solensim project documentation

Anton Douginets (anton.douginets@physik.hu-berlin.de) Andrii Yanovets (yanoveta@hu-berlin.de)

June 29, 2020

Summary

TODO

Contents

1	Introduction	2
2	Physical model 2.1 Beam parameters	3 3
3	Software concept and implementation	5
4	Software manual	6
\mathbf{R}	eferences	7

1 Introduction

2 Physical model

2.1 Beam parameters

The formulas involving $p_{z,0}$ call for relativistic momentum [1, p. 27]. The energy-momentum relation is:

$$E^2 = p^2 + m_0^2;$$

With SI factors, this yields

$$p = \frac{1}{c}\sqrt{E^2 - m_0^2 c^4}. (1)$$

2.2 Field calculation

2.3 Deriving characteristic values

2.4 Aberrations

Figure 1: Focus shift due to spherical aberrations

Spherical aberrations

$$1/f = const. \cdot F2$$

$$\triangle f \simeq c \cdot x^2$$

$$x = f_1 tan(\alpha) \simeq f \cdot tan(\alpha)$$

$$r_{s} = \Delta f \cdot tan(\alpha) \simeq \Delta f \cdot \alpha \approx \left(c \left(f \cdot tan(\alpha) \right)^{2} \right) \cdot tan(\alpha) = C_{s} \cdot tan(\alpha)^{3} = C_{s} \cdot \left(\frac{max\{x\}}{f - \Delta f} \right)^{3}$$

$$\underset{f \approx f_1}{=} C_s \cdot \left(\frac{max \{x\}}{f} \right)^3 \quad (1)$$

If $f \approx f_1$ then replace f in (1) with $f - \max\{x\}^2 \cdot \frac{C_s}{f^2}$

2.4.1 Chromatic aberrations

3 Software concept and implementation

4 Software manual

References

[1] T. Gehrke. "Design of Permanent Magnetic Solenoids for REGAE". MA thesis. Hamburg: Universität Hamburg, 2013.