Chapter 18

Discriminant Analysis

Review: Previous Techniques

- Regression models
 - Numeric response modeled by continuous and/or categorical predictors
- PCA
 - (Unknown) feature extraction and dimension reduction for correlated variables
- Cluster Analysis
 - Obtain (unknown) groups based on proximity of continuous predictors

Discriminant Analysis

- Data from known groups
- Want one or more functions based on explanatory variables to classify those groups
- Classification is based on group means
- Goal is to classify new observations (with unknown group) into one of the known groups

Terminology

- Discriminant function effectively define dividing lines for groups
- Prior probabilities tell relative sizes of known groups in the general population
- Posterior probabilities probabilities that an observation with specific explanatory variable values would be from each of the known groups
- Misclassification rate estimates estimated percentages of observations classified into the wrong group (methods include resubstitution, cross-validation, or using training and test sets)
- Training set the set of observations the discrimination is based on
- Test set –observations with known group not included in training set used to estimate classification of new observations

A Few Types

- Assumed normal populations (LDA and QDA)
- Logistic discriminants
- Nonparametric or semi-parametric (e.g. kernel-based)
- Support vector machines (a more general methodology)
- Will focus on LDA and QDA in class

Linear Discriminant Analysis (LDA)

- Assume multivariate normal distribution for each group
- Assume same covariance for each group
- Separating surfaces will be linear(straight lines or planes or hyperplanes)

Quadratic Discriminant Analysis (QDA)

- Assume multivariate normal distribution for each group
- Covariances not assumed to be the same for each group
- Separating surfaces will be quadratic

proc discrim

- class statement for classification variable (really our response variable)
- var statement for our predictors, just like in other procedures
- Will give us classifications, misclassification rates, etc.
- Can use resubstitution, cross-validation, or test/training set misclassification estimates

Example: Skulls Data Set

Variables:

- Length measurement of skull length
- Width measurement of skull width
- Height measurement of skull height
- Faceheight measurement of face height
- Facewidth measurement of face width
- Type A (local graves) or B (battlefield)

Example: LDA with One Predictor

- Classify skulls based only on length using LDA
- Will look at the following:
 - the classifications
 - misclassification rates
 - the posterior probabilities (via the out option)
 - estimated densities (via the **outd** option) for the underlying populations

Example: Cross-Validation

- Leave-one-out crossvalidation is more realistic
- Removes influence of data point on its own classification
- Can be obtained with crossvalidate option

Exercise: Unequal Priors

- Prior probabilities are about the assumed proportion in the general population
- Specify with **priors** statement
- See docs for **priors** statement...
- Repeat previous analysis assuming proportional rather than equal priors
- Compare results

Example: Iris Data and Petal Width

- Now will have 3 groups (species)
- Will classify based only on petal width first
- Will look at LDA, testing for unequal covariances, and QDA
- Simplified version of The DISCRIM
 Procedure>> Examples>> Univariate Density
 Estimates and Posterior Probabilities

Example: Both Petal Measurements

- Will look at the example in the docs for this one
- The DISCRIM Procedure>> Examples>>
 Bivariate Density Estimates and Posterior
 Probabilities

Exercise: Skulls with All Predictors

With the skulls data set:

- Perform discriminant analysis using all 5 skull measurements
- What does the MANOVA tell us?
- Compare these classifications to those based only on length

stepdisc Procedure

- Stepwise selection for terms in discriminant analysis
- Can be used to determine predictors to use in proc discrim

Exercise: Selection for Skulls

- Use stepdisc to choose best skull measurements for discrimination
- Compare results with those based on length

Training and Testing Sets

- Will look at The DISCRIM Procedure>>
 Examples>> Linear Discriminant Analysis of Remote-Sensing Data on Crops
- Steps:
 - discrimination on a training data set
 - output training classification info via outstat=
 - use that data as a new input data set in proc discrim via data= and define a test set via testdata=
 - testout= to write the test classification information out like we did with out= before