

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Adress: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/720,742	11/24/2003	Lawrence W. Yonge III	04838-077001	2741
94145	7590	05/04/2010	EXAMINER	
Fish & Richardson PC			PATEL, CHIRAG R	
P.O.Box 1022			ART UNIT	PAPER NUMBER
Minneapolis, MN 55440			2454	
MAIL DATE		DELIVERY MODE		
05/04/2010		PAPER		

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/720,742	Applicant(s) YONGE ET AL.
	Examiner CHIRAG R. PATEL	Art Unit 2454

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 10 February 2010.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-57 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) 57-64 is/are allowed.
- 6) Claim(s) 1-6,9,11-27,37-40,42,43,49-56 and 65-70 is/are rejected.
- 7) Claim(s) 7,8 and 28-48 is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
- 5) Notice of Informal Patent Application
 6) Other: _____

Response to Arguments

Applicant's arguments, see pages 1-6, filed July 20, 2009, with respect to the rejection(s) of claim(s) 1-70 under 35 U.S.C. 102 have been fully considered and are persuasive. Therefore, the rejection has been withdrawn. However, upon further consideration, a new ground(s) of rejection is made in view of newly found prior art.

Claim Objections

Claims 36-48 objected to under 37 CFR 1.75(c) as being in improper form because a multiple dependent claim 35. Claims 36-48 depend from a multiple dependent claim 35. A claim cannot depend on a multiple dependent claim. See MPEP § 608.01(n). Accordingly, the claims 36-48 not been further treated on the merits.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 1-6, 12, 17-19 and 65-70 are rejected under 35 U.S.C. 103(a) as being unpatentable over Alapuramen (US 2004/0010736) in view of Heer et al. – hereinafter Heer (US 6,028,933) / Cimini, Jr. et al. – hereinafter Cimini, Jr. (US 7,519,030) / Wang, Contribution to the TG3 and TG4 MAC: MPDU Formats, May 10, 2001, Wi-LAN Inc., IEEE 802.16 Broadband Wireless Access Working Group <<http://ieee802.org/16>>

As per claim 1, Alapuramen discloses a method of operating in a network in which a plurality of stations communicate over a shared medium, comprising

dividing the encapsulated stream into a plurality of pieces with each piece capable of being independently retransmitted; and ([0029]; dividing the length of MPDU by a system constant for a maximum segment size)

supplying low level data units, ([0029]; physical layer packet equated as a low level data unit) at least some of the low level data units each containing a plurality of the pieces into which the encapsulated stream was divided, ([0029]; physical layer packet which can consist of single or multiple segments in a data stream)

Alapuramen fails to disclose providing a physical layer for handling physical communication over the shared medium, providing a high level layer that receives data from a station and supplies high level data units for transmission over the medium, providing a MAC layer that receives the high level data units from the high level layer and supplies low level data units to the physical layer, at the MAC layer, encapsulating content from a plurality of the high level data units into a stream of sub-frames and at least some of the low level data units containing boundary demarcation information indicating boundaries between the sub-frames in the stream,

Cimini, Jr. discloses disclose providing a physical layer for handling physical communication over the shared medium, (Col 2 line 66 – Col 3 line 19; a physical layer (PHY) block 26 connected to the MAC block 24 by a MAC-to-PHY I/O bus 28) providing

Art Unit: 2454

a high level layer that receives data from a station and supplies high level data units for transmission over the medium (Col 3 lines 51-Col 4 line 2; A MAC Service Data Unit (MSDU) refers to any information that the MAC block has been tasked to transport by upper protocol layers) and providing a MAC layer that receives the high level data units from the high level layer and supplies low level data units to the physical layer. (Col 2 line 66 – Col 3 line 19; a physical layer (PHY) block 26 connected to the MAC block 24 by a MAC-to-PHY I/O bus 28)

Wang discloses at the MAC layer, encapsulating content from a plurality of the high level data units into a stream of sub-frames (Section 3.2, Differences Between Super MDPU and Packing MPDU; (2) The super MPDU contains multiple generic MPDUs; the packing MPDU contains multiple MSDUs/segments)

Heer discloses at least some of the low level data units containing boundary demarcation information indicating boundaries between the sub-frames in the stream. (Col 14 lines 31-54; The VL PDU segment header 910 of a segment which has not been completely transmitted within a subframe boundary provides total segment length information about its associated PDU segment payload 911. The total length in this illustrative example is shown to traverse the subframe boundary 920 and the remainder of the PDU segment payload 911 is transmitted in the subsequent subframe as PDU segment payload 922)

At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to disclose providing a physical layer for

Art Unit: 2454

handling physical communication over the shared medium, providing a high level layer that receives data from a station and supplies high level data units for transmission over the medium, providing a MAC layer that receives the high level data units from the high level layer and supplies low level data units to the physical layer, at the MAC layer, encapsulating content from a plurality of the high level data units into a stream of sub-frames and at least some of the low level data units containing boundary demarcation information indicating boundaries between the sub-frames in the stream. The motivation for doing do would have been to communicate with any other node on the wireless network (Cimini,JR.; Col 3 lines 20-35) for initial identification of a VL PDU segment boundary, or for resynchronization after a synchronization loss . (Heer, Col 14 line 63-Col 15 line 7) and to directly and efficiently support the concatenation of MPDUs with different CIDs. (Wang, 1 Introduction)

As per claim 2, Alapuramen / Heer / Cimini , Jr. / Wang disclose the method of claim 1. Cimini, JR. discloses wherein at least some information common to the high level data units is not repeated for each high level data unit encapsulated in the stream. (Col 3 line 61-Col 4 line 2; the MPDU 50 may have the capacity to contain an entire MSDU 52 or only a fragment of the MSDU 52.)

As per claim 3, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 2. Cimini, JR. discloses wherin the information common to the high level data

Art Unit: 2454

units comprises destination and source addresses. (Col 4 line 57-Col 5 line 14; Figures 4A, 4B)

As per claim 4, Alapuramen/ Heer / Cimini, Jr. / Wang disclose the method of claim 2. Cimini, JR. discloses wherein the high level data units each comprise a payload, and encapsulating comprises forming the stream comprising the payloads from a succession of high level data units. (Col 3 line 61-Col 4 line 2; Figure 3: item 60)

As per claim 5, Alapuramen/ Heer / Cimini, Jr. / Wang disclose the method of claim 4. Cimini, JR. discloses wherein the stream comprises a succession of sub-frames, each sub-frame comprising a header and a plurality of the payloads. (Col 3 line 61-Col 4 line 2)

As per claim 6, Alapuramen/ Heer / Cimini, Jr. / Wang disclose the method of claim 5. Alapuramen discloses wherein each sub-frame is divided into the plurality of pieces ([0029]; dividing the length of MPDU by a system constant for a maximum segment size) capable of being independently retransmitted. ([0016]; failed segments can be retransmitted)

As per claim 12, Alapuramen/ Heer / Cimini, Jr. / Wang disclose the method of claim 1. Alapuramen discloses wherein some of the pieces making up a low level data

Art Unit: 2454

unit ([0029]) constitute retransmitted pieces that failed to be correctly transmitted in an earlier attempt. ([0032])

As per claim 17, Alapuramen/ Heer / Cimini, Jr. / Wang disclose the method of claim 5. Alapuramen discloses further comprising further comprising an integrity check value associated with each sub-frame or with a plurality of sub-frames. ([0030])

As per claim 18, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 5. Alapuramen discloses wherein each of the plurality of payloads in a sub-frame have identical length. ([0029])

As per claim 19, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 5. Alapuramen discloses wherein each sub-frame further comprises MAC management information. ([0015])

As per claim 65, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 1. Heer discloses wherein the boundary demarcation information given for a given low level data unit comprises information that indicates whether a boundary between sub-frames exists within the low level data unit. (Col 14 lines 31-54; The total length in this illustrative example is shown to traverse the subframe boundary 920 and

the remainder of the PDU segment payload 911 is transmitted in the subsequent subframe as PDU segment payload 922. Length arrow 913 describes the PDU segment payload total length and points to the beginning of the next VL PDU segment header. Pointer Field (PF) 912 provides direct information regarding the byte position of the beginning of the header of the first full PDU segment in the next subframe.)

As per claim 66, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 65. Heer discloses wherein, if such boundary does exist within the low level data unit, the boundary demarcation information further comprises information that indicates where the boundary occurs within the low level data unit. (Col 14 lines 31-54; Pointer Field (PF) 912 provides direct information regarding the byte position of the beginning of the header of the first full PDU segment in the next subframe; Figure 9: items 912, 920)

As per claim 67, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 66. Heer discloses wherein the information that indicates whether a boundary between high level data units exists within the low level data unit comprises a field having a value that indicates which piece (Figure 9: items 911, 922) in the low level data unit includes the boundary, or having a value that indicates that no boundary exists within the low level data unit. (Col 14 lines 31-54; Pointer Field (PF) 912 provides direct information regarding the byte position of the beginning of the header of the first full PDU segment in the next subframe)

As per claim 68, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 67. Heer discloses wherein the information that indicates where the boundary occurs within the low level data unit comprises an offset indicating a relative position of the boundary within the piece including the boundary. (Col 14 lines 31-54; (Col 14 lines 31-54; Pointer Field (PF) 912 provides direct information regarding the byte position of the beginning of the header of the first full PDU segment in the next subframe)

As per claim 69, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 67. Cimini, Jr. discloses wherein the field is a header associated with the low-level data unit. (Col 6 lines 36-38)

As per claim 70, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 1. Heer discloses wherein at least one of the low-level data units contains a portion of at least one sub-frame, and at least one of the low-level data units contains a different portion of the at least one sub-frame. (Col 14 lines 31-54; The total length in this illustrative example is shown to traverse the subframe boundary 920 and the remainder of the PDU segment payload 911 is transmitted in the subsequent subframe as PDU segment payload 922. Length arrow 913 describes the PDU segment payload total length and points to the beginning of the next VL PDU segment header. Pointer Field (PF) 912 provides direct information regarding the byte position of the beginning of the header of the first full PDU segment in the next subframe.)

Claims 9-11, 13 and 49-56 are rejected under 35 U.S.C. 103(a) as being unpatentable over Alapuramen (US 2004/0010736) / Heer (US 6,028,933) / Cimini, Jr. (US 7,519,030) / Wang, Contribution to the TG3 and TG4 MAC: MPDU Formats, May 10, 2001, Wi-LAN Inc., IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16> further in view of Rakib (US 2002/0015423)

As per claim 9, Alapuramen / Heer / Cimini, Jr/ Wang disclose the method of claim 1. Alapuramen fails to disclose further comprising parity pieces derived from other pieces and capable of being used at a destination to recover one or more lost pieces at the destination without having to retransmit the lost pieces. Rakib discloses comprising parity pieces derived from other pieces and capable of being used at a destination to recover one or more lost pieces at the destination without having to retransmit the lost pieces. ([0386]) At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to disclose recovering one or more lost pieces at the destination without having to retransmit the lost pieces in the disclosure of Yi. The motivation for doing do would have been to reduce the error rate or increase the number of payload bits without increasing the symbol rate and bandwidth consumed. ([0281])

As per claim 10, Alapuramen / Heer / Cimini, Jr. / Wang / Rakib disclose the method of claim 9. Alapuramen discloses wherein each piece is transmitted as a

Art Unit: 2454

physical layer block, ([0029]) and the parity pieces are also transmitted as parity physical layer blocks. ([0030])

As per claim 11, Alapuramen / Heer / Cimini, Jr./ / Wang / Rakib disclose the method of claim 10. Alapuramen discloses wherein the physical layer blocks are encoded using forward error correction. ([0030])

As per claim 13, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 12. Rakib discloses wherein at least some retransmitted pieces are transmitted with greater forward error correction than forward error correction used in the earlier attempt. ([0381]; fallback mode where more redundant bits are added to each 4-bit group and correspondingly less payload data is included in each 4 bit group)

As per claim 49, Alapuramen / Heer / Cimini, Jr. / Wang disclose the same limitations as recited in claim 1. However, Alapuramen fails to disclose adaptively escalating the robustness of transmission of the low level data units depending on the frequency of transmission errors. Rakib discloses adaptively escalating the robustness of transmission of the low level data units depending on the frequency of transmission errors. ([0381]) At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to disclose adaptively escalating the robustness of transmission of the low level data units depending on the frequency of transmission

Art Unit: 2454

errors. The motivation for doing do would have been to reduce the error rate or increase the number of payload bits without increasing the symbol rate and bandwidth consumed. ([0281])

As per claim 50, Alapuramen / Heer / Cimini, Jr. / Wang / Rakib disclose the method of claim 49. Alapuramen discloses the method further comprises incorporating forward-error correction information into the transmitted stream of low level data units. ([0028]) Rakib discloses wherein the step of adaptively escalating comprises adaptively varying the forward-error correction information depending on the frequency of transmission errors. ([0381])

As per claim 51, Alapuramen / Heer / Cimini, Jr. / Rakib / Wang disclose the method of claim 50. Rakib discloses wherein varying the forward-error correction information comprises varying one or both of the amount and type of forward-error correction information. ([0381])

As per claim 52, Alapuramen / Heer / Cimini, Jr. / Rakib / Wang disclose the method of claim 51. Rakib discloses wherein decisions on adaptively escalating are made at a transmitting station. ([0381],[0386])

As per claim 53, Alapuramen / Heer / Cimini, Jr. / Rakib / Wang disclose the method of claim 49. Alapuramen discloses wherein each of the low level data units contains a plurality of the pieces. ([0029])

As per claim 54, Alapuramen / Heer / Cimini, Jr. / Rakib / Wang disclose the method of claim 52. Alapuramen discloses wherein the forward error correction information comprises wherein the forward error correction information comprises information associated with the pieces for use at a destination for recovering a piece that is received with errors. ([0028], [0032])

As per claim 55, Alapuramen / Heer / Cimini, Jr. / Rakib / Wang disclose the method of claim 52. Rakib discloses herein the forward error correction information comprises parity pieces derived from other pieces and capable of being used at a destination to recover one or more lost pieces at the destination without having to retransmit the lost pieces. ([0386])

As per claim 56, Alapuramen / Heer / Cimini, Jr. / Rakib / Wang disclose the method of claim 55. Alapuramen discloses wherein each piece is transmitted as a physical layer block, and the parity pieces are also transmitted as parity physical layer blocks. ([0028],[0029])

Claims 14-16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Alapuramen (US 2004/0010736) / Heer (US 6,028,933) / Cimini, Jr. (US 7,519,030) / Wang, Contribution to the TG3 and TG4 MAC: MPDU Formats, May 10, 2001, Wi-LAN Inc., IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16> further in view of Gibson et al. – hereinafter Gibson (US 6,445,717)

As per claim 14, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 5. Alapuramen fails to disclose delivery time stamp. Gibson discloses wherein each sub-frame further comprises a delivery time stamp associated with at least some payloads. (Col 6 line 54 – Col 7 line 5) At the time of invention, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to disclose time stamp. The motivation for doing so would have been to calculate a round trip time. (Col 6 line 54 – Col 7 line 5)

As per claim 15, Alapuramen / Heer / Cimini, Jr. / Wang / Gibson disclose the method of claim 5. Alapuramen fails to disclose wherein clock information characterizing the time setting of a clock in a transmitting station is transmitted to a receiving station within a header of the low level data units. Gibson discloses the clock information is used by the receiving station along with the delivery time stamps to establish the time at which payloads are delivered. (Col 6 line 54 – Col 7 line 5) At the time of invention, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to

Art Unit: 2454

clock information. The motivation for doing so would have been to detect packet loss if expected packets don't arrive in the allowed time. (Col 9 lines 1-23)

As per claim 16, Alapuramen / Heer / Cimini, Jr. / Wang / Gibson disclose the method of claim 15. Alapuramen fails to disclose the time a payload is delivered is set by time stamp. Gibson discloses wherein the time at which a payload is delivered is set to be substantially the time specified by the time stamp based on information derived from the clock information. (Col 6 line 54 – Col 7 line 5)

Claim 20-24 and 26-27 are rejected under 35 U.S.C. 103(a) as being unpatentable over Alapuramen (US 2004/0010736) / Heer (US 6,028,933) / Cimini, Jr. (US 7,519,030) / Wang, Contribution to the TG3 and TG4 MAC: MPDU Formats, May 10, 2001, Wi-LAN Inc., IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16> further in view of Krishnamurthy et al. - hereinafter Krishnamurthy (US 2008/0132264)

As per claims 20 and 21, Alapuramen / Heer / Cimini, Jr. / Wang disclose the method of claim 4. Alapuramen fails to disclose wherein the MAC layer has the capability of transmitting data in a plurality of sessions within a regularly-repeated contention free interval, wherein a station to which data is transmitted is identified by a destination address and a station from which data is transmitted is identified by a source address, and wherein the stream contains a queue of payloads for the same session,

same source address, and same destination address. Krishnamurthy discloses wherein the MAC layer has the capability of transmitting data in a plurality of sessions within a regularly-repeated contention free interval, wherein a station to which data is transmitted is identified by a destination address and a station from which data is transmitted is identified by a source address, and wherein the stream contains a queue of payloads for the same session, same source address, and same destination address.

([0025]) At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to disclose wherein the MAC layer has the capability of transmitting data in a plurality of sessions within a regularly-repeated contention free interval, wherein a station to which data is transmitted is identified by a destination address and a station from which data is transmitted is identified by a source address, and wherein the stream contains a queue of payloads for the same session, same source address, and same destination address. The motivation would have been to determine when retransmission is appropriate can be based on an interval of time during which no packets are forthcoming, but at least one was expected. ([0025])

As per claim 22, Alapuramen / Heer / Cimini, Jr. / Wang / Krishnamurthy discloses the method of claim 20 or 21. Krishnamurthy discloses wherein the MAC layer processes data transmitted in the sessions according to contention-free channel access processing. ([0025])

As per claim 23, Alapuramen / Heer / Cimini, Jr. / Wang / Krishnamurthy discloses the method of claim 22. Krishnamurthy discloses wherein the sessions are transmitted within time slots of a regularly-repeated contention-free interval. ([0025])

As per claim 24, Alapuramen / Heer / Cimini, Jr. / Wang / Krishnamurthy disclose the method of claim 20 or 21. Alapuramen discloses wherein a stream identifier is used to associate content of a queue with a particular session. ([0009])

As per claim 26, Alapuramen / Heer / Cimini, Jr. / Wang / Krishnamurthy disclose the method of claim 24. Alapuramen discloses wherein there are a plurality of queues of payloads in the stream, each containing payloads having a unique combination of stream identifier, ([0009]) source address, and destination address. ([0030])

As per claim 27, Alapuramen / Heer / Cimini, Jr. / Wang / Krishnamurthy disclose the method of claim 26. Alapuramen discloses wherein each queue contains payloads having a unique combination of stream identifier, ([0009]) source address, destination address. ([0030]) Cimini, Jr. discloses type of high level layer. (Col 3 lines 51-60)

Claim 25 is rejected under 35 U.S.C. 103(a) as being unpatentable over

Art Unit: 2454

Alapuramen (US 2004/0010736) / Heer (US 6,028,933) / Cimini, Jr. (US 7,519,030) / Wang, Contribution to the TG3 and TG4 MAC: MPDU Formats, May 10, 2001, Wi-LAN Inc., IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16/> / Krishnamurthy (US 2008/0132264) further in view of Del Prado Pavon et al. – hereinafter Del Prado Pavon (US 2004/0047351)

As per claim 25, Alapuramen / Heer / Cimini, Jr. / Wang Krishnamurthy disclose the method of claim 24. Alapuramen fails to disclose wherein the stream identifier is also used to associate content of a queue with a priority level for contention-based transmission over the medium. Del Prado Pavon discloses wherein the stream identifier is also used to associate content of a queue with a priority level for contention-based transmission over the medium ([0043]) At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to disclose priority level. The motivation for doing do would have been to have multiple queues that work independently, in parallel, for different priorities. ([0043])

Claims 37-40 are rejected under 35 U.S.C. 103(a) as being unpatentable over Alapuramen (US 2004/0010736) / Heer (US 6,028,933) / Cimini, Jr. et al. – hereinafter Cimini, Jr. (US 7,519,030) / Wang, Contribution to the TG3 and TG4 MAC: MPDU Formats, May 10, 2001, Wi-LAN Inc., IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16/> /Ketchum (US 2005/0135403) further in view of Henson et al. – hereinafter Henson (US 2002/0131591)

