Q4. Distributed Concurrency Control · Concurrency controlling techniques ensure that multiple transactions are executed simultaneously while maintaining the ACID properties of transactions and serializability in schedules · Concurrency control is provided in a database to -- enforce isolation among transactions - preserve database consistency - resolve read-write and write-read conflicts · Locking based Concurrency control protocols use the concept of locking data items · A lock is a variable associated with a data item that determines whether read/write operations can be performed on the data item. · The operation's accell request is decided based on the compatibility of two lock modes · I read lock is compatible with another read lock A write lock is not compatible with another read or · Lecking based concurrency control systems can either use one-phase or two-phase locking protocols.

	One Phase Locking Protocol ->
•	In this method, each transaction locks an item before use and releases the lock as soon as it finishes using it
•	This locking method provides for maximum concurrency
•	But it does not always enforce serializability.
	- meren database consistency
	Two Phase Locking Protocol ->
	In this method all the locking operations occur before the first lock release or unlock operation.
	The transaction comprises of two phases -
	-> In the first phase, the transaction acquires all the locks it needs and does not release any lock
450	This is called the expanding or growing phase.
10 10	-> In the second phase, the transaction releases the locks and cannot request any new locks.
	This is called the shrinking phase.
	Lander and the real to head the second
	Locks are usually maintained in a lock table.

Centralized 2PL -

- The 2PL algorithm can be easily extended to the DDBMS environment by delegating the lock management responsibility to a single site.
- This means that only one site has a lock manager, the transaction managers at other sites communicate with it to obtain locks.
- · This approach is also known as the primary site 294 algorithm
- The communication is between the coordinating TM, the Lock manager at the central site and data processors at other participating sites.
- The participating sites are those, on which the operation (s) is to be carried out.
- The transaction manager (CRPL-TM) is written as an algorithm that runs forever and waits until a message arrives either from the application (with a transaction operation) or from the lock manager.
- The data processors (DP) and the lock manager (C2PL-LM) algorithms are written as procedures that are called when needed.

Coordinating Participating Data procusors at participating sites Drock Request a Lock granted (9) end of operation G release locks CENTRALISED 2PL Distributed 2PL -> . D2PL requires the availability of lock manager at each site · The DAPL-TM algorithm is similar to the CRPL-TM, with two major modifications -> The messages sent to the central site lock manager of in C2PL-TM are sent to all the sites participating sites in DaPL-TM -> Operations are not passed to the dataprocessors by the coordinating transaction manager, instead they are passed by the participating lock managers. So, the coordinating transaction manager does not wait for a lock request granted musage

	Page
Participating	Participating
Schedukis	DM's
Cock of	
Request) @ On	
Per	ation
aperation	
End of	
Lock	DISTRIBUTED
4 3	
	Participating Schedules Schedules Open Open Sock Request Open Open Sock Find of operation