Support Vector Machines (SVM)

3. Recap on Logistic Regression

Recap on logistic regression and the perceptron algorithm

Classification goal: split data

Step 1: Start with a random line with blue and red sides.

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 3: (repeat 1000 times)

- Pick random point
- If point is correctly classified:
 - Do nothing
- If point is incorrectly classified
 - Move line towards point

Step 4: Enjoy your line that separates the data!

4. Choice between two lines

Which line is better?

Which line is better?

``... How to separate lines?

5. SVM algorithm SC

SVM algorithm

Step 1: Start with a line, and two equidistant parallel lines to it.

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 3: Pick a number close to 1. (the expanding factor) 0.99

- Pick random point
- If point is correctly classified:
 - Do nothing
- If point is incorrectly classified
 - Move line towards point

SVM algorithm

Step 1: Start with a line, and two equidistant parallel lines to it.

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 3: Pick a number close to 1. (the expanding factor) 0.99

- Pick random point
- If point is correctly classified:
 - Do nothing
- If point is incorrectly classified
 - Move line towards point

SVM algorithm

Step 1: Start with a line, and two equidistant parallel lines to it.

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 3: Pick a number close to 1. (the expanding factor) 0.99

- Pick random point
- If point is correctly classified:
 - Do nothing
- If point is incorrectly classified
 - Move line towards point

SVM algorithm

Step 1: Start with a line, and two equidistant parallel lines to it.

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 3: Pick a number close to 1. (the expanding factor) 0.99

- Pick random point
- If point is correctly classified:
 - Do nothing
- If point is incorrectly classified
 - Move line towards point
- Separate the lines using the expanding factor

SVM algorithm

Step 1: Start with a line, and two equidistant parallel lines to it.

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 4: (repeat 1000 times)

- Pick random point
- If point is correctly classified:
 - Do nothing
- If point is incorrectly classified
 - Move line towards point
- Separate the lines using the expanding factor

Step 5: Enjoy your lines that separate the data!

Perceptron algorithm

Step 1: Start with a random line of equation ax + by + c = 0

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 3: Pick a small number. 0.01 (learning rate)

Step 4: (repeat 1000 times)

- Pick random point (p,q)
- If point is correctly classified
 - Do nothing
- If point is blue, and ap+bq+c > 0
 - Subtract 0.01p to a
 - Subtract 0.01q to b
 - Subtract 0.01 to c
- If point is, red and ap+bq+c < 0
 - Add 0.01p to a
 - Add 0.01q to b
 - Add 0.01 to c

Step 5: Enjoy your line!

SVM algorithm

Step 1: Start with a random line of equation ax + by + c = 0. Draw parallel lines with equations:

- ax + by + c = 1, and
- ax + by + c = -1

Step 2: Pick a large number. 1000 (number of repetitions, or epochs)

Step 4: Pick an expanding rate. 0.99

- Step 5: (repeat 1000 times)
 - Pick random point (p,q)
 If point is correctly classified
 - Do nothing
 - If point is blue, and ap+bq+c > 0
 - Subtract 0.01p to a
 - Subtract 0.01q to b
 - Subtract 0.01 to c
 - If point is, red and ap+bq+c < 0
 - Add 0.01p to a
 - Add 0.01q to b
 - Add 0.01 to c

Multiply a, b, c, by 0.99

6. Error functions HS

7. Error function(s)

Which line is better?

Perceptron Error

SVM Classification Error

SVM Classification Error

SVM Classification Error

Margin Error

Margin Error

Margin Error

Gradient Descent

Same as the SVM trick!

Minimize using calculus (gradient descent) Small error Large error Good SVM **Bad SVM**

Challenge - Gradient Descent

8. The C Parameter

Which line is better?

The C parameter

