Lista do wykładu

Przestrzenie afiniczne

Zadanie 1 Co można powiedzieć o punktach a,b przestrzeni afinicznej $\mathfrak{A}[V]$ jeśli istnieje wektor $x \in V$ taki, że a#x = b oraz b#x = a.

Zadanie 2 Niech $\mathfrak{A}[V]$ będzie przestrzenią afiniczną. Nich $a \in \mathfrak{A}$ będzie ustalonym punktem. Udowodnij, że

$$\mathfrak{A}\ni b\mapsto f(b)=\bar{ab}\in V,$$

jest bijekcją pomiędzy A i V.

Zadanie 3 W pewnej przestrzeni afinicznej \mathfrak{A} nad przestrzenią euklidesową \mathbb{R}^3 w pewnym układzie współrzędnych \mathcal{O}, \mathcal{E} , punkty a, b, c mają następujące współrzędne

$$(3,-5,2), (1,0,-4), (-2,-2,5)$$

odpowiednio. Napisz współrzędne wektora $\bar{ab} - 2\bar{bc}$.

Zadanie 4 Udowodnij, że dla zadanej przestrzeni afinicznej $\mathfrak{A}[V]$, przez dowolny punkt zbioru \mathfrak{A} przechodzi dokładnie jedna rozmaitość afiniczna o zadanej przestrzeni kierunkowej.

Zadanie 5 Niech $\mathfrak{A}[V]$ będzie ustaloną przestrzenią afiniczną. Załóżmy, że $\mathfrak{B}=b\#W$ i $\mathfrak{C}=c\#Z$ będą dwiema rozmaitościami afinicznymi w $\mathfrak{A}[V]$. Udowodnij, że

$$\mathfrak{B}\cap\mathfrak{C}\neq\emptyset\longleftrightarrow\bar{cb}\in W+Z,$$

gdzie

$$W + Z = \{ w + z \in V : (w, z) \in W \times Z \}.$$

Zadanie 6 Niech $\mathfrak{A}[V]$ będzie ustaloną przestrzenią afiniczną. Załóżmy, że $\mathfrak{B} = b\#W$ i $\mathfrak{C} = c\#Z$ będą dwiema rozmaitościami afinicznymi w $\mathfrak{A}[V]$. Załóżmy, że $\mathfrak{B} \cap \mathfrak{C} \neq \emptyset$, udowodnij, że $\mathfrak{B} \cap \mathfrak{C}$ jest rozmaitością afiniczną o przestrzeni kierunkowej $W \cap Z$.

Zadanie 7 Wykaż, że dowolny automorfizm przestrzeni afinicznej $\mathfrak{A}[V]$ przekształca rozmaitości afiniczne na rozmaitości afiniczne. Ponadto, jeśli obydwie rozmaitości afiniczne są równoległe, to ich obrazy względem automorfizu też są równoległe.

Zadanie 8 W przestrzeni afinicznej $\mathbb{R}^2[\mathbb{R}^2]$ dany jest punkt $a \in \mathfrak{A}[V]$ o współrzędnych (3,-1) w zadanym układzie współrzędnych $(\mathcal{O},\mathcal{E})$. Wyznacz współrzędne punktu $a \in \mathfrak{A}[V]$ w układzie współrzędnych $(\mathcal{O}',\mathcal{E}')$, wiedząc, że \mathcal{O}' ma współrzędne (-2,-5) w układzie $(\mathcal{O},\mathcal{E})$ oraz

$$\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$$

jest macierzą przejścia z bazy \mathcal{E} do bazy \mathcal{E}' .

Grafika 2D i 3D

Zadanie 9 Napisz funkcję w javascript (albo w pseudokodzie), która sprawdza, czy dane punkty $A, B, C \in \mathbb{R}^2$ są współliniowe.

Zadanie 10 Napisz funkcję w javascript (albo w pseudokodzie), która sprawdza, czy dane punkty $A, B, C \in \mathbb{R}^3$ są współliniowe.

Zadanie 11 Napisz funkcję sprawdzającą, czy dla punktów $A, B, C, D \in \mathbb{R}^2$ punkty C i D leżą po tej samej stronie prostej wyznaczonej przez punkty A i B.

Zadanie 12 Napisz funkcję sprawdzającą, czy punkty $X, Y \in \mathbb{R}^3$ leżą po tej samej stronie płaszczyzny wyznaczonej przez niewspóliniowe punkty $A, B, C \in \mathbb{R}^3$.

Zadanie 13 Napisz funkcję sprawdzającą, czy odcinek I wyznaczony przez punkty $X, Y \in \mathbb{R}^3$ przecina płaszczyznę π , wyznaczoną przez niewspóliniowe punkty $A, B, C \in \mathbb{R}^3$. Jeśli odpowiedź jest pozytywna, to funkcja zwraca zbiór $I \cap \pi$.

Zadanie 14 Napisz funkcję, która zwraca unormowany wektor normalny \bar{n} do płaszczyzny wyznaczonej przez niewspóliniowe punkty $A, B, C \in \mathbb{R}^3$. Zakładamy, że \bar{n} ma zgodną orientacje z (A, B, C).

Zadanie 15 Dla zadanych nizerowych punktów $A, B \in \mathbb{R}^2$ wyznacz macierz obrotu $M \in \mathbb{R}^{2 \times 2}$ względem początku układu wsółrzędnych, która przeprowadza punkt A na punkt B.

Zadanie 16 Czy dla zadanych punktów $A,B,C,D\in\mathbb{R}^2$ można wyznaczyć izometrię $f:\mathbb{R}^2\to\mathbb{R}^2$ taką, że

- 1. f(a) = B,
- 2. prosta wyznaczona przez punkty A, B przechodzi na prostą przechodzącą przez punkty C i D,
- 3. istnieje macierz $M \in \mathbb{R}^{2\times 2}$ i wektor $v \in \mathbb{R}^2$ taka, że dla dowolnego $x \in \mathbb{R}^2$ $f(x) = M \cdot x + v$, (wektory x, y zapisujemy kolumnowo).

Jeśli odpowiedź jest twierdząca, to wyznacz M i v.

Zadanie 17 Napisz funkcję która sprawdza, czy część wspólna dwóch trójkątów wyznaczonych przez wierzchołki $A,B,C\in\mathbb{R}^3$ oraz $C,D,E\in\mathbb{R}^3$ jest odcinkiem o dodatniej długości.

cdn.