

Test report No. : 10636726H-K-R3

Page : 1 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

SAR TEST REPORT

Test Report No.: 10636726H-K-R3

Applicant : Panasonic Mobile Communications Development of

Europe Ltd

Type of Equipment : Digital Camera

Model No. : DMC-CM1

FCC ID : UCE314062A

Test regulation : FCC47CFR 2.1093

Test Result : Complied

Reported SAR(1g) Value The highest reported SAR(1g)

WWAN Head : 0.468W/kg

Body : 1.511W/kg

WWAN+WLAN: 1.513W/kg

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers SAR technical requirements. It does not cover administrative issues such as Manual or non-SAR test related Requirements. (if applicable)
- 7. This report is a revised version of 10636726H-K-R2. 10636726H-K-R2 is replaced with this report.

Date of test:

January 15 to February 6, 2015

Representative test engineer:

Tomohisa Nakagawa Engineer

Consumer Technology Division

Approved by:

Takahiro Hatakeda

Leader

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3

Page : 2 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

REVISION HISTORY

Original Test Report No.: 10636726H-K

Revision	Test report No.	Date	Page revised	Contents
_	10636726H-K	February 20, 2015	-	-
(Original)	10030/20H-K	reordary 20, 2013	_	-
1	10636726H-K-R1	March 5, 2015	P.4	Correction of rating
1	10636726H-K-R1	March 5, 2015	P.6	Correction of KDB procedures
1	10636726H-K-R1	March 5, 2015	P.54	Correction of column "position" for WWAN
				LTE V and WWAN LTE XVII in the table
2	10636726H-K-R2	March 9, 2015	P.11	Addition of Output power operating modes
2	10636726H-K-R2	March 9, 2015	P.103-106	Addition of unit and Correction of test data
3	10636726H-K-R3	March 19, 2015	P.7	Correction of KDB941225D06 version
3	10636726H-K-R3	March 19, 2015	P.10	Addition of explanatory note for Hotspot mode
3	10636726H-K-R3	March 19, 2015	P.424, 426-429	Addition of word "Ear Reference Point" in SAR Setup Photo
				_
	1			
	1			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3

Page : 3 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

	<u>rents</u>	PAGE
SECT	TION 1: CUSTOMER INFORMATION	5
SECT	TION 2: EQUIPMENT UNDER TEST (E.U.T.)	5
2.1	IDENTIFICATION OF E.U.T.	
2.2	PRODUCT DESCRIPTION	5
SECT	TION 3: TEST STANDARD INFORMATION	7
3.1	TEST SPECIFICATION	
3.2	Procedure.	
3.3	EXPOSURE LIMIT	
3.4	TEST LOCATION	8
SECT	TION 4: TEST RESULT	9
4.1	STAND-ALONE SAR RESULT.	
4.2	SIMULTANEOUS TRANSMISSION SAR RESULT	
SECT	TION 5: DESCRIPTION OF THE OPERATING MODE	11
5.1	OUTPUT POWER OPERATING MODES	
5.2	OUTPUT POWER MEASUREMENT RESULTS	
5.3	CONFIRMATION AFTER SAR TESTING.	
SECT	TION 6 SAR TEST EXCLUSION CONSIDERATIONS	
6.1	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
	TION 7: DESCRIPTION OF THE SAR MEASUREMENT SETUP	
7.1	TEST POSITION FOR HEAD SETUP	
7.2	TEST POSITION FOR BODY-WORN AND BODY(HOTSPOT) SETUP	
	TION 8: TEST SURROUNDING	
8.1	MEASUREMENT UNCERTAINTY	
	TION 9: MEASUREMENT RESULTS	
9.1	GSM850 HEAD SAR	
9.1	GSM850 BODY-WORN AND BODY(HOTSPOT) SAR	
9.2	PCS1900 HEAD SAR	
9.4	PCS1900 BODY-WORN AND BODY (HOTSPOT) SAR	
9.5	WCDMA BAND II HEAD SAR	
9.6	WCDMA BAND II BODY-WORN AND BODY(HOTSPOT) SAR	
9.7	WCDMA BAND IV HEAD SAR	
9.8	WCDMA BAND IV BODY-WORN AND BODY(HOTSPOT) SAR	
9.9	WCDMA BAND V HEAD SAR	
9.10	WCDMA BAND V BODY-WORN AND BODY(HOTSPOT) SAR	
9.11	LTE BAND II HEAD SAR	80
9.12	LTE BAND II BODY-WORN AND BODY(HOTSPOT) SAR	82
9.13	LTE BAND IV HEAD SAR	
9.14	,	
9.15		
9.16		
9.17		
9.18		
9.19		
9.20		
	TION 10 SIMULTANEOUS TRANSMISSION ANALYSIS	
10.1	SUM OF THE SAR FOR GSM & WLAN	
10.2		
10.3	SUM OF THE SAR FOR LTE BAND II, IV & WLAN	
10.4	SUM OF THE SAR FOR LTE BAND V, VII, XVII & WLAN	
	TION 11 TEST INSTRUMENTS	
APPE	ENDIX 1: SAR MEASUREMENT DATA	109
APPE	ENDIX 2: SYSTEM CHECK	273

Test report No. : 10636726H-K-R3
Page : 4 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 5 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 1: Customer information

Company Name : Panasonic Mobile Communications Development of Europe Ltd

Address : Willoughby Road, Bracknell Berkshire RG12 8FP, UK

Telephone Number : +44 (0) 1344 706774
Facsimile Number : +44 (0) 1344 706796
Contact Person : Andrew James

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Digital Camera Model No. : DMC-CM1 Serial No. : 004401221416395

Rating : AC120V/60Hz (AC Adaptor)

DC3.8V (Battery)

Option Battery : None

Body-worn Accessary : Typical Earphone Receipt Date of Sample : January 7, 2015

Country of Mass-production : China

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product description

General Specification

Power Supply (radio part input) : Cellular PA: 3.0V-4.2V (Depend on Battery voltage)

Cellular other RF part: 1.3V, 1.8V, 2.05V, 2.7V (Regulated voltage) WLAN 5GHz Front-end module: 3.0V-4.2V (Depend on Battery voltage)

WLAN/BT other RF part: 1.3V, 1.8V, 3.0V (Regulated voltage)

Clock frequency(ies) in the system : 2.26GHz (Max)

See below table for other clock frequencies

Frequency	Device	
32.768kHz	MSM8974AB	
32.768kHz (X'tal)	BUYD2206	
27.0MHz	TC358764AXBG, XO2-256-64UCBGA, BUYD2206	
48.0MHz (X'tal)	WCN3680	
24.0MHz	MSM8974AB, Sub Camera	
19.2MHz	WTR1625L, MSM8974AB	
19.2MHz (X'tal)	PM8941	
9.6MHz	WCD9320	
72MHz	Main Camera	
27.12MHz	NFC IC	

Hardware / Software version : Rev. PR / QRCT Version 3.0.32.0

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3

Page : 6 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

Radio Specification

	IEEE802.11b	IEEE802.11g/n	IEEE802.11a/n/ac	IEEE802.11n/ac	IEEE802.11ac
		(20 M band)	(20 M band)	(40 M band)	(80 M band)
Frequency	2412-2462MHz	2412-2462MHz	5180-5240MHz	5190-5230MHz	5210MHz
of operation			5260-5320MHz	5270-5310MHz	5290MHz
-			5500-5700MHz	5510-5670MHz	5530-5610MHz
			5745-5825MHz	5755-5795MHz	5775MHz
Type of modulation	DSSS	OFDM-CCK	OFDM (64QAM, 16QAM, QPSK, BPSK)		OFDM
	(CCK, DQPSK,	(64QAM, 16QAM,	·		(64QAM, 16QAM,
	DBPSK)	QPSK, BPSK)			QPSK, BPSK,
	·	·			256QAM)
Channel spacing	5MHz		20MHz	40MHz	80MHz
Antenna type	Monopole				
Antenna Connector	Spring type				
type					
Antenna Gain	2.4GHz: -5.40dBi				
	W52: -3.0dBi, W53: -3.5dBi, W56: -1.5dBi, W58: -1.8dBi				

	Bluetooth Ver.4.0 with EDR function	GSM	W-CDMA	LTE
Frequency of operation	2402-2480MHz	[Up Link] GSM850: 824 – 849MHz PCS: 1850 – 1910MHz [Down Link] GSM850: 869 – 894MHz PCS: 1930 – 1990MHz	[Up Link] Band II: 1850 – 1910MHz Band IV: 1710 – 1755MHz Band V: 824 – 849MHz [Down Link] Band II: 1930 – 1990MHz Band IV: 2110 – 2155MHz Band V: 869 – 894MHz	[Up Link] Band II: 1850 – 1910MHz Band IV: 1710 – 1755MHz Band V: 824 – 849MHz Band VII: 2500 – 2570MHz Band X VII: 704 – 716MHz [Down Link] Band II: 1930 – 1990MHz Band IV: 2110 – 2155MHz Band V: 869 – 894MHz Band VII: 2620 – 2690MHz Band X VII: 734 – 746MHz
Type of modulation	BT: FHSS (GFSK, π/4-DQPSK, 8-DPSK) LE: GFSK	GMSK, 8PSK	QPSK	QPSK, 16QAM
Channel spacing	BT: 1MHz, LE: 2MHz	200kHz	200kHz	100kHz
Antenna type	Monopole	Monopole	Main: Monopole Sub: Monopole	•
Antenna Connector type	Spring type	Spring type	Main: Spring type Sub: Spring type	
Antenna Gain	-5.40dBi	GSM850: -0.9dBi PCS: 0.5dBi	Band II: 0.5dBi Band IV: 0.6dBi Band V: -0.9dBi Band V: -0.9dBi Band VII: -0.2dBi Band X VII: -1.5dBi	

	NFC	GPS/GLONASS
Frequency	13.56MHz	GPS: 1575.42MHz
of operation		GLONASS: 1597.55-1605.89MHz
Type of modulation	ASK	GPS: BPSK
		GLONASS: BPSK
Channel spacing	-	GLONASS: 0.5625MHz
Antenna type	Loop	Monopole
Antenna Connector	Spring type	Spring type
type		
Antenna Gain	N/A	-2.9dBi

^{*}This test report applies for WWAN.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 7 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093

Radiofrequency radiation exposure evaluation: portable devices.

IEEE Std 1528-2003:

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices.

: Published RF exposure KDB procedures

	KDB447498D01(v05r02)	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
	KDB447498D02(v02)	SAR Measurement Procedures for USB Dongle Transmitters
	KDB648474D04(v01r02) KDB941225D01(v03)	SAR Evaluation Considerations for Wireless Handsets 3G SAR Measurement Procedures
	KDB941225D05(v02r03)	SAR for LTE Devices
	KDB941225D06(v02r01)	SAR test procedures for devices incorporating SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
	KDB941225D07(v01r01)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
	KDB616217D04(v01r01)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
	KDB865664D01(v01r03)	SAR Measurement Requirements for 100MHz to 6 GHz
Ø	KDB248227D01(v01r02)	SAR Measurement Procedures for 802.11a//b/g Transmitters

Reference

[1]SPEAG uncertainty document (AN 15-7/AN19-17) for DASY 5 System from SPEAG (Schmid & Partner Engineering AG).

[2] ÍEEE Std 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

(The reference for Uncertainty in SAR correction for deviations in permittivity and conductivity, in clause E.3.2.)

3.2 Procedure

Transmitter	WWAN
Test Procedure	Published RF exposure KDB procedures
	SAR
Category	FCC47CFR 2.1093
Note: UL Japan, Inc. 's SAR	Work Procedures 13-EM-W0429 and 13-EM-W0430

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3

Page : 8 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

3.3 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

3.4 Test Location

*Shielded room for SAR testings

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3

Page : 9 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

SECTION 4: Test result

4.1 Stand-alone SAR result

Reported SAR

Measured SAR is scaled to the maximum tune-up tolerance limit by the following formulas. Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg] Maximum tune-up tolerance limit is by the specification from a customer.

Position	Mode	Frequency	Micasurcu	Maximum tune-up		Reported SAR
1 osition	Mode		[mW]*1	tolerance limit	[W/kg]	[W/kg]
Head	LTE Band VII QPSK 50%RB	2510MHz	165.96	251.19	0.309	0.468
Body-worn Body(Hotspot)	PCS1900 GPRS 2slots	1909.8MHz	134.28	189.64	1.07	1.511

Note

WWAN Maximum tune-up tolerance limit

· GSM

		1slots (dBm) Burst	2slots(dBm) Burst	1slots (dBm) Frame	2slots (dBm) Frame
	GSM	34.0		24.98	
GSM850	GPRS	34.0	32.0	24.98	25.98
	EGPRS	28.7	26.5	19.67	20.48
	GSM	31.0		21.98	
PCS	GPRS	31.0	28.8	21.98	22.78
	EGPRS	27.5	25.3	18.47	19.28

· WCDMA

		Normal Mode(dBm)	Hot Spot Mode(dBm)	Power
		RMC/HSDPA/HSUP A	RMC/HSDPA/HSUP A	Reduction(dB)
	B2	24.0	21.5	-2.5
WCDM A	В4	24.0	21.5	-2.5
-11	В5	24.0		

• LTE

		Normal Mode(dBm) Hot Spot Mode(dBm)		Power Reduction(dB)
	B2	24.0	21.5	-2.5
	B4	24.0	21.5	-2.5
LTE	В5	24.0		
	В7	24.0	19.0	-5.0
	B17	24.0		

Note

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The sample used by the SAR test is within the tune-up tolerance but not more than 2 dB lower than the maximum tune-up tolerance limit. That is, measured power is included the tune-up tolerance range.

^{*} When WLAN tethering function(Hotspot mode) is activated, WWAN transmit power is reduced. This function is adapted to WCDMA Band 2, 4 and LTE Band 2, 4, 7.

Test report No. : 10636726H-K-R3
Page : 10 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

4.2 Simultaneous transmission SAR result

This EUT has the unlicensed transmitter such as WLAN (802.11a/b/g/n) & Bluetooth devices besides licensed transmitter WWAN (GSM/WCDMA/LTE), and the following simultaneous transmission is possible.

No.	Capable Tx configurations	Head	Body-worn	Product specific	Note
				(Hotspot etc.)	
1	WWAN + WLAN	Yes	Yes	Yes	*1, *3
2	WWAN + Bluetooth	Exemption	Exemption	Exemption	*2, *4

^{*1} For Hotspot mode, WLAN is applicable with 2.4G tethering mode. When Hotspot mode is active, the EUT can originate a voice call.

Simultaneous transmission SAR result

Position	Mode	WWAN	WLAN	SUM of SAR
1 OSITION	Wiode	VV VV2 X 11	VV EZZIV	[W/kg]
Head	LTE Band VII + WiFi 2.4G	0.468	0.234	0.702
Body-worn Body(Hotspot)	GSM 1900 + WiFi 2.4G	1.511	0.002	1.513

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} WLAN and Bluetooth cannot be transmitted simultaneously and Bluetooth power level was lower than WLAN Please refer to the WLAN SAR report: 10636726H-J

^{*3} WLAN 2.4GHz and 5GHz cannot be transmitted simultaneously

^{*4} WLAN and Bluetooth cannot be transmitted simultaneously

Test report No. : 10636726H-K-R3
Page : 11 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 5: Description of the operating mode

5.1 Output power operating modes

WWAN(GSM/WCDMA)

Band	Duty cycle	Test Frequency	Mode
	or		
	Multi class(GSM)		
GSM850	Multi class 10	824.2MHz (128ch)	GSM
		836.6MHz(190ch)	GPRS (CS-1)
		848.8MHz(251ch)	EGPRS(MCS-5)
PCS1900	Multi class 10	1850.2MHz(512ch)	
		1880.0MHz(661ch)	
		1909.8MHz(810ch)	
WCDMA II	100%	1852.4MHz(9262ch)	12.2k RMC
		1880.0MHz(9400ch)	HSDPA
		1907.6MHz(9538ch)	DC-HSDPA
WCDMA IV	100%	1712.4MHz(1312ch)	HSUPA
		1732.6MHz(1413ch)	HSPA+
		1752.6MHz(1513ch)	
WCDMA V	100%	826.4MHz (4132ch)	
		836.6MHz(4183ch)	
		846.6MHz(4233ch)	

Setting

The communication link was set up with the Wireless Communications Test Set

(Agilent M/N: E5515C,Rohde & Schwarz M/N: CMW500). The EUT was command to operate at maximum transmit power.

GSM850 :PCL 5 PCS1900 :PCL 0 W-CDMA:All up bits

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 12 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WWAN(LTE)

LTE	Duty	Test Frequen	cy	Mode	
Band	cycle	Bandwidth	Frequency (channel)		
Band 2 (1850.7MHz-	100%	1.4MHz	1850.7MHz(18607ch) 1880MHz(18900ch)	QPSK 16QAM	
1909.3MHz)			1909.3MHz(19193ch)	10QAW	
1909.3WIIIZ)		3MHz	1851.5MHz(18615ch)		
		JIVIIIZ	1880MHz(18900ch)		
			1908.5MHz(19185ch)		
		5MHz	1852.5MHz(18625ch)		
		0111111	1880MHz(18900ch)		
			1907.5MHz(19175ch)		
		10MHz	1855MHz(18650ch)		
			1880MHz(18900ch)		
			1905MHz(19150ch)		
		15MHz	1857.5MHz(18675ch)		
			1880MHz(18900ch)		
			1902.5MHz(19125ch)		
		20MHz	1860MHz(18700ch)		
			1880MHz(18900ch)		
			1900MHz(19100ch)		
Band 4	100%	1.4MHz	1710.7MHz(19957ch)	QPSK	
(1710.7MHz-			1732.5MHz(20175ch)	16QAM	
1754.3MHz)			1754.3MHz (20393ch)		
		3MHz	1711.5MHz(19965ch)		
			1732.5MHz(20175ch)		
			1753.5MHz(20385ch)		
		5MHz	1712.5MHz(19975ch)		
			1732.5MHz(20175ch)		
		102.577	1752.5MHz(20375ch)		
		10MHz	1715.0MHz(20000ch)		
			1732.5MHz(20175ch)		
		15) ([]	1750.0MHz(20350ch)		
		15MHz	1717.5MHz(20025ch)		
			1732.5MHz(20175ch)		
		20MHz	1747.5MHz(20325ch) 1720.0MHz(20050ch)		
		ZUMITIZ	1720.0MHz(20030ch) 1732.5MHz(20175ch)		
			1745.0MHz(20300ch)		
Band 5	100%	1.4MHz	824.7MHz(20407ch)	QPSK	
(824.7MHz-848.3MHz)	10070	1.411112	836.5MHz(20525ch)	16QAM	
(02 1.7141112 0 10.3141112)			848.3MHz(20643ch)	100/11/1	
		3MHz	825.5MHz(20415ch)		
		5141112	836.5MHz(20525ch)		
			847.5MHz(20635ch)		
		5MHz	826.5MHz(20425ch)		
			836.5MHz(20525ch)		
			846.5MHz(20625ch)		
		10MHz	829MHz(20450ch)		
			836.5MHz(20525ch)		
			844MHz(20600ch)		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 13 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

100%	5MHz	2502.5MHz(20775ch)	QPSK
		2535MHz(21100ch)	16QAM
		2567.5MHz(21425ch)	
	10MHz	2505MHz(20800ch)	
		2535MHz(21100ch)	
		2565MHz(21400ch)	
	15MHz	2507.5MHz(20825ch)	
		2535MHz(21100ch)	
		2562.5MHz(21375ch)	
	20MHz	2510MHz(20850ch)	
		2535MHz(21100ch)	
		2560MHz(21350ch)	
100%	5MHz	706.5MHz(23755ch)	QPSK
		710.0MHz(23790ch)	16QAM
		713.5MHz(23825ch)	
	10MHz	709.0MHz(23780ch)	
		710.0MHz(23790ch)	
		711MHz(23800ch)	
		10MHz 15MHz 20MHz 100% 5MHz	2535MHz(21100ch) 2567.5MHz(21425ch) 10MHz 2505MHz(20800ch) 2535MHz(21100ch) 2565MHz(21400ch) 2565MHz(21400ch) 257.5MHz(20825ch) 2535MHz(21100ch) 2562.5MHz(21375ch) 20MHz 2510MHz(20850ch) 2535MHz(21100ch) 2560MHz(21350ch) 2560MHz(21350ch) 100% 5MHz 706.5MHz(23755ch) 710.0MHz(23790ch) 713.5MHz(23825ch) 10MHz 709.0MHz(23780ch) 710.0MHz(23790ch)

Setting

The communication link was set up with the Wireless Communications Test Set (Rohde & Schwarz M/N: CMW500).

The EUT was command to operate at maximum transmit power.

LTE: All up bits

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 14 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

5.2 Output power measurement results

GSM (GMSK	() - Coding So	heme: CS1						
Band Ch No.		f (MHz)	f (MHz) 1 Slot Power (dBm)		2 Slot Power (dBm)		3 Slot Power (dBm)	
			Burst Avg	Frame Avg	Burst Avg	Frame Avg	Burst Avg	Frame Avg
	128	824.2	33.06	23.45	-	-	-	-
850	190	836.6	32.89	23.33	-	-	-	-
	251	848.8	32.70	23.00	-	-	-	-
GPRS (GMS	K) - Coding S	cheme: CS1	(Multislot Cla	ss 10)				
Band	Ch No.	f (MHz)	f (MHz) 1 Slot Power (dBm)		2 Slot Power (dBm)		3 Slot Power (dBm)	
			Burst Avg	Frame Avg	Burst Avg	Frame Avg	Burst Avg	Frame Avg
	128	824.2	33.06	23.33	31.40	24.60	-	-
850	190	836.6	32.88	23.30	31.50	24.58	-	-
	251	848.8	32.69	23.21	31.14	24.51	-	-
EGPRS (8PS	K) - Coding	Scheme: MCS	5 (Multislot	Class 10)				
Band	Ch No.	f (MHz)		Slot (dBm)		Slot (dBm)		Slot (dBm)
			Burst Avg	Frame Avg	Burst Avg	Frame Avg	Burst Avg	Frame Avg
	128	824.2	29.13	18.71	27.42	20.00	-	-
850	190	836.6	28.94	18.58	27.25	19.97	-	-
	251	848.8	28.66	19.03	27.00	20.30	-	-

GSM (GMSK) - Coding Sc	heme: CS1								
Band	Ch No.		1 Slot Power (dBm)		2 Slot Power (dBm)		3 Slot Power (dBm)		4 Slot Power (dBm)	
			Burst Avg	Frame Avg						
	512	1850.2	30.52	19.84	-	-	-	-	-	-
1900	661	1880	30.51	19.89	-	-	-	-	-	-
	810	1909.8	30.23	19.80	-	-	-	-	-	-
GPRS (GMS	K) - Coding S	cheme: CS1								
Band	Ch No.	f (MHz)	1 Slot Power (dBm)		2 Slot Power (dBm)		3 Slot Power (dBm)		4 Slot Power (dBm)	
			Burst Avg	Frame Avg						
	512	1850.2	30.49	19.69	28.41	21.47	-	-	-	-
1900	661	1880	30.47	19.70	28.33	21.49	-	-	-	-
	810	1909.8	30.20	19.69	28.02	21.28	-	-	-	-
EGPRS (8PS	K) - Coding S	Scheme: MCS	5							
Band	1 Slot 2 S Ch No. f (MHz) Power (dBm) Power				Slot (dBm)		Slot (dBm)			
			Burst Avg	Frame Avg						
	512	1850.2	26.30	16.42	25.27	18.40	-	-	-	-
1900	661	1880	26.48	16.50	25.37	18.55	-	-	-	-
	810	1909.8	25.72	15.88	24.58	17.83	-	-	-	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 15 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Band	Mode	UL Ch	Freq.	Avg	Pwr (dBm)
20.10		No.	(MHz)	Full Power	Reduced Power
UMTS	Rel 99	9262	1852.4	23.88	20.86
Band II	(RMC, 12.2	9400	1880.0	23.68	20.66
Danu II	kbps)	9538	1907.6	23.55	20.69
Band	Mode	UL Ch	Freq.	А	vg Pwr
Danu	iviode	No.	(MHz)	Full Power	Reduced Power
	HSDPA	9262	1852.4	22.84	19.93
		9400	1880.0	22.66	19.56
	Subtest 1	9538	1907.6	22.67	19.63
	HSDPA	9262	1852.4	22.81	19.89
	Subtest 2	9400	1880.0	22.66	19.66
UMTS	Sublest 2	9538	1907.6	22.67	19.62
Band II	HSDPA	9262	1852.4	22.31	19.40
	Subtest 3	9400	1880.0	22.27	19.16
	Sublest 3	9538	1907.6	22.18	19.12
	HSDPA	9262	1852.4	22.30	19.30
		9400	1880.0	22.25	19.16
	Subtest 4	9538	1907.6	22.18	19.12

