LABORATORIO LENGUAJES FORMALES Y DE PROGRAMACIÓN

AGENDA

- Preguntas sobre la práctica
- DFA a gramática Regular
- Gramática Regular a DFA
- Expresiones Regulares
- Tarea 2

DFA A GRAMÁTICA REGULAR

DFA A GRAMÁTICA REGULAR

Si tenemos un autómata finito determinista (DFA), se puede encontrar la gramática regular de ese autómata de la siguiente manera

DFA A GRAMÁTICA REGULAR

- 1. Los terminales son los mismos en cambos casos.
- 2. Los no terminales de la gramática son igual a los estados del DFA.
- 3. El no terminal inicial de la gramática es igual al estado inicial del DFA.
- 4. Para las reglas de producción o producciones.
 - a. Para cada transición del DFA nace una producción.
 - b. Para cada estado de aceptación del DFA nace una producción a epsilon.

Obtener la gramática regular del siguiente DFA


```
Paso 1. Terminales = \{0,1\}
```

```
Paso 2. No terminales = {S,T}
```

```
Paso 3. Inicio = {S}
```

```
Paso 4. Producciones
S ->1 T
S ->0 S
T ->1 S
T ->0 T
T ->epsilon
```

GRAMÁTICA REGULAR A DFA

GRAMÁTICA REGULAR A DFA

De manera similar podemos encontrar un DFA a partir de una gramática regular de la siguiente manera.

GRAMÁTICA REGULAR A DFA

- 1. Los terminales son los mismos en ambos casos.
- 2. Los no terminales de la gramática son iguales a los estados del del DFA.
- 3. El no terminal inicial de la gramática es igual al estado inicial del DFA.
- 4. De las reglas de producción o producciones:
 - a. para cada producción diferente a epsilon, nace una transición en el DFA.
 - b. para cada producción a epsilon, nace un estado de aceptación en el DFA.

Terminales = {0,1}

EXPRESIONES REGULARES

EXPRESIÓN REGULAR

ER representa una un patrón, describe que un conjunto cadenas, para existe cada ER un denominado autómata finito.

CÓMO FUNCIONA UNA EXPRESIÓN REGULAR

Una expresión regular puede estar formada o bien exclusivamente por caracteres normales (como las letras abc) o bien por una combinación de caracteres normales y meta caracteres o meta símbolos.

SE DEFINE UNA EXP. REG. SOBRE UN ALFABETO COMO SIGUE:

- 1. La cadena nula o vacía es una expresión regular.
- 2. Si x pertenece al conjunto de terminales, entonces x es una ER.
- 3. Si el es una expresión regular, entonces así es (el)
- 4. Si el y e2, son ER, entonces así son:
 - a. (e1)
 - b. e1e2
 - c. e1 e2
 - d. e1*
 - e. e1+
 - f. e1?

META SÍMBOLOS

Los símbolos () | * + ? se llaman meta símbolos los cuales no pertenecen al lenguaje.

Estos meta símbolos, describen ciertas reglas de construcción o forma de disponer de los símbolos del lenguaje.

PRIORIDAD DE OPERADORES

CONCATENACIÓN

Es representado con un punto o simplemente colocar de forma consecutiva los elementos. Por ejemplo "XY", lo anterior representa el terminal x seguido de y.

ALTERNACION

Este meta símbolo es representado con una barra vertical que separa las alternativas. Por ejemplo "negro|rojo", texto en negro o en rojo.

CUANTIFICACIÓN

Un cuantificador tras un caracter especifica la frecuencia con la que este puede ocurrir

Los más comunes +,*,?

CUANTIFICACIÓN CON +

El signo más indica que el carácter al que procede debe aparecer al menos una vez.

Por ejemplo:

La expresión regular ho+la

Describe el siguiente conjunto infinito de cadenas:

hola, hoola, hoooooola, etc

Cadena no válida:

hla

CUANTIFICACIÓN CON?

El signo de interrogación indica que el carácter al que procede puede aparecer 1 vez o no aparecer.

Por ejemplo:

La expresión regular ho?la

Describe el siguiente conjunto de cadenas

hola o hla

Cadenas no válidas:

hoooooola, hooooooooola

CUANTIFICACIÓN CON *

el signo asterisco indica que el carácter que lo precede puede aparecer cero, una o más veces.

Por ejemplo:

La expresión regular ho*la

Describe el siguiente conjunto de cadenas infinitas:

hla, hola hooooola

AGRUPACIÓN

Los paréntesis pueden usarse para poder definir ámbito o precedencia de los demás operadores.

Por ejemplo:

La expresión regular (h|b)ola

Describe el siguiente conjunto de cadenas:

hola o bola

AGRUPACION, ALGO MÁS INTERESANTE

Por ejemplo:

La expresión regular (h|b)?ola

Describe el siguiente conjunto de cadenas:

ola, hola, bola

AGRUPACION, ALGO MÁS INTERESANTE

Por ejemplo:

La expresión regular (23)+abc

Describe el siguiente conjunto de cadenas:

23abc, 2323abc, 232323abc

```
Crear una expresión regular que sea capaz de aceptar números positivos enteros y decimales.
```

```
D = \{0,1,2...9\}
s = \{.\}
```

```
((D)+ (S) (D)+) | ((D)+)
(D)+ (S)? (D)+)
(D)+ ((S) (D)+)?
```

Crear una expresión regular que reconozca identificadores de variables, en donde el primer carácter sea una letra, luego puede estar seguido de letras, números y guión bajo.

```
L = \{a...Z, A...Z\}
D = \{0,1,...,9\}
s = \{\_\}
```

(L)(L|D|s)*

TAREA 2