几何代数第5章

作者 刘国华

日求

特征值与特征向量

几何代数第5章

作者 刘国华

东南大学 数学系

September 5, 2017

目录

L何代数第5章

4年年1日日日

- 1 特征值与特征向量
 - 矩阵的特征值与特征向量
 - 相似矩阵
 - 实对称矩阵的相似对角化

几何代数第5章 作者 刘国华

目录

回量 矩阵的特征值与特别 向量 相似矩阵 实对我和性的相似。 请用10 秒钟计算

34 + 55 + 89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 = ??

几何代数第5章 作者 刘国华

特征值与特征

可董 矩阵的特征值与特征 向董 相似矩阵 实对称矩阵的相似x 请用10 秒钟计算

34 + 55 + 89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 = ??

答案是6710.

几何代数第5章 作者 刘国华

请用10 秒钟计算

$$34 + 55 + 89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 = ??$$

答案是6710.

定义

若一个数列,前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列.即:1,1,2,3,5,8,13,···

几何代数第5章 作者 刘国华

目录 寺征值与特征 句量 矩阵的特征值与特征 向量 请用10 秒钟计算

$$34 + 55 + 89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 = ??$$

答案是6710.

定义

若一个数列,前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列.即: $1,1,2,3,5,8,13,\cdots$

数学家发现:连续10个斐波那契数之和,必定等于第7个数的11 倍! 所以上面式子的答案为610×11=6710.

几何代数第5章 作者 刘国华

日求

特征值与特征 向量 矩阵的特征值与特征 向量 相似矩阵 实对称矩阵的相似。 假设一对初生兔子要一个月才到成熟期,而一对成熟兔子每月会生一对(雌雄)兔子,那么,由一对初生兔子开始,12个月后会有多少对兔子呢?

几何代数第5章 假设一对初生兔子要一个月才到成熟期,而一对成熟兔子每 月会生一对(雌雄)兔子,那么,由一对初生兔子开始,12个 月后会有多少对兔子呢? 1月1对: (小): 2月1对; (大); 3月2对; (1小+1大) 4月3对; (1小+2大) 5月5对; (2小+3大) 6月8对; (3小+5大) 7月13对; (5小+8大) 1) 分析问题、抓住本质、简化。本质上有两类兔子: 一类是 能生殖的兔子, 简称为大兔子; 新生的兔子不能生殖, 简称 为小兔子: 小兔子一个月就长成大兔子, 求的是大兔子与小 兔子的总和 2) 深入观察发现规律①每月小兔对数=上个月大兔对数. ② 每月大兔对数=上个月大兔对数+上个月小兔对数=上个月大 免对数+上上个月大免对数=前两个月大免对数之和.

```
几何代数第5章
作者 刘国华
```

]录 持征值与特征]量 1. 培养观察问题分析问题的能力

```
1月1对; (1小); 2月1 对; (1大); 3月2对; (1小+1大) 4月3 对; (1小+2大) 5月5对; (2小+3大) 6月8对; (3小+5大) 7月13对; (5小+8大) 8月21对; (8小+13大) 9月34对; (13小+21大) 10月55对; (21小+34大) 11月89对; (34小+55大) 12月144对; (55小+89大) 12月233对; (89小+144大) 即: 二阶递推公式  \begin{cases} F_1 = F_2 = 1 \\ F_n = F_{n-1} + F_{n-2}, \end{cases} n = 3, 4, 5, \cdots
```

```
几何代数第5章
作者 刘国化
```

```
目录
特征值与特征
向量
矩阵的特征值与特征
```

1. 培养观察问题分析问题的能力

```
1月1对; (1小);
                   2月1对; (1大);
3月2对; (1小+1大) 4月3 对; (1小+2大)
5月5对: (2小+3大)
                   6月8对; (3 小+5 大)
7月13对; (5小+8大) 8月21对; (8小+13大)
9月34对; (13小+21大) 10月55对; (21小+34大)
11月89对; (34小+55大) 12月144对; (55小+89 大)
12月233对; (89小+144大)
即:二阶递推公式
   F_1 = F_2 = 1
             n=3,4,5,\cdots
F_n = F_{n-1} + F_{n-2}
2. 深入观察发现规律
I每月小兔对数=上个月大兔对数。
II 每月大兔对数=上个月大兔对数+上个月小兔对数.
```

```
几何代数第5章
作者 刘国华
```

日本 特征值与特征 向量 矩阵的特征值与特征 向量 相似矩阵 实对称矩阵的相似对

3. 深入研究问题
由二阶递推公式
$$\begin{cases} F_1 = F_2 = 1 \\ F_n = F_{n-1} + F_{n-2}, \end{cases} n = 3, 4, 5, \cdots 可得:$$
$$\begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix},$$
$$\begin{pmatrix} F_3 \\ F_4 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^2 \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}, \cdots$$
$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$$

門代数第55

作者 刘国华

日 水

特征值与特征 向量

矩阵的特征值与特征 向量 相似矩阵 4. 进一步深入分析

问题的提出:设A 是n 阶方阵,求 A^k ?

