Sequencing Legal DNA NLP for Law and Political Economy

5. Neural Nets and Word Embeddings

► Text classifiers produce $\hat{\mathbf{y}}_i = f(\mathbf{x}_i; \hat{\theta})$, a vector of predicted probabilities across classes for each document i.

- ► Text classifiers produce $\hat{\mathbf{y}}_i = f(\mathbf{x}_i; \hat{\theta})$, a vector of predicted probabilities across classes for each document i.
- This vector is a compressed representation of the outcome-predictive text features x_i

- ► Text classifiers produce $\hat{\mathbf{y}}_i = f(\mathbf{x}_i; \hat{\theta})$, a vector of predicted probabilities across classes for each document i.
- ightharpoonup This vector is a compressed representation of the outcome-predictive text features x_i
 - \triangleright x_i is itself a compressed representation of the unprocessed document \mathcal{D}_i .

- ► Text classifiers produce $\hat{y}_i = f(x_i; \hat{\theta})$, a vector of predicted probabilities across classes for each document i.
- ightharpoonup This vector is a compressed representation of the outcome-predictive text features x_i
 - \triangleright x_i is itself a compressed representation of the unprocessed document \mathcal{D}_i .
- ightharpoonup Correspondingly: the parameters $\hat{\theta}$ can also be understood as a compressed (or "learned") representation:
 - it contains information about the training corpus, the text features, and the outcomes.

Information in $\hat{\theta}$

- ➤ Say we train a multinomial logistic regression on a bag-of-words representation of the documents.
- Let θ be the learned matrix of parameters relating words to outcomes:
 - lt contains n_y columns = n_x -vectors representing the outcome classes.

Information in $\hat{\theta}$

- ➤ Say we train a multinomial logistic regression on a bag-of-words representation of the documents.
- Let θ be the learned matrix of parameters relating words to outcomes:
 - lt contains n_v columns = n_x -vectors representing the outcome classes.
 - It contains n_x rows = n_y -vectors representing each word in the vocabulary.

Information in $\hat{\theta}$

- Say we train a multinomial logistic regression on a bag-of-words representation of the documents.
- Let θ be the learned matrix of parameters relating words to outcomes:
 - lt contains n_v columns = n_x -vectors representing the outcome classes.
 - lt contains n_x rows = n_y -vectors representing each word in the vocabulary.
- How to use this?
 - could cluster column vectors to understand which outcomes are similar/related.
 - could cluster row vectors to understand which features are similar/related.

Preview of Word Embeddings

Let's say x_i is a bag-of-words representation for document i with length n_i . We can write

$$\mathbf{x}_i = \frac{1}{n_i} \sum_{l=1}^{n_i} \mathbf{x}_i^{[l]}$$

- / indexes words in the the document
- each vector $\mathbf{x}_{i}^{[l]}$ is an n_{x} -dimensional one-hot vector all entries are zero except the single entry corresponding to the word at l, which is 1.

Preview of Word Embeddings

Let's say x_i is a bag-of-words representation for document i with length n_i . We can write

$$\mathbf{x}_i = \frac{1}{n_i} \sum_{l=1}^{n_i} \mathbf{x}_i^{[l]}$$

- / indexes words in the the document
- each vector $\mathbf{x}_i^{[I]}$ is an n_x -dimensional one-hot vector all entries are zero except the single entry corresponding to the word at I, which is 1.
- Now let $\theta^{[I]}$ be the row of θ corresponding to the word w_I . We can write

$$\hat{\mathbf{y}}_i = \frac{1}{n_i} \sum_{l=1}^{n_i} \theta^{[l]}$$

the sum of the n_y -dimensional word representations (the row vectors from above).

- ▶ this is called the "continuous bag of words (CBOW)" representation.
- \triangleright θ is a word embedding matrix.

Outline

Intro to Neural Nets

Practicalities

Application to Fact-Value Distinction

Autoencoders

Embedding Layers

Word Embeddings

Word2Vec and GloVe

"Neural Networks"

- ► "Neural":
 - nothing like brains

"Neural Networks"

- "Neural":
 - nothing like brains
- "Networks":
 - ▶ nothing to do with "networks" as normally understood in particular, nothing to do with network theory in math or social science.

▶ NNs frequently outperform other ML techniques on large and complex problems.

- ▶ NNs frequently outperform other ML techniques on large and complex problems.
- ▶ Increase in computing power makes them computationally tractable, graphical processing units (GPUs, designed for video games) give you over 100x performance gain over CPUs.

- ▶ NNs frequently outperform other ML techniques on large and complex problems.
- ▶ Increase in computing power makes them computationally tractable, graphical processing units (GPUs, designed for video games) give you over 100x performance gain over CPUs.
- ▶ Training algorithms have improved small tweaks have made a huge impact.

- ▶ NNs frequently outperform other ML techniques on large and complex problems.
- ▶ Increase in computing power makes them computationally tractable, graphical processing units (GPUs, designed for video games) give you over 100x performance gain over CPUs.
- Training algorithms have improved small tweaks have made a huge impact.
- ➤ Some theoretical limitations of NNs have turned out to be benign in practice for example, they work well on non-convex functions.

Will it last?

- ► Three key principles of deep learning will persist:
 - Simplicity
 - feature engineering is obsolete
 - complex, brittle, engineering-heavy pipelines replaced with simple, end-to-end trainable models, composed of 5-6 tensor operations.

Will it last?

► Three key principles of deep learning will persist:

Simplicity

- feature engineering is obsolete
- complex, brittle, engineering-heavy pipelines replaced with simple, end-to-end trainable models, composed of 5-6 tensor operations.

Scalability

- ▶ amenable to parallelization on GPUs or TPUs (tensor processing units)
- trained on batches of data, so can be scaled to datasets of arbitrary size.

Will it last?

► Three key principles of deep learning will persist:

Simplicity

- feature engineering is obsolete
- complex, brittle, engineering-heavy pipelines replaced with simple, end-to-end trainable models, composed of 5-6 tensor operations.

Scalability

- ▶ amenable to parallelization on GPUs or TPUs (tensor processing units)
- trained on batches of data, so can be scaled to datasets of arbitrary size.

Versatility and reusability

- can be trained on additional data without restarting from scratch, therefore amenable for continuous online learning.
- deep-learning models are repurposable and thus reusable

A "Neuron"

- ▶ A neuron multiplies each input by its weight, sums them, applies a non-linear function to the result, and passes the output.
 - ightharpoonup e.g., the \int shape indicates a sigmoid transformation.

In Notation

► The simplest neural network is called a perceptron:

$$MLP0(x) = x \cdot \omega$$

$$\mathbf{x} \in \mathbb{R}^{n_x}, \boldsymbol{\omega} \in \mathbb{R}^{n_x \times n_y}$$

here, ω is the matrix of weights in the layer.

▶ In more standard notation, there would be an additional constant (or "bias") term:

$$\mathsf{MLPO}(\mathbf{x}) = \alpha + \mathbf{x} \cdot \boldsymbol{\omega}$$

 \triangleright We leave it out by assuming that x is de-meaned or has an extra column of ones.

A Feed-Forward Neural Network

➤ A feed-forward network is simply a stack of linear models, separated by non-linear functions.

Multi-Layer Perceptron

▶ An multi-layer perceptron (MLP) with one hidden layer is

$$\begin{aligned} \mathsf{MLP1}(\mathbf{\textit{x}}) &= \mathbf{\textit{g}}(\mathbf{\textit{x}} \cdot \boldsymbol{\omega}_1) \cdot \boldsymbol{\omega}_2 \\ \mathbf{\textit{x}} &\in \mathbb{R}^{\textit{n}_{x}}, \boldsymbol{\omega}_1 \in \mathbb{R}^{\textit{n}_{x} \times \textit{n}_1}, \boldsymbol{\omega}_2 \in \mathbb{R}^{\textit{n}_{1} \times \textit{n}_{y}}, \end{aligned}$$

- $ightharpoonup n_1 = \text{dimensionality in first (and only) hidden layer}$
- $m{\omega}_1=$ set of learnable weights for the first linear transformation of the inputs.
- $\mathbf{g}(\cdot)$ = an element-wise non-linear function (an "activation function")
- lacksquare $\omega_2=$ weights on the second linear transformation leading to the output.

Multi-Layer Perceptron

An multi-layer perceptron (MLP) with one hidden layer is

$$\begin{aligned} \mathsf{MLP1}(\pmb{x}) &= \pmb{g}(\pmb{x} \cdot \pmb{\omega}_1) \cdot \pmb{\omega}_2 \\ \pmb{x} &\in \mathbb{R}^{n_{\mathsf{x}}}, \pmb{\omega}_1 \in \mathbb{R}^{n_{\mathsf{x}} \times n_1}, \pmb{\omega}_2 \in \mathbb{R}^{n_1 \times n_y}, \end{aligned}$$

- $ightharpoonup n_1 = \text{dimensionality in first (and only) hidden layer}$
- lacksquare $\omega_1=$ set of learnable weights for the first linear transformation of the inputs.
- $m{p}(\cdot) = an$ element-wise non-linear function (an "activation function")
- $ightharpoonup \omega_2$ = weights on the second linear transformation leading to the output.
- MLP1 can approximate any continuous function on a closed and bounded subset of \mathbb{R}^n , and any mapping from one finite discrete space to another finite discrete space (Hornik et al 1989, Cybenko 1989).
 - ▶ But MLP1 would have to be exponentially large in some cases (Telgarsky 2016) .

Two hidden layers

► Adding a second hidden layer gives

$$\begin{aligned} \mathsf{MLP2}(\mathbf{\textit{x}}) &= \mathbf{\textit{g}}_2(\mathbf{\textit{g}}_1(\mathbf{\textit{x}} \cdot \boldsymbol{\omega}_1) \cdot \boldsymbol{\omega}_2) \cdot \boldsymbol{\omega}_3 \\ \\ \mathbf{\textit{x}} &\in \mathbb{R}^{\textit{n}_x}, \boldsymbol{\omega}_1 \in \mathbb{R}^{\textit{n}_x \times \textit{n}_1}, \boldsymbol{\omega}_2 \in \mathbb{R}^{\textit{n}_1 \times \textit{n}_2}, \boldsymbol{\omega}_3 \in \mathbb{R}^{\textit{n}_2 \times \textit{n}_y} \end{aligned}$$

 $ightharpoonup n_2=$ number of neurons in second hidden layer.

Two hidden layers

Adding a second hidden layer gives

$$\begin{aligned} \mathsf{MLP2}(\mathbf{\textit{x}}) &= \mathbf{\textit{g}}_2(\mathbf{\textit{g}}_1(\mathbf{\textit{x}} \cdot \boldsymbol{\omega}_1) \cdot \boldsymbol{\omega}_2) \cdot \boldsymbol{\omega}_3 \\ \\ \mathbf{\textit{x}} &\in \mathbb{R}^{\textit{n}_x}, \boldsymbol{\omega}_1 \in \mathbb{R}^{\textit{n}_x \times \textit{n}_1}, \boldsymbol{\omega}_2 \in \mathbb{R}^{\textit{n}_1 \times \textit{n}_2}, \boldsymbol{\omega}_3 \in \mathbb{R}^{\textit{n}_2 \times \textit{n}_y} \end{aligned}$$

- $ightharpoonup n_2 =$ number of neurons in second hidden layer.
- MLP2 can be written in the following decomposed notation:

$$\mathsf{MLP2}(oldsymbol{x}) = oldsymbol{h}_1 = oldsymbol{g}_1(oldsymbol{x} \cdot oldsymbol{\omega}_1) \ oldsymbol{h}_2 = oldsymbol{g}_2(oldsymbol{h}_1 \cdot oldsymbol{\omega}_2) \ oldsymbol{y} = oldsymbol{h}_2 \cdot oldsymbol{\omega}_3$$

where h_I give hidden layers.

Constructing the Last Layer

- ► MLPs will output a probability distribution across output classes.
 - can also output a real number, which would make a regression model.

What to pick for g()

▶ logistic function: $logit(z) = \frac{1}{1 + exp(-z)}$

What to pick for g()

- ▶ logistic function: $logit(z) = \frac{1}{1 + exp(-z)}$
- ▶ hyperbolic tangent function: $tanh(z) = 2\sigma(2z) 1$
 - ranges between -1 and 1 (rather than between 0 and 1, as the case with the logistic)
 - centered on zero, can speed up convergence

What to pick for g()

- ▶ logistic function: $logit(z) = \frac{1}{1 + exp(-z)}$
- ▶ hyperbolic tangent function: $tanh(z) = 2\sigma(2z) 1$
 - ranges between -1 and 1 (rather than between 0 and 1, as the case with the logistic)
 - centered on zero, can speed up convergence
- ▶ ReLU (rectified linear unit) function: $\max\{0, z\}$,
 - deceptively simple, fast to compute, and very effective in practice
 - gradient does not saturate to zero for large values (but is flat below zero)

Backpropagation

- ▶ A crucial technology in deep learning is *backpropagation*, also known as reverse-mode automatic differentiation (autodiff).
 - intuitively, computes the network's output error and how much each neuron contributes to the error, so they can be updated to reduce error.

Backpropagation

- ▶ A crucial technology in deep learning is *backpropagation*, also known as reverse-mode automatic differentiation (autodiff).
 - intuitively, computes the network's output error and how much each neuron contributes to the error, so they can be updated to reduce error.
 - Keras/TensorFlow will do this under the hood, just like how scikit-learn does gradient descent.
 - ▶ Appendix D of the Geron book has a decent explanation for how it works.

Outline

Intro to Neural Nets

Practicalities

Application to Fact-Value Distinction

Autoencoders

Embedding Layers

Word Embeddings

Word2Vec and GloVe

MLP baseline for Text Classification

Google Developers Advice

- 1. Calculate the number of samples/number of words per sample ratio.
- 2. If this ratio is less than 1500, tokenize the text as n-grams and use a simple multi-layer perceptron (MLP) model to classify them.
 - ▶ In the case of N-grams models, Google testers found that MLPs tended to out-perform logistic regression and gradient boosting machines.
 - ▶ A simple MLP is one of the models tried by Peterson and Spirling (2018).

Keras Basics

- ▶ See the Geron book and sample notebooks for Keras examples.
- ▶ "Dense" layer is the DNN baseline means that all neurons are connected.

Keras Basics

- ▶ See the Geron book and sample notebooks for Keras examples.
- "Dense" layer is the DNN baseline means that all neurons are connected.
- Output layer:
 - ▶ for regression, do not use an activation function
 - for binary classification, use activation='sigmoid'
 - ▶ for multi-class classification, use activation='softmax'

Loss function and metrics

- Loss function:
 - for regression, use mean_squared_error
 - for binary classification, use binary_crossentropy
 - ▶ for multi-class classification, use sparse_categorical_crossentropy

Loss function and metrics

- Loss function:
 - for regression, use mean_squared_error
 - for binary classification, use binary_crossentropy
 - for multi-class classification, use sparse_categorical_crossentropy
- Metrics:
 - ightharpoonup for classification, can use accuracy and F_1
 - ightharpoonup for regression, use R^2

Table 10-1. Typical regression MLP architecture

Hyperparameter	Typical value
# input neurons	One per input feature (e.g., 28 x 28 = 784 for MNIST)
# hidden layers	Depends on the problem, but typically 1 to 5
# neurons per hidden layer	Depends on the problem, but typically 10 to 100
# output neurons	1 per prediction dimension
Hidden activation	ReLU (or SELU, see Chapter 11)
Output activation	None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs)
Loss function	MSE or MAE/Huber (if outliers)

Table 10-2. Typical classification MLP architecture

Hyperparameter	Binary classification	Multilabel binary classification	Multiclass classification
Input and hidden layers	Same as regression	Same as regression	Same as regression
# output neurons	1	1 per label	1 per class
Output layer activation	Logistic	Logistic	Softmax
Loss function	Cross entropy	Cross entropy	Cross entropy

Initializing Neuron Weights

Neuron weights have to be initalized randomly; otherwise they are collinear and backprop won't distinguish their contributions to the output error.

Initializing Neuron Weights

- Neuron weights have to be initalized randomly; otherwise they are collinear and backprop won't distinguish their contributions to the output error.
- ▶ Standard practice is to use "Glorot" or "He" initialization:

Activation function	Uniform distribution [-r, r]	Normal distribution
Logistic	$r = \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$
Hyperbolic tangent	$r = 4\sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = 4\sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$
ReLU (and its variants)	$r = \sqrt{2} \sqrt{\frac{6}{n_{\rm inputs} + n_{\rm outputs}}}$	$\sigma = \sqrt{2} \sqrt{\frac{2}{n_{\rm inputs} + n_{\rm outputs}}}$

- ► Number of neurons:
 - iust pick 128 neurons per layer
 - overall, better to have too many neurons, and use regularization

- Number of neurons:
 - ▶ just pick 128 neurons per layer
 - overall, better to have too many neurons, and use regularization
- Number of hidden layers:
 - try between one and five.
 - adding layers usually helps more than adding neurons.

- Number of neurons:
 - ▶ just pick 128 neurons per layer
 - overall, better to have too many neurons, and use regularization
- Number of hidden layers:
 - try between one and five.
 - adding layers usually helps more than adding neurons.
- Activation functions:
 - ReLU is a good baseline in the hidden layers.

- Number of neurons:
 - ▶ just pick 128 neurons per layer
 - overall, better to have too many neurons, and use regularization
- Number of hidden layers:
 - try between one and five.
 - adding layers usually helps more than adding neurons.
- Activation functions:
 - ▶ ReLU is a good baseline in the hidden layers.
- ► See Geron, pp. 322-323 for tools to help with tuning, e.g. Keras Tuner.
 - ► See also Smith (2018).

Early stopping

An efficient training approach, that also works to regularize a model, is **early stopping:**

Split data into three sets: training, validation, and test.

Early stopping

An efficient training approach, that also works to regularize a model, is **early stopping:**

- Split data into three sets: training, validation, and test.
- continually evaluate your model in validation set at regular intervals
- stop training when the validation-set accuracy starts to decrease.

Early stopping

An efficient training approach, that also works to regularize a model, is **early stopping:**

- Split data into three sets: training, validation, and test.
- continually evaluate your model in validation set at regular intervals
- stop training when the validation-set accuracy starts to decrease.
- evaluate model in test set.

Batch normalization

- Another trick to increase performance, speed up training, and regularize the model:
 - in between layers, zero-center and normalize the inputs to variance one.
 - normally done before a non-linear activation function

Batch normalization

- Another trick to increase performance, speed up training, and regularize the model:
 - in between layers, zero-center and normalize the inputs to variance one.
 - normally done before a non-linear activation function
- ▶ Does not work well in recurrent neural nets can use gradient clipping (hard constraint on gradient) instead.

ELU and **SELU**

Exponential linear unit

$$\mathsf{ELU}(z) = \begin{cases} \alpha(\mathsf{exp}(z) - 1) & z < 0 \\ z & z \ge 0 \end{cases}$$

ELU and SELU

Exponential linear unit

$$ELU(z) = \begin{cases} \alpha(\exp(z) - 1) & z < 0 \\ z & z \ge 0 \end{cases}$$

SELU (Scaled ELU):

SELU(z) =
$$\lambda \begin{cases} \alpha(\exp(z) - 1) & z < 0 \\ z & z \ge 0 \end{cases}$$

- Requires standardized inputs.
- Gaussian initialization of neuron weights:
 - mean zero and standard deviation = $n_X^{-1/2}$
- Set $\lambda \approx 1.0507$, $\alpha \approx 1.6732$.
- →Then layers will be self-normalizing; weights will converge to mean zero and variance once (Klambauer et al 2017)

ELU and SELU

Exponential linear unit

$$ELU(z) = \begin{cases} \alpha(\exp(z) - 1) & z < 0 \\ z & z \ge 0 \end{cases}$$

SELU (Scaled ELU):

SELU(z) =
$$\lambda \begin{cases} \alpha(\exp(z) - 1) & z < 0 \\ z & z \ge 0 \end{cases}$$

- Requires standardized inputs.
- Gaussian initialization of neuron weights:
 - mean zero and standard deviation = $n_x^{-1/2}$
- Set $\lambda \approx 1.0507$, $\alpha \approx 1.6732$.
- ➤ Then layers will be self-normalizing; weights will converge to mean zero and variance once (Klambauer et al 2017)

In general, SELU > ELU > ReLU.

Optimizer and Learning Rate

- ► Choice of optimization algorithm is the topic of active research, which has shown that it can have a big impact on model performance.
 - See Geron, pp. 351-358. He recommends SGD with momentum, RMSProp, or Nadam.

Optimizer and Learning Rate

- ► Choice of optimization algorithm is the topic of active research, which has shown that it can have a big impact on model performance.
 - See Geron, pp. 351-358. He recommends SGD with momentum, RMSProp, or Nadam.
- ▶ On the learning rate, see Geron pp. 359-364, recommending 1cycle scheduling:
 - start at η_0 , increase linearly up to η_1 halfway through training, then decrease linearly to η_0 at the end.

Regularization for Sparse Models

As with linear models, neural network parameters can be regularized with an L1 and/or L2 penalty to push weak neurons to zero and produce a sparse model.

Regularization for Sparse Models

- As with linear models, neural network parameters can be regularized with an L1 and/or L2 penalty to push weak neurons to zero and produce a sparse model.
- Another regularizer: "max-norm regularization":
 - ▶ constrain each neuron's weights ω by $||\omega||_2 \le r$, where r is a hyperparameter.

Regularization for Sparse Models

- As with linear models, neural network parameters can be regularized with an L1 and/or L2 penalty to push weak neurons to zero and produce a sparse model.
- ► Another regularizer: "max-norm regularization":
 - ▶ constrain each neuron's weights ω by $||\omega||_2 \le r$, where r is a hyperparameter.
- ▶ But usually its better/simpler to use dropout.

Figure 2: **Left**: A unit at training time that is present with probability p and is connected to units in the next layer with weights **w**. **Right**: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output at training time.

Source: Srivastava et al, JMLR 2014

An elegant regularization technique:

- at every training step, every neuron has some probability (typically p = 0.5) of being temporarily dropped out, so that it will be ignored at this step.
- ▶ at test time, neurons dont get dropped anymore but coefficients are down-weighted by p.

ightharpoonup Approximately equivalent to averaging the output of N models (where N is the number of neurons).

- ▶ Approximately equivalent to averaging the output of *N* models (where *N* is the number of neurons).
- Neurons trained with dropout:
 - cannot co-adapt with neighboring neurons and must be independently useful.
 - cannot rely excessively on just a few input neurons; they have to pay attention to all input neurons.
 - makes the model less sensitive to slight changes in the inputs.

- ▶ Approximately equivalent to averaging the output of *N* models (where *N* is the number of neurons).
- Neurons trained with dropout:
 - cannot co-adapt with neighboring neurons and must be independently useful.
 - cannot rely excessively on just a few input neurons; they have to pay attention to all input neurons.
 - makes the model less sensitive to slight changes in the inputs.
- ▶ If using SELU activiation functions, use alpha dropout (Klambauer et al 2017).

Monte Carlo Dropout

- ► Normal dropout:
 - ▶ at test time, neurons dont get dropped but coefficients are down-weighted by p.

Monte Carlo Dropout

- ► Normal dropout:
 - ▶ at test time, neurons dont get dropped but coefficients are down-weighted by p.
- ► Monte Carlo dropout:
 - ▶ at test time, continue to allow dropout but produce 100 predictions, and average them.

Summary and Practical Guidelines

Table 11-3. Default DNN configuration

Hyperparameter	Default value
Kernel initializer	He initialization
Activation function	ELU
Normalization	None if shallow; Batch Norm if deep
Regularization	Early stopping (+ ℓ_2 reg. if needed)
Optimizer	Momentum optimization (or RMSProp or Nadam)
Learning rate schedule	lcycle

Table 11-4. DNN configuration for a self-normalizing net

	,	, ,
yperparameter		Default value
ernel initializer		LeCun initialization
ctivation function		SELU
formalization		None (self-normalization)
egularization		Alpha dropout if needed
ptimizer		Momentum optimization (or RMSProp or Nadam)
earning rate sched	ule	1cycle

Outline

Intro to Neural Nets

Practicalities

Application to Fact-Value Distinction

Autoencoders

Embedding Layers

Word Embeddings

Word2Vec and GloVe

Application: Facts vs. Law

- A crucial distinction in law practice, and in applying caselaw, is to distinguish the law from the facts.
- ▶ In Cao, Ash, Chen (2018), we made a sample of fact and law sections in court cases and trained a model to predict them based on the text.

Application: Facts vs. Law

- A crucial distinction in law practice, and in applying caselaw, is to distinguish the law from the facts.
- ▶ In Cao, Ash, Chen (2018), we made a sample of fact and law sections in court cases and trained a model to predict them based on the text.
- Corpus:
 - ▶ all cases from courtlistener.com with an annotated "FACTS" section (extracted using regular expressions).
 - ▶ 23,497 sections, split into 1.3M paragraphs
 - ▶ 36% facts, 64% laws

Models and Results

DEPN: Document represented as a sequence of word-dependency pairs, fed to a **MLP classifier** with two 500-dim hidden layers.

DEPW: a variant of DEPN using Shulayeva et al.'s (2017) dependency features.

SMITH: Implementation of Smith's (2014) method: Bag of Words, but filter words that are statistically related to either fact statements or law statements. Fed to a Logistic Regression classifier.

WS: Laver et al.'s (2003) Wordscore algorithm (cf. Sarel and Demirtas, 2017). Bag of Words, but each word assigned a score based on relation to fact or law. Document is represented as a (re-scaled) score that sums up the pre- calculated scores of the words it contains, weighted by their frequencies.

BOW: Bag of words representation of documents, fed to a Logistic Regression classifier.

 $\mbox{D2V:}$ 500-dim Doc2Vec vectors (Le and Mikolov, 2014), fed to $\mbox{MLP.}$

Models and Results

DEPN: Document represented as a sequence of word-dependency pairs, fed to a **MLP classifier** with two 500-dim hidden layers.

DEPW: a variant of DEPN using Shulayeva et al.'s (2017) dependency features.

SMITH: Implementation of Smith's (2014) method: Bag of Words, but filter words that are statistically related to either fact statements or law statements. Fed to a Logistic Regression classifier.

WS: Laver et al.'s (2003) Wordscore algorithm (cf. Sarel and Demirtas, 2017). Bag of Words, but each word assigned a score based on relation to fact or law. Document is represented as a (re-scaled) score that sums up the pre- calculated scores of the words it contains, weighted by their frequencies.

 $\ensuremath{\mathbf{BOW}}$: Bag of words representation of documents, fed to a Logistic Regression classifier.

 $\mbox{\sc D2V:}$ 500-dim Doc2Vec vectors (Le and Mikolov, 2014), fed to $\mbox{\sc MLP.}$

	F1 for facts	F1 for values
DEPN	73.38	74.66
DEPW	72.77	73.79
SMITH	71.85	71.4
WS	77.11	77.67
BOW	72.57	73.29
D2V	67.18	65.36

Table 2: 5-fold cross validation.

Outline

Intro to Neural Nets

Practicalities

Application to Fact-Value Distinction

Autoencoders

Embedding Layers

Word Embeddings

Word2Vec and GloV

Efficient Data Representations

Which of the following number sequences do you find the easiest to memorize?

- 40, 27, 25, 36, 81, 57, 10, 73, 19, 68
- 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14

Autoencoders ↔ Optimal Compression Algorithms

- "Autoencoder" refers to a class of deep neural network that performs domain-specific compression and dimension reduction.
 - ► They learn efficient encodings of the data, which can then be decoded back to a reconstruction a (minimally) lossy representation of the original data.
 - Can also randomly generate new data that look like the training data.

PCA is a linear autoencoder

```
from tensorflow import keras
encoder = keras.models.Sequential([keras.layers.Dense(2, input_shape=[3])])
decoder = keras.models.Sequential([keras.layers.Dense(3, input_shape=[2])])
autoencoder = keras.models.Sequential([encoder, decoder])
autoencoder.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=0.1))
```


Figure 17-2. PCA performed by an undercomplete linear autoencoder

Figure 17-3. Stacked autoencoder

- ▶ Autoencoders work by stacking layers that gradually decrease in dimensionality to create the compressed representation (Z), and then gradually increase in dimensionality to try to reconstruct the input.
 - the autoencoder is implicitly solving the problem of maximizing entropy in the bottleneck layer.

Figure 17-3. Stacked autoencoder

- ▶ Autoencoders work by stacking layers that gradually decrease in dimensionality to create the compressed representation (Z), and then gradually increase in dimensionality to try to reconstruct the input.
 - the autoencoder is implicitly solving the problem of maximizing entropy in the bottleneck layer.
 - for symmetric autoencoders, **tying weights** of the encoding and decoding segments will speed up training and tends to improve performance.

Reconstruction from encoded vector

Figure 17-4. Original images (top) and their reconstructions (bottom)

Autoencoders for Data Visualization

Figure 17-5. Fashion MNIST visualization using an autoencoder followed by t-SNE

- Decent baseline for visualizing the encodings:
 - use an autoencoder to compress your data to relatively low dimension (e.g. 32 dimensions)
 - then use t-SNE for mapping the compressed data to a 2D plane.

Denoising Autoencoders

Figure 17-8. Denoising autoencoders, with Gaussian noise (left) or dropout (right)

Outline

Intro to Neural Nets

Practicalities

Application to Fact-Value Distinction

Autoencoders

Embedding Layers

Word Embeddings

Word2Vec and GloVe

What is an Embedding?

- A (relatively) low-dimensional vector representation of a categorical variable.
 - > spatial location of the vector encodes predictive information about the category.

What is an Embedding?

- A (relatively) low-dimensional vector representation of a categorical variable.
 - > spatial location of the vector encodes predictive information about the category.
- e.g., trying to predict how employment responds to economic growth with data from U.S. states:
 - instead of including a fifty-dimensional categorical variable, include two-dimensional latitude and longitude

What is an Embedding?

- A (relatively) low-dimensional vector representation of a categorical variable.
 - spatial location of the vector encodes predictive information about the category.
- e.g., trying to predict how employment responds to economic growth with data from U.S. states:
 - instead of including a fifty-dimensional categorical variable, include two-dimensional latitude and longitude
 - or initialize each state to a random two-dimensional vector, and let the model decide where to move the states to improve prediction on your task (e.g.).

An embedding layer is just matrix multiplication

An embedding layer can be represented as

$$x = v(w)$$

$$\underbrace{x}_{n_{E} \times 1} = \underbrace{E}_{n_{E} \times n_{w}} \cdot \underbrace{w}_{n_{w} \times 1}$$

- w, a categorical variable (e.g., representing a word)
 - one-hot vector with a single item equaling one.
 - ► The input to the embedding layer.

An embedding layer is just matrix multiplication

An embedding layer can be represented as

$$x = v(w)$$

$$\underbrace{x}_{n_{E} \times 1} = \underbrace{E}_{n_{E} \times n_{w}} \cdot \underbrace{w}_{n_{w} \times 1}$$

- w, a categorical variable (e.g., representing a word)
 - one-hot vector with a single item equaling one.
 - ► The input to the embedding layer.
- x, a dense representation of the variable.
 - ► The output of the embedding layer.

An embedding layer is just matrix multiplication

An embedding layer can be represented as

- w, a categorical variable (e.g., representing a word)
 - one-hot vector with a single item equaling one.
 - ► The input to the embedding layer.
- x, a dense representation of the variable.
 - ► The output of the embedding layer.
- \blacktriangleright An embedding function $v(\cdot)$, defined by matrix E, learnable by the DNN

The Embedding Matrix *E*

- ► The model learns the weights of the embedding matrix in the same way that it would learn any model parameters.
- \triangleright The rows of the matrix correspond to vectors for the n_w categories.
 - ► These are the "word vectors" that people talk about when they mention word embeddings or Word2Vec.

Figure 13-4. Embeddings will gradually improve during training

Embedding Layers versus Dense Layers

An embedding layer is statistically equivalent to a fully-connected dense layer with sparse data set as input and linear activation.

Embedding Layers versus Dense Layers

- An embedding layer is statistically equivalent to a fully-connected dense layer with sparse data set as input and linear activation.
- Why use an embedding layer rather than a dense layer?
 - embedding layers are much faster for this purpose
 - batch updating with regularization and dropout do not work well on sparse data.

Embedding Layers versus Dense Layers

- An embedding layer is statistically equivalent to a fully-connected dense layer with sparse data set as input and linear activation.
- Why use an embedding layer rather than a dense layer?
 - embedding layers are much faster for this purpose
 - batch updating with regularization and dropout do not work well on sparse data.
- ► Geron (pg. 433) advises using one-hot encoding for less than 10 items, embedings for more than 50, and in between it's unclear.

MLP output layer as embedding matrix

- Consider the output layer for an MLP:
 - last hidden layer l, with dimensionality n_l
 - ightharpoonup output classes with dimensionality n_y
 - layer $I = n_I \times n_y$ matrix of weights E_y

MLP output layer as embedding matrix

- Consider the output layer for an MLP:
 - last hidden layer I, with dimensionality n_I
 - \triangleright output classes with dimensionality n_y
 - layer $I = n_I \times n_y$ matrix of weights E_y
- ightharpoonup columns of E_y give n_y outcome class vectors.
 - vector similarities between columns indicate model's learned similarities between the output classes (Goldberg pg. 99)

Outline

Intro to Neural Nets

Practicalities

Application to Fact-Value Distinction

Autoencoders

Embedding Layers

Word Embeddings

Word2Vec and GloVe

▶ Word embeddings are NN layers that map word indexes to dense vectors.

- Word embeddings are NN layers that map word indexes to dense vectors.
- ▶ Documents are lists of word indexes $\{w_1, w_2, ..., w_{n_i}\}$.
 - equivalently, let w_i be a one-hot vector (dimensionality $n_w = \text{vocab size}$) where the associate word's index equals one.

- Word embeddings are NN layers that map word indexes to dense vectors.
- ▶ Documents are lists of word indexes $\{w_1, w_2, ..., w_{n_i}\}$.
 - equivalently, let w_i be a one-hot vector (dimensionality $n_w = \text{vocab size}$) where the associate word's index equals one.
 - Normalize all documents to the same length *L*; shorter documents can be padded with a null token. This requirement can be relaxed with recurrent neural networks.

