8. hét, 2020. április 6.

Analízis I. Előadás

Tartalom

a) Torlódási pont

b) Függvény határértéke

Torlódási pont

Definíció: Azt mondjuk, hogy $a \in \mathbb{R}$ az $A \subset \mathbb{R}$ halmaz torlódási pontja, ha az a minden környezetében az A halmaznak végtelen sok pontja van:

$$\forall \ \epsilon > 0$$
 esetén $K_{\epsilon}(a) \cap A$ végtelen halmaz.

Az A halmaz torlódási pontjainak halmazát A'-vel jelöljük, és az A derivált hamazának nevezzük.

Példák

- a) $A = (a, b) \ (a, b \in \mathbb{R}) : A' = [a, b].$
- **b)** $A = \mathbb{N} : A' = \{+\infty\}.$
- c) $A = \mathbb{Q} : A' = \overline{\mathbb{R}}$.
- d) $A = \mathbb{R} \setminus \mathbb{Q} : A' = \overline{\mathbb{R}}$.
- e) $A = \left\{ \frac{1}{n} : n \in \mathbb{N}, n \ge 1 \right\} : A' = \{0\}.$

Átfogalmazás

$$A\subset \mathbb{R},\ a\in A'\iff \ \forall\ \epsilon>0 \ \ \ \ \ \ \ \ \left(\mathcal{K}_\epsilon(a)\cap A \right)\setminus \{a\}
eq\emptyset\,.$$

Bizonyítás:

A \Longrightarrow irány triviális.

 $\longleftarrow \quad \text{Indirekt tegyük fel, hogy } \exists \ \ \epsilon > 0, \quad \text{amelyre} \quad \left(\textit{K}_{\epsilon}(\textit{a}) \bigcap \textit{A} \right) \setminus \{\textit{a}\} \neq \emptyset \ \ \text{v\'eges}$

halmaz. Legyen $\epsilon^* = \min \left\{ |x-a| : x \in \left(K_{\epsilon}(a) \cap A \right) \setminus \{a\} \right\} > 0.$

Ekkor $(K_{\epsilon^*}(a) \cap A) \setminus \{a\} = \emptyset$.

Megjegyés

- a) Véges halmaznak nincs torlódási pontja.
- b) Ha $a \in A \setminus A'$, akkor a-t az A halmaz izolált pontjának nevezzük.

Állítás

Minden végtelen halmaznak van torlódási pontja.

Bizonyítás

- i) Ha A nem korlátos, akkor felülről nem korlátos esetben $+\infty \in A'$. Ha alulról nem korlátos, akkor $-\infty \in A'$.
- ii) Legyen $A \subset \mathbb{R}$ olyan korlátos halmaz, amelynek végtelen sok eleme van. Ekkor van olyan $a: \mathbb{N} \to A$ sorozat, amelyiknek minden tagja különböző, azaz $a_k \neq a_n \ (k \neq n, k, n \in \mathbb{N})$.

A Bolzano–Weierstrass-tétel miatt a korlátos a sorozatnak van konvergens részsorozata. \exists tehát olyan $\nu: \mathbb{N} \to \mathbb{N} \uparrow$ indexsorozat, hogy $a \circ \nu$ konvergens.

Legyen $b := \lim a \circ \nu \in \mathbb{R}$.

A határérték definíciója szerint ekkor $\forall \ \epsilon > 0$ esetén van olyan $N \in \mathbb{N}$, hogy $a_{\nu_n} \in K_{\epsilon}(b) \ \forall \ n > N$. Ha tehát n > N, akkor $a_{\nu_n} \in A \bigcap K_{\epsilon}(b)$.

Mivel a sorozat tagjai mind különbözők, ezért ez egyben azt is jelenti, hogy $A \cap K_{\epsilon}(b)$ végtelen halmaz. Következésképpen b az A torlódási pontja.

Függvény határértéke

Függvény határértékének definíciója

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f'$ pontban van határértéke és ez $A \in \overline{\mathbb{R}}$, ha $\forall \ \epsilon > 0$ esetén van olyan $\delta > 0$, hogy ha $x \in (K_\delta(a) \cap \mathcal{D}_f) \setminus \{a\}$, akkor $f(x) \in K_\epsilon(A)$.

Emlékeztető

 $f \in \mathbb{R} \to \mathbb{R}$ jelölés jelentése: f valós-valós függvény, azaz $\mathcal{D}_f \subset \mathbb{R}$ és $\mathcal{R}_f \subset \mathbb{R}$.

A határérték szempontjából érdektelen, hogy f értelmezve van-e a-ban, és ha igen, akkor ott mi a függvény értéke.

A határérték egyértelműsége

Tegyük fel, hogy a fenti definíció feltételeinek két különböző $A_1, A_2 \in \mathbb{R}$ is eleget tesz. Mivel a két elem különböző, ezért nyilvánvalóan olyan $\exists \ \epsilon > 0$, amelyre $K_{\epsilon}(A_1) \mid K_{\epsilon}(A_2) = \emptyset$.

A hatérérték definíciója szerint:

$$\exists \delta_1 > 0 \text{ olyan, hogy } x \in (K_{\delta_1}(a) \cap \mathcal{D}_f) \setminus \{a\} \text{ esetén } f(x) \in K_{\epsilon}(A_1),$$

$$\exists \ \delta_2 > 0 \ \text{olyan, hogy} \ x \in (K_{\delta_2}(a) \cap \mathcal{D}_f) \setminus \{a\} \ \text{eset\'en} \ f(x) \in K_{\epsilon}(A_2).$$

Legyen $\delta := \min\{\delta_1, \, \delta_2\}.$

Ekkor $x \in (K_{\delta}(a) \cap \mathcal{D}_f) \setminus \{a\}$ esetén $f(x) \in K_{\epsilon}(A_1) \cap K_{\epsilon}(A_2) = \emptyset$.

Ellentmondáshoz jutottunk, amivel igazoltuk a határérték egyértelműségét.

Jelölés

$$\lim_{a} f = A$$
, $\lim_{x \to a} f(x) = A$, $f(x) \longrightarrow A$ $(x \longrightarrow a)$

Esetek

$\lim_{n \to \infty} f = A$

- a) Végesben vett véges határérték: $a \in \mathbb{R}, A \in \mathbb{R}$.
- b) Végesben vett végtelen határérték: $a \in \mathbb{R}$, $A = \pm \infty$.
- c) Végtelenben vett véges határérték: $a = \pm \infty$, $A \in \mathbb{R}$.
- d) Végtelenben vett végtelen határérték: $a = \pm \infty$, $A = \pm \infty$.

Végesben vett véges határérték

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f' \cap \mathbb{R}$ pontban van határértéke és ez $A \in \mathbb{R}$, ha $\forall \ \epsilon > 0$ számhoz van olyan $\delta > 0$, hogy ha $0 < |x - a| < \delta$ és $x \in \mathcal{D}_f$, akkor $|f(x) - A| < \epsilon$.

Példák:

- a) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x. \lim_{n \to \infty} f = a \ (a \in \mathbb{R}).$
 - |f(x)-a|=|x-a| miatt a definícióban egy adott $\epsilon>0$ számhoz a $\delta=\epsilon$ jó választás
- **b)** Legyen $c \in \mathbb{R}$, és $f(x) = c \ \forall x \in \mathbb{R}$. Ekkkor $\lim_{a \to c} f = c \ (a \in \mathbb{R})$.

|f(x)-c|=0 miatt a definícióban egy adott $\epsilon>0$ számhoz tetszőleges $\delta>0$ jó választás.

c)
$$t_0 \in \mathbb{R}$$
. $f : \mathbb{R} \setminus \{t_0\} \to \mathbb{R}$, $f(t) = \frac{1}{2}g\frac{t^2 - t_0^2}{t - t_0}$. $t_0 \in \mathcal{D}_f'$.

$$\lim_{t_0} f = \lim_{t \to t_0} \frac{1}{2}g\frac{t^2 - t_0^2}{t - t_0} = \lim_{t \to t_0} \frac{1}{2}g(t + t_0) = g \cdot t_0. \quad (\epsilon > 0, \ \delta = \frac{\epsilon}{(1/2)g})$$

Végesben vett végtelen határérték

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f' \cap \mathbb{R}$ pontban van határértéke és ez $+\infty$, ha $\forall K > 0$ számhoz van olyan $\delta > 0$, hogy ha $0 < |x - a| < \delta$ és $x \in \mathcal{D}_f$, akkor f(x) > K.

Jelölés:
$$\lim_{t \to \infty} f = +\infty$$

A $\lim f = -\infty$ eset megfogalmazása értelemszerű módosítással.

Példa:

$$f: \mathbb{R} \to \mathbb{R} \setminus \{0\}, \ f(x) = \frac{1}{\sqrt{2}}, \ 0 \in \mathcal{D}'_f, \ \lim_{n \to \infty} f = +\infty.$$

Legyen
$$K > 0$$
. Ekkor $\frac{1}{12} > K \iff x^2 < \frac{1}{12} \iff |x| < \sqrt{\frac{1}{12}}$.

$$\delta := \sqrt{\frac{1}{K}}$$
 esetén ha $|x - 0| < \delta$, akkor $f(x) = \frac{1}{x^2} > K$.

Példák: nem létezik határérték

a)
$$f(x) = \operatorname{sign} x = \begin{cases} 1, & ha \ x > 0 \\ 0, & ha \ x = 0 \\ -1, & ha \ x < 0 \end{cases} \not\exists \lim_{n \to \infty} f.$$

b)
$$f(x) = \frac{1}{x} (x \in \mathbb{R} \setminus \{0\}). \not\equiv \lim_{x \to 0} f$$
.

Végtelenben vett véges határérték

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek a $+\infty$ -ben van határértéke és ez $A \in \mathbb{R}$, ha $\forall \ \epsilon > 0$ számhoz van olyan K > 0, hogy ha x > K és $x \in \mathcal{D}_f$, akkor $|f(x) - A| < \epsilon$.

Jelölés:
$$\lim_{t \to a} f = A$$

A $\lim_{-\infty} = A$ eset megfogalmazása értelemszerű módosítással.

Megjegyzések

- a) A $+\infty$ -ben akkor lehet vizsgálni a haárértéket, ha $+\infty\in\mathcal{D}_f'$, azaz \mathcal{D}_f felülről nem korlátos.
 - Hasonlóan, a $-\infty$ -ben akkor lehet vizsgálni a haárértéket, ha $-\infty \in \mathcal{D}_f'$, azaz \mathcal{D}_f alulról nem korlátos.
- b) Speciális eset $\mathcal{D}_f = \mathbb{N}$. A végtelenben vett véges határérték fogalma egybeesik a sorozatok konvergenciájának fogalmával.

Példa:

$$\begin{split} f: \mathbb{R} &\to \mathbb{R} \setminus \{0\}, \ f(x) = \frac{1}{x}, +\infty \in \mathcal{D}_f', \lim_{+\infty} f = 0. \\ \text{Legyen } \epsilon &> 0. \ \text{Ekkor} \left| \frac{1}{x} - 0 \right| < \epsilon \iff |x| > \frac{1}{\epsilon}. \ \text{Ha tehát } x > K := \frac{1}{\epsilon}, \ \text{akkor} \right| \end{split}$$

$$|f(x)-0|<\epsilon.$$

Végtelenben vett végtelen határérték

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek a $+\infty$ -ben van határértéke és ez $+\infty$, ha $\forall L > 0$ számhoz van olyan K > 0, hogy ha X > K és $X \in \mathcal{D}_f$, akkor f(X) > L.

Jelölés: $\lim_{t\to\infty} f = +\infty$

A $\lim_{t\to\infty} f=-\infty$, $\lim_{t\to\infty} f=+\infty$, $\lim_{t\to\infty} f=-\infty$, esetek megfogalmazása értelemszerű módosítással.

Megjegyzés

Speciális eset $\mathcal{D}_f = \mathbb{N}$.

A végtelenben vett végtelen határérték fogalma egybeesik a sorozatok kibővített értelemben vett határértékének a fogalmával.

Példa:

 $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x, +\infty \in \mathcal{D}'_f, \lim_{t \to \infty} f = +\infty.$

Legyen L > 0. Ekkor K = L választással, ha x > K, akkor f(x) = x > K = L.

Egyoldali határéték

Egyoldali torlódási pont

Definíció. Azt mondjuk, hogy $a\in \mathbb{R}$ az $A\subset \mathbb{R}$ halmaz jobb oldali torlódási pontja, ha az a torlódási pontja az $A\cap (a,+\infty)$ halmaznak, azaz $a\in (A\cap (a,+\infty))'$.

Jelölés: $a \in A'_+$.

A bal oldali torlódási pont fogalma értelemszerű módosítással adódik:

$$a \in A'_{-} :\iff a \in (A \cap (-\infty, a))'$$
.

Megjegyzés

- a) $a \in A'$ -ből nem következik, sem az hogy $a \in A'_+$, sem pedig az, hogy $a \in A'_-$. Példa: $1 \in (0,1)'$, de $1 \notin (0,1)'_+$ és $0 \in (0,1)'$, de $0 \notin (0,1)'_-$.
- b) Az a) pontban mondottal kapcsolatban viszont könnyen megmutatható, hogy ha $a \in A'$, akkor az $a \in A'_{\perp}$, $a \in A'_{\perp}$ állítások közül legalább az egyik igaz.
- c) Ha $a \in A'_{+}$ és $a \in A'_{-}$, akkor $a \in A'$.

Egyoldali határérték definíciója

Legyen $f \in \mathbb{R} \to \mathbb{R}$. Tegyük fel, hogy $a \in (D_f)'_+$. Tekintsük a $J_a = \mathcal{D}_f \cap (a, +\infty)$ halmazt, és az f függvénynek az erre való $f_{|J_a|}$ leszűkítését.

Ha az $f_{|J_a|}$ függvénynek létezik az a pontban határértéke, akkor azt az f függvény a pontbeli jobb oldali határértékének nevezzük.

Jelölés:
$$\lim_{a \to 0} f := \lim_{a} f_{|J_a}$$
.

Megjegyzés

- a) Bal oldali határérték: $f \in \mathbb{R} \to \mathbb{R}$, $a \in (D_f)'_-$, $B_a = \mathcal{D}_f \cap (-\infty, a)$, $f_{|B_a}$. $\lim_{a \to 0} f := \lim_a f_{|B_a}$.
- b) Ha $\exists \lim_{a \to 0} f$ és $\lim_{a \to 0} f$, akkor $\lim_{a \to 0} f = \lim_{a \to 0} f$. Hasonlóan $\lim_{a \to 0} f$ esetén.

Példák

- a) $f(x) = \operatorname{sign} x \ (x \in \mathbb{R})$. $\nexists \lim_{t \to 0} f$, $\lim_{t \to 0} f = 1$, $\lim_{t \to 0} f = -1$.
- **b)** $\nexists \lim_{x \to 0} \frac{1}{x}, \lim_{x \to 0+0} \frac{1}{x} = +\infty, \lim_{x \to 0-0} \frac{1}{x} = -\infty.$

Tétel

Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in (\mathcal{D}_f \cap (a, +\infty))'$ és $a \in (\mathcal{D}_f \cap (-\infty, a))$.

Ebben az esetben akkor és csak akkor van határértéke az f függvénynek az a pontban, ha mindkét egyoldali hatérérték létezik az a-ban, és azok egyenlők. Ekkor a három határérték egyenlő.

$$\exists \lim_{a} f \iff \exists \lim_{a+0} f, \lim_{a-0} f \text{ és } \lim_{a+0} f = \lim_{a-0} f (= \lim_{a} f).$$

Bizonyítás

Triviális

$$\Longrightarrow \lim_a f$$
 esetén $\forall \epsilon > 0 \;\; \exists \;\; \delta > 0$ (ld. def.). Ugyanaz a δ megfelel mindkét egyoldali határértéknél.

$$\iff \epsilon > 0$$
 számhoz $\exists \ \delta_1 > 0 \lim_{a \to 0} f$ esetén, $\exists \ \delta_2 > 0 \lim_{a \to 0} f$ esetén. Ekkor

$$\delta = \min\{\delta_1, \, \delta_2\}$$
 megfelel a lim f határértéknél.