageous Effects of Invention

10

15

20

25

30

35

40

45

50

55

[0028] Measures to counter the increase in atmospheric carbon dioxide entail reduction of carbon dioxide emissions and fixation of emitted carbon dioxide. In order to reduce carbon dioxide emissions, solar, wind, geothermal, and similar energies are utilized in place of fossil energy. However, the utilization of such energies is not yet extensive enough to repress the buildup of atmospheric carbon dioxide. Consequently, there is need to enhance atmospheric carbon fixation or recycling of emitted carbon dioxide.

[0029] Carbon fixation of carbon dioxide can occur physically or chemically, but fixation utilizing living cells, avails organic substances that can consequently be utilized as food, feed, and fuel. In so doing, carbon dioxide itself becomes a resource that can be directly converted into valuable chemical products. Accordingly, the twin problems of global warming due to increased atmospheric carbon dioxide and scarcity of food, feed, and fuel can be solved. Further, indemand chemical products can be produced while suppressing global warming attributed to increased carbon dioxide emissions.

[0030] Biodegradable plastics of chemical products attract attention for their environmental benefits. Biodegradable plastics produced by fixation of carbon dioxide are decomposed to water and carbon dioxide by microorganisms in the

environment. That is, biodegradable plastics are carbon-neutral, and are able to solve global warming attributed to increased carbon dioxide emissions, difficulty in securing plastic products necessary for life, and environmental problems such as sea pollution, together.

[0031] Hydrogen-oxidizing bacteria can grow by utilizing the chemical energy generated by the reaction of hydrogen with oxygen and by using carbon dioxide as a sole carbon source. Since hydrogen-oxidizing bacteria can produce chemical products from a mixture of oxygen, hydrogen, and carbon dioxide gases as raw material, the cells can efficiently assimilate carbon from carbon dioxide and be cultured in a simple culture medium. Growth of typical hydrogen-oxidizing bacteria is generally slow, but that of *Hydrogenophilus* bacteria is exceptionally high. The Journal of Mitsubishi Research Institute No.34 1999 describes *Hydrogenophilus* bacteria as follows: "Their proliferative capacity is so high that their carbon fixation ability of carbon dioxide cannot be compared with that of plants, which truly indicates the high carbon dioxide fixation ability of microorganisms".

[0032] When a heterologous gene is introduced into *Hydrogenophilus* bacteria using a vector that functions within the *Hydrogenophilus* bacteria, a functioning protein is often not produced. Regardless, according to the present invention, by introducing lactate dehydrogenase gene and/or malate/lactate dehydrogenase gene into of *Hydrogenophilus* bacteria, the genes functioned within the *Hydrogenophilus* bacteria, and lactic acid could be produced.

[0033] As described above, *Hydrogenophilus* bacteria have a atypically remarkable carbon fixation ability of carbon dioxide among organisms having carbon dioxide fixation ability, and therefore, by using the transformant of the present invention, carbon derived from carbon dioxide can be fixed and lactic acid can be produced at an industrial level. Since lactic acid is used as a raw material for producing polylactic acid, which is a typical biodegradable plastic, the present invention has opened the way to producing polylactic acid industrially.

Mode for Carrying Out the Invention

[0034] The present invention is described in detail below:

(1) Transformant having lactic acid producing ability

[0035] The present invention encompasses a transformant obtained by introducing lactate dehydrogenase gene and/or malate/lactate dehydrogenase gene into a host bacterium of *Hydrogenophilus*. In other words, this transformant possesses exogenous lactate dehydrogenase gene and/or malate/lactate dehydrogenase gene. Malate/lactate dehydrogenase is an enzyme having the activity of lactate dehydrogenase.

[0036] Lactate dehydrogenase gene or malate/lactate dehydrogenase gene can be introduced, alternatively, lactate dehydrogenase gene and malate/lactate dehydrogenase gene can be introduced. Further, two or more kinds of lactate dehydrogenase genes and/or two or more kinds of malate/lactate dehydrogenase genes can be introduced.

[0037] Hydrogenophilus bacteria do not produce lactic acid in an amount that can be utilized industrially. When a lactate dehydrogenase gene and/or malate/lactate dehydrogenase gene of a heterogenous microorganism is introduced into Hydrogenophilus bacteria, the gene(s) function(s) within the Hydrogenophilus bacteria, and a highly active lactate dehydrogenase and/or malate/lactate dehydrogenase is/are produced, and therefore, the obtained transformants efficiently produce lactic acid using carbon dioxide as a sole carbon source.

Transgene

10

20

25

30

35

40

50

[0038] Examples of the lactate dehydrogenase gene include *Parageobacillus thermoglucosidasius* Idh gene, *Geobacillus kaustophilus* Idh gene and *Thermus thermophilus* Idh gene, which are preferable in that they have good lactic acid production efficiency. The base sequence of *Parageobacillus thermoglucosidasius* Idh gene is SEQ ID NO: 1, the base sequence of *Geobacillus kaustophilus* Idh gene is SEQ ID NO: 2 and base sequence of *Thermus thermophilus* Idh gene is SEQ ID NO: 3.

[0039] DNA which consists of a base sequence having 90% or more, particularly 95% or more, more particularly 98% or more, furthermore particularly 99% or more identity to SEQ ID NO: 1, 2 or 3, the DNA encoding a polypeptide having lactate dehydrogenase activity, can also be used preferably.

[0040] In the present invention, the identities of base sequences were calculated using GENETYX ver.17 (made by GENETYX Corporation).

[0041] DNA which hybridizes with a DNA consisting of a base sequence complementary to SEQ ID NO: 1, 2 or 3 under stringent conditions, the DNA encoding a polypeptide having lactate dehydrogenase activity, can also be used preferably.

[0042] In the present invention, "stringent conditions" means hybridization with 6xSSC solution at temperatures from 50 to 60°C for 16 hours, followed by washing with 0.1xSSC solution.

[0043] In addition, DNA which encodes a polypeptide consisting of an amino acid sequence of SEQ ID NO: 4, 5 or 6

is also used preferably. SEQ ID NO: 4 is the amino acid sequence of *Parageobacillus thermoglucosidasius* lactate dehydrogenase, SEQ ID NO: 5 is the amino acid sequence of *Geobacillus kaustophilus* lactate dehydrogenase, and SEQ ID NO: 6 is the amino acid sequence of *Thermus thermophilus* lactate dehydrogenase.

[0044] Further, DNA which encodes a polypeptide consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more even more preferably 99% or more identity to SEQ ID NO: 4, 5 or 6, the polypeptide having lactate dehydrogenase activity can also be used.

[0045] In the present invention, the identities of amino acid sequences were calculated using GENETYX ver.17 (made by GENETYX Corporation).

[0046] DNA which encodes a polypeptide consisting of an amino acid sequence having a deletion, substitution, or addition of one or a plurality of amino acids in the amino acid sequence of SEQ ID NO: 4, 5 or 6, the polypeptide having lactate dehydrogenase activity can also be used preferably.

[0047] In the present invention, examples of plurality include 1 to 5, in particular 1 to 3, in particular 1 to 2, and particularly 1.

[0048] Examples of the malate/lactate dehydrogenase gene include *Thermus thermophilus* mldh gene and *Meiothermus ruber* mldh-1 and mldh-2 genes, which are preferable in that they have good lactic acid production efficiency. The base sequence of *Thermus thermophilus* mldh gene is SEQ ID NO: 7, the base sequence of *Meiothermus ruber* mldh-1 gene is SEQ ID NO: 8 and the base sequence of *Meiothermus ruber* mldh-2 gene is SEQ ID NO: 9.

[0049] DNA which consists of a base sequence having 90% or more, particularly 95% or more, more particularly 98% or more, further more particularly 99% or more identity to SEQ ID NO: 7, 8 or 9, the DNA encoding a polypeptide having lactate dehydrogenase activity, and DNA which hybridizes with a DNA consisting of a base sequence complementary to SEQ ID NO: 7, 8 or 9 under stringent conditions, the DNA encoding a polypeptide having lactate dehydrogenase activity, can also be used preferably.

[0050] In addition, DNA which encodes a polypeptide consisting of an amino acid sequence of SEQ ID NO: 10, 11 or 12 is also used preferably. SEQ ID NO: 10 is the amino acid sequence which is encoded by *Thermus thermophilus* malate/lactate dehydrogenase (MIdh) gene, SEQ ID NO: 11 is the amino acid sequence which is encoded by *Meiothermus ruber* malate/lactate dehydrogenase (MIdh-1) gene, and SEQ ID NO: 12 is the amino acid sequence which *is encoded by Meiothermus ruber* malate/lactate dehydrogenase (MIdh-2) gene.

[0051] Further, DNA which encodes a polypeptide consisting of an amino acid sequence having 90% or more, particularly 95% or more, more particularly 98% or more, further more particularly 99% or more identity to SEQ ID NO: 10, 11 or 12, the polypeptide having lactate dehydrogenase activity, and DNA which encodes a polypeptide consisting of an amino acid sequence having a deletion, substitution, or addition of one or a plurality of amino acids in the amino acid sequence of SEQ ID NO: 10, 11 or 12, the polypeptide having lactate dehydrogenase activity can also be used preferably. [0052] In the present invention, in order to verify that a polypeptide to be tested has a lactate dehydrogenase activity, the polypeptide is reacted with pyruvic acid under the coexistence of NADH, and decrease in absorbance at 340nm is detected. Lactate dehydrogenase produces lactic acid from pyruvic acid. Lactate dehydrogenase consumes NADH when lactic acid is produced from pyruvic acid, and thus decrease in the amount of NADH is detected using decrease in absorbance at 340nm as an index. Specifically, the method described in item "Examples" is carried out. If the polypeptide to be tested reduces absorbance at 340nm even by a slight degree, the polypeptide is determined to have lactate dehydrogenase activity.

(2) Methods for producing transformants

[0053] Next, methods for obtaining transformants by introducing the above-described genes for the production of lactic acid into *Hydrogenophilus* bacteria are described.

Host

10

30

35

40

45

50

55

[0054] Examples of *Hydrogenophilus* bacteria include *Hydrogenophilus thermoluteolus*, *Hydrogenophilus halorhabdus*, *Hydrogenophilus denitrificans*, *Hydrogenophilus hirschii*, *Hydrogenophilus islandicus*, and strain Mar3 of the genus *Hydrogenophilus* (*Hydrogenophilus* sp. Mar3). In particular, *Hydrogenophilus thermoluteolus* is preferable because its superior growth rate enables top-level carbon fixation from cardon dioxide among carbon dioxide fixing microorganisms.

[0055] *Hydrogenophilus* bacteria have been easily isolated from diverse regions everywhere on the earth. A preferable strain of *Hydrogenophilus thermoluteolus* is strain TH-1 (NBRC 14978). *Hydrogenophilus thermoluteolus* strain TH-1 (NBRC 14978) exhibits comparatively rapid growth rate among carbon dioxide fixing microorganisms (Agricultural and Biological Chemistry, 41, 685-690 (1977)). *Hydrogenophilus thermoluteolus* strain NBRC 14978 is internationally deposited under the Budapest Treaty, and is thus available to the general public.

Transformation

10

30

35

45

50

[0056] Plasmid vectors for introducing the above-described DNAs into a host should contain a DNA which controls the autonomous replication function within *Hydrogenophilus* bacteria, and examples include broad-host-range vectors pRK415 (GenBank: EF437940.1), pBHR1 (GenBank: Y14439.1), pMMB67EH (ATCC 37622), pCAR1 (NCBI Reference Sequence: NC_004444.1), pC194 (NCBI Reference Sequence: NC_002013.1), pK18mobsacB (GenBank: FJ437239.1), pUB110 (NCBI Reference Sequence: NC_001384.1), and the like.

