МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и системы»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студента гр. 1383	Панов М.Ю.
Преподаватель	Ефремов М.А

Санкт-Петербург

Цель работы.

Изучение ветвлений на ассемблере и методов обработки целых чисел.

Задание.

(f3, f5, f3)

Разработать Ассемблера программу, на языке которая ПО заданным целочисленным значениям параметров a, b, i, k вычисляет: a) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл. 3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения а, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров а и в

Выполнение работы.

- 1) формула 7 4і не нуждается в оптимизации
- 2) формула 8 6і можно представить в виде 8 4і 2і
- 3) формула 20 4і не нуждается в оптимизации
- 4) формула -(6і -6) можно представить в виде 6- 4і -2і

Так же для уменьшения количества кода заранее считается 2і.

Тесты:

Номер	Входные данные	Результат
1	a = 2 b = 1 k = 0 i = 2	i1 = -1 i2 = 12 res = 11

2	a = 2 b = 1 k = 1 i = 2	i1 = -1 i2 = 12 res = -1
3	a = 1 b = 2 k = 1 i = 2	i1 = -4 i2 = -6 res = -6
4	a = 1 $b = 1$ $k = 1$ $i = 2$	i1 = -4 i2 = -6 res = -6
5	a = -1 b = 1 k = 0 i = 1	i1 = 7 i2 = 0 res = 7
6	a = 1 b = 1 k = 1 i = -1	i1 = 14 i2 = 12 res = 12

Выводы.

В ходе работы были изучены ветвления и обработка с целых чисел на языке ассемблер.

Исходный код

dosseg

.MODEL small

```
; /7-4*i, при а>b
f3 = <
; \ 8 -6*i, при а<=b
; / 20 - 4*i , при a>b
f5 = <
  \ -(6*i - 6), при a<=b
; /|i1 + i2|, при k=0
;f3 = <
; \ min(i1,i2), при k/=0
a EQU 1
b EQU 1
k EQU 1
i EQU 2
.STACK
.DATA
f1 dw 0
f2 dw 0
```

.CODE

res dw 0

```
mov ax, i ; ax = i
shl ax, 1 ; ax = 2*i
```

mov cx, a cmp cx, b jle less

; a<=b

;ах отвечает за результат f3 ;dx отвечает за результат f5

; a > bneg ax ; -2i shl ax, 1 ; ax = -4imov dx, ax ; dx = -4iadd ax, 7 ; ax = -4i + 7add dx, 20 ; dx = -4i + 20jmp finish1

less: add ax, i ; ax = 3ishl ax, 1 ; ax = 6ineg ax ; ax = -6imov dx, ax ; dx = -6i

add ax, 8; ax = -6i + 8

add dx, 6; dx = -6i + 6

finish1:

mov [f1], ax ;i1

mov [f2], dx ;i2

mov cx, k

cmp cx, 0

je zer0

;k != 0

cmp ax, dx

jle finish2 ; if i1 < i2

mov dx, ax ; i1 = i2

jmp finish2

zer0:

add ax, dx ; i1 + i2

cmp ax, 0

jge finish2 ; if $i1 + i2 \le 0$

neg ax

jmp finish2

finish2:

mov [res], ax

END

ЛИСТИНГ:

Microsoft (R) Macro Assembler Version 5.10

11/6/22 05:12:43

Page 1-1

dosseg

lb3.ASM(1): warning A4001: Extra characters on line

.MODEL small

;
$$/7 - 4*i$$
, $\mathfrak{D}_{c}\tilde{N}\in\mathfrak{D}_{c}$, $a>b$
; $f3 = <$
; $/8 - 6*i$, $\mathfrak{D}_{c}\tilde{N}\in\mathfrak{D}_{c}$, $a<=b$
; $/20 - 4*i$, $\mathfrak{D}_{c}\tilde{N}\in\mathfrak{D}_{c}$, $a>b$
; $f5 = <$
; $/-(6*i - 6)$, $\mathfrak{D}_{c}\tilde{N}\in\mathfrak{D}_{c}$, $a<=b$
; $/|i1 + i2|$, $\mathfrak{D}_{c}\tilde{N}\in\mathfrak{D}_{c}$, $k=0$
; $f3 = <$
; $/\min(i1,i2)$, $\mathfrak{D}_{c}\tilde{N}\in\mathfrak{D}_{c}$, $k/=0$

= 0001 a EQU 1

= 0001 b EQU 1

= 0001 k EQU 1

= 0001 i EQU 1

.STACK

.DATA

0000 0000 f1 dw 0 0002 0000 f2 dw 0 0004 0000 res dw 0

.CODE

0000 B8 0001 mov ax, i ; ax = i0003 D1 E0 shl ax, 1 ; ax = 2*i

 0005
 B9 0001
 mov cx, a

 0008
 83 F9 01
 cmp cx, b

 000B
 7E 0F
 jle less

;ax $\theta^3/4\tilde{N}$, $\theta^2\theta\mu\tilde{N}$; $\theta^\circ\theta\mu\tilde{N}$, $\theta\cdot\theta^\circ$

 $\tilde{\mathbf{N}} \in \mathcal{D} \mu \mathcal{D} \cdot \tilde{\mathbf{N}} f \mathcal{D} \gg \tilde{\mathbf{N}} \times \tilde{\mathbf{N}}, \mathcal{D} \circ \tilde{\mathbf{N}}$

, f3

;dx $\theta^3\!\!/\tilde{N}$, $\theta^2\theta\mu\tilde{N}$; $\theta^\circ\theta\mu\tilde{N}$, $\theta\cdot\theta^\circ$

 $\tilde{\mathbf{N}} \in \mathcal{D} \mu \cdot \tilde{\mathbf{N}} f \cdot \tilde{\mathbf{D}} \times \tilde{\mathbf{N}} \times \tilde{\mathbf{N}} = \tilde{\mathbf{N}}, \tilde{\mathbf{D}} \cdot \tilde{\mathbf{N}}$

, f5

; a>b

000D F7 D8 neg ax ; -2i 000F D1 E0 shl ax, 1 ; ax = -4i

0011 8B D0	mov dx, ax	; dx = -4i
0013 05 0007	add ax, 7	; $ax = -4i + 7$
0016 83 C2 14	add dx, 20	; dx = -4i +20
0019 EB 10 90	jmp finish1	

Microsoft (R) Macro Assembler Version 5.10 11/6/22 05:12:43

Page 1-2

; a<=b

001C	less:	
001C 05 0001	add ax, i	; ax = 3i
001F D1 E0	shl ax, 1	; ax = 6i
0021 F7 D8	neg ax	; ax = -6i
0023 8B D0	mov dx, ax	; dx = -6i
0025 05 0008	add ax, 8	; ax = -6i + 8
0028 83 C2 06	add dx, 6	dx = -6i + 6

002B	finish1:	
	; mov [f1], ax	;i1
	;mov [f2], dx	;i2

002B B9 0001 mov cx, k cmp cx, 0 002E 83 F9 00 0031 74 09 je zer0

;k != 0

0035 7E 11 jle finish2 ; if
$$i1 < i2$$

0037 8B D0
$$mov dx, ax$$
 ; $i1 = i2$

0039 EB 0D 90 jmp finish2

003C zer0:

 $003C \ 03 \ C2$ add ax, dx ; i1 + i2

003E 3D 0000 cmp ax, 0

0041 7D 05 jge finish2 ; if i1 + i2

 ≤ 0

0043 F7 D8 neg ax

0045 EB 01 90 jmp finish2

0048 finish2:

0048 A3 0004 R mov [res], ax

END

Microsoft (R) Macro Assembler Version 5.10 11/6/22 05:12:43

Symbols-1

Segments and Groups:

Name Length Align Combine Class

DGROUP..... GROUP

_DATA 0006 WORD PUBLIC 'DATA'

STACK
Symbols:
N a m e Type Value Attr
A NUMBER 0001
B NUMBER 0001
F1 L WORD 0000 _DATA
F2 L WORD 0002 _DATA
FINISH1 L NEAR 002B _TEXT
FINISH2 L NEAR 0048 _TEXT
I NUMBER 0001
K NUMBER 0001
LESS L NEAR 001C _TEXT
RES L WORD 0004 _DATA
ZERO L NEAR 003C _TEXT
@CODE TEXT _TEXT
@CODESIZE TEXT 0
@CPU TEXT 0101h
@DATASIZE TEXT 0

- @FILENAME TEXT lb3@VERSION TEXT 510
 - 91 Source Lines
 - 91 Total Lines
 - 28 Symbols

48020 + 459240 Bytes symbol space free

- **1 Warning Errors**
- **0** Severe Errors