

MG811 型 CO2 气体传感器

特点

对 CO2 有良好的灵敏度和选择性 受温湿度的变化影响较小 良好的稳定性、再现性

应用

空气质量控制系统 发酵过程控制 温室 CO2 浓度检测

结构及测试电路

元件结构及测试电路如下图。传感器由固体电解质层(1),金电极(2),铂引线(3),加热器(4),陶瓷管(5),100目双层不锈钢网(6),镀镍铜卡环(7),胶木基座(8),针状镀镍铜管脚(9)组成。

工作原理

本传感器采用固体电解质电池原理, 由下列固体电池构成:

空气, Au|NASICON||碳酸盐|Au,空气, CO₂

当传感器置于 CO2 气氛中时,将发生以下电极反应:

负极: $2Li^+ + CO_2 + 1/2O_2 + 2e^- = Li_2CO_3$

正极: $2Na^+ + 1/2O_2 + 2e^- = Na_2O$

总电极反应: Li₂CO₃ + 2Na + = Na₂O + 2Li + CO₂

传感器敏感电极与参考电极间的电势差(EMF)符合能斯特方程:

 $EMF = Ec - (R \times T) / (2F) \ln (P(CO_2))$

上式中: P(CO₂)—CO₂ 分压 Ec—常量 R—气体常量

T—绝对温度(K)F—法拉第常量

在图 1B 中,元件加热电压由外电路提供,当其表面温度足够高时,元件相当于一个电池,其两端会输出一电压信号,其值与能斯特方程符合得较好。元件测量时放大器的阻抗须在 100-1000G Ω 之间,其测试电流应控制在 1pA 以下

规格:

符号	参数名称	技术条件	备注
V_{H}	加热电压	6.0±0.1 V	AC or DC
R _H	加热电阻	30.0±5% Ω	室温
I_{H}	加热电流	约 200mA	
P_{H}	加热功耗	约 1200mW	
Tao	使用温度	-20-50	

Tas	储存温度	-20-70	
ΔΕΜΕ	输出信号	30—50mV	350—10000ppmCO2

灵敏度特性:

图 2 给出了传感器的灵敏度特性曲线。

其中:

温度: 28℃、

相对湿度: 65%、

氧气浓度: 21%

EMF:元件在不同气体,不同浓度下的输出电势

响应恢复特性:

从图 3 中可以看出: 固体电解质元件具有较好的响应恢复特性。

温湿度特性:

