Trabalho Prático 1 - 2024/1 Implementação da Arquitetura "Lobo-Guará"

Objetivo:

O objetivo deste trabalho é projetar e implementar uma arquitetura de computador de 8 bits, denominada "Lobo-Guará", utilizando a ferramenta de simulação **Logisim Evolution**. A arquitetura deve ser capaz de executar um conjunto específico de instruções e deve ser organizada de acordo com o modelo monociclo.

Instruções da Arquitetura "Lobo-Guará":

A arquitetura "Lobo-Guará" possui um conjunto de instruções que incluem operações de branch, jump, load, store, movimentação de dados, aritmética e lógica. A lista completa de instruções está disponível na próxima página.

Componentes a serem Implementados:

Os alunos devem implementar os seguintes componentes da arquitetura "Lobo-Guará" no **Logisim Evolution**:

- Unidade Lógico-Aritmética (ULA) conforme especificações da arquitetura.
- Unidade de Controle para interpretação e execução das instruções.
- Registradores necessários para o funcionamento da arquitetura.

Entrega:

O trabalho é individual e deverá ser entregue em duas partes, conforme detalhado a seguir:

Parte 1 - Diagrama da Arquitetura (Peso: 40%):

 Diagrama em PDF contendo o diagrama da arquitetura e o projeto da ULA com eventuais detalhes do projeto.

Parte 2 - Projeto no Logisim Evolution (Peso: 60%):

• Projeto completo da arquitetura no formato Logisim Evolution, incluindo todos os componentes implementados e a interconexão entre eles.

As datas limite de entrega serão sempre às 23:59 do dia, impreterivelmente.

Casos não tratados no enunciado deverão ser discutidos com o professor.

Os trabalhos devem ser feitos individualmente. A cópia do trabalho (plágio), acarretará em nota igual a Zero para todos os envolvidos.

Os trabalhos deverão ser apresentados de forma oral pelo aluno. A nota irá considerar domínio do tema, robustez da solução e rigorosidade da metodologia.

Opcode	Tipo	Mnemonic	Nome	Operação			
Controle							
0000	R	brzr	Branch On Zero Register	if (R[ra] == 0) PC = R[rb]			
0001	I	brzi	Branch On Zero Immediate	if (R[0] == 0) PC = PC + Imm.			
0010	R	jr	Jump Register	PC = R[rb]			
0011	I	ji	Jump Immediate	PC = PC + Imm.			
Dados							
0100	R	ld	Load	R[ra] = M[R[rb]]			
0101	R	st	Store	M[R[rb]] = R[ra]			
0110	R	movr	Move Register	R[ra] = R[rb]			
0111	I	movh	Move High	$R[0] = \{Imm. + R[0](3:0)\}$			
1000	I	movl	Move Low	$R[0] = \{R[0](7:4) + Imm.\}$			
Aritmética							
1001	R	add	Add	R[ra] = R[ra] + R[rb]			
1010	R	sub	Sub	R[ra] = R[ra] - R[rb]			
Lógica							
1011	R	and	And	R[ra] = R[ra] & R[rb]			
1100	R	or	Or	R[ra] = R[ra] R[rb]			
1101	R	not	Not	R[ra] = ! R[rb]			
1110	R	slr	Shift Left Register	R[ra] = R[ra] << R[rb]			
1111	R	srr	Shift Right Register	R[ra] = R[ra] >> R[rb]			

Tipo R								
7	6	5	4	3	2	1	0	
opcode			Ra		Rb			

Tipo I								
7	6	5	4	3	2	1	0	
opcode			Imm					

