

Task History

Initiating Search

February 21, 2025, 9:12 PM

Substances:

Filtered By:

Structure Match: Substructure

Search Tasks

Task		Search Type	View
Returned Substance Results + Filters (12,935) Exported: Retrieved Related Reaction Results + Filters (403)		Substances Reactions	View Results View Results
Substance Role:	Reactant, Reagent, Solvent		
Catalyst:	[(1,2,5,6-η)-1,5-Cyclooctadiene][(1 <i>S</i>)-7'- (diphenylphosphino-κ <i>P</i>)-2,2',3,3'-tetrahydro-1,1'- spirobi[1 <i>H</i> -indene]-7-carboxylato-κ <i>O</i>]iridium, [(1,2,5,6-η)-1,5-Cyclooctadiene][<i>N</i> -[(4,6- dimethoxy-2,3-dimethyl-1 <i>H</i> -indol-7-yl- κ <i>N</i>)methylene]benzenaminato-κ <i>N</i>]iridium, (1,3- Dihydro-1,3,4,5-tetramethyl-2 <i>H</i> -imidazol-2- ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4- cyclopentadien-1-yl]bis(2,2,2-trifluoroacetato- κ <i>O</i>)iridium, (1,3-Dihydro-1,3,4,5-tetramethyl-2 <i>H</i> - imidazol-2-ylidene)[(1,2,3,4,5-η)-1,2,3,4,5- pentamethyl-2,4-cyclopentadien-1-yl][sulfato(2-)- κ <i>O</i> ,κ <i>O</i>]iridium, (1,3-Dihydro-1,3,4,5-tetramethyl- 2 <i>H</i> -imidazol-2-ylidene)bis(nitrato-κ <i>O</i>][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1- yl]iridium, [1,3-Dihydro-1-(phenylmethyl)-3- (2,4,6-trimethylphenyl)-2 <i>H</i> -imidazol-2- ylidene]diiodo[(1,2,3,4,5-η)-1,2,3,4,5- pentamethyl-2,4-cyclopentadien-1-yl]iridium, (1- Butyl-1,3-dihydro-3-methyl-2 <i>H</i> -imidazol-2- ylidene)chloro[(1,2,5,6-η)-1,5- cyclooctadiene]iridium, [2-[[(1,1- Dimethylethyl)amino]carbonyl-κ <i>O</i>]-5- methoxyphenyl-κ <i>O</i>][(1,2,3,4,5-η)-1,2,3,4,5- pentamethyl-2,4-cyclopentadien-1-yl](2,2,2- trifluoroacetato-κ <i>O</i>)iridium, Bis[(1,2,5,6-η)-1,5-		

cyclooctadiene]di-µ-methoxydiiridium, Chloro[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl][2-(2-pyridinyl-κ/)phenylκC]iridium, Chloro[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl][N-(8quinolinyl-k/N)acetamidato-k/Njiridium, Chloro[(1,2,5,6-η)-1,5-cyclooctadiene][1,3dihydro-1,3-bis[2,4,6tri(methyl-d₃)phenyl-3,5-d₂]-2H-imidazol-2ylidene]iridium, Chloro(1,5-cyclooctadiene)(1,3dihydro-1,3-dimesityl-2H-imidazol-2ylidene)iridium, Chloro[N-[4-(dimethylamino)phenyl]-2pyridinecarboxamidato- κN^1 , κN^2][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1yl]iridium, Dichloro[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl][1,2,3tris(1,1-dimethylethyl)-4-phenyl-1,3,2diazagermetium-2-yl]iridium, Dichloro(1,3dibutyl-1,3-dihydro-2*H*-imidazol-2-ylidene) [(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]iridium, Dichloro(1,3dihydro-1,3,4,5-tetramethyl-2H-imidazol-2ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]iridium, Dichloro[1,3dihydro-1-(phenylmethyl)-3-(2,4,6trimethylphenyl)-2H-imidazol-2-ylidene] [(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]iridium, Di-uchlorobis[(1,2,5,6-η)-1,5cyclooctadiene]diiridium, Di-µchlorobis[(5,6,11,12-n)dibenzo[a,e]cyclooctene]diiridium, Di-µchlorodichlorobis[(1,2,5,6-η)-1,5cyclooctadiene]diiridium, fac-Tris(2-(2pyridinyl)phenyl)iridium, Iridate(1-), [[2,2'bipyridine]-6,6'(1*H*,1'*H*)-dionato(2-)- $\kappa N^1, \kappa N^{1'}$]hydroxy[(1,2,3,4,5- η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, sodium (1:1), Iridium, Iridium(1+), [1-[2-(2-benzoxazolyl- κN^3)phenyl]-1,3-dihydro-3-methyl-2*H*benzimidazol-2-ylidene-κ*C*]chloro[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, hexafluorophosphate(1-) (1:1), Iridium(1+), [(1,2,5,6-η)-1,5-cyclooctadiene][1-[[2-(diphenylphosphino-κP)phenyl]methyl]-1,3dihydro-3-phenyl-2H-imidazol-2-ylidene-κC]-, tetrakis[3,5-bis(trifluoromethyl)phenyl]borate(1-) (1:1), Iridium(1+), [(1,2,5,6-η)-1,5-cyclooctadiene] (pyridine)(tricyclohexylphosphine)-, hexafluorophosphate(1-) (1:1), Iridium(1+), [(1,2,5,6- η)-1,5-cyclooctadiene][($\alpha R, \beta R$)- β -(diphenylphosphino-κP)-N,αdimethylbenzeneethanamine-ĸNJ-, tetrafluoroborate(1-), Iridium(1+), [2-[(15)-7'-[bis[3,5-bis(1,1-dimethylethyl)phenyl]phosphinoκ*P*]-2,2',3,3'-tetrahydro-1,1'-spirobi[1*H*-inden]-7yl]-4,5-dihydrooxazole- κN^3][(1,2,5,6- η)-1,5cyclooctadiene]-, tetrakis[3,5bis(trifluoromethyl)phenyl]borate(1-) (1:1), Iridium(1+), (2,2'-bipyridine- κN^1 , $\kappa N^{1'}$)bis[2-(2pyridinyl-κ/)phenyl-κ/]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), Iridium(1+), (2,2'-

bipyridine- κN^1 , κN^1)bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-κ//]phenyl-κ//-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), Iridium(1+), [μ-[3,5-bis[(diphenylphosphino- κP)methyl]-1H-pyrazolato- $\kappa N^1:N^2$]]bis[(1,2,5,6-η)-1,5-cyclooctadiene]di-, tetrafluoroborate(1-), Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN)phenylκC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'bipyridine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-κ/Jphenyl-κ/J-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'bipyridine- κN^1 , κN^1 ']bis[5-fluoro-2-(5-methyl-2pyridinyl-κ//)phenyl-κ//]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), Iridium(1+), [(45)-2-[(1S)-7'-[bis[3,5-bis(1,1dimethylethyl)phenyl]phosphino-kP[-2,2',3,3'tetrahydro-1,1'-spirobi[1H-inden]-7-yl]-4,5dihydro-4-methyloxazole-κ N^3][(1,2,5,6-η)-1,5cyclooctadiene]-, tetrakis[3,5bis(trifluoromethyl)phenyl]borate(1-) (1:1), Iridium(1+), [(4S)-2-[(1S)-7'-[bis(3,5dimethylphenyl)phosphino-κPJ-2,2',3,3'tetrahydro-1,1'-spirobi[1H-inden]-7-yl]-4,5dihydro-4-(1-naphthalenylmethyl)oxazole-κ*N*³] [(1,2,5,6-η)-1,5-cyclooctadiene]-, tetrakis[3,5bis(trifluoromethyl)phenyl]borate(1-) (1:1), Iridium(1+), [5,5'-bis(trifluoromethyl)-2,2'bipyridine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-κ/Jphenyl-κ/-2-, hexafluorophosphate(1-) (1:1), Iridium(1+), [6- $(1H-benzimidazol-2-yl-\kappa N^3)-2-pyridinol \kappa N^{1}$]chloro[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, chloride (1:1), Iridium(1+), (acetonitrile-2,2,2-d₃)chloro(1,3dihydro-1,3,4,5-tetramethyl-2H-imidazol-2ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]-, 1,1,1trifluoromethanesulfonate (1:1), Iridium(1+), aquacarbonylmethyl(trifluoromethanesulfonatoκO)bis(triphenylphosphine)-, 1,1,1trifluoromethanesulfonate (1:1), Iridium(1+), bis[(1,2,5,6-η)-1,5-cyclooctadiene]-, tetrafluoroborate(1-) (1:1), Iridium(1+), bis[3,5difluoro-2-(2-pyridinyl-κ/)phenyl-κ/](1,10phenanthroline- κN^1 , κN^{10})-, (*OC*-6-13)-, hexafluorophosphate(1-) (1:1), Iridium(1+), carbonyltris(1,3-dihydro-1,3-dimethyl-2Hbenzimidazol-2-ylidene)-, (SP-4-2)-, tetrafluoroborate(1-) (1:1), Iridium(1+), chloro(1,10-phenanthroline- κN^1 , κN^{10})[(1,2,3,4,5η)-1,2,3,4-tetramethyl-5-phenyl-2,4cyclopentadien-1-yl]-, hexafluorophosphate(1-) (1:1), Iridium(1+), chloro[6-[6-(1,1-dimethylethyl)-1*H*-benzimidazol-2-yl-κ N^3]-2-pyridinol-κ N^1] [(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]-, chloride (1:1), Iridium(1+), dicarbonyl[1,1'-methylenebis[1*H*-pyrazole- κN^2]]-, (SP-4-2)-, tetraphenylborate(1-) (1:1), Iridium(1+), dicarbonylbis[1,3-dihydro-1-(4-methoxyphenyl)-3-methyl-2H-imidazol-2-ylidene]-, (SP-4-2)-,

