PURE MATHS SOLUTIONS

SECTION A WORKING Marks 1 Let $t = \tan \frac{\theta}{2}$ $\cos \theta = \frac{1-t^2}{1+t^2}$ $\sin \theta = \frac{1-t^2}{1+t^2}$ From $\cos \theta + \sqrt{3} \sin \theta = 2$	Comments
1 Let $t = \tan \frac{\theta}{2}$ $\cos \theta = \frac{1 - t^2}{1 + t^2}$ $\sin \theta = \frac{1 - t^2}{1 + t^2}$	
$\cos \theta = \frac{1 - t^2}{1 + t^2}$ $\sin \theta = \frac{1 - t^2}{1 + t^2}$	
$\sin \theta = \frac{1 - t^2}{1 + t^2}$	
$\sin \theta = \frac{1 - t^2}{1 + t^2}$	
From $\cos \theta + \sqrt{3} \sin \theta = 2$	
$1-t^2$ $\sqrt{2}(2t)$	
$\Rightarrow \frac{1-t^2}{1+t^2} + \sqrt{3} \left(\frac{2t}{1+t^2} \right) = 2$	
$1 - t^2 + 2\sqrt{3}t = 2(1 + t^2)$	
$1 - t^2 + 2\sqrt{3}t = 2 + 2t^2$	
$3t^2 - 2\sqrt{3}t + 1 = 0$	
30 2430 11 = 0	
$\frac{1}{2} \frac{1}{12} $	
$t = \frac{2\sqrt{3} \pm \sqrt{\left(-2\sqrt{3}\right)^2 - 4 \times 3 \times 1}}{6}$	
$= \frac{2\sqrt{3} \pm \sqrt{12 - 12}}{6}$	
$=\frac{2\sqrt{3}\pm\sqrt{12-12}}{6}$	
6	
$t = \frac{\sqrt{3}}{3}$	
But $t = \tan \frac{\theta}{2}$	
$\theta \sqrt{3}$	
$\tan\frac{\theta}{2} = \frac{\sqrt{3}}{3}$	
$\theta = \sqrt{3}$	
$\frac{\theta}{2} = \tan^{-1}\left(\frac{\sqrt{3}}{3}\right)$	
θ	
$\frac{\theta}{2} = 30^{\circ}, 210^{\circ}$	
$\theta = 60^{\circ}, 420^{\circ}$	
Altama atin alu	
Alternatively, $\cos \theta + \sqrt{3} \sin \theta = R\cos(\theta - \alpha)$	
$\cos \theta + \sqrt{3} \sin \theta = \text{Rcos}(\theta - \alpha)$ $\cos \theta + \sqrt{3} \sin \theta = \text{Rcos}\theta \cos \alpha + \text{Rsin }\theta \sin \alpha$	
Comparing L.H.S and R.H.S	
$R \cos \alpha = 1$ (i)	
$R \sin \alpha = \sqrt{3}$ (ii)	
$[\text{Eqn }(i)]^2 + [\text{Eqn }(ii)]^2$	
$R^2\cos^2\alpha + R^2\sin^2\alpha = 1 + 3$	
$R^{2}(\cos^{2}\alpha + \sin^{2}\alpha) = 4$ $R^{2} = 4$	
$\begin{vmatrix} R^2 = 4 \\ R = 2 \end{vmatrix}$	
$\begin{array}{ c c }\hline & R-2\\ Eqn (ii) \div Eqn (i) \end{array}$	
$\tan \theta = \sqrt{3}$	
$\theta = \tan^{-1}(\sqrt{3})$	
$\theta = 60^{\circ}$	

