(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Juli 2005 (21.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/067069 A2

- (51) Internationale Patentklassifikation⁷:
- (21) Internationales Aktenzeichen: PCT/EP2005/050111
- (22) Internationales Anmeldedatum:

12. Januar 2005 (12.01.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

H01L 41/00

(30) Angaben zur Priorität:

10 2004 001 696.8 12. Januar 2004 (12.01.2004) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): LUBITZ, Karl [DE/DE]; Röntgenstr. 20, 85521 Ottobrunn (DE). SCHUH, Carsten [DE/DE]; Heideweg 9, 85598 Baldham (DE). WOLFF, Andreas [DE/DE]; Bajuwarenstr. 28, 81825 München (DE).
- (74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-SELLSCHAFT; Postfach 22 16 34, 80506 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR PRODUCING A CORRELATION BETWEEN A FIRST STATE AND A SECOND STATE OF A PIEZOELECTRIC COMPONENT, AND THE USE OF SAID CORRELATION

(54) Bezeichnung: VERFAHREN ZUM HERSTELLEN EINER KORRELATION ZWISCHEN EINEM ERSTEN ZUSTAND EINES PIEZOELEKTRISCHEN BAUTEILS UND EINEM ZWEITEN ZUSTAND DES BAUTEILS SOWIE VERWENDUNG DER KORRELATION

- (57) Abstract: The invention relates to a method for producing a correlation between a first state of a piezoelectric component (1, 20) comprising a piezoceramic element, and a second state of said component. The second state of the component is created from the first state of the component by polarisation of the piezoceramic element of the component. The inventive method comprises the following steps: a) a first group of components respectively in the first state is prepared (101), b) at least one defined characteristic of each component of the first group is determined (102), c) the piezoceramic element of the components of the first group is polarised, and a corresponding component of a second group in the second state is thus created from each component of the first group (103), d) at least one defined characteristic of each component of the second group is determined (104), and e) the correlation is produced by comparing the defined characteristics of each component of the first group with the defined characteristic of the corresponding component of the second group (105). Said component is, for example, an actuator body (20) having a monolithic multilayer structure. The correlation produced is used for the quality assurance of the actuator body.
- (57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zum Herstellen einer Korrelation zwischen einem ersten Zustand eines piezoelektrischen Bauteils (1, 20), das eine Piezokeramik aufweist, und einem zweiten Zustand des Bauteils. Der zweite Zustand des Bauteils wird aus dem ersten Zustand des Bauteils durch ein Polarisieren der Piezokeramik des Bauteils erzeugt. Das Verfahren weist folgende Verfahrensschritte auf: a) Bereitstellen einer ersten Gruppe von Bauteilen mit jeweils dem ersten

101. PREPARATION OF FIRST GROUP OF COMPONENTS
102. DETERMINATION OF DEFINED CHARACTERISTIC OF EACH COMPONENT OF FIRST
GROUP
103. POLARISATION OF PIEZOCERAMIC ELEMENT OF COMPONENTS OF FIRST GROUP
104. DETERMINATION OF DEFINED CHARACTERISTIC OF EACH COMPONENT OF SECOND
GROUP

GROUP 105. PRODUCTION OF CORRELATION BETWEEN DEFINED CHARACTERISTICS

WO 2005/067069 A2

FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Zustand (101), b)Ermitteln mindestens einer bestimmten Eigenschaft jedes der Bauteile der ersten Gruppe, c) Polarisieren der Piezokeramik der Bauteile der ersten Gruppe (102), wobei aus jedem der Bauteile der ersten Gruppe ein entsprechendes Bauteil einer zweiten Gruppe entsteht, das den zweiten Zustand aufweist (103), d) Ermitteln mindestens einer bestimmten Eigenschaft jedes der Bauteile der zweiten Gruppe (104) und e) Herstellen der Korrelation durch Vergleich der bestimmten Eigenschaften jedes der Bauteile der ersten Gruppe und der bestimmten Eigenschaft des entsprechenden Bauteils der zweiten Gruppe (105). Das Bauteil ist beispielsweise ein Aktorkörper (20) in monolithischer Vielschichtbauweise. Die hergestellte Korrelation wird zur Qualitätssicherung des Aktorkörpers benutzt.

Verfahren zum Herstellen einer Korrelation zwischen einem ersten Zustand eines piezoelektrischen Bauteils und einem zweiten Zustand des Bauteils sowie Verwendung der Korrelation

Die Erfindung betrifft ein Verfahren zum Herstellen einer Korrelation zwischen einem ersten Zustand eines piezoelektrischen Bauteils, das eine Piezokeramik aufweist, und einem zweiten Zustand des Bauteils. Daneben wird eine Verwendung der Korrelation angegeben.

Das piezoelektrische Bauteil ist beispielsweise ein piezoelektrischer Aktor mit einem monolithischen Aktorkörper. Der Aktorkörper besteht beispielsweise aus einer Vielzahl von in einer Stapelrichtung übereinander angeordneten Piezoelementen. Ein einzelnes Piezoelement weist mindestens zwei übereinander angeordnete Elektrodenschichten und mindestens eine zwischen den Elektrodenschichten angeordnete piezoelektrische Schicht mit der Piezokeramik (Piezokeramikschicht) auf. Die Piezoelemente sind so angeordnet, dass Elektrodenschichten und piezoelektrische Schichten abwechselnd übereinander angeordnet sind. Jede der Elektrodenschichten, die als Innenelektroden bezeichnet werden, fungiert als Elektrodenschicht benachbarter Piezoelemente. Zur elektrischen Kontaktierung der Elektrodenschichten sind benachbarte Elektrodenschichten abwechselnd an zwei elektrisch voneinander isolierte, seitliche Oberflächenabschnitte des Aktorkörpers geführt. An diesen Oberflächenabschnitten weist der Aktorkörper jeweils eine streifenförmige Metallisierung auf.

Ein piezoelektrisch aktiver Bereich der Piezokeramikschicht befindet sich zwischen den Elektrodenschichten des jeweiligen Piezoelements. In diesem Bereich der Piezokeramikschicht wird durch eine elektrische Ansteuerung der Elektroden ein relativ homogenes elektrisches Feld induziert. Über den gesamten

piezoelektrisch aktiven Bereich hinweg kommt es zu einer homogenen Auslenkung der Piezokeramikschicht. Dagegen ist jede Piezokeramikschicht im Bereich der beschriebenen Oberflächenabschnitte piezoelektrisch inaktiv. Aufgrund der abwechselnden Führung der Elektrodenschichten an die 5 Oberflächenabschnitte wird in den piezoelektrisch inaktiven Bereich der Piezokeramikschicht ein elektrisches Feld eingekoppelt, das sich deutlich von dem elektrischen Feld unterscheidet, das in den piezoelektrisch aktiven Bereich der Piezokeramikschicht eingekoppelt wird. Bei der elektrischen 10 Ansteuerung der Elektrodenschichten, also beim Polarisieren und/oder im Betrieb des Piezoaktors, kommt es aufgrund der unterschiedlichen elektrischen (Polarisations-)Felder zu unterschiedlichen Auslenkungen der Piezokeramikschicht im piezoelektrisch aktiven Bereich und im piezoelektrisch 15 inaktiven Bereich. Als Folge davon treten mechanische Spannungen im Piezoelement auf, die zu einem sogenannten Polungsriss quer zur Stapelrichtung führen können. Dieser Polungsriss kann sich in die an den Oberflächenabschnitten des Aktorkörpers angebrachten Metallisierungen fortsetzen. 20 Dies führt zu einem Unterbrechen der elektrischen Kontaktierung zumindest eines Teils der Elektrodenschichten des Aktorkörpers.

Um die Wahrscheinlichkeit für das Auftreten von Polungsrissen 25 schon während des Polarisierens eines monolithischen Aktorkörpers zu verringern, wird in der DE 197 56 182 C2 für den oben beschriebenen Piezoaktor ein spezielles Polarisierungsverfahren angegeben. Der Aktorkörper besteht aus mehreren hundert, abwechselnd angeordneten 30 Piezokeramikschichten und Elektrodenschichten. Die Piezokeramikschichten sind aus einem Bleizirkonattitanat (PZT). Die Elektrodenschichten sind aus einer Silber-Palladium-Legierung. Zum Herstellen des Aktorkörpers werden keramische Grünfolien mit einer Silber-Palladium-Paste 35 bedruckt, übereinander gestapelt, entbindert und gemeinsam gesintert.

Gemäß dem Polarisierungsverfahren wird während des Anlegens eines Polarisationsfeldes eine mechanische Druckspannung am Aktorkörper angelegt, die einer verlängernden Wirkung des Polarisationsfeldes entgegenwirkt. Dadurch wird ein Ausmaß der Ausdehnungsänderung der Piezokeramikschicht im piezoelektrisch aktiven Bereich verringert. Es kommt zu geringeren mechanischen Spannungen im Aktorkörper. Mit dem beschriebenen Verfahren lässt sich somit die Wahrscheinlichkeit für das Auftreten von Polungsrissen im Aktorkörper verringern.

10

Das Polen des Aktorkörpers ist aber nur ein Arbeitsschritt von vielen Arbeitsschritten, die notwendig sind, um einen Piezoaktor zu erhalten, der für entsprechende Anwendungen 15 geeignet ist. Eine Anwendung des Piezoaktors ist beispielsweise eine Ansteuerung eines Einspritzventils eines Motors eines Kraftfahrzeugs. Die weiteren Arbeitsschritte werden vor oder nach dem Polarisieren durchgeführt. So werden 20 beispielsweise elektrische Anschlusselemente an den Metallisierungsstreifen angebracht. Der Aktorkörper wird üblicherweise auch mit einer Kunststoffmasse vergossen. Dadurch wird die Oberfläche des Aktorkörpers vor mechanischer Zerstörung oder vor elektrischen Überschlägen zwischen benachbarten Elektrodenschichten geschützt. Darüber hinaus 25 wird der Aktorkörper nicht nur unter einer mechanischen Druckspannung gepolt, sondern auch unter einer mechanischen Druckspannung betrieben. Dies bedeutet, dass der Aktorkörper vorgespannt wird. Dazu wird beispielsweise der (mit Kunststoff vergossene) Aktorkörper in eine Rohrfeder 30 eingeschweißt.

Am Ende der beschriebenen Herstellungskette ist zu überprüfen, ob der Piezoaktor bestimmungsgemäß eingesetzt werden kann. Es muss die Qualität des Piezoaktors ermittelt werden. Die Qualität betrifft insbesondere piezoelektrische Kenngrößen des Piezoaktors, beispielsweise dessen d33-

Koeffizienten. Dabei stellt sich oftmals heraus, dass der hergestellte Piezoaktor piezoelektrische Kenngrößen aufweist, die die Verwendung des Piezoaktors ausschließen. Der Ausschluss ist dabei häufig auf Defekte zurückzuführen, die bereits durch die Sinterung induziert werden.

Aufgabe der Erfindung ist es daher, aufzuzeigen, wie bereits nach dem Sintern des Aktorkörpers eine Aussage über eine Qualität des Aktorkörpers getroffen werden kann.

10

15

20

25

Zur Lösung der Aufgabe wird ein Verfahren zum Herstellen einer Korrelation zwischen einem ersten Zustand eines piezoelektrischen Bauteils, das eine Piezokeramik aufweist, und einem zweiten Zustand des Bauteils angegeben, wobei der zweite Zustand des Bauteils aus dem ersten Zustand des Bauteils durch ein Polarisieren der Piezokeramik des Bauteils erzeugt wird. Das Verfahren weist folgende Verfahrensschritte auf: a) Bereitstellen einer ersten Gruppe von Bauteilen mit jeweils dem ersten Zustand, b) Ermitteln mindestens einer bestimmten Eigenschaft jedes der Bauteile der ersten Gruppe, c) Polarisieren der Piezokeramik der Bauteile der ersten Gruppe, wobei aus jedem der Bauteile der ersten Gruppe ein entsprechendes Bauteil einer zweiten Gruppe entsteht, das den zweiten Zustand aufweist, d) Ermitteln mindestens einer bestimmten Eigenschaft jedes der Bauteile der zweiten Gruppe und e) Herstellen der Korrelation durch Vergleich der bestimmten Eigenschaften jedes der Bauteile der ersten Gruppe und der bestimmten Eigenschaft des entsprechenden Bauteils der zweiten Gruppe.

