Building Anomaly Detection System using Python

(unsupervised approach)

Problem Statement:

In this project, we delve deep into the thriving sector of **Security** by analyzing a **Anomaly detection on Healthcare Dataset** from a USA-based Health Service Providers, available at the kaggle. This dataset documents all transactions between patients and service providers. Our primary objective is to amplify the efficiency of Healthcare System and avoid fraudulent transactions in **Healthcare system**. We aim to transform the data into a -centric dataset that will facilitate the Base for Anomaly Detection system of patient providing better service, ultimately enhancing security efficiency and patient service.

```
In [1]: #importing necessary libraries
        #Loading dataset
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        import statistics
        from matplotlib.colors import LinearSegmentedColormap
        from sklearn.ensemble import IsolationForest
        from sklearn.preprocessing import StandardScaler
        import category_encoders as ce
        from sklearn.decomposition import PCA
        from sklearn.covariance import EllipticEnvelope
        from sklearn.svm import OneClassSVM
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        import shap
        df = pd.read_csv(r'C:\Users\tmbha\Downloads\ifosys_springboard\df_processed.csv') #orignal Dataframe after EDA
        hdata_scaled = pd.read_csv(r'C:\Users\tmbha\Downloads\ifosys_springboard\test.csv') #scaled Dataframe after scaling milestone 2
```

C:\Users\tmbha\AppData\Local\Programs\Python\Python310\lib\site-packages\tqdm\auto.py:21: TqdmWarning: IProgress not found. Plea
se update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
 from .autonotebook import tqdm as notebook_tqdm

```
In [2]: #overview of original dataframe after EDA

df_i = df #making copy of dataset for further use in isolation approach

df_s = df #making copy of dataset for further use in one SVM approach
```

In [3]: #overview of scaled dataframe
hdata_scaled.sample(5)

Out[3]:		Number of Services	Number of Medicare Beneficiaries	Number of Distinct Medicare Beneficiary/Per Day Services	Average Medicare Allowed Amount	Average Submitted Charge Amount	Average Medicare Payment Amount	Average Medicare Standardized Amount	Diff_submitted_allowed	Is_US	Gender	Ent
	90326	-0.070862	-0.053000	-0.048235	-0.234970	-0.104037	-0.237869	-0.235825	-0.056343	1	1	
	12579	-0.065648	-0.016050	-0.040309	-0.267469	-0.277197	-0.280491	-0.267132	-0.253844	1	1	
	86786	-0.065648	-0.030470	-0.040309	-0.125773	-0.205625	-0.129553	-0.102566	-0.209312	1	0	
	36405	0.161372	0.220069	0.304767	-0.102488	-0.192060	-0.128449	-0.123258	-0.199839	1	1	
	38833	-0.074873	-0.048494	-0.054332	0.001655	-0.014634	0.003752	0.021090	-0.017965	1	0	

Using Isolation Forest algorithm

• Given the multi-dimensional nature of the data, it would be prudent to use algorithms that can detect anomalies in multi-dimensional spaces. I am going to use the **Isolation Forest** algorithm for this task. This algorithm works well for multi-dimensional data and is computationally efficient. It isolates observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature

```
In [4]: # Initializing the IsolationForest model with a contamination parameter of auto
    #max_feature parameter 1 to 9
    #using Default parameters as it's unsupervised approach considering we don't know the depth of data
    model = IsolationForest(n_estimators=100, contamination=0.025, random_state=42, max_samples='auto')

# Fitting the model on our dataset (converting DataFrame to NumPy to avoid warning) on original dataframe
    df_i['Anomaly_Scores'] = model.fit_predict(hdata_scaled.iloc[:, 1:].to_numpy())

# Creating a new column to identify anomalies (1 for inliers and -1 for outliers) on original dataframe
    df_i['Is_Anomaly'] = [1 if x == -1 else 0 for x in df_i['Anomaly_Scores']]

# Display the first few rows of the original dataframe
    df_i.sample(5).T
```

ut[4]:		49894	71692	61404	57229	96476
	Credentials of the Provider	DO	MD	DO	NP	MD
	Gender of the Provider	F	F	F	F	М
	Entity Type of the Provider	1	I	1	1	I
	City of the Provider	BURLINGTON	MYRTLE BEACH	DALLAS	MCMINNVILLE	VENTURA
	State Code of the Provider	VT	SC	TX	TN	CA
	Country Code of the Provider	US	US	US	US	US
	ProviderType	Surgical Oncology	Internal Medicine	Internal Medicine	Nurse Practitioner	Diagnostic Radiology
	Medicare Participation Indicator	Υ	Y	Y	Υ	Υ
	Place of Service	F	0	F	0	F
	HCPCS Description	Ultrasound of one breast	Electrocardiogram, routine ecg with 12 leads;	Subsequent hospital inpatient care, typically	Injection, triamcinolone acetonide, not otherw	CT scan of lower spine
	HCPCS Drug Indicator	N	N	N	Υ	N
	Number of Services	43.0	12.0	349.0	56.0	11.0
	Number of Medicare Beneficiaries	39	12	162	13	11
	Number of Distinct Medicare Beneficiary/Per Day Services	43	12	349	14	11
	Average Medicare Allowed Amount	34.38	15.73	73.46	1.854286	52.647273
	Average Submitted Charge Amount	38.0	65.0	202.11447	15.0	321.0
	Average Medicare Payment Amount	22.802093	7.296667	56.020888	1.27125	37.421818
	Average Medicare Standardized Amount	22.37186	8.7175	56.573754	1.511607	34.241818
	Name	SOWDEN MICHELLE M	TANGEMAN LINDA	HUYNH SUSAN	JENKINS ELIZABETH A	MCMAHAN JOHN
	Full Address	89 BEAUMONT AVE GIVEN BUILDING - B227	141 MCDONALD CT	1441 N BECKLEY AVE	155 HEALTH WAY SUITE 1	3291 LOMA VISTA RD
	Anomaly_Scores	1	1	1	1	1
	Is_Anomaly	0	0	0	0	0

```
# Calculate the percentage of anomalies
anomalies_percentage = df_i['Is_Anomaly'].value_counts(normalize=True) * 100

# Plotting the percentage of anomalies
plt.figure(figsize=(16,6))
anomalies_percentage.plot(kind='barh', color='Blue')

# Adding the percentage labels on the bars
for index, value in enumerate(anomalies_percentage):
    plt.text(value, index, f'{value:.2f}%', fontsize=15)

plt.title('Percentage of Anomalies')
plt.xticks(ticks=np.arange(0, 115, 5))
plt.xlabel('Percentage (%)')
plt.ylabel('Is Anomaly ')
plt.gca().invert_yaxis()
plt.show()
```


Inferences from the Graph:

• There are total **2.50%** anomalies are detected by our model i.e. around 2500 entries in entire dataset .

```
In [15]: sns.set(rc={'axes.facecolor': 'white'}, style='darkgrid')
          #creating new dataframe with scaled data and anomaly column as target variable for shap analysis
          iso = hdata_scaled.join(df_i['Is_Anomaly'], how='inner')
          #creating sample size due to system constraints
         #iso_sample = iso.sample(n=10000)
          #splitting data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(iso.drop('Is_Anomaly',axis=1),iso['Is_Anomaly'],test_size=0.2, random_s
          #Reseting Index of X_test
         X_test.reset_index(drop=True,inplace=True)
         #training logistic regression model on data
         model = LogisticRegression()
         model.fit(X_train, y_train)
          #creating a SHAP explainer object
          explainer = shap.Explainer(model.predict,X_train,algorithm='permutation')
          #computing shap values for the testing data
          shap_values = explainer.shap_values(X_test)
          #Plotting the SHAP values using a summary plot
          shap.summary_plot(shap_values, X_test, show=False)
         plt.show()
```

PermutationExplainer explainer: 20001it [07:42, 41.75it/s]

Inferences from the Summary Plot of Isolation Forest:

There is major positive infulence of columns on model such columns are Average Medicare Payment
 Amount, Average Medicare Allowed Amount overall all numerical columns are has impact on model
 either positive or negative some categorical columns such as city and State of the provider also has some
 contributions to model.

```
In [26]: sns.set(rc={'axes.facecolor': 'skyblue'}, style='darkgrid')
          fig, axs = plt.subplots(2,2, figsize=(12,10))
          #Scatter plot 1
          sns.scatterplot(x='Average Submitted Charge Amount', y='Average Medicare Payment Amount',data=df i, hue='Is Anomaly',ax=a)
                         palette=['green','red'])
          axs[0,0].set_title('Scatter Plot 1')
          axs[0,0].set_xlabel('Average Submitted Charge Amount')
          axs[0,0].set_ylabel('Average Medicare Payment Amount')
          axs[0,0].legend()
          #Scatter plot 2
          sns.scatterplot(x='Average Medicare Allowed Amount', y='Average Medicare Payment Amount',data=df_i, hue='Is_Anomaly',ax=a
                         palette=['green','red'])
          axs[0,1].set_title('Scatter Plot 2')
          axs[0,1].set_xlabel('Average Medicare Allowed Amount')
          axs[0,1].set_ylabel('Average Medicare Payment Amount')
          axs[0,1].legend()
          #Scatter plot 3
          sns.scatterplot(x='Average Submitted Charge Amount', y='Average Medicare Standardized Amount',data=df_i, hue='Is_Anomaly'
                         palette=['green','red'])
          axs[1,0].set_title('Scatter Plot 3')
          axs[1,0].set_xlabel('Average Submitted Charge Amount')
          axs[1,0].set_ylabel('Average Medicare Standardized Amount')
          axs[1,0].legend()
```


Inferences from the Scatter-Plots:

- By Visualizing the **Scatter Plots** we can see that our **Isolation Forest** algorithm works well, and our model is able to distinguish between Normal points and Anomalies.
- There is **clear separation** can be seen between the normal and anomalous point
- Green dots indicates the Normal points while red dots indicates Anomaly.

```
In [27]: #filtering States with rows which has anomaly
    States_with_anomalies = df_i[df_i['Is_Anomaly']==1]['State Code of the Provider']

# counting the States with occurence
    State_counts = States_with_anomalies.value_counts(normalize=True).head(20)

#creating pie chart
    plt.figure(figsize=(7,8))
    plt.pie(State_counts,labels=State_counts.index, autopct='%1.1f%%',colors=sns.color_palette('Set1'))
    plt.axis('equal')
    plt.title('Statewise Distribution of Anoamly - Top 20 States')
    plt.legend(title='States' ,loc='center right',bbox_to_anchor=(1,0,0.5,1))
    plt.show()
```