Band	Mode	UL Ch	Freq.	Α	vg Pwr
Danu	Mode	No.	(MHz)	Full Power	Reduced Power
	DC-HSDPA	9262	1852.4	22.62	19.78
		9400	1880.0	22.68	19.64
	Subtest 1	9538	1907.6	22.56	19.70
	DC-HSDPA	9262	1852.4	22.79	19.83
	Subtest 2	9400	1880.0	22.66	19.70
UMTS	Sublest 2	9538	1907.6	22.63	19.61
Band II	DC-HSDPA	9262	1852.4	22.27	19.35
	Subtest 3	9400	1880.0	22.15	19.17
	Sublest 3	9538	1907.6	22.14	19.12
	DC-HSDPA	9262	1852.4	22.36	19.34
		9400	1880.0	22.15	19.20
	Subtest 4	9538	1907.6	22.17	19.12

Band	Mode	UL Ch	Freq.	Α	vg Pwr
Dallu	Mode	No.	(MHz)	Full Power	Reduced Power
	HSUPA	9262	1852.4	22.50	19.05
	Subtest 1	9400	1880.0	22.26	19.16
	Sublest 1	9538	1907.6	22.27	19.22
	HSUPA	9262	1852.4	21.01	18.07
		9400	1880.0	21.07	18.05
	Subtest 2	9538	1907.6	21.02	18.05
UMTS	HSUPA	9262	1852.4	21.30	18.37
Band II	Subtest 3	9400	1880.0	21.27	18.15
Danu II	Sublest 3	9538	1907.6	21.38	18.32
	HSUPA	9262	1852.4	21.68	18.69
		9400	1880.0	21.53	18.45
	HSUPA	9538	1907.6	21.39	18.33
		9262	1852.4	22.70	19.81
		9400	1880.0	22.66	19.66
	Subtest 5	9538	1907.6	22.65	19.57

Band	Mode	UL Ch	Freq.	А	vg Pwr
Dariu	Mode	No.	(MHz)	Full Power	Reduced Power
UMTS	HSPA+	9262	1852.4	20.84	17.60
-	(16QAM)	9400	1880.0	20.85	17.51
Band II	Subtest 1	9538	1907.6	20.85	17.71

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 16 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Band	Mode	UL Ch	Freq.		vg Pwr (dBm)
		No.	(IVITIZ)	Full Power	Reduced Power
UMTS	Rel 99	1312	1712.4	23.47	20.82
Band IV	(RMC, 12.2	1413	1732.6	23.37	20.66
Dailu IV	kbps)	1513	1752.6	23.25	20.73

Band	Mode	UL Ch	Freq.	А	vg Pwr
Danu	iviode	No.	(MHz)	Full Power	Reduced Power
	HSDPA	1312	1712.4	22.51	19.76
	Subtest 1	1413	1732.6	22.38	19.61
	Sublest 1	1513	1752.6	22.41	19.59
	HSDPA	1312	1712.4	22.50	19.75
		1413	1732.6	22.32	19.64
UMTS	Subtest 2	1513	1752.6	22.40	19.70
Band IV	HSDPA	1312	1712.4	22.07	19.27
	Subtest 3	1413	1732.6	21.92	19.20
	Sublest 3	1513	1752.6	22.01	19.20
	HSDPA	1312	1712.4	22.07	19.29
		1413	1732.6	21.92	19.19
	Subtest 4	1513	1752.6	22.01	19.20

Band	Mode	UL Ch	Freq.	Avg Pwr		
Danu	Wiode	No.	(MHz)	Full Power	Reduced Power	
	DC-HSDPA	1312	1712.4	22.44	19.41	
	Subtest 1	1413	1732.6	22.09	19.26	
	Sublest I	1513	1752.6	22.23	19.58	
	DC-HSDPA	1312	1712.4	22.61	19.80	
	Subtest 2	1413	1732.6	22.44	19.62	
UMTS	Sublest 2	1513	1752.6	22.44	19.73	
Band IV	DC-HSDPA	1312	1712.4	22.01	19.32	
	Subtest 3	1413	1732.6	21.95	19.26	
	Sublest 3	1513	1752.6	21.98	19.28	
	DC-HSDPA	1312	1712.4	22.08	19.34	
		1413	1732.6	21.95	19.26	
	Subtest 4	1513	1752.6	21.97	19.24	

Band	Mode	UL Ch	Freq.	А	vg Pwr
Dariu	ivioue	No.	(MHz)	Full Power	Reduced Power
	HSUPA	1312	1712.4	22.45	19.56
	Subtest 1	1413	1732.6	22.33	19.14
	Sublest 1	1513	1752.6	22.09	19.39
	HSUPA	1312	1712.4	21.58	18.73
	Subtest 2	1413	1732.6	21.42	18.66
	Sublest 2	1513	1752.6	21.40	18.67
UMTS	HSUPA	1312	1712.4	21.07	18.29
Band IV	Subtest 3	1413	1732.6	20.95	18.18
Dallu IV	Sublest 3	1513	1752.6	21.01	18.51
	HSUPA	1312	1712.4	22.07	19.24
	Subtest 4	1413	1732.6	21.88	19.16
	Sublest 4	1513	1752.6	21.86	19.14
	HSUPA	1312	1712.4	22.51	19.73
	Subtest 5	1413	1732.6	22.39	19.56
	Sublest 3	1513	1752.6	22.47	19.63

Band	Mode	UL Ch	Freq.	Α	vg Pwr
Danu	iviode	No.	(MHz)	Full Power	Reduced Power
UMTS	HSPA+	1312	1712.4	20.71	17.65
Band IV	(16QAM)	1413	1732.6	20.77	17.98
Danu IV	Subtest 1	1513	1752.6	20.56	17.71

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 17 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Band	Mode	UL Ch No.	Freq. (MHz)	Avg Pwr (dBm)	
		INO.	(IVITIZ)	Full Power	Reduced Power
UMTS	Rel 99	4132	826.4	23.78	-
Band V	(RMC, 12.2	4183	836.6	23.65	-
Dallu V	kbps)	4233	846.6	23.66	-

Band	Mode	UL Ch	Freq.	Α	vg Pwr
Danu	Wode	No.	(MHz)	Full Power	Reduced Power
	HSDPA	4132	826.4	22.81	-
	Subtest 1	4183	836.6	22.74	-
	Sublest 1	4233	846.6	22.64	-
	HSDPA	4132	826.4	22.80	1
	Subtest 2	4183	836.6	22.73	-
UMTS	Sublest 2	4233	846.6	22.63	-
Band V	HSDPA	4132	826.4	22.30	1
	Subtest 3	4183	836.6	22.24	1
	Sublest 3	4233	846.6	22.14	1
	HSDPA	4132	826.4	22.30	-
		4183	836.6	22.24	-
	Subtest 4	4233	846.6	22.13	-

Band	Mode	UL Ch	Freq.	А	vg Pwr
Danu	Mode	No.	(MHz)	Full Power	Reduced Power
	DC-HSDPA	4132	826.4	22.76	-
	Subtest 1	4183	836.6	22.71	-
	Sublest 1	4233	846.6	22.64	-
	DC-HSDPA	4132	826.4	22.85	-
	Subtest 2	4183	836.6	22.77	1
UMTS	Sublest 2	4233	846.6	22.72	-
Band V	DC-HSDPA	4132	826.4	22.30	-
	Subtest 3	4183	836.6	22.26	-
	DC-HSDPA	4233	846.6	22.22	-
		4132	826.4	22.30	-
		4183	836.6	22.26	-
	Subtest 4	4233	846.6	22.22	-

Band	Mode	UL Ch	Freq.	Α	vg Pwr
Dallu	Wiode	No.	(MHz)	Full Power	Reduced Power
	HSUPA	4132	826.4	22.65	-
	Subtest 1	4183	836.6	22.45	-
	Sublest 1	4233	846.6	22.27	-
	HSUPA	4132	826.4	21.13	-
		4183	836.6	21.11	-
	Subtest 2	4233	846.6	21.04	-
UMTS	HSUPA	4132	826.4	21.35	-
Band V	Subtest 3	4183	836.6	21.33	-
Danu v	Sublest 3	4233	846.6	21.27	-
	HSUPA	4132	826.4	22.26	-
		4183	836.6	21.44	-
	Subtest 4 HSUPA	4233	846.6	21.36	-
		4132	826.4	22.77	-
	Subtest 5	4183	836.6	22.75	-
	Sublest 3	4233	846.6	22.63	-

Band	Mode	UL Ch	Freq.	Α	vg Pwr
Dariu Wode		No.	(MHz)	Full Power	Reduced Power
UMTS	HSPA+	4132	826.4	20.84	-
Band V	(16QAM)	4183	836.6	20.88	-
Dailu V	Subtest 1	4233	846.6	20.84	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 18 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

LTE Band 2, 20 MHz Bandwidth Output Power Full Power (Tethering Off)

BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
DVV	Cii	(MHz)	Mode	Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	22.96
				1	49	0	0	22.95
				1	99	0	0	22.84
			QPSK	50	0	1	1	22.02
				50	24	1	1	22.06
				50	49	1	1	22.05
	18700	1860		100	0	1	1	22.04
	10700	1000		1	0	1	1	22.14
				1	49	1	1	22.17
				1	99	1	1	22.06
			16QAM	50	0	2	2	20.94
				50	24	2	2	21.02
				50	49	2	2	21.05
				100	0	2	2	21.04
				1	0	0	0	22.70
				1	49	0	0	22.73
				1	99	0	0	22.66
			QPSK	50	0	1	1	21.94
				50	24	1	1	21.87
				50	49	1	1	21.91
20	18900	1880		100	0	1	1	21.85
20	10900	1000	30	1	0	1	1	21.92
				1	49	1	1	21.98
				1	99	1	1	21.92
			16QAM	50	0	2	2	20.96
				50	24	2	2	20.89
				50	49	2	2	20.92
				100	0	2	2	20.88
				1	0	0	0	22.59
				1	49	0	0	22.66
				1	99	0	0	22.77
			QPSK	50	0	1	1	21.78
				50	24	1	1	21.80
				50	49	1	1	21.72
	19100	19100 1900		100	0	1	1	21.85
	19100			1	0	1	1	21.81
				1	49	1	1	21.89
				1	99	1	1	22.03
			16QAM	50	0	2	2	20.86
				50	24	2	2	20.85
				50	49	2	2	20.79
				100	0	2	2	20.91

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 19 of 434 : UCE314062A FCC ID **Issued date** : February 20, 2015 Revised date : March 19, 2015

Reduced	Power (T		On)	55				
BW	Ch	Freq.	Mode	UL RB	UL RB	Target MPR	Meas. MPR	Avg Pwr
		(MHz)		Allocation	Start	IVIPR	IVIPK	(dBm)
				1	0			20.45
				1	49			20.44
			0.0017	1	99			20.37
			QPSK	50	0			20.47
				50	24	_		20.48
				50	49	_		20.51
	18700	1860		100	0			20.55
				1	0			20.62
				1	49			20.62
				1	99			20.54
			16QAM	50	0			20.49
				50	24			20.55
				50	49]		20.54
				100	0			20.59
				1	0			20.15
				1	49			20.15
				1	99			20.14
			QPSK	50	0			20.34
				50	24			20.27
				50	49	MPR is	disabled	20.37
20	18900	1880		100	0	when	en power	20.32
20	18900	1000		1	0	reduc	tion is	20.44
				1	49	ena	bled	20.44
				1	99			20.35
			16QAM	50	0			20.41
				50	24			20.32
				50	49	1		20.41
				100	0	1		20.37
				1	0	1		20.01
				1	49	1		20.11
				1	99	1		20.25
			QPSK	50	0	1		20.28
				50	24	1		20.28
				50	49	1		20.17
	40:00	4000		100	0		20.29	
	19100	1900		1	0		20.27	
				1	49		20.38	
				1	99		20.45	
			16QAM	50	0	1		20.33
			1030,111	50	24	1		20.27
				50	49	1		20.22
				100	0	†		20.22

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 20 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

LTE Band 2, 15 MHz Bandwidth Output Power

BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
D 11	OII	(MHz)	Mode	Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	23.07
				1	37	0	0	23.00
				1	74	0	0	23.05
			QPSK	36	0	1	1	22.02
				36	19	1	1	22.07
				36	39	1	1	22.17
	18675	1857.5		75	0	1	1	22.11
	10075	1657.5		1	0	1	1	21.86
				1	37	1	1	21.87
				1	74	1	1	21.87
			16QAM	36	0	2	2	20.92
				36	19	2	2	20.99
				36	39	2	2	21.05
				75	0	2	2	21.03
				1	0	0	0	22.92
				1	37	0	0	22.89
				1	74	0	0	22.83
	40000		QPSK	36	0	1	1	21.88
				36	19	1	1	21.86
				36	39	1	1	21.88
4.5		4000		75	0	1	1	20.99 21.05 21.03 22.92 22.89 22.83 21.88 21.86 21.88 21.94 21.74 21.67 21.58 20.80 20.78 20.82 20.88 22.88 22.88
15	18900	1880		1	0	1	1	21.74
				1	37	1 1	21.67	
			1 16QAM 36	74	1	1	21.58	
				36	0	2	2	20.80
				36	19	2	2	20.78
				36	39	2	2	20.82
				75	0	2	2	20.88
				1	0	0	0	
				1	37	0	0	22.80
				1	74	0	0	22.93
			QPSK	36	0	1	1	21.79
				36	19	1	1	21.90
	19125	1902.5		36	39	1	1	21.84
				75	0	1	1	21.90
				1	0	1	1	21.60
				1	37	1	1	21.51
				1	74	1	1	21.68
			16QAM	36	0	2	2	20.77
			16QAM	36	19	2	2	20.79
				36	39	2	2	20.76
				75	0	2	2	20.81

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 21 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

Reduced	Power (Tethering	g On)					
BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
J.,	0	(MHz)	modo	Allocation	Start	MPR	MPR	(dBm)
				1	0			20.53
				1	37			20.46
				1	74			20.53
			QPSK	36	0			20.47
				36	19			20.49
				36	39			20.58
	18675	1857.5		75	0			20.48
	10073	1037.3		1	0			20.32
				1	37			20.27
				1	74			20.29
			16QAM	36	0			20.43
				36	19	1		20.45
				36	39	1		20.53
				75	0	1		20.54
				1	0	1		20.41
				1	37	1		20.35
				1	74	1		20.25
			QPSK	36	0	1		20.30
				36	19	1		20.32
				36	39	MPR is	disabled	20.38
4.5	40000	4000		75	0	when	power	20.35
15	18900	1880		1	0		tion is	20.15
				1	37	ena	bled	20.11
				1	74			20.01
			16QAM	36	0			20.23
				36	19			20.29
				36	39			20.28
				75	0	1		20.27
				1	0	1		20.34
				1	37	1		20.17
				1	74	1		20.35
			QPSK	36	0	1		20.30
				36	19	1		20.32
				36	39	1		20.21
	40405	4000 5		75	0	1		20.36
	19125	1902.5		1	0	1		20.08
				1	37	1		19.94
				1	74	1		20.16
			16QAM	36	0	1		20.20
			•	36	19	1		20.22
				36	39	-	20.19	
				75	0	1		20.28

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 22 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

LTE Band 2, 10 MHz Bandwidth Output Power

BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
DVV		(MHz)	Wode	Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	23.11
				1	24	0	0	23.01
				1	49	0	0	23.14
			QPSK	25	0	1	1	22.13
				25	12	1	1	22.04
				25	24	1	1	22.12
	10050	1855		50	0	1	1	22.05
	18650			1	0	1	1	21.86
				1	24	1	1	21.78
				1	49	1	1	21.96
			16QAM	25	0	2	2	21.03
				25	12	2 2	20.93	
				25	24	2	2	20.95
				50	0	2	2	20.95
				1	0	0	0	22.96
				1	24	0	0	22.91
	40000			1	49	0	0	22.86
			QPSK	25	0	1	1	21.86
				25	12	1	1	21.81
				25	24	1	1	21.92
40		1880		50	0	1	1	21.90
10	18900	1000		1	0	1	1	21.86 21.81 21.92 21.90 21.73 21.62 21.55 20.80
				1	24	1 1	21.62	
				1	1 49 1 1	1	21.55	
			16QAM	25		2	20.80	
				25	12	2	2	20.85
				25	24	2	2	20.84
				50	0	2	2	20.80
				1	0	0	0	22.83
				1	24	0	0	22.81
				1	49	0	0	23.02
			QPSK	25	0	1	1	21.87
				25	12	1	1	21.80
	19150	1905		25	24	1	1	21.81
				50	0	1	1	21.80
			1	0	1	1	21.65	
				1	24	1	1	21.56
				1	49	1	1	21.68
			16QAM	25	0	2	2	20.83
			TOWAIVI	25	12	2	2	20.74
				25	24	2	2	20.84
				50	0	2	2	20.81

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 23 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

18650 1855	_
18650 1855 1	Pwr
18650 1855	Bm)
18650 1855 QPSK 25 0 20 20 20 20 20 20).55
18650 1855	.46
18650 1855 25	.58
18650 1855).56
18650 1855	.48
10 18900 1880	.53
10 18900 1880 1880 1 16QAM 25 0 20 20 20 20 20 20 20 20 20 20 20 20 2).41
10 18900 1880 1880 1 1890 1 18	.34
10 18900 1880 25 0 0 25 12 20 20 20 20 20 20 20 20 20 20 20 20 20	.23
10 18900 1880	.36
10 18900 1880 QPSK 25 0 20 20 20 20 20 20 20 20 20 20 20 20 2	.53
10 18900 1880 1880 QPSK	.41
10 18900 1880 1880 1880 25 0 20 20 20 20 20 20 20 20 20 20 20 20 2	.50
10 18900 1880 1880 1880 25 0 20 20 20 20 20 20 20 20 20 20 20 20 2	.44
10 18900 1880 1880 25 0 0 20 20 20 20 20 20 20 20 20 20 20 20	.41
10 18900 1880 25 0 0 20 20 20 12 12 18900 1880 25 24 when power reduction is enabled 20 20 20 20 20 20 20 20 20 20 20 20 20	.36
10 18900 1880 25 12 24 MPR is disabled when power reduction is enabled 20 20 20 20 20 20 20 20 20 20 20 20 20	.34
10 18900 1880 25 24 MPR is disabled when power reduction is enabled 20 20 20 25 12 20 20 20 25 24 20 20 20 25 12 20 20 20 25 12 20 20 20 25 12 20 20 20 25 12 20 20 20 20 25 12 20 20 20 20 25 12 20 20 20 20 20 25 12 20 20 20 20 25 12 20 20 20 20 20 20 20 20 20 20 20 20 20	.33
10 18900 1880 50 0 when power reduction is enabled 20 20 20 20 20 20 20 20 20 20 20 20 20	.29
10 18900 1880 50 0 when power reduction is enabled 20 20 20 20 20 20 20 20 20 20 20 20 20	.34
10 18900 1880 1 0 reduction is enabled 20 20 20 20 20 20 20 20 20 20 20 20 20	.33
1 24 enabled 20 1 49 25 0 25 12 25 24 50 0 21 0 25 24 20 20 20 21 0 20 21 0 20 20 20 20 20 20 20 20 20 20 20 20 20	.20
1 49 20 20 20 20 20 20 20 20 20 20 20 20 20	.09
16QAM 25 0 20 20 20 20 20 20 20 20 20 20 20 20 2	.01
25 12 25 24 50 0 1 0 1 24 1 49 QPSK 25 0 25 12 25 24 50 0	.29
25 24 20 20 20 20 20 20 20 20 20 20 20 20 20	.27
Description of the second of t	.33
1 0 20 20 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20	.34
1 24 20 20 20 20 20 20 20 20 20 20 20 20 20	0.31
QPSK 25 0 20 20 20 20 20 20 20 20 20 20 20 20 2).18
QPSK 25 0 20 20 20 20 20 20 20 20 20 20 20 20 2	0.42
25 12 20 25 24 20 50 0	0.31
25 24 20 50 0	0.17
50 0).22
).19
19150 1905 1 0 20	0.05
	0.95
	0.13
).25
).25).16
).24).19

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 24 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

LTE Band 2, 5 MHz Bandwidth Output Power

3W	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwi
> V V	Cii	(MHz)	Mode	Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	22.93
				1	12	0	0	22.94
				1	24	0	0	22.89
			QPSK	12	0	1	1	22.04
				12	6	1	1	22.11
				12	11	1	1	22.10
	18625	1852.5		25	0	1	1	22.13
	10023	1032.3		1	0	1	1	21.89
				1	12	1	1	21.88
				1	24	1	1	21.83
			16QAM	12	0	2	2	21.02
				12	6	2	2	21.05
				12	11	2	2	21.05
				25	0	2	2	21.10
				1	0	0	0	22.95
				1	12	0	0	22.87
				1	24	0	0	22.88
			QPSK	12	0	1	1	21.87
				12	6	1	1	21.83
				12	11	1	1	21.83
5	18900	1880		25	0	1	1	21.83 21.83 21.70 21.63
5	10900	1000		1	0	1	1	21.70
			16QAM	1	12	1	1	21.63
				1	24	1	1	21.70
				12	0	2	2	20.88
				12	6	2	2	20.85
				12	11	2	2	20.85
				25	0	2	2	20.92
				1	0	0	0	22.81
				1	12	0	0	22.81
				1	24	0	0	22.95
			QPSK	12	0	1	1	21.83
				12	6	1	1	21.76
	19175	1907.5		12	11	1	1	21.85
				25	0	1	1	21.81
		1307.3		1	0	1	1	21.57
				1	12	1	1	21.57
				1	24	1	1	21.71
			16QAM	12	0	2	2	20.83
				12	6	2	2	20.84
				12	11	2	2	20.87
				25	0	2	2	20.88

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 25 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

Reduced	Power (1	ethering	On)	==				
BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
		(MHz)		Allocation	Start	MPR	MPR	(dBm)
				1	0			20.42
				1	12			20.39
			00014	1	24			20.34
			QPSK	12	0			20.51
				12	6			20.48
				12	11			20.48
	18625	1852.5		25	0			20.51
				1	0			20.26
				1	12			20.29
				1	24			20.24
			16QAM	12	0	1		20.55
				12	6			20.53
				12	11			20.54
				25	0	<u> </u>		20.61
				1	0			20.38
				1	12			20.31
				1	24			20.37
			QPSK	12	0			20.34
				12	6			20.30
				12	11	MPR is	s disabled n power	20.29
5	18900	1880		25	0			20.30
3	10300	1000		1	0		tion is	20.14
				1	12	ena	bled	20.05
				1	24			20.13
			16QAM	12	0			20.30
				12	6			20.32
				12	11			20.31
				25	0			20.39
				1	0	Ī		20.22
				1	12			20.27
				1	24			20.38
			QPSK	12	0			20.21
				12	6			20.25
				12	11	1		20.26
	10175	1007.5		25	0	1		20.28
	19175	1907.5		1	0	1		20.01
				1	12	1		20.03
				1	24	-	20.14	
			16QAM	12	0	1		20.27
				12	6		20.31	
				12	11			20.31
				25	0	1		20.38

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 26 of 434 FCC ID : UCE314062A Issued date : February 20, 2015

Revised date : March 19, 2015

LTE Band 2, 3 MHz Bandwidth Output Power **Full Power (Tethering Sensor Off)**

BW	Ch	ring Sens Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
DVV	Oil	(MHz)	Wiode	Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	23.13
				1	7	0	0	23.09
				1	14	0	0	23.21
			QPSK	8	0	1	1	22.10
				8	4	1	1	22.06
				8	7	1	1	22.11
	18615	1851.5		15	0	1	1	22.14
	10015	1651.5		1	0	1	1	21.93
				1	7		21.83	
				1	14	1	1	21.91
			16QAM	8	0	2	2	21.03
				8	4	2	2	21.04
				8	7	2	2	21.04
				15	0	2	2	21.04
				1	0	0	0	22.90
				1	7	0	0	22.92
				1	14	0	0	22.94
	40000		QPSK	8	0	1	1	21.87
				8	4	1	1	21.85
				8	7	1	1	21.87
2		1000		15	0	1	1	21.84
3	18900	1880		1	0	1	1	21.68
				1	7	1	1	21.66
				1	14	1	1	21.66
			16QAM	8	0	2	2	20.85
				8	4	2	2	20.84
				8	7	2	2	20.85
				15	0	2	2	20.88
				1	0	0	0	22.88
				1	7	0	0	22.87
				1	14	0	0	23.03
			QPSK	8	0	1	1	21.84
				8	4	1	1	21.83
	19185			8	7	1	1	21.87
		1000 5		15	0	1	1	21.82
		1908.5		1	0	1	1	21.63
				1	7	1	1	21.63
				1	14	1	1	21.69
			16QAM	8	0	2	2	20.83
				8	4	2	2	20.83
				8	7	2	2	20.85
				15	0	2	2	20.87

