

ABSTRACT OF THE DISCLOSURE

Induction voltage command E_m^* is obtained from inverter's primary frequency command ω_1^* and torque boost voltage commander produces torque boost voltage command ΔV_z^* in accordance with ω_1^* while integrator produces reference phase command θ_d^* . uvw/dq converter detects motor excitation current I_d (equivalent of no-load current). Next, deviation of excitation current limitation level command I_{dmax}^* and detected I_d is inputted to limiter processing unit to produce torque boost voltage compensation value ΔV_c for varying ΔV_z^* so that I_d is smaller than or equal to I_{dmax}^* . Inverted ΔV_z^* is set up as a lower limiter value of the limiter processing unit. Next, ΔV_c and ΔV_z^* are added to produce final compensated torque boost voltage command ΔV_t^* and ΔV_t^* and E_m^* are added to produce q-axis voltage command V_q^* of the inverter output voltage.