

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ (ИУ)

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

Разработка базы данных карточек для адаптивной коммуникации

Студент: Авсюнин Алексей Алексеевич ИУ7-66Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи работы

Цель курсового проекта: разработка базы данных карточек для адаптивной коммуникации и программы, предоставляющей интерфейс взаимодействия с базой данных.

Задачи:

- проанализировать существующие базы данных;
- описать сущности проектируемой БД;
- выбрать необходимый инструментарий для реализации;
- реализовать спроектированную БД и необходимый интерфейс для работы с ней;
- исследовать характеристики разработанного программного обеспечения.

Карточки PECS

- система альтернативной коммуникации;
- на каждой карточке слово и картинка, описывающая данное слово;

Диаграмма вариантов использования

- психолог пользователь, обладающий возможностями изменять, добавлять, удалять и просматривать сущности базы данных;
- пациент пользователь, обладающий возможностью только просматривать сущности базы данных.
- родственник пользователь, обладающий возможностями изменять и просматривать сущности базы данных.

ER-диаграмма в нотации Чена

ER-диаграмма базы данных

Схема триггера

Преимущества графовой БД

- Отсутствие развязочных таблиц;
- Исключение дублирования за счёт множественных связей;
- Компактные запросы.

Cypher	SQL
MATCH (noun:noun), (adjective:adjective {text: <<красный>>}), (obAction:obAction {text: <<играть>>}) WHERE (noun)→(adjective) AND (noun)→(obAction) RETURN noun	SELECT noun.text (SELECT obAction.id AS oid, noun.id AS nid FROM (obAction JOIN nounObAction ON noun.id = nounObAction.oaid AND obAction.text=<<играть>>)) AS oa JOIN (SELECT adjective.id AS aid, noun.id AS nid FROM (adjective JOIN nounAdjective ON adjective.id=nounAdjective.aid AND adjective.text=<<красный>>)) AS adj ON oa.nid=adj.nid JOIN noun ON oa.nid=noun.id

Выбранный технологический стек

- Neo4j графовая СУБД;
- Python язык программирования;
- neo4j библиотека взаимодействия python с СУБД Neo4j;
- fastapi библиотека для создания API на python;

Интерфейс взаимодействия

Пример работы программы

Анализ времени поиска узла по связям

MATCH (noun:noun), (adjective:adjective {text: <<красный>>}), (obAction:obAction {text: <<играть>>}) WHERE (noun)→(adjective) AND (noun)→(obAction) RETURN noun

Количество узлов	Время (мс)
15	1
25	2
40	3.5
50	3.5
70	5.5
90	7
100	8
115	8.5
135	9

Анализ времени создания узла

CREATE (n:noun {text: <<машина>>})

Количество узлов	Время (мс)
20	2.0
50	2.8
75	4.7
100	2.0
150	1.0
175	2.0
200	2.5
250	3.8
300	3.7
350	3.4
400	5.5
450	3.7
500	3.1

Заключение

Поставленная цель была достигнута: разработана база данных карточек для адаптивной коммуникации и программы, предоставляющей интерфейс взаимодействия с базой данных.

В рамках курсового проекта были выполнены задачи:

- проанализированы существующие БД;
- описаны сущности проектируемой БД;
- выбран необходимый инструментарий для реализации;
- реализованы спроектированная БД и необходимый интерфейс для работы с ней;
- исследованы характеристики разработанного программного обеспечения.

Направления дальнейшего развития

- графический пользовательский интерфейс;
- возможность составления расписания из карточек;
- возможность составления историй из карточек;
- синтаксический анализатор для преобразования текста в карточки;
- возможность взаимодействовать с помощью карточек в Интернете.