	$\Rightarrow 2\cos(\theta - 60^0) = 2$		
	$\cos(\theta - 60^{\circ}) = 1$		
	$\theta - 60^0 = \cos^{-1}(1)$ $\theta - 60^0 = 0^0$		
	$\theta = 0^0 + 60^0$		
	$\theta = 60^{\circ}$		
	0 – 00		
2.	Taking $y = z^3 - 5z^2 + 9z - 5$ (i)		Note: By use of the
	Substituting for $z = 1$ into Eqn (i) above,		remainder theorem, the
	$y = 1^3 - 5(1)^2 + 9(1) - 5$		remainder of the
	=1-5+9-5		equation must be zero
	= 0		for $z = 1$ to be a root
	Hence $z = 1$ is a root		101 2 1 10 00 4 1001
	Alternatively;		
	By using long division method,		
	z^2-4z+5		
	$z-1)z^3-5z^2+9z-5$		
	$z^3 - z^2$		
	$-4z^2+9z-5$		
	$-4z^2+4z$		
	5z-5		
	5z - 5		
	0 0		
	Now when solving for other roots, we have		
	$(z-1)(z^2-4z+5)=0$		
	Taking $(z^2 - 4z + 5) = 0$		
	$Z = 4 \pm \sqrt{4^2 - 4 \times 1 \times 5}$		
	$=4\pm\sqrt{16-20}$		
	2		
	4 1 1		
	$=\frac{4\pm\sqrt{-4}}{2}$		
	$Z = \frac{4 \pm 2i}{2}$		
	$=2\pm i$		
	Hence the roots are $2 - i$ and $2 + i$		
	Thence the roots are $2-t$ and $2+t$		
3.	Taking $y = x \cdot 10^{\sin x}$		
	Introducing log _e to both sides,		
	$\log_{\rm e} y = \log_{\rm e} [x 10^{\sin x}]$		
	$\log_{\rm e} y = \log_{\rm e} x + \sin x \log_{\rm e} 10$		
	Differentiating with respect to x ,		
		I	

	$\frac{1}{y}\frac{dy}{dx} = \frac{1}{x} + \cos x \log_e 10$	
	$\frac{dy}{dx} = \left(\frac{1}{x} + \cos x \log_e 10\right) y$	
	$= x10^{\sin x} \left(\frac{1}{x} + \cos x \log_e 10 \right)$	
4		
4.	Let $\frac{x}{5} = \frac{y+2}{2} = \frac{z-1}{4} = \lambda$	
	Making x , y and z the subject;	
	$x = 5\lambda$	
	$y = 2\lambda - 2$	
	$z = 4 \lambda + 1$	
	Substituting for x , y and z in	
	3x + 4y + 2z - 25 = 25,	
	$3(5\lambda) + 4(2\lambda - 2) + 2(4\lambda + 1) - 25 = 0$	
	$15\lambda + 8\lambda - 8 + 8\lambda + 2 - 25 = 0$	
	$31\lambda = 31$	
	$\lambda = 1$	
	By substitution, $x = 5$	
	x = 3 y = 2 - 2 = 0	
	z = 4 + 1 = 5	
	Hence the coordinates of the point of	
	intersection are $(5, 0, 5)$	
5.	Let $P = \text{current population}$,	
٥.	n = number of years it will take the	
	population to triple	
	$\Rightarrow 3P = P \left(1 + \frac{r}{100} \right)^n$	
	$3 = \left(1 + \frac{r}{100}\right)^n$	
	$3 = (1 + 0.0275)^n$	
	$3 = (1.0275)^n$	
	Introducing log to base ten on both sides,	
	$\log 3 = n \log 1.0275$	
	$n = \frac{\log 3}{\log 1.0275} = \frac{0.4771212547}{0.0117818305}$	
	= 40.5 (I d.p.)	
	Hence it will take 40.5 years for the	
	population to triple.	
	_	
6.	$0.6^{-2x} < 3.5$	
	Introducing log _e to both sides	

