Università di Parma - Corso di Laurea Magistrale in Ingegneria Informatica

Prova di sistemi multivariabili del 14 Febbraio 2022

Es. 1) (5 punti)

a) Trova una rappresentazione con un modello di stato per il seguente circuito elettrico, in cui l'ingresso è la tensione u del generatore di tensione e l'uscita è data dalla tensione y ai capi dell'induttanza. I parametri R e L sono strettamente positivi.

b) Trova l'insieme degi stati raggiungibili X_R e l'insieme degli stati non osservabili X_{NO} .

Es. 2) (4 punti) Considera il sistema, dove $x(t) \in \mathbb{R}$,

$$\dot{x}(t) = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] x(t) + \left[\begin{array}{c} 0 \\ 1 \end{array} \right] u(t).$$

Fissato un tempo di campionamento T, con $T \in \mathbb{R}$ e T > 0, sia $x^*(k) = x(kT)$ lo stato campionato e sia $u(t) = u_d(\lfloor \frac{t}{T} \rfloor)$ l'ingresso ottenuto applicando il filtro di hold al segnale di controllo $u_d(k)$.

a) Calcola le matrici A_d , B_d del sistema equivalente a tempo discreto, cioè del sistema per cui

$$x^*(k+1) = A_d x^*(k) + B_d u_d(k).$$

b) Posto $u_d(k) = a[0,1]x^*(k)$, trova i valori del parametro $a \in \mathbb{R}$, in functione di T, per cui il sistema discreto retroazionato è instabile.

Es. 3) (3 punti) Considera il sistema a tempo continuo

$$\begin{cases} \dot{x}(t) = Ax(t) \\ x(0) = x_0, \end{cases}$$

con

$$A = \left[\begin{array}{rrrr} 0 & a & 0 \\ 0 & 0 & 0 \\ 1 - a & 1 & a - 1 \end{array} \right]$$

dove $a \in \mathbb{R}$ è un parametro.

- a) Trova il polinomio minimo e il polinomio caratteristico di A in funzione di $a \in \mathbb{R}$.
- b) Per quali valori di $a \in \mathbb{R}$ il sistema è asintoticamente stabile?
- c) Per quali valori di $a \in \mathbb{R}$ il sistema è semplicemente stabile?

Continua dietro.

Es. 4) (4 punti) Considera il sistema a tempo discreto

$$x(k+1) = Ax(k) + Bu(k)$$

dove

$$A = \left[\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 0 & 2 & -1 \end{array} \right], \ B = \left[\begin{array}{ccc} 0 & -1 \\ 1 & -1 \\ 0 & -1 \end{array} \right].$$

Trova una matrice F per cui A + BF abbia tutti gli autovalori in 0.

Es. 5) (4 punti) Considera il sistema a tempo continuo

$$\dot{x}(t) = Ax(t) + Bu(t) \,,$$

dove

$$A = \begin{bmatrix} -1 & 1 & 2 \\ 1 & 0 & a - 1 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

- a) Calcola l'insieme degli stati raggiungibili X_R in funzione del parametro $a \in \mathbb{R}$.
- b) Assunto $a \neq 0$, metti il sistema nella forma canonica per i sistemi completamente raggiungibili, trovando una trasformazione di coordinate che dipende dal parametro $a \in \mathbb{R}$.

Es. 6) (5 punti)

a) Esegui la scomposizione di Kalman per il seguente sistema a tempo continuo, mettendo in evidenza gli zeri strutturali e le sottomatrici di questa forma

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t),$$

$$A = \left[\begin{array}{cccc} -1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & -1 & 2 & 0 \end{array} \right], B = \left[\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array} \right], C = \left[\begin{array}{cccc} 1 & 0 & -1 & 0 \end{array} \right].$$

- b) Calcola la funzione di trasferimento del sistema.
- c) Il sistema è asintoticamente stabile? E' BIBO-stabile?

Es. 7) (5 punti) Un sistema a tempo continuo è descritto dall'equazione

$$\dot{x}(t) = \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right] x(t) + \left[\begin{array}{c} 1 \\ 1 \end{array} \right] u(t) \, .$$

Trova una legge di controllo in retroazione che minimizzi la funzione costo

$$J(u) = \int_0^{+\infty} (x^T(t)Qx(t) + u^T(t)Ru(t)) dt,$$

$$con Q = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} ed R = 1.$$

Es. 8) (3 punti) Considera il sistema

$$\dot{x}(t) = Ax(t),$$

$$x(0) = x_0$$

mostra che se la matrice A è antisimmetrica (cioè soddisfa $A^T = -A$), il sistema non può essere asintoticamente stabile.

