The Gromov-Hausdorff distance between spheres

Sunhyuk Lim

Sungkyunkwan University (SKKU)

Ish3109@skku.edu

April 11th, 2024

• The Gromov-Hausdorff distance d_{GH} is a metric on the collection of isometric classes of compact metric spaces.

- The Gromov-Hausdorff distance d_{GH} is a metric on the collection of isometric classes of compact metric spaces.
- Despite being widely used in Riemannian geometry, precise value of the Gromov-Hausdorff distance between spaces is largely unknown.

- The Gromov-Hausdorff distance d_{GH} is a metric on the collection of isometric classes of compact metric spaces.
- Despite being widely used in Riemannian geometry, precise value of the Gromov-Hausdorff distance between spaces is largely unknown.
- This is because geometers primarily focus on the topology induced by $d_{\rm GH}$ (such as Gromov's precompactness theorem and the finiteness of homotopy types) as well as the convergence with respect to $d_{\rm GH}$ (for instance, the Gromov-Hausdorff limit of Riemannian manifolds being Alexandrov spaces).

 However, with the recent application of the Gromov-Hausdorff distance to Data Analysis, the need for accurate estimation of its value has become increasingly significant.

- However, with the recent application of the Gromov-Hausdorff distance to Data Analysis, the need for accurate estimation of its value has become increasingly significant.
- In particular, the **stability theorem** in Topological Data Analysis (TDA) was important motivation for this project. So, let's look at this theorem more carefully.

Definition (Vietoris-Rips filtration)

Let (X, d_X) be a metric space and r > 0. The (open) **Vietoris-Rips** complex VR(X; r) of X is the simplicial complex such that

$$\operatorname{VR}(X;r) := \{\{x_0,\ldots,x_n\} \subseteq X : \operatorname{diam}(\{x_0,\ldots,x_n\}) < r \text{ for any } n \geq 0\}.$$

Note that if $r \leq s$, then VR(X; r) is contained in VR(X; s).

Hence, the family

$$(\operatorname{VR}(X;r), i_{r,s})_{0 < r \leq s}$$

is called the **Vietoris-Rips filtration** of X.

Figure: An example of Vietoris-Rips filtration (from [Piangerelli et al., 2018])

• If we apply the k-dimensional homology functor $H_k(\cdot; \mathbb{F})$ to $(\operatorname{VR}(X; r), i_{r,s})_{0 < r \leq s}$, we get the filtration of \mathbb{F} -vector spaces

$$(\mathrm{H}_k(\mathrm{VR}(X;r);\mathbb{F}),(i_{r,s})_*)_{0 < r \leq s}.$$

It is denoted by $\mathrm{PH}_k(\mathrm{VR}(X;*);\mathbb{F})$ and called **Vietoris-Rips** persistent homology.

• If we apply the k-dimensional homology functor $H_k(\cdot; \mathbb{F})$ to $(\operatorname{VR}(X; r), i_{r,s})_{0 < r \leq s}$, we get the filtration of \mathbb{F} -vector spaces

$$(\mathrm{H}_k(\mathrm{VR}(X;r);\mathbb{F}),(i_{r,s})_*)_{0 < r \leq s}.$$

It is denoted by $\operatorname{PH}_k(\operatorname{VR}(X;*);\mathbb{F})$ and called **Vietoris-Rips** persistent homology.

• If a metric space (X, d_X) is "nice" (for exmaple, totally bounded), then there is a unique multiset of intervals $\{I_\lambda\}_\lambda$ associated to (in a certain rigorous sense) to $\mathrm{PH}_k(\mathrm{VR}(X;*);\mathbb{F})$. Each interval represents "lifespan" of each k-dimensional hole of VR filtration.

• If we apply the k-dimensional homology functor $H_k(\cdot; \mathbb{F})$ to $(\operatorname{VR}(X; r), i_{r,s})_{0 < r \le s}$, we get the filtration of \mathbb{F} -vector spaces

$$(\mathrm{H}_k(\mathrm{VR}(X;r);\mathbb{F}),(i_{r,s})_*)_{0 < r \leq s}.$$

It is denoted by $\operatorname{PH}_k(\operatorname{VR}(X;*);\mathbb{F})$ and called **Vietoris-Rips** persistent homology.

- If a metric space (X, d_X) is "nice" (for exmaple, totally bounded), then there is a unique multiset of intervals $\{I_\lambda\}_\lambda$ associated to (in a certain rigorous sense) to $\mathrm{PH}_k(\mathrm{VR}(X;*);\mathbb{F})$. Each interval represents "lifespan" of each k-dimensional hole of VR filtration.
- This multiset is said to be **persistence barcode** and denoted by $\operatorname{barc}_k^{\operatorname{VR}}(X; \mathbb{F})$.

Figure: An Example of persistence barcode (from datawarrior.wordpress.com)

• There is a so called **bottleneck distance** $d_{\rm B}$ between persistence barcodes measuring their dissimilarity.

- There is a so called **bottleneck distance** $d_{\rm B}$ between persistence barcodes measuring their dissimilarity.
- Both persistence barcode and $d_{\rm B}$ are **computable** (in polynomial time).

