Introduction to RSA

Modular Exponentiation, Key Generation (Standard and CRT)

Christophe Clavier

University of Limoges

Master 2 Cryptis

Christophe Clavier (Unilim)

Introduction to RSA

Master 2 Cryptis

1 / 10

RSA Description

RSA Exponentiation Methods

RSA Standard Key Generation
O

RSA in CRT mode

Description

The RSA cryptosystem was invented in 1977 by Rivest, Shamir and Adleman. It is based on the factorisation problem.

Key: $pk = \{n, e\}$, sk = d, such that $ed \equiv 1 \pmod{\Phi(n)}$.

Encryption: $c = m^e \mod n$ Decryption: $m = c^d \mod n$

n is called the modulus.

e is the public exponent while d is the private exponent.

For classical 2-factor RSA, the modulus n is taken equal to pq, where p and q are primes of the same bitlength.

 $\Phi(n) = (p-1)(q-1)$ is Euler's totient function.

Consistency

So, why does it work?

Because of Euler's theorem that says:

$$\forall m \in \mathbb{Z}_n^*, \quad m^{\Phi(n)} \equiv 1 \pmod{n}$$

so that

$$\forall m \in \mathbb{Z}_n^*, \quad c^d \equiv (m^e)^d \equiv m^{ed} \equiv m^{1+k\Phi(n)} \equiv m \pmod{n}$$

(remember that $ed \equiv 1 \pmod{\Phi(n)}$)

Christophe Clavier (Unilim)

ntroduction to RSA

Master 2 Cryptis

3 / 10

RSA Description

Typical Use Case

RSA Exponentiation Method

RSA Standard Key Generation

RSA in CRT mode

Typical Use Case

A classical use of RSA encryption scheme is as follows:

- The modulus is made of two prime factors of (almost) same bitlength, and the modulus is 1024 bits long.
- The public exponent is taken prime, and can be very small. Typical values are 3 or better $2^{16} + 1$. Taking a small public exponent is not less secure, and has some efficiency advantages.

Problem Statement

- Given a modulus n, a k-bit exponent $d = (d_{k-1}d_{k-2}\dots d_0)_2$ and an input m < n, we want to compute $m^d \mod n$ in a secure and efficient way.
- Security should be considered with respect to side-channel analysis (SPA, DPA, CPA,...) and fault analysis.
- All methods proposed here are based on a sequence of $\mathcal{O}(k)$ modular multiplications. The average number of them is typically $c \cdot k$ ($1 \le c \le 2$). Time efficiency is simply understood as reducing the constant c.

Modular computations

Usual integer multiplication methods have quadratic bit complexity. For efficiency purpose an implicit reduction modulo n will be performed after each multiplication of two k-bit integers. For example:

$$(a \times b \times c \times d) \mod n$$

will be computed as

$$a \times (b \times (c \times d \mod n) \mod n) \mod n$$

Christophe Clavier (Unilim)

RSA Exponentiation Methods 00000

Left-to-right square-and-multiply

Principle

The left-to-right square-and-multiply exponentiation is based on the following expression:

$$d = d_0 + 2 \times (d_1 + 2 \times (\ldots + 2 \times (d_{k-1}) \ldots))$$

$$m^d = m^{d_0} imes \left(m^{d_1} imes \left(\ldots imes \left(m^{d_{k-1}}
ight)^2 \ldots
ight)^2
ight)^2$$

Left-to-right square-and-multiply exponentiation

Input: $m, n \in \mathbb{N}, m < n, d = (d_{k-1}d_{k-2}...d_0)_2$

Output: $m^d \mod n$

- 1. $a \leftarrow 1$
- 2. **for** i = k 1 **to** 0 **do**
- 3. $a \leftarrow a^2 \mod n$
- 4. if $d_i = 1$ then
- 5. $a \leftarrow a \times m \mod n$
- 6. return a

de Limoges

Left-to-right square-and-multiply

Exercise

Simulate the execution of the algorithm with $d=3441=(D71)_{16}$. Write down the successive powers of m taken by register a. Find how to express the value taken by a at the end of each loop.

Invariant property

At the end of each loop the following holds:

•
$$a = m^{(d_{k-1}d_{k-2}...d_i)_2} \mod n$$

Complexity

• Time cost: 1S + 0.5M per exponent bit

Christophe Clavier (Unilim)

Introduction to RSA

Master 2 Cryptis

7 / 10

RSA Description
O

RSA Exponentiation Methods ○○○●○

RSA Standard Key Generation

RSA in CRT mode

Basic Square & Multiply

Right-to-left square-and-multiply

Principle

The right-to-left square-and-multiply exponentiation is based on the following expression:

$$d = 2^{k-1} \times d_{k-1} + 2^{k-2} \times d_{k-2} + \ldots + 2 \times d_1 + d_0$$

$$m^d = \left(m^{2^{k-1}}\right)^{d_{k-1}} \times \left(m^{2^{k-2}}\right)^{d_{k-2}} \times \ldots \times \left(m^2\right)^{d_1} \times m^{d_0}$$

Right-to-left square-and-multiply exponentiation

Input: $m, n \in \mathbb{N}, m < n, d = (d_{k-1}d_{k-2}...d_0)_2$ **Output:** $m^d \mod n$

- 1. $a \leftarrow 1$
- 2. $b \leftarrow m$
- 3. **for** i = 0 **to** k 1 **do**
- 4. if $d_i = 1$ then
- 5. $a \leftarrow a \times b \mod n$
- 6. $b \leftarrow b^2 \mod n$
- 7. return a

té ges

Right-to-left square-and-multiply

Exercise

Simulate the execution of the algorithm with $d=9747=(2613)_{16}$. Write down the successive powers of m taken by registers a and b. Find how to express the value taken by a at the end of each loop.

Invariant property

At the end of each loop the following holds:

- $\bullet \ a = m^{(d_i \dots d_1 d_0)_2} \bmod n$
- $b = m^{2^{i+1}} \bmod n$

Complexity

• Time cost: 1S + 0.5M per exponent bit

Christophe Clavier (Unilim)

Introduction to RSA

Master 2 Cryptis

0 / 10

RSA Description

RSA Exponentiation Methods

RSA Standard Key Generation

RSA in CRT mode

RSA Standard Key Generation

Usually the public exponent e is previously chosen as a small integer (typical values: 3, 5, 17, 257, $2^{16} + 1$).

Choosing e small allows to encrypt efficiently.

Given *e* the following procedure generates a *k*-bit RSA key pair:

- Generate at random a k/2-bit prime p such that gcd(e, p-1) = 1
- ② Generate at random a k/2-bit prime q such that gcd(e, q 1) = 1
- **3** Compute n = pq, and $\Phi(n) = (p-1)(q-1)$
- Compute $d = e^{-1} \mod \Phi(n)$

Publish $pk = \{n, e\}$.

Keep secret $sk = \{ \frac{d}{d} \}$. (and discard $\Phi(n), p, q$)

Let's generate a 20-bit RSA key for the public exponent e=11.

- p = 547, q = 797
- $n = p \times q = 547 \times 797 = 435959$
- $\Phi(n) = (p-1) \times (q-1) = 546 \times 796 = 434616$
- $d = e^{-1} \mod \Phi(n) = 11^{-1} \mod 434616 = 355595$ by means of extended Euclid's algorithm

Note that p and q are both 10-bit primes while n is only a 19-bit modulus!

Let's encrypt/decrypt the secret message m = 123456:

encryption $c = m^e \mod n = 123456^{11} \mod 435959 = 77111$ decryption $m = c^d \mod n = 77111^{355595} \mod 435959 = 123456$

Christophe Clavier (Unilim)

Introduction to RSA

Master 2 Cryptis

11 / 19

RSA Description

RSA Exponentiation Method

RSA Standard Key Generation

RSA in CRT mode

Standard versus CRT Mode

RSA we just described is said in standard mode. This is the simplest way to use it.

Note that the encryption operation is efficient since e is small.

Conversely decryption is time consuming since d is always full size (about the size of n).

There is a computation trick that allows to make decryption faster. This is related to the Chinese Remainder Theorem, hence its name: CRT mode.

Chinese Remainder Theorem

RSA in CRT mode

Chinese Remainder Theorem (CRT)

Chinese Remainder Theorem

Let n_1, \ldots, n_k be pairwise coprime positive integers, and a_1, \ldots, a_k be integers defined modulo n_1, \ldots, n_k respectively.

There exists an integer a such that

$$a \equiv a_i \pmod{n_i} \quad (i = 1, \dots, k).$$

• Also, a' is also a solution to this equations system iff $a \equiv a' \pmod{N}$, where $N = \prod_{i=1}^{k} n_i$.

Therefore, the solution to this congruences system is uniquely determined modulo the product of the moduli.

The Chinese remainder theorem expresses that there exists a one-to-one mapping between \mathbb{Z}_N and $\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$.

In \mathbb{Z}_N , it is possible to represent the integer a by the tuple (a_1,\ldots,a_k) where for all i, $a_i = a \mod n_i$.

Christophe Clavier (Unilim)

Introduction to RSA

RSA in CRT mode 000000

Chinese Remainder Theorem (CRT)

Example

Example with $n_1 = 3$ and $n_2 = 5$ (N = 15):

а	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
<i>a</i> mod 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
<i>a</i> mod 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4

The integer 8 is represented by the couple (2,3).

Changing the Representation

Chinese Remainder Theorem

From \mathbb{Z}_N to $\mathbb{Z}_{n_1} imes \ldots imes \mathbb{Z}_{n_k}$

$$\forall i = 1, \ldots, k \quad a_i = a \mod n_i$$

From $\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$ to \mathbb{Z}_N (Gauss's method)

For all
$$i = 1, ..., k$$
, let $N_i := N/n_i$. Then:

$$a = \left(a_1 \cdot N_1 \cdot \left(N_1^{-1} \bmod n_1\right) + \ldots + a_k \cdot N_k \cdot \left(N_k^{-1} \bmod n_k\right)\right) \bmod N$$

From $\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$ to \mathbb{Z}_N (Garner's method)

Particular case k = 2:

$$a = a_1 + n_1 \cdot \left((a_2 - a_1) \cdot (n_1^{-1} \mod n_2) \mod n_2 \right)$$

This method can be generalised for k > 2. It consists in computing the successive digits of a in multi-radix base (n_1, n_2, \ldots, n_k) .

Christophe Clavier (Unilim)

Introduction to RSA

Master 2 Cryptis

15 / 10

0

RSA Exponentiation Methods

RSA Standard Key Generatio

RSA in CRT mode 000●000

CRT Mode

Remember that n=pq. From the Chinese Remainder Theorem, m can be evaluated as $(m_p, m_q) \in \mathbb{Z}_p \times \mathbb{Z}_q$. (Instead of being computed directly in \mathbb{Z}_n .)

$$m_p = m \mod p$$

$$= (c^d \mod n) \mod p$$

$$= c^d \mod p$$

$$= c^{d \mod (p-1)} \mod p \quad \text{since } c^{p-1} \equiv 1 \pmod p \quad \text{(Fermat)}$$
 $m_p = c^{d_p} \mod p \quad \text{(with } d_p := d \mod (p-1))$

A similar computation leads to $m_q = c^{d_q} \mod q$ (with $d_q := d \mod (q-1)$)

From Garner's formula, $m \in \mathbb{Z}_n$ is recovered as :

$$m = m_p + p \cdot ((m_q - m_p) \cdot I_p \bmod q)$$

where $I_p = p^{-1} \mod q$.

CRT Mode

This is a lot more computations! How would it be more efficient?

- Modular exponentiation on k-bit operands is $\mathcal{O}(k^3)$.
- There are two modular exponentiations (modulo p and q) in CRT mode, but each one computes on k/2-bit operands.
- These exponentiations are thus eight times faster than $c^d \mod n$!
- Assuming the final Garner's recombination time is negligible, CRT mode decryption achieves a four times speed-up compared to standard mode.

Christophe Clavier (Unilim)

Introduction to RSA

RSA in CRT mode 0000000

RSA CRT Key Generation

Given e the following procedure generates a k-bit RSA key pair usable in CRT mode:

- Generate at random a k/2-bit prime p such that gcd(e, p-1) = 1
- ② Generate at random a k/2-bit prime q such that gcd(e, q-1) = 1
- **3** Compute n = pq

- **6** Compute $I_p = p^{-1} \mod q$

Publish $pk = \{n, e\}$.

Keep secret sk = $\{p, q, d_p, d_q, I_p\}$.

A Toy Example

Let's generate a 20-bit RSA CRT key for the public exponent e = 11.

•
$$p = 547$$
, $q = 797$

•
$$n = p \times q = 547 \times 797 = 435959$$

•
$$d_p = e^{-1} \mod (p-1) = 11^{-1} \mod 546 = 149$$

•
$$d_q = e^{-1} \mod (q-1) = 11^{-1} \mod 796 = 579$$

•
$$I_p = p^{-1} \mod q = 547^{-1} \mod 797 = 424$$

Let's encrypt and CRT decrypt the secret message m = 123456:

encryption
$$c = m^e \mod n = 123456^{11} \mod 435959 = 77111$$

decryption $m_p = c^{d_p} \mod p = 77111^{149} \mod 547 = 381$
 $m_q = c^{d_q} \mod q = 77111^{579} \mod 797 = 718$
 $m = 381 + 547 \cdot ((718 - 381) \cdot 424 \mod 797) = 123456$

