SMT: Equality Logic With Uninterpreted Functions

Lukas Koller

June 20, 2020

Program Verification: OpenJML Example

▶ https://www.rise4fun.com/OpenJMLESC/BinarySearch

Program Verification: OpenJML Example

► How does OpenJML work?

Program Verification: OpenJML Example

► How does OpenJML work?

How do SMT solvers reason about equality?

What is SMT?

4/37

What is SMT?

► Satisfiability Modulo Theories (SMT) is a generalization of the Boolean satisfiability problem (SAT) for first-order logic

First-Order Theories

First-Order Theories

► A first-order theory is an extension of Boolean logic with specific constants, predicates, functions, and quantifiers

First-Order Theories

► A first-order theory is an extension of Boolean logic with specific constants, predicates, functions, and quantifiers

Example (First-Order Theories)

- ▶ Theory of Equality Logic: $x_1 \neq x_2 \land x_1 = 4$
- ▶ Theory of Linear Arithmetic: $(3x^2 + 2x 1 = 0) \land (0 < x)$
- ▶ Theory of Bit Vectors: $(a \gg 2) = c \land c \oplus d$

How do SMT solvers reason about equality?

How do SMT solvers reason about equality?

► Solver for Theory of Equality Logic With Uninterpreted Functions (EUF)

► Introduces the equality predicate (=)

$$\forall x. \ x = x$$
 (Reflexivity)
 $\forall x. \ \forall y. \ x = y \implies y = x$ (Symmetry)
 $\forall x. \ \forall y. \ \forall z. \ x = y \land y = z \implies x = z$ (Transitivity)

► Introduces the equality predicate (=)

$$\forall x. \ x = x$$
 (Reflexivity)
 $\forall x. \ \forall y. \ x = y \implies y = x$ (Symmetry)
 $\forall x. \ \forall y. \ \forall z. \ x = y \land y = z \implies x = z$ (Transitivity)

ightharpoonup Variables are defined over an infinite domain, such as $\mathbb N$ or $\mathbb R$

► Introduces the equality predicate (=)

$$\forall x. \ x = x$$
 (Reflexivity)
 $\forall x. \ \forall y. \ x = y \implies y = x$ (Symmetry)
 $\forall x. \ \forall y. \ \forall z. \ x = y \land y = z \implies x = z$ (Transitivity)

- lacktriangle Variables are defined over an infinite domain, such as $\mathbb N$ or $\mathbb R$
- ► Functions are uninterpreted ⇒ only functional congruence

► Introduces the equality predicate (=)

$$\forall x. \ x = x$$
 (Reflexivity)
 $\forall x. \ \forall y. \ x = y \implies y = x$ (Symmetry)
 $\forall x. \ \forall y. \ \forall z. \ x = y \land y = z \implies x = z$ (Transitivity)

- lacktriangle Variables are defined over an infinite domain, such as $\mathbb N$ or $\mathbb R$
- ► Functions are uninterpreted ⇒ only functional congruence

Example (Formula in EUF)

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

◆ロト ◆団ト ◆意ト ◆意ト 意 めなべ

Definition (Functional Congruence)

For each n > 0 and n-ary function f

$$\forall \bar{x}, \bar{y}. \bigwedge_{i=1}^{n} x_i = y_i \implies f(\bar{x}) = f(\bar{y})$$

Ignore details and characteristics of a function

Example (Uninterpreted Functions & Commutativity) The following formula is valid as + is commutative.

$$x_1 = y_1 \land x_2 = y_2 \implies x_1 + x_2 = y_2 + y_1$$

Example (Uninterpreted Functions & Commutativity) The following formula is valid as + is commutative.

$$x_1 = y_1 \land x_2 = y_2 \implies x_1 + x_2 = y_2 + y_1$$

Abstracting + with an uninterpreted function symbol f:

$$x_1 = y_1 \wedge x_2 = y_2 \implies f(x_1, x_2) = f(y_2, y_1)$$

Example (Uninterpreted Functions & Commutativity) The following formula is valid as + is commutative.

$$x_1 = y_1 \land x_2 = y_2 \implies x_1 + x_2 = y_2 + y_1$$

Abstracting + with an uninterpreted function symbol f:

$$x_1 = y_1 \wedge x_2 = y_2 \implies f(x_1, x_2) = f(y_2, y_1)$$

 \rightarrow Commutativity is lost

Example (Uninterpreted Functions & Commutativity) The following formula is valid as + is commutative.

