

SMIC 55nm 1.2V/2.5V LL Process

1K x 32 bits One Time Programmable Device

Document Code : EG001K32GK05DLB03

Issue Date : Feb. 03, 2020

Version : 1.0 Total Pages : 15

Preliminary version may change spec after proven on silicon.

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

	Document Update History						
Ver.	Effective	Revised Content	Applicant				
1.0		Original Draft	JK Chen				

[QM-201(01A)]

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

INDEX

1K x 32-bits One Time Programmable	
Features	
General Description	2
Pin Assignments	
Power Connection Requirement	2
Symbol	2
Pin Description	3
Operation Mode Truth Table	4
Truth Table	4
Write/Read Truth Table	4
DC Specifications	5
Recommended DC Operating Conditions	5
DC Electrical Characteristics	6
Timing	7
Timing Parameters (C _{LOAD} =0.1pF)	7
Input Capacitance	8
Timing Waveforms	9
Timing Definition	9
Timing Waveforms	10
Timing Definition	10
User Mode	12
Read Cycle	12
Program Cycle	13
Test Mode	14
Margin Read Cycle	14
Test Row Select	15
Test Row Address/PDOUT Description Table	15

EG001K32GK05DLB03

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

1K x 32-bits One Time Programmable

eMemory's 55nm OTP device (NeoFuse®) is adopted in SMIC 55nm single poly baseline ULP process. NeoFuse® is an antifuse based technology, which is capable for security code storage. This IP programming voltage is generated from an internal charge pump.

Features

- SMIC 1.2V/2.5V LL Process
 - ➤ 1P5M IP Design(M1, M2~M5 follow inter metal rule).
 - Capable of using on 1P5M/1P6M/ 1P7M/1P8M/1P9M/1P10M process
 - Use1.2V SVT N/PMOS, 1.2V HVT NMOS and 2.5V N/P MOS
- ♦ VDD and VDD2 Power Supply
 - > 0.81V~1.32V VDD, 2.25V~3.63V VDD2 for Read
 - > 0.81V~1.32V VDD, 2.25V~3.63V VDD2 for Program
- Memory Organization 1K x 32-bits
- 1-Bits Program Operation
- Built-in 1bit Charge Pump
- Built-in ECC scheme
- ◆ Junction Temperature T_J:
 - Read Mode:-40°C ~ 125°C
 - Program Mode: -40°C ~ 125°C
- Data Retention: >10 Years
- Special Boolean operation is required, please refer to Special Note of Release Note document.

- NeoFuse Cell :1.2V device
- ◆ IP Size :0.152 mm² (505 um x 301um)
 On silicon size: 0.123 mm²
- Access Time :
 - 50ns(max) at 0.9V~1.32V VDD
 - > 60ns(max) at 0.81V~0.9V VDD
- Bit Program Time :
 - \rightarrow 10 μ s (min)
- Operating Current @ 20MHz:
 - \triangleright I_{VDD R}:0.7mA/2.1mA (typ./max.)
 - \triangleright I_{VDD2 R}:1.5mA/2.2mA (typ./max.)
- Deep Standby Current:
 - IVDD_DSB: 0.02uA/6.5uA (typ./max.)
 - I_{VDD2_DSB}: 0.01uA/1uA (typ./max.)

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

General Description

EG001K32GK05DLB03 is a CMOS 1K x 32-bits One Time Programmable device. The main memory is organized as 1,024 by 32 bits. The OTP cell design will provide a low cost logic process OTP approach compared with alternative approaches. The EG001K32GK05DLB03 is programmed by 1.2V, 3.3V power supply.

PGM is the abbreviation for program and **T**_J stands for junction temperature.

Pin Assignments

Power Connection Requirement

- Power/Ground bouncing beyond DC specifications is not allowed.
- It is necessary to connect at least two power sets of VDD/VDD2/VSS, and metal width should be at least same as VDD/VDD2/VSS pin width.

