الصيغ المعيارية Normal Forms

- Normalization is the process of a clearance the database of inappropriate reputation of data by depending on the inference rules and functional dependency, although the process of developing the database design in the normal forms is a key building block for a state of art design of the database.
- الصيغة المعيارية: هي عملية تخليص قاعدة البيانات من التكرار غير المناسب للبيانات بالاعتماد على قوانين الاستنتاج والاعتمادية الوظيفية.
- وإن عملية وضع تصميم قاعدة البيانات في الصيغة المعيارية يشكل لبنة أساسية في عملية التصميم الجيد لقاعدة البيانات، وتتم هذه العملية على عدة مراحل مثل:
 - الصيغة المعيارية الأولى First Normal Form 1NF
 - الصيغة المعيارية الثانية Second Normal Form 2NF
 - الصيغة المعيارية الثالثة Third Normal Form 3NF

مشاكل تكرار البيانات (Data Anomalies)

• نلاحظ في الجدول التالي أن معلومات الموظف والقسم الذي يعمل فيه موجودة في جدول واحد، ونتيجة لذلك فأن تكرار بعض البيانات مثل اسم وموقع القسم في كل سجل سوف يؤدي إلى عدة مشاكل.

Employee_department

Empno	Ename	Job	Salary	Deptno	Dname	Loc
<u>10</u>	Smer	Clerk	300	1	Accounting	Baghdad
<u>20</u>	Ali	Manager	500	1	Accounting	Baghdad
<u>30</u>	Khalid	Salesman	400	2	Sales	Mosul
40	Saeed	Salesman	450	2	Sales	Mosul
<u>50</u>	Salem	Clerk	350	3	Operation	Basrah

مشاكل تكرار البيانات (Data Anomalies)

- 1. مشكلة الإضافة Insertion Anomaly: حيث أننا لا نستطيع أن نضيف قسماً جديداً إلا إذا كان القسم يحتوي على موظف؛ لأن المفتاح الرئيسي للجدول هو رقم الموظف.
- 2. مشكلة التعديل موقع (Ioc) القسم فلا بد من إجراء عملية التعديل لجميع الموظفين في هذا القسم؛ وإلا ستؤدي هذه العملية إلي عدم توافقية البيانات، أي نفس رقم القسم ولكن أكثر من موقع، وكذلك إذا تمت عملية تغيير موقع القسم عند أي موظف عن طريق الخطأ، فإنه لو قمنا بعملية استرجاع لجميع الموظفين الذين يعملون في هذا القسم فإن هذا الموظف لن يظهر بين الموظفين.
- 3. مشكلة الحذف Deletion Anomaly: إن القسم 3 يحتوي علي موظف واحد فقط، ولو قمنا بحذف هذا الموظف فإن معلومات القسم 3 سوف تختفي من الجدول.

الاعتمادية الوظيفية Functional Dependency FD

- Functional Dependency is the adoption of one attributes on the value of another attribute(s). Where through the identification of this dependency we will be able to determine where it should be placed, and this consequently leads to put the data in the right place and get rid of the data replication.
 - وهي اعتماد قيمة إحدى صفات الكيان على قيمة صفة (صفات) أخرى، ويرمز لها بالرمز (--).
 - حيث من خلال تحديد هذه الاعتمادية سوف نستطيع أن نحدد المكان الذي يجب أن توضع فيه الصفة.
 - وهذا بالتالى يؤدي إلى وضع البيانات في المكان الصحيح والتخلص من عملية تكرار البيانات.
 - A → B : مثال •
- وأن B تعتمد اعتماداً وظيفياً على A، ونستطيع أن نقول هنا أن قيمة A تحدد قيمة B وأن A ترجع لنا قيمة واحدة فقط لـ B.
 - ويمكن ايضاً أن نقول أننا نستطيع أن نصل إلى البيانات في العمود B بمعرفتنا للبيانات في العمود A.

الاعتمادية الوظيفية Functional Dependency FD

- وهي اعتماد قيمة إحدى صفات الكيان على قيمة صفة (صفات) أخرى، ويرمز لها بالرمز (—).
- حيث من خلال تحديد هذه الاعتمادية سوف نستطيع أن نحدد المكان الذي يجب أن توضع فيه الصفة.
- وهذا بالتالي يؤدي إلى وضع البيانات في المكان الصحيح والتخلص من عملية تكرار البيانات.
 - A → B : مثال •
- يعني أن B تعتمد اعتماداً وظيفياً على A، ونستطيع أن نقول هنا أن قيمة A تحدد قيمة
 B. وأن A ترجع لنا قيمة واحدة فقط لـ B.
- ويمكن ايضاً أن نقول أننا نستطيع أن نصل إلى البيانات في العمود B بمعرفتنا للبيانات في العمود A في العمود في العمود م.

الاعتمادية الوظيفية Functional Dependency FD

• مثال: لكل موظف اسم واحد فقط ولكل موظف قسم واحد يعمل فيه إذاً:

FD1 : Empno → Ename

FD2: Empno → Deptno

• أي يمكن معرفة اسم الموظف من رقمه وكذلك القسم.

• ويمكن أن نعيد كتابة هذه الاعتمادية على الشكل التالي:

FD1: Empno → Ename, Deptno

قواعد الاستنتاج Inference Rules

- Inference Rules قواعد الاستنتاج
- Inference Rules is a set of rules that are used in the process of identifying the functional dependency.
- قواعد الاستنتاج: هي عبارة عن مجموعة من القواعد تستخدم في عملية تحديد الاعتمادية الوظيفية وتتلخص هذه القواعد كما يلي:
 - y جزء من x (x محتواه في x) غإن xتحدد y جزء من x (x محتواه في x) فإن Y:X + قاعدة الانعكاسية (Reflexive Rule) الإنعكاسية (Y:X + Y2</u>X
 - مثال:

Empno → Deptno

ملاحظة : = | تعني أنه إذا تحقق الطرف الأيسر فإننا نستطيع استنتاج الطرف الأيمن.

Empno → Deptno
Empno, Dname → Deptno, Dname

2- قاعدة التعدي (Transitive Rule) : إذا كانت x تحدد y وكانت و تحدد x فإن x تحدد z

$$\{X \longrightarrow Y, Y \longrightarrow Z\} \mid = X \longrightarrow Z$$

مثال:

Book → Author

Author → Auth_Addr

Book → Auth_Addr

4- قاعدة الاتحاد (Union Rule) : إذا كانت x تحدد x و x تحدد y و y تحدد yz

$$\{X \rightarrow Y, X \rightarrow Z\} \mid = X \rightarrow YZ$$

• مثال:

Empno → **Ename**

Empno → **Gender**

Empno → Ename, Gender

5- قاعدة التقسيم (Decomposition Rule) : وهي عكس قاعدة الاتحاد، إذا كانت x تحدد yz إذاً x تحدد ع

$$\{X \rightarrow YZ\} \mid = X \rightarrow Y, X \rightarrow Z$$

• مثال:

Empno → Ename, Gender

Empno → Ename

Empno → Gender

العلاقة غير المعيارية (Unnormalized Form UNF)

هي العلاقة التي تحتوي على مجموعة مكررة من البيانات، أي وجود أكثر من قيمة بيانية في داخل الخلية، أمثلة:

Customer

Cno	Cname	Address
<u>10</u>	Smer Mohammed Ali	12 abc Mosul
<u>20</u>	Ahmed Ali Salem	343 xyz Baghdad
<u>30</u>	Khalid Saad Ahmed	23 Abc Anbar
<u>40</u>	Noor Ahmed Mohammed	67 xyz Dohok

Employee

Eno	Ename	Proj_code	Hours	Deptno	Dname
		P1	12	10	Research
<u>210</u>	Ali	P2	20	20	Operation
		P3	40	20	Operation
201	Colom	P1	30	10	Research
<u>201</u>	Salem	P3	15	20	Operation
205	Ali	P2	40	20	Operation
305	All	P3	20	20	Operation