[0057] Examples of preferable promoters include tac promoter, lac promoter, trc promoter, or each of promoters OXB1 and OXB11 to OXB20 from Oxford Genetics Ltd. Examples of preferable terminators include the T1T2 terminator of *Escherichia coli* rRNA operon rrnB, the t0 transcription terminator of bacteriophage λ , and the like.

[0058] Transformation can be carried out by publicly known methods such as calcium chloride method, calcium phosphate method, DEAE-dextran transfection method, and electric pulse method.

[0059] Hydrogenophilus bacteria grow under autotrophic conditions. However, since they can grow under heterotrophic conditions as well, the culture medium which is used to culture a host or Hydrogenophilus bacterium recombinant can either be an inorganic culture medium or an organic culture medium. An organic culture medium comprising sugar, organic acids, amino acid, and the like can be used. The pH of the culture medium can be adjusted to approximately 6.2 to 8.

[0060] In any of the cases, culture can be carried out while supplying a mixture of gases containing hydrogen, oxygen, and carbon dioxide, and preferably a mixture of gases consisting of hydrogen, oxygen, and carbon dioxide. When using an organic culture medium, a mixture of gases containing hydrogen, oxygen, and carbon dioxide, for example air, can be used for aeration. When carbon dioxide gas is not supplied, a culture medium containing a carbonate as a carbon source can be used. Mixed gases can be entrapped within or continuously supplied into an airtight culture container, and can be dissolved into the culture medium by means of shaking culture. Alternatively, the culture container can be an airtight or open type, and mixed gases can be dissolved into the culture medium by bubbling.

[0061] The volume ratio of hydrogen, oxygen, and carbon dioxide within the supplied gas (hydrogen: oxygen: carbon dioxide) is preferably 1.75 to 7.5:1:0.25 to 3, more preferably 5 to 7.5:1:1 to 2, and furthermore preferably 6.25 to 7.5:1:1.5. *Hydrogenophilus* bacteria are thermophilic bacteria, and thus the culture temperature is preferably 35 to 55°C, more preferably 37 to 52°C, and even more preferably 50 to 52°C.

(3) Method for producing lactic acid

[0062] When producing lactic using the transformant of a *Hydrogenophilus* bacterium described above, the transformant can be cultured using an inorganic or organic culture medium while supplying a mixture of gases containing hydrogen, oxygen, and carbon dioxide.

[0063] The supplied gas is preferably a mixture of gases consisting of hydrogen, oxygen, and carbon dioxide. However, different kinds of gases can be mixed within, to the extent that lactic acid can be produced efficiently.

[0064] Hydrogenophilus bacteria can grow using hydrogen as a source of energy and using carbon dioxide as a sole carbon source, and thus, carbon dioxide can be fixed efficiently particularly by producing the above-described compounds by using substantially only carbon dioxide (in particular, by using only carbon dioxide) as a carbon source. Therefore, using an inorganic culture medium that does not contain carbon sources such as organic substances and carbonates, namely, carrying out culture using substantially only carbon dioxide (in particular, using only carbon dioxide) as a carbon source is preferable. "Using substantially only carbon dioxide as a carbon source" encompasses cases in which an unavoidable amount of other carbon sources is mixed within. Furthermore, a culture medium containing organic substances such as sugar, organic acids, and amino acids, as well as carbonates, can also be used without supplying carbon dioxide.

[0065] The pH of the culture medium is preferably 6.2 to 8, more preferably 6.4 to 7.4, and furthermore preferably 6.6 to 7. When the pH is within this range, bacteria grow well and mixed gas dissolves well into the culture medium, and lactic acid can be produced efficiently.

[0066] When batch culture is utilized, mixed gases can be entrapped within an airtight culture container and static culture or shaking culture can be carried out. When continuous culture is utilized, mixed gases can be continuously supplied into an airtight culture container and shaking culture can be carried out, or the transformant can be cultured using an airtight culture container while introducing mixed gases into the culture medium by bubbling. Shaking culture is preferable in that better dissolution of mixed gases into the culture medium can be achieved.

[0067] The volume ratio of hydrogen, oxygen, and carbon dioxide (hydrogen: oxygen: carbon dioxide) in the supplied gas mixture is preferably 1.75 to 7.5:1:0.25 to 3, more preferably 5 to 7.5:1:1 to 2, and even more preferably 6.25 to 7.5:1:1.5. When the volume ratio is within this range, bacteria grow well, and the target compound can be produced efficiently.

[0068] The supply rate of mixed gases or raw material gases can be 10.5 to 60 L/hour, in particular 10.5 to 40 L/hour,

in particular 10.5 to 21 L/hour, per 1 L of culture medium. When the supply rate is within this range, transformants grow well and the target compound can be produced efficiently, and the amount of wasted mixed gases can be reduced.

[0069] The culture temperature is preferably 35 to 55°C, more preferably 37 to 52°C, and even more preferably 50 to 52°C. When the temperature is within this range, transformants grow well, and lactic acid can be produced efficiently.

[0070] The target compound lactic acid is produced in the reaction solution by culturing in the above-described manner. Collecting the reaction solution will enable the recovery of lactic acid, however, lactic acid can furthermore be separated from the reaction solution by publicly known methods. Such publicly known methods include precipitation method, fractional distillation and electrodialysis.

10 Examples

15

20

25

30

35

40

50

(1) Construction of a plasmid vector

[0071] The method for constructing a plasmid vector that was commonly used to introduce genes for conferring lactic acid producing ability is described below.

[0072] First, a broad-host-range vector pRK415 (GenBank: EF437940.1) (Gene, 70, 191-197 (1998)) was used as a template and PCR was performed. In order to amplify the DNA fragment of the plasmid region excluding a tetracycline gene region, a primer pair described below was synthesized and used. PCR was performed according to a conventional method using "DNA thermal cycler" manufactured by Life Technologies Inc., and using KOD FX Neo (manufactured by Toyobo Co., Ltd.) as a reaction reagent.

Primers for the amplification of pRK415 plasmid sequence

```
(a-1) 5'-CGTGGCCAACTAGGCCCAGCCAGATACTCCCGATC-3' (SEQ ID NO: 13) (b-1) 5'-TGAGGCCTCATTGGCCGGAGCGCAACCCACTCACT-3' (SEQ ID NO: 14)
```

A Sfil restriction site has been added to primers (a-1) and (b-1).

[0073] Plasmid pK18mobsacB (GenBank: FJ437239.1) (Gene, 145, 69-73 (1994)), which contains a neomycin/kanamycin resistance gene (hereinafter, the gene may be referred to as "nptll"), was used as a template and PCR was performed according to a conventional method. In the PCR, a primer pair described below was synthesized and used in order to amplify the DNA fragment containing the nptll gene sequence. PCR was performed according to a conventional method using "DNA thermal cycler" manufactured by Life Technologies Inc., and using KOD FX Neo (manufactured by Toyobo Co., Ltd.) as a reaction reagent.

Primers for the amplification of nptII gene sequence

```
(a-2) 5'-ctg<u>GGCC</u>TAGTT<u>GGCC</u>acgtagaaagccagtccgc-3' (SEQ ID NO: 15) (b-2) 5'-tccGGCCAATGAGGCCtcagaagaactcgtcaaga-3' (SEQ ID NO: 16)
```

A Sfil restriction site has been added to primers (a-2) and (b-2).

[0074] The reaction solutions that were produced by each of the above-described PCR were subjected to electrophoresis using a 1% agarose gel, and as a result, a DNA fragment of approximately 8.7-kb was detected when pRK415 plasmid was used as a template, and a DNA fragment of approximately 1.1-kb was detected when nptII gene was used as a template.

[0075] Thus prepared DNA fragments were each cleaved by restriction enzyme SfiI, and reacted with a T4 DNA Ligase (manufactured by Takara Bio Inc.) to obtain a ligation solution. The obtained ligation solution was used to transform *Escherichia coli* JM109 by calcium chloride method (Journal of Molecular Biology, 53, 159-162 (1970)), and the transformants were applied onto LB agar media containing 50 μ g/mL kanamycin. Viable strains on the culture media were cultured in a liquid culture medium by a conventional method, and plasmid DNA was extracted from the obtained culture solution. This plasmid DNA was cleaved by using restriction enzyme SfiI, and the inserted fragment was confirmed. As a result, a DNA fragment of the nptII gene sequence which was approximately 1.1-kb was observed in addition to DNA fragments of approximately 2.0-kb, 3.0-kb and 3.7-kb, which were derived from the pRK415 plasmid.

[0076] The constructed plasmid was named pCYK01.

- (2) Construction of cloning vector used for gene expression
- (2-1) Preparation of DNA fragment of λ t0 terminator sequence

[0077] A primer pair described below was synthesized and used in PCR in order to prepare a DNA having λ to terminator sequence. PCR was performed using "DNA thermal cycler" manufactured by Life Technologies Inc., and using KOD FX

Neo (manufactured by Toyobo Co., Ltd.) as a reaction reagent. No template DNA was included since extension was carried out using each primer as the other's template.

Primers for the preparation of λ t0 terminator sequence

- ⁵ (a-3) 5'-GCATTAAT ccttggactcctgttgatagatccagtaatgacctcagaactccatctggattt gttcagaacgctcggttgccg -3' (SEQ ID NO: 17)
 - (b-3) 5'-caccgtgcagtcgatgGATctggattctcaccaataaaaaacgcccggcggcaaccgagcgttctgaacaaatccagatggag -3' (SEQID NO: 18)
- The base sequences of the 3' ends of primers (a-3) and (b-3) are complementary to each other.

[0078] The produced reaction solution was subjected to electrophoresis using a 1% agarose gel, and as a result, a DNA fragment of approximately 0.13-kb, which corresponds to the λ t0 terminator sequence, was detected.

(2-2) Preparation of a DNA fragment of tac promoter sequence

[0079] PCR was performed using plasmid pMAL-c5X (manufactured by New England Biolabs Inc.) containing a tac promoter, as a template. In the PCR, a primer pair described below was synthesized and used in order to amplify tac promoter sequence. PCR was performed according to a conventional method using "DNA thermal cycler" manufactured by Life Technologies Inc., and using KOD FX Neo (manufactured by Toyobo Co., Ltd.) as a reaction reagent.

Primers for the amplification of tac promoter sequence

(a-4) 5'-TTATTGGTGAGAATCCAGATCCATCGACTGCACGGTGCACCAATGCTTCT-3' (SEQ ID NO: 19)

```
(b-4) 5'-
```

15

20

25

50

55

gcaagcttggagtgatcatcgtATGCATATGCGTTTCTCCTCCAGATCCctgtttcctgtgt
gaaattgt

-3' (SEO ID NO: 20)

[0080] The produced reaction solution was subjected to electrophoresis using a 1% agarose gel, and as a result, a DNA fragment of approximately 0.3-kb, which corresponds to tac promoter sequence, was detected.

(2-3) Introduction of λ t0 terminator and tac promoter sequences

[0081] The DNA fragments that were prepared in the above-described (2-1) and (2-2) were cut out from the agarose gel, and DNA was recovered from the gel by freezing and melting the gel. The recovered DNA fragments corresponding to λ t0 terminator sequence and the tac promoter sequence were mixed and used as templates, and overlap extension PCR was performed. In the overlap extension PCR, a combination of the above-described primers (a-3) and (b-4) was used in order to prepare a DNA in which the tac promoter is linked downstream of λt0 terminator. The base sequences of the 5' ends of the primers (b-3) and (a-4), which were used in amplifying the template DNA fragments, are complementary with each other. PshBl and HindIII restriction sites have been added to primers (a-3) and (b-4), respectively. [0082] The produced reaction solution was subjected to electrophoresis using a 1% agarose gel, and as a result, a

DNA fragment of approximately 0.4-kb, which corresponds to the DNA in which the tac promoter is linked downstream of λ to terminator, was detected.

