

(51) Int. Cl.5:

BUNDESREPUBLIK **DEUTSCHLAND**

® DE 42 36 911 C 1

C 23 C 4/12 B 05 B 7/14 B 05 B 7/16

// C23C 4/06,4/10

PATENTAMT

Aktenzeichen:

P 42 36 911.8-45

Anmeldetag:

31, 10, 92

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 23. 12. 93

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

OSU-Maschinenbau GmbH, 44577 Castrop-Rauxel,

(4) Vertreter:

Meinke, J., Dipl.-Ing.; Dabringhaus, W., Dipl.-Ing.; Meinke, J., Dipl.-Ing., Pat.-Anwälte, 44137 Dortmund (7) Erfinder:

Antrag auf Nichtnennung

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> EP 361710A1 3 61 709 A1 EP 2 49 790 A1 EP EP 2 32 919 A1 EP 0 49 915 A1

(5) Thermisches Spritzverfahren zur Erzeugung von Oberflächenbeschichtungen

Ein thermisches Spritzverfahren zur Erzeugung von keramischen, metallischen oder hartmetallähnlichen Oberflächenbeschichtungen auf metallischen Oberflächen, wobei die die Beschichtung bildenden pulverförmigen Partikel erhitzt und in einer Düse mittels eines Gasstromes beschleunigt und auf die zu beschichtende Oberfläche gespritzt werden, wobei vor dem Beschichten die zu beschichtende Oberfläche zur Vorbereitung gestrahlt wird, soll so verbessert werden, daß es einen geringeren apparativen Aufwand benötigt und weniger zeiteufwendig ist, wobei dies mit einfachen Mitteln bei geringem Energiebedarf erreichbarsein soll.

Dies wird dadurch erreicht, daß wenigstens ein Teil der pulverförmigen Partikel in der Düse nur bis unterhalb des Schmelzpunktes erhitzt und zur Vorbereitung der Oberfläche auf die Oberfläche strahlend gespritzt wird.

Beschreibung

Die Erfindung betrifft ein thermisches Spritzverfahren zur Erzeugung von keramischen, metallischen oder hartmetallähnlichen Oberflächenbeschichtungen auf metallischen Oberflächen, wobei die die Beschichtung bildenden pulverförmigen Partikel erhitzt und in einer Düse mittels eines Gasstromes beschleunigt und auf die zu beschichtende Oberfläche gespritzt werden, wobei zur Vorbereitung gestrahlt wird.

Es sind eine Reihe von derartigen thermischen Spritzverfahren bekannt, so das Hochgeschwindigkeitsflammspritzverfahren bekannt, so das Hochgeschwindigkeits-Dabei lassen sich mit dem Hochgeschwindigkeitsflammspritzverfahren Beschichtungen aus keramischen, metallischen und auch hartmetallähnlichen Zusatzwerkstoffen herstellen. Die nach diesem Verfahren erzielten Schichtqualitäten und -eigenschaften sind für hochwer- 20 tige Maschinenbauteile von wichtiger Bedeutung.

In einem Hochgeschwindigkeitsflammspritzsystem werden pulverförmige Spritzzusatzwerkstoffe angeschmolzen, auf hohe Teilchengeschwindigkeiten beaufgespritzt. Die Flammenströmung wird innerhalb einer meist wassergekühlten Düse gebündelt, wobei die Flamme Geschwindigkeiten erreicht, die im Bereich der Schallgeschwindigkeit liegen.

Vor Beschichtung einer Oberfläche mittels eines der- 30 artigen thermischen Spritzverfahrens ist es erforderlicht, die Oberfläche vorzubereiten, um die Oberfläche zu reinigen und ggf. zu aktivieren. Es ist dazu bisher üblich, das zu beschichtende Bauteil in einem vorausgebeispielsweise mit Korund zu strahlen. Anschließend muß das Bauteil dann möglichst sofort in die entsprechende Spritzeinrichtung eingebracht und dort behandelt werden. Dies ist im Hinblick auf den apparativen Aufwand und die Bearbeitungszeit entsprechend aufwendig und daher nachteilig.

Aufgabe der Erfindung ist es deshalb, ein derartiges Verfahren so zu verbessern, daß es einen geringeren apparativen Aufwand benötigt und weniger zeitaufwen-Energiebedarf erreichbar sein soll.