الصيغة المعيارية الأولى (First Normal Form 1NF)

- The table will be in the 1NF if all table columns contain simple data (Atomic), that is, any intersection of column with row gives only one value.
- إن الجدول يكون في الصيغة المعيارية الأولى إذا كانت جميع أعمدة الجدول تحتوي على بيانات بسيطة أو مفردة (Atomic غير مركبة) أي إن تقاطع العمود مع الصف يعطي قيمة واحدة فقط.
- <u>مثال</u>: الاسم (يتم تقسيمه إلى الاسم الأول، الاسم الثاني، اسم العائلة)، العنوان (يتم تقسيمه إلى المدينة، الشارع، رقم المنزل) وكل واحد في عمود مستقل.
 - · أي أن في 1NF هناك قاعدتان أساسيتان:
 - 1- أن لا يكون هناك صفة متعددة القيم: بمعنى أن يكون داخل العمود أكثر من بيان.
 - 2- أن لا يكون هناك صفة مركبة: بمعنى أن يقسم العمود إلى قسمين أو اكثر.

الصيغة المعيارية الأولى (First Normal Form 1NF)

· مثال 1: في الجدول التالي معلومات الزبون، ونلاحظ أن الاسم يحتوي على ثلاثة قيم بيانية وكذلك العنوان، فبالتالي لا نستطيع أن نخزن قيمة واحدة فقط في عمود الاسم أو العنوان.

Customer

Cno	Cname	Address
<u>10</u>	Smer Mohammed Ali	12 abc Mosul
<u>20</u>	Ahmed Ali Salem	343 xyz Baghdad
<u>30</u>	Khalid Saad Ahmed	23 abc Anbar
<u>40</u>	Noor Ahmed Mohammed	67 xyz Dohok

ولوضع الجدول في الصيغة المعيارية الأولى 1NF يجب تقسيم الأعمدة المركبة إلى أعمدة بسيطة:

<u>Cno</u>	Fname	Mname	Lname	Sno	Street	City
<u>10</u>	Smer	Mohammed	Ali	12	Abc	Mosul
<u>20</u>	Ahmed	Ali	Salem	343	Xyz	Baghdad
<u>30</u>	Khalid	Saad	Ahmed	23	abc	Anbar
<u>40</u>	Noor	Ahmed	Mohammed	67	xyz	Dohok

• مثال 2: يمثل الجدول التالي سجل ساعات العمل Hours لموظف في عدد من المشاريع Projects والقسم الذي يشرف على تنفيذ المشروع.

Hours

40

Deptno

10 20

20

10

20

20

20

Dname

Research

Operation

Operation

Research

Operation

Operation

Operation

Proj_code

Employee			P1	12
	<u>210</u>	Ali	P2	20
			P3	40
	201	Colom	P1	30
	201	Salem	P3	15

Ename

Ali

Eno

305

و كما هو مبين فأن عدداً من الأعمدة تحتوي على أكثر من قيمة مثل رمز المشروع وساعات العمل والاقسام، ولتحويله يجب أن نقوم بتقسيم الجدول على النحو التالى:

P3

Empl	loyee

Eno	Ename	Proj_code	Hours	Deptno	Dname
<u>210</u>	Ali	P1	12	10	Research
<u>210</u>	Ali	P2	20	20	Operation
<u>210</u>	Ali	P3	40	20	Operation
<u>201</u>	Salem	P1	30	10	Research
<u>201</u>	Salem	P3	15	20	Operation
<u>305</u>	Ali	P2	40	20	Operation
<u>305</u>	Ali	Р3	20	20	Operation

- ولكن توجد مشكلة في هذا الجدول وهي ايجاد المفتاح الرئيسي، إذ أصبح رقم الموظف لا يصلح أن يكون مفتاحاً رئيسياً PK، وذلك لأن من شروطه هي عدم التكرار.
 - سوف نقوم الأن باستخدام الاعتمادية الوظيفية FD لمحاولة إيجاد المفتاح الرئيسي للجدول:

FD1: Eno → Ename

 حيث أن الرقم يحدد الاسم، ولكل موظف رقم واحد ولا يمكن أن نقول أن الاسم يحدد الرقم لوجود اسماء متشابهة

FD2 : Proj_code → Deptno

حیث أن لکل مشروع قسم واحد یشرف علیه.