[0083] The approximately 0.4-kb DNA fragment that was amplified by PCR, in which the tac promoter is linked down-stream of the λ t0 terminator, and the above-mentioned approximately 9.8-kb DNA fragment of cloning vector pCYK01, were cleaved by the restriction enzymes PshBI and HindIII. The cleaved DNA fragments were linked to each other using a T4 DNA Ligase (manufactured by Takara Bio Inc.).

[0084] The obtained ligation solution was used to transform *Escherichia coli* JM109 by calcium chloride method, and the transformants were applied onto LB agar media containing 50 μ g/mL kanamycin. Viable strains on the culture media were cultured in a liquid culture medium by a conventional method, and plasmid DNA was extracted from the obtained culture solution. This plasmid DNA was cleaved by using restriction enzymes PshBI and HindIII, and the inserted fragment was confirmed. As a result, a DNA fragment of approximately 0.4-kb, in which tac promoter is linked downstream of λ to terminator, was observed in addition to a DNA fragment of approximately 9.6-kb from plasmid pCYK01.

(2-4) Introduction of rrnB T1T2 bidirectional terminator (hereinafter, may be referred to as "rrnB terminator")

[0085] PCR was performed using plasmid pMAL-c5X (manufactured by New England Biolabs Inc.) containing rrnB

terminator sequence as a template. In the PCR, a primer pair described below was synthesized and used in order to amplify rrnB terminator sequence. PCR was performed according to a conventional method using "DNA thermal cycler" manufactured by Life Technologies Inc., and using KOD FX Neo (manufactured by Toyobo Co., Ltd.) as a reaction reagent. Primers for the amplification of rrnB terminator sequence

5

10

15

30

35

40

45

50

55

```
(a-5) 5'-ctcgaattcactggccgtcgttttacaacgtcgtg-3' (SEQ ID NO: 21) (b-5) 5'-CGCAATTGAGTTTGTAGAAACGCAAAAAGGCCATC-3' (SEQ ID NO: 22)
```

EcoRI and MunI restriction sites have been added to primers (a-5) and (b-5), respectively.

[0086] The produced reaction solution was subjected to electrophoresis using a 1% agarose gel, and as a result, a DNA fragment of approximately 0.6-kb, which corresponds to rrnB terminator sequence, was detected.

[0087] The approximately 0.6-kb DNA fragment containing rrnB terminator sequence, which was amplified by the above-described PCR, was cleaved by restriction enzymes EcoRI and MunI, and the approximately 10.0-kb DNA fragment of the plasmid that was constructed in the above-described (2-3) was cleaved using restriction enzyme EcoRI.

The cleaved DNA fragments were linked to each other using a T4 DNA Ligase (manufactured by Takara Bio Inc.). **[0088]** The obtained ligation solution was used to transform *Escherichia coli* JM109 by calcium chloride method, and

the obtained transformants were applied onto LB agar media containing 50 µg/mL kanamycin. Viable strains on the culture media were cultured in a liquid culture medium by a conventional method, and plasmid DNA was extracted from the obtained culture solution. This plasmid was cleaved by using restriction enzymes EcoRI and MunI, and the inserted fragment was confirmed. As a result, a DNA fragment of approximately 0.6-kb which corresponds to rrnB terminator sequence was observed in addition to a DNA fragment of approximately 10.0-kb from the above-described plasmid of (2-3).

[0089] The constructed cloning vector for gene expression was named pCYK21.

(3) Transformant capable of producing lactic acid

(3-1) Cloning of lactate dehydrogenase gene

[0090] Genomic DNAs were extracted from *Parageobacillus thermoglucosidasius* NBRC 107763, *Geobacillus kaustophilus* NBRC 102445, and *Meiothermus ruber* NBRC 106122 according to a conventional method. Genomic DNA of *Thermus thermophilus* HB8 strain (ATCC 27634) was purchased from Takara Bio Inc.

[0091] The four genomic DNAs described above were each used as templates to amplify a DNA fragment containing lactate dehydrogenase Idh gene of each of *Parageobacillus thermoglucosidasius*, *Geobacillus kaustophilus* and *Thermus thermophilus* and a DNA fragment containing malate/lactate dehydrogenase mIdh gene of each of *Thermus thermophilus* and *Meiothermus ruber*, respectively, by PCR method. The following primers were used for PCR. PCR was performed according to a conventional method using "DNA thermal cycler" manufactured by Life Technologies Inc., and using KOD FX Neo (manufactured by Toyobo Co., Ltd.) as a reaction reagent.

[0092] Primers for the amplification of Parageobacillus thermoglucosidasius Idh gene

```
(a-6) 5'-TTACATATGAAACAACAAGGCATGAATCGAGTAGC-3' (SEQ ID NO: 23) (b-6) 5'-TTAGAATTCTTATTTTACATCATCAAAATAACGGG-3' (SEQ ID NO: 24)
```

An Ndel restriction site has been added to primer (a-6), and an EcoRI restriction site has been added to primer (b-6). **[0093]** Primers for the amplification of *Geobacillus kaustophilus* ldh gene

```
(a-7) 5'-TTACATATGAAAAACGGGAGAGGAAATCGGGTAGC-3' (SEQ ID NO: 25) (b-7) 5'-TTAGAATTCTTACTGAGCAAAATAGCGCGCCAATA-3' (SEQ ID NO: 26)
```

An Ndel restriction site has been added to primer (a-7), and an EcoRl restriction site has been added to primer (b-7). **[0094]** Primers for the amplification of *Thermus thermophilus* ldh gene

```
(a-8) 5'-TTACATATGAAGGTCGGCATCGTGGGAAGCGGCAT-3' (SEQ ID NO: 27) (b-8) 5'-TTAGAATTCCTAAAACCCCAGGGCGAAGGCCGCCT-3' (SEQ ID NO: 28)
```

An Ndel restriction site has been added to primer (a-8), and an EcoRl restriction site has been added to primer (b-8). [0095] Primers for the amplification of *Thermus thermophilus* mldh gene

```
(a-9) 5'-TTACATATGAGGTGGCGGGCGGACTTCCTCTCGGC-3' (SEQ ID NO: 29)
```

(b-9) 5'-TTAGAATTCTCAAGCATCGTCCCTCCAAGGCACGC-3' (SEQ ID NO: 30)

An Ndel restriction site has been added to primer (a-9), and an EcoRI restriction site has been added to primer (b-9). **[0096]** Primers for the amplification of *Meiothermus ruber* mldh-1 gene

```
(a-10) 5'-TTACATATGCAAGGCATTCCTGTGCAACAACTGCG-3' (SEQ ID NO: 31) (b-10) 5'-TTAGAATTCTTAAAGGCCCACCGCTTTAGCGGCCCT-3' (SEQ ID NO: 32)
```

An Ndel restriction site has been added to primer (a-10), and an EcoRI restriction site has been added to primer (b-10). [0097] Primers for the amplification of *Meiothermus ruber* mldh-2 gene

```
(a-11) 5'-TTACATATGAGGGTTCCTTATCCCGTACTCAAGCA-3' (SEQ ID NO: 33) (b-11) 5'-TTTGAATTCTCATCTTGTCCCTCCTTGTAGAT-3' (SEQ ID NO: 34)
```

An Ndel restriction site has been added to primer (a-11), and an EcoRI restriction site has been added to primer (b-11). **[0098]** The produced reaction solutions were subjected to electrophoresis using a 1% agarose gel, and DNA fragments of approximately 1.0-kb were detected with regard to each of *Parageobacillus thermoglucosidasius ldh* gene, *Geobacillus kaustophilus ldh* gene, *Thermus thermophilus ldh* gene, and *Meiothermus ruber mldh-1 gene and mldh-2 gene*.

[0099] The approximately 1.0-kb DNA fragments containing each of *Parageobacillus thermoglucosidasius Idh* gene, *Geobacillus kaustophilus Idh* gene, *Thermus thermophilus Idh* gene, *Thermus thermophilus Idh* gene, and *Meiothermus ruber mIdh-1 gene and mIdh-2 gene*, that were amplified by the above-described PCR, were cleaved by using restriction enzymes Ndel and EcoRI. The above-mentioned approximately 10.6-kb DNA fragment of cloning vector pCYK21 was also cleaved by using restriction enzymes Ndel and EcoRI. Each of the cleaved 1.0-kb DNA fragments and the 10.6-kb DNA fragment were linked to each other using a T4 DNA Ligase (manufactured by Takara Bio Inc.).

[0100] The obtained ligation solutions were used to transform *Hydrogenophilus thermoluteolus* strain TH-1 (NBRC 14978) by electric pulse method, and the obtained transformants were applied onto A-solid medium $[(NH_4)_2SO_4\ 3.0\ g, KH_2PO_4\ 1.0\ g, K_2HPO_4\ 2.0\ g, NaCl\ 0.25\ g, FeSO_4 = 7H_2O\ 0.014\ g, MgSO_4 = 7H_2O\ 0.5\ g, CaCl_2\ 0.03\ g, MoO_3\ 4.0\ mg, ZnSO_4 = 7H_2O\ 28\ mg, CuSO_4 = 5H_2O\ 2.0\ mg, H_3BO_3\ 4.0\ mg, MnSO_4 = 5H_2O\ 4.0\ mg, CoCl_2 = 6H_2O\ 4.0\ mg, agar\ 15g$ were dissolved in 1 L of distilled water (pH 7.0)] containing kanamycin at 50 μ g/ml, and incubated at 50°C for 60 hours in a chamber that was filled with a mixed gas of $H_2:O_2:CO_2=7\ .5:1:1.5$.

[0101] Each of the viable strains on the A-solid medium was inoculated using a platinum loop into a test tube containing 5 ml of A-liquid medium [(NH₄)₂SO₄ 3.0 g, KH₂PO₄ 1.0 g, K₂HPO₄ 2.0 g, NaCl 0.25 g, FeSO₄ = 7H₂O 0.014 g, MgSO₄ = 7H₂O 0.5 g, CaCl₂ 0.03 g, MoO₃ 4.0 mg, ZnSO₄ = 7H₂O 28 mg, CuSO₄ = 5H₂O 2.0 mg, H₃BO₃ 4.0 mg, MnSO₄ = 5H₂O 4.0 mg, CoCl₂ = 6H₂O 4.0 mg were dissolved in 1 L of distilled water (pH 7.0)] containing kanamycin at 50 μg/ml. The test tubes were filled with a mixed gas of H₂:O₂:CO₂=7.5:1:1.5, and subjected to shaking culture at 50°C, and plasmid DNAs were extracted from the culture solution. The plasmids, which comprise *Parageobacillus thermoglucosidasius ldh* gene, *Geobacillus kaustophilus ldh* gene, *Thermus thermophilus ldh* gene, *Thermus thermophilus mldh* gene, and *Meiothermus ruber mldh-1 gene and mldh-2 gene, respectively,* were cleaved using restriction enzymes Ndel and EcoRI, and the inserted fragments were confirmed. As a result, fragments of approximately 1.0-kb in length which were each inserted fragment of *Parageobacillus thermoglucosidasius ldh* gene, *Geobacillus kaustophilus ldh* gene, *Thermus thermophilus mldh gene,* and *Meiothermus ruber mldh-1 gene and mldh-2 gene*, in addition to an approximately 10.6-kb DNA fragment of plasmid pCYK21 were observed.

[0102] The plasmid containing *Parageobacillus thermoglucosidasius ldh* gene was named as pC-Pth-ldh, the *plasmid containing Geobacillus kaustophilus ldh* gene was named as pC-Gka-ldh, the plasmid containing *Thermus thermophilus ldh* gene was named as pC-Tth-ldh, the plasmid containing *Thermus thermophilus mldh gene* was named as pC-Tth-mldh, the plasmid containing *Meiothermus ruber* mldh-1 *gene* was named as pC-Mru-mldh-1, *and* the plasmid containing *Meiothermus ruber* mldh-2 *gene* was named as pC-Mru-mldh-2.

[0103] The plasmids possessed by the recombinant strains of Hydrogenophilus thermoluteolus are shown in Table 1.

[Table 1]

Strain	Plasmid	Transgene
LDH03	pC-Pth-Idh	ldh (Parageobacillus thermoglucosidasius)
	'	, ,
LDH04	pC-Gka-ldh	ldh (Geobacillus kaustophilus)
LDH05	pC-Tth-ldh	ldh (Thermus thermophilus)

55

50

5

10

30

(continued)

Strain	Plasmid	Transgene
MLDH01	pC-Tth-mldh	mldh (Thermus thermophilus)
MLDH02	pC-Mru-mldh1	mldh-1 (Meiothermus ruber)
MLDH03	pC-Mru-mldh2	mldh-2 (Meiothermus ruber)

(3-2) Confirmation of transgene expression in *Hydrogenophilus thermoluteolus* strain into which lactic acid producing gene has been introduced

[0104] Each lactate dehydrogenase gene or malate/lactate dehydrogenase gene-introduced strain that was obtained as described above, was inoculated using a platinum loop into a test tube containing 5 ml of A-liquid medium containing kanamycin at 50 μ g/ml. The test tubes were filled with a mixed gas of H₂:O₂:CO₂=7.5:1:1.5, and subjected to shaking culture at 50°C for 20 hours.

[0105] Bacterial cells thus cultured and proliferated were collected by centrifugation (4°C, 15,000 rpm, 1 minute). The bacterial cells were disrupted by sonication, and subsequently centrifuged (4°C, 15,000 rpm, 5 minutes) to obtain a cell disruption supernatant. The cell disruption supernatant was used as a crude enzyme solution to measure lactate dehydrogenase activity by the following method. Crude enzyme solution, 50 mM sodium acetate (pH 5.0), 0.5mM NADH, 0.2 mM fructose 1,6-bisphosphate and 5 mM sodium pyruvate were mixed, reacted at 50°C, and decrease in absorbance at 340nm coming from NADH was traced, and the initial rate of reaction was analyzed. Specific activity was calculated from the initial rate of reaction and protein concentration. The enzyme level for producing 1 μ mol of lactic acid per minute was defined as 1 U (Unit).

[0106] As a result, lactate dehydrogenase activity of interest was detected in each of strain LDH03 into which *Parageobacillus thermoglucosidasius* ldh gene was introduced, strain LDH04 into which *Geobacillus kaustophilus* ldh gene was introduced, strain LDH05 into which *Thermus thermophilus* ldh gene was introduced, strain MLDH01 into which *Thermus thermophilus* mldh gene was introduced, strain MLDH02 into which *Meiothermus ruber* mldh-1 gene was introduced, and strain MLDH03 into which *Meiothermus ruber* mldh-2 gene was introduced.

[Table 2]

Lactate dehydroge or mldh gene	enase activities of Hydro	ogenophilus thermoluteolus strains wh	nich are obtained by introducing ldh
Strain	Plasmid	Transgene	Lactate dehydrogenase activity (U/mg-protein)
LDH03	pC-Pth-ldh	ldh (<i>Parageobacillus</i> thermoglucosidasius)	0.55
LDH04	pC-Gka-ldh	ldh (Geobacillus kaustophilus)	0.14
LDH05	pC-Tth-ldh	ldh (Thermus thermophilus)	1.21
MLDH01	pC-Tth-mldh	mldh (Thermus thermophilus)	0.044
MLDH02	pC-Mru-mldh1	mldh-1 (Meiothermus ruber)	0.24
MLDH03	pC-Mru-mldh2	mldh-2 (Meiothermus ruber)	0.021
pCYK21 /TH-1	pCYK21	None	ND(Undetectable)

(3-3) Production of lactic acid

5

10

15

20

25

30

35

40

45

50

55

[0107] Hydrogenophilus thermoluteolus strain into which lactate dehydrogenase gene was introduced, was inoculated using a platinum loop into A-liquid medium containing kanamycin at 50 μ g/ml, and subjected to shaking culture at 50°C for 30 hours while supplying a mixed gas of H₂:O₂:CO₂=7.5:1:1.5 during incubation.

[0108] Following incubation, a culture supernatant was obtained by centrifugation (4°C, 15,000 rpm, 1 minute), and lactic acid in the culture supernatant was quantified. As a result, lactic acid was produced in the culture supernatant, as shown in Table 3.

[Table 3]

5	Strain	Plasmid	Transgene	Lactic acid concentration in culture supernatant (mM)
3	LDH03	pC-Pth- ldh	ldh (<i>Parageobacillus</i> thermoglucosidasius)	1.2
10	LDH04	pC-Gka- ldh	ldh (Geobacillus kaustophilus)	0.7
10	LDH05	pC-Tth- ldh	ldh (Thermus thermophilus)	1.8
	MLDH01	pC-Tth- mldh	mldh (Thermus thermophilus)	0.6
15	MLDH02	pC-Mru- mldh1	mldh-1 (Meiothermus ruber)	1.5
	MLDH03	pC-Mru- mldh2	mldh-2 (Meiothermus ruber)	0.4
20	pCYK21/TH-1	pCYK21	None	0.2

(4) Deposited strains

[0109] Hydrogenophilus thermoluteolus LDH05 strain and Hydrogenophilus thermoluteolus MLDH02 strain were deposited to NITE Patent Microorganisms Depositary, National Institute of Technology and Evaluation (2-5-8 Kazusakamatari, Kisarazu-shi, Chiba, Japan (postal code 292-0818)). For Hydrogenophilus thermoluteolus LDH05 strain, the accession number is BP-02822 and the date of acceptance is November 14, 2018. For Hydrogenophilus thermoluteolus MLDH02 strain, the accession number is BP-02828 and the date of acceptance is November 21, 2018. Accordingly, these strains are available to the public.

[0110] Furthermore, all strains (including ATCC strains and NBRC strains) that are described in the present specification are internationally deposited under the Budapest Treaty, or are possessed by organizations that furnish the strains without any terms or conditions, or are marketed, and therefore, these strains are all available to the general public.

35 Industrial Applicability

40

45

50

55

[0111] The transformant of the present invention effectively produces lactic acid using carbon dioxide as a sole carbon source, and therefore, it is able to efficiently produce biodegradable plastics, while solving global warming caused by increased emissions of carbon dioxide.

SEQUENCE LISTING

	<110> Utilization of Carbon Dioxide Institute Co., Ltd.	
5	<120> Hydrogenophilus bacterium transformant producing lactic acid	
	<130> FPR0013WO	
	<160> 34	
10	<170> PatentIn version 3.5	
15	<210> 1 <211> 960 <212> DNA <213> Parageobacillus thermoglucosidasius	
	<pre><400> 1 atgaaacaac aaggcatgaa tcgagtagca cttataggaa cggggttcgt tggggccagc</pre>	60
20	tatgcatttg cccttatgaa ccaaggaata gcagatgagt tagtattgat tgatgtaaat	L 2 0
20	aagaataagg cagagggcga tgtgatggat ttaaatcacg gaaaagtatt cgcgccgaag	180
	ccgatgaata tttggtttgg agattatcaa gattgccaag acgccgattt ggtggtgatt	240
25	tgtgcagggg ctaaccaaaa gccgggagaa acaagactgg atcttgttga caaaaatatt	300
	aatatcttca aaacgattgt cgattctgtg atgaaatccg gatttgatgg cgtttttctt	360
	gtggcaacga acccagtgga tattttaacg tatgctactt ggaaatttag cgggttaccg	120
30	aaagagcggg taatcggctc aggaacgatt cttgatacag caagattccg cttcttgcta	180
	agtgaatatt ttcaagtggc tccgaccaat gtacatgcgt atattattgg cgagcatggg	540
	gatacagage tgeetgtttg gagecatgeg gaaattggaa geatteeagt tgageaaata	500
35	ttgatgcaaa acgataacta tagaaaagag gatttagaca atatctttgt taatgttcgt	60
	gatgcggcat atcaaatcat tgagaaaaaa ggggcaacgt attacggcat tgcaatggga	720
40	ttagtccgta tcactcgtgc tattttgcac aatgaaaatg ccatcttaac cgtttctgct	780
40	catttggacg gccaatatgg cgaacgaaat gtttatattg gcgtgcctgc cattatcaac	340
	cgaaacggta ttcgtgaagt gatggaattg acgctaaatg aaacagaaca acaacaattc	900
45	catcatagtg taactgtatt aaaagacatt ctttcccgtt attttgatga tgtaaaataa	60
50	<210> 2 <211> 954 <212> DNA <213> Geobacillus kaustophilus	
	<400> 2 atgaaaaacg ggagaggaaa tcgggtagcg gtcgtcggca ccgggtttgt cggcgccagt	60
		20
55		180
		-