	$\ln 0.6^{-2x} < \ln 3.5$	
	$-2x \ln 0.6 < \ln 3.6$	
	-2x(-0.222) < 0.558	
	0.444x < 0.556	
	$x < \frac{0.556}{0.444}$	
	0.111	
	x < 1.252 (3 d p)	
7.	$\frac{dy}{dx} + 3y = e^{2x} \qquad (i)$	
	$I.F. = e^{\int 3dx} = e^{3x}$	
	$e^{i \cdot F} = e^{i \cdot F} = e^{i \cdot F}$ Multiplying Eqn (i) by the I.F.	
	$e^{3x}\frac{dy}{dx} + 3y(e^{3x}) = e^{2x}(e^{3x})$	
	$e^{3x}\frac{dy}{dx} + 3y(e^{3x}) = e^{5x}$	
	$\Rightarrow \frac{d}{dx} y(e^{3x}) = e^{5x}$	
	$\int \frac{d}{dx} y(e^{3x}) dx = \int e^{5x} dx$	
	$y\left(e^{3x}\right) = \frac{1}{5}e^{5x} + C$	
	$y = \frac{1}{5}e^{2x} + C(e^{-3x})$ (ii)	
	Substituting for $x = 0$ and $y = 1$ into Eqn (ii)	
	$1 = \frac{1}{5}e(^{0}) + C(e^{0})$	
	$C = \frac{4}{5}$	
	Substituting for C into Eqn (ii)	
	$y = \frac{1}{5}e^{2x} + \frac{4}{5}e^{-3x}$	
	$1(2x - 4^{-3x})$	
	$y = \frac{1}{5} \left(e^{2x} + 4e^{-3x} \right)$	
8.	$x^2 - 4x - 12 = x^2 - 6x + 2x - 12$	
	= x(x-6) + 2(x-6)	
	=(x-6)(x+2)	
	$\Rightarrow \frac{8x}{x^2 - 4x - 12} = \frac{8x}{(x - 6)(x + 2)}$	
	Changing to partial fractions	
	$\frac{8x}{(x-6)(x+2)} = \frac{A}{x-6} + \frac{B}{x+2}$	
	$8x \equiv A(x+2) + B(x-6)$	
	Putting $x = -2$	
	-16 = -8B	
	B=2	
	Putting $x = 6$	
	48 = 8A	

$$A = 6$$

$$\Rightarrow \int_{0}^{2} \frac{8x}{x^{2} - 4x - 12} dx = \int_{0}^{2} \left(\frac{6}{x - 6} + \frac{2}{x + 2}\right) dx$$

$$= \left[6\ln(x - 6) + 2\ln(x + 2)\right]_{0}^{2}$$

$$= \left[\ln(x - 6)^{6} + \ln(x + 2)^{2}\right]_{0}^{2}$$

$$= \left(\ln(-4)^{6}\right) - \left(\ln(-6)^{6}\right) + \left(\ln 4^{2}\right) - \left(\ln 2^{2}\right)$$

$$= \ln(4096) - \ln(46656) + \ln 16 - \ln 4$$

$$= \ln\left(\frac{4096 \times 4}{46656}\right) = \ln\left(\frac{16384}{46656}\right)$$

$$= -1.05 \quad (2 \text{ dp})$$

).		working	Marks	Comments
•	(a)	let $P(x, y, z)$ lie on the line AB		
		$AP = \lambda AB$		
		$\mathbf{OP} - \mathbf{OA} = \lambda \big[\mathbf{OB} - \mathbf{OA} \big]$		
		$\mathbf{OP} = \mathbf{OA} + \lambda \big[\mathbf{OB} - \mathbf{OA} \big]$		
		$\mathbf{p} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix} + \lambda \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix} - \begin{pmatrix} 2 \\ -4 \\ -1 \end{bmatrix} \dots (i)$		
		$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} $		
		Substituting for (x, y, z) into the equation of the plane		
		$2(2+3\lambda) + 6(-4+2\lambda) - 3(-1+4x) = -5$		
		$4 + 6\lambda - 24 + 12\lambda + 3 - 12\lambda = -5$ $6\lambda = 12$		
		$\lambda = 2$		
		Substituting for λ into Eqn (i)		
		$\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 8 \end{pmatrix}$		
		$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ 7 \end{pmatrix}$		
	(b)			
		Hence the coordinates of C are (8,0,7)		
		The vector parallel to the line is		
		$\mathbf{d} = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ and the normal to the plane is		
		$\mathbf{n} = 2\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$		

