

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Campus de Botucatu

Rendimento volumétrico máximo de madeira serrada

Prof. Hernando Alfonso Lara Palma

Aula 04

DEPARTAMENTO DE CIÊNCIA FLORESTAL PROCESSAMENTO MECÂNICO DA MADEIRA

BOTUCATU / SP 2020

1. Cálculo de peças laterais de máximo volume (aproveitamento de costaneiras)

O volume máximo dependerá das dimensões (x;y) das peças laterais, que correspondem aos lados de um retângulo de máxima área inscrito no segmento circular definido pela secção transversal de uma costaneira.

- R = raio do circulo
- K = a/2
- $a = D / \sqrt{2}$
- D = diâmetro menor da tora
- b = largura de corte da serra
- A = área do retângulo inscrito no segmento circular

a) Volume máximo de uma peça lateral (V_{P.L})

$$V_{P.L} = x' \cdot y \cdot c \rightarrow x' = x - b$$

b) Área máxima de uma peça lateral sem considerar "b" no cálculo de A

$$A = x' \cdot y$$

• Cálculo de x e y

$$\Delta$$
 abc: $\cos \alpha = \frac{k+x}{R}$
 $\sin \alpha = \frac{y/2}{R}$
 $x = R \cdot \cos \alpha - k$

 $y = 2R \cdot \text{sen } \alpha$

onde:

- A = área do retângulo inscrito no segmento circular
- R = rádio do circulo
- K = a/2
- $a = (D / \sqrt{2})$
- D = diâmetro menor da tora (ponta fina)
- $\alpha = ?$

• Cálculo de "α" (derivadas 1ª e 2ª para determinar máximos de uma função)

$$A = x \cdot y = (R \cdot \cos \alpha - K) \cdot (2R \cdot \sin \alpha)$$

$$A' = (R \cos \alpha - K) \cdot (2R \cos \alpha) + [2R \sin \alpha \cdot (-R \sin \alpha)]$$

$$A' = 4R^2 \cos^2 \alpha - 2KR \cos \alpha - 2R^2$$
fazendo z = cos \alpha:

$$A' = 4R^2z^2 - 2kRz - 2R^2$$
 \longrightarrow $A' = \frac{2kR \pm \sqrt{(4k^2 \times R^2) + 32R^4}}{8R^2}$
 $\therefore \alpha = 25.09$ (graus · cte)

• Volume das 4 peças laterais (volume máximo)

$$V_{4P \cdot L} = 4 \cdot (x' \cdot y) \cdot c$$

• Rendimento máximo de madeira serrada obtida de uma tora (RMáx)

$$R_{\text{M\'{a}x}} = \frac{V_{\text{mad.serrada}}}{V_{\text{tora}}} \cdot 100 \qquad (\%) = \frac{V_{\text{blocom\'{a}x}} + V_{4P.L}}{V_{\text{tora}}} \times 100 \qquad (\%)$$

Exemplos 1. Calcular o volume e o rendimento "máximo" de madeira serrada (bloco + peças laterais) que se obtém de uma tora de *Pinus* sem casca com as seguintes dimensões: $D_1 = 35$ cm; $D_2 = 30$ cm; $C_2 = 2.75$ m; $C_3 = 2.75$ m; $C_4 = 2.75$ m; $C_5 = 2.75$ m;

Solução:

-
$$\mathbf{a} = (D_2/\sqrt{2}) = 0.3/\sqrt{2} = 0.212130 \text{ m}$$

-
$$V_{bloco\ m\acute{a}x.} = a^2\ x\ c = (0.212130\ m)^2\ x\ 2.75\ m = \textbf{0.123748}\ m^3$$

- Rend =
$$(V_{bloco máx.} / V_{tora}) \times 100 = (0,123748 \text{ m}^3/0,229484 \text{ m}^3) \times 100 = 53,92\%$$

-
$$V_{tora} = [\pi (D^2_1 + D^2_2) / 8] x c = [\pi (0.35^2 + 0.30^2) / 8] x 2.75 m = 0.229484 m^3$$

-
$$\mathbf{x} = \text{R}\cos\alpha - K$$
 \rightarrow R = D₂/2 = 0,30/2 = 0,15 m
 \rightarrow K = a/2 = (0,212113) / 2 = 0,10606 m e α = 25,09°

$$-\mathbf{x} = (0.15 \times \cos 25.09) - 0.10606 = 0.0298 \text{ m} = 29.8 \text{ mm}$$

- $\mathbf{x}' = 0.0298 \text{ m} 0.003 \text{ m} = 0.0268 \text{ m} = \mathbf{26.8 mm}$
- $y = 2Rsen\alpha = 2 \times 0.15 \text{ m} \times sem25.09 = 0.1272 \text{ m} = 127.2 \text{ mm}$
- $V_{4PL} = 4 [(0.0268 \text{ m} \times 0.1272 \text{ m}) \times 2.75 \text{ m}] = 0.037499 \text{ m}^3$
- Rend $_{\text{máx.}} = [(V_{\text{bloco máx}} + V_{4\text{PL}}) / V_{\text{tora}}] \times 100 = [(0,123748 + 0,037499) / 0,229484] \times 100 = [(0,123748 + 0,03749) / 0,229484] \times 100 = [(0,123748 + 0,03748 + 0$
- Rend $_{\text{máx}} = 70,63\%$ \rightarrow rendimento real madeira verde

2. Cálculo da espessura de corte e quantidade de tábuas do bloco

• Espessura de corte (ec)

$$e_c = e_n + S_e + b$$

• Quantidade de tábuas do bloco (ou número de cortes)

$$N^{O}cortes = \frac{a}{e_{c}}$$
 ou $= N^{O}tabuas = \frac{a}{e_{c}}$

Exemplo 2. Para o exemplo anterior (Ex. 1) calcular o volume e o rendimento máximo (real) em madeira serrada (tábuas laterais e do bloco) que se pode obter da tora, considerando uma $e_n = 25$ mm (para as tábuas do bloco). Calcular também o volume e o rendimento máximo em madeira serrada (tábuas) normalizada. Considere $S_e = 5$ % da em e b = 3 mm.

Solução:

a) Volume e rendimento máximo (real)

Quantidade de tábuas:

$$-e_c = 25 \text{ mm} + (0.05 \text{ x } 25 \text{ mm}) + 3 \text{ mm} = 29.25 \text{ mm}$$

-
$$N_{tábuas}^{o} = a/e_c = 212,13 \text{ mm} / 29,25 \text{ mm} = 7,25 \rightarrow 7 \text{ tábuas}$$

- Rend máx. =
$$[(V_{4PL} + V_{7 peças bloco}) / V_{tora}] \times 100$$

- V7 peças bloco =
$$7 \times (e \times 1 \times c) = 7 \times (0.026250 \text{ m} \times 0.21213 \text{ m} \times 2.75) = 0.107192 \text{ m}^3$$

$$V_{4PL} = 0.037499 \text{ m}^3$$
 (já calculado)

$$e = 25 + 5\% \ 25 = 26,25 \ mm = 0,026250 \ m$$

$$l = a = 212,13 \text{ mm} = 0,21213 \text{ m}$$

- Rend
$$_{\text{máx.}} = [(0.037499 \text{ m}^3 + 0.107192 \text{ m}^3) / 0.229484 \text{ m}^3] \times 100 = 63\%$$

(rendimento real madeira verde)

b) Volume e o rendimento máximo em madeira serrada (tábuas) normalizada

Normalização das tábuas do bloco:

- $e_n = j\acute{a}$ esta normalizada (dado no exemplo = 25 mm)

-
$$l_n = a/25 = (212,13/25) = 8,44 \text{ vezes} = 8 \times 25 \text{ mm} = 200 \text{ mm}$$

-
$$\mathbf{c_n}$$
 = 2,75 m / 0,30 m = 9,16 vezes → 9 x 0,30m = 2,70m → 2,70m + 0,05m = 2,75m
2,75 → $\mathbf{c_n}$ = 2,70 m

- Volume peças do bloco normalizadas
- $V_{7 \text{ peças bloco}} = 7 \times (0.025 \text{ m} \times 0.20 \text{ m} \times 2.70 \text{ m}) = 0.095 \text{ m}^3$

Normalização peças laterais:

Aliás, está errado, mas não altera o resultado, então foda-se!!!

-
$$e_n$$
 = 25 mm → 25 + 5% 25 = 26,25 mm < 26,9 mm \therefore e_n = 25 mm

-
$$l_n = y/25 = 127, 2/25 = 5,01 \text{ vezes} \rightarrow 5 \times 25 \text{ mm} = 125 \text{ mm} \rightarrow 125 + (5\% \times 125) =$$

Sobremedida de contratação padrão para coníferas em 5% Apostila 2 - pág. 16

 $\frac{131,25 \text{ mm}}{131,25 \text{ mm}}$ > 127,2 mm → ln inferior = 100 mm → 100 + (5% ×100) = 105 mm

$$105 \text{ mm} < 127,2 \therefore \ln = 100 \text{ mm}$$

-
$$\mathbf{c_n}$$
 = 2,75 m / 0,30 m = 9,16 vezes → 9 x 0,30m = 2,70m → 2,70m + 0,05m = 2,75 m = 2,75 → $\mathbf{c_n}$ = 2,70 m

-
$$V_{4PL} = 4 \{(0.025 \text{ m} \times 0.10 \text{ m}) \times 2.70 \text{ m}\} = 0.027 \text{ m}^3$$

- Rend
$$nor = [(V_{4PLnor} + V_{7 peças bloco nor}) / V_{tora}] \times 100$$

- Rend
$$_{\text{nor.}} = [(0.095 \text{ m}^3 + 0.027 \text{ m}^3) / 0.229484 \text{ m}^3] \times 100 = 52.94\% \sim 53\%$$

3. Cálculo da quantidade de serragem produzida – aproximado

Exemplo 3. No exemplo anterior, calcular a quantidade (%) de serragem produzida, no desdobro total da tora (real).

