NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 4/2 A STATISTICAL ANALYSIS OF DAILY AND WEEKLY RAINFALL FOR THE MON--ETC(U) AD-A109 525 SEP 81 D KIRCA UNCLASSIFIED NL 1 of 3 40 A 109524

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD A I CO5525

TIE

THESIS

A STATISTICAL ANALYSIS OF DAILY AND WEEKLY RAINFALL FOR THE MONTEREY PENINSULA, IN CENTRAL CALIFORNIA

by

Davut Kirca

September 1981

Thesis Advisor:

D. P. Gaver

Approved for public release; distribution unlimited.

1. REPORT HUNSER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER -1 D1/07 325	NS FORM
LiD-1/69 125	ER
4. TITLE (and Substitle) 5. TYPE OF REPORT & PERIOD	COVERED
A Statistical Analysis of Daily and Master's thesis;	
Workly Doinfell for the Monterey September 1901	
Peninsula, in Central California 4. PERFORMING ORG. REPORT,	NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBE	ER(a)
Davut Kirca	
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT AREA & WORK UNIT NUMBER	CT, TASK
Naval Postgraduate School	
Monterey, California 93940	
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE	
Centember 1981	
Naval Postgraduate School	
Monterey, California 93940	
14. MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) 18. SECURITY CLASS. (of this re	port)
Unclassified	
15e. DECLASSIFICATION/DOWN SCHEDULE	GRADING
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the element & fored in Block 20, if different from Report)	
17. DISTRIBUTION STATEMENT (at the approach & loves in allega 24, if willower the report)	1
	·
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY NOTES	· · · · · · · · · · · · · · · · · · ·
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse olds if necessary and identify by block number)	
19. KEY WORDS (Continue on reverse olds if necessary and identify by block number)	
19. KEY WORDS (Continue on reverse side if necessory and identify by block number) Daily rainfall	
Daily rainfall Weekly rainfall	
19. KEY WORDS (Continue on reverse side if necessory and identify by block number) Daily rainfall	
Daily rainfall Weekly rainfall Logistic analysis	
Daily rainfall Weekly rainfall Logistic analysis 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
Daily rainfall Weekly rainfall Logistic analysis 20. Abstract (Continue on reverse side of necessary and identify by block number) This thesis presents a preliminary statistical analysis	
Daily rainfall Weekly rainfall Logistic analysis 20. Approach (Continue on reverse olds if recovery and identify by block number) This thesis presents a preliminary statistical analysis of the daily and weekly rainfall for the Monterey Peninsula	•
Daily rainfall Weekly rainfall Logistic analysis This thesis presents a preliminary statistical analysis of the daily and weekly rainfall for the Monterey Peninsula in central California. The analysis begins by examining	
Daily rainfall Weekly rainfall Logistic analysis This thesis presents a preliminary statistical analysis of the daily and weekly rainfall for the Monterey Peninsula in central California. The analysis begins by examining the daily rainfall data, also the relationship among the less	ngth
Daily rainfall Weekly rainfall Logistic analysis This thesis presents a preliminary statistical analysis of the daily and weekly rainfall for the Monterey Peninsula in central California. The analysis begins by examining	ngth of

DD , FORM 1473

EDITION OF I NOV 68 IS OBSOLETE S/N 0102-014-6601 |

UNCLASSIFIED 2 /

.

BEUMTY CLASSIFICATION OF THIS PAGE/Mice Rote Betorie

20. ABSTRACT (continued)

study of the distribution was carried out for non-zero weekly rainfalls. 4x4 contingency tables are used to identify dependence/independence among the weeks in a given month. Also, 2x2 contingency tables are used to examine dependencies between weekly rainfalls; logistic analysis is used as a parameteric model for dependence.

This paper attempts to analyze rainfall data in the statistical sense. No attempt is made to provide a physical explanation of the findings from the point of view of a

meteorologist.

_	Access
	NA. E
	D. D. D. L.
	man and the second
	yshtik iti e deta Di sekij keyar
	Dist Lectul
	A

Approved for public release, distribution unlimited.

A Statistical Analysis of Daily and Weekly Rainfall for the Monterey Peninsula, in Central California

by

Davut Kirca Lieutenant, Turkish Navy B.S., Naval Postgraduate School, 1981

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL September, 1981

Author:	Don't direa
Approved by:	Patron A Just Honald P Gare
	Thesis Advisor
	Second Reader
	Chairman, Department of Operations Research
	W. 712. Woods
	Dean of Information and Policy Sciences

ABSTRACT

This thesis presents a preliminary statistical analysis of the daily and weekly rainfall for the Monterey Peninsula, in central California. The analysis begins by examining the daily rainfall data, also the relationship among the length of the storms, amount of rainfall in the storms and length of the successive days of rain. Also included is a study of the distribution of the amount of rainfall in the storms. Also study of the distribution was carried out for non-zero weekly rainfalls. 4x4 contingency tables are used to identify dependence/independence among the weeks in a given month. Also, 2x2 contingency tables are used to examine dependencies between weekly rainfalls; logistic analysis is used as a parametric model for dependence.

This paper attempts to analyze rainfall data in the statistical sense. No attempt is made to provide a physical explanation of the findings from the point of view of a meteorologist.

TABLE OF CONTENTS

I.	INT	RODU	CTION	17
II.	DATA	A		18
	A.	GEN	ERAL	18
	в.	WEE	KLY DATA	18
III.	ANA	LYSI	S OF STORMS	24
	A.	GEN	ERAL	24
	В.	STO	RMS	24
IV.	ANA	LYSI	S OF WEEKLY RAINFALL	39
	A.	DIS	TRIBUTION OF POSITIVE WEEKLY RAINFALL	39
		1.	Theory	39
		2.	Empirical Distribution of Positive Weekly Rainfall	39
	В.	SKEV	WNESS AND KURTOSIS ANALYSIS FOR POSITIVE KLY RAINFALL	46
		1.	Theory	46
		2.	Skewness and Kurtosis Analysis for Positive Weekly Rainfall	55
	c.	2X2	CONTINGENCY TABLES	62
		1.	Summary	62
		2.	Chi-Squared Test for Independence	66
	D.	4X4	CONTINGENCY TABLES	80
		1.	General	80
		2.	Classification of Rainfall	83
		3.	Chi-Squared Test for Independence	84
	Ē.	LOG.	ISTIC ANALYSIS	92

1.	Theory	92
2.	Analysis	94
APPENDIX A:	DAILY RAINFALL DATA	117
APPENDIX B:	WEEKLY RAINFALL DATA	151
APPENDIX C:	WEEKLY AMOUNT OF RAINFALL	156
APPENDIX D:	EXPONENTIAL DISTRIBUTION	172
APPENDIX E:	HISTORGRAMS OF AMOUNT OF RAINFALL IN EXACTLY n DAYS LASTING STORMS	176
APPENDIX F:	PLOT OF EXPONENTIAL SCORES VERSUS OBSERVED SCORES FOR WEEKLY DATA	190
LIST OF REFER	RENCES	221
INITIAL DIST	RIBUTION LIST	222

LIST OF TABLES

1.	MEANS AND VARIANCES FOR WEEKLY RAINFALL (WITH ZERO RAINFALL)	20
2.	MEANS AND VARIANCES FOR POSITIVE WEEKLY RAINFALL	21
3.	MEAN OF LENGTH OF THE NON-RAINY PERIOD FOLLOWING EXACTLY N DAYS LASTING STORMS IN THE 36-YEAR PERIOD	35
4.	SOME STATISTICS FOR THE LS, AR, AND LN	37
5.	ESTIMATED # OF OCCURRENCES/YEAR FOR THE EXACTLY N DAYS LASTING STORMS IN THE 36-YEAR PERIOD	38
6.	MEANS AND VARIANCES FOR POSITIVE WEEKLY RAINFALL	40
7.	MEANS, STANDARD DEVIATIONS, AND COEFFICIENTS OF VARIATION FOR POSITIVE WEEKLY RAINFALL	42
8.	ESTIMATED AND THEORETICAL VALUES OF MEDIAN, LOWER AND UPPER QUARTILE FOR THE POSITIVE WEEKLY RAINFALL	47
9.	SLOPES OF THE ESTIMATED VALUES AGAINST THEORETICAL VALUES FOR MEDIAN AND LOWER AND UPPER QUARTILES	51
10.	90% CONFIDENCE INTERVAL FOR AVERAGE POSITIVE WEEKLY RAINFALL WITH EXPONENTIAL DISTRIBUTION	52
11.	SKEWNESS AND KURTOSIS FOR WEEKLY RAINFALL DATA	56
12.	ESTIMATED AND SIMULATED MEANS FOR THE SKEWNESS AND KURTOSIS COEFFICIENTS	57
13.	SLOPES FOR SKEWNESS AND KURTOSIS	60
14.	ESTIMATED AND SIMULATED VALUES FOR SKEWNESS AND KURTOSIS FOR SAME SAMPLE SIZES	61
15.	TEST STATISTICS, APPROXIMATED CHI-SQUARED AND SIGNIFICANCE LEVEL FOR THE WEEKS	73
16.	TEST STATISTICS, APPROXIMATED CHI-SQUARED AND SIGNIFICANCE LEVEL FOR THE WEEKS	81
17.	AMOUNT OF RAINFALL LIMITS FOR THE WEEKLY	0.4

TA.	TABLES	85
19.	TEST STATISTIC, APPROXIMATE CHI-SQUARED VALUES, SIGNIFICANCE LEVEL FOR THE MONTH	91
20.	RESULTS OF THE LOGISTIC ANALYSIS FOR THE WEEKS	96
21.	RESULT OF LOGISTIC ANALYSIS FOR THE WEEKS	107
22.	ESTIMATED AND SIMULATED VALUES FOR SKEWNESS AND KURTOSIS FOR SAME SAMPLE SIZES	175

LIST OF FIGURES

1.	Weekly means and variances for the weeks zero rainfalls included	22
2.	Weekly means and variances for the positive weekly rainfalls	23
3.	Time series plot of the LS for December-February	26
4.	Time series plot of the AR for December-February	27
5.	Time series plot of the LN for December-February	28
6.	Plot of the LS against AR for October-April	29
7.	Plot of the LS against LN for October-April	30
8.	Plot of the LN against AR for October-April	31
9.	Plot of the LS against AR for December-February	32
LO.	Plot of the LS against LN for December-February	33
11.	Plot of the LN against AR for December-February	34
12.	Plot of the LS against mean of the non-rainy period for October-April and December-February	36
L3.	Weekly means and variances for the positive weekly rainfall data in the 36-year period	41
14.	Weekly coefficients of variation for the positive weekly rainfalls in the 36-year period	4 4
15.	Plot of means against standard deviations for the positive weekly rainfall in the 36-year period	45
L6.	Plot of estimated median against theoretical median for positive weekly rainfall	48
17.	Plot of estimated L-quartile against theoretical L-quartile for positive weekly rainfall	49
18.	Plot of estimated U-quartile against theoretical U-quartile for positive weekly rainfall	50
19.	Weekly skewness and kurtosis coefficients for the positive weekly rainfall	58

\$.

20.	Plot of weekly skewness against weekly kurtosis for positive weekly rainfall	59
21.	Plot of estimated skewness against simulated skewness for the positive weekly rainfall	63
22.	Plot of estimated kurtosis against simulated kurtosis for the positive weekly rainfall	64
23.	Typical 2x2 contingency table	65
24.	2x2 Contingency tables for weeks 01, 02, 03, 04, ON, N1	67
25.	2x2 Contingency tables for weeks N2, N3, N4, D1, D2, D3, D4	68
26.	2x2 Contingency tables for weeks for weeks D4, J1, J2, J3, J4, JF, F1	69
27.	2x2 Contingency tables for weeks F1, F2, F3, FM, M1, M2, M3	70
28.	2x2 Contingency tables for weeks M3, M4, A1, A2, A3, A4, AM	71
29.	2x2 Contingency tables for weeks 01, 02, 03, 04, ON, N1	75
30.	2x2 Contingency tables for weeks N2, N3, N4, D1, D2, D3, D4	76
31.	2x2 Contingency tables for weeks D4, J1, J2, J3, J4, JF, F1	77
32.	2x2 Contingency tables for weeks F1, F2, F3, FM, M1, M2, M3	78
33.	2x2 Contingency tables for weeks M3, M4, A1, A2, A3, A4, AM	79
34.	Typical 4x4 contingency table	80
35.	4x4 contingency table for October	87
36.	4x4 contingency table for November	87
37.	4x4 contingency table for December	88
38.	4x4 contingency table for January	88
39.	4x4 contingency table for February	89

40.	4x4 contingency table for March	89
41.	4x4 contingency table for April	90
42.	Plot of alpha coefficient for the weeks	115
43.	Plot of beta coefficient for the weeks	116
44.	Weekly rainfall in inches for weeks 01 and 02	156
45.	Weekly rainfall in inches for weeks 03 and 04	157
46.	Weekly rainfall in inches for weeks ON and Nl	158
47.	Weekly rainfall in inches for weeks N2 and N3	159
48.	Weekly rainfall in inches for weeks N4 and D1	160
49.	Weekly rainfall in inches for weeks D2 and D3	161
50.	Weekly rainfall in inches for weeks D4 and J1	162
51.	Weekly rainfall in inches for weeks J2 and J3	163
52.	Weekly rainfall in inches for weeks J4 and JF	164
53.	Weekly rainfall in inches for weeks Fl and F2	165
54.	Weekly rainfall in inches for weeks F3 and FM	166
55.	Weekly rainfall in inches for weeks Ml and M2	167
56.	Weekly rainfall in inches for weeks M3 and M4	168
57.	Weekly rainfall in inches for weeks Al and A2	169
58.	Weekly rainfall in inches for weeks A3 and A4	170
59.	Weekly rainfall in inches for week AM	171
60.	Histogram of the LS in days for October through April in the 36-year period	176
61.	Histogram of the LS in days for December through February in the 36-year period	177
62.	Histogram of the AR in inches in all storms for October through April in the 36-year period	178
63.	Histogram of the AR in inches in all storms for December through February in the 36-year period	179

04.	through April in the 36-year period	180
65.	Histogram of the LN in days for December through February in the 36-year period	181
66.	Histogram of AR in inches in the exactly 1 day lasting storms for October through April in the 36-year period	182
67.	Histogram of the AR in inches in the exactly l day lasting storms for December through February in the 36-year period	183
68.	Histogram of the AR in inches in the exactly 2 days lasting storms for October through April in the 36-year period	184
69.	Histogram of the AR in inches in the exactly 2 days lasting storms for December through February in the 36-year period	185
70.	Histogram of the AR in inches in the exactly 3 days lasting storms for October through April in the 36-year period	186
71.	Histogram of the AR in inches in the exactly 3 days lasting storms for December through February in the 36-year period	187
72.	Histogram of AR in inches in the exactly 4 days lasting storms for October through April in the 36-year period	188
73.	Histogram of AR in inches in the exactly 4 days lasting storms for December through February in the 36-year period	189
74.	Exponential scores versus observed scores for week 01	190
75.	Exponential scores versus observed scores for week 02	191
76.	Exponential scores versus observed scores for week 03	192
77.	Exponential scores versus observed scores for week 04	193
78.	Exponential scores versus observed scores for week ON	194

79.	Exponential scores versus observed scores for week N1	195
80.	Exponential scores versus observed scores for week N2	196
81.	Exponential scores versus observed scores for week N3	197
82.	Exponential scores versus observed scores for week N4	198
83.	Exponential scores versus observed scores for week Dl	199
84.	Exponential scores versus observed scores for week D2	200
85.	Exponential scores versus observed scores for week D3	201
86.	Exponential scores versus observed scores for week D4	202
87.	Exponential scores versus observed scores for week J1	203
88.	Exponential scores versus observed scores for week J2	204
89.	Exponential scores versus observed scores for week J3	205
90.	Exponential scores versus observed scores for week J4	206
91.	Exponential scores versus observed scores for week JF	207
92.	Exponential scores versus observed scores for week Fl	208
93.	Exponential scores versus observed scores for week F2	209
94.	Exponential scores versus observed scores for week F3	210
95.	Exponential scores versus observed scores for week FM	211
96.	Exponential scores versus observed scores for	

97.	Exponential scores versus observed scores for week M2	213
98.	Exponential scores versus observed scores for week M3	214
99.	Exponential scores versus observed scores for week M4	215
100.	Exponential scores versus observed scores for week Al	216
101.	Exponential scores versus observed scores for week A2	217
102.	Exponential scores versus observed scores for week A3	218
103.	Exponential scores versus observed scores for week A4	219
104.	Exponential scores versus observed scores for week AM	220

GLOSSARY OF SYMBOLS

JULIAN

WEEK	DATE	DESCRIPTION
		~ ~ ~ ~ ~ ~ ~ ~ ~
Jl:	001-007	is first week of January.
J2:	008-014	is second week of January.
J3:	015-021	is third week of January.
J4:	022-028	is fourth week of January.
JF:	029-035	is end of Januarybeginning of February.
F1:	035-042	is first week of February.
F2:	043-049	is second week of February.
F3:	050-056	is third week of February.
FM:	05663	is end of Februarybeginning of March.
Ml:	064-070	is first week of March.
M2:	071-077	is second week of March.
м3:	078-084	is third week of March.
M4:	085-091	is fourth week of March.
Al:	092-098	is first week of April.
A2:	099-105	is second week of April.
A3:	106-112	is third week of April.
A4:	113-119	is fourth week of April.
AM:	120-126	is end of Aprilbeginning of May.
ol:	272-278	is first week of October.
02:	279-285	is second week of October.
03:	286-292	is third week of October.