几何代数第5章

目录

可量 矩阵的特征值与特征 向量 相似矩阵 4. 进一步深入分析

问题的提出: 设 $A \in \mathbb{R}_n$ 阶方阵, 求 A^k ? 分析:

- ② 若A 不是对角阵, 怎么求Ak

几何代数第5章

4. 特征值与特征 向量

矩阵的特征值与特别 向量 相似矩阵 4. 进一步深入分析

问题的提出:设A 是n 阶方阵,求 A^k ?

分析:

- ② 若A 不是对角阵, 怎么求Ak
- ③ 若存在n 阶可逆矩阵P, 使得 $P^{-1}AP = \Lambda$, Λ 为对角阵,则易求得 A^k . 此时称方阵A 可与对角阵此时称方阵A 可与对角阵 Λ 相似.

几何代数第5章

作者 刘国华

4 特征值与特征 向量

57 主 矩阵的特征值与特征 向量 相似矩阵 4. 进一步深入分析

问题的提出: 设A 是n 阶方阵, 求 A^k ? 分析:

- ② 若A 不是对角阵, 怎么求Ak
- ③ 若存在n 阶可逆矩阵P, 使得 $P^{-1}AP = \Lambda$, Λ 为对角阵, 则易求得 A^k . 此时称方阵A 可与对角阵此时称方阵A 可与对角阵 Λ 相似.

问题: 如何判断A 可与对角阵 Λ 相似? 当且仅当存在n 个线性无关的向量 p_1, p_2, \dots, p_n , 使得

$$Ap_i = \lambda_i p_i.$$

几何代数第5章 作者 刘国华

7 个 特征值与特征

四 坐 矩阵的特征值与特征 向量 相似矩阵 实对称矩阵的相似对

定义

设 $A \in M_n$, 如果存在数 λ , 非零向量 η 使得

$$A\eta = \lambda \eta,$$

则称数 λ 为A 的一个特征值, 称向量 η 为A 的属于 λ 的特征向量.

几何代数第5章 作者 刘国华

定义

设 $A \in M_n$, 如果存在数 λ , 非零向量 η 使得

$$A\eta = \lambda \eta,$$

则称数 λ 为A 的一个特征值, 称向量 η 为A 的属于 λ 的特征向量.

这里有两点要注意:

- (1) 特征向量 α 一定是非零的向量. λ 可以为零.
- (2) λ 必须是数, 否则数乘 $\lambda\alpha$ 没有意义.

特征值存在的条件及基本性质

几何代数第5章 作者 刘国华

对于给定的方阵A,它满足什么条件才有特征值呢?

性质

下列三个条件等价:

- A 有特征值λ;
- (2) 以方阵 $\lambda E A$ 为系数矩阵的齐次线性方程组

$$(\lambda E - A)x = 0$$

有非零解;

(3) n 阶行列式

$$|\lambda E - A| = 0.$$

特征值存在的条件及基本性质

几何代数第5章 作者 刘国华

对于给定的方阵A,它满足什么条件才有特征值呢?

性质

下列三个条件等价:

- A 有特征值λ;
- (2) 以方阵 $\lambda E A$ 为系数矩阵的齐次线性方程组

$$(\lambda E - A)x = 0$$

有非零解;

(3) n 阶行列式

$$|\lambda E - A| = 0.$$

特征值存在的条件及基本性质

几何代数第5章 作者 刘国华

特征值与特征 向量 矩阵的特征值与特征 向量 相似矩阵 将行列式 $|\lambda E - A|$ 展开,得到一个变量为 λ 的n 次多项式,记为 $f_A(\lambda)$,即

$$f_A(\lambda) = |\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

这个多项式称为A 的 特征多项式, 方程称为矩阵A的 特征方程. 特征多项式的根即为A 的特征值.

特征值与特征向量的求法

几何代数第5章 作者 刘国华

由上述讨论可知A的特征值和特征向量可按如下步骤求得:

- (1) 写出A的特征多项式, 并求出根, 即A的全部特征值.
- (2) 对求得的每一特征值 $\lambda_i (i=1,2,\cdots,s(\leq n))$, 求齐次线性 方程组

$$(\lambda_i E - A)x = 0$$

的基础解系, 此即A的属于 λ_i 最大个数的线性无关的特征向量.

(3) 写出基础解系的一切非零的线性组合, 即得属于特征值λ_i的全部特征向量.

特征值与特征向量的求法

例

求矩阵

$$A = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$$

的特征值和特征向量.

特征值与特征向量的求法

几何代数第5章

例

求矩阵

$$A = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$$

的特征值和特征向量.

例

求矩阵

$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{pmatrix}$$

的特征值与特征向量.

例

证明

$$f_A(\lambda) = |\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

是关于 λ 的n 次多项式, 并求 λ^n , λ^{n-1} 的系数以及常数项.

几何代数第5章

作者 刘国华

目录

特征值与特征 向量

有量 相似矩阵 实对称矩阵的相似对

例

证明

$$f_A(\lambda) = |\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

是关于 λ 的n 次多项式,并求 λ^n, λ^{n-1} 的系数以及常数项.

