2.9 Зависимость и независимость случайных величин

Системы случайных величин

Двумерные СВ могут быть

- дискретными (если составляющие дискретны),
- непрерывными (составляющие непрерывны),
- *смешанными* (одна из составляющих дискретна, а другая непрерывна).

Системы случайных величин

СВ X и Y, рассматриваемые одновременно, образуют *систему двух СВ* (или *двумерную СВ*). Каждую из СВ X и Y называют *составляющей* (или *компонентой*) двумерной СВ.

Понятие системы СВ легко обобщается на случай более, чем двух компонент.

Примеры.

- Точка приземления летательного аппарата характеризуется системой двух СВ – географических координат.
- Контролируемые размеры детали, изготавливаемой станком-автоматом, образуют систему СВ (число компонент – количество контролируемых размеров).

Закон распределения дискретной двумерной СВ

Законом распределения дискретной двумерной СВ называется перечень возможных значений (x_i, y_j) и их вероятностей

$$p(x_i, y_j) = P((X = x_i) \cdot (Y = y_j)),$$

 $i = 1, 2, ..., n, j = 1, 2, ..., m,$

$$\sum_{i=1}^n \sum_{j=1}^m p(x_i, y_j) = 1$$

Закон распределения дискретной двумерной СВ

Обычно представляется таблицей вида

Υ	X					
	<i>X</i> ₁	<i>X</i> ₂		Xi		X _n
Уı	$p(x_1, y_1)$	$p(x_2, y_1)$		$p(x_i, y_1)$		$p(x_n, y_1)$
y ₂	$p(x_1, y_2)$	$p(x_2, y_2)$	•••	$p(x_i, y_2)$		$p(x_n, y_2)$
Y _j	$p(x_1, y_j)$	$p(x_2, y_j)$		$p(x_i, y_j)$	***	$p(x_n, y_j)$
Уm	$p(x_1, y_m)$	$p(x_2, y_m)$		$p(x_i, y_m)$		$p(x_n, y_m)$

Законы распределения дискретных составляющих

Зная закон распределения двумерной СВ, можно найти законы распределения составляющих:

$$P(X = x_i) = \sum_{j=1}^{m} p(x_i, y_j), \quad i = 1, 2, ..., n,$$

$$P(Y = y_j) = \sum_{i=1}^{n} p(x_i, y_j), \quad j = 1, 2, ..., m.$$

Функция распределения двумерной СВ

Функцией распределения двумерной СВ (X, Y) называется функция

$$F(x,y) = P((X < x) \cdot (Y < y)).$$

Плотность распределения непрерывной двумерной CB

Пусть функция распределения F(x, y) всюду непрерывна и имеет непрерывные смешанные частные производные второго порядка.

Плотностью распределения вероятностей f(x, y) двумерной СВ (X, Y) называется функция

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \, \partial y}.$$

График этой функции - *поверхность* распределения.

Плотность распределения непрерывной двумерной СВ

Зная плотность совместного распределения f(x, y), можно найти функцию совместного распределения:

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) \, dxdy.$$

Вероятность попадания случайной точки (X,Y) в область D плоскости xOy может быть найдена как

$$P((X,Y) \in D) = \iint_D f(x,y) dxdy$$
.

Зависимость и независимость случайных величин

Теорема.

Для того, чтобы СВ X и Y были независимыми, необходимо и достаточно, чтобы

$$F(x,y) = F_X(x) \cdot F_Y(y) ,$$

где $F_X(x)$ и $F_Y(y)$ – функции распределения составляющих.

Зависимость и независимость случайных величин

Ранее было дано определение:

две CB называются *независимыми*, если закон распределения одной из них не зависит от того, какие из возможных значений приняла другая CB.

В противном случае эти СВ называются *зависимыми*.

Зависимость и независимость случайных величин

Следствие.

Для того, чтобы непрерывные СВ X и Y были независимыми, необходимо и достаточно, чтобы

$$f(x,y) = f_X(x) \cdot f_Y(y) ,$$

где $f_X(x)$ и $f_Y(y)$ – плотности распределения составляющих.

Корреляционный момент СВ Хи У

Корреляционным моментом K_{xy} CB X и Y называется величина, равная математическому ожиданию произведения отклонений CB X и Y:

$$K_{xy} = M\left(\left(X - M(X)\right) \cdot \left(Y - M(Y)\right)\right),$$
 (2.26)

или

$$K_{xy} = M\left(\overset{\circ}{X}\cdot\overset{\circ}{Y}\right).$$

Корреляционный момент CB X и Y

Из свойств математического ожидания:

$$K_{xy} = M(X \cdot Y) - M(X) \cdot M(Y).$$

С учетом этого формулы (2.27) и (2.28) можно переписать в более удобном для вычислений виде.

