Teoría de la integral y de la medida Hoja n⁰ 2 (Medidas, conjuntos medibles)

1. Sea $X = \{a, b, c, d\}$. Comprobar que la familia de conjuntos

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}\$$

forman una σ - álgebra en X.

2. Sea $X = \{a, b, c, d\}$. Construir la σ - álgebra generada por

$$\mathcal{E} = \{\{a\}\}\$$
 y por $\mathcal{E} = \{\{a\}, \{b\}\}\$

- 3. Sea $g: X \to Y$. Sea \mathcal{A} una σ álgebra en X. Probar que $\mathcal{B} = \{E \subset Y: g^{-1}(E) \in \mathcal{A}\}$ es una σ álgebra en Y.
- 4. Sea $g: X \to Y$. Sea \mathcal{A} una σ álgebra en Y. Probar que $\mathcal{B} = \{g^{-1}(E) : E \in \mathcal{A}\}$ es una σ -álgebra en X

SOL: Para 3 y 4 comprobar y luego usar que se tiene $g^{-1}(E^c) = (g^{-1}(E))^c$ y $g^{-1}(\bigcup_k E_k) = \bigcup_k g^{-1}(E_k)$

- 5. Determinar la σ álgebra engendrada por la colección de los subconjuntos finitos de un conjunto X no-numerable. **SOL**: $\mathcal{A} = \{A \subset X : A \text{ numerable o } A^c \text{ numerable } \}$
- 6. Se dice que $\mathcal{A} \subset \mathcal{P}(X)$ es una **álgebra** si cumple: i) $X \in \mathcal{A}$; ii) la unión **finita** de elementos de \mathcal{A} está en \mathcal{A} , y iii) \mathcal{A} es cerrada por complementos. Probar que una álgebra \mathcal{A} en X es una σ álgebra si y solo si es cerrada para las uniones numerables crecientes, (es decir si $E_i \in \mathcal{A}$, $E_1 \subset E_2 \subset \ldots$, entonces $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$)

SOL: Usar que dados $\{A_j\}_j$, si $B_n = \bigcup_{1 < j < n} A_j$ se tiene que B_n crece y $\bigcup_n B_n = \bigcup_j A_j$.

- 7. Probar que la unión de una sucesión creciente de álgebras $A_1 \subset A_2 \subset ...$ es una álgebra. Pero dar ejemplos de que:
 - la unión de dos álgebras puede no ser una álgebra, y
 - la unión de la sucesión $A_1 \subset A_2 \subset ...$ de σ -álgebras puede no ser una σ álgebra.

SOL: Para la primera parte, con $X = \{a, b, c\}$, se tiene que $A_1 = \{\emptyset, X, \{a\}, \{b, c\}\}\}$ y $A_2 = \{\emptyset, X, \{b\}, \{a, c\}\}$, son σ -álgebras pero $A_1 \bigcup A_2$ no. Para la segunda parte ver las soluciones al ejercicio 2 del parcial 1 del curso 2007-08.

8. Sea (X, \mathcal{A}, μ) un espacio de medida. Si $E, F \in \mathcal{A}$, comprobar que

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$$

- 9. Sea (X, \mathcal{A}, μ) un espacio de medida. Para $E \in \mathcal{A}$ fijo, definimos $\mu_E(A) = \mu(A \cap E)$. Probar que μ_E es una medida sobre \mathcal{A} .
- 10. Sea (X, \mathcal{A}, μ) un espacio de medida. Se definen las operaciones de conjuntos líminf $E_j := \bigcup_n \bigcap_{j \geq n} E_j$; lím sup $E_j := \bigcap_n \bigcup_{j \geq n} E_j$. Sean $E_j \in \mathcal{M}$, $j \geq 1$. Probar que si $\mu(\cup E_j) < \infty$:

1

$$\mu(\liminf E_j) \le \liminf \mu(E_j)$$

 $\mu(\limsup E_j) \ge \limsup \mu(E_j)$

En particular si $\mu(X) < \infty$ entonces:

- a) $\mu(\liminf E_i) \leq \liminf \mu(E_i) \leq \limsup \mu(E_i) \leq \mu(\limsup E_i)$
- b) Si existe lím E_i , entonces $\mu(\lim E_i) = \lim \mu(E_i)$

SOL: Usar los teoremas de monotonía creciente y decreciente para conjuntos.

