LFSR, números pseudo aleatorios

José Galaviz

¿Qué son?

- Registros de desplazamiento que producen una salida secuencial regulada normalmente por un reloj. Un bit en cada pulso.
- Luego de cada pulso también se actualiza el estado del registro usando una función lineal de su estado previo.
- Se parte de un estado inicial arbitrario.
- Típicamente algunos de los bits del registro (taps) se conectan a un XOR, cuya salida regresa al registro por un extremo.
- En el extremo opuesto se produce la salida.

Ejemplo tap4 tap1 D Q D Q D Q D Q LS BIT MS BIT

Ejemplo

Para identificar a los taps se usa un modelo de polinomio

Uso, características

- Como la secuencia de salida no parece tener un patrón, se puede pensar en usarlos en un "stream cipher".
- Sin embargo existe un patrón:
 - Un LFSR de n bits puede generar una secuencia de hasta 2^{n} -1 bits, que luego se repite cíclicamente.
 - o El estado inicial sólo determina donde se comienza la secuencia.
 - No todo polinomio genera secuencias máximas.

Ejemplo de periodo corto

Polinomio x^2+x+1 .

La secuencia de salida tiene periodo 3.

¿Cómo debe ser el polinomio de alambrado?

	b1	b2	b3	b4	b1 xor b2	s
1	1	1	1	1	0	1
2	0	1	1	1	1	1
3	1	0	1	1	1	1
4	1	1	0	1	0	1
5	0	1	1	0	1	0
6	1	0	1	1	1	1
7	1	1	0	1	0	1
8	0	1	1	0	1	0
9	1	0	1	1	1	1

Polinomio irreducible

No puede factorizarse como el producto de polinomios de grado menor no constantes.

Polinomio: x^4+x+1 .

Periodo: $15 = 2^4 - 1$.

Polinomio irreducible.

	b1	b2	b3	b4	bl xor b4	Salida	x^4+x+1
1	1	1	1	1	0	1	S es igual a b1, es el bit que sale cada clock
2	0	1	1	1	1	1	b2 del renglón 1
3	1	0	1	1	0	1	b3 del renglón 1
4	0	1	0	1	1	1	b4 del renglón 1
5	1	0	1	0	1	0	1er resultado no establecido como entrada
6	1	1	0	1	0	1	
7	0	1	1	0	0	0	
8	0	0	1	1	1	1	
9	1	0	0	1	0	1	
10	0	1	0	0	0	0	
11	0	0	1	0	0	0	
12	0	0	0	1	1	1	
13	1	0	0	0	1	0	
14	1	1	0	0	1	0	
15	1	1	1	0	1	0	
16	1	1	1	1	0	1	Se repite el renglón 1, periodo 16-1=15

Pero...

- Berlekamp (1967, para códigos BCH) y Massey (1969).
- Algoritmo para recuperar el polinomio de alambrado a partir de una secuencia del polinomio.
- En el ejemplo previo la secuencia de salidas observadas será:
 - o 11110101

Análisis

Se construye una transformación lineal a partir de una secuencia de tamaño 2n.

La transformación inversa proporciona el polinomio de alambrado.

Matriz M								
1	1	1	1		0			
1	1	1	0		1			
1	1	0	1		0			
1	0	1	0		1			
I	nvers	a de N	Л					
-1	0	1	1					
0	1	0	-1					
1	0	-1	0					
1	-1	0	0					
Inver	Inversa de M (mód 2)							
1	0	1	1		0	1	1	X^4
0	1	0	1		1	2	0	x^3
1	0	1	0		0	0	0	X^2
1	1	0	0		1	1	1	Х

Números pseudo aleatorios

- Por definición, si existe un método, un algoritmo para generar algo, el algo no es aleatorio.
- Lo que generamos en la computadora es pseudo-aleatorio.

LCG

Linear Congruential Generator.

$$X_{n+1} = (a X_n + c) \pmod{m}$$

Partiendo de una semilla X_0 .

Secuencia determinista, finita, repetida en un ciclo que puede ser grande, en función del tamaño del tipo de dato usado.

No son suficientemente robustos para aplicaciones criptográficas.

Requisitos

Un CSPRNG (generador de números pseudo-aleatorios criptográficamente seguro) debe:

- Con muy baja probabilidad generar secuencias idénticas de números.
- Generar secuencias estadísticamente indistinguibles de una verdaderamente aleatoria.
- Dada una secuencia de números debe ser imposible determinar el término siguiente.
- Dado un estado del generador, debe ser imposible calcular el estado previo del generador y los términos previos de la secuencia.

Pruebas estadísticas

- Monobit test. En la secuencia de números, en binario, el número de ceros debe ser aproximadamente igual al de unos.
- Poker test. No debe haber repeticiones frecuentes del mismo dígito en los números: 959, 633, 882, etc.
- Kolmogorov-Smirnov. La distribución acumulativa de los términos de la secuencia debe corresponder a la de la distribución teórica con la que son generados.
- Run test. No debe haber corridas (subsecuencias con un patrón). P. ej. 3, **39**, 5, **25**, 13, **12**, 24, una creciente dentro de otra decreciente.
- Autocorrelación. Los términos de la secuencia deben ser independientes.

Criterio de Yao

No debe haber un algoritmo polinomial para calcular el siguiente bit de la secuencia con probabilidad mayor a 0.5.

¿Qué se usa?

- Usar una función de hash criptográfica.
- O cifrados de bloque.
- A la función o cifrado se le pone en modo de operación "de contador" y se le suministra una semilla y luego la secuencia "1", "2", "3", ...
- Hay diseños más complejos basados en problemas matemáticos.
- Edward Snowden (2013) reveló que en uno de esos:
 NIST-800-90A (2007), la NSA puso una puerta trasera para predecir la secuencia.