Bivariate Regression Analysis

Yalin Yang

2020-04-28

Contents

Scatter Plot & Effect Plots	2
Initialize Data	2
Check normality	3
Scatter Plot	3
Regression modeling on untransformed data	Ę
Plain Model	Ę
Quadratic term (Could use turkey test)	6
Effect Plots	6
Regression modeling on log-form data	7
Base model	7
Quadratic effects	8
Explore non-linear effect	ę
Transfer dependent variable to the original scale	Ć
Conditional Effect Plot	10
Initialize Data	10
Regression Modeling	11
Conditional Effect Plot	13
Partial Effects Demo	15
Initialize Data	15
Demonstration: Partial Effects	16
Controling for water80	17
Controling for income	19

Beta Coefficients	21
Linear Modeling	21
coefficent plot	22
Partial F-test	23
Stepwise Model	24
Conditional Effects	27
All effects at mean level of remaing variavles	28
get value ranges	28
Income effect for a low consumer profile	29
Income effect for an average consumer profile	30
Income effect for a high consumer profile	31
Factor Variable Analysis	32
Initialize Data	32
Explore Coding Scheme of Factors	32
Prepare data for analysis	33
Linear Model for factor variables	35
Standard Regression	36
Regression with intercept dummy	37
Regression with slope dummy	38
Regression with intercept and slope dummy	39

Scatter Plot & Effect Plots

Initialize Data

Relevant variables:

- price: median home price in community
- crime: crime rate
- nox: nitrogen oxide in the air
- dist: weighted distance to five employment centers
- $\bullet\,$ rooms: average number of in houses in the community
- stratio: Student-teacher ratio of schools in the community
- proptax: property tax in community per \$1000 home value

```
library(car); library(effects)
hprice2 <- foreign::read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge/hprice2.dta")
summary(hprice2)</pre>
```

```
##
        price
                        crime
                                            nox
                                                          rooms
          : 5000
                           : 0.0060
##
   Min.
                    Min.
                                              :3.85
                                                      Min.
                                                             :3.560
                                      \mathtt{Min}.
   1st Qu.:16850
                                      1st Qu.:4.49
                    1st Qu.: 0.0820
                                                      1st Qu.:5.883
                    Median : 0.2565
  Median :21200
                                      Median:5.38
                                                      Median :6.210
##
   Mean
           :22512
                    Mean
                           : 3.6115
                                      Mean
                                              :5.55
                                                      Mean
                                                             :6.284
   3rd Qu.:24999
                    3rd Qu.: 3.6770
                                                      3rd Qu.:6.620
##
                                       3rd Qu.:6.24
##
   Max.
           :50001
                    Max.
                           :88.9760
                                      Max.
                                              :8.71
                                                             :8.780
##
         dist
                         radial
                                          proptax
                                                          stratio
##
   Min.
          : 1.130
                     Min.
                            : 1.000
                                      Min.
                                              :18.70
                                                       Min.
                                                              :12.60
##
   1st Qu.: 2.100
                     1st Qu.: 4.000
                                      1st Qu.:27.90
                                                       1st Qu.:17.40
  Median : 3.210
                     Median : 5.000
                                      Median :33.00
                                                       Median :19.10
  Mean
          : 3.796
                           : 9.549
                                      Mean
                                             :40.82
                                                             :18.46
##
                     Mean
                                                       Mean
   3rd Qu.: 5.188
                     3rd Qu.:24.000
##
                                       3rd Qu.:66.60
                                                       3rd Qu.:20.20
##
   Max.
          :12.130
                     Max.
                            :24.000
                                      Max.
                                             :71.10
                                                       Max.
                                                              :22.00
##
       lowstat
                         lprice
                                            lnox
                                                          lproptax
##
   Min.
          : 1.730
                            : 8.517
                                      Min.
                                             :1.348
                                                              :5.231
                     Min.
                                                       Min.
##
   1st Qu.: 6.923
                     1st Qu.: 9.732
                                      1st Qu.:1.502
                                                       1st Qu.:5.631
## Median :11.360
                     Median : 9.962
                                      Median :1.683
                                                       Median :5.799
## Mean
          :12.701
                     Mean
                           : 9.941
                                      Mean :1.693
                                                       Mean
                                                             :5.931
## 3rd Qu.:17.058
                     3rd Qu.:10.127
                                       3rd Qu.:1.831
                                                       3rd Qu.:6.501
## Max.
           :39.070
                     Max.
                            :10.820
                                      Max.
                                             :2.164
                                                       Max.
                                                              :6.567
```

Check normality

```
summary(powerTransform(cbind(price,crime,nox,dist,rooms,stratio)~1, data=hprice2))
```

```
## bcPower Transformations to Multinormality
           Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
                            0.50
## price
              0.3971
                                       0.2595
                                                     0.5348
## crime
             -0.1025
                           -0.10
                                       -0.1378
                                                    -0.0672
## nox
                           -1.00
                                                    -0.9280
             -1.2281
                                       -1.5282
## dist
             -0.0798
                            0.00
                                       -0.2024
                                                     0.0427
## rooms
              1.1678
                            1.00
                                       0.7340
                                                     1.6017
## stratio
              4.5471
                            4.55
                                       3.7763
                                                     5.3179
## Likelihood ratio test that transformation parameters are equal to 0
   (all log transformations)
##
                                        LRT df
                                                      pval
## LR test, lambda = (0 0 0 0 0 0) 298.4363 6 < 2.22e-16
##
## Likelihood ratio test that no transformations are needed
                                         LRT df
## LR test, lambda = (1 1 1 1 1 1) 3375.716 6 < 2.22e-16
```

