

Wintersemester 2009/2010

Klausur

Formale Grundlagen der Informatik I

N	lame:								
N	fatrNr								
A	ufgabe		1	2	3	4	5	6	Σ
P	unkte (1	maximal)	10	12	12	12	12	12	70
e	reichte	Punkte		B _h					
									Note:
Aufga		vertung wird	aul Klate I	oarstenun	g und Deg	grundung	in well go	Acg.	10 Punk
		genden Aussa	gen sind v	vahr? (Bit	te ankreu:	zen, falsch	e Antwor	ten geber	Punktabzug.
vahr	falsch	seriden ridosa	gerr sirrer ,	,		,			
		Reguläre Spr	rachen sind entscheidbar.				Eigentum des		
		Es gibt kontextfreie Sprachen, die regulär sind.					LZM		
		Ist L_1 regulär	Ist L_1 regulär und $L_2 \subseteq L_1$, so ist L_2 auch regulär.						
		Sind L_1 und L_2 kontextfrei, so ist $L_1 \times L_2$ entscheidl Die Sprache aller regulären Ausdrücke ist regulär.						-FB Mather	matik-
									12 Punk

Aufgabe 2

Sei $\Sigma := \{a, b, c\}$. Geben Sie zu den folgenden Sprachen jeweils einen NFA und einen regulären Ausdruck an:

- (a) Die Sprache aller Wörter, deren Länge ein Vielfaches von 3 ist.
- (b) Die Sprache aller Wörter, die mindestens ein a enthalten und in denen nach dem letzten a keine bmehr kommen.
- (c) Die Sprache aller Wörter, in denen zwischen zwei a immer mindestens ein b steht.

Aufgabe 3

12 Pun

(a) Geben Sie zu folgendem NFA einen DFA an.

(b) Minimieren Sie folgenden DFA. (Bitte Zwischenschritte angeben.)

Aufgabe 4

12 Punkte

(a) Finden Sie zu dem folgenden regulären Ausdruck einen NFA:

$$(a+bba^*)a(ab)^*(a+b)$$

(b) Finden Sie zu dem folgenden NFA einen regulären Ausdruck:

Aufgabe 5

12 Punkte

Wir betrachten Wörter über dem Alphabet $\Sigma = \{a, b, (,)\}$, die korrekt geklammert sind, wie etwa a(bb(b)a)()b(a), (a)()b, oder abb, d. h. Klammerwörter, in denen an beliebigen Stellen die Buchstaben a und b eingefügt sein können.

(a) Geben Sie kontextfreie Grammatiken für folgende Sprachen an:

(i) $L_1 = \{ w \in \Sigma^* : w \text{ ist korrekt geklammert } \}$

(ii) $L_2 = \{ w \in \Sigma^* : w \text{ ist korrekt geklammert und } |w|_a \text{ ist ungerade } \}$

(b) Wandeln Sie folgende Grammatik in Chomsky-Normalform um:

$$S \to X(Y) \mid a$$

$$X \to (Z) \mid b$$

$$Y \rightarrow S \mid YcS$$

$$Z \to X \mid ZdX$$

gabe 6

12 Punkte

(a) Geben Sie für die Sprache

$$L_1 = \{ a^n w : n \in \mathbb{N}, w \in \{a, b\}^*, |w| = n \}$$

eine kontextfreie Grammatik an und beweisen Sie, daß L_1 nicht regulär ist.

(b) Beweisen Sie, daß die Sprache

$$L_2 = \{ a^k : k = 2^n \text{ für ein } n \in \mathbb{N} \}$$

nicht kontextfrei ist.

Eigentum des LZM

Technische Universität Darmstadt -FB Mathematik-