```
In [1]:
          #Importing libraries
         import pandas as pd
         import numpy as np
          import matplotlib.pyplot as plt
         %matplotlib inline
         import warnings
         warnings.filterwarnings("ignore")
In [2]:
         #Reading the data
         data=pd.read csv('nyc taxi trip duration.csv')
In [3]:
         data.head()
                  id vendor_id pickup_datetime dropoff_datetime passenger_count pickup_longitude pickup_latitude dro
Out[3]:
                                    2016-02-29
                                                    2016-02-29
         0 id1080784
                                                                                   -73.953918
                                                                                                  40.778873
                                      16:40:21
                                                      16:47:01
                                    2016-03-11
                                                    2016-03-11
         1 id0889885
                                                                           2
                                                                                   -73.988312
                                                                                                  40.731743
                                      23:35:37
                                                      23:53:57
                                    2016-02-21
                                                    2016-02-21
         2 id0857912
                                                                                   -73.997314
                                                                                                  40.721458
                                      17:59:33
                                                      18:26:48
                                    2016-01-05
                                                    2016-01-05
         3 id3744273
                                                                           6
                                                                                   -73.961670
                                                                                                  40.759720
                                      09:44:31
                                                      10:03:32
                                    2016-02-17
                                                    2016-02-17
         4 id0232939
                                                                                   -74.017120
                                                                                                  40.708469
                                      06:42:23
                                                      06:56:31
In [4]:
         #Checking for null values
         data.isnull().sum()
        id
                                 0
Out[4]:
        vendor id
        pickup datetime
        dropoff_datetime
        passenger count
        pickup longitude
        pickup latitude
        dropoff longitude
                                 0
        dropoff latitude
        store and fwd flag
        trip duration
        dtype: int64
In [5]:
         #Checkibg for data types
         data.dtypes
        id
                                  object
Out[5]:
        vendor id
                                  int64
        pickup datetime
                                 object
        dropoff datetime
                                  object
        passenger_count
                                  int64
        pickup longitude
                                 float64
```

```
dropoff latitude
                             float64
        store and_fwd_flag object
        trip duration
                                int64
        dtype: object
In [6]:
         # converting strings to datetime features
         data['pickup datetime'] = pd.to datetime(data.pickup datetime)
         data['dropoff datetime'] = pd.to datetime(data.dropoff datetime)
         # Converting yes/no flag to 1 and 0
         data['store and fwd flag'] = 1 * (data.store and fwd flag.values == 'Y')
In [7]:
         data.head()
Out[7]:
                 id vendor_id pickup_datetime dropoff_datetime passenger_count pickup_longitude pickup_latitude dro
                                 2016-02-29
                                                2016-02-29
        0 id1080784
                                                                      1
                                                                              -73.953918
                                                                                            40.778873
                                   16:40:21
                                                  16:47:01
                                 2016-03-11
                                                2016-03-11
        1 id0889885
                                                                              -73.988312
                                                                                            40.731743
                                    23:35:37
                                                   23:53:57
                                 2016-02-21
                                                2016-02-21
                                                                      2
        2 id0857912
                                                                              -73.997314
                                                                                            40.721458
                                   17:59:33
                                                  18:26:48
                                 2016-01-05
                                                2016-01-05
        3 id3744273
                                                                              -73.961670
                                                                                            40.759720
                                   09:44:31
                                                   10:03:32
                                 2016-02-17
                                                2016-02-17
        4 id0232939
                                                                      1
                                                                              -74.017120
                                                                                            40.708469
                                   06:42:23
                                                  06:56:31
In [8]:
         data.dtypes
                                       object
Out[8]:
        vendor id
                                       int64
        pickup datetime
                             datetime64[ns]
        dropoff datetime
                             datetime64[ns]
        passenger count
                                       int64
                                     float64
        pickup longitude
                                     float64
        pickup latitude
        dropoff longitude
                                     float64
        dropoff latitude
                                     float64
        store and_fwd_flag
                                        int32
                                        int64
        trip duration
        dtype: object
In [9]:
         #Feature engineering on datetime values
         data['pickup dayofweek'] = data['pickup datetime'].dt.dayofweek
         #data['dropoff dayofweek'] = data['dropoff datetime'].dt.dayofweek
         data['pickup month'] = data['pickup datetime'].dt.month
         #data['dropoff month'] = data['dropoff datetime'].dt.month
         data['pickup week'] = data['pickup datetime'].dt.week
         #data['dropoff week'] = data['dropoff datetime'].dt.week
         data['pickup day'] = data['pickup datetime'].dt.day
         #data['dropoff day'] = data['dropoff datetime'].dt.day
```

