Experimento 04 - Máquina de atwood

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

11 de outubro de 2014

1 Resumo

Inicialmente, prendeu-se um fio (inextensível) com duas massas nas extremidades em uma polia em torno de um eixo fixo (Máquina de Atwood). Após variar a diferença entre as massas das extremidades dos pesos dos fios (com discos de metal de massas variadas) e obter os períodos de queda de da massa de maior peso com um cronômetro, foi utilizada a fórmula $\Delta m = (\frac{2h}{gR^2})(I+MR^2)\frac{1}{t^2} + (\frac{tau_a}{gR}) \text{ para determinar o momento de inércia da polia e o torque do atrito. Após a transformação linear da equação em <math>X$, traçou-se um gráfico de Δm por $1/t^2$. A partir desses dados e das dimensões do cilindro (calculadas com um paquímetro), foi possível a determinação do momento de inércia aproximado e do torque realizado pela força de atrito na polia.

2 Objetivos

O experimento realizado teve como objetivo estudar a máquina de Atwood, utilizando para isso a determinação do momento de inércia da polia utilizada e do torque realizado pelo atrito entre tal polia e o fio que a toca. $T = \sqrt{\frac{8\pi I_0 L}{Gr^4}}$

3 Procedimento Experimental e Coleta de Dados

3.1 Materiais utilizados

- Polia de latão com eixo;
- barbante;
- dois pesos de suspensão;
- vários discos metálicos que se acoplam aos pesos;
- fita métrica para medição de comprimentos;
- paquímetro;
- balança de precisão;
- cronômetro;

3.2 Procedimento

3.3 Dados Obtidos

4 Análise dos Resultados e Discussões

4.1 Regressão linear

Pela equação

$$\Delta m = \frac{2h}{gR^2} \cdot (I + MR^2) \frac{1}{t^2} + \frac{\tau_a}{gR}$$

Onde $\Delta m = m_1 - m_2$, $M = m_1 + m_2$, h é a altura inicial, t é o tempo em que os corpos se deslocam de h, I é o momento de inércia do cilindro de latão, R é o seu raio.

Vemos que existe uma relação linear entre Δm e $\frac{1}{t^2}$. Para explorar essa relação, foi construída a Tabela 1, relacionando Δm à $\frac{1}{t^2}$.

	Tabela 1: A dif	ferença de massa,	relacionada à	grandeza 1	$/t^2$.
--	-----------------	-------------------	---------------	------------	----------

$\Delta m (g)$	t(s)	$1/t^2 (s^{-2})$
37.0 ± 0.1	4.24 ± 0.03	0.055 ± 0.001
29.2 ± 0.1	4.51 ± 0.05	0.049 ± 0.001
10.2 ± 0.1	8.34 ± 0.05	0.0143 ± 0.0002
10.4 ± 0.1	8.60 ± 0.09	0.0135 ± 0.0003
9.8 ± 0.1	8.51 ± 0.01	0.01379 ± 0.0002
13.6 ± 0.1	7.26 ± 0.03	0.0189 ± 0.0003

Fazendo a regressão linear de Δm X $\frac{1}{t^2}$, pelo método de mínimos quadrados, obtem-se os seguintes coeficientes:

$$a = 0.00138 \pm 0.00005$$
$$b = 0.0002 \pm 0.0005$$

A reta resultante da regressão linear, sobreposta aos pontos medidos experimentalmente pode ser vista na Figura 1. Nota-se que o experimento falhou em coletar dados distribuidos uniformemente sobre o eixo Δm , e isso pode acarretar erros e incertezas.

4.2 Significado do coeficiente angular

O momento de inércia da polia de latão pode ser escrito em função do coeficiente angular a pela fórmula

$$I = a \cdot \frac{gR^2}{2h} - MR^2,$$

$$\Delta I = \sqrt{\Delta a^2 \frac{g^2 R^4}{4h^2} + \Delta R^2 (a\frac{g}{h^2} - M)^2 + \Delta M^2 R^4}$$

4.3 Significado do coeficiente linear

5 Conclusões

Figura 1: Regressão linear de Δm por $1/t^2$ sobreposta aos pontos experimentais