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 27 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

Reduced	Power ('I	ethering	On)	111 00	111 00	T	N4	A
BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr (dBm)
		(1011 12)		1	0	IVIFIX	IVIFIX	20.58
				1	7			20.56
				1	14			20.52
			QPSK	8	0			20.55
			QI OIX	8	4			20.52
				8	7			20.52
				15	0			20.52
	18615	1851.5		1	0	+		20.35
				1	7			20.29
				1	14			20.33
			16QAM	8	0			20.54
				8	4			20.52
				8	7			20.54
				15	0			20.54
				1	0	Ť		20.41
				1	7	1		20.33
				1	14	1		20.46
			QPSK	8	0			20.55
				8	4			20.52
				8	7	MPR is	disabled	20.51
0	40000	4000		15	0	1	power	20.52
3	18900	1880		1	0		tion is	20.11
				1	7	ena	bled	20.10
				1	14	1		20.12
			16QAM	8	0	1		20.36
				8	4			20.30
				8	7			20.33
				15	0			20.33
				1	0]		20.31
				1	7			20.32
				1	14			20.44
			QPSK	8	0			20.32
				8	4			20.33
				8	7			20.28
	19185	1908.5		15	0		20.31	
	13103	1000.0		1	0		20.08	
				1	7		20.07	
				1	14]		20.18
			16QAM	8	0		20.29	
				8	4		20.28	
				8	7]		20.33
				15	0			20.34

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 28 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

LTE Band 2, 1.4 MHz Bandwidth Output Power Full Power (Tethering Off)

Full Pow	er (Tethe	ring Off)						
BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
		(MHz)		Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	23.07
				1	2	0	0	22.99
				1	5	0	0	23.06
			QPSK	3	0	0	0	23.13
				3	1	0	0	23.09
				3	3	0	0	23.01
	18607	1850.7		6	0	1	1	22.15
	10001	1000.1		1	0	1	1	22.17
				1	2	1	1	22.12
				1	5	1	1	22.16
			16QAM	3	0	1	1	22.04
				3	1	1	1	22.00
				3	3	1	1	22.00
				6	0	2	2	21.09
				1	0	0	0	22.91
				1	2	0	0	22.80
				1	5	0	0	22.87
			QPSK	3	0	0	0	22.86
				3	1	0	0	22.85
				3	3	0	0	22.86
1.4	18900	1880		6	0	1	1	21.87
1.4	16900	1000		1	0	1	1	21.91
				1	2	1	1	21.86
				1	5	1	1	21.86
			16QAM	3	0	1	1	21.78
				3	1	1	1	21.77
				3	3	1	1	21.75
				6	0	2	2	20.92
				1	0	0	0	22.92
				1	2	0	0	22.83
				1	5	0	0	22.92
			QPSK	3	0	0	0	22.86
				3	1	0	0	22.93
	19193			3	3	0	0	22.90
		1909.3		6	0	1	1	21.88
				1	0	1	1	21.89
				1	2	1	1	21.78 21.77 21.75 20.92 22.92 22.83 22.92 22.86 22.93 22.90 21.88
				1	5	1	1	21.86
			16QAM	3	0	1	1	21.81
				3	1	1	1	21.78
				3	3	1	1	21.77
				6	0	2	2	20.92

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 : 29 of 434 Page : UCE314062A FCC ID Issued date : February 20, 2015 Revised date : March 19, 2015

BW								
	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
		(MHz)		Allocation	Start	MPR	MPR	(dBm)
				1	0			20.58
				1	2			20.45
			0.0014	1	5			20.53
			QPSK	3	0			20.57
				3	1			20.54
				3	3			20.52
	18607	1850.7		6	0			20.58
				1	0	ļ		20.60
				1	2			20.55
				1	5			20.60
			16QAM	3	0			20.48
				3	1			20.45
				3	3			20.44
				6	0			20.57
				1	0			20.34
				1	2			20.30
				1	5			20.35
			QPSK	3	0			20.34
				3	1			20.33
				3	3	MPR is	disabled	20.32
1.4	18900	1880		6	0	when	power	20.36
1.4	18900	1000		1	0	reduc	tion is	20.34
				1	2	ena	bled	20.32
				1	5	1		20.37
			16QAM	3	0	1		20.25
				3	1	1		20.26
				3	3	1		20.26
				6	0	1		20.40
				1	0			20.35
				1	2	1		20.27
				1	5			20.35
			QPSK	3	0	1		20.30
				3	1	1		20.29
				3	3	1		20.32
	40.55	4000 5		6	0		20.38	
	19193	1909.3		1	0		20.32	
				1	2		20.29	
				1	5		20.31	
			16QAM	3	0		20.23	
				3	1	1		20.22
				3	3	1		20.22
				6	0	1		20.40

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 30 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 4, 20 MHz Bandwidth Output Power

Full Power (Tethering Off)

ull Pow	er (Tethe	ring Off)						
BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr (dBm)
				1	0	0	0	22.79
				1	49	0	0	22.79
				1	99	0	0	22.87
			QPSK	50	0	1	1	21.99
				50	24	1	1	21.87
				50	49	1	1	21.89
	20050	1720		100	0	1	1	21.88
	20000			1	0	1	1	21.97
				1	49	1	1	22.00
				1	99	1	1	22.06
			16QAM	50	0	2	2	20.99
				50	24	2	2	20.93
				50	49	2	2	20.89
				100	0	2	2	20.91
				1	0	0	0	22.67
				1	49	0	0	22.71
	0 20175			1	99	0	0	22.78
			QPSK	50	0	1	1	21.74
				50	24	1	1	21.88
				50	49	1	1	21.94
20		1732.5		100	0	1	1	21.90
20	20173	1732.3		1	0	1	1	21.94
				1	49	1	1	21.94
				1	99	1	1	22.06
			16QAM	50	0	2		20.81
				50	24	2		20.90
				50	49	2	2	20.99
				100	0	2	2	20.87
				1	0	0	0	22.64
				1	49	0	0	22.78
				1	99	0	0	22.74
			QPSK	50	0	1	1	21.86
		1745 -		50	24	1	1	21.87
	20300			50	49	1	1	21.79
				100	0	1	1	21.88
				1	0	1	1	21.87
				1	49	1	1	22.00
				1	99	1	1	21.94
			16QAM	50	0	2	2	20.89
				50	24	2	2	20.95
				50	49	2	2	20.91
				100	0	2	2	20.93

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 31 of 434 : UCE314062A FCC ID **Issued date** : February 20, 2015 Revised date : March 19, 2015

Reduced	Power (1		On)	111.00				. 5
BW	Ch	Freq.	Mode	UL RB	UL RB	Target MPR	Meas. MPR	Avg Pwr
		(MHz)		Allocation	Start	IVIPK	IVIPR	(dBm)
				1	0		20.29	
				1	49			20.33
			0.0014	1	99			20.42
			QPSK	50	0			20.45
				50	24			20.40
				50	49			20.34
	20050	1720		100	0			20.45
				1	0			20.50
				1	49	1		20.48
				1	99			20.58
			16QAM	50	0			20.51
				50	24			20.42
				50	49			20.44
				100	0	1		20.45
				1	0			20.17
				1	49			20.23
				1	99			20.22
		1732.5	QPSK	50	0			20.26
				50	24	MPR is disabled when power reduction is enabled	20.37	
				50	49		20.41	
20	20175			100	0		20.36	
20	20173			1	0		20.41	
				1	49		20.44	
				1	99		20.52	
			16QAM	50	0		20.37	
				50	24			20.39
				50	49			20.44
				100	0		20.39	
				1	0		20.10	
			QPSK	1	49		20.26	
				1	99		20.18	
				50	0		20.32	
				50	24		20.42	
				50	49		20.30	
	00000	4745		100	0		20.37	
	20300	1745		1	0	1		20.34
				1	49	1		20.48
				1	99			20.43
			16QAM	50	0			20.40
				50	24			20.45
				50	49			20.41
				100	0	1		20.42

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 32 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

LTE Band 4, 15 MHz Bandwidth Output Power Full Power (Tethering Off)

-155		ring Off) Freq.		UL RB	UL RB	Target	Meas.	Avg Pwr
BW	Ch	(MHz)	Mode	Allocation	Start	MPR	MPR	(dBm)
		,		1	0	0	0	22.91
				1	37	0	0	22.82
				1	74	0	0	22.84
			QPSK	36	0	1	1	22.02
				36	19	1	1	21.95
				36	39	1	1	21.89
	20005	4747.5		75	0	1	1	22.02
	20025	1717.5		1	0	1	1	21.66
				1	37	1	1	21.71
				1	74	1	1	21.70
			16QAM	36	0	2	2	20.89
				36	19	2	2	20.84
				36	39	2	2	20.79
				75	0	2	2	20.93
		1732.5	QPSK	1	0	0	0	22.88
				1	37	0	0	22.83
				1	74	0	0	22.91
				36	0	1	1	21.76
				36	19	1	1	21.83
				36	39	1	1	21.91
15	20175			75	0	1	1	21.94
15	20175			1	0	1	1	21.71
				1	37	1	1	21.66
				1	74	1	1	21.64
			16QAM	36	0	2	2	20.78
				36	19	2	2	20.81
				36	39	2	2	20.91
				75	0	2	2	20.89
				1	0	0	0	22.87
			QPSK	1	37	0	0	22.84
				1	74	0	0	22.85
				36	0	1	1	21.85
				36	19	1	1	21.95
				36	39	1	1	21.84
	20225	1747.5		75	0	1	1	21.83
	20325	1747.5		1	0	1	1	21.59
				1	37	1	1	21.60
				1	74	1	1	21.60
			16QAM	36	0	2	2	20.89
				36	19	2	2	20.89
				36	39	2	2	20.84
				75	0	2	2	20.86

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 33 of 434 FCC ID : UCE314062A Issued date : February 20, 2015

Revised date : March 19, 2015

Reduced Power (Tethering On)

BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
DVV	Cii	(MHz)	Wode	Allocation	Start	MPR	MPR	(dBm)
				1	0		20.43	
				1	37			20.43
				1	74	1		20.41
			QPSK	36	0			20.47
				36	19			20.39
				36	39			20.33
	20025	1717.5		75	0			20.47
	20025	1717.5		1	0			20.20
				1	37			20.16
				1	74			20.17
			16QAM	36	0			20.43
				36	19			20.40
				36	39			20.34
				75	0			20.48
				1	0	1		20.39
			QPSK	1	37			20.33
				1	74	1		20.40
		1732.5		36	0			20.31
				36	19			20.34
				36	39	MPR is	disabled	20.41
15	20175			75	0	when	power	20.41
15	20175			1	0	reduction is	20.14	
				1	37	ena	bled	20.11
				1	74	=		20.13
			16QAM	36	0		20.31	
				36	19		20.33	
				36	39		20.40	
				75	0			20.41
				1	0		20.35	
				1	37			20.31
				1	74	1	20.33	
			QPSK	36	0			20.37
				36	19	=		20.41
				36	39]		20.32
	20325	1747.5		75	0]		20.37
	20323	1747.3		1	0]		20.13
				1	37		20.09	
			16QAM	1	74		20.08	
				36	0		20.35	
				36	19]		20.36
				36	39			20.32
				75	0			20.36

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 34 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 4, 10 MHz Bandwidth Output Power

BW (Ch	Freq. (MHz)	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
DVV	Oil			Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	22.95
				1	24	0	0	22.89
				1	49	0	0	23.00
			QPSK	25	0	1	1	21.91
				25	12	1	1	21.96
				25	24	1	1	21.87
	20000	1715		50	0	1	1	21.98
	20000	1715		1	0	1	1	21.73
				1	24	1	1	21.64
				1	49	1	1	21.78
			16QAM	25	0	2	2	20.92
				25	12	2	2	20.90
				25	24	2	2	20.91
				50	0	2	2	20.98
			QPSK	1	0	0	0	22.88
				1	24	0	0	22.88
				1	49	0	0	22.92
				25	0	1	1	21.80
				25	12	1	1	21.85
				25	24	1	1	21.87
40	00475	1732.5		50	0	1	1	21.88
10	20175			1	0	1	1	21.69
				1	24	1	1	21.65
				1	49	1	1	21.64
			16QAM	25	0	2	2	20.77
				25	12	2	2	20.84
				25	24	2	2	20.91
				50	0	2	2	20.85
				1	0	0	0	22.90
				1	24	0	0	22.91
				1	49	0	0	22.88
			QPSK	25	0	1	1	21.78
				25	12	1	1	21.82
				25	24	1	1	21.82
	000=5	4750		50	0	1	1	21.85
	20350	1750		1	0	1	1	21.67
				1	24	1	1	21.61
				1	49	1	1	21.53
			16QAM	25	0	2	2	20.83
				25	12	2	2	20.79
				25	24	2	2	20.89
				50	0	2	2	20.87

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 : 35 of 434 Page : UCE314062A FCC ID Issued date : February 20, 2015 Revised date : March 19, 2015

	I T OWEI (I	Tethering	On)	UL RB	UL RB	Torgot	Meas.	Avg Pwr
BW	Ch	Freq. (MHz)	Mode	Allocation	Start	Target MPR	MPR	(dBm)
		(1711 12)		1	0	IVII IX	20.51	
				1	24	1		20.43
				1	49	-		
			QPSK			-		20.50
				25	0 12	-		20.49
				25		-		20.50
				25 50	24			20.43
	20000	1715		50	0	-		20.51
				1	0	-		20.25
				1	24	-		20.14
			400 4 14		49	1		20.22
			16QAM	25	0	1		20.49
				25	12	_		20.44
				25	24	4		20.38
				50	0	<u> </u>		20.51
			QPSK	1	0			20.47
				1	24			20.37
				1	49	1		20.38
				25	0	1		20.29
				25	12			20.38
		1732.5		25	24		disabled	20.41
10	20175			50	0		power	20.38
10	20170	1702.0		1	0	reduction is	20.19	
				1	24	ena	bled	20.11
				1	49			20.16
			16QAM	25	0		20.32	
				25	12		20.31	
				25	24		20.43	
				50	0]		20.38
				1	0			20.43
				1	24]		20.34
				1	49	1	20.36	
			QPSK	25	0]		20.30
				25	12]		20.33
				25	24]		20.38
	20250	1750		50	0	1		20.29
	20350	1750		1	0	1		20.14
				1	24	1	20.06	
				1	49			20.07
			16QAM	25	0			20.25
				25	12			20.31
				25	24			20.33
				50	0	1		20.30

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 36 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 4, 5 MHz Bandwidth Output Power Full Power (Tethering Off)

	er (Tethe			UL RB	UL RB	Torget	Meas.	Avg Pwr
BW	Ch	Freq. (MHz)	Mode	Allocation	Start	Target MPR	MPR	(dBm)
		(1411 12)		1	0	0	0	22.93
				1	12	0	0	22.94
				1	24	0	0	22.90
			QPSK	12	0	1	1	21.91
			QI OIX	12	6	1	1	21.97
				12	11	1	1	21.99
				25	0	1	1	21.94
	19975	1712.5		1	0	1	1	21.72
				1	12	1	1	21.72
				1	24	1	1	21.72
			16QAM	12	0	2	2	20.99
			100/11/1	12	6	2	2	20.99
				12	<u></u>	2	2	20.99
				25	0	2	2	21.01
				1	0	0	0	22.78
		1732.5	QPSK	1	12	0	0	22.80
				1	24	0	0	22.89
				12	0	1	1	21.86
				12	6	1	1	21.78
				12	11	1	1	21.88
				25	0	1	1	21.83
5	20175			1	0	1	1	21.60
				1	12	1	1	21.59
				1	24	1	1	21.72
			16QAM	12	0	2	2	20.88
			IOQAW	12	6	2	2	20.86
				12	11	2	2	20.91
				25	0	2	2	20.90
					0		0	
			QPSK	1	12	0	0	22.82 22.86
				1	24	0	0	22.80
				12			1	21.81
			QFSN	12	6	1	1	21.79
				12	11	1	1	
								21.75
	20375	1752.5		25	0	1	1	21.73
				1	0	1	1	21.60
				1	12	1	1	21.62
			400 4 8 4	1	24	1	1	21.60
			16QAM	12	0	2	2	20.91
				12	6	2	2	20.90
				12	11	2	2	20.81
				25	0	2	2	20.87

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 : 37 of 434 Page : UCE314062A FCC ID Issued date : February 20, 2015 Revised date : March 19, 2015

	Power (1	ethering Freq.		UL RB	UL RB	Target	Meas.	Avg Pwr	
BW	Ch	(MHz)	Mode	Allocation	Start	MPR	MPR		
		(1	0				
				1	12	1			
				1	24				
			QPSK	12	0	1			
			4. 5.1	12	6				
				12	11	1			
				25	0	1			
	19975	1712.5		1	0	1			
				1	12	1			
				1	24	1			
			16QAM	12	0	1			
				12	6	1			
				12	11	1			
				25	0	1			
				1	0	1			
				1	12	1			
				1	24	1			
			QPSK	12	0				
				12	6	1		20.37	
	00475			12	11	MPR is	disabled	(dBm) 20.43 20.44 20.41 20.44 20.42 20.49 20.45 20.15 20.18 20.18 20.48 20.46 20.51 20.57 20.30 20.33 20.42 20.34 20.37 20.38 20.33 20.11 20.10 20.20 20.38 20.39 20.40 20.41 20.30 20.31 20.26 20.31 20.26 20.31 20.27 20.28 20.12 20.11 20.10 20.20 20.38	
_		4700 5		25	0	when	power	20.33	
5	20175	1732.5		1	0		-	20.11	
				1	12	ena	bled	20.10	
				1	24	1		20.20	
			16QAM	12	0	1		20.38	
				12	6	enabled 20.10 20.20 20.30 20.30			
				12	11			20.40	
				25	0			20.41	
				1	0			20.30	
				1	12]		20.31	
				1	24	0 when power reduction is enabled 20 12 enabled 20 24 20 20 6 20 20 11 20 20 0 20 20 12 20 20 12 20 20 24 20 20 24 20 20		20.26	
			QPSK	12	0			20.31	
				12	6			20.32	
				12	11			20.27	
	20375	1752.5		25	0			20.28	
	203/3	1732.3		1	0			20.12	
				1	12			20.11	
				1	24			20.12	
			16QAM	12	0			20.43 20.44 20.41 20.44 20.42 20.49 20.45 20.18 20.18 20.18 20.46 20.51 20.57 20.30 20.33 20.42 20.34 20.37 20.38 20.33 20.11 20.10 20.20 20.38 20.39 20.40 20.41 20.30 20.31 20.26 20.31 20.26 20.31 20.26 20.31 20.27 20.28 20.12 20.11 20.10 20.20	
				12	6			20.37	
				12	11			20.30	
				25	0	1		20.30	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 38 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 4, 3 MHz Bandwidth Output Power Full Power (Tethering Off)

Full Power (Tethering Off)									
BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr	
		(MHz)		Allocation	Start	MPR	MPR	(dBm)	
				1	0	0	0	22.96	
				1	7	0	0	22.94	
				1	14	0	0	23.06	
			QPSK	8	0	1	1	21.94	
				8	4	1	1	21.91	
				8	7	1	1	21.97	
	19965	1711.5		15	0	1	1	21.98	
	10000			1	0	1	1	21.78	
				1	7	1	1	21.73	
				1	14	1	1	21.78	
			16QAM	8	0	2	2	20.95	
				8	4	2	2	20.93	
				8	7	2	2	20.97	
				15	0	2	2	20.96	
				1	0	0	0	22.90	
				1	7	0	0	22.87	
	3 20175			1	14	0	0	22.97	
			QPSK	8	0	1	1	21.87	
				8	4	1	1	21.84	
				8	7	1	1	21.84	
2		1732.5		15	0	1	1	21.86	
3	20175	1732.3		1	0	1	1	21.68	
				1	7	1	1	21.65	
				1	14	1	1	21.71	
			16QAM	8	0	2	2	20.87	
				8	4	2	2	20.86	
				8	7	2	2	20.87	
				15	0	2	2	20.89	
				1	0	0	0	22.95	
				1	7	0	0	22.81	
				1	14	0	0	22.89	
			QPSK	8	0	1	1	21.77	
				8	4	1	1	21.65	
				8	7	1	1	21.75	
	00005	4750.5		15	0	1	1	21.71	
	20385	1753.5		1	0	1	1	21.68	
				1	7	1	1	21.53	
		1		1	14	1	1		
			16QAM	8	0	2	2		
			16QAM	8	4	2	2		
				8	7	2	2	20.89 22.95 22.81 22.89 21.77 21.65 21.75 21.71 21.68	
				15	0	2	2		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 : 39 of 434 Page : UCE314062A FCC ID Issued date : February 20, 2015 Revised date : March 19, 2015

Reduced Power (Tethering On)											
BW	Ch	Freq.	Mode	UL RB	UL RB Start	Target	Meas.	Avg Pwr			
		(MHz)		Allocation		IVIPK	IVIPR				
				1	0	-					
				1	7	-					
			ODOK	1	14	-					
			QPSK	8	0						
				8	4						
				8	7						
	19965	1711.5		15	0						
				1	0	1					
				1	7						
				1	14		MPR MPR (0) 20 20 20 20 20 20 20 20 20				
			16QAM	8	0	MPR MPR (dBr 20.4 20.4 20.5 20.3 20.3 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4					
				8	4						
				8	7						
				15	0						
				1	0						
				1	7		20.37				
				1	14			20.43			
			QPSK	8	0			20.30			
				8	4			20.33			
				8	7	MPR is	disabled	20.36			
3	20175	1732.5		15	0			20.34			
3	20173	1732.3		1	0			20.13			
				1	7	ena	bled	20.08			
				1	14			20.17			
			16QAM	8	0		20.35				
				8	4		20.34				
				8	7			20.36			
				15	0			20.35			
				1	0			20.36			
				1	7]		20.30			
				1	14			20.32			
			QPSK	8	0]		20.28			
				8	4]		20.18			
				8	7]		20.21			
	20205	1750 5		15	0]		20.19			
	20385	1753.5		1	0	1		20.12			
				1	7	1		19.98			
				1	14	1		20.53 20.37 20.35 20.40 20.46 20.22 20.21 20.26 20.47 20.45 20.48 20.47 20.34 20.37 20.43 20.30 20.33 20.36 20.34 20.17 20.35 20.36 20.35 20.36 20.35 20.36 20.36 20.35 20.36 20.30 20.32 20.28 20.18 20.21 20.19 20.12			
			16QAM	8	0	1					
				8	4	1					
				8	7	1					
				15	0	1					

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 40 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

LTE Band 4, 1.4 MHz Bandwidth Output Power Full Power (Tethering Off)

un Pow	er (Teme	ring Off)		III DD	III DD	Torrest	Maga	Aug Dun	
BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr (dBm)	
		(1411 12)		1	0	0	0	22.98	
				1	2	0	0		
				1	5				
			QPSK			0	0		
			QPSK	3	0	0	0		
				3	1	0	0		
				3	3	0	0		
	19957	1710.7		6	0	1	1		
				1	0	1	1		
				1	2	1	1		
			400 414	1	5	1	1		
			16QAM	3	0	1	1		
				3	1	1	1		
				3	3	1	1		
				6	0	2	2		
				1	0	0	0		
				1	2	0	0		
	1.4 20175			1	5	0	0		
			QPSK	3	0	0	0		
				3	1	0	0	22.83	
				3	3	0	0	22.84	
1 1		1732.5		6	0	1	1	21.87	
1.4	20173	1732.3		1	0	1	1	21.85	
				1	2	1	1	21.82	
				1	5	1	1	21.86	
			16QAM	3	0	1	1	21.78	
				3	1	1	1	21.77	
				3	3	1	1	22.03 21.94 21.90 21.88 21.00 22.86 22.81 22.85 22.83 22.83 22.84 21.87 21.85 21.82 21.86 21.77 21.78 20.95 22.84 22.74 22.81 22.80 22.78 22.79 21.72 21.86 21.82 21.86	
				6	0	2	2	20.95	
				1	0	0	0	22.84	
				1	2	0	0		
				1	5	0	0	22.81	
			QPSK	3	0	0	0	22.80	
				3	1	0	0		
				3	3	0	0	22.79	
		47540		6	0	1	1		
	20393	1754.3		1	0	1	1		
				1	2	1	1		
				1	5	1	1		
			16QAM	3	0	1	1		
				3	1	1	1	21.94 21.90 21.88 21.00 22.86 22.81 22.85 22.83 22.83 22.84 21.87 21.85 21.82 21.86 21.77 21.78 20.95 22.84 22.74 22.81 22.80 22.78 22.79 21.72 21.86 21.82	
				3	3	1	1		
				6	0	2	2		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 41 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

