

部分中学 2025 届高中毕业班上学期期中质量检测参考答案 **物理试题参考答案**

- 一、单项选择题:本题共4小题,每小题4分,共16分。在每小题给出的四个选项中,只有一个选项符合题目要求。
- 二、双项选择题:本题共 4 小题,每小题 6 分,共 24 分。每小题有两项符合题目要求,全部选对的得 6 分,选对但不全的得 3 分,有选错或不选的得 0 分。

								_
1	2	3	4	5	6	7	8	
D	В	D	С	AC	BD	CD	BD	

三、非选择题: 共60分。请根据要求作答。

9. (3分)

10. (3分)

11. (3分)

$$\frac{g_2 R^2}{G}$$
 (1 $\%$) $\sqrt{g_2 R}$ (1 $\%$) $2\pi \sqrt{\frac{R}{g_2 - g_1}}$ (1 $\%$)

12. (5分)

13. (7分)

(1) 2.0 (3
$$\%$$
) (2) $\frac{k}{b}$ (2 $\%$) $\frac{1}{b}$ (2 $\%$)

14. (10分)解:

(1) 以冰壶为研究对象,由共点力作用下物体的平衡条件:

在水平方向有
$$F\cos\theta = \mu N$$
 (2分)
在竖直方向有 $F\sin\theta + mg = N$ (2分)
解得 $\mu = 0.02$ (1分)
(2)由匀变速直线运动的位移速度加速度关系式得 $0 - v^2 = 2(-a)s$ (2分)
由牛顿运动定律得 $\mu mg = ma$ (2分)

15. (13分)解:

(1) 小滑块恰好能通过最高点
$$C$$
,有 $mg = m \frac{v_C^2}{R}$ (1分)

解得 $v_c = 2m/s$

从
$$B$$
 到 C 根据动能定理有 $-mg \cdot 2R = \frac{1}{2}mv_c^2 - \frac{1}{2}mv_B^2$ (1分)

解得 $v_B = 2\sqrt{5}$ m/s

小滑块在
$$B$$
 点有 $F_N - mg = m \frac{v_B^2}{R}$ (1分)

解得
$$F_N = 6N$$
 (1分)

根据牛顿第三定律可得小滑块对圆轨道最低处 B 点的压力大小为 6N (1分)

(2) 设弹簧压缩至A点时弹簧的弹性势能为E。, 根据功能关系有

$$E_{p} - \mu mgL = \frac{1}{2} m v_{B}^{2} - 0 \tag{2 \%}$$

解得
$$E_p = 5J$$
 (1分)

(3) 小滑块恰好能通过最高点 C, AB 的长度为 20m, 则有 $L \le 20$ m

小滑块运动到与圆心O等高时速度为零,从A到与圆心等高位置,根据能量守恒定律

可得
$$E_{\rm p} = \mu mgL_{\rm l} + mgR$$
 (1分)

解得
$$L_1 = 23m$$
 (1分)

小滑块恰好到达 B 点时,根据能量守恒定律可得 $E_p = \mu m g L_2$ (1分)

解得
$$L_2 = 25$$
m (1分)

则有 $23m \le L \le 25m$

小滑块在半圆轨道运动时不脱离轨道,则
$$L \le 20$$
m 或 23 m $\le L \le 25$ m (1分)

16. (16分)解:

(1) 固定木板,同时释放B和C到B脱离木板A过程,由动能定理可得

$$m_{\rm C}gL - m_{\rm B}gL\sin\theta - \mu m_{\rm B}gL\cos\theta = \frac{1}{2}(m_{\rm B} + m_{\rm C}) v^2 - 0$$
 (2 \(\frac{\psi}{2}\))

解得
$$v = 4\sqrt{3}$$
m/s (1分)

(2)解锁木板,释放 B、C 后,对 A、B、C 受力分析,C 向下加速,A 沿斜面向上加速,B 沿 A 向上加速。

根据牛顿第二定律可得,对
$$A$$
: $\mu m_{\rm B} g \cos \theta - m_{\rm A} g \sin \theta = m_{\rm A} a_{\rm A}$ (1分)

対
$$B: T - \mu m_{\rm B} g \cos \theta - m_{\rm B} g \sin \theta = m_{\rm B} a_{\rm B}$$
 対 $C: m_{\rm C} g - T = m_{\rm C} a_{\rm B}$ (1分)

解得 $a_A = 2\text{m/s}^2$ $a_B = a_C = 6\text{m/s}^2$

设B从静止到经过木板A中点这段时间为4,由运动学知识可得

$$x_{\rm A} = \frac{1}{2} a_{\rm A} t_{\rm l}^2 \qquad x_{\rm B} = \frac{1}{2} a_{\rm B} t_{\rm l}^2$$
 (1 分)

又
$$x_{\rm B} - x_{\rm A} = \frac{L}{2}$$
 (1分)

$$v_{\rm B} = a_{\rm B} t_{\rm I} \tag{1分}$$

$$v_{\rm A} = a_{\rm A} t_{\rm I}$$

解得
$$v_A=2\text{m/s}$$
 $v_B=6\text{m/s}$ (1分)

则 B 经过木板 A 中点时的速度为 $v_B=6$ m/s

(3) 在第 (2) 问的基础上,连接 B、C 绳断裂后,设 B 沿木板 A 向上做匀减速运动的加速度为 $a_{\rm B}$ ',根据牛顿第二定律可得 $\mu m_{\rm B} g \cos \theta + m_{\rm B} g \sin \theta = m_{\rm B} a_{\rm B}$ (1分)

解得 $a_{\rm B}'=10{\rm m/s^2}$

设经过时间 t_2 , B 与 A 共速 v_1 , B 位移为 x_B , A 位移为 x_A

$$v_{\rm B} - a_{\rm B} t_2 = v_{\rm A} + a_{\rm A} t_2 \tag{1 \%}$$

解得 $t_2 = \frac{1}{3}$ s

$$x_{\rm B}' = \frac{v_{\rm B} + v_{\rm 1}}{2} t_{\rm 2}$$

$$x_{A}' = \frac{v_{A} + v_{1}}{2}t_{2} \tag{1.5}$$

$$B$$
 相对 A 的相对位移 $\Delta x = x_B' - x_A' = \frac{2}{3} m < 2m$ 所以, B 在共速前未滑下 A 。 (1分)

设之后 B 和 A 以共同加速度一起沿斜面向上做匀减速运动,加速度 $a_{+}=g\sin\theta=6\text{m/s}^{2}$

分别对
$$B$$
和 A 受力分析,假设成立。 (1分)

 $A \times B$ 一起减速到 0 后,再一起反向以 6m/s^2 向下加速直到 A 碰到挡板速度变为 0,B 向下继续加速直到脱离 A。

整个过程
$$A \cdot B$$
 间因摩擦产生的热量为 $Q = \mu m_B g \cos \theta \cdot 2(\Delta x + \frac{L}{2})$ (1分)

解得
$$Q = \frac{128}{3}$$
 J (1分)