16:332:599:02 – Smart Grid Project Report

By David Lambropoulos, Demetrios Lambropoulos

Professor Hana Godrich May $9^{\rm th}$, 2018

Contents

2	Det	cailed Solution
	2.1	Calculating Per Unit Values
		2.1.1 Per-Unit One-Line Model
	2.2	Compute All Bus Voltages
		2.2.1 Newton-Raphson Method

List of Figures

1	Original Circuit	1
2	Per-Unit One-line Diagram	5
3	PowerWorld Diagram	6
4	PowerWorld Diagram	7
5	PowerWorld Diagram	7
6	PowerWorld Diagram	8
7	PowerWorld Diagram	8
8	PowerWorld Diagram	9
9	PowerWorld Diagram	9
10	PowerWorld Diagram	10
11	PowerWorld Diagram	10
12	PowerWorld Diagram	11
13	PowerWorld Diagram	11
14	PowerWorld Diagram	11
15	PowerWorld Diagram	12
16	PowerWorld Diagram	12
17	PowerWorld Diagram	13
18	PowerWorld Diagram	13
19	PowerWorld Diagram	14

1 Circuit Values	1	Circuit V	Values																																	1
------------------	---	-----------	--------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

1 Case Study/Problem Formulation

For the single-line diagram in Figure 4 convert all positive-sequence impedance, load, and voltage data to per unit using the given system base quantities. Run the power flow program and obtain the bus, line, and transformer input/output voltages

Figure 1: Original Circuit

	Generator Ratings
G1	100MVA, 13.8kV, x'' = 0.12
G2	200MVA, 15.0kV, x'' = 0.12
	The generator neutrals are solidly grounded

	Transformer Ratings
T1	$100MVA, 13.8kV\Delta/230kVY, x = 0.1 \text{ per unit}$
T2	$200MVA$, $15kV\Delta/230kVY$, $x = 0.1$ per unit
	The transformer neutrals are solidly grounded

	Transmission Line Ratings
All Lines	$230kV$, $z_1 = 0.08 + j0.5\Omega/km$, $y_1 = j3.3E - 6S/km$, $Max\ MVA = 400$
Line Lengths	$L_1 = 15km, L_2 = 20km, L_3 = 40km, L_4 = 15km, L_5 = 50km$

	Power Flow Data
Bus 1	Swing bus $V_1 = 13.8kV$, $\partial_1 = 0^{\circ}$
Bus 2, 3, 4, 5, 6	Load buses
Bus 7	Constant voltage magnitude bus, $V_7 = 15kV$, $P_{G7} = 180MW$, $-87MVAr < Q_{G7} < +87MVAr$

System Base Quantities
$S_{base} = 100MVA$ (three-phase)
$V_{base} = 13.8kV$ (line-to-line) in the zone of G_1

Table 1: Circuit Values

2 Detailed Solution

2.1 Calculating Per Unit Values

$$per\ unit\ (pu)\ value = rac{Actual\ value}{Base\ value}$$

In zone G1, base values are,

$$S_{base} = 100MVA$$

$$V_{base_{L-L}} = 13.8kV$$

@ G1

$$S_{G1_{(pu)}} = \frac{100MVA}{100MVA} = \boxed{1pu}$$

$$V_{G1_{(pu)}} = \frac{13.8kV}{13.8kV} = \boxed{1pu}$$

$$x''_{(new)} = \boxed{0.12pu}$$

@T1

$$S_{T1_{(pu)}} = \frac{100MVA}{100MVA} = \boxed{1pu}$$

$$V_{T1_{(pu)}} = \frac{13.8kV}{13.8kV} = \boxed{1pu}$$

$$x_{(pu)} = \boxed{0.1pu}$$

@ Bus 2

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

 $@L_1$

$$L_1 = 15km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (15km)(0.08 + j0.5\Omega/km) = 1.2 + j7.5\Omega$$

$$\theta = tan^{-1} \left(\frac{7.5}{1.2} \right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(1.2)^2 + (7.5)^2} = \boxed{7.59539\Omega}$$

$$Z_{total} = \boxed{7.59539 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 7.595 \cdot \left(\frac{100MVA}{(230kV)^{2}}\right) = \boxed{0.014358pu}$$

