CLAIMS

1. Use of a compound of general formula I

wherein

5

10

15

20

25

30

R₁, R₂, R₃ and R₄ are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-12-alkyl, C2-12-alkenyl, C4-12alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C₁₋₁₂-alkyl, C₂₋₁₂alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_4 - $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-₆-alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, - OR_{12} , $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$ $S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C₁₋₄ alkyl, C₁₋₄ alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂, S(O)NH₂, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl,

heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂; X is O or S;

R₅ is hydrogen, hydroxy, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, C_{1-6} alkoxy, carbonyl, carboxy, amido, thioamido, guanyl, guanidinyl, ureidyl, sulfonyl, trihalomethanesulfonyl, $-C(O)OR_{14}$, $-C(O)R_{14}$, wherein R_{14} is hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, cycloalkyl or aryl;

 R_6 is hydrogen, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halogen, $-OR_7$, - $C(O)R_7$, $-C(O)OR_7$, $-NR_7R_8$, $S(O)_2NR_7R_8$, wherein R_7 and R_8 are independently hydrogen, C_{1-6} alkyl, aryl or heterocyclyl, said C_{1-6} alkyl or heterocyclyl being optionally substituted by heterocyclyl, $-OR_7$, $-C(O)R_7$ or $C(O)OR_7$, the zigzag line indicating that the group denoted R_6 is present as the E- or Z-isomer;

15

20

25

30

35

A is phenyl or a monocyclic or bicyclic heteroaryl ring, optionally substituted at one or more positions with hydrogen, halogen, trihalomethyl, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, $-OR_{10}$, $-C(O)R_{10}$, $-C(O)R_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)_2R_{10}$, $-S(O)_2R_{10}$, $-S(O)_2R_{10}$, and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1-12} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl,

heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, - OR_{12} , - $C(O)R_{12}$, - $C(O)OR_{12}$, - $OC(O)R_{12}$, - $OC(O)R_{1$

alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo,

halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, - $CONH_2$ or $S(O)NH_2$, aryl, heteroaryl, heterocyclyl or carbocyclyl said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, - $CONH_2$ or - $S(O)NH_2$; the zigzag line indicating that the group denoted A is present as the E- or Z-isomer; or pharmaceutically acceptable salts thereof, for the preparation of a medicament for the prevention, treatment or amelioration of multiple sclerosis, or to delay of the onset of or reduce the relapse rate in multiple sclerosis.

10

25

30

5

2. The use according to claim 1 wherein, in the compound of formula I, X is O or S;

 R_1 , R_2 , R_3 and R_4 are the same or different and independently selected from the group consisting of hydrogen, C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen, trihalomethyl, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2R_{18}$, $S(O)_2R_{18}$, $S(O)_3R_{18}$

A is phenyl or a monoclyclic or bicyclic heteroaryl ring selected from the group consisting of pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, oxazole, isoxazole, thiazole, isothiazole, 2-sulfonylfuran, 4-alkylfuran, 1,2,3-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3,4-oxatriazole, 1,2,3,5-oxatriazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,3,4-thiatriazole, 1,2,3,5-thiatriazole, tetrazole and indole, optionally substituted at one or more positions with C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen, trihalomethyl, a sugar residue, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2NR_{18}R_{19}$, $S(O)_3R_{18}$, SR_{18} , NO_2 , $NR_{18}R_{19}$, OH, CN, CH_2OH , $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, $NHC(O)R_{18}$, $(CH_2)_nC(O)_2R_{18}$ and $C(O)NR_{18}R_{19}$, wherein R_{18} , R_{19} and n are as indicated above;

 R_5 is hydrogen or C_{1-6} alkyl; and R_6 is hydrogen.

- 35 3. The use of claim 1 wherein, in the compound of formula I, R₅ is hydrogen.
 - 4. The use of claim 1 wherein, in the compound of formula I, X is oxygen.

149

PCT/DK2004/000875

- same or different and independently selected from hydrogen and C_{1-6} alkyl.
- 5 6. The use of claim 1 wherein, in the compound of formula I, R_6 is hydrogen or COOH.

WO 2005/058309

10

25

- 7. The use of any of claims 1-6 wherein, in the compound of formula I, A is pyrrole, phenyl or indole, said pyrrole, phenyl or indole being optionally substituted at one or more positions with C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} 10 alkylaryloxy, halogen, trihalomethyl, a sugar residue, S(O)R₁₈, S(O)₂R₁₈, $S(O)_2NR_{18}R_{19}$, $S(O)_3R_{18}$, SR_{18} , NO_2 , $NR_{18}R_{19}$, OH, CN, CH_2OH , $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, $NHC(O)R_{18}$, $(CH_2)_nC(O)_2R_{18}$ and $C(O)NR_{18}R_{19}$, wherein R_{18} , R_{19} and n are as indicated in claim 2.
- 8. The use of claim 7 wherein, in the compound of formula I, A is pyrrole substituted at 15 position 3 and 5 with C_{1-6} alkyl, or at position 3 with C_{1-6} alkyl and at position 5 with CH_2OH , COOH or a sugar residue, or at position 3 and 5 with C_{1-6} alkyl and at position 4 with halogen, or at position 5 with $C(0)0-C_{1-6}$ alkyl, and at position 3 with C_{1-6} alkyl.
- 9. The use of claim 7 wherein, in the compound of formula I, A is phenyl substituted at 20 position 2 and 5 with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, C_{1-6} alkyl- $NR_{26}R_{27}$, $NH-C_{1-6}$ alkyl- $NR_{26}R_{27}$ or $O-C_{1-6}$ alkyl- $NR_{26}R_{27}$, wherein R_{26} and R_{27} are independently hydrogen or C_{1-6} alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring.
 - 10. The use of claim 7 wherein, in the compound of formula I, A is indole.
 - 11. The use of claim 7 wherein the compound is 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene-1,3-dihydro-indol-2-one.
 - 12. The use of claim 7 wherein the compound is 3-(2,5-dimethoxy-benzylidene)-1,3dihydroindol-2-one.
- 13. The use of claim 7 wherein the compound is 3-(1H-indol-3-ylmethylene)-1,3-35 dihydroindol-2-one.
 - 14. The use of claim 1, wherein the compound is a compound of formula II

5

10

15

20

25

30

wherein R₁, R₂, R₃, R₄, R₆ and X are as indicated in claim 1,

 R_8 and R_4 are independently hydrogen, hydroxy, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, C_{1-6} alkoxy, carbonyl, carboxy, amido, thioamido, guanyl, guanidinyl, ureidyl, sulfonyl, trihalomethanesulfonyl, -PO(OR)(OR'), wherein R and R' are independently selected from hydrogen or C_{1-6} alkyl, , $-OR_{10}$, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-OC(O)OR_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10},\ -S(O)_2R_{10},\ -S(O)_2NR_{10}R_{11},\ -S(O)OR_{10}\ and\ CH_2-aryl-OR_{10},\ wherein\ R_{10}\ and\ R_{11}$ are the same or different and independently selected from the group consisting of hydrogen, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R₁₀ and R₁₁, together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, $-OR_{12}$, $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-OC(O)OR_{12}$, $-NR_{12}R_{13}$, - $C(O)NR_{12}R_{13}$, $-OC(O)NR_{10}R_{11}$, $-NHC(O)R_{12}$, $-SR_{12}$, $-S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂, -S(O)NH2, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl

or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4}

alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, $-CONH_2$ or $-S(O)NH_2$; $-C(R_{24}R_{25})-OR_{16}$ or - $OC(O)R_{16}$, wherein R_{16} is hydrogen, C_{1-6} alkyl, aralkyl, acyl or -PO(OR)(OR'), $-C(R_{24}R_{25})$ - $NR_{26}R_{27}$, wherein R_{24} is hydrogen, C_{1-6} alkyl or aryl, R_{25} is hydrogen, and R_{26} and R_{27} are independently hydrogen or C_{1-6} alkyl or, together with the nitrogen atom to which they 5 are attached, form a heteroaryl or heteroaryl ring optionally substituted with hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂; -NR₂₀R₂₁, $-O(CH_2)_mNR_{20}R_{21}$, $-N(CH_2)_mNR_{20}R_{21}$, $-O(CH_2)_mC(O)R_{22}$, $-N(CH_2)_mC(O)R_{22}$, wherein m is 0, 1, 2 or $3, R_{20}$ and R_{21} are the same or different and independently selected from the 10 group consisting of hydrogen, C₁₋₆ alkyl, cycloalkyl, aryl, carbonyl, acetyl, trihalomethylcarbonyl, carboxy, sulfonyl or trihalomethanesulfonyl, or R20 and R21 together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, and R₂₂ is hydroxy, C₁₋₆ alkoxy, aryloxy, amino, hydroxylamino, carboxy or -NR $_{20}$ R $_{21}$, wherein R $_{20}$ and R $_{21}$ are as indicated above; and 15 $R_{1}{}'$, $R_{2}{}'$ and $R_{3}{}'$ are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ 20 $S(0)_2R_{10}$, $-S(0)_2NR_{10}R_{11}$ and $-S(0)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C_{1-12} -alkyl, C_{2-12} alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they 25 are attached form a heterocyclic or heteroaryl ring, each of C1-12-alkyl, C2-12-alkenyl, C4- $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1} - $_{6}$ -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -30 OR_{12} , $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $OC(O)NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-C(O)NR_{1$ $NHC(O)R_{12}$, $-SR_{12}$, $-S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R₁₃ are the same or different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, 35 carbocyclyl and heterocyclyl, or wherein R₁₂ and R₁₃, together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C₁₋₆-alkyl, C₂₋₆-

alkenyl, C₄₋₆-alkadienyl, C₂₋₆-alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl

substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or S(O)NH₂, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂.

5

25

30

- 15. The use of claim 14 wherein, in the compound of formula II, R₁, R₂, R₃, R₄, R₆ and X are as indicated in claim 2, and R₁', R₂' and R₃' are the same or different and independently selected from the group consisting of with C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, aryl, heteroaryl, aryloxy, C₁₋₁₀ alkylaryl, C₁₋₁₀ alkylaryloxy, halogen, trihalomethyl, a sugar residue, S(O)R₁₈, S(O)₂R₁₈, S(O)₂NR₁₈R₁₉, S(O)₃R₁₈, SR₁₈, NO₂, NR₁₈R₁₉, OR₁₈, CN,
 15 CH₂OH, C(O)R₁₈, C(O)OR₁₈, OC(O)R₁₈, NHC(O)R₁₈, (CH₂)_nC(O)₂R₁₈ and C(O)NR₁₈R₁₉, wherein R₁₈ is hydrogen, C₁₋₆ alkyl, heteroaryl or aryl, said C₁₋₆ alkyl, heteroaryl or aryl being optionally substituted with hydroxy or NR₂₆R₂₇, wherein R₂₆ and R₂₇ are independently hydrogen or C₁₋₆ alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring, R₁₉ is hydrogen, C₁₋₆ alkyl or aryl, and n is 0-3.
 - 16. The use of claim 15 wherein, in the compound of formula II, R_1 , R_2 , R_3 and R_4 are the same or different and independently selected from hydrogen, halogen and C_{1-6} alkyl, or R_2 is hydroxy or heteroaryl, such as pyridyl, or a group $C(O)R_{20}$, wherein R_{20} is heteroaryl, such as pyridyl or thienyl, and R_1 , R_3 and R_4 are hydrogen.
 - 17. The use of claim 15 wherein, in the compound of formula II, R_1 ', R_2 ' and R_3 ' are the same or different and independently selected from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} alkoxy, CH_2OH , $C(O)OR_{18}$ or $C(O)NR_{18}R_{19}$, wherein R_{18} and R_{19} are as defined in claim 15.
 - 18. The use of claim 14 or 15 wherein, in the compound of formula II, R_1' and R_3' are both C_{1-6} alkyl, in particular methyl, and R_2' is hydrogen, or wherein R_1' is C_{1-6} alkyl and R_3' is C_{1-6} alkoxy, CH_2OH , $C(O)OR_{18}$ or $C(O)NR_{18}R_{19}$, wherein R_{18} and R_{19} are as defined in claim 15, or wherein R_1' and R_3' are both C_{1-6} alkyl, in particular methyl, and R_2' is halogen, in particular chloro or bromo, or wherein R_1' is C_{1-6} alkyl and R_3' is $C(O)O-C_{1-6}$ alkyl, or wherein R_1' is C_{1-6} alkyl and R_3' is $C(O)NH-C_{1-6}$ alkyl substituted with hydroxy.

- 19. The use of claim 14 wherein, in the compound of formula II, R_8 and R_4' are independently hydrogen, hydroxy, -PO(OR)(OR'), -OR₁₀, -C(O)OR₁₀, -C(O)NR₁₀R₁₁, -C(O)R₁₄, -C(R₂₄R₂₅)OR₁₆, -OC(O)R₁₆ or -C(R₂₄R₂₅)NR₂₆R₂₇, wherein R, R', R₁₀, R₁₁, R₁₄, R₁₆, R₂₄, R₂₅, R₂₆, R₂₇ are as defined in claim 14.
- 20. The use of claim 14 wherein the compound is selected from the group consisting of 3-(3,5-Dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 226) 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid
- 10 ethyl ester (Compound 01)

- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-ethyl)-amide (Compound 02)
- 3-(5-hydroxymethyl-3-methyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 03)
- 1-[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-2-ylmethyl)-pyrridinum; chloride (Compound 04)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (Compound 05)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-
- 20 diethylamino-ethyl)-amide (Compound 06)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-methoxy-ethyl)-amide (Compound 07)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid [3-(1-formyl-piperidin-4-yl)-propyl]-amide (Compound 08)
- 4-{[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carbonyl]-amino}-butyric acid methyl ester (Compound 09)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (6-hydroxy-hexyl)-amide (Compound 10)
- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid cyclohexylmethyl-amide (Compound 11)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (4-hydroxy-butyl)-amide (Compound 12)
 - 6-{[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carbonyl]-amino}-hexanoic acid ethyl ester (Compound 13)
- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (tetrahydro-furan-2-ylmethyl)-amide (Compound 14)

- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid [2-
- (1H-indol-3-yl)-ethyl]-amide (Compound 15)
- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (3-phenyl-propyl)-amide (Compound 16)
- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (4-phenyl-butyl)-amide (Compound 17)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (5-hydroxy-pentyl)-amide (Compound 18)
 - 4-{[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carbonyl]-
- amino}-butyric acid ethyl ester (Compound 19)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid [1-(4-chloro-phenyl)-cyclopropylmethyl]-amide (Compound 20)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid benzyl ester (Compound 21)
- 3-(4-bromo-3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 22)
 - 3-(4-chloro-3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 23)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-(4-methoxy-benzyl)-1,3-dihydro-indol-2-
- 20 one (Compound 41)
 - 3-(3,5-Dimethyl-1H-pyrrol-2-ylmethylene)-1-methyl-1,3-dihydro-indol-2-one (Compound 42)
 - acetic acid 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-indol-1-ylmethyl ester (Compound 43)
- 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-hydroxy-1,3-dihydro-indol-2-one (Compound 45)
 - 3-(4-bromo-3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-hydroxy-1,3-dihydro-indol-2-one (Compound 46)
 - $3\hbox{-}(3,5\hbox{-}dimethyl\hbox{-}1H\hbox{-}pyrrol\hbox{-}2\hbox{-}ylmethylene)\hbox{-}1\hbox{-}methoxy\hbox{-}1,3\hbox{-}dihydro\hbox{-}indol\hbox{-}2\hbox{-}one$
- 30 (Compound 49)
 - acetic acid 3-(3,5-dimethyl-1*H*-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-indol-1-yl ester (Compound 51)
 - 2-{3-[3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-indol-1-yloxy]-propyl}-isoindole-1,3-dione (Compound 52)
- 2,4-Dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (Compound 227)

- 5-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (Compound 228)
- (3,5-dimethyl-1H-pyrrol-2-yl)-(2-oxo-1,2-dihydro-indol-3-ylidene)-acetic acid (Compound 229)
- 5 3-[2,4-Dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]-propionic acid (Compound 230)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-4-iodo-1,3-dihydro-indol-2-one (Compound 231)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-methoxy-1,3-dihydro-indol-2-one
- 10 (Compound 232)
 - 5-chloro-3-(3-methoxy-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 233)
 - 3-(3-methoxy-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 234)
 - 3-[5-(4-chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrol-3-yl]-
- propionic acid (Compound 235)
 - 4-chloro-3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 236)
 - 4-chloro-3-(3-methoxy-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 237)
- 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-1H-indole-4-carboxylic acid (Compound 238)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-pyridin-3-yl-1,3-dihydro-indol-2-one (Compound 239)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-pyridin-3-yl-1,3-dihydro-indol-2-one;
- 25 methanesulfonic acid (Compound 240)
 - 5-pyridin-3-yl-3-(1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 241) 5-pyridin-3-yl-3-(1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one; methanesulfonic acid (Compound 242)
 - $3\hbox{-}(3,5\hbox{-}dimethyl\hbox{-}1H\hbox{-}pyrrol\hbox{-}2\hbox{-}ylmethylene)\hbox{-}5\hbox{-}hydroxy\hbox{-}1,3\hbox{-}dihydro\hbox{-}indol\hbox{-}2\hbox{-}one$
- 30 (Compound 243)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-fluoro-1,3-dihydro-indol-2-one (Compound 244)
 - 3-(1-methyl-1H-indol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 245)
 - 2,4-dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid
- 35 ethyl ester (Compound 246)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid pyridin-4-ylmethyl ester (Compound 263)

(3,5-dimethyl-1H-pyrrol-2-yl)-(2-oxo-1,2-dihydro-indol-3-ylidene)-acetic acid benzyl ester (Compound 264)

3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-pyrrolidin-1-ylmethyl-1,3-dihydro-indol-2-one (Compound 266)

5 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-(4-methyl-piperazin-1-ylmethyl)-1,3-dihydro-indol-2-one (Compound 267) and

3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-piperidin-1-ylmethyl-1,3-dihydro-indol-2-one (Compound 268)

10 21. The use of claim 1, wherein the compound is a compound of formula III

wherein R₁, R₂, R₃, R₄, R₅. R₆ and X are as indicated in claim 1, and 15 R_1 ", R_2 ", R_3 ", R_4 " and R_5 " are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C₁₋₁₂-alkyl, C₂₋₁₂-alkenyl, C₄₋₁₂alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different 20 and independently selected from the group consisting of hydrogen, C_{1-12} -alkyl, C_{2-12} alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-1} 25 $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-₆-alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido,

halogen, $-OR_{12}$, $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$, $-S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2R_{12}$, and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxyl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, $-CONH_2$ or $-S(O)NH_2$.

