Banking_EDA

May 5, 2025

0.1 Exploratory Data Analysis of banking data

Problem Statement: Develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimise the risk of losing money while lending to customers.

EDA Techniques Used: - Data Overview and Summary

- Univariate Analysis
- Bivariate Analysis
- Categorical Feature Analysis
- Data Visualization
- Correlation Analysis

```
[]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

```
[]: df = pd.read_csv('/content/Banking.csv')
    df.head(5)
```

```
[]:
      Client ID
                                        Location ID Joined Bank
                                                                   Banking Contact \
                             Name
                                   Age
     0 IND81288
                                                     06-05-2019
                                                                    Anthony Torres
                    Raymond Mills
                                    24
                                               34324
     1 IND65833
                    Julia Spencer
                                    23
                                               42205
                                                     10-12-2001
                                                                  Jonathan Hawkins
     2 IND47499
                   Stephen Murray
                                    27
                                                7314
                                                     25-01-2010
                                                                     Anthony Berry
     3 IND72498
                   Virginia Garza
                                    40
                                               34594
                                                      28-03-2019
                                                                        Steve Diaz
     4 IND60181 Melissa Sanders
                                    46
                                               41269
                                                     20-07-2012
                                                                        Shawn Long
```

	Nationality	Occupation	Fee Structure	Loyalty	Classification		\
0	American	Safety Technician IV	High		Jade	•••	
1	African	Software Consultant	High		Jade	•••	
2	European	Help Desk Operator	High		Gold	•••	
3	American	Geologist II	Mid		Silver	•••	
4	American	Assistant Professor	Mid		Platinum	•••	

Bank Deposits Checking Accounts Saving Accounts \

```
0
      1485828.64
                           603617.88
                                            607332.46
1
       641482.79
                           229521.37
                                             344635.16
2
      1033401.59
                           652674.69
                                             203054.35
3
      1048157.49
                          1048157.49
                                             234685.02
       487782.53
                           446644.25
                                             128351.45
```

	Foreign Currency Account	Business Lending	Properties Owned	\
0	12249.96	1134475.30	1	
1	61162.31	2000526.10	1	
2	79071.78	548137.58	1	
3	57513.65	1148402.29	0	
4	30012.14	1674412.12	0	

	Risk	Weighting	BRId	GenderId	IAId
0		2	1	1	1
1		3	2	1	2
2		3	3	2	3
3		4	4	1	4
4		3	1	2	5

[5 rows x 25 columns]

[]: df.shape

[]: (3000, 25)

[]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	Client ID	3000 non-null	object
1	Name	3000 non-null	object
2	Age	3000 non-null	int64
3	Location ID	3000 non-null	int64
4	Joined Bank	3000 non-null	object
5	Banking Contact	3000 non-null	object
6	Nationality	3000 non-null	object
7	Occupation	3000 non-null	object
8	Fee Structure	3000 non-null	object
9	Loyalty Classification	3000 non-null	object
10	Estimated Income	3000 non-null	float64
11	Superannuation Savings	3000 non-null	float64
12	Amount of Credit Cards	3000 non-null	int64
13	Credit Card Balance	3000 non-null	float64

```
14 Bank Loans
                            3000 non-null
                                            float64
15 Bank Deposits
                            3000 non-null
                                            float64
16 Checking Accounts
                            3000 non-null
                                            float64
17 Saving Accounts
                            3000 non-null
                                            float64
18 Foreign Currency Account 3000 non-null
                                            float64
19 Business Lending
                            3000 non-null
                                            float64
20 Properties Owned
                            3000 non-null
                                            int64
                            3000 non-null
21 Risk Weighting
                                            int64
22 BRId
                            3000 non-null
                                            int64
23 GenderId
                            3000 non-null
                                            int64
24 IAId
                            3000 non-null
                                            int64
```

dtypes: float64(9), int64(8), object(8)

memory usage: 586.1+ KB

[]: # Generate descriptive statistics for the dataframe df.describe()

[]:		Age	Location ID	Estimated	lIncome	Superannuation Saving	s \
	count	3000.000000	3000.000000	3000	0.00000	3000.00000	0
	mean	51.039667	21563.323000	171305	.034263	25531.59967	3
	std	19.854760	12462.273017	111935	.808209	16259.95077	0
	min	17.000000	12.000000	15919	.480000	1482.03000	0
	25%	34.000000	10803.500000	82906	5.595000	12513.77500	0
	50%	51.000000	21129.500000	142313	3.480000	22357.35500	0
	75%	69.000000	32054.500000	242290	.305000	35464.74000	0
	max	85.000000	43369.000000	522330	.260000	75963.90000	0
		Amount of Cr	edit Cards Cr	edit Card	Balance	Bank Loans \	
	count	3	000.00000	3000	0.000000	3.000000e+03	
	mean		1.463667	3176	.206943	5.913862e+05	
	std		0.676387	2497	.094709	4.575570e+05	
	min		1.000000	1	.170000	0.000000e+00	
	25%		1.000000	1236	6.630000	2.396281e+05	
	50%		1.000000	2560	.805000	4.797934e+05	
	75%		2.000000	4522	2.632500	8.258130e+05	
	max		3.000000	13991	.990000	2.667557e+06	
		Dank Danagit	a Chaolaine Ao	acumta Co	rring Agg	voumta \	
		3.000000e+0	s Checking Ac		0		
	count			000e+03	3.00000		
	mean	6.715602e+0		929e+05	2.32908		
	std	6.457169e+0		'96e+05	2.30007		
	min	0.000000e+0		000e+00	0.00000		
	25%	2.044004e+0		175e+05	7.47944		
	50%	4.633165e+0		.57e+05	1.64086		
	75%	9.427546e+0		'49e+05	3.15575		
	max	3.890598e+0	5 1.9699	23e+06	1.72411	.8e+06	

```
Foreign Currency Account
                                       Business Lending Properties Owned \
                                           3.000000e+03
                                                               3000.000000
                         3000.000000
     count
    mean
                         29883.529993
                                           8.667598e+05
                                                                  1.518667
     std
                         23109.924010
                                           6.412303e+05
                                                                  1.102145
                            45.000000
                                           0.000000e+00
                                                                  0.000000
    min
    25%
                         11916.542500
                                           3.748251e+05
                                                                  1.000000
    50%
                         24341.190000
                                           7.113147e+05
                                                                  2.000000
    75%
                         41966.392500
                                           1.185110e+06
                                                                  2.000000
                        124704.870000
                                           3.825962e+06
    max
                                                                  3.000000
            Risk Weighting
                                    BRId
                                             GenderId
                                                               IAId
               3000.000000
                            3000.000000
                                          3000.000000
                                                        3000.000000
     count
                                2.559333
                                             1.504000
    mean
                  2.249333
                                                          10.425333
     std
                  1.131191
                                1.007713
                                             0.500067
                                                           5.988242
    min
                  1.000000
                                1.000000
                                             1.000000
                                                           1.000000
     25%
                  1.000000
                                2.000000
                                             1.000000
                                                           5.000000
     50%
                  2.000000
                                3.000000
                                             2.000000
                                                          10.000000
     75%
                                3.000000
                                                          15.000000
                  3.000000
                                             2.000000
    max
                  5.000000
                                4.000000
                                             2.000000
                                                          22.000000
[]: bins = [0, 100000, 300000, float('inf')]
     labels = ['Low', 'Med', 'High']
     df['Income Band'] = pd.cut(df['Estimated Income'], bins=bins, labels=labels,
      ⇔right=False)
[]: df['Income Band'].value_counts().plot(kind='bar')
[]: <Axes: xlabel='Income Band'>
```



```
[]: # Examine the distribution of unique cataegories in categorical columns categorical_cols = df[["BRId", "GenderId", "IAId", "Amount of Credit Cards", □ → "Nationality", "Occupation", "Fee Structure", "Loyalty Classification", □ → "Properties Owned", "Risk Weighting", "Income Band"]].columns

for col in categorical_cols:
   print(f"Value Counts for '{col}':")
   display(df[col].value_counts())
```

Value Counts for 'BRId':

```
BRId
```

- 3 1352
- 1 660
- 2 495
- 4 493

Name: count, dtype: int64

Value Counts for 'GenderId':

GenderId

2 1512

```
1488
1
Name: count, dtype: int64
Value Counts for 'IAId':
IAId
1
      177
3
      177
4
      177
8
      177
2
      177
      176
11
15
      176
14
      176
      176
13
12
      176
10
      176
9
      176
7
       89
6
       89
5
       89
16
       88
17
       88
18
       88
19
       88
20
       88
21
       88
22
       88
Name: count, dtype: int64
Value Counts for 'Amount of Credit Cards':
Amount of Credit Cards
1
     1922
2
      765
3
      313
Name: count, dtype: int64
Value Counts for 'Nationality':
Nationality
European
              1309
Asian
               754
American
               507
Australian
               254
African
               176
Name: count, dtype: int64
Value Counts for 'Occupation':
Occupation
Structural Analysis Engineer
                                 28
```

Associate Professor 28 Recruiter 25 Human Resources Manager 24 Account Coordinator 24 . . Office Assistant IV 8 Automation Specialist I 7 Computer Systems Analyst I 6 Developer III 5 Senior Sales Associate 4 Name: count, Length: 195, dtype: int64 Value Counts for 'Fee Structure': Fee Structure 1476 High 962 Mid Low 562 Name: count, dtype: int64 Value Counts for 'Loyalty Classification': Loyalty Classification Jade 1331 Silver 767 Gold 585 Platinum 317 Name: count, dtype: int64 Value Counts for 'Properties Owned': Properties Owned 2 777 776 1 3 742 0 705 Name: count, dtype: int64 Value Counts for 'Risk Weighting': Risk Weighting 1222 1 836 3 460 4 322 5 160 Name: count, dtype: int64 Value Counts for 'Income Band': Income Band Med 1517

Low

1027

High 456

Name: count, dtype: int64

0.2 Univariate Analysis

```
[]: for i, predictor in enumerate(df[["BRId", "GenderId", "IAId", "Amount of Credit

Gards", "Nationality", "Occupation", "Fee Structure", "Loyalty

Gassification", "Properties Owned", "Risk Weighting", "Income Band"]].

Goolumns):

plt.figure(i)

sns.countplot(data=df, x=predictor)
```


0.3 Bivariate Analysis

```
[]: for i, predictor in enumerate(df[["BRId", "GenderId", "IAId", "Amount of Credit

Gards", "Nationality", "Occupation", "Fee Structure", "Loyalty

Gardsification", "Properties Owned", "Risk Weighting", "Income Band"]].

Goolumns):

plt.figure(i)

sns.countplot(data=df, x=predictor, hue='Nationality')
```



```
[]: # HIstplot of value counts for different Occupation

for col in categorical_cols:
    if col == "Occupation":
        continue
    plt.figure(figsize=(8,4))
    sns.histplot(df[col])
    plt.title('Histogram of Occupation Count')
    plt.xlabel(col)
    plt.ylabel("Count")
    plt.show()
```


0.4 Numerical Analysis

```
[]: numerical_cols = ['Estimated Income', 'Superannuation Savings', 'Credit Card

→Balance', 'Bank Loans', 'Bank Deposits', 'Checking Accounts', 'Saving

→Accounts', 'Foreign Currency Account', 'Business Lending']
```

```
# Univariate analysis and visualization
plt.figure(figsize=(15,10))
for i,col in enumerate(numerical_cols):
  plt.subplot(4,3,i+1)
  sns.histplot(df[col],kde=True)
  plt.title(col)
plt.show()
```


0.5 Heatmaps

0.6 Insights of EDA:

• The strongest positive correlation occur among "Bank Deposits" with "Checking Accounts", "Saving Accounts" and "Foreign Currency Account" indicating that customers who maintain high balances in one account type often hold substantial amount/funds across other accounts as well.

- Moderate correlations of Age and Estimated Income with various balances (Superannuation, Savings, Checking) reflect a common financial lifecycle trend: higher income earners and older individuals often accumulate more savings, retirement funds, and may carry higher credit card balances or loans.
- Property ownership may depend on external factors (location, real estate market conditions, inheritance, etc.) that are not captured by these particular banking variables. Hence, we see weaker correlations here.
- Business Lending's moderate link to Bank Loans suggests some customers may have both
 personal and business debts. However, business lending is relatively uncorrelated with other
 deposit or property-related metrics, indicating it may serve a distinct subset of customers
 or needs. Income Banding helped categorize customers into financial segments, supporting
 better risk-based decision-making.
- Customer Profile Trends showed clustering around certain occupations and loyalty levels, indicating potential behavioral patterns.
- Correlations between features such as income, properties owned, and risk weighting provided hints at possible risk drivers.
- Categorical Distributions revealed imbalances (e.g., skewed gender representation or concentration in a few occupations), which may inform marketing or risk models.

[]:	:	