Prof: Med El Hacen Concours d'entrée aux lycées d'excellences (PC (2010 – 2024)) Tel: 41349593

Concours d'entrée aux lycées d'excellences 2016

Exercice 1

Votre mètre dit qu'elle n'est pas à l'aise car elle sent son « acidité montée » pour la soulager votre sœur lui prépare une boisson. Avant de lui servir cette boisson tu lui propose d'estimer son pH à l'aide d'un papier pH. Le papier pH devient vert.

1) Cette boisson est — elle : basique, acide ou neutre ?

Justifier votre choix en se servant le schéma.

- 2) On ajoute de l'eau à la boisson dans quel sens évolue le pH si on continue à ajouter de l'eau ?
- 3) Compléter la phrase par l'un des mots suivants : plus, moins, autant.
- \ll Cette boison contient d'ions hydroniums que d'ions hydroxyde \gg Exercice 2

En présence de chaleur l'aluminium Al réagit avec le dioxygène O_2 pour donner l'alumine Al_2O_3 .

- 1) Ecrire l'équation équilibrée de la réaction chimique.
- 2) Indiquer les réactifs et les produits.
- 3) On réalise l'expérience en mélangeant 6g d'aluminium avec 4g de dioxygène. A la fin de la réaction Il reste 1,5g d'aluminium. Déterminer la masse d'aluminium qui a réagi et la masse d'alumine formée. Exercice 3

Un ressort R à spires non jointives de masse négligeable et de raideur K est enfilé sur une tige verticale.

L'extrémité A du ressort est fixe et l'extrémité B est attachée à un plateau de masse 100g.

Lorsque l'ensemble du dispositif est en équilibre, le ressort se comprime de $\Delta l=4cm$.

- 1) Représenter les forces qui s'exercent sur le plateau à l'équilibre.
- 2) Ecrire la condition d'équilibre du plateau.
- 3) Calculer la tension T du ressort. En déduire sa raideur K. On donne g = 10N/kg.
- 4) Quelle masse m' doit-on placer sur le plateau pour que la compression du ressort soit $\Delta l' = 6$ cm.

On donne: M(Al) = 27; M(0) = 16 et M(H) = 1.

Exercice 4

Afin de déterminer la résistance R d'un conducteur ohmique, on propose le dispositif ci-contre : Apres variation de l'intensité de courant I on trouve la caractéristique l'intensité — tension de ce conducteur.

1) Rappeler l'expression traduisant la loi d'Ohm. Préciser les unités des

grandeurs utilisées dans cette loi.

- 2) Parmi les caractéristiques (1), (2) ou (3) préciser la courbe correspondante à la caractéristique du circuit précédent sachant que $R = 100\Omega$.
- 3) On réalise la même expérience mais avec un conducteur de résistance $R' = 50\Omega$. Compléter le tableau de mesure en admettant que les mesures sont obtenues avec une très grande précision.

U(V)	0	2	4	5	8	10
I(A)	0	0,04			0,16	

4) On dispose d'une résistance R_1 qui présente les anneaux colorés suivants :1^{er} anneau (rouge :2) ; $2^{\text{\'e}me}$ anneau (jaune :4) ; $3^{\text{\'e}me}$ anneau (rouge :2) et $4^{\text{\'e}me}$ anneau (marron : tolérance 1%). Déterminer la valeur nominale de la résistance R_1 ainsi que les limites de sa valeur effective.

Prof: Mohamed El Hacen Sidi Cheikh