

Prof Liam McDaid

Smart Watchdog Mechanism for Real-time Fault Detection in RISC-V

PhD Supervisors: Prof Jim Harkin Mr Malachy McElholm

School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, UK

David Simpson simpson-d12@ulster.ac.uk

Background

- Error checking in modern processors is critical¹.
- Detection mechanisms (watchdogs) must exhibit minimal area overhead and power consumption².
- Spiking Neural Networks (SNNs) could offer a more hardware friendly and efficient implementation³.

SNN-based Smart Watchdog

SNN trained to detect control flow errors (CFEs) caused by hardware faults in a RISC-V processor⁴.

- Smarter watchdog paradigm
- **Smart Watchdog Aims:** (F)

Smart Watchdog

Validation

- Lower power consumption
- More hardware friendly

Live Demonstration (FPGA)

- RISC-V processor executes a closedloop PI control algorithm on a DC motor and rotary quadrature encoder.
- Faults are injected at the program counter register of RISC-V processor.
- **Smart watchdog decisions observed in** detail on a custom Python-based GUI.
- Nexys A7-100T development board (AMD Artix-7 FPGA) used as hardware platform for live demonstration.
- See Github page for full details.

Methodology

Model

Testing

- AMD VC-709 (Virtex-7) FPGA used in this work.

Stage 8 - Smart Watchdog Validation

Validation Dataset: Heap Sort (new application)					
Samples	Correct	TP	TN	FN	FP
100	98	46	52	2	0
Accuracy		Precision	Recall	F1 Score	
0.98		1.00	0.96	0.98	

New Samples from Heap Sort: 11/11 (100% accuracy)

Smart Watchdog Fault Detection Capability

Total leap Sort plications	Applications with Control Flow Errors	Applications with Traps Triggered	Smart Watchdog Detection
1,000	840	490 (58.3%)	350 (100%)

Smart watchdog detected all CFEs that were undetected in the RISC-V processor.

Max Freq: 350MHz **Latency**: 153 cycles Inference:

438ns

Hardware Synthesis Results Component LUTs | Power (W) 1,993 Neorv32 0.027 1,874 157 0.001 **Feature Layer** 8,928 6,494 SNN 0.142 Smart W-dog 10,264 6,733 0.143

Stage 1 - Data Collection

Watchdog

Implementation

Fibonacci Series, Bubble Sort and Matrix Multiplication software applications were executed on RISC-V processor.

Model

Training

Faults were injected into the Program Counter register (PC) of RISC-V processor during execution.

Instruction data from RISC-V processor was extracted via **UART** and stored as text files (serial terminal).

Builds a library of normal instructions and faulty instructions to train the SNN of the smart watchdog.

Stage 6 - SNN Model Testing

Testing Dataset: Bubble Sort & Matrix Multiplication

Samples	Correct	TP	TN	FN	FP
155	152	78	74	3	0
Accuracy		Precision	Recall	F1 Score	
0.98		1.00	0.96	0.98	

Seen Test Samples at Training: 80/80 (100% accuracy)

Unseen Test Samples During Training: 72/75 (96% accuracy)

Stage 5 - SNN Model Training

Training Dataset: Fibonacci Series

Training Dataset. Tiboliacol Celles		
Parameter	Value	
Network Type	Binary Classifier	
Learning Type	Supervised	
Development Library	SNNTorch ⁵ (PyTorch)	
Epochs	400	
Optimizer	Adam	
Batch Size	1	
Loss Function	Mean Square Error	
Learning Scheduler Rates	0.1 / 0.01 / 0.001	
Learning Rate Milestones	10 / 200	

Stage 2 – Feature Extraction

Features are extracted from each instruction

V

Ulster University

Stage 3 - Dataset Preprocessing

Datasets are pre-processed and produced for each of the three applications as shown below.

SNN model of the smart watchdog.