Symbol

Page 2

This information is from eMemory Technology Inc.. This information may contain privileged and confidential information and shall not be disclosed, copied, distributed, reproduced or used in whole or in part without prior written permission of eMemory Technology Inc..

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Pin Description

Pin Name	Direction	Description
PA[9:0]	ı	Address input for Read operation
PAIO[5:0]	ı	Address input for programming operation
PDIN[31:0]	ı	Data input
PDOUT[31:0]	0	Data output
PTM[3:0]	ı	Pins for Test mode enabling
PWE	I	Pin to Define program cycle
PPROG	ı	Pin to Program mode enabling
PCLK	ı	Pin for Clock input
PCE	ı	Pin for IP enabling
PTR	I	Test row enable
PDSTB	I	Pin for Deep standby mode enabling (low active)
PLDO	ı	Enable LDO to generate for 2.5V power
VDD	ı	1.1V Power supply
VDD2	1	3.3V Power supply
vss	ı	Ground
PENVDD2_VDD2	ı	VDD2 Enable Pin (VDD2 domaim)

[26854]

© eMemory EG001K32GK05DLB03

Notes

1. No glitch immunity on these signals. Users should provide the non-glitch signals to all pins.

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Operation Mode Truth Table

Truth Table

Mode	Туре	PTM[3:0]	PCLK	PCE	PWE	PPROG	PTR	PDSTB	PLDO	PENVDD2_VDD2
User Mode	Stand-by	LLLL	H or L	L	L	L	L	Н	н	н
	Deep Stand-by	LLLL	H or L	L	L	L	L	L	L	н
	Read Access	LLLL	7	н	L	L	H or L	Н	н	н
Mode	Program Entry	LLHL	×	н	L	L	H or L	н	н	н
	Program Access	LLHL	×	н	н	н	H or L	Н	н	н
Test Mode	Room Temp. initial Margin Read Mode	LLLH	7	н	L	L	H or L	н	н	н
	Room Temp. PGM Margin Read Mode	LHLL	×	н	L	L	H or L	Н	Н	н
	High Temp. initial Margin Read Mode	HLLH	7	н	L	L	H or L	н	н	н
	High Temp. PGM Margin Read Mode	HHLL	A	н	L	L	H or L	Н	Н	Н

[26854]

© eMemory EG001K32GK05DLB03

Notes

- 1. H stands for logic High level. L stands for logic Low level.
- 2. PCE pin is not latched by PCLK during read access. The timing dependency is only enable/disable time basically, not setup/hold time.
- 3. Initial Margin Read Mode provides initial state check to filter out defect bit in the testing flow.
- 4. PGM Margin Read Mode is a test mode for CP sorting and provides a critical read condition to filter out "weak programmed" bits in the testing flow. To ensure programming success, customer should implement this mode.
- 5. High temperature (>85C) Initial Margin Read Mode provides initial state check to filter out defect bit in high temperature (>85C) in the testing flow.
- 6. High temperature (>85C) PGM Margin Read Mode is a test mode for CP sorting and provides a critical read condition to filter out "weak programmed" bits in high temperature in the testing flow. To ensure programming success, customer should implement this mode.

Write/Read Truth Table

Cell State	PDIN Write	PDOUT Read
Programmed	L	L
Un-programmed(Initial)	Н	Н

[26854]

© eMemory EG001K32GK05DLB03

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Program Selection Table

PA	Bit Selection For Write Data Input	Data Readout		
	PAIO[5:0]=000000	PDOUT[0]		
	PAIO[5:0]=000001	PDOUT[1]		
Select 1K32	PAIO[5:0]=000010	PDOUT[2]		
	PAIO[5:0]=011111	PDOUT[31]		

