Hot Sphere in Oil Coarse Mesh Case

$$\int q \, dA = hA \big(T_f - T_s \big)$$

$$h = \frac{\int q dA}{A(T_f - T_s)}$$

Nusselt Number (Tf=300K)

$$Nu = \frac{hD}{k}$$

$$k_{fluid} = 0.1856 - 0.0002 * 300 = 0.1376 \frac{W}{m \cdot K}$$

$$D_{sphere} = \frac{3}{100} m$$

Prandtl Number (Tf=300K)

$$Pr = \frac{\mu c_p}{k}$$

$$k_{fluid} = 0.1856 - 0.0002 * 300 = 0.1376 \frac{W}{m \cdot K}$$

Dynamic viscosity (300K)

	Dynamic Viscosity		T(K)
	Coefficient	T^n	300
first term	4.57E-17	7.29E+14	
second term	-1.42E-13	2.43E+12	
third term	1.83E-10	8100000000	
fourth term	-1.24E-07	27000000	
fifth term	4.71E-05	90000	
sixth term	-9.47E-03	300	
seventh term	7.89E-01	1	
dynamic viscosity	0.003756412		

$$\mu(300K) = 0.003756 \, Pa \, s$$

Cp (300K)

	ср		T(K)
	Coefficient	T^n	300
first term	3.22F-08	8100000000	
second term	-5.51E-05		
third term	3.44E-02	90000	
fourth term	-6.49E+00	300	
fifth term	1.67E+03	1	
Cp (J/kgK)	1591.1103		

$$C_p = 1591.1103 \frac{J}{kg \cdot k}$$

Grasshof Number

$$Gr = \frac{g\beta(T_s - T_f)D^3}{v^2} = \frac{g\beta(T_s - T_f)D^3\rho^2}{\mu^2}$$
$$g = 9.81\frac{m}{s^2}$$
$$\beta = -\frac{1}{\rho}\left(\frac{\partial\rho}{\partial T}\right)_p$$
$$D = \frac{3}{100}m$$

Density Data (300K)

	density		T(K)
	Coefficient	T^n	300
T^6	0.00E+00	7.29E+14	
T^5	0.00E+00	2.43E+12	
T^4	0.00E+00	8100000000	
T^3	-1.74E-06	27000000	
T^2	1.73E-03	90000	
Т	-1.39E+00	300	
constant	1.36E+03	1	
density	1054.258887		

$$\rho = 1054.2588$$

	d(rho)/dT		T(K)
	Coefficient	T^n	300
T^6	0.00E+00	7.29E+14	
T^5	0.00E+00	2.43E+12	
T^4	0.00E+00	8100000000	
T^3	0.00E+00	27000000	
T^2	-5.22E-06	90000	
Т	3.47E-03	300	
constant	-1.39E+00	1	
d(rho)/dT	-0.82281423		
beta	0.000780467		

$$\left(\frac{\partial \rho}{\partial T}\right)_p = -0.8228$$

$$\left(\frac{\partial \rho}{\partial T}\right)_p = -0.8228$$

$$\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_p = 0.000780467$$

Largest Rayleigh Number

Ra=Gr*Pr=1.411E+08

This is below our threshold (3e8) for liquids!

Laminar simulation is correct!

Comparison vs correlation

Round one doesn't seem convincing!

Why the mismatch?

- Mesh is too coarse (we found out this can contribute, but it's not the only problem)
- The correlation developed is for <u>steady state</u> and the experiment was <u>transient</u> (not really, because some experimental data found online with transient conjugate heat trf matched the <u>spherical Nusselt Number Correlation</u>)
 - http://courses.washington.edu/mengr331/lab/ME331 Transient Lab Sample Report.pdf
- β changes with temperature??, don't use bulk fluid temperatures for β (natural convection)
 - o 's input: film temperature instead of bulk temperature
 - \circ Yes we shid always use film temperature $\frac{T_S + T_{\infty}}{2}$ for Thermodynamic property calculation
 - http://courses.washington.edu/mengr331/lab/ME331_Transient_Lab_Sample_Report.pdf
- After we include temperature variation using film temperature, the discrepancy grows (for turbulent) and remains for laminar.

- Actual additional reason post debugging: thermophysical property round off error.

I rounded off the polynomial not using enough significant figures for OpenFOAM input, this resulted in μ being several orders of magnitude bigger, and also it increases viscosity with temperature (not physical for liquids)

- Using 10 decimal places helps!
- o So we can see effect of having corrected thermophysical properties:

- Without which, we get close to zero Nu for convection with fineMesh
- We can see that even with correct thermophysical properties, the fineMesh outperforms the coarse Mesh, fineMesh laminar flow matches well with correlation

.