Seminar on Moduli Theory Lecture 17

Neeraj Deshmukh

January 8, 2021

Last Time

Castelnuovo-Mumford regularity

Castelnuovo Mumford regularity

Definition

Let $\mathcal F$ be a coherent sheaf on $\mathbb P^n_k$. Let m be an integer. $\mathcal F$ is said to be m-regular if we have

$$H^i(\mathbb{P}^n_k, \mathcal{F}(m-i)) = 0$$
 for each $i \geq 1$.

Theorem (Mumford)

Given any non-negative integers p and n, there exists a polynomial $F_{p,n}$ in n+1-variables with the following property:

If $\mathcal{F}\subset \oplus^p\mathcal{O}_{\mathbb{P}^n_k}$ is any coherent subsheaf with Hilbert polynomial

$$\chi(\mathcal{F},r) = \sum_{i=0}^{n} a_i \begin{pmatrix} r \\ i \end{pmatrix},$$

then \mathcal{F} is $F_{p,n}(a_0,\ldots,a_n)$ -regular.

Theorem (Grothendieck)

Let $\pi:X\to S$ be a projective morphism with S Noetherian. Then for any coherent sheaf E on X and any polynomial $\phi\in\mathbb{Q}[t]$, the functor $\mathfrak{Quot}_{E/X/S}^{\phi(t)}$ is representable by a projective S-scheme.

Three key ingredients:

- (1)
- (2)
- (3)

Flattening stratification

Theorem

Let $\mathcal F$ be a coherent sheaf on $\mathbb P^n_S$ with S a Noetherian scheme. Then the set I of Hilbert polynomials of $\mathcal F$ on the fibers of $\mathbb P^n_S \to S$ is a finite set. Moreover, for each $f \in I$, there exists a locally closed subscheme $S_f \subset S$ such that the following conditions hold:

- **1** $|S| = \coprod_f |S_f|$, set-theoretically;
- ② Fix an $f \in \mathbb{Q}[\lambda]$. For any morphism $\phi : T \to S$ the pullback $\phi^* \mathcal{F}$ is flat on \mathbb{P}^n_T with Hilbert polynomial f if and only if $\phi : T \to S$ factors through S_f .

Special case when n = 0

Behaviour of the fibres \mathcal{F}_s via generic flatness

Behaviour of the fibres \mathcal{F}_s via generic flatness

Applying special case to get stratification for pushforward sheaves

Applying special case to get stratification for pushforward sheaves

The correct subscheme structure on W_{e_0,\dots,e_n}