Trial HSC Examination 2018 Mathematics Course

	Name_			I	Teacher		
		Sec	tion I – N	<i>fultiple</i>	Choice An	Section I – Multiple Choice Answer Sheet	
Allow about 15 minutes for this section Select the alternative A, B, C or D that best	t 15 min ı ternative	utes for t A, B, C or	his sectio D that bes	n st answer	s the questio	n. Fill in the resp	Allow about 15 minutes for this section Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:	2 + 4	ΪΙ	(A) 2 A O		(B) 6 B ●	0° (C) 8	(D) 9 O
If you think answer.	you have	made a n	nistake, pu	t a cross	through the i	If you think you have made a mistake, put a cross through the incorrect answer and fill answer.	and fill in the new
			A		B (0	0
If you chang indicate the	e your mi correct aı	nd and h nswer by	ave crosse writing th	d out wh	at you consid orrect and di	If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.	ect answer, then as follows.
			A		B M	0	0
.1	A ()	B	0	DO			
2.	> •	В	0	DO			
ω	A ()	В	0	D			
4.	A ()	B	0	D O			
<u>.</u>	A	В	0	D Jar.			
6.	A (в О	0	0			
7.	> ()	В	0	D			
8.	> ()	В	0	DO			
9.	> ()	В	0	0			
10.	A ()	B	0	DO			

С	At point P, the slope of the curve is positive, therefore the velocity is positive. Concavity is negative, so acceleration is negative.	8
מ	We have two triangles with base length 1.5 units and height 3 units. $A = \frac{1}{2}$ bh gives us area = 4.5 square units $A = \frac{1}{2} = \frac{3}{2} =$	7
A	The graph shows a concave up parabola $(a > 0)$ with 2 distinct, integer roots. For distinct integer roots, need $\Delta \neq 0$ and Δ square.	6
# P	$P(AFL wins) = I - P(AFL loses)$ $= \frac{2}{5}$ $= \frac{2}{5}$ $= \frac{3}{20}$ $= 15\%$	U
В	$27x^3 - 8 = (3x - 2)(9x^2 + 6x + 4)$	4
D	sin and tan are both negative in the fourth quadrant.	သ
A	$\int \frac{x}{x^2 + 1} dx$ $\int \frac{x}{dx} (x^2 + 1) = 2x$ $\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{2x}{x^2 + 1} dx$ $= \frac{1}{2} \ln(x^2 + 1) + C$	12
₽	$3x + 2y - 10 = 0$ $2y = -3x + 10$ $y = -\frac{3}{2}x + 5$ $\therefore m = -\frac{3}{2}$	-
Answer	Working	No
	Multiple Choice Worked Solutions	
	And the second of the second o	

10	9
$8 = r\theta$ $8 = r\theta$ $8 = r\theta$ $R = \frac{8}{\theta}$ $R = \frac{1}{2}r^{2}\theta$ $= \frac{1}{2} \times \left(\frac{8}{\theta}\right)^{2} \times \theta$ $= \frac{1}{2} \times \frac{64}{\theta^{2}} \times \theta$ $= \frac{32}{\theta} \text{ square units}$	$5, \frac{5}{7}, \frac{5}{49}$ $a = 5$ $r = \frac{1}{7}$ $S_{\infty} = \frac{a}{1 - r}$ $\frac{5}{5}$ $= \frac{1}{1 - \frac{1}{7}}$ $= 5 \frac{5}{6}$ $= \frac{5}{6}$
B	C

								,
(e)		(a)		(c)	(б)		(a)	
(i) $ x-5 > 2$ x-5 > 2 or $-x+5 > 2x > 7$ $-x > -3x > 7$ $x < 3$	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin 2x dx = -\frac{1}{2} \left[\cos 2x\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$ $= -\frac{1}{2} \left[\cos \pi - \cos \frac{\pi}{2}\right]$ $= -\frac{1}{2} \left[-1 - 0\right]$ $= \frac{1}{2}$	$\left[\frac{d}{dx}(-\cos 2x) = 2\sin 2x\right]$	OSE - 13 and z $10x^{2} - 13x - 3 = \frac{(10x - 15)(10x + 2)}{10}$ $= \frac{5(2x - 3)2(5x + 1)}{10}$ $= (2x - 3)(5x + 1)$	$a = -\frac{21}{47}$ and $b = -\frac{2}{47}$ and $b = -\frac{2}{47}$ and $a = 10, b = -\frac{2}{47}$	010	$y' = \frac{vu' - uv'}{v^2}$ $= \frac{3(2x^3 - 5x^2) - (3x + 2)(6x^2 - 10x)}{(2x^3 - 5x^2)^2}$ $= \frac{6x^3 - 15x^2 - 18x^3 + 30x^2 - 12x^2 + 20x}{(2x^3 - 5x^2)^2}$ $= \frac{-12x^3 + 3x^2 + 20x}{(2x^3 - 5x^2)^2}$	For $\frac{3x+2}{2x^3-5x^2}$ let $u = 3x+2$ and $v = 2x^3-5x^2$ then $u' = 3$ and $v' = 6x^2-10x$	Question 11 Solutions
<u> </u>	<u></u>			2	<u> </u>	1		Marks
Correct inequalities set up using concept of absolute value. Correct conclusion.			1 mark if incorrect answer due to a minor error	Correct separation of values from answer reached in (i). 2 marks for correct answer.	Multiplication by correct fraction with conjugate. Correct answer.	Correct use of quotient rule Correct expansion & simplification		Allocation of marks

		(f)	
(ii) f'(f(When .:	٠. 	(i) 22	Question (ii)
$f'(x) = 2x - 5$ $f(x) = \int 2x - 5$ $= x^{2} - 5x$ $= x^{2} - 5x$ When $x = 2$, $y = 0$ $0 = 2^{2} - 5(2)$ $0 = 4 - 10 + 6$ $0 = -6 + 6$ $C = 6$ $\therefore y = x^{2} - 5x$	For $x < 2.5$ we have $f'(x) < 0$.	ω 🖨	Question 11 Solutions (ii)
x-5 $2x-5 dx$ $2x-5 dx$ $x-5$ $x-6$ $x-7$ $x-$	8 8 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4	ons
		V1 +	
	f'(x) = 2x - 5 $f'(x) = 2x - 5$ $have f(x) = 0$ $(turning point)$	6 +	
	For $x > 2.5$ we have $f'(x) > 0$. f(x) increasing $f(x) = 0$ oint)	7 🕀	
	5 we > 0. easing	~	The state of the s
-	, → . →		Marks
Correct answer	Correct identificat turning point x-val with turning point somewhere on the $x=2.5$.	Correct g open circ region.	Allocatio
nswer	Correct identification of turning point x-value. Any concave up parabola with turning point somewhere on the line x=2.5.	Correct graph including open circles and correct region.	Allocation of marks
	on of ue. rabola	iding irrect	S

Question 12		2018	
Question	Question 12 Solutions	Marks	Allocation of marks
(a) (i) The l	(i) The line passing through (2, 4) and (5,3) has:		
	$m = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{3 - 4}{5 - 2}$ $= -\frac{1}{3}$	⊢	Correct gradient.
× + (a	$y - y_1 = m(x - x_1)$ $y - 4 = -\frac{1}{3}(x - 2)$ $3y - 12 = -x + 2$ $x + 3y - 14 = 0$	1	Any correct method for finding equation of line.
(ii) The a	(ii) The diagonals in a rhombus are perpendicular to each other. For perpendicular lines: $m_1 \times m_2 = -1$ $-\frac{1}{3} \times m_2 = -1$ $\therefore m_2 = 3$		Correct gradient with mention of perpendicularity.
(iii) Using pe		—	Correct use of perpendicular distance formula or other appropriate method.
15 ×	$=\frac{15}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} = \frac{15}{\sqrt{10}}$ $=\frac{15}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} = \frac{15\sqrt{10}}{10}$ $=\frac{3\sqrt{10}}{2} \text{ units}$	-	Correct answer to here.
OR Find	OR Find coordinates of M (31/2, 51/2) and use distance formula		Vertico Constitution (Constitution Constitution Constitut