15

20

25

30

10

- 22. The use of claim 21 wherein, in the compound of formula III, R_2 , R_3 , R_4 , R_5 , R_6 and X are as indicated in claim 2, and R_1 ", R_2 ", R_3 ", R_4 " and R_5 " are the same or different and independently selected from the group consisting of with C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen, trihalomethyl, a sugar residue, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2NR_{18}R_{19}$, $S(O)_3R_{18}$, SR_{18} , NO_2 , $NR_{18}R_{19}$, OR_{18} , CN, CH_2OH , $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, $NHC(O)R_{18}$, $(CH_2)_nC(O)_2R_{18}$ and $C(O)NR_{18}R_{19}$, wherein R_{18} is hydrogen, C_{1-6} alkyl, heteroaryl or aryl, said C_{1-6} alkyl, heteroaryl or aryl being optionally substituted with hydroxy or $NR_{26}R_{27}$, wherein R_{26} and R_{27} are independently hydrogen or C_{1-6} alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring, R_{19} is hydrogen, C_{1-6} alkyl or aryl, and n is 0-3.
- 23. The use of claim 22 wherein, in the compound of formula III, R_2 " and R_5 " are the same or different and independently are C_{1-6} alkyl, in particular methyl, or C_{1-6} alkoxy, in particular methoxy, or halogen, in particular chloro or bromo.
- 24. The use of claim 21 wherein, in the compound of formula III, R_5 is hydrogen, hydroxy, $C(O)R_{14}$ or $C(O)OR_{14}$, wherein R_{14} is as defined in claim 1.
- 25. The use of claim 21, wherein the compound is selected from the group consisting of 3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 110)

- 3-(5-dimethylaminomethyl-2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 32)
- 3-{2-[(2-dimethylamino-ethyl)-methyl-amino]-5-methoxy-benzylidene}-1,3-dihydro-indol-2-one (Compound 33)
- 5 3-{4-[(2-dimethylamino-ethyl)-methyl-amino]-3',5'-dimethyl-biphenyl-3-ylmethylene}-1,3-dihydro-indol-2-one (Compound 34)
 - 3-(2-dimethylaminomethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 35)
 - 3-[2-(2-diethylamino-ethoxy)-5-methoxy-benzylidene]-1,3-dihydro-indol-2-one (Compound 36)
- 3-[2-(2-diethylamino-ethoxy)-5-methoxy-benzylidene]-1,3-dihydro-indol-2-one; hydrochloride (Compound 37)
 - 3-[5-methoxy-2-(2-morpholin-4-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 38)
 - 3-[5-methoxy-2-(2-piperidin-1-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one
- 15 (Compound 39)
 - 1-acetyl-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 44)
 - 3-(2,5-dimethoxy-benzylidene)-1-hydroxy-1,3-dihydro-indol-2-one (Compound 48)
 - 3-(2,5-dimethoxy-benzylidene)-1-methoxy-1,3-dihydro-indol-2-one (Compound 50)
 - 3-(phenyl-4-tolyl-methylene)-1,3-dihydro-indol-2-one (Compound 53)
- 20 3-[bis-(4-methoxy-phenyl)-methylene]-1,3-dihydro-indol-2-one (Compound 54)
 - 3-[1-(2,5-dimethoxy-phenyl)-ethylidene]-1,3-dihydro-indol-2-one (Compound 55)
 - 3-(4-hydroxy-3,5-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 95)
 - 3-(3,5-di-tert-butyl-4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 96)
 - 3-(4-bromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 97)
- 25 3-(2-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 98)
 - 3-(2,4-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 99)
 - 3-(2,6-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 100)
 - 3-(3,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 101)
 - 3-(4-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 102)
- 30 3-(2,4-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 103)
 - 3-(2,5-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 104)
 - 3-(2,6-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 105)
 - 3-benzylidene-1,3-dihydro-indol-2-one (Compound 106)
 - 3-(4-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 107)
- 35 3-(2,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 108)
 - 3-(3,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 109)
 - 3-(3,4-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 111)

```
3-naphtalen-2-ylmethylene-1,3-dihydro-indol-2-one (Compound 112)
     3-naphtalen-1-ylmethylene-1,3-dihydro-indol-2-one (Compound 113)
     3-(2,3-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 114)
     3-(3-nitro-benzylidene)-1,3-dihydro-indol-2-one (Compound 115)
 5
     3-(2-fluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 116)
     3-(3-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 117)
     3-(3-fluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 118)
     3-(4-fluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 119)
     3-anthracen-9-ylmethylene-1,3-dihydro-indol-2-one (Compound 120)
     3-(5-bromo-2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 121)
10
     3-(2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 122)
     5-chloro-3-(4-isopropyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 123)
     5-chloro-3-(4-dimethylamino-benzylidene)-1,3-dihydro-indol-2-one (Compound 124)
     5-chloro-3-(3,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 125)
15
     5-chloro-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 126)
     5-Chloro-3-(2-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 127)
     5-chloro-3-(2,3-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 128)
     5-Chloro-3-(2,6-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 129)
     5-Chloro-3-(2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 130)
20
     5-chloro-3-(4-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 131)
     5-chloro-3-(4-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 132)
     5-chloro-3-naphtalen-1-ylmethylene-1,3-dihydro-indol-2-one (Compound 133)
     5-chloro-3-(4-bromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 134)
     5-chloro-3-(4-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 135)
25
     3-anthracen-9-ylmethylene-5-chloro-1,3-dihydro-indol-2-one (Compound 136)
     5-chloro-3-naphtalen-2-ylmethylene-1,3-dihydro-indol-2-one (Compound 137)
     5-chloro-3-(2,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 138)
     5-chloro-3-(2,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 139)
     5-chloro-3-(3,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 140)
30
     5-Chloro-3-(3,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 141)
     5-chloro-3-(3,5-di-tert-butyl-4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one
     (Compound 142)
     5-chloro-3-(3,4,5-trimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 143)
     3-benzylidene-5-Chloro-1,3-dihydro-indol-2-one (Compound 144)
     5-chloro-3-(3-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 145)
35
     5-chloro-3-(2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 146)
```

5-chloro-3-(2-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 147)

3-(3,5-dibromo-4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 148)

- 3-(3,4-difluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 149)
- 3-(2-hydroxy-naphtalen-1-ylmethylene)-1,3-dihydro-indol-2-one (Compound 150)
- 3-(4-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 151)
- 5 3-(3,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 152)
 - 3-(3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 153)
 - 3-(2-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 154)
 - 3-(3-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 155)
 - 3-(2,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 156)
- 3-(3,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 157)
 - 3-(3-bromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 158)
 - 3-(4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 159)
 - 3-(3-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 160)
 - 3-(2,4-dihydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 161)
- 5-chloro-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 162)
 - 3-(3,4,5-trimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 163)
 - 3-(3,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 164)
 - 3-(2,3-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 165)
 - 3-(2-methoxy-naphtalen-1-ylmethylene)-1,3-dihydro-indol-2-one (Compound 166)
- 20 3-(2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 167)
 - 3-(4-hydroxy-3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 168)
 - 3-(3-hydroxy-4-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 169)
 - 5-bromo-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 170)
 - 6-bromo-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 171)
- 7-bromo-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 172)
 - 3-(2,5-dimethoxy-benzylidene)-6-fluoro-1,3-dihydro-indol-2-one (Compound 173)
 - 3-(2,5-dimethoxy-benzylidene)-5-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 174)
 - 5-amino-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 175)
- 30 6-chloro-5-(2-chloro-acetyl)-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 176)
 - 3-(2,5-dimethoxy-benzylidene)-5-hydroxy-1,3-dihydro-indol-2-one (Compound 177)
 - 3-(2,5-dimethoxy-benzylidene)-2-oxo-2,3-dihydro-1H-indole-5-carboxylic acid methyl ester (Compound 178)
- 35 3-(9-ethyl-9H-carbazol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 179)
 - 3-(2-hydroxy-3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 180)
 - 3-(2,5-dimethoxy-benzylidene)-4,5-difluoro-1,3-dihydro-indol-2-one (Compound 181)

```
3-(3,5-dichloro-2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 182)
```

- 3-(2,5-diethoxy-benzylidene)- 1,3-dihydro-indol-2-one (Compound 183)
- 3-(2,5-dihydroxy-benzylidene)- 1,3-dihydro-indol-2-one (Compound 184)
- 3-(2,4,5-trimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 185)
- 5 3-(9-methyl-9H-carbazol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 186)
 - 3-(2-hydroxy-5-trifluoromethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 187)
 - 3-(1H-indol-5-ylmethylene)-1,3-dihydro-indol-2-one (Compound 188)
 - 3-(1H-indol-4-ylmethylene)-1,3-dihydro-indol-2-one (Compound 189)
- 3-(1H-indol-7-ylmethylene)-1,3-dihydro-indol-2-one (Compound 190)
 - 3-(1,4-dimethyl-9H-carbazol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 191)
 - 3-(2-benzyloxy-4,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 192)
 - 3-(2,5-dichloro-benzylidene)- 1,3-dihydro-indol-2-one (Compound 193)
 - 3-(2,5-dimethoxy-benzylidene)-2-oxo-2,3-dihydro-1H-indole-7-carbonitrile (Compound
- 15 194)
 - 3-(2,5-dimethoxy-benzylidene)-6-methanesulfonyl-1,3-dihydro-indol-2-one (Compound 195)
 - 3-(2,5-dimethoxy-benzylidene)-2-oxo-2,3-dihydro-1H-indole-5-carbonitrile (Compound 196)
- 3-(2,5-dimethoxy-benzylidene)-6-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 197)
 - 3-(2,5-dimethoxy-benzylidene)-7-fluoro-1,3-dihydro-indol-2-one (Compound 198)
 - 3-(2,5-dimethoxy-benzylidene)-2-oxo-2,3-dihydro-1H-indole-6-carbonitrile (Compound 199)
- 6-chloro-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 200)
 - 3-(2,5-dibromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 201)
 - 3-(5-bromo-2-ethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 202)
 - 3-(5-bromo-2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 203)
 - 3-(2-fluoro-5-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 204)
- 30 3-(2,5-difluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 205)
 - 3-(2-chloro-5-nitro-benzylidene)-1,3-dihydro-indol-2-one (Compound 206)
 - 3-(2,5-bis-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 207)
 - 3-(2,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 208)
 - 3-(2-hydroxy-5-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 209)
- 35 3-(1H-indol-6-ylmethylene)-1,3-dihydro-indol-2-one (Compound 210)
 - 3-(2,5-dimethoxy-benzylidene)-5-fluoro-1,3-dihydro-indol-2-one (Compound 211)
 - 3-[4-(quinolin-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 212)