- Word embeddings are NN layers that map word indexes to dense vectors.
- ▶ Documents are lists of word indexes $\{w_1, w_2, ..., w_{n_i}\}$.
 - equivalently, let w_i be a one-hot vector (dimensionality $n_w = \text{vocab size}$) where the associate word's index equals one.
 - Normalize all documents to the same length *L*; shorter documents can be padded with a null token. This requirement can be relaxed with recurrent neural networks.
- The embedding layer replaces the list of sparse one-hot vectors with a list of n_E -dimensional ($n_E << n_w$) dense vectors

$$\mathbf{X} = \begin{bmatrix} x_1 & \dots & x_L \end{bmatrix}$$

where

$$x_j = \underbrace{E}_{n_E \times n_w} \cdot \underbrace{w_j}_{n_w \times 1}$$

- Word embeddings are NN layers that map word indexes to dense vectors.
- ▶ Documents are lists of word indexes $\{w_1, w_2, ..., w_{n_i}\}$.
 - equivalently, let w_i be a one-hot vector (dimensionality $n_w = \text{vocab size}$) where the associate word's index equals one.
 - Normalize all documents to the same length *L*; shorter documents can be padded with a null token. This requirement can be relaxed with recurrent neural networks.
- The embedding layer replaces the list of sparse one-hot vectors with a list of n_E -dimensional ($n_E << n_w$) dense vectors

$$\mathbf{X} = \left[\begin{array}{cccc} \mathbf{x}_1 & \dots & \mathbf{x}_L \end{array} \right]$$

where

$$\underbrace{x_j}_{n_E \times 1} = \underbrace{E}_{n_E \times n_w} \cdot \underbrace{w_j}_{n_w \times 1}$$

▶ This **X** matrix is then flattened into an $L*n_E$ vector for input to the next layer.

Illustration

Continuous Bag-of-Words Representation

- \triangleright Let w_i be the one-hot representation of feature j
- ▶ The dot product $w_j \cdot E$ selects the row of E corresponding to j:

$$v(w_j) = \boldsymbol{w}_j \cdot \boldsymbol{E}$$

And a document can be represented as

$$\mathbf{x}_i = \mathsf{CBOW}(x_1, ..., x_{n_i}) = \sum_{j=1}^{n_i} w_j \cdot \mathbf{E} = (\sum_{j=1}^{n_i} w_j) \cdot \mathbf{E}$$

the sum over the word vectors in the document.

Word Embeddings can be used for any NLP Task

- ► For example, to predict political party from political speech:
 - could represent each document as concatenated embedding vectors for each word in the document.

Word Embeddings can be used for any NLP Task

- For example, to predict political party from political speech:
 - could represent each document as concatenated embedding vectors for each word in the document.
 - ▶ DNN will learn the optimal vector for each word in predicting the political party.

Practical Tip: Embedded Hashed N-Grams

Goldberg (2017) proposes the hashing vectorizer (keras.preprocessing.text.hashing_trick) as an efficient alternative to CNN's:

- ▶ Allocate $n_w \approx 1$ million rows to an embedding matrix **E**
- Assign n-grams to embedding indexes with hashing function
- train MLP on top of embedding layer.

Practical Tip: Embedded Hashed N-Grams

Goldberg (2017) proposes the hashing vectorizer (keras.preprocessing.text.hashing_trick) as an efficient alternative to CNN's:

- ▶ Allocate $n_w \approx 1$ million rows to an embedding matrix **E**
- Assign n-grams to embedding indexes with hashing function
- train MLP on top of embedding layer.
- Captures the local predictive power of n-grams without building vocabulary or costly training of CNN.

Outline

Intro to Neural Nets

Practicalities

Application to Fact-Value Distinction

Autoencoders

Embedding Layers

Word Embeddings

Word2Vec and GloVe

Word2Vec & GloVe

- "Word embeddings" often refers to Word2Vec or GloVe these are particular (popular) models for producing word embeddings.
 - ▶ the goal: represent the meaning of words by the neighboring words their **contexts**.

Word2Vec & GloVe

- "Word embeddings" often refers to Word2Vec or GloVe these are particular (popular) models for producing word embeddings.
 - ▶ the goal: represent the meaning of words by the neighboring words their **contexts**.
 - rather than predicting some metadata (such as citations) they predict the co-occurence of neighboring words.

Word2Vec & GloVe

- "Word embeddings" often refers to Word2Vec or GloVe these are particular (popular) models for producing word embeddings.
 - ▶ the goal: represent the meaning of words by the neighboring words their **contexts**.
 - rather than predicting some metadata (such as citations) they predict the co-occurence of neighboring words.
- "You shall know a word by the company it keeps":
 - ▶ "He filled the wampimuk, passed it around and we all drunk some."
 - "We found a little, hairy wampimuk sleeping behind the tree."

Words and Contexts

A long line of NLP research aims to capture the distributional properties of words using a **word-context matrix** M:

- ▶ each row w represents a **word** (e.g. "income"), each column c represents a linguistic **context** in which words can occur (e.g. "corporate ____ tax").
 - A matrix entry $M_{[w,c]}$ quantifies the strength of association between a word and a context in a large corpus.

Words and Contexts

A long line of NLP research aims to capture the distributional properties of words using a **word-context matrix** M:

- ▶ each row w represents a word (e.g. "income"), each column c represents a linguistic context in which words can occur (e.g. "corporate ____ tax").
 - A matrix entry $M_{[w,c]}$ quantifies the strength of association between a word and a context in a large corpus.
- \triangleright each word (row) w has a vector $M_{[w,:]}$ giving a distribution over contexts.
 - ightharpoonup normally, these vectors have a spatial interpretation ightharpoonup geometric distances between word vectors reflect semantic distances between words.

Words and Contexts

A long line of NLP research aims to capture the distributional properties of words using a **word-context matrix** M:

- ▶ each row w represents a **word** (e.g. "income"), each column c represents a linguistic **context** in which words can occur (e.g. "corporate ____ tax").
 - A matrix entry $M_{[w,c]}$ quantifies the strength of association between a word and a context in a large corpus.
- \triangleright each word (row) w has a vector $M_{[w,:]}$ giving a distribution over contexts.
 - normally, these vectors have a spatial interpretation → geometric distances between word vectors reflect semantic distances between words.
 - \blacktriangleright Different definitions of contexts and different measures of association \rightarrow different types of word vectors.

- ► The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "tabby", c = "tabby"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")

- ▶ The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "the"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")
 - note the symmetry between words and contexts in this case.

- ▶ The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "the"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")
 - ▶ note the symmetry between words and contexts in this case.
- Could extend this to words within a window of two:
 - ▶ add (w = "the", c = "cat"), (w = "cat", c = "the")

- ▶ The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "the"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")
 - ▶ note the symmetry between words and contexts in this case.
- Could extend this to words within a window of two:
 - ightharpoonup add (w = "the", c = "cat"), (<math>w = "cat", c = "the")
 - word2vec and glove generally use 5- or 10-word windows.

- ▶ The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "the"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")
 - ▶ note the symmetry between words and contexts in this case.
- ▶ Could extend this to words within a window of two:
 - ightharpoonup add (w = "the", <math>c = "cat"), (w = "cat", c = "the")
 - word2vec and glove generally use 5- or 10-word windows.
- The context could be the tuple of preceding and subsequent words:
 - (w = "tabby", c = ("the", "cat"))

- ▶ The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "the"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")
 - ▶ note the symmetry between words and contexts in this case.
- Could extend this to words within a window of two:
 - ightharpoonup add (w = "the", <math>c = "cat"), (w = "cat", c = "the")
 - word2vec and glove generally use 5- or 10-word windows.
- The context could be the tuple of preceding and subsequent words:
 - (w = "tabby", c = ("the", "cat"))
- Could include all words in the same sentence.

- ▶ The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "the"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")
 - note the symmetry between words and contexts in this case.
- Could extend this to words within a window of two:
 - ightharpoonup add (w = "the", <math>c = "cat"), (w = "cat", c = "the")
 - word2vec and glove generally use 5- or 10-word windows.
- The context could be the tuple of preceding and subsequent words:
 - ► (w = "tabby", c = ("the", "cat"))
- Could include all words in the same sentence.
 - or same paragraph
 - or nouns in the same sentence
 - or syntactically connected words (from the parse tree)

- ▶ The simplest definition of context is neighboring words:
 - for "the tabby cat": we get (w = "the", c = "tabby"), (w = "tabby", c = "the"), (w = "tabby", c = "cat"), and (w = "cat", c = "tabby")
 - note the symmetry between words and contexts in this case.
- Could extend this to words within a window of two:
 - ightharpoonup add (w = "the", <math>c = "cat"), (w = "cat", c = "the")
 - word2vec and glove generally use 5- or 10-word windows.
- The context could be the tuple of preceding and subsequent words:
 - ► (w = "tabby", c = ("the", "cat"))
- Could include all words in the same sentence.
 - or same paragraph
 - or nouns in the same sentence
 - or syntactically connected words (from the parse tree)
 - **•** ...
- Etc.