- 04: 292-299 is fourth week of October.
- ON: 300-306 is end of October-beginning of November.
- N1: 307-313 is first week of November.
- N2: 314-320 is second week of November.
- N3: 321-327 is third week of November.
- N4: 328-334 is fourth week of November.
- D1: 335-341 is first week of December.
- D2: 342-348 is second week of December.
- D3: 349-355 is third week of December.
- D4: 356-362 is fourth week of December.

I. INTRODUCTION

The Monterey Peninsula Water District, in the central California coastal area, has as one of its responsibilities the duty to recommend and/or impose water rationing on its constituents.

To do this in a rational way requires the district to have some way for predicting future water availability. This thesis analyzes rainfall data for the Forest Lake station of Monterey by purely statistical methodology in order to identify possible ways for predicting future water availability.

No strong evidence for useful procedures has been uncovered in this thesis, although some week indications of possible dependencies have been found.

II. DATA

A. GENERAL

Daily and weekly rainfall data were used in this analysis. The data were accumulated at the Forest Lake station of Monterey, in Central California. Rainfall data has been gathered by the California American-Water Company since 1891.

Although this data set started quite early, the data prior to 1938 has frequent missing observations. Therefore this data set includes observations from January 1938 through December 1974. Appendix A contains a listing of the daily rainfall data.

Weekly rainfall amounts have been obtained by summing daily rainfall amounts, starting from the beginning of October and running to the end of the April (which is considered the rainy season for Monterey Peninsula area) for the 36-year period (1938-1939 through 1973-1974). A week is defined in terms of Julian dates rather than the usual calendar week. For example the first week of January is defined to include the first seven days of the year. For other definitions of weeks, see the Table of Symbols.

B. WEEKLY DATA

Appendix B contains a listing of weekly rainfall data.

Appendix C shows plots of the weekly rainfall. As can be seen the data are strongly seasonal. This is enough to indicate that it is quite non-stationary.

Means and variances of the weekly rainfall are shown in Tables 1 and 2 for weeks with and without positive rainfall respectively. Figures 1 and 2 show plots of means and variances for weeks with and without positive rainfalls. On the figures week 1 represents the first week of October as Ol and week 31 represents the end of April and beginning of May as AM.

Table 1 : MEANS AND VARIANCES FOR WEEKLY RAINFALL (WITH ZERO RAINFALL)

REEK	a Pan	VARIANCE

のうりのの対対対域 DDDDJJJJJPPPPHHHHALLLA のうりのの対対対域 DDDDJJJJJPPPPHHHHALLLA	7065347051974095324076477225403	4519808525767080315608767456533 01102408363388927183823633361210 000000101000101010001000100000

