

Aula 12

BCNF (Boyce-Codd Normal Form)

BCNF (Boyce-Codd Normal Form) IMPAC

- Definição de BCNF:
 - Uma relação esquema R está na BCNF se, sempre que houver uma DF $X \square A$ em R, então X é uma superchave de R.
- Cada FN engloba a FN anterior:
 - Toda relação em 2FN está na 1FN
 - Toda relação em 3FN está na 2FN
 - Toda relação em BCNF está na 3FN
- Existem relações que estão na 3FN, mas não em BCNF

Boyce-Codd Normal Form

R	df2	▼ df1
ESTUDANDE	CURSO	INSTRUTOR
Nair	Banco de dados	Marcos
Silas	Banco de dados	Nico
Silas	Sistemas Operacionais	Altair
Silas	Teoria	Saulo
Wilson	Banco de Dados	Marcos
Wilson	Sistemas Operacionais	Álvaro
Wellington	Banco de Dados	Carlos
Zenaide	Banco de Dados	Nico

Relação em 3FN, mas não em BCNF

Boyce-Codd Normal Form

R	df2	▼ df1
ESTUDANDE	CURSO	INSTRUTOR
Nair	Banco de dados	Marcos
Silas	Banco de dados	Nico
Silas	Sistemas Operacionais	Altair
Silas	Teoria	Saulo
Wilson	Banco de Dados	Marcos
Wilson	Sistemas Operacionais	Álvaro
Wellington	Banco de Dados	Carlos
Zenaide	Banco de Dados	Nico

Relação em 3FN mas não em BCNF

Uma relação esquema R está na **3FN** se, sempre que houver uma DF X□A, então:

- X é uma superchave de R **ou**
- A é atributo primo de R.

Uma relação esquema R está na **BCNF** se, sempre que houver uma DF X□A, então:

• X é uma superchave de R.

Alcançando a BCNF pela Decomposição

- Existem duas DF em relação:
 - df1: { estudante, curso } □ instrutor
 - df2: instrutor □ curso
 - Se a relação tivesse apenas df1, a relação estaria na BCNF.
 - Mas em df2, instrutor não é uma superchave, e, portanto, viola a
 BCNF, mas não a 3FN, pois curso é primo.
- Uma relação que não esteja na BCNF deve ser decomposta para atender a esta propriedade, mas abdica da preservação das dependências funcionais

Alcançando a BCNF pela Decomposição

- Três possíveis decomposições para relação:
 - R1(estudante, instrutor)e R2(estudante, curso)
 - R1(curso, instrutor)e R2(curso, estudante)
 - R1(instrutor, curso)e R2(instrutor, estudante)
- Todas as três decomposições perdem a df1.
 - Temos que conviver com este sacrifício, mas não podemos sacrificar a propriedade não aditiva após a decomposição.
- Das três, apenas a terceira decomposição não gera tuplas espúrias após a junção (join), e, assim,

Alcançando a BCNF pela Decomposição

1			R2	
INSTRUTOR	ESTUDANDE		INSTRUTOR	CURSO
Marcos	Nair		Marcos	Banco de dados
Nico	Silas		Nico	Banco de dados
Altair	Silas	X	Altair	Sistemas Operacionais
Saulo	Silas	(JOIN)	Saulo	Teoria
Marcos	Wilson	(50)	Álvaro	Sistemas Operacionais
Álvaro	Wilson		Carlos	Banco de Dados
Carlos	Wellington			
Nico	Zenaide			

Relação original: R

3 0		
ESTUDANDE	CURSO	INSTRUTOR
Nair	Banco de dados	Marcos
Silas	Banco de dados	Nico
Silas	Sistemas Operacionais	Altair
Silas	Teoria	Saulo
Wilson	Banco de Dados	Marcos
Wilson	Sistemas Operacionais	Álvaro
Wellington	Banco de Dados	Carlos
Zenaide	Banco de Dados	Nico

Decomposição sem perdas

- A decomposição de R em X e Y é sem perdas se, e somente se, pelo menos uma das duas DFs for válida:
 - $X \cap Y \square X ou$
 - $X \cap Y \square Y$
- Caso especial:
 - Se U □ V, então a decomposição de R em UV e R V é sem perdas.

Verifique que a decomposição de R satisfaz esta condição!

Algoritmo de Decomposição BCNF

- Considere uma relação R e suas DFs associadas.
 - Se X □ Y violar a FNBC, decomponha R em XY e R Y.

 Aplicando esta ideia repetidamente, obteremos uma decomposição sem perdas de R em uma coleção de relações na BCNF.

Em geral, mais de uma DF pode violar a BCNF.

Dependendo da ordem em que as dependências

são tratadas, podemos obter decomposições

diferentes (e mesmo assim corretas).

- As dependências multivaloradas são consequência da 1FN, a qual não aceita atributos multivalorados.
 - Considere, por exemplo, a relação ACERVO abaixo:

ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1, 2
0-13031-995-3	Molina, Ulman, Widom	1, 2

Relação Normalizada para BCNF (note que não há DFs):

ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1
85-7323-169-6	Dantas	2
0-13031-995-3	Molina	1
0-13031-995-3	Molina	2
0-13031-995-3	Ulman	1
0-13031-995-3	Ulman	2
0-13031-995-3	Widom	1
0-13031-995-3	Widom	2

- As dependências multivaloradas são consequência da 1FN, a qual não aceita atributos multivalorados.
 - Considere, por exemplo, a relação ACERVO abaixo:

ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1, 2
0-13031-995-3	Molina, Ulman, Widom	1, 2

Relação Normalizada para BCNF (note que não há DFs)

ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1
85-7323-169-6	Dantas	2
0-13031-995-3	Molina	1
0-13031-995-3	Molina	2
0-13031-995-3	Ulman	1
0-13031-995-3	Ulman	2
0-13031-995-3	Widom	1
0-13031-995-3	Widom	2

Mas ainda temos redundâncias. Por quê?
Porque existem dependências multivaloradas!
ISBN □□ AUTOR ISBN □□ CÓPIAS

- Sempre que X □ □ Y ocorrer, dizemos que X multidetermina Y.
- Devido à simetria da definição, sempre que X □ □ Y ocorrer em R, também ocorre X □ □ Z.
- Por isso, X □□ Y implica X □□ Z; por isso, às vezes é escrito como X□□Y |
 Z.
- Então, na relação ACERVO do exemplo anterior:
 - ISBN □ □ AUