# 华中科技大学光学与电子信息学院本科教学

半导体物理(电子16级)





- 1 半导体中的电子状态
- 2 半导体中载流子的统计分布
- 3 载流子输运与导电
- 4 非平衡载流子
- 5 p-n结
- 6 金属和半导体的接触
- 7 半导体表面与MIS结构
  - 8 半导体异质结
- 9 半导体的光、热、磁效应

5

p-n结

# 本章内容提要

- · p-n结的形成及其能带图
- ・p-n结伏安特性
- ・p-n结电容
- ・p-n结击穿
- ・隧道p-n结



# 5.1 p-n结的形成

p-n结: p型半导体和n型半导体结合的交界面



电流电压特性 电容效应 击穿特性



半导体器件的心脏







### 半导体器件的心脏——p-n结

- ➤ 二极管实际上就是一个p-n结
- > 三极管是两个靠得很近、背靠背的p-n结组成
- > 结型场效应管也是利用p-n结的特性工作
- ▶半导体集成电路中,还利用了p-n结的有关特性制成了电路中的电阻、电容以及实现电路元器件间的隔离,使得大规模集成电路(LSI/VLSI)的制作成为可能
- > 可制作成LED、光伏、光探等多种半导体功能器件

#### 二极管的基本电路应用

- (1) 限幅电路——利用二极管的单向导电性及导通后两端电压基本不变的特点
- (2) 箝位电路——把输出电压箝位在一定数值上
- (3) 开关电路——利用p-n结的单向导电特性, 其理想模型相当于一个理想的开关

### p-n结的杂质分布:

突变结: p、n区杂质均匀分布,两侧杂质类型及浓度突然变化

缓变结: 从一个区域到另一个区域的杂质浓度逐渐变化



(合金结、高表面浓度的浅扩散结)



缓变结杂质分布 (低表面浓度的深扩散结)



# pX

# $n \times$

#### 接触之前各自保持电中性















形成空间电荷区 产生内建电场 发生漂移运动 阻碍继续扩散 直至动态平衡



扩散电流和漂移电流完全抵消,无宏观电流空间电荷区的宽度达到稳定,内建电场也恒定

平衡p-n结

# 5.2 p-n结空间电荷区及能带图

#### 1.空间电荷区

#### 内建电场:

空间电荷区中的正、负电 荷间产生的电场,其方向 由n区指向p区

### 平衡p-n结:

载流子在内建电场的作用下,漂移运动和扩散运动相抵时,所达到的动态平衡状态下的p-n结(p-n结的净电流为零)



空间电荷区也称作耗尽区

### 2. p-n结能带图



# 平衡p-n结的能带图 ?







# 3.p-n结接触电势差

空间电荷区存在内建电场



### 沿电场方向电势降低

电子电势能逐渐升高



#### 空间电荷区能带弯曲/倾斜

p-n结势垒高度  $qV_{\rm D} = (E_{\rm F})_{\rm n} - (E_{\rm F})_{\rm p}$ 

空间电荷区也称作势垒区



# 作业: $V_{\rm D}$ 的表达式?

提示:  $qV_{\rm D} = (E_{\rm F})_{\rm p} - (E_{\rm F})_{\rm p}$ 

**n**区电子平衡浓度: 
$$n_{n0} = n_i \exp \left| \frac{(E_F)_n - E_i}{k_0 T} \right|$$

**p**区电子平衡浓度:  $n_{p0} = n_i \exp \left| -\frac{E_i - (E_F)_p}{k_i T} \right|$ 

$$\longrightarrow V_{D} = \frac{1}{q} \left[ \left( E_{F} \right)_{n} - \left( E_{F} \right)_{p} \right] = \frac{k_{0}T}{q} \ln \left( \frac{n_{n0}}{n_{p0}} \right)$$

在非简并情况下近似有 $n_{n0} \approx N_D$ , $n_{p0} \approx n_i^2 / N_A$ (因为 $p_{p0} \approx N_A$ )

$$V_{D} = \frac{k_{0}T}{q} \left[ \ln \left( \frac{N_{D}N_{A}}{n_{i}^{2}} \right) \right]$$

$$V_{D} = N_{D} \cdot N_{A} \cdot T \cdot \frac{N_{A} \cdot T}{N_{A} \cdot T} \cdot \frac{N_$$

$$n_{\rm i} = n_0 = p_0 = (N_{\rm C} N_{\rm V})^{1/2} \exp\left(-\frac{E_{\rm g}}{2k_0 T}\right)$$





p-n结的单向导电性

· 正向电流随正向电压增大而迅速增大,正向电阻很小(导通) 反向电流微弱且不随反向电压变化,反向电阻很大(关断)

关键在于空间电荷区(势垒区/耗尽区)的存在,且其宽度(高度)随外加电压变化

# 1.非平衡状态下的p-n结(正偏) I





#### 正向偏压时

**外加电场与内建电场相反**结区电场减弱

(本述)

「新尽层宽度↓

対散大于漂移

# 产生载流子净扩散流

非子注入到p、n区

- 均是非平衡少子的注入,积累
- 边扩散边复合,形成稳定分布
- 由对方多子提供,扩散电流显著
- 电流随正偏压增大而提高

p-n结正向(扩散)电流  $I_F$  = p区电子扩散电流 +n区空穴扩散电流

# 2.非平衡状态下的p-n结(反偏)





#### 反向偏压时



漂移大于扩散



从p、n区中抽取非子

- 均是非平衡少子的抽取,吸出
- 边扩散边漂走,形成稳定分布
- 由自身少子提供(本征激发产生),电流微弱且在反偏压增 大时几乎不变

p-n结反向(扩散)电流  $I_R = p$ 区电子扩散电流 +n区空穴扩散电流



# 3.电流电压方程(利用连续性方程)

$$\frac{\partial n}{\partial t} = D_{n} \frac{\partial^{2} n}{\partial x^{2}} + \mu_{n} |E| \frac{\partial n}{\partial x} + \mu_{n} n \frac{\partial |E|}{\partial x} - \frac{\Delta n}{\tau_{n}} + g_{n}$$

$$\frac{\partial p}{\partial t} = D_{p} \frac{\partial^{2} p}{\partial x^{2}} - \mu_{p} |E| \frac{\partial p}{\partial x} - \mu_{p} p \frac{\partial |E|}{\partial x} - \frac{\Delta p}{\tau_{p}} + g_{p}$$

$$D_{\rm n} \frac{\mathrm{d}^2 \Delta n}{\mathrm{d}x^2} - \frac{\Delta n}{\tau_{\rm n}} = 0$$



$$D_{\rm p} \frac{\mathrm{d}^2 \Delta p}{\mathrm{d}x^2} - \frac{\Delta p}{\tau_{\rm p}} = 0$$

利用边界条件求解  $\Lambda n$  ,代入到

p区电子  
扩散电流 
$$(J_n)_{f} = qD_n \frac{d\Delta n(x)}{dx}$$

利用边界条件求解  $\Delta p$  ,代入到

$$J = J_{\rm S} \left[ \exp \left( \frac{qV}{k_0 T} \right) - 1 \right]$$

肖克莱方程式 
$$J = J_{\rm S} \left[ \exp \left( \frac{qV}{k_0 T} \right) - 1 \right]$$
 其中, $J_{\rm S} = q \left( \frac{n_{\rm p0} D_{\rm n}}{L_{\rm n}} + \frac{p_{\rm n0} D_{\rm p}}{L_{\rm p}} \right)$  饱和电流密度

# 肖克莱方程式

$$J = J_{\rm S} \left[ \exp \left( \frac{qV}{k_0 T} \right) - 1 \right]$$

$$J = J_{S} \left[ \exp \left( \frac{qV}{k_{0}T} \right) - 1 \right] \qquad J_{S} = q \left( \frac{n_{p0}D_{n}}{L_{n}} + \frac{p_{n0}D_{p}}{L_{p}} \right)$$

p-n结具有单向导电性(整流特性)

(室温下 $k_0T/q \approx 0.026$ V,外加正向偏压约 $0.7 \sim 1.5$ V)

$$\exp\left(\frac{qV}{k_0T}\right)\rangle 1$$

与正向偏压呈指数变化关系

$$J = -J_{\rm S}$$

为反向饱和电流密度, 与外加电压无关

饱和电流密度随温度上升而增加

$$D_{
m n}$$
,  $L_{
m n}$ ,  $n_{
m p0}$   
 $D_{
m p}$ ,  $L_{
m p}$ ,  $p_{
m n0}$ 

想—想?



