Lecture 12

Discrimination and Classification

Readings: Zelterman, 2015, Chapters 10

DSA 8070 Multivariate Analysis November 1 - November 5, 2021

> Whitney Huang Clemson University

notes			

Agenda

- Overview
- 2 Binary Linear Classification

ı	Notes			
-				
-				
-				
-				
-				

Discrimination and Classification

Main objectives behind discrimination and classification are:

- Discrimination: separate distinct "populations" of observations
- Classification: classify new objectives into pre-defined populations

Examples

- Given measurements on the concentrations of five elements in bullet lead, find combinations of those concentrations that best describe bullets made by Cascade, Federal, Winchester and Remington ⇒ discrimination
- Using information on prisoners eligible for parole (good behavior, history of drug use, job skills, etc) can we successfully allocate a prisoners elegible for parole into two groups: those who will commit another crime or those who will not commit another crime? ⇒ classification

Discrimination and Classification
Overview

Notes			

Classification

Data:

$$\{\boldsymbol{X}_i, Y_i\}_{i=1}^n,$$

where Y_i is the class information for the i_{th} observation $\Rightarrow Y$ is a qualitative variable

 Classification aims to classify a new observation (or several new observations) into one of those classes

Quantity of interest: $P(Y = k_{th} \text{ category} | \boldsymbol{X} = \boldsymbol{x})$

In this lecture we will focus on binary linear classification

Discrimination and Classification
Overview Binary Linear

Notes

12.4

Toy Example

Wish to classify a new observation $x_i=(x_{1i},x_{2i})$, denoted by (*), into one of the two groups (class 1 or class 2)

Notes

Toy Example Cont'd

We can compute the distances from this new observation ${\pmb x}=(x_1,x_2)$ to the groups, for example,

$$d_1 = \sqrt{(x_1 - \mu_{11})^2 + (x_2 - \mu_{12})^2},$$

$$d_2 = \sqrt{(x_1 - \mu_{21})^2 + (x_2 - \mu_{22})^2}.$$

We can assign \boldsymbol{x} to the group with the smallest distance

Discrimination and Classification
<u>CLEMS#N</u>
Overview

Binary Linear

Notes

Variance Corrected Distance

In this one-dimensional example, $d_1=|x-\mu_1|>|x-\mu_2|$. Does that mean x is "closer" to group 2 (red) than group 1 (blue)?

We should take the "spread" of each group into account. $\tilde{d}_1=|x-\mu_1|/\sigma_1<\tilde{d}_2=|x-\mu_2|/\sigma_2$

Notes

12.7

General Covariance Adjusted Distance: Mahalanobis Distance

The Mahalanobis distance [Mahalanobis, 1936] is a measure of the distance between a point \boldsymbol{x} and a multivariate distribution of \boldsymbol{X} :

$$D_M(\boldsymbol{x}) = \sqrt{(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})},$$

where μ is the mean vector and Σ is the variance-covariance matrix of X

One can use the Mahalanobis distance, by computing the Mahalanobis distance between an observations \boldsymbol{x}_i and the "center" of the k_{th} population $\boldsymbol{\mu}_k$, to carry out classification

Notes

Binary Classification with Multivariate Normal Populations

Assume $X_1 \sim \text{MVN}(\mu_1, \Sigma)$, $X_2 \sim \text{MVN}(\mu_2, \Sigma)$, that is, $\Sigma_1 = \Sigma_2 = \Sigma$

Maximum Likelihood of group membership:

Group 1 if
$$\ell({m x},{m \mu}_1,{m \Sigma}) > \ell({m x},{m \mu}_2,{m \Sigma})$$

Linear Discriminant Function:

Group 1 if
$$(\mu_1 - \mu_2)^T \Sigma^{-1} x - \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) > 0$$

Minimize Mahalanobis distance:

Group 1 if
$$(x-\mu_1)^T \Sigma^{-1} (x-\mu_1) < (x-\mu_2)^T \Sigma^{-1} (x-\mu_2)$$

All the methods above are equivalent

Binary Linear Classification Notes

Priors and Misclassification Costs

In addition to the observed characteristics of units $\{x_i\}_{i=1}^n$, other features of classification rules are:

Prior probability:

If one population is more prevalent than the other, chances are higher that a new unit came from the larger population. Stronger evidence would be needed to allocate the unit to the population with the smaller prior probability.