• The pie chart shows **Top 20 state** with anomaly percentage where **California** has highest no of anomalies **15.8%** followed by **Texas 13.2%**, **Florida 12.2%**.

```
In [28]: #filtering cities with rows which has anomaly
    cities_with_anomalies = df_i[df_i['Is_Anomaly']==1]['City of the Provider']

# counting the cities with occurence
    city_counts = cities_with_anomalies.value_counts(normalize=True).head(20)

#creating pie chart
    plt.figure(figsize=(7,8))
    plt.pie(city_counts,labels=city_counts.index, autopct='%1.1f%%')
    plt.title('City wise Distribution of Anoamly - Top 20 Cities')
    plt.axis('equal')
    plt.legend(title='Cities' ,loc='center right',bbox_to_anchor=(1,0,0.6,1))
    plt.show()
```


• The pie chart shows **Top 20 Cities** with anomaly percentage where **NEWYORK** has highest no of anomalies **15.3%** followed by **Houston 12.5%** and **Dallas 7.5%** .

```
In [29]: #filtering Credentials of the Provider with rows which has anomaly
    Credentials_with_anomalies = df_i[df_i['Is_Anomaly']==1]['Credentials of the Provider']

# counting the Credentials with occurence
    Credential_counts = Credentials_with_anomalies.value_counts(normalize=True).head(5)

#creating pie chart
    plt.figure(figsize=(7,8))
    plt.pie(Credential_counts,labels=Credential_counts.index, autopct='%1.1f%%',colors=sns.color_palette('Set2'))
    plt.title('Credentials wise Distribution of Anoamly - Top 5 Credentials')
    plt.axis('equal')
    plt.legend(title='Credentials' ,loc='center right',bbox_to_anchor=(1,0,0.4,1))
    plt.show()
```


• The pie chart shows **Top 5 Credentials** with anomaly percentage where **MD** has highest no of anomalies **92.3%** followed by **DO 4.7%**, **CRNA 1.5%** .

```
In [30]: #filtering ProviderType with rows which has anomaly
ProviderType_with_anomalies = df_i[df_i['Is_Anomaly']==1]['ProviderType']

# counting the ProviderType with occurence
ProviderType_counts = ProviderType_with_anomalies.value_counts(normalize=True).head(15)

#creating pie chart
plt.figure(figsize=(7,8))
plt.pie(ProviderType_counts,labels=ProviderType_counts.index, autopct='%1.1f%%',colors=sns.color_palette('Set2'))
plt.title('Provider Type wise Distribution of Anoamly - Top 15 ProviderType')
plt.axis('equal')
plt.legend(title='Credentials' ,loc='center right',bbox_to_anchor=(1,0,0.9,1))
plt.show()
```

Provider Type wise Distribution of Anoamly - Top 15 ProviderType

• The pie chart shows **Top 15 ProviderType** with anomaly percentage where **Ambulatory Surgical Center** has highest no of anomalies **21.8%** followed by **Ortopedic Surgery 15.2%**, **Ambulance Service Provider 9.2%**.

```
In [11]: sns.set(rc={'axes.facecolor': '#DAE5E0'}, style='darkgrid')
          fig, axs = plt.subplots(2,2, figsize=(12,12))
          #Count plot 1
          sns.countplot(x='Entity Type of the Provider',data=df_i, hue='Is_Anomaly',ax=axs[0,0],palette=['green','red'])
          axs[0,0].set_title('Count Plot 1')
          axs[0,0].set_xlabel('Entity Type of the Provider')
          axs[0,0].set_ylabel('Count')
          axs[0,0].legend()
          #Count plot 2
          sns.countplot(x='Gender of the Provider',data=df_i, hue='Is_Anomaly',ax=axs[0,1],palette=['green','red'])
          axs[0,1].set_title('Count Plot 2')
          axs[0,1].set_xlabel('Gender of the Provider')
          axs[0,1].set_ylabel('Count')
          axs[0,1].legend()
          #Count plot 3
          sns.countplot(x='Medicare Participation Indicator',data=df_i, hue='Is_Anomaly',ax=axs[1,0],palette=['green','red'])
          axs[1,0].set_title('Count Plot 3')
          axs[1,0].set_xlabel('Medicare Participation Indicator')
          axs[1,0].set_ylabel('Count')
          axs[1,0].legend()
          #Count plot 1
          sns.countplot(x='Place of Service',data=df_i, hue='Is_Anomaly',ax=axs[1,1],palette=['green','red'])
          axs[1,1].set_title('Count Plot 4')
          axs[1,1].set_xlabel('Place of Service')
          axs[1,1].set_ylabel('Count')
          axs[1,1].legend()
          for ax in axs.flat:
              for p in ax.patches:
                  ax.text(p.get_x() + p.get_width()/2, p.get_height(), '%d' % int(p.get_height()), ha='center', va='bottom')
          plt.subplots_adjust(wspace=0.3,hspace=0.3)
          plt.show()
```


Inferences from the Count Plots:

- The Countplots shows the anomaly in the **categorical columns red** bars shows **anomaly** and the **green** bars represent the **normal** point.
- Count Plot 1 shows anomaly in the Entity where I-individual has 1540 anomalies where O-organization has 960 anomalies only which indicates that individual entity has more fraudulent transactions.
- Count Plot 2 shows anomaly in the Gender where F-Female has 306 anomalies where M-Male has 2194 anomalies which indicates that in Male has more fraudulent transactions.
- Count Plot 3 shows anomaly in the Medicare Participation Indicator where Y-Yes has 2500 anomalies where N-No has 0 anomalies only which indicates that Yes has all fraudulent transactions.
- Count Plot 4 shows anomaly in the Place of Service where F-Facility has 1622 anomalies where
 O-Non-Facility has 878 anomalies which indicates that facility has more no of fraudulent transactions.

Using Elliptic Envelope algorithm

• Given the multi-dimensional nature of the data, it would be prudent to use algorithms that can detect anomalies in multi-dimensional spaces. I am going to use the **Elliptic Envelope** algorithm for this task. Elliptic Envelope is an unsupervised machine learning algorithm used for anomaly

detection. It creates an imaginary area around the given dataset ,with values inside envelope considered as normal and anything outside labeled as outliers.

```
In [12]: anomaly_detector = EllipticEnvelope(contamination=0.02)
    anomaly_detector.fit(hdata_scaled)
    df['Anomaly_Scores'] = anomaly_detector.predict(hdata_scaled)
    df['Is_Anomaly'] = [1 if x == -1 else 0 for x in df['Anomaly_Scores']]
```

C:\Users\tmbha\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\covariance_robust_covariance.
py:747: UserWarning: The covariance matrix associated to your dataset is not full rank
 warnings.warn(

In [40]:	df	<pre>.sample</pre>	(5)) . T

Out[40]:		73252	12791	87501	71463	96261
	Credentials of the Provider	MD, MBA	MD	MD	MD	MD
	Gender of the Provider	М	М	М	F	М
	Entity Type of the Provider	I	I	I	I	1
	City of the Provider	LUBBOCK	ROCKLEDGE	WICHITA	NEWARK	DEDHAM
	State Code of the Provider	TX	FL	KS	NJ	MA
	Country Code of the Provider	US	US	US	US	US
	ProviderType	Rheumatology	Family Practice	Cardiology	Psychiatry	Internal Medicine
	Medicare Participation Indicator	Y	Υ	Υ	Υ	Υ
	Place of Service	0	0	F	F	0
	HCPCS Description	Injection beneath the skin or into muscle for	New patient office or other outpatient visit,	Hospital discharge day management, 30 minutes	Hospital discharge day management, 30 minutes	Phosphate level
	HCPCS Drug Indicator	N	N	N	N	N
	Number of Services	36.0	73.0	83.0	20.0	14.0
	Number of Medicare Beneficiaries	26	73	80	20	14
	Number of Distinct Medicare Beneficiary/Per Day Services	36	73	83	20	14
	Average Medicare Allowed Amount	24.4	162.39	70.23	75.5	2.765
	Average Submitted Charge Amount	50.0	250.0	135.0	177.0	12.0
	Average Medicare Payment Amount	17.746944	92.96589	54.396627	59.19	2.709286
	Average Medicare Standardized Amount	19.353333	97.984932	57.843855	57.68	2.709286
	Name	CALMES JAMES M	KOBOBEL JASEN S	REUSSER LAYNE M	CLOUDEN TOBECHUKWU	LEE DANIEL C
	Full Address	5220 80TH ST	1950 ROCKLEDGE BLVD STE 101	9350 E 35TH ST N STE 101	30 BERGEN ST	1 LYONS ST
	Anomaly_Scores	1	1	1	1	1
	Is_Anomaly	0	0	0	0	0

```
In [42]: # Set seaborn plot style
sns.set(rc={'axes.facecolor': 'skyblue'}, style='darkgrid')

# Calculate the percentage of anomalies
anomalies_percentage = df['Is_Anomaly'].value_counts(normalize=True) * 100

# Plotting the percentage of anomalies
plt.figure(figsize=(16,6))
anomalies_percentage.plot(kind='barh', color='#ff6200')

# Adding the percentage labels on the bars
for index, value in enumerate(anomalies_percentage):
    plt.text(value, index, f'{value:.2f}%', fontsize=15)

plt.title('Percentage of Anomalies')
plt.xticks(ticks=np.arange(0, 115, 5))
```

```
plt.xlabel('Percentage (%)')
plt.ylabel('Is Anomaly ')
plt.gca().invert_yaxis()
plt.show()
```


Inferences from the Graph:

PermutationExplainer explainer: 20001it [04:26, 72.73it/s]

• There are total **2.00%** anomalies are detected by our model i.e.around 2000 entries in entire dataset .

```
In [43]: sns.set(rc={'axes.facecolor': 'white'}, style='darkgrid')
          #creating new dataframe with scaled data and anomaly column as target variable for shap analysis
          EE = hdata_scaled.join(df['Is_Anomaly'], how='inner')
          #creating sample size due to system constraints
          #EE_sample = EE.sample(n=10000)
          #splitting data into training and testing sets
          X_train, X_test, y_train, y_test = train_test_split(EE.drop('Is_Anomaly',axis=1),EE['Is_Anomaly'],test_size=0
          #training logistic regression model on data
          model = LogisticRegression()
          model.fit(X_train, y_train)
          #creating a SHAP explainer object
          explainer = shap.Explainer(model.predict,X_train)
          #computing shap values for the testing data
          shap_values = explainer.shap_values(X_test)
          #Plotting the SHAP values using a summary plot
          shap.summary_plot(shap_values, X_test, show=False)
          plt.show()
```


Inferences from the Summary Plot of Elliptic Envelope:

 There is major positive infulence of columns on model such columns are Number of services, Average Medicare Payment Amount some numerical columns are impacting model negatively like number of distinct beneficiary and Average Medicare Allowed Amount none of categorical columns are adding impact on model not positive or negative (neutral) or no effect.

```
In [36]: sns.set(rc={'axes.facecolor': 'skyblue'}, style='darkgrid')
          fig, axs = plt.subplots(2,2, figsize=(12,10))
          #Scatter plot 1
          sns.scatterplot(x='Average Submitted Charge Amount', y='Average Medicare Payment Amount',data=df, hue='Is_Ar
                         palette=['green','red'])
          axs[0,0].set_title('Scatter Plot 1')
          axs[0,0].set xlabel('Average Submitted Charge Amount')
          axs[0,0].set_ylabel('Average Medicare Payment Amount')
          axs[0,0].legend()
          #Scatter plot 2
          sns.scatterplot(x='Average Medicare Allowed Amount', y='Average Medicare Payment Amount',data=df, hue='Is_Ar
                         palette=['green','red'])
          axs[0,1].set_title('Scatter Plot 2')
          axs[0,1].set_xlabel('Average Medicare Allowed Amount')
          axs[0,1].set_ylabel('Average Medicare Payment Amount')
          axs[0,1].legend()
          #Scatter plot 3
          sns.scatterplot(x='Average Submitted Charge Amount', y='Average Medicare Standardized Amount',data=df, hue=
                         palette=['green','red'])
          axs[1,0].set_title('Scatter Plot 3')
          axs[1,0].set_xlabel('Average Submitted Charge Amount')
          axs[1,0].set_ylabel('Average Medicare Standardized Amount')
```


Inferences from the Scatter-Plots:

- By Visualizing the **Scatter Plots** we can see that our **Elliptic Envelope** algorithm works well, and our model is able to distinguish between Normal points and Anomalies.
- There is **clear separation** can be seen between the normal and anomalous point
- Green dots indicates the Normal points while red dots indicates Anomaly.

```
In [37]: #filtering States with rows which has anomaly
    States_with_anomalies = df[df['Is_Anomaly']==1]['State Code of the Provider']

# counting the States with occurence
    State_counts = States_with_anomalies.value_counts(normalize=True).head(20)

#creating pie chart
    plt.figure(figsize=(7,7))
    plt.pie(State_counts,labels=State_counts.index, autopct='%1.1f%%',colors=sns.color_palette('Set1'))
    plt.axis('equal')
    plt.title('Statewise Distribution of Anoamly - Top 20 States')
    plt.legend(title='States' ,loc='center right',bbox_to_anchor=(1,0,0.5,1))
    plt.show()
```


• The pie chart shows **Top 20 state** with anomaly percentage where **Florida** has highest no of anomalies **12.8%** followed by **Texas 11.0%**, **California 10.5%**.

```
In [38]: #filtering cities with rows which has anomaly
    cities_with_anomalies = df[df['Is_Anomaly']==1]['City of the Provider']

# counting the cities with occurence
    city_counts = cities_with_anomalies.value_counts(normalize=True).head(20)

#creating pie chart
    plt.figure(figsize=(6,7))
    plt.pie(city_counts,labels=city_counts.index, autopct='%1.1f%%',colors=sns.color_palette('Oranges'))
    plt.title('City wise Distribution of Anoamly - Top 20 Cities')
    plt.legend(title='Cities' ,loc='center right',bbox_to_anchor=(1,0,0.6,1))
    plt.axis('equal')
    plt.show()
```

City wise Distribution of Anoamly - Top 20 Cities

Inferences from the Pie-Chart:

• The pie chart shows **Top 20 Cities** with anomaly percentage where **NEWYORK** has highest no of anomalies **12.6%** followed by **Dallas 7.5%**, **Houston 6.7%**.

```
In [39]: #filtering Credentials of the Provider with rows which has anomaly
    Credentials_with_anomalies = df[df['Is_Anomaly']==1]['Credentials of the Provider']

# counting the Credentials with occurence
    Credential_counts = Credentials_with_anomalies.value_counts(normalize=True).head(5)

#creating pie chart
    plt.figure(figsize=(7,8))
    plt.pie(Credential_counts,labels=Credential_counts.index, autopct='%1.1f%%',colors=sns.color_palette('Solution of Anomaly - Top 5 Credentials')
    plt.axis('equal')
    plt.legend(title='Credentials' ,loc='center right',bbox_to_anchor=(1,0,0.4,1))
    plt.show()
```

Credentials wise Distribution of Anoamly - Top 20 Credentials

Inferences from the Pie-Chart:

• The pie chart shows **Top 5 Credentials** with anomaly percentage where **MD** has highest no of anomalies **84.6%** followed by **PT 6.3%**, **DO 3.9%** .

```
In [40]: #filtering ProviderType with rows which has anomaly
ProviderType_with_anomalies = df[df['Is_Anomaly']==1]['ProviderType']

# counting the ProviderType with occurence
ProviderType_counts = ProviderType_with_anomalies.value_counts(normalize=True).head(15)

#creating pie chart
plt.figure(figsize=(7,8))
plt.pie(ProviderType_counts,labels=ProviderType_counts.index, autopct='%1.1f%%',colors=sns.color_palet
plt.title('Provider Type wise Distribution of Anoamly - Top 15 ProviderType')
plt.axis('equal')
plt.legend(title='Credentials' ,loc='center right',bbox_to_anchor=(1,0,0.9,1))
plt.show()
```


