Mathematics 122

Quiz #16

Key Name:

You must show your work to get full credit.

(1) Let a be a constant. Find the equation of the tangent line to $y = \sqrt{x}$ at the point where $x = b^2$.

point where
$$x = b^2$$
.

 $\chi_0 = b^2$
 $y_0 = \sqrt{\chi_0} = \sqrt{b^2} = b$
 $y' = (\chi^{\frac{1}{2}})' = \frac{1}{2} \chi^{\frac{1}{2}}$
 $y' = (\chi^{\frac{1}{2}})' = \frac{1}{2} \chi^{\frac{1}{2}}$
 $y' = (y^2)' = \frac{1}{2} \chi^{\frac{1}{2}}$
 $y = y'(\chi_0) = \frac{1}{2} (y^2)^{\frac{1}{2}} = \frac{1}{2} b$
 $y - y_0 = m(\chi - \chi_0)$

he comes $y - b = \frac{1}{2b} (\chi - b^2)$

(2) Find the derivatives of the following functions.

(a) $f(x) = 3(2x^3 - 9x)^5$ $f'(x) = 15(2x^3 - 9x)(6x^2 - 9)$

ng functions.
$$f'(x) = 15(2\chi^3 - 9\chi)(6\chi^2 - 9)$$

(b) $w = 4\sqrt{e^z + z^2} = 4(e^2 + 2^2)^{\frac{1}{2}} \frac{dw}{dz} = 2(e^2 + 2^2)^{\frac{1}{2}} (e^2 + 2^2)$ $w' = \frac{1}{2} 4(e^2 + 2^2)^{-\frac{1}{2}} (e^2 + 2^2)$

(c) $A(t) = \frac{4}{(t^2 + 2t)^4} = 4(t^3+24)A'(t) = -16(t^2+2t)(2t+2)$ A = (-4)(4)(+2+2+) 5(2++2)