MÈTODES NUMÈRICS I

Grau de Matemàtiques, primer semestre, curs 2010-11 Examen final, 2 de febrer de 2011

- 1.- Sigui $0 < \alpha < \frac{\pi}{2}$ un angle desconegut, del qual es coneixen valors aproximats del sinus $(s \approx \sin(\alpha))$ i del cosinus $(c \approx \cos(\alpha))$, amb un error absolut fitat per ε_a en els dos casos.
 - (a) Quina de les següents fórmules permet calcular α amb menys error?

$$\alpha = \arcsin s$$
, $\alpha = \arccos c$.

Si la resposta depèn del valor d' α , especifica tots els casos possibles.

(b) Dóna una fita de l'error amb què obtenim α si usem l'expressió següent:

$$\alpha = \arctan \frac{s}{c}$$
.

- (c) Si $\alpha < \frac{\pi}{6}$, quina de les tres fórmules anteriors permet calcular α amb més precisió?
- **2.-** Sigui A una matriu $n \times n$ que té descomposició A = LU (sense necessitat de permutacions). Suposem que aquesta descomposició és coneguda. Volem aprofitar-la per a trobar les descomposicions d'altres matrius semblants a A.
 - (a) Sigui B una matriu $n \times n$ que **difereix de** A **només en l'última fila**. Demostreu que B també té descomposició $B = \tilde{L}\tilde{U}$. Digueu quins elements de \tilde{L} (i \tilde{U}) són diferents dels corresponents de L (i U).
 - (b) Sigui C una matriu $n \times n$ que **difereix de** A **només en l'última columna**. Demostreu que C també té descomposició $C = L_1U_1$. Digueu quins elements de L_1 (i U_1) són diferents dels corresponents de L (i U).
 - (c) Sabent que

trobeu les descomposicions LU de les matrius

(a) D'una funció $f: \mathbb{R} \to \mathbb{R}$ coneixem tres condicions:

$$f(x_0) = f_0$$
, $f'(x_1) = f'_1$, $f(x_2) = f_2$,

on $x_0 < x_1 < x_2$. Trobeu quina relació hi ha d'haver entre les abscisses x_0 , x_1 i x_2 per tal que existeixi un únic polinomi de $P_2(x)$ que interpoli la funció f segons les tres condicions anteriors.

(b) Sigui ara $f: \mathbb{R} \to \mathbb{R}$ verificant

$$f(0) = 3$$
, $f(1) = 3$, $f'(1) = 0$, $f(2) = 9$.

Calculeu una aproximació de $\int_0^2 f(x)dx$ mitjançant $\int_0^2 p(x)dx$, on $p \in P_3(x)$ és el polinomi interpolador d'Hermite de f segons les condicions donades.

(c) Si la funció de l'apartat (b) també verifica

$$f \in C^4([0,2])$$
, i $|f^{(4)}(z)| \le 24 \ \forall z \in [0,2]$,

trobeu una fita de l'error absolut comès a l'apartat anterior.

4.- Considerem l'equació $f(x) = 1 - x - \sin x = 0$.

- (a) Quantes solucions té?
- (b) Considerem l'esquema iteratiu $x_{n+1} = g(x_n, \lambda)$, on $g(x, \lambda) = \lambda + (1 \lambda)x \lambda \sin x$.
 - (b.1) Vegeu que, per a qualsevol $\lambda \neq 0$, els punts fixos de g coincideixen amb els zeros de f.
 - (b.2) L'equació té un zero prop de x=0.5. Escolliu un valor de λ perquè la convergència de $x_{n+1}=g(x_n,\lambda)$ sigui el més rapida possible. Useu aquest esquema (amb aquest valor de λ) per a calcular aquest zero amb 5 xifres decimals correctes.
 - (b.3) Quin és l'ordre d'aquest mètode iteratiu? i la constant asimptòtica?

Entregueu problemes diferents en fulls diferents

Notes: Dimarts 8 de febrer, a les 14h, al Campus Virtual i al tauler del "xalet".

Revisions: Dimecres 9 de febrer, de 12:00 a 13:00, al "xalet".