

1 What is claimed is:

2

1 1. A spatial light modulator comprising:
2 a multi-pixel display array; and
3 a multi-pixel memory array having pixel storage cells;
4 wherein at least some pixels of the multi-pixel memory array are disposed outside
5 the display array.

1 2. The spatial light modulator of claim 1 wherein all of the pixels of the
2 memory array are disposed outside the display array.

1 3. The spatial light modulator of claim 1 further comprising:
2 at least one local pulse width modulation drive circuit coupled to at least one of
3 the pixel storage cells.
4 a global counter coupled to the local pulse width modulation drive circuit.

1 4. The spatial light modulator of claim 3 wherein:
2 the display pixels of the multi-pixel display array comprise first display pixels of
3 a first color, and second display pixels of a second color;
4 the global counter includes,
5 a first global counter coupled to the local pulse width modulation drive
6 circuits of the first display pixels, and
7 a second global counter coupled to the local pulse width modulation drive
8 circuits of the second display pixels.

1 5. The apparatus of claim 4 wherein:
2 the display pixels of the multi-pixel display array further comprise third pixels of
3 a third color.

1 6. The apparatus of claim 5 wherein:
2 the global counter further includes,

3 a third global counter coupled to the local pulse width modulation drive circuits of
4 the third display pixels.

1 7. The apparatus of claim 3 wherein:

2 the multi-pixel display array includes display pixels of at least two different
3 colors; and

4 the global counter is adapted to count up to two respective different values and is
5 switchably coupled to the respective different color display pixels to provide global
6 counter values to their local pulse width modulation drive circuits in a time-slice manner.

1 8. The apparatus of claim 7 wherein:

2 the multi-pixel display array includes display pixels of three different colors.

1 9. The apparatus of claim 8 wherein:

2 the three colors are Red, Green, and Blue.

1 10. A spatial light modulator comprising:

2 control logic;

3 a pixel memory array coupled to the control logic and occupying a first area of the
4 spatial light modulator; and

5 a pixel display array coupled to the control logic and the pixel memory array, and
6 occupying a second area of the spatial light modulator, wherein the first and second areas
7 are substantially non-overlapping.

1 11. The spatial light modulator of claim 10 wherein:

2 the pixel display array comprises a plurality of pixel display cells, each having
3 disposed within its area an associated pulse width modulation driver circuit; and

4 the pixel memory array comprises a plurality of pixel memory cells.

1 12. The spatial light modulator of claim 11 wherein:

2 the control logic comprises a counter for providing a count value;

3 the pulse width modulation driver circuit comprises a comparator coupled to
4 compare the count value to a pixel value stored in an associated pixel array cell of the
5 pixel memory array.

1 13. The spatial light modulator of claim 12 further comprising:
2 means for providing non-linearity in the pulse width modulation.

1 14. The spatial light modulator of claim 11 wherein the pixel memory array
2 comprises:

3 more memory cells than the pixel display array has pixel display cells; and
4 means for providing redundancy in the pixel memory array.

1 20. A method of manufacturing a light modulator, the method comprising:
2 constructing, in a first area of the light modulator, a pixel display array including
3 multiple display pixels; and
4 constructing, in a second area of the light modulator that is substantially
5 non-overlapping with the first area, a pixel memory array including multiple pixel storage
6 cells.

1 21. The method of claim 20 further comprising:
2 constructing, within each of a plurality of the display pixels, a pulse width
3 modulation driver circuit.

1 22. The method of claim 21 further comprising:
2 constructing a counter having an output coupled to each of the plurality of display
3 pixels;
4 constructing, within each of the pulse width modulation driver circuits, a
5 comparator having a first input coupled to the output of the counter and a second input
6 coupled to receive a pixel data value from the pixel memory array.

1 23. The method of claim 22 wherein constructing the comparator comprises:

2 configuring the comparator to determine whether the pixel data value is
3 greater-than-or-equal-to the counter output.

1 24. The method of claim 23 further comprising:

2 constructing a lookup table to provide non-linear response in the pulse width
3 modulation.

1 25. The method of claim 24 performed in an order as recited.

1 30. A method of operating a light modulator, the method comprising, for each
2 respective pixel cell in a plurality of pixel cells in a pixel display array:

3 performing a digital function on a pixel data value and a present counter value to
4 generate one of a first result or a second result; and

5 in response to the first result, activating the pixel cell;

6 in response to the second result, deactivating the pixel cell.

1 31. The method of claim 30 wherein:

2 the digital function comprises a comparison.

1 32. The method of claim 30 further comprising, over time:

2 incrementing the counter value from 0 to N-1, wherein N is a number of bits of
3 color depth represented in the pixel data value; and then

4 wrapping back to 0.

1 33. The method of claim 30 further comprising:

2 detecting that a pixel memory cell in a pixel memory array is not operating
3 correctly; and, responsively

4 logically replacing that pixel memory cell with a redundant memory cell.

1 34. The method of claim 30 further comprising:

2 performing non-linear pulse width modulation.

1 35. The method of claim 30 wherein:

2 the digital function is performed outside the pixel cell.

- 1 36. The method of claim 30 wherein:
2 the digital function comprises using the present counter value to index into a
3 lookup table.
- 1 40. A display device comprising:
2 a display including a first plurality of pixel display cells;
3 each of the first plurality of pixel display cells including,
4 (1) an electrode,
5 (2) a phase modulation driver circuit coupled to drive the electrode, and
6 including,
7 (A) a comparator coupled to receive a counter value and a pixel
8 value from outside the pixel display cell, and
9 (B) no multi-bit pixel value storage.
- 1 41. The display device of claim 40 wherein the display further includes:
2 a second plurality of pixel display cells, each of which includes,
3 (1) an electrode,
4 (2) a phase modulation driver circuit coupled to drive the electrode, and
5 including,
6 (A) a multi-bit pixel value storage, and
7 (B) a comparator coupled to receive a counter value, and coupled
8 to receive a value stored by the multi-bit pixel value storage.
- 1 42. The display device of claim 41 wherein the second plurality of pixel
2 display cells each further includes:
3 (C) a second multi-bit pixel value storage coupled to provide the
4 pixel value to a comparator in the phase modulation driver circuit of one
5 of the first plurality of pixel display cells.

1 43. The display device of claim 40 wherein the display device is a silicon light
2 modulator.

1 44. The display device of claim 40 wherein the display device is a liquid
2 crystal display.

1 45. The display device of claim 40 wherein the display device is a plasma
2 display panel.

1 50. A projection device comprising:

2 a polarization beam splitter; and

3 a first light modulator coupled in optical contact with the polarization beam
4 splitter, the first light modulator including,

5 a first pixel display array in a first region of the first light modulator, and
6 a first pixel memory array in a second region substantially not overlapping
7 the first region of the first light modulator, such that at least a plurality of pixel
8 memory cells of the first pixel memory array lie outside the first region of the first
9 light modulator.

1 51. The projection device of claim 50 further comprising:

2 a second light modulator coupled in optical contact with the polarization beam
3 splitter, the second light modulator including,

4 a second pixel display array in a first region of the second light modulator,
5 and

6 a second pixel memory array in a second region substantially not overlapping the first
7 region of the second light modulator, such that at least a plurality of pixel memory cells
8 of the second pixel memory array lie outside the first region of the second light
9 modulator.

1 60. A spatial light modulator comprising:

2 a display array having display pixels; and

3 a memory array having pixel value storage cells each associated with a
4 corresponding one of the display pixels, wherein at least some of the storage cells are
5 located outside the display array.

1 61. The spatial light modulator of claim 60 wherein:

2 all of the storage cells are located outside the display array.

1 62. The spatial light modulator of claim 60 further comprising:

2 at least one comparator coupled to compare a counter value against a pixel value
3 from one of the pixel storage cells.

1 63. The spatial light modulator of claim 62 wherein:

2 the at least one comparator comprises a plurality of comparators, each uniquely
3 associated with a respective one of the pixel value storage cells.

1 64. The spatial light modulator of claim 62 wherein:

2 the at least one comparator comprises a plurality of comparators, each uniquely
3 associated with a respective group of the pixel value storage cells.

1 65. The spatial light modulator of claim 63 wherein:

2 each respective group of the pixel value storage cells comprises one of a row and
3 a column of the pixel value storage cells; and

4 each of the plurality of comparators is configured for time slice multiplexing
5 comparisons of the counter value against respective values stored in the individual ones
6 of its associated row or column of pixel value storage cells.

1 66. The spatial light modulator of claim 62 wherein:

2 the at least one comparator comprises exactly one comparator, which is
3 configured for time slice multiplexing comparisons of the counter value against each of
4 the pixel value storage cells.

1 67. The spatial light modulator of claim 62 wherein:

2 the at least one comparator is disposed outside the display array.

1 70. An article of manufacture comprising:
2 a machine-accessible medium including data that, when accessed by a machine
3 system, cause the machine system to construct the apparatus of claim 10 as a monolithic
4 integrated circuit device.

1 71. The article of manufacture of claim 70 wherein the machine-accessible
2 medium further includes data that, when accessed by the machine system, cause the
3 machine system to construct the apparatus of claim 13 as a monolithic integrated circuit
4 device.

1 80. An article of manufacture comprising:
2 a machine-accessible medium including data that, when accessed by a machine
3 system, cause the machine system to perform the method of claim 30.

1 81. The article of manufacture of claim 80 wherein the machine-accessible
2 medium further includes data that, when accessed by the machine system, cause the
3 machine system to perform the method of claim 31.