- There is a so called **bottleneck distance** $d_{\rm B}$ between persistence barcodes measuring their dissimilarity.
- Both persistence barcode and $d_{\rm B}$ are **computable** (in polynomial time).
- Moreover, for any two compact metric spaces (X, d_X) , (Y, d_Y) and any field \mathbb{F} , we have

$$\frac{1}{2} \sup_{k \geq 0} d_{\mathrm{B}}(\mathrm{barc}_{k}^{\mathrm{VR}}(X; \mathbb{F}), \mathrm{barc}_{k}^{\mathrm{VR}}(Y; \mathbb{F})) \leq d_{\mathrm{GH}}(X, Y).$$

So, persistence barcodes are **stable** w.r.t metric perturbation.

- There is a so called **bottleneck distance** $d_{\rm B}$ between persistence barcodes measuring their dissimilarity.
- Both persistence barcode and $d_{\rm B}$ are **computable** (in polynomial time).
- Moreover, for any two compact metric spaces (X, d_X) , (Y, d_Y) and any field \mathbb{F} , we have

$$\frac{1}{2}\sup_{k\geq 0}d_{\mathrm{B}}(\mathrm{barc}_{k}^{\mathrm{VR}}(X;\mathbb{F}),\mathrm{barc}_{k}^{\mathrm{VR}}(Y;\mathbb{F}))\leq d_{\mathrm{GH}}(X,Y).$$

So, persistence barcodes are **stable** w.r.t metric perturbation.

• How good is LHS as an estimator of $d_{GH}(X, Y)$?

• For each n, we view the n-unit sphere \mathbb{S}^n (with diameter π) as a metric space equpped with the geodesic metric.

- For each n, we view the n-unit sphere \mathbb{S}^n (with diameter π) as a metric space equpped with the geodesic metric.
- The goal of this project is computing some estimates of

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)$$

for $0 \le m < n \le \infty$.

- For each n, we view the n-unit sphere \mathbb{S}^n (with diameter π) as a metric space equpped with the geodesic metric.
- The goal of this project is computing some estimates of

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)$$

for
$$0 \le m < n \le \infty$$
.

 Why is it important? the n-sphere serves as a model space with a single n-dimensional hole, making it a natural foundation for comprehending Gromov-Hausdorff distances before delving into more intricate spaces. Also, the theoretical result will be a reference for the other computations.

The matrix of $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)$

• Given two sets X and Y, a correspondence between them is any relation $R \subseteq X \times Y$ such that $\pi_X(R) = X$ and $\pi_Y(R) = Y$. $\mathcal{R}(X, Y)$ denotes the set of all correspondences between X and Y.

- Given two sets X and Y, a correspondence between them is any relation $R \subseteq X \times Y$ such that $\pi_X(R) = X$ and $\pi_Y(R) = Y$. $\mathcal{R}(X, Y)$ denotes the set of all correspondences between X and Y.
- For any relation $R \subseteq X \times Y$, the distortion of R is defined in the following way: $\operatorname{dis}(R) := \sup_{(x,y),(x',y') \in R} \left| d_X(x,x') d_Y(y,y') \right|$.

- Given two sets X and Y, a correspondence between them is any relation $R \subseteq X \times Y$ such that $\pi_X(R) = X$ and $\pi_Y(R) = Y$. $\mathcal{R}(X, Y)$ denotes the set of all correspondences between X and Y.
- For any relation $R \subseteq X \times Y$, the distortion of R is defined in the following way: $\operatorname{dis}(R) := \sup_{(x,y),(x',y') \in R} \left| d_X(x,x') d_Y(y,y') \right|$.
- For a map $\phi: X \to Y$, $\operatorname{dis}(\phi)$ indicates the distortion of the graph of ϕ . Note that the graph of ϕ becomes correspondence if ϕ is surjective.

- Given two sets X and Y, a correspondence between them is any relation $R \subseteq X \times Y$ such that $\pi_X(R) = X$ and $\pi_Y(R) = Y$. $\mathcal{R}(X, Y)$ denotes the set of all correspondences between X and Y.
- For any relation $R \subseteq X \times Y$, the distortion of R is defined in the following way: $\operatorname{dis}(R) := \sup_{(x,y),(x',y') \in R} \left| d_X(x,x') d_Y(y,y') \right|$.
- For a map $\phi: X \to Y$, $\operatorname{dis}(\phi)$ indicates the distortion of the graph of ϕ . Note that the graph of ϕ becomes correspondence if ϕ is surjective.
- Definition of the Gromov-Hausdorff distance:

$$d_{\mathrm{GH}}(X,Y) := \frac{1}{2} \inf_{R \in \mathcal{R}(X,Y)} \mathrm{dis}(R),$$