Table 2: MEANS AND VARIANCES FOR POSITIVE NEEKLY RAINFALL

WEEK	HEAN	VARIANCE
	~~~	j
12341123412341234123H12341234H 00000NNNNDDDDJJJJJFFFFHHHHAAAAA	9267899491335336748753167302706	1285358285540227439636890588223



Figure 1. Weekly means and variances for the weeks zero rainfalls included.



Figure 2. Weekly means and variances for the positive weekly rainfalls

#### III. ANALYSIS OF STORMS

#### A. GENERAL

This analysis is carried out on rainfall data from October to May for a 36-year period (1938-1939 through 1973-1974). The rainy period is considered to run from October to May for the Monterey Peninsula.

#### B. STORMS

It will be said that a storm lasts exactly n days if there are exactly n consecutive days having rainfall greater than 0.02 inches. For example, if on January 10th there is no rainfall and on the 11th, 12th, and 13th of January there are 0.30", 0.15", 1.15" recorded in inches of rain respectively, and on the 14th of January there is again no rainfall, this means that a storm of length of duration 3 days has occurred, and the amount of rainfall in this storm is 1.60" (0.30 + 0.15 + 1.15 = 1.60).

Based on the above definition the historical lengths of storms and the amount of rainfall in the storms will be examined.

Appendix E shows the histograms of length of the storms, as denoted by LS, amount of the rainfall in the storms, as denoted by AR, and length of the non-rainy period after the storms, as denoted by LN for October through April and December through February in the 36-year period. The rainy period in the December through February months is more

homogeneous than the October through April period so for this reason the December through February period is also examined. Figures 3 through 5 show the time series plots of the LS, AR, and the LS in the 36-year period. On the figures, dot (·) indicates the beginning of each year from 1938-1939 through 1973-1974. Figures 6 through 11 show the plot of LS against AR, LS against LN, and LN against AR for the October through April and December through February months in the 36-year period.

Plots of LS versus LN indicates that if the length of the storms is small then the following non-rainy period (dry period) is large. Table 3 shows the LS and the mean of the length of the following non-rainy period for the October through April and December through February months.

Figure 12 shows the LS versus the mean of the following non-rainy period for the October through April and December through February in the 36-year period. The length of the storms (LS) and amount of the rainfall (AR) in the storms appear to have a linear relationship. By using median methods the slope of the length of the storms against the amount of the rainfall in the storm was computed as 0.71 for October through April and 0.79 for December through February.

Here are some statistics from the historgrams of LS, AR, and LN (Table 4).

Appendix E shows the histograms of the amount of rainfalls in exactly n days lasting storms which are made for



Figure 3. Time series plot of the LS for December-February.



AMOUNT OF THE RAINFALL IN THE STORMS

Figure 4. Time series plot of the AR for December-February.



LENGTH OF THE NONRAINY PERIOD

Figure 5. Time series plot of the LN for December-February.



Figure 6. Plot of the LS against AR for October-April



Figure 7. Plot of the LS against LN for October-April



AR



Figure 9. Plot of the LS against AR for December-February

45.80	1.00 	00°5*
37.67	,	79.76
30.33	•	30.33
23.00		.23.60
15.67	••••••	15.67
ñ.		
8.	1.00 4.25 10.162 E-00 UNITS L.S.	7.00
Y-SCALES	*** 0.7 33E+00 UNITS	

Figure 10. Plot of the LS against LN for December-Feburary



Table 3: HEAN OF LENGTH OF THE NON-RAINY PERIOD FOLLOWING EXACTLY N DAYS LASTING STORMS IN THE 36-YEAR PERIOD.

	OCT-APR	DEC-FEB
	******	****
STORM	MEAN OF LN	ezan of Ln
IN DAYS	IN DAYS	IN DAYS
LS=1	7.33	6.04
LS=2	6.71	5.92
LS=3	6.47	5.34
LS=4	6.66	3.83
LS=5	6.44	6.17
LS>6	5.91	3.76





Figure 12. Plot of the LS against mean of the non-rainy period for October-April and December-February

Table 4: SOME STATISTICS FOR THE LS, AR, AND LN

	OCTO	BER-AP	RIL	DECEME	ER-PEB	RUARY
	Min.	Mean	Max.	Min.	Mean	Max.
LS in days	1.	2.09	14.	1.	2.31	14.
AR in inches	0.03	0.71	7.86	0.03	0.83	7.86
LN in days	1.	6.86	57.	1.	5.64	45.

n = 1, 2, 3, 4 days in the 36-year period for October through April and December through February.

From the total number of occurrences for each exactly n days lasting storms estimated of occurrences for a year were computed in the following way and are shown in Table 5.

This suggests that many of the small storms, especially exactly one day lasting storms, occur during the months of October, November, March, and April and many ofthe large storms occur during the months of December, January, February.

Table 5: ESTIMATED # OF OCCURRENCES/YEAR FOR THE EXACTLY N DAYS LASTING STGRMS IN THE 36-YEAR PEFIOD.

	OCT, NOV, MAR, APR	DEC, JAN, FEB
STORMS	es tinated	ESTIMATED
(EXACTLY)	OCC URRENCE/YEAR	OCCURRENCE/YEAR
LS=1	6.52	4.64
LS=2	2.97	3.17
LS=3	1.06	1.31
LS=4	0.78	0.84
LS=5	0.28	0.47
LS <u>&gt;</u> 6	0.36	0.58

### IV. ANALYSIS OF WEEKLY RAINFALL

### A. DISTRIBUTION OF POSITIVE WEEKLY RAINFALL

## 1. Theory

In this section we will explore the distribution of positive weekly amounts of rainfall. A week is said to have a positive amount of rainfall if the amount of rain exceeds 0.02 inches. Table 6 is a listing of estimates of means and variances for positive weekly rainfalls. They were computed by using the program "HISTG". Figure 13 shows a plot of the weekly means and variances respectively. The pattern of weekly means again indicates nonstationarity of rainfall with more rain on the average falling during the weeks D4, J2, J3, JF, F3, FM, M4 where the average amount of rainfall in these weeks is more than 1.00 inches.

### 2. Empirical Distribution of Positive Weekly Rainfall

In order to fit a theoretical distribution to the positive weekly rainfall it is necessary to use some statistics computed from the data such as the mean, median, variance, standard deviation, quartiles, coefficients of variation, and skewness and kurtosis coefficients. Agreement of these statistics with the theoretical values for the exponential model (or some others) helps to identify and support that model.

Table 7 shows a listing of means, standard deviations, and coefficients of variation of the non-zero (positive)

Table 6: MEANS AND VARIANCES FOR POSITIVE WEEKLY RAINFALL

WEEK	MEAN	VARIANCE
1234N123412341234P123M12341234M	9267899491375336748753167302106	1285358285540227439636890588223



Figure 13. Weekly means and variances for the positive weekly rainfall data in the 36-year period

Table 7: MEANS, STANDARD DEVIATIONS, AND COEFFICIENTS OF VARIATION FOR POSITIVE WEEKLY RAINFALL.

		ST ANDARD	COEFFIC	CIENT OF
WEEK	MEAN	DEVIATION	S VAR	IATIONS
1234N123412341234F123H12341234E	0.0000000000000000000000000000000000000	1.386654990080969999999999999999999999999999999	393780717816186	4164458740611504836003165392510 1110280159089197899991099190077

weekly rainfalls. Figure 14 shows the weekly coefficients of variation for the positive weekly rainfalls.

As can be seen, the means and standard deviations of the data are approximately equal to each other, and the coefficients of variation of the data are close to one. These facts indicate that the distribution of the data may be approximately exponential. This is suggested since for data from an exponential distribution, the mean of the data equal the standard deviation of the data, and the coefficient of variation is one.

The fit of an exponential model for the positive weekly data will not be explored in more detail.

A plot of the means against standard deviations of the positive weekly rainfall is shown in Figure 15. These data appear to have a linear relationship. By using the median method (McNeil [Ref. 3]) the slope of the means versus standard deviations was computed as 0.84. This indicates that the means of the data are little higher than the standard deviations of the data.

Next, by using the subroutine EXPLT (which is a NONIMSL subroutine at the Naval Postgraduate School computer library), a plot exponential scores versus observed scores of the data can be examined. If the data is distributed exponentially, the the plot should be a straight line. Appendix E shows the exponential scores versus observed scores for the positive weekly rainfall. Most of the weeks seem to fit the exponential.



Figure 14. Weekly coefficients of variation for the positive weekly rainfalls in the 36-year period



Figure 15. Plot of means against standard deviations for the positive weekly rainfall in the 36-year period

Std. Dev. Also, estimated and theoretical values of median, lower and upper quartiles were examined against each other. Table 8 shows the estimated and theoretical values of the median, and lower and upper quartiles for the positive weekly rainfalls. Figures 16 through 18 show the plot of estimated values against theoretical values. They seem to support the exponential model for the positive weekly rainfall. Again using the median method the slope of estimated values against theoretical values were computed and are shown in Table 9.

A 90% confidence interval for the average positive weekly rainfall can be computed by assuming exponential distribution for the weeks which are shown in Table 10. Let  $\bar{x}$  be average positive weekly rainfall with n observations, then the formula for  $(1-\alpha)$ % confidence interval for the mean with  $\alpha = 0.10$  is

$$\overline{x}\left[\frac{\chi_{2n}^{2}(1-\alpha/2)}{2n}\right]^{-1} \leq E[x] = \frac{1}{\lambda} \leq \overline{x}\left[\frac{\chi_{2n}^{2}(\alpha/2)}{2n}\right]^{-1}$$

## B. SKEWNESS AND KURTOSIS ANALYSIS FOR POSITIVE WEEKLY RAINFALL

## 1. Theory

In general the third moment of a distribution is considered to be a measure of skewness. If the distribution of a sample is symmetric, its third moment about the mean will be zero. If the distribution is skewed to the right, the third moment about the mean will have a positive value, because the large size of observations on the long tail will

Table 8: ESTIMATED AND THEORETICAL VALUES OF MEDIAN, LOWER AND UPPER QUARTILE FOR THE POSITIVE WEEKLY RAINFALL

				ESTIM.	THEOR.	ESTIM.	THEOR.
		ESTIM.	THEOR.	LOWER	LOWER	UPPER	UPPER
WEEK	MEAN	MEDIAN	MEDIAN	QU ARTILE	QUARTILE	QUARTILE	QUARTILE
					******		
1234N123412341234F123M12341234H 00000NNNNDDDDJJJJJFFFFHHHAAAAA	926789949133553367487531667302106	25198049538610m98m0782584677828 112227773363605836865944554432342 00000000000010010000000000000000000	0956059523417781798601206829258 22224566664505706764874647624318	8786953013073237175498774988273 00001122132161233221410111101111 000000000000000000000000	8201738766815422838930859262847 0111122222124234232133121321110 000000000000000000000000	87172247781921847540596563332772745652321913381764059940765073	0801007036715572486393593758596 4555813322801150353954819525863 00000111110121121110110101110000

1.370€+60	0.12	0.12 6-1-5-2-2-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.76		***************************************	1.0706+00
9.2176-61	•••••	,			••••••	9.2176-01
7.733E-61	****	٠.	••	•	••••••••••••••••••••••••••••••••••••••	7.7336-01
Theoretical median	•••••				• • • • • • • •	6.2506-01
4.767E-01	•••••	•			•••••	4.7676-01
3.2836-61	•			•		3.2836-01
1.8006-61				1.07	**************************************	1.800E-01
	N-SCALE: "	**** 0.1596-01 UNITS		Estimated median	edian	

Figure 16. Plot of estimated median against theoretical median for positive weekly rainfall

11 4.5coe-01	3.867E-01	3.2336-01	2,600E-01	1.967E-01	1.3336-01	7.000E-02
		*******	*****	*******		6.300 6.300
4.8456-01 6.888888888888888888888888888888888888					•	Sof-on Estimated Lower Quartile
3.450E-01	•					3.450E-01 Estimate
4.002E-02 ec-sesses-sec-consisting of the contract of the cont	,	· · .	•	•		6.0035E-02 2.025E-01 3.450E-01 4.875E-01 6.300E-01 3-5CALE: "** 0.712E-02 UNITS Estimated Lower Quartile
.003E-02		••••	••••••	•••••	· · ·	0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000
4.5CEE-C1	3.001E-G1	3.236-01	2.606-01 Theoretical	Lower Quartiles 1.9016-01	1.338-61	7.000E-G2 6.

Plot of estimated L-quartile against theoretical L-quartile for positive weekly rainfall Figure 17.



Figure 18. Plot of estimated U-quartile against theoretical U-quartile for positive weekly rainfall

Table 9: SLOPES OF THE ESTIMATED VALUES AGAINST THEORETICAL VALUES FOR MEDIAN AND LOWER AND UPPER QUARTILES.

	SLOPE	INTERCEPT
EST. MEDIAN VS THEO. MEDIAN	0.96	0.03
EST. L.QUAR. VS THEO. L.QUAR.	0.95	0.04
EST. U.QUAR. VS THEO. U.QUAR.	0.88	0.01

Table 10: 90% CONFIDENCE INTERVAL FOR AVERAGE POSTIVE WEEKLY RAINFALL WITH EXPONENTIAL DISTRIBUTION

WEEK	MEAN	STD DEV	LOWER LIMIT	UPPER LIMIT
	***			****
1234N123412341234F123H1Z341234H	9267899491335336748753167302106	3739378071781618664017134893558 	8955974758654246384038750251268 1222357666451680787587465863431	6680690419335938859523426642040 5656914432902161353974829636074

more than offset the greater number of smaller observations on the shorter tail of the distribution. Hence for a positively skewed distribution (i.e., one with the long tail to the right), the third moment ( $\mu_3$ ) will be positive. For these reasons the third moment around the mean is taken as a measure of the absolute skewness of a distribution. The theoretical skewness for a random variable X is given by

$$\gamma_1 = \frac{E[(X-E(X))^3]}{(Var[X])^{3/2}}$$

The empirical skewness for data  $\{x_i, i = 1,...,n\}$ having average  $\overline{x}$  is given by

$$g_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{3}}{\left[\frac{1}{n-1} \left(\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right)^{3/2}\right]}$$

If a distribution is symmetric,  $\gamma_1$  will be zero. If the distribution of X is exponential with parameter  $\lambda=1$ , then  $\gamma_1$  has the value 2 (see Appendix D for the algebraic computation).

The kurtosis for a random variable X is given by

$$\gamma_2 = \frac{E[(X-E(X))^4]}{[Var(X)]^2} - 3$$

The empirical kurtosis for data  $\{x_i, i = 1,...,n\}$  having average  $\vec{x}$  is given by

$$g_{2} = \frac{\frac{1}{n} (\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{4})}{[\frac{1}{n-1} (\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}]^{2}} - 3$$

If the fourth moment  $(\mu_4)$  about the mean of the random variable X is large relative to the variance  $(\sigma^2)$ , it indicates relatively large tails.

