

FIRST

FIRST(X), donde $(X \in \{T \cup N\})$, o FIRST(α), donde $(\alpha \in \{T \cup N\}^*)$

Conjunto formado por los Terminales que pueden aparecer como **primer símbolo terminal** en las cadenas derivadas a partir de X (o a partir de α).

Follow

FOLLOW(A), donde $(A \in N)$

Conjunto formado por los Terminales que pueden aparecer **inmediatamente a continuación** de *A* en alguna forma sentencial.

Además de los **terminales** (**los tokens**) mencionados, puede contener el **elemento nulo** (λ)

Además de los terminales (los tokens) mencionados, puede contener el delimitador de final de cadena (\$)

FIRST de un símbolo terminal

$$\begin{aligned} & \mathsf{FIRST}(\mathsf{a}) = \left\{ \, \mathsf{a} \, \right\} \\ & \mathsf{FIRST}(\mathsf{b}) = \left\{ \, \mathsf{b} \, \right\} \\ & \mathsf{FIRST}(\mathsf{h}) = \left\{ \, \mathsf{h} \, \right\} \\ & \mathsf{FIRST}(\mathsf{c}) = \left\{ \, \mathsf{c} \, \right\} \\ & \mathsf{FIRST}(\mathsf{d}) = \left\{ \, \mathsf{d} \, \right\} \end{aligned}$$

 $S \rightarrow T V \mid V Z$

Ejemplo.

FIRST de un símbolo No terminal

FIRST(T) =
$$\{a, b, h\}$$

 $T \rightarrow a T$ T

FIRST(V) = {
$$\lambda$$
, c }
V $\rightarrow \lambda$ V

FIRST(Z) = {
$$\lambda$$
, d }
Z $\rightarrow \lambda$ Z

FIRST de un símbolo No terminal

$$FIRST(S) = \{ a, b, h, c, d, \lambda \}$$

$$S \rightarrow T V$$

$$s \rightarrow v z$$

$s \rightarrow T \lor | \lor Z$

$$T \rightarrow aT \mid bT \mid h$$

$$V \rightarrow \lambda \mid c Z h$$

$$Z \rightarrow \lambda \mid d Z$$

FIRST de

un símbolo

FIRST

FIRST (X) $(X \in \{T \cup N\})$. El conjunto de los símbolos terminales que pueden aparecer como primer símbolo **terminal** en las cadenas derivadas a partir de X.

- \triangleright Si X es un terminal $(X = t, \text{con } t \in T)$ entonces FIRST $(X) = \{t\}$.
- \triangleright Si X es un no terminal (X \in N) entonces hay que estudiar cada una de las reglas de X. Se ejecutarán los siguientes pasos hasta que no se puedan añadir más elementos al conjunto FIRST:
 - Si existe la regla $X \to \lambda$, entonces añadir λ a FIRST (X)
 - 2. Para cada una de las restantes reglas $X \to Y_1 Y_2 \dots Y_k$, (donde $Y_i \in \{T \cup N\}$), se aplica el siguiente algoritmo hasta que no se pueda añadir nada nuevo al conjunto FIRST(X):

```
Calcular FIRST(Y_1). Todos los elementos no nulos de FIRST(Y_1) se añaden a FIRST(X)
if \lambda \notin FIRST(Y_1) then return FIRST(X)
else Calcular FIRST(Y_2). Todos los elementos no nulos de FIRST(Y_2) se añaden a FIRST(X)
    if \lambda \notin FIRST(Y_{\lambda}) then return FIRST(X)
    else Calcular FIRST(Y_3). Todos los elementos no nulos de FIRST(Y_3) se añaden a FIRST(X)
         … y así sucesivamente …
            if \lambda \notin FIRST(Y_{k-1}) then return FIRST(X)
```

First de una cadena de símbolos α $(\alpha = Y_1 Y_2... Y_n)$

else Calcular $FIRST(Y_k)$. Todos los elementos no nulos de $FIRST(Y_k)$ se añaden a FIRST(X)if $\lambda \notin FIRST(Y_b)$ then return FIRST(X)else añadir λ a FIRST(X) y return FIRST(X)

FIRST

FIRST (X) $(X \in \{T \cup N\})$. El conjunto de los símbolos terminales que pueden aparecer como primer símbolo terminal en las cadenas derivadas a partir de X.

