

Employee Future Prediction

Outline

01

Introduction

Goal of Project

03

Data Preprocessing

Analysis and visualization

02

Data Description

Describe the data

04

Machine learning Model

Classification Models

Introduction

The goal of this project was to use classification models to predict the future of an employee in order to help the company to know to when give them a promotion to let them stay for a longer time. also, it help the company to make a plan to fill the empty position with temporary employees and help the company to know when to give them a promotion to let them stay for a longer time.

Data Description

- The data pertains to a company's HR department wants to predict whether some employees would leave the company in next 2 years. I will build a predictive model that predicts the prospects of future and present employee.
- The data includes the following features:
- Education
- JoiningYear
- City
- PaymentTier
- Age
- Gender
- EverBenched
- ExperienceInCurrentDomain
- LeaveOrNot

Data Preprocessing

Analysis and visualization

- Education

71.3% of the Employees are Bachelors in this dataset followed by Masters and PHD. Employees with Bachelors Education are more likley to leave

- Gender

Female Employees are more likley to leave their job.

- Age

Most of Employees are between 24 to 30 years old.

Most of Employees are between 24 to 28 years old are more likely to leave.

Analysis and visualization - City

47.9% employee are from Bangalore. Bangalore city employee are more likley to leave

- JoiningYear

Most of employee joined in 2017 as shown in chart.

Most number of employee who left the company were from year 2018, followed by year 2017 and 2015

Machine learning Model

Classification Models

SVC

----- SVC scores -----SVC accuracy score: 0.6623711340206185 SVC recall score: 0.0 SVC precision score: SVC f1 score: 0.0

GaussianNB

----- GaussianNB scores ------GaussianNB accuracy score: 0.6881443298969072 GaussianNB recall score: 0.5457317073170732 GaussianNB precision score: 0.455470737913486 GaussianNB f1 score: 0.49653259361997226

KNeighborsClassifier

----- KNeighborsClassifier scores ------KNeighborsClassifier accuracy score: 0.7766323024054983 KNeighborsClassifier recall score: 0.7224080267558528 KNeighborsClassifier precision score: 0.549618320610687 KNeighborsClassifier f1 score: 0.6242774566473989

----- ODA scores -----

QDA f1 score:

0.7233676975945017 QDA accuracy score: QDA recall score: QDA precision score:

0.6290909090909091 0.4402035623409669 0.5179640718562875

DecisionTreeClassifier

0.8075601374570447

0.7302452316076294

0.6819338422391857

DecisionTreeClassifier accuracy score: DecisionTreeClassifier recall score: DecisionTreeClassifier precision score:

----- DecisionTreeClassifier scores ------

DecisionTreeClassifier f1 score: 0.7052631578947369

MLP

----- MLP scores -----MLP accuracy score: 0.6623711340206185 MLP recall score: 0.0 MLP precision score: 0.0 MLP f1 score: