# Power Optimization Techniques for FPGAs



#### **Outline**

- Introduction
- Hardware Techniques
  - ☐ Selectable Core Voltage
  - □ Programmable Power Mode of Individual Tiles
- **■** EDA Solutions
  - □ Dynamic Power Optimization in LUTs with Unused Input(s)
  - □ Leakage Power Optimization by LUT Output Polarity Selection
  - ☐ Leakage Power Optimization by LUT Input Vector Reordering
  - □ Power-Driven Synthesis, Place & Route
  - □ Clock Power Reduction by Power-Aware Placement and Clock Shutdown
  - ☐ Glitch Power Reduction by Don't Care Assignment
- Hardware + EDA
  - ☐ Interconnect Power Reduction by Effective Interconnect Capacitance Optimization

#### Introduction

- Power consumption is a key concern today.
- Reducing power will
  - □ Lower packaging cost and cooling costs
  - ☐ Improve reliability
  - ☐ Lengthen the battery life of mobile device









#### Introduction

- FPGA's programmability incurs extra power overhead in
  - More transistors are needed to implement a logic function than custom ASIC
  - □ Longer wire lengths
  - ☐ Inclusion of programmable routing switches





### **Power Reduction Techniques**

- Combination of techniques to reduce
  - □ Dynamic power
  - ☐ Static power
- Combination of hardware techniques and EDA solutions



## Dynamic Power vs Leakage Power

- Two major sources of power dissipation
  - □ Dynamic power caused by signal transition
  - □ Static (leakage) power caused by leakage currents in off transistors
- Dynamic power:  $P_{avg} = \frac{1}{2} \sum_{i \in signals} C_i \cdot f_i \cdot V^2$
- Leakage power
  - proportional to transistor count
  - □ dependent on supply voltage and threshold voltage



#### **Outline**

- Introduction
- Hardware Techniques
  - ☐ Selectable Core Voltage
  - □ Programmable Power Mode of Individual Tiles
- EDA Solutions
  - □ Dynamic Power Optimization in LUTs with Unused Input(s)
  - □ Leakage Power Optimization by LUT Output Polarity Selection
  - ☐ Leakage Power Optimization by LUT Input Vector Reordering
  - □ Power-Driven Synthesis, Place & Route
  - □ Clock Power Reduction by Power-Aware Placement and Clock Shutdown
  - ☐ Glitch Power Reduction by Don't Care Assignment
- Hardware + EDA
  - ☐ Interconnect Power Reduction by Effective Interconnect Capacitance Optimization



## Selectable Core Voltage

- Selectable core voltage allows user to choose lower core voltage if performance can be met
- Dynamic power:

$$P_{avg} = \frac{1}{2} \sum_{i \in signals} C_i \cdot f_i \cdot V^2$$

- Lower supply voltage reduces
  - □ dynamic power (quadratically)
  - ☐ Leakage power (more than quadratically)

Table 2. Stratix III Power Compared to Stratix II Power Across Selectable Core Voltage

| Core Voltage | Dynamic Power Reduction From 1.2V | Static Power Reduction From 1.2V |
|--------------|-----------------------------------|----------------------------------|
| 1.1V         | 33%                               | 52%                              |
| 0.9V         | 55%                               | 64%                              |

8

# Programmable Power Technology in FPGA

- Only a small percentage of logic is timing-critical
- Reduce leakage power by running non-timing critical logic on low-power mode





# Programmable Power Technology in Stratix Series (since Stratix III)

Timing analysis determines the slack available in each path of the circuit

 Individual tile programmability between highperformance and low-power modes by back-bias

adjustment





#### **Outline**

- Introduction
- Hardware Techniques
  - ☐ Selectable Core Voltage
  - □ Programmable Power Mode of Individual Tiles
- **■** EDA Solutions
  - □ Dynamic Power Optimization in LUTs with Unused Input(s)
  - □ Leakage Power Optimization by LUT Output Polarity Selection
  - ☐ Leakage Power Optimization by LUT Input Vector Reordering
  - □ Power-Driven Synthesis, Place & Route
  - ☐ Clock Power Reduction by Power-Aware Placement and Clock Shutdown
  - ☐ Glitch Power Reduction by Don't Care Assignment
- Hardware + EDA
  - ☐ Interconnect Power Reduction by Effective Interconnect Capacitance Optimization

# Dynamic Power Optimization in LUT with Unused Input(s)

- A mapped design has many LUTs with unused input(s)
- How to optimize dynamic power consumption of such



- Toggling at n1 and n2 consumes dynamic power.
- Setting shaded cells to logic-0 and A3 to 1 will eliminate unnecessary switching.