Reduced Power (Tethering On)											
BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas.	Avg Pwr			
		(IVITZ)				IVIPK	IVIPK	, ,			
				1	0						
				1	2						
			ODOK	1	5						
			QPSK	3	0						
				3	1	ļ					
			3 3								
	19957	1710.7		6	0						
				1	0						
				1	2						
				1	5						
			16QAM	3	0	ļ					
				3	1	ļ					
				3	3	ļ					
				6	0		20.37 ction is 20.41 abled 20.35 20.41 20.32 20.27 20.27 20.40 20.31 20.23 20.25 20.26 20.26 20.26 20.26 20.26 20.26 20.32				
				1	0			20.35			
				1	2						
				1	5			20.35			
			QPSK	3	0			20.29			
				3	1			20.31			
				3	3	MPR is	disabled	20.35			
1.4	20175	1732.5		6	0			20.37			
1.4	20173	1732.3		1	0	reduc	tion is	20.41			
				1	2	ena	bled	20.35			
				1	5			20.41			
			16QAM	3	0		20.32				
				3	1		20.1 20.2 20.2 20.3 20.3 20.3 20.3 20.3 20.4 20.3 20.3 				
				3	3			20.27			
				6	0			20.40			
				1	0]		20.31			
				1	2			20.23			
				1	5			20.25			
			QPSK	3	0			20.25			
				3	1						
				3	3	1					
	00000	47540		6	0	1					
	20393	1754.3		1	0	1					
				1	2	1					
				1	 5	1					
			16QAM	3	0	1		20.16			
				3	1	-	20.17				
				3	3			20.16			
				6	0	1		20.29			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 42 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 5, 10 MHz Bandwidth Output Power Full Power

Full Pow BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr	
DVV	Ö	(MHz)	Wode	Allocation	Start	MPR	MPR	(dBm)	
				1	0	0	0	22.91	
				1	24	0	0	22.74	
				1	49	0	0	22.69	
			QPSK	25	0	1	1	21.69	
				25	12	1	1	21.68	
				25	24	1	1		
	20450	829		50	0	1	1		
	20100	020		1	0	1	1	21.68	
				1	24	1	1	21.48	
				1	49	1	2	21.41	
			16QAM	25	0	2	2	20.74	
				25	12	2	2	(dBm) 22.91 22.74 22.69 21.69 21.68 21.65 21.68 21.48 21.41 20.74 20.72 20.70 20.70 22.62 22.83 22.74 21.66 21.65 21.65 21.64 21.39 21.47 21.53 20.69 20.63 20.70 20.64 22.66 22.70 22.75 21.61 21.63 21.65 21.65 21.65 21.65 21.65 21.67 20.64	
				25	24	2	2	20.70	
				50	0	2	2		
				1	0	0	0	22.62	
				1	24	0	0	22.83	
				1	49	0	0	22.74	
			QPSK	25	0	1	1	21.66	
				25	12	1	1	21.65	
				25	24	1	1	21.65	
10	20525	836.5		50	0	1	1	21.64	
10	20020	030.3		1	0	1	1	21.39	
				1	24	1	1	21.47	
				1	49	1	1	21.53	
			16QAM	25	0	2	2	20.69	
				25	12	2	2	20.63	
				25	24	2	2	20.70	
				50	0	2	2	20.64	
				1	0	0	0	22.66	
				1	24	0	0	22.70	
				1	49	0	0	22.75	
			QPSK	25	0	1	1	21.61	
				25	12	1	1	21.63	
				25	24	1	1	21.65	
	20600	844		50	0	1	1	21.65	
	20000	044		1	0	1	1	21.40	
				1	24	1	1	21.39	
				1	49	1	1	21.48	
			16QAM	25	0	2	2	20.64	
				25	12	2	2	20.67	
				25	24	2	2	20.70	
				50	0	2	2	20.68	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 43 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 5, 5 MHz Bandwidth Output Power Full Power

BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr		
		(1011 12)		1	0	0	0			
				1	12	0	0			
				1	24	0	0			
			QPSK	12	0	1	1			
			Qi Oit	12	6	1	1			
				12	11	1	1			
				25	0	1	1			
	20425	826.5		1	0	1	1			
				1	12	1	1			
				1	24	1	1			
			16QAM	12	0	2	2	(dBm) 22.84 22.67 22.73 21.76 21.72 21.72 21.56 21.49 21.51 20.77 20.78 20.79 22.58 22.62 22.72 21.61 21.60 21.60 21.34 21.48 20.70 20.69 20.67 20.86 22.65 22.65 22.71 21.58 21.58 21.58 21.65 21.63 21.47 20.68		
				12	6	2	2			
				12	11	2	2			
				25	0	2	2			
				1	0	0	0			
				1	12	0	0			
				1	24	0	0			
		QPSK	12	0	1	1				
			12	6	1	1				
	5 20525			12	11	1	1			
				25	0	1	1			
5		836.5		1	0	1	2			
				1	12	1	1			
				1	24	1	1			
			16QAM	12	0	2	2			
				12	6	2	2			
				12	11	2	2			
				25	0	2	2			
				1	0	0	0			
				1	12	0	0			
				1	24	0	0			
			QPSK	12	0	1	1			
				12	6	1	1			
				12	11	1	1			
	20005	040.5		25	0	1	1			
	20625	846.5		1	0	1	1			
				1	12	1	1			
				1	24	1	1			
			16QAM	12	0	2	2			
				12	6	2	2	20.78 20.79 22.58 22.62 22.72 21.61 21.64 21.60 21.60 21.34 21.43 21.48 20.70 20.69 20.67 20.86 22.65 22.66 22.71 21.58 21.58 21.65 21.63 21.42 21.39 21.47 20.68 20.71		
				12	11	2	2			
				25	0	2	2			

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 44 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 5, 3 MHz Bandwidth Output Power Full Power

ull Pow BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr	
DVV	Cii	(MHz)	iviode	Allocation	Start	MPR	MPR	(dBm)	
				1	0	0	0	22.90	
				1	7	0	0	22.76	
				1	14	0	0	22.80	
			QPSK	8	0	1	1	21.65	
				8	4	1	1	21.65	
				8	7	1	1	21.70	
	20415	825.5		15	0	1	1	21.75	
	20413	023.3		1	0	1	1	21.67	
				1	7	1	1	21.52	
				1	14	1	1	21.55	
			16QAM	8	0	2	2	(dBm) 22.90 22.76 22.80 21.65 21.65 21.70 21.75 21.67 21.52	
				8	4	2	2	20.75	
				8	7	2	2	20.78	
				15	0	2	2	20.78	
				1	0	0	0	22.74	
				1	7	0	0	22.71	
				1	14	0	0	22.76	
		QPSK	8	0	1	1	21.65		
	20525			8	4	1	1	21.65	
				8	7	1	1	21.63	
3		836.5		15	0	1	1	21.63	
3		030.3		1	0	1	1	21.53	
				1	7	1	1	21.47	
				1	14	1	1	21.48	
			16QAM	8	0	2	2	20.73	
				8	4	2	2	21.70 21.75 21.67 21.52 21.55 20.74 20.75 20.78 20.78 20.78 22.74 22.71 22.76 21.65 21.65 21.63 21.63 21.63 21.63 21.47 21.48 20.73 20.67 20.67 20.70 22.69 22.69 22.73 21.66 21.63 21.63 21.63 21.47 21.48 20.73	
				8	7	2	2	20.67	
				15	0	2	2	20.70	
				1	0	0	0	22.69	
				1	7	0	0	22.69	
				1	14	0	0		
			QPSK	8	0	1	1	21.66	
				8	4	1	1	21.64	
				8	7	1	1	21.63	
	20635	847.5		15	0	1	1	21.60	
	20000	047.5		1	0	1	1	21.47	
				1	7	1	1	21.42	
			1	14	1	1	21.46		
			16QAM	8	0	2	2	22.76 22.80 21.65 21.65 21.70 21.75 21.67 21.52 21.55 20.74 20.75 20.78 20.78 22.74 22.71 22.76 21.65 21.63 21.63 21.63 21.63 21.63 21.63 21.63 21.63 21.64 20.73 20.67 20.67 20.70 22.69 22.69 22.73 21.66 21.63 21.63 21.64 21.64 21.63 21.64 21.63 21.64 21.65 21.66 20.70	
				8	4	2	2		
				8	7	2	2	20.70	
				15	0	2	2	20.71	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 45 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 5, 1.4 MHz Bandwidth Output Power Full Power

Full Power										
BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr (dBm)		
		(IVIITZ)								
				1	0	0	0	22.83		
				1	2	0	0	22.79		
			ODCK	1	5	0	0	22.79		
			QPSK	3	0	0	0	22.88		
				3	1	0	0	22.85		
				3	3	0	0	22.75		
	20407	824.7		6	0	1	1	21.80		
				1	0	1	1	21.93		
				1	2	1	1	21.84		
			400 444	1	5	1	1	21.77		
			16QAM	3	0	1	1	21.82		
				3	1	1	1	21.77		
				3	3	1	1	21.63		
				6	0	2	2	20.86		
				1	0	0	0	22.68		
				1	2	0	0	22.61		
				1	5	0	0	22.68		
			QPSK	3	0	0	0	22.59		
				3	1	0	0	22.62		
				3	3	0	0	22.69		
1.4	20525	836.5		6	0	1	1	21.71		
1	20020	000.0		1	0	1	1	21.67		
				1	2	1	1	21.63		
				1	5	1	1	21.66		
			16QAM	3	0	1	1	21.58		
				3	1	1	1	21.57		
				3	3	1	1	21.58		
				6	0	2	2	20.75		
				1	0	0	0	22.65		
				1	2	0	0	22.58		
				1	5	0	0	22.62		
			QPSK	3	0	0	0	22.60		
				3	1	0	0	22.64		
				3	3	0	0	22.63		
	20642	040.0		6	0	1	1	21.63		
	20643	848.3		1	0	1	1	21.70		
				1	2	1	1	21.64		
				1	5	1	1	21.68		
			16QAM	3	0	1	1	21.55		
			16QAM	3	1	1	1	21.56		
				3	3	1	1	21.55		
				6	0	2	2	20.73		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 46 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

LTE Band 7, 20 MHz Bandwidth Output Power

BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pw
DVV	Cil	(MHz)	iviode	Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	22.83
				1	49	0	0	23.05
				1	99	0	0	22.94
			QPSK	50	0	1	1	22.18
				50	24	1	1	22.20
				50	49	1	1	22.10
	20850	2510		100	0	1	1	22.14
	20000	2510		1	0	1	1	22.32
				1	49	1	1	22.28
				1	99	1	1	22.28
			16QAM	50	0	2	2	21.24
				50	24	2	2	21.23
				50	49	2	2	21.18
				100	0	2	2	21.19
				1	0	0	0	22.73
			1	49	0	0	22.70	
			1	99	0	0	22.91	
		QPSK	50	0	1	1	21.89	
			50	24	1	1	21.93	
	21100			50	49	1	1	21.96
20		2535		100	0	1	1	22.01
20		2333		1	0	1	1	22.03
				1	49	1	1	22.06
				1	99	1	1	22.18
			16QAM	50	0	2	2	20.98
				50	24	2	2	20.98
				50	49	2	2	21.00
				100	0	2	2	1 22.18 2 20.98 2 20.98 2 21.00 2 20.97
				1	0	0	0	22.73
				1	49	0	0	22.94
				1	99	0	0	23.02
			QPSK	50	0	1	1	22.01
				50	24	1	1	22.12
				50	49	1	1	22.22
	21350	2560		100	0	1	1	22.12
	21000	2000		1	0	1	1	22.02
				1	49	1	1	22.24
				1	99	1	1	22.38
			16QAM	50	0	2	2	21.04
				50	24	2	2	22.14 22.32 22.28 22.28 21.24 21.23 21.18 21.19 22.73 22.70 22.91 21.89 21.93 21.96 22.01 22.03 22.06 22.18 20.98 20.98 21.00 20.97 22.73 22.94 23.02 22.01 22.12 22.22 22.12 22.02 22.24 22.38
				50	49	2	2	
				100	0	2	2	21.12

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 47 of 434 : UCE314062A FCC ID Issued date : February 20, 2015 Revised date : March 19, 2015

BW	Ch	Freq. (MHz)	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr	
		(IVIHZ)		A 11 4:	Ctant		MDD		
				Allocation	Start	MPR	MPR	(dBm)	
				1	0				
				1	49				
				1	99			17.96	
			QPSK	50	0			18.23	
				50	24			18.17	
				50	49			18.12	
	20850	2510		100	0			18.16	
		_0.0		1	0			18.35	
				1	49			18.27	
				1	99			18.22	
			16QAM	50	0	18.1 18.0 17.9 18.2 18.1 18.1 18.1 18.2 18.2 18.2 18.2 18.2 18.2 18.1 17.7 17.7 17.7 17.7 17.7 17.9 17.8 17.9 17.9 17.8 18.0 18.2 17.9 17.8 18.0 18.1 18.0 18.1			
				50	24			18.19	
				50	49			18.13	
				100	0			18.15	
				1	0			17.76	
				1	49			17.79	
				1	99			17.94	
			QPSK	50	0			17.87	
				50	24			17.95	
				50	49	MPR is	disabled	17.94	
00	04400	0505		100	0			17.94	
20	21100	2535		1	0			17.98	
				1	49	ena	bled	18.03	
				1	99			18.23	
			16QAM	50	0			17.87	
				50	24			17.97	
				50	49			17.96	
				100	0			17.94	
H				1	0			17.81	
				1	49	1		18.00	
				1	99			18.10	
			QPSK	50	0			18.00	
			Ξ. Ο.	50	24				
				50	49			18.19	
				100	0	1		18.07	
	21350	2560		1	0	1			
				1	49	1			
				1	99	1			
			16QAM	50	0			18.00	
			IOQAIN	50	24	_	18.10		
								18.23	
				50 100	49 0			18.23	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 48 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015

Revised date : March 19, 2015

LTE Band 7, 15 MHz Bandwidth Output Power

Full Power (Tethering Off)

Full Power (Tethering Off)									
BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr (dBm)	
		, ,		1	0	0	0	23.05	
				1	37	0	0	23.20	
				1	74	0	0	23.04	
			QPSK	36	0	1	1	22.20	
				36	19	1	1	22.29	
				36	39	1	1	22.25	
		0507.5		75	0	1	1	22.24	
	20825	2507.5		1	0	1	1	22.02	
				1	37	1	1	22.11	
				1	74	1	1	21.88	
			16QAM	36	0	2	2	21.21	
				36	19	2	2	21.23	
				36	39	2	2		
				75	0	2	2		
				1	0	0	0		
				1	37	0	0		
	45 04400			1	74	0	0		
			QPSK	36	0	1	1		
				36	19	1	1		
				36	39	1	1		
4.5		0505		75	0	1	1		
15	21100	2535		1	0	1	1		
				1	37	1	1		
				1	74	1	1		
			16QAM	36	0	2	2	20.99	
				36	19	2	2		
				36	39	2	2	20.96	
				75	0	2	2	20.96	
				1	0	0	0	23.11	
				1	37	0	0	23.05	
				1	74	0	0	23.19	
			QPSK	36	0	1	1	22.16	
				36	19	1	1	22.13	
				36	39	1	1	22.29	
	04075	0500 5		75	0	1	1	22.16	
	21375	2562.5		1	0	1	1	21.83	
				1	37	1	1	21.87	
				1	74	1	1	22.08	
			16QAM	36	0	2	2	21.05	
				36	19	2	2	21.17 21.24 22.84 22.89 22.91 21.98 21.97 21.99 22.02 21.69 21.77 21.74 20.99 20.94 20.96 23.11 23.05 23.19 22.16 22.13 22.29 22.16 21.83 21.87 22.08	
				36	39	2	2		
				75	0	2	2		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 49 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Reduced Power (Tethering On)

		ethering C Freq.		UL RB	UL RB	Target	Meas.	Avg Pwr
BW	Ch	(MHz)	Mode	Allocation	Start	MPR	MPR	(dBm)
				1	0			18.29
				1	37	-		18.19
				1	74			18.10
			QPSK	36	0			18.24
				36	19			18.16
				36	39			18.14
	00005	0507.5		75	0			18.15
	20825	2507.5		1	0			18.04
				1	37			17.98
				1	74			17.84
			16QAM	36	0			18.15
				36	19			18.16
				36	39	1		18.08
				75	0			18.12
				1	0	1		17.90
				1	37			17.91
		2535		1	74			17.92
			QPSK	36	0			17.96
				36	19			17.92
				36	39	MPR is	disabled	17.94
15	24400			75	0		power	17.93
15	21100		16QAM	1	0	reduc	tion is	17.65
				1	37	ena	bled	17.73
				1	74			17.74
				36	0			17.91
				36	19			17.88
				36	39			17.92
				75	0			17.88
				1	0			18.13
				1	37			18.15
				1	74			18.22
			QPSK	36	0			18.10
				36	19			18.13
				36	39			18.25
	21375	2562.5		75	0			18.14
	213/5	2502.5		1	0			17.89
				1	37			17.95
				1	74			18.08
			16QAM	36	0			18.07
				36	19			18.10
				36	39			18.20
				75	0			18.08

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 50 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 7, 10 MHz Bandwidth Output Power

Full Power (Tethering Off)

Full Power (Tethering Off)								
BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwr
		(MHz)		Allocation	Start	MPR	MPR	(dBm)
				1	0	0	0	23.03
				1	24	0	0	23.07
				1	49	0	0	23.51
			QPSK	25	0	1	1	22.19
				25	12	1	1	22.23
				25	24	1	1	22.28
	20800	2505		50	0	1	1	22.24
	20000	2000		1	0	1	1	22.04
				1	24	1	1	22.03
				1	49	1	1	22.02
			16QAM	25	0	2	2	21.21
				25	12	2	2	21.30
				25	24	2	2	21.24
				50	0	2	2	21.27
				1	0	0	0	22.85
				1	24	0	0	22.92
				1	49	0	0	22.98
		QPSK	25	0	1	1	21.98	
				25	12	1	1	21.95
				25	24	1	1	21.97
10	21100	2535		50	0	1	1	21.94
10	21100	2000	16QAM	1	0	1	1	21.69
				1	24	1	1	21.75
				1	49	1	1	21.80
				25	0	2	2	20.94
				25	12	2	2	20.98
				25	24	2	2	20.96
				50	0	2	2	20.97
				1	0	0	0	23.06
				1	24	0	0	23.23
				1	49	0	0	23.24
			QPSK	25	0	1	1	22.15
				25	12	1	1	22.23
				25	24	1	1	22.29
	24.400	OFFE		50	0	1	1	22.26
	21400	2565		1	0	1	1	21.91
				1	24	1	1	22.03
				1	49	1	1	22.07
			16QAM	25	0	2	2	21.10
				25	12	2	2	21.17
				25	24	2	2	21.18
				50	0	2	2	21.22

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 51 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

BW	Ch	Freq.	Mode	UL RB	UL RB	Target	Meas.	Avg Pwi
D V V	OII	(MHz)	Wode	Allocation	Start	MPR	MPR	(dBm)
				1	0			18.32
				1	24			18.30
				1	49			18.27
			QPSK	25	0			18.26
				25	12			18.25
				25	24			18.20
	20800	2505		50	0			18.25
	20000	2000		1	0			18.08
				1	24			18.01
				1	49			18.01
			16QAM	25	0			18.21
				25	12			18.23
				25	24			18.20
				50	0			18.24
				1	0			17.87
				1	24			17.96
				1	49			18.02
		QPSK	25	0			17.90	
	04400			25	12			17.92
				25	24	MPR is	disabled	17.93
10		2525		50	0	when	power	17.95
10	21100	2535	16QAM	1	0	reduc	tion is	17.66
				1	24	ena	bled	17.70
				1	49			17.75
				25	0			17.89
				25	12			17.91
				25	24			17.92
				50	0			17.91
				1	0			18.14
				1	24			18.28
				1	49			18.29
			QPSK	25	0			18.12
				25	12			18.18
				25	24			18.19
	21400	2565		50	0]		18.20
	21400	2565		1	0	1		17.90
				1	24]		18.05
				1	49	1		18.07
			16QAM	25	0	1		18.06
				25	12	1		18.18
				25	24	1		18.22
				50	0	1		18.18

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 52 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 7, 5 MHz Bandwidth Output Power

Full Power (Tethering Off) UL RB UL RB Target Freq. Meas. Avg Pwr BW Ch Mode (MHz) Allocation **MPR MPR** (dBm) Start 22.98 22.97 23.05 **QPSK** 22.15 22.15 22.17 22.13 2502.5 22.10 22.07 22.17 16QAM 21.19 21.22 21.22 21.25 22.81 22.86 22.92 **QPSK** 22.01 21.92 21.98 21.94 21.63 21.69 21.76 16QAM 20.99 20.97 21.01 21.07 23.19 23.14 23.14 **QPSK** 22.23 22.20 22.18 22.22 2567.5 21.98 21.98 22.00 16QAM 21.23 21.24 21.24

21.30

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 53 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

Reduced	Power (1	Tethering	On)	111.00				
BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr
		(IVITIZ)			0	IVIFIX	IVIFIX	(dBm)
				1	12			18.30
			ODOK	1				18.26
				1	24			18.31
			QPSK	12	0			18.26
				12	6			18.27
				12	11			18.25
	20775	2502.5		25	0			18.24
				1	0			18.05
				1	12			18.01
				1	24			18.10
			16QAM	12	0			18.29
				12	6			18.30
				12	11			18.29
				25	0	1		18.34
		2535		1	0			17.85
				1	12			17.89
				1	24	MPR is disabled		17.95
			QPSK	12	0		17.97	
				12	6		17.94	
				12	11		17.92	
5	21100			25	0	when	when power	17.95
5	21100			1	0	reduction is enabled	17.58	
				1	12		17.66	
				1	24		17.73	
				12	0		17.96	
				12	6		17.97	
				12	11		17.95	
				25	0		18.03	
				1	0		18.23	
				1	12	1		18.19
				1	24		18.22	
			QPSK	12	0	1		18.19
				12	6	1		18.21
				12	11	1		18.17
				25	0	1		18.19
	21425	2567.5		1	0	1		18.02
				1	12	1		18.02
				1	24	1		18.05
			16QAM	12	0	_		18.19
			IOQAIVI	12	6			18.22
				t	11	1		
				12		1		18.25
				25	0			18.28

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 54 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 17, 10 MHz Bandwidth Output Power Full Power

BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr (dBm)
		, ,		1	0	0	0	22.72
				1	24	0	0	22.69
			QPSK	1	49	0	0	22.76
				25	0	1	1	21.63
				25	12	1	1	21.62
				25	24	1	1	21.64
	23780	700		50	0	1	1	21.64
	23/80	709		1	0	1	1	21.48
				1	24	1	1	21.48
				1	49	1	1	21.48
			16QAM	25	0	2	2	20.64
	1			25	12	2	2	20.65
				25	24	2	2	20.62
				50	0	2	2	20.68
				1	0	0	0	22.73
				1	24	0	0	22.72
				1	49	0	0	22.71
		QPSK	25	0	1	1	21.65	
		710		25	12	1	1	21.64
				25	24	1	1	21.64
4.0	00700			50	0	1	1	21.63
10	23790		16QAM	1	0	1	1	21.46
				1	24	1	1	21.47
				1	49	1	1	21.46
				25	0	2	2	20.65
				25	12	2	2	20.60
				25	24	2	2	20.61
				50	0	2	2	20.68
				1	0	0	0	22.69
				1	24	0	0	22.66
				1	49	0	0	22.72
			QPSK	25	0	1	1	21.62
				25	12	1	1	21.61
				25	24	1	1	21.61
				50	0	1	1	21.61
	23800	711		1	0	1	1	21.47
				1	24	1	1	21.39
				1	49	1	1	21.45
			16QAM	25	0	2	2	20.65
				25	12	2	2	20.64
				25	24	2	2	20.62
				50	0	2	2	20.67

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 55 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

LTE Band 17, 5 MHz Bandwidth Output Power Full Power

BW	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Start	Target MPR	Meas. MPR	Avg Pwr (dBm)
		(IVITZ)						22.71
				1	0 12	0	0	
			QPSK	1		0	0	22.64
				1 12	24	0	0 1	22.72
					0			21.71
				12	6 11	1	1 1	21.65
				12				21.70
	23755	706.5		25	0	1	1	21.64
				1	0	1	1	21.46
				1	12	1	1	21.43
			400 4 14	1	24	1	1	21.51
			16QAM	12	0	2	2	20.71
				12	6	2	2	20.72
				12	11	2	2	20.73
				25	0	2	2	20.77
				1	0	0	0	22.64
				1	12	0	0	22.57
				1	24	0	0	22.65
		QPSK	12	0	1	1	21.65	
			12	6	1	1	21.65	
			12	11	1	1	21.55	
5	23790	710		25	0	1	1	21.66
			16QAM	1	0	1	1	21.40
				1	12	1	1	21.41
				1	24	1	1	21.48
				12	0	2	2	20.68
				12	6	2	2	20.66
				12	11	2	2	20.70
				25	0	2	2	20.75
				1	0	0	0	22.63
				1	12	0	0	22.55
				1	24	0	0	22.66
			QPSK	12	0	1	1	21.58
				12	6	1	1	21.59
				12	11	1	1	21.61
	22025	712 5		25	0	1	1	21.57
	23825	713.5		1	0	1	1	21.36
				1	12	1	1	21.36
				1	24	1	1	21.48
			16QAM	12	0	2	2	20.67
				12	6	2	2	20.65
				12	11	2	2	20.66
				25	0	2	2	20.72

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 56 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

5.3 Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5%. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb)

Before SAR testing : Eb[V/m]

After SAR testing : Ea[V/m]

Limit of power drift[W] =+/-5%

X[dB] = 10log[P] = 10log(1.05/1) = 10log(1.05) - 10log(1) = 0.212dB

from E-filed relations with power.

