Mathematik 3 für	Name:
Elektrotechniker	MatrNr.:
Probeklausur WS2007/08	

Aufgabenstellung: Beck

Bearbeitungszeit: 120 min für MA3 (+ 120 min für SYT)

Hilfsmittel: Taschenrechner,

Vorlesungsunterlagen

Benotung: Die Note ergibt sich aus der Gesamtpunktzahl aus MA3 und SYT

Bitte beachten Sie folgendes:

- > Schreiben Sie Ihre Ausarbeitung **gut lesbar** auf die dafür vorgesehenen Blätter.
- > Bei Platzmangel benutzen Sie die Blattrückseite.
- > Schmierblätter mit Konzepten nicht mit abgeben.
- **Ergebnisse**, soweit vorhanden, heben Sie bitte geeignet hervor.
- ➤ Lösungsansatz und der Lösungsweg müssen sich zweifelsfrei erkennen lassen; Ansatz und Weg werden bewertet. Ein Ergebnis ohne Lösungsweg zählt nicht.
- > Geben Sie die Klausurunterlagen in jedem Fall (mit eingetragenem Namen) ab.
- ➤ **Nichtmuttersprachler** wenden sich bei sprachlichen Schwierigkeiten **rechtzeitig** an den Dozenten, Textteile in englisch werden akzeptiert,

Punkteverteilung:

Aufaaba		1	1	2	,	3		4		ļ	5	Gesamt
Aufgabe	а	b	а	b	а	b	а	b	С	а	b	Gesaint
Punkte	4	4	6	2	4	4	2	4	2	4	4	40
Punkte erreicht												

Fakultät für Elektrotechnik

Aufgabe 1 (8 Punkte):

$$a) y' + 2x \cdot y^2 = 0$$

Berechnen Sie die allgemeine Lösung der obigen DGL.

Geben Sie die spezielle Lösung für das AWP y(0) = -1 an und skizzieren Sie die Lösung für $-3 \le x \le 3$.

$$b) y' + \frac{x}{y} = 0$$

Berechnen Sie die allgemeine Lösung der DGL

Skizzieren Sie die Schar der Lösungskurven. Welche geometrische Form beschreibt jede der Lösungskurven?

Fakultät für Elektrotechnik

Aufgabe 2 (8 Punkte):

- a) Berechnen Sie die allgemeine Lösung der folgenden DGL durch Variation der Konstanten: $x \cdot y' + y = x \cdot \cos x$
- b) Geben Sie die spezielle Lösung der obigen DGL für folgende Randbedingung an: $y(\pi) = 0$

Führen Sie eine Probe durch und zeigen Sie, dass die von Ihnen gefundene Lösung tatsächlich eine Lösung der DGL ist.

Fakultät für Elektrotechnik

Aufgabe 3 (8 Punkte):

a) Berechnen Sie die allgemeine Lösung der folgenden DGL mit Methoden, die in der Vorlesung MA3 verwendet wurden:

$$y''+3y'-4y = \sin x$$

b) Berechnen Sie die spezielle Lösung der obigen DGL für folgende Anfangsbedingungen:

$$y(0) = -\frac{3}{34}$$
, $y'(0) = -\frac{5}{34}$

Wie groß ist die Phasenverschiebung zwischen der speziellen Lösung und der Störfunktion sin x?

Fakultät für Elektrotechnik

Aufgabe 4 (8 Punkte):

Im R^2 seien zwei Basissysteme gegeben:

Basis A:
$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Basis B:
$$b_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $b_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Die Koordinaten eines Vektors $v \in \mathbb{R}^2$ bezüglich der Basis A seien $v_A = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

Die Koordinaten des gleichen Vektors $v \in \mathbb{R}^2$ bezüglich der Basis B seien $v_B = \begin{pmatrix} v_1^* \\ v_2^* \end{pmatrix}$

- a) Zeichnen Sie die beiden Basissysteme in je ein Diagramm. Bestimmen Sie (wenn Sie möchten zeichnerisch) die Koordinaten v_B des Vektors, der bezüglich der Basis A folgende Koordinaten besitzt: $v_A = \begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix}$.
- b) Bestimmen Sie die Matrix M, um für beliebige Vektoren $v \in R^2$ v_B aus v_A zu berechnen: $\begin{pmatrix} v_1^* \\ v_2^* \end{pmatrix} = M \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$
- c) Ist die Matrix *M* orthogonal ? (Begründung!) Ist M eine Drehung? (Begründung!)

Fakultät für Elektrotechnik

Aufgabe 5 (8 Punkte):

Gegeben sei die Matrix
$$M = \begin{pmatrix} 1 & \sqrt{6} \\ \sqrt{6} & 2 \end{pmatrix}$$

- a) Berechnen Sie die Eigenwerte von M.
- b) Berechnen Sie zu jedem Eigenwert einen Eigenvektor.