As per claim 37, Alapuramen / Heer / Cimini, Jr. / Wang / Ketchum disclose the method of claim 35. Alapuramen fails to disclose wherein individual segments are individually encrypted. Henson discloses wherein individual segments are individually encrypted ([0108]) At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to disclose wherein individual segments are individually encrypted. The motivation for doing so would have been to prevent unauthorized user from accessing body of the message or the segments. ([0108])

As per claim 38, Alapuramen / Heer / Cimini, Jr. / Wang / Ketchum disclose the method of claim 37. Henson discloses encryption information common to a plurality of segments is carried in a header. [0108].

As per claims 39 and 40, Alapuramen / Heer / Cimini, Jr. / Wang / Ketchum/ Henson disclose the method of claim 37. Henson discloses wherein some encryption information is carried in a header and frame control of the low level data unit and in a header of the block. [0108] At the time of invention, it would have been obvious to a person of ordinary skill in the art to use encryption in a header and frame control in the disclosure of Yi. The motivation would have been to prevent unauthorized user from accessing body of the message or the segments. ([0108])

Claims 42-43 are rejected under 35 U.S.C. 103(a) as being unpatentable over Alapuramen (US 2004/0010736) / Heer (US 6,028,933) / Cimini, Jr. (US 7,519,030) / Wang, Contribution to the TG3 and TG4 MAC: MPDU Formats, May 10, 2001, Wi-LAN Inc., IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16> /Ketchum (US 2005/0135403) further in view of Rakib (US 2002/0015423)

As per claim 42, Alapuramen / Heer / Cimini, Jr. / Wang / Ketchum disclose the method of claim 41. Alapuramen fails to disclose wherein the level of forward error correction used is different for different blocks. Rakib discloses wherein the level of forward error correction used is different for different blocks. ([0381]) At the time the invention was made, it would have been obvious to a person of ordinary skill in the art to modify Alapuramen to disclose wherein the level of forward error correction used is different for different blocks. The motivation would have been to effectively manage the noise using conventional error detection and correction bits. ([0027])

As per claim 43, Alapuramen / Heer / Cimini, Jr. / Wang / Ketchum disclose the method of claim 42. Rakib discloses wherein the level of forward error correction used provides greater error correction capability for selected blocks that are being retransmitted after failing to be correctly transmitted in an earlier attempt. ([0381])

Allowable Subject Matter

Claims 7-8 and 28-48 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Claims 57-64 are allowed.

As per claim 57, a thorough review of the prior art fails to disclose the " dividing the encapsulated stream into a plurality of sub-blocks, forming a plurality of pieces, with each piece including one or more sub-blocks, to provide pieces capable of being independently retransmitted, and supplying low level data units, at least some of the low level data units each containing a plurality of the pieces that include the sub-blocks into which the encapsulated content was divided, and at least some of the low level data units containing boundary demarcation information indicating boundaries between the sub-frames in the stream."

Claims 7 and 28 recite similar limitations. As per claim 7, a thorough review of the prior art fails to disclose, "wherein division of a sub-frame into the plurality of pieces comprises dividing the sub-frame into a plurality of sub-blocks, and forming at least some pieces from a plurality of sub-blocks." As per claim 28, a thorough review of the prior art fails to disclose, "wherein the stream is divided into a plurality of sub-blocks, wherein a plurality of sub-blocks are grouped to form a segment, with a segment crossing sub-frame boundaries in the stream, wherein a segment constitutes one of the pieces."

Claims 8 and 29-48 are objected to due to its dependence on claims 7, and 28, respectively. (For claims 36-48, please see the discussion under "claim objections" for multiple dependent claims)

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Chirag R Patel whose telephone number is (571)272-7966. The examiner can normally be reached on Monday to Friday from 8:00AM to 4:30PM. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nathan Flynn, can be reached on (571) 272-1915.

The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pairdirect.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll free).

/C. R. P./
Examiner, Art Unit 2454

Application/Control Number: 10/720,742

Page 23

Art Unit: 2454

/NATHAN FLYNN/

Supervisory Patent Examiner, Art Unit 2454