 $p=E^2/\eta=E^2/\eta$

Therefore, The correlation of power and the E-filed

 $XdB=10log(P)=10log(E)^2=20log(E)$

Therefore.

The calculated power drift of DASY5 System must be the less than +/-0.212dB.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 57 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 6 SAR test exclusion considerations

6.1 Standalone SAR test exclusion considerations

Test was performed on all the surfaces which distance to antenna is less than 50mm.

The following is based on KDB447498D01.

- 1) At 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following.
- a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz

WWAN GSM850

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold
	Тор	848.8 [MHz] (251ch)	25.98 [dBm] 396.28 [mW]	127 [mm]	598.5 [mW]

WWAN PCS1900

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold
	Тор	1909.8 [MHz] (810ch)	22.78 [dBm] 189.67 [mW]	127 [mm]	878.5 [mW]

WWAN WCDMA II

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold
	Тор	1907.6 [MHz] (9538ch)	24 [dBm] 251.19 [mW]	127 [mm]	878.6 [mW]

WWAN WCDMA IV

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold
	Тор	1752.6 [MHz] (1513ch)	24 [dBm] 251.19 [mW]	127 [mm]	883.3 [mW]

WWAN WCDMA V

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold
	Тор	846.6 [MHz] (4233ch)	24 [dBm] 251.19 [mW]	127 [mm]	597.6 [mW]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 58 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WWAN LTE II

Standalone SAR tested	Position	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold
	Тор	1900 [MHz] (19100ch)	24 [dBm] 251.19 [mW]	127 [mm]	878.8 [mW]

WWAN LTE IV

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold	
	Тор	1754.3 [MHz] (20393ch)	24 [dBm] 251.19 [mW]	127 [mm]	883.3 [mW]	

WWAN LTE V

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold	
	Тор	844 [MHz] (20600ch)	24 [dBm] 251.19 [mW]	127 [mm]	596.5 [mW]	

WWAN LTE VII

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold	
	Тор	2562.5 [MHz] (21375ch)	24 [dBm] 251.19 [mW]	127 [mm]	863.7 [mW]	

WWAN LTE XVII

Standalone SAR tested	Positiom	Upper frequency of band *1	Maximum tune-up tolerance limit	Min distance *2	Calculation of threshold	
	Тор	711 [MHz] (23800ch)	24 [dBm] 251.19 [mW]	127 [mm]	542.9 [mW]	

^{*1} The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} Based on KDB447498D01, When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Refer to Appendix 4.

Test report No. : 10636726H-K-R3
Page : 59 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 7: Description of the SAR measurement setup

7.1 Test position for Head setup

i)Procedure for SAR testing

The EUT was tested in accordance with IEEE 1528: 2003 for both the "Cheek/Touch" and "Ear/Tilt" positions at the left and right sides of the SAM phantom head region. The FCC KDB 648474 D01 was also incorporated.

ii)Test mode

GSM850/PCS1900	Data transmission mode (GPRS)/ Voice mode (GSM)
WCDMA II/IV/V	12.2kRMC
LTE II/IV/V/VII/XVII	QPSK

iii)Test position

No.	Phantom	Position	WWAN		
			Teste	Antenna	
			d		
1	Left	Cheek	\square	Fixed	
2	Left	Cheek	\square	Fixed	
3	Right	Tilt	\square	Fixed	
4	Right	Tilt	\square	Fixed	

Initial ear position

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom.

The device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane".

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 60 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Cheek position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line.

This test position is established:

- i) When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- ii) (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

Tilt position

If the earpiece of the handset is not in full contact with the phantom's ear spacer and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. Otherwise the handset should be moved away from the cheek perpendicular to the line passes through both "ear reference points" for approximate 2-3 cm. While it is in this position, the handset is tilted away from the mouth with respect to the "test device reference point" by 15°. After the tilt, it is then moved back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously.

<Antenna position>

The antennas use for WWAN is integral part of the device.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 61 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

7.2 Test position for Body-worn and Body(Hotspot) setup

i) Procedure for SAR testing

The tested procedure was performed according to The KDB 648474 D04. Test performed at 10 mm from the Flat phantom. According to KDB 941225 D06 Hotspot SAR procedure, test separation of Body-worn for WWAN is 10mm since the test separation distance (10mm) for hotspot mode is more conservative than Body-worn test(15mm).

ii) Test mode

GSM850/PCS1900	Data transmission mode (GPRS)/ Voice mode (GSM)
WCDMA II/IV/V	12.2kRMC
LTE II/IV/V/VII/XVII	QPSK

iii) Test position

	cst position				
No.	Position	WWAN			
		Tested	Antenna	Test separation distance	Only WCDMA Band2,4
				(Separation of a flat phantom to	and LTE Band2,4,7
				EUT's surfaces and edges)	with power reduction *1
1	Front	\square	Internal	10mm	□ *2
2	Rear	\square	Internal	10mm	□ *2
3	Тор		Internal	-	
4	Bottom	\square	Internal	10mm	
5	Right	\square	Internal	10mm	\square
6	Left	\square	Internal	10mm	

About test position, Refer to Appendix 4.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} When WLAN tethering function(Hotspot mode) is activated, WWAN transmit power is reduced. This function is adapted to WCDMA Band 2, 4 and LTE Band 2, 4, 7.

^{*2} For the Front and Rear setup of above band, SAR was measured with Full power by considering with Body-worn SAR measurement.

Test report No. : 10636726H-K-R3
Page : 62 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 8: Test surrounding

8.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013)[2] and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget[1]). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01 Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

<0.3 - 3GHz range>

	Unce	ertainty	Probability		(ci)	Standard Uncertainty	vi
Error Description	valu	e ± %	distribution	divisor	1g	(1g)	or
							veff
Measurement System			•			•	
Probe calibration	±	6.00	Normal	1	1	± 6.00	∞
Axial isotropy of the probe	±	4.7	Rectangular	√3	0.7	± 1.9	∞
Spherical isotropy of the probe	±	9.6	Rectangular	√3	0.7	± 3.9	∞
Boundary effects	±	1.0	Rectangular	√3	1	± 0.6	∞
Probe linearity	±	4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	±	1.0	Rectangular	√3	1	± 0.6	∞
Modulation response	±	2.4	Rectangular	√3	1	± 1.4	∞
Readout electronics	±	0.3	Normal	1	1	± 0.3	∞
Response time	±	0.8	Rectangular	√3	1	± 0.5	∞
Integration time	±	2.6	Rectangular	√3	1	± 1.5	∞
RF ambient Noise	±	3.0	Rectangular	√3	1	± 1.7	∞
RF ambient Reflections	±	3.0	Rectangular	√3	1	± 1.7	∞
Probe Positioner	±	0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	±	2.9	Rectangular	√3	1	± 1.7	∞
Max.SAR Eval.	±	2.0	Rectangular	√3	1	± 1.2	∞
Test Sample Related			 	•		* '	
Device positioning	±	2.9	Normal	1	1	± 2.9	8
Device holder uncertainty	±	3.6	Normal	1	1	± 3.6	162
Power drift	±	5.0	Rectangular	√3	1	± 2.9	∞
Power Scaling	+	0.0	Rectangular	√3	1	± 0.0	∞
Phantom and Setup							
Phantom uncertainty	±	6.1	Rectangular	$\sqrt{3}$	1	± 3.5	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	±	1.9	Normal	1	1	± 1.9	∞
Liquid conductivity (target.)	±	5.0	Rectangular	√3	0.78	± 2.3	∞
Liquid conductivity (meas.)	+	4.7	Rectangular	1	0.78	+ 3.7	∞
Liquid permittivity (target.)	±	5.0	Rectangular	√3	0.23	+ 0.7	
Liquid permittivity (meas.)	-	4.7	Rectangular	1	0.23	- 1.1	∞
Liquid conductivity	±	5.2	Rectangular	√3	0.78	± 2.3	
- temp.unc (below 2deg.C.)	Ξ.	3.2	Rectangular	\\\ 3	0.78	± 2.3	∞
Liquid permittivity		0.0	D 4 1	./2	0.22	0.1	
- temp.unc (below 2deg.C.)	±	0.8	Rectangular	$\sqrt{3}$	0.23	± 0.1	∞
	•		•	•	•	•	
Combined Standard Uncertainty						± 12.122	
Expanded Uncertainty (k=2)						± 24.2	

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 63 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 9: Measurement results

9.1 GSM850 Head SAR

(1) Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Step2. The changing mode

The test was performed with the worst position of Step.1.

Note:

- 1) The GPRS 2up mode was maximum time-based average power. The other slots SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured GPRS 2up mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	PARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
				_	835	εr	41.5	-	-	-	*1
_	-	_	-	_	655	σ [mho/m]	0.90	-	-	-	1
17-Jan	24.0	46	HSL900	23.5	836.6	er	41.5	43.0	3.6	+/-5	*2
1/-Jaii	24.0	40	HSL900	23.3	830.0	σ [mho/m]	0.90	0.94	3.9	+/-5	٠ ٧
17-Jan	24.0	24.0 46 HS	HSL900	23.5	900	er	41.5	43.3	4.2	+/-5	*1
1/-Jaii	24.0		1131,900	23.3	300	σ [mho/m]	0.97	1.00	2.9	+/-5	. 1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No.: 10636726H-K-R3

Page : 64 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

(3)Result of Head SAR

	HEAD SAR MEASUREMENT RESULTS												
Fre	equency	Modulation		sured wer	up tol	um tune- erance nit	Phantom Section	EUT Set-up Conditions		Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]	
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Step.1 Worst position search												
190	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Left cheek	0	0.305	1.380	0.421
190	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Left tilt	0	0.200	1.380	0.276
190	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Right cheek	0	0.302	1.380	0.417
190	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Right tilt	0	0.212	1.380	0.293
								· ·			_	_	
190	836.6	GSM	23.33	215.28	24.97	313.99	Flat	Inner	Left cheek	0	0.200	1.459	0.292

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 65 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.2 GSM850 Body-worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Step2. The changing mode

The test was performed with the position which reported SAR>0.8W/kg of Step.1.

Step3. The changing to the other channels (Low, Mid)

The test was performed at the worst condition of Step1 and Step 2.

Note:

- 1) The GPRS 2up mode was maximum time-based average power. The other slots SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured GPRS 2up mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 66 of 434 : UCE314062A FCC ID Issued date : February 20, 2015

Revised date : March 19, 2015

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	PARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
_	_	_	_	_	450	εr		-	-	-	*1
_	_	_	_	_	150	σ [mho/m]		-	-	-	1
6-Feb	24.0	45	MSL900	23.5	824.2	εr	55.2	54.0	-2.2	+/-5	*2
0-1-00	24.0	73	WISL/00	23.3	624.2	σ [mho/m]	0.97	0.95	-1.9	+/-5	2
					835	εr	55.2	-	-	-	*1
_	_	_	-	-	633	σ [mho/m]	0.97	-	-	1	1
15-Jan	24.0	46	MSL900	23.5	836.6	εr	55.2	54.7	-0.9	+/-5	*2
15-3411	24.0	40	WISL/00	23.3	650.0	σ [mho/m]	0.97	0.96	-0.7	+/-5	2
6-Feb	24.0	45	MSL900	23.5	836.6	εr	55.2	53.9	-2.4	+/-5	*2
0-1-60	24.0	43	WISL900	23.3	830.0	σ [mho/m]	0.97	0.97	-0.5	+/-5	2
6-Feb	24.0	45	MSL900	23.5	848.6	εr	55.2	53.8	-2.5	+/-5	*2
0-1-60	24.0	43	MSL900	23.3	040.0	σ [mho/m]	0.99	0.98	-0.9	+/-5	. 2
15-Jan	24.0	46	MSL900	23.5	900	er	55.0	54.0	-1.8	+/-5	*1
13-Jall	24.0	40	MISL900	23.3	900	σ [mho/m]	1.05	1.03	-1.7	+/-5	1
6-Feb	24.0	45	MSL900	23.5	900	εr	55.0	53.4	-2.9	+/-5	*1
0-1-0	24.0	43	MISESUU	23.3		σ [mho/m]	1.05	1.05	0.0	+/-5	. 1

εr: Relative Permittivity / σ : Coductivity

(3) Result of Body SAR

					ВО	DY SAF	R MEASU	REMENT	RESULTS				
Fre	equency	Modulation		Measured power		Maximum tune- up tolerance limit		EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst positio	n search											
189	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Front	10	0.635	1.380	0.876
189	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Rear	10	0.440	1.380	0.607
189	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Bottom	10	0.139	1.380	0.192
189	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Left	10	0.215	1.380	0.297
189	836.6	GPRS 2slots	24.58	287.08	25.98	396.22	Flat	Inner	Right	10	0.549	1.380	0.758
Step.2 N	Mode change											•	
189	836.6	GSM	23.33	215.28	24.97	313.99	Flat	Inner	Front(with earphone)	10	0.485	1.459	0.707
Step.3 (Channel chan	ige											
128	824.2	GPRS 2slots	24.60	288.40	25.98	396.22	Flat	Inner	Front	10	0.640	1.374	0.879
251	848.8	GPRS 2slots	24.51	282.49	25.98	396.22	Flat	Inner	Front	10	0.465	1.403	0.652

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 67 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.3 PCS1900 Head SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Step2. The changing mode

The test was performed with the worst position of Step.1.

Note:

- 1) The GPRS 2up mode was maximum time-based average power. The other slots SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured GPRS 2up mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS													
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark			
					1800	er	40.0	-	-	-	*1			
_	-	-	-	_	1000	σ [mho/m]	1.40	-	-	-	1			
21-Jan	24.0	40	HSL1800	23.5	1880	er	40.0	38.5	-3.7	+/-5	*2			
21-Jan	24.0	40	HSL1800	23.3	1880	σ [mho/m]	1.40	1.46	4.4	+/-5	*2			
					1000	er	40.0	-	-	-	*1			
-	-	-	-	-	1900	σ [mho/m]	1.40	-	-	-	*1			

εr: Relative Permittivity / σ : Coductivity

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3

Page : 68 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

(3)Result of Head SAR

					HEA	D SAR	MEASUR	EMENT	RESULTS				
Frequency		Modulation	Measured power		Maximum tune- up tolerance limit		Phantom Section	El	UT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst position	n search											
661	1880	GPRS 2slots	21.49	140.93	22.78	189.64	Flat	Inner	Left cheek	0	0.339	1.346	0.456
661	1880	GPRS 2slots	21.49	140.93	22.78	189.64	Flat	Inner	Left tilt	0	0.058	1.346	0.078
661	1880	GPRS 2slots	21.49	140.93	22.78	189.64	Flat	Inner	Right cheek	0	0.150	1.346	0.202
661	1880	GPRS 2slots	21.49	140.93	22.78	189.64	Flat	Inner	Right tilt	0	0.043	1.346	0.058
Step.2 Mode changge							-		-	-			
661	1880	GSM	19.89	97.50	21.97	157.37	Flat	Inner	Left cheek	0	0.148	1.614	0.239

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 69 of 434 FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

9.4 PCS1900 Body-worn and Body (Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Step2. The changing mode

The test was performed with the worst position of Step1.

Step3. The changing to the other channels (Low, Mid)

The test was performed with the position which reported SAR>0.8W/kg of Step.1 and Step2.

Step4. With accessory

The test was performed at the worst condition of Step1, Step2 and Step3 since measured SAR>1.2W/kg.

Note:

- 1) The GPRS 2up mode was maximum time-based average power. The other slots SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured GPRS 2up mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELE	CTRIC	PARAME'	TERS MEA	SUREME	NT RESUI	TS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	M easured	Deviation [%]	Limit [%]	Remark
					1800	εr	53.3	-	-	-	*1
_	-	-	-	-	1000	σ [mho/m]	1.52	-	-	-	. 1
30-Jan	24.0	42	MLS1800	23.5	1850.2	er	53.3	51.6	-3.1	+/-5	*2
30-Jan	24.0	42	WILSTOOD	23.3	1650.2	σ [mho/m]	1.52	1.54	1.5	+/-5	2
30-Jan	24.0	42	MLS1800	23.5	1880	Er	53.3	51.6	-3.3	+/-5	*2
30-Jan	24.0	42	WILS 1800	23.3	1000	σ [mho/m]	1.52	1.57	3.6	+/-5	٠ ٧
30-Jan	24.0	42	MLS1950	23.5	1909.8	er	53.3	52.1	-2.3	+/-5	*2
30-Jan	24.0	42	WILS 1930	23.3	1909.8	σ [mho/m]	1.52	1.48	-2.9	+/-5	٠ ٧
					2000	εr	53.3	-	-	-	*1
_	-	-	-	-	2000	σ [mho/m]	1.52	-	-	-	. 1

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3

Page : 70 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

(3)Result of Body SAR

					В	ODY S	AR MEAS	UREME	NT RESULT	rs			
Fre	equency	Modulation		asured ower	Maximu up tole		Phantom Section		Set-up Cond		Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separatio [mm]			
Step.1 V	Vorst positio	n search											
661	1880	GPRS 2slot	21.49	140.93	22.78	189.64	Flat	Inner	Front	10	0.633	1.346	0.852
661	1880	GPRS 2slot	21.49	140.93	22.78	189.64	Flat	Inner	Rear	10	0.592	1.346	0.797
661	1880	GPRS 2slot	21.49	140.93	22.78	189.64	Flat	Inner	Bottom	10	1.070	1.346	1.440
661	1880	GPRS 2slot	21.49	140.93	22.78	189.64	Flat	Inner	Left	10	0.130	1.346	0.175
661	1880	GPRS 2slot	21.49	140.93	22.78	189.64	Flat	Inner	Right	10	0.318	1.346	0.428
Step.2 N	Iode changg	e											
661	1880	GSM	19.89	97.50	21.97	157.37	Flat	Inner	Front	10	0.767	1.614	1.238
Step.3 C	Channel chan	gge											
512	1850.2	GPRS 2slot	21.47	140.28	22.78	189.64	Flat	Inner	Front	10	0.585	1.352	0.791
810	1909.8	GPRS 2slot	21.28	134.28	22.78	189.64	Flat	Inner	Front	10	0.690	1.412	0.975
512	1850.2	GPRS 2slot	21.47	140.28	22.78	189.64	Flat	Inner	Bottom	10	0.883	1.352	1.194
810	1909.8	GPRS 2slot	21.28	134.28	22.78	189.64	Flat	Inner	Bottom	10	1.070	1.412	1.511
512	1850.2	GSM	19.84	96.38	21.97	157.37	Flat	Inner	Front	10	0.649	1.633	1.060
810	1909.8	GSM	19.80	95.50	21.97	157.37	Flat	Inner	Front	10	0.530	1.648	0.873
Step.4 V	Vith accessor	·y											
810	1909.8	GPRS 2slot	21.28	134.28	22.78	189.64	Flat	Inner	Bottom	10	1.010	1.412	1.426

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 71 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.5 WCDMA Band II Head SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Note:

- 1) The BODY SAR is not required for HSDPA mode because the maximum average output power for HSDPA mode is less than 1/4dB higher than that measured 12.2k RMC mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESUI	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					1800	er	40.0	-	-	•	*1
_	-	-	-	-	1000	σ [mho/m]	1.40	-	1	1	. 1
23-Jan	24.0	46	HSL1800	23.5	1880	er	40.0	39.4	-1.6	+/-5	*2
23-Jan	24.0	40	HSL1600	23.3	1000	σ [mho/m]	1.40	1.42	1.4	+/-5	٠. ک
					1900	er	40.0	-	-	ı	*1
_	-	-		-	1900	σ [mho/m]	1.40	-	1	1	1 1

εr: Relative Permittivity / σ : Coductivity

(3) Result of Head SAR

	HEAD SAR MEASUREMENT RESULTS													
Frequency		Modulation	Measured power		Maximum tune- up tolerance limit		Phantom Section	EUT Set-up Conditions			Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]	
Channel	[MHz]		[dBm] [mW] [[dBm]	[mW]		Antenna	Position	Separation [mm]				
Step.1 V	Step.1 Worst position search													
9400	1880	RMC 12.2kbps	23.68	233.35	24.00	251.19	Flat	Inner	Left cheek	0	0.270	1.076	0.291	
9400	1880	RMC 12.2kbps	23.68	233.35	24.00	251.19	Flat	Inner	Left tilt	0	0.074	1.076	0.080	
9400	1880	RMC 12.2kbps	23.68	233.35	24.00	251.19	Flat	Inner	Right cheek	0	0.163	1.076	0.175	
9400	1880	RMC 12.2kbps	23.68	233.35	24.00	251.19	Flat	Inner	Right tilt	0	0.087	1.076	0.094	

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 72 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.6 WCDMA Band II Body-worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Step2. The changing to the other channels (Low, Mid)

The test was performed with the position which reported SAR>0.8W/kg of Step.1.

Step3. With accessory

The test was performed at the worst condition of Step1 and Step2 since measured SAR>1.2W/kg.

Step4. The repeated measurement

The test was performed at the worst condition of 1900MHz Band.

