Environmental Isolation Task

C.D. Coulbert, Chairman

A review of the scope of PV module encapsulation technology made available to the industry through the various FSA-supported contracts and studies under the Flat-Plate Collector Research, Engineering Sciences, and Module Performance and Failure Analysis Areas shows it to be very broad (see p. 322). This technology has enabled the PV industry to respond with module designs and hardware with the potential of meeting module cost, performance and life goals. However, a review of these specific technology areas continues to stress the need for continuing module durability research to define module life-limiting degradation mechanisms so they can be quantified, predicted, and corrected. In these early days of PV module development, the great value of durability testing and failure analysis has been to identify design weaknesses; this has been used by industry to develop guidelines by which manufacturers could design and fabricate higher-quality hardware incorporating fault-tolerant design features.

Current FSA research activities are focused on identifying, modeling, and quantifying those long-term degradation mechanisms that would limit the ultimate service life of a PV module. At the same time, research is continuing on encapsulation materials and processes that have the greatest potential of increasing module life and efficiency and effectively reducing module cost.

The following visual presentations summarize significant progress in these areas during the reporting period.

Inasmuch as polymeric encapsulant material properties that may change with long-term field exposure do not necessarily result in a corresponding module damage or failure mode, it has become necessary to organize the failure-analysis process into a more specific set of long-term degradation steps so that material property change can be differentiated from module damage and module failure (see pp. 324-325). These categories allow separation, testing and modeling of the various degradation mechanisms with a clear distinction of which effects interact and which are sequential.

The polymeric aging computer model being developed by the University of Toronto will eventually predict what physical property changes may occur as a function of exposure time and environment. Additional analysis and experimental work are still required to relate polymer property change to module performance loss.

Encouraging development, in increasing module performance and life are indicated by the data on module surface treatments for soiling resistance, by improved bonding techniques and primers, by anti-corrosion treatments and by improved polymer stabilizers.

A new photoacoustic technique for very early detection of polymer surface reactions due to aging is being developed and evaluated at JPL. Such techniques are needed if the 20-year potential of modules is to be assessed and validated based on correlating field tests with accelerated tests over a limited number of months of durability testing.

ENCAPSULATION TECHNOLOGY AVAILABLE

JET PROPULSION LABORATORY

C.D. Coulbert

PV MODULE DESIGN	DESIGN ANALYSIS	FAILURE ANALYSIS
 PERFORMANCE REQ- LOADS & HAZARDS AVAILABLE MATERIALS & PROCESSES DESIGN ANALYSES & GUIDELINES LIFE LIMITING MODES 	PERFORMANCE EST- PHYSICAL DURABILITY ANALYSIS PREDICTED PROPERTY CHANGES NOCT/HOT SPOT TEMP- DESIGN OPTIONS QUALITY CONTROL RE- QUIREMENTS DAMAGE VS- PROPERTY CHANGE MODULE WEAK LINK	PERFORMANCE LOSS WHAT FAILED WHY FAILED PROPERTY CHANGE PROGNOSIS CORRECTIVE ACTION PREDICTABILITY ACCEPTABILITY

Encapsulation Materials and Processes

- O SURFACE TREATMENTS BASED ON FLUOROCARBONS FOR LOW SOILING MODULE COVERS HAVE REDUCED OPTICAL LOSSES FROM 10% UNTREATED TO 3% OVER A TEN MONTH TEST PERIOD. (TESTING CONTINUES) (SPRINGBORN)
- O NEW CURING AGENTS IDENTIFIED FOR EVA AND EMA TO REDUCE CURING TEMPERATURES AND TIMES. CURING TIMES MAY BE REDUCED FROM 15 MINUTES TO LESS THAN 5 MINUTES(SPRINGBORN)
- O CORROSION RESISTANT COATINGS IDENTIFIED FOR MILD STEEL SUBSTRATE PANELS. TEST
 SPECIMENS HAVE SURVIVED SALT SPRAY FOR 3000 HOURS WITHOUT DETERIORATION. (SPRINGBORN)
- O EXPERIMENTAL BONDING PRIMER SYSTEMS DEVELOPED AND BEING EVALUATED FOR BONDING EVA AND EMA TO POLYESTER FILMS AND ALSO PRIMERS FOR CORROSION INHIBITION OF MILD STEEL. (DOW CORNING)
- o ION-PLATING AS METHOD FOR NON-FIRED METALLIZATION (TI/AL-Cu) ON SOLAR CELL n-SURFACE DEMONSTRATED. POTENTIAL FEASIBILITY FOR p-SURFACE SHOWN EXPERIMENTALLY. (ITW)
- O TWO NEW POLYMERIZABLE UV STABILIZERS FORMULATED FOR MODULE ACRYLIC COVER FILMS SHOW EXCELLENT UV CUT-OFF SPECTRAL CHARACTERISTICS. (UNIV. OF MASSACHUSETTS).

