

Advancing Materials Modeling to Accelerate Net Shape Fabrication

Current Status and Future Vision

Kris Wise NASA LaRC

Incubator Capability Target

A tool for on-demand fabrication of net shape, multifunctional components for aerospace structural applications.

Meeting this target will require significant advances in:

- Printer technology
- CNT fiber reinforced feedstock
- Methods for optimally designing the components to leverage advances in printer and feedstock

Why a New Design Method?

Current design methods were created for:

- Metals subtractive manufacturing
- Composites sheet/tape prepreg layup manufacturing
- Plastics molding and extrusion processes

New materials and fabrication process permit:

- Optimizing placement/orientation of CNT reinforcement
- Balancing stiffness/strength with mass reduction
- Incorporating electrical and thermal conductivity paths
- Optimizing tool paths for fabrication

Existing design tools cannot do what is required

Topology Optimization

Topology Optimization is an automated technique for optimally designing structures subject to prescribed performance targets and boundary conditions

Input

- Loading Requirements
- Mass Constraints
- Dimensional Boundaries
- Material(s) Properties

Structural Design

Material Selection And Placement

Output

- Component Shape
- Material Distribution
- Loading Capacity
- Response Properties

Topology Optimization Flow Chart

Multiscale Structure of CNT Fibers

Multiscale Modeling for CNT Composites

What is Peridynamic Modeling?

A recent method with exciting capabilities:

- Introduced in 2000, still in active development
- Represents continuum materials with material points
- Nonlocal theory that bridges from finite element to molecular dynamics via an adjustable internal length parameter

Particularly for CNT fiber composite materials:

- Damage initiation and propagation at multiple sites
- Arbitrary fracture paths without special crack growth criteria
- Permits arbitrary numbers and shapes of inclusions and voids
- Material properties depend on detailed micro/mesostructure

Multiscale Modeling for CNT Composites

Composite Properties

Peridynamic Modeling

Properties

Reactive Molecular Dynamics

Quantum Chemistry

Structure

Coarse Grained Dynamics

Molecular Dynamics

Multiscale Structure of CNT Fibers

Topology Optimization Flow Chart

Recent LaRC Modeling Work

Reactive Molecular Dynamics Simulations of CNT/Amorphous Carbon Composites

Ben Jensen, Kris Wise (LaRC) Greg Odegard (MTU)

Fracture of CNT Composites

ReaxFF Simulation of a SWNT Array/Amorphous Carbon Composite

Fracture of CNT Composites

ReaxFF Simulation of a SWNT Bundle/Amorphous Carbon Composite

Fracture of CNT Composites

ReaxFF Simulation of a MWNT Array/Amorphous Carbon Composite

Summary of Fracture Results

<u>Trends in Mechanical Properties</u>

- Axial specific moduli ≈200 GPa, axial specific strength ≈ 30 GPa
- Transverse specific moduli ≈ 50 GPa, transverse specific strengths ≈ 10 GPa
- These results place an upper bound on expected experimental results

Effect of Crosslinking to the Matrix

- SWNT Array most sensitive to crosslinking, which is reduced by bundling
- Smallest reduction in specific modulus found for MWNT array
- Loss in axial properties compensated for by increase in transverse directions

Discontinuous SWNT Bundles

Tension

Compression

Collapse of Large Diameter CNTs

Acknowledgements

- Ben Jensen & Mia Siochi, LaRC
- Greg Odegard, MTU
- Boris Yakobson Group, Rice
- Richard Liang Group, FSU
- James Guest, JHU
- Erdogan Madenci, U Arizona