Roll No. 26

EXPERIMENT No:7

<u>AUTOMATIC GENERATION CONTROL – TWO</u> <u>AREA SYSTEM</u>

Aim

To determine the change in speed, frequency and steady state error corresponding to a load disturbance in a two-area power system, with and without supplementary control using any software.

Software Platform

MATLAB/Simulink

Theory

A large power system can be divided into a number of load frequency control areas which are interconnected by tie lines. For simulation purpose we consider a two-area system. Each area contains an equivalent turbine, generator, load and governor system.

Consider the two area representation by an equivalent generating unit interconnected by a lossless tie-line with reactance X_{tie} . During normal operation, the real power transferred through tie-line is given by,

$$P_{12} = \frac{|E_1||E_2|}{X_{12}} \sin \delta_{12}$$

where,
$$X_{12} = X_1 + X_{tie} + X_2$$
 and $\delta_{12} = \delta_1 - \delta_2$

for small deviation, $\Delta P_{12} = P_s \Delta \delta_{12}$. The quantity P_s is the slope of the power angle curve at the initial operating angle $\delta_{12_0} = \delta_{1_0} - \delta_{2_0}$

Thus,
$$P_s = \frac{|E_1||E_2|}{X_{12}} \cos \Delta \delta_{12_0}$$

The tie-line power deviation is given by $\Delta P_{12} = P_s \left(\Delta \delta_1 - \Delta \delta_2 \right)$

Depending on the direction of the flow, the tie-lie power flow appears as a load increase in one area and a load decrease in the other area. If $\Delta \delta_1 > \Delta \delta_2$, the power flows from area 1 to 2.

Case1: Obtain the frequency deviation response and the change in tie line flow deviation with only primary LFC control

Consider a load change ΔP_{L1} in area 1. In the steady-state, both areas will have the same steady-state frequency deviation, $\Delta \omega = \Delta \omega_1 = \Delta \omega_2$ and $\Delta P_{m1} - \Delta P_{12} - \Delta P_{L1} = \Delta \omega D_1$, $\Delta P_{m2} - \Delta P_{12} = \Delta \omega D_1$

Two-area system with only primary LFC loop

Case 2: With Tie-line bias control

In Conventional LFC each area tend to reduce the area control error (ACE) to zero (tie-line bias control).

$$ACE_i = \sum_{j=1}^n \Delta P_{ij} + K_i \Delta \omega$$

The overall satisfactory performance is achieved when K_i (area bias) is selected equal to the frequency bias of that area

$$ACE_1 = \Delta P_{12} + B_1 \Delta \omega_1$$
 and $ACE_2 = \Delta P_{21} + B_2 \Delta \omega_2$
$$B_i = \frac{1}{R_i} + D_i$$

Two-area system with tie-line bias control

Exercise1:

A two-area system connected by a tie-line with following parameters on 1000 MVA base

Area	1	2
Governor speed regulation	$R_1 = 0.05 \text{ pu}$	$R_2 = 0.0625$ pu
Load damping constant	D ₁ =0.8	D ₂ =0.9
Generator inertia constant	H ₁ =5 sec	$H_2=4$ sec
Governor time constant	τ_{g1} =0.2sec	τ_{g2} =0.3sec
Turbine time constant	τ_{T1} =0.5sec	$ au_{T2}$ =0.6sec

The unit are operating in parallel at nominal frequency of 60 Hz. The synchronizing power coefficient is computed from the initial operating condition, given by P_s=2pu. A load change of 187.5 MW occurs in area 1.

Case 1: Obtain the frequency deviation response and the change in tie line flow deviation with only primary LFC control

Simulation Diagram

<u>OUTPUT</u>

Simulation Diagram

<u>Output</u>

<u>Result</u>

Two area power system is simulated using MATLAB and the waveforms are plotted.