$$\frac{Vx}{R} + \frac{Vx - M}{R} + \lambda^{\prime}z = \lambda^{\prime} |$$

$$Vx = \frac{R(\lambda_{1} - \lambda^{\prime}z) + M}{z}$$

$$L\lambda_{1} = \mu - V_{X} = \frac{R(\lambda_{2}^{\prime} - \lambda_{1}^{\prime})}{2} + \frac{\mu}{2}$$

$$L \Lambda_z = V_X = \frac{R[\lambda_1 - \lambda_2] + AL}{2}$$

$$y = M - V_X = \frac{R(\lambda'_2 - \lambda'_1)}{2} + \frac{u}{2}$$

$$\begin{bmatrix} \lambda_{1} \\ \lambda_{1} \end{bmatrix} = \begin{bmatrix} -R & R \\ \frac{2L}{2L} & \frac{2L}{2L} \end{bmatrix} \begin{bmatrix} \lambda_{1} \\ \lambda_{1} \end{bmatrix} + \begin{bmatrix} \frac{1}{2L} \\ \frac{1}{2L} \end{bmatrix} A$$

$$A \qquad B$$

$$Y = \int_{-\frac{R}{2}}^{-\frac{R}{2}} \frac{R}{2} \int_{1}^{\frac{R}{2}} \frac{1}{2} \frac{1}{2}$$

OneNote 17/02/22, 17:48

b)
$$X_{R} = [m \begin{bmatrix} B_{l} & AB \end{bmatrix} = lm \begin{bmatrix} \frac{1}{2L} & 0 \\ \frac{1}{2L} & 0 \end{bmatrix} = lm \begin{bmatrix} 1 \\ \frac{1}{2L} & 0 \end{bmatrix}$$

$$X_{NO} = Ker \begin{bmatrix} C \\ CA \end{bmatrix} = Ker \begin{bmatrix} -R/2 & R/2 \\ R^{2}/2L & -R^{2}/2L \end{bmatrix}$$

$$= lm \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$Z(x) = (\lambda - 1)^{2}$$

$$Xer(A - 1) = Ker \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = Im \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$Ker(A - 1)^{2} = Ker \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = Im \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$e^{A \leftarrow} = \left[e^{A \leftarrow} v_{1}, e^{A \leftarrow} v_{2} \right] \left[v_{1}, v_{2} \right]^{-1}$$

$$= \left[e^{A \leftarrow} + e^{A \leftarrow} \right]$$

$$= \left[e^{A \leftarrow} + e^{A \leftarrow} \right]$$

$$A_{D} = \ell^{AT} = \begin{bmatrix} e^{T} & Te^{T} \\ 0 & e^{T} \end{bmatrix}$$

$$B_{0} = \int_{0}^{T} e^{Ae} de B = A^{-1} \left(e^{AT} - I \right) B$$

$$= \int_{0}^{T} \left[e^{T} - I \right] \left[e^{T} - I \right] \left[e^{T} - I \right] \left[e^{T} - I \right]$$

$$= \left[Te^{T} - e^{T} + 1 \right]$$

$$e^{T} - 1$$

$$A_{D} + Q_{D} [O_{I}] = A_{D} + Q_{D} [O_{I}] = A_{D} + Q_{D} [O_{I} e^{T} - \iota] + I$$

INSTABILE PER OGNI CER.

3) e)
$$\chi_{A}(\lambda) = \lambda^{1}(\lambda - (e-1))$$

$$\lambda = 0 \rightarrow \text{Ker } A = \text{Ken } \begin{bmatrix} 0 & e & 0 \\ 0 & 0 & 0 \\ -e & | & e - | \end{bmatrix}$$

$$\Rightarrow \mu_{A}(\lambda) = \begin{cases} \lambda^{2}(\lambda - (\alpha - 1)), \text{ se } \alpha \neq 20, 14 \\ \lambda(\lambda - (\alpha - 1)), \text{ ACTRIMENTIAL STATES AND STATES AN$$

OneNote 17/02/22, 17:48

4)
$$M(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, X(1) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 $X(2) = A \times (1) + B M(1) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + B \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $X(3) = A \times (2) + B M(2) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} + B \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 $X = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}, X = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
 $X = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$

