63-00

Atty Dkt No. 1621.002 BOX SE Q 2302-1621

APPLICATION TRANSMITTAL LETTER

Box Patent Application Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

x "Express Mail" Mailing Label No. EL 457 530 443 US, Date of Deposit December 30, 1999.

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Gail Wavawell

Typed or Printed Name of Person Mailing Paper or Fee)

Signature of Person Mailing Paper or Fee)

Transmitted herewith for filing is the patent application of Susan BARNETT, Jan ZUR MEGEDE, Indresh SRIVASTAVA, Ying LIAN, Karin HARTOG, Hong LIU, Catherine GREER, Mark SELBY and Christopher WALKER for IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION OF VIRUS-LIKE PARTICLES, claiming priority to provisional patent applications serial nos. 60/114,495, filed December 31, 1998 and 60/168,471 filed December 1, 1999.

Enclosed are:

121	sheets of drawings.
	A claim for foreign priority under 35 U.S.C. § 119/363 in a separate document the declaration.
<u>X</u>	A claim for priority under 35 U.S.C. § 119(e)(1) in a separate document X the declaration.
	A certified copy of the priority document.
	Verified Statement(s) Claiming Small Entity Status.
<u>X</u>	Other: Title page; Sequence Listing on paper (pp.1-62) and on disk; Statement to Support Filing and Submission in Accordance with 37 C.F.R. §§ 1.821-1.825; return receipt postcard.

The declaration of the inventor \underline{X} is enclosed \underline{X} unsigned.

The fee has been calculated as follows:

ij

A. Basic Application Fee		\$760.00
B. Total Claims 90 - 20 = 70	x \$18.00	1260.00
C. Independent Claims $2 - 3 = 0$	x \$78.00	0.00
D. If multiple dependent claims present, add	\$260.00	0.00
E. Total Application Fee (Total of A, B, C, & D)	=	2020.00
F. If verified statement of small entity status is enclosed, reduce Total Application Fee by 50%		0
G. Application Fee Due (E - F)	=	2020.00
H. Assignment Recording Fee of \$40.00 if assignment document is enclosed	\$40.00	NA
I. TOTAL FEE (G + H)		\$2020.00

Respectfully submitted,

Date: Dec 30, 1999

By: Dahna S. Pasternak

Registration No. 41,411
Attorney for Applicants

CHIRON CORPORATION Intellectual Property - R440 P.O. Box 8097 Emeryville, CA 94662-8097

Telephone: (510) 923-2719 Facsimile: (510) 655-3542

"Express Mail" Mailing Label No. <u>EL 457 530 443 US</u> Date of Deposit <u>December 30, 1999</u>

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Typed or Printed Name of Person Mailing Paper or Fee

Gail wardwell

Signature of Person Mailing Paper or Fee

Application for U.S. Letters Patent Entitled

IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION OF VIRUS-LIKE PARTICLES

claiming priority to provisional patent applications serial nos. 60/114,495, filed December 31, 1998 and 60/168,471, filed December 1, 1999

by Inventors:

Susan BARNETT
Jan ZUR MEGEDE
Indresh SRIVASTAVA
Ying LIAN
Karin HARTOG
Hong LIU
Catherine GREER
Mark SELBY
Christopher WALKER

CHIRON CORPORATION Intellectual Property - R440 P.O. Box 8097 Emeryville, CA 94662-8097 Telephone: (510) 923-2719

Facsimile: (510) 655-3542

Attorney Docket No. 1621.002

10

15

20

25

IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION OF VIRUS-LIKE PARTICLES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to provisional patent applications serial nos. 60/114,495, filed December 31, 1998 and 60/168,471, filed December 1, 1999, from which priority is claimed under 35 USC §119(e)(1) and which applications are incorporated herein by reference in their entireties.

TECHNICAL FIELD

Synthetic expression cassettes encoding the HIV polypeptides (e.g., Gag-, pol-, prot-, reverse transcriptase, Env- or tat-containing polypeptides) are described, as are uses of the expression cassettes. The present invention relates to the efficient expression of HIV polypeptides in a variety of cell types. Further, the invention provides methods of producing Virus-Like Particles (VLPs), as well as, uses of the VLPs and high level expression of oligomeric envelope proteins.

BACKGROUND OF THE INVENTION

Acquired immune deficiency syndrome (AIDS) is recognized as one of the greatest health threats facing modern medicine. There is, as yet, no cure for this disease.

10

15

20

25

30

In 1983-1984, three groups independently identified the suspected etiological agent of AIDS. See, e.g., Barre-Sinoussi et al. (1983) Science 220:868-871; Montagnier et al., in Human T-Cell Leukemia Viruses (Gallo, Essex & Gross, eds., 1984); Vilmer et al. (1984) The Lancet 1:753; Popovic et al. (1984) Science 224:497-500; Levy et al. (1984) Science 225:840-842. These isolates were variously called lymphadenopathy-associated virus (LAV), human T-cell lymphotropic virus type III (HTLV-III), or AIDS-associated retrovirus (ARV). All of these isolates are strains of the same virus, and were later collectively named Human Immunodeficiency Virus (HIV). With the isolation of a related AIDS-causing virus, the strains originally called HIV are now termed HIV-1 and the related virus is called HIV-2 See, e.g., Guyader et al. (1987) Nature 326:662-669; Brun-Vezinet et al. (1986) Science 233:343-346; Clavel et al. (1986) Nature 324:691-695.

A great deal of information has been gathered about the HIV virus, however, to date an effective vaccine has not been identified. Several targets for vaccine development have been examined including the env, Gag, pol and tat gene products encoded by HIV.

Haas, et al., (Current Biology 6(3):315-324, 1996) suggested that selective codon usage by HIV-1 appeared to account for a substantial fraction of the inefficiency of viral protein synthesis. Andre, et al., (J. Virol. 72(2):1497-1503, 1998) described an increased immune response elicited by DNA vaccination employing a synthetic gp120 sequence with optimized codon usage. Schneider, et al., (J Virol. 71(7):4892-4903, 1997) discuss inactivation

10

15

20

25

30

of inhibitory (or instability) elements (INS) located within the coding sequences of the Gag and Gag-protease coding sequences.

The Gag proteins of HIV-1 are necessary for the assembly of virus-like particles. HIV-1 Gag proteins are involved in many stages of the life cycle of the virus including, assembly, virion maturation after particle release, and early post-entry steps in virus replication. The roles of HIV-1 Gag proteins are numerous and complex (Freed, E.O., Virology 251:1-15, 1998).

Wolf, et al., (PCT International Application, WO 96/30523, published 3 October 1996; European Patent Application, Publication No. 0 449 116 A1, published 2 October 1991) have described the use of altered pr55 Gag of HIV-1 to act as a non-infectious retroviral-like particulate carrier, in particular, for the presentation of immunologically important epitopes. Wang, et al., (Virology 200:524-534, 1994) describe a system to study assembly of HIV Gag- β -galactosidase fusion proteins into virions. They describe the construction of sequences encoding HIV Gag- β -galactosidase fusion proteins, the expression of such sequences in the presence of HIV Gag proteins, and assembly of these proteins into virus particles.

Recently, Shiver, et al., (PCT International Application, WO 98/34640, published 13 August 1998) described altering HIV-1 (CAM1) Gag coding sequences to produce synthetic DNA molecules encoding HIV Gag and modifications of HIV Gag. The codons of the synthetic molecules were codons preferred by a projected host cell.

The envelope protein of HIV-1 is a glycoprotein of about 160 kD (gp160). During virus infection of the host

10

15

20

25

30

cell, gp160 is cleaved by host cell proteases to form gp120 and the integral membrane protein, gp41. The gp41 portion is anchored in (and spans) the membrane bilayer of virion, while the gp120 segment protrudes into the surrounding environment. As there is no covalent attachment between gp120 and gp41, free gp120 is released from the surface of virions and infected cells.

Haas, et al., (Current Biology 6(3):315-324, 1996) suggested that selective codon usage by HIV-1 appeared to account for a substantial fraction of the inefficiency of viral protein synthesis. Andre, et al., (J. Virol. 72(2):1497-1503, 1998) described an increased immune response elicited by DNA vaccination employing a synthetic qp120 sequence with optimized codon usage.

SUMMARY OF THE INVENTION

The present invention relates to improved expression of HIV Env-, tat-, pol-, prot-, reverse transcriptase, or Gag-containing polypeptides and production of virus-like particles.

In one embodiment the present invention includes an expression cassette, comprising a polynucleotide encoding an HIV Gag polypeptide comprising a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:20. In certain embodiments, the polynucleotide sequence encoding said Gag polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:9 or SEQ ID NO:4. The expression cassettes may further include a polynucleotide sequence encoding an HIV protease polypeptide, for example a nucleotide sequence having at least 90% sequence identity to a sequence selected

10

15

20

25

30

from the group consisting of: SEQ ID NO:5, SEQ ID NO:78, and SEO ID NO:79. The expression cassettes may further include a polynucleotide sequence encoding an HIV reverse transcriptase polypeptide, for example a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, and SEQ ID NO:84. The expression cassettes may further include a polynucleotide sequence encoding an HIV tat polypeptide, for example a sequence selected from the group consisting of: SEQ ID NO:87, SEQ ID The expression cassettes may NO:88, and SEO ID NO:89. further include a polynucleotide sequence encoding an HIV polymerase polypeptide, for example a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:6. The expression cassettes may include a polynucleotide sequence encoding an HIV polymerase polypeptide, wherein (i) the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:4, and (ii) wherein the sequence is modified by deletions of coding regions corresponding to reverse transcriptase and The expression cassettes described above may preserves T-helper cell and CTL epitopes. The expression cassettes may further include a polynucleotide sequence encoding an HCV core polypeptide, for example a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:7.

In another aspect, the invention includes an expression cassette, comprising a polynucleotide sequence encoding a polypeptide including an HIV *Env* polypeptide, wherein the polynucleotide sequence encoding said *Env* polypeptide

10

15

20

25

30

comprises a sequence having at least 90% sequence identity to SEQ ID NO:71 (Figure 58) or SEQ ID NO:72 (Figure 59). In certain embodiments, the Env expression cassettes includes sequences flanking a V1 region but have a deletion in the V1 region itself, for example the sequence presented as SEQ ID NO:65 (Figure 52, gp160.modUS4.delV1). In certain embodiments, the Env expression cassettes, include sequences flanking a V2 region but have a deletion in the V2 region itself, for example the sequences shown in SEQ ID NO:60 (Figure 47); SEQ ID NO:66 (Figure 53); SEQ ID NO:34 (Figure 20); SEQ ID NO:37 (Figure 24); SEQ ID NO:40 (Figure 27); SEQ ID NO:43 (Figure 30); SEQ ID NO:46 (Figure 33); SEQ ID NO:76 (Figure 64) and SEQ ID NO:49 (Figure 36). In certain embodiments, the Env expression cassettes include sequences flanking a V1/V2 region but have a deletion in the V1/V2 region itself, for example, SEQ ID NO:59 (Figure 46); SEQ ID NO:61 (Figure 48); SEQ ID NO:67 (Figure 54); SEQ ID NO:75 (Figure 63); SEQ ID NO:35 (Figure 21); SEQ ID NO:38 (Figure 25); SEQ ID NO:41 (Figure 28); SEQ ID NO:44 (Figure 31); SEQ ID NO:47 (Figure 34) and SEQ ID NO:50 (Figure 37). The Envencoding expression cassettes may also include a mutated cleavage site that prevents the cleavage of a gp140 polypeptide into a gp120 polypeptide and a gp41 polypeptide, for example, SEQ ID NO:57 (Figure 44); SEQ ID NO:61 (Figure 48); SEQ ID NO:63 (Figure 50); SEQ ID NO:39 (Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34). The Env expression cassettes may include a gp160 Env polypeptide or a polypeptide derived

10

15

20

25

30

from a gp160 Env polypeptide, for example SEQ ID NO:64 (Figure 51); SEQ ID NO:65 (Figure 52); SEQ ID NO:66 (Figure 53); SEQ ID NO:67 (Figure 54); SEQ ID NO:68 (Figure 55); SEQ ID NO:75 (Figure 63); SEQ ID NO:73 (Figure 61); SEQ ID NO:48 (Figure 35); SEQ ID NO:49 (Figure 36); SEQ ID NO:50 (Figure 37); SEQ ID NO:76 (Figure 64); and SEQ ID NO:74 (Figure 62). The Env expression cassettes may include a gp140 Env polypeptide or a polypeptide derived from a gp140 Env polypeptide, for example SEQ ID NO:56 (Figure 43); SEQ ID NO:57 (Figure 44); SEQ ID NO:58 (Figure 45); SEQ ID NO:59 (Figure 46); SEQ ID NO:60 (Figure 47); SEQ ID NO:61 (Figure 48); SEQ ID NO:62 (Figure 49); SEQ ID NO:63 (Figure 50); SEQ ID NO:36 (Figure 23); SEQ ID NO:37 (Figure 24); SEQ ID NO:38 (Figure 25); SEQ ID NO:39 (Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34). The Env expression cassettes may also include a gp120 Env polypeptide or a polypeptide derived from a gp120 Env polypeptide, for example SEQ ID NO:54 (Figure 41); and SEQ ID NO:55 (Figure 42); SEQ ID NO:33 (Figure 19); SEQ ID NO:34 (Figure 20); and SEQ ID NO:35 (Figure 21). expression cassettes may include an Env polypeptide lacking the amino acids corresponding to residues 128 to about 194, relative to strains SF162 or US4, for example, SEQ ID NO:55 (Figure 42); SEQ ID NO:62 (Figure 49); SEQ ID NO:63 (Figure 50); and SEQ ID NO:68 (Figure 55).

In another aspect, the invention includes a recombinant expression system for use in a selected host cell, comprising, one or more of the expression cassettes

10

15

20

25

30

described herein operably linked to control elements compatible with expression in the selected host cell. The expression cassettes may be included on one or on multiple vectors and may use the same or different promoters.

Exemplary control elements include a transcription promoter (e.g., CMV, CMV+intron A, SV40, RSV, HIV-Ltr, MMLV-ltr, and metallothionein), a transcription enhancer element, a transcription termination signal, polyadenylation sequences, sequences for optimization of initiation of translation, and translation termination sequences.

In another aspect, the invention includes a recombinant expression system for use in a selected host cell, comprising, any one of the expression cassettes described herein operably linked to control elements compatible with expression in the selected host cell. Exemplary control elements include, but are not limited to, a transcription promoter (e.g., CMV, CMV+intron A, SV40, RSV, HIV-LTR, MMLV-LTR, and metallothionein), a transcription enhancer element, a transcription termination signal, polyadenylation sequences, sequences for optimization of initiation of translation, and translation termination sequences.

In yet another aspect, the invention includes a cell comprising one or more of the expression cassettes described herein operably linked to control elements compatible with expression in the cell. The cell can be, for example, a mammalian cell (e.g., BHK, VERO, HT1080, 293, RD, COS-7, or CHO cells), an insect cell (e.g., Trichoplusia ni (Tn5) or Sf9), a bacterial cell, a plant cell, a yeast cell, an antigen presenting cell (e.g., primary, immortalized or tumor-derived lymphoid cells such as macrophages, monocytes,

10

15

20

25

30

dendritic cells, B-cells, T-cells, stem cells, and progenitor cells thereof).

In another aspect, the invention includes methods for producing a polypeptide including HIV Gag-, prot-, pol-, reverse transcriptase, Env- or Tat-containing polypeptide sequences, said method comprising, incubating the cells comprising one or more the expression cassettes describe herein, under conditions for producing said polypeptide.

In yet another aspect, the invention includes compositions for generating an immunological response, comprising one or more of the expression cassettes described herein. In certain embodiments, the compositions also include an adjuvant.

In a still further aspect, the invention includes methods of generating an immune response in a subject, comprising introducing a composition comprising one or more of the expression cassettes described herein into the subject under conditions that are compatible with expression of said expression cassette in the subject. In certain embodiments, the expression cassette is introduced using a gene delivery vector. More than one expression cassette may be introduced using one or more gene delivery vectors.

In yet another aspect, the invention includes a purified polynucleotide comprising a polynucleotide sequence encoding a polypeptide including an HIV Env polypeptide, wherein the polynucleotide sequence encoding said Env polypeptide comprises a sequence having at least 90% sequence identity to SEQ ID NO:71 (Figure 58) or SEQ ID NO:72 (Figure 59). Further exemplary purified polynucleotide sequences were presented above.

10

15

20

25

30

The polynucleotides of the present invention can be produced by recombinant techniques, synthetic techniques, or combinations thereof.

In another embodiment, the invention includes a method for producing a polypeptide including HIV *Gag* polypeptide sequences, where the method comprises incubating any of the above cells containing an expression cassette of interest under conditions for producing the polypeptide.

The invention further includes, a method for producing virus-like particles (VLPs) where the method comprises incubating any of the above-described cells containing an expression cassette of interest under conditions for producing VLPs.

In another aspect the invention includes a method for producing a composition of virus-like particles (VLPs) where, any of the above-described cells containing an expression cassette of interest are incubated under conditions for producing VLPs, and the VLPs are substantially purified to produce a composition of VLPs.

In a further embodiment of the present invention, packaging cell lines are produced using the expression cassettes of the present invention. For example, a cell line useful for packaging lentivirus vectors comprises suitable host cells that have an expression vector containing an expression cassette of the present invention wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the host cell. In a preferred embodiment, such host cells may be transfected with one or more expression cassettes having a polynucleotide sequence that encodes an HIV polymerase

10

15

20

25

30

polypeptide or polypeptides derived therefrom, for example, where the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:6. Further, the HIV polymerase polypeptide may be modified by deletions of coding regions corresponding to reverse transcriptase and integrase. Such a polynucleotide sequence may preserve Thelper cell and CTL epitopes, for example when used in a vaccine application. In addition, the polynucleotide sequence may also include other polypeptides. Further, polynucleotide sequences encoding additional polypeptides whose expression are useful for packaging cell line function may also be utilized.

In another aspect, the present invention includes a gene delivery or vaccine vector for use in a subject, where the vector is a suitable gene delivery vector for use in the subject, and the vector comprises one or more of any of the expression cassettes of the present invention where the polynucleotide sequences of interest are operably linked to control elements compatible with expression in the subject. Such gene delivery vectors can be used in a method of DNA immunization of a subject, for example, by introducing a gene delivery vector into the subject under conditions that are compatible with expression of the expression cassette in the subject. Gene delivery vectors useful in the practice of the present invention include, but are not limited to, nonviral vectors, bacterial plasmid vectors, viral vectors, particulate carriers (where the vector is coated on a polylactide co-glycolide particles, gold or tungsten particle, for example, the coated particle can be delivered

20

25

30

to a subject cell using a gene gun), liposome preparations, and viral vectors (e.g., vectors derived from alphaviruses, pox viruses, and vaccinia viruses, as well as, retroviral vectors, including, but not limited to, lentiviral vectors).

Alphavirus-derived vectors include, for example, an alphavirus cDNA construct, a recombinant alphavirus particle preparation and a eukaryotic layered vector initiation system. In one embodiment, the subject is a vertebrate, preferably a mammal, and in a further embodiment the subject is a human.

The invention further includes a method of generating an immune response in a subject, where cells of a subject are transfected with any of the above-described gene delivery vectors (e.g., alphavirus constructs; alphavirus cDNA constructs; eukaryotic layered vector initiation systems (see, e.g., U.S. Patent Number 5,814,482 for description of suitable eukaryotic layered vector initiation systems); alphavirus particle preparations; etc.) under conditions that permit the expression of a selected polynucleotide and production of a polypeptide of interest (i.e., encoded by any expression cassette of the present invention), thereby eliciting an immunological response to the polypeptide. Transfection of the cells may be performed ex vivo and the transfected cells are reintroduced into the subject. Alternately, or in addition, the cells may be transfected in vivo in the subject. The immune response may be humoral and/or cell-mediated (cellular).

Further embodiments of the present invention include purified polynucleotides. In one embodiment, the purified polynucleotide comprises a polynucleotide sequence having at

least 90% sequence identity to the sequence presented as SEQ ID NO:20, and complements thereof. In another embodiment, the purified polynucleotide comprises a polynucleotide sequence encoding an HIV Gag polypeptide, wherein the polynucleotide sequence comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:20, and complements thereof. In still another embodiment, the purified polynucleotide comprises a polynucleotide sequence encoding an HIV Gag polypeptide, wherein the polynucleotide sequence comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:9, and complements thereof. further embodiments the polynucleotide sequence comprises a sequence having at least 90% sequence identity to one of the following sequences: SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, and complements thereof.

The polynucleotides of the present invention can be produced by recombinant techniques, synthetic techniques, or combinations thereof.

20

30

5

10

15

These and other embodiments of the present invention will readily occur to those of ordinary skill in the art in view of the disclosure herein.

25 Brief Description of the Figures

Figure 1 shows the locations of the inactivation sites for the native HIV-1SF2 Gag protein coding sequence.

Figure 2 shows the locations of the inactivation sites for the native HIV-1SF2 Gag-protease protein coding sequence.

10

15

20

25

30

Figures 3A and 3B show electron micrographs of virus-like particles. Figure 3A shows immature p55Gag virus-like particles in COS-7 cells transfected with a synthetic HIV- $\mathbf{1}_{\text{SF2}}$ gag construct while Figure 3B shows mature (arrows) and immature VLP in cells transfected with a modified HIV- $\mathbf{1}_{\text{SF2}}$ gagprotease construct (GP2, SEQ ID NO:70). Transfected cells were fixed at 24 h (gag) or 48 h (gagprotease) post-transfection and subsequently analyzed by electron microscopy (magnification at 100,000%). Cells transfected with vector alone (pCMVKm2) served as negative control (data not shown).

Figure 4 presents an image of samples from a series of fractions which were electrophoresed on an 8-16% SDS polyacrylamide gel and the resulting bands visualized by commassie blue staining. The results show that the native p55 Gag virus-like particles (VLPs) banded at a sucrose density of range of 1.15 - 1.19 g/ml with the peak at approximately 1.17 g/ml.

Figure 5 presents an image similar to Figure 4 where the analysis was performed using Gag VLPs produced by a synthetic Gag expression cassette.

Figure 6 presents a comparison of the total amount of purified HIV p55 Gag from several preparations obtained from two baculovirus expression cassettes encoding native and modified Gag.

Figure 7 presents an alignment of modified coding sequences of the present invention including a synthetic Gag expression cassette (SEQ ID NO:4), a synthetic Gag-protease expression cassette (SEQ ID NO:5), and a synthetic Gag-polymerase expression cassette (SEQ ID NO:6). A common

10

15

20

25

30

region (Gag-common; SEQ ID NO:9) extends from position 1 to position 1262.

Figure 8 presents an image of wild-type Gag-HCV core expression samples from a series of fractions which were electrophoresed on an 8-16% SDS polyacrylamide gel and the resulting bands visualized by commassie staining.

Figure 9 shows the results of Western blot analysis of the gel shown presented in Figure 8.

Figure 10 presents results similar to those shown in Figure 9. The results in Figure 10 indicate that the main HCV Core-specific reactivity migrates at an approximate molecular weight of 72,000 kD, which is in accordance with the predicted molecular weight of the Gag-HCV core chimeric protein.

Figures 11A to 11D present a comparison of AT content, in percent, of cDNAs corresponding to an unstable human mRNA (human IFN γ mRNA; 11A), wild-type HIV Gag native RNA (11B), a stable human mRNA (human GAPDH mRNA; 11C), and synthetic HIV Gag RNA (11D).

Figure 12 shows the location of the inactivation sites for the native HIV-1SF2 Gag-polymerase sequence.

Figure 13A presents a vector map of pESN2dhfr.

Figure 13B presents a map of the pCMVIII vector.

Figure 14 presents a vector map of pCMV-LINK.

Figure 15 presents a schematic diagram showing the relationships between the following forms of the HIV Env polypeptide: gp160, gp140, gp120, and gp41.

Figure 16 depicts the nucleotide sequence of wild-type gp120 from SF162 (SEQ ID NO:30).

Figure 17 depicts the nucleotide sequence of the wildtype gp140 from SF162 (SEQ ID NO:31).

10

15

20

25

30

Figure 18 depicts the nucleotide sequence of the wildtype gp160 from SF162 (SEQ ID NO:32).

Figure 19 depicts the nucleotide sequence of the construct designated gp120.modSF162 (SEQ ID NO:33).

Figure 20 depicts the nucleotide sequence of the construct designated gp120.modSF162.delV2 (SEQ ID NO:34).

Figure 21 depicts the nucleotide sequence of the construct designated gp120.modSF162.delV1/V2 (SEQ ID NO:35).

Figures 22A-H show the percent A-T content over the length of the sequences for IFN γ (Figures 2C and 2G); native gp160 Env US4 and SF162 (Figures 2A and 2E, respectively); GAPDH (Figures 2D and 2H); and the synthetic gp160 Env for US4 and SF162 (Figures 2B and 2F, respectively).

Figure 23 depicts the nucleotide sequence of the construct designated gp140.modSF162 (SEQ ID NO:36).

Figure 24 depicts the nucleotide sequence of the construct designated gp140.modSF162.delV2 (SEQ ID NO:37).

Figure 25 depicts the nucleotide sequence of the construct designated gp140.modSF162.delV1/V2 (SEQ ID NO:38).

Figure 26 depicts the nucleotide sequence of the construct designated gp140.mut.modSF162 (SEQ ID NO:39).

Figure 27 depicts the nucleotide sequence of the construct designated gp140.mut.modSF162.delV2 (SEQ ID ${\tt NO:40}$).

Figure 28 depicts the nucleotide sequence of the construct designated gp140.mut.modSF162.delV1/V2 (SEQ ID ${\rm NO:41}$).

Figure 29 depicts the nucleotide sequence of the construct designated gp140.mut7.modSF162 (SEQ ID NO:42).

Figure 30 depicts the nucleotide sequence of the construct designated gp140.mut7.modSF162.delV2 (SEQ ID NO:43).

10

15

20

25

Figure 31 depicts the nucleotide sequence of the construct designated gp140.mut7.modSF162.delV1/V2 (SEQ ID NO:44).

Figure 32 depicts the nucleotide sequence of the construct designated gp140.mut8.modSF162 (SEQ ID NO:45).

Figure 33 depicts the nucleotide sequence of the construct designated gp140.mut8.modSF162.delV2 (SEQ ID NO:46).

Figure 34 depicts the nucleotide sequence of the construct designated gp140.mut8.modSF162.delV1/V2 (SEQ ID NO:47).

Figure 35 depicts the nucleotide sequence of the construct designated gp160.modSF162 (SEQ ID NO:48).

Figure 36 depicts the nucleotide sequence of the construct designated gp160.modSF162.delV2 (SEQ ID NO:49).

Figure 37 depicts the nucleotide sequence of the construct designated gp160.modSF162.delV1/V2 (SEQ ID NO:50).

Figure 38 depicts the nucleotide sequence of the wild-type gp120 from US4 (SEQ ID NO:51).

Figure 39 depicts the nucleotide sequence of the wild-type gp140 from US4 (SEQ ID NO:52).

Figure 40 depicts the nucleotide sequence of the wild-type gp160 from US4 (SEQ ID NO:53).

Figure 41 depicts the nucleotide sequence of the construct designated gp120.modUS4 (SEQ ID NO:54).

Figure 42 depicts the nucleotide sequence of the construct designated gp120.modUS4.del 128-194 (SEQ ID NO:55).

Figure 43 depicts the nucleotide sequence of the construct designated gp140.modUS4 (SEQ ID NO:56).

10

15

20

25

Figure 44 depicts the nucleotide sequence of the construct designated gp140.mut.modUS4 (SEQ ID NO:57).

Figure 45 depicts the nucleotide sequence of the construct designated gp140.TM.modUS4 (SEQ ID NO:58).

Figure 46 depicts the nucleotide sequence of the construct designated gp140.modUS4.delV1/V2 (SEQ ID NO:59).

Figure 47 depicts the nucleotide sequence of the construct designated gp140.modUS4.delV2 (SEQ ID NO:60).

Figure 48 depicts the nucleotide sequence of the construct designated gp140.mut.modUS4.delV1/V2 (SEQ ID NO:61).

Figure 49 depicts the nucleotide sequence of the construct designated gp140.modUS4.del 128-194 (SEQ ID NO:62).

Figure 50 depicts the nucleotide sequence of the construct designated gp140.mut.modUS4.del 128-194 (SEQ ID NO:63).

Figure 51 depicts the nucleotide sequence of the construct designated gp160.modUS4 (SEQ ID NO:64).

Figure 52 depicts the nucleotide sequence of the construct designated gp160.modUS4.delV1 (SEQ ID NO:65).

Figure 53 depicts the nucleotide sequence of the construct designated gp160.modUS4.delV2 (SEQ ID NO:66).

Figure 54 depicts the nucleotide sequence of the construct designated gp160.modUS4.delV1/V2 (SEQ ID NO:67).

Figure 55 depicts the nucleotide sequence of the construct designated gp160.modUS4.del 128-194 (SEQ ID NO:68).

Figure 56 depicts the nucleotide sequence of the common region of Env from wild-type US4 (SEQ ID NO:69).

10

15

20

25

30

Figure 57 depicts the nucleotide sequence of the common region of Env from wild-type SF162 (SEQ ID NO:70).

Figure 58 depicts the nucleotide sequence of synthetic sequences corresponding to the common region of Env from US4 (SEQ ID NO:71).

Figure 59 depicts the nucleotide sequence of synthetic sequences corresponding to the common region of Env from SF162 (SEQ ID NO:72).

Figure 60 presents a schematic representation of an Env polypeptide purification strategy.

Figure 61 depicts the nucleotide sequence of the bicistronic construct designated gp160.modUS4.Gag.modSF2 (SEQ ID NO:73).

Figure 62 depicts the nucleotide sequence of the bicistronic construct designated gp160.modSF162.Gag.modSF2 (SEQ ID NO:74).

Figure 63 depicts the nucleotide sequence of the bicistronic construct designated gp160.modUS4.-delV1/V2.Gaq.modSF2 (SEQ ID NO:75).

Figure 64 depicts the nucleotide sequence of the bicistronic construct designated gp160.modSF162.delV2.Gag.modSF2 (SEQ ID NO:76).

Figures 65A-65F show micrographs of 293T cells transfected with the following polypeptide encoding sequences: Figure 65A, gag.modSF2; Figure 65B, gp160.modUS4; Figure 65C, gp160.modUS4.delV1/V2.gag.modSF2 (bicistronic Env and Gag); Figures 65D and 65E, gp160.modUS4.delV1/V2 and gag.modSF2; and Figure 65F, gp120.modSF162.delV2 and gag.modSF2.

Figures 66A and 66B present alignments of selected modified coding sequences of the present invention including

10

15

20

25

30

a common region defined for each group of synthetic *Env* expression cassettes. Figure 66A presents alignments of modified SF162 sequences. Figure 66B presents alignments of modified US4 sequences. The SEQ ID NOs for these sequences are presented in Tables 1A and 1B.

Figure 67 shows the ELISA titers (binding antibodies) obtained in two rhesus macaques (H445, lines with solid black dots; and J408, lines with open squares). The y-axis is the end-point gp140 ELISA titers and the x-axis shows weeks post-immunization. The dashed lines at 0, 4, and 8 weeks represent DNA immunizations. The alternating dash/dotted line at 27 weeks indicates a DNA plus protein boost immunization.

Figure 68 (SEQ ID NO:77) depicts the wild-type nucleotide sequence of Gag reverse transcriptase from SF2.

Figure 69 (SEQ ID NO:78) depicts the nucleotide sequence of the construct designated GP1.

Figure 70 (SEQ ID NO:79) depicts the nucleotide sequence of the construct designated GP2.

Figure 71 (SEQ ID NO:80) depicts the nucleotide sequence of the construct designated FS(+).protinact.RTopt.YM. FS(+) indicates that there is a frameshift in the GagPol coding sequence.

Figure 72 (SEQ ID NO:81) depicts the nucleotide sequence of the construct designated FS(+).protinact.RTopt.YMWM.

Figure 73 (SEQ ID NO:82) depicts the nucleotide sequence of the construct designated FS(-).protmod.RTopt.YM. FS(-) indicates that there is no frameshift in the GagPol coding sequence.

10

15

20

25

Figure 74 (SEQ ID NO:83) depicts the nucleotide sequence of the construct designated FS(-).protmod.RTopt.YMWM.

Figure 75 (SEQ ID NO:84) depicts the nucleotide sequence of the construct designated FS(-).protmod.RTopt(+).

Figure 76 (SEQ ID NO:85) depicts the nucleotide sequence of wild type Tat from isolate SF162.

Figure 77 (SEQ ID NO:86) depicts the amino acid sequence of the tat polypeptide.

Figure 78 (SEQ ID NO:87) depicts the nucleotide sequence of a synthetic Tat construct designated Tat.SF162.opt.

Figure 79 (SEQ ID NO:88) depicts the nucleotide sequence of a synthetic Tat construct designated tat.cys22.sf162.opt. The construct encodes a tat polypeptide in which the cystein residue at position 22 of the wild type Tat polypeptide is replaced by a glycine residue.

Figures 80A to 80E are an alignment of the nucleotide sequences of the constructs designated Gag.mod.SF2, GP1 (SEQ ID NO:78), and GP2 (SEQ ID NO:79).

Figure 81 (SEQ ID NO:89) depicts the nucleotide sequence of the construct designated tataminoSF162.opt, which encodes the amino terminus of that tat protein. The codon encoding the cystein-22 residue is underlined.

Figure 82 (SEQ ID NO:90) depicts the amino acid sequence of the polypeptide encoded by the construct designated tat.cys22.SF162.opt (SEQ ID NO:88).

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

The practice of the present invention will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Remington's Pharmaceutical Sciences, 18th Edition (Easton, Pennsylvania: Mack Publishing Company, 1990); Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.); and Handbook of Experimental Immunology, Vols. I-IV (D.M. Weir and C.C. Blackwell, eds., 1986, Blackwell Scientific Publications); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Short Protocols in Molecular Biology, 4th ed. (Ausubel et al. eds., 1999, John Wiley & Sons); Molecular Biology Techniques: An Intensive Laboratory Course, (Ream et al., eds., 1998, Academic Press); PCR (Introduction to Biotechniques Series), 2nd ed. (Newton & Graham eds., 1997, Springer Verlag).

All publications, patents and patent applications cited herein, whether *supra* or *infra*, are hereby incorporated by reference in their entirety.

As used in this specification and the appended claims, the singular forms "a," "an" and "the" include plural references unless the content clearly dictates otherwise. Thus, for example, reference to "an antigen" includes a mixture of two or more such agents.

10

15

20

25

30

1. DEFINITIONS

In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.

"Synthetic" sequences, as used herein, refers to Env-, tat- or Gag-encoding polynucleotides whose expression has been optimized as described herein, for example, by codon substitution, deletions, replacements and/or inactivation of inhibitory sequences. "Wild-type" or "native" sequences, as used herein, refers to polypeptide encoding sequences that are essentially as they are found in nature, e.g., Gag encoding sequences as found in the isolate HIV-1SF2 or Env encoding sequences as found in the isolates HIV-1SF162 or HIV1US4.

As used herein, the term "virus-like particle" or "VLP" refers to a nonreplicating, viral shell, derived from any of several viruses discussed further below. VLPs are generally composed of one or more viral proteins, such as, but not limited to those proteins referred to as capsid, coat, shell, surface and/or envelope proteins, or particleforming polypeptides derived from these proteins. VLPs can form spontaneously upon recombinant expression of the protein in an appropriate expression system. Methods for producing particular VLPs are known in the art and discussed more fully below. The presence of VLPs following recombinant expression of viral proteins can be detected using conventional techniques known in the art, such as by electron microscopy, biophysical characterization, and the like. See, e.g., Baker et al., Biophys. J. (1991) 60:1445-1456; Hagensee et al., J. Virol. (1994) 68:4503-4505. For

10

15

20

25

30

example, VLPs can be isolated by density gradient centrifugation and/or identified by characteristic density banding (e.g., Example 7). Alternatively, cryoelectron microscopy can be performed on vitrified aqueous samples of the VLP preparation in question, and images recorded under appropriate exposure conditions.

By "particle-forming polypeptide" derived from a particular viral protein is meant a full-length or near full-length viral protein, as well as a fragment thereof, or a viral protein with internal deletions, which has the ability to form VLPs under conditions that favor VLP formation. Accordingly, the polypeptide may comprise the full-length sequence, fragments, truncated and partial sequences, as well as analogs and precursor forms of the reference molecule. The term therefore intends deletions, additions and substitutions to the sequence, so long as the polypeptide retains the ability to form a VLP. Thus, the term includes natural variations of the specified polypeptide since variations in coat proteins often occur between viral isolates. The term also includes deletions, additions and substitutions that do not naturally occur in the reference protein, so long as the protein retains the ability to form a VLP. Preferred substitutions are those which are conservative in nature, i.e., those substitutions that take place within a family of amino acids that are related in their side chains. Specifically, amino acids are generally divided into four families: (1) acidic -aspartate and glutamate; (2) basic -- lysine, arginine, histidine; (3) non-polar -- alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar -- glycine, asparagine, glutamine, cystine, serine threonine, tyrosine. Phenylalanine,

10

15

20

25

30

tryptophan, and tyrosine are sometimes classified as aromatic amino acids.

An "antigen" refers to a molecule containing one or more epitopes (either linear, conformational or both) that will stimulate a host's immune system to make a humoral and/or cellular antigen-specific response. The term is used interchangeably with the term "immunogen." Normally, a Bcell epitope will include at least about 5 amino acids but can be as small as 3-4 amino acids. A T-cell epitope, such as a CTL epitope, will include at least about 7-9 amino acids, and a helper T-cell epitope at least about 12-20 amino acids. Normally, an epitope will include between about 7 and 15 amino acids, such as, 9, 10, 12 or 15 amino The term "antigen" denotes both subunit antigens, acids. (i.e., antigens which are separate and discrete from a whole organism with which the antigen is associated in nature), as well as, killed, attenuated or inactivated bacteria, viruses, fungi, parasites or other microbes. Antibodies such as anti-idiotype antibodies, or fragments thereof, and synthetic peptide mimotopes, which can mimic an antigen or antigenic determinant, are also captured under the definition of antigen as used herein. Similarly, an oligonucleotide or polynucleotide which expresses an antigen or antigenic determinant in vivo, such as in gene therapy and DNA immunization applications, is also included in the definition of antigen herein.

For purposes of the present invention, antigens can be derived from any of several known viruses, bacteria, parasites and fungi, as described more fully below. The term also intends any of the various tumor antigens. Furthermore, for purposes of the present invention, an

10

15

20

25

30

"antigen" refers to a protein which includes modifications, such as deletions, additions and substitutions (generally conservative in nature), to the native sequence, so long as the protein maintains the ability to elicit an immunological response, as defined herein. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the antigens.

An "immunological response" to an antigen or composition is the development in a subject of a humoral and/or a cellular immune response to an antigen present in the composition of interest. For purposes of the present invention, a "humoral immune response" refers to an immune response mediated by antibody molecules, while a "cellular immune response" is one mediated by T-lymphocytes and/or other white blood cells. One important aspect of cellular immunity involves an antigen-specific response by cytolytic T-cells ("CTL"s). CTLs have specificity for peptide antiqens that are presented in association with proteins encoded by the major histocompatibility complex (MHC) and expressed on the surfaces of cells. CTLs help induce and promote the destruction of intracellular microbes, or the lysis of cells infected with such microbes. Another aspect of cellular immunity involves an antigen-specific response by helper T-cells. Helper T-cells act to help stimulate the function, and focus the activity of, nonspecific effector cells against cells displaying peptide antigens in association with MHC molecules on their surface. A "cellular immune response" also refers to the production of cytokines, chemokines and other such molecules produced by activated T-cells and/or other white blood cells, including those derived from CD4+ and CD8+ T-cells.

10

15

20

25

30

A composition or vaccine that elicits a cellular immune response may serve to sensitize a vertebrate subject by the presentation of antigen in association with MHC molecules at the cell surface. The cell-mediated immune response is directed at, or near, cells presenting antigen at their surface. In addition, antigen-specific T-lymphocytes can be generated to allow for the future protection of an immunized host.

The ability of a particular antigen to stimulate a cell-mediated immunological response may be determined by a number of assays, such as by lymphoproliferation (lymphocyte activation) assays, CTL cytotoxic cell assays, or by assaying for T-lymphocytes specific for the antigen in a sensitized subject. Such assays are well known in the art. See, e.g., Erickson et al., J. Immunol. (1993) 151:4189-4199; Doe et al., Eur. J. Immunol. (1994) 24:2369-2376. Recent methods of measuring cell-mediated immune response include measurement of intracellular cytokines or cytokine secretion by T-cell populations, or by measurement of epitope specific T-cells (e.g., by the tetramer technique) (reviewed by McMichael, A.J., and O'Callaghan, C.A., J. Exp. Med. 187(9)1367-1371, 1998; Mcheyzer-Williams, M.G., et al, Immunol. Rev. 150:5-21, 1996; Lalvani, A., et al, J. Exp. Med. 186:859-865, 1997).

Thus, an immunological response as used herein may be one which stimulates the production of CTLs, and/or the production or activation of helper T- cells. The antigen of interest may also elicit an antibody-mediated immune response. Hence, an immunological response may include one or more of the following effects: the production of antibodies by B-cells; and/or the activation of suppressor

10

15

20

25

30

T-cells and/or $\gamma\delta$ T-cells directed specifically to an antigen or antigens present in the composition or vaccine of interest. These responses may serve to neutralize infectivity, and/or mediate antibody-complement, or antibody dependent cell cytotoxicity (ADCC) to provide protection to an immunized host. Such responses can be determined using standard immunoassays and neutralization assays, well known in the art.

An "immunogenic composition" is a composition that comprises an antigenic molecule where administration of the composition to a subject results in the development in the subject of a humoral and/or a cellular immune response to the antigenic molecule of interest.

By "subunit vaccine" is meant a vaccine composition which includes one or more selected antigens but not all antigens, derived from or homologous to, an antigen from a pathogen of interest such as from a virus, bacterium, parasite or fungus. Such a composition is substantially free of intact pathogen cells or pathogenic particles, or the lysate of such cells or particles. Thus, a "subunit vaccine" can be prepared from at least partially purified (preferably substantially purified) immunogenic polypeptides from the pathogen, or analogs thereof. The method of obtaining an antigen included in the subunit vaccine can thus include standard purification techniques, recombinant production, or synthetic production.

"Substantially purified" general refers to isolation of a substance (compound, polynucleotide, protein, polypeptide, polypeptide composition) such that the substance comprises the majority percent of the sample in which it resides. Typically in a sample a substantially purified component comprises 50%, preferably 80%-85%, more preferably 90-95% of

10

15

20

25

30

the sample. Techniques for purifying polynucleotides and polypeptides of interest are well-known in the art and include, for example, ion-exchange chromatography, affinity chromatography and sedimentation according to density.

A "coding sequence" or a sequence which "encodes" a selected polypeptide, is a nucleic acid molecule which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vivo when placed under the control of appropriate regulatory sequences (or "control elements"). The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A coding sequence can include, but is not limited to, cDNA from viral, procaryotic or eucaryotic mRNA, genomic DNA sequences from viral or procaryotic DNA, and even synthetic DNA sequences. A transcription termination sequence may be located 3' to the coding sequence.

Typical "control elements", include, but are not limited to, transcription promoters, transcription enhancer elements, transcription termination signals, polyadenylation sequences (located 3' to the translation stop codon), sequences for optimization of initiation of translation (located 5' to the coding sequence), and translation termination sequences, see e.g., McCaughan et al. (1995) PNAS USA 92:5431-5435; Kochetov et al (1998) FEBS Letts. 440:351-355.

A "nucleic acid" molecule can include, but is not limited to, procaryotic sequences, eucaryotic mRNA, cDNA from eucaryotic mRNA, genomic DNA sequences from eucaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences.

10

15

20

25

30

The term also captures sequences that include any of the known base analogs of DNA and RNA.

"Operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, a given promoter operably linked to a coding sequence is capable of effecting the expression of the coding sequence when the proper enzymes are present. The promoter need not be contiguous with the coding sequence, so long as it functions to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between the promoter sequence and the coding sequence and the promoter sequence can still be considered "operably linked" to the coding sequence.

"Recombinant" as used herein to describe a nucleic acid molecule means a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of the polynucleotide with which it is associated in nature; and/or (2) is linked to a polynucleotide other than that to which it is linked in nature. The term "recombinant" as used with respect to a protein or polypeptide means a polypeptide produced by expression of a recombinant polynucleotide. "Recombinant host cells," "host cells," "cells," "cell lines," "cell cultures," and other such terms denoting procaryotic microorganisms or eucaryotic cell lines cultured as unicellular entities, are used interchangeably, and refer to cells which can be, or have been, used as recipients for recombinant vectors or other transfer DNA, and include the progeny of the original cell which has been transfected. It is understood that the progeny of a single parental cell may not necessarily be completely identical in

10

15

20

25

30

morphology or in genomic or total DNA complement to the original parent, due to accidental or deliberate mutation. Progeny of the parental cell which are sufficiently similar to the parent to be characterized by the relevant property, such as the presence of a nucleotide sequence encoding a desired peptide, are included in the progeny intended by this definition, and are covered by the above terms.

Techniques for determining amino acid sequence "similarity" are well known in the art. In general, "similarity" means the exact amino acid to amino acid comparison of two or more polypeptides at the appropriate place, where amino acids are identical or possess similar chemical and/or physical properties such as charge or hydrophobicity. A so-termed "percent similarity" then can be determined between the compared polypeptide sequences. Techniques for determining nucleic acid and amino acid sequence identity also are well known in the art and include determining the nucleotide sequence of the mRNA for that gene (usually via a cDNA intermediate) and determining the amino acid sequence encoded thereby, and comparing this to a second amino acid sequence. In general, "identity" refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of two polynucleotides or polypeptide sequences, respectively.

Two or more polynucleotide sequences can be compared by determining their "percent identity." Two or more amino acid sequences likewise can be compared by determining their "percent identity." The percent identity of two sequences, whether nucleic acid or peptide sequences, is generally described as the number of exact matches between two aligned

10

15

2.0

25

30

sequences divided by the length of the shorter sequence and multiplied by 100. An approximate alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981). This algorithm can be extended to use with peptide sequences using the scoring matrix developed by Dayhoff, Atlas of Protein Sequences and Structure, M.O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA, and normalized by Gribskov, Nucl. Acids Res. 14(6):6745-6763 (1986). implementation of this algorithm for nucleic acid and peptide sequences is provided by the Genetics Computer Group (Madison, WI) in their BestFit utility application. default parameters for this method are described in the Wisconsin Sequence Analysis Package Program Manual, Version 8 (1995) (available from Genetics Computer Group, Madison, WI). Other equally suitable programs for calculating the percent identity or similarity between sequences are generally known in the art.

For example, percent identity of a particular nucleotide sequence to a reference sequence can be determined using the homology algorithm of Smith and Waterman with a default scoring table and a gap penalty of six nucleotide positions. Another method of establishing percent identity in the context of the present invention is to use the MPSRCH package of programs copyrighted by the University of Edinburgh, developed by John F. Collins and Shane S. Sturrok, and distributed by IntelliGenetics, Inc. (Mountain View, CA). From this suite of packages, the Smith-Waterman algorithm can be employed where default

10

15

20

25

30

parameters are used for the scoring table (for example, gap open penalty of 12, gap extension penalty of one, and a gap of six). From the data generated, the "Match" value reflects "sequence identity." Other suitable programs for calculating the percent identity or similarity between sequences are generally known in the art, such as the alignment program BLAST, which can also be used with default parameters. For example, BLASTN and BLASTP can be used with the following default parameters: genetic code = standard; filter = none; strand = both; cutoff = 60; expect = 10; Matrix = BLOSUM62; Descriptions = 50 sequences; sort by = HIGH SCORE; Databases = non-redundant, GenBank + EMBL + DDBJ + PDB + GenBank CDS translations + Swiss protein + Spupdate + PIR. Details of these programs can be found at the following internet address: http://www.ncbi.nlm.gov/cgibin/BLAST.

One of skill in the art can readily determine the proper search parameters to use for a given sequence in the above programs. For example, the search parameters may vary based on the size of the sequence in question. Thus, for example, a representative embodiment of the present invention would include an isolated polynucleotide having X contiguous nucleotides, wherein (i) the X contiguous nucleotides have at least about 50% identity to Y contiguous nucleotides derived from any of the sequences described herein, (ii) X equals Y, and (iii) X is greater than or equal to 6 nucleotides and up to 5000 nucleotides, preferably greater than or equal to 8 nucleotides and up to 5000 nucleotides, more preferably 10-12 nucleotides and up to 5000 nucleotides, and even more preferably 15-20

10

15

20

25

30

nucleotides, up to the number of nucleotides present in the full-length sequences described herein (e.g., see the Sequence Listing and claims), including all integer values falling within the above-described ranges.

The synthetic expression cassettes (and purified polynucleotides) of the present invention include related polynucleotide sequences having about 80% to 100%, greater than 80-85%, preferably greater than 90-92%, more preferably greater than 95%, and most preferably greater than 98% sequence (including all integer values falling within these described ranges) identity to the synthetic expression cassette sequences disclosed herein (for example, to the sequences presented in Tables 1A and 1B) when the sequences of the present invention are used as the query sequence.

Two nucleic acid fragments are considered to "selectively hybridize" as described herein. The degree of sequence identity between two nucleic acid molecules affects the efficiency and strength of hybridization events between such molecules. A partially identical nucleic acid sequence will at least partially inhibit a completely identical sequence from hybridizing to a target molecule. Inhibition of hybridization of the completely identical sequence can be assessed using hybridization assays that are well known in the art (e.g., Southern blot, Northern blot, solution hybridization, or the like, see Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, (1989) Cold Spring Harbor, N.Y.). Such assays can be conducted using varying degrees of selectivity, for example, using conditions varying from low to high stringency. If conditions of low stringency are employed, the absence of

10

15

20

25

30

non-specific binding can be assessed using a secondary probe that lacks even a partial degree of sequence identity (for example, a probe having less than about 30% sequence identity with the target molecule), such that, in the absence of non-specific binding events, the secondary probe will not hybridize to the target.

When utilizing a hybridization-based detection system, a nucleic acid probe is chosen that is complementary to a target nucleic acid sequence, and then by selection of appropriate conditions the probe and the target sequence "selectively hybridize," or bind, to each other to form a hybrid molecule. A nucleic acid molecule that is capable of hybridizing selectively to a target sequence under "moderately stringent" typically hybridizes under conditions that allow detection of a target nucleic acid sequence of at least about 10-14 nucleotides in length having at least approximately 70% sequence identity with the sequence of the selected nucleic acid probe. Stringent hybridization conditions typically allow detection of target nucleic acid sequences of at least about 10-14 nucleotides in length having a sequence identity of greater than about 90-95% with the sequence of the selected nucleic acid probe. Hybridization conditions useful for probe/target hybridization where the probe and target have a specific degree of sequence identity, can be determined as is known in the art (see, for example, Nucleic Acid Hybridization: A Practical Approach, editors B.D. Hames and S.J. Higgins, (1985) Oxford; Washington, DC; IRL Press).

With respect to stringency conditions for hybridization, it is well known in the art that numerous

10

15

20

25

30

equivalent conditions can be employed to establish a particular stringency by varying, for example, the following factors: the length and nature of probe and target sequences, base composition of the various sequences, concentrations of salts and other hybridization solution components, the presence or absence of blocking agents in the hybridization solutions (e.g., formamide, dextran sulfate, and polyethylene glycol), hybridization reaction temperature and time parameters, as well as, varying wash conditions. The selection of a particular set of hybridization conditions is selected following standard methods in the art (see, for example, Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, (1989) Cold Spring Harbor, N.Y.).

A first polynucleotide is "derived from" second polynucleotide if it has the same or substantially the same basepair sequence as a region of the second polynucleotide, its cDNA, complements thereof, or if it displays sequence identity as described above.

A first polypeptide is "derived from" a second polypeptide if it is (i) encoded by a first polynucleotide derived from a second polynucleotide, or (ii) displays sequence identity to the second polypeptides as described above.

Generally, a viral polypeptide is "derived from" a particular polypeptide of a virus (viral polypeptide) if it is (i) encoded by an open reading frame of a polynucleotide of that virus (viral polynucleotide), or (ii) displays sequence identity to polypeptides of that virus as described above.

10

15

20

25

30

"Encoded by" refers to a nucleic acid sequence which codes for a polypeptide sequence, wherein the polypeptide sequence or a portion thereof contains an amino acid sequence of at least 3 to 5 amino acids, more preferably at least 8 to 10 amino acids, and even more preferably at least 15 to 20 amino acids from a polypeptide encoded by the nucleic acid sequence. Also encompassed are polypeptide sequences which are immunologically identifiable with a polypeptide encoded by the sequence.

"Purified polynucleotide" refers to a polynucleotide of interest or fragment thereof which is essentially free, e.g., contains less than about 50%, preferably less than about 70%, and more preferably less than about 90%, of the protein with which the polynucleotide is naturally associated. Techniques for purifying polynucleotides of interest are well-known in the art and include, for example, disruption of the cell containing the polynucleotide with a chaotropic agent and separation of the polynucleotide(s) and proteins by ion-exchange chromatography, affinity chromatography and sedimentation according to density.

By "nucleic acid immunization" is meant the introduction of a nucleic acid molecule encoding one or more selected antigens into a host cell, for the *in vivo* expression of an antigen, antigens, an epitope, or epitopes. The nucleic acid molecule can be introduced directly into a recipient subject, such as by injection, inhalation, oral, intranasal and mucosal administration, or the like, or can be introduced ex vivo, into cells which have been removed from the host. In the latter case, the transformed cells are reintroduced into the subject where an immune response

10

15

20

25

30

can be mounted against the antigen encoded by the nucleic acid molecule.

"Gene transfer" or "gene delivery" refers to methods or systems for reliably inserting DNA or RNA of interest into a host cell. Such methods can result in transient expression of non-integrated transferred DNA, extrachromosomal replication and expression of transferred replicons (e.g., episomes), or integration of transferred genetic material into the genomic DNA of host cells. Gene delivery expression vectors include, but are not limited to, vectors derived from bacterial plasmid vectors, viral vectors, non-viral vectors, alphaviruses, pox viruses and vaccinia viruses. When used for immunization, such gene delivery expression vectors may be referred to as vaccines or vaccine vectors.

"T lymphocytes" or "T cells" are non-antibody producing lymphocytes that constitute a part of the cell-mediated arm of the immune system. T cells arise from immature lymphocytes that migrate from the bone marrow to the thymus, where they undergo a maturation process under the direction of thymic hormones. Here, the mature lymphocytes rapidly divide increasing to very large numbers. The maturing T cells become immunocompetent based on their ability to recognize and bind a specific antigen. Activation of immunocompetent T cells is triggered when an antigen binds to the lymphocyte's surface receptors.

The term "transfection" is used to refer to the uptake of foreign DNA by a cell. A cell has been "transfected" when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) Virology,

10

15

20

25

30

52:456, Sambrook et al. (1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al. (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells. The term refers to both stable and transient uptake of the genetic material, and includes uptake of peptide- or antibody-linked DNAs.

A "vector" is capable of transferring gene sequences to target cells (e.g., bacterial plasmid vectors, viral vectors, non-viral vectors, particulate carriers, and liposomes). Typically, "vector construct," "expression vector," and "gene transfer vector," mean any nucleic acid construct capable of directing the expression of a gene of interest and which can transfer gene sequences to target cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors.

Transfer of a "suicide gene" (e.g., a drug-susceptibility gene) to a target cell renders the cell sensitive to compounds or compositions that are relatively nontoxic to normal cells. Moolten, F.L. (1994) Cancer Gene Ther. 1:279-287. Examples of suicide genes are thymidine kinase of herpes simplex virus (HSV-tk), cytochrome P450 (Manome et al. (1996) Gene Therapy 3:513-520), human deoxycytidine kinase (Manome et al. (1996) Nature Medicine 2(5):567-573) and the bacterial enzyme cytosine deaminase (Dong et al. (1996) Human Gene Therapy 7:713-720). Cells which express these genes are rendered sensitive to the effects of the relatively nontoxic prodrugs ganciclovir (HSV-tk), cyclophosphamide (cytochrome P450 2B1), cytosine arabinoside (human deoxycytidine kinase) or 5-fluorocytosine

10

15

20

25

30

(bacterial cytosine deaminase). Culver et al. (1992)

Science 256:1550-1552, Huber et al. (1994) Proc. Natl. Acad.

Sci. USA 91:8302-8306.

A "selectable marker" or "reporter marker" refers to a nucleotide sequence included in a gene transfer vector that has no therapeutic activity, but rather is included to allow for simpler preparation, manufacturing, characterization or testing of the gene transfer vector.

A "specific binding agent" refers to a member of a specific binding pair of molecules wherein one of the molecules specifically binds to the second molecule through chemical and/or physical means. One example of a specific binding agent is an antibody directed against a selected antigen.

By "subject" is meant any member of the subphylum chordata, including, without limitation, humans and other primates, including non-human primates such as chimpanzees and other apes and monkey species; farm animals such as cattle, sheep, pigs, goats and horses; domestic mammals such as dogs and cats; laboratory animals including rodents such as mice, rats and guinea pigs; birds, including domestic, wild and game birds such as chickens, turkeys and other gallinaceous birds, ducks, geese, and the like. The term does not denote a particular age. Thus, both adult and newborn individuals are intended to be covered. The system described above is intended for use in any of the above vertebrate species, since the immune systems of all of these vertebrates operate similarly.

By "pharmaceutically acceptable" or "pharmacologically acceptable" is meant a material which is not biologically or otherwise undesirable, i.e., the

10

15

20

25

30

material may be administered to an individual in a formulation or composition without causing any undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.

By "physiological pH" or a "pH in the physiological range" is meant a pH in the range of approximately 7.2 to 8.0 inclusive, more typically in the range of approximately 7.2 to 7.6 inclusive.

As used herein, "treatment" refers to any of (I) the prevention of infection or reinfection, as in a traditional vaccine, (ii) the reduction or elimination of symptoms, and (iii) the substantial or complete elimination of the pathogen in question. Treatment may be effected prophylactically (prior to infection) or therapeutically (following infection).

"Lentiviral vector", and "recombinant lentiviral vector" are derived from the subset of retroviral vectors known as lentiviruses. Lentiviral vectors refer to a nucleic acid construct which carries, and within certain embodiments, is capable of directing the expression of a nucleic acid molecule of interest. The lentiviral vector includes at least one transcriptional promoter/enhancer or locus defining element(s), or other elements which control gene expression by other means such as alternate splicing, nuclear RNA export, post-translational modification of messenger, or post-transcriptional modification of protein. Such vector constructs must also include a packaging signal, long terminal repeats (LTRS) or portion thereof, and positive and negative strand primer binding sites appropriate to the lentiviral vector used (if these are not already present in the retroviral vector). Optionally, the

10

15

20

25

30

recombinant lentiviral vector may also include a signal which directs polyadenylation, selectable markers such as Neo, TK, hygromycin, phleomycin, histidinol, or DHFR, as well as one or more restriction sites and a translation termination sequence. By way of example, such vectors typically include a 5' LTR, a tRNA binding site, a packaging signal, an origin of second strand DNA synthesis, and a 3'LTR or a portion thereof.

"Lentiviral vector particle" as utilized within the present invention refers to a lentivirus which carries at least one gene of interest. The retrovirus may also contain a selectable marker. The recombinant lentivirus is capable of reverse transcribing its genetic material (RNA) into DNA and incorporating this genetic material into a host cell's DNA upon infection. Lentiviral vector particles may have a lentiviral envelope, a non-lentiviral envelope (e.g., an ampho or VSV-G envelope), or a chimeric envelope.

"Nucleic acid expression vector" or "Expression cassette" refers to an assembly which is capable of directing the expression of a sequence or gene of interest. The nucleic acid expression vector includes a promoter which is operably linked to the sequences or gene(s) of interest. Other control elements may be present as well. Expression cassettes described herein may be contained within a plasmid construct. In addition to the components of the expression cassette, the plasmid construct may also include a bacterial origin of replication, one or more selectable markers, a signal which allows the plasmid construct to exist as single-stranded DNA (e.g., a M13 origin of replication), a multiple cloning site, and a "mammalian" origin of

10

15

20

25

30

replication (e.g., a SV40 or adenovirus origin of replication).

"Packaging cell" refers to a cell which contains those elements necessary for production of infectious recombinant retrovirus (e.g., lentivirus) which are lacking in a recombinant retroviral vector. Typically, such packaging cells contain one or more expression cassettes which are capable of expressing proteins which encode Gag, pol and env proteins.

"Producer cell" or "vector producing cell" refers to a cell which contains all elements necessary for production of recombinant retroviral vector particles.

2. Modes of Carrying Out the Invention

Before describing the present invention in detail, it is to be understood that this invention is not limited to particular formulations or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.

Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.

2.1 SYNTHETIC EXPRESSION CASSETTES

2.1.1 Modification of HIV-1 Gag Nucleic Acid Coding Sequences

One aspect of the present invention is the generation of HIV-1 Gag protein coding sequences, and related

10

15

20

related viruses).

sequences, having improved expression relative to the corresponding wild-type sequence. An exemplary embodiment of the present invention is illustrated herein modifying the Gag protein wild-type sequences obtained from the HIV-1SF2 strain (SEQ ID NO:1; Sanchez-Pescador, R., et al., Science 227(4686): 484-492, 1985; Luciw, P.A., et al. U.S. Patent No. 5,156,949, issued October 20, 1992, herein incorporated by reference; Luciw, P.A., et al., U.S. Patent No. 5,688,688, November 18, 1997, herein incorporated by reference). Gag sequence obtained from other HIV variants may be manipulated in similar fashion following the teachings of the present specification. Such other variants include, but are not limited to, Gag protein encoding sequences obtained from the isolates ${\rm HIV}_{{\scriptscriptstyle \rm IIIb}},\ {\rm HIV}_{{\scriptscriptstyle \rm SF2}},\ {\rm HIV}$ $\mathbf{1}_{\text{SF162}}, \text{ HIV-}\mathbf{1}_{\text{SF170}}, \text{ HIV}_{\text{LAV}}, \text{ HIV}_{\text{LAI}}, \text{ HIV}_{\text{MN}}, \text{ HIV-}\mathbf{1}_{\text{CM235}},, \text{ HIV-}\mathbf{1}_{\text{US4}},$ other HIV-1 strains from diverse subtypes (e.g., subtypes, A through G, and O), HIV-2 strains and diverse subtypes (e.g., $\text{HIV-2}_{\text{UC1}}$ and $\text{HIV-2}_{\text{UC2}}) \,,$ and simian immunodeficiency virus (SIV). (See, e.g., Virology, 3rd Edition (W.K. Joklik ed. 1988); Fundamental Virology, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991); Virology, 3rd Edition (Fields, BN, DM Knipe, PM Howley, Editors, 1996, Lippincott-Raven, Philadelphia, PA; for a description of these and other

25 First, the HIV-1 codon usage pattern was modified so that the resulting nucleic acid coding sequence was comparable to codon usage found in highly expressed human genes (Example 1). The HIV codon usage reflects a high content of the nucleotides A or T of the codon-triplet. The effect of the HIV-1 codon usage is a high AT content in the DNA sequence that results in a decreased translation

10

15

20

25

30

ability and instability of the mRNA. In comparison, highly expressed human codons prefer the nucleotides G or C. Gaq coding sequences were modified to be comparable to codon usage found in highly expressed human genes. In Figure 11 (Example 1), the percent A-T content of cDNA sequences corresponding to the mRNA for a known unstable mRNA and a known stable mRNA are compared to the percent A-T content of native HIV-1SF2 Gag cDNA and to the synthetic Gag cDNA sequence of the present invention. Experiments performed in support of the present invention showed that the synthetic Gag sequences were capable of higher level of protein production (see the Examples) relative to the native Gaq sequences. The data in Figure 11 suggest that one reason for this increased production is increased stability of the mRNA corresponding to the synthetic Gag coding sequences versus the mRNA corresponding to the native Gag coding sequences.

Second, there are inhibitory (or instability) elements (INS) located within the coding sequences of the Gag coding sequences (Example 1). The RRE is a secondary RNA structure that interacts with the HIV encoded Rev-protein to overcome the expression down-regulating effects of the INS. To overcome the post-transcriptional activating mechanisms of RRE and Rev, the instability elements were inactivated by introducing multiple point mutations that did not alter the reading frame of the encoded proteins. Figure 1 shows the original SF2 Gag sequence, the location of the INS sequences, and the modifications made to the INS sequences to reduce their effects. The resulting modified coding sequences are presented as a synthetic Gag expression cassette (SEQ ID NO:4).

10

15

Modification of the Gag polypeptide coding sequences resulted in improved expression relative to the wild-type coding sequences in a number of mammalian cell lines (as well as other types of cell lines, including, but not limited to, insect cells). Further, expression of the sequences resulted in production of virus-like particles (VLPs) by these cell lines (see below). Similar Gag polypeptide coding sequences can be obtained from a variety of isolates (families, sub-types, strains, etc.) including, but not limited to such other variants include, but are not limited to, Gag polypeptide encoding sequences obtained from the isolates $\mathrm{HIV_{IIIb}}$, $\mathrm{HIV_{SF2}}$, $\mathrm{HIV-1_{SF162}}$, $\mathrm{HIV-1_{SF170}}$, $\mathrm{HIV_{LAV}}$, $\mathrm{HIV_{LAI}}$, $\text{HIV}_{\text{MN}}\text{, HIV-1}_{\text{CM235}}\text{, HIV-1}_{\text{US4}}\text{, other HIV-1 strains from diverse}$ subtypes(e.g., subtypes, A through G, and O), HIV-2 strains and diverse subtypes (e.g., $\mbox{HIV-2}_{\mbox{\tiny UC1}}$ and $\mbox{HIV-2}_{\mbox{\tiny UC2}})\,,$ and simian immunodeficiency virus (SIV). (See, e.g., Virology, 3rd Edition (W.K. Joklik ed. 1988); Fundamental Virology, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991; Virology, 3rd Edition (Fields, BN, DM Knipe, PM Howley, Editors, 1996, Lippincott-Raven, Philadelphia, PA). Gag polypeptide encoding sequences derived from these variants can be optimized and tested for improved expression in mammals by following the teachings of the present specification (see the Examples, in particular Example 1).

25

30

20

2.1.2 Further Modification of Sequences Including HIV-1 Gag Nucleic Acid Coding Sequences

Experiments performed in support of the present invention have shown that similar modifications of HIV-1 Gag-protease, Gag-reverse transcriptase and Gag-polymerase sequences also result in improved expression of the

10

15

20

25

30

polyproteins, as well as, the production of VLPs formed by polypeptides produced from such modified coding sequences.

For the Gag-protease sequence (wild type, SEQ ID NO:2; modified, SEQ ID NOs:5, 78, 79), the changes in codon usage were restricted to the regions upstream of the -1 frameshift (Figure 2). Further, inhibitory (or instability) elements (INS) located within the coding sequences of the Gag-protease polypeptide coding sequence were altered as well (indicated in Figure 2). Exemplary constructs (which include the -1 frameshift) encoding modified Gag-protease sequences include those shown in SEQ ID NOs:78 and 79 (Figures 69 and 70). These are: GP1 (SEQ ID NO:78) in which the protease region was also codon optimized and INS inactivated and GP2 (SEQ ID NO:79), in which the protease region was only subjected to INS inactivation.

For other Gag-containing sequences, for example the Gag-polymerase sequence (wild type, SEQ ID NO:3; modified, SEQ ID NO:6) or Gag-reverse transcriptase (wild type, SEQ ID NO:77; modified SEQ ID NOs:80-84), the changes in codon usage are similar to those for the Gag-protease sequence. Those expression cassettes which contain a frameshift in the GagPol coding sequence are designated "FS(+)" (SEQ ID NOs:80 and 81, Figures 71 and 72) while the designation "FS(-)" (SEQ ID Nos: 82, 83 and 84, Figures 73, 74 and 75) indicates that there is no frameshift utilized in this coding sequence.

In addition to polyproteins containing HIV-related sequences, the various Gag-, Gag-prot, Gag-pol, Gag-reverse transcriptase encoding sequences of the present invention can be fused to other polypeptides (creating chimeric polypeptides) for which an immunogenic response is desired. An example of such a chimeric protein is the joining of the

10

15

20

25

30

improved expression Gag encoding sequences to the Hepatitis C Virus (HCV) core protein. In this case, the HCV-core encoding sequences were placed in-frame with the HIV-Gag encoding sequences, resulting in the Gag/HCV-core encoding sequence presented as SEQ ID NO:7 (wild type sequence presented as SEQ ID NO:8).

Further sequences useful in the practice of the present invention include, but are not limited to, sequences encoding viral epitopes/antigens {including but not limited to, HCV antigens (e.g., E1, E2; Houghton, M.., et al., U.S. Patent No. 5,714,596, issued February 3, 1998; Houghton, M.., et al., U.S. Patent No. 5,712,088, issued January 27, 1998; Houghton, M.., et al., U.S. Patent No. 5,683,864, issued November 4, 1997; Weiner, A.J., et al., U.S. Patent No. 5,728,520, issued March 17, 1998; Weiner, A.J., et al., U.S. Patent No. 5,766,845, issued June 16, 1998; Weiner, A.J., et al., U.S. Patent No. 5,670,152, issued September 23, 1997; all herein incorporated by reference), HIV antigens (e.g., derived from nef, tat, rev, vpu, vif, vpr and/or env); and sequences encoding tumor antigens/epitopes. Additional sequences are described below. Also, variations on the orientation of the Gag and other coding sequences, relative to each other, are also described below.

Gag. Gag-protease, Gag-reverse transcriptase and/or Gag-polymerase polypeptide coding sequences can be obtained from any HIV isolates (different families, subtypes, and strains) including but not limited to the isolates HIV_{IIIb}, HIV_{SF2}, HIV_{SF162}, HIVus4, HIV_{Cm235}, HIV_{LAV}, HIV_{LAI}, HIV_{MN}) (see, e.g., Myers et al. Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al., Human Retroviruses and Aids, 1997, Los Alamos, New Mexico:

10

15

20

25

30

Los Alamos National Laboratory). Synthetic expression cassettes can be generated using such coding sequences as starting material by following the teachings of the present specification (e.g., see Example 1). Further, the synthetic expression cassettes of the present invention include related Gag polypeptide coding sequences having greater than 75%, preferably greater than 80-85%, more preferably greater than 90-95%, and most preferably greater than 98% sequence identity (or any integer value within these ranges) to the synthetic expression cassette sequences disclosed herein (for example, SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6; and SEQ ID NO:20, the Gag Major Homology Region).

2.1.3 EXPRESSION OF SYNTHETIC SEQUENCES ENCODING HIV-1 GAG AND RELATED POLYPEPTIDES

Several synthetic Gag-encoding sequences (expression cassettes) of the present invention were cloned into a number of different expression vectors (Example 1) to evaluate levels of expression and production of VLPs. modified synthetic coding sequences are presented as a synthetic Gag expression cassette (SEQ ID NO:4) and a synthetic Gag-protease expression cassette (SEQ ID NOs:78 and 79). Other synthetic Gag-encoding proteins are presented, for example, as SEQ ID NOs:80 through 84. The synthetic DNA fragments for Gag-encoding polypeptides (e.g., Gag, Gag-protease, Gag-polymerase, Gag-reverse transcriptase) were cloned into expression vectors described in Example 1, including, a transient expression vector, CMVpromoter-based mammalian vectors, and a shuttle vector for use in baculovirus expression systems. Corresponding wildtype sequences were cloned into the same vectors.

10

15

20

25

30

These vectors were then transfected into a several different cell types, including a variety of mammalian cell lines, (293, RD, COS-7, and CHO, cell lines available, for example, from the A.T.C.C.). The cell lines were cultured under appropriate conditions and the levels of p24 (Gag) expression in supernatants were evaluated (Example 2). The results of these assays demonstrated that expression of synthetic Gag-encoding sequences were significantly higher than corresponding wild-type sequences (Example 2; Table 2).

Further, Western Blot analysis showed that cells containing the synthetic Gag expression cassette produced the expected 55 kD (p55) protein at higher per-cell concentrations than cells containing the native expression cassette. The Gag p55 protein was seen in both cell lysates and supernatants. The levels of production were significantly higher in cell supernatants for cells transfected with the synthetic Gag expression cassette of the present invention. Experiments performed in support of the present invention suggest that cells containing the synthetic Gag-prot expression cassettes produced the expected Gag-prot protein at comparably higher per-cell concentrations than cells containing the wild-type expression cassette.

Fractionation of the supernatants from mammalian cells transfected with the synthetic Gag expression cassette showed that it provides superior production of both p55 protein and VLPs, relative to the wild-type Gag sequences (Examples 6 and 7).

Efficient expression of these Gag-containing polypeptides in mammalian cell lines provides the following benefits: the Gag polypeptides are free of baculovirus contaminants; production by established methods approved by

10

15

20

25

30

the FDA; increased purity; greater yields (relative to native coding sequences); and a novel method of producing the Gag-containing polypeptides in CHO or other mammalian cells which is not feasible in the absence of the increased expression obtained using the constructs of the present invention. Exemplary Mammalian cell lines include, but are not limited to, BHK, VERO, HT1080, 293, 293T, RD, COS-7, CHO, Jurkat, HUT, SUPT, C8166, MOLT4/clone8, MT-2, MT-4, H9, PM1, CEM, myeloma cells (e.g., SB20 cells) and CEMX174, such cell lines are available, for example, from the A.T.C.C.).

A synthetic Gag expression cassette of the present invention also demonstrated high levels of expression and VLP production when transfected into insect cells (Example 7). Further, in addition to a higher total protein yield, the final product from the synthetic p55-expressed Gag consistently contained lower amounts of contaminating baculovirus proteins than the final purified product from the native p55-expressed Gag.

Further, synthetic Gag expression cassettes of the present invention have also been introduced into yeast vectors which were transformed into and efficiently expressed by yeast cells (Saccharomyces cerevisea; using vectors as described in Rosenberg, S. and Tekamp-Olson, P., U.S. Patent No. RE35,749, issued, March 17, 1998, herein incorporated by reference).

In addition to the mammalian and insect vectors described in the Examples, the synthetic expression cassettes of the present invention can be incorporated into a variety of expression vectors using selected expression control elements. Appropriate vectors and control elements for any given cell type can be selected by one having

10

15

20

25

30

ordinary skill in the art in view of the teachings of the present specification and information known in the art about expression vectors.

For example, a synthetic Gag expression cassette can be inserted into a vector which includes control elements operably linked to the desired coding sequence, which allow for the expression of the gene in a selected cell-type. example, typical promoters for mammalian cell expression include the SV40 early promoter, a CMV promoter such as the CMV immediate early promoter (a CMV promoter can include intron A), RSV, HIV-LTR, the mouse mammary tumor virus LTR promoter (MMLV-LTR), FIV-LTR, the adenovirus major late promoter (Ad MLP), and the herpes simplex virus promoter, among others. Other nonviral promoters, such as a promoter derived from the murine metallothionein gene, will also find use for mammalian expression. Typically, transcription termination and polyadenylation sequences will also be present, located 3' to the translation stop codon. Preferably, a sequence for optimization of initiation of translation, located 5' to the coding sequence, is also present. Examples of transcription terminator/polyadenylation signals include those derived from SV40, as described in Sambrook, et al., supra, as well as a bovine growth hormone terminator sequence. containing splice donor and acceptor sites, may also be designed into the constructs for use with the present invention (Chapman et al., Nuc. Acids Res. (1991) 19:3979-3986).

Enhancer elements may also be used herein to increase expression levels of the mammalian constructs. Examples include the SV40 early gene enhancer, as described in

15

20

25

30

Dijkema et al., EMBO J. (1985) 4:761, the enhancer/promoter derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus, as described in Gorman et al., Proc. Natl. Acad. Sci. USA (1982b) 79:6777 and elements derived from human CMV, as described in Boshart et al., Cell (1985) 41:521, such as elements included in the CMV intron A sequence (Chapman et al., Nuc. Acids Res. (1991) 19:3979-3986).

The desired synthetic Gag polypeptide encoding sequences can be cloned into any number of commercially available vectors to generate expression of the polypeptide in an appropriate host system. These systems include, but are not limited to, the following: baculovirus expression {Reilly, P.R., et al., BACULOVIRUS EXPRESSION VECTORS: A LABORATORY MANUAL (1992); Beames, et al., Biotechniques 11:378 (1991); Pharmingen; Clontech, Palo Alto, CA) }, vaccinia expression {Earl, P. L., et al., "Expression of proteins in mammalian cells using vaccinia" In Current Protocols in Molecular Biology (F. M. Ausubel, et al. Eds.), Greene Publishing Associates & Wiley Interscience, New York (1991); Moss, B., et al., U.S. Patent Number 5,135,855, issued 4 August 1992}, expression in bacteria {Ausubel, F.M., et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley and Sons, Inc., Media PA; Clontech}, expression in yeast {Rosenberg, S. and Tekamp-Olson, P., U.S. Patent No. RE35,749, issued, March 17, 1998, herein incorporated by reference; Shuster, J.R., U.S. Patent No. 5,629,203, issued May 13, 1997, herein incorporated by reference; Gellissen, G., et al., Antonie Van Leeuwenhoek, 62(1-2):79-93 (1992); Romanos, M.A., et al., Yeast 8(6):423-488 (1992); Goeddel, D.V., Methods in Enzymology 185 (1990); Guthrie, C., and G.R. Fink, Methods

30

in Enzymology 194 (1991)}, expression in mammalian cells {Clontech; Gibco-BRL, Ground Island, NY; e.g., Chinese hamster ovary (CHO) cell lines (Haynes, J., et al., Nuc. Acid. Res. 11:687-706 (1983); 1983, Lau, Y.F., et al., Mol. Cell. Biol. 4:1469-1475 (1984); Kaufman, R. J., "Selection 5 and coamplification of heterologous genes in mammalian cells," in Methods in Enzymology, vol. 185, pp537-566. Academic Press, Inc., San Diego CA (1991)}, and expression in plant cells {plant cloning vectors, Clontech Laboratories, Inc., Palo Alto, CA, and Pharmacia LKB 10 Biotechnology, Inc., Pistcataway, NJ; Hood, E., et al., J. Bacteriol. <u>168</u>:1291-1301 (1986); Nagel, R., et al., FEMS Microbiol. Lett. 67:325 (1990); An, et al., "Binary Vectors", and others in Plant Molecular Biology Manual A3:1-19 (1988); Miki, B.L.A., et al., pp.249-265, and others in 15 Plant DNA Infectious Agents (Hohn, T., et al., eds.) Springer-Verlag, Wien, Austria, (1987); Plant Molecular Biology: Essential Techniques, P.G. Jones and J.M. Sutton, New York, J. Wiley, 1997; Miglani, Gurbachan Dictionary of Plant Genetics and Molecular Biology, New York, Food 20 Products Press, 1998; Henry, R. J., Practical Applications of Plant Molecular Biology, New York, Chapman & Hall, 1997}.

Also included in the invention is an expression vector, such as the CMV promoter-containing vectors described in Example 1, containing coding sequences and expression control elements which allow expression of the coding regions in a suitable host. The control elements generally include a promoter, translation initiation codon, and translation and transcription termination sequences, and an insertion site for introducing the insert into the vector. Translational control elements have been reviewed by M.

10

15

20

25

30

Kozak (e.g., Kozak, M., Mamm. Genome 7(8):563-574, 1996;
Kozak, M., Biochimie 76(9):815-821, 1994; Kozak, M., J Cell
Biol 108(2):229-241, 1989; Kozak, M., and Shatkin, A.J.,
Methods Enzymol 60:360-375, 1979).

Expression in yeast systems has the advantage of commercial production. Recombinant protein production by vaccinia and CHO cell line have the advantage of being mammalian expression systems. Further, vaccinia virus expression has several advantages including the following:

(i) its wide host range; (ii) faithful post-transcriptional modification, processing, folding, transport, secretion, and assembly of recombinant proteins; (iii) high level expression of relatively soluble recombinant proteins; and (iv) a large capacity to accommodate foreign DNA.

The recombinantly expressed polypeptides from synthetic Gag-encoding expression cassettes are typically isolated from lysed cells or culture media. Purification can be carried out by methods known in the art including salt fractionation, ion exchange chromatography, gel filtration, size-exclusion chromatography, size-fractionation, and affinity chromatography. Immunoaffinity chromatography can be employed using antibodies generated based on, for example, Gag antigens.

Advantages of expressing the Gag-containing proteins of the present invention using mammalian cells include, but are not limited to, the following: well-established protocols for scale-up production; the ability to produce VLPs; cell lines are suitable to meet good manufacturing process (GMP) standards; culture conditions for mammalian cells are known in the art.

10

15

20

25

30

2.1.4 Modification of HIV-1 Env Nucleic Acid Coding Sequences

One aspect of the present invention is the generation of HIV-1 Env protein coding sequences, and related sequences, having improved expression relative to the corresponding wild-type sequence. Exemplary embodiments of the present invention are illustrated herein modifying the Env protein wild-type sequences obtained from the HIV-1 subtype B strains HIV-1US4 and HIV-1SF162 (Myers et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al., Human Retroviruses and Aids, 1997, Los Alamos, New Mexico: Los Alamos National Laboratory). Env sequence obtained from other HIV variants may be manipulated in similar fashion following the teachings of the present specification. Such other variants include those described above in Section 2.1.1 and on the World Wide Web (Internet), for example at http://hiv- web.lan1.gov/cqi-bin/hivDB3/public/wdb/ssampublic and http://hiv-web.lan1.gov.

First, the HIV-1 codon usage pattern was modified so that the resulting nucleic acid coding sequence was comparable to codon usage found in highly expressed human genes (Example 1). The HIV codon usage reflects a high content of the nucleotides A or T of the codon-triplet. The effect of the HIV-1 codon usage is a high AT content in the DNA sequence that results in a decreased translation ability and instability of the mRNA. In comparison, highly expressed human codons prefer the nucleotides G or C. The Env coding sequences were modified to be comparable to codon usage found in highly expressed human genes. Experiments performed in support of the present invention showed that

10

15

20

25

30

the synthetic Env sequences were capable of higher level of protein production (see the Examples) relative to the native Env sequences. One reason for this increased production may be increased stability of the mRNA corresponding to the synthetic Env coding sequences versus the mRNA corresponding to the native Env coding sequences.

Modification of the Env polypeptide coding sequences resulted in improved expression relative to the wild-type coding sequences in a number of mammalian cell lines. Similar Env polypeptide coding sequences can be obtained from a variety of isolates (families, sub-types, etc.). Env polypeptide encoding sequences derived from these variants can be optimized and tested for improved expression in mammals by following the teachings of the present specification (see the Examples, in particular Example 2).

2.1.5 FURTHER MODIFICATION OF HIV-1 ENV NUCLEIC ACID CODING SEQUENCES

In addition to proteins containing HIV-related sequences, the Env encoding sequences of the present invention can be fused to other polypeptides (creating chimeric polypeptides). Also, variations on the orientation of the Env and other coding sequences, relative to each other, are contemplated. Further, the HIV protein encoding cassettes of the present invention can be co-expressed using one vector or multiple vectors. In addition, the polyproteins can be operably linked to the same or different promoters.

Env polypeptide coding sequences can be obtained from any HIV isolates (different families, subtypes, and strains) including but not limited to the isolates ${\rm HIV_{IIIb}}$, ${\rm HIV_{SF2}}$,

15

20

25

30

 $\text{HIV}_{\text{us4}}, \text{ HIV}_{\text{CM235}}, \text{ HIV}_{\text{SF162}}, \text{ HIV}_{\text{LAV}}, \text{ HIV}_{\text{LAI}}, \text{ HIV}_{\text{MN}}) \text{ (see, e.g., Myers)}$ et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico (1992); Myers et al., Human Retroviruses and Aids, 1997, Los Alamos, New Mexico: Los Alamos National Laboratory). Synthetic expression cassettes can be generated using such coding sequences as starting material by following the teachings of the present specification (e.g., see Example 1). Further, the synthetic expression cassettes (and purified polynucleotides) of the present invention include related Env polypeptide coding sequences having greater than 90%, preferably greater than 92%, more preferably greater than 95%, and most preferably greater than 98% sequence identity to the synthetic expression cassette sequences disclosed herein (for example, SEQ ID NOs:71-72; and/or the sequences presented in Tables 1A and 1B) when the sequences of the present invention are used as the query sequence.

2.1.6 Expression of Synthetic Sequences Encoding HIV-1 Env and Related Polypeptides

Several synthetic Env-encoding sequences (expression cassettes) of the present invention were cloned into a number of different expression vectors (Example 1) to evaluate levels of expression and production of Env polypeptide. A modified synthetic coding sequence is presented as synthetic Env expression cassettes (Example 1, e.g., Tables 1A and 1B). The synthetic DNA fragments for Env were cloned into eucaryotic expression vectors described in Example 1 and in Section 2.1.3 above, including, a transient expression vector and CMV-promoter-based mammalian

10

15

20

25

30

vectors. Corresponding wild-type sequences were cloned into the same vectors.

These vectors were then transfected into a several different cell types, including a variety of mammalian cell lines, (293, RD, COS-7, and CHO, cell lines available, for example, from the A.T.C.C.). The cell lines were cultured under appropriate conditions and the levels of gp120, gp140 and gp160 Env expression in supernatants were evaluated (Example 2). Env polypeptides include, but are not limited to, for example, native gp160, oligomeric gp140, monomeric gp120 as well as modified sequences of these polypeptides. The results of these assays demonstrated that expression of synthetic Env encoding sequences were significantly higher than corresponding wild-type sequences (Example 2; Tables 3 and 4).

Further, Western Blot analysis showed that cells containing the synthetic Env expression cassette produced the expected protein (gp120, gp140 or gp160) at higher percell concentrations than cells containing the native expression cassette. The Env proteins were seen in both cell lysates and supernatants. The levels of production were significantly higher in cell supernatants for cells transfected with the synthetic Env expression cassettes of the present invention as compared to wild type.

Fractionation of the supernatants from mammalian cells transfected with the synthetic Env expression cassettes showed that it provides superior production of Env proteins, relative to the wild-type Env sequences (Examples 2 and 3).

Efficient expression of these Env-containing polypeptides in mammalian cell lines provides the following benefits: the Env polypeptides are free of baculovirus or other viral contaminants; production by established methods

approved by the FDA; increased purity; greater yields (relative to native coding sequences); and a novel method of producing the Env-containing polypeptides in CHO cells which is less feasible in the absence of the increased expression obtained using the constructs of the present invention.

Exemplary cell lines (e.g., mammalian, yeast, insect, etc.) include those described above in Section 2.1.3 for Gag-containing constructs. Further, appropriate vectors and control elements (e.g., promoters, enhancers,

polyadenylation sequences, etc.) for any given cell type can be selected, as described above in Section 2.1.3, by one having ordinary skill in the art in view of the teachings of the present specification and information known in the art about expression vectors. In addition, the recombinantly expressed polypeptides from synthetic Env-encoding expression cassettes are typically isolated and purified from lysed cells or culture media, as described above for Gag-encoding expression cassettes. An exemplary

20 60.

25

30

5

2.1.7 Modification of HIV-1 Tat Nucleic Acid Coding Sequences

purification is described in Example 4 and shown in Figure

Another aspect of the present invention is the generation of HIV-1 tat protein coding sequences, and related sequences, having improved expression relative to the corresponding wild-type sequence. Exemplary embodiments of the present invention are illustrated herein modifying the tat wild-type nucleotide sequence (SEQ ID NO:85, Figure 76) obtained from SF162 as described above. Exemplary synthetic tat constructs are shown in SEQ ID NO:87, which

10

15

20

25

30

depicts a tat construct encoding a full-length tat polypeptide from strain SF162; SEQ ID NO:88, which depicts a tat construct encoding a tat polypeptide having the cystein residue at position 22 changed; and SEQ ID NO:89, which depicts a tat construct encoding the amino terminal portion of a tat polypeptide from strain SF162. The amino portion of the tat protein appears to contain many of the epitopes that induce an immune response. In addition, further modifications include replacement or deletion of the cystein residue at position 22, for example with a valine residue, an alanine residue or a glycine residue (SEQ ID Nos: 88 and 89, Figures 79 and 81), see, e.g., Caputo et al. (1996) Gene Ther. 3:235. In Figure 81, which depicts a tat construct encoding the amino terminal portion of a tat polypeptide, the nucleotides (nucleotides 64-66) encoding the cystein residues are underlined. The design and construction of suitable construct can be readily done using the teachings of the present specification. As with Gag, pol, prot and Env, tat polypeptide coding sequences can be obtained from a variety of isolates (families, sub-types, etc.).

Modification of the tat polypeptide coding sequences result in improved expression relative to the wild-type coding sequences in a number of cell lines (e.g., mammalian, yeast, bacterial and insect cells). Tat polypeptide encoding sequences derived from these variants can be optimized and tested for improved expression in mammals by following the teachings of the present specification (see the Examples, in particular Example 2).

Various forms of the different embodiments of the invention, described herein, may be combined. For example,

polynucleotides may be derived from the polynucleotide sequences of the present invention, including, but not limited to, coding sequences for Gag polypeptides, Env polypeptides, polymerase polypeptides, protease polypeptides, tat polypeptides, and reverse transcriptase polypeptides. Further, the polynucleotide coding sequences of the present invention may be combined into multicistronic expression cassettes where typically each coding sequence for each polypeptide is preceded by IRES sequences.

10

15

20

25

2.2 PRODUCTION OF VIRUS-LIKE PARTICLES AND USE OF THE CONSTRUCTS OF THE PRESENT INVENTION TO CREATE PACKAGING CELL LINES

The group-specific antigens (Gag) of human immunodeficiency virus type-1 (HIV-1) self-assemble into noninfectious virus-like particles (VLP) that are released from various eucaryotic cells by budding (reviewed by Freed, E.O., Virology 251:1-15, 1998). The synthetic expression cassettes of the present invention provide efficient means for the production of HIV-Gag virus-like particles (VLPs) using a variety of different cell types, including, but not limited to, mammalian cells.

Viral particles can be used as a matrix for the proper presentation of an antigen entrapped or associated therewith to the immune system of the host. For example, U.S. Patent No. 4,722,840 describes hybrid particles comprised of a particle-forming fragment of a structural protein from a virus, such as a particle-forming fragment of hepatitis B virus (HBV) surface antigen (HBsAg), fused to a heterologous polypeptide. Tindle et al., *Virology* (1994) 200:547-557, describes the production and use of chimeric HBV core

30

10

15

20

25

30

antigen particles containing epitopes of human papillomavirus (HPV) type 16 E7 transforming protein.

Adams et al., Nature (1987) 329:68-70, describes the recombinant production of hybrid HIVgp120:Ty VLPs in yeast and Brown et al., Virology (1994) 198:477-488, the production of chimeric proteins consisting of the VP2 protein of human parvovirus B19 and epitopes from human herpes simplex virus type 1, as well as mouse hepatitis virus A59. Wagner et al., (Virology (1994) 200:162-175, Brand et al., J. Virol. Meth. (1995) 51:153-168; Virology (1996) 220:128-140) and Wolf, et al., (EP 0 449 116 A1, published 2 October 1991; WO 96/30523, published 3 October 1996) describe the assembly of chimeric HIV-1 p55Gag particles. U.S. Patent No. 5,503,833 describes the use of rotavirus VP6 spheres for encapsulating and delivering therapeutic agents.

2.2.1 VLP PRODUCTION USING THE SYNTHETIC EXPRESSION CASSETTES OF THE PRESENT INVENTION

Experiments performed in support of the present invention have demonstrated that the synthetic expression cassettes of the present invention provide superior production of both protein and VLPs, relative to native coding sequences (Examples 7 and 15). Further, electron microscopic evaluation of VLP production (Examples 6 and 15, Figures 3A-B and 65A-F) showed that free and budding immature virus particles of the expected size were produced by cells containing the synthetic expression cassettes.

Using the synthetic expression cassettes of the present invention, rather than native coding sequences, for the production of virus-like particles provide several

30

advantages. First, VLPs can be produced in enhanced quantity making isolation and purification of the VLPs Second, VLPs can be produced in a variety of cell types using the synthetic expression cassettes, in 5 particular, mammalian cell lines can be used for VLP production, for example, CHO cells. Production using CHO cells provides (i) VLP formation; (ii) correct myristylation and budding; (iii) absence of non-mammalian cell contaminants (e.g., insect viruses and/or cells); and (iv) 10 ease of purification. The synthetic expression cassettes of the present invention are also useful for enhanced expression in cell-types other than mammalian cell lines. For example, infection of insect cells with baculovirus vectors encoding the synthetic expression cassettes resulted in higher levels of total protein yield and higher levels of 15 VLP production (relative to wild-type coding sequences). Further, the final product from insect cells infected with the baculovirus-Gag synthetic expression cassettes consistently contained lower amounts of contaminating insect 20 proteins than the final product when wild-type coding sequences were used (Examples).

VLPs can spontaneously form when the particle-forming polypeptide of interest is recombinantly expressed in an appropriate host cell. Thus, the VLPs produced using the synthetic expression cassettes of the present invention are conveniently prepared using recombinant techniques. As discussed below, the Gag polypeptide encoding synthetic expression cassettes of the present invention can include other polypeptide coding sequences of interest (for example, Env, tat, rev, HIV protease, HIV polymerase, HCV core; see, Example 1). Expression of such synthetic expression cassettes yields VLPs comprising the product of the

15

20

25

30

synthetic expression cassette, as well as, the polypeptide of interest.

Once coding sequences for the desired particle-forming polypeptides have been isolated or synthesized, they can be cloned into any suitable vector or replicon for expression. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate cloning vector is a matter of choice. See, generally, Ausubel et al, supra or Sambrook et al, supra. The vector is then used to transform an appropriate host cell. Suitable recombinant expression systems include, but are not limited to, bacterial, mammalian, baculovirus/insect, vaccinia, Semliki Forest virus (SFV), Alphaviruses (such as, Sindbis, Venezuelan Equine Encephalitis (VEE)), mammalian, yeast and Xenopus expression systems, well known in the art. Particularly preferred expression systems are mammalian cell lines, vaccinia, Sindbis, insect and yeast systems.

