Data Structures I – 150015 -5782 Formula Sheet – Midterm Quiz

Asymptotic Notation

Additional	Formal Definition	
Property		
$\lim_{n \to \infty} \frac{f(n)}{g(n)}$ < \infty	Definition of O: Given two functions $f(n)$, $g(n)$: $N \to \mathbb{R}^+$ We say that $g(n)$ is $O(f(n))$ if there are positive constants n_0 and c such that $g(n) \le c * f(n)$ for all $n \ge n_0$	O Big
f(n)	Definition of Ω: Given two functions $f(n)$, $g(n)$: $N \to \mathbb{R}^+$	Ω
$\lim_{n\to\infty}\frac{f(n)}{g(n)}$	We say that $g(n)$ is Ω ($f(n)$) if there are positive constants n_0 and c such that	
> 0	$g(n) \ge c*f(n)$ for all $n \ge n_0$	
$ \lim_{n\to\infty}\frac{f(n)}{g(n)} $	Definition of Θ: Given two functions $f(n)$, $g(n)$: $N \to \mathbb{R}^+$	Θ
	We say that $g(n)$ is Θ ($f(n)$) if there are positive constants n_0 , c_1 , c_2 and c such that	
$= c \neq 0$	$c_1 f(n) \le g(n) \le c_2 f(n)$ for all $n \ge n_0$	
f(n)	Definition of 0: Given two functions $f(n)$, $g(n)$: $N \rightarrow R^+$	Small
$\lim_{n\to\infty}\frac{f(n)}{g(n)}$	We say that $g(n)$ is $o(f(n))$ if for every positive c there is positive constant n_0	
=0	such that $g(n) < c*f(n)$ for all $n \ge n_0$	
$\lim \frac{f(n)}{x}$	Definition of ω : Given two functions $f(n)$, $g(n)$: $N \rightarrow R^+$	ω
$n \to \infty \overline{g(n)}$	We say that $g(n)$ is ω ($f(n)$) if for every positive c there is positive constant no	
= ∞	such that $g(n) > c*f(n)$ for all $n \ge n_0$	
	such that $\theta(n) = e^{-i(n)}$ for the $i = 10$	

Various formula

$\sum_{k=1}^{n} k = 1 + 2 + \dots = \frac{1}{2}n(n+1)$	$\log_b(x * y) = \log_b x + \log_b y$
$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$	$\log_b (x / y) = \log_b x - \log_b y$
$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} X < 1$ עבור	

Page 1 Data Structures I - 150015 -5782 - Formula Sheet - Midterm Quiz

$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$ $= \ln n + O(1)$	$\log_b(a^n) = n \log_b a$
$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$	$\frac{\log_c a}{\log_c b} = \log_b a$
$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$	$n^{\log_C a} = a^{\log_C n}$