Methods for Applied Mathematics

Homework 6 (Due: Oct 21, 2005)

Wenhao Wang CAM program

Exercises 2.9

19. Proof: From Exercises 2.9 Problem 18, we know that all the norms $\|\cdot\|_p$ $(1 \le p \le \infty)$ on $X \times Y$ are equivalent, so we only need to show that $X \times Y$ is a Banach space in $\|\cdot\|_{\infty}$ when X, Y are both Banach spaces.

Let $\{(x_n, y_n)\}\subset X\times Y$ be a Cauchy sequence, when we have

$$||x_n - x_m||_X \le \max\{||x_n - x_m||_X, ||y_n - y_m||_Y\}$$

$$= ||(x_n - x_m, y_n - y_m)||_{\infty}$$

$$= ||(x_n, y_n) - (x_m, y_m)||_{\infty} \to 0, (n, m \to \infty)$$

which means $\{x_n\}$ is a Cauchy sequence in X. Since X is a Banach space, so there exists $x \in X$ such that $x_n \to x$. In the same way, we know there exists $y \in Y$ such that $y_n \to y$. Therefore, we have

$$\|(x_n, y_n) - (x, y)\|_{\infty} = \max\{\|x_n - x\|_X, \|y_n - y\|_Y\} \to 0, (n \to \infty)$$

which means $(x_n, y_n) \to (x, y)$ in $X \times Y$. So $X \times Y$ is a Banach space.

26. Proof: Let $M^a = \{ f \in X^* : f|_{M} = 0 \}$. First, we show that M^a is a linear subspace of X^* .

For any $f, g \in M^a$, $\lambda \in \mathbb{C}$, we have

$$(f+g)|_{M} = f|_{M} + g|_{M} = 0$$
 and $(\lambda f)|_{M} = \lambda(f|_{M}) = 0$,

which means $f + g, \lambda f \in M^a$. So M^a is closed for addition and scalar multiplication in X^* , which means M^a is a linear subspace of X^* .

Then we will show that $M^a \subset X^*$ is closed.

Let $\{f_n\} \subset M^a$, $f_n \to f \in X^*$, then for any $x \in M$, we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} 0 = 0,$$

which means $f|_{M} = 0$. So $f \in M^{a}$. So $M^{a} \subset X^{*}$ is closed.

And we have

$$X^a = \{ f \in X^* : f|_X = 0 \} = \{ 0 \}$$

and

$$\{0\}^a = \{f \in X^* : f(0) = 0\} = X^*.$$

27. Proof: We let p be the conjugate exponent of q, which means $\frac{1}{p} + \frac{1}{q} = 1$ and p = 1 if $q = \infty$, $p = \infty$ if q = 1. Then we will show that $T \in B(L_p[a,b], L_q[a,b])$. For any $f \in L_p[a,b]$

(i). When $1 < q < \infty$, we have

$$||Tf||_q^q = \int_a^b |\int_a^b K(x,y)f(y)dy|^q dx$$

$$\leq \int_a^b \int_a^b |K(x,y)|^q dy (\int_a^b |f(y)^p| dy)^{\frac{q}{p}} dx$$

$$= ||K||_q^q ||f||_p^q$$

So

$$||Tf||_q \le ||K||_q ||f||_p,$$

which means $||T|| \leq ||K||_q < \infty$. So $T \in B(L_p[a, b], L_q[a, b])$.

(ii). When q = 1, $p = \infty$, we have

$$||Tf||_1 = \int_a^b |\int_a^b K(x,y)f(y)dy|dx$$

$$\leq \int_a^b \int_a^b |K(x,y)|dy||f||_{\infty}dx$$

$$= ||K||_1 ||f||_{\infty}$$

So

$$||Tf||_1 \le ||K||_1 ||f||_{\infty},$$

which means $||T|| \le ||K||_1 < \infty$. So $T \in B(L_{\infty}[a, b], L_1[a, b])$.

(ii). When
$$q=\infty, p=1$$
, we have for a.e. $x\in[a,b]$
$$|(Tf)(x)|=|\int_a^b K(x,y)f(y)dy|$$

$$\leq \int_a^b |K(x,y)f(y)|dy$$

$$\leq \|K\|_\infty \int_a^b |f(y)|dy=\|K\|_\infty \|f\|_1$$

So

$$||Tf||_{\infty} \le ||K||_{\infty} ||f||_{1},$$

which means $||T|| \leq ||K||_{\infty} < \infty$. So $T \in B(L_1[a, b], L_{\infty}[a, b])$.

Therefore, $T \in B(L_p[a, b], L_q[a, b])$ when p be the conjugate exponent of q.

Then we will show that if a, b are finite, $K \in L_{\infty}([a, b] \times [a, b])$, then $T \in B(L_p[a, b], L_p[a, b])$ for all $1 \leq p \leq \infty$.

