

LLM4SGG: Large Language Models for Weakly Supervised Scene Graph Generation

-CVPR 2024 Poster-

Kibum Kim, Kanghoon Yoon, Jaehyeong Jeon, Yeonjun In, Jinyoung Moon, Donghyun Kim, Chanyoung Park[†]

Presenter: Kibum Kim

Ph.D Student
Department of Industrial & Systems Engineering
KAIST

CONTENT

- Scene Graph Generation
- Weakly Supervised Scene Graph Generation
- LLM4SGG: Large Language Models for Weakly Supervised Scene Graph Generation
 - Motivation
 - Method
 - Experiment
 - Conclusion

SCENE GRAPH GENERATION (SGG)

- SGG aims to represent observable knowledges in an image in the form of a graph
- The knowledge includes 1) object information and 2) their relation information, which is mapped to a scene graph
 - E.g., Object information: {man, horse, glasses, bucket}
 - E.g., Relationship information between objects: {feeding, wearing, ..., holding, eat from}

WEAKLY SUPERVISED SCENE GRAPH GENERATION

- Weakly Supervised Scene Graph Generation (WSSGG) aims to alleviate the issue of fully-supervised approach, which heavily relies on costly annotation.
 - Expensive Annotation: 1) bounding box, 2) entity class within bounding box, 3) predicate class between entities

Localized Scene Graph

• Generating large-scale SGG data faces constraints due to the need for expensive human labor cost

WSSGG studies generally utilize image-text pair datasets, which are readily accessible, for training the SGG model.

LLM4SGG: Large Language Models for Weakly Supervised Scene Graph Generation

PIPELINE OF WSSGG

- Pipeline of training an SGG model with image caption datasets
 - **Step 1**: Preparing an image with its caption
 - **Step 2**: Parsing the image caption into <subject, predicate, object> triplets
 - Step 3: Aligning the entity/predicate classes of parsed triplets with the entity/predicate classes of target data (=Unlocalized Triplets)
 - Step 4: Grounding the unlocalized triplets with image regions (i.e., bounding boxes) extracted from pre-trained object detector

Existing WSSGG studies have mainly focused on grounding the unlocalized triplets (Step 4)

But! Do those unlocalized triplets have no issue? → Let's delve into it!

MOTIVATION: INHERENT ISSUES IN TRIPELT FORMATION PROCESS (1/2)

- 1. Issue in triplet formation process Step 2
 - Previous approach: Based on rule-based parser [1], existing works parse captions into triplets
 - Rule-based Parser [1] extract predicates without comprehending the context of captions.
 - > **Semantic Over-simplification**: Informative predicates within captions are simplified into uninformative predicates.
 - Left figure: "lying on" within caption → "on"
- As a result, the long-tailed problem is exacerbated
 - Right figure: Predicate distribution from unlocalized triplets extracted by conventional approach (parser) and ours

MOTIVATION: INHERENT ISSUES IN TRIPELT FORMATION PROCESS (2/2)

- 2. Issue in triplet formation process Step 3
 - Previous approach: existing works align entity/predicate with those of target data based on knowledge base (e.g., WordNet [1])
 - Knowledge base (KB) fails to cover semantic relationship between a large number of words due to its static structured nature
 - > Low-Density Scene Graph: Reduction in the number of triplets used for learning
 - > < subject, predicate, object > triplet is discarded if alignment fails for any element in the triplet.
 - Left figure: A triplet is discarded since "log" is not aligned with predicate classes of target data (i.e., Visual Genome)
- As a result, insufficient supervision arises, leading to deterioration in the model's generalization

To alleviate Semantic Over-simplification (Step 2) and Low-Density Scene Graph (Step 3) issues,

We introduce LLM for WSSGG task!