Mit einem thermischen Spritzverfahren der eingangs bezeichneten Art wird diese Aufgabe gemäß der Erfindung dadurch gelöst, daß wenigstens ein Teil der pulver-Schmelzpunktes erhitzt und zur Vorbereitung der Oberfläche auf die Oberfläche strahlend gespritzt wird.

Mit der erfindungsgemäßen Verfahrensführung ist eine wesentlich effektivere Arbeitsweise möglich, da sowohl für die Vorbereitung als auch für die eigentliche 55 Beschichtung der Oberfläche nur eine einzige Vorrichtung, nämlich eine entsprechende Spritz- und Beschleunigungsdüse erforderlich ist. Die Strahlung erfolgt dabei dadurch, daß wenigstens ein Teil der pulverförmigen Partikel nicht aufgeschmolzen wird und somit diese fe- 60 sten Partikel mit hoher Geschwindigkeit auf die betreffende Oberfläche treffen und diese entsprechend reinigen und gleichzeitig aktivieren. Diese Verfahrensführung hat den weiteren wesentlichen Vorteil, daß eine deutlich kürzere Bearbeitungszeit erforderlich ist, da 65 Transportvorgänge von einer Strahleinrichtung zur Spritz- und Beschleunigungsdüse vollständig entfallen, außerdem ist ein besseres Beschichtungsergebnis erziel-

bar, da unmittelbar nach bzw. auch gleichzeitig mit der Aktivierung der Oberfläche durch die nicht geschmolzenen Partikel die Beschichtung erfolgt. Gleichzeitig erfolgt durch den Strahlvorgang auch eine Anwärmung 5 der Oberfläche, ohne daß dazu, wie bei bekannten Verfahren, ein zusätzlicher Verfahrensschritt erforderlich

In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß zur Vorbereitung der Oberfläche und/ vor dem Beschichten die zu beschichtende Oberfläche 10 oder zum Beschichten ein Pulvergemisch in die Düse eingeleitet wird, das zu einem Anteil von 10 bis 90 Vol.-% aus Spritzzusatzwerkstoff und zu einem Anteil von 90 bis 10 Vol.-% aus Strahlzusatz mit einem Schmelzpunkt oberhalb der Gastemperatur in der Düse flammspritzverfahren und das Plasmaspritzverfahren. 15 gebildet wird. Bei Verwendung eines derartigen Pulvergemisches ist es dann möglich, daß durch Einstellung der Flammentemperatur, des Drucks und der Verweilzeit des eingedüsten Pulvergemisches gezielt eine Teilchenfraktion beschleunigt, aufgeschmolzen und zur Schichtbildung gebracht wird, während eine andere Fraktion bei gleichen Parametern verarbeitet und auf hohe Teilchengeschwindigkeiten beschleunigt wird, wobei nur auf Teilchentemperaturen erhitzt wird, welche erheblich unterhalb des Schmelzpunktes liegen. Diese Frakschleunigt und auf eine zu beschichtende Oberfläche 25 tion der Partikel strahlt dann kontinuierlich die Oberfläche, was zu einer ständigen Reinigung und Aktivierung auch während des Beschichtungsprozesses führt. Dadurch lassen sich sehr niedrige Rauhigkeiten und eine verbesserte Duktilität der Beschichtung erzielen.

Besonders vorteilhaft ist es, wenn ein Pulvergemisch eingesetzt wird, welches aus einer feineren Fraktion aus Spritzzusatzwerkstoff und einer sich nicht mit dem Spritzzusatzwerkstoff überschneidenden und mit Abstand gröberen Fraktion aus hochschmelzendem Strahlhenden Arbeitsschritt mittels einer Strahleinrichtung 35 zusatz besteht. Ein geeignetes Pulvergemisch besteht dabei beispielsweise aus einer Spritzpulverfraktion mit einer Partikelgröße von 5 bis 22 µm zu 50 Vol-% und aus einer Strahlfraktion in einer Partikelgröße zwischen 60 und 120 µm. Durch diese mechanische Größentrennung der beiden Fraktionen im Pulvergemisch ist eine einwandfreie Trennung und damit auch Einstellung der Anteile möglich, die strahlen bzw. beschichten, so daß entsprechend exakte Beschichtungsergebnisse erzielbar sind, nämlich z. B. dünne maßgenaue Beschichtungen dig ist, wobei dies mit einfachen Mitteln bei geringem 45 niedriger Rauhigkeit, welche ohne nachfolgende spanende Bearbeitung technisch einsatzfähige Beschichtungen ermöglichen.

