

3.4 数据选择器和分配器

并-串转换:数据选择器

串-并转换:数据分配器

3.4.1 数据选择器 (Data Selector)

能够从多路数据输入中选择一路作为输出的电路

一、4选1数据选择器

1. 逻辑抽象

	真	真值表				
D	A_1	A_0	Y			
$\overline{D_0}$	0	0	D_0			
D_1	0	1	D_1			
D_2	1	0	D_2			
D_3	1	1	D_3			

2. 逻辑表达式 $Y = D_0 \overline{A_1} \overline{A_0} + D_1 \overline{A_1} A_0 + D_2 A_1 \overline{A_0} + D_3 A_1 A_0$

一、4选1数据选择器

2. 逻辑表达式

$$Y = D_0 \overline{A}_1 \overline{A}_0 + D_1 \overline{A}_1 A_0 + D_2 A_1 \overline{A}_0 + D_3 A_1 A_0$$
$$= m_0 D_0 + m_1 D_1 + m_2 D_2 + m_3 D_3$$

3. 逻辑图

二、集成数据选择器

1. 8 选 1 数据选择器 74151 74LS151 74251 74LS251

当
$$\overline{S} = 1$$
时,选择器被禁止 $Y = 0$ $\overline{Y} = 1$ 当 $\overline{S} = 0$ 时,选择器被选中(使能) $Y = D_0 \overline{A}_2 \overline{A}_1 \overline{A}_0 + D_1 \overline{A}_2 \overline{A}_1 A_0 + \dots + D_7 A_2 A_1 A_0$

2. 集成数据选择器的扩展 两片8选1(74151)

四片 8 选 1 (74151) --- 32 选 1 数据选择器

方法 1: 74LS139 双 2 线 - 4 线译码器

四片 8 选 1 (74151) --- 32 选 1 数据选择器

方法 1: 真值表 (使用 74LS139 双 2 线 - 4 线译码器)

A_4	A_3	译码器输出	(1)	(2)	(3)	(4)	输出信号
0	0	$\overline{Y}_0 = 0$	工	禁	禁	禁	$D_0 \sim D_7$
0	1	$\overline{Y}_1 = 0$	禁	工	禁	禁	$D_{8}^{0} \sim D_{15}^{\prime}$ $D_{16} \sim D_{23}^{\prime}$
1	0	$\overline{\overline{Y}}_2 = 0$	禁	禁	工	禁	$D_{16} \sim D_{23}$
1	1	$\overline{Y}_3 = 0$	禁	禁	禁	工	$D_{24} \sim D_{31}$

方法 2: 74LS153 双 4 选 1 数据选择器 (电路略)

四路 8 位并行数据

四片8选1

四路1位串行数据

一片4选1

一路1位串行数据

3.4.2 数据分配器 (Data Demultiplexer)

将1路输入数据,根据需要分别传送到 m 个输出端

二、集成数据分配器

用 3 线-8 线译码器可实现 1 路-8 路数据分配器

数据输出

 S_1 — 数据输入(D)

$$\overline{Y}_0 \sim \overline{Y}_7$$
 — 数据输出(\overline{D})
 $\overline{S}_2 \setminus \overline{S}_3$ — 使能控制端
 $\overline{S}_2 = \overline{S}_3 = 0$ 时,
实现数据分配器的功能。

 \overline{S}_2 — 数据输入(D)

$$\overline{Y}_0 \sim \overline{Y}_7$$
 — 数据输出(D) $S_1 \setminus \overline{S}_2$ — 使能控制端 $S_1 = 1$, $\overline{S}_2 = 0$ 时, 实现数据分配器的功能 。