- Given two sets X and Y, a correspondence between them is any relation $R \subseteq X \times Y$ such that $\pi_X(R) = X$ and $\pi_Y(R) = Y$. $\mathcal{R}(X,Y)$ denotes the set of all correspondences between X and Y.
- For any relation $R \subseteq X \times Y$, the distortion of R is defined in the following way: $\operatorname{dis}(R) := \sup_{(x,y),(x',y')\in R} \left| d_X(x,x') d_Y(y,y') \right|$.
- For a map $\phi: X \to Y$, $\operatorname{dis}(\phi)$ indicates the distortion of the graph of ϕ . Note that the graph of ϕ becomes correspondence if ϕ is surjective.
- Definition of the Gromov-Hausdorff distance:

$$d_{\mathrm{GH}}(X,Y) := \frac{1}{2} \inf_{R \in \mathcal{R}(X,Y)} \mathrm{dis}(R),$$

• By the above characterization, it is easy to check $d_{\mathrm{GH}}(X,Y) \leq \frac{\max\{\mathrm{diam}(X),\mathrm{diam}(Y)\}}{2}$. Hence, $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) \leq \frac{\pi}{2}$ for all $0 \leq m < n \leq \infty$.

• The topology of spheres play an important role in order to build bounds of $d_{GH}(\mathbb{S}^m, \mathbb{S}^n)$. In particular, for lower bounds.

- The topology of spheres play an important role in order to build bounds of $d_{GH}(\mathbb{S}^m, \mathbb{S}^n)$. In particular, for lower bounds.
- For an example, if we use persistent homology and stability of the bottleneck distance [Lim et al., 2020]:

$$d_{\mathrm{GH}}(\mathbb{S}^{\textcolor{red}{m}},\mathbb{S}^{\textcolor{black}{n}}) \geq \frac{1}{2} \sup_{k} d_{\mathrm{B}}(\mathrm{barc}_{k}^{\mathrm{VR}}(\mathbb{S}^{\textcolor{red}{m}};\mathbb{F}),\mathrm{barc}_{k}^{\mathrm{VR}}(\mathbb{S}^{\textcolor{black}{n}};\mathbb{F})) = \frac{1}{4} \zeta_{\textcolor{black}{m}}$$

where $\zeta_{\mathbf{m}} := \arccos\left(-\frac{1}{\mathbf{m}+1}\right)$ for any $0 < \mathbf{m} < \mathbf{n} < \infty$.

 $\zeta_m := \arccos\left(-\frac{1}{m+1}\right)$ is the geodesic distance between any two vertices of a regular (m+1)-simplex inscribed in \mathbb{S}^m .

Example

Note that $\zeta_1 = \frac{2\pi}{3}$, and $\zeta_2 \approx 1.91$.

- Topology plays an important role to build bounds of $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)$. In particular, for lower bounds.
- For an example, if we use persistent homology and stability of the bottleneck distance:

$$\begin{split} d_{\mathrm{GH}}(\mathbb{S}^{m},\mathbb{S}^{n}) &\geq \frac{1}{2} d_{\mathrm{B}}(\mathrm{barc}^{\mathrm{VR}}_{m}(\mathbb{S}^{m};\mathbb{F}),\mathrm{barc}^{\mathrm{VR}}_{m}(\mathbb{S}^{n};\mathbb{F})) \\ &\geq \frac{1}{2} \mathrm{FillRad}(\mathbb{S}^{m}) = \frac{1}{4} \zeta_{m} := \frac{1}{4} \arccos\left(-\frac{1}{m+1}\right) \end{split}$$

for any $0 < m < n < \infty$.

However, Borsuk-Ulam type theorems give better results!

$$d_{\mathrm{GH}}(\mathbb{S}^0,\mathbb{S}^n)=d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^\infty)=rac{\pi}{2}$$

Theorem (Lyusternik-Schnirelmann)

Let $n \in \mathbb{N}$, and $\{U_1, \ldots, U_{n+1}\}$ be a closed cover of \mathbb{S}^n . Then there is $i_0 \in \{1, \ldots, n+1\}$ such that U_{i_0} contains two antipodal points.

$$d_{\mathrm{GH}}(\mathbb{S}^0,\mathbb{S}^n)=d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^\infty)=rac{\pi}{2}$$

Theorem (Lyusternik-Schnirelmann)

Let $n \in \mathbb{N}$, and $\{U_1, \ldots, U_{n+1}\}$ be a closed cover of \mathbb{S}^n . Then there is $i_0 \in \{1, \ldots, n+1\}$ such that U_{i_0} contains two antipodal points.

Theorem ([Lim et al., 2021, Proposition 1.5,1.6])

For any n > 0 and $m < \infty$, $d_{\mathrm{GH}}(\mathbb{S}^0, \mathbb{S}^n) = d_{\mathrm{GH}}(\mathbb{S}^m, \mathbb{S}^\infty) = \frac{\pi}{2}$.

Proof.

Fix arbitrary correspondence $R \in \mathcal{R}(\mathbb{S}^0,\mathbb{S}^n)$. Recall that $\mathbb{S}^0 = \{-1,1\}$. Let $A^- := \{x \in \mathbb{S}^n : (-1,x) \in R\}$, and $A^+ := \{x \in \mathbb{S}^n : (1,x) \in R\}$. Then, by Lyusternik-Schnirelmann Theorem, A^- or A^+ contains a pair of antipodal points. It implies $d_{\mathrm{GH}}(\mathbb{S}^0,\mathbb{S}^n) \geq \frac{\pi}{2}$ so that $d_{\mathrm{GH}}(\mathbb{S}^0,\mathbb{S}^n) = \frac{\pi}{2}$. The proof of $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^\infty) = \frac{\pi}{2}$ is similar, but require a bit more details so I omit it. \square

$d_{\mathrm{GH}}(\mathbb{S}^0, \overline{\mathbb{S}^n}) = d_{\mathrm{GH}}(\mathbb{S}^m, \overline{\mathbb{S}^\infty}) = \frac{\pi}{2}$

$d_{\mathrm{GH}}(\mathbb{S}^0,\mathbb{S}^n)=d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^\infty)=rac{\pi}{2}$

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) < rac{\pi}{2} ext{ for } 0 < m < n < \infty$$

• Then, one might conjecture $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)=\frac{\pi}{2}$ for any $0\leq m< n\leq \infty$. But, it is NOT TRUE!

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) < rac{\pi}{2} ext{ for } 0 < m < n < \infty$$

- Then, one might conjecture $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)=\frac{\pi}{2}$ for any $0\leq m< n\leq \infty$. But, it is NOT TRUE!
- Actually, we were able to prove that $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)<\frac{\pi}{2}$ for any $0< m< n<\infty$. In order to prove this result, we established the following **Reverse Borsuk-Ulam Theorem**.

Theorem (Reverse Borsuk-Ulam Theorem [Lim et al., 2021])

For all integers $0 < m < n < \infty$, there exists an odd (ie, $\psi_{m,n}(-x) = -\psi_{m,n}(x)$) continuous surjection

$$\psi_{m,n}: \mathbb{S}^m \to \mathbb{S}^n$$
.

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) < rac{\pi}{2} ext{ for } 0 < m < n < \infty$$

Theorem ([Lim et al., 2021, Theorem A])

 $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) < \frac{\pi}{2}$ for all $0 < m < n < \infty$.

Proof.

Let $\psi_{m,n}: \mathbb{S}^m \twoheadrightarrow \mathbb{S}^n$ be the map given in Reverse Borsuk-Ulam Theorem. Since $\psi_{m,n}$ is surjective, the graph of $\psi_{m,n}$ is a correspondence between \mathbb{S}^m and \mathbb{S}^n . Hence, it is enough to show $\operatorname{dis}(\psi_{m,n}) < \pi$. Since $\mathbb{S}^m, \mathbb{S}^n$ are compact, there exists $x_0, x_0' \in \mathbb{S}^m$ attaining the $\operatorname{dis}(\psi_{m,n})$:

$$dis(\psi_{m,n}) = |d_{\mathbb{S}^m}(x_0, x_0') - d_{\mathbb{S}^n}(\psi_{m,n}(x_0), \psi_{m,n}(x_0'))|.$$

if $x_0' = -x_0$, then $\operatorname{dis}(\psi_{m,n}) = 0$ since $\psi_{m,n}$ is odd. This implies that $\psi_{m,n}$ is surjective isometry which is contradiction. Hence, one can conclude that $0 < d_{\mathbb{S}^m}(x_0, x_0') < \pi$ therefore $\operatorname{dis}(\psi_{m,n}) < \pi$ as we required.

• Let's construct a continuous, surjective, and anipode-preserving map $\psi_{1,2}:\mathbb{S}^1 woheadrightarrow \mathbb{S}^2$ first.

- Let's construct a continuous, surjective, and anipode-preserving map $\psi_{1,2}:\mathbb{S}^1 \twoheadrightarrow \mathbb{S}^2$ first.
- Divide \mathbb{S}^1 into eight equal segments and \mathbb{S}^2 into eight equal spherical triangles $(\triangle e_1 e_2 e_3, \triangle(-e_1) e_2 e_3, \cdots)$.

- Let's construct a continuous, surjective, and anipode-preserving map $\psi_{1,2}:\mathbb{S}^1 \twoheadrightarrow \mathbb{S}^2$ first.
- Divide \mathbb{S}^1 into eight equal segments and \mathbb{S}^2 into eight equal spherical triangles $(\triangle e_1 e_2 e_3, \triangle (-e_1) e_2 e_3, \cdots)$.
- By using the space of filling curve, one can construct a continuous surjective map from each segment to each triangle. By combining eight of them, we establish the required $\psi_{1,2}$ as follows:

• By using the suspension, for any map $\psi: \mathbb{S}^m \to \mathbb{S}^n$, one can build a map $S\psi: S\mathbb{S}^m = \mathbb{S}^{m+1} \to S\mathbb{S}^n = \mathbb{S}^{n+1}$.

- By using the suspension, for any map $\psi: \mathbb{S}^m \to \mathbb{S}^n$, one can build a map $S\psi: S\mathbb{S}^m = \mathbb{S}^{m+1} \to S\mathbb{S}^n = \mathbb{S}^{n+1}$.
- So, by applying the suspension inductively, one can get continuous, surjective, and odd map $\psi_{m,m+1}: \mathbb{S}^m \twoheadrightarrow \mathbb{S}^{m+1}$.