Scatter Plot

Applied log-transformation on highly positive skewed variables

Regression modeling on untransformed data

Plain Model

```
mod0 <- lm(price~nox+dist+rooms+stratio, data=hprice2)</pre>
summary(mod0)
##
## Call:
## lm(formula = price ~ nox + dist + rooms + stratio, data = hprice2)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                Max
## -14310 -3124 -546
                        2181 38580
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 23716.2
                        5120.6
                                  4.632 4.63e-06 ***
## nox
               -3044.9
                           353.7 -8.609 < 2e-16 ***
               -965.5
                           191.5 -5.042 6.45e-07 ***
## dist
## rooms
               6808.8
                           401.4 16.964 < 2e-16 ***
## stratio
               -1269.2
                           127.4 -9.965 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 5701 on 501 degrees of freedom
## Multiple R-squared: 0.6198, Adjusted R-squared: 0.6168
## F-statistic: 204.2 on 4 and 501 DF, p-value: < 2.2e-16</pre>
```

Quadratic term (Could use turkey test)

```
mod0 <- lm(price~nox+dist+rooms+I(rooms^2)+stratio, data=hprice2)
summary(mod0)</pre>
```

```
##
## Call:
## lm(formula = price ~ nox + dist + rooms + I(rooms^2) + stratio,
      data = hprice2)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                Max
## -24609 -2831
                -225
                         2167 34950
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 120386.8 10964.2 10.980 < 2e-16 ***
## nox
                          324.5 -9.511 < 2e-16 ***
              -3086.5
## dist
               -723.5
                           177.4 -4.078 5.29e-05 ***
                          3279.8 -7.620 1.28e-13 ***
## rooms
              -24993.1
              2477.3
                                  9.758 < 2e-16 ***
## I(rooms^2)
                           253.9
## stratio
             -1082.9
                           118.4 -9.146 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5230 on 500 degrees of freedom
## Multiple R-squared: 0.6806, Adjusted R-squared: 0.6774
## F-statistic: 213.1 on 5 and 500 DF, p-value: < 2.2e-16
```

Effect Plots

```
mod0.eff <- allEffects(mod0, xlevels=list(rooms=3:9))
plot(mod0.eff, "rooms", main="Non-linear effect of # of rooms")</pre>
```

Non-linear effect of # of rooms

Regression modeling on log-form data

Base model

```
mod1 <- lm(log(price)~log(crime)+log(nox)+log(dist)+rooms+stratio, data=hprice2)
summary(mod1)</pre>
```

```
##
## Call:
## lm(formula = log(price) ~ log(crime) + log(nox) + log(dist) +
##
       rooms + stratio, data = hprice2)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
   -0.93773 -0.12747
                      0.00152 0.11892
                                        1.34566
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.352387
                           0.343160 30.168 < 2e-16 ***
## log(crime) -0.048871
                           0.009734
                                     -5.021 7.18e-07 ***
## log(nox)
               -0.629195
                           0.131050
                                     -4.801 2.09e-06 ***
## log(dist)
                                    -3.905 0.000107 ***
               -0.166265
                           0.042576
## rooms
                0.253968
                           0.018099 14.032 < 2e-16 ***
                           0.006098 -6.952 1.13e-11 ***
## stratio
               -0.042393
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2588 on 500 degrees of freedom
## Multiple R-squared: 0.604, Adjusted R-squared: 0.6
## F-statistic: 152.5 on 5 and 500 DF, p-value: < 2.2e-16</pre>
```

Quadratic effects

```
mod2 <- lm(log(price)~log(crime)+log(nox)+log(dist)+rooms+I(rooms^2)+stratio, data=hprice2)
summary(mod2)
##
## Call:
## lm(formula = log(price) ~ log(crime) + log(nox) + log(dist) +
     rooms + I(rooms^2) + stratio, data = hprice2)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -0.9092 -0.1188 -0.0013 0.1227 1.2647
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.907027  0.554213  23.289  < 2e-16 ***
## log(crime) -0.056155 0.009519 -5.899 6.75e-09 ***
## log(nox)
            ## log(dist)
## rooms
            -0.671539
                       0.161558 -4.157 3.80e-05 ***
## I(rooms^2) 0.072055
                               5.763 1.45e-08 ***
                       0.012504
            ## stratio
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2509 on 499 degrees of freedom
## Multiple R-squared: 0.6287, Adjusted R-squared: 0.6242
## F-statistic: 140.8 on 6 and 499 DF, p-value: < 2.2e-16
```

anova test

```
anova(mod1,mod2)
```

```
## Analysis of Variance Table
##
## Model 1: log(price) ~ log(crime) + log(nox) + log(dist) + rooms + stratio
## Model 2: log(price) ~ log(crime) + log(nox) + log(dist) + rooms + I(rooms^2) +
## stratio
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 500 33.495
## 2 499 31.405 1 2.09 33.209 1.451e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Explore non-linear effect

