WHAT IS CLAIMED:

1. A system comprising:

a radid receiver;

switched mode circuitry operating at a selected switching frequency; and

circuitry for setting said switching frequency of said switched mode circuitry as a function of a frequency of a signal being received by said radio receiver.

- 2. The system of Claim 1 wherein said switched mode circuitry comprises a switching power supply.
- 3. The system of Claim 1 wherein said switched mode circuitry comprises a Class D amplifier.
- 4. The system of Claim 1 wherein said circuitry for setting said switching frequency of said switched mode circuitry comprises:
- a plurality of crystals of differing resonance frequencies;
- a crystal oscillator for generating said switching frequency from a selected one of said crystals; and
- control circuitry for selecting said selected one of said crystals.

5 6

7

4 5

6 7

8 9

	-1
	5
	6
	7
17 1	
•	_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
4.13	3

Ü

THE THE PERSON NAMED IN

1 2

1

2

3

4

1

2

3

5. The system of Claim 1 wherein said circuitry for setting said switching frequency of said switched mode circuitry comprises:

a signal generator for generating a base frequency;
a programmable divider for dividing said base frequency
by a selected divisor to generate said switching frequency;
control circuitry for selecting said divisor.

6. The system of Claim 1 wherein said circuitry for setting said switching frequency includes a microcontroller operable to select said switching frequency in response to selection of a reception frequency band by user input.

7. The system of Claim 1 wherein said circuitry for setting said switching frequency detects said frequency of said signal received by said radio receiver by measuring a local oscillator frequency.

8. The system of Claim 1 wherein said switching frequency is selected such that at least one harmonic of said switching frequency lies outside a frequency band including said signal being received by said radio receiver.

WSM Docket No. 2836- P108US

9

6

7

receiver.

- An amplifier for use in a system including a radio 9. 1 2 receiver comprising: an output transistor for driving an output; and 3 pulse width modulation circuitry for generating a pulse 4 5 width modulated signal in response to an input signal for 6 switching the conduction state of said output transistor, a 7 frequency of said pulse width modulated signal selected as a 8 function of a frequency of a signal received by the radio
- 1 10. The amplifier of Claim 9 wherein said pulse width 2 modulation circuitry comprises:
- a crystal oscillator for generating an oscillator
 signal of a selected base frequency from a selected one of a
 plurality of crystals;
 - a microcontroller for selecting said selected one of said crystals as a function of said frequency of said signal received by said radio receiver; and
- 9 circuitry for converting said oscillator signal into 10 said pulse width modulated signal.
- 1 11. The amplifier of Claim 10 wherein said circuitry for
- 2 converting comprises a ramp generator for generating a
- 3 ramped signal in response to an output of said oscillator
- 4 and a comparator for comparing the input signal with an
- 5 output of said ramp generator.

(1)

2

3 4

5

1	12. The amplifier of Claim 9 wherein said pulse width
2	modulation circuitry comprises:
3	a signal generator for generating a base signal of a
4	selected base frequency;
5	a divider for dividing said base frequency by a
6	selected divisor to generate a signal at said frequency of
7	said pulse width modulated signal;
8	a microcontroller for selecting said divisor as a
9	function of said frequency of said signal received by said
10	radio receiver; and
11	circuitry for converting said signal at said frequency
12	of said pulse width modulated signal into said pulse width
13	modulated signal.
1	13. The amplifier of Claim 12 wherein said signal
2	generator comprises a crystal oscillator.
1	14. The amplifier of Claim 9 wherein said output
2	transistor comprises a metal oxide semiconductor field
3	effect transistor.
1	15. The amplifier of Claim 9 wherein said frequency of

said pulse width modulated signal is selected such that at

least one harmonic of said pulse width modulated signal is

outside a selected frequency band including said signal

received by said radio receiver.

1

(1) (1) 3

. 4

□ 6

7

8

1

2

L	16. A switched mode power supply for use in a system
2	including a radio receiver comprising:
3	a transistor for driving an output; and
1	circuitry for generating a pulse width modulated signal
5	for switching said transistor on and off at a switching
5	frequency selected as a function of a reception frequency of
7	said radio receiver.

- 1 17. The power supply of Claim 16 wherein said switching
 2 frequency is selected such that at least one harmonic of
 3 said switching frequency is outside a selected frequency
 4 band including said signal received by said radio receiver.
 - 18. The power supply of Claim 16 wherein said circuitry for generating comprises:

a crystal oscillator for generating said switching frequency using a selected one of a plurality of crystals of differing resonance frequencies; and

circuitry for selecting the one of the plurality of crystals for generating said switching frequency as a function of a frequency of said reception frequency.

19. The power supply of Claim 18 wherein said circuitry for selecting comprises a microcontroller.

! <u>.</u> .]
4]
ij.
(1)
ľij.
4
12
[:]
ij.
į,į
i,,

1	20.	The power supply of Claim 16 wherein said circuitry for
2		generating comprises:
3		a base frequency generator; and
4		a programmable divider for dividing said base frequency
5	by a	selected divisor to generate said switching frequency.

5

6

7

8

9

2 --- 3

1

() () 1

Üĺ

73) 13) 134

(1) 2

[i] [i] 3

1	21.	A metho	d of	switch	ning	a r	power	transistor	used	in	a
2 -	radio	receiver	compi	rising	the	ste	eps of	£:			

determining a frequency of a received signal being received by the radio receiver; and

generating a switching signal for switching the power transistor in response to said step of determining, a frequency of the switching signal selected such that at least one harmonic of the switching signal is outside a frequency band including the frequency of the received signal.

22. The method of Claim 21 wherein the radio includes a local oscillator and said step of determining comprises the step of counting periods of the local oscillator.

23. The method of Claim 21 wherein the radio includes a microcontroller and said step of determining comprises the step of decoding user input selecting the frequency of the received signal.

- 1 24. The method of Claim 21 wherein said step of generating 2 comprises the substeps of:
- selecting a crystal from a plurality of crystals of differing resonance frequencies; and
- generating the frequency of the switching signal from the selected crystal using a crystal oscillator.

25.	The method of Claim 21 wherein said step of generating
	comprises the substeps of:
	generating a base frequency; and
	dividing the base frequency by a selected factor to
gene:	rate the switching frequency.

40D

1

2

3

5

The principle of the control of the