Encapsulant Material Stability

- EVA FORMULATION A9918 HAS SURVIVED > 30,000 HOURS (3.5 YR) OF RS/4 SUNLAMP 550C EXPOSURE WITHOUT DAMAGE. (SPRINGBORN)
- ADVANCED ENCAPSULANT MATERIALS (EVA, PU, HARDBOARD, CONCRETE, ETC.) IN MINI-MODULE TESTS HAVE ALMOST TWO YEARS OF FIELD EXPOSURE AND PASSED JPL QUAL TESTS. (JPL)
- SUBSTRATE MODULES WITH EVA AND WOOD HARDBOARD SUBSTRATES PASS HAIL IMPACT TESTS. (JPL)
- NEW DIAGNOSTIC TECHNIQUE (LASER PHOTOACOUSTICS) MEASURES POLYMER SURFACE PHOTO
 OXIDATION AND CORRELATES 60-DAY FIELD EXPOSURE WITH 10-HOUR LAB TESTS. (JPL)
- FULL-SIZE MODULE TEST FACILITY FOR ACCELERATED UV THERMAL TESTING COMPLETED AND INITIAL TESTS IN PROCESS. (JPL)
- MATERIAL PROPERTY (MOLECULAR WEIGHT, STRENGTH, TOUGHNESS AND STABILITY)
 PREDICTION BY COMPUTER MODEL OF POLYMER MOJ CULAR STRUCTURE DEVELOPED AND
 DEMONSTRATED. (ROCKWELL SCIENCE CENTER)
- MODULE RESPONSES TO ENVIRONMENT AS A FUNCTION ENCAPSULANT PROPERTIES AND THICKNESSES
 PREDICTABLE BY COMPUTER MODELING. REDUCED VARIABLE MASTER CURVES DEVELOPED FOR
 CELL STRESS PREDICTION FOR WIND AND TEMPERATURE. (SPECTROLAB AND JPL)
- COMPUTER MODEL OF EVA PHOTODEGRADATION YIELDS DEGRADATION PRODUCTS VS TIME. LONG INCUBATION PERIOD INDICATED (5 10 YEARS). (UNIV. OF TORONTO)
- REPORT ON EXPERIMENTAL PHOTOTHERMAL CHARACTERIZATION OF CANDIDATE POTTANTS AND
 COVER FILM MATERIALS EXPOSED TO UV AND AIR UP TO 105°C COMPLETED AND IN PUBLICATION.
 (JPL).

Encapsulation Requirements

WHEN ONE OF THESE IS VIOLATED YOU HAVE DAMAGE AND POTENTIAL FAILURE

ORIGINAL PAGE IS OF POOR QUALITY

PV Module Failure Analysis Sequence

Durability Analysis Categories

DESIGN DETAILS		MT'L & CONFIG.
EXPOSURE	QUAL FIELD ACCEL / TIME	TEST CONDITIONS
LOADS	RAD TMP ATM H2U WND MEC VLT	INTENSITY/TIME
COMPONENT	COV POT PAN EDG PVC	OR MATERIALS
LOCALITY	SRF BLK INT	WHICH OR WHERE
RESPONSE	OPT STR THM FLD CHM ELC	QUANTITATIVE
CHANGE	CHM PHY GEO	MEASURABLE/VISIBLE
DAMAGE	OPT ENC PVC ISO	INTEGRITY
FAILURE	OPT PVC ISO	OPERATIONAL
PENALTY	PWR NC: HZD	VALUE LOSS

