First Milestone Presentation

Moving 2

- 1. Introduction to Reinforcement Learning
- 2. Project Requirements
- 3. Basic Approach
- 4. First Results
- 5. Schedule
- 6. Sources

Introduction to Reinforcement Learning

Why Reinforcement Learning in Robotics?

Why don't we just program robots?

- more "natural" movement with less programmer knowledge
- possibility to find solutions beyond what developers think is optimal
- allows adaptation to changes (Kormushev, 2013)

1: Teach Pendant

2: Pancake Robot

Markov Decision Process

- from a state, an agent can take possible actions
- only current state relevant
- action outcomes in specific states are probabilistic

states are a representation of the environment, based on an observation of the

environment

3: Fundamental processes of RL

4: States and possible actions

Reward Functions

- Reward functions receive state and action and return reward
- Rewards accumulated over a trajectory are a return
- Value: return agent expects to receive from an action in a state and onwards

3: Fundamental processes of RL

Policies and Learning Algorithms in RL

- Agent decides based on a policy function, which takes the state and outputs an action -> Parameters in policy function are to be optimized!
- Direct and indirect policy mapping
- Model-free and Model-based

5: Reinforcement Learning Framework

Project Requirements

Specified:

- movement forward (not driving)
- use of at least two motors
- use of sensors
- learning of movement with reinforcement learning

Safety Requirements:

- avoidance of collisions
- does not fall over

Basic Approach

♦ The Robot

- Possible types of movement: jumping, rolling, shuffling, walking, slithering...
- To consider:
 - stability
 - control of movement
 - mechanical complexity
 - number of motors required
 - placement of sensors

6: Jumping robot

7: Omnidirectional walker

8: Mechanism of a snake's movement

- receives state and action and returns reward
- Challenges and Solutions
 - sparse rewards and reward shaping
 - cobra effect and incentivizing what you intend
 - positive and negative rewards
- how to shape the function: space, time, sensors

9: Reward function and improvement

Observation and Action Space

Observation space

- data that the robot can collect from the environment
- can be continuous and discrete

Action Space

- contains possible actions
- can be continuous and discrete

Vera, Zied

RL Algorithm

- Model-free vs Model-based
- Whether the agent uses predictions of the environment response
- We are dealing with the real world (complex environment)

11: RL Algorithms classification

Basic robot Design

- "Ski-Robot":
- uses 2 Motors
- stable
- moves forward most efficiently moving 2 mot
- able to rotate by moving one motor

System Architecture

Possibilities

- Data collection and RL agent on RPI
- Data collection on RPI and fed instantly to the agent in a server.
- Offline Data collection on RPI and feed after a few tests to RL agent.

Implementation

- Hardware:
 - Raspberry Pi 4 + Lego Build Hat
 - 2 motors
 - 1 camera sensor
 - 1 distance sensor
- Software:
 - Offline Data Collection on Raspberry Pi
 - Data Processing and RL Agent Training (Server or Computer)
 - Periodic Data Transfer to Agent over TCP/IP
 - Send Feedback from Pi/ Agent to Server and Rerun for iterative improvements

♦ Test Environment

Rectangular shaped room

- Floor in Testing space is covered in colored Tape :
 - Straight line in Different colors of Tape (representing levels) (or one color)
 - Sides of the line in a specific color Tape

Observation Space

- Horizontal distance to walls :
 - continuous space
 - measured with distance Sensor

- Color of current position :
 - discrete space
 - measured with color sensor

Subsequent Action

- Continuous : Motor torque
 - continuous action space
 - for each motor

- Discrete : pre-defined movements
 - small, big , intermediate step ..

10: Torque

Distance reward/punishment : (relative to distance)

- gets minor reward when distance gets smaller
- gets minor punishment when distance gets bigger

Color reward/punishment :

- colors are ordered
- side color being worse
- gets major reward when going from a color to a "better" one
- gets major punishment when going from a color to a "worse" one

	07.05-13.05	14.05-20.05	21.05-27.05	28.05-03.06
Hardware				
Gather Information about Mechanics, robotics To make efficient first prototype.				
Decide Robot design (first prototype)				
Brainstorm System Architectures				
Build an efficient Prototype				
Decide System Architecture		3		
Refine Robot Design				

Software				
	07.05-13.05	14.05-20.05	21.05-27.05	28.05-03.06
Gather broad knowledge about RL Algorithms and how to implement them				
Understand C++ Library				
Select 2 RL Algorithms				
Implement RL Algorithms and try them out				
Improve RL Algorithm				
Brainstorm reward function				
first trial of a value function				

General				
	07.05-13.05	14.05-20.05	21.05-27.05	28.05-03.06
Define Requierments				
Define Observation Space (decide which sensors to use and how)				
Define Action Space (Define type of action)				

Reinforcement Learning:

Kormushev, Petar, Sylvain Calinon, and Darwin Caldwell. "Reinforcement Learning in Robotics: Applications and Real-World Challenges." *Robotics* 2, no. 3 (July 5, 2013): 122–48. https://doi.org/10.3390/robotics2030122.

https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-1-4-866695deb4d1 (all parts)

https://medium.com/@BonsaiAI/deep-reinforcement-learning-models-tips-tricks-for-writing-reward-functions-a84fe525e8e0

https://de.mathworks.com/campaigns/offers/reinforcement-learning-with-matlab-ebook.html?gclid=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_BwE&ef_id=CjwKCAjw0YGyBhByEiwAQmBEWvkDebcU6pwgRJ3Z9KIZYZpl4plXoRO-pOeCbEH3CE8iThIlHnyo0hoCOUAQAvD_Bw

(ebook)

https://de.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html

- 1: https://control.com/technical-articles/how-to-program-a-robot-industrial-robotic-arm-coding-basics/
- 2: https://www.mdpi.com/2218-6581/2/3/122 (see Source 1 in Sources)
- 3: https://lilianweng.github.io/posts/2018-02-19-rl-overview/
- 4: https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-2-4-46a1491a2451
- 5: https://de.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html
- 6: https://www.sciencebuddies.org/science-fair-projects/project-ideas/Robotics p047/robotics/rubber-band-jumping-robot
- 7: https://rebrickable.com/mocs/MOC-102576/2in1/omnidirectional-walker/#details
- 8: Lopez, Marcela, and Mahdi Haghshenas-Jaryani. "A Muscle-Driven Mechanism for Locomotion of Snake-Robots." *Automation* 3, no. 1 (December 31, 2021): 1–26. https://doi.org/10.3390/automation3010001.
- 9: https://medium.com/@cedric.vandelaer/reinforcement-learning-an-introduction-part-2-4-46a1491a2451
- 10: https://akotorque.com/resources/torque-101/
- 11: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html