Applied Machine Learning

- Convolution operator
- Pattern detection
- Invalid convolutions
- Strides
- Properties of convolution

Image Classification

- Small local patterns in objects
 - edges
 - corners
 - dominant colors
 - textures
- Composition of patterns
 - small figures or shapes
- More composition
 - larger objects

Convolutional Layer - Pattern Detection

- Domain Knowledge from Image Processiing
- Feature maps
 - Convolutional layers
- Stacks of convolutional layers
 - Learn patterns from patterns learned at previous layers
 - More complex patterns learned at each successive layer

Image Processing

UIUC - Applied Machine Learning

Convolution

- Convolution
 - Slide kernel K over the image I

$$N_{u,v} = \sum_{(i,j)\in K} I_{u+i,v+j} K_{i,j}$$

•
$$N = \operatorname{conv}(K, I)$$

 Pixels at the output image encode information around them as defined by the weights in the kernel

Pattern Detection through Convolution

- Convolution
 - Slide kernel K over the image I

$$N_{u,v} = \sum_{(i,j)\in K} I_{u+i,v+j} K_{i,j}$$

$$\begin{cases}
\mathbf{i} = \mathbf{k} & N_{u,v} > 0 \\
\mathbf{i} = -\mathbf{k} & N_{u,v} < 0
\end{cases}$$

Pattern Detection through Convolution

- Convolution
 - Slide kernel K over the image I

$$N_{u,v} = \sum_{(i,j)\in K} I_{u+i,v+j} K_{i,j}$$

- compute for every pixel $\forall (u, v) \in I$
- Kernel Templates
 - Edges, Points, Corners, Others
 - Filtering
- Learning Kernels
 - Weights in convolutional Layers

Kernel: Vertical Edge

Bricks on a Wall

Kernel Outside the Image

- Pixels with invalid convolution
 - kernel of size $\{2k+1\} \times \{2k+1\}$
 - k rows and columns closest to the borders: invalid convolution
- Handling invalid convolution
 - Valid convolution
 - Input I of size $\{i\} \times \{j\}$
 - Output N of size $\{i-2k\} \times \{j-2k\}$
 - Padding
 - expand I on each side by k pixels
 - assign value of 0 to new rows and columns
 - Input I of size $\{i\} \times \{j\}$
 - Output N of size $\{i\} \times \{j\}$

Invalid

Reducing Redundancy - Strides

- Applying convolution to every pixel leads to some redundancy in the output
 - downsampling reduces the size of the output
 - compute convolution to a subset of the input
- Stride size
 - ullet number of pixels to move the kernel over the input image I
 - Stride of 1: compute convolution for every pixel
 - Stride of 2: move kernel by two pixels, skipping one in each dimension
 - Stride of s: move kernel by s pixels in each dimension
 - Input I of size $\{i\} \times \{j\}$
 - Output N of size $\{\lceil \frac{i}{s} \rceil\} \times \{\lceil \frac{j}{s} \rceil\}$

Properties of Convolution

- Commutative: $A \otimes B = B \otimes A$
- Associative: $A \otimes (B \otimes C) = (A \otimes B) \otimes C$
- Distributive: $A \otimes (B + C) = A \otimes B + A \otimes C$
- Linear: $A \otimes (\alpha B) = \alpha (A \otimes B)$
- Invariant to spatial shift $S(\cdot)$: $A \otimes S(B) = S(A \otimes B)$

- Convolution operator
- Pattern detection
- Invalid convolutions
- Strides
- Properties of convolution

Applied Machine Learning