STAT 154 Notes (2019) - math behind PCA

Raaz Dwivedi and Bin Yu

UC Berkeley

February 5, 2019

Math behind PCA: Eigendecomposition

ullet For our positive semidefinite sample covariance matrix ${f G}={f X}^T{f X}$, we have the eigendecomposition

$$\mathbf{G} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top}$$

where ${\bf U}$ is an orthonormal matrix ${\bf U}^{\top}{\bf U}={\bf I}$ and ${\bf D}$ is a diagonal matrix with non-negative entries

- Columns of U are the eigenvectors of the matrix G and D contains the (non-negative) eigenvalues $d_1 \geq d_2, ... \geq d_p \geq 0$.
- \bullet The geometric interpretation of U is a rotation and \sqrt{D} is a rescaling.

Math behind PCA: obtaining PCs using eigen decomposition

ullet After the rotation U applied to X, we get

$$(\mathbf{Z}_1,...,\mathbf{Z}_p) = \mathbf{X}\mathbf{U} = (\mathbf{X}_1,...,\mathbf{X}_p)(\mathbf{u}_1,...,\mathbf{u}_p)$$

•

$$\mathbf{Z}_{j} = (\mathbf{X}_{1},...,\mathbf{X}_{p})\mathbf{u}_{j} = u_{1j}\mathbf{X}_{1} + ... + u_{pj}\mathbf{X}_{p},$$
 where $(u_{1j},...,u_{pj})^{T} = \mathbf{u}_{j}$ and $||\mathbf{u}_{j}||^{2} = \sum_{k=1}^{p} u_{kj}^{2} = 1$

• $\mathbf{Z}_1,...,\mathbf{Z}_p$ are called Principal Components (PCs) and

$$\mathbf{Z}^T\mathbf{Z} = (\mathbf{X}\mathbf{U})^T(\mathbf{X}\mathbf{U}) = \mathbf{U}^T\mathbf{G}\mathbf{U} = \mathbf{D}$$

• Hence $\text{var}(\mathbf{Z}_j) = d_j, \ \, \text{cov}(\mathbf{Z}_i,\mathbf{Z}_j) = 0 \, \, \text{for} \, \, i \neq j.$ That is, the PCs, or Z_j 's, are orthogonal and their lengths are $\sqrt{d_j}.$

Math behind PCA

- First PC is the direction of maximum variance, let's derive it mathematically.
- Consider the set of vectors $S = \mathbf{x}_1, \dots, \mathbf{x}_n$ such that their mean $\overline{\mathbf{x}} = \mathbf{0}$ is zero.
- We need to find a direction \mathbf{v} such that $\mathrm{Var}(\mathbf{v}^{\top}\mathbf{x})$ is maximized where \mathbf{x} is selected uniformly at random from the set \mathcal{S} .
- Mathematically, we have to solve the problem:

$$\begin{aligned} \max_{\mathbf{v}:\|\mathbf{v}\|_2=1} \sum_{i=1}^n (\mathbf{v}^\top \mathbf{x}_i - \mathbf{v}^\top \overline{\mathbf{x}})^2, \text{or equivalently} \\ \max_{\mathbf{v}:\|\mathbf{v}\|_2=1} \sum_{i=1}^n (\mathbf{v}^\top \mathbf{x}_i)^2 \end{aligned}$$

Math behind PCA

Mathematically, we have

$$\max_{\mathbf{v}:\|\mathbf{v}\|_{2}=1} \sum_{i=1}^{n} (\mathbf{v}^{\top} \mathbf{x}_{i})^{2} = \max_{\mathbf{v}:\|\mathbf{v}\|_{2}=1} \sum_{i=1}^{n} \mathbf{v}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v}$$

$$= \max_{\mathbf{v}:\|\mathbf{v}\|_{2}=1} \mathbf{v}^{\top} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right) \mathbf{v}$$

$$= \max_{\mathbf{v}:\|\mathbf{v}\|_{2}=1} \mathbf{v}^{\top} \underbrace{\left(\mathbf{X}^{\top} \mathbf{X} \right) \mathbf{v}}_{G}$$

Math behind PCA: proof continues

- Let d_1, \ldots, d_p denote the eigenvalues of the sample covariance matrix $\mathbf{G} = \mathbf{X}^T X$ with corresponding eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_p$.
- We have

$$\begin{aligned} \max_{\mathbf{v}:\|\mathbf{v}\|_2=1} \mathbf{v}^\top \mathbf{G} \mathbf{v} &= d_1, \quad \text{and} \\ \arg\max_{\mathbf{v}:\|\mathbf{v}\|_2=1} \mathbf{v}^\top \mathbf{G} \mathbf{u} &= \mathbf{v}_1 \end{aligned}$$

- Two ways to prove:
 - 1 Lagrange method of multipliers.
 - ② Using SVD decomposition of the symmetric PSD matrix G.

Math behind PCA: proof finishes

It follows that we have

$$\max_{\mathbf{v}:\|\mathbf{v}\|_2=1}\mathbf{v}^{\top}\mathbf{G}\mathbf{v} = \max_{\mathbf{v}:\|\mathbf{v}\|_2=1}\mathbf{v}^{\top}\mathbf{U}\mathbf{D}\mathbf{U}^{\mathbf{T}}\mathbf{v} = \max_{\mathbf{w}:\|\mathbf{w}\|_2=1}\mathbf{w}^{\top}\mathbf{D}\mathbf{w}$$

where $\mathbf{w} = \mathbf{U}^T \mathbf{v}$, and because \mathbf{U} is a rotation and L2 norm stays the same under rotation.

- Let $\mathbf{w} = (w_1, ..., w_p)^T$, $\max_{\mathbf{w}: \|\mathbf{w}\|_2 = 1} \mathbf{w}^\top \mathbf{D} \mathbf{w} = \max_{\mathbf{w}: \|\mathbf{w}\|_2 = 1} \sum_{j=1}^p w_j^2 d_j$ which is maximized under the constraint $||w||_2 = 1$ when $w_1 = 1$ and $w_2 = ... = w_p = 0$.
- Hence $\max_{\mathbf{w}:\|\mathbf{w}\|_2=1} \mathbf{w}^{\top} \mathbf{D} \mathbf{w} = d_1$ and $\arg\max_{\mathbf{w}:\|\mathbf{w}\|_2=1} \mathbf{w}^{\top} \mathbf{D} \mathbf{w} = (1,0,...,0)^T$ which corresponds to \mathbf{u}_1 the fist column of \mathbf{U} since $w = \mathbf{U}^T v$ implying that the maximizing $v = \mathbf{U}(1,0,...,0)^T = \mathbf{u}_1$.