In weiterer vorteilhafter Ausgestaltung ist vorgesehen, daß die beiden Pulverfraktionen der Düse getrennt förmigen Partikel in der Düse nur bis unterhalb des 50 zugeführt und erst innerhalb der Düse vor der Anwendung gemischt werden. Es kommen dann beispielsweise zwei Pulvergeber zum Einsatz, die entsprechend getrennt den Strahlzusatz und den Spritzzusatzwerkstoff in die Düse einleiten.

Dabei können der Spritzzusatzwerkstoff und der Strahlzusatz aus einem artgleichen oder aus einem anderen Werkstoff bestehen, dies ist abhängig von den jeweils eingesetzten Werkstoffen bzw. von den gewünschten Oberflächenbeschichtungen.

In ganz besonders vorteilhafter Ausgestaltung der Ersindung ist vorgesehen, daß zur Vorbereitung der Obersläche zunächst die maximale Temperatur innerhalb der Düse derart begrenzt wird, daß diese unterhalb des Schmelzpunktes des niedrig schmelzenden Spritzzusatzwerkstoffes liegt, und daß nachfolgend die Gastemperatur zum Beschichten über den betreffenden Schmelzpunkt erhöht wird. Es erfolgt dann zunächst, da auch die Spritzpartikel nicht schmelzen, eine reine

Strahlung der Oberfläche zur Vorbereitung derselben, anschließend wird dann durch die Temperaturerhöhung ein Aufschmelzen der Spritzpartikel bewirkt, so daß diese geschmolzenen Partikel die Beschichtung bilden und gleichzeitig die Strahlpartikel kontinuierlich die Oberflächen strahlen, d. h. ständig reinigen und aktivieren.

Dabei ist vorteilhaft vorgesehen, daß die Gastemperatur durch Änderung der Zufuhr des Brenngases, des Oxidanten, des Kühlgases und/oder des Pulverfördergases eingestellt wird. Es ist dann möglich, die jeweilige Temperatur exakt zu regeln, so daß zunächst nur eine Strahlung und anschließend eine kombinierte Strahlung und Beschichtung erfolgt. Eine derart gestrahlte und beschichtete Oberfläche zeichnet sich gegenüber herkömmlichen Verfahren durch eine wesentlich intensi- 15 vere Aktivierung aus, was dazu führt, daß eine wesentlich bessere Haftung der nachfolgend aufgebrachten Beschichtung gegeben ist.

Die Erfindung ist nachstehend anhand der Zeichnung beispielsweise näher erläutert. Diese zeigt in der einzigen Figur das Prinzipbild einer Spritz- und Beschleunigungsdüse zur Durchführung des erfindungsgemäßen Verfahrens.

In der Figur ist lediglich schematisch eine Spritz- und Beschleunigungsdüse allgemein mit 1 bezeichnet, wobei 25 45-90 μm der eigentliche Düsenkanal, der beispielsweise ein Längendurchmesserverhältnis von 10 bis 200 aufweisen kann, mit 1a bezeichnet ist.

Im dargestellten Beispiel ist jeweils nur andeutungsweise zentrisch eine Pulvergemischzuführung 2, eine 30 ggf. vorgesehene, diese konzentrisch umgebende Zuführung eines neutralen bzw. reduzierend wirkenden Gases 3, eine diese wiederum zentrisch umgebende erste Brenngaszuführung 4 wiedergegeben und eine diese wiederum zentrisch umgebende weitere zweite Brenn- 35 gaszuführung 5.

Die seitlich horizontal angedeuteten Pfeile 3a, 4a und 5a sollen andeuten, daß noch weitere gasförmige Komponenten hiermit eingebracht werden können. Eine weitere konzentrische Gaseinführung ist weiter unten 40 durch zusätzliche Pfeile 6 angedeutet, deren Einspeisung etwa im Düsengrund liegt. Durch diese Einführung wird im Gleichstrom Kühlgas eingeführt, mittels welchem eine exakte Steuerung der Prozess- bzw. Flammentemperatur zwischen 200 und 2500°C möglich ist.