- ▶ Let $M_{[w,c]} = f_M(w,c)$ where w and c are lookups to words in the w vocabulary and c vocabulary.
 - "word" could also mean phrases or more complicated objects.

- Let $M_{[w,c]} = f_M(w,c)$ where w and c are lookups to words in the w vocabulary and c vocabulary.
 - "word" could also mean phrases or more complicated objects.
- **counts**: $f_M(w,c) = \#(w,c)$, the number of times w appeared along with context c.
- **document frequencies**: $f_M(w,c) = \frac{\#(w,c)}{n_D}$

- Let $M_{[w,c]} = f_M(w,c)$ where w and c are lookups to words in the w vocabulary and c vocabulary.
 - "word" could also mean phrases or more complicated objects.
- **counts**: $f_M(w,c) = \#(w,c)$, the number of times w appeared along with context c.
- **document frequencies**: $f_M(w,c) = \frac{\#(w,c)}{n_D}$
 - puts high weight on very common contexts that are shared across many words (e.g., "the cat" will be weighted higher than "tabby cat")

- Let $M_{[w,c]} = f_M(w,c)$ where w and c are lookups to words in the w vocabulary and c vocabulary.
 - "word" could also mean phrases or more complicated objects.
- **counts**: $f_M(w,c) = \#(w,c)$, the number of times w appeared along with context c.
- **document frequencies**: $f_M(w,c) = \frac{\#(w,c)}{n_D}$
 - puts high weight on very common contexts that are shared across many words (e.g., "the cat" will be weighted higher than "tabby cat")
- ▶ Point-wise mutual information (PMI) normalized for high frequency:

$$(w,c) = \log \frac{\Pr(w,c)}{\Pr(w)\Pr(c)} = \log \frac{\frac{\#(w,c)}{n_D}}{\frac{\#(w)}{n_D} \frac{\#(c)}{n_D}} = \log \frac{n_D \#(w,c)}{\#(w) \#(c)}$$

where #(w) and #(c) are the corpus counts for w and c, respectively.

Issues with PMI

$$f_M(w,c) = PMI(w,c) = \log \frac{\#(w,c)}{\#(w)\#(c)}$$

- ▶ Issue 1: with PMI(·), unseen (w,c) pairs will take value $-\infty$.
 - ► So positive PMI (PPMI) is preferred:

$$\mathsf{PPMI}(w,c) = \mathsf{max}(\mathsf{PMI}(w,c),0)$$

Issues with PMI

$$f_M(w,c) = PMI(w,c) = \log \frac{\#(w,c)}{\#(w)\#(c)}$$

- ▶ Issue 1: with PMI(·), unseen (w,c) pairs will take value $-\infty$.
 - So positive PMI (PPMI) is preferred:

$$PPMI(w,c) = max(PMI(w,c),0)$$

- Issue 2: PMI assigns high value to rare word-context pairs.
 - so impose a minimum count threshold on (w,c) pairs; below the threshold, set to zero.

- **M** is $n_w \times n_c$
 - if c is drawn from from the vocabulary of a reasonably large corpus, the associated word vectors $\{v_1 = \mathbf{M}_{[w_1,:]}, v_2 = \mathbf{M}_{[w_2,:]},...\}$ are too high-dimensional to be useful.

- \blacktriangleright **M** is $n_w \times n_c$
 - if c is drawn from from the vocabulary of a reasonably large corpus, the associated word vectors $\{v_1 = \mathbf{M}_{[w_1,:]}, v_2 = \mathbf{M}_{[w_2,:]},...\}$ are too high-dimensional to be useful.
- ► The standard approach is singular value decomposition (SVD):
 - factorize $\pmb{M} \in \mathbb{R}^{n_w \times n_c}$ into a word matrix $\pmb{W} \in \mathbb{R}^{n_w \times n_E}$ and context matrix $\pmb{C} \in \mathbb{R}^{n_c \times n_E}$
 - **>** such that $\tilde{\mathbf{M}} = \mathbf{WC}'$ is the best rank- n_E approximation of \mathbf{M} .

- \blacktriangleright **M** is $n_w \times n_c$
 - if c is drawn from from the vocabulary of a reasonably large corpus, the associated word vectors $\{v_1 = \mathbf{M}_{[w_1,:]}, v_2 = \mathbf{M}_{[w_2,:]},...\}$ are too high-dimensional to be useful.
- ► The standard approach is singular value decomposition (SVD):
 - ▶ factorize $M \in \mathbb{R}^{n_w \times n_c}$ into a word matrix $W \in \mathbb{R}^{n_w \times n_E}$ and context matrix $C \in \mathbb{R}^{n_c \times n_E}$
 - **>** such that $\tilde{\mathbf{M}} = \mathbf{WC}'$ is the best rank- n_E approximation of \mathbf{M} .
 - $ightharpoonup ilde{M}$ can be seen as a "smoothed" version of M; "missing" values are filled in, etc.

- \blacktriangleright **M** is $n_w \times n_c$
 - if c is drawn from from the vocabulary of a reasonably large corpus, the associated word vectors $\{v_1 = \mathbf{M}_{[w_1,:]}, v_2 = \mathbf{M}_{[w_2,:]},...\}$ are too high-dimensional to be useful.
- The standard approach is singular value decomposition (SVD):
 - factorize $\pmb{M} \in \mathbb{R}^{n_w \times n_c}$ into a word matrix $\pmb{W} \in \mathbb{R}^{n_w \times n_E}$ and context matrix $\pmb{C} \in \mathbb{R}^{n_c \times n_E}$
 - **>** such that $\tilde{\mathbf{M}} = \mathbf{WC}'$ is the best rank- n_E approximation of \mathbf{M} .
 - \tilde{M} can be seen as a "smoothed" version of M; "missing" values are filled in, etc.
- ▶ **W** is the matrix of word vectors (word embeddings):
 - relatively low-dimensional ($n_E \ll n_w$, typically between 50 and 300)
 - dense, rather than sparse.

- \blacktriangleright **M** is $n_w \times n_c$
 - if c is drawn from from the vocabulary of a reasonably large corpus, the associated word vectors $\{v_1 = \mathbf{M}_{[w_1,:]}, v_2 = \mathbf{M}_{[w_2,:]},...\}$ are too high-dimensional to be useful.
- The standard approach is singular value decomposition (SVD):
 - factorize $\pmb{M} \in \mathbb{R}^{n_w \times n_c}$ into a word matrix $\pmb{W} \in \mathbb{R}^{n_w \times n_E}$ and context matrix $\pmb{C} \in \mathbb{R}^{n_c \times n_E}$
 - ▶ such that $\tilde{\mathbf{M}} = \mathbf{WC}'$ is the best rank- n_E approximation of \mathbf{M} .
 - $ightharpoonup ilde{M}$ can be seen as a "smoothed" version of M; "missing" values are filled in, etc.
- ▶ **W** is the matrix of word vectors (word embeddings):
 - relatively low-dimensional ($n_E \ll n_w$, typically between 50 and 300)
 - dense, rather than sparse.
 - ightharpoonup similarity measures between rows of $oldsymbol{W}$ approximate similarity measures between rows of $oldsymbol{M}$

Word Similarity

- ▶ Once words are represented as vectors $\{v_1 = \boldsymbol{M}_{[w_1,:]}, v_2 = \boldsymbol{M}_{[w_2,:]},...\}$, we can use linear algebra to understand the relationships between words:
 - ▶ Words that are geometrically close to each other are similar: e.g. "dog" and "cat":

▶ The standard metric for comparing vectors is cosine similarity:

$$\cos\theta = \frac{v_1 \cdot v_2}{||v_1||||v_2||}$$

▶ alternatives include e.g. Jaccard similarity (Goldberg 2017)

Word Similarity

- ▶ Once words are represented as vectors $\{v_1 = \boldsymbol{M}_{[w_1,:]}, v_2 = \boldsymbol{M}_{[w_2,:]},...\}$, we can use linear algebra to understand the relationships between words:
 - ▶ Words that are geometrically close to each other are similar: e.g. "dog" and "cat":

▶ The standard metric for comparing vectors is cosine similarity:

$$\cos\theta = \frac{v_1 \cdot v_2}{||v_1||||v_2||}$$

- ▶ alternatives include e.g. Jaccard similarity (Goldberg 2017)
- ► Thanks to linearity, can compute similarities between groups of words by averaging the groups.

Word2Vec

When people mention "word2vec", they are usually talking about a particular word-embedding model with good performance on a range of analogy and prediction tasks.

Word2Vec

- When people mention "word2vec", they are usually talking about a particular word-embedding model with good performance on a range of analogy and prediction tasks.
- How does it learn the meaning of the word "fox"?
 - By comparing true instances of the word fox ("The <u>quick brown</u> fox <u>jumps over</u> the lazy dog")
 - ▶ to fake (randomly sampled) ones ("The <u>prescription of</u> **fox** <u>is advised</u> for this diagnosis")

Word2Vec

- When people mention "word2vec", they are usually talking about a particular word-embedding model with good performance on a range of analogy and prediction tasks.
- How does it learn the meaning of the word "fox"?
 - By comparing true instances of the word fox ("The <u>quick brown</u> fox <u>jumps over</u> the lazy dog")
 - to fake (randomly sampled) ones ("The <u>prescription of</u> fox <u>is advised</u> for this diagnosis")
- Word2Vec learns embedding vectors for the target word ("fox") and context words (neighbors of "fox") to distinguish true from false samples.

Word2Vec Objective

- ▶ The dataset is a collection of context pairs indexed by *i*:
 - $ightharpoonup y_i = 1$ means correct (it appeared in the corpus)
 - $ightharpoonup y_i = 0$ means incorrect (it was randomly drawn).

Word2Vec Objective

- ▶ The dataset is a collection of context pairs indexed by *i*:
 - $y_i = 1$ means correct (it appeared in the corpus)
 - $y_i = 0$ means incorrect (it was randomly drawn).
 - ► This random drawing of incorrect pairs is called "negative sampling". It is a form of unsupervised learning.

Word2Vec Objective

- ▶ The dataset is a collection of context pairs indexed by *i*:
 - $ightharpoonup y_i = 1$ means correct (it appeared in the corpus)
 - $y_i = 0$ means incorrect (it was randomly drawn).
 - ► This random drawing of incorrect pairs is called "negative sampling". It is a form of unsupervised learning.
- Let $\hat{y}_i(w,c;\theta)$ be the predicted probability of a correct pair. Word2Vec minimizes the binary cross-entropy

$$L(\theta) = -\sum_{i=1}^{n_D} [y_i \log \hat{y}_i(w, c; \theta) + [1 - y_i] \log(1 - \hat{y}_i(w, c; \theta))]$$

We have an embedding matrix for target words, \boldsymbol{E}_{w} , and for context words, \boldsymbol{E}_{c} .

Let $v_w(w) = \mathbf{E}_w \cdot w$ and $v_c(c) = \mathbf{E}_c \cdot c$ be the associated lookup functions.

We have an embedding matrix for target words, E_w , and for context words, E_c .

Let $v_w(w) = \mathbf{E}_w \cdot w$ and $v_c(c) = \mathbf{E}_c \cdot c$ be the associated lookup functions.

Embedding layer for instance *i*:

$$\mathbf{w}_i = v_w(w_i)$$

We have an embedding matrix for target words, \boldsymbol{E}_w , and for context words, \boldsymbol{E}_c .

Let $v_w(w) = \mathbf{E}_w \cdot w$ and $v_c(c) = \mathbf{E}_c \cdot c$ be the associated lookup functions.

Embedding layer for instance i:

- $\mathbf{w}_i = v_w(w_i)$
- ► Skip-gram step:
 - ightharpoonup draw one word c_i from i's context window (n_{cw} words before or after w_i)
 - look up $c_i = v_c(c_i)$

We have an embedding matrix for target words, \boldsymbol{E}_{w} , and for context words, \boldsymbol{E}_{c} .

Let $v_w(w) = \mathbf{E}_w \cdot w$ and $v_c(c) = \mathbf{E}_c \cdot c$ be the associated lookup functions.

Embedding layer for instance i:

- $\mathbf{w}_i = v_w(w_i)$
- Skip-gram step:
 - ightharpoonup draw one word c_i from i's context window (n_{cw} words before or after w_i)
 - look up $c_i = v_c(c_i)$

The embedding [w; c] is input to MLP1 (no activation) with sigmoid output:

$$\hat{y}(w,c) = \operatorname{sigmoid}(([\boldsymbol{w}; \boldsymbol{c}] \cdot \omega_0) \cdot \omega_1)$$

Target word

negative)

We have an embedding matrix for target words, \boldsymbol{E}_{w} , and for context words, \boldsymbol{E}_{c} .

Let $v_w(w) = \mathbf{E}_w \cdot w$ and $v_c(c) = \mathbf{E}_c \cdot c$ be the associated lookup functions.

Embedding layer for instance i:

- $\mathbf{w}_i = v_w(w_i)$
- **Skip-gram** step:
 - ightharpoonup draw one word c_i from i's context window (n_{cw} words before or after w_i)
 - look up $c_i = v_c(c_i)$

The embedding [w; c] is input to MLP1 (no activation) with sigmoid output:

$$\hat{y}(w,c) = \operatorname{sigmoid}(([\boldsymbol{w};\boldsymbol{c}]\cdot\omega_0)\cdot\omega_1)$$

Does does this relate to **M**?

- ▶ Word2Vec produces embedding matrices E_w and E_c .
 - generally, context embeddings are discarded after training.

Does does this relate to **M**?

- ▶ Word2Vec produces embedding matrices \boldsymbol{E}_w and \boldsymbol{E}_c .
 - generally, context embeddings are discarded after training.
- If we take $\tilde{M} = E_w E_c'$, Levy and Goldberg (2014) show that word2vec is equivalent to factorizing a matrix M with items

$$\mathbf{M}_{[w,c]} = \mathsf{PMI}(w,c) - \log a$$

where a is a constant calibrating the amount of negative sampling.

GloVe Embeddings

- ▶ Pennington et al (2014) (GloVe = Global Vectors) take a different approach:
 - that does not require a neural net
- Let #(w,c) be the co-occurrence counts within some window, e.g. 10 words.

GloVe Embeddings

- ▶ Pennington et al (2014) (GloVe = Global Vectors) take a different approach:
 - that does not require a neural net
- Let #(w,c) be the co-occurrence counts within some window, e.g. 10 words.
- ▶ Learn W and C (containing vectors w and c corresponding to w and c, respectively), to solve

$$\min_{\boldsymbol{W},\boldsymbol{C}} \sum_{(\boldsymbol{w},\boldsymbol{c})} \phi(\#(\boldsymbol{w},\boldsymbol{c})) (\boldsymbol{w} \cdot \boldsymbol{c} - \log(\#(\boldsymbol{w},\boldsymbol{c})))^2$$

 $lackbox{}\phi(\cdot)$ is weighting function to down-weight frequent words.

GloVe Embeddings

- \triangleright Pennington et al (2014) (GloVe = Global Vectors) take a different approach:
 - that does not require a neural net
- Let #(w,c) be the co-occurrence counts within some window, e.g. 10 words.
- ▶ Learn W and C (containing vectors w and c corresponding to w and c, respectively), to solve

$$\min_{\boldsymbol{W},\boldsymbol{C}} \sum_{(\boldsymbol{w},\boldsymbol{c})} \phi(\#(\boldsymbol{w},\boldsymbol{c})) (\boldsymbol{w} \cdot \boldsymbol{c} - \log(\#(\boldsymbol{w},\boldsymbol{c})))^2$$

- $ightharpoonup \phi(\cdot)$ is weighting function to down-weight frequent words.
- Minimizes squared difference between:
 - **b** dot product of word vectors, $w \cdot c$
 - empirical co-occurrence, $\log(\#(w,c))$
- Intuitively: words that co-occur have high correlation (dot product)

Word Embeddings Encode Linguistic Relations

Word Embeddings Encode Linguistic Relations

Similarity vs. Relatedness (Budansky and Hirst, 2006)

- ► Semantic **similarity**: words sharing salient attributes / features
 - synonymy (car / automobile)
 - hypernymy (car / vehicle)
 - co-hyponymy (car / van / truck)

Similarity vs. Relatedness (Budansky and Hirst, 2006)

- ► Semantic **similarity**: words sharing salient attributes / features
 - synonymy (car / automobile)
 - hypernymy (car / vehicle)
 - co-hyponymy (car / van / truck)
- Semantic relatedness: words semantically associated without necessarily being similar
 - function (car / drive)
 - meronymy (car / tire)
 - location (car / road)
 - attribute (car / fast)

Similarity vs. Relatedness (Budansky and Hirst, 2006)

- ► Semantic **similarity**: words sharing salient attributes / features
 - synonymy (car / automobile)
 - hypernymy (car / vehicle)
 - co-hyponymy (car / van / truck)
- Semantic relatedness: words semantically associated without necessarily being similar
 - function (car / drive)
 - meronymy (car / tire)
 - location (car / road)
 - attribute (car / fast)
- Word embeddings will recover one or both of these relations, depending on how contexts and associated are constructed.