For example, a number of mammalian cell lines are known

in the art and include immortalized cell lines available from the American Type Culture Collection (A.T.C.C.), such as, but not limited to, Chinese hamster ovary (CHO) cells, 293 cells, HeLa cells, baby hamster kidney (BHK) cells, mouse myeloma (SB20), monkey kidney cells (COS), as well as others. Similarly, bacterial hosts such as E. coli, Bacillus subtilis, and Streptococcus spp., will find use with the present expression constructs. Yeast hosts useful in the present invention include inter alia, Saccharomyces cerevisiae, Candida albicans, Candida maltosa, Hansenula polymorpha, Kluyveromyces fragilis, Kluyveromyces lactis, Pichia guillerimondii, Pichia pastoris, Schizosaccharomyces pombe and Yarrowia lipolytica. Insect cells for use with

10

15

20

25

baculovirus expression vectors include, inter alia, Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni. See, e.g., Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987). Fungal hosts include, for example, Aspergillus.

Viral vectors can be used for the production of particles in eucaryotic cells, such as those derived from the pox family of viruses, including vaccinia virus and avian poxvirus. Additionally, a vaccinia based infection/transfection system, as described in Tomei et al., J. Virol. (1993) 67:4017-4026 and Selby et al., J. Gen. Virol. (1993) 74:1103-1113, will also find use with the present invention. In this system, cells are first infected in vitro with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This polymerase displays exquisite specificity in that it only transcribes templates bearing T7 promoters. Following infection, cells are transfected with the DNA of interest, driven by a T7 promoter. The polymerase expressed in the cytoplasm from the vaccinia virus recombinant transcribes the transfected DNA into RNA which is then translated into protein by the host translational machinery. Alternately, T7 can be added as a purified protein or enzyme as in the "Progenitor" system (Studier and Moffatt, J. Mol. Biol. (1986) 189:113-The method provides for high level, transient, cytoplasmic production of large quantities of RNA and its translation product(s).

Depending on the expression system and host selected,

the VLPS are produced by growing host cells transformed by
an expression vector under conditions whereby the particle-

10

15

20

25

30

forming polypeptide is expressed and VLPs can be formed. The selection of the appropriate growth conditions is within the skill of the art. If the VLPs are formed intracellularly, the cells are then disrupted, using chemical, physical or mechanical means, which lyse the cells yet keep the VLPs substantially intact. Such methods are known to those of skill in the art and are described in, e.g., Protein Purification Applications: A Practical Approach, (E.L.V. Harris and S. Angal, Eds., 1990).

The particles are then isolated (or substantially purified) using methods that preserve the integrity thereof, such as, by density gradient centrifugation, e.g., sucrose gradients, PEG-precipitation, pelleting, and the like (see, e.g., Kirnbauer et al. J. Virol. (1993) 67:6929-6936), as well as standard purification techniques including, e.g., ion exchange and gel filtration chromatography.

VLPs produced by cells containing the synthetic expression cassettes of the present invention can be used to elicit an immune response when administered to a subject. One advantage of the present invention is that VLPs can be produced by mammalian cells carrying the synthetic expression cassettes at levels previously not possible. As discussed above, the VLPs can comprise a variety of antigens in addition to the Gag polypeptides (e.g., Env, tat, Gagprotease, Gag-polymerase, Gag-HCV-core). Purified VLPs, produced using the synthetic expression cassettes of the present invention, can be administered to a vertebrate subject, usually in the form of vaccine compositions. Combination vaccines may also be used, where such vaccines contain, for example, other subunit proteins derived from HIV or other organisms (e.q., env) or gene delivery vaccines

10

15

20

25

30

encoding such antigens. Administration can take place using the VLPs formulated alone or formulated with other antigens. Further, the VLPs can be administered prior to, concurrent with, or subsequent to, delivery of the synthetic expression cassettes for DNA immunization (see below) and/or delivery of other vaccines. Also, the site of VLP administration may be the same or different as other vaccine compositions that are being administered. Gene delivery can be accomplished by a number of methods including, but are not limited to, immunization with DNA, alphavirus vectors, pox virus vectors, and vaccinia virus vectors.

VLP immune-stimulating (or vaccine) compositions can include various excipients, adjuvants, carriers, auxiliary substances, modulating agents, and the like. The immune stimulating compositions will include an amount of the VLP/antigen sufficient to mount an immunological response. An appropriate effective amount can be determined by one of skill in the art. Such an amount will fall in a relatively broad range that can be determined through routine trials and will generally be an amount on the order of about 0.1 μ g to about 1000 μ g, more preferably about 1 μ g to about 300 μ g, of VLP/antigen.

A carrier is optionally present which is a molecule that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycollic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Examples of particulate carriers include those derived from polymethyl methacrylate polymers, as well as microparticles derived

10

15

20

25

30

from poly(lactides) and poly(lactide-co-glycolides), known as PLG. See, e.g., Jeffery et al., Pharm. Res. (1993)

10:362-368; McGee JP, et al., J Microencapsul. 14(2):197210, 1997; O'Hagan DT, et al., Vaccine 11(2):149-54, 1993.

Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen may be conjugated to a bacterial toxoid, such as toxoid from diphtheria, tetanus, cholera, etc., as well as toxins derived from E. coli.

Such adjuvants include, but are not limited to: aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc.; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59 (International Publication No. WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) Ribi™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS),

10

15

20

25

30

preferably MPL + CWS (Detox™); (3) saponin adjuvants, such as Stimulon™ (Cambridge Bioscience, Worcester, MA) may be used or particle generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freunds Adjuvant (CFA) and Incomplete Freunds Adjuvant (IFA); (5) cytokines, such as interleukins (IL-1, IL-2, etc.), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), beta chemokines (MIP, 1-alpha, 1-beta Rantes, etc.); (6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63 (where lysine is substituted for the wild-type amino acid at position 63) LT-R72 (where arginine is substituted for the wild-type amino acid at position 72), CT-S109 (where serine is substituted for the wild-type amino acid at position 109), and PT-K9/G129 (where lysine is substituted for the wild-type amino acid at position 9 and glycine substituted at position 129) (see, e.g., International Publication Nos. W093/13202 and W092/19265); and (7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition.

Muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acteyl-normuramyl-L-alanyl-D-isogluatme (nor-MDP), N-acetylmuramyl-L-alanyl-D-isogluatminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

Dosage treatment with the VLP composition may be a single dose schedule or a multiple dose schedule. A multiple dose schedule is one in which a primary course of

10

15

20

25

30

vaccination may be with 1-10 separate doses, followed by other doses given at subsequent time intervals, chosen to maintain and/or reinforce the immune response, for example at 1-4 months for a second dose, and if needed, a subsequent dose(s) after several months. The dosage regimen will also, at least in part, be determined by the potency of the modality, the vaccine delivery employed, the need of the subject and be dependent on the judgment of the practitioner.

If prevention of disease is desired (e.g., reduction of symptoms, recurrences or of disease progression), the antigen carrying VLPs are generally administered prior to primary infection with the pathogen of interest. If treatment is desired, e.g., the reduction of symptoms or recurrences, the VLP compositions are generally administered subsequent to primary infection.

2.2.2 USING THE SYNTHETIC EXPRESSION CASSETTES OF THE PRESENT INVENTION TO CREATE PACKAGING CELL LINES

A number of viral based systems have been developed for use as gene transfer vectors for mammalian host cells. For example, retroviruses (in particular, lentiviral vectors) provide a convenient platform for gene delivery systems. A coding sequence of interest (for example, a sequence useful for gene therapy applications) can be inserted into a gene delivery vector and packaged in retroviral particles using techniques known in the art. Recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo. A number of retroviral systems have been described, including, for example, the following: (U.S. Patent No. 5,219,740; Miller et al. (1989) Biotechniques

7:980; Miller, A.D. (1990) Human Gene Therapy 1:5; Scarpa et al. (1991) Virology 180:849; Burns et al. (1993) Proc. Natl. Acad. Sci. USA 90:8033; Boris-Lawrie et al. (1993) Cur. Opin. Genet. Develop. 3:102; GB 2200651; EP 0415731; EP 0345242; WO 89/02468; WO 89/05349; WO 89/09271; WO 90/02806; 5 WO 90/07936; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; WO 93/11230; WO 93/10218; WO 91/02805; in U.S. 5,219,740; U.S. 4,405,712; U.S. 4,861,719; U.S. 4,980,289 and U.S. 4,777,127; in U.S. Serial No. 07/800,921; and in 10 Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res <u>53</u>:962-967; Ram (1993) Cancer Res <u>53</u>:83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci USA 81;6349; and Miller (1990) Human Gene Therapy 1.

Sequences useful for gene therapy applications include, 15 but are not limited to, the following. Factor VIII cDNA, including derivatives and deletions thereof (International Publication Nos. WO 96/21035, WO 97/03193, WO 97/03194, WO 97/03195, and WO 97/03191, all of which are hereby incorporated by reference). Factor IX cDNA (Kurachi et al. 20 (1982) Proc. Natl. Acad. Sci. USA 79:6461-6464). Factor V cDNA can be obtained from pMT2-V (Jenny (1987) Proc. Natl. Acad. Sci. USA 84:4846, A.T.C.C. Deposit No. 40515). A full-length factor V cDNA, or a B domain deletion or B 25 domain substitution thereof, can be used. B domain deletions of factor V, include those reported by Marquette (1995) Blood <u>86</u>:3026 and Kane (1990) Biochemistry 29:6762. Antithrombin III cDNA (Prochownik (1983) J. Biol. Chem. 258:8389, A.T.C.C. Deposit No. 57224/57225). Protein C 30 encoding cDNA (Foster (1984) Proc. Natl. Acad. Sci. USA 81:4766; Beckmann (1985) Nucleic Acids Res. 13:5233).

20

Prothrombin cDNA can be obtained by restriction enzyme digestion of a published vector (Degen (1983) Biochemistry 22:2087). The endothelial cell surface protein, thrombomodulin, is a necessary cofactor for the normal activation of protein C by thrombin. A soluble recombinant form has been described (Parkinson (1990) J. Biol. Chem. 265:12602; Jackman (1987) Proc. Natl. Acad. Sci. USA 84:6425; Shirai (1988) J. Biochem. 103:281; Wen (1987) Biochemistry 26:4350; Suzuki (1987) EMBO J. 6:1891, A.T.C.C. Deposit No. 61348, 61349).

Many genetic diseases caused by inheritance of defective genes result in the failure to produce normal gene products, for example, thalassemia, phenylketonuria, Lesch-Nyhan syndrome, severe combined immunodeficiency (SCID), hemophilia A and B, cystic fibrosis, Duchenne's Muscular Dystrophy, inherited emphysema and familial hypercholesterolemia (Mulligan et al. (1993) Science 260:926; Anderson et al. (1992) Science 256:808; Friedman et al. (1989) Science 244:1275). Although genetic diseases may result in the absence of a gene product, endocrine disorders, such as diabetes and hypopituitarism, are caused by the inability of the gene to produce adequate levels of the appropriate hormone insulin and human growth hormone respectively.

In one aspect, gene therapy employing the constructs and methods of the present invention involves the introduction of normal recombinant genes into T cells so that new or missing proteins are produced by the T cells after introduction or reintroduction thereof into a patient.

A number of genetic diseases have been selected for treatment with gene therapy, including adenine deaminase

10

15

20

25

30

deficiency, cystic fibrosis, α_1 -antitrypsin deficiency, Gaucher's syndrome, as well as non-genetic diseases.

In particular, Gaucher's syndrome is a genetic disorder characterized by a deficiency of the enzyme glucocerebrosidase. This enzyme deficiency leads to the accumulation of glucocerebroside in the lysosomes of all cells in the body. For a review see Science 256:794 (1992) and Scriver et al., The Metabolic Basis of Inherited Disease, 6th ed., vol. 2, page 1677). Thus, gene transfer vectors that express glucocerebrosidase can be constructed for use in the treatment of this disorder. Likewise, gene transfer vectors encoding lactase can be used in the treatment of hereditary lactose intolerance, those expressing AD can be used for treatment of ADA deficiency, and gene transfer vectors encoding α_1 -antitrypsin can be used to treat α_1 -antitrypsin deficiency. See Ledley, F.D. (1987) J. Pediatrics <u>110</u>:157-174, Verma, I. (Nov. 1987) Scientific American pp. 68-84, and International Publication No. WO 95/27512 entitled "Gene Therapy Treatment for a Variety of Diseases and Disorders," for a description of gene therapy treatment of genetic diseases.

In still further embodiments of the invention, nucleotide sequences which can be incorporated into a gene transfer vector include, but are not limited to, proteins associated with enzyme-deficiency disorders, such as the cystic fibrosis transmembrane regulator (see, for example, U.S. Patent No. 5,240,846 and Larrick et al. (1991) Gene Therapy Applications of Molecular Biology, Elsevier, New York and adenosine deaminase (ADA) (see U.S. Patent No. 5,399,346); growth factors, or an agonist or antagonist of a growth factor (Bandara et al. (1992) DNA and Cell Biology,

25

30

11:227); one or more tumor suppressor genes such as p53, Rb. or C-CAMI (Kleinerman et al. (1995) Cancer Research 55:2831); a molecule that modulates the immune system of an organism, such as a HLA molecule (Nabel et al. (1993) Proc. Natl. Acad. Sci. USA 90:11307); a ribozyme (Larsson et al. 5 (1996) Virology 219:161); a peptide nucleic acid (Hirshman et al. (1996) J. Invest. Med. 44:347); an antisense molecule (Bordier et al. (1995) Proc. Natl. Acad. Sci. USA 92:9383) which can be used to down-regulate the expression or 10 synthesis of aberrant or foreign proteins, such as HIV proteins or a wide variety of oncogenes such as p53 (Hesketh, The Oncogene Facts Book, Academic Press, New York, (1995); a biopharmaceutical agent or antisense molecule used to treat HIV-infection, such as an inhibitor of p24 15 (Nakashima et al. (1994) Nucleic Acids Res. 22:5004); or reverse-transcriptase (see, Bordier, supra).

Other proteins of therapeutic interest can be expressed in vivo by gene transfer vectors using the methods of the invention. For instance sustained in vivo expression of tissue factor inhibitory protein (TFPI) is useful for treatment of conditions including sepsis and DIC and in preventing reperfusion injury. (See International Publications Nos. WO 93/24143, WO 93/25230 and WO 96/06637). Nucleic acid sequences encoding various forms of TFPI can be obtained, for example, as described in US Patent Nos. 4,966,852; 5,106,833; and 5,466,783, and incorporated into the gene transfer vectors described herein.

Erythropoietin (EPO) and leptin can also be expressed in vivo from genetically modified T cells according to the methods of the invention. For instance EPO is useful in gene therapy treatment of a variety of disorders including

10

15

20

25

30

anemia (see International Publication No. WO 95/13376 entitled "Gene Therapy for Treatment of Anemia"). Sustained delivery of leptin by the methods of the invention is useful in treatment of obesity. See International Publication No. WO 96/05309 for a description of the leptin gene and the use thereof in the treatment of obesity.

A variety of other disorders can also be treated by the methods of the invention. For example, sustained in vivo systemic production of apolipoprotein E or apolipoprotein A from genetically modified T cells can be used for treatment of hyperlipidemia (see Breslow et al. (1994) Biotechnology 12:365). Sustained production of angiotensin receptor inhibitor (Goodfriend et al. (1996) N. Engl. J. Med. 334:1469) can be provided by the methods described herein. As yet an additional example, the long term in vivo systemic production of angiostatin is useful in the treatment of a variety of tumors. (See O'Reilly et al. (1996) Nature Med. 2:689).

In other embodiments, gene transfer vectors can be constructed to encode a cytokine or other immunomodulatory molecule. For example, nucleic acid sequences encoding native IL-2 and gamma-interferon can be obtained as described in US Patent Nos. 4,738,927 and 5,326,859, respectively, while useful muteins of these proteins can be obtained as described in U.S. Patent No. 4,853,332. Nucleic acid sequences encoding the short and long forms of mCSF can be obtained as described in US Patent Nos. 4,847,201 and 4,879,227, respectively. In particular aspects of the invention, retroviral vectors expressing cytokine or immunomodulatory genes can be produced as described herein (for example, employing the packaging cell lines of the

present invention) and in International Application No. PCT US 94/02951, entitled "Compositions and Methods for Cancer Immunotherapy."

Examples of suitable immunomodulatory molecules for use herein include the following: IL-1 and IL-2 (Karupiah et al. (1990) J. Immunology 144:290-298, Weber et al. (1987) J. Exp. Med. 166:1716-1733, Gansbacher et al. (1990) J. Exp. Med. 172:1217-1224, and U.S. Patent No. 4,738,927); IL-3 and IL-4 (Tepper et al. (1989) Cell 57:503-512, Golumbek et al.

- 10 (1991) Science 254:713-716, and U.S. Patent No. 5,017,691);
 IL-5 and IL-6 (Brakenhof et al. (1987) J. Immunol. 139:41164121, and International Publication No. WO 90/06370); IL-7
 (U.S. Patent No. 4,965,195); IL-8, IL-9, IL-10, IL-11, IL12, and IL-13 (Cytokine Bulletin, Summer 1994); IL-14 and
- 15 IL-15; alpha interferon (Finter et al. (1991) Drugs <u>42</u>:749-765, U.S. Patent Nos. 4,892,743 and 4,966,843, International Publication No. WO 85/02862, Nagata et al. (1980) Nature <u>284</u>:316-320, Familletti et al. (1981) Methods in Enz. <u>78</u>:387-394, Twu et al. (1989) Proc. Natl. Acad. Sci. USA
- 86:2046-2050, and Faktor et al. (1990) Oncogene 5:867-872);
 beta-interferon (Seif et al. (1991) J. Virol. 65:664-671);
 gamma-interferons (Radford et al. (1991) The American
 Society of Hepatology 20082015, Watanabe et al. (1989) Proc.
 Natl. Acad. Sci. USA 86:9456-9460, Gansbacher et al. (1990)
- 30 (1990) J. Immunology <u>144</u>:942-951); CD3 (Krissanen et al. (1987) Immunogenetics <u>26</u>:258-266); ICAM-1 (Altman et al.

20

25

30

(1989) Nature 338:512-514, Simmons et al. (1988) Nature 331:624-627); ICAM-2, LFA-1, LFA-3 (Wallner et al. (1987) J. Exp. Med. 166:923-932); MHC class I molecules, MHC class II molecules, B7.1-.3, β_2 -microglobulin (Parnes et al. (1981) Proc. Natl. Acad. Sci. USA 78:2253-2257); chaperones such as calnexin; and MHC-linked transporter proteins or analogs thereof (Powis et al. (1991) Nature 354:528-531). Immunomodulatory factors may also be agonists, antagonists, or ligands for these molecules. For example, soluble forms of receptors can often behave as antagonists for these types of factors, as can mutated forms of the factors themselves.

Nucleic acid molecules that encode the above-described substances, as well as other nucleic acid molecules that are advantageous for use within the present invention, may be readily obtained from a variety of sources, including, for example, depositories such as the American Type Culture Collection, or from commercial sources such as British Bio-Technology Limited (Cowley, Oxford England). Representative examples include BBG 12 (containing the GM-CSF gene coding for the mature protein of 127 amino acids), BBG 6 (which contains sequences encoding gamma interferon), A.T.C.C. Deposit No. 39656 (which contains sequences encoding TNF), A.T.C.C. Deposit No. 20663 (which contains sequences encoding alpha-interferon), A.T.C.C. Deposit Nos. 31902, 31902 and 39517 (which contain sequences encoding betainterferon), A.T.C.C. Deposit No. 67024 (which contains a sequence which encodes Interleukin-1b), A.T.C.C. Deposit Nos. 39405, 39452, 39516, 39626 and 39673 (which contain sequences encoding Interleukin-2), A.T.C.C. Deposit Nos. 59399, 59398, and 67326 (which contain sequences encoding Interleukin-3), A.T.C.C. Deposit No. 57592 (which contains

10

15

20

25

30

sequences encoding Interleukin-4), A.T.C.C. Deposit Nos. 59394 and 59395 (which contain sequences encoding Interleukin-5), and A.T.C.C. Deposit No. 67153 (which contains sequences encoding Interleukin-6).

Plasmids containing cytokine genes or immunomodulatory genes (International Publication Nos. WO 94/02951 and WO 96/21015, both of which are incorporated by reference in their entirety) can be digested with appropriate restriction enzymes, and DNA fragments containing the particular gene of interest can be inserted into a gene transfer vector using standard molecular biology techniques. (See, e.g., Sambrook et al., supra., or Ausubel et al. (eds) Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience).

Exemplary hormones, growth factors and other proteins which are useful for long term expression are described, for example, in European Publication No. 0437478B1, entitled "Cyclodextrin-Peptide Complexes." Nucleic acid sequences encoding a variety of hormones can be used, including those encoding human growth hormone, insulin, calcitonin, prolactin, follicle stimulating hormone (FSH), luteinizing hormone (LH), human chorionic gonadotropin (HCG), and thyroid stimulating hormone (TSH). A variety of different forms of IGF-1 and IGF-2 growth factor polypeptides are also well known the art and can be incorporated into gene transfer vectors for long term expression in vivo. See, e.g., European Patent No. 0123228B1, published for grant September 19, 1993, entitled "Hybrid DNA Synthesis of Mature Insulin-like Growth Factors." As an additional example, the long term in vivo expression of different forms of fibroblast growth factor can also be effected employing the

10

15

20

25

30

compositions and methods of invention. See, e.g., U.S. Patent Nos. 5,464,774, 5,155,214, and 4,994,559 for a description of different fibroblast growth factors.

Polynucleotide sequences coding for the above-described molecules can be obtained using recombinant methods, such as by screening cDNA and genomic libraries from cells expressing the gene, or by deriving the gene from a vector known to include the same. For example, plasmids which contain sequences that encode altered cellular products may be obtained from a depository such as the A.T.C.C., or from commercial sources. Plasmids containing the nucleotide sequences of interest can be digested with appropriate restriction enzymes, and DNA fragments containing the nucleotide sequences can be inserted into a gene transfer vector using standard molecular biology techniques.

Alternatively, cDNA sequences for use with the present invention may be obtained from cells which express or contain the sequences, using standard techniques, such as phenol extraction and PCR of cDNA or genomic DNA. See, e.g., Sambrook et al., supra, for a description of techniques used to obtain and isolate DNA. Briefly, mRNA from a cell which expresses the gene of interest can be reverse transcribed with reverse transcriptase using oligodT or random primers. The single stranded cDNA may then be amplified by PCR (see U.S. Patent Nos. 4,683,202, 4,683,195 and 4,800,159, see also PCR Technology: Principles and Applications for DNA Amplification, Erlich (ed.), Stockton Press, 1989)) using oligonucleotide primers complementary to sequences on either side of desired sequences.

The nucleotide sequence of interest can also be produced synthetically, rather than cloned, using a DNA

15

synthesizer (e.g., an Applied Biosystems Model 392 DNA Synthesizer, available from ABI, Foster City, California). The nucleotide sequence can be designed with the appropriate codons for the expression product desired. The complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge (1981) Nature 292:756; Nambair et al. (1984) Science 223:1299; Jay et al. (1984) J. Biol. Chem. 259:6311.

The synthetic expression cassettes of the present invention can be employed in the construction of packaging cell lines for use with retroviral vectors.

One type of retrovirus, the murine leukemia virus, or "MLV", has been widely utilized for gene therapy applications (see generally Mann et al. (Cell 33:153, 1993), Cane and Mulligan (Proc, Nat'l. Acad. Sci. USA 81:6349, 1984), and Miller et al., Human Gene 2lerapy 1:5-14,1990.

Lentiviral vectors typically, comprise a 5' lentiviral LTR, a tRNA binding site, a packaging signal, a promoter operably linked to one or more genes of interest, an origin 20 of second strand DNA synthesis and a 3' lentiviral LTR, wherein the lentiviral vector contains a nuclear transport The nuclear transport element may be located either upstream (5') or downstream (3') of a coding sequence of interest. Within certain embodiments, the nuclear 25 transport element is not RRE. Within one embodiment the packaging signal is an extended packaging signal. Within other embodiments the promoter is a tissue specific promoter, or, alternatively, a promoter such as CMV. Within other embodiments, the lentiviral vector further comprises 30 an internal ribosome entry site.

A wide variety of lentiviruses may be utilized within the context of the present invention, including for example, lentiviruses selected from the group consisting of HIV, HIV-1, HIV-2, FIV and SIV.

In one embodiment of the present invention synthetic Env and/or Gag-polymerase expression cassettes are provided comprising a promoter and a sequence encoding synthetic Gag-polymerase (SEQ ID NO:6) and at least one of vpr, vpu, nef or vif, wherein the promoter is operably linked to Gag-

10 polymerase and vpr, vpu, nef or vif.

Within yet another aspect of the invention, host cells (e.g., packaging cell lines) are provided which contain any of the expression cassettes described herein. For example, within one aspect packaging cell line are provided

comprising an expression cassette that comprises a sequence encoding synthetic Env and/or Gag-polymerase, and a nuclear transport element, wherein the promoter is operably linked to the sequence encoding Env and/or Gag-polymerase.

Packaging cell lines may further comprise a promoter and a sequence encoding tat, rev, or an envelope, wherein the promoter is operably linked to the sequence encoding tat, rev, or, the envelope. The packaging cell line may further comprise a sequence encoding any one or more of nef, vif, vpu or vpr.

In one embodiment, the expression cassette (carrying, for example, the synthetic Env, synthetic tat and/or synthetic Gag-polymerase) is stably integrated. The packaging cell line, upon introduction of a lentiviral vector, typically produces viral particles. The promoter regulating expression of the synthetic expression cassette may be inducible. Typically, the packaging cell line, upon introduction of a lentiviral vector, produces viral

10

15

20

particles that are essentially free of replication competent virus.

Packaging cell lines are provided comprising an expression cassette which directs the expression of a synthetic *Env* (or *Gag-polymerase*) gene, an expression cassette which directs the expression of a Gag (or Env) gene optimized for expression (e.g., Andre, S., et al., *Journal of Virology* 72(2):1497-1503, 1998; Haas, J., et al., *Current Biology* 6(3):315-324, 1996). A lentiviral vector is introduced into the packaging cell line to produce a vector particle producing cell line.

As noted above, lentiviral vectors can be designed to carry or express a selected gene(s) or sequences of interest. Lentiviral vectors may be readily constructed from a wide variety of lentiviruses (see RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985).

Representative examples of lentiviruses included HIV, HIV-1, HIV-2, FIV and SIV. Such lentiviruses may either be obtained from patient isolates, or, more preferably, from depositories or collections such as the American Type Culture Collection, or isolated from known sources using available techniques.

Portions of the lentiviral gene delivery vectors (or vehicles) may be derived from different viruses. For example, in a given recombinant lentiviral vector, LTRs may be derived from an HIV, a packaging signal from SIV, and an origin of second strand synthesis from HrV-2. Lentiviral vector constructs may comprise a 5' lentiviral LTR, a tRNA binding site, a packaging signal, one or more heterologous sequences, an origin of second strand DNA synthesis and a 3'

10

15

20

25

30

LTR, wherein said lentiviral vector contains a nuclear transport element that is not RRE.

Briefly, Long Terminal Repeats ("LTRs") are subdivided into three elements, designated U5, R and U3. These elements contain a variety of signals which are responsible for the biological activity of a retrovirus, including for example, promoter and enhancer elements which are located within U3. LTRs may be readily identified in the provirus (integrated DNA form) due to their precise duplication at either end of the genome. As utilized herein, a 5' LTR should be understood to include a 5' promoter element and sufficient LTR sequence to allow reverse transcription and integration of the DNA form of the vector. The 3' LTR should be understood to include a polyadenylation signal, and sufficient LTR sequence to allow reverse transcription and integration of the DNA form of the vector.

The tRNA binding site and origin of second strand DNA synthesis are also important for a retrovirus to be biologically active, and may be readily identified by one of skill in the art. For example, retroviral tRNA binds to a tRNA binding site by Watson-Crick base pairing, and is carried with the retrovirus genome into a viral particle. The tRNA is then utilized as a primer for DNA synthesis by reverse transcriptase. The tRNA binding site may be readily identified based upon its location just downstream from the 5'LTR. Similarly, the origin of second strand DNA synthesis is, as its name implies, important for the second strand DNA synthesis of a retrovirus. This region, which is also referred to as the poly-purine tract, is located just upstream of the 3'LTR.

In addition to a 5' and 3' LTR, tRNA binding site, and origin of second strand DNA synthesis, recombinant

20

30

retroviral vector constructs may also comprise a packaging signal, as well as one or more genes or coding sequences of interest. In addition, the lentiviral vectors have a nuclear transport element which, in preferred embodiments is not RRE. Representative examples of suitable nuclear transport elements include the element in Rous sarcoma virus (Ogert, et al., J Virol 70, 3834-3843, 1996), the element in Rous sarcoma virus (Liu & Mertz, Genes & Dev., 9, 1766-1789, 1995) and the element in the genome of simian retrovirus

type I (Zolotukhin, et al., J Virol. 68, 7944-7952, 1994).
Other potential elements include the elements in the histone gene (Kedes, Annu. Rev. Biochem. 48, 837-870, 1970), the α-interferon gene (Nagata et al., Nature 287, 401-408, 1980), the β-adrenergic receptor gene (Koilka, et al., Nature 329, 75-79, 1987), and the c-Jun gene (Hattorie, et al., Proc.

Natl. Acad. Sci. USA 85, 9148-9152, 1988).

Recombinant lentiviral vector constructs typically lack both Gag-polymerase and env coding sequences. Recombinant lentiviral vector typically contain less than 20, preferably 15, more preferably 10, and most preferably 8 consecutive nucleotides found in Gag-polymerase or env genes. One advantage of the present invention is that the synthetic Gag-polymerase expression cassettes, which can be used to construct packaging cell lines for the recombinant

retroviral vector constructs, have little homology to wildtype Gag-polymerase sequences and thus considerably reduce or eliminate the possibility of homologous recombination between the synthetic and wild-type sequences.

Lentiviral vectors may also include tissue-specific promoters to drive expression of one or more genes or sequences of interest. For example, lentiviral vector

particles of the invention can contain a liver specific promoter to maximize the potential for liver specific expression of the exogenous DNA sequence contained in the vectors. Preferred liver specific promoters include the hepatitis B X-gene promoter and the hepatitis B core protein promoter. These liver specific promoters are preferably employed with their respective enhancers. The enhancer element can be linked at either the 5' or the 3' end of the nucleic acid encoding the sequences of interest. The

hepatitis B X gene promoter and its enhancer can be obtained from the viral genome as a 332 base pair *EcoRV-NcoI* DNA fragment employing the methods described in Twu, et al., *J Virol*. 61:3448-3453, 1987. The hepatitis B core protein promoter can be obtained from the viral genome as a 584 base pair *BamHI-BgIII* DNA fragment employing the methods

pair BamHI-BglII DNA fragment employing the methods described in Gerlach, et al., Virol 189:59-66, 1992. It may be necessary to remove the negative regulatory sequence in the BamHI-BglII fragment prior to inserting it. Other liver specific promoters include the AFP (alpha fetal protein)

gene promoter and the albumin gene promoter, as disclosed in EP Patent Publication 0 415 731, the -1 antitrypsin gene promoter, as disclosed in Rettenger, et al., Proc. Natl. Acad. Sci. 91:1460-1464, 1994, the fibrinogen gene promoter, the APO-A1 (Apolipoprotein A1) gene promoter, and

the promoter genes for liver transference enzymes such as, for example, SGOT, SGPT and glutamyle transferase. See also PCT Patent Publications WO 90/07936 and WO 91/02805 for a description of the use of liver specific promoters in lentiviral vector particles.

Lentiviral vector constructs may be generated such that more than one gene of interest is expressed. This may be

10

15

20

25

30

accomplished through the use of di- or oligo-cistronic cassettes (e.g., where the coding regions are separated by 80 nucleotides or less, see generally Levin et al., Gene 108:167-174, 1991), or through the use of Internal Ribosome Entry Sites ("IRES").

Packaging cell lines suitable for use with the above described recombinant retroviral vector constructs may be readily prepared given the disclosure provided herein. Briefly, the parent cell line from which the packaging cell line is derived can be selected from a variety of mammalian cell lines, including for example, 293, RD, COS-7, CHO, BHK, VERO, HT1080, and myeloma cells.

After selection of a suitable host cell for the generation of a packaging cell line, one or more expression cassettes are introduced into the cell line in order to complement or supply in *trans* components of the vector which have been deleted.

Representative examples of suitable expression cassettes have been described herein and include synthetic Env, tat, Gag, synthetic Gag-protease, synthetic Gag-reverse transcriptase and synthetic Gag-polymerase expression cassettes, which comprise a promoter and a sequence encoding, e.g., Env, tat, or Gag-polymerase and at least one of vpr, vpu, nef or vif, wherein the promoter is operably linked to Env, tat or Gag-polymerase and vpr, vpu, nef or vif. As described above, optimized Env, Gag and/or tat coding sequences may also be utilized in various combinations in the generation of packaging cell lines.

Utilizing the above-described expression cassettes, a wide variety of packaging cell lines can be generated. For example, within one aspect packaging cell line are provided

20

25

30

comprising an expression cassette that comprises a sequence encoding synthetic HIV (e.g., Gag, Env, tat, Gag-polymerase, Gag-reverse transcriptase or Gag-protease) polypeptide, and a nuclear transport element, wherein the promoter is

operably linked to the sequence encoding the HIV polypeptide. Within other aspects, packaging cell lines are provided comprising a promoter and a sequence encoding Gag, tat, rev, or an envelope (e.g., HIV env), wherein the promoter is operably linked to the sequence encoding Gag,

tat, rev, or, the envelope. Within further embodiments, the packaging cell line may comprise a sequence encoding any one or more of nef, vif, vpu or vpr. For example, the packaging cell line may contain only nef, vif, vpu, or vpr alone, nef and vif, nef and vpu, nef and vpr, vif and vpu, vif and vpr, vpu and vpr, nef vif and vpu, nef vif and vpr, nef vpu and vpr, vvir vpu and vpr, or, all four of nef vif vpu and vpr.

In one embodiment, the expression cassette is stably integrated. Within another embodiment, the packaging cell line, upon introduction of a lentiviral vector, produces particles. Within further embodiments the promoter is inducible. Within certain preferred embodiments of the invention, the packaging cell line, upon introduction of a lentiviral vector, produces particles that are free of replication competent virus.

The synthetic cassettes containing optimized coding sequences are transfected into a selected cell line.

Transfected cells are selected that (i) carry, typically, integrated, stable copies of the Gag, Pol, and Env coding sequences, and (ii) are expressing acceptable levels of these polypeptides (expression can be evaluated by methods known in the prior art, e.g., see Examples 1-4). The

10

15

20

ability of the cell line to produce VLPs may also be verified (Examples 6, 7 and 15).

A sequence of interest is constructed into a suitable viral vector as discussed above. This defective virus is then transfected into the packaging cell line. The packaging cell line provides the viral functions necessary for producing virus-like particles into which the defective viral genome, containing the sequence of interest, are packaged. These VLPs are then isolated and can be used, for example, in gene delivery or gene therapy.

Further, such packaging cell lines can also be used to produce VLPs alone, which can, for example, be used as adjuvants for administration with other antigens or in vaccine compositions. Also, co-expression of a selected sequence of interest encoding a polypeptide (for example, an antigen) in the packaging cell line can also result in the entrapment and/or association of the selected polypeptide in/with the VLPs.

2.3 DNA IMMUNIZATION AND GENE DELIVERY

A variety of polypeptide antigens can be used in the practice of the present invention. Polypeptide antigens can be included in DNA immunization constructs containing, for example, any of the synthetic expression cassettes described herein fused in-frame to a coding sequence for the polypeptide antigen, where expression of the construct results in VLPs presenting the antigen of interest. Antigens can be derived from a wide variety of viruses, bacteria, fungi, plants, protozoans and other parasites.

For example, the present invention will find use for

stimulating an immune response against a wide variety of

10

15

proteins from the herpesvirus family, including proteins derived from herpes simplex virus (HSV) types 1 and 2, such as HSV-1 and HSV-2 gB, gD, gH, VP16 and VP22; antigens derived from varicella zoster virus (VZV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) including CMV gB and gH; and antigens derived from other human herpesviruses such as HHV6 and HHV7. (See, e.g. Chee et al., Cytomegaloviruses (J.K. McDougall, ed., Springer-Verlag 1990) pp. 125-169, for a review of the protein coding content of cytomegalovirus; McGeoch et al., J. Gen. Virol. (1988) 69:1531-1574, for a discussion of the various HSV-1 encoded proteins; U.S. Patent No. 5,171,568 for a discussion of HSV-1 and HSV-2 gB and gD proteins and the genes encoding therefore; Baer et al., Nature (1984) 310:207-211, for the identification of protein coding sequences in an EBV genome; and Davison and Scott, J. Gen. Virol. (1986) $\underline{67}$:1759-1816, for a review of VZV.)

Additionally, immune responses to antigens from the hepatitis family of viruses, including hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), the 20 delta hepatitis virus (HDV), hepatitis E virus (HEV), and hepatitis G virus, can also be stimulated using the constructs of the present invention. By way of example, the HCV genome encodes several viral proteins, including E1 (also known as E) and E2 (also known as E2/NSI), which will 25 find use with the present invention (see, Houghton et al. Hepatology (1991) 14:381-388, for a discussion of HCV proteins, including E1 and E2). The $\delta\text{-antigen}$ from HDV can also be used (see, e.g., U.S. Patent No. 5,389,528, for a 30 description of the δ -antigen).

10

15

20

25

30

Similarly, influenza virus is another example of a virus for which the present invention will be particularly useful. Specifically, the envelope glycoproteins HA and NA of influenza A are of particular interest for generating an immune response. Numerous HA subtypes of influenza A have been identified (Kawaoka et al., Virology (1990) 179:759-767; Webster et al. "Antigenic variation among type A influenza viruses," p. 127-168. In: P. Palese and D.W. Kingsbury (ed.), Genetics of influenza viruses. Springer-Verlag, New York).

Other antigens of particular interest to be used in the practice of the present invention include antigens and polypeptides derived therefrom from human papillomavirus (HPV), such as one or more of the various early proteins including E6 and E7; tick-borne encephalitis viruses; and HIV-1 (also known as HTLV-III, LAV, ARV, etc.), including, but not limited to, antigens such as gp120, gp41, gp160, Gag and pol from a variety of isolates including, but not limited to, $\mathrm{HIV_{IIIb}}$, $\mathrm{HIV_{SF2}}$, $\mathrm{HIV-1_{SF162}}$, $\mathrm{HIV-1_{SF170}}$, $\mathrm{HIV_{LAV}}$, $\mathrm{HIV_{LAI}}$, HIV_{MN}, HIV-1_{CM235}, HIV-1_{US4}, other HIV-1 strains from diverse subtypes (e.g., subtypes, A through G, and O), HIV-2 strains and diverse subtypes (e.g., HIV-2_{uct} and HIV-2_{uct}). See, e.g., Myers, et al., Los Alamos Database, Los Alamos National Laboratory, Los Alamos, New Mexico; Myers, et al., Human Retroviruses and Aids, 1990, Los Alamos, New Mexico: Los Alamos National Laboratory.

Proteins derived from other viruses will also find use in the claimed methods, such as without limitation, proteins from members of the families Picornaviridae (e.g., polioviruses, etc.); Caliciviridae; Togaviridae (e.g.,

rubella virus, dengue virus, etc.); Flaviviridae;

10

15

20

25

30

Coronaviridae; Reoviridae; Birnaviridae; Rhabodoviridae (e.g., rabies virus, etc.); Filoviridae; Paramyxoviridae (e.g., mumps virus, measles virus, respiratory syncytial virus, etc.); Orthomyxoviridae (e.g., influenza virus types A, B and C, etc.); Bunyaviridae; Arenaviridae; Retroviradae, e.g., HTLV-I; HTLV-II; HIV-1; HIV-2; simian immunodeficiency virus (SIV) among others. See, e.g. Virology, 3rd Edition (W.K. Joklik ed. 1988); Fundamental Virology, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991; Virology, 3rd Edition (Fields, BN, DM Knipe, PM Howley, Editors, 1996, Lippincott-Raven, Philadelphia, PA) for a description of these and other viruses.

Particularly preferred bacterial antigens are derived from organisms that cause diphtheria, tetanus, pertussis, meningitis, and other pathogenic states, including, without limitation, antigens derived from Corynebacterium diphtheriae, Clostridium tetani, Bordetella pertusis, Neisseria meningitidis, including serotypes Meningococcus A, B, C, Y and WI35 (MenA, B, C, Y and WI35), Haemophilus influenza type B (Hib), and Helicobacter pylori. Examples of parasitic antigens include those derived from organisms causing malaria, tuberculosis, and Lyme disease.

Furthermore, the methods described herein provide means for treating a variety of malignant cancers. For example, the system of the present invention can be used to enhance both humoral and cell-mediated immune responses to particular proteins specific to a cancer in question, such as an activated oncogene, a fetal antigen, or an activation marker. Such tumor antigens include any of the various MAGEs (melanoma associated antigen E), including MAGE 1, 2, 3, 4, etc. (Boon, T. Scientific American (March 1993):82-

10

15

20

89); any of the various tyrosinases; MART 1 (melanoma antigen recognized by T cells), mutant ras; mutant p53; p97 melanoma antigen; CEA (carcinoembryonic antigen), among others.

DNA immunization using synthetic expression cassettes of the present invention has been demonstrated to be efficacious (Examples 8 and 10-12). Animals were immunized with both the synthetic expression cassette and the wild type expression cassette. The results of the immunizations with plasmid-DNAs showed that the synthetic expression cassettes provide a clear improvement of immunogenicity relative to the native expression cassettes. Also, the second boost immunization induced a secondary immune response, for example after two to eight weeks. Further, the results of CTL assays showed increased potency of synthetic expression cassettes for induction of cytotoxic T-lymphocyte (CTL) responses by DNA immunization.

It is readily apparent that the subject invention can be used to mount an immune response to a wide variety of antigens and hence to treat or prevent a large number of diseases.

2.3.1 DELIVERY OF THE SYNTHETIC EXPRESSION CASSETTES OF THE PRESENT INVENTION

Polynucleotide sequences coding for the above-described molecules can be obtained using recombinant methods, such as by screening cDNA and genomic libraries from cells expressing the gene, or by deriving the gene from a vector known to include the same. The sequences can be analyzed by conventional sequencing techniques. Furthermore, the desired gene can be isolated directly from cells and tissues

10

15

20

25

containing the same, using standard techniques, such as phenol extraction and PCR of cDNA or genomic DNA. See, e.g., Sambrook et al., supra, for a description of techniques used to obtain, isolate and sequence DNA. Once the sequence is known, the gene of interest can also be produced synthetically, rather than cloned. The nucleotide sequence can be designed with the appropriate codons for the particular amino acid sequence desired. In general, one will select preferred codons for the intended host in which the sequence will be expressed. The complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge, Nature (1981) 292:756; Nambair et al., Science (1984) 223:1299; Jay et al., J. Biol. Chem.

(1984) 259:6311; Stemmer, W.P.C., (1995) Gene 164:49-53.

Next, the gene sequence encoding the desired antigen can be inserted into a vector containing a synthetic expression cassette of the present invention (e.g., see Example 1 for construction of various exemplary synthetic expression cassette). The antigen is inserted into the synthetic coding sequence such that when the combined sequence is expressed it results in the production of VLPs comprising the polypeptide and/or the antigen of interest. Insertions can be made within the Gag coding sequence or at either end of the coding sequence (5', amino terminus of the expressed polypeptide; or 3', carboxy terminus of the expressed polypeptide -- e.g., see Example 1) (Wagner, R., et al., Arch Virol. 127:117-137, 1992; Wagner, R., et al., Virology 200:162-175, 1994; Wu, X., et al., J. Virol.

30 69(6):3389-3398, 1995; Wang, C-T., et al., Virology 200:524-534, 1994; Chazal, N., et al., Virology 68(1):111-122, 1994;

10

15

20

25

30

Griffiths, J.C., et al., J. Virol. 67(6):3191-3198, 1993; Reicin, A.S., et al., J. Virol. 69(2):642-650, 1995).

Up to 50% of the coding sequences of p55Gag can be deleted without affecting the assembly to virus-like particles and expression efficiency (Borsetti, A., et al, J. Virol. 72(11):9313-9317, 1998; Gamier, L., et al., J Virol 72(6):4667-4677, 1998; Zhang, Y., et al., J Virol 72(3):1782-1789, 1998; Wang, C., et al., J Virol 72(10): 7950-7959, 1998). In one embodiment of the present invention, immunogenicity of the high level expressing synthetic p55GagMod and p55GagProtMod expression cassettes can be increased by the insertion of different structural or non-structural HIV antigens, multiepitope cassettes, or cytokine sequences into deleted, mutated or truncated regions of p55GagMod sequence. In another embodiment of the present invention, immunogenicity of the high level expressing synthetic Env expression cassettes can be increased by the insertion of different structural or nonstructural HIV antigens, multiepitope cassettes, or cytokine sequences into deleted regions of gp120Mod, gp140Mod or gp160Mod sequences. Such deletions may be generated following the teachings of the present invention and information available to one of ordinary skill in the art. One possible advantage of this approach, relative to using full-length modified Env sequences fused to heterologous polypeptides, can be higher expression/secretion efficiency and/or higher immunogenicity of the expression product. Such deletions may be generated following the teachings of the present invention and information available to one of ordinary skill in the art. One possible advantage of this

approach, relative to using full-length Env, Gag or Tat

10

15

20

25

sequences fused to heterologous polypeptides, can be higher expression/secretion efficiency and/or immunogenicity of the expression product.

When sequences are added to the amino terminal end of Gag (for example, when using the synthetic p55GagMod expression cassette of the present invention), the polynucletide can contain coding sequences at the 5' end that encode a signal for addition of a myristic moiety to the Gag-containing polypeptide (e.g., sequences that encode Met-Gly).

The ability of Gag-containing polypeptide constructs to form VLPs can be empirically determined following the teachings of the present specification.

HIV polypeptide/antigen synthetic expression cassettes include control elements operably linked to the coding sequence, which allow for the expression of the gene in vivo in the subject species. For example, typical promoters for mammalian cell expression include the SV40 early promoter, a CMV promoter such as the CMV immediate early promoter, the mouse mammary tumor virus LTR promoter, the adenovirus major late promoter (Ad MLP), and the herpes simplex virus promoter, among others. Other nonviral promoters, such as a promoter derived from the murine metallothionein gene, will also find use for mammalian expression. Typically, transcription termination and polyadenylation sequences will also be present, located 3' to the translation stop codon. Preferably, a sequence for optimization of initiation of translation, located 5' to the coding sequence, is also present. Examples of transcription

30 terminator/polyadenylation signals include those derived

10

15

20

25

30

from SV40, as described in Sambrook et al., supra, as well as a bovine growth hormone terminator sequence.

Enhancer elements may also be used herein to increase expression levels of the mammalian constructs. Examples include the SV40 early gene enhancer, as described in Dijkema et al., EMBO J. (1985) 4:761, the enhancer/promoter derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus, as described in Gorman et al., Proc. Natl. Acad. Sci. USA (1982b) 79:6777 and elements derived from human CMV, as described in Boshart et al., Cell (1985) 41:521, such as elements included in the CMV intron A sequence.

Furthermore, plasmids can be constructed which include a chimeric antigen-coding gene sequences, encoding, e.g., multiple antigens/epitopes of interest, for example derived from a single or from more than one viral isolate.

Typically the antigen coding sequences precede or follow the synthetic coding sequences and the chimeric transcription unit will have a single open reading frame encoding both the antigen of interest and the synthetic Gag coding sequences. Alternatively, multi-cistronic cassettes (e.g., bi-cistronic cassettes) can be constructed allowing expression of multiple antigens from a single mRNA using the EMCV IRES, or the like. Lastly, antigens can be encoded on separate transcripts from independent promoters on a single plasmid or other vector.

Once complete, the constructs are used for nucleic acid immunization or the like using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Patent Nos. 5,399,346, 5,580,859, 5,589,466. Genes can be delivered either directly to the vertebrate

10

15

20

25

30

subject or, alternatively, delivered ex vivo, to cells derived from the subject and the cells reimplanted in the subject.

A number of viral based systems have been developed for gene transfer into mammalian cells. For example, retroviruses provide a convenient platform for gene delivery systems. Selected sequences can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo. A number of retroviral systems have been described (U.S. Patent No. 5,219,740; Miller and Rosman, BioTechniques (1989) 7:980-990; Miller, A.D., Human Gene Therapy (1990) 1:5-14; Scarpa et al., Virology (1991) 180:849-852; Burns et al., Proc. Natl. Acad. Sci. USA (1993) 90:8033-8037; and Boris-Lawrie and Temin, Cur. Opin. Genet. Develop. (1993) 3:102-109.

A number of adenovirus vectors have also been described. Unlike retroviruses which integrate into the host genome, adenoviruses persist extrachromosomally thus minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and Graham, J. Virol. (1986) 57:267-274; Bett et al., J. Virol. (1993) 67:5911-5921; Mittereder et al., Human Gene Therapy (1994) 5:717-729; Seth et al., J. Virol. (1994) 68:933-940; Barr et al., Gene Therapy (1994) 1:51-58; Berkner, K.L. BioTechniques (1988) 6:616-629; and Rich et al., Human Gene Therapy (1993) 4:461-476).

Additionally, various adeno-associated virus (AAV) vector systems have been developed for gene delivery. AAV vectors can be readily constructed using techniques well known in the art. See, e.g., U.S. Patent Nos. 5,173,414 and

10

15

20

25

30

5,139,941; International Publication Nos. WO 92/01070 (published 23 January 1992) and WO 93/03769 (published 4 March 1993); Lebkowski et al., Molec. Cell. Biol. (1988) 8:3988-3996; Vincent et al., Vaccines 90 (1990) (Cold Spring Harbor Laboratory Press); Carter, B.J. Current Opinion in Biotechnology (1992) 3:533-539; Muzyczka, N. Current Topics in Microbiol. and Immunol. (1992) 158:97-129; Kotin, R.M. Human Gene Therapy (1994) 5:793-801; Shelling and Smith, Gene Therapy (1994) 1:165-169; and Zhou et al., J. Exp. Med. (1994) 179:1867-1875.

Another vector system useful for delivering the polynucleotides of the present invention is the enterically administered recombinant poxvirus vaccines described by Small, Jr., P.A., et al. (U.S. Patent No. 5,676,950, issued October 14, 1997, herein incorporated by reference).

Additional viral vectors which will find use for delivering the nucleic acid molecules encoding the antigens of interest include those derived from the pox family of viruses, including vaccinia virus and avian poxvirus. way of example, vaccinia virus recombinants expressing the genes can be constructed as follows. The DNA encoding the particular synthetic Gag/antigen coding sequence is first inserted into an appropriate vector so that it is adjacent to a vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence encoding thymidine kinase (TK). vector is then used to transfect cells which are simultaneously infected with vaccinia. Homologous recombination serves to insert the vaccinia promoter plus the gene encoding the coding sequences of interest into the viral genome. The resulting TK-recombinant can be selected by culturing the cells in the presence of 5-

20

25

30

bromodeoxyuridine and picking viral plaques resistant thereto.

Alternatively, avipoxviruses, such as the fowlpox and canarypox viruses, can also be used to deliver the genes.

Recombinant avipox viruses, expressing immunogens from mammalian pathogens, are known to confer protective immunity when administered to non-avian species. The use of an avipox vector is particularly desirable in human and other mammalian species since members of the avipox genus can only productively replicate in susceptible avian species and therefore are not infective in mammalian cells. Methods for producing recombinant avipoxviruses are known in the art and employ genetic recombination, as described above with respect to the production of vaccinia viruses. See, e.g.,

Molecular conjugate vectors, such as the adenovirus chimeric vectors described in Michael et al., J. Biol. Chem. (1993) 268:6866-6869 and Wagner et al., Proc. Natl. Acad. Sci. USA (1992) 89:6099-6103, can also be used for gene delivery.

WO 91/12882; WO 89/03429; and WO 92/03545.

Members of the Alphavirus genus, such as, but not limited to, vectors derived from the Sindbis, Semliki Forest, and Venezuelan Equine Encephalitis viruses, will also find use as viral vectors for delivering the polynucleotides of the present invention (for example, a synthetic Gag- or Env-polypeptide encoding expression cassette as described in Example 14 below). For a description of Sindbis-virus derived vectors useful for the practice of the instant methods, see, Dubensky et al., J. Virol. (1996) 70:508-519; and International Publication Nos. WO 95/07995 and WO 96/17072; as well as, Dubensky, Jr.,

10

15

20

25

30

T.W., et al., U.S. Patent No. 5,843,723, issued December 1, 1998, and Dubensky, Jr., T.W., U.S. Patent No. 5,789,245, issued August 4, 1998, both herein incorporated by reference.

A vaccinia based infection/transfection system can be conveniently used to provide for inducible, transient expression of the coding sequences of interest (for example, a synthetic Gag/HCV-core expression cassette) in a host In this system, cells are first infected in vitro with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This polymerase displays exquisite specificity in that it only transcribes templates bearing T7 promoters. Following infection, cells are transfected with the polynucleotide of interest, driven by a T7 promoter. The polymerase expressed in the cytoplasm from the vaccinia virus recombinant transcribes the transfected DNA into RNA which is then translated into protein by the host translational machinery. The method provides for high level, transient, cytoplasmic production of large quantities of RNA and its translation products. See, e.g., Elroy-Stein and Moss, Proc. Natl. Acad. Sci. USA (1990) 87:6743-6747; Fuerst et al., Proc. Natl. Acad. Sci. USA (1986) 83:8122-8126.

As an alternative approach to infection with vaccinia or avipox virus recombinants, or to the delivery of genes using other viral vectors, an amplification system can be used that will lead to high level expression following introduction into host cells. Specifically, a T7 RNA polymerase promoter preceding the coding region for T7 RNA polymerase can be engineered. Translation of RNA derived from this template will generate T7 RNA polymerase which in

10

15

20

25

30

turn will transcribe more template. Concomitantly, there will be a cDNA whose expression is under the control of the Thus, some of the T7 RNA polymerase generated T7 promoter. from translation of the amplification template RNA will lead to transcription of the desired gene. Because some T7 RNA polymerase is required to initiate the amplification, T7 RNA polymerase can be introduced into cells along with the template(s) to prime the transcription reaction. polymerase can be introduced as a protein or on a plasmid encoding the RNA polymerase. For a further discussion of T7 systems and their use for transforming cells, see, e.g., International Publication No. WO 94/26911; Studier and Moffatt, J. Mol. Biol. (1986) 189:113-130; Deng and Wolff, Gene (1994) 143:245-249; Gao et al., Biochem. Biophys. Res. Commun. (1994) 200:1201-1206; Gao and Huang, Nuc. Acids Res. (1993) <u>21</u>:2867-2872; Chen et al., *Nuc. Acids Res.* (1994) 22:2114-2120; and U.S. Patent No. 5,135,855.

The synthetic expression cassette of interest can also be delivered without a viral vector. For example, the synthetic expression cassette can be packaged as DNA or RNA in liposomes prior to delivery to the subject or to cells derived therefrom. Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed DNA to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight, Biochim. Biophys. Acta. (1991) 1097:1-17; Straubinger et al., in Methods of Enzymology (1983), Vol. 101, pp. 512-527.

10

15

20

25

30

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations, with cationic liposomes particularly preferred. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416); mRNA (Malone et al., Proc. Natl. Acad. Sci. USA (1989) 86:6077-6081); and purified transcription factors (Debs et al., J. Biol. Chem. (1990) 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416). Other commercially available lipids include (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g., Szoka et al., Proc. Natl. Acad. Sci. USA (1978) 75:4194-4198; PCT Publication No. WO 90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as, from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for

10

15

20

making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See, e.g., Straubinger et al., in METHODS OF IMMUNOLOGY (1983), Vol. 101, pp. 512-527; Szoka et al., Proc. Natl. Acad. Sci. USA (1978) 75:4194-4198; Papahadjopoulos et al., Biochim. Biophys. Acta (1975) 394:483; Wilson et al., Cell (1979) 17:77); Deamer and Bangham, Biochim. Biophys. Acta (1976) 443:629; Ostro et al., Biochem. Biophys. Res. Commun. (1977) 76:836; Fraley et al., Proc. Natl. Acad. Sci. USA (1979) 76:3348); Enoch and Strittmatter, Proc. Natl. Acad. Sci. USA (1979) 76:145); Fraley et al., J. Biol. Chem. (1980) 255:10431; Szoka and Papahadjopoulos, Proc. Natl. Acad. Sci. USA (1978) 75:145; and Schaefer-Ridder et al., Science (1982) 215:166.

The DNA and/or protein antigen(s) can also be delivered in cochleate lipid compositions similar to those described by Papahadjopoulos et al., *Biochem. Biophys. Acta.* (1975) 394:483-491. See, also, U.S. Patent Nos. 4,663,161 and 4,871,488.

The synthetic expression cassette of interest (e.g.,
any of the synthetic expression cassettes described in
Example 1) may also be encapsulated, adsorbed to, or
associated with, particulate carriers. Such carriers
present multiple copies of a selected antigen to the immune
system and promote migration, trapping and retention of
antigens in local lymph nodes. The particles can be taken
up by profession antigen presenting cells such as

10

15

20

25

30

macrophages and dendritic cells, and/or can enhance antigen presentation through other mechanisms such as stimulation of cytokine release. Examples of particulate carriers include those derived from polymethyl methacrylate polymers, as well as microparticles derived from poly(lactides) and poly(lactide-co-glycolides), known as PLG. See, e.g., Jeffery et al., Pharm. Res. (1993) 10:362-368; McGee JP, et al., J Microencapsul. 14(2):197-210, 1997; O'Hagan DT, et al., Vaccine 11(2):149-54, 1993.

Furthermore, other particulate systems and polymers can be used for the in vivo or ex vivo delivery of the gene of interest. For example, polymers such as polylysine, polyarginine, polyornithine, spermine, spermidine, as well as conjugates of these molecules, are useful for transferring a nucleic acid of interest. Similarly, DEAE dextran-mediated transfection, calcium phosphate precipitation or precipitation using other insoluble inorganic salts, such as strontium phosphate, aluminum silicates including bentonite and kaolin, chromic oxide, magnesium silicate, talc, and the like, will find use with the present methods. See, e.g., Felgner, P.L., Advanced Drug Delivery Reviews (1990) 5:163-187, for a review of delivery systems useful for gene transfer. Peptoids (Zuckerman, R.N., et al., U.S. Patent No. 5,831,005, issued November 3, 1998, herein incorporated by reference) may also be used for delivery of a construct of the present invention.

Additionally, biolistic delivery systems employing particulate carriers such as gold and tungsten, are especially useful for delivering synthetic expression cassettes of the present invention. The particles are

10

15

20

25

30

coated with the synthetic expression cassette(s) to be delivered and accelerated to high velocity, generally under a reduced atmosphere, using a gun powder discharge from a "gene gun." For a description of such techniques, and apparatuses useful therefore, see, e.g., U.S. Patent Nos. 4,945,050; 5,036,006; 5,100,792; 5,179,022; 5,371,015; and 5,478,744. Also, needle-less injection systems can be used (Davis, H.L., et al, *Vaccine* 12:1503-1509, 1994; Bioject, Inc., Portland, OR).

Recombinant vectors carrying a synthetic expression cassette of the present invention are formulated into compositions for delivery to the vertebrate subject. These compositions may either be prophylactic (to prevent infection) or therapeutic (to treat disease after infection). The compositions will comprise a "therapeutically effective amount" of the gene of interest such that an amount of the antigen can be produced in vivo so that an immune response is generated in the individual to which it is administered. The exact amount necessary will vary depending on the subject being treated; the age and general condition of the subject to be treated; the capacity of the subject's immune system to synthesize antibodies; the degree of protection desired; the severity of the condition being treated; the particular antigen selected and its mode of administration, among other factors. An appropriate effective amount can be readily determined by one of skill in the art. Thus, a "therapeutically effective amount" will fall in a relatively broad range that can be determined through routine trials.

The compositions will generally include one or more "pharmaceutically acceptable excipients or vehicles" such as

10

15

20

25

30

water, saline, glycerol, polyethyleneglycol, hyaluronic acid, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, surfactants and the like, may be present in such vehicles. Certain facilitators of immunogenicity or of nucleic acid uptake and/or expression can also be included in the compositions or coadministered, such as, but not limited to, bupivacaine, cardiotoxin and sucrose.

Once formulated, the compositions of the invention can be administered directly to the subject (e.g., as described above) or, alternatively, delivered ex vivo, to cells derived from the subject, using methods such as those described above. For example, methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and can include, e.g., dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) (with or without the corresponding antigen) in liposomes, and direct microinjection of the DNA into nuclei.

Direct delivery of synthetic expression cassette compositions in vivo will generally be accomplished with or without viral vectors, as described above, by injection using either a conventional syringe, needless devices such as Bioject® or a gene gun, such as the Accell® gene delivery system (PowderJect Technologies, Inc., Oxford, England). The constructs can be delivered (e.g., injected) either subcutaneously, epidermally, intradermally, intramuscularly, intravenous, intramucosally (such as nasally, rectally and

10

15

20

25

30

vaginally), intraperitoneally or orally. Delivery of DNA into cells of the epidermis is particularly preferred as this mode of administration provides access to skin-associated lymphoid cells and provides for a transient presence of DNA in the recipient. Other modes of administration include oral ingestion and pulmonary administration, suppositories, needle-less injection, transcutaneous and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule.

2.3.2 Ex vivo Delivery of the synthetic expression cassettes of the present invention

In one embodiment, T cells, and related cell types (including but not limited to antigen presenting cells, such as, macrophage, monocytes, lymphoid cells, dendritic cells, B-cells, T-cells, stem cells, and progenitor cells thereof), can be used for ex vivo delivery of the synthetic expression cassettes of the present invention. T cells can be isolated from peripheral blood lymphocytes (PBLs) by a variety of procedures known to those skilled in the art. For example, T cell populations can be "enriched" from a population of PBLs through the removal of accessory and B cells. particular, T cell enrichment can be accomplished by the elimination of non-T cells using anti-MHC class II monoclonal antibodies. Similarly, other antibodies can be used to deplete specific populations of non-T cells. example, anti-Ig antibody molecules can be used to deplete B cells and anti-MacI antibody molecules can be used to deplete macrophages.

10

15

20

25

30

T cells can be further fractionated into a number of different subpopulations by techniques known to those skilled in the art. Two major subpopulations can be isolated based on their differential expression of the cell surface markers CD4 and CD8. For example, following the enrichment of T cells as described above, CD4* cells can be enriched using antibodies specific for CD4 (see Coligan et al., supra). The antibodies may be coupled to a solid support such as magnetic beads. Conversely, CD8+ cells can be enriched through the use of antibodies specific for CD4 (to remove CD4* cells), or can be isolated by the use of CD8 antibodies coupled to a solid support. CD4 lymphocytes from HIV-1 infected patients can be expanded ex vivo, before or after transduction as described by Wilson et. al. (1995) J. Infect. Dis. 172:88.

Following purification of T cells, a variety of methods of genetic modification known to those skilled in the art can be performed using non-viral or viral-based gene transfer vectors constructed as described herein. For example, one such approach involves transduction of the purified T cell population with vector-containing supernatant of cultures derived from vector producing cells. A second approach involves co-cultivation of an irradiated monolayer of vector-producing cells with the purified T cells. A third approach involves a similar co-cultivation approach; however, the purified T cells are pre-stimulated with various cytokines and cultured 48 hours prior to the co-cultivation with the irradiated vector producing cells. Pre-stimulation prior to such transduction increases effective gene transfer (Nolta et al. (1992) Exp. Hematol. 20:1065). Stimulation of these cultures to proliferate also

10

15

20

25

30

provides increased cell populations for re-infusion into the patient. Subsequent to co-cultivation, T cells are collected from the vector producing cell monolayer, expanded, and frozen in liquid nitrogen.

Gene transfer vectors, containing one or more synthetic expression cassette of the present invention (associated with appropriate control elements for delivery to the isolated T cells) can be assembled using known methods.

Selectable markers can also be used in the construction of gene transfer vectors. For example, a marker can be used which imparts to a mammalian cell transduced with the gene transfer vector resistance to a cytotoxic agent. The cytotoxic agent can be, but is not limited to, neomycin, aminoglycoside, tetracycline, chloramphenicol, sulfonamide, actinomycin, netropsin, distamycin A, anthracycline, or pyrazinamide. For example, neomycin phosphotransferase II imparts resistance to the neomycin analogue geneticin (G418).

The T cells can also be maintained in a medium containing at least one type of growth factor prior to being selected. A variety of growth factors are known in the art which sustain the growth of a particular cell type. Examples of such growth factors are cytokine mitogens such as rIL-2, IL-10, IL-12, and IL-15, which promote growth and activation of lymphocytes. Certain types of cells are stimulated by other growth factors such as hormones, including human chorionic gonadotropin (hCG) and human growth hormone. The selection of an appropriate growth factor for a particular cell population is readily accomplished by one of skill in the art.

For example, white blood cells such as differentiated progenitor and stem cells are stimulated by a variety of

10

15

20

25

30

growth factors. More particularly, IL-3, IL-4, IL-5, IL-6, IL-9, GM-CSF, M-CSF, and G-CSF, produced by activated $T_{\rm H}$ and activated macrophages, stimulate myeloid stem cells, which then differentiate into pluripotent stem cells, granulocytemonocyte progenitors, eosinophil progenitors, basophil progenitors, megakaryocytes, and erythroid progenitors. Differentiation is modulated by growth factors such as GM-CSF, IL-3, IL-6, IL-11, and EPO.

Pluripotent stem cells then differentiate into lymphoid stem cells, bone marrow stromal cells, T cell progenitors, B cell progenitors, thymocytes, $T_{\rm H}$ Cells, $T_{\rm C}$ cells, and B cells. This differentiation is modulated by growth factors such as IL-3, IL-4, IL-6, IL-7, GM-CSF, M-CSF, G-CSF, IL-2, and IL-5.

Granulocyte-monocyte progenitors differentiate to monocytes, macrophages, and neutrophils. Such differentiation is modulated by the growth factors GM-CSF, M-CSF, and IL-8. Eosinophil progenitors differentiate into eosinophils. This process is modulated by GM-CSF and IL-5.

The differentiation of basophil progenitors into mast cells and basophils is modulated by GM-CSF, IL-4, and IL-9. Megakaryocytes produce platelets in response to GM-CSF, EPO, and IL-6. Erythroid progenitor cells differentiate into red blood cells in response to EPO.

Thus, during activation by the CD3-binding agent, T cells can also be contacted with a mitogen, for example a cytokine such as IL-2. In particularly preferred embodiments, the IL-2 is added to the population of T cells at a concentration of about 50 to 100 μ g/ml. Activation with the CD3-binding agent can be carried out for 2 to 4 days.

10

15

20

25

30

Once suitably activated, the T cells are genetically modified by contacting the same with a suitable gene transfer vector under conditions that allow for transfection of the vectors into the T cells. Genetic modification is carried out when the cell density of the T cell population is between about 0.1×10^6 and 5×10^6 , preferably between about 0.5×10^6 and 2×10^6 . A number of suitable viral and nonviral-based gene transfer vectors have been described for use herein.

After transduction, transduced cells are selected away from non-transduced cells using known techniques. example, if the gene transfer vector used in the transduction includes a selectable marker which confers resistance to a cytotoxic agent, the cells can be contacted with the appropriate cytotoxic agent, whereby non-transduced cells can be negatively selected away from the transduced If the selectable marker is a cell surface marker, the cells can be contacted with a binding agent specific for the particular cell surface marker, whereby the transduced cells can be positively selected away from the population. The selection step can also entail fluorescence-activated cell sorting (FACS) techniques, such as where FACS is used to select cells from the population containing a particular surface marker, or the selection step can entail the use of magnetically responsive particles as retrievable supports for target cell capture and/or background removal.

More particularly, positive selection of the transduced cells can be performed using a FACS cell sorter (e.g. a FACSVantage™ Cell Sorter, Becton Dickinson Immunocytometry Systems, San Jose, CA) to sort and collect transduced cells expressing a selectable cell surface marker. Following transduction, the cells are stained with fluorescent-labeled

10

15

20

25

30

antibody molecules directed against the particular cell surface marker. The amount of bound antibody on each cell can be measured by passing droplets containing the cells through the cell sorter. By imparting an electromagnetic charge to droplets containing the stained cells, the transduced cells can be separated from other cells. The positively selected cells are then harvested in sterile collection vessels. These cell sorting procedures are described in detail, for example, in the FACSVantage™

Training Manual, with particular reference to sections 3-11 to 3-28 and 10-1 to 10-17.

Positive selection of the transduced cells can also be performed using magnetic separation of cells based on expression or a particular cell surface marker. In such separation techniques, cells to be positively selected are first contacted with specific binding agent (e.g., an antibody or reagent the interacts specifically with the cell surface marker). The cells are then contacted with retrievable particles (e.g., magnetically responsive particles) which are coupled with a reagent that binds the specific binding agent (that has bound to the positive The cell-binding agent-particle complex can then be physically separated from non-labeled cells, for example using a magnetic field. When using magnetically responsive particles, the labeled cells can be retained in a container using a magnetic filed while the negative cells are removed. These and similar separation procedures are known to those of ordinary skill in the art.

Expression of the vector in the selected transduced cells can be assessed by a number of assays known to those skilled in the art. For example, Western blot or Northern analysis can be employed depending on the nature of the

10

15

20

inserted nucleotide sequence of interest. Once expression has been established and the transformed T cells have been tested for the presence of the selected synthetic expression cassette, they are ready for infusion into a patient via the peripheral blood stream.

The invention includes a kit for genetic modification of an ex vivo population of primary mammalian cells. The kit typically contains a gene transfer vector coding for at least one selectable marker and at least one synthetic expression cassette contained in one or more containers, ancillary reagents or hardware, and instructions for use of the kit.

EXPERIMENTAL

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.

10

15

20

25

30

Example 1

Generation of Synthetic Gag and Env Expression Cassettes

Modification of HIV-1 Gag, Gag-protease, Gag-reverse

A. Modification of HIV-1 Gag, Gag-protease, Gag-reverse transcriptase and Gag-polymerase Nucleic Acid Coding Sequences

The Gag (SEQ ID NO:1), Gag-protease (SEQ ID NO:2), Gag-polymerase (SEQ ID NO:3), and Gag-reverse transcriptase (SEQ ID NO:77) coding sequences were selected from the HIV-1SF2 strain (Sanchez-Pescador, R., et al., Science 227(4686): 484-492, 1985; Luciw, P.A., et al. U.S. Patent No. 5,156,949, issued October 20, 1992, herein incorporated by reference; Luciw, P.A., et al., U.S. Patent No. 5,688,688, November 18, 1997). These sequences were manipulated to maximize expression of their gene products.

First, the HIV-1 codon usage pattern was modified so that the resulting nucleic acid coding sequence was comparable to codon usage found in highly expressed human genes. The HIV codon usage reflects a high content of the nucleotides A or T of the codon-triplet. The effect of the HIV-1 codon usage is a high AT content in the DNA sequence that results in a high AU content in the RNA and in a decreased translation ability and instability of the mRNA. In comparison, highly expressed human codons prefer the nucleotides G or C. The Gag-encoding sequences were modified to be comparable to codon usage found in highly expressed human genes.

Figure 11 presents a comparison of the percent A-T content for the cDNAs of stable versus unstable RNAs (comparison window size = 50). Human IFNy mRNA is known to (i) be unstable, (ii) have a short half-life, and (iii) have

10

15

20

25

30

a high A-U content. Human GAPDH (glyceraldehyde-3-phosphate dehydrogenase) mRNA is known to (i) be a stable RNA, and (i) have a low A-U content. In Figure 11, the percent A-T content of these two sequences are compared to the percent A-T content of native HIV-1SF2 Gag cDNA and to the synthetic Gag cDNA sequence of the present invention. The top two panels of the figure show the percent A-T content over the length of the sequences for IFNy and native Gag. The bottom two panels of the figure show the percent A-T content over the length of the sequences for GAPDH and the synthetic Gaq. Experiments performed in support of the present invention showed that the synthetic Gaq sequences were capable of higher level of protein production (see the Examples) than the native Gag sequences. The data in Figure 11 suggest that one reason for this increased production may be increased stability of the mRNA corresponding to the synthetic Gag coding sequences versus the mRNA corresponding to the native Gag coding sequences.

Second, there are inhibitory (or instability) elements (INS) located within the coding sequences of the Gag and Gag-protease coding sequences (Schneider R, et al., J Virol. 71(7):4892-4903, 1997). RRE is a secondary RNA structure that interacts with the HIV encoded Rev-protein to overcome the expression down-regulating effects of the INS. To overcome the requirement for post-transcriptional activating mechanisms of RRE and Rev, and to enhance independent expression of the Gag polypeptide, the INS were inactivated by introducing multiple point mutations that did not alter the reading frame of the encoded proteins. Figure 1 shows the original SF2 Gag sequence, the location of the INS

10

15

20

25

30

sequences, and the modifications made to the INS sequences to reduce their effects.

For the Gag-protease sequence (wild type, SEQ ID NO:2; synthetic, SEQ ID NOs:5, 78 and 79), the changes in codon usage were restricted to the regions up to the -1 frameshift and starting again at the end of the Gag reading frame (Figure 2; the region indicated in lower case letters in Figure 2 is the unmodified region). Further, inhibitory (or instability) elements (INS) located within the coding sequences of the Gag-protease polypeptide coding sequence were altered as well (indicated in Figure 2). The synthetic coding sequences were assembled by the Midland Certified Reagent Company (Midland, Texas).

Modification of the Gag-polymerase sequences (wild type, SEQ ID NO:3; synthetic, SEQ ID NO:6) and Gag-reverse transcriptase sequences (SEQ ID NOs:80 through 84) include similar modifications as described for Gag-protease in order to preserve the frameshift region. Locations of the inactivation sites and changes to the sequence to alter the inactivation sites are presented in Figure 12 for the native $HIV-1_{SF2}$ Gag-polymerase sequence.

In one embodiment of the invention, the full length polymerase coding region of the Gag-polymerase sequence is included with the synthetic Gag sequences in order to increase the number of epitopes for virus-like particles expressed by the synthetic, optimized Gag expression cassette. Because synthetic HIV-1 Gag-polymerase expresses the potentially deleterious functional enzymes reverse transcriptase (RT) and integrase (INT) (in addition to the structural proteins and protease), it is important to inactivate RT and INT functions. Several in-frame deletions in the RT and INT reading frame can be made to achieve

catalytic nonfunctional enzymes with respect to their RT and INT activity. {Jay. A. Levy (Editor) (1995) The Retroviridae, Plenum Press, New York. ISBN 0-306-45033X. Pages 215-20; Grimison, B. and Laurence, J. (1995), Journal Of Acquired Immune Deficiency Syndromes and Human Retrovirology 9(1):58-68; Wakefield, J. K., et al., (1992) Journal Of Virology 66(11):6806-6812; Esnouf, R., et al., (1995) Nature Structural Biology 2(4):303-308; Maignan, S., et al., (1998) Journal Of Molecular Biology 282(2):359-368;

- 10 Katz, R. A. and Skalka, A. M. (1994) Annual Review Of
 Biochemistry 73 (1994); Jacobo-Molina, A., et al., (1993)
 Proceedings Of the National Academy Of Sciences Of the
 United States Of America 90(13):6320-6324; Hickman, A. B.,
 et al., (1994) Journal Of Biological Chemistry
- 15 269(46):29279-29287; Goldgur, Y., et al., (1998) Proceedings
 Of the National Academy Of Sciences Of the United States Of
 America 95(16):9150-9154; Goette, M., et al., (1998) Journal
 Of Biological Chemistry 273(17):10139-10146; Gorton, J. L.,
 et al., (1998) Journal of Virology 72(6):5046-5055;
- 20 Engelman, A., et al., (1997) Journal Of Virology 71(5):35073514; Dyda, F., et al., Science 266(5193):1981-1986; Davies,
 J. F., et al., (1991) Science 252(5002):88-95; Bujacz, G.,
 et al., (1996) Febs Letters 398(2-3):175-178; Beard, W. A.,
 et al., (1996) Journal Of Biological Chemistry
- 30 Chemistry 272(17):11157-11164; Rodgers, D. W., et al., (1995) Proceedings Of the National Academy Of Sciences Of

10

15

20

25

30

the United States Of America 92(4):1222-1226; Sheng, N. and Dennis, D. (1993) Biochemistry 32(18):4938-4942; Spence, R. A., et al., (1995) Science 267(5200):988-993.

Furthermore selected B- and/or T-cell epitopes can be added to the Gag-polymerase constructs within the deletions of the RT- and INT-coding sequence to replace and augment any epitopes deleted by the functional modifications of RT and INT. Alternately, selected B- and T-cell epitopes (including CTL epitopes) from RT and INT can be included in a minimal VLP formed by expression of the synthetic Gag or synthetic GagProt cassette, described above. (For descriptions of known HIV B- and T-cell epitopes see, HIV Molecular Immunology Database CTL Search Interface; Los Alamos Sequence Compendia, 1987-1997; Internet address:

http://hiv-web.lanl.gov/immunology/index.html.)

The resulting modified coding sequences are presented as a synthetic Gag expression cassette (SEQ ID NO:4), a synthetic Gaq-protease expression cassette (SEQ ID NOs:5, 78 and 79), and a synthetic Gag-polymerase expression cassette (SEQ ID NO:6). Synthetic expression cassettes containing codon modifications in the reverse transcriptase region are shown in SEQ ID NOs:80 through 84. An alignment of selected sequences is presented in Figure 7. A common region (Gagcommon; SEO ID NO:9) extends from position 1 to position 1262.

The synthetic DNA fragments for Gag and Gag-protease were cloned into the following expression vectors: pCMVKm2, for transient expression assays and DNA immunization studies, the pCMVKm2 vector was derived from pCMV6a (Chapman et al., Nuc. Acids Res. (1991) 19:3979-3986) and comprises a kanamycin selectable marker, a ColE1 origin of replication,

20

25

30

a CMV promoter enhancer and Intron A, followed by an insertion site for the synthetic sequences described below followed by a polyadenylation signal derived from bovine growth hormone -- the pCMVKm2 vector differs from the pCMV-link vector only in that a polylinker site was inserted into pCMVKm2 to generate pCMV-link (Figure 14, polylinker at positions 1646 to 1697); pESN2dhfr (Figure 13A) and pCMVPLEdhfr (also known as pCMVIII as shown in Figure 13B), for expression in Chinese Hamster Ovary (CHO) cells; and, pAcCl3, a shuttle vector for use in the Baculovirus expression system (pAcCl3, was derived from pAcCl2 which was described by Munemitsu S., et al., Mol Cell Biol. 10(11):5977-5982, 1990).

A restriction map for vector pCMV-link is presented in Figure 14. In the figure, the CMV promoter (CMV IE ENH/PRO), bovine growth hormone terminator (BGH pA), kanamycin selectable marker (kan), and a ColE1 origin of replication (ColE1 ori) are indicated. A polycloning site is also indicated in the figure following the CMV promoter sequences.

A restriction map for vector pESN2dhfr is presented in Figure 13A. In the figure, the CMV promoter (pCMV, hCMVIE), bovine growth hormone terminator (BGHpA), SV40 origin of replication (SV40ori), neomycin selectable marker (Neo), SV40 polyA (SV40pA), Adenovirus 2 late promoter (Ad2VLP), and the murine dhfr gene (mu dhfr) are indicated. A polycloning site is also indicated in the figure following the CMV promoter sequences.

Briefly, construction of pCMVPLEdhfr (pCMVIII) was as follows. To construct a DHFR cassette, the EMCV IRES (internal ribosome entry site) leader was PCR-amplified from

10

15

20

25

30

pCite-4a+ (Novagen, Inc., Milwaukee, WI) and inserted into pET-23d (Novagen, Inc., Milwaukee, WI) as an Xba-Nco fragment to give pET-EMCV. The dhfr gene was PCR-amplified from pESN2dhfr to give a product with a Gly-Gly-Gly-Ser spacer in place of the translation stop codon and inserted as an Nco-BamH1 fragment to give pET-E-DHFR. Next, the attenuated neo gene was PCR amplified from a pSV2Neo (Clontech, Palo Alto, CA) derivative and inserted into the unique BamH1 site of pET-E-DHFR to give pET-E-DHFR/Neo_(m2).

Then, the bovine growth hormone terminator from pCDNA3 (Invitrogen, Inc., Carlsbad, CA) was inserted downstream of the neo gene to give pET-E-DHFR/Neo_(m2)BGHt. The EMCV-dhfr/neo selectable marker cassette fragment was prepared by cleavage of pET-E-DHFR/Neo_(m2)BGHt. The CMV enhancer/promoter plus Intron A was transferred from pCMV6a (Chapman et al., Nuc. Acids Res. (1991) 19:3979-3986) as a HindIII-Sall fragment into pUC19 (New England Biolabs, Inc., Beverly, MA). The vector backbone of pUC19 was deleted from the Nde1 to the Sapl sites. The above described DHFR cassette was added to the construct such that the EMCV IRES followed the CMV promoter to produce the final construct. The vector also contained an amp^r gene and an SV40 origin of replication.

Selected pCMVKm2 vectors containing the synthetic expression cassettes have been designated as follows: pCMVKm2.GagMod.SF2, pCMVKm2.GagprotMod.SF2, and pCMVKm2.GagpolMod.SF2, pCMVKm2.GagprotMod.SF2.GP1 (SEQ ID NO:78) and pCMVKm2.GagprotMod.SF2.GP2 (SEQ ID NO:79). Other exemplary Gag-encoding expressing cassettes are shown in the Figures and as Sequence Listings.

B. Modification of HIV-1 Gag/Hepatitis C Core Chimeric Protein Nucleic Acid Coding Sequences Generation of Synthetic Expression Cassettes

To facilitate the ligation of the Gag and HCV core coding sequences, PCR amplification was employed. The synthetic p55Gag expression cassette was used as a PCR template with the following primers: GAG5(SEQ ID NO:11) and P55-SAL3 (SEQ ID NO:12). The PCR amplification was conducted at 55°C for 25 cycles using Stratagene's Pfu polymerase.

- The resulting PCR product was rendered free of nucleotides and primers using the Promega PCR clean-up kit and then subjected to EcoRI and SalI digestions. For HCV core coding sequences, the following primers were used with an HCV template (Houghton, M., et al., U.S. Patent No. 5,714,596,
- issued February 3, 1998; Houghton, M., et al., U.S. Patent
 No. 5,712,088, issued January 27, 1998; Houghton, M., et
 al., U.S. Patent No. 5,683,864, issued November 4, 1997;
 Weiner, A.J., et al., U.S. Patent No. 5,728,520, issued
 March 17, 1998; Weiner, A.J., et al., U.S. Patent No.
- 5,766,845, issued June 16, 1998; Weiner, A.J., et al., U.S. Patent No. 5,670,152, issued September 23, 1997; all herein incorporated by reference): CORESAL 5 (SEQ ID NO:13) and 173CORE(SEQ ID NO:14) using the conditions outlined above. The purified product was digested with SalI and BamHI
- 25 restriction enzymes. The digested Gag and HCV core PCR products were ligated into the pCMVKm2 vector digested with EcoRI and BamHI. Ligation of the PCR products at the SalI site resulted in a direct fusion of the final amino acid of p55Gag to the second amino acid of HCV core, serine. Amino
- acid 173 of core is a serine and is followed immediately by a TAG termination codon. The sequence of the fusion clone

10

15

20

25

30

was confirmed. The pCMVKm2 vector containing the synthetic expression cassette was designated as pCMVKm2. GagModHCVcore.

The EcoRI-BamHI fragment of p55Gag-core 173 was also cloned into EcoRI-BamHI-digested pAcC13 for baculovirus expression. Western blots confirmed expression and sucrose gradient sedimentation along with electron microscopy confirmed particle formation. To generate the above clone but containing the synthetic Gag sequences (instead of wildtype), the following steps were performed: pCMVKm2-modified p55Gag was used as template for PCR amplification with MS65 (SEQ ID NO:15) and MS66(SEQ ID NO:16) primers. The region amplified corresponds to the BspHI and SalI sites at the Cterminus of synthetic Gaq sequence. The amplification product was digested with BspHI and SalI and ligated to SalI/BamHI digested pCMV-link along with the Sal/BspHI fragment from pCMV-Km-p55modGag , representing the amino terminal end of modified Gag, and the Sall/BamHI fragment from pCMV-p55Gag-core173. Thereafter, a T4-blunted-SalI partial/BamHI fragment was ligated into pAcC4-SmaI/BamHI to generate pAcC4-p55GagMod-core173 (containing the synthetic sequence presented as SEQ ID NO:7).

C. <u>Defining of the Major Homology Region (MHR) of HIV-1</u> p55Gag

The Major Homology Region (MHR) of HIV-1 p55 (Gag) is located in the p24-CA sequence of Gag. It is a conserved stretch of 20 amino acids (SEQ ID NO:19). The position in the wild type HIV-1_{SF2} Gag protein is from aa 286-305 and spans a region from nucleotides 856-915 in the native HIV-1_{SF2} Gag DNA-sequence. The position in the synthetic Gag protein is from aa 288-307 and spans a region from nucleotides 862-921 for the synthetic Gag DNA-sequence. The

10

20

25

30

nucleotide sequence for the MHR in the synthetic GagMod.SF2 is presented as SEQ ID NO:20. Mutations or deletions in the amino acid sequence of the MHR can severely impair particle production (Borsetti, A., et al., J. Virol. 72(11):9313-9317, 1998; Mammano, F., et al., J Virol 68(8):4927-4936, 1994).

Percent identity to the MHR nucleotide sequence can be determined, for example, using the MacDNAsis program (Hitachi Software Engineering America Limited, South San Francisco, CA), Higgins algorithm, with the following exemplary parameters: gap penalty = 5, no. of top diagonals = 5, fixed gap penalty = 5, K-tuple = 2, window size = 5, and floating gap penalty = 10.

15 D. Generation of Synthetic Env Expression Cassettes

Env coding sequences of the present invention include, but are not limited to, polynucleotide sequences encoding the following HIV-encoded polypeptides: gp160, gp140, and gp120 (see, e.g., U.S. Patent No. 5,792,459 for a description of the $HIV-1_{SF2}$ ("SF2") Env polypeptide). relationships between these polypeptides is shown schematically in Figure 15 (in the figure: the polypeptides are indicated as lines, the amino and carboxy termini are indicated on the qp160 line; the open circle represents the oligomerization domain; the open square represents a transmembrane spanning domain (TM); and "c" represents the location of a cleavage site, in qp140.mut the "X" indicates that the cleavage site has been mutated such that it no longer functions as a cleavage site). The polypeptide gp160 includes the coding sequences for gp120 and gp41. polypeptide gp41 is comprised of several domains including

10

15

20

25

30

an oligomerization domain (OD) and a transmembrane spanning domain (TM). In the native envelope, the oligomerization domain is required for the non-covalent association of three gp41 polypeptides to form a trimeric structure: through non-covalent interactions with the qp41 trimer (and itself), the gp120 polypeptides are also organized in a trimeric structure. A cleavage site (or cleavage sites) exists approximately between the polypeptide sequences for gp120 and the polypeptide sequences corresponding to gp41. This cleavage site(s) can be mutated to prevent cleavage at the The resulting gp140 polypeptide corresponds to a truncated form of gp160 where the transmembrane spanning domain of gp41 has been deleted. This gp140 polypeptide can exist in both monomeric and oligomeric (i.e. trimeric) forms by virtue of the presence of the oligomerization domain in the gp41 moiety. In the situation where the cleavage site has been mutated to prevent cleavage and the transmembrane portion of gp41 has been deleted the resulting polypeptide product is designated "mutated" gp140 (e.g., gp140.mut). As will be apparent to those in the field, the cleavage site can be mutated in a variety of ways. The native amino acid sequence in the SF162 cleavage sites is: APTKAKRRVVQREKR (SEQ ID NO:21), where KAKRR (SEQ ID NO:22) is termed the "second" site and REKR (SEQ ID NO:23) is the "first site". Exemplary mutations include the following constructs: gp140.mut7.modSF162 which encodes the amino acid sequence APTKAISSVVQSEKS (SEQ ID NO:24) in the cleavage site region; gp140.mut8.modSF162 which encodes the amino acid sequence APTIAISSVVQSEKS (SEQ ID NO:25) in the cleavage site region and gp140mut.modSF162 which encodes the amino acid sequence

APTKAKRRVVQREKS (SEQ ID NO:26). Mutations are denoted in

10

15

20

bold. The native amino acid sequence in the US4 cleavage sites is: APTQAKRRVVQREKR (SEQ ID NO:27), where QAKRR (SEQ ID NO:28) is termed the "second" site and REKR (SEQ ID NO:23) is the "first site". Exemplary mutations include the following construct: gp140.mut.modUS4 which encodes the amino acid sequence APTQAKRRVVQREKS (SEQ ID NO:29) in the cleavage site region. Mutations are denoted in bold.

E. Modification of HIV-1 Env (Envelope) Nucleic Acid Coding Sequences

In one embodiment of the present invention, wild-type Env coding sequences were selected from the HIV-1_{SF162} ("SF162") strain (Cheng-Mayer (1989) PNAS USA 86:8575-8579). These SF162 sequences were as follows: gp120, SEQ ID NO:30 (Fig. 16); gp140, SEQ ID NO:31 (Fig. 17); and gp160, SEQ ID NO:32 (Fig. 18).

In another embodiment of the present invention, wild-type Env coding sequences were selected from the HIV-US4 strain (Mascola, et al. (1994) J. Infect. Dis. 169:48-54). These US4 sequences were as follows: gp120, SEQ ID NO:51 (Fig. 38); gp140, SEQ ID NO:52 (Fig. 39); and gp160, SEQ ID NO:53 (Fig. 40).

These *Env* coding sequences were manipulated to maximize expression of their gene products.

First, the wild-type coding region was modified in one or more of the following ways. In one embodiment, sequences encoding hypervariable regions of Env, particularly V1 and/or V2 were deleted. In other embodiments, mutations were introduced into sequences encoding the cleavage site in Env to abrogate the enzymatic cleavage of oligomeric gp140 into gp120 monomers. (See, e.g., Earl et al. (1990) PNAS

10

15

20

25

30

USA 87:648-652; Earl et al. (1991) J. Virol. 65:31-41). In yet other embodiments, hypervariable region(s) were deleted, N-glycosylation sites were removed and/or cleavage sites mutated.

Second, the HIV-1 codon usage pattern was modified so that the resulting nucleic acid coding sequence was comparable to codon usage found in highly expressed human genes. The HIV codon usage reflects a high content of the nucleotides A or T in the codon-triplet. The effect of the HIV-1 codon usage is a high AT content in the DNA sequence that results in a decreased translation ability and instability of the mRNA. In comparison, highly expressed human codons prefer the nucleotides G or C. The Env coding sequences were modified to be comparable to codon usage found in highly expressed human genes.

Figures 22A-22H present comparisons of the percent A-T content for the cDNAs of stable versus unstable RNAs (comparison window size = 50). Human IFNy mRNA is known to (i) be unstable, (ii) have a short half-life, and (iii) have a high A-U content. Human GAPDH (glyceraldehyde-3-phosphate dehydrogenase) mRNA is known to (i) be a stable RNA, and (i) have a low A-U content. In Figures 22A-H, the percent A-T content of these two sequences are compared to the percent A-T content of (1) native HIV-1 US4 Env gp160 cDNA, a synthetic US4 Env gp160 cDNA sequence (i.e., having modified codons) of the present invention; and (2) native HIV-1 SF162 Env gp160 cDNA, a synthetic SF162 Env gp160 cDNA sequence (i.e., having modified codons) of the present invention. Figures 22A-H show the percent A-T content over the length of the sequences for IFNy (Figures 22C and 22G); native gp160 Env US4 and SF162 (Figures 22A and 22E, respectively);

10

15

20

25

30

GAPDH (Figures 22D and 22H); and the synthetic gp160 Env for US4 and SF162 (Figures 22B and 22F). Experiments performed in support of the present invention showed that the synthetic Env sequences were capable of higher level of protein production (see the Examples) than the native Env sequences. The data in Figures 22A-H suggest that one reason for this increased production is increased stability of the mRNA corresponding to the synthetic Env coding sequences versus the mRNA corresponding to the native Env coding sequences.

To create the synthetic coding sequences of the present invention the gene cassettes were designed to comprise the entire coding sequence of interest. Synthetic gene cassettes were constructed by oligonucleotide synthesis and PCR amplification to generate gene fragments. Primers were chosen to provide convenient restriction sites for The resulting fragments were then ligated to subcloning. create the entire desired sequence which was then cloned into an appropriate vector. The final synthetic sequences were (i) screened by restriction endonuclease digestion and analysis, (ii) subjected to DNA sequencing in order to confirm that the desired sequence had been obtained and (iii) the identity and integrity of the expressed protein confirmed by SDS-PAGE and Western blotting (See, Examples. The synthetic coding sequences were assembled at Chiron Corp. or by the Midland Certified Reagent Company (Midland, Texas).

Exemplary modified coding sequences are presented as synthetic Env expression cassettes in Table 1A and 1B. The following expression cassettes (i) have unique, terminal <code>EcoRI</code> and <code>XbaI</code> cloning sites; (ii) include Kozak sequences

to promote optimal translation; (iii) tPA signal sequences (to direct the ENV polypeptide to the cell membrane, see, e.g., Chapman et al., infra); (iv) open reading frames optimized for expression in mammalian cells; and (v) a translational stop signal codon.

