

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 September 2001 (07.09.2001)

PCT

(10) International Publication Number
WO 01/64198 A2

(51) International Patent Classification⁷: **A61K 31/00**

(21) International Application Number: **PCT/EP01/02167**

(22) International Filing Date: 26 February 2001 (26.02.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
00200695.5 29 February 2000 (29.02.2000) EP

(71) Applicant (for all designated States except US):
JANSSEN PHARMACEUTICA N.V. [BE/BE]; Patent Department, Turnhoutseweg 30, B-2340 Beerse (BE).

(72) Inventor; and

(75) Inventor/Applicant (for US only): **RYBAK, Mary, Ellen, Margaret** [US/US]; Janssen Pharmaceutica Inc., 1125 Trenton-Harbourton Road, Titusville, NJ 08560 (US).

(74) Agent: **LEAPER, Lyn**; Janssen Pharmaceutica N.V., Patent Department, Turnhoutseweg 30, B-2340 Beerse (BE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/64198 A2

(54) Title: FARNESYL PROTEIN TRANSFERASE INHIBITOR COMBINATIONS WITH ANTI-TUMOR PODOPHYLLOTOXIN DERIVATIVES

(57) Abstract: The present invention is concerned with combinations of a farnesyl transferase inhibitor and an anti-tumor podophyllotoxin derivative for inhibiting the growth of tumor cells and useful in the treatment of cancer.

FARNESYL PROTEIN TRANSFERASE INHIBITOR COMBINATIONS
WITH ANTI-TUMOR PODOPHYLLOTOXIN DERIVATIVES

5 The present invention is concerned with combinations of a farnesyl transferase inhibitor and an anti-tumor podophyllotoxin derivative for inhibiting the growth of tumor cells and useful in the treatment of cancer.

Oncogenes frequently encode protein components of signal transduction pathways
10 which lead to stimulation of cell growth and mitogenesis. Oncogene expression in cultured cells leads to cellular transformation, characterized by the ability of cells to grow in soft agar and the growth of cells as dense foci lacking the contact inhibition exhibited by non-transformed cells. Mutation and/or overexpression of certain oncogenes is frequently associated with human cancer. A particular group of
15 oncogenes is known as *ras* which have been identified in mammals, birds, insects, mollusks, plants, fungi and yeasts. The family of mammalian *ras* oncogenes consists of three major members ("isoforms") : H-*ras*, K-*ras* and N-*ras* oncogenes. These *ras* oncogenes code for highly related proteins generically known as p21^{*ras*}. Once attached to plasma membranes, the mutant or oncogenic forms of p21^{*ras*} will provide a signal
20 for the transformation and uncontrolled growth of malignant tumor cells. To acquire this transforming potential, the precursor of the p21^{*ras*} oncoprotein must undergo an enzymatically catalyzed farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Therefore, inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase, will prevent the membrane attachment of
25 p21^{*ras*} and block the aberrant growth of *ras*-transformed tumors. Hence, it is generally accepted in the art that farnesyl transferase inhibitors can be very useful as anticancer agents for tumors in which *ras* contributes to transformation.

Since mutated, oncogenic forms of *ras* are frequently found in many human cancers,
30 most notably in more than 50 % of colon and pancreatic carcinomas (Kohl et al., *Science*, vol 260, 1834 - 1837, 1993), it has been suggested that farnesyl tranferase inhibitors can be very useful against these types of cancer. Following further investigations, it has been found that a farnesyl transferase inhibitor is capable of demonstrating antiproliferative effects *in vitro* and antitumor effects *in vivo* in a variety
35 of human tumor cell lines with and without ras gene mutations.

WO-97/21701 describes the preparation, formulation and pharmaceutical properties of farnesyl protein transferase inhibiting (imidazoly-5-yl)methyl-2-quinolinone derivatives of formulas (I), (II) and (III), as well as intermediates of formula (II) and (III) that are metabolized in vivo to the compounds of formula (I). The compounds of formulas (I), (II) and (III) are represented by

(I)

(II)

(III)

the pharmaceutically acceptable acid or base addition salts and the stereochemically isomeric forms thereof, wherein

10 the dotted line represents an optional bond;

X is oxygen or sulfur;

15 R¹ is hydrogen, C₁₋₁₂alkyl, Ar¹, Ar²C₁₋₆alkyl, quinolinylC₁₋₆alkyl, pyridylC₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, aminoC₁₋₆alkyl, or a radical of formula -Alk¹-C(=O)-R⁹, -Alk¹-S(O)-R⁹ or -Alk¹-S(O)₂-R⁹,

15 whereon Alk¹ is C₁₋₆alkanediyil,

R⁹ is hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, amino, C₁₋₈alkylamino or C₁₋₈alkylamino substituted with C₁₋₆alkyloxycarbonyl;

R², R³ and R¹⁶ each independently are hydrogen, hydroxy, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, aminoC₁₋₆alkyl-

20

oxy, mono- or di(C₁-6alkyl)aminoC₁-6alkyloxy, Ar¹, Ar²C₁-6alkyl, Ar²oxy, Ar²C₁-6alkyloxy, hydroxycarbonyl, C₁-6alkyloxycarbonyl, trihalomethyl, trihalomethoxy, C₂-6alkenyl, 4,4-dimethoxazolyl; or
when on adjacent positions R² and R³ taken together may form a bivalent radical of

5 formula

- O-CH₂-O- (a-1),
- O-CH₂-CH₂-O- (a-2),
- O-CH=CH- (a-3),
- O-CH₂-CH₂- (a-4),
- 10 -O-CH₂-CH₂-CH₂- (a-5), or
- CH=CH-CH=CH- (a-6);

R⁴ and R⁵ each independently are hydrogen, halo, Ar¹, C₁-6alkyl, hydroxyC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, C₁-6alkyloxy, C₁-6alkylthio, amino, hydroxycarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylS(O)C₁-6alkyl or C₁-6alkylS(O)₂C₁-6alkyl;

15 R⁶ and R⁷ each independently are hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxy, Ar²oxy, trihalomethyl, C₁-6alkylthio, di(C₁-6alkyl)amino, or
when on adjacent positions R⁶ and R⁷ taken together may form a bivalent radical of

formula

- O-CH₂-O- (c-1), or
- 20 -CH=CH-CH=CH- (c-2);

R⁸ is hydrogen, C₁-6alkyl, cyano, hydroxycarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylcarbonylC₁-6alkyl, cyanoC₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, carboxyC₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono- or di(C₁-6alkyl)-aminoC₁-6alkyl, imidazolyl, haloC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, aminocarbonylC₁-6alkyl, or a radical of formula

- O-R¹⁰ (b-1),
- S-R¹⁰ (b-2),
- N-R¹¹R¹² (b-3),

wherein R¹⁰ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹, Ar²C₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, or a radical or formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

R¹¹ is hydrogen, C₁-12alkyl, Ar¹ or Ar²C₁-6alkyl;
R¹² is hydrogen, C₁-6alkyl, C₁-16alkylcarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylaminocarbonyl, Ar¹, Ar²C₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl, a natural amino acid, Ar¹carbonyl, Ar²C₁-6alkylcarbonyl, aminocarbonylcarbonyl, C₁-6alkyloxyC₁-6alkylcarbonyl, hydroxy, C₁-6alkyloxy, aminocarbonyl, di(C₁-6alkyl)aminoC₁-6alkylcarbonyl,

amino, C₁-6alkylamino, C₁-6alkylcarbonylamino, or a radical or formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

wherein Alk² is C₁-6alkanediyl;

R¹³ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, hydroxy-C₁-6alkyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁴ is hydrogen, C₁-6alkyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁵ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁷ is hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxycarbonyl, Ar¹;

R¹⁸ is hydrogen, C₁-6alkyl, C₁-6alkyloxy or halo;

R¹⁹ is hydrogen or C₁-6alkyl;

Ar¹ is phenyl or phenyl substituted with C₁-6alkyl, hydroxy, amino, C₁-6alkyloxy or halo; and

Ar² is phenyl or phenyl substituted with C₁-6alkyl, hydroxy, amino, C₁-6alkyloxy or halo.

WO-97/16443 concerns the preparation, formulation and pharmaceutical properties of farnesyl protein transferase inhibiting compounds of formula (IV), as well as intermediates of formula (V) and (VI) that are metabolized in vivo to the compounds of formula (IV). The compounds of formulas (IV), (V) and (VI) are represented by

(IV)

(V)

(VI)

the pharmaceutically acceptable acid or base addition salts and the stereochemically isomeric forms thereof, wherein

the dotted line represents an optional bond;

5 X is oxygen or sulfur;

R¹ is hydrogen, C₁-12alkyl, Ar¹, Ar²C₁-6alkyl, quinolinylC₁-6alkyl, pyridyl-C₁-6alkyl, hydroxyC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, mono- or di(C₁-6alkyl)-aminoC₁-6alkyl, aminoC₁-6alkyl,
or a radical of formula -Alk¹-C(=O)-R⁹, -Alk¹-S(O)-R⁹ or -Alk¹-S(O)₂-R⁹,

10 wherein Alk¹ is C₁-6alkanediyl,

R⁹ is hydroxy, C₁-6alkyl, C₁-6alkyloxy, amino, C₁-8alkylamino or
C₁-8alkylamino substituted with C₁-6alkyloxycarbonyl;

R² and R³ each independently are hydrogen, hydroxy, halo, cyano, C₁-6alkyl,
C₁-6alkyloxy, hydroxyC₁-6alkyloxy, C₁-6alkyloxyC₁-6alkyloxy, amino-

15 C₁-6alkyloxy, mono- or di(C₁-6alkyl)aminoC₁-6alkyloxy, Ar¹, Ar²C₁-6alkyl,
Ar²oxy, Ar²C₁-6alkyloxy, hydroxycarbonyl, C₁-6alkyloxycarbonyl, trihalomethyl,
trihalomethoxy, C₂-6alkenyl; or

when on adjacent positions R² and R³ taken together may form a bivalent radical
of formula

20	-O-CH ₂ -O-	(a-1),
	-O-CH ₂ -CH ₂ -O-	(a-2),
	-O-CH=CH-	(a-3),
	-O-CH ₂ -CH ₂ -	(a-4),
	-O-CH ₂ -CH ₂ -CH ₂ -	(a-5), or
	-CH=CH-CH=CH-	(a-6);

