

PARAMETROS

El número posible de agentes contaminantes del agua es elevado.

El intentar medir cada uno de ellos sería complejo.

Muchos de los agentes producen efectos similares.

Se definen una serie de parámetros generales indicadores de contaminación y estos son los que se cuantifican. (ver Res. 336/03)

Contaminación Biológica-Procesos de degradación biológica

• Procesos aérobicos:

MO + O2 + microorg. → CO2 + H2O + nuevos microorg microorganismos aeròbicos

Procesos Anaerobicos

MO + H2O + microorg. → CH4 + H2O + NH3 +nuevos microorg microorganismos anaeròbicos

MO: materia orgánica biodegradable

Ing. Mónica Bianucci-FIUBA-97-04 2do.cuatrimestre 2021

Demanda bioquímica de oxígeno DBO

Es la cantidad de oxígeno disuelto en una muestra que necesita una población heterogénea de bacterias aeróbicas para degradar la materia orgánica disuelta presente en una muestra.

Demanda bioquímica de oxígeno DBO

Se determina mediante un ensayo normalizado a 20 grados centígrados y 5 días de incubación (a temperatura Cte.).

Se necesita:

- Materia orgánica biodegradable (que es lo que se pretende determinar)
- Bacterias aeróbicas
- Oxígeno disuelto

En una muestra con dilución:

DBO = Oi - Of

Ing. Mónica Bianucci-FIUBA-97-04 2do.cuatrimestre 2021

Demanda bioquímica de oxígeno DBO

En una muestra con dilución:

 $DBO_{5,20} = O_i - O_f$

En una muestra con dilución:

 $DBO_{5,20} = ((Oi - Of) / \% \text{ dilución}) \times 100$

Donde:

Oi: concentración de oxígeno disuelto inicial de la muestra

Of : concentración de oxígeno disuelto final de la muestra Ejemplo:

Dilución 10 %

Oi: 10,1 mg/l

Of: 6,0 mg/l

DBO 5,20 = $(\frac{10,1-6,0}{10})$ x 100 = 41 mg/l

04 2do.cuatrimestre 2021

Demanda bioquímica de oxígeno DBO

Curva DBO- Tiempo

Gráfico extraído de apunte Ing. Juan Manuel Sanchez- Procedimiento de estudio para evaluar la calidad de aguas y efluentes líquidos.

Ing. Mónica Bianucci-FIUBA-97-04_2do.cuatrimestre 2021

Del Manual de saneamiento de poblaciones [2] extrajimos la tabla 15, referida a un líquido cloacal fresco; en ella resaltamos los valores correspondientes a cinco días y veinte grados, que se usan normalmente como referencia.

Días	Temperatura										
Dias	5°C	10°C	15°C	20°C	25°C	30°C					
1	0,11	0,16	0,22	0,30	0,40	0,54					
2	0,21	0,30	0,40	0,54	0,71	0,91					
3	0,31	0,41	0,56	0,73	0,93	1,17					
4	0,38	0,52	0,68	0,88	1,11	1,35					
5	0,45	0,60	0,79	1,00	1,23	1,47					
6	0,51	0,68	0,88	1,10	1,31	1,56					
7	0,57	0,75	0,95	1,17	1,40	1,62					
8	0,62	0,80	1,01	1,23	1,45	1,66					
9	0,66	0,85	1,06	1,28	1,49	1,69					
10	0,70	0,90	1,10	1,32	1,52	1,71					
12	0,77	0,97	1,17	1,37	1,56	1,73					
14	0,82	1,02	1,21	1,40	1,58	1,74					
16	0,85	1,06	1,24	1,43	1,59	1,75					
18	0,90	1,08	1,27	1,44	1,60	1,76					
20	0,92	1,10	1,28	1,45	1,61						
25	0,97	1,14	1,30	1,46							
Demanda											
completa de	1,02 =	1,17 =	1,32 =	1,46 =	1,61 =	1,76 =					
oxígeno de la	=0,7x1,46	=0.8x1,46	=0.9x1,46	=1/0,684	=1,1x1,46	=1,2x1,46					
primera fase											

Tabla 15. Descomposición en la primera fase en un agua aireada, a diferentes temperaturas, referida a la demanda de oxígeno a los cinco días, a 20°C, según Fair, en [2].