	ccggctgaca	tttggcacgg	cgattacgat	gattgccgcg	atgccgattt	ggttgtcatt	240
	tgcgccggcg	ccaaccaaaa	accgggcgag	acgcggcttg	atcttgtgga	caaaaacatt	300
5	gccattttcc	gctcgatcgt	tgagtcggtc	atggcatccg	gatttcaagg	actgtttctc	360
	gtcgccacca	atccggtcga	cattttaacg	tacgcgacgt	ggaaattcag	cggcctgccg	420
	caagagcgag	taatcggatc	gggcacgatt	ttggacacgg	cgcggttccg	cttcttgttg	480
10	ggcgactatt	tegeegtege	cccgacgaac	gtgcacgcct	atattatcgg	cgaacatggc	540
	gacactgaac	tcccggtctg	gagccaggct	gatatcggcg	gcgtgccgat	ccgcaagctg	600
(E	gtcgagtcta	aaggggaaga	agcgcaaaaa	gagctcgagc	gcatttttgt	caatgtgcgc	660
15	gatgccgcct	accaaattat	tgagaaaaaa	ggagcgacgt	actacgggat	tgctatgggg	720
	cttgcccgcg	tgacgcgcgc	cattttgcat	catgaaaatg	ccattttgac	cgtttccgct	780
20	tacttggacg	gcccatacgg	cgaacgcgat	gtctacatcg	gtgtgcctgc	tgtgatcaac	840
	cgaaatggca	tccgcgaagt	gattgaaatt	gaacttgacg	aggaggagaa	aaaatggttc	900
	caccgtagtg	ctgcgacgtt	aaaaggtgta	ttggcgcgct	attttgctca	gtaa	954
25	<210> 3 <211> 933 <212> DNA						
	<213> The	rmus thermop	ohilus				
30	<400> 3	rmus thermop		gtggggagcg	ccaccgccta	cgccctggcc	60
30	<400> 3 atgaaggtcg	gcatcgtggg	aagcggcatg			cgccctggcc ggcccaggcc	60 120
	<400> 3 atgaaggtcg ctcctcggcg	gcatcgtggg	aagcggcatg	gtggacctgg	accggaagct	ggcccaggcc	
30 35	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg	gcatcgtggg	aagcggcatg ggtggtcctc cgccacgccc	gtggacctgg	accggaagct	ggcccaggcc	120
	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg	gcatcgtggg tggcgcggga acatcctcca	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg	gtggacctgg ttcgcccacc gtggtgctcg	accggaagct cggtctgggt ccgccggggt	ggcccagcgc gcgggcgggg	120 180
	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga	gcatcgtggg tggcgcggga acatcctcca acctcgaggg	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac	gtggacctgg ttcgcccacc gtggtgctcg cgcaacgccc	accggaagct cggtctgggt ccgccggggt aggtcttcgc	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggtg	120 180 240
35	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccggaggcg	gtggacctgg ttcgcccacc gtggtgctcg cgcaacgccc gtgctcctcg	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggtg	120 180 240 300
35	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt gtgatgaccc	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccggaggcg	gtggacctgg ttcgccacc gtggtgctcg cgcaacgccc gtgctcctcg ggcctgccc	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa cggggcgggt	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggtg cccggtggac	120 180 240 300 360
35	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt gtgatgaccc gggacgatcc	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc aggtggccta	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccggaggcg ccgctctcc	gtggacctgg ttcgccacc gtggtgctcg cgcaacgccc gtgctcctcg ggcctgcccc	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa cggggcgggt cggagtacct	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggtg cccggtggac ggtgggctcg	120 180 240 300 360 420
35 40	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt gtgatgaccc gggacgatcc ccccagtcgg	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc aggtggccta tggacacggc	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccggaggcg ccgctctcc ccgcttccgg	gtggacctgg ttcgccacc gtggtgctcg cgcaacgccc gtgctcctcg ggcctgcccc gcccttctgg gagcacgggg	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa cggggcgggt cggagtacct actcggaggt	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggac cccggtggac ggtgggctcg ccgggtggcc gctggtctgg	120 180 240 300 360 420 480
95 90	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt gtgatgaccc gggacgatcc ccccagtcgg tccagcgccc	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc aggtggccta tggacacggc tccacgccta	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccggaggcg ccgctctcc ccgcttccgg cgtgctgggg	gtggacctgg ttcgccacc gtggtgctcg cgcaacgccc gtgctcctcg ggcctgcccc gcccttctgg gagcacgggg ctggagttcg	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa cggggcgggt cggagtacct actcggaggt ccgaggccg	ggcccaggcc gcgggcgggg gcccagcgc ccaggtggac ggtgggctcg ccgggtggcc gctggtctgg	120 180 240 300 360 420 480 540
35 40	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt gtgatgaccc gggacgatcc ccccagtcgg tccagcgccc ctttccccgg	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc aggtggccta tggacacggc tccacgccta aggtggcgg	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccgcatctcc ccgcttccgg cgtgctgggg ggtgccctc ccgcattgac	gtggacctgg ttcgccacc gtggtgctcg cgcaacgccc gtgctcctcg ggcctgcccc gcccttctgg gagcacgggg ctggagttcg gaaggggtcc	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa cggggcgggt cggagtacct actcggaggt ccgaggccg	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggtg cccggtggac ggtgggctcg ccgggtggcc gctggtctgg ggggcggcc ctaccggatc	120 180 240 300 360 420 480 540
95 90	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt gtgatgaccc gggacgatcc ccccagtcgg tccagcgcc ctttccccgg attgaggga	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc aggtggccta tggacacggc tccacgccta aggtggcgg	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccggaggcg ccgctctcc ccgcttccgg ggtgcccctc ccgcattgac	gtggacctgg ttcgccacc gtggtgctcg cgcaacgccc gtgctcctcg ggcctgcccc gcccttctgg gagcacgggg ctggagttcg gaaggggtcc atcggggcgg	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa cggggcgggt cggagtacct actcggaggt ccgaggccg gccgggccg	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggtg cccggtggac ggtgggctcg ccgggtggcc gctggtctgg ggggcggcc ctaccggatc	120 180 240 300 360 420 480 540 600
95 90	<400> 3 atgaaggtcg ctcctcggcg cacgccgagg tcgtacgggg cccggggaga ccccgggttt gtgatgaccc gggacgatcc ccccagtcgg tccagcgcc ctttccccgg attgaggga gccatcctca	gcatcgtggg tggcgcgga acatcctcca acctcgaggg cccgcctgca tagaggcggc aggtggccta tggacacggc tccacgccta aggtggcgg aggaccgggc	aagcggcatg ggtggtcctc cgccacgccc ggcccgggcg gcttctggac cccgcatccc ccgcttccgg cgtgctgggg ggtgccctc ccgcattgac ctactacggc	gtggacctgg ttcgccacc gtggtgctcg cgcaacgccc gtgctcctcg ggcctgcccc gcccttctgg gagcacgggg ctggagttcg gaaggggtcc atcggggcgg accgtgagcg	accggaagct cggtctgggt ccgccggggt aggtcttcgc tggccacgaa cggggcgggt cggagtacct actcggaggt ccgaggcccg gccgggccgc gcctcgcccg	ggcccaggcc gcgggcgggg ggcccagcgc ccaggtggtg cccggtggac ggtgggctcg ccgggtggcc gctggtctgg ggggcgggc	120 180 240 300 360 420 480 540 600 660 720

933

ctcaaggagg cggccttcgc cctggggttt tag

<210 <210 <210 <210	L> 2> :	4 319 PRT Paraq	geoba	acill	Lus t	thern	noglı	ıcosi	idas:	ius					
<400)>	4													
Met 1	Lys	Gln	Gln	Gly 5	Met	Asn	Arg	Val	Ala 10	Leu	Ile	Gly	Thr	Gly 15	Phe
Val	Gly	Ala	Ser 20	Tyr	Ala	Phe	Ala	Leu 25	Met	Asn	Gln	Gly	Ile 30	Ala	Asp
Glu	Leu	Val 35	Leu	Ile	Asp	Val	Asn 40	Lys	Asn	Lys	Ala	Glu 45	Gly	Asp	Val
Met	Asp 50	Leu	Asn	His	Gly	Lys 55	Val	Phe	Ala	Pro	Lys 60	Pro	Met	Asn	Ile
Trp 65	Phe	Gly	Asp	Tyr	Gln 70	Asp	Cys	Gln	Asp	Ala 75	Asp	Leu	Val	Val	Ile 80
Cys	Ala	Gly	Ala	Asn 85	Gln	Lys	Pro	Gly	Glu 90	Thr	Arg	Leu	Asp	Le u 95	Val
Asp	Lys	Asn	Ile 100	Asn	Ile	Phe	Lys	Thr 105	Ile	Val	Asp	Ser	Val 110	Met	Lys
Ser	Gly	Phe 115	Asp	Gly	Val	Phe	Leu 120	Val	Ala	Thr	Asn	Pro 125	Val	Asp	Ile
Leu	Thr 130	Tyr	Ala	Thr	Trp	Lys 135	Phe	Ser	Gly	Leu	Pro 140	Lys	Glu	Arg	Val
Ile 145	Gly	Ser	Gly	Thr	Ile 150	Leu	Asp	Thr	Ala	Arg 155	Phe	Arg	Phe	Leu	Leu 160
Ser	Glu	Tyr	Phe	Gln 165	Val	Ala	Pro	Thr	As n 170	Val	His	Ala	Tyr	Ile 175	Ile
Gly	Glu	His	Gly 180	Asp	Thr	Glu	Leu	Pro 185	Val	Trp	Ser	His	Ala 190	Glu	Ile
Gly	Ser	Ile 195	Pro	Val	Glu	Gln	Ile 200	Leu	Met	Gln	Asn	Asp 205	Asn	Tyr	Arg
Lys	Glu	Asp	Leu	Asp	Asn	Ile	Phe	Val	Asn	Val	Arg	Asp	Ala	Ala	Tyr

	Gln Ile	e Ile	Glu	Lys	Lys	Gly	Ala	Thr	Tyr	Tyr	Gly	Ile	Ala	Met	Gly
5	225				230					235					240
10	Leu Va	l Arg	Ile	Thr 245	Arg	Ala	Ile	Leu	His 250	Asn	Glu	Asn	Ala	Ile 255	Leu
	Thr Va	l Ser	Ala 260	His	Leu	Asp	Gly	Gln 265	Tyr	Gly	Glu	Arg	Asn 270	Val	Tyr
15	Ile Gl	y Val 275	Pro	Ala	Ile	Ile	As n 280	Arg	Asn	Gly	Ile	Arg 285	Glu	Val	Met
20	Glu Let 29		Leu	Asn	Glu	Thr 295	Glu	Gln	Gln	Gln	Phe 300	His	His	Ser	Val
	Thr Vai	l Leu	Lys	Asp	Ile 310	Leu	Ser	Arg	Tyr	Phe 315	Asp	Asp	Val	Lys	
25	<210> <211> <212> <213>	5 317 PRT Geoba	ıcill	.us l	caust	ophi	ilus								
30	<400>	5													
	Met Ly: 1	s Asn	Gly	Arg 5	Gly	Asn	Arg	Val	Ala 10	Val	Val	Gly	Thr	Gly 15	Phe
35	Val Gl	y Ala	Ser 20	Tyr	Ala	Phe	Ala	Leu 25	Met	Asn	Gln	Gly	Ile 30	Ala	Asp
40	Glu Il	e Val 35	Leu	Ile	Asp	Ala	Asn 40	Glu	Asn	Lys	Ala	Glu 45	Gly	Asp	Ala
	Met As ₁	p Phe	Asn	His	Gly	Lys 55	Val	Phe	Ala	Pro	Lys 60	Pro	Ala	Asp	Ile
45	Trp Hi:	s Gly	Asp	Tyr	Asp 70	Asp	Cys	Arg	Asp	Ala 75	Asp	Leu	Val	Val	Ile 80
50	Cys Ala	a Gly	Ala	Asn 85	Gln	Lys	Pro	Gly	Glu 90	Thr	Arg	Leu	Asp	Leu 95	Val
55	Asp Ly	s A sn	Ile 100	Ala	Ile	Phe	Arg	Ser 105	Ile	Val	Glu	Ser	Val 110	Met	Ala
	Ser Gl	y Phe	Gln	Gly	Leu	Phe	Leu	Val	Ala	Thr	Asn	Pro	Val	Asp	Ile

5	Leu Th	nr Tyr 30	Ala	Thr	Trp	Lys 135	Phe	Ser	Gly	Leu	Pro 140	Gln	Glu	Arg	Val
	Ile GI 145	ly Ser	Gly	Thr	Ile 150	Leu	Asp	Thr	Ala	Arg 155	Phe	Arg	Phe	Leu	Leu 160
10	Gly As	sp Tyr	Phe	Ala 165	Val	Ala	Pro	Thr	Asn 170	Val	His	Ala	Tyr	Ile 175	Ile
15	Gly G	lu His	Gly 180	Asp	Thr	Glu	Leu	Pro 185	Val	Trp	Ser	Gln	Ala 190	Asp	Ile
20	Gly G	ly Val 195		Ile	Arg	Lys	Leu 200	Val	Glu	Ser	Lys	Gly 205	Glu	Glu	Ala
	Gln Ly 21	•	Leu	Glu	Arg	Ile 215	Phe	Val	Asn	Val	Arg 220	Asp	Ala	Ala	Tyr
25	Gln II 225	le Ile	Glu	Lys	Lys 230	Gly	Ala	Thr	Tyr	Tyr 235	Gly	Ile	Ala	Met	Gly 240
30	Leu Al	la Arg	Val	Thr 245	Arg	Ala	Ile	Leu	His 250	His	Glu	Asn	Ala	Ile 255	Leu
	Thr Va	al Ser	Ala 260	туг	Leu	Asp	Gly	Pro 265	Tyr	Gly	Glu	Arg	Asp 270	Val	Tyr
35	Ile G	ly Val 275	Pro	Ala	Val	Ile	As n 280	Arg	Asn	Gly	Ile	Arg 285	Glu	Val	Ile
40	Glu II 29		Leu	Asp	Glu	Glu 295	Glu	Lys	Lys	Trp	Phe 300	His	Arg	Ser	Ala
45	Ala Ti 305	nr Leu	Lys	Gly	Val 310	Leu	Ala	Arg	Tyr	Phe 315	Ala	Gln			
	<210> <211> <212>	6 310 PRT		. .		. 1									
50	<213> <400>	Ther	mus 1	ner	noph:	LIUS									
	Met Ly 1	ys Val	Gly	Ile 5	Val	Gly	Ser	Gly	Met 10	Val	Gly	Ser	Ala	Thr 15	Ala
55	Tyr Al	la Leu	Ala	Leu	Leu	Gly	Val	Ala	Arg	Glu	Val	Val	Leu	Val	Asp