[26854] © eMemory EG001K32GK05DLB03

Address/PDOUT Description Table

Mode	Туре	PA[9:0]	PAS	PAIO[5:0]	PDOUT
	Stand-by	-	-	-	-
User Mode	Read Access	Address-in	-	-	PDOUT[31:0]
	Program Access	Address-in	Address-in	Address-in	-
Test Mode	PGM Margin Read Mode	Address-in	-	-	PDOUT[31:0]
Test Mode	Initial Margin Read Mode	Address-in	-	-	PDOUT[31:0]

[26854] © eMemory EG001K32GK05DLB03

DC Specifications

Recommended DC Operating Conditions

Operating Mode	Power Pin	Min	Тур	Max	Unit
	VDD	0.81	1.2	1.32	V
Read Mode	VDD2	2.25	3.3	3.63	V
	Vss		V		
PGM Mode	Vdd	0.81	1.2	1.32	V
	VDD2	2.25	3.63	V	
	Vss		0		V

[26854] © eMemory EG001K32GK05DLB03

Notes

- 1. Power supply voltage beyond DC operating range is not guaranteed.
- 2. Power/Ground bouncing beyond DC operating range might cause invalid data output. It's not guaranteed by eMemory and customers must take care of power stability on their own.
- 3. Normally, operating junction temperature is from -40°C to 125°C, and Program operation should be at junction temperature -40°C ~ 125°C.

Page 5

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

DC Electrical Characteristics

Parameter	Power Pin	Тур	Max	Unit	Test Condition
Read Current	IVDD_R	700	2100	μA	VDD=VDDMAX, VDD2=VDD2MAX, PTM[3:0]=0, PA[9:0]=0/VDD,
@20MHz	IVDD2_R	1500	2200	μΑ	PCE=VDD, PDIN[31:0]=0/VDD, PPROG=PWE=0, PDSTB=PLDO=VDD PENVDD2_VDD2=VDD2
Read Current II	IVDD_R	200	1200	μA	VDD=VDDMAX, VDD2=VDD2MAX, PTM[3:0]=0, PA[9:0]=0/VDD,
@1MHz	IVDD2_R	1200	2000	μΑ	PCE=VDD, PDIN[31:0]=0/VDD, PPROG=PWE=0, PDSTB=PLDO=VDD PENVDD2_VDD2=VDD2
	IVDD_P	110	1000	μA	VDD=VDDMAX, VDD2=VDD2MAX, PDSTB=VDD,
Normal Program Current	IVDD2_P	4	5	mA	PTM[3:0]=2, PDIN[31:0]=0 ,PPROG=PCE=PWE= PLDO=VDD PENVDD2_VDD2=VDD2
	IVDD_SB	1	600	μΑ	VDD=VDDMAX, VDD2=VDD2MAX, PTM[3:0]=0,
Standby Current	IVDD2_SB	800	1100	μA	PA[9:0]=0/VDD, PCLK=PDIN[31:0]=0/VDD, PDSTB=PLDO=VDD, PPROG=PCE=PWE=0, PENVDD2_VDD2=VDD2
	IVDD_DSB	0.02	6.5	μA	VDD=VDDMAX, VDD2=VDD2MAX, PTM[3:0]=0,
Deep Standby Current	IVDD2_DSB	0.01	1	μА	PA[9:0]=0/VDD, PCLK=PDIN[31:0]=0/VDD, PDSTB=PLDO= PPROG=PCE=PWE=0 PENVDD2_VDD2=VDD2

[26854]

© eMemory EG001K32GK05DLB03

Notes

- 1. All electrical parameters listed above are based on SPICE (or equivalent) simulations and subject to changes after silicon verification.
- 2. Capacitive loading should less than 0.1pF same as simulation conditions.
- 3. No active current at standby mode, thus I_{SB} is dependent on device leakage current.
- 4. Typical DC SPEC is defined at typical operation voltage and room temperature.
- 5. Normally, operating junction temperature is from -40°C to 125°C, and Program operation should be at junction temperature -40°C ~ 125°C.