Schließlich ist in der Figur noch angedeutet, daß ein Kühlmedium, z. B. im Gegenstrom, den Düsenkanal 1a kühlt, dies ist durch Pfeile 7 dargestellt. Zusätzlich kann hier auch vorgesehen sein, was in der Zeichnung nicht dargestellt ist, daß der Düsenkanal 1a im Randbereich 50 wenigstens bereichsweise porös ausgebildet und mit einer Kühlluftzuführung versehen ist. Alle Eindüsungen sind konzentrisch zu der mit 8 bezeichneten Mittelachse der Düse angeordnet, seitliche Eindüsungen können auch im Winkel zur Mittelachse vorgenommen werden. 55 Zusätzlich ist auch noch angedeutet, daß im Bereich des mit 9 bezeichneten Düsengrundes eine Heizeinrichtung 10 vorgesehen sein kann, etwa eine Induktionsheizung, eine elektrische Heizeinrichtung oder dgl.

Die Ausgestaltung der Spritz- und Beschleunigungs- 60 düse 1, die für sich betrachtet bekannt ist, kann selbstverständlich auch anders gewählt sein, insbesondere ist erfindungsgemäß auch eine geeignete Einrichtung zur Durchführung eines Plasmaspritzverfahrens einsetzbar.

Wesentlich für die Durchführung des erfindungsge- 65 mäßen Verfahrens ist das durch die Zuführung 2 in die Düse eingebrachte Pulvergemisch. Dieses Pulvergemisch besteht bevorzugt zu einem Anteil von 10 bis

90 Vol.-% aus Spritzzusatzwerkstoff und zu einem Anteil von 90 bis 10 Vol.-% aus einem Strahlzusatz, wobei der Strahlzusatz einen Schmelzpunkt aufweist, der oberhalb der Gastemperatur in der Düse liegt. Dabei wird ein Pulvergemisch vorteilhaft eingesetzt, welches aus einer feineren Fraktion aus Spritzzusatzwerkstoff und einer sich nicht mit dem Spritzzusatzwerkstoff überschneidenden und mit Abstand gröberen Fraktion aus hochschmelzendem Strahlzusatz besteht.

Die Pulvermischung besteht beispielsweise aus einem typischen Spritzzusatzwerkstoff eines eng fraktionierten Pulvers folgender möglicher Siebungen:

Spritzzusatzwerkstoff

Pulverfraktion:

- $1-6\,\mu m$
- 5 15 µm
- 5-22 µm
- 5-45 µm
- $10 30 \, \mu m$
- 15-45 µm
- 22 **–** 45 µm
- 35-75 µm

Desweiteren besteht die Pulvermischung aus einer meist hochschmelzenden Strahlfraktion folgender möglicher Siebungen:

Strahlgut

Pulverfraktion:

- 45- 90 µm
- $60 120 \, \mu m$
- 90-180 µm
- 120-240 µm
- 180-360 µm
- 240-500 µm 400-800 µm
- Dabei bestehen die Pulvergemische zu einem Anteil von 10 bis 90 Vol.-% aus Spritzzusatz und desweiteren aus Strahlgut, eine vorteilhafte Mischung besteht aus einer Spritzpulverfraktion mit 5 bis 22 µm zu 50 Vol.-% und einer Strahlfraktion mit 60 bis 120 um zu ebenfalls 50 Vol.-%, wobei der Strahlzusatz sowohl aus einem dem Spritzpulver artgleichen als auch aus einem anderen höherschmelzenden Werkstoff besteht.

Vor Beschichtung einer zu beschichtenden Oberfläche wird zunächst die Temperatur innerhalb der Düse 1 so eingestellt, daß diese unterhalb der Schmelztemperatur des eingesetzten Spritzzusatzwerkstoffes liegt. Dazu wird beispielsweise der in die Düse eingebrachte Brenngasvolumenstrom reduziert und/oder der Kühlgasvolumenstrom erhöht, so daß die Strahlfraktion und auch die Spritzfraktion aufgrund der niedrigen Flammentemperatur nicht auf- bzw. angeschmolzen werden. Sämtliche Partikel werden dann in nichtgeschmolzenem Zustand beschleunigt und auf die betreffende Oberfläche gespritzt, so daß eine Reinigung und Aktivierung derselben erfolgt.