For the normal distribution,  $\mu_4/\sigma^4$  has the value 3. Since the normal distribution arises very frequently and is often used as a basis of reference for distributions that are not normal, the quantity  $\gamma_2$  is defined so that it will be 0 when a distribution has the kurtosis of a normal distribution. Thus  $\gamma_2 > 0$  means that a distribution has a sharper peak, thinner shoulder, and fatter tails than the normal distribution.  $\gamma_2 < 0$  means that a distribution has a flatter peak, fatter shoulders, and thinner tails than the normal distribution. Cramer [Ref. 5] and Duncan [Ref. 6] contain a discussion of the skewness and kurtosis coefficients.

If the distribution of X is exponential, then  $\gamma_2$  has the value 6 (see Appendix D for algebraic computations). Appendix D also contains a discussion of the sample properties of the skewness and kurtosis coefficients.

It is suspected that the sample size has some effect on the values of sample skewness and sample kurtosis. To study this effect a simulation study was done as described below.

By using the random number generator (LLRANDOM) N independent unit exponential random numbers were generated as a sample. Then the sample skewness and kurtosis were computed from the sample. M independent replications of the procedure were done and sample means and standard deviations were computed for the skewness and kurtosis.

Appendix D shows the simulation results for sample skewness and sample kurtosis of a unit exponential distribution with various sample size (standard deviations of them are given in parentheses).

As can be seen in Appendix D if the sample size is small, then the sample skewness and kurtosis values are smaller than their theoretical values. When sample size is between 2000-3000 they reach the theoretical values 2 and 6 for the skewness and kurtosis respectively.

# 2. Skewness and Kurtosis Analysis for Positive Weekly Rainfall

Histograms, and plots of exponential scores versus observed values of positive weekly rainfalls are given in Appendix F; they suggest that the distribution of weekly positive rainfall is approximately exponential. The examination of classical skewness and kurtosis coefficients of positive weekly rainfall can be used to further examine the fit of this exponential model.

Table 11 shows a listing of the values of skewness and kurtosis for the positive weekly rainfall.

Table 11: SKEWNESS AND KURTOSIS FOR WEEKLY RAINFALL DATA

## NUMBER OF YEARS

WEEK	SREWNESS	RURTOS IS	POSITIVE RAINPALL
7234112341234F123HF12341234H	7319601778560346820936813251712 73199601778560346820936813251712 73199601778560346820936813251712	#142567506809731988115230803614 1165175497279534003755417849825 0031512111301200000000000000000000000000	9765408928284651797710285312428

Figure 19 shows the skewness and kurtosis of the positive weekly rainfall, and a plot of skewness against kurtosis values is shown in Figure 20.

Figure 19 shows that the skewness and kurtosis values are reasonably stable. But relatively high values occur early in the year. There is some tendency for the distribution to change throughout the rainy season. Average skewness and kurtosis values of the positive weekly rainfall are shown in Table 12.

Table 12: ESTIMATED AND SIMULATED MEANS FOR THE SKEWNESS AND KURTOSIS COEFFICIENTS

	SKEWNESS	KURTOSIS
ESTINATED NEA	n 1.29	1.19
SIMULATED MEA	N 1.45	1.84

The estimated kurtosis is somewhat lower than its simulated value. This might suggest that the distribution of positive weekly rainfall has a shorter right tail than the exponential. Perhaps a Gamma or Weibull distribution would fit these data slightly better.

Table 14 shows the estimated and simulated values of the skewness and kurtosis coefficients for the actual sample sizes observation. By using the median method the slopes of estimated values against simulated values were computed for skewness and kurtosis and are shown in Table 13.



Figure 19. Weekly skewness and kurtosis coefficients for the positive weekly rainfall



Plot of weekly skewness against weekly kurtosis for positive weekly rainfall Figure 20.

## Table 13: SLOPES FOR SKEWNESS AND KURTOSIS

					SLOPE	INTERCEPT
					-	
EST.	SKEWNESS	۷s	SIM.	SKEWNESS	0.19	1.20
EST.	KURTOSIS	٧s	SIM.	KURTOSIS	0.40	1.32

Table 14: ESTIMATED AND SIMULATED VALUES FOR SKEWNESS AND KURTOSIS FOR SAME SAMPLE SIZES.

As can be seen they are not fitted very well. Estimated values are lower than the simulated values for the
skewness and kurtosis. Figures 21 and 22 show the estimated
values against simulated values for the skewness and kurtosis.

### C. 2X2 CONTINGENCY TABLES

## 1. Summary

The idea to be explored in this section is whether or not some weeks of the weekly rainfall, to be called the control, may be used to predict in some way the behavior of another weeks of the weekly rainfall, to be called the complement.

Let X be a week of a month, to be called the control, and let Y be a week of a month, which is different from X, to be called the complement. It is necessary that  $X \cap Y = 0$ ; that is, the intersection of these two weeks is empty. The weeks are then compared for some quality in X and for some quality in Y. The question is then; does the presence (or absence) of quality in X affect the presence (or absence) of quality in Y? An example of a typical table is shown below in Figure 23.

The elements, a typical one of which is  $n_{ij}$ , represent the number of years which display quality i in the control and quality j in the complement. The marginal entries  $n_{i}$  and  $n_{ij}$  represent the number of years for which the control has quality i and the number of years the complement has quality j respectively. The overall number of years, N, appear in the lower right of the table.



Figure 21. Plot of estimated skewness against simulated skewness for the positive weekly rainfall



Figure 22. Plot of estimated kurtosis against simulated kurtosis for the positive weekly rainfall

nll	n ₁₂	n ₁ .
n ₂₁	n ₂₂	n ₂ .
n.1	n.2	N

Figure 23. Typical 2X2 contingency table

Conover [Ref. 2] gives a discussion of the theory and use of contingency tables. Let  $\theta_{ij}$  be the probability that any given year will have a control quality i and a complement quality j. Then estimates of the  $\theta_{ij}$ 's are

$$\hat{\theta}_{ij} = n_{ij}/N$$

$$\hat{\theta}_{i.} = n_{i.}/N$$

$$\hat{\theta}_{.j} = n_{.j}/N$$

If the control and complement are independent,

$$\theta_{ij} = \theta_{i} \cdot \theta_{.j}$$
, for all i,j.

These simple assumptions allow for an investigation of the possible interrelationships between the weekly rainfalls.

The question of independence may be approached in the was as described below.

## 2. Chi-Squared Test for Independence

Let  $E_{ij}$  equal  $n_{i}$ .  $n_{i}$ . Then for a 2x2 contingency table the test statistics are given by

$$Q = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(n_{ij}-E_{ij})^{2}}{E_{ij}}$$

or simplifying for the calculation

$$Q = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{n_{ij}^{2}}{E_{ij}} - N$$

The exact distribution of Q is difficult to tabulate because of all the different combinations of values possible for  $n_{11}$ ,  $n_{12}$ ,  $n_{21}$ ,  $n_{22}$ . Therefore the large sample approximation is used for the distribution of Q; this turns out to be chi-square distribution with one degree of freedom.

Hypothesis

$$H_0: \theta_{ii} = \theta_{i}, \theta_{i}$$
, for all i,j

$$H_1: \theta_{ij} = \theta_{i,\theta,j}$$
, for some i,j

Decision Rule: Reject  $H_0$  is Q exceeds the  $(1-\alpha)$  quantile of a chi-square random variable with one degree of freedom. The approximate level of significance is then  $\alpha$ .

Figures 24 through 28 show  $2x^2$  contingency tables for the weekly rainfall. In these tables, X = 1 occurs when the week i falls below its mean of weekly rainfall and X = 2



Figure 24: 2x2 contingency tables for weeks 01,02,03,04,0N,N1.



Figure 25: 2x2 contingency tables for weeks N2, N3, N4, D1, D2, D3, D4.



Pigure 26: 2x2 Contingency tables for weeks D4,J1,J2,J3,J4,JF,F1.



Figure 27: 2x2 Contingency tables for weeks F1,F2,F3,F8,M1,M2,M3.



Figure 28: 2x2 Contingency tables for weeks M3, M4, A1, A2, A3, A4, AM.

occurs when week i falls above its mean of weekly rainfall. Similarly, Y = 1 occurs when the week i+l falls below its mean of weekly rainfall and Y = 2 occurs when the week i+l falls above its mean of weekly rainfall.

The control consists of the binary category of rainfall for week i and the complement consists of the binary category of rainfall for week i+l in the 36-year period.

Results of the test statistics suggest that the weeks N1 vs N2, D4 vs J1, J3 vs J4, M2 vs M3, and M4 vs A1 are not independent with  $\alpha$  = 0.10 significance level. The rest of the weeks appeared independent of each other at  $\alpha$  = 0.10 significance level. Table 15 shows the test statistics and their chi-square values with  $\alpha$  significance levels.

The expected number of 30  $\chi^2$  random variables that would be over .10 is 3. So it seems that the result could be explained by random sampling.

Figures 29 through 33 show the 2x2 contingency tables for which the weekly X and Y values are determined differently from those shown above. On these figures, X = 1 occurs when the week i has no rainfall (no rainfall means rainfall of less than 0.02") in year t and X = 2 occurs when week i has rainfall in year t. Similarly, Y = 1 occurs when the week i+1 has no rainfall in year t and Y = 2 occurs when the week i+1 has rainfall in year t.

The control consists of the binary category of rainfall for week i and the complement consists of the binary category of rainfall for week i+l in the 36-year period.

Table 15: TEST STATISTICS, APPROXIMATED CHI-SQUARED AND SIGNIFICANCE LEVEL FOR THE WEEKS.

		APPROXIMATED	
WEEK	STATISTICS	X 2 VALUE	LEVEL
			********
01 VS 02	0.32	x 2 4 0	0.60
02 VS 03	1.83	x 2 . 82	0.18
03 VS 04	0.39	x 2 . 47	0.53
O4 VS ON	1.66	x.80	0.20
ON VS N1	0.67	x.57	0.43
N1 VS N2	2.85	x.91	0.09
N2 VS N3	2.41	x.88	0.12
N3 42 N4	0.86	x.63	0.37
N4 VS D1	1.00	² .68	0.32
D1 VS D2	0.54	x.52	0.48
D2 VS D3	2. 36	x.2	0.13
D3 VS D4	3.60	x ² .94	0.06
D4 75 J1	3.85	2 X.95	0.05
J1 V5 J2	0.89	x 2 65	0.35
J2 VS J3	0.45	x 2 4 9	0.51
J3 75 J4	5.84	x ² .98	0.02

<b>J</b> 4	VS JF	0.96	x.67 x.12 x.80	0.33
JP	Vs F1	0.01	X.212	0.88
<b>P</b> 1	VS F2	1.63		0.20
<b>F</b> 2	VS F3	1.92	X . 84	0.16
<b>F</b> 3	VS FM	0.60	² .55	0.45
PH	VS M1	1.63	x ² .79	0.21
H 1	<b>V</b> S 112	0.01	x.12	0.88
82	VS H3	2.77	x.90	0.10
83	VS M4	1.00	x.79	0.21
34	VS A1	4.62	x.97	0.03
11	VS A2	2.47	X.88	0.12
12	VS A3	1.83	x.82	0.18
13	VS A4	0.55	x.82 x.52	0.48
14	VS AM	0.24	x.38	0.52



Figure 29: 2x2 contingency tables for weeks 01,32,03,04,08,%1.



Figure 30: 2x2 contingency tables for weeks N2, N3, N4, D1, D2, D3, D4.



Figure 31: 2x2 Contingency tables for weeks D4,J1,J2,J3,J4,JF,F1.



Figure 32: 2x2 Contingency tables for weeks F1,F2,F3,FN,H1,H2,H3.



Figure 33: 2x2 Contingency tables for weeks M3, M4, A1, A2, A3, A4, AM.

Table 16 shows the test statistics and their approximated chi-square value with  $\alpha$  significance level.

Results of the test statistics showed that the weeks D3 vs D4, J1 vs J2, J2 vs J3, JF vs F1, and A2 vs A3 are not independent with  $\alpha$  = 0.10 significance level. The rest of the weeks appeared independent of each other at  $\alpha$  = 0.10 significance level. According to this procedure, the overall association among the weeks is not strong.

#### D. 4X4 CONTINGENCY TABLES

#### 1. General

Figure 34 shows a typical 4x4 contingency table. The table element,  $n_{ij}$ , represents the number of years which display quality i in the control and quality j in the complement. The marginal entries  $n_{i}$  and  $n_{ij}$  represent the number of years

# COMPLEMENT WEEK (Y)

		<del></del>	<del></del>	<del></del> 1	
	n ₁₁	n ₁₂	n ₁₃	n ₁₄	n
CONTROL WEEK,	n ₂₁	n ₂₂	n ₂₃	n ₂₄	n
	n ₃₁	n ₃₂	n33	n ₃₄	n
	n ₄₁	n ₄₂	n ₄₃	n ₄₄	n
	n.1	n.2	n.3	n . 4	N

Figure 34. Typical 4x4 contingency table

Table 16 TEST STATISTICS, APPROXIMATED CHI-SQUARED AND SIGNIFICANCE LEVEL FOR THE WEEKS.

	TEST	APPROXIMATED	SIGNIFICANCE
VEER	STATISTICS	X 2 YALUE	LEVEL
****	****	***	******
01 VS 02	0.93	² .66	0.34
02 VS 03	0.09	x ² .25	0.75
03 VS 04	0.05	x.21	0.79
04 VS ON	2.26	x ² .87	0.13
ON VS N1	0.71	x.59	0.41
N1 VS N2	1.36	x 2 . 75	0.25
n2 vs n3	0.96	x 2 67	0.33
n3 vs na	0.91	χ ² .66	0.34
N4 VS D1	0.54	x ² .52	0.48
D1 VS D2	0.01	x ² .12	0.88
D2 VS D3	0.54	x ² .52	0.48
D3 VS D4	3.94	X.95	0.05
D4 VS J1	0.07	x ² .24	0.76
J1 VS J2	5.66	X.98	0.02
J2 VS J3	6.29	×2.99	0.01
J3 VS J4	0.95	×.67	0.33
J4 VS JF	1.48	x ² .77	0.23
JF VS F1	9.99	x.299	0.01

<b>P1</b>	٧s	F2	0.05	x.21	0.79
P2	٧s	<b>F3</b>	0.04	χ ² .18	0.82
23	۷s	PM	1.85	² .88	0.18
PM	٧s	MI	0.23	x ² .38	0.62
<b>H</b> 1	۷s	112	1.29	x ² .74	0.25
M2	٧s	#3	0.23	x. 38	0.62
83	٧s	H4	2. 33	x.87	0.13
<b>M4</b>	۷s	<b>A</b> 1	0.17	x ² .33	0.67
A1	۷s	A2	0.65	×.56	0.44
12	٧s	A3	2.94	x ² .91	0.09
<b>A3</b>	۷s	A4	1.03	x ² .69	0.31
14	۷S	M	1.87	x ² .83	0.17

for which control has quality i and the numbers of years the complement has quality j respectively. The overall number of years, N, is in the lower right of the table.

Conover [Ref. 2] discusses the theory and use of rxc contingency tables.

#### 2. Classification of Rainfall

The National Weather Association classifies the daily positive rainfall in 3 categories, as light rainfall, moderate rainfall, and heavy rainfall. Any rainfall amount less than 0.02 inches is defined as zero rainfall. The observed positive rainfall data is ordered from least to highest for a given year. Then, the first 1/3 of the ordered positive rainfall data is called light rainfall, the second 1/3 of the ordered positive rainfall, and the remaining 1/3 of the ordered positive rainfall data is called heavy rainfall.

To construct a 4x4 contingency table using the weekly rainfall data, a similar procedure was used and is described below.

The weekly positive rainfall data was ordered from least to highest for a given month in the 36-year period; then 3 categories of rainfall were defined as described above. Additionally, a weekly rainfall of less than 0.02" inches is called zero rainfall and is considered as one category so that weekly rainfall data was broken down to 4 categories. Thus X = 1 occurs when the week i has zero rainfall in year t,

X = 2 occurs when week i has light rainfall in year t, X = 3 occurs when week i has moderate rainfall in year t, and X = 4 occurs when week i has heavy rainfall in year t for a given month.

Table 17 shows the amount of rainfall limits of 3 categories of rainfall for the 7-month rainy period.

Table 17: AMOUNT OF RAINFALL LIMITS FOR THE WEEKLY RAINFALL IN INCHES

	LIGHT	HODERATE	HEAVY
Honth	RAINFALL	RAINPALL	RAINFALL
	والمالية في جه والواد والمالية		
OCTOBER	0.03-0.12	0.13-0.34	0.35-over
november	0.03-0.31	0.32-1.00	1.01-over
DECEMBER	0.03-0.37	0.38-1.07	1.08-over
JANUARY	0.03-0.38	0.39-1.34	1.35-over
FEBRUARY	0.03-0.40	0.41-1.19	1.20-over
HARCH	0.03-0.26	0.27-0.86	0.87-over