定理

 $\partial_1, \lambda_2, \cdots, \lambda_n$ (实数或复数, 可重复)是n 阶方阵A 的n 个特征值, $\mathbb{P}|\lambda E - A| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$ 则

$$\sum_{i=1}^{n} \lambda_i = trA = \sum_{i=1}^{n} a_{ii}, \quad \prod_{i=1}^{n} \lambda_i = detA.$$

几何代数第5章

作者 刘国华

口 小特征值与特征向量 矩阵的特征值与特征 內量 相似矩阵

例

 $战\lambda$ 是方阵A 的特征值, α 是A 的属于 λ 的特征向量, 证明:

- (1) λ^2 是 A^2 的特征值, 且 α 是 A^2 的属于 λ^2 的特征向量;
- (2) 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值, , $|A|\lambda^{-1}$ 是 A^* 的特征值, 且 α 是 A^{-1} . A^* 对应的特征向量:
- (3) $k\lambda$ 是kA 的特征值, 且 α 是kA 的属于 $k\lambda$ 的特征向量;
- (4) 设2 为A 的一个特征值, 求矩阵 $3A^2 + 2A 5E$ 的一个特征值;
- (5) 设三阶矩阵A的特征值为 $1, -2, 3, |x| A^* + 2A 3E|$.

者 刘国华

日 水 特征值与特征 向量 矩阵的特征值与特征 向量

例

 $战\lambda$ 是方阵A 的特征值, α 是A 的属于 λ 的特征向量, 证明:

- (1) λ^2 是 A^2 的特征值, 且 α 是 A^2 的属于 λ^2 的特征向量;
- (2) 当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值, , $|A|\lambda^{-1}$ 是 A^* 的特征值, 且 α 是 A^{-1} , A^* 对应的特征向量;
- (3) $k\lambda$ 是kA 的特征值, 且 α 是kA 的属于 $k\lambda$ 的特征向量;
- (4) 设2 为A 的一个特征值, 求矩阵 $3A^2 + 2A 5E$ 的一个特征值:
- (5) 设三阶矩阵A的特征值为 $1, -2, 3, |x| A^* + 2A 3E|$.

推论

- ① \overline{A} 是A 的特征值, 则 $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值.
- ② A 与A^T 有相同的特征多项式, 因此也有相同的特征值.
- る 方阵A 可逆的充要条件是A 的特征值均不为0.

化零多项式

几何代数第5章

作者 刘国华

日水 特征值与:

可量 矩阵的特征值与特征 向量 相似矩阵

定义

假设A 是方阵, $f(\lambda)$ 是多项式, 并且f(A)=0, 称 $f(\lambda)$ 是方阵A 的化零多项式.

性质

矩阵A 的特征值全是 $f(\lambda) = 0$ 的根.

化零多项式

几何代数第5章

目录 特征值与特征 向量

矩阵的特征值与特征 向量 相似矩阵 实对称矩阵的相似。

定义

假设A 是方阵, $f(\lambda)$ 是多项式, 并且f(A)=0, 称 $f(\lambda)$ 是方阵A 的化零多项式.

性质

矩阵A 的特征值全是 $f(\lambda) = 0$ 的根.

注

- A 的化零多项式的根未必都是A 的特征值.
- A 的化零多项式的根 $\supset A$ 的特征值.
- A 的化零多项式的根是A 的所有可能的特征值.

化零多项式

几何代数第5章

作者 刘国华

日水 特征值与特征 白量

矩阵的特征值与特系 向量 相似矩阵 实对称矩阵的相似?

定义

假设A 是方阵, $f(\lambda)$ 是多项式, 并且f(A)=0, 称 $f(\lambda)$ 是方阵A 的化零多项式.

性质

矩阵A 的特征值全是 $f(\lambda) = 0$ 的根.

注

A 的化零多项式的根未必都是A 的特征值.

A 的化零多项式的根 $\supset A$ 的特征值.

A 的化零多项式的根是A 的所有可能的特征值.

例

若 $A^2 = E$, 求A 的所有可能的特征值.

相似矩阵

几何代数第5章

日 來 持征值与特征

定义

设 A,B 都是 n 阶方阵, 若有可逆矩阵 P, 使 $P^{-1}AP=B$, 则称矩阵 A 与 B 相似. 记为 $A\sim B$. P 为相似变换矩阵.

相似矩阵

几何代数第5章 作者 刘国华

特征值与特征 向量

矩阵的特征值与 向量 相似矩阵 实对称矩阵的相

定义

设 A,B 都是 n 阶方阵, 若有可逆矩阵 P, 使 $P^{-1}AP=B$, 则称矩阵 A 与 B 相似. 记为 $A \sim B$. P 为相似变换矩阵.

例

证明矩阵
$$A = \begin{pmatrix} \lambda_0 & a \\ 0 & \lambda_1 \end{pmatrix}$$
 与 $B = \begin{pmatrix} \lambda_1 & 0 \\ a & \lambda_0 \end{pmatrix}$ 相似.

几何代数第5章

作者 刘国华

日水 杜红枯 15.4

特征值与特征向量 矩阵的特征值与特征 向量 如何知晓 注

- 相似是等价关系的特例: 相似必等价,反之不然.
- ② 矩阵间的相似关系是一种等价关系(反身性;对称性; 传递性.)