Costs of misclassification:

It may be more costly to misclassify a seriously ill subject as healthy than to misclassify a healthy subject as being ill.

Notes			

Classification Regions

Ignore for now the prior probabilities of each population and the potentially different misclassification costs.

• The probability of misclassifying an object into π_2 when it belongs in π_1 is

$$P(2|1) = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_2 | \pi_1)$$

• The probability of misclassifying an object into π_1 when it belongs in π_2 is

$$P(1|2) = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_1 | \pi_2)$$

Source: Figure 11.3 from Applied Multivariate Statistical Analysis, 6th Ed (Johnson & Wichern). Visualization is for p=1 variable.

Notes

Probability and Expected Cost of Misclassification

Let p_1 and p_2 denote the prior probabilities of π_1,π_2 , and c(1|2),c(2|1) be the costs of nisclassification:

• Then probabilities of the four possible outcomes are:

 Classification rules are often evaluated in terms of the expected cost of misclassification (ECM):

$$ECM = c(2|1)p(2|1)p_1 + c(1|2)P(1|2)P(1|2)p_2,$$

and we seek rules that minimize the ECM

1 110

Notes

Binary Linear

140103			

Example: Fisher's Iris Data

4 variables (sepal length and width and petal length and width), 3 species (setosa, versicolor, and virginica)

Task: Classify flowers into different species based on lengths and widths of sepal and petal

Discrimination and Classification
CLEMS N
Binary Linear Classification

on lengths and widths of separana petal

Fisher's Iris Data Cont'd

Let's focus on the latter two classes (versicolor, and virginica)

NI	a t	1	0

Notes

Fisher's iris Data Cont'd

To further simplify the matter, let's focus on the first two PCs of \boldsymbol{X}

Discrimination and Classification
CLEMS#N
Binary Linear Classification
Glassification

Notes			

Screen Plot

Notes

Linear Discriminant Analysis

Main idea: Use Bayes rule to compute

$$P(Y = k | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(Y = k)P(\boldsymbol{X} = \boldsymbol{x}|Y = k)}{P(\boldsymbol{X} = \boldsymbol{x})} = \frac{\pi_k f_k(\boldsymbol{x})^{\frac{1}{2}}}{\sum_{k=1}^{K} \pi_k f_k(\boldsymbol{x})^{\frac{1}{2}}} = \frac{\pi_k f_k(\boldsymbol{x})^{\frac{1}{2}}}{\sum_{k=1}^{K} \pi_k f_k(\boldsymbol{x})^{\frac$$

Assuming $f_k(x) \sim \text{MVN}(\mu_k, \Sigma), \quad k = 1, \cdots, K$ and use $\hat{\pi}_k = \frac{n_k}{n} \Rightarrow$ it turns out the resulting classifier is linear in X

Discrimination and Classification

CLEMS

UNIVERSITY

Notes

Classification Performance Evaluation

fit.LDA
versicolor virginica
versicolor 47 3
virginica 1 49

Notes

Logistic Regression Classifier

Main idea: Model the logit $\log\left(\frac{\mathrm{P}(Y=1)}{1-\mathrm{P}(Y=1)}\right)$ as a linear function in \boldsymbol{x}

Notes

Logistic Regression Classifier Cont'd

logisticPred
versicolor virginica
versicolor 48 2
virginica 1 49

Notes			

Linear Discriminant Analysis Versus Logistic Regression

For a binary classification problem, one can show that both linear discriminant analysis (LDA) and logistic regression are linear classifiers. The difference is in how the parameters are estimated:

- \bullet Logistic regression uses the conditional likelihood based on $\mathrm{P}(Y|\pmb{X}=\pmb{x})$
- ullet LDA uses the full likelihood based on multivariate normal assumption on $oldsymbol{X}$
- Despite these differences, in practice the results are often very similar

Discrimination and Classification	
CLEMS#N	
Binary Linear Classification	

Notes				

Quadratic Discriminant Analysis

In linear discriminant analysis, we **assume** $\{f_k(\boldsymbol{x})\}_{k=1}^K$ are normal densities and $\Sigma_1 = \Sigma_2$, therefore we obtain a linear classifier. What if $\Sigma_1 \neq \Sigma_2 \Rightarrow$ we get quadratic discriminant analysis

Figure: Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 150

Notes	
Notes	
Notes	