- 3-[4-(naphthalen-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 213)
- 3-[3,5-dichloro-2-(quinolin-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 214)
- 2-[4-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenoxy]-propionic acid (Compound
- 5 215)
 - 2-benzyl-3-butylamino-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-
 - benzenesulfonamide (Compound 216)
 - 2-benzyl-3-benzylamino-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-
 - benzenesulfonamide (Compound 217)
- 3-[(furan-2-ylmethyl)-amino]-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2-phenoxy-benzenesulfonamide (Compound 218)
 - 3-methylamino-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2-phenoxy-benzenesulfonamide (Compound 219)
 - 2-benzyl-3-ethoxy-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzenesulfonamide
- 15 (Compound 220)
 - [2-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenoxy]-acetic acid (Compound 221)
 - 3-[4-(6-methyl-pyridin-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 222)
 - 4-[4-(5-chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-piperazine-1-
- 20 carbaldehyde (Compound 223)
 - 5-chloro-3-(4-isopropyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 224)
 - 4-[4-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-piperazine-1-carbaldehyde (Compound 225)
 - 3-[5-methoxy-2-(2-morpholin-4-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one;
- 25 hydrochloride (Compound 258)
 - 3-[5-methoxy-2-(2-piperidin-1-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one; hydrochloride (Compound 259)
 - 3-(2,5-dimethoxy-benzylidene)-5,7-difluoro-1,3-dihydro-indol-2-one (Compound 260)
 - 3-[4-(1-quinolin-4-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 261)
- 30 3-[4-(pyridin-4-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 262) and 5-amino-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one; methanesulfonic acid (Compound 265)
 - 26. The use of claim 1 wherein the compound is a compound of general formula IV

163

к_р

ΙV

R₄

 R_{3}

5

10

15

20

25

wherein R₁, R₂, R₃, R₄, R₅, R₆ and X are as indicated in claim 1,

 R_1 ", R_2 ", R_3 ", R_4 " and R_5 " are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C₁₋₁₂-alkyl, C₂₋₁₂alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-1} $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-₆-alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, - OR_{12} , $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$ $S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, $\mathsf{C}_{\mathsf{1-6}} ext{-alkyl},$ C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -

optionally substituted with heterocyclyl, heteroaryl or -C(O)OR₂₃, wherein R₂₃ is

hydrogen, C_{1-6} alkyl, aryl, heteroaryl or heterocyclyl.

 $C(O)OR_{18}$ or $S(O)_2R_{18}$, wherein R_{18} is as indicated above.

164

PCT/DK2004/000875

WO 2005/058309

5

20

- 27. The use of claim 26 wherein, in the compound of formula IV, R₂, R₃, R₄, R₅, R₆ and
 X are as indicated in claim 2, and R₁", R₂", R₃", R₄" and R₅" are the same or different and independently selected from the group consisting of with C₁₋₁₀alkyl, C₁₋₁₀alkoxy, aryl, heteroaryl, aryloxy, C₁₋₁₀alkylaryl, C₁₋₁₀alkylaryloxy, halogen, trihalomethyl, a sugar residue, S(O)R₁₈, S(O)₂R₁₈, S(O)₂NR₁₈R₁₉, S(O)₃R₁₈, SR₁₈, NO₂, NR₁₈R₁₉, OR₁₈, CN, CH₂OH, C(O)R₁₈, C(O)OR₁₈, OC(O)R₁₈, NHC(O)R₁₈, (CH₂)_nC(O)₂R₁₈ and C(O)NR₁₈R₁₉, wherein R₁₈ is hydrogen, C₁₋₆alkyl, heteroaryl or aryl, said C₁₋₆ alkyl, heteroaryl or aryl being optionally substituted with hydroxy or NR₂₆R₂₇, wherein R₂₆ and R₂₇ are independently hydrogen or C₁₋₆ alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring, R₁₉ is hydrogen, C₁₋₆alkyl or aryl, and n is 0-3; and R₆" is hydrogen, C₁₋₆alkyl, heteroaryl, heteroaryl-C₁₋₆alkyl, C(O)R₁₈,
 - 28. The use of claim 26 wherein, in the compound of formula IV, $R_5{''}$ is hydrogen or C_{1-6} alkyl.
- 25 29. The use of claim 26 wherein, in the compound of formula IV, R_6'' is hydrogen or C_{1-6} alkyl.
 - 30. The use of claim 26 wherein, in the compound of formula IV, R_5 is hydrogen, hydroxy, $C(O)R_{14}$ or $C(O)OR_{14}$, wherein R_{14} is as defined in claim 1.
 - 31. The use of claim 26 wherein the compound is selected from the group consisting of 3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 57) [3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-acetic acid methyl ester (Compound 24)
- 35 [3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-acetic acid ethyl ester (Compound 25)
 - [3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-acetic acid (Compound 26)

- 3-[3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-propionic acid ethyl ester (Compound 27)
- 3-[3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-propionic acid (Compound 28)
- 5 3-[1-(2-chloro-thiazol-5-ylmethyl)-1H-indol-3-ylmethylene]-1,3-dihydro-indol-2-one (Compound 29)
 - 3-(1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 30)
 - 3-(1-propyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 31)
 - $3\hbox{-}(1H\hbox{-}indol\hbox{-} 3\hbox{-}yImethylene)\hbox{-} 2\hbox{-}oxo\hbox{-} 2,3\hbox{-}dihydro\hbox{-}indole\hbox{-} 1\hbox{-}carboxylic acid } \textit{tert}\hbox{-}butyl \ ester$
- 10 (Compound 40)
 - 1-hydroxy-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 47)
 - (1-Methyl-1H-indol-3-yl)-(2-oxo-1,2-dihydro-indol-3-ylidene)-acetic acid (Compound 56)
 - 3-(2-phenyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 58)
- 3-(1-methyl-2-phenyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 59)
 - 3-[2-(4-chloro-phenyl)-1H-indol-3-ylmethylene]-1,3-dihydro-indol-2-one (Compound 60)
 - 3-(2-naphthalen-2-yl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 61)
- 20 5-chloro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 62)
 - 3-(5-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 63)
 - 5,7-difluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 64)
 - 5-bromo-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 65)
 - 6-fluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 66)
- 25 6-bromo-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 67)
 - 5-hydroxy-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 68)
 - 3-(4,5,6,7-tetrafluoro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 69)
 - 3-(6-fluoro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 70)
- 30 3-[2-(4-chloro-phenyl)-5-nitro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 71)
 - 7-bromo-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 72)
 - 3-(6-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 73)
 - 3-(7-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 74)
- 35 3-(2-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 75)
 - 3-(5-fluoro-1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 76)
 - 3-(5-fluoro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 77)

3-(5-methoxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 78)

3-(5-benzyloxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 79)

3-(6-methoxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 80)

3-(5-methoxy-1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 81)

3-(6-methoxy-1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 82)

3-(4-benzyloxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 83)

3-(1H-indol-3-ylmethylene)-2-oxo-2,3-dihydro-1H-indol-6-carbonitrile (Compound 84)

3-(1H-indol-3-ylmethylene)-2-oxo-2,3-dihydro-1H-indol-7-carbonitrile (Compound 85)

3-(1H-indol-3-ylmethylene)-2-oxo-2,3-dihydro-1H-indol-5-carbonitrile (Compound 86)

7-fluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 87)

3-(1H-indol-3-ylmethylene)-6-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 88)

3-(1H-indol-3-ylmethylene)-6-methanesulfonyl-1,3-dihydro-indol-2-one (Compound

15 89)

20

25

5

10

3-(1H-indol-3-ylmethylene)-5-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 90)

3-(1H-indol-3-ylmethylene)-5,6-dimethoxy-1,3-dihydro-indol-2-one (Compound 91)

4,5-difluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 92)

3-(1H-indol-3-ylmethylene)-5-methoxy-1,3-dihydro-indol-2-one (Compound 92A)

6-chloro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 93) and 3-[1-Methyl-2-(4-methyl-piperazin-1-yl)-1H-indol-3-ylmethylene]-1,3-dihydro-indol-2-one (Compound 94)

32. A method of preventing, treating or ameliorating multiple sclerosis, or delaying the onset of or reducing the relapse rate in multiple sclerosis, the method comprising administering, to a patient in need thereof, a pharmacologically effective amount of a compound of general formula I

30 wherein

 R_1 , R_2 , R_3 and R_4 are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} -

alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different 5 and independently selected from the group consisting of hydrogen, C_{1-12} -alkyl, C_{2-12} alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-1} ₁₂-alkadienyl, C₆₋₁₂-alkatrienyl, C₂₋₁₂-alkynyl, aryl, heteroaryl, carbocyclyl and 10 heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-₆-alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, - OR_{12} , $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$ $S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or 15 different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -20 alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH2, S(O)NH2, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, 25 hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂; X is O or S;

 R_5 is hydrogen, hydroxy, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, C_{1-6} alkoxy, carbonyl, carboxy, amido, thioamido, guanyl, guanidinyl, ureidyl, sulfonyl, trihalomethanesulfonyl, $-C(O)OR_{14}$, $-C(O)R_{14}$, wherein R_{14} is hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, cycloalkyl or aryl; R_6 is hydrogen, C_{1-6} alkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halogen, $-OR_7$, $-C(O)R_7$, $-C(O)OR_7$, $-NR_7R_8$, $S(O)_2NR_7R_8$, wherein R_7 and R_8 are independently hydrogen, C_{1-6} alkyl, aryl or heterocyclyl, said C_{1-6} alkyl or heterocyclyl being optionally substituted by heterocyclyl, $-OR_7$, $-C(O)R_7$ or $C(O)OR_7$, the zigzag line indicating that the group denoted R_6 is present as the E- or Z-isomer;

30

A is phenyl or a monocyclic or bicyclic heteroaryl ring, optionally substituted at one or more positions with hydrogen, halogen, trihalomethyl, C₁₋₁₂-alkyl, C₂₋₁₂-alkenyl, C₄₋₁₂alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ 5 $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C 1-12-alkyl, C2-12alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-1} 10 $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-₆-alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -15 OR_{12} , $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$ $S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, C $_{1-6}$ -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached 20 form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C₁₋₄ alkyl, C₁₋₄ alkoxy, nitro, cyano, amino, oxo, 25 halogen, trihalomethyl, C₁₋₄ alkylthio, C₁₋₄ alkylamino, C₁₋₄ alkoxycarbonyl, carboxy, -CONH₂, S(O)NH₂, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂; the zigzag line indicating that the group denoted A is present as the E- or Z-isomer; 30 or pharmaceutically acceptable salts thereof.