	(9)			<u></u>		(b)				
12 16 Red Blue-Red Blue-Red Blue-Red Blue Red Blue Red Blue Red Blue Red Red	Sample Space A Blue Blue, Blue Blue, Blue Blue, Blue Blue	Period = $\frac{\pi}{2}$ = π Range = $-3 \le y \le 3$. Vs	$\therefore 2 - \log_3 a = \log_3 9 - \log_3 a$ $= \log_3 \left(\frac{9}{a}\right)$	$2 = \log_3 9$	Area of rhombus = $\frac{1}{2}xy$ where x and y are the diagonals. = $\frac{1}{2} \times 3\sqrt{10} \times \sqrt{10}$ = 15 square units	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $AC = \sqrt{(5 - 2)^2 + (3 - 4)^2}$ $= \sqrt{10}$	BD (diagonals in a rhombus bisect each other). $\therefore BD = 2BM$ $= 3\sqrt{10}$ Using distance formula:	Question 12 Solutions (iv) M is the midpoint of AC and is therefore the midpoint of
			 -		<u> </u>	_	⊢)	–	Marks
Correct probabilities	Correct sample space	Correct range.		Graph not required.	Using difference identity.	Expressing 2 in log form.	Correct area.	Correct length of AC.	Correct length of BD.	Allocation of marks

(ii) $p(\text{matching pair}) = P(Blue, Blue \text{ or Red, } Red)$ $= P(Blue, Blue) + P(Red, Red)$ $= \frac{5}{17} \times \frac{4}{16} + \frac{12}{17} \times \frac{11}{16}$ $= \frac{152}{272}$ $= \frac{272}{34} \text{ or } 0.5588235294 \text{ or } 55.88235294\%$	Question 12 Solutions
+	Marks
Correct answer.	Marks Allocation of marks

(b)				(a)	
(i) N Q40° $50^{\circ}E$ R Q40° $50^{\circ}E$ A Q40° QE A QE A A QE A A A A A A A A A A A A A	$= \left[\left(-\frac{27}{3} + 2(3^2) - 3(3) \right) - \left(-\frac{1}{3} + 2(1^2) - 3(1) \right) \right]$ $= \left[0 + \frac{4}{3} \right]$ $= \frac{4}{3} \text{ square units.}$	$A = \int_{1}^{3} (-x^{2} + 3x + 4) - (-x + 7) dx$ $= \int_{1}^{3} (-x^{2} + 4x - 3) dx$ $= \left[-\frac{x^{3}}{3} + 2x^{2} - 3x \right]_{1}^{3}$	-4x + 3 = 3)(x - 1) = X = A has x-co	(i) $y = -x^{2} + 3x + 4 \text{ (1)}$ $y = -x + 7 \text{ (2)}$ $-x^{2} + 3x + 4 = -x + 7 \text{ (sub (1) into (2))}$ $-x^{2} + 4x - 3 = 0$	Question 13 Solutions
, ,	,	1 1	-	-	Marks
Correct ∠PQS Correct ∠RQE	Correct answer.	Setting up correct integral. Correct integration.	Correct x-coordinate.	Correct use of simultaneous equations.	Allocation of marks

(d)			<u>©</u>		
$\begin{array}{ c c c c c c }\hline x & 0 & 0.5 & 1 & 1.5 & 2 \\ \hline xe^x & 0 & 0.5e^{0.5} & e & 1.5e^{1.5} & 2e^2 \\ \hline \int_0^2 xe^x dx \approx \frac{0.5}{2} \left[0 + 2 \times 0.5e^{0.5} + 2 \times e + 2 \times 1.5e^{1.5} + 2e^2\right] \\ = 0.25 \left[e^{0.5} + 2e + 3e^{1.5} + 2e^2\right] \\ = 0.25 [35.30846434] \\ \approx 8.83 (2 \text{ dec places}) \end{array}$	(ii) In $\triangle HLJ$ and $\triangle HIJ$: $\angle LHJ = \angle IHJ = 59^{\circ}$ (see part (i)) HJ is a common side $\angle HJL + \angle HJI = 180^{\circ}$ (angles on a straight line) $\therefore \angle HJI = \angle HJL = 90^{\circ}$ $\therefore \triangle JLJ \equiv \triangle HIJ$ (AAS) $\therefore LH = IH$ (corresponding sides in congruent triangles)	$HI LK \text{ (given)}$ $\angle IHJ = \angle JKL = 59^{\circ} \text{ (alternate angles on parallel lines)}$ $\angle LHJ = \angle JKL = 59^{\circ} \text{ (equal base angles in isosceles } \Delta \text{)}$ $\angle HLK = 180 - (\angle LHJ + \angle JKL) \text{ (angle sum of triangle HLK)}$ $\therefore \qquad \angle HLK = 62^{\circ}$	$ \begin{array}{c} $	$PR^{2} = 650^{2} + 990^{2} - 2 \times 650 \times 990 \cos 155$ $= 2569018.122$ $PR = \sqrt{2569018.122}$ $= 1602.815686$ $\approx 1603 \text{ km}$	ğ.
<u> </u>	2	⊢			Marks
Correct use of trapezoidal rule.	1 mark if working towards correct proof, but incomplete. 2 marks for complete proof with reasoning.	Correct reasoning. Correct answer.		Correct use of cosine rule. Correct answer.	Allocation of marks

Question 14	2018	
Question 14 Solutions	Marks	Allocation of marks
(a) (i) , p		
$S\left(0,\frac{1}{2}\right) \qquad P(x,y)$ $y \text{ units}$ $y = -\frac{1}{2}$		
The distance from P to the directrix is $y + \frac{1}{2}$.		Correct distance from P to
$(x-0)^{2} + \left(y - \frac{1}{2}\right)^{2} = \left(y + \frac{1}{2}\right)^{2}$ $x^{2} + y^{2} - y + \frac{1}{4} = y^{2} + y + \frac{1}{4}$ $x^{2} - y = y$ $x^{2} - y = y$ $x^{2} = 2y$	—	Correct manipulation of equation to get to $x^2 - y = y$
(ii) $x^{2} = 2y$ $y = \frac{x^{2}}{2}$ $y' = x$ $At x = 2, y' = 2$	—	Calculating gradient.
$y - y_1 = m(x - x_1)$ $y - 2 = 2(x - 2)$		
y-2=2x-4 $2x-y-2=0$	—	Using valid method to find equation.

(c) V=volume of cylinder – volume of solid formed below the curve $y = \sqrt{x+1}$ $= \pi r^2 h - \pi \int_{-1}^{8} y^2 dx$ $= \pi \times 3^2 \times 9 - \pi \int_{-1}^{8} x + 1 dx$ $= 81\pi - \pi \left[\frac{x^2}{2} + x \right]_{-1}^{8}$ $= 81\pi - \pi \left[\frac{64}{2} + 8 \right] - \left(\frac{1}{2} - 1 \right]$ $= 81\pi - \pi \left[\frac{81}{2} \right]$ $= \frac{81}{2}\pi \text{ cubic units}$	erce ady	Question 14 Solutions
he 1 1		Marks
Setting up correct difference of volumes. Correct integral set up. Correct answer.	Correct x-intercepts. Correct shape of curve—decreasing, increasing, decreasing left-right.	Allocation of marks

(b)					(a)	
(i) $\cos 2x + \cos x = \cos^2 x - \sin^2 x + \cos x$ $= \cos^2 x - (1 - \cos^2 x) + \cos x$ $= 2\cos^2 x - 1 + \cos x$ $= 2\cos^2 x + \cos x - 1$		(iv) $C < 5$ $24e^{-0.18t} < 5$ $e^{-0.18t} < \frac{5}{24}$ $-0.18t < \ln\left(\frac{5}{25}\right)$	(iii) $C = 24e^{-0.18 \times 3}$ = 13.98595806 $\approx 14 \text{ mg}$	(ii) A is the starting amount = 24 mL. Possible calculation: $C = Ae^{-0.18t}$ $24 = Ae^{-0.18 \times 0}$ $24 = Ae^{0}$ A = 24 mg	(i) $RTP \frac{dC}{dt} = -0.18C, \text{ where } C = Ae^{-0.18t}$ $LHS = \frac{d}{dt}(Ae^{-0.18t})$ $= -0.18Ae^{-0.18t}$ $= -0.18C (\text{since } C = Ae^{-0.18t})$ $= RHS$	Question 15 Solutions
ь	<u> </u>	—		—	—	Marks
Use of $\sin^2 x + \cos^2 x = 1$ identity.	Correct calculator answer. Correct time rounding from calculator answer.	Correct manipulation of exponential equation to make t the subject	Correct answer from correct substitution.	Correct answer.	Valid proof by differentiating $C = Ae^{-0.0018t}$	Allocation of marks

