时间序列分析

课件二

相关概念

强平稳时间序列

联合分布 \$\$Zi_1,Zi_2...Zi_r\$\$ 只依赖于 \$Zi_1-i, Zi_2-i...Zi_r-i\$ 而不依赖于 \$i\$

弱平稳序列

- \$E(z i)\$ 不依赖于 \$i\$
- \$Cov(z_i, z_{i-j})\$ 只依赖于 \$j\$

自协方差和自相关

第 \$j\$ 阶自协方差就是之后 \$j\$ 期

白噪声

最特殊的弱平稳序列

- \$E(z_i)=0\$ 对任意 \$i\$
- \$Cov(z_i, z_{i-j})=0\$ 对任意 \$j \neq\ 0\$

遍历性和LLN

满足遍历性时有 LLN, 大样本的平均数逼近于均值 \$\mu\$

Martingale

给定信息集 Z_{i-1}, Z_2, Z_1 , 有: $E(x_i|Z_{i-1}, Z_2, Z_1) = x_{i-1}$ 信息集举例如 $Z_1 = g_1, Z_2 = g_1 + g_2 ...$

Random Walk

\$Z_1 = g_1, Z_2 = g_1 + g_2 ...\$ 其中 \$g_i\$ 是 白噪声

Martingale Difference Sequences

对于 g_i \$,满足 $E(g_i)=0$ \$,同时条件期望也是0,即 $E(g_i|g_i-1),...,g_1$) = 0\$,没有序列相关性,因为 $E(g_i|g_i-1)=0$ \$。

ARCH过程

全称autoregressive conditional heteroskedastic (ARCH) process, ARCH(1) 为一阶ARCH过程,性质为:

- \$g_i= \sqrt{\zeta+\alpha g_{i-1}^2 }\cdot\ \varepsilon_i\$
- 其中 \$\varepsilon_i\$ 为 i.i.d ,均值为0,方差为1

自协方差、自相关的估计

样本自协方差, 自相关

cross-covaraiance, cross-correlation

时间序列数据-传统的回归模型

模型选择依据,AIC,BIC,公式为\$log(SSR_j/n)+(j+1)C(n)/n\$对于AIC,\$C(n)=2\$,对于BIC,\$C(n)=log(n)\$

对于time regression,就是将时间 \$t\$ 作为自变量,加入到回归方程中。

线性时间序列模型

线性的时间序列 r_t 可以表示成, $r_t=\max_{i=0}^{i=0}^{i=0}$,其中 p_t ,其中 p_t 。而 p_t 。而 p_t 是白噪声过程 意思是每一期的 p_t 。非 基于白噪声的线性加和。

简单AR模型

AR(1)

 $r_t=\phi_0+\phi_1r_{t-1}+a_t$ 表示 r_t 和 r_{t-1} 的线性关系,误差项用白噪声 a_t 表示

基本性质:

- \$Var(r t)=\phi 1^2Var(r {t-1})+\sigma a^2\$, 即 \$Var(r t)=\dfrac{\sigma a^2}{1-\phi 1^2}\$
- 很容易推导出自相关函数ACF, \$p_I = \phi_1p_{I-1}\$, 其中 \$p_I\$ 表示 \$I\$ 阶自相关, \$p_0=1\$, \$p_1=\phi_1\$

类似的对于AR(2)

- \$\mu=\dfrac{\phi 0}{1-\phi 1-\phi 2}\$
- \$p_l=\phi_1p_{l-1}+\phi_2p_{l-2}\$ 其中 \$p_1=\dfrac{\phi_1}{1-\phi_2}\$

prove of \$p_1=\dfrac{\phi_1}{1-\phi_2}\$

AR(p)

 $r_t=\phi_0+\phi_1^r_{t-1}+...+\phi_p^r_{r-p}+a_t$ 表示 \$r_t\$ 与p阶滞后项的线性组合的关系

识别AR模型

Partial Autocorrelation Function(PACF)

考虑一系列自回归:

 $r_t = \phi_{0,1} + \phi_{1,1}r_{t-1}+e_{1t}$

 $r_t = \phi_{0,2} + \phi_{1,2}r_{t-1} + \phi_{2,2}r_{t-2} + e_{2t}$

 $r_t = \phi_{0,3} + \phi_{1,3}r_{t-1} + \phi_{2,3}r_{t-2} + \phi_{3,3}r_{t-3} + e_{3t}$

\$...\$

得到一系列系数估计,具有如下性质:

- \$\phi_{p,p}\$ 收敛到 \$\phi_p\$, 当T到正无穷时
- \$\phi_{I,I}\$ 收敛到0, 当 \$I>p\$ 时

这意味着对于AR(p), PACF在滞后p处是截断的

Information Criteria

对于 AR(p)而言,AIC和BIC分别是

- \$AIC(I) = ln(\sigma_I^2)+\dfrac{2I}{T}\$
- \$BIC(I) = ln(\sigma_I^2)+\dfrac{I *ln(T)}{T}\$

