Predykcja białek amyloidogennych

Projekt badawczy Doktoranckiego Koła Naukowego Bioinformatyki

Michał Burdukiewicz, Przemysław Gagat

1 Założenia projektu badawczego

Amyloidy to zróżnicowana grupa białek mogących tworzyć zazwyczaj cytotoksyczne kompleksy (Fändrich, 2012). Agregaty amyloidowe są przyczyną różnych zaburzeń (m.in. choroby Alzheimera, Creutzfelda-Jacoba). Ustalono, że mimo podobieństw w procesie agregacji, białka amyloidogenne są zróżnicowane pod względem długości i składu aminokwasowego. Wszystkie jednak zawierają tzw. hot-spots, krótkie sekwencje aminokwasów, które pełnią kluczową rolę w procesie formowania kompleksów amyloid (Breydo & Uversky, 2015).

Celem badań jest utworzenie probabilistyczngo modelu *hot-spots*. Opracowany model zostanie zweryfikowany poprzez analizę znanych sekwencji amyloidogennych. Teoretyczny model może posłużyć do wykrywania potencjalnych amyloid oraz badania procesu ich agregacji.

2 Metody

Głównym narzędziem wykorzystywanym w projekcie badawczym jest pakiet bio-gram przeznaczony do analizy n-gramowej. n-gramy (k-mery, k-tuple) to wektory o długości n zawierające znaki z sekwencji wejściowych. Pierwotnie analiza n-gramów rozwijana była na potrzeby analizy języka naturalnego, ale ma również zastosowania w genomice (Fang et al., 2011), transkryptomice (Wang et al., 2014) i proteomice (Guo et al., 2014).

W przewidzianych analizach wykorzystane zostaną zarówno ciągłe jak i nieciągłe n-gramy. Uzyskane zliczenia n-gramów będą przefiltrowane w celu odrzucenia mniej informatywnych n-gramów, a następnie wykorzystane do uczenia lasu losowego (Liaw & Wiener, 2002).

3 Obecny stan badań

Wstępna n-gramowa analiza sekwencji białek uzyskanych z bazy AmyLoad (Wozniak & Kotulska, 2015) została przeprowadzona używając pakietu $\it biogram$ (Burdu-

kiewicz et al., 2015). Stworzony model nazwany roboczo AmyloGram został porównany z najlepszymi istniejącymi predyktorami amoyloidogenności.

Porównanie programów przewidujących amyloidogenność.

Nazwa programu	AUC	Czułość	Specyficzność
AmyloGram	0.8426	0.8054	0.7222
PASTA2 (Walsh et al., 2014)	0.7920	0.7248	0.8593
FoldAmyloid (Garbuzynskiy et al., 2010)	0.7351	0.7517	0.7185

AUC (Area under Curve) to jedna z najpopularniejszych miar jakości klasyfikatora i zawiera się między 1 (idealna dobra klasyfikacja) i 0 (idealnie zła klasyfikacja). Wartość 0.5 jest typowa dla całkowicie losowej predykcji. AmyloGram uzyskując AUC = 0.84 pod względem jakości predykcji przewyższa istniejące programy przewidujące amyloidy i dobrze oddaje rzeczywistą strukturę regionu hot-spots.

4 Planowane wydatki

Łączny koszt projektu badawczego to 16 560 zł.

Kosztorys projektu badawczego.

Nazwa	Koszt
Modernizacja istniejącej infrastruktury	8560 zł
Dofinansowanie wyjazdów zagranicznych	8000 zł

Łącznie 16 560 zł

4.1 Ulepszenia istniejącej infrastruktury

Realizacja zaplanowanych zadań badawczych wymaga modyfikacji dostępnego wyposażenia: zakupu nowych dysków twardych oraz baterii do UPS.

Kosztorys ulepszeń istniejącej infrastruktury (ceny z dnia 26.11.2015).

Nazwa	Cena (szt.)	Liczba	Łączna cena
Dysk twardy WD Red Sata 3	1150 zł	6	6900 zł
Bateria APC RBC7	830 zł	2	1660 zł
		T:-	0FCO -1

Łącznie: 8560 z

4.2 Wyjazdy zagraniczne

Wyniki badań zostana zaprezentowane podczas 15th European Conference on Computational Biology (3-7 września 2016, Haga, Holandia). Dofinansowanie umożliwi większej liczbie członków Koła aktywny udział w konferencji i zaprezentowanie nie tylko wyników realizacji zadań badawczych postawionych w tym wniosku, ale również postępów w realizacji prac doktorskich.

Kosztorys wyjazdów zagranicznych.

Nazwa	Cena (szt.)	Liczba	Łączna cena
Dofinansowanie wyjazdu	2000 zł	4	8000 zł
		Łacznie:	8000 zł

5 Współpraca

Projekt jest realizowany przy współpracy z profesor Małgorzatą Kotulską (Politechnika Wrocławska), kuratorem bazy AmyLoad i ekspertem w zakresie analizy sekwencji amyloidogennych, oraz Piotrem Sobczykiem (Politechnika Wrocławska), współtwórcą pakietu biogram.

Literatura

- Breydo, L., & Uversky, V. N. (2015, July). Structural, morphological, and functional diversity of amyloid oligomers. *FEBS letters*. doi: 10.1016/j.febslet.2015.07.013
- Burdukiewicz, M., Sobczyk, P., & Lauber, C. (2015). biogram: analysis of biological sequences using n-grams. Retrieved from http://CRAN.R-project.org/package=biogram (R package version 1.2)
- Fang, Y.-C., Lai, P.-T., Dai, H.-J., & Hsu, W.-L. (2011). Meinfotext 2.0: gene methylation and cancer relation extraction from biomedical literature. *BMC Bioinformatics*, 12(1), 471. Retrieved from http://www.biomedcentral.com/1471-2105/12/471 doi: 10.1186/1471-2105-12-471
- Fändrich, M. (2012, August). Oligomeric Intermediates in Amyloid Formation: Structure Determination and Mechanisms of Toxicity. *Journal of Molecular Biology*, 421(4-5), 427-440. Retrieved 2015-07-24, from http://www.sciencedirect.com/science/article/pii/S0022283612000277 doi: 10.1016/j.jmb.2012.01.006
- Garbuzynskiy, S. O., Lobanov, M. Y., & Galzitskaya, O. V. (2010). Foldamyloid: a method of prediction of amyloidogenic regions from protein sequence. *Bioinformatics*, 26(3), 326-332.
- Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W., & Chou, K.-C. (2014). inuc-pseknc: a sequence-based predictor for

- predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 30(11), 1522-1529. Retrieved from http://bioinformatics.oxfordjournals.org/content/30/11/1522.abstract doi: 10.1093/bioinformatics/btu083
- Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 18-22. Retrieved from http://CRAN.R-project.org/doc/Rnews/
- Walsh, I., Seno, F., Tosatto, S. C. E., & Trovato, A. (2014, July). PASTA 2.0: an improved server for protein aggregation prediction. *Nucleic Acids Research*, 42(W1), W301-W307. Retrieved 2015-07-24, from http://nar.oxfordjournals.org/content/42/W1/W301 doi: 10.1093/nar/gku399
- Wang, Y., Liu, L., Chen, L., Chen, T., & Sun, F. (2014, 01). Comparison of metatranscriptomic samples based on jitalic¿k-j/italic¿tuple frequencies. *PLoS ONE*, 9(1), e84348. Retrieved from
- Wozniak, P. P., & Kotulska, M. (2015, June). AmyLoad: website dedicated to amyloidogenic protein fragments. *Bioinformatics (Oxford, England)*. doi: 10.1093/bioinformatics/btv375