Jupyter in HPC

Feb 28th, 2018

Matthias Bussonnier

bussonniermatthias@gmail.com

GitHub: @carreau

Twitter: @mbussonn

About Me

Matthias Bussonnier

- A Physicist/Bio-Physicist
- Core developer of IPython/Jupyter since 2012
 - Co-founder, and Steering Council member
- Post doctoral Scholar on Jupyter at BIDS

Demo(s)

Just to find bugs and make things crash

Webinar & Outline

- This webinar will be in 3 parts
 - Overview of what is Jupyter + HPC
 - Use case: Suhas Somnath
 - Use case: Shreyas Cholia
- Outline Part 1
 - From IPython to Jupyter
 - What is Jupyter
 - Jupyter Popularity
 - Some Jupyter Usage

From IPython to Jupyter

- 2001: Fernando Perez Wrote "IPython"
 - Create IPython for Interactive Python with prompt number, gnu plot integration
 - Replace a bunch on perl/make/C/C++ files with only Python.
- 2011: QtConsole
- 2012: Birth of current **Notebook** (6th prototype)
 - Make IPython "network enabled"
 - Made possible by mature web tech.
- 2013: First non-Python (Julia) kernel
- 2014: we renamed the Python-Agnostic part to Jupyter.
- 2018: several millions users & JupyterLab released

What is Jupyter

- Mainly Known for The Notebook
 - Web server, a web app, load .ipynb (json), containing code, narrative, math and results.
 - Attached to a **Kernel** doing computation.
- Results can be:
 - Static (Image)
 - Interactive (client-side scoll/pan/brush)
 - Dynamic (Call back into Kernel)

Focused on Exploratory Programming

• IPython was designed for exploratory programming, as

a REPL (Read Eval Print Loop) and grew popular, especially

among scientist who loved it to explore.

"IPython have weaponized the tab [completion] key" – Fernando Pérez

Open Organisation

- Organisation with Open Governance (https://GitHub.com/jupyter/governance)
- Funded by Grants and Donations, and Collaborations

Protocols and Formats

Jupyter is also a set of Protocols and Formats that reduce the N-frontends x M-

backends problem to a M-Frontends + N-backends,

- Open, Free and Simple.
 - JSON (almost) everywhere
 - Notebook document format,
 - Wire protocol
- Thought for Science and Interactive use case.
 - Results embedded in documents no "Copy past" mistake.
- \tilde{C}

Scale from Education to HPC jobs.

Ecosystem

Frontends: Notebook, JupyterLab, CLI, Vim, Emacs, Visual Studio Code, Atom, Nteract, Juno...

Kernels: Python, Julia, R, Haskell, Perl, Fortran, Ruby, Javascript, C/

C++, Go, Scala, Elixir... 60+

Building Blocks: Nbformat, JupyterHub, Kernel Gateway...

JupyterLab

• Extends the notebook interface with text editor, shell, ...etc

• is it and IDE?

If by I you mean Interactive,
 then yes

https://github.com/parente/nbestimate

Interactivity

- Coding is not the end goal of most of our users. A simple, single tool, with friendly interface helps.
- Persisting kernel state allows to iterate only on part of an analysis.
- Notebook interface give the interactivity of the REPL with the edit-ability and linearity of a script with intermediate result.
 Aka "Literate Computing"

Separation of states

- Computation, narrative/visualisation in different processes.
 - Robust to crashes
 - Can "Share" and analysis / notebook without having to "rerun"
 - Trustworthy (No copy-past issues).
- Cons:
 - Understanding that document/kernel can have different states can be challenging.
 - Notebook format is not as widespread as others.

Network enabled / web based

• User love fancy colors and things moving. Using D3 and other

You'll only take Spyder from my cold, dead... Oooooh, pretty shiny colors, inline graphics.. Does it come in fuchsia? :)

- dynamic libraries are highly popular
- Usable by novices and power-users
- Users w/ different expertise (Numerical Methods, Visualization,...)
- Seamless transition to HPC: Kernel Menu > Restart on Cluster
- Document persist if code crash.
- Can be Zero-Installation (See JupyterHub).
 - A web browser is all you need.

JupyterHub

- Multi-users Jupyter deployment
 - Not (Yet) Realtime collaboration
- Each user can get their own process/version(s)/ configuration(s)
 - Hooks into any Auth
 - Only requires a browser
- Not limited to running Jupyter (e.g. work with RStudio, OpenRefine...)

HPC

- Batch Jobs
 - You can run notebook "headless"
 - Parametrized notebook as "reports" you can interact with later
- Interactive Cluster.
 - Run a Hub (hook into LDAP/PAM...)
 - Run notebook servers on a Head node
 - Run Kernels on head Node/fast queue
 - Extra Workers (e.g. dask) on Batch queue/cluster.

HPC deployment

HPC Misconceptions

We need to run JupyterHub on the cluster: No

- Hub, Server, Kernels, (and Workers):
 - Do not have to be on the same machine
 - Do not have to use the same environment

A Kernel is a (single) language: No

- A Kernel is a preconfigured computation environment. It can be:
 - A queue, a hardware resource (GPU, SSD...), A location (like a beam-line)
- Example of Python, Cython, Julia, R, Fortran, Rust, C calling each other in same notebook

Every User have the same environment: No/No

- Kernels and notebook server can be configured independently
- Subset of users could use different server versions w/ different extensions.

JupyterHub is Limited to Jupyter: No

JupyterHub Can run RStudio, Open Refine.

Danger!

Despite Notebook being great, some limitations:

Most if not all document state is in your browser!

- Watch out for flaky network connections!
- Do Not close your Laptop Lid*/Tab*!

Workaround:

- Wrap computations (especially long), in Futures
- Use Caching.

Interrupting in compiled code is hard.

Large outputs/notebooks can crash the browser

Some Jupyter Usage

Ligo

Pangeo

Cern's SWAN

Ligo

- Some events analysis with Jupyter
- Subset of data + env put online
- Run the analysis yourself on Binder[1] and listen to the waves

Pangeo (pangeo-data.github.io)

• Effort from Atmosphere / Ocean / Land / Climate (AOC) science

community

- unified effort
- Cloud based
- Recent Technologies
 - Dask, Jupyter

Cern Swan (swan.web.cern.ch)

- Share platformed for Data Analysis
- Sync W/ \$HOME directory
- 0-install
- Share Data
- Provide example gallery with 1-clickfork

The Shape of Things to come

The Shape of Things to come

Classic Notebook -> JupyterLab transition

- Stabilisation
- Transfer of extensions
- Collaboration:
 - Google retired Real-time API
 - Who "executes" problem
- Long Running Jobs

JupyterHub

- Horizontal (and Vertical) Scaling
- Audits APIs (Hippa Compliance?)
- "Federation" (binder) / Intercommunication

CFP- Ends March 6th

Question(s)
while we change
speakers?

