

FIRST SEMESTER 2023-2024

Course Handout Part II

Date: 11-08-2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MF F311

Course Title : MECHATRONICS AND AUTOMATION

Instructor-in-Charge : Dr. ARSHAD JAVED

Scope and Objective of the Course: This course is intended to a comprehensive knowledge of the technology related to Mechatronics and Automation. Mechatronics is an interdisciplinary engineering domain that builds on the traditional mechanical engineering studies, combines it with technologies from the electrical, electronics, computer and control fields, using techniques such as simultaneous engineering to provide solutions in manufacturing applications. This course will develop overall background of the student in interdisciplinary mechatronic technology and a broad introduction to the issues encountered and techniques required in developing mechatronic products and automation systems.

Textbooks:

1. W. Bolton, *Mechatronics*, 3rd Ed., Pearson, 2004. [1]

Reference books:

- 1. A. Smaili and F. Mrad, *Applied Mechatronics*, Oxford University Press, 2008. [2]
- 2. M.P. Groover, "Automation, Production systems, and Computer-Integrated Manufacturing", PHI, 2008. [3]
- 3. W. Stadler, Analytical Robotics and Mechatronics, McGraw Hill, 1995. [4]
- 4. Tai-Ran Hsu, MEMS and Microsystems: Design and Manufacture, John Wiley & Sons. 2008. [5]

Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1	Understand mechatronics and the development of automation system through mechatronics	Introduction, Mechatronic systems – Examples	[1]-1
2		Introduction to automation, Key issues, Approach to Mechatronics and automation	class notes, [1]-4, [2]-14
3-7	Understanding working principles and applications of sensors	Sensors and Instrumentation: Sensor functions, Characteristics, Applications, Specifications & Selection	[1]-2, 3 [2]-11
8-12		Actuation Systems: Pneumatic and Hydraulic actuation systems	[1]-5

13		Mechanical actuation and systems	[1]-6, class notes
14-19	Understanding the working principles and applications of different actuation and transmission systems used for automation	Electrical Actuators	[1]-7, [2]-12, class notes
20-21	transmission systems used for automation	Torque estimation, Performance & Selection of actuation system	[2]-12, class notes
22-24	Understanding basic control concepts	Open-loop, close-loop, proportional derivative, integral, multivariable, digital, adaptive control systems	[1]-13, class notes
25-26	Understanding the application and	Digital electronics, Digital logic, Microprocessors	[1]-14, 15
27-29	implementation of automatic control for small and large automation systems	Programmable and selection of PLC's (Programmable Logic Controller)	[1]-19, 21 class notes
30-32	Student will know the architecture and classification of Industrial Automation	Introduction of Industrial Automation	Class notes
33-35	Student will able to understand the basics, components, structure and classification of SCADA system	Introduction to SCADA system	Class notes
36-38	Understanding the application of Industrial manipulator	Introduction, specification, selection and programming of industrial manipulator (robot).	class notes
39-40	Understanding the challenges in real time Mechatronics and Automation system	Case-Studies	[2]-14, [4], class notes

Evaluation Scheme:

availation benefite:								
Component	Duration	Weightage (%)	Date & Time	Nature of Component				
Mid semester Test	90 min	20	13/10 - 4.00 - 5.30PM	Close Book				
Quiz		15		Open Book (10%)				
Laboratory		25						
Comprehensive- Examination	180 min	40	19/12 AN	Close & Open (at least 20%) Book				

Chamber Consultation Hour: Will be decided based on Time table and availability of the students.

Notices: The necessary announcements will be made in the classroom itself.

Make-up Policy: Make-up will be given with prior concern and genuine reasons only.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Plagiarism and AI tool policy: All take home assignment should be free from any plagiarism and application of (AI) Artificial Intelligence tools. If found, the marks of that component will be nullified.

INSTRUCTOR-IN-CHARGE