理想p-n 结的 J-V 曲线

# 5.4 p-n结电容

研究表明:频率对p-n结的伏安特性具有重要影响

原因在于p-n结具有电容效应,而且是可变电容  $C = \frac{dQ}{dV}$ 

$$C = \frac{dQ}{dV}\bigg|_{V}$$

$$C = \frac{Q}{V}$$

电容是表征容纳电荷的本领的物理量,当非导电体的两个相对 表面保持某一电位差时,由于电荷移动的结果,能量便贮存在该 非导电体之中

p-n结电容(极间电容)由势垒电容和扩散电容组成

势垒电容: 描述势垒区电荷数量随外电压变化而产生的电容效应

散电容: 描述扩散区电荷数量随外加电压变化而产生的电容效应

## 1.势垒电容

势垒电容 $C_{\mathrm{T}}$ 

正向偏压时

产生的电场与内建电场相反

势垒区电场减弱,扩散占优



正向偏压↑ **更多的p区空穴进入势垒**, "存入空穴" **更多的p区电子进入势垒**, "存入电子"

正向偏压↓ { 进入势垒的p区空穴减少, 进入势垒的n区电子减少,

"取出空穴" "取出电子" 势垒区 电荷数量的 变化



正向偏压时

扩散区



空穴

电子

结区扩散大于漂移■

p区空穴经势垒区扩散流入n区 n区电子经势垒区扩散流入p区

非平衡少数载流子 的电注入 形成正向扩散电流

正向偏压↑

更多电子积累在扩散区(p区), "存入电子"

更多空穴积累在扩散区 (n区), "存入空穴"

扩散区

电荷数量变化

正向偏压」

积累在扩散区(p区)的电子减少, "取出电子" 积累在扩散区(n区)的空穴减少,

"取出空穴"

研究表明:频率对p-n结的伏安特性具有重要影响

原因在于p-n结具有电容特性,可变电容 C=

$$C = \frac{dQ}{dV}\bigg|_{V}$$

#### p-n结电容(极间电容)是势垒电容 $C_T$ 和扩散电容 $C_D$ 作用的总效果

结电容只在外加电压改变时才起作用,外加电压的频率越高, 其电容效应越显著







定义:反向偏压增大到某一数值 $V_{BR}$ 时,反向电流密度突然 开始迅速增大的现象

1. 雪崩击穿

2. 隧道击穿(齐纳击穿)

3. 热电击穿



## 反向偏压时,势垒区漂移大于扩散

p区、n区的非平衡少数载流子被抽取,形成向势垒区的扩散流

# 反向偏压很大时,会怎样?



p区电子到势垒区 被其强场驱向n区 n区空穴到势垒区 被其强场驱向p区

### 1.雪崩击穿

势垒区中 原子中的内层电子 与晶格原子 漂移作用很强 (价带)激发到导 碰撞时 反向V很大 动能很大 带,产生电子空穴 电子和空穴作 对(碰撞电离) 剧烈加速运动 "繁衍后代" "生生不息"  $\mathbf{n}$ 载流子倍增效应 雪崩倍增机构 反向电流迅速增大 需要足够的电场强度和势垒区宽度!

(载流子必须积累一定的能量,才能实现碰撞电离)

# 2.隧道击穿 (Zener齐纳击穿)

强电场作用下,隧道效应使得大量价带电子 穿过 禁带而进入导带

# 思考: 如何成行?

平衡态时, p区能带上移、n区下移 n区、p区费米能级统一



反向偏压下,

结区电场增强

势垒区能带倾斜更为明显



内建电场↑ 势垒高度↑



存在能量相同的量子态(A与B)隔着水平距离为  $\Delta x$ 的禁带。 隧道长度  $\Delta x$ 



### 隧道长度越短,隧穿几率越高

当反向电压增强使 $\Delta x$ 短到一定程度时,发生隧穿(量子力学隧道效应)

此时,尽管势垒高度很高,但p区价带电子仍能到达n区导带参与导电



反向电流 急剧增大



## 反向V越大,p区、n区相同能量的量子态就越多,隧道长度也越短, 因此隧穿几率就越高,易发生隧道击穿

数学证明: 隧道长度与杂质浓度成反比关系

掺杂浓度较高时,



隧道击穿占优

隧道长度小,隧道击穿所需电压较低

一般掺杂时,

隧道长度大,隧道击穿所需电压较高

势垒宽度较大 利于雪崩倍增

→ 雪崩击穿占优

这两种电击穿过程均是可逆的: 可利用



而热电击穿则不可逆,彻底烧毁:应避免



### 3.热电击穿

反向电压 反向电流

消耗功率 产生热能

散热条件 受到限制时

结温T↑



$$J_{\rm s} \propto n_{\rm i}^2 \propto T^3 {\rm e}^{-E_{\rm g}/(k_0 T)}$$

#### 反向饱和电流大小与温升陷入恶性循环,直至过热烧毁

对于禁带宽度比较小的半导体如锗p-n结,由于反向饱和电流 密度较大,在室温时热电击穿问题就很突出。

# 5.6 隧道p-n结

隧道结: 重掺杂的p区和重掺杂n区形成的p-n结(p+-n+)



**反向(隧穿)电流**,随反向偏压增大而迅速增加

思路:以重掺杂简并半导体的特性为基础,结合能带图来讨论 正、反向偏压对电流的影响。

#### 隧道结热平衡时的能带图

重掺杂半导体---简并化,特征?



p区价带顶比n区导带底高,存在相同能量的量子态 杂质浓度大,隧道长度短,穿过隧道的概率大 隧道结平衡时p区价带和n区导带即存在相同量子态,而且隧道长度小,故在小偏压时即可发生隧道击穿,而且正向、反向均有可能!!!



隧道pn结热平衡时的能带图

#### 思考: 二者的区别与联系?

(想一想发生隧道击穿需具备的条件)

一般pn结仅在反向偏压很大时, p区价带和n区导带才存在相同量 子态,才可能发生(反向)隧道 击穿



一般pn结大反向偏压下的能带图

隧道结正向电流=正向扩散电流 + 正向隧道电流 (指数增长) (导致负阻特性)



电压较低时,以隧道电流为主它随外加电压的变化情况如何?

< 防穿载流子数目 及其隧穿几率>

① *V*=0时(平衡态) 存在相同能量的量子态 但费米能级统一,无隧道电流

① 正偏,当V很小,n区导带电子 (多子)可能穿过隧道到达p区价 带中的空量子态,产生正向隧 道电流



正向偏压时,势垒区能带倾斜减弱





当V继续增加,势垒高度不断下降,更多n区导带电子可能 穿过隧道到达p区价带中的空量子态,隧道电流不断增大。

② 正偏,当V增至V<sub>p</sub>时,n区导带底与p区费米能级一样,n区导带中的电子可能全部穿过隧道到达p区价带中的空量子态——峰值电流



③ 正偏,此后V增加,随着两边相 同能量的量子态减少,隧穿几率 减小,隧道电流随之减小,负阻





④ 当V=谷值电压V<sub>v,,</sub> n区导带底和p区价带顶一样高,无能量相同的量子态,隧道电流应该降为零,而实际中的谷值电流大于谷值电压对应的正向扩散电流



(过量电流,与简并半导体禁带变窄效应以及深能级杂质或缺陷有关)

#### 反向偏压时,势垒区能带倾斜增强

⑤ 反向偏压时,p区相对n区升高,p区中的价带电子可穿过隧道到n区导带,形成反向隧道电流。V增加,两边能量相同的量子态增多,结两边电子填充水平差距更大,因此穿过隧道的电子大大增多,反向电流迅速增加



#### 说明:

- ① 隧道结由重掺杂的简并半导体制成,利用的是多子隧道效应, 多子数目起伏小,因此隧道二极管的噪声低、工作温度范围大!
- ② 隧道效应本质上是量子跃迁的过程,电子穿过势垒的速度极其迅速,不受电子渡越时间的限制,因此隧道二极管可以在极高频率下工作!