33. The method of claim 32, wherein, in the compound of formula I, X is O or S;

R₁, R₂, R₃ and R₄ are the same or different and independently selected from the group consisting of hydrogen, C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen, trihalomethyl, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2NR_{18}R_{19}$, $S(O)_3R_{18}$,

 SR_{18} , NO_2 , $NR_{18}R_{19}$, OH, CN, $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, $NHC(O)R_{18}$, $(CH_2)_nC(O)_2R_{18}$ and $C(O)NR_{18}R_{19}$, wherein R_{18} is hydrogen, C_{1-6} alkyl, heteroaryl or aryl, said C_{1-6} alkyl, heteroaryl or aryl being optionally substituted with hydroxy or $NR_{26}R_{27}$, wherein R_{26} and R_{27} are independently hydrogen or C_{1-6} alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring, R_{19} is hydrogen, C_{1-6} alkyl or aryl, and n is 0-3;

A is phenyl or a monoclyclic or bicyclic heteroaryl ring selected from the group consisting of pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, oxazole, isoxazole, thiazole, isothiazole, 2-sulfonylfuran, 4-alkylfuran, 1,2,3-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3,4-oxatriazole, 1,2,3,5-oxatriazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,3,4-thiatriazole, 1,2,3,5-thiatriazole, tetrazole and indole, optionally substituted at one or more positions with C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen, trihalomethyl, a sugar residue, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2NR_{18}R_{19}$, $S(O)_3R_{18}$, SR_{18} , SR_{18} , SR_{19} ,

15 CH_2OH , $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, $NHC(O)R_{18}$, $(CH_2)_nC(O)_2R_{18}$ and $C(O)NR_{18}R_{19}$, wherein R_{18} , R_{19} and n are as indicated above;

 R_5 is hydrogen or $C_{1\text{-}6}$ alkyl; and R_6 is hydrogen.

5

- 20 34. The method of claim 33 wherein, in the compound of formula I, R₅ is hydrogen.
 - 35. The method of claim 33 wherein, in the compound of formula I, X is oxygen.
- 36. The method of claim 33 wherein, in the compound of formula I, R_6 is hydrogen or COOH.
 - 37. The method of claim 33 wherein, in the compound of formula I, R_1 , R_2 , R_3 and R_4 are the same or different and independently selected from hydrogen and C_{1-6} alkyl.
- 38. The method of claim 33 wherein, in the compound of formula I, A is pyrrole, phenyl or indole, said pyrrole, phenyl or indole being optionally substituted at one or more positions with C₁₋₁₀alkyl, C₁₋₁₀alkoxy, aryl, heteroaryl, aryloxy, C₁₋₁₀alkylaryl, C₁₋₁₀alkylaryloxy, halogen, trihalomethyl, a sugar residue, S(O)R₁₈, S(O)₂R₁₈, S(O)₂R₁₈, S(O)₂R₁₈, S(O)₃R₁₈, SR₁₈, NO₂, NR₁₈R₁₉, OR₁₈, CN, CH₂OH, C(O)R₁₈, C(O)OR₁₈, OC(O)R₁₈, NHC(O)R₁₈, (CH₂)_nC(O)₂R₁₈ and C(O)NR₁₈R₁₉, wherein R₁₈, R₁₉ and n are as indicated in claim 33.

5

10

20

25

30

- 39. The method of claim 38 wherein, in the compound of formula I, A is pyrrole substituted at position 3 and 5 with C₁₋₆alkyl, or at position 3 with C₁₋₆alkyl and at position 5 with CH₂OH, COOH or a sugar residue, or or at position 3 and 5 with C₁₋₆alkyl and at position 4 with halogen, or at position 5 with $C(0)0-C_{1-6}$ alkyl, and at position 3 with C₁₋₆alkyl.
- 40. The method of claim 38 wherein, in the compound of formula I, A is phenyl substituted at position 2 and 5 with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, C_{1-6} alkyl-NR₂₆R₂₇, $NH-C_{1-6}$ alkyl- $NR_{26}R_{27}$ or $O-C_{1-6}$ alkyl- $NR_{26}R_{27}$, wherein R_{26} and R_{27} are independently hydrogen or C₁₋₆ alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring.
- 41. The method of claim 38 wherein, in the compound of formula I, A is indole.
- 15 42. The the method of claim 38 wherein the compound is 3-(3,5-dimethyl-1H-pyrrol-2yl-methylene)-1,3-dihydro-indol-2-one.
 - 43. The method of claim 38 wherein the compound is 3-(2,5-dimethoxy-benzylidene)-1,3-dihydroindol-2-one.
 - 44. The method of claim 38 wherein the compound is 3-(1H-indol-3-ylmethylene)-1,3dihydroindol-2-one.
 - 45. The method of claim 32 wherein the compound is a compound of general formula II

wherein R₁, R₂, R₃, R₄, R₅, R₆ and X are as indicated in claim 1, R_8 and R_4 are independently hydrogen, hydroxy, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, C_{1-6} alkoxy, carbonyl, carboxy, amido, thioamido, guanyl, guanidinyl, ureidyl, sulfonyl, trihalomethanesulfonyl, -PO(OR)(OR'), wherein R and R' are independently selected from hydrogen or C_{1-6} alkyl, , -OR₁₀, -

 $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $OC(O)OR_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-OC(O)NR_{10}R_{11}$, $-OC(O)NR_{1$ $OC(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$, $-S(O)OR_{10}$ and CH_2 -aryl- OR_{10} , wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C₁₋₁₂-alkyl, C₂₋₁₂-alkenyl, C₄₋₁₂alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, 5 or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -10 alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR₁₂, -C(O)R₁₂, - $C(O)OR_{12}$, $-OC(O)R_{12}$, $OC(O)OR_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-OC(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$, $-S(0)R_{12}$, $-S(0)_2R_{12}$, $-S(0)_2NR_{12}R_{13}$ and $-S(0)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, 15 C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C₁₋₆-alkyl, C₂₋₆-alkenyl, C₄₋₆alkadienyl, C₂₋₆-alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from 20 the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂, -S(O)NH₂, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, 25 hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C₁₋₄ alkylamino, C₁₋₄alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂; - $C(R_{24}R_{25})-OR_{16}$ or $-OC(O)R_{16}$, wherein R_{16} is hydrogen, C_{1-6} alkyl, aralkyl, acyl or -PO(OR)(OR'), $-C(R_{24}R_{25})-NR_{26}R_{27}$, wherein R_{24} is hydrogen, C_{1-6} alkyl or aryl, R_{25} is hydrogen, and R₂₆ and R₂₇ are independently hydrogen or C₁₋₆ alkyl or, together with 30 the nitrogen atom to which they are attached, form a heteroaryl or heteroaryl ring optionally substituted with hydrogen, hydroxy, C₁₋₄ alkyl, C₁₋₄ alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, $-CONH_2$ or $-S(O)NH_2$; $-NR_{20}R_{21}$, $-O(CH_2)_mNR_{20}R_{21}$, $-N(CH_2)_mNR_{20}R_{21}$, - $O(CH_2)_mC(O)R_{22}$, $-N(CH_2)_mC(O)R_{22}$, wherein m is 0, 1, 2 or 3, R_{20} and R_{21} are the same 35 or different and independently selected from the group consisting of hydrogen, C_{1-6} alkyl, cycloalkyl, aryl, carbonyl, acetyl, trihalomethylcarbonyl, carboxy, sulfonyl or trihalomethanesulfonyl, or R_{20} and R_{21} together with the nitrogen atom to which they

are attached form a heterocyclic or heteroaryl ring, and R_{22} is hydroxy, C_{1-6} alkoxy, aryloxy, amino, hydroxylamino, carboxy or $-NR_{20}R_{21}$, wherein R_{20} and R_{21} are as indicated above; and

10

15

20

25

30

35

 R_1' , R_2' and R_3' are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C₁₋₁₂-alkyl, C₂₋₁₂-alkenyl, C₄₋₁₂alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C₁₋₁₂-alkyl, C₂₋₁₂alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-1} $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-₆-alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, - OR_{12} , $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$ $S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{12} and R_{13} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-16} -alkyl, C_{2-16} -alkenyl, C_{4-6} -alkadienyl, C_{2-} 6-alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH2, S(O)NH2, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4}

46. The method of claim 45 wherein, in the compound of formula II, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and X are as indicated in claim 33, and R_1 , R_2 and R_3 are the same or different and independently selected from the group consisting of with C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen, trihalomethyl, a sugar

alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂.

residue, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2NR_{18}R_{19}$, $S(O)_3R_{18}$, SR_{18} , NO_2 , $NR_{18}R_{19}$, OR_{18} , CN, CH_2OH , $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, $NHC(O)R_{18}$, $(CH_2)_nC(O)_2R_{18}$ and $C(O)NR_{18}R_{19}$, wherein R_{18} is hydrogen, $C_{1\text{-}6}$ alkyl, heteroaryl or aryl, said $C_{1\text{-}6}$ alkyl, heteroaryl or aryl being optionally substituted with hydroxy or $NR_{26}R_{27}$, wherein R_{26} and R_{27} are independently hydrogen or $C_{1\text{-}6}$ alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring, R_{19} is hydrogen, $C_{1\text{-}6}$ alkyl or aryl, and n is 0-3.

5

10

- 47. The method of claim 46 wherein, in the compound of formula II, R_1 , R_2 , R_3 and R_4 are the same or different and independently selected from hydrogen, halogen and C_{1-6} alkyl, or R_2 is hydroxy or heteroaryl, such as pyridyl, or a group $C(O)R_{20}$, wherein R_{20} is heteroaryl, such as pyridyl or thienyl, and R_1 , R_3 and R_4 are hydrogen.
- 48. The method of claim 46 wherein, in the compound of formula II, R₁', R₂' and R₃' are the same or different and independently selected from hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy, CH₂OH, C(O)OR₁₈ or C(O)NR₁₈R₁₉, wherein R₁₈ and R₁₉ are as defined in claim 46.
- 49. The method of claim 45 or 46 wherein, in the compound of formula II, R_1' and R_3' are both C_{1-6} alkyl, in particular methyl, and R_2' is hydrogen, or wherein R_1' is C_{1-6} alkyl and R_3' is C_{1-6} alkoxy, CH_2OH , $C(O)OR_{18}$ or $C(O)NR_{18}R_{19}$, wherein R_{18} and R_{19} are as defined in claim 46, or wherein R_1' and R_3' are both C_{1-6} alkyl, in particular methyl, and R_2' is halogen, in particular chloro or bromo, or wherein R_1' is C_{1-6} alkyl and R_3' is $C(O)O-C_{1-6}$ alkyl, or wherein R_1' is C_{1-6} alkyl and R_3' is $C(O)NH-C_{1-6}$ alkyl substituted with hydroxy.
 - 50. The method of claim 45 wherein, in the compound of formula II, R_8 and R_4 ' are independently hydrogen, hydroxy, -PO(OR)(OR'), -OR₁₀, -C(O)OR₁₀, -C(O)NR₁₀R₁₁, -C(O)R₁₄, -C(R₂₄R₂₅)OR₁₆, -OC(O)R₁₆ or -C(R₂₄R₂₅)NR₂₆R₂₇, wherein R, R', R₁₀, R₁₁, R₁₄, R₁₆, R₂₄, R₂₅, R₂₆, R₂₇ are as defined in claim 45.
 - 51. The method of claim 45 wherein the compound is selected from the group consisting of
- 35 3-(3,5-Dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 226) 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid ethyl ester (Compound 01)

- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-ethyl)-amide (Compound 02)
- 3-(5-hydroxymethyl-3-methyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 03)
- 5 1-[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-2-ylmethyl)-pyrridinum; chloride (Compound 04)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (Compound 05)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-
- 10 diethylamino-ethyl)-amide (Compound 06)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (2-methoxy-ethyl)-amide (Compound 07)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid [3-(1-formyl-piperidin-4-yl)-propyl]-amide (Compound 08)
- 4-{[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carbonyl]-amino}-butyric acid methyl ester (Compound 09)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (6-hydroxy-hexyl)-amide (Compound 10)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid
- 20 cyclohexylmethyl-amide (Compound 11)

phenyl-butyl)-amide (Compound 17)

- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (4-hydroxy-butyl)-amide (Compound 12)
- $6-\{[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carbonyl]-amino}-hexanoic acid ethyl ester (Compound 13)$
- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (tetrahydro-furan-2-ylmethyl)-amide (Compound 14)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid [2-(1H-indol-3-yl)-ethyl]-amide (Compound 15)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (3-
- phenyl-propyl)-amide (Compound 16)4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (4-
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid (5-hydroxy-pentyl)-amide (Compound 18)
- 4-{[4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carbonyl]-amino}-butyric acid ethyl ester (Compound 19)

- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid [1-(4-chloro-phenyl)-cyclopropylmethyl]-amide (Compound 20)
- 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid benzyl ester (Compound 21)
- 5 3-(4-bromo-3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 22)
 - 3-(4-chloro-3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 23)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-(4-methoxy-benzyl)-1,3-dihydro-indol-2-
- 10 one (Compound 41)
 - 3-(3,5-Dimethyl-1H-pyrrol-2-ylmethylene)-1-methyl-1,3-dihydro-indol-2-one (Compound 42)
 - acetic acid 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-indol-1-ylmethyl ester (Compound 43)
- 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-hydroxy-1,3-dihydro-indol-2-one (Compound 45)
 - 3-(4-bromo-3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-hydroxy-1,3-dihydro-indol-2-one (Compound 46)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-methoxy-1,3-dihydro-indol-2-one
- 20 (Compound 49)
 - acetic acid 3-(3,5-dimethyl-1*H*-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-indol-1-yl ester (Compound 51)
 - 2-{3-[3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-indol-1-yloxy]-propyl}-isoindole-1,3-dione (Compound 52)
- 25 2,4-Dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (Compound 227)
 - 5-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylamino-ethyl)-amide (Compound 228)
 - (3,5-dimethyl-1H-pyrrol-2-yl)-(2-oxo-1,2-dihydro-indol-3-ylidene)-acetic acid
- 30 (Compound 229)
 - 3-[2,4-Dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]-propionic acid (Compound 230)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-4-iodo-1,3-dihydro-indol-2-one (Compound 231)
- 35 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-methoxy-1,3-dihydro-indol-2-one (Compound 232)

- 5-chloro-3-(3-methoxy-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 233)
- 3-(3-methoxy-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 234)
- 3-[5-(4-chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2,4-dimethyl-1H-pyrrol-3-yl]-
- 5 propionic acid (Compound 235)
 - 4-chloro-3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 236)
 - 4-chloro-3-(3-methoxy-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 237)
- 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-2-oxo-2,3-dihydro-1H-indole-4-carboxylic acid (Compound 238)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-pyridin-3-yl-1,3-dihydro-indol-2-one (Compound 239)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-pyridin-3-yl-1,3-dihydro-indol-2-one;
- methanesulfonic acid (Compound 240)
 - 5-pyridin-3-yl-3-(1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 241)
 - 5-pyridin-3-yl-3-(1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one; methanesulfonic acid (Compound 242)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-hydroxy-1,3-dihydro-indol-2-one
- 20 (Compound 243)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-5-fluoro-1,3-dihydro-indol-2-one (Compound 244)
 - 3-(1-methyl-1H-indol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 245)
 - $2,4-dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1 H-pyrrole-3-carboxylic\ acid$
- 25 ethyl ester (Compound 246)
 - 4-methyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrole-2-carboxylic acid pyridin-4-ylmethyl ester (Compound 263)
 - (3,5-dimethyl-1H-pyrrol-2-yl)-(2-oxo-1,2-dihydro-indol-3-ylidene)-acetic acid benzyl ester (Compound 264)
- 30 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-pyrrolidin-1-ylmethyl-1,3-dihydro-indol-2-one (Compound 266)
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-(4-methyl-piperazin-1-ylmethyl)-1,3-dihydro-indol-2-one (Compound 267) and
 - 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1-piperidin-1-ylmethyl-1,3-dihydro-indol-2-ylmethyl-1,3-dihy
- one (Compound 268)
 - 52. The method of claim 32, wherein the compound is a compound of formula III

177

5

10

15

20

25

wherein R₁, R₂, R₃, R₄, R₅, R₆ and X are as indicated in claim 1, and R_1 ", R_2 ", R_3 ", R_4 " and R_5 " are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-12} alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR10, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C_{1-12} -alkyl, C_{2-12} alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-1} $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-6-alkyl, C2-6-alkenyl, C4-6-alkadienyl, C2-6-alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, halogen, $-OR_{12}$, $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-R_{12}R_{13}$, SR_{12} , $-S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R₁₂ and R₁₃, together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂, -S(O)NH₂, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} alkylthio, C₁₋₄ alkylamino, C₁₋₄ alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂.

5

- 53. The method of claim 52 wherein, in the compound of formula III, R_2 , R_3 , R_4 , R_5 , R_6 and X are as indicated in claim 31, and R_1'' , R_2'' , R_3'' , R_4'' and R_5'' are the same or different and independently selected from the group consisting of with C_{1-10} alkyl, C_{1-10} alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen,
- trihalomethyl, a sugar residue, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2NR_{18}R_{19}$, $S(O)_3R_{18}$, SR_{18} , NO_2 , 10 $NR_{18}R_{19}$, OR_{18} , CN, CH_2OH , $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, $NHC(O)R_{18}$, $(CH_2)_nC(O)_2R_{18}$ and C(O)NR₁₈R₁₉, wherein R₁₈ is hydrogen, C_{1-6} alkyl, heteroaryl or aryl, said C_{1-6} alkyl, heteroaryl or aryl being optionally substituted with hydroxy or NR₂₆R₂₇, wherein R₂₆ and R_{27} are independently hydrogen or C_{1-6} alkyl or, together with the nitrogen atom to which they are attached, form a heteroaryl or heterocyclic ring, R_{19} is hydrogen, C_{1-6} 15 alkyl or aryl, and n is 0-3.
 - 54. The method of claim 53 wherein, in the compound of formula III, R_2 " and R_5 " are the same or different and independently are C_{1-6} alkyl, in particular methyl, or C_{1-6} alkoxy, in particular methoxy, or halogen, in particular chloro or bromo.
 - 55. The method of claim 52 wherein, in the compound of formula III, R₅ is hydrogen, hydroxy, $C(O)R_{14}$ or $C(O)OR_{14}$, wherein R_{14} is as defined in claim 32.
- 56. The method of claim 52, wherein the compound is selected from the group 25 consisting of
 - 3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 110)
 - 3-(5-dimethylaminomethyl-2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 32)
- 3-{2-[(2-dimethylamino-ethyl)-methyl-amino]-5-methoxy-benzylidene}-1,3-dihydro-30 indol-2-one (Compound 33)
 - 3-{4-[(2-dimethylamino-ethyl)-methyl-amino]-3',5'-dimethyl-biphenyl-3-ylmethylene}-1,3-dihydro-indol-2-one (Compound 34)
 - 3-(2-dimethylaminomethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 35)
- 35 3-[2-(2-diethylamino-ethoxy)-5-methoxy-benzylidene]-1,3-dihydro-indol-2-one (Compound 36)

