Windows 2000/XP/Vista Security/7/8

- ▶ Local and Domain Logon
- User accounts and groups
- Access tokens
- Objects and security descriptors
- ▶ The Register
- Some features in Windows 7 and Windows 8

EIT060 - Computer Security

Introduction

- ▶ Windows XP evolved from Windows 2000
- ▶ Windows 8, 7 and Vista evolved from XP
- Similar security solution
- ▶ Rich support for managing security
- > Standalone computers administered locally
- Domains used for centralized administration
- Domain controller (DC) has information about users
- Acts as a trusted third party

EIT060 - Computer Security

Design Motivation

- Security was designed to meet requirements for C2 rating in Orange Book
 - Secure logon users must be uniquely identified
 - Discretionary access control Owner determines access
 - · Auditing Record security related events in a logfile
 - Object reuse protection Initialize all objects before giving access to users
 - Trusted path Functionality to detect trojan horses at authentication time (called SAS in Windows)
 - Trusted facility management Separate accounts for users and administrators
- Windows NT 3.5 SP3 was the first Windows version to earn C2 rating (1995)
 - Windows NT 4 SP6a earned C2 rating in 1999

EIT060 - Computer Security

Windows Logon (somewhat simplified)

- Winlogon.exe handles the logon and responds to the Secure Attention Sequence (SAS)
 - CTRL+ALT+DEL
- Winlogon uses libraries that authenticates the user
- · Can be libraries for passwords, smartcards, biometric data etc
- ▶ Local Security Authority (LSA) creates an access token
 - LSA is responsible for the local security policy (who can log in, password policies, privileges, what should be audited etc)
- > Password hashes are stored in SAM
 - Security Accounts Manager

SAM File

- Stores user account information
 - Username
 - Full name
 - Expiration date
 - Password dates (date of last change, expiry, when it can be changed next time, if it can be changed)
 - Logon hours and workstations (thrown out a certain time or continue)
 - · Profile path and logon script name
 - · Home directory
 - Groups
- Locked while machine is running

EIT060 - Computer Security

Local Accounts VS Domain accounts

- Local accounts
 - NTLM used as authentication protocol
- Domain accounts
- Kerberos V5 used as authentication protocol
 - · Mutual authentication
 - · This will be covered in detail later in the course
- NTLM used in some cases
- · Unilateral authentication

EIT060 - Computer Security

NTLM Hash and Protocol

Can you find problems here?

- Challenge response
- > Server sends 8 byte random challenge
- Response calculated as:
 - MD4(password) gives 16 byte result (NTLM hash stored in SAM database)
 - Pad with 5 zero bytes → 21 bytes
- Split into 3 DES keys and encrypt challenge with each key

 24 byte response NTLM hash MD4 920a3bdfe12e5fa537d7e8b8c6a064fe 920a3bdfe12e5f DES a5ef3810bf7aced4 challenge a537d7e8b8c6a0 response 910af3418cd8e9af < DES challenge 64fe00000000000 DES challenge EIT060 - Computer Security

LM Hash

Can you find problems here?

- If wanted, both NTLM and LM response are used
 - · This was default before Windows Vista
- LM hash calculated as
 - Convert password to uppercase and pad to 14 bytes
 - Split into two parts of 7 byte each → two DES keys
 - Encrypt "KGS!@#\$%" with the two keys to get 16 bytes LM hash which is stored in the SAM database
- LM response calculated same way as NTLM response

Password Hashes, Problems

- NTLM hash is stored in the SAM file (local accounts)
 - **Problem 1:** MD4 is a very fast hash function
 - Problem 2: No salt is used so time-memory tradeoff attacks (rainbow tables) can be used
- Possibly, also the LM hash is stored in the SAM file
 - **Problem 3:** DES is a fast block cipher
 - **Problem 4:** No salt here either...
 - Problem 5: Passwords up to 14 characters are never better than passwords of 7 characters
 - Problem 6: There are no lowercase characters in the effective character set

EIT060 - Computer Security

Access Token

- After successful authentication LSA builds an access token
- Processes which run as the user has a copy of the token
- When a process interacts with a securable object, token determines authorization level

Access Control

- Security Reference Monitor (SRM) is responsible for determining access control
- ▶ Three parameters are considered
 - Identity of subject (SID)
 - Type of access
 - Object security settings (Security Descriptor)