Ing. Mónica Bianucci-FIUBA-97-04_2do.cuatrimestre 2021

Carga Orgánica

- A partir de la demanda bioquímica de oxígeno podemos definir la carga orgánica correspondiente a un vertido como la cantidad de oxígeno que precisarían los microorganismos para degradar a las substancias biodegradables y oxidar los otros reductores mencionados en la definición de la demanda bioquímica de oxígeno presentes en el efluente vertido durante una unidad de tiempo, generalmente un día, o por cada habitante, o por una unidad de producción. Debemos destacar que, si no se dice nada en contrario, esa cantidad de oxígeno será el total consumido durante los cinco primeros días después del vertido y a 20°C, según la definición de la demanda bioquímica de oxígeno normalizada, ya vista.
- Según el Manual de Saneamiento de Poblaciones del Ing. Imhoff [2] se puede considerar que la carga orgánica correspondiente a un habitante promedio en Europa es del orden de 54 g /(hab.día)-Carga orgànica por habitante
- Ése es el valor que consideraremos nosotros, pero, como destaca el autor, varía con las costumbres de cada país, así en los Estados Unidos de Norte América podría llegar a 74 g (hab.día) –
- Carga orgánica = DBO_{5.20} x Qe ; Qe= caudal del efluente

Demanda química de oxígeno-DQO

Determina el contenido de reductores totales presentes en una muestra (orgánicos e inorgánicos). Se obtiene mediante un ensayo normalizado:

- · Reactivo: dicromato de potasio
- Temperatura de ebullición
- Duración del ensayo: 2 hs.

Relación entre DBO_{5,20} y DQO

 Si DBO_{5,20} / DQO > 0,6 indica la presencia predominante de contaminación orgánica de naturaleza biodegradable.

Ing. Mónica Bianucci-FIUBA-97-04_2do.cuatrimestre 2021

Res.336/03

- En la tabla adjunta se muestran los paràmetros y los limites admisibles en función al cuerpo receptor.
- CUERPO RECEPTOR: lugar fisico donde descarga el efluente: mar, cuerpo de agua superficial, conducto pluvial, conducto cloacal, el suelo.

	R	es.	.336	5/0	3		
PA	RÁMETROS DE CAL	IDAD I	ANEXO I DE LAS DE	SCARGA			
	=100.010	UNIDA D	CODIGO TÉCNICA ANALITICA	LIMITES PARA DESCARGAR A			
GRUPO	PARAMETRO			Colectora Cloacal	Cond. Play. o cuerpo de agua superficial	Absorción por el suelo (h)	Mat Abierto
	Temperatura	*C	2550 B	≤45	≤45	≤45	≤45
1	pH	upH	4500 H+ B	7,0-10	6,5-10	6,5-10	6,5-10
	Sólidos Sedim 10 Min (2)	ml/I	Cono Imboff	Ausente	Ausente	Ausente	Ausente
	Sólidos Sedimen 2 Horas	ml/1	Cono Imhoff	≤5,0	≤1,0	≤5,0	≤5,0
	Sulfaros	mg/l	4500 S=D	52,0	≤1,0	≤5,0	NE (c)
	S.S.E.E. (1)	mg/l	5520 B (1)	≤100	≤50	≤50	≤50
	Ciamuros	mg/l	4500 CN C y E	≤0,1	≤0,1	Ausente	≤0,1
	Hidrocarburos Totales	mg/l	EPA 418.1 6 ASTM3921- 85	≤30	≤30	Ausente	≤30
	Cloro Libre	mg/l	4500 CI G (DPD)	NE	≤0,5	Ausente	≤0,5
	Coliformes Fecales (f)	NMP/10 Ond	9223 A	≤20000	≤2000	≤2000	≤20000