Table 1A: Exemplary Synthetic Env Expression

Cassettes(SF162)

	Expression Cassette	Seq Id	Further Information
5	gp120 SF162	30	wild-type; Figure 16
	gp140 SF162	31	wild-type; Figure 17
	gp160 SF162	32	wild-type; Figure 18
	gp120.modSF162	33	none; Figure 19
	gp120.modSF162.delV2	34	deleted V2 loop; Figure 20
10	gp120.modSF162.delV1/V2	35	deleted V1 and V2; Figure 21
	gp140.modSF162	36	none; Figure 23
	gp140.modSF162.delV2	37	deleted V2 loop; Figure 24
	gp140.modSF162.delV1/V2	38	deleted V1 and V2; Figure 25
	gp140.mut.modSF162	39	mutated cleavage site; Fig. 26
15	gp140.mut.modSF162.delV2	40	deleted V2; mutated cleavage
		:	site; Figure 27
	gp140.mut.modSF162.delV1/V2	41	deleted V1 & V2; mutated
			cleavage site; Figure 28
	gp140.mut7.modSF162	42	mutated cleavage site; Fig. 29
	gp140.mut7.modSF162.delV2	43	mutated cleavage site; deleted
			V2; Figure 30
	gp140.mut7.modSF162.delV1/V2	44	mutated cleavage site; deleted
			V1 and V2; Figure 31
20	gp140.mut8.modSF162	45	mutated cleavage site; Fig. 32
	gp140.mut8.modSF162.delV2	46	mutated cleavage site; deleted
			V2; Figure 33
	gp140.mut8.modSF162.delV1/V2	47	mutated cleavage site; deleted
			V1 and V2; Figure 34
	gp160.modSF162	48	none; Figure 35
	gp160.modSF162.delV2	49	deleted V2 loop; Figure 36
25	gp160.modSF162.delV1/V2	50	deleted V1 & V2; Figure 37

10

15

20

25

Table 1B:
Exemplary Synthetic Env Expression Cassettes (US4)

Expression Cassette	Seq Id	Further Information
gp120 US4	51	wild-type; Figure 38
gp140 US4	52	wild-type; Figure 39
gp160 US4	53	wild-type; Figure 40
gp120.modUS4	54	none; Figure 41
gp120.modUS4.del 128-194	55	deletion in V1 and V2 regions; Figure 42
gp140.modUS4	56	none; Figure 43
gp140.mut.modUS4	57	mutated cleavage site; Figure 44
gp140TM.modUS4	58	native transmembrane region; Figure 45
gp140.modUS4.delV1/V2	59	deleted V1 and V2; Figure 46
gp140.modUS4.delV2	60	deleted V1; Figure 47
gp140.mut.modUS4.delV1/V2	61	mutated cleavage site; deleted V1 and V2; Figure 48
gp140.modUS4.del 128-194	62	deletion in V1 and V2 regions; Figure 49
gp140.mut.modUS4.del 128-	63	mutated cleavage site; deletion in V1 and V2 regions; Figure 50
gp160.modUS4	64	none; Figure 51
gp160.modUS4.delV1	65	deleted V1; Figure 52
gp160.modUS4.delV2	66	deleted V2; Figure 53
gp160.modUS4.delV1/V2	67	deleted V1 and V2; Figure 54
gp160.modUS4del 128-194	68	deletion in V1 and V2 regions; Figure 55

Alignments of the sequences presented in the above tables are presented in Figures 66A and 66B.

A common region (Env-common) extends from nucleotide

10

15

20

25

position 1186 to nucleotide position 1329 (SEQ ID NO:69, Fig. 56) relative to the wild-type US4 sequence and from nucleotide position 1117 to position 1260 (SEQ ID NO:79, Fig. 57) relative to the wild-type SF162 sequence. The synthetic sequences of the present invention corresponding to these regions are presented, as SEQ ID NO:71 (Figure 58) for the synthetic Env US4 common region and as SEQ ID NO:72 (Figure 59) for the synthetic Env SF162 common region.

Percent identity to this sequence can be determined, for example, using the Smith-Waterman search algorithm (Time Logic, Incline Village, NV), with the following exemplary parameters: weight matrix = nuc4x4hb; gap opening penalty = 20, gap extension penalty = 5, reporting threshold = 1; alignment threshold = 20.

Various forms of the different embodiments of the present invention (e.g., constructs) may be combined.

F. Cloning Synthetic Env Expression Cassettes of the Present Invention.

The synthetic DNA fragments encoding the Env polypeptides were typically cloned into the eucaryotic expression vectors described above for Gag, for example, pCMVKm2/pCMVlink (Figure 4), pCMV6a, pESN2dhfr (Figure 13A), pCMVIII (Figure 13B; alternately designated as the pCMV-PL-E-dhfr/neo vector).

Exemplary designations for pCMVlink vectors containing synthetic expression cassettes of the present invention are as follows: pCMVlink.gp140.modSF162; pCMVlink.gp140.-modSF162.delV2; pCMVlink.gp140.mut.modSF162;

pCMVlink.gp140.mut.modSF162.delV2; pCMVKm2.gp140modUS4; pCMVKm2.gp140.modUS4.delV2; pCMVKm2.gp140.mut.modUS4; and,

25

pCMVKm2.gp140.mut.modUS4.delV1/V2.

G. Generation of Synthetic Tat Expression Cassettes

Tat coding sequences have also been modified according 5 to the teachings of the present specification. The wild type nucleotide sequence encoding tat from variant SF162 is presented in Figure 76 (SEQ ID NO:85). The corresponding wild-type amino acid sequence is presented in Figure 77 (SEQ ID NO:86). Figure 81 (SEQ ID NO:89) shows the nucleotide 10 sequence encoding the amino terminal of the tat protein and the codon encoding cystein-22 is underlined. Other exemplary constructs encoding synthetic tat polypeptides are shown in Figures 78 and 79 (SEQ ID NOs:87 and 88). In one embodiment (SEQ ID NO:88), the cystein residue at position 22 is replaced by a glycine. Caputo et al. (1996) Gene 15 Therapy 3:235 have shown that this mutation affects the trans activation domain of Tat.

Various forms of the different embodiments of the invention, described herein, may be combined.

H. Deposit of Vectors

Selected exemplary constructs shown below and described herein are deposited at Chiron Corporation, Emeryville, CA, 94662-8097, and were sent to the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209 on December 27, 1999.

10

15

20

Plasmid Name	Chiron	Date Sent
	Deposit #	to ATCC
pCMVgp160.modUS4	5094	27 Dec 99
pCMVgp160delI.modUS4	5095	27 Dec 99
pCMVgp160del2.modUS4	5096	27 Dec 99
pCMVgp160del-2.modUS4	5097	27 Dec 99
pCMVgp160del128-194.mod.US4	5098	27 Dec 99
pCMVgp140mut.modUS4del128-194	5100	27 Dec 99
pCMVgp140.mut.mod.US	5101	27 Dec 99
pCMVgp160.modSF162	5125	27 Dec 99
pCMVgp160.modSF162.delV2	5126	27 Dec 99
pCMVgp160.modSF162.delV1V2	5127	27 Dec 99
pCMVgp140.mut.modSF162delV2	5128	27 Dec 99
pCMVgp140.mut7.modSF162	5129	27 Dec 99
pCMVgp140.mut7.modSF162delV2	5130	27 Dec 99
pCMVgp140.mut8.modSF162	5131	27 Dec 99
pCMVgp140.mut8.modSF162delV2	5132	27 Dec 99
pCMVgp140.mut8.modSF162delV1V2	5133	27 Dec 99
pCMVKm2.Gagprot.Mod.SF2.GP1	5150	27 Dec 99
pCMVKm2.Gagprot.Mod.SF2.GP2	5151	27 Dec 99

Example 2

Expression Assays for the

Synthetic Gag, Env and Tat Coding Sequences

25 A. Gag and Gag-Protease Coding Sequences

The HIV-1SF2 wild-type Gag (SEQ ID NO:1) and Gagprotease (SEQ ID NO:2) sequences were cloned into expression vectors having the same features as the vectors into which

10

15

20

the synthetic Gag (SEQ ID NO:4) and Gag-protease (SEQ ID NOs:5, 78 or 79)) sequences were cloned.

Expression efficiencies for various vectors carrying the HIV-1SF2 wild-type and synthetic Gag sequences were evaluated as follows. Cells from several mammalian cell lines (293, RD, COS-7, and CHO; all obtained from the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209) were transfected with 2 uq of DNA in transfection reagent LT1 (PanVera Corporation, 545 Science Dr., Madison, WI). The cells were incubated for 5 hours in reduced serum medium (Opti-MEM, Gibco-BRL, Gaithersburg, MD). The medium was then replaced with normal medium as follows: 293 cells, IMDM, 10% fetal calf serum, 2% glutamine (BioWhittaker, Walkersville, MD); RD and COS-7 cells, D-MEM, 10% fetal calf serum, 2% glutamine (Opti-MEM, Gibco-BRL, Gaithersburg, MD); and CHO cells, Ham's F-12, 10% fetal calf serum, 2% glutamine (Opti-MEM, Gibco-BRL, Gaithersburg, MD). The cells were incubated for either 48 or 60 hours. Supernatants were harvested and filtered through 0.45 μm syringe filters and, optionally, stored at -20°C.

Supernatants were evaluated using the Coulter p24-assay (Coulter Corporation, Hialeah, FL, US), using 96-well plates coated with a murine monoclonal antibody directed against

HIV core antigen. The HIV-1 p24 antigen binds to the coated wells. Biotinylated antibodies against HIV recognize the bound p24 antigen. Conjugated strepavidin-horseradish peroxidase reacts with the biotin. Color develops from the reaction of peroxidase with TMB substrate. The reaction is terminated by addition of 4N H₂SO₄. The intensity of the color is directly proportional to the amount of HIV p24 antigen in a sample.

The results of these expression assays are presented in Tables 2A and 2B. Tables 2A and 2B shows data obtained using the synthetic Gag-protease expression cassette of SEQ ID NO:5. Similar results were obtained using the Gag-protease expression cassettes of SEQ ID NOs:78 and 79.

Table 2: in vitro gag and gagprot p24 expression

TABLE 2a. Increased in vitro expression from modified vs. native gag plasmids in supernatants and lysates from transiently transfected cells

experiment	native (nat) a modified (mod) b	supernatant (sup) lysate (lys)	cell line	hours post transfection	total ng p24 (fold increase)
i	nat	sup	293	48	3.4
	mod	sup	293	48	1260 (371)
	nat	sup	293	60	3.2
	mod	sup	293	60	2222 (694)
2	nat	sup	293	60	1.8
	mod	sup	293	60	1740 (966)
3	nat	sup	293	60	1.8
•	mod	sup	293	60	580 (322)
4	nat	lys	293	60	1.5
•	mod	lys	293	60	85 (57)
i	nat	sup	RD	48	5.6
	mod	sup	RD	48	66 (12)
	nat	sup	RD	60	7.8
	mod	sup	RD	60	70.2 (9)
ż	nat	lys	RD	60	1.9
	mod	lys	RD	60	7.8 (4)
1	nat	sup	COS-7	48	0.4
	mod	sup	COS-7	48	33.4 (84)
2	nat	sup	COS-7	48	0.4
	mod	sup	COS-7	48	10 (25)
	nat	lys	COS-7	48	3
	mod	lys	COS-7	48	14 (5)

^apCMVLink.Gag.SF2.PRE

bpCMVKm2.GagMod.SF2

TABLE 2b. In vitro expression from modified gag and gagprotease plasmids in supernatants and lysates from transiently transfected cells

plasmid	supernatant (sup) lysate (lys)	cell line	hours post transfection	total ng p24 ^d
Gag ^a	sup	293	60	760
GagProt(GP1) b	sup	293	60	380
GagProt(GP2)°	sup	293	60	320
Gag	lys	293	60	78
GagProt(GP1)	lys	293	60	1250
GagProt(GP2)	lys	293	60	400
Gag	sup	COS-7	72	40
GagProt(GP1)	sup	COS-7	72	150
GagProt(GP2)	sup	COS-7	72	290
Gag	lys	COS-7	72	60
GagProt(GP1)	lys	COS-7	72	63
GagProt(GP2)	lys	COS-7	72	58

apCMVKm2.GagMod.SF2

^b pCMVKm2.GagProtMod.SF2(GP1) gagprotease with codon optimization and inactivation of INS in protease

c pCMVKm2.GagProtMod.SF2(GP2) gagprotease with only inactivation
of INS in protease

 $^{^{\}rm d}$ Shown are representative results from 3 independent experiments for each cell line tested.

10

15

20

The data showed that the synthetic Gag and Gag-protease expression cassettes provided dramatic increases in production of their protein products, relative to the native (HIV-1SF2 wild-type) sequences, when expressed in a variety of cell lines.

B. Env Coding Sequences

The HIV-SF162 ("SF162") wild-type Env (SEQ ID NO:1-3) and HIV-US4 ("US4") wild-type Env (SEQ ID NO:22-24) sequences were cloned into expression vectors having the same features as the vectors into which the synthetic Env sequences were cloned.

Expression efficiencies for various vectors carrying the SF162 and US4 wild-type and synthetic Env sequences were evaluated essentially as described above for Gag except that cell lysates were prepared in 40 μ l lysis buffer (1.0 % NP40, 0.1 M Tris pH 7.5) and frozen at -20°C and capture ELISAs were performed as follows.

For Capture ELISAs, 250 ng of an ammonium sulfate IgG cut of goat polyclonal antibody to gp120SF2/env2-3 was used to coat each well of a 96-well plate (Corning, Corning, NY). Serial dilutions of gp120/SF2 protein (MID 167) were used to set the quantitation curve from which expression of US4 or SF162 gp120 proteins from transfection supernatant and

- lysates were calculated. Samples were screened undiluted and, optionally, by serial 2-fold dilutions. A human polyclonal antibody to HIV-1 gp120/SF2 was used to detect bound gp120 envelope protein, followed by horse-radish peroxidase (HRP)-labeled goat anti-human IgG conjugates.
- 30 TMB (Pierce, Rockford, IL) was used as the substrate and the reaction is terminated by addition of $4N\ H_2SO_4$. The

10

reaction was quantified by measuring the optical density (OD) at 450 nm. The intensity of the color is directly proportional to the amount of HIV gp120 antigen in a sample. Purified SF2 gp120 protein was diluted and used as a standard.

The results of the transient expression assays are presented in Tables 3 and 4. Table 3 depicts transient expression in 293 cells transfected with a pCMVKm2 vector carrying the Env cassette of interest. Table 4 depicts transient expression in RD cells transfected with a pCMVKm2 vector carrying the Env cassette of interest.

Table 3

Native (N)	Ce11	Total	Sup fold	Total cell	Cell lysate	Total	rotal fold
Synthetic(S)	Line	(Su)	increase (S v. N)	lysate (ng)	fold increase (S v. N)	(ng)	increase (S v. N)
N-gp120.US4	£	87		<1		88	
8-gp120.modU84	Ð	069	8	2	5	693	88
M-gp140.US4	£	526		0		526	
S-gp140.modUS4	£	1305	2	н	2	1306	7
S-gp140mut.modUS4	æ	35	n/a	25	N/A	60	N/A
S-gp140TM.modUS4	æ	0	n/a	5	n/a	5	N/A
M-gp160.us4	ZZ	0		8		80	
S-qp160.modUS4	82	0	0	30	4	30	4

10

Table 4

CHO Cell Lines Expression Level of US4 Envelope				
Constructs				
Constructs	CHO Clone #	MTX	Expression Level*	
		Level	(ng/ml)	
gp120.modUS4	1	3.2μΜ	250-450	
	2	1.6μΜ	350-450	
	3	200nM	230-580	
	4	200nM	300-500	
gp140.modUS4	1	1μ M	155-300	
	2 .	1μ M	100-260	
	3	1μΜ	200-430	
gp140.mut.	1	1μΜ	110-270	
modUS4	2	1μΜ	100-235	
	3	1μ M	100-220	
gp140.modUS4	1	50nM	313-587**	
.delV1/V2	2	50nM	237-667**	
	3	50nM	492-527**	
gp140.mut.	1	50nM	46-328**	
modUS4.delV1	2	50nM	82-318**	
/V2	3	50nM	204-385**	

*All samples measured at T-75 flask stage unless otherwise indicated

^{**}at 24 well and 6 well plate stages

^{***}in a three liter bioreactor perfusion culture this clone yielded approximately 2-5 $\mu g/ml$.

10

15

20

25

30

The data showed that the synthetic Env and expression cassettes provided a significant increase in production of their protein products, relative to the native (HIV-1SF162 or US4 wild-type) sequences, when expressed in a variety of cell lines.

C. CHO Cell line Env expression data

Chinese hamster ovary (CHO) cells were transfected with plasmid DNA encoding the synthetic HIV-1 gp120 or gp140 proteins (e.g., pESN2dhfr or pCMVIII vector backbone) using Mirus TransIT-LT1 polyamine transfection reagent (Pan Vera) according to the manufacturers instructions and incubated for 96 hours. After 96 hours, media was changed to selective media (F12 special with 250 $\mu g/ml$ G418) and cells were split 1:5 and incubated for an additional 48 hours. Media was changed every 5-7 days until colonies started forming at which time the colonies were picked, plated into 96 well plates and screened by gp120 Capture ELISA. Positive clones were expanded in 24 well plates and screened several times for Env protein production by Capture ELISA, as described above. After reaching confluency in 24 well plates, positive clones were expanded to T25 flasks (Corning, Corning, NY). These were screened several times after confluency and positive clones were expanded to T75 flasks.

Positive T75 clones were frozen in LN2 and the highest expressing clones amplified with 0-5 μM methotrexate (MTX)at several concentrations and plated in 100mm culture dishes. Plates were screened for colony formation and all positive closed were again expanded as described above. Clones were expanded an amplified and screened at each step by gp120

10

capture ELISA. Positive clones were frozen at each methotrexate level. Highest producing clones were grown in perfusion bioreactors (3L, 100L) for expansion and adaptation to low serum suspension culture conditions for scale-up to larger bioreactors.

Tables 5 and 6 show Capture ELISA data from CHO cells transfected with pCMVIII vector carrying a cassette encoding synthetic HIV-US4 and SF162 Env polypeptides (e.g., mutated cleavage sites, modified codon usage and/or deleted hypervariable regions). Thus, stably transfected CHO cell lines which express Env polypeptides (e.g., gp120, gp140-monomeric, and gp140-oligomeric) have been produced.

15

5

Table 5

CHO Cell Lines Expression Level of US4 Envelope				
Constructs				
Constructs	CHO Clone #	MTX	Expression Level*	
		Level	(ng/ml)	
gp120.modUS4	1	3.2μΜ	250-450	
	2	1.6μΜ	350-450	
	3	200nM	230-580***	
	4	200nM	300-500	
gp140.modUS4	1	1μ M	155-300	
	2	1μ M	100-260	
	3	1μ M	200-430	
gp140.mut.	1	1μ M	110-270	
modUS4	2	1μ M	100-235	
	3	1μ M	100-220	
gp140.modUS4	1	50nM	313-587**	
.delV1/V2	2	50nM	237-667**	
	3	50nM	492-527**	
gp140.mut.	1	50nM	46-328**	
modUS4.delV1	2	50nM	82-318**	
/V2	3	50nM	204-385**	

^{*}All samples measured at T-75 flask stage unless otherwise indicated

^{**}at 24 well and 6 well plate stages

^{***}in a three liter bioreactor perfusion culture this clone yielded approximately 2-5 $\mu g/ml$.

10

15

Table 6

CHO Cell Lines Expression Level of SF162 Envelope				
Constructs				
Constructs	CHO Clone #	MTX	Expression Level*	
		Level	(ng/ml)	
gp120.modSF162	1	0	755-2705	
	2	0	928-1538	
	3	0	538-1609	
gp140.modSF162	1	20 nM	180-350	
gp140.mut.	1	20 nM	164-451	
modSF162	2	20 nM	188-487	
	3	20 nM	233-804	
gp120.modSF162	1	800nM	528-1560	
.delV2	2	800nM	487-1878	
	3	800nM	589-1212	
gp140.modSF162	1	800nM	300-600	
.delV2	2	800nM	200-400	
	3	800nM	200-500	
gp140.mut.	1	800nM	300-700	
modSF162.delV2	2	400nM	1161	
	3	800nM	400-600	
	4	400nM	1600-2176	

*All samples measured at T-75 flask stage unless otherwise indicated

The results presented above demonstrate the ability of
the constructs of the present invention to provide
expression of Env polypeptides in CHO cells. Production of
polypeptides using CHO cells provides (i) correct

glycosylation patterns and protein conformation (as determined by binding to panel of MAbs); (ii) correct binding to CD4 receptor molecules; (iii) absence of non-mammalian cell contaminants (e.g., insect viruses and/or cells); and (iv) ease of purification.

D. Tat Coding Sequences

The HIV-SF162 ("SF162") wild-type Tat (SEQ ID NO:85) sequences were cloned into expression vectors having the same features as the vectors into which the synthetic Tat sequences were cloned (SEQ ID NOs:87, 88 and 89).

Expression efficiencies for various vectors carrying the SF162 wild-type and synthetic Tat sequences are evaluated essentially as described above for Gag and Env using capture ELISAs with the appropriate anti-tat antibodies and/or CHO cell assays. Expression of the polypeptides encoded by the synthetic cassettes is improved relative to wild type.

20

25

30

5

10

15

Example 3

Western Blot Analysis of Expression

A. Gag and Gag-Protease Coding Sequences

Human 293 cells were transfected as described in Example 2 with pCMV6a-based vectors containing native or synthetic Gag expression cassettes. Cells were cultivated for 60 hours post-transfection. Supernatants were prepared as described. Cell lysates were prepared as follows. The cells were washed once with phosphate-buffered saline, lysed with detergent [1% NP40 (Sigma Chemical Co., St. Louis, MO) in 0.1 M Tris-HCl, pH 7.5], and the lysate transferred into fresh tubes. SDS-polyacrylamide gels (pre-cast 8-16%;

10

15

20

25

30

Novex, San Diego, CA) were loaded with 20 μ l of supernatant or 12.5 μ l of cell lysate. A protein standard was also loaded (5 μ l, broad size range standard; BioRad Laboratories, Hercules, CA). Electrophoresis was carried out and the proteins were transferred using a BioRad Transfer Chamber (BioRad Laboratories, Hercules, CA) to Immobilon P membranes (Millipore Corp., Bedford, MA) using the transfer buffer recommended by the manufacturer (Millipore), where the transfer was performed at 100 volts for 90 minutes. The membranes were exposed to HIV-1-positive human patient serum and immunostained using ophenylenediamine dihydrochloride (OPD; Sigma).

The results of the immunoblotting analysis showed that cells containing the synthetic Gag expression cassette produced the expected p55 protein at higher per-cell concentrations than cells containing the native expression cassette. The Gag p55 protein was seen in both cell lysates and supernatants. The levels of production were significantly higher in cell supernatants for cells transfected with the synthetic Gag expression cassette of the present invention. Experiments performed in support of the present invention suggest that cells containing the synthetic Gag-prot expression cassette produced the expected Gag-prot protein at comparably higher per-cell concentrations than cells containing the native expression cassette.

In addition, supernatants from the transfected 293 cells were fractionated on sucrose gradients. Aliquots of the supernatant were transferred to Polyclear™ ultracentrifuge tubes (Beckman Instruments, Columbia, MD), underlaid with a solution of 20% (wt/wt) sucrose, and subjected to 2 hours centrifugation at 28,000 rpm in a Beckman SW28

10

15

25

30

rotor. The resulting pellet was suspended in PBS and layered onto a 20-60% (wt/wt) sucrose gradient and subjected to 2 hours centrifugation at 40,000 rpm in a Beckman SW41ti rotor.

The gradient was then fractionated into approximately 10 x 1 ml aliquots (starting at the top, 20%-end, of the gradient). Samples were taken from fractions 1-9 and were electrophoresed on 8-16% SDS polyacrylamide gels. Fraction number 4 (the peak fraction) corresponds to the expected density of Gag protein VLPs. The supernatants from 293/synthetic Gag cells gave much stronger p55 bands than supernatants from 293/native Gag cells, and, as expected, the highest concentration of p55 in either supernatant was found in fraction 4.

These results demonstrate that the synthetic Gag expression cassette provides superior production of both p55 protein and VLPs, relative to the native Gag coding sequences.

20 B. Env Coding Sequences

Human 293 cells were transfected as described in Example 2 with pCMVKm2-based; pCMVlink-based; p-CMVII-based or pESN2-based vectors containing native or synthetic Env expression cassettes. Cells were cultivated for 48 or 60 hours post-transfection. Cell lysates and supernatants were prepared as described (Example 2). Briefly, the cells were washed once with phosphate-buffered saline, lysed with detergent [1% NP40 (Sigma Chemical Co., St. Louis, MO)] in 0.1 M Tris-HCl, pH 7.5], and the lysate transferred into fresh tubes. SDS-polyacrylamide gels (pre-cast 8-16%; Novex, San Diego, CA) were loaded with 20 μ l of supernatant or 12.5 μ l of cell lysate. A protein molecular weight

10

15

standard and an HIV SF2 gp120 positive control protein (5 μ l, broad size range standard; BioRad Laboratories, Hercules, CA) were also loaded. Electrophoresis was carried out and the proteins were transferred using a BioRad Transfer Chamber (BioRad Laboratories, Hercules, CA) to Immobilon P membranes (Millipore Corp., Bedford, MA) using the transfer buffer recommended by the manufacturer (Millipore), where the transfer was performed at 100 volts for 90 minutes. The membranes were then reacted against polyclonal goat anti-gp120SF2/env2-3 anti-sera, followed by incubation with swine anti-goat IgG-peroxidase (POD) (Sigma, St. Louis, MO). Bands indicative of binding were visualized by adding DAB with hydrogen peroxide which deposits a brown precipitate on the membranes.

The results of the immunoblotting analysis showed that cells containing the synthetic Env expression cassette produced the expected Env gp proteins of the predicted molecular weights as determined by mobilities in SDS-polyacrylamide gels at higher per-cell concentrations than cells containing the native expression cassette. The Env proteins were seen in both cell lysates and supernatants. The levels of production were significantly higher in cell supernatants for cells transfected with the synthetic Env expression cassette of the present invention.

25

30

20

C. Tat Coding Sequences

Human 293 cells are transfected as described in Example 2 with various vectors containing native or synthetic Tat expression cassettes. Cells are cultivated and isolated proteins analyzed as described above. Immunoblotting analysis shows that cells containing the synthetic Tat

expression cassette produced the expected Tat proteins of the predicted molecular weights as determined by mobilities in SDS-polyacrylamide gels at higher per-cell concentrations than cells containing the native expression cassette.

5

10

15

20

25

30

Example 4

Purification of Env polypeptides

A. Purification of Oligomeric gp140

Purification of oligomeric gp140 (o-gp140 US4) was conducted essentially as shown in Figure 60. For the experiments described herein, o-gp140 refers to oligomeric gp140 in either native or modified (e.g., optimized expression sequences, deleted, mutated, truncated, etc.) Briefly, concentrated (30-50%) supernatants obtained form. from CHO cell cultures were loaded onto an anion exchange (DEAE) column which removed DNA and other serum proteins. The eluted material was loaded onto a ceramic hydroxyapatite column (CHAP) which bound serum proteins but not HIV Env The flow-through from the DEAE and CHAP columns was loaded onto a Protein A column as a precautionary step to remove any remaining serum immunoglobulins. proteins in the flow-through were then captured using the lectin gluvanthus navalis (GNA, Vector Labs, Burlingame, CA). GNA has high affinity for mannose rich carbohydrates such as Env. The Env proteins were then eluted with GNA To remove other highly glycosylated proteins, a substrate. cation exchange column (SP) was used to purify qp140/qp120. In a final step, which separates gp120 from o-gp140, a gel filtration column was used to separate oligomers from monomers. Sizing and chromatography analysis of the final

product revealed that this strategy lead to the successful isolation of oligomeric gp140.

B. Purification of qp120

Purification of gp120 was conducted essentially as previously described for other Env proteins. Briefly, concentrated supernatants obtained from CHO cell cultures were loaded onto an anion exchange (DEAE) column which removed DNA and other serum proteins. The eluted material was loaded onto a ceramic hydroxyapatite column (CHAP) which bound serum proteins but not HIV Env proteins. The flow-through from the CHAP column was loaded a cation exchange column (SP) where the flow-through was discarded and the bound fraction eluted with salt. The eluted fraction(s) were loaded onto a Suprose 12/Superdex 200 Tandem column (Pharmacia-Upjohn, Uppsala, Sweden) from which purified gp120 was obtained. Sizing and chromatography analysis of the final product revealed that this strategy successfully purified gp120 proteins.

20

25

30

5

10

15

Example 5

Analysis of Purified Env Polypeptides

A. Analysis of o-qp140

It is well documented that HIV Env protein binds to CD4 only in its correct conformation. Accordingly, the ability of o-gp140 US4 polypeptides, produced and purified as described above, to bind CD4 cells was tested. O-gp140 US4 was incubated for 15 minutes with FITC-labeled CD4 at room temperature and loaded onto a Biosil 250 (BioRad) size exclusion column using Waters HPLC. CD4-FITC has the longest retention time (2.67 minutes), followed by CD4-FITC-gp120 (2.167 min). The shortest retention time (1.9 min) was

10

15

20

25

30

observed for CD4-FITC-o-gp140 US4 indicating that, as expected, o-gp140 US4 binds to CD4 forming a large complex which reduces retention time on the column. Thus, the o-gp140 US4 produced and purified as described above is of the correct size and conformation.

In addition, the US4 o-gp140, purified as described above, was also tested for its ability to bind to a variety of monoclonal antibodies with known epitope specificities for the CD4 binding site, the CD4 inducible site, the V3 loop and oligomer-specific gp41 epitope. O-gp140 bound strongly to these antibodies, indicating that the purified protein retains its structural integrity.

B. Analysis of qp120

As described above, CD4-FITC binds qp120, as demonstrated by the decreased retention time on the HPLC Thus, US4 gp120 purified by the above method retains its conformational integrity. In addition, the properties of purified gp120 can be tested by examining its integrity and identity on western blots, as well as, by examining protein concentration, pH, conductivity, endotoxin levels, bioburden and the like. US4 gp120, purified as described above, was also tested for its ability to bind to a variety of monoclonal antibodies with known epitope specificities for the CD4 binding site, the CD4 inducible site, the V3 loop and oligomer-specific gp41 epitope. The pattern of mAb binding to qp120 indicated that the purified protein retained its structural integrity, for example, the purified gp120 did not bind the mAb having the oligomerspecific gp41 epitope (as expected).

10

15

20

25

30

Example 6

Electron Microscopic Evaluation of VLP Production

The cells for electron microscopy were plated at a density of 50-70% confluence, one day before transfection. The cells were transfected with 10 µg of DNA using transfection reagent LT1 (Panvera) and incubated for 5 hours in serum-reduced medium (see Example 2). The medium was then replaced with normal medium (see Example 2) and the cells were incubated for 14 hours (COS-7) or 40 hours (CHO). After incubation the cells were washed twice with PBS and fixed with 2% glutaraldehyde. Electron microscopy was performed by Prof. T.S. Benedict Yen, Veterans Affairs,

Electron microscopy was carried out using a transmission electron microscope (Zeiss 10c). The cells were pre-stained with osmium and stained with uranium acetate and lead citrate. The magnification was 100,000X.

Medical Center, San Francisco, CA).

Figures 3A and 3B show micrographs of CHO cells transfected with pCMVKM2 carrying the synthetic Gag expression cassette (SEQ ID NO:5) or carrying the Gag-prot expression cassette (SEQ ID NO:79). In the figure, free and budding immature virus-like-particles (VLP) of the expected size (100 nm) are seen for the Gag expression cassette (Figure 3A) and both immature and mature VLPs are seen for the Gag-prot expression cassette (Figure 3B). COS-7 cells transfected with the same vector have the same expression pattern. VLP can also be found intracellularly in CHO and COS-7 cells.

Native and synthetic Gag expression cassettes were compared for their associated levels of VLP production when used to transfect human 293 cells. The comparison was performed by density gradient ultracentrifugation of cell

15

20

25

30

supernatants and Western-blot analysis of the gradient fractions. There was a clear improvement in production of VLPs when using the synthetic Gag construct.

5 <u>Example 7</u>

Expression of Virus-like Particles in the Baculovirus System

A. Expression of Native HIV p55 Gag

To construct the native HIV p55 Gag baculovirus shuttle vector, the prototype SF2 HIV p55 plasmid, pTM1-Gag (Selby M.J., et al., J Virol. 71(10):7827-7831, 1997), was digested with restriction endonucleases Ncol and BamHI to extract a 1.5 Kb fragment that was subsequently subcloned into pAcC4 (Bio/Technology 6:47-55, 1988), a derivative of pAc436. Generation of the recombinant baculovirus was achieved by co-transfecting 2 μg of the HIV p55 Gag pAcC4 shuttle vector with 0.5 μq of linearized, Autographa californica baculovirus (AcNPV) wild-type viral DNA into Spodoptera frugiperda (Sf9) cells (Kitts, P.A., Ayres M.D., and Possee R.D., Nucleic Acids Res. 18:5667-5672, 1990). The isolation of recombinant virus expressing HIV p55 Gag was performed according to standard techniques (O'Reilly, D.R., L.K. Miller, and V. A. Luckow, Baculovirus Expression Vector: A Laboratory Manual, W.H. Freeman and Company, New York, 1992).

Expression of the HIV p55 Gag was achieved using a 500 ml suspension culture of Sf9 cells grown in serum-free medium (Miaorella, B., D. Inlow, A. Shauger, and D. Harano, Bio/Technology 6:1506-1510, 1988) that had been infected with the HIV p55 Gag recombinant baculovirus at a multiplicity of infection (MOI) of 10. Forty-eight hours post-infection, the supernatant was separated by

10

15

20

25

30

centrifugation and filtered through a 0.2 µm filter. Aliquots of the supernatant were then transferred to Polyclear™ (Beckman Instruments, Palo Alto, CA) ultracentrifuge tubes, underlaid with 20% (wt/wt) sucrose, and subjected to 2 hours centrifugation at 24,00 rpm using a Beckman SW28 rotor.

The resulting pellet was suspended in Tris buffer (20 mM Tris HCl, pH 7.5, 250 mM NaCl, and 2.5 mM ethylenediaminetetraacetic acid [EDTA]), layered onto a 20-60% (wt/wt) sucrose gradient, and subjected to 2 hours centrifugation at 40,000 rpm using a Beckman SW41ti rotor. The gradient was then fractionated starting at the top (20% sucrose) of the gradient into approximately twelve 0.75 ml aliquots. A sample of each fraction was electrophoresed on 8-16% SDS polyacrylamide gels and the resulting bands were visualized after commassie staining (Figure 4). Additional aliquots were subjected to refractive index analysis.

The results shown in Figure 4 indicated that the p55 Gag virus-like particles banded at a sucrose density of range of 1.15 - 1.19 g/ml with the peak at approximately 1.17 g/ml. The peak fractions were pooled and concentrated by a second 20% sucrose pelleting. The resulting pellet was suspended in 1 ml of Tris buffer (described above). The total protein yield as estimated by Bicimchrominic Acid (BCA) (Pierce Chemical, Rockford, IL) was 1.6 mg.

B. Expression of Synthetic HIV p55 Gag

A baculovirus shuttle vector containing the synthetic p55 Gag sequence was constructed as follows. The synthetic HIV p55 expression cassette (Example 1) was digested with restriction enzyme SalI followed by incubation with T4-DNA

10

15

20

25

30

polymerase. The resulting fragment was isolated (PCR Clean- Up^{TM} , Promega, Madison, WI) and then digested with BamHI endonuclease. The shuttle vector pAcCl3 (Munemitsu S., et al., Mol Cell Biol. 10(11):5977-5982, 1990) was linearized by digestion with EcoI, followed by incubation with T4-DNA polymerase, and then isolated (PCR Clean- Up^{TM}). The linearized vector was digested with BamHI, treated with alkaline phosphatase, and isolated by size fragmentation in an agarose gel. The isolated 1.5 kb fragment was ligated with the prepared pAcCl3 vector. The resulting clone was designated pAcCl3-Modif.p55Gag.

The expression conditions for the synthetic HIV p55
VLPs differed from those of the native p55 Gag as follows:
a culture volume of 1 liter used instead of 500 ml;
Trichoplusia ni (Tn5) (Wickham, T.J., and Nermerow, G.R.,
BioTechnology Progress, 9:25-30, 1993) insect cells were
used instead of Sf9 insect cells; and, an MOI of 3 was
instead of an MOI of 10. Experiments performed in support
of the present invention showed that there was no
appreciable difference in expression level between the Sf9
and Tn5 insect cells with the native p55 clone. In terms of
MOI, experience with the native p55 clone suggested that an
MOI of 10 resulted in higher expression (approximately 2fold) of VLPs than a lower MOI.

The sucrose pelleting and banding methods used for the synthetic p55 VLPs were similar to those employed for the native p55 VLPs (described above), with the following exceptions: pelleted VLPs were suspended in 4 ml of phosphate buffered saline (PBS) instead of 1.0 ml of the Tris buffer; and four, 20-60% sucrose gradients were used instead of a single gradient. Also, due to the high

15

20

25

30

concentration of banded VLPs, further concentration by pelleting was not required. The peak fractions from all 4 gradients were simply dialyzed against PBS. The approximate density of the banded VLPs ranged from 1.23-1.28 g/ml. A total protein yield as estimated by BCA was 46 mg. Results from the sucrose gradient banding of the synthetic p55 are shown in Figure 5.

A comparison of the total amount of purified HIV p55 Gag from several preparations obtained from the two baculovirus expression cassettes has been summarized in Figure 6. The average yield from the native p55 was 3.16 mg/liter of culture (n=5, standard deviation (sd) ± 1.07 , range = 1.8-4.8 mg/L) whereas the average yield from the synthetic p55 was more than ten-fold higher at 44.5 mg/liter of culture (n=2, sd= ± 6.4).

In addition to a higher total protein yield, the final product from the synthetic p55-expressed Gag consistently contained lower amounts of contaminating baculovirus proteins than the final product from the native p55-expressed Gag. This difference can be seen in the two commassie-stained gels Figures 4 and 5.

C. Expression of Native and Synthetic Gag-Core

Expression of the HIV p55 Gag/HCV Core 173 (SEQ ID NO:8) was achieved using a 2.5 liter suspension culture of Sf9 cells grown in serum-free medium (Miaorella, B., D. Inlow, A. Shauger, and D. Harano. 1988 Bio/Technology 6:1506-1510). The cells were infected with an HIV p55 Gag/HCV Core 173 recombinant baculovirus. Forty-eight hours post-infection, the supernatant was separated from the cells by centrifugation and filtered through a 0.2 µm filter.

10

15

20

25

30

Aliquots of the supernatant were then transferred to a Polyclear™ (Beckman Instruments, Palo Alto, CA) ultracentrifuge tubes containing 30% (wt/wt) sucrose, and subjected to 2 hours of centrifugation at 24,000 rpm in a Beckman SW28 rotor and ultracentrifuge.

The resulting pellet was suspended in Tris buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl) and layered onto a 30-60% (wt/wt) sucrose gradient and subjected to 2 hours centrifugation at 40,000 rpm in a Beckman SW41ti rotor and ultracentrifuge. The gradient was then fractionated starting at the top (30%) of the gradient into approximately 11 x 1.0 ml aliquots. A sample of each fraction was electrophoresed on 8-16% SDS polyacrylamide gels and the resulting bands were visualized after commassie staining.

A subset of aliquots were also subjected to Western blot analysis using monoclonal antibody 76C.5EG (Steimer, K.S., et al., *Virology* 150:283-290, 1986) which is specific for HIV p24 (a subunit of HIV p55). The peak fractions from the sucrose gradient were pooled and concentrated by a second 20% sucrose pelleting. The resulting pellet was suspended in 1 ml of buffer Tris buffer and the total protein yield as estimated by BCA (Pierce Chemical, Rockford, IL) was ~ 1.0 mg.

The results from the SDS PAGE are shown in Figure 8 and the anti- p24 Western blot results are shown in Figure 9.

Taken together, these results indicate that the HIV p55

Gag/HCV Core 173 chimeric VLPs banded at a sucrose density similar to that of the HIV p55 Gag VLPs and the visible protein band that migrated at a molecular weight of ~ 72,000 kd was reactive with the HIV p24-specific monoclonal antibody. An additional immunoreactive band at

10

15

20

25

approximately 55,000 kd also appeared to be reactive with the anti-p24 antibody and may be a degradation product.

Although aliquots from the above preparation were not tested for reactivity with an HCV Core-specific antibody (an anti-CD22 rabbit serum), results from a similar preparation are shown in Figure 10 and indicate that the main HCV Corespecific reactivity migrates at an approximate molecular weight of 72,000 kd which is in accordance with the predicted molecular weight of the chimeric protein.

The expression conditions for the synthetic HIV p55 Gag/HCV Core 173 (SEQ ID NO:8) VLPs differed from those of the native p55 Gag and are as follows: a culture volume of 1 liter used instead of 2.5 liters, Trichoplusia ni (Tn5) (Wickham, T.J., and Nemerow, G.R. 1993 BioTechnology Progress, 9:25-30) insect cells were used instead of Sf9 insect cells and an MOI of 3 was instead of an MOI of 10. The sucrose pelleting and banding methods used for the synthetic HIV p55 Gag/HCV Core 173 VLPs were similar to those employed for the native HIV p55 Gaq/HCV Core 173 VLPs. However, differences included: pelleted VLPs were suspended in 1 ml of phosphate buffered saline (PBS) instead of 1.0 ml of the Tris buffer, and a single 20-60% sucrose gradients was used. A comparison of the total amount of purified HIV p55 Gag/HCV Core 173 from multiple preparations obtained from the two baculovirus expression cassettes showed that there was an increase in expression using the synthetic HIV

p55 Gag/HCV Core 173 cassette.

10

15

20

25

D. Alternative method for the enrichment of HIV p55 Gag VLPs

In addition to purification from the media, p55 (Gag protein) expressed in baculovirus (e.g., using a synthetic expression cassette of the present invention) can also be purified as virus-like particles from the infected insect cells. For example, forty-eight hours post infection, the media and cell pellet are separated by centrifugation and the cell pellet is stored at -70°C until future use. At the time of processing, the cell pellet is suspended in 5 volumes of hypotonic lysis buffer (20 mM Tris-HCl, pH 8.2, 1 mM EGTA; 1 mM MgCl, and Complete Protease Inhibitor® (Boehringer Mannheim Corp., Indianapolis, IN]). If needed, the cells are then dounced 8-10 times to complete cell lysis.

The lysate is then centrifuged at approximately 1000-1500 x g for 20 minutes. The supernatant is decanted into UltraClear™ tubes, underlayed with 20% sucrose (w/w) and centrifuged at 24,000 rpm in SW28 buckets for 2 hours. The resulting pellet is suspended in Tris buffer (20 mM Tris HCl, pH 7.5, 250 mM NaCl, and 2.5 mM ethylene-diamine-tetraacetic acid (EDTA) with 0.1% IGEPAL detergent (Sigma Chemical, St. Louis, MO) and 250 units/ml of benzonase (American International Chemical, Inc., Natick, MA) and incubated at 4°C for at least 30 minutes. The suspension is subsequently layered onto a 20-60% sucrose gradient and spun at 40,000 rpm using an SW41ti rotor for 20-24 hours.

15

20

25

After ultracentrifugation, the sucrose gradient is fractionated and aliquots run on SDS PAGE to identify peak fractions. The peak fractions are dialyzed against PBS and measured for protein content. Negatively stained electron mircographs typically show non-enveloped VLPs somewhat smaller in diameter (80-120 nm) than the budded HIV Gag VLPs prepared in this manner are also capable of generating Gag-specific CTL responses in mice.

10 Example 8

In Vivo Immunogenicity of Synthetic Gag Expression Cassettes Immunization <u>A.</u>

To evaluate the possibly improved immunogenicity of the synthetic Gag expression cassettes, a mouse study was performed. The plasmid DNA, pCMVKM2 carrying the synthetic Gag expression cassette, was diluted to the following final concentrations in a total injection volume of 100 μ l: μ g, 2 μ g, 0.2 μ g, and 0.02 μ g. To overcome possible negative dilution effects of the diluted DNA, the total DNA concentration in each sample was brought up to 20 μ g using the vector (pCMVKM2) alone. As a control, plasmid DNA of the native Gag expression cassette was handled in the same manner. Twelve groups of four Balb/c mice (Charles River, Boston, MA) were intramuscularly immunized (50 μ l per leg, intramuscular injection into the tibialis anterior)

according to the schedule in Table 7.

10

Table 7

Group	Gag Expression Cassette	Concentration of Gag plasmid DNA (µg)	Immunized at time (weeks):
1	Synthetic	20	0 ¹ , 4
2	Synthetic	2	0, 4
3	Synthetic	0.2	0, 4
4	Synthetic	0.02	0, 4
5	Synthetic	20	0
6	Synthetic	2	0
7	Synthetic	0.2	0
8	Synthetic	0.02	0
9	Native	20	0
10	Native	2	0
11	Native	0.2	0
12	Native	0.02	0

15 1 = initial immunization at "week 0"

Groups 1-4 were bled at week 0 (before immunization), week 4, week 6, week 8, and week 12. Groups 5-12 were bled at week 0 (before immunization) and at week 4.

20 <u>B. Humoral Immune Response</u>

The humoral immune response was checked with an anti-HIV Gag antibody ELISAs (enzyme-linked immunosorbent assays) of the mice sera 0 and 4 weeks post immunization (groups 5-12) and, in addition, 6 and 8 weeks post immunization,

25 respectively, 2 and 4 weeks post second immunization (groups 1-4).

The antibody titers of the sera were determined by anti-Gag antibody ELISA. Briefly, sera from immunized mice were screened for antibodies directed against the HIV p55

10

15

20

Gag protein. ELISA microtiter plates were coated with 0.2 μ g of HIV-1_{SF2} p24-Gag protein per well overnight and washed four times; subsequently, blocking was done with PBS-0.2% Tween (Sigma) for 2 hours. After removal of the blocking solution, 100 μ l of diluted mouse serum was added. were tested at 1/25 dilutions and by serial 3-fold dilutions, thereafter. Microtiter plates were washed four times and incubated with a secondary, peroxidase-coupled anti-mouse IgG antibody (Pierce, Rockford, IL). plates were washed and 100 μ l of 3, 3', 5, 5'-tetramethyl benzidine (TMB; Pierce) was added per well. The optical density of each well was measured after 15 minutes. titers reported are the reciprocal of the dilution of serum that gave a half-maximum optical density (O.D.). The ELISA results are presented in Table 8.

Table 8

Group	Inoculum	Expression	Sera -	Sera -	Sera -
	(μg)	cassette	Week 4 ³	Week 6	Week 8
1	20	S¹ - gag	98	455	551
2	2	S - gag	59	1408	227
3	0.	S - gag	29	186	61
4	0.02	S - gag	< 20	< 20	< 20
5	20	S - gag	67	n.a.4	n.a.
6	2	S - gag	63	n.a.	n.a.
7	0.	S - gag	57	n.a.	n.a.
8	0.02	S - gag	< 20	n.a.	n.a.
9	20	N^2 - gag	43	n.a.	n.a.
10	2	N - gag	< 20	n.a.	n.a.
11	0.	N - gag	< 20	n.a.	n.a.
12	0.02	N - gag	< 20	n.a.	n.a.

1 = synthetic gag expression cassette (SEQ ID NO: 4)

2 = native gag expression cassette (SEQ ID NO: 1)

3 = geometric mean antibody titer

4 = not applicable

164

30

25

10

15

20

25

30

The results of the mouse immunizations with plasmid-DNAs show that the synthetic expression cassettes provide a clear improvement of immunogenicity relative to the native expression cassettes. Also, the second boost immunization induced a secondary immune response after two weeks (groups 1-3).

C. Cellular Immune Response

The frequency of specific cytotoxic T-lymphocytes (CTL) was evaluated by a standard chromium release assay of peptide pulsed Balb/c mouse CD4 cells. Gag expressing vaccinia virus infected CD-8 cells were used as a positive control (vvGag). Briefly, spleen cells (Effector cells, E) were obtained from the BALB/c mice immunized as described above (Table 8) were cultured, restimulated, and assayed for CTL activity against Gag peptide-pulsed target cells as described (Doe, B., and Walker, C.M., AIDS 10(7):793-794, The HIV-1_{SF2} Gag peptide used was p7g SEQ ID NO:10. Cytotoxic activity was measured in a standard 51Cr release assay. Target (T) cells were cultured with effector (E) cells at various E:T ratios for 4 hours and the average cpm from duplicate wells was used to calculate percent specific ⁵¹Cr release. The results are presented in Table 9.

Cytotoxic T-cell (CTL) activity was measured in splenocytes recovered from the mice immunized with HIV Gag DNA (compare Effector column, Table 9, to immunization schedule, Table 8). Effector cells from the Gag DNA-immunized animals exhibited specific lysis of Gag p7g peptide-pulsed SV-BALB (MHC matched) targets cells indicative of a CTL response. Target cells that were

peptide-pulsed and derived from an MHC-unmatched mouse strain (MC57) were not lysed (Table 9; MC/p7g).

Table 9

10

15

20

25

Table 9. Cytotoxic T-lymphocyte (CTL) responses in					
mice immunized with HIV-1 gag DNA					
		Percent specific lysis of			
			arget cell		
Immunization	E:T	SVBALB	SVBALB	RMA	
		none	p7g	p7g	
20 μg DNA	100:1	2	49	<1	
gagmod	30:1	3	30	<1	
	10:1	<1	14	<1	
2 μ g DNA	100:1	2	37	<1	
gagmod	30:1	2	21	<1	
	10:1	<1	13	<1	
0.2 μg DNA	100:1	2	32	<1	
gagmod	30:1	3	25	<1	
	10:1	1	14	<1	
0.02 μg DNA	100:1	1	17	<1	
gagmod	30:1	1	16	<1	
	10:1	1	8	<1	
20 μg DNA	100:1	2	49	<1	
gag native	30:1	2	24	<1	
	10:1	1	12	<1	
2 μg DNA	100:1	<1	18	<1	
gag native	30:1	1	14	<1	
	10:1	1	7	<1	
0.2 μg DNA	100:1	3	30	<1	
gag native	30:1	3	17	<1	
	10:1	2	7	<1	
0.02 μg DNA	100:1	4	2	<1	
gag native	30:1	1	2	<1	
	10:1	1	2	<1	

15

20

25

*representative results of two animals per DNA-dose; positive CTL responses are indicated by boxed data

The results of the CTL assays show increased potency of synthetic Gag expression cassettes for induction of cytotoxic T-lymphocyte (CTL) responses by DNA immunization.

Example 9

In vivo Immunization with Env polypeptides

10 A. Immunogenicity Study of US4 o-gp140 in Ras-3c Adjuvant
System

Studies have been conducted using rabbits immunized with US4 o-gp140 purified as described above. Studies are also underway in animals to determine immunogenicity of US4 gp120, SF162 o-gp140 and SF162 gp120.

Two rabbits (#1 and #2) were immunized intramuscularly at 0, 4, 12 and 24 weeks with 50 μ g of US4 o-gp140 in the Ribi[™] adjuvant system (RAS-3c), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL, Ribi Immunochem, Hamilton, MT). In each experiment described herein, o-gp140 can be native, mutated and/or modified. Antibody responses directed against the US4 o-gp140 protein were measured by ELISA. Results are shown in Table 10.

10

15

Table 10

Rabbit/sample	Approximate o-gp140 ELISA	
	titer	
pre-immunization	0	
#1: post1 (0 week immuniz)	400	
#1: post2 (4 week immuniz)	15,000	
#1: post3 (12 week immuniz)	50,000	
#1: post4 (24 week immuiz)	100,000	
#2: post1 (0 week immuniz)	600	
#2: post2 (4 week immuniz)	12,000	
#2: post3 (12 week immuniz)	25,000	
#2: post4 (24 week immuiz)	55,000	

The avidities of antibodies directed against the US4 ogp140 protein were measured in a similar ELISA format employing successive washes with increasing concentrations of ammonium isothiocynate. Results are shown in Table 11.

Table 11

Time of sample	Approx. Antibody avidity (NH4HCN
	Conc. in M)
pre-immunization	0.02
post1 (0 week immuniz)	1.8
post2 (4 week immuniz)	3.5
post3 (12 week immuniz)	5.5
post4 (24 week immuniz)	5.1

25

20

These results show that US4 o-gp140 is highly immunogenic and able to induce substantial antibody responses after only one or two immunizations.

B. Immunogenicity of US4 o-qp140 in MF59-based Adjuvants

Groups of 4 rabbits were immunized intramuscularly at 0, 4, 12 and 24 weeks with various doses of US4 o-gp140 protein in three different MF59-based adjuvants (MF59 is described in International Publication No. WO 90/14837 and typically contains 5% Squalene, 0.5% Tween 80, and 0.5% Span 85). Antibody titers were measured post-third by ELISA using SF2 gp120 to coat the plates. QHC is a quill-based adjuvant (Iscotek, Uppsala, Sweden). Results are shown in Table 12.

15 Table 12

Anti-gp120_{SF2} Ab GMT* Adjuvant Antigen dose (μg) 7231 MF59 12.5 MF59 8896 25 MF59 12822 50 12.5 MF59/MPL 24146 MF59/MPL 27199 25 50 MF59/MPL 23059 50 MF59/MPL/QHC 31759

*GMT = geometric mean titer

Thus, adjuvanted o-gp140 generated antigen-specific antibodies. Further, the antibodies were shown to increased in avidity over time.

20

5

10

25

C. Neutralizing Antibodies

Neutralizing antibodies post-third immunization were measured against HIV-1 SF2 in a T-cell line adapted virus (TCLA) assay and against PBMC-grown HIV-1 variants SF2, SF162 and 119 using the CCR5+ CEMx174 LTR-GFP reporter cell line, 5.25 (provided by N. Landau, Salk Institute, San Diego, CA) as target cells. Results are shown in Table 13.

10

15

20

25

30

Table 13

Neutralizing antibody responses in rabbits immunized with o-gp140.modUS4 protein

Group	Animal	SF2	SF2	SF162	. 119
		TCLA*	PBMC#	PBMC#	PBMC#
Experiment 1					
o-gp140/	217	>640	100%	49	17
Ras-3c					
50 mg	218	>640	96	37	29
Experiment 2					
o-gp140/	792	45	71	39	26
MF59					
50 mg	793	50	87	26	4
	794	59	87	13	0
	795	128	92	15	0
o-gp140/	804	173	91	47	18
MF59 + MPL					
50 mg	805	134	93	28	4
	806	N.D.**	95	49	13
	807	441	100	31	15
o-gp140/MF59	808	465	98	46	40
+ MPL + QHC					
50 mg	809	496	100	44	39
	810	>640	101	27	4
	811	92	92	24	37

^{*}TCLA neutralizing antibody titers (50% inhibition).

The above studies in rabbits indicate that the US4 ogp140 protein is highly immunogenic. When administered with

^{**}Not Determined

^{* %} Inhibition at 1:10 dilution of sera with any detectable non-specific inhibition in pre-bleeds subtracted.

adjuvant, this protein was able to induce substantial antibody responses after only one or two immunizations. Moreover, the adjuvanted o-gp140 protein was able to generate antigenspecific antibodies which increased in avidity after successive immunizations, and substantial neutralizing activity against T-cell line adapted HIV-1. Neutralizing activity was also observed against PBMC-grown primary HIV strains, including the difficult to neutralize CCR5 coreceptor (R5)-utilizing isolates, SF162 and 119.

10

15

20

25

5

Example 10

In Vivo Immunogenicity of Synthetic Env Expression Cassettes

A. General Immunization Methods

To evaluate the immunogenicity of the synthetic Env expression cassettes, studies using guinea pigs, rabbits, mice, rhesus macaques and baboons were performed. The studies were structured as follows: DNA immunization alone (single or multiple); DNA immunization followed by protein immunization (boost); DNA immunization followed by Sindbis particle immunization; immunization by Sindbis particles alone.

B. Humoral Immune Response

The humoral immune response was checked in serum specimens from immunized animals with an anti-HIV Env antibody ELISAs (enzyme-linked immunosorbent assays) at various times post-immunization. The antibody titers of the sera were determined by anti-Env antibody ELISA as described above. Briefly, sera from immunized animals were screened for antibodies directed against the HIV gp120 or gp140 Env protein. Wells of ELISA microtiter plates were coated

10

20

25

overnight with the selected <code>Env</code> protein and washed four times; subsequently, blocking was done with PBS-0.2% Tween (Sigma) for 2 hours. After removal of the blocking solution, 100 μ l of diluted mouse serum was added. Sera were tested at 1/25 dilutions and by serial 3-fold dilutions, thereafter. Microtiter plates were washed four times and incubated with a secondary, peroxidase-coupled anti-mouse IgG antibody (Pierce, Rockford, IL). ELISA plates were washed and 100 μ l of 3, 3', 5, 5'-tetramethyl benzidine (TMB; Pierce) was added per well. The optical density of each well was measured after 15 minutes. Titers are typically reported as the reciprocal of the dilution of serum that gave a half-maximum optical density (O.D.).

15 Example 11

<u>DNA-immunization of Baboons Using Synthetic Gag Expression</u> <u>Cassettes</u>

A. Baboons

Four baboons were immunized 3 times (weeks 0, 4 and 8) bilaterally, intramuscular into the quadriceps using lmg pCMVKM2.GagMod.SF2 plasmid-DNA (Example 1). The animals were bled two weeks after each immunization and a p24 antibody ELISA was performed with isolated plasma. The ELISA was performed essentially as described in Example 5 except the second antibody-conjugate was an anti-human IgG, g-chain specific, peroxidase conjugate (Sigma Chemical Co., St. Louis, MD 63178) used at a dilution of 1:500. Fifty μ g/ml yeast extract was added to the dilutions of plasma samples and antibody conjugate to reduce non-specific background due to

preexisting yeast antibodies in the baboons. The antibody titer results are presented in Table 14.

Table 14

5	Immunizati on no.	Weeks	Antigen	wpi ^a / Baboon No.	Ab-titer ^b
	1	0	gagmod	0 w/219	< 10
			DNA	0 w/220	< 10
				0 w/221	< 10
				0 w/222	< 10
10		6		2 wp 1st/219	< 10
				2 wp 1st/220	< 10
				2 wp 1st/221	< 10
				2 wp 1st/222	15
	4	14	gagmod	2 wp 4th/219	< 10
15			DNA	2 wp 4th/220	88
				2 wp 4th/221	< 10
				2 wp 4th/222	56
	5	30	gagmod	2 wp 5th/219	< 10
			DNA	2 wp 5th/220	391
20				2 wp 5th/221	237
	*****			2 wp 5th/222	222
	6	46	gag VLP	2 wp 6th/219	753
			protein	2 wp 6th/219	4330
				2 wp 6th/219	5000
25	a :	1		2 wp 6th/219	2881

a wpi = weeks post immunization

In Table 14, pre-bleed data are given as Immunization

No. 0; data for bleeds taken 2 weeks post-first immunization are given as Immunization No. 1; data for bleeds taken 2 weeks post-second immunization are given as Immunization No. 2; and, data for bleeds taken 2 weeks post-third immunization are given as Immunization No. 3.

b geometric mean antibody titer

10

15

20

25

Further, lymphoproliferative responses to p24 antigen were also observed in baboons 221 and 222 two weeks postfourth immunization (at week 14), and enhanced substantially post-boosting with VLP (at week 44 and 76). Such proliferation results are indicative of induction of Thelper cell functions.

B. Rhesus Macaques

The improved potency of the codon-modified gag expression plasmid observed in mouse and baboon studies was confirmed in rhesus macaques. Four of four macaques had detectable Gag-specific CTL after two or three 1 mg doses of modified gag plasmid. In contrast, in a previous study, only one of four macaques given 1 mg doses of plasmid-DNA encoding the wild-type ${\rm HIV-1_{\rm SF2}}$ Gag showed strong CTL activity that was not apparent until after the seventh immunization. Further evidence of the potency of the modified gag plasmid was the observation that CTL from two of the four rhesus macaques reacted with three nonoverlapping Gag peptide pools, suggesting that as many as three different Gag peptides are recognized and indicating that the CTL response is polyclonal. Additional quantification and specificity studies are in progress to further characterize the T cell responses to Gag in the plasmid-immunized rhesus macaques. DNA immunization of macaques with the modified gag plasmid did not result in significant antibody responses, with only two of four animals seroconverting at low titers. In contrast, in the same study the majority of macaques in groups immunized with

10

20

25

p55Gag protein seroconverted and had strong Gag-specific antibody titers. These data suggest that a prime-boost strategy (DNA-prime and protein-boost) could be very promising for the induction of a strong CTL and antibody response.

In sum, these results demonstrate that the synthetic Gag plasmid DNA is immunogenic in non-human primates. When similar experiments were carried out using wild-type Gag plasmid DNA no such induction of anti-p24 antibodies was observed after four immunizations.

Example 12

<u>DNA- and Protein Immunizations of Animals Using Env</u> <u>Expression Cassettes and Polypeptides</u>

15 A. Guinea Pigs

Groups comprising six guinea pigs each were immunized intramuscularly at 0, 4, and 12 weeks with plasmid DNAs encoding the gp120.modUS4, gp140.modUS4, gp140.modUS4.delV1, gp140.modUS4.delV2, gp140.modUS4.delV1/V2, or gp160.modUS4 coding sequences of the US4-derived Env. The animals were subsequently boosted at 18 weeks with a single intramuscular dose of US4 o-gp140.mut.modUS4 protein in MF59 adjuvant. Anti-gp120 SF2 antibody titers (geometric mean titers) were measured at two weeks following the third DNA immunization and at two weeks after the protein boost. Results are shown in Table 15.

Table 15

Group	GMT post-DNA	GMT post-protein
	immuniz.	boost
gp120.modUS4	2098	9489
gp140.modUS4	190	5340
gp140.modUS4.delV1	341	7808
gp140.modUS4.delV2	386	8165
gp140.modUS4.delV1/V2	664	8270
gp160.modUS4	235	9928

These results demonstrate the usefulness of the synthetic constructs to generate immune responses, as well as, the advantage of providing a protein boost to enhance the immune response following DNA immunization.

15 B. Rabbits

Rabbits were immunized intramuscularly and intradermally using a Bioject needless syringe with plasmid DNAs encoding the following synthetic SF162 Env polypeptides: gp120.modSF162, gp120.modSF162.delV2, gp140.modSF162, gp140.modSF162, gp140.mut.modSF162, gp140.mut.modSF162.delV2, gp160.modSF162, and gp160.modSF162.delV2. Approximately 1 mg of plasmid DNA (pCMVlink) carrying the synthetic Env expression cassette was used to immunize the rabbits. Rabbits were immunized with plasmid DNA at 0, 4, and 12 weeks. At two weeks after the third immunization all of the constructs were shown to have generated significant antibody titers in the test animals. Further, rabbits immunized with constructs

10

15

20

containing deletions of the V2 region generally generated similar antibody titers relative to rabbits immunized with the companion construct still containing the V2 region.

The nucleic acid immunizations are followed by protein boosting with o-gp140.modSF162.delV2 (0.1 mg of purified protein) at 24 weeks after the initial immunization. Results are shown in Table 16.

Table 16

Group	GMT 2wks post-2nd DNA immunization	GMT 2wks post-3rd DNA immunization	GMT 2wks post-protein boost
gp120.modSF162	4573	5899	26033
gp120.modSF162.delV2	3811	3122	29606
gp140.modSF162	1478	710	12882
gp140.modSF162.delV2	1572	819	11067
gp140.mut.modSF162	1417	788	8827
gp140.mut.modSF162.delV2	1378	1207	13301
gp160.modSF162	23	81	7050
gp160.modSF162.delV2	85	459	11568

All constructs are highly immunogenic and generate substantial antigen binding antibody responses after only 2 immunizations in rabbits.

C. Baboons

Groups of four baboons were immunized intramuscularly
with 1 mg doses of DNA encoding different forms of synthetic
US4 gp140 (see the following table) at 0, 4, 8, 12, 28, and
44 weeks. The animals were also boosted twice with US4 0-

gp140 protein (gp140.mut.modUS4) at 44 and 76 weeks using MF59 as adjuvant. Results are shown in Table 17.

10

15

20

		Table 17		
Animal	Treatment	2 Wks Post	2 Wks post	2 Wks post
		5th DNA	6th DNA	7th DNA (c
		immuniza-	(plus o-	gp140
		tion	gp140 prot.	protein
			immuniz.)	only)
CY 215		8.3	446	1813
CY 216	gp140.modUS4	8.3	433	1236
CY 217		68	1660	2989
CY 218		101	2556	1610
Geomean:		26.2	951.4	1812.1
CY 219		8.3	8.3	421
CY 220	gp140.modUS4	8.3	8.3	3117
CY 221	+ p55gag.SF2	8.3	954	871
CY 222		8.3	71	916
Geomean:		8.3	46.5	1011.5
CY 223		41.4	10497	46432
CY 224	gp140.mut.	8.3	979	470
CY 225	modUS4	135	2935	3870
CY 226		47	1209	4009
Geomean:		68.3	2457.4	4289.6
CY 227		8.3	56	5001
CY 228	gp140TM.	8.3	806	1170
CY 229	modUS4	8.3	48	3402
CY 230		8.3	38	6520
GMT*:		8.3	95.3	3375.3

The results in Table 17 demonstrate the usefulness of the synthetic constructs to generate immune responses in

15

20

primates such as baboons. In addition, all animals showed evidence of antigen-specific (*Env* antigen) lymphoproliferative responses.

5 D. Rhesus Macagues

delivery at 28 weeks.

Two rhesus macaques (designated H445 and J408) were immunized with 1 mg of DNA encoding SF162 gp140 with a deleted V2 region (SF162.gp140.delV2) by intramuscular (IM) and intradermal (ID) routes at 0, 4, 8, and 28 weeks. Approximately 100 μ g of the protein encoded by the SF162. gp140mut.delV2 construct was also administered in MF59 by IM

ELISA titers are shown in Figure 61. Neutralizing antibody activity is shown Tables 18 and 19. Neutralizing antibody activity was determined against a variety of primary HIV-1 isolates in a primary lymphocyte or "PBMC-based" assay (see the following tables). Further, the phenotypic co-receptor usage for each of the primary isolates is indicated. As can be seen in the tables neutralizing antibodies were detected against every isolate tested, including the HIV-1 primary isolates (i.e., SF128A, 92US660, 92HT593, 92US657, 92US714, 91US056, and 91US054).

	Table 18					
		Treatment		Bleed 0	Bleed 1	Bleed 2
	Animal	1st Immunization	2nd Immunization	1st Imm'n	2nd Imm'n	2 Wks post 2nd
5	EO 456			8.3	45	· 309
	EO 457			8.3	254	÷ 4 60
	EO 458	25μg 120mod	(None)	8.3	8.3	93
	EO 459	DNA		8.3	43	45
	EO 460			8.3	8.3	274
10	EO 461			8.3	47	1502
	EO 462			8.3	80	5776
	EO 463	25μg 120mod	25μg 120mod	8.3	89	3440
	EO 464	DNA	DNA	8.3	8.3	3347
	EO 465			8.3	69	1127
15	EO 466			8.3	63	102
	EO 467			8.3	112	662
	EO 468	50μg 120mod	(None)	8.3	94	459
	EO 469	DNA		8.3	58	48
	EO 470			8.3	95	355
20	EO 471			8.3	110	9074
	EO 472			8.3	8.3	4897
	EO 473	50μg 120mod	50μg 120mod	8.3	49	4089
	EO 474	DNA	DNA	8.3	59	5280
	EO 475			8.3	8.3	929
25	EO 476			8.3		653
	EO 477			8.3	87	22675
	EO 478	25μg 120mod	Sindbis/Env	8.3	76	3869
	EO 479	DNA		8.3		1004
	EO 480			8.3	71	7080

	Table 19				
	Treatment		Bleed 0	Bleed 1	Bleed 2
Animal	lst Immunization	2nd Immunization	1st Imm'n	2nd Imm'n	2 Wks post 2nd
EO 481			8.3	8.3	8.3
EO 482			8.3	8.3	8.3
EO 483	Sindbis/Env	(None)	8.3	78	103
EO 484			8.3	8.3	32
EO 485			8.3	76	207
EO 486			8.3	8.3	458
EO 487			8.3	8.3	345
EO 488	Sindbis/Env	Sindbis/Env	8.3	8.3	331
EO 489			8.3	103	111
EO 490			8.3	8.3	5636

Lymphoproliferative activity (LPA) was also determined by antigenic stimulation followed by uptake of ³H-thymidine in these animals and is shown in Table 20. Experiment 1 was performed at 14 weeks post third DNA immunization and Experiment 2 was performed at 2 weeks post fourth DNA immunization using DNA and protein. For gp120ThaiE, gp120SF2 and US4 o-gp140, appropriate background values were used to calculate Stimulation Indices (S.I.; Antigenic stimulation CPM/Background CPM).

10

5

Table 20

S.I.: Calculated as Ag CPM/Background CPM					
Animal/ exp# gp120ThaiE gp120 SF2 env2-3SF2 o-gp140U			o-gp140US4		
J408/#1	2	1	1	5	
H445/#1	1	1	1.	6	
J408/#2	1	1	2	3	
H445/#2	0	0	3	2	

15

As can be seen by the results presented in Table 20 lymphoproliferative responses to o-gp140.US4 antigen were also in all four animals at both experimental time points. Such proliferation results are indicative of induction of Thelper cell functions.

The results presented above demonstrate that the synthetic gp140.modSF162.delV2 DNA and protein are immunogenic in non-human primates.

10

15

20

25

Example 13

In vitro expression of recombinant Sindbis RNA and DNA containing the synthetic Gag or Env expression cassettes

A. Synthetic Gag expression cassettes

To evaluate the expression efficiency of the synthetic Gag expression cassette in Alphavirus vectors, the synthetic Gag expression cassette was subcloned into both plasmid DNA-based and recombinant vector particle-based Sindbis virus vectors. Specifically, a cDNA vector construct for in vitro transcription of Sindbis virus RNA vector replicons (pRSIN-luc; Dubensky, et al., J Virol. 70:508-519, 1996) was modified to contain a PmeI site for plasmid linearization and a polylinker for insertion of heterologous genes. A polylinker was generated using two oligonucleotides that contain the sites XhoI, PmII, ApaI, NarI, XbaI, and NotI (XPANXNF, SEQ ID NO:17, and XPANXNR, SEQ ID NO:18).

The plasmid pRSIN-luc (Dubensky et al., supra) was digested with XhoI and NotI to remove the luciferase gene insert, blunt-ended using Klenow and dNTPs, and purified from an agarose get using GeneCleanII (Biolol, Vista, CA). The oligonucleotides were annealed to each other and ligated into the plasmid. The resulting construct was digested with NotI and Sacl to remove the minimal Sindbis 3'-end sequence and A40 tract, and ligated with an approximately 0.4 kbp fragment from PKSSIN1-BV (WO 97/38087). This 0.4 kbp fragment was obtained by digestion of pKSSIN1-BV with NotI and SacI, and purification after size fractionation from an agarose gel. The fragment contained the complete Sindbis virus 3'-end, an A40 tract and a PmeI site for

10

15

20

25

30

linearization. This new vector construct was designated SINBVE.

The synthetic HIV Gag coding sequence was obtained from the parental plasmid by digestion with EcoRI, blunt-ending with Klenow and dNTPs, purification with GeneCleanII, digestion with SalI, size fractionation on an agarose gel, and purification from the agarose gel using GeneCleanII. The synthetic Gag coding fragment was ligated into the SINBVE vector that had been digested with XhoI and PmlI. The resulting vector was purified using GeneCleanII and designated SINBVGag. Vector RNA replicons may be transcribed in vitro (Dubensky et al., supra) from SINBVGaq and used directly for transfection of cells. Alternatively, the replicons may be packaged into recombinant vector particles by co-transfection with defective helper RNAs or using an alphavirus packaging cell line as described, for example, in U.S. Patent Numbers 5,843,723 and 5,789,245, and then administered in vivo as described...

The DNA-based Sindbis virus vector pDCMVSIN-beta-gal (Dubensky, et al., J Virol. 70:508-519, 1996) was digested with SalI and XbaI, to remove the beta-galactosidase gene insert, and purified using GeneCleanII after agarose gel size fractionation. The HIV Gag gene was inserted into the the pDCMVSIN-beta-gal by digestion of SINBVGag with SalI and XhoI, purification using GeneCleanII of the Gag-containing fragment after agarose gel size fractionation, and ligation. The resulting construct was designated pDSIN-Gag, and may be used directly for in vivo administration or formulated using any of the methods described herein.

BHK and 293 cells were transfected with recombinant Sindbis vector RNA and DNA, respectively. The supernatants

and cell lysates were tested with the Coulter p24 capture ELISA (Example 2).

BHK cells were transfected by electroporation with recombinant Sindbis RNA. The expression of p24 (in ng/ml) is presented in Table 21. In the table, SINGag#1 and 2 represent duplicate measurements, and $SIN\beta$ gal represents a negative control. Supernatants and lysates were collected 24h post transfection.

10

5

Table 21

Construct	Supernatant	Lysate
SINβgal RNA	0	0
SINGag#1 RNA	7 ng	Max (approx. 1 μg)
SINGag#2 RNA	1 ng	700 ng

15

293 cells were transfected using LT-1 (Example 2) with recombinant Sindbis DNA. Synthetic pCMVKM2GagMod.SF2 was used as a positive control. Supernatants and lysates were collected 48h post transfection. The expression of p24 (in ng/ml) is presented in Table 22.

20

25

Table 22

Construct	Supernatant	Lysate
SINGag DNA	3	30
pCMVKM2.GagMod.SF2 DNA	32	42

The results presented in Tables 21 and 22 demonstrate that Gag proteins can be efficiently expressed from both DNA and RNA-based Sindbis vector systems using the synthetic Gag 30 expression cassette (p55Gag.mod).

10

15

20

25

30

B. Synthetic Env expression cassettes

To evaluate the expression efficiency of the synthetic Env expression cassette in Alphavirus vectors, synthetic Env expression cassettes were subcloned into both plasmid DNA-based and recombinant vector particle-based Sindbis virus vectors as described above for Gag.

The synthetic HIV Env coding sequence was obtained from the parental plasmid by digestion with SalI and XbaI, size fractionation on an agarose gel, and purification from the agarose gel using GeneCleanII. The synthetic Env coding fragment was ligated into the SINBVE vector that had been digested with XhoI and XbaI. The resulting vector was purified using GeneCleanII and designated SINBVEnv. Vector RNA replicons may be transcribed in vitro (Dubensky et al., supra) from SINBVEnv and used directly for transfection of cells. Alternatively, the replicons may be packaged into recombinant vector particles by co-transfection with defective helper RNAs or using an alphavirus packaging cell line and administered as described above for Gag.

The DNA-based Sindbis virus vector pDCMVSIN-beta-gal (Dubensky, et al., *J Virol*. 70:508-519, 1996) was digested with *Sal*I and *Xba*I, to remove the beta-galactosidase gene insert, and purified using GeneCleanII after agarose gel size fractionation. The HIV Env gene was inserted into the the pDCMVSIN-beta-gal by digestion of SINBVEnv with *Xba*I and *Xho*I, purification using GeneCleanII of the Env-containing fragment after agarose gel size fractionation, and ligation. The resulting construct was designated pDSIN-Env, and may be used directly for *in vivo* administration or formulated using any of the methods described herein.

BHK and 293 cells were transfected with recombinant Sindbis vector RNA and DNA, respectively. The supernatants and cell lysates were tested by capture ELISA.

BHK cells were transfected by electroporation with recombinant Sindbis RNA. The expression of Env (in ng/ml) is presented in Table 23. In the table, the Sindbis RNA containing synthetic Env expression cassettes are indicated and β gal represents a negative control. Supernatants and lysates were collected 24h post transfection.

10

5

Table 23

Construct	Supernatant (Neat)ng/ml	Lysate (1:10 dilution)ng/ml
βgal RNA	0	0
gp140.modUS4	726	7147
gp140.modSF162	3529	7772
gp140.modUS4.delV1/V2	1738	6526
gp140.modUS4.delV2	960	3023
gp140.modSF162.delV2	2772	3359

15

20

293 cells were transfected using LT-1 mediated transfection (PanVera) with recombinant Sindbis DNA containing synthetic expression cassettes of the present invention and β gal sequences as a negative control.

Supernatants and lysates were collected 48h post transfection. The expression of Env (in ng/ml) is presented in Table 24.

Table 24

Construct	Supernatant (Neat)ng/ml	Lysate (1:10 dilution)ng/ml
βgal	0	0 .
gp140.modSF162.delV2	1977	801
gp140.modSF162	949	746

The results presented in Tables 23 and 24 demonstrated that Env proteins can be efficiently expressed from both DNA and RNA-based Sindbis vector systems using the synthetic Env expression cassettes of the present invention.

Example 14

A. In vivo Immunization with Gag-containing DNA and/or Sindbis particles

15

20

25

10

5

CB6F1 mice were immunized intramuscularly at 0 and 4 weeks with plasmid DNA and/or Sindbis vector RNA-containing particles each containing GagMod.SF2 sequences as indicated in Table 25. Animals were challenged with recombinant vaccinia expressing SF2 Gag at 3 weeks post second immunization (at week 7). Spleens were removed from the immunized and challenged animals 5 days later for a standard ⁵¹C release assay for CTL activity. Values shown in Table 25 indicate the results from the spleens of three mice from each group. The boxed values in Table 25 indicate that all groups of mice receiving immunizations with pCMVKm2.GagMod.SF2 DNA and/or SindbisGagMod.SF2 virus particles either alone or in combinations showed antigenspecific CTL activity.

10

15

20

25

Table 25

Cytotoxic T-lymphocyte (CTL)	responses i	n mice imm	unized wit	h HIV-1
gagmod DNA and Sindbis gagmod	virus parti	cles		
		Percent s	pecific lys	sis of
		tar	get cells*	
Immunization	E:T	SVBALB	SVBALB	RMA
		none	p7g	p7g
pCMVKm2.GagMod.SF2 DNA ^a	100:1	5	20	1
at 0, 4 wks	25:1	5	20	<1
	6:1	4	8	<1
SindbisGagMod.SF2	100:1	10	49	<1
virus particles ^b	25:1	7	20	<1
at 0, 4 weeks	6:1	5	12	<1
pCMVKm2.GagMod.SF2 DNA at 0	100:1	9	58	<1
wks SindbisGagMod.SF2 virus	25:1	7	42	2
particles at 4 wks	6:1	4	13	<1
SindbisGagMod.SF2	100:1	5	38	<1
virus particles at 4 wks	25:1	4	18	<1
pCMVKm2.GagMod.SF2 DNA at 0 wks	6:1	3	13	1

a 20 μg

* Challenge with recombinant vaccinia virus expressing HIV-1SF2 Gag at 3 weeks post second immunization (week 7). Spleens taken 5 days later. Ex vivo CTL assay performed by standard ⁵¹Cr release assay. Values seen represent results from 3 pooled mouse spleens per group

B. In vivo Immunization with Env-containing DNA and/or Sindbis particles

Balb/C mice were immunized intramuscularly at 0 and 4 weeks (as shown in the following table) with plasmid DNA and/or Sindbis-virus RNA-containing particles each containing gp120.modUS4 sequences. Treatment regimes and antibody titers are shown in Table 26. Antibody titers were determined by ELISA using gp120 SF2 protein to coat the plates.

35

b 107 particles

•			Table 26			
		Treatment		Bleed 0	Bleed 1 (8 wks)	Bleed 2 (10 wks)
	Animal	1st Immunization	2nd Immunization	1st Imm′n	2nd Imm'n	2 Wks post 2nd
5	EO 456 EO 457 EO 458 EO 459 EO 460	25μg 120mod DNA	(None)	8.3 8.3 8.3 8.3	45 254 8.3 43 8.3	309 460 - 93 45 274
10	EO 461 EO 462 EO 463 EO 464 EO 465	25μg 120mod DNA	25μg 120mod DNA	8.3 8.3 8.3 8.3 8.3	47 80 89 8.3 69	1502 5776 3440 3347 1127
15	EO 466 EO 467 EO 468 EO 469 EO 470	50μg 120mod DNA	(None)	8.3 8.3 8.3 8.3	63 112 94 58 95	102 662 459 48 355
20	EO 471 EO 472 EO 473 EO 474 EO 475	50μg 120mod DNA	50μg 120mod DNA	8.3 8.3 8.3 8.3	110 8.3 49 59 8.3	9074 4897 4089 5280 929
25	EO 476 EO 477 EO 478 EO 479 EO 480	25μg 120mod DNA	Sindbis/Env	8.3 8.3 8.3 8.3 8.3	87 76 71	653 22675 3869 1004 7080
30	EO 481 EO 482 EO 483 EO 484 EO 485	Sindbis/Env	(None)	8.3 8.3 8.3 8.3	8.3 8.3 78 8.3 76	8.3 8.3 103 32 207
35	EO 486 EO 487 EO 488 EO 489 EO 490	Sindbis/Env	Sindbis/Env	8.3 8.3 8.3 8.3 8.3	8.3 8.3 8.3 103 8.3	458 345 331 111 5636

As can be seen from the data presented above, all of the mice generally demonstrated substantial immunological

10

15

20

25

30

responses by bleed number 2. For Env, the best results were obtained using either (i) 50 μ g of gp120.modUS4 DNA for the first immunization followed by a second immunization using 50 μ g of gp120.modUS4 DNA, or (ii) 25 μ g of gp120.modUS4 DNA for the first immunization followed by a second immunization using 10⁷ pfus of Sindbis.

The results presented above demonstrate that the Env and Gag proteins of the present invention are effective to induce an immune response using Sindbis vector systems which include the synthetic Env (e.g., gp120.modUS4) or Gag expression cassettes.

Example 15

<u>Co-Transfection of Env and Gag as Monocistronic and</u> Bicistronic Constructs

DNA constructs encoding (i) wild-type US4 and SF162 Env polypeptides, (ii) synthetic US4 and SF162 Env polypeptides (gp160.modUS4, gp160.modUS4.delV1/V2, gp160.modSF162, and gp120.modSF162.delV2), and (iii) SF2gag polypeptide (i.e., the Gag coding sequences obtained from the SF2 variant or optimized sequences corresponding to the gagSF2 -- gag.modSF2) were prepared. These monocistronic constructs were co-transfected into 293T cells in a transient transfection protocol using the following combinations: gp160.modUS4; gp160.modUS4 and gag.modSF2; gp160.modUS4.delV1/V2; gp160.modUS4.delV1/V2 and gag.modSF2; gp160.modSF162 and gag.modSF2; gp120.modSF162.delV2 and gag.modSF2; and gag.modSF2 alone.

Further several bicistronic constructs were made where the coding sequences for Env and Gag were under the control of a single CMV promoter and, between the two coding

10

15

20

25

30

sequences, an IRES (internal ribosome entry site (EMCV IRES); Kozak, M., Critical Reviews in Biochemistry and Molecular Biology 27(45):385-402, 1992; Witherell, G.W., et al., Virology 214:660-663, 1995) sequence was introduced after the Env coding sequence and before the Gag coding sequence. Those constructs were as follows: gp160.modUS4.gag.modSF2, SEQ ID NO:73 (Figure 61); gp160.modUS4.gag.modSF2, SEQ ID NO:74 (Figure 62); gp160.modUS4.delV1/V2.gag.modSF2, SEQ ID NO:75 (Figure 63); and gp160.modSF162.delV2.gag.modSF2, SEQ ID NO:76 (Figure 64).

Supernatants from cell culture were filtered through 0.45 μm filters then ultracentrifuged for 2 hours at 24,000 rpm (140,000Xg) in an SW28 rotor through a 20% sucrose cushion. The pelleted materials were suspended and layered on a 20-60% sucrose gradient and spun for 2 hours at 40,000 rpm (285,000Xg) in an SW41Ti rotor. Gradients were fractionated into 1.0 ml samples. A total of 9-10 fractions were typically collected from each DNA transfection group.

The fractions were tested for the presence of the Env and Gag proteins (across all fractions). These results demonstrated that the appropriate proteins were expressed in the transfected cells (i.e., if an Env coding sequence was present the corresponding Env protein was detected; if a Gag coding sequence was present the corresponding Gag protein was detected).

Virus like particles (VLPs) were known to be present through a selected range of sucrose densities. Chimeric virus like particles (VLPs) were formed using all the tested combinations of constructs containing both Env and Gag. Significantly more protein was found in the supernatant collected from the cells transfected with

10

15

20

25

30

"gp160.modUS4.delV1/V2 and gag.modSF2" than in all the other supernatants.

Western blot analysis was also performed on sucrose gradient fractions from each transfection. The results show that bicistronic plasmids gave lower amounts of VLPs than the amounts obtained using co-transfection with monocistronic plasmids.

In order to verify the production of chimeric VLPs by these cell lines the following electron microscopic analysis was carried out.

293T cells were plated at a density of 60-70% confluence in 100 mm dishes on the day before transfection. The cells were transfected with 10 μg of DNA in transfection reagent LT1 (Panvera Corporation, 545 Science Dr., Madison, WI). The cells were incubated overnight in reduced serum medium (opti-MEM, Gibco-BRL, Gaithersburg, MD). The medium was replaced with 10% fetal calf serum, 2% glutamine in IMDM in the morning of the next day and the cells were incubated for 65 hours. Supernatants and lysates were collected for analysis as described above (see Example 2).

The fixed, transfected 293T cells and purified ENV-GAG VLPs were analyzed by electron microscopy. The cells were fixed as follows. Cell monolayers were washed twice with PBS and fixed with 2% glutaraldehyde. For purified VLPs, gradient peak fractions were collected and concentrated by ultracentrifugation (24,000 rpm) for 2 hours. Electron microscopic analysis was performed by Prof. T.S. Benedict Yen (Veterans Affairs, Medical Center, San Francisco, CA).

Electron microscopy was carried out using a transmission electron microscope (Zeiss 10c). The cells were pre-stained with osmium and stained with uranium acetate and lead citrate. Immunostaining was performed to

10

15

20

visualize envelope on the VLP. The magnification was 100,000X.

Figures 65A-65F show micrographs of 293T cells transfected with the following constructs: Figure 65A, gag.modSF2; Figure 65B, gp160.modUS4; Figure 65C, gp160.modUS4.delV1/V2.gag.modSF2 (bicistronic Env and Gag); Figures 65D and 65E, gp160.modUS4.delV1/V2 and gag.modSF2; and Figure 65F, gp120.modSF162.delV2 and gag.modSF2. In the figures, free and budding immature virus-like-particles (VLPs) of the expected size (approximately 100 nm) decorated with the Env protein were seen. In sum, gp160 polypeptides incorporate into Gag VLPs when constructs were cotransfected into cells. The efficiency of incorporation is 2-3 fold higher when constructs encoding V-deleted Env polypeptides from high synthetic expression cassettes are used.

Although preferred embodiments of the subject invention have been described in some detail, it is understood that obvious variations can be made without departing from the spirit and the scope of the invention as defined by the appended claims.

What Is Claimed Is:

1. An expression cassette, comprising

a polynucleotide sequence encoding a polypeptide including an HIV *Gag* polypeptide, wherein the polynucleotide sequence encoding said *Gag* polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:20.

10

15

20

25

30

- 2. The expression cassette of claim 1, comprising, a polynucleotide sequence encoding a polypeptide including an HIV Gag polypeptide, wherein the polynucleotide sequence encoding said Gag polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:9.
- 3. The expression cassette of claim 1, wherein said polynucleotide sequence encoding a polypeptide including an HIV Gag polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:4.
- 4. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV protease polypeptide.
- 5. The expression cassette of claim 4, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:5, SEQ ID NO:78, and SEQ ID NO:79.

20

25

30

- 6. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV reverse transcriptase polypeptide.
- 7. The expression cassette of claim 6, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, and SEQ ID NO:84.

8. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide

sequence encoding an HIV tat polypeptide.

9. The expression cassette of claim 8, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to a sequence selected from the group consisting of: SEQ ID NO:87, SEQ ID NO:88, and SEQ ID NO:89.

10. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV polymerase polypeptide, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:6.

11. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HIV polymerase polypeptide, wherein (i) the nucleotide sequence encoding said polypeptide comprises

a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:4, and (ii) wherein the sequence is modified by deletions of coding regions corresponding to reverse transcriptase and integrase.

- 12. The expression cassette of claim 11, wherein said polynucleotide sequence preserves T-helper cell and CTL epitopes.
- 13. The expression cassette of claim 1, wherein said polynucleotide sequence further includes a polynucleotide sequence encoding an HCV core polypeptide, wherein the nucleotide sequence encoding said polypeptide comprises a sequence having at least 90% sequence identity to the sequence presented as SEQ ID NO:7.
 - 14. An expression cassette, comprising a polynucleotide sequence encoding a polypeptide including an HIV *Env* polypeptide, wherein the polynucleotide sequence encoding said *Env* polypeptide comprises a sequence having at least 90% sequence identity to SEQ ID NO:71 (Figure 58) or SEQ ID NO:72 (Figure 59).
- 15. The expression cassette of claim 14, wherein said
 25 Env polypeptide includes sequences flanking a V1 region but
 has a deletion in the V1 region itself.
- 16. The expression cassette of claim 15, wherein the polynucleotide sequence encoding the polypeptide comprises the sequence presented as SEQ ID NO:65 (Figure 52 gp160.modUS4.delV1).

25

- 17. The expression cassette of claim 14, wherein said *Env* polypeptide includes sequences flanking a V2 region but has a deletion in the V2 region itself.
- 18. The expression cassette of claim 17, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:60 (Figure 47); and SEQ ID NO:66 (Figure 53).
- 19. The expression cassette of claim 17, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:34 (Figure 20); SEQ ID NO:37 (Figure 24); SEQ ID NO:40 (Figure 27); SEQ ID NO:43 (Figure 30); SEQ ID NO:46 (Figure 33); SEQ ID NO:76 (Figure 15 64) and SEQ ID NO:49 (Figure 36).
 - 20. The expression cassette of claim 14, wherein said *Env* polypeptide includes sequences flanking a V1/V2 region but has a deletion in the V1/V2 region itself.
 - 21. The expression cassette of claim 20, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:59 (Figure 46); SEQ ID NO:61 (Figure 48); SEQ ID NO:67 (Figure 54); and SEQ ID NO:75 (Figure 63).
 - 22. The expression cassette of claim 20, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:35 (Figure 21); SEQ ID NO:38 (Figure 25); SEQ ID NO:41 (Figure 28); SEQ ID NO:44

(Figure 31); SEQ ID NO:47 (Figure 34) and SEQ ID NO:50 (Figure 37).

- 23. The expression cassette of claim 14, wherein said

 5 Env polypeptide has a mutated cleavage site that prevents
 the cleavage of a gp140 polypeptide into a gp120 polypeptide
 and a gp41 polypeptide.
- 24. The expression cassette of claim 23, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:57 (Figure 44); SEQ ID NO:61 (Figure 48); and SEQ ID NO:63 (Figure 50).
- 25. The expression cassette of claim 23, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:39 (Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34).
 - 26. The expression cassette of claim 14, wherein said Env polypeptide includes a gp160 Env polypeptide or a polypeptide derived from a gp160 Env polypeptide.

27. The expression cassette of claim 26, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:64 (Figure 51); SEQ ID NO:65 (Figure 52); SEQ ID NO:66 (Figure 53); SEQ ID NO:67 (Figure 54); SEQ ID NO:68 (Figure 55); SEQ ID NO:75 (Figure

25

- 63); and SEQ ID NO:73 (Figure 61).
- 28. The expression cassette of claim 26, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:48 (Figure 35); SEQ ID NO:49 (Figure 36); SEQ ID NO:50 (Figure 37); SEQ ID NO:76 (Figure 64); and SEQ ID NO:74 (Figure 62).
- 29. The expression cassette of claim 14, wherein said

 10 Env polypeptide includes a gp140 Env polypeptide or a

 polypeptide derived from a gp140 Env polypeptide.
 - 30. The expression cassette of claim 29, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:56 (Figure 43); SEQ ID NO:57 (Figure 44); SEQ ID NO:58 (Figure 45); SEQ ID NO:59 (Figure 46); SEQ ID NO:60 (Figure 47); SEQ ID NO:61 (Figure 48); SEQ ID NO:62 (Figure 49); and SEQ ID NO:63 (Figure 50).
- 31. The expression cassette of claim 29, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:36 (Figure 23); SEQ ID NO:37 (Figure 24); SEQ ID NO:38 (Figure 25); SEQ ID NO:39 (Figure 26); SEQ ID NO:40 (Figure 27); SEQ ID NO:41 (Figure 28); SEQ ID NO:42 (Figure 29); SEQ ID NO:43 (Figure 30); SEQ ID NO:44 (Figure 31); SEQ ID NO:45 (Figure 32); SEQ ID NO:46 (Figure 33); and SEQ ID NO:47 (Figure 34).
- 32. The expression cassette of claim 14, wherein said 30 Env polypeptide includes a gp120 Env polypeptide or a

10

15

polypeptide derived from a gp120 Env polypeptide.

- 33. The expression cassette of claim 32, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:54 (Figure 41); and SEQ ID NO:55 (Figure 42).
- 34. The expression cassette of claim 32, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:33 (Figure 19); SEQ ID NO:34 (Figure 20); and SEQ ID NO:35 (Figure 21).
- 35. The expression cassette of claim 14, wherein the polynucleotide sequence encoding the polypeptide is selected from the group consisting of: SEQ ID NO:55 (Figure 42); SEQ ID NO:62 (Figure 49); SEQ ID NO:63 (Figure 50); and SEQ ID NO:68 (Figure 55).
- 36. A recombinant expression system for use in a selected host cell, comprising, an expression cassette of claim 1, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the selected host cell.
- 37. The recombinant expression system of claim 36, wherein said control elements are selected from the group consisting of a transcription promoter, a transcription enhancer element, a transcription termination signal, polyadenylation sequences, sequences for optimization of initiation of translation, and translation termination sequences.

38. The recombinant expression system of claim 36, wherein said transcription promoter is selected from the group consisting of CMV, CMV+intron A, SV40, RSV, HIV-Ltr, MMLV-ltr, and metallothionein.

5

39. A cell comprising an expression cassette of claim 1, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the selected cell.

10

- 40. The cell of claim 39, wherein the cell is a mammalian cell.
- 41. The cell of claim 40, wherein the cell is selected from the group consisting of BHK, VERO, HT1080, 293, RD, COS-7, and CHO cells.
 - 42. The cell of claim 41, wherein said cell is a CHO cell.

- 43. The cell of claim 39, wherein the cell is an insect cell.
- 44. The cell of claim 43, wherein the cell is either 25 Trichoplusia ni (Tn5) or Sf9 insect cells.
 - 45. The cell of claim 39, wherein the cell is a bacterial cell.
- 30 46. The cell of claim 39, wherein the cell is a yeast cell.

15

- 47. The cell of claim 39, wherein the cell is a plant cell.
- 5 48. The cell of claim 39, wherein the cell is an antigen presenting cell.
 - 49. The cell of claim 48, wherein the lymphoid cell is selected from the group consisting of macrophage, monocytes, dendritic cells, B-cells, T-cells, stem cells, and progenitor cells thereof.
 - 50. The cell of claim 39, wherein the cell is a primary cell.

51. The cell of claim 39, wherein the cell is an immortalized cell.

- 52. The cell of claim 39, wherein the cell is a tumor-20 derived cell.
 - 53. A method for producing a polypeptide including HIV Gag polypeptide sequences, said method comprising,

incubating the cells of claim 39, under conditions for producing said polypeptide.

