Deep Learning for NLP, part II Stanford ICME Summer workshop 2021

Instructor: **Afshine Amidi**

Deep Learning for NLP, part II

Stanford ICME Summer workshop 2021

Motivation and setup

Background

Transformers

BERT

Conclusion

Residual connections

Idea:

- Taken from the ResNet paper
- Element-wise addition of input and output features at different stages of the network

Benefits:

- Diversifies features at each level of the network
- Helps with gradient propagation

Masking

"Masked" also known as "causal" self-attention

Idea:

- Future tokens to be decoded need to be hidden at training time
- Create matrix of masked tokens at each decoding step

Benefit:

All operations are vectorized

Layer normalization

Idea:

- Introduced in a 2016 UToronto paper, widely used today
- Normalize activation outputs over neurons of a hidden layer to reduce "covariate shift" across layers

Benefits:

- Interesting invariance properties in theory (e.g. independent of the batch)
- Faster, more stable convergence in practice

Multi-head attention

Idea:

run multiple self-attention layers in parallel

Benefits:

- Enables the model to capture different attention features in parallel
- Comparison: multiple filters of a convolutional layer in computer vision

Dropout

Idea:

- From 2014, now ubiquitous in DL architectures
- Randomly drop neural net connections/units with a small probability

Better **generalization**

(b) After applying dropout.

Label smoothing

Idea:

- 2015 vision paper: overconfidence is bad
- Introduce **noise** in true labels

$$q(k|x) = \delta_{k,y} \longrightarrow q'(k|x) = (1 - \epsilon)\delta_{k,y} + \epsilon u(k)$$

Benefits:

- General technique that prevents overfitting
- Improves accuracy and BLEU score

Let's compute the number of parameters!

Notebook 1: Transformer

Recommended post-workshop reading

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best

Break + questions

Deep Learning for NLP, part II

Stanford ICME Summer workshop 2021

Motivation and setup

Background

Transformers

BERT

Conclusion

A cute teddy bear is reading.

A cute teddy bear is reading.

arbitrary

Α | | сι

cute teddy bear

is

reading

•

word

A cute teddy bear is reading.

A cute teddy bear is reading .

A cute teddy bear is reading .

A cute teddy bear is reading.

A cute teddy bear is reading.

Tokenization summary

Method	Pros	Cons		
Word-level	SimpleInterpretable	Risk of OOVDoes not leverage knowledge of root		
Subword-level e.g. WordPiece, BPE	Leverages prefix suffixesLearned from the data	Risk of OOV, though less than word-level		
Character-level	 Small chance of OOV RoBUsT tO CASinG anD MlspeliNGs 	Makes computations slower		

Deep Learning for NLP, part II

Stanford ICME Summer workshop 2021

Motivation and setup

Background

Transformers

BERT (for real)

Conclusion

BERT: overview of the changes

Original transformer (2017)

BERT (2018)

Overview

Goal: leverage general language representation for NLP tasks

Pretraining

- Data: enormous unlabeled corpus of Books (800M words) and Wikipedia (2.5B words)
- MLM task: predict 15% of input tokens
- NSP task: predict whether sentences follow each other or not

Fine-tuning

- Dataset: task-specific
- Objective: tailored to end goal

Figure adapted from "Attention Is All You Need", Vaswani et al., 2017.

Input processing

WordPiece algorithm

- Tokenizer trained on a training set beforehand
- Vocabulary size: ~30,000
- Great at detecting common particles

NSP task processing

• Add [CLS] token at the beginning of the input

MLM task processing

 Separate consecutive segments with the [SEP] token and put another one at the end

Input embedding

Input embeddings

- Gigantic lookup table
- Learns an embedding for each word of the vocabulary

Positional encoding

- Helps the network associate tokens with a position
- Encoding either learnt or fixed with cosines and sines

(new!) Segment encoding

Shared embedding for a segment

Encoder-only model

Model

Encoder part of the original transformers paper

Goal

- Represent input data with features (hopefully) needed for NLP tasks
- Leverage the Transformer's self-attention mechanism
- Use learned embedding towards classification-oriented tasks