FD3 : Deptno → Dname

- حیث أن لکل قسم اسم و احد.
- أما بالنسبة لبقية العناصر فمثلاً اسم الموظف لا يحدد شيئاً لأنه يوجد أكثر من موظف اسمه Ali فالأسم لا يحدد الرقم، وكذلك فأن Ali يعمل في أكثر من مشروع.
- وكذلك رمز المشروع لا يحدد عدد الساعات ولا الموظفين الذين يعملون فيه، فالمشروع P1 يعمل فيه أكثر من موظف وبساعات مختلفة.
- اما بالنسبة للقسم فلا يحدد الموظفين و لا المشاريع، فمثلاً القسم 20 يشرف على أكثر من مشروع و هذه المشاريع يعمل عليها اكثر من موظف.
- ففي هذه الحالة يجب علينا القيام بمحاولة جديدة لإيجاد المفتاح الرئيسي PK من خلال مفتاح مركب من اكثر من صفة.

• نقوم بربط رقم الموظف مع رمز المشروع:

FD4 : <u>Eno</u>, Proj_code → Ename

FD5 : Eno, <u>Proj_code</u> → Deptno

FD6 : <u>Eno, Proj_code</u> → Hours

FD7: Deptno → Dname

FD8 : Eno, Proj_code → Ename, Hours, Deptno, Dname

- FD4 و FD5 تنطبق مع FD1 و FD2 حيث ان رقم الموظف وحده يحدد الاسم وكذلك رمز المشروع يحدد القسم.
- اما بالنسبة لـ FD6 فأنها تنطبق لأن رقم الموظف ورمز المشروع يحددان عدد ساعات عمل الموظف في ذلك المشروع.
- وبالتالي نكون قد حصلنا على مفتاح رئيسي لهذا الجدول وكذلك قمنا بوضعه في الصيغة المعيارية الأولى.
- ملاحظة: عندما يكون الجدول بالصيغة غير المعيارية UNF و ONF نقوم بتحويل العمود ذو القيم المركبة أو متعددة القيم إلى قيم بسيطة بطريقتين:
 - إما بتحويل العمود الواحد إلى عدة أعمدة أو صفوف،
- أو بعمل علاقة جديدة تحوي القيم المتعددة أو المركبة، بالإضافة إلى مفتاح أجنبي يمثل الجدول الأصلي بالطبع.

- إن الجدول يكون في الصيغة المعيارية الثانية إذا:
 - 1. كان الجدول في الصيغة المعيارية الأولى.
 - 2. لم يحتوي الجدول على اعتمادية جزئية.
- الاعتمادية الجزئية: هي أن تعتمد بعض الأعمدة (الصفات) اعتماداً وظيفياً على جزء من المفتاح الرئيسي (المركب).

- نلاحظ أن A,B تحدد C أي أن C تعتمد اعتماد وظيفياً على A,B،
- وكذلك أن B تحدد C اي أن C تعتمد اعتماداً وظيفياً على B، وفي هذه الحالة يمكن ان نقول أن هذا الجدول يحتوي على اعتمادية جزئية.

الاعتماد الوظيفي الكامل والجزئي Full & Partial Dependency

يوضح الجدول الآتي درجات الطلاب:

Stud

Sno	<u>Cno</u>	Grades
<u>10</u>	1	70
<u>10</u>	2	88
<u>20</u>	1	100
<u>20</u>	2	94

- · فمثلا لو أردنا أن نعرف درجة الطالب رقم 10 ستظهر لنا درجتان وهما 70-88.
- · وهذا يدل على أن الدرجات لا تعتمد اعتماداً وظيفياً على رقم الطالب فحسب، بل أنها تعتمد أيضاً على رقم المادة أيضاً.
 - ويمكن توضيحها كالآتي:

Sno, Cno → Grades

اذن فالدرجات تعتمد وظيفياً كاملاً على رقم الطالب + رقم المادة.