KB of synonyms, hypernyms.

and hyponyms

METHOD: PREPARING IMAGE & CAPTION (1/4)

Step 1: Preparing an image with its caption (e.g., COCO caption dataset)

METHOD: TRIPLET EXTRACTION FROM CAPTIONS (2/4)

• Step 2-1: Extracting triplets from original captions via LLM, Step 2-2: Extracting triplets from paraphrased captions

To further alleviate Low-Density Scene Graph issue

Q. Given the sentence "A surfer on rock holding wooden surfboard," extract meaningful triplets

< Prompt Input for Step 2-1 (Top) and Step 2-2 (Bottom) >

Based on comprehension of captions' context via LLMs, we extract triplets

Alleviation of Semantic **Over-simplification**

Prompt for paraphrased caption 2-2. Extracting triplets from paraphrased caption Prompt for original caption

Aligned entity/predicate

METHOD: ALIGNMENT OF ENTITY / PREDICATE CLASSES (3/4)

• Step 3: Aligning the entities (subject, object) and predicate of misaligned triplets obtained in Step 2 with those of target data

Alignment based on semantic reasoning within LLMs

Alleviation of Low-Density Scene Graph

3. Alignment of Entity/Predicate with those of target data

METHOD: GROUNDING OF UNLOCALIZED TRIPLETS (4/4)

• Step 4: Grounding the unlocalized triplets to image regions using the grounding method of existing WSSGG works

EXPERIMENT: COMPARISON WITH BASELI

- Training dataset: COCO Caption (64K) / Test dataset: Visual Genome
- Grounding method
 - SGNLS [1], VS³ [2]

- 1) Performance enhancement in terms of mR@K → Alleviation of long-tailed problem for the first time (See right figure)
- 2) Further Improvement on mR@K when applying reweighting method → it operates effectively since the number of tail predicate classes are increased

25000-20000-15000-10000-

Method	R@50	R@100	mR@50	mR@100	F@50	F@100
Motif (CVPR'18) - Fully-supervised	31.89	36.36	6.38	7.57	10.63 / 12.53	12.53
LSWS (CVPR'21)	3.29	3.69	3.27	3.66	3.28	3.67
SGNLS (ICCV'21)	3.80	4.46	2.51	2.78	3.02	3.43
SGNLS (ICCV'21)+LLM4SGG	$5.09_{+1.29}$	$5.97_{+\ 1.51}$	$4.08_{+1.57}$	$4.49_{+1.71}$	4.53+1.51	$5.13_{+1.70}$
Li et al (<i>MM</i> '22)	6.40	7.33	1.73	1.98	2.72	3.12
VS ³ (CVPR'23)	6.60	8.01	2.88	3.25	4.01	4.62
VS ³ (CVPR'23)+LLM4SGG	8.91 _{+2.31}	10.43 _{+ 2.42}	$7.11_{+4.23}$	$8.18_{+4.93}$	7.91 _{+ 3.90}	9.17 _{+ 4.55}
VS ³ (CVPR'23)+Rwt	4.25	5.04	5.17	5.99	4.67	5.47
VS ³ (CVPR'23)+Rwt+LLM4SGG	$5.10_{+0.85}$	$6.34_{+\ 1.30}$	8.42 _{+ 3.25}	9.90 _{+ 3.91}	6.35 _{+ 1.69}	$7.73_{+2.26}$

Predicate

Per class comparison when applying reweighting method

Performance comparison with baselines

Per class comparison

VS³+Rwt+LLM4SGG

Recall@100

EXPERIMENT: DATA-EFFICIENCY

- Question: Would LLM4SGG be effective despite having limited training data?
- Total number of images: 64K
- Experiment: Performance is averaged by randomly extracting each of the following images five times: 1K (1.5%), 5K (7.8%), 10K (15.6%), 64K (100%)
 - Observation: Surpassing the performance of the baseline (VS³) even with only 5K (7.8%) → Demonstrating Data-Efficiency
 - Another observation: Further performance increasement as the training data gradually increases to 10K and 64K

Performance over various number of images – Data efficiency

CONCLUSION

• Existing Weakly Supervised SGG studies have mainly focused on grounding unlocalized triplets and image regions.

- However, we identify two issues within the triplet formation process: Semantic Over-simplification (Step 2) and Low-Density Scene Graph (Step 3).
- To alleviate them, we introduce LLM to the WSSGG task in Step 2 and Step 3.

- We observe that LLM4SGG significantly increases performance in terms of R@K and mR@K on both Visual Genome and GQA datasets.
 - Demonstration of effectively alleviating the Semantic Over-simplification and Low-Density Scene Graph issues.

THANK YOU

Paper (Arxiv): https://arxiv.org/pdf/2310.10404

• Code: https://github.com/rlqja1107/torch-LLM4SGG

