Les variateurs de vitesse mécaniques

- 1 Situé entre l'organe moteur et l'organe récepteur, le variateur de vitesse a, dans une chaine cinématique de transmission , 2 fonctions :
- l'une d'ordre cinématique, pour modifier la vitesse d'évolution du mécanisme récepteur, compte-tenu de la fonction que ce dernier doit assurer (indépendamment des efforts transmis)
- l'autre d'ordre énergétique, pour permettre la mise en mouvement (et son maintien) du mécanisme récepteur compte-tenu des charges inérentes au système (inertie) ou appliquées (couple résistant par exemple)
- **2** Soit $k_{12} = \frac{\omega_2}{\omega_1}$ = rapport algébrique de transmission ((1) arbre d'entrée, (2) arbre de sortie)

Selon la valeur de k_{12} , le variateur de vitesse peut fonctionner en :

- $\begin{array}{l} \text{-} \ transmetteur / \ r\'educteur} \\ \text{-} \ transmetteur / \ multiplicateur} \end{array} \right\} \quad \text{Si } k_{12} > 0$

- 3 Le tableau ci-après donne une classification globale des différents systèmes pouvant participer à la variation du mouvement dans une chaîne de transmission de puissance.

Système d'origine	Critères (de classification	Désignation du variateur	
	Élément transmetteur solide	Déformable (courroie, chaîne)	Variateur à élément déformable (objet principal de ce présent cha- pitre)	
Mécanique	Element transmetteur solide	Rigide (Galet, sphère)	Variateur à élément rigide (objet du chapitre 4 suivant)	
	Élément transmetteur liquide	À « arbre hydraulique »	Variateur hydrostatique	
		À effet centrifuge	Variateur hydrodynamique	
Électrique	À poudre métallique		Variateur à poudre	
	Àç	Variateur électrique		
	Avec convertisseur de fréquence		Variateur électronique	
	Avec gradateur de tension			
	Avec gradateur de tension			
	Ave			

- 4 La variation de vitesse électronique connaît un grand essor . avantage des variateurs mécaniques : Autonomie (pas besoin de source d'énergie électronique)
- Les variateurs mécaniques connaissent un regain d'intérêt grâce aux nouveaux matériaux, nouveaux procédés de lubrification ...
- 5 Les variateurs à élément déformable peuvent être réalisés avec 2 poulies à gorges déformables (sur une des 2 poulies) , recevant une courroie trapézoïdale spécifique (en élastomère) , ou une chaine métallique spécialement conçue pour être du type "poussée" ou "tirée" La commande de variation de vitesse, asservie ou non, peut être obtenue :
- mécaniquement, par divers systèmes de transformation de mouvement tel le système vis / écrou
- hydrauliquement comme c'est le cas par exemple pour certaines boites de vitesse automatiques (à variation continue) de véhicules automobiles.

6 - Liste générale des variateurs

Système d'origine	Critères de	Désignation du variateur		
Mécanique	Élément transmetteur solide	Déformable (courroie, chaîne)	Variateur à élément déformable (objet du chapitre 3)	
	Element transmetteur solide	Rigide (Galet, sphère)	Variateur à élément rigide (objet du présent chapitre)	
	Élément transmetteur liquide	À « arbre hydraulique » Variateur hydrostatique		
		À effet centrifuge	Variateur hydrodynamique	
Électrique	À poudre métallique		Variateur à poudre	
	À gér	Variateur électrique		
	Avec convertisseur de fréquence		18	
	Avec gradateur de tension		Variateur électronique	
	Avec redresseur			
	Avec			

7 - Loi de variation du rapport de transmission

En fonction des paramètres λ et Θ :

 λ = amplitude de la translation de l'organe de commande Θ = amplitude de la rotation de l'organe de commande

Pour
$$\lambda$$
 = 0 et Θ = 0 k_{12} = $\frac{\omega_2}{\omega_1}$ = +/- 1

Type de réalisation			Position relative de Δ_1 et Δ_2	Rapport de transmission $k_{12} = f(\lambda \text{ ou } \theta)$	
Non spicycloïdal	Anneau et poulies à gorges déformables		Δ_1 // Δ_2	$\frac{a + \frac{\lambda}{2\tan\alpha}}{a - \frac{\lambda}{2\tan\alpha}}$	k ₁₂ > 0
	Galet cylindrique et poulies coniques		Δ_1 // Δ_2	$\frac{a + \lambda \sin \alpha}{a - \lambda \sin \alpha}$	k ₁₂ > 0
	Galet cylindrique et plateau(x) cylindrique(s)	Un plateau	$\Delta_1 \perp \Delta_2$	<u>a</u> a – λ	
		Deux plateaux	Δ_1 // Δ_2	$\frac{a+\lambda}{a-\lambda}$	k ₁₂ > 0
	Galet sphérique et couronnes toriques		Δ_1 et Δ_2 confondus	$\frac{a - R[\sin(\beta + \theta) - \sin\beta]}{a + R[\sin\beta - \sin(\beta - \theta)]}$	k ₁₂ < 0
	Galet sphérique et plateaux coniques			$\frac{R\cos(\beta+\theta)+d\sin\theta}{R\cos(\beta+\theta)}$	k ₁₂ > 0
Épicycloïdal	Galet biconique			$1+\frac{r_0(a+\lambda)}{r_2(a-\lambda)}$	k ₁₂ > 0
	Bille			r ₁ r ₃ r ₂ r ₃ Ici les valeurs des rayons r ₃ r ₃ ' varient simultanément	k ₁₂ > 0 , r ₂ , r ₃ et