R⁴ and R⁵ each independently are hydrogen, Ar¹, C₁-6alkyl, C₁-6alkyloxyC₁-6alkyl,
C₁-6alkyloxy, C₁-6alkylthio, amino, hydroxycarbonyl, C₁-6alkyloxycarbonyl,
C₁-6alkylS(O)C₁-6alkyl or C₁-6alkylS(O)₂C₁-6alkyl;

25 R⁶ and R⁷ each independently are hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxy or
Ar²oxy;

R⁸ is hydrogen, C₁-6alkyl, cyano, hydroxycarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylcarbonylC₁-6alkyl, cyanoC₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, hydroxycarbonylC₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono- or di(C₁-6alkyl)-aminoC₁-6alkyl, haloC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, aminocarbonylC₁-6alkyl,

5 Ar¹, Ar²C₁-6alkyloxyC₁-6alkyl, C₁-6alkylthioC₁-6alkyl;

R¹⁰ is hydrogen, C₁-6alkyl, C₁-6alkyloxy or halo;

R¹¹ is hydrogen or C₁-6alkyl;

Ar¹ is phenyl or phenyl substituted with C₁-6alkyl, hydroxy, amino, C₁-6alkyloxy or halo;

10 Ar² is phenyl or phenyl substituted with C₁-6alkyl, hydroxy, amino, C₁-6alkyloxy or halo.

WO-98/40383 concerns the preparation, formulation and pharmaceutical properties of farnesyl protein transferase inhibiting compounds of formula (VII)

15

the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein

20 the dotted line represents an optional bond;

X is oxygen or sulfur;

-A- is a bivalent radical of formula

-CH=CH-	(a-1),	-CH ₂ -S-	(a-6),
-CH ₂ -CH ₂ -	(a-2),	-CH ₂ -CH ₂ -S-	(a-7),
-CH ₂ -CH ₂ -CH ₂ -	(a-3),	-CH=N-	(a-8),
-CH ₂ -O-	(a-4),	-N=N-	(a-9), or
-CH ₂ -CH ₂ -O-	(a-5),	-CO-NH-	(a-10);

wherein optionally one hydrogen atom may be replaced by C₁-4alkyl or Ar¹;

25 R¹ and R² each independently are hydrogen, hydroxy, halo, cyano, C₁-6alkyl, trihalomethyl, trihalomethoxy, C₂-6alkenyl, C₁-6alkyloxy, hydroxyC₁-6alkyloxy, C₁-6alkyloxyC₁-6alkyloxy, C₁-6alkyloxycarbonyl, aminoC₁-6alkyloxy, mono- or

di(C₁-6alkyl)aminoC₁-6alkyloxy, Ar², Ar²-C₁-6alkyl, Ar²-oxy,
Ar²-C₁-6alkyloxy; or when on adjacent positions R¹ and R² taken together may
form a bivalent radical of formula

- 5 -O-CH₂-O- (b-1),
- O-CH₂-CH₂-O- (b-2),
- O-CH=CH- (b-3),
- O-CH₂-CH₂- (b-4),
- O-CH₂-CH₂-CH₂- (b-5), or
- CH=CH-CH=CH- (b-6);

10 R³ and R⁴ each independently are hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxy,
Ar³-oxy, C₁-6alkylthio, di(C₁-6alkyl)amino, trihalomethyl, trihalomethoxy, or
when on adjacent positions R³ and R⁴ taken together may form a bivalent radical
of formula

- 15 -O-CH₂-O- (c-1),
- O-CH₂-CH₂-O- (c-2), or
- CH=CH-CH=CH- (c-3);

R⁵ is a radical of formula

(d-1),

(d-2),

wherein R¹³ is hydrogen, halo, Ar⁴, C₁-6alkyl, hydroxyC₁-6alkyl, C₁-6alkyloxy-
20 C₁-6alkyl, C₁-6alkyloxy, C₁-6alkylthio, amino, C₁-6alkyloxy-
carbonyl, C₁-6alkylS(O)C₁-6alkyl or C₁-6alkylS(O)₂C₁-6alkyl;

R¹⁴ is hydrogen, C₁-6alkyl or di(C₁-4alkyl)aminosulfonyl;

25 R⁶ is hydrogen, hydroxy, halo, C₁-6alkyl, cyano, haloC₁-6alkyl, hydroxyC₁-6alkyl,
cyanoC₁-6alkyl, aminoC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl,
C₁-6alkylthioC₁-6alkyl, aminocarbonylC₁-6alkyl,
C₁-6alkyloxycarbonylC₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl,
C₁-6alkyloxycarbonyl, mono- or di(C₁-6alkyl)aminoC₁-6alkyl, Ar⁵,
Ar⁵-C₁-6alkyloxyC₁-6alkyl; or a radical of formula

- 30 -O-R⁷ (e-1),
- S-R⁷ (e-2),
- N-R⁸R⁹ (e-3),

wherein R⁷ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar⁶, Ar⁶-C₁-6alkyl,
C₁-6alkyloxycarbonylC₁-6alkyl, or a radical of formula -Alk-OR¹⁰
or -Alk-NR¹¹R¹²;

35 R⁸ is hydrogen, C₁-6alkyl, Ar⁷ or Ar⁷-C₁-6alkyl;

R⁹ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylaminocarbonyl, Ar⁸, Ar⁸-C₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl, Ar⁸-carbonyl, Ar⁸-C₁-6alkylcarbonyl, aminocarbonyl-carbonyl, C₁-6alkyloxyC₁-6alkylcarbonyl, hydroxy, C₁-6alkyloxy, aminocarbonyl, di(C₁-6alkyl)aminoC₁-6alkylcarbonyl, amino, C₁-6alkylamino, C₁-6alkylcarbonylamino,
 5 or a radical or formula -Alk-OR¹⁰ or -Alk-NR¹¹R¹²;
 wherein Alk is C₁-6alkanediyl;
 R¹⁰ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, hydroxyC₁-6alkyl,
 10 Ar⁹ or Ar⁹-C₁-6alkyl;
 R¹¹ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹⁰ or
 Ar¹⁰-C₁-6alkyl;
 R¹² is hydrogen, C₁-6alkyl, Ar¹¹ or Ar¹¹-C₁-6alkyl; and
 Ar¹ to Ar¹¹ are each independently selected from phenyl; or phenyl substituted
 15 with halo, C₁-6alkyl, C₁-6alkyloxy or trifluoromethyl.

WO-98/49157 concerns the preparation, formulation and pharmaceutical properties of farnesyl protein transferase inhibiting compounds of formula (VIII)

20 the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein
 the dotted line represents an optional bond;
 X is oxygen or sulfur;
 R¹ and R² each independently are hydrogen, hydroxy, halo, cyano, C₁-6alkyl, trihalomethyl, trihalomethoxy, C₂-6alkenyl, C₁-6alkyloxy, hydroxyC₁-6alkyloxy, C₁-6alkyloxyC₁-6alkyloxy, C₁-6alkyloxycarbonyl, aminoC₁-6alkyloxy, mono- or di(C₁-6alkyl)aminoC₁-6alkyloxy, Ar¹, Ar¹C₁-6alkyl, Ar¹oxy or Ar¹C₁-6alkyloxy;
 25 R³ and R⁴ each independently are hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxy, Ar¹oxy, C₁-6alkylthio, di(C₁-6alkyl)amino, trihalomethyl or trihalomethoxy;

R⁵ is hydrogen, halo, C₁-6alkyl, cyano, haloC₁-6alkyl, hydroxyC₁-6alkyl, cyanoC₁-6alkyl, aminoC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, C₁-6alkylthioC₁-6alkyl, aminocarbonylC₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl, C₁-6alkyloxycarbonyl, mono- or di(C₁-6alkyl)aminoC₁-6alkyl, Ar¹, Ar¹C₁-6alkyloxyC₁-6alkyl; or a radical of formula

- O-R¹⁰ (a-1),
- S-R¹⁰ (a-2),
- N-R¹¹R¹² (a-3),

wherein R¹⁰ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹, Ar¹C₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, or a radical of formula -Alk-OR¹³ or -Alk-NR¹⁴R¹⁵;

R¹¹ is hydrogen, C₁-6alkyl, Ar¹ or Ar¹C₁-6alkyl;

R¹² is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylaminocarbonyl, Ar¹, Ar¹C₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl, Ar¹carbonyl, Ar¹C₁-6alkylcarbonyl, aminocarbonyl-carbonyl, C₁-6alkyloxyC₁-6alkylcarbonyl, hydroxy, C₁-6alkyloxy, aminocarbonyl, di(C₁-6alkyl)aminoC₁-6alkylcarbonyl, amino, C₁-6alkylamino, C₁-6alkylcarbonylamino,

or a radical or formula -Alk-OR¹³ or -Alk-NR¹⁴R¹⁵;
wherein Alk is C₁-6alkanediyl;

R¹³ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, hydroxy-C₁-6alkyl, Ar¹ or Ar¹C₁-6alkyl;

R¹⁴ is hydrogen, C₁-6alkyl, Ar¹ or Ar¹C₁-6alkyl;

R¹⁵ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹ or Ar¹C₁-6alkyl;

R⁶ is a radical of formula

(b-1),

(b-2),

wherein R¹⁶ is hydrogen, halo, Ar¹, C₁-6alkyl, hydroxyC₁-6alkyl, C₁-6alkyloxy-C₁-6alkyl, C₁-6alkyloxy, C₁-6alkylthio, amino, C₁-6alkyloxycarbonyl, C₁-6alkylthioC₁-6alkyl, C₁-6alkylS(O)C₁-6alkyl or C₁-6alkylS(O)₂C₁-6alkyl;

R¹⁷ is hydrogen, C₁-6alkyl or di(C₁-4alkyl)aminosulfonyl;

R⁷ is hydrogen or C₁-6alkyl provided that the dotted line does not represent a bond;

R⁸ is hydrogen, C₁-6alkyl or Ar²CH₂ or Het¹CH₂;

R⁹ is hydrogen, C₁-6alkyl, C₁-6alkyloxy or halo; or

R⁸ and R⁹ taken together to form a bivalent radical of formula

- CH=CH- (c-1),
- 5 -CH₂-CH₂- (c-2),
- CH₂-CH₂-CH₂- (c-3),
- CH₂-O- (c-4), or
- CH₂-CH₂-O- (c-5);

Ar¹ is phenyl; or phenyl substituted with 1 or 2 substituents each independently selected from halo, C₁-6alkyl, C₁-6alkyloxy or trifluoromethyl;

10 Ar² is phenyl; or phenyl substituted with 1 or 2 substituents each independently selected from halo, C₁-6alkyl, C₁-6alkyloxy or trifluoromethyl; and

Het¹ is pyridinyl; pyridinyl substituted with 1 or 2 substituents each independently selected from halo, C₁-6alkyl, C₁-6alkyloxy or trifluoromethyl.