• Sequência de cortes

Cálculo:

- $V_{total \ serragem} = V_{1^{\circ} corte} + V_{2^{\circ} corte} + V_{3^{\circ} corte} + V_{4^{\circ} corte} + V_{5^{\circ} corte}$
- $V_{total \ serragem} = N^{o} cortes \times (h_c \times b \times c)$

 $h_c = altura de corte = a; x'; y; etc)$

- $V_{1^{\circ}\text{corte}} = 2\text{cortes x } (a \times b \times c) = 2 \times (0.21213 \text{ m} \times 0.003 \text{ m} \times 2.75 \text{ m}) = 0.003500 \text{ m}^3$
- $V_{2^{\circ}\text{corte}} = 2\text{cortes x } (a \times b \times c) = 2 \times (0.21213 \text{ m x } 0.003 \text{ m x } 2.75 \text{ m}) = 0.003500 \text{ m}^3$
- $V_{3^{\circ}\text{corte}} = 7 \text{cortes } x \text{ (a x b x c)} = 7 \text{ x (0,21213 m x 0,003 m x 2,75 m)} = 0,012251 \text{ m}^3$
- $V_{4^{\circ}\text{corte}} = 4\text{cortes x } (y \times b \times c) = 4 \times (0.12720 \text{ m x } 0.003 \text{ m x } 2.75 \text{ m}) = 0.004198 \text{ m}^3$
- $V_{5^{\circ}\text{corte}} = 8\text{cortes x } (x'x b x c) = 8 x (0.02680 m x 0.003 m x 2.75 m) = 0.001769 m^3$
- $V_{\text{serragem}} = 0.025218 \text{ m}^3$
- %Perda $_{serragem}$ = ($V_{total\ serragem}/\ V_{tora}$) x 100 = (0,025218 $m^3/0$,229484 m^3) x 100 =
- %Perda serragem = 11%

 $S_e = sobredimensão na espessura$ $S_l = sobredimensão na largura$

b = largura de corte da serra
 e_n = espessura nominal
 e_c = espessura de corte
 a' = aresta de corte sem perda

 $l_n = largura nominal$

D' = diâmetro no

4. Cálculo do diâmetro exato da tora sem perda de material

Exemplo 4. Calcular o diâmetro necessário para produzir sete tábuas de *Pinus* normalizadas do bloco central de uma tora, sem perda de madeira. Considerar: $e_n = 25 \text{mm}$; $l_n = 200 \text{mm}$; $c_n = 2,70 \text{m}$.

 $\overline{ab} = a'$ $\overline{bc} = I_n + S_1$

$$a' = N^{\circ} t \acute{a} buas \cdot (e_n + S_e) + (N^{\circ} t \acute{a} buas - 1) \cdot b$$

$$D'^2 = a'^2 + l^2 \longrightarrow D' = \sqrt{a'^2 + l^2}$$

Cálculo:

- a' =
$$N^{\circ}t\acute{a}buas \cdot (e_n + S_e) + (N^{\circ}t\acute{a}buas - 1) \cdot b$$

$$-a' = 7 \times (25 \text{ mm} + 5\% \times 25 \text{ mm}) + (7 - 1) \times 3 \text{ mm} = 201,75 \text{ mm}$$

$$-1 = l_n + 5\% \ l_n = 200 + (5\% \times 200) = 210 \ mm$$

-
$$D' = \sqrt{20,175^2 + 21^2} = 29,12 \cdot cm \sim 30 \text{ cm}$$

- Calcular geometricamente as dimensões das peças laterais

Exemplo 5. Calcular o diâmetro das toras para produzir 4 pranchas de *Pinus* normalizadas do bloco central, com as seguintes características: $e_n = 50$ mm; $l_n = 150$ mm; b = 5 mm.