30

35

Gemäß einem zweiten Aspekt der Erfindung wird die hergestellte Korrelation zur Vorhersage der bestimmten Eigenschaft eines bestimmten piezoelektrischen Bauteils mit dem zweiten Zustand aus der ermittelten Eigenschaft des bestimmten Bauteils mit dem ersten Zustand verwendet.

Als piezoelektrisches Bauteil kommt jedes beliebige piezoelektrische Bauteil in Frage, das im Hinblick auf seinen Einsatz gepolt wird. Die Piezokeramik des Bauteils wird polarisiert. Durch das Polen des Bauteils bzw. durch das Polarisieren der Piezokeramik wird ein für den Betrieb des Bauteils geeigneter (Polungs-)Zustand erzeugt. Dieser Zustand ist der zweite Zustand des Bauteils.

5

Das piezoelektrische Bauteil ist beispielsweise ein

10 piezoelektrischer Biegewandler. Der Biegewandler weist ein
Piezoelement oder mehrere geeignet zueinander angeordnete
Piezoelemente auf. Das piezoelektrische Bauteil ist
insbesondere ein eingangs beschriebener Piezoaktor mit einem
Aktorkörper in monolithischer Vielschichtbauweise. Denkbar

15 ist aber auch ein Aktorkörper, bei dem die einzelnen
Piezoelemente nicht monolithisch miteinander verbunden sind.
Beispielsweise sind die Piezoelemente miteinander verklebt.

Die grundlegende Idee der Erfindung besteht darin, einen 20 empirischen Zusammenhang (Korrelation) zwischen dem (Ausgangs-) Zustand des Bauteils vor dem Polarisieren der Piezokeramik und dem (Polungs-) Zustand des Bauteils nach dem Polarisieren der Piezokeramik herzustellen. Dazu werden qeeignete Eigenschaften (z.B. physikalische Kenngrößen oder chemische Zusammensetzung) einer Vielzahl der Bauteile vor 25 dem Polarisieren bestimmt, anschließend jedes der Bauteile gepolt und nachfolgend die Eigenschaften (z.B. piezoelektrische Kenngrößen) der Bauteile nach dem Polen bestimmt. Durch Vergleich der Eigenschaften der Bauteile im Ausgangszustand mit den Eigenschaften des jeweiligen Bauteils 30 im Polungszustand wird die Korrelation ermittelt. Bei Kenntnis der Korrelation können aufgrund der Eigenschaften eines bestimmten Bauteils, das sich im Ausgangszustand befindet, von vornherein die nach dem Polen zu erwartenden Eigenschaften des Bauteils abgeschätzt werden. Es kann mit 35 einer gewissen Wahrscheinlichkeit auf die Eigenschaften des nach dem Polarisieren der Piezokeramik erhaltenen Bauteils

geschlossen werden. Somit ist es möglich, eine Vorauswahl für die Weiterbehandlung der Bauteile zu treffen. Bauteile, deren zu erwartenden Eigenschaften nicht innerhalb eines festzulegenden Toleranzbereichs liegen, werden verworfen und nicht weiter verarbeitet. Liegen die aufgrund der empirisch ermittelten Korrelation zu erwartenden Eigenschaften innerhalb des Toleranzbereichs, wird das Bauteil zur Weiterverarbeitung freigegeben. Mit der beschriebenen Vorgehensweise ist es möglich, eine Qualitätssicherung schon in einem relativ frühen Stadium der Herstellung des piezoelektrischen Bauteils durchzuführen.

5

10

30

35

Gemäß einer besonderen Ausgestaltung wird eine Anzahl von bestimmten Eigenschaften des Bauteils mit dem ersten Zustand ermittelt und zum Herstellen der Korrelation mit der 15 bestimmten Eigenschaft des Bauteils mit dem zweiten Zustand verwendet. Dies bedeutet, dass mehr als eine einzige Eigenschaft des Bauteils im ersten Zustand bestimmt wird, um auf die Eigenschaft oder die Eigenschaften des Bauteils im zweiten Zustand zu schließen. Durch das Ermitteln mehrerer 20 Eigenschaften des Bauteils im Zustand vor dem Polarisieren kann eine Zuverlässigkeit der Vorhersage über die Eigenschaften des Bauteil im Zustand nach dem Polarisieren erhöht werden. Dies trägt zur Sicherheit bezüglich der Vorhersage der Eignung eines Bauteils für eine bestimmte 25 Anwendung bei.

In einer besonderen Ausgestaltung wird die bestimmte Eigenschaft des Bauteils mit dem ersten Zustand aus der Gruppe Verlustwinkel (tan δ) der piezoelektrischen Schicht, Isolationswiderstand der piezoelektrischen Schicht, Dichte der piezoelektrischen Schicht, relative Permittivität der piezoelektrischen Schicht, ferroelastisches Verhalten des Bauteils, Elastizitätsmodul (E-Modul) des Bauteils, longitudinale Schallgeschwindigkeit des Bauteils und/oder Temperaturgang der Kapazität des Bauteils ausgewählt. Aus den genannte physikalischen Kenngrößen wird mindestens eine

ausgewählt. Wie oben angegeben, werden bevorzugt mehrere der aufgezählten physikalischen Kenngrößen ermittelt, um die Korrelation zwischen den Zuständen des Bauteils herzustellen.