15

WO-00/39082 concerns the preparation, formulation and pharmaceutical properties of farnesyl protein transferase inhibiting compounds of formula (IX)

20 or the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein

=X¹-X²-X³- is a trivalent radical of formula

- =N-CR⁶=CR⁷- (x-1), =CR⁶-CR⁷=CR⁸- (x-6),
- =N-N=CR⁶- (x-2), =CR⁶-N=CR⁷- (x-7),
- 25 =N-NH-C(=O)- (x-3), =CR⁶-NH-C(=O)- (x-8), or
- =N-N=N- (x-4), =CR⁶-N=N- (x-9);
- =N-CR⁶=N- (x-5),

wherein each R⁶, R⁷ and R⁸ are independently hydrogen, C₁-4alkyl, hydroxy, C₁-4alkyloxy, aryloxy, C₁-4alkyloxycarbonyl, hydroxyC₁-4alkyl, C₁-4alkyloxyC₁-4alkyl, mono- or di(C₁-4alkyl)aminoC₁-4alkyl, cyano, amino, thio, C₁-4alkylthio, arylthio or aryl;

>Y¹-Y²- is a trivalent radical of formula

- >CH-CHR⁹- (y-1),
- >C=N- (y-2),
- >CH-NR⁹- (y-3), or
- >C=CR⁹- (y-4);

5

wherein each R⁹ independently is hydrogen, halo, halocarbonyl, aminocarbonyl, hydroxyC₁₋₄alkyl, cyano, carboxyl, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, aryl;

10 r and s are each independently 0, 1, 2, 3, 4 or 5;

t is 0, 1, 2 or 3;

each R¹ and R² are independently hydroxy, halo, cyano, C₁₋₆alkyl, trihalomethyl, trihalomethoxy, C₂₋₆alkenyl, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, aminoC₁₋₆alkyloxy, mono- or di(C₁₋₆alkyl)amino, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy, aryl, arylC₁₋₆alkyl, aryloxy or arylC₁₋₆alkyloxy, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl, aminocarbonyl, aminoC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminocarbonyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl; or

two R¹ or R² substituents adjacent to one another on the phenyl ring may independently form together a bivalent radical of formula

- O-CH₂-O- (a-1),
- O-CH₂-CH₂-O- (a-2),
- O=CH=CH- (a-3),
- O-CH₂-CH₂- (a-4),
- O-CH₂-CH₂-CH₂- (a-5), or
- CH=CH-CH=CH- (a-6);

25

R³ is hydrogen, halo, C₁₋₆alkyl, cyano, haloC₁₋₆alkyl, hydroxyC₁₋₆alkyl, cyanoC₁₋₆alkyl, aminoC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylthioC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonyl, hydroxycarbonylC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, C₁₋₆alkylcarbonylC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, aryl, arylC₁₋₆alkyloxyC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

30

or a radical of formula

35

- O-R¹⁰ (b-1),
- S-R¹⁰ (b-2),
- NR¹¹R¹² (b-3),

wherein R¹⁰ is hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, aryl, arylC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, or a radical of formula -Alk-OR¹³ or

activity in several human neoplasms, including pediatric leukemia, small cell carcinomas of the lung, testicular tumors, Hodgkin's disease, and large cell lymphomas. These derivatives are referred to as etoposide (VP-16) which has the chemical name 4¹-demethylepipodophyllotoxin-9-[4,6-O-(R)-ethylidene-beta-D-glucopyranoside] and 5 teniposide (VM-26) which has the chemical name 4¹-demethylepipodophyllotoxin-9-[4,6-O-(R)-thenylidene-beta-D-glucopyranoside]. These compounds have a similar mechanism of action which involves the induction of DNA strand breaks by an interaction with DNA topoisomerase II or the formation of free radicals. Both etoposide and teniposide, however, suffer from certain toxic side-effects especially myelosuppression.

10

There is therefore a need to increase the inhibitory efficacy of anti-tumor podophyllotoxin derivatives against tumor growth and also to provide a means for the use of lower dosages of anti-tumor podophyllotoxin derivatives to reduce the potential of adverse toxic side effects to the patient.

15

It is an object of the invention to provide a therapeutic combination of an anti-tumor podophyllotoxin derivative and a farnesyl transferase inhibitor of the type described above which has an advantageous inhibitory effect against tumor cell growth, in comparison with the respective effects shown by the individual components of the 20 combination.

According to the invention therefore we provide a combination of an anti-tumor podophyllotoxin derivative and a farnesyl transferase inhibitor of formula (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX) above, in particular a compound of formula (I), (II) or (III):

(III)

the pharmaceutically acceptable acid or base addition salts and the stereochemically isomeric forms thereof, wherein

the dotted line represents an optional bond;

5 X is oxygen or sulfur;

R¹ is hydrogen, C₁-12alkyl, Ar¹, Ar²C₁-6alkyl, quinolinylC₁-6alkyl, pyridyl-C₁-6alkyl, hydroxyC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, mono- or di(C₁-6alkyl)-aminoC₁-6alkyl, aminoC₁-6alkyl,
or a radical of formula -Alk¹-C(=O)-R⁹, -Alk¹-S(O)-R⁹ or -Alk¹-S(O)2-R⁹,
wherein Alk¹ is C₁-6alkanediyl,

R⁹ is hydroxy, C₁-6alkyl, C₁-6alkyloxy, amino, C₁-8alkylamino or
C₁-8alkylamino substituted with C₁-6alkyloxycarbonyl;

R², R³ and R¹⁶ each independently are hydrogen, hydroxy, halo, cyano, C₁-6alkyl,
C₁-6alkyloxy, hydroxyC₁-6alkyloxy, C₁-6alkyloxyC₁-6alkyloxy,
aminoC₁-6alkyloxy, mono- or di(C₁-6alkyl)aminoC₁-6alkyloxy, Ar¹,
Ar²C₁-6alkyl, Ar²oxy, Ar²C₁-6alkyloxy, hydroxycarbonyl,
C₁-6alkyloxycarbonyl, trihalomethyl, trihalomethoxy, C₂-6alkenyl, 4,4-dimethyloxazolyl; or
when on adjacent positions R² and R³ taken together may form a bivalent radical
of formula

- O-CH₂-O- (a-1),
- O-CH₂-CH₂-O- (a-2),
- O-CH=CH- (a-3),
- O-CH₂-CH₂- (a-4),
- O-CH₂-CH₂-CH₂- (a-5), or
- CH=CH-CH=CH- (a-6);

25

R⁴ and R⁵ each independently are hydrogen, halo, Ar¹, C₁-6alkyl, hydroxyC₁-6alkyl,
C₁-6alkyloxyC₁-6alkyl, C₁-6alkyloxy, C₁-6alkylthio, amino, hydroxycarbonyl,
C₁-6alkyloxycarbonyl, C₁-6alkylS(O)C₁-6alkyl or C₁-6alkylS(O)2C₁-6alkyl;

R⁶ and R⁷ each independently are hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxy, Ar²oxy, trihalomethyl, C₁-6alkylthio, di(C₁-6alkyl)amino, or when on adjacent positions R⁶ and R⁷ taken together may form a bivalent radical of formula

5 -O-CH₂-O- (c-1), or
-CH=CH-CH=CH- (c-2);

R⁸ is hydrogen, C₁-6alkyl, cyano, hydroxycarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylcarbonylC₁-6alkyl, cyanoC₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, carboxy-C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono- or di(C₁-6alkyl)amino-C₁-6alkyl, imidazolyl, haloC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, aminocarbonyl-C₁-6alkyl, or a radical of formula

-O-R¹⁰ (b-1),
-S-R¹⁰ (b-2),
-N-R¹¹R¹² (b-3),

15 wherein R¹⁰ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹, Ar²C₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, or a radical or formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

R¹¹ is hydrogen, C₁-12alkyl, Ar¹ or Ar²C₁-6alkyl;

20 R¹² is hydrogen, C₁-6alkyl, C₁-16alkylcarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylaminocarbonyl, Ar¹, Ar²C₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl, a natural amino acid, Ar¹carbonyl, Ar²C₁-6alkylcarbonyl, aminocarbonylcarbonyl, C₁-6alkyloxyC₁-6alkylcarbonyl, hydroxy-C₁-6alkyloxy, aminocarbonyl, di(C₁-6alkyl)aminoC₁-6alkylcarbonyl, amino, C₁-6alkylamino, C₁-6alkylcarbonylamino,

25 or a radical or formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;
wherein Alk² is C₁-6alkanediyl;

R¹³ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, hydroxy-C₁-6alkyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁴ is hydrogen, C₁-6alkyl, Ar¹ or Ar²C₁-6alkyl;

30 R¹⁵ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁷ is hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxycarbonyl, Ar¹;

R¹⁸ is hydrogen, C₁-6alkyl, C₁-6alkyloxy or halo;

R¹⁹ is hydrogen or C₁-6alkyl;

35 Ar¹ is phenyl or phenyl substituted with C₁-6alkyl, hydroxy, amino, C₁-6alkyloxy or halo; and

Ar² is phenyl or phenyl substituted with C₁₋₆alkyl, hydroxy, amino, C₁₋₆alkyloxy or halo.

5 The above described combinations are hereinafter referred to as combinations according to the invention. These combinations may provide a synergistic effect whereby they demonstrate an advantageous therapeutic effect which is greater than that which would have been expected from the effects of the individual components of the combinations.

