Problema 01

Generar los procedimientos y/o funciones que impriman los valor pares, impares y el promedio de un arreglo bidimensional. El (los) procedimiento(s) o método(s) deben ser invocados desde el método principal (quien es el único responsable de gestionar las entradas/salidas); además el método debe recibir como parámetro un arreglo bidimensional.

Análisis

En este problema nos pide que mostremos los valores pares e impartes junto al promedio de la matriz bidimensional

Pseucodigo

```
Leer matrizBidi[3][4]
Procedimiento pares(matrizBidi):
  Escribir "Valores pares"
  Para i desde 0 hasta 2:
     Para j desde 0 hasta 3:
       Si matrizBidi[i][j] módulo 2 es igual a 0:
          Escribir matrizBidi[i][j]
  Fin Para
  Escribir nueva línea
Procedimiento impares(matrizBidi):
  Escribir "Valores impares"
  Para i desde 0 hasta 2:
     Para j desde 0 hasta 3:
       Si matrizBidi[i][j] módulo 2 no es igual a 0:
          Escribir matrizBidi[i][j]
  Fin Para
```

```
Procedimiento promedioMatriz(matrizBidi):
  Definir suma como entero
  Definir contador como entero
  suma = 0
  contador = 0
  Para i desde 0 hasta 2:
    Para j desde 0 hasta 3:
       suma = suma + matrizBidi[i][j]
       contador = contador + 1
  Fin Para
  Definir promedio como real
  promedio = suma / contador
  Escribir "Promedio de todos los elementos: ", promedio
Algoritmo
Inicio
  Definir matrizBidi como entero[3][4]
  matrizBidi[0] = \{1, 2, 3, 4\}
  matrizBidi[1] = \{5, 6, 7, 8\}
  matrizBidi[2] = {9, 10, 11, 12}
  pares(matrizBidi)
  impares(matrizBidi)
  promedioMatriz(matrizBidi)
Fin
```

Fin Algoritmo

Prueba de escritorio

Matriz

1		2	3		4	
5		6	7		8	
9		10	11		12	
Valores pares						
2	4	6	8	10	12	
Valores impares						
1	3	5	7	9	11	

Problema 02

- Generar una solución que implemente 3 procedimientos. Que permitan calcular el área de un cuadrado, área de un triángulo y área de un rectángulo. Cada procedimiento/función debe recibir los datos necesarios y generar el valor correspondiente. Se debe invocar a los procedimientos desde un método principal; Si el usuario ingresa 1 se llama al procedimiento obtenerAreaCuadrado; 2 se llama al procedimiento obtenerAreaTriangulo; 3 se llama al procedimiento obtenerAreaCuadrado.
 - o El área del cuadrado es igual a lado x lado x lado x lado
 - o El área del triángulo es igual a (base x altura)/2
 - o El área del rectángulo es igual a base x altura

Análisis

En este problema nos pide hacer 3 procedimientos en el cual en cada procedimiento se realice cada operación planteada por el problema dando que el usuario ingrese un numero y llame al procedimiento que desea

Pseucodigo

```
Procedimiento areaCuadrado
  Escribir "El area del cuadrado es: "
  area = lado * 4
  Escribir area
Procedimiento areaTriangulo
  Escribir "El area del triangulo es: "
  area = (base * altura) / 2
  Escribir area
Procedimiento areaRectangulo
  Escribir "El area del rectangulo es: "
  area = base * altura
  Escribir area
Algoritmo
Inicio
  opcion = 0
  Mientras opcion no sea 4 Hacer
     Escribir "Ingrese el numero de la operacion que desea "
     Escribir "1. Area del cuadrado"
     Escribir "2. Area del triangulo"
     Escribir "3. Area del rectangulo"
     Escribir "4. Salir"
     Leer opcion
     Segun opcion Hacer
       Caso 1:
```

```
areaCuadrado()

Caso 2:
    areaTriangulo()

Caso 3:
    areaRectangulo()

Caso 4:
    Escribir "Saliendo del programa"

De Otro Modo:
    Escribir "Opcion invalida"

Fin Segun
```

Fin

Fin Algoritmo

Fin Mientras

Prueba de escritorio

Ingrese el numero de la operación que desea		•	Selección del usuario	Resultados
	1	Área del cuadrado	1	El área del cuadrado es
	2	Área del triangulo		: 16.0
	3	Área del rectángulo		
	4	Salir		

Problema 03

 Generar una función que tenga 4 parámetros de tipo decimal y devuelva el promedio cualitativo de los parámetros. Si el promedio es: De 0 a 5 el promedio cualitativo es Regular De 5.1 a 8 el promedio es Bueno De 8.1 a 9 el promedio es Muy Bueno De 9.1 a 10 el promedio es Sobresaliente. A la función se la debe llamar desde un método principal. Los parámetros necesarios para llamar a la función, deben ser ingresados solicitados al usuario.

Análisis

En este problema nos pide que con 4 parámetros devuelva el promedio cualitativo y en cada parámetro muestra un mensaje de acuerdo a cada promedio

Pseucodigo

```
Procedimiento cualitativo(promedio)
```

```
Si promedio >= 0 y promedio <= 5 Entonces

Escribir "El promedio es: " , promedio , " es Regular"

Sino Si promedio >= 5.1 y promedio <= 8 Entonces

Escribir "El promedio es: " , promedio , " es Bueno"

Sino Si promedio >= 8.1 y promedio <= 9 Entonces

Escribir "El promedio es: " , promedio , " es Muy bueno"

Sino Si promedio >= 9.1 y promedio <= 10 Entonces

Escribir "El promedio es: " , promedio , " es Sobresaliente"

De Otro Modo

Imprimir "Ingrese un promedio valido"

Fin Procedimiento
```

Algoritmo

Inicio

```
Escribir "Ingrese el promedio"

Leer = promedio

cualitativo(promedio)
```

Fin

Fin Algoritmo

Prueba de escritorio

Ingrese el promedio	Promedio cualitativo	Resultados
6	Bueno	El promedio es: 6 es Bueno

Problema 04

 Generar un procedimiento para calcular el valor de la planilla de luz y otro procedimiento para calcular el valor del predio de un bien inmueble.
 Cada procedimiento debe tener 2 parámetros (tipo cadena para nombre del cliente, cédula del cliente).

En el procedimiento de planilla de luz se debe pedir los siguiente datos valor del kilowatio y el número de kilowatios del mes. Y se genera en pantalla el siguiente reporte: Cliente Ana Contreras con cédula 1100112233 debe cancelar el valor de \$10

En el procedimiento del predio se debe pedir el valor de inmueble y el para obtener el valor del predio se saca el 2% del valor del inmueble. Y se genera el siguiente reporte:

Cliente Ana Contreras con cédula 1100112233 tiene un bien inmueble valorado en \$30000 y tiene que pagar de predio \$ 600.

En el método principal; si el usuario ingresa 1 se llama al procedimiento calcularValorLuz; 2 se llama al procedimiento calcularPredio. Los datos que se necesita en cada procedimiento se los debe ingresar por teclado.

Análisis

En este problema nos pide hacer dos procedimientos en uno hará el calculo del valor de la luz y el otro el calculo del valor del predio

Pseucodigo

```
Procedimiento ValorLuz(nombreCliente, cedulaCliente)
```

```
Escribir "Ingrese el valor del kilowatio:"
```

Leer = valorKilowatio

Escribir "Ingrese el número de kilowatios del mes:"

Leer = numKilowatios

totalPagar = valorKilowatio * numKilowatios

Escribir "Cliente ", nombreCliente, " con cédula ", cedulaCliente, " debe cancelar el valor de \$", totalPagar

Fin Procedimiento

Procedimiento ValorPredio(nombreCliente, cedulaCliente)

Escribir "Ingrese el valor del inmueble:"

Leer = valorInmueble

valorPredio = 0.02 * valorInmueble

Escribir "Cliente ", nombreCliente, " con cédula ", cedulaCliente,

" tiene un bien inmueble valorado en \$", valorInmueble,

" y tiene que pagar de predio \$", valorPredio

Fin Procedimiento

Algoritmo

Inicio

Escribir "Seleccione una opción:"

