"ALGORITMI"

CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

Seconda prova in itinere - 09 febbraio 2015

Si svolgano i seguenti esercizi, argomentando adeguatamente le risposte.

ESERCIZIO 1

- (a) Si illustri la struttura dati degli alberi "rosso-neri".
- (b) Si enunci una minorazione del numero di nodi interni in un sottoalbero radicato in un nodo x di un albero rosso-nero e la si utilizzi per dimostrare un limite superiore all'altezza di un albero rosso-nero con n nodi interni.
- (c) Si illustri l'inserimento delle chiavi 38, 35, 21, 10, 12, 4 in un albero rosso-nero inizialmente vuoto.

ESERCIZIO 2

Sia \otimes un'operazione associativa su matrici di numeri reali tale che, date due matrici $A \in B$ rispettivamente di dimensioni $p \times q \in q \times r$, produce una matrice $A \otimes B$ di dimensione $p \times r$, effettuando $p^2q^2 + r^3$ operazioni elementari.

Sia
$$\mathcal{A} = (A_1, A_2, \dots, A_n)$$
 una sequenza di matrici di dimensioni $p_{i-1} \times p_i$, per $i = 1, 2, \dots, n$.

Utilizzando la metodologia della programmazione dinamica, si descriva un'algoritmo per determinare la parente-sizzazione della sequenza \mathcal{A} che consenta di calcolare la matrice

$$A_1 \otimes A_2 \otimes \ldots \otimes A_n$$

con il minor numero possibile di operazioni elementari.

Qual è la complessità dell'algoritmo trovato in funzione della lunghezza n della sequenza A?

ESERCIZIO 3

Nel contesto della metodologia greedy, si enunci il problema di ottimizzazione relativo alla selezione di attività e se ne discuta una soluzione efficiente, valutandone la complessità computazionale e illustrandola sul seguente insieme $S = \{a_1, \ldots, a_{10}\}$ di attività, caratterizzate dai seguenti tempi iniziali e finali:

i	1	2	3	4	5	6	7	8	9	10
$\overline{s_i}$	11	13	7	2	1	4	12	5	10	6
f_i	12	14	9	5	6	7	13	5 10	12	9