10 In Formulas (I), (II) and (III), R⁴ or R⁵ may also be bound to one of the nitrogen atoms in the imidazole ring. In that case the hydrogen on the nitrogen is replaced by R⁴ or R⁵ and the meaning of R⁴ and R⁵ when bound to the nitrogen is limited to hydrogen, Ar¹, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylS(O)C₁₋₆alkyl, C₁₋₆alkylS(O)₂C₁₋₆alkyl.

15 Preferably the substituent R¹⁸ is situated on the 5 or 7 position of the quinolinone moiety and substituent R¹⁹ is situated on the 8 position when R¹⁸ is on the 7-position.

20 Interesting compounds are these compounds of formula (I) wherein X is oxygen.
Also interesting compounds are these compounds of formula (I) wherein the dotted line represents a bond, so as to form a double bond.

25 Another group of interesting compounds are those compounds of formula (I) wherein R¹ is hydrogen, C₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, or a radical of formula -Alk¹-C(=O)-R⁹, wherein Alk¹ is methylene and R⁹ is C₁₋₈alkyl-amino substituted with C₁₋₆alkyloxycarbonyl.

30 Still another group of interesting compounds are those compounds of formula (I) wherein R³ is hydrogen or halo; and R² is halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₁₋₆alkyloxy, trihalomethoxy or hydroxyC₁₋₆alkyloxy.

35 A further group of interesting compounds are those compounds of formula (I) wherein R² and R³ are on adjacent positions and taken together to form a bivalent radical of formula (a-1), (a-2) or (a-3).

A still further group of interesting compounds are those compounds of formula (I)

wherein R⁵ is hydrogen and R⁴ is hydrogen or C₁-6alkyl.

Yet another group of interesting compounds are those compounds of formula (I) wherein R⁷ is hydrogen; and R⁶ is C₁-6alkyl or halo, preferably chloro, especially

5 4-chloro.

A particular group of compounds are those compounds of formula (I) wherein R⁸ is
 10 hydrogen, hydroxy, haloC₁-6alkyl, hydroxyC₁-6alkyl, cyanoC₁-6alkyl, C₁-6alkyloxy-
 carbonylC₁-6alkyl, imidazolyl, or a radical of formula -NR¹¹R¹² wherein R¹¹ is
 15 hydrogen or C₁-12alkyl and R¹² is hydrogen, C₁-6alkyl, C₁-6alkyloxy, hydroxy,
 C₁-6alkyloxyC₁-6alkylcarbonyl, or a radical of formula -Alk²-OR¹³ wherein R¹³ is
 20 hydrogen or C₁-6alkyl.

Preferred compounds are those compounds wherein R¹ is hydrogen, C₁-6alkyl,
 15 C₁-6alkyloxyC₁-6alkyl, di(C₁-6alkyl)aminoC₁-6alkyl, or a radical of formula
 -Alk¹-C(=O)-R⁹, wherein Alk¹ is methylene and R⁹ is C₁-8alkylamino substituted
 with C₁-6alkyloxycarbonyl; R² is halo, C₁-6alkyl, C₂-6alkenyl, C₁-6alkyloxy, trihalo-
 with C₁-6alkyloxycarbonyl; R³ is hydrogen; R⁴ is methyl bound to the
 20 methoxy, hydroxyC₁-6alkyloxy or Ar¹; R⁵ is hydrogen; R⁶ is chloro; R⁷ is hydrogen;
 nitrogen in 3-position of the imidazole; R⁸ is hydrogen, hydroxy, haloC₁-6alkyl, hydroxyC₁-6alkyl, cyanoC₁-6alkyl,
 R¹⁷ is hydrogen and R¹⁸ is hydrogen.
 25

Most preferred compounds are
 30 4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-
 1-methyl-2(1H)-quinolinone,
 6-[amino(4-chlorophenyl)-1-methyl-1H-imidazol-5-ylmethyl]-4-(3-chlorophenyl)-
 1-methyl-2(1H)-quinolinone;
 35 6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-
 1-methyl-2(1H)-quinolinone;
 6-[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-methyl-
 2(1H)-quinolinone monohydrochloride.monohydrate;
 40 6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-
 methyl-2(1H)-quinolinone,

6-amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-4-(3-propylphenyl)-2(1H)-quinolinone; a stereoisomeric form thereof or a pharmaceutically acceptable acid or base addition salt; and

(+)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone (Compound 75 in Table 1 of the Experimental part of WO-97/21701) ; or a pharmaceutically acceptable acid addition salt thereof. The latter compound is especially preferred.

Further preferred embodiments of the present invention include compounds of formula (IX) wherein one or more of the following restrictions apply:

- $=X^1-X^2-X^3$ is a trivalent radical of formula (x-1), (x-2), (x-3), (x-4) or (x-9) wherein each R^6 independently is hydrogen, C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl, amino or aryl and R^7 is hydrogen;

- $>Y^1-Y^2-$ is a trivalent radical of formula (y-1), (y-2), (y-3), or (y-4) wherein each R^9 independently is hydrogen, halo, carboxyl, C_{1-4} alkyl or C_{1-4} alkyloxycarbonyl;

- r is 0, 1 or 2;

- s is 0 or 1;

- t is 0;

- R^1 is halo, C_{1-6} alkyl or two R^1 substituents ortho to one another on the phenyl ring may independently form together a bivalent radical of formula (a-1);

- R^2 is halo;

- R^3 is halo or a radical of formula (b-1) or (b-3) wherein R^{10} is hydrogen or a radical of formula -Alk-OR¹³.
 R^{11} is hydrogen;

R^{12} is hydrogen, C_{1-6} alkyl, C_{1-6} alkylcarbonyl, hydroxy, C_{1-6} alkyloxy or mono- or di(C_{1-6} alkyl)amino C_{1-6} alkylcarbonyl;

Alk is C_{1-6} alkanediyl and R^{13} is hydrogen;

- R^4 is a radical of formula (c-1) or (c-2) wherein R^{16} is hydrogen, halo or mono- or di(C_{1-4} alkyl)amino;

R^{17} is hydrogen or C_{1-6} alkyl;

- aryl is phenyl.

A particular group of compounds consists of those compounds of formula (IX) wherein $=X^1-X^2-X^3$ is a trivalent radical of formula (x-1), (x-2), (x-3), (x-4) or (x-9), $>Y^1-Y^2$ is a trivalent radical of formula (y-2), (y-3) or (y-4), r is 0 or 1, s is 1, t is 0, R^1 is halo,

$C_{(1-4)}$ alkyl or forms a bivalent radical of formula (a-1), R^2 is halo or C_{1-4} alkyl, R^3 is

hydrogen or a radical of formula (b-1) or (b-3), R^4 is a radical of formula (c-1) or (c-2),

R⁶ is hydrogen, C₁₋₄alkyl or phenyl, R⁷ is hydrogen, R⁹ is hydrogen or C₁₋₄alkyl, R¹⁰ is hydrogen or -Alk-OR¹³, R¹¹ is hydrogen and R¹² is hydrogen or C₁₋₆alkylcarbonyl and R¹³ is hydrogen;

5 Preferred compounds are those compounds of formula (IX) wherein =X¹-X²-X³ is a trivalent radical of formula (x-1) or (x-4), >Y1-Y2 is a trivalent radical of formula (y-4), r is 0 or 1, s is 1, t is 0, R¹ is halo, preferably chloro and most preferably 3-chloro, R² is halo, preferably 4-chloro or 4-fluoro, R³ is hydrogen or a radical of formula (b-1) or (b-3), R⁴ is a radical of formula (c-1) or (c-2), R⁶ is hydrogen, R⁷ is hydrogen, R⁹ is hydrogen, R¹⁰ is hydrogen, R¹¹ is hydrogen and R¹² is hydrogen;

10 Other preferred compounds are those compounds of formula (IX) wherein =X¹-X²-X³ is a trivalent radical of formula (x-2), (x-3) or (x-4), >Y1-Y2 is a trivalent radical of formula (y-2), (y-3) or (y-4), r and s are 1, t is 0, R¹ is halo, preferably chloro, and most preferably 3-chloro or R¹ is C₁₋₄alkyl, preferably 3-methyl, R² is halo, preferably chloro, and most preferably 4-chloro, R³ is a radical of formula (b-1) or (b-3), R⁴ is a radical of formula (c-2), R⁶ is C₁₋₄alkyl, R⁹ is hydrogen, R¹⁰ and R¹¹ are hydrogen and R¹² is hydrogen or hydroxy.

15 20 The most preferred compounds of formula (IX) are
7-[(4-fluorophenyl)(1H-imidazol-1-yl)methyl]-5-phenylimidazo[1,2-a]quinoline;
α-(4-chlorophenyl)-α-(1-methyl-1H-imidazol-5-yl)-5-phenylimidazo[1,2-a]quinoline-7-methanol;
5-(3-chlorophenyl)-α-(4-chlorophenyl)-α-(1-methyl-1H-imidazol-5-yl)-imidazo[1,2-a]quinoline-7-methanol;
25 5-(3-chlorophenyl)-α-(4-chlorophenyl)-α-(1-methyl-1H-imidazol-5-yl)imidazo[1,2-a]quinoline-7-methanamine;
5-(3-chlorophenyl)-α-(4-chlorophenyl)-α-(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinoline-7-methanamine;
30 5-(3-chlorophenyl)-α-(4-chlorophenyl)-1-methyl-α-(1-methyl-1H-imidazol-5-yl)-1,2,4-triazolo[4,3-a]quinoline-7-methanol;
5-(3-chlorophenyl)-α-(4-chlorophenyl)-α-(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinoline-7-methanamine;
5-(3-chlorophenyl)-α-(4-chlorophenyl)-α-(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanol;
35 5-(3-chlorophenyl)-α-(4-chlorophenyl)-4,5-dihydro-α-(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanol;

5-(3-chlorophenyl)- α -(4-chlorophenyl)- α -(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanamine;

5-(3-chlorophenyl)- α -(4-chlorophenyl)-N-hydroxy- α -(1-methyl-1H-imidazol-5-yl)tetrahydro[1,5-a]quinoline-7-methanamine;

5 α -(4-chlorophenyl)- α -(1-methyl-1H-imidazol-5-yl)-5-(3-methylphenyl)tetrazolo[1,5-a]quinoline-7-methanamine; the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof.