Example

DESIGN DETAILS	SENSOR TECH BLK 11	CONF, MTL & FLAWS
EXPOSURE	ACCEL / TIME 250 CYCLF?	TEST CONDITIONS
LOADS	(MP) (ATM) (H2O) (VLT)	INTENSITY/TIME
COMPONENT	POT PAN PANEL PVC INTERCONNECTS	OR MATERIALS
LOCALITY	SRF (BLK) (NT) (BLK) (BLK)	WHICH OR WHERE
RESPONSE	(PT) (STR) (THM) (FLD) (CHM) (THM)-(STR	REVERS I BLE/QUANT
CHANGE	YELLOW FATIGUE GEO PHY	MEASURABLE/VISIBLE
DAMAGE	BOTH INTERCONNECTS OF	INTEGRITY VIOLATED
FAILURE	SETIES CELL OPEN 10 OF 10 MODULES IN 250	OPERATIONAL
PENALTY		VALUE LOSS

MATERIAL RESEARCH AND EVALUATION

SPRINGBORN LABORATORIES, INC.

Candidate Pottant Materials

SHEET LAMINATION GRADES:

- . EMA
 - EVA

CASTING SYRUPS:

- POLYBUTYL ACRYLATE
- . ALIPHATIC POLYURETHANE

PHASES:

- . INDUSTRIAL EVALUATION GRADE
- . TECHNOLOGY READINESS STAGE

CURRENT WORK:

- . ADVANCED CURE SYSTEMS
- . THERMAL AGING EVALUATION
- . ADVANCED STABILIZATION

Pottants

INVESTIGATION OF PEROXIDE CURING AGENTS:

- . CURE POLYMER TO HIGH GEL CONTENTS
- . CURE IN THE RANGE OF 120°C TO 160°C WITH NO PREMATURE "SCORCH" AT 110°C MUST BE SOLUBLE IN THE RESIN AND NON-VOLATILE TO PREVENT LOSS
- MUST NOT SENSITIZE THE AGING OF THE RESIN (NON-AROMATIC)

 MUST BE COMPATIBLE WITH THE STABILIZERS AND OTHER INGREDIENTS
- . MUST NOT PRODUCE CHEMICALLY ANTAGONISTIC EYPPODUCTS OF RESULT IN BUBBLING

GENERAL MECHANISM:

- 1. RO-OR 2 RO-
- 2. P-H + R0+ → P+ + ROH
- 3. 2P° → P P (CROSSLINK)
- TERTIARY HYDROGENS ON THE POLYMEP EACKEONE MOST READILY ABSTRACTED.
- CURING MUST BE CONDUCTED IN THE ABSENCE OF OXYGEN
 TO BE EFFECTIVE AND TO PREVENT OXIDATION OF THE RESIN.

Pottant Compounds

ADVANCED CURE SYSTEMS IN EVA

	TIME	REQUIRED	FOR 70%	GEL CONT	TENT
CURE TEMP.	120	130	140	150	160
LUPEPSOL 101	N/A	N/A	45	15	6
LUPERSOL 99	30	20	12	8	2
LUPERSOL 331-80B	15	10	5	2	2
LUPERSOL TBEC	30	10	4	2	1

ALL PEPOXIDES COMPOUNDED INTO STANDARD FORMULA, A9918.

NO CURE OCCURS AT 119°C WITH ANY PEROXIDE: SHOULD SURVIVE EXTRUSION OK.

ADVANCED CURE SYSTEMS IN EMA

	TIME REQUIRED FOR 50% GEL CONTENT			
	130°C	<u>140°C</u>	150°C	
LUPERSOL 101	N/A	60	30	
LUPERSOL 99	30	15	5	
LUPERSOL 331-80B	15	10	5	
LUPERSOL TREC	25	5	∠ 2	

- . ALL PEROXIDES TESTED IN STANDARD FORMULA NO. 13439.
- . NO CURE AT 110°C IN ANY FORMULATION: SHOULD SURVIVE EXTRUDER OK.

ORIGINAL PAGE IS OF POOR QUALITY

NEW CUPING AGENTS FOR EVA AND EMA

	Z ACTIVE	ONE HOUR HALF-LIFE TEMPERATURE	FLASH POINT (VOLATILITY)
LUPERSOL 101	1007	138°C	43 ⁰ C
LUPERSOL 331-80B	75%	111℃	40 ⁰ C
LUPERSOL 99	75%	118°C	77°C
LUPERSOL TEEC A.	1007	120°C	101°C

- . LUPERSOL TBEC CURING AGENT OF CHOICE:
- . HIGHEST CURING EFFICIENCY
- . 100% ACTIVE, NO DILUENT
- . LOWEST VAPOR PRESSURE