5 Zur Bestimmung des Elastizitätsmoduls oder der Schallgeschwindigkeit wird das Bauteil beispielsweise mechanisch angeregt. Das ferroelastische Verhalten wird beispielsweise durch eine einmalige Druckbelastung des Bauteils ermittelt. Bei Anlegen einer Druckspannung auf das Bauteil (Druckbelastung des Bauteils) kann eine sogenannte 10 Spannungs-Dehnungskurve erfasst werden. Bei niedrigerer Druckspannung ist die Dehnung des Bauteils linear von der angelegten Druckspannung abhängig. Bei höherer Druckspannung ist die Dehnung von der Druckspannung nicht mehr linear abhängig. Zur Ermittlung des ferroelastischen Verhaltens des 15 Bauteils wird die einmalige Druckbelastung bis in den beschriebenen nicht-linearen Bereich der Spannungs-Dehnungskurve durchgeführt. Das ferroelastische Verhalten ist u.a. gekennzeichnet durch die Druckspannung, bei der eine Abweichung von der Linearität beobachtet wird, und durch die 20 durch die Druckspannung induzierte, verbleibende Längenänderung (Verkürzung) des Bauteils nach der Druckbelastung. Eine weitere Größe ist der sogenannte Koerzitivdruck, also die Druckspannung, die notwendig ist, um

Die Piezokeramik des Bauteils kann dabei zusammen mit weiteren Materialien einen Verbundwerkstoff bilden. Im Fall eines oben beschriebenen Piezoelements kann beispielsweise die piezoelektrische Schicht aus einer Polymermatrix bestehen, in die Piezokeramik-Partikel eingebettet sind. Vorzugsweise wird aber die piezoelektrische Schicht allein von der Piezokeramik gebildet.

ein gepoltes Bauteil wieder zu entpolen.

25

35 Als Piezokeramik ist jeder beliebige piezokeramische Werkstoff oder eine Mischung aus mehreren piezokeramischen Werkstoffen denkbar. Insbesondere wird als Piezokeramik ein

Bleizirkonattitanat (Pb(Ti,Zr)O3, PZT) verwendet. Das PZT ist ein Perowskit (ABO3). Die A-Plätze des Perowskits werden von Blei besetzt. Die B-Plätze des Perwoskits werden von Titan und von Zirkonium eingenommen. Das Bleizirkonattitanat kann dabei auch dotiert sein. Beispielsweise verfügt das PZT über Seltenerddotierungen.

Bei Verwendung einer Piezokeramik mit Bleizirkonattitanat wird in einer besonderen Ausgestaltung als bestimmte Eigenschaft des Bauteils mit dem ersten Zustand ein 10 Verhältnis eines rhomboedrischen Volumenanteils mit rhomboedrischer Phase und eines tetragonalen Volumenanteils mit tetragonaler Phase verwendet. Das PZT-Mischkristallsystem $(PbZr_{x}Ti_{(1-x)}O_{3})$ ist durch eine lückenlose Mischbarkeit des Bleizirkonats (PbZrO3, PZ) und des Bleititanats (PbTiO3, PT) 15 gekennzeichnet. Bei einer Temperatur über der Curie-Temperatur (T_C) kristallisiert das PZT unabhängig von einem Zirkonium-Titan-Verhältnis in einer paraelektrischen, kubischen Perowskitstruktur. Wird die Curie-Temperatur 20 unterschritten, kommt es zu einer spontanen Verzerrung des kubischen Gitters. Dabei bilden sich in Abhängigkeit vom Zirkonium-Titanverhältnis verschiedene Phasen aus. Titanreiche Mischkristalle (0,47 > x > 0) bilden bei Raumtemperatur eine ferroelektrische Mischkristallphase mit tetragonaler Gitterstruktur (tetragonale Phase). Kristallite 25 der tetragonalen Phase zeichnen sich durch 180°- und 90°-Domänen aus. Zirkoniumreiche Mischkristalle (0.47 < x < 1)bilden dagegen bei Raumtemperatur eine ferroelektrische Mischkristallphase mit rhomboedrischer Gitterstruktur (rhomboedrische Phase). Kristallite der rhomboedrischen Phase 30 zeichnet sich 180°-, 71°- und 109°-Domänen aus. Das Zirkonium-Titan-Verhältnis, bei dem beide ferroelektrischen Phasen vorliegen, wird als morphotrope Phasengrenze bezeichnet. Die morphotrope Phasengrenze bezeichnet also einen Koexistenzbereich, in dem die tetragonale Phase und die 35 rhomboedrische Phase nebeneinander existieren.

Es hat sich gezeigt, dass das Verhältnis des Volumenanteils der tetragonalen Phase zum Volumenanteil der rhomboedrischen Phase die piezoelektrischen Eigenschaften des gepolten Bauteils stark beeinflusst. Daraus wird gefolgert, dass bei Kenntnis des Verhältnisses der Volumenanteile mit großer Wahrscheinlichkeit auf die piezoelektrischen Eigenschaften des Bauteils geschlossen werden kann. Es wird überprüft, ob nach dem Sintern die morphotrope Phasengrenze vorliegt. Wenn die morphotrope Phasengrenze vorliegt, so kann mit einer gewissen Wahrscheinlichkeit eine Aussage darüber getroffen werden, ob das später, nach dem Polarisieren erhaltene Bauteil die benötigten piezoelektrischen Kenngrößen aufweist.

Zum Ermitteln der morphotropen Phasengrenze kann auf die Röntgenstrukturanalyse zurückgegriffen werden. Diese Analyse führt allerdings nur zum Verhältnis der Oberflächenanteile der Phasen an der untersuchten Oberfläche des Bauteils. Von dem Verhältnis der Oberflächenanteile kann auf das Verhältnis der Volumenanteile geschlossen werden.

20

25

30

35

10

15

Um den beschriebenen, mit Unsicherheiten behafteten Transfer vom Verhältnis der Oberflächenanteile auf das Verhältnis der Volumenanteile zu umgehen, werden vorzugsweise Kenngrößen ermittelt, die sehr empfindlich auf das Verhältnis der Volumenanteile der beiden Phasen reagiert. Insbesondere wird daher zum Ermitteln der morphotropen Phasengrenze auf die Bestimmung der oben beschriebenen physikalischen Kenngrößen zurückgegriffen. Diese Kenngrößen reagieren sehr empfindlich auf das Verhältnis der Volumenanteile der tetragonalen und der rhomboedrischen Phase der Piezokeramik zueinander. So kann beispielsweise durch die Bestimmung der Dichte (aus Abmessung und Gewicht des Bauteils) das Verhältnis der Volumenanteile bestimmt werden. Je höher die Dichte ist, desto größer ist der Anteil der rhomboedrischen Phase. Auch die Bestimmung der relativen Dielektrizitätskonstante der Piezokeramik aus gemessener Kapazität bei definierter Temperatur (z.B. 20°C) und genau ermittelten Strukturdaten

des Bauteils (z.B. Schichtdicken der Piezokeramikschicht und der Elektrodenschichten eines Piezoelements) eignet sich sehr gut zur Bestimmung der morphotropen Phasengrenze. Die weiteren, bereits oben erwähnten Kenngrößen sind

5 Verlustwinkel (tan δ) der piezoelektrischen Schicht, Isolationswiderstand der piezoelektrischen Schicht, ferroelastisches Verhalten des Bauteils, Elastizitätsmodul (E-Modul) des Bauteils, longitudinale Schallgeschwindigkeit des Bauteils und/oder Temperaturgang der Kapazität des

10 Bauteils. Um eine reltiv genaue Aussage über die morphotrope Phasengrenze treffen zu können, werden vorzugsweise mehrere der beschriebenen physikalischen Eigenschaften ermittelt.

Die Eigenschaften des Bauteils werden gewöhnlich nach dem 15 Sintern des Bauteils und vor der Weiterverarbeitung des Bauteils bestimmt. Das Bauteil ist in diesem Zustand nicht gepolt. Die Piezokeramik ist nicht polarisiert. In einer besonderen Ausgestaltung werden aber Bauteile der ersten Gruppe verwendet, deren erster Zustand sich jeweils durch 20 eine teilweise Polarisierung der Piezokeramik auszeichnet. Es werden vorgepolte bzw. schwach gepolte piezokeramische Bauteile verwendet. Vorzugsweise sind die Bauteile derart gepolt, dass keine Vorschädigung des Bauteils auftritt. Ein oben beschriebener Polungsriss in einem Aktorkörper in monolithischer Vielschichtbauweise wäre eine derartige 25 Vorschädigung. Um Polungsrisse im Aktorkörper zu vermeiden, wird die Piezokeramik des Aktorkörpers bis zu einem Grad polarisiert, der weit weg ist von einer Sättigung der Polarisierung. Es wird darauf geachtet, dass im remanenten 30 Zustand, also im bleibend gepolten Zustand, keine Polungsrisse vorhanden sind.

Zur Polarisierung der Piezokeramik der Bauteile wird ein geeignetes Polarisationsfeld erzeugt. So wird beispielsweise ein unipolares Polarisationsfeld mit "Gleich-Feldstärke" verwendet. Dabei kann eine lineare Rampe (zeitliche Erhöhung oder Verringerung der Feldstärke) und/oder Haltezeit der

Feldstärke vorgesehen sein. Denkbar ist auch ein Polarisationsfeld mit pulsierendem Gleichfeld. Eine Frequenz eines solchen Polarisationsfeldes ist dabei vorzugsweise so gewählt, dass es zu keiner Erwärmung der Piezokeramik kommt.

5

Um die Piezokeramik der Bauteile teilweise zu polarisieren, gibt es verschiedene Möglichkeiten. Im Folgende werden bevorzugte Polarisierungsverfahren bzw. bevorzugte Bedingungen angegeben, unter denen das

- 10 Polarisierungsverfahren durchgeführt wird. Die Polarisierungsverfahren bzw. die Bedingungen, unter denen die Bauteile vorgepolt werden, sind den Bauteilen entsprechend anzuwenden bzw. miteinander kombinierbar.
- 2ur teilweisen Polarisierung wird beispielsweise die Piezokeramik der Bauteile bei Raumtemperatur druckfrei polarisiert. Dies bedeutet, dass keine mechanische Druckspannung während des Anlegens des Polarisationsfeldes auf das Bauteil ausgeübt wird. Dabei werden vorwiegend alle 20 180°-Domänen der Kristallite der tetragonalen Phase und der rhomboedrischen Phase in Feldrichtung geschaltet.

Alternativ dazu wird zur teilweisen Polarisierung die Piezokeramik der Bauteile bei einer Polungstemperatur polarisiert, die höher ist als die Raumtemperatur. Als 25 Raumtemperatur werden etwa 20° C mit einer Abweichung von bis zu ± 10° C angesehen. Dabei kann das Bauteil auf eine Temperatur erwärmt werden, die während des gesamten Polungsprozesses unter der Curietemperatur der Piezokeramik liegt. Zur teilweisen Polarisierung kann das Bauteil aber 30 auch über die Curie-Temperatur der Piezokeramik erwärmt werden. Während eines Abkühlens des Bauteils auf Raumtemperatur wird dann ein Polarisationsfeld mit relativ geringer Feldstärke angelegt. Die Feldstärke dieses Polarisationsfeldes beträgt beispielsweise unter 100 V/mm. 35

Zur teilweisen Polarisierung der Piezokeramik kann auch zusätzlich eine mechanische Druckspannung auf die Piezokeramik der Bauteile ausgeübt werden. Es findet ein Druckpolarisieren statt. Die angelegte Druckspannung kann dabei über der Druckspannung liegen, unter der das Bauteil möglicherweise später betrieben wird. Beispielsweise wird bei einem Aktorkörper in monolithischer Vielschichtbauweise während des Polens des Bauteils ein Duck von 10 MPa bis 20 MPa angelegt.

