ADVANCED QUANTITATIVE METHODS ACADEMIC YEAR 2012-2013 ASSIGNMENT ONE

Deadline: to be determined.

Download the dataset lutkepohl2.dta from within Stata:

. webuse lutkepohl2.dta (Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

The dataset is made up of the following variables:

. des

Contains data from http://www.stata-press.com/data/r11/lutkepohl2.dta

obs: 92

Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1

vars: 10 4 Dec 2008 14:31

size: 3,496 (99.9% of memory free)

variable name	•	display format	value label	variable label
inv	int	%8.0g		investment
inc	int	%8.0g		income
consump	int	%8.0g		consumption
qtr	float	%tq		quarter
ln_inv	float	%9.0g		log investment
dln_inv	float	%9.0g		first-difference of ln_inv
ln_inc	float	%9.0g		log income
dln_inc	float	%9.0g		first-difference of ln_inc
ln consump	float	%9.0g		log consumption
dln_consump	float	%9.0g		first-difference of ln_consump

Exercise

- a. Identify, estimate and diagnostic check ARIMA models for each of the following variables: ln_inv, ln_inc, and ln_consump.
- b. Formulate and estimate a dynamic linear model with four lags for ln_consump with ln_inc and ln_inv as explanatory variables.
- c. Reformulate the model in b. as an error correction model; store the log-likelihood value using the command -estimates store llu-; and subject the model to misspecification testing.
- d. Reduce the model in successive steps by dropping insignificant variables (subjecting each step to mis-specification testing) in order to obtain a parsimonious model.

- e. Save the log-likelihood value of the parsimonious model (-estimates store 11r-)and perform a likelihood ratio test comparing the model in c. with the model in d. (-1rtest 11u 11r). You may wish to save the log-likelihood value at each step of the reduction using different names with the estimates command at each step.
- f. Estimate a VAR(4) for the three variables dln_consump, dln_inc, and dln_inv, that is, for the first difference of ln_inv, ln_inc, and ln_consump. Then determine the minimum number of lags required for the VAR, and subject it to mis-specification testing.
- g. Finally, drop individual variables from each of the three equations until you end up with a parsimonious model.