tetrafluoroborate(1-) (1:1), Iridium(1+), hydro(methan-d3-ol-d)[2-[(phenyliminoκ//)methyl]phenyl-κ//jbis(triphenylphosphine)-, (OC-6-14)-, hexafluorophosphate(1-) (1:1), Iridium(1+), hydro(pyridine)[tris[1-(diphenylphosphino-κP)-3-methyl-1H-indol-2yl]methyl-κC]-, (OC-6-41)-, tetrafluoroborate(1-) (1:1), Iridium(2+), [µ-([2,2'-bipyrimidine]-4,4',6,6'tetrol- κN^1 , κN^1 ': κN^3 , κN^3 ')]dichlorobis[(1,2,3,4,5η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1yl]di-, chloride (1:2), Iridium(2+), aqua(1,10phenanthroline- κN^1 , κN^{10})[(1,2,3,4,5- η)-1,2,3,4tetramethyl-5-phenyl-2,4-cyclopentadien-1-yl]-, hexafluorophosphate(1-) (1:2), Iridium(2+), aqua[(1,2,3,4,5-n)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl](1,10-phenanthroline- κN^{1} , κN^{10})-, hexafluorophosphate(1-) (1:2), Iridium(2+), bis(acetonitrile)(1,3-dihydro-1,3,4,5tetramethyl-2H-imidazol-2-ylidene)[(1,2,3,4,5-ŋ)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, 1,1,1-trifluoromethanesulfonate (1:2), Iridium(2+), diagua(1,3-dihydro-1,3,4,5tetramethyl-2*H*-imidazol-2-ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, 1,1,1-trifluoromethanesulfonate (1:2), Iridium(2+), di-µ-chlorobis(1,3-dihydro-1,3,4,5tetramethyl-2H-imidazol-2-ylidene)bis[(1,2,3,4,5η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1ylldi-, stereoisomer, 1,1,1trifluoromethanesulfonate (1:2), Iridium, [9-[[bis(1,1-dimethylethyl)phosphinoκP]oxy]benzo[h]quinolin-10-ylκC,κM]chlorohydro-, (SP-5-54)-, Iridium, aqua[[2,2'-bipyridine]-6,6'(1H,1'H)-dionato(2-)- $\kappa N^1, \kappa N^{1'}$][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]-, Iridium, bromodicarbonyl[1-(1,1-dimethylethyl)-1,3dihydro-3-[[6-(methoxymethyl)-2pyridinyl]methyl]-2H-imidazol-2-ylidene]-, (SP-4-2)-, Iridium, chloro[(3-methyl-1 H-imidazol-1-yl-2(3H)-ylidene)methylene-1,2-phenylene] [(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]-, Iridium, chloro[N-(2methoxyphenyl)-2-pyridinecarboxamidato- $\kappa N^1, \kappa N^2$][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]-, Iridium, di-µchlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-, Iridium, iodo[(3-methyl-1H-imidazol-1-yl-2(3H)ylidene)methylene-1,2-phenylene][(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, [N-[(1 S,2S)-2-(Amino-κN)-1,2diphenylethyl]methanesulfonamidato(2-)-kMJ [(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]iridium, (OC-6-22)-Tris[5fluoro-2-(2-pyridinyl-κΛ)phenyl-κC]iridium, Sodium(1+), (1,4,7,10,13,16hexaoxacyclooctadecane- κO^{1} , κO^{4} , κO^{7} , κO^{10} , κO^{13} , κO^{16})-, (OC-6-11)-, (OC-6-11)-hexachloroiridate(2-), hydrate (2:1:3), Stereoisomer of [(1,2,5,6-η)-1,5-cyclooctadiene] [(2*S*)-2-[[(11b *R*)-dinaphtho[2,1-*d*:1',2'-*f*] [1,3,2]dioxaphosphepin-4-yl-κP][(1 R)-1phenylethyl]amino]-2-phenylethyl- κ *C*](η^2 ethene)iridium, (TB-5-13)-[rel-(11R,12R)-1,8-Bis(diphenylphosphino-κ*P*)-9,10-dihydro-11,12-

Document

bis(hydroxymethyl)-9,10-ethanoanthracen-9-yljournal kC]chlorohydroiridium, Tris[2-(2-pyridinyl-

Type:

κ**//)**phenyl-κ*C*]iridium English

Language:

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved. Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (128)

View in CAS SciFinder

Steps: 1 Yield: 100%

Steps: 1 Yield: 100%

Scheme 1 (1 Reaction)

$$F \rightarrow HO$$
 $F \rightarrow HO$
 F

31-614-CAS-33408359

1.1 **Reagents:** Methanol- d_4 , Water- d_2 , Sodium hydroxide-d **Catalysts:** Iridium, aqua[[2,2'-bipyridine]-6,6'(1H,1'H)-dionato (2-)- κN^1 , κN^1 '][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

Steps: 1 Yield: 100%

tadien-1-yl]-

Solvents: Isopropanol; 7 h, 80 °C

1.2 **Reagents:** Sulfuric acid **Solvents:** Water; pH 5

Experimental Protocols

Iridium-catalyzed $\alpha\text{-selective}$ deuteration of alcohols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 2 (1 Reaction)

31-614-CAS-33408362

Steps: 1 Yield: 100%

Iridium-catalyzed α -selective deuteration of alcohols

1.1 **Reagents:** Methanol- d_4 , Water- d_2

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato (2-)- κN^1 , κN^1 '][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]-

Solvents: Isopropanol; 21 h, 80 °C

1.2 **Reagents:** Sulfuric acid **Solvents:** Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 3 (1 Reaction)

Steps: **1** Yield: **99%**

Steps: 1 Yield: 99%

Steps: 1 Yield: 98%

31-614-CAS-33408360

Steps: 1 Yield: 99% | Iridium-catalyzed α-selective deuteration of alcohols

1.1 **Reagents:** Methanol- d_4 , Water- d_2

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato (2-)- κN^1 , κN^1 '][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]-

Solvents: Isopropanol; 2 d, 80 °C

1.2 **Reagents:** Sulfuric acid **Solvents:** Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 4 (1 Reaction)

31-614-CAS-37018490

Steps: 1 Yield: 99%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

1.1 Reagents: Methanol-d₄

Catalysts: Diisopropylethylamine, (SP-4-2)-[[2,2'-[(1S,2S)-1,2-Cyclohexanediylbis[(nitrilo-κN)methylidyne]]bis[4,6-bis(1,1-dimethylethyl)phenolato-κO]](2-)]cobalt, Iridium(1+), [4,4'-bis (1,1-dimethylethyl)-2,2'-bipyridine-κN1,κN1']bis[2-(2-pyridinyl-κN1)phenyl-κN2-, (OC-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Acetonitrile; 5 h, rt

Experimental Protocols

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 5 (1 Reaction)

Steps: 1 Yield: 98%

Steps: 1 Yield: 98%

31-614-CAS-33408371

Steps: 1 Yield: 98%

Iridium-catalyzed α-selective deuteration of alcohols

1.1 **Reagents:** Methanol- d_4 , Water- d_2

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$

tadien-1-yl]-

Solvents: Isopropanol; 21 h, 80 °C

Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 6 (1 Reaction)

31-614-CAS-33408350

Steps: 1 Yield: 98% Iridium-catalyzed α-selective deuteration of alcohols

Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-dCatalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$ tadien-1-yl]-

Solvents: Isopropanol; 3 d, 80 °C

Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

31-614-CAS-33408367

Steps: 1 Yield: 98%

Iridium-catalyzed α-selective deuteration of alcohols

Reagents: Methanol- d_4 , Water- d_2

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$

tadien-1-yl]-

Solvents: Isopropanol; 2 d, 80 °C

1.2 Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Steps: 1 Yield: 97%

Steps: 1 Yield: 97%

Steps: 1 Yield: 96%

Scheme 8 (1 Reaction)

$$\begin{array}{c}
O \\
O
\end{array}$$

Suppliers (8)

Double bond geometry shown

31-614-CAS-37018565

Steps: 1 Yield: 97%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

1.1 **Reagents:** Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (*N M*-dimethyl-4-pyridinamine- κN^1)cohalt

 $(N,N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt **Solvents:** Dimethylformamide; 36 h, rt

Experimental Protocols

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 9 (1 Reaction)

HO Br HO Br Br Suppliers (93) ■ Suppliers (5)

31-614-CAS-33408357

Steps: 1 Yield: 97%

1.1 Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-d Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1H,1'H)-dionato (2-)- κN^1 , κN^1 '][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]-

Solvents: Isopropanol; 3 h, 80 °C

1.2 **Reagents:** Sulfuric acid **Solvents:** Water; pH 5

Experimental Protocols

Iridium-catalyzed α -selective deuteration of alcohols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 10 (1 Reaction)

➤ Suppliers (19)

Steps: 1 Yield: 95%

Steps: 1 Yield: 94%

31-614-CAS-37018557

Steps: 1 Yield: 96%

1.1 Reagents: Methanol-d₄

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)]

(N,N-dimethyl-4-pyridinamine-κN¹)cobaltSolvents: Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 11 (1 Reaction)

Double bond geometry shown

31-116-CAS-20391658

Steps: 1 Yield: 95%

1.1 **Catalysts:** Di-µ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene]

Solvents: Methanol-d₄; 1.5 h, 70 °C

Additive- and Ligand-Free Cross-Coupling Reactions between Alkenes and Alkynes by Iridium Catalysis

By: Sun, Yaling; et al

Organic Letters (2019), 21(12), 4868-4872.

Scheme 12 (1 Reaction)

31-614-CAS-33408363

Steps: 1 Yield: 94%

Iridium-catalyzed α-selective deuteration of alcohols

Reagents: Methanol-d₄, Water-d₂

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato (2-)- κN^1 , $\kappa N^{1'}$][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]-

Solvents: Isopropanol; 5 d, 80 °C

Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 13 (1 Reaction)

Absolute stereochemistry shown

Suppliers (43)

Steps: 1 Yield: 93%

31-614-CAS-40739758

Steps: 1 Yield: 93%

Reagents: Methanol-d₄, Triisopropylsilanethiol Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1]bis[2-(2-pyridinyl- κN)phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1); 40 h, rt

Experimental Protocols

Visible-Light-Mediated, Diastereoselective Epimerization of **Exocyclic Amines**

By: Vargas-Rivera, Maria A.; et al

Organic Letters (2023), 25(51), 9197-9201.

Scheme 14 (1 Reaction)

Steps: 1 Yield: 93%

$$\xrightarrow{N}$$

📜 Suppliers (4)

31-116-CAS-23813551

Steps: 1 Yield: 93%

Reagents: 3-Phenyl-1,4,2-dioxazol-5-one, 2-Propan-2-d-ol-d, 1, 1,1,3,3,3-hexafluoro-

Catalysts: Iridium, di-µ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-; 3 h, 70 °C

Experimental Protocols

Iridium(III)-Catalyzed Direct Intermolecular Chemoselective α-Amidation of Masked Aliphatic Carboxylic Acids with Dioxaz olones via Nitrene Transfer

By: Mahato, Sanjit K.; et al

ACS Catalysis (2021), 11(12), 7126-7131.

Scheme 15 (1 Reaction)

Steps: 1 Yield: 92%

Steps: 1 Yield: 91%

31-614-CAS-33408356

Steps: 1 Yield: 92%

Iridium-catalyzed α-selective deuteration of alcohols Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-dBy: Itoga, Moeko; et al

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato (2-)- κN^1 , $\kappa N^{1'}$][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]-

Solvents: Isopropanol; 7 h, 80 °C

1.2 Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

Chemical Science (2022), 13(30), 8744-8751.

Scheme 16 (1 Reaction)

Suppliers (161)

Suppliers (39)

31-614-CAS-33408349

Steps: 1 Yield: 91%

1.1 Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-dCatalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$

tadien-1-yl]-

Solvents: Isopropanol; 7 h, 80 °C

Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

Iridium-catalyzed α-selective deuteration of alcohols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 17 (1 Reaction) Steps: 1 Yield: 91%

31-614-CAS-33408366

Suppliers (85)

Steps: 1 Yield: 91%

📜 Suppliers (2)

Iridium-catalyzed α-selective deuteration of alcohols

Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-dCatalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$ tadien-1-yl]-

Solvents: Isopropanol; 3 h, 80 °C

Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

■ Suppliers (72)

31-614-CAS-33408355

Steps: 1 Yield: 91%

Iridium-catalyzed α-selective deuteration of alcohols

Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-dCatalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$ tadien-1-yl]-

Solvents: Isopropanol; 7 h, 80 °C

1.2 Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Steps: 1 Yield: 91%

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

Scheme 19 (1 Reaction)

31-614-CAS-33408351

Steps: 1 Yield: 91%

Iridium-catalyzed α -selective deuteration of alcohols

1.1 **Reagents:** Methanol- d_4 , Water- d_2 , Sodium hydroxide-d **Catalysts:** Iridium, aqua[[2,2'-bipyridine]-6,6'(1H,1'H)-dionato (2-)- κN^1 , κN^1 '][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]-

Solvents: Isopropanol; 2 d, 100 °C

1.2 **Reagents:** Sulfuric acid **Solvents:** Water; pH 5

Solvents: Water; pH Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 20 (1 Reaction)

31-614-CAS-33408364

Steps: 1 Yield: 90%

Iridium-catalyzed α -selective deuteration of alcohols

1.1 **Reagents:** Methanol-*d*₄, Water-*d*₂

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato (2-)-κ N^1 ,κ N^1 '][(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]-

Solvents: Isopropanol; 1 d, 80 °C

1.2 Reagents: Sulfuric acid

Solvents: Water; pH 5

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 21 (1 Reaction)

Experimental Protocols

➤ Suppliers (75)

Steps: 1 Yield: 90%

31-614-CAS-33408378

Steps: 1 Yield: 90%

Iridium-catalyzed α-selective deuteration of alcohols

1.1 **Reagents:** Methanol- d_4 , Water- d_2

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$

tadien-1-yl]-

Solvents: Isopropanol; 3 h, 80 °C

Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 22 (1 Reaction)

31-614-CAS-36702158

Steps: 1 Yield: 90%

Enantioselective Synthesis of N-N Biaryl Atropisomers through Iridium(I)-Catalyzed C-H Alkylation with Acrylates

By: Yin, Si-Yong; et al

Reagents: Methanol-d4

1.1 **Catalysts:** Di-μ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene]

borate; 12 h, 100 °C

diiridium, R-Xyl-BINAP

Solvents: Toluene; 10 min, rt

Catalysts: Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]

Experimental Protocols

Angewandte Chemie, International Edition (2023), 62(37), e202305067.

31-614-CAS-37018534

Steps: 1 Yield: 90%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Reagents: Methanol-d4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)]

 $(N, N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt Solvents: Dimethylformamide; 36 h, rt

Experimental Protocols

Steps: 1 Yield: 90%

Steps: 1 Yield: 89%

Steps: 1 Yield: 89%

Scheme 24 (1 Reaction)

$$\xrightarrow{\mathsf{D}} \mathsf{D}$$

► Suppliers (88)

31-614-CAS-37018555

Steps: 1 Yield: 90%

1.1 Reagents: Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ Λ¹, κ Λ¹']bis[2-(2-pyridinyl- κ Λ) phenyl- κ C]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ Λ)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κ Λ¹)cobalt **Solvents:** Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 25 (1 Reaction)

31-116-CAS-22314608

Steps: 1 Yield: 89%

.1 Reagents: Zinc acetate, Methanol- d₄
Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]di-Solvents: 1,2-Dichloroethane; 15 h, 120 °C

Experimental Protocols

Iridium-Catalyzed Oxidative Annulation of 2-Arylindoles with Benzoquinone Leading to Indolo[1,2-f]phenanthridin-6-ols

By: Guo, Shenghai; et al

Advanced Synthesis & Catalysis (2020), 362(14), 3011-3020.

Scheme 26 (1 Reaction)

Steps: 1 Yield: 88%

Steps: 1 Yield: 87%

31-614-CAS-33408375

Steps: 1 Yield: 89%

Iridium-catalyzed $\alpha\text{-selective}$ deuteration of alcohols

1.1 **Reagents:** Methanol- d_4 , Water- d_2

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1,\kappa N^1'$][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]-

Solvents: Isopropanol; 1 d, 80 °C

1.2 Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 27 (1 Reaction)

Suppliers (79)

📜 Suppliers (248)

31-614-CAS-39266853

Steps: 1 Yield: 88%

1.1 Reagents: Cesium carbonate

Catalysts: Iridium, aqua[[2,2]-bipy]

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato (2-)-κ N^1 ,κ N^1 '][(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]-; 12 h, 125 °C

Experimental Protocols

The α -trideuteromethylation of arylacetonitriles with deuterated methanol via deuterium autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst

By: Liu, Deyun; et al

Journal of Catalysis (2024), 430, 115301.

Scheme 28 (1 Reaction)

31-614-CAS-33408361

Steps: 1 Yield: 87%

Iridium-catalyzed α -selective deuteration of alcohols

1.1 Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-d Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1H,1'H)-dionato (2-)- κN^1 , κN^1 '][(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]-

Solvents: Isopropanol; 1 d, 80 °C

1.2 **Reagents:** Sulfuric acid **Solvents:** Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Steps: 1 Yield: 86%

Scheme 29 (1 Reaction)

≒ Suppliers (60)

📜 Supplier (1)

31-614-CAS-37018535

Steps: 1 Yield: 86%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

1.1 Reagents: Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Dimethylformamide; 36 h, rt

Experimental Protocols

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 30 (1 Reaction)

Relative stereochemistry shown

Suppliers (52)

Steps: 1 Yield: 86%

Steps: 1 Yield: 85%

31-614-CAS-40739766 Steps: **1** Yield: **86%**

1.1 **Reagents:** Methanol- d_4 , Triisopropylsilanethiol **Catalysts:** Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN)phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1); 40 h, rt

Experimental Protocols

Visible-Light-Mediated, Diastereoselective Epimerization of Exocyclic Amines

By: Vargas-Rivera, Maria A.; et al

Organic Letters (2023), 25(51), 9197-9201.

Scheme 31 (1 Reaction)

➤ Suppliers (27)

Double bond geometry shown

Relative stereochemistry shown

Steps: 1 Yield: 83%

Steps: 1 Yield: 83%

31-614-CAS-37018568

Steps: 1 Yield: 85%

1.1 **Reagents:** Methanol-*d*₄

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)]

 $(N,N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt **Solvents:** Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 32 (1 Reaction)

31-614-CAS-37018554

Steps: 1 Yield: 83%

1.1 **Reagents:** Methanol- d_4

Suppliers (66)

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ /Λ', κ /Λ'']bis[2-(2-pyridinyl- κ /Λ) phenyl- κ /С]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ /Λ)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κ /Λ')cobalt **Solvents:** Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III) H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 33 (1 Reaction)

31-614-CAS-37018556

Steps: 1 Yield: 83%

1.1 **Reagents:** Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

(*N*,*N*-dimethyl-4-pyridinamine-k*N*')cob **Solvents:** Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 82%

Steps: 1 Yield: 81%

Steps: 1 Yield: 80%

Scheme 34 (1 Reaction)

31-614-CAS-37018558

Steps: 1 Yield: 82%

Steps. 1 Held. 8270

1.1 **Reagents:** Methanol- d_4

Suppliers (10)

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 35 (1 Reaction)

31-614-CAS-37018536

Steps: **1** Yield: **81%**

1.1 Reagents: Methanol-d4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 36 (1 Reaction)

Suppliers (74)

Steps: 1 Yield: 79%

Steps: 1 Yield: 77%

31-614-CAS-37018551

Steps: 1 Yield: 80%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

Reagents: Methanol-d₄

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)]

(N,N-dimethyl-4-pyridinamine-κN¹)cobaltSolvents: Dimethylformamide; 36 h, rt

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Experimental Protocols

Scheme 37 (1 Reaction)

Suppliers (105)

31-614-CAS-33408365

Steps: 1 Yield: 79%

Iridium-catalyzed α-selective deuteration of alcohols

Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-dCatalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$ tadien-1-yl]-

Solvents: Isopropanol; 13 h, 80 °C

1.2 Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 38 (1 Reaction)

31-614-CAS-37018559

Steps: 1 Yield: 77%

Reagents: Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)] (N,N-dimethyl-4-pyridinamine-κN¹)cobalt

Solvents: Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 73%

Steps: 1 Yield: 70%

Steps: 1 Yield: 67%

Scheme 39 (1 Reaction)

Suppliers (74)

Solvents: Dimethylformamide; 36 h, rt

📜 Supplier (1)

31-614-CAS-37018552

Steps: 1 Yield: 73%

Reagents: Methanol-d₄

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/\)](1-)] $(N,N-dimethyl-4-pyridinamine-κ<math>N^1$)cobalt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 40 (1 Reaction)

31-116-CAS-18874915

Steps: 1 Yield: 70%

Reagents: Pivalic acid

Catalysts: Nickel acetate, Iridium, di-µ-chlorodichlorobis[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, Silver hexafluoroantimonate

Solvents: 2-Propanol-d; 12 h, 80 °C

Experimental Protocols

Divergent Coupling of Anilines and Enones by Integration of C-H Activation and Transfer Hydrogenation

By: Zhou, Xukai; et al

Angewandte Chemie, International Edition (2018), 57(22), 6681-6685.

Scheme 41 (1 Reaction)

31-085-CAS-9070584

Steps: 1 Yield: 67%

Reagents: Methanol-d4

Catalysts: [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*] methanesulfonamidato-κO]silver, Chloro[(1,2,3,4,5-η)-1,2,3,4, 5-pentamethyl-2,4-cyclopentadien-1-yl][2-(2-pyridinyl-κ/)) phenyl-κC]iridium, Antimonate(1-), hexafluoro-, (OC-6-11)-, hydrogen, compd. with 2-phenylpyridine (1:1:1) Solvents: 1,2-Dichloroethane; 6 h, 120 °C; 120 °C → rt

Experimental Protocols

Complete Switch of Selectivity in the C-H Alkenylation and Hydroarylation Catalyzed by Iridium: The Role of Directing Groups

By: Kim, Jiyu; et al

Journal of the American Chemical Society (2015), 137(42), 13448-13451.

Steps: 1 Yield: 64%

Steps: 1 Yield: 64%

Steps: 1 Yield: 63%

Scheme 42 (1 Reaction)

31-614-CAS-24448981

Steps: 1 Yield: 64%

Steps: 1 Yield: 64%

1.1 **Reagents:** Pivalic acid, Methanol-*d*₄, Silver hexafluoro antimonate

Catalysts: Iridium, di- μ -chlorodichlorobis[(1,2,3,4,5- η)-1,2,3,4,5- η)-1,2,3,4,5- η

pentamethyl-2,4-cyclopentadien-1-yl]di-Solvents: Acetonitrile; 2 h, 110 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Synthesis of Indolyl-Tethered Spiro[cyclobutane-1,1'-indenes] through Cascade Reactions of 1-(Pyridin-2-yl)-1H-indoles with Alkynyl Cyclobutanols

By: Xu, Yuanshuang; et al

Organic Letters (2021), 23(21), 8510-8515.

Scheme 43 (1 Reaction)

> Suppliers (34)

31-614-CAS-36702159

1.1 **Catalysts:** Di-μ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene]

diiridium, *R*-Xyl-BINAP **Solvents:** Toluene; 10 min, rt

1.2 **Reagents:** Methanol-*d*₄

 $\textbf{Catalysts:} \ Sodium \ tetrakis [3,5-bis (trifluoromethyl) phenyl]$

borate; 12 h, 100 °C

Experimental Protocols

Enantioselective Synthesis of N-N Biaryl Atropisomers through Iridium(I)-Catalyzed C-H Alkylation with Acrylates

By: Yin, Si-Yong; et al

Angewandte Chemie, International Edition (2023), 62(37), e202305067.

Scheme 44 (1 Reaction)

Suppliers (85)

Steps: 1 Yield: 62%

Steps: 1 Yield: 59%

31-614-CAS-37018533

Steps: 1 Yield: 63%

1.1 Reagents: Methanol-d₄

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)]

 $(N,N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt **Solvents:** Dimethylformamide; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 45 (1 Reaction)

Suppliers (248)

Suppliers (72)

31-614-CAS-31431741

Steps: 1 Yield: 62%

Reagents: Cesium carbonate Catalysts: Iridate(1-), [[2,2'-bipyridine]-6,6'(1H,1'H)-dionato(2-)- κN^1 , κN^1 ']hydroxy[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-

cyclopentadien-1-yl]-, sodium (1:1) Solvents: Methanol-*d*₄; 12 h, 120 °C Iridium-catalyzed synthesis of $\beta\text{-methylated}$ secondary alcohols using methanol

By: Song, Ao; et al

Journal of Catalysis (2022), 407, 90-96.

Scheme 46 (1 Reaction)

Suppliers (17)

📜 Suppliers (76)

31-614-CAS-34401938

Steps: 1 Yield: 59%

1.1 **Reagents:** Cesium carbonate, Methanol-*d*₄, *N*-Cyclohexyl-*N*-ethylcyclohexanamine

Catalysts: fac-Tris(2-(2-pyridinyl)phenyl)iridium Solvents: Dimethyl sulfoxide; 48 h, 25 - 30 °C

1.2 Reagents: Hydrochloric acid

Solvents: Water
Experimental Protocols

Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO₂

By: Song, Lei; et al

Nature Catalysis (2022), 5(9), 832-838.

Scheme 47 (1 Reaction)

➤ Suppliers (46)

Double bond geometry shown

Steps: 1 Yield: 45%

Steps: 1 Yield: 40%

31-177-CAS-18250011

Steps: 1 Yield: 51%

1.1 Reagents: Methanol-d₄

Catalysts: [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*] methanesulfonamidato-κ*O*]silver, [2-[[(1,1-Dimethylethyl) amino]carbonyl- κ *O*]-5-methoxyphenyl- κ *C*][(1,2,3,4,5- η)-1,2,3,4, 5-pentamethyl-2,4-cyclopentadien-1-yl](2,2,2-trifluoroacetato-

к*O*)iridium

Solvents: 1,2-Dichloroethane; 2 h, 70 °C; 70 °C → rt

Experimental Protocols

Complete Switch of Selectivity in the C-H Alkenylation and Hydroarylation Catalyzed by Iridium: The Role of Directing Groups

By: Kim, Jiyu; et al

Journal of the American Chemical Society (2015), 137(42), 13448-13451.

Scheme 48 (1 Reaction)

Suppliers (21)

31-614-CAS-40343559

Steps: 1 Yield: 45%

Reagents: 1-Adamantanecarboxylic acid, Silver triflate, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]methanesulfona midato-кО]silver

Catalysts: Iridium, di-µ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]di-Solvents: Methanol-d; 12 h, 120 °C

Reagents: Sodium bicarbonate Solvents: Water

Experimental Protocols

Synthesis of acridones via Ir (III)-catalyzed amination annulation of oxazoles with anthranils

By: Zhou, Han-Yi; et al

Organic & Biomolecular Chemistry (2024), 22(20), 4036-4040.

Scheme 49 (1 Reaction)

31-614-CAS-40796524

Steps: 1 Yield: 40%

Reagents: tert-Butanol-d₁₀

Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2pyridinyl-κ*N*]phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), Nickel, [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , $\kappa N^{1'}$]dibromo-, (*T*-4)-

Solvents: Ethyl acetate; 48 h, rt

Experimental Protocols

Dehydrogenative Coupling of Alkylamines with Primary Alcohols Forming α-Amino Ketones

By: Kawasaki, Tairin; et al

Journal of the American Chemical Society (2024), 146(26), 17566-17572.

Steps: 1 Yield: 35%

Steps: 1 Yield: 31%

Steps: 1 Yield: 27%

Scheme 50 (1 Reaction)

31-614-CAS-24427671

Steps: 1 Yield: 35%

1.1 **Reagents:** Sodium acetate, Methanol- d_4

 $\textbf{Catalysts:} \ \, \textbf{Iridium,} \ \, \textbf{di-}\mu\text{-}chlorodichlorobis} \underline{[(1,2,3,4,5-\eta)\text{-}1,2,3,4,5-\eta)\text{-}1,2,3,4,5-\eta)\text{-}1,2,3,4,5-\eta)\text{-}1,2,3,4,5-\eta} \\$

pentamethyl-2,4-cyclopentadien-1-yl]di-

Solvents: Methanol; 1 h, 25 °C

📜 Supplier (1)

Experimental Protocols

Temperature-Controlled Divergent Synthesis of Tetrasub stituted Alkenes and Pyrrolo[1,2-a]indole Derivatives via Iridium Catalysis

By: Liu, Siyu; et al

Asian Journal of Organic Chemistry (2021), 10(12), 3308-3320.

Scheme 51 (1 Reaction)

31-116-CAS-23788473

Steps: 1 Yield: 31%

1.1 Reagents: Methanol-d₄, Tripotassium phosphateCatalysts: Di-μ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene]

diiridium

Solvents: Toluene; 36 h, 70 °C

Experimental Protocols

Iridium-catalysed branched-selective hydroacylation of 1,3dienes with salicylaldehydes

By: Yang, Yang; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(60), 7378-7381.

Scheme 52 (1 Reaction)

31-614-CAS-35237801

Steps: 1 Yield: 27%

1.1 Reagents: Calcium hydroxide, Cesium acetate Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]methanesulfonamidato-κ*O*] silver

Solvents: Methanol- d_4 , 1,1,1,3,3,3-Hexafluoro-2-propanol; 8 h, 100 °C

Experimental Protocols

Tandem C-C/C-N Bond Formation via Rh (III)-Catalyzed α -Fluoroalkenylation and Sequential Annulation of 2-Arylquina zolinones and gem-Difluorostyrenes

By: Pang, Binghan; et al

Journal of Organic Chemistry (2023), 88(1), 143-153.

Page 26

Steps: 1

Steps: 1

Steps: 1 Yield: 20%

Scheme 53 (1 Reaction)

31-116-CAS-6427781

1.1 **Catalysts:** Iridium, di-µ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-, [1,1,1-Trifluoro-*N*-

[(trifluoromethyl)sulfonyl- κO]methanesulfonamidato- κO] silver

Solvents: Methanol-d; 16 h, rt

Suppliers (10)

Iridium(III)-Catalyzed C-7 Selective C-H Alkynylation of Indolines at Room Temperature

By: Wu, Yunxiang; et al

Journal of Organic Chemistry (2015), 80(3), 1946-1951.

Scheme 54 (1 Reaction)

31-614-CAS-40104451

.1 Reagents: Methanol-d₄

Catalysts: Thioacetic acid, 1-Butanaminium, N,N,N-tributyl-, dibutyl phosphate, Iridium(1+), (2,2'-bipyridine-κN¹,κN¹')bis[3, 5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-κN]phenyl-κN]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol; 20 h, rt

Experimental Protocols

Steps: 1

Steps: 1 Yield: 20%

Isotopic Fractionation as a Mechanistic Probe in Light-Driven C-H Bond Exchange Reactions

By: Qiu, Guanqi; et al

Journal of the American Chemical Society (2023), 145(21), 11537-11543.

Scheme 55 (1 Reaction)

31-614-CAS-30100546

1.1 **Reagents:** Methanol-*d*₄, Silver triflate

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2*H*-imidazol-2-ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]iridium

Solvents: Methanol-d₄; 12 h, 100 °C

Steps: 1

Highly Stable Cp-Ir(III) Complexes with N-Heterocyclic Carbene Ligands as C-H Activation Catalysts for the Deuter ation of Organic Molecules

By: Corberan, Rosa; et al

Journal of the American Chemical Society (2006), 128(12), 3974-3979.

Scheme 56 (1 Reaction)

Steps: 1

Steps: 1

31-116-CAS-19743476

Steps: 1

1.1 **Catalysts:** Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-ρentamethyl-2,4-cyclopentadien-1-yl]di-, Silver hexafluoro antimonate

Solvents: 1,2-Dichloroethane, Methanol-d₄; 12 h, 70 °C

Experimental Protocols

Iridium(III)-Catalyzed Alkynylation of 2-(Hetero)arylquinazolin-4-one Scaffolds via C-H Bond Activation

By: Rohokale, Rajendra S.; et al

Journal of Organic Chemistry (2019), 84(5), 2951-2961.

Scheme 57 (1 Reaction)

Suppliers (72)

 \rightarrow

> Suppliers (410)

31-614-CAS-29780071

Steps: 1

1.1 Reagents: Methanol-d₄, Silver triflate

 $\label{lem:catalysts:} \textbf{Catalysts:} \ \ \textbf{Dichloro}(1,3-dibutyl-1,3-dihydro-2\textit{H-}imidazol-2-ylidene)[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$

tadien-1-yl]iridium

Solvents: Methanol-d4; 6 h, 100 °C

Highly Stable Cp-Ir(III) Complexes with N-Heterocyclic Carbene Ligands as C-H Activation Catalysts for the Deuter ation of Organic Molecules

By: Corberan, Rosa; et al

Journal of the American Chemical Society (2006), 128(12), 3974-3979.

Scheme 58 (1 Reaction)

Steps: 1

31-614-CAS-39581828

Steps: 1

1.1 **Reagents:** Methanol- d_4

Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-ρentamethyl-2,4-cyclopentadien-1-yl]di-, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ \mathcal{O}]methanesulfonamidato-κ \mathcal{O}]

Solvents: Chlorobenzene; 60 min, 120 °C

Experimental Protocols

Ir(III)/Ag(I)-catalyzed directly C-H amidation of arenes with O H-free hydroxyamides as amidating agents

By: Zuo, Youpeng; et al

RSC Advances (2024), 14(9), 5975-5980.

Scheme 59 (1 Reaction) Steps: 1

≒ Suppliers (90)

31-614-CAS-39581834

Reagents: Methanol- d_4

 $\label{eq:catalysts:} \begin{tabular}{ll} \textbf{Catalysts:} & Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-$\eta)$-1,2,3,4,5-$pentamethyl-2,4-cyclopentadien-1-yl]di-, [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl-$\kappa$$\mathcal{O}] methanesulfonamidato-$\kappa$$\mathcal{O}] \end{tabular}$

silver

Solvents: Chlorobenzene; 60 min, 120 °C

Experimental Protocols

Ir(III)/Ag(I)-catalyzed directly C-H amidation of arenes with O H-free hydroxyamides as amidating agents

By: Zuo, Youpeng; et al

RSC Advances (2024), 14(9), 5975-5980.

Scheme 60 (1 Reaction) Steps: 1

Steps: 1

➤ Supplier (1)

31-614-CAS-25856816

1.1 **Reagents:** Methanol- d_4

Catalysts: Iridium(1+), bis[(1,2,5,6-η)-1,5-cyclooctadiene]-, tetrafluoroborate(1-) (1:1), Potassium tetrakis(pentafluo

rophenyl)borate, BINAP

Solvents: Tetrahydropyran; 1 h, 80 °C

Experimental Protocols

Ir(I)-Catalyzed C-H Glycosylation for Synthesis of 2- Indolyl-C-Deoxyglycosides

By: Yu, Changyue; et al

Advanced Synthesis & Catalysis (2021), 363(21), 4926-4931.

Scheme 61 (1 Reaction) Steps: 1

Steps: 1

Steps: 1

compounds

31-614-CAS-30838666

1.1 **Reagents:** Methanol-*d*, Silver hexafluoroantimonate **Catalysts:** Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-ρentamethyl-2,4-cyclopentadien-1-yl]di-; 24 h, 80 °C

Experimental Protocols

An Ir(III)-catalyzed aryl C-H bond carbenoid functionalization cascade: access to 1,3-dihydroindol-2-ones

By: Bai, Siyi; et al

Organic & Biomolecular Chemistry (2017), 15(17), 3638-3647.

Scheme 62 (1 Reaction)

Steps: 1

$$\begin{array}{c|c} & & & \\ & & &$$

Double bond geometry shown

Double bond geometry shown

Suppliers (10)

31-116-CAS-17915137

Steps: 1

1.1 Reagents: Methanol-d₄

 $\label{eq:catalysts:} Catalysts: Sodium acetate, Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-$\eta)$-1,2,3,4,5-$pentamethyl$-2,4-cyclopentadien-1-yl]di-,$

Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 16 h, 100 °C

Ir(III)-Catalyzed site-selective amidation of azoxybenzenes and late-stage transformation

By: Zhang, Wenge; et al

Organic Chemistry Frontiers (2017), 4(11), 2202-2206.

Scheme 63 (1 Reaction)

31-116-CAS-16435432

Steps: 1

1.1 Reagents: Methanol-d₄

Catalysts: Iridium, di- μ -chlorodichlorobis[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-; 0.5 h, 100 °C

Experimental Protocols

Iridium(III)-Catalyzed Regioselective Carbenoid Insertion C-H Alkylation by $\alpha\text{-Diazotized}$ Meldrum's Acid

By: Lv, Honggui; et al

European Journal of Organic Chemistry (2016), 2016(34), 5637-5641.

Scheme 64 (1 Reaction)

Steps: 1

31-614-CAS-40104453

Steps:

1.1 Reagents: Methanol-d4

Catalysts: Thioacetic acid, 1-Butanaminium, *N,N,N*-tributyl-, dibutyl phosphate, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2, 2'-bipyridine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl- κN]phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol; 20 h, rt

Experimental Protocols

Isotopic Fractionation as a Mechanistic Probe in Light-Driven C-H Bond Exchange Reactions

By: Qiu, Guanqi; et al

Journal of the American Chemical Society (2023), 145(21), 11537-11543.

Scheme 65 (1 Reaction)

Steps: 1

Page 30

31-614-CAS-40104457

Steps: 1

Isotopic Fractionation as a Mechanistic Probe in Light-Driven C-H Bond Exchange Reactions

1.1 Reagents: Methanol-d₄

Catalysts: Thioacetic acid, 1-Butanaminium, *N,N,N*-tributyl-, dibutyl phosphate, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2, 2'-bipyridine- κN^1 , κN^1 ']bis[5-fluoro-2-(5-methyl-2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol; 20 h, rt

Experimental Protocols

By: Qiu, Guanqi; et al

Journal of the American Chemical Society (2023), 145(21), 11537-11543.

Scheme 66 (1 Reaction)

Steps: 1

31-614-CAS-40104452

Steps: 1

1.1 Reagents: Methanol- d_4

Catalysts: Thioacetic acid, 1-Butanaminium, *N*,*N*,*N*-tributyl-, dibutyl phosphate, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2, 2'-bipyridine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl- κN]phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol; 20 h, rt

Suppliers (6)

Experimental Protocols

Isotopic Fractionation as a Mechanistic Probe in Light-Driven C-H Bond Exchange Reactions

By: Qiu, Guanqi; et al

Journal of the American Chemical Society (2023), 145(21), 11537-11543.

Scheme 67 (1 Reaction)

$$\rightarrow \bigvee_{D} \bigvee_{N}$$

31-116-CAS-14337978

Steps: 1

Regioselective Ir(III)-catalyzed C-H alkynylation directed by 7-azaindoles

1.1 **Reagents:** Methanol- d_4

Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-ρentamethyl-2,4-cyclopentadien-1-yl]di-, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ \mathcal{O}]methanesulfonamidato-κ \mathcal{O}]

silver

Solvents: 1,2-Dichloroethane; 1 h, rt

Experimental Protocols

By: Liu, Bin; et al

Organic & Biomolecular Chemistry (2016), 14(10), 2944-2949.

Steps: 1

Steps: 1

Scheme 68 (1 Reaction)

31-614-CAS-40104450

Steps: 1

1.1 Reagents: Methanol-d₄

Catalysts: Thioacetic acid, 1-Butanaminium, N,N,N-tributyl-, dibutyl phosphate, Iridium(1+), (2,2'-bipyridine-κN¹,κN¹')bis[3, 5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-κN]phenyl-κN]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol; 20 h, rt

Suppliers (40)

Experimental Protocols

Isotopic Fractionation as a Mechanistic Probe in Light-Driven C-H Bond Exchange Reactions

By: Qiu, Guanqi; et al

Journal of the American Chemical Society (2023), 145(21), 11537-11543.

Scheme 69 (2 Reactions)

31-116-CAS-19920386

Steps: 1

1.1 **Catalysts:** Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, Silver hexafluoro antimonate

Solvents: 1,2-Dichloroethane, Methanol-d4; 24 h, 80 °C

Experimental Protocols

Diastereoselective Spirocyclization of Cyclic N-Sulfonyl Ketimines with Nitroalkenes via Iridium-Catalyzed Redox-Neutral Cascade Reaction

By: Mishra, Aniket; et al

Organic Letters (2019), 21(7), 2056-2059.

31-116-CAS-18551007

Steps: 1

1.1 **Catalysts:** Silver triflate, Iridium, di-μ-chlorodichlorobis[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, BOC-L-Phenylalanine

Solvents: 1,2-Dichloroethane; 0.5 h, 40 °C

1.2 **Solvents:** Methanol-*d*₄; 0.5 h, 40 °C

Experimental Protocols

Ir(III)/MPAA-Catalyzed Mild and Selective C-H Amidation of N-Sulfonyl Ketimines: Access To Benzosultam-Fused Quinazoli nes/Quinazolinones

By: Mishra, Aniket; et al

Journal of Organic Chemistry (2018), 83(7), 3756-3767.

Scheme 70 (1 Reaction)

➤ Suppliers (38)

Steps: 1

31-614-CAS-35549815

Steps: 1

1.1 **Reagents:** Methanol-*d*₄, 1-Adamantanecarboxylic acid **Catalysts:** Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, Silver hexafluoro antimonate

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 25 °C; 12 h, 120 °C

Experimental Protocols

Ir(III)-Catalyzed Dual C-H Activation of 2-Aryl Phthalazi nediones and 3-Aryl-2H-benzo[e][1,2,4]thiadiazine-1,1dioxides for the Construction of Spiro-Fused Cyclic Frameworks

By: Yogananda Chary, Devulapally; et al

Journal of Organic Chemistry (2023), 88(5), 2758-2772.

Scheme 71 (1 Reaction)

Steps: 1

Steps: 1

Isotopic Fractionation as a Mechanistic Probe in Light-Driven C-H Bond Exchange Reactions

By: Qiu, Guanqi; et al

Journal of the American Chemical Society (2023), 145(21), 11537-11543.

31-614-CAS-40104456

1.1 **Reagents:** Methanol- d_4

Suppliers (65)

Catalysts: Thioacetic acid, 1-Butanaminium, *N,N,N*-tributyl-, dibutyl phosphate, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2, 2'-bipyridine- κN^1 , κN^1 ']bis[5-fluoro-2-(5-methyl-2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1) **Solvents:** Methanol; 20 h, rt

Experimental Protocols

Scheme 72 (1 Reaction)

31-614-CAS-30907891

Steps: 1

1.1 Reagents: Methanol-d₄, Silver triflate

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2*H*-imidazol-2-ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]iridium

Solvents: Methanol-d₄; 12 h, 100 °C

Highly Stable Cp-Ir(III) Complexes with N-Heterocyclic Carbene Ligands as C-H Activation Catalysts for the Deuter ation of Organic Molecules

By: Corberan, Rosa; et al

Journal of the American Chemical Society (2006), 128(12), 3974-3979.

Scheme 73 (1 Reaction)

➤ Suppliers (55)

Steps: 1

31-116-CAS-6288479

Steps: 1

1.1 Catalysts: Sodium acetate, Iridium, di-μ-chlorodichlorobis[(1,2, 3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-,
 Silver tetrafluoroborate

Solvents: 2,2,2-Trifluoroethan- *1,1-d*₂-ol-*d*; 1 h, 45 °C

Experimental Protocols

Cp*Ir(III)-Catalyzed Mild and Broad C-H Arylation of Arenes and Alkenes with Aryldiazonium Salts Leading to the External Oxidant-Free Approach

By: Shin, Kwangmin; et al

Journal of the American Chemical Society (2015), 137(26), 8584-8592.

Scheme 74 (1 Reaction)

Steps: 1

31-116-CAS-23549855

Steps: 1

1.1 Reagents: Silver acetate, Methanol-d₄, Water-d₂
 Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, Silver hexafluoro antimonate

Solvents: Methanol; 1 h, rt

Experimental Protocols

Rh(III)-Catalyzed Olefination and Alkylation of Arenes with Maleimides: A Tunable Strategy for C (sp 2)-H Functionalization

By: Zhang, Wenjie; et al

Synthesis (2021), 53(13), 2229-2239.

Scheme 75 (1 Reaction)

Steps: 1

31-614-CAS-26350154

Steps: 1

1.1 **Reagents:** Methanol- d_4 , Silver triflate

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2*H*-imidazol-2-ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]iridium

Solvents: Methanol-d₄; 3 h, 100 °C

Highly Stable Cp-Ir(III) Complexes with N-Heterocyclic Carbene Ligands as C-H Activation Catalysts for the Deuter ation of Organic Molecules

By: Corberan, Rosa; et al

Journal of the American Chemical Society (2006), 128(12), 3974-3979.

Scheme 76 (1 Reaction)

Steps: 1

Suppliers (73)

compounds

Steps: 1

31-116-CAS-17381737

Steps: 1

1 **Reagents:** Methanol-*d*, Silver hexafluoroantimonate **Catalysts:** Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-; 24 h, 80 °C

Experimental Protocols

An Ir(III)-catalyzed aryl C-H bond carbenoid functionalization cascade: access to 1,3-dihydroindol-2-ones

By: Bai, Siyi; et al

Organic & Biomolecular Chemistry (2017), 15(17), 3638-3647.

Scheme 77 (1 Reaction)

Suppliers (387)

31-614-CAS-27140623

Steps: 1

1.1 **Reagents:** Methanol-*d*₄, Silver triflate **Catalysts:** Dichloro(1,3-dibutyl-1,3-dihydro-2*H*-imidazol-2-ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]iridium

Solvents: Methanol-d₄; 3 h, 100 °C

Highly Stable Cp-Ir(III) Complexes with N-Heterocyclic Carbene Ligands as C-H Activation Catalysts for the Deuter ation of Organic Molecules

By: Corberan, Rosa; et al

Journal of the American Chemical Society (2006), 128(12), 3974-3979.

Scheme 78 (1 Reaction)

Steps: 1

≒ Suppliers (68)

31-614-CAS-43664072

Steps: 1

1.1 Reagents: Sodium acetate, Methanol- d₄
Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]diSolvents: 2,2,2-Trifluoroethanol; 18 h, 140 °C

Experimental Protocols

Integrating C-H activation/2-fold annulation: a modular access to heteroaryl-tethered oxazoloisoquinolinones

By: Basak, Shubhajit; et al

Chemical Communications (Cambridge, United Kingdom) (2025), 61(8), 1693-1696.

Scheme 79 (7 Reactions)

Suppliers (179)

➤ Suppliers (143)

31-116-CAS-2682519 Steps: 1 1.1 Reagents: Methanol-*d*₄ Catalysts: Iridium(2+), di-μ-chlorobis(1,3-dihydro-1,3,4,5-tetramethyl-2*H*-imidazol-2-ylidene)bis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, stereoisomer, 1,1,1-trifluoromethanesulfonate (1:2), Iridium(1+), (acetonitrile-*2,2*, *2-d*₃)chloro(1,3-dihydro-1,3,4,5-tetramethyl-2*H*-imidazol-2-ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]-, 1,1,1-trifluoromethanesulfonate (1:1)

Effect of Ancillary Ligands and Solvents on H/D Exchange Reactions Catalyzed by Cp*Ir Complexes

By: Feng, Yuee; et al

Organometallics (2010), 29(13), 2857-2867.

Experimental Protocols

31-116-CAS-6653740

1.1 Reagents: Methanol-d₄

Catalysts: (1,3-Dihydro-1,3,4,5-tetramethyl-2*H*-imidazol-2-ylidene)bis(nitrato- κ *O*)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]iridium

Solvents: Methanol- d_4 ; rt \rightarrow 150 °C; 24 h, 150 °C; 150 °C \rightarrow rt

Solvents: Methanol- d_4 ; rt \rightarrow 150 °C; 24 h, 150 °C; 150 °C \rightarrow rt

Experimental Protocols

31-116-CAS-221793 Steps: 1

1.1 **Reagents:** Methanol- d_4

Catalysts: Iridium(2+), bis(acetonitrile)(1,3-dihydro-1,3,4,5-tetramethyl-2H-imidazol-2-ylidene)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, 1,1,1-trifluoro

methanesulfonate (1:2)

Solvents: Methanol- d_4 ; rt \rightarrow 150 °C; 24 h, 150 °C; 150 °C \rightarrow rt

Experimental Protocols

31-116-CAS-2404552

1.1 Reagents: Methanol-d₄

Catalysts: Iridium(2+), diaqua(1,3-dihydro-1,3,4,5-tetramethyl-2H-imidazol-2-ylidene)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, 1,1,1-trifluoromethanesulfonate (1:2) Solvents: Methanol- d_4 ; rt \rightarrow 150 °C; 24 h, 150 °C; 150 °C \rightarrow rt

Effect of Ancillary Ligands and Solvents on H/D Exchange Reactions Catalyzed by Cp*Ir Complexes

Effect of Ancillary Ligands and Solvents on H/D Exchange

By: Feng, Yuee; et al

By: Feng, Yuee; et al

Steps: 1

Steps: 1

Steps: 1

Steps: 1

Organometallics (2010), 29(13), 2857-2867.

Reactions Catalyzed by Cp*Ir Complexes

Organometallics (2010), 29(13), 2857-2867.

Effect of Ancillary Ligands and Solvents on H/D Exchange Reactions Catalyzed by Cp*Ir Complexes

By: Feng, Yuee; et al

Organometallics (2010), 29(13), 2857-2867.

31-116-CAS-13663280

Experimental Protocols

1.1 **Reagents:** Methanol- d_4 , Water- d_2

Catalysts: Dichloro(1,3-dihydro-1,3,4,5-tetramethyl-2 \mathcal{H} imidazol-2-ylidene)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-

cyclopentadien-1-yl]iridium

Solvents: Methanol- d_4 , Water- d_2 ; rt \rightarrow 150 °C; 24 h, 150 °C;

150 °C → rt

Experimental Protocols

Effect of Ancillary Ligands and Solvents on H/D Exchange Reactions Catalyzed by Cp*Ir Complexes

By: Feng, Yuee; et al

Organometallics (2010), 29(13), 2857-2867.

31-116-CAS-4525955

1.1 **Reagents:** Methanol- d_4

 $\label{lem:catalysts:} \textbf{Catalysts:} (1,3-Dihydro-1,3,4,5-tetramethyl-2$$H$-imidazol-2-ylidene)[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$

tadien-1-yl][sulfato(2-)-κ*O*,κ*O*']iridium

Solvents: Methanol- d_4 ; rt \rightarrow 150 °C; 24 h, 150 °C; 150 °C \rightarrow rt

Experimental Protocols

Effect of Ancillary Ligands and Solvents on H/D Exchange Reactions Catalyzed by Cp*Ir Complexes

By: Feng, Yuee; et al

Organometallics (2010), 29(13), 2857-2867.

31-116-CAS-8788377

Steps: 1

1.1 Reagents: Methanol-d₄

Catalysts: (1,3-Dihydro-1,3,4,5-tetramethyl-2*H*-imidazol-2ylidene)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]bis(2,2,2-trifluoroacetato-κ*O*)iridium

Solvents: Methanol- d_4 ; rt \rightarrow 150 °C; 24 h, 150 °C; 150 °C \rightarrow rt

Experimental Protocols

Effect of Ancillary Ligands and Solvents on H/D Exchange Reactions Catalyzed by Cp*Ir Complexes

By: Feng, Yuee; et al

Organometallics (2010), 29(13), 2857-2867.

Scheme 80 (1 Reaction)

31-614-CAS-39442851

Steps: 1

Reagents: Copper oxide (CuO), Copper(II) triflate Catalysts: Silver triflate, Iridium, di-µ-chlorodichlorobis[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-; 1 h, 100 °C

Experimental Protocols

Ir (III)-catalyzed three-component cascade trifluoroethox ylation and one-pot method to construct complex amide compounds

By: Zeng, Chengfu; et al

Youji Huaxue (2023), 43(3), 1115-1123.

31-614-CAS-30579549

Steps: 1

Reagents: Methanol-d₄, Silver triflate

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2*H*-imidazol-2ylidene)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]iridium

Solvents: Methanol-d₄; 3 h, 100 °C

Highly Stable Cp-Ir(III) Complexes with N-Heterocyclic Carbene Ligands as C-H Activation Catalysts for the Deuter ation of Organic Molecules

By: Corberan, Rosa; et al

Journal of the American Chemical Society (2006), 128(12), 3974-3979.

Scheme 82 (1 Reaction)

Steps: 1

Suppliers (47)

Suppliers (124)

31-614-CAS-42513224

Steps: 1

1.1 **Reagents:** Formic-*d* acid, Ethanol-*d*₆, Formic-*d* acid, sodium salt, Water-*d*₂

Catalysts: Iridium (boron-doped ZrO2/SiO2 support); 1 h, 120 °C

Experimental Protocols

Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to y-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst

By: Jia, Huanhuan; et al

Journal of the American Chemical Society (2024), 146(46), 31647-31655.

Scheme 83 (1 Reaction)

Steps: 1

31-614-CAS-31846806

Steps: 1

1.1 Reagents: Cupric acetate

Catalysts: Iridium, di- μ -chlorodichlorobis[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-

Solvents: Acetonitrile, Methanol-d₄; 12 h, 120 °C

Experimental Protocols

Iridium-catalyzed oxidative coupling and cycliz ation of NH isoquinolones with olefins leading to isoindolo [2,1-b]isoqui nolin-5(7H)-one derivatives

By: Yan, Kelu; et al

Tetrahedron Letters (2022), 97, 153779.

Scheme 84 (2 Reactions)

Steps: 1

31-116-CAS-3776550

Steps: 1

1.1 **Reagents:** Methanol- d_4

Catalysts: Silver triflate, Dichloro[1,3-dihydro-1-(phenylmethyl) -3-(2,4,6-trimethylphenyl)-2*H*-imidazol-2-ylidene][(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]iridium (reaction products with (chloromethyl)phenyl-functionalized trimethylsi...)

Solvents: Methanol-d₄; 15 min, 100 °C

Experimental Protocols

A tailored organometallic-inorganic hybrid mesostructured material: a route to a well-defined, active, and reusable heterogeneous iridium-NHC catalyst for H/D exchange

By: Maishal, Tarun K.; et al

Angewandte Chemie, International Edition (2008), 47(45), 8654-8656.

31-116-CAS-1656612

Steps: 1

1.1 Reagents: Methanol-d₄

 $\label{lem:catalysts: Silver triflate, [1,3-Dihydro-1-(phenylmethyl)-3-(2,4,6-trimethylphenyl)-2 H-imidazol-2-ylidene] $$diiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]iridium$

Solvents: Methanol-d₄; 5 min, 100 °C

Experimental Protocols

A tailored organometallic-inorganic hybrid mesostructured material: a route to a well-defined, active, and reusable heterogeneous iridium-NHC catalyst for H/D exchange

By: Maishal, Tarun K.; et al

Angewandte Chemie, International Edition (2008), 47(45), 8654-8656.

Scheme 85 (1 Reaction)

$$\rightarrow \qquad \stackrel{\mathsf{D}}{\longrightarrow} \qquad$$

Steps: 1

31-116-CAS-15979163

Steps: 1

Suppliers (39)

Amidinatogermylene Metal Complexes as Homogeneous Catalysts in Alcoholic Media

Reagents: Methanol- d_4

📜 Suppliers (109)

Catalysts: Dichloro[(1,2,3,4,5-n)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl][1,2,3-tris(1,1-dimethylethyl)-4-phenyl-1,3,

By: Alvarez-Rodriguez, Lucia; et al

2-diazagermetium-2-yl]iridium; 24 h, 110 °C

Organometallics (2016), 35(15), 2516-2523.

Experimental Protocols

Scheme 86 (1 Reaction)

Steps: 1

Steps: 1 Yield: 95%

31-614-CAS-25520471

Steps: 1

Reagents: Methanol- d_4 , Silver triflate

Suppliers (109)

Catalysts: Dichloro(1,3-dibutyl-1,3-dihydro-2*H*-imidazol-2ylidene)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]iridium

Solvents: Methanol-d₄; 12 h, 100 °C

Highly Stable Cp-Ir(III) Complexes with N-Heterocyclic Carbene Ligands as C-H Activation Catalysts for the Deuter ation of Organic Molecules

By: Corberan, Rosa; et al

Journal of the American Chemical Society (2006), 128(12), 3974-3979.

Scheme 87 (1 Reaction)

Relative stereochemistry shown Suppliers (2)

Relative stereochemistry shown

Relative stereochemistry shown

31-116-CAS-23178793

Steps: 1 Yield: 95%

1.1 Reagents: Thiophenol

> Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2pyridinyl-κ*N*]phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol-d₄; 40 h, rt

Experimental Protocols

General Light-Mediated, Highly Diastereoselective Piperidine Epimerization: From Most Accessible to Most Stable Stereo isomer

By: Shen, Zican; et al

Journal of the American Chemical Society (2021), 143(1), 126-131.

Steps: 1 Yield: 93%

Steps: 1 Yield: 93%

Steps: 1 Yield: 90%

Scheme 88 (1 Reaction)

$$\rightarrow \bigcup_{D} \bigcup_{(S)} \bigcup_{(R)} \bigcup_{($$

Steps: 1 Yield: 93%

Relative stereochemistry shown

Suppliers (2)

Relative stereochemistry shown

Relative stereochemistry shown

31-116-CAS-23179939

1.1 Reagents: Thiophenol

Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl- κN]phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol-d₄; 40 h, rt

Experimental Protocols

General Light-Mediated, Highly Diastereoselective Piperidine Epimerization: From Most Accessible to Most Stable Stereo isomer

By: Shen, Zican; et al

Journal of the American Chemical Society (2021), 143(1), 126-131.

Scheme 89 (1 Reaction)

(S) NH

Relative stereochemistry shown

Relative stereochemistry shown

Relative stereochemistry shown

31-614-CAS-32698466

Steps: 1 Yield: 93%

1.1 **Reagents:** Quinuclidine, Methanol- d_4 , Triisopropylsilanethiol **Catalysts:** Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN)phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1); 20 h, rt

Experimental Protocols

Visible Light-Mediated, Highly Diastereoselective Epimeri zation of Lactams from the Most Accessible to the More Stable Stereoisomer

By: Kazerouni, Amaan M.; et al

ACS Catalysis (2022), 12(13), 7798-7803.

Scheme 90 (1 Reaction)

Relative stereochemistry shown

☐ Suppliers (3)

Relative stereochemistry shown

Relative stereochemistry shown

31-116-CAS-23177800

Steps: 1 Yield: 90%

1.1 Reagents: Thiophenol

Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl- κN]phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1)

Solvents: Methanol-d₄; 40 h, rt

Experimental Protocols

General Light-Mediated, Highly Diastereoselective Piperidine Epimerization: From Most Accessible to Most Stable Stereo isomer

By: Shen, Zican; et al

Journal of the American Chemical Society (2021), 143(1), 126-131.

Steps: 1 Yield: 89%

Steps: 1 Yield: 84%

Scheme 91 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

31-614-CAS-37018566

Steps: 1 Yield: 89%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

Reagents: Methanol-d4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κΛ/)](1-)]

 $(N, N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt Solvents: Dimethylformamide; 36 h, rt

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 92 (1 Reaction)

➤ Suppliers (75)

➤ Suppliers (17)

Suppliers (21)

31-614-CAS-33408369

Steps: 1 Yield: 84%

Reagents: Methanol- d_4 , Water- d_2

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$ tadien-1-yl]-

Solvents: Isopropanol; 21 h, 80 °C

1.2 Reagents: Sulfuric acid Solvents: Water; pH 5

Experimental Protocols

Iridium-catalyzed α-selective deuteration of alcohols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 93 (1 Reaction)

Suppliers (73)

Suppliers (35)

Steps: 1 Yield: 79%

Steps: 1 Yield: 75%

31-085-CAS-18874912

Steps: 1 Yield: 82%

Reagents: Pivalic acid

Catalysts: Nickel acetate, Iridium, di-µ-chlorodichlorobis[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, Silver

hexafluoroantimonate

Solvents: 2-Propanol-d; 12 h, 80 °C

Experimental Protocols

Divergent Coupling of Anilines and Enones by Integration of C-H Activation and Transfer Hydrogenation

By: Zhou, Xukai; et al

Angewandte Chemie, International Edition (2018), 57(22), 6681-6685.

Scheme 94 (1 Reaction)

Suppliers (95)

Double bond geometry shown

Double bond geometry shown

Supplier (1)

31-614-CAS-37018563

Steps: 1 Yield: 79%

Reagents: Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/λ)](1-)]

 $(N, N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt Solvents: Dimethylformamide; 36 h, rt

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 95 (1 Reaction)

Suppliers (57)

Double bond geometry shown

Double bond geometry shown

31-614-CAS-37018564

Steps: 1 Yield: 75%

Reagents: Methanol-d4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)]

(N,N-dimethyl-4-pyridinamine-κN¹)cobaltSolvents: Dimethylformamide; 36 h, rt

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 69%

Scheme 96 (1 Reaction)

Suppliers (6)

📜 Suppliers (20)

31-614-CAS-24223554

Steps: 1 Yield: 69%

1.1 **Reagents:** Methanol- d_4 Catalysts: Iridium, di-µ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-, Silver hexafluoro

antimonate

Solvents: 1,2-Dichloroethane; 4 h, 120 °C

Experimental Protocols

Efficient Synthesis of Quinazolines from Aryl Imidates and N-Alkoxyamide by Ir(III)-Catalyzed C-H Amidation/Cyclization

By: Fan, Wei-Tai; et al

European Journal of Organic Chemistry (2021), 2021(29), 4144-4147.

Scheme 97 (1 Reaction)

> Suppliers (86)

Supplier (1)

Steps: 1 Yield: 68%

31-614-CAS-33408370

Steps: 1 Yield: 68%

Reagents: Methanol- d_4 , Water- d_2 , Sodium hydroxide-dCatalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato $(2-)-\kappa N^1, \kappa N^{1'}][(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopen$ tadien-1-yl]-

Solvents: Isopropanol; 3 d, 80 °C

Experimental Protocols

Iridium-catalyzed α-selective deuteration of alcohols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Scheme 98 (1 Reaction) Steps: 1 Yield: 66%

Double bond geometry shown

Double bond geometry shown

Double bond geometry shown

Suppliers (103)

Steps: 1 Yield: 65%

Steps: 1 Yield: 63%

31-614-CAS-37018562

Steps: 1 Yield: 66%

1.1 Reagents: Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)]

(N,N-dimethyl-4-pyridinamine- κN^1)cobalt **Solvents:** Dimethylformamide; 36 h, rt

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 99 (1 Reaction)

+

31-614-CAS-36702157

Steps: 1 Yield: 65%

Suppliers (66)

1.1 **Catalysts:** Di- μ -chlorobis[(1,2,5,6- η)-1,5-cyclooctadiene]

diiridium, *R*-Xyl-BINAP **Solvents:** Toluene; 10 min, rt

1.2 **Reagents:** Methanol- d_4

Catalysts: Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]

borate; 12 h, 100 °C

Experimental Protocols

Enantioselective Synthesis of N-N Biaryl Atropisomers through Iridium(I)-Catalyzed C-H Alkylation with Acrylates

By: Yin, Si-Yong; et al

Angewandte Chemie, International Edition (2023), 62(37), e202305067.

Scheme 100 (1 Reaction)

Suppliers (41)

N D

📜 Suppliers (4)

31-116-CAS-23809105

Steps: 1 Yield: 63%

1.1 Reagents: 2-Propan-*2-d*-ol-*d*, 1,1,1,3,3,3-hexafluoro-Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-; 10 min, 70 °C

Experimental Protocols

Iridium(III)-Catalyzed Direct Intermolecular Chemoselective α -Amidation of Masked Aliphatic Carboxylic Acids with Dioxaz olones via Nitrene Transfer

By: Mahato, Sanjit K.; et al

ACS Catalysis (2021), 11(12), 7126-7131.

Scheme 101 (1 Reaction)

Steps: 1 Yield: 59%

Steps: 1 Yield: 48%

• 1/2 Zn

➤ Suppliers (90)

➤ Suppliers (33)

➤ Suppliers (88)

Multi-component structure image available in CAS SciFinder \bigcup_{D}

➤ Supplier (1)

31-614-CAS-41216431

Steps: **1** Yield: **59%**

1.1 Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-Solvents: Methanol-*d*₄; 2 h, 60 °C

Experimental Protocols

Electrooxidative iridium-catalyzed sp 2 C-H activation-annulation leading to cationic π -extended heteroaromatics

By: Yang, Qi-Liang; et al

Organic Chemistry Frontiers (2024), 11(17), 4849-4856.

Scheme 102 (1 Reaction)

Absolute stereochemistry shown, Rotation (-)

➤ Suppliers (96)

31-614-CAS-33408372 Steps: 1 Yield: 48%

.1 Reagents: Methanol-d₄, Water-d₂

Catalysts: Iridium, aqua[[2,2'-bipyridine]-6,6'(1*H*,1'*H*)-dionato (2-)-κ N^1 ,κ N^1 '][(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen

tadien-1-yl]-

Solvents: Isopropanol; 21 h, 80 °C

Experimental Protocols

Iridium-catalyzed α-selective deuteration of alcohols

By: Itoga, Moeko; et al

Chemical Science (2022), 13(30), 8744-8751.

Steps: 1 Yield: 46%

Steps: 1 Yield: 44%

Scheme 103 (1 Reaction)

$$\begin{array}{c} \mathsf{OH} \\ \to \\ \mathsf{HO} \\ \end{array} \begin{array}{c} \mathsf{OH} \\ \mathsf{N} \\ \mathsf{N} \\ \end{array}$$

📜 Suppliers (6)

Double bond geometry shown

Steps: 1 Yield: 46%

Double bond geometry shown

31-614-CAS-37018567

1.1 **Reagents:** Methanol- d_4

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)]

(N,N-dimethyl-4-pyridinamine- κN^1)cobalt **Solvents:** Dimethylformamide; 36 h, rt

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 104 (1 Reaction)

Double bond geometry shown

□ Suppliers (59)

- -

Double bond geometry shown

Steps: 1 Yield: 44%

Double bond geometry shown

Supplier (1)

31-614-CAS-37018561

1.1 Reagents: Methanol-d₄

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ *N*¹, κ *N*¹']bis[2-(2-pyridinyl- κ *N*) phenyl- κ *C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ *N*)](1-)]

(N,N-dimethyl-4-pyridinamine- κN^1)cobalt **Solvents:** Dimethylformamide; 36 h, rt

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 39%

Scheme 105 (1 Reaction)

₩ Suppliers (66)

Suppliers (161)

➤ Supplier (1)

Suppliers (39)

31-116-CAS-22501245

Steps: 1 Yield: 39%

Iridium Complex Catalyzed C2-Extension of Primary Alcohols with Ethanol via Hydrogen Autotransfer Reaction

1.1 **Reagents:** Potassium *tert*-butoxide

 $\textbf{Catalysts:} \ \, \text{Iridium, di-μ-chlorodichlorobis} \ \, [(1,2,3,4,5-\eta)-1,2,3,4,5-\eta] \ \, \text{Catalysts:} \ \, \text{Iridium, di-μ-chlorodichlorobis} \ \, \text{Catalysts:} \ \, \text{Cataly$

pentamethyl-2,4-cyclopentadien-1-yl]di-Solvents: Tetrahydrofuran; 24 h, 100 °C By: Kobayashi, Masaki; et al

Journal of Organic Chemistry (2020), 85(18), 11952-11958.

Scheme 106 (1 Reaction)

Steps: 1 Yield: 39%

Suppliers (21)

≒ Suppliers (70)

31-614-CAS-40343563

Steps: 1 Yield: 39%

1.1 Reagents: 1-Adamantanecarboxylic acid, Silver triflate, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]methanesulfona midato-κ*O*]silver

Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-η)-1,2,3,4,5-η)-1,2,3,4,5-η

pentamethyl-2,4-cyclopentadien-1-yl]di-Solvents: Methanol-*d*; 12 h, 120 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Synthesis of acridones via Ir (III)-catalyzed amination annulation of oxazoles with anthranils

By: Zhou, Han-Yi; et al

Organic & Biomolecular Chemistry (2024), 22(20), 4036-4040.

Steps: 1 Yield: 32%

Scheme 107 (1 Reaction)

$$+ \longrightarrow 0$$

➤ Suppliers (55)

📜 Suppliers (76)

Double bond geometry shown

31-116-CAS-6942209

Steps: 1 Yield: 32%

1.1 Reagents: Methanol- d_4

Catalysts: Iridium, di- μ -chlorodichlorobis[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl- κ *O*]methanesulfonamidato- κ *O*] silver

Solvents: 1,2-Dichloroethane; 1 h, 70 °C; 70 °C → rt

Experimental Protocols

Complete Switch of Selectivity in the C-H Alkenylation and Hydroarylation Catalyzed by Iridium: The Role of Directing Groups

By: Kim, Jiyu; et al

Journal of the American Chemical Society (2015), 137(42), 13448-13451.

Scheme 108 (1 Reaction)

Absolute stereochemistry shown, Rotation (+)

Suppliers (102)

Suppliers (248)

Steps: 1 Yield: 32%

Absolute stereochemistry shown

Absolute stereochemistry shown

31-614-CAS-39967508

Steps: 1 Yield: 32%

- 1.1 Reagents: Benzoxazolium, 5,7-bis(1,1-dimethylethyl)-3-phenyl-, tetrafluoroborate(1-) (1:1)
 Solvents: tert-Butyl methyl ether; 10 min, rt
- 1.2 Reagents: Pyridine; rt; 45 min, rt
- 1.3 Reagents: Benzoyl peroxide, Quinuclidine
 Catalysts: Bis(acetylacetonato)nickel, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine-κ/ν¹,κ/ν¹']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-κ/ν]phenyl-κ/ν]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1)
 Solvents: Dimethyl sulfoxide, *tert*-Butyl methyl ether; 1 h, rt

Experimental Protocols

Alcohol-alcohol cross-coupling enabled by SH2 radical sorting

By: Chen, Ruizhe; et al

Science (Washington, DC, United States) (2024), 383(6689), 1350-1357.

Steps: 1

Steps: 1 Yield: 24%

Scheme 109 (1 Reaction)

Suppliers (49)

` Suppliers (75)

➤ Suppliers (471)

📜 Suppliers (89)

31-614-CAS-30929097

Steps: 1 Yield: 24%

Reagents: Hydrochloric acid Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[3,5-difluoro-2-[5-(trifluoromethyl)-2pyridinyl-κ*N*]phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-)

Solvents: 1,2-Dichloroethane, Water; 24 h

Experimental Protocols

The Alkylation and Reduction of Hetero arenes with Alcohols Using Photoredox Catalyzed Hydrogen Atom Transfer via Chlorine Atom Generation

By: Zidan, Montserrat; et al

European Journal of Organic Chemistry (2020), 2020(10), 1453-1458.

Scheme 110 (1 Reaction)

D

Suppliers (49)

Suppliers (248)

Suppliers (76)

31-116-CAS-19850307

Steps: 1

Reagents: Water-d₂

Catalysts: Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-, Indium triflate; 6 h, 80 °C

Experimental Protocols

Ir(III)-Catalyzed [4 + 2] cycliz ation of azobenzene and diazotized Meldrum's acid for the synthesis of cinnolin-3(2H)-

By: Borah, Gongutri; et al

Organic & Biomolecular Chemistry (2019), 17(9), 2554-2563.

Scheme 111 (1 Reaction)

+

Steps: 1

Steps: 1

➤ Suppliers (81)

31-614-CAS-34442419

Steps: 1

Thioamide-Directed Transition-Metal-Catalyzed C(sp²)-H Vinylation and Arylation of Ferrocenes

1.1 **Reagents:** Methanol-*d*₄, Silver fluoride

 $\label{eq:Catalysts:Cupric acetate, Silver acetate, Iridium, di-μ-chlorodic hlorobis[(1,2,3,4,5-$\eta)$-1,2,3,4,5-pentamethyl-2,4-cyclopen$

tadien-1-yl]di-

Solvents: Tetrahydrofuran; 12 h, 80 °C

By: Li, Hao; et al

Advanced Synthesis & Catalysis (2022), 364(17), 2926-2931.

Scheme 112 (1 Reaction)

Suppliers (29)

Steps: 1

Suppliers (95)

1.1 **Catalysts:** Iridium, di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]di-, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]methanesulfonamidato-κ*O*] silver

Solvents: Methanol-d₄; 12 h, 30 °C

Experimental Protocols

31-116-CAS-7037858

Ir(III)-Catalyzed Synthesis of Isoqui noline N-Oxides from Aryloxime and α -Diazocarbonyl Compounds

By: Phatake, Ravindra S.; et al

Organic Letters (2016), 18(2), 292-295.

Scheme 113 (1 Reaction)

Steps: 1

Suppliers (56)

31-116-CAS-22283107

Steps: 1

Regioselective, Photocatalytic α-Functionalization of Amines

1.1 **Reagents:** Methanol- d_4

Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN)phenyl- κC]-, (OC-6-33)-,

hexafluorophosphate(1-) (1:1)

Solvents: Dichloromethane; 24 h, 24 °C

By: Leng, Lingying; et al

Journal of the American Chemical Society (2020), 142(28), 11972-11977.

Scheme 114 (1 Reaction)

Steps: 1

Suppliers (248)

➤ Suppliers (471)

➤ Suppliers (120)

31-032-CAS-23664192

Steps: 1

1.1 Reagents: Cesium carbonate

Catalysts: Iridium (complex with 2,6-dicyanopyridine homopo lymer, pentamethylcyclopentadie...), 2,6-Pyridinedicarbon itrile, homopolymer (complex with pentamethylcyclope ntadienyliridium(III) dichloride dimer)

Solvents: Methanol; 12 h, 125 °C

Recyclable covalent triazine framework-supported iridium catalyst for the N-methylation of amines with methanol in the presence of carbonate

By: Liu, Peng; et al

Journal of Catalysis (2021), 396, 281-290.

Steps: 1 Yield: 41%

Scheme 115 (1 Reaction)

O →

➤ Suppliers (56)

➤ Suppliers (26)

31-116-CAS-22283108

Steps: 1 Yield: 41% Re

Regioselective, Photocatalytic α-Functionalization of Amines

1.1 Reagents: Methanol- d_4

Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN)phenyl- κC]-, (OC-6-33)-,

hexafluorophosphate(1-) (1:1)

Solvents: Dichloromethane; 4 h, 24 °C

By: Leng, Lingying; et al

Journal of the American Chemical Society (2020), 142(28), 11972-11977.

Scheme 116 (1 Reaction)

Suppliers (56)

➤ Suppliers (26)

31-614-CAS-29352699

Steps: 1 Yield: 35%

Regioselective, Photocatalytic α-Functionalization of Amines

1.1 **Reagents:** Methanol- d_4

Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN)phenyl- κC]-, (OC-6-33)-,

hexafluorophosphate(1-) (1:1) Solvents: Acetonitrile; 4 h, 24 °C By: Leng, Lingying; et al

Journal of the American Chemical Society (2020), 142(28), 11972-11977.

Scheme 117 (1 Reaction)

Steps: 1 Yield: 31%

$$+ \underbrace{ \left(E \right) \left(E \right) }_{\left(E \right)} \rightarrow \underbrace{ \left(E \right) }_{\left(E \right)} \underbrace{ \left(E$$

Double bond geometry shown

Double bond geometry shown

➤ Suppliers (2)

Double bond geometry shown

31-614-CAS-36270101

Steps: **1** Yield: **31%**

31% Chelation-assisted iridium-catalyzed hydroalkenylation and hydroarylation/cyclization with conjugated trienes

1.1 **Reagents:** Methanol-*d*

 $\textbf{Catalysts:} \ \, \textbf{Bis[(1,2,5,6-\eta)-1,5-cyclooctadiene]} \\ \textbf{di-}\mu\text{-methoxydi}$

iridium; 45 min, 60 °C

Experimental Protocols

By: Liao, Yilei; et al

Organic & Biomolecular Chemistry (2023), 21(17), 3537-3541.

Scheme 118 (1 Reaction)

Steps: 1 Yield: 21%

$$+ \bigvee_{|E| \atop |E|} + \bigvee_{|E| \atop |E| \atop |E|} + \bigvee_{|E| \atop |E| \atop |E|$$

Double bond geometry shown

> Suppliers (11)

➤ Suppliers (2)

Double bond geometry shown

Relative stereochemistry shown Double bond geometry shown

31-614-CAS-36270099

Steps: 1 Yield: 21%

1.1 Reagents: Ethanol-*d*

Catalysts: Bis[(1,2,5,6-η)-1,5-cyclooctadiene]di-μ-methoxydi

iridium; 12 h, 60 °C

Experimental Protocols

Chelation-assisted iridium-catalyzed hydroalkenylation and hydroarylation/cyclization with conjugated trienes

By: Liao, Yilei; et al

Organic & Biomolecular Chemistry (2023), 21(17), 3537-3541.

Steps: 1

→ (

Suppliers (11)

Double bond geometry shown

➤ Suppliers (65)

Double bond geometry shown

□ Suppliers (79)

➤ Suppliers (93)

31-242-CAS-4844934

1.1 Reagents: Hydrogen

Catalysts: Iridium(1+), [μ -[3,5-bis[(diphenylphosphino- κP) methyl]-1H-pyrazolato- κN^1 : N^2]]bis[(1,2,5,6- η)-1,5-cyclooc

tadiene]di-, tetrafluoroborate(1-)

Solvents: Methanol-d4

Steps: 1 Bimetallic reactivity. Oxidative-addition and reductive-elimin ation reactions of rhodium and iridium bimetallic complexes

By: Schenck, Terry G.; et al

Inorganic Chemistry (1985), 24(15), 2338-44.

Scheme 120 (1 Reaction)

 $\bigvee_{N} \longrightarrow \bigvee_{N}$

N—

+

D

Steps: 1 Yield: 60%

Suppliers (2)

📜 Suppliers (56)

➤ Suppliers (91)

31-614-CAS-26049872

Steps: 1 Yield: 60%

Regioselective, Photocatalytic α-Functionalization of Amines

1.1 **Reagents:** Methanol-*d*₄

Catalysts: Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyri dine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN)phenyl- κC]-, (OC-6-33)-,

hexafluorophosphate(1-) (1:1) Solvents: Acetonitrile; 24 h, 24 °C By: Leng, Lingying; et al

Journal of the American Chemical Society (2020), 142(28), 11972-11977.