Artificial Intelligence Final Project – Spring 2017

Outline

- 執行方法
- 程式架構與流程
- 結果與討論
- 遇到的困難

執行方法

make 過後以 "./main [Dataset 的名稱(不需加副檔名)]"即可 .

- P.S. 1. Datasets 需放在 working 目錄下的"dataset"目錄中 .
 - 2. 執行完後即可在"foldedDatatsets"目錄下找到 C.V.分完後的 dataset .

程式架構與流程

Global Variables:

- Data Table:紀錄每一筆 Data.
- Attribute's value Table:紀錄每個 Attribute 各別擁有的 Value 值 .
- Class's information Table:紀錄各個 Class 分別為哪些 instance 的 Class.
- Continuous Attribute's Index:紀錄哪些 Attribute 是 Continuous 的 .
- Folded Training Data: 紀錄各個 Fold 的 Training Data.
- Folded Testing Data:紀錄各個 Fold 的 Testing Data.

Step 01: Parsing

設定好 Data Table、Attribute's value Table、Class's information Table、Continuous Attribute's Index 這些 Global Variables.

Step 02: 10 – Folding for Cross Validation

首先會先計算各個 Class 在每個 Fold 中應該要有的個數,利用 Class's information Table 來得知各個 Class 在 Data set 中所佔的比例,在轉換成在各個 Fold 應該要有的個數。

接著依據這些個數資訊來進行 Folding,一樣利用 Class's information Table 來取 Data set 中的 instance,形成十個 folds,並將

這些 folds 儲存下來(Folded Training Data & Folded Testing Data).

Step 03 : Naïve Bayesian

依序以 Folded Training Data 進行訓練,Folded Testing Data 進行測試。

Training -

■ 針對「各個」Attribute,建立以下 lookup Table:

Attribute i	Value 1	Value 2	•••	•••	•••	Value N
Class 1	P(V1 C1)	P(V3 C3)				
Class 2	P(V2 C2)	P(V4 C4)				
•••			•••			
Class N						P(CN VN)

每個元素為 P(Attribute i = Value x | Class y),即在 Class y 下,該 Attribute 值為 Value x 的條件機率。

- 紀錄各個 Class 的 P(Ci), 即 Class Ci 發生的機率。
- Continuous Attribute 的處理:
 - ◆ 利用 Continuous Attribute's Index 來得知哪些是數值形態的 Attribute,取出該 Attribute 的所有 Value 計算三個值:
 - first cut point = (second cut point + Min) / 2
 - second cut point = (Max + Min) / 2
 - third cut point = (Max + second cut point) / 2

因此可以得到四個 Segment, 分別是:

- [Min ,first cut point]
- [first cut point , second cut point]
- [second cut point, third cut point]
- f third cut point,Max]

也就是每個 Continuous Attribute 最後會後都會濃縮成四個 Value 值,就是以上的四個區段。

Testing -

利用 Training 出來的 lookup table 進行預測,然後和實際結果比較,計算預測正確的個數,最後輸出正確率。

◆ Continuous Attribute 的處理: 當遇到 continuous attribute 時,會先將該 Value map 到對應 的區段 Value,再去查找 look up table.

結果與討論

Result

dataset		cv1	cv2	cv3	cv4	cv5	cv6	cv7	cv8	cv9	cv10	avg	p-value
adult	NB Acc	0.78	0.78	0.78	0.77	0.78	0.78	0.78	0.78	0.78	0.78	0.78	4.1167E-13
	c4.5 Acc	0.85	0.86	0.86	0.85	0.86	0.86	0.86	0.86	0.86	0.85	0.86	
car	NB Acc	0.72	0.66	0.89	0.71	0.86	0.85	0.76	0.72	0.84	0.74	0.77	0.135937586
	c4.5 Acc	0.77	0.77	0.72	0.76	0.81	0.85	0.88	0.88	0.82	0.84	0.81	
isolet	NB_Acc	0.83	0.93	0.88	0.92	0.88	0.89	0.80	0.82	0.75	0.85	0.86	3.87555E-06
	c4.5_Acc	0.70	0.81	0.79	0.77	0.86	0.79	0.69	0.70	0.67	0.70	0.75	
page-blocks	NB_Acc	0.82	0.85	0.83	0.90	0.91	0.90	0.76	0.65	0.60	0.61	0.78	0.000405166
	c4.5_Acc	0.95	0.98	0.96	0.97	0.97	0.97	0.97	0.98	0.95	0.94	0.96	
winequality	NB_Acc	0.33	0.34	0.30	0.31	0.36	0.34	0.30	0.35	0.38	0.29	0.33	4.18287E-06
	c4.5_Acc	0.43	0.42	0.37	0.40	0.41	0.49	0.46	0.47	0.46	0.39	0.43	

Discuss

由結果得知,Decision Tree 的準確度大多優於 N.B.,我的猜想可能的原因有:

- 1. 在 continuous attribute 處理上不夠嚴謹,目前是只將整個值域(min ~ max)分成四個區段,若多切幾個區段,也許可以提高預測的準確度 . 或是利用常態分佈方法,將所有 Value 視為是常態分佈,因此若給一個值我們即可反推他的機率為何 .
- 2. 各個 dataset 中的 attributes 中,多少互相會有一些關聯,不能以各自獨立的角度去看 .

遇到的困難

在撰寫的過程中沒有遇到什麼太大的困難,但有些小地方像是使用了 蠻多 Nested map/vector 資料結構,導致最後遇到 bug 要 trace 時花了 不少時間.