Total No. of pages 01 - 188

Roll No.....

FOURTH SEMESTER

B.Tech.[CO/IT/SE]

MID SEMESTER EXAMINATION

MARCH-2019

	EC262 DIGITAL ELECTRONICS	_
	ne: 1 and 1/2 Hours Max. Marks	
Answer All Questions Assume suitable missing data, if any		
	What is Ex-3 code? Write its properties. Design a circuit to con 8421 BCD code to Ex-3 code.	Contract to
2.	Simplify the function $P = \pi M(1,2,4,5,9,11,12,15) + \phi M(0,6)$ u Tabular Method and implement the same by logic gates.	sing [6]
3.		
	(ii) Convert 24610 to Octal and hexadecimal number (iii) Excitation table for SR Flip Flop and explain briefly	[4] [©]
4.	(iv) EX-OR gate using four NAND gates A safe has five locks, v, w, x, y, and z, all of which must be unlocked	for
	the safe to open. The keys to the locks are distributed among executives in the following manner:	
	(i) A has keys for locks v and x;(ii) B has keys for locks v and y;(iii) C has keys for locks w and y;	
	(iv) D has keys for locks x and z;	
	(a) Determine the minimum number of executives required to open so the find all the combinations of executives that can open the so	are.
ią.	Write an expression f (A, B, C, D, E) which specifies when the safe	can
	(c) Who is the "essential executive" without whom the safe canno opened? With neat circuit diagram, explain the of JK flip-flop and its solution	[6]
	overcome racing condition. (a)Design a binary Full Subtractor by using only one	[4] [4]
6.	(i) 4:1 Mux along with basic gates	6
	(b) Compare combinational circuit with sequential circuit	[2]