Durch Änderung der Flammentemperatur durch entsprechende Regulierung des Brenngasvolumenstromes oder des Kühlgasvolumenstromes wird nachfolgend die Temperatur so erhöht, daß die Spritzpartikel schmelzen, die Strahlpartikel jedoch partikelförmig bleiben, d. h. die Temperatur liegt unterhalb des Schmelzpunktes der 15

Strahlpartikel. Dies führt dazu, daß gleichzeitig mit der Beschichtung der Oberfläche durch die aufgeschmolzenen Spritzpartikel kontinuierlich eine Reinigung und Aktivierung der Oberfläche erfolgt, wodurch sehr maßgenaue Beschichtungen niedriger Rauhigkeit erzielbar sind, so daß ohne nachfolgende spanende Bearbeitung technisch einsatzfähige Beschichtungen erreichbar sind.

Natürlich ist die Erfindung nicht auf die dargestellte Verfahrensweise beschränkt. So ist es auch möglich, ein einheitliches Pulvergemisch zu verwenden, das zunächst zur Reinigung und Aktivierung der Oberfläche nur bis unterhalb des Schmelzpunktes erhitzt wird und erst nach der Vorbereitung der Oberfläche aufgeschmolzen wird, worauf dann die Beschichtung derselben erfolgt.

Patentansprüche

1. Thermisches Spritzverfahren zur Erzeugung von keramischen, metallischen oder hartmetallähnlichen Oberflächenbeschichtungen auf metallischen 20 Oberflächen, wobei die die Beschichtung bildenden pulverförmigen Partikel erhitzt und in einer Düse mittels eines Gasstromes beschleunigt und auf die zu beschichtende Oberfläche gespritzt werden, wobei vor dem Beschichten die zu beschichtende Oberfläche zur Vorbereitung gestrahlt wird, dadurch gekennzeichnet, daß wenigstens ein Teil der pulverförmigen Partikel in der Düse nur bis unterhalb des Schmelzpunktes erhitzt und zur Vorbereitung der Oberfläche auf die Oberfläche strahlend 30 gespritzt wird.

2. Thermisches Spritzverfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Vorbereitung der Oberfläche und/oder zum Beschichten ein Pulvergemisch in die Düse eingeleitet wird, das zu einem 35 Anteil von 10 bis 90 Vol.-% aus Spritzzusatzwerkstoff und zu einem Anteil von 90 bis 10 Vol.-% aus Strahlzusatz mit einem Schmelzpunkt oberhalb der Gastemperatur in der Düse gebildet wird.

3. Thermisches Spritzverfahren nach Anspruch 2, 40 dadurch gekennzeichnet, daß ein Pulvergemisch eingesetzt wird, welches aus einer feineren Fraktion aus Spritzzusatzwerkstoff und einer sich nicht mit dem Spritzzusatzwerkstoff überschneidenden und mit Abstand gröberen Fraktion aus hoch- 45 schmelzendem Strahlzusatz besteht.

4. Thermisches Spritzverfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die beiden Pulverfraktionen der Düse getrennt zugeführt und erst innerhalb der Düse vor der Anwendung gemischt werden.

5. Thermisches Spritzverfahren nach Anspruch 2 oder einem der folgenden, dadurch gekennzeichnet, daß für Spritzzusatzwerkstoff und Strahlzusatz artgleiche oder verschiedene Werkstoffe eingesetzt werden.

6. Thermisches Spritzverfahren nach Anspruch 2 oder einem der folgenden, dadurch gekennzeichnet, daß zur Vorbereitung der Oberfläche zunächst die maximale Temperatur innerhalb der Düse derart begrenzt wird, daß diese unterhalb des Schmelzpunktes des niedrig schmelzenden Spritzzusatzwerkstoffes liegt, und daß nachfolgend die Gastemperatur zum Beschichten über den betreffenden Schmelzpunkt erhöht wird.

7. Thermisches Spritzverfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Gastemperatur durch Änderung der Zufuhr des Brenngases, des

Oxidanten, des Kühlgases und/oder des Pulverfördergases eingestellt wird.

Hierzu 1 Seite(n) Zeichnungen

THIS PAGE BLANK (USPTO)

- Leerseite -

ZEICHNUNGEN SEITE 1

Nummer: Int. Cl.5:

DE 42 38 911 C1

C 23 C 4/12

Veröffentlichungstag: 23. Dezember 1993