Two Kinds of Access Tokens

- Token is either a primary access token or an impersonation access token
- ▶ Primary access token access token of the user account associated with the process.
 - Every process has this
- Impersonation access token allows a thread to execute in a different security context than the process owner.
 - · A thread may additionally have an impersonation access token
- **Example:** Database server runs with high privileges
 - Threads handle concurrent user requests
 - Thread get token of user → restricted access

SID

- Security Identifier
- Unique for each user or group
- **Format:**

S-R-I-SA-SA-SA-N

- S: The letter S (just means that the string is a SID)
- R: revision number (1)
- ▶ I: Identifier authority (5 for user accounts)
- ▶ SA: subauthority (specifies domain or computer)
 - Can be up to 14 groups, but 3 is typical
- N: relative identifier, incremented for each new principal

EIT060 - Computer Security

Known SIDs

- ▶ Generic groups and users
- ▶ S-1-1-0 Everyone, a group that includes all users
- ▶ S-1-5-20 Network Service
- ▶ S-1-5-18 SYSTEM, local operating system
- ► S-1-5-SA-SA-SA-500 Administrator
- ▶ S-1-5-SA-SA-SA-501 Guest account (no password required)
- ► S-1-5-SA-SA-SA-512 Domain Admins (global group)

EIT060 - Computer Security

Privileges

- > The right to perform system related operations
 - · Shutting down
 - · Change system time
 - · Backup files
 - · Generate audit
- Applies only to local computer. A user can have different privileges on different machines in a domain.
- Privileges can be assigned to both users and groups
- Access token is checked when user tries to perform privileged operation
- Differs from access rights
 - · Access to resources and tasks, not objects
 - · Stored with subject
 - · Admin assigns privileges
- > Stored in access token produced at logon

EIT060 - Computer Security

Objects

- ▶ All resources are objects
 - Files, folders, printers, registry keys, processes, threads, access tokens, etc...
- ▶ Containers can hold other objects, e.g., folders
- Noncontainers can not hold other objects, e.g., files
- ▶ Securable object Any object that can be shared
- ▶ All securable objects can have a security descriptor
 - · But it is not necessary

EIT060 - Computer Security

16

Access Rights (in the ACE)

- ▶ Since there are so many different types of objects access rights look different for different types
- > Standard access rights apply to (almost) all objects
 - DELETE delete the object
 - READ_CONTROL read info in security descriptor (owner, group and DACL)
 - WRITE_DAC write access to the DACL
 - WRITE_OWNER write access to the field "owner" in the security descriptor
 - SYNCHRONIZE The right to synchronize with the object

EIT060 - Computer Security

Access Mask

▶ The access rights are given by a 32-bit integer

Bits	Access Right		
0-15	Specific rights for the current object type		
16-22	Standard rights		
23	Access system security (e.g., SACL)		
24-27	reserved		
28	generic all		
29	generic execute		
30	generic write		
31	generic read		

EIT060 - Computer Security

Generic Access Rights

- Since there are many different types of objects, there are very many different types of access rights
- Generic access rights gives a mapping to specific access rights for a type of objects

 Generic access rights 	GENERIC_EXECUTE	FILE_EXECUTE
gives a mapping to		FILE_READ_ATTRIBUTES
		STANDARD_RIGHTS_EXECUTE
specific access rights		SYNCHRONIZE
for a type of objects	GENERIC_READ	FILE_READ_ATTRIBUTES
31 3		FILE_READ_DATA
		FILE_READ_EA
		STANDARD_RIGHTS_READ
		SYNCHRONIZE
Example – Files and directories	GENERIC_WRITE	FILE_APPEND_DATA
		FILE_WRITE_ATTRIBUTES
		FILE_WRITE_DATA
		FILE_WRITE_EA
		STANDARD_RIGHTS_WRITE
		SYNCHRONIZE

EIT060 - Computer Security

Access Control, Network Shares

- ▶ Users must go through two ACL's to access a file via a share
 - · ACL on the share
 - · ACL on the file itself
 - · User's effective permission through a file share is determined by masking both sets of ACL's together.
- Example 1:
 - · Client sets share permission to read only for everyone and file permission to read+write for everyone
 - · Result: Users on client machine get read+write, network users get read
- Example 2:
 - Client sets share permission to full control for everyone and file permission to
 - Result: Users on client machine get read access, network users get read access