• The pie chart shows **Top 15 ProviderType** with anomaly percentage where **Hematology-Oncology** has highest no of anomalies **17.9%** followed by **Physical Therapist in Private sector 17.8%**, **Orthopedic surgery 7.0%**.

```
In [13]: sns.set(rc={'axes.facecolor': '#DAE5E0'}, style='darkgrid')
          fig, axs = plt.subplots(2,2, figsize=(12,10))
          #Count plot 1
          sns.countplot(x='Entity Type of the Provider',data=df, hue='Is_Anomaly',ax=axs[0,0],palette=['green',
          axs[0,0].set_title('Count Plot 1')
          axs[0,0].set_xlabel('Entity Type of the Provider')
          axs[0,0].set_ylabel('Count')
          axs[0,0].legend()
          #Count plot 2
          sns.countplot(x='Gender of the Provider',data=df, hue='Is_Anomaly',ax=axs[0,1],palette=['green','red
          axs[0,1].set_title('Count Plot 2')
          axs[0,1].set_xlabel('Gender of the Provider')
          axs[0,1].set_ylabel('Count')
          axs[0,1].legend()
          #Count plot 3
          sns.countplot(x='Medicare Participation Indicator',data=df, hue='Is_Anomaly',ax=axs[1,0],palette=['gr
          axs[1,0].set_title('Count Plot 3')
          axs[1,0].set_xlabel('Medicare Participation Indicator')
          axs[1,0].set_ylabel('Count')
          axs[1,0].legend()
          #Count plot 1
          sns.countplot(x='Place of Service',data=df, hue='Is_Anomaly',ax=axs[1,1],palette=['green','red'])
          axs[1,1].set_title('Count Plot 4')
          axs[1,1].set_xlabel('Place of Service')
          axs[1,1].set_ylabel('Count')
          axs[1,1].legend()
          for ax in axs.flat:
              for p in ax.patches:
                  ax.text(p.get_x() + p.get_width()/2, p.get_height(), '%d' % int(p.get_height()), ha='center'
          plt.subplots_adjust(wspace=0.3,hspace=0.3)
          plt.show()
```


Inferences from the Count Plots:

- The Countplots shows the anomaly in the **categorical columns red** bars shows **anomaly** and the **green** bars represent the **normal** point.
- Count Plot 1 shows anomaly in the Entity where I-individual has 1679 anomalies where O-organization has 321 anomalies only which indicates that individual entity has more fraudulent transactions.
- Count Plot 2 shows anomaly in the Gender where F-Female has 406 anomalies where M-Male has 1594 anomalies which indicates that in Male has more fraudulent transactions.
- Count Plot 3 shows anomaly in the Medicare Participation Indicator where Y-Yes has 2000 anomalies where N-No has 0 anomalies only which indicates that Yes has all fraudulent transactions.
- Count Plot 4 shows anomaly in the Place of Service where F-Facility has 377
 anomalies where O-Non-Facility has 1623 anomalies which indicates that Non
 Facility Places has more no of fraudulent transactions.

Using One Class SVM algorithm

- Given the multi-dimensional nature of the data, it would be prudent to use algorithms that can detect anomalies in multi-dimensional spaces. I am going to use the **One-class SVM** algorithm for this task. This is a type of unsupervised machine learning algorithm that can be used for anomaly detection.
- In a one-class SVM, the algorithm is trained on a dataset that contains only normal or in-class samples. The goal is to find a decision boundary that separates the normal data from the rest of feature space, which is considered as anomalous.

```
#Predicting anomalies
anomaly_scores = model.predict(hdata_scaled)

#creating new column to identify anomalies
df_s['Is_Anomaly'] = [1 if x == -1 else 0 for x in anomaly_scores]

#displaying few rows of data after prediction
df_s.sample(5).T
```

Out[14]:

	62141	19774	24432	32550	49508
Credentials of the Provider	MD	MD	PA	MD	DO
Gender of the Provider	М	М	F	М	М
Entity Type of the Provider	0	1	1	I	I
City of the Provider	BAILEYVILLE	JACKSONVILLE	LEXINGTON	LUBBOCK	JUPITER
State Code of the Provider	ME	FL	KY	TX	FL
Country Code of the Provider	US	US	US	US	US
ProviderType	Ambulance Service Provider	Diagnostic Radiology	Physician Assistant	General Surgery	Family Practice
Medicare Participation Indicator	Υ	Υ	Υ	Υ	Υ
Place of Service	F	F	0	0	F
HCPCS Description	Specialty care transport (sct)	X-ray of spine, 1 view	Insertion of needle into vein for collection o	New patient office or other outpatient visit,	Critical care delivery critically ill or injur
HCPCS Drug Indicator	N	N	N	N	N
Number of Services	70.0	31.0	299.0	15.0	42.0
Number of Medicare Beneficiaries	68	31	249	15	36
Number of Distinct Medicare Beneficiary/Per Day Services	70	31	299	15	42
Average Medicare Allowed Amount	850.0	7.92	3.0	201.2	226.7
Average Submitted Charge Amount	850.0	29.0	9.986622	300.0	440.0
Average Medicare Payment Amount	666.4	5.847742	2.931639	151.144	174.18
Average Medicare Standardized Amount	593.76	6.29	2.94	166.764667	177.83
Name	WASHINGTON COUNTY EMERGENCY MEDICAL SERVICE AU	MOON BRIAN B	ARNETT DENISE D	CUMMINS DOUGLAS G	GOLDBERG RICHARD A
Full Address	205 MAIN ST	3599 UNIVERSITY BLVD. S. BLDG. 300	2101 NICHOLASVILLE RD	4515 MARSHA SHARP FWY	2163 SOUTH U.S. HWY 1
Anomaly_Scores	1	1	1	1	1
Is_Anomaly	1	0	0	0	0

```
In [9]: # Set seaborn plot style
sns.set(rc={'axes.facecolor': 'skyblue'}, style='darkgrid')

# Calculate the percentage of anomalies
anomalies_percentage = df_s['Is_Anomaly'].value_counts(normalize=True) * 100

# Plotting the percentage of anomalies
plt.figure(figsize=(16,6))
anomalies_percentage.plot(kind='barh', color='#ff6200')

# Adding the percentage labels on the bars
for index, value in enumerate(anomalies_percentage):
```

```
plt.text(value, index, f'{value:.2f}%', fontsize=15)

plt.title('Percentage of Anomalies')
plt.xticks(ticks=np.arange(0, 115, 5))
plt.xlabel('Percentage (%)')
plt.ylabel('Is Anomaly ')
plt.gca().invert_yaxis()
plt.show()
```