Корреляционный момент CB X и Y

Для дискретных СВ X и Y из (2.26) и (2.15) следует: корреляционный момент K_{xy} равен

$$K_{xy} = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i - M(X)) \cdot (y_j - M(Y)) \cdot p(x_i, y_j).$$
 (2.27)

Для непрерывных СВ X и Y из (2.26) и (2.16) следует: корреляционный момент K_{xy} равен

$$K_{xy} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(x - M(X) \right) \cdot \left(y - M(Y) \right) \cdot f(x, y) \, dx dy. \tag{2.28}$$

Корреляционный момент CB X и Y

Для дискретных CB X и Y

$$K_{xy} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i \cdot y_j \cdot p(x_i, y_j) - M(X) \cdot M(Y).$$
 (2.29)

Для непрерывных CB X и Y

$$K_{xy} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot y \cdot f(x, y) \, dx dy - M(X) \cdot M(Y). \quad (2.30)$$

Корреляционный момент CB X и Y

Корреляционный момент служит для характеристики связи между СВ X и Y.

Теорема.

Если СВ X и Y независимы, то $K_{xy} = 0$.

Прямое следствие свойств математического ожидания. <u>Упражнение</u>: самостоятельно доказать утверждение теоремы

Обратное утверждение неверно:

из $K_{xy} = 0$ в общем случае <u>HE СЛЕДУЕТ</u> независимость CB X и Y.

Корреляционный момент СВ Хи У

Корреляционный момент имеет размерность, равную произведению размерностей СВ X и Y

его величина зависит от единиц измерения СВ X и Y (например: 2 см 2 или 200 мм 2). Это недостаток (затрудняет сравнение корреляционных моментов разных систем СВ).

Для устранения этого недостатка вводят еще одну числовую характеристику системы CB – коэффициент корреляции.

Корреляционный момент СВ X и Y

Следствие.

Если $K_{xy} \neq 0$, то CB X и Y зависимы.

Коэффициент корреляции

Коэффициентом корреляции r_{xy} СВ X и Y называется величина

$$r_{xy} = \frac{K_{xy}}{\sigma_x \cdot \sigma_y}.$$

Это безразмерная величина, значение которой не зависит от выбора единиц измерения СВ X и Y.

Очевидно: для независимых СВ X и Y $r_{xy} = 0$.

Коэффициент корреляции

Теорема. Для любых СВ *X* и *Y*

$$|r_{xy}| \leq 1$$
.

Резюме о коррелированности и зависимости CB

- Из коррелированности СВ X и Y следует зависимость этих СВ.
- Из зависимости СВ X и Y в общем случае не следует их коррелированность (зависимые СВ могут быть как коррелированными, так и некоррелированными).
- Из независимости СВ *X* и *Y* следует их некоррелированность.
- Из некоррелированности СВ *X* и *Y* в общем случае не следует их независимость.

Коррелированные и некоррелированные случайные величины

СВ X и Y называются *коррелированными*, если $K_{xv} \neq 0$ (или $r_{xv} \neq 0$);

СВ X и Y называются *некоррелированными*, если $K_{xy} = 0$ (или $r_{xy} = 0$).

Резюме о коррелированности и зависимости CB

При этом:

из некоррелированности **нормально распределенных** СВ вытекает их независимость.

Для <u>нормально распределенных</u> СВ независимость и некоррелированность эквивалентны

Коэффициент корреляции как характеристика линейной зависимости СВ

Коэффициент корреляции характеризует <u>линейную</u> зависимость CB.

Линейная вероятностная зависимость СВ заключается в том, что при возрастании одной СВ другая имеет тенденцию возрастать/убывать по линейному закону. Эта зависимость может быть более или менее выражена.

Коэффициент корреляции характеризует степень тесноты линейной зависимости между СВ.

Различные случаи корреляции нормально распределенных СВ.

Коэффициент корреляции как характеристика линейной зависимости СВ

Если СВ *X* и *Y* связаны точной линейной зависимостью

$$Y = a \cdot X + b$$
.

TO

$$r_{xy}=\pm 1$$
,

причем знак r_{xy} совпадает со знаком a.

В общем случае произвольной вероятностной зависимости

$$-1 < r_{xy} < 1$$
.

Числовые характеристики системы нескольких СВ

Минимальное количество числовых характеристик, с помощью которых может быть охарактеризована система n CB (X_1, X_2, \ldots, X_n) , сводится к следующему:

• *n* математических ожиданий

$$m_1, m_2, \ldots, m_n$$

• *n* дисперсий

$$D_1, D_2, \ldots, D_n$$

• $n \cdot (n-1)$ корреляционных моментов K_{ij} , i, j = 1, 2, ..., n, характеризующих попарную корреляцию СВ, входящих в систему.

Корреляционная матрица

Замечание.

Дисперсия $D(X_i)$ – частный случай корреляционного момента: $D(X_i) = K_{ii}$.

Все корреляционные моменты и дисперсии записывают в виде матрицы

$$\begin{pmatrix} K_{11} & K_{12} & \dots & K_{1n} \\ K_{21} & K_{22} & \dots & K_{2n} \\ \dots & \dots & \dots & \dots \\ K_{n1} & K_{n2} & \dots & K_{nn} \end{pmatrix},$$

которая называется *корреляционной матрицей* системы CB (X_1, X_2, \dots, X_n) .

Корреляционная матрица

Очевидно:

$$K_{ii} = K_{ii}$$
,

т. е. матрица симметрична.

Если СВ X_1 , X_2 , ..., X_n не коррелированы, то корреляционная матрица будет диагональной:

$$\begin{pmatrix} D_1 & 0 & \dots & 0 \\ 0 & D_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & D_n \end{pmatrix}.$$