-----Glossary------**Underfitting:** less amount of training data -> less throughput **Overfitting:** more amount of training data -> limited throughput **Generalized model:** maximized training data -> optimized throughput Hyperparamters: if small change in parameter, will reflect as large change in throughput Filter: collection of neurons -Install python and Scipy platform -Loading dataset. -Summarizing dataset.(dim,attr,..) -Visualizing dataset. -Evaluating some algorithms.(apply algorithm) -Making some predictions. Project: To classify iris type based on sepal and petal measurements-------Required Libraries: SciPy- mathematic operations NumPy-matrix/vector operation matploitlib- to visualize dataset(graphical) pandas- file operations ScikitLearn- all ML/datamining libraries -Train data= 120 rows (80% of dataset) -Test data=30 rows(20% of dataset) -For multivariate relation:(for reading graphical representation) trend->increasing or decreasing mode shape->linear,parabola

strength->strong,moderate
DL
ANN (artificial neural network)
-Linearly separable problems (can separate classes with one line) -> Perceptron (single later perceptron-forward pass)
-Non-linearly problems (cannot) -> Back propagation (multilayer perceptron-forward and back pass)
-cannot work with picture data computer vision (many inputs for first layer->over fitting)
CNN (convolutional neural network)
-dimensionality reduction
-top->bottom, left->right
-piece by piece (filter) matching
-layers:
Convolution (filters), ReLu layer (activation func), Pooling(reduce dims), Fully Connected(one dimension matrix)
CNN STEPS:
-line up filter and image
-multiply each Image pixel by the corresponding filter pixel
-add them up

-divide total number of pixels in the filter