Practice 7

Question 1

Consider a relation R (A, B, C, D, E, G, H, I, J) and its FD set F = {A -> EI, BC -> DEG, CEH -> GJ, D -> CJ, DHJ -> AB}

Regarding the following questions. Give and justify your answers if the question is specified.

- 1) Check if BD→G. Justify your answer. (1 mark)
- 2) Find all the candidate keys for *R*. (2 mark)
- 3) Determine the highest normal form of R with respect to F. Justify your answer. (2 marks)
- 4) Find a minimal cover F_m for F. (2 marks)
- 5) Regarding F, does the decomposition R1 = {ABDE}, R2 = {CEHJ}, R3 = {AGIJ} of R satisfy the lossless join property? Please justify your answer. (2 marks)
- 6) Provide a step-by-step lossless decomposition of R into BCNF normal form. (3 marks)

Question 2

Consider the following query:

P1, P2, P3, P4, P3, P1, P5, P2, P3, P6, P7, P5, P2, P1.

(The user is trying to read page 1 from disk, then page 2, page 3, ...) Assume there are 4 buffers in the buffer pool.

- 1) Sketch the process of how blocks are replaced in the First In First Out (FIFO) policy. (2 marks)
- 2) Sketch the process of how blocks are replaced in the Least Recently Used (LRU) policy. (2 marks)
- 3) Between FIFO and LRU policies, which one performs better in the given query? Why? (2 marks)

Question 3

Consider the schedule below. Here, R(*) and W(*) stand for 'Read' and 'Write', respectively. T1, T2, T3 and T4 represent four transactions and t_i represents a time slot.

	t_1	t ₂	t 3	t ₄	t 5	t ₆	t ₇	t ₈	t 9	t 10	t ₁₁	t 12	t 13	t ₁₄	t 15	t 16
<i>T1</i>	R(A)					W(C)						R(A)			W(A)	
<i>T2</i>				R(B)			R(C)	W(B)		W(A)						
<i>T3</i>		R(B)	R(D)								W(B)		W(D)			
<i>T4</i>					R(C)				W(C)					R(D)		W(D)

Each transaction begins at the time slot of its first operation and commits right after its last operation (same time slot).

Regarding the following questions. Give and justify your answers.

- 1) Assume a checkpoint is made between t_4 and t_5 , what should be done to the four transactions when the crash happens between t_{11} and t_{12} . (2 marks)
- 2) Is the transaction schedule conflict serializable? Give the full precedence graph to justify your answer. (2 marks)
- 3) Construct a schedule (which is different from above) of these four transactions which **causes** deadlock when using two-phase locking protocol. You should clearly indicate all the locks and the corresponding unlocks in your schedule. If no such schedule exists, explain why. (4 marks)