

Léo Ducas

CWI, Amsterdam, The Netherlands

AFRICAN MATHEMATICAL SCHOOL **UNIVERSITY OF BAMENDA- CAMEROON** JUNE 06-17 2016

PRMAIS

A-Mathematics Applied to Cryptology and Information Security.

Outline

- 1 Encryption
- 2 Signatures
- 3 Cryptography from lattices

Problem:

■ Two parties **A** and **B** wish to communicate

Problem:

■ Two parties **A** and **B** wish to communicate

Problem:

■ Two parties **A** and **B** wish to communicate

Problem:

- Two parties **A** and **B** wish to communicate
- An adversary, **J** trying to eavrop

Problem:

- Two parties **A** and **B** wish to communicate
- An adversary, **J** trying to eavrop

Problem:

- Two parties **A** and **B** wish to communicate
- An adversary, **J** trying to eavrop
- A and B want to keep confidentiality

Solution: Symmetric cryptography

 \blacksquare \boldsymbol{A} and \boldsymbol{B} agree on a secret key \boldsymbol{k} in a close room

Solution: Symmetric cryptography

lacksquare A and B agree on a secret key lacksquare in a close room

Solution: Symmetric cryptography

lacksquare A and B agree on a secret key lacksquare in a close room

Solution: Symmetric cryptography

lacksquare A and B agree on a secret key lacksquare in a close room

Solution: Symmetric cryptography

lacksquare A and B agree on a secret key lacksquare in a close room

■ Latter, $\bf A$ and $\bf B$ encrypt ${\cal E}$ and decrypt ${\cal D}$ their communication

Solution: Symmetric cryptography

■ A and B agree on a secret key k in a close room

Solution: Symmetric cryptography

lacktriangle A and B agree on a secret key lacktriangle in a close room

Solution: Symmetric cryptography

lacksquare A and B agree on a secret key lacksquare in a close room

Solution: Symmetric cryptography

lacktriangle A and B agree on a secret key lacktriangle in a close room

Probleme: Confidentiality without pre-shared key?

Probleme: Confidentiality without pre-shared key?

Solution: Make encryption and decryption key different

Probleme: Confidentiality without pre-shared key?

Solution: Make encryption and decryption key different

Probleme : Confidentiality without pre-shared key ?

Solution: Make encryption and decryption key different

The transformation **private key** \rightarrow **public key** must be **one-way**.

Outline

- 1 Encryption
- 2 Signatures
- 3 Cryptography from lattices

Problem 1: Message authentication

Problem 1: Message authentication

Problem 1: Message authentication

Encryption guarentees confidentiality, but not authenticity: Poison Ivy can pretend to be Robin

Without authenticity of public key, encryption can be insecure!

Digital signature

Digital version of signature, or a certificate. Must be

- impossible to forge
- verifiable by all (using some public key)

Secret key

Public key

Signature

Outline

- 1 Encryption
- 2 Signatures
- 3 Cryptography from lattices

Lattices!

Definition

A lattice \boldsymbol{L} is a discrete subgroup of a finite-dimensional Euclidean vector space.

Bases of a Lattice

Bases and Fundamental Domains

Round'off Algorithm [Lenstra, Babai]:

Bases and Fundamental Domains

Round'off Algorithm [Lenstra, Babai]:

■ Given a target t

Bases and Fundamental Domains

Round'off Algorithm [Lenstra, Babai]:

- Given a target t
- Find's $\mathbf{v} \in L$ at the center the tile.

Round'off Algorithm [Lenstra, Babai]:

$Round' off \ Algorithm \ [Lenstra, Babai]:$

■ Use **B** to switch to the lattice n (×**B**⁻¹)

$$\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t};$$

Round'off Algorithm [Lenstra, Babai]:

- Use **B** to switch to the lattice n (×**B**⁻¹)
- round each coordinate (square tiling)

$$\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v}' = |\mathbf{t}'|;$$

Round'off Algorithm [Lenstra, Babai]:

- Use **B** to switch to the lattice n (×**B**⁻¹)
- round each coordinate (square tiling)
- switch back to $L(\times B)$

$$\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v}' = |\mathbf{t}'|; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v}'$$

Finding Close Vectors

Given a good basis **G** the Round'off algorithm allows to solve CVP. Given only a bad basis **B**, tsolving CVP is a **hard problem**.

Can this somehow be used as a trapdoor?

Encryption from lattices (simplified)

Using the (second) decoding algorithm, on can recover \mathbf{v} , \mathbf{e} from $\mathbf{w} = \mathbf{v} + \mathbf{e}$ when $\mathbf{e} \in \mathcal{P}(\mathbf{B}^*)$. In particular when:

$$\|\mathbf{e}\| \leq \min \|\mathbf{b}_i^*\|$$

Parameter η

- Private key: good basis **G** such that $\|\mathbf{g}_i^*\| \ge \eta$
- Public key: bad basis **B** such that $\|\mathbf{b}_i^*\| \ll \eta$
- lacksquare Message : $\mathbf{m} \in \Lambda = \mathcal{L}(\mathbf{B}) = \mathcal{L}(\mathbf{G})$
- Ciphertext : $\mathbf{c} = \mathbf{m} + \mathbf{e}$, for a random error \mathbf{e} , $\|\mathbf{e}\| = \eta$
- Decryption : $(\mathbf{m}', \mathbf{e}) = decode(\mathbf{c})$

Encryption from lattices

- With the good basis G, m' = m
- With the bad basis **B**, $\mathbf{m}' \neq \mathbf{m}$: decryption fails !

Signatures

Sign

- Hash the message to a random vector **m**.
- apply Round'off with a good basis **G**: find $s \in L$ proche de **m**.

Vérify

- check that $s \in L$ using the bad basis **B**
- and that m is close to s.

A statistical attack [NguReg05,DucNgu12]

The difference $\mathbf{s} - \mathbf{m}$ is always inside the parallelepiped by the good basis G:

Each signatures (s, m) leaks a bit of information about the secret key G.

Nguyen et Regev showed how to "learn the parralepiped" using a few signature:

⇒ Total break of original GGH and NTRUSign schemes.

Round'off:

$$\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v}' = |\mathbf{t}'|; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v}'$$

Round'off:

$$\mathbf{t'} = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v'} = \lfloor \mathbf{t'} \rceil; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v'}$$

Round'off:

$$\mathbf{t'} = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v'} = \lfloor \mathbf{t'} \rceil; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v'}$$

Round'off:

$$\mathbf{t'} = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v'} = \lfloor \mathbf{t'} \rceil; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v'}$$

Round'off:

$$\mathbf{t'} = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v'} = \lfloor \mathbf{t'} \rceil; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v'}$$

Round'off:

$$\mathbf{t}' = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v}' = |\mathbf{t}'|; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v}'$$

Round'off:

$$\mathbf{t'} = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v'} = \lfloor \mathbf{t'} \rceil; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v'}$$

Round'off:

$$\mathbf{t'} = \mathbf{B}^{-1} \cdot \mathbf{t}; \quad \mathbf{v'} = \lfloor \mathbf{t'} \rceil; \quad \mathbf{v} = \mathbf{B} \cdot \mathbf{v'}$$

Gaussian sampling

Using the appropriate randomized rounding (Gaussian-sampling) the distribution $\mathbf{s} - \mathbf{m}$ can be made Gaussian:

With more effort, the ellipsoid can be transformed into a ball, that leaks no information about the secret basis.

- [Klein 2000, Gentry Peikert Vaikuthanathan 2008]: for a randomization of the Nearest Plane algorithm
- [Peikert 2010] for a randomization of the Round'off algorithm

