Rank-74499 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(4) is 1499092313

General information

Number of lines	7
Number of points	29
Number of singular points	2
Number of Eckardt points	1
Number of double points	5
Number of single points	18
Number of points off lines	4
Number of Hesse planes	0
Number of axes	0
Type of points on lines	57
Type of lines on points	$4, 3, 2^5, 1^{18}, 0^4$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \mathbf{Pl}(0, 0, 1, 0, 0, 1)_{108}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{5} = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{33}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{129}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{121} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{121} = \mathbf{Pl}(0, 1, 1, 0, 0, 1)_{112}$$

Rank of lines: (0, 16, 37, 5, 337, 356, 121)

Rank of points on Klein quadric: (0, 2, 108, 33, 129, 1, 112)

Eckardt Points

The surface has 1 Eckardt points: $0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0).$

Double Points

The surface has 5 Double points: The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_4$$

$$P_{42} = (0, 1, 1, 1) = \ell_3 \cap \ell_4$$

$$P_4 = (1, 1, 1, 1) = \ell_3 \cap \ell_6$$

$$P_{38} = (0, 0, 1, 1) = \ell_4 \cap \ell_5$$

Single Points

The surface has 18 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_3 = (0,0,0,1) \ \text{lies on line} \ \ell_5 \\ 1: \ P_6 = (2,1,0,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_7 = (3,1,0,0) \ \text{lies on line} \ \ell_0 \\ 3: \ P_8 = (1,0,1,0) \ \text{lies on line} \ \ell_1 \\ 4: \ P_9 = (2,0,1,0) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{10} = (3,0,1,0) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_2 \\ 7: \ P_{17} = (2,2,1,0) \ \text{lies on line} \ \ell_2 \\ 8: \ P_{22} = (3,3,1,0) \ \text{lies on line} \ \ell_2 \\ 9: \ P_{27} = (1,1,0,1) \ \text{lies on line} \ \ell_6 \end{array}$

 $\begin{array}{l} 10: \ P_{43} = (2,1,1,1) \ \text{lies on line} \ \ell_3 \\ 11: \ P_{44} = (3,1,1,1) \ \text{lies on line} \ \ell_3 \\ 12: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_4 \\ 13: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_4 \\ 14: \ P_{53} = (0,0,2,1) \ \text{lies on line} \ \ell_5 \\ 15: \ P_{58} = (1,1,2,1) \ \text{lies on line} \ \ell_6 \\ 16: \ P_{69} = (0,0,3,1) \ \text{lies on line} \ \ell_5 \\ 17: \ P_{74} = (1,1,3,1) \ \text{lies on line} \ \ell_6 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 4 points not on any line:

The points on the surface but not on lines are:

 $0: P_{33} = (3, 2, 0, 1)$

 $1: P_{36} = (2, 3, 0, 1)$ $2: P_{62} = (1, 2, 2, 1)$

 $3: P_{82} = (1, 3, 3, 1)$

Line Intersection Graph

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_5	P_0	P_1

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_0	P_2	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_6
in point	P_5	P_2	P_2	P_2

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_6
in point	P_0	P_0	P_{42}	P_4

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_5
in point	P_1	P_{42}	P_{38}

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_6
in point	P_2	P_2	P_{38}	P_2

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5
in point	P_2	P_2	P_4	P_2

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$6: P_6 = (2, 1, 0, 0)$	$12: P_{17} = (2, 2, 1, 0)$
$1: P_1 = (0, 1, 0, 0)$	$7: P_7 = (3, 1, 0, 0)$	$13: P_{22} = (3, 3, 1, 0)$
$2: P_2 = (0,0,1,0)$	$8: P_8 = (1,0,1,0)$	$14: P_{27} = (1, 1, 0, 1)$
$3: P_3 = (0,0,0,1)$	$9: P_9 = (2,0,1,0)$	15: $P_{33} = (3, 2, 0, 1)$
$4: P_4 = (1, 1, 1, 1)$	$10: P_{10} = (3, 0, 1, 0)$	16: $P_{36} = (2, 3, 0, 1)$
$5: P_5 = (1, 1, 0, 0)$	$11: P_{12} = (1, 1, 1, 0)$	17: $P_{38} = (0, 0, 1, 1)$

$18: P_{42} = (0, 1, 1, 1)$	$22: P_{49} = (0, 3, 1, 1)$	26: $P_{69} = (0, 0, 3, 1)$
$19: P_{43} = (2, 1, 1, 1)$	$23: P_{53} = (0,0,2,1)$	$27: P_{74} = (1, 1, 3, 1)$
$20: P_{44} = (3, 1, 1, 1)$	$24: P_{58} = (1, 1, 2, 1)$	$28: P_{82} = (1, 3, 3, 1)$
$21: P_{45} = (0, 2, 1, 1)$	$25: P_{62} = (1, 2, 2, 1)$	