3-[2-(2-diethylamino-ethoxy)-5-methoxy-benzylidene]-1,3-dihydro-indol-2-one; hydrochloride (Compound 37)

- 3-[5-methoxy-2-(2-morpholin-4-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 38)
- 5 3-[5-methoxy-2-(2-piperidin-1-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 39)
 - 1-acetyl-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 44)
 - 3-(2,5-dimethoxy-benzylidene)-1-hydroxy-1,3-dihydro-indol-2-one (Compound 48)
 - 3-(2,5-dimethoxy-benzylidene)-1-methoxy-1,3-dihydro-indol-2-one (Compound 50)
- 3-(phenyl-4-tolyl-methylene)-1,3-dihydro-indol-2-one (Compound 53)
 - 3-[bis-(4-methoxy-phenyl)-methylene]-1,3-dihydro-indol-2-one (Compound 54)
 - 3-[1-(2,5-dimethoxy-phenyl)-ethylidene]-1,3-dihydro-indol-2-one (Compound 55)
 - 3-(4-hydroxy-3,5-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 95)
 - 3-(3,5-di-tert-butyl-4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 96)
- 3-(4-bromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 97)
 - 3-(2-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 98)
 - 3-(2,4-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 99)
 - 3-(2,6-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 100)
 - 3-(3,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 101)
- 20 3-(4-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 102)
 - 3-(2,4-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 103)
 - 3-(2,5-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 104)
 - 3-(2,6-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 105)
 - 3-benzylidene-1,3-dihydro-indol-2-one (Compound 106)
- 25 3-(4-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 107)
 - 3-(2,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 108)
 - 3-(3,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 109)
 - 3-(3,4-dimethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 111)
 - 3-naphtalen-2-ylmethylene-1,3-dihydro-indol-2-one (Compound 112)
- 30 3-naphtalen-1-ylmethylene-1,3-dihydro-indol-2-one (Compound 113)
 - 3-(2,3-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 114)
 - 3-(3-nitro-benzylidene)-1,3-dihydro-indol-2-one (Compound 115)
 - 3-(2-fluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 116)
 - 3-(3-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 117)
- 35 3-(3-fluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 118)
 - 3-(4-fluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 119)
 - 3-anthracen-9-ylmethylene-1,3-dihydro-indol-2-one (Compound 120)

```
3-(5-bromo-2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 121)
     3-(2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 122)
     5-chloro-3-(4-isopropyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 123)
     5-chloro-3-(4-dimethylamino-benzylidene)-1,3-dihydro-indol-2-one (Compound 124)
     5-chloro-3-(3,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 125)
 5
     5-chloro-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 126)
     5-Chloro-3-(2-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 127)
     5-chloro-3-(2,3-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 128)
     5-Chloro-3-(2,6-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 129)
10
     5-Chloro-3-(2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 130)
     5-chloro-3-(4-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 131)
     5-chloro-3-(4-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 132)
     5-chloro-3-naphtalen-1-ylmethylene-1,3-dihydro-indol-2-one (Compound 133)
     5-chloro-3-(4-bromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 134)
     5-chloro-3-(4-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 135)
15
     3-anthracen-9-ylmethylene-5-chloro-1,3-dihydro-indol-2-one (Compound 136)
     5-chloro-3-naphtalen-2-ylmethylene-1,3-dihydro-indol-2-one (Compound 137)
     5-chloro-3-(2,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 138)
     5-chloro-3-(2,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 139)
20
     5-chloro-3-(3,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 140)
     5-Chloro-3-(3,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 141)
     5-chloro-3-(3,5-di-tert-butyl-4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one
     (Compound 142)
     5-chloro-3-(3,4,5-trimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 143)
25
     3-benzylidene-5-Chloro-1,3-dihydro-indol-2-one (Compound 144)
     5-chloro-3-(3-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 145)
     5-chloro-3-(2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 146)
     5-chloro-3-(2-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 147)
     3-(3,5-dibromo-4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 148)
30
     3-(3,4-difluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 149)
     3-(2-hydroxy-naphtalen-1-ylmethylene)-1,3-dihydro-indol-2-one (Compound 150)
     3-(4-methyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 151)
     3-(3,4-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 152)
     3-(3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 153)
35
     3-(2-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 154)
     3-(3-chloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 155)
```

3-(2,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 156)

```
3-(3,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 157)
```

- 3-(3-bromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 158)
- 3-(4-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 159)
- 3-(3-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 160)
- 3-(2,4-dihydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 161) 5
 - 5-chloro-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 162)
 - 3-(3,4,5-trimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 163)
 - 3-(3,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 164)
 - 3-(2,3-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 165)
- 3-(2-methoxy-naphtalen-1-ylmethylene)-1,3-dihydro-indol-2-one (Compound 166) 10
 - 3-(2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 167)
 - 3-(4-hydroxy-3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 168)
 - 3-(3-hydroxy-4-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 169)
 - 5-bromo-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 170)
- 15 6-bromo-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 171)
 - 7-bromo-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 172)
 - 3-(2,5-dimethoxy-benzylidene)-6-fluoro-1,3-dihydro-indol-2-one (Compound 173)
 - 3-(2,5-dimethoxy-benzylidene)-5-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 174)
- 5-amino-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 175) 20
 - 6-chloro-5-(2-chloro-acetyl)-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 176)
 - 3-(2,5-dimethoxy-benzylidene)-5-hydroxy-1,3-dihydro-indol-2-one (Compound 177)
 - 3-(2,5-dimethoxy-benzylidene)-2-oxo-2,3-dihydro-1H-indole-5-carboxylic acid methyl
- 25 ester (Compound 178)
 - 3-(9-ethyl-9H-carbazol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 179)
 - 3-(2-hydroxy-3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 180)
 - 3-(2,5-dimethoxy-benzylidene)-4,5-difluoro-1,3-dihydro-indol-2-one (Compound 181)
 - 3-(3,5-dichloro-2-hydroxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 182)
- 30 3-(2,5-diethoxy-benzylidene)- 1,3-dihydro-indol-2-one (Compound 183)
 - 3-(2,5-dihydroxy-benzylidene)- 1,3-dihydro-indol-2-one (Compound 184)
 - 3-(2,4,5-trimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 185)
 - 3-(9-methyl-9H-carbazol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 186)
 - 3-(2-hydroxy-5-trifluoromethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound
- 35 187)
 - 3-(1H-indol-5-ylmethylene)-1,3-dihydro-indol-2-one (Compound 188)
 - 3-(1H-indol-4-ylmethylene)-1,3-dihydro-indol-2-one (Compound 189)

```
3-(1H-indol-7-ylmethylene)-1,3-dihydro-indol-2-one (Compound 190)
```

- 3-(1,4-dimethyl-9H-carbazol-2-ylmethylene)-1,3-dihydro-indol-2-one (Compound 191)
- 3-(2-benzyloxy-4,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 192)
- 3-(2,5-dichloro-benzylidene)- 1,3-dihydro-indol-2-one (Compound 193)
- 5 3-(2,5-dimethoxy-benzylidene)-2-oxo-2,3-dihydro-1H-indole-7-carbonitrile (Compound 194)
 - 3-(2,5-dimethoxy-benzylidene)-6-methanesulfonyl-1,3-dihydro-indol-2-one (Compound 195)
 - $3\hbox{-}(2,5\hbox{-}dimethoxy\hbox{-}benzylidene)\hbox{-}2\hbox{-}oxo\hbox{-}2,3\hbox{-}dihydro\hbox{-}1H\hbox{-}indole\hbox{-}5\hbox{-}carbonitrile\ (Compound))}$
- 10 196
 - 3-(2,5-dimethoxy-benzylidene)-6-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 197)
 - 3-(2,5-dimethoxy-benzylidene)-7-fluoro-1,3-dihydro-indol-2-one (Compound 198)
 - $3\hbox{-}(2,5\hbox{-}dimethoxy\hbox{-}benzylidene)\hbox{-}2\hbox{-}oxo\hbox{-}2,3\hbox{-}dihydro\hbox{-}1H\hbox{-}indole\hbox{-}6\hbox{-}carbonitrile\ (Compound)}$
- 15 199)
 - 6-chloro-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 200)
 - 3-(2,5-dibromo-benzylidene)-1,3-dihydro-indol-2-one (Compound 201)
 - 3-(5-bromo-2-ethoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 202)
 - 3-(5-bromo-2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 203)
- 20 3-(2-fluoro-5-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 204)
 - 3-(2,5-difluoro-benzylidene)-1,3-dihydro-indol-2-one (Compound 205)
 - 3-(2-chloro-5-nitro-benzylidene)-1,3-dihydro-indol-2-one (Compound 206)
 - 3-(2,5-bis-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 207)
 - 3-(2,4-dichloro-benzylidene)-1,3-dihydro-indol-2-one (Compound 208)
- 25 3-(2-hydroxy-5-methoxy-benzylidene)-1,3-dihydro-indol-2-one (Compound 209)
 - 3-(1H-indol-6-ylmethylene)-1,3-dihydro-indol-2-one (Compound 210)
 - 3-(2,5-dimethoxy-benzylidene)-5-fluoro-1,3-dihydro-indol-2-one (Compound 211)
 - 3-[4-(quinolin-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 212)
 - 3-[4-(naphthalen-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 213)
- 30 3-[3,5-dichloro-2-(quinolin-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 214)
 - 2-[4-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenoxy]-propionic acid (Compound 215)
 - 2-benzyl-3-butylamino-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-
- 35 benzenesulfonamide (Compound 216)
 - 2-benzyl-3-benzylamino-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzenesulfonamide (Compound 217)