几何代数第5章 作者 刘国华

| 求

付任1旦与行任 句量 矩阵的特征值与特别 向量 相似矩阵

注

- 相似是等价关系的特例: 相似必等价,反之不然.
- ② 矩阵间的相似关系是一种等价关系(反身性;对称性; 传递性.)

性质

- **●** 若 $A \sim B$, 且 A 可逆, 则 $A^{-1} \sim B^{-1}$.
- ② 设 $A \sim B$, f 是一个多项式, 则 $f(A) \sim f(B)$.

几何代数第5章

作者 刘国华

31 /- /b b 3

向量 矩阵的特征值与特征 向量 棚份矩阵

相似矩阵 实对称矩阵的相似对

定理

若 n 阶方阵 A 与 B 相似,则有相同的特征多项式和特征值.

几何代数第5章 作者 刘国华

定理

 $\stackrel{\cdot}{a}$ n 阶方阵 $\stackrel{\cdot}{a}$ 与 $\stackrel{\cdot}{b}$ 相似,则有相同的特征多项式和特征值.

注: 特征多项式相同的矩阵未必相似.

例

$$A=\begin{pmatrix}1&1\\0&1\end{pmatrix}$$
 与 $B=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, 则 A 与 B 有相同的特征多项式和特征值,但是不相似.

特征多项式相同是相似的必要而非充分的条件.

作者 刘国华

目录

特征值与特征 向量 矩阵的特征值与特征 向量 相似矩阵 实对称矩阵的相似对

等价关系下的不变量为秩. 相似关系下的的不变量?

作者 刘国华

目录

特征值与特征 句量 矩阵的特征值与特征 向量 相似矩阵 实时称矩阵的相似对

等价关系下的不变量为秩. 相似关系下的的不变量? 相似关系下的不变量为:特征值,迹,行列式,秩

目录

持征值与特征 句量 起降的特征值与特征 向量 相似矩阵 实对标矩阵的相似对

等价关系下的不变量为秩. 相似关系下的的不变量? 相似关系下的不变量为:特征值,迹,行列式,秩 以上不变量都只是必要条件.

几何代数第5章 作者 刘国华 目录 特征值与特征 向量

如果矩阵 A 相似于某个对角矩阵,则称矩阵可以相似对角化. 方阵 A 的相似对角化问题: 求可逆阵 P, 使 $P^{-1}AP = \Lambda = diag(\lambda_1, \dots \lambda_n)$.

几何代数第5章 作者 刘国华 目录 特征值与特征 向量 年度的特征值为特征

如果矩阵 A 相似于某个对角矩阵,则称矩阵可以相似对角化. 方阵 A 的相似对角化问题: 求可逆阵 P, 使 $P^{-1}AP = \Lambda = diag(\lambda_1, \dots \lambda_n)$.

定理

n 阶方阵 A 与对角矩阵相似⇔ A 有 n 个线性无关的特征向量.

几何代数第5章 作者 刘国华

如果矩阵 A 相似于某个对角矩阵,则称矩阵可以相似对角化. 方阵 A 的相似对角化问题: 求可逆阵 P, 使 $P^{-1}AP = \Lambda = diag(\lambda_1, \dots \lambda_n)$.

定理

n 阶方阵 A 与对角矩阵相似 \Leftrightarrow A 有 n 个线性无关的特征向量.

注

若 n 阶方阵 A 有少于 n 个线性无关的特征向量,则 A 不与对角矩阵相似.不是每个方阵都与对角矩阵相似.

几何代数第5章 作者 刘国华

如果矩阵 A 相似于某个对角矩阵,则称矩阵可以相似对角化. 方阵 A 的相似对角化问题: 求可逆阵 P, 使 $P^{-1}AP = \Lambda = diag(\lambda_1, \dots \lambda_n)$.

定理

n 阶方阵 A 与对角矩阵相似⇔ A 有 n 个线性无关的特征向量.

注

若 n 阶方阵 A 有少于 n 个线性无关的特征向量,则 A 不与对角矩阵相似.不是每个方阵都与对角矩阵相似.

问题的提出:如何判断 A 是否有 n 个线性无关的特征向量?

作者 刘国华

.....

特征值与特征向量

相似矩阵 实对称矩阵的相似对 定理

假设 $\eta_1, \eta_2, \dots, \eta_s$ 是矩阵属于不同特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$ 的特征向量,则 $\eta_1, \eta_2, \dots, \eta_s$ 线性无关.

作者 刘国华

4 特征值与特征

句量 矩阵的特征值与特向量 相似矩阵 定理

假设 $\eta_1, \eta_2, \dots, \eta_s$ 是矩阵属于不同特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$ 的特征向量,则 $\eta_1, \eta_2, \dots, \eta_s$ 线性无关.

推论

作者 刘国华

特征值与特征 向量

向量 相似矩阵 实对称矩阵的相信

定理

假设 $\eta_1, \eta_2, \dots, \eta_s$ 是矩阵属于不同特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$ 的特征向量,则 $\eta_1, \eta_2, \dots, \eta_s$ 线性无关.

推论

若 n 阶方阵 A 有 n 个互异的特征值 $\lambda_1, \lambda_2, \dots \lambda_n$, 则 A 与对角矩阵相似.