### Leakage Power in FPGA

Many MUXes and buffers in FPGA, they consume leakage power



Logic block



Routing switch



- Buffer leakage power is smaller when input = 1
  - □ due to different leakage characteristics of N and P transistors and transistor sizing for delay



| Input | Power (nW) |
|-------|------------|
| 0     | 56.1       |
| 1     | 46.6       |

### **MUX Leakage Characteristic**

■ MUX leakage power is smaller when output = 1

decoded multiplexer 50 average power When when output = 0input i1 is 40 average power passed Power (nW) when output = 1to the output: 20 10 0101: 1001: 1010: 1000:

Input vector (i1i2i3i4)

60



# Leakage Power Optimization by LUT Output Polarity Selection

- Want signals to spend most of their time in logic 1 state
- Signals spending more time in logic 0 state are candidates for inversion
- Most signal can be inverted like below:







a) original circuit

b) 2-LUT implementation

## Polarity Selection Algorithm for Leakage Power Optimization

function OptimizeLeakage(design, signal static probabilities)

for each signal n in the design do

if static\_probability(n) < 0.5 then

if signal *n* can be inverted then

invert(n) // FPGA is re-programmed; n replaced with  $\overline{n}$ 

return new design

#### **Experimental Results**

Leakage power reduction by polarity selection



# Leakage Characteristic of MUX Transistor Pair

- Leakage of transistor pair in a MUX depends on values of input pair
  - □ (a) shows low-leakage multiplexer configurations
  - □(b) shows high-leakage multiplexer configurations



# Leakage Power Optimization by LUT Input Vector Reordering

■ How to optimize leakage power for LUT with unused input(s)?



(a) A 3-LUT with one unused input.



(b) Input padding to create largest # of low-leakage transistor pairs.



### **Power-Driven Synthesis**

Timing-Driven Synthesis



Power-Driven Synthesis



## v

#### **Power-aware Placement**

- Use cost function including estimated dynamic power:  $Cost = a \cdot W + b \cdot T + c \cdot P_{avg}$
- Dynamic power consumption of a signal estimated based on its switching activity, fanouts, X-span and Y-span.



#### **Power-Driven Place & Route**

- Minimize capacitance of high-toggling signals
- Without violating timing constraints





### **Power-Driven Routing**

- Timing-critical nets
  - □ route with minimum delay
- Non-timing-critical nets
  - □ route with a cost considering capacitance and switching activities
- In iterative negotiation-based routing
  - □ high activity nets are given preference to retain low-capacitance routing resources

# Reducing Clock Power by Power-aware Placement and Shutdown of Clocks

- Shut down unused clock signals to reduce power
- Group logic with common clock into same LAB in power-driven placement



Clocking with a timing-driven placement



Clocking with a power-driven placement



#### **Glitch Power**

- *Glitches* at gate output are unwanted signal transitions due to unbalanced arrival times at gate inputs.
- E.g. Input transition from 000 to 111:



■ For FPGA, glitch power accounts for a significant portion of dynamic power (>20%)



- A mapped LUT may have *don't care* entries
- Don't care entry: an input pattern can never occur or output cannot propagate to POs
- E.g.



| abc | f | Care |
|-----|---|------|
| 000 | 0 | Y    |
| 001 | 0 | Y    |
| 010 | 0 | Y    |
| 011 | 0 | Y    |
| 100 | 1 | N    |
| 101 | 1 | Y    |
| 110 | 0 | N    |
| 111 | 0 | Y    |

# Glitch Reduction by Don't Care Assignment

 Glitch reduction by proper logic value assignment for don't cares (use a simple majority vote heuristic)



DC 1



#### **Outline**

- Introduction
- Hardware Techniques
  - ☐ Selectable Core Voltage
  - □ Programmable Power Mode of Individual Tiles
- EDA Solutions
  - □ Dynamic Power Optimization in LUTs with Unused Input(s)
  - ☐ Leakage Power Optimization by LUT Output Polarity Selection
  - ☐ Leakage Power Optimization by LUT Input Vector Reordering
  - □ Power-Driven Synthesis, Place & Route
  - □ Clock Power Reduction by Power-Aware Placement and Clock Shutdown
  - ☐ Glitch Power Reduction by Don't Care Assignment
- Hardware + EDA
  - ☐ Interconnect Power Reduction by Effective Interconnect Capacitance Optimization





- Routing power is prime component of FPGA dynamic power
- Large wire capacitance results in high power consumption





- FPGAs typically have underutilized wires
- Can we take advantage of unused wires?

