VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA

Darbo tipas

Darbo tema

Atliko: 4 kurso studentas Vardenis Pavardenis

(Parašas)

Vadovas:

Vardauskas Pavardauskas

(Parašas)

Turinys

Įvadas	3
1. Pirmas skyrius	4
1.1. Pirmo skyriaus poskyris	
1.1.1. Lentelės	
1.1.2. Paveiksliukai	4
Išvados	6
Literatūros sarašas	7

Įvadas

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut.

1. Pirmas skyrius

Anyone caught using formulas such as $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$ or $\frac{1}{x+y} = \frac{1}{x} + \frac{1}{y}$ will fail The binomial theorem is (1).

$$(x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k}.$$
 (1)

A favorite sum of most mathematicians is

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.\tag{2}$$

Likewise a popular integral is

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi} \tag{3}$$

1.1. Pirmo skyriaus poskyris

Literatūros nuorodos: [Sur+01], [SSS04]

1.1.1. Lentelės

Galima naudoti lenteles kaip 1 lentelė.

1 lentelė. Solids

	Area	Parameters
	0 .0	<i>h</i> : height
Cylinder	$\pi h \frac{D^2 - d^2}{4}$	D: outer radius
	1	d: inner radius
Tetrahedron	$\frac{\sqrt{2}}{12}a^3$	a: edge length

1.1.2. Paveiksliukai

1 paveiksliuke vaizduojamas VU logotipas.

1 pav. VU logotipas

Išvados

Išveskime

Literatūros sąrašas

- [SSS04] A. Surname, B. Surname, ir C. Surname, "Online publication title". URL: https://example.com/path/to/publication, 48 KB
- [Sur+01] A. Surname, B. Aurname, C. Burname, ir D. Curname, "Straipsnio pavadinimas", *Žurnalo pavadinimas*, **4**, 2001, pp. 8–17.