定理

假设 $\lambda_1, \lambda_2 \cdots, \lambda_s$ 是矩阵 A 的互不相同的特征值, $\eta_{i1}, \eta_{i2}, \cdots, \eta_{it_i}$ 是 A 的对应于特征值 λ_i 的线性无关的特征向量,则向量组

 $\eta_{11}, \eta_{12}, \cdots, \eta_{1t_1}, \eta_{21}, \eta_{22}, \cdots, \eta_{2t_2}, \cdots, \eta_{s1}, \eta_{s2}, \cdots, \eta_{st_s}$

线性无关.

几何代数第5章 作者 刘国华

目录 特征值与特征向量 矩阵的特征值与特征 向量 相似矩阵

n 阶方阵 A 与对角矩阵相似

 \Leftrightarrow A 的每个 n_i 重特征值 i 有 n_i 个线性无关的特征向量,即 $r(\lambda_i E - A) = n - n_i, n = 1, \dots, t$, 其中 $n_1 + n_2 + \dots + n_t = n$ $\Leftrightarrow \lambda_i$ 的代数重数等于几何重数, $\forall \lambda_i$.

几何代数第5章 作者 刘国华

n 阶方阵 A 与对角矩阵相似

 $\Leftrightarrow A$ 的每个 n_i 重特征值 i 有 n_i 个线性无关的特征向量, 即 $r(\lambda_i E - A) = n - n_i$, $n = 1, \dots, t$, 其中 $n_1 + n_2 + \dots + n_t = n$ $\Leftrightarrow \lambda_i$ 的代数重数等于几何重数, $\forall \lambda_i$.

例

若
$$A = \begin{pmatrix} 2 & x & y \\ 0 & b & z \\ 0 & 0 & c \end{pmatrix}$$
 相似于对角阵, 求 b, c, x, y, z .

作者 刘国华

1录 持征值与特征

向量 矩阵的特征值与特征 向量 相似矩阵 实对称矩阵的相似对

 A_n 与 Λ 相似 $\Leftrightarrow \forall \lambda_i(n_i \mathbb{E}),$ $|x|\lambda E - A| = 0$ 的根 相 $有r(\lambda_i E - A) = n - n_i$ 似 对 有重根吗? A可以相似对角化 角 有 化 求n个线性无关的 是 问 特征向量 $\xi_1, ..., \xi_n$ 题 $r(\lambda_i E - A) = n - n_i?$ $\diamondsuit P = (\xi_1, ..., \xi_n)$ 解 题 $P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ 步 否 注:特征向量要与特征 骤 A不能相似对角化 值的顺序相对应

作者 刘国华

目录

寺征值与特征 司量 起降的特征值与特征 向量 相似矩阵 实对条矩阵的相似对

例

若
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
, 求可逆矩阵 P 和对角阵 Λ , 使得 $P^{-1}AP = \Lambda$, 并求 A^k .

相似矩阵

几何代数第5章 作者 刘国华

- 相似是等价的特例: 相似必等价,反之不然.
- ② 相似是一等价关系,不变量为特征值,迹,行列式,秩. 注:不变量都只是必要条件,而非充要条件.
- ◎ 相似对角化下的最简形为对角阵.
- 相似则特征多项式相同, 但反之不然.
- 若A,B都可相似对角化,且特征多项式相同,则A,B相似吗?
- $A \sim B$,则对于任意多项式 f(x) 有 $f(A) \sim f(B)$. tr(f(A)) = tr(f(B)), |f(A)| = |f(B)|, r(f(A)) = r(f(B)).
- **②** $A \sim \Lambda \Leftrightarrow A$ 有 n 个线性无关的特征向量.
- る A 属于不同特征值的线性无关的特征向量仍线性无关.

求斐波那契数列的通项

几何代数第5章

目录 持征值与特名 句量 矩阵的特征值与特

由二阶递推公式
$$\begin{cases}
F_1 = F_2 = 1 \\
F_n = F_{n-1} + F_{n-2}
\end{cases} n = 3, 4, 5, \cdots$$

$$\begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix},$$

$$\begin{pmatrix} F_3 \\ F_4 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^2 \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}, \cdots$$

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$$

求矩阵 $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ 的特征值和特征向量

$$|\lambda E - A| = \begin{vmatrix} \lambda & -1 \\ -1 & \lambda - 1 \end{vmatrix} = \lambda^2 - \lambda - 1, \ \lambda = \frac{1 \pm \sqrt{5}}{2},$$

$$\exists \lambda_1 E - A = \begin{pmatrix} -1 & \lambda - 1 \\ -1 & \frac{1 + \sqrt{5}}{2} & -1 \\ -1 & \frac{\sqrt{5} - 1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{1 - \sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

可得
$$p_1 = \begin{pmatrix} \frac{\sqrt{5}-1}{2} \\ 1 \end{pmatrix}$$
.

$$\begin{pmatrix} \frac{1-r}{2} \\ - \end{pmatrix}$$

由
$$\lambda_2 E - A = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$\exists \lambda_2 E - A = \begin{pmatrix} \frac{1-\sqrt{5}}{2} & -1 \\ -1 & \frac{-\sqrt{5}-1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 0 & 0 \end{pmatrix},$$

可得
$$p_1 = \begin{pmatrix} \frac{\sqrt{5}+1}{2} \\ -1 \end{pmatrix}$$
.