		$\mathbf{d} \cdot \mathbf{n} = \mathbf{d} \mathbf{n} \cos \theta$	
		$(3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}).(2\mathbf{i} + 6\mathbf{j} - 3\mathbf{k})$	
		$= \sqrt{3^2 + 2^2 + 4^2} \cdot \sqrt{2^2 + 6^2 + (-3)^2}$	
		$6+12-12 = \sqrt{9+4+16}.\sqrt{4+36+9}\cos\theta$	
		$6 = \sqrt{29 \times 49} \cos \theta$	
		$\cos\theta = \frac{6}{\sqrt{1421}}$	
		V ==	
		$\theta = 80.8414^{\circ}$	
		d n	
		The angle between the line and the plane is	
		$\alpha = 90^{\circ} - \theta$	
		$=90^{\circ}-80.84^{\circ}$	
10	()	$=9.16^{\circ}$	
10.	(a)	$2 \sin 2x = 3 \cos x$ $2 \sin 2x - 3 \cos x = 0$	
		$4 \sin x \cos x - \cos x = 0$	
		$\cos x (4\sin x - 3) = 0$	
		$\cos x = 0$	
		$x = \cos^{-1}(0)$ x = 90°, -90	
		$4 \sin x - 3 = 0$	
		. 3	
		$\sin x = \frac{3}{4}$	
		$x = \sin^{-1}\left(\frac{3}{4}\right)$	
		$x = 48.59^{\circ}, 131.41$	
		Hence $x = (-90^{\circ}, 48.6^{\circ}, 90^{\circ}, 131.4^{\circ})$	
		Alternatively:	
		1	
		By using $t = \tan \frac{1}{2}x$	
		$\frac{1-t^2}{1-t^2}$	
		$\cos x = \frac{1 - t^2}{1 + t^2}$	
		$\sin x = \frac{2t}{1+t^2}$	
		By substitution	
		$4\left[\frac{2t}{1+t^2}.\frac{1-t^2}{1+t^2}\right] - 3\left[\frac{1-t^2}{1+t^2}\right] = 0$	