For any $f \in L_p[a,b]$, we have

(i). When 1

$$\begin{split} \|Tf\|_{p}^{p} &= \int_{a}^{b} |\int_{a}^{b} K(x,y)f(y)dy|^{p}dx \\ &\leq \|K\|_{\infty}^{p} \int_{a}^{b} (\int_{a}^{b} |f(y)|dy)^{p}dx \\ &= \|K\|_{\infty}^{p} (b-a)\|f\|_{1}^{p} \\ &\leq \|K\|_{\infty}^{p} (b-a)(\|1\|_{q}\|f\|_{p})^{p} \\ &= (b-a)^{p} \|K\|_{\infty}^{p} \|f\|_{p}^{p} \end{split}$$

which means $||Tf||_p \le (b-a)||K||_{\infty}||f||_p$. So $||T|| \le (b-a)||K||_{\infty} < \infty$. So $T \in B(L_p[a,b], L_p[a,b])$.

(ii). When p=1

$$||Tf||_1 = \int_a^b |\int_a^b K(x, y) f(y) dy| dx$$

$$\leq ||K||_{\infty} \int_a^b (\int_a^b |f(y)| dy) dx ,$$

$$= ||K||_{\infty} (b - a) ||f||_1$$

which means $||Tf||_1 \le (b-a)||K||_{\infty}||f||_1$. So $||T|| \le (b-a)||K||_{\infty} < \infty$. So $T \in B(L_1[a,b], L_1[a,b])$.

(iii). When
$$p = \infty$$
, for a.e. $x \in [a, b]$
$$|(Tf)(x)| = |\int_a^b K(x, y) f(y) dy|$$

$$\leq \|K\|_{\infty} \|f\|_{\infty} \int_{a}^{b} 1 dy ,$$

$$= ||K||_{\infty}(b-a)||f||_{\infty}$$

which means $||Tf||_{\infty} \leq (b-a)||K||_{\infty}||f||_{\infty}$. So $||T|| \leq (b-a)||K||_{\infty} < \infty$. So $T \in B(L_{\infty}[a,b], L_{\infty}[a,b])$.

Therefore, $T \in B(L_p[a,b], L_p[a,b])$ for all $1 \le p \le \infty$.

28. Proof: Since $\overline{U} = \overline{B(0,r)}$ is a closed, convex and balance set, and $y \in X \setminus \overline{U}$, according to Lemma 2.17 (Mazur Separation Lemma 2), we know there exists $f \in X^*$ such that

$$|f(x)| \le 1, \ \forall x \in \overline{U}$$
 and $f(y) > 1$.

Let $\alpha = \frac{1 + f(y)}{2}$, then we have

$$f(x) \le |f(x)| \le 1 < \alpha < f(y), \ \forall x \in U$$

which means f separates U from y.

30. Proof: Since X is reflexive, which means $X^{**} \cong X$, so we have

$$(X^*)^{**} = ((X^*)^*)^* = (X^{**})^* \cong X^*,$$

which means X^* is reflexive. (We use " \cong " to represent isometry.)

The converse is also true.

Let X be a Banach space. If X^* is reflexive, then X is reflexive.

Proof: According to the embedding $[\cdot]: X \to X^{**}$, we know the image $[X] \cong X$ is a subspace of X^{**} , where $[X] = \{[x] \in X^{**}: x \in X\}$.

According to the denotation in **Exercises 2.9 Problem 26**, we define a subspace of $(X^{**})^*$:

$$[X]^a = \{ F \in (X^{**})^* : F|_{[X]} = 0 \}.$$

For any $F \in [X]^a \subset (X^{**})^*$, since X^* is reflexive, so $F \in (X^{**})^* = (X^*)^{**} \cong X^*$. Then there exists $f \in X^*$ such that F = [f], which means

$$F([x]) = [f]([x]) = [x](f), \forall [x] \in X^{**}.$$

Since $F|_{[X]} = 0$, so for any $x \in X$, we have

$$f(x) = [x](f) = [f]([x]) = F([x]) = 0,$$

which means $f = 0 \in X^*$. So $F = [f] = [0] = 0 \in (X^{**})^*$. Since $F \in [X]^a$ is arbitrary, so $[X]^a = \{0\}$.

Suppose $[X] \neq X^{**}$, then $\exists \omega \in X^{**} \setminus [X]$. Since X is a Banach space, so $X \cong [X] \subset X^{**}$ is a complete subspace, which means [X] is closed in X^{**} . So we have

$$d(\omega, [X]) = \inf_{[x] \in [X]} ||[x] - \omega|| = d > 0.$$

According to the corollary of Hahn-Banach Theorem, we know $\exists F_0 \in (X^{**})^*$ such that $F_0|_{[X]} = 0$, $F_0(\omega) = d > 0$. So $F_0 \in [X]^a$ and $F_0 \neq 0$, which contradicts $[X]^a = \{0\}$.

Therefore, $X \cong X^{**}$, which means X is reflexive.