## VE320

## Intro to Semiconductor Devices

## HOMEWORK 7

November 13, 2020

## Yihua Liu 518021910998

1. (a) Substituting  $N_c=2.8\times 10^{19}~{\rm cm}^{-3}$  for  $N_c,\,5\times 10^{15}~{\rm cm}^{-3}$  for  $N_d,\,$ 

$$\phi_n = \frac{kT}{e} \ln \left( \frac{N_c}{N_d} \right) = 0.2231 \text{ V}.$$

The built-in potential barrier  $V_{bi}$  is

$$V_{bi} = \phi_{B0} - \phi_n = 0.4269 \text{ V}.$$

(b) When  $N_d=10^{16}~{\rm cm}^{-3}$ , since the value of the Schottky barrier height  $\phi_{B0}$  has no relation to the doping concentration  $N_d$ , it will remain the same as

$$\phi_{B0} = 0.65 \text{ V}.$$

$$\phi_n = \frac{kT}{e} \ln \left( \frac{N_c}{N_d} \right) = 0.2052 \text{ V}.$$

The built-in potential barrier  $V_{bi}$  is

$$V_{bi} = \phi_{B0} - \phi_n = 0.4448 \text{ V}.$$

The value of  $\phi_{B0}$  remains the same, while the value of  $V_{bi}$  increases.

(c) When  $N_d = 10^{15} \text{ cm}^{-3}$ , for the same reason,

$$\phi_{B0} = 0.65 \text{ V}.$$

$$\phi_n = \frac{kT}{e} \ln \left( \frac{N_c}{N_d} \right) = 0.2647 \text{ V}.$$

The built-in potential barrier  $V_{bi}$  is

$$V_{bi} = \phi_{B0} - \phi_n = 0.3853 \text{ V}.$$

The value of  $\phi_{B0}$  remains the same, while the value of  $V_{bi}$  decreases.

2. (a) From Figure 9.5 we read that  $\phi_m = 4.65$  V and the Schottky barrier is

$$\phi_{B0} = 0.63 \text{ V}.$$

The reverse-saturation current density  $J_{sT}$  is

$$J_{sT} = A^* T^2 \exp\left(\frac{-e\phi_{B0}}{kT}\right) = 120 \times 300^2 \times e^{\frac{-0.63e}{300k}} = 2.818 \times 10^{-4} \text{ A/cm}^2.$$

The reverse-saturation current  $I_{sT}$  is

$$I_{\circ T} = AJ_{\circ T} = 2.818 \times 10^{-8} \text{ A}.$$

When  $I = 10 \ \mu\text{A} = 10^{-5} \text{ A}$ , the forward-bias voltage is

$$V_a = \frac{kT}{e} \ln \left( \frac{I}{I_{sT}} + 1 \right) = 0.1519 \text{ V}.$$

When  $I=100~\mu\mathrm{A}=10^{-4}~\mathrm{A},$  the forward-bias voltage is

$$V_a = \frac{kT}{e} \ln \left( \frac{I}{I_{sT}} + 1 \right) = 0.2113 \text{ V}.$$

When  $I = 1 \text{ mA} = 10^{-3} \text{ A}$ , the forward-bias voltage is

$$V_a = \frac{kT}{e} \ln \left( \frac{I}{I_{sT}} + 1 \right) = 0.2709 \text{ V}.$$

(b) Assuming T = 350 K, the reverse-saturation current  $I_{sT}$  is

$$I_{sT} = AJ_{sT} = AA^*T^2 \exp\left(\frac{-e\phi_{B0}}{kT}\right) = 1.247 \times 10^{-6} \text{ A}.$$

When  $I = 10 \ \mu\text{A} = 10^{-5} \text{ A}$ , the forward-bias voltage is

$$V_a = \frac{kT}{e} \ln \left( \frac{I}{I_{sT}} + 1 \right) = 0.06634 \text{ V}.$$

When  $I = 100 \ \mu\text{A} = 10^{-4} \ \text{A}$ , the forward-bias voltage is

$$V_a = \frac{kT}{e} \ln \left( \frac{I}{I_{sT}} + 1 \right) = 0.1326 \text{ V}.$$

When  $I = 1 \text{ mA} = 10^{-3} \text{ A}$ , the forward-bias voltage is

$$V_a = \frac{kT}{e} \ln \left( \frac{I}{I_{sT}} + 1 \right) = 0.2017 \text{ V}.$$

3. (a) From the I-V characteristic, we have

$$I = I_{sT} \left[ \exp\left(\frac{eV_a}{kT}\right) - 1 \right],$$

thus, the forward-bias voltage of Schottky diode is

$$V_{a1} = \frac{kT}{e} \ln \left( \frac{I}{I_{sT1}} + 1 \right).$$

Substituting 150  $\mu$ A = 1.5 × 10<sup>-4</sup> A for I,  $AJ_{sT1} = 8 \times 10^{-4} \times 6 \times 10^{-9} = 4.8 \times 10^{-12}$  A, the forward-bias voltage of Schottky diode is

$$V_{a1} = 0.4461 \text{ V}.$$

The forward-bias voltage of pn junction diode is

$$V_{a2} = \frac{kT}{e} \ln \left( \frac{I}{I_{eT2}} + 1 \right).$$

Substituting 150  $\mu$ A =  $1.5 \times 10^{-4}$  A for I,  $AJ_{sT1} = 8 \times 10^{-4} \times 8 \times 10^{-13} = 6.4 \times 10^{-16}$  A, the forward-bias voltage of pn junction diode is

$$V_{a2} = 0.6768 \text{ V}.$$

(b) Similar to (a), when  $I=700~\mu\mathrm{A}=7\times10^{-4}~\mathrm{A},$  the forward-bias voltage of Schottky diode is

$$V_{a1} = \frac{kT}{e} \ln \left( \frac{I}{I_{sT1}} + 1 \right) = 0.4860 \text{ V}.$$

The forward-bias voltage of pn junction diode is

$$V_{a2} = \frac{kT}{e} \ln \left( \frac{I}{I_{sT2}} + 1 \right) = 0.7166 \text{ V}.$$

(c) When  $I = 1.2 \text{ mA} = 1.2 \times 10^{-3} \text{ A}$ , the forward-bias voltage of Schottky diode is

$$V_{a1} = \frac{kT}{e} \ln \left( \frac{I}{I_{sT1}} + 1 \right) = 0.4999 \text{ V}.$$

The forward-bias voltage of pn junction diode is

$$V_{a2} = \frac{kT}{e} \ln \left( \frac{I}{I_{sT2}} + 1 \right) = 0.7306 \text{ V}.$$

4. (a) (i) The resistance at junction is

$$R = \frac{R_c}{A} = \frac{5 \times 10^{-5}}{10^{-5}} = 5 \ \Omega.$$

When the current  $I = 1 \text{ mA} = 1 \times 10^{-3} \text{ A}$ , the voltage across the junction is

$$V = IR = 1 \times 10^{-3} \times 5 = 5 \times 10^{-3} \text{ V}.$$

(ii) When  $I = 100 \ \mu A = 1 \times 10^{-4} A$ , the voltage across the junction is

$$V = IR = 1 \times 10^{-4} \times 5 = 5 \times 10^{-4} \text{ V}.$$

(b) (i) Similar to (a), the resistance at junction is

$$R = \frac{R_c}{A} = \frac{5 \times 10^{-5}}{10^{-6}} = 50 \ \Omega.$$

When the current  $I = 1 \text{ mA} = 1 \times 10^{-3} \text{ A}$ , the voltage across the junction is

$$V = IR = 1 \times 10^{-3} \times 50 = 5 \times 10^{-2} \text{ V}.$$

(ii) When the current  $I = 100 \ \mu A = 1 \times 10^{-4} \ A$ , the voltage across the junction is

$$V = IR = 1 \times 10^{-4} \times 50 = 5 \times 10^{-3} \text{ V}.$$

5. (a) We have  $\phi_s = \chi_s + (E_c - E_F)_{FB}$ ,

$$E_c - E_F = -\frac{kT}{e} \ln \left( \frac{n_0}{N_c} \right) = 0.5519 \text{ V},$$

thus  $\phi_s = \chi_s + (E_c - E_F)_{FB} > 4.5518 \text{ V} > \phi_m = 4.2 \text{ V}.$ 

The energy-band diagram for zero bias for the case when no space charge region exists at the junction is



Figure 1: 5(a).

(b) The schottky barrier is

$$\phi_{Bn} = \phi_m - \chi_s = 4.2 - 4.0 = 0.2 \text{ V}.$$
  
 $\phi_n = \phi_{Bn} = 0.2 \text{ V}.$ 

On the other hand,

$$\phi_n = \frac{kT}{e} \ln \left( \frac{N_c}{N_d} \right) = \frac{300k}{e} \ln \left( \frac{2.8 \times 10^{19}}{N_d} \right) = 0.2 \text{ V}.$$

Solving the equation,

$$N_d = 1.223 \times 10^{16} \text{ cm}^{-3}.$$

- (c) From (b) we have the potential barrier height seen by electrons in the metal moving into the semiconductor is  $0.2~\rm V.$ 
  - 6. (a) The thermal equilibrium energy-band diagram is



Figure 2: 6(a).

(b) 
$$\phi_{B0} = \phi_m - \chi_s = 4.3 - 4.0 = 0.3 \text{ eV}.$$

(c)



Figure 3: 6(c).

(d)



Figure 4: 6(d).