54. A method for producing virus-like particles (VLPs), comprising,

incubating the cells of claim 39, under conditions for producing said VLPs.

20

30

- 55. A method for producing a composition of virus-like particles (VLPs), comprising,
- (a) incubating the cells of claim 39, under conditions for producing said VLPs; and
- 5 (b) substantially purifying said VLPs to produce a composition of VLPs.
 - 56. A cell line useful for packaging lentivirus vectors, comprising
- suitable host cells that have been transfected with an expression vector containing an expression cassette of claim 1, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the host cell.

57. A cell line useful for packaging lentivirus vectors, comprising

suitable host cells that have been transfected with an expression vector containing an expression cassette of claim 2, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the host cell.

58. A cell line useful for packaging lentivirus vectors, comprising

suitable host cells that have been transfected with an expression vector containing an expression cassette of claim 3, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the host cell.

59. A cell line useful for packaging lentivirus

vectors, comprising

suitable host cells that have been transfected with an expression vector containing an expression cassette of claim 11, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the host cell.

60. A gene delivery vector for use in a Mammalian subject, comprising

a suitable gene delivery vector for use in said subject, wherein the vector comprises an expression cassette of claim 1, and wherein said polynucleotide sequence is operably linked to control elements compatible with expression in the subject.

15

5

61. A method of DNA immunization of a subject, comprising,

introducing a gene delivery vector of claim 60 into said subject under conditions that are compatible with expression of said expression cassette in said subject.

- 62. The method of claim 61, wherein said gene delivery vector is a nonviral vector.
- 25 63. The method of claim 61, wherein said vector is delivered using a particulate carrier.
- 64. The method of claim 63, wherein said vector is coated on a gold or tungsten particle and said coated particle is delivered to said subject using a gene gun.
 - 65. The method of claim 63, wherein said vector is

25

encapsulated in a liposome preparation.

- 66. The method of claim 61, wherein said vector is a viral vector.
- 67. The method of claim 66, wherein said viral vector is a retroviral vector.
- 68. The method of claim 67, wherein said viral vector 10 is a lentiviral vector.
 - 69. The method of claim 61, wherein said subject is a mammal.
- 70. The method of claim 69, wherein said mammal is a human.
 - 71. A method of generating an immune response in a subject, comprising
- transfecting cells of said subject a gene delivery vector of claim 60, under conditions that permit the expression of said polynucleotide and production of said polypeptide, thereby eliciting an immunological response to said polypeptide.
 - 72. The method of claim 71, wherein said vector is a nonviral vector.
- 73. The method of claim 72, wherein said vector is delivered using a particulate carrier.
 - 74. The method of claim 73, wherein said vector is

coated on a gold or tungsten particle and said coated particle is delivered to said vertebrate cell using a gene qun.

- 5 75. The method of claim 73, wherein said vector is encapsulated in a liposome preparation.
 - 76. The method of claim 71, wherein said vector is a viral vector.

- 77. The method of claim 76, wherein said viral vector is a retroviral vector.
- 78. The method of claim 77, wherein said viral vector is a lentiviral vector.
 - 79. The method of claim 71, wherein said subject is a mammal.
- 20 80. The method of claim 79, wherein said mammal is a human.
- 81. The method of claim 71, wherein said transfecting is done ex vivo and said transfected cells are reintroduced into said subject.
 - 82. The method of claim 71, wherein said transfecting is done *in vivo* in said subject.
- 30 83. The method of claim 71, where said immune response is a humoral immune response.

- 84. The method of claim 71, where said immune response is a cellular immune response.
- 5 85. A gene delivery vector comprising an alphavirus vector construct, wherein said alphavirus construct comprises an expression cassette according to claim 1.
- 86. The gene delivery vector of claim 85, wherein the alphavirus vector construct is a cDNA vector construct.
 - 87. The gene delivery vector of claim 85, wherein the alphavirus comprises a recombinant alphavirus particle preparation.

- 88. The gene delivery vector of claim 85, wherein the vector comprises a eukaryotic layered vector initiation system.
- 89. A method of stimulating an immune response in a subject comprising administering the gene delivery vector of claim 85 in an amount effective to stimulate an immune response in said subject.
- 25 90. The method of claim 89, wherein the gene delivery vector is administered intramuscularly, intramucosally, intranasally, subcutaneously, intradermally, transdermall, intravaginally, intrarectally, orally or intravenously.

10

15

20

IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION OF VIRUS-LIKE PARTICLES

Abstract of the Disclosure

The present invention relates to the efficient expression of HIV polypeptides in a variety of cell types, including, but not limited to, mammalian, insect, and plant cells. Synthetic expression cassettes encoding the HIV Gagcontaining polypeptides are described, as are uses of the expression cassettes in applications including DNA immunization, generation of packaging cell lines, and production of Env-, tat- or Gag-containing proteins. The invention provides methods of producing Virus-Like Particles (VLPs), as well as, uses of the VLPs including, but not limited to, vehicles for the presentation of antigens and stimulation of immune response in subjects to whom the VLPs are administered.

orig.gagSF2
ATGGGTGCGAGAGCGTCGGTATTAAGCGGGGGAGAATTAGATAAATGGGAAAAAATTCGGTTAAGGCCAGGGGAAAA
Inact.1 AMAAAATATAAGTTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTCAATCCTGGCCTGTTAGAA G G C C G C
Inact. 2 ACATCAGAAGGCTGCAGACAAATATTGGGACAGCTACAGCCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTA G G C C
Inact.3 TATAATACAGTAGCAACCCTCTATTGTGTACATCAAAGGATAGATGTAAAAGACACCAAGGAAGCTTTAGAGAAGATA C C C C G
GAGGAAGAGCAAAACAAAAGTAAGAAAAAGGCACAAGCAAG
${\tt AGCCAAAATTACCCTATAGTGCAGAACCTACAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCA}$
TGGGTAAAAGTAGTAGAAGAAAAAGGCTTTCAGCCCAGAAGTAATACCCATGTTTTCAGCATTATCAGAAGGAGCCACC
Inact.5 CCACAAGATTTAAACACCATGCTAAACACAGTGGGGGGACATCAAGCAGCCATGCAAATGTTAAAAAGAGACTATCAAT G CC G G T G
GAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCATGCA
GGAAGTGACATAGCAGGAACTACTAGTACCCTTCAGGAACAAATAGGATGGAT
Inact.6 GGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAA
ATAAGACAAGGACCAAAGGAACCCTTTAGAGATTATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAACAAGCTTCA
CAGGATGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAATGCAAACCCAGATTGTAAGAC TATTTTAAAAGCA
TTGGGA CCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGGACCCGGCCATAAAGCAAGAGTT
TTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAACATAATGATGCAGAGAGGCAATTTTAGGAACCAAAGAAAG
ACTGTTAAGTGTTCAATTGTGGCAAAGAAGGGCCACATAGCCAAAAATTGCAGGGCCCCTAGGAAAAAAGGGCTGTTGG
AGATGTGGAAGGGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTTAGGGAAGATCTGGCCTTCC
TACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCCAACAGCCCCACCAGAAGAGAGCTTCAGGTTTGGG
GAGGAGAAAACAACTCCCTCTCAGAAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGATCACTC
TTTGGCAACGACCCCTCGTCACAATAA

native HIV-1SF2 gag-protease From here codon optimization + inactivation (GP1) and (GP2) ATGGGTGCGAGAGCGTCGGTATTAAGCGGGGGAGAATTAGATAAATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAA Inact. 1 AMANATATANGTTANANACATATAGTATGGGCANGCAGGGAGCTAGAACGATTCGCAGTCAATCCTGGCCTGTTAGAA G C C G C Inact. 2 TATACHACAGCAACCCTCTATTGTGTACATCAAAGGATAGATGTAAAAGACACCAAGGAAGCTTTAGAGAAGATA C GC C C AGCCAAAATTACCCTATAGTGCAGAACCTACAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCA TGGGTAAAAGTAGTAGAAGAAAAGGCTTTCAGCCCAGAAGTAATACCCATGTTTTCAGCATTATCAGAAGGAGCCACC Tnact.5 CCACAAGATTTAAACACCATGCTAAACACAGTGGGGGGGACATCAAGCAGCCATGCAAATGTTAAAAGAGACTATCAAT G CC G G T G ATAAGACAAGGACCAAAGGAACCCTTTAGAGATTATGTAGACCGGTTCTATAAAACTCTAAGAGCGAAACAAGCTTCA CAGGATGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAAATGCAAACCCAGATTGTAAGACTATTTTAAAAGCA Inact./ IGGGACCAGCA GCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGGACCCGGCCATAAAGCAAGAGTT Inact.8 TTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGC CC GC G Inact.9 ACTETTAAGTGTTTCAATTGTGGCAAAGAAGGGCAC ATAGCCAAAAATTGCAGGGCCCCTAGGAAAAAAGGGCTGTTGG $\mathtt{AGATGTGGAAGGGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTTT}$ $\mathtt{AGGGAAGATCTGGCCTTCC}$ From here no changes to native sequence (GP1) and (GP2) TACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCAACAGCCCCACCAGAAGAGAGCTTCAGGTTTGGG GAGGAGAAACAACTCCCTCTCAGAAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGATCACTC From here codon optimization + inactivation (GPI) Inact. 11 or only inactivation (GP2) CAGTATTAGAAGAAATGAATTTGCCAGGAAAATGGAAACCAAAAATGATAGGGGGAATTGGAGGTTTTATCAAAGTAA Inact.12 GACAGTACGATCAGATACCTGTAGAAATCTGTGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCA TAAAATTAAAGCCAGGAATGGATGGCCCAAAAGTTAAGCAATGGCCATTGTAA G G G G G C C G G

FIGURE 3

30

FIG. 5

FIG. 6

. " 🔩 🚉

GagPol.Mod GagProt.Mc Gag.ModSF2	ds 1	ATGGGCGCCC	CGCCAGCGT	SCICACCCC	SCCAGCTCC	50 Acaactora <i>ca</i> Acaactora Acaactora	50 50 50	
GagPol.Moc GagProt.Mc Gag.ModSF2	ds 51		PPOPOPOPOTE	GCGGCAAGAA	AAGTACAAG	100 Ctgaagcaca Ctgaagcaca Ctgaagcaca	100 100 100	FIG. 7
GagPol.Mod GagProt.Mod Gag.ModSF	ods 101		CAGCCGCGAG	CTGGAGCGCT		150 ICCCGGCCTG ICCCGGCCTG ICCCGGCCTG	150 150 150	
GagPol.Mo GagProt.M Gag.ModSF	ods 151	CTGGAGACCA	SCGAGGGCTG	CCCCAGATC	190 Tegeccaec Tegeccaec Tegeccaec	200 PACCCAGE TGCAGCCAG TGCAGCCAG	200 200 200	-
GagPol.Mo GagProt.M Gag.ModSF	ods 201		3GCAGCGAGG	AGCTGCGCAG	240 CCTGTACAAC CCTGTACAAC CCTGTACAAC	250 ACCGTGGCCA ACCGTGGCCA ACCGTGGCCA	250 250 250	
GagPol.Mo GagProt.M Gag.ModSF	ods 251		CGTGCACCAG	CGCATCGACG	290 TCAAGGACAC TCAAGGACAC TCAAGGACAC	00E ODEDAGDAAC ODEDAGDAAC ODEDAGDAAC	300 300 300	
GagPol.Mo GagProt.N Gag.ModSi	sods 301	CTGGAGAAGA	320 TCGAGGAGGA TCGAGGAGGA TCGAGGAGGA	3CAGAACAAG	340 TCCAAGAAGA TCCAAGAAGA TCCAAGAAGA	AGGCCCAGCA	350 350 350	
GagPol.McGagProt.M	fodS 351	360 3600600600 3600600600	370 GCCCCCGCA GCCCCCCA GCCCCCCA	CCGCCAACAG	390 CAGCCAGGTG CAGCCAGGTG CAGCCAGGTG	AGCCAGAACT	400 400 400	•
GagPol.Ma GagProt.1 Gag.ModSi	fods 40:	410 ACCCCATCGT ACCCCATCGT ACCCCATCGT	SCAGAACCTG	430 CAGGGCCAGA CAGGGCCAGA CAGGGCCAGA	440 TGGTGCACCA TGGTGCACCA TGGTGCACCA	SGCCATCAGC	450 450 450	
GagPol.M GagProt.1 Gag.ModS	Mods 45	460 1 CCCCGCACCC 1 CCCCGCACCC 1 CCCCGCACCC	TGAACGCCTG	SGTGAAGGTG	GTGGAGGAGA	AGGCCTTCAG AGGCCTTCAG	500 500 500	
GagPol.M GagProt. Gag.ModS	Mods 50	510 1 CCCCGAGGTG 1 CCCCGAGGTG 1 CCCCGAGGTG	ATCCCCATGT	TCAGCGCCCT	GAGCGAGGGC	22222A22E	550 550 550	
GagPol.M GagProt. Gag.ModS	Mods 55	560 1 AGGACCTGAA 1 AGGACCTGAA	CACGATGTTG	AACACCGTGG AACACCGTGG	GCGGCCACC	E SGCCGCCATG	600 600 600	
GagPol.M GagProt. Gag.ModS	Mods 60	610 1 CAGATGCTGA 1 CAGATGCTGA 1 CAGATGCTGA	AGGAGACCAT AGGAGACCAT	CAACGAGGAG CAACGAGGAG	SCCGCCGAG'	T SGGACCGCGT	650 650 650	
GagPol.M GagProt. Gag.ModS	Modš 69	660 51 3CACCCCGTC 51 3CACCCCGTC 51 3CACCCCGTC	CACGCCGCC	CATCGCCCC	CGGCCAGAT	CCCGAGCCCC	700 700 700	
GagPol.1 GagProt Gag.Mod:	Mods 70	710 30000AGCG 30000AGCG 30000AGCG	CATCGCCGG	ACCACCAGCA ACCACCAGCA	L CCTGCAGG	0 750 A SCAGATOGGO A SCAGATOGGO A SCAGATOGGO	750 7 50 7 50	
GagPol.1 GagProt Gag.Mod	.ModS 7	760 51 TGGATGACC 51 TGGATGACC 51 TGGATGACC	ACAACCCC	TATCCCCGT	G GGGAGATO	T ACAAGCGTG	800 800 800	. •/

GagPol.ModSF GagProt.ModS Gag.ModSF2	810 820 830 840 850 801 SATCATCCTG SECCTGAACA AGATCGTGGG SATGTACAGC CCACCAGCA 801 SATCATCCTG SECCTGAACA AGATCGTGGG SATGTACAGC CCACCAGCA 801 SATCATCCTG SECCTGAACA AGATCGTGGG SATGTACAGC CCCACCAGCA	850 850 850	
GagPol.ModSF GagProt.ModS Gag.ModSF2	860 870 880 890 900 851 TCCTGGACAT CCGCCAGGGC CCCAAGGAGC CCTTCCGCGA CTACGTGGAC 851 TCCTGGACAT CCGCCAGGGC CCCAAGGAGC CCTTCCGCGA CTACGTGGAC 851 TCCTGGACAT CCGCCAGGGC CCCAAGGAGC CCTTCCGCGA CTACGTGGAC	900 900 900	FIG. 7 (cont'd.)
GagPol.ModSF GagProt.ModS Gag.ModSF2	910 920 930 940 950 901 CECTTCTACA AGACCCTECE CECTGAGCAG CAGCCAGG ACGTGAAGAA 901 CECTTCTACA AGACCCTECE CECTGAGCAG CAGCCAGG ACGTGAAGAA 901 CECTTCTACA AGACCCTECE CECTGAGCAG CAGCCAGG ACGTGAAGAA	950 950 950	
GagPol.ModSF GagProt.ModS Gag.ModSF2	960 970 980 990 1000 951 CTGGATGACC SAGACCCTGC TGGTGCAGAA CGCCAACCCC SACTGCAAGA 951 CTGGATGACC SAGACCCTGC TGGTGCAGAA CGCCAACCCC SACTGCAAGA 951 CTGGATGACC SAGACCCTGC TGGTGCAGAA CGCCAACCCC SACTGCAAGA	1000 1000 1000	•
GagFol.ModSF GagProt.ModS Gag.ModSF2	1010 1020 1030 1040 1050 1001 CATCCTGAA GCTCTCGGC CCGCGGCCA CCCTGGAGGA GATGATGACC 1001 CCATCCTGAA GCTCTCGGC CCGCGGCCA CCCTGGAGGA GATGATGACC 1001 CCATCCTGAA GCTCTCGGC CCGCGGCCA CCCTGGAGGA GATGATGACC	1050 1050 1050	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1060 1070 1080 1090 1100 1051 SCCTGCCAGE SCGTGGGGG CCCCGGCCAC AAGGCCCGGG TGCTGGCCGA 1051 SCCTGCCAGE SCGTGGGCG CCCCGGCCAC AAGGCCCGCG TGCTGGCCGA 1051 SCCTGCCAGE SCGTGGGCGG CCCCGGCCAC AAGGCCCGCG TGCTGGCCGA	1100 1100 1100	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1110 1120 1130 1140 1150 1101 3GCGATGAGC CAGGTGACGA ACCCGGCGAC CATCATGATG CAGCGCGGCA	1150 1150 1150	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1160 1170 1180 1190 1200 1151 ACTTCCGCAA CAGCGGAAG ACCGTCAAGT GCTTCAACTG CGCCAAGGAG 1151 ACTTCCGCAA CAGCGGAAG ACCGTCAAGT GCTTCAACTG CGCCAAGGAG 1151 ACTTCCGCAA CAGCGGAAG ACCGTCAAGT GCTTCAACTG CGCCAAGGAG	1200 1200 1200	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1210 1220 1230 1240 1250 1201 3GCCACACCG CCAGGAACTG CCGCGCCCCC CGCAAGAAGG 3CTGCTGGCG 1201 3GCCACACCG CCAGGAACTG CCGCGCCCCC CGCAAGAAGG 3CTGCTGGCG 1201 3GCCACACCG CCAGGAACTG CCGCGCCCCCC CGCAAGAAGG 3CTGCTGGCG	1250 1250 1250	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1260 1270 1280 1290 1300 1251 TGCGGCCGC GAAGGACACC PAATGAAAGA TTGCACTGAG AGACAGGCTA 1251 TGCGGCCGC GAAGGACACC AAATGAAAGA TTGCACTGAG AGACAGGCTA 1251 TGCGGCCGC GAAGGACACC AAATGAAAGA TTGCACTGAG AGACAGGCTA 1251 TGCGGCCGC GAAGGACACC AGATGAAAGA CTGCACCGAG CGCCAGGCCCA	1300 1300 1300	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1310 1320 1330 1340 1350 1301 1301 1301 1302 1301	1350 1350 1350	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1360 1370 1380 1390 1400 1351 CTTCAGAGCA SACCAGAGCC ACAGCCCCA CCAGAAGAGA SCTTCAGGTT 1351 CTTCAGAGCA SACCAGAGCC CACCGCCCCA CCAGAAGAGA SCTTCAGGTT 1351 CTGCAGAGCC SACCA CACCGCCCCC CCGAGGAGAGA SCTTCAGGTT	1400 1400 1400	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1410 1420 1430 1440 1450 1401 TGGGGAGGAG AAAACAACTC CCTCTCAGAA GCAGGAGCCC ATAGACAAGG 1401 TGGGGAGGAG AAAACAACTC CCTCTCAGAA GCAGGAGCCC ATAGACAAGG 1401 CGGCGAGGAG AAAACAACTC CCTCTCAGAA GCAGGAGCCC ATAGACAAGG	1450 1450 1450	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1460 1470 1480 1490 1500 1451 ACTGTATCC TTTAACTICC CTCAGATCAC TCTTTGGCAA CGACCCCTCG 1451 ACTGTATCC TTTAACTICC CTCAGATCAC TCTTTGGCAA CGACCCCTCG 1451 ACTGTACCC CTGACCAGC CTGCGCAGC TCTTTGGCAA CGACCCCAGC	1500 1500 1500	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1510 1520 1530 1540 1550 1501 TCACAGTAAG GATCGGCGGC CAGCTCAAGG AGGCGCTGCT CCACACCGGC 1501 TCACAGTAAG GATCGGCGGC CAGCTCAAGG AGGCGCTGCT CCACACCGGC 1501 AGCCAGTAA.	1550 1550 1550	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1560 1570 1580 1590 1600 1551 GCCGACGACA CCGTGCTGGA GGAGATGAAC CTGCCCGGCA AGTGGAAGCC 1551 GCCGACGACA CCGTGCTGGA GGAGATGAAC CTGCCCGGCA AGTGGAAGCC 1551	1600 1600 1600	

GagPol.ModSF GagProt.ModS Gag.ModSF2	1610 1620 1630 1640 1650 1601 CAAGATGATC SECGGGATCG SEGECTICAT CAAGGTGCGG CAGTACGACC 1601 CAAGATGATC SECGGGATCG SEGECTTCAT CAAGGTGCGG CAGTACGACC 1601	1650 1650 1650	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1660 1670 1680 1690 1700 1651 AGATCCCCCT SCHOMTOTEC SCCCACAAGG SCATCCCCAC SCHOCTCCTCCTC 1651 AGATCCCCCT SCHOMTOTEC SCCCACAAGG SCATCCCCAC SCHOCTCCTCCTC 1651	1700 1700 1700	FIG. 7 (cont'd.)
GagPol.ModSF GagProt.ModS Gag.ModSF2	1710 1720 1730 1740 1750 1701 SECCCCACCC CCETGAACAT CATCGGCCGC AACCTGCTGA CCCAGATCGG 1701 CCCCCACCC CCGTGAACAT CATCGGCCGC AACCTGCTGA CCCAGATCGG 1701	1750 1750 1750	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1750 1770 1780 1790 1800 1751 CTGCACCCTG AACTTCCCCA TCAGCCCCAT CGAGACGGTG CCCGTGAAGC 1751 CTGCACCCTG AACTTCCCCA TCAGCCCCAT CGAGACGGTG CCCGTGAAGC 1751	1800 1800 1800	·
GagPol.ModSF GagProt.ModS Gag.ModSF2	1810 1820 1830 1840 1850 1801 IGAAGCCGGG GATGGACGGC CCCAAGGTCA AGCAGTGGCC CCTGACCGAG 1801 IGAAGCCGGG GATGGACGGC CCCAAGGTCA AGCAGTGGCC CCTGTAA	1850 1850 1850	·
GagPol.ModsF GagProt.Mods Gag.ModsF2	1860 1870 1880 1890 1900 1851 GAGAAGATCA AGGCCCTGGT GGAGATCTGC ACCGAGATGG AGAAGGAGGG 1851	1900 1900 1900	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1910 1920 1930 1940 1950 1901 CAAGATCAGC AAGATCAGCC CCGAGAACCC CTACAACACC CCCGTGTTCG 1901	1950 1950 1950	
GagPol.ModSF GagProt.ModS Gag.ModSF2	1960 1970 1980 1990 2000 1951 CCATCAAGAA GAAGGACAGC ACCAAGTGGC GCAAGCTGGT GGACTTCCGC 1951	2000 2000 2000	
GagFol.ModsF GagProt.Mods Gag.ModsF2	2010 2020 2030 2040 2050 2001 GAGCTGAACA AGCGCACCCA GGACTTCTGG GAGGTGCAGC TGGGCATCCC 2001	2050 2050 2050	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2060 2070 2080 2090 2100 2051 CCACCCCCC GGCCTGAAGA AGAAGAAGAG CGTGACCGTG CTGGACGTGG 2051	2100 2100 2100	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2110 2120 2130 2140 2150 2101 GOGACGCCTA CTTCAGCGTG CCCCTGGACA AGGACTTCCG CAAGTACACC 2101	2150 2150 2150	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2160 2170 2180 2190 2200 2151 GCCTTCACCA TCCCCAGCAT CAACAACGAG ACCCCCGGCA TCCGCTACCA 2151	2200 2200 2200	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2210 2220 2230 2240 2250 2201 GTACAACGTG CTGCCCCAGG GCTGGAAGGG CAGCCCCGCC ATCTTCCAGA 2201	2250 2250 2250	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2260 2270 2280 2290 2300 2251 GCAGCATGAC CAAGATCCTG GAGCCCTTCC GCAAGCAGAA CCCCGACATC 2251	2300 2300 2300	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2310 2320 2330 2340 2350 2301 GTGATCTACC AGTACATGGA CGACCTGTAC GTGGGCAGGG ACCTGGAGAT 2301	2350 2350 2350	•
GagPol.ModSF GagProt.ModS Gag.ModSF2	2360 2370 2380 2390 2400 2351 CGGCCAGCAC CGCACCAAGA TCGAGGAGCT GCGCCAGCAC CTGCTGCGCT 2351	2400 2400 2400	.w/

GagPol.ModSF GagProt.ModS	2401		AGAAGGAGCC CCCCTTCCTG	2450 2450	
Gag.ModSF2 GagPol.ModSF GagProt.ModS Gag.ModSF2	2460 2451 TGGATGGGCT 2451	2470 2480 ACGAGCTGCA CCCCGACAAG	2490 2500 TGGACCGTGC AGCCCATCAT	2500 F/ 2500 2500	'G. 7 (cont'd.)
GagPol.ModSF GagProt.ModS Gag.ModSF2	2510 2501 GCTGCCCGAG 2501	2520 2530 AAGGACAGCT GGACCGTGAA	2540 2550 CGACATCCAG AAGCTGGTGG	2550 2550 2550	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2551		2590 2600 G CCGGCATCAA GGTGAAGCAG	2600 2600 2600	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2601	TGCTGCGCGG CACCAAGGC	2640 2650 C CTGACOGAGG TGATCCCCCT	2650 2650 2650	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2651	GCCGAGCTGG AGCTGGCCG	0 2690 2700 A GAACCGCGAG ATCCTGAAGG	2700 2700 2700	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2701	CGAGGTGTAC TACGACCCC	0 2740 2750 A GCAAGGACCT GGTGGCCGAG	2750 2750 2750	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2751 2751	AGGGCCAGGG CCAGTGGAC	C TACCAGATCT ACCAGGAGCC	2800 2800 2800	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2801 2801	CTGAAGACCG GCAAGTACC	SC COGCATGOGC GGOGCCACA	2850 2850 2850	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2851 2851	GAAGCAGCTG ACCGAGGCC	2890 2900 CG TGCAGAAGGT GAGCACCGAG	2900 2900 2900	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2901 ACCATCGTG 2901	A TCTGGGGCAA GATCCCCA	30 2940 2950 AG TYCAAGCTGC CCATCCAGAA	2950 2950 2950	
GagPol.ModSF GagProt.ModS Gag.ModSF2	2951	G GAGGCCTGGT GGATGGAG	80 2990 3000 TA CTGGCAGGCC ACCTGGATCC 30 3040 3050	3000 3000 3000	
GagPol.ModSi GagProt.ModS Gag.ModSF2	F 3001 CCGAGTGGG S 3001	A GTTCGTGAAC ACCCCCCC	CC TGGTGAAGCT GTGGTACCAG	3050 3050 3050	
GagPol.ModSi GagProt.Mod Gag.ModSF2	F 3051 CTGGAGAAG S 3051 3051	G AGCCCATCGT GGGCGCCG	AG ACCTTCTACG TGGACGCGC	3100 3100 3100	
GagPol.ModSi GagProt.Mod Gag.ModSF2	3101	C GAGACCAAGC TGGGCAAC	SGC CGGCTACGTG ACCGACCGCG 180 3190 3200	3150 3150 3150	
GagPol.ModS GagProt.Mod Gag.ModSF2	ls 3151		ACA CCACCAACCA GAAGACCGAG	3200 3200 3200	-

GagPol.ModSF	3210 3220 3230		3250
GagProt.ModS	3201 CTGCAGGCCA TCCACCTGGC CCTGCAGGAC		3250
Gag.ModSF2	3201		3250
GagPol.ModSF GagProt.ModS Gag.ModSF2	3260 3270 3280 3251 CGTGACCGAC AGCCAGTACG CCCTGGGCAT 3251		3300 3300 3300
GagPol.ModSF	3310 3320 3330		3350
GagProt.ModS	3301 AGAGCGAGAG CGAGCTGGTG AGCCAGATCA		3350
Gag.ModSF2	3301		3350
GagPol.ModSF GagProt.ModS Gag.ModSF2	3360 3370 3380 3351 GAGAAGGTGT ACCTGGCCTG GGTGCCCGCC 3351	CACAAGGGCA TCGGCGGCAA	3400 3400 3400
GagPol.ModSF	3410 3420 3430	CATCCGCAAG GTGCTGTTCC	3450
GagProt.ModS	3401 CGAGCAGGTG GACAAGCTGG TGAGCGCCGG		3450
Gag.ModSF2	3401		3450
GagPol.ModSF GagProt.ModS Gag.ModSF2	3460 3470 3480 3451 TGAACGCAT CGACAAGGCC CAGGAGGAGC 3451	ACGAGAAGTA CCACAGCAAC	3500 3500 3500
GagPol.ModSF	3510 3520 3530	CCCCCCCTGG TGGCCAAGGA	3550
GagProt.ModS	3501 TGGCGCGCCA TGGCCAGCGA CTTCAACCTG		3550
Gag.ModSF2	3501		3550
GagPol.ModSF	3560 3570 3580	GAAGGGCGAG GCCATGCACG	3600
GagProt.ModS	3551 GATCGTGGCC AGCTGCGACA AGTGCCAGCT		3600
Gag.ModSF2	3551		3600
GagPol.ModSF	3610 3620 3630	AGCTGGACTG CACCCACCTG	3650
GagProt.ModS	3601 GCCAGGTGGA CTGCAGCCCC GGCATCTGGC		3650
Gag.ModSF2	3601		3650
GagProt.ModSF GagProt.ModS Gag.ModSF2	3660 3670 3680 3651 GAGGGCAAGA TCATCCTGGT GGCCGTGCA 3651	GIGGCCAGCG GCTACATCGA	3700 3700 3700
GagPol.ModSF	3710 3720 373	A GGAGACCGCC TACTTCCTGC	3750
GagProt.ModS	3701 GGCCGAGGTG ATCCCCGCCG AGACCGGCC		3750
Gag.ModSF2	3701		3750
GagPol.ModSF GagProt.ModS Gag.ModSF2	3760 3770 378 3751 TGAAGCTGGC CGGCCGCTGG CCCGTGAAG 3751	A CCATCCACAC CGACAACGGC	3800 3800 3800
GagPol.ModSF GagProt.ModS Gag.ModSF2	3810 3820 383 3801 AGCAACTTCA CCAGCACCAC CGTGAAGGC 3801	C GCCTGCTGGT GGGCCGGCAT	3850 3850 3850
GagPol.ModSF GagProt.ModS Gag.ModSF2	3860 3870 388 3851 CAAGCAGGAG TTCGGCATCC CCTACAACC 3851	C CCAGAGCCAG GGCGTGGTGG	3900 3900 3900
GagPol.ModSF	3910 3920 393	CA TOGGOCAGGT GOGOGACCAG	3950
GagProt.ModS	3901 AGAGCATGAA CAACGAGCTG AAGAAGAT		3950
Gag.ModSF2	3901		3950
GagPol.ModSF	3960 3970 39	TG GCCGTGTTCA TCCACAACTT	4000
GagProt.ModS	3951 GCCGAGCACC TGAAGACCGC CGTGCAGA		4000
Gag.ModSF2	3951		4000

FIG. 7 (cont'd.)

GagPol.ModSF GagProt.ModS Gag.ModSF2 GagPol.ModSF GagProt.ModS Gag.ModSF2 GagPol.ModSF GagProt.ModS Gag.ModSF2	4001 4001 4051 4051 4051 4101 4101	4060 ACATCATOGC 4110 AAGATCCAGA	4070 CACCGACATC 4120 ACTTCCGCGT	4030 GCGGCTACAG 4080 CAGACCAAGG 4130 GTACTACCGC	4090 AGCTGCAGAA 4140 GACAACAAGG	4100 GCAGATCACC 4150 ACCCCCTGTG	4050 4050 4050 4100 4100 4150 4150 4150	FIG.	7 (cont'd.)
GagPol.ModSF GagProt.ModS Gag.ModSF2 GagPol.ModSF GagProt.ModS Gag.ModSF2	4151 4151 4201 4201	4210 AGGACAACAG	GCCAAGCTGC 4220 CGACATCAAG	TGTGGAAGGG	4240 GCCGCAAGGC	4250 CAAGATCATC	4200 4200 4200 4250 4250 4250	٠	
GagPol.ModSF GagProt.ModS Gag.ModSF2 GagPol.ModSF GagProt.ModS GagProt.ModS	4251 4251 4301 4301	4310 GGACGAGGAC	GCAAGCAGAT 4320	r GGCCGCGAC	GACTGCGTGG	4350	4300 4300 4300 4350 4350 4350		
The code of the last state of				·					

FIG. 12

FIG. 13A

FIG.14

FIG. 15

qp120wtSF162

GTAGAAAAATTGTGGGTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAGCAACCACCACTCTATTTT GTGCATCAGATGCTAAAGCCTATGACACAGAGGTACATAATGTCTGGGCCACACATGCCTGTGTACCCAC AGACCCTAACCCACAAGAAATAGTATTGGAAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACATG GTAGAACAGATGCATGAGGATATAATCAGTTTATGGGATCAAAGTCTAAAGCCATGTGTAAAGTTAACCC CACTCTGTGTTACTCTACATTGCACTAATTTGAAGAATGCTACTAATACCAAGAGTAGTAATTGGAAAGA GATGGACAGAGGAGAAATAAAAAATTGCTCTTTCAAGGTCACCACAAGCATAAGAAATAAGATGCAGAAA GAATATGCACTTTTTTATAAACTTGATGTAGTACCAATAGATAATGATAATACAAGCTATAAATTGATAA ATTGTAACACCTCAGTCATTACACAGGCCTGTCCAAAGGTATCCTTTGAACCAATTCCCATACATTATTG TGCCCCGGCTGGTTTTGCGATTCTAAAGTGTAATGATAAGAAGTTCAATGGATCAGGACCATGTACAAAT GTCAGCACAGTACAATGTACACATGGAATTAGGCCAGTAGTGTCAACTCAATTGCTGTTAAATGGCAGTC TAGCAGAAGAAGGGGTAGTAATTAGATCTGAAAATTTCACAGACAATGCTAAAACTATAATAGTACAGCT GAAGGAATCTGTAGAAATTAATTGTACAAGACCTAACAATAATACAAGAAAAAGTATAACTATAGGACCG GGGAGAGCATTTTATGCAACAGGAGACATAATAGGAGATATAAGACAAGCACATTGTAACATTAGTGGAG AAAAATGGAATAACACTTTAAAACAGATAGTTACAAAATTACAAGCACAATTTGGGAATAAAACAATAGT CTTTAAGCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGTTTTAATTGTGGAGGGGAATTTTTC TACTGTAATTCAACACAGCTTTTTAATAGTACTTGGAATAATACTATAGGGCCAAATAACACTAATGGAA CTATCACACTCCCATGCAGAATAAAACAAATTATAAACAGGTGGCAGGAAGTAGGAAAAGCAATGTATGC CCCTCCCATCAGAGGACAAATTAGATGCTCATCAAATATTACAGGACTGCTATTAACAAGAGATGGTGGT AAAGAGATCAGTAACACCACCGAGATCTTCAGACCTGGAGGTGGAGATATGAGGGACAATTGGAGAAGTG GGTGCAGAGAGAAAAAAGA

FIG. 16 (SEQ ID NO:30)

qp140wtSF162

GTAGAAAATTGTGGGTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAGCAACCACCACTCTATTTT GTGCATCAGATGCTAAAGCCTATGACACAGAGGTACATAATGTCTGGGCCACACATGCCTGTGTACCCAC AGACCCTAACCCACAAGAAATAGTATTGGAAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACATG GTAGAACAGATGCATGAGGATATAATCAGTTTATGGGATCAAAGTCTAAAGCCATGTGTAAAGTTAACCC CACTCTGTGTTACTCTACATTGCACTAATTTGAAGAATGCTACTAATACCAAGAGTAGTAATTGGAAAGA GATGGACAGAGGAGAAATAAAAAATTGCTCTTTCAAGGTCACCACAAGCATAAGAAATAAGATGCAGAAA GAATATGCACTTTTTTATAAACTTGATGTAGTACCAATAGATAATGATAATACAAGCTATAAATTGATAA ATTGTAACACCTCAGTCATTACACAGGCCTGTCCAAAGGTATCCTTTGAACCAATTCCCATACATTATTG TGCCCCGGCTGGTTTTGCGATTCTAAAGTGTAATGATAAGAAGTTCAATGGATCAGGACCATGTACAAAT GTCAGCACAGTACAATGTACACATGGAATTAGGCCAGTAGTGTCAACTCAATTGCTGTTAAATGGCAGTC TAGCAGAAGAAGGGGTAGTAATTAGATCTGAAAATTTCACAGACAATGCTAAAACTATAATAGTACAGCT GAAGGAATCTGTAGAAATTAATTGTACAAGACCTAACAATAATACAAGAAAAAGTATAACTATAGGACCG GGGAGAGCATTTTATGCAACAGGAGACATAATAGGAGATATAAGACAAGCACATTGTAACATTAGTGGAG AAAAATGGAATAACACTTTAAAACAGATAGTTACAAAATTACAAGCACAATTTGGGAATAAAACAATAGT CTTTAAGCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGTTTTAATTGTGGAGGGGAATTTTTC TACTGTAATTCAACACAGCTTTTTAATAGTACTTGGAATAATACTATAGGGCCAAATAACACTAATGGAA CTATCACACTCCCATGCAGAATAAAACAAATTATAAACAGGTGGCAGGAAGTAGGAAAAGCAATGTATGC CCCTCCCATCAGAGGACAAATTAGATGCTCATCAAATATTACAGGACTGCTATTAACAAGAGATGGTGGT AAAGAGATCAGTAACACCACCGAGATCTTCAGACCTGGAGGTGGAGATATGAGGGACAATTGGAGAAGTG GGTGCAGAGAAAAAAAGAGCAGTGACGCTAGGAGCTATGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGC ACTATGGGCGCACGGTCACTGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAACAGC AGAACAATTTGCTGAGAGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCA GCTCCAGGCAAGAGTCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGGGATTTGGGGTTGC TCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGATCAGA TTTGGAATAACATGACCTGGATGGAGTGGGAGAGAGAAATTGACAATTACACAAACTTAATATACACCTT AATTGAAGAATCGCAGAACCAACAAGAAAAGAATGAACAAGAATTATTAGAATTGGATAAGTGGGCAAGT TTGTGGAATTGGTTTGACATATCAAAATGGCTGTGGTATATA

FIG. 17 (SEQ ID NO:31)

gp160wtSF162

GTAGAAAATTGTGGGTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAGCAACCACCACTCTATTTT GTGCATCAGATGCTAAAGCCTATGACACAGAGGTACATAATGTCTGGGCCACACATGCCTGTGTACCCAC AGACCCTAACCCACAAGAAATAGTATTGGAAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACATG GTAGAACAGATGCATGAGGATATAATCAGTTTATGGGATCAAAGTCTAAAGCCATGTGTAAAGTTAACCC CACTCTGTGTTACTCTACATTGCACTAATTTGAAGAATGCTACTAATACCAAGAGTAGTAATTGGAAAGA GATGGACAGAGGAGAAATAAAAAATTGCTCTTTCAAGGTCACCACAAGCATAAGAAATAAGATGCAGAAA GAATATGCACTTTTTTATAAACTTGATGTAGTACCAATAGATAATGATAATACAAGCTATAAATTGATAA ATTGTAACACCTCAGTCATTACACAGGCCTGTCCAAAGGTATCCTTTGAACCAATTCCCATACATTATTG TGCCCCGGCTGGTTTTGCGATTCTAAAGTGTAATGATAAGAAGTTCAATGGATCAGGACCATGTACAAAT GTCAGCACAGTACAATGTACACATGGAATTAGGCCAGTAGTGTCAACTCAATTGCTGTTAAATGGCAGTC TAGCAGAAGAAGGGGTAGTAATTAGATCTGAAAATTTCACAGACAATGCTAAAACTATAATAGTACAGCT GAAGGAATCTGTAGAAATTAATTGTACAAGACCTAACAATAATACAAGAAAAAGTATAACTATAGGACCG GGGAGAGCATTTTATGCAACAGGAGACATAATAGGAGATATAAGACAAGCACATTGTAACATTAGTGGAG AAAAATGGAATAACACTTTAAAACAGATAGTTACAAAATTACAAGCACAATTTGGGAATAAAACAATAGT $\tt CTTTAAGCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGTTTTAATTGTGGAGGGGAATTTTTC$ TACTGTAATTCAACACAGCTTTTTAATAGTACTTGGAATAATACTATAGGGCCAAATAACACTAATGGAA CTATCACACTCCCATGCAGAATAAAACAAATTATAAACAGGTGGCAGGAAGTAGGAAAAGCAATGTATGC CCCTCCCATCAGAGGACAAATTAGATGCTCATCAAATATTACAGGACTGCTATTAACAAGAGATGGTGGT AAAGAGATCAGTAACACCACCGAGATCTTCAGACCTGGAGGTGGAGATATGAGGGACAATTGGAGAAGTG GGTGCAGAGAAAAAAAAGAGCAGTGACGCTAGGAGCTATGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGC ACTATGGGCGCACGGTCACTGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAACAGC AGAACAATTTGCTGAGAGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCA GCTCCAGGCAAGAGTCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTAGGGATTTGGGGTTGC TCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGATCAGA TTTGGAATAACATGACCTGGATGGAGTGGGAGAGAGAAATTGACAATTACACAAACTTAATATACACCTT AATTGAAGAATCGCAGAACCAACAAGAAAAGAATGAACAAGAATTATTAGAATTGGATAAGTGGGCAAGT TTGTGGAATTGGTTTGACATATCAAAATGGCTGTGGTATATAAAAATATTCATAATGATAGTAGGAGGTT TAGTAGGTTTAAGGATAGTTTTTACTGTGCTTTCTATAGTGAATAGAGTTAGGCAGGGATACTCACCATT ATCATTTCAGACCCGCTTCCCAGCCCCAAGGGGACCCGACAGGCCCGAAGGAATCGAAGAAGAAGGTGGA GAGAGAGACAGACAGATCCAGTCCATTAGTGCATGGATTATTAGCACTCATCTGGGACGATCTACGGA GCCTGTGCCTCTTCAGCTACCACCGCTTGAGAGACTTAATCTTGATTGCAGCGAGGATTGTGGAACTTCT GGGACGCAGGGGTGGGAAGCCCTCAAGTATTGGGGGAATCTCCTGCAGTATTGGATTCAGGAACTAAAG AATAGTGCTGTTAGTTTGTTTGATGCCATAGCTATAGCAGTAGCTGAGGGGACAGATAGGATTATAGAAG TAGCACAAAGAATTGGTAGAGCTTTTCTCCACATACCTAGAAGAATAAGACAGGGCTTTGAAAGGGCTTT **GCTATAA**

FIG. 18 (SEQ ID NO:32)

gp120.modSF162

ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgaccgagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcgggggagatcaagaactgc agcttcaaggtgaccaccagcatccgcaacaagatgcagaaggagtacgccctgttctacaagctg gacgtggtgcccatcgacaacgacaacaccagctacaagctgatcaactgcaacaccagcgtgatc acccaggcctgccccaaggtgagcttcgagcccatccccatccactactgcgcccccgccggcttcgccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtg cagtgcacccacggcatccgccccgtggtgagcacccagctgctgctgaacggcagcctggccgag gagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaag gagagegtggagateaactgcaccegeceaacaacaacaccegeaagageateaceateggeeee ggccgcgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagc ggcgagaagtggaacaacacctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaag accatcgtgttcaagcagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggc ggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacaccatcggcccc aacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggag gtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggc ctgctgctgaccgcgacggcgaaggagatcagcaacaccaccgagatcttccgccccggcggc ggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagccctg ggcgtggcccccaccaaggccaagcgcgtggtgcagcgcgagaagcgctaactcgag

FIG. 19 (SEQ ID NO:33)

gp120.modSF162.delV2

gaattcgccaccatggatgcaatgaagagggctctgctgtgtgctgctgctgtgtggagcagtc ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagcctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcgggcgagatcaagaactgc agcttcaaggtgggcgccggcaagctgatcaactgcaacaccagcgtgatcacccaggcctgcccc aaggtgagettegageeeateeeateeactactgegeeeeggettegeeateetgaagtge aacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtgcagtgcacccacggc atccgcccgtggtgagcacccagctgctgctgaacggcagcctggccgaggagggcgtggtgatc cgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc aactgcacccgcccaacaacacacccgcaagagcatcaccatcggccccggccgcgccttctac gccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagcggcgagaagtggaac ${\tt aacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaagaccatcgtgttcaag}$ $\verb|cagagcagcggcgagccccgagatcgtgatgcacagcttcaactgcggcggcgagttcttctac|\\$ tgcaacagcacccagctgttcaacagcacctggaacaacaccatcggccccaacaacaccaacggc accatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggaggtgggcaaggccatg tacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggcctgctgacccgc gacggcggcaaggagatcagcaacaccaccgagatcttccgccccggcggcggcgacatgcgcgac aactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctgggcgtggccccacc aaggccaagcgcgcgtggtgcagcgcgagaagcgctaactcgag

FIG. 20 (SEQ ID NO:34)

gp120.modSF162.delV1V2

 $\verb|ttcgtttcgcccagcgccgtggagaagctgttgggtgaccgtgtactacggcgtgcccgtgtggaag|$ gaggccaccaccaccctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc $\tt gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg$ gaccagagcctgaagccctgcgtgaagctgacccccctgtgcgtgggcgccggcaactgccagacc agcgtgatcacccaggcctgccccaaggtgagcttcgagcccatccccatccactactgcgccccc gccggcttcgccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtg agcaccgtgcagtgcacccacggcatccgccccgtggtgagcacccagctgctgctgaacggcagc ctggccgaggagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtg cagctgaaggagagcgtggagatcaactgcacccgccccaacaacaacacccgcaagagcatcacc ateggeceeggeegeettetaegeeaceggegacateateggegacateegeeaggeecaetge $\verb| aacatcagcggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttc| \\$ ggcaacaagaccatcgtgttcaagcagagcagcggcggcgaccccgagatcgtgatgcacagcttc $\verb|aactgcggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacacc|$ tggcaggaggtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaac atcaccggcctgctgacccgcgacggcggcaaggagatcagcaacaccaccgagatcttccgc cccggcggcggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatc gagcccctgggcgtggcccccaccaaggccaagcgcgtggtgcagcgcgagaagcgctaactc gag

FIG. 21 (SEQ ID NO:35)

gp140.modSF162

gaattcgccaccatggatgcaatgaagagggctctgctgtgtgctgctgctgtgtggagcagtc ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagectgaageeetgegtgaagetgaeeeeeetgtgegtgaeeetgeaetgeaeeaaeetg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcgggggagatcaagaactgc agcttcaaggtgaccaccagcatccgcaacaagatgcagaaggagtacgccctgttctacaagctg gacgtggtgcccatcgacaacgacaacaccagctacaagctgatcaactgcaacaccagcgtgatc acccaggcctgccccaaggtgagcttcgagcccatcccatccactactgcgccccggcggcttc gccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtg cagtgcacccacggcatccgccccgtggtgagcacccagctgctgctgaacggcagcctggccgag gagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaag gagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcaccatcggcccc ggccgcgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagc ggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaag accatcgtgttcaagcagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggc ggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacaccatcggcccc aacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggag gtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggc ctgctgctgacccgcgacggcgacaggagatcagcaacaccaccgagatcttccgcccggcggc ggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagccctg ggcgtggcccccaccaaggccaagcgcgtggtgcagcgcgagaagcgcgcgtgaccctgggc $\verb|gccatg| tectgggcttcctgggcgccgccggcagcaccatgggcgcccgcagcctgaccctgacc|$ gtgcaggcccgccagctgctgagcggcatcgtgcagcagcagcagaacaacctgctgcgcgccatcgag gcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggcc gtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgc accaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctggaacaacatg ${\tt acctggatggagtggagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggag}$ agccagaaccagcaggagaacgagcaggagctgctggagctggacaagtgggccagcctgtgg aactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 23 (SEQ ID NO:36)

gp140.modSF162.delV2

ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcgggggagatcaagaactgc agcttcaaggtgggcgccggcaagctgatcaactgcaacaccagcgtgatcacccaggcctgcccc aaggtgagcttcgagcccatcccatccactactgcgcccccgccggcttcgccatcctgaagtgc aacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtgcagtgcacccacggc atccgcccgtggtgagcacccagctgctgctgaacggcagcctggccgaggagggcgtggtgatc cgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc aactgcacccgcccaacaacacccgcaagagcatcaccatcggccccggccgcgcttctac gccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagcggcgagaagtggaac a a caccet gaag cagate gt gacca aget geaggee cagt teggeaa caagace at egt gt teaagcagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggcggcgagttcttctac tg caa cag cac cag ct gtt caa cag cac ct gg aa caa cac cat cg gc cccaa caa cac caa cg gcaccatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggaggtgggcaaggccatg tacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggcctgctgacccgc gacggcggcaaggagatcagcaacaccaccgagatcttccgccccggcggcggcgacatgcgcgac aactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctgggcgtggccccacc aaggccaagcgcgcgtggtgcagcgcgagaagcgcgctgtgaccctgggcgccatgttcctgggc ttcctgggcgccggcagcaccatgggcgcccgcagcctgaccctgaccgtgcaggcccgccag ctgctgagcggcatcgtgcagcagcagaacaacctgctgcgcgccatcgaggcccagcagcacctg ctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggccgtggagcgctacctg ${\tt aaggaccagcagctgcatctggggcttgcagcggcaagctgatctgcaccaccgccgtgccc}$ gagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggagagccagaaccagcag gagaagaacgagcaggagctgctggagctggacaagtgggccagcctgtggaactggttcgacatc agcaagtggctgtggtacatctaactcgag

FIG. 24 (SEQ ID NO:37)

gp140.modSF162.delV1V2

ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgggcgccggcaactgccagacc agegtgateacceaggeetgeeceaaggtgagettegageecateceeatecaetaetgegeecee gccggcttcgccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtg agcaccgtgcagtgcacccacggcatccgccccgtggtgagcacccagctgctgctgaacggcagc ctggccgaggagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtg cagctgaaggagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcacc ateggeceggecgecttetacgecaceggegacateateggegacateegecaggeceaetge a a cateage g g e g a a garaga a cateage g a garaga e gggcaacaagaccatcgtgttcaagcagagcagcggcgaccccgagatcgtgatgcacagcttc $\verb|aactgcggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacacc|\\$ atcggccccaacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgc tggcaggaggtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaac atcaccggcctgctgctgacccgcgacggcgacaggagatcagcaacaccaccgagatcttccgc cccggcggcggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatc gagcccctgggcgtggcccccaccaaggccaagcgcggtggtgcagcgcgagaagcgccgtg ${\tt accctgggcgccatgttcctgggcttcctgggcgccgccgccgcagcaccatgggcgcccgcagcctg}$ accetgacegtgeaggeeggeagetgetgageggeategtgeageageageageaeetgetgege gccatcgaggcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgc gtgctggccgtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaag ctgatctgcaccaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctgg ${\tt aacaacatgacctggatggagtgggagcgcgagatcgacaactacaccaacctgatctacaccctg}$ atcgaggagagccagaaccagcaggagaagaacgagcaggagctgctggagctggacaagtgggcc agcctgtggaactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 25 (SEQ ID NO:38)

gp140.mut.modSF162

gaattcgccaccatggatgcaatgaagagggctctgctgtgtgctgctgctgtgtggagcagtc $\verb|tcgtttcgcccagcgcgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag|$ gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagcctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcggggagatcaagaactgc agettcaaggtgaccaccagcatccgcaacaagatgcagaaggagtacgccctgttctacaagctg gacgtggtgcccatcgacaacgacaacaccagctacaagctgatcaactgcaacaccagcgtgatc ${\tt acccaggcctgccccaaggtgagcttcgagcccatccccatccactactgcgcccccgccggcttc}$ gccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtg cagtgcacccacggcatccgcccgtggtgagcacccagctgctgctgaacggcagcctggccgag gagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaag gagagegtggagateaactgcaccegeceaacaacacaccegeaagageateaceateggeeee $\tt ggccgcgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagc$ ggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaag ${\tt accategtgttcaagcagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggc}$ ggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacaccatcggcccc aacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggag gtgggcaaggccatgtacgccccccatccgcggccagatccgctgcagcagcaacatcaccggc $\verb|ctgctgacccgcgacggcgacaggagatcagcaacaccaccgagatcttccgccccggcggc|\\$ ggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctg ggcgtggcccccaccaaggccaagcgcgcgtggtgcagcgcgagaagagcgccgtgaccctgggc gccatgttcctgggcttcctgggcgccggcagcaccatgggcgcccgcagcctgaccctgacc gtgcaggccgccagctgctgagcggcatcgtgcagcagcagcagcaacctgctgcgcgccatcgag gcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggcc $\tt gtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgc$ ${\tt accaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctggaacaacatg}$ acctggatggagtgggagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggag agccagaaccagcaggagaagaacgagcaggagctgctggagctggacaagtgggccagcctgtgg aactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 26 (SEQ ID NO:39)

gp140.mut.modSF162.delV2

gaattcgccaccatggatgcaatgaagagggctctgctgtgtgctgctgctgtgtggagcagtc ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagcctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcgggggagatcaagaactgc agetteaaggtgggegeeggeaagetgateaaetgeaaeaeeagegtgateaeeeaggeetgeeee aaggtgagettegageeeateeeateeactactgegeeeeggeettegeeateetgaagtge aacgacaagaagttcaacggcagcggcccttgcaccaacgtgagcaccgtgcagtgcacccacggc atccgccccgtggtgagcacccagctgctgctgaacggcagcctggccgaggagggcgtggtgatc cgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc aactgcacccgcccaacaacacacccgcaagagcatcaccatcggccccggccgcgcttctac gccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagcggcgagaagtggaac ${\tt aacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaagaccatcgtgttcaag}$ cagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggcggcgagttcttctac tgcaacagcacccagctgttcaacagcacctggaacaacaccatcggccccaacaacaccaacggc ${\tt accatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggaggtgggcaaggccatg}$ tacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggcctgctgacccgc gacggcggcaaggagatcagcaacaccaccgagatcttccgccccggcggcggcgacatgcgcgac aactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctgggcgtggccccacc ${\tt aaggccaagcgcgtggtgcagcgcgagaagagcgccgtgaccctgggcgccatgttcctgggc}$ $\verb|ttcctgggcgccggcagcaccatgggcgccgcagcctgaccctgaccgtgcaggcccgccag|$ ctgctgagcggcatcgtgcagcagcagcacacctgctgcgcgccatcgaggcccagcagcacctg ctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggccgtggagcgctacctg aaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgcaccaccgccgtgccc gagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggagagccagaaccagcag gagaagaacgagcaggagctggagctggacaagtgggccagcctgtggaactggttcgacatc agcaagtggctgtggtacatctaactcgag

FIG. 27 (SEQ ID NO:40)

gp140.mut.modSF162.delV1V2

ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccaccctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgggcgccggcaactgccagacc agegtgateacecaggeetgeecaaggtgagettegageecatececatecaetaetgegeecee gccggcttcgccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtg agcaccgtgcagtgcacccacggcatccgccccgtggtgagcacccagctgctgctgaacggcagc ctggccgaggaggggtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtg cagctgaaggagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcacc ateggeceeggeegeettetaegeeaceggegacateateggegacateegeeaggeecaetge aacatcagcggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttc ggcaacaagaccatcgtgttcaagcagagcagcggcggcgaccccgagatcgtgatgcacagcttc $\verb|aactgcggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacacc|$ tggcaggaggtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaac atcaccggcctgctgacccgcgacggcggcaaggagatcagcaaccaccgagatcttccgc cccqqcqqcqqcqacatgcgcqacaactggcgcagcgagctgtacaagtacaaggtggtgaagatc gagcccctgggcgtggcccccaccaaggccaagcgcgcgtggtgcagcgcgagaagagcgccgtg accetgggegecatgtteetgggetteetgggegeegeeggeageaceatgggegeegeageetg accetgacegtgeaggeeggeagetgetgageggeategtgeageageagaacaacetgetgege gccatcgaggcccagcagcagctgcagctgaccgtgtggggcatcaagcagctgcaggcccgc $\verb|gtgctggccgtggagcgctacctgaaggaccagcagctgctggggcatctggggctgcagcggcaag|$ ctgatctgcaccaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctgg aacaacatgacctggatggagtgggagcgcgagatcgacaactacaccaacctgatctacaccctg atcgaggagagccagaaccagcaggagaagaacgagcaggagctgctggagctggacaagtgggcc agcctgtggaactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 28 (SEQ ID NO:41)

gp140.mut7.modSF162

ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcggggagatcaagaactgc agettcaaggtgaccaccagcatccgcaacaagatgcagaaggagtacgccctgttctacaagctg gacgtggtgcccatcgacaacgacaacaccagctacaagctgatcaactgcaacaccagcgtgatc ${\tt acccaggcctgccccaaggtgagcttcgagcccatccccatccactactgcgcccccgccggcttc}$ gccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtg cagtgcacccacggcatccgcccgtggtgagcacccagctgctgctgaacggcagcctggccgag gagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaag gagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcaccatcggcccc ggccgcgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagc ggcgagaagtggaacaacacctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaag accategtgttcaagcagagcageggeggegaceeegagategtgatgcacagettcaaetgegge ggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacaccatcggcccc aacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggag gtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggc ctgctgctgacccgcgacggcgacaggagatcagcaacaccaccgagatcttccgccccggcggc $\verb|ggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctg|$ ggcgtggcccccaccaaggccatcagcagcgtggtgcagagcgagaagagcgccgtgaccctgggc $\tt gccatgttcctgggcttcctgggcgccgccggcagcaccatgggcgcccgcagcctgaccctgacc$ gtgcaggccgccagctgctgagcggcatcgtgcagcagcagcagcaaccacctgctgcgcgccatcgag gcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggcc gtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgc accaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctggaacaacatg ${\tt acctggatggagtggagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggag}$ agccagaaccagcaggagaagaacgagcaggagctgctggagctggacaagtgggccagcctgtgg aactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 29 (SEQ ID NO:42)

gp140.mut7.modSF162.delV2

ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc $\tt gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg$ gaccagagcctgaagcctgcagtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg ${\tt aagaacgccaccaacaccaagagcagcaactggaagagatggaccgcgggagatcaagaactgc}$ agetteaaggtgggegeeggeaagetgateaaetgeaacaceagegtgateaceeaggeetgeee ${\tt aaggtgagcttcgagcccatcccatccactactgcgcccccgccggcttcgccatcctgaagtgc}$ ${\tt aacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtgcagtgcacccacggc}$ $\verb|cgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc|$ $\verb|aactgcacccgcccaacaacaacacccgcaagagcatcaccatcggccccggccgcgccttctac|$ gccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagcggcgagaagtggaac aacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaagaccatcgtgttcaag $\verb|cagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggcggcgagttcttctac|$ ${\tt tgcaacagcacccagctgttcaacagcacctggaacaacaccatcggccccaacaacaccaacggc}$ ${\tt accatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggaggtggcaaggccatg}$ $\verb|tacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggcctgctgctgacccgc|$ gacggcggcaaggagatcagcaacaccaccgagatcttccgccccggcggcggcgacatgcgcgac $\verb|aactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctgggcgtggccccacc|$ aaggccatcagcagcgtggtgcagagcgagaagagcgccgtgaccctgggcgccatgttcctgggc $\verb|ttcctgggcgccgcagcaccatgggcgccgcagcctgaccctgaccgtgcaggcccgccag|$ ctgctgagcggcatcgtgcagcagcagcacaacctgctgcgcgccatcgaggcccagcagcacctg ctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtggtggcggtggcgctacctg aaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgcaccaccgccgtgccc gagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggagagccagaaccagcag gagaagaacgagcaggagctgctggagctggacaagtgggccagcctgtggaactggttcgacatc agcaagtggctgtggtacatctaactcgag

FIG. 30 (SEQ ID NO:43)

gp140.mut7.modSF162.delV1V2

ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg $\verb|tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc|$ gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagcctgcgtgaagctgaccccctgtgcgtgggcgccggcaactgccagacc agegtgateacceaggectgeceeaaggtgagettegageceateeceateeactactgegeeece gccggcttcgccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtg agcaccgtgcagtgcacccacggcatccgcccgtggtgagcacccagctgctgctgaacggcagc ctggccgaggagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtg $\verb|cagctgaaggagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcacc|\\$ $\verb|atcggccccggccgcccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgc|$ aacatcagcggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttc $\tt ggcaacaagaccatcgtgttcaagcagagcagcggcggcgaccccgagatcgtgatgcacagcttc$ aactgcggcggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacacc atcggccccaacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgc tggcaggaggtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaac atcaccggcctgctgctgacccgcgacggcggcaaggagatcagcaacaccaccgagatcttccgc cccggcggcggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatc gagcccctgggcgtggcccccaccaaggccatcagcagcgtggtgcagagcgagaagagcgccgtg accetgggegeeatgtteetgggetteetgggegeegeeggeageaceatgggegeeegeageetg accetgacegtgeaggeeggeagetgetgageggeategtgeageageagaacaacetgetgege gccatcgaggcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgc gtgctggccgtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaag $\verb|ctgatctgcaccaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctgg|$ ${\tt aacaacatgacctggatggagtgggagcgcgagatcgacaactacaccaacctgatctacaccctg}$ $\verb|atcgaggagagccagaaccagcaggagaacgagcaggagctgctggagcaagtgggcc|$ agectgtggaactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 31 (SEQ ID NO:44)

gp140.mut8.modSF162

gaattcgccaccatggatgcaatgaagagggctctgctgtgtgctgctgctgtgtggagcagtc $\verb|ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag|$ gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcgggggagatcaagaactgc agcttcaaggtgaccaccagcatccgcaacaagatgcagaaggagtacgccctgttctacaagctg gacgtggtgcccatcgacaacgacaacaccagctacaagctgatcaactgcaacaccagcgtgatc acccaggcctgccccaaggtgagcttcgagcccatccccatccactactgcgcccccgccggcttc gccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtg cagtgcacccacggcatccgcccgtggtgagcacccagctgctgctgaacggcagcctggccgag gagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaag gagagegtggagateaactgcacccgcccaacaacaacacccgcaagagcatcaccatcggcccc ggccgcgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagc ggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaag ${\tt accatcgtgttcaagcagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggc}$ $\tt ggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacaccatcggcccc$ aacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggag gtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggc ctgctgctgacccgcgacggcgacaggagatcagcaacaccaccgagatcttccgccccggcggc $\verb|ggcgacatgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctg|$ ggcgtggcccccaccatcgccatcagcagcgtggtgcagagcgagaagagcgccgtgaccctgggc gccatgttcctgggcttcctgggcgccgccggcagcaccatgggcgcccgcagcctgaccctgacc gtgcaggcccgccagctgctgagcggcatcgtgcagcagcagaacaacctgctgcgcgccatcgag gcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggcc gtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgc ${\tt accaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctggaacaacatg}$ ${\tt acctggatggagtggagacgcgagatcgacaactacaccaacctgatctacaccctgatcgaggag}$ agccagaaccagcaggagaacgagcaggagctgctggagctggacaagtgggccagcctgtgg aactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 32 (SEQ ID NO:45)

gp140.mut8.modSF162.delV2

gaattcgccaccatggatgcaatgaagagggctctgctgtgtgctgctgctgtgtggagcagtc ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagcctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcggggagatcaagaactgc agettcaaggtgggegeeggeaagetgateaactgeaacaceagegtgateaceeaggeetgeeee aaggtgagcttcgagcccatcccatccactactgcgcccccgccggcttcgccatcctgaagtgc aacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtgcagtgcacccacggc atccgcccgtggtgagcacccagctgctgctgaacggcagcctggccgaggagggcgtggtgatc cgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc aactgcacccgcccaacaacaacacccgcaagagcatcaccatcggccccggccgcgccttctac gccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagcggcgagaagtggaac aacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaagaccatcgtgttcaag cagagcagcggcggcgaccccgagatcgtgatgcacagcttcaactgcggcggcgagttcttctac tgcaacagcacccagctgttcaacagcacctggaacaacaccatcggccccaacaacaccaacggc accatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggaggtgggcaaggccatg tacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggcctgctgctgacccgc gacggcggcaaggagatcagcaacaccaccgagatcttccgccccggcggcggcgacatgcgcgac aactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctgggcgtggcccccacc atcgccatcagcagcgtggtgcagagcgagaagagcgccgtgaccctgggcgccatgttcctgggc ttcctgggcgccgccgcagcaccatgggcgcccgcagcctgaccctgaccgtgcaggcccgccag $\verb|ctgctgagcggcatcgtgcagcagcagcagcaacctgctgcgcgccatcgaggcccagcagcacctg|$ $\verb|ctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggccgtggagcgctacctg|$ aaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgcaccaccgccgtgccc gagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggagagccagaaccagcag gagaagaacgagcaggagctggagctggacaagtgggccagcctgtggaactggttcgacatc agcaagtggctgtggtacatctaactcgag

FIG. 33 (SEQ ID NO:46)

gp140.mut8.modSF162.delV1V2

gaattcgccaccatggatgcaatgaagaggggctctgctgtgtgctgctgctgtgtggagcagtc ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagcctgcgtgaagctgacccccctgtgcgtgggcgccggcaactgccagacc agcgtgatcacccaggcctgccccaaggtgagcttcgagcccatccccatccactactgcgccccc gccggcttcgccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtg agcaccgtgcagtgcacccacggcatccgccccgtggtgagcacccagctgctgctgaacggcagc ctggccgaggagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtg cagctgaaggagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcacc atcggccccggccgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgc aacatcagcggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttc ggcaacaagaccatcgtgttcaagcagagcagcggcggcgaccccgagatcgtgatgcacagcttc aactgcggcggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacacc atcggccccaacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgc tggcaggaggtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaac atcaccggcctgctgctgacccgcgacggcggcaaggagatcagcaacaccaccgagatcttccgc cccggcggcggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatc gagcccctgggcgtggcccccaccatcgccatcagcagcgtggtgcagagcgagaagagcgccgtg accctgggcgccatgttcctgggcttcctgggcgccgccggcagcaccatgggcgcccgcagcctg accctgaccgtgcaggcccgccagctgctgagcggcatcgtgcagcagcagaacaacctgctgcgc gccatcgaggcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgc gtgctggccgtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaag ctgatctgcaccaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctgg aacaacatgacctggatggagtgggagcgcgagatcgacaactacaccaacctgatctacaccctg atcgaggagagccagaaccagcaggagaagaacgagcaggagctgctggagctggacaagtgggcc agcctgtggaactggttcgacatcagcaagtggctgtggtacatctaactcgag

FIG. 34 (SEQ ID NO:47)

gp160.modSF162

gaattcgccaccatggatgcaatgaagaggggctctgctgtgtgctgctgctgtgtggagcagtc ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagcctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcggggagatcaagaactgc agcttcaaggtgaccaccagcatccgcaacaagatgcagaaggagtacgccctgttctacaagctg gacgtggtgcccatcgacaacgacaacaccagctacaagctgatcaactgcaacaccagcgtgatc acccaggcctgccccaaggtgagcttcgagcccatccccatccactactgcgcccccgccggcttc gccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtgagcaccgtg cagtgcacccacggcatccgccccgtggtgagcacccagctgctgctgaacggcagcctggccgag gagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaag gagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcaccatcggcccc ggccgcgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagc ggcgagaagtggaacaacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaag accatcgtgttcaagcagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggc ggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacaccatcggcccc aacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgctggcaggag gtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggc ctgctgctgacccgcgacggcgacaggagatcagcaacaccaccgagatcttccgccccggcggc ggcgacatgcgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagccctg ggcgtggcccccaccaaggccaagcgcgtggtgcagcgcgagaagcgcgcgtgaccctgggc gccatgttcctgggcttcctgggcgccgccggcagcaccatgggcgcccgcagcctgaccctgacc gtgcaggcccgccagctgctgagcggcatcgtgcagcagcagaacaacctgctgcgcgccatcgag gcccagcagcacctgctgcagctgaccgtgtggggcatcaagcagctgcaggcccgcgtgctggcc gtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgc accaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctggaacaacatg acctggatggagtgggagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggag agccagaaccagcaggagaagaacgagcaggagctgctggagctggacaagtgggccagcctgtgg aactggttcgacatcagcaagtggctgtggtacatcaagatcttcatcatgatcgtgggcggcctg gtgggcctgcgcatcgtgttcaccgtgctgagcatcgtgaaccgcgtgcgccagggctacagcccc ctgagcttccagacccgcttccccgcccccgcggccccgaccgcccgagggcatcgaggaggag ggcggcgagcgcgaccgcagcagccccctggtgcacggcctgctggccctgatctgggac atcgtggagctgctgggccgccgcggctgggaggccctgaagtactggggcaacctgctgcagtac tggatccaggagctgaagaacagcgccgtgagcctgttcgacgccatcgccatcgccgtggccgag ggcaccgaccgcatcatcgaggtggcccagcgcatcggccgcgccttcctgcacatcccccgccgc atccgccagggcttcgagcgcgccctgctgtaactcgag

FIG. 35 (SEQ ID NO:48)

gp160.modSF162.delV2

gaattcgccaccatggatgcaatgaagagggctctgctgtgtgctgctgctgtgtggagcagtc ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaaccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgaccctgcactgcaccaacctg aagaacgccaccaacaccaagagcagcaactggaaggagatggaccgcggggagatcaagaactgc agcttcaaggtgggcgccggcaagctgatcaactgcaacaccagcgtgatcacccaggcctgcccc aaggtgagcttcgagcccatcccatccactactgcgcccccgccggcttcgccatcctgaagtgc aacgacaagaagttcaacggcagcggccctgcaccaacgtgagcaccgtgcagtgcacccacggc atccgccccgtggtgagcacccagctgctgctgaacggcagcctggccgaggagggcgtggtgatc cgcagcgagaacttcaccgacaacgccaagaccatcatcgtgcagctgaaggagagcgtggagatc aactgcacccgccccaacaacaacccgcaagagcatcaccatcggccccggccgccttctac gccaccggcgacatcatcggcgacatccgccaggcccactgcaacatcagcggcgagaagtggaac aacaccctgaagcagatcgtgaccaagctgcaggcccagttcggcaacaagaccatcgtgttcaag cagagcagcggcgaccccgagatcgtgatgcacagcttcaactgcggcggcgagttcttctac tgcaacagcacccagctgttcaacagcacctggaacaacaccatcggccccaacaacaccaacggc accatcaccetgccctgccgcatcaagcagatcatcaaccgctggcaggaggtgggcaaggccatg tacgcccccccatccgcggccagatccgctgcagcagcaacatcaccggcctgctgacccgc gacggcggcaaggagatcagcaaccaccgagatcttccgccccggcggcggcgacatgcgcgac aactggcgcagcgagctgtacaagtacaaggtggtgaagatcgagcccctgggcgtggccccacc aaggccaagcgccgcgtggtgcagcgcgagaagcgccgtgaccctgggcgccatgttcctgggc ttcctgggcgccgccggcagcaccatgggcgcccgcagcctgaccctgaccgtgcaggcccgccag ctgctgagcggcatcgtgcagcagcagaacaacctgctgcgcgccatcgaggcccagcagcacctg etgeagetgacegtgtggggeateaageagetgeaggeeegegtgetggeegtggagegetaeetg aaggaccagcagctgctgggcatctggggctgcagcggcaagctgatctgcaccaccgccgtgccc gagcgcgagatcgacaactacaccaacctgatctacaccctgatcgaggagagccagaaccagcag gagaagaacgagcaggagctgctggagctggacaagtgggccagcctgtggaactggttcgacatc agcaagtggctgtggtacatcaagatcttcatcatgatcgtgggcggcctggtgggcctgcgcatc gtgttcaccgtgctgagcatcgtgaaccgcgtgcgccagggctacagccccctgagcttccagacc cgcttccccgcccccgcggccccgaccgcccgagggcatcgaggaggagggggggagcgac egegaeegeageageeeettggtgeaeggeetgetggeeetgatetgggaegaeetgegeageetg ggccgccgcggctgggaggccctgaagtactggggcaacctgctgcagtactggatccaggagctg atcgaggtggcccagcgcatcggccgcgccttcctgcacatcccccgccgcatccgccagggcttc gagegegeetgetgtaactegag

gp160.modSF162.delV1V2

 $\verb|ttcgtttcgcccagcgccgtggagaagctgtgggtgaccgtgtactacggcgtgcccgtgtggaag|$ gaggccaccaccacctgttctgcgccagcgacgccaaggcctacgacaccgaggtgcacaacgtg tgggccacccacgcctgcgtgcccaccgaccccaacccccaggagatcgtgctggagaacgtgacc gagaacttcaacatgtggaagaacaacatggtggagcagatgcacgaggacatcatcagcctgtgg gaccagagcctgaagccctgcgtgaagctgaccccctgtgcgtgggcgccggcaactgccagacc ${\tt agcgtgatcacccaggcctgccccaaggtgagcttcgagcccatcccatccactactgcgccccc}$ gccggcttcgccatcctgaagtgcaacgacaagaagttcaacggcagcggcccctgcaccaacgtg agcaccgtgcagtgcacccacggcatccgcccgtggtgagcacccagctgctgctgaacggcagc ctggccgaggagggcgtggtgatccgcagcgagaacttcaccgacaacgccaagaccatcatcgtg cagctgaaggagagcgtggagatcaactgcacccgcccaacaacaacacccgcaagagcatcacc atcggccccggccgccttctacgccaccggcgacatcatcggcgacatccgccaggcccactgc aacatcagcggcgagaagtggaacaacccctgaagcagatcgtgaccaagctgcaggcccagttc ggcaacaagaccatcgtgttcaagcagagcagcggcggcgaccccgagatcgtgatgcacagcttc aactgcggcggcgagttcttctactgcaacagcacccagctgttcaacagcacctggaacaacacc atcggccccaacaacaccaacggcaccatcaccctgccctgccgcatcaagcagatcatcaaccgc tggcaggaggtgggcaaggccatgtacgcccccccatccgcggccagatccgctgcagcagcaac ${\tt atcaccggcctgctgaccgcgacggcggcaaggagatcagcaacaccaccgagatcttccgc}$ $\verb|cccggcggcgacatgcgacaactggcgcagcgagctgtacaagtacaaggtggtgaagatc|$ $\tt gagcccctgggcgtggcccccaccaaggccaagcgcgcgtggtgcagcgcgagaagcgcgcgtg$ ${\tt accctgggcgccatgttcctgggcttcctgggcgccgccgcagcaccatgggcgccgcagcctg}$ $\tt gccatcgaggcccagcagcagctgcagctgaccgtgtggggcatcaagcagctgcaggcccgc$ gtgctggccgtggagcgctacctgaaggaccagcagctgctgggcatctggggctgcagcggcaag ctgatctgcaccaccgccgtgccctggaacgccagctggagcaacaagagcctggaccagatctgg ${\tt aacaacatgacctggatggagtggagcgcgagatcgacaactacaccaacctgatctacaccctg}$ $\verb|atcgaggagagccagaaccagcaggagaacgagcaggagctgctggagctggacaagtgggcc|$ ${\tt agcctgtggaactggttcgacatcagcaagtggctgtggtacatcaagatcttcatcatgatcgtg}$ $\tt ggcggcctggtgcctgcgcatcgtgttcaccgtgctgagcatcgtgaaccgcgtgcgccagggc$ tacagccccctgagcttccagacccgcttccccgcccccgcggccccgaccgcccgagggcatc atctgggacgacctgcgcagcctgtgcctgttcagctaccaccgcctgcgcgacctgatcctgatc $\tt gccgcccgcatcgtggagctgctgggccgccgcggctgggaggccctgaagtactggggcaacctg$ ctgcagtactggatccaggagctgaagaacagcgccgtgagcctgttcgacgccatcgcc $\tt gtggccgagggcaccgaccgcatcatcgaggtggcccagcgcatcggccgcgccttcctgcacatc$ ccccgccgcatccgccagggcttcgagcgccctgctgtaactcgag

FIG. 37 (SEQ ID NO:50)

gp120wtUS4

ACAACAGTCTTGTGGGTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAG CAACCACCACTCTGTTTTGTGCATCAGATGCTAAAGCATACAAAGCAGAGGC ACATAACGTCTGGGCTACACATGCCTGTGTACCCACAGACCCCAACCCACAG GAAGTAAATTTAACAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACA TGGTGGAACAGATGCATGAGGATATAATCAGTTTATGGGATCAAAGCCTAAA GCCATGTGTAAAATTAACCCCACTCTGTGTTACTTTAAATTGTACTGATAAGT TGACAGGTAGTACTAATGGCACAAATAGTACTAGTGGCACTAATAGTACTAG TGGCACTAATAGTACTAGTACTAATAGTACTGATAGTTGGGAAAAGATGCCA GAAGGAGAAATAAAAAACTGCTCTTTCAATATCACCACAAGTGTAAGAGATA AAGTGCAGAAAGAATATTCTCTCTTCTATAAACTTGATGTAGTACCAATAGAT AATGATAATGCTAGCTATAGATTGATAAATTGTAATACCTCAGTCATTACACA AGCCTGTCCAAAGGTATCTTTTGAACCAATTCCCATACATTATTGTGCCCCGG CTGGTTTTGCGATTCTAAAGTGTAAAGATAAGAAGTTCAATGGAACAGGACC ATGTAAAAATGTCAGCACAGTACAATGCACACATGGAATTAGACCAGTAGTA TCAACTCAACTGCTGTTAAATGGCAGTCTAGCAGAAGAAGAGATAGTACTTA GATCTGAAAATTTCACAGACAATGCTAAAAACCATAATAGTACAGCTGAATGA ATCTGTAGAAATTAATTGTATAAGACCCAACAATAATACAAGAAAAAGTATA CATATAGGACCAGGGAGAGCATTTTATGCAACAGGTGATATAATAGGAGACA TAAGACAAGCACATTGTAACATTAGTAAAGCAAACTGGACTAACACTTTAGA ACAGATAGTTGAAAAATTAAGAGAACAATTTGGGAATAATAAAACAATAATC TTTAATTCATCCTCAGGAGGGGACCCAGAAATTGTATTTCACAGTTTTAATTG TGGAGGGGAATTTTCTATTGTAATACATCACAACTATTTAATAGTACCTGGA ATATTACTGAAGAGTAAATAAGACTAAAGAAAATGACACTATCATACTCCC ATGCAGAATAAGACAAATTATAAACATGTGGCAAGAAGTAGGAAAAGCAAT GTATGCCCCTCCCATCAGAGGACAAATTAAATGTTCATCAAATATTACAGGG AGACCTTCAGACCTGGGGGAGGAAACATGAAGGACAATTGGAGAAGTGAAT GGCAAAGAGAAGAGTGGTGCAAAGAGAGAAAAGA

FIG. 38 (SEQ ID NO:51)

gp140wtUS4

ACAACAGTCTTGTGGGTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAG ${\tt CAACCACCACTCTGTTTTGTGCATCAGATGCTAAAGCATACAAAGCAGAGGC}$ ACATAACGTCTGGGCTACACATGCCTGTGTACCCACAGACCCCAACCCACAG GAAGTAAATTTAACAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACA TGGTGGAACAGATGCATGAGGATATAATCAGTTTATGGGATCAAAGCCTAAA GCCATGTGTAAAATTAACCCCACTCTGTGTTACTTTAAATTGTACTGATAAGT TGACAGGTAGTACTAATGGCACAAATAGTACTAGTGGCACTAATAGTACTAG TGGCACTAATAGTACTAATAGTACTGATAGTTGGGAAAAGATGCCA GAAGGAGAAATAAAAAACTGCTCTTTCAATATCACCACAAGTGTAAGAGATA AAGTGCAGAAAGAATATTCTCTCTTCTATAAACTTGATGTAGTACCAATAGAT AATGATAATGCTAGCTATAGATTGATAAATTGTAATACCTCAGTCATTACACA AGCCTGTCCAAAGGTATCTTTTGAACCAATTCCCATACATTATTGTGCCCCGG CTGGTTTTGCGATTCTAAAGTGTAAAGATAAGAAGTTCAATGGAACAGGACCATGTAAAAATGTCAGCACAGTACAATGCACACATGGAATTAGACCAGTAGTA TCAACTCAACTGCTGTTAAATGGCAGTCTAGCAGAAGAAGAAGAAGATAGTACTTA GATCTGAAAATTTCACAGACAATGCTAAAAACCATAATAGTACAGCTGAATGA ATCTGTAGAAATTAATTGTATAAGACCCAACAATAATACAAGAAAAAGTATA CATATAGGACCAGGGAGAGCATTTTATGCAACAGGTGATATAATAGGAGACA TAAGACAAGCACATTGTAACATTAGTAAAGCAAACTGGACTAACACTTTAGA ACAGATAGTTGAAAAATTAAGAGAACAATTTGGGAATAATAAAACAATAATC TTTAATTCATCCTCAGGAGGGGACCCAGAAATTGTATTTCACAGTTTTAATTG TGGAGGGGAATTTTCTATTGTAATACATCACAACTATTTAATAGTACCTGGA ATATTACTGAAGAGTAAATAAGACTAAAGAAAATGACACTATCATACTCCC ATGCAGAATAAGACAATTATAAACATGTGGCAAGAAGTAGGAAAAGCAAT GTATGCCCCTCCCATCAGAGGACAAATTAAATGTTCATCAAATATTACAGGG AGACCTTCAGACCTGGGGAGAAACATGAAGGACAATTGGAGAAGTGAAT CTTTGTTCATTGGGTTCTTGGGAGCAGCAGCAGCACTATGGGCGCAGCGTC AGTGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAACAG CAGAACAATTTGCTGAGAGCTATTGAGGCGCAACAGCATCTGTTGCAACTCA CGGTCTGGGGCATCAAACAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATA CCTAAAGGATCAACAGCTCCTAGGGATTTGGGGTTGCTCTGGAAAACTCATTT ATTTGGGATAATATGACCTGGATGGAGTGGGAAAGAGAAATTGGCAATTATA CAGGCTTAATATACAATTTAATTGAAATAGCACAAAACCAGCAAGAAAAGAA TGAACAAGAATTATTGGAATTAGACAAGTGGGCAAGTTTGTGGAATTGGTTT GATATAACAAACTGGCTGTGGTATATA

gp160wtUS4

ACAACAGTCTTGTGGGTCACAGTCTATTATGGGGTACCTGTGTGGAAAGAAG ${\tt CAACCACCACTCTGTTTTGTGCATCAGATGCTAAAGCATACAAAGCAGAGGC}$ ACATAACGTCTGGGCTACACATGCCTGTGTACCCACAGACCCCAACCCACAG GAAGTAAATTTAACAAATGTGACAGAAAATTTTAACATGTGGAAAAATAACA TGGTGGAACAGATGCATGAGGATATAATCAGTTTATGGGATCAAAGCCTAAA GCCATGTGTAAAATTAACCCCACTCTGTGTTACTTTAAATTGTACTGATAAGT TGACAGGTAGTACTAATGGCACAAATAGTACTAGTGGCACTAATAGTACTAG TGGCACTAATAGTACTAGTACTAATAGTACTGATAGTTGGGAAAAGATGCCA GAAGGAGAAATAAAAAACTGCTCTTTCAATATCACCACAAGTGTAAGAGATA AAGTGCAGAAAGAATATTCTCTCTTCTATAAACTTGATGTAGTACCAATAGAT AATGATAATGCTAGCTATAGATTGATAAATTGTAATACCTCAGTCATTACACA AGCCTGTCCAAAGGTATCTTTTGAACCAATTCCCATACATTATTGTGCCCCGG ${\tt CTGGTTTTGCGATTCTAAAGTGTAAAGATAAGAAGTTCAATGGAACAGGACC}$ ATGTAAAAATGTCAGCACAGTACAATGCACACATGGAATTAGACCAGTAGTA TCAACTCAACTGCTGTTAAATGGCAGTCTAGCAGAAGAAGAAGATAGTACTTA GATCTGAAAATTTCACAGACAATGCTAAAAACCATAATAGTACAGCTGAATGA ATCTGTAGAAATTAATTGTATAAGACCCAACAATAATACAAGAAAAAGTATA CATATAGGACCAGGGAGAGCATTTTATGCAACAGGTGATATAATAGGAGACA TAAGACAAGCACATTGTAACATTAGTAAAGCAAACTGGACTAACACTTTAGA ACAGATAGTTGAAAAATTAAGAGAACAATTTGGGAATAATAAAACAATAATC TTTAATTCATCCTCAGGAGGGGACCCAGAAATTGTATTTCACAGTTTTAATTG TGGAGGGGAATTTTCTATTGTAATACATCACAACTATTTAATAGTACCTGGA ATATTACTGAAGAGTAAATAAGACTAAAGAAAATGACACTATCATACTCCC ATGCAGAATAAGACAATTATAAACATGTGGCAAGAAGTAGGAAAAGCAAT GTATGCCCCTCCCATCAGAGGACAAATTAAATGTTCATCAAATATTACAGGG AGACCTTCAGACCTGGGGGAGGAAACATGAAGGACAATTGGAGAAGTGAAT GGCAAAGAGAGAGAGAGAAAAGAGCAGTGGGACTAGGAG AGTGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAACAG CAGAACAATTTGCTGAGAGCTATTGAGGCGCAACAGCATCTGTTGCAACTCA CGGTCTGGGGCATCAAACAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATA ${\tt CCTAAAGGATCAACAGCTCCTAGGGATTTGGGGTTGCTCTGGAAAACTCATTT}$ ATTTGGGATAATATGACCTGGATGGAGTGGGAAAGAGAAATTGGCAATTATA CAGGCTTAATACAATTTAATTGAAATAGCACAAAACCAGCAAGAAAAGAA TGAACAAGAATTATTGGAATTAGACAAGTGGGCAAGTTTGTGGAATTGGTTT GATATAACAAACTGGCTGTGGTATATAAGAATATTCATAATGATAGTAGGAG GCTTGATAGGTTTAAGAATAGTTTTTTGCTGTACTTTCTATAGTGAATAGAGTT AGGCAGGGATACTCACCAATATCATTGCAGACCCGCCTCCCAGCTCAGAGGG

FIG. 40 CONT'D (SEQ ID NO:53)

gp120.modUS4

GTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTGCCCGTG TGGAAGGAGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACC TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG ACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGGCACCAACAGCACCAGCGGCAC CAACAGCACCAGCGCACCAACAGCACCAGCACCAACAGCACCGACAGCTGGGAGAAGATG CCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCACCAGCGTGCGCGACAAGGTGCA GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACGACAACGCCAGCT ACCGCCTGATCAACTGCAACACCAGCGTGATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGC CCATCCCATCCACTACTGCGCCCCCGCCGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGT TCAACGCACCGCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCC GTGGTGAGCACCCAGCTGCTGCAACGGCAGCCTGGCCGAGGAGAGATCGTGCTGCCCTC CGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCA ACTGCATCCGCCCAACAACACACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCT ACGCCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAAC TGGACCAACACCCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGAC CATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGG CGGCGAGTTCTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGA GGTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCA ACATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGC AGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCCCAACAACAACAACCGCACCAA CGACACCGAGACCTTCCGCCCGGCGGCGGCAACATGAAGGACAACTGGCGCAGCGAGCTGT GTGGTGCAGCGCGAGAAGCGCTAAGATATCGGATCCTCTAGA

FIG. 41 (SEQ ID NO:54)

gp120.mod.US4.del128-194

AGCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCG TGCCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTAC AAGGCCGAGGCCCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCCGACCCCAACCC CCAGGAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGG TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTG AAGCTGACCCCCTGTGCGTGGGGGCAGGGAACTGCGAGACCAGCGTGATCACCCAGGC CTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTCG CCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGGCCCCTGCAAGAACGTGAGC ACCGTGCAGTGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTGCAACGG CAGCCTGGCCGAGGAGGAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGA CCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACAAC ACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGACATCAT CGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTCG AGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCATCATCTTCAAC AGCAGCAGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGGCGGCGAGTT CTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGA ACAAGACCAAGGAGAACGACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAAC ATGTGGCAGGAGGTGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTG CAGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCACCAACAACAACCGCA CCAACGACACCGAGACCTTCCGCCCCGGCGGCGCAACATGAAGGACAACTGGCGCAGC CAAGCGCCGCGTGGTGCAGCGCGAGAAGCGCTAAGATATCGGATCCTCTAGA

FIG. 42 (SEQ ID NO:55)

gp140.modUS4

GTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTGCCCGTG TGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACC TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG ACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGGCACCAACAGCACCAGCGGCAC CAACAGCACCAGCGCACCAACAGCACCAACAGCACCGACAGCTGGGAGAAGATG CCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCACCAGCGTGCGCGACAAGGTGCA GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACGACAACGCCAGCT ACCGCCTGATCAACTGCAACACCAGCGTGATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGC CCATCCCATCCACTACTGCGCCCCGCCGGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGT TCAACGCACCGGCCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC GTGGTGAGCACCCAGCTGCTGCAACGGCAGCCTGGCCGAGGAGGAGATCGTGCTGCGCTC CGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCA ACTGCATCCGCCCCAACAACAACACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCT ACGCCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAAC TGGACCAACACCCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGAC CATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGG CGGCGAGTTCTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGA GGTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCA ACATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGC AGCAGCAATATTACCGGCCTGCTGACCCGCGACGGCGCACCAACAACAACAACCGCACCAA CGACACCGAGACCTTCCGCCCCGGCGCGCGCAACATGAAGGACAACTGGCGCAGCGAGCTGT GTGGTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGTTCATCGGCTTCCTGGGCGCC GCCGGGAGCACCATGGGCGCCCCCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAG AGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAGCGCTACCTG AAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCACCGT GCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAACATGACCTGGA TGGAGTGGGAGCCGAGATCGGCAACTACACCGGCCTGATCTACAACCTGATCGAGATCGCC CAGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGT GGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCTAAGATATCGGATCCTCTAGA

FIG. 43 (SEQ ID NO:56)

gp140.mut.modUS4

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGGAGCA ${\tt GTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTGCCCGTG}$ TGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC ${\tt CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACC}$ TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG ACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGGCACCAACAGCACCAGCGGCAC CAACAGCACCAGCGCACCAACAGCACCAACAGCACCGACAGCTGGGAGAAGATG CCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCACCAGCGTGCGCGACAAGGTGCA GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACGACAACGCCAGCT ACCGCCTGATCAACTGCAACACCAGCGTGATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGC CCATCCCATCCACTACTGCGCCCCCCCGCCGGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGT TCAACGGCACCGGCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC GTGGTGAGCACCCAGCTGCTGAACGGCAGCCTGGCCGAGGAGGAGATCGTGCTGCGCTC CGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCA CGGCGAGTTCTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCA AGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCACCAACAACAACCACCACAA CGACACCGAGACCTTCCGCCCCGGCGGCGCAACATGAAGGACAACTGGCGCAGCGAGCTGT ${\tt GCCGGGAGCACCATGGGCCCCCCCTCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAG}$ AGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAGCGCTACCTG AAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAACATGACCTGGA TGGAGTGGGAGCGCGAGATCGGCAACTACACCGGCCTGATCTACAACCTGATCGAGATCGCCCAGAACCAGCAGGAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGT GGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCTAAGATATCGGATCCTCTAGA

FIG. 44 (SEQ ID NO:57)

gp140.TM.modUS4

GTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTGCCCGTG TGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCCGACCCCAACCCCCAGGAGGTGAACC TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCTGCGTGAAGCTGACCCCCCTGTGCGTG ACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGGCACCAACAGCACCAGCGGCAC CAACAGCACCAGCGCACCAACAGCACCAACAGCACCGACAGCTGGGAGAAGATG CCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCACCAGCGTGCGCGACAAGGTGCA GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACGACAACGCCAGCT ACCGCCTGATCAACTGCAACACCAGCGTGATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGC CCATCCCATCCACTACTGCGCCCCGCCGGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGT TCAACGCACCGCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC GTGGTGAGCACCCAGCTGCTGAACGGCAGCCTGGCCGAGGAGGAGATCGTGCTGCCTC CGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCA ACTGCATCCGCCCAACAACAACACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCT ACGCCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAAC TGGACCAACACCCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGAC CATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGG CGGCGAGTTCTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGA GGTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCA ACATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCATCCGCGGCCAGATCAAGTGC AGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCACCAACAACAACAACCGCACCAA CGACACCGAGACCTTCCGCCCCGGCGGCGCAACATGAAGGACAACTGGCGCAGCGAGCTGTGTGGTGCAGCGCGAGAAGCGCGCGTGGGCCTGGGCGCCCTGTTCATCGGCTTCCTGGGCGCC GCCGGGAGCACCATGGGCGCCCCCCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAG CGGCATCGTGCAGCAGCAGCAGCACCTGCTGCGCGCCCATCGAGGCCCAGCAGCACCTGCTGC AGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAGCGCTACCTG AAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCACCGT GCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAACATGACCTGGA TGGAGTGGGAGCGCGAGATCGCCAACTACACCGGCCTGATCTACAACCTGATCGAGATCGCC GGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCCGCATCTTCATCATGATCGTGGGCG GCCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCATCGTGTAAGATATCGGATCCTCTA

FIG. 45 (SEQ ID NO:58)