TECHNOLOGY VOIDS:

- . PLANT EXTRUSION PUNS
- . SHELF LIFE DETERMINATION
- . COMPATABILITY WITH ADHESION SYSTEM
- A. LUPERSOL TBEC IS 0,0-T-BUTYL-0-(2-ETHYL HEXYL) PEROXY CARBONATE

ORIGINAL PAGE IS
OF POOR QUALITY

ETHYLENE VINYL ACETATE, A9918 (COMMERCIAL FORMULATION)

CAVEAT:

- . CURING AGENT (PEROXIDE) IS SLIGHTLY VOLATILE

 KEEP THE EVA IN ROLL FORM WHERE LOSS IS INHIBITED
- . DO NOT USE CUT SHEET WHICH HAS BEEN OPENLY EX-POSED FOR OVER ONE DAY

ROLLS APPEAR TO HAVE INDEFINITE SHELF LIFE.

NEED TO DETERMINE PEROXIDE LOSSES VERSUS TIME AND STORAGE CONDITIONS

Butyl Acrylate Casting Syrup

FORMULA: BA 13870

INDUSTRIAL SAMPLES AVAILABLE (LABORATORY PROCESS)

	CURE TIME GUIDE				
	25°C	35°C	50°C	60°C	70 ⁰ C
TIME TO ONSET OF	STABLE (A)	STABLE (A)	60	25	6.5
CURE (MINUTES)					

- , PILOT PLANT QUANTITIES
- . INITIATOR AND DATA SHEET SUPPLIED WITH EACH REQUEST
- . PRIMER: TENTATIVE RECOMMENDATION

 SPRINGBORN 14588

 (DOW CORNING Z-6020 WITH TETRAETHYL

 SILICATE)

 ALSO PROVIDED WITH REQUEST
- A. STABLE AT LEAST ONE WEEK, REFRIGERATION SUGGESTED.

Aliphatic Urethane Encapsulant

FORMULA: Z-2591

. AVAILABLE - DEVELOPMENT ASSOCIATES, INC. .I.R , NWOTSDNIN HTRCN

. COST:

APPX. \$3.00 PER POUND

(MIXED SYSTEM)

. CONTACT: MR. BUD NANNIG

. PRIMER: . TENTATIVE RECOMMENDATION

DOW CORNING Z-6020

(10% SOLUTION IN METHANOL)

. BAKE PRIMERS ALSO

AVAILABLE - DEVELOPMENT

ASSOCIATES, INT.

ORIGINAL PAGE IS OF POOR QUALITY

RS/4 Exposures

POTTANT COMPOUNDS:

				7 PROPE	RTY RETAINED
POTTANT		HOURS		TENSILE	ELONGATION
URETHANE Z-2591		4,000		827	917
EMA 23439		7,600		120%	1197
EMA 11877		15,000		130%	117%
EMA 2205		15,000		5%	5%
(UNCOMPOUNDED)	REMOV			EMOVED	
BUTYL ACRYLATE 13870		7,0		60%	88%
EVA W/UV-2098		JUST STA	RTED		
EVA W/5-VINYL TINUVIN REACTED IN		15,000		77%	78%
REFERENCE:					
POLYETHYLENE UNSTABILIZED	500		10%		
POLYPROPYLENE UNSTABILIZED	500		0%		

OUTER COVER AND BACK COVER FILMS:

		7 PROPER	* PROPERTY RETAINED	
OUTER COVER FILM	HOURS	TENSILE	ELONGATION	
ACRYLAR X-22417	12,000	54%	100%	
TEDLAR 100 RG 30 UT	14,000	947	98.5%	
TEDLAR 4662	10,800	140%	38%	
TEDLAR OSVT (W/VINYL TINUVIN)	10,800	67 %	17	
FLUOREX-A	10,800	70%	30%	
BACK COVER FILMS				
TEDLAR 200 BS 30 WH	10,800	98%	937	
SCOTCHPAR 20CPH	6,600	95%	74%	
KORAD 63000	6,600	94%	71%	

. TEDLARS (BOTH CLEAR AND PIGMENTED)
APPEAR TO BE MOST STABLE.

ORIGINAL PAGE IS OF POOR QUALITY

"ACRYLAR" BIAXIALLY ORIENTED

ACRYLIC FILM

(3M X 22417)

DECREASE IN VISCOSITY AVERAGE MOLECULAR WEIGHT WITH EXPOSURE TIME.

