Računalni sustav s procesorom ARM

HPC ARCHITECTURE

Osnovni dijelovi računalnih sustava

己

Logika za povezivanje (npr. dekoderi)

- **AMBA** (Advanced Microcontroller Bus Architecture) je specifikacija (standard) sabirnice za ARM
- Trenutno aktualna specifikacija je AMBA 5, a mi ćemo proučiti (u pojednostavljenom obliku) dvije sabirnice definirane još u specifikacijama AMBA 2:
 - AHB
 - APB

ER

- AMBA AHB (Advanced High-performance Bus)
 - memorijska sabirnica za povezivanje procesora s memorijama na čipu i s vanjskim memorijama
 - za sustave visokih performansi i frekvencija clocka
- AMBA APB (Advanced Peripheral Bus)
 - UI sabirnica za povezivanje vanjskih uređaja u sustav
 - manja potrošnja i jednostavnija izvedba u usporedbi s AHB-om
 - povezuje vanjske jedinice koje ne zahtijevaju visoke performanse i imaju jednostavna sučelja
 - primjeri takvih jedinica:
 - serijski sklop (UART), vremenski sklop (RTC) i paralelni sklop (GPIO)
 - spaja se na AHB pomoću mosta

Računalni sustav s ARM-om

^{*} Vanjsku memoriju nećemo dalje razmatrati u okviru AR1R

HPC ARCHITECTURE

... i naš Arm sustav u SSPARCS-u

^{*} Detalje ovog ćemo objasniti kasnije u predavanjima

Priključci ARM-a

- Većina ARM-ovih priključaka su aktivni u visokom stanju
 - HCLK ulazni, clock ili takt sustava
 - HADDR izlazni, adresni priključci, 32 linije
 - HRDATA ulazni, podatkovni priključci*, 32 linije
 - HWDATA izlazni, podatkovni priključci*, 32 linije
 - HSIZE izlazni, širina podatka (bajt=00, poluriječ=01, riječ=10, 11 je ilegalna kombinacija), 2 linije
 - HWRITE izlazni, označava da se izvodi operacija pisanja, a dok je nisko znači da je čitanje
 - HREADY ulazni, komponenta aktiviranjem ovog signala javlja da može odraditi prijenos u zadanom intervalu (omogućuje spajanje sporijih komponenata koje ako ne mogu odraditi prijenos u zadanom intervalu deaktiviraju ovaj signal i time uzrokuju produljenje operacije čitanja/pisanja

^{*} Specifičnost ARM-a je da u internoj arhitekturi nema dvosmjernu sabirnicu podataka, nego dvije odvojene podatkovne sabirnice - jednu za čitanje i drugu za pisanje

(nastavak...)

巴

- IRQ ulazni, zahtjev za prekidom, spojeni-ILI sabirnica
- FIQ ulazni, zahtjev za brzim prekidom, spojeni-ILI sabirnica
- RESET ulazni, resetiranje procesora
- nMREQ izlazni, aktivan nisko (prefiks 'n' = not), označava da je pokrenuta operacija čitanja ili pisanja
- HBUSREQ ulazni, zahtjev za sabirnicom (za DMA)
- HGRANT izlazni, odobren zahtjev za sabirnicom (za DMA)

Čitanje i pisanje na AHB

己

Čitanje podatka

Pisanje podatka

Pristup memoriji sa stanjem čekanja na AHB

己

Adresna i podatkovna faza na AHB

巴

Kod sabirnice AHB postoji preklapanje između adresne faze jednog pristupa i podatkovne faze prethodnog pristupa* čime se ubrzava komunikacija

^{*} slično ideji preklapanja faza u protočnoj strukturi

Dio sustava sa sabirnicom APB

- Most AHB-APB je sklop koji povezuje AHB i APB sabirnice te omogućuje prijenos podataka između njih
- Funkcije mosta su sljedeće:
 - Uzima adresu i održava je valjanom tijekom cijelog prijenosa
 - Dekodira adresu i generira signal PSEL_x kojim se izabire jedna od vanjskih jedinica kojom se izvodi prijenos podataka
 - Prilikom pisanja postavlja podatke sa sabirnice AHB na sabirnicu APB
 - Prilikom čitanja postavlja podatke sa sabirnice APB na sabirnicu AHB
 - Generira signal PENABLE kojim se omogućuje prijenos

AHB i APB - čitanje s vanjske jedinice

AHB i APB – pisanje na vanjsku jedinicu

