DI

- · Administrative Information
- · Discussion of Assignment 7
- · Preview of Assignment 9
- · Recap DFS
- · Graph Quizzes
- ·Peer Grading (Ex. 8.1)

Administrative Information

- · graph-cheatsheet updated (DFS, directed graphs)

 can be found in the Polybox
- ·going forward: no exceptions for missing the peer-grading dradlines

 Hand-in until Tuesday 12:00
 - Smake sure your group actually sent it (talk to your partner)
- · if you type your solutions on the Computer:
 - Guse the same mathematical symbol as in the exercise, not the "most similar letter" $G \in \mathcal{P}_{+}$ $\mathcal{E} \neq \mathcal{E}$, $\mathcal{E} \neq \mathcal{E}$, $\mathcal{E} \neq \mathcal{E}$, $\mathcal{E} \neq \mathcal{E}$
 - Louse underscore for subscripts, carel symbol for superscripts, to avoid confusion $\log_2(\alpha^2) = \log_2(\alpha^2)$
 - (For those interested: read into LaTeX, vill also help in your later studies ③)

Discussion of Assignment 7

- •7.1: Justification for the entry computation was often missing Bounds for the entry computation not (sufficiently stated)
- •7.9: -Missing the runtime justification

 -Remark: Uhen speaking about 3d DP-Tables we can't
 talk about rows and columns since these terms
 are only defined for matrices/vectors (1d/2d DP-Tables)
- ·75: Not much to say, was solved very well!

Preview of Assignment 9

- only graph exercises
- .3/4 are bonus
 - try to do the non-bonus (doesn't take long)

Depth-First-Search (DFS) One of the most important algorithms (together with BFS) Since year wide range of use (not just in AnD:) Searn to implement this by heart, you will be using it a lot Runtime O(IVI+IEI) (with adjacency lists)

$\overline{\mathbf{Algorithm} \ \mathbf{3} \ \mathrm{Visit}(u)}$

- 1: $\operatorname{pre}[u] \leftarrow T$; $T \leftarrow T + 1$
- 2: markiere u
- 3: for Nachvolger v von u, unmarkiert do
- 4: Visit(v)
- 5: $post[u] \leftarrow T; T \leftarrow T + 1$

Algorithm 4 DFS(G)

- 1: T ← 1
- 2: alle Knoten unmarkiert
- 3: for $u_0 \in V$, unmarkiert do
- 4: $Visit(u_0)$
- To check for connected components of u∈V (undirected graphs)

 > run Visit(u)

 > v EHK(u) ⇒ v flagged (=markiert) after Visit(u)
- ·Using the pre/post-ordering (directed graphs)

 ·if G=(V,E) is acyclic > reversed post-order is a topological ordering
 - · classification of edges (e=(u,v) EE)
 - -edge is in tree ⇒ tree edge
 - -edge is not in tree
 - > pre[v] < pre[v] < post[v] > back edge
 - > pre[u] < pre[v] < post[v] < post[u] > forward edge
 - > pre[v] < poot[v] < pre[v] < poot[v] ⇒ cross edge
 - Gother options aren't possible
 - 3 back edge ⇒ 3 directed cycle

