Jaskirat Singh | Academic CV

☐ +61 0411417934 • ☑ jaskirat.singh@anu.edu.au • ② 1jsingh.github.io 3 Jaskirat Singh

Research Interests

Computer Vision, Deep Reinforcement Learning, Robotics, Vision and Language Navigation.

Education

The Australian National University

Master of Machine Learning and Computer Vision Jul' 19-Present

GPA: 7/7

Jul' 20 - Nov' 20

Indian Institute of Technology, Delhi

GPA: 9.3/10 Bachelor of Technology (B. Tech), Electrical Engineering 2013-2017 Specialization in Intelligent and Cognitive systems

Publications

[1] 2020a J. Singh and L. Zheng. "Combining Semantic Guidance and Deep Reinforcement Learning for Generating Human Level Paintings". In: Computer Vision and Pattern Recognition (CVPR, 2021). URL: https://arxiv.org/abs/2011.12589.

[2] 2020b J. Singh and L. Zheng. "Dynamic Value Estimation for Single-Task Multi-Scene Reinforcement Learning". In: Submitted [Under Review]. URL: https://arxiv.org/pdf/2102.07266.pdf.

[3] **2020c J. Singh** and L. Zheng. "Enhanced Scene-Specificity with Sparse Dynamic Value Estimation". In: Submitted [Under Review]. URL: https://arxiv.org/abs/2011.12574.

Research/Teaching Experience

Adobe Research California Research Intern: Computer Vision, Imaging & Video Jun' 21 - Aug' 21

The Australian National University Canberra Research Scholar: ANU Computer Science Summer Research Nov' 20 - Feb' 21

The Australian National University Canberra Teaching Assistant: Introduction to Machine Learning (COMP6670)

Yahoo Japan Tokyo Machine Learning Research Engineer

- Developed an Ad image-based CTR (click through rate) prediction model using parameterized CNNs and unsupervised clustering. Our model improved the CTR prediction accuracy by 2.3 % over past methods.
- Proposed a novel pricing strategy to deal with the problem of unfairness and attain Nash Equilibrium in online advertising auctions.
- Designed an end to end deep learning pipeline for automated "user target setting" selection in order to maximize the number of clicks for online Ads.

Other Research Projects

Domain-Aware Adversarial Level Selection for Multi-Scene RL

Supervisor: Prof. Liang Zheng Jul 2020-Present

- Developed an adversarial level selection strategy for achieving better sample complexity and episode rewards on multi-scene environments like OpenAI ProcGen and AI2THOR based visual navigation task.
- **Reduced the source to domain gap** by using a perpetual RL model for minimizing the KL divergence between sample distributions for the training and validation game level trajectories.

Exploring Semantic and Depth Penalties for Sketch Generation

Research Project in Advanced Computer Vision with Dr. Dylan Campbell Jul 2020–Nov 2020

- Used model-based RL with a novel depth variance penalty to **enhance depth perception** in generated sketches.
- Designed a semantic entropy reward function to discourage brush strokes traversing multiple object boundaries.

Connected Stories of Australia: Project with National Museum of Australia

Supervisor: Prof. Emmaline Lear

Jul 2019-Nov 2019

- Developed a machine learning and design thinking based solution for improving organisation of historic artifacts within NMA's database and increase the outreach of their public API.
- The final prototype poses as an online interactive treasure hunt, with an NLP based backend for learning sparse concept associations.

Finetuning CNNs using Neural Activation Data

Independent Study: IIT Delhi

Jul' 16-Jun '17 & Jan' 19-May' 19

- Demonstrated significant correlation between **representational dissimilarity matrices (RDM)** for **IT cortex activations** and higher-order CNN features.
- Showed the importance of inter-class correlations between model features for popular CNN architectures.
- Improved the linear SVM accuracy for penultimate layer features from the Squeezenet model by 9.86 % on the Cadieu dataset using a novel RDM loss finetuning approach.

Face Detection and Recognition

🖰 Undergraduate Thesis: IIT Delhi 🗐

Jul 2016-May 2017

- Proposed a novel face recognition approach which uses **Spatial Transformer Networks** along with traditional Facenet pipeline in order to introduce translational and rotational invariance for input images. This resulted in an **improvement of 1.37%** in accuracy over the Facenet model.
- Came up with a unique approach to **combine 3D facial reconstruction and face recognition** in an end to end pipeline, in order to account for the variations in 3D structure and facial pose.

Honors and Achievements

- Awarded ANU Computer Science Summer Research Grant (\$5k).
- o **Invited for delivering a tutorial** on "Applying deep reinforcement learning for computer vision research" by the **Australian Centre for Robotic Vision (ACRV)** group.
- Our project "Connected Stories of Australia" has been awarded as the best innovative design project by the National Museum of Australia.
- Won national hackday at Yahoo Japan, among 54 competing teams from all across Japan, for developing a real-time application for facial attribute modification using reversible GANs.
- o Received IIT Delhi Merit Award & Scholarship for outstanding academic performance.
- o Secured All India Rank 128 in IIT-JEE among 1.4 million aspirants appearing for the exam.
- o Won the 2nd prize at a National-level FIDE Rated Chess Tournament.

Open Source RL Implementations

- Quadcopter Flight Control: Trained a quadcopter to fly using Actor-Critic based Deep Deterministic Policy Gradients (DDPG) algorithm with prioritized experience replay.
- Multi-Agent Competition: Trained a pair of RL agents to play tennis using Multi-Agent DDPG algorithm, which leads to robust policies for competitive/cooperative play.
- o Navigation: Trained a Deep Reinforcement Learning Agent to navigate an artificial world simulated

in the **Unity Environment**. The underlying model is a **Dueling Double Deep Q Network with prioritized experience replay**.

- • Robotic Arm Control: Trained a robotic arm to reach target locations using Proximal Policy Optimization (PPO) algorithm, with multiple (non-interacting, parallel) copies of the same agent to distribute the task of gathering experience.
- • Alphazero for Tictactoe: Implemented the alphazero algorithm for the game of Tictactoe. Extended the solution to a much more complex 6-6-4 tictactoe.

Relevant Courses

Advanced Topics in Machine Learning (Convex & Differentiable Optimization)
Statistical Machine Learning (Bayesian Neural Networks)
Advanced Topics in Computer Vision (Research Oriented Course)
Class rank: 1
Class rank: 1

Advanced Topics in Mechatronics (Computer Vision and Deep Learning)

Technical Skills

o **Programming Languages and Tools:** Python, Java, C++, LATEX

o Deep Learning Frameworks: Pytorch, Tensorflow, Caffe, Caffe2

o Big Data: Hadoop, Hive, SQL, Teradata

Web Development: HTML5, CSS, Javascript