الاعتماد الوظيفي الكامل والجزئي Full & Partial Functional Dependency

Stud

مثلاً في حالة أضفنا إلى الجدول اسم الطالب واسم المادة:

Sno	Cno	Grades	St_name	Course
<u>10</u>	1	70	Ahmed	DB
<u>10</u>	2	88	Ahmed	OS
<u>20</u>	1	100	Salem	DB
<u>20</u>	2	94	Salem	OS

• مثال:

Sno, Cno → St_name

- · هنا خطأ لأن رقم الطالب يكفي لنعرف اسمه وهذه الحالة تسمى اعتماد وظيفي جزئي.
 - إذن فإن اسم الطالب يعتمد وظيفياً على رقم الطالب فقط و هو اعتماد وظيفي جزئي.
 - مثال أخر:

Sno, Cno → Course

هنا خطأ لأن رقم المادة يكفي لنعرف اسمها. وهذه الحالة تسمى اعتماد وظيفي جزئي.

- في الصيغة المعيارية الثانية لا ينفع أن يكون هناك صفة تعتمد اعتماد وظيفي جزئي على المفتاح الرئيسي.
- ولكن يجب أن يكون اعتماداً وظيفياً كاملاً كما في حالة الدرجات فهي تعتمد على المفتاح المركب (رقم الطالب + رقم المادة).
 - اما في حالة اسم الطالب، اسم المادة فهو اعتماد وظيفي جزئي.
- الحل في هذه الحالة أن نضيف جدول جديد لكل صفة مع المفتاح الرئيسي المعتمدة عليه اعتماداً وظيفياً كاملاً وتحذف الصفات من الجدول الأساسي.

- 1) ننشأ جدول جديد به المفتاح الرئيسي + الصفة المعتمدة عليه اعتمادية وظيفية كاملة.
 - 2) نحذف الصفة من الجدول الأساسي.

<u>Sno</u>	Cno	Grades	St_name	Course
<u>10</u>	1	70	Ahmed	DB
<u>10</u>	2	88	Anwed	OS
<u>20</u>	1	100	Salem	DB
<u>20</u>	2	94	Salem	OS

<u>Sno</u>	St_name
<u>10</u>	Ahmed
<u>20</u>	Salem

Sno → St_name

هنا يعتمد اسم الطالب على رقمه اعتماداً وظيفياً كاملاً.

- 1) ننشأ جدول جديد به المفتاح الرئيسي + الصفة المعتمدة عليه اعتمادية وظيفية كاملة.
 - 2) نحذف الصفة من الجدول الأساسي.

Sno	Cno	Grades	St_name	Course
<u>10</u>	1	70	Ahmed	DB
<u>10</u>	2	88	Ahmed	OS/
<u>20</u>	1	100	Salem	D?
<u>20</u>	2	94	Salem	OS

<u>Cno</u>	Course
<u>1</u>	DB
2	OS

Cno → Course

هنا يعتمد اسم المادة على رقمها اعتماداً وظيفياً كاملاً.

• والان هل الجدول التالي هو في الصيغة المعيارية الثانية 2NF؟

Eno	Ename	Proj_code	Hours	Deptno	Dname
<u>210</u>	Ali	P1	12	10	Research
<u>210</u>	Ali	P2	20	20	Operation
<u>210</u>	Ali	P3	40	20	Operation
<u>201</u>	Salem	P1	30	10	Research
<u>201</u>	Salem	P3	15	20	Operation
<u>305</u>	Ali	P2	40	20	Operation
305	Ali	P3	20	20	Operation

Employee

- وللإجابة على ذلك، نجيب على السؤالين التاليين:
- 1- هل الجدول في الصيغة المعيارية الاولى 1NF؟
- نعم، لأنه لا توجد هناك قيم متكررة، كل عمود يحتوي على قيمة واحدة فقط.

