Worksheet 4 - Unconstrained Optimization: Part 2

1 On the descent direction

- 1. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(\boldsymbol{x}) = x_1^3 + x_2^2 + 2x_2$. Give some descent directions for f at the point $[1,1]^{\top}$. Is there any descent direction at the point $[0,-1]^{\top}$? Justify the answer.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$. For the following cases specify if the direction d is a descent one for f at x or not (Justify the answer).
 - (a) $\mathbf{d} = -\nabla f(\mathbf{x})$
 - (b) $\mathbf{d} = -[1, \dots, 1]^{\top}$
 - (c) $\mathbf{d} = -A\nabla f(\mathbf{x})$ where $A \succ 0$.
 - (d) $\boldsymbol{d} = -\left[\frac{\partial f}{\partial x_1}(\boldsymbol{x}), 2\frac{\partial f}{\partial x_2}(\boldsymbol{x}), 3\frac{\partial f}{\partial x_3}(\boldsymbol{x}), \dots, n\frac{\partial f}{\partial x_n}(\boldsymbol{x})\right]^{\top}$.

2 On the optimal step-size

1. Consider the following optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f(\boldsymbol{x}) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2.$$

Compute the optimal step-size at $[5,1]^{\top}$ following the direction $\mathbf{d} = -\nabla f([5,1]^{\top})$.

2. Consider the quadratic minimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^\top Q \boldsymbol{x} - \boldsymbol{a}^\top \boldsymbol{x}$$

where the matrix $Q \in \mathbb{R}^n$ is symmetric positive definite and $\boldsymbol{a} \in \mathbb{R}^n$.

Given a point $x \in \mathbb{R}^n$ and a direction $d \in \mathbb{R}^n$ (such that $d \neq 0_{\mathbb{R}^2}$), compute the optimal step-size α^* given by

$$\alpha^* = \arg\min_{\alpha \in \mathbb{R}} f(\boldsymbol{x} + \alpha \boldsymbol{d}).$$

3 On the Newton method

Consider the following optimization problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f(\boldsymbol{x})$$

- 1. First let $f(\mathbf{x}) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$
 - (a) For a given starting point $\mathbf{x}^0 = [x_1^0, x_2^0]^\top$, compute the Newton direction at this point.
 - (b) Show that such direction is a descent direction at the point x^0 .
 - (c) Compute the first iterate \boldsymbol{x}^1 of the Newton method. Comment the obtained result.
- 2. Assume now that $f(x) = x_1^4 + 2x_2^2$ and answer questions (a), (b) and (c).

2