pickup latitude

dropoff longitude

float64

float64

```
data['pickup hour'] = data['pickup datetime'].dt.hour
          #data['dropoff hour'] = data['dropoff datetime'].dt.hour
In [10]:
          #Calculating trip distance from longitude and Latitude values
          from math import sin, cos, sqrt, atan2, radians
          def Distance(row):
              R = 6373.0 # approximate radius of earth in km
              x = radians(row['pickup latitude'])
              y = radians(row['pickup longitude'])
              x1 = radians(row['dropoff latitude'])
              y1 = radians(row['dropoff longitude'])
              d1 = y1 - y
              d2 = x1 - x
              x3 = \sin(d2 / 2)**2 + \cos(x) * \cos(x1) * \sin(d1 / 2)**2
              y3 = 2 * atan2(sqrt(x3), sqrt(1 - x3))
              result = R * y3
              return result
In [11]:
          data['trip distance'] = data.apply(lambda row: Distance(row), axis= 1)
          data.head()
Out[11]:
                  id vendor_id pickup_datetime dropoff_datetime passenger_count pickup_longitude pickup_latitude drc
                                   2016-02-29
                                                   2016-02-29
         0 id1080784
                            2
                                                                          1
                                                                                  -73.953918
                                                                                                40.778873
                                      16:40:21
                                                     16:47:01
                                   2016-03-11
                                                   2016-03-11
                                                                          2
         1 id0889885
                                                                                  -73.988312
                                                                                                40.731743
                                      23:35:37
                                                     23:53:57
                                   2016-02-21
                                                   2016-02-21
         2 id0857912
                                                                          2
                                                                                  -73.997314
                                                                                                40.721458
                                     17:59:33
                                                     18:26:48
                                                   2016-01-05
                                   2016-01-05
         3 id3744273
                                                                                  -73.961670
                                                                                                40.759720
                                                     10:03:32
                                      09:44:31
                                   2016-02-17
                                                   2016-02-17
         4 id0232939
                           1
                                                                          1
                                                                                  -74.017120
                                                                                                40.708469
                                      06:42:23
                                                     06:56:31
In [12]:
          #Checking for outliers
          data['trip_duration'].describe()/3600
         count
                  202.589444
Out[12]:
                   0.264508
         mean
         std
                    1.073507
         min
                    0.000278
         25%
                     0.110278
         50%
                     0.184167
         75%
                     0.298611
                   538.815556
         Name: trip duration, dtype: float64
In [13]:
          #removing outliers
          Q1 = data['trip duration'].quantile(0.25)
```

```
Q3 = data['trip duration'].quantile(0.75)
         IQR = Q3 - Q1 #IQR is interquartile range.
         filter = (data['trip duration'] >= Q1 - 1.5 * IQR) & (data['trip duration'] <= Q3 + 1.5 *]
         data cleaned= data.loc[filter]
In [14]:
         data cleaned['trip duration'].describe()/3600
        count 192.321944
Out[14]:
                 0.203375
        mean
        std
                  0.124510
                  0.000278
        min
        25%
                  0.106667
        50%
                   0.175556
        75%
                  0.275556
                   0.581111
        max
        Name: trip duration, dtype: float64
In [15]:
         #Truncating data due to hardware limitation in my personal pc
         #This step is skipped otherwise
         data cleaned= data cleaned.truncate(after=100)
In [16]:
         data benchmark = data cleaned.drop(['id','dropoff datetime','pickup datetime','dropoff lor
In [17]:
         data benchmark
Out[17]:
             vendor id nassanger count store and fwd flag trip duration nickup dayofweek nickup month nickup week
```

)ut[1/]:		vendor_id	passenger_count	store_and_fwd_flag	trip_duration	pickup_dayotweek	pickup_month	pickup_week
	0	2	1	0	400	0	2	9
	1	1	2	0	1100	4	3	10
	2	2	2	0	1635	6	2	7
	3	2	6	0	1141	1	1	1
	4	1	1	0	848	2	2	7
	•••							
	96	1	2	0	181	6	3	9
	97	1	3	0	1507	5	6	22
	98	1	1	0	1178	1	6	25
	99	2	1	0	1439	0	2	9
	100	1	1	0	629	5	2	8