模型选择规则 是根据计算一系列不同阶数 \$I\$ 的AIC,选择最小的AIC值的阶 \$k\$,对于BIC也是一样的。

模型诊断

AR模型的关键假设是 **误差项** 是一个白噪声过程,那么拟合出来的模型 **残差** 也应该表现出白噪声过程的性质。利用 **ACF** 和 **Ljung-Box** 统计量来检测残差和白噪声的相近程度

• $Q(m) = T(T+2)\sum_{l=1}^m \frac{1}{2}{T-l}$

其中 \$p_I\$ 表示 残差 的 \$I\$ 阶自相关系数

预测

课件四

简单MA模型

Infinite Order AR Model

将AR模型扩展到无穷阶,常理而言,无穷阶的AR模型是不可估计的,但是如果对系数加以限制就可行。如:

- $r_t = \phi_0 t_1^2 t_2^2 t_2^2 t_3^2 t_3^2$
- 这其中 \$\phi i=-\theta 1^i\$

对于上述形式的无穷阶AR模型,可以通过变换后得到:

- MA(1) \$r_t=c_0+a_t-\theta_1a_{t-1}\$
- MA(2) \$r_t=c_0+a_t-\theta_1a_{t-1}-\theta_2a_{t-2}\$
- MA(q) \$r t=c 0+a t-\theta 1a {t-1}-...-\theta qa {t-q}\$
- 这其中 \$c_0\$ 为常数, \$a_t\$ 为白噪声

MA(1)的性质

- \$E(r_t)=c_0\$
- $\qquad \qquad \text{$Var(r_t)=\simeq a^2+\theta_1^2\simeq a^2=(1+\theta_1^2)\simeq a^2$}$
- 很容易得出 **只有一阶自相关** 且 \$\gamma_1 = -\theta_1\sigma_a^2\$, \$\gamma_I = 0\$ 对于所有的 \$\>1\$, 也就是说 **MA(1)** 的 **ACF在滞后阶数1处是截断的**

相似的推理可以推断出 MA(2) 的性质

从以上性质我们可以进一步推断 MA模型是弱平稳的,因为前两阶矩不随时间脚标变化而变化。

同时通过简单的变换我们还能得到 MA(1)是可逆的

• $a t = r t + t = 1r \{t-1\} + t = 2r \{t-2\}...$

确定MA模型的阶

使用 ACF, \$p_q \neq 0\$ 但 \$p_l=0\$ 对于任何 \$l>q\$, 那么 \$r_t\$ 符合一个 MA(q)模型

简单ARMA模型

将AR和MA结合起来,从 ARMA(1,1)到 ARMA(p,q)

ARMA(1,1)

形如:

- \$r_t \phi_1r_{t-1} = \phi_0+a_t-\theta_1a_{t-1}\$
- 其中 \$a_t\$ 为白噪声, 且 \$\theta_1 \neq \phi_1\$

基本性质(假设 \$r_t\$ 是平稳的):

- 两边同时取期望有,\$\mu=\dfrac{\phi_0}{1-\phi_1}\$
- \$E(r ta t)=\sigma a^2\$ 基于 \$E(r {t-1}a t)=0\$ 和 \$E(a {t-1}a t)=0\$
- $\$ \\ \text{Var}(r_t)=\sigma_a^2\\ \dfrac{1-2\phi_1\theta_1+\theta_1^2}{1-\phi_1^2}\\ \)

要求 ACF 的话,两边乘以 \$r_{t-l}\$

- \$r_tr_{t-l}-\phi_1r_{t-l}=a_tr_{t-l}-\theta_1a_{t-1}r_{t-l}\$
- 当 \$I\$ 取 \$1,2...I\$ 时,有
 - \$\gamma_1-\phi_1\gamma_0=\theta_1\sigma_a^2\$
 - \$\gamma_2-\phi_1\gamma_1=0\$
 - o \$...\$
- 即 \$\rho_1=\phi_1-\dfrac{\theta_1\sigma_a^2}{\gamma_0}\$, \$\rho_I=\phi_1\rho_{I-1}\$ 对于 \$\r>1\$
- 不会截断

ARMA(p,q)

- $r_t=\phi_0+\sum_{i=1}^p\phi_i=r_{t-i}+a_t-\sum_{i=1}^q\theta_i=1$
- 要求不能有公共根,类似于 \$\phi_1 \neq \theta_1\$

确定ARMA的阶

ACF和PACF都不再有效,使用 EACF,Extended autocorrelation function

会生成一个矩阵,行为 \$p\$,列为 \$q\$,对于 ARMA(1,1) 而言,表现为 **矩阵上三角为0,左顶点为**(1,1),对于 ARMA(p,1) 而言,**左顶点为**(p,q),行列标从0开始

需要将 EACF简化为O以及X符号

- X表示**大于等于** \$\dfrac{2}{\sqrt{T}}\$ 即大于两倍 EACF 的渐进方差
- O表示 小于 \$\dfrac{2}{\sqrt{T}}\$

利用Information Criteria确定阶

同样是给定范围 \$P\$ 和 \$Q\$,选择 AIC最小对应的p,q值

同样ARMA也是 invertible 的,可以表示为AR的形式