APRIL	0.03-0.17	0.18-0.60	0.61-over

### 3. Chi-Squared Test for Independence

A 4x4 contingency table was constructed the category or rainfall in week i and the category of rainfall in week i+l

by grouping all weeks in a month together. Table 18 shows the name of the weeks which were included to construct the contingency table for each month. Each month was analyzed separately since the rainfall data is seasonal. Each paired week contains 36 observations so that the total 144 (4x36 = 144) observations are formed in each contingency table. For example in the December contingency table the paired weeks used are (D1,D2), (D2,D3), (D3,D4), (D4,J1). The chi-square test was used to explore possible relationships between rainfall in successive weeks for a given month.

Table 18: WEEK NAMES FOR CONSTRUCTING 4x4 CONTINGENCY TABLES

HO NTH	WEEKS
OCTOBER	01,02,03,04,0N
november	N1, N2, N3, N4, D1
decemb er	D1, D2, D3, D4, J1
JANUARY	J1,J2,J3,J4,JP
FEBRUARY	JP, F1, P2, P3, FM
MARCH	PM, M1, M2, M3, M4
APRIL	A1, A2, A3, A4, AM

Let  $E_{ij}$  equal  $n_i$ ,  $n_j/N$ . Then for a 4x4 contingency table the test statistic is given by:

$$Q = \sum_{i=1}^{4} \sum_{j=1}^{4} \frac{(n_{ij} - E_{ij})^{2}}{E_{ij}}$$

or simplifying for the calculation

$$Q = \sum_{i=1}^{4} \sum_{j=1}^{4} \frac{n_{ij}^2}{E_{ij}} - N$$

The exact distribution of Q is difficult to tabulate because of all the combinations of values possible for  $n_{ij}$ . Therefore the large sample approximateion, the chi-square distribution with 9 degrees of freedom is used for the distribution of Q.

Figures 35 through 41 show the 4x4 contingency tables for the weekly rainfall. The control consists of the category of rainfall for week i and the complement consists of category of rainfall for week i+1 for a given month, where the categories are given in Table 14.

The results of the test statistics suggest that the weeks of January, the weeks of February, and the weeks of April are not independent at  $\alpha=.10$  significance level  $(\chi^2_{.90}(9)=14.7 \text{ with } \alpha=.10)$ . The rest of the months, October, November, December, and March appear independent at the  $\alpha=.10$  significance level.

Table 19 shows the test statistics, approximate chisquared values, and the achieved significance level  $\alpha$ .

octo ber

	1	2	3	4	
1	51	11	10	15	<b>]</b> 87
2	14	3	3	3	23
3	10	2	4	0	16
4	7	3	4	4	18
,	82	19	21	22	144

Pigure 35: 4x4 contingency table for OCTOBER.

november

	1	2	3	4	_
1	22	11	12	10	55
2	9	7	9	6	31
3	7 .	9	3	8	27
4	9	3	10	9	31
1	47	30	34	33	144

Figure 36: 4x4 contingency table for NOVEMBER.

DECEMBER

	1	2	3	4	_
1	15	11	7	9	42
2	7	10	10	4	31
3	11	7	7	11	36
4	11	8	5	11	35
	44	36	29	35	144

Figure 37: 4x4 contingency table for DECEMBER

JANUARY

	1	2	3	4	_
1	22	9	5	9	45
2	8	9	10	7	34
3	6	ц	12	10	32
4	6	8	8	11	33
,	42	30	35	37	144

Figure 38 4x4 contingency table for JANUARY

FEBRUARY

	1	2	3	4	
1	15	11	6	8	40
2	5	9	12	4	30
3	13	11	7	8	39
4	6	6	10	13	35
,	39	37	35	33	144

Figure 39: 4x4 contingency table for FEBRUARY

MARCH

	1	2	3	4	
1	10	10	5	4	29
2	9	8	12	11	40
3	13	9	6	10	38
4	4	11	12	10	37
•	36	38	35	35	144

Figure 40: 4x4 contingency table for MARCH

APRIL

	1	2	3	4	
1	37	13	9	6	65
2	10	9	3	4	26
3	10	4	6	2	22
4	11	2	8	10	31
i	68	28	26	22	144

Figure 41: 4x4 contingency table for APRIL

Table 19: TEST STATISTIC, APPROXIMATE CHI-SQUARED VALUES, SIGNIFICANCE LEVEL FOR THE MONTH.

E

#### E. LOGISTIC ANALYSIS

#### 1. Theory

The logistic analysis to be described in this section was developed from Cox [Ref. 1].

The basic approach is to view the complement as having a binary representation, with success being defined to mean that a complement has rainfall, while failure means that the complement has no rainfall for week t+1. The problem then is to find the conditional probability of a success given that the control takes on a particular value.

Let  $X_t$  be the rainfall in week t. If the probability of "success" = rainfall in week t+1, given  $X_t$ , is written as

$$\theta_t = P(rainfall in week t+1|X_t)$$
,

the logistic model is

$$\theta_{t} = \frac{e^{\alpha + \beta X_{t}}}{e^{\alpha + \beta X_{t}}},$$

where the  $X_{t}$  are the explanatory variables.

The likelihood function is then

$$L(X,Y;\alpha,\beta) = \prod_{t=1}^{N} \frac{(e^{\alpha+\beta X}t)^{Y}t+1}{1+e^{\alpha+\beta X}t} (\frac{1}{1+e^{\alpha+\beta X}t})^{1-Y}t+1$$

where:

and the log-likelihood is

$$L(X,Y;\alpha,\beta) = \alpha \sum_{t=1}^{N} Y_t + \beta \sum_{t=1}^{N} X_t Y_t - \sum_{t=1}^{N} \ln(1 + e^{\alpha + \beta X_t})$$

The gradient, and Hessians are:

$$\frac{\partial \text{Log L}}{\partial \alpha} = \sum_{t=1}^{N} Y_{t} - \sum_{t=1}^{N} \left( \frac{e^{\alpha + \beta X_{t}}}{1 + e^{\alpha + \beta X_{t}}} \right)$$

$$\frac{\partial \text{Log L}}{\partial \beta} = \sum_{t=1}^{N} X_{t} Y_{t} - \sum_{t=1}^{N} X_{t} \left( \frac{e^{\alpha + \beta X_{t}}}{1 + e^{\alpha + \beta X_{t}}} \right)$$

Hessian:

$$-\sum_{t=1}^{N} \frac{e^{\alpha+\beta X}t}{(1+e^{\alpha+\beta X}t)^{2}} - \sum_{t=1}^{N} \frac{x_{t}e^{\alpha+\beta X}t}{(1+e^{\alpha+\beta X}t)^{2}}$$

$$H_{L} = -\sum_{t=1}^{N} \frac{x_{t}e^{\alpha+\beta X}t}{(1+e^{\alpha+\beta X}t)^{2}} - \sum_{t=1}^{N} \frac{x_{t}^{2}e^{\alpha+\beta X}t}{(1+e^{\alpha+\beta X}t)^{2}}$$

Information Matrix:

to solve for  $\alpha$  and  $\beta$  use of Newton's method as follows;

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix}_{k+1} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}_{k} - H_{L} \nabla t_{L}$$

All necessary elements may be calculated in one pass of the computer algorithm.

One beneficial byproduct of the maximum likelihood approach is the asymptotic covariance matrix,  $(I_{s_1s_2})^{-1}$ . Cos [Ref. 3] states that the diagonal elements of this matrix provide good estimates of  $Var(\alpha)$  and  $Var(\hat{\beta})$  under assumptions of normality.

Next, by using the diagonal elements of the asymptotic covariance matrix to put approximately symmetric confidence limits on  $\alpha$  and  $\beta$ ; for 90%

$$\hat{\alpha}$$
 - 1.64  $\sqrt{I^{S,S}(\hat{\alpha})}$  <  $\alpha$  <  $\hat{\alpha}$  + 1.64  $\sqrt{I^{S,S}(\hat{\alpha})}$ 

$$\beta$$
 - 1.64  $\sqrt{I^{S,S}(\hat{\beta})}$  <  $\beta$  <  $\hat{\beta}$  + 1.64  $\sqrt{I^{S,S}(\hat{\beta})}$ 

#### 2. Analysis

In this analysis, given week i has rainfall/no rainfall in year t is considered as a control X, then conditional probability of success which week i+l has rainfall in year t is considered as a complement Y. Let

and

Then, the model

$$P\{Y_{i+1} = 1 \mid X_i\} = \theta = \frac{e^{\alpha + \beta X_i}}{e^{\alpha + \beta X_i}}$$

and

$$\log Odds = \Psi = \ln(\frac{\theta}{1-\theta}) = \alpha + \beta X_{i}$$

Using the computer package "BMDPLR" estimates of  $\alpha$  and  $\beta$  were obtained using maximum likelihood. Other quantities computed were conditional observed and predicted. These values are shown in Table 20. Also the number of successes, number of failures, predicted log odds and parameters  $\alpha$  and  $\beta$  and their 90% confidence interval are shown in the same tables for the weeks. In the tables weeks are shown with their names which are indicated in the glossary of symbols tables.

In the 2x2 tables, the  $\chi^2$  test results have suggested that the weeks O2 vs O3, D3 vs D4, J1 vs J2, J2 vs J3, JF vs F1, and A2 vs A3 are not independent with  $\alpha$  = 0.10 significance level. Logistic model also indicates that these weeks

NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 4/2
A STATISTICAL ANALYSIS OF DAILY AND WEEKLY RAINFALL FOR THE MON--ETC(U) AD-A109 525 SEP 81 D KIRCA UNCLASSIFIED 'NL 2 ... 3 AD A 109525



### Table 20: RESULTS OF THE LOGISTIC ANALYSIS FOR THE WEEKS

## MODEL : P(02=1(01=x)

SUCCESS 8 14	PAIL 7	OBSERVED PROBABILIT 0.5333 0.6667	PREDI PROBAB 0.53 0.66	ILITY	LOG ODDS 0.134 0.693	01		
P	ARAMET Alpha Beta Var(	ER COE	FFICIENT 133 .560 Var[	0.51 0.69 β J=0.65	8 0. 4 0.	7/SE 258 806		
90% Confidence limits Lower Upper Alpha -0.502 0.768 Beta -0.762 1.882  MODEL: P(03=1 02=x)								

SUCCESS	# OF FAIL	OBS ERV PROBABI		PREDIC ROBABI	TED	OD	OG DS	02
11	11	0.214	3	0.21	43 00	- <u>1.</u>	299 0	0
	PARAMET Alpha Beta Var( a	er (	COE PFIC -1.299 1.299	1	0.9 0.9 ]=0.9	551 778	-1.	F/SE 995 669
	Alpha Beta		% Confi Lover -2.212 0.083	-0	limit pper .386 .515	:s		

### MODEL : P(04=1|03=x)

# OF SUCCESS 12 10	OF PAIL	OBSEI PROBA 0.54 0.7	BILITY	0.5	ICTED BILITY 455 143	LOG ODDS 0.182 0.916	03
Pi	RAMET Alpha Beta Var( o	ER (]=0.20	COEFI	PICIENT 182 734 Var	SE 0.4 0.7 (β ]=0.5	28 0.6 30 1.6	7/SE 126 105
). Be	lpha eta	•	90% Cor Love -0.55	7	e limit Upper 0.915 1.905	S	
	<u> </u>	ODEL :	P (ON=1	104=x)			
# OF SUCCESS 5 13	# OP FAIL 9	OBSEI PROBA	BILITY 571		ECTED BILITY 571 909	LOG ODDS -0.588 0.368	04
97	ARAMET Alpha Beta Var[a	ER ]=0.21	COEF	PICIENT 888 956 Var	SE 0.5 0.7 [β]=0.4	COE 58 -1.0	7/SE )54 352
À.	lpha eta	-	90% Cor Lowe -1.34 -0.18	fidenc	e limit Upper 0.164 2.092		
	ŭ	ODEL :	P(N2=	N 1=x)			
SUCCESS 11 17	PAIL 5	OBSE PROBA 0.6	BILITY	~ ~~~	SICTED BILITY 875 500	LOG ODDS 0.788 1.735	N 1 0 1
P	ARAMET Alpha Beta Var(a	]=0.29	COEF	PICIENT 188 947 Vai	9 0.5 0.8 (β]=0.6	39 1.1 26 1.	/SE 162 145
A. B	lpha eta	,	90% Con Lowe -0.09	) 5	upper 1.671 2.299	. <b>s</b>	

### MODEL : P(N3=1|N2=x)

# OF # OF SUCCESS FAIL  3 16 5 12	OBSERVED PROBABILITY 0.3750 0.5714	PREDICTED PROBABILITY  0.3750 0.5714	LOG ODDS N2 -0.511 0 0.288 1
PARAMETI Alpha Beta Var( a )	]=0.53	99 Var[β]=0.6	
Alpha Beta	90% Con: Lowe: -1.70! -0.55	fidenca limic Typer 0.693 2.151	ts
<u>M</u>	DEL : P(N4=1	M 3=x)	
OF OF SUCCESS FAIL  9 8 13 6	OBSERVED PROBABILITY 0.5294 0.6842	PREDICTED PROBABILITY 0.5294 0.6842	LOG ODDS N3 0.118 0 0.773 1
PARAMET Alpha Beta Var[ a	ER COEFF 0.1 0.6 ]=0.24	ICIENT S 18 0. 55 0. Var[β]=0.	486 0.242 693 0.946
Alpha Beta	90% Con Lowe -0.68 -0.48	fidence limi green 5 0.921 1 1.791	ts
5	ODEL : P(D1=1	[ ½ 4=x)	
# OF # OF	OBSERVED	PREDICTED PROBABILITY	LOG ODDS N4

10 18	4	0.7143 0.8182	0.714	3 0	.916 .504	0
	PARAMETE Alpha Beta Var[ a]	er coerr 0.9 0.5 ]=0.35	TCIENT 116 888 Var( ß	SE 0.592 0.810 ]=0.66	COE	F/SE 549 726
÷	Alpha Beta		fidence T U 14 1	limits pper .886 .920		

### HODEL : P(D2=1|D1=x)

SUCCESS	# OF FAIL	OBSER PROBAE	ILILA	PRED PROBA	ICTED BILITY	LOG	D1
17	11	0.62 0.60	50 71	0.	6250 6071	0.511	0
P	ARAMET Alpha Beta Var[ a	ER ]=0.53	COEFF 0.5 -0.0	ICIENT 11 76 Var	SE 0.7 0.8 [β]≖0.6	30 0. 26 -0.	P/SE 699 091
A B	lpha eta	9	0% Con Lowe -0.68 -1.42	r 3	e limit Upper 1.705 1.276	S	
	<b>H</b>	ODEL :	P(D3=1	D2=x			
# OF SUCCESS 10 18	# OF PAIL 4	OBSER PROBAE 0.71 0.81	ULITY 43	PRED PROBA 0.7 0.8	ICTED BILITY	LOG ODDS 0.916 1.504	D2 0
	ARAMET Alpha Beta	ER			SE 0.5 0.8 [β]≈0.5		F/SE 549 726
A B	lpha eta		0% Con Lowe 0.00 -0.59	fidenc	e limit Upper 1.829 1.771		
		ODEL :	P (D4 = 1	(D3=x)			
SUCCESS	OF PAIL	OBSER PROBAE 0.37	ILITY	PRED PROBA	ICTED BILITY 750 500	LOG ODDS -0.511 1.099	D3 0 1
P	ARAHET Alpha Beta Var[a	er ]=0.53	COEFF -0.5 1.6	TCIENT 11 09 Var	SE 0.7 0.8 β]=0.7	30 -0. 51 1.	F/SE 699 892
A B	lpha eta		0% Con Love -1.70 0.21	fidenc 5 7	upper 0.683 3.001	S	

### MODEL : P(J1=1|D4=x)

SUCCESS	# OF FAIL	OBSEI PROBAI	BILITY	PROB	DICTED BILITY 5000 7857	LOG ODDS 0.000 1.299	D4 0
22 P	ARAMET Alpha Beta Var[ a	FR		ICIENT		2 CDE 707 0. 344 1.	1 7/SE 000 540
<b>)</b> B	lpha eta	ġ	20% Cor Lowe -1.08 -0.02	18	te limit Upper 1.088 2.621	:S	
	8	ODEL :	P(J2=1	J 1=x)	•		
SUCCESS	# OF FAIL 6 5	OBSE1 PROBA1 0.40 0.80	DOO	~	DICTED ABILITY 1000	LOG ODDS -0.405 1.435	J1 0
P	ARAMET Alpha Beta Var[ o		COE FI -0.4	PICIENT 105 140 Vai	S 0.0 (β ]=0.0	545 -0. 315 2.	F/SE 628 258
A E	lpha leta	9	90% Cor Love -1.46 0.50	8	Upper 0.658 3.172	:s	
		ODEL :	P(J3=1	J2=x)	-		
SUCCESS 3 18	# OF FAIL 8 7	OBSET PROBA 0.2 0.7	BILITY	PROB	DICTED BILITY 2727 7200	LOG ODDS -0.981 0.984	J2 0
Ę	ARAMET Alpha Beta Var[ a	]=0.46	COE F1	TCIENT 181 125 Var	S 0.0 0.1 ( ₈ )=0.0	COE 577 -1. 310 2.	P/SE 449 376
	lpha Jeta	•	90% Cor Lowe -2.09	fidend er 3 3	upper 0.131 3.247	Ł <b>s</b>	

### MODEL : P(J4=1|J3=x)

SUCCESS 10 17	OF FAIL	OBSER PROBAB 0.66 0.80	ILITY 67	PREDI PROBA	ICTED BILITY 667 095	LOG ODDS 0.693 1.447	J3 0 1
P.	ARAMET Alpha Beta Var( o	ER ]=0.30	COEFF 0.6 0.7	ICIENT 93 54 Var	SE 0.5 0.7 [β]=0.6	COE 48 1. 80 0.	EF/SE 266 966
A. B	lpha eta	9	0% Con Lowe -0.20 -0.52	fidence 5 7	Upper 1.591 2.035	. <b>S</b>	
	Ē	ODEL :	P(JF=1	J4=x)			
OF SUCCESS	# OF FAIL	OBSER PROBAB 0.66 0.85	ILITY 67	PRED PROBA 0.6	ICTED BILITY 667	LOG ODDS 0.694 1.749	J4 0 1
	ARAMET Alpha Beta	ĒR		ICIENT 94 56	SI 0.7 0.8 [β]=0.8	COF 107 0.	P/SP 980 186
A B	lpha eta		0% Con Love -0.46 -0.41	fidenc	e limit Upper 1.854 2.523		
		ODEL :	P (F1=1	(JF=x)			
SUCCESS 25	FAIL 5	OBSER PROBAB 0.28 0.86	ILITY	PROBA	ICTED BILITY 2857 8621	LOG ODDS -0.916 1.833	JF G 1
P	ARAMET Alpha Beta Var[a	]=0.70	COEFF -0.9 2.7	ICIENT 16 49 Var	Si 0.8 0.9 [β]=1.0	CO E 137 -1. 195 2.	F/SE 095 763
À B	lpha eta	9	0% Con Love -2.28 1.10	fidence 8	Upper 0.456 4.389		

### MODEL : P(F2=1|F1=x)

SUCCESS 7 20	# OP FAIL 2 7	OBSER PROBAR 0.77 0.74	SILITY 778		DICTED ABILITY 778 407	LOG ODDS 1.050 1.253	F1 0
p	ARAMET Alpha Beta Var( a	ER ]=0.64	COR PR 1.2 -0.2	TCIENT 53 03 Vai	S. 6 0.9 (β]=0.8	/14 -U.	F/SE 562 222
A B	lpha eta	9	00% Con Love -0.05 -1.70	fidenc 9 6	re limit Upper 2.565 1.300	: <b>s</b>	
	Ħ	ODEL :	P(P3=1	F 2=x)			
# OF SUCCESS 5 16	# OF PAIL	OBSER PROBAE	ILITY		CTED BILITY	LOG ODDS 0.223	F2 0
16	11	0.55 0.59	26	0.5	556 926	0.223	0
P	ARAMET Alpha Beta Var( a	ER ]=0.45	COEFF 0.2 0.1	ICIENT 23 52 Var	SE 0.6 0.7 (β]=0.6	71 0. 77 0.	7/SE 333 195
A B	lpha eta	9	0% Con Love -0.87 -1.11	5	e limit Upper 1.323 1.422	, <b>s</b>	
	H	ODEL :	P (PH=1	F 3=x)	,		
SUCCESS	# OF FAIL 4 2	OBSER PROBAE 0.73 0.90	ILITY 33	PROBA	ICTED BILITY 333	LOG ODDS 1.012 2.251	F3 0 1
P	ARAMET Alpha Beta Var(a	ER ]=0.34	COEFF 1.0 1.2	ICIENT		CDE 84 1.	F/SE 733 311
A B	lpha eta	-	0% Con Lowe 0.05 -0.30	fidenc 5 6	Upper 1.967 2.788	. <b>s</b>	

### MODEL : P(M1=1|FM=x)

SUCCESS 5 27	# OF PAIL 1 3	OBSER PROBAB 0.83 0.90	ILITY	PROBA	ICTED BILITY 333 000	LOG ODDS 1.609 2.197	PM 0
P	ARAMET Alpha Beta Var[a	]=1.19	0.5	CICIENT 09 88 Var	52 1.0 1.2 [β]=1.5	COI 95 1. 53 0.	#69 469
A B	lpha eta	9	0% Cor Lowe -0.18 -1.46	0	e limit Upper 3.398 2.643	. <b>s</b>	
MODEL : P(M2=1(M1=x)							
# OF SUCCESS	OP PAIL	OBSER PROBAE 1.00 0.75	ILITY 00	PRCBA	ECTED BILITY 999 500	LOG ODDS 2.197 1.009	<u>m 1</u>
P	ARAMET Alpha Beta Var[a	]=2.78			[β]=2.9	108 -2.	2F/SE 000 691
) E	lpha Beta	g	0% Cor Love -0.5: -3.9	nfidencer 37 10	e limit Upper 4.931 1.714	:s	
HODEL : P(H3=1 H2=x)							
SUCCESS	FAIL	OBSER PROBAT	ILITY		DICTED BILITY 250	LOG ODDS 0.511 0.916	M2 0 1
I	PARAMET Alpha Beta Var(	ER α]=0.53	COEF 0.0	PICIENI 511 405 Vai	ο. ο. (β ]=0.	730 0 342 0	EP/SE .699 .482
1	llpha Beta	•	0% Co Love -0.6	er A 3	dpper 1.705 1.787	ts	

### MODEL : P (M4 = 1 | M3 = x)

SUCCESS 5 18	# OF PAIL 6 7	OBSER PROBAB 0.45 0.72	ILITY	PRED PRCBA 0.4 0.7	ICTED BILITY 545 200	ODD 5	12 0
