Chapitre 1 : Réduction des endomorphismes et matrices diagonalisables

Dans toute ce chapitre, on notera E un \mathbb{K} -espace vectoriel, avec $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

I Sous-espaces stables par un endomorphisme

Définition : Soit $f \in \mathcal{L}(E)$, et soit $F \subset E$ un sous-espace vectoriel. On dit que F est **stable** par f si $f(F) \subset F$., $i.e. \ \forall x \in F, f(x) \in F$.

1 Remarque:

- 0_E est stable par f.
- E est stable par f.
- $\ker(f)$ et Im(f) sont stables par f.

Preuve:

II Éléments propres d'un endomorphisme

✓ Vocabulaire: On appelle élément propre de f ses valeurs propres, vecteurs propres et sous-espaces propres.

A Valeur propre

Définition : Soit $f \in \mathcal{L}(E)$, et soit $\lambda \in \mathbb{K}$.

 λ est une valeur propre de f si $\exists x \in E \setminus \{0_E\}$: $f(x) = \lambda x$.

On dit que x est un **vecteur propre** de f associé à λ .

L'ensemble des valeurs propres de f est noté Sp(f) et appelé **spectre** de f.

B Sous-espace propre

Définition : Soit $f \in \mathcal{L}(E)$, et soit $\lambda \in \mathbb{K}$.

On note $E_{\lambda}(f)$ le **sous-espace propre** de f associé à λ , défini par :

$$E_{\lambda}(f) = \ker(f - \lambda I d_E) = \{x \in E : f(x) = \lambda x\}.$$

 $E_{\lambda}(f)$ est un sous-espace vectoriel de E.

1 Remarque : $E_{\lambda}(f)$ est l'ensemble des vecteurs propres de f associés à λ .

1 Remarque:

- $\lambda \in Sp(f) \iff f$ n'est pas injective $\iff \det(E_{\lambda}(f)) \neq 0$.
- $0_E \in Sp(f) \iff \det(f) = 0.$

Preuve:

III Polynôme caractéristique

Définition : On appelle **polynôme caractéristique** d'une matrice $A \in M_n(\mathbb{K})$ le polynôme défini par :

$$\chi_A(X) = \det(A - XId_n).$$

© Exemple : Soit $A = \begin{pmatrix} 5 & 0 & 4 \\ 4 & 1 & 0 \\ -8 & 0 & -7 \end{pmatrix}$. Déterminons son polynôme caractéristique.

$$\chi_A(X) = \det(A - XId_3) = \det\left(\begin{pmatrix} 5 - X & 0 & 4\\ 4 & 1 - X & 0\\ -8 & 0 & -7 - X \end{pmatrix}\right)$$

En développant le déterminant suivant la deuxième colonne, on obtient :

$$\chi_A(X) = (1 - X) \det \left(\begin{pmatrix} 5 - X & 4 \\ -8 & -7 - X \end{pmatrix} \right) = (1 - X) \left((5 - X)(-7 - X) + 32 \right).$$

En factorisant ce polynôme, on trouve :

$$\chi_A(X) = -(X-1)^2(X+3)$$

Preuve:

Exemple: (suite de l'exemple précédent)

On a trouvé le polynôme caractéristique de $A: \chi_A(X) = -(X-1)^2(X+3)$.

Donc les valeurs propres de A sont $\lambda_1 = 1$ (de multiplicité 2) et $\lambda_2 = -3$.

Alors, on a : $Sp(A) = \{1, -3\}.$

1 Remarque: $A \in M_2(\mathbb{K}) \implies Sp(A) = \chi_A(X) = X^2 - Tr(A)X + \det(A)$.

Preuve:

IV Matrice diagonalisable

Définition: Soit $A \in M_n(\mathbb{K})$. On dit que A est **diagonalisable** si A est **semblable** à une matrice diagonale.

Autrement dit, A est diagonalisable si $A = PDP^{-1}$, où D est une matrice diagonale et P est une matrice inversible.

1 Remarque:

- Soient $\lambda_1, \ldots, \lambda_k$ les valeurs propres de A, et soient $E_{\lambda_i}(A)$ les sous-espaces propres associés à λ_i . A diagonalisable $\iff \dim(E_{\lambda_i}(A)) = \text{ordre de multiplicité de } \lambda_i.$ e.g. λ_i est une valeur propre simple, alors $\dim(E_{\lambda_i}(A)) = 1$.
- A diagonalisable $\iff E = \bigoplus_{i=1}^k E_{\lambda_i}(A)$. (i.e.E est la somme directe des sous-espaces propres associés aux valeurs propres de A)

Exemple: (suite de l'exemple précédent)

On a trouvé que $Sp(A) = \{1, -3\}$ et $\chi_A(X) = -(X - 1)^2(X + 3)$.

Alors, A est diagonalisable si:

$$\begin{cases} \dim(E_1(A)) = 2\\ \dim(E_{-3}(A)) = 1 \end{cases}$$

On a aussi que A est diagonalisable si $\mathbb{R}^3 = E_1(A) \oplus E_{-3}(A)$.