93 rows × 10 columns

```
In [18]: from sklearn.utils import shuffle

# Shuffling the Dataset
data_benchmark = shuffle(data_benchmark, random_state = 42)

#creating 4 divisions
div = int(data_benchmark.shape[0]/4)
```

```
test = data benchmark.loc[3*div+1:]
In [19]:
          train.head()
             vendor_id passenger_count store_and_fwd_flag trip_duration pickup_dayofweek pickup_month pickup_week
Out[19]:
                     2
                                    5
                                                      0
                                                                                    2
          43
                                                                 346
                                                                                                             16
          23
                                                      0
                                                                 325
                                                                                                              8
                     1
                                    1
                                                                                    6
                                                                                                 2
          59
                                                      0
                                                                1392
                                                                                    0
                     1
                                    1
                                                                                                 4
                                                                                                             15
          77
                     2
                                    2
                                                                 533
                                                                                    3
                                                                                                 6
                                                                                                             24
           0
                     2
                                    1
                                                      n
                                                                 400
                                                                                    0
                                                                                                 2
                                                                                                              9
In [20]:
          test.head()
             vendor_id passenger_count store_and_fwd_flag trip_duration pickup_dayofweek pickup_month pickup_week
Out[20]:
          70
                     2
                                                                 352
                                                                                    2
                                                                                                 3
                                                                                                             10
          73
                     2
                                    2
                                                                 711
                                                                                                 5
                                                                                                             19
          33
                     1
                                                                 157
                                                                                    5
                                                                                                             1
          83
                     2
                                                                1592
                                                                                                 3
                                                                                                             12
           9
                     1
                                                      0
                                                                1429
                                    1
                                                                                    6
                                                                                                 4
                                                                                                             14
In [21]:
           # storing simple mean in a new column in the test set as "simple mean"
          test['simple mean'] = train['trip duration'].mean()
In [22]:
           #calculating mean absolute error
          from sklearn.metrics import mean absolute error as MAE
          simple_mean_error = MAE(test['trip_duration'] , test['simple mean'])
          simple mean error
          484.1077943615257
Out[22]:
         Vendor_id Vs Trip_Duration
In [23]:
          vendor = pd.pivot table(train, values='trip duration', index = ['vendor id'], aggfunc=np.r
          vendor
Out[23]:
                    trip duration
          vendor id
                 1
                     1078.272727
                 2
                     796.500000
```

vendor id= pd.pivot table(train, values='trip duration', index = ['vendor id'], aggfunc=ng

3 parts to train set and 1 part to test set

train = data benchmark.loc[:3*div+1,:]

In [24]:

vendor id

```
# initializing new column to zero
         test['vendor id mean'] = 0
          # For every unique entry in vendor id
         for i in train['vendor id'].unique():
            # Assign the mean value corresponding to unique entry
            test['vendor id mean'][test['vendor id'] == i] = train['trip duration'][train['vendor id']
          #calculating mean absolute error
         vendor id error = MAE(test['trip duration'] , test['vendor id'] )
         vendor id error
         788.2089552238806
Out[24]:
        Passenger_count Vs Trip_duration
In [25]:
         passenger = pd.pivot table(train, values='trip duration', index = ['passenger count'], age
         passenger
Out[25]:
                       trip_duration
         passenger_count
                         853.095238
```

- 2 1011.666667
- 5 346.000000
- 1654.500000

```
In [26]:
         # initializing new column to zero
         test['passenger mean'] = 0
         # For every unique entry in passenger count
         for i in train['passenger count'].unique():
           # Assign the mean value corresponding to unique entry
           test['passenger_mean'][test['passenger_count'] == i] = train['trip_duration'][train['pas
         #calculating mean absolute error
         passenger count error = MAE(test['trip duration'] , test['passenger count'] )
         passenger count error
```

788.0746268656717 Out[26]:

Store_and_fwd_flag Vs Trip_duration

```
In [27]:
         store and fwd flag = pd.pivot table(train, values='trip duration', index = ['store and fwd
         passenger
```