Note:

- 1) The GPRS 2up mode was maximum time-based average power. The other slots SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured GPRS 2up mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is ≥ 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
_	_	_	_	_	1800	εr	53.3	-	-	-	*1
	_				1000	σ [mho/m]	1.52	-	-	-	1
28-Jan	24.0	42	MSL1800	23.5	1852.4	εr	53.3	50.8	-4.6	+/-5	*2
20-3411	24.0	42	WISLIGUU	23.3	1032.4	σ [mho/m]	1.52	1.58	3.9	+/-5	. 2
30-Jan	24.0	40	MSL1800	23.5	1852.4	er	53.3	51.6	-3.2	+/-5	*2
30 - 3aii	24.0	40	WISLIGUU	23.3	1632.4	σ [mho/m]	1.52	1.54	1.3	+/-5	٠ ٧
28-Jan	24.0	40	MSL1800	23.5	1880	er	53.3	50.8	-4.6	+/-5	*2
20-3411	24.0	40	WISLIGUU	23.3	1000	σ [mho/m]	1.52	1.58	3.9	+/-5	. 7
30-Jan	24.0	40	MSL1800	23.5	1880	εr	53.3	51.6	-3.3	+/-5	*2
30-Jan	24.0	40	WISLIGOO	23.3	1000	σ [mho/m]	1.52	1.57	3.6	+/-5	2
30-Jan	24.0	40	MSL1950	23.5	1907.6	er	53.3	52.1	-2.3	+/-5	*2
JO-Jan	24.0	40	WISE1930	23.3	1707.0	σ [mho/m]	1.52	1.48	-3.0	+/-5	2
30-Jan	24.0	40	MSL1950	23.5	2000	εr	53.3	51.7	-3.0	+/-5	*1
30-Jaii	24.0	40	WISE1930	23.3	2000	σ [mho/m]	1.52	1.57	3.6	+/-5	1

εr: Relative Permittivity / σ : Coductivity

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3

Page : 73 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

(3)Result of Body SAR

					ВО	DY SAF	R MEASU	REMENT	RESULTS				
Fre	quency	Modulation		sured wer		im tune- erance nit	Phantom Section	EU	JT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst position	n search											
9400	1880	RMC 12.2k	23.68	233.35	24.00	251.19	Flat	Inner	Front	10	1.100	1.076	1.184
9400	1880	RMC 12.2k	23.68	233.35	24.00	251.19	Flat	Inner	Rear	10	1.080	1.076	1.163
9400	1880	RMC 12.2k	20.66	116.41	21.50	141.25	Flat	Inner	Bottom	10	0.893	1.213	1.084
9400	1880	RMC 12.2k	20.66	116.41	21.50	141.25	Flat	Inner	Left	10	0.529	1.213	0.642
9400	1880	RMC 12.2k	20.66	116.41	21.50	141.25	Flat	Inner	Right	10	0.080	1.213	0.097
Step.2 C	hannel chan	ge											
9262	1852.4	RMC 12.2k	23.88	244.34	24.00	251.19	Flat	Inner	Front	10	1.190	1.028	1.223
9538	1907.6	RMC 12.2k	23.55	226.46	24.00	251.19	Flat	Inner	Front	10	0.962	1.109	1.067
9262	1852.4	RMC 12.2k	23.88	244.34	24.00	251.19	Flat	Inner	Rear	10	0.966	1.028	0.993
9538	1907.6	RMC 12.2k	23.55	226.46	24.00	251.19	Flat	Inner	Rear	10	1.010	1.109	1.120
9262	1852.4	RMC 12.2k	20.86	121.90	21.50	141.25	Flat	Inner	Bottom	10	0.758	1.159	0.878
9538	1907.6	RMC 12.2k	20.69	117.22	21.50	141.25	Flat	Inner	Bottom	10	0.880	1.205	1.060
Step.3 V	Vith accessor	у					•			•			
9262	1852.4	RMC 12.2k	23.88	244.34	24.00	251.19	Flat	Inner	Front	10	1.140	1.028	1.172
Step.4 R	epeat measu	rement				1							
9262	1852.4	RMC 12.2k	23.88	244.34	24.00	251.19	Flat	Inner	Front	10	1.030	1.028	1.059

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} For Bottom, Left and Right positions, SAR is measured with power reduction mode

Test report No. : 10636726H-K-R3
Page : 74 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.7 WCDMA Band IV Head SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Note:

- 1) The BODY SAR is not required for HSDPA mode because the maximum average output power for HSDPA mode is less than 1/4dB higher than that measured 12.2k RMC mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESUI	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					1450	er	40.5	-	-	-	*1
_	-	-	-		1430	σ [mho/m]	1.20	-	-	-	- 1
24-Jan	24.0	40	HSL1800	23.0	1732.6	er	40.1	40.2	0.2	+/-5	*2
24-Jan	24.0	40	113L1600	23.0	1/32.0	σ [mho/m]	1.36	1.34	-1.3	+/-5	٠ ک
					1800	er	40.0	-	-	-	*1
_	_	_	-		1000	σ [mho/m]	1.40	-	-	-	1

 $[\]epsilon r \hbox{: Relative Permittivity} \, / \, \sigma : Coductivity$

(3)Result of Head SAR

					HE	AD SAF	R MEASU	REMENT	RESULTS				
Fre	quency	Modulation		sured wer	up tol	um tune- erance nit	Phantom Section		UT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 W	orst position	n search											
1413	1732.6	RMC 12.2kbps	23.37	217.27	24.00	251.19	Flat	Inner	Left cheek	0	0.401	1.156	0.464
1413	1732.6	RMC 12.2kbps	23.37	217.27	24.00	251.19	Flat	Inner	Left tilt	0	0.084	1.156	0.098
1413	1732.6	RMC 12.2kbps	23.37	217.27	24.00	251.19	Flat	Inner	Right cheek	0	0.238	1.156	0.275
1413	1732.6	RMC 12.2kbps	23.37	217.27	24.00	251.19	Flat	Inner	Right tilt	0	0.113	1.156	0.131

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable

Test report No. : 10636726H-K-R3
Page : 75 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.8 WCDMA Band IV Body-Worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Step2. The changing to the other channels (Low, Mid)

The test was performed with the position which reported SAR>0.8W/kg of Step.1.

Step3. The repeated measurement

The test was performed at the worst condition of 1750MHz Band.

Note:

- 1) The GPRS 2up mode was maximum time-based average power. The other slots SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured GPRS 2up mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
				_	1610	er	53.8	-	-	-	*1
-	_	-	-		1010	σ [mho/m]	1.40	-	-	-	1
29-Jan	24.0	40	MLS1800	23.5	1712.4	er	53.5	51.6	-3.6	+/-5	*2
29 - Jan	24.0	40	WILSTOOU	23.3	1/12.4	σ [mho/m]	1.46	1.40	-3.8	+/-5	2
29-Jan	24.0	46	MLS1800	23.5	1732.6	εr	53.5	51.6	-3.5	+/-5	*2
29 - Jan	24.0	40	WILSTOU	23.3	1/32.0	σ [mho/m]	1.48	1.42	-4.4	+/-5	. 2
2 E.L	24.0	1.6	MI 01000	22.5	1722 (er	53.5	51.4	-3.8	+/-5	*2
3-Feb	24.0	46	MLS1800	23.5	1732.6	σ [mho/m]	1.48	1.42	-4.2	+/-5	*2
29-Jan	24.0	46	MLS1800	23.5	1752.6	er	53.4	51.5	-3.6	+/-5	*2
29-Jan	24.0	40	WILS 1800	23.3	1/32.0	σ [mho/m]	1.49	1.45	-2.9	+/-5	٠. ک
					1800	er	53.3	-	-	-	*1
•	-	_	-	-	1000	σ [mho/m]	1.52	-	-	-	· 1

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3

 Page
 : 76 of 434

 FCC ID
 : UCE314062A

 Issued date
 : February 20, 2015

 Revised date
 : March 19, 2015

(3)Result of Body SAR

				P	ODY SA	AR MEA	SUREME	NT RES	ULTS				
Fre	quency	Modulation		easured ower	up tol	am tune- erance nit	Phantom Section	EU	UT Set-up Condi	tions	Measure d [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst positio	n search											
1413	1732.6	RMC 12.2k	23.37	217.27	24.00	251.19	Flat	Inner	Front	10	0.791	1.156	0.914
1413	1732.6	RMC 12.2k	23.37	217.27	24.00	251.19	Flat	Inner	Rear	10	0.969	1.156	1.120
1413	1732.6	RMC 12.2k	20.66	116.41	21.50	141.25	Flat	Inner	Bottom	10	0.798	1.213	0.968
1413	1732.6	RMC 12.2k	20.66	116.41	21.50	141.25	Flat	Inner	Left	10	0.112	1.213	0.136
1413	1732.6	RMC 12.2k	20.66	116.41	21.50	141.25	Flat	Inner	Right	10	0.144	1.213	0.175
Step.2 C	hannel chan	ige											
1312	1712.4	RMC 12.2k	23.47	222.33	24.00	251.19	Flat	Inner	Front	10	0.657	1.130	0.742
1513	1752.6	RMC 12.2k	23.25	211.35	24.00	251.19	Flat	Inner	Front	10	0.830	1.189	0.986
1312	1712.4	RMC 12.2k	23.47	222.33	24.00	251.19	Flat	Inner	Rear	10	0.944	1.130	1.067
1513	1752.6	RMC 12.2k	23.25	211.35	24.00	251.19	Flat	Inner	Rear	10	0.937	1.189	1.114
1312	1712.4	RMC 12.2k	20.82	120.78	21.50	141.25	Flat	Inner	Bottom	10	0.832	1.169	0.973
1513	1752.6	RMC 12.2k	20.73	118.30	21.50	141.25	Flat	Inner	Bottom	10	0.807	1.194	0.964
Step.3 R	epeat measu	rement											
1413	1732.6	RMC 12.2k	23.37	217.27	24.00	251.19	Flat	Inner	Rear	10	0.962	1.156	1.112

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} For Bottom, Left and Right positions, SAR is measured with power reduction mode

Test report No. : 10636726H-K-R3
Page : 77 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.9 WCDMA Band V Head SAR

(1)Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Note:

- 1) The BODY SAR is not required for HSDPA mode because the maximum average output power for HSDPA mode is less than 1/4dB higher than that measured 12.2k RMC mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	ARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					835	er	41.5	-	-	•	*1
-	-	-	-	1	833	σ [mho/m]	0.90	-	-	1	. 1
17-Jan	24.0	46	HSL900	23.5	836.6	er	41.5	43.0	3.6	+/-5	*2
1/-Jan	24.0	40	nsL900	23.3	830.0	σ [mho/m]	0.90	0.94	3.9	+/-5	. 2
17-Jan	24.0	46	HSL900	23.5	900	er	41.5	42.3	1.8	+/-5	*1
1 /-Jaii	24.0	40	1131,900	23.3	900	σ [mho/m]	0.97	1.00	2.9	+/-5	. 1

 $[\]epsilon r$: Relative Permittivity / σ : Coductivity

(3)Result of Head SAR

					HE	AD SAF	R MEASU	REMENT	RESULTS				
Fre	equency	Modulation		sured wer	up tol	am tune- erance nit	Phantom Section		UT Set-up Condi	ions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna		Separation [mm]			
Step.1 V	Vorst position	n search											
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Left cheek	0	0.280	1.084	0.303
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Left tilt	0	0.182	1.084	0.197
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Right cheek	0	0.327	1.084	0.354
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Right tilt	0	0.229	1.084	0.248

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 78 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.10 WCDMA Band V Body-worn and Body(Hotspot) SAR

(1) Method of measurement

Step.1 The searching for the worst position

The test was performed in the middle channel.

Step2. The changing to the other channels (Low, Mid)

The test was performed with the position which reported SAR>0.8W/kg of Step.1.

Step3. The repeated measurement

The test was performed at the worst condition of 850MHz Band.

Note:

- 1) The BODY SAR is not required for HSDPA mode because the maximum average output power for HSDPA mode is less than 1/4dB higher than that measured 12.2k RMC mode.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	PARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					450	εr		-	-	-	*1
-	_	_	-		430	σ [mho/m]		-	-	-	1
15-Jan	24.5	46	MSL900	23.5	826.4	er	55.2	54.8	-0.8	+/-5	*2
13-3411	24.3	40	WISL900	23.3	620.4	σ [mho/m]	0.97	0.95	-1.8	+/-5	٠. ک
					835	er	55.2	-	-	-	*1
-	-	-	-	-	633	σ [mho/m]	0.97	-	-	-	1
15-Jan	24.5	46	MSL900	23.5	836.6	er	55.2	54.7	-0.9	+/-5	*2
13-Jan	24.3	40	WISL900	23.3	830.0	σ [mho/m]	0.97	0.96	-0.7	+/-5	. 2
15-Jan	24.5	46	MSL900	23.5	846.6	er	55.2	54.6	-1.1	+/-5	*2
13-Jan	24.3	40	WISL900	23.3	040.0	σ [mho/m]	0.99	0.97	-1.7	+/-5	2
15-Jan	24.5	46	MSL900	23.5	900	er	55.0	54.0	-1.8	+/-5	*1
13-Jan	24.3	40	MSL900	23.3	900	σ [mho/m]	1.05	1.03	-1.7	+/-5	1 1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3

Page : 79 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

(3)Result of Body-worn and Body(Hotspot) SAR

					BO	DY SAR	MEASUE	REMENT	RESULTS				
Fre	equency	Modulation		sured wer		um tune- erance nit	Phantom Section		UT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst positio	n search											
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	ner Front 10		0.652	1.084	0.707
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Rear	10	0.494	1.084	0.535
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Bottom	0	0.151	1.084	0.164
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Left	0	0.769	1.084	0.834
4183	836.6	RMC 12.2kbps	23.65	231.74	24.00	251.19	Flat	Inner	Right	0	0.215	1.084	0.233
Step.2 C	Channel chan	igge											
4132	826.4	RMC 12.2kbps	23.78	238.78	24.00	251.19	Flat	Inner	Left	0	0.877	1.052	0.923
4233	846.6	RMC 12.2kbps	23.66	232.27	24.00	251.19	Flat	Inner	Left	0	0.823	1.081	0.890
Step.3 F	Repeat												
4132	826.4	RMC 12.2kbps	23.78	238.78	24.00	251.19	Flat	Inner	Left	0	0.859	1.052	0.904

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 80 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.11 LTE Band II Head SAR

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - O When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 81 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					1800	er	40.0	-	-	-	*1
-	-	-	-		1800	σ [mho/m]	1.40	-	ı	-	. 1
26-Jan	24.0	40	HSL1800	23.5	1860	er	40.0	39.7	-0.7	+/-5	*2
20 - Jan	24.0	40	HSL1000	23.3	1800	σ [mho/m]	1.40	1.45	3.7	+/-5	. 2
					2000	er	40.0	-	-	-	*1
_	_	-	-	•	2000	σ [mho/m]	1.40	-	•	-	- 1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(3)Result of Head SAR

							TEAD CA	DATE	CUDENCE	NE DEGI	T MC				
_			UL RB	UL RB		sured wer	Maximi up tol	um tune- erance	Phantom				Measured SAR(1g)	Scaled factor	Reported SAR(1g) *1
Channel		Modulation	Allocation	-	P			mit [mW]	Section	Antenna	JT Set-up Condi Position	Separation [mm]	[W/kg]		[W/kg]
Step.1 V	Vorst position	n search													
18700	1860	QPSK	1	0	22.96	197.70	24.00	251.19	Flat	Inner	Left cheek	0	0.199	1.271	0.253
18700	1860	QPSK	1	0	22.96	197.70	24.00	251.19	Flat	Inner	Left tilt	0	0.048	1.271	0.061
18700	1860	QPSK	1	0	22.96	197.70	24.00	251.19	Flat	Inner	Right cheek	0	0.138	1.271	0.175
18700	1860	QPSK	1	0	22.96	197.70	24.00	251.19	Flat	Inner	Right tilt	0	0.067	1.271	0.084
Step.2 N	Aode changg	e							-		_		_		-
18700	1860	QPSK	50	24	22.06	160.69	24.00	251.19	Flat	Inner	Left cheek	0	0.165	1.563	0.258

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 82 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.12 LTE Band II Body-worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB and 100%RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among for 50% RB and 100%RB allocation configurations.

Step.3 The changing to the other channels

The test was performed at the worst condition of Step1 and Step 2.

Step4. With accessory

The test was performed at the worst condition of Step1 to Step3 since measured SAR>1.2W/kg.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 83 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is \geq 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

	, and the second		DIELEC'			ERS MEAS			TS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
29-Jan	24.5	42	MSL1800	23.5	1800	er	53.3	51.4	-3.6	+/-5	*1
27 3411	24.5	12	WISE1000	23.3	1000	σ [mho/m]	1.52	1.48	-2.8	+/-5	1
30-Jan	24.5	40	MSL1800	23.5	1800	er	53.3	52.0	-2.4	+/-5	*1
30 3u 11	24.5	10	WISE1000	23.3	1000	$\sigma [mho/m]$	1.52	1.50	-1.6	+/-5	1
29-Jan	24.5	42	MSL1800	23.5	1860	er 13	53.3	51.1	-4.0	+/-5	*2
27-Juli	24.3	72	WISE1000	23.3	1000	σ [mho/m]	1.52	1.55	2.0	+/-5	2
3-Feb	24.5	33	MSL1800	23.5	1860	er	53.3	50.8	-4.7	+/-5	*2
3 1 00	24.5	33	WISE1000	23.3	1000	σ [mho/m]	1.52	1.56	2.6	+/-5	2
29-Jan	24.5	42	MSL1800	23.5	1880	er	53.3	51.1	-4.2	+/-5	*2
2) Juli	24.5	12	WISE1000	23.3	1000	σ [mho/m]	1.52	1.58	3.6	+/-5	2
30-Jan	24.5	40	MSL1800	23.5	1880	er	53.3	51.6	-3.3	+/-5	*2
30-Jan	24.3	40	WISE1000	23.3	1000	σ [mho/m]	1.52	1.57	3.6	+/-5	2
29-Jan	24.5	42	MSL1800	23.5	1900	er	53.3	51.0	-4.3	+/-5	*2
Z)-Jan	24.3	72	WISE1000	23.3	1700	σ [mho/m]	1.52	1.59	4.7	+/-5	2
30-Jan	24.5	40	MSL1800	23.5	1900	er	53.3	51.4	-3.5	+/-5	*2
30-Jan	24.3	70	WISE1000	23.3	1700	σ [mho/m]	1.52	1.58	4.0	+/-5	Z
_	_	-		_	2000	er	53.3	-	-	-	*1
_	_	=		=	2000	σ [mho/m]	1.52	-	1	•	1

εr: Relative Permittivity / σ : Coductivity

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3

Page : 84 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

(3)Result of Body and Hotspot SAR

							SAR MI	EASURI	EMENT R	ESULTS					
Fre	quency	Modulation	UL RB Allocatio	UL RB Start	Meas	sured wer		im tune- erance nit	Phantom Section	EU	UT Set-up Condi		Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		n	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst positio	n search													
18700	1860	QPSK	1	0	22.96	197.70	24.00	251.19	Flat	Inner	Front	10	0.826	1.271	1.049
18700	1860	QPSK	1	0	22.96	197.70	24.00	251.19	Flat	Inner	Rear	10	0.704	1.271	0.894
18700	1860	QPSK	1	0	20.45	110.92	21.50	141.25	Flat	Inner	Bottom	10	0.753	1.274	0.959
18700	1860	QPSK	1	0	20.45	110.92	21.50	141.25	Flat	Inner	Left	10	0.188	1.274	0.239
18700	1860	QPSK	1	0	20.45	110.92	21.50	141.25	Flat	Inner	Right	10	0.105	1.274	0.134
Step.2 N	Iode changg	e													
18700	1860	QPSK	50	24	22.06	160.69	23.00	199.53	Flat	Inner	Front	10	0.914	1.242	1.135
18700	1860	QPSK	100	0	22.04	159.96	23.00	199.53	Flat	Inner	Front	10	0.892	1.247	1.113
Step.3 C	hannel chan	ge													
18900	1880	QPSK	1	49	22.73	187.50	24.00	251.19	Flat	Inner	Front	10	0.884	1.340	1.184
19100	1900	QPSK	1	99	22.77	189.23	24.00	251.19	Flat	Inner	Front	10	0.981	1.327	1.302
18900	1880	QPSK	1	49	22.73	187.50	24.00	251.19	Flat	Inner	Rear	10	0.726	1.340	0.973
19100	1900	QPSK	1	99	22.77	189.23	24.00	251.19	Flat	Inner	Rear	10	0.870	1.327	1.155
18900	1880	QPSK	1	49	20.15	103.51	21.50	141.25	Flat	Inner	Bottom	10	0.679	1.365	0.927
19100	1900	QPSK	1	99	20.25	105.93	21.50	141.25	Flat	Inner	Bottom	10	0.816	1.334	1.088
18900	1880	QPSK	50	0	21.94	156.31	23.00	199.53	Flat	Inner	Front	10	0.757	1.276	0.966
19100	1900	QPSK	50	24	21.80	151.36	23.00	199.53	Flat	Inner	Front	10	0.856	1.318	1.128
Step.4 V	Vith accessor	у									_				_
19100	1900	QPSK	1	99	22.77	189.23	24.00	251.19	Flat	Inner	Front	10	0.985	1.327	1.307

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} For Bottom, Left and Right positions, SAR is measured with power reduction mode

Test report No. : 10636726H-K-R3
Page : 85 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.13 LTE Band IV Head SAR

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 50% RB allocation configurations.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 : 86 of 434 Page FCC ID : UCE314062A Issued date : February 20, 2015

Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					1610	er	40.3	-	-	-	*1
_	-	-	-		1010	σ [mho/m]	1.29	-	ı	-	. 1
2-Feb	24.5	33	HSL1800	23.5	1720	er	40.1	39.6	-1.4	+/-5	*2
2-560	24.3	33	H3L1000	23.3	1/20	σ [mho/m]	1.35	1.36	0.4	+/-5	٠. ک
2-Feb	24.5	33	HSL1800	23.5	1800	er	40.0	39.2	-1.9	+/-5	*1
∠-Feb	24.3	33	H3L1800	23.3	1000	σ [mho/m]	1.40	1.43	2.4	+/-5	- 1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(3)Result of Head SAR

(-)		read Di				****	D (1 1 D)	FE LOVE	T3 (T3 (T) T	TOTT TO					
						HEA	D SAR I	MEASUR	EMENT F	RESULTS					
Fre	quency	Modulation	UL RB	UL RB		sured		num tune- ance limit	Phantom Section		UT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		Allocation	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	orst position	n search													
20050	1720	QPSK	1	99	22.87	193.64	24.00	251.19	Flat	Inner	Left cheek	0	0.333	1.297	0.432
20050	1720	QPSK	1	99	22.87	193.64	24.00	251.19	Flat	Inner	Left tilt	0	0.080	1.297	0.104
20050	1720	QPSK	1	99	22.87	193.64	24.00	251.19	Flat	Inner	Right cheek	0	0.170	1.297	0.221
20050	1720	QPSK	1	99	22.87	193.64	24.00	251.19	Flat	Inner	Right tilt	0	0.089	1.297	0.115
Step.2 M	Iode changg	e								· ·					
20050	1720	QPSK	50	0	21.99	158.12	24.00	251.19	Flat	Inner	Left cheek	0	0.281	1.589	0.446
	101								•			1010 5			

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 87 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.14 LTE Band IV Body-worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB and 100%RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 50% RB and 100%RB allocation configurations.