Int at the end of nth month. + \$300(1.015)(1.0025) + \$300(1.015)^2(1.0025) + \$300(1.015)(1.0025)^2 + \$300(1.015)^2(1.0025) + \$300(1.015)(1.0025)^{n-1} + \$300(1.015)^2(1.0025)^{n-2} + \$0(1.015)^n - 1(1.0025) + $\frac{1.015}{1.0025} + \left(\frac{1.015}{1.0025}\right)^2 + \dots + \left(\frac{1.015}{1.0025}\right)^{n-1}$ $\left(\frac{1.015}{1.0025}\right)^2 + \dots + \left(\frac{1.015}{1.0025}\right)^n - 1$ is a geometric series $\frac{1.015}{1.0025} - 1$	(i) Amount at end of first month = \$300(1.0025) Amount at end of second month = (\$300(1.0025) + \$300(1.015))(1.0025) = \$300(1.0025) ² + \$300(1.015)(1.0025)	$(u+1)(2u-1) = 0$ $u = -1 \text{ or } u = \frac{1}{2}$ $\therefore \cos x = -1 \text{ or } \cos x = \frac{1}{2}.$ $x = \pi \qquad x = \frac{1}{3}, \pi, \frac{5\pi}{3}$ Solutions $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$	(ii) $\cos 2x + \cos x = 0$ $2\cos^2 x + \cos x - 1 = 0$ let $u = \cos x$ $2u^2 + u - 1 = 0$ $\frac{(2u+2)(2u-1)}{(2u-1)} = 0$
<u></u>	<u> </u>	<u> </u>	—
Any correct expression for A_n . Use of sum of geometric series.	Correct expression for end of first month. Correct expression for end of second month including 2 nd deposit.	Factorisation or other method to find solutions for cos <i>x</i> . Correct values for <i>x</i> from solutions for cos <i>x</i> .	Use of part (i) to set up equation.

(iii) $A_{60} = \$300(1.0025)^{60} \times \frac{\left(\frac{1.015}{1.0025}\right)^{60} - 1}{\frac{1.015}{1.0025} - 1}$ $= \$30 \ 835.36804$ $\approx \$30 \ 835$	Question 15 Solutions
—	Marks
Correct use of calculator from correct substitution.	Marks Allocation of marks

·

(a) (i) A is the ver velocity when at $t = 0$ $\nu = 2 - \frac{3}{1 + 2}$ $= 2 - 3$ $= -1 \text{ m}$ $\therefore A = (0,-1)$	Question
(i) A is the vertical intercept, so its vertical coordinate is the velocity when $t = 0$. at $t = 0$ $v = 2 - \frac{3}{1+0}$ $= 2 - 3$ $= -1 \text{ ms}^{-1}$ $\therefore A = (0,-1)$	Question 16 Solutions
⊢	Marks
Finding ν when $t = 0$.	Allocation of marks

(iv) $v = 2 - \frac{3}{1 + 2t}$ $As \ t \to \infty \frac{3}{1 + 2t} \to 0$ $\therefore v \to 2 - 0$ $= 2 \text{ ms}^{-1}$ $\therefore C \text{ has coordinates } (0,2)$	$\begin{pmatrix} \frac{1}{2} \\ \frac{6}{9} \\ \frac{1}{4} \\ = 6 \times \frac{4}{9} \\ = \frac{8}{3} \text{ ms}^{-2}$	$a = \frac{dv}{dt} = \frac{d}{dt} \left(2 - \frac{3}{1 + 2t} \right)$ $ et u = -3 v = 1 + 2t$ $u' = 0 v' = 2$ $vu' - uv' = 0 - (-3)(2)$ $v^{2} = \frac{(1 + 2t)^{2}}{(1 + 2t)^{2}}$ $= \frac{d}{dt} \left(2 - \frac{3}{(1 + 2t)^{2}} \right) = \frac{6}{(1 + 2t)^{2}}$ Particle is stationary at $t = \frac{1}{4}$ When $t = \frac{1}{4}$ $a = \frac{6}{(3)^{2}}$ $= \frac{6}{(3)^{2}}$	Question 16 Solutions
	-		Marks
Using limit to show vertical coordinate of C is 2.	Correct answer.	Correct derivative of ν to get expression for a .	Allocation of marks

(v) The velocity is negative between $t = 0$ and $t = \frac{1}{4}$. It then becomes positive. So the particle changes direction. Distance $= -\int_0^{\frac{1}{4}} \left(2 - \frac{3}{1+2t}\right) dt + \int_{\frac{1}{4}}^1 \left(2 - \frac{3}{1+2t}\right) dt$ $= -\left[2t - \frac{3}{2}\ln(1+2t)\right]_0^{\frac{1}{4}} + \left[2t - \frac{3}{2}\ln(1+2t)\right]_{\frac{1}{4}}^{\frac{1}{4}}$ $= -\left[\frac{1}{2} - \frac{3}{2}\ln\left(\frac{3}{2}\right) - 0\right] + \left[2 - \frac{3}{2}\ln 3 - \left(\frac{1}{2} - \frac{3}{2}\ln\left(\frac{3}{2}\right)\right)\right]$ $= -\frac{1}{2} + \frac{3}{2}\ln\left(\frac{3}{2}\right) + 2 - \frac{3}{2}\ln 3 - \frac{1}{2} + \frac{3}{2}\ln\left(\frac{3}{2}\right)$ Correct set up of integral to find distance. $= -\frac{1}{2} + \frac{3}{2}\ln\left(\frac{3}{2}\right) + 2 - \frac{3}{2}\ln 3 - \left(\frac{1}{2} - \frac{3}{2}\ln\left(\frac{3}{2}\right)\right)$ $= -\frac{1}{2} + \frac{3}{2}\ln\left(\frac{3}{2}\right) + 2 - \frac{3}{2}\ln 3 - \frac{1}{2} + \frac{3}{2}\ln\left(\frac{3}{2}\right)$

(c)		(6)	
(i) Using similar triangles: $\frac{y}{12} = \frac{8 - x}{8}$ $y = 12 \frac{8 - x}{8}$ $= \frac{3}{2}(8 - x)$ 12 cm $= \frac{3}{8} \text{ cm}$	In \triangle ABX and square ABCD: AB is a common side. BX = AB (sides in equilateral \triangle) $CB = AB$ (sides in square) $\therefore CB = BX$ $\therefore ACBX$ is isosceles $\angle XCB = \angle BXC$ (base angles in isosceles \triangle) $\angle XBA = 60^{\circ}$ (angles in equilateral \triangle) $\angle ABC = 90^{\circ}$ (angles in square) $\therefore \angle XBC = 150^{\circ}$ $\angle XCB + \angle BXC = 180 - \angle XBC$ (angle sum of \triangle) $\therefore \angle XCB + \angle BXC = 15^{\circ}$ $\angle ACX = \angle ACB - \angle XCB$ $\angle ACX = A5^{\circ}$ (diagonal AC bisects angle in square) $\therefore \angle ACX = 45^{\circ}$ (diagonal AC bisects angle in square) $\therefore \angle AXC = \angle AXB - \angle BXC$ $= 60^{\circ} - 15^{\circ}$ $= 45^{\circ}$ $= 3 \times \angle BXC$ $= 45^{\circ}$ $= 3 \times \angle BXC$ $= 5 \times \angle BXC$	C 4500 A	Question 16 Solutions
, , , , , , , , , , , , , , , , , , , 	<u> </u>		Marks
Correct use of similar triangles to show relationship between side lengths.	Identifying $\triangle CBX$ as isosceles. Correct calculation of size of $\angle BXC$. Correct calculation of size of $\angle ACX$ and $\angle AXC$.		Allocation of marks

$V'' = 24\pi - 9\pi x$ $At x = \frac{16}{3} V'' = 24\pi - 9\pi \times \frac{16}{3}$ $= 24\pi - 48\pi$ < 0 $\therefore \text{ maximum volume when } x = \frac{16}{3} \text{ cm}$	$x = 0 \text{ or } 8 = \frac{1}{2}x$ $16 = 3x$ $x = \frac{16}{3}$ To check if this is a maximum, look at V "	$3\pi x \left(8 - \frac{3}{2}x\right) = 0$	Let $V' = 0$ $24\pi x - \frac{9}{2}\pi x^2 = 0$	$V' = 24\pi x - \frac{9}{2}\pi x^2$	(iii) Stationary points at $V' = 0$ $V = 12\pi x^2 - \frac{3}{2}\pi x^3$	(11) $V = \pi r h$ $= \pi x^{2} \times \frac{3}{2}(8 - x)$ $= \frac{3}{2} \pi x^{2}(8 - x).$	Question 16 Solutions
—	-					–	Marks
Proof that this is a maximum turning point.	Correct value of x .					Correct use of formula for volume of cylinder.	Allocation of marks