ARE TEACHERS OBSOLETE?

Emily Jensen's Area Exam 12 November, 2021

ADAPTIVE SYSTEMS

A brief overview

Automated Systems

Machine agent performs previously human tasks

Automated Systems

Machine agent performs previously human tasks

Adaptable Automation

Human chooses how to adjust the automation

Adaptive Automation

System adjusts based on current human state

(Fig. from Feigh, 2012; Heard, 2020)

TRAINING HUMANS

Efficiently and at scale

Learner Modeling

Estimates learner's internal state

Learner Modeling Bayesian Knowledge Tracing

Learner Modeling Bayesian Knowledge Tracing

 $P_i = initial$ $P_l = learn$ $P_g = guess$ $P_s = slip$

Learner Modeling Bayesian Knowledge Tracing

- Learning individual P_i
 (Pardos, 2010)
- Relationship between carelessness + affect (San Pedro, 2011)
- Cf. Deep Knowledge Tracing (Khajah, 2016)

 $P_i = initial$ $P_1 = learn$ $P_g = guess$ $P_s = slip$

Learner Modeling Inverse Reinforcement Learning

Learner Modeling Inverse Reinforcement Learning

Infer knowledge based on a sequence of actions

- Ex: solving algebraic equations
- Learner is modeled as an MDP

$$\mathbb{P}(a|s) \propto \exp(\beta \cdot Q_h(s,a))$$

Giving Feedback

Gold standard: human tutors

- Curriculum development
- Personalization
- But, it's not scalable. Can we automate problem generation? (Gulwani, 2014)

Giving Feedback

Make it challenging, but not too hard

- Scaffolding! (Shute, 2008)
 - □ Deliberate Practice (Ericsson, 1993)
 - ☐ Zone of Proximal Development (Vygotsky, 1978)

Giving Feedback

Make it challenging, but not too hard

- Scaffolding! (Shute, 2008)
 - □ Deliberate Practice (Ericsson, 1993)
 - ☐ Zone of Proximal Development (Vygotsky, 1978)
- Some concrete examples
 - Bayesian Knowledge Tracing based "ready to learn" (Baker, 2020)
 - Address a misunderstood skill (Rafferty, 2016)
 - ☐ ZPD based on hint use (Murray, 2002)

COMPLEX TASKS

Current work and opportunities

Modeling Complex Tasks

How do we measure the internal state of the user?

- Driving Actively force user to display behavior (Sadigh, 2016)
- Gaming Assume actions are rational wrt internal dynamics (Reddy, 2018)
- Measure physiological responses (Heard, 2020)

Case Study: Rafferty 2015

26

Case Study: Rafferty 2015

- Modeled complex user actions as a Markov Decision Process
- Users may have misconceptions about how their actions change the current state
- Used inverse planning to reason about knowledge

Review of Markov Decision Processes

- Agent is currently in state s and chooses to take action a
- Next state s' is determined by transition model T = Pr(s' | s, a)
- The result of the action is given a cost/reward r(s, a, s')

Review of Markov Decision Processes

- Expected long-term value is given by Q(s, a)
- Chosen action is determined by policy $Pr(a \mid s)$ (optimal policy will maximize Q)

$$Q(s,a) = \sum_{s' \in S} \mathbb{P}(s'|a,s) \left(r(s,a,s') + \gamma \sum_{a' \in A} \mathbb{P}(a'|s')Q(s',a') \right)$$

Sum over all possible next states

Prob. of getting Reward at the state to the state

Discounted result of future actions

Inferring User Beliefs

- Assume reward function is given
- Goal: infer user's transition model given action sequence

$$\mathbb{P}(T|\mathbf{a}, s_1, R, \gamma) \propto \mathbb{P}(\mathbf{a}|s_1, T, R, \gamma) \mathbb{P}(T)$$

Posterior: prob of a given transition model

Likelihood: prob of action sequence given model

Prior: distribution over transition models. Can encode misconceptions, set as uniform here

Inferring User Beliefs

- Need approximation of policy to calculate likelihood
- Use Boltzmann noisily optimal policy
- Higher Q represents better choices
- Marginalize over various values of β

$$\mathbb{P}(a|s,T,R,\gamma) \propto \exp\left(\beta \cdot Q(s,a|T,R,\gamma)\right)$$

Determines how close to optimal

Q-value of choosing action in state

- 73% match of Maximum A Posteriori with beliefs
- Distinguishes plans with misconceptions
- Similar performance to human raters

Key Results

Flight plan phase 1/6

Adaptive Automation Perceive Select Act

Adaptive Automation

Perceive

- Great strides in sensing technology (Feigh, 2012)
- Theoretical frameworks for assessing knowledge (Pelánek, 2017)
- Are humans really rational? (Reddy, 2018; Rafferty, 2015/2016)
- How do we represent complex domain models?
- Need to address the social-emotional and cultural side of learning

Adaptive Automation

Perceive

- Great strides in sensing technology (Feigh, 2012)
- Theoretical frameworks for assessing knowledge (Pelánek, 2017)
- Are humans really rational? (Reddy, 2018; Rafferty, 2015/2016)
- How do we represent complex domain models?
- Need to address the social-emotional and cultural side of learning

Select

- Triggers and adaptations based on heuristics (Heard, 2020; Murray, 2002; Shute, 2008)
- Need to go beyond metrics like performance (Khasawneh, 2019; Heard, 2020)
- How do we plan for how humans change over time? (Kress-Gazit, 2021)

Adaptive Automation

Perceive

- Great strides in sensing technology (Feigh, 2012)
- Theoretical frameworks for assessing knowledge (Pelánek, 2017)
- Are humans really rational? (Reddy, 2018; Rafferty, 2015/2016)
- How do we represent complex domain models?
- Need to address the social-emotional and cultural side of learning

Select

- Triggers and adaptations based on heuristics (Heard, 2020; Murray, 2002; Shute, 2008)
- Need to go beyond metrics like performance (Khasawneh, 2019; Heard, 2020)
- How do we plan for how humans change over time? (Kress-Gazit, 2021)

Act

- A whole world of UX/UI and VIZ to explore
- What is the role of explainability?
- Very little focus on user experience (Khasawneh, 2019; Heard, 2020)
- How do we treat humans as an integral part of the system? (Parasuraman, 1997)

Human-Centered Automation

(Fig. from Parasuraman, 1997; Kress-Gazit, 2021; Khasawneh, 2019)

How do I fit into this?

How do I fit into this?

Perceive

- Sensor-free student affect (EDM 2019; HLA)
- Teacher dialog strategies (CHI 2020; LAK 2021b)
- Cognitive engagement (LAK 2021a)

How do I fit into this?

Select

Perceive

- Sensor-free student affect (EDM 2019; HLA)
- Teacher dialog strategies (CHI 2020; LAK 2021b)
- Cognitive engagement (LAK 2021a)

Act

ARE TEACHERS OBSOLETE?

0-

Thank you! Questions?

References, pt 1

- **Baker, R.S.J.d. et al. 2020**. The results of zone of proximal development on learning outcomes. *Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)* (2020), 749–753.
- **Corbett, A.T. and Anderson, J.R.** 1995. Knowledge-tracing: modeling the acquisition of procedural knowledge. *User Modeling and User Adapted Interaction*. 4, (1995), 253–278.
- **Ericsson, K.A. et al. 1993**. The role of deliberate practice in the acquisition of expert performance. *Psychological Review.* 100, 3 (1993), 363–406.
- **Feigh, K.M. et al. 2012**. Toward a characterization of adaptive systems: a framework for researchers and system designers. *Human Factors*. 54, 6 (2012), 1008–1024.
- **Gulwani, S. 2014.** Example-based learning in computer-aided stem education. *Communications of the ACM*. 57, 8 (Aug. 2014), 70–80.
- **Heard, J. et al. 2020**. SAHRTA: a supervisory-based adaptive human-robot teaming architecture. *2020 IEEE International Conference on Cognitive and Computational Aspects of Situation Management, CogSIMA 2020* (2020), 37–44.
- **Khajah, M. et al. 2016**. How deep is knowledge tracing? *Proceedings of the 9th International Conference on Educational Data Mining, EDM 2016* (2016).
- **Khasawneh, A. et al. 2019**. Human adaptation to latency in teleoperated multi-robot human-agent search and rescue teams. *Automation in Construction*. 99, January 2018 (2019), 265–277. DOI:https://doi.org/10.1016/j.autcon.2018.12.012.
- **Kress-Gazit, H. et al. 2021**. Formalizing and guaranteeing human-robot interaction. *Communications of the ACM*. 64, 9 (Sep. 2021), 78–84.

References, pt 2

- **Murray, T. and Arroyo, I. 2002**. Toward measuring and maintaining the zone of proximal development in adaptive instructional systems. *International Conference on Intelligent Tutoring Systems* (2002), 749–758.
- **Parasuraman, R. and Riley, V. 1997**. Humans and automation: use, misuse, disuse, abuse. *Human Factors*. 39, 2 (1997), 230–253.
- **Pardos, Z.A. and Heffernan, N.T. 2010**. Modeling individualization in a bayesian networks implementation of knowledge tracing. *User Modeling, Adaptation, and Personalization*. 255–267.
- **Pelánek, R. 2017**. Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques. *User Modeling and User-Adapted Interaction*. 27, (2017), 313–350.
- **Rafferty, A.N. et al. 2016**. Using inverse planning for personalized feedback. *Proceedings of the 9th International Conference on Educational Data Mining, EDM 2016* (2016), 472–477.
- **Rafferty, A.N. et al. 2015**. Inferring learners' knowledge from their actions. *Cognitive Science*. 39, 3 (2015), 584–618.
- **Reddy, S. et al. 2018**. Where do you think you're going?: inferring beliefs about dynamics from behavior. *Advances in Neural Information Processing Systems*. 2018-Decem, NeurIPS (2018), 1454–1465.
- **Sadigh, D. et al. 2016**. Information gathering actions over human internal state. *IEEE International Conference on Intelligent Robots and Systems* (2016), 66–73.
- **San Pedro, M.O.C.Z. et al. 2011**. The relationship between carelessness and affect in a cognitive tutor. *Affective Computing and Intelligent Interaction (ACII 2011)* (2011), 306–315.
- **Shute, V.J. 2008**. Focus on formative feedback. *Review of Educational Research*. 78, 1 (2008), 153–189.
- **Vygotsky, L.S. 1978**. *Mind in society: the development of higher psychological processes*. Harvard University Press.

References, pt 3

- **Jensen, E. et al. 2019**. Generalizability of sensor-free affect detection models in a longitudinal dataset of tens of thousands of students. *The 12th International Conference on Educational Data Mining* (2019), 324–329.
- **Jensen, E. et al. 2020**. Toward automated feedback on teacher discourse to enhance teacher learning. *2020 CHI Conference on Human Factors in Computing Systems Proceedings (CHI 2020)* (2020).
- **Jensen, E. et al. 2021a**. What you do predicts how you do: prospectively modeling student quiz performance using activity features in an online learning environment. *LAK21: 11th International Learning Analytics and Knowledge Conference (LAK21)* (2021).
- **Jensen, E. et al. 2021b**. A deep transfer learning approach to modeling teacher discourse in the classroom. *LAK21: 11th International Learning Analytics and Knowledge Conference (LAK21)* (2021).
- D'Mello, S.K. and Jensen, E. (to appear) Emotional Learning Analytics. Handbook of Learning Analytics.