Progettare Basi di Dati

Prof. Nicoletta D'Alpaos & Prof. Andrea Borghesan

Entità-Relazione

Elementi di informatica per l'economia

Teoria della normalizzazione

La **teoria della normalizzazione** ha come scopo quello di fornire metodi per progettare basi di dati senza anomalie.

La realtà che si intende analizzare tramite una base di dati può avere più **schemi**, equivalenti fra loro, che la descrivono.

Alcuni di questi schemi possono presentare degli inconvenienti (ridondanze o anomalie di comportamento) che rendono inadeguato l'utilizzo efficiente delle informazioni.

Anomalie di comportamento

- Ridondanza
- Anomalie da modifica
- Anomalie da inserzione
- Anomalie da cancellazione

Anomalie di comportamento

- Con **ridondanza** si intende la non necessaria ripetizione della stessa informazione con il conseguente spreco di spazio;
- Con **anomalie da modifica** si intende la necessità di ripetere, in caso di cambiamento di una informazione, la modifica ovunque tale informazione è, duplicata;
- Con **anomalia da inserzione** si intende la necessità di inserire ulteriori informazioni, non strettamente necessarie per poter inserire un nuovo dato;
- Per **anomalie di cancellazione** si intende l'eliminazione di alcune informazioni in conseguenza della cancellazione di altre.

Esempio:

Codice Cliente	Nome	Via	Codice Articolo	Quantità ordinata
10	Rossi Antonio	Piazza Garibaldi	A25	20
10	Rossi Antonio	Piazza Garibaldi	B10	10
20	Bianchi Maria	Viale Fermi	C12	3

Si osserva che:

- Le informazioni anagrafiche si ripetono tante volte quanti sono gli ordini fatti;
- > Se un cliente cambia indirizzo, bisogna modificare più righe;
- ➤ Non si può caricare un nuovo cliente se questo prima non ha effettuato un ordine;
- ➤ Se un articolo deve essere eliminato (per esempio C12), si possono cancellare anche delle informazioni anagrafiche.

Teoria della normalizzazione

La **teoria della normalizzazione** si occupa dei seguenti problemi su schemi (*soprattutto*) relazionali:

- Definire quando due schemi sono equivalenti
- Definire criteri di bontà per schemi (forme normali) (Una forma normale è una proprietà di uno schema relazionale che ne garantisce la "qualità", cioè <u>l'assenza di determinati difetti</u>)
- Determinare metodi algoritmici per ottenere uno schema "migliore" ed equivalente a partire da uno schema non in forma normale (normalizzazione)

Forme Normali

Relazione in 1NF

Normalizzazione

- L'attività che permette di trasformare schemi non normalizzati in schemi che soddisfano una forma normale è detta **normalizzazione**;
- La normalizzazione va utilizzata come **tecnica di verifica dei risultati della progettazione** di una base di dati;
- Non costituisce quindi una metodologia di progettazione;

Normalizzazione

Per costruire uno schema relazionale:

- 1. Si parte da un buon schema E-R e lo si "traduce";
- 2. Si costruiscono direttamente le relazioni e poi si correggono quelle che presentano "anomalie";
- 3. Si analizza uno schema relazionale già esistente e lo si modifica/completa;

PRIMA FORMA NORMALE

Ogni campo deve contenere un solo valore: (la 1NF è chiamata anche FORMA ATOMICA).

Un campo non atomico può essere strutturato o multivalore:

- > ogni attributo strutturato viene sostituito da tanti attributi quanti sono i valori che appaiono nell'attributo strutturato stesso;
- > ogni attributo multivalore diventa un attributo semplice spezzando la tupla che contiene il valore in tante tuple quanti sono i valori descritti nell'attributo;

(Se una tabella si trova nella prima forma normale, non c'è alcuna possibilità di suddividere ulteriormente i campi della tabella)

1NF

Esempio:

Tabella STUDENTI:

(#MATRICOLA, nomeCognome, indirizzo, voti)

- ➤ "NomeCognome" e "indirizzo" sono campi strutturati e vengono divisi in "nome", "cognome", "via", "cap", "città"
- Voti è un campo multivalore, di conseguenza ogni riga viene divisa in più righe, una per ogni voto riportato

1NF

(continua):

Tabella STUDENTI:

(<u>#MATRICOLA</u>, nome, cognome, via, cap, città, voto)

Attenzione: "#Matricola" non può più essere chiave della relazione perché uno studente deve fare più esami:

(#MATRICOLA, #ESAME, nome, cognome, via, cap, città, voto)

SECONDA FORMA NORMALE

Una tabella è in 2NF se è in 1NF e se tutti i suo attributi sono dipendenti dall'intera chiave primaria.

➤ La tabella viene divisa in più tabelle che soddisfano la condizione.

2NF

Esempio:

Tabella STUDENTI:

(#MATRICOLA, #ESAME, nome, cognome, via, cap, città, voto)

➤ I campi "nome", "cognome", "via", "cap", "città" dipendono solo da una parte della chiave (#MATRICOLA)

Tabella STUDENTI:

(#MATRICOLA, nome, cognome, via, cap, città)

Tabella ESAMI:

(#MATRICOLA, #ESAME, voto)

Qualità delle decomposizioni

Una decomposizione dovrebbe sempre soddisfare due proprietà:

- la decomposizione senza perdita, che garantisce la ricostruzione delle informazioni originarie
- la conservazione delle dipendenze, che garantisce il mantenimento dei vincoli di integrità originari

TERZA FORMA NORMALE

Una tabella è in 3NF se è in 2NF e tutti gli attributi che non sono chiavi sono mutuamente indipendenti (eliminazione delle dipendenze transitive).

La tabella viene divisa in più tabelle che soddisfano la condizione.

3NF

Esempio:

Tabella STUDENTI:

(#MATRICOLA, nome, cognome, via, cap, città, #isee, tassa)

Con #isee si intende il codice dello scaglione di reddito che determina la tassa scolastica.

Tabella STUDENTI:

(#MATRICOLA, nome, cognome, via, cap, città, #isee)

Tabella TASSA:

(#ISEE, tassa)

Codice	Articoli	Colore	Cod.Colore	Prezzo
1	Sedia	Rosso; Verde;Giallo	R; V; G;	100
2	Tavolo	Rosso; Verde;	R; V;	200

Codice Spettacolo	Replica	Titolo	Data	Compagnia	Autore
X	1	Il berretto a sonagli	2 gen 05	Teatro nuovo	Pirandello
X	2	Il berretto a sonagli	3 gen 05	Teatro nuovo	Pirandello
Y	1	Irusteghi	4 gen 05	Veneziana	Goldoni
Y	2	Irusteghi	5 gen 05	Veneziana	Goldoni
Y	3	I rusteghi	7 gen 05	Veneziana	Goldoni
Z	1	Casa di bambole	8 gen 05	AllStars	Ibsen

Numero Ordine	Progressivo Riga	Codice Cliente	Codice Articolo	Quantità ordinata	Prezzo unitario
1	1	A10	12-500L	20	50
1	2	A10	24-400P	10	43
2	1	B20	45-200X	10	44
2	2	B20	12-500L	10	50
3	1	A10	12-500L	15	50

(NOTA: un cliente può fare più ordini, il prezzo di un certo articolo non cambia)

Titolo	Autore	Biografia	ISBN	Subject	Pag	Editore	Sede (editore)
Introdu zione alle tecnolo gie WEB	Vito Roberto Marco Frailis	Roberto è professore ordinario a Udine, Frailis è dottorando in informatica	88386 6181	Informatica, WEB design, Ateneo	426	McGra w-Hill	Milano

Matricola	Nominati vo	Indirizzo	Progetto	Descrizione	Ore lavorate
10	Mario Rossi	Via Leopardi, 15 Milano	P-10; P-21	Sviluppo sito web; Sviluppo grafica	80; 24
20	Maria Pia Bianchi	Piaz.le Mazzini 23, Milano	P-21; P-44; A-57	Sviluppo grafica; Acquisizione immagini; Documentazione	130; 10; 20
30	Gianni Verdi	Corso Pascoli,100 Padova	P-44	Acquisizione immagini;	30
40	Carlo Manzi	Corso Petrarca, 44 Padova	P-30	Sviluppo XML;	81

Titolo	Autore	ISBN	ID_copia	Prestito
Zoologia	Mitchell,	88-08-12176	1, 2, 3, 4, 5	V, F, F, F; F
	Mutchmor,			
	Dolphin			
Il foglio	Atzeni, De	88-386-6255	1, 2, 3, 4, 5, 6,	V, V, V, V, V,
elettronico	Checchi,		7, 8, 9, 10	V, F , F, V, V
per	Sindoni,			
economia	Tirelli			
Java 2. I	Horstmann,	88-386-4367	1, 2	F, F
fondamenti	Cornell			

(NOTA: "prestito" contiene V (=vero) se il libro è prestato, F(= falso) se il libro è disponibile).