Cao học 2020 - 2021 Bài Tập Numerics 4 PDEs. No 2. Finite Element Methods (1D)

Câu 1 Giải phương trình truyền sóng elastic 1 chiều dạng

$$\rho \partial_t t u = \partial_x \left(\mu \partial_x u \right) + f(t, x) \tag{1}$$

bằng phương pháp phần tử hữu hạn sử dụng bảng sau. Ở đây ta giả sử rằng hàm mật độ ρ và mô đun kéo μ đều phụ thuộc vào không gian.

	Left	Middle	Right
x	4,600 m	1,000 m	4,600 m
v_s	6,000 m/s	1,500 m/s	3,000 m/s
dx	40 m	10 m	20 m
ρ	$2,500 \text{ kg/m}^3$	$2,500 \text{ kg/m}^3$	$2,500 \text{ kg/m}^3$
Parameter	Value		
nt	18,000		
dt	3.3 ms		
f_0	5 Hz		
eps	0.5		

Hình 1: Tham số mô phỏng cho sóng elastic 1 chiều, trường hợp môi trường không thuần nhất

Vên cầu:

- 1) Xây dựng và tính toán chi tiết các ma trận độ cứng K, ma trận trọng M, f.
- 2) Sử dụng lưới không đều (h-adaptivity).

Chú ý rằng trong mô phỏng với vận tốc sóng thay đổi như trong Hình 1 cần tính các bước thời gian thích hợp theo công thức CFL: $\epsilon = c_{max} \frac{dt}{dx}$, trong đó c_{max} là vận tốc sóng tối đa trên toàn miền. Hãy quan sát độ lệch u trên các miền con, bạn có nhận xét gì?

Câu 2 Cùng câu hỏi như bài tập 1, tuy nhiên hãy sử dụng những hàm định dạng (shape function) bậc hai như trong Mục 6.5 (Chương 6 SGT).