Inferences from the Graph:

• There are total **3.50**% anomalies are detected by our model i.e.around 3500 entries in entire dataset .

```
In [5]: # sns.set(rc={'axes.facecolor': 'white'}, style='darkgrid')
         #creating new dataframe with scaled data and anomaly column as target variable for shap analysi
         Osvm = hdata_scaled.join(df_s['Is_Anomaly'], how='inner')
         #creating sample size due to system constraints
         #Osvm_sample = Osvm.sample(n=10000)
         #splitting data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(Osvm.drop('Is_Anomaly',axis=1),Osvm['Is_Anomaly',axis=1)
         #training logistic regression model on data
         model = LogisticRegression()
         model.fit(X_train, y_train)
         #creating a SHAP explainer object
         explainer = shap.Explainer(model.predict,X_train)
         #computing shap values for the testing data
         shap_values = explainer.shap_values(X_test)
         #Plotting the SHAP values using a summary plot
         shap.summary_plot(shap_values, X_test, show=False)
         plt.show()
```

PermutationExplainer explainer: 20001it [11:54, 27.60it/s]

Inferences from the Summary Plot of One Class SVM:

 There is major positive infulence of Numerical columns on model except column Average Medicare Standardized Amount which impacting model negatively some of categorical columns are adding impact on model positively like HCPCS description, city and Provider Type.

```
In [10]: sns.set(rc={'axes.facecolor': 'skyblue'}, style='darkgrid')
          fig, axs = plt.subplots(2,2, figsize=(12,10))
          #Scatter plot 1
          sns.scatterplot(x='Average Submitted Charge Amount', y='Average Medicare Payment Amount',data
                         palette=['green','red'])
          axs[0,0].set_title('Scatter Plot 1')
          axs[0,0].set_xlabel('Average Submitted Charge Amount')
          axs[0,0].set_ylabel('Average Medicare Payment Amount')
          axs[0,0].legend()
          #Scatter plot 2
          sns.scatterplot(x='Average Medicare Allowed Amount', y='Average Medicare Payment Amount',data-
                         palette=['green','red'])
          axs[0,1].set_title('Scatter Plot 2')
          axs[0,1].set_xlabel('Average Medicare Allowed Amount')
          axs[0,1].set ylabel('Average Medicare Payment Amount')
          axs[0,1].legend()
          #Scatter plot 3
          sns.scatterplot(x='Average Submitted Charge Amount', y='Average Medicare Standardized Amount')
                         palette=['green','red'])
          axs[1,0].set_title('Scatter Plot 3')
          axs[1,0].set_xlabel('Average Submitted Charge Amount')
          axs[1,0].set_ylabel('Average Medicare Standardized Amount')
          axs[1,0].legend()
          #Scatter plot 4
          sns.scatterplot(x='Number of Services', y='Number of Medicare Beneficiaries',data=df_s, hue=']
                         palette=['green','red'])
          axs[1,1].set_title('Scatter Plot 4')
          axs[1,1].set_xlabel('Number of Services')
          axs[1,1].set_ylabel('Number of Medicare Beneficiaries')
          axs[1,1].legend()
```

plt.subplots_adjust(wspace=0.3,hspace=0.3)
plt.show()

Inferences from the Scatter-Plots:

- By Visualizing the **Scatter Plots** we can see that our **One-class SVM** algorithm works well, and our model is able to distinguish between Normal points and Anomalies.
- There is **clear separation** can be seen between the normal and anomalous point
- Green dots indicates the Normal points while red dots indicates Anomaly.

```
In [11]: #filtering States with rows which has anomaly
States_with_anomalies = df_s[df_s['Is_Anomaly']==1]['State Code of the Provider']

# counting the States with occurence
State_counts = States_with_anomalies.value_counts(normalize=True).head(20)

#creating pie chart
plt.figure(figsize=(7,7))
plt.pie(State_counts,labels=State_counts.index, autopct='%1.1f%%',colors=sns.color_palette('plt.axis('equal'))
plt.title('Statewise Distribution of Anoamly - Top 20 States')
plt.legend(title='States' ,loc='center right',bbox_to_anchor=(1,0,0.5,1))
plt.show()
```


