8강

Range examples

$$A_1 = egin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix}$$

• For any $v \in R^2$, we have

$$Av=(v_1+2v_2,2v_1+4v2)=c(1,2)$$

for some constant c Thus, $R(A) = \{c(1,2) \mid c \in R\}$ and is a subspace with dimension of 1

- \rightarrow v에 뭘 넣던지 간에 c(1, 2)라는 결과가 나오는 것이다. 이는 원점을 지나는 직선이다.
- → 그 dim은 1이된다. 즉, dim=2인 v가 R(A_1)를 거치면 dim=1이 되는 것이다.
- → 왜냐하면 a_1, a_2이 linearly independent하지 않기 때문이다.
- 이것은 차원이 줄어드는 example이다.

$$A_2 = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$$

- it turns out that whole R² can be mapped onto with Ax for $x \in R^2$
- Thus R(A_2) = R^2 and has dimension 2
 - → 왜냐하면 a_1, a_2이 linearly independent하기 때문이다.
 - → 이것은 차원이 유지되는 example이다.
- → 차원이 더 작아지기는 하지만 더 커지지는 못한다.

Case $R(A) = R^m$

- if statement R(A) = R^m is equivalent to the following:
 - columns of A spans Rⁿ

by definition.

pf)

if A has right inverse, that is, there exists B such that

$$AB=I \ with \ B=A^T(AA^T)^{-1} \ AB=I \ A[b_1 \ b_2 \ ... \ b_m]=I \ Ab_i=e_i \ for \ i=1,...m$$
 Let $c\in R^m$

 $c = A(c_1b_1 + c_2b_2 + ... + c_mb_m)$

임의의 c_1, c_2, ... c_m을 집어 넣으면 c를 만들 수 있는 것이다.

A^T * c = 0 implies that c = 0
 pf)

→ c는 m차원 벡터이다.

 $A^T * c \rightarrow linear combination of rows of A.$

- the rows of A are independent
 A^T * c = 0 implies that c = 0이려면 the rows of A are independen하다.
- $oldsymbol{det}(AA^T)
 eq 0$

pf)

Assume $det(AA^T) = 0$

 \rightarrow

$$\exists_{c\neq 0}AA^Tc=0$$

$$c^{T}AA^{T}c = 0 \ (A^{T}c)^{T}A^{T}c = 0 \ ||A^{T}c||_{2}^{2} = 0 \ A^{T}c = 0$$

 $A^T * c = 0$ implies that c = 0,

→ Contradiction!!

$$AA^T = B$$
$$x \to Bx$$

이는 복원이 가능하다는 말이다.

$$y = Bx$$
$$x = B^{-1}y$$

• A has right inverse, that is, there exists B such that

$$AB = I$$
 $with B = A^T (AA^T)^{-1}$

pf)

$$Let B = A^{T} (AA^{T})^{-1}$$

$$AB = AA^{T} (A^{T})^{-1}$$

$$= (AA^{T})(AA^{T})^{-1}$$

$$= I$$

- → row들이 independent하려면 m ≤ n 이여야 한다.
- → 위 모든 특성들은 다 동치이다.

Nullspace

- → range에 반대되는 개념
 - Nullspace of a matrix A ∈ R^{m×n}, denoted by N(A) is defined as

$$N(A) = \{x \in R^n \mid Ax = 0\}$$

N(A) is set of vectors that is mapped to 0, under linear transformation

A

0벡터를 만들 수 있는 모든 집합이 Nullspace이다.

$$x \rightarrow A \rightarrow 0$$

vectors in N(A) are orthogonal to the rows of A
 Null space에 들어 있는 모든 벡터들은 A의 row에 대해 수직이다.

$$egin{bmatrix} a_1^T \ a_2^T \ ... \ a_m^T \end{bmatrix} x = egin{bmatrix} a_1^T x \ a_2^T x \ ... \ a_m^T x \end{bmatrix} = 0$$

- N(A) gives the ambiguity of system A
 - for any v ∈ N(A), we have A(x +v) = Ax
 → x가 무엇이었는지는 알아채기가 힘들다.
 - conversely, if we have Ax = Ay then y = x + v for some $v \in N(A)$
- N(A) is a subspace

8강

Interpretation of Nullspace

- Suppose A is a system measures (sensor) input signal x and outputs y, so that y = Ax
 - → A라는 시스템이 있고, x라는 현상에 대한 정보를 취합(sense)한다.
 - → 그 정보는 y=Ax이다.
- suppose $z \in N(A)$
 - z is undetectable from sensor A
 - → z는 A로는 발견되지 않는다.
 - That is, a signal x and a mixture x +z looks same at the output of sensor A

A라는 시스템에서 x와 x + z는 같은 것으로 보일 수 밖에 없다. output만으로는 알 수가 없다.

$$Ax = A(x+z)$$

- N(A) characterizes ambiguity
 - the 'smaller' N(A), the less ambiguity
 - → N(A)가 작을 수록 모호성이 줄어드는 것이다.
- suppose A such that there is no ambiguity for y = Ax, that is, by looking at
 y = Ax we can uniquely find x!
 - → 가장 작은 Nullspace가 무엇인가?
 - In that case N(A) = {0}

8강

- → N(A)에 0벡터 하나 밖에 없는 경우.
- → 원점하나만 포함하는 경우
- equivalent to state that the mapping A is unique

- \rightarrow Ax = A(x+z)가 가능하게 만드는 z는 0벡터 밖에 없다는 의미이다.
- → 그렇기에 각각의 output이 unique하다는 의미이다.

Nullspace examples

$$A_1 = egin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix}$$

- let v = (2,-1), then for any c we have A(cv) = 0.
- it turns out that $N(A_1) = \{cv \mid c \in R\}$
- N(A_1) is 1-dimensional subspace
 - → 원점을 지나고 (2,-1)에 평행한 직선

$$A_2 = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$$

- it turns out that N(A_2) = {0}; that is, there is no v != 0 such that A_2 * v =
 0
 - \rightarrow x를 (0, 0)을 넣을 수 밖에 없다. 왜냐하면 두 column이 linearly independent하기 때문이다.
- for $y = A_2 * x$, if we know y, x can be uniquely determined \rightarrow in this case $(A_2)^{-1}y$
 - → y를 알면 unique하게 x가 결정된다는 의미이다.
 - → 그렇다면 이 경우에는 nxn 행렬이고, $N(A_2) = \{0\}$ 이기에 → A_2 에게는 역행렬이 존재한다.

Case $N(A) = \{0\}$

m ≥ n이여야 한다.

그래야 column들이 independent하다.

• 0 is the only element of the nullspace of A: called zero nullspace or oneto-one

하나에 대해서 하나로 결정됨

pf) Let

$$\exists_{x \neq 0} Ax = 0, BA = I$$
 $BA = I$ $BAx = Ix$ $B0 = x$ $x = 0$

- → contradiction!
- x can be uniquely determined by Ax = 0
 (for linear transformation y = Ax, there is unique x for each output y)
 unique하게 결정된다.
- columns of A are independent (they form basis for a span)
 위의 이야기와 동치이다.
- A has a left inverse, that is, there exists B such that BA = I

$$B = (A^T A)^{-1} A^T$$

det(A^T * A) != 0pf) Let det(A^T * A) = 0

$$A^T A x = 0 \; (x
eq 0) \ x^T A^T A x = 0 \ (A x)^T (A x) = 0 \ ||A x||_2^2 = 0 \ A x = 0$$

→ contradiction!