OneNote

$$q\overline{A} = \begin{bmatrix} -1, 0, 1 \end{bmatrix}, q\overline{A}^{2} = \begin{bmatrix} -1, 1, 0 \end{bmatrix}$$

$$q\overline{A}^{3} = \begin{bmatrix} -1, 0, 1 \end{bmatrix}$$

$$f = \begin{bmatrix} 1, 0, -1 \end{bmatrix}$$

$$F = \overline{F} + \lambda(0)f = \overline{F} + \begin{bmatrix} 1, 0, -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0, 0, 0 \end{bmatrix} \quad \text{Questa solution}$$

$$\text{Willitta in Solo}$$

$$\text{Willitta in Solo}$$

$$\text{Willitta}$$

$$5)e)R = \begin{bmatrix} 1 & 0 & e \\ -1 & e & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Det
$$R = -e^{2}$$

$$\times_{R} = \int_{1}^{R} R^{3}, \text{ so } e \neq 0$$

$$\lim_{n \to \infty} \left[\frac{1}{n} \right], \text{ so } e = 0$$

17/02/22, 17:48

OneNote 17/02/22, 17:48

$$AC = [AP = e] \cup o e] = [o o]$$

$$bC = PB = [o]$$

6)
$$X_{R}(i) = l_{m} B$$

 $X_{R}(i) = l_{m} [B_{i} A B] = l_{m} [l_{i} 0]$
 $X_{R}(3) = X_{R}(1) + l_{m} A M$
 $= X_{R}(1) + l_{m} [l_{i} 0] = X_{R}(1)$
 $E(i) = l_{m} B$

$$\times_{NO}(Q) = \text{Ker}(C)$$

$$\times_{NO}(Q) = \text{Ker}(C)$$

$$\times_{NO}(Q) = \text{Ker}(C)$$

$$= \text{Ker}(C)$$

$$\begin{array}{l} \times_{NO}(l) = \times_{NO}(l) \cap \text{ Ker } H\Delta \\ = \times_{NO}(l) \cap \text{ Ker } \left[\begin{array}{ccc} l & 0 & l & 0 \\ \end{array} \right] \\ = \text{ Ker } \left[\begin{array}{ccc} l & 0 & -l & 0 \\ 0 & l & l & 0 \\ \end{array} \right] \end{array}$$

$$\times_{NO}(3) = \times_{NO}(1) \cap \text{Xer } HA$$

$$= \times_{NO}(1) \cap \text{Xer } [-1 \mid 0 \mid 0]$$

17/02/22, 17:48

$$= \times_{N3}(3) = \times_{N3} = I_{N} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$dI_{N} \times_{R} + X_{N} = rew \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 3$$

$$\Rightarrow \times_{R} \wedge X_{N} = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \Rightarrow T_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \\ 0 \\ 0 \end{cases} = \begin{cases} 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \end{cases} = \begin{cases} 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \end{cases} =$$

$$C = CT = \begin{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} & \begin{bmatrix} 0 \\$$

b)
$$H(s) = (RO(SI-ARO)^{-1}BRO)$$

= $[I O][S - I]^{-1}[I]$
= $[I O][S+I]^{-1}[I]$
= $[I O][S+I]^{-1}[I]$

ATP+PA - PBRBTP+Q=0

$$PA = \begin{bmatrix} Q & Q \\ b & b \end{bmatrix} \quad PB = \begin{bmatrix} Q+b \\ b+c \end{bmatrix}$$

$$\begin{bmatrix} Q & b \\ Q & b \end{bmatrix} + \begin{bmatrix} Q & Q \\ D & b \end{bmatrix} - \begin{bmatrix} (Q+b)(b+c) \\ (Q+b)(b+c) \end{bmatrix}$$

OneNote

$$\begin{cases} 2 e - (e + b)^{2} + 2 = 0 \\ e + b - (e + b)(b + c) = 0 \\ 2b - (b + c)^{2} + 2 = 0 \end{cases}$$

$$2-2C - (1)^{1}+2 = 0$$

$$-2C = -3 \Rightarrow C = \frac{3}{2} \Rightarrow b = -\frac{1}{2}$$

$$2e - (e-\frac{1}{2})^{2}+2 = 0$$

$$e^{2} - 3e - \frac{4}{5} = 0$$

$$e = \frac{3 \pm \sqrt{9 + 4}}{2} = \frac{3 \pm 4}{2}$$

$$= \frac{1}{2} \times \frac{$$

$$F^* = -R^{-1}BTP = -\begin{bmatrix} 3 & 1 \end{bmatrix}$$

= $[-3, -1]$

8) Se
$$\lambda \in 6$$
 (A) $\exists v \in 6^n$: $Av = \lambda v$

$$A^{*} = -A \quad Per \quad (PSTeS)$$

$$\Rightarrow -\overline{\lambda} \in 6(A)$$

$$QUINDIISE \quad \lambda \in 6(A) \quad awc(e)$$

$$-\overline{\lambda} \in 6(A)$$

$$e \quad A \quad New \quad PUS \quad AVERE \quad TUTTICULIANTO VALORIA P. REALE < 0$$