- By using the suspension, for any map $\psi: \mathbb{S}^m \to \mathbb{S}^n$, one can build a map $S\psi: S\mathbb{S}^m = \mathbb{S}^{m+1} \to S\mathbb{S}^n = \mathbb{S}^{n+1}$.
- So, by applying the suspension inductively, one can get continuous, surjective, and odd map $\psi_{m,m+1}: \mathbb{S}^m \to \mathbb{S}^{m+1}$.
- Finally, for arbitrary $0 < m < n < \infty$,

$$\psi_{m,n} := \psi_{n-1,n} \circ \psi_{n-2,n-1} \circ \cdots \circ \psi_{m,m+1}.$$

$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) < rac{\pi}{2} ext{ for } 0 < m < n < \infty$

• We were able to prove

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)\geq rac{1}{2}\zeta_m=rac{1}{2}rccos\left(rac{-1}{m+1}
ight)$$

for any $0 < m < n < \infty$ via a "quantitative version" of Borsuk-Ulam Theorem by Dubins-Schwarz.

• We were able to prove

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)\geq rac{1}{2}\zeta_m=rac{1}{2}rccos\left(rac{-1}{m+1}
ight)$$

for any $0 < m < n < \infty$ via a "quantitative version" of Borsuk-Ulam Theorem by Dubins-Schwarz.

• Moreover, we were able to prove this bound is tight when (m, n) = (1, 2), (1, 3), (2, 3).

• We were able to prove

$$d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)\geq rac{1}{2}\zeta_m=rac{1}{2}rccos\left(rac{-1}{m+1}
ight)$$

for any $0 < m < n < \infty$ via a "quantitative version" of Borsuk-Ulam Theorem by Dubins-Schwarz.

- Moreover, we were able to prove this bound is tight when (m, n) = (1, 2), (1, 3), (2, 3).
- Because of the following alternative characterization of the Gromov-Hausdorff distance:

$$d_{\mathrm{GH}}(X,Y) = \frac{1}{2} \inf_{\phi: X \to Y, \psi: Y \to X} \max\{\mathsf{dis}(\phi), \mathsf{dis}(\psi), \mathsf{codis}(\phi, \psi)\},$$

we have $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) \geq \frac{1}{2} \inf_{\psi:\mathbb{S}^n \to \mathbb{S}^m} \mathrm{dis}(\psi)$ over all (not-necessarily continuous) maps $\psi:\mathbb{S}^n \to \mathbb{S}^m$.

 Lyusternik-Schnirelmann Theorem is equivlanet to the classical Borsuk-Ulam Theorem:

"For any continuous map $g: \mathbb{S}^{m+1} \to \mathbb{S}^m$, g cannot be odd."

 Lyusternik-Schnirelmann Theorem is equivlanet to the classical Borsuk-Ulam Theorem:

"For any continuous map $g: \mathbb{S}^{m+1} \to \mathbb{S}^m$, g cannot be odd."

 But, since Gromov-Hausdorff distance does not require continuity, it is reasonable guess that we may need "discontinuous" version of Borsuk-Ulam.

"If $g: \mathbb{S}^{m+1} \to \mathbb{S}^m$ is odd, quantitatively speaking, how much discontinuous is g?"

 Lyusternik-Schnirelmann Theorem is equivlanet to the classical Borsuk-Ulam Theorem:

"For any continuous map $g: \mathbb{S}^{m+1} \to \mathbb{S}^m$, g cannot be odd."

 But, since Gromov-Hausdorff distance does not require continuity, it is reasonable guess that we may need "discontinuous" version of Borsuk-Ulam.

"If $g:\mathbb{S}^{m+1}\to\mathbb{S}^m$ is odd, quantitatively speaking, how much discontinuous is g?"

• The modulus of discontinuity of a map $g: X \longrightarrow Y$,

$$\inf\{\delta \geq 0 : \forall x \in X, \exists \text{ open } U_x \ni x \text{ s.t. } \operatorname{diam}(g(U_x)) \leq \delta\}$$

is a quantity measuring the discontinuity of g.

 Lyusternik-Schnirelmann Theorem is equivlanet to the classical Borsuk-Ulam Theorem:

"For any continuous map $g: \mathbb{S}^{m+1} \to \mathbb{S}^m$, g cannot be odd."

 But, since Gromov-Hausdorff distance does not require continuity, it is reasonable guess that we may need "discontinuous" version of Borsuk-Ulam.

"If $g:\mathbb{S}^{m+1}\to\mathbb{S}^m$ is odd, quantitatively speaking, how much discontinuous is g?"

• The modulus of discontinuity of a map $g: X \longrightarrow Y$,

$$\inf\{\delta \geq 0 : \forall x \in X, \exists \text{ open } U_x \ni x \text{ s.t. } \operatorname{diam}(g(U_x)) \leq \delta\}$$

is a quantity measuring the discontinuity of g.

• We realized that the modulus of discontinuity of a map g is upper bounded by dis(g).

Theorem ([Dubins and Schwarz, 1981, Corollary 3])

For each m > 0, if a map $g : \mathbb{S}^{m+1} \to \mathbb{S}^m$ is odd, then the modulus of discontinuity of g is greater than or equal to ζ_m .