3-[(furan-2-ylmethyl)-amino]-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2-phenoxy-benzenesulfonamide (Compound 218)

183

3-methylamino-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-2-phenoxy-benzenesulfonamide (Compound 219)

- 5 2-benzyl-3-ethoxy-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzenesulfonamide (Compound 220)
 - [2-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenoxy]-acetic acid (Compound 221) 3-[4-(6-methyl-pyridin-2-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound
- 4-[4-(5-chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-piperazine-1-carbaldehyde (Compound 223)

5-chloro-3-(4-isopropyl-benzylidene)-1,3-dihydro-indol-2-one (Compound 224) 4-[4-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-piperazine-1-carbaldehyde (Compound 225)

3-[5-methoxy-2-(2-morpholin-4-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one; hydrochloride (Compound 258)

3-[5-methoxy-2-(2-piperidin-1-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one; hydrochloride (Compound 259)

3-(2,5-dimethoxy-benzylidene)-5,7-difluoro-1,3-dihydro-indol-2-one (Compound 260)

3-[4-(1-quinolin-4-yl-ethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 261) 3-[4-(pyridin-4-ylmethoxy)-benzylidene]-1,3-dihydro-indol-2-one (Compound 262) and 5-amino-3-(2,5-dimethoxy-benzylidene)-1,3-dihydro-indol-2-one; methanesulfonic acid (Compound 265)

57. The method of claim 32 wherein the compound is a compound of general formula IV

ΙV

222)

wherein R₁, R₂, R₃, R₄, R₅, R₆ and X are as indicated in claim 1, $R_1{}''$, $R_2{}''$, $R_3{}''$, $R_4{}''$ and $R_5{}''$ are the same or different and independently selected from the group consisting of hydrogen, halogen, trihalomethyl, C₁₋₁₂-alkyl, C₂₋₁₂-alkenyl, C₄₋₁₂alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, 5 carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, -OR₁₀, - $C(O)R_{10}$, $-C(O)OR_{10}$, $OC(O)R_{10}$, $-NR_{10}R_{11}$, $-C(O)NR_{10}R_{11}$, $-NHC(O)R_{10}$, $-SR_{10}$, $-S(O)R_{10}$, $-S(O)R_{10$ $S(O)_2R_{10}$, $-S(O)_2NR_{10}R_{11}$ and $-S(O)OR_{10}$, wherein R_{10} and R_{11} are the same or different and independently selected from the group consisting of hydrogen, C_{1-12} -alkyl, C_{2-12} alkenyl, C_{4-12} -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, or wherein R_{10} and R_{11} , together with the nitrogen atom to which they 10 are attached form a heterocyclic or heteroaryl ring, each of C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-1} $_{12}$ -alkadienyl, C_{6-12} -alkatrienyl, C_{2-12} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, halogen, trihalomethyl, C1-15 $_{6}$ -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, hydroxy, carboxy, formyl, aryl, heteroaryl, carbocyclyl, heterocyclyl, amino, carbamoyl, cyano, guanidino, carbamido, - OR_{12} , $-C(O)R_{12}$, $-C(O)OR_{12}$, $-OC(O)R_{12}$, $-NR_{12}R_{13}$, $-C(O)NR_{12}R_{13}$, $-NHC(O)R_{12}$, $-SR_{12}$, - $S(O)R_{12}$, $-S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{13}$ and $-S(O)OR_{12}$, wherein R_{12} and R_{13} are the same or different and independently selected from the group consisting of hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} -alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl, 20 or wherein R₁₂ and R₁₃, together with the nitrogen atom to which they are attached form a heterocyclic or heteroaryl ring, each C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{4-6} -alkadienyl, C_{2-6} alkynyl, aryl, heteroaryl, carbocyclyl and heterocyclyl substituent being optionally substituted with one or more, same or different substituents selected from the group consisting of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, 25 halogen, trihalomethyl, C_{1-4} alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂, S(O)NH₂, aryl, heteroaryl, heterocyclyl or carbocyclyl, said aryl, heteroaryl, heterocyclyl or carbocyclyl being optionally substituted with one or more of hydrogen, hydroxy, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, cyano, amino, oxo, halogen, trihalomethyl, C_{1-4} 30 alkylthio, C_{1-4} alkylamino, C_{1-4} alkoxycarbonyl, carboxy, -CONH₂ or -S(O)NH₂; and R_6 " is hydrogen, heterocyclyl, heteroaryl, $-C(O)R_{23}$, $-S(O)_2R_{23}$, $-C(O)OR_{23}$ or C_{1-6} alkyl optionally substituted with heterocyclyl, heteroaryl or -C(O)OR23, wherein R23 is hydrogen, C₁₋₆alkyl, aryl, heteroaryl or heterocyclyl.

35 58. The method of claim 57 wherein, in the compound of formula IV, R_2 , R_3 , R_4 , R_5 , R_6 and X are as indicated in claim 31, and R_1 ", R_2 ", R_3 ", R_4 " and R_5 " are the same or different and independently selected from the group consisting of with C_{1-10} alkyl, C_{1-10}

 $_{10}$ alkoxy, aryl, heteroaryl, aryloxy, C_{1-10} alkylaryl, C_{1-10} alkylaryloxy, halogen, trihalomethyl, a sugar residue, $S(O)R_{18}$, $S(O)_2R_{18}$, $S(O)_2R_{18}R_{19}$, $S(O)_3R_{18}$, SR_{18} , NO_2 , $NR_{18}R_{19}$, OR_{18} , CN, CH_2OH , $C(O)R_{18}$, $C(O)OR_{18}$, $OC(O)R_{18}$, O

5

- 59. The method of claim 57 wherein, in the compound of formula IV, $R_5{''}$ is hydrogen or $C_{1\text{-}6}$ alkyl.
- 60. The method of claim 54 wherein, in the compound of formula IV, R_6'' is hydrogen or C_{1-6} alkyl.
 - 61. The method of claim 57 wherein, in the compound of formula IV, R_5 is hydrogen, hydroxy, $C(O)R_{14}$ or $C(O)OR_{14}$, wherein R_{14} is as defined in claim 32.
- 20 62. The method of claim 57 wherein the compound is selected from the group consisting of 3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 57) [3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-acetic acid methyl ester (Compound 24)
- [3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-acetic acid ethyl ester
 (Compound 25)
 [3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-acetic acid (Compound 26)
 3-[3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-propionic acid ethyl ester
 (Compound 27)
- 30 3-[3-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-indol-1-yl]-propionic acid (Compound 28)
 - 3-[1-(2-chloro-thiazol-5-ylmethyl)-1H-indol-3-ylmethylene]-1,3-dihydro-indol-2-one (Compound 29)
 - 3-(1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 30)
- 35 3-(1-propyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 31) 3-(1H-indol-3-ylmethylene)-2-oxo-2,3-dihydro-indole-1-carboxylic acid *tert*-butyl ester (Compound 40)

- 1-hydroxy-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 47) (1-Methyl-1H-indol-3-yl)-(2-oxo-1,2-dihydro-indol-3-ylidene)-acetic acid (Compound 56)
- 3-(2-phenyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 58)
- 5 3-(1-methyl-2-phenyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 59)
 - 3-[2-(4-chloro-phenyl)-1H-indol-3-ylmethylene]-1,3-dihydro-indol-2-one (Compound 60)
 - 3-(2-naphthalen-2-yl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 61)
- 5-chloro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 62)
 - 3-(5-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 63)
 - 5,7-difluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 64)
 - 5-bromo-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 65)
 - 6-fluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 66)
- 6-bromo-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 67)
 - 5-hydroxy-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 68)
 - 3-(4,5,6,7-tetrafluoro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 69)
 - 3-(6-fluoro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 70)
- 3-[2-(4-chloro-phenyl)-5-nitro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 71)
 - 7-bromo-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 72)
 - 3-(6-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 73)
 - 3-(7-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 74)
- 3-(2-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 75)
 - 3-(5-fluoro-1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 76)
 - 3-(5-fluoro-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 77)
 - 3-(5-methoxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 78)
 - 3-(5-benzyloxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 79)
- 30 3-(6-methoxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 80)
 - 3-(5-methoxy-1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 81)
 - 3-(6-methoxy-1-methyl-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 82)
- 35 3-(4-benzyloxy-1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 83)
 - 3-(1H-indol-3-ylmethylene)-2-oxo-2,3-dihydro-1H-indol-6-carbonitrile (Compound 84)
 - 3-(1H-indol-3-ylmethylene)-2-oxo-2,3-dihydro-1H-indol-7-carbonitrile (Compound 85)

3-(1H-indol-3-ylmethylene)-2-oxo-2,3-dihydro-1H-indol-5-carbonitrile (Compound 86)

- 7-fluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 87)
- 3-(1H-indol-3-ylmethylene)-6-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 88)
- 3-(1H-indol-3-ylmethylene)-6-methanesulfonyl-1,3-dihydro-indol-2-one (Compound 89)
- 5 89)
 3-(1H-indol-3-ylmethylene)-5-trifluoromethyl-1,3-dihydro-indol-2-one (Compound 90)
 - 3-(1H-indol-3-ylmethylene)-5,6-dimethoxy-1,3-dihydro-indol-2-one (Compound 91)
 - 4,5-difluoro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 92)
 - 3-(1H-indol-3-ylmethylene)-5-methoxy-1,3-dihydro-indol-2-one (Compound 92A)
- 6-chloro-3-(1H-indol-3-ylmethylene)-1,3-dihydro-indol-2-one (Compound 93) and 3-[1-Methyl-2-(4-methyl-piperazin-1-yl)-1H-indol-3-ylmethylene]-1,3-dihydro-indol-2-one (Compound 94)