Discrete likelihood			
Likelihood	Conjugate prior	Posterior hyperparameters	
Bern(p)	$\mathrm{Beta}\left(\alpha,\beta\right)$	$\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i$	
$\operatorname{Bin}(p)$	Beta (α, β)	$\alpha + \sum_{i=1}^{n} x_i, \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	
$\operatorname{NBin}\left(p\right)$	$ \operatorname{Beta} \left(\alpha, \beta \right) $	$\alpha + rn, \beta + \sum_{i=1}^{n} x_i$	
$\operatorname{Po}(\lambda)$	$\boxed{\operatorname{Gamma}\left(\alpha,\beta\right)}$	$\alpha + \sum_{i=1}^{n} x_i, \beta + n$	
	$\operatorname{Dir}\left(\alpha\right)$	$\alpha + \sum_{i=1}^{n} x^{(i)}$	
$\operatorname{Geo}\left(p\right)$	$\mathrm{Beta}(\alpha,\beta)$	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	

15.4 Bayesian Testing

If $H_0: \theta \in \Theta_0$:

Prior probability
$$\mathbb{P}\left[H_0\right] = \int_{\Theta_0} f(\theta) \, d\theta$$

Posterior probability $\mathbb{P}\left[H_0 \,|\, x^n\right] = \int_{\Theta_0} f(\theta \,|\, x^n) \, d\theta$

Let $H_0...H_{k-1}$ be k hypotheses. Suppose $\theta \sim f(\theta \mid H_k)$,

$$\mathbb{P}\left[H_k \mid x^n\right] = \frac{f(x^n \mid H_k)\mathbb{P}\left[H_k\right]}{\sum_{k=1}^K f(x^n \mid H_k)\mathbb{P}\left[H_k\right]},$$

Marginal likelihood

$$f(x^n \mid H_i) = \int_{\Theta} f(x^n \mid \theta, H_i) f(\theta \mid H_i) d\theta$$

Posterior odds (of H_i relative to H_i)

$$\frac{\mathbb{P}\left[H_{i} \mid x^{n}\right]}{\mathbb{P}\left[H_{j} \mid x^{n}\right]} = \underbrace{\frac{f(x^{n} \mid H_{i})}{f(x^{n} \mid H_{j})}}_{\text{Bayes Factor } BF_{i,i}} \times \underbrace{\frac{\mathbb{P}\left[H_{i}\right]}{\mathbb{P}\left[H_{j}\right]}}_{\text{prior odds}}$$

Bayes factor

$\log_{10} BF_{10}$	BF_{10}	evidence
0 - 0.5	1 - 1.5	Weak
0.5 - 1	1.5 - 10	Moderate
1 - 2	10 - 100	Strong
> 2	> 100	Decisive

$$p^* = \frac{\frac{p}{1-p}BF_{10}}{1+\frac{p}{1-p}BF_{10}}$$
 where $p = \mathbb{P}[H_1]$ and $p^* = \mathbb{P}[H_1 \mid x^n]$

16 Sampling Methods

16.1 Inverse Transform Sampling

Setup

- $U \sim \text{Unif}(0,1)$
- X ~ I
- $F^{-1}(u) = \inf\{x \mid F(x) \ge u\}$

Algorithm

- 1. Generate $u \sim \text{Unif}(0,1)$
- 2. Compute $x = F^{-1}(u)$

16.2 The Bootstrap

Let $T_n = g(X_1, \ldots, X_n)$ be a statistic.

- 1. Estimate $\mathbb{V}_F[T_n]$ with $\mathbb{V}_{\widehat{F}_n}[T_n]$.
- 2. Approximate $\mathbb{V}_{\widehat{F}_n}[T_n]$ using simulation:
 - (a) Repeat the following B times to get $T_{n,1}^*, \ldots, T_{n,B}^*$, an IID sample from the sampling distribution implied by \widehat{F}_n
 - i. Sample uniformly $X_1^*, \ldots, X_n^* \sim \widehat{F}_n$.
 - ii. Compute $T_n^* = g(X_1^*, ..., X_n^*)$.
 - (b) Then

$$v_{boot} = \widehat{\mathbb{V}}_{\widehat{F}_n} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2$$

