Gmacs BBRKC model comparisons

The Gmacs Development Team

June 29, 2015

Outline Introduction

- Indices
 - Leading model parameters
 - Growth parameters
 - Latent states
 - Other variables
- 2 Size, weight and growth
 - Size-weight $(w_{h,\ell})$
 - Growth
 - Molting
- 3 Natural mortality and survival
 - Natural mortality
- 4 Selectivity, retention, fishing
- Recruitment
- 6 Initialization
 - Initialization
 - 7 Fits to data
 - Survey

Introduction

This presentation provides a comparison between three different Bristol Bay Red King Crab (BBRKC) stock assessment models. These models inleade:

- OneSex
- TwoSex
- Zheng

Leading model parameters

Symbol	Support	Description
$\overline{M_0}$	$0 < M_0 < \infty$	Initial instantaneous natural mortality rate
R_0	$0 < R_0 < \infty$	Unfished average recruitment
\ddot{R}	$0 < \ddot{R} < \infty$	Initial recruitment
$ar{R}$	$0 < \bar{R} < \infty$	Average recruitment
$lpha_r$	$\alpha_r > 0$	Mode of size-at-recruitment
$eta_{m{r}}$	$\beta_r > 0$	Shape parameter for size-at-recruitment
κ	$\kappa > 1$	Recruitment compensation ratio

We group the leading model parameters into the vector

$$\boldsymbol{\theta} = \{M_0, R_0, \ddot{R}, \bar{R}, \alpha_r, \beta_r, \kappa\}.$$

Growth parameters

Symbol	Support	Description
α_h	$\alpha_h > 0$	Mode of size-at-recruitment
eta_h	$\beta_h > 0$	Shape parameter for size-at-recruitment
$arphi_h$	$\varphi_h > 0$	Instantaneous natural mortality rate
μ_h	$\mu_h > 0$	Length at 50% molting probability
c_h	$c_h > 0$	Coefficient of variation of molting probability

We group the growth parameters into the vector

$$\boldsymbol{\psi} = \{\alpha_h, \beta_h, \varphi_h, \mu_h, c_h\}.$$

Latent states

Symbol	Support	Description
ν	$\ell \times 1$	Initial recuitment deviates
ξ		Discard mortality rate

We group the latent states into the vector

$$\omega = \{ \nu, \xi \}.$$

Other variables

Symb	ool	Dimensions	Description
$oldsymbol{w}_h$	ι	$\ell \times 1$	Mean weight at length (ℓ) by sex (h)
$oldsymbol{m}_h$	'n	$\ell \times 1$	Average proportion mature at length (ℓ) by sex

$$\boldsymbol{w}_h = f_w(\ell, \theta)$$

$$\boldsymbol{m}_h = f_m(\ell, \theta)$$

Size-weight $(w_{h,\ell})$

Growth increments $(a_{h,\ell})$

Growth transitions (G_h)

No comparison with Zheng on plot.

Molt probability (\boldsymbol{P}_h)

Size transitions $(\boldsymbol{P}_h\boldsymbol{G}_h)$

Natural mortality: option 4

If time-varying natural mortality is specified using the **blocked changes** option, the model constrains $M_{h,i}$ by the variance (σ_M^2) . For example, setting $\sigma_M^2 = 0.04$ and four specific years (1976, 1980, 1985, 1994) we get

Selectivity and retention

Assuming that selectivity for the NMFS trawl fishery is split into two blocks (1975-1981 and 1982-2014) and that retention is constant with time $y_{h.i.k} = y_{h.k}$

Catch

Recruitment

Recruitment size-distribution

Initial recruitment

Recruitment size-distribution

Initial numbers

Survey

Size composition

Mature male biomass

