Calcul Calculs d'aire Second' dieré Dérivation locale Dérivation Globale Suites numériques Application du produit scalaire

Automatismes en premiére 2022/2023

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

28 février 2023

Plan

- Calcul
- Calculs d'aire
- Second degré
- 4 Dérivation locale
- **5** Dérivation Globale
- 6 Suites numériques
- Application du produit scalaire

Automatisme 1 thème : Puissances

- Écrire $(3^2 \times 3^5)^4$ sous la forme d'une puissance de 3.
- ② Soit ABC un triangle rectangle en A tel que AB = 5 et BC = 13, calculer la longueur AC.
- Simplifier $(2\sqrt{3})^4$
- **5** Soit *a* et *b* des réels avec $b \ge 0$, simplifier $\frac{a-\sqrt{b}}{2} \frac{-a+\sqrt{b}}{2}$
- **6** Développer et réduire $\left(\frac{a+b+c}{2}\right)^2 \left(\frac{a+b-c}{2}\right)^2$

Automatisme 2 thème : Fractions

Réduire au même dénominateur et simplifier les expressions suivantes définies pour l'indéterminée x ou n.

•
$$\frac{1}{n} - \frac{1}{n+1}$$

•
$$\frac{1}{n-4} - n$$

$$\frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}$$

$$\bullet \ \frac{1}{x} + \frac{x+2}{x^2-4} + \frac{2}{x^2-2x}$$

Automatisme 3 thème : Factoriser

Soit a un réel.

- Factoriser $a^4 16$
- Factoriser $a^2 1 + 3a 3$ par a 1
- Factoriser $2a^2 + 5a + 2$ par a + 2
- Factoriser $a^2 + a 2$
- Factoriser $a^2 + a 6$

Plan

- Calcul
- 2 Calculs d'aire
- Second degré
- 4 Dérivation locale
- **5** Dérivation Globale
- 6 Suites numériques
- Application du produit scalaire

Calcul Calculs d'aire Second degré Dérivation locale Dérivation Globale Suites numériques plication du produit scalaire

Automatisme 4 thème : Calcul d'aire

Quelle fraction du triangle équilatéral est recouverte par l'aire bleue? Quelle est la valeur exacte de l'aire bleue?

Source : Daniel Mentrard

Calcul

Calculs d'aire

Second degré

Dérivation locale

Dérivation Globale

Suites numériques

on du produit scalaire

Automatisme 5 thème : Calcul d'aire

Quelle est la valeur exacte de l'aire bleue? Source : Daniel Mentrard

Plan

- Calcul
- Calculs d'aire
- 3 Second degré
- 4 Dérivation locale
- **5** Dérivation Globale
- 6 Suites numériques
- Application du produit scalaire

Automatisme 6 thème : Résoudre une équation du second degré

- Déterminer le nombre de solutions dans \mathbb{R} de l'équation $x^2 = m$ si m > 0
- Déterminer le nombre de solutions dans \mathbb{R} de l'équation $x^2 = m$ si m = 0
- Déterminer le nombre de solutions dans \mathbb{R} de l'équation $x^2 = m$ si m < 0
- Résoudre mentalement dans \mathbb{R} l'équation $x^2 = 9$
- Résoudre mentalement dans \mathbb{R} l'équation $(x-1)^2 = 9$
- Résoudre mentalement dans \mathbb{R} l'équation $16 (x-1)^2 = 7$

Automatisme 7 thème : Déterminer l'axe de symétrie d'une parabole

- Déterminer l'axe de symétrie de la parabole d'équation $y = x^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = 3 x^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = (x-3)^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = (x+3)^2$
- Déterminer l'axe de symétrie de la parabole d'équation $y = (3-x)^2 1$
- Déterminer l'axe de symétrie de la parabole d'équation $v = -3x^2 6x + 1$

Automatisme 8 thème : Déterminer les racines d'un trinôme

- Déterminer les racines du trinôme d'expression f(x) = -3(x+2)(1-x)
- Déterminer les racines du trinôme d'expression $f(x) = 16 x^2$
- Déterminer les racines du trinôme d'expression $f(x) = x^2 + 1$
- Déterminer les racines du trinôme d'expression $f(x) = 16 (x-1)^2$

Automatisme 9 thème : second degré

Pour chacun des trinômes suivants déterminer le signe de son discriminant sans le calculer.

