STAT 611 Homework 7 Solutions

1. (a) Suppose that $\theta_2 > \theta_1 > 0$. Then the likelihood ratio and its derivative are

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\theta_2(\theta_1^2 + x^2)}{\theta_1(\theta_2^2 + x^2)}$$

and

$$\frac{d}{dx} = \frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\theta_2(\theta_2^2 - \theta_1^2)}{(\theta_2^2 + x^2)^2} x$$

Since the sign of the derivative is the same as the sign of x which changes sign, the ratio is not monotone. Hence, the MLR does not exist.

(b) It can be shown that |X| is sufficient. The PDF of T = |X| is

$$f(t|\theta) = \frac{2\theta}{\pi(\theta^2 + t^2)}$$

for t > 0. Differentiating we find that the sign of the derivative is the same as the sign of y which is positive. Hence, the distribution of |X| has an MLR.

2. (a) The marginal distribution of Y_1 is

$$f(y_1|\theta) = n(1 - (y_1 - \theta))^{n-1}$$

for $\theta < y_1 < \theta + 1$. The joint pdf of (Y_1, Y_n) is

$$f(y_1, y_n | \theta) = n(n-1)(y_n - y_1)^{n-2}$$

for $\theta < y_1 < y_n < \theta + 1$. Under H_0 , $P(Y_n \ge 1) = 0$ so

$$\alpha = P(Y_1 \ge k | \theta = 0) = (1 - k)^n$$

Hence, for a size α test, take $k = 1 - \alpha^{1/n}$.

(b) For $\theta \le k-1$, $\beta(0)=0$ and for $k-1<\theta \le 0$,

$$\beta(\theta) = \int_{k}^{\theta+1} n(1 - (y_1 - \theta))^{n-1} dy_1 = (1 - k + \theta)^n$$

For $0 < \theta \le k$,

$$\beta(\theta) = \int_{k}^{\theta+1} n(1 - (y_1 - \theta))^{n-1} dy_1 + \int_{\theta}^{k} \int_{1}^{\theta+1} n(n-1)(y_n - y_1)^{n-2} dy_n dy_1$$
$$= \alpha + 1 - (1 - \theta)^n$$

For $k < \theta$, $\beta(\theta) = 1$.

(c) (Y_1, Y_n) are sufficient statistics. Using Corollary 8.3.13 and the joint pdf, we can attempt to find the UMP test. For $\theta \in (0, 1)$, the ratio of the pdfs is

$$\frac{f(y_1, y_n | \theta)}{f(y_1, y_n | 0)} = \begin{cases} 0 & 0 < y_1 \le \theta, y_1 < y_n < 1\\ 1 & \theta < y_1 < y_n < 1\\ \infty & 1 \le y_n < \theta + 1, \theta < y_1 < y_n \end{cases}$$

For $1 \leq \theta$, the ratio of the pdfs is

$$\frac{f(y_1, y_n | \theta)}{f(y_1, y_n | \theta)} = \begin{cases} 0 & y_1 < y_n < 1\\ \infty & \theta < y_1 < y_n < \theta + 1 \end{cases}$$

For $0 < \theta < k$, use k' = 1. The given test always rejects if $f(y_1, y_n | \theta) / f(y_1, y_n | \theta) > 1$ and always accepts if this ratio is less than 1. For $\theta \ge k$, use k' = 0. The given test always rejects if the ratio of pdfs is greater than 0 and always accepts if it is less than 0. Thus, the given test is UMP.

- (d) From the power function in (b), $\beta(\theta) = 1$ for all $\theta \ge k = 1 \alpha^{1/n}$. Thus, these conditions are satisfied for any n.
- 3. Let R_1 denote the rejection region, that is, R_1 is the set of all sequences **X** such that its likelihood ratio is greater than or equal to γ_1 . Similarly, let R_0 be the acceptance region or the set of all sequences **X** whose likelihood ratio is less than or equal to γ_0 . The power is

$$\beta = P(\text{reject } H_0|H_1) = \int_{R_1} p(x|p_1)dx$$

$$= \int_{R_1} \frac{p(x|p_1)}{p(x|p_0)} p(x|p_0)dx$$

$$\geq \gamma_1 \int_{R_1} p(x|p_0)dx$$

$$= \gamma_1 \times P(\text{reject } H_0|H_0)$$

$$= \gamma_1 \alpha$$

Hence, $\gamma_1 \leq \beta/\alpha$. Using a similar derivation,

$$1 - \beta = P(\text{accept } H_0|H_1) = \int_{R_0} p(x|p_1)dx$$

$$= \int_{R_0} \frac{p(x|p_1)}{p(x|p_0)} p(x|p_0)dx$$

$$\leq \gamma_0 \int_{R_0} p(x|p_0)dx$$

$$= \gamma_0 \times P(\text{accept } H_0|H_0)$$

$$= \gamma_0 (1 - \alpha)$$

so
$$(1 - \beta)/(1 - \alpha) \le \gamma_0$$
.