P	ARAMET Alpha Beta Var( a	ER ]=0.37	COEFF -0.1 1.1	TCIENT 82 27 Var	ο.   ο.   β ]=ο.	E 05 752 57	OEF/SE 0.301 1.499
A B	lpha eta	9	0% Con Lowe -1.18 -0.11	fidenc 1 1	e limi Upper 0.816 2.365	ts	
	<u>-</u>	ODEL :	P ( ) 1 = 1	[ #4=x)			
SUCCESS	# OF FAIL 6 9	OBSER PROBAB 0.53 0.60	ILITY	PROBA	ICTED BILITY 5385 6087	LOG ODDS 0.15	M4
14						0.44	12 1
P	ARAMET Alpha Beta Var( a	PR ]=0.31	0.1 0.2	TCIENT 54 88 Var	ος  -0   _β ]=0.	E 0 556 701 49	0.277 0.410
<b>A</b> B	lpha eta	9	0% Con Lowe -0.75 -0.86	fidenc 9 0	Upper 1.067 1.436	ts	
	<u> </u>	ODEL :	P (A2=1	1 1 = x)			
SUCCESS 8	# OF FAIL	OBSER PROBAB	ILITY	~	ICTED BILITY	LOG ODDS	<u> 11</u>
14	7	0.53 0.66	67	0.5	667	0.13	3 1
p	ARAMET Alpha Beta Var( a	ER ]=0.27	COEFF 0.1 0.5	CIENT 34 60 Var	ο.    β ]=0.	E 18 518 694 48	0.258 0.806
AB	lpha eta	9	0% Con Love -0.71 -0.57	fidenc 8 6	e limi Upper 0.986 1.696	ts	

# MODEL : P(A3=1|A2=x)

SUCCESS 3	* OP PAIL 11	OBSER PROBAE 0.21 0.50	ILITY		ICTED BILITY 143 000	LOG ODDS -1.299 0.000	A2 0
p	ARAMET Alpha Beta Var(a	ER ]=0.42	COEFF -1.2 1.2	TCIENT 99 99 Var	SP 0.6 0.7 [8]=0.6	78 1.	P/SE 995 669
	lpha eta	9	0% Con Lowe -2.36 0.01	fidenc 2 8	e limit Tpper -0.236 2.580	S	
	<u> </u>	ODEL :	P ( A 4 = 1	( A 3=x)			
SUCCESS 12 10	# OP FAIL 10	OBSER PROBAE 0.54	ILITY	PROBA	ICTED BILITY 455 143	LOG ODDS 0.182 0.916	A3 0 1
P	ARAMET Alpha Beta Var(a	ER ]=0.18	CGEFF 0.1 0.7	CIENT 82 33 Var	SI 0.4 0.7 [β]=0.5	28 0.	F/SE 426 005
<b>A</b> B	lpha eta	9	0% Con Lowe -0.51 -0.46	Ţ	e limit Upper 0.878 1.927	; <b>s</b>	
	<u></u>	ODEL :	P (AM=1	14=x)			
SUCCESS 15 13	# OF FAIL 9	OBSER PROBAR 0.35	ILITY	PROBA	ICTED BILITY 571 909	LOG ODDS -0.588 0.368	14 0
P	ARAMET Alpha Beta Var( a	]=0.30			[β] <b>=0.</b> 5	0	F/SE 054 352
		9	0% Con	fidenc	e_limit	S	

Alpha Beta are dependent on each other at the 10% significance level since the 90% confidence interval for beta does not cover zero.

The following logistic model was also considered.

$$P\{Y_{t+1} = 1 | R_t\} = \frac{e^{\alpha + \beta R_t}}{e^{\alpha + \beta R_t}},$$

where  $R_t$  is the amount of rainfall in week t and  $Y_{t+1}$  is a binary random variable taking the value 1 if week t+1 has positive rainfall. Tabel 21 shows the alpha and beta coefficients, standard errors (ss) and the 90% confidence limits for the alpha and beta coefficients. These numbers were computed using computer package "BMDPLR".

The 90% confidence intervals for do not cover zero only for the weeks D3 vs D4, JF vs F1, and M2 vs M3. This suggests that for these weeks the amount of rainfall in the previous weeks exceeds the amount of rainfall in the current week. Figures 42 and 43 show the plots of estimated alpha and beta coefficients by week.

#### Table 21: RESULT OF LOGISTIC ANALYSIS FOR THE WEEKS

	HODEL : P(02=1 01=x)	
PARAMETER Alpha Beta Var[a]=0  Alpha Beta	COEFFICIENT SE 0.438 0.409 0.027 0.432 Var[8]=2.91 90% Confidence limits Lower gpper -0.153 1.029 -2.771 2.825	CDEF/SE 1.071 0.062
	MODEL : P(03=1102=x)	
PARAMETER Alpha Beta Var[a]=0	COEFFICIENT SE -0.735 0.424 1.067 1.175 .16 Var( 3]=0.87	COEF/SE -1.735 1.173
Alpha Beta	90% Confidence limits Lower Upper -1.391 -0.079 -0.463 2.597	
	MODEL : P(04=1 03=x)	
	NOBE : F(04-7 03-1)	
PARAMETER Alpha Beta Var[ \alpha]=0	COEFFICIENT SE 0.380 0.379 0.317 0.748	COEF/SE 1.002 0.424
Alpha Beta	COEFFICIENT SE 0.380 0.379 0.317 0.748	COEF/SE 1.002 0.424
Alpha Beta Var[α]=0	COEFFICIENT SE 0.380 0.379 0.748 0.317 0.748 Var[β]=1.18	COEF/SE 1.002 0.424
Alpha Beta Var[α]=0	COEFFICIENT SE 0.379 0.379 0.317 0.748 0.317 0.748 90% Confidence limits Lower Opper -0.334 0.994 -1.464 2.098 MODEL: P(ON=1[O4=x)  COEFFICIENT SE 0.438 0.992 0.636 0.992	COEF/SE 1.002 0.424 COEF/SE -0.439 0.675

### MODEL : P(N2=1|N1=x)

PARAMETER Alpha Beta Var[a]=0.22	COEFFICIENT 0.986 0.743 Var(	0.466 0.807 3]=0.65	COEF/SE 2.115 0.921
Alpha Beta	90% Confidence Lower 0.217 -0.579	limits Upper 1.755 2.065	

#### MODEL : P(N3=1|N2=x)

PARAMETER Alpha Beta Var[α]=0.1	COEFFICIENT -0.102 0.284 Var(\$\begin{array}{cccccccccccccccccccccccccccccccccccc	0.422 0.351 ]=0.12	COEF/SE -0.243 0.807
Alpha Beta	90% Confidence Lower -0.798 -0.384	limits pper .576 .852	

# MODEL : P(N4=1|N3=x)

PARAMETER Alpha Beta Var[a]=0.1	COEFFICIENT 0.595 -0.280 Var[	SE 0.395 0.375 β]=0.14	COEF/SE 1.507 -0.748
Alpha Beta	90% Confidence Lower -0.061 -0.894	limits Upper 1.251 0.334	

# MODEL : P(D1=1|N4=x)

PARAMETER Alpha Beta Var[a]=0.21	COEFFICIENT 1.106 0.336 Var(	SE 0.454 0.589 β]=0.35	COEF/SE 2.434 0.570
Alpha Beta	0% Confidence Lower 0.354 -0.634	limits Opper 1.858 1.306	

#### MODEL : P(D2=1|D1=x)

PARAMETER Alpha Beta Var[a]=0.21	0% Confidence	SE 0.456 0.450 β]=0.20	CCEF/SF 0.644 0.509
Alpha Beta	Lover -0.458 -0.503	Upper 1.046 0.963	
моп	P(D3=1 D	2=x)	
PARAMETER Alpha Beta Var[a]=0.24	COEFFICIENT 1.378 -0.301 Var(	SE 0.485 0.614 g j=0.38	COEF/SE 2.838 -0.490
Alpha Beta	O% Confidence Lower 0.575 -1.312	limits Upper 2.181 0.710	
HOD	EL : P(D4=1 D	3=x)	
PARAMETER Alpha Beta Var[a]=0.23	COEFFICIENT 0.396 0.560 Var[	0.482 0.653 β ]=0.43	COEF/SE 0.822 0.858
Alpha Beta	0% Confidence Lower -0.391 -0.515	limits Upper 1.183 1.635	
HOD	EL : P(J1=1 D	4=x)	
PARAMETER Alpha Beta Var[a]=0.25	COEFFICIENT 0.132 1.952 Var(	0.499 0.988 β]=1.07	COEF/SE 0.265 1.976

90% Confidence limits Lower Typer -0.688 0.952 0.256 3.648

Alpha Beta

### MODEL : P(J2=1|J1=x)

PARAMETER Alpha Beta Var[ a]=0.20	COEFFICIENT 0.299 1.232 Var( a	SE 0.445 0.801 3]=0.64	COEF/SE 0.671 1.538
Alpha Beta	90% Confidence Lower 0 -0.434 1 -0.080 2	limits pper .032 .544	

# MODEL : P(J3=1|J2=x)

PARAMETER Alpha Beta Var[ a]=0.19	COEFFICIENT -0.045	0.434	COEF/SE
	0.526	0.402	-0.104
	Var(	3]=0.16	1.310
Alpha Beta	00% Confidence Lower -0.760		

## MODEL : P(J4=1|J3=x)

PARAMETER Alpha Beta Var[ a]=0.22	COEFFICIENT 0.809 0.394 Var[	SE 0.472 0.428 ]=0.18	COEF/SE 1.712 0.922
Alpha Beta	00% Confidence Lower 0 0.040 1 -0.302 1	limits pper .578 .090	

### MODEL: P(JF=1|J4=x)

PARAMETER Alpha Beta Var[ a]=0.32	COEFFICIENT 1.525 -0.137 Var[	0.567 0.482 β]=0.23	COEF/SE 2.690 -0.285
Alpha Beta	00% Confidence Lower 0.597 -0.924	limits Upper 2.448 0.650	

### MODEL : P(F1=1|JF=X)

PARAMETER Alpha Beta Var[ a ]=0.26	CDEFFICIENT 0.356 1.162 Var(	SE 0.505 0.691 3]=0.48	COEF/SE 0.706 1.680
	Lower Confidence	limits Joper 1.192 2.298	

# HODEL : P (F2=1|F1=x)

PARAMETER Alpha Beta Var[ a ]=0.2	COEFFICIENT 0.986 0.161 γ Var[β	0.491 0.454 ]=0.21	COEF/SE 2.008 0.354
Alpha Beta	90% Confidence Lover U	limits pper .599 .913	

# MODEL : P (F3=1| F2=x)

PARAMETER Alpha Beta Var[ a]=0.20	COEFFICIENT 0.135 0.412 Var( 6	0.444 0.606 ]=0.37	0.304 0.679
	90% Confidence Lower -0.598 -0.586	limits pper .868 .410	

# MODEL : P(PM=1| F3=x)

PARAMETER Alpha Beta Var[ a]=0.30		0.546 0.578 1=0.33	COEF/SE 2.647 0.471
Alpha Beta	Onfidence Lower 0.547 -0.670	limits pper .343 .214	

#### HODEL : P(M1=1| FM=x)

90% Confidence limits
Lower Upper
Alpha 0.576 2.550
Beta -0.701 2.375

### MODEL : P(M2=1|M1=x)

PARAMETER COEFFICIENT SE COEF/SE Alpha 1.209 0.535 2.258 Beta Var[ $_{\alpha}$ ]=0.29 Var[ $_{\beta}$ ]=0.46

90% Confidence limits
Lower Upper
Alpha 0.326 2.092
Beta -1.029 1.195

#### MODEL : P(M3=1|M2=x)

t

 PARAMETER
 COEFFICIENT
 SE
 COEF/SE

 Alpha
 0.143
 0.467
 0.307

 Beta
 1.377
 0.776
 1.774

 Var[α]=0.22
 Var[β]=0.60
 1.774

90% Confidence limits
Lower Upper
Alpha -0.626 0.912
Beta 0.107 2.647

### MODEL : P(M4=1|M3=x)

 PARAMETER
 COEFFICIENT
 SE
 COEF/SE

 Alpha
 0.237
 0.435
 0.546

 Beta
 0.800
 0.694
 1.154

 Var[α]=0.19
 Var[β]=0.48
 0.48
 0.694
 0.694

90% Confidence limits
Lower Upper
Alpha -0.478 0.952
Beta -0.336 1.936

# MODEL : P(A1=1|M4=x)

PARAMETER Alpha Beta Var[ \alpha]=0.1	COEFFICIENT -0.087 0.728 Var[	0.407 0.466 β]=0.22	COEF/SE -0.213 1.563
	90% Confidence		
Alpha B <b>e</b> ta	Lower -0.763 -0.041	Upper 0.589 1.497	

### MODEL : P(A2=1|A1=x)

PARAMETER Alpha Beta Var[a]=0.17	COEFFICIENT 0.438 0.027 Var(	0.409 0.432 3]=0.19	COEF/SE 1.071 0.062
Alpha Beta	90% Confidence Lower 0 -0.238 1 -0.588 0	limits pper 114 742	

### MODEL : P(A3=1|A2=x)

PARAMETER Alpha Beta Var[a ]=0.18	COEPFICIENT -0.735 1.067 Var[β	SE 0.424 0.909 ]=0.83	COEF/SE -1.735 1.173
Alpha Beta	90% Confidence Lower U -1.431 -0 -0.427 2	limits pper .039 .561	

### MODEL : P(14=1|13=x)

PARAMETER Alpha Beta Var[ a]=0.14	COEFFICIENT 0.380 0.317 Var[	0.379 0.748 3]=0.56	COEF/SE 1.002 0.424
Alpha	00% Confidence Lower -0.234 -0.210	limits pper .994	

### MODEL : P(AH=1|A4=x)

 PARAMETER
 COEFFICIENT
 SE
 COEF/SE

 Alpha
 -0.192
 0.438
 -0.439

 Beta
 0.636
 Var[β]=0.89
 0.675

 Var[α]=0.19
 Var[β]=0.89
 0.675

 Lower
 Upper

 Alpha
 -0.907
 0.523

 Beta
 -0.911
 2.183



Figure 42. Plot of alpha coefficient for the weeks



Figure 43. Plot of beta coefficient for the weeks

#### APPENDIX A. DAILY RAINFALL DATA

YEAR	1	2	3	4	5	6	7	8	9	10	11
1949 1950 1955 1955 1955 1955 1955 1955	00101000000110000N00000000000000000000	10100050N000000000000000000000000000000	040 4 7 N N 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	007400N050000000000000000000000000000000	872 8 562 6 8 07040000000000000000000000000000000000	00000000000000000000000000000000000000	98 8 5 4 003 7 2 1	0071N00000001046004000N00000000000000000000	00000000000000000000000000000000000000	9 4 19 49 686 NN46 3	001000000000000000000000000000000000000
2713	0.0	V • VO	0.10	<b>J.</b> U	J. U	<b>U</b> • U	U. Z. I	U. 73	U = 3 3	<b>3. 0.</b>	<b>J. U</b>

YEAR	12	13	14	15	16	17	18	19	20	21	22
890123456789012345678901234567890123 5559559555555555555556666666677777 55595555555555	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00070000000000000000000000000000000000	2 200000000000000000000000000000000000	00080000000000000000000000000000000000	7 4000000000000000000000000000000000000	00000000000000000000000000000000000000	2 6 4 0 66 7 85 12 70030000000000000000000000000000000000	10070000000000000000000000000000000000	000001000000000000000000000000000000000	5119 0 74 4 4182 32 000754000000000000000000000000000000000

YEAR	23	24	25	26	27	28	29	30	31	32	33
890123456789012345678901234567890123	75330 0000000000000000000000000000000000	001610N00000000000000000000000000000000	9994 4 8 7548 1V 9 7 00007000000000000000000000000000000	7131 004301000000000000000000000000000000	00000000000000000000000000000000000000	930010000300000000000000000000000000000	00000000000000000000000000000000000000	1200136000000000000000000000000000000000	00000000000000000000000000000000000000	048 4 N 06 5 65 3 N 1140000000000000000000000000000000000	100010030023000000000000000000000000000

1959 0.0 0.0 0.0 0.0 0.0 0.18 0.07 0.52 1.14 0.50 0.0 1960 0.04 0.62 0.28 0.02 0.25 0.40 0.40 0.11 0.0 0.0 0.0 1961 0.0 0.0 0.01 0.25 0.14 1.07 0.82 0.17 0.07 0.11 0.58 1962 0.0 0.0 0.0 0.0 0.14 1.07 0.82 0.17 0.07 0.11 0.58 1963 0.0 0.0 0.0 0.0 0.10 0.02 1.21 0.14 0.01 0.67 0.07 1964 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	YEAR	34	35	36	37	38	39	40	41	42	43	44
1971 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8901234567890123456789012345678901 334444444445555555555666666666677 11111111111111111	799 6 234 235 8220104130015000000000000000000000000000000	94 N 9 606 N N ON N7 ON N7	3 6 8 1 58V1 0 8 1 50 0000000000000000000000000000000000	15 N 05 000000000000000000000000000000000	09 N 0N10000000000000000000000000000000000	8 016N 030603500000000000000000000000000000000	3 6 09 174 8 1270 21 2 11 000100000000000000000000000000	37 5 9 13 3V1874 V19 00000000000000000000000000000000000	10000000000000000000000000000000000000	3 2 7 10 NO 17 16	000000000000000000000000000000000000000

YEAR	45	46	47	48	49	50	51	52	53	54	55
890123456789012345678901234567890123 55555555555555555666666666677777 55555555	7050000N300000008000000000000000000000000	5 5N 96 3 18 1N45 000400000000000000000000000000000000	00000000000000000000000000000000000000	10000000000000000000000000000000000000	8 06 7 N5 1 814 8 4 N8 N 0000000000000000000000000000000000	4 9 7 9 344 9 104 200000000000000000000000000000000000	00010010000000000000000000000000000000	00040N500000000000000000000000000000000	31041 0035049000000000000000000000000000000000	00000000000000000000000000000000000000	763 0909000000000000000000000000000000000

YEAR	56	57	58	59	60	61	62	63	64	65	66
890123456789012345678901234567890123555555666666666667777755555555555555666666	9 69 7 00070130000010000000000000000000000000	005307000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	1 15 3 2 6 8 6 1 2 5 N8 6 020000000000000000000000000000000000	0.06	2 9 29 3 8 3 6 5 71 5 6 0000000000000000000000000000000000	111 6 7 3 5 38 1 161 3 7 1 10000000000000000000000000000000	4 41 686 9 M&F 4 000005400000000000000000000000000000	508 5 NTN 63 NM4-N 5	51 60000000000001400000000000000000000000

1939 0.09 1.58 0.23 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.1 1540 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	YEAR	67 68	67 68 69	70 71	72 73	74	75	76	77
1560 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8901234567890123456789012345678901334444444444455555555555566666666677	0.21 0.58 0.09 0.00 0.00 0.00	0.21 0.0 0.0 23 0.09 1.58 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.16 0.62 0.07 0.02 0.04 0.07 0.04 0.07 0.09 0.00 0.00 0.00	00000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	0 5 6 8 3 4 3 11 000000000000000000000000000000	7 980060 1 4m 000000000000000000000000000000000

1940 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.83 0.1	YEAR	87 88	86	85	84	83	82	81	80	79	78	YEAR
1 558       0.0       0.20       0.14       1.07       0.0       0.68       0.11       0.02       0.85       0.06       0.07       0.06       0.01       0.02       0.85       0.06       0.07       0.02       0.06       0.0       0.07       0.02       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       <	3901234567890123 1199444567890123	00100000000000000000000000000000000000	0103333 7338 5 51 7 000000000000000000000000000000000000	3 0NO00000000000000000000000000000000000	00000000000000000000000000000000000000	3 7 N 8 0 9 3 7 N 8 0 9 9 N N N N N N N N N N N N N N N N N	000000000000000000000000000000000000000	4 4 7 0479 73 79 15 08 2 0000000000000000000000000000000000	0 0 1 094 4 N83 1 00000000000000000000000000000000000	0 1000000011 0000000000000000000000000	00000000000000000000000000000000000000	1538 1539 1540

YEAR	100	101	102	103	104	105	1 76	107	108	109	110
890123456789012345678901234567890123 334444444445555555555666666666677777 5555555555	63 5 N 7 000700000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	9 4 N 9 N 9 1 6 801 0000000000000000000000000000000	7 N N N N N N N N N N N N N N N N N N N	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000070000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000

YEAR	111	112	113	114	115	116	117	118	119	120	121
