Алгебра I, листочек 7

1. Постройте базисы над полем k в алгебрах: матриц $\mathcal{M}at_n(k)$; верхнетреугльных матриц; многочленов с коэффициентами в k. Запишите законы умножения в этих базисах.

Очевидно, что на матрицы можно смотреть как на наборы чисел, а значит и как на элементы свободного модуля. Тогда матричные единицы $\{e_{i,j}\}$, в которых на одном месте стоит единица, а на остальных нули, образуют базис алгебры, более того часто матрицы строят как свободная алгебра на матричных единицах. Умножение матричных единиц происоходит по следующему правилу $e_{i,l}e_{k,l}=\delta_{i,k}e_{i,l}$.

Базис верхнетреугольных матриц состоит из матричных единиц $e_{i,j}$, для которых $i \leq j$. умножение остается таким же, проверим замкнутость по нему: пусть $i \leq j$ и $k \leq l$, если произведение $e_{i,j}e_{l,k}$ не нулевое, то j=l, тогда по транзитивности \leq мы получим $i \leq l$, а значит результат произведения также врехнетреугольный.

Так как полиномы имеют моном максимальной степени, то каждый полином расскладывается в линейную комбинацию x^n . Тогда $\{x^n\}$ – базис алгебры. Это нельзя формализовать из наивного определения полинов, но если из рассматривать как элементы группового (наверно правильнее говорить моноидального, так как $\mathbb N$ не группа) кольца $K[\mathbb N]$, то это утверждение верно по определению. Произведение ведёт себя следующим образом, $x^nx^m=x^{n+m}$.

2. Постройте канонические изоморфизмы

(a) $U+W\cong U\oplus W/(U\cap W)$ для подпространств $U,W\leq V$

Если прочитать это соотношение как $U+W\cong U\oplus (W/(U\cap W))$, то изоморфизм нельзя канонически построить, так как придётся выбирать базис, и поэтому мы пойдём по иному пути, который верен в более общем случае для модулей.

 $U+W\cong (U\oplus W)/(U\cap W)$. Построим точную последовательность

$$0 \to U \cap W \to U \oplus W \to U + W \to 0$$

где нетривиальные стрелки $i=a\mapsto (a,-a)$ и $\pi=(a,b)\mapsto a+b$ в том порядке, в котором они появлятся в последовательности. Её точность тривиальна, а тогда согласованно с ней искомое соотношение, которое следует для теоремы об изоморфизме для π , то есть $U+W=\mathrm{Im}(\pi)\cong U\oplus W/\mathrm{Ker}(\pi)=U\oplus W/\mathrm{Im}(i)\cong U\oplus W/U\cap W$, так как $i:U\cap W\to U\oplus W$ – вложение и факторизация происходит по нему. Сопутствующий изоморфизм будет слудующим:

$$[(a,b)] \in U \oplus W/U \cap W \mapsto a+b$$

(b) [Теорема Нетер об изоморфизме] $(U+W)/U\cong W/(U\cap W)$ для подмодулей $U,W\le V$

Построим сюръективный морфизм $\phi = a \in W \mapsto a + U \in (U + W)/U$, ядро которого $W \cap U$. Применим теорему о гомоморфизме и получим нужное соотношение $W/(U \cap W) \cong (U + W)/U$. Сопутствующий изомрфизм $w + U \cap W \in W/(U \cap W) \mapsto w + U \in (U + W)/U$.

(c) $V/(U+W) \cong (V/U)/(W/(U\cap W))$ для подмодулей $U,W \leq V$

Здесь правый фактор не происходит по стандартному вложению, так как одно не подмножество другого, поэтому это соотношение образовано из точной последовательности:

$$0 \rightarrow W/(U \cap W) \rightarrow V/U \rightarrow V/(U+W) \rightarrow 0$$

где нетривиальные стрелки следующие $i=w+U\cap W\mapsto w+U$ и $\pi=v+U\mapsto v+U+W$. Первая инъективнаь так как для $w\in W, w+U=U$ означает, что $w\in U,$ а тогда $w\in U\cap W$ и $w+U\cap W=U\cap W$. Вторая стрелка инъективна, так как для v+U+W можно найти прообраз v+U. Последовательность точна, так как с одной стороны для $w\in W$ w+U+W=U+W, а значит $\mathrm{Im}(i)\subseteq \mathrm{Ker}(\pi),$ с другой стороны, если v+U+W=U+W, то $v\in U+W,$ тогда v=u+w для некоторых $u\in U$ и $w\in W.$

тогда прообораз равен $v+U=w+u+U=w+U\in {\rm Im}(i)$ и мы получили второе включение. Осталось использовать теорему о гомеоморфизме $V/(U+W)={\rm Im}(\pi)\cong (V/U)/{\rm Ker}(\pi)=(V/U)/{\rm Im}(i)\cong (V/U)/(W/(U\cap W))$. Сопутствующий изоморфизм моморфизм следующий $[v+U]\in (V/U)/(W/(U\cap W))\mapsto v+U+W$.