	Panel	Data		
		y. –	· Caoss - Se	ctions
		U		
		y ₊ -	- 75	
			0-	
		Yit.	- Panel [)ata
•				
M;=0	oded OLS	y, t =	d + BX;+	+ Eit
0~(µ;,x) 1	ixed Effect	yit =	X + B X;+	+ Mi + Eit
	La LSDV.	On h	served beta	noconcila
	L> LSDV, FD, Within-Est.		soved bete	
	7) 14 1.14		7	
ρ√(μ;,X)=0	Randon Effect	Jit =	x + BX;t	+ Mi + Eit
	L, GLS		015	√,'ŧ
		<u> </u>	$M_i(X) = E$	
	FE	KE	OLS	∱∥
Mi=0	not eff n	ot eff.	V	Cors.,
	'			unbiased
cov (Mi, X)=0 not eff.	(V)	not eff-	cons.,
بار) مر (اا ،	χ) € 0 (V)	biake	(wire weg
for (ju;	/' V	k incon	l sistant	

FE

(1) LSDV

$$y_{it} = \int_{0}^{\infty} X_{it} + \int_{0}^{\infty} D_{i}^{(N)} + \sum_{i=1}^{\infty} \int_{0}^{\infty} P_{i} dx + \sum_{i=1}^{\infty} P_{i} dx + \sum_{i=1}^{\infty} \int_{0}^{\infty} P_{i} dx + \sum_{i=1}^{\infty} P_{i} dx + \sum_{i=1}$$

Breusch - Pagan Test:

$$V: t = \mu_i + \epsilon_i t$$
 $Var(Vit) = 6^2 + 6^2$
 $Var(Vit) = 0$

$$BP = \frac{NT}{2 \cdot (T-1)} \left(\frac{\sum \hat{\epsilon}_{i+1}}{\sum \hat{\epsilon}_{i+1}} - 1 \right) \frac{\lambda_0}{\sum \sum \hat{\epsilon}_{i+1}}$$

RE VS FE

Hausman Test

Ho: RE-consistent, Lov(µ:,X)=0

Ha: RE-inconsistent, cov(ji, X) to=> FE

 $(\hat{\beta}_{RE} - \hat{\beta}_{FE})$ $(\hat{\beta}_{RE}) - \hat{\beta}_{FE})$ $(\hat{\beta}_{FE})$ $(\hat{\beta}_{FE} - \hat{\beta}_{FE}) \sim \chi^{2}$

f=1,2 Yiz = L+BXi2+ Eiz+ h;

Yin = 2 + px: 1 + Ein + pi

0 y; = B d X; + d €;

t=2 => FD identical to LSDV

$$cov(V_{it}, V_{jp}) = \begin{cases} i = j, t = p \\ i = j, t \neq p \end{cases}$$

$$cov(V_{it}, V_{jp}) = \begin{cases} i = j, t \neq p \\ i = j, t \neq p \end{cases}$$

$$V_{it} = \begin{cases} \mu_{i} + \varepsilon_{it}, \mu_{i} + \varepsilon_{ip} \\ i = \delta_{ip} \end{cases}$$

$$= \delta_{ip}^{2}$$

$$\frac{\delta_{\nu}^{2} + \delta_{\nu}^{2}}{\delta_{\nu}^{2} + \delta_{\mu}^{2}} = 0$$

$$\frac{\delta_{\nu}^{2} + \delta_{\nu}^{2} + \delta_{\mu}^{2}}{\delta_{\nu}^{2} + \delta_{\mu}^{2}} = 0$$

$$\frac{\delta_{\nu}^{2} + \delta_{\nu}^{2} + \delta_{\mu}^{2}}{\delta_{\nu}^{2} + \delta_{\mu}^{2}} = 0$$

$$\frac{\delta_{\nu}^{2} + \delta_{\nu}^{2} + \delta_{\mu}^{2}}{\delta_{\nu}^{2} + \delta_{\mu}^{2}} = 0$$

$$\frac{\delta_{\nu}^{2} + \delta_{\nu}^{2} + \delta_{\mu}^{2}}{\delta_{\nu}^{2} + \delta_{\mu}^{2}} = 0$$

$$\frac{\delta_{\nu}^{2} + \delta_{\nu}^{2} + \delta_{\mu}^{2}}{\delta_{\nu}^{2} + \delta_{\mu}^{2}} = 0$$

;

$$(y_{i+} - \overline{y}) = y_{i+} (x_{i+} - \overline{x}) + (\varepsilon_{i+} - \overline{\varepsilon})$$

$$y_{i+} = y_{i+} (x_{i+} - \overline{x}) + (\varepsilon_{i+} - \overline{\varepsilon})$$