$$\frac{8t(1-t^2)}{1+t^2} - 3(1-t^2) = 0$$

$$8t(1-t^2) - 3(1-t^2)(1+t^2) = 0$$

$$(1-t^2) \Big[(8t - (3+3t^2)) \Big] = 0$$

$$1 - t^2 = 0$$

$$1 = t^2$$

$$1 = t = 1$$

$$t = \pm 1$$

$$t = 1$$

$$t =$$

		Taking $\cos = 0$
		$x = \cos^{-1}(0)$
		$x = \frac{-\pi}{2}, \frac{\pi}{2}$
		$x-\frac{1}{2},\frac{1}{2}$
		Taking $\sin 2x - \sin 3x = 0$
		$\sin 3x - \sin 2x = 0$
		$2\cos\left(\frac{3x+2x}{2}\right)\sin\left(\frac{3x-2x}{2}\right) = 0$
		$\begin{pmatrix} 2 & 3 & 2 \\ 2 & 3 & 2 \end{pmatrix}$
		$\cos\left(\frac{5}{2}x\right)\sin\left(\frac{1}{2}x\right) = 0$
		(5)
		Either $\cos\left(\frac{5}{2}x\right) = 0$
		_```
		$\frac{5}{2}x = \cos^{-1}(0)$
		$\frac{5}{2}x = \pm \frac{\pi}{2}, \pm \frac{3}{2}\pi$
		$x=\pm \frac{\pi}{5}, \pm \frac{3\pi}{5}$
		Or $\operatorname{Sin}\left(\frac{1}{2}x\right) = 0$
		. ``
		$\frac{1}{2}x = \sin^{-1}(0) = 0, \pm \pi$
		$x = 0^0$
		Hence $x = -\frac{\pi^0}{5}, -\frac{\pi^0}{2}, -\frac{3\pi^0}{5}, 0^0, \frac{\pi^0}{5}, \frac{\pi^0}{2}, \frac{\pi^0}{5}, \frac{3\pi^0}{5}$
11.	(a)	Let $y = \sqrt{x}$
11.	(a)	Suppose x changes by δx , then y also changes by δy
		$=>y-\delta y=\sqrt{x-\delta x}$
		But $\sqrt{98} = \sqrt{100 - 2}$
		Where $y = \sqrt{100} = 10$, $x = 100$, $\delta x = 2$
		As $\delta x \to 0$, $\frac{\delta y}{\delta x} \longrightarrow \frac{dy}{dx}$
		α α
		\Rightarrow When x is very small, $\frac{\delta y}{\delta x} \approx \frac{dy}{dx}$
		$\delta y = \frac{dy}{dx} \cdot \delta x$
		$=\frac{1}{2\sqrt{x}}\cdot\delta x$
		$=\frac{1}{2\sqrt{100}}\cdot 2$
		$=\frac{1}{10}=0.1$
		10
		$\Rightarrow \sqrt{98} = y - \delta y$
	(b)	= 10 - 0.1
		= 9.9
		$Let f(x) = \ln(1 + ax)$
		By Maclaurin's theorem;

			П	
		$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$		
		Now $f(0) = \ln 1 = 0$		
		From $f(x) = \ln (1 + ax)$		
		$f'(x) = \frac{a}{1 + ax}, f'(0) = a$		
		1+ax, $f(0)=u$		
		$f''(x) = \frac{-a^2}{(1+ax)^2}, \ f''(0) = -a^2$		
		$f(x) = \frac{1}{(1+ax)^2}$, $f(0) = -a$		
		$2a^3$ $au(a)$ a^3		
		$f'''(x) = \frac{2a^3}{(1+ax)^3}, f'''(0) = 2a^3$		
		By substitution, we have;		
		2 2		
		$f(x) = 0 + \frac{a}{1}x + \frac{-a^2}{2}x^2 + \frac{2a^3}{6}x^3 + \dots$		
		$=ax-\frac{a^2x^2}{2}+\frac{a^3x^3}{2}+\dots$		
		$=ax-\frac{1}{2}+\frac{1}{3}+\dots$		
		$\ln\left(\frac{1+x}{\sqrt{1-2x}}\right) = \ln(1+x) - \ln(1-2x)^{\frac{1}{2}}$		
		$\left(\sqrt{1-2x}\right)^{-1} \ln(1+x)^{-1} \ln(1-2x)^{-1}$		
		$= \ln(1+x) - \frac{1}{2}\ln(1-2x)$		
		2		
		By comparing with $ln(1 + ax)$, For $ln(1 + x)$, $a = 1$		
		For $\ln (1 - 2x)$, $a = -2$		
		$=> \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{2} + \dots$		
		$=> \ln(1+x) = x - \frac{1}{2} + \frac{1}{3} + \dots$		
		$\ln\left(1-2x\right) = \frac{8x^3}{2} - \dots$		
		By substitution,		
		$\ln\left(\frac{1+x}{\sqrt{1-2x}}\right) = \left[x - \frac{x^2}{2} + \frac{x^3}{3} +\right] - \frac{1}{2} \left[-2x - 2x^2 - \frac{8x^3}{3}\right]$		
		$\lim_{x \to \infty} \left(\frac{1}{\sqrt{1 - 2x}} \right) = \left[x - \frac{1}{2} + \frac{1}{3} + \dots \right] - \frac{1}{2} \left[-2x - 2x - \frac{1}{3} + \dots \right]$		
		$=x-\frac{x^2}{2}+\frac{x^3}{3}+x+x^2+\frac{4x^3}{3}+$		
		2 3		
		$=2x+\frac{x^2}{2}+\frac{5x^3}{3}+\dots$		
		Validity of the expression		
		For $\ln (1 + x)$ to be valid, $-1 < x < 1$ For $\ln (1 - 2x)$ to be valid, $-1 < -2x < 1$		
		Where $-\frac{1}{2} < x < \frac{1}{2}$		
		Hence the expansion for $\ln \left(\frac{1+x}{\sqrt{1-2x}} \right)$ is valid for $-\frac{1}{2} < x < \frac{1}{2}$ or		
		Thence the expansion for $\lim_{n \to \infty} \left(\frac{1}{\sqrt{1-2x}} \right)$ is valid for $-\frac{1}{2} < x < \frac{1}{2}$ or		
		$ x < \frac{1}{2}$		
	, .			
12.	(a)	Note: $(\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta)$		
		=> $(\cos \theta + i \sin \theta)^5 = (\cos 5\theta + i \sin 5\theta)$		
		By expanding $(\cos \theta + i \sin \theta)^5$		
		$(\cos \theta + i \sin \theta)^5$ $(\cos \theta + i \sin \theta)^5 = \cos^5 \theta + 5i\cos^4 \theta \sin \theta - 10\cos^3 \theta \sin^2 \theta - 10i$		
		$\cos^2\theta \sin^3\theta + 5\cos\theta \sin^4\theta + i\sin^5\theta$		
1	1	COS V SIII V + 3COS V SIII V + 1 SIII V		

	From Eqn (ii);
	$y(3x^2 - y^2) = 0$
	Either $y = 0$ or $3x^2 - y^2 = 0$
	$y^2 = 3x^2$
	Substituting for $y = 0$ in Eqn (i)
	$x^3 = -1; \ x = -1$
	Substituting for $y^2 = 3x^2$ in Eqn (i)
	$x^3 - 3x(3x^2) = -1$
	$x^3 - 9x^3 = -1$
	$-8x^3 = -1$
	$x^3 = \frac{1}{8}; x = \frac{1}{2}$
	$y^2 = 3\left(\frac{1}{4}\right)$
	$y^2 = \frac{3}{4}$
	$y = \pm \frac{\sqrt{3}}{2}$
	Hence $z = -1$, and $z = \frac{1 \pm i\sqrt{3}}{2}$
13.	dy
	At turning points, $\frac{dy}{dx} = 0$
	$dy (2x-1)(2x-6)-(x^2-6x+5)(2)$
	$\Rightarrow \frac{dy}{dx} = \frac{(2x-1)(2x-6) - (x^2 - 6x + 5)(2)}{(2x-1)^2} = 0$
	$(2x-1)(2x-6) - (x^2-6x+5)(2) = 0$
	By opening brackets and simplifying,
	$2x^2 - 2x - 4 = 0$
	$x^2 - x - 2 = 0$
	$x^2 - 2x + x - 2 = 0$
	x(x-2) + 1(x-2) = 0 (x+1)(x-2) = 0
	Either $x + 1 = 0$
	x = -1
	Or $x - 2 = 0$
	x = -2
	Substituting for $x = -1$
	$y = \frac{(-1)^2 + 6(-1) + 5}{2(-1) - 1} = -1$
	Investigating the nature of the turning points
	For (-1, -4)
	x -2 -1 0
	$\left \frac{dy}{dx} \right + \left 0 \right - $
	Maximum For (2, -1)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	dy 0
	$\left \begin{array}{c c} \frac{dy}{dx} & - & 0 & + \end{array} \right $
	Minimum
	Finding the intercepts

For
$$x$$
 – intercept, $y = 0$
=> $x^2 - 6x + 5 = 0$
 $x^2 - x - 5x + 5 = 0$
 $x(x - 1) - 5(x - 1) = 0$
 $(x - 5)(x - 1) = 0$
Either $x - 1 = 0$