```
Turning point: -\frac{b}{2a} => 0.672/(2*0.072) = 4.667
```

```
mod2a.eff <- allEffects(mod2, xlevels=list(rooms=3:9))
plot(mod2a.eff, "rooms", ylab="log(price)", main="Non-linear effect of # of rooms")</pre>
```

Non-linear effect of # of rooms

Transfer dependent variable to the original scale

Non-linear effect of # of rooms

Conditional Effect Plot

Initialize Data

Key variables: * stndfnl: Standardized outcome on final exam * atndrte: Percentage of class attendence * priGPA: Prior college grade point average * ACT: American College Testing score

```
library(car); library(effects)
attend <- foreign::read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge/attend.dta")
summary(attend)</pre>
```

```
priGPA
                                                             ACT
##
        attend
                        termgpa
           : 2.00
                            :0.000
                                              :0.857
                                                               :13.00
##
    Min.
                     Min.
                                      Min.
                                                       Min.
    1st Qu.:24.00
                     1st Qu.:2.138
                                      1st Qu.:2.190
                                                       1st Qu.:20.00
##
##
    Median :28.00
                     Median :2.670
                                      Median :2.560
                                                       Median :22.00
##
    Mean
           :26.15
                     Mean
                             :2.601
                                      Mean
                                              :2.587
                                                       Mean
                                                               :22.51
##
    3rd Qu.:30.00
                     3rd Qu.:3.120
                                      3rd Qu.:2.942
                                                       3rd Qu.:25.00
           :32.00
                                                               :32.00
##
    Max.
                     Max.
                             :4.000
                                      Max.
                                              :3.930
                                                       Max.
##
##
        final
                        atndrte
                                           hwrte
                                                              frosh
##
    Min.
           :10.00
                            : 6.25
                                       Min.
                                               : 12.50
                                                         Min.
                                                                 :0.0000
                     Min.
##
    1st Qu.:22.00
                     1st Qu.: 75.00
                                       1st Qu.: 87.50
                                                         1st Qu.:0.0000
                     Median: 87.50
                                       Median :100.00
##
    Median :26.00
                                                         Median :0.0000
    Mean
           :25.89
                     Mean
                            : 81.71
                                       Mean
                                              : 87.91
                                                         Mean
                                                                 :0.2324
```

```
3rd Qu.:29.00 3rd Qu.: 93.75
                                  3rd Qu.:100.00 3rd Qu.:0.0000
          :39.00 Max.
                        :100.00
                                        :100.00 Max.
                                                      :1.0000
##
   Max.
                                 Max.
                                  NA's
                                        :6
##
##
                                     stndfnl
        soph
                      skipped
         :0.0000
                                         :-3.30882
##
   Min.
                   Min. : 0.000
                                 Min.
##
   1st Qu.:0.0000
                   1st Qu.: 2.000
                                 1st Qu.:-0.78782
##
   Median :1.0000
                   Median: 4.000 Median: 0.05252
         :0.5765
                   Mean : 5.853 Mean : 0.02966
   Mean
##
##
   3rd Qu.:1.0000
                   3rd Qu.: 8.000 3rd Qu.: 0.68277
##
   Max. :1.0000
                   Max. :30.000 Max. : 2.78361
##
```

Regression Modeling

Scatter Plot

Base model

```
mod1 <- lm(stndfnl~atndrte+priGPA+ACT, data=attend)
summary(mod1)</pre>
```

##

```
## Call:
## lm(formula = stndfnl ~ atndrte + priGPA + ACT, data = attend)
## Residuals:
               1Q Median
                               3Q
                                      Max
## -3.2339 -0.5528 -0.0329 0.5884 2.3303
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.343655 0.299098 -11.179 < 2e-16 ***
## atndrte
              0.005334
                          0.002369
                                    2.252
                                             0.0247 *
                                    5.140 3.60e-07 ***
## priGPA
               0.402373
                          0.078280
## ACT
               0.084257
                          0.011182 7.535 1.57e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8862 on 676 degrees of freedom
## Multiple R-squared: 0.2013, Adjusted R-squared: 0.1978
## F-statistic: 56.79 on 3 and 676 DF, p-value: < 2.2e-16
**With interaction. Notice the "*" in the formula**
mod2 <- lm(stndfnl~atndrte*priGPA+ACT, data=attend)</pre>
summary(mod2)
##
## Call:
## lm(formula = stndfnl ~ atndrte * priGPA + ACT, data = attend)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -3.2071 -0.5380 -0.0297 0.5852 2.3765
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             0.793175 -1.432 0.15258
                 -1.135889
## atndrte
                  -0.020893
                             0.009047 -2.309 0.02122 *
## priGPA
                 -0.554498
                             0.328065 -1.690 0.09145 .
## ACT
                  0.081698
                             0.011149
                                       7.328 6.7e-13 ***
## atndrte:priGPA 0.011462
                             0.003818
                                       3.002 0.00278 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.881 on 675 degrees of freedom
## Multiple R-squared: 0.2118, Adjusted R-squared: 0.2072
## F-statistic: 45.35 on 4 and 675 DF, p-value: < 2.2e-16
Partial F-test here equal to the t-test for the interaction term
```

Analysis of Variance Table

anova(mod1,mod2)

```
##
## Model 1: stndfnl ~ atndrte + priGPA + ACT
## Model 2: stndfnl ~ atndrte * priGPA + ACT
             RSS Df Sum of Sq
    Res.Df
                                 F
## 1
       676 530.94
## 2
       675 523.94 1
                       6.9971 9.0144 0.002778 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Conditional Effect Plot

Effect of attendence rate at average priGPA

```
(b <- coef(mod2))
##
      (Intercept)
                         atndrte
                                         priGPA
                                                           ACT atndrte:priGPA
##
      -1.13588880
                     -0.02089258
                                    -0.55449794
                                                    0.08169791
                                                                   0.01146168
(mean(attend$priGPA))
## [1] 2.586775
cat("Partial effect of atndrte for priGPA=2.59:", b["atndrte"]+mean(attend$priGPA)*b["atndrte:priGPA"])
## Partial effect of atndrte for priGPA=2.59: 0.008756212
Test partial effect at priGPA=mean(attend$priGPA)
linearHypothesis(mod2, c("atndrte+2.59*atndrte:priGPA"))
## Linear hypothesis test
##
## Hypothesis:
## atndrte + 2.59 atndrte:priGPA = 0
## Model 1: restricted model
## Model 2: stndfnl ~ atndrte * priGPA + ACT
##
##
    Res.Df
              RSS Df Sum of Sq
                                         Pr(>F)
## 1
       676 532.68
## 2
       675 523.94 1
                        8.7325 11.25 0.0008407 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
plot(allEffects(mod2))
```


Partial Effects Demo

Initialize Data

Demonstration: Partial Effects

```
mod1.lm <- lm(water81 ~ income, data=concord)
summary(mod1.lm)</pre>
```

```
##
## Call:
## lm(formula = water81 ~ income, data = concord)
##
## Residuals:
      Min
##
               1Q Median
                               ЗQ
                                      Max
  -2765.3 -889.8 -239.8
                            536.8 7010.2
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                          123.325
                                     9.74
                                            <2e-16 ***
## (Intercept) 1201.124
                47.549
                            4.652
                                    10.22
                                            <2e-16 ***
## income
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1352 on 494 degrees of freedom
## Multiple R-squared: 0.1745, Adjusted R-squared: 0.1729
## F-statistic: 104.5 on 1 and 494 DF, p-value: < 2.2e-16
```

```
mod2.lm <- lm(water81 ~ income + water80, data=concord)
summary(mod2.lm)</pre>
```

```
##
## Call:
## lm(formula = water81 ~ income + water80, data = concord)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -4861.1 -439.5
                    -67.5
                             382.5
                                   4984.0
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 203.82169
                           94.36129
                                      2.160 0.0313 *
## income
                20.54504
                            3.38341
                                      6.072 2.52e-09 ***
                            0.02505 23.679 < 2e-16 ***
## water80
                 0.59313
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 925.4 on 493 degrees of freedom
## Multiple R-squared: 0.6138, Adjusted R-squared: 0.6122
## F-statistic: 391.8 on 2 and 493 DF, p-value: < 2.2e-16
```

Controling for water 80

```
y.x2 <- residuals(lm(water81 ~ water80, data=concord))
plot(concord$water81,y.x2)</pre>
```


compare with coefficients of mod2.lm

```
summary(lm(y.x2 ~ x1.x2-1))
```

```
##
## Call:
## lm(formula = y.x2 ~ x1.x2 - 1)
##
## Residuals:
      Min
              1Q Median
                              3Q
                                    Max
## -4861.1 -439.5 -67.5 382.5 4984.0
##
## Coefficients:
       Estimate Std. Error t value Pr(>|t|)
## x1.x2 20.545 3.377 6.085 2.34e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 923.6 on 495 degrees of freedom
## Multiple R-squared: 0.06959, Adjusted R-squared: 0.06771
## F-statistic: 37.02 on 1 and 495 DF, p-value: 2.341e-09
```

Controling for income

compare with coefficients of mod2.lm

```
summary(lm(y.x1 ~ x2.x1-1))
```

```
##
## Call:
## lm(formula = y.x1 ~ x2.x1 - 1)
##
## Residuals:
##
      Min
               1Q Median
                              ЗQ
                                     Max
  -4861.1 -439.5
##
                   -67.5
                            382.5 4984.0
##
## Coefficients:
##
        Estimate Std. Error t value Pr(>|t|)
## x2.x1 0.5931
                     0.0250
                             23.73
                                   <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 923.6 on 495 degrees of freedom
## Multiple R-squared: 0.5321, Adjusted R-squared: 0.5312
## F-statistic: 563 on 1 and 495 DF, p-value: < 2.2e-16
```

Beta Coefficients

Linear Modeling

full model

```
mod3.lm <- lm(water81 ~ income+water80+educat+retire+peop81+cpeop, data=concord)</pre>
summary(mod3.lm)
##
## Call:
## lm(formula = water81 ~ income + water80 + educat + retire + peop81 +
      cpeop, data = concord)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -4037.0 -447.6 -69.5 365.4 5038.0
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 242.22043 206.86382 1.171 0.24220
              20.96699 3.46372 6.053 2.83e-09 ***
## income
## water80
               -41.86552 13.22031 -3.167 0.00164 **
## educat
## retireyes 189.18433 95.02142 1.991 0.04704 *
## peop81
              248.19702
                          28.72480 8.641 < 2e-16 ***
## cpeop
              96.45360 80.51903 1.198 0.23154
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 849.3 on 489 degrees of freedom
## Multiple R-squared: 0.6773, Adjusted R-squared: 0.6734
## F-statistic: 171.1 on 6 and 489 DF, p-value: < 2.2e-16
convert factor to metric. retired: "yes"=1, "no"=0
concord$retireDummy <- as.numeric(concord$retire)-1</pre>
Transfer all variables to scaled form
concordNew <- concord[ ,sapply(concord,is.numeric)] # Remove non-numeric variables</pre>
concordScale <- as.data.frame(scale(concordNew))</pre>
                                                   # apply z-transformation with scale function
                                                   # dataframe concordScale holds the transformed val
mod4.lm <- lm(water81 ~ -1+income+water80+educat+retireDummy+peop81+cpeop, data=concordScale)
summary(mod4.lm)
##
## Call:
## lm(formula = water81 ~ -1 + income + water80 + educat + retireDummy +
##
      peop81 + cpeop, data = concordScale)
##
```

```
## Residuals:
##
      Min
              1Q Median
                           3Q
                                  Max
## -2.7165 -0.3012 -0.0468 0.2459 3.3900
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
##
## income
            0.18423 0.03040
                               6.060 2.73e-09 ***
                       0.03124 18.690 < 2e-16 ***
            0.58386
## water80
## educat
            ## retireDummy 0.05808
                       0.02914
                               1.993 0.04682 *
## peop81
           0.27676
                       0.03200
                               8.649 < 2e-16 ***
                       0.02623
                               1.199 0.23106
## cpeop
             0.03146
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5709 on 490 degrees of freedom
## Multiple R-squared: 0.6773, Adjusted R-squared: 0.6734
## F-statistic: 171.4 on 6 and 490 DF, p-value: < 2.2e-16
```

coefficent plot

coefficient plot useful for beta weights because the parameters are on the same scale

```
library (coefplot)

## Loading required package: ggplot2

coefplot(mod4.lm)
```


Partial F-test

```
H0: \beta_{RETIRE} = \beta_{CPEOP} = 0
```

```
mod5.lm <- lm(water81 ~ water80+income+educat+peop81, data=concord)
summary(mod5.lm)</pre>
```

```
##
## Call:
## lm(formula = water81 ~ water80 + income + educat + peop81, data = concord)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                     Max
## -3956.4 -472.7
                   -65.3
                            365.7 4976.8
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 399.64803 188.85176
                                   2.116 0.034830 *
                          0.02613 18.538 < 2e-16 ***
## water80
               0.48440
## income
              19.59823 3.35785 5.837 9.69e-09 ***
## educat
              -43.98044 13.23258 -3.324 0.000955 ***
## peop81
              240.50194 27.58814 8.718 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 852.3 on 491 degrees of freedom
## Multiple R-squared: 0.6738, Adjusted R-squared: 0.6711
## F-statistic: 253.5 on 4 and 491 DF, p-value: < 2.2e-16</pre>
```

Compare both models

```
## Analysis of Variance Table
##
## Model 1: water81 ~ water80 + income + educat + peop81
## Model 2: water81 ~ income + water80 + educat + retire + peop81 + cpeop
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 491 356658211
## 2 489 352761188 2 3897023 2.701 0.06814 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Nested F test Equal to t test

```
Anova (mod3.lm)
```

```
## Anova Table (Type II tests)
##
## Response: water81
##
             Sum Sq Df F value
                                Pr(>F)
## income
          26433751 1 36.6426 2.828e-09 ***
## water80 251481466 1 348.6053 < 2.2e-16 ***
## educat
           7234388 1 10.0284 0.001638 **
            2859560 1 3.9639 0.047041 *
## retire
## peop81
           ## cpeop
           1035170 1 1.4350 0.231537
## Residuals 352761188 489
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Stepwise Model

```
## + retire 1 81557382 1011681328 7210.0
## + cpeop 1 4777708 1088461002 7246.3
## <none>
                        1093238710 7246.5
## + educat 1 1782539 1091456170 7247.7
## Step: AIC=6812.38
## water81 ~ water80
##
##
           Df Sum of Sq
                         RSS
## + peop81 1 70887612 382904111 6730.1
## + income 1 31578364 422213359 6778.6
               8853815 444937908 6804.6
## + cpeop 1
## + retire 1
               2971449 450820274 6811.1
## <none>
                       453791723 6812.4
## + educat 1 1332325 452459398 6812.9
##
## Step: AIC=6730.13
## water81 ~ water80 + peop81
           Df Sum of Sq
##
                         RSS AIC
## + income 1 18221721 364682390 6707.9
## + cpeop 1 1989154 380914957 6729.5
                       382904111 6730.1
## <none>
## + educat 1
              1501286 381402825 6730.2
## + retire 1 359352 382544758 6731.7
## Step: AIC=6707.95
## water81 ~ water80 + peop81 + income
           Df Sum of Sq
                             RSS
                                  AIC
## + educat 1 8024179 356658211 6698.9
## + retire 1
               3534967 361147423 6705.1
## <none>
                       364682390 6707.9
## + cpeop 1 1160227 363522163 6708.4
## Step: AIC=6698.91
## water81 ~ water80 + peop81 + income + educat
##
           Df Sum of Sq
                             RSS
               2861853 353796358 6696.9
## + retire 1
## <none>
                       356658211 6698.9
## + cpeop 1 1037463 355620748 6699.5
## Step: AIC=6696.92
## water81 ~ water80 + peop81 + income + educat + retire
##
          Df Sum of Sq
                            RSS
                                   AIC
## <none>
                      353796358 6696.9
## + cpeop 1 1035170 352761188 6697.5
summary(mod6.step)
##
## Call:
```

```
## lm(formula = water81 ~ water80 + peop81 + income + educat + retire,
##
      data = concord)
##
## Residuals:
      Min
               1Q Median
                              3Q
## -4005.5 -462.9 -75.5 376.6 5035.7
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 229.8612 206.6980
                                  1.112 0.26666
## water80
              0.4875
                         0.0261 18.680 < 2e-16 ***
## peop81
                                  8.966 < 2e-16 ***
              253.9900
                        28.3273
## income
                                  6.164 1.48e-09 ***
              21.2943
                         3.4545
## educat
             -42.1928 13.2233 -3.191 0.00151 **
## retireyes 189.2601
                         95.0636
                                  1.991 0.04705 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 849.7 on 490 degrees of freedom
## Multiple R-squared: 0.6764, Adjusted R-squared: 0.6731
## F-statistic: 204.8 on 5 and 490 DF, p-value: < 2.2e-16
Alternative stepwise specification
mod7.step <- step(mod3.lm, scope=list(lower=null.lm, upper=mod3.lm), direction="backward")</pre>
## Start: AIC=6697.46
## water81 ~ income + water80 + educat + retire + peop81 + cpeop
##
##
            Df Sum of Sq
                              RSS
                                     AIC
## - cpeop 1 1035170 353796358 6696.9
## <none>
                        352761188 6697.5
## - retire 1 2859560 355620748 6699.5
## - educat 1 7234388 359995575 6705.5
## - income 1 26433751 379194939 6731.3
## - peop81 1 53858103 406619291 6765.9
## - water80 1 251481466 604242653 6962.4
##
## Step: AIC=6696.92
## water81 ~ income + water80 + educat + retire + peop81
##
##
            Df Sum of Sq
                              RSS
                                     AIC
## <none>
                         353796358 6696.9
## - retire 1
                 2861853 356658211 6698.9
## - educat 1 7351065 361147423 6705.1
## - income 1 27436136 381232494 6732.0
## - peop81 1 58046844 411843202 6770.3
## - water80 1 251947001 605743359 6961.6
summary(mod7.step)
```

##

```
## Call:
## lm(formula = water81 ~ income + water80 + educat + retire + peop81,
      data = concord)
##
## Residuals:
##
      Min
              1Q Median
                              3Q
                                     Max
## -4005.5 -462.9 -75.5
                           376.6 5035.7
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 229.8612 206.6980
                                 1.112 0.26666
                                  6.164 1.48e-09 ***
             21.2943
                          3.4545
## income
                         0.0261 18.680 < 2e-16 ***
## water80
               0.4875
             -42.1928
## educat
                       13.2233 -3.191 0.00151 **
## retireyes 189.2601
                         95.0636
                                  1.991 0.04705 *
## peop81
              253.9900
                         28.3273
                                  8.966 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 849.7 on 490 degrees of freedom
## Multiple R-squared: 0.6764, Adjusted R-squared: 0.6731
## F-statistic: 204.8 on 5 and 490 DF, p-value: < 2.2e-16
```

Conditional Effects

```
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.811259 0.240687 7.525 2.55e-13 ***
## log(income)
             0.102958 0.034182
                              3.012 0.00273 **
## log(water80) 0.689469 0.032449 21.248 < 2e-16 ***
## educat
            ## retireyes
             0.010156 0.044540
                               0.228 0.81972
## log(peop81)
             0.230115 0.041144
                              5.593 3.72e-08 ***
## clogpeop
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3788 on 489 degrees of freedom
```

Multiple R-squared: 0.7102, Adjusted R-squared: 0.7066

```
## F-statistic: 199.7 on 6 and 489 DF, p-value: < 2.2e-16
```

All effects at mean level of remaing variavles

plot(allEffects(mod08.lm, transformation=list(link=log, inverse=exp)), ylab="water81")

get value ranges

summary(concord)

```
##
                        water81
                                        water80
                                                         water79
##
           : 5.0
                            : 100
                                             : 200
                                                              : 200
    1st Qu.:133.8
                    1st Qu.: 1200
                                     1st Qu.: 1500
                                                      1st Qu.: 1700
    Median :259.5
                    Median: 2050
                                     Median: 2300
                                                      Median: 2500
##
                            : 2298
                                             : 2732
           :260.4
                    Mean
                                     Mean
                                                      Mean
                                                              : 2974
    3rd Qu.:386.2
##
                    3rd Qu.: 2900
                                     3rd Qu.: 3700
                                                      3rd Qu.: 3800
##
    Max.
           :516.0
                    Max.
                            :10100
                                     Max.
                                             :12700
                                                      Max.
                                                              :14500
##
                                                      NA's
                                                              :47
##
                          educat
                                   retire
                                                  peop81
        income
                                                                    cpeop
##
          : 2.00
                                   no:350
                                                     : 1.000
                                                                       :-3.00000
    Min.
                      Min.
                             : 6
                                              Min.
                                                               Min.
    1st Qu.: 15.00
                                              1st Qu.: 2.000
                                                                1st Qu.: 0.00000
                      1st Qu.:12
                                   yes:146
    Median : 21.00
                      Median:13
                                              Median : 3.000
                                                               Median: 0.00000
```

```
## Mean : 23.08
                  Mean
                       :14
                                      Mean : 3.073
                                                       Mean
                                                            :-0.03831
##
  3rd Qu.: 30.00
                  3rd Qu.:16
                                      3rd Qu.: 4.000
                                                       3rd Qu.: 0.00000
                                                       Max. : 3.00000
  Max. :100.00
##
                  Max. :20
                                       Max. :10.000
##
##
       peop80
                   retireDummy
                                    clogpeop
##
  Min. : 1.000
                       :0.0000 Min. :-1.09861
                  Min.
  1st Qu.: 2.000
                  1st Qu.:0.0000 1st Qu.: 0.00000
## Median : 3.000
                  Median: 0.0000 Median: 0.00000
## Mean : 3.111
                  Mean :0.2944 Mean :-0.01874
## 3rd Qu.: 4.000
                  3rd Qu.:1.0000 3rd Qu.: 0.00000
## Max. :10.000
                  Max. :1.0000 Max. : 1.38629
##
summary(log(concord$water80))
##
     Min. 1st Qu. Median
                          Mean 3rd Qu.
                                         Max.
##
    5.298
          7.313
                  7.741
                          7.707
                                 8.216
                                        9.449
summary(log(concord$peop81))
##
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                         Max.
  0.0000 0.6931 1.0986 0.9751 1.3863 2.3026
```

Income effect for a low consumer profile

Income Effect of Low Water Consumer

Income effect for an average consumer profile

Income Effect of Average Water Consumer

Income effect for a high consumer profile

Factor Variable Analysis

Initialize Data

```
wells <- foreign::read.spss("wells.sav",to.data.frame=TRUE)
summary(wells)</pre>
```

```
##
          deep
                      droad
                                        chlor
##
    shallow :10
                         : 20.0 Min.
                                          : 3.0
                  Min.
##
    deep wel:43
                  1st Qu.: 60.0
                                   1st Qu.: 10.0
##
                  Median : 100.0
                                   Median: 10.5
##
                        : 251.2
                                   Mean
                                         : 81.5
##
                  3rd Qu.: 300.0
                                   3rd Qu.: 43.5
                  Max.
                         :2640.0
                                           :760.0
##
                                   {\tt Max.}
                                   NA's
##
                                           :1
```

Explore Coding Scheme of Factors

See coding of factor

```
class(wells$deep)
```

```
## [1] "factor"
```

```
contrasts(wells$deep)
##
             deep wel
## shallow
## deep wel
Change to 1,0,-1 coding
contrasts(wells$deep) <- "contr.sum"</pre>
contrasts(wells$deep)
##
             [,1]
## shallow
## deep wel
Change back to 0,1 coding
contrasts(wells$deep) <- "contr.treatment"</pre>
contrasts(wells$deep)
            deep wel
## shallow
## deep wel
```

Prepare data for analysis

Symbols & colors for well type

Linear Model for factor variables

No intercept Model

```
mod0 <- lm(logChlor ~ deep -1) # One way analysis of variance
summary(mod0) # Suppressing intercept gives mean levels
```

```
##
## Call:
## lm(formula = logChlor ~ deep - 1)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
  -1.9707 -0.7667 -0.7667
                           0.5517
                                  3.5640
##
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                 3.7751
                            0.4289
                                     8.801 9.85e-12 ***
## deepshallow
                            0.2093 14.664 < 2e-16 ***
## deepdeep wel
                 3.0693
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
\#\# Residual standard error: 1.356 on 50 degrees of freedom
## Multiple R-squared: 0.854, Adjusted R-squared: 0.8482
## F-statistic: 146.2 on 2 and 50 DF, p-value: < 2.2e-16
```

intercept model

```
mod1 <- lm(logChlor ~ deep) # One-way analysis of variance
summary(mod1)
##
## Call:
## lm(formula = logChlor ~ deep)
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -1.9707 -0.7667 -0.7667 0.5517 3.5640
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 3.7751 0.4289 8.801 9.85e-12 ***
## deepdeep wel -0.7058
                            0.4773 - 1.479
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.356 on 50 degrees of freedom
## Multiple R-squared: 0.0419, Adjusted R-squared: 0.02274
## F-statistic: 2.187 on 1 and 50 DF, p-value: 0.1455
Standard Regression
mod2 <- lm(logChlor ~ logDist)</pre>
summary(mod2)
##
## Call:
## lm(formula = logChlor ~ logDist)
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -2.2007 -0.9273 -0.6002 0.5607 3.6749
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           0.9017
                                  4.094 0.000155 ***
## (Intercept) 3.6914
## logDist
               -0.1002
                           0.1816 -0.552 0.583397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.382 on 50 degrees of freedom
## Multiple R-squared: 0.006057,
                                  Adjusted R-squared:
## F-statistic: 0.3047 on 1 and 50 DF, p-value: 0.5834
plot(logDist,logChlor,pch=wellSymbol,col=wellCol) # just distance not interaction
abline(mod2)
```

legend("topright",legend=c("shallow","deep"), title="Well Type", col=c("red","blue"),pch=c(15,16))

Regression with intercept dummy

```
mod3 <- lm(logChlor ~ deep + logDist)
summary(mod3)</pre>
```

```
##
## Call:
## lm(formula = logChlor ~ deep + logDist)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -2.0579 -0.8127 -0.6686 0.5956 3.7862
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                           0.96096
                                   4.381 6.22e-05 ***
## (Intercept)
                4.20954
## deepdeep wel -0.69712
                           0.48119 -1.449
                                              0.154
## logDist
               -0.09097
                           0.17972 -0.506
                                              0.615
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.367 on 49 degrees of freedom
## Multiple R-squared: 0.04688,
                                  Adjusted R-squared: 0.007981
## F-statistic: 1.205 on 2 and 49 DF, p-value: 0.3084
```

```
plot(logDist,logChlor,pch=wellSymbol,col=wellCol) # intercept dummy
abline(mod3$coef[1],mod3$coef[3],col="blue")
abline(mod3$coef[1]+mod3$coef[2],mod3$coef[3],col="red")
legend("topright",legend=c("shallow","deep"), title="Well Type", col=c("red","blue"),pch=c(15,16))
```


Regression with slope dummy

logDist:deepdeep wel -0.08147

```
mod4 <- lm(logChlor ~ logDist + logDist:deep)</pre>
summary(mod4)
##
## Call:
## lm(formula = logChlor ~ logDist + logDist:deep)
##
## Residuals:
##
       Min
                1Q Median
                                 ЗQ
                                        Max
##
   -2.1355 -0.8611 -0.5865 0.6493
                                     3.7748
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          3.66615
                                     0.90518
                                                4.050 0.000182 ***
## logDist
                         -0.02897
                                     0.20187 -0.144 0.886478
```

0.09946 -0.819 0.416682

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.386 on 49 degrees of freedom
## Multiple R-squared: 0.01948, Adjusted R-squared: -0.02054
## F-statistic: 0.4868 on 2 and 49 DF, p-value: 0.6175

plot(logDist,logChlor,pch=wellSymbol,col=wellCol) # slope dummy
abline(mod4$coef[1],mod4$coef[2],col="red")
abline(mod4$coef[1],mod4$coef[2]+mod4$coef[3],col="blue")
legend("topright",legend=c("shallow","deep"), title="Well Type", col=c("red","blue"),pch=c(15,16))
```


Regression with intercept and slope dummy

```
mod5 <- lm(logChlor ~ deep*logDist)
summary(mod5)

##
## Call:
## lm(formula = logChlor ~ deep * logDist)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8265 -0.7278 -0.3346 0.3140 3.2068
##</pre>
```

```
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                     1.8794
                                              4.828 1.45e-05 ***
                         9.0735
## deepdeep wel
                         -6.7174
                                     2.0947 -3.207 0.00239 **
## logDist
                         -1.1094
                                     0.3844
                                            -2.886 0.00583 **
                                              2.942 0.00501 **
## deepdeep wel:logDist
                         1.2558
                                     0.4269
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.271 on 48 degrees of freedom
## Multiple R-squared: 0.1925, Adjusted R-squared: 0.142
## F-statistic: 3.814 on 3 and 48 DF, p-value: 0.0157
mod5 <- lm(logChlor ~ deep + logDist + logDist:deep)</pre>
plot(logDist,logChlor,pch=wellSymbol,col=wellCol)
                                                       # intercept and slope dummy
abline(mod5$coef[1],mod5$coef[3],col="red")
abline(mod5$coef[1]+mod5$coef[2],mod5$coef[3]+mod5$coef[4],col="blue")
legend("topright",legend=c("shallow","deep"), title="Well Type", col=c("red","blue"),pch=c(15,16))
```


anova(mod2,mod5)

```
## Analysis of Variance Table
##
## Model 1: logChlor ~ logDist
## Model 2: logChlor ~ deep + logDist + logDist:deep
## Res.Df RSS Df Sum of Sq F Pr(>F)
```

```
## 1 50 95.441
## 2 48 77.539 2 17.901 5.5409 0.006838 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```