

Ferienkurs Analysis 3 für Physiker

Übung: Fouriertransformation

Autor: Benjamin Rüth, Korbinian Singhammer

Stand: 12. März 2015

Aufgabe 1 Bestimmen Sie die cos-sin-Darstellungen der Fourierreihen der folgenden 2π -periodischen Funktionen:

1.1
$$f(x) = \left(\frac{x}{\pi}\right)^3 - \frac{x}{\pi} \text{ für } x \in [-\pi, \pi),$$

1.2
$$f(x) = (x - \pi)^2$$
 für $x \in [0, 2\pi)$,

1.3
$$f(x) = |\sin x| \text{ für } x \in [-\pi, \pi),$$

1.4
$$f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ \sin x, & 0 \le x \le \pi \end{cases}$$
.

Aufgabe 2 Gegeben ist die 2π -periodische Funktion f mit

$$f(x) = \pi - |x|$$
 für $-\pi \le x \le \pi$.

- **2.1** Man berechne die Koeffizienten der zugehörigen cos-sin-Darstellung S(f)(x).
- 2.2 Man bestimme mit Hilfe von Teilaufgabe (a) den Wert der unendlichen Reihe

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Aufgabe 3 (Faltung, schwer!) Es sei s mit $s(x) = \frac{\pi - x}{2}$ für $x \in [0, 2\pi)$ eine 2π -periodische Sägezahnfunktion.

- **3.1** Zeigen Sie, dass die Faltung (s*s)(x) wieder eine 2π -periodische Funktion ergibt.
- **3.2** Berechnen Sie die periodische Faltung $(s*s)(x) = \frac{1}{2\pi} \int_0^{2\pi} s(x-t)s(t) dt$ für $x \in \mathbb{R}$ direkt.
- **3.3** Bestimmen Sie die Fourierkoeffizienten c_k der Funktion s*s durch direkte Rechnung.

Aufgabe 4 Bestimmen Sie die Fouriertranformation von

$$f(x) = \begin{cases} xe^{-x}, & x \ge 0\\ 0, & \text{sonst} \end{cases}$$
 (0.1)

Aufgabe 5 (Fouriertransformation) Gegeben sei die Fouriertransformation von $f(t) = e^{-\frac{1}{2}t^2}$

$$\hat{f}(\omega) = \sqrt{2\pi}e^{-\frac{1}{2}\omega^2}.$$

Bestimmen Sie die Fouriertransformationen folgender Funktionen

5.1 $t^2e^{-t^2}$

5.2
$$e^{4i-(t-2)^2}$$

5.3
$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}\xi^2 - \frac{1}{2}(t-\xi)^2} d\xi$$

Aufgabe 6 (Faltung) Es sei $f(t) = e^{-|t|}$.

- **6.1** Man berechne die Faltung (f * f)(t). (Tipp: Fallunterscheidung $t \ge 0$ und t < 0.)
- **6.2** Man berechne die Fouriertransformierte $\mathcal{F}(f(t))(\omega)$.
- **6.3** Unter Zuhilfenahme der Faltung bestimme man $\mathcal{F}(|t|e^{-|t|})(\omega)$.

 $\textbf{Aufgabe 7} \text{ (Fourier$ $transformation)} \quad \text{F\"{u}r} \ \lambda > 0 \ \text{und} \ a \in \mathbb{R} \ \text{sei} \ f(t) = \left\{ \begin{array}{ccc} 0 & , & t < 0 \\ \frac{1}{2} & , & t = 0 \\ \exp((-\lambda + ia)t) & , & t > 0 \end{array} \right. .$

- **7.1** Man berechne die Fouriertransformierte von f(t).
- 7.2 Wie lauten die Fouriertransformierten der gedämpften Schwingungen

$$x(t) = e^{-\lambda t} \cos Nt$$
 und $y(t) = e^{-\lambda t} \sin Nt$, $N \in \mathbb{N}$, $t > 0$?

Aufgabe 8 (Fouriertransformation) Bestimmen Sie die Fouriertransformierte der Funktion

$$f(t) = \begin{cases} \frac{1}{2}(1 - |t|) &, & |t| \le 1\\ 0 &, & |t| > 1 \end{cases}$$

und bestätigen Sie mithilfe der Rücktransformation $\int\limits_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^2 \mathrm{d}x = \pi \;.$