$$x_1 = y_1 \land x_2 = y_2 \implies x_1 + x_2 = y_2 + y_1$$

Abstracting + with an uninterpreted function symbol f:

$$x_1 = y_1 \land x_2 = y_2 \implies f(x_1, x_2) = f(y_2, y_1)$$

→ Commutativity is lost

Additional constraint to keep the commutativity:

$$x_1 = y_1 \land x_2 = y_2 \implies f(x_1, x_2) = f(y_2, y_1) \lor f(x_1, x_2) = f(y_1, y_2)$$

4□ ト 4団 ト 4 豆 ト 4 豆 ・ 夕 Q ○

SMT — EUF, Lukas Koller

10/37

► Satisfiability of a conjunction of equalities and inequalities with uninterpreted functions

 Satisfiability of a conjunction of equalities and inequalities with uninterpreted functions

Algorithm (Congruence Closure Algorithm)

$$F: (\bigwedge_{i=1}^m s_i = t_i) \wedge (\bigwedge_{j=m+1}^n s_j \neq t_j)$$

 \mathcal{S} : the set of all equalities and inequalities in \mathcal{F}

T: set of all terms and subterms in F

A partition of T is constructed as follows:

- (1) initial partition $\{\{t\} \mid t \in T\}$
- (2) for all $1 \le i \le m$
 - a. with $s_i = t_i$ merge the congruence classes of s_i and t_i
 - b. propagate the new congruence with symmetry, transitivity, and functional congruence

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ かへの

Constructed partition induces a congruence relation \sim on T

- ightharpoonup \sim is reflexive, symmetric, & transitive (equivalence relation)
- ightharpoonup ~ respects functional congruence

Constructed partition induces a congruence relation \sim on T

- ightharpoonup \sim is reflexive, symmetric, & transitive (equivalence relation)
- ightharpoonup ~ respects functional congruence

Theorem

F is satisfiable $\iff \nexists s_i, t_i \in T$ such that $s_i \sim t_i$ and $(s_i \neq t_i) \in S$

Example (Congruence Closure Algorithm)

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

▶ initial partition:

a b

f(a,b) f(f(a,b),b)

Example (Congruence Closure Algorithm)

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

• with f(a, b) = a merge the congruence classes of f(a, b) and a:

Example (Congruence Closure Algorithm)

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

▶ $a \sim f(a, b)$, with functional congruence $f(a, b) \sim f(f(a, b), b)$:

Example (Congruence Closure Algorithm)

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

▶ $a \sim f(a, b)$, with functional congruence $f(a, b) \sim f(f(a, b), b)$:

Example (Congruence Closure Algorithm)

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

▶ $a \sim f(a, b)$, with functional congruence $f(a, b) \sim f(f(a, b), b)$:

 $\implies f(f(a,b),b) \sim a$, but $f(f(a,b),b) \neq a \implies F$ is UNSATISFIABLE

SMT — EUF, Lukas Koller

Satisfiability of Arbitrary EUF-Formulas

 Congruence Closure algorithm only for conjunctions of equalities and inequalities

Satisfiability of Arbitrary EUF-Formulas

 Congruence Closure algorithm only for conjunctions of equalities and inequalities

Algorithm (Satisfiability of Arbitrary EUF-Formulas)

- 1. Negate F & convert to DNF, yields F'
- 2. check unsatisfiability for each disjunct of F' with Congruence Closure algorithm
- if all disjuncts of F' are unsatisfiable then return SATISFIABLE else return UNSATISFIABLE

Satisfiability of Arbitrary EUF-Formulas

 Congruence Closure algorithm only for conjunctions of equalities and inequalities

Algorithm (Satisfiability of Arbitrary EUF-Formulas)

- 1. Negate F & convert to DNF, yields F'
- 2. check unsatisfiability for each disjunct of F' with Congruence Closure algorithm
- if all disjuncts of F' are unsatisfiable then return SATISFIABLE else return UNSATISFIABLE

possible exponential blowup of DNF

Efficient Implementation of the Congruence Closure Algorithm

Constructed congruence relation \sim on T

- ightharpoonup \sim is reflexive, symmetric, & transitive (equivalence relation)
- ightharpoonup ~ respects functional congruence

 \implies Idea: Union-Find algorithm + efficient propagation of functional congruence

Efficient Implementation of the Congruence Closure Algorithm: Union-Find

General idea

► Membership to an equivalence class represented by reference to representative element

Example (Union-Find)

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

How to efficiently propagate functional congruence?