890123456789012345678901234567890123 9959999595955555555555555555555555555	00000010000000000000000000000000000000	00000000000000000000000000000000000000	0.09	2 1000000000000000000000000000000000000	3 NOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO		3 68660 0 5 00000000000000000000000000000000	0 994 N 4 5N 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	3 5000000000000000000000000000000000000	8 N 000000000000000000000000000000000000

YEAR	122	123	124	125	126	127	128	129	130	131	132
890123456789012345678901234567890123	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	3 0100000000000000000000000000000000000	37	000000000000000000000000000000000000000

YEAR	133	134	135	136	137	138	139	140	141	142	143
890123456789012345678901234567890 5555555555555555556666666666666666666	3 0000000000000000000000000000000000000	00000000000000000000000000000000000000		3 0000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	98 13 7 1 11 1 000000000000000000000000000000	000000000000000000000000000000000000000	141030000000000000000000000000000000000	9 0 0N 13 2 0100000000000000000000000000000000000	3 000000000000000000000000000000000000
1571 1572 1573	0.01	0.01	0.0 0.0 0.0 0.01	0.01 0.0 0.0	0.0	0.0	0.0	0.03	0.0	0.02	0.0 0.0 0.03

YEAR	4 145	146 147	148 149	150 151	152	153	154
11111111111111111111111111111111111111		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000		000000000000000000000000000000000000000	1 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1962 19645 19665 19666 19667 19670 19772 1973	0 000	0.09 0.0	0.0 0.0 0.0 0.0 5 0.01 0.0	0.0 0.0 0.02 0.0 0.02 0.0 0.02 0.0 0.01 0.01	0.0 0.0 0.0 0.49	0.0	•

YEAR	155	156	157	158	159	160	161	162	163	164	165
1538 1539 1540 1541 1542 1543 1544 1545	0.0	0.00	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000

YEAR	177	178	179	180	181	182	183	184	185	186	187
890123456789012345678901234444444444555555555566666666677777 5555555555			000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000		000000000000000000000000000000000000000

YEAR	188	189	190	191	192	193	194	195	196	197	198
8901234567890123456789012345678901 555555555555555555555555555555555555		00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	00000000000000000000000000000000000000	
1 5 7 2 1 5 7 3	0.0 0.0	0.0 0.0	0. ŏ 0. ŏ1	ŏ.ŏ	ŏ.ŏ	ŏ.ŏ	0.01	ğ. ö	0.0	0.01	ğ.ğı

YEAR	199	200	201	202	203	204	205	206	207	208	20
1938 1939 1940	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.07	0.0	0.0 0.0 0.0 0.0 0.0	0000
1942 1943 1944	0.0	0000000	0.0	0.00	0.0	0.0	0.01	0.0 0.02 0.06	0.02	0.0	0.00
11111111111111111111111111111111111111	0.0		0.0	0.0	000000	0.0		0.06	0.0	0.0	000000
1949	0.00	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0	000000000000000000000000000000000000000	0.0	000000000000000000000000000000000000000	0.0	0.0	0.0 0.03 0.0 0.01	0000
1952 1953 1954	0.01	0.00	0.0	0.0		0.0	0.0	0.0	0.00	0.0	_ ^ /
1955 1956 1957	0.01	0.01	<b>U</b> • <b>U</b>	0.0	000000000000000000000000000000000000000	000000	0.01	0.0	0.01	000000000000000000000000000000000000000	000
1559	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.01	0.0	0.0	000000000000000000000000000000000000000
1562	0.00	0.0	0.0	0.0	0.00	0.01	0.01	0.02		0.01	8:5
1965	0.00	00000	000000000000000000000000000000000000000	0.0	0.00	0.02	0.01 0.01 0.01	0.02	0.0	0.0	0.0
1969 1969 1970	V • V	0.0	U . U	0.0	0000	0.02	0.0	0.0 0.0	0.02 0.02 0.01	000000000000000000000000000000000000000	
1971 1972 1973	0.0	0.0 0.03 0.01	0.02	0.03	0.01 0.0 0.01	0.02	9.02 9.0 9.0	0.0	0.0	0.0	0.0

YEAR	210	211	212	213	214	215	216	217	218	219	220
890123456789012345678901234567890123 555555555555555555555555555555555555	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2 000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
1973	0.0	0.0	0.02	0.03	0.01	0.01	0.01	0.03	0.0	0.0	0.0

1538 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
1541       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0

1540 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	YEAR	3 244	YEAR 243	4 245	246	247	248	249	250	251	252	253
1567 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.	890123456789012345678901234567890		00000000000000000000000000000000000000		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

YEAR	254	255	256	257	258	259	260	261	262	263	264
290123456789012341 2996966444444445555555555555555555555555		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	3 1000000000000000000000000000000000000	9N 9 N 6 1	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
1973	5.5	0.01	0. 02	0.01	0.04	0.0	0.01	0.08	0.07	0.5	0.10

YEAR	276	277	278	279	280	281	282	283	284	285	286
######################################	000000000000000000000000000000000000000	9 1 11 1		000000000000000000000000000000000000000	01000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000

YEAR	287	288	289	290	291	292	293	294	295	296	297
11111111111111111111111111111111111111	000000000000000000000000000000000000000	2 000000000000000000000000000000000000	28 000000000000000000000000000000000000	9 0000000000000000000000000000000000000	2 9 99 99 1	2 000000000000000000000000000000000000	29 0000010000000000000000000000000000000	4 000m000000000000000000000000000000000	9	000000000000000000000000000000000000000	2 4 0300000000000000000000000000000000000
1 6 7 1 1 9 7 2 1 9 7 3	0.0	0.08 0.60 0.01	0.01	0.0	0.02	0.0	0.0	0.0	0.02	0.0	0.01

YEAR	298	299	300	301	302	303	304	305	306	307	308
890123456789012345678901234567890123 555555555555555556666666677777 55555555	3 000000000000000000000000000000000000	8 000N00000000N000000000000000000000000	63 2 0000720000000000000000000000000000000	000100010000000000000000000000000000000	00000	1 7 N 1 01 1 01 1 0000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	7 93 3 N N N N N N N N N N N N N N N N N	00000000000000000000000000000000000000	00100000000000000000000000000000000000

YEAR	309	310	311	312	313	314	315	316	317	318	319
890123456789012345678901234567890123 \$9\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	000000000000000000000000000000000000000	000000110000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000100000000000000000000000000000000	00000000000000000000000000000000000000	8 NNN1 MMO4 55 9 MM 7N 55	00000000000000010100000000000000000000

YEAR	320	321	322	323	324	325	326	327	328	329	330
890123456789012345678901234567555995555555555555555555555555555555	00000000000000000000000000000000000000	000041000000100000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	8 0400000000000000000000000000000000000	00000000000000000000000000000000000000
1966 1967 1968 1969	0.0	0.02	0.05 0.02 0.00 0.0	0.0	0.0		~ ~ ~		0.0 0.0 0.05 0.43 0.01	0.44 0.7 0.48 0.3	0.31 0.0 0.0 0.03 0.02
1971 1972 1973	0.0 0.34 0.61	0.0 0.23 0.73	0.0	0.01 0.06	0.0	0.0	0.05	3.0	0.0	0.02	0.02

YEAR	331	332	333	334	335	336	337	338	339	340	341
X 89012345678901234567890123 4 33444444444455#555555566666666677777 5 5555555555555555	1 000000000000000000000000000000000000	0000001m000000000000000000000000000000	0 7 N 8N 3 6NO N 6	00000000000000000000000000000000000000	8 N137 0 N6 1 4 05	9 NM4 NN 56N 4 6M 0000000000000000000000000000000000	000000000000000000000000000000000000000	8 4 3N 6367N 1 N	1 12 9 5 605 1 52 4 0000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
1573	9.9	0.0	0.01 0.0 1.23	0.0	0.0	0.14	0.0	0.0	0.09	0.40	0.0 0.21 0.02

YEAR	342	343	344	345	346	347	348	349	350	351	352
890123456789012345678901234567890123 5999999999999999999999999999999999999	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	07000000000000000000000000000000000000	8 000000000000000000000000000000000000	4	6 3 41 N 000N00000000000000000000000000000000	3 0 31 86 9 N 5 7 N006000000000000000000000000000000000	38 6 5 3 43 2 6 38 3 0000000000000000000000000000000000	7 884 N 6 1 4 55 6 00N0000000000000000000000000000000000	1 4 45 1 8 7681 V NONDOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC

YEAR 353 354 355 356 357 358 359 360 361 362 363 0.60 0.0 0.56 0.23 0.0 0.0 0.0 0.21 0.28 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.04 0.05 0.07 0.07 0.00 1.03 0.73 0.0 0.00 00000 1.643 19645 19665 19667 19689 1970 1972 1973 0.03 6 0

A890123456789012345678901234 Y5999959999999999999999999999999999999	3 16 0 4 4000N077000004000400000000000000000000	5000005500000012305000000000000000000000	31.000000000000000000000000000000000000
1964 1965 1966 1968 1969 1970 1971	551	0.37	-1.00 -1.00 -1.00 -1.00 -1.00

# APPENDIX B

# WEEKLY RAINFALL DATA

TEAR	01	02	03	04	ON	N 1	N 2
71111111111111111111111111111111111111	7800000010005000000000000000000000000000	D100408504MM00070M800000000000000000000000000000	70000770000000000000000000000000000000	D5086990000017000005503070600000000000000000000000000	T0N9M0690500700000000000000000000000000000000	D0000000000000000000000000000000000000	D000210666200690279033070512552893123 D00003000000101101000000001135000000131

REEKS

YEAR	м 3	N 4	D 1	<b>D2</b>	<b>D3</b>	24
71111111111111111111111111111111111111	D0000000400012000000000000002000100000000	##0010##000000000000000000000000000000	8009902657026786095750056014069025040 200725151657966316720013050099042510	00000000000000000000000000000000000000	######################################	D738186260608850010072000009903590600 D722749470400250050002500006300078319

YEAR	J1	<b>J2</b>	J3	J4	JF	P1
71111111111111111111111111111111111111	#2140908052724031124800002580000024071 T82105000016142038613100106000012031 T310010100000110010001000001000000000	D300000000000000044847468501063001171037	D0101000000100200210000002020020420020 D010100000010020021000002020107203030020 D010100000010020021000002020202020202020	793772408008700306875390042181800070 781987003026080309571540023174980060 7022000000000101010100100000010200000	7300497953941670030825630200460430848 730556330187130040080380705551600070	75436111694310000005514412505000040770 82725721652053000002514455005000040170 10031000000110000000011021000000200020

YEAR	F 2	<b>F3</b>	PM	<b>H1</b>	M2	#3
71111111111111111111111111111111111111	D11100000000000001000001000000000110000	D12112000000000000011110000000000000000	701017646420930070470858078573478069	D44201856M814405048603295014M8403038 900446006201452600500042404034820015	770900650994030440703366479836006403 035970780950020100560352324030090000 000000000100020200020010100022000000	#000040640296017760500700148677048102080321 00000000000100010000000000000000000

YEAR	M4	A1	12	13	14	AM
71111111111111111111111111111111111111	6330005685500000667940800 56096000075 78204069620000400160200732051001014 03400001000000000000000000	D9761m00m00600m00m00000004050000805506	900000470000000000000000000000000000000	D000000000000000000000000000000000000	<b>937994000900863518006805780090700507 961193000200826663004701300090100007 9000000000000000000000000000000000000</b>	D35802000739700029000760030000000000000000000000000000000



Figure 44. Weekly rainfall in inches for weeks 01 and 02





Figure 45. Weekly rainfall in inches for weeks 03 and 04





Figure 46. Weekly rainfall in inches for weeks ON and N1





Figure 47. Weekly rainfall in inches for weeks N2 and N3





Figure 48. Weekly rainfall in inches for weeks N4 and D1





Figure 49. Weekly rainfall in inches for weeks D2 and D3





Figure 50. Weekly rainfall in inches for weeks D4 and J1





Figure 51. Weekly rainfall in inches for weeks J2 and J3





Figure 52. Weekly rainfall in inches for weeks J4 and JF





Figure 53. Weekly rainfall in inches for weeks Fl and F2





Figure 54. Weekly rainfall in inches for weeks F3 and FM





Figure 55. Weekly rainfall in inches for weeks Ml and M2





Figure 56. WEekly rainfall in inches for weeks M3 and M4





Figure 57. Weekly rainfall in inches for weeks Al and A2





Figure 58. WEekly rainfall in inches for weeks A3 and A4



Figure 59. Weekly rainfall in inches for week AM

#### APPENDIX D

### EXPONENTIAL DISTRIBUTION

The Exponential Distribution with parameter  $\lambda$  has the form

$$F(x) = 1 - \exp(-\lambda x)$$
 ,  $0 \le x$   
= 0 ,  $x < 0$ 

It has density function,

$$f(x) = \lambda \exp(-\lambda x)$$

Suppose X has the exponential density with parameter  $\lambda$ . Here are some characteristics of X.

- a) The mean :  $E[X] = 1/\lambda$
- b) The variance :  $V[X] = 1/\lambda^2$

std. dev [X]:  $1/\lambda$ 

(Coef. of variation) $^2 = 1$ 

- c) The Median :  $X_{0.5} = 0.693E[X]$
- d) The Lower Quartile:  $X_{.25} = 0.288E[X]$
- d) The Upper Quartile:  $X_{.75} = 1.386E[X]$
- f) The Skewness: 2

The Kurtosis: 6

ALGEBRAIC COMPUTATION OF SKEWNESS AND KURTOSIS FOR EXPONENTIAL DISTRIBUTION.

Exponential distribution with parameter  $\lambda = 1$ .

Density function: f(x) = exp(-x)

Mean : 1

Variance: 1

### A. SKEWNESS

$$\gamma_{1} = \frac{E[(X-1)^{3}]}{(1)^{3/2}} = E[(X-1)^{3}]$$

$$E[(X-1)^{3}] = \int_{0}^{\infty} (X-1)^{3}e^{-X}dX ; \int_{0}^{\infty} x^{k}e^{-X}dx = k!$$

$$= 3! - 3x^{2}! + 3x^{1}! - 1x^{0}!$$

### B. KURTOSIS

$$\gamma_2 = E[(X-1)^4] - 3$$

$$E[(X-1)^4] = \int_0^\infty (X-1)^4 e^{-X} dx; \text{ again } \int_0^\infty X^k e^{-X} dx = k!$$

$$= 4! - 4x^3! + 6x^2! - 4x^4! + 1x^6!$$

$$= 9$$

$$\gamma_2 = 9 - 3 = 6$$

#### SAMPLE PROPERTIES OF SKEWNESS AND KURTOSIS

Cramer [Ref. 6] gives a discussion of mean and variances of the skewness and kurtosis for sampling. In general, the mean of  $g_1$  and  $g_2$  are:

$$E[g_1] = \gamma_1$$
,  $E[g_2] = \gamma_2$ 

and the variances are:

$$Var[g_1] = \frac{4\mu_2^2\mu_6 - 12\mu_2\mu_3\mu_5 - 24\mu_2^3\mu_4 + 9\mu_3^2\mu_4 + 35\mu_2^2\mu_3^2 + 36\mu_2^5}{4 \times n \times \mu_2^5}$$

$$Var[g_2] = \frac{\frac{2^{\mu_2 \mu_8 - 4\mu_2 \mu_4 \mu_6 - 8\mu_2^2 \mu_3 \mu_5 + 4\mu_4^3 - \mu_2^2 \mu_4^2 + 16\mu_2 \mu_3^2 \mu_4 + 16\mu_2^3 \mu_3^2}{n \times \mu_2^6}$$

When the parent population is exponential,

$$E[g_1] = 2$$
,  $E[g_2] = 6$   
 $Var[g_1] = \frac{225}{8\pi n}$ ,  $Var[g_2] = \frac{1332}{n}$ 

for the computation.

In general for the exponential distribution with density function  $f(x) = e^{-x}$ , the kth moment;  $\mu_k = \int\limits_0^\infty x^k e^{-x} dx = k!$  So, by using this formula and putting it in the equations of variance:

$$Var[g_1] = \frac{225}{8n}$$
,  $Var[g_2] = \frac{1332}{n}$ 

Table 22: ESTIMATED AND SIMULATED VALUES FOR SKEWNESS AND KURTOSIS FOR SAME SAMPLE SIZES.

	* OF YEARS	ESTIM.	SIMULATED	ESTIM.	SIMULATED
WEEK	POS. RAINFALL	SKEWNESS	SKEWNESS	KURTOSIS	KURTOSIS
01 02 03	9 17 16	1.57 1.23 2.05	1.11 1.37 1.34	0.43 0.10 3.16	0.24 1.36 1.25
O4 ON	16 15 14	2.05 1.50 2.62 0.39	1.33 1.29 1.43	1.65 5.82 -1.58	1.17 1.02 1.70
N 1 N 2 N 3 N 4	20 28 19 22	1.78 1.64	1.54 1.41	2.26	2.31 1.57
D 1 D 2	228 228 228 228	3.39 1.45 1.84	1.45 1.54 1.45	2.26 1.65 11.39 1.08 3.03	1.83 2.31 1.83
D3 D4 J1	26	0.70 1.34 1.73	1.54 1.49 1.52	0.17 1.10 2.66	2.31 1.57 1.83 2.33 2.09 2.19 2.09
J2 J3 J4	2651797771028531	0.83 0.76 1.04	1.50 1.44	-0.73 0.44 -0.01	2.09 1.76
JP	29 27	1.00	1.52 1.55 1.52 1.52	-0.11 1.24	2.22 2.37 2.22 2.22 1.76
P1 P2 P3	21 21 30	1.10 1.05 1.31	1.52 1.44 1.55 1.57	0.47 0.65 0.46	2.40
M 1 M 2 M 3 M 4	32 28 25	1.25 0.83 1.07	1.57 1.54 1.50	-0.84 -0.81 0.17	2.50 2.31 2.09