		D.B.O.	mg/l	5210 B	≤200	≤50	≤200	≤200	
		D.Q.O.	mg/l	5220 D	≤700	S250	≤500	≤500	
		S.A.A.M.	mg1	5540 C	≤10	≤2,0	≤2,0	≤5,0	
		Sustancias fenólicas	mg1	5530 C	\$2.0	≤0,5	≤0,1	\$2,0	
	п	Sulfatos	mg1	4500 SO4	≤1000	NE	≤1000	NE	
		Carbono orgánico total	mg1	5310 B	NE	NE	NE	NE	
	-			2000		52,0	≤0,1	≤10	
		Hierro (soluble)	mg1	3500 Fe D	≤10			197715.	
		Manganeso (soluble)	mg1	3500 Mn D	\$1,0	≤0,5	50,1	≤10	
		Cinc	mg/l	3111 B y	≤5,0	≤2,0	≤1,0	≤5,0	
		Niquel	mg/l	3111 B y	≤3,0	≤2,0	≤1,0	≤2,0	
		Cromo Total	mg/l	3111 B y	≤2,0	\$2,0	Ausente	NE	
		Cromo Hexavalente	mg/l	3500 Cr	≤0,2	≤0,2	Ausente	NE	
		Cadmio	mg/l	3111 B y	≤0,5	≤0,1	Ausente	≤0,1	
		Mercuno	mg/l	3500 Hg B	≤0,02	≤0,005	Ausente	≤0,005	
	10	Cobre	mg/l	3500 Cu D 6 3111 B y	≤2,0	≤1,0	Ausente	≤2,0	
	ш	Aluminio	mg/1	3500 Al D 6 3111 B y C	\$5,0	≤2,0	≤1,0	≤5,0	
		Arsénico	mg/l	3500 As C	≤0,5	≤0,5	≤0,1	≤0,5	
		Bano	mg/l	3111 B 4500 B B	≤2,0 ≤2,0	≤2,0 ≤2,0	≤1,0 ≤1,0	≤2,0 ≤2,0	-
		Boro Cobalto	mg/l	3111 B y	≤2,0	52,0	≤1,0	≤3,0	
	13	Selenio	mg/l	3114 C	≤0,1	≤0,1	Ausente	≤0,1	
		Plomo	mg/l	3111 B y	≤1,0	≤0,1	Ausente	≤0,1	
	100	Plaguicidas Organoclorados (g)	mg/l	6630 B	≤0,5	≤0,05	Ausente	≤0,05	
	20	Plaguicidas Organofosforados (g)	mg/l	6630 B	≤1.0	≤0,1	Ausente	≤0,1	

IV	Nitrógeno total (d)	mg/l	4500 N org B (NTK)	≤105	≤35	≤105	≤105
	Nitrógeno Amoniacal (d)	mg/1	4500 NH3+F	≤75	≤25	≤75	575
	Nitrógeno Orgánico (d)	mg/l	4500 N org B	≤30	≤10	≤30	≤30
	Fósforo Total (d)	mg/l	4500 PC	≤10	≤1,0	≤10	≤10

Las técnicas utilizadas son las extraídas del Standard Methods- 18 th Edition para análisis de agua de bebida y agua de desecho.

(1) Utilizando éter etilico.

(2) Sólidos sedimentables en 10 minutos y 2 horas. Se coloca 1 litro de muestra bien homogeneizada en un cono Imhoff y luego de 10 minutos ó 2 horas (según sea el parámetro) se lee el volumen sedimentado.

Los parámetros de calidad de las descargas de los límites admisibles deberán cumplirse en la Cámara de Toma de Muestras.

Ing. Mónica Bianucci-FIUBA-97-04_2do.cuatrimestre 2021

 LOS LIMITES DE VUELCO DEPENDEN DE LA JURISDICCIÓN

PH

Las bacterias aeróbicas alcanzan una actividad óptima en su ciclo biológico si el PH del medio oscila entre 6,5 y 8,5.

Valores altos o bajos de PH actúan como bactericidas.

Ing. Mónica Bianucci-FIUBA-97-04 2do.cuatrimestre 2021

Temperatura

Se limita debido a que afecta a: Solubilidad de los gases y sales (especialmente solubilidad del oxígeno)

Acelera los procesos de putrefacción.