How to efficiently propagate functional congruence?

$$\forall \bar{x}, \bar{y}. \bigwedge_{i=1}^{n} x_i = y_i \implies f(\bar{x}) = f(\bar{y})$$

⇒ functional congruence is only propagated from function arguments to function applications

⇒ Directed-Acyclic-Graph (DAG)

Example (DAG)

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

⇒ efficient propagation of functional congruence to predecessors

Efficient Implementation of the Congruence Closure Algorithm: Propagation of Functional Congruence

- \triangleright P_s : all predecessors the congruence class that contains s
- \triangleright P_t : all predecessors the congruence class that contains t
- ▶ new congruence $s \sim t$
- ▶ for any $(s', t') \in P_s \times P_t$ check if $s' \stackrel{?}{\sim} t'$

Example (Union-Find + DAG)
$$G: f^{5}(a) = a \wedge f^{3}(a) = a \wedge f(a) \neq a$$

► DAG for G:

$$\overbrace{f^5(a)} \longrightarrow \overbrace{f^4(a)} \longrightarrow \overbrace{f^3(a)} \longrightarrow \overbrace{f^2(a)} \longrightarrow \overbrace{f(a)} \longrightarrow \overbrace{a}$$

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

► Initial partition:

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

$$ightharpoonup f^5(a)=a \implies f^5(a)\sim a$$

$$P_{f^5(a)} \times P_a = \{\}$$

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

$$P_{f^5(a)} \times P_a = \{\}$$

SMT — EUF, Lukas Koller

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

$$f^3(a) = a \implies f^3(a) \sim a$$

$$P_{f^3(a)} \times P_a = \{(f^4(a), f(a))\}$$

SMT — EUF, Lukas Koller

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

$$f^3(a) = a \implies f^3(a) \sim a$$

$$P_{f^3(a)} \times P_a = \{(f^4(a), f(a))\} \implies f^4(a) \stackrel{?}{\sim} f(a)$$

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

• with functional congruence $f^4(a) \sim f(a)$

 $P_{f^4(a)} \times P_{f(a)} = \{(f^5(a), f^2(a))\}$

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

• with functional congruence $f^4(a) \sim f(a)$

SMT — EUF, Lukas Koller

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

► $f^5(a) \stackrel{?}{\sim} f^2(a)$

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

• with functional congruence $f^5(a) \sim f^2(a)$

 $P_{f^5(a)} \times P_{f^2(a)} = \{ (f^4(a), f^3(a)), (f(a), f^3(a)) \}$

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

• with functional congruence $f^5(a) \sim f^2(a)$

$$P_{f^5(a)} \times P_{f^2(a)} = \{ (f^4(a), f^3(a)), (f(a), f^3(a)) \}$$

 $\implies f^4(a) \stackrel{?}{\sim} f^3(a) \text{ and } f(a) \stackrel{?}{\sim} f^3(a)$

SMT — EUF, Lukas Koller

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

► $f^4(a) \stackrel{?}{\sim} f^3(a)$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

Example (Union-Find + DAG)

$$G: f^5(a) = a \wedge f^3(a) = a \wedge f(a) \neq a$$

► $f^4(a) \sim f^3(a)$

Example (Union-Find + DAG)
$$G: f^{5}(a) = a \wedge f^{3}(a) = a \wedge f(a) \neq a$$

 $\implies f(a) \sim a$, but $f(a) \neq a \implies G$ is UNSATISFIABLE

Conclusion

Fast implementations of the Congruence Closure algorithm take $\mathcal{O}(n \log n)$ time, for formulas of size n

Conclusion

- Fast implementations of the Congruence Closure algorithm take $O(n \log n)$ time, for formulas of size n
- Any modern SMT Solver contains an efficient solver for EUF

Conclusion

- Fast implementations of the Congruence Closure algorithm take $O(n \log n)$ time, for formulas of size n
- ▶ Any modern SMT Solver contains an efficient solver for EUF
- SMT solvers have numerous applications
 - ▶ Program & hardware verification ⇒ OpenJML
 - ► Testcase-generation
 - Static analysis
 - **.**..

⇒ in almost all applications a SMT solver must be able to efficiently reason about equality

