Association Rule Mining -

Dr. Faisal Kamiran

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
\{Diaper\} \rightarrow \{Beer\},\
\{Milk, Bread\} \rightarrow \{Eggs, Coke\},\
\{Beer, Bread\} \rightarrow \{Milk\},\
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$=3^{d}-2^{d+1}+1$$

If d=6, R = 602 rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3 = 41$ With support-based pruning, 6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

What about {Beer, Diaper, Milk}?
And, {Bread, Milk, Beer}?
And, {Bread, Diaper, Beer}?

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Sup_{min} = 2
Database TDB

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

Sup_{min} = 2
Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

Sup_{min} = 2
Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

C₁

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

C_2	Itemset	sup
	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

2nd scan

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

C_I

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

 Itemset
 sup

 {A, C}
 2

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Sup_{min} = 2

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

C₁ 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

 Itemset
 sup

 {A, C}
 2

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

Itemset {B, C, E}

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

 C_3

 $Sup_{min} = 2$ **Database TDB**

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_{I} 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
$L_{_{I}}$	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2
_		-
\ .	Items	et

sup	
2	
2	4
3	
2	

		_	
)			
	4	_	

C 7 — J		
{B, C}		2
{B, E}		(:)
{C, E}		2
scan	L	3

{A, C}

	C_2
 2 nd scan	

Itemset	
{A, B}	
{A, C}	
{A, E}	
{B, C}	
{B, E}	
{C, E}	

{B, C, E}

3 rd scan	L_3
	

Itemset	sup
{B, C, E}	2