Out[27]: trip_duration

passenger_count

- 1 853.095238
- 1011.666667 2
- 346.000000 5
- 1654.500000

```
In [28]:
          # initializing new column to zero
         test['store and fwd flag mean'] = 0
          # For every unique entry in store and fwd flag
         for i in train['store and fwd flag'].unique():
            # Assign the mean value corresponding to unique entry
            test['store and fwd flag mean'][test['store and fwd flag'] == i] = train['trip duration
          #calculating mean absolute error
         store and fwd flag error = MAE(test['trip duration'] , test['store and fwd flag'] )
          store and fwd flag error
         789.7611940298508
Out[28]:
        Pickup month Vs Trip duration
In [29]:
         pickup month= pd.pivot table(train, values='trip_duration', index = ['pickup_month'], aggs
         pickup month
Out[29]:
                     trip duration
         pickup_month
                      1014.250000
                   2
                       549.600000
                   3
                       926.000000
                   4
                       902.142857
                      1503.500000
                       954.800000
                   6
In [30]:
          # initializing new column to zero
         test['pickup month mean'] = 0
          # For every unique entry in pickup month
          for i in train['pickup month'].unique():
            # Assign the mean value corresponding to unique entry
            test['pickup month mean'][test['pickup month'] == i] = train['trip duration'][train['pickup']
          #calculating mean absolute error
          pickup month error = MAE(test['trip duration'] , test['pickup month'] )
         pickup month error
         786.3283582089553
Out[30]:
        Pickup_dayofweek Vs Trip_duration
In [31]:
         pickup dayofweek= pd.pivot table(train, values='trip duration', index = ['pickup dayofweek]
         pickup dayofweek
Out[31]:
                         trip_duration
         pickup_dayofweek
```

1015.000000

1418.600000

0

trip_duration

pickup_dayofweek

- 777.714286
- 837.000000
- 4 911.000000
- 412.666667

```
In [32]: # initializing new column to zero
    test['pickup_dayofweek_mean'] = 0

# For every unique entry in pickup_dayofweek
for i in train['pickup_dayofweek'].unique():
    # Assign the mean value corresponding to unique entry
    test['pickup_dayofweek_mean'][test['pickup_dayofweek'] == i] = train['trip_duration'][tn
# calculating mean absolute error
    pickup_dayofweek_error = MAE(test['trip_duration'] , test['pickup_dayofweek'] )
    pickup_dayofweek_error
```

Out[32]: 786.7014925373135

Pickup_week Vs Trip_duration

```
In [33]: pickup_week= pd.pivot_table(train, values='trip_duration', index = ['pickup_week'], aggfur
pickup_week
```

Out[33]: trip_duration

pickup_week

- 419.000000
- 1609.500000
- 6 615.000000
- 848.000000
- 442.500000
- 9 400.000000
- 758.500000
- 1093.500000
- 700.000000
- 1141.500000
- 877.333333
- 1461.000000
- 1546.000000
- 1338.500000
- 533.000000
- 782.000000

```
In [34]:
          # initializing new column to zero
          test['pickup week mean'] = 0
          # For every unique entry in pickup week
          for i in train['pickup week'].unique():
            # Assign the mean value corresponding to unique entry
            test['pickup week mean'][test['pickup week'] == i] = train['trip duration'][train['picku
          #calculating mean absolute error
          pickup week error = MAE(test['trip duration'] , test['pickup week'] )
          pickup week error
         776.955223880597
Out[34]:
         Pickup_day Vs Trip_duration
In [35]:
          pickup day= pd.pivot table(train, values='trip duration', index = ['pickup day'], aggfunc=
          pickup day
Out[35]:
                    trip_duration
         pickup_day
                 4
                           326.0
                  5
                          1461.0
                 7
                          1451.5
                 8
                          1006.5
                 9
                           352.0
                          1003.5
                 11
                 13
                           601.0
                 16
                           533.0
                 17
                           687.5
                 18
                          1942.0
                 19
                          1375.0
                 20
                           346.0
                 21
                          1227.5
                 22
                           911.0
                 25
                           560.0
                           386.0
                 26
                 28
                           325.0
                 29
                           400.0
                          1848.0
                 30
                 31
                           942.5
```

