Engineering DesignENGR 13x2

Materials, Manufacturing, & 3d Printing

Look for efficient solutions

Agenda

- Demo of 3d Printing
 - Slicing software
 - G-code
 - Printer setup
 - Print!
- Materials & Fabrication Methods
- Manufacturing & Production Issues

3d Printing demo

STL model

Your 3d Printing Options...

OSU Bookstore

- Tech counter at the back.
- Give them a file, they give you back a part.

- Free for school projects, otherwise 8 cents per gram.
- Edmon Low Creative Studios (OSU Library)
 - https://info.library.okstate.edu/creativestudios/3dprinting
 - Go through their training, and you can print on your own.
 - Nice printers, can use free of charge!

CEAT ITS 3d Printers

- CraftUnique Craftbot printers in ATRC, ES, Parker Hall.
- Let them help you with your first print, then open-use.

Materials & Fabrication Methods

Structural/Mechanical Materials

What are some commonly-used materials?

- Metals
- Wood
- Plastics
- Concrete
- Ceramics/Glass
- Paints/Coatings
- Composites
- Fluids

Material Properties

- General Properties
 - Availability/Manufacturability
 - Cost
 - Appearance
- Mechanical Properties
 - Density
 - Corrosion Resistance
 - Strength
 - Elasticity
- Thermal Properties
 - Melting Point
 - Conductivity
 - Creep Resistance

Material Selection

- Size Constraints
- Shape & Geometry
- Technology availability
- Lifetime targets
- Cost/Stock Availability
- Environment
- Force Requirements
- Disposal
- Safety
- Quantity

Fabrication Methods

Metals

- Casting (complex geometries, hollow parts, large parts, combinations of parts, high volume) (https://www.youtube.com/watch?v=yXVLbzI3xTE)
- Wrought Processes (superior mechanical properties)
 - Stamping
 - Forging
 - Extrusion (https://www.youtube.com/watch?v=iiGlq7408ME)
 - Rolling
 - Drawing
- Machining (subtractive, common, can be complicated (5-axis machines))
- Joining
 - Welding
 - Assembly

Fabrication Methods

Plastics

- Injection Molding
- Compression Molding
- Extrusion
- Blow Molding
- Thermoforming
- 3D Printing
- Machining
- Joining
 - Welding
 - Adhesives
 - Assembly

https://www.youtube.com/watch?v=qn16JtE_vLc

Manufacturing & Production Issues

Manufacturing & Production Issues

- Raw Material & Component Quality
- Fits & Tolerances
- Tooling Costs
- Lead-times
- Functionality vs.
 Manufacturability

Some Recommendations

- Consider taking Materials & Fabrication Courses
- Establish good relationships
 - Make friends with the prototype shop and the manufacturing technicians.
- Maintain your willingness to learn
 - This is practice, not theory.
 - Be willing to get your hands dirty.
- Hone your organizational skills (working on multiple projects)
- Failure is your friend... it is how we learn best.