STT3100-MAT8081 ANALYSE MULTIVARIÉE

Devoir 1 . 15 % de la note finale

Automne 2014

Partie I: partie théorique

Exercice 1

Méthode d'orthogonalisation de Gram-Schmidt: Soient x_1, x_2, \ldots, x_n , n vecteurs linéairement indépendants de R^d $(n \leq d)$. On construit les vecteurs u_1, u_2, \ldots, u_n à partir des vecteurs x_i de la façon suivante:

i.
$$u_1 = x_1/||x_1||$$

ii.
$$u_i = \frac{x_i - \sum_{j=1}^{i-1} u_j^T x_i u_j}{||x_i - \sum_{j=1}^{i-1} u_j^T x_i u_j||}, i = 1, \dots, n.$$

- a. Montrer que les u_i sont orthogonaux entre eux et ont une norme égale à 1.
- b. Montrer que $V(x_1, x_2, ..., x_n) = V(u_1, u_2, ..., u_n)$, c'est-à-dire que les x_i et les u_i engendrent le même espace vectoriel. Pour établir b), prendre un vecteur Xa de $V(x_1, x_2, ..., x_n)$ et montrer que ce vecteur peut également s'écrire comme Ub où U est la matrice $d \times n$ des u_i et montrer que b = Ca où C est la matrice $n \times n$ de changement de base telle que X=UC.
- c. Montrer que la matrice de changement de base C est triangulaire supérieure et que ses éléments satisfont C_{ii} =distance entre x_i et sa projection sur $V(u_1, u_2, \ldots, u_{i-1})$ (ou entre x_1 et l'origine lorsque i=1) et que C_{ki} =coordonnée de u_k dans la projection de x_i sur $V(u_1, u_2, \ldots, u_{i-1}), k=1, 2, \ldots, i-1$.
- d. Soit $S = X^T X$, une matrice $n \times n$. Montrer que $S = C^T C$; on dit que C est la décomposition de Cholesky de S. Donner un algorithme itératif pour construire les éléments de C à partir de ceux de S (C_{ii} s'écrit en fonction de S_{ii} et de C_{ki} , k =

1, ..., i-1 et $C_{ij}, j > i$, s'écrit en fonction de S_{ij} et de $\{C_{ki}, C_{kj} : k = 1, ..., i\}$. Justifier vos résultats. (Suggestion utilisez le fait que pour $j \geq i$, $S_{ij} = \sum_{k=1}^{i} C_{ki} C_{kj}$).

Remarque: Étant donné une matrice définie positive quelconque S, cet algorithme permet de calculer la décomposition de Cholesky de S, une matrice triangulaire supérieure C telle que $S = C^T C$.

Application: Prendre d = 5 et n = 3 et poser

$$X = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- a. Construire les vecteurs u_i et calculer C.
- b. Calculer S et recalculer C à l'aide de l'algorithme du problème 1 d).

Exercice 2

Soit $y = (y_1, y_2)^{\top} \in \Re^2$ un vecteur aléatoire distribué selon une loi normale de moyenne $\mu = (\mu_1, \mu_2)^{\top}$ et de variance Σ , i. e. $y \sim N_2(\mu, \Sigma)$. Soit $U = [u_1; u_2]$ une matrice 2×2 orthogonale et $D = diag(\lambda_1, \lambda_2), \lambda_1 > \lambda_2 > 0$, une matrice diagonale 2×2 telle que:

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} = UDU^{\top}.$$

Soit $w_1 = u_1^{\top} y$, $w_2 = u_2^{\top} y$, $\alpha_1 = u_1^{\top} \mu$ et $\alpha_2 = u_2^{\top} \mu$.

- i. Montrer que w_1 et w_2 sont les coordonnées de y sur u_1 et u_2 respectivement.
- ii. Montrer que α_1 et α_2 sont les coordonnées de μ sur u_1 et u_2 respectivement.
- iii. Déduire la loi de w.
- a. Les iso-contours d'une loi normale bidimensionnelle sont des ellipses centrés en μ . On les obtient comme ceci:

$$C = \{ y \in \Re^2 : f_y(y) = c \},$$

où $f_y(y)$ est la fonction de densité de y et c est une constante positive.

- b. Écrire l'equation de l'ellipse en fonction de c, w, λ_1 , λ_2 , α_1 et α_2 ; montrer que l'ensemble C décrit une ellipse dans \Re^2 .
- c. Déduire les axes principaux de l'ellipse.

APPLICATION: Prendre $\mu = (2,3)^{\top}$, $\sigma_1^2 = \sigma_2^2 = 3$, $\sigma_{12} = 2$ et c = 4.

- 1. Écrire un programme R permettant de calculer les points, (y_1, y_2) , de l'ellipse C. [Indication: écrire l'équation de l'ellipse sous la forme $\cos(\theta)^2 + \sin(\theta)^2 = 1$, générer un vecteur des θ , à l'aide de ceci: $\theta = \sec(0, 2^*pi$, length.out=200), et calculer les 200 points (y_{i1}, y_{i2})].
- 2. Faire un graphique de l'ellipse pour les 200 points (y_{i1}, y_{i2}) et rajouter les axes principaux.

