

Literature Review

Railway Passenger Train Delay Prediction By Yaghini & al

- Iranian Railway Dataset from 2006 to 2009
- Develop a highly accurate neural network for scheduling
- Artificial Neural Networks (ANN), Classification & Regression Trees (CART),
 Multinomial Logistic Regression

A Comparative Analysis of Models for Predicting Delays in Air Traffic Networks

By Gopalakrishnan and Balakrishnan

- Bureau of Transportation Statistics from 2011 to 2012
- Classification (Delay/No Delay) & Regression (Length of Plane Delay & Length of Airport Delay)
- Models: Markov Jump Linear System (MJLS), CART, ANN

Predicting Flight Delay Based on Multiple Linear Regression By Yi Ding

- www.umetrip.com (flight tracking) November 3, 2015 to March 5, 2016
- Classification & Regression (Delay/No Delay, Length of Delay)
- Model: Multiple Linear Regression

TTC Subway Delay Data

- Clty of Toronto Open Data Catalogue
- Updated Monthly
- Excel spreadsheet >> R Studio
- Date range for analysis: January 1st to December 31st, 2017
- 18,885 rows of data
- 10 initial attributes
 - 2 Quantitative
 - 8 Categorical
- Additionally used an associated data log for the delay codes

Field	Description				
Date	Date (YYYY/MM/DD)				
Time	Time (24h clock)				
Day	Name of the day of the week				
Station	TTC subway station name				
Code	TTC delay code				
Min Delay	Delay (in minutes) between trains				
Min Gap	Time length (in minutes) between trains				
Bound	Direction of train dependent on the line				
Line	TTC subway line i.e. YU, BD, SHP, and SRT				
Vehicle	TTC train number				

Data Cleaning & Processing

Data Collection & **Data Cleansing Data Processing** Pre-Processing Consolidated data into All attributes were checked for Created additional one file containing data completeness and consistency category (Daypart) as from 2017 Data formats buckets for day & time Data possibly has some Missing values Created attribute for fields where data was e.g. Stations, Bound prediction class manually inputted (delayed/not delayed) based on TTC Schedule

Feature Selection

- 80% Training (with Cross-Validation), 20% Testing
- All: Wrapper Method >> Boruta Algorithm
 - Random Forest
 - Variable Importance Measure (VIM)
- Numeric: Spearman Correlation
- Excluded date and Min Gap attributes

Modeling

Decision Tree

K-fold Cross Validation with 5-folds

caret package rpart & rpart.plot packages

- Takes categorical inputs
- Quick, simple, robust
- Handles messy data relatively well

Naive Bayes

K-fold CV with 5-folds manually applied

e1071 package for Naive Bayes analysis

- Takes categorical inputs
- Quick, simple method
- Low training time

Logistic Regression

Forward selection AIC Comparison

glm package

- Takes categorical inputs
- Quick, simple, robust

Decision Tree

- Used the Complexity Parameter (CP) from the CV stage to prune the decision tree
- Inputs: Minutes delayed, Line, Daypart, Vehicle

Used all inputs; no additional feature selection/reduction

Reference Prediction 0 1 0 2514 123 1 78 316

Logistic Regression

- Fit determined by lowest AIC
- Inputs: Min Delay, Daypart

Reference Prediction 0 1 0 2561 41 1 31 398

Receiver Operating Characteristic

Reference			Reference			Reference		
Prediction	0	1	Prediction	0	1	Prediction	0	1
0	2558	78		2514			2561	41
1	34	361	1	78	316	1	31	398

Summary

- Large, messy dataset from the TTC
- 80%/20% Training-Testing, 5-fold CV
- Used Boruta algorithm and measured correlation for feature selection
- O Created & compared three models
- The Logistic Regression model yielded the best results

Future Work

- Recommendation for standardization in the data inputs in order to refine model
- Additional regression analysis for time and/or location of delays

Thanks!

Any questions?