5	Leu	Asp	Arg 35	Lys	Leu	Ala	Gln	Ala 40	His	Ala	Glu	Asp	Ile 45	Leu	His	Ala
10	Thr	Pro 50	Phe	Ala	His	Pro	Val 55	Trp	Val	Arg	Ala	Gly 60	Ser	Tyr	Gly	Asp
	Leu 65	Glu	Gly	Ala	Arg	Ala 70	Val	Val	Leu	Ala	Ala 75	Gly	Val	Ala	Gln	Arg 80
15	Pro	Gly	Glu	Thr	Arg 85	Leu	Gln	Leu	Leu	Asp 90	Arg	Asn	Ala	Gln	Val 95	Phe
20	Ala	Gln	Val	Val 100	Pro	Arg	Val	Leu	Glu 105	Ala	Ala	Pro	Glu	Ala 110	Val	Leu
	Leu	Val	Ala 115	Thr	Asn	Pro	Val	Asp 120	Val	Met	Thr	Gln	Val 125	Ala	Tyr	Arg
25	Leu	Ser 130	Gly	Leu	Pro	Pro	Gly 135	Arg	Val	Val	Gly	Ser 140	Gly	Thr	Ile	Leu
30	Asp 145	Thr	Ala	Arg	Phe	Arg 150	Ala	Leu	Leu	Ala	Glu 155	Tyr	Leu	Arg	Val	Ala 160
35	Pro	Gln	Ser	Val	His 165	Ala	Tyr	Val	Leu	Gly 170	Glu	His	Gly	Asp	Ser 175	Glu
	Val	Leu	Val	Trp 180	Ser	Ser	Ala	Gln	Val 185	Gly	Gly	Val	Pro	Leu 190	Leu	Glu
40	Phe	Ala	Glu 195	Ala	Arg	Gly	Arg	Ala 200	Leu	Ser	Pro	Glu	Asp 205	Arg	Ala	Arg
45	Ile	Asp 210	Glu	Gly	Val	Arg	Arg 215	Ala	Ala	Tyr	Arg	Ile 220	Ile	Glu	Gly	Lys
50	Gly 225	Ala	Thr	Tyr	Tyr	Gly 230	Ile	Gly	Ala	Gly	Leu 235	Ala	Arg	Leu	Val	Ar g 240
	Ala	Ile	Leu	Thr	Asp 245	Glu	Lys	Gly	Val	Tyr 250	Thr	Val	Ser	Ala	Phe 255	Thr
55	Pro	Glu	Val	Glu 260	Gly	Val	Leu	Glu	Val 265	Ser	Leu	Ser	Leu	Pro 270	Arg	Ile

	Leu Gly Ala Gly Gly Val Glu Gly Thr Val Tyr Pro Ser Leu Ser Pro 275 280 285	
5	Glu Glu Arg Glu Ala Leu Arg Arg Ser Ala Glu Ile Leu Lys Glu Ala 290 295 300	
10	Ala Phe Ala Leu Gly Phe 305 310	
15	<210> 7 <211> 1035 <212> DNA <213> Thermus thermophilus	
	<400> 7	60
	atgaggtggc gggcggactt cctctcggcc tgggcggagg ccctcttgcg aaaggcggga	120
20	gcggacgaac cctccgccaa ggcggtggcc tgggccctgg tggaggcgga cctcaggggg gtgggaagcc acgggctttt gcgccttccc gtttacgtgc gccgcctcga ggcgggcctg	180
	gtgaacccca gccccaccct gcccctggag gaacggggcc ccgtggccct cctggacggg	240
	gagcacggct teggaceeeg egtggeeeta aaggeegtgg aggeggeeea aageetegea	300
25		360
	aggaggcacg gcctcggggc cgtgggggtg cggcggagca cccacttcgg catggcgggc	
30	ctctacgcgg agaagctcgc ccgggagggc ttcgtggcct gggtcaccac caacgccgag	420
30	cccgacgtgg tgcccttcgg ggggcgggag aaggccttgg gcaccaaccc tctggccttc	480
	geegeeeegg eeeeteaggg gateetegtg geegaeetgg eeaeetegga aagegeeatg	540
25	ggcaaggtct tectageeeg ggagaagggg gageggatee eeceaagetg gggggtggae	600
35	cgggagggga gccccacgga cgaccccac cgggtctacg ccctgaggcc cctcgggggg	660
	cccaaggggt acgccctggc ccttttggtg gaggtgctct cggggggtgct cacgggggcg	720
40	ggggtggccc acggcatcgg ccgcatgtac gacgagtggg accgccccca ggacgtgggc	780
40	cacttectee tggeeetgga eeeggggege ttegtgggea aagaggeett eetggagegg	840
	atgggggccc tttggcaagc cctaaaggcc actcccccgg cgccggggca cgaggaggtc	900
45	tteeteeeg gggagttgga ggeeaggagg egggageggg eeetggegga ggggatggee	960
	cttccggagc gggtggtggc ggagcttaag gccttggggg agcgctacgg cgtgccttgg	1020
	agggacgatg cttga	1035
50	<210> 8 <211> 1011 <212> DNA	

atgcaaggca ttcctgtgca acaactgcgc gagcgggtgg agcagattct aataaaccgg

60

<213> Meiothermus ruber

<400> 8

	ggccccacgc	cggagaacge	cccacccacc	geagaaceee	cggcgccggc	cgagacgcgg	120
	ggggttgcct	cgcacggcct	gatccgactg	cccatctacc	tcgagcgcgc	ccgactgggt	180
5	tcggtaaaac	cccaggcccg	gcccgtgctg	ctggcggatt	atccagccct	ggccctgctg	240
	gatgcccagg	atggtcacgg	catcccctcc	ggcttgaaag	cgatggagct	ggccattgaa	300
	aaagcccaga	aggtgggcct	ggccgctgtg	ggggtgcggc	gctcgagcca	ctttggcctg	360
10	gcctggtact	tcgtgcgcag	cgcagtggaa	aaggggctgg	tcggcgtggc	actctccaac	420
	gccgatgcgc	tggtggcccc	ctggggcgcc	cgcagccgct	ttctgggcac	caaccccctg	480
	gctgtgggca	tcccggccat	ggaggaaccc	cccatcgccc	tggacatggc	caccagcgag	540
15	gccgcccacg	gcaaaatttt	gctggccaag	tccagcggga	aaaccatccc	cctcaactgg	600
	gccctcgatg	cggaggggcg	gcccaccgac	gaccccgacc	gggccctggc	cggcgccctg	660
20	ctgccttttg	gggggcccaa	gggatcggcc	atcagcctgc	tcattgatgt	gctgtgcggc	720
	ccactcgtgg	gcgctctgat	tggccccgag	atcgccccgc	tctacaccga	gcccgaacgg	780
	ccccagggcc	tgggccattt	ttttatggcc	ctgaacccgg	gtgtttttgg	cgacgccgaa	840
25	cagtttagaa	agcaggtcga	cgcgtacatt	cgcagggttc	gcgcgctgcc	tcccgccgaa	900
	aacgtcgatc	gggttctact	gccaggcgaa	cgcgagtggc	gcctcgagca	aaaagcgcta	960
	caggagggg	tgtctctaag	cccagaggcc	gctaaagcgg	tgggccttta	a	1011
30	<210> 9 <211> 999 <212> DNA <213> Meio	othermus ruk	per				
35	<400> 9						
	atgagggttc	cttatcccgt	actcaagcag	gcggtctcga	gccacttcca	gggcctgggg	60
	ctggccccgg	atcatgccga	ggccttcacc	gaggtgatcc	tcgaggccga	gctcgagggc	120
40	aacctggggc	acggcctgac	ccggattgcc	cagtacaccg	cccagctaca	ggccggtggg	180
	ctcaaccccc	ggccgcagat	gcgtttggaa	cgaaccaaac	ccggggttgc	agttctgcat	240
45	gccgacggcg	cacccgggcc	ggtggccggg	ctttttgcag	tgcaggcgct	ggccccgatg	300
45	gccagggagc	agggaagcgc	cgccctggcc	gtgcgcggcg	cggggcattc	cggggtgctc	360
	tcggcgtacg	tgggccggct	ggcccaagag	ggcctggtag	ccctggcctt	tgccaacacc	420
50	ccccggcca	tegeceeggg	gccggtgctg	ggcaccaacc	ccatcgccct	gggcgcgccg	480
	accasacca	agccggtcat	cattgatacc	tccatctcgg	tggtggcgcg	cggcaagatc	540
	geegageeee	-999	-				
		ctaaaaaggg			gggcgctcga	caaggagggt	600
55	atcgccgcgg		cgagcccatc	ccgccgggct			660

	ctctcgcccg agctgcccct gccctggatg cccccagcgc aggccgccaa gccggggctg	780
	ctgctgctgg cctttgaccc cgccgccttt ggcccgggct acaggggccg ggtggcccag	840
5	ctcatcgagg ctcttaaagc ggccggaggc cggattcccg gtgcgcgccg ggccgcttta	900
	cgagagaaag ccttggcgga aggtctggag gtcaaccaga cgcttcaggc cgaactcggt	960
	acactaggcg tgcatctaca aggaggaggg acaagatga	999
10	<210> 10 <211> 344 <212> PRT	
	<213> Thermus thermophilus	
15	<400> 10	
	Met Arg Trp Arg Ala Asp Phe Leu Ser Ala Trp Ala Glu Ala Leu Leu 1 5 10 15	
20	Arg Lys Ala Gly Ala Asp Glu Pro Ser Ala Lys Ala Val Ala Trp Ala 20 25 30	
25	Leu Val Glu Ala Asp Leu Arg Gly Val Gly Ser His Gly Leu Leu Arg 35 40 45	
30	Leu Pro Val Tyr Val Arg Arg Leu Glu Ala Gly Leu Val Asn Pro Ser 50 55 60	
	Pro Thr Leu Pro Leu Glu Glu Arg Gly Pro Val Ala Leu Leu Asp Gly 65 70 75 80	
35	Glu His Gly Phe Gly Pro Arg Val Ala Leu Lys Ala Val Glu Ala Ala 85 90 95	
40	Gln Ser Leu Ala Arg Arg His Gly Leu Gly Ala Val Gly Val Arg Arg 100 105 110	
	Ser Thr His Phe Gly Met Ala Gly Leu Tyr Ala Glu Lys Leu Ala Arg 115 120 125	
45	Glu Gly Phe Val Ala Trp Val Thr Thr Asn Ala Glu Pro Asp Val Val 130 135 140	
50	Pro Phe Gly Gly Arg Glu Lys Ala Leu Gly Thr Asn Pro Leu Ala Phe 145 150 155 160	
55	Ala Ala Pro Ala Pro Gln Gly Ile Leu Val Ala Asp Leu Ala Thr Ser 165 170 175	
55	Glu Ser Ala Met Gly Lys Val Phe Leu Ala Arg Glu Lys Gly Glu Arg	