Exercice 3

Soient A et B deux matrices $d \times d$ avec A semi-définie positive et B définie positive et soit b un vecteur de R^d .

a. Montrer que

$$\max_a \frac{(a^T b)^2}{a^T B a} = b^T B^{-1} b,$$

avec le maximum est atteint pour tout vecteur $a = cB^{-1}b$, avec $c \in R$. [Indication: utiliser l'inégalité de Cauchy–Schwartz pour répondre à cette question, voir définiton à la fin de la partie I du devoir].

b. Montrer que

$$\max_{a} \frac{a^T A a}{a^T B a} = \lambda_1,$$

où λ_1 est la plus grande valeur propre de $B^{-1}A$. Conclure que le maximum est atteint pour le vecteur propre de $B^{-1}A$ qui est associé à λ_1 .

Exercice 4

APPLICATION DE L'EXERCICE 3: Suppposons maintenant que nous sommes dans une situation ou on rejette l'hypothèse nulle dans un test multivarié à deux échantillons

$$\begin{cases} \text{échantillon I:} & y_{11}, \dots, y_{n1} & i.i.d \sim N_d(\mu_1, \Sigma), \\ \text{échantillon II:} & y_{12}, \dots, y_{n2} & i.i.d \sim N_d(\mu_2, \Sigma). \end{cases}$$

Nous somme donc dans la situation où l'hypothèse nulle $H_0: \mu_1 = \mu_2$ est rejetée. On suppose aussi que Σ est inconnue, comme dans la section 2.2 (b) du chapitre 3 des notes de cours.

- a. Montrer que si $H_0: \mu_1 = \mu_2$ est rejetée, alors il existe au moins un vecteur $a \in R^d$ (c.-à-d. une direction dans R^d) tel que l'hypothèse univariée $H_0: a^T \mu_1 = a^T \mu_2$ est rejetée.
- b. Supposons maintenant les variables aléatoires Z_1 et Z_2 définies par $Z_{i1} = a^T Y_{i1}$ et $Z_{i2} = a^T Y_{i2}$ pour i = 1, ..., n. Donnez la forme explicite de la statistique de Student, $t_z(a)$, du test $H_0: \mu_{z1} = \mu_{z2}$ en fonction de a, \bar{y}_1, \bar{y}_2 et S_p où μ_{z1} et μ_{z2} sont les moyennes théoriques des deux variables Z_1 et Z_2 respectivements. La matrice S_p est la matrice de variances-covariances combinée donnée dans la page 17 des notes de cours (chapitre 3), et \bar{y}_1 et \bar{y}_2 se sont les vecteurs moyens des deux échantillons 1 et 2 respectivement.
- c. Montrer que

$$\max_a \{ [t_z(a)]^2 \} = T^2,$$

où T^2 est la statistique de Hotelling qui teste $H_0: \mu_1 = \mu_2$. Montrer que le maximum est atteint pour $a = S_p^{-1}(\bar{y}_1 - \bar{y}_2)$. Le vecteur a est appelé la fonction discriminante, (c.-à-d. c'est la direction selon laquelle les deux populations se distinguent davantage). La statistique T^2 est donnée dans la page 17 du chapitre 3 des notes de cours.

d. Que peut-on conclure alors lorsque nous rejetons $H_0: \mu_1 = \mu_2$ par la statistique T^2 ? Les entrées du vecteur $a = S_p^{-1}(\bar{y}_1 - \bar{y}_2)$, sont-elles interpétables? Justifiez vos réponses.

Rappel 1

INÉGALITÉ DE CAUCHY-SCHWARTZ (EXTENSION): Soient a et b deux vecteurs quelconques de R^d , et soit B une matrice $d \times d$ définie positive. Alors nous avons les résultats suivants:

$$\begin{cases} \text{inégalité de Cauchy-Schwartz} & (a^T b)^2 \leq (a^T a)(b^T b), \\ \text{une extension de cette inégalité donne} & (a^T b)^2 \leq (a^T B a)(b^T B^{-1} b). \end{cases}$$

PARTIE II: PARTIE PRATIQUE

Exercice 5

Le fichier ExeV.dat contient les mesures de d=3 variables mesurées sur n=51 individus.

- a. Tester la normailté univariée pour chacune des trois variables? Citer au moins deux statistiques vues dans le cours pour cet effet?
- b. La normalité multivariée est-elle acceptable pour ces données ?
- c. Utiliser R et SAS pour trouver la statistique de Hotelling et le p-value qui testent l'hypothèse $H_0: \mu = (14.6, 26, 21)^T$?

Exercice 6

EXERCICE 5.18 DU LIVRE (PAGE 150): La Table 5.6 du livre est disponible par moodle dans la section *Laboratoires* -> *Données*.

- a. À l'aide du logiciel R, calculer la statistique de Hotelling T^2 ainsi que la statistique F associée et tester l'hypothèse $H_0: \mu_1 = \mu_2$.
- b. Calculer la fonction discriminante a et interpréter ces entrées dans le contexte de l'exercice.
- c. En utilisant un modèle de régression, comme dans les notes de cours, recalculer la statistique F à l'aide de SAS.
- d. Si on rejette l'hypothèse nulle, tester l'importance de chaque variable à la présence des autres cinq variables [donnez la statistique du test appropriée et le p-value associé].
- e. Maintenant, à l'aide de la correction de Bonferroni, refaire les tests univariés de l'importance de chaque variable dans la distinction des deux groupes.
- f. En comparant les résultats de d) et e) que peut-on conclure de la correction de Bonferroni?