Solução:

-
$$a' = N^{\circ}t\acute{a}buas \cdot (e_n + S_e) + (N^{\circ}t\acute{a}buas - 1) \cdot b$$

 $S_e = 5\% \times 50 \text{ mm} = 2,5 \text{ mm}$
 $1 = \ln + 5\% \times 150 \text{ mm} = 150 + 7,5 \text{ mm} = 157,5 \text{ mm} = 15,75 \text{ cm}$
 $a' = 4 \cdot (50 + 2,5) + (4 - 1) \cdot 5 = 225 \text{ mm} = 22,5 \text{ cm}$

-
$$D' = \sqrt{22.5^2 + 15.75^2} = 27.46 \text{ cm} \sim 28 \text{ cm}$$

5. Rendimento da madeira serrada (R)

5.1 Cálculo de perdas no processo de desdobro

$$\% Perdas_{torasS.C} = \left(\frac{V_{serragem} + V_{costaneiras,refugos}}{V_{toraS.C}}\right) x 100$$

$$\% Perdas_{torasC.C} = \left(\frac{V_{serragem} + V_{costaneiras,refugos} + V_{casca}}{V_{toraC.C}}\right) x 100$$

$$V_{costaneira,refugos} = V_{toraS.C} - \left(V_{mad.serrada} + V_{serragem}\right)$$

$$V_{costaneira,refugos} = V_{toraC.C} - \left(V_{mad.serrada} + V_{serragem} + V_{casca}\right)$$

$$V_{casca} = V_{toraC.C} - V_{toraS.C}$$

Exemplo 6. Calcular o rendimento real da madeira serrada do exemplo 2. Considere o volume real das tábuas do bloco e laterais.

Solução:

- Volume tábuas laterais do bloco
$$= V_{4PL} = 0.037499 \text{ m}^3$$

- Volume de serragem $= V_{serragem} = 0.025218 \text{ m}^3$
- Volume tora s/casca $= V_{tora} = 0.229484 \text{ m}^3$
- Volume tábuas bloco $= V_{7 \text{ pecas bloco}} = 0.107192 \text{ m}^3$

- Volume madeira serrada = $V_{4PL}+V_{7peças\ bloco} = 0.037499\ m^3 + 0.107192\ m^3 = \textbf{0.144691}\ m^3$

$$-V_{\text{costan}\textit{eira},\textit{refugos}} = V_{\textit{toraS.C}} - \left(V_{\textit{mad.serrada}} + V_{\textit{serragem}}\right)$$

-
$$V_{costaneira, refugos} = 0,229484 \text{ m}^3 - (0,144691 \text{ m}^3 + 0,025218 \text{ m}^3) = \mathbf{0,059575 m}^3$$

- % Perda
$$_{serragem}$$
 = ($V_{total\ serragem}$ / V_{tora}) x 100 = (0,025218 m³/0,229484 m³) x 100 = 11%

- %
$$Perdas_{torasS.C} = \left(\frac{V_{serragem} + V_{costaneiras, refugos}}{V_{toras.C}}\right) x 100$$

- %
$$Perdas\ torasS.C = [(0.025218\ m^3 + 0.059575\ m^3)/(0.229484\ m^3)]\ x\ 100 = 36.95 \sim 37\%$$

$$-R = \frac{V_{mad \ serrada}}{V_{tora}} \times 100 \text{ (\%)} = (0.144691 \text{ m}^3 / 0.229484 \text{ m}^3) \text{ x } 100 = 63\%$$

5.2 Exercícios para resolver

- 1. Calcular o volume e o rendimento "máximo" de madeira serrada (bloco + peças laterais) que se obtém de uma tora de *Pinus* sem casca com as seguintes dimensões: D₁ = 30cm; D₂ = 27 cm; c = 2,40 m; b = 3 mm.
- 2. Para o exemplo anterior (Ex. 1) calcular o volume e o rendimento máximo (real) em madeira serrada (tábuas laterais e tábuas do bloco) que se pode obter da tora, considerando uma $e_n = 22 mm$ (para as tábuas do bloco). Calcular também o volume e o rendimento máximo em madeira serrada (tábuas) normalizada. Considere S_e = 5% da e_n e b = 3mm.
- 3. Calcular o diâmetro das toras para produzir 9 tábuas de *Pinus* normalizadas do bloco central, com as seguintes características: $e_n = 32$ mm; $l_n = 200$ mm; b = 5 mm; b = 3mm; $c_n = 3,00$ m.
- 4. Calcular a quantidade (%) de serragem produzida no desdobro total de uma tora de *Pinus* sem casca, de acordo com o esquema abaixo. Considere: 4 cortes para obter o bloco máximo (2 cortes no 1º corte e 2º cortes no segundo corte); 7 cortes para obter as tábuas do bloco; 4 cortes "y" para obter 4 tábuas laterais; 8 cortes x' (espessura das tábuas laterais); a = h_c = 212,13mm; b = 3mm; D₁ = 35cm; D₂ = 30 cm; c = 4,00m.