MOLECULAR WEIGHT DECREASES FROM 116,000 TO 94,800 IN 10,000 HOURS TIME.

ORIGINAL PAGE IS OF POOR QUALITY

EVA POTTANT

NO COVER FILM)

. CLEAR STABILIZED EVA EXPOSED 30,000 HOURS, LITTLE CHANGE.

	TOTAL INTEGRATED	ULTIMATE*	TENSILE*
	TRANSMISSION (%)	ELONGATION (Z)	STRENGTH (PSI)
CONTROL	91	510	1890
EXPOSED 30,000 HRS.	90	480	1450
7 CONTROL	997	94%	77 % A+

UNSTABILIZED ELVAX 250 (EVA) BECOMES SOFT, TACKY, - LOSES PHYSICAL PROPERTIES IN LESS THAN 1,000 HOURS.

*ASTM D-638

A. FIRST SIGN OF CHANGE NOTICES THROUGHOUT EXPOSURE PERIOD

Substrate Materials

CURRENT CANDIDATES

MATERIAL	¢/FT ²	\$/M ²
COLD ROLLED MILD STEEL, 28 GAUGE	15,5	1.67
SUPER DORLUX HARDBOARD (MASONITE CORP.)	14.0	1.51
DURON TEMPERED HARDBOARD (US-GYPSUM COMPANY)	14.5	1.56

- . SUBSTRATE ALLOCATION APPROX. 70¢/FT2
- . COST INCREMENT WILL APPEAR FOR PROTECTIVE TREATMENT

PROTECTIVE COATINGS OR TREATMENTS REQUIRED FOR LONG OPERATING LIFE IN OUTDOOR ENVIRONMENT

POSSIBILITIES:

- . ENCAPSULATE ENTIRE SUBSTRATE WITH WEATHERABLE POTTANT
- . LAMINATION WITH OCCULSIVE FOIL: A.

E.G.: "HOT-FOIL" TREATMENT
(ALUMINUM FOIL WITH HOT MELT ADHESIVE)

- . LAMINATE WITH ORGANIC FILMS
- . COATING WITH WEATHERABLE ENAMEL^B OR PAINT
- . COMPINATIONS OF THESE
- . CHEMICAL MODIFICATION (WOOD)
- A. TECHNIQUE BEING DEVELOPED BY U.S. GYPSUM AND OTHERS.
- B. RECOMMENDATIONS FROM:

DOW CORNING CORPORATION

DEXTER - MIDLAND CORPORATION

STEEL STRUCTURES PAINTING

COUNCIL (SSPC)

TESTING

TEST "MODULES" PREPARED WITH COATED STEEL PANEL, BUTYL SEALANT AND GASKET

Corrosion Experiments

MILD STEEL SUBSTRATES SALT SPRAY EXPOSURE

(ASTM B-117)

COATING	ADHESIVES	HOURS	CONDITIONS
ACRYLAR	ACRYLIC	2,000	R
SCOTCHPAR	ACRYLIC	2,000	R
ALUM. FOIL	ACRYLIC	1,500	R
KORAD (WHITE)	ACRYLIC	2,000	R
EVA	SILANE	1,500	R
CLEAR KORAD	ACRYLIC	2,000	R
ACMITITE	ACRYLIC	2,500	R
WHITE TEDLAR	ACRYLIC	2,000	R
302 STAINLESS	ACRYLIC	2,500	R
EVA/SCUTCHPAR	SILANE	4,500	I
EVA/STAINLESS	SILANE	2,500	R
EVA/TEDLAR	SILANE	2,500	R
SCOTCHCLAD	NONE	2,000	R
EVA	CHROMATE/SILANE	4,000	11
VINYLIDENE/FLUORIDE	EPOXY	3,500	III
SILICONE/POLYESTER	EP0XY	3,100	II
ACRYLIC AUTO TOPCOAT	EPOXY	3,100	III

I NO OBSERVABLE CHANGE

II SOME SIGNS OF DETERIORATION (CORROS!ON, DELAMINATION)

III NOTICEABLE DETERIORATION

R SPECIMEN FAILED, REMOVED

MILD STEEL SUBSTRATES OUTDOOR EXPOSURE, ENFIELD, CT.

COATING	ADHESIVES	HOURS	CONDITIONS
ACRYLAR	ACRYL!C	4,500	II
SCOTCHPAR	ACRYLIC	4,500	11
ALUM. FOIL	ACRYLIC	4,500	I
KORAD (WHITE)	ACRYLIC	4,500	11
EVA	SILANE	4,500	II
CLEAR KORAD	ACRYLIC	1,500	R
ACMITITE	ACRYLIC	4,500	I
WHITE TEDLAR	ACRYLIC	4,500	I
302 STAINLESS	ACRYLIC	4,500	II
EVA/SCOTCHPAR	SILANE	4,500	Ī
EVA/STAINLESS	SILANE	4,500	H
EVA/TEDLAR	SILANE	4,500	11
SCOTCHCLAD	NONE	4,500	11
EVA	CHROMATE/SILANE	4,000	11
VINYLIDENE FLEGRIDE	EPOXY	3,400	11
SILICONE/POLYESTER	EPOXY	3,100	11
ACRYLIC AUTO TOPCOAT	EPOXY	3,100	11

- NO OBSERVABLE CHANGE
- II SOME SIGNS OF DETERIORATION (CORROSION, DELAMINATION)
- III NOTICEABLE DETERIORATION
- R SPECIMEN FAILED, REMOVED

Hardboard Protection Experiments

"SUPER DORLUX" - MASONITE CORPORATION

"MODULES" PREPARED WITH BUTYL EDGE SEAL AND
GASKET - SIX MONTHS OUTDOORS,
ENFIELD, CONNECTICUT

COATING	ADHESIVE	CHANGE MODULE	I CHANGE HARDBOARD
ACRYLAR	3M 4910	40	53
KORAD 63000	3M 4910	58	75
PAINT (RUSTOLEUM)	-	+1.98	+2.57
302 STAINLESS	3M 4920	03	~.05
ALUM. FOIL	3% 4910	+.07	+.09
SCOTCHPAR 20CP	3M 4910	+.03	+.05
EVA 9938	A 11861	+.36	+.53
TEDLAR, WHITE	68070	26	34
MELAMINE "SHOWER COATING"			
AND EVA 9918 WITH A 11861	-	+2.56	+3.26
HARDBOARD	UNCOATED	-	+3.36

- . NO SIGNS OF DELAMINATION OF EDGE SEAL DETERIORATION
- . RAINFALL, 12.6 INCHES TOTAL
- . BEST PERFORMANCE TO DATE WITH METAL FOIL COVERS
- . BEST ORGANIC FILM, SCOTCHPAR POLYESTER

"SUPER DORLUX" MODULES PREPARED
WITH BUTYL EDGE SEAL AND GASKET

Soiling Effects

DECAY IN OPTICAL TRANSMISSION SITE: ENFIELD, CONNECTICUT

3	TRANSM	ISS	· *401
---	--------	-----	--------

	2 11/41/201014				
MATERIAL	CONTROL	4 WEEKS	8 MEEK2		
PYREX GLASS	92	90	90		
SODA LIME GLASS	87	84	87		
TEDLAR 100BG30UT	84	72	77		
RTV 615	79	65	65		
Q1-2577	7 4	65	64		
SYLGARD 184	82	81	54		

A. DIRECT TRANSMISSION FROM 350 NM TO 900 NM.

JPL SOILING THEORY SUGGESTS THAT SOIL RESISTANT SUPFACES HAVE THE FOLLOWING PROPERTIES

HIGH SURFACE HARDNESS

HYDROPHOBIC

OLEOPHOBIC

ION FREE

LOW SURFACE ENERGY

SMOOTH

Antisoiling Experiments

SURFACE UNDER INVESTIGATION:

SUNADEX GLASS

3M ACRYLIC FILM, X-22417

TEDLAR 100BG30UT - DU PONT

SURFACE TREATMENTS UNDER INVESTIGATION:

3M FLUOROSILANE TREATMENT L-1668A.

PERFLUORODECANOIC ACID BASED COATINGA.
DOW CORNING E-3820

OWENS ILLINOIS GLASS RESIN 650

GENERAL ELECTRIC SHC - 1000

ROHM & HAAS WL-81 ACRYLIC COATING

A. ALSO USED WITH OZONE TREATMENT TO COUPLE TO ORGANIC SURFACES.

Antisoiling Program

SHORT CIRCUIT MEASUREMENT DEVICE

CURRENT W/SPECIMEN X 100 = % CHANGE IN SHORT SHORT CIRCUIT CURRENT CIRCUIT SURRENT

Antisoiling Test Results

TEN MONTH EXPOSURE ENFIELD, COMN.