2- هل توجد هناك اعتمادية جزئية؟ ولمعرفة ذلك يجب أن نحدد الاعتمادية الوظيفية

 $FD1: Eno \rightarrow Ename$

FD2 : Proj_code → Deptno, Dname

FD3: Eno, Proj_code

Ename, Deptno, Hours

- المفتاح الرئيسي للجدول هو Eno, Proj_code ولكن Eno يحدد Ename إذاً هناك اعتمادية جزئية.
 - وكذلك Proj_code يحدد Deptno, Dname وهذه اعتمادية جزئية أخرى.
- وللتخلص من هذه المشكلة يجب أن نقوم بتقسيم الجدول إلى جداول بحيث يضم كل منها الجزء من المفتاح والأعمدة التي تعتمد عليه ونبقي فقط المفتاح المركب مع الاعمدة التي تعتمد عليه.

1- نقوم بنقل اسم ورقم الموظف إلى جدول جديد ونبقي نسخة من رقم الموظف في الجدول الأصلي (لأنه جزء من المفتاح الرئيسي).

2- نقوم بنقل رمز المشروع ورقم القسم واسم القسم إلى جدول جديد ونبقي نسخة من رمز المشروع في الجدول الأصلي (لأنه جزء من المفتاح الرئيسي).

Eno	Proj_code	Hours
<u>210</u>	P1	12
<u>210</u>	P2	20
<u>210</u>	P3	40
<u>201</u>	P1	30
<u>201</u>	P3	15
<u>305</u>	P2	40
305	Р3	20

Eno	Ename
<u>210</u>	Ali
<u>201</u>	Salem
<u>305</u>	Ali

Proj_code	Deptno	Dname
P1	10	Research
P2	20	Operation
P3	20	Operation

الصيغة المعيارية الثالثة (Third Normal Form 2NF)

- إن الجدول يكون في الصيغة المعيارية الثالثة إذا:
 - 1. كان الجدول في الصيغة المعيارية الثانية.
 - 2. لم يحتوي الجدول على اعتمادية متعدية.
- الاعتمادية المتعدية Transitive Dependency: هي أن تعتمد بعض الأعمدة (الصفات) اعتماداً وظيفياً على صفة غير المفتاح الرئيسي.

- نلاحظ أن A تحدد B,C أي أن B,C تعتمد اعتماد وظيفياً على A،
- وكذلك أن B تحدد C اي أن C تعتمد اعتماداً وظيفياً على B، وفي هذه الحالة يمكن ان نقول أن هذا الجدول يحتوي على اعتمادية متعدية.

الاعتمادية المتعدية

Transitive Functional Dependency (TFD)

- بمعنى انه هناك صفة تعتمد على صفة أخرى والصفة الأخرى تعتمد على المفتاح الرئيسي، في هذه
 الحالة تكون الصفة التى فى المنتصف هى صفة وسيطة.
- يعني أنها تعتمد بطريقة غير مباشرة على المفتاح الرئيسي، أي أن الصفة لا تعتمد على المفتاح الرئيسي مباشرة، وإنما تعتمد على صفة هي التي تعتمد على المفتاح الرئيسي.
- نلاحظ في الجدول التالي أن رقم القسم يعتمد مباشرة على المفتاح الرئيسي (رقم الموظف)، بينما اسم مدير القسم يعتمد على رقم القسم وليس على المفتاح الرئيسي.

<u>Eno</u>	Deptno	Dept_manager
<u>10</u>	1	Ali
<u>35</u>	2	Hassan
<u>55</u>	3	Noor
<u>20</u>	4	Ahmed

Eno → Deptno → Dept-manager

Deptno → TFD

الصيغة المعيارية الثالثة (Third Normal Form 2NF)

- في هذه الحالة يكون الحل:
- 1) نحذف الصفة المتعمدة من الجدول الأساسي.
- 2) ننشأ جدول جديد به الصفة المعتمدة مع الصفة الوسيطة، ونعين الصفة الوسيطة مفتاح رئيسي.

