Differential rechnung im \mathbb{R}^n

Def Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$. f heißt (total) differenzierbar in $x_0 \in U$, falls es eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}$ gibt, sodass

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{\|h\|} = 0.$$

In diesem Fall heißt A die Ableitung von f in x_0 und wird mit $f'(x_0) := A$ bezeichnet. Manchmal nennt man A das Differential von f in x_0 und bezeichnet man es mit $Df_{|x_0}$.

Def Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$. Sei $x_0 \in U$ und $h \in \mathbb{R}^n$. Falls der Grenzwert

$$\lim_{t \to 0} \frac{f(x_0 + th) - f(x_0)}{t}$$

existiert, so heißt er Richtungsableitung von f in x_0 in Richtung h und wird mit $\partial_h f(x_0)$ bezeichnet.

Def Sei $e_1, ..., e_n$ die Standard-Basis von \mathbb{R}^n . Dann heißt

$$\frac{\partial f}{\partial x_j}(x_0) := \partial_{e_j} f(x_0) = \lim_{t \to 0} \frac{f(x_0 + t e_j) - f(x_0)}{t}, \quad j = 1, ..., n,$$

die j-te partielle Ableitung von f in x_0 oder auch die partielle Ableitung von f nach x_j in x_0 .

Satz 2.1 Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ differenzierbar in $x_0 \in U$. Dann existiert für jeden Vektor $h = h_1 e_1 + ... + h_n e_n$ die Richtungsableitung $\partial_h f(x_0)$ und es gilt:

$$f'(x_0)h = \partial_h f(x_0) = h_1 \frac{\partial f}{\partial x_1}(x_0) + \dots + h_n \frac{\partial f}{\partial x_n}(x_0)$$
$$= \left(\frac{\partial f}{\partial x_1}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0)\right) \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

Satz 2.2 Sei $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$ und $a \in U$. Wenn alle partiellen Ableitungen von f in einer Umgebung von a existieren und in a stetig sind, dann ist f in a total differenzierbar.

Satz 2.3 (Kettenregel, erste Version) Sei $I \subset \mathbb{R}$ ein Intervall, $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$ und $\gamma: I \to U$, $\gamma(t) = (\gamma_1(t), ..., \gamma_n(t))$. Wenn γ in $t_0 \in I$ differenzierbar und f in $a = \gamma(t_0)$ differenzierbar ist, dann ist $f \circ \gamma$ differenzierbar in t_0 und es gilt

$$(f \circ \gamma)'(t_0) = Df_{|\gamma(t_0)}\gamma'(t_0) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(\gamma(t_0))\gamma'_k(t_0).$$

Def Sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf \mathbb{R}^n , $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ im Punkt $a \in U$ differenzierbar. Der *Gradient* von f an der Stelle a bezüglich $\langle \cdot, \cdot \rangle$ ist der Vektor gradf(a), für den gilt

$$Df_{|a}h = \langle \operatorname{grad} f(a), h \rangle \quad \forall h \in \mathbb{R}^n.$$

Der Gradient wird auch mit $\nabla f(a)$ bezeichnet. Im Fall des Standardskalarproduktes ist

$$\operatorname{grad} f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix}.$$

Satz 2.4 Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ im Punkt $a \in U$ differenzierbar. Die Richtungsableitung $\partial_h f(a)$ ist maximal über alle $h \in \mathbb{R}^n$ mit ||h|| = 1, wenn h und grad f(a) parallel und gleichgerichtet sind.

Def Sei $U \subset \mathbb{R}^n$ offen, $k \in \mathbb{N}$. Eine Funktion $f: U \to \mathbb{R}$ heißt k-mal partiell differenzierbar, wenn alle partiellen Ableitungen von f bis zur Ordnung k existieren. Wenn alle partiellen Ableitungen von f bis zur Ordnung k noch zusätzlich stetig sind, so sagt man, f sei k-mal stetig differenzierbar in U und schreibt $f \in C^k(U)$.

Satz 2.5 (Satz von Schwarz) Sei $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$, $i, j \in \{1, ..., n\}$. Existieren in einer Umgebung von $a \in U$ die partiellen Ableitungen $\frac{\partial f}{\partial x_i}, \frac{\partial f}{\partial x_j}, \frac{\partial^2 f}{\partial x_j \partial x_i}$ und sind sie dort stetig, so existiert auch $\frac{\partial^2 f}{\partial x_i \partial x_j}(a)$ und es gilt

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a).$$