Step.3 The changing to the other channels

The test was performed at the worst condition of Step1 and Step 2.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 10636726H-K-R3

 Page
 : 88 of 434

 FCC ID
 : UCE314062A

 Issued date
 : February 20, 2015

 Revised date
 : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

	•		DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
_	_	_	_		1610	εr	53.8	-	-	-	*1
_	-	-	-		1010	σ [mho/m]	1.40	•	•	•	1
3-Feb	24.0	33	MSL1800	23.5	1720	er	53.5	51.5	-3.8	+/-5	*2
3-1-60	24.0	33	MISLIGUU	23.3	1720	σ [mho/m]	1.47	1.41	-4.3	+/-5	12
3-Feb	24.0	33	MSL1800	23.5	1732.5	er	53.5	51.4	-3.8	+/-5	*2
3-1-60	24.0	33	WISL1000	23.3	1/32.3	σ [mho/m]	1.48	1.42	-4.1	+/-5	٠. ک
3-Feb	24.0	33	MSL1800	23.5	1745	er	53.4	51.4	-3.9	+/-5	*2
3-1-60	24.0	33	WISLIGUU	23.3	1743	σ [mho/m]	1.49	1.43	-3.9	+/-5	٠. ک
					1800	er	53.3	-	-	•	*1
_	_	_	-	-	1000	σ [mho/m]	1.52	-	-	-	1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(3)Result of Body-worn and Body(Hotspot) SAR

							SAR MI	EASURE	MENT RE	SULTS					
Fre	equency	Modulation	UL RB Allocatio	UL RB Start		asured ower	**	um tune- ance limit	Phantom Section		JT Set-up Condi		Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		n	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst positio	n search													
20050	1720	QPSK	1	99	22.87	193.64	24.00	251.19	Flat	Inner	Front	10	0.629	1.297	0.816
20050	1720	QPSK	1	99	22.87	193.64	24.00	251.19	Flat	Inner	Rear	10	0.668	1.297	0.867
20050	1720	QPSK	1	99	20.42	110.15	21.50	141.25	Flat	Inner	Bottom	10	0.919	1.282	1.178
20050	1720	QPSK	1	99	20.42	110.15	21.50	141.25	Flat	Inner	Left	10	0.097	1.282	0.124
20050	1720	QPSK	1	99	20.42	110.15	21.50	141.25	Flat	Inner	Right	10	0.197	1.282	0.253
Step2. N	Iode change														
20050	1720	QPSK	50	0	20.45	110.92	21.50	141.25	Flat	Inner	Bottom	10	0.923	1.274	1.175
20050	1720	QPSK	100	0	20.45	110.92	21.50	141.25	Flat	Inner	Bottom	10	0.897	1.274	1.142
Step.3 C	hannel chan	gge													
20175	1732.5	QPSK	1	99	22.78	189.67	24.00	251.19	Flat	Inner	Front	10	0.652	1.324	0.863
20300	1745	QPSK	1	49	22.78	189.67	24.00	251.19	Flat	Inner	Front	10	0.687	1.324	0.910
20175	1732.5	QPSK	1	99	22.78	189.67	24.00	251.19	Flat	Inner	Rear	10	0.691	1.324	0.915
20300	1745	QPSK	1	49	22.78	189.67	24.00	251.19	Flat	Inner	Rear	10	0.712	1.324	0.943
20175	1732.5	QPSK	1	49	20.23	105.44	21.50	141.25	Flat	Inner	Bottom	10	0.834	1.340	1.117
20300	1745	QPSK	1	49	20.26	106.17	21.50	141.25	Flat	Inner	Bottom	10	0.835	1.330	1.111
20175	1732.5	QPSK	50	49	20.41	109.90	21.50	141.25	Flat	Inner	Bottom	10	0.809	1.285	1.040
20300	1745	QPSK	50	24	20.42	110.15	21.50	141.25	Flat	Inner	Bottom	10	0.829	1.282	1.063

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

^{*2} For Bottom, Left and Right positions, SAR is measured with power reduction mode

Test report No. : 10636726H-K-R3
Page : 89 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.15 LTE Band V Head SAR

(1)Method of measurement

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.3 The changing to the other channels

The test was performed at the worst condition of Step1 and Step 2.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 90 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	ARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					450	er	43.5	-	-	-	*1
_	-	-	-	-	430	σ [mho/m]	0.87	-	-	-	- 1
17-Jan	24.5	46	HSL900	23.5	829	er	41.5	43.1	3.8	+/-5	*2
1 /-Jaii	24.3	40	113L900	23.3	829	σ [mho/m]	0.90	0.93	2.9	+/-5	٠ ک
17-Jan	24.5	46	HSL900	23.5	900	er	41.5	42.3	1.8	+/-5	*1
1/-Jan	24.3	40	113L900	23.3	900	σ [mho/m]	0.97	1.00	2.9	+/-5	. 1

er: Relative Permittivity / σ : Coductivity

(3)Result of Head SAR

						HEAL	D SAR N	MEASU	REMENT	RESULT	S				
Fre	equency	Modulation	UL RB	UL RB	Meas	sured wer	up tol	um tune- erance nit	Phantom Section		JT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		Allocation	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna		Separation [mm]			
Step.1 V	Vorst positio	ı search													
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Left cheek	0	0.243	1.285	0.312
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Left tilt	0	0.180	1.285	0.231
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Right cheek	0	0.276	1.285	0.355
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Right tilt	0	0.199	1.285	0.256
Step.2 N	Iode changge	9													
20400	829	QPSK	25	0	21.69	147.57	23.00	199.53	Flat	Inner	Right cheek	0	0.197	1.352	0.266

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 91 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.16 LTE Band V Body-worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB and 100%RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 50% RB and 100%RB allocation configurations.

Step.3 The changing to the other channels

The test was performed at the worst condition of Step1 and Step 2.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 92 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	PARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					450	er		-	-	-	*1
_	-	-	-	-	430	σ [mho/m]		-	-	-	- 1
27-Jan	24.5	40	MSL900	23.5	829	er	55.2	54.8	-0.7	+/-5	*2
2/-Jaii	24.3	40	MSL900	23.3	829	σ [mho/m]	0.97	0.96	-1.4	+/-5	. 2
6 Eab	24.5	45	MCI 000	22.5	920	εr	55.2	54.0	-2.1	+/-5	*2
6-Feb	24.5	43	MSL900	23.5	829	σ [mho/m]	0.97	0.96	-1.2	+/-5	*2
					835	er	55.2	-	-	-	*1
_	-	-	-	-	633	σ [mho/m]	0.97	-	-	-	. 1
6-Feb	24.5	45	MSL900	23.5	836.5	εr	55.2	53.9	-2.4	+/-5	*2
0-1-60	24.3	43	MSL900	23.3	830.3	σ [mho/m]	0.97	0.97	-0.4	+/-5	. 2
6-Feb	24.5	45	MSL900	23.5	844	εr	55.2	53.8	-2.4	+/-5	*2
0-160	24.3	43	MSL900	23.3	644	σ [mho/m]	0.98	0.97	-0.6	+/-5	. 2
27-Jan	24.5	40	MSL900	23.5	900	εr	55.0	54.1	-1.6	+/-5	*1
Z/-Jan	24.3	40	MISL900	23.3	900	σ [mho/m]	1.05	1.04	-1.4	+/-5	-1
6 Eak	24.5	40	MCLOOO	22.5	000	εr	55.0	53.4	-2.9	+/-5	*1
6-Feb	24.5	40	MSL900	23.5	900	σ [mho/m]	1.05	1.03	-1.8	+/-5	*1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3

Page : 93 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

(2) Result of Body-worn and Body(Hotspot) SAR

							SAR M	EASURI	EMENT R	ESULTS					
Fre	equency	Modulation	UL RB Allocatio	UL RB	Mea:	sured wer		um tune- erance nit	Phantom Section	EU	UT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		n	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst positio	n search													
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Front	10	0.452	1.285	0.581
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Rear	10	0.450	1.285	0.578
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Bottom	10	0.105	1.285	0.135
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Left	10	0.135	1.285	0.174
20400	829	QPSK	1	0	22.91	195.43	24.00	251.19	Flat	Inner	Right	10	0.669	1.285	0.860
Step.2 N	Iode change														
20400	829	QPSK	25	0	21.69	147.57	23.00	199.53	Flat	Inner	Right	0	0.498	1.352	0.673
20400	829	QPSK	50	0	21.68	147.23	23.00	199.53	Flat	Inner	Right	0	0.494	1.355	0.669
Step.3 (Channel chan	ge													
20525	836.5	QPSK	1	24	22.83	191.87	24.00	251.19	Flat	Inner	Left	0	0.562	1.309	0.736
20600	844	QPSK	1	49	22.75	188.36	24.00	251.19	Flat	Inner	Left	0	0.432	1.334	0.576

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 94 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.17 LTE Band VII Head SAR

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 95 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
1-Feb	24.5	33	HSL2450	23.5	2450	er	39.2	39.1	-0.2	+/-5	*1
1-1.60	24.3	33	113L2430	23.3	2430	σ [mho/m]	1.80	1.84	2.4	+/-5	- 1
1-Feb	24.5	33	HSL2450	23.5	2510	er	39.1	39.0	-0.3	+/-5	*2
1-1.60	24.3	33	113L2430	23.3	2310	σ [mho/m]	1.87	1.93	3.4	+/-5	٠ ٧
					3000	er	38.5	-	-	-	*1
_	_	-	-	-	3000	σ [mho/m]	2.40	-	-	-	'1

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(3)Result of Head SAR

						HEA	D SAR	MEASUR	EMENT F	RESULTS					
Fr	equency	Modulation	UL RB	UL RB		sured		num tune- ance limit	Phantom Section		UT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channe	[MHz]		Allocation	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Worst position	n search													
20850	2510	QPSK	1	49	23.05	201.84	24.00	251.19	Flat	Inner	Left cheek	0	0.345	1.245	0.429
20850	2510	QPSK	1	49	23.05	201.84	24.00	251.19	Flat	Inner	Left tilt	0	0.127	1.245	0.158
20850	2510	QPSK	1	49	23.05	201.84	24.00	251.19	Flat	Inner	Right cheek	0	0.185	1.245	0.230
20850	2510	QPSK	1	49	23.05	201.84	24.00	251.19	Flat	Inner	Right tilt	0	0.152	1.245	0.189
Step.2 N	Mode changg	e				•		•							
20850	2510	QPSK	50	24	22.20	165.96	24.00	251.19	Flat	Inner	Left cheek	0	0.309	1.514	0.468

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 96 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.18 LTE Band VII Body-worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB and 100%RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 50% RB and 100%RB allocation configurations.

Step.3 The changing to the other channels

The test was performed at the worst condition of Step1 and Step 2.

Step4 The repeated measurement

The test was performed at the worst condition of 2600MHz Band.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 97 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	TRIC PA	ARAMET	ERS MEAS	SUREME	NT RESUI	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
1-Feb	24.5	33	MSL2450	23.5	2450	er	52.7	51.2	-2.9	+/-5	*1
1-1.60	24.3	33	WISL2430	23.3	2430	σ [mho/m]	1.95	1.97	0.9	+/-5	. 1
1-Feb	24.5	33	MSL2450	23.5	2510	er	52.6	51.1	-3.0	+/-5	*2
1-1-60	24.3	33	WISL2430	23.3	2310	σ [mho/m]	2.04	2.07	1.4	+/-5	. 2
2-Feb	24.5	33	MSL2450	23.5	2510	er	52.6	50.6	-3.9	+/-5	*2
2-1.60	24.3	33	WISL2430	23.3	2310	σ [mho/m]	2.04	2.08	1.9	+/-5	. 2
2-Feb	24.5	33	MSL2450	23.5	2535	er	50.6	50.5	-0.2	+/-5	*2
2-1.60	24.3	33	WISL2430	23.3	2333	σ [mho/m]	2.07	2.11	2.0	+/-5	. 2
2-Feb	24.5	33	MSL2450	23.5	2560	er	52.6	50.4	-4.2	+/-5	*2
Z-F60	24.3	33	WISE2430	43.3	2300	σ [mho/m]	2.11	2.14	1.6	+/-5	. 2
					3000	er	52.0	-	-	-	*1
-	-	-	-	-	3000	σ [mho/m]	2.73	-	-	-	.1

er: Relative Permittivity / σ : Coductivity

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable

Test report No. : 10636726H-K-R3

Page : 98 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

(3)Result of Body and Hotspot SAR

							SAR MI	EASURE	MENT RE	SULTS					
Fre	equency	Modulation	UL RB Allocatio	UL RB Start		asured ower		num tune- ance limit	Phantom Section	El	UT Set-up Condi		Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		n	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Vorst positio	n search													
20850	2510	QPSK	1	49	23.05	201.84	24.00	251.19	Flat	Inner	Front	10	0.770	1.245	0.958
20850	2510	QPSK	1	49	23.05	201.84	24.00	251.19	Flat	Inner	Rear	10	0.731	1.245	0.910
20850	2510	QPSK	1	0	18.11	64.71	19.00	79.43	Flat	Inner	Bottom	10	0.857	1.227	1.052
20850	2510	QPSK	1	0	18.11	64.71	19.00	79.43	Flat	Inner	Left	10	0.021	1.227	0.026
20850	2510	QPSK	1	0	18.11	64.71	19.00	79.43	Flat	Inner	Right	10	0.207	1.227	0.254
Step2. N	Aode change														
20850	2510	QPSK	50	0	18.23	66.53	19.00	79.43	Flat	Inner	Bottom	10	0.733	1.194	0.875
20850	2510	QPSK	100	0	18.16	65.46	19.00	79.43	Flat	Inner	Bottom	10	0.709	1.213	0.860
Step.3 C	Channel chan	gge													
21100	2535	QPSK	1	99	22.91	195.43	24.00	251.19	Flat	Inner	Front	10	0.760	1.285	0.977
21350	2560	QPSK	1	99	23.02	200.45	24.00	251.19	Flat	Inner	Front	10	0.787	1.253	0.986
21100	2535	QPSK	1	99	22.91	195.43	24.00	251.19	Flat	Inner	Rear	10	0.472	1.285	0.607
21350	2560	QPSK	1	99	23.02	200.45	24.00	251.19	Flat	Inner	Rear	10	0.425	1.253	0.533
21100	2535	QPSK	1	99	17.94	62.23	19.00	79.43	Flat	Inner	Bottom	10	0.630	1.276	0.804
21350	2560	QPSK	1	99	18.10	64.57	19.00	79.43	Flat	Inner	Bottom	10	0.648	1.230	0.797
21100	2535	QPSK	50	24	17.95	62.37	19.00	79.43	Flat	Inner	Bottom	10	0.664	1.274	0.846
21350	2560	QPSK	50	49	18.19	65.92	19.00	79.43	Flat	Inner	Bottom	10	0.656	1.205	0.791
Step4. R	Repeat Measu	irement													
20850	2510	QPSK	1	0	18.11	64.71	19.00	79.43	Flat	Inner	Bottom	10	0.843	1.227	1.035

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2} For Bottom, Left and Right positions, SAR is measured with power reduction mode

Test report No. : 10636726H-K-R3
Page : 99 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.19 LTE Band XVII Head SAR

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - O When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 100 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

	•		DIELEC	CTRIC P	ARAMET	TERS MEA	SUREME	NT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					450	er	43.5	-	-	-	*1
_	-	-	-		430	σ [mho/m]	0.87	-	-	1	. 1
4-Feb	24.0	30	HSL750	23.5	709	er	42.2	41.5	-1.6	+/-5	*2
4-1.60	24.0	30	113L/30	23.3	709	σ [mho/m]	0.89	0.89	-0.5	+/-5	. 2
4-Feb	24.0	30	HSL750	23.5	710	er	42.2	41.4	-1.8	+/-5	*2
4-1.60	24.0	30	113L/30	23.3	/10	σ [mho/m]	0.89	0.89	-0.3	+/-5	. 2
					925	er	41.5	-	-	-	*1
_	_	-	-	-	835	σ [mho/m]	0.90	-	-	-	. 1

εr: Relative Permittivity / σ : Coductivity

(3)Result of Head SAR

						HEA	D SAR I	MEASUR	EMENT R	ESULTS					
Fre	quency	Modulation	UL RB	UL RB	P * **		Maximum tune- up tolerance limit		Phantom Section		JT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		Allocation	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	Step.1 Worst position search														
23780	709	QPSK	1	49	22.76	188.80	24.00	251.19	Flat	Inner	Left cheek	0	0.341	1.330	0.454
23780	709	QPSK	1	49	22.76	188.80	24.00	251.19	Flat	Inner	Left tilt	0	0.198	1.330	0.263
23780	709	QPSK	1	49	22.76	188.80	24.00	251.19	Flat	Inner	Right cheek	0	0.312	1.330	0.415
23780	709	QPSK	1	49	22.76	188.80	24.00	251.19	Flat	Inner	Right tilt	0	0.173	1.330	0.230
Step.2 N	itep.2 Mode changge														
23790	710	QPSK	25	0	21.65	146.22	23.00	199.53	Flat	Inner	Left cheek	0	0.232	1.365	0.317

^{*1} Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 101 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9.20 LTE Band XVII Body-worn and Body(Hotspot) SAR

(1)Method of measurement

Step.1 The searching for the worst position

QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.2 Mode change

QPSK modulation at the largest channel bandwidth, testing for 50% RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.

Step.3 The changing to the other channels

The test was performed at the worst condition of Step1 and Step 2.

Note:

- 1) Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:
 - Beginning with QPSK modulation at the largest channel bandwidth, testing for 1 RB allocation configurations is initially performed for the channel/RB offset combination with the highest output power among 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is < 0.8 W/kg, no further assessment is required for 1 RB allocation configurations.
 - When the reported SAR for the initial measurement is > 0.8 W/kg, the remaining channels are evaluated using the RB offset with the highest output power within the respective channels.
 - o For all reported SAR that is > 1.45 W/kg, SAR, SAR is required for the remaining RB offset configurations of the same channel.
 - The same procedures apply to QPSK 50% RB allocation configurations at the largest channel bandwidth.
 - Testing for 100% RB allocation configurations at the largest channel bandwidth is performed for the channel, across low, mid and high, with the highest output power, when the highest reported SAR for either 1 RB or 50% RB is ≥ 0.8 W/kg, or when the maximum output power among 100% RB allocation configurations is greater than the maximum output power among either 1 RB or 25% RB allocation configurations.
 - o Testing for the remaining channels in 100% RB allocation configurations is required only when reported SAR for the initial 100% RB allocation configuration is > 1.45 W/kg.
 - Testing for higher order modulations (16-QAM or 64-QAM) is required only when the highest reported SAR for QPSK is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of QPSK.
 - Testing for the other channel bandwidths is required only when the highest reported SAR for the highest channel bandwidth is > 1.45 W/Kg or if its output power is more than 0.5 dB higher than that of the highest channel bandwidth.
- 2) According to KDB 447498 D01 General RF Exposure Guidance v05, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is
- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 102 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the R140 Reflectometer and DAKS-3.5 probe.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	PARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					450	er	56.7	-	-	-	*1
_	-	-	-		430	σ [mho/m]	0.94	-	-	-	. 1
4-Feb	24.0	30	MSL750	23.5	709	er	55.7	54.2	-2.7	+/-5	*2
4-1.60	24.0	30	WISL/30	23.3	709	σ [mho/m]	0.96	0.92	-4.4	+/-5	. 2
4-Feb	24.0	30	MSL750	23.5	710	εr	55.7	54.1	-2.8	+/-5	*2
4-1.60	24.0	30	WISL/30	23.3	/10	σ [mho/m]	0.96	0.92	-4.2	+/-5	. 2
					835	εr	55.2	-	-	-	*1
_	_	-	-	-	633	σ [mho/m]	0.97	-	-	-	-1

εr: Relative Permittivity / σ : Coductivity

$(3) \ \ Result \ of \ Body-worn \ and \ Body(Hotspot) \ SAR$

							SAR MI	EASURE	MENT RE	SULTS					
Fre	equency	UL RB Modulation Allocatio		locatio UL RB	Measured power			um tune- ance limit	Phantom Section	EUT Set-up Conditions		tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		n	Start	[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 V	tep.1 Worst position search														
23780	709	QPSK	1	49	22.76	188.80	24.00	251.19	Flat	Inner	Front	10	0.482	1.330	0.641
23780	709	QPSK	1	49	22.76	188.80	24.00	251.19	Flat	Inner	Rear	10	0.409	1.330	0.544
23780	709	QPSK	1	0	22.76	188.80	24.00	251.19	Flat	Inner	Bottom	10	0.106	1.330	0.141
23780	709	QPSK	1	0	22.76	188.80	24.00	251.19	Flat	Inner	Left	10	0.295	1.330	0.392
23780	709	QPSK	1	0	22.76	188.80	24.00	251.19	Flat	Inner	Right	10	0.247	1.330	0.329
Step2. N	tep2. Mode change														
23780	709	QPSK	25(50%)	0	21.65	146.22	23.00	199.53	Flat	Inner	Front	10	0.427	1.365	0.583

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-K-R3
Page : 103 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 10 Simultaneous transmission analysis

All Wi-Fi 1-g SAR values were taken from results recorded in SAR report 10636726H-J

All Simultaneous Transmission SAR analysis applies scaling in accordance with the scaled values documented in this report (for the WWAN radios) and the aforementioned SAR report (10636726H-J) with scaling applied (for the WLAN radios).

WLAN 5GHz and WWAN cannot be transmitted simultaneously.

10.1 Sum of the SAR for GSM & WLAN

		Data		
Test Position	GSM850 [W/kg]	GSM1900 [W/kg]	WiFi [W/kg]	Σ 1-g SAR [W/kg]
Left cheek	0.421	0.456	0.234	0.655
I aft 4:14	0.276	0.456	0.234	0.690 0.426
Left tilt		0.078	0.150	0.228
Right cheek	0.417		0.077	0.494
Right Check		0.202	0.077	0.279
Right tilt	0.273		0.078	0.351
Tright the		0.058	0.078	0.136
Front	0.879		0.031	0.910
Tiont		0.975	0.031	1.006
Rear	0.607		0.031	0.638
reui		0.797	0.031	0.828
Bottom	0.192		0.002	0.194
Bottom		1.511	0.002	1.513
Left	0.297		0.028	0.325
Ecit		0.175	0.028	0.203
Right	0.758		0.012	0.770
Kigiit		0.428	0.012	0.440

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 104 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

10.2 Sum of the SAR for WCDMA & WLAN

		Da	ıta		
Test Position	Band II [W/kg]	Band IV [W/kg]	Band V [W/kg]	WiFi [W/kg]	Σ 1-g SAR [W/kg]
	0.291			0.234	0.525
Left cheek		0.464		0.234	0.698
			0.303	0.234	0.537
	0.080			0.150	0.230
Left tilt		0.098		0.150	0.248
			0.197	0.150	0.347
	0.175			0.077	0.252
Right cheek		0.275		0.077	0.352
			0.354	0.077	0.431
	0.094			0.078	0.172
Right tilt		0.131		0.078	0.209
			0.248	0.078	0.326
	1.223			0.031	1.254
Front		0.914		0.031	0.945
			0.707	0.031	0.738
	1.163			0.031	1.194
Rear		1.120		0.031	1.151
			0.535	0.031	0.566
	1.084			0.002	1.086
Bottom		0.973		0.002	0.975
			0.164	0.002	0.166
	0.642			0.028	0.670
Left		0.136		0.028	0.164
			0.923	0.028	0.951
	0.097			0.012	0.109
Right		0.175		0.012	0.187
			0.233	0.012	0.245

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 : 105 of 434 Page FCC ID : UCE314062A **Issued date** : February 20, 2015 Revised date : March 19, 2015

10.3 Sum of the SAR for LTE Band II, IV & WLAN

		Data		
Test Position	Band II [W/kg]	Band IV [W/kg]	WiFi [W/kg]	Σ 1-g SAR [W/kg]
Left cheek	0.258		0.234	0.492
2011 0110011		0.446	0.234	0.680
Left tilt	0.061		0.150	0.211
Left tift		0.104	0.150	0.254
Dight shools	0.175		0.077	0.252
Right cheek		0.221	0.077	0.298
Right tilt	0.084		0.078	0.162
Kigiit tiit		0.115	0.078	0.193
Front	1.307		0.031	1.338
FIOIIL		0.910	0.031	0.941
Rear	1.155		0.031	1.186
Keai		0.943	0.031	0.974
Bottom	1.088		0.002	1.090
Douom		1.178	0.002	1.180
Left	0.239		0.028	0.267
Leit		0.124	0.028	0.152
Right	0.134		0.012	0.146
Kigiit		0.253	0.012	0.265

Conclusion:Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3 Page : 106 of 434 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

10.4 Sum of the SAR for LTE Band V, VII, XVII & WLAN

		Da	ıta		
Test Position	Band V [W/kg]	Band VII [W/kg]	Band XVII [W/kg]	WiFi [W/kg]	Σ 1-g SAR [W/kg]
	0.312			0.234	0.546
Left cheek		0.468		0.234	0.702
			0.454	0.234	0.688
	0.231			0.150	0.381
Left tilt		0.158		0.150	0.308
			0.263	0.150	0.413
	0.355			0.077	0.432
Right cheek		0.230		0.077	0.307
			0.415	0.077	0.492
	0.256			0.078	0.334
Right tilt		0.189		0.078	0.267
			0.230	0.078	0.308
	0.581			0.031	0.612
Front		0.986		0.031	1.017
			0.641	0.031	0.672
	0.578			0.031	0.609
Rear		0.910		0.031	0.941
			0.544	0.031	0.575
	0.135			0.002	0.137
Bottom		1.052		0.002	1.054
			0.141	0.002	0.143
	0.174			0.028	0.202
Left		0.026		0.028	0.054
			0.392	0.028	0.420
	0.860			0.012	0.872
Right		0.254		0.012	0.266
			0.329	0.012	0.341

<u>Conclusion:</u>
Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 107 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 11 Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MOS-37	Digital thermometer	LKM electronic	DTM3000	-	SAR	2014/07/06 * 12
MDPK-03	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK-3.5	0008	SAR	2014/03/04 * 12
COTS-MSAR- 04	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK		SAR	-
MDAE-02	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	1369	SAR	2014/05/14 * 12
MPB-08	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3917	SAR	2014/05/14 * 12
MPSAM-04	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CD	1762	SAR	2014/06/03 * 12
MPF-05	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1095	SAR	2015/01/14 * 12
MDH-04	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-30	Thermo-Hygrometer	Custom	CTH-201	3001	SAR	2014/07/06 * 12
MOS-35	Digital thermometer	HANNA	Checktemp 4	-	SAR	2014/07/06 * 12
COTS-MSAR- 03	Dasy5	Schmid&Partner Engineering AG	DASY5	-	SAR	-
MRBT-03	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F13/5PP1D1/A/01	SAR	2014/06/24 * 12
MDAE-03	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	1372	SAR	2014/06/18 * 12
MPB-09	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3922	SAR	2014/06/13 * 12
MPSAM-03	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CD	1764	SAR	2014/06/03 * 12
MPF-03	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1203	SAR	2014/06/03 * 12
MDH-03	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MRBT-04	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F13/5PP1A1/A/01	SAR	2014/06/23 * 12
MDAE-01	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	509	SAR	2014/07/28 * 12
MPB-07	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3825	SAR	2014/12/16 * 12
MPSAM-02	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CB	1333	SAR	2014/05/30 * 12
MPF-02	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1045	SAR	2014/05/30 * 12
MDH-01	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-10	Digtal thermometer	HANNA	Checktemp-2	MOS-10	SAR	2014/08/06 * 12
MOS-26	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q29	SAR	2014/05/20 * 12
MRBT-02	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F10/5E3LA1/A/01	SAR	2014/05/09 * 12
MPM-15	Power Meter	Agilent	N1914A	MY53060017	SAR	2014/06/20 * 12
MPSE-20	Power sensor	Agilent	N8482H	MY53050001	SAR	2014/06/20 * 12
MPSE-21	Power sensor	Agilent	N8482H	MY52460010	SAR	2014/07/02 * 12
MHDC-21	Dual Directional Coupler	Agilent	778D	MY52180243	SAR(0.1- 2GHz)	Pre Check
MHDC-22	Directional Coupler	Agilent	87300B	14893A	SAR(2-18GHz)	Pre Check
MRFA-24	Pre Amplifier	R&K	R&K CGA020M602- 2633R	B30550	SAR	2014/06/19 * 12

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 108 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MSG-13	Signal Generator	Rohde & Schwarz	SMA 100A	103764	SAR	2014/06/19 * 12
MDA-05	Dipole Antenna	Schmid&Partner Engineering AG	D900V2	155	SAR(D900)	2013/12/06 * 24
MDA-06	Dipole Antenna	Schmid&Partner Engineering AG	D1800V2	2d040	SAR(D1800)	2014/12/25 * 24
MDA-07	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	713	SAR(D2450)	2013/09/10 * 24
MDA-10	Dipole Antenna	Schmid&Partner Engineering AG	D2000V2	1029	SAR(D2000)	2012/06/15 * 36
MDA-19	Dipole Antenna	Schmid&Partner Engineering AG	D2600V2	1030	SAR(D2600)	2013/04/23 * 24
MDA-20	Dipole Antenna	Schmid&Partner Engineering AG	D750V3	1058	SAR(D750)	2014/05/30 * 12
HSL750				Daily check Ta	rget value ± 5%	
MSL750				Daily check Ta	rget value ± 5%	
HSL900				Daily check Ta	rget value ± 5%	
MSL900				Daily check Ta	rget value ± 5%	
HSL1800				Daily check Ta	rget value ± 5%	
MSL1800				Daily check Ta	rget value ± 5%	
MSL1950				Daily check Ta	rget value ± 5%	
HSL2450				Daily check Ta	rget value ± 5%	
MSL2450				Daily check Ta	rget value ± 5%	
SAR room				Daily check Ambient Noise<	0.012W/kg	

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 109 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

APPENDIX 1: SAR Measurement data

1. Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band.