1162.0		
HS20		
Claim	true false	
The topological ordering of a directed acyclic graph is unique.		
For all $n \in \mathbb{N}$, there exists a directed acyclic graph on n vertices with $\binom{n}{2}$ edges.		
Let $v \in V$ be a vertex of an undirected graph $G = (V, E)$ with adjacency matrix A . It takes time $\Theta(1 + \deg(v))$ to compute $\deg(v)$ from A .		
If every vertex of an undirected graph G has even degree, then G has an Eulerian walk.		
False. Consider A both (A,B,C) av	ad <b,a,c> are valid topological orderings</b,a,c>	
BOTH 17, B,C/ av	ia (1), 1, C/ are valid topological ordering	
(B)		
True. Let V= [v4, v2,, vn3. Vi ∈ {1,, n-13, let the	e vertex V; have n-1 outgoing edges, one to each vertex V;, with	h i
		h i
		h i
⇒ We have $(n-1)+(n-2)++(n-(n-1))=\frac{(n-1)-n}{2}=\binom{n}{2}$	dges.	
⇒ We have $(n-1)+(n-2)++(n-(n-1))=\frac{(n-1)-n}{2}=\binom{n}{2}$		
Take. Since we have an adjacency matrix we have to	dges.	
Take. Since we have an adjacency matrix we have to	dges.	
Take. Since we have an adjacency matrix we have to	dges.	
Take. Since we have an adjacency matrix we have to	dges.	
⇒ We have $(n-1)+(n-2)++(n-(n-1))=\frac{(n-1)+n}{2}=\binom{n}{2}$ explains the same an adjacency matrix we have to the same of the graph is connected the same of the same of the graph is connected the graph is graph in the graph is connected the graph is graph in the graph is graph in the graph is graph in the graph in the graph is graph in the graph in the graph is graph in the g	dges.	
Take. Since we have an adjacency matrix we have to	dges.	
False. Since we have an adjacency matrix we have to the state of the graph is connected. HS21 Claim Kreis Zyklus An undirected graph that contains a closed walk of even length always	dges.	
⇒ We have $(n-1)+(n-2)++(n-(n-1))=\frac{(n-1)+n}{2}=\binom{n}{2}$. False. Since we have an adjacency matrix we have to: False. This is only true if the graph is connected. HS21 Claim Kreis Zyklus	true false	
False. Since we have an adjacency matrix we have to the state of the graph is connected. HS21 Claim Kreis Zyklus An undirected graph that contains a closed walk of even length always	true false	
False. Since we have an adjacency matrix we have to the state of the graph is connected. HS21 Claim Kreis An undirected graph that contains a closed walk of even length always contains a cycle of even length as well. The state of the graph is connected as a cycle of even length as well.	true false	
False. Since we have an adjacency matrix we have to a state of the graph is connected. HS21 Claim Kreis An undirected graph that contains a closed walk of even length always contains a cycle of even length as well.	true false	
False. Since we have an adjacency matrix we have to the state of the graph is connected. False. This is only true if the graph is connected. HS21 Claim Kreis An undirected graph that contains a closed walk of even length always contains a cycle of even length as well. An undirected graph $G = (V, E)$ with $ E = V - 1$ is always connected.	true false	n) ro
False. Since we have an adjacency matrix we have to the state of the graph is connected. False. This is only true if the graph is connected. HS21 Claim Kreis An undirected graph that contains a closed walk of even length always contains a cycle of even length as well. An undirected graph $G = (V, E)$ with $ E = V - 1$ is always connected.	true false	n) ro
False. Since we have an adjacency matrix we have to the state of the graph is connected. False. This is only true if the graph is connected. HS21 Claim Kreis An undirected graph that contains a closed walk of even length always contains a cycle of even length as well. An undirected graph $G = (V, E)$ with $ E = V - 1$ is always connected.	true false	n) ro
False. Since we have an adjacency matrix we have to the state of the graph is connected. False. This is only true if the graph is connected. HS21 Claim Kreis An undirected graph that contains a closed walk of even length always contains a cycle of even length as well. An undirected graph $G = (V, E)$ with $ E = V - 1$ is always connected.	true false	n) ro
False. Since we have an adjacency matrix we have to a false. This is only true if the graph is connected. HS21 Claim Kreis An undirected graph that contains a closed walk of even length always contains a cycle of even length as well. An undirected graph $G = (V, E)$ with $ E = V - 1$ is always connected. False. Consider A B There exists a closed.	true false	n) ro
False. Since we have an adjacency matrix we have to a since we have an adjacency matrix we have to a since we have an adjacency matrix we have to a since we have an adjacency matrix we have to a since the since we have an adjacency matrix we have to a since the since we have an adjacency matrix we have to a since the since	true false	n) ro
False. Since we have an adjacency matrix we have to a since we have an adjacency matrix we have to a since we have an adjacency matrix we have to a since we have an adjacency matrix we have to a since a since we have an adjacency matrix we have to a since a sin	true false	n) ro

G is	bipartite $\Leftrightarrow 3A,B \subseteq V$ with $A \cap B = \emptyset$, $A \cup B = V$, such that for every HS22	very ed	lge e=	ક્લામ્ડ્રે	a EA a	nd beB				
	Claim	true	$_{ m false}$							
1	Every graph that is connected and Eulerian is bipartite.									
Z	In a directed graph suppose there exists a walk with vertices s and t as endpoints. Then there exists a simple walk with vertices s and t as endpoints.									
	Figure 1. Then there exists a simple wark with vertices s and t as empoints. In any tree $T = (V, E)$ with $ V \ge 10$, we can always add at least one									
	(the set of vertices must remain the same).									
3	In every undirected graph $G = (V, E)$ with $ V = E > 0$ there exists a simple cycle as a subgraph.									
	Given an undirected graph G with all degrees even, there always exists a way to direct the edges of G (i.e., convert each edge $\{a,b\}$ into either $a \to b$ or									
4	$b \to a$) such that in the resulting directed graph it holds that at every vertex v , the in-degree and out-degree are equal (despite different vertices can still have different in-degrees).									
4	False. Consider A B									
	C C									
2.	True. (try to prove this yourself, the proof is quite verbouse)							(fo	be exact: vei	rlex disjoint)
3	True. Since the graph is commected and IEI>IVI-1, we don't	have	a tree	e and	Herefo	re ther	e exist u,1	v EE, with	two disjoin	it u-v-paths.
	We can combine these to get a simple-cycle.									
4	True. To get this, find the Eulertour for every connected the Eulertour(s).									
	This is correct, since in an (undirected) Eulertour, everytime ue	. Went	er" a v	vertex	ve also	V eave II	it. Hence	in the re	sulting gra	.eh il holds
	that VvEV: degin(u) = degon(u)									