The Registry

- ▶ Central database for Windows configuration data
- Just files on the harddisk
- Entries are called *keys* and *values*
- A registry *Hive* is a group of keys, subkeys, and values in the registry stored in a file
 - · "Registreringsdatafil" in swedish
- Protecting the integrity of registry data is important
 - Example: The search path is set in registry, if an attacker can modify it, malicious software can be inserted/executed.
- Proprietary format: registry editor (Regedit.exe)

EIT060 - Computer Securit

Temporary Hives

- ▶ HKEY LOCAL MACHINE\hardware
 - · Hardware is detected when system starts
- ▶ HKEY LOCAL MACHINE\system\clone
 - Built during startup, saved as HKEY_LOCAL_MACHINE\SYSTEM\Select\LastKnownGood Control Set if startup is successful
 - If there is a problem to start (e.g., if an installed driver has damaged the system), then LastKnownGood configuration can be used by copying this to CurrentControlSet

Restricted Context

- Application can start process with restricted token
- Process can start process or thread with restricted token
 - Can be either primary token or impersonation token
- **Example 1:** Untrusted webpages can be displayed with restrictions
- **Example 2:** Email attachments can be opened with restrictions
- Restrict by (one or more of):
 - 1. Remove privileges
 - 2. Set deny-only attribute to SIDs
 - 3. Specify restricting SID

EIT060 - Computer Security

iter Security

How To Restrict a Token

- 1. Let group SIDs be used for deny only
- 2. Add restricted SID
- → Two access checks are done

Both must allow access, otherwise access is denied

Restricted Token			
User SID	Alice		
Group SIDs	Admin (deny only)		
	Users		
Restricted SIDs	SID_Restr		
Privileges	none		

Example: Process with restricted token require read access

a) Principal SID: Alice Allow: read, write

Allow: read

b) Principal SID: Admin Allow: read

Principal SID: SID_Restr Allow: read c) Principal SID: Alice Allow: read, write

Access granted

Access denied

Access denied

EIT060 - Computer Security

User Account Control (UAC)

- ▶ Introduced in Windows Vista
- Administrators get two access tokens when logging in
 - · One administrator token
 - One standard user token
- Standard user token used unless administrator privileges are needed
 - $^{\circ}\,$ User has to actively acknowledge use of administrator token
- Windows 7 uses UAC, but not all programs ask for explicit permission

EIT060 - Computer Security

Mandatory Access Control

- Windows Vista, Windows 7 and Windows 8 includes mandatory access control
 - Called Integrity Control
- Access tokens have an integrity level
 - Untrusted (Processes started by group Anonymous)
 - Low integrity (e.g., IE in protected mode)
 - Medium integrity (Used by normal applications when UAC is enabled)
 - High integrity (Admin applications started through UAC, normal applications if UAC is disabled)
 - System integrity (Used by some system processes)

Mandatory Access Control

- Each object can also have an integrity level stored in the SACL
- ▶ Default for newly created objects:
 - If access token is lower than medium, integrity level of object is same as in access token
 - o If access token is medium or higher, integrity level of object is medium
- Partial ordering: Subject has label S, object has label O
 - Write access granted if $O \le S$
- Subjects integrity level must dominate object's integrity level in write operations
 - · Checked before DACL

EIT060 - Computer Security

puter Security

Example

- ▶ Internet Explorer 7 can run in Protected Mode
 - Will run with "low integrity" access token
- Can not be forced to make changes to operating system files, registry, etc
 - However, it can read all this data
- ▶ Can write to history, cookies etc.
- ▶ This can be compared to the Biba security model

EIT060 - Computer Security

Secure Boot in Windows 8

- UEFI (Unified Extensible Firmware Interface) provides support for Secure Boot
 - · OEMs providing Windows 8 must support it
- > Only trusted boot loader can be loaded
- **db** is a database with known *good* CAs, hashed
 - · Includes Microsoft Windows CA
- **dbx** is a database with known *bad*CAs and hashes
- Databases are signed with a Microsoft key

Idea: It will not be possible to install other Boot loaders than those trusted Protects against certain rootkits

EIT060 - Computer Security

Windows security on the Man-Machine Scale

- ▶ Complex solution with many options
- Users can easily get the exact functionality they want
- ▶ Relatively difficult to get high assurance

(