ディスプレイを用いた擬似的脈波生成手法の検討

藤井敦寛(立命館大学)、村尾和哉(立命館大学、JST さきがけ)

1 研究の背景と目的

近年、健康管理への意識の高まりから、自身の生体情報を 記録するウェアラブルデバイスが広く普及している. 記録す る生体情報は活動量や呼吸数、体温など様々な情報があり、 心拍数もその一つである. 心拍数を取得するために用いられ る脈波センサでは、緑色の LED を皮膚に照射して、血管を 通して反射した光の変化から脈波を計測する光電式容積脈波 記録法 (PPG) と呼ばれる方式のものが一般的であり、ス マートウォッチにも導入されている. 今井ら [1] がスマート ウォッチから取得できる心拍データを用いて疲労度を検出す る手法を提案しているなど、スマートウォッチから得られる 脈波データを使用した研究は盛んである. しかしながら, 皮 膚内の血管に向けて光を照射するという特性上, センサの装 着位置に血管が存在しない場合は使用が不可能である。例え ば、義手にスマートウォッチを装着する場合、正常な心拍数 が取得できない. 多くのスマートウォッチは心拍数データも 含めた生体情報を取得し、活動記録を残す. そのため、正常 な心拍数が取得できない場合には、正しい活動が記録されな い可能性がある.

任意の脈波を生成することが可能であれば、スマートウォッ チを義手などに装着する場合でも、他の身体部位から取得さ れた正しい脈波データを複製し, スマートウォッチに入力す ることが可能となる. 本研究では、ディスプレイを用いて擬 似的に脈波データを生成する手法を検討する. あらかじめ収 集された実際の脈波データを参考にして、ディスプレイの色 調を変化させることで、脈波センサの取得値を意図的に操作 する. ディスプレイを用いて擬似的に脈波データを生成する ことが可能か確認し、提案手法の有効性を明らかにする.

予備実験

予備実験として、ディスプレイ上に脈波センサを貼り付け た状態で、ディスプレイの色調を変化させたときの脈波セン サの取得値を観察した.

2.1実験環境

参考にする脈波データを事前に収集した. 被験者は20代 男性1名である。図1の左図に示すように、左手人差し指 に光電式容積脈波記録法の脈波センサ (pulsesensor.com 製) を装着した. 脈波センサは ArduinoUNO を介して PC に接 続しており、サンプリング周波数は約 90Hz で 10 秒間デー タの収集を行った.

擬似脈波の生成には、データの収集で使用する PC とは異 なる PC のディスプレイを使用した. 図 1 の右図に示すよ うに、ディスプレイ上に脈波センサを乗せ、光が入らないよ うに布で覆った後、ガムテープで固定した. 事前に脈波デー タを取得した時と同じ条件でデータの取得を行った. ディス プレイの色調の変化には JavaScript を使用し、ブラウザの 背景色を変化させることで制御した.事前に収集した脈波 データを1サンプルずつ読み込み、その値に応じた3色で表 示を繰り返す. 全サンプルの処理が終了した場合, 同じデー タで再び処理を行う. 値が 685 より大きければ R:150, G:19, B:20, 465 より小さければ R:157, G:26, B:27, それ以外の 場合は R:156, G:25, B:26 の色を表示する. また, 色の表示 ごとに 10[ms] の遅延を挟んだ.

(a) 参考にする脈波の取得方法

(b)擬似脈波の取得方法

図 1: 脈波データの取得方法

図 2: 脈波センサの取得値の変化

2.2 結果と考察

取得された脈波データを、最初のピークから5秒間切り出 した結果を図2に示す、結果から、波形の形やピークの位置 に違いがあることが確認できる. これは、ディスプレイ制御 の開始時刻とセンサ値取得の開始時刻を同期していなかった ことや, 色の表示ごとの遅延を 10[ms] に固定していたこと が影響したと考えられる. しかしながら、擬似的にピークを 生成できていることから、ディスプレイを使用するアプロー チは有効だといえる.

まとめと今後 3

本研究では、ディスプレイを用いて擬似的に脈波データを 生成する手法を実現するために、ディスプレイの色調を変化 させることで、脈波センサの取得値を意図的に操作すること が可能であるか調査した. 今後は、別の身体部位から取得さ れた脈波データをリアルタイムに再現するプログラムを実装 する. そのためには、手動ではなく自動でディスプレイの色 調を決定し、変化に適応していく必要がある. 具体的な実現 方法として、ディープラーニングの手法の一つである LSTM (Long short-term memory) を使用し、直近数秒間のデータ を繰り返し入力しながら再現していくことを検討している.

参考文献

[1] 今井ら: スマートウォッチを用いた疲労度検出の試行に関 する研究, 日本知能情報ファジィ学会 ファジィ システム シンポジウム 講演論文集, Vol. 34, pp. 407-408 (2018).