11. Sea X un conjunto infinito numerable. Consideremos la σ - álgebra $\mathcal{A}=\mathcal{P}(X)$. Definimos para $A\in\mathcal{A}$

$$\mu(A) = \begin{cases} 0 & \text{si } A \text{ es finito,} \\ \infty & \text{si } A \text{ es infinito.} \end{cases}$$

- a) Probar que μ es finitamente aditiva, pero no numerablemente aditiva.
- b) Probar que $X = \lim_{n \to \infty} A_n$, para cierta sucesión creciente de conjuntos $\{A_n\}$, tales que $\mu(A_n) = 0 \quad \forall n \in \mathbb{N}$.

SOL: Si $X = \{x_1, x_2, \dots\}$ y llamamos $A_n = \{x_1, x_2, \dots, x_n\}$ entonces $\mu(A_n) = 0$, pero $\mu(\lim_{n \to \infty} A_n) = \mu(\cup_n A_n) = \mu(X) = \infty$.

12. Sea $X = \{a_1, a_2, a_3\}$, sea $\mathcal{A} = \mathcal{P}(X)$. Sea μ una medida que verifica $\mu(a_1) = \mu(a_2) = \mu(a_3) = \frac{1}{3}$. Consideremos la sucesión de conjuntos

$$A_n = \{a_1, a_2\}$$
 si n es par $A_n = \{a_3\}$ si n es impar

Probar que $\mu(\liminf A_n) < \liminf \mu(A_n) < \limsup \mu(A_n) < \mu(\limsup A_n)$.

SOL: Se tiene lím inf $A_n = \emptyset$ y lím sup $A_n = X$. Además $\mu(A_n) = 1/3$, si n es impar, y $\mu(A_n) = 2/3$, si n es par. Por tanto, $\mu(\liminf A_n) = 0 < \liminf \mu(A_n) = 1/3 < \limsup \mu(A_n) = 2/3 < \mu(\limsup A_n) = 1$.

13. Sean $\{A_n\}$ conjuntos medibles tales que $\sum_{n=1}^{n=\infty} \mu(A_n) < \infty$. Demostrar que cada elemento x pertenece a un número finito de A_n para c.t.x. (Dicho de otra manera el conjunto de los puntos x que pertenecen a infinitos de los A_n , es decir, lím sup A_n , mide cero.)

SOL: Recordemos que lím sup $A_n := \cap_k B_k$, donde $B_k = \bigcup_{j \geq k} A_j$. Como ... $B_{k+1} \subset B_k \subset \cdots \subset B_1$ y $\mu(B_1) \leq \sum_{n=1}^{n=\infty} \mu(A_n) < \infty$, podemos usar el TCM para sucesiones de conjuntos decrecientes y obtenemos

$$\mu(\limsup_{n\to\infty}A_n)=\lim_{k\to\infty}\mu(B_k)=\lim_{k\to\infty}\mu\left(\bigcup_{j\geq k}A_j\right)\leq \lim_{k\to\infty}\sum_{j=k}^\infty\mu(A_j)=0.$$

14. Sea (X_1, A_1, μ_1) un espacio de medida completo, es decir, tal que todos los subconjuntos de un conjunto medible de **medida cero** también son medibles.. Sea $g: X_1 \to X_2$ una aplicación, $A_2 = \{A \subset X_2 : g^{-1}(A) \in A_1\}, \quad \mu_2(A) = \mu_1(g^{-1}(A)).$ Comprobar que (X_2, A_2, μ_2) es un espacio de medida completo. **NOTA:** a μ_2 se le denomina medida inducida en X_2 por la aplicación g.

SOL:

- a) A_2 es una σ -álgebra (ver ejercicio 3)
- b) μ_2 es una medida sobre $\mathcal{A}_2 \dots (f\acute{a}cil)$
- c) μ_2 es completa: Supongamos que $A \in \mathcal{A}_2$ cumple $\mu_2(A) = 0$ y sea $B \subset A$. Queremos probar que $B \in \mathcal{A}_2$. Como $\mu_1(g^{-1}(A)) = \mu_2(A) = 0$, $g^{-1}(B) \subset g^{-1}(A)$ y μ_1 es completa, deducimos que $g^{-1}(B) \in \mathcal{A}_1$ y por tanto $B \in \mathcal{A}_2$.