Proxy tasks

Masked Language Modeling

Idea:

15% of input tokens are set up for prediction where

- 80% are masked
- 10% are changed to a random word
- 10% are unchanged

Benefits:

- Network learns language modeling based on contextual information
- Regularization reflects probabilistic nature of language

Proxy tasks

Next Sentence Prediction

Idea: pick two sentences from the corpus, where

- 50% of the time, they follow each other
- 50% of the time, they **do not** follow each other

Task: predict if they actually follow each other

Benefits:

- Network implicitly learns to detect useful contextual information
- Easy classification task that does not require any labels

General parameters

Layers (L). Number of layers. Corresponds to the "N" parameter in the original Transformers paper.

Hidden (H). Hidden layer size. Dimension of embeddings.

Attention heads (A). Number of attention heads operating in parallel.

Original / whole word masking. Whether separate tokens or entire words were masked during pre-training.

Language-specific / multilingual. Languages on which the model has been trained on.

Cased / uncased. Whether inputs are converted to lowercase or not.

Figure adapted from "Attention Is All You Need", Vaswani et al., 2017.

Some numbers

	L	Н	A	Parameters
BERT-Tiny	2	128	2	4M
BERT-Mini	4	256	4	11M
BERT-Small	4	512	8	30M
BERT-Medium	8	512	8	42M
BERT-Base	12	768	12	110M
BERT-Large	24	1024	16	330M

Pretraining

Pick a pair of sentences that follow each other 50% of the time, and not the other 50%.

A cute teddy bear is reading. The book is about Persian poetry.

Pretraining

(optional) Apply casing constraints.

a cute teddy bear is reading. the book is about persian poetry.

Apply WordPiece tokenization.

a cute teddy bear is rea ##ing . the book is about pers ##ian poetry .

Insert [CLS] and [SEP] tokens at the right position.

[CLS] a cute teddy bear is rea ##ing [SEP] the book is about pers ##ian poetry [SEP]

Note: if the number of tokens is smaller than the expected input size, add padding with [PAD] tokens to the right.

[CLS] a cute teddy bear is rea ##ing [SEP] the book is about pers ##ian poetry [SEP]

Randomly choose 15% of the tokens for the prediction task...

...out of which 80% are replaced with [MASK] tokens

[CLS] a cute [MASK] bear is rea ##ing [SEP] the [MASK] is about pers ##ian poetry [SEP]

...10% others changed to a random token,

```
[CLS] a cute mask] bear is rea ##ing [SEP] the mask] is about pers ##ian swim [SEP]
```

...and the last 10% remain unchanged.

[CLS] a cute [MASK] bear is rea ##ing [SEP] the [MASK] is about pers ##ian swim [SEP]

embedding

 [CLS]
 a
 cute
 [MASK]
 bear
 is
 rea
 ##ing
 [SEP]
 the
 [MASK]
 is
 about
 pers
 ##ian
 swim
 [SEP]

embedding

[CLS] a cute [MASK] bear is rea ##ing [SEP] the [MASK] is about pers ##ian swim [SEP]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

- segment embedding
- position embedding
 - embedding

 [CLS]
 a
 cute
 [MASK]
 bear
 is
 rea
 ##ing
 [SEP]
 the
 [MASK]
 is
 about
 pers
 ##ian
 swim
 [SEP]

position- and segment-aware embedding

[CLS] a cute mask] bear is rea ##ing [SEP] the mask] is about pers ##ian swim [SEP]

Tips on choosing the right resources

Datasets

- Multi-framework: HuggingFace, paperswithcode
- Tensorflow: TFDS
- PyTorch: Torchtext

Pre-trained models

- Multi-framework: HuggingFace, ModelZoo
- TensorFlow: Hub, Model Garden
- PyTorch: PyTorch Models

Fine-tuning

Goal: Leverage embeddings learned by BERT for a "sister" task

Tricks

- Use weights from already massively pre-trained model
- Freezing early layers: sometimes better trade-off complexity/performance
- Great results possible with minimal labeled data (depending on complexity/proximity to pre-trained data distribution + objectives)

Use cases

- Sequence classification: e.g. sentiment extraction
- Token classification: e.g. question answering

This teddy bear is SO CUTE!

this teddy bear is so cute!

this teddy bear is so cute!