10 5-(3-chlorophenyl)- α -(4-chlorophenyl)- α -(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanamine, especially the (-) enantiomer, and its pharmaceutically acceptable acid addition salts are especially preferred.

As used in the foregoing definitions and hereinafter halo defines fluoro, chloro, bromo and iodo; C₁-6alkyl defines straight and branched chained saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl and the like; C₁-8alkyl encompasses the straight and branched chained saturated hydrocarbon radicals as defined in C₁-6alkyl as well as the higher homologues thereof containing 7 or 8 carbon atoms such as, for example heptyl or octyl; C₁-12alkyl again encompasses C₁-8alkyl and the higher homologues thereof containing 9 to 12 carbon atoms, such as, for example, nonyl, decyl, undecyl, dodecyl; C₁-16alkyl again encompasses C₁-12alkyl and the higher homologues thereof containing 13 to 16 carbon atoms, such as, for example, tridecyl, tetradecyl, pentedecyl and hexadecyl; C₂-6alkenyl defines straight and branched chain hydrocarbon radicals containing one double bond and having from 2 to 6 carbon atoms such as, for example, ethenyl, 2-propenyl, 3-butenyl, 2-pentenyl, 3-pentenyl, 3-methyl-2-butenyl, and the like; C₁-6alkanediyl defines bivalent straight and branched chained saturated hydrocarbon radicals having from 1 to 6 carbon atoms, such as, for example, methylene, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl, 1,5-pantanediyl, 1,6-hexanediyl and the branched isomers thereof. The term "C(=O)" refers to a carbonyl group, "S(O)" refers to a sulfoxide and "S(O)₂" to a sulfon. The term "natural amino acid" refers to a natural amino acid that is bound via a covalent amide linkage formed by loss of a molecule of water between the carboxyl group of the amino acid and the amino group of the remainder of the molecule. Examples of natural amino acids are glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, tryptophan, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartic acid, glutamic acid, lysine, arginine, histidine.

The pharmaceutically acceptable acid or base addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and non-toxic base addition salt forms which the compounds of formulas (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX) are able to form. The compounds of formulas (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX) which have basic properties can be converted in their pharmaceutically acceptable acid addition salts by treating said base form with an appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid; sulfuric; nitric; phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic, malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.

The compounds of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX) which have acidic properties may be converted in their pharmaceutically acceptable base addition salts by treating said acid form with a suitable organic or inorganic base. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, N-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.

The terms acid or base addition salt also comprise the hydrates and the solvent addition forms which the compounds of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX) are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.

The term stereochemically isomeric forms of compounds of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX), as used hereinbefore, defines all possible compounds made up of the same atoms bonded by the same sequence of bonds but having different three-dimensional structures which are not interchangeable, which the compounds of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX) may possess. Unless otherwise mentioned or indicated, the chemical designation of a compound encompasses the mixture of all possible stereochemically isomeric forms which said compound may possess. Said mixture may contain all diastereomers and/or enantiomers of the basic molecular structure of said compound. All stereochemically isomeric forms of the compounds of formulae (I), (II), (III), (IV),

(V), (VI), (VII), (VIII) or (IX) both in pure form or in admixture with each other are intended to be embraced within the scope of the present invention.

5 Some of the compounds of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX) may also exist in their tautomeric forms. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.

10 Whenever used hereinafter, the term "compounds of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII) or (IX)" is meant to include also the pharmaceutically acceptable acid or base addition salts and all stereoisomeric forms.

15 Preferred anti-tumor anti-tumor podophyllotoxin derivatives for use in accordance with the invention include etoposide and teniposide referred to above. Etoposide is commercially available for example from Bristol-Myers Squibb under the trade name VePesid, and may be prepared for example as described in European patent specification No. 111058, or by processes analogous thereto. Teniposide is commercially available for example from Bristol-Myers Squibb under the trade name Vumon and may be prepared for example as described in PCT patent specification No. WO 93/02094, or by processes analogous thereto. Other anti-tumor 20 podophyllotoxin derivatives may be prepared in conventional manner for example by processes analogous to those described above for etoposide and teniposide.

25 The present invention also relates to combinations according to the invention for use in medical therapy for example for inhibiting the growth of tumor cells.

The present invention also relates to the use of combinations according to the invention for the preparation of a pharmaceutical composition for inhibiting the growth of tumor cells.

30 The present invention also relates to a method of inhibiting the growth of tumor cells in a human subject which comprises administering to the subject an effective amount of a combination according to the invention.

35 This invention further provides a method for inhibiting the abnormal growth of cells, including transformed cells, by administering an effective amount of a combination according to the invention. Abnormal growth of cells refers to cell growth independent

of normal regulatory mechanisms (e.g. loss of contact inhibition). This includes the abnormal growth of : (1) tumor cells (tumors) expressing an activated *ras* oncogene; (2) tumor cells in which the *ras* protein is activated as a result of oncogenic mutation of another gene; (3) benign and malignant cells of other proliferative diseases in which aberrant *ras* activation occurs. Furthermore, it has been suggested in literature that *ras* oncogenes not only contribute to the growth of tumors *in vivo* by a direct effect on tumor cell growth but also indirectly, *i.e.* by facilitating tumor-induced angiogenesis (Rak. J. et al, *Cancer Research*, 55, 4575-4580, 1995). Hence, pharmacologically targeting mutant *ras* oncogenes could conceivably suppress solid tumor growth *in vivo*, in part, by inhibiting tumor-induced angiogenesis.

This invention also provides a method for inhibiting tumor growth by administering an effective amount of a combination according to the present invention, to a subject, e.g. a mammal (and more particularly a human) in need of such treatment. In particular, this invention provides a method for inhibiting the growth of tumors expressing an activated *ras* oncogene by the administration of an effective amount of combination according to the present invention. Examples of tumors which may be inhibited include, but are not limited to, lung cancer (e.g. adenocarcinoma and including non-small cell lung cancer), pancreatic cancers (e.g. pancreatic carcinoma such as, for example exocrine pancreatic carcinoma), colon cancers (e.g. colorectal carcinomas, such as, for example, colon adenocarcinoma and colon adenoma), hematopoietic tumors of lymphoid lineage (e.g. acute lymphocytic leukemia, B-cell lymphoma, Burkitt's lymphoma), myeloid leukemias (for example, acute myelogenous leukemia (AML)), thyroid follicular cancer, myelodysplastic syndrome (MDS), tumors of mesenchymal origin (e.g. fibrosarcomas and rhabdomyosarcomas), melanomas, teratocarcinomas, neuroblastomas, gliomas, benign tumor of the skin (e.g. keratoacanthomas), breast carcinoma (e.g. advanced breast cancer), kidney carcinoma, ovary carcinoma, bladder carcinoma and epidermal carcinoma.

This invention also provides a method for inhibiting proliferative diseases, both benign and malignant, wherein *ras* proteins are aberrantly activated as a result of oncogenic mutation in genes, *i.e.* the *ras* gene itself is not activated by mutation to an oncogenic mutation to an oncogenic form, with said inhibition being accomplished by the administration of an effective amount of a combination according to the invention, to a subject in need of such a treatment. For example, the benign proliferative disorder neurofibromatosis, or tumors in which *ras* is activated due to mutation or

overexpression of tyrosine kinase oncogenes may be inhibited by the combinations according to the invention.

The anti-tumor podophyllotoxin derivative and the farnesyl transferase inhibitor may be
5 administered simultaneously (e.g. in separate or unitary compositions) or sequentially
in either order. In the latter case, the two compounds will be administered within a
period and in an amount and manner that is sufficient to ensure that an advantageous or
synergistic effect is achieved. It will be appreciated that the preferred method and order
of administration and the respective dosage amounts and regimes for each component
10 of the combination will depend on the particular anti-tumor podophyllotoxin derivative
and farnesyl transferase inhibitor being administered, their route of administration, the
particular tumor being treated and the particular host being treated. The optimum
method and order of administration and the dosage amounts and regime can be readily
determined by those skilled in the art using conventional methods and in view of the
15 information set out herein.

The farnesyl transferase inhibitor is advantageously administered in an effective
amount of from 0.0001 mg/kg to 100 mg/kg body weight, and in particular from 0.001
mg/kg to 10 mg/kg body weight. More particularly, for an adult patient, the dosage is
20 conveniently in the range of 50 to 500mg bid, advantageously 100 to 400 mg bid and
particularly 300mg bid.

The anti-tumor podophyllotoxin derivative is advantageously administered in a dosage
of 30 to 300 mg per square meter (mg/m^2) of body surface area, for example 50 to
250 mg/m^2 , particularly for etoposide in a dosage of about 35 to 100 mg/m^2 and for
25 teniposide in about 50 to 250 mg/m^2 per course of treatment. These dosages may be
administered for example once, twice or more per course of treatment, which may be
repeated for example every 7,14,21 or 28 days.

30 It is especially preferred to administer the farnesyl tranferase inhibitor at a dosage of
100 or 200mg bid for 7, 14, 21 or 28 days with a dosage of the anti-tumor
podophyllotoxin derivative in the ranges indicated above.

35 In view of their useful pharmacological properties, the components of the combinations
according to the invention, i.e. the anti-tumor podophyllotoxin derivative and the
farnesyl transferase inhibitor may be formulated into various pharmaceutical forms for
administration purposes. The components may formulated separately in individual

pharmaceutical compositions or in a unitary pharmaceutical composition containing both components. Farnesyl protein transferase inhibitors can be prepared and formulated into pharmaceutical compositions by methods known in the art and in particular according to the methods described in the published patent specifications 5 mentioned herein and incorporated by reference; for the compounds of formulae (I), (II) and (III) suitable examples can be found in WO-97/21701. Compounds of formulae (IV), (V), and (VI) can be prepared and formulated using methods described in WO 97/16443, compounds of formulae (VII) and (VIII) according to methods described in WO 98/40383 and WO 98/49157 and compounds of formula (IX) according to 10 methods described in WO 00/39082 respectively.