And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- (1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- (2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- (3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

*1. Ratio step method parameters used;

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5 These parameters comply with the requirement of the KDB 865664D01.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 110 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

2. Measurement data

1. GSM850 Head

GSM850 GPRS 2slots 836.6MHz Left cheek

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.935 \text{ S/m}$; $\epsilon r = 43.002$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3917; ConvF(9.75, 9.75, 9.75); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.318 W/kg

Zoom Scan 2 (9x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.441 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.567 W/kg

SAR(1 g) = 0.305 W/kg; SAR(10 g) = 0.214 W/kg

Maximum value of SAR (measured) = 0.311 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 111 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 836.6MHz Left tilt

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3917; ConvF(9.75, 9.75, 9.75); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.224 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.352 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.249 W/kg

SAR(1 g) = 0.200 W/kg; SAR(10 g) = 0.154 W/kg

Maximum value of SAR (measured) = 0.228 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 112 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 836.6MHz Right cheek

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3917; ConvF(9.75, 9.75, 9.75); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.340 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.922 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.302 W/kg; SAR(10 g) = 0.235 W/kg

Maximum value of SAR (measured) = 0.339 W/kg

Date: 2015/01/17

0.339 0.280 0.221 0.162 0.102 0.043

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 113 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 836.6MHz Right tilt

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3917; ConvF(9.75, 9.75, 9.75); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.240 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.3640 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.335 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.168 W/kgMaximum value of SAR (measured) = 0.239 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 114 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GSM 836.6MHz Left cheek

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz;Duty Cycle: 1:8.30042

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3917; ConvF(9.75, 9.75, 9.75); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.235 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.627 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.256 W/kg

SAR(1 g) = 0.200 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 0.231 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 115 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

2. GSM850 Body

GSM850 GPRS 2slot 836.6MHz Front side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.963$ S/m; $\varepsilon_r = 54.69$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(9.64, 9.64, 9.64); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.777 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.85 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.834 W/kg

SAR(1 g) = 0.635 W/kg; SAR(10 g) = 0.465 W/kg

Maximum value of SAR (measured) = 0.739 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.85 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.768 W/kg

SAR(1 g) = 0.610 W/kg; SAR(10 g) = 0.478 W/kg

Maximum value of SAR (measured) = 0.700 W/kg

Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.85 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.771 W/kg

SAR(1 g) = 0.488 W/kg; SAR(10 g) = 0.280 W/kg

Maximum value of SAR (measured) = 0.665 W/kg

Date: 2015/01/15

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 116 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 836.6MHz Rear side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.963 \text{ S/m}$; $\varepsilon_r = 54.69$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(9.64, 9.64, 9.64); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (111x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.516 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.63 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.440 W/kg; SAR(10 g) = 0.328 W/kg Maximum value of SAR (measured) = 0.524 W/kg

Date: 2015/01/15

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 117 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slot 836.6MHz Bottom side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.963$ S/m; $\varepsilon_r = 54.69$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(9.64, 9.64, 9.64); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan 2 (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.184 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.10 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.085 W/kg

Maximum value of SAR (measured) = 0.181 W/kg

Date: 2015/01/15

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 118 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 836.6MHz Left side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.965$ S/m; $\varepsilon_r = 53.891$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(9.98, 9.98, 9.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan 2 (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.261 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.

85 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.295 W/kg

SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.150 W/kg

Maximum value of SAR (measured) = 0.261 W/kg

Date: 2015/02/06

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 119 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 836.6MHz Right side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 837 MHz; $\sigma = 0.965$ S/m; $\varepsilon_r = 53.891$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(9.98, 9.98, 9.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan 2 (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.678 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.04 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.757 W/kg

SAR(1 g) = 0.549 W/kg; SAR(10 g) = 0.380 W/kg

Maximum value of SAR (measured) = 0.670 W/kg

Date: 2015/02/06

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 120 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GSM 836.6MHz Front side 10mm with accessory

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 837 MHz; $\sigma = 0.965$ S/m; $\varepsilon_r = 53.891$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(9.98, 9.98, 9.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan 3 (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.570 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.91 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.628 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.363 W/kg

Maximum value of SAR (measured) = 0.568 W/kg

Date: 2015/02/06

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 121 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 824.2MHz Front side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 824.2 MHz; Duty Cycle: 1:4.19952

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.952 \text{ S/m}$; $\varepsilon_r = 54.045$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(9.98, 9.98, 9.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan 3 (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.742 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.19 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.856 W/kg

SAR(1 g) = 0.640 W/kg; SAR(10 g) = 0.465 W/kg

Maximum value of SAR (measured) = 0.761 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.19 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.823 W/kg

SAR(1 g) = 0.486 W/kg; SAR(10 g) = 0.301 W/kg

Maximum value of SAR (measured) = 0.656 W/kg

Zoom Scan 2 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.19 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.681 W/kg

SAR(1 g) = 0.541 W/kg; SAR(10 g) = 0.422 W/kg

Maximum value of SAR (measured) = 0.619 W/kg

Date: 2015/02/06

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 122 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM850 GPRS 2slots 848.8MHz Front side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: GSM 850 (824.0 - 849.0 MHz);

Frequency: 848.8 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 849 MHz; $\sigma = 0.981$ S/m; $\varepsilon_r = 53.783$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(9.98, 9.98, 9.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan 3 (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.551 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.20 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.635 W/kg

SAR(1 g) = 0.465 W/kg; SAR(10 g) = 0.342 W/kg

Maximum value of SAR (measured) = 0.554 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.20 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.643 W/kg

SAR(1 g) = 0.376 W/kg; SAR(10 g) = 0.226 W/kg

Maximum value of SAR (measured) = 0.514 W/kg

Date: 2015/02/06

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 123 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3. PCS1900 Head

GSM1900 GPRS 2slot 1880MHz Left Cheek 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.461 \text{ S/m}$; $\varepsilon_r = 38.536$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.440 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.923 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.543 W/kg

SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.198 W/kg

Maximum value of SAR (measured) = 0.446 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 124 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1880MHz Left tilt 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.461 \text{ S/m}$; $\varepsilon_r = 38.536$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0980 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.733 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.058 W/kg; SAR(10 g) = 0.032 W/kgMaximum value of SAR (measured) = 0.0760 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 125 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1880MHz Right cheek 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.461$ S/m; $\varepsilon_r = 38.536$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (91x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.182 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.703 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.257 W/kg

SAR(1 g) = 0.150 W/kg; SAR(10 g) = 0.079 W/kgMaximum value of SAR (measured) = 0.209 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 126 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1880MHz Right tilt 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.461$ S/m; $\varepsilon_r = 38.536$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (91x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0635 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.095 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.0750 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.026 W/kgMaximum value of SAR (measured) = 0.0597 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 127 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GSM 1880MHz Left cheek 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; $\sigma = 1.461$ S/m; $\varepsilon_r = 38.536$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.181 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.652 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.087 W/kg Maximum value of SAR (measured) = 0.196 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 128 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

4. PCS1900 Body

GSM1900 GPRS 2slot 1880MHz Front side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.574$ S/m; $\varepsilon_r = 51.555$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.860 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.23 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.633 W/kg; SAR(10 g) = 0.350 W/kg

Maximum value of SAR (measured) = 0.861 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 129 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1880MHz Rear side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.574$ S/m; $\varepsilon_r = 51.555$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.817 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.70 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.980 W/kg

SAR(1 g) = 0.592 W/kg; SAR(10 g) = 0.334 W/kg

Maximum value of SAR (measured) = 0.798 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 130 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1880MHz Bottom side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.574$ S/m; $\varepsilon_r = 51.555$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.56 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.34 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.552 W/kg

Maximum value of SAR (measured) = 1.51 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 131 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1880MHz Left side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.574$ S/m; $\varepsilon_r = 51.555$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.184 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.97 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.229 W/kg

SAR(1 g) = 0.130 W/kg; SAR(10 g) = 0.069 W/kg Maximum value of SAR (measured) = 0.183 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 132 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1880MHz Right side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1880 MHz; $\sigma = 1.574$ S/m; $\varepsilon_r = 51.555$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.442 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.87 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.533 W/kg

SAR(1 g) = 0.318 W/kg; SAR(10 g) = 0.175 W/kg

Maximum value of SAR (measured) = 0.435 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 133 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GSM 1880MHz Front side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1880 MHz; $\sigma = 1.574 \text{ S/m}$; $\varepsilon_r = 51.555$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.11 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.767 W/kg; SAR(10 g) = 0.412 W/kgMaximum value of SAR (measured) = 1.05 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 134 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1850.2MHz Front side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1850.2 MHz; Duty Cycle: 1:4.19952

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.543 \text{ S/m}$; $\varepsilon_r = 51.646$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.783 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.75 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.969 W/kg

SAR(1 g) = 0.585 W/kg; SAR(10 g) = 0.327 W/kg

Maximum value of SAR (measured) = 0.778 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 135 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1909.8MHz Front side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1909.8 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1910 MHz; $\sigma = 1.476$ S/m; $\varepsilon_r = 52.062$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(7.68, 7.68, 7.68); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2014/05/14

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1095 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Unnamed procedure/Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.917 W/kg

Configuration/Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.55 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.690 W/kg; SAR(10 g) = 0.391 W/kg Maximum value of SAR (measured) = 0.912 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 136 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1850.2MHz Bottom side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1850.2 MHz; Duty Cycle: 1:4.19952

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.543 \text{ S/m}$; $\varepsilon_r = 51.646$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.28 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.69 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.883 W/kg; SAR(10 g) = 0.456 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 137 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1909.8MHz Bottom side

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1909.8 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1910 MHz; $\sigma = 1.476$ S/m; $\varepsilon_r = 52.062$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(7.68, 7.68, 7.68); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2014/05/14

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1095 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.54 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.31 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.563 W/kgMaximum value of SAR (measured) = 1.47 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 138 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

PCS1900 GSM Voice 1850.2MHz Front side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1850.2 MHz;Duty Cycle: 1:8.30042

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.543 \text{ S/m}$; $\varepsilon_r = 51.646$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.890 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.16 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = **0.649 W/kg; SAR(10 g)** = **0.353 W/kg** Maximum value of SAR (measured) = 0.884 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 139 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

PCS1900 GSM Voice 1909.8MHz Front side 10mm

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042

Medium parameters used: f = 1910 MHz; $\sigma = 1.476$ S/m; $\varepsilon_r = 52.062$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(7.68, 7.68, 7.68); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1369; Calibrated: 2014/05/14

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1095 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.697 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.24 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.833 W/kg

SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.302 W/kgMaximum value of SAR (measured) = 0.700 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 140 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

GSM1900 GPRS 2slot 1909.8MHz Bottom side with accessory

Communication System: UID 0, Generic GSM (0); Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz);

Frequency: 1909.8 MHz; Duty Cycle: 1:4.19952

Medium parameters used: f = 1910 MHz; $\sigma = 1.476$ S/m; $\varepsilon_r = 52.062$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(7.68, 7.68, 7.68); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1369; Calibrated: 2014/05/14

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1095 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.45 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.93 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.529 W/kg

Maximum value of SAR (measured) = 1.39 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 141 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

5. WCDMA Band II Head

WCDMA II RMC 12.2kbps 1880.0MHz Left Cheek

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\varepsilon_r = 39.366$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.345 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.129 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.427 W/kg

SAR(1 g) = 0.270 W/kg; SAR(10 g) = 0.162 W/kg

Maximum value of SAR (measured) = 0.356 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 142 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1880.0MHz Left tilt

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\varepsilon_r = 39.366$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0997 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.491 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.074 W/kg; SAR(10 g) = 0.044 W/kgMaximum value of SAR (measured) = 0.0956 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 143 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WCDMA II RMC 12.2kbps 1880.0MHz Right cheek

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\varepsilon_r = 39.366$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (91x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.224 W/kg

Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.208 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.288 W/kg

SAR(1 g) = 0.163 W/kg; SAR(10 g) = 0.088 W/kg Maximum value of SAR (measured) = 0.227 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 144 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1880.0MHz Right tilt

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\varepsilon_r = 39.366$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.95, 7.95, 7.95); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (91x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.152 W/kg

Zoom Scan (10x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.880 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.136 W/kg

SAR(1 g) = 0.087 W/kg; SAR(10 g) = 0.053 W/kgMaximum value of SAR (measured) = 0.111 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 145 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

6. WCDMA Band II Body

WCDMA II RMC 12.2kbps 1880.0MHz Front side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.58 \text{ S/m}$; $\varepsilon_r = 50.844$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.27 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.604 W/kg

Maximum value of SAR (measured) = 1.50 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 146 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1880.0MHz Rear side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ S/m; $\varepsilon_r = 50.844$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.51 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.08 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.581 W/kg

Maximum value of SAR (measured) = 1.48 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 147 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1880.0MHz Bottom side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ S/m; $\varepsilon_r = 50.844$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.34 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.81 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.893 W/kg; SAR(10 g) = 0.445 W/kgMaximum value of SAR (measured) = 1.28 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 148 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1880MHz Left side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ S/m; $\varepsilon_r = 50.844$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.739 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.85 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.896 W/kg

SAR(1 g) = 0.529 W/kg; SAR(10 g) = 0.287 W/kgMaximum value of SAR (measured) = 0.726 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 149 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1880.0MHz Right side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1880 MHz; Duty Cycle:

1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ S/m; $\varepsilon_r = 50.844$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.118 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.619 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.141 W/kg

SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.041 W/kg

Maximum value of SAR (measured) = 0.112 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 150 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1852.4MHz Front side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1852.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.55 \text{ S/m}$; $\varepsilon_r = 50.913$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.61 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.06 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.639 W/kg

Maximum value of SAR (measured) = 1.63 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 151 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1907.6MHz Front side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1907.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1908 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 52.072$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3917; ConvF(7.68, 7.68, 7.68); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1369; Calibrated: 2014/05/14

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1095 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.26 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.64 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.962 W/kg; SAR(10 g) = 0.549 W/kg

Maximum value of SAR (measured) = 1.27 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 152 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WCDMA II RMC 12.2kbps 1852.4MHz Rear side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1852.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.55 \text{ S/m}$; $\varepsilon_r = 50.913$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.36 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.75 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.966 W/kg; SAR(10 g) = 0.531 W/kg

Maximum value of SAR (measured) = 1.31 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 153 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WCDMA II RMC 12.2kbps 1907.6MHz Rear side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1907.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1908 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 52.072$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3917; ConvF(7.68, 7.68, 7.68); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1369; Calibrated: 2014/05/14

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1095

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.66 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.571 W/kg

Maximum value of SAR (measured) = 1.32 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 154 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1852.4MHz Bottom side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1852.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.55$ S/m; $\varepsilon_r = 50.913$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.10 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.71 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.758 W/kg; SAR(10 g) = 0.389 W/kgMaximum value of SAR (measured) = 1.07 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 155 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1907.6MHz Bottom side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1907.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1908 MHz; $\sigma = 1.475$ S/m; $\varepsilon_r = 52.072$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3917; ConvF(7.68, 7.68, 7.68); Calibrated: 2014/05/14;

Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm

(Mechanical Surface Detection)

Electronics: DAE4 Sn1369; Calibrated: 2014/05/14

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1095

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.24 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.38 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.880 W/kg; SAR(10 g) = 0.464 W/kg

Maximum value of SAR (measured) = 1.22 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 156 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1852.4MHz Front side 10mm with accessory

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1852.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.54$ S/m; $\varepsilon_r = 51.606$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.55 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.33 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.619 W/kgMaximum value of SAR (measured) = 1.57 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 157 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA II RMC 12.2kbps 1852.4MHz Front side 10mm Repeat

Communication System: UID 0, WCDMA (0); Communication System Band: Band II; Frequency: 1852.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.54$ S/m; $\varepsilon_r = 51.606$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.62, 7.62, 7.62); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection (Locations

From Previous Scan Used))

Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.42 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.44 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.567 W/kg

Maximum value of SAR (measured) = 1.39 W/kg

Date: 2015/01/30

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 158 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

7. WCDMA Band IV Head

WCDMA IV RMC 12.2kbps 1732.6MHz Left Cheek

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.344$ S/m; $\varepsilon_r = 40.191$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(8.46, 8.46, 8.46); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.544 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.638 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.605 W/kg

SAR(1 g) = 0.401 W/kg; SAR(10 g) = 0.255 W/kg

Maximum value of SAR (measured) = 0.509 W/kg

Date: 2015/01/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 159 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Left tilt

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.344$ S/m; $\varepsilon_r = 40.191$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(8.46, 8.46, 8.46); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.117 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.413 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.131 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.050 W/kgMaximum value of SAR (measured) = 0.109 W/kg

Date: 2015/01/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 160 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Right cheek

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.344$ S/m; $\varepsilon_r = 40.191$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(8.46, 8.46, 8.46); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (91x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.302 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.185 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.154 W/kgMaximum value of SAR (measured) = 0.302 W/kg

Date: 2015/01/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 161 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Right tilt

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.344$ S/m; $\varepsilon_r = 40.191$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(8.46, 8.46, 8.46); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (91x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.141 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.189 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.071 W/kg

Maximum value of SAR (measured) = 0.143 W/kg

Date: 2015/01/24

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 162 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

8. WCDMA Band IV Body

WCDMA IV RMC 12.2kbps 1732.6MHz Front side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 51.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.06 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.56 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.456 W/kgMaximum value of SAR (measured) = 1.06 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.56 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.680 W/kg; SAR(10 g) = 0.352 W/kg

Maximum value of SAR (measured) = 1.00 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 163 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Rear side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 51.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.92 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.969 W/kg; SAR(10 g) = 0.557 W/kg

Maximum value of SAR (measured) = 1.29 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 164 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Bottom side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 51.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.14 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.33 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.798 W/kg; SAR(10 g) = 0.427 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 165 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Left side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 51.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.153 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.47 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.063 W/kg

Maximum value of SAR (measured) = 0.150 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 166 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Right side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.415$ S/m; $\varepsilon_r = 51.592$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.193 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.87 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.233 W/kg

SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.193 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 167 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1712.4MHz Front side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1712.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.404 \text{ S/m}$; $\varepsilon_r = 51.62$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.02 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.45 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.761 W/kg; SAR(10 g) = 0.442 W/kgMaximum value of SAR (measured) = 1.02 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.45 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.657 W/kg; SAR(10 g) = 0.355 W/kg

Maximum value of SAR (measured) = 0.962 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 168 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1752.6MHz Front side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1752.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1753 MHz; $\sigma = 1.447$ S/m; $\varepsilon_r = 51.517$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 3 (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.10 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.89 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.830 W/kg; SAR(10 g) = 0.477 W/kg

Maximum value of SAR (measured) = 1.11 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.89 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.689 W/kg; SAR(10 g) = 0.346 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 169 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1712.4MHz Rear side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1712.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.404 \text{ S/m}$; $\varepsilon_r = 51.62$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.26 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.34 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.944 W/kg; SAR(10 g) = 0.544 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 170 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1752.6MHz Rear side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1752.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1753 MHz; $\sigma = 1.447$ S/m; $\varepsilon_r = 51.517$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.25 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.88 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.937 W/kg; SAR(10 g) = 0.534 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 171 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1712.4MHz Bottom side 10mm

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1712.4 MHz; Duty

Cycle: 1:1

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.404 \text{ S/m}$; $\varepsilon_r = 51.62$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.22 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.24 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.832 W/kg; SAR(10 g) = 0.445 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 172 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1752.6MHz Bottom side 10mmg

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1752.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1753 MHz; $\sigma = 1.447$ S/m; $\varepsilon_r = 51.517$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.18 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.46 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.807 W/kg; SAR(10 g) = 0.428 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 173 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA IV RMC 12.2kbps 1732.6MHz Rear side 10mm -Repeat-

Communication System: UID 0, WCDMA (0); Communication System Band: Band IV; Frequency: 1732.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 1733 MHz; $\sigma = 1.418$ S/m; $\varepsilon_r = 51.449$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(7.94, 7.94, 7.94); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: ELI v4.0 (20deg probe tilt); Type: QDOVA001BB; Serial: TP:1045

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.30 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.74 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 0.962 W/kg; SAR(10 g) = 0.555 W/kgMaximum value of SAR (measured) = 1.30 W/kg

Date: 2015/02/03

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 174 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

9. WCDMA Band V Head

WCDMA V RMC 12.2kbps 836.6MHz Left cheek

Communication System: UID 0, WCDMA (0); Communication System Band: Band V; Frequency: 836.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(9.77, 9.77, 9.77); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.334 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.414 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.200 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-K-R3
Page: 175 of 434
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WCDMA V RMC 12.2kbps 836.6MHz Left tilt

Communication System: UID 0, WCDMA (0); Communication System Band: Band V; Frequency: 836.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(9.77, 9.77, 9.77); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.208 W/kg

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.489 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.229 W/kg

SAR(1 g) = 0.182 W/kg; SAR(10 g) = 0.141 W/kg

Maximum value of SAR (measured) = 0.209 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 176 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA V RMC 12.2kbps 836.6MHz Right cheek

Communication System: UID 0, WCDMA (0); Communication System Band: Band V; Frequency: 836.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(9.77, 9.77, 9.77); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.368 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.392 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.396 W/kg

SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.252 W/kgMaximum value of SAR (measured) = 0.367 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-K-R3
Page : 177 of 434
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WCDMA V RMC 12.2kbps 836.6MHz Right tilt

Communication System: UID 0, WCDMA (0); Communication System Band: Band V; Frequency: 836.6 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 837 MHz; $\sigma = 0.935$ S/m; $\epsilon r = 43.002$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3825; ConvF(9.77, 9.77, 9.77); Calibrated: 2014/12/16;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn509; Calibrated: 2014/07/28

Phantom: SAM (30deg probe tilt) with CRP v4.0; Type: QD000P40CB; Serial: TP:1333

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Area Scan 2 2 2 (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.265 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.61 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.178 W/kgMaximum value of SAR (measured) = 0.264 W/kg

Date: 2015/01/17

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN