Modeling Sudoku as a CNF Formula

Spring 2017

CSCE 235H Introduction to Discrete Structures

URL: cse.unl.edu/~cse235h

All questions: Piazza

Sudoku

	8	9	4	1			
		9	7	•	1	9	3
2					7		
2	4		6			1	
			6 9				5
				2		5	
6	5			2		5	
6 7	5 3		1				

Rules:

- Each cell filled with a number 1...9
- Each
 - row,
 - column, and
 - 3x3 box

contains all nine numbers (i.e., no duplicates)

Sudoku

1	7		2	6	9	5	8	4
5	8	9	4	1	3	6	7	2
4	2	6	7	5	8	1	9	3
2	9	1	5	8	4	7	3	6 9 5
3	4	5	6	7	2	8	1	9
8	6	7	9	3	1	2	4	5
9	1	4	8	2	6	3	5	7
6	5	8	3	4	7	9	2	1
7	3	2	1	9	5	4	6	8

Rules:

- Each cell filled with a number 1...9
- Each
 - row,
 - column, and
 - 3x3 box

contains all nine numbers (i.e., no duplicates)

Defining the Variables

• p(i,j,n) asserts than the cell in row i and column j is assigned value n.

Assigning Numbers (1)

One number in 1...9 in cell in row i, column j

$$p(i, j, 1) \vee p(i, j, 2) \vee \ldots \vee p(i, j, 9)$$

$$\equiv \bigvee_{n=1}^{9} p(i, j, n)$$

Every cell contains at least one number:

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigvee_{n=1}^{9} p(i,j,n)$$

Assigning Numbers (2)

The cell in row i column j cannot take two numbers

$$\forall x, y (x \neq y \rightarrow \neg (p(i, j, x) \land p(i, j, y)))$$

$$\equiv \forall x, y (x \neq y \rightarrow (\neg p(i, j, x) \lor \neg p(i, j, y)))$$

$$(x, y \in 1...9) \land x \neq y \equiv x, y = x + 1, ..., 9$$

$$x = 1, y = 2, 3, 4, 5, 6, 7, 8, 9$$

$$x = 2, y = 3, 4, 5, 6, 7, 8, 9$$

$$x = 3, y = 4, 5, 6, 7, 8, 9$$

$$x = 4, y = 5, 6, 7, 8, 9$$

$$x = 5, y = 6, 7, 8, 9$$

$$x = 6, y = 7, 8, 9$$

$$x = 7, y = 8, 9$$

x = 8, y = 9

Assigning Numbers (3)

Each cell must contain a number:

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigvee_{n=1}^{9} p(i,j,n)$$

Every cell contains at most one number:

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{x=1}^{8} \bigvee_{y=x+1}^{9} (\neg p(i,j,x) \lor \neg p(i,j,y))$$

Restricting Rows, Columns

Every row contains every number:

$$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i,j,n)$$

Every column contains every number:

$$\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i,j,n)$$

Restricting 3x3 Boxes

Every 3x3 box contains every number:

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i,3s+j,n)$$

Redundant Clauses

- Sudoku problem can be modeled in many ways
- May involve redundant clauses that can be removed to obtain an equivalent formula
- Can be generated using inference rules on other clauses in the problem
- Redundant clauses may be useful and speed the solving process

Defining Initial Setup

 Initial setup is defined by including unary clauses containing the variables corresponding to the values in the filled cells

	8	9	7	1			
		9	7		1	9	3
2					7		
3	4		6			1	
			9				5
				2		5	
6 7	5			4		5	
7	5 3		1				

$$\land p(2, 2, 8) \\ \land p(2, 3, 9) \\ \land p(2, 4, 4) \\ \land p(2, 5, 1) \\ \land p(3, 3, 6) \\ \land \dots$$

Sudoku CNF Formula

- 729 variables
- 324 clauses with 9 literals
- 2916 clauses with 2 literals
- 3240 total clauses (+ clauses for initial setup)

Solving Sudoku

Total number of possible assignments:

$$2^{729} = 2.824014 \times 10^{219}$$

Testing one billion assignments a second:

$$8.94876 \times 10^{202} \text{ years}$$

 Modern SAT solvers can solve Sudoku in milliseconds by aggressively pruning the search tree