Graph Theory - Sheet 3 - November 7, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Problem 9

Theorem 1.1. A hypercube Q_n is Hamiltonian. It has a girth of 4, a diameter of n , an or a size of ?.	der of 2^n and
Proof.	
Theorem 1.2. A bipartite complete graph $K_{m,n}$ is Hamiltonian iff $m = n$. It's girth is 4 for ∞ otherwise. It's diameter is 2. The graph's order is $m + n$ and it's size is $m \cdot n$.	$m,n \geq 2$ and
Proof.	
Theorem 1.3. The Petersen graph is Hamiltonian, it has a girth of 5, a diameter of 2, a and a size of 15.	n order of 10
Proof.	

Problem 10

Theorem 2.1. For a natural number $n \ge 2$ let $G = (V_G, E_G)$ be the graph of order 2n + 1 obtained from $K_{n,n}$ by subdividing an edge by a vertex. Then, $\chi'(X) = \Delta(G) + 1 = n + 1$ but $\chi'(G - e) = \Delta(G - e)$ for any edge e of G.

Proof. Let $V = \{v_1, ..., v_n\}$ and $W = \{w_1, ..., w_n\}$ denote the two partitions of $K_{n,n}$ and $\{c_k \mid k \in \mathbb{N}\}$ be a set of colors. Furthermore, let $u \in V_G$ be the vertex subdividing an edge between these two partitions.

First, we will prove that $\chi'(X) = \Delta(G) + 1 = n + 1$. We will argue, that any partial coloring of G will inevitably result in n + 1 colors.

For a partially colored G, let $v \in V_G$ be a vertex of G.

• Case 1: $v \neq u$: Since v has n adjacent vertices, we need n colors to color the edges incident to v. Of course,

Problem 11

For each even integer k > 1, the complete graph $K_{(n+1)}$ is a k-regular graph with no 1-factor. For each odd integer k > 1 the graph must not be bipartite (*Hall's Theorem*). Furthermore, there must be a subset U such that the graph without U has at least |U| connected components with an odd number of vertices (*Tutte Theorem*).

Problem 12

In the following I will show that any graph G with 2n vertices and all degrees at least n has a 1-factor. I will show that if we divide such a G into two parts we can remove edges until we get an bipartite 1-regular graph. Then using the corollary of Hall's theorem we know we can find a perfect matching.

Theorem 4.1. Let G = (V, E) be a graph with |V| = 2n vertices with all degree at least n, then G has a 1-factor.

Proof. Because |V|=2n we can divide the vertices V into two subsets $A,B\subset V$ with |A|=|B|=n and $A\cap B=\emptyset$