Gp140modUS4.DV1V2

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGC TGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACC GTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTGTTCTGCG CCAGCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTGGGCCACCCA CGCCTGCGTGCCCACCGACCCCAACCCCAGGAGGTGAACCTGACCAACGTG ACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGGGCGCCGGCC AGGCCTGCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCC CGCCGGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGGC CCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCCGTGG TGAGCACCCAGCTGCTGAACGGCAGCCTGGCCGAGGAGGAGATCGTGCT GCGCTCCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAAC GAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACAACACGCGTAAGAGCA TCCACATCGGCCCGGCCGCCCTTCTACGCCACCGGCGACATCATCGGCGA CATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTC GAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCATC ATCTTCAACAGCAGCAGCGGCGACCCCGAGATCGTGTTCCACAGCTTCA ACTGCGGCGGCGAGTTCTTCTACTGCAACACCAGCCAGCTGTTCAACAGCAC CTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACACCATCAT CCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGGCAAG GCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGCAGCAGCAATATTA CCGGCCTGCTGACCCGCGACGGCGCACCAACAACAACACCGCACCAACGA CACCGAGACCTTCCGCCCGGCGCGGCAACATGAAGGACAACTGGCGCAGC GAGCTGTACAAGTACAAGGTGGTGCGCATCGAGCCCCTGGGCGTGGCCCCCA CCCAGGCCAAGCGCGCGTGGTGCAGCGCGAGAAGCGCGCCGTGGGCCTGG GCGCCTGTTCATCGGCTTCCTGGGCGCCGCGGGAGCACCATGGGCGCCGC CTCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAGCGGCATCGTGCAG CAGCAGAACAACCTGCTGCGCGCCATCGAGGCCCAGCAGCACCTGCTGCAGC TGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAGCG CTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCTG ATCTGCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGA CCGAGATCTGGGACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGGCA ACTACACCGGCCTGATCTACAACCTGATCGAGATCGCCCAGAACCAGCAGGA GAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGGAA CTGGTTCGACATCACCAACTGGCTGTGGTACATCTAAGATATCGGATCCTCTA GA

FIG. 46 (SEQ ID NO:59)

Gp140modUS4.DV2

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGC TGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACC GTGTACTACGGCGTGCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCG CCAGCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTGGGCCACCCA CGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACCTGACCAACGTG ACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCC CCCTGTGCGTGACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGG CACCAACAGCACCAGCGCACCAACAGCACCAGCGGCACCAACAGCACCAG CACCAACAGCACCGACAGCTGGGAGAAGATGCCCGAGGGCGAGATCAAGAA CTGCAGCTTCAACATCGGCGCCGCCTGATCAACTGCAACACCAGCGTG ATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCATCCACTACT GCGCCCCGCCGGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGTTCAACGG CACCGGCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGC CCCGTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGAGA TCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCA GCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACACACGCGT AAGAGCATCCACATCGGCCCGGCCGCCCTTCTACGCCACCGGCGACATCA TCGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAA CACCCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAA GACCATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCAC CAGCACCTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACAC CATCATCCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAGGAGGTG GGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGCAGCAGCA ATATTACCGGCCTGCTGACCCGCGACGGCGCACCAACAACAACCGCAC CAACGACACCGAGACCTTCCGCCCCGGCGCGCGCAACATGAAGGACAACTG GCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGAGCCCCTGGGCGTG GCCCCACCAGGCCAAGCGCGCGTGGTGCAGCGCGAGAAGCGCGCGTG GGCCTGGGCCCCTGTTCATCGGCTTCCTGGGCGCCCGCGGGAGCACCATGG GCGCCGCCTCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAGCGGCAT CGTGCAGCAGCAGAACAACCTGCTGCGCGCCATCGAGGCCCAGCAGCACCTG CTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCG TGGAGCGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGG CAAGCTGATCTGCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAG AGCCTGACCGAGATCTGGGACAACATGACCTGGATGGAGTGGAGCGCGAG ATCGGCAACTACACCGGCCTGATCTACAACCTGATCGAGATCGCCCAGAACC AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCC TGTGGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCTAAGATATCGG **ATCCTCTAGA**

FIG. 47 (SEQ ID NO:60)

Gp140modmutUS4.DV1V2

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGC TGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACC GTGTACTACGGCGTGCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCG CCAGCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTGGGCCACCC ACGCCTGCGTGCCCACCGACCCCAACCCCAGGAGGTGAACCTGACCAACGT GACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGA GGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGGGCGCCGGC CAGGCCTGCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCC CCGCCGGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGG CCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCGTG GTGAGCACCCAGCTGCTGCAACGGCAGCCTGGCCGAGGAGGAGATCGTGC TGCGCTCCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAA CGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACACACGCGTAAGAGC ATCCACATCGGCCCGGCCGCCTTCTACGCCACCGGCGACATCATCGGCG ACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCT CGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCAT CATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTC CCTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACACCATCA TCCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGGCAA GGCCATGTACGCCCCCCCATCCGCGCCAGATCAAGTGCAGCAGCAATATT ACCGGCCTGCTGACCCGCGACGGCGCACCAACAACAACCGCACCAACG ACACCGAGACCTTCCGCCCGGCGGCGGCAACATGAAGGACAACTGGCGCA GCGAGCTGTACAAGTACAAGGTGGTGCGCATCGAGCCCCTGGGCGTGGCCCC CACCCAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAGAGCGCCGTGGGCCT GGGCGCCTGTTCATCGGCTTCCTGGGCGCCGCCGGGAGCACCATGGGCGCC GCCTCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAGCGGCATCGTGC AGCAGCAGAACAACCTGCTGCGCGCCATCGAGGCCCAGCAGCACCTGCTGCA GCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAG CGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGCAAGC TGATCTGCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCT GACCGAGATCTGGGACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGG CAACTACACCGGCCTGATCTACAACCTGATCGAGATCGCCCAGAACCAGCAG GAGAAGAACGAGCAGGAGCTGGAGCTGGACAAGTGGGCCAGCCTGTGG AACTGGTTCGACATCACCAACTGGCTGTGGTACATCTAAGATATCGGATCCTC **TAGA**

FIG. 48 (SEQ ID NO:61)

gp140.mod.US4.del128-194

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGG AGCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCG TGCCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTAC AAGGCCGAGGCCCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCC CCAGGAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGG TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTG AAGCTGACCCCCTGTGCGTGGGGGCAGGGAACTGCGAGACCAGCGTGATCACCCAGGC CCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGGCCCCTGCAAGAACGTGAGC ACCGTGCAGTGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTGCAACGG CAGCCTGGCCGAGAGAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGA CCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACAAC ACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCTTCTACGCCACCGGCGACATCAT CGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTCG AGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCATCATCTTCAAC AGCAGCAGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGGCGGCGAGTT CTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGA ACAAGACCAAGGAGAACGACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAAC ATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTG CAGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCGCCAACAACAACCGCA CCAACGACACCGAGACCTTCCGCCCCGGCGGCGCCAACATGAAGGACAACTGGCGCAGC ${\tt CAAGCGCCGCGTGGTGCAGCGCGAGAAGCGCGCGTGGGCCTTGTTCATCG}$ GCTTCCTGGGCGCCGCGGGAGCACCATGGGCGCCCCCCCTGACCCTGACCGTGCAG GCCCGCCAGCTGCTGAGCGGCATCGTGCAGCAGCAGCACCTGCTGCGCGCCCATCGA GGCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCA TCCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGC GGCAAGCTGATCTGCACCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCT GACCGAGATCTGGGACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGGCAACTACA CCGGCCTGATCTACAACCTGATCGAGATCGCCCAGAACCAGCAGGAGAAGAACGAGCAG GAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTG GCTGTGGTACATCTAAGATATCGGATCCTCTAGA

FIG. 49 (SEQ ID NO:62)

gp140.mut.mod.US4.del128-194

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGG AGCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCG TGCCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTAC AAGGCCGAGGCCCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCC CCAGGAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGG TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTG AAGCTGACCCCCTGTGCGTGGGGGCAGGGAACTGCGAGACCAGCGTGATCACCCAGGC CTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCCCGCCGGCTTCG CCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGGCCCCTGCAAGAACGTGAGC ACCGTGCAGTGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTGCTGAACGG CAGCCTGGCCGAGAGAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGA CCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACAAC ACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCTTCTACGCCACCGGCGACATCAT CGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTCG AGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCATCATCTTCAAC AGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGGCGGCGAGTT CTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGA ACAAGACCAAGGAGAACGACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAAC ATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCATCCGCGGCCAGATCAAGTG CAGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCCCCAACAACAACCGCA CCAACGACACCGAGACCTTCCGCCCGGCGGCGCAACATGAAGGACAACTGGCGCAGC CAAGCGCCGCGTGGTGCAGCGCGAGAAGAGCGCCGTGGGCCTGGTGCCCTGTTCATCG GCTTCCTGGGCGCCGCGGGAGCACCATGGGCGCCCCCCCGTGACCCTGACCGTGCAG GCCCGCCAGCTGCTGAGCGGCATCGTGCAGCAGCAGCACCTGCTGCGCGCCATCGA GGCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCA TCCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGC GGCAAGCTGATCTGCACCACCGCGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCT GACCGAGATCTGGGACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGGCAACTACA CCGGCCTGATCTACAACCTGATCGAGATCGCCCAGAACCAGCAGGAGAAGAACGAGCAG GAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTG GCTGTGGTACATCTAAGATATCGGATCCTCTAGA

FIG. 50 (SEQ ID NO:63)

gp160.modUS4

GTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTGCCCGTG TGGAAGGAGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACC TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG ACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGGCACCAACAGCACCAGCGGCAC CAACAGCACCAGCGCACCAACAGCACCAGCACCACCGACAGCTGGGAGAAGATG CCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCACCAGCGTGCGCGACAAGGTGCA GAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGCTCCCATCGACAACGACAACGCCAGCT ACCGCCTGATCAACTGCAACACCAGCGTGATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGC CCATCCCATCACTGCGCCCCGCCGGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGT TCAACGCACCGGCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC GTGGTGAGCACCCAGCTGCTGAACGGCAGCCTGGCCGAGGAGGAGATCGTGCTGCCCTC CGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCA ACTGCATCCGCCCCAACAACAACACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCT ACGCCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAAC TGGACCAACACCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGAC CATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGG CGGCGAGTTCTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGA GGTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCA ACATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGC AGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCACCAACAACAACCGCACCAA CGACACCGAGACCTTCCGCCCCGGCGGCGGCAACATGAAGGACAACTGGCGCAGCGAGCTGT GTGGTGCAGCGCGAGAAGCGCGCCGTGGGCCTGGGCGCCCTGTTCATCGGCTTCCTGGGCGCC GCCGGGAGCACCATGGGCGCCCCCCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAG CGGCATCGTGCAGCAGCAGCACCACCTGCTGCGCGCCCATCGAGGCCCAGCAGCACCTGCTGC AGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAGCGCTACCTG AAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCACCGT GCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAACATGACCTGGA TGGAGTGGGAGCGCGAGATCGCCAACTACACCGGCCTGATCTACAACCTGATCGAGATCGCC CAGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGT GGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCCGCATCTTCATCATGATCGTGGGCG GCCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCATCGTGAACCGCGTGCGCCAGGGCT ATCGAGGAGGAGGGCGAGCGACCGCGACCGCAGCAACCGCCTGGTGCACGGCCTGCT GGCCCTGATCTGGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCGCCTGCGCGACCT GCTGCTGATCGTGGCCCGCATCGTGGAGCTGCTGGGCCGCCGCGGCTGGGAGGCCCTGAAGT ACTGGTGGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAGCGCCGTGAGCCTGTTC AACGCCACCGCCATCGCCGTGGCCGAGGGCACCGACCGCATCATCGAGATCGTGCAGCGCAT CTTCCGCGCCGTGATCCACATCCCCCGCCGCATCCGCCAGGGCCTGGAGCGCCCCTGCTGTA AGATATCGGATCCTCTAGA

FIG. 51 (SEQ ID NO:64)

gp160.modUS4.delV1

GAATTCGCCACCATGGATGCAATGAAGAGGGGCTCTGCTGTTGTGCTGCTGTTGTGGAGCA GTCTTCGTTTCGCCCAGCGCCACCGCGTGCTGTGGGTGACCGTGTACTACGGCGTGCCCGTG TGGAAGGAGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACC TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG ACCCTGAACTGCACCGACAAGCTGGGCGCCGGCGGCGAGATCAAGAACTGCAGCTTCAACAT CACCACCAGCGTGCGCGACAAGGTGCAGAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGG TGCCCATCGACAACGACAACGCCAGCTACCGCCTGATCAACTGCAACACCAGCGTGATCACCC AGGCCTGCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCCGCCGGCTTCG ${\tt CCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGGCCCTGCAAGAACGTGAGCACC}$ GTGCAGTGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTG GCCGAGGAGGAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGACCATCATCGT GCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACAACACGCGTAAGAGCA TCCACATCGGCCCGGCCGCCTTCTACGCCACCGGCGACATCATCGGCGACATCCGCCAGG CCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAGATCGTGGAGAAGCTG CGCGAGCAGTTCGGCAACAACAAGACCATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGA CAACAGCACCTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACCATCATCC TGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGGCAAGGCCATGTACGCC CCCCCATCCGCGCCAGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGACCCGCGAC GGCGGCACCAACAACACCGCACCAACGACACCGAGACCTTCCGCCCCGGCGCGCGAACAT GAAGGACAACTGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGAGCCCCTGGGCG TGGCCCCACCCAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAGCGCGCGTGGGCCTGGGC GCCTGTTCATCGGCTTCCTGGGCGCCGCCGGGAGCACCATGGGCGCCGCCTCCGTGACCCTG ACCGTGCAGGCCCGCCAGCTGCTGAGCGGCATCGTGCAGCAGCAGAACAACCTGCTGCGCGC CATCGAGGCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCC GCATCCTGGCCGTGGAGCGCTACCTGAAGGACCAGCTGCTGGGCATCTGGGGCTGCAGC GGCAAGCTGATCTGCACCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGAC CGAGATCTGGGACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGGCAACTACACCGGCC TGATCTACAACCTGATCGAGATCGCCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTG GAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGGCTGTGGTACATC CGCATCTTCATCATGATCGTGGGCGGCCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGC ATCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCCTGCAGACCCGCCTGCCCGAG CGCGGCCCGACCGCCCGAGGGCATCGAGGAGGAGGGCGCGAGCGCGACCGCACCGCA GCAACCGCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACCTGCGCAGCCTGTGCCTGT TCAGCTACCACCGCCTGCGCGACCTGCTGCTGATCGTGGCCCGCATCGTGGAGCTGCTGGGCC GCCGCGGCTGGAGCCCTGAAGTACTGGTGGAACCTGCTGCAGTACTGGAGCCAGGAGCTG CATCATCGAGATCGTGCAGCGCATCTTCCGCGCCGTGATCCACATCCCCCGCCGCATCCGCCA GGGCCTGGAGCGCCCCTGCTGTAAGATATCGGATCCTCTAGA

FIG. 52 (SEQ ID NO:65)

gp160.mod.US4.delV2

AGCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCG TGCCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTAC AAGGCCGAGGCCCACACGTGTGGGCCCACCCCACGCCTGCGTGCCCACCGCACCCCAACCC CCAGGAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGG TGGAGCAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTG AAGCTGACCCCCTGTGCGTGACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAA CGGCACCAACAGCACCAGCGGCACCAACAGCACCAGCGCACCAACAGCACCAGCACCA ACAGCACCGACAGCTGGGAGAAGATGCCCGAGGGCGAGATCAAGAACTGCAGCTTCAAC ATCGGCGCCGGCCTGATCAACTGCAACACCAGCGTGATCACCCAGGCCTGCCCCAA AGTGCAAGGACAAGAAGTTCAACGGCACCGGCCCCTGCAAGAACGTGAGCACCGTGCAG TGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGC CGAGGAGGAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGACCATCATCG TGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACAACACGCGTAAG AGCATCCACATCGGCCCGGCCGCCTTCTACGCCACCGGCGACATCATCGGCGACAT CCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAGATCG TGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCATCATCTTCAACAGCAGCAGC GGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTG CAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGAACAAGACCA AGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG GAGGTGGGCAAGGCCATGTACGCCCCCCCCATCCGCGGCCAGATCAAGTGCAGCAGCAA TATTACCGGCCTGCTGACCGCGACGGCGGCCCAACAACAACACCGCACCAACGACA CCGAGACCTTCCGCCCCGGCGCGCGCAACATGAAGGACAACTGGCGCAGCGAGCTGTAC CGTGGTGCAGCGCGAGAAGCGCGCCGTGGGCCTTGGGCCCCTGTTCATCGGCTTCCTGG GCGCCGCGGGAGCACCATGGGCGCCGCCTCCGTGACCCTGACCGTGCAGGCCCGCCAG CTGCTGAGCGCATCGTGCAGCAGCAGCAGCACCTGCTGCGCGCCCATCGAGGCCCAGCA GCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCG TGGAGCGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCTG ATCTGCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGAT CTGGGACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGGCAACTACACCGGCCTGA TCTACAACCTGATCGAGATCGCCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTG GAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGGCTGTGGTA CATCCGCATCTTCATCATGATCGTGGGCGGCCTGATCGGCCTGCGCATCGTGTTCGCCG TGCTGAGCATCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCCTGCAGACCCGC CTGCCCGCCCAGCGCCCCGACCGCCCCGAGGGCATCGAGGAGGAGGGCGCGAGCG CGACCGCGACCGCACCACCGCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACC TGCGCAGCCTGTGCCTGTTCAGCTACCACCGCCTGCGCGACCTGCTGCTGATCGTGGCC CGCATCGTGGAGCTGCTGGGCCGCCGCGGCTGGGAGGCCCTGAAGTACTGGTGGAACCT GCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAGCGCCGTGAGCCTGTTCAACGCCACCG CCATCGCCGTGGCCGAGGGCACCGACCGCATCATCGAGATCGTGCAGCGCATCTTCCGC GCCGTGATCCACATCCCCCGCCGCATCCGCCAGGGCCTGGAGCGCCCCTGCTGTAAGA TATCGGATCCTCTAGA

gp160.modUS4delV1/2

GAATTCGCCACCATGGATGCAATGAAGAGGGGCTCTGCTGTGTGCTGCTGTTGTGGAGCA GTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTGCCCGTG TGGAAGGAGCCACCACCCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACC TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGGGCGCCGGCCAGGCCTGCCC CAAGGTGAGCTTCGAGCCCATCCCCATCACTGCGCCCCGCCGGCTTCGCCATCCTGAA GTGCAAGGACAAGAAGTTCAACGGCACCGGCCCCTGCAAGAACGTGAGCACCGTGCAGTGCA CCCACGCATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAG GAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAA CGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACACACGCGTAAGAGCATCCACATCG GCCCGGCCGCCTTCTACGCCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTGCA ACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAG TTCGGCAACAACAAGACCATCATCTTCAACAGCAGCGGCGGCGGCGACCCCGAGATCGTGTT CTGGAACATCACCGAGGAGGTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCC GCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCATC CGCGGCCAGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGGCAC CAACAACAACCGCACCAACGACACCGAGACCTTCCGCCCCGGCGGCGCAACATGAAGGACA ACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGAGCCCCTGGGCGTGGCCCCC ACCCAGGCCAAGCGCGCGTGGTGCAGCGCGAGAAGCGCGCGTGGGCCTGGGCCCCTGTT CATCGGCTTCCTGGGCGCCGCGGGAGCACCATGGGCGCCGCCTCCGTGACCCTGACCGTGCA GGCCGCCAGCTGCTGAGCGCATCGTGCAGCAGCAGAACAACCTGCTGCGCGCCCATCGAGG CCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTG GCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCT GATCTGCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCT GGGACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGGCAACTACACCGGCCTGATCTAC AACCTGATCGAGATCGCCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGG ACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCCGCATCT TCATCATGATCGTGGGCGGCCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCATCGTGA ACCGCGTGCGCCAGGGCTACAGCCCCATCAGCCTGCAGACCCGCCTGCCCAGCGCGGGC GCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACCTGCGCAGCCTGTGCCTGTTCAGCT ACCACCGCTGCGGACCTGCTGATCGTGGCCCGCATCGTGGAGCTGCTGGGCCGCCGCG GCTGGGAGCCCTGAAGTACTGGTGGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGC GAGATCGTGCAGCGCATCTTCCGCGCCGTGATCCACATCCCCCGCCGCATCCGCCAGGGCCTG GAGCGCCCCTGCTGTAAGATATCGGATCCTCTAGA

FIG. 54 (SEQ ID NO:67)

gp160.modUS4 del 128-194

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGGAGCA TGGAAGGAGGCCACCACCCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAGGCCGAGGC ${\tt CCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGGTGAACC}$ TGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAGCAGATGCATGAG GACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTG ${\tt GGGGCAGGGAACTGCGAGACCAGCGTGATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGCC}$ TGGTGAGCACCCAGCTGCTGAACGGCAGCCTGGCCGAGGAGGAGATCGTGCTGCCTCC GAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAA CTGCATCCGCCCCAACAACAACACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCTA CGCCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACT GGACCAACACCCTCGAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACC ATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGGC GGCGAGTTCTTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAG GTGAACAAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAA CATGTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGCA GCAGCAATATTACCGGCCTGCTGCTGACCCGCGACGGCGCCCCAACAACAACAACCGCACCAAC ${\tt GACACCGAGACCTTCCGCCCCGGCGCGCGCGCAACATGAAGGACAACTGGCGCAGCGAGCTGTA}$ ${\tt CCGGGAGCACCATGGGCGCCGCCTCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTGAGC}$ ${\tt GCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAGCGCTACCTGA}$ AGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCACCGTG AGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTG GAACTGGTTCGACATCACCAACTGGCTGTGGTACATCCGCATCTTCATCATGATCGTGGGCGG ${\tt CCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCATCGTGAACCGCGTGCGCCAGGGCTA}$ CAGCCCCATCAGCCTGCAGACCCGCCTGCCCGAGCGCCCGACCGCCCCGAGGGCA TCGAGGAGGAGGGCGAGCGACCGCACCGCAGCAACCGCCTGGTGCACGGCCTGCTG GCCCTGATCTGGGACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCGCCTGCGCGACCTG TGGTGGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGAGCAGCGCCGTGAGCCTGTTCAA CGCCACCGCCATCGCCGTGGCCGAGGGCACCGACCGCATCATCGAGATCGTGCAGCGCATCTT CCGCGCCGTGATCCACATCCCCCGCCGCATCCGCCAGGGCCTGGAGCGCCCCTGCTGTAAGA TATCGGATCCTCTAGA

FIG. 55 (SEQ ID NO:68)

Env_US4_C4wt

GACACTATCATACTCCCATGCAGAATAAGACAAATTATAAACATGTGGCAAGAAGTAGG AAAAGCAATGTATGCCCCTCCCATCAGAGGACAAATTAAATGTTCATCAAATATTACAG GGCTGCTATTAACTAGAGATGGTGGT

FIG. 56 (SEQ ID NO:69)

Env_SF162_C4wt

 $\label{thm:capacita} GGAACTATCACACTCCCATGCAGAATAAAACAAATTATAAACAGGTGGCAGGAAGTAGG\\ AAAAGCAATGTATGCCCCTCCCATCAGAGGACAAATTAGATGCTCATCAAATATTACAG\\ GACTGCTATTAACAAGAGATGGTGGT\\$

FIG. 57 (SEQ ID NO:70)

Env_US4_C4mod

GACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAGGAGGTGGG CAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGCAGCAGCAACATCACCG GCCTGCTGACCCGCGACGGCGGC

FIG. 58 (SEQ ID NO:71)

Env SF162 C4mod

GGCACCATCACCCTGCCCGCATCAAGCAGATCATCAACCGCTGGCAGGAGGTGGG CAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCTGCAGCAGCAACATCACCG GCCTGCTGCTGACCCGCGACGGCGGC

FIG. 59 (SEQ ID NO:72)

gp160mod.us4.gag.modSF2

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGGGA GCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTG CCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAG GCCGAGGCCCACACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAG GAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG CAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG ACCCCCTGTGCGTGACCCTGAACTGCACCGACAAGCTGACCGGCAGCACCAACGGCACC AACAGCACCAGCGGCACCAACAGCACCAGCGCACCAACAGCACCAGCACCAACAGCACC GACAGCTGGGAGAAGATGCCCGAGGGCGAGATCAAGAACTGCAGCTTCAACATCACCACC AGCGTGCGCGACAAGGTGCAGAAGGAGTACAGCCTGTTCTACAAGCTGGACGTGGTGCCC ATCGACAACGACAACGCCAGCTACCGCCTGATCAACTGCAACACCAGCGTGATCACCCAG GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCCGCCGGCTTC GCCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGGCCCCTGCAAGAACGTGAGC ACCGTGCAGTGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTGCAGCGC AGCCTGGCCGAGAGGGGGGGAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCCAAGACC ATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAACAACACG CGTAAGAGCATCCACATCGGCCCCGGCCGCCTTCTACGCCACCGGCGACATCATCGGC GACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG ATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCATCATCTTCAACAGCAGC AGCGGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGGCGGCGAGTTCTTCTAC TGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGAACAAGACC AAGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAACATGTGGCAG GAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCAAGTGCAGCAGCAAT ATTACCGGCCTGCTGACCCGCGACGGCGCACCAACAACAACCGCACCAACGACACC GAGACCTTCCGCCCGGCGGCGCAACATGAAGGACAACTGGCGCAGCGAGCTGTACAAG GTGCAGCGCGAGAAGCGCGCCGTGGGCCCTGGGCGCCCTGTTCATCGGCTTCCTGGGCGCC GCCGGGAGCACCATGGGCGCCGCCTCCGTGACCCTGACCGTGCAGGCCCGCCAGCTGCTG AGCGGCATCGTGCAGCAGCAGCACCTGCTGCGCGCCCATCGAGGCCCCAGCAGCACCTG CTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTGGAGCGC TACCTGAAGGACCAGCAGCTGCTGGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACC ACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGGGACAAC ATGACCTGGATGGAGTGGAGCGCGAGATCGGCAACTACACCGGCCTGATCTACAACCTG ATCGAGATCGCCCAGAACCAGCAGGAGAACGAGCAGGAGCTGCTGGAGCTGGACAAG TGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCCGCATCTTC ATCATGATCGTGGGCGGCCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCATCGTG GGCCCGACCGCCCGAGGGCATCGAGGAGGAGGGCGGCGAGCGCGACCGCGACCGCAGC AACCGCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACCTGCGCAGCCTGTGCCTG TTCAGCTACCACCGCCTGCGGACCTGCTGCTGATCGTGGCCCGCATCGTGGAGCTGCTG GGCCGCCGCGCTGGAGGCCCTGAAGTACTGGTGGAACCTGCTGCAGTACTGGAGCCAG GAGCTGAAGAGCAGCCGTGAGCCTGTTCAACGCCACCGCCATCGCCGTGGCCGAGGGC ACCGACCGCATCATCGAGATCGTGCAGCGCATCTTCCGCGCCGTGATCCACATCCCCCGC CGCATCCGCCAGGGCCTGGAGCGCCCTGCTGTAAGATATCGGATCCTCTAGAGAATTC CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCAACGTTACTGGCCGAAGCCGC TTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTT GGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTT CCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCG GCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCC TCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCT GATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTA GGCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATAATACCATGGGCGC CCGCGCCAGCGTGCTGAGCGGCGGGGGGGGGAGAAGTGCGGCTGCGCCC CGGCGGCAAGAAGTACAAGCTGAAGCACATCGTGTGGGCCCAGCCGCGAGCTGGAGCG CTTCGCCGTGAACCCCGGCCTGCTGGAGACCAGCGAGGGCTGCCGCCAGATCCTGGGCCA GCTGCAGCCCAGCCTGCAGACCGGCAGCGAGGGAGCTGCGCAGCCTGTACAACACCGTGGC CACCCTGTACTGCGTGCACCAGCGCATCGACGTCAAGGACACCAAGGAGGCCCTGGAGAA GATCGAGGAGCAGAACAAGTCCAAGAAGAAGGCCCAGCAGGCCGCCGCCGCCGCCGC CACCGGCAACAGCCAGGTGAGCCAGAACTACCCCATCGTGCAGAACCTGCAGGGCCA GATGGTGCACCAGGCCATCAGCCCCGCACCCTGAACGCCTGGGTGAAGGTGGTGGAGGA GAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTCAGCGCCCTGAGCGAGGGCGCCACCCC CCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCCACCAGGCCGCCATGCAGATGCT GAAGGAGACCATCAACGAGGAGGCCGCCGAGTGGGACCGCGTGCACCCCGTGCACGCCGG CCCCATCGCCCCGGCCAGATGCGCGAGCCCCGCGGCACCACCAG CACCCTGCAGGAGCAGATCGGCTGGATGACCAACAACCCCCCCATCCCCGTGGGCGAGAT CTACAAGCGGTGGATCATCCTGGGCCTGAACAAGATCGTGCGGATGTACAGCCCCACCAG CATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGCGACTACGTGGACCGCTTCTA CAAGACCCTGCGCGCTGAGCAGGCCAGCCAGGACGTGAAGAACTGGATGACCGAGACCCT GCTGGTGCAGAACGCCAACCCCGACTGCAAGACCATCCTGAAGGCTCTCGGCCCCGCGGC CACCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGGGCGGCCCCGGCCACAAGGCCCG CGTGCTGGCCGAGGCGATGAGCCAGGTGACGAACCCGGCGACCATCATGATGCAGCGCGG CAACTTCCGCAACCAGCGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGGCCACAC CGCCAGGAACTGCCGCCCCCCCGCAAGAAGGGCTGCTGGCGCTGCGGCCGCGAGGCCCA CCAGATGAAGGACTGCACCGAGCGCCAGCCCAACTTCCTGGGCAAGATCTGGCCCAGCTA CAAGGGCCGCCCGGCAACTTCCTGCAGAGCCGCCCCGAGGCCCACCGCCCCCCGAGGA GAGCTTCCGCTTCGGCGAGGAGACCACCCCCAGCCAGAAGCAGGAGCCCATCGACAA GGAGCTGTACCCCCTGACCAGCCTGCGCAGCCTGTTCGGCAACGACCCCAGCAGCCAGTA AGAATTCAGACTCGAGCAAGTCTAGA

FIG. 61 (CONT'D.) (SEQ ID NO:73)

gp160mod.SF162.gag.modSF2

GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGG AGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGGTGACCGTGTACTACGGCG TGCCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCCTAC GACACCGAGGTGCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCAACCC CCAGGAGATCGTGCTGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGG TGGAGCAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTG AAGCTGACCCCCTGTGCGTGACCCTGCACTGCACCAACCTGAAGAACGCCACCAACAC CAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAGATCAAGAACTGCAGCTTCAAGG TGACCACCAGCATCCGCAACAAGATGCAGAAGGAGTACGCCCTGTTCTACAAGCTGGAC GTGGTGCCCATCGACAACGACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGT GATCACCCAGGCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCC CCGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCGGCCCCTGC ACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCT GCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGTGGTGATCCGCAGCGAGAACTTCACCG ACAACGCCAAGACCATCATCGTGCAGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGC CGGCGACATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGTGGA ACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGCAACAAGACCATC GTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGTGATGCACAGCTTCAACTGCGG CGGCGAGTTCTTCTACTGCAACAGCACCCAGCTGTTCAACAGCACCTGGAACAACACCA AACCGCTGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCG CTGCAGCAGCACATCACCGGCCTGCTGCTGACCCGCGACGGCGGCAAGGAGATCAGCA ACACCACGAGATCTTCCGCCCGGCGGCGGCGACATGCGCGACAACTGGCGCAGCGAG CTGTACAAGTACAAGGTGGTGAAGATCGAGCCCCTGGGCGTGGCCCCCACCAAGGCCAA $\tt GCGCCGCGTGGTGCAGCGCGAGAAGCGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCT$ TCCTGGGCGCCGCCGCAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCC $\tt CGCCAGCTGCTGAGCGGCATCGTGCAGCAGCAGCAGCAGCAGCCTGCTGCGCGCCATCGAGGC$ CCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGCGTGC TGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGCTGCAGCGGC AAGCTGATCTGCACCACCGCCGTGCCCTGGAACGCCAGCTGGAGCAACAAGAGCCTGGA CCAGATCTGGAACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCA ACCTGATCTACACCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAG CTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAAGTGGCT GTGGTACATCAAGATCTTCATCATGATCGTGGGCGGCCTGGTGGGCCTGCGCATCGTGT TCACCGTGCTGAGCATCGTGAACCGCGTGCGCCAGGGCTACAGCCCCCTGAGCTTCCAG ACCCGCTTCCCCGCCCCCCGCGCCCCGACCGCCCCGAGGGCATCGAGGAGGAGGGCGG CGAGCGCGACCGCGACCGCAGCAGCCCCCTGGTGCACGGCCTGCTGGCCCTGATCTGGG ACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCGCCTGCGCGACCTGATCCTGATC GCCGCCCGCATCGTGGAGCTGCTGGGCCGCCGCGGCTGGGAGGCCCTGAAGTACTGGGG CAACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGCGCCGTGAGCCTGTTCGACG CCATCGCCATCGCCGTGGCCGAGGGCACCGACCGCATCATCGAGGTGGCCCAGCGCATC GGCCGCGCTTCCTGCACATCCCCCGCCGCATCCGCCAGGGCTTCGAGCGCCCTGCT CCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATAT GTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTG TCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTG TTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAACAACGTCTGT AGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAA AGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGT TGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAA TTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCGAACCACGGGGACGTG GTTTTCCTTTGAAAAACACGATAATACCATGGGCGCCCGCGCCAGCGTGCTGAGCGGCG GCGAGCTGGACAAGTGGGAGAAGATCCGCCTGCGCCCCGGCGGCAAGAAGAAGTACAAG CTGAAGCACATCGTGTGGGCCAGCCGCGAGCTGGAGCGCTTCGCCGTGAACCCCGGCCT GCTGGAGACCAGCGAGGCTGCCGCCAGATCCTGGGCCAGCTGCAGCCCAGCCTGCAGA CCGGCAGCGAGGCTGCGCAGCCTGTACAACACCGTGGCCACCCTGTACTGCGTGCAC CAGCGCATCGACGTCAAGGACACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAA AGGTGAGCCAGAACTACCCCATCGTGCAGAACCTGCAGGGCCAGATGGTGCACCAGGCC ATCAGCCCCGCACCCTGAACGCCTGGGTGAAGGTGGTGGAGGAGAAGGCCTTCAGCCC ${\tt CGAGGTGATCCCCATGTTCAGCGCCCTGAGCGAGGGCGCCACCCCCCAGGACCTGAACA}$ CGATGTTGAACACCGTGGGCGGCCACCAGGCCGCCATGCAGATGCTGAAGGAGACCATC AACGAGGAGGCCGCCGAGTGGGACCGCGTGCACCCCGTGCACGCCGGCCCCATCGCCCC CGGCCAGATGCGCGAGCCCCGCGGCAGCGACATCGCCGGCACCACCAGCACCCTGCAGG AGCAGATCGGCTGGATGACCAACAACCCCCCCATCCCCGTGGGCGAGATCTACAAGCGG TGGATCATCCTGGGCCTGAACAAGATCGTGCGGATGTACAGCCCCACCAGCATCCTGGA CATCCGCCAGGGCCCCAAGGAGCCCTTCCGCGACTACGTGGACCGCTTCTACAAGACCC TGCGCGCTGAGCAGGCCAGCCAGGACGTGAAGAACTGGATGACCGAGACCCTGCTGGTG CAGAACGCCAACCCCGACTGCAAGACCATCCTGAAGGCTCTCGGCCCCGCGGCCACCCT GGAGGAGATGATGACCGCCTGCCAGGGCGTGGGCGCCCCGGCCACAAGGCCCGCGTGC TGGCCGAGGCGATGAGCCAGGTGACGAACCCGGCGACCATCATGATGCAGCGCGGCAAC TTCCGCAACCAGCGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGGCCACACCGC CAGGAACTGCCGCGCCCCCGCAAGAAGGGCTGCTGCGCGCTGCGGCCGCGAGGGCCACC AGATGAAGGACTGCACCGAGCGCCAGGCCAACTTCCTGGGCAAGATCTGGCCCAGCTAC AAGGGCCGCCCGGCAACTTCCTGCAGAGCCGCCCCGAGCCCACCGCCCCCCCGAGGA AGGAGCTGTACCCCCTGACCAGCCTGCGCAGCCTGTTCGGCAACGACCCCAGCAGCCAG TAAGAATTCAGACTCGAGCAAGTCTAGA

FIG. 62 (CONT'D.) (SEQ ID NO:74)

gp160modUS4.delV1/V2.gag.modSF2

GCAGTCTTCGTTTCGCCCAGCGCCACCACCGTGCTGTGGGTGACCGTGTACTACGGCGTG CCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCTTACAAG GAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG CAGATGCATGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGGGCGCC GGCCAGGCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCCGCC GGCTTCGCCATCCTGAAGTGCAAGGACAAGAAGTTCAACGGCACCGGCCCCTGCAAGAAC GTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCCGTGGTGAGCACCCAGCTGCTG AACGGCAGCCTGGCCGAGGAGGAGATCGTGCTGCGCTCCGAGAACTTCACCGACAACGCC AAGACCATCATCGTGCAGCTGAACGAGTCCGTGGAGATCAACTGCATCCGCCCCAACAAC AACACGCGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGACATC ATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCAAGGCCAACTGGACCAACACCCTC GAGCAGATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGACCATCATCTTCAAC AGCAGCAGCGGCGACCCCGAGATCGTGTTCCACAGCTTCAACTGCGGCGGCGAGTTC TTCTACTGCAACACCAGCCAGCTGTTCAACAGCACCTGGAACATCACCGAGGAGGTGAAC AAGACCAAGGAGAACGACACCATCATCCTGCCCTGCCGCATCCGCCAGATCATCAACATG TGGCAGGAGGTGGGCAAGGCCATGTACGCCCCCCCCATCCGCGGCCAGATCAAGTGCAGC AGCAATATTACCGGCCTGCTGACCCGCGACGGCGCACCAACAACAACCGCACCAAC GACACCGAGACCTTCCGCCCCGGCGCGCGAACATGAAGGACAACTGGCGCAGCGAGCTG CGCGTGGTGCAGCGCGAGAAGCGCGCCGTGGGCCTTGGGCCCCTGTTCATCGGCTTCCTG GGCGCCGCGGGAGCACCATGGGCGCCGCCTCCGTGACCCTGACCGTGCAGGCCCGCCAG CTGCTGAGCGGCATCGTGCAGCAGCAGAACCACCTGCTGCGCGCCATCGAGGCCCAGCAG CACCTGCTGCAGCTGACCGTGTGGGGCCATCAAGCAGCTGCAGGCCCGCATCCTGGCCGTG GAGCGCTACCTGAAGGACCAGCAGCTGCTGGGGCATCTGGGGGCTGCAGCGGCAAGCTGATC TGCACCACCACCGTGCCCTGGAACAGCAGCTGGAGCAACAAGAGCCTGACCGAGATCTGG GACAACATGACCTGGATGGAGTGGGAGCCCGAGATCGGCAACTACACCGGCCTGATCTAC AACCTGATCGAGATCGCCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTG GACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGGCTGTGGTACATCCGC ATCTTCATCATGATCGTGGGCGGCCTGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGC ATCGTGAACCGCGTGCGCCAGGGCTACAGCCCCATCAGCCTGCAGACCCGCCTGCCCGCC CGCAGCAACCGCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACCTGCGCAGCCTG TGCCTGTTCAGCTACCACCGCCTGCGCGACCTGCTGCTGATCGTGGCCCGCATCGTGGAG CTGCTGGGCCGCGGCTGGGAGGCCCTGAAGTACTGGTGGAACCTGCTGCAGTACTGG AGCCAGGAGCTGAAGAGCAGCGCCGTGAGCCTGTTCAACGCCACCGCCATCGCCGTGGCC GAGGGCACCGACCGCATCATCGAGATCGTGCAGCGCATCTTCCGCGCCCGTGATCCACATC CCCCGCCGCATCCGCCAGGGCCTGGAGCGCCCTGCTGTAAGATATCGGATCCTCTAGA AGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCG TCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGG CCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCA AAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGG CTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATG GGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAA CGTCTAGGCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATAATACCAT GGGCGCCCGCGCCAGCGTGCTGAGCGGCGGCGAGCTGGACAAGTGGGAGAAGATCCGCCT GCGCCCCGGCGCAAGAAGAAGTACAAGCTGAAGCACATCGTGTGGGCCAGCCGCGAGCT GGAGCGCTTCGCCGTGAACCCCGGCCTGCTGGAGACCAGCGAGGGCTGCCGCCAGATCCT GGGCCAGCTGCAGCCTGCAGACCGGCAGCGAGGAGCTGCGCAGCCTGTACÀACAC CGTGGCCACCCTGTACTGCGTGCACCAGCGCATCGACGTCAAGGACACCAAGGAGGCCCT GGAGAAGATCGAGGAGGAGCAGAACAAGTCCAAGAAGAAGGCCCAGCAGGCCGCCGCCGC CGCCGGCACCGGCAACAGCCAGCTGAGCCAGAACTACCCCATCGTGCAGAACCTGCA GGGCCAGATGGTGCACCAGGCCATCAGCCCCCGCACCCTGAACGCCTGGGTGAAGGTGGT GGAGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTCAGCGCCCTGAGCGAGGGCGC CACCCCCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCCACCAGGCCGCCATGCA GATGCTGAAGGAGACCATCAACGAGGAGGCCGCCGAGTGGGACCGCGTGCACCCCGTGCA CGCCGGCCCATCGCCCCGGCCAGATGCGCGAGCCCCGGCGCAGCACATCGCCGGCAC CACCAGCACCCTGCAGGAGCAGATCGGCTGGATGACCAACAACCCCCCCATCCCCGTGGG CGAGATCTACAAGCGGTGGATCATCCTGGGCCTGAACAAGATCGTGCGGATGTACAGCCC CACCAGCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGCGACTACGTGGACCG CTTCTACAAGACCCTGCGCGCTGAGCAGGCCAGCCAGGACGTGAAGAACTGGATGACCGA GACCCTGCTGGTGCAGAACGCCAACCCCGACTGCAAGACCATCCTGAAGGCTCTCGGCCC CGCGGCCACCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGGGCGGCCCCGGCCACAA GGCCCGCGTGCTGGCCGAGGCGATGAGCCAGGTGACGAACCCGGCGACCATCATGATGCA GCGCGGCAACTTCCGCAACCAGCGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGG CCACACCGCCAGGAACTGCCGCGCCCCCCGCAAGAAGGGCTGCTGGCGCCGCGCGA GGGCCACCAGATGAAGGACTGCACCGAGCGCCAGGCCAACTTCCTGGGCAAGATCTGGCC CAGCTACAAGGGCCGCCCGGCAACTTCCTGCAGAGCCGCCCCGAGCCCACCGCCCCCC CGACAAGGAGCTGTACCCCCTGACCAGCCTGCGCAGCCTGTTCGGCAACGACCCCAGCAG CCAGTAAGAATTCAGACTCGAGCAAGTCTAGA

FIG. 63 (CONT'D.) (SEQ ID NO:75)

gp160.modSF162.deIV2.gag.modSF2

GCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGGTGACCGTGTACTACGGCGTG CCCGTGTGGAAGGAGGCCACCACCACCTGTTCTGCGCCAGCGACGCCAAGGCCTACGAC ACCGAGGTGCACAACGTGTGGGCCACCCACGCCTGCGTGCCCACCGACCCCCAACCCCCAG GAGATCGTGCTGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG ACCCCCTGTGCGTGACCCTGCACTGCACCTGAAGAACGCCACCAACACCAAGAGC AGCAACTGGAAGGAGATGGACCGCGGCGAGATCAAGAACTGCAGCTTCAAGGTGGGCGCC GGCAAGCTGATCAACTGCAACACCAGCGTGATCACCCAGGCCTGCCCCAAGGTGAGCTTC GAGCCCATCCCATCCACTACTGCGCCCCCGCCGGCTTCGCCATCCTGAAGTGCAACGAC AAGAAGTTCAACGGCAGCGCCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGC ${ t ATCCGCCCGTGGTGAGCACCCAGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGTG}$ GTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGCAGCTGAAGGAG AGCGTGGAGATCAACTGCACCCGCCCCAACAACAACACCCGCAAGAGCATCACCATCGGC CCCGGCCGCCTTCTACGCCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTGC AACATCAGCGGCGAGAAGTGGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCC CAGTTCGGCAACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGTG ATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCCAGCTGTTCAAC AGCACCTGGAACAACACCATCGGCCCCAACAACACCCAACGGCACCATCACCCTGCCCTGC ATCCGCGGCCAGATCCGCTGCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGC GGCAAGGAGATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGAC AACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCCTGGGCGTGGCC CCCACCAAGGCCAAGCGCGCGTGGTGCAGCGCGAGAAGCGCGCGTGACCCTGGGCGCC ATGTTCCTGGGCTTCCTGGGCGCCGCCGCAGCCTGACCCTG ACCGTGCAGGCCCGCCAGCTGCTGAGCGGCATCGTGCAGCAGCAGCAACCAGCTGCTGCGC GCCATCGAGGCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCCATCAAGCAGCTGCAG GCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGGGCATCTGGGGC TGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGGAACGCCAGCTGGAGCAACAAG AGCCTGGACCAGATCTGGAACAACATGACCTGGATGGAGTGGGAGCGCGAGATCGACAAC TACACCAACCTGATCTACACCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAG CAGGAGCTGCTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAAG ${\tt TGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGGCGGCCTGGTGGGCCTGCGCATC}$ GTGTTCACCGTGCGCAGCCTCGAGCTTC CAGACCCGCTTCCCCGCCCCCCGCGGCCCCGACCGCCCCGAGGGCATCGAGGAGGGGC GGCGAGCGCGACCGCAGCAGCCCCCTGGTGCACGGCCTGCTGGCCCTGATCTGG GACGACCTGCGCAGCCTGTGCCTGTTCAGCTACCACCGCCTGCGCGACCTGATCCTGATC GCCGCCCGCATCGTGGAGCTGCTGGGCCCGCCGCGGCTGGGAGGCCCTGAAGTACTGGGGC AACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGCGCCGTGAGCCTGTTCGACGCC ATCGCCATCGCCGTGGCCGAGGGCACCGACCGCATCATCGAGGTGGCCCAGCGCATCGGC CGCGCCTTCCTGCACATCCCCCGCCGCATCCGCCAGGGCTTCGAGCGCGCCCTGCTGTAA TAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATT ${\tt TTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTT}$

GACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGT CGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAACCACCTCTGTAGCGACCCT TTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGT ATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGT GGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAA GGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTTA GTCGAGGTTAAAAAACGTCTAGGCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAA GGGAGAAGATCCGCCTGCGCCCCGGCGGCAAGAAGAAGTACAAGCTGAAGCACATCGTGT GGGCCAGCCGCGAGCTGGAGCGCTTCGCCGTGAACCCCGGCCTGCTGGAGACCAGCGAGG GCTGCCGCCAGATCCTGGGCCAGCTGCAGCCCAGCCTGCAGACCGGCAGCGAGGAGCTGC GCAGCCTGTACAACACCGTGGCCACCCTGTACTGCGTGCACCAGCGCATCGACGTCAAGG ACACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAACAAGTCCAAGAAGAAGGCCC AGCAGGCCGCCGCCGCCGGCACCGGCAACAGCAGCCAGGTGAGCCAGAACTACCCCA TCGTGCAGAACCTGCAGGGCCAGATGGTGCACCAGGCCATCAGCCCCCGCACCCTGAACG CCTGGGTGAAGGTGGAGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTCAGCG CCCTGAGCGAGGGCGCCACCCCCCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCC ACCAGGCCGCCATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCGCCGAGTGGGACC GCGTGCACCCCGTGCACGCCGGCCCCATCGCCCCGGCCAGATGCGCGAGCCCCGCGGCA GCGACATCGCCGGCACCACCAGCACCTGCAGGAGCAGATCGGCTGGATGACCAACAACC CCCCCATCCCGTGGGCGAGATCTACAAGCGGTGGATCATCCTGGGCCTGAACAAGATCG TGCGGATGTACAGCCCCACCAGCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCC AGAACTGGATGACCGAGACCCTGCTGGTGCAGAACGCCAACCCCGACTGCAAGACCATCC TGAAGGCTCTCGGCCCCGCGGCCACCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGG GCGGCCCGGCCACAAGGCCCGCGTGCTGGCCGAGGCGATGAGCCAGGTGACGAACCCGG CGACCATCATGATGCAGCGCGGCAACTTCCGCAACCAGCGGAAGACCGTCAAGTGCTTCA GGCGCTGCGGCCGCGAGGGCCACCAGATGAAGGACTGCACCGAGCGCCAGGCCAACTTCC TGGGCAAGATCTGGCCCAGCTACAAGGGCCGCCCGGCAACTTCCTGCAGAGCCGCCCCG AGCCCACCGCCCCCCGAGGAGAGCTTCCGCTTCGGCGAGGAGAAGACCACCCCCAGCC AGAAGCAGGAGCCCATCGACAAGGAGCTGTACCCCCTGACCAGCCTGCGCAGCCTGTTCG GCAACGACCCCAGCAGCAGTAAGAATTCAGACTCGAGCAAGTCTAGA

FIG. 64 (CONT'D.) (SEQ ID NO:76)


```
50
                            (1) GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
        gp160.modSF162
                            (1) GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
  gp160.modSF162.delV2
                            (1) GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
gp160.modSF162.delV1V2
                                GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
        gp140.modSF162
                                GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
    gp140.mut.modSF162
                                GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
   gp140.mut7.modSF162
                                GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
   gp140.mut8.modSF162
                                GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
        gp120.modSF162
                                GAATTCGCCACCATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCT
             Consensus
                                GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
        gp160.modSF162
                           (51)
                                GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
  gp160.modSF162.delV2
                           (51)
gp160.modSF162.delV1V2
                                GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
                           (51)
                           (51)
                                GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
        gp140.modSF162
                                GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
    gp140.mut.modSF162
                           (51)
   gp140.mut7.modSF162
                           (51) GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
   gp140.mut8.modSF162
                           (51). GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
                           (51) GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
        gp120.modSF162
                           (51) GCTGTGTGGAGCAGTCTTCGTTTCGCCCAGCGCCGTGGAGAAGCTGTGGG
             Consensus
                                101
                                                                                150
(101) TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
        gp160.modSF162
  gp160.modSF162.delV2
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
gp160.modSF162.delV1V2
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
        gp140.modSF162
                          (101)
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
    gp140.mut.modSF162
                          (101)
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
   gp140.mut7.modSF162
                          (101)
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
   gp140.mut8.modSF162
                          (101)
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCTG
        gp120.modSF162
                          (101)
=
             Consensus
                          (101)
                                TGACCGTGTACTACGGCGTGCCCGTGTGGAAGGAGGCCACCACCACCCTG
jei:
                                                                                200
TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
        gp160.modSF162
                          (151)
  gp160.modSF162.delV2
                          (151)
                                TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
gp160.modSF162.delV1V2
                                TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
                                TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
        gp140.modSF162
Ţ
                          (151) TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
    gp140.mut.modSF162
   gp140.mut7.modSF162
                                TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
                                TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
   gp140.mut8.modSF162
                                TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
        gp120.modSF162
                          (151)
                          (151) TTCTGCGCCAGCGACGCCAAGGCCTACGACACCGAGGTGCACAACGTGTG
             Consensus
                          (201) GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
        gp160.modSF162
  gp160.modSF162.delV2
                               GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
gp160.modSF162.delV1V2
                          (201) GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
        gp140.modSF162
                          (201) GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
                          (201) GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
    gp140.mut.modSF162
                          (201) GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
   gp140.mut7.modSF162
                                GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
   gp140.mut8.modSF162
                          (201)
                                GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
        gp120.modSF162
                          (201)
                          (201)
                                GGCCACCCACGCTGCGTGCCCACCGACCCCAACCCCCAGGAGATCGTGC
             Consensus
                                251
                                TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
                          (251)
         gp160.modSF162
                          (251)
                                TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
  gp160.modSF162.delV2
                          (251)
                                TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
gp160.modSF162.delV1V2
                                TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
         gp140.modSF162
                          (251)
    gp140.mut.modSF162
                                TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
   gp140.mut7.modSF162
                                TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
   gp140.mut8.modSF162
                          (251)
                                TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
```

```
(251) TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
       qp120.modSF162
                        (251) TGGAGAACGTGACCGAGAACTTCAACATGTGGAAGAACAACATGGTGGAG
            Consensus
       gp160.modSF162
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
 gp160.modSF162.delV2
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
gp160.modSF162.delV1V2
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
       gp140.modSF162
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
   gp140.mut.modSF162
  gp140.mut7.modSF162
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
  gp140.mut8.modSF162
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
       gp120.modSF162
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
            Consensus
                        (301) CAGATGCACGAGGACATCATCAGCCTGTGGGACCAGAGCCTGAAGCCCTG
       gp160.modSF162
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCCTGCACTGCACCAACCTGAAGA
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCTGCACTGCACCAACCTGAAGA
 gp160.modSF162.delV2
gp160.modSF162.delV1V2
                        (351) CGTGAAGCTGACCCCCTGTGCGTG-------
       gp140.modSF162
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCCTGCACTGCACCAACCTGAAGA
   gp140.mut.modSF162
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCCTGCACTGCACCAACCTGAAGA
   gp140.mut7.modSF162
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCCTGCACTGCACCAACCTGAAGA
   gp140.mut8.modSF162
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCCTGCACTGCACCAACCTGAAGA
gp120.modSF162
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCCTGCACTGCACCAACCTGAAGA
            Consensus
                        (351) CGTGAAGCTGACCCCCTGTGCGTGACCTGCACTGCACCAACCTGAAGA
                              401
       gp160.modSF162
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAG
gp160.modSF162.delV2
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAG
gp160.modSF162.delV1V2
                             ______
       gp140.modSF162
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAG
   gp140.mut.modSF162
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGTGGACCGCGGCGAG
   gp140.mut7.modSF162
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAG
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAG
   gp140.mut8.modSF162
ļ.i.
       gp120.modSF162
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAG
Ŋ
            Consensus
                        (401) ACGCCACCAACACCAAGAGCAGCAACTGGAAGGAGATGGACCGCGGCGAG
       gp160.modSF162
                        (451) ATCAAGAACTGCAGCTTCAAGGTGACCACCAGCATCCGCAACAAGATGCA
  gp160.modSF162.delV2
                        (451) ATCAAGAACTGCAGCTTCAAGGTGGGC---------
මුර්160.modSF162.delV1V2
                        gp140.modSF162
                        (451) ATCAAGAACTGCAGCTTCAAGGTGACCACCAGCATCCGCAACAAGATGCA
    gp140.mut.modSF162
                        (451) ATCAAGAACTGCAGCTTCAAGGTGACCACCAGCATCCGCAACAAGATGCA
                        (451) ATCAAGAACTGCAGCTTCAAGGTGACCACCAGCATCCGCAACAAGATGCA
   gp140.mut7.modSF162
   gp140.mut8.modSF162
                        (451) ATCAAGAACTGCAGCTTCAAGGTGACCACCAGCATCCGCAACAAGATGCA
       qp120.modSF162
                        (451) ATCAAGAACTGCAGCTTCAAGGTGACCACCAGCATCCGCAACAAGATGCA
                        (451) ATCAAGAACTGCAGCTTCAAGGTGACCACCAGCATCCGCAACAAGATGCA
            Consensus
       gp160.modSF162
                        (501) GAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACG
  gp160.modSF162.delV2
                        (478) -----GCC------GG------
gp160.modSF162.delV1V2
                        (501) GAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACG
       gp140.modSF162
   gp140.mut.modSF162
                        (501) GAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACG
                        (501) GAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACG
   gp140.mut7.modSF162
                        (501) GAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACG
   gp140.mut8.modSF162
       gp120.modSF162
                        (501) GAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACG
                        (501) GAAGGAGTACGCCCTGTTCTACAAGCTGGACGTGGTGCCCATCGACAACG
            Consensus
                        (551) ACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
       gp160.modSF162
  gp160.modSF162.delV2
                        (492) -----CAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
                        (384) -----CAACTGCCAGACCAGCGTGATCACCCAG
gp160.modSF162.delV1V2
                        (551) ACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
        gp140.modSF162
    gp140.mut.modSF162
                        (551) ACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
```

```
(551) ACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
   gp140.mut7.modSF162
                          (551) ACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
   qp140.mut8.modSF162
                               ACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
        qp120.modSF162
                               ACAACACCAGCTACAAGCTGATCAACTGCAACACCAGCGTGATCACCCAG
             Consensus
                          (601) GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCC
        gp160.modSF162
                          (520) GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCATCCACTACTGCGCCCC
  gp160.modSF162.delV2
                          (412) GCCTGCCCAAGGTGAGCTTCGAGCCCATCCCATCCACTACTGCGCCCC
gp160.modSF162.delV1V2
                          (601) GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCATCCACTACTGCGCCCC
        gp140.modSF162
    gp140.mut.modSF162
                          (601) GCCTGCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCC
                          (601) GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCATCCACTACTGCGCCCC
   gp140.mut7.modSF162
   gp140.mut8.modSF162
                          (601) GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCATCCACTACTGCGCCCC
                          (601) GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCC
        gp120.modSF162
                          (601) GCCTGCCCCAAGGTGAGCTTCGAGCCCATCCCCATCCACTACTGCGCCCC
             Consensus
                                                                                700
        gp160.modSF162
                          (651) CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
  gp160.modSF162.delV2
                          (570) CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
                               CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
gp160.modSF162.delV1V2
                          (651) CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
        gp140.modSF162
                          (651) CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
    qp140.mut.modSF162
                               CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
   gp140.mut7.modSF162
   gp140.mut8.modSF162
                               CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
        gp120.modSF162
                               CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
                          (651) CGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGAAGTTCAACGGCAGCG
             Consensus
IJ
                                701
                                                                                750
        gp160.modSF162
                          (701) GCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCC
                               GCCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
  gp160.modSF162.delV2
ap160.modSF162.delV1V2
                               GCCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
                                GCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
        gp140.modSF162
                          (701)
                               GCCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
    gp140.mut.modSF162
                          (701)
ļ.
                          (701) GCCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
   gp140.mut7.modSF162
                          (701) GCCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
   gp140.mut8.modSF162
                          (701) GCCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
        qp120.modSF162
                               GCCCTGCACCAACGTGAGCACCGTGCAGTGCACCCACGGCATCCGCCCC
Consensus
                          (701)
                                                                                800
1
                                GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
        gp160.modSF162
                          (751)
                               GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
  qp160.modSF162.delV2
                          (670)
                          (562) GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
qp160.modSF162.delV1V2
                               GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
        gp140.modSF162
                          (751) GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
    qp140.mut.modSF162
                          (751) GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
   gp140.mut7.modSF162
                          (751) GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
   gp140.mut8.modSF162
                          (751) GTGGTGAGCACCCAGCTGCTGCAACGGCAGCCTGGCCGAGGAGGGCGT
        gp120.modSF162
                          (751) GTGGTGAGCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAGGGCGT
              Consensus
                          (801) GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
        gp160.modSF162
                          (720) GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
  gp160.modSF162.delV2
                          (612) GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
gp160.modSF162.delV1V2
                          (801) GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
        gp140.modSF162
                          (801) GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
    qp140.mut.modSF162
                          (801) GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
   gp140.mut7.modSF162
                                GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
   gp140.mut8.modSF162
                                GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
        qp120.modSF162
                          (801) GGTGATCCGCAGCGAGAACTTCACCGACAACGCCAAGACCATCATCGTGC
              Consensus
                          (851) AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACACCC
        gp160.modSF162
                          (770) AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACACCC
  gp160.modSF162.delV2
                          (662) AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACAACAC
```

gp160.modSF162.delV1V2

```
(851) AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACAACACC
        qp140.modSF162
                          (851) AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACACCC
    gp140.mut.modSF162
                                AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACACCC
   gp140.mut7.modSF162
                                AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACACCC
                          (851)
   gp140.mut8.modSF162
                          (851) AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACAACA
        gp120.modSF162
                          (851) AGCTGAAGGAGAGCGTGGAGATCAACTGCACCCGCCCCAACAACAACAACACC
             Consensus
                          (901) CGCAAGAGCATCACCATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGA
        qp160.modSF162
                          (820) CGCAAGAGCATCACCATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGA
  gp160.modSF162.delV2
                               CGCAAGAGCATCACCATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGA
qp160.modSF162.delV1V2
                          (901) CGCAAGAGCATCACCATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGA
        gp140.modSF162
                          (901) CGCAAGAGCATCACCATCGGCCCGGCCGCCCTTCTACGCCACCGGCGA
    gp140.mut.modSF162
                          (901) CGCAAGAGCATCACCATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGA
   gp140.mut7.modSF162
                          (901) CGCAAGAGCATCACCATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGA
   gp140.mut8.modSF162
                          (901) CGCAAGAGCATCACCATCGGCCCGGCCGCCCTTCTACGCCACCGGCGA
        gp120.modSF162
                          (901) CGCAAGAGCATCACCATCGGCCCCGGCCGCCCTTCTACGCCACCGGCGA
              Consensus
                                951
                          (951) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
        gp160.modSF162
                          (870) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
  gp160.modSF162.delV2
gp160.modSF162.delV1V2
                           (762) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
                           (951) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
         gp140.modSF162
                           (951) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
    gp140.mut.modSF162
                           (951) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
   gp140.mut7.modSF162
                           (951) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
   gp140.mut8.modSF162
                           (951) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
         qp120.modSF162
                           (951) CATCATCGGCGACATCCGCCAGGCCCACTGCAACATCAGCGGCGAGAAGT
              Consensus
UT
                                                                                1050
                                 1001
ļ.i.
                         (1001) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
         gp160.modSF162
                           (920) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
   qp160.modSF162.delV2
gp160.modSF162.delV1V2
                           (812) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
                          (1001) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
         gp140.modSF162
                          (1001) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
     qp140.mut.modSF162
                          (1001) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
    gp140.mut7.modSF162
                          (1001) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
    gp140.mut8.modSF162
                          (1001) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
         gp120.modSF162
Æ.
                          (1001) GGAACAACACCCTGAAGCAGATCGTGACCAAGCTGCAGGCCCAGTTCGGC
              Consensus
                          (1051) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
         gp160.modSF162
                           (970) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
   gp160.modSF162.delV2
                           (862) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
 gp160.modSF162.delV1V2
                          (1051) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
         gp140.modSF162
                          (1051) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
     gp140.mut.modSF162
                          (1051) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
    gp140.mut7.modSF162
                          (1051) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
    gp140.mut8.modSF162
                          (1051) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
         gp120.modSF162
                          (1051) AACAAGACCATCGTGTTCAAGCAGAGCAGCGGCGGCGACCCCGAGATCGT
              Consensus
                          (1101) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
         gp160.modSF162
                          (1020) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
   gp160.modSF162.delV2
                           (912) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
 gp160.modSF162.delV1V2
                          (1101) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
         gp140.modSF162
                          (1101) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
     gp140.mut.modSF162
                          (1101) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
    gp140.mut7.modSF162
                                GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
    gp140.mut8.modSF162
                          (1101) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
         gp120.modSF162
                          (1101) GATGCACAGCTTCAACTGCGGCGGCGAGTTCTTCTACTGCAACAGCACCC
              Consensus
                                                                                1200
                                 1151
                          (1151) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCAAC
         gp160.modSF162
```

```
(1070) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCCAAC
  gp160.modSF162.delV2
                         (962) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCAAC
gp160.modSF162.delV1V2
        gp140.modSF162
                         (1151) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCAAC
    gp140.mut.modSF162
                         (1151) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCAAC
                         (1151) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCCAAC
   gp140.mut7.modSF162
                         (1151) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCCAAC
   gp140.mut8.modSF162
                         (1151) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCAAC
        gp120.modSF162
                         (1151) AGCTGTTCAACAGCACCTGGAACAACACCATCGGCCCCAACAACACCAAC
             Consensus
                                                                              1250
                         (1201) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
        gp160.modSF162
                         (1120) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
  gp160.modSF162.delV2
gp160.modSF162.delV1V2
                         (1012) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
                         (1201) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
        gp140.modSF162
                         (1201) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
    gp140.mut.modSF162
                         (1201) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
   gp140.mut7.modSF162
                         (1201) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
   gp140.mut8.modSF162
                         (1201) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
        gp120.modSF162
                         (1201) GGCACCATCACCCTGCCCTGCCGCATCAAGCAGATCATCAACCGCTGGCA
             Consensus
                                1251
                                                                               1300
                         (1251) GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
        gp160.modSF162
  gp160.modSF162.delV2
                         (1170)
                               GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
dp160.modSF162.delV1V2
                         (1062)
                               GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
                               GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
        gp140.modSF162
                         (1251)
                         (1251) GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
    gp140.mut.modSF162
                         (1251) GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
   gp140.mut7.modSF162
   gp140.mut8.modSF162
                         (1251) GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
                         (1251) GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
        gp120.modSF162
Consensus
                         (1251) GGAGGTGGGCAAGGCCATGTACGCCCCCCCATCCGCGGCCAGATCCGCT
LT.
                                                                               1350
#
                         (1301) GCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGCGGCAAGGAG
        gp160.modSF162
                         (1220) GCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGCGACGGCAAGGAG
  qp160.modSF162.delV2
                         (1112) GCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGCGGCAAGGAG
pp160.modSF162.delV1V2
        gp140.modSF162
                         (1301) GCAGCAGCAACATCACCGGCCTGCTGACCCGCGACGGCGGCAAGGAG
                         (1301) GCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGCGGCAAGGAG
    gp140.mut.modSF162
   gp140.mut7.modSF162
                         (1301) GCAGCAGCAACATCACCGGCCTGCTGACCCGCGACGGCGGCAAGGAG
                         (1301) GCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGCGGCAAGGAG
   gp140.mut8.modSF162
                         (1301) GCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGCGAAGGAG
        gp120.modSF162
                         (1301) GCAGCAGCAACATCACCGGCCTGCTGCTGACCCGCGACGGCGGCAAGGAG
             Consensus
                         (1351) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGA
        gp160.modSF162
  gp160.modSF162.delV2
                         (1270) ATCAGCAACACCACGAGATCTTCCGCCCCGGCGGCGCGACATGCGCGA
                         (1162) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGA
gp160.modSF162.delV1V2
                         (1351) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGA
        gp140.modSF162
                         (1351) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGA
    gp140.mut.modSF162
                         (1351) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGA
   gp140.mut7.modSF162
                         (1351) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGA
   gp140.mut8.modSF162
        gp120.modSF162
                         (1351) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGACATGCGCGA
                         (1351) ATCAGCAACACCACCGAGATCTTCCGCCCCGGCGGCGGCGACATGCGCGA
             Consensus
                         (1401) CAACTGGCGCAGCGAGCTGTACAAGTACAAGTTGGTGAAGATCGAGCCCC
        gp160.modSF162
  gp160.modSF162.delV2
                         (1320) CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
                         (1212) CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
qp160.modSF162.delV1V2
                         (1401) CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
        gp140.modSF162
                         (1401) CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
    gp140.mut.modSF162
                                CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
   gp140.mut7.modSF162
                         (1401)
                                CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
   gp140.mut8.modSF162
                         (1401)
                                CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
        qp120.modSF162
                         (1401)
                         (1401) CAACTGGCGCAGCGAGCTGTACAAGTACAAGGTGGTGAAGATCGAGCCCC
              Consensus
```

```
1500
                              1451
                        (1451) TGGGCGTGGCCCCCACCAAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAG
        qp160.modSF162
                        (1370) TGGGCGTGGCCCCCACCAAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAG
  gp160.modSF162.delV2
                        (1262) TGGGCGTGGCCCCACCAAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAG
gp160.modSF162.delV1V2
                              TGGGCGTGGCCCCACCAAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAG
        gp140.modSF162
                        (1451)
                              TGGGCGTGGCCCCCACCAAGGCCAAGCGCGCGTGGTGCAGCGCGAGAAG
    qp140.mut.modSF162
                        (1451)
                              TGGGCGTGGCCCCCACCAAGGCCATCAGCAGCGTGGTGCAGAGCGAGAAG
   gp140.mut7.modSF162
                        (1451)
                              TGGGCGTGGCCCCCACCATCGCCATCAGCAGCGTGGTGCAGAGCGAGAAG
   gp140.mut8.modSF162
                        (1451)
                        (1451) TGGGCGTGGCCCCCACCAAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAG
        qp120.modSF162
                              TGGGCGTGGCCCCACCAAGGCCAAGCGCCGCGTGGTGCAGCGCGAGAAG
             Consensus
                        (1501) CGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCGCCGG
        gp160.modSF162
                        (1420) CGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCGCCGG
  qp160.modSF162.delV2
                        (1312) CGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCGCCGG
gp160.modSF162.delV1V2
                        (1501) CGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCCCGG
        gp140.modSF162
                        (1501) AGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCGCCGG
    gp140.mut.modSF162
                        (1501) AGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCGCCGG
   gp140.mut7.modSF162
                        (1501) AGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCGCCGG
   qp140.mut8.modSF162
                        (1501) CGC---TAACTCGAG-----
        gp120.modSF162
                        (1501) CGCGCCGTGACCCTGGGCGCCATGTTCCTGGGCTTCCTGGGCGCCCCGG
             Consensus
(1551) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
        gp160.modSF162
                        (1470) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
  gp160.modSF162.delV2
                        (1362) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
(1551) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
        gp140.modSF162
                        (1551) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
    gp140.mut.modSF162
                        (1551) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
   gp140.mut7.modSF162
                        (1551) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
   gp140.mut8.modSF162
                               gp120.modSF162
                        (1513)
                        (1551) CAGCACCATGGGCGCCCGCAGCCTGACCCTGACCGTGCAGGCCCGCCAGC
æ
             Consensus
(1601) TGCTGAGCGGCATCGTGCAGCAGCAGCAACCTGCTGCGCGCCATCGAG
        gp160.modSF162
                        (1520) TGCTGAGCGGCATCGTGCAGCAGCAGCAACCTGCTGCGCGCCATCGAG
  gp160.modSF162.delV2
                               TGCTGAGCGGCATCGTGCAGCAGCAGAACAACCTGCTGCGCGCCATCGAG
gp160.modSF162.delV1V2
                        (1601) TGCTGAGCGGCATCGTGCAGCAGCAGCAACCTGCTGCGCGCCATCGAG
        gp140.modSF162
                        (1601) TGCTGAGCGGCATCGTGCAGCAGCAGCAACCTGCTGCGCGCCCATCGAG
    qp140.mut.modSF162
                        (1601) TGCTGAGCGGCATCGTGCAGCAGCAGCAACCTGCTGCGCGCCATCGAG
    gp140.mut7.modSF162
                        (1601) TGCTGAGCGGCATCGTGCAGCAGCAGCAACCTGCTGCGCGCCCATCGAG
    gp140.mut8.modSF162
         gp120.modSF162
                        (1601) TGCTGAGCGGCATCGTGCAGCAGCAGCAACCTGCTGCGCGCCCATCGAG
             Consensus
                        (1651) GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCA
         gp160.modSF162
                        (1570) GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCA
   qp160.modSF162.delV2
                         (1462) GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCCATCAAGCAGCTGCA
 gp160.modSF162.delV1V2
                              GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCA
         gp140.modSF162
                         (1651)
                               GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCA
     gp140.mut.modSF162
                         (1651)
                         (1651) GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCA
    qp140.mut7.modSF162
                         (1651) GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCA
    gp140.mut8.modSF162
                               gp120.modSF162
                         (1513)
                         (1651) GCCCAGCAGCACCTGCTGCAGCTGACCGTGTGGGGCATCAAGCAGCTGCA
              Consensus
                         (1701) GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
         gp160.modSF162
                         (1620) GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
   qp160.modSF162.delV2
                         (1512) GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
 gp160.modSF162.delV1V2
                         (1701) GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
         gp140.modSF162
                         (1701) GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
     gp140.mut.modSF162
                               GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
    gp140.mut7.modSF162
                         (1701)
                         (1701) GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
    qp140.mut8.modSF162
```

```
(1513) -----
       gp120.modSF162
                      (1701) GGCCCGCGTGCTGGCCGTGGAGCGCTACCTGAAGGACCAGCAGCTGCTGG
            Consensus
                      (1751) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
       gp160.modSF162
                      (1670) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
 gp160.modSF162.delV2
                      (1562) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
gp160.modSF162.delV1V2
                      (1751) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
       gp140.modSF162
                      (1751) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
   gp140.mut.modSF162
                      (1751) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
  gp140.mut7.modSF162
                       (1751) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
   gp140.mut8.modSF162
                       (1513) -----
       gp120.modSF162
                       (1751) GCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGG
            Consensus
                       (1801) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
       gp160.modSF162
                       (1720) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
  qp160.modSF162.delV2
                       (1612) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
gp160.modSF162.delV1V2
                       (1801) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
       gp140.modSF162
                       (1801) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
    gp140.mut.modSF162
                       (1801) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
   gp140.mut7.modSF162
                       (1801) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
   qp140.mut8.modSF162
                             _______
        gp120.modSF162
                       (1801) AACGCCAGCTGGAGCAACAAGAGCCTGGACCAGATCTGGAACAACATGAC
            Consensus
                             1851
                       (1851) CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
        qp160.modSF162
                             CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
gp160.modSF162.delV2
                       (1662) CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
ap160.modSF162.delV1V2
                             CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
        gp140.modSF162
                       (1851)
                       (1851) CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
    gp140.mut.modSF162
IJ.
                       (1851) CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
   gp140.mut7.modSF162
                       (1851) CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
   gp140.mut8.modSF162
                             (1513)
        gp120.modSF162
                       (1851) CTGGATGGAGTGGGAGCGCGAGATCGACAACTACACCAACCTGATCTACA
ħJ
            Consensus
                       (1901) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
        gp160.modSF162
                       (1820) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
  gp160.modSF162.delV2
                       (1712) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
gp160.modSF162.delV1V2
                       (1901) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
        gp140.modSF162
                       (1901) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
    gp140.mut.modSF162
                       (1901) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
   gp140.mut7.modSF162
                       (1901) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
   gp140.mut8.modSF162
                       (1513) -----
        gp120.modSF162
                       (1901) CCCTGATCGAGGAGAGCCAGAACCAGCAGGAGAAGAACGAGCAGGAGCTG
             Consensus
                       (1951) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
        gp160.modSF162
                        (1870) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
  gp160.modSF162.delV2
                        (1762) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
 gp160.modSF162.delV1V2
                        (1951) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
        gp140.modSF162
                        (1951) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
    gp140.mut.modSF162
                        (1951) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
    gp140.mut7.modSF162
                        (1951) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
    gp140.mut8.modSF162
                             _______
                        (1513)
        gp120.modSF162
                       (1951) CTGGAGCTGGACAAGTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAA
             Consensus
                        (2001) GTGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGGCGGCCTGGTGG
        gp160.modSF162
                        (1920) GTGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGGCGGCCTGGTGG
   gp160.modSF162.delV2
                        (1812) GTGGCTGTGGTACATCAAGATCTTCATCATGATCGTGGGCGGCCTGGTGG
 gp160.modSF162.delV1V2
                        (2001) GTGGCTGTGGTACATCTAACTCGAG-----
        gp140.modSF162
                        (2001) GTGGCTGTGGTACATCTAACTCGAG-----
     qp140.mut.modSF162
```

gp140.mut7.modSF162	(2001)	GTGGCTGTGGTACATCTAACTCGAG
gp140.mut8.modSF162	(2001)	GTGGCTGTGGTACATCTAACTCGAG
gp120.modSF162	(1513)	
Consensus		GTGGCTGTGGTACATCTAACTCGAG
Consensus	•	2051 2100
gp160.modSF162	(2051)	GCCTGCGCATCGTGTTCACCGTGCTGAGCATCGTGAACCGCGTGCGCCAG
gp160.modSF162.delV2	(1970)	GCCTGCGCATCGTGTTCACCGTGCTGAGCATCGTGAACCGCGTGCGCCAG
qp160.modSF162.delV1V2	(1862)	GCCTGCGCATCGTGTTCACCGTGCTGAGCATCGTGAACCGCGTGCGCCAG
gp160.modSF162.de1V1V2 gp140.modSF162	(2026)	
gp140.mut.modSF162	(2026)	
gp140.mut7.modSF162	(2026)	
gp140.mut/.modSr162	(2026)	
gp140.mut8.modSF162	(1513)	
gp120.modSF162		
Consensus	(2051)	2101 2150
4.60 1971.60	(0101)	GGCTACAGCCCCTGAGCTTCCAGACCCGCTTCCCCGCCCCCCGCGGCCC
gp160.modSF162	(2101)	GGCTACAGCCCCCTGAGCTTCCAGACCCGCTTCCCCGCCCCCGGGGCCC
gp160.modSF162.delV2	(2020)	GGCTACAGCCCCCTGAGCTTCCAGACCCGCTTCCCCGCCCCCGCGGCCC
gp160.modSF162.delV1V2	(1912)	GGCTACAGCCCCTGAGCTTCCAGACCCGCTTCCCCGCCCCCCCGCCCCCCCC
gp140.modSF162	(2026)	
gp140.mut.modSF162	(2026)	
gp140.mut7.modSF162	(2026)	
gp140.mut8.modSF162	(2026)	
gp120.modSF162	(1513)	
Consensus	(2101)	0000
gp140.mut7.modSF162 gp140.mut8.modSF162 gp120.modSF162 Consensus		2151 2200
<pre>gp160.modSF162</pre>	(2151)	CGACCGCCCGAGGGCATCGAGGAGGAGGGCGGCGAGCGCGACC
an160 modSF162.delV2	(2070)	CGACCGCCCGAGGGCATCGAGGAGGAGGGCGGCGAGCGCGACCGCGACC
ep160.modSF162.delV1V2	(1962)	CGACCGCCCGAGGGCATCGAGGAGGAGGGCGGGGGGGGGG
gp140.modSF162	(2026)	
gp140.mut.modSF162	(2026)	
gp140.mut7.modSF162	(2026)	
gp140.mut8.modSF162	(2026)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
gp120.modSF162	(1513)	
Consensus	(2151)	
Equil Component	(2232)	2201 2250
qp160.modSF162	(2201)	GCAGCAGCCCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACCTG
gp160.modSF162 gp160.modSF162.delV2	(2120)	CCACCACCCCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACCTG
gp160.modSF162.delV1V2	(2012)	GCAGCAGCCCCTGGTGCACGGCCTGCTGGCCCTGATCTGGGACGACCTG
qp140.modSF162	(2026)	
gp140.modSF162	(2026)	
gp140.mut7.modSF162	(2026)	
qp140.mut8.modSF162	(2026)	
gp140.mut8.modSF162 gp120.modSF162	(1513)	
	(2201)	
Consensus	(2201)	2251 2300
1.60 1071.60	(0051)	
gp160.modSF162	(2251)	
gp160.modSF162.delV2	(2170)	
gp160.modSF162.delV1V2	(2062)	
gp140.modSF162	(2026)	
gp140.mut.modSF162	(2026)	
gp140.mut7.modSF162	(2026)	
gp140.mut8.modSF162	(2026)	
gp120.modSF162	(1513)	
Consensus	(2251)	
		2301
gp160.modSF162	(2301)	
gp160.modSF162.delV2	(2220)	CGCCGCCCGCATCGTGGAGCTGCTGGGCCGCCGCGCGCGGGAGGCCCTGA
gp160.modSF162.delV1V2	(2112)	CGCCGCCCGCATCGTGGAGCTGCTGGGCCCGCGCGGCTGGGAGGCCCTGA

gp140.modSF162 gp140.mut.modSF162 gp140.mut7.modSF162 gp140.mut8.modSF162 gp120.modSF162 Consensus	(2026) (2026) (2026) (2026) (1513) (2301)	
gp160.modSF162 gp160.modSF162.delV2 gp160.modSF162.delV1V2 gp140.modSF162 gp140.mut.modSF162 gp140.mut7.modSF162 gp140.mut8.modSF162 gp120.modSF162 Consensus	(2351) (2270) (2162) (2026) (2026) (2026) (2026) (1513) (2351)	2351 2400 AGTACTGGGGCAACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGC AGTACTGGGGCAACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGC AGTACTGGGGCAACCTGCTGCAGTACTGGATCCAGGAGCTGAAGAACAGC
gp160.modSF162 gp160.modSF162.delV1V2 pp160.modSF162.delV1V2 gp140.modSF162 gp140.mut.modSF162 gp140.mut7.modSF162 gp140.mut8.modSF162 gp120.modSF162	(2401) (2320) (2212) (2026) (2026) (2026) (2026) (1513)	2401 GCCGTGAGCCTGTTCGACGCCATCGCCATCGCCGTGGCCGAGGGCACCGA GCCGTGAGCCTGTTCGACGCCATCGCCATCGCCGTGGCCGAGGGCACCGA GCCGTGAGCCTGTTCGACGCCATCGCCATCGCCGTGGCCGAGGGCACCGA
gp160.modSF162 gp160.modSF162.delV2 gp160.modSF162.delV1V2 gp140.modSF162 gp140.mut.modSF162 gp140.mut7.modSF162 gp140.mut8.modSF162 gp120.modSF162 Consensus	(2401) (2451) (2370) (2262) (2026) (2026) (2026) (2026) (1513) (2451)	2451 CCGCATCATCGAGGTGGCCCAGCGCATCGGCCGCGCCTTCCTGCACATCC CCGCATCATCGAGGTGGCCCAGCGCATCGGCCGCGCCTTCCTGCACATCC CCGCATCATCGAGGTGGCCCAGCGCATCGGCCGCGCCTTCCTGCACATCC
gp160.modSF162 gp160.modSF162.delV2 gp160.modSF162.delV1V2 gp140.modSF162 gp140.mut.modSF162 gp140.mut7.modSF162 gp140.mut8.modSF162 gp120.modSF162 Consensus	(2501) (2420) (2312) (2026) (2026) (2026) (2026) (1513) (2501)	CCCGCCGCATCCGCCAGGGCTTCGAGCGCGCCCTGCTGTAACTCGAG CCCGCCGCATCCGCCAGGGCTTCGAGCGCGCCCTGCTGTAACTCGAG

FIG. & B (Sheet 1/14)

```
200
                            161
                            <u>CCCACGCCAAGGCTTACAAGGOGGAGGCCCAGAAGGTCTG</u>
             gp160
                      (161)
                            GCGACGCCAAGGCTTAGAAGGCGGAGGGGCACAAGGTGTG
      gp160 del V1
                      (161)
                            gcgangccaaggct<u>tacaaggc</u>cgag<u>c</u>ccacaacgtgtg
      gp160 del V2
                      (161)
                            EGGACCOGAAGGOTWACAAGGGCGAGGGOCCACAACGTGTG
    gp160 del V1-2
                      (161)
gp 160 del 128-194
                      (161)
                            GCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTG
                            gcgacgccaaggcttacaaggccgaggcagacaacgtgtg
           qp140TM
                      (161)
                            GCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTG
             gp140
                      (161)
                            GCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTG
          gp140mut
                      (161)
                            GCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTG
                      (161)
             gp120
                      (161) GCGACGCCAAGGCTTACAAGGCCGAGGCCCACAACGTGTG
         Consensus
                            GGCCACCCAGGCCTGCGTGCGCACCCCAACCCCAACCCCCAG
                      (201)
             gp160
                            GGCACECACCCTGCCTGCCACCGACCCCAACCCCAG
      gp160 del V1
                      (201)
                            GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAG
      gp160 del V2
                      (201)
                            GGCCACCCACGCCTGCGTGCCCACGGACCCCAACCCCCAG
    gp160 del V1-2
                      (201)
                            GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAG
gp 160 del 128-194
                      (201)
                            EGCCACCCACGCCTGCGTGCCCACCGACCCGAACCCCCAG
           gp140TM
                      (201)
                            EGCCACCCACGCCTGCGTGCCCACGGACCCCAACCCCCAG
             gp140
                      (201)
                            GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAG
          gp140mut
                      (201)
                            GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAG
                      (201)
             gp120
                            GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAG
         Consensus
                      (201)
                                                                   280
                            GAGG"GAACCTGACCAACGTGACCGAGAACTTCAACATGT
                      (241)
             gp160
                            gaggygaacutgaccaacgtgaccgagaacttcaacatgt
      gp160 del V1
                      (241)
                            GAGGTGAACCTGACCAACGTGACGGAGAACTTCAACATGT
      gp160 del V2
                      (241)
                            GAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGT
    gp160 del V1-2
                      (241)
                            GAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGT
gp 160 del 128-194
                      (241)
                            GAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGT
           qp140TM
                      (241)
                            GAGGTGAACCTGACCAACGTGACCGAGAACTTCAAGATGT
              gp140
                      (241)
                            GAGGTGAACCTCACCAAGGTCACCGAGAACTTCAACATGT
                      (241)
          gp140mut
                            GAGGTGAACCTGACGAACGTGACCGAGAACTTCAACATGT
              gp120
                      (241)
                            GAGGTGAACCTGACCAACGTGACCGAGAACTTCAACATGT
         Consensus
                      (241)
                            281
                            GGAAGAACAACATGGTGGAGCAGATGCATGAGGACATCAT
                      (281)
              gp160
                            ggagaacaacatggtggagcagatgaaggacatcat
      gp160 del V1
                      (281)
      gp160 del V2
                            GGAAGAACAACATGGTGGAGCAGATGCATGAGGACATCAT
                      (281)
                            GGAAGAACAACATGGTGGAGCAGATGCATGAGGACATCAT
    qp160 del V1-2
                      (281)
                            GCAAGAACAACATGCTGGAGCAGATGCATGAGGACATCAT
gp 160 del 128-194
                      (281)
                            GCAAGAACAACATGGTGGAGCAGATGCATGAGGACATCAT
            gp140TM
                      (281)
                            gcaagaacaacatggtggagcagatgcatgaggacatgat
              gp140
                      (281)
                            ggaagaacaacatggtggagcagatgcatgaggacatcat
           gp140mut
                      (281)
                            GGAAGAACAACATGCTGGAGCAGATGCATGAGGACATCAT
              gp120
                      (281)
         Consensus
                      (281) GGAAGAACAACATGGTGGAGCAGATGCATGAGGACATCAT
                             321
                            CAGCCTGTGGGACCAGAGCCTGAAGCCCTGGGTGAAGCTG
                      (321)
              gp160
                            CAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
      qp160 del V1
                      (321)
                            CAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
      gp160 del V2
                      (321)
                             CAGCCTGTGGGACCAGAGCCTGAAGCCCTGGGTG<mark>GGCG</mark>CC
    gp160 del V1-2
                      (321)
                             CAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
gp 160 del 128-194
                      (321)
                            CAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
            gp140TM
                      (321)
                            CAGCCTGTGGGACCAGAGCCTGAAGCCCTGGGTGAAGCTG
              gp140
                      (321)
                            CAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
           gp140mut
                      (321)
                      (321) CAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
              gp120
                      (321) CAGCCTGTGGGACCAGAGCCTGAAGCCCTGCGTGAAGCTG
          Consensus
```


	-	761 800
gp160	(761)	SECOPIGO AAGAA MOZIGA GOAACECTIGCA GIRECA O OOACEG
gp160 del V1	(665)	SCCCTGCAAGAAGGTCAGGACCGTGCAGTGCACCGAGGG
		GOCCOTERAGEACCTGAGCACCCACGG
gp160 del V2	(680)	GCCCTACAAGAAGSTGAGCACCGTGGAGTGCACCCACGG
gp160 del V1-2	(467)	
gp 160 del 128-194	(512)	GCCCTGCAACAACGTGAGCACGCTGCAGTGCACCCACGG
gp140TM	(761)	GCCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGG
gp140	(761)	GCCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGG
gp140mut	(761)	GCCCCTGCAAGAACGTGAGCAOOGTGCAGTGCACCCACGG
gp120	(761)	GCCCCTGGAAGAACGTGAGCACCGTGGAGTGCACCCACGG
Consensus	(761)	GCCCCTGCAAGAACGTGAGCACCGTGCAGTGCACCCACGG
		801 840
gp160	(801)	CATCCGCCCCGTGCTGAGGACCCAGCTGCTGCTGAACGGC
gp160 del V1	(705)	CATCOGOCOCGTGGTGAGCACCCAGCTGCTGCTGAACGGC
gp160 del V2	(720)	CATCCCCCCCCTCGTGAGCACCCAGGTGCTGCTGAACGGC
gp160 del V1-2	(507)	CATCCCCCCCCTCGTGAGCACOCAGOTGCTGCTGAACGGC
gp 160 del 128-194	(552)	CATCCCCCCCCTCGTGACCACCCAGCTCCTGCTGAACGGC
gp140TM	(801)	CATCCGCCCCGTGGTGAGGACCCAGCTGCTGCTGAACGGC
gp140	(801)	CATCOCCCCCTGGFGAGGAGGCAGCTGCTGCTGAACGGC
gp140mut	(801)	CATTCTISCCOCCTGCTGAGCACCCAGGTGCTGCTGAACGGC
gp120	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC
Consensus	(801)	CATCCGCCCGTGGTGAGCACCCAGCTGCTGCTGAACGGC
combandad	(001)	841 880
gp160	(841)	AGCCTGGCCGAGGAGGAGATCGTGCTGCGCTCCGAGAACT
gp160 del V1	(745)	ACCUTGCCCGAGGAGGATCCTGCTGCGCTCCGAGAACT
gp160 del V2	(760)	AGCCTGGCCGAGGAGGAGATUGTGCTGCGCTCCGAGAACT
gp160 del V1-2	(547)	AGCCTGGCCGAGGAGGAGATCGTGCTGCGCTCCGAGAACT
gp 160 del 128-194	(592)	AGCCTGGGGGAGGAGGAGTCGTGCTGCGCTCCGAGAACT
		AGCCTGGCCGAGGAGGAGATCGTGCTGCGCGCTCCGAGAACT
gp140TM	(841)	AGCCTGGCCGAGGAGAGATCGTGCTGCGCTCCGAGAACT
gp140	(841)	
gp140mut	(841)	AGCCTGGCCGAGGAGGAGCTCCTGCTGCGCTCCGAGAACT
gp120	(841)	AGCCTGGCCGAGAGCAGGAGCTGCTGCGCCCCGAGAACT
Consensus	(841)	AGCCTGGCCGAGGAGGAGTCGTGCTGCGCTCCGAGAACT
1.50	(001)	881 920
gp160	(881)	TCACCAACACGCCAAGACCATCATCGTGCAGCTGAACGA
gp160 del V1	(785)	<u>ECAUCGACAAGGCCAAGACCATCATCGTGCAGCTGAACGA</u>
gp160 del V2	(800)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA
gp160 del V1-2	(587)	POAGOGADAOGECAAGACCATCATCGTGCAGCTGAACGA
gp 160 del 128-194	(632)	TCACCGACAACGECAAGACCATCATCGTGCAGCTGAACGA
gp140TM	(881)	PCAECGACAACGCCAAGACCATCATCGTGCAGCTGAACGA
gp140	(881)	icaciogacaaegicaagaecatcatceigeaegetgaacca
gp140mut	(881)	<u>ECACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA</u>
gp120	(881)	ICACCG <u>AC</u> AACGCCAAGACGATCATOGTGCAGCTGAACGA
Consensus	(881)	TCACCGACAACGCCAAGACCATCATCGTGCAGCTGAACGA
		921 960
gp160	(921)	gteogregagàtéaactgeateegeeecaacaacaacaa
gp160 del V1	(825)	STOCGTGGAGATCAACTGCATCCGCCCCAACAACAACACCG
gp160 del V2	(840)	gtccgtggagatcaactgcatg <u>cgcc</u> ccaacaacaacac
gp160 del V1-2	(627)	GTCCGTGGAGATCAACITGCATCCGCCCCAACAACAACAACA
gp 160 del 128-194	(672)	GTCCGTGGAGATCAACTGCATCCGCCCCAACAACAACACG
gp140TM	(921)	gt@ggtggagatcaaCtgcatccgcgcaacaacaacac
gp140	(921)	CTCCCTGGAGATCAACTGCATCCGCCCCAACAACAACACCG
gp140mut	(921)	GTCCGTGGAGATCAACTGCATCCGCCCGAAGAACAACACG
gp120	(921)	GTCCGTGGAGATCAAGTGCATCCGCCCCAACAACAACAACA
Consensus	(921)	GTCCGTGGAGATCAACTGCATCCGCCCCAACAACAACACC

			961 1000
	an160	(961)	961 1000 CGTAAGAGCATCCACATCGGCCCGGCCGGCCGGCCTTCTACG
an-	gp160 160 del V1	(865)	CGTAAGAGCATCGACATCGGGGGGGGGGGGGGGGGGTTCTACG
	160 del V2	(880)	SETVANGACION (CALCALUCE COO DECOGGO GO CONTOURCE
	0 del V1-2	(667)	CTAAGAGCATCOACATOGCCCCCGGGGGGGGGGGGGTECTACG
	el 128-194	(712)	CGTAAGAGCATCCACATCCGCCCCGCCGCCGCCCCCCCTTCTACG
35 TO T	gp140TM	(961)	CGTAAGAGCATCGACATEGGCCCCGGGGGGCGCCTTCTACG
	gp140	(961)	CGTAAGAGCATUCACATCGGCCCCGGCCGCGCGCTTCTACG
	gp140mut	(961)	EGTAAGAGCAT CCACATCGGCCCGGGCGCGCGCGTTCTACG
	gp120	(961)	CGTAAGAGCATCCACATCGGCCCCGGGCGCGCCTTCTACG
	Consensus	(961)	CGTAAGAGCATCCACATCGGCCCCGGCCGCCCTTCTACG
			1001 1040
	gp160	(1001)	<u>CCACCGGCGACATCATCGGCGACATCGGCCAGGCCCACTG</u>
	160 del V1	(905)	CCACGGGGGACATCATCGGGGACATCCGGCAGGCGCACTG
	160 del V2	(920)	SCACCGGCGACATCATCGGCGACATCGGCCAGGCCGACTG
	0 del V1-2	(707)	CEACCGECGAUATCATCEGCGACATCCGCCAGGCCCACTG
gp 160 d	el 128-194	(752)	CACCGGCGACATCGGCGACATCGGCCACGGCCACTG
	gp140TM	(1001)	CACCGGCGACATCATCGGCGACATGCGCCAGGCCCACTG
	gp140	(1001)	CACGGCCACATCATCGGCGAGATCCGCCAGGCCCACTC CCACCGGCCACATCATCGGCGAGATCCGCCAGGCCCACTC
	gp140mut	(1001)	CCACCGGCGACATCATCGGCGACATCGGCCAGGCCCACTG
	gp120 Consensus	(1001) (1001)	CCACCGGCGACATCATCGGCGACATCCGCCAGGCCCACTG
	Consensus	(1001)	1041 1080
	gp160	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
an	160 del V1	(945)	CAACATCAGCAAGGECAACTGGACCAACACCCTCGAGCAG
	160 del V2	(960)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
	0 del V1-2	(747)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
	el 128-194	(792)	CAACATCAGOAAGGCCAACTGGACCAACACCCTCGAGCAG
31	gp140TM	(1041)	CAAGATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
	gp140	(1041)	CAACATCAGCAAGGCCAACTGGAGCAACACCCTCGAGCAG
	gp140mut	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
	gp120	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
	Consensus	(1041)	CAACATCAGCAAGGCCAACTGGACCAACACCCTCGAGCAG
			1081 1120
	gp160	(1081)	ATCGTGGAGAAGCTGCGGGAGCAGTTCGGCAACAACAAGA
	160 del V1	(985)	atogtggagaaggtgcgcgagcagtteggcaacaacaaga
	160 del V2	(1000)	atcgtgg <u>agab</u> gctggggggggggteggcaacaacaaga atcgtggagaagetegggagcagttggggaacaacaaga
	0 del V1-2	(787)	htegigeagaagetgogegageagttogggaacaacaaga
gp 160 a	el 128-194	(832) (1081)	ATOGTGGAGAAGCTGCGCGAGGAGTTCGGGAACAACAAGA
	gp140TM gp140	(1081)	ategtegagageteegegageagttegegaacaacaaga
	gp140mut	(1081)	ATCGTGCAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGA
	gp110dc	(1081)	ATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGA
	Consensus	(1081)	ATCGTGGAGAAGCTGCGCGAGCAGTTCGGCAACAACAAGA
		(/	1121 1160
	gp160	(1121)	CCATTATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGAT
gp	160 del V1	(1025)	CCATYATCTTCAACAGCAGCAGCGGGGGGGGCGACCCCGAGAT
gp	160 del V2	(1040)	CCATCATCTTCAACAGCAGCAGCGGCGGGGACCCCGAGAT
	0 del V1-2	(827)	CCATCATCTTCAACAGCAGCAGCGGGGGGGGGCGCCCCGAGAT
gp 160 d	lel 128-194	(872)	CCATCATCTTCAACAGCAGCAGCGGCGGCGACCCCCAGAT
	gp140TM	(1121)	CCATCATCTTCAACAGCAGGAGGGGGGGGGACCCCGAGAT
	gp140	(1121)	CCATCATCTTCAACAGCAGCAGCGGGGGGGGGCCCCGAGAT
	gp140mut	(1121)	CCATCATCTTCAACAGCAGCAGGGGGGGGGGCGACCCCGAGAT
	gp120	(1121)	CCATCATCTTCAACAGCAGCAGCGGGGGGGGCGCCCGAGAT
	Consensus	(1121)	CCATCATCTTCAACAGCAGCAGCGGCGGCGACCCCGAGAT

