Notas de Álgebra Moderna IV. Una introducción a la teoría de categorías.

Cristo Daniel Alvarado

17 de abril de 2024

Índice general

3. Funtores													2																		
	3.1.	Conceptos Fundamentales																													2

Capítulo 3

Funtores

3.1. Conceptos Fundamentales

Definición 3.1.1

Sean \mathcal{C} y \mathcal{D} dos categorías. Un funtor covariante (respectivamente, funtor contravariante), denotado por $F: \mathcal{C} \to \mathcal{D}$, consta de

- 1. Un mapeo $F : \mathrm{Obj}(\mathcal{C}) \to \mathcal{D}$ tal que $A \mapsto F(A)$.
- 2. Para cualesquier dos pares de objetos $A, B \in \mathrm{Obj}(\mathcal{C})$, un mapeo $F : \mathrm{Hom}_{\mathcal{C}}(A, B) \to \mathrm{Hom}_{\mathcal{D}}(F(A), F(B))$ (resp. $F : \mathrm{Hom}_{\mathcal{C}}(A, B) \to \mathrm{Hom}_{\mathcal{D}}(F(B), F(A))$) tal que $f \mapsto F(f)$, que cumple las condiciones siguientes:
 - I) Para cada $A \in \text{Obj}(\mathcal{C}), F(1_A) = 1_{F(A)}$.
 - II) Para cada $f \in \text{Hom}_{\mathcal{C}}(A, B)$ y $g \in \text{Hom}_{\mathcal{C}}(B, C)$, se tiene que

$$F(g \circ f) = F(g) \circ F(f)$$

(resp.
$$F(g \circ f) = F(f) \circ F(g)$$
).

Definición 3.1.2

la imagen de un funtor F entre las categorías C y D, consta de una clase $\{F(C) | C \in \text{Obj}(C)\}$ junto con todos los conjuntos $\{F(f) | f \in \text{Hom}_{C}(A, B) \text{ con } A, B \in \text{Obj}(C)\}$.

Observación 3.1.1

La imagen de un funtor no necesariamente es una categoría.

Demostración:

En efecto, sean \mathcal{C} y \mathcal{D} dos categorías. Para cualesquiera $C_1, C_2, C_3, C_4 \in \text{Obj}(\mathcal{C})$ y $D_1, D_2, D_3 \in \text{Obj}(\mathcal{D})$, $f \in \text{Hom}_{\mathcal{C}}(C_1, C_2)$ y $g \in \text{Hom}_{\mathcal{C}}(C_3, C_4)$, $h \in \text{Hom}_{\mathcal{D}}(D_1, D_2)$ y $k \in \text{Hom}_{\mathcal{D}}(D_2, D_3)$. Se tiene lo siguiente:

$$C_1 \longrightarrow C_2 \text{ y } C_3 \longrightarrow C_4$$

 $D_1 \longrightarrow D_2 \longrightarrow D_3$

la imagen de $F: \mathcal{C} \to \mathcal{D}$ noes una categoría, pues si hacemos que

$$F(C_1) = D_1, F(C_2) = F(C_3) = D_2 \text{ y } F(C_4) = D_4$$

haciendo

$$F(f) = h, F(g) = k$$

además,

$$F(1_{C_1}) = 1_{D_1}$$
 $F(1_{C_2}) = F(1_{C_3}) = 1_{D_2}$ $F(1_{C_4}) = 1_{D_3}$

pues, h y k paretenecen a la imagen de F, pero su composición no lo está.

Observación 3.1.2

Si F es inyectiva, entonces la imagen de F será una categoría.

Proposición 3.1.1

Si $\bar{F}: \mathcal{C} \to \mathcal{D}$ es un funtor covariante (resp. contravariante), entonces $F': \mathcal{C} \to \mathcal{D}$ es un funtor contravariante (resp. covariante).

Demostración:

3