10

15

5

Bei einem schwach gepolten Bauteil kann zum Herstellen der Korrelation auf die oben angegebenen, zu bestimmenden physikalischen Messgrößen zurückgegriffen werden. Insbesondere kann zur Bestimmung der morphotropen Phasengrenze und damit zum Herstellen der Korrelation eine relativen Permittivität der Piezokeramik vor dem schwachen Polen (ϵ_{rv}) und eine relative Permittivität der Piezokeramik nach dem schwachen Polen (ϵ_{rn}) bestimmt werden. Die relative Änderung der Permittivität (($\epsilon_{rn} - \epsilon_{rv}$)/ ϵ_{rv}) ist ein Maß für das Verhältnis der Volumenanteile der rhomboedrischen Phase und der tetragonalen Phase. Die Feldabhängigkeit der Polarisaionsladung (P(E)) und die maximale Polarisation Pmax

führen ebenfalls zu einer verwertbaren Korrelation zwischen

Ausgangszustand und Polungszustand des Bauteils.

25

30

35

20

Im Übrigen sei noch angemerkt, dass durch die beschriebene, schwache Polung des Bauteils keinerlei Nachteile in Kauf genommen werden müssen. Wie bereits angegeben, wird die Polung so gestaltet, dass keine Schädigung des Bauteils auftritt. Darüber hinaus kann das schwach gepolte piezoelektrische Bauteil zur Weiterverarbeitung in einen ungepolten Zustand durch bekannte Verfahren überführt werden. So kann das schwach gepolte Bauteil durch Erwärmung über die Curietemperatur oder durch Anlegen eines Wechselfeldes mit zeitlich abnehmender Amplitude depolarisiert werden.

Bezüglich der Verwendung der Korrelation wird vorzugsweise aufgrund der Vorhersagemöglichkeit eine Qualität des Bauteils beurteilt. Weiterhin wird die Korrelation zur Gestaltung eines Polarisationsverfahrens verwendet, mit dem die Piezokeramik des Bauteils polarisiert wird, so dass ein Bauteil mit einem bestimmten zweiten Zustand erhalten wird. Aufgrund der bestimmten Eigenschaften des Bauteils und aufgrund der ermittelten Korrelation ergeben sich Hinweise darauf, wie das Polarisationsverfahren gestaltet werden muss, damit ein funktionsfähiges Bauteil erhalten wird. Beispielsweise werden Informationen darüber erhalten, dass das Bauteil unter einer bestimmten Druckspannung polarisiert

15 Wie bereits erwähnt, können beliebige piezoelektrische
Bauteile verwendet werden. Vorzugsweise wird ein
piezoelektrisches Bauteil verwendet, das mindestens ein
Piezoelement mit mindestens zwei übereinander angeordneten
Elektrodenschichten und mindestens einer zwischen den
20 Elektrodenschichten angeordneten piezoelektrischen Schicht
mit der Piezokeramik aufweist. Gemäß einer besonderen
Ausgestaltung wird als piezoelektrisches Bauteil ein
Vielschichtaktor verwendet, bei dem eine Vielzahl von
Piezoelementen zu einem stapelförmigen Aktorkörper angeordnet
25 sind.

werden sollte.

Zusammenfassend ergeben sich mit der vorliegenden Erfindung folgende wesentlichen Vorteile:

Mit der Erfindung ist es möglich, in einem frühen Stadium der Herstellung eines piezoelektrischen Bauteils, das eine Piezokeramik aufweist, dessen piezoelektrische Eigenschaften und damit dessen Qualität nach dem Polarisieren der Piezokeramik abzuschätzen. Bauteile, die mit großer Wahrscheinlichkeit nicht die geforderten piezoelektrischen Kenngrößen erzielen, können von der

Weiterverarbeitung ausgeschlossen werden. Dies führt zu einer deutlichen Reduzierung der Herstellkosten.

- Mit der Erfindung kann eine definierte Schnittstelle
zwischen Bauteile-Hersteller und Bauteile-Verarbeiter
(Systemanwender) installiert werden. Der Systemanwender
wird mit einem Halbzeug beliefert, also einem nicht
fertigen Bauteil. Das nicht fertige Bauteil ist
beispielsweise ein sogenannter "nackter Stack", also ein
gesinterter, ungepolter Aktorkörper in monolithischer
Vielschichtbauweise, bei dem lediglich die
streifenförmigen Metallisierungen angebracht sind. Ein
solcher Aktorkörper wird mit Hilfe der Erfindung
charakterisiert.

15

- Die gemäß dem Verfahren zum Herstellen der Korrelation und später am einzelnen Bauteil zu bestimmenden physikalischen Eigenschaften sind einfach zu bestimmen.
- Anhand mehrerer Beispiele und der dazugehörigen Figuren wird die Erfindung im Folgenden näher beschrieben. Die Figuren sind schematisch und stellen keine maßstabsgetreuen Abbildungen dar.
- 25 Figur 1 zeigt ein Verfahren zum Herstellen der Korrelation.
 - Figur 2 zeigt einen Querschnitt eines piezoelektrischen
 Bauteils in Form eines Piezoaktors mit einem
 Aktorkörper in monolithischer Vielschichtbauweise.

30

- Figur 3 zeigt ein Piezoelement des Piezoaktors aus Figur 2 in einem seitlichen Querschnitt.
- Das piezoelektrische Bauteil 1 ist ein Piezoaktor mit einem 35 Aktorkörper 20 in monolithischer Vielschichtbauweise mit einer (nicht zu sehenden) quadratischen Grundfläche (Figur 2). Bei diesem Aktorkörper 20 ist eine Vielzahl von