		1361 1400
gp160	(1361)	AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGCTGAC
gp160 del V1	(1265)	AGAT CAAGUGOAGCAGCAATATTACOGGGCTGCTGCTGAC
gp160 del V2	(1280)	AGATIOA AGTIGOAGOAGOAATATT AGOGGOOTGOTGOTGAC
gp160 del V1-2	(1067)	AGATCAAGTGCAGGAGTAATATTACCGGCGTGCTGCTGAC
gp 160 del 128-194	(1112)	AGATCAAGEGGAGCAGCAATATTAGCGGGCTGCTGCTGAC
gp140TM	(1361)	<u>AGATOAAGTECAGGAGCAATATTACCGGCCTGCTGCTGAC</u>
gp140	(1361)	AGATCAAGTGCAGCAGCATATTACCGGCCTGCTGCTGAC
gp140mut	(1361)	agatcaactgcagcag <mark>catattacc</mark> ggcctgctgctgac
gp120	(1361)	agatcaagtggagcaggaatattageggegtgetgetgae
Consensus	(1361)	AGATCAAGTGCAGCAGCAATATTACCGGCCTGCTGAC
		1401 1440
gp160	(1401)	CCGCGACGGCGGCACCAACAACAACGCGCACCAACGACACC
gp160 del V1	(1305)	CCGCGACGGCGGCACCAACAACAACCGCACCAACGACACC
gp160 del V2	(1320)	EGGCGACGGGGCAGCAACAACAACGCCAACGACACC CCGCGACGGCGCACCAACAACAACCGCACCAACGACACC
gp160 del V1-2	(1107)	CGCCGACGGCGCACCAACAACAACGCCCAACGACGACGAC
gp 160 del 128-194	(1152) (1401)	CEGCGACGGCGCACCAACAACACCGCACCAACGACACC
gp140TM	(1401)	DOGCEACGECGCACCAACAACAACGACCAACGACAC
gp140 gp140mut	(1401)	COCCGACGGCGCACCAACAACAACGCCACCAACGACACC
gp140muc gp120	(1401)	CCGCGACGGCGCACCAACAACAACCGCACCAACGACACC
Consensus	(1401)	CCGCGACGGCGCACCAACAACAACCGCACCAACGACACC
30113011343	(2102)	1441 1480
gp160	(1441)	GAGACCTTCCGCCCCGGCGGCGCGACATGAAGGACAACT
gp160 del V1	(1345)	GAGACCTTCCGCCCGGCGGCGGCAACATGAAGGACAACT
gp160 del V2	(1360)	GAGACCTTCCGCCCCGGGGGGGGCAACATGAAGGACAACT
gp160 del V1-2	(1147)	GAGACCTTCCGCCCCGGCGGCGCCACATGAAGGACAACT
gp 160 del 128-194	(1192)	GAGACCTTCCGCCCGGGGGCGCGGCAACATGAAGGAGAACT
gp140TM	(1441)	GAGACCTTCCGCCCGGCGGCGCGACATGAAGGACAACT
gp140	(1441)	GAGACCTTCCGCCCCGGCGGCGCGAACATGAAGGACAACT
gp140mut	(1441)	GAGACCTTCCGCCCCGGCGGCGGCAACATGAAGGACAACT
gp120	(1441)	GAGACCTTCCGCCCCGGCGCGCGCAACATGAAGGACAACT GAGACCTTCCGCCCCGGCGCGCGCAACATGAAGGACAACT
Consensus	(1441)	1481 1520
gp160	(1481)	GGCGCAGCGAGCTCTACAAGTACAAGTGGTGGGCATCGA
gp160 del V1	(1385)	GGCGCAGCGAGGTGTACAAGTACAAGGTGGTGCGCATCGA
gp160 del V2	(1400)	GCCCAGCGAGCTGTAGAAGTAGAAGGTGGTGCGCATCGA
gp160 del V1-2	(1187)	GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA
gp 160 del 128-194	(1232)	GGCGCAGCCAGCTGTACAAGTACAAGGTGCTGCGCATCGA
gp140TM	(1481)	GGGGCAGCGAGGTGTACAAGTACAAGGTGGTGGGGCATCGA
gp140	(1481)	
gp140mut	(1481)	GGCGCACCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA
gp120	(1481)	
Consensus	(1481)	GGCGCAGCGAGCTGTACAAGTACAAGGTGGTGCGCATCGA
1.60	(1501)	1521 1560
gp160	(1521)	GCCCCTGGGCGTGGCCCCCACCCAGGCCAAGCGCCGCGTG GCCCCTGGGCGTGGCCCCCACCCAGGCCAAGCGCCGCGTG
gp160 del V1	(1425)	
gp160 del V2 gp160 del V1-2	(1440) (1227)	
gp 160 del 128-194	(1272)	
gp 100 del 120 154 gp140TM	(1521)	
gp140	(1521)	
gp140mut	(1521)	
gp120	(1521)	GCCCTGGGCGTGGCCCCCCACCCAGGCCAAGCGCCGCGTG
Consensus	(1521)	GCCCTGGGCGTGGCCCCACCCAGGCCAAGCGCCGCGTG

			1961 2000
	gp160	(1960)	ACCGGCOTGATCTACAACCTGATCGAGATCGCCCAGAACC
	gp160 del V1	(1864)	ACCOGCCTGATCTACAACCTGATCGAGATCGCCCAGAACC
	gp160 del V2	(1879)	ACCCCCOPGATOWACAACCTCATCCAGATCGCCCAGAACC
	gp160 del V1-2	(1666)	accosectgateracaacctgategagategeecagaace
gр	160 del 128-194	(1711)	accec cotcatetacaacctcat ccacatecccacaacc
	gp140TM	(1960)	ACCGGCCTGATCTACAAGCTGATCGAGATCGCCCAGAACC
	gp140	(1960)	ACCEGCTEGATETACAACCTGATCGAGATCGCCCAGAACC
	gp140mut	(1960)	ACCECCTGATCTAGAACCTGATCGAGATCGCCCAGAACC
	gp120	(1600)	
	Consensus	(1961)	ACCGGCCTGATCTACAACCTGATCGAGATCGCCCAGAACC
			2001 2040
	gp160	(2000)	agcaggaga gaagcagca geagctgctggagctggacaa
	gp160 del V1	(1904)	aggaggagaagaacgaggaggagctgctggaggtggacaa
	gp160 del V2	(1919)	agcaggagaagaacgagcaggagctgctggagctggagaa
	gp160 del V1-2	(1706)	ngcaggagaagaacgaggaggagcuggtggagctaa
дþ	160 del 128-194	(1751)	agcaggaga acaaccagcagc agctggagctggacaa
	gp140TM	(2000)	accaccacaacaaccaccaccacctcctgcacctccac
	gp140	(2000)	AGCAGGACAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
	gp140mut	(2000)	agcaggagaagaacgagdaggagctgCtggagctggacaa
	gp120	(1600)	
	Consensus	(2001)	AGCAGGAGAAGAACGAGCAGGAGCTGCTGGAGCTGGACAA
			2041 2080
	gp160	(2040)	GTGGGCAGCCTGTGGAACTGGTTCGACATCACCAACTGG
	gp160 del V1	(1944)	GTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGG
	gp160 del V2	(1959)	GTGGGCCAGCCTGTGGAACTGGTTCGACATCAGCAACTGG
	gp160 del V1-2	(1746)	GTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGG
дþ	160 del 128-194	(1791)	GTGGGCCAGCCTGTGGAACTGGTTCGAGATCACCAACTGG
	gp140TM	(2040)	GTGGGCCAGCCTGT <u>GG</u> AACTGGT <u>TC</u> GACATCACCAACTGG GTGGGCCAGCCTGTQGAACTGGTTCGACATCACCAACTGG
	gp140	(2040)	GTGGGCCAGCCTGTGGAACTGGTTGGACATCACCAACTGG
	gp140mut	(2040)	GIBRIO CACRODATRIBARCIO DI PROBINCA I CACCARCIGO
	gp120 Consensus	(1600) (2041)	GTGGGCCAGCCTGTGGAACTGGTTCGACATCACCAACTGG
	Consensus	(2041)	2081 2120
	gp160	(2080)	CTGTGGTACATCGGCATCTTCATCATGATCGTGGGCGGCC
	gp160 del V1	(1984)	CTGTGCTACATCCGCATCTTCATCATGATGGTGGGCGGGC
	gp160 del V2	(1999)	CTGTGGTACATCGGCATCTTCATCATGATCGTGGGCGGCC
	gp160 del V1-2	(1786)	CTGTGCTACATCCGCATCTTCATCATGATCGTGGGCGGCC
др	160 del 128-194	(1831)	CTGTGGTACATCGGCATCTTCATCATGATCGTGGGCGGCC
21	gp140TM	(2080)	CTGTGGTACATCCGCATCTTCATCATGATCGTGGGCGGCC
	gp140	(2080)	CTGTGGTACATO
	gp140mut	(2080)	CTGTGGTACATC
	gp120	(1600)	
	Consensus	(2081)	CTGTGGTACATCCGCATCTTCATCATGATCGTGGGCGGCC
			2121 2160
	gp160	(2120)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA
	gp160 del V1	(2024)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA
	gp160 del V2	(2039)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA
	gp160 del V1-2	(1826)	EGATOGGCCTGCGCATCGTCTTCGCCGTGCTGAGCA
gp	160 del 128-194	(1871)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCA
	gp140TM	(2120)	TGATCGCCTGCCCATCGTGTTCGCCGTGCTGAGCATCGT
	gp140	(2092)	
	gp140mut	(2092)	
	gp120	(1600)	man magagamagan ang magamagan ang man
	Consensus	(2121)	TGATCGGCCTGCGCATCGTGTTCGCCGTGCTGAGCANNNN

			2361	2400
	gp160	(2355)	CCTGCGCGACCTGCTGCTGATCGTGGCCCGCATCGT(SGAG
	gp160 del V1	(2259)	cotecgcgacquectgctgategtegcgcgcatqct	G AG
	gp160 del V2	(2274)	CONGCOGGACONGCTGCTGATCGTGGCCGGCATCGT] GAG
	gp160 del V1-2	(2061)	COTGCGCGACCTGCTGCTGATCGTGGCCCGCATCGT	SGAG
дp	160 del 128-194	(2106)	COTGCGCGACCTGCTGCTGATCGTGGCCCGCATCGT	3GAG
	gp140TM	(2182)		
	gp140	(2113)		
	gp140mut	(2113)		
	gp120	(1600)		,
	Consensus	(2361)	CCTGCGCGACCTGCTGCTGATCGTGGCCCGCATCGT	2440
	1 C O	(2395)	2401 : TGCTGGGGGGCGCGGGGGGGGGGCCCTGAAGTAC	
	gp160 gp160 del V1	(2393)	OTGOTGGGCCGCCGGGCTGGGGGCCTGAAGTAC	
	gp160 del V2	(2314)	CTGCTGGGCCGCGCGGGTGGGAGGCCCTGAAGTAC	TGGT
	gp160 del V1-2	(2101)	CTGCTGGGCCGCCGCGGCTGGGAGGCCCTGAAGTAC	
gр	160 del 128-194	(2146)	CTGCTGGGCCGCCGCCTGGGGGCCCTGAAGTAC	MANAGEMENT CONTRACTOR OF THE PARTY OF T
91	gp140TM	(2182)		
	gp140	(2113)		
	gp140mut	(2113)		
	gp120	(1600)		
	Consensus	(2401)	CTGCTGGGCCGCCGCGGCTGGGAGGCCCTGAAGTAC	TGGT
				2480
	gp160	(2435)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGA	
	gp160 del V1	(2339)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGA	
	gp160 del V2	(2354)	GGAACCTGCTGCAGTACTGGAGCGAGGAGCTGAAGA	
	gp160 del V1-2	(2141)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGA	004/204/204/204/204/204/204/204/204/204/
gp	160 del 128-194	(2186)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGA	SCA15
	gp140TM	(2182)		
	gp140	(2113)		
	gp140mut gp120	(2113) (1600)		
	Consensus	(2441)	GGAACCTGCTGCAGTACTGGAGCCAGGAGCTGAAGA	GCAG
	Consensus	(2441)		2520
	gp160	(2475)	CGCCGTCAGCCTGTTCAACGCCAGCCCCCATCGCCGT	
	gp160 del V1	(2379)	CGCCGTGAGCCTGTTCAACGCCACCGCCATCGCCGT	
	gp160 del V2	(2394)	CGCCGTGAGCCTGTTGAACGCCACCGCCATCGCCGT	
	gp160 del V1-2	(2181)	CGCCGTGAGCCTCTTCAACGCCACCGCCATCGCCGT	ggcc
gp	160 del 128-194	(2226)	CGCCGTGAGCCTGTTCAACGCCACCGCCATCGGCGT	GGCC
	gp140TM	(2182)		
	gp140	(2113)		
	gp140mut	(2113)		
	gp120	(1600)		
	Consensus	(2481)	CGCCGTGAGCCTGTTCAACGCCACCGCCATCGCCGT	
	1.50	,0515)		2560
	gp160	(2515)		*******************
	gp160 del V1 gp160 del V2	(2419)		
	gp160 del V1-2	(2434) (2221)		
др	160 del 128-194	(2266)	ACCUPATION AND ADMINISTRATION AN	00000000000000000000000000000000000000
92	gp140TM	(2182)		
	gp140	(2113)		
	gp140mut	(2113)		
	gp120	(1600)		
	Consensus	(2521)	GAGGGCACCGACCGCATCATCGAGATCGTGCAGCGC	ATCT

FIG.67

HIV-1SF2 wt RT (PISPIET-->GIRKVL)

GTTAAGCAATGGCCATTGACAGAAGAAAAATAAAAGCATTAGTAGAGATATGTACAGAA ATGGAAAAGGAAGGGAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTA TTTGCTATAAAGAAAAAAGACAGTACTAAATGGAGAAAACTAGTAGATTTCAGAGAACTT AATAAAAGAACTCAAGACTTCTGGGAAGTTCAGTTAGGAATACCACACCCCGCAGGGTTA AAAAAGAAAAATCAGTAACAGTATTGGATGTGGGTGATGCATACTTTTCAGTTCCCTTA GATAAAGACTTTAGAAAGTATACTGCATTTACCATACCTAGTATAAACAATGAGACACCA GGGATTAGATATCAGTACAATGTGCTGCCACAGGGATGGAAAGGATCACCAGCAATATTC CAAAGTAGCATGACAAAAATCTTAGAGCCTTTTAGAAAACAGAATCCAGACATAGTTATC TATCAAtacatggatgatTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCATAGAACA AAAATAGAGGAACTGAGACAGCATCTGTTGAGGTGGGGATTTACCACACCAGACAAAAAA CATCAGAAAGAACCTCCATTCCTTtggatgggttatGAACTCCATCCTGATAAATGGACA GTACAGCCTATAATGCTGCCAGAAAAAGACAGCTGGACTGTCAATGACATACAGAAGTTA GTGGGAAAATTGAATTGGGCAAGTCAGATTTATGCAGGGATTAAAGTAAAGCAGTTATGT AAACTCCTTAGAGGAACCAAAGCACTAACAGAAGTAATACCACTAACAGAAGAAGCAGAG CTAGAACTGGCAGAAAACAGGGAGATTCTAAAAGAACCAGTACATGAAGTATATTATGAC CCATCAAAAGACTTAGTAGCAGAAATACAGAAGCAGGGGCAAGGCCAATGGACATATCAA ATTTATCAAGAGCCATTTAAAAATCTGAAAACAGGAAAGTATGCAAGGATGAGGGTGCC CACACTAATGATGTAAAACAGTTAACAGAGGCAGTGCAAAAAGTATCCACAGAAAGCATA GTAATATGGGGAAAGATTCCTAAATTTAAACTACCCATACAAAAGGAAACATGGGAAGCA TGGTGGATGGAGTATTGGCAAGCTACCTGGATTCCTGAGTGGGAGTTTGTCAATACCCCT CCCTTAGTGAAATTATGGTACCAGTTAGAGAAAGAACCCATAGTAGGAGCAGAAACTTTC TATGTAGATGGGGCAGCTAATAGGGAGACTAAATTAGGAAAAGCAGGATATGTTACTGAC AGAGGAAGACAAAAAGTTGTCTCCATAGCTGACACAACAAATCAGAAGACTGAATTACAA GCAATTCATCTAGCTTTGCAGGATTCGGGATTAGAAGTAAACATAGTAACAGACTCACAA ATAATAGAGCAGTTAATAAAAAAGGAAAAGGTCTACCTGGCATGGGTACCAGCACAAA GGAATTGGAGGAAATGAACAAGTAGATAAATTAGTCAGTGCTGGAATCAGGAAAGTACTA

FIG. 68 (SEQ ID NO:77)

GagProtMod.SF2(GP1)

GTCGACGCCACCATGGGCGCCCGCGCCAGCGTGCTGAGCGGCGGCGAGCTGGACAAGTGG GAGAAGATCCGCCTGCGCCCCGGCGGCAAGAAGAAGTACAAGCTGAAGCACATCGTGTGG GCCAGCCGCGAGCTGGAGCGCTTCGCCGTGAACCCCGGCCTGCTGGAGACCAGCGAGGGC AGCCTGTACAACACCGTGGCCACCCTGTACTGCGTGCACCAGCGCATCGACGTCAAGGAC ACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAACAAGTCCAAGAAGAAGGCCCAG CAGGCCGCCGCCGCCGCCACCGGCAACAGCCAGCTGAGCCAGAACTACCCCATC GTGCAGAACCTGCAGGGCCAGATGGTGCACCAGGCCATCAGCCCCCGCACCCTGAACGCC TGGGTGAAGGTGGTGGAGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTCAGCGCC CTGAGCGAGGCGCCCCCCCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCCAC CAGGCCGCCATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCGCCGAGTGGGACCGC GTGCACCCCGTGCACGCCGGCCCATCGCCCCCGGCCAGATGCGCGAGCCCCGCGGCAGC GACATCGCCGGCACCACCACCACCCTGCAGGAGCAGATCGGCTGGATGACCAACAACCCC CCCATCCCCGTGGCGAGATCTACAAGCGGTGGATCATCCTGGGCCTGAACAAGATCGTG CGGATGTACAGCCCCACCAGCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGC AACTGGATGACCGAGACCCTGCTGGTGCAGAACGCCAACCCCGACTGCAAGACCATCCTG AAGGCTCTCGGCCCGCGGCCACCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGGGC GGCCCGGCCACAAGGCCCGCGTGCTGGCCGAGGCGATGAGCCAGGTGACGAACCCGGCG ACCATCATGATGCAGCGCGGCAACTTCCGCAACCAGCGGAAGACCGTCAAGTGCTTCAAC TGCGGCAAGGAGGCCACACCGCCAGGAACTGCCGCCCCCCCGCAAGAAGGGCTGCTGG CGCTGCGGCCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTTA GGGAAGATCTGGCCTTCCTACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAG CCAACAGCCCCACCAGAAGAGAGCTTCAGGTTTGGGGAGGAGAAAACAACTCCCTCTCAG AAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGATCACTCTTTGGC AACGACCCTCGTCACAGTAAGGATCGGCGGCCAGCTCAAGGAGGCGCTGCTCGACACCG GCGCCGACGACCCCTGCTGGAGGAGATGAACCTGCCCGGCAAGTGGAAGCCCAAGATGA TCGGCGGGATCGGGGGCTTCATCAAGGTGCGGCAGTACGACCAGATCCCCGTGGAGATCT GCGCCACAAGGCCATCGGCACCGTGCTGGTGGGCCCCACCCCCGTGAACATCATCGGCC GCAACCTGCTGACCCAGATCGGCTGCACCCTGAACTTCCCCATCAGCCCCATCGAGACGG TGCCCGTGAAGCTGAAGCCGGGGATGGACGGCCCCAAGGTCAAGCAGTGGCCCCTGTAAG AATTC

GagProtMod.SF2(GP2)

GTCGACGCCACCATGGGCGCCCGCGCCAGCGTGCTGAGCGGCGGCGAGCTGGACAAGTGG GAGAAGATCCGCCTGCGCCCCGGCGGCAAGAAGAAGTACAAGCTGAAGCACATCGTGTGG GCCAGCCGCGAGCTGGAGCGCTTCGCCGTGAACCCCGGCCTGCTGGAGACCAGCGAGGGC AGCCTGTACAACACCGTGGCCACCCTGTACTGCGTGCACCAGCGCATCGACGTCAAGGAC ACCAAGGAGGCCCTGGAGAAGATCGAGGAGGAGCAGAACAAGTCCAAGAAGAAGGCCCAG CAGGCCGCCGCCGCCGCACCGCAACAGCAGCCAGGTGAGCCAGAACTACCCCATC GTGCAGAACCTGCAGGGCCAGATGGTGCACCAGGCCATCAGCCCCCGCACCCTGAACGCC ${\tt TGGGTGAAGGTGGTGGAGGAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTCAGCGCC}$ CTGAGCGAGGCCCCCCCCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCCAC CAGGCCGCCATGCAGATGCTGAAGGAGACCATCAACGAGGAGGCCGCCGAGTGGGACCGC GTGCACCCCGTGCACGCCGCCCCATCGCCCCCGGCCAGATGCGCGAGCCCCGCGGCAGC GACATCGCCGGCACCACCAGCACCCTGCAGGAGCAGATCGGCTGGATGACCAACAACCCC $\tt CCCATCCCGTGGGCGAGATCTACAAGCGGTGGATCATCCTGGGCCTGAACAAGATCGTG$ CGGATGTACAGCCCCACCAGCATCCTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGC AACTGGATGACCGAGACCCTGCTGGTGCAGAACGCCAACCCCGACTGCAAGACCATCCTG AAGGCTCTCGGCCCGCGGCCACCCTGGAGGAGATGATGACCGCCTGCCAGGGCGTGGGC GGCCCGGCCACAAGGCCCGCGTGCTGGCCGAGGCGATGAGCCAGGTGACGAACCCGGCG ACCATCATGATGCAGCGCGCAACTTCCGCAACCAGCGGAAGACCGTCAAGTGCTTCAAC CGCTGCGGCCGCAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTTA GGGAAGATCTGGCCTTCCTACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAG CCAACAGCCCCACCAGAAGAGAGCTTCAGGTTTGGGGAGGAAAACAACTCCCTCTCAG AAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGATCACTCTTTGGC AACGACCCCTCGTCACAGTAAGGATCGGGGGGCAACTCAAGGAAGCGCTGCTCGATACAG GAGCAGATGATACAGTATTAGAAGAAATGAATTTGCCAGGAAAATGGAAACCAAAAATGA TAGGGGGGATCGGGGGCTTCATCAAGGTGAGGCAGTACGACCAGATACCTGTAGAAATCT GTGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAA GAAATCTGTTGACCCAGATCGGCTGCACCTTGAACTTCCCCATCAGCCCTATTGAGACGG TGCCCGTGAAGTTGAAGCCGGGGATGGACGGCCCCAAGGTCAAGCAATGGCCATTGTAAG AATTC

FS(+) ProtInact RTopt YM

GCGCCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTTAGGGA AGATCTGGCCTTCCTACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCAA CAGCCCCACCAGAAGAGCTTCAGGTTTGGGGAGGAGAAAACAACTCCCTCTCAGAAGC AGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGATCACTCTTTGGCAACG ACCCCTCGTCACAATAAGGATCGGGGGGCAACTCAAGGAAGCGCTGCTCGATACAGGAGC AGATGATACAGTATTAGAAGAAATGAATTTGCCAGGAAAATGGAAACCAAAAATGATAGG GGGGATCGGGGGCTTCATCAAGGTGAGGCAGTACGACCAGATACCTGTAGAAATCTGTGG ACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAA ${\tt TCTGTTGACCCAGATCGGCTGCACCTTGAACTTCCCCATCAGCCCTATTGAGACGGTGCC}$ CGTGAAGTTGAAGCCGGGGATGGACGGCCCCAAGGTCAAGCAATGGCCATTGACCGAGGA GAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCAA GATCGGCCCGAGAACCCCTACAACACCCCCGTGTTCGCCATCAAGAAGAAGAACACCAC CAAGTGGCGCAAGCTGGTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTTCTGGGA GGTGCAGCTGGGCATCCCCCACCCGCCGGCCTGAAGAAGAAGAAGAGCGTGACCGTGCT GGACGTGGGCGACGCCTACTTCAGCGTGCCCCTGGACAAGGACTTCCGCAAGTACACCGC ${\tt CTTCACCATCCCCAGCATCAACAACGAGACCCCCGGCATCCGCTACCAGTACAACGTGCT}$ GCCCCAGGGCTGGAAGGGCAGCCCCGCCATCTTCCAGAGCAGCATGACCAAGATCCTGGA GCCCTTCCGCAAGCAGAACCCCGACATCGTGATCTACCAGGCCCCCCTGTACGTGGGCAG CGACCTGGAGATCGGCCAGCACCGCACCAAGATCGAGGAGCTGCGCCAGCACCTGCTGCG ${\tt CTGGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGCCCCCCTTCCTGTGGATGGG}$ CTACGAGCTGCACCCCGACAAGTGGACCGTGCAGCCCATCATGCTGCCCGAGAAGGACAG CGCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCGCGCACCAAGGCCCTGACCGA GGTGATCCCCCTGACCGAGGGGCCGAGCTGGAGCTGGCCGAGAACCGCGAGATCCTGAA GGAGCCCGTGCACGAGGTGTACTACGACCCCAGCAAGGACCTGGTGGCCGAGATCCAGAA GCAGGGCCAGGGCCAGTGGACCTACCAGATCTACCAGGAGCCCTTCAAGAACCTGAAGAC CGGCAAGTACGCCCGCATGCGCGCGCCCACACCAACGACGTGAAGCAGCTGACCGAGGC CGTGCAGAAGGTGAGCACCGAGAGCATCGTGATCTGGGGCAAGATCCCCAAGTTCAAGCT

FIG. 71 (CONT'D.) (SEQ ID NO:80)

FS(+) ProtInact_RTopt_YMWM

GCGGCCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTTAGGGA AGATCTGGCCTTCCTACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCAA CAGCCCCACCAGAAGAGAGCTTCAGGTTTGGGGAGGAGAAAACAACTCCCTCTCAGAAGC AGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGATCACTCTTTGGCAACG ACCCCTCGTCACAATAAGGATCGGGGGGCAACTCAAGGAAGCGCTGCTCGATACAGGAGC AGATGATACAGTATTAGAAGAAATGAATTTGCCAGGAAAATGGAAACCAAAAATGATAGG GGGGATCGGGGGCTTCATCAAGGTGAGGCAGTACGACCAGATACCTGTAGAAATCTGTGG ACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAA TCTGTTGACCCAGATCGGCTGCACCTTGAACTTCCCCATCAGCCCTATTGAGACGGTGCC CGTGAAGTTGAAGCCGGGGATGGACGGCCCCAAGGTCAAGCAATGGCCATTGACCGAGGA GAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCAA GATCGGCCCGAGAACCCCTACAACACCCCCGTGTTCGCCATCAAGAAGAAGAAGACACCAC CAAGTGGCGCAAGCTGGTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTTCTGGGA GGTGCAGCTGGGCATCCCCCACCCGCCGGCCTGAAGAAGAAGAAGAGCGTGACCGTGCT GGACGTGGGCGACGCCTACTTCAGCGTGCCCCTGGACAAGGACTTCCGCAAGTACACCGC CTTCACCATCCCCAGCATCAACAACGAGACCCCCGGCATCCGCTACCAGTACAACGTGCT GCCCCAGGGCTGGAAGGGCAGCCCCGCCATCTTCCAGAGCAGCATGACCAAGATCCTGGA GCCCTTCCGCAAGCAGAACCCCGACATCGTGATCTACCAGGCCCCCCTGTACGTGGGCAG CGACCTGGAGATCGGCCAGCACCACCAAGATCGAGGAGCTGCGCCAGCACCTGCTGCG CTGGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGCCCCCCTTCCTGCCCATCGA GCTGCACCCCGACAAGTGGACCGTGCAGCCCATCATGCTGCCCGAGAAGGACAGCTGGAC CATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCGCGCCCCAAGGCCCTGACCGAGGTGAT CCCCTGACCGAGGGGCCGAGCTGGAGCTGGCCGAGAACCGCGAGATCCTGAAGGAGCC CGTGCACGAGGTGTACTACGACCCCAGCAAGGACCTGGTGGCCGAGATCCAGAAGCAGGG CCAGGGCCAGTGGACCTACCAGATCTACCAGGAGCCCTTCAAGAACCTGAAGACCGGCAA GTACGCCCGCATGCGCGCGCCCCACACCAACGACGTGAAGCAGCTGACCGAGGCCGTGCA GAAGGTGAGCACCGAGAGCATCGTGATCTGGGGCCAAGATCCCCAAGTTCAAGCTGCCCAT CCAGAAGGAGACCTGGGAGGCCTGGTGATGGAGTACTGGCAGGCCACCTGGATCCCCGA
GTGGGAGTTCGTGAACACCCCCCCCCTGGTGAAGCTGTGGTACCAGCTGGAGAAGGAGCC
CATCGTGGGCGCCGAGACCTTCTACGTGGACGGCGCCCAACCGCGAGACCAAGCTGGG
CAAGGCCGGCTACGTGACCGACCGGGGCCGGCAGAAGGTGGTGAGCATCGCCGACACCAC
CAACCAGAAGACCGAGCTGCAGGCCATCCACCTGGCCCTGCAGGACAGCGGCCTGGAGGT
GAACATCGTGACCGACAGCCAGTACGCCCTGGGCATCATCCAGGCCCAGCCCGACAAGAG
CGAGAGCGAGCTGGTGAGCCAGATCATCCAGGCCCAGCCCGACAAGAG
CGAGAGCGAGCTGGTGAGCCAGATCATCGAGCAGCAGGTGGACAAGCTGGTGAG
CGCCTGGGTGCCCCCCCACAAGGGCATCGGCGGCAACGAGCAGGTGGACAAGCTGGTGAG
CGCCGGCATCCGCAAGGTGCTGTTCCTGAACGGCATCGATGGCGGCATCGTGATCTACCA
GTACATGGACGACCTGTACGTGGGCAGCGGCGCCCTAGGATCGATTAAAAGCTTCCCGG
GGCTAGCACCGGTGAATTC

FIG. 72 (CONT'D.) (SEQ ID NO:81)

FS(-) ProtMod_RTopt_YM

GCGGCCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTCTTCCGCG AGGACCTGGCCTTCCTGCAGGGCAAGGCCCGCGAGTTCAGCAGCGAGCAGACCCGCGCCA ACAGCCCCACCCGCCGCGAGCTGCAGGTGTGGGGCGGCGAGAACAACAGCCTGAGCGAGG $\tt CCGGCGCCGACCGCCAGGGCACCGTGAGCTTCAACTTCCCCCAGATCACCCTGTGGCAGC$ GCCCCTGGTGACCATCAGGATCGGCGGCCAGCTCAAGGAGGCGCTGCTCGACACCGGCG CCGACGACACCGTGCTGGAGGAGATGAACCTGCCCGGCAAGTGGAAGCCCAAGATGATCG GCGGGATCGGGGGCTTCATCAAGGTGCGGCAGTACGACCAGATCCCCGTGGAGATCTGCG GCCACAAGGCCATCGGCACCGTGCTGGTGGGCCCCACCCCCGTGAACATCATCGGCCGCA ACCTGCTGACCCAGATCGGCTGCACCCTGAACTTCCCCATCAGCCCCATCGAGACGGTGC CCGTGAAGCTGAAGCCGGGGATGGACGGCCCCAAGGTCAAGCAGTGGCCCCTGACCGAGG AGAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCA AGATCGGCCCGAGAACCCCTACAACACCCCCGTGTTCGCCATCAAGAAGAAGAAGACACCA ${\tt CCAAGTGGCGCAAGCTGGTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTTCTGGG}$ AGGTGCAGCTGGGCATCCCCCACCCCGCCGGCCTGAAGAAGAAGAAGAGCGTGACCGTGC TGGACGTGGGCGACGCCTACTTCAGCGTGCCCCTGGACAAGGACTTCCGCAAGTACACCG CCTTCACCATCCCCAGCATCAACAACGAGACCCCCGGCATCCGCTACCAGTACAACGTGC TGCCCCAGGGCTGGAAGGGCAGCCCCGCCATCTTCCAGAGCAGCATGACCAAGATCCTGG AGCCCTTCCGCAAGCAGAACCCCGACATCGTGATCTACCAGGCCCCCTGTACGTGGGCA GCGACCTGGAGATCGGCCAGCACCGCACCAAGATCGAGGAGCTGCGCCAGCACCTGCTGC GCTGGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGCCCCCCTTCCTGTGGATGG GCTACGAGCTGCACCCCGACAAGTGGACCGTGCAGCCCATCATGCTGCCCGAGAAGGACA AGGTGATCCCCCTGACCGAGGAGGCCGAGCTGGAGCTGGCCGAGAACCGCGAGATCCTGA AGGAGCCCGTGCACGAGGTGTACTACGACCCCAGCAAGGACCTGGTGGCCGAGATCCAGA AGCAGGGCCAGGGCCAGTGGACCTACCAGATCTACCAGGAGCCCTTCAAGAACCTGAAGA CCGGCAAGTACGCCCGCATGCGCGCCCCACACCAACGACGTGAAGCAGCTGACCGAGG CCGTGCAGAAGGTGAGCACCGAGAGCATCGTGATCTGGGGCAAGATCCCCAAGTTCAAGC

FIG. 73 (CONT'D.) (SEQ ID NO:82)

FS(-) ProtMod_RTopt_YMWM

GCGGCCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTCTTCCGCG AGGACCTGGCCTTCCTGCAGGGCAAGGCCCGCGAGTTCAGCAGCGAGCAGACCCGCGCCA ACAGCCCCACCCGCGGGGCTGCAGGTGTGGGGCGGCGAGAACAACAGCCTGAGCGAGG CCGGCGCCGACCGCCAGGGCACCGTGAGCTTCAACTTCCCCCAGATCACCCTGTGGCAGC GCCCCTGGTGACCATCAGGATCGGCGGCCAGCTCAAGGAGGCGCTGCTCGACACCGGCG CCGACGACACCGTGCTGGAGGAGATGAACCTGCCCGGCAAGTGGAAGCCCAAGATGATCG GCGGGATCGGGGGCTTCATCAAGGTGCGGCAGTACGACCAGATCCCCGTGGAGATCTGCG GCCACAAGGCCATCGGCACCGTGCTGGTGGGCCCCACCCCCGTGAACATCATCGGCCGCA ACCTGCTGACCCAGATCGGCTGCACCCTGAACTTCCCCATCAGCCCCATCGAGACGGTGC CCGTGAAGCTGAAGCCGGGGATGGACGGCCCCAAGGTCAAGCAGTGGCCCCTGACCGAGG AGAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCA AGATCGGCCCGAGAACCCCTACAACACCCCCGTGTTCGCCATCAAGAAGAAGAAGACACA CCAAGTGGCGCAAGCTGGTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTTCTGGG AGGTGCAGCTGGGCATCCCCCACCCCGCCGGCCTGAAGAAGAAGAAGAGCGTGACCGTGC TGGACGTGGCCGACGCCTACTTCAGCGTGCCCCTGGACAAGGACTTCCGCAAGTACACCG CCTTCACCATCCCCAGCATCAACAACGAGACCCCCGGCATCCGCTACCAGTACAACGTGC TGCCCCAGGGCTGGAAGGGCAGCCCCGCCATCTTCCAGAGCAGCATGACCAAGATCCTGG AGCCCTTCCGCAAGCAGAACCCCGACATCGTGATCTACCAGGCCCCCCTGTACGTGGGCA GCGACCTGGAGATCGGCCAGCACCGCACCAAGATCGAGGAGCTGCGCCAGCACCTGCTGC GCTGGGGCTTCACCACCCCGACAAGAAGCACCAGAAGGAGCCCCCCTTCCTGCCCATCG AGCTGCACCCCGACAAGTGGACCGTGCAGCCCATCATGCTGCCCGAGAAGGACAGCTGGA GCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCGCGCGCACCAAGGCCCTGACCGAGGTGA TCCCCCTGACCGAGGGGCCGAGCTGGAGCTGGCCGAGAACCGCGAGATCCTGAAGGAGC CCGTGCACGAGGTGTACTACGACCCCAGCAAGGACCTGGTGGCCGAGATCCAGAAGCAGG GCCAGGGCCAGTGGACCTACCAGATCTACCAGGAGCCCTTCAAGAACCTGAAGACCGGCA AGTACGCCCGCATGCGCGCCCCACACCAACGACGTGAAGCAGCTGACCGAGGCCGTGC AGAAGGTGAGCACCGAGAGCATCGTGATCTGGGGCAAGATCCCCAAGTTCAAGCTGCCCA

FIG. 74 (SEQ ID NO:83)

FIG. 74 (CONT'D.) (SEQ ID NO:83)

FS(-) ProtMod RTopt(+)

GCGGCCGCGAAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTCTTCCGCG AGGACCTGGCCTTCCTGCAGGGCAAGGCCCGCGAGTTCAGCAGCGAGCAGACCCGCGCCA ACAGCCCACCGCCGCGAGCTGCAGGTGTGGGGCGGCGAGAACAACAGCCTGAGCGAGG CCGCCCCGACCCCCAGGCCACCGTGAGCTTCAACTTCCCCCAGATCACCCTGTGGCAGCGCCCCTGGTGACCATCAGGATCGGCGGCCAGCTCAAGGAGGCGCTGCTCGACACCGGCG CCGACGACACCGTGCTGGAGGAGATGAACCTGCCCGGCAAGTGGAAGCCCAAGATGATCG GCGGGATCGGGGGCTTCATCAAGGTGCGGCAGTACGACCAGATCCCCGTGGAGATCTGCG GCCACAGGCCATCGGCACCGTGCTGGTGGGCCCCACCCCCGTGAACATCATCGGCCGCA ACCTGCTGACCCAGATCGGCTGCACCCTGAACTTCCCCATCAGCCCCATCGAGACGGTGC CCGTGAAGCTGAAGCCGGGGATGGACGCCCCAAGGTCAAGCAGTGGCCCCTGACCGAGG AGAAGATCAAGGCCCTGGTGGAGATCTGCACCGAGATGGAGAAGGAGGGCAAGATCAGCA AGATCGGCCCGAGAACCCCTACAACACCCCCGTGTTCGCCATCAAGAAGAAGAAGACACCA CCAAGTGGCGCAAGCTGGTGGACTTCCGCGAGCTGAACAAGCGCACCCAGGACTTCTGGG AGGTGCAGCTGGGCATCCCCCACCCGCCGGCCTGAAGAAGAAGAAGAGCGTGACCGTGC ${\tt TGGACGTGGGCGACGCCTACTTCAGCGTGCCCCTGGACAAGGACTTCCGCAAGTACACCG}$ CCTTCACCATCCCCAGCATCAACAACGAGACCCCCGGCATCCGCTACCAGTACAACGTGC TGCCCCAGGGCTGGAAGGGCAGCCCCGCCATCTTCCAGAGCAGCATGACCAAGATCCTGG AGCCCTTCCGCAAGCAGAACCCCGACATCGTGATCTACCAGTACATGGACGACCTGTACG TGGGCAGCGACCTGGAGATCGGCCAGCACCCACCAGATCGAGGAGCTGCGCCAGCACC TGCTGCGCTGGGGCTTCACCACCCCCGACAAGAAGCACCAGAAGGAGCCCCCCTTCCTGT GGATGGCCTACGAGCTGCACCCCGACAAGTGGACCGTGCAGCCCATCATGCTGCCCGAGA AGGACAGCTGGACCGTGAACGACATCCAGAAGCTGGTGGGCCAAGCTGAACTGGGCCAGCC AGATCTACGCCGGCATCAAGGTGAAGCAGCTGTGCAAGCTGCTGCGCGGCACCAAGGCCC TGACCGAGGTGATCCCCCTGACCGAGGGGGCCGAGCTGGAGCTGGCCGAGAACCGCGAGA TCCTGAAGGAGCCCGTGCACGAGGTGTACTACGACCCCAGCAAGGACCTGGTGGCCGAGA TCCAGAAGCAGGCCAGGGCCAGTGGACCTACCAGATCTACCAGGAGCCCTTCAAGAACC TGAAGACCGGCAAGTACGCCCGCATGCGCGCGCCCACACCAACGACGTGAAGCAGCTGA CCGAGGCCGTGCAGAAGGTGAGCACCGAGAGCATCGTGATCTGGGGCAAGATCCCCAAGT CCTGGATCCCCGAGTGGGAGTTCGTGAACACCCCCCCCTGGTGAAGCTGTGGTACCAGC TGGAGAAGGAGCCCATCGTGGGCGCCGAGACCTTCTACGTGGACGGCGCCGCCAACCGCG

FIG. 75 (CONT'D.) (SEQ ID NO:84)

Tat_wt_SF162 (wildtype)

FIG. 76 (SEQ ID NO:85)

MEPVDPRLEPWKHPGSQPKTACTNCYCKKCCFHCQVCFITKGLGISYGRKKRRQRRRAPPDSE VHQVSLPKQPASQPQGDPTGPKESKKKVERETETDPVH

FIG. 77 (SEQ ID NO:86)

FIG. 78 (SEQ ID NO:87)

FIG. 79 (SEQ ID NO:88)

÷

Section	(1) 1 50 60 70 70 70 70 70 70 70 70 70 70 70 70 70	AgMod.SF2 (77) AGAAGAAGTACAAGCTGTGTGTGGGCCGCGCGCGGAGCTGGAGCCGTGAACCCCGGCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	(153) 153 160 170 180 200 200 210 228 GagMod.SF2 (153) GGAGGCCAGCTGCCGCCAGCTGCAGCCTGCAGACCGGCAGCGAGGAGCTGCGC Alod.SF2(GPI) (153) GGAGACCAGCGAGGGCTGCCAGATCCTGGGCCCAGCTGCAGCTGCGC Alod.SF2(GPI) (153) GGAGACCAGCGAGGGCTGCCAGATCCTGGGCCAGCTGCAGCTGCAGCTGCGCAGCAGCGAGGAGCTGCGC Alod.SF2(GPI) (153) GGAGACCAGCGAGGGCTGCCGCCAGATCCTGGGCCAGCTGCAGCCCAGCCTGCAGCAGCAGCAGCGAGGAGCTGCGC Consensus (153) GGAGACCAGCGAGGGCTGCCGCCAGATCCTGGGCCAGCTGCAGCCCAGCCTGCAGCCAGC	(229) 229 240 250 260 270 270 280 304 304 304 GagMod.SF2 (229) AGCCTGTACACCTGTGCCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	(305) 305 310 320 330 340 350 350 380 380 380 380 380 380 380 380 380 38
	GagMod.SF2 GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus	GagMod.SF2 GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus	GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus	GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) GagProtMod.SF2(GP2) Consensus	GagMod.SF2 GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus

F/G. 80A

Section 6	456	scccccc scccccc scccccc scccccc	532	SCCCTGA SCCCTGA SCCCTGA SCCCTGA Section 8	809	AGATGCT AGATGCT AGATGCT AGATGCT Section 9	684	CCCCGGC CCCCGGC CCCCGGC CCCCGGC	760 PACCA PACCA PACCA
- Sect		AACTACCCCATCGTGCAGAACCTGCAGGCCAGATGGTGCACCAGGCCATCAGCCCCCGC AACTACCCCATCGTGCAGAACCTGCAGGGCCAGATGGTGCACCAGGCCATCAGCCCCGC AACTACCCCATCGTGCAGAACCTGCAGGGCCAGATGGTGCACCAGGCCATCAGCCCCGC AACTACCCCATCGTGCAGAACCTGCAGGGCCAGATGGTGCACCAGGCCATCAGCCCCGC		TGAAGGTGGTGGAGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCATGTTCAGCGCCCTGA TGAAGGTGGTGGAGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCCATGTTCAGCGCCCTGA TGAAGGTGGTGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCCATGTTCAGCGCCCTGA TGAAGGTGGTGGAGAAGGCCTTCAGCCCCGAGGTGATCCCCCATGTTCAGCGCCCTGA		CCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCCACCAGGCCGCCATGCAGATGCT CCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCCACCAGGCCGCCATGCAGATGCT CCAGGACCTGAACACGATGTTGAACACCGTGGGCGGCCACCAGGCCGCCATGCAGATGCT		GagMod.SF2 (609) GAAGGAGACCATCAACGAGGAGGCCGCCGAGTGGGACCGCGTGCACCCCGTGCACGCCGGCCCCATCGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCCGGCCCC	10 0 0 0
		CATCA CATCA CATCA CATCA	520	TTCAC TTCAC TTCAC		CCATC	_	CATC	750 GGCT GGCT GGCT
	440	AGGC AGGC AGGC		CCATG CCATG CCATG	0	92295 92295 92295	670	00000	AGATC AGATC AGATC AGATC
		GCACC	510	ATCC(ATCC)	290	ACCA ACCA ACCA ACCA		10000 10000	740 3GAGC 3GAGC 3GAGC
	430	ATGGT ATGGT ATGGT	ıΩ.	AGGTG AGGTG AGGTG		00990 00990 00990 00990	999	GTGCA GTGCA GTGCA	TGCAC TGCAC TGCAC
	7.	CCAG CCAG CCAG CCAG	0	(5000)	580	TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		ACCCC ACCCC ACCCC	730 CACCC CACCC CACCC
	420	CAGGG CAGGG CAGGG	200	TCAGC TCAGC TCAGC		CACC	650	GTGCZ GTGCZ GTGCZ	ACCAGO ACCAGO
	4	ACCTG ACCTG ACCTG		36CCT 36CCT 36CCT	570	TTGAA TTGAA TTGAA		ACCGC ACCGC ACCGC	720 CACCA CACCA
	_	CAGAZ CAGAZ CAGAZ CAGAZ	490	AGAA(GATG	640	STGGG STGGG STGGG	99225 99225 99225
	410	TCGTG TCGTG TCGTG		GGAGG GGAGG GGAGG	560	AACAC AACAC AACAC		CCGAC CCGAC CCGAC	710 ACATC ACATC ACATC
		CCCCA	480	GTGGTGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGG		ACCTG ACCTG ACCTG	630	000000	AGCGF AGCGF AGCGF
	400	ACTAC ACTAC		GAAG GAAG	750	CAGG		SAGGA	000000000000000000000000000000000000000
			470				624	CAACC	00Z 20000000000000000000000000000000000
	30	STGAG STGAG STGAG		ACGCC ACGCC	270	GGCCA	4	ACCAT ACCAT ACCAT	GCGAGGCGAGGCGAGGGCGAGGGCGAGG
		CCAGC		CTGAZ CTGAZ CTGAZ	"	AGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		AGGAGA AGGAGA AGGAGA	690 SATGCC SATGCC
	73817 381	(381) CAGCCAGGTGAGCCAG (381) CAGCCAGGTGAGCCAG (381) CAGCCAGGTGAGCCAG (381) CAGCCAGGTGAGCCAG	1457 157	GagMod.SF2 (457) ACCCTGAACGCCTGGGGGGQProtMod.SF2(GP1) (457) ACCCTGAACGCCTGGGGGGGQProtMod.SF2(GP2) (457) ACCCTGAACGCCTGGGCCTGGGGCCTGGGGGGCCTGGGGGCCTGGGGGG	533	GagMod.SF2 (533) GCGAGGCGCCACCCC GagProtMod.SF2(GP1) (533) GCGAGGGCGCCACCCC GagProtMod.SF2(GP2) (533) GCGAGGGCGCCACCCC Consensus (533) GCGAGGGCGCCACCCC	64 66	GagMod.SF2 (609) GAAGGAGACCATCAAC GagProtMod.SF2(GP1) (609) GAAGGAGACCATCAAC GagProtMod.SF2(GP2) (609) GAAGGAGACCATCAAC Consensus (609) GAAGGAGACCATCAAC	(685) CAC (685) CAC (685) CAC (685) CAC (685) CAC
	00/		777	3 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	;	88888 88888	1
		GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) GagProtMod.SF2(GP2) Consensus		GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus		GagMod.SF2 GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus		IgMod.SF2 J.SF2(GP1) J.SF2(GP2) Consensus	GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus
		SagN od.SF od.SF Cor		SagN lod.SF lod.SF Cor		SagN lod.SF lod.SF Coi		Pagh Tod.St Tod.St	Gagh fod.Si fod.Si Co
		ProtM ProtM		ProtM ProtM	-	ProtM ProtM		Proff\(\rightarrow\)	Protiv
		Gagi Gagi		6ag 6ag		6 00 6 00		9 9 9 9	000 000

FIG. 80B

Section 11	836 GGATGTA GGATGTA GGATGTA GGATGTA Section 12	912 CTACAAG CTACAAG CTACAAG	988 GCCAACC GCCAACC GCCAACC GCCAACC	1064 AGGGCGT AGGGCGT AGGGCGT AGGGCGT Section 15	ATGATG ATGATG ATGATG ATGATG
	(761) 761 770 780 800 810 820 836 836 CALLO TO	860 870 880 900 900 CTGGACATCCGCCAAGGAGCCCTTCCGCGACTACGTGGACCGCTTCTACAAG CTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGCGACTACGTGGACCGCTTCTACAAG CTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGCGACTACGTGGACCGCTTCTACAAG CTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGCGACTACGTGGACCGCTTCTACAAG CTGGACATCCGCCAGGGCCCCAAGGAGCCCTTCCGCGACTACGTGGACCGCTTCTACAAG	AGGCCAGCCAGGACGTGAAGAACTGGATGACCGAGACCCTGCTGGTGCAGAACGCCAACCAGCCAG	CTGCC	(1065) 1065 1070 1080 1090 1100 1110 1120 1130 1140 1140 1150 1140 1150 1150 1140 114
	820 ACAAGATA ACAAGATA ACAAGATA	OCTGGAC	970 CTGGTGC CTGGTGC CTGGTGC	1050 TGACCGC TGACCGC TGACCGC)))))))))))))))))))
	GCCTGA/ GCCTGA/ GCCTGA/ GCCTGA/	890 CGACTA(CGACTA(CGACTA(ACCCTG	1040 JAGATGA JAGATGA JAGATGA	1120 IGACGAAC IGACGAAC IGACGAAC
	ATCCTGG(ATCTGG(ATCCTGG(ATCTGG(ATCCTGG(ATCTGG(ATCCTGG(ATCTGG(ATCTGG(ATCTGG(ATCTGG(ATCTGG(ATCTGG	OCTTCCG CCTTCCG	960 SACCGAG SACCGAG SACCGAG	CTGGAGG CTGGAGG CTGGAGG CTGGAGG	GCCAGG GCCAGG GCCAGG GCCAGG
	800 TGGATCA TGGATCA TGGATCA	880 AGGAGCCC AGGAGCCC AGGAGCCC	950 ACTGGATO ACTGGATO ACTGGATO	1030 GCCACC GCCACC GCCACC GCCACC	SCGATGA SCGATGA SCGATGA
	AAGCGG CAAGCGG	870 seccca seccca seccca	9 TGAAGAA TGAAGAA TGAAGAA	1020 CCCCGCC CCCCGCC CCCCGCC	1100 GCCGAGG GCCGAGG GCCGAGG
	790 GATCTAC GATCTAC GATCTAC	CGCCAG CGCCAG CGCCAG	940 AGGACG AGGACG AGGACG	TCTCGG TTCTCGG TTCTCGG	1090 SGTGCTG SGTGCTG
	780 IGGGCGA IGGGCGA IGGGCGA	860 3GACATC 3GACATC 3GACATC GGACATC	NO GCCAGCC GCCAGCC GCCAGCC	1010 TGAAGGG TGAAGGG TGAAGGG) 900099 900099 900099
	TCCCCG				1080 SCCACAA SCCACAA SCCACAA
	770 CCCCCA CCCCCA CCCCCA	CACCAG	920 3060601 3060601 3060601	TGCAAG! TGCAAG! TGCAAG!	1070 GCCCCGG GCCCCGG GCCCCGG
	(761) 761 (761) ACAACC (761) ACAACC (761) ACAACC (761) ACAACC	(837) 837 850 (837) CAGCCCCACCAGCATC (837) CAGCCCCACCAGCATC (837) CAGCCCCACCAGCATC (837) CAGCCCCACCAGCATC	(913) 913 920 GagMod.SF2 (913) ACCCTGCGCGCTGAGC GagProtMod.SF2(GP1) (913) ACCCTGCGCGCTGAGC GagProtMod.SF2(GP2) (913) ACCCTGCGCGCTGAGC Consensus (913) ACCCTGCGCGCTGAGC	(989) 989 1000 GagMod.SF2 (989) CCGACTGCAAGACCATGAGProtMod.SF2(GP1) (989) CCGACTGCAAGACCATGAGACCATGAGACCATGAGACCATGAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCATGCAAGACCAATGCAAGACCAATGCAAGACCAATGAAGACCAATGCAAGACCAATGCAAGACCAATGCAAGACCAATGCAAGACCAATGCAAGACCAATGAAGACCAATGAAGACCAATGAAGACCAATGAAGACCAATGAAGACCAATGAAGACCAATGAAGACCAATGAAGACCAATGAAGAAGACCAATGAAGAAGACCAATGAAGAAGACCAATGAAGAAGAACAATGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	GagNod.SF2(1065) 1065 1070 1069 1070 1069 1070 1069 GagCGGCCCCGGCCACGGGCCACGGCCCCGGCCCCGGCCACGGCCCCGGCCCACGGCCCCCGGCCACGGCCCACGGCCCACGGCCCCCGGCCACGGCCCCCGGCCACGGCCCCCGGCCACGCCCCGGCCACGCCCCGGCCCACGCCCCGGCCACGCCCCCGGCCACGCCACGCCCCCGGCCACGCCCACGCCCACGCCCACGCCCCGGCCACACGCCCCCGGCCACACGCCCCCGGCCACACGCCCCCGGCCACACGCCCCCGGCCACACGCCCCCGGCCACACGCCCCCGGCCCACACACACACACACACACACACACACACACACACACA
	761 (761 (761 (761 (761 (761) st	(837 (837 (937 (837 (837) (837)	25 (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	(2) (38 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	(106) (106) (106) (2) (106) (106)
	GagMod.SF2 GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus	GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus	GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) GagProtMod.SF2(GP2)	GagMod.SF2 GagProtMod.SF2(GP1) GagProtMod.SF2(GP2) Consensus	JMod.S SF2(GF SF2(GF Sonsens
	Gag otMod.(otMod.(O	Gag otMod.	Gag otMod. otMod.	Gag otMod	Gag rotMod rotMod
	GagPrc	GagPr	GagPr	GagPr	Gagp Gagp

Alignment GagMod vs GP1_GP2

41) CAGCGCGCCAACTTCCGCAACCAGCGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGCCACCGCCAGGAAI) CAGCGCGGCAACTTCCGCAACGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGCCACCGCCAGGAAI) CAGCGCGGCAACTTCCGCAACCAGCAAGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGCCACCGCCAGGAAI) CAGCGCGGCAACTTCCGCAACCAGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGCCACACCGCCAGGAAI) CAGCGCGGCAACTTCCGCAACCAGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGCCACACGCCAAGGAAGACCGTCAAGTGCTTCAACTGCGGCAAGGAGGCCACACGCCAAGGAAGACCGTCAAAGTGCTTCAACTGCGGCAAGGAGGCCACACCGCCAAGGAAGACCGTCAAAGTGCTTCAACTGCGGCAAGGAGGCCACACCGCCAAGGAAGACCGTCAAAGTGCTTCAACTGCGGCAAGGAGGCCACACCGCCAAGGAAGACCGTCAAAGTGCTTCAACTGCGGCAAGGAGGCCACACCACCACCACGCAAGGAAGACCGCCAAGGAAGTGCTTCAACTTCCGCAAGGAAGCCCACACCACCACCACCAAGGAAGTGCTTCAACTTCAACTTCCGCAAGGAAGCCCACACGCAAGGAAGCCCACACCACCAC	1240 1280 1260 CAAGAAGGGCTGCTGCGCCCGCGCGCCCACCAGATGAAGGACTGCACCGAGCCAAGAAGGGCTGCTGCGCCGCGCGAGGGCCCCAAATGAAGAATGAAT	(1293) 1293 1300 1310 1320 1330 1340 1350 1350 1350 1360 GGGGGCGCGCCCGGGGAACTTCCTGCAGAGCCCCCGAGGAGCCGCCCCGAGGAGCCCCCGAGGAG	1390 1430 1400 1400 1420 1430 1430 1430 1430 1430 1430 1430 143	(1445) 1445 1450 1460 1470 1480 1490 1500 1500 1520 GagMod.SF2(1445) ACAAGGAACTGTACCCCTGACCTGCAACGCAACGCAACG
GagProtMod.SF2(GP1) CAGCGCGCCAACTTCCGGGProtMod.SF2(GP1)(1141) CAGCGCGGCAACTTCCGGGProtMod.SF2(GP2)(1141) CAGCGCGGCAACTTCCCGGGProtMod.SF2(GP2)(1141) CAGCGCGGCAACTTCC	GagMod.SF2(1217) 1217 GagMod.SF2(1217) ACTGCCGCGCCCCCGGGGProfMod.SF2(GP1)(1217) ACTGCCGCGCGCCCCCGGGGProfMod.SF2(GP2)(1217) ACTGCCGCGCCCCCGGCCCCCGGCCCCCCGGCCCCCCGGCCCC	(1293) 1293 1300 GagMod.SF2(1293) CCAGGCCAACTTCCTG GagProtMod.SF2(GP1)(1293) ACAGGCTAATTTTTA GagProtMod.SF2(GP2)(1293) ACAGGCTAATTTTTTA	(1369) 1369 agMod.SF2(1369) CCCACCGCCCC ad.SF2(GP1)(1369) CCMACMGCCCCC ad.SF2(GP2)(1369) CCMACMGCCCC Consensus(1369) CCMACMGCCCC	(1445) 1445 1450 cagMod.SF2(1445) ACAAGGAGCTGTACCC cod.SF2(GP1)(1445) ACAAGGAACTGTAACC consensus(1445) ACAAGGAACTGTAACC
GagProtMo GagProtMo	GagProtMc GagProtMc	GagProtMc GagProtMc	GagProtMc GagProtMc	GagProtM GagProtM GagProtM

FIG. 80D

(31)	(1521)	1530		1540	1550	1560	95	1570		1580	ן ק
GagMod.SF2(1510)	() () () () () () () () () () () () () (GOTCAAGGAA ACTCAAGGAA CTCAAGGA	SCGCTGCTCGA	CATPT	THE TOTAL CHECK CHACKACK COTT CONTROL OF THE CONTRO	GA GA AC	CCT GCT G	CAGGA CAAGA GA GA	APTGAAT APTGAAT	TGCC	A GATGAA CCECCCE CONGLESS CAAATGAA TTIFCC ACGA AA TGGA GA ATGAA TGCC GG AA TGGA
(156)	(1597) 1597	7	1610	1620	٠	1630	1640		1650	1660	
GagProtMod.SF2(1510)	10) 77) GG 77) A (77	CARABATGA CCARABATGA CC AA ATGAT	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ATTCGGG	GGGATCGGGGCTTCATCAAGGTGA	TCAAGGT	COCAGTACGACCAGAT	ACGAC	CAGAT (CC GT G	GCAGTACGACAGANAC TETALAAATETT TETAGGCAGTACGACCAGAT CC GT GA ATCTG GG
(16)	(1673) 1673	3 1680	1690	0	1700	1710		8	1730	0	1748
GagProtMod.SF2(GP1)(1673) CONCENTION GGC CONTINUED GAGProtMod.SF2(GP2)(1673) ACNTEN ACCTINIA GGT CONSENSUS(1673) CA AA GC AT GG	10) 73) CCA 73) ACA 73) CA	A TAAGGTATA	CGGCACC AGGTACA GG AC	TATTAGE	CACCENGENCECCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TACACOT AC CC	STGRACA STCRACA GT AACA	T AT G	AT AT GG G AA CTG	CCTCT TCTCT	TCACCCAGATC Section 24
71)	(1749) 1749		1760	1770	1780	0	1790	1800			1824
GagMod.SF2(1510)	49) CC 49) CC 49) CC 49) GC	CTGCACC TG	TGAACTTCCCCATCAGCC	CCATCAG	CCC AT	cacaceee cacacee cacaceee	GACACGTGCCCGTGAA GACACGGTGCCCGTGAAG	AAG T	TARGE GOOD GAAGGCC	GGGGATC	THE CONTRACT OF THE CONTRACT OF THE AND THE AND THE CONTRACT OF THE AND THE CONTRACT OF THE CO
(1825) 1825 1830 1847 GagMod.SF2(1510)	(25) 18/ (10) (25) AC (25) AC	(1825) 1825 1830 2(1510))(1825) ACSTCAACCAGI)(1825) ACSTCAACCAAI 3(1825) AGGTCAAGCA T	GGCC T	1847 GT & A GT & A							

FIG. 80E

TataminoSF162.opt

 $ATGGAGCCCGTGGACCCCGGCTGGAGCCCTGGAAGCACCCCGGCAGCCCAAGACCGCC\underline{TGC}ACCAACTGCTACTGCAAGAAGTGCTGCTTCCACTGCCAGGTGTGCTT\\CATCACCAAGGGCCTGGGCATCAGCTACGGCCGCAAGAAGCGCCGCCAGCGCCGC\\$

FIG. 81 (SEQ ID NO:89)

Tat_Cys22_SF162

MEPVDPRLEPWKHPGSQPKTAGTNCYCKKCCFHCQVCFITKGLGISYGRKKRRQRRRAPPDSE VHQVSLPKQPASQPQGDPTGPKESKKKVERETETDPVHZ

FIG. 82 (SEQ ID NO:90)

Atty Dkt No. 1621.002 2302-1621

COMBINED DECLARATION AND POWER OF ATTORNEY FOR UTILITY PATENT APPLICATION

AS A BELOW-NAMED INVENTOR, I HEREBY DECLARE THAT: My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if more than one name is listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION OF VIRUS-LIKE PARTICLES the specification of which

X is attached hereto was filed on

and assigned Serial No. and was amended on .

I HAVE REVIEWED AND UNDERSTAND THE CONTENTS OF THE ABOVE-IDENTIFIED SPECIFICATION, INCLUDING THE CLAIMS, AS AMENDED BY ANY AMENDMENT REFERRED TO ABOVE.

I acknowledge and understand that I am an individual who has a duty to disclose information which is material to the patentability of the claims of this application in accordance with Title 37, Code of Federal Regulations, §§ 1.56(a) and (b) which state:

(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is canceled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is canceled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by §§ 1.97(b)-(d) and 1.98. However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated

through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:

- (1) prior art cited in search reports of a foreign patent office in a counterpart application, and
- (2) the closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentably defines, to make sure that any material information contained therein is disclosed to the Office.
- (b) Under this section, information is material to patentability when it is not cumulative to information already of record or being made of record in the application, and
- (1) It establishes, by itself or in combination with other information, a prima facie case of unpatentability of a claim; or
 - (2) It refutes, or is inconsistent with, a position the applicant takes in:
 - (i) Opposing an argument of unpatentability relied on by the Office,

or

(ii) Asserting an argument of patentability.

A prima facie case of unpatentability is established when the information compels a conclusion that a claim is unpatentable under the preponderance of evidence, burden-of-proof standard, giving each term in the claim its broadest reasonable construction consistent with the specification, and before any consideration is given to evidence which may be submitted in an attempt to establish a contrary conclusion of patentability.

I do not know and do not believe this invention was ever known or used in the United States of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to said application. This invention was not in public use or on sale in the United States of America more than one year prior to this application. This invention has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on any application filed by me or my legal representatives or assigns more than six months prior to this application.

I hereby claim priority benefits under Title 35, United States Code § 119(e)(1) of any United States provisional application(s) for patent as indicated below and have also identified below any application for patent on this invention having a filing date before that of the application for patent on which priority is claimed:

Application No.	Date of Filing (day/month/year)	Priority <u>Claimed</u>
60/114,495	31 December 1998	Yes <u>X</u> No
60/168,471	01 December 1999	Yes <u>X</u> No

I hereby appoint the following attorneys and agents to prosecute that application and to transact all business in the Patent and Trademark Office connected therewith and to file, to prosecute and to transact all business in connection with all patent applications directed to the invention:

Lisa E. Alexander, Reg. No. 41,576 Robert P. Blackburn, Reg. No. 30,447 Anne S. Dollard, Reg. No. 43,935 Joseph H. Guth, Reg. No. 31,261 Alisa A. Harbin, Reg. No. 33,895 Charlene A. Launer, Reg. No. 33,035 David P. Lentini, Reg. No. 33,944 Kimberlin L. Morley, Reg. No. 35,391 Roberta L. Robins, Reg. No. 33,208 Dahna S. Pasternak, Reg. No. 41,411 Vandana Date, Reg. No. 38,675 Gary R. Fabian, Ph.D., Reg. No. 33,875

Address all correspondence to: Anne S. Dollard, Esq. at

CHIRON CORPORATION Intellectual Property - R440 P.O. Box 8097 Emeryville, CA 94662-8097.

Address all telephone calls to: Anne S. Dollard, Esq. at 510-923-2719.

This appointment, including the right to delegate this appointment, shall also apply to the same extent to any proceedings established by the Patent Cooperation Treaty.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Signature:	Date
Full Name of Inventor: Susan BARNETT	
Citizenship: US	
Residence: San Francisco, CA	
Post Office Address: c/o Chiron Corporation	, P.O. Box 8097, Emeryville, CA 94662-8097
Signature:	Date
Full Name of Inventor: Jan ZUR MEGEDE	
Citizenship: Germany	
Residence: San Francisco, CA	
Post Office Address: c/o Chiron Corporation	, P.O. Box 8097, Emeryville, CA 94662-8097

Signature:	Date
Full Name of Inventor: Indresh SRIVASTAVA	
Citizenship: India	
Residence: Benicia, CA	
Post Office Address: c/o Chiron Corporation, P.O. Bo	ox 8097, Emeryville, CA 94662-8097
Signature:	Date
Full Name of Inventor: Ying LIAN	
Citizenship: China	
Residence: Albany, CA	
Post Office Address: c/o Chiron Corporation, P.O. Bo	ox 8097, Emeryville, CA 94662-8097
Signature:	Date
Full Name of Inventor: Karin HARTOG	
Citizenship: Chile	
Residence: Piedmont, CA	
Post Office Address: c/o Chiron Corporation, P.O. Bo	ox 8097, Emeryville, CA 94662-8097
Signature:	Date
Full Name of Inventor: Hong LIU	
Citizenship: China	
Residence: Castro Valley, CA	
Post Office Address: c/o Chiron Corporation, P.O. Bo	ox 8097, Emeryville, CA 94662-8097
Signature:	Date
Full Name of Inventor: Catherine GREER	
Citizenship: US	
Residence: Oakland, CA	
Post Office Address: c/o Chiron Corporation, P.O. B	ox 8097, Emeryville, CA 94662-8097
Signature:	Date
Full Name of Inventor: Mark SELBY	
Citizenship: US	
Residence: Berkeley, CA	
Post Office Address: c/o Chiron Corporation, P.O. B	Sox 8097, Emeryville, CA 94662-8097
Signature:	Date
Full Name of Inventor: Christopher WALKER	
Citizenship: US	
Residence: Columbus, OH	
Post Office Address: c/o Chiron Corporation, P.O. E	30x 8097, Emeryville, CA 94662-8097

SEQUENCE LISTING

```
<110> BARNETT, Susan
     ZUR MEGEDE, Jan
     SRIVASTAVA, Indresh
     LIAN, Ying
     HARTOG, Karin
     LIU, Hong
     GREER, Catherine
      SELBY, Mark
     WALKER, Christopher
<120> IMPROVED EXPRESSION OF HIV POLYPEPTIDES AND PRODUCTION
      OF VIRUS-LIKE PARTICLES
<130> 1621.002
<140>
<141>
<160> 90
<170> PatentIn Ver. 2.0
<210> 1
<211> 1509
<212> DNA
<213> Human immunodeficiency virus
<400> 1
atgggtgcga gagcgtcggt attaagcggg ggagaattag ataaatggga aaaaattcgg 60
ttaaggccag ggggaaagaa aaaatataag ttaaaacata tagtatgggc aagcagggag 120
ctagaacgat tcgcagtcaa tcctggcctg ttagaaacat cagaaggctg cagacaaata 180
ttgggacagc tacagccatc ccttcagaca ggatcagaag aacttagatc attatataat 240
acagtagcaa ccctctattg tgtacatcaa aggatagatg taaaagacac caaggaagct 300
ttagagaaga tagaggaaga gcaaaacaaa agtaagaaaa aggcacagca agcagcagct 360
gcagctggca caggaaacag cagccaggtc agccaaaatt accctatagt gcagaaccta 420
caggggcaaa tggtacatca ggccatatca cctagaactt taaatgcatg ggtaaaagta 480
gtagaagaaa aggctttcag cccagaagta atacccatgt tttcagcatt atcagaagga 540
gccaccccac aagatttaaa caccatgcta aacacagtgg ggggacatca agcagccatg 600
caaatgttaa aagagactat caatgaggaa gctgcagaat gggatagagt gcatccagtg 660
catgcagggc ctattgcacc aggccaaatg agagaaccaa ggggaagtga catagcagga 720
actactaqta cccttcagga acaaatagga tggatgacaa ataatccacc tatcccagta 780
ggagaaatct ataaaagatg gataatcctg ggattaaata aaatagtaag aatgtatagc 840
cctaccagca ttctggacat aagacaagga ccaaaggaac cctttagaga ttatgtagac 900
cggttctata aaactctaag agccgaacaa gcttcacagg atgtaaaaaa ttggatgaca 960
gaaaccttgt tggtccaaaa tgcaaaccca gattgtaaga ctattttaaa agcattggga 1020
ccagcagcta cactagaaga aatgatgaca gcatgtcagg gagtgggggg acccggccat 1080
aaagcaagag ttttggctga agccatgagc caagtaacaa atccagctaa cataatgatg 1140
cagagaggca attttaggaa ccaaagaaag actgttaagt gtttcaattg tggcaaagaa 1200
gggcacatag ccaaaaattg cagggcccct aggaaaaagg gctgttggag atgtggaagg 1260
gaaggacacc aaatgaaaga ttgcactgag agacaggcta attttttagg gaagatctgg 1320
```

ccttcctaca agggaaggcc agggaatttt cttcagagca gaccagagcc aacagcccca 1380 ccagaagaga gcttcaggtt tggggaggag aaaacaactc cctctcagaa gcaggagccg 1440

```
atagacaagg aactgtatcc tttaacttcc ctcagatcac tctttggcaa cgacccctcg 1500
                                                                   1509
tcacaataa
<210> 2
<211> 1845
<212> DNA
<213> Human immunodeficiency virus
<400> 2
atgggtgcga gagcgtcggt attaagcggg ggagaattag ataaatggga aaaaattcgg 60
ttaaqqccaq qqqqaaaqaa aaaatataaq ttaaaacata tagtatgggc aagcagggag 120.
ctagaacgat tcgcagtcaa tcctggcctg ttagaaacat cagaaggctg cagacaaata 180
ttgggacage tacagecate cetteagaca ggateagaag aaettagate attatataat 240
acagtagcaa ccctctattg tgtacatcaa aggatagatg taaaagacac caaggaagct 300
ttagagaaga tagaggaaga gcaaaacaaa agtaagaaaa aggcacagca agcagcagct 360
gcagctggca caggaaacag cagccaggtc agccaaaatt accctatagt gcagaaccta 420
caggggcaaa tggtacatca ggccatatca cctagaactt taaatgcatg ggtaaaagta 480
gtagaagaaa aggctttcag cccagaagta atacccatgt tttcagcatt atcagaagga 540
gccaccccac aagatttaaa caccatgcta aacacagtgg ggggacatca agcagccatg 600
caaatqttaa aaqaqactat caatqaqqaa gctgcagaat gggatagagt gcatccagtg 660
catqcaqqqc ctattqcacc aqqccaaatg agagaaccaa ggggaagtga catagcagga 720
actactaqta cccttcaqqa acaaataqqa tqqatqacaa ataatccacc tatcccaqta 780
qqaqaaatct ataaaaqatq qataatcctg ggattaaata aaatagtaag aatgtatagc 840
cctaccaqca ttctqqacat aaqacaaqqa ccaaaqqaac cctttagaga ttatgtagac 900
cggttctata aaactctaag agccgaacaa gcttcacagg atgtaaaaaa ttggatgaca 960
gaaaccttgt tggtccaaaa tgcaaaccca gattgtaaga ctattttaaa agcattggga 1020
ccaqcaqcta cactaqaaqa aatqatqaca qcatqtcaqq gagtgggggg acccggccat 1080
aaagcaagag ttttggctga agccatgagc caagtaacaa atccagctaa cataatgatg 1140
cagagaggca attttaggaa ccaaagaaag actgttaagt gtttcaattg tggcaaagaa 1200
qqqcacatag ccaaaaattg cagggcccct aggaaaaagg gctgttggag atgtggaagg 1260
gaaggacacc aaatgaaaga ttgcactgag agacaggcta attttttagg gaagatctgg 1320
ccttcctaca agggaaggcc agggaatttt cttcagagca gaccagagcc aacagcccca 1380
ccagaagaga gcttcaggtt tggggaggag aaaacaactc cctctcagaa gcaggagccg 1440
·ataqacaaqq aactqtatcc tttaacttcc ctcagatcac tctttggcaa cgacccctcg 1500
tcacaataag gatagggggg caactaaagg aagctctatt agatacagga gcagatgata 1560
cagtattaga agaaatgaat ttgccaggaa aatggaaacc aaaaatgata gggggaattg 1620
qaqqttttat caaaqtaaqa caqtacqatc agatacctgt agaaatctgt ggacataaag 1680
ctataqqtac aqtattaqta qqacctacac ctgtcaacat aattggaaga aatctgttga 1740
ctcagattgg ttgtacttta aatttcccca ttagtcctat tgaaactgta ccagtaaaat 1800
taaagccagg aatggatggc ccaaaagtta agcaatggcc attga
                                                                   1845
 <210> 3
 <211> 4313
 <212> DNA
 <213> Human immunodeficiency virus
 <400> 3
 atgggtgcga gagcgtcggt attaagcggg ggagaattag ataaatggga aaaaattcgg 60
 ttaaggccag ggggaaagaa aaaatataag ttaaaacata tagtatgggc aagcagggag 120
 ctagaacgat tegcagteaa teetggeetg ttagaaacat cagaaggetg cagacaaata 180
 ttgggacagc tacagccatc ccttcagaca ggatcagaag aacttagatc attatataat 240
 acagtagcaa ccctctattg tgtacatcaa aggatagatg taaaagacac caaggaagct 300
 ttaqaqaaqa taqaqqaaqa qcaaaacaaa aqtaaqaaaa aqqcacaqca aqcaqcaqct 360
 gcagctqqca caqqaaacaq caqccaqqtc aqccaaaatt accctataqt qcaqaaccta 420
```

caggggcaaa tggtacatca ggccatatca cctagaactt taaatgcatg ggtaaaagta 480 gtagaagaaa aggettteag eecagaagta atacceatgt ttteageatt ateagaagga 540 gccaccccac aagatttaaa caccatgcta aacacagtgg ggggacatca agcagccatg 600 caaatgttaa aagagactat caatgaggaa gctgcagaat gggatagagt gcatccagtg 660 catgcagggc ctattgcacc aggccaaatg agagaaccaa ggggaagtga catagcagga 720 actactagta cccttcagga acaaatagga tggatgacaa ataatccacc tatcccagta 780 ggagaaatct ataaaagatg gataatcctg ggattaaata aaatagtaag aatgtatagc 840 cctaccagca ttctggacat aagacaagga ccaaaggaac cctttagaga ttatgtagac 900 cggttctata aaactctaag agccgaacaa gcttcacagg atgtaaaaaa ttggatgaca 960 gaaaccttgt tggtccaaaa tgcaaaccca gattgtaaga ctattttaaa agcattggga 1020 ccagcagcta cactagaaga aatgatgaca gcatgtcagg gagtggggggg acccggccat 1080 aaagcaagag ttttggctga agccatgagc caagtaacaa atccagctaa cataatgatg 1140 cagagaggca attttaggaa ccaaagaaag actgttaagt gtttcaattg tggcaaagaa 1200 gggcacatag ccaaaaattg cagggcccct aggaaaaagg gctgttggag atgtggaagg 1260 gaaggacacc aaatgaaaga ttgcactgag agacaggcta attttttagg gaagatctgg 1320 ccttcctaca agggaaggcc agggaatttt cttcagagca gaccagagcc aacagcccca 1380 ccagaagaga gcttcaggtt tggggaggag aaaacaactc cctctcagaa gcaggagccg 1440 atagacaagg aactgtatcc tttaacttcc ctcagatcac tctttggcaa cgaccctcg 1500 tcacaataag gatagggggg caactaaagg aagctctatt agatacagga gcagatgata 1560 cagtattaga agaaatgaat ttgccaggaa aatggaaacc aaaaatgata gggggaattg 1620 gaggttttat caaagtaaga cagtacgatc agatacctgt agaaatctgt ggacataaag 1680 ctataggtac agtattagta ggacctacac ctgtcaacat aattggaaga aatctgttga 1740 ctcagattgg ttgtacttta aatttcccca ttagtcctat tgaaactgta ccagtaaaat 1800 taaagccagg aatggatggc ccaaaagtta agcaatggcc attgacagaa gaaaaaataa 1860 aagcattagt agagatatgt acagaaatgg aaaaggaagg gaaaatttca aaaattgggc 1920 ctgaaaatcc atacaatact ccagtatttg ctataaagaa aaaagacagt actaaatgga 1980 gaaaactagt agatttcaga gaacttaata aaagaactca agacttctgg gaagttcagt 2040 taggaatacc acaccccgca gggttaaaaa agaaaaaatc agtaacagta ttggatgtgg 2100 gtgatgcata cttttcagtt cccttagata aagactttag aaagtatact gcatttacca 2160 tacctagtat aaacaatgag acaccaggga ttagatatca gtacaatgtg ctgccacagg 2220 gatggaaagg atcaccagca atattccaaa gtagcatgac aaaaatctta gagcctttta 2280 gaaaacagaa tccagacata gttatctatc aatacatgga tgatttgtat gtaggatctg 2340 acttagaaat agggcagcat agaacaaaaa tagaggaact gagacagcat ctgttgaggt 2400 ggggatttac cacaccagac aaaaaacatc agaaagaacc tccattcctt tggatgggtt 2460 atgaactcca tcctgataaa tggacagtac agcctataat gctgccagaa aaagacagct 2520 ggactgtcaa tgacatacag aagttagtgg gaaaattgaa ttgggcaagt cagatttatg 2580 cagggattaa agtaaagcag ttatgtaaac tccttagagg aaccaaagca ctaacagaag 2640 taataccact aacagaagaa gcagagctag aactggcaga aaacagggag attctaaaag 2700 aaccagtaca tgaagtatat tatgacccat caaaagactt agtagcagaa atacagaagc 2760 aggggcaagg ccaatggaca tatcaaattt atcaagagcc atttaaaaat ctgaaaacag 2820 gaaagtatgc aaggatgagg ggtgcccaca ctaatgatgt aaaacagtta acagaggcag 2880 tgcaaaaagt atccacagaa agcatagtaa tatggggaaa gattcctaaa tttaaactac 2940 ccatacaaaa ggaaacatgg gaagcatggt ggatggagta ttggcaagct acctggattc 3000 ctgagtggga gtttgtcaat accctccct tagtgaaatt atggtaccag ttagagaaag 3060 aacccatagt aggagcagaa actttctatg tagatggggc agctaatagg gagactaaat 3120 taggaaaagc aggatatgtt actgacagag gaagacaaaa agttgtctcc atagctgaca 3180 caacaaatca gaagactgaa ttacaagcaa ttcatctagc tttgcaggat tcgggattag 3240 aagtaaacat agtaacagac tcacaatatg cattaggaat cattcaagca caaccagata 3300 agagtgaatc agagttagtc agtcaaataa tagagcagtt aataaaaaag gaaaaggtct 3360 acctggcatg ggtaccagca cacaaaggaa ttggaggaaa tgaacaagta gataaattag 3420 tcagtgctgg aatcaggaaa gtactatttt tgaatggaat agataaggcc caagaagaac 3480 atgagaaata tcacagtaat tggagagcaa tggctagtga ttttaacctg ccacctgtag 3540 tagcaaaaga aatagtagcc agctgtgata aatgtcagct aaaaggagaa gccatgcatg 3600 gacaagtaga ctgtagtcca ggaatatggc aactagattg tacacatcta gaaggaaaaa 3660

<213> Artificial Sequence

```
ttatcctggt agcagttcat gtagccagtg gatatataga agcagaagtt attccagcag 3720
agacagggca ggaaacagca tattttctct taaaattagc aggaagatgg ccagtaaaaa 3780
caatacatac agacaatggc agcaatttca ccagtactac ggttaaggcc gcctgttggt 3840
gggcagggat caagcaggaa tttggcattc cctacaatcc ccaaagtcaa ggagtagtag 3900
aatctatgaa taatgaatta aagaaaatta taggacaggt aagagatcag gctgaacacc 3960
ttaagacagc agtacaaatg gcagtattca tccacaattt taaaagaaaa ggggggattg 4020
ggggatacag tgcaggggaa agaatagtag acataatagc aacagacata caaactaaaq 4080
aactacaaaa gcaaattaca aaaattcaaa attttcqqqt ttattacaqq qacaacaaaq 4140
atcccctttg gaaaggacca gcaaagcttc tctggaaagg tgaaggggca gtagtaatac 4200
aagataatag tgacataaaa gtagtgccaa gaagaaaagc aaaaatcatt agggattatg 4260
gaaaacagat ggcaggtgat gattgtgtgg caagtagaca ggatgaggat tag
<210> 4
<211> 1515
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
     HIV-Gaq
<400> 4
gccaccatgg gcgcccgcgc cagcgtgctg agcggcggcg agctggacaa gtgggagaag 60
atcogcctgc gccccggcgg caagaagaag tacaagctga agcacatcgt gtgggccagc 120
cgcgagctgg agcgcttcgc cgtgaacccc ggcctgctgg agaccagcga gggctgccgc 180
cagatectgg gecagetgea geccageetg cagaceggea gegaggaget gegeageetg 240
tacaacaccg tggccaccct gtactgcgtg caccagcgca tcgacgtcaa ggacaccaag 300
gaggccctgg agaagatcga ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360
gccgccgccg ccggcaccgg caacagcagc caggtgagcc agaactaccc catcgtgcag 420
aacctgcagg gccagatggt gcaccaggcc atcagccccc gcaccctgaa cgcctgggtg 480
aaggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgccctgagc 540
gagggcgcca cccccagga cctgaacacg atgttgaaca ccgtgggcgg ccaccaggcc 600
gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtggga ccgcgtgcac 660
cccgtgcacg ccggccccat cgccccggc cagatgcgcg agccccgcgg cagcgacatc 720
geeggeacea ceageaceet geaggageag ateggetgga tgaccaacaa ceceeceate 780
cccgtgggcg agatctacaa gcggtggatc atcctgggcc tgaacaagat cgtqcqqatq 840
tacagececa ecageatect ggacateege cagggececa aggagecett eegegaetac 900
gtggaccgct tctacaagac cctgcgcgct gagcaggcca gccaggacgt gaagaactgg 960
atgaccgaga ccctgctggt gcagaacgcc aaccccgact gcaagaccat cctgaaggct 1020
cteggeeceg eggeeacett ggaggagatg atgacegeet geeagggegt gggegeece 1080
ggccacaagg cccgcgtgct ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140
atgatgcage geggeaactt cegeaaceag eggaagaceg teaagtgett caactgegge 1200
aaggagggcc acacegecag gaactgeegc geeeceegca agaagggetg etggegetge 1260
ggccgcgagg gccaccagat gaaggactgc accgagcgcc aggccaactt cctgggcaag 1320
atctggccca gctacaaggg ccgcccggc aacttcctgc agagccgccc cgagcccacc 1380
gcccccccg aggagagett ccgcttcggc gaggagaaga ccacccccag ccagaagcag 1440
gagcccatcg acaaggagct gtaccccctg accagcctgc gcagcctgtt cggcaacgac 1500
cccagcagcc agtaa
                                                                  1515
<210> 5
<211> 1853
<212> DNA
```

```
<220>
<223> Description of Artificial Sequence: synthetic
      HIV-Gag-protease
<400> 5
gccaccatgg gcgcccgcgc cagcgtgctg agcggcggcg agctggacaa gtgggagaag 60
atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatcgt gtgggccagc 120
cgcgagctgg agcgcttcgc cgtgaacccc ggcctgctgg agaccagcga gggctqccqc 180
cagatectgg gecagetgea geccageetg cagaceggea gegaggaget gegcageetg 240
tacaacaccg tggccaccct gtactgcgtg caccagcgca tcgacgtcaa ggacaccaag 300
gaggccctgg agaagatcga ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360:
gccgccgccg ccggcaccgg caacagcagc caggtgagcc agaactaccc catcgtgcag 420
aacctgcagg gccagatggt gcaccaggcc atcagccccc gcaccctgaa cgcctgggtg 480
aaggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgccctgagc 540
gagggcgcca ccccccagga cctgaacacg atgttgaaca ccgtgggcgg ccaccaggcc 600
gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtggga ccgcqtqcac 660
eccgtgcacg ceggeccat egecceegge cagatgegeg ageccegegg cagegacate 720
gccggcacca ccagcaccct gcaggagcag atcggctgga tgaccaacaa cccccccatc 780
cccgtgggcg agatctacaa gcggtggatc atcctgggcc tgaacaagat cgtgcggatg 840
tacagececa ecageatect ggacateege cagggeecea aggagecett eegegaetae 900
gtggaccgct tctacaagac cctgcgcgct gagcaggcca gccaggacgt gaagaactgg 960
atgaccgaga ccctgctggt gcagaacgcc aaccccgact gcaagaccat cctgaaggct 1020
ctcggccccg cggccaccct ggaggagatg atgaccgcct gccagggcgt gggcggcccc 1080
ggccacaagg cccgcgtgct ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140
atgatgcagc gcggcaactt ccgcaaccag cggaagaccg tcaagtgctt caactgcqqc 1200
aaggagggcc acaccgccag gaactgccgc gcccccgca agaagggctg ctggcgctgc 1260
ggccgcgaag gacaccaaat gaaagattgc actgagagac aggctaattt tttagggaag 1320
atctggcctt cctacaaggg aaggccaggg aattttcttc agagcagacc agagccaaca 1380
gccccaccag aagagagctt caggtttggg gaggagaaaa caactccctc tcagaagcag 1440
gagccgatag acaaggaact gtatccttta acttccctca gatcactctt tggcaacgac 1500
ccctcgtcac agtaaggatc ggcggccagc tcaaggaggc gctgctcgac accggcgccg 1560
acgacaccgt gctggaggag atgaacctgc ccggcaagtg gaagcccaag atgatcggcg 1620
ggatcggggg cttcatcaag gtgcggcagt acgaccagat ccccgtggag atctgcggcc 1680
acaaggccat cggcaccgtg ctggtgggcc ccacccccgt gaacatcatc ggccgcaacc 1740
tgctgaccca gatcggctgc accctgaact tccccatcag ccccatcgag acggtgcccg 1800
tgaagctgaa gccggggatg gacggcccca aggtcaagca gtggcccctg taa
<210> 6
<211> 4319
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      HIV-Gag-polymerase
<400> 6
gccaccatgg gcgcccgcgc cagcgtgctg agcggcggcg agctggacaa gtgggagaag 60
atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatcgt gtgggccagc 120
cgcgagctgg agcgcttcgc cgtgaacccc ggcctgctgg agaccagcga gggctgccgc 180
cagatectgg gecagetgea gecageetg cagaceggea gegaggaget gegeageetg 240
tacaacaccg tggccaccct gtactgcgtg caccagcgca tcgacgtcaa ggacaccaag 300
gaggccctgg agaagatcga ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360
gccgccgccg ccggcaccgg caacagcagc caggtgagcc agaactaccc catcgtgcag 420
```

aacctgcagg gccagatggt gcaccaggcc atcagccccc gcaccctgaa cgcctgggtg 480 aaggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgccctgagc 540 gagggcgcca ccccccagga cctgaacacg atgttgaaca ccgtgggcgg ccaccaggcc 600 gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtggga ccgcgtgcac 660 cccgtgcacg ccggccccat cgcccccggc cagatgcgcg agccccgcgg cagcgacatc 720 gccggcacca ccagcaccct gcaggagcag atcggctgga tgaccaacaa cccccccatc 780 cccgtgggcg agatctacaa gcggtggatc atcctgggcc tgaacaagat cqtqcqqatq 840 tacagececa ecageatect ggacateege cagggececa aggagecett eegegaetae 900 gtggaccgct tctacaagac cctgcgcgct gagcaggcca gccaggacgt gaagaactgg 960 atgaccgaga ccctgctggt gcagaacgcc aaccccgact gcaagaccat cctgaaggct 1020 ctcggccccg cggccaccct ggaggagatg atgaccgcct gccagggcgt gggcggcccc 1080 ggccacaagg cccgcgtgct ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140 atgatgcagc gcggcaactt ccgcaaccag cggaagaccg tcaagtgctt caactgcggc 1200 aaggagggcc acaccgccag gaactgccgc gcccccgca agaagggctg ctggcgctgc 1260 ggccgcgaag gacaccaaat gaaagattgc actgagagac aggctaattt tttagggaag 1320 atctggcctt cctacaaggg aaggccaggg aattttcttc agagcagacc agagccaaca 1380 gccccaccag aagagagctt caggtttggg gaggagaaaa caactccctc tcagaagcag 1440 gagccgatag acaaggaact gtatccttta acttccctca gatcactctt tggcaacgac 1500 ccctcgtcac agtaaggatc ggcggccagc tcaaggaggc gctgctcgac accggcgccg 1560 acgacaccgt gctggaggag atgaacctgc ccggcaagtg gaagcccaag atgatcggcg 1620 ggatcggggg cttcatcaag gtgcggcagt acgaccagat ccccgtggag atctgcggcc 1680 acaaggccat cggcaccgtg ctggtgggcc ccacccccgt gaacatcatc ggccgcaacc 1740 tgctgaccca gatcggctgc accetgaact tececateag ecceategag aeggtgeeeg 1800 tgaagctgaa gccggggatg gacggcccca aggtcaagca gtggcccctg accgaggaga 1860 agatcaaggc cctggtggag atctgcaccg agatggagaa ggagggcaag atcagcaaga 1920 teggeecega gaaceeetae aacaeeeeg tgttegeeat caagaagaag gacageacea 1980 agtggcgcaa gctggtggac ttccgcgagc tgaacaagcg cacccaggac ttctgggagg 2040 tgcagctggg catcccccac cccgccggcc tgaagaagaa gaagagcgtg accgtgctgg 2100 acgtgggcga cgcctacttc agcgtgcccc tggacaagga cttccgcaag tacaccgcct 2160 tcaccatccc cagcatcaac aacgagaccc ccggcatccg ctaccagtac aacgtgctgc 2220 cccagggctg gaagggcagc cccgccatct tccagagcag catgaccaag atcctggagc 2280 ccttccgcaa gcagaacccc gacatcgtga tctaccagta catggacgac ctgtacgtgg 2340 gcagcgacct ggagatcggc cagcaccgca ccaagatcga ggagctgcgc cagcacctgc 2400 tgcgctgggg cttcaccacc cccgacaaga agcaccagaa ggagcccccc ttcctgtgga 2460 tgggctacga gctgcacccc gacaagtgga ccgtgcagcc catcatgctg cccgagaagg 2520 acagetggae egtgaaegae atecagaage tggtgggeaa getgaaetgg geeageeaga 2580 tctacgccgg catcaaggtg aagcagctgt gcaagctgct gcgcggcacc aaggccctga 2640 ccgaggtgat ccccctgacc gaggaggccg agctggagct ggccgagaac cgcgagatcc 2700 tgaaggagee egtgeaegag gtgtaetaeg acceeageaa ggaeetggtg geegagatee 2760 agaagcaggg ccagggccag tggacctacc agatctacca ggagcccttc aagaacctga 2820 agaccggcaa gtacgcccgc atgcgcggcg cccacaccaa cgacgtgaag cagctgaccg 2880 aggccgtgca gaaggtgagc accgagagca tcgtgatctg gggcaagatc cccaagttca 2940 agctgcccat ccagaaggag acctgggagg cctggtggat ggagtactgg caggccacct 3000 ggatccccga gtgggagttc gtgaacaccc ccccctggt gaagctgtgg taccagctgg 3060 agaaggagcc catcgtgggc gccgagacct tctacgtgga cggcgccgcc aaccgcgaga 3120 ccaagctggg caaggccggc tacgtgaccg accgcggccg ccagaaggtg gtgagcatcg 3180 ccgacaccac caaccagaag accgagctgc aggccatcca cctggccctg caggacagcg 3240 gcctggaggt gaacatcgtg accgacagcc agtacgccct gggcatcatc caggcccagc 3300 ccgacaagag cgagagcgag ctggtgagcc agatcatcga gcagctgatc aagaaggaga 3360 aggtgtacct ggcctgggtg cccgcccaca agggcatcgg cggcaacgag caqqtqqaca 3420 agctggtgag cgccggcatc cgcaaggtgc tgttcctgaa cggcatcgac aaggcccagg 3480 aggagcacga gaagtaccac agcaactggc gcgccatggc cagcgacttc aacctgcccc 3540 ccgtggtggc caaggagatc gtggccagct gcgacaagtg ccagctgaag gqcqaqqcca 3600 tgcacggcca ggtggactgc agccccggca tctggcagct ggactgcacc cacctggagg 3660

```
gcaagatcat cctggtggcc gtgcacgtgg ccagcggcta catcgaggcc gaggtgatcc 3720
ccgccgagac cggccaggag accgcctact tcctgctgaa gctggccggc cgctggcccg 3780
tgaagaccat ccacaccgac aacggcagca acttcaccag caccaccgtg aaggccgcct 3840
gctggtgggc cggcatcaag caggagttcg gcatccccta caacccccag agccagggcg 3900
tggtggagag catgaacaac gagctgaaga agatcatcgg ccaggtgcgc gaccaggccg 3960
agcacctgaa gaccgccgtg cagatggccg tgttcatcca caacttcaag cgcaagggcg 4020
gcateggegg ctacagegee ggegagegea tegtggaeat categeeace gacatecaga 4080
ccaaggaget geagaageag ateaceaaga teeagaaett eegegtgtae taeegegaea 4140
acaaggaccc cctgtggaag ggccccgcca agctgctgtg gaagggcgag ggcgccgtgg 4200
tgatccagga caacagcgac atcaaggtgg tgccccgccg caaggccaag atcatccgcg 4260
actacggcaa gcagatggcc ggcgacgact gcgtggccag ccgccaggac gaggactag 4319
<210> 7
<211> 2031
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      HIV-Gag/HCV-core fusion polypeptide
<400> 7
gccaccatgg gcgcccgcgc cagcgtgctg agcggcggcg agctggacaa gtgggagaag 60
atcogoctgo gccccggcgg caagaagaag tacaagctga agcacatcgt gtgggccagc 120
egegagetgg agegettege egtgaacece ggeetgetgg agaceagega gggetgeege 180
cagatectgg gecagetgea geccageetg cagaceggea gegaggaget gegeageetg 240
tacaacaccg tggccaccct gtactgcgtg caccagegca tcgacgtcaa ggacaccaaq 300
gaggccctgg agaagatcga ggaggagcag aacaagtcca agaagaaggc ccagcaggcc 360
gccgccgccg ccggcaccgg caacagcagc caggtgagcc agaactaccc catcgtgcag 420
aacctgcagg gccagatggt gcaccaggcc atcagccccc gcaccctgaa cgcctgggtg 480
aaggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgccctqaqc 540
gagggcgcca cccccagga cctgaacacg atgttgaaca ccgtgggcgg ccaccaggcc 600
gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtggga ccgcgtgcac 660
cccgtgcacg ccggccccat cgccccggc cagatgcgcg agcccgcgg cagcgacatc 720
gccggcacca ccagcaccct gcaggagcag atcggctgga tgaccaacaa cccccccatc 780
cccgtgggcg agatctacaa gcggtggatc atcctgggcc tgaacaagat cgtgcggatg 840
tacagececa ecageatect ggacateege cagggececa aggagecett ecgegactae 900
gtggaccgct tctacaagac cctgcgcgct gagcaggcca gccaggacgt gaagaactgg 960
atgaccgaga ccctgctggt gcagaacgcc aaccccgact gcaagaccat cctgaaggct 1020
ctcggccccg cggccaccct ggaggagatg atgaccgcct gccagggcgt gggcggcccc 1080
ggccacaagg cccgcgtgct ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140
atgatgcagc gcggcaactt ccgcaaccag cggaagaccg tcaagtgctt caactgcggc 1200
aaggagggcc acacegecag gaactgeege geeeceegea agaagggetg etggegetge 1260
ggccgcgagg gccaccagat gaaggactgc accgagcgcc aggccaactt cctgggcaag 1320
atctggccca gctacaaggg ccgcccggc aacttcctgc agagccgccc cgagcccacc 1380
gcccccccg aggagagctt ccgcttcggc gaggagaaga ccaccccag ccagaagcag 1440
gagcccatcg acaaggagct gtaccccctg accagcctgc gcagcctgtt cggcaacgac 1500
cccagcagcc agtcgacgaa tcctaaacct caaagaaaaa acaaacgtaa caccaaccgt 1560
cgcccacagg acgtcaagtt cccgggtggc ggtcagatcg ttggtggagt ttacttgttg 1620
ccgcgcaggg gccctagatt gggtgtgcgc gcgacgagaa agacttccga gcggtcgcaa 1680
cetegaggta gaegteagee tateeecaag getegtegge eegagggeag gaeetggget 1740
cagcccgggt acccttggcc cctctatggc aatgagggct gcgggtgggc gggatggctc 1800
ctgtctcccc gtggctctcg gcctagctgg ggccccacag acccccggcg taggtcgcgc 1860
aatttgggta aggtcatcga tacccttacg tgcggcttcg ccgacctcat ggggtacata 1920
```