Theorem ([Dubins and Schwarz, 1981, Corollary 3])

For each m > 0, if a map $g : \mathbb{S}^{m+1} \to \mathbb{S}^m$ is odd, then the modulus of discontinuity of g is greater than or equal to ζ_m .

Let

 $A(\mathbb{S}^0) :=$ one of the two points of \mathbb{S}^0 , and $A(\mathbb{S}^{m+1}) :=$ (strict upper hemisphere of $\mathbb{S}^{m+1}) \cup A(\mathbb{S}^m)$

for each $m \ge 0$. Here, we are identifying the equator of \mathbb{S}^{m+1} and \mathbb{S}^m .

• Observe that $A(\mathbb{S}^m) \cap (-A(\mathbb{S}^m)) = \emptyset$ and $A(\mathbb{S}^m) \cup (-A(\mathbb{S}^m)) = \mathbb{S}^m$ for each $m \geq 0$ (ie, $A(\mathbb{S}^m)$ is a \mathbb{Z}_2 -fundamental domain).

Lemma (distortion preserving lemma)

For any $\phi: A(\mathbb{S}^n) \longrightarrow \mathbb{S}^m$, we have $\operatorname{dis}(\phi) = \operatorname{dis}(\widehat{\phi})$ where

$$\widehat{\phi}: \mathbb{S}^n \longrightarrow \mathbb{S}^m \text{ s.t. } \begin{cases} x & \longmapsto \phi(x) \\ -x & \longmapsto -\phi(x) \end{cases} \forall x \in A(\mathbb{S}^n).$$

Theorem ([Lim et al., 2021, Theorem B])

For any $0 < m < n < \infty$, $d_{\mathrm{GH}}(\mathbb{S}^m, \mathbb{S}^n) \geq \frac{1}{2}\zeta_m$.

sketch of proof.

Suppose not. Then, $\exists R \in \mathcal{R}(\mathbb{S}^m, \mathbb{S}^n)$ such that $\operatorname{dis}(R) < \zeta_m$. Since n > m, $A(\mathbb{S}^{m+1}) \subset \mathbb{S}^{m+1} \subseteq \mathbb{S}^n$. Hence, one can construct a map $\phi : A(\mathbb{S}^{m+1}) \to \mathbb{S}^m$ such that $(x, \phi(x)) \in R$ for any $x \in A(\mathbb{S}^{m+1})$. Note that $\operatorname{dis}(\phi) \leq \operatorname{dis}(R)$.

Now, apply the distortion preserving lemma, we get an odd map $\widehat{\phi}: \mathbb{S}^{m+1} \to \mathbb{S}^m$ such that $\operatorname{dis}(\widehat{\phi}) = \operatorname{dis}(\phi) \leq \operatorname{dis}(R) < \zeta_m$, which contradicts the Dubins-Schwarz's result.

$d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^2) \leq rac{\pi}{3}$, hence $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^2) = rac{\pi}{3}$

$$\phi_{2,1}: \mathbb{S}^2 \to \mathbb{S}^1 \text{ s.t. } x \longmapsto \begin{cases} u_i & \text{if } x \in N_i \\ x & \text{if } x \in \mathbb{S}^1 \\ v_i = -u_i & \text{if } x \in N_i \end{cases}$$

$d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^2) \leq rac{\pi}{3}$, hence $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^2) = rac{\pi}{3}$

$$\phi_{2,1}: \mathbb{S}^2 \to \mathbb{S}^1 \text{ s.t. } x \longmapsto \begin{cases} u_i & \text{if } x \in N_i \\ x & \text{if } x \in \mathbb{S}^1 \\ v_i = -u_i & \text{if } x \in N_i \end{cases}$$

• $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^2) \leq \frac{\pi}{3}$ since $\mathrm{dis}(\phi_{2,1}) = \frac{2\pi}{3}$. So, $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^2) = \frac{\pi}{3}$.

$d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) \leq rac{\pi}{3}$, hence $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) = rac{\pi}{3}$

• For each $q \in \mathbb{S}^3$, there is a way to choose the unique pair, the point $p_q, \in \mathbb{S}^2$ and the angle $\alpha_q \in [0, \pi)$ such that $q = T_{\alpha_q} p_q$ (rotation of p_q by angle α_q). Let $h(q) := (p_q, \alpha_q)$.

$d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) \leq rac{\pi}{3}$, hence $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) = rac{\pi}{3}$

- For each $q \in \mathbb{S}^3$, there is a way to choose the unique pair, the point $p_q, \in \mathbb{S}^2$ and the angle $\alpha_q \in [0, \pi)$ such that $q = T_{\alpha_q} p_q$ (rotation of p_q by angle α_q). Let $h(q) := (p_q, \alpha_q)$.
- Let $\phi_{3,1}(q) := T_{\alpha_q}\phi_{2,1}(p_q)$. One can prove $\operatorname{dis}(\phi_{3,1}) = \frac{2\pi}{3}$.

$d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) \leq \frac{\pi}{3}$, hence $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) = \frac{\pi}{3}$

$d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) \leq rac{\pi}{3}$, hence $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^3) = rac{\pi}{3}$

- For each $q \in \mathbb{S}^3$, there is a way to choose the unique pair, the point $p_q, \in \mathbb{S}^2$ and the angle $\alpha_q \in [0, \pi)$ such that $q = T_{\alpha_q} p_q$ (rotation of p_q by angle α_q). Let $h(q) := (p_q, \alpha_q)$.
- Let $\phi_{3,1}(q) := T_{\alpha_q}\phi_{2,1}(p_q)$. One can prove $dis(\phi_{3,1}) = \frac{2\pi}{3}$.
- If we consider $\pi_1 \circ h : \mathbb{S}^3 \to \mathbb{S}^2$, $(\pi_1 \circ h)^{-1}(\{p, -p\})$ is isometric to \mathbb{S}^1 for any $p \in \mathbb{S}^2 \backslash \mathbb{S}^1$. So there is a certain degree of similarity to "Hopf fibration".

The matrix of $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)$

Open Questions

- Prove/Disprove the conjecture $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^{m+1})=\frac{1}{2}\zeta_m$ for $m\geq 3$.
- For fixed m, is $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)$ non-decreasing with respect to n? If so, how fast?
- What if we use Euclidean distance instead of geodesic distance?
 Surprisingly, they don't seem directly come from the geodesic cases.
- There is an analogue of Gromov-Hausdorff distance for metric measure spaces, so called "Gromov-Wasserstein distances". Can we compute the Gromov-Wasserstein distances between spheres?

• Recall that we proved $2 \cdot d_{\mathrm{GH}}(\mathbb{S}^m, \mathbb{S}^n) \geq \zeta_m$ for any $0 < m < n < \infty$. But this lower bound ζ_m only depends on the dimension of the lower dimensional sphere. How can we upgrade this lower bound in a way that it depends on both m and n?

- Recall that we proved $2 \cdot d_{\mathrm{GH}}(\mathbb{S}^m, \mathbb{S}^n) \geq \zeta_m$ for any $0 < m < n < \infty$. But this lower bound ζ_m only depends on the dimension of the lower dimensional sphere. How can we upgrade this lower bound in a way that it depends on both m and n?
- This number $\zeta_m := \arccos\left(\frac{-1}{m+1}\right)$ also appears in the following problem:
 - "When the homotopy type of the Vietoris-Rips complex $VR(\mathbb{S}^m; r)$ changes?"
 - In [Lim et al., 2020], we proved that ζ_m is the first critical point of the above problem. More precisely, we know that $\operatorname{VR}(\mathbb{S}^m;r)\simeq\mathbb{S}^m$ for all $0< r\leq \zeta_m$ and the homotopy type of $\operatorname{VR}(\mathbb{S}^m;r)$ must change for $r>\zeta_m$.

- Recall that we proved $2 \cdot d_{\mathrm{GH}}(\mathbb{S}^m, \mathbb{S}^n) \geq \zeta_m$ for any $0 < m < n < \infty$. But this lower bound ζ_m only depends on the dimension of the lower dimensional sphere. How can we upgrade this lower bound in a way that it depends on both m and n?
- This number $\zeta_m := \arccos\left(\frac{-1}{m+1}\right)$ also appears in the following problem:
 - "When the homotopy type of the Vietoris-Rips complex $VR(\mathbb{S}^m; r)$ changes?"
 - In [Lim et al., 2020], we proved that ζ_m is the first critical point of the above problem. More precisely, we know that $\operatorname{VR}(\mathbb{S}^m;r)\simeq\mathbb{S}^m$ for all $0< r\leq \zeta_m$ and the homotopy type of $\operatorname{VR}(\mathbb{S}^m;r)$ must change for $r>\zeta_m$.
- Is this coincidence? It turns out that it is not!

Theorem (Stronger Quantitatve Borsuk-Ulam Theorem [Adams et al., 2022, Main Theorem])

For all $0 < m < n < \infty$, if a map $g : \mathbb{S}^n \to \mathbb{S}^m$ is odd, then the distortion dis(g) is greater than or equal to $c_{m,n}$ where

 $c_{m,n} := \inf\{r > 0 : \exists \text{ an odd continuous map } \mathbb{S}^n \to |VR(\mathbb{S}^m; r)|\}.$

Theorem (Stronger Quantitatve Borsuk-Ulam Theorem [Adams et al., 2022, Main Theorem])

For all $0 < m < n < \infty$, if a map $g: \mathbb{S}^n \to \mathbb{S}^m$ is odd, then the distortion dis(g) is greater than or equal to $c_{m,n}$ where

 $c_{m,n} := \inf\{r > 0 : \exists \text{ an odd continuous map } \mathbb{S}^n \to |\mathrm{VR}(\mathbb{S}^m; r)|\}.$

Theorem ([Adams et al., 2022, Main Theorem])

For any $0 < m < n < \infty$, $d_{\mathrm{GH}}(\mathbb{S}^m, \mathbb{S}^n) \geq \frac{1}{2}c_{m,n}$.

Known values of $c_{m,n}$

• One can prove that $c_{m,n} \leq c_{m',n'}$ if $m \geq m'$ and $n \leq n'$.

Known values of $c_{m,n}$

- One can prove that $c_{m,n} \leq c_{m',n'}$ if $m \geq m'$ and $n \leq n'$.
- For all $m \ge 1$, $c_{m,m+1} = c_{m,m+2} = \zeta_m$ for all $m \ge 1$. This recovers our previous result $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) \ge \frac{1}{2}\zeta_m$.

Known values of $c_{m,n}$

- One can prove that $c_{m,n} \leq c_{m',n'}$ if $m \geq m'$ and $n \leq n'$.
- For all $m \ge 1$, $c_{m,m+1} = c_{m,m+2} = \zeta_m$ for all $m \ge 1$. This recovers our previous result $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n) \ge \frac{1}{2}\zeta_m$.
- For all $k \ge 1$, $c_{1,2k} = c_{1,2k+1} = \frac{2\pi k}{2k+1}$. Hence, we have $d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^{2k}), d_{\mathrm{GH}}(\mathbb{S}^1,\mathbb{S}^{2k+1}) \ge \frac{\pi k}{2k+1}$.

Lemma

A map $f: X \to Y$ between metric spaces induces a simplicial map $\overline{f}: \operatorname{VR}(X; r) \to \operatorname{VR}(Y; r + \operatorname{dis}(f))$ for any r > 0. Moreover, if f is an odd map, then \overline{f} is also odd.

Lemma

A map $f: X \to Y$ between metric spaces induces a simplicial map $\overline{f}: \operatorname{VR}(X; r) \to \operatorname{VR}(Y; r + \operatorname{dis}(f))$ for any r > 0. Moreover, if f is an odd map, then \overline{f} is also odd.

Lemma

An arbitrary $\varepsilon > 0$ is given. Suppose a finite subset $X \subset \mathbb{S}^n$ is $\frac{\varepsilon}{2}$ -net and \mathbb{Z}_2 -invariant (ie, X = -X), then there exists a continuous odd map $\phi : \mathbb{S}^n \to \mathrm{VR}(X; \varepsilon)$.

Proof.

Fix an arbitrary $\varepsilon > 0$ and choose a finite \mathbb{Z}_2 -invariant $\frac{\varepsilon}{2}$ -net $X \subset \mathbb{S}^n$. Then, by the second lemma in the previous page, there is a continuous odd map $\phi : \mathbb{S}^n \to \mathrm{VR}(X; \varepsilon)$.

Also, by the first lemma in the previous page, the odd map $g|_X$ induces a continuous odd map from $\operatorname{VR}(X;\varepsilon)$ to $\operatorname{VR}(\mathbb{S}^m;\operatorname{dis}(g)+\varepsilon)$.

Then, their composition is a continuous odd map from \mathbb{S}^n to $\mathrm{VR}(\mathbb{S}^m; \mathrm{dis}(g) + \varepsilon)$. By the definition of $c_{m,n}$, we know that $\mathrm{dis}(g) + \varepsilon \geq c_{m,n}$. Since the choice of $\varepsilon > 0$ is arbitrary, finally one can conclude that

$$\operatorname{dis}(g) \geq c_{m,n}$$
.

The End

The End

Other bounds of $d_{\mathrm{GH}}(\mathbb{S}^m,\mathbb{S}^n)$

• $q_{m,n} = \max\left(\frac{\zeta_m}{2}, \frac{\pi}{2} - \text{cov}_{\mathbb{S}^m}(n+1)\right)$ where $\text{cov}_X(k)$ denotes the k-th covering radius of X:

$$\operatorname{cov}_X(k) := \inf\{d_{\mathrm{H}}(X, P) | P \subset X \text{ s.t. } |P| \leq k\}.$$

• η_m is the diameter of the spherical convex hull induced by $\{u_1,\cdots,u_{m+1}\}$ where $\{u_1,\cdots,u_{m+1},u_{m+2}\}$ are the vertices of a regular (m+1)-simplex inscribed in \mathbb{S}^m . Hence,

$$\eta_m = \begin{cases} \arccos\left(-\frac{m+1}{m+3}\right) & \text{for } m \text{ odd} \\ \arccos\left(-\sqrt{\frac{m}{m+4}}\right) & \text{for } m \text{ even.} \end{cases}$$

Adams, H., Bush, J., Clause, N., Frick, F., Gómez, M., Harrison, M., Jeffs, R. A., Lagoda, E., Lim, S., Mémoli, F., et al. (2022).

Gromov-hausdorff distances, borsuk-ulam theorems, and vietoris-rips complexes.

arXiv preprint arXiv:2301.00246.

Dubins, L. and Schwarz, G. (1981). Equidiscontinuity of borsuk-ulam functions. Pacific Journal of Mathematics, 95(1):51–59.

Lim, S., Mémoli, F., and Okutan, O. B. (2020). Vietoris-Rips persistent homology, injective metric spaces, and the filling radius.

arXiv preprint arXiv:2001.07588.

Lim, S., Mémoli, F., and Smith, Z. (2021). The gromov-hausdorff distance between spheres. arXiv preprint arXiv:2105.00611.

Piangerelli, M., Rucco, M., Tesei, L., and Merelli, E. (2018).

Topological classifier for detecting the emergence of epileptic seizures.

BMC research notes, 11(1):1-7.