16.2.1 Bootstrap Confidence Intervals

Normal-based interval

$$T_n \pm z_{\alpha/2} \widehat{\mathsf{se}}_{boot}$$

Pivotal interval

1. Location parameter $\theta = T(F)$

- 2. Pivot $R_n = \widehat{\theta}_n \theta$
- 3. Let $H(r) = \mathbb{P}[R_n \leq r]$ be the CDF of R_n
- 4. Let $R_{n,b}^* = \hat{\theta}_{n,b}^* \hat{\theta}_n$. Approximate H using bootstrap:

$$\widehat{H}(r) = \frac{1}{B} \sum_{b=1}^{B} I(R_{n,b}^* \le r)$$

- 5. $\theta_{\beta}^* = \beta$ sample quantile of $(\widehat{\theta}_{n,1}^*, \dots, \widehat{\theta}_{n,B}^*)$
- 6. $r_{\beta}^* = \text{beta sample quantile of } (R_{n,1}^*, \dots, R_{n,B}^*), \text{ i.e., } r_{\beta}^* = \theta_{\beta}^* \widehat{\theta}_n$
- 7. Approximate 1α confidence interval $C_n = (\hat{a}, \hat{b})$ where

$$\hat{a} = \widehat{\theta}_n - \widehat{H}^{-1} \left(1 - \frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{1-\alpha/2}^* = 2\widehat{\theta}_n - \theta_{1-\alpha/2}^*$$

$$\hat{b} = \widehat{\theta}_n - \widehat{H}^{-1} \left(\frac{\alpha}{2} \right) = \widehat{\theta}_n - r_{\alpha/2}^* = 2\widehat{\theta}_n - \theta_{\alpha/2}^*$$

Percentile interval

$$C_n = \left(\theta_{\alpha/2}^*, \theta_{1-\alpha/2}^*\right)$$

16.3 Rejection Sampling

Setup

- We can easily sample from $g(\theta)$
- We want to sample from $h(\theta)$, but it is difficult
- We know $h(\theta)$ up to a proportional constant: $h(\theta) = \frac{k(\theta)}{\int k(\theta) d\theta}$
- Envelope condition: we can find M > 0 such that $k(\theta) \leq Mg(\theta) \quad \forall \theta$

Algorithm

- 1. Draw $\theta^{cand} \sim g(\theta)$
- 2. Generate $u \sim \text{Unif}(0,1)$
- 3. Accept θ^{cand} if $u \leq \frac{k(\theta^{cand})}{Mg(\theta^{cand})}$
- 4. Repeat until B values of θ^{cand} have been accepted

Example

- We can easily sample from the prior $g(\theta) = f(\theta)$
- Target is the posterior $h(\theta) \propto k(\theta) = f(x^n \mid \theta) f(\theta)$
- Envelope condition: $f(x^n \mid \theta) < f(x^n \mid \widehat{\theta}_n) = \mathcal{L}_n(\widehat{\theta}_n) \equiv M$
- Algorithm
 - 1. Draw $\theta^{cand} \sim f(\theta)$

- 2. Generate $u \sim \text{Unif}(0,1)$
- 3. Accept θ^{cand} if $u \leq \frac{\mathcal{L}_n(\theta^{cand})}{\mathcal{L}_n(\widehat{\theta}_n)}$

16.4 Importance Sampling

Sample from an importance function g rather than target density h. Algorithm to obtain an approximation to $\mathbb{E}\left[q(\theta)\,|\,x^n\right]$:

- 1. Sample from the prior $\theta_1, \ldots, \theta_n \stackrel{iid}{\sim} f(\theta)$
- 2. $w_i = \frac{\mathcal{L}_n(\theta_i)}{\sum_{i=1}^B \mathcal{L}_n(\theta_i)} \quad \forall i = 1, \dots, B$
- 3. $\mathbb{E}\left[q(\theta) \mid x^n\right] \approx \sum_{i=1}^B q(\theta_i) w_i$

17 Decision Theory

Definitions

- Unknown quantity affecting our decision: $\theta \in \Theta$
- Decision rule: synonymous for an estimator $\widehat{\theta}$
- Action $a \in \mathcal{A}$: possible value of the decision rule. In the estimation context, the action is just an estimate of θ , $\widehat{\theta}(x)$.
- Loss function L: consequences of taking action a when true state is θ or discrepancy between θ and $\widehat{\theta}$, $L: \Theta \times \mathcal{A} \to [-k, \infty)$.

Loss functions

- Squared error loss: $L(\theta, a) = (\theta a)^2$
- Linear loss: $L(\theta, a) = \begin{cases} K_1(\theta a) & a \theta < 0 \\ K_2(a \theta) & a \theta \ge 0 \end{cases}$
- Absolute error loss: $L(\theta, a) = |\theta a|$ (linear loss with $K_1 = K_2$)
- L_p loss: $L(\theta, a) = |\theta a|^p$
- Zero-one loss: $L(\theta, a) = \begin{cases} 0 & a = \theta \\ 1 & a \neq \theta \end{cases}$

17.1 Risk

Posterior risk

$$r(\widehat{\theta} \mid x) = \int L(\theta, \widehat{\theta}(x)) f(\theta \mid x) d\theta = \mathbb{E}_{\theta \mid X} \left[L(\theta, \widehat{\theta}(x)) \right]$$

(Frequentist) risk

$$R(\theta, \widehat{\theta}) = \int L(\theta, \widehat{\theta}(x)) f(x \mid \theta) dx = \mathbb{E}_{X \mid \theta} \left[L(\theta, \widehat{\theta}(X)) \right]$$