<220>

```
ccgctcgtcg gcgcccctct tggaggcgct gccagggccc tggcgcatgg cgtccgggtt 1980
ctggaagacg gcgtgaacta tgcaacaggg aaccttcctg gttgctctta g
<210> 8
<211> 2025
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
     HIV-Gag/HCV-Core fusion polypeptide
<400> 8
atgggtgcga gagcgtcggt attaagcggg ggagaattag ataaatggga aaaaattcgg 60
ttaaqqccaq qqqqaaaqaa aaaatataaq ttaaaacata taqtatqqqc aaqcaqqqaq 120
ctagaacgat tcgcagtcaa tcctggcctg ttagaaacat cagaaggctg cagacaaata 180
ttgggacagc tacagccatc ccttcagaca ggatcagaag aacttagatc attataat 240
acaqtaqcaa ccctctattg tqtacatcaa aqqataqatq taaaaqacac caaqqaaqct 300
ttagagaaga tagaggaaga gcaaaacaaa agtaagaaaa aggcacagca agcagcagct 360
gcagctggca caggaaacag cagccaggtc agccaaaatt accctatagt gcagaaccta 420
caggggcaaa tggtacatca ggccatatca cctagaactt taaatgcatg ggtaaaagta 480
gtagaagaaa aggctttcag cccagaagta atacccatgt tttcagcatt atcagaagga 540
gccaccccac aagatttaaa caccatgcta aacacagtgg ggggacatca agcagccatg 600
caaatgttaa aagagactat caatgaggaa gctgcagaat gggatagagt gcatccagtg 660
catgcagggc ctattgcacc aggccaaatg agagaaccaa ggggaagtga catagcagga 720
actactagta cccttcagga acaaatagga tggatgacaa ataatccacc tatcccagta 780
ggagaaatct ataaaagatg gataatcctg ggattaaata aaatagtaag aatgtatagc 840
cctaccagca ttctggacat aagacaagga ccaaaggaac cctttagaga ttatgtagac 900
cggttctata aaactctaag agccgaacaa gcttcacagg atgtaaaaaa ttggatgaca 960
gaaaccttgt tggtccaaaa tgcaaaccca gattgtaaga ctattttaaa agcattggga 1020
ccagcagcta cactagaaga aatgatgaca gcatgtcagg gagtgggggg acccggccat 1080
aaagcaagag ttttggctga agccatgagc caagtaacaa atccagctaa cataatgatg 1140
cagagaggca attttaggaa ccaaagaaag actgttaagt gtttcaattg tggcaaagaa 1200
gggcacatag ccaaaaattg cagggccct aggaaaaagg gctgttggag atgtggaagg 1260
gaaggacacc aaatgaaaga ttgcactgag agacaggcta attttttagg gaagatctgg 1320
ccttcctaca agggaaggcc agggaatttt cttcagagca gaccagagcc aacagcccca 1380
ccagaagaga gcttcaggtt tggggaggag aaaacaactc cctctcagaa gcaggagccg 1440
atagacaagg aactgtatcc tttaacttcc ctcagatcac tctttggcaa cgacccctcg 1500
tcacagtcga cgaatcctaa acctcaaaga aaaaacaaac gtaacaccaa ccgtcgccca 1560
caggacgtca agttcccggg tggcggtcag atcgttggtg gagtttactt gttgccqcqc 1620
aggggcccta gattgggtgt gcgcgcqacq agaaaqactt ccqaqcqqtc qcaacctcqa 1680
ggtagacgtc agcctatccc caaggctcgt cggcccgagg gcaggacctg ggctcagccc 1740
gggtaccett ggeceeteta tggcaatgag ggetgegggt gggegggatg geteetgtet 1800
ccccgtggct ctcggcctag ctggggccc acagacccc ggcgtaggtc gcgcaatttq 1860
ggtaaggtca tcgataccct tacgtgcggc ttcgccgacc tcatggggta cataccgctc 1920
gtcggcgccc ctcttggagg cgctgccagg gccctggcgc atggcgtccg ggttctggaa 1980
gacggcgtga actatgcaac agggaacctt cctggttgct cttag
                                                                  2025
<210> 9
<211> 1268
<212> DNA
<213> Artificial Sequence
```

<223> Description of Artificial Sequence: synthetic Gag common region

```
<400> 9
gccaccatgg gcgcccgcgc cagcgtgctg agcggcggcg agctggacaa gtgggagaag 60
atccgcctgc gccccggcgg caagaagaag tacaagctga agcacatcgt gtgggccagc 120
cgcgagctgg agcgcttcgc cgtgaacccc ggcctgctgg agaccagcga gggctgccgc 180
cagatectgg gecagetgca geccagectg cagaceggca gegaggaget gegcageetg 240
tacaacaccg tggccaccct gtactgcgtg caccagcgca tcgacgtcaa ggacaccaag 300
qaqqcctqq aqaaqatcqa qqaqqaqcaq aacaagtcca agaagaaggc ccagcaggcc 360
qccqccqccq ccqqcaccqq caacaqcaqc caqqtqaqcc agaactaccc catcgtgcag 420.
aacctgcagg gccagatggt gcaccaggcc atcagccccc gcaccctgaa cgcctgggtg 480
aaggtggtgg aggagaaggc cttcagcccc gaggtgatcc ccatgttcag cgccctgagc 540
qaqqqqqca cccccaqqa cctqaacacq atqttqaaca ccgtgggcgg ccaccaggcc 600
gccatgcaga tgctgaagga gaccatcaac gaggaggccg ccgagtggga ccgcgtgcac 660
cccgtgcacg ccggccccat cgcccccggc cagatgcgcg agccccgcgg cagcgacatc 720
gccggcacca ccagcaccct gcaggagcag atcggctgga tgaccaacaa cccccccatc 780
cccgtgggcg agatctacaa gcggtggatc atcctgggcc tgaacaagat cgtgcggatg 840
tacagececa ecageatect ggacateege cagggeeeca aggageeett eegegaetae 900
gtggaccgct tctacaagac cctgcgcgct gagcaggcca gccaggacgt gaagaactgg 960
atqaccqaqa ccctqctqqt qcaqaacqcc aaccccqact gcaagaccat cctgaaggct 1020
ctcggccccg cggccaccct ggaggagatg atgaccgcct gccagggcgt gggcggcccc 1080
ggccacaagg cccgcgtgct ggccgaggcg atgagccagg tgacgaaccc ggcgaccatc 1140
atgatgcage geggeaactt cegeaaceag eggaagaceg teaagtgett caactgegge 1200
aaqqaqqqcc acaccgccag gaactgccgc gcccccgca agaagggctg ctggcgctgc 1260
                                                                   1268
ggccgcga
<210> 10
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HIV-Gag
      peptide p7G
<400> 10
Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu
                                     10
                                                          15
Glu Ala Ala Glu
             20
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer GAG5
<400> 11
                                                                   30
aagaattcca tgggtgcgag agcgtcggta
```

```
<210> 12
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
      p55-SAL3
<400> 12
                                                                   30 -
attcgtcgac tgtgacgagg ggtcgttgcc
<210> 13
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
      CORESAL5
<400> 13
                                                                    34
atttgtcgac gaatcctaaa cctcaaagaa aaac
<210> 14
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer 173CORE
tattggatcc taagagcaac caggaaggtt c
                                                                    31
<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer MS65
<400> 15
cgaccatcat ggatgcagcg c
                                                                    21
<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer MS66
```

```
<400> 16
                                                                   30
aggattcgtc gagtcgctgc tggggtcgtt
<210> 17
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer XPANXNF
<400> 17
gcacgtgggc ccggcgcctc tagagc
                                                                   26
<210> 18
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer XPANXNR
<400> 18
gctctagagg cgccgggccc acgtgc
                                                                    26
<210> 19
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HIV p55 Gag
      Major Homology Region
<400> 19
Asp Ile Arg Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg
                                                           15
Phe Tyr Lys Thr
             20
<210> 20
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic p55
      Gag Major Homology Region
<400> 20
gacatccgcc agggccccaa ggagcccttc cgcgactacg tggaccgctt ctacaagacc 60
```

```
<210> 21
<211> 15
<212> PRT
<213> Human immunodeficiency virus
<400> 21
Ala Pro Thr Lys Ala Lys Arg Arg Val Val Gln Arg Glu Lys Arg
<210> 22
<211> 5
<212> PRT
<213> Human immunodeficiency virus
<400> 22
Lys Ala Lys Arg Arg
 1
<210> 23
<211> 4
<212> PRT
<213> Human immunodeficiency virus
<400> 23
Arg Glu Lys Arg
 1
<210> 24
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: aa of
      mut7.SF162 cleavage site
<400> 24
Ala Pro Thr Lys Ala Ile Ser Ser Val Val Gln Ser Glu Lys Ser
  1
                                      10
<210> 25
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: aa of
      mut8.SF162 cleavage site
<400> 25
```

```
Ala Pro Thr Ile Ala Ile Ser Ser Val Val Gln Ser Glu Lys Ser
                  5
                                      10
<210> 26
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: aa of
      mut.SF162 cleavage site
<400> 26
Ala Pro Thr Lys Ala Lys Arg Arg Val Val Gln Arg Glu Lys Ser
                                      10
<210> 27
<211> 15
<212> PRT
<213> Human immunodeficiency virus
<220>
<223> Description of Artificial Sequence: aa of native
      cleavage site in US4
<400> 27
Ala Pro Thr Gln Ala Lys Arg Arg Val Val Gln Arg Glu Lys Arg
                  5
<210> 28
<211> 5
<212> PRT
<213> Human immunodeficiency virus
<220>
<223> Description of Artificial Sequence: aa of second
      cleavage site in US4
<400> 28
Gln Ala Lys Arg Arg
<210> 29
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: aa of mut.US4
      cleavage site
```

```
<400> 29
Ala Pro Thr Gln Ala Lys Arg Arg Val Val Gln Arg Glu Lys Ser
                                     10
<210> 30
<211> 1419
<212> DNA
<213> Human immunodeficiency virus
<400> 30
gtagaaaaat tgtgggtcac agtctattat ggggtacctg tgtggaaaga agcaaccacc 60
acticatett gtgcatcaga tgctaaagcc tatgacacag aggtacataa tgtctgggcc 120
acacatgcct gtgtacccac agaccctaac ccacaagaaa tagtattgga aaatgtgaca 180
gaaaatttta acatgtggaa aaataacatg gtagaacaga tgcatgagga tataatcagt 240
ttatgggatc aaagtctaaa gccatgtgta aagttaaccc cactctgtgt tactctacat 300
tgcactaatt tgaagaatgc tactaatacc aagagtagta attggaaaga gatggacaga 360
ggagaaataa aaaattgctc tttcaaggtc accacaagca taagaaataa gatgcagaaa 420
qaatatgcac ttttttataa acttgatgta gtaccaatag ataatgataa tacaagctat 480
aaattqataa attqtaacac ctcaqtcatt acacaqqcct gtccaaaggt atcctttgaa 540
ccaattccca tacattattq tqccccqqct qqttttqcqa ttctaaaqtq taatgataaq 600
aaqttcaatq qatcaqqacc atqtacaaat gtcaqcacag tacaatgtac acatggaatt 660
aggecagtag tgtcaactca attgctgtta aatggcagtc tagcagaaga aggggtagta 720
attagatctg aaaatttcac agacaatgct aaaactataa tagtacagct gaaggaatct 780
qtaqaaatta attgtacaag acctaacaat aatacaagaa aaagtataac tataggaccg 840
qqqaqaqcat tttatqcaac aqqaqacata ataggagata taagacaagc acattgtaac 900
attaqtqqaq aaaaatqqaa taacacttta aaacagatag ttacaaaatt acaagcacaa 960
tttgggaata aaacaatagt ctttaagcaa tcctcaggag gggacccaga aattgtaatg 1020
cacagtttta attgtggagg ggaatttttc tactgtaatt caacacagct ttttaatagt 1080
acttggaata atactatagg gccaaataac actaatggaa ctatcacact cccatgcaga 1140
ataaaacaaa ttataaacag gtggcaggaa gtaggaaaag caatgtatgc ccctcccatc 1200
agaggacaaa ttagatgctc atcaaatatt acaggactgc tattaacaag agatggtggt 1260
aaagagatca gtaacaccac cgagatcttc agacctggag gtggagatat gagggacaat 1320
tggagaagtg aattatataa atataaagta gtaaaaattg agccattagg agtagcaccc 1380
accaaggcaa agagaagagt ggtgcagaga gaaaaaaga
                                                                   1419
<210> 31
<211> 1932
<212> DNA
<213> Human immunodeficiency virus
<400> 31
gtagaaaaat tqtqqqtcac agtctattat ggggtacctg tgtggaaaga agcaaccacc 60
actctatttt gtgcatcaga tgctaaagcc tatgacacag aggtacataa tgtctgggcc 120
acacatgcct gtgtacccac agaccctaac ccacaagaaa tagtattgga aaatgtgaca 180
gaaaatttta acatgtggaa aaataacatg gtagaacaga tgcatgagga tataatcagt 240
ttatgggatc aaagtctaaa gccatgtgta aagttaaccc cactctgtgt tactctacat 300
tgcactaatt tgaagaatgc tactaatacc aagagtagta attggaaaga gatggacaga 360
ggagaaataa aaaattgctc tttcaaggtc accacaagca taagaaataa gatgcagaaa 420
gaatatgcac ttttttataa acttgatgta gtaccaatag ataatgataa tacaagctat 480
aaattgataa attgtaacac ctcagtcatt acacaggcct gtccaaaggt atcctttgaa 540
ccaattccca tacattattg tgccccggct ggttttgcga ttctaaagtg taatgataag 600
aagttcaatg gatcaggacc atgtacaaat gtcagcacag tacaatgtac acatggaatt 660
aggccaqtaq tqtcaactca attqctqtta aatqqcaqtc taqcaqaaqa agggqtaqta 720
```

```
attagatctg aaaatttcac agacaatgct aaaactataa tagtacagct gaaggaatct 780
gtagaaatta attgtacaag acctaacaat aatacaagaa aaagtataac tataggaccg 840
gggagagcat tttatgcaac aggagacata ataggagata taagacaagc acattgtaac 900
attagtggag aaaaatggaa taacacttta aaacagatag ttacaaaatt acaagcacaa 960
tttgggaata aaacaatagt ctttaagcaa tcctcaggag gggacccaga aattgtaatg 1020
cacagittta attgtggagg ggaattttic tactgtaatt caacacagct tittaatagt 1080
acttggaata atactatagg gccaaataac actaatggaa ctatcacact cccatgcaga 1140
ataaaacaaa ttataaacag gtggcaggaa gtaggaaaag caatgtatgc ccctcccatc 1200
agaggacaaa ttagatgctc atcaaatatt acaggactgc tattaacaag agatggtggt 1260
aaagagatca gtaacaccac cgagatcttc agacctggag gtggagatat gagggacaat 1320
tggagaagtg aattatataa atataaagta gtaaaaattg agccattagg agtagcaccc 1380
accaaggcaa agagaagagt ggtgcagaga gaaaaaagag cagtgacgct aggagctatg 1440
ttccttgggt tcttgggagc agcaggaagc actatgggcg cacggtcact gacgctgacg 1500
gtacaggcca gacaattatt gtctggtata gtgcaacagc agaacaattt gctgagagct 1560
attgaggcgc aacagcatct gttgcaactc acagtctggg gcatcaagca gctccaggca 1620
agagtcctgg ctgtggaaag atacctaaag gatcaacagc tcctagggat ttggggttgc 1680
tctggaaaac tcatttgcac cactgctgtg ccttggaatg ctagttggag taataaatct 1740
ctggatcaga tttggaataa catgacctgg atggagtggg agagagaaat tgacaattac 1800
acaaacttaa tatacacctt aattgaagaa tcgcagaacc aacaagaaaa gaatgaacaa 1860
gaattattag aattggataa gtgggcaagt ttgtggaatt ggtttgacat atcaaaatgg 1920
ctgtggtata ta
                                                                  1932
<210> 32
<211> 2457
<212> DNA
<213> Human immunodeficiency virus
<400> 32
gtagaaaaat tgtgggtcac agtctattat ggggtacctg tgtggaaaga agcaaccacc 60
actictatitt gtgcatcaga tgctaaagcc tatgacacag aggtacataa tgtctgggcc 120
acacatgcct gtgtacccac agaccctaac ccacaagaaa tagtattgga aaatgtgaca 180
gaaaatttta acatgtggaa aaataacatg gtagaacaga tgcatgagga tataatcagt 240
ttatgggatc aaagtctaaa gccatgtgta aagttaaccc cactctgtgt tactctacat 300
tgcactaatt tgaagaatgc tactaatacc aagagtagta attggaaaga gatggacaga 360
ggagaaataa aaaattgctc tttcaaggtc accacaagca taagaaataa gatgcagaaa 420
gaatatgcac ttttttataa acttgatgta gtaccaatag ataatgataa tacaagctat 480
aaattgataa attgtaacac ctcagtcatt acacaggcct gtccaaaggt atcctttgaa 540
ccaattccca tacattattg tgccccggct ggttttgcga ttctaaagtg taatgataag 600
aagttcaatg gatcaggacc atgtacaaat gtcagcacag tacaatgtac acatggaatt 660
aggccagtag tgtcaactca attgctgtta aatggcagtc tagcagaaga aggggtagta 720
attagatetg aaaattteac agacaatget aaaactataa tagtacaget gaaggaatet 780
gtagaaatta attgtacaag acctaacaat aatacaagaa aaagtataac tataggaccg 840
gggagagcat tttatgcaac aggagacata ataggagata taagacaagc acattgtaac 900
attagtggag aaaaatggaa taacacttta aaacagatag ttacaaaatt acaagcacaa 960
```

tttgggaata aaacaatagt ctttaagcaa tcctcaggag gggacccaga aattgtaatg 1020 cacagtttta attgtggagg ggaatttttc tactgtaatt caacacagct ttttaatagt 1080 acttggaata atactatagg gccaaataac actaatggaa ctatcacact cccatgcaga 1140 ataaaacaaa ttataaacag gtggcaggaa gtaggaaaag caatgtatgc ccctcccatc 1200 agaggacaaa ttagatgctc atcaaatatt acaggactgc tattaacaag agatggtggt 1260 aaagagatca gtaacaccac cgagatcttc agacctggag gtggagatat gagggacaat 1320 tggagaagtg aattatataa atataaagta gtaaaaattg agccattagg agtagcaccc 1380 accaaggcaa agagaagat ggtgcagaga gaaaaaaagag cagtgacgct aggagctatg 1440 ttccttgggt tcttgggagc agcaggaagc actatgggcg cacggtcact gacgctgacg 1500 gtacaggcca gacaattatt gtctggtata gtgcaacagc agaacaattt gctgagagct 1560

```
attgaggege aacageatet gttgeaaete acagtetggg geateaagea getecaggea 1620
agagteetgg etgtggaaag atacetaaag gateaacage teetagggat ttggggttge 1680
tctggaaaac tcatttgcac cactgctgtg ccttggaatg ctagttggag taataaatct 1740
ctggatcaga tttggaataa catgacctgg atggagtggg agagagaaat tgacaattac 1800
acaaacttaa tatacacctt aattgaagaa tcgcagaacc aacaagaaaa gaatgaacaa 1860
gaattattag aattggataa gtgggcaagt ttgtggaatt ggtttgacat atcaaaatgg 1920
ctgtggtata taaaaatatt cataatgata gtaggaggtt tagtaggttt aaggatagtt 1980
tttactgtgc tttctatagt gaatagagtt aggcagggat actcaccatt atcatttcag 2040
acccgcttcc cagccccaag gggacccgac aggcccgaag gaatcgaaga agaaggtgga 2100
gagagagaca gagacagatc cagtccatta gtgcatggat tattagcact catctgggac 2160
gatctacgga gcctgtgcct cttcagctac caccgcttga gagacttaat cttgattgca 2220
gcgaggattg tggaacttct gggacgcagg gggtgggaag ccctcaagta ttgggggaat 2280
ctcctgcagt attggattca ggaactaaag aatagtgctg ttagtttgtt tgatgccata 2340
gctatagcag tagctgaggg gacagatagg attatagaag tagcacaaag aattggtaga 2400
gcttttctcc acatacctag aagaataaga cagggctttg aaagggcttt gctataa
                                                                  2457
<210> 33
<211> 1453
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: gp120.modSF162
<400> 33
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccaq 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
agcatccgca acaagatgca gaaggagtac gccctgttct acaagctgga cgtggtqccc 540
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 660
gccatcctga agtgcaacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
acceptgcagt gcacccacge catcceccc gtggtgagca cccagctgct gctgaacggc 780
agcctggccg aggagggcgt ggtgatccgc agcgagaact tcaccgacaa cqccaaqacc 840
atcatcgtgc agctgaagga gagcgtggag atcaactgca cccgcccaa caacaacacc 900
cgcaagagca tcaccatcgg ccccggccgc gccttctacg ccaccggcga catcatcgqc 960
gacatccgcc aggcccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
atcgtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
ggcggcgacc ccgagatcgt gatgcacagc ttcaactgcg gcggcgagtt cttctactgc 1140
aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
ggcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 1260
aaggccatgt acgcccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 1320
ctgctgctga cccgcgacgg cggcaaggag atcagcaaca ccaccgagat cttccgcccc 1380
ggcggcggcg acatgcgcga caactggcgc agcgagctgt acaagtacaa ggtggtgaag 1440
atcgagcccc tgg
                                                                  1453
<210> 34
<211> 1387
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
     gp120.modSF162.delV2
<400> 34
gaattegeea eeatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccaq 240.
gagategtge tggagaaegt gaeegagaae tteaacatgt ggaagaaeaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
acceccetgt gegtgaccet geactgeace aacetgaaga aegecaccaa caccaagage 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
ggcaagctga tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 540
gageceatee ceatecacta etgegeeece geeggetteg ceatectgaa gtgcaacqae 600
aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
atccgccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggagggcgtg 720
gtgatccgca gcgagaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780
agcgtggaga tcaactgcac ccgccccaac aacaacaccc qcaaqaqcat caccatcqqc 840
eceggeegeg cettetaege caeeggegae atcateggeg acateegeea ggeecaetge 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagttcggca acaagaccat cgtgttcaag cagagcagcg gcggcgaccc cgagatcgtg 1020
atgcacaget teaactgegg eggegagtte ttetaetgea acageaceca getgtteaac 1080
cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200
atccgcggcc agatccgctg cagcagcaac atcaccggcc tgctgctgac ccgcgacggc 1260
ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320
aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380
cccacca
                                                                1387
<210> 35
<211> 1323
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
     gp120.modSF162.delV1V2
<400> 35
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccaq 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gegtgggege eggeaactge cagaccageg tgatcaccca ggectgeece 420
aaggtgaget tegageeeat ecceateeac tactgegeee eegeeggett egeeateetg 480
aagtgcaacg acaagaagtt caacggcagc ggcccctgca ccaacgtgag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggagggcg tggtgatccg cagcgagaac ttcaccgaca acqccaaqac catcatcqtq 660
cagctgaagg agagcgtgga gatcaactgc acccgcccca acaacaacac ccgcaagagc 720
```

```
atcaccateg geceeggeeg egeettetae gecaeeggeg acateategg egaeateege 780
caggcccact gcaacatcag cggcgagaag tggaacaaca ccctgaagca gatcgtgacc 840
aagetgeagg eecagttegg caacaagace ategtgttea ageagageag eggeggegae 900
cccgagatcg tgatgcacag cttcaactgc ggcggcgagt tcttctactg caacagcacc 960
cagctgttca acagcacctg gaacaacacc atcggcccca acaacaccaa cggcaccatc 1020
accetgeeet geegeateaa geagateate aacegetgge aggaggtggg caaggeeatg 1080
tacgcccccc ccatccgcgg ccagatccgc tgcagcagca acatcaccgg cctgctgctg 1140
accegegacg geggeaagga gateageaac accacegaga tetteegeec eggeggegge 1200
gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtgaa gatcgagccc 1260
ctgggcgtgg cccccaccaa ggccaagcgc cgcgtggtgc agcgcgagaa qcqctaactc 1320
gag
                                                                  1323
<210> 36
<211> 2025
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: gp140.modSF162
<400> 36
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
agcatcegca acaagatgca gaaggagtac gccctgttct acaagctgga cgtggtgccc 540
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 660
gccatcctga agtgcaacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
accgtgcagt gcacccacgg catecgccc gtggtgagca cccagctgct gctgaacggc 780
agcctggccg aggaggcgt ggtgatccgc agcgagaact tcaccgacaa cgccaagacc 840
atcatcgtgc agctgaagga gagcgtggag atcaactgca cccgccccaa caacaacacc 900
cgcaagagca tcaccatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 960
gacatccgcc aggcccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
atcgtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
ggcggcgacc ccgagatcgt gatgcacagc ttcaactgcg gcggcgagtt cttctactgc 1140
aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
ggcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 1260
aaggccatgt acgcccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 1320
ctgctgctga cccgcgacgg cggcaaggag atcagcaaca ccaccgagat cttccgcccc 1380
ggcggcggcg acatgcgcga caactggcgc agcgagctgt acaagtacaa ggtggtgaag 1440
atcgagcccc tgggcgtggc ccccaccaag gccaagcgcc gcgtggtgca gcgcgagaag 1500
cgcgccgtga ccctgggcgc catgttcctg ggcttcctgg gcgccgccgg cagcaccatg 1560
ggcgcccgca gcctgaccct gaccgtgcag gcccgccagc tgctgagcgg catcgtgcag 1620
cagcagaaca acctgctgcg cgccatcgag gcccagcagc acctgctgca gctgaccgtg 1680
tggggcatca agcagctgca ggcccgcgtg ctggccgtgg agcgctacct gaaggaccag 1740
cagctgctgg gcatctgggg ctgcagcggc aagctgatct gcaccaccgc cgtgcctgg 1800
aacgccagct ggagcaacaa gagcctggac cagatctgga acaacatgac ctggatggag 1860
tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
```

aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg 1980

```
<210> 37
<211> 1944
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.modSF162.delV2
<400> 37
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cqccqtqqaq aaqctqtqqq tqaccqtqta ctacqqcqtq 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
acceccetgt gcgtgaccet gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
ggcaagctga tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 540
gageceatee ceatecacta etgegeeeee geeggetteg ceatectgaa qtqcaacqae 600
aagaagttca acggcagcgg cccctgcacc aacgtqaqca ccqtqcaqtq cacccacqqc 660
atcogccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggagggcgtg 720
gtgatccgca gcgagaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780
agogtggaga tcaactgcac cogcoccaac aacaacacco gcaagagcat caccatcggc 840
cccggccgcg ccttctacgc caccggcgac atcatcgqcq acatccqcca qqcccactqc 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagttcggca acaagaccat cgtgttcaag cagagcagcg gcggcgaccc cgagatcgtg 1020
atgcacaget teaactgegg eggegagtte ttetactgca acageaceca getgtteaac 1080
cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200
atccgcggcc agatccgctg cagcagcaac atcaccggcc tgctgctgac ccgcgacggc 1260
ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320
aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380
cccaccaagg ccaagegeeg egtggtgeag egegagaage gegeegtgae eetgggegee 1440
atgtteetgg getteetggg egeegeegge ageaceatgg gegeeegeag cetgaecetg 1500
acceptgcage coceccaget getgagegge atceptgcage ageagaacaa cetgetgcage 1560
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1620
gcccgcgtgc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggqqc 1680
tgcagcggca agctgatctg caccaccgcc gtgccctqqa acgccaqctq qaqcaacaaq 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagetge tggagetgga caagtgggee ageetgtgga actggttega cateageaag 1920
tggctgtggt acatctaact cgag
                                                                 1944
<210> 38
<211> 1944
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.modSF162.delV1/V2
```

```
<400> 38
gaattegeea eeatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accecetgt gegtgaceet geactgeace aacetgaaga acgeeaceaa caccaagage 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
qqcaaqctqa tcaactqcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 540
gageceatee ceatecaeta etgegeeeee geeggetteg ceatectgaa gtgeaaegae 600 :
aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
atccgccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggagggcgtg 720
gtgatccgca gcgagaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780
agcgtggaga tcaactgcac ccgccccaac aacaacaccc gcaagagcat caccatcggc 840
cccggccgcg ccttctacgc caccggcgac atcatcggcg acatccgcca ggcccactgc 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagtteggea acaagaceat egtgtteaag cagageageg geggegaeee egagategtg 1020
atgcacaget teaactgegg eggegagtte ttetactgea acageaceca getgtteaac 1080
cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200
atcogoggec agatocgotg cagcagoaac atcacoggec tgotgotgac cogogacgge 1260
ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320
aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380
cccaccaaqq ccaaqcqccq cqtqqtqcaq cgcqaqaaqc gcgccqtqac cctgggcgcc 1440
atgttcctgg gcttcctggg cgccgccgc agcaccatgg gcgcccgcag cctgaccctg 1500
accgtgcagg cccgccagct gctgagcggc atcgtgcagc agcagaacaa cctgctgcgc 1560
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1620
gcccgcgtgc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1680
tgcagcggca agctgatctg caccaccgcc gtgccctgga acgccagctg gagcaacaag 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagetge tggagetgga caagtgggee ageetgtgga actggttega cateageaag 1920
tggctgtggt acatctaact cgag
                                                                 1944
<210> 39
<211> 2025
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      qp140.mut.modSF162
<400> 39
gaattegeea eeatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcetgtgg gaccagagee tgaageeetg egtgaagetg 360
acceccetgt gegtgaccet geaetgeace aacetgaaga aegecaceaa caccaagage 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
```

agcatccgca acaagatgca gaaggagtac gccctgttct acaagctgga cgtggtgccc 540

```
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 660
gccatcctga agtgcaacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
accytycayt gcacccacyy catecycece ytyytyayca eccayetyet getyaacyye 780 1
agcctggccg aggagggcgt ggtgatccgc agcgagaact tcaccgacaa cgccaagacc 840
atcatcqtqc agctgaagga gagcgtggag atcaactgca cccgccccaa caacaacacc 900
cgcaagagca tcaccatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 960
gacatccgcc aggcccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
atcgtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
ggcggcgacc ccgagatcgt gatgcacagc ttcaactgcg gcggcgagtt cttctactgc 1140
aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
ggcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 1260
aaggecatgt aegeeeeee cateegegge cagateeget geageageaa cateaeegge 1320
ctgctgctga cccgcgacgg cggcaaggag atcagcaaca ccaccgagat cttccgcccc 1380
ggcggcggcg acatgcgcga caactggcgc agcgagctgt acaagtacaa ggtggtgaag 1440
atcgagcccc tgggcgtggc ccccaccaag gccaagcgcc gcgtggtgca gcgcgagaag 1500
agegeegtga eeetgggege catgtteetg ggetteetgg gegeegeegg cageaceatg 1560
ggcgcccgca gcctgaccct gaccgtgcag gcccgccagc tgctgagcgg catcgtgcag 1620
cagcagaaca acctgctgcg cgccatcgag gcccagcagc acctgctgca gctgaccgtg 1680
tggggcatca agcagctgca ggcccgcgtg ctggccgtgg agcgctacct gaaggaccag 1740
cagetgetgg geatetgggg etgeagegge aagetgatet geaceaeege egtgeeetgg 1800
aacgccagct ggagcaacaa gagcctggac cagatctgga acaacatgac ctggatggag 1860
tgggagegeg agategacaa etacaccaac etgatetaca ecetgatega ggagagecag 1920
aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg 1980
aactggttcg acatcagcaa gtggctgtgg tacatctaac tcgag
<210> 40
<211> 1944
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.mut.modSF162.delV2
<400> 40
qaattcqcca ccatqqatqc aatqaaqaqa qqqctctqct gtqtqctqct gctqtqtqqa 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcqtqc tqqagaacqt gaccqagaac ttcaacatqt ggaagaacaa catqqtqqaq 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accecettgt gegtgaceet geactgeace aacetgaaga acgeeaceaa caccaagage 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
ggcaagetga teaactgcaa caccagegtg atcacccagg cetgeeccaa ggtgagette 540
gageceatee ceatecaeta etgegeeece geeggetteg ceatectgaa gtgcaacgae 600
aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
atcegecceg tggtgageac ceagetgetg etgaacggea geetggeega ggagggegtg 720
gtgatccgca gcgagaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780
agegtggaga teaactgeac cegececaac aacaacace geaagageat caccategge 840
cccggccgcg ccttctacgc caccggcgac atcatcggcg acatccgcca ggcccactgc 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
```

cagtteggea acaagaceat egtgtteaag cagageageg geggegaeee egagategtg 1020 atgeaeaget teaactgegg eggegagtte ttetaetgea acageaeeea getgtteaae 1080

```
cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200
atcogoggcc agatcogotg cagcagcaac atcacoggcc tgctgctgac cogogacggc 1260
ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320
aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380
cccaccaagg ccaagegeeg egtggtgeag egegagaaga gegeegtgae eetgggegee 1440
atgttcctgg gcttcctggg cgccgccgc agcaccatgg gcgcccgcag cctgaccctg 1500
acceptgcage cocedecaget getgagegge atceptgcage ageagaacaa cetgetgege 1560
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1620
gcccgcgtgc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1680
tgcagcggca agctgatctg caccaccgcc gtgccctgga acgccagctg gagcaacaag 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagetge tggagetgga caagtgggee ageetgtgga aetggttega cateageaag 1920
tggctgtggt acatctaact cgag
                                                               1944
<210> 41
<211> 1836
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
     gp140.mut.modSF162.delV1/V2
<400> 41
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accecetgt gegtgggege eggeaactge eagaceageg tgateaccea ggcetgeece 420
aaggtgaget tegageeeat eeceateeae taetgegeee eegeeggett egeeateetg 480
aagtgcaacg acaagaagtt caacggcagc ggcccctgca ccaacgtgag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggaggggg tggtgatccg cagcgagaac ttcaccgaca acgccaagac catcatcgtg 660
cagctgaagg agagcgtgga gatcaactgc acccgccca acaacaacac ccgcaagagc 720
atcaccatcg geoecggeeg egeettetac gecaceggeg acatcategg egacateege 780
caggeceact geaacateag eggegagaag tggaacaaca ceetgaagca gategtgaee 840
cccgagatcg tgatgcacag cttcaactgc ggcggcgagt tcttctactg caacagcacc 960
cagctgttca acagcacctg gaacaacacc atcggcccca acaacaccaa cggcaccatc 1020
accetgeect geegeateaa geagateate aacegetgge aggaggtggg caaggeeatg 1080
tacgccccc ccatccgcgg ccagatccgc tgcagcagca acatcaccgg cctgctgctg 1140
accegegacg geggeaagga gateageaac accacegaga tetteegece eggeggegge 1200
gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtgaa gatcgagccc 1260
ctgggcgtgg ccccaccaa ggccaagcgc cgcgtggtgc agcgcgagaa gagcgccgtg 1320
accetgggeg ccatgtteet gggetteetg ggegeegeeg geageaceat gggegeege 1380
agcctgaccc tgaccgtgca ggcccgccag ctgctgagcg gcatcgtgca gcagcagaac 1440
aacctgctgc gcgccatcga ggcccagcag cacctgctgc agctgaccgt gtggggcatc 1500
aagcagetge aggeeeget getggeegtg gagegetace tgaaggacea geagetgetg 1560
ggcatctggg gctgcagcgg caagctgatc tgcaccaccg ccgtgccctg gaacgccagc 1620
tggagcaaca agagcctgga ccagatctgg aacaacatga cctggatgga gtgggagcgc 1680
```

<213> Artificial Sequence

```
gagategaca actacaceaa eetgatetae accetgateg aggagageca gaaceageag 1740
gagaagaacg agcaggagct gctggagctg gacaagtggg ccagcctgtg gaactggttc 1800
gacatcagca agtggctgtg gtacatctaa ctcgag
<210> 42
<211> 2025
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      qp140.mut7.modSF162
<400> 42
gaattegeea eeatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accecettyt gegtgaeeet geaetgeaee aacetgaaga aegeeaeeaa caccaagage 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
aqcatccqca acaaqatqca gaaggagtac gccctgttct acaagctgga cgtggtgccc 540
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
geotgeecca aggtgagett egageecate eccatecaet aetgegeece egeeggette 660
qccatcctqa aqtgcaacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
acceptqcaqt qcacccacgg catccgcccc gtggtgagca cccagctgct gctgaacggc 780
agectggeeg aggagggegt ggtgateege agegagaact teacegacaa egecaagace 840
atcatcgtgc agctgaagga gagcgtggag atcaactgca cccgccccaa caacaaccc 900
cgcaagagca tcaccatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 960
gacatccgcc aggcccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
ategtgacca agetgeagge ceagttegge aacaagacca tegtgtteaa geagageage 1080
ggcggcgacc ccgagatcgt gatgcacagc ttcaactgcg gcggcgagtt cttctactgc 1140
aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
qqcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 1260
aaggccatgt acgcccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 1320
ctgctgctga cccgcgacgg cggcaaggag atcagcaaca ccaccgagat cttccgcccc 1380
qqcqqcqq acatqcqcqa caactqqcqc aqcqaqctqt acaagtacaa ggtggtgaag 1440
atcgagcccc tgggcgtggc ccccaccaag gccatcagca gcgtggtgca gagcgagaag 1500
agegeegtga eeetgggege catgtteetg ggetteetgg gegeegeegg cageaccatg 1560
ggcgcccgca gcctgaccct gaccgtgcag gcccgccagc tgctgagcgg catcgtgcag 1620
cagcagaaca acctgctgcg cgccatcgag gcccagcagc acctgctgca gctgaccgtg 1680
tggggcatca agcagctgca ggcccgcgtg ctggccgtgg agcgctacct gaaggaccag 1740
cagctgctgg gcatctgggg ctgcagcggc aagctgatct gcaccaccgc cgtgcctgg 1800
aacgccagct ggagcaacaa gagcctggac cagatctgga acaacatgac ctggatggag 1860
tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg 1980
aactggttcg acatcagcaa gtggctgtgg tacatctaac tcgag
                                                                   2025
<210> 43
<211> 1944
<212> DNA
```

<220>

```
<223> Description of Artificial Sequence:
     gp140.mut7.modSF162.delV2
<400> 43
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagategtge tggagaaegt gaeegagaae tteaacatgt ggaagaaeaa catggtggag 300
cagatgcacg aggacatcat cagcetgtgg gaccagagee tgaageeetg egtgaagetg 360;
accecettt gegtgaceet geaetgeace aacetgaaga acgecaceaa caccaagage 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
ggcaagctga tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 540
gageceatee ceatecaeta etgegecece geeggetteg ceatectgaa gtgeaacgae 600
aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
atccgccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggagggcgtg 720
qtqatccqca qcqaqaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780
agegtggaga teaactgeac eegececaac aacaacace geaagageat caccategge 840
cccqqccqcq ccttctacgc caccggcgac atcatcggcg acatccgcca ggcccactgc 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagttcggca acaagaccat cgtgttcaag cagagcagcg gcggcgaccc cgagatcgtg 1020
atgcacaget teaactgegg eggegagtte ttetactgea acageaceca getgtteaac 1080
cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200
atccgcggcc agatccgctg cagcagcaac atcaccggcc tgctgctgac ccgcgacggc 1260
ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320
aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380
cccaccaagg ccatcagcag cgtggtgcag agcgagaaga gcgccgtgac cctgggcgcc 1440
atgttectgg getteetggg egeegeegge ageaceatgg gegeegeag cetgaceetg 1500
acceptgcage ccceccaget getgagegge atceptgcage ageagaacaa cctgctgcgc 1560
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1620
gcccgcgtgc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1680
tgcagcggca agetgatetg caccaccgcc gtgccetgga acgccagetg gagcaacaag 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagctgc tggagctgga caagtgggcc agcctgtgga actggttcga catcagcaag 1920
                                                                 1944
tggctgtggt acatctaact cgag
<210> 44
<211> 1836
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.mut7.modSF162.delV1/V2
<400> 44
gaattegeea eeatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
```

```
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
acccccctgt gcgtgggcgc cggcaactgc cagaccagcg tgatcaccca ggcctgcccc 420
aaggtgaget tegageeeat eeccateeae tactgegeee eegeeggett egecateetg 480
aagtgcaacg acaagaagtt caacggcagc ggcccctgca ccaacgtgag caccgtgcag 540
tqcacccacq qcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggagggcg tggtgatccg cagcgagaac ttcaccgaca acgccaagac catcatcgtg 660
cagctgaagg agagcgtgga gatcaactgc acccgcccca acaacaacac ccgcaagagc 720
atcaccatcg geoecggeeg egeettetac gecaceggeg acateategg egacateege 780
caggeecact geaacateag eggegagaag tggaacaaca eeetgaagea gategtgaee 840
cccgagatcg tgatgcacag cttcaactgc ggcggcgagt tcttctactg caacagcacc 960:
cagetgttca acageacetg gaacaacace ateggeecea acaacaceaa eggeaceate 1020
accetgeet geegeateaa geagateate aacegetgge aggaggtggg caaggeeatg 1080
tacgccccc ccatccgcgg ccagatccgc tgcagcagca acatcaccgg cctgctgctg 1140
accegegacg geggeaagga gateageaac accaeegaga tetteegeec eggeggegge 1200
gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtgaa gatcgagccc 1260
ctgggcgtgg cccccaccaa ggccatcagc agcgtggtgc agagcgagaa gagcgccgtg 1320
accetgggeg ceatgtteet gggetteetg ggegeegeeg geageaceat gggegeeege 1380
agectgacce tgaccgtgca ggcccgccag ctgctgagcg gcatcgtgca gcagcagaac 1440
aacctgctgc gcgccatcga ggcccagcag cacctgctgc agctgaccgt gtggggcatc 1500
aagcagetge aggeeeggt getggeegtg gagegetace tgaaggacea geagetgetg 1560
qqcatctqqq gctgcagcgg caagctgatc tgcaccaccg ccgtgccctg gaacgccagc 1620
tggagcaaca agagcctgga ccagatctgg aacaacatga cctggatgga gtgggagcgc 1680
gagategaca actacaceaa ectgatetae accetgateg aggagageca gaaceageag 1740
gagaagaacg agcaggagct gctggagctg gacaagtggg ccagcctgtg gaactggttc 1800
                                                                 1836
gacatcagca agtggctgtg gtacatctaa ctcgag
<210> 45
<211> 2025
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.mut8.modSF162
<400> 45
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagectgtgg gaccagagce tgaagecetg egtgaagetg 360
accecetgt gegtgaceet geactgeace aacetgaaga aegecaceaa caccaagage 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
agcatccgca acaagatgca gaaggagtac gccctgttct acaagctgga cgtggtgccc 540
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 660
gccatcctga agtgcaacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
acceptgcagt gcacccacgg catccgcccc gtggtgagca cccagctgct gctgaacggc 780
agcctggccg aggagggcgt ggtgatccgc agcgagaact tcaccgacaa cgccaagacc 840
atcatcgtgc agctgaagga gagcgtggag atcaactgca cccgccccaa caacaacacc 900
```

cgcaagagca tcaccatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 960 gacatccgcc aggcccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020

```
atcgtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
ggcggcgacc ccgagatcgt gatgcacagc ttcaactgcg gcggcgagtt cttctactgc 1140
aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
ggcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 1260
aaggccatgt acgcccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 1320
ctgctgctga cccgcgacgg cggcaaggag atcagcaaca ccaccgagat cttccgcccc 1380
ggcggcggcg acatgcgcga caactggcgc agcgagctgt acaagtacaa ggtggtgaag 1440
atcgagcccc tgggcgtggc ccccaccatc gccatcagca gcgtggtgca gagcgagaag 1500
agggcgtqa ccctgggcgc catgttcctg ggcttcctgg gcgccgccgg cagcaccatg 1560
ggcgcccgca gcctgaccct gaccgtgcag gcccgccagc tgctgagcgg catcgtgcag 1620
cagcagaaca acctgctgcg cgccatcgag gcccagcagc acctgctgca gctgaccgtg 1680
tggggcatca agcagctgca ggcccgcgtg ctggccgtgg agcgctacct gaaggaccag 1740
cagctgctgg gcatctgggg ctgcagcggc aagctgatct gcaccaccgc cgtgccctgg 1800
aacgccagct ggagcaacaa gagcctggac cagatctgga acaacatgac ctggatggag 1860
tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg 1980
aactggttcg acatcagcaa gtggctgtgg tacatctaac tcgag
                                                                 2025
<210> 46
<211> 1944
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.mut8.modSF162.delV2
<400> 46
gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
qqcaaqctqa tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 540
gageceatee ceatecacta etgegeeece geeggetteg ceateetgaa gtgcaacgae 600
aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
atcegeceeg tggtgageae ceagetgetg etgaaeggea geetggeega ggagggegtg 720
gtgatccgca gcgagaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780
agcgtggaga tcaactgcac ccgccccaac aacaacaccc gcaagagcat caccatcggc 840
cceggeegeg cettetaege caceggegae atcateggeg acateegeea ggeecaetge 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagtteggea acaagaceat egtgtteaag cagageageg geggegaeee egagategtg 1020
atgcacaget teaactgegg eggegagtte ttetactgca acageaceca getgtteaac 1080
cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200
atcegeggee agateegetg cageageaac atcaceggee tgetgetgae eegegaegge 1260
ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320
aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380
cccaccatcg ccatcagcag cgtggtgcag agcgagaaga gcgccgtgac cctgggcgcc 1440
atgttcctgg gcttcctggg cgccgccggc agcaccatgg gcgcccgcag cctgaccctg 1500
acceptgcage ccceccaget getgagegge atceptgcage ageagaacaa cetgctgcgc 1560
```

```
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1620
gcccgcgtgc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1680
tgcagcggca agctgatctg caccaccgcc gtgccctgga acgccagctg gagcaacaag 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagetge tggagetgga caagtgggee ageetgtgga actggttega cateageaag 1920
                                                                 1944
tggctgtggt acatctaact cgag
<210> 47
<211> 1836
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.mut8.modSF162.delV1/V2
<400> 47
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
qaqatcqtqc tqqaqaacqt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgggcgc cggcaactgc cagaccagcg tgatcaccca ggcctgcccc 420
aaqqtqaqct tcqaqcccat ccccatccac tactgcgccc ccgccggctt cgccatcctg 480
aagtgcaacg acaagaagtt caacggcagc ggcccctgca ccaacgtgag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggagggcg tggtgatccg cagcgagaac ttcaccgaca acgccaagac catcatcgtg 660
cagctgaagg agagcgtgga gatcaactgc acccgcccca acaacaacac ccgcaagagc 720
atcaccatcg gccccggccg cgccttctac gccaccggcg acatcatcgg cgacatccgc 780
caggcccact gcaacatcag cggcgagaag tggaacaaca ccctgaagca gatcgtgacc 840
cccgagatcg tgatgcacag cttcaactgc ggcggcgagt tcttctactg caacagcacc 960
cagctgttca acagcacctg gaacaacacc atcggcccca acaacaccaa cggcaccatc 1020
accetgeect geogeateaa geagateate aacegetgge aggaggtggg caaggeeatg 1080
tacgccccc ccatccgcgg ccagatccgc tgcagcagca acatcaccgg cctgctgctg 1140
accegegacy geggeaagga gateageaac accaeegaga tetteegeee eggeggegge 1200
gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtgaa gatcgagccc 1260
ctqqqcqtqq ccccaccat cgccatcagc agcgtggtgc agagcgagaa gagcgccgtg 1320
accetgggeg ceatgtteet gggetteetg ggegeegeeg geageaceat gggegeeege 1380
agcctgaccc tgaccgtgca ggcccgccag ctgctgagcg gcatcgtgca gcagcagaac 1440
aacctgctgc gcgccatcga ggcccagcag cacctgctgc agctgaccgt gtggggcatc 1500
aagcagctgc aggcccgcgt gctggccgtg gagcgctacc tgaaggacca gcagctgctg 1560
ggcatctggg gctgcagcgg caagctgatc tgcaccaccg ccgtgccctg gaacgccagc 1620
tggagcaaca agagcctgga ccagatctgg aacaacatga cctggatgga gtgggagcgc 1680
gagategaca actacaceaa eetgatetae accetgateg aggagageca gaaceageag 1740
gagaagaacg agcaggagct gctggagctg gacaagtggg ccagcctgtg gaactggttc 1800
                                                                 1836
 gacatcagca agtggctgtg gtacatctaa ctcgag
 <210> 48
 <211> 2547
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: gp160.modSF162
```

```
<400> 48
gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420:
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
agcatccgca acaagatgca gaaggagtac gccctgttct acaagctgga cgtggtgccc 540
atcgacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
geetgeecca aggtgagett egageecate eccatecaet aetgegeece egeeggette 660
gccatcctga agtgcaacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
accettgcagt gcacccacgg catccgcccc gtggtgagca cccagctgct gctgaacggc 780
agcctggccg aggagggcgt ggtgatccgc agcgagaact tcaccgacaa cgccaagacc 840
atcatcgtgc agctgaagga gagcgtggag atcaactgca cccgccccaa caacaacacc 900
cgcaagagca tcaccatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 960
gacateegee aggeeeactg caacateage ggegagaagt ggaacaacae eetgaageag 1020
atcqtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
ggcggcgacc ccgagatcgt gatgcacagc ttcaactgcg gcggcgagtt cttctactgc 1140
aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
ggcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 1260
aaggccatgt acgcccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 1320
ctgctgctga cccgcgacgg cggcaaggag atcagcaaca ccaccgagat cttccgcccc 1380
ggcggcggcg acatgcgcga caactggcgc agcgagctgt acaagtacaa ggtggtgaag 1440
atcgagcccc tgggcgtggc ccccaccaag gccaagcgcc gcgtggtgca gcgcgagaag 1500
cgcgccgtga ccctgggcgc catgttcctg ggcttcctgg gcgccgccgg cagcaccatg 1560
ggcgcccgca gcctgaccct gaccgtgcag gcccgccagc tgctgagcgg catcgtgcag 1620
cagcagaaca acctgctgcg cgccatcgag gcccagcagc acctgctgca gctgaccgtg 1680
tggggcatca agcagctgca ggcccgcgtg ctggccgtgg agcgctacct gaaggaccag 1740
cagctgctgg gcatctgggg ctgcagcggc aagctgatct gcaccaccgc cgtgccctgg 1800
aacgccagct ggagcaacaa gagcctggac cagatctgga acaacatgac ctggatggag 1860
tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920
aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg 1980
aactggttcg acatcagcaa gtggctgtgg tacatcaaga tcttcatcat gatcgtgggc 2040
ggcctggtgg gcctgcgcat cgtgttcacc gtgctgagca tcgtgaaccg cgtgcgccag 2100
ggctacagcc ccctgagctt ccagacccgc ttccccgccc cccgcggccc cgaccgcccc 2160
gagggcatcg aggaggaggg cggcgagcgc gaccgcgacc gcagcagccc cctggtgcac 2220
ggcctgctgg ccctgatctg ggacgacctg cgcagcctgt gcctgttcag ctaccaccgc 2280
ctgcgcgacc tgatcctgat cgccgcccgc atcgtggagc tgctgggccg ccgcggctgg 2340
gaggccctga agtactgggg caacctgctg cagtactgga tccaggagct gaagaacagc 2400
geogtgagee tgttegaege categocate geogtggeeg agggeaeega eegeateate 2460
gaggtggccc agcgcatcgg ccgcgccttc ctgcacatcc cccgccgcat ccgccagggc 2520
                                                                   2547
ttcgagcgcg ccctgctgta actcgag
```

<220>

<210> 49 <211> 2466

<212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: gp160.modSF162.delV2

```
<400> 49
gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
qaqatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
ggcaagctga tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 540
gageceatee ceatecacta etgegecece geeggetteg ceatectgaa gtgcaacgae 600
aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660
atccgccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggagggcgtg 720
gtgatccgca gcgagaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780
agcgtggaga tcaactgcac ccgccccaac aacaacaccc gcaagagcat caccatcggc 840
cccggccgcg ccttctacgc caccggcgac atcatcggcg acatccgcca ggcccactgc 900
aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960
cagttcggca acaagaccat cgtgttcaag cagagcagcg gcggcgaccc cgagatcgtg 1020
atgcacaget teaactgcgg eggegagtte ttetactgca acageaceca getgtteaac 1080
cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200
atccgcggcc agatccgctg cagcagcaac atcaccggcc tgctgctgac ccgcgacggc 1260
ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320
aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380
cccaccaagg ccaagegeeg egtggtgeag egegagaage gegeegtgae eetgggegee 1440
atgttcctgg gcttcctggg cgccgccggc agcaccatgg gcgcccgcag cctgaccctg 1500
accettgcage ccceccaget getgagegge atcettgcage ageagaacaa cctgctgcgc 1560
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1620
gcccgcgtgc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1680
tgcagcggca agctgatctg caccaccgcc gtgccctgga acgccagctg gagcaacaag 1740
agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800
tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860
caggagetge tggagetgga caagtgggee ageetgtgga actggttega cateageaag 1920
tggctgtggt acatcaagat cttcatcatg atcgtgggcg gcctggtggg cctgcgcatc 1980
gtgttcaccg tgctgagcat cgtgaaccgc gtgcgccagg gctacagccc cctgagcttc 2040
cagacccgct teccegeece eegeggeece gaccgeeceg agggeatega ggaggaggge 2100
ggcgagcgcg accgcgaccg cagcagcccc ctggtgcacg gcctgctggc cctgatctgg 2160
gacgacctgc gcagcctgtg cctgttcagc taccaccgcc tgcgcgacct gatcctgatc 2220
gccgcccgca tcgtggagct gctgggccgc cgcggctggg aggccctgaa gtactggggc 2280
aacctgctgc agtactggat ccaggagctg aagaacagcg ccgtgagcct gttcgacgcc 2340
atcgccatcg ccgtggccga gggcaccgac cgcatcatcg aggtggccca gcgcatcggc 2400
cgcgccttcc tgcacatccc ccgccgcatc cgccagggct tcgagcgcgc cctgctgtaa 2460
                                                                 2466
ctcgag
```

```
<210> 50
```

<211> 2358

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

```
<400> 50
gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgggcgc cggcaactgc cagaccagcg tgatcaccca ggcctgcccc 420
aaggtgaget tegageceat ecceateeac tactgegeec eegeeggett egeeateetg 480;
aagtgcaacg acaagaagtt caacggcagc ggcccctgca ccaacgtgag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagetgc tgctgaacgg cagectggcc 600
gaggagggcg tggtgatccg cagcgagaac ttcaccgaca acgccaagac catcatcgtg 660
cagctgaagg agagcgtgga gatcaactgc acccgcccca acaacaacac ccgcaagagc 720
atcaccatcg gccccggccg cgccttctac gccaccggcg acatcatcgg cgacatccgc 780
caggcccact gcaacatcag cggcgagaag tggaacaaca ccctgaagca gatcgtgacc 840
cccgagatcg tgatgcacag cttcaactgc ggcggcgagt tcttctactg caacagcacc 960
cagctgttca acagcacctg gaacaacacc atcggcccca acaacaccaa cggcaccatc 1020
accetgeet geegeateaa geagateate aacegetgge aggaggtggg caaggeeatg 1080
tacgccccc ccatccgcgg ccagatccgc tgcagcagca acatcaccgg cctgctgctg 1140
accegegacg geggeaagga gateageaac accaeegaga tetteegeee eggeggegge 1200
gacatgcgcg acaactggcg cagcgagctg tacaagtaca aggtggtgaa gatcgagccc 1260
ctgggcgtgg cccccaccaa ggccaagcgc cgcgtggtgc agcgcgagaa gcgcgccgtg 1320
accetgggcg ccatgttcct gggcttcctg ggcgccgccg gcagcaccat gggcgcccgc 1380
agectgacce tgaccgtgca ggcccgccag ctgctgagcg gcatcgtgca gcagcagaac 1440
aacctgctgc gcgccatcga ggcccagcag cacctgctgc agctgaccgt gtggggcatc 1500
aagcagctgc aggcccgcgt gctggccgtg gagcgctacc tgaaggacca gcagctgctg 1560
ggcatctggg gctgcagcgg caagctgatc tgcaccaccg ccgtgccctg gaacgccagc 1620
tggagcaaca agagcctgga ccagatctgg aacaacatga cctggatgga gtgggagcgc 1680
gagatcgaca actacaccaa cctgatctac accctgatcg aggagagcca gaaccagcag 1740
gagaagaacg agcaggagct gctggagctg gacaagtggg ccagcctgtg gaactggttc 1800
gacatcagca agtggctgtg gtacatcaag atcttcatca tgatcgtggg cggcctggtg 1860
ggcctgcgca tcgtgttcac cgtgctgagc atcgtgaacc gcgtgcgcca gggctacagc 1920
cccctgagct tccagacccg cttccccgcc ccccgcggcc ccgaccgccc cgagggcatc 1980
gaggaggagg geggegageg egacegegae egeageagee eeetggtgea eggeetgetg 2040
gccctgatct gggacgacct gcgcagcctg tgcctgttca gctaccaccg cctgcgcgac 2100
 ctgatcctga tcgccgcccg catcgtggag ctgctgggcc gccgcggctg ggaggccctg 2160
 aagtactggg gcaacctgct gcagtactgg atccaggagc tgaagaacag cgccgtgagc 2220
 ctgttcgacg ccatcgccat cgccgtggcc gagggcaccg accgcatcat cgaggtggcc 2280
 cagcgcatcg gccgcgcctt cctgcacatc ccccgccgca tccgccaggg cttcgagcgc 2340
                                                                  2358
 gccctgctgt aactcgag
 <210> 51
 <211> 1494
 <212> DNA
 <213> Human immunodeficiency virus
 <400> 51
 acaacagtct tgtgggtcac agtctattat ggggtacctg tgtggaaaga agcaaccacc 60
 actctgtttt gtgcatcaga tgctaaagca tacaaagcag aggcacataa cgtctgggct 120
 acacatgcct gtgtacccac agaccccaac ccacaggaag taaatttaac aaatgtgaca 180
 gaaaatttta acatgtggaa aaataacatg gtggaacaga tgcatgagga tataatcagt 240
```

```
ttatgggatc aaagcctaaa gccatgtgta aaattaaccc cactctgtgt tactttaaat 300
tgtactgata agttgacagg tagtactaat ggcacaaata gtactagtgg cactaatagt 360
actagtggca ctaatagtac tagtactaat agtactgata gttgggaaaa gatgccagaa 420
ggagaaataa aaaactgctc tttcaatatc accacaagtg taagagataa agtgcagaaa 480
gaatattete tettetataa aettgatgta gtaccaatag ataatgataa tgetagetat 540
agattgataa attgtaatac ctcagtcatt acacaagcct gtccaaaggt atcttttgaa 600
ccaattccca tacattattg tgccccggct ggttttgcga ttctaaagtg taaagataag 660
aagttcaatg gaacaggacc atgtaaaaat gtcagcacag tacaatgcac acatggaatt 720
agaccagtag tatcaactca actgctgtta aatggcagtc tagcagaaga agagatagta 780
cttagatctg aaaatttcac agacaatgct aaaaccataa tagtacagct gaatgaatct 840
gtagaaatta attgtataag acccaacaat aatacaagaa aaagtataca tataggacca 900;
gggagagcat tttatgcaac aggtgatata ataggagaca taagacaagc acattgtaac 960
attagtaaag caaactggac taacacttta gaacagatag ttgaaaaatt aagagaacaa 1020
tttgggaata ataaaacaat aatctttaat tcatcctcag gaggggaccc agaaattgta 1080
tttcacagtt ttaattgtgg aggggaattt ttctattgta atacatcaca actatttaat 1140
agtacctgga atattactga agaggtaaat aagactaaag aaaatgacac tatcatactc 1200
ccatgcagaa taagacaaat tataaacatg tggcaagaag taggaaaagc aatgtatgcc 1260
cctcccatca gaggacaaat taaatgttca tcaaatatta cagggctgct attaactaga 1320
gatggtggta ctaacaataa taggacgaac gacaccgaga ccttcagacc tgggggagga 1380
aacatgaagg acaattggag aagtgaatta tataaatata aagtagtaag aattgaacca 1440
ttaggagtag cacccaccca ggcaaagaga agagtggtgc aaagagagaa aaga
                                                                  1494
<210> 52
<211> 2007
<212> DNA
<213> Human immunodeficiency virus
<400> 52
acaacagtct tgtgggtcac agtctattat ggggtacctg tgtggaaaga agcaaccacc 60
actctgtttt gtgcatcaga tgctaaagca tacaaagcag aggcacataa cgtctgggct 120
acacatgcct gtgtacccac agaccccaac ccacaggaag taaatttaac aaatgtgaca 180
gaaaatttta acatgtggaa aaataacatg gtggaacaga tgcatgagga tataatcagt 240
ttatgggatc aaagcctaaa gccatgtgta aaattaaccc cactctgtgt tactttaaat 300
tgtactgata agttgacagg tagtactaat ggcacaaata gtactagtgg cactaatagt 360
actagtggca ctaatagtac tagtactaat agtactgata gttgggaaaa gatgccagaa 420
ggagaaataa aaaactgctc tttcaatatc accacaagtg taagagataa agtgcagaaa 480
gaatattctc tcttctataa acttgatgta gtaccaatag ataatgataa tgctagctat 540
agattgataa attgtaatac ctcagtcatt acacaagcct gtccaaaggt atcttttgaa 600
ccaattccca tacattattg tgccccggct ggttttgcga ttctaaagtg taaagataag 660
aagttcaatg gaacaggacc atgtaaaaat gtcagcacag tacaatgcac acatggaatt 720
agaccagtag tatcaactca actgctgtta aatggcagtc tagcagaaga agagatagta 780
cttagatctg aaaatttcac agacaatgct aaaaccataa tagtacagct gaatgaatct 840
```

gtagaaatta attgtataag acccaacaat aatacaagaa aaagtataca tataggacca 900 gggagagcat tttatgcaac aggtgatata ataggagaca taagacaagc acattgtaac 960 attagtaaag caaactggac taacacttta gaacagatag ttgaaaaatt aagagaacaa 1020 tttgggaata ataaaacaat aatctttaat tcatcctcag gaggggaccc agaaattgta 1080 tttcacagtt ttaattgtgg aggggaattt ttctattgta atacatcaca actatttaat 1140 agtacctgga atattactga agaggtaaat aagactaaag aaaatgacac tatcatactc 1200 ccatgcagaa taagacaaat tataaacatg tggcaagaag taggaaaagc aatgtatgcc 1260 cctcccatca gaggacaaat taaatgtca tcaaaatatta cagggctgct attaactaga 1320 gatggtggta ctaacaataa taggacgaac gacaccgaga ccttcagacc tgggggagga 1380 aacatggagg cacccaccca ggcaaagaga agagtggtgc aaagagagaa aagagcagtg 1500 ggactaggag ctttgttcat tgggttcttg ggagcagcag gaagcactat gggcgcagcg 1560

```
tcagtgacgc tgacggtaca ggccagacaa ttattgtctg gtatagtgca acagcagaac 1620
aatttgctga gagctattga ggcgcaacag catctgttgc aactcacggt ctggggcatc 1680
aaacagctcc aggcaagaat cctggctgtg gaaagatacc taaaggatca acagctccta 1740
gggatttggg gttgctctgg aaaactcatt tgcaccacta ctgtgccttg gaactctagt 1800
tggagtaata aatctctgac tgagatttgg gataatatga cctggatgga gtgggaaaga 1860
gaaattggca attatacagg cttaatatac aatttaattg aaatagcaca aaaccagcaa 1920
gaaaagaatg aacaagaatt attggaatta gacaagtggg caagtttgtg gaattggttt 1980
                                                                  2007
gatataacaa actggctgtg gtatata
<210> 53
<211> 2532
<212> DNA
<213> Human immunodeficiency virus
<400> 53
acaacagtct tgtgggtcac agtctattat ggggtacctg tgtggaaaga agcaaccacc 60
actctgtttt gtgcatcaga tgctaaagca tacaaagcag aggcacataa cgtctgggct 120
acacatgcct gtgtacccac agaccccaac ccacaggaag taaatttaac aaatgtgaca 180
gaaaatttta acatgtggaa aaataacatg gtggaacaga tgcatgagga tataatcagt 240
ttatgggatc aaagcctaaa gccatgtgta aaattaaccc cactctgtgt tactttaaat 300
tgtactgata agttgacagg tagtactaat ggcacaaata gtactagtgg cactaatagt 360
actagtggca ctaatagtac tagtactaat agtactgata gttgggaaaa gatgccagaa 420
ggagaaataa aaaactgctc tttcaatatc accacaagtg taagagataa agtgcagaaa 480
gaatattoto tottotataa aottgatgta gtaccaatag ataatgataa tgotagotat 540
agattgataa attgtaatac ctcagtcatt acacaagcct gtccaaaggt atcttttgaa 600
ccaattccca tacattattg tgccccggct ggttttgcga ttctaaagtg taaagataag 660
aagttcaatg gaacaggacc atgtaaaaat gtcagcacag tacaatgcac acatggaatt 720
agaccagtag tatcaactca actgctgtta aatggcagtc tagcagaaga agagatagta 780
cttagatctg aaaatttcac agacaatgct aaaaccataa tagtacagct gaatgaatct 840
gtagaaatta attgtataag acccaacaat aatacaagaa aaagtataca tataggacca 900
gggagagcat tttatgcaac aggtgatata ataggagaca taagacaagc acattgtaac 960
attagtaaag caaactggac taacacttta gaacagatag ttgaaaaatt aagagaacaa 1020
tttgggaata ataaaacaat aatctttaat tcatcctcag gaggggaccc agaaattgta 1080
 tttcacagtt ttaattgtgg aggggaattt ttctattgta atacatcaca actatttaat 1140
 agtacctgga atattactga agaggtaaat aagactaaag aaaatgacac tatcatactc 1200
 ccatgcagaa taagacaaat tataaacatg tggcaagaag taggaaaagc aatgtatgcc 1260
 cctcccatca gaggacaaat taaatgttca tcaaatatta cagggctgct attaactaga 1320
 gatggtggta ctaacaataa taggacgaac gacaccgaga ccttcagacc tgggggagga 1380
 aacatgaagg acaattggag aagtgaatta tataaatata aagtagtaag aattgaacca 1440
 ttaggagtag cacccaccca ggcaaagaga agagtggtgc aaagagagaa aagagcagtg 1500
 ggactaggag ctttgttcat tgggttcttg ggagcagcag gaagcactat gggcgcagcg 1560
 tcagtgacgc tgacggtaca ggccagacaa ttattgtctg gtatagtgca acagcagaac 1620
 aatttgctga gagctattga ggcgcaacag catctgttgc aactcacggt ctggggcatc 1680
 aaacagetee aggeaagaat eetggetgtg gaaagataee taaaggatea acageteeta 1740
 gggatttggg gttgctctgg aaaactcatt tgcaccacta ctgtgccttg gaactctagt 1800
 tggagtaata aatctctgac tgagatttgg gataatatga cctggatgga gtgggaaaga 1860
 gaaattggca attatacagg cttaatatac aatttaattg aaatagcaca aaaccagcaa 1920
 gaaaagaatg aacaagaatt attggaatta gacaagtggg caagtttgtg gaattggttt 1980
 gatataacaa actggctgtg gtatataaga atattcataa tgatagtagg aggcttgata 2040
 ggtttaagaa tagtttttgc tgtactttct atagtgaata gagttaggca gggatactca 2100
 ccaatatcat tgcagacccg cctcccagct cagaggggac ccgacaggcc cgaaggaatc 2160
 gaagaagaag gtggagagag agacagagac agatccaatc gattagtgca tggattattg 2220
 gcactcatct gggacgatct gcggagcctg tgcctcttca gctaccaccg cttgagagac 2280
```

ttactcttga ttgtagcgag gattgtggaa cttctgggac gcagggggtg ggaagccctc 2340

```
aagtattggt ggaatctcct gcagtattgg agtcaggagc taaagagtag tgctgttagt 2400
ttgtttaatg ccacagcaat agcagtagct gaagggacag ataggattat agaaatagta 2460
caaagaattt ttagagctgt aattcacata cctagaagaa taagacaggg cttggagagg 2520
gctttactat aa
<210> 54
<211> 1599
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: gp120.modUS4
<400> 54
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtetteg tttegeceag egecaceace gtgetgtggg tgacegtgta etaeggegtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
geegaggeee acaaegtgtg ggeeaceeae geetgegtge eeacegaeee caaceccaag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
aacagcacca gcggcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
gacagctggg agaagatgcc cgagggcgag atcaagaact gcagcttcaa catcaccacc 540
agegtgegeg acaaggtgea gaaggagtae ageetgttet acaagetgga egtggtgeee 600
atcgacaacg acaacgccag ctaccgcctg atcaactgca acaccagcgt gatcacccag 660
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 720
gccatcctga agtgcaagga caagaagttc aacggcaccg gcccctgcaa gaacgtgagc 780
acceptgcagt gcacccacge catcceccc gtggtgagca cccagctgct gctgaacggc 840
agcctggccg aggaggagat cgtgctgcgc tccgagaact tcaccgacaa cgccaagacc 900
atcatcgtgc agctgaacga gtccgtggag atcaactgca tccgccccaa caacaacacg 960
cgtaagagca tccacatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 1020
gacatccgcc aggcccactg caacatcagc aaggccaact ggaccaacac cctcgagcag 1080
atcgtggaga agctgcgcga gcagttcggc aacaacaaga ccatcatctt caacagcagc 1140
ageggeggeg acceegagat egtgtteeae agetteaaet geggeggega gttettetae 1200
tgcaacacca gccagctgtt caacagcacc tggaacatca ccgaggaggt gaacaagacc 1260
aaggagaacg acaccatcat cctgccctgc cgcatccgcc agatcatcaa catgtggcag 1320
gaggtgggca aggccatgta cgccccccc atccgcggcc agatcaagtg cagcagcaat 1380
attaccggcc tgctgctgac ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440
gagacettee geeeggegg eggeaacatg aaggacaact ggegeagega getgtacaag 1500
 tacaaggtgg tgcgcatcga gcccctgggc gtggccccca cccaggccaa gcgccgcgtg 1560
                                                                   1599
gtgcagcgcg agaagcgcta agatatcgga tcctctaga
 <210> 55
 <211> 1350
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       gp120.modUS4.del 128-194
 <400> 55
 gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
 gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
```

```
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
geegaggeee acaaegtgtg ggeeaceeae geetgegtge eeacegaeee caaceeceag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtggggc agggaactgc gagaccagcg tgatcaccca ggcctgcccc 420
aaggtgaget tegageeeat ecceateeae tactgegeee eegeeggett egeeateetg 480
aagtgcaagg acaagaagtt caacggcacc ggcccctgca agaacgtgag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggaggaga tcgtgctgcg ctccgagaac ttcaccgaca acgccaagac catcatcgtg 660
cagctgaacg agtccgtgga gatcaactgc atccgcccca acaacaacac gcgtaagagc 720
atccacatcg gccccggccg cgccttctac gccaccggcg acatcatcgg cgacatccgc 780;
caggeceact geaacateag caaggecaac tggaceaaca ceetegagea gategtggag 840
aagctgcgcg agcagttcgg caacaacaag accatcatct tcaacagcag cagcggcggc 900
gaccccgaga tcgtgttcca cagcttcaac tgcggcggcg agttcttcta ctgcaacacc 960
agccagctgt tcaacagcac ctggaacatc accgaggagg tgaacaagac caaggagaac 1020
gacaccatca tectgeeetg eegcateege eagateatea acatgtggea ggaggtggge 1080
aaggccatgt acgcccccc catccgcggc cagatcaagt gcagcagcaa tattaccggc 1140
ctgctgctga cccgcgacgg cggcaccaac aacaaccgca ccaacgacac cgagaccttc 1200
cgccccggcg gcggcaacat gaaggacaac tggcgcagcg agctgtacaa gtacaaggtg 1260
gtgcgcatcg agcccctggg cgtggccccc acccaggcca agcgccgcgt ggtgcagcgc 1320
                                                                   1350
gagaagcgct aagatatcgg atcctctaga
<210> 56
<211> 2112
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: gp140.modUS4
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
 cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
 geegaggeee acaaegtgtg ggeeaceeae geetgegtge eeacegaeee caaeeeceag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
 cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
 aacagcacca gcggcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
 gacagetggg agaagatgcc cgagggcgag atcaagaact gcagettcaa catcaccacc 540
 agcgtgcgcg acaaggtgca gaaggagtac agcctgttct acaagctgga cgtggtgccc 600
 atcgacaacg acaacgccag ctaccgcctg atcaactgca acaccagcgt gatcacccag 660
 gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 720
 gccatcctga agtgcaagga caagaagttc aacggcaccg gcccctgcaa gaacgtgagc 780
 accgtgcagt gcacccacgg catccgccc gtggtgagca cccagctgct gctgaacggc 840
 agcctggccg aggaggagat cgtgctgcgc tccgagaact tcaccgacaa cgccaagacc 900
 atcatcgtgc agctgaacga gtccgtggag atcaactgca tccgccccaa caacaacacg 960
 cgtaagagca tccacatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 1020
 gacatccgcc aggcccactg caacatcagc aaggccaact ggaccaacac cctcgagcag 1080
 atcgtggaga agctgcgcga gcagttcggc aacaacaaga ccatcatctt caacagcagc 1140
 ageggeggeg acceegagat egtgtteeac agetteaact geggeggega gttettetac 1200
 tgcaacacca gccagctgtt caacagcacc tggaacatca ccgaggaggt gaacaagacc 1260
 aaggagaacg acaccatcat cctgccctgc cgcatccgcc agatcatcaa catgtggcag 1320
 gaggtgggca aggccatgta cgccccccc atccgcggcc agatcaagtg cagcagcaat 1380
```

```
attaccggcc tgctgctgac ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440
gagacettee geeeggegg eggeaacatg aaggacaact ggegeagega getgtacaag 1500
tacaaggtgg tgcgcatcga gcccctgggc gtggccccca cccaggccaa gcgccgcgtg 1560
gtgcagcgcg agaagcgcgc cgtgggcctg ggcgccctgt tcatcggctt cctgggcgcc 1620
gccgggagca ccatgggcgc cgcctccgtg accctgaccg tgcaggcccg ccagctgctg 1680
ageggeateg tgeageagea gaacaacetg etgegegeea tegaggeeea geageacetg 1740
ctgcagctga ccgtgtgggg catcaagcag ctgcaggccc gcatcctggc cgtggagcgc 1800
tacctgaagg accagcagct gctgggcatc tggggctgca gcggcaagct gatctgcacc 1860
accaccgtgc cctggaacag cagctggagc aacaagagcc tgaccgagat ctgggacaac 1920
atgacctgga tggagtggga gcgcgagatc ggcaactaca ccggcctgat ctacaacctg 1980
atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgctgga gctggacaag 2040
tgggccagcc tgtggaactg gttcgacatc accaactggc tgtggtacat ctaagatatc 2100
                                                                  2112
ggatcctcta ga
<210> 57
<211> 2112
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.mut.modUS4
<400> 57
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
geogaggeee acaacgtgtg ggeeacceae geetgegtge ceaecgaeee caacceceag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accecetgt gegtgaceet gaactgeace gacaagetga eeggeageac caaeggeace 420
aacagcacca gcggcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
gacagctggg agaagatgcc cgagggcgag atcaagaact gcagcttcaa catcaccacc 540
agcgtgcgcg acaaggtgca gaaggagtac agcctgttct acaagctgga cgtggtgccc 600
atcgacaacg acaacgccag ctaccgcctg atcaactgca acaccagcgt gatcacccag 660
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 720
gccatcctga agtgcaagga caagaagttc aacggcaccg gcccctgcaa gaacgtgagc 780
acceptgcagt gcacccacge catcceccc gtggtgagca cccagctgct gctgaacggc 840
 agcctggccg aggaggagat cgtgctgcgc tccgagaact tcaccgacaa cgccaagacc 900
 atcatcgtgc agctgaacga gtccgtggag atcaactgca tccgccccaa caacaacacg 960
 cgtaagagca tccacatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 1020
 gacatccgcc aggcccactg caacatcagc aaggccaact ggaccaacac cctcgagcag 1080
 atcgtggaga agctgcgcga gcagttcggc aacaacaaga ccatcatctt caacagcagc 1140
 ageggeggeg acceegagat egtgtteeac agetteaact geggeggega gttettetae 1200
 tgcaacacca gccagctgtt caacagcacc tggaacatca ccgaggaggt gaacaagacc 1260
 aaggagaacg acaccatcat cctgccctgc cgcatccgcc agatcatcaa catgtggcag 1320
 gaggtgggca aggccatgta cgccccccc atccgcggcc agatcaagtg cagcagcaat 1380
 attaccggcc tgctgctgac ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440
 gagacettee geeeggegg eggeaacatg aaggacaact ggegeagega getgtacaag 1500
 tacaaggtgg tgcgcatcga gcccctgggc gtggccccca cccaggccaa gcgccgcgtg 1560
 gtgcagcgcg agaagagcgc cgtgggcctg ggcgccctgt tcatcggctt cctgggcgcc 1620
 gccgggagca ccatgggcgc cgcctccgtg accctgaccg tgcaggcccg ccagctgctg 1680
 ageggcateg tgcagcagca gaacaacetg etgegegeca tegaggeeca geagcacetg 1740
 ctgcagctga ccgtgtgggg catcaagcag ctgcaggccc gcatcctggc cgtggagcgc 1800
```

```
tacctgaagg accagcagct gctgggcatc tggggctgca gcggcaagct gatctgcacc 1860
accaccgtgc cctggaacag cagctggagc aacaagagcc tgaccgagat ctgggacaac 1920
atgacctgga tggagtggga gcgcgagatc ggcaactaca ccggcctgat ctacaacctg 1980
atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgctgga gctggacaag 2040
tgggccagcc tgtggaactg gttcgacatc accaactggc tgtggtacat ctaagatatc 2100
                                                                  2112
qqatcctcta ga
<210> 58
<211> 2181
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: gp140TM.modUS4
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
geogaggee acaacgtgtg ggecacceac geotgegtge ceacegacee caacececag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
aacagcacca gcggcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
gacagctggg agaagatgcc cgagggcgag atcaagaact gcagcttcaa catcaccacc 540
agcgtgcgcg acaaggtgca gaaggagtac agcctgttct acaagctgga cgtggtgccc 600
atcgacaacg acaacgccag ctaccgcctg atcaactgca acaccagcgt gatcacccag 660
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 720
gccatcctga agtgcaagga caagaagttc aacggcaccg gcccctgcaa gaacgtgagc 780
acceptgcagt gcacccacge catcceccc gtggtgagca cccagctgct gctgaacggc 840
agcctggccg aggaggagat cgtgctgcgc tccgagaact tcaccgacaa cgccaagacc 900
atcatcgtgc agctgaacga gtccgtggag atcaactgca tccgccccaa caacaacacg 960
cgtaagagca tccacatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 1020
gacatccgcc aggcccactg caacatcagc aaggccaact ggaccaacac cctcgagcag 1080
atcgtggaga agctgcgcga gcagttcggc aacaacaaga ccatcatctt caacagcagc 1140
ageggeggeg acceegagat egtgtteeac agetteaact geggeggega gttettetac 1200
tgcaacacca gccagctgtt caacagcacc tggaacatca ccgaggaggt gaacaagacc 1260
aaggagaacg acaccatcat cctgccctgc cgcatccgcc agatcatcaa catgtggcag 1320
gaggtgggca aggccatgta cgccccccc atccgcggcc agatcaagtg cagcagcaat 1380
attaccggcc tgctgctgac ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440
gagacettee geeceggegg eggeaacatg aaggacaact ggegeagega getgtacaag 1500
tacaaggtgg tgcgcatcga gcccctgggc gtggccccca cccaggccaa gcgccgcgtg 1560
gtgcagcgcg agaagcgcgc cgtgggcctg ggcgccctgt tcatcggctt cctgggcgcc 1620
gccgggagca ccatgggcgc cgcctccgtg accctgaccg tgcaggcccg ccagctgctg 1680
ageggcateg tgcagcagca gaacaacetg etgegegeca tegaggeeca geageacetg 1740
ctgcagctga ccgtgtgggg catcaagcag ctgcaggccc gcatcctggc cgtggagcgc 1800
tacctgaagg accagcagct gctgggcatc tggggctgca gcggcaagct gatctgcacc 1860
accaccgtgc cctggaacag cagctggagc aacaagagcc tgaccgagat ctgggacaac 1920
atgacctgga tggagtggga gcgcgagatc ggcaactaca ccggcctgat ctacaacctg 1980
atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgctgga gctggacaag 2040
 tgggccagcc tgtggaactg gttcgacatc accaactggc tgtggtacat ccgcatcttc 2100
 atcatgatcg tgggcggcct gatcggcctg cgcatcgtgt tcgccgtgct gagcatcgtg 2160
                                                                   2181
 taagatatcg gatcctctag a
```

```
<210> 59
<211> 1818
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.modUS4.delV1/V2
<400> 59
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60 3
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caaccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgggcgcc 360
ggccaggcct gccccaaggt gagcttcgag cccatcccca tccactactg cgcccccgcc 420
ggcttcgcca tcctgaagtg caaggacaag aagttcaacg gcaccggccc ctgcaagaac 480
gtgagcaccg tgcagtgcac ccacggcatc cgccccgtgg tgagcaccca gctgctgctg 540
aacggcagcc tggccgagga ggagatcgtg ctgcgctccg agaacttcac cgacaacgcc 600
aagaccatca tcgtgcagct gaacgagtcc gtggagatca actgcatccg ccccaacaac 660
aacacgcgta agagcatcca catcggcccc ggccgcgcct tctacgccac cggcgacatc 720
ateggegaca teegeeagge ceaetgeaac ateageaagg ceaaetggae caacacecte 780
gagcagatcg tggagaagct gcgcgagcag ttcggcaaca acaagaccat catcttcaac 840
agcagcagcg gcggcgaccc cgagatcgtg ttccacagct tcaactgcgg cggcgagttc 900
ttctactgca acaccagcca gctgttcaac agcacctgga acatcaccga ggaggtgaac 960
aagaccaagg agaacgacac catcatectg ceetgeegea teegeeagat catcaacatg 1020
tggcaggagg tgggcaaggc catgtacgcc cccccatcc gcggccagat caagtgcagc 1080
agcaatatta ccggcctgct gctgacccgc gacggcggca ccaacaacaa ccgcaccaac 1140
gacaccgaga ccttccgccc cggcggcggc aacatgaagg acaactggcg cagcgagctg 1200
tacaagtaca aggtggtgcg catcgagccc ctgggcgtgg cccccaccca ggccaagcgc 1260
cgcgtggtgc agcgcgagaa gcgcgccgtg ggcctgggcg ccctgttcat cggcttcctg 1320
ggcgccgccg ggagcaccat gggcgccgcc tccgtgaccc tgaccgtgca ggcccgccag 1380
ctgctgagcg gcatcgtgca gcagcagaac aacctgctgc gcgccatcga ggcccagcag 1440
cacctgctgc agctgaccgt gtggggcatc aagcagctgc aggcccgcat cctggccgtg 1500
gagcgctacc tgaaggacca gcagctgctg ggcatctggg gctgcagcgg caagctgatc 1560
tgcaccacca ccgtgccctg gaacagcagc tggagcaaca agagcctgac cgagatctgg 1620
gacaacatga cctggatgga gtgggagcgc gagatcggca actacaccgg cctgatctac 1680
aacctgatcg agatcgccca gaaccagcag gagaagaacg agcaggagct gctggagctg 1740
gacaagtggg ccagcctgtg gaactggttc gacatcacca actggctgtg gtacatctaa 1800
                                                                   1818
gatatcggat cctctaga
<210> 60
 <211> 2031
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       qp140.modUS4.delV2
 <400> 60
 gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
```

gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120

```
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
geegaggeee acaaegtgtg ggeeaeceae geetgegtge eeaeegaeee eaaeeceaag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
aacagcacca gcggcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
gacagetggg agaagatgee egagggegag atcaagaact geagetteaa categgegee 540
ggccgcctga tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 600
gageceatee ceatecacta etgegeecee geeggetteg ceatectgaa gtgcaaggae 660
aagaagttca acggcaccgg cccctgcaag aacgtgagca ccgtgcagtg cacccacggc 720
atccgccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggaggagatc 780;
gtgctgcgct ccgagaactt caccgacaac gccaagacca tcatcgtgca gctgaacgag 840
teegtggaga teaactgeat eegececaac aacaacaege gtaagageat eeacategge 900
cccggccgcg ccttctacgc caccggcgac atcatcggcg acatccgcca ggcccactgc 960
aacatcagca aggccaactg gaccaacacc ctcgagcaga tcgtggagaa gctgcgcgag 1020
cagtteggea acaacaagae catcatette aacageagea geggeggega eeeegagate 1080
gtgttccaca gcttcaactg cggcggcgag ttcttctact gcaacaccag ccagctgttc 1140
aacagcacct ggaacatcac cgaggaggtg aacaagacca aggagaacga caccatcatc 1200
ctgccctgcc gcatccgcca gatcatcaac atgtggcagg aggtgggcaa ggccatgtac 1260
gccccccca tccgcggcca gatcaagtgc agcagcaata ttaccggcct gctgctgacc 1320
cgcgacggcg gcaccaacaa caaccgcacc aacgacaccg agaccttccg ccccggcggc 1380
ggcaacatga aggacaactg gcgcagcgag ctgtacaagt acaaggtggt gcgcatcgag 1440
cccctgggcg tggcccccac ccaggccaag cgccgcgtgg tgcagcgcga gaagcgcgcc 1500
gtgggcctgg gcgccctgtt catcggcttc ctgggcgccg ccgggagcac catgggcgcc 1560
gcctccgtga ccctgaccgt gcaggcccgc cagctgctga gcggcatcgt gcagcagcag 1620
aacaacctgc tgcgcgccat cgaggcccag cagcacctgc tgcagctgac cgtgtggggc 1680
atcaagcagc tgcaggcccg catcctggcc gtggagcgct acctgaagga ccagcagctg 1740
ctgggcatct ggggctgcag cggcaagctg atctgcacca ccaccgtgcc ctggaacagc 1800
agctggagca acaagagcct gaccgagatc tgggacaaca tgacctggat ggagtgggag 1860
cgcgagatcg gcaactacac cggcctgatc tacaacctga tcgagatcgc ccagaaccag 1920
caggagaaga acgagcagga gctgctggag ctggacaagt gggccagcct gtggaactgg 1980
                                                                   2031
ttcgacatca ccaactggct gtggtacatc taagatatcg gatcctctag a
 <210> 61
 <211> 1818
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       qp140.mut.modUS4.delV1/V2
 <400> 61
 gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
 gcagtetteg tttegeceag egecaceace gtgetgtggg tgacegtgta etaeggegtg 120
 cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcttacaag 180
 gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
 cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgggcgcc 360
 ggccaggcct gccccaaggt gagcttcgag cccatcccca tccactactg cgcccccgcc 420
 ggcttcgcca tcctgaagtg caaggacaag aagttcaacg gcaccggccc ctgcaagaac 480
 gtgagcaccg tgcagtgcac ccacggcatc cgccccgtgg tgagcaccca gctgctgctg 540
 aacggcagcc tggccgagga ggagatcgtg ctgcgctccg agaacttcac cgacaacgcc 600
 aagaccatca tcgtgcagct gaacgagtcc gtggagatca actgcatccg ccccaacaac 660
```

```
aacacgcgta agagcatcca catcggcccc ggccgcgcct tctacgccac cggcgacatc 720
ateggegaca teegeeagge ceaetgeaae ateageaagg ceaaetggae caacaceete 780
gagcagatcg tggagaagct gcgcgagcag ttcggcaaca acaagaccat catcttcaac 840
agcagcagcg gcggcgaccc cgagatcgtg ttccacagct tcaactgcgg cggcgagttc 900
ttctactgca acaccagcca gctgttcaac agcacctgga acatcaccga ggaggtgaac 960
aagaccaagg agaacgacac catcatectg ceetgeegea teegecagat catcaacatg 1020
tggcaggagg tgggcaaggc catgtacgcc cccccatcc gcggccagat caagtgcagc 1080
agcaatatta ccggcctgct gctgacccgc gacggcggca ccaacaacaa ccgcaccaac 1140
gacaccgaga ccttccgccc cggcggcggc aacatgaagg acaactggcg cagcgagctg 1200
tacaagtaca aggtggtgcg catcgagccc ctgggcgtgg cccccaccca ggccaagcgc 1260
cgcgtggtgc agcgcgagaa gagcgccgtg ggcctgggcg ccctgttcat cggcttcctg 1320
ggcgccgccg ggagcaccat gggcgccgcc tccgtgaccc tgaccgtgca ggcccgccag 1380
ctgctgagcg gcatcgtgca gcagcagaac aacctgctgc gcgccatcga ggcccagcag 1440
cacctgctgc agctgaccgt gtggggcatc aagcagctgc aggcccgcat cctggccgtg 1500
gagcgctacc tgaaggacca gcagctgctg ggcatctggg gctgcagcgg caagctgatc 1560
tgcaccacca ccgtgccctg gaacagcagc tggagcaaca agagcctgac cgagatctgg 1620
gacaacatga cctggatgga gtgggagcgc gagatcggca actacaccgg cctgatctac 1680
aacctgatcg agatcgccca gaaccagcag gagaagaacg agcaggagct gctggagctg 1740
gacaagtggg ccagcctgtg gaactggttc gacatcacca actggctgtg gtacatctaa 1800
                                                                   1818
gatatcggat cctctaga
<210> 62
<211> 1818
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp140.modUS4.del 128-194
<400> 62
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcttacaag 180
geegaggeec acaacgtgtg ggecacccac geetgegtge ecacegaece caacccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
 cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgggcgcc 360
 ggccaggcct gccccaaggt gagcttcgag cccatcccca tccactactg cgccccgcc 420
 ggcttcgcca tcctgaagtg caaggacaag aagttcaacg gcaccggccc ctgcaagaac 480
 gtgagcaccg tgcagtgcac ccacggcatc cgccccgtgg tgagcaccca gctgctgctg 540
 aacggcagcc tggccgagga ggagatcgtg ctgcgctccg agaacttcac cgacaacgcc 600
 aagaccatca tcgtgcagct gaacgagtcc gtggagatca actgcatccg ccccaacaac 660
 aacacgcgta agagcatcca catcggcccc ggccgcgcct tctacgccac cggcgacatc 720
 ateggegaca teegeeagge ceaetgeaac ateageaagg ceaactggae caacaceete 780
 gagcagatcg tggagaagct gcgcgagcag ttcggcaaca acaagaccat catcttcaac 840
 agcagcagcg gcggcgaccc cgagatcgtg ttccacagct tcaactgcgg cggcgagttc 900
 ttctactgca acaccagcca gctgttcaac agcacctgga acatcaccga ggaggtgaac 960
 aagaccaagg agaacgacac catcatectg ceetgeegea teegeeagat catcaacatg 1020
 tggcaggagg tgggcaaggc catgtacgcc cccccatcc gcggccagat caagtgcagc 1080
 agcaatatta ccggcctgct gctgacccgc gacggcggca ccaacaacaa ccgcaccaac 1140
 gacaccgaga ccttccgccc cggcggcggc aacatgaagg acaactggcg cagcgagctg 1200
 tacaagtaca aggtggtgcg catcgagccc ctgggcgtgg cccccaccca ggccaagcgc 1260
 cgcgtggtgc agcgcgagaa gagcgccgtg ggcctgggcg ccctgttcat cggcttcctg 1320
 ggcgccgccg ggagcaccat gggcgccgcc tccgtgaccc tgaccgtgca ggcccgccag 1380
```

```
ctgctgagcg gcatcgtgca gcagcagaac aacctgctgc gcgccatcga ggcccagcag 1440
cacctgctgc agctgaccgt gtggggcatc aagcagctgc aggcccgcat cctggccgtg 1500
gagcgctacc tgaaggacca gcagctgctg ggcatctggg gctgcagcgg caagctgatc 1560
tgcaccacca ccgtgccctg gaacagcagc tggagcaaca agagcctgac cgagatctgg 1620
gacaacatga cctggatgga gtgggagcgc gagatcggca actacaccgg cctgatctac 1680
aacctgatcg agatcgccca gaaccagcag gagaagaacg agcaggagct gctggagctg 1740
gacaagtggg ccagcctgtg gaactggttc gacatcacca actggctgtg gtacatctaa 1800
                                                                  1818
gatatcggat cctctaga
<210> 63
<211> 1863
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      qp140.mut.modUS4.del 128-194
<400> 63
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtetteg tttegeccag egecaceace gtgetgtggg tgaeegtgta etaeggegtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcttacaag 180
gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtggggc agggaactgc gagaccagcg tgatcaccca ggcctgcccc 420
aaggtgaget tegageecat ecceateeac tactgegeec eegeeggett egeeateetg 480
aagtgcaagg acaagaagtt caacggcacc ggcccctgca agaacgtgag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggaggaga tegtgetgeg eteegagaae tteacegaea aegeeaagae eateategtg 660
cagctgaacg agtccgtgga gatcaactgc atccgcccca acaacaacac gcgtaagagc 720
atccacatcg gccccggccg cgccttctac gccaccggcg acatcatcgg cgacatccgc 780
caggcccact gcaacatcag caaggccaac tggaccaaca ccctcgagca gatcgtggag 840
aagctgcgcg agcagttcgg caacaacaag accatcatct tcaacagcag cagcggcggc 900
gaccccgaga tcgtgttcca cagcttcaac tgcggcggcg agttcttcta ctgcaacacc 960
agccagctgt tcaacagcac ctggaacatc accgaggagg tgaacaagac caaggagaac 1020
 gacaccatca tectgeeetg eegeateege eagateatea acatgtggea ggaggtggge 1080
 aaggccatgt acgcccccc catccgcggc cagatcaagt gcagcagcaa tattaccggc 1140
 ctgctgctga cccgcgacgg cggcaccaac aacaaccgca ccaacgacac cgagaccttc 1200
 cgccccggcg gcggcaacat gaaggacaac tggcgcagcg agctgtacaa gtacaaggtg 1260
 gtgcgcatcg agcccctggg cgtggccccc acccaggcca agcgccgcgt ggtgcagcgc 1320
 gagaagagcg ccgtgggcct gggcgccctg ttcatcggct tcctgggcgc cgccgggagc 1380
 accatgggcg ccgcctccgt gaccctgacc gtgcaggccc gccagctgct gagcggcatc 1440
 gtgcagcagc agaacaacct gctgcgcgcc atcgaggccc agcagcacct gctgcagctg 1500
 accgtgtggg gcatcaagca gctgcaggcc cgcatcctgg ccgtggagcg ctacctgaag 1560
 gaccagcagc tgctgggcat ctggggctgc agcggcaagc tgatctgcac caccaccgtg 1620
 ccctggaaca gcagctggag caacaagagc ctgaccgaga tctgggacaa catgacctgg 1680
 atggagtggg agcgcgagat cggcaactac accggcctga tctacaacct gatcgagatc 1740
 gcccagaacc agcaggagaa gaacgagcag gagctgctgg agctggacaa gtgggccagc 1800
 ctgtggaact ggttcgacat caccaactgg ctgtggtaca tctaagatat cggatcctct 1860
                                                                    1863
 aga
```