H4 A1 A2	23 21 22	1.34 0.81 1.34	1.47 1.44 1.45	0.39 -0.94 0.59	1.94
13 14 18	22 14 22 18	0.15 0.56 1.03	1.29 1.45 1.39	1.49 -0.72 0.55	1.76 1.83 1.02 1.83 1.50



Histogram of the LS in days for October through April in the 36-year period Figure 60.

TOTAL TEREST TOTAL

VARIANCE COEF VAR MEAN CEV RANGE OEV RANGE OEV

SPREAD

CENTRAL TENDENCY

DISTRIBUTION

HIGHER CENTRAL MOMENTS



Histogram of the LS in days for December through February in the 36-year period Figure 61.



Histogram of the AR in inches in all storms for October through April in the 36-year period Figure 62.



December through February in the 36-year period Histogram of the AR in inches in all storms for Figure 63.



Figure 64. Histogram of the LN in days for October through April in the 36-year period



Figure 65. Histogram of the LN in days for December through February in the 36-year period



Histogram of AR in inches in the exactly 1 day lasting storms for October through April in the 36-year period



Figure 67. Histogram of the AR in inches in the exactly 1 day lasting storms for December through February in the 36-year period



Histogram of the AR in inches in the exactly 2 days lasting storms for October through April in the 36-year period Figure 68.



	######################################
	A TENTE
0157P 18U7 10N	TOPOS CONTROL OF CONTR
HIGHER CENTRAL MOMENTS	243 SACRESS - 1-201123E-103 SACRESS - 1-201123E-103 BETTAN 15: 100 100 100 100 100 100 100 100 100 10
	5-4-24 4-4-24 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-44 4-4-4-4-
SPREAD	MARCHE DAY PROPERTY OF THE PRO
ENDENCY	44444444444444444444444444444444444444
CENTRAL 1	A SAME A

Histogram of the AR in inches in the exactly 2 days lasting storms for December through February in the 36-year period Figure 69.



*

	HINGE!
DISTRIBUTION	LLELLE MANANA ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS ANDRESS
HIGHER CENTRAL MOMENTS	#3 SKEWNESS SKEWNESS SKEWNESS SKEWNESS SKEWNESS 17.1021896-01 BETAL 17.5640146-01 BETAL 17.5640146-01
	72.7.7. 9999000000000000000000000000000000000
SPREAD	VAR IANCE COTO DEV COTO DEV COTO VAR REAN DEV RAZGE RAZGE RAZGE RAZGE
PEADENCY	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
CENTRAL	A REPORT OF THE PROPERTY OF TH

Histogram of the AR in inches in the exactly 3 days lasting storms for October through April in the 36-year period Figure 70.



	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
DISTAIBUTION	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
HIGHER CENTRAL MOMENTS	######################################
	20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 200000 200000 200000 200000 20000 20000 20000 20000 20000
SPREAD	A STORY OF THE STORY OF T
ENDENCY	
CENTRAL TE	A A A A A A A A A A A A A A A A A A A

Histogram of the AR in inches in the exactly 3 days lasting storms for December through February in the 36-year period Figure 71.



	2000 1000 1000 1000 1000 1000 1000 1000
	IXI
15 TA [BUT 10N	28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 2888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 28888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 2688 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26888 26
DISTRI	TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPOPOR TOPO
MENTS	000000
CENTRAL MOMENTS	4
IGHER CE	43 5xem 5xem 5xem 5xem 5xem 5xem 5xem 5xem
5	まがらべぬむ シャベンミニ しないて
	000000
	######################################
2	SYARIAN SYARIAN SOO JEV TECH TECH TECH TECH TECH TECH TECH TECH
SPREAD	SOME TO SECOND
	0000000
ENDENCY	
TERCE	
ENTRAL	A CONTRACTOR A CON

Histogram of AR in inches in the exactly 4 days lasting storms for October through April in the 36-year period Figure 72.



ISTAIBUTION	A SON OLD AND A SON OLD A
IIGHER CENTRAL MOMENTS DIS	2.424031E-103 2.4240431E-103 2.4240431E-103 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.4240612 2.424061
H	3. 19.00 1. 19.00 1. 19.00 1. 19.00 1. 19.00 1. 19.00 1. 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.
SPREAD	VARIANCE STO DEVE COEF VAR MELLE MIDSPREAD MIDSPREAD
TENDENCY	A A A A A A A A A A A A A A A A A A A
CENTAL	22 22 22 22 22 22 22 22 22 22 22 22 22

Histogram of AR in inches in the exactly 4 days lasting storms for December through February in the 36-year period Figure 73.

NUMBER OF ORDERED PAIRS .

UNITS r-SCALE : *** = 0.453E-01 UNITS 0.845E-02 EXPON. SCCRES 2.829 2.602 2.376 2.150 1.923 1.657 1.470 1.244 1.017 0.791 0.564 0.338

Figure 74. Exponential scores versus observed scores for week Ol

GAMMA? = 4.344463E-01

ESTIMATED PARAMETERS OF DATA : GAMMAL - 1.571202E+00

Figure 75. Exponential scores versus observed scores for week 02 GAMMA2 = 1.014958E-01 ESTIMATED PARAMETERS OF DATA : GAMMA! - 1.231586E+00

X-SCALE : **' = 0.13E-01 UNITS Y-SCALE : ** = 0.563E-01 UNITS





3.381

3.104	2.326	2.551+	2.275	1.998

						9.0
	•	•				0.17 0.32 0.46
			•	• •		0.17
 					•••	0.0
1.722	1.445	1.169	. 0.492	0.616	0.339	

Figure 76. Exponential scores versus observed scores for week 03 GANNA2 - 3.163898E+00 ESTIMATED PARAMETERS OF DATA : GAMMAI - 2.050803E+00

X-SCALE : *** . G.143E-01 UNITS Y-SCALE : *** . 0.555E-01 UNITS

1.03	
0.78 0.99	
0.53 0.66	
0.047 + 0.042 +	
0 0	

X-SCALE : '*' = 0.125E-01 UNITS Y-SCALE : '*' = 0.542E-01 UNITS

Las crath

ESTIMATED PARAMETERS OF DATA 1 GAMMAI - 1.4983376+00 GAMMA2 - 1.4520676+00

Figure 77. Exponential scores versus observed scores for week O4

C.880

0.609

0.336

1

3.252 +	2.983	2.722	2.457	2.192	1.927	••••• ••••	1.394	1.131	0.866	100.0	0.33	0.071
									•	٠.	•	0.0710.035 0.000 0.29 0.54 0.80 1.05 1.31 1.36 1.35 2.07 2.33 2.36
							•	•				0.54
	!			•		•						000
				•								1.05
												0.000000000000000000000000000000000000
									• .			
												07
`											<b>.</b>	2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -

Figure 78. Exponential scores versus observed scores for week ON

ESTIMATED PARAMETERS OF DATA 1 GAMMAI - 2.615961E+00

X-SCALE : *** * 0.255E-01 UNITS Y-SCALE : *** * 0.530E-01 UNITS GAMMA2 - 5.8153576+00

*

3.598	3.302	3.006	2.11	2.415	2.120	1.424	1.528

165.0	74.0	0.346	6.050	840.0-
•••	••••	·		3.63
	•	•		0.20
		•		0.37
	•			-0.008 \$1984000000000000000000000000000000000000
•	•			12.0
				98.0
				90.1
				1.23
				1.40
				1.57
				1.74
		٠,	·-	i

K-SCALE : *** = 0.171E-01 UNITS V-SCALE : *** = 0.591E-01 UNITS

ESTINATED PARAMETERS OF GATA: GAMMAI - 3.900155E-01 GAMMAZ --1,575627E+00
Figure 79. Exponential scores Versus observed scores for week NI

1.233

ESSIMATED PARAMETERS OF DATA: GAMMAN - 1.7812546+00 GAMMAZ - 2.2573906+00 Figure 80. Exponential scores versus observed scores for week N2

UN175 UN175

0.649E-01

A-SCALE 1 ...

X-SCALE : *** = 0.35&E-01

X-SCALE : *** = 0.365E-01 UNITS Y-SCALE : *** = 0.583E-01 UNITS

Figure 81. Exponential scores versus observed scores for week N3 ESTIMATED PARAMETERS OF DATA : GAMMAL . 1.636559E+00

0.608E-01 UNITS X-SCALE : ** * C.580E-01 UNITS Y-SCALE : ...

Exponential scores versus observed scores for week N4 GAMMA2 - 1.139031E+01 GAMMA1 - 3.385616E+00 ESTIMATED FARANETERS OF DATA 1 Figure 82.

X-SCALE : *** = 0.275E-01 UNITS Y-SCALE : *** = 0.649E-01 UNITS

THATEO PARAMETERS OF DATA: GAMHAL - 1.448464500 GAMHAZ - 1.0783835400 FOR WEEK DI FIGURE 83. Exponential scores versus observed scores for week DI ESTIMATED PARAMETERS OF DATA :

				••••	••••	••••	••••	••••	••••	••••
3.491	3.387	3.383	2.779		2.172		1.564	1.261	0.957	3.653

	:
	2.53
	2.29
	2.04
	1.79
	1.55
	1.30
	1,06
	0.81
	0.56
	0.32
	5
0.0	-0.076

0.349

X-SCALE : *** * 0.246E-01 UNITS Y-SCALE : *** * 0.608E-01 UNITS

Figure 84. Exponential scores versus observed scores for week D2 ESTIMATED PARAMETERS OF DATA :

··.			•		•		•	•••					6.000000000000000000000000000000000000
3.927 3.434 2.436 2.436 2.436 1.009 1.009 0.160 0.160 0.160 0.160 0.160 0.160 0.160	 	••••	••••• *	••••• •	••••	••••	••••		••••	••••	•	• • • • • • • • • • • • • • • • • • • •	7. 0. 0 50 0 50 0 54 0 0 24

Figure 85. Exponential scores versus observed scores for week D3 STIM **ST13** C.210E-01 6.6496-01 A-SCALE : ** . Y-SCALE : "...

GAMMA1 = 6.964020E-01

ESTIMATED PARAMETERS OF DATA :

6. Exponential scores versus observed scores for week D4 GANHAZ * 1.098867E+00

Figure 86.

STING STING

0.498E-01 0.622E-01

Y-5CALE : ... .

GAMMA1 - 1.339972E+00

ESTIMATED FARAMETERS OF DATA :

3.854	• • • •									•
3.534	••••		1							
3.216	••••									
2.400	••••								•	
2.582	••••		·							
2.264	••••	٠			•					
1.366	••••			•						
1.628	••••			•						
1.310	••••		•	•		•				
266.0		•	•							
0.674	•	•		•						
0.356									•	٠.
0.338	6	0.7	1.1	· · · · · · · · · · · · · · · · · · ·	1.8	2.1	2.4	2.8	3.1	3.5

Figure 87. Exponential scores versus observed scores for week Jl CANHAZ = 2.656740E+00

ESTIMATED PAMAMETERS OF DATA 1 GAMMAL . 1.733326E+00

GNITS UNITS

0.3456-01

X-SCALE : *** *

\$ MUMBER OF GROERED PAIRS

¥04×	EXPON. SCORES										
3.816	••••										•
3.501	••••			,							
3.107	••••										
2.032	••••									•	
1.551	••••										
2.243	••••									•	
1.928	<b>4•••</b>									•	
1.413	••••								•		
\$ 7:1	••••										
	••••			•			٠				
	••••		٠.	· _							
0.155	••••••	•	•							i.	
0.0.0		0.32	0.62	0.91	1.20	1.53	1.79	2.09	2.38	2.67	0.340 0.32 0.32 0.42 0.91 1.20 1.53 1.79 2.09 2.38 2.67 2.97 2.97

Exponential scores versus observed scores for week J2

Figure 88.

GAMMA2 = -7.332562E-01

GAMMAI = 8.340170E-01

4-5CALE : '*: * 0.294E-01 UNITS Y-SCALE : '*: * 0.629E-01 UNITS

ESTIMATED PARAMETERS OF DATA &

											•
***	••••	••••	••••	••••	••••	••••	••••		••••	••••	••••
3.645	3.346	3.04	2.74£	2.446	7.146	1.846	1.547	1.241	1,6.0	1,0.0	0.347
	•••	•••	•	••	-						•

	0.7	
	•	
	•	
	:	
	i	
	in.	
	:	
	٠.	
	:	
	~	
	~	
	i	
	.~	
	i	
	-	
	i	
	-	
	į	
	:	
	į,	
	:	
•		
·••	-0.072 p.d.spp.co.co.co.co.co.co.co.co.co.co.co.co.co.	
10.	.072	
0	Ŷ	

e 89. Exponential scores versus observed scores for week J3

Figure 89.

UNITS UNITS

0.389E-01

Y-SCALE : *** A-SCALE : ...

GAMMAI - 7.564707E-01

ESTIMATED PARAMETERS JF DATA :

					•		•			•		`·•	0.600000000000000000000000000000000000	es versus	ESTINATED PARAMETERS OF DATA I GAMMAI - 1.0380406+00 GAMMAZ9.423792E-03 SCOLES IOF WEEK J4
7.49.	3.570	3.245	2.426	2.607	2.265	1.944	1.643	1.322	1.001	0.679	0.358	0.037	160-0-		

				•	•		•			7.7 7.4
										2.0
					•	•			•	
,						•	•			· ·
				•			•	••		
								•.	·.	0.7
									••	4.0
6.46 6.46 6.46 6.46 6.46 6.46 6.46 6.46	3.307	7	2.325	1.058	1.671	1.344	1.016		0.362	0.0

Figure 91. Exponential scores versus observed scores for week JF

GAMMA2 - -1.076772E-01

ESTIMATED PARAMETERS OF DATA: GAMMAI - 1.001960E+00

X-SCALE : *** . 0.335E-01 UNITS Y-SCALE : *** . 0.655E-01 UNITS

Exponential scores versus observed scores for week Fl Figure 92.

GAYHA! - 1.449948+00

ESTIMATED PARAMETERS OF DATA 1

STIND STIND

X-SCALE : '*: * 0.335E-01 Y-SCALE : '*: * 0.442E-01 GAMMAZ * 1.2381&0E+00

3.691

2.607

2.285

1.643

1.904

1.322

1.001

0.479

0.358

2718 STIM 0.205E-01 0.64 2E-01 X-SCALE : ... . GAMMA2 . 4.708149E-01 ESTIMATED PARAMETERS OF DATA : GAMMAI . 1.096996E+00

Exponential scores versus observed scores for week F2 Figure 93.

Exponential scores versus observed scores for week F3 GANHA2 . 6.506062E-01 ESTIMATED PARAMETERS OF DATA 1 GAMMAI - 1.052673E+00

**GN11S GN11S** 

0.3146-01

X-SCALE : *** .

Figure 95. Exponential scores versus observed scores for week FM

GAMMA1 - 1.306018E+00

ESTIMATED PARAMETERS OF DATA 1

STIND STIND

X-3CALE 3 *** = 0.379E-01 Y-SCALE 3 *** = 0.660E-01 GAMMAZ - 4.553317E-01

EXPON. SCENES

Exponential scores versus observed scores for week Ml

GAMMA2 - 8.420482E-01

GAMMAI - 1.247642E+00

ESTIMATED PARAMETERS OF DATA :

Figure 96.

5

0.4716-01

Y-SCALE : ...

X-SCALE : ** * 0.219E-01 UNITS

212

0.034 ... -0.094 6.63 0.24 0.26 0.73 0.96 1.20 1.43 1.67 1.96 2.13 2.37

 ESTIMATED PARAMETERS OF DATA : GANYAI . B.3105316-01 GANHAZ - - 8.1262416-01

Figure 97. Exponential scores versus

Exponential scores versus observed scores for week M2

i :

213

1

The Parks of the P

ESTIMATED PARAMETERS OF DATA: GAMMAI - 1.072396E-00 GAMMAZ - 1.695281E-01
Figure 98. Exponential scores versus observed scores for week M3

ST150

0.1966-01

N-SCALE : *** **

214

X-SCALE 1 *** • 0.380E-01 UNITS Y-SCALE 1 *** • 0.619E-01 UNITS

Figure 99. Exponential scores versus observed scores for week M4

ESTIMATED PARAMETERS OF DATA : GAMMAL - 1.341865E+00

GAMMA2 = 3.884540E-01

4.

0.347

X-5CALE : '*. * 0.2456-01 UNITS Y-5CALE : '*. * 0.6006-01 UNITS

Figure 100. Exponential scores versus observed scores for week Al GANNA2 - -9.3980526-01 ESTIMATED PARAMETERS OF DATA: GAMMAI - 0.048037E-01

ESTIMATED PARAMETERS DF DATA: GAMMAI - 1.3414396+000 GAMMAZ - 5.9234466-01
Figure 101. Exponential scores versus observed scores for week A2

109-0

0.336

0.866

K-SCALE : '0' - 0.200E-01 UNITS Y-SCALE : '0' - 0.530E-01 UNITS

Figure 102. Exponential acores versus observed scores for week A3 GAMMA2 - 1.485915E+00 GAMMA1 = 1.4650*2E+00 ESTEMATED PARAMETERS OF DATA :

EAPON. SCENES

X-SCALE : *** . 0.113E-01 UNITS Y-SCALE : *** . 0.608E-01 UNITS ESTIMATEO PARAMETERS OF DATA : GAMMAI = 5.609644E-01 GAMMAZ = -7.214982E-01

Figure 103. Exponential scores versus observed scores for week A4

3.455	9.208 • • • •	2.922	2.435	2.349	2.062	1.775	• • • • • • • • • • • • • • • • • • • •	1.202	0.915	• • • • • • • • • • • • • • • • • • • •	0.342	•	0.0
						٠					•		0.09 0.16 0.22 0.28 0.34 0.41
		r											. 0.22
					,			•	•	,	•		0.2
						•	•						0. y
									•				7.0

0.47 0.53 0.59 0.66

C.627E-02 UNITS 0.573E-01 UNITS A-SCALE : ... = Y-SCALE : ... = ESTIMATED PARAMETERS OF DATA : GAMMAL - 1.031787E+00

Figure 104. Exponential scores versus observed scores for week AM

GAMMAZ . 5.543498E-01

## LIST OF REFERENCES

- Cox, D.R., The Analysis of Binary Data, Barnes & Noble, Inc., 1970.
- Conover, W.J., <u>Practical Nonparametric Statistics</u>, Wiley, 1971.
- 3. McNeil, D.R., Interactive Data Analysis, Wiley, 1977.
- 4. Davis, D.P., A Statistical Analysis of Monthly Rainfall for Monterey Peninsula, M.S. Thesis, Naval Postgraduate School, Monterey, March 1981.
- 5. Cramér, H., Mathematical Methods of Statistics, Princeton University Press, 1946.
- 6. Duncan, A.J., Quality Control and Industrial Statistics, Irwin, 1974.

## INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Professor D.P. Gaver, Code 55Gv Naval Postgraduate School Monterey, California 93940		1
4.	Professor P.A. Jacobs, Code 55Jc Naval Postgraduate School Monterey, California 93940		1
5.	Professor R.J. Renard, Code 63Rd Naval Postgraduate School Monterey, California 93940		1
6.	Lieutenant Davut Kirca Ipras sitesi 7, sok No 4 Tutunciftlik, izmit, TURKEY		1
7.	Dz. Kuvvetleri Komutanligi Bakanliklar, Ankara, TURKEY		2
8.	Chairman, Department of Operations Research, Code 55 Naval Postgraduate School Monterey, California 93940		1

## DATE ILME