Sulfuros

- Los sulfuros son sales derivadas del ácido sulfhídrico, p
 ej. el sulfuro de amonio ,(S (NH4), el de potasio, (SK2), el de hierro
 ferroso, (SFe) y el de hierro férrico o bisulfuro de hierro, (S3Fe2), el sulfuro de
 carbono, (S2C), etc.
- Pueden encontrarse disueltos en un líquido, en estado coloidal o en suspensión.
- Pueden crear problemas de contaminación atmosférica al liberar sulfuro de hidrógeno, en PH àcidos.

Turbiedad

Es el resultado de la presencia en un líquido de partículas insolubles que tienen tamaño coloidal (diámetro medio menor a 1µ) Estas partículas dispersan la luz y en consecuencia disminuye el ingreso de la misma a la masa de líquido.

Ing. Mónica Bianucci-FIUBA-97-04 2do.cuatrimestre 2021

Sólidos Sedimentables

COMPACTOS: durante la sedimentación mantienen su masa, su volumen y su forma constantes.

FLOCULENTOS: su volumen aparente es mayor que el real (son compactables). Durante la sedimentación se van aglomerando, su volumen y su forma van cambiado.

Ensayo: Cono Imhoff (a los 10 min: sólidos compactos; a las 2 hs.: sólidos floculentos)

Cono Imhoff – probeta Gràfico extraìdo libro Ing. Sanchez_

Cono de linnon Propeta graduada

Fig. 8 Comparación entre el cono de I

Ing. Mónica Bianucci-FIUBA-97-04 2do.cuatrimestre 2021

Sustancias solubles en éter etílico SSEE

GRASAS Y ACEITES: tienen menor densidad que el agua (flotan)

Impactos que producen en los cursos de agua:

Restringen el ingreso de luz a los cursos de agua.

Impiden la transferencia de oxígeno del aire al agua.

Contribuyen a aumentar la carga orgánica.

Cromo Hexavalente

- Muy tóxico para las bacterias
- · Cancerígeno para el hombre

Ing. Mónica Bianucci-FIUBA-97-04 2do.cuatrimestre 2021

TRATAMIENTO DE EFLUENTES LÌQUIDOS

Conjunto de operaciones y/o procesos tendientes a eliminar de líquido efluente aquellos agentes que generan contaminación o perturbación en el medio receptor (superan los límites admisibles de vuelco)

Se debe cumplir con los parámetros de vuelco (dependen de la jurisdicción)

Operaciones y/o procesos

Mónica Bianucci

- <u>Físicos</u>: Rejas, desbaste, desarenadores, sedimentadores.
- Químicos: oxido reducción, desinfección, neutralización, coagulación floculación
- Biológicos: Lecho percolador, barros activados, lagunas

InT. a la Ingeniería Ambiental/ Gestión Ambiental/Proyectos Nacionales -Ingeniera Mónica Bianucci

TRATAMIENTO DE EFLUENTES LIQUIDOS

Las operaciones y/o procesos dependerán de las características de líquido efluente y las los límites admisibles en los parámetros de vuelco.

TRATAMIENTO PRIMARIO 1. De naturaleza Física 2. De naturaleza Química TRATAMIENTO SECUNDARIO o BIOLÓGICO TRATAMIENTO TERCIARIO o de AFINO DESINFECCIÓN CTM

TRATAMIENTOS (CLASIFICACIÓN)

- PRIMARIOS: rejas, desbaste, desarenadores, sedimentador primario.
- SECUNDARIOS: trat.biológicos
- TERCIARIOS: eliminación de fosforo, entre otros

InT. a la Ingeniería Ambiental/ Gestión Ambiental/Proyectos Nacionales -Ingeniera Mónica Bianucci

Tratamientos de efluentes lìquidos

Relación DBO/ DQO

> 0,6 Trat. Biológico
Pueden ser biológ.
con mayores tiempos de
adaptación de los
Microorganismos

< 0,2 Trat.químico

Ing. Mónica Bianucci-FIUBA-97-04 2do.cuatrimestre 2021