$$y_0 = a \sin(x_0 - \theta_0), y_1 = a \sin(x_1 - \theta_0)$$

$$\frac{y_1}{y_0} = \frac{\sin(x_1 - \theta_0)}{\sin(x_0 - \theta_0)}$$
????
$$(x', y', z') = (\cos y \cos x, \cos y \sin x, \sin y)$$
???

Instead of mapping to \mathbb{R}^3 , as we did for other surfaces, we can simply embed into \mathbb{R}^4 .

Given points \mathbf{x}, \mathbf{y} ,

They are almost always not equal or antipodal.

Let \mathbf{y}' be a renormalized form of $\mathbf{y} - \langle \mathbf{x}, \mathbf{y} \rangle$.

The geodesic is $\mathbf{x} \cos \theta + \mathbf{y}' \sin \theta$.

The direction is \mathbf{y}' .

The distance is $\operatorname{arccos} \langle \mathbf{x}, \mathbf{y} \rangle$.

The vector is $\operatorname{arccos} \langle \mathbf{x}, \mathbf{y} \rangle \mathbf{y}'$.

If we're dealing with a 2-sphere:

We have a rotation of $\operatorname{arccos} \langle \mathbf{x}, \mathbf{y} \rangle$ around the axis $\mathbf{x} \times \mathbf{y}'$.

This gives the quaternion $\langle \mathbf{x}, \mathbf{y} \rangle$ ($\mathbf{x} \times \mathbf{y}'$).

We then convert this to a rotation matrix with:

$$Q = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2zw & 2xz + 2yw \\ 2xy + 2zw & 1 - 2x^2 - 2z^2 & 2yz - 2xw \\ 2xz - 2yw & 2yz + 2xw & 1 - 2x^2 - 2y^2 \end{bmatrix}$$

???

If we're not dealing with a 2-sphere, it gets more complex.

Let \mathbf{u}, \mathbf{v} be unit vectors that are linearly independant with \mathbf{x}, \mathbf{y} . You can pick them at random since this will almost certainly be true,

???

Given a point \mathbf{x} and a vector \mathbf{v} ,

$$\mathbf{y} = \mathbf{x} \cos |\mathbf{v}| + \frac{\mathbf{v}}{|\mathbf{v}|} \sin |\mathbf{v}|$$

$$\mathbf{y}' = \frac{\mathbf{v}}{|\mathbf{v}|}$$

The rotation matrix can be found as before.