

LUMBACARE

Designing a wearable system that tracks and visualizes the movements of joints using IMU sensor for patients during rehabilitation, with integrated pattern detection to improve recovery.

ORIGIN STORY

SCALE OF THE ISSUE

JOINT-RELATED ISSUES

- Knee related: ACL injury
- Back Issues: Lordosis & Kyphosis
- Shoulder
- Hip

MEASUREMENT TECHNOLOGIES

- Goniometer
 - Accuracy +/- 7 degrees
 - Difficult set up/Learning curve
 - Requires at least 2 users
- Dynamometer
 - Highly Accurate
 - Difficult setup
 - o Requires at least 2 users

NEED FOR CHANGE

- Increasing Rehabilitation Demand
 - More patients requiring timely intervention
- Outdated Equipment
 - Contributes to slow recovery and inadequate monitoring
- Limited Therapy Time
 - Patients spend only **11.8 minutes** with therapists
- Physical Therapy market growing at CAGR 9%
 - Creating scope for technology & innovation

Physical Therapy Rehabilitation Global Market Report 2025

MACHINE LEARNING PREDICTIVE MODEL

Prevents harmful movements and learn patient recovery trends

LUMBACARE

JOINT TRACKING

Monitors joint angles and motion

HAPTIC FEEDBACK

Provides real-time sensory guidance for proper movement

QUATERNION-BASED ORIENTATION

$$q = ig[q_w, q_x, q_y, q_zig]$$

$$q_w^2 + q_x^2 + q_y^2 + q_z^2 = 1$$

UNIT QUATERNION

$$q = \left[\cos\left(rac{ heta}{2}
ight), \mathbf{n}\sin\left(rac{ heta}{2}
ight)\right]$$
 ROTATION ABOUT AXIS N

DERIVATION OF QUATERNION-BASED ORIENTATION

$$\theta = \kappa \ell$$

$$\mathbf{n} = [-\sin\phi, \cos\phi, 0]$$

$$q = \left[\cos\left(\frac{\kappa\ell}{2}\right), -\sin\phi\sin\left(\frac{\kappa\ell}{2}\right), \cos\phi\sin\left(\frac{\kappa\ell}{2}\right), 0\right]$$

$$R(q) = egin{bmatrix} 1 - 2(q_y^2 + q_z^2) & 2(q_x q_y - q_w q_z) & 2(q_x q_z + q_w q_y) \ 2(q_x q_y + q_w q_z) & 1 - 2(q_x^2 + q_z^2) & 2(q_y q_z - q_w q_x) \ 2(q_x q_z - q_w q_y) & 2(q_y q_z + q_w q_x) & 1 - 2(q_x^2 + q_y^2) \end{bmatrix}$$

Machine learning model

Real-time machine learning algorithm to detect unusual joint motion based on live **IMU sensor data**.

Training Phase:

Collects data to compute mean (mu) and variance (var) for each feature.

Uses Welford's online algorithm for real-time stats:

- Incremental mean: mu[i] += (x mu[i]) / nSeen
- Variance: var[i] += (x mu[i]) * (x mu[i])

Detection Phase:

- Calculates Z-scores: z = |x mu| / sqrt(var)
- Flags anomaly if Z-score > Z_THRESHOLD (4.0)

For our simulation,

- Data trained over 30 seconds
- Alerts if joint angle exceeds 30° (visual warning).

SIMULATIONS

Arm Simulation Trial

Knee Simulation

FORM FACTOR

USER INTERFACE

ADOPTION

- Partner with clinics for pilot testing
- Target rehabilitation centers and telemedicine platforms
- Expand to at-home users with an app-guided wearable system
- Focus on personalized recovery and improved patient outcomes

COMMERCIALIZATION

- Manufacture devices at \$10 each
- Sell devices at \$20 each
- Offer SaaS subscriptions for clinics
- Pursue data service opportunities
- Secure patents for technology protection
- Obtain FDA Class II clearance for healthcare adoption

EXPANDING ACCESS THROUGH WEARABLE REHAB

- O1 AFFORDABLE & PORTABLE

 Affordable, remote rehab system delivering personalized care to all patients.
- O2 REMOTE MONITORING

 Tracks recovery remotely, reducing need to come to therapy centers physically
- PERSONALIZED FEEDBACK

 Real-time feedback enables personalized therapy for diverse patient needs
- ACCELERATES RECOVERY

 Early detection of abnormal patterns enables timely intervention, improving outcomes.

THE TEAM

Team

- Nahiyan Muhammad Mechanical & Computer Engineering
- Essoha Kadambaya **Mechanical Engineering**
- Adam Mhal Computer Engineering

Advisors

Prof. Ray Nagem

Associate Professor Mechanical Engineering

Board Certified PT, DPT, OCS, FAAOMPT

Associate Professor Mechanical Engineering

Dr. Anna Rubakhina Prof. Pavan Bhavsar

Coordinate Geometry, Accelerometer Calibration

Device Placement, user pain points, feedback

PCB Design, Circuitry component analysis

30+ years of industry Cartesian Coordinate

10 years of PT experience Research in the design experience/ expertise in Expertise in Back, hip, and ACL injuries

and calibration of sensors

THANK YOU FOR YOUR TIME ANY QUESTIONS?