Most similar words to dog, depending on context window size

► Small windows pick up substitutable words; large windows pick up topics.

Target Word	BoW5	BoW2	Deps
batman	nightwing	superman	superman
	aquaman	superboy	superboy
	catwoman	aquaman	supergirl
	superman	catwoman	catwoman
	manhunter	batgirl	aquaman
hogwarts	dumbledore	evernight	sunnydale
	hallows	sunnydale	collinwood
	half-blood	garderobe	calarts
	malfoy	blandings	greendale
	snape	collinwood	millfield
turing	nondeterministic	non-deterministic	pauling
	non-deterministic	finite-state	hotelling
	computability	nondeterministic	heting
	deterministic	buchi	lessing
	finite-state	primality	hamming
florida	gainesville	fla	texas
	fla	alabama	louisiana
	jacksonville	gainesville	georgia
	tampa	tallahassee	california
	lauderdale	texas	carolina
object-oriented	aspect-oriented	aspect-oriented	event-driven
	smalltalk	event-driven	domain-specific
	event-driven	objective-c	rule-based
	prolog	dataflow	data-driven
	domain-specific	4gl	human-centered
dancing	singing	singing	singing
	dance	dance	rapping
	dances	dances	breakdancing
	dancers	breakdancing	miming
	tap-dancing	clowning	busking

Parts of Speech and Phrases

- ▶ In the default model multiple senses of a word are merged.
 - e.g. "I like a bird" (verb) and "I am like a bird" (preposition).

Parts of Speech and Phrases

- In the default model multiple senses of a word are merged.
 - e.g. "I like a bird" (verb) and "I am like a bird" (preposition).
- ► Can significantly improve the quality of embeddings in these cases by attaching the POS to the word (e.g. "like:verb", "like:prep") before training.

Parts of Speech and Phrases

- ▶ In the default model multiple senses of a word are merged.
 - e.g. "I like a bird" (verb) and "I am like a bird" (preposition).
- ► Can significantly improve the quality of embeddings in these cases by attaching the POS to the word (e.g. "like:verb", "like:prep") before training.
- ▶ The default model only works by word, but "new york \neq "new" + "york"
 - it makes sense to tokenize phrases together (see Week 2 lecture) before training.

▶ The trivial or obvious features of a word are not mentioned in standard corpora.

- ▶ The trivial or obvious features of a word are not mentioned in standard corpora.
- ► For example, although most sheep are white, you rarely see the phrase "white sheep".
 - so word2vec tells you sim(black,sheep) > sim(white,sheep).

- ▶ The trivial or obvious features of a word are not mentioned in standard corpora.
- ► For example, although most sheep are white, you rarely see the phrase "white sheep".
 - so word2vec tells you sim(black,sheep) > sim(white,sheep).
- ► This is really important when we will use embeddings to analysis social biases. And I don't see a solution to it.

- ▶ The trivial or obvious features of a word are not mentioned in standard corpora.
- ► For example, although most sheep are white, you rarely see the phrase "white sheep".
 - so word2vec tells you sim(black,sheep) > sim(white,sheep).
- ► This is really important when we will use embeddings to analysis social biases. And I don't see a solution to it.
- ► Relatedly, antonyms are often rated similarly, be careful with that.

$Vector\ Directions \leftrightarrow Meaning$

► Intriguingly, word2vec algebra can depict conceptual, analogical relationships between words:

$$vec(king) - vec(man) + vec(woman) \approx vec(queen)$$

$$vec(king) - vec(man) + vec(woman) \approx vec(queen)$$

More generally: The analogy $a_1:b_1::a_2:b_2$ can be solved (that is, find b_2 given a_1,b_1,a_2) by

$$\arg\max_{b_2\in V}\cos(b_2,a_2-a_1+b_1)$$

where V excludes (a_1, b_1, a_2) .

$$vec(king) - vec(man) + vec(woman) \approx vec(queen)$$

More generally: The analogy $a_1:b_1::a_2:b_2$ can be solved (that is, find b_2 given a_1,b_1,a_2) by

$$\arg\max_{b_2\in V}\cos(b_2,a_2-a_1+b_1)$$

where V excludes (a_1, b_1, a_2) .

▶ Often works better with normalized vectors (so that one long vector doesnt wash out the others)

$$vec(king) - vec(man) + vec(woman) \approx vec(queen)$$

More generally: The analogy $a_1:b_1::a_2:b_2$ can be solved (that is, find b_2 given a_1,b_1,a_2) by

$$\arg\max_{b_2\in V}\cos(b_2,a_2-a_1+b_1)$$

where V excludes (a_1, b_1, a_2) .

- Often works better with normalized vectors (so that one long vector doesnt wash out the others)
- ▶ Levy and Goldberg (2014) recommend the following "CosMul" metric which tends to perform better:

$$\arg\max_{b_2\in V}\frac{\cos(b_2,a_2)\cos(b_2,b_1)}{\cos(b_2,a_1)+\epsilon}$$

- requires normalized, non-negative vectors (can transform using (x+1)/2)
- $ightharpoonup \epsilon$ is a small smoothing parameter.

Word embeddings vs topic models

Ben Schmidt:

► Topic models reduce words to core meanings to understand documents more clearly.

Word embeddings vs topic models

Ben Schmidt:

- Topic models reduce words to core meanings to understand documents more clearly.
- ▶ Word embedding models ignore information about individual documents to better understand the relationships between words.

Tokenizing for Embeddings

- embeddings work better with more information about the placement of words in sentences.
 - don't drop stopwords/function-words
 - should include tokens for start of sentence and end of sentence
 - should include a special token for out-of-vocabulary words
 - or replace with the part of speech tag

Word Dropout

- ▶ When training models, words can be randomly replaced with the unknown symbol with some small probability (lyyer et al 2015).
- ▶ Prevents models from relying too much on particular words.

K-means clustering with Word Embeddings

Income Tax (Pensions Topic and Health Care Topic)


```
restor servic in accordvocat rehability provides of the provides of the servic in an accord of the provides of
```

Sales Tax (Retail Topic and Health Care Topic)

Clustered phrases affecting tax revenues (Ash 2018); Green words tend to increase revenues; red words tend to decrease revenues.

Word Mover Distance

▶ Cosine distance treats synonyms as just as close as totally unrelated words.

Word Mover Distance

- Cosine distance treats synonyms as just as close as totally unrelated words.
- ▶ Word mover distance between two texts is given by:
 - total amount of "mass" needed to move words from one side into the other
 - multiplied by the distance the words need to move
 - Kusner, Sun, Kolkin, and Weinberger (ICML 2015)

Word Mover Distance

- Cosine distance treats synonyms as just as close as totally unrelated words.
- ▶ Word mover distance between two texts is given by:
 - total amount of "mass" needed to move words from one side into the other
 - multiplied by the distance the words need to move
 - Kusner, Sun, Kolkin, and Weinberger (ICML 2015)
- Requires measure of distance between words (word embeddings).
 - see wmd package in Python.

Illustration

- d (obama speaks media illinois) is orthogonal to d' (president greets press chicago):
 - cosine similarity is zero

Illustration

- ightharpoonup d (obama speaks media illinois) is orthogonal to d' (president greets press chicago):
 - cosine similarity is zero
 - Word mover distance sums the shortest distances between the words in the documents.

Pre-trained word embeddings

- For some NLP tasks, you might not need to train your own vectors.
 - or your corpus might be too small to do so.

Pre-trained word embeddings

- For some NLP tasks, you might not need to train your own vectors.
 - or your corpus might be too small to do so.
- ▶ In these cases, you can use a pre-trained model, like spaCy's GloVe embeddings:
 - one million vocabulary entries
 - ▶ 300-dimensional vectors
 - trained on the Common Crawl corpus

Pre-trained word embeddings

- For some NLP tasks, you might not need to train your own vectors.
 - or your corpus might be too small to do so.
- ▶ In these cases, you can use a pre-trained model, like spaCy's GloVe embeddings:
 - one million vocabulary entries
 - ▶ 300-dimensional vectors
 - trained on the Common Crawl corpus
- Can initialize prediction model using pre-trained embeddings.

Tips for using pre-trained embeddings

- ► Split training in two steps:
 - in first run, train the model with the first layer (the pre-trained embeddings) frozen.

Tips for using pre-trained embeddings

- Split training in two steps:
 - in first run, train the model with the first layer (the pre-trained embeddings) frozen.
 - in second run, un-freeze the embedding layer for fine tuning.