Forecast

To predict the future state of a variable or system

Prediction is very difficult, especially if it's about the future - *Niels Bohr*

Inference

- Pearson: How reliable is the evidence?
 - how reliable is the procedure?
- How reliable are algorithms (Efron & Hastie 2016)?

Different inference goals

Estimation

Infer a property of a population (e.g. mean) from a sample

Model selection

Infer the data generating process from among a set of candidate datagenerating processes

Hypothesis test (association)

Infer that y is associated with x

Causation

Infer that x causes y

Infer the size of an effect due to an experimental intervention (estimation) Infer that an experimental intervention had an effect (H-test)

Prediction

Predict the value of a new observation or population state (extrapolation or interpolation)

Predict the population state in the future (forecast/extrapolation)

Why forecast?

- Make decisions about the future
 - Scenarios: what will happen if we …?
 - Making ecology relevant to society
- Prediction: progress and test understanding
 - RH Peters 1991 A Critique for Ecology
 - Houlahan et al 2017
 - but counter arguments

History of ecological forecasting

- Early qualitative (e.g. climax concept)
- Population Viability Analysis
 - 1990s data science competitions
- Foot and Mouth Disease, UK 2001
 - SIR model, nearly real time forecasts
- Then: small data. Now/soon: big data
 - new satellite instruments
 - drones, cameras, audio etc
 - low orbit IoT connectivity

Cultures & algorithms

- 3 cultures of modeling with data
 - Natural process, data generative, algorithmic
- 3 algorithm classes
 - Model, training, inference

Modeling with data

Algorithm classes

	Model	Training	Inference		
Natural process "science"	HiFi process (e.g. predator -prey, C cycle)	Frequentist: Optimization (e.g. max lik)	Sampling distribution		Confidence intervals Prediction intervals
Data generative "statistics"	Generic functions (e.g. linear,	Bayesian: Integration (e.g. MCMC) Other:	Posteriorsample Cross-validation -		Credible intervals Posterior prediction intervals CV, AIC, BIC etc
Algorithmic "machine learning"	normal) Generic algorithms (map inputs to outputs)	Optimization	Cross-validation		

Predictive performance

Basic idea: out-of-sample validation

Fit model to training dataset

Test model on validation dataset

k-fold cross validation (CV)

Divide dataset into k parts (preferably randomly)

... repeat with each test subset

Leave-one-out cross validation

- LOOCV
- This is k-fold CV for k = n
- Information criteria
 - AIC frequentist LOOCV asymptotically
 - AICc frequentist LOOCV, finite sample
 - WAIC Bayesian LOOCV asymptotically
 - LOOIC Bayesian LOOCV, finite sample

Role of models

- Scaffold for knowledge synthesis
- Uncertainty accounting (critical)
- Estimation engine (via calibration/training)
- Prediction engine

Lots of our focus will be on models

Challenges

- Informatics
 - need lots of data
 - how to work with big data!
 - quality (garbage in -> garbage out)
- What is forecastable?
 - irreducible uncertainty
 - stochasticity, nonlinearity, high dimensionality (extreme e.g. chaos)
 - weather forecasts improved

Improvements to weather forecasts

Goals

- Just do it
- Culture & community
- Work as a team to produce a forecast using current best practices