Piezoelementen entlang der Stapelrichtung 21 des Aktorkörpers 20 übereinander gestapelt und fest verbunden. Ingesamt ist der Aktorkörper aus bis zu 1000 einzelnen Schichten aufgebaut. Dabei weist ein einzelnes Piezoelement 10 eine 5 piezoelektrische Schicht 13 aus einer Piezokeramik auf (Figur 3). Die Schichtdicke der piezoelektrischen Schicht 13 beträgt 20 µm bis 200 µm. Die Piezokeramik ist ein PZT. Die piezoelektrische Schicht 13 des Piezoelements 10 befindet sich zwischen einer Elektrodenschicht 11 und einer weiteren Elektrodenschicht 12 des Piezoelements 10. Das 10 Elektrodenmaterial der Elektrodenschichten 11 und 12 ist eine Silber-Palladium-Legierung. Die Schichtdicke der Elektrodenschicht beträgt 1 µm bis 3 µm. Die Elektrodenschichten 11 und 12 sind derart an den Hauptflächen der piezoelektrischen Schicht 13 angeordnet, dass durch die 15 elektrische Ansteuerung der Elektrodenschichten 11 und 12 ein elektrisches Feld in der piezoelektrischen Schicht 13 erzeugt wird. Dieses elektrische Feld kann während der Polung des Aktorkörpers als Polarisationsfeld fungieren und die Polarisation der Piezokeramik bewirken. Im Betrieb des 20 Piezoaktors 1 führt das elektrische Feld in Verbindung mit der Polarisation der Piezokeramik zu einer bestimmten Auslenkung der piezoelektrischen Schicht 13 und damit zu einer bestimmten Auslenkung des Piezoelements 10.

25

11 und 12 an zwei, elektrisch voneinander isolierte
Oberflächenabschnitte 14 und 15 geführt. An diesen Stellen
sind die beiden Elektrodenschichten 11 und 12 jeweils mit
30 einem (in Figur 3) nicht dargestellten elektrischen
Anschlusselement verbunden. Durch die Führung der Elektroden
11 und 12 an unterschiedliche Oberflächenabschnitte 14 und 15
verfügt jedes Piezoelement 10 über einen piezoelektrisch
aktiven Bereich 16 und mindestens zwei piezoelektrisch
inaktive Bereiche 17.

Zur elektrischen Kontaktierung sind die Elektrodenschichten

Dadurch, dass bei dem Aktorkörper 20 in monolithischer Vielschichtbauweise eine Vielzahl von Piezoelementen 10 übereinander gestapelt sind, kann ein relativ hoher, absoluter Hub entlang der Stapelrichtung 21 des Aktorkörpers 20 bei einer relativ niedrigen Ansteuerspannung erzielt werden.

Benachbarte Piezoelemente 10 weisen jeweils eine gemeinsame Elektrodenschicht auf, so dass im Aktorkörper 20 Elektrodenschichten 22, 23 und piezoelektrische Schichten 24 abwechselnd übereinander angeordnet sind.

10

30

35

Die Elektrodenschichten 22 und 23 des Aktorkörpers 20 sind an zwei elektrisch voneinander isolierte, seitliche

Oberflächenabschnitte 25 und 26 geführt. Die 15 Oberflächenabschnitte 25 und 26 befinden sich an den Ecken des Aktorkörpers 20. Zum Herstellen des Aktorkörpers 20 werden keramische Grünfolien mit quadratischen Grundflächen verwendet, die an jeweils einer Ecke frei von

Elektrodenmaterial sind, entsprechend übereinander gestapelt 20 und gemeinsam gesintert. An den beiden Oberflächenabschnitten 25 und 26 wird jeweils eine streifenförmige Metallisierung 27 und 28 aufgetragen, so dass die Elektrodenschichten 23 und 24 abwechselnd elektrisch kontaktiert sind. Der so erhaltene

Aktorkörper 20 wird als "nackter Stack" bezeichnet. 25

Gemäß dem Verfahren wird eine Korrelation zwischen einem ersten Zustand und einem zweiten Zustand des Aktorkörpers 20 hergestellt. Der erste Zustand des Aktorkörpers 20 entspricht dem Zustand nach dem Auftragen der Metallisierungen 27 und 28 an den Oberflächenabschnitten 25 und 26 des Aktorkörpers 20. Der Aktorkörper 20 ist dabei gemäß einem ersten Ausführungsbeispiel ungepolt. In einem dazu alternativen Ausführungsbeispiel der Aktorkörper 2 im ersten Zustand schwach gepolt. Der zweite Zustand ist in beiden Fällen der Polungszustand des Aktorkörpers 20, unter dem der Aktorkörper 20 betrieben wird.

Zur Herstellung der Korrelation wird zunächst eine Anzahl solcher Aktorkörper 20 bereitgestellt (Figur 1, 101). Im Folgenden werden an jedem der Aktorkörper 20 mehrere bestimmte physikalische Eigenschaften ermittelt (Figur 1, 102). Dazu zählen die Dichte der Piezokeramik, der Temperaturgang der Kapazität des Aktorkörpers 20 und ferroelastische Eigenschaften des Aktorkörpers 20. Diese Eigenschaften können zum Bestimmen einer weiteren Eigenschaft herangezogen werden, nämlich zum Bestimmen der morphotropen Phasengrenze des PZTs.

Nach dem Ermitteln der Eigenschaft bzw. der Eigenschaften jedes der Aktorkörper 20 werden die Aktorkörper 20 gepolt durch Anlegen entsprechender Polarisationsfelder. Das PZT der piezoelektrischen Schichten 24 wird polarisiert (Figur 1, 103). Das Polen erfolgt dabei unter einer Druckspannung, die am Aktorkörper 20 so angelegt wird, dass sie der verlängernden Wirkung des Polarisationsfeldes entgegenwirkt.

20

25

10

15

Im weiteren Verlauf werden die piezoelektrischen Eigenschaften jedes der gepolten Aktorkörper 20 ermittelt (Figur 1, 104) und in Beziehung zu den ermittelten Eigenschaften des jeweiligen ungepolten Aktorkörpers 20 gesetzt (Figur 1, 105). Aus dem Vergleich der festgestellten, einzelnen Beziehungen wird die, für die Art des Aktorkörpers 20 gültige Korrelation zwischen dem Ausgangszustand des Aktorkörpers 20 und dem Polungszustand des Aktorkörpers 20 hergestellt.