FIRST(t) = { t }	FIRST de un terminal
FIRST (N)	FIRST de un no terminal
	$N \rightarrow Y_1 Y_2 Y_3 \dots Y_n$ $(Y_i \in \{T \cup N\})$
	FIRST $(Y_1) - \lambda$ Si Y_1 no puede derivar λ , termino. En caso contrario se pasa a Y_2 y se hace lo mismo:
Para cada regla de N 🚤	FIRST (Y_2) - λ Si Y_2 no puede derivar λ , termino. En caso contrario se pasa a Y_3
	Solo si llegamos a FIRST(Y_n) y este también contiene λ , se añadirá λ al FIRST(N)
	NOTA: La regla N $\rightarrow \lambda$, si existe, evidentemente indica que λ está en FIRST(N)

FIRST(S) = { a, b, h, c, d,
$$\lambda$$
 }
S \rightarrow T \vee
S \rightarrow Y₁Y₂ FIRST(T)={a, b, h}

$$S \rightarrow V Z$$

 $S \rightarrow Y_1 Y_2$

FIRST(V)=
$$\{\lambda, c\}$$

FIRST(Z)= $\{\lambda, d\}$

Como λ está en el FIRST de todos los Y_i (V y Z), se añade a FIRST (S)

FIRST

FIRST(X), donde $(X \in \{T \cup N\})$, o FIRST(α), donde $(\alpha \in \{T \cup N\}^*)$

Conjunto formado por los Terminales que pueden aparecer como **primer símbolo terminal** en las cadenas derivadas a partir de X (o a partir de α).

Además de los **terminales** (**los tokens**) mencionados, puede contener el **elemento nulo** (λ)

FOLLOW

FOLLOW(A), donde $(A \in N)$

Conjunto formado por los Terminales que pueden aparecer **inmediatamente a continuación** de *A* en alguna forma sentencial.

Además de los terminales (los tokens) mencionados, puede contener el delimitador de final de cadena (\$)

Ejemplo.

G: $S \rightarrow T \lor | \lor Z$ $T \rightarrow a T | b T | h$ $\lor \rightarrow \lambda | c Z h$ $Z \rightarrow \lambda | d Z$

S

\$ es el símbolo de final de cadena (o fin de fichero). S es el axioma.

Ejemplo.

$$FOLLOW(V) = { $, d }$$

$$s \rightarrow t \vee$$

$$s \rightarrow v z$$

$$FOLLOW(S) = \{ \$ \}$$

S no aparece en ningún consecuente

G: $S \rightarrow T \lor | \lor Z$ $T \rightarrow a T | b T | h$ $\lor \rightarrow \lambda | c Z h$ $Z \rightarrow \lambda | d Z$

\$ es el símbolo de final de cadena (o fin de fichero). S es el axioma.

$$z \rightarrow d \overline{z}$$

$$Z \longrightarrow d \overline{z}$$

$$Z \longrightarrow d \overline{z}$$

G: $S \rightarrow T \lor | \lor Z$ $T \rightarrow a T | b T | h$ $\lor \rightarrow \lambda | c Z h$

 $Z \rightarrow \lambda \mid d Z$

\$ es el símbolo de final de cadena (o fin de fichero). S es el axioma.

FOLLOW

Follow (A), ($A \in N$). El conjunto de los símbolos terminales que pueden aparecer inmediatamente a la derecha de A en alguna forma sentencial, es decir, el conjunto de terminales t tales que haya una derivación de la forma $S \Rightarrow \alpha A t \beta$ (siendo $\alpha, \beta \in (N \cup T)^*$). Si A puede ser el símbolo de más a la derecha en alguna forma sentencial, entonces \$ está en Follow(A).

Para calcular *Follow* (A) se aplican las siguientes reglas hasta que no se pueda añadir nada más al conjunto *Follow* (A):

- 1. Si A es el axioma de la gramática, añadir \$ a FOLLOW (A).
- 2. Si existe una regla $B \to \alpha A \beta$, entonces todos los elementos no nulos de *FIRST* (β) se añaden a *FOLLOW* (A).
- 3. Si existe una regla $B \to \alpha A \beta$ y $\lambda \in FIRST(\beta)$ (es decir, $\beta \stackrel{*}{\Rightarrow} \lambda$), o bien si existe una regla $B \to \alpha A$, entonces todo lo que esté en *Follow* (B) se añade a *Follow* (A).

FOLLOW de un símbolo No terminal

FOLLOW

Follow (A), $(A \in N)$. El conjunto de los símbolos terminales que pueden aparecer inmediatamente a la derecha de A en alguna forma sentencial, es decir, el conjunto de terminales t tales que haya una derivación de la forma $S \stackrel{*}{\Rightarrow} \alpha A t \beta$ (siendo α , $\beta \in (N \cup T)^*$). Si A puede ser el símbolo de más a la derecha en alguna forma sentencial, entonces \$ está en Follow(A).