- f_1 définie sur \mathbb{R} par $f_1(x) = x^2 + 100$
- f_2 définie sur \mathbb{R} par $f_2(x) = (x 100)^2$
- f_3 définie sur \mathbb{R} par $f_3(x) = (x+100)^2$
- f_4 définie sur \mathbb{R} par $f_4(x) = x^2 100$

Automatisme 10 thème : second degré

Un problème :

Un batelier descend une rivière de 120 km. Il la remonte ensuite et met un jour de plus, car, chaque jour, il fait 6 km de moins qu'en descendant.

Combien de jours a-t-il mis pour descendre?

Automatisme 11 thème : second degré

- Déterminer deux réels dont la somme est 2002 et le produit 2002.
- Peut-on construire un rectangle d'aire 7 cm² et de périmètre 10,6 cm?

Automatisme 12 thème : équations avec changement d'inconnue

- **1** Résoudre l'équation d'inconnue réelle $x: x^2 2x = 3$.
- 2 Avec le changement d'inconnue $X = x^2$, résoudre l'équation d'inconnue réelle $x : x^4 2x^2 = 3$.
- **3** Avec le changement d'inconnue $X = \sqrt{x}$, résoudre l'équation d'inconnue réelle $x : x 2\sqrt{x} = 3$.
- 4 Avec le changement d'inconnue $X = \frac{1}{x}$, résoudre l'équation d'inconnue réelle $x : \frac{1}{x^2} 2\frac{1}{x} = 3$.

Plan

- Calcul
- Calculs d'aire
- Second degré
- Dérivation locale
- Dérivation Globale
- 6 Suites numériques
- Application du produit scalaire

Automatisme 13 thème : dérivation locale

On considère la fonction affine f telle que :

$$f(0) = 5$$
 et $f(4) = 13$.

En notant f(x) = mx + p, déterminer m puis p.

Automatisme 14 thème : dérivation locale

On considère la fonction affine g telle que :

$$g(-2) = 7$$
 et $g(2) = 11$.

En notant g(x) = mx + p, déterminer m puis p.

Automatisme 15 thème : dérivation locale

Déterminer le coefficient directeur des droites suivantes.

- **1.** \mathfrak{D}_1 , droite passant par A(-1; 5) et B(3; 7).
- **2.** \mathfrak{D}_2 , droite passant par C(7;8) et D(-1;8).
- 3. \mathfrak{D}_3 , droite passant par E(4; 0.25) et F(13; 0.75).

Automatisme 16 thème : dérivation locale

Soit f la fonction définie sur] $-\infty$; 0[par $f(x) = \frac{1}{x}$.

- Soit un réel a < 0 et un réel $h \neq 0$ tel que a + h < 0, démontrer que $\frac{f(a+h)-f(a)}{h} = \frac{-h}{(a+h)a}$.
- En déduire que f est dérivable en tout réel a < 0 et déterminer l'expression de f'(a).
- Déterminer une équation de la tangente à la courbe de f au point d'abscisse -2.

Automatisme 17 thème : dérivation locale

Soit f la fonction définie sur]-1; $+\infty[$ par $f(x) = \frac{2x-1}{x+1}$.

- Démontrer que f est dérivable en 0 et que f'(0) = 3.
- Déterminer une équation de la tangente à la courbe de f au point d'abscisse 0

Plan

- Calcul
- 2 Calculs d'aire
- Second degré
- 4 Dérivation locale
- Dérivation Globale
- 6 Suites numériques
- Application du produit scalaire

Déterminer une expression de la fonction dérivée pour la fonction fdérivable sur l'intervalle L

•
$$f: x \mapsto \frac{x^3-1}{5x^2+1}$$
 sur \mathbb{R} ;

•
$$f: x \mapsto x^2 \sqrt{x} \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto (8-3x)^7 \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto 4x - \frac{1}{x-3} \text{ sur }]3; +\infty[.$$

Automatisme 19 thème : dérivation

Soit f une fonction dérivable sur [-8; 6] dont on donne le tableau de variation ci-dessous.

X	-8	-5	2	3	6
f(x)	4 —	0	→ -1	→ 0 —	—

- Dresser le tableau de signes de la fonction dérivée f' de f sur l'intervalle [-8; 6].
- ② Dresser le tableau de variations d'une fonction F dérivable sur l'intervalle [-8; 6] et dont la dérivée est f.