所以有 $P = \begin{pmatrix} \frac{\sqrt{5}-1}{2} & \frac{\sqrt{5}+1}{2} \\ 1 & -1 \end{pmatrix}$, $\Lambda = \begin{pmatrix} \frac{\sqrt{5}+1}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}$, 使得 $P^{-1}AP = \Lambda$.

作者 刘国红

特征值与特征 向量 矩阵的特征值与特征 向量 相似矩阵

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, P = \begin{pmatrix} \frac{\sqrt{5}-1}{2} & \frac{\sqrt{5}+1}{2} \\ 1 & -1 \end{pmatrix}, \Lambda = \begin{pmatrix} \frac{\sqrt{5}+1}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}, P^{-1}AP = \Lambda.$$

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = P\Lambda^{n-1}P^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
= -\frac{\sqrt{5}}{5} \begin{pmatrix} \frac{\sqrt{5}-1}{2} & \frac{\sqrt{5}+1}{2} \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{5}+1}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}^{n-1} \begin{pmatrix} -1 & \frac{-\sqrt{5}-1}{2} \\ -1 & \frac{\sqrt{5}-1}{2} \end{pmatrix}$$

因此

$$F_n = \frac{\sqrt{5}}{5} \left(\frac{\sqrt{5}+1}{2}\right)^n - \frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

作者 刘国华

特征值与特色向量 起降的特征值与特向量 相似矩阵 $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, P = \begin{pmatrix} \frac{\sqrt{5}-1}{2} & \frac{\sqrt{5}+1}{2} \\ 1 & -1 \end{pmatrix}, \Lambda = \begin{pmatrix} \frac{\sqrt{5}+1}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix},$ $P^{-1}AP = \Lambda.$

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = P\Lambda^{n-1}P^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= -\frac{\sqrt{5}}{5} \begin{pmatrix} \frac{\sqrt{5}-1}{2} & \frac{\sqrt{5}+1}{2} \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{5}+1}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}^{n-1} \begin{pmatrix} -1 & \frac{-\sqrt{5}-1}{2} \\ -1 & \frac{\sqrt{5}-1}{2} \end{pmatrix}$$

因此

$$F_n = \frac{\sqrt{5}}{5} \left(\frac{\sqrt{5}+1}{2}\right)^n - \frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

一个正整数序列的通项,竟然可以用带有无理数的式子表达.

斐波那契数列与黄金分割

几何代数第5章

目录

持征值与特征 句量 矩阵的特征值与特征 向量 相似矩阵

$$F_n = \frac{\sqrt{5}}{5} \left(\frac{\sqrt{5}+1}{2}\right)^n - \frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$
1, 1, 2, 3, 5, 8, 13, ...

$$\left\{\frac{F_n}{F_{n-1}}\right\}\frac{1}{1}, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \dots \to \frac{-\sqrt{5}-1}{2} \approx 0.6180339.$$

斐波那契数列与黄金分割

几何代数第5章 作者 刘国华

$$F_n = \frac{\sqrt{5}}{5} \left(\frac{\sqrt{5}+1}{2}\right)^n - \frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$
1, 1, 2, 3, 5, 8, 13, ...

$$\left\{\frac{F_n}{F_{n-1}}\right\}\frac{1}{1}, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \dots \to \frac{-\sqrt{5}-1}{2} \approx 0.6180339.$$

"黄金分割"比喻这一"分割"如黄金一样珍贵。黄金比是工艺美术、建筑、摄影等艺术门类中审美的因素之一。 认为它表现了恰到好处的"合谐"。 几何代数第5章 作者 刘国华

特征值与特征向量 知度的特征值与特色员

$$F_n = \frac{\sqrt{5}}{5} \left(\frac{\sqrt{5}+1}{2}\right)^n - \frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$
1, 1, 2, 3, 5, 8, 13, ...

$$\left\{\frac{F_n}{F_{n-1}}\right\}\frac{1}{1}, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \dots \to \frac{-\sqrt{5}-1}{2} \approx 0.6180339.$$

"黄金分割"比喻这一"分割"如黄金一样珍贵。黄金比是工艺美术、建筑、摄影等艺术门类中审美的因素之一。 认为它表现了恰到好处的"合谐"。

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{2}{\sqrt{5} - 1} = \dots \approx 1.618$$

称为第二黄金比.

生活中的斐波那契数

几何代数第5章

目录 特征值与特征

向量 矩阵的特征值与特征 向量

相似矩阵 实对称矩阵的

生活中的斐波那契数 向日葵花盘内葵花子排列的螺线数

种子按顺、逆时针的螺线排列,两组螺线的条数往往成相继的两个斐波那契数,一般是34和55;89和144;144和233条螺线。

生活中的斐波那契数

几何代数第5章

目录

特征值与特征

四 五 矩阵的特征值与特征

向量

实对称矩阵的相位

菜花表面排列的螺线数 (5-8)

植物生长的动力学 特性造成的: 相邻器 官原基之间的夹角 是黄金角——

137.50776度;这使 种子的堆集效率达 到最高。

生活中的斐波那契数

几何代数第5章 作者 刘围华

目录

特征值与特征 句量 矩阵的特征值与特征 向量 相似矩阵 实对条矩阵的相似对

松果种子的排列的螺线数(8-13)

复矩阵的共轭矩阵

几何代数第5章 作者 刘国华

目录

寺征值与特征 句量 矩阵的特征值与特征 向量 相级矩阵 实对称矩阵的相级对 角化 设矩阵 $A=(a_{ij})_{m\times n},\,a_{ij}\in\mathbb{C}$,则称 $\overline{A}=(\overline{a_{ij}})_{m\times n}$ 为 A 的 共轭矩阵.

