

Veechi gen di fumzione campiono l'ompieno piceo piceo drando l'Stema (mon meede a moi) I punti visti sull'oscilloccopio mon hammo inventigas melle frequenzo. Tultoma H è un napporto, quindi Ett = Evin + Evout. 1 come traces H? Devo fore tutt i pt? 20 log H va fallo DOPO over sommeto l'incertina. le force di imente 402 sono orinnetiale in reala logarithmica 20 log (H+ SH) = forcie inc. sup 20 log (H) = valone otters 20 log (H-SH) = Porosis inc. inf DIAGRAHMA DI BOSE CON INT. CHIUSO 11 CAMPIONI PRESI II (100 Hz 300 Hz 500 Hz, 1KHz, 3KHz, 5KHz, 10KHz, 30,50, 400, 300, 600, 1MH2) @ 100Hz = fim (880 ± 60) mV } Vpp im = Siomo Vpp, out = eretini Vpp, in = (860 ± 80) mV } @ 300 Hz = 5in questa ē pempu upuals! Vpp, im = (880 ± 80) mV } @ 500 Hz = fim Vpp, out = (800 + 80) mV 0-9 (880 ± 80)mV } @ 1kz = fin Vpp, in = (800 ± 80) anV Vpp, out = Millio @ 3KHZ 5KHZ o bosino Vpp, in = (880±80) mV) @ 10KHz Vpp, ow = (400±80) mV @ 30 KHz (240+80) MV @ 50KHZ

	MDIES	PO CC:	0.70	C101	21110	00.1	1.17	000	nc ou	4.30
SA	MPLES	PRESI	PEK			PA-BASPO		KKU I 60	RG CH	- (0 + o) ku
V	. (000.	(a) V		3	LH79	A-BANO		7	T = I	= (8±2) KHZ
Abb	'iw = (880 +	· (CO) (MV								
F	im	\ \ \ \	pp, oul- (£ 80	(Vm					PomV penehi
	÷ 5K		कि							on riderate inventina
1	Lok		680							su misuno punto
30			400							= nifollytiand,
	ОК								. (5 Vpp = 542+641)
100 K		1	130 ± 80	mv ~	de	qui in p	oi, A	NG HODO	€ ↓ ($\delta y = \frac{1}{5} k_v$
300 k			44 ± 4 28 ± 4							
20 K			12 ± 4							
							_	1		0
Ψim =	Oms						<u>(</u>			ne od uno skommento di
5	im		7 ф	δΔ0	b				ad ionti	
	70		- 1		_			A 9	uamlo (numoulo in ms?
100H	= ÷ 500 Hz	1	> μc	40						
1	KHz	1	D M	25						
3	kH2		g μς	8						
5	KHZ		D JU	2						
	KHz		,2 µs	0.4						
	KHZ		5.8 ps	0.4						
	KHs		4 ps	0.2						
	KHE	2	2.2 µs 880 ms	0.2		4 F	1VG	de qui	in poil	
	KHE		510 ms	40						
	MHz		250ms	40						