Add [CLS] token as a placeholder for sentiment.

[CLS] this teddy bear is so cute!

position embedding

embedding

[CLS] this teddy bear is so cute ! [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]

position- and segment-aware embedding

 [CLS]
 this
 teddy
 bear
 is
 so
 cute
 !
 [PAD]
 [PAD]</td

Break + questions

Hands-on

Notebook 2: sentiment extraction with BERT

Break + questions

Deep Learning for NLP, part II

Stanford ICME Summer workshop 2021

Motivation and setup

Background

Transformers

BERT

Conclusion

Main transformer-based models

Architecture	Models
Encoder	BERT, DistilBERT, RoBERTa
Decoder	GPT-2, 3
Encoder - Decoder	T5, mT5, ByT5

Latest trends

- NLP is still an area with many unsolved problems
 - In-domain VS out-of-domain generalization

- NLP is still an area with **many** unsolved problems
 - In-domain VS out-of-domain generalization
 - Model size / Data requirement / Efficiency

- NLP is still an area with many unsolved problems
 - In-domain VS out-of-domain generalization
 - Model size / Data requirement / Efficiency
 - Hard to get common sense

- NLP is still an area with many unsolved problems
 - In-domain VS out-of-domain generalization
 - Model size / Data requirement / Efficiency
 - Hard to get common sense
 - Knowledge that changes with respect to time

- NLP is still an area with many unsolved problems
 - In-domain VS out-of-domain generalization
 - Model size / Data requirement / Efficiency
 - Hard to get common sense
 - Knowledge that changes with respect to time

- Performance can only be at most as good as labels
 - Challenges with NLG labeling
 - Interesting: "All That's Human is Not Gold: Evaluating Human Evaluation of Generated Text" by Clark et al., 2021

How to stay up-to-date with NLP advances

Papers

- arXiv > Computer Science > Computation and Language (curated: arxiv-sanity)
- General ML (NeurIPS, ICML, ICLR) and NLP (ACL, EMNLP) venues

How to stay up-to-date with NLP advances

Papers

- arXiv > Computer Science > Computation and Language (curated: arxiv-sanity)
- General ML (NeurIPS, ICML, ICLR) and NLP (ACL, EMNLP) venues

Code

- Authors' GitHub repositories linked in their papers
- paperswithcode.com: browse state-of-the-art datasets/methods for each task

How to stay up-to-date with NLP advances

Papers

- arXiv > Computer Science > Computation and Language (curated: arxiv-sanity)
- General ML (NeurIPS, ICML, ICLR) and NLP (ACL, EMNLP) venues

Code

- Authors' GitHub repositories linked in their papers
- paperswithcode.com: browse state-of-the-art datasets/methods for each task

Miscellaneous

- Stanford course websites (CS 224N, CS 224U and to some extent CS 230)
- Twitter (academics + industry leaders)
- YouTube theoretical (Two Minute Papers, Yannic Kilcher) and practical (Google Developers, HuggingFace)
- Company/academia technical papers + blogs (Amazon Science, Apple ML, Google Al, Google Brain, Microsoft Research, Stanford NLP)

Flashback from before first class

"Some context on evolution of NLP will be super helpful"

"Start from medium level and then go upwards to higher difficulty"

"Hope to get the **summary of the materials** (including additional articles/books) and **links to them** to have better understanding. Hope to **try BERT in practice** (in Python notebooks). [...]"

I am very interested in **hands on** experience. I hope this session will help to start running my first deep learning model.

"[...] My hope is we dig into the code and the details of running a program"

"Among the given topics, I am more interested in the application areas of **sentiment extraction**"

Thank you for your attention!

