Greg Ver Steeg¹ Chantal Tax³ Paul Thompson²

 1 Information Sciences Institute, University of Southern California 2 Imaging Genetics Center, University of Southern California ³CUBRIC, School of Psychology, Cardiff University

The TL;DR

Daniel Moyer^{1,2}

Background: Data have biases by collection site/scanner. If we combine data from multiple sites, we need to correct for site bias.

Idea: Compress our data so that it is uninformative of site. Desiderata:

"Find a representation z of x such that $I(z:s) - \lambda I(x:z)$ is minimal for tradeoff λ between compression and relevance."

Surprisingly, we can solve this optimization problem, giving us:

- 1. Site/scanner-invariant representations of images.
- 2. Reconstructed images with **bounded** info. about their original site/scanner.

Takehome Intution: Compression + Cond. Reconstruction → Harmonization

Details

We want a function from scan x to new scan x' that removes the original site information s and replaces it with s'.

Data Proc. Ineq.: Let $q: x \mapsto z$ and $p: z, s' \mapsto x'$. If $z \perp s$, then $x' \perp s$. Moreover, $I(x',s) \le I(z,s)$

So by reducing I(z,s), we can remove site information.

Further, if we let p depend on a new s', we can attempt to map x to x' which has site information from s'.

Bound for I(z,s)

$$0 \le I(z,s) \le \underbrace{-\mathbb{E}_{x,s,z \sim q}[\log p(x|z,s)]}_{\text{Reconstruction}} + \underbrace{\mathbb{E}_x[\ KL[\ q(z|x) \parallel q(z)\]]}_{\text{Compression}} - \underbrace{H(x|s)}_{\text{Const}}.$$

By minimizing this bound on I(z,s) over q,p, we can learn a remapping function that tries to ``forget'' the original site variable, with a guarantee of the maximum amount of information retained.

DWI Specific Architecture

Data and Demonstration Experiements

We use the MICCAI CDMRI Diffusion Harmonization Challenge Dataset [2]:

- N=10 subjects scanned at all ``sites'', 8/2 Train-test split.
- All subjects Eddy and EPI corrected, then rigidly aligned. High spatial-resolution scans resampled to 2.4 mm isotropic.
- Projected to ℓ_2 -minimal 8^{th} order Spherical Harmonics basis using SVD.

Site Name	Scanner-type	Voxel Size (iso)	TE/TR	# Grad.
Prisma-30	Prisma	2.4 mm	89/7200 <i>ms</i>	30
Prisma-60	Prisma	1.5 mm	80/4500 <i>ms</i>	30
Connectom-30	Connectom	$2.4\mathrm{mm}$	89/7200 <i>ms</i>	30
Connectom-60	Connectom	1.2 mm	68/5400 ms	60

All scans collected two diffusion shells, $1200\frac{s}{mm^2}$ and $3000\frac{s}{mm^2}$, and at least 4 interspersed b_0 volumes, one with a reversed phase encoding.

Error Plot: Prisma-30 to Connectom-30

References

Please contact Daniel Moyer at moyerd@usc.edu for any questions/comments.

This work was supported by NIH grants P41 EB015922, R01 MH116147, R56 AG058854, RF1 AG041915, and U54 EB020403, DARPA grant W911NF-16-1-0575, as well as the NSF Graduate Research Fellowship Program Grant Number DGE-1418060, and a GPU grant from NVidia.

- [1] Hengameh Mirzaalian et al. Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging and Behavior, 12(1):284--295, 2018.
- [2] Lipeng Ning et al. Multi-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results.

arxiv.org/abs/1904.05375

The Paper

Voxelwise Test MSE vs Baseline

Method im Mirzaalian Prop. Multi-Task Prop. Single-Task

Error Plot: Prisma-30 to Prisma-60

Error Plot: Prisma-30 to Connectom-60

