

脑机接口与机器学习实验室

人机工程学

伍冬睿 华中科技大学 人工智能与自动化学院 脑机接口与机器学习实验室

Sony Google TV Remote

- 非常复杂
- 太大: 需要双手操作
- 太多按钮,黑暗中无法使用。看电影?
- 有键盘

Apple TV Remote

- 过于简单
- 很多地方需要方向菜单
- 几乎无法输入文字
- 太小, 易掉
- 常见的任务操作比较容易

- 少量按钮
- 语音输入
- 触摸屏
- 体积大小合适

Dyson AirBlade 干手器

使用简单,一目了然

人机工程学

- 与认知心理学相比,人机工程学 (Ergonomics) 更多地从人本身和系统的角度出发,研究人机关 系
- 人机界面学初期发展阶段的主要研究内容,并对人机界面学以后的发展产生了重大的影响
- 人机工程学,又称为人类工程学(Human Engineering)、人因工程学(Human Factors Engineering)、人类工效学(Ergonomics)、 人间工学等
- 人机工程不同的命名充分体现了该学科是"人体 科学"与"工程技术"的结合

人机工程学定义和研究内容

- 人机工程学是研究"人-机-环境"系统中人、机、环境三大要素之间的关系,为解决系统中的人的效能、健康问题提供理论与方法的科学
- 研究内容:
 - 研究人与机器之间的分工与配合
 - 研究机具如何能更适合人的操作和使用 ,以提高人的工作效率,减轻人的疲劳 和劳动强度
 - 研究人机系统的工作环境对操作者的影响,用以改善工作环境
 - 研究人机之间的界面,信息传递以及控制器和显示器的设计等等

图 1 人-机-环境系统工程研究范畴示意图

人机系统组成

- 人子系统包括感觉器官、中枢神经系统及运动器 官三大部分
- 机子系统包括操作器(又名控制器)、**机具本体** 及**显示器三大部分**
- 人机界面负责人机子系统之间的信息传递
- 环境是人机系统运行的外界条件
- 在进行人机界面设计时,不 应单纯设计显示与控制,还 必须站在系统的高度上,整 体考虑人-机-环境系统,进行 系统设计

人机比较与分工

	机	人
物理功率	能输出极大和极小的功率,但不能像人手那样精细地调整	10s内能输出1.5kW,以0.15kW 的输出能连续工作一天,并能 作精细的调整
检测	物理量检测范围广,可检测像 电磁波这样人不易检测的物理 量	具有与认知直接联系的高级检测能力,缺少标准,会出偏差, 具有味觉、嗅觉、触觉
操作	在速度、精度、力度、操作范围、耐久性等方面优于人,能 处理液体、气体、粉状体等	空间自由度高,协调性好,可在三维空间进行多种运动
信息处理 能力	在事先编程的情况下可进行高级、准确的数据处理,记忆准确、持久,调出速度快	具有特征抽取、综合、归纳、 模式识别、联想、发明创造等 高级思维能力及丰富的经验
图形识别	图形识别能力差	图形识别能力强

人机比较与分工

	机	人		
耐久性、 持续性、 可维护性	由成本决定;需维护保养,可进行单调的反复作业,不会疲劳	易疲劳,需要适当休息、保健、 娱乐,很难长时间保持紧张状态,不适应从事刺激小、单调 乏味的作业		
可靠性	由成本决定;对事先设计的作业有高可靠性,对预料之外的事件无能为力。一个零件的损坏,可导致整机失灵;特性能保持不变	容易出差错;如果有时间和精力,可以处理意外事件,自我维护力强		
通道	能够进行多通道的复杂动作	单通道		
效率	需外加功率;简单作业速度快、 准确,新机械从设计、制造到运 转需要时间;即使坏了也不要紧	耗费能源小,但要吃饭,需要 教育和训练,必须采取绝对的 安全措施		
成本	需要购置费,运转、保养费;机 械不使用仅失去机械本身的价值	需要人工费用、工资等;如果 发生意外,会危及生命		