Déterminer une expression de la fonction dérivée pour la fonction f dérivable sur l'intervalle I.

•
$$f: x \mapsto \sqrt{3x+1} \text{ sur }]-\frac{1}{3}; +\infty[;$$

•
$$f: x \mapsto (5x-3)\sqrt{x} \text{ sur }]0; +\infty[;$$

•
$$f: x \mapsto (605x - 3)^{607} \text{ sur } \mathbb{R};$$

•
$$f: x \mapsto \frac{1}{3} - \frac{2}{3-x} \text{ sur }]3; +\infty[.$$

Plan

- Calcul
- 2 Calculs d'aire
- Second degré
- 4 Dérivation locale
- **5** Dérivation Globale
- 6 Suites numériques
- Application du produit scalaire

Automatisme 21 thème : suites

- Soit la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 n$. Calculer u_4 et u_7 .
- Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = 4$ et $u_{n+1} = 2u_n 1$. Calculer u_1 , u_2 et u_3 .
- Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = 1$ et $u_n = u_{n-1} n + 1$. Calculer u_1 , u_2 et u_3 .

Automatisme 22 thème : suites

```
#On définit la suite (Un) par Un=f(n)
def f(n):
   if n==0:
     return 1
   else:
     return 1/n**2
# n**2 signifie le carré de n
```

Interpréteur en ligne :

https://repl.it/@Reformelycee/suite-explicite.

- $u_0 = 1$ Vrai ou Faux?
- $u_1 = 0.5$ Vrai ou Faux?
- $u_{50} = 0,0004$ Vrai ou Faux?
- La suite n'est pas définie en 0. Vrai ou Faux?

Plan

- Calcul
- 2 Calculs d'aire
- Second degré
- 4 Dérivation locale
- **5** Dérivation Globale
- 6 Suites numériques
- Application du produit scalaire

Automatisme 23 thème : Application du produit scalaire

On se place dans un repère orthonormé. Dans chacun des cas suivants, dire si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.

$$\mathbf{a}. \overrightarrow{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

$$\mathbf{b}. \vec{u} \begin{pmatrix} -5 \\ 2 \end{pmatrix} \text{ et } \vec{v} \begin{pmatrix} 6 \\ 15 \end{pmatrix}$$

$$\mathbf{c.} \vec{u} \begin{pmatrix} \sqrt{10} \\ -2 \end{pmatrix} \text{ et } \vec{v} \begin{pmatrix} \sqrt{2} \\ \sqrt{5} \end{pmatrix}$$

Automatisme 24 thème : Application du produit scalaire

Dans le repère orthonormé ci-dessous, les points A, B, C et D ont des coordonnées entières.

Les droites (AB) et (CD)sont-elles perpendiculaires ?

Automatisme 25 thème : Application du produit scalaire

Soit
$$ABC$$
 un triangle tel que $AB = 4$, $AC = 5$ et $\widehat{BAC} = 60^{\circ}$.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \dots$$

Automatisme 26 thème : Application du produit scalaire

QCM une seule réponse exacte

ABCD est un rectangle de centre O tel que AB = 4 et AD = 2.

$$\overrightarrow{CO} \cdot \overrightarrow{AB}$$
 vaut :

(a) 8

$$(c) - 4\sqrt{5}$$

Automatisme 27 thème : Application du produit scalaire

VRAI ou FAUX

ABCD est un carré de centre O et de côté 1. Indiquer si les égalités suivantes sont vraies ou fausses.

$$\overrightarrow{OB} \cdot \overrightarrow{OD} = 0$$

$$\overrightarrow{BD} = 0$$

$$\overrightarrow{AC} \cdot \overrightarrow{AD} = 1$$

Automatisme 28 thème : Application du produit scalaire

Calculer la valeur exacte de la longueur *BC*.

Automatisme 29 thème : Application du produit scalaire

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $\overrightarrow{AB} \cdot \overrightarrow{BM} = 0$:

- a est une droite;
- **b** est un cercle;
- c n'est ni une droite ni un cercle.

Automatisme 30 thème : Application du produit scalaire

QCM une seule réponse exacte

A et B sont deux points distincts.

L'ensemble des points M vérifiant $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$:

- a est une droite;
- **b** est un cercle;
- (c) n'est ni une droite ni un cercle.