ACADEMIC – UNDER GRADUATE STUDIES DIVISION FIRST SEMESTER 2024 – 2025

COURSE HANDOUT (PART II)

Date: 01.08.2024

In addition to Part I (General Handout for all courses appended to the timetable) this handout gives further details regarding the course.

Course No : CS F342

Course Title : Computer Architecture
Instructor-in-charge : Prof. G Geethakumari

Instructors : Nikumani Choudhury; Rajib Ranjan Maiti; Aritra Mukherjee; Tamoghna Ojha

1. Scope and Objective of the Course:

The scope of this course is to cover various aspects of Computer Architecture, which is a specification detailing how a set of software and hardware technology standards interact to form a computer system or platform. Performance issues with respect to computer system design and the compatible technologies would be discussed.

The main objective of this course is to give the students exposure to

- Processor performance criteria, performance benchmarks
- CPU design instruction set architecture, instruction execution
- Single and Multicycle implementation, ILP, Pipeline design, Hazards
- Methods of overcoming hazards, Branch prediction
- Memory subsystems including cache optimization

2. Text Book:

T1. Patterson, D.A. & J.L. Hennessy, Computer Organization and Design: MIPS Edition, Elsevier, 5th edition., 2013.

3. Reference Books:

- (i) Hamacher et. al, Computer Organisation, McGraw Hill, 5th ed., 2002.
- (ii)J.L. Hennessy & D.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kauffmann, 5th Ed, 2012.
- (iii) W. Stallings, Computer Organisation & Architecture, PHI, 6th ed., 2004.
- (iv) Additional material to be put up in the course folder in Google Drive

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter No.
1 - 2	To understand about the overview of	Computer Abstractions and Technology	Ch. 1
	classes of computers		
3 - 4	To learn about instructions; ISA as	Instructions- language of the computer	Ch.2
5-7	well as know about sample ISAs like	MIPS Architecture & Instruction Set	Ch. 2
8	MIPS		
9 - 11	To practice arithmetic operations on	Arithmetic for computers: floating point	Ch 3
	integers; floating point numbers etc	arithmetic	
12 -13	To understand the basics of	Processors: logic design conventions	Ch 4
14 - 15	processor; learn about data path,	Role of Performance, pipelining – design	Ch 4
	control path	issues	
16 - 17		Pipelined data path and control	Ch 4
18		Various types of hazards	Ch 4
19		Structural hazards	Ch 4
20 - 21		Data Hazards	Ch 4
22 - 23		Control Hazards	Ch 4
24		Branch prediction techniques	Ch 4
25		Static Branch Prediction	Ch 4
26		Dynamic Branch Prediction	Ch 4
27	To know about the organization of	Exploiting memory hierarchy - introduction	Ch 5
28	memory hierarchy and learn various Cache Memory Organization		Ch 5
29-32	optimization techniques at each level	Measuring and improving cache	Ch 5
		performance, cache optimization	
33 - 34		Main Memory and Interleaving	Ch 5
35		Virtual Memory and Virtual Machines	Ch 5
36-38		Performance and memory hierarchies:	Ch 5
		Cache coherence	
39	To understand about storage systems	Storage and other I/O topics	T1 Ch5; R(ii)
40	and performance	Dependability, reliability, availability	T1 Ch5; R(ii)
41 - 42		I/O performance measures, Redundant	T1 Ch5; R(ii)
		Array of Independent Disks	

5. Evaluation Scheme:

EC No.	Evaluation Component	Duration (Min)	Weightage (%)	Date & Time	Nature of Component
1	Mid Sem Test	90	30%	TBA	Closed Book
2	Laboratory Evaluation (to be conducted during the lab sessions)	120	30% (15% before mid sem grading)	Continuous Evaluation	Open Book
3	Comprehensive	180	40%	TBA	Closed Book

Note: At least 40% of the evaluation to be completed by midsem grading.

- **6. Chamber Consultation Hour:** To be announced in the class
- **7. Notices:** Notices regarding the course will be put up in CMS.
- **8**. **Makeup Policy:** No makeup exam allowed without prior permission. For lab evaluation component, there is no makeup.
- 9. Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE CS F342