人机系统设计要求考虑的问题

人机系统应该能满足以下要求:

- 1. 达到预定的目的,完成预定的任务
- 2. 人机都能发挥各自的作用并协调一致地工作
- 系统提供接收输入和完成输出的功能,并具备协调功能
- 4. 系统设计应考率环境因素影响,例如厂房结构、 工作场地布局、照明、温度、湿度、噪声等
- 5. 人机系统应充分适应人的特性,让人容易学习、操作、使用系统,充分发挥系统效能

界面设计中的人机工程学

- □在人机界面设计中,根据人接受信息的感觉通道 不同,可以将显示界面分为视觉显示界面、听觉 显示界面和触觉显示界面
- □其中以视觉和听觉显示界面最为广泛

显示界面设计

- 三项基本要求:能见性,清晰性,可识性
- 设计原则:
 - 选用最适宜的视觉刺激维度作为传递信息的代码,并将视觉 代码的数目限制在人的绝对辨识能力允许的范围内
 - 使显示器精度与人的视觉辨认能力相适应
 - 尽量采用形象直观且与人的认知特点相匹配的显示格式
 - 对同时呈现的相互关联的信息尽可能实现综合显示,以提高显示效率
 - 目标与背景之间要有适宜的对比关系,包括亮度对比、颜色 对比和形状对比等
 - 具有良好的环境照明条件,以保证对目标的准确辨认
 - 根据任务的性质和使用条件确定视觉显示器的尺寸和安放位 置
 - 与系统中其他显示器和控制器在空间和运动关系上相兼容

weather.com

第一眼看到的是什么?

5 Days

iMap Weather · AccuWeather · weather.com · Compare all

Hourly Weather

	2:00 PM	5:00 PM	8:00 PM	11:00 PM	2:00 AM	
<				9	9	
	47°	42°	33°	24°	17°	>
	Mostly Cloudy Precip 0%	Partly Cloudy Precip 0%	Partly Cloudy Precip 0%	Partly Cloudy Precip 0%	Partly Cloudy Precip 0%	

see detailed hourly forecast

see detailed 10-day forecast

bing.com/weather

一目了然

稍显单调

iOS Yahoo weather

iOS 地图

Google 地图 vs iOS6 地图

做好最重要的功能!

Amazon review:

You' Il get almost as much juice and counter as you do in the glass juice will spray in every direction.

好看不中用!

显示错误信息

- 显眼
- 清楚指示哪里出错
- 人们能够阅读
- 礼貌
- 描述问题
- 解释如何修正错误

听觉显示器

- 利用声音通过人的听觉通道向人传递信息
- 与视觉通道相比,听觉具有易引起人的随意注意,而且反应速度快和不受照明条件限制等突出的优点
- 设计原则:
 - 听觉刺激所代表的意义一般应与人们已经习惯的或自然的联系相 一致
 - 采用声音的强度、频率、持续时间等维度作信息代码时,应避免使用极端值,而且代码数目不应超过使用者的绝对辨识能力
 - 信号的强度应高于背景噪声,要保持足够的信噪比,以防止声音 掩蔽效应带来的不利影响
 - 尽量使用间隔或可变的声音信号,要避免使用稳定信号,使对声音信号的听觉适应减至最小
 - 不同声音信号应尽量分时段呈现,其时间间隔不宜短于1s
 - 显示复杂的信息时,可采用两级信号。第一级为引起注意的信号 ,第二级为精确指示的信号
 - 对不同场合使用的听觉信号尽可能标准化

控制显示界面设计

控制界面主要指各种操作装置,包括手动操纵装置和脚动操 纵装置。常见的有旋钮、摇柄、按钮、手柄按键等。在这些 界面设计中需要人给予一定力的作用,并且这些力都需要一 定的信息反馈

Car Automatic Shifter

无线充电器

脑机接口与机器学习实验室

RAIN-COMPUTER INTERFACE AND MACHINE LEARNING LABORATORY

伍冬睿 华中科技大学 人工智能与自动化学院 脑机接口与机器学习实验室