WESLEYAN

Step 1 and 2: Stating hypotheses and identifying the sample

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

$$H_a$$
: not all the μ 's are equal

It turns out that:

- * The sample mean frustration score of the 35 business majors is: $\overline{y_1} = 7.3$
- * The sample mean frustration score of the 35 English majors is: $\overline{y_2} = 11.8$
- * The sample mean frustration score of the 35 math majors is: $\overline{y_3}=13.2$
- * The sample mean frustration score of the 35 psychology majors is: $\overline{y_4} = 14.0$

Same mean differences, difference variability

Boxplots of Frustration by Major

Scenario #1

Boxplots of Frustration by Major

Scenario #2

One-way ANOVA: Frustration Score versus Major

Source	DF	SS	MS	F P	\
Major	3	939.85	313.28	46.60 0.0001)
Error	136	914.29	6.72		
Total	139	1854.14			
S = 2.59	93 R	t-Sq = 50	0.69% R-	-Sq(adj) = 49.60%	
Level		N	Mean	StDev	
Business		35	7.314	2.898	
Englis	h	35	11.771	2.088	
Mathematics		s 35	13.200	2.153	
Psychology		35	14.029	3.082	

 H_a : not all the μ 's are equal

ANOVA using SAS

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_a : not all the μ 's are equal

WESLEYAN

H_a : μ 1, μ 2, μ 3, μ 4 not all equal

- 1. $\mu 1 \neq \mu 2 \neq \mu 3 \neq \mu 4$
- 2. µ1=µ2=µ3≠µ4
- 3. $\mu 1 = \mu 2 \neq \mu 3 = \mu 4$

Level	N		StDev
Business	35	7.314	2.898
English	35	11.771	2.898 2.088 2.153
Mathematics	35	13.200	2.153
Psychology	35	14.029	3.082

Why not test multiple ANOVAs examining each pair?

Remember that we accept 'significance' and reject the null hypothesis at $P \le 0.05$ (i.e. a 5% chance that we are wrong)

Performing multiple tests therefore means that our overall chance of committing a type I error is >5%.

# Tests	Comparison α	Familywise α
1	.05	.05
3	.05	.14
6	.05	.26
10	.05	.40
15	.05	.54

Critical Difference

LSD Low

Tukey Moderate

Scheffe High

Bonferroni Adjustment

Bonferroni adjustment) is to divide 0.05/c (number of comparisons)

3 comparisons is 0.05/3, so that alpha for each test = 0.017.

WESLEYAN UNIVERSITY