## Wire Capacitance



- Wire capacitance consists of:
  - $\square$  Coupling capacitance ( $C_C$ ) between adjacent wires on same layer
  - $\square$  Plate capacitance ( $C_P$ ) between adjacent wires on different layers
- Due to aspect ratio of wires, C<sub>C</sub> is dominant

#### Wire Capacitance Optimization in ASICs



- In ASICs, have freedom to optimize wire width and spacing
  - $\square$  Can optimize  $w_i$  and  $s_i$  to maximize timing, minimize power
  - $\square$  Optimize  $w_i$  and  $s_i$  subject to  $\Sigma w_i + \Sigma s_i = W$

#### Wire Capacitance Optimization in ASICs



- If net *j* is timing/power critical:
  - $\square$  Can increase  $s_2$  and  $s_3$  to reduce  $C_C$
  - $\square$  Reduces capacitance on net j, improves speed and reduces power
- Can also optimize  $w_1$ ,  $w_2$ ,  $w_3$  for speed and power

#### In FPGAs?



- FPGA wiring prefabricated, width and spacing fixed
- Capacitance on wires in two routing options the same
  - $\square$  Despite the fact that nets i,j,k are now spaced further apart

#### Wire Cap. Optimization (1)



■ What's the total impedance seen by Routing Conductor 1, looking towards Routing Conductor 2?

#### Wire Cap. Optimization (2)



- If  $R_{eq}$  is small, capacitor  $C_{C2} + C_P$  is shorted out
- Impedance looking towards Routing Conductor 2 is the capacitor C<sub>c</sub>

### Wire Cap. Optimization (3)



- If R<sub>eq</sub> is large, we approximate as an open circuit
- $\blacksquare$   $Z_{IN}$  equal to series combination of  $C_{C}$  and  $C_{C2} + C_{P}$

## Wire Cap. Optimization (3)

- Series combinations of capacitors result in reduced capacitance:
  - □ If  $C_1$  in series with  $C_2$ , eq. capacitance  $C_{eq} = C_1 C_2 / (C_1 + C_2) < C_1$
- $\blacksquare$  So, we can reduce capacitance if  $R_{eq}$  is large enough
- Making R<sub>eq</sub> large is bad...
  - $\square$  buffer delay  $\sim R_{eq}C_{wire}$  --> increase in  $R_{eq}$  increases delay
- What if we made  $R_{eq}$  large only for unused conductors?
  - □ Would not result in increased delay of used conductors
  - □ Neighbouring used conductors would see benefit of reduced cap.
- lacktriangle Need to be able to set  $R_{eq}$  large for unused conductors, but small for used conductors
  - ☐ Use tri-state buffers!

### Optimize Wire Cap. by TSB and Routing



- If intermediate wires are tristated, see reduced  $C_C$ !!
- In this work we tristate unused wires to reduce wire cap
  - □ Proposed a novel, lightweight TSB topology
  - □ Proposed CAD techniques to space wires out, reduce effective cap.

## .

#### **Traditional Tri-state Buffers**



- Header transistor M5 cuts off pull up path to output
- Unused buffer would have IN at VDD
  - $\square$  M<sub>1</sub> pulls gate of M<sub>6</sub> to GND
- Large area cost: size of M<sub>2</sub>, M<sub>4</sub> and M<sub>5</sub> must be doubled to maintain same delay as a conventional buffer



#### **Alternative Tri-state Buffer**



N.B. Tri-state mode is achieved without transistor stacking in the output stage

## **Proposed Tri-state Buffer**



| Buffer Topology | Area | TS Mode Leakage<br>Reduction [%] |
|-----------------|------|----------------------------------|
| Conventional    | 99   | 45                               |
| Alternative     | 6.5  | 11                               |
| Proposed        | 3    | 25.4                             |

### **Proposed CAD Flow**



- Power and speed of a conductor can be optimized if adjacent conductor(s) unused
- For capacitance reduction we need CAD which ensures conductors adjacent to power/timing critical nets are unused

## **Modifications to VPR Router**

- VPR router cost function for expanding net i to node n:
  - $\square$  Cost(n) = f(congestion(n), criticality(i), delay(n))
  - $\square$  If *i* is timing critical focus on using fastest resources
  - $\square$  If *i* is not timing critical use uncongested resources
- To maximize capacitance reduction:
  - □ Want to route high activity nets with unused adj. conductors
  - □ Want to avoid using routing conductors adj. to high activity nets

|              | • |               |
|--------------|---|---------------|
|              | • |               |
|              | • | Lleo          |
|              |   | USE           |
| -            |   | Use           |
| -            |   | Avoid Using   |
| Net i        |   | •             |
|              |   | Avoid Using   |
| Net <i>j</i> |   | 711010 001118 |
|              |   |               |

## .

#### **Results**



- Dynamic power reduction exceeds 15% for  $C_C/C_P \approx 3$
- Get additional 14.6% leakage power savings from TSB
- Critical path degradation ~1%
- Total area overhead ~2.1%



#### References

- Stratix-III FPGA Family Data Sheet, 2008.
- "Active Leakage Power Optimization for FPGAs", in FPGA'04
- "Input Vector Reordering for Leakage Power Reduction in FPGAs", TCAD, Sept. 2008
- "CAD Techniques for Power Optimization in Virtex-5 FPGAs", in CICC'07
- "Clock-aware placement for FPGAs", in FPL'07
- "FPGA glitch power analysis and reduction", in ISLPED'11
- "Optimizing Effective Interconnect Capacitance for FPGA Power Reduction", in FPGA'14