

A Level · Edexcel · Maths

1.2 Proof by Contradiction (A Level only)

Total Marks	/107
Very Hard (7 questions)	/34
Hard (6 questions)	/27
Medium (6 questions)	/26
Easy (6 questions)	/20

Scan here to return to the course

or visit savemyexams.com

Easy Questions

- 1 Find the prime factorisation of the following numbers
 - (i) 100
 - (ii) 120

(4 marks)

2 State whether the following are rational or irrational quantities.

For those that are rational, write them in the form $\frac{a}{b}$, where a and b are integers and $\frac{a}{b}$ is in its simplest terms.

(4 marks)

of two consecutive integers is odd.	3 Prove by contradiction that the sum of
(3 mark duct of two odd numbers is odd.	4 Prove by contradiction that the produc
(3 mark ven, then x^2 must be even.	5 Prove by contradiction that if <i>x</i> is even
(3 mark an infinite number of multiples of 10.	6 Prove by contradiction that there is an
(3 mark	

Medium Questions

1 Prove by contradiction that if x^2 is odd, then x must be odd.

(3 marks)

4 (a) A student is attempting to answer the following exam question:

"Prove by contradiction that $\sqrt{2}$ is an irrational number. You may use without proof the fact that if a number n^2 is even, then n must also be even."

The student's proof proceeds as follows:

Line 1: Assume $\sqrt{2}$ is a rational number. Therefore, it can be written in the form $\sqrt{2} = \frac{a}{b}$, where a and b are integers with $b \neq 0$, and where a and b may be assumed to have no common factors.

Line 2: Squaring both sides: $4 = \frac{a^2}{b^2}$

 $\therefore a^2 = 2b^2$ Line 3:

Line 4:

Line 5: Therefore a = 2m, for some integer m

Then, $a^2 = (2m)^2 = 4m^2$ Line 6:

 $2b^2 = 4m^2$ Line 7:

Line 8: $b^2 = 2m^2$

So b^2 is even and therefore b is also even. Line 9:

It has been shown that both a and b are even, so they share a common Line 10: factor of 2.

Line 11: This is a contradiction of the assumption that a and b have no common factors.

Line 12: Therefore, $\sqrt{2}$ is irrational.

There is an error within the first three lines of the proof.

State what the error is and write the correct line down.

(2 marks)

(b) Line 4 of the proof is missing.

Write down the missing line of the proof.

(2 marks)

5 (a) (i)	How many distinct factors does a prime number have?

- (ii) What can you say about the number of distinct factors a square number has?
- (iii) If *N* is the square of a prime number, then excluding *N* itself, write down, in terms of *N*, the largest factor of *N*.

(3 marks)

(b) A composite number can be written uniquely as the product of its prime factors.i.e., any composite number N can be written uniquely as $N=p_1 \times p_2 \times p_3 \times ...$, where p_1, p_2, p_3, \dots are the prime factors of N.

Show that a composite number N may be written in the form N = pq, where q is an integer and p is a prime factor of N.

By expressing q in terms of the prime factors of N, be sure to explain why q must be an integer.

(2 marks)

6 Prove by contradiction that a triangle cannot have more than one obtuse angle.

(5 marks)

Hard Questions

1	Prove by contradiction that if x^3 is odd, then x must be odd.	
2	Prove that the product of two rational numbers is rational.	(4 marks)
3	Prove by contradiction that there are an infinite number of powers of 2.	(4 marks)
4	Prove by contradiction that $\sqrt{11}$ is an irrational number. You may use witho the fact that if n^2 is a multiple of 11, then n is a multiple of 11.	(4 marks) ut proof

(6 marks)

- **5** Below is a proof by contradiction that there is no largest multiple of 7.
 - Line 1: Assume there is a number, *S*, say, that is the largest multiple of 7.
 - S = 7kLine 2:
 - Line 3: Consider the number S+7.
 - Line 4: S + 7 = 7k + 7
 - Line 5: $\therefore S + 7 = 7(k+1)$
 - Line 6: So S + 7 is a multiple of 7.
 - Line 7: This is a contradiction to the assumption that S is the largest multiple of 7.
 - Line 8: Therefore, there is no largest multiple of 7.

The proof contains two omissions in its argument.

Identify both omissions and correct them.

(4 marks)

6 If a positive integer greater than 1 is not a prime number, then it is called a composite number. Prove by contradiction that any composite integer N has a prime factor less than or equal to \sqrt{N} .

(5 marks)

Very Hard Questions

1	Prove by contradiction that if x^n is odd, where $n \ge 2$ is a positive integer, the odd.	n <i>x</i> must be
		(4 marks)
		(4 IIIai K5)
2	Prove that the difference between two rational numbers is rational.	
		(4 marks)
3	Prove by contradiction that there are an infinite number of prime numbers.	
		(5 marks)

4 Prove by contradiction that \sqrt{k} , where k is a prime number, is an irrational number. You may use without proof the fact that any positive integer may be written uniquely as a product of its prime factors.

(6 marks)

- **5** Below is a proof by contradiction that $\log_2 7$ is irrational.
 - Assume $\log_2 7$ is a rational number. Therefore it can be written in the form Line 1: $\log_2 7 = \frac{a}{b}$, where a and b are integers, and $b \neq 0$. As $\log_2 4 = 2$ and $\log_2 8 = 3$, we may assume as well that a > b > 0.

Line 2:
$$\therefore 2^{\frac{a}{b}} = 7$$

Line 3:
$$\left(2^{\frac{a}{b}}\right)^b = 7^b$$

Line 4:
$$2^b = 7^a$$

Line 5: No power of 2 (all even) is equal to a power of 7 (all odd).

Line 6: $\therefore 2^a \neq 7^b$ unless a = b = 0 but this is a contradiction of the original assumption.

 $\therefore \log_2 7$ is irrational Line 7:

The proof contains one mathematical error and one logical error.

Identify both errors and correct them.

(4 marks)

6 Prove by contradiction that the solutions to the equation $3x^2 + 10x - 8 = 0$ cannot be written in the form $\frac{a}{b}$ where a and b are both odd integers.

(5 marks)

7 Prove by contradiction that, if p, q, r and s are rational numbers and c is a positive nonsquare integer, then

$$p + q\sqrt{c} = r + s\sqrt{c}$$

implies that p = r and q = s. You may use without proof the fact that for any positive non-square integer n, \sqrt{n} is irrational.

(6 marks)