TREATMENT	SUNADI	EX	ACRYLIC X-22417		TEDLAR 100 BG 30 UT		
	INITIAL	<u>^ 3</u>	INTTIAL	Δz	INITIAL	<u>△</u>	
CONTROL NO TREATMENT	90.5	-3.2	84.0	10.8	87.7	-8.8	
L-1668	89.7	-2.3	80.3	-6.6	88.4	-5.3	
L-1668/0Z0ME	Α,	Α.	84.5	-6.1	88.1	-5.0	
PFDA E-3820	90.0	-2.7	90.08	-6.8	86.0	-3.8	
PFDA E-3820/0ZONE	Α.	Α.	84.1	-4.9	86.0	-6.4	
GLASS RESIN 650	91.0	-5.7	81.1	-7.4	89.0	-6.5	
SHC - 1000	91.9	-4.5	82.1	-7.6	89.0	-5.6	
HL-81	90.7	-5.1	83.6	-6.3	87.7	-5.2	

A. NOT PREPARED

Antisoiling Experiments

TEN MONTHS EXPOSURE, ENFIELD, CONNECTICUT

% LOSS IN 1_{SC} MITH STANDARD CELL TREATED SUNADEX GLASS

BEST TREATMENT, L-1668

ORIGINAL PAGE IS OF POOR QUALITY

ENVIRONMENTAL ISOLATION TASK

TEN MONTHS EXPOSURE, ENFIELD, CONNECTICUT

** LOSS IN 1_{SC} FITH STANDARD CELL

J. J. G. A. B. 150.

TREATED ACRYLAR (SUPPORTED ON GLASS)

ORIGINAL PAGE IS OF POOR QUALITY

TEN MONTHS EXPOSURE, ENFIELD, CONNECTICUT $$\rm ISS$ IN $\rm 1_{SC}$ WITH STANDARD CELL

TREATED TEDLAR 100BG300UT (SUPPORTED ON GLASS)

BEST TREATMENT, E-3820

ORIGINAL PAGE IS OF POCR QUALITY

GENERAL OBSERVATIONS:

- . SUNADEX HAS BEST CONTROL VALUES (-3.0%)
- . SUNADEX: BEST COATING, L-1658 (-0.5%)
- . TEDLAR: BEST COATING, E-3820 (-L.5%)
- . ACRYLAR: BEST COATING, OZONE + E-3820 (-2.4%)
- GOOD CORRELATION WITH NATURAL "CLEANING" CONDITIONS

NEW MATERIALS:

- . NEW FLUOROSILANE (SPRINGBORN): PERFLUORO-OCTYL TRIETHOXYSILANE
- REACTIVE POLYMER SURFACE TREATMENT (SPRINGBORN):
 PERFLUOROBUTYL ACRYLATE COPOLYMERIZED
 WITH DGW CORNING Z-6030 SILANE

Accelerated Aging Test Program: Outdoor Photothermal Aging

- . USE NATURAL SUNLIGHT, AVOIDS SPECTRAL DISTRIBUTION PROBLEMS WITH ARTIFICIAL LIGHT SOURCES
- . USES TEMPERATURE TO ACCELERATE THE PHOTOTHERMAL REACTION
- . INCLUDES DARK CYCLE REACTIONS
- . INCLUDES DEW/RAIN EXTRACTION
- . SILICONE RUBBER HEATERS IN OPERATION ONLY DURING SUNLIT HOURS

- TEMPERATURES OF INTEREST, 70°, 90°, 110° C
- TEST MATERIALS:

4 POTTANTS: EVA, EMA, BA, PU 3 OUTER COVERS: SUNADEX, TEDLAR, ACRYLIC COMBINATIONS OF POTTANTS/OUTER COVERS

TESTS:

DIELECTRIC STRENGTH
CHEMICAL INERTNESS (COPPER CORROSION)
OPTICAL TRANSMISSION
STANDARD CELL OUTPUT
GEL CONTENT
YOUNG'S MODULUS
TENSILE STRENGTH
ULTIMATE ELONGATION

. DUPLICATE SPECIMENS - PHOENIX AND FLORIDA

ENCAPSULANT DESIGN ANALYSIS AND VERIFICATION

SPECTROLAB, INC.

C.P. Minning (Hughes Aircraft Co.)

Electrical Test Setup

Electrical Isolation Models (Typical)

Electrical Isolation Test Results

Typical Test Article: Structural/Deflection Test

Structural Deflection Test Setup

Structural Deflection Test Results

LOAD-BEARING MEMBER DEFLECTION AND STRESS

		DEFLECTION, INCHES		STRESS, PSI	
TEST MODULE	DESCRIPTION	TEST	ANALYSIS	TEST	ANALYSIS
SDM -1	GLASS SUPERSTRATE	0.615	0.67	3216	5381
2	GLASS SUPERSTRATE	0.62	0.65	4571	4946
3	GLASS SUPERSTRATE	0.61	0.67	2571	5100
4	GLASS SUPERSTRATE	0.5 8	0.65	2749	4236
5	PLAIN WOOD SUBSTRATE	1.42	1.33	817	752
6	PLAIN WOOD SUBSRTATE	1,36	1.27	766	741
7	RIBBED WOOD SUBSTRATE	FAILURE	-	-	-
8	STEEL SUBSTRATE	0.42	0.5	2357	4395
9	RIBBED WOOD SUBSTRATE	0.37	0.36	NA	NA

PHOTOACOUSTIC TECHNIQUE

JET PROPULSION LABORATORY

R.H. Liang

Photoacoustic Setup

Formation of (OH) as a Function of Accelerated and Real-Time Aging

MINIMODULE ENCAPSULANT FIELD TESTING

JET PROPULSION LABORATORY

P. Frickland

Summary of Minimodule Temperature and Humidity-Freeze Testing

		$\triangle^{P_{(\tau)}/P_{(o)}}$		
SUBSTRATE	TEMP	HUMID/FREEZE		
KORAD/EVA/GALVANIZED STEEL (DE 131-145)	- 4	- 6		
TEDLAR/EVA/GLASS REINFORCED CONCRETE (MB 110-124)	- 0	-11		
KORAD/EVA/Super Dorlux (DE 101-115)	-25	-59		
SUPERSTRATE (GLASS)				
SODA-LIME GLASS/POLYURETHANE (PN 101-115)	+ 5	+ 1		
SODA-LIME GLASS/POLYURETHANE/ACMETITE (PM 116-130)	+ 2	+ 1		
SODA-LIME GLASS/EVA/NHITE EVA/CRANEGLASS/AL FOIL				
(DE 116-130)	- 4	- 6		
SUNADEX GLASS/EVA/ACMETITE (CE 131-145)	+ 2	+ 1		
SUNADEX GLASS/EVA/CRANEGLASS/ACMETITE (CE 116-130)	- 2	- 1		
SUNADEX GLASS/EVA/CRANEGLASS/MYLAR (CE 101-115)	- 2	- 2		
SUNADEX GLASS/RTV SILICONE/CRANEGLASS/ACMETITE				
(GE 101-105)	+ 1	+ 2		
7070 ROBOSTI ICATE GLASS (FSR)/FVA/ACMETITE (SF 101-110)	+ 1	n _100		

Summary of Minimodule Hail Testing

SUBSTRATE	RESULTS
KORAD/EVA/GALVANIZED STEEL (DE 131-145)	OK
TEDLAR/EVA/GLASS REINFORCED CONCRETE (MB 110-124)	OK
KORAD/EVA/SUPER DORLUX (DE 101-115)	ок
SUPERSTRATE (GLASS)	
SODA-LIME GLASS/POLYURETHANE (PW 101-115)	ок
SODA-LIME GLASS/POLYURETHANE/ACMETITE (PW 116-130)	OK
SODA-LIME GLASS/EVA/MHITE EVA/CRANEGLASS/AL FOIL (DE 116-130)	ок
SUNADEX GLASS/EVA/ACMETITE (CE 131-145)	ок
SUNADEX GLASS/EVA/CRANEGLASS/ACMETITE (CE 116-130)	•
SUNADEX GLASS/EVA/CRANEGLASS/MYLAR (CE 101-115)	OK
SUNADEX GLASS/RTV SILICONE/CRANEGLASS/ACMETITE (GE 101-105)	OK
7070 Borosilicate Glass (ESB)/EVA/ACMETITE (SE 101-110)	BAD (4 & 25 MPH)

Cracked at edge only, 3rd impact 52 mph