Escribir "1. Calcular valor de la planilla de luz"

Escribir "2. Calcular valor del predio de un bien inmueble"

Leer = opcion

Escribir "Ingrese el nombre del cliente:"

Leer = nombreCliente

Escribir "Ingrese la cédula del cliente:"

Leer = cedulaCliente

Si opcion = 1 Entonces

ValorLuz(nombreCliente, cedulaCliente)

Sino Si opcion = 2 Entonces

ValorPredio(nombreCliente, cedulaCliente)

De Otro Modo

Escribir "Opción no válida"

Fin Si

Fin

Fin Algoritmo

Prueba de escritorio

Sel	Seleccione una opción				
1.	Calcular valor de la planilla de luz				
2.	Calcular valor del predio de un bien inmueble				

Resultados

El usuario ingresa: 1

Ingrese el nombre del cliente	Ingrese la cedula del cliente	Ingrese el valor del kilowatio	Ingrese el numero de kilowatio del mes
Jean	1105919664	5	2

Mostrara:

Cliente Jean con cedula 1105919664 debe cancelar el valor de 10\$

Problema 05

Generar las funciones/métodos que devuelvan las suma, resta y multiplicación de un arreglo bidimensional cuadrado; mismo que se lo recibe como parámetro.

Análisis

En este problema se hizo dos matrizes bidimensionales en la cual se hizo 3 metodos donde cada método realiza la operación que pide el ejercicio

Pseucodigo

```
Procedimiento sumarMatrices(matrizA, matrizB)

filas = longitud(matrizA)

columnas = longitud(matrizA[0])

resultado = nuevaMatriz(filas, columnas)

Para i desde 0 hasta filas hacer

Para j desde 0 hasta columnas hacer

resultado[i][j] = matrizA[i][j] + matrizB[i][j]

Fin Para

Fin Para

Devolver resultado

Fin Procedimiento
```

Procedimiento restarMatrices(matrizA, matrizB)

```
filas = longitud(matrizA)
```

```
columnas = longitud(matrizA[0])
  resultado = nuevaMatriz(filas, columnas)
  Para i desde 0 hasta filas hacer
    Para i desde 0 hasta columnas hacer
       resultado[i][j] = matrizA[i][j] - matrizB[i][j]
    Fin Para
  Fin Para
  Devolver resultado
Fin Procedimiento
Procedimiento multiplicarMatrices(matrizA, matrizB)
  filasA ← longitud(matrizA)
  columnasA ← longitud(matrizA[0])
  columnasB ← longitud(matrizB[0])
  resultado ← nuevaMatriz(filasA, columnasB)
  Para i desde 0 hasta filasA hacer
    Para j desde 0 hasta columnasB hacer
       Para k desde 0 hasta columnasA hacer
         resultado[i][j] ← resultado[i][j] + matrizA[i][k] * matrizB[k][j]
       Fin Para
    Fin Para
  Fin Para
  Devolver resultado
```

Fin Procedimiento

```
Procedimiento imprimirMatriz(matriz)
  Para cada fila en matriz hacer
     Para cada elemento en fila hacer
        Escribir elemento + " "
     Fin Para
     Escribir nueva línea
  Fin Para
  Escribir nueva línea
Fin Procedimiento
Algoritmo
Inicio
  matrizA \leftarrow [[1, 2], [3, 4]]
  matrizB \leftarrow [[5, 6], [7, 8]]
  suma ← sumarMatrices(matrizA, matrizB)
  Escribir "Suma de matrices:"
  EscribirMatriz(suma)
  resta ← restarMatrices(matrizA, matrizB)
  Escribir "Resta de matrices:"
  EscribirMatriz(resta)
```

 $multiplicacion \leftarrow multiplicarMatrices(matrizA, matrizB)$

Escribir "Multiplicación de matrices:"

EscribirMatriz(multiplicacion)

Fin

Fin Algoritmo

Prueba de escritorio

Matriz 1		Matriz 2	
1	2	5	6
3	4	7	8

Resultados

Suma		Resta Multiplicación		ón	
6	8	-4	-4	19	22
10	12	-4	-4	43	50