Eno	Deptno	Dept_manager
<u>10</u>	1	Al
<u>35</u>	2	Hastan
<u>55</u>	3	Noor
<u>20</u>	4	Ahmed

<u>Deptno</u>	Dept_manager	
1	Ali	
2	Hassan	
3	Noor	
4	Ahmed	

الصيغة المعيارية الثالثة (Third Normal Form 2NF)

والأن هل الجداول التالية في الصيغة المعيارية الثالثة 3NF؟

Eno	Proj_code	Hours
<u>210</u>	P1	12
<u>210</u>	P2	20
<u>210</u>	P3	40
<u>201</u>	P1	30
<u>201</u>	P3	15
<u>305</u>	P2	40
<u>305</u>	P3	20

<u>Eno</u>	Ename
<u>210</u>	Ali
<u>201</u>	Salem
<u>305</u>	Ali

Proj_code	Deptno	Dname
P1	10	Research
P2	20	Operation
P3	20	Operation

- وللإجابة نجيب على التساؤلين التاليين:
- 1- هل الجداول في الصيغة المعيارية الثانية 2NF؟
 - نعم، وذلك لعدم وجود اعتمادية جزيئة.
 - 2- هل توجد اعتمادیة متعدیة؟
- · لمعرفة ذلك يجب تحديد الاعتمادية الوظيفية لكل جدول:
 - الجدول الأول:

FD1: Eno → Ename

- لا توجد اعتمادية متعدية
 - الجدول الثاني:

FD2 : Eno, Proj_code → Hours

- لا توجد اعتمادية متعدية
 - الجدول الثالث:

FD1 : Proj_code → Deptno, Dname

FD2 : Deptno → Dname

- المفتاح الرئيسي Proj_code يحدد Deptno, Dname وفي نفس الوقت فأن Deptno وفي نفس الوقت فأن Dname يحدد Dname أي أن هناك اعتمادية متعدية.
- وللتخلص من هذه المشكلة نقوم بتقسيم الجدول إلى جداول بحيث يضم كل منها الاعمدة التي تعتمد على بعض، ونبقي المفتاح مع الأعمدة التي تعتمد عليه وحده فقط مع ابقاء المحدد الجديد Deptno.

• أي نقوم بنقل رقم واسم القسم إلى جدول جديد ونبقي نسخة من رقم القسم في الجدول الأصلي:

Eno	Proj_code	Hours
<u>210</u>	P1	12
<u>210</u>	P2	20
<u>210</u>	P3	40
<u>201</u>	P1	30
<u>201</u>	P3	15
<u>305</u>	P2	40
<u>305</u>	Р3	20

Eno	Ename
<u>210</u>	Ali
<u>201</u>	Salem
<u>305</u>	Ali

Proj_code	Deptno
P1	10
P2	20
P3	20

Deptno	Dname
10	Research
20	Operation

• Ex: Convert the following UNF table to 3NF form?

UNF

St_no	St_name	C_no	Cource	Degree
20	30 Ahmed Ali	1	DB	70
30		2	OS	80
22	171, .1, .1 11,	1	DB	62
33 Khaled Has	Khaled Hassan	2	OS	75
<u>35</u>	Noor Mohammed	1	DB	40
		2	OS	50

• للتحويل إلى 1NF يجب أن تحتوي كل خلية على قيمة بيانية واحدة

1NF

			**	
St_no	St_name	C_no	Cource	Degree
<u>30</u>	Ahmed Ali	1	DB	70
<u>30</u>	Ahmed Ali	2	OS	80
<u>33</u>	Khaled Hassan	1	DB	62
<u>33</u>	Khaled Hassan	2	OS	75
<u>35</u>	Noor Mohammed	1	DB	40
<u>35</u>	Noor Mohammed	2	OS	50

FD1: St_no → St_name

FD2: C_no → Cource

FD3: St_no, C_no → Degree

اعتمادا على النتائج السابقة يتم وضع مفتاح رئيسي للجدول مكون من رقم الطالب ورقم المادة.

