Assignment 11

Chained Hash Table

Grading

- Hash Table
 - 0 80%
 - Constructor
 - The put method
 - The get method
- Measurement and Analysis
 - o 20%
 - Analysis of "unloaded" hash table (10x less than size of added items)
 - Analysis of loaded hash table (capacity 10x more than added items)

Hash Table Interface

- Hash211<K,V>
 - o constructor: Hash211<K, V>(int capacity, boolean printTimes)
 - capacity number of entries in table
 - printTimes print times for put and get methods
- Methods
 - O V put(K key, V value)
 - o V get(object key)

Hash Table Implementation

- Use .equals (...) to determine if two keys are the same
- Use .hashCode() of key to create index into table
 - o Returns an int
 - Must make sure this value maps to a valid array location
- The put method
 - Adds new value to hash table
 - Returns the value just added
 - If a matching key already exists, old value is replaced
- The get method
 - Returns item matching key
 - Returns null if key does not exist in table

Hash Table

- Chained hash table
- Each element of hash table array is a linked list
- Elements of the hash table are linked lists
 - List elements contain both a key and a value
 - You can use the built-in java linked list class
 - Create a class for this (e.g.: class KeyValuePair)
 - o table[h] = new LinkedList<KeyValuePair>()

```
class KeyValuePair<K,V> {
    K key;
    V value;
}
```

Chained Hash Table

Measurement and Analysis

- What's being measured
 - The amount of time a put operations take
 - The amount of time a get operations take
- Use nanoTime() to compute time deltas
 - This is required by the assignment
 - Time delta of zero you'll need to use multiple get or put operations
- You can also use HashTableStressTest.java
 - Command line parameters
 - Specify capacity of hash table
 - Input word dictionary
 - See assignment for more details

Time Pseudo-Code

```
V put (K key, V value) {
   long ts, tf;
   ts = System.nanoTime();
   // put implementation
   tf = System.nanoTime();
   System.out.println("put took " + tf-ts + "ns.");
   return val;
```

Example

- Example "dict.txt" has 234,937 elements
- Unloaded table would have capacity of 2,349,370 items
- Loaded table would have capacity of 23,493 items

Analysis Write-up

- Submit a text file, MS word doc, or PDF with your analysis
 - Just make sure it's included with your assignment submission
 - Can be in the jar file or separate
 - Just make sure you don't forget it
- Include your measurement results
- Write an analysis
 - Your measurements should be consistent with expected hash table performance
 - Your book has a good description of hash table performance
 - Your measurements should support the analysis you write

Bonus Point

- Add comments
- Create readable code
- Make your code efficient
- Etc...

...and get extra credit!