				-00					-00							
5	Ile	Pro	Pro 195	Ser	Trp	Gly	Val	Asp 200	Arg	Glu	Gly	Ser	Pro 205	Thr	Asp	Asp
	Pro	His 210	Arg	Val	Tyr	Ala	Leu 215	Arg	Pro	Leu	Gly	Gly 220	Pro	Lys	Gly	Tyr
10	Ala 225	Leu	Ala	Leu	Leu	Val 230	Glu	Val	Leu	Ser	Gly 235	Val	Leu	Thr	Gly	Ala 240
15	Gly	Val	Ala	His	Gly 245	Ile	Gly	Arg	Met	Tyr 250	Asp	Glu	Trp	Asp	Arg 255	Pro
20	Gln	Asp	Val	Gly 260	His	Phe	Leu	Leu	Ala 265	Leu	Asp	Pro	Gly	Arg 270	Phe	Val
	Gly	Lys	Glu 275	Ala	Phe	Leu	Glu	Arg 280	Met	Gly	Ala	Leu	Trp 285	Gln	Ala	Leu
25	Lys	Ala 290	Thr	Pro	Pro	Ala	Pro 295	Gly	His	Glu	Glu	Val 300	Phe	Leu	Pro	Gly
30	Glu 305	Leu	Glu	Ala	Arg	Arg 310	Arg	Glu	Arg	Ala	Leu 315	Ala	Glu	Gly	Met	Ala 320
	Leu	Pro	Glu	Arg	Val 325	Val	Ala	Glu	Leu	Lys 330	Ala	Leu	Gly	Glu	Ar g 335	Tyr
35	Gly	Val	Pro	Trp 340	Arg	Asp	Asp	Ala								
40	<210 <211 <212 <213	?> I	l1 336 PRT Meiot	hern	nus 1	rubei	r									
	<400)> 1	L 1													
45	Met 1	Gln	Gly	Ile	Pro 5	Val	Gln	Gln	Leu	Arg 10	Glu	Arg	Val	Glu	Gln 15	Ile
50	Leu	Ile	Asn	Arg 20	Gly	Phe	Thr	Leu	Glu 25	Asn	Ala	Leu	Pro	Ile 30	Ala	Glu
55	Ser	Leu	Val 35	Leu	Ala	Glu	Met	Arg 40	Gly	Val	Ala	Ser	His 45	Gly	Leu	Ile
	Arg	Leu	Pro	Ile	Tyr	Leu	Glu	Arg	Ala	Arg	Leu	Gly	Ser	Val	Lys	Pro

5	Gln 65	Ala	Arg	Pro	Val	Leu 70	Leu	Ala	Asp	Tyr	Pro 75	Ala	Leu	Ala	Leu	Leu 80
10	Asp	Ala	Gln	Asp	Gly 85	His	Gly	Ile	Pro	Ser 90	Gly	Leu	Lys	Ala	Met 95	Glu
	Leu	Ala	Ile	Glu 100	Lys	Ala	Gln	Lys	Val 105	Gly	Leu	Ala	Ala	Val 110	Gly	Val
15	Arg	Arg	Ser 115	Ser	His	Phe	Gly	Leu 120	Ala	Trp	Tyr	Phe	Val 125	Arg	Ser	Ala
20	Val	Glu 130	Lys	Gly	Leu	Val	Gly 135	Val	Ala	Leu	Ser	Asn 140	Ala	Asp	Ala	Leu
25	Val 145	Ala	Pro	Trp	Gly	Ala 150	Arg	Ser	Arg	Phe	Leu 155	Gly	Thr	Asn	Pro	Leu 160
20	Ala	Val	Gly	Ile	Pro 165	Ala	Met	Glu	Glu	Pro 170	Pro	Ile	Ala	Leu	Asp 175	Met
30	Ala	Thr	Ser	Glu 180	Ala	Ala	His	Gly	Lys 185	Ile	Leu	Leu	Ala	Lys 190	Ser	Ser
35	Gly	Lys	Thr 195	Ile	Pro	Leu	Asn	Trp 200	Ala	Leu	Asp	Ala	Glu 205	Gly	Arg	Pro
	Thr	Asp 210	Asp	Pro	Asp	Arg	Ala 215	Leu	Ala	Gly	Ala	Leu 220	Leu	Pro	Phe	Gly
40	Gly 225	Pro	Lys	Gly	Ser	A la 230	Ile	Ser	Leu	Leu	Ile 235	Asp	Val	Leu	Cys	Gly 240
45	Pro	Leu	Val	Gly	Ala 245	Leu	Ile	Gly	Pro	Glu 250	Ile	Ala	Pro	Leu	Tyr 255	Thr
50	Glu	Pro	Glu	Arg 260	Pro	Gln	Gly	Leu	Gly 265	His	Phe	Phe	Met	Ala 270	Leu	Asn
	Pro	Gly	Val 275	Phe	Gly	Asp	Ala	Glu 280	Gln	Phe	Arg	Lys	Gln 285	Val	Asp	Ala
55	Tyr	Ile 290	Arg	Arg	Val	Arg	Ala 295	Leu	Pro	Pro	Ala	Glu 300	Asn	Val	Asp	Arg

	Val Leu 305	Leu Pro	-	Glu <i>I</i> 310	Arg Gl	ı Trp	Arg	Leu 315	Glu	Gln	Lys	Ala	Leu 320
5	Gln Glu	Gly Val	Ser :	Leu S	Ser Pr	Glu	Ala 330	Ala	Lys	Ala	Val	Gly 335	Leu
10		12 332 PRT Meiothe:	mus r	uber									
	<400>	12											
15	Met Arg	Val Pro	Tyr :	Pro V	Val Le	ı Lys	Gln 10	Ala	Val	Ser	Ser	His 15	Phe
20	Gln Gly	Leu Gly 20	Leu .	Ala I	Pro As _i	His 25	Ala	Glu	Ala	Phe	Thr 30	Glu	Val
	Ile Leu	Glu Ala 35	Glu :	Leu (Glu Gly 40	/ Asn	Leu	Gly	His	Gly 45	Leu	Thr	Arg
25	Ile Ala 50	Gln Tyı	Thr .		Gln Le	ı Gln	Ala	Gly	Gly 60	Leu	Asn	Pro	Arg
30	Pro Gln 65	Met Aro		Glu <i>1</i> 70	Arg Th	. Lys	Pro	Gly 75	Val	Ala	Val	Leu	His 80
35	Ala Asp	Gly Ala	Pro 85	Gly I	Pro Va	l Ala	Gly 90	Leu	Phe	Ala	Val	Gln 95	Ala
	Leu Ala	Pro Met		Arg (Glu Gl	Gly 105	Ser	Ala	Ala	Leu	Ala 110	Val	Arg
40	Gly Ala	Gly His	Ser	Gly V	Val Lei 12		Ala	Tyr	Val	Gly 125	Arg	Leu	Ala
45	Gln Glu 130	Gly Le	ı Val .		Leu Ala 135	a Phe	Ala	Asn	Thr 140	Pro	Pro	Ala	Ile
50	Ala Pro 145	Gly Pro		Leu (150	Gly Th	Asn	Pro	Ile 155	Ala	Leu	Gly	Ala	Pro 160
	Ala Glu	Pro Glr	165	Val 1	Ile Il	a Asp	Thr 170	Ser	Ile	Ser	Val	Val 175	Ala
55	Arg Gly	Lys Ile 180		Ala A	Ala Ala	Lys 185	Lys	Gly	Glu	Pro	Ile 190	Pro	Pro

	Gly	Trp	Ala 195	Leu	Asp	Lys	Glu	Gly 200	Arg	Pro	Thr	Thr	Asp 205	Ala	Lys	Ala	
5	Ala	Leu 210	Glu	Gly	Ser	Leu	Leu 215	Pro	Ile	Gly	Glu	Gly 220	Lys	Gly	Phe	Ala	
10	Leu 225	Ala	Val	Leu	Val	Glu 230	Ile	Leu	Ala	Gly	Ala 235	Leu	Ala	Gly	Asp	Val 240	
	Leu	Ser	Pro	Glu	Leu 245	Pro	Leu	Pro	Trp	Met 250	Pro	Pro	Ala	Gln	Ala 255	Ala	
15	Lys	Pro	Gly	Leu 260	Leu	Leu	Leu	Ala	Phe 265	Asp	Pro	Ala	Ala	Phe 270	Gly	Pro	
20	Gly	Tyr	Arg 275	Gly	Arg	Val	Ala	Gln 280	Leu	Ile	Glu	Ala	Leu 285	Lys	Ala	Ala	
25	Gly	Gly 290	Arg	Ile	Pro	Gly	Ala 295	Arg	Arg	Ala	Ala	Leu 300	Arg	Glu	Lys	Ala	
20	Leu 305	Ala	Glu	Gly	Leu	Glu 310	Val	Asn	Gln	Thr	Leu 315	Gln	Ala	Glu	Leu	Gly 320	
30	Thr	Leu	Gly	Val	His 325	Leu	Gln	Gly	Gly	Gly 330	Thr	Arg					
35	<210 <210 <210 <210	1> : 2> :	13 35 ONA Arti	ficia	al se	equei	nce										
40	<220 <220		PCR p	prime	er												
40	<400	-	13 aac t	aggo	cca	ge ea	agata	actco	c cga	atc							35
45		1> : 2> :		ficia	al se	equei	nce										
50	<220 <220	3> 1	PCR I	prime	er												
	<400		14 tca t	tgg	ccgga	ag c	gcaad	cca	e tea	act							35
55	<210 <210 <210		15 35 ONA														

	<213>	Artificial sequence	
	<220>		
	<223>	PCR primer	
5	<400>	15	
		ctag ttggccacgt agaaagccag tccgc	35
	<210>	16	
10	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
15	<223>	PCR primer	
	<400>	16	
	tccggc	caat gaggcctcag aagaactcgt caaga	35
20	<210>	17	
	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
25	<223>	PCR primer	
	<400>	17	
	gcatta	atcc ttggactcct gttgatagat ccagtaatga cctcagaact ccatctggat	60
30	ttgttc	agaa cgctcggttg ccg	83
	<210>		
	<211>		
35	<212>	Artificial sequence	
00	\2132	Altificial sequence	
	<220>		
	<223>	PCR primer	
40	<400>		
	caccgt	gcag tegatggate tggattetea ecaataaaaa aegeeeggeg geaacegage	60
	gttctg	gaaca aatccagatg gag	83
45	<210>		
	<211>		
	<212>	Artificial sequence	
		ALCITICIAL SEQUENCE	
50	<220>		
50	<223>	PCR primer	
	<400>		
	ttatto	gtga gaatccagat ccatcgactg cacggtgcac caatgcttct	50
55			
	<210>		
	<211>	70	