- للتحويل إلى 2NF يجب التحقق من الشرطين:
 - 1- الجدول في الصيغة المعيارية الاولى 1NF.
 - 2- لا توجد هناك اعتمادية جزئية بين الحقول.
 - الشرط الاول تحقق لان البيانات مفردة.
- أما الشرط الثاني فانه لم يتحقق وذلك لأن الحقول غير المفتاحية St_name و Course تعتمد على جزء من المفتاح وليس على كل المفتاح وهذا واضح من خلال الاعتمادات الوظيفية:

FD1: St_no → St_name

FD2: C_no → Cource

• لتحويلها الى 2NF نقوم بتقسيم الجدول الى علاقات اعتمادا على الاعتمادات الوظيفية التي جعلت من الجدول ليس في الصيغة المعيارية الثانية وهي:

St_no → St_name

C_no → Cource

وتكون النتيجة كما يلى:

FD1: St_no → St_name

FD2: C no → Cource

FD3: St_no, C_no → Degree

2NF

St_no	St_name
<u>30</u>	Ahmed Ali
<u>33</u>	Khaled Hassan
<u>35</u>	Noor Mohammed

C_no	Cource	
1	DB	
2	OS	

St_no	C_no	Degree
<u>30</u>	1	70
<u>30</u>	2	80
<u>33</u>	1	62
<u>33</u>	2	75
<u>35</u>	1	40
<u>35</u>	2	50

- · للتحويل إلى 3NF يجب التحقق من الشرطين:
 - 1. كان الجدول في الصيغة المعيارية الثانية.
 - 2. لم يحتوي الجدول على اعتمادية متعدية.
- لمعرفة ذلك يجب تحديد الاعتمادية الوظيفية لكل جدول:
 - الجدول الأول:

FD1: St_no → St_name

- لا توجد اعتمادیة متعدیة.
 - الجدول الثاني:

FD2 : C_no → Course

- لا توجد اعتمادية متعدية.
 - الجدول الثالث:

FD3 : St_no, C_no → Degree

- لا توجد اعتمادية متعدية.
- إذن تحقق شروط 3NF فتبقى الجداول كما هي.

Homework: Convert the following UNF table to 3NF form?

Author	ISBN	Title	Pages	Publisher
Abraham Silberschatz, Henry Korth	0072958863	Database System	1168	Willy
Abraham Silberschatz, Henry Korth	0471694665	Operating System	944	Willy

Homework: Convert the following UNF table to 3NF form?

Auth_id	Fname	Lname	<u>ISBN</u>	Title	Pages	Publisher
10	Abraham	Silberschatz	0072958863	Database System	1168	Willy
20	Henry	Korth	0072958863	Database System	1168	Willy
10	Abraham	Silberschatz	0471694665	Operating System	944	Willy
20	Henry	Korth	0471694665	Operating System	944	Willy

• Ex: Convert the following UNF table to 3NF form?

Eno	Ename	Age	Child_name	Company	Serv_year	Job_title
<u>30</u>	Ahmed	45	Sami, Layla	IBM	15	Accountant
<u>33</u>	Khaled	50	Majed, Ali, Rami	MIT	20	Programmer

Eno	Ename	Age	Child_name	Company	Serv_year	Job_title
<u>30</u>	Ahmed	45	Sami	IBM	15	Accountant
<u>30</u>	Ahmed	45	Layla	IBM	15	Accountant
<u>33</u>	Khaled	50	Noor	MIT	20	Programmer
<u>33</u>	Khaled	50	Ali	MIT	20	Programmer
<u>33</u>	Khaled	50	Rami	MIT	20	Programmer

• FD1: Eno → Ename