The present invention therefore also relates to a pharmaceutical composition comprising an anti-tumor podophyllotoxin derivative and a farnesyl tranferase inhibitor of formula (I) together with one or more pharmaceutical carriers. To prepare 15 pharmaceutical compositions for use in accordance with the invention, an effective amount of a particular compound, in base or acid addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are 20 desirably in unitary dosage form suitable, preferably, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycals, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as 25 starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, 30 though other ingredients, to aid solubility for example, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous 35 administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause a significant deleterious effect to the

skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment.

5 It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association
10 with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

15 It may be appropriate to administer the required dose of each component of the combination as two, three, four or more sub-doses at appropriate intervals throughout the course of treatment. Said sub-doses may be formulated as unit dosage forms, for example, in each case containing independently 0.01 to 500 mg, for example 0.1 to 200 mg and in particular 1 to 100mg of each active ingredient per unit dosage form.

20

Experimental Testing of Combinations for Inhibition of Tumor Growth

The combinations according to the invention may be tested for their efficacy in inhibiting tumor growth using conventional assays described in the literature for example the HTB177 lung carcinoma described by Liu M et al, Cancer Research, Vol. 58, No.21, 1 November 1998, pages 4947-4956, and the anti-mitotic assay described by Moasser M et al, Proc. Natl. Acad. Sci. USA, Vol. 95, pages 1369-1374, February 1998. Other *in vitro* and *in vivo* models for determining ant-tumor effects of combinations and possible synergy of the combinations according to the invention are described in WO 98/54966 and WO 98/32114. Clinical models for determining the efficacy and possible synergism for combination therapy in the clinic are generally described in Cancer: Principles and Practice of Oncology, Fifth Edition, edited by Vincent T DeVita, Jr., Samuel Hellman, Steven A. Rosenberg, Lippincott-Raven, Philadelphia, 1997, especially Chapter 17, pages 342-346.

Claims

1. A combination of an anti-tumor podophyllotoxin derivative and a farnesyl transferase inhibitor selected from compounds of formulae (I), (II), (III), (IV), (V),
 5 (VI), (VII), (VIII) and (IX) below:

(I)

(II)

(III)

the pharmaceutically acceptable acid or base addition salts and the stereochemically isomeric forms thereof, wherein
 the dotted line represents an optional bond;

10 X is oxygen or sulfur;
 R¹ is hydrogen, C₁-12alkyl, Ar¹, Ar²C₁-6alkyl, quinolinylC₁-6alkyl,
 pyridylC₁-6alkyl, hydroxyC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, mono- or
 di(C₁-6alkyl)aminoC₁-6alkyl, aminoC₁-6alkyl,
 or a radical of formula -Alk¹-C(=O)-R⁹, -Alk¹-S(O)-R⁹ or -Alk¹-S(O)₂-R⁹,
 15 wherein Alk¹ is C₁-6alkanediyl,
 R⁹ is hydroxy, C₁-6alkyl, C₁-6alkyloxy, amino, C₁-8alkylamino or
 C₁-8alkylamino substituted with C₁-6alkyloxycarbonyl;
 R², R³ and R¹⁶ each independently are hydrogen, hydroxy, halo, cyano, C₁-6alkyl,
 C₁-6alkyloxy, hydroxyC₁-6alkyloxy, C₁-6alkyloxyC₁-6alkyloxy, aminoC₁-6alkyl-
 oxy, mono- or di(C₁-6alkyl)aminoC₁-6alkyloxy, Ar¹, Ar²C₁-6alkyl, Ar²oxy,
 20

$\text{Ar}^2\text{C}_1\text{-6alkyloxy}$, hydroxycarbonyl, $\text{C}_1\text{-6alkyloxycarbonyl}$, trihalomethyl, trihalomethoxy, $\text{C}_2\text{-6alkenyl}$, 4,4-dimethyloxazolyl; or when on adjacent positions R^2 and R^3 taken together may form a bivalent radical of formula

- 5 -O-CH₂-O- (a-1),
- O-CH₂-CH₂-O- (a-2),
- O-CH=CH- (a-3),
- O-CH₂-CH₂- (a-4),
- O-CH₂-CH₂-CH₂- (a-5), or
- 10 -CH=CH-CH=CH- (a-6);

R^4 and R^5 each independently are hydrogen, halo, Ar^1 , $\text{C}_1\text{-6alkyl}$, hydroxy $\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkyloxyC}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkyloxy}$, $\text{C}_1\text{-6alkylthio}$, amino, hydroxycarbonyl, $\text{C}_1\text{-6alkyloxycarbonyl}$, $\text{C}_1\text{-6alkylS(O)C}_1\text{-6alkyl}$ or $\text{C}_1\text{-6alkylS(O)2C}_1\text{-6alkyl}$;

R^6 and R^7 each independently are hydrogen, halo, cyano, $\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkyloxy}$, Ar^2oxy , trihalomethyl, $\text{C}_1\text{-6alkylthio}$, di($\text{C}_1\text{-6alkyl}$)amino, or

when on adjacent positions R^6 and R^7 taken together may form a bivalent radical of formula

- O-CH₂-O- (c-1), or
- CH=CH-CH=CH- (c-2);

20 R^8 is hydrogen, $\text{C}_1\text{-6alkyl}$, cyano, hydroxycarbonyl, $\text{C}_1\text{-6alkyloxycarbonyl}$, $\text{C}_1\text{-6alkylcarbonylC}_1\text{-6alkyl}$, cyano $\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkyloxycarbonylC}_1\text{-6alkyl}$, carboxy $\text{C}_1\text{-6alkyl}$, hydroxy $\text{C}_1\text{-6alkyl}$, amino $\text{C}_1\text{-6alkyl}$, mono- or di($\text{C}_1\text{-6alkyl}$)-amino $\text{C}_1\text{-6alkyl}$, imidazolyl, halo $\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkyloxyC}_1\text{-6alkyl}$, aminocarbonyl $\text{C}_1\text{-6alkyl}$, or a radical of formula

- 25 -O-R¹⁰ (b-1),
- S-R¹⁰ (b-2),
- N-R¹¹R¹² (b-3),

wherein R^{10} is hydrogen, $\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkylcarbonyl}$, Ar^1 , $\text{Ar}^2\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkyloxycarbonylC}_1\text{-6alkyl}$, or a radical or formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

- 30 R¹¹ is hydrogen, $\text{C}_1\text{-12alkyl}$, Ar^1 or $\text{Ar}^2\text{C}_1\text{-6alkyl}$;
- R¹² is hydrogen, $\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-16alkylcarbonyl}$, $\text{C}_1\text{-6alkyloxycarbonyl}$, $\text{C}_1\text{-6alkylaminocarbonyl}$, Ar^1 , $\text{Ar}^2\text{C}_1\text{-6alkyl}$, $\text{C}_1\text{-6alkylcarbonyl-C}_1\text{-6alkyl}$, a natural amino acid, $\text{Ar}^1\text{carbonyl}$, $\text{Ar}^2\text{C}_1\text{-6alkylcarbonyl}$, aminocarbonylcarbonyl, $\text{C}_1\text{-6alkyloxyC}_1\text{-6alkylcarbonyl}$, hydroxy, $\text{C}_1\text{-6alkyloxy}$, aminocarbonyl, di($\text{C}_1\text{-6alkyl}$)amino $\text{C}_1\text{-6alkylcarbonyl}$, amino, $\text{C}_1\text{-6alkylamino}$, $\text{C}_1\text{-6alkylcarbonylamino}$, or a radical or

formula -Alk²-OR¹³ or -Alk²-NR¹⁴R¹⁵;

wherein Alk² is C₁-6alkanediyl;

R¹³ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, hydroxy-C₁-6alkyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁴ is hydrogen, C₁-6alkyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁵ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹ or Ar²C₁-6alkyl;

R¹⁷ is hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxycarbonyl, Ar¹;

R¹⁸ is hydrogen, C₁-6alkyl, C₁-6alkyloxy or halo;

R¹⁹ is hydrogen or C₁-6alkyl;

Ar¹ is phenyl or phenyl substituted with C₁-6alkyl, hydroxy, amino, C₁-6alkyloxy or halo; and

Ar² is phenyl or phenyl substituted with C₁-6alkyl, hydroxy, amino, C₁-6alkyloxy or halo.

15

(IV)

(V)

(VI)

the pharmaceutically acceptable acid or base addition salts and the stereochemically isomeric forms thereof, wherein
 the dotted line represents an optional bond;
 X is oxygen or sulfur;

R¹ is hydrogen, C₁₋₁₂alkyl, Ar¹, Ar²C₁₋₆alkyl, quinolinylC₁₋₆alkyl, pyridyl-C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)-aminoC₁₋₆alkyl, aminoC₁₋₆alkyl,
or a radical of formula -Alk¹-C(=O)-R⁹, -Alk¹-S(O)-R⁹ or -Alk¹-S(O)₂-R⁹,

5 wherein Alk¹ is C₁₋₆alkanediyl,

R⁹ is hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, amino, C₁₋₈alkylamino or
C₁₋₈alkylamino substituted with C₁₋₆alkyloxycarbonyl;

R² and R³ each independently are hydrogen, hydroxy, halo, cyano, C₁₋₆alkyl,
C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, amino-
10 C₁₋₆alkyloxy, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy, Ar¹, Ar²C₁₋₆alkyl,
Ar²oxy, Ar²C₁₋₆alkyloxy, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl, trihalomethyl,
trihalomethoxy, C₂₋₆alkenyl; or
when on adjacent positions R² and R³ taken together may form a bivalent radical
of formula

15 -O-CH₂-O- (a-1),
-O-CH₂-CH₂-O- (a-2),
-O-CH=CH- (a-3),
-O-CH₂-CH₂- (a-4),
-O-CH₂-CH₂-CH₂- (a-5), or
20 -CH=CH-CH=CH- (a-6);

R⁴ and R⁵ each independently are hydrogen, Ar¹, C₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl,
C₁₋₆alkyloxy, C₁₋₆alkylthio, amino, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl,
C₁₋₆alkylS(O)C₁₋₆alkyl or C₁₋₆alkylS(O)₂C₁₋₆alkyl;

R⁶ and R⁷ each independently are hydrogen, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy or
25 Ar²oxy;

R⁸ is hydrogen, C₁₋₆alkyl, cyano, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyl-
carbonylC₁₋₆alkyl, cyanoC₁₋₆alkyl, C₁₋₆alkyloxycarbonylC₁₋₆alkyl, hydroxy-
carbonylC₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)-
aminoC₁₋₆alkyl, haloC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl,
30 Ar¹, Ar²C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylthioC₁₋₆alkyl;

R¹⁰ is hydrogen, C₁₋₆alkyl, C₁₋₆alkyloxy or halo;

R¹¹ is hydrogen or C₁₋₆alkyl;

Ar¹ is phenyl or phenyl substituted with C₁₋₆alkyl, hydroxy, amino, C₁₋₆alkyloxy or
halo;

35 Ar² is phenyl or phenyl substituted with C₁₋₆alkyl, hydroxy, amino, C₁₋₆alkyloxy or
halo.

the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein

5 the dotted line represents an optional bond;

X is oxygen or sulfur;

-A- is a bivalent radical of formula

-CH=CH- (a-1),

-CH₂-S- (a-6),

-CH₂-CH₂- (a-2),

-CH₂-CH₂-S- (a-7),

10 -CH₂-CH₂-CH₂- (a-3),

-CH=N- (a-8),

-CH₂-O- (a-4),

-N=N- (a-9), or

-CH₂-CH₂-O- (a-5),

-CO-NH- (a-10);

wherein optionally one hydrogen atom may be replaced by C₁₋₄alkyl or Ar¹;

R¹ and R² each independently are hydrogen, hydroxy, halo, cyano, C₁₋₆alkyl, trihalomethyl, trihalomethoxy, C₂₋₆alkenyl, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, aminoC₁₋₆alkyloxy, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy, Ar², Ar²-C₁₋₆alkyl, Ar²-oxy,

Ar²-C₁₋₆alkyloxy; or when on adjacent positions R¹ and R² taken together may form a bivalent radical of formula

20 -O-CH₂-O- (b-1),

-O-CH₂-CH₂-O- (b-2),

-O-CH=CH- (b-3),

-O-CH₂-CH₂- (b-4),

-O-CH₂-CH₂-CH₂- (b-5), or

25 -CH=CH-CH=CH- (b-6);

R³ and R⁴ each independently are hydrogen, halo, cyano, C₁₋₆alkyl, C₁₋₆alkyloxy, Ar³-oxy, C₁₋₆alkylthio, di(C₁₋₆alkyl)amino, trihalomethyl, trihalomethoxy, or when on adjacent positions R³ and R⁴ taken together may form a bivalent radical of formula

30 -O-CH₂-O- (c-1),

-O-CH₂-CH₂-O- (c-2), or

-CH=CH-CH=CH- (c-3);

R⁵ is a radical of formula

(d-1),

(d-2),

wherein R¹³ is hydrogen, halo, Ar⁴, C₁-6alkyl, hydroxyC₁-6alkyl, C₁-6alkyloxy-C₁-6alkyl, C₁-6alkyloxy, C₁-6alkylthio, amino, C₁-6alkyloxy-carbonyl, C₁-6alkylS(O)C₁-6alkyl or C₁-6alkylS(O)₂C₁-6alkyl;

5 R¹⁴ is hydrogen, C₁-6alkyl or di(C₁-4alkyl)aminosulfonyl;

R⁶ is hydrogen, hydroxy, halo, C₁-6alkyl, cyano, haloC₁-6alkyl, hydroxyC₁-6alkyl, cyanoC₁-6alkyl, aminoC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl, C₁-6alkylthioC₁-6alkyl, aminocarbonylC₁-6alkyl,

C₁-6alkyloxycarbonylC₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl,

C₁-6alkyloxycarbonyl, mono- or di(C₁-6alkyl)aminoC₁-6alkyl, Ar⁵,

Ar⁵-C₁-6alkyloxyC₁-6alkyl; or a radical of formula

-O-R⁷ (e-1),

-S-R⁷ (e-2),

-N-R⁸R⁹ (e-3),

15 wherein R⁷ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar⁶, Ar⁶-C₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, or a radical of formula -Alk-OR¹⁰ or -Alk-NR¹¹R¹²;

R⁸ is hydrogen, C₁-6alkyl, Ar⁷ or Ar⁷-C₁-6alkyl;

R⁹ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylaminocarbonyl, Ar⁸, Ar⁸-C₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl, Ar⁸-carbonyl, Ar⁸-C₁-6alkylcarbonyl, aminocarbonyl-carbonyl, C₁-6alkyloxyC₁-6alkylcarbonyl, hydroxy, C₁-6alkyloxy, aminocarbonyl, di(C₁-6alkyl)aminoC₁-6alkylcarbonyl, amino, C₁-6alkylamino, C₁-6alkylcarbonylamino,

25 or a radical or formula -Alk-OR¹⁰ or -Alk-NR¹¹R¹²;

wherein Alk is C₁-6alkanediyl;

R¹⁰ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, hydroxyC₁-6alkyl, Ar⁹ or Ar⁹-C₁-6alkyl;

R¹¹ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹⁰ or Ar¹⁰-C₁-6alkyl;

R¹² is hydrogen, C₁-6alkyl, Ar¹¹ or Ar¹¹-C₁-6alkyl; and

30 Ar¹ to Ar¹¹ are each independently selected from phenyl; or phenyl substituted with halo, C₁-6alkyl, C₁-6alkyloxy or trifluoromethyl.

the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein

the dotted line represents an optional bond;

5 X is oxygen or sulfur;

R¹ and R² each independently are hydrogen, hydroxy, halo, cyano, C₁-6alkyl, trihalomethyl, trihalomethoxy, C₂-6alkenyl, C₁-6alkyloxy, hydroxyC₁-6alkyloxy, C₁-6alkyloxyC₁-6alkyloxy, C₁-6alkyloxycarbonyl, aminoC₁-6alkyloxy, mono- or di(C₁-6alkyl)aminoC₁-6alkyloxy, Ar¹, Ar¹C₁-6alkyl, Ar¹oxy or

10 Ar¹C₁-6alkyloxy;

R³ and R⁴ each independently are hydrogen, halo, cyano, C₁-6alkyl, C₁-6alkyloxy, Ar¹oxy, C₁-6alkylthio, di(C₁-6alkyl)amino, trihalomethyl or trihalomethoxy;

R⁵ is hydrogen, halo, C₁-6alkyl, cyano, haloC₁-6alkyl, hydroxyC₁-6alkyl, cyanoC₁-6alkyl, aminoC₁-6alkyl, C₁-6alkyloxyC₁-6alkyl,

15 C₁-6alkylthioC₁-6alkyl, aminocarbonylC₁-6alkyl,

C₁-6alkyloxycarbonylC₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl,

C₁-6alkyloxycarbonyl, mono- or di(C₁-6alkyl)aminoC₁-6alkyl, Ar¹,

Ar¹C₁-6alkyloxyC₁-6alkyl; or a radical of formula

-O-R¹⁰ (a-1),

-S-R¹⁰ (a-2),

-N-R¹¹R¹² (a-3),

wherein R¹⁰ is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, Ar¹, Ar¹C₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, or a radical of formula -Alk-OR¹³ or -Alk-NR¹⁴R¹⁵;

25 R¹¹ is hydrogen, C₁-6alkyl, Ar¹ or Ar¹C₁-6alkyl;

R¹² is hydrogen, C₁-6alkyl, C₁-6alkylcarbonyl, C₁-6alkyloxycarbonyl, C₁-6alkylaminocarbonyl, Ar¹, Ar¹C₁-6alkyl, C₁-6alkylcarbonyl-C₁-6alkyl, Ar¹carbonyl, Ar¹C₁-6alkylcarbonyl, aminocarbonyl-carbonyl, C₁-6alkyloxyC₁-6alkylcarbonyl, hydroxy, C₁-6alkyloxy, aminocarbonyl, di(C₁-6alkyl)aminoC₁-6alkylcarbonyl, amino,

C₁₋₆alkylamino, C₁₋₆alkylcarbonylamino,
or a radical or formula -Alk-OR¹³ or -Alk-NR¹⁴R¹⁵;
wherein Alk is C₁₋₆alkanediyl;

R¹³ is hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, hydroxy-C₁₋₆alkyl, Ar¹ or Ar¹C₁₋₆alkyl;

5 R¹⁴ is hydrogen, C₁₋₆alkyl, Ar¹ or Ar¹C₁₋₆alkyl;

R¹⁵ is hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, Ar¹ or
Ar¹C₁₋₆alkyl;

R⁶ is a radical of formula

10 wherein R¹⁶ is hydrogen, halo, Ar¹, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxy-C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, amino, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylthioC₁₋₆alkyl, C₁₋₆alkylS(O)C₁₋₆alkyl or C₁₋₆alkylS(O)₂C₁₋₆alkyl;

15 R¹⁷ is hydrogen, C₁₋₆alkyl or di(C₁₋₄alkyl)aminosulfonyl;

R⁷ is hydrogen or C₁₋₆alkyl provided that the dotted line does not represent a bond;

R⁸ is hydrogen, C₁₋₆alkyl or Ar²CH₂ or Het¹CH₂;

R⁹ is hydrogen, C₁₋₆alkyl, C₁₋₆alkyloxy or halo; or

R⁸ and R⁹ taken together to form a bivalent radical of formula

20 -CH=CH- (c-1),
-CH₂-CH₂- (c-2),
-CH₂-CH₂-CH₂- (c-3),
-CH₂-O- (c-4), or
-CH₂-CH₂-O- (c-5);

25 Ar¹ is phenyl; or phenyl substituted with 1 or 2 substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy or trifluoromethyl;

Ar² is phenyl; or phenyl substituted with 1 or 2 substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy or trifluoromethyl; and