EG001K32GK05DLB03

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Timing

Timing Parameters (C_{LOAD}=0.1pF)

Parameter	Symbol	Min	Max	Unit
Rising Time	Tr	-	1	ns
Falling Time	Tf	-	1	ns
Read Data Access Time	Tcd	-	50	ns
Clock Cycle Time @VDD=0.9V~1.32V	Тсус	50	-	ns
Clock Pulse High Time	Tkh	20	-	ns
Clock Pulse Low Time	Tki	20	-	ns
Address Setup Time	Tas	1	-	ns
Address Hold Time	Tah	15	-	ns
IP Enable Time	Tcs	10	-	μs
PCE Disable Time	Tch	0	-	ns
Output Data Hold Time	Toh	0.1	-	ns
Program Pulse Width Time	Трw	10	20	μs
Program Pulse Interval Time	Tpwi	1	5	μs
Control Signal Enable Time	Tvds_VDD	1	-	μs
Program Address Setup Time	Tasp	1	-	ns
Program Address Hold Time	Tahp	2	-	ns
Program Data Setup Time	Tdsp	1	-	ns
Program Data Hold Time	Tdhp	2	-	ns
Read Data Access Time-2 @VDD=0.81V~0.9V	Tcd	-	60	ns
Clock Cycle Time-2 @VDD=0.81V~0.9V	Тсус	60	-	ns
Program Mode Recovery Time	Tppr	5	100	μs
Program Mode Setup Time	Tpps	5	20	μs
Program Mode Hold Time	Tpph	5	20	μs
Active Mode to Deep Standby Hold Time	Tash	10	-	ns
Deep Standby to Active Mode Setup Time	Tsas	2	-	μs
PTM Mode Setup Time	Tms	1	-	ns
PTM Mode Hold Time	Tmh	1	-	ns
IP Enable Time in Program	Tcsp	10	100	μs
LDO Setup Time	Tpls	10	-	μs

Page 7

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Parameter	Symbol	Min	Max	Unit
LDO Hold Time	Tplh	0	-	ns
VDD2 Power Up Setup Time	Tvd2us	1	-	μs
VDD Power Up Setup Time	Tvdus	1	-	μs
VDD2 Power Enable Setup Time	Tvd2ens	0	-	ns
VDD Power Enable Setup Time	Tvdens	0	-	ns
Power Enable Setup Time	Tpens	1	-	μs
Power Enable Hold Time	Tpenh	0	-	ns
VDD2 Power Down Hold Time	Tvd2dh	0	-	ns
VDD Power Down Hold Time	Tvddh	0	-	ns

[26854]

© eMemory EG001K32GK05DLB03

Notes

- 1. All electrical and timing parameters listed above are based on SPICE (or equivalent) simulations and subject to changes after silicon verification.
- 2. Capacitive loading should less than 0.1pF same as simulation conditions.
- 3. Tpw have maximum value limitation, which is reliability concern to avoid long HV stress time.
- 4. Tsas and Tash values are the simulation results based on VDD2 current = 100mA (max)
- 5. Normally, operating junction temperature is from -40°C to 125°C, and Program operation should be
- 6. At junction temperature -40°C ~125°C.

Input Capacitance

Parameter	Symbol	Min	Max	Unit	Test Condition
Control Input	CCON	-	0.02	pF	VIN=0 at f=1 MHz
Address Input	CADD	-	0.02	pF	VIN=0 at f=1 MHz
Data Input	CDIN	-	0.02	pF	VIN=0 at f=1 MHz

[26854]

© eMemory EG001K32GK05DLB03

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Timing Waveforms

Timing Definition

Power Up/Down Sequence Tvd2us VDD2 Tvd2ens Tvd2dh VSS VDD Tvdus VDD VSS Tvddh Tvdens VDD2 PENVDD2_VDD2 Tpens Tpenh VDD PLDO Tpls Tplh VDD **PDSTB** Tsas Tash VDD 50% Control Pin VSS