The pie chart shows Top 20 state with anomaly percentage where California
has highest no of anomalies 20.6% followed by New York 20.5%, and Texas
11.7%.

```
In [12]: #filtering cities with rows which has anomaly
    cities_with_anomalies = df_s[df_s['Is_Anomaly']==1]['City of the Provider']

# counting the cities with occurence
    city_counts = cities_with_anomalies.value_counts(normalize=True).head(20)

#creating pie chart
    plt.figure(figsize=(6,7))
    plt.pie(city_counts,labels=city_counts.index, autopct='%1.1f%%',colors=sns.color_palette('Citite')
    plt.title('City wise Distribution of Anoamly - Top 20 Cities')
    plt.legend(title='Cities',loc='center right',bbox_to_anchor=(1,0,0.6,1))
    plt.axis('equal')
    plt.show()
```

City wise Distribution of Anoamly - Top 20 Cities

Inferences from the Pie-Chart:

The pie chart shows Top 20 Cities with anomaly percentage where
 NEWYORK has highest no of anomalies 42.1% followed by Houston
 11.7%, Baltimore 4.7%.

```
In [13]: #filtering Credentials of the Provider with rows which has anomaly
    Credentials_with_anomalies = df_s[df_s['Is_Anomaly']==1]['Credentials of the Provider']

# counting the Credentials with occurence
    Credential_counts = Credentials_with_anomalies.value_counts(normalize=True).head(5)

#creating pie chart
    plt.figure(figsize=(7,8))
    plt.pie(Credential_counts,labels=Credential_counts.index, autopct='%1.1f%%',colors=sns.co.
    plt.title('Credentials wise Distribution of Anoamly - Top 5 Credentials')
    plt.axis('equal')
    plt.legend(title='Credentials' ,loc='center right',bbox_to_anchor=(1,0,0.4,1))
    plt.show()
```

Credentials wise Distribution of Anoamly - Top 20 Credentials

Inferences from the Pie-Chart:

The pie chart shows Top 5 Credentials with anomaly percentage where
 MD has highest no of anomalies 86.4% followed by DO 8.4%, CRNA 1.9%

```
In [14]: #filtering ProviderType with rows which has anomaly
    ProviderType_with_anomalies = df_s[df_s['Is_Anomaly']==1]['ProviderType']

# counting the ProviderType with occurence
    ProviderType_counts = ProviderType_with_anomalies.value_counts(normalize=True).head(15)

#creating pie chart
    plt.figure(figsize=(7,8))
    plt.pie(ProviderType_counts,labels=ProviderType_counts.index, autopct='%1.1f%%',colors=s
    plt.title('Provider Type wise Distribution of Anoamly - Top 15 ProviderType')
    plt.axis('equal')
    plt.legend(title='Credentials' ,loc='center right',bbox_to_anchor=(1,0,0.9,1))
    plt.show()
```


 The pie chart shows Top 15 ProviderType with anomaly percentage where Diagnostic Radiology has highest no of anomalies 19.7% followed by Ambulatory Surgical center 12.0%, Orthopedic surgery 11.6%.

```
In [15]: sns.set(rc={'axes.facecolor': '#DAE5E0'}, style='darkgrid')
          fig, axs = plt.subplots(2,2, figsize=(12,10))
          #Count plot 1
          sns.countplot(x='Entity Type of the Provider',data=df_s, hue='Is_Anomaly',ax=axs[0,0],f
          axs[0,0].set_title('Count Plot 1')
          axs[0,0].set_xlabel('Entity Type of the Provider')
          axs[0,0].set_ylabel('Count')
          axs[0,0].legend()
          #Count plot 2
          sns.countplot(x='Gender of the Provider',data=df_s, hue='Is_Anomaly',ax=axs[0,1],paleti
          axs[0,1].set_title('Count Plot 2')
          axs[0,1].set_xlabel('Gender of the Provider')
          axs[0,1].set_ylabel('Count')
          axs[0,1].legend()
          #Count plot 3
          sns.countplot(x='Medicare Participation Indicator',data=df_s, hue='Is_Anomaly',ax=axs[1
          axs[1,0].set_title('Count Plot 3')
          axs[1,0].set_xlabel('Medicare Participation Indicator')
          axs[1,0].set_ylabel('Count')
          axs[1,0].legend()
          #Count plot 1
          sns.countplot(x='Place of Service',data=df_s, hue='Is_Anomaly',ax=axs[1,1],palette=['gr
          axs[1,1].set_title('Count Plot 4')
          axs[1,1].set_xlabel('Place of Service')
          axs[1,1].set_ylabel('Count')
          axs[1,1].legend()
          plt.subplots_adjust(wspace=0.3,hspace=0.3)
          for ax in axs.flat:
              for p in ax.patches:
                  ax.text(p.get_x() + p.get_width()/2, p.get_height(), '%d' % int(p.get_height())
          plt.show()
```


Inferences from the Count Plots:

- The Countplots shows the anomaly in the **categorical columns red** bars shows **anomaly** and the **green** bars represent the **normal** point.
- Count Plot 1 shows anomaly in the Entity where I-individual has 2908 anomalies where O-organization has 590 anomalies only which indicates that individual entity has more fraudulent transactions.
- Count Plot 2 shows anomaly in the Gender where F-Female has 862
 anomalies where M-Male has 2636 anomalies which indicates that in
 Male has more fraudulent transactions.
- Count Plot 3 shows anomaly in the Medicare Participation Indicator
 where Y-Yes has 3493 anomalies where N-No has 5 anomalies only
 which indicates that Yes has more fraudulent transactions.
- Count Plot 4 shows anomaly in the Place of Service where F-Facility
 has 1767 anomalies where O-Non-Facility has 1731 anomalies which
 indicates that both Places has equal no of fraudulent transactions.