30

35

Die so hergestellte Korrelation wird zur Charakterisierung eines Aktorkörpers 20 benutzt. Der Aktorkörper 20 wird im Ausgangszustand, also in dem Zustand nach dem Anbringen der Metallisierungen (ungepolt oder schwach gepolt) vermessen. Es wird die für die Korrelation verwendete Eigenschaft bzw. es werden die für die Korrelation verwendeten Eigenschaften ermittelt. Aus den daraus gewonnen Daten lässt sich eine

Wahrscheinlichkeit dafür abschätzen, dass der Aktorkörper 20 nach dem Polen (inkl. weiterer Verarbeitungsschritte) piezoelektrische Kenngrößen aufweist, die in einem festgelegten Toleranzbereich liegen. Anhand dieser Abschätzung wird der Aktorkörper 20 entweder der weiteren Verarbeitung zugeführt oder von der weiteren Verarbeitung ausgeschlossen.

5

Patentansprüche

5

30

1. Verfahren zum Herstellen einer Korrelation zwischen einem ersten Zustand eines piezoelektrischen Bauteils (1, 20), das eine Piezokeramik aufweist, und einem zweiten Zustand des Bauteils, wobei der zweite Zustand des Bauteils aus dem ersten Zustand des Bauteils durch ein Polarisieren der Piezokeramik des Bauteils erzeugt wird, mit folgenden Verfahrensschritten:

- 10 a) Bereitstellen einer erste Gruppe von Bauteilen mit jeweils dem ersten Zustand,
 - b) Ermitteln mindestens einer bestimmten Eigenschaft jedes der Bauteile der ersten Gruppe,
- c) Polarisieren der Piezokeramik der Bauteile der ersten

 Gruppe, wobei aus jedem der Bauteile der ersten Gruppe
 ein entsprechendes Bauteil einer zweiten Gruppe
 entsteht, das den zweiten Zustand aufweist,
 - d) Ermitteln mindestens einer bestimmten Eigenschaft jedes der Bauteile der zweiten Gruppe und
- 20 e) Herstellen der Korrelation durch Vergleich der bestimmten Eigenschaft jedes der Bauteile der ersten Gruppe und der bestimmten Eigenschaft des entsprechenden Bauteils der zweiten Gruppe.
- 25 2. Verfahren nach Anspruch 1, wobei eine Anzahl von bestimmten Eigenschaften des Bauteils mit dem ersten Zustand ermittelt wird und zum Herstellen der Korrelation mit der bestimmten Eigenschaft des Bauteils mit dem zweiten Zustand verwendet wird.

3. Verfahren nach Anspruch 1 oder 2, wobei die bestimmte Eigenschaft des Bauteils mit dem ersten Zustand aus der Gruppe Verlustwinkel der piezoelektrischen Schicht, Isolationswiderstand der piezoelektrischen Schicht,

Dichte der piezoelektrischen Schicht, relative Permittivität der piezoelektrischen Schicht, ferroelastisches Verhalten des Bauteils,

Elastizitätsmodul des Bauteils, longitudinale Schallgeschwindigkeit des Bauteils und/oder Temperaturgang der Kapazität des Bauteils ausgewählt wird.

5

- 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei als Piezokeramik ein Bleizirkonattitanat verwendet wird.
- 5. Verfahren nach Anspruch 4, wobei als bestimmte

 Eigenschaft des Bauteils mit dem ersten Zustand ein
 Verhältnis eines rhomboedrischen Volumenanteils mit
 rhomboedrischer Phase und eines tetragonalen
 Volumenanteils mit tetragonaler Phase verwendet wird.
- 15 6. Verfahren nach einem der Ansprüche 1 bis 4, wobei Bauteile der ersten Gruppe verwendet werden, deren erster Zustand sich jeweils durch eine teilweise Polarisierung der Piezokeramik auszeichnet.
- 7. Verfahren nach Anspruch 6, wobei zur teilweisen Polarisierung die Piezokeramik der Bauteile bei Raumtemperatur druckfrei polarisiert wird.
- 8. Verfahren nach Anspruch 6 oder 7, wobei zur teilweisen Polarisierung die Piezokeramik der Bauteile bei einer Polungstemperatur polarisiert wird, die höher ist als die Raumtemperatur.
- 9. Verfahren nach einem der Ansprüche 6 bis 8, wobei zur teilweisen Polarisierung eine mechanische Druckspannung auf die Piezokeramik der Bauteile ausgeübt wird.
- 10. Verfahren nach einem der Ansprüche 6 bis 9, wobei zur teilweisen Polarisierung das Bauteil über die

 Curietemperatur der Piezokeramik erwärmt wird und während eines Abkühlens des Bauteils auf Raumtemperatur

ein Polarisationsfeld mit geringer Feldstärke von unter 100V/mm angelegt wird.

- 11. Verfahren nach einem der Ansprüche 1 bis 10, wobei ein piezoelektrisches Bauteil verwendet wird, das mindestens ein Piezoelement (10) mit mindestens zwei übereinander angeordneten Elektrodenschichten (11, 12) und mindestens einer zwischen den Elektrodenschichten angeordneten piezoelektrischen Schicht (13) mit der Piezokeramik aufweist.
 - 12. Verfahren nach Anspruch 11, wobei als piezoelektrisches Bauteil ein Vielschichtaktor verwendet wird, bei dem eine Vielzahl von Piezoelementen (10) zu einem stapelförmigen Aktorkörper (20) angeordnet sind.

15

20

25

30

- 13. Verwendung der Korrelation zur Vorhersage der bestimmten Eigenschaft eines bestimmten piezoelektrischen Bauteils mit dem zweiten Zustand aus der ermittelten bestimmten Eigenschaft des bestimmten Bauteils mit dem ersten Zustand.
- 14. Verwendung nach Anspruch 13, wobei aufgrund der Vorhersage eine Qualität des Bauteils beurteilt wird.
- 15. Verwendung der Korrelation zur Gestaltung eines Polarisationsverfahrens, mit dem die Piezokeramik des Bauteils polarisiert wird, so dass ein Bauteil mit einem bestimmten zweiten Zustand erhalten wird.

FIG 1

FIG 2

FIG 3