共轭矩阵的性质:

•
$$\overline{kA} = \overline{kA}$$
;

$$\bullet \quad \overline{A^T} = (\overline{A})^T;$$

$$\bullet \quad \overline{AB} = \overline{AB}.$$

复矩阵的共轭矩阵

几何代数第5章

设矩阵 $A=(a_{ij})_{m\times n}, a_{ij}\in\mathbb{C}$,则称 $\overline{A}=(\overline{a_{ij}})_{m\times n}$ 为A的 共轭矩阵.

共轭矩阵的性质:

•
$$\overline{kA} = \overline{kA}$$
;

$$\bullet \quad \overline{A^T} = (\overline{A})^T;$$

$$\bullet \quad \overline{AB} = \overline{AB}.$$

实对称:
$$\overline{A} = A$$
, $A^T = A \Rightarrow \overline{A}^T = A$.

实对称矩阵的性质

几何代数第5章

行证但与行证 向量 4年的每年的债务

矩阵的特征值与特征 向量 相似矩阵

实对称矩阵的相似; 角化

性质

实对称矩阵的特征值都是实数.

实对称矩阵的性质

几何代数第5章 作者 刘国华

性质

实对称矩阵的特征值都是实数.

若矩阵 A 满足 $\overline{A}^T = A, A\eta = \lambda \eta, 则有$

- $\lambda \in \mathbb{R}$;
- $(\lambda E A)x = 0$ 有实的基础解系.
- A 对应于 λ 有实的特征向量.

实对称矩阵的性质

几何代数第5章 作者 刘国华

性质

实对称矩阵的特征值都是实数.

若矩阵 A 满足 $\overline{A}^T = A, A\eta = \lambda \eta, 则有$

- $\lambda \in \mathbb{R}$;
- $(\lambda E A)x = 0$ 有实的基础解系.
- A 对应于 λ 有实的特征向量.

性质

实对称矩阵对应于不同特征值的特征向量相互正交.

几何代数第5章 作者 刘国华

定理

对于任意 n 阶实对称矩阵 A, 存在正交矩阵 Q, 使得 $Q^{-1}AQ=Q^TAQ=\Lambda=diag(\lambda_1,\lambda_2,\cdots,\lambda_n)$, 其中 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 为 A 的全部特征值, $Q=(q_1,q_2,\cdots,q_n)$ 的列向量组是 A 的对应于 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 的标准正交特征向量组.

几何代数第5章 作者 刘国华

定理

对于任意 n 阶实对称矩阵 A, 存在正交矩阵 Q, 使得 $Q^{-1}AQ=Q^TAQ=\Lambda=diag(\lambda_1,\lambda_2,\cdots,\lambda_n)$, 其中 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 为 A 的全部特征值, $Q=(q_1,q_2,\cdots,q_n)$ 的列向量组是 A 的对应于 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 的标准正交特征向量组.

推论

n 阶实对称矩阵 A 的 n_i 重特征值都有 n_i 个线性无关的特征向量,再由Schmit正交化方法知,必有 n_i 个标准正交的特征向量.

```
几何代数第5章
```

 $|x|\lambda E-A|=0$ 的根,<mark>得到所有特征值</mark> $\lambda_1,\lambda_2,...,\lambda_s$ 对每个 λ , 求($\lambda E - A$)x = 0的一个非零解 η_0 ,由正交 性求得正交的特征向量组 $\eta_a, \eta_a, ..., \eta_u$ 阵 的 将 $\eta_1, \eta_2, ..., \eta_n$ 单位化得标准正交 正交 特征向量组火1,火2,...,火1 相 $Q = (\gamma_{11}, \gamma_{12}, ..., \gamma_{1t_1}, ..., \gamma_{s1}, \gamma_{s2}, ..., \gamma_{st_s})$ 似 $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_1, \ldots, \lambda_s, \ldots, \lambda_s)$ 对 则 $O^{-1}AO = O^{\mathsf{T}}AQ = \Lambda$ 角 化 注:特征向量要与特征值的顺序相对应

例

把 $A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -2 \\ 2 & -2 & 0 \end{pmatrix}$, 正交相似对角化.

几何代数第5章 作者 刘围化

日 环 特征值与特

可量 矩阵的特征值与特征 向量 相似矩阵 灾对称矩阵的相似对 角化

例

把
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -2 \\ 2 & -2 & 0 \end{pmatrix}$$
, 正交相似对角化.

例

设3阶实对称矩阵 A 的特征多项式为 $(\lambda-1)^2(\lambda-10)$, 且 $\alpha_3 = (1,2,-2)^T$ 是对应于 $\lambda = 10$ 的特征向量, 求 A.