In [36]: # initializing new column to zero
 test['pickup_day_mean'] = 0

```
# Assign the mean value corresponding to unique entry
            test['pickup day mean'][test['pickup day'] == i] = train['trip duration'][train['pickup
          #calculating mean absolute error
          pickup day error = MAE(test['trip duration'] , test['pickup day'] )
          pickup day error
         773.776119402985
Out[36]:
        Pickup_hour Vs Trip_duration
In [37]:
          pickup hour= pd.pivot table(train, values='trip duration', index = ['pickup hour'], aggfur
          pickup hour
Out[37]:
                    trip duration
         pickup_hour
                      352.000000
                  6
                      848.000000
                     1277.000000
                     1000.666667
                  9
                 12
                     1546.000000
                 13
                      339.000000
                 14
                      346.000000
                 15
                      817.000000
                 16
                      393.000000
                     1190.500000
                 18
                 19
                      773.333333
                 20
                      318.500000
                 21
                     1383.500000
                 22
                     1364.750000
                 23
                      911.000000
In [38]:
          # initializing new column to zero
          test['pickup hour mean'] = 0
          # For every unique entry in pickup hour
          for i in train['pickup hour'].unique():
            # Assign the mean value corresponding to unique entry
            test['pickup hour mean'][test['pickup hour'] == i] = train['trip duration'][train['pickup
          #calculating mean absolute error
          pickup hour error = MAE(test['trip duration'] , test['pickup hour'] )
          pickup hour error
         775.2089552238806
Out[38]:
```

For every unique entry in pickup_day
for i in train['pickup day'].unique():

Trip_distance Vs Trip_duration

```
In [39]: trip_distance = pd.pivot_table(train, values='trip_duration', index = ['trip_distance'], a
trip_distance
```

Out[39]: trip_duration

trip_distance	
0.406928	339
0.677139	311
0.701831	346
0.945542	560
0.991164	533
1.199449	400
1.373155	615
1.480537	326
1.579791	325
1.711597	1848
1.740356	527
1.931888	1829
1.984848	848
2.144388	352
2.387217	911
2.549247	386
3.460470	891
4.097868	1178
4.329893	848
4.407695	1165
4.912427	1546
5.024410	1375
5.100414	1277
5.478256	1074
6.506580	1392
7.817653	1461
21.256194	1942

```
In [40]: # initializing new column to zero
    test['trip_distance_mean'] = 0

# For every unique entry in trip_distance
    for i in train['trip_distance'].unique():
        # Assign the mean value corresponding to unique entry
        test['trip_distance_mean'][test['trip_distance'] == i] = train['trip_duration'][train['trip_distance']]
```

```
#calculating mean absolute error
trip_distance_error = MAE(test['trip_duration'] , test['trip_distance'] )
trip_distance_error
```

Out[40]:

786.8163127140311

Two Features

```
In [41]:
    two_features = pd.pivot_table(train, values = 'trip_duration', index = ['pickup_day','pic}
    two_features
```

Out[41]: trip_duration

		trip_duration
pickup_day	pickup_hour	
4	20	326
5	22	1461
7	9	1829
	15	1074
8	9	848
	22	1165
9	0	352
11	19	615
	21	1392
13	20	311
	22	891
16	18	533
17	6	848
	19	527
18	22	1942
19	21	1375
20	14	346
21	8	1277
	19	1178
22	23	911
25	15	560
26	16	386
28	9	325
29	16	400
30	18	1848
31	12	1546
	13	339

```
# Initiating new empty column
In [42]:
         test['2features mean'] = 0
          # Assigning variables to strings ( to shorten code length)
         s2 = 'pickup day'
         s1 = 'pickup hour'
          # For every Unique Value in s1
         for i in test[s1].unique():
           # For every Unique Value in s2
           for j in test[s2].unique():
              # Calculate and Assign mean to new column, corresponding to both unique values of sl
              test['2features mean'][(test[s1] == i) & (test[s2] == j)] = train['trip duration'][(traj
In [43]:
         test 2 feature=test[test['2features mean'].notnull()]
In [44]:
          #calculating mean absolute error
          two features error1 = MAE(test 2 feature['trip duration'] , test 2 feature['2features mean
         two features error1
         700.5
Out[44]:
        Five Features
In [45]:
         five features=pd.pivot table(train, values = 'trip duration', index = ['pickup day', 'picku
         print(five features)
                                                                              trip duration
         pickup day pickup week pickup hour pickup month pickup dayofweek
                    14
                                20
                                                                                        326
         5
                                             5
                    18
                                 22
                                                           3
                                                                                       1461
         7
                    14
                                15
                                                           3
                                                                                       1074
                    23
                                9
                                                           1
                                                                                       1829
         8
                    10
                                22
                                             3
                                                                                       1165
                                                           1
                    23
                                 9
                                             6
                                                           2
                                                                                        848
         9
                    10
                                 0
                                             3
                                                           2
                                                                                        352
         11
                    6
                                19
                                             2
                                                           3
                                                                                        615
                    15
                                21
                                             4
                                                           0
                                                                                       1392
         13
                    2
                                 20
                                             1
                                                           2
                                                                                        311
                                22
                    15
                                             4
                                                           2
                                                                                        891
                    24
                                                           3
                                                                                        533
         16
                                18
                                             6
         17
                    2
                                19
                                             1
                                                           6
                                                                                        527
                    7
                                 6
                                             2
                                                           2
                                                                                        848
         18
                                22
                                             1
                                                           0
                    3
                                                                                       1942
         19
                    16
                                21
                                             4
                                                           1
                                                                                       1375
                    16
                                14
                                                           2
         20
                                             4
                                                                                        346
                                 8
         21
                    3
                                             1
                                                           3
                                                                                       1277
                    25
                                19
                                                                                       1178
         22
                    16
                                23
                                             4
                                                           4
                                                                                        911
                    8
         25
                                 15
                                             2
                                                           3
                                                                                        560
         26
                    25
                                16
                                             6
                                                                                        386
                                             2
         28
                    8
                                                           6
                                                                                        325
         29
                                             2
                    9
                                16
                                                           0
                                                                                        400
                    13
                                             3
         30
                                 18
                                                           2
                                                                                       1848
                                             3
                                                           3
         31
                    13
                                13
                                                                                       339
                    22
                                 12
                                             5
                                                                                       1546
In [46]:
          # Initiating new empty column
         test['5features mean'] = 0
```