- VDD/VDD2/VSS level is specified in each timing waveform.
- Power up sequence timing is based on power measuring point while VDD/VDD2 is stable as waveform indicated.
- ➤ Signal to signal timing is measured from T_i to T_o of input/output signal at 50% VDD/VDD2 level based on VSS=0V.
- Signal rise time T_r (fall time T_f) is defined from 10% ⇒ 90% (10% <= 90%) of VDD/VDD2 level based on VSS=0V.</p>

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Timing Waveforms

Timing Definition

Signal Pin Timing Definition

- VDD/VDD2/VSS level is specified in each timing waveform.
- Power up sequence timing is based on power measuring point while VDD/VDD2 is stable as waveform indicated.
- ➤ Signal to signal timing is measured from T_i to T_o of input/output signal at 50% VDD/VDD2 level based on VSS=0V.
- ightharpoonup Signal rise time T_r (fall time T_f) is defined from 10% => 90% (10% <= 90%) of VDD/VDD2 level based on VSS=0V.

EG001K32GK05DLB03

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Timing Definition

Deep Standby Mode Timing Definition

Deep Standby Mode

EG001K32GK05DLB03

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

User Mode

Read Cycle

PTR=H/L, PPROG=PWE=0, PDSTB=V_{DD}, PDIN[31:0]=H/L, PLDO=H PENVDD2_VDD2=VDD2,VDD=0.81V~1.32V, VDD2=2.25V~3.63V, VSS=0V,

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Program Cycle

Zoom In

Notes

- 1. PWE needs to be toggled for specific PAIO (PAIO=0~31) that PDIN data is "0". When PDIN data is "1", PWE doesn't have to be toggled.
- 2. PWE needs to be toggled for PAIO=32~37 (last 6 PAIO).
- 3. This NeoFuse IP with ECC functionality (Error-Correcting Code) needs customer's special attention: not only 32 data bits but also 6 ECC bits need to be programmed for one address at the same time. It means the minimum data string is 32 bits for each write operation and only can be programmed one time in each address.

EG001K32GK05DLB03

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Test Mode

Margin Read Cycle

PTR=H/L, PPROG=PWE=0, PDSTB=V_{DD}, PDIN[31:0]=H/L, VDD=1.2V, VDD2=3.3V, VSS=0V, PENVDD2_VDD2=VDD2, PLDO=H PTM[3:0]=[0,0,0,1] for initial Margin Read, PTM[3:0]=[0,1,0,0] for PGM Margin Read,

PTM[3:0]=[1,0,0,1] for HT initial Margin Read,PTM[3:0]=[1,1,0,0] for HT PGM Margin Read,

Notes

1. VDD/VDD2 needs to use typical value 1.2V/3.3V when doing Margin Read Mode.

SMIC 55nm 1.2V/2.5V LL Process 1k x 32-bits One Time Programmable Device

Test Row Select

Test Row Address/PDOUT Description Table

Mode	Туре	PA[3:0]	PA[9:4]	PAS	PAIO[5:0]	PDOUT
User Mode	Stand-by	-	-	-	-	-
	Read Access	Address-in	Must=0	-	-	PDOUT[31:0]
	Program Access	Address-in	Must=0	Address-in	Address-in	-
Test Mode	PGM Margin Read Mode	Address-in	Must=0	-	-	PDOUT[31:0]
	Initial Margin Read Mode	Address-in	Must=0	-	-	PDOUT[31:0]
	HT PGM Margin Read Mode	Address-in	Must=0			PDOUT[31:0]
	HT Initial Margin Read Mode	Address-in	Must=0			PDOUT[31:0]

[26854]

© eMemory EG001K32GK05DLB03

Notes

- 1. PTR=H with PA valid address specified in the figure to select test row.
- 2. Test Row is individual memory block for testing, it does not include in main array size.