Either
$$x - 1 = 0$$

$$x = 1$$

Or
$$x - 5 = 0$$

$$x = 5$$

For y-intercept, x = 0

$$\Rightarrow$$
 $y = 5/_{-1} = -5$

Finding asymptotes

Vertically: 2x - 1 = 0

$$x = \frac{1}{2}$$

Horizontally:

$$(2x-1)y = x^2 - 6x + 5$$

$$x^2 - 6x + 5 - 2xy + = 0$$

$$x^2 - (6+2y)x + 5 + y = 0$$

For real values of x

$$(6+2y)^{2} \ge 4(5+y)$$

$$36+24y+4y^{2} \ge 20+4y$$

$$4y^{2}+20y+16 \ge 0$$

$$(y+1)(y+4)=0$$

Either
$$y + 1 = 0$$

$$y = -1$$

Or
$$y + 4 = 0$$

$$y = -4$$

For slanting asymptote:

$$\frac{\frac{x}{2} - \frac{11}{4}}{(2x-1)\sqrt{x^2 + 6x + 5}}$$

$$\frac{x^2 - \frac{x}{2}}{-\frac{11}{2}x + 5}$$

$$-\frac{11}{2}x + \frac{11}{4}$$

Hence the slanting asymptote is $y = \frac{x}{2} - \frac{11}{4}$

Investigating the range of *x* where the curve lies

x	x < 1/2	$\frac{1}{2} < x < 1$	1< <i>x</i> <5	x > 5
<i>x</i> -1	_	-	+	+
x-5	_	-	_	+
(x-1)(x-5)	+	+	-	+
2x - 1	_	+	+	+
y	_	+	_	+

Investigating the range of y

	y< -4	-4 <y< -1<="" th=""><th>y> -1</th></y<>	y> -1
(y+1)(y+4)	+	1	+

Graph of
$$y = \frac{x^2 - 6x + 5}{2x - 1}$$

		$(2a^2mc)^2 = 4a^2(b^2 + a^2m^2)(c^2 - b^2)$
		$4a^4m^2c^2 = 4a^2b^2c^2 - 4a^2b^4 + 4a^4m^2c^2 - 4a^4m^2b^2$
		$a^{2}m^{2}c^{2} = b^{2}c^{2} - b^{4} + a^{2}m^{2}c^{2} - a^{2}m^{2}b^{2}$
		$b^{2}c^{2} - b^{4} - a^{2}m^{2}b^{2} = 0$
		$c^2 = b^2 + a^2m^2$
		For $y = mx + c$, at point (-3, 3)
		$\Rightarrow 3 = -3m + c$
		c = 3(1+m)
		Substituting for c in $c^2 = b^2 + a^2m^2$
		$9(1+m)^2 = b^2 + a^2m^2$
		$9(1+2m+m^2) = b^2 + a^2m^2$
		Since $a = 4$ and $b = 3$
		$\Rightarrow 9(1 + 2m + m^2) = 9 + 16m^2$
		$9 + 18m + 9m^2 = 9 + 16m^2$
		$7m^2 - 18m = 0$
		m(7m-18)=0
		Either $m = 0$
		Or $7m = 18$
		m = 18/7
		· '
		When $m = 0$, $c = 3(1 + 0) = 3$
		When $m = \frac{18}{7}$, $c = 3(1 + \frac{18}{7}) = \frac{75}{7}$
		Hence the equation of the tangents are $y = 3$ and $y = \frac{18}{7}x + \frac{75}{7}$
15.	(a)	$\int x^3 e^{x^4} dx$
		Let $t = x^4$ $dt = 4x^3 dx$
		$dx = \frac{dt}{4x^3}$
		$\int x^3 e^{x^4} dx = \int x^3 e^t \Box \frac{dt}{4x^3}$
		$=\frac{1}{4}\int e^t dt$
		$=\frac{1}{4}e^t+c$
		$=\frac{1}{4}e^{x^4}+c$
	(1)	$-\frac{-e}{4}$
	(b)	
		$t = \tan x$, $\frac{dt}{dx} = \sec^2 x = 1 + t^2$, $dx = \frac{dt}{1 + t^2}$
		Dividing through by $\cos^2 x$