30 Het¹ is pyridinyl; pyridinyl substituted with 1 or 2 substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy or trifluoromethyl

and

or the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein

=X¹-X²-X³- is a trivalent radical of formula

- 5 =N-CR⁶=CR⁷- (x-1), =CR⁶-CR⁷=CR⁸- (x-6),
- =N-N=CR⁶- (x-2), =CR⁶-N=CR⁷- (x-7),
- =N-NH-C(=O)- (x-3), =CR⁶-NH-C(=O)- (x-8), or
- =N-N=N- (x-4), =CR⁶-N=N- (x-9);
- =N-CR⁶=N- (x-5),

10 wherein each R⁶, R⁷ and R⁸ are independently hydrogen, C₁₋₄alkyl, hydroxy, C₁₋₄alkyloxy, aryloxy, C₁₋₄alkyloxycarbonyl, hydroxyC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, cyano, amino, thio, C₁₋₄alkylthio, arylthio or aryl;

>Y¹-Y²- is a trivalent radical of formula

- 15 >CH-CHR⁹- (y-1),
- >C=N- (y-2),
- >CH-NR⁹- (y-3), or
- >C=CR⁹- (y-4);

20 wherein each R⁹ independently is hydrogen, halo, halocarbonyl, aminocarbonyl, hydroxyC₁₋₄alkyl, cyano, carboxyl, C₁₋₄alkyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, mono- or di(C₁₋₄alkyl)amino, mono- or di(C₁₋₄alkyl)aminoC₁₋₄alkyl, aryl;

r and s are each independently 0, 1, 2, 3, 4 or 5;

t is 0, 1, 2 or 3;

25 each R¹ and R² are independently hydroxy, halo, cyano, C₁₋₆alkyl, trihalomethyl, trihalomethoxy, C₂₋₆alkenyl, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkyloxyC₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, aminoC₁₋₆alkyloxy, mono- or di(C₁₋₆alkyl)amino, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy, aryl, arylC₁₋₆alkyl, aryloxy or arylC₁₋₆alkyloxy, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl, aminocarbonyl, aminoC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminocarbonyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl; or

two R¹ or R² substituents adjacent to one another on the phenyl ring may independently form together a bivalent radical of formula

- O-CH₂-O- (a-1),
- O-CH₂-CH₂-O- (a-2),
- O=CH=CH- (a-3),
- O-CH₂-CH₂- (a-4),
- O-CH₂-CH₂-CH₂- (a-5), or
- CH=CH-CH=CH- (a-6);

R³ is hydrogen, halo, C₁₋₆alkyl, cyano, haloC₁₋₆alkyl, hydroxyC₁₋₆alkyl,
10 cyanoC₁₋₆alkyl, aminoC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylthioC₁₋₆alkyl,
aminocarbonylC₁₋₆alkyl, hydroxycarbonyl, hydroxycarbonylC₁₋₆alkyl,
C₁₋₆alkyloxycarbonylC₁₋₆alkyl, C₁₋₆alkylcarbonylC₁₋₆alkyl, C₁₋₆alkyloxycarbonyl,
aryl, arylC₁₋₆alkyloxyC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

or a radical of formula

15 -O-R¹⁰ (b-1),
 -S-R¹⁰ (b-2),
 -NR¹¹R¹² (b-3),

wherein R¹⁰ is hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, aryl, arylC₁₋₆alkyl,
C₁₋₆alkyloxycarbonylC₁₋₆alkyl, or a radical of formula -Alk-OR¹³ or
-Alk-NR¹⁴R¹⁵;

20 R¹¹ is hydrogen, C₁₋₆alkyl, aryl or arylC₁₋₆alkyl;
 R¹² is hydrogen, C₁₋₆alkyl, aryl, hydroxy, amino, C₁₋₆alkyloxy,
 C₁₋₆alkylcarbonylC₁₋₆alkyl, arylC₁₋₆alkyl, C₁₋₆alkylcarbonylamino, mono-
 or di(C₁₋₆alkyl)amino, C₁₋₆alkylcarbonyl, aminocarbonyl, arylcarbonyl,
 haloC₁₋₆alkylcarbonyl, arylC₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl,
 C₁₋₆alkyloxyC₁₋₆alkylcarbonyl, mono- or di(C₁₋₆alkyl)aminocarbonyl
 wherein the alkyl moiety may optionally be substituted by one or more
 substituents independently selected from aryl or C₁₋₃alkyloxycarbonyl,
 aminocarbonylcarbonyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkylcarbonyl,
 or a radical or formula -Alk-OR¹³ or -Alk-NR¹⁴R¹⁵;

25 wherein Alk is C₁₋₆alkanediyl;

30 R¹³ is hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, hydroxyC₁₋₆alkyl, aryl or
 arylC₁₋₆alkyl;
 R¹⁴ is hydrogen, C₁₋₆alkyl, aryl or arylC₁₋₆alkyl;
 R¹⁵ is hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, aryl or arylC₁₋₆alkyl;

35 R⁴ is a radical of formula

wherein R¹⁶ is hydrogen, halo, aryl, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, amino, mono- or di(C₁₋₄alkyl)amino, hydroxycarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylthioc₁₋₆alkyl,

5 C₁₋₆alkylS(O)C₁₋₆alkyl or C₁₋₆alkylS(O)₂C₁₋₆alkyl;

R^{16} may also be bound to one of the nitrogen atoms in the imidazole ring of formula (c-1) or (c-2), in which case the meaning of R^{16} when bound to the nitrogen is limited to hydrogen, aryl, C_1 -alkyl, hydroxy C_1 -alkyl, C_1 -alkyloxy C_1 -alkyl, C_1 -alkyloxycarbonyl, C_1 -alkylS(O)C $_1$ -alkyl or

10 C₁₋₆alkylS(O)₂C₁₋₆alkyl;
R¹⁷ is hydrogen, C₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, arylC₁₋₆alkyl, trifluoromethyl or di(C₁₋₄alkyl)aminosulfonyl;

R^5 is C_{1-6} alkyl, C_{1-6} alkyloxy or halo;
aryl is phenyl, naphthalenyl or phenyl substituted with 1 or more substituents each
independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy or trifluoromethyl

20 2. A combination as claimed in claim 1 wherein the farnesyl protein transferase inhibitor is a compound of formula (I) wherein X is oxygen and the dotted line represents a bond.

25 3. A combination as claimed in claim 1 or claim 2 wherein the farnesyl protein transferase inhibitor is a compound of formula (I) wherein R¹ is hydrogen, C₁-6alkyl, C₁-6alkyloxyC₁-6alkyl or mono- or di(C₁-6alkyl)aminoC₁-6alkyl and wherein R³ is hydrogen and R² is halo, C₁-6alkyl, C₂-6alkenyl, C₁-6alkyloxy, trihalomethoxy or hydroxyC₁-6alkyloxy.

30 4. A combination as claimed in any of the preceding claims wherein the farnesyl protein transferase inhibitor is a compound of formula (I) wherein R⁸ is hydrogen, hydroxy, haloC₁-6alkyl, hydroxyC₁-6alkyl, cyanoC₁-6alkyl, C₁-6alkyloxycarbonylC₁-6alkyl, imidazolyl, or a radical of formula -NR¹¹R¹² wherein R¹¹ is hydrogen or C₁-12alkyl and R¹² is hydrogen, C₁-6alkyl, C₁-6alkyloxy, C₁-6alkyloxyC₁-6alkylcarbonyl, hydroxy, or a radical of formula -Alk²-OR¹³ wherein R¹³ is hydrogen or C₁-6alkyl.

35 5. A combination as claimed in claim 1 wherein the farnesyl transferase inhibitor is

selected from:

4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone,
5 6-[amino(4-chlorophenyl)-1-methyl-1H-imidazol-5-ylmethyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone;
6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-methyl-2(1H)-quinolinone;
10 6-[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-methyl-2(1H)-quinolinone monohydrochloride.monohydrate;
15 6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-methyl-2(1H)-quinolinone, and
6-amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-4-(3-propylphenyl)-2(1H)-quinolinone; a stereoisomeric form thereof or a pharmaceutically acceptable acid or base addition salts thereof.

20 6. A combination as claimed in claim 1 wherein the farnesyl transferase inhibitor is (+)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone; or a pharmaceutically acceptable acid addition salt thereof.

25 7. A combination as claimed in claim 1 wherein the farnesyl protein transferase inhibitor is a compound of formula (IX) wherein $=X^1-X^2-X^3$ is a trivalent radical of formula (x-2), (x-3) or (x-4), $>Y_1-Y_2$ is a trivalent radical of formula (y-2), (y-3) or (y-4), r and s are 1, t is 0, R^1 is halo, preferably chloro, and most preferably 3-chloro or R^1 is C_{1-4} alkyl, preferably 3-methyl, R^2 is halo, preferably chloro, and most preferably 4-chloro, R^3 is a radical of formula (b-1) or (b-3), R^4 is a radical of formula (c-2), R^6 is C_{1-4} alkyl, R^9 is hydrogen, R^{10} and R^{11} are hydrogen and R^{12} is hydrogen or hydroxy.

30 8. A combination as claimed in claim 1 wherein the farnesyl protein transferase inhibitor is 5-(3-chlorophenyl)- α -(4-chlorophenyl)- α -(1-methyl-1H-imidazol-5-yl)tetrazolo[1,5-a]quinazoline-7-methanamine or a pharmaceutically acceptable acid addition salt thereof.

35 9. A combination as claimed in any of the preceding claims in which the anti-tumor podophyllotoxin derivative is etoposide or teniposide.

10. A combination as claimed in any of the preceding claims in the form of a pharmaceutical composition comprising an anti-tumor podophyllotoxin derivative and a farnesyl transferase inhibitor selected from compounds of formulae (I), (II), (III), (IV), (V), (VI), (VII), (VIII) and (IX) (as defined in claim 1) together with one or more pharmaceutical carriers.
11. A combination as claimed in any of the preceding claims for use in medical therapy.
12. A combination as claimed in claim 11 for inhibiting the growth of tumor cells.
- 10 13. Use of a combination as claimed in any of claims 1 to 12 in the manufacture of a pharmaceutical composition for inhibiting the growth of tumor cells.
- 15 14. A method of inhibiting the growth of tumor cells in a human subject which comprises administering to the subject an effective amount of a combination as claimed in any of claims 1 to 12.