	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
5	<223>	PCR primer	
	<400>	20	
	gcaagc	ttgg agtgatcatc gtatgcatat gcgtttctcc tccagatccc tgtttcctgt	60
	gtgaaa	ttgt	70
10			
	<210>		
	<211>		
	<212>		
15	<213>	Artificial sequence	
	<220>	DOD	
	<223>	PCR primer	
	<400>	01	
20			35
20	ctcgaa	ttca ctggccgtcg ttttacaacg tcgtg	33
	<210>	22	
	<211>		
	<212>		
25		Artificial sequence	
	1220		
	<220>		
	<223>	PCR primer	
		•	
30	<400>	22	
00	cgcaat	tgag tttgtagaaa cgcaaaaagg ccatc	35
	<210>		
	<211>		
35	<212>		
	<213>	Artificial sequence	
	<220>		
	<223>	PCR primer	
40	44005		
	<400>		35
	LLacal	atga aacaacaagg catgaatcga gtagc	33
	<210>	24	
45	<211>		
70	<212>		
		Artificial sequence	
		•	
	<220>		
		PCR primer	
50			
	<400>	24	
	ttagaa	ttct tattttacat catcaaaata acggg	35
55	<210>		
	<211>		
	<212>	DNA	

	<213>	Artificial sequence	
	<220>		
	<223>	PCR primer	
5			
	<400>		35
	LLaCal	atga aaaacgggag aggaaatcgg gtagc	33
40	<210>		
10	<211> <212>		
		Artificial sequence	
		•	
	<220>		
15	<223>	PCR primer	
	<400>	26	
	ttagaa	ttet tactgageaa aatagegege caata	35
20	<210>	27	
	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
25	<223>	PCR primer	
	<400>	27	
			35
30	<210>	20	
	<211>		
	<212>	DNA	
	<213>	Artificial sequence	
35	<220>		
	<223>	PCR primer	
	<400>	28	
			35
40	-		
. •	<210>	29	
	<211>		
	<212>	DNA	
	<213>	Artificial sequence	
45	<220>		
		PCR primer	
	.400		
	<400>		35
50		arga ggraggga ggaccccca coggo	
	<210> <211>		
	<211> <212>		
55		Artificial sequence	
	<220>		

<pre></pre>	35
ttagaattct caagcatcgt ccctccaagg cacgc <pre></pre>	
210> 31	35
<pre></pre>	35
<pre> 400> 31 ttacatatgc aaggcattcc tgtgcaacaa ctgcg </pre> <pre> 210> 32</pre>	35
<pre> 400> 31 ttacatatgc aaggcattcc tgtgcaacaa ctgcg </pre> <pre> 210> 32</pre>	35
15 ttacatatgc aaggcattcc tgtgcaacaa ctgcg	35
<pre></pre>	35
20	
20	
20	
20	
<pre></pre>	
<pre></pre>	
<pre></pre>	
25	
<pre> <400> 32 ttagaattct taaaggccca ccgctttagc ggcct <210> 33</pre>	
<pre> <400> 32 ttagaattct taaaggccca ccgctttagc ggcct <210> 33</pre>	
30	
30	35
30	
30	
<pre> <211> 35 <212> DNA <213> Artificial sequence <220> 35 <223> PCR primer <400> 33</pre>	
<213> Artificial sequence <220> 35 <223> PCR primer <400> 33	
<220> 35 <223> PCR primer <400> 33	
35 <223> PCR primer <400> 33	
35 <223> PCR primer <400> 33	
< 4 00> 33	
ttacatatga gggttcctta tcccgtactc aagca	
	35
40	
<210> 34 <211> 35	
<211> 35 <212> DNA	
<213> Artificial sequence	
⁴⁵ <220>	
<223> PCR primer	
F	
<400> 34	
tttgaattet catettgtee etecteettg tagat	35

Claims

- **1.** A transformant obtained by introducing (a) a lactate dehydrogenase gene and/or (b) a malate/lactate dehydrogenase gene into a *Hydrogenophilus* bacterium.
- 2. The transformant according to claim 1, wherein (a) the lactate dehydrogenase gene is the following DNA (a1), (a2), (a3), (a4), (a5) or (a6):

(a1) DNA which consists of a base sequence of SEQ ID NO: 1, 2 or 3;

5

10

15

20

25

30

35

40

45

50

- (a2) DNA which consists of a base sequence having 90% or more identity to SEQ ID NO: 1, 2 or 3, the DNA encoding a polypeptide having lactate dehydrogenase activity;
- (a3) DNA which hybridizes with a DNA consisting of a base sequence complementary to SEQ ID NO: 1, 2 or 3 under stringent conditions, and which encodes a polypeptide having lactate dehydrogenase activity;
- (a4) DNA which encodes a polypeptide consisting of an amino acid sequence of SEQ ID NO: 4, 5 or 6;
- (a5) DNA which encodes a polypeptide consisting of an amino acid sequence having 90% or more identity to SEQ ID NO: 4, 5 or 6, the polypeptide having lactate dehydrogenase activity;
- (a6) DNA which encodes a polypeptide consisting of an amino acid sequence having a deletion, substitution, or addition of one or a plurality of amino acids in an amino acid sequence of SEQ ID NO: 4, 5 or 6, the polypeptide having lactate dehydrogenase activity.
- 3. The transformant according to claim 1 or 2, wherein (b) the malate/lactate dehydrogenase gene is the following DNA (b1), (b2), (b3), (b4), (b5) or (b6):
 - (b1) DNA which consists of a base sequence of SEQ ID NO: 7, 8 or 9;
 - (b2) DNA which consists of a base sequence having 90% or more identity to SEQ ID NO: 7, 8 or 9, the DNA encoding a polypeptide having lactate dehydrogenase activity;
 - (b3) DNA which hybridizes with a DNA consisting of a base sequence complementary to SEQ ID NO: 7, 8 or 9 under stringent conditions, and which encodes a polypeptide having lactate dehydrogenase activity;
 - (b4) DNA which encodes a polypeptide consisting of an amino acid sequence of SEQ ID NO: 10, 11 or 12;
 - (b5) DNA which encodes a polypeptide consisting of an amino acid sequence having 90% or more identity to SEQ ID NO: 10, 11 or 12, the polypeptide having lactate dehydrogenase activity;
 - (b6) DNA which encodes a polypeptide consisting of an amino acid sequence having a deletion, substitution, or addition of one or a plurality of amino acids in the amino acid sequence of SEQ ID NO: 10, 11 or 12, the polypeptide having lactate dehydrogenase activity.
- **4.** The transformant according to any one of claims 1-3, wherein the *Hydrogenophilus* bacterium is *Hydrogenophilus* thermoluteolus.
- **5.** A method for producing lactic acid comprising a step of culturing the transformant according to any one of claims 1-4 through use carbon dioxide as a substantially sole carbon source.

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2018/044226 A. CLASSIFICATION OF SUBJECT MATTER 5 Int.Cl. C12N15/09(2006.01)i, C12N1/21(2006.01)i, C12N15/53(2006.01)i, C12P7/56(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) Int.Cl. C12N15/09, C12N1/21, C12N15/53, C12P7/56 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Published examined utility model applications of Japan 1922-1996 Published unexamined utility model applications of Japan 1971-2019 Registered utility model specifications of Japan 1996-2019 Published registered utility model applications of Japan 1994-2019 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JSTPlus/JMEDPlus/JST7580 (JDreamIII), 20 CAplus/WPIDS/MEDLINE/EMBASE/BIOSIS(STN), GenBank/EMBL/DDBJ/GeneSeq, UniProt/GeneSeq DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2017-093465 A (CENTRAL RESEARCH INSTITUTE OF ELECTRIC 1-2, 4-5 25 Υ 1 - 5POWER INDUSTRY) 01 June 2017, claims 1, 5, 8, paragraphs [0025], [0028], [0050]-[0053] (Family: none) Υ HAYASHI, N. R. et al., Hydrogenophilus thermoluteolus 1 - 530 gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium, International Journal of Systematic Bacteriology, 1999, 49, 783-786, abstract 35 X 40 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "L" 45 document of particular relevance; the claimed invention cannot be special reason (as specified) document of particular relevance, the channel mention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 50 15.02.2019 26.02.2019 Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Telephone No. Tokyo 100-8915, Japan 55 Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2018/044226

5	C (Continuation)). DOCUMENTS CONSIDERED TO BE RELEVANT	·
	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
10	Y	JP 2017-523778 A (PURAC BIOCHEM BV) 24 August 2017, SEQ ID NO.: 47, 48 & US 2017/0275656 A1 & WO 2016/012296 A1 & KR 10-2017-0019467 A & CN 106574236 A	1-5
15	Y	Database UniProt [online], Accession No. Q5L2S0, https://www.uniprot.org/uniprot/Q5L2S0.txt?version=97 10 October 2018 uploaded, [retrieved on 12 February 2019] Definition: RecName: Full=L-lactate dehydrogenase, columns DE, OS, SQ	1-5
20	Y	Database UniProt [online], Accession No. Q53W84, https://www.uniprot.org/uniprot/Q53W84.txt?version=89 07 November 2018 uploaded, [retrieved on 12 February 2019] Definition: SubName: Full=Malate/L-lactate dehydrogenase family protein, columns DE, OS, SQ	1-5
25	Y	Database UniProt [online], Accession No. D3PMY6, https://www.uniprot.org/uniprot/D3PMY6.txt?version=53 07 November 2018 uploaded, [retrieved on 12 February 2019] Definition: SubName: Full=Malate dehydrogenase, columns DE, OS, DR, SQ	1-5
30	Y	Database UniProt [online], Accession No. D3PMA5, https://www.uniprot.org/uniprot/D3PMA5.txt?version=53> 07 November 2018 uploaded, [retrieved on 12 February 2019] Definition: SubName: Full=Malate/L-lactate dehydrogenase, columns DE, OS, SQ	1-5
35	Y A	JP 2013-179863 A (TOSOH CORPORATION) 12 September 2013, claims 1-2, 7, paragraph [0032] (Family: none)	1, 4-5 2-3
40	Y A	重富徳夫, 微生物の機能を活用した CO ₂ 固定化の検討, 三菱総合研究所/所報,1999,34,82-93,p.91,11.17-23,(SHIGETOMI, Norio,Astudy of Co ₂ fixation utilizing microorganisms, Journal of Mitsubishi Research Institute)	1, 4-5 2-3
45	Α	石井正治, 水素細菌の代謝特性を活かしたものづくりに対する基盤的研究, 公益財団法人岩谷直治記念財団研究報告書, 01 August 2018, 41, 57-59, p. 58, (2), (ISHII, Masaharu, Basic research toward material production through the utilization of metabolic characteristics of hydrogen-oxidizing microorganisms), non-official translation (Research Report of the Iwatani Naoji Foundation)	1-5
50	Е, А	JP 6450912 B1 (UTILIZATION OF CARBON DIOXIDE INSTITUTE CO., LTD.) 16 January 2019, claims (Family: none)	1-5
55		O (continuation of cocond short) (January 2015)	

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2005528106 A [0018]
- JP 2014030655 A [0018]
- JP 2015023854 A **[0018]**

- JP 2017523778 A [0018]
- JP 2017093465 A **[0018]**

Non-patent literature cited in the description

- CHANG DE; JUNG HC; RHEE JS; PAN JG. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl. Environ. Microbiol., 1999, vol. 65, 1384-1389 [0019]
- ANGERMAYR SA; PASZOTA M; HELLINGWERF KJ. Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol., 2012, vol. 78, 7098-7106 [0019]
- The Journal of Mitsubishi Research Institute No.34, 1999 [0031]
- Agricultural and Biological Chemistry, 1977, vol. 41, 685-690 [0055]
- Gene, 1998, vol. 70, 191-197 [0072]
- Gene, 1994, vol. 145, 69-73 [0073]
- Journal of Molecular Biology, 1970, vol. 53, 159-162 [0075]