Assigning variables to strings (to shorten code length)

```
In [47]:
    test_5_feature=test[test['5features_mean'].notnull()]
    five_features_error = MAE(test_5_feature['trip_duration'] , test_5_feature['5features_mean five_features_error
```

Out[47]: 700.5

All Features

In [48]: all_features=pd.pivot_table(train, values = 'trip_duration', index = ['pickup_day','pickup_print(five_features)

					trip_duration	
pickup_day	pickup_week	pickup_hour	pickup_month	pickup_dayofweek		
4	14	20	4	0	326	
5	18	22	5	3	1461	
7	14	15	4	3	1074	
	23	9	6	1	1829	
8	10	22	3	1	1165	
	23	9	6	2	848	
9	10	0	3	2	352	
11	6	19	2	3	615	
	15	21	4	0	1392	
13	2	20	1	2	311	
	15	22	4	2	891	
16	24	18	6	3	533	
17	2	19	1	6	527	
	7	6	2	2	848	
18	3	22	1	0	1942	
19	16	21	4	1	1375	
20	16	14	4	2	346	
21	3	8	1	3	1277	
	25	19	6	1	1178	
22	16	23	4	4	911	
25	8	15	2	3	560	
26	25	16	6	6	386	
28	8	9	2	6	325	
29	9	16	2	0	400	
30	13	18	3	2	1848	
31	13	13	3	3	339	
	22	12	5	1	1546	

```
In []: #Due to limitations in pc this step takes too long to complete
    # Initiating new empty column
```

```
test['all features mean'] = 0
          # Assigning variables to strings ( to shorten code length)
         s9='vendor id'
         s8='store and fwd flag'
         s7='passenger count'
         s6='trip distance'
         s5='pickup dayofweek'
         s4='pickup month'
         s3='pickup hour'
         s2 = 'pickup week'
         s1 = 'pickup day'
          # For every Unique Value in s1
         for i in test[s1].unique():
           # For every Unique Value in s2 and so on
           for j in test[s2].unique():
                 for k in test[s3].unique():
                        for 1 in test[s4].unique():
                                for m in test[s5].unique():
                                        for n in test[s6].unique():
                                               for o in test[s7].unique():
                                                     for p in test[s8].unique():
                                                             for q in test[s9].unique():
                                                                   # Calculate and Assign mean to new
                                                                       test['all features mean'][(tes
         test all features=test[test['all features mean'].notnull()]
         all features error = MAE(test all features['trip duration'] , test all features['all features
         all features error
In [54]:
         names=['No feature','1 feature','2 features', '5 features']
         values=[simple mean error,pickup day error,two features error1,five features error]
         values=np.round(values,2)
In [55]:
         #Evaluation
         def addlabels(x,y):
             for i in range(len(x)):
                 plt.text(i,y[i],y[i], ha = 'center')
         plt.figure(figsize=(8, 6))
         plt.bar( names, values )
         addlabels(names, values)
         plt.xlabel( "Different features")
         plt.ylabel('Score')
         plt.title('Benchmark Scores')
        Text(0.5, 1.0, 'Benchmark Scores')
Out[55]:
```

