RCA SOLUTIONS

JAEMINOH

Date: July 13, 2020.

JAEMINOH

1. Abstract Integration

Problem (10).

Since each f_n is bounded and $\mu(X) < \infty$, $f_n \in L^1$. We can conclude that f is also bounded hence $f \in L^1$ because f_n is uniformly convergent to f and each f_n is bounded.

$$\left| \int_{X} f_{n} d\mu - \int_{X} f d\mu \right| \leq \int_{X} |f_{n} - f| d\mu$$
$$\leq \varepsilon \mu (X)$$

if n is large, because of uniform convergence. So we can see that $\lim \int_X f_n d\mu = \int_X f d\mu$.

4. Elementary Hilbert Space Theory

Problem (1).

Let $m \in M$. Then (m,x) = 0 for all $x \in M^{\perp}$. So $m \in (M^{\perp})^{\perp} \Rightarrow M \leq (M^{\perp})^{\perp}$. On the contrary, let $m \in (M^{\perp})^{\perp}$. Decompose m by Pm + Qm where $Pm \in M$ and $Qm \in M^{\perp}$. For $x \in M^{\perp}$, (m,x) = (Qm,x) = 0. Take x = Qm. Then Qm = 0, which leads $m = Pm \in M$. Hence $(M^{\perp})^{\perp} \leq M$.

Problem (5).

Since L is continuous linear functional on H, there is nonzero unique $y \in H$ such that Lx = (x, y) for all $x \in H$. (When L is nontrivial linear functional.) For all $x \in M$, (x, y) = Lx = 0. So $y \in M^{\perp}$.

If dimension of M^{\perp} is bigger than 1, we can take $z \in M^{\perp}$ such that $z \neq 0$ and $\{z,y\}$ is linearly independent.

Now, consider the following:

$$u = z - \frac{(z,y)}{(y,y)}y$$

Then (u,y) = 0 and $u \in M^{\perp}$, so u = 0. This contradicts to independency of $\{z,y\}$. So dimension of M^{\perp} is smaller than 1.

Problem (7).

Let $N_0 = 0$, choose N_1 so that $\sum_{n=N_0+1}^{N_1} a_n^2 > 1$. For chosen N_0, \dots, N_k , choose N_{k+1} so that $\sum_{n=N_k+1}^{N_{k+1}} a_n^2 > 1$. And put $E_k = \{N_{k-1}, \dots, N_k\}$. Let $s_k = \sum_{n \in E_k} a_n^2 > 1$, and $c_k = \frac{1}{ks_k}$. Then, done.

Problem (8).

Let $\{v_{\beta}: \beta \in B\}$ be an orthonormal basis of H_2 . Then $H_2 \cong l^2(B)$. Additionally, assume $H_1 \cong l^2(A)$ and without loss of generality, there exists an injection $\varphi: A \hookrightarrow B$. Let Q be a class of all finite linear combination of $\{v_{\beta}: \beta \in \varphi(A)\}$. Then \overline{Q} is Hilbert space, being closed subspace of H_2 .

Then $\overline{Q} \cong l^2(\varphi(A)) \cong l^2(A) \cong H_1$. So H_1 is isomorphic to \overline{Q} , which is closed subspace of H_2 .