Para calcular *FOLLOW* (A) se aplican las siguientes reglas hasta que no se pueda añadir nada más al conjunto *FOLLOW* (A):

Algoritmo cálculo de FOLLOW

Ejemplo de aplicación del algoritmo de cálculo de FOLLOW

FOLLOW(V) =
$$\{ \underline{\$, d} \}$$

 $S \rightarrow T \vee$
 $B \rightarrow \alpha A$

$$FOLLOW(S) \subseteq FOLLOW(V)$$

 $FOLLOW(S) = \{ \} \}$

$$S \rightarrow VZ$$

$$B \rightarrow \alpha A \beta$$
FIRST(Z) - $\{\lambda\} \subseteq FOLLOW(V)$
FIRST(Z) = $\{\lambda\}$ d }
FOLLOW(S) $\subseteq FOLLOW(V)$

G: $S \rightarrow T \lor | \lor Z$ $T \rightarrow a T | b T | h$ $\lor \rightarrow \lambda | c Z h$ $Z \rightarrow \lambda | d Z$

Para cada regla $B \rightarrow \alpha A \beta$

- Todos los elementos de FIRST(β) excepto λ , se añaden a FOLLOW(A) Si β es λ o se puede hacer λ , entonces
- Todos los elementos de FOLLOW(B) se añaden a FOLLOW(A)

B es el antecendente de la regla

CONDICIÓN LL(1)

- Una gramática G es LL(1) sii
- Para cada no terminal *A* para el que haya más de una producción en *G*:
 - Para cada par de producciones $A \rightarrow \alpha / \beta$ se cumplen las siguientes dos condiciones:
 - 1. No existe ningún terminal t tal que tanto α como β deriven cadenas que empiecen por ese mismo terminal

$$FIRST(\alpha) \cap FIRST(\beta) = \phi$$

2. A lo sumo, o α o β pueden derivar la cadena vacía λ , pero no ambos. Supongamos que β puede derivarla, es decir, $\beta \stackrel{*}{=}> \lambda$. En este caso, α no puede derivar ninguna cadena que empiece con un terminal que pertenezca a FOLLOW(A)

$$FIRST(\alpha) \cap FOLLOW(A) = \phi$$

Una gramática G es LL(1) sii

Para cada no terminal A para el que haya más de una producción (A $ightarrow \alpha$ | β | γ | ...)

/* como máximo uno de esos consecuentes puede ser λ o derivar λ */

Para cada par de producciones A $ightarrow \alpha \mid \beta$

- 1. $FIRST(\alpha) \cap FIRST(\beta) = \phi$
- 2. Si $\beta \stackrel{*}{=} \lambda$, /* supongamos que β deriva λ */

 $FIRST(\alpha) \cap FOLLOW(A) = \phi$

Por ello, un analizador sintáctico construido sobre esa gramática LL(1):

aplicará A
$$\rightarrow \alpha$$
 sii sig_tok \in FIRST(α)

aplicará
$$A \rightarrow \beta$$
 sii sig_tok \in FIRST(β) o a FOLLOW(A)

aplicará
$$A \rightarrow \gamma$$
 sii sig_tok \in FIRST(γ)

Ejemplo de comprobación de la condición LL(1)

$$\begin{array}{ccc}
E \rightarrow T E' \\
E' \rightarrow + T E' \mid \lambda \\
T \rightarrow F T' \\
T' \rightarrow * F T' \mid \lambda \\
F \rightarrow (E) \mid id
\end{array}$$

E'
$$\rightarrow$$
 + T E' | λ
FIRST(+TE') \cap FIRST(λ) = { + } \cap { λ } = \emptyset
FIRST(+TE') \cap FOLLOW(E') = { + } \cap {), \$ } = \emptyset

$$T' \rightarrow * F T' \mid \lambda$$

$$FIRST(*FT') \cap FIRST(\lambda) = \{ * \} \cap \{ \lambda \} = \emptyset$$

$$FIRST(*FT') \cap FOLLOW(T') = \{ * \} \cap \{ +, \}, \$ \} = \emptyset$$

$$F \rightarrow (E) \mid id$$

$$FIRST((E)) \cap FIRST(id) = \{ (\} \cap \{ id \} = \emptyset \}$$

Para cada par de producciones A $ightarrow \alpha$ | β se ha de cumplir:

- 1. $FIRST(\alpha) \cap FIRST(\beta) = \phi$
- 2. Si $\beta \stackrel{*}{\Rightarrow} \lambda$, FIRST(α) \cap FOLLOW(A) = ϕ

Por tanto, la G es LL(1)