@ Bus 3

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

@ Bus 4

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

@ Bus 5

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

@ Bus 6

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

 $@L_2$

$$L_2 = 20km$$
$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (20km)(0.08 + j0.5\Omega/km) = \boxed{1.6 + j10\Omega}$$

$$\theta = tan^{-1} \left(\frac{10}{1.6}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(1.6)^2 + (10)^2} = \boxed{10.127191\Omega}$$

$$Z_{total} = \boxed{10.127191 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 10.127191 \cdot \left(\frac{100MVA}{(230kV)^2}\right) = \boxed{0.019144pu}$$

 $@L_3$

$$L_{3} = 40km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (40km)(0.08 + j0.5\Omega/km) = \boxed{3.2 + j20\Omega}$$

$$\theta = tan^{-1} \left(\frac{20}{3.2}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(3.2)^{2} + (20)^{2}} = \boxed{20.254382\Omega}$$

$$Z_{total} = \boxed{20.254382 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 20.254382 \cdot \left(\frac{100MVA}{(230kV)^{2}}\right) = \boxed{0.038288pu}$$

 $@L_4$

$$L_{4} = 15km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (15km)(0.08 + j0.5\Omega/km) = \boxed{1.2 + j7.5\Omega}$$

$$\theta = tan^{-1} \left(\frac{7.5}{1.2}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(1.2)^{2} + (7.5)^{2}} = \boxed{7.59539\Omega}$$

$$Z_{total} = \boxed{7.59539 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 7.595 \cdot \left(\frac{100MVA}{(230kV)^{2}}\right) = \boxed{0.014358pu}$$

 $@L_5$

$$L_5 = 50km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (50km)(0.08 + j0.5\Omega/km) = \boxed{4 + j25\Omega}$$

$$\theta = tan^{-1} \left(\frac{25}{4}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(4)^2 + (25)^2} = \boxed{25.317978\Omega}$$

$$Z_{total} = \boxed{25.317978 \angle 80.91^\circ \Omega}$$

$$Z_{total_{(pu)}} = 25.317978 \cdot \left(\frac{100MVA}{(230kV)^2}\right) = \boxed{0.04786pu}$$
© Bus 7
$$P_{G7_{(pu)}} = \frac{180MW}{100MVA} = \boxed{1.8pu}$$

$$\frac{-87MVAr}{100} < Q_{G7_{(pu)}} < \frac{87MVAr}{100}$$

$$-0.87pu < Q_{G7_{(pu)}} < 0.87pu$$

$$V_{T2_{(pu)}} = \frac{15kV}{13.8kV} = \boxed{1.086956pu}$$

2.1.1 Per-Unit One-Line Model

Figure 2: Per-Unit One-line Diagram

2.2 Compute All Bus Voltages

Figure 3: PowerWorld Diagram

2.2.1 Newton-Raphson Method

Figure 4: PowerWorld Diagram

Figure 5: PowerWorld Diagram

Figure 6: PowerWorld Diagram

Figure 7: PowerWorld Diagram

Figure 8: PowerWorld Diagram

Figure 9: PowerWorld Diagram

Figure 10: PowerWorld Diagram

Figure 11: PowerWorld Diagram

Figure 12: PowerWorld Diagram

Figure 13: PowerWorld Diagram

Figure 14: PowerWorld Diagram

Figure 15: PowerWorld Diagram

Figure 16: PowerWorld Diagram

Figure 17: PowerWorld Diagram

Figure 18: PowerWorld Diagram

Figure 19: PowerWorld Diagram

3 Conclusions