<211> 2634

<210> 64

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: gp160.modUS4
<400> 64
gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
geogaggeee acaacgtgtg ggeeacceae geotgegtge ceaecgaeee caacceceag 240:
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
aacagcacca gcggcaccaa cagcaccagc ggcaccaaca gcaccagcac caacagcacc 480
gacagetggg agaagatgee egagggegag atcaagaact geagetteaa cateaceace 540
agcgtgcgcg acaaggtgca gaaggagtac agcctgttct acaagctgga cgtggtgccc 600
atcgacaacg acaacgccag ctaccgcctg atcaactgca acaccagcgt gatcacccag 660
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 720
gccatcctga agtgcaagga caagaagttc aacggcaccg gcccctgcaa gaacgtgagc 780
accgtgcagt gcacccacgg catccgccc gtggtgagca cccagctgct gctgaacggc 840
agcctggccg aggaggagat cgtgctgcgc tccgagaact tcaccgacaa cgccaagacc 900
atcatcgtgc agctgaacga gtccgtggag atcaactgca tccgccccaa caacaacacg 960
cgtaagagca tccacatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 1020
gacatccgcc aggcccactg caacatcagc aaggccaact ggaccaacac cctcgagcag 1080
atcgtggaga agctgcgcga gcagttcggc aacaacaaga ccatcatctt caacagcagc 1140
ageggeggeg acceegagat egtgtteeac agetteaact geggeggega gttettetae 1200
tgcaacacca gccagctgtt caacagcacc tggaacatca ccgaggaggt gaacaagacc 1260
aaggagaacg acaccatcat cctgccctgc cgcatccgcc agatcatcaa catgtggcag 1320
gaggtgggca aggccatgta cgccccccc atccgcggcc agatcaagtg cagcagcaat 1380
attaccggcc tgctgctgac ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440
gagacettee geeeggegg eggeaacatg aaggacaact ggegeagega getgtacaag 1500
tacaaggtgg tgcgcatcga gcccctgggc gtggccccca cccaggccaa gcgccgcgtg 1560
gtgcagcgcg agaagcgcgc cgtgggcctg ggcgccctgt tcatcggctt cctgggcgcc 1620
geoggagea ceatgggege egecteegtg accetgaceg tgeaggeeeg ceagetgetg 1680
ageggeateg tgeageagea gaacaacetg etgegegeea tegaggeeea geageacetg 1740
ctgcagctga ccgtgtgggg catcaagcag ctgcaggccc gcatcctggc cgtggagcgc 1800
tacctgaagg accagcagct gctgggcatc tggggctgca gcggcaagct gatctgcacc 1860
accaccgtgc cctggaacag cagctggagc aacaagagcc tgaccgagat ctgggacaac 1920
atgacctgga tggagtggga gcgcgagatc ggcaactaca ccggcctgat ctacaacctg 1980
atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgctgga gctggacaag 2040
tgggccagcc tgtggaactg gttcgacatc accaactggc tgtggtacat ccgcatcttc 2100
atcatgatcg tgggcggcct gatcggcctg cgcatcgtgt tcgccgtgct gagcatcgtg 2160
 aaccgcgtgc gccagggcta cagccccatc agcctgcaga cccgcctgcc cgcccagcgc 2220
 ggccccgacc gccccgaggg catcgaggag gagggcggcg agcgcgaccg cgaccgcagc 2280
 aaccgcctgg tgcacggcct gctggccctg atctgggacg acctgcgcag cctgtgcctg 2340
 ttcagctacc accgcctgcg cgacctgctg ctgatcgtgg cccgcatcgt ggagctgctg 2400
 ggccgccgcg gctgggaggc cctgaagtac tggtggaacc tgctgcagta ctggagccag 2460
 gagctgaaga gcagcgccgt gagcctgttc aacgccaccg ccatcgccgt ggccgagggc 2520
 accgaccgca tcatcgagat cgtgcagcgc atcttccgcg ccgtgatcca catcccccgc 2580
 cgcatccgcc agggcctgga gcgcgccctg ctgtaagata tcggatcctc taga
                                                                   2634
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp160.modUS4.delV1
<400> 65
gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcttacaag 180;
geegaggeee acaaegtgtg ggeeaeceae geetgegtge eeaeegaeee eaaeeeceag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gaactgcacc gacaagctgg gcgccggcgg cgagatcaag 420
aactgcagct tcaacatcac caccagcgtg cgcgacaagg tgcagaagga gtacagcctg 480
ttctacaagc tggacgtggt gcccatcgac aacgacaacg ccagctaccg cctgatcaac 540
tgcaacacca gcgtgatcac ccaggcctgc cccaaggtga gcttcgagcc catccccatc 600
cactactgcg cccccgccgg cttcgccatc ctgaagtgca aggacaagaa gttcaacggc 660
accggcccct gcaagaacgt gagcaccgtg cagtgcaccc acggcatccg ccccgtggtg 720
agcacccagc tgctgctgaa cggcagcctg gccgaggagg agatcgtgct gcgctccgag 780
aacttcaccg acaacgccaa gaccatcatc gtgcagctga acgagtccgt ggagatcaac 840
tgcatccgcc ccaacaacaa cacgcgtaag agcatccaca tcggccccgg ccgcgccttc 900
tacgccaccg gcgacatcat cggcgacatc cgccaggccc actgcaacat cagcaaggcc 960
aactggacca acaccctcga gcagatcgtg gagaagctgc gcgagcagtt cggcaacaac 1020
aagaccatca tottcaacag cagcagegge ggegaceeeg agategtgtt ecacagette 1080
aactgcggcg gcgagttctt ctactgcaac accagccagc tgttcaacag cacctggaac 1140
atcaccgagg aggtgaacaa gaccaaggag aacgacacca tcatcctgcc ctgccgcatc 1200
cgccagatca tcaacatgtg gcaggaggtg ggcaaggcca tgtacgcccc ccccatccgc 1260
ggccagatca agtgcagcag caatattacc ggcctgctgc tgacccgcga cggcggcacc 1320
aacaacaacc gcaccaacga caccgagacc ttccgccccg gcggcggcaa catgaaggac 1380
aactggcgca gcgagctgta caagtacaag gtggtgcgca tcgagcccct gggcgtggcc 1440
cccacccagg ccaagcgccg cgtggtgcag cgcgagaagc gcgccgtggg cctgggcgcc 1500
ctgttcatcg gcttcctggg cgccgccggg agcaccatgg gcgccgcctc cgtgaccctg 1560
accgtgcagg cccgccagct gctgagcggc atcgtgcagc agcagaacaa cctgctgcgc 1620
gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1680
gcccgcatcc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1740
tgcagcggca agctgatctg caccaccacc gtgccctgga acagcagctg gagcaacaag 1800
agcctgaccg agatctggga caacatgacc tggatggagt gggagcgcga gatcggcaac 1860
tacaccggcc tgatctacaa cctgatcgag atcgcccaga accagcagga gaagaacgag 1920
caggagctgc tggagctgga caagtgggcc agcctgtgga actggttcga catcaccaac 1980
tggctgtggt acatccgcat cttcatcatg atcgtgggcg gcctgatcgg cctgcgcatc 2040
gtgttcgccg tgctgagcat cgtgaaccgc gtgcgccagg gctacagccc catcagcctg 2100
cagacccgcc tgcccgccca gcgcggcccc gaccgccccg agggcatcga ggaggagggc 2160
ggcgagcgcg accgcgaccg cagcaaccgc ctggtgcacg gcctgctggc cctgatctgg 2220
gacgacctgc gcagcctgtg cctgttcagc taccaccgcc tgcgcgacct gctgctgatc 2280
 gtggcccgca tcgtggagct gctgggccgc cgcggctggg aggccctgaa gtactggtgg 2340
 aacctgctgc agtactggag ccaggagctg aagagcagcg ccgtgagcct gttcaacgcc 2400
 accgccatcg ccgtggccga gggcaccgac cgcatcatcg agatcgtgca gcgcatcttc 2460
 cgcgccgtga tccacatccc ccgccgcatc cgccagggcc tggagcgcgc cctgctgtaa 2520
                                                                   2538
 gatatcggat cctctaga
```

<210> 66 <211> 2553

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp160.modUS4.delV2
<400> 66
gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
gcagtetteg tttegeccag egceaceace gtgetgtggg tgacegtgta etaeggegtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180;
geegaggeee acaaegtgtg ggeeaeceae geetgegtge eeaeegaeee eaaeeecaag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420
aacagcacca geggeaccaa cagcaccage ggeaccaaca geaccageae caacagcace 480
gacagctggg agaagatgcc cgagggcgag atcaagaact gcagcttcaa catcggcgcc 540
ggccgcctga tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 600
gageceatee ceatecaeta etgegeeece geeggetteg ceatectgaa gtgcaaggae 660
aagaagttca acggcaccgg cccctgcaag aacgtgagca ccgtgcagtg cacccacggc 720
atccgccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggaggagatc 780
gtgctgcgct ccgagaactt caccgacaac gccaagacca tcatcgtgca gctgaacgag 840
tccgtggaga tcaactgcat ccgccccaac aacaacacgc gtaagagcat ccacatcggc 900
cccggccgcg ccttctacgc caccggcgac atcatcggcg acatccgcca ggcccactgc 960
aacatcagca aggccaactg gaccaacacc ctcgagcaga tcgtggagaa gctgcgcgag 1020
cagttcggca acaacaagac catcatcttc aacagcagca gcggcggcga ccccgagatc 1080
gtgttccaca gcttcaactg cggcggcgag ttcttctact gcaacaccag ccagctgttc 1140
aacagcacct ggaacatcac cgaggaggtg aacaagacca aggagaacga caccatcatc 1200
ctgccctgcc gcatccgcca gatcatcaac atgtggcagg aggtgggcaa ggccatgtac 1260
gccccccca tccgcggcca gatcaagtgc agcagcaata ttaccggcct gctgctgacc 1320
cgcgacggcg gcaccaacaa caaccgcacc aacgacaccg agaccttccg ccccggcggc 1380
ggcaacatga aggacaactg gcgcagcgag ctgtacaagt acaaggtggt gcgcatcgag 1440
cccctgggcg tggccccac ccaggccaag cgccgcgtgg tgcagcgcga gaagcgcgcc 1500
gtgggcctgg gcgccctgtt catcggcttc ctgggcgccg ccgggagcac catgggcgcc 1560
gcctccgtga ccctgaccgt gcaggcccgc cagctgctga gcggcatcgt gcagcagcag 1620
aacaacctgc tgcgcgccat cgaggcccag cagcacctgc tgcagctgac cgtgtggggc 1680
 atcaagcagc tgcaggcccg catcctggcc gtggagcgct acctgaagga ccagcagctg 1740
 ctgggcatct ggggctgcag cggcaagctg atctgcacca ccaccgtgcc ctggaacagc 1800
 agctggagca acaagagcct gaccgagatc tgggacaaca tgacctggat ggagtgggag 1860
 cgcgagatcg gcaactacac cggcctgatc tacaacctga tcgagatcgc ccagaaccag 1920
 caggagaaga acgagcagga gctgctggag ctggacaagt gggccagcct gtggaactgg 1980
 ttcgacatca ccaactggct gtggtacatc cgcatcttca tcatgatcgt gggcggcctg 2040
 ateggeetge geategtgtt egeegtgetg ageategtga acegegtgeg eeagggetae 2100
 agccccatca gcctgcagac ccgcctgccc gcccagcgcg gccccgaccg ccccgagggc 2160
 atcgaggagg agggcggcga gcgcgaccgc gaccgcagca accgcctggt gcacggcctg 2220
 ctggccctga tctgggacga cctgcgcagc ctgtgcctgt tcagctacca ccgcctgcgc 2280
 gacctgctgc tgatcgtggc ccgcatcgtg gagctgctgg gccgccgcgg ctgggaggcc 2340
 ctgaagtact ggtggaacct gctgcagtac tggagccagg agctgaagag cagcgccgtg 2400
 agcctgttca acgccaccgc catcgccgtg gccgagggca ccgaccgcat catcgagatc 2460
 gtgcagcgca tetteegege egtgateeae ateceeegee geateegeea gggeetggag 2520
                                                                   2553
 cgcgccctgc tgtaagatat cggatcctct aga
 <210> 67
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      qp160.modUS4.delV1/V2
<400> 67
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180;
geogaggeee acaacgtgtg ggecacceae geetgegtge ceaecgaeee caacceceag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgggcgcc 360
ggccaggcct gccccaaggt gagcttcgag cccatcccca tccactactg cgccccgcc 420
ggettegeca teetgaagtg caaggacaag aagtteaacg geaceggeee etgeaagaac 480
gtgagcaccg tgcagtgcac ccacggcatc cgccccgtgg tgagcaccca gctgctgctg 540
aacggcagcc tggccgagga ggagatcgtg ctgcgctccg agaacttcac cgacaacgcc 600
aagaccatca tcgtgcagct gaacgagtcc gtggagatca actgcatccg ccccaacaac 660
aacacgcgta agagcatcca catcggcccc ggccgcgcct tctacgccac cggcgacatc 720
ateggegaca teegeeagge ecaetgeaac ateageaagg ecaaetggae caacaceete 780
gagcagatcg tggagaagct gcgcgagcag ttcggcaaca acaagaccat catcttcaac 840
agcagcagcg gcggcgaccc cgagatcgtg ttccacagct tcaactgcgg cggcgagttc 900
ttctactgca acaccagcca gctgttcaac agcacctgga acatcaccga ggaggtgaac 960
aagaccaagg agaacgacac catcatcctg ccctgccgca tccgccagat catcaacatg 1020
tggcaggagg tgggcaaggc catgtacgcc cccccatcc gcggccagat caagtgcagc 1080
agcaatatta ccggcctgct gctgacccgc gacggcggca ccaacaacaa ccgcaccaac 1140
gacaccgaga cetteegeee eggeggegge aacatgaagg acaactggeg cagegagetg 1200
tacaagtaca aggtggtgcg catcgagccc ctgggcgtgg cccccaccca ggccaagcgc 1260
cgcgtggtgc agcgcgagaa gcgcgccgtg ggcctgggcg ccctgttcat cggcttcctg 1320
ggcgccgccg ggagcaccat gggcgccgcc tccgtgaccc tgaccgtgca ggcccgccag 1380
ctgctgagcg gcatcgtgca gcagcagaac aacctgctgc gcgccatcga ggcccagcag 1440
cacctgctgc agctgaccgt gtggggcatc aagcagctgc aggcccgcat cctggccgtg 1500
gagcgctacc tgaaggacca gcagctgctg ggcatctggg gctgcagcgg caagctgatc 1560
tgcaccacca ccgtgccctg gaacagcagc tggagcaaca agagcctgac cgagatctgg 1620
gacaacatga cctggatgga gtgggagcgc gagatcggca actacaccgg cctgatctac 1680
aacctgatcg agatcgccca gaaccagcag gagaagaacg agcaggagct gctggagctg 1740
gacaagtggg ccagcctgtg gaactggttc gacatcacca actggctgtg gtacatccgc 1800
atcttcatca tgatcgtggg cggcctgatc ggcctgcgca tcgtgttcgc cgtgctgagc 1860
 ategtgaace gegtgegeea gggetaeage eccateagee tgeagaeeeg eetgeeegee 1920
 cagegeggee eegacegeee egagggeate gaggaggagg geggegageg egacegegae 1980
 cgcagcaacc gcctggtgca cggcctgctg gccctgatct gggacgacct gcgcagcctg 2040
 tgcctgttca gctaccaccg cctgcgcgac ctgctgctga tcgtggcccg catcgtggag 2100
 ctgctgggcc gccgcggctg ggaggccctg aagtactggt ggaacctgct gcagtactgg 2160
 agccaggage tgaagagcag egeegtgage etgttcaaeg eeacegeeat egeegtggee 2220
 gagggcaccg accgcatcat cgagatcgtg cagcgcatct tccgcgccgt gatccacatc 2280
 ccccgccgca tccgccaggg cctggagcgc gccctgctgt aagatatcgg atcctctaga 2340
 <210> 68
 <211> 2385
 <212> DNA
 <213> Artificial Sequence
 <220>
```

<223> Description of Artificial Sequence: gp160.modUS4del 128-194

```
<400> 68
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtetteg tttegeceag egecaceace gtgetgtggg tgacegtgta etaeggegtg 120
cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcttacaag 180
geogaggeec acaacgtgtg ggecacccac geotgegtge ceacegaece caaceccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtggggc agggaactgc gagaccagcg tgatcaccca ggcctgcccc 420;
aaggtgagct tcgagcccat ccccatccac tactgcgccc ccgccggctt cgccatcctg 480
aagtgcaagg acaagaagtt caacggcacc ggcccctgca agaacgtgag caccgtgcag 540
tgcacccacg gcatccgccc cgtggtgagc acccagctgc tgctgaacgg cagcctggcc 600
gaggaggaga tegtgetgeg eteegagaae tteacegaea aegeeaagae eateategtg 660
cagetgaaeg agteegtgga gateaaetge ateegeecea acaacaaeae gegtaagage 720
atccacatcg gccccggccg cgccttctac gccaccggcg acatcatcgg cgacatccgc 780
caggcccact gcaacatcag caaggccaac tggaccaaca ccctcgagca gatcgtggag 840
aagctgcgcg agcagttcgg caacaacaag accatcatct tcaacagcag cagcggcggc 900
gaccccgaga tcgtgttcca cagcttcaac tgcggcggcg agttcttcta ctgcaacacc 960
agccagctgt tcaacagcac ctggaacatc accgaggagg tgaacaagac caaggagaac 1020
gacaccatca teetgeeetg eegeateege cagatcatca acatgtggea ggaggtggge 1080
aaggccatgt acgcccccc catccgcggc cagatcaagt gcagcagcaa tattaccggc 1140
ctgctgctga cccgcgacgg cggcaccaac aacaaccgca ccaacgacac cgagaccttc 1200
cgccccggcg gcggcaacat gaaggacaac tggcgcagcg agctgtacaa gtacaaggtg 1260
gtgcgcatcg agcccctggg cgtggccccc acccaggcca agcgccgcgt ggtgcagcgc 1320
gagaagegeg cegtgggeet gggegeeetg tteategget teetgggege egeegggage 1380
accatgggcg ccgcctccgt gaccctgacc gtgcaggccc gccagctgct gagcggcatc 1440
gtgcagcagc agaacaacct gctgcgcgcc atcgaggccc agcagcacct gctgcagctg 1500
accytytygy gcatcaagca gctycagycc cycatcctyg ccytygyagcy ctacctyaag 1560
gaccagcagc tgctgggcat ctggggctgc agcggcaagc tgatctgcac caccaccgtg 1620
ccctggaaca gcagctggag caacaagagc ctgaccgaga tctgggacaa catgacctgg 1680
atggagtggg agcgcgagat cggcaactac accggcctga tctacaacct gatcgagatc 1740
gcccagaacc agcaggagaa gaacgagcag gagctgctgg agctggacaa gtgggccagc 1800
ctgtggaact ggttcgacat caccaactgg ctgtggtaca tccgcatctt catcatgatc 1860
gtgggcggcc tgatcggcct gcgcatcgtg ttcgccgtgc tgagcatcgt gaaccgcgtg 1920
cgccagggct acagccccat cagcctgcag acccgcctgc ccgcccagcg cggccccgac 1980
cgccccgagg gcatcgagga ggagggcggc gagcgcgacc gcgaccgcag caaccgcctg 2040
gtgcacggcc tgctggccct gatctgggac gacctgcgca gcctgtgcct gttcagctac 2100
 caccgcctgc gcgacctgct gctgatcgtg gcccgcatcg tggagctgct gggccgccgc 2160
ggctgggagg ccctgaagta ctggtggaac ctgctgcagt actggagcca ggagctgaag 2220
 agcagegeeg tgageetgtt caaegeeace gecategeeg tggeegaggg caeegaeege 2280
 atcatcgaga tcgtgcagcg catcttccgc gccgtgatcc acatcccccg ccgcatccgc 2340
 cagggcctgg agcgcccct gctgtaagat atcggatcct ctaga
```

```
<210> 69
```

<400> 69

gacaccatca	tcctqccctq	ccgcatccgc	cagatcatca	acatgtggca	ggaggtgggc	60
aaggccatgt	acqcccccc	catccgcggc	cagatcaagt	gcagcagcaa	catcaccggc	120
ctactactaa			-			144

<211> 144

<212> DNA

<213> Human immunodeficiency virus

```
<210> 70
<211> 144
<212> DNA
<213> Human immunodeficiency virus
<400> 70
ggaactatca cactcccatg cagaataaaa caaattataa acaggtggca ggaagtagga 60
aaagcaatgt atgcccctcc catcagagga caaattagat gctcatcaaa tattacagga 120
                                                                   144
ctqctattaa caagagatgg tggt
<210> 71
<211> 144
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic Env
      US4 common region
<400> 71
gacaccatca tectgeeetg cegeateege cagateatea acatgtggea ggaggtggge 60
aaggccatgt acgcccccc catccgcggc cagatcaagt gcagcagcaa catcaccggc 120
ctgctgctga cccgcgacgg cggc
<210> 72
<211> 144
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic Env
      SF162 common region
<400> 72
ggcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 60
aaggccatgt acgcccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 120
                                                                   144
ctgctgctga cccgcgacgg cggc
 <210> 73
 <211> 4766
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       qp160.modUS4.gag.modSF2
 <400> 73
 gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
 gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
 cccgtgtgga aggaggccac caccacctg ttctgcgcca gcgacgccaa ggcttacaag 180
 gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
 gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
 cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
```

accccctgt gcgtgaccct gaactgcacc gacaagctga ccggcagcac caacggcacc 420 aacagcacca geggeaccaa cagcaccage ggeaccaaca geaccageae caacagcace 480 gacagetggg agaagatgee egagggegag atcaagaact geagetteaa cateaceace 540 agcgtgcgcg acaaggtgca gaaggagtac agcctgttct acaagctgga cgtggtgccc 600 atcgacaacg acaacgccag ctaccgcctg atcaactgca acaccagcgt gatcacccag 660 geetgeecea aggtgagett egageecate eccatecaet aetgegeece egeeggette 720 gccatcctga agtgcaagga caagaagttc aacggcaccg gcccctgcaa gaacgtgagc 780 acceptgcagt gcacccacgg catccgcccc gtggtgagca cccagctgct gctgaacggc 840 agcctggccg aggaggagat cgtgctgcgc tccgagaact tcaccgacaa cgccaagacc 900 atcatcgtgc agctgaacga gtccgtggag atcaactgca tccgccccaa caacaacacg 960 cgtaagagca tccacatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 1020 gacatccgcc aggcccactg caacatcagc aaggccaact ggaccaacac cctcgagcag 1080 atcgtggaga agctgcgcga gcagttcggc aacaacaaga ccatcatctt caacagcagc 1140 ageggeggeg acceegagat egtgtteeae agetteaaet geggeggega gttettetae 1200 tgcaacacca gccagctgtt caacagcacc tggaacatca ccgaggaggt gaacaagacc 1260 aaggagaacg acaccatcat cctgccctgc cgcatccgcc agatcatcaa catgtggcag 1320 gaggtgggca aggccatgta cgccccccc atccgcggcc agatcaagtg cagcagcaat 1380 attaccggcc tgctgctgac ccgcgacggc ggcaccaaca acaaccgcac caacgacacc 1440 gagacettee geeeggegg eggeaacatg aaggacaact ggegeagega getgtacaag 1500 tacaaggtgg tgcgcatcga gcccctgggc gtggccccca cccaggccaa gcgccgcgtg 1560 gtgcagcgcg agaagcgcgc cgtgggcctg ggcgccctgt tcatcggctt cctgggcgcc 1620 geegggagea ceatgggege egeeteegtg accetgaceg tgeaggeeeg ceagetgetg 1680 ageggeateg tgeageagea gaacaacetg etgegegeea tegaggeeea geageacetg 1740 ctgcagctga ccgtgtgggg catcaagcag ctgcaggccc gcatcctggc cgtggagcgc 1800 tacctgaagg accagcagct gctgggcatc tggggctgca gcggcaagct gatctgcacc 1860 accaccgtgc cctggaacag cagctggagc aacaagagcc tgaccgagat ctgggacaac 1920 atgacctgga tggagtggga gcgcgagatc ggcaactaca ccggcctgat ctacaacctg 1980 atcgagatcg cccagaacca gcaggagaag aacgagcagg agctgctgga gctggacaag 2040 tgggccagcc tgtggaactg gttcgacatc accaactggc tgtggtacat ccgcatcttc 2100 atcatgatcg tgggcggcct gatcggcctg cgcatcgtgt tcgccgtgct gagcatcgtg 2160 aaccgcgtgc gccagggcta cagccccatc agcctgcaga cccgcctgcc cgcccagcgc 2220 ggccccgacc gccccgaggg catcgaggag gagggcggcg agcgcgaccg cgaccgcagc 2280 aaccgcctgg tgcacggcct gctggccctg atctgggacg acctgcgcag cctgtgcctg 2340 ttcagctacc accgcctgcg cgacctgctg ctgatcgtgg cccgcatcgt ggagctgctg 2400 ggccgccgcg gctgggaggc cctgaagtac tggtggaacc tgctgcagta ctggagccag 2460 gagctgaaga gcagcgccgt gagcctgttc aacgccaccg ccatcgccgt ggccgagggc 2520 accgaccgca tcatcgagat cgtgcagcgc atcttccgcg ccgtgatcca catcccccgc 2580 cgcatccgcc agggcctgga gcgcgccctg ctgtaagata tcggatcctc tagagaattc 2640 cgccccccc ccccccccc ctctccctcc cccccccta acgttactgg ccgaagccgc 2700 ttggaataag gccggtgtgc gtttgtctat atgttatttt ccaccatatt gccgtctttt 2760 ggcaatgtga gggcccggaa acctggccct gtcttcttga cgagcattcc taggggtctt 2820 tcccctctcg ccaaaggaat gcaaggtctg ttgaatgtcg tgaaggaagc agttcctctg 2880 gaagcttctt gaagacaaac aacgtctgta gcgacccttt gcaggcagcg gaacccccca 2940 cctggcgaca ggtgcctctg cggccaaaag ccacgtgtat aagatacacc tgcaaaggcg 3000 gcacaacccc agtgccacgt tgtgagttgg atagttgtgg aaagagtcaa atggctctcc 3060 tcaagcgtat tcaacaaggg gctgaaggat gcccagaagg taccccattg tatgggatct 3120 gatctggggc ctcggtgcac atgctttaca tgtgtttagt cgaggttaaa aaaacgtcta 3180 ggcccccga accacgggga cgtggttttc ctttgaaaaa cacgataata ccatgggcgc 3240 ccgcgccagc gtgctgagcg gcggcgagct ggacaagtgg gagaagatcc gcctgcgccc 3300 cggcggcaag aagaagtaca agctgaagca catcgtgtgg gccagccgcg agctggagcg 3360 cttcgccgtg aaccccggcc tgctggagac cagcgagggc tgccgccaga tcctgggcca 3420 gctgcagccc agcctgcaga ccggcagcga ggagctgcgc agcctgtaca acaccgtggc 3480 caccetgtae tgegtgeace agegeatega egteaaggae accaaggagg ecetggagaa 3540 gatcgaggag gagcagaaca agtccaagaa gaaggcccag caggccgccg ccgccgccgg 3600

```
caccggcaac agcagccagg tgagccagaa ctaccccatc gtgcagaacc tgcagggcca 3660
gatggtgcac caggccatca gccccgcac cctgaacgcc tgggtgaagg tggtggagga 3720
gaaggccttc agccccgagg tgatccccat gttcagcgcc ctgagcgagg gcgccacccc 3780
ccaggacctg aacacgatgt tgaacaccgt gggcggccac caggccgcca tgcagatgct 3840
gaaggagacc atcaacgagg aggccgccga gtgggaccgc gtgcaccccg tgcacgccgg 3900
ccccatcgcc cccggccaga tgcgcgagcc ccgcggcagc gacatcgccg gcaccaccag 3960
caccetgeag gageagateg getggatgae caacaacece eccateceeg tgggegagat 4020
ctacaagcgg tggatcatcc tgggcctgaa caagatcgtg cggatgtaca gccccaccag 4080
catcctggac atccgccagg gccccaagga gcccttccgc gactacgtgg accgcttcta 4140
caagaccctg cgcgctgagc aggccagcca ggacgtgaag aactggatga ccgagaccct 4200
gctggtgcag aacgccaacc ccgactgcaa gaccatcctg aaggctctcg gccccgcggc 4260
caccetggag gagatgatga cegeetgeca gggegtggge ggeeceggee acaaggeeeg 4320
cgtgctggcc gaggcgatga gccaggtgac gaacccggcg accatcatga tgcagcgcgg 4380
caacttccgc aaccagcgga agaccgtcaa gtgcttcaac tgcggcaagg agggccacac 4440
cgccaggaac tgccgcgccc cccgcaagaa gggctgctgg cgctgcggcc gcgagggcca 4500
ccagatgaag gactgcaccg agcgccaggc caacttcctg ggcaagatct ggcccagcta 4560
caagggccgc cccggcaact tcctgcagag ccgccccgag cccaccgccc cccccgagga 4620
gagetteege tteggegagg agaagaceae eeceageeag aageaggage eeategacaa 4680
ggagctgtac cccctgacca gcctgcgcag cctgttcggc aacgacccca gcagccagta 4740
                                                                   4766
agaattcaga ctcgagcaag tctaga
<210> 74
<211> 4689
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp160.modSF162.gag.modSF2
<400> 74
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccgtggag aagctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
accccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgaccacc 480
agcatccgca acaagatgca gaaggagtac gccctgttct acaagctgga cgtggtgccc 540
ategacaacg acaacaccag ctacaagctg atcaactgca acaccagcgt gatcacccag 600
gcctgcccca aggtgagctt cgagcccatc cccatccact actgcgcccc cgccggcttc 660
gccatcctga agtgcaacga caagaagttc aacggcagcg gcccctgcac caacgtgagc 720
acceptgcagt gcacccacgg catccgcccc gtggtgagca cccagctgct gctgaacggc 780
 agcctggccg aggagggcgt ggtgatccgc agcgagaact tcaccgacaa cgccaagacc 840
 atcatcgtgc agctgaagga gagcgtggag atcaactgca cccgccccaa caacaacacc 900
 cgcaagagca tcaccatcgg ccccggccgc gccttctacg ccaccggcga catcatcggc 960
 gacatccgcc aggcccactg caacatcagc ggcgagaagt ggaacaacac cctgaagcag 1020
 atcgtgacca agctgcaggc ccagttcggc aacaagacca tcgtgttcaa gcagagcagc 1080
 ggcggcgacc ccgagatcgt gatgcacagc ttcaactgcg gcggcgagtt cttctactgc 1140
 aacagcaccc agctgttcaa cagcacctgg aacaacacca tcggccccaa caacaccaac 1200
 ggcaccatca ccctgccctg ccgcatcaag cagatcatca accgctggca ggaggtgggc 1260
 aaggccatgt acgcccccc catccgcggc cagatccgct gcagcagcaa catcaccggc 1320
 ctgctgctga cccgcgacgg cggcaaggag atcagcaaca ccaccgagat cttccgcccc 1380
```

ggcggcggcg acatgcgcga caactggcgc agcgagctgt acaagtacaa ggtggtgaag 1440 atcgagcccc tgggcgtggc ccccaccaag gccaagcgcc gcgtggtgca gcgcgagaag 1500 cgcgccgtga ccctgggcgc catgttcctg ggcttcctgg gcgccgccgg cagcaccatg 1560 ggcgcccgca gcctgaccct gaccgtgcag gcccgccagc tgctgagcgg catcgtgcag 1620 cagcagaaca acctgctgcg cgccatcgag gcccagcagc acctgctgca gctgaccgtg 1680 tggggcatca agcagctgca ggcccgcgtg ctggccgtgg agcgctacct gaaggaccag 1740 cagctgctgg gcatctgggg ctgcagcggc aagctgatct gcaccaccgc cgtgccctgg 1800 aacgccagct ggagcaacaa gagcctggac cagatctgga acaacatgac ctggatggag 1860 tgggagcgcg agatcgacaa ctacaccaac ctgatctaca ccctgatcga ggagagccag 1920 aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg 1980 aactggttcg acatcagcaa gtggctgtgg tacatcaaga tcttcatcat gatcgtgggc 2040 ggcctggtgg gcctgcgcat cgtgttcacc gtgctgagca tcgtgaaccg cgtgcgccag 2100 ggctacagcc ccctgagctt ccagacccgc ttccccgccc cccgcggccc cgaccgcccc 2160 gagggcatcg aggagggg cggcgagcgc gaccgcgacc gcagcagccc cctggtgcac 2220 ggcctgctgg ccctgatctg ggacgacctg cgcagcctgt gcctgttcag ctaccaccgc 2280 ctgcgcgacc tgatcctgat cgccgcccgc atcgtggagc tgctgggccg ccgcggctgg 2340 gaggccctga agtactgggg caacctgctg cagtactgga tccaggagct gaagaacagc 2400 geogtgagee tgttegaege categocate geogtggeeg agggeaeega eegeateate 2460 gaggtggccc agcgcatcgg ccgcgccttc ctgcacatcc cccgccgcat ccgccagggc 2520 ttcgagcgcg ccctgctgta actcgagcaa gtctagagaa ttccgccccc ccccccccc 2580 cccctctccc tcccccccc ctaacgttac tggccgaagc cgcttggaat aaggccggtg 2640 tgcgtttgtc tatatgttat tttccaccat attgccgtct tttggcaatg tgagggcccg 2700 gaaacctggc cctgtcttct tgacgagcat tcctaggggt ctttcccctc tcgccaaagg 2760 aatgcaaggt ctgttgaatg tcgtgaagga agcagttcct ctggaagctt cttgaagaca 2820 aacaacgtct gtagcgaccc tttgcaggca gcggaacccc ccacctggcg acaggtgcct 2880 ctgcggccaa aagccacgtg tataagatac acctgcaaag gcggcacaac cccagtgcca 2940 cgttgtgagt tggatagttg tggaaagagt caaatggctc tcctcaagcg tattcaacaa 3000 ggggctgaag gatgcccaga aggtacccca ttgtatggga tctgatctgg ggcctcggtg 3060 cacatgettt acatgtgttt agtegaggtt aaaaaaacgt etaggeeece egaaceaegg 3120 ggacgtggtt ttcctttgaa aaacacgata ataccatggg cgcccgcgcc agcgtgctga 3180 geggeggega getggacaag tgggagaaga teegeetgeg eeeeggegge aagaagaagt 3240 acaagctgaa gcacatcgtg tgggccagcc gcgagctgga gcgcttcgcc gtgaaccccg 3300 gcctgctgga gaccagcgag ggctgccgcc agatcctggg ccagctgcag cccagcctgc 3360 agaccggcag cgaggagctg cgcagcctgt acaacaccgt ggccaccctg tactgcgtgc 3420 accagegeat egacgteaag gacaccaagg aggeeetgga gaagategag gaggageaga 3480 acaagtccaa gaagaaggcc cagcaggccg ccgccgccgc cggcaccggc aacagcagcc 3540 aggtgagcca gaactacccc atcgtgcaga acctgcaggg ccagatggtg caccaggcca 3600 tcagcccccg caccctgaac gcctgggtga aggtggtgga ggagaaggcc ttcagccccg 3660 aggtgatece catgtteage geeetgageg agggegeeae eeeccaggae etgaacaega 3720 tgttgaacac cgtgggcggc caccaggccg ccatgcagat gctgaaggag accatcaacg 3780 aggaggccgc cgagtgggac cgcgtgcacc ccgtgcacgc cggccccatc gcccccggcc 3840 agatgcgcga gccccgcggc agcgacatcg ccggcaccac cagcaccctg caggagcaga 3900 tcggctggat gaccaacaac cccccatcc ccgtgggcga gatctacaag cggtggatca 3960 teetgggeet gaacaagate gtgeggatgt acageeceae cageateetg gacateegee 4020 agggccccaa ggagcccttc cgcgactacg tggaccgctt ctacaagacc ctgcgcgctg 4080 agcaggccag ccaggacgtg aagaactgga tgaccgagac cctgctggtg cagaacgcca 4140 accorgactg caagaccatc ctgaaggctc tcggccccgc ggccaccctg gaggagatga 4200 tgaccgcctg ccagggcgtg ggcggccccg gccacaaggc ccgcgtgctg gccgaggcga 4260 tgagccaggt gacgaacccg gcgaccatca tgatgcagcg cggcaacttc cgcaaccagc 4320 ggaagaccgt caagtgcttc aactgcggca aggagggcca caccgccagg aactgccgcg 4380 cccccgcaa gaagggctgc tggcgctgcg gccgcgaggg ccaccagatg aaggactgca 4440 ccgagcgcca ggccaacttc ctgggcaaga tctggcccag ctacaagggc cgccccggca 4500 acttectgea gageegeece gageecaceg ceeeceega ggagagette egetteggeg 4560 aggagaagac cacccccagc cagaagcagg agcccatcga caaggagctg taccccctga 4620

```
ccagcetgeg cagcetgtte ggcaacgace ccagcageca gtaagaatte agactegage 4680
                                                                  4689
aagtctaga
<210> 75
<211> 4472
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      gp160.modUS4.delV1/V2.gag.modSF2
                                                                     ÷
<400> 75
gaattcgcca ccatggatgc aatgaagaga gggctctgct gtgtgctgct gctgtgtgga 60
gcagtcttcg tttcgcccag cgccaccacc gtgctgtggg tgaccgtgta ctacggcgtg 120
cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcttacaag 180
gccgaggccc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
gaggtgaacc tgaccaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
cagatgcatg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgggcgcc 360
ggccaggcct gccccaaggt gagcttcgag cccatcccca tccactactg cgcccccgcc 420
ggcttcgcca tcctgaagtg caaggacaag aagttcaacg gcaccggccc ctgcaagaac 480
gtgagcaccg tgcagtgcac ccacggcatc cgccccgtgg tgagcaccca gctgctgctg 540
aacggcagcc tggccgagga ggagatcgtg ctgcgctccg agaacttcac cgacaacgcc 600
aagaccatca tcgtgcagct gaacgagtcc gtggagatca actgcatccg ccccaacaac 660
aacacgcgta agagcatcca catcggcccc ggccgcgcct tctacgccac cggcgacatc 720
atcggcgaca tccgccaggc ccactgcaac atcagcaagg ccaactggac caacaccctc 780
gagcagatcg tggagaagct gcgcgagcag ttcggcaaca acaagaccat catcttcaac 840
agcagcagcg gcggcgaccc cgagatcgtg ttccacagct tcaactgcgg cggcgagttc 900
ttctactgca acaccagcca gctgttcaac agcacctgga acatcaccga ggaggtgaac 960
aagaccaagg agaacgacac catcatectg ceetgeegea teegeeagat catcaacatg 1020
tggcaggagg tgggcaaggc catgtacgcc cccccatcc gcggccagat caagtgcagc 1080
agcaatatta ccggcctgct gctgacccgc gacggcggca ccaacaacaa ccgcaccaac 1140
gacaccgaga ccttccgccc cggcggcggc aacatgaagg acaactggcg cagcgagctg 1200
 tacaagtaca aggtggtgcg catcgagccc ctgggcgtgg cccccaccca ggccaagcgc 1260
 cgcgtggtgc agcgcgagaa gcgcgccgtg ggcctgggcg ccctgttcat cggcttcctg 1320
 ggcgccgccg ggagcaccat gggcgccgcc tccgtgaccc tgaccgtgca ggcccgccag 1380
 ctgctgagcg gcatcgtgca gcagcagaac aacctgctgc gcgccatcga ggcccagcag 1440
 cacctgctgc agctgaccgt gtggggcatc aagcagctgc aggcccgcat cctggccgtg 1500
 gagcgctacc tgaaggacca gcagctgctg ggcatctggg gctgcagcgg caagctgatc 1560
 tgcaccacca ccgtgccctg gaacagcagc tggagcaaca agagcctgac cgagatctgg 1620
 gacaacatga cctggatgga gtgggagcgc gagatcggca actacaccgg cctgatctac 1680
 aacctgatcg agatcgccca gaaccagcag gagaagaacg agcaggagct gctggagctg 1740
 gacaagtggg ccagcctgtg gaactggttc gacatcacca actggctgtg gtacatccgc 1800
 atcttcatca tgatcgtggg cggcctgatc ggcctgcgca tcgtgttcgc cgtgctgagc 1860
 atcgtgaacc gcgtgcgcca gggctacagc cccatcagcc tgcagacccg cctgcccgcc 1920
 cagegeggee cegacegee egagggeate gaggaggagg geggegageg egacegegae 1980
 cgcagcaacc gcctggtgca cggcctgctg gccctgatct gggacgacct gcgcagcctg 2040
 tgcctgttca gctaccaccg cctgcgcgac ctgctgctga tcgtggcccg catcgtggag 2100
 ctgctgggcc gccgcggctg ggaggccctg aagtactggt ggaacctgct gcagtactgg 2160
 agccaggagc tgaagagcag cgccgtgagc ctgttcaacg ccaccgccat cgccgtggcc 2220
 gagggcaccg accgcatcat cgagatcgtg cagcgcatct tccgcgccgt gatccacatc 2280
 ccccgccgca tccgccaggg cctggagcgc gccctgctgt aagatatcgg atcctctaga 2340
 gaatteegee ecceecece ecceectet eccteecee eccetaaegt taetggeega 2400
```

agecgettgg aataaggeeg gtgtgegttt gtetatatgt tatttteeae catattgeeg 2460

```
tettttggca atgtgaggge eeggaaacet ggeeetgtet tettgaegag eatteetagg 2520
ggtctttccc ctctcgccaa aggaatgcaa ggtctgttga atgtcgtgaa ggaagcagtt 2580
cctctggaag cttcttgaag acaaacaacg tctgtagcga ccctttgcag gcagcggaac 2640
ccccacctg gcgacaggtg cctctgcggc caaaagccac gtgtataaga tacacctgca 2700
aaggcggcac aaccccagtg ccacgttgtg agttggatag ttgtggaaag agtcaaatgg 2760
ctctcctcaa gcgtattcaa caaggggctg aaggatgccc agaaggtacc ccattgtatg 2820
ggatctgatc tggggcctcg gtgcacatgc tttacatgtg tttagtcgag gttaaaaaaa 2880
cgtctaggcc ccccgaacca cggggacgtg gttttccttt gaaaaacacg ataataccat 2940
gggcgcccgc gccagcgtgc tgagcggcgg cgagctggac aagtgggaga agatccgcct 3000
gcgccccggc ggcaagaaga agtacaagct gaagcacatc gtgtgggcca gccgcgagct 3060
ggagcgcttc gccgtgaacc ccggcctgct ggagaccagc gagggctgcc gccagatcct 3120
gggccagctg cagcccagcc tgcagaccgg cagcgaggag ctgcgcagcc tgtacaacac 3180
cgtggccacc ctgtactgcg tgcaccagcg catcgacgtc aaggacacca aggaggccct 3240
ggagaagatc gaggaggagc agaacaagtc caagaagaag gcccagcagg ccgccgccgc 3300
cgccggcacc ggcaacagca gccaggtgag ccagaactac cccatcgtgc agaacctgca 3360
gggccagatg gtgcaccagg ccatcagccc ccgcaccctg aacgcctggg tgaaggtggt 3420
ggaggagaag gccttcagcc ccgaggtgat ccccatgttc agcgccctga gcgagggcgc 3480
cacccccag gacctgaaca cgatgttgaa caccgtgggc ggccaccagg ccgccatgca 3540
gatgctgaag gagaccatca acgaggaggc cgccgagtgg gaccgcgtgc accccgtgca 3600
cgccggcccc atcgcccccg gccagatgcg cgagccccgc ggcagcgaca tcgccggcac 3660
caccagcacc ctgcaggagc agatcggctg gatgaccaac aaccccccca tccccgtggg 3720
cgagatctac aagcggtgga tcatcctggg cctgaacaag atcgtgcgga tgtacagccc 3780
caccagcatc ctggacatcc gccagggccc caaggagccc ttccgcgact acgtggaccg 3840
cttctacaag accctgcgcg ctgagcaggc cagccaggac gtgaagaact ggatgaccga 3900
gaccetgetg gtgcagaacg ccaaccecga ctgcaagace atcetgaagg ctctcggccc 3960
cgcggccacc ctggaggaga tgatgaccgc ctgccagggc gtgggcggcc ccggccacaa 4020
ggcccgcgtg ctggccgagg cgatgagcca ggtgacgaac ccggcgacca tcatgatgca 4080
gcgcggcaac ttccgcaacc agcggaagac cgtcaagtgc ttcaactgcg gcaaggaggg 4140
ccacaccgcc aggaactgcc gcgcccccg caagaagggc tgctggcgct gcggccgcga 4200
gggccaccag atgaaggact gcaccgagcg ccaggccaac ttcctgggca agatctggcc 4260
cagctacaag ggccgccccg gcaacttcct gcagagccgc cccgagccca ccgccccccc 4320
cgaggagagc ttccgcttcg gcgaggagaa gaccaccccc agccagaagc aggagcccat 4380
cgacaaggag ctgtaccccc tgaccagcct gcgcagcctg ttcggcaacg accccagcag 4440
                                                                   4472
 ccagtaagaa ttcagactcg agcaagtcta ga
 <210> 76
 <211> 4608
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       gp160.modSF162.delV2.gag.modSF2
 <400> 76
 gaattegeea ceatggatge aatgaagaga gggetetget gtgtgetget getgtgtgga 60
 gcagtetteg tttegeceag egeegtggag aagetgtggg tgaeegtgta etaeggegtg 120
 cccgtgtgga aggaggccac caccaccctg ttctgcgcca gcgacgccaa ggcctacgac 180
 accgaggtgc acaacgtgtg ggccacccac gcctgcgtgc ccaccgaccc caacccccag 240
 gagatcgtgc tggagaacgt gaccgagaac ttcaacatgt ggaagaacaa catggtggag 300
 cagatgcacg aggacatcat cagcctgtgg gaccagagcc tgaagccctg cgtgaagctg 360
 accccctgt gcgtgaccct gcactgcacc aacctgaaga acgccaccaa caccaagagc 420
 agcaactgga aggagatgga ccgcggcgag atcaagaact gcagcttcaa ggtgggcgcc 480
 ggcaagctga tcaactgcaa caccagcgtg atcacccagg cctgccccaa ggtgagcttc 540
```

gageceatee ceatecaeta etgegeceee geeggetteg ceatectgaa gtgeaacgae 600 aagaagttca acggcagcgg cccctgcacc aacgtgagca ccgtgcagtg cacccacggc 660 atccgccccg tggtgagcac ccagctgctg ctgaacggca gcctggccga ggagggcgtg 720 gtgatccgca gcgagaactt caccgacaac gccaagacca tcatcgtgca gctgaaggag 780 agegtggaga tcaactgcac cegececaac aacaacace geaagageat caccategge 840 cccggccgcg ccttctacgc caccggcgac atcatcggcg acatccgcca ggcccactgc 900 aacatcagcg gcgagaagtg gaacaacacc ctgaagcaga tcgtgaccaa gctgcaggcc 960 cagttcggca acaagaccat cgtgttcaag cagagcagcg gcggcgaccc cgagatcgtg 1020 atgcacagct tcaactgcgg cggcgagttc ttctactgca acagcaccca gctgttcaac 1080 cgcatcaagc agatcatcaa ccgctggcag gaggtgggca aggccatgta cgccccccc 1200 atccgcggcc agatccgctg cagcagcaac atcaccggcc tgctgctgac ccgcgacggc 1260 ggcaaggaga tcagcaacac caccgagatc ttccgccccg gcggcggcga catgcgcgac 1320 aactggcgca gcgagctgta caagtacaag gtggtgaaga tcgagcccct gggcgtggcc 1380 cccaccaagg ccaagcgccg cgtggtgcag cgcgagaagc gcgccgtgac cctgggcgcc 1440 atgttcctgg gcttcctggg cgccgccggc agcaccatgg gcgcccgcag cctgaccctg 1500 acceptgcage ccceccaect ecteagege atceptecaec agcagaacaa cctectecec 1560 gccatcgagg cccagcagca cctgctgcag ctgaccgtgt ggggcatcaa gcagctgcag 1620 gcccgcgtgc tggccgtgga gcgctacctg aaggaccagc agctgctggg catctggggc 1680 tgcagcggca agctgatctg caccaccgcc gtgccctgga acgccagctg gagcaacaag 1740 agcctggacc agatctggaa caacatgacc tggatggagt gggagcgcga gatcgacaac 1800 tacaccaacc tgatctacac cctgatcgag gagagccaga accagcagga gaagaacgag 1860 caggagctgc tggagctgga caagtgggcc agcctgtgga actggttcga catcagcaag 1920 tggctgtggt acatcaagat cttcatcatg atcgtgggcg gcctggtggg cctgcgcatc 1980 gtgttcaccg tgctgagcat cgtgaaccgc gtgcgccagg gctacagccc cctgagcttc 2040 cagacceget teccegeece eegeggeece gaeegeeceg agggeatega ggaggaggge 2100 ggcgagcgcg accgcgaccg cagcagcccc ctggtgcacg gcctgctggc cctgatctgg 2160 gacgacctgc gcagcctgtg cctgttcagc taccaccgcc tgcgcgacct gatcctgatc 2220 gccgcccgca tcgtggagct gctgggccgc cgcggctggg aggccctgaa gtactggggc 2280 aacctgctgc agtactggat ccaggagctg aagaacagcg ccgtgagcct gttcgacgcc 2340 ategecateg cegtggeega gggeacegae egeateateg aggtggeeca gegeategge 2400 cgcgccttcc tgcacatccc ccgccgcatc cgccagggct tcgagcgcgc cctgctgtaa 2460 taacgttact ggccgaagcc gcttggaata aggccggtgt gcgtttgtct atatgttatt 2580 ttccaccata ttgccgtctt ttggcaatgt gagggcccgg aaacctggcc ctgtcttctt 2640 gacgagcatt cctaggggtc tttcccctct cgccaaagga atgcaaggtc tgttgaatgt 2700 cgtgaaggaa gcagttcctc tggaagcttc ttgaagacaa acaacgtctg tagcgaccct 2760 ttgcaggcag cggaaccccc cacctggcga caggtgcctc tgcggccaaa agccacgtgt 2820 ataagataca cctgcaaagg cggcacaacc ccagtgccac gttgtgagtt ggatagttgt 2880 ggaaagagtc aaatggctct cctcaagcgt attcaacaag gggctgaagg atgcccagaa 2940 ggtaccccat tgtatgggat ctgatctggg gcctcggtgc acatgcttta catgtgttta 3000 gtcgaggtta aaaaaacgtc taggcccccc gaaccacggg gacgtggttt tcctttgaaa 3060 aacacgataa taccatgggc gcccgcgcca gcgtgctgag cggcggcgag ctggacaagt 3120 gggagaagat ccgcctgcgc cccggcggca agaagaagta caagctgaag cacatcgtgt 3180 gggccagccg cgagctggag cgcttcgccg tgaaccccgg cctgctggag accagcgagg 3240 gctgccgcca gatcctgggc cagctgcagc ccagcctgca gaccggcagc gaggagctgc 3300 gcagcctgta caacaccgtg gccaccctgt actgcgtgca ccagcgcatc gacgtcaagg 3360 acaccaagga ggccctggag aagatcgagg aggagcagaa caagtccaag aagaaggccc 3420 agcaggcege egeegeegee ggcaceggea acageageea ggtgageeag aactaeeeea 3480 tcgtgcagaa cctgcagggc cagatggtgc accaggccat cagcccccgc accctgaacg 3540 cctgggtgaa ggtggtggag gagaaggcct tcagccccga ggtgatcccc atgttcagcg 3600 ccctgagcga gggcgccacc ccccaggacc tgaacacgat gttgaacacc gtgggcggcc 3660 accaggeege catgeagatg etgaaggaga ceateaacga ggaggeegee gagtgggace 3720 gegtgeacec egtgeacgec ggececateg ceceggeca gatgegegag cecegeggea 3780

```
gcgacatcgc cggcaccacc agcaccctgc aggagcagat cggctggatg accaacaacc 3840
ccccatccc cgtgggcgag atctacaagc ggtggatcat cctgggcctg aacaagatcg 3900
tgcggatgta cagccccacc agcatcctgg acatccgcca gggccccaag gagcccttcc 3960
gcgactacgt ggaccgcttc tacaagaccc tgcgcgctga gcaggccagc caggacgtga 4020
agaactggat gaccgagacc ctgctggtgc agaacgccaa ccccgactgc aagaccatcc 4080
tgaaggetet eggeeegeg gecaceetgg aggagatgat gaeegeetge eagggegtgg 4140
geggeeeegg ccacaaggee egegtgetgg ccgaggegat gageeaggtg acgaaceegg 4200
cgaccatcat gatgcagcgc ggcaacttcc gcaaccagcg gaagaccgtc aagtgcttca 4260
actgcggcaa ggagggccac accgccagga actgccgcgc cccccgcaag aagggctgct 4320
ggcgctgcgg ccgcgagggc caccagatga aggactgcac cgagcgccag gccaacttcc 4380
tgggcaagat ctggcccagc tacaagggcc gccccggcaa cttcctgcag agccgccccg 4440
ageccacege eccecegag gagagettee getteggega ggagaagace acceceagee 4500
agaagcagga gcccatcgac aaggagctgt accccctgac cagcctgcgc agcctgttcg 4560
gcaacgaccc cagcagccag taagaattca gactcgagca agtctaga
<210> 77
<211> 1680
<212> DNA
<213> Human immunodeficiency virus
<400> 77
cccattagtc ctattgaaac tgtaccagta aaattaaagc caggaatgga tggcccaaaa 60
gttaagcaat ggccattgac agaagaaaaa ataaaagcat tagtagagat atgtacagaa 120
atggaaaagg aagggaaaat ttcaaaaatt gggcctgaaa atccatacaa tactccagta 180
tttgctataa agaaaaaaga cagtactaaa tggagaaaac tagtagattt cagagaactt 240
aataaaagaa ctcaagactt ctgggaagtt cagttaggaa taccacaccc cgcagggtta 300
aaaaagaaaa aatcagtaac agtattggat gtgggtgatg catacttttc agttccctta 360
gataaagact ttagaaagta tactgcattt accataccta gtataaacaa tgagacacca 420
gggattagat atcagtacaa tgtgctgcca cagggatgga aaggatcacc agcaatattc 480
caaagtagca tgacaaaaat cttagagcct tttagaaaac agaatccaga catagttatc 540
tatcaataca tggatgattt gtatgtagga tctgacttag aaatagggca gcatagaaca 600
aaaatagagg aactgagaca gcatctgttg aggtggggat ttaccacacc agacaaaaaa 660
catcagaaag aacctccatt cctttggatg ggttatgaac tccatcctga taaatggaca 720
 gtacagccta taatgctgcc agaaaaagac agctggactg tcaatgacat acagaagtta 780
 gtgggaaaat tgaattgggc aagtcagatt tatgcaggga ttaaagtaaa gcagttatgt 840
 aaactcctta gaggaaccaa agcactaaca gaagtaatac cactaacaga agaagcagag 900
 ctagaactgg cagaaaacag ggagattcta aaagaaccag tacatgaagt atattatgac 960
 ccatcaaaag acttagtagc agaaatacag aagcaggggc aaggccaatg gacatatcaa 1020
 atttatcaag agccatttaa aaatctgaaa acaggaaagt atgcaaggat gaggggtgcc 1080
 cacactaatg atgtaaaaca gttaacagag gcagtgcaaa aagtatccac agaaagcata 1140
 gtaatatggg gaaagattcc taaatttaaa ctacccatac aaaaggaaac atgggaagca 1200
 tggtggatgg agtattggca agctacctgg attcctgagt gggagtttgt caatacccct 1260
 cccttagtga aattatggta ccagttagag aaagaaccca tagtaggagc agaaactttc 1320
 tatgtagatg gggcagctaa tagggagact aaattaggaa aagcaggata tgttactgac 1380
 agaggaagac aaaaagttgt ctccatagct gacacaacaa atcagaagac tgaattacaa 1440
 gcaattcatc tagctttgca ggattcggga ttagaagtaa acatagtaac agactcacaa 1500
 tatgcattag gaatcattca agcacaacca gataagagtg aatcagagtt agtcagtcaa 1560
 ataatagagc agttaataaa aaaggaaaag gtctacctgg catgggtacc agcacacaaa 1620
 ggaattggag gaaatgaaca agtagataaa ttagtcagtg ctggaatcag gaaagtacta 1680
 <210> 78
 <211> 1865
 <212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: GP1
<400> 78
gtcgacgcca ccatgggcgc ccgcgccagc gtgctgagcg gcggcgagct ggacaagtgg 60
gagaagatee geetgegeee eggeggeaag aagaagtaca agetgaagea categtgtgg 120
gccagccgcg agctggagcg cttcgccgtg aaccccggcc tgctggagac cagcgagggc 180
tgccgccaga tcctgggcca gctgcagccc agcctgcaga ccggcagcga ggagctgcgc 240
agcctgtaca acaccgtggc caccctgtac tgcgtgcacc agcgcatcga cgtcaaggac 300
accaaggagg ccctggagaa gatcgaggag gagcagaaca agtccaagaa gaaggcccag 360
caggccgccg ccgccgccgg caccggcaac agcagccagg tgagccagaa ctaccccatc 420;
gtgcagaacc tgcagggcca gatggtgcac caggccatca gcccccgcac cctgaacgcc 480
tgggtgaagg tggtggagga gaaggcette ageceegagg tgateeecat gtteagegee 540
ctgagcgagg gcgccacccc ccaggacctg aacacgatgt tgaacaccgt gggcggccac 600
caggeegeea tgeagatget gaaggagaee ateaacgagg aggeegeega gtgggaeege 660
gtgcaccccg tgcacgccgg ccccatcgcc cccggccaga tgcgcgagcc ccgcggcagc 720
gacatcgccg gcaccaccag caccctgcag gagcagatcg gctggatgac caacaacccc 780
cccatccccg tgggcgagat ctacaagcgg tggatcatcc tgggcctgaa caagatcgtg 840
cggatgtaca gccccaccag catcctggac atccgccagg gccccaagga gcccttccgc 900
gactacgtgg accgcttcta caagaccctg cgcgctgagc aggccagcca ggacgtgaag 960
aactggatga ccgagaccct gctggtgcag aacgccaacc ccgactgcaa gaccatcctg 1020
aaggeteteg geeeggge caecetggag gagatgatga eegeetgeea gggegtggge 1080
ggccccggcc acaaggcccg cgtgctggcc gaggcgatga gccaggtgac gaacccggcg 1140
accatcatga tgcagcgcgg caacttccgc aaccagcgga agaccgtcaa gtgcttcaac 1200
tgcggcaagg agggccacac cgccaggaac tgccgcgccc cccgcaagaa gggctgctgg 1260
cgctgcggcc gcgaaggaca ccaaatgaaa gattgcactg agagacaggc taatttttta 1320
gggaagatct ggccttccta caagggaagg ccagggaatt ttcttcagag cagaccagag 1380
ccaacagccc caccagaaga gagcttcagg tttggggagg agaaaacaac tccctctcag 1440
aagcaggagc cgatagacaa ggaactgtat cctttaactt ccctcagatc actctttggc 1500
aacgacccct cgtcacagta aggatcggcg gccagctcaa ggaggcgctg ctcgacaccg 1560
gcgccgacga caccgtgctg gaggagatga acctgcccgg caagtggaag cccaagatga 1620
teggegggat egggggette atcaaggtge ggeagtacga ceagateece gtggagatet 1680
geggecacaa ggccategge acegtgetgg tgggececae eceegtgaac ateateggee 1740
gcaacctgct gacccagate ggctgcaccc tgaacttecc catcageecc ategagaegg 1800
tgcccgtgaa gctgaagccg gggatggacg gccccaaggt caagcagtgg cccctgtaag 1860
                                                                   1865
aattc
 <210> 79
 <211> 1865
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: GP2
 <400> 79
 gtcgacgcca ccatgggcgc ccgcgccagc gtgctgagcg gcggcgagct ggacaagtgg 60
 gagaagatcc gcctgcgccc cggcggcaag aagaagtaca agctgaagca catcgtgtgg 120
 gccagccgcg agctggagcg cttcgccgtg aaccccggcc tgctggagac cagcgagggc 180
 tgccgccaga tcctgggcca gctgcagccc agcctgcaga ccggcagcga ggagctgcgc 240
 agcctgtaca acaccgtggc caccctgtac tgcgtgcacc agcgcatcga cgtcaaggac 300
 accaaggagg ccctggagaa gatcgaggag gagcagaaca agtccaagaa gaaggcccag 360
 caggccgccg ccgccgccgg caccggcaac agcagccagg tgagccagaa ctaccccatc 420
 gtgcagaacc tgcagggcca gatggtgcac caggccatca gcccccgcac cctgaacgcc 480
```

```
tgggtgaagg tggtggagga gaaggeette ageeeegagg tgateeeeat gtteagegee 540
ctgagegagg gegeeacccc ceaggacetg aacaegatgt tgaacacegt gggeggeeac 600
caggccgcca tgcagatgct gaaggagacc atcaacgagg aggccgccga gtgggaccgc 660
gtgcaccccg tgcacgccgg ccccatcgcc cccggccaga tgcgcgagcc ccgcggcagc 720
gacategeeg geaceaceag caccetgeag gageagateg getggatgae caacaacece 780
cccatccccg tgggcgagat ctacaagcgg tggatcatcc tgggcctgaa caagatcgtg 840
eggatgtaca geceeaceag cateetggae ateegeeagg geceeaagga gecetteege 900
gactacgtgg accgcttcta caagaccctg cgcgctgagc aggccagcca ggacgtgaag 960
aactggatga ccgagaccct gctggtgcag aacgccaacc ccgactgcaa gaccatcctg 1020
aaggeteteg geeeegege caccetggag gagatgatga cegeetgeea gggegtggge 1080
ggccccggcc acaaggcccg cgtgctggcc gaggcgatga gccaggtgac gaacccggcg 1140
accatcatga tgcagcgcgg caacttccgc aaccagcgga agaccgtcaa gtgcttcaac 1200
tgcggcaagg agggccacac cgccaggaac tgccgcgccc cccgcaagaa gggctgctgg 1260
cgctgcggcc gcgaaggaca ccaaatgaaa gattgcactg agagacaggc taatttttta 1320
gggaagatct ggccttccta caagggaagg ccagggaatt ttcttcagag cagaccagag 1380
ccaacagccc caccagaaga gagcttcagg tttggggagg agaaaacaac tccctctcag 1440
aagcaggagc cgatagacaa ggaactgtat cctttaactt ccctcagatc actctttggc 1500
aacgacccct cgtcacagta aggatcgggg ggcaactcaa ggaagcgctg ctcgatacag 1560
gagcagatga tacagtatta gaagaaatga atttgccagg aaaatggaaa ccaaaaatga 1620
taggggggat cgggggcttc atcaaggtga ggcagtacga ccagatacct gtagaaatct 1680
gtggacataa agctataggt acagtattag taggacctac acctgtcaac ataattggaa 1740
gaaatctgtt gacccagatc ggctgcacct tgaacttccc catcagccct attgagacgg 1800
tgcccgtgaa gttgaagccg gggatggacg gccccaaggt caagcaatgg ccattgtaag 1860
aattc
                                                                  1865
<210> 80
<211> 2305
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      FS(+).proinact.RTopt.YM
<400> 80
gcggccgcga aggacaccaa atgaaagatt gcactgagag acaggctaat tttttaggga 60
agatetggee tteetacaag ggaaggeeag ggaattttet teagageaga eeagageeaa 120
cageeceace agaagagage tteaggtttg gggaggagaa aacaacteec teteagaage 180
aggagccgat agacaaggaa ctgtatcctt taacttccct cagatcactc tttggcaacg 240
acccctcgtc acaataagga tcgggggca actcaaggaa gcgctgctcg atacaggagc 300
agatgataca gtattagaag aaatgaattt gccaggaaaa tggaaaccaa aaatgatagg 360
ggggatcggg ggcttcatca aggtgaggca gtacgaccag atacctgtag aaatctgtgg 420
acataaagct ataggtacag tattagtagg acctacacct gtcaacataa ttggaagaaa 480
tctgttgacc cagatcggct gcaccttgaa cttccccatc agccctattg agacggtgcc 540
cgtgaagttg aagccgggga tggacggccc caaggtcaag caatggccat tgaccgagga 600
gaagatcaag gccctggtgg agatctgcac cgagatggag aaggagggca agatcagcaa 660
gateggeece gagaacecet acaacacece egtgttegee atcaagaaga aggacageac 720
caagtggcgc aagctggtgg acttccgcga gctgaacaag cgcacccagg acttctggga 780
ggtgcagctg ggcatccccc accccgccgg cctgaagaag aagaagagcg tgaccgtgct 840
ggacgtgggc gacgcctact tcagcgtgcc cctggacaag gacttccgca agtacaccgc 900
cttcaccatc cccagcatca acaacgagac ccccggcatc cgctaccagt acaacgtgct 960
gecceaggge tggaagggea geccegeeat ettecagage ageatgaeea agateetgga 1020
gecetteege aageagaace eegacategt gatetaceag geceeetgt acgtgggeag 1080
cgacctggag atcggccagc accgcaccaa gatcgaggag ctgcgccagc acctgctgcg 1140
```

```
ctggggcttc accacccccg acaagaagca ccagaaggag cccccttcc tgtggatggg 1200
ctacgagetg caeeeegaca agtggaeegt geageeeate atgetgeeeg agaaggaeag 1260
ctggaccgtg aacgacatcc agaagctggt gggcaagctg aactgggcca gccagatcta 1320
cgccggcatc aaggtgaagc agctgtgcaa gctgctgcgc ggcaccaagg ccctgaccga 1380
ggtgatcccc ctgaccgagg aggccgagct ggagctggcc gagaaccgcg agatcctgaa 1440
ggagcccgtg cacgaggtgt actacgaccc cagcaaggac ctggtggccg agatccagaa 1500
gcagggccag ggccagtgga cctaccagat ctaccaggag cccttcaaga acctgaagac 1560
cggcaagtac gcccgcatgc gcggcgccca caccaacgac gtgaagcagc tgaccgaggc 1620
cgtgcagaag gtgagcaccg agagcatcgt gatctggggc aagatcccca agttcaagct 1680
gcccatccag aaggagacct gggaggcctg gtggatggag tactggcagg ccacctggat 1740
ccccgagtgg gagttcgtga acacccccc cctggtgaag ctgtggtacc agctggagaa 1800
ggagcccatc gtgggcgccg agaccttcta cgtggacggc gccgccaacc gcgagaccaa 1860
gctgggcaag gccggctacg tgaccgaccg gggccggcag aaggtggtga gcatcgccga 1920
caccaccaac cagaagaccg agctgcaggc catccacctg gccctgcagg acagcggcct 1980
ggaggtgaac atcgtgaccg acagccagta cgccctgggc atcatccagg cccagcccga 2040
caagagcgag agcgagctgg tgagccagat catcgagcag ctgatcaaga aggagaaggt 2100
gtacctggcc tgggtgcccg cccacaaggg catcggcggc aacgagcagg tggacaagct 2160
ggtgagcgcc ggcatccgca aggtgctgtt cctgaacggc atcgatggcg gcatcgtgat 2220
ctaccagtac atggacgacc tgtacgtggg cagcggcggc cctaggatcg attaaaagct 2280
                                                                  2305
tcccggggct agcaccggtg aattc
<210> 81
<211> 2299
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      FS(+).proinact.RTopt.YMWM
<400> 81
geggeegega aggacaccaa atgaaagatt geactgagag acaggetaat tttttaggga 60
agatctggcc ttcctacaag ggaaggccag ggaattttct tcagagcaga ccagagccaa 120
 cagccccacc agaagagagc ttcaggtttg gggaggagaa aacaactccc tctcagaagc 180
 aggageegat agacaaggaa etgtateett taaetteeet eagateacte tttggcaaeg 240
 acccctcgtc acaataagga tcggggggca actcaaggaa gcgctgctcg atacaggagc 300
 agatgataca gtattagaag aaatgaattt gccaggaaaa tggaaaccaa aaatgatagg 360
 ggggatcggg ggcttcatca aggtgaggca gtacgaccag atacctgtag aaatctgtgg 420
 acataaagct ataggtacag tattagtagg acctacacct gtcaacataa ttggaagaaa 480
 tctgttgacc cagatcggct gcaccttgaa cttccccatc agccctattg agacggtgcc 540
 cgtgaagttg aagccgggga tggacggccc caaggtcaag caatggccat tgaccgagga 600
 gaagatcaag gccctggtgg agatctgcac cgagatggag aaggagggca agatcagcaa 660
 gatcggcccc gagaacccct acaacacccc cgtgttcgcc atcaagaaga aggacagcac 720
 caagtggcgc aagctggtgg acttccgcga gctgaacaag cgcacccagg acttctggga 780
 ggtgcagctg ggcatccccc accccgccgg cctgaagaag aagaagagcg tgaccgtgct 840
 ggacgtgggc gacgcctact tcagcgtgcc cctggacaag gacttccgca agtacaccgc 900
 cttcaccatc cccagcatca acaacgagac ccccggcatc cgctaccagt acaacgtgct 960
 gccccagggc tggaagggca gccccgccat cttccagagc agcatgacca agatcctgga 1020
 gcccttccgc aagcagaacc ccgacatcgt gatctaccag gccccctgt acgtgggcag 1080
 cgacctggag atcggccagc accgcaccaa gatcgaggag ctgcgccagc acctgctgcg 1140
 ctggggcttc accaccccg acaagaagca ccagaaggag cccccttcc tgcccatcga 1200
 gctgcacccc gacaagtgga ccgtgcagcc catcatgctg cccgagaagg acagctggac 1260
 cgtgaacgac atccagaagc tggtgggcaa gctgaactgg gccagccaga tctacgccgg 1320
 catcaaggtg aagcagctgt gcaagctgct gcgcggcacc aaggccctga ccgaggtgat 1380
```

```
cccctgacc gaggaggccg agctggagct ggccgagaac cgcgagatcc tgaaggagcc 1440
cgtgcacgag gtgtactacg accccagcaa ggacctggtg gccgagatcc agaagcaggg 1500
ccagggccag tggacctacc agatctacca ggagcccttc aagaacctga agaccggcaa 1560
gtacgcccgc atgcgcggcg cccacaccaa cgacgtgaag cagctgaccg aggccgtgca 1620
gaaggtgagc accgagagca tcgtgatctg gggcaagatc cccaagttca agctgcccat 1680
ccagaaggag acctgggagg cctggtggat ggagtactgg caggccacct ggatccccga 1740
gtgggagttc gtgaacaccc ccccctggt gaagctgtgg taccagctgg agaaggagcc 1800
catcgtgggc gccgagacct tctacgtgga cggcgccgcc aaccgcgaga ccaagctggg 1860
caaggccggc tacgtgaccg accggggccg gcagaaggtg gtgagcatcg ccgacaccac 1920
caaccagaag accgagctgc aggccatcca cctggccctg caggacagcg gcctggaggt 1980
gaacatcgtg accgacagcc agtacgccct gggcatcatc caggcccagc ccgacaagag 2040
cgagagcgag ctggtgagcc agatcatcga gcagctgatc aagaaggaga aggtgtacct 2100
ggcctgggtg cccgcccaca agggcatcgg cggcaacgag caggtggaca agctggtgag 2160
cgccggcatc cgcaaggtgc tgttcctgaa cggcatcgat ggcggcatcg tgatctacca 2220
gtacatggac gacctgtacg tgggcagcgg cggccctagg atcgattaaa agcttcccgg 2280
ggctagcacc ggtgaattc
<210> 82
<211> 2306
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      FS(-).protmod.RTopt.YM
<400> 82
gcggccgcga aggacaccaa atgaaagatt gcactgagag acaggctaat ttcttccgcg 60
aggacctggc cttcctgcag ggcaaggccc gcgagttcag cagcgagcag acccgcgcca 120
acagececae eegeegag etgeaggtgt ggggeggega gaacaacage etgagegagg 180
ccggcgccga ccgccagggc accgtgagct tcaacttccc ccagatcacc ctgtggcagc 240
gcccctggt gaccatcagg atcggcggcc agctcaagga ggcgctgctc gacaccggcg 300
ccgacgacac cgtgctggag gagatgaacc tgcccggcaa gtggaagccc aagatgatcg 360
gcgggatcgg gggcttcatc aaggtgcggc agtacgacca gatccccgtg gagatctgcg 420
gccacaaggc catcggcacc gtgctggtgg gccccacccc cgtgaacatc atcggccgca 480
acctgctgac ccagatcggc tgcaccctga acttccccat cagccccatc gagacggtgc 540
 ccgtgaagct gaagccgggg atggacggcc ccaaggtcaa gcagtggccc ctgaccgagg 600
 agaagatcaa ggccctggtg gagatctgca ccgagatgga gaaggaggc aagatcagca 660
 agateggeee egagaaceee tacaacacee eegtgttege cateaagaag aaggacagea 720
 ccaagtggcg caagctggtg gacttccgcg agctgaacaa gcgcacccag gacttctggg 780
 aggtgcagct gggcatcccc caccccgccg gcctgaagaa gaagaagagc gtgaccgtgc 840
 tggacgtggg cgacgcctac ttcagcgtgc ccctggacaa ggacttccgc aagtacaccg 900
 ccttcaccat ccccagcatc aacaacgaga cccccggcat ccgctaccag tacaacgtgc 960
 tgccccaggg ctggaagggc agcccgcca tcttccagag cagcatgacc aagatcctgg 1020
 agcccttccg caagcagaac cccgacatcg tgatctacca ggcccccctg tacgtgggca 1080
 gcgacctgga gatcggccag caccgcacca agatcgagga gctgcgccag cacctgctgc 1140
 gctggggctt caccacccc gacaagaagc accagaagga gccccccttc ctgtggatgg 1200
 gctacgagct gcaccccgac aagtggaccg tgcagcccat catgctgccc gagaaggaca 1260
 gctggaccgt gaacgacatc cagaagctgg tgggcaagct gaactgggcc agccagatct 1320
 acgccggcat caaggtgaag cagctgtgca agctgctgcg cggcaccaag gccctgaccg 1380
 aggtgatccc cctgaccgag gaggccgagc tggagctggc cgagaaccgc gagatcctga 1440
 aggagcccgt gcacgaggtg tactacgacc ccagcaagga cctggtggcc gagatccaga 1500
 agcagggcca gggccagtgg acctaccaga tctaccagga gcccttcaag aacctgaaga 1560
 ccggcaagta cgcccgcatg cgcggcgccc acaccaacga cgtgaagcag ctgaccgagg 1620
```

```
ccgtgcagaa ggtgagcacc gagagcatcg tgatctgggg caagatcccc aagttcaagc 1680
tgcccatcca gaaggagacc tgggaggcct ggtggatgga gtactggcag gccacctgga 1740
tccccgagtg ggagttcgtg aacaccccc ccctggtgaa gctgtggtac cagctggaga 1800
aggageceat egtgggegee gagacettet aegtggaegg egeegeeaac egegagaeca 1860
agetgggeaa ggccggctac gtgaccgacc ggggccggca gaaggtggtg agcatcgccg 1920
acaccaccaa ccagaagacc gagctgcagg ccatccacct ggccctgcag gacagcggcc 1980
tggaggtgaa catcgtgacc gacagccagt acgccctggg catcatccag gcccagcccg 2040
acaagagcga gagcgagctg gtgagccaga tcatcgagca gctgatcaag aaggagaagg 2100
tgtacetggc etgggtgece geccaeaagg geateggegg eaacgageag gtggaeaage 2160
tggtgagcgc cggcatccgc aaggtgctgt tcctgaacgg catcgatggc ggcatcgtga 2220
tctaccagta catggacgac ctgtacgtgg gcagcggcgg ccctaggatc gattaaaagc 2280
ttcccggggc tagcaccggt gaattc
<210> 83
<211> 2300
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      FS(-).protmod.RTopt.YMWM
<400> 83
geggeegega aggaeaceaa atgaaagatt geactgagag acaggetaat ttetteegeg 60
aggacctggc cttcctgcag ggcaaggccc gcgagttcag cagcgagcag acccgcgcca 120
acageeecae eegeegegag etgeaggtgt ggggeggega gaacaacage etgagegagg 180
ccggcgccga ccgccagggc accgtgagct tcaacttccc ccagatcacc ctgtggcagc 240
gccccctggt gaccatcagg atcggcggcc agctcaagga ggcgctgctc gacaccggcg 300
ccgacgacac cgtgctggag gagatgaacc tgcccggcaa gtggaagccc aagatgatcg 360
gcgggatcgg gggcttcatc aaggtgcggc agtacgacca gatccccgtg gagatctgcg 420
gccacaaggc catcggcacc gtgctggtgg gccccacccc cgtgaacatc atcggccgca 480
acctgctgac ccagatcggc tgcaccctga acttccccat cagccccatc gagacggtgc 540
ccgtgaagct gaagccgggg atggacggcc ccaaggtcaa gcagtggccc ctgaccgagg 600
agaagatcaa ggccctggtg gagatctgca ccgagatgga gaaggagggc aagatcagca 660
agatcggccc cgagaacccc tacaacaccc ccgtgttcgc catcaagaag aaggacagca 720
ccaagtggcg caagetggtg gacttccgcg agctgaacaa gcgcacccag gacttctggg 780
aggtgcagct gggcatcccc cacccogccg gcctgaagaa gaagaagagc gtgaccgtgc 840
tggacgtggg cgacgcctac ttcagcgtgc ccctggacaa ggacttccgc aagtacaccg 900
ccttcaccat ccccagcatc aacaacgaga cccccggcat ccgctaccag tacaacgtgc 960
tgccccaggg ctggaagggc agccccgcca tcttccagag cagcatgacc aagatcctgg 1020
agcccttccg caagcagaac cccgacatcg tgatctacca ggccccctg tacgtgggca 1080
gcgacctgga gatcggccag caccgcacca agatcgagga gctgcgccag cacctgctgc 1140
gctggggctt caccacccc gacaagaagc accagaagga gcccccttc ctgcccatcg 1200
agctgcaccc cgacaagtgg accgtgcagc ccatcatgct gcccgagaag gacagctgga 1260
ccgtgaacga catccagaag ctggtgggca agctgaactg ggccagccag atctacgccg 1320
gcatcaaggt gaagcagctg tgcaagctgc tgcgcggcac caaggccctg accgaggtga 1380
tccccctgac cgaggaggcc gagctggagc tggccgagaa ccgcgagatc ctgaaggagc 1440
ccgtgcacga ggtgtactac gaccccagca aggacctggt ggccgagatc cagaagcagg 1500
gccagggcca gtggacctac cagatctacc aggagccctt caagaacctg aagaccggca 1560
agtacgcccg catgcgcggc gcccacacca acgacgtgaa gcagctgacc gaggccgtgc 1620
agaaggtgag caccgagagc atcgtgatct ggggcaagat ccccaagttc aagctgccca 1680
tccagaagga gacctgggag gcctggtgga tggagtactg gcaggccacc tggatccccg 1740
agtgggagtt cgtgaacacc cccccctgg tgaagctgtg gtaccagctg gagaaggagc 1800
```

ccatcgtggg cgccgagacc ttctacgtgg acggcgccgc caaccgcgag accaagetgg 1860

```
gcaaggccgg ctacgtgacc gaccggggcc ggcagaaggt ggtgagcatc gccgacacca 1920
ccaaccagaa gaccgagctg caggccatcc acctggccct gcaggacagc ggcctggagg 1980
tgaacatcgt gaccgacagc cagtacgccc tgggcatcat ccaggcccag cccgacaaga 2040
gcgagagcga gctggtgagc cagatcatcg agcagctgat caagaaggag aaggtgtacc 2100
tggcctgggt gcccgccac aagggcatcg gcggcaacga gcaggtggac aagctggtga 2160
gcgccggcat ccgcaaggtg ctgttcctga acggcatcga tggcggcatc gtgatctacc 2220
agtacatgga cgacctgtac gtgggcagcg gcggccctag gatcgattaa aagcttcccg 2280
gggctagcac cggtgaattc
                                                                  2300
<210> 84
<211> 2312
                                                                     :
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      FS(-).protmod.RTopt(+)
<400> 84
geggeegega aggacaccaa atgaaagatt geactgagag acaggetaat ttetteegeg 60
aggacetgge etteetgeag ggeaaggeee gegagtteag eagegageag accegegeea 120
acagececae eegeegegag etgeaggtgt ggggeggega gaacaacage etgagegagg 180
ccggcgccga ccgccagggc accgtgagct tcaacttccc ccagatcacc ctgtggcagc 240
gccccctggt gaccatcagg atcggcggcc agctcaagga ggcgctgctc gacaccggcg 300
ccgacgacac cgtgctggag gagatgaacc tgcccggcaa gtggaagccc aagatgatcg 360
gcgggatcgg gggcttcatc aaggtgcggc agtacgacca gatccccgtg gagatctgcg 420
gccacaaggc catcggcacc gtgctggtgg gccccacccc cgtgaacatc atcggccgca 480
acctgctgac ccagatcggc tgcaccctga acttccccat cagccccatc gagacggtgc 540
ccgtgaagct gaagccgggg atggacggcc ccaaggtcaa gcagtggccc ctgaccgagg 600
agaagatcaa ggccctggtg gagatctgca ccgagatgga gaaggagggc aagatcagca 660
agateggeee egagaaceee tacaacacee eegtgttege cateaagaag aaggacagca 720
ccaagtggcg caagctggtg gacttccgcg agctgaacaa gcgcacccag gacttctggg 780
aggtgcagct gggcatcccc cacccgccg gcctgaagaa gaagaagagc gtgaccgtgc 840
tggacgtggg cgacgcctac ttcagcgtgc ccctggacaa ggacttccgc aagtacaccg 900
ccttcaccat ccccagcatc aacaacgaga cccccggcat ccgctaccag tacaacgtgc 960
tgccccaggg ctggaagggc agcccgcca tcttccagag cagcatgacc aagatcctgg 1020
agcccttccg caagcagaac cccgacatcg tgatctacca gtacatggac gacctgtacg 1080
tgggcagcga cctggagatc ggccagcacc gcaccaagat cgaggagctg cgccagcacc 1140
tgctgcgctg gggcttcacc acccccgaca agaagcacca gaaggagccc cccttcctgt 1200
ggatgggeta cgagetgeac ecegacaagt ggacegtgea geceateatg etgeeegaga 1260
aggacagetg gacegtgaac gacatecaga agetggtggg caagetgaac tgggecagec 1320
agatetaege eggeateaag gtgaageage tgtgeaaget getgegegge aceaaggeee 1380
tgaccgaggt gatccccctg accgaggagg ccgagctgga gctggccgag aaccgcgaga 1440
teetgaagga geeegtgeac gaggtgtaet acgaeeceag caaggaeetg gtggeegaga 1500
tecagaagea gggeeaggge cagtggaeet accagateta ceaggageee tteaagaace 1560
tgaagaccgg caagtacgcc cgcatgcgcg gcgcccacac caacgacgtg aagcagctga 1620
ccgaggccgt gcagaaggtg agcaccgaga gcatcgtgat ctggggcaag atccccaagt 1680
tcaagctgcc catccagaag gagacctggg aggcctggtg gatggagtac tggcaggcca 1740
cctggatccc cgagtgggag ttcgtgaaca cccccccct ggtgaagctg tggtaccagc 1800
tggagaagga gcccatcgtg ggcgccgaga ccttctacgt ggacggcgcc gccaaccgcg 1860
agaccaagct gggcaaggcc ggctacgtga ccgaccgggg ccggcagaag gtggtgagca 1920
tegeegacae caccaaccag aagacegage tgeaggeeat ceacetggee etgeaggaca 1980
gcggcctgga ggtgaacatc gtgaccgaca gccagtacgc cctgggcatc atccaggccc 2040
agcccgacaa gagcgagagc gagctggtga gccagatcat cgagcagctg atcaagaagg 2100
```

```
aqaaqqtqta cctqqcctqq gtgcccgccc acaaqqqcat cggcggcaac gagcaggtgg 2160
acaagctggt gagcgccggc atccgcaagg tgctgttcct gaacggcatc gatggcggca 2220
tegtgateta ccagtacatg gaegacetgt acgtgggcag eggeggecet aggategatt 2280
aaaagcttcc cggggctagc accggtgaat tc
                                                                   2312
<210> 85
<211> 306
<212> DNA
<213> Human immunodeficiency virus
<400> 85
atggagccag tagatcctag attagagccc tggaagcatc caggaagtca gcctaagact 60
gcttgtacaa attgctattg taaaaagtgt tgctttcatt gccaagtttg tttcataaca 120
aaaggettag geateteeta tggeaggaag aageggagae agegaegaag ageteeteea 180
gacagtgagg ttcatcaagt ttctctacca aagcaacccg cttcccagcc ccaaggggac 240
ccgacaggcc cgaaggaatc gaagaagaag gtggagagag agacagagac agatccagtc 300
                                                                   306
cattag
<210> 86
<211> 101
<212> PRT
<213> Human immunodeficiency virus
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
Gln Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys Phe
His Cys Gln Val Cys Phe Ile Thr Lys Gly Leu Gly Ile Ser Tyr Gly
         35
Arg Lys Lys Arg Arg Gln Arg Arg Ala Pro Pro Asp Ser Glu Val
His Gln Val Ser Leu Pro Lys Gln Pro Ala Ser Gln Pro Gln Gly Asp
Pro Thr Gly Pro Lys Glu Ser Lys Lys Lys Val Glu Arg Glu Thr Glu
                 85
                                      90
Thr Asp Pro Val His
            100
<210> 87
<211> 306
<212> DNA
<213> Artificial Seguence
<220>
<223> Description of Artificial Sequence: tat.SF162.opt
```

```
<400> 87
atggageceg tggaceceeg cetggagece tggaageace eeggeageca geecaagaee 60
gcctgcacca actgctactg caagaagtgc tgcttccact gccaggtgtg cttcatcacc 120
aagggeetgg geatcageta eggeegeaag aagegeegee agegeegeeg egeeeeeee 180
gacagegagg tgcaccaggt gagectgeec aageageeeg ecagecagee ecagggegae 240
cccaccggcc ccaaggagag caagaagaag gtggagcgcg agaccgagac cgaccccgtg 300
cactag
                                                                  306
<210> 88
<211> 306
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      tat.cys22.SF162.opt
<400> 88
atggageceg tggaececeg cetggagece tggaageace eeggeageca geecaagaee 60
gccggcacca actgctactg caagaagtgc tgcttccact gccaggtgtg cttcatcacc 120
aagggcctgg gcatcagcta cggccgcaag aagcgccgcc agcgccgccg cgccccccc 180
gacagegagg tgcaccaggt gagectgeec aageageeg ccagecagec ccagggegae 240
cccaccggcc ccaaggagag caagaagaag gtggagcgcg agaccgagac cgaccccgtg 300
cactag
<210> 89
<211> 168
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      tatamino.SF162.opt
<400> 89
atggageceg tggaececeg cetggagece tggaageace eeggeageca geecaagaee 60
gcctgcacca actgctactg caagaagtgc tgcttccact gccaggtgtg cttcatcacc 120
aagggcctgg gcatcagcta cggccgcaag aagcgccgcc agcgccgc
<210> 90
<211> 102
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: tat cys22
      SF162 protein
<400> 90
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
Gln Pro Lys Thr Ala Gly Thr Asn Cys Tyr Cys Lys Lys Cys Cys Phe
```

25

20

His Cys Gln Val Cys Phe Ile Thr Lys Gly Leu Gly Ile Ser Tyr Gly 35 40 45

Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Pro Asp Ser Glu Val 50 55 60

His Gln Val Ser Leu Pro Lys Gln Pro Ala Ser Gln Pro Gln Gly Asp 65 70 75 80

Pro Thr Gly Pro Lys Glu Ser Lys Lys Lys Val Glu Arg Glu Thr Glu 85 90 95

Thr Asp Pro Val His Glx 100