Estadística Computacional

Distribuciones muestrales

Braulio Fuentes - Diego Quezada

Temario

- Introducción
- Tipos de convergencia
 - En probabilidad
 - En distribución
- Teoremas
 - Ley débil de los grandes números
 - Ley fuerte de los grandes números
 - Teorema del límite central
- Otros resultados interesantes

Introducción

- Hemos trabajado asumiendo que los datos disponibles conforman la población.
- Ahora estudiaremos el comportamiento de una secuencia de variables X_1, X_2, \ldots, X_n a medida que $n \to \infty$.
- Trabajaremos bajo los siguientes supuestos:
 - i. X_n es una muestra aleatoria simple (MAS).
 - ii. X_n está conformada por variables aleatorias independientes e identicamente distribuidas (IID).

ullet Sea X_n una muestra IID donde $\mu=E[X_i]$ y $\sigma^2=V[X_i]$ para cada i:

$$E[\overline{X}_n] = E[rac{1}{n} \sum_{i=0}^n X_i] = rac{1}{n} E[\sum_{i=0}^n X_i] = rac{1}{n} \cdot (n\mu) = \mu$$

$$V[\overline{X}_n] = V[rac{1}{n}\sum_{i=0}^n X_i] = rac{1}{n^2}V[\sum_{i=0}^n X_i] = rac{1}{n^2}\sum_{i=0}^n V[X_i] = rac{1}{n^2} \cdot n\sigma^2 = rac{\sigma^2}{n}$$

Recordando:

$$V(X\pm Y)=V(X)+V(Y)\pm 2\cdot Cov(X,Y)$$

Tipos de convergencia

Sea X_n una secuencia de variables aleatorias, y sea X otra variable aleatoria. Denotemos F_n a la cdf de X_n y F a la cdf de X.

Convergencia en probabilidad

 X_n converge a X en probablidad: Se denota $X_n \stackrel{P}{\longrightarrow} X$ si para todo $\epsilon > 0$ se cumple:

$$P(\lim_{n\to\infty}|X_n-X|>\epsilon)=0$$

Convergencia en distribución

 X_n converge a X en distribución: Se denota $X_n \leadsto X$ si para todo t para el cual F es continua se cumple:

$$\lim_{n o\infty}F_n(t)=F(t)$$

Teoremas

Ley débil de los grandes números

Sea X_n una muestra IID donde $\mu=E[X_i]$ y $\sigma^2=V[X_i]$. El promedio muestral \overline{X}_n converge en probabilidad a μ , es decir:

$$P(\lim_{n o \infty} |\overline{X}_n - \mu| < \epsilon) = 1$$

Ley fuerte de los grandes números

Sea X_n una muestra IID donde $\mu=E[X_i]<\infty$.

El promedio muestral X_n converge casi seguramente a μ , es decir:

$$P(\lim_{n o\infty}\overline{X}_n=\mu)=1$$

Investigar sobre convergencia "almost sure", L_1 y L_2

Teorema del límite central (TCL)

Sea X_n una muestra IID donde $\mu=E[X_i]$ y $\sigma^2=V[X_i]$. Entonces $\overline{X}_n \leadsto N(\mu,\frac{\sigma^2}{n})$, a medida que $n\to\infty$ independiente de la distribución de la muestra.

Normalización

$$Z_n = rac{\overline{X}_n - \mu}{\sqrt{V(\overline{X}_n)}} = rac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu) \leadsto N(0, 1)$$

Declaraciones de probabilidad sobre \overline{X}_n pueden ser aproximadas utilizando una distribucion normal \cite{S} .

Estimadores

Si no conocemos ni la media ni la varianza podemos utilizar estimadores muestrales para el TCL.

Hay que estar consciente que los resultados solo serán aproximaciones de aproximaciones.

Estimador de σ^2

En la siguiente unidad podremos estimar la varianza poblacional mediante la muestra como:

$$S_{n-1}^2 = rac{1}{n-1} \sum_i^n (X_i - \overline{X}_i)^2$$

Además, si $X_i \sim N(\mu, \sigma^2)$ sabemos:

$$rac{(n-1)S_{n-1}^2}{\sigma^2}\sim \chi^2(n-1)$$

Otros resultados interesantes

Desiguladad de Markov

Sea X una variable aleatoria sobre \mathbb{R}^+ , se sabe que:

$$\forall a > 0, \ P(X \ge a) \le \frac{E[X]}{a}$$

Desiguladad de Chebyshev

Sea X una variable aleatoria tal que $E[X] = \mu$ y $V[X] = \sigma^2$, se sabe que:

$$orall k>0,\ P(|X-\mu|>k)\leq rac{\sigma^2}{k^2}$$

Usando esta desigualdad se puede demostrar el TCL 💡

Ejercicio propuesto

Suponga el número de errores por programa sigue una distribución de poisson con $\lambda=5$. Tenemos 125 programas. Sean X_1,X_2,\ldots,X_{125} el número de errores en los programas, aproxime $P(\overline{X}_n\leq 5.5)$