几何代数第5章

例

把
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -2 \\ 2 & -2 & 0 \end{pmatrix}$$
, 正交相似对角化.

例

设3阶实对称矩阵 A 的特征多项式为 $(\lambda-1)^2(\lambda-10)$, 且 $\alpha_3=$ $(1, 2, -2)^T$ 是对应于 $\lambda = 10$ 的特征向量, 求 A.

若已知 $\alpha_1 = (2,1,2)^T$ 是对应于 $\lambda = 1$ 的特征向量, 能否唯一 求出 A 呢?

几何代数第5章 作者 刘国化

目录 特征值与特

矩阵的特征值与特 向量 相似矩阵 实对称矩阵的相似 角化

例

把
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -2 \\ 2 & -2 & 0 \end{pmatrix}$$
, 正交相似对角化.

例

设3阶实对称矩阵 A 的特征多项式为 $(\lambda-1)^2(\lambda-10)$, 且 $\alpha_3=(1,2,-2)^T$ 是对应于 $\lambda=10$ 的特征向量, 求 A.

若已知 $\alpha_1 = (2,1,2)^T$ 是对应于 $\lambda = 1$ 的特征向量, 能否唯一 求出 A 呢?

例

若 A,B 是实对称阵, $|\lambda E-A|=|\lambda E-B|$, A,B 是否相似?是否正交相似?

几何代数第5章 作者 刘围化

日取 特征值与特 向量

矩阵的特征值与4 向量 相似矩阵 **尖对称矩阵的相位** 角化

例

把
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -2 \\ 2 & -2 & 0 \end{pmatrix}$$
, 正交相似对角化.

例

设3阶实对称矩阵 A 的特征多项式为 $(\lambda-1)^2(\lambda-10)$, 且 $\alpha_3=(1,2,-2)^T$ 是对应于 $\lambda=10$ 的特征向量, 求 A.

若已知 $\alpha_1 = (2,1,2)^T$ 是对应于 $\lambda = 1$ 的特征向量, 能否唯一 求出 A 呢?

例

若 A,B 是实对称阵, $|\lambda E - A| = |\lambda E - B|$, A,B 是否相似?是否正交相似?若 A,B 是一般实方阵呢?

作者 刘国华

日求

守征值与特征 句量 矩阵的特征值与特征 向量 相似矩阵 实外标矩阵的相似对

例

设 $\alpha \neq 0$, $\alpha \in \mathbb{R}^n$, 求 $A = \alpha \alpha^T$ 的特征值和特征向量.

求 $A = \alpha \alpha^T$ 的特征值和特征向量

几何代数第5章 作者 刘国华

特征值与特征 向量 矩阵的特征值与特征 向量 相似矩阵 安好格矩阵的相似对

解1: 设
$$a_1 \neq 0$$
 $\begin{vmatrix} a_1^2 - \lambda & a_1 a_2 & \cdots & a_1 a_n \\ a_1 a_2 & a_2^2 - \lambda & \cdots & a_2 a_n \\ \vdots & \vdots & \vdots & \vdots \\ a_1 a_n & a_2 a_n & \cdots & a_n^2 - \lambda \end{vmatrix} \underbrace{i = 2, \cdots, n}_{i = 2, \cdots, n}$

$$\begin{vmatrix} a_1^2 - \lambda & a_1 a_2 & \cdots & a_1 a_n \\ a_1^2 - \lambda & -\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{a_n}{a_1} \lambda & -\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{a_n}{a_1} \lambda & 0 & \cdots & -\lambda \end{vmatrix} = \underbrace{c_1 + \sum_{i=2}^n \frac{a_i}{a_1} c_i}_{0} \begin{bmatrix} 0 & -\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -\lambda \end{bmatrix}}_{= -\lambda^{n-1}} \begin{pmatrix} \alpha^T \alpha - \lambda \end{pmatrix}$$
所以A的全部特征值为 $0(n-1$ 重根), $\alpha^T \alpha$

求 $A = \alpha \alpha^T$ 的特征值和特征向量

几何代数第5章 作者 刘国华

解法2: $:: A^2 = \alpha \alpha^T \alpha \alpha^T = \alpha^T \alpha A$ 所以A的所有可能的特征值 λ 满足 $\lambda^2 - (\alpha^T \alpha)\lambda = 0$ 所以A的所有可能的特征值 $0, \alpha^T \alpha$

$$\because A = oldsymbol{lpha}oldsymbol{lpha}^T = egin{pmatrix} a_1^2 & a_1a_2 & \cdots & a_1a_n \ a_1a_2 & a_2^2 & \cdots & a_2a_n \ dots & dots & dots & dots \ a_1a_n & a_2a_n & \cdots & a_n^2 \end{pmatrix},$$

$$\therefore trA = \sum_{i=1}^{n} a_i^2 = \alpha^T \alpha = \alpha^T \alpha + 0 + \dots + 0$$

所以A的全部特征值为0(n-1重根), $\alpha^{T}\alpha$

求 $A = \alpha \alpha^T$ 的特征值和特征向量

几何代数第5章 作者 刘国华

目 求 特征值与特征 向量 矩阵的特征值与特征 内量 相似矩阵 实对称矩阵的相似对