		1	
		$\int \frac{1}{1+\sin^2 x} dx = \int \frac{\frac{1}{\cos^2 x}}{\frac{1}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x}} dx$	
		$= \int \frac{\sec^2 x}{\sec^2 x + \tan^2 x} dx$	
		$= \int \frac{1 + \tan^2 x}{\left(1 + \tan^2 x\right) + \tan^2 x} dx$	
		$=\int \frac{1+\tan^2 x}{\left(1+2\tan^2 x\right)} dx$	
		$=\int \frac{1+t^2}{\left(1+2t^2\right)} \bullet \frac{dt}{1+t^2}$	
		$=\int \frac{dt}{1+2t^2}$	
		$= \frac{1}{\sqrt{2}} \tan^{-1} \left(\sqrt{2} \ t \right) + C$	
		$= \frac{1}{\sqrt{2}} \tan^{-1} \left(\sqrt{2} \tan x \right) + C$	
		Hence $\int \frac{1}{1+\sin^2 x} dx = \frac{1}{\sqrt{2}} \tan^{-1} \left(\sqrt{2} \tan x \right) + C$	
16.	(a)	$\frac{dR}{dt} = e^{2t} + t$	
		$dR = (e^{2t} + t)dt$	
		$R = \int (e^{2t} + t)dt$	
		$R = \frac{1}{2}e^{2t} + \frac{1}{2}t^2 + c$	
		Now when $t = 0$, $R = 3$	
		$\Rightarrow 3 = \frac{1}{2}e^{2(0)} + \frac{1}{2}(0)^2 + c$	
		$3 = \frac{1}{2}(1) + c$	
		$c = \frac{5}{2}$	
		$\Rightarrow R = \frac{1}{2}e^{2t} + \frac{1}{2}t^2 + \frac{5}{2}$	
	(b)	$\rightarrow \mathbf{K} = \frac{1}{2}e^{1} + \frac{1}{2}i^{2} + \frac{1}{2}i^{2}$	
		$\frac{dV}{dt} = a$	
		$\Rightarrow \frac{dV}{dt} = 5 + \cos(\frac{1}{2}t)$	
		$dV = 5 + \cos(\frac{1}{2}t)dt$	
		$V = \int 5 + \cos(\frac{1}{2}t)dt$	
		$=5t+2\sin(\frac{1}{2}t)+c$	
		At time $t = 0$, $V = 1 \text{ ms}^{-1}$	

$$\Rightarrow 1 = 5(0) + 2 \sin \frac{1}{2}(0) + c$$

$$c = 1$$

$$\Rightarrow V = 5t + 2 \sin(\frac{1}{2}t) + 1$$
At $t = 2\pi$,
$$V = 10 \pi + 2 \sin(\pi) + 1$$

$$V = 10 \pi + 1$$
Hence its velocity is $10 \pi + 1$

$$Also \quad \frac{ds}{dt} = V$$

$$\Rightarrow \quad \frac{ds}{dt} = [5t + 2\sin(\frac{1}{2}t) + 1]dt$$

$$S = \int (5t + 2\sin(\frac{1}{2}t) + 1)dt$$

$$S = \frac{5}{2}t^2 - 4\cos(\frac{t}{2}) + t$$
at $t = 2\pi$,
$$S = \frac{5}{2}(2\pi)^2 - 4\cos(\pi) + 2\pi$$

$$= 10\pi^2 - 4(-1) + 2\pi$$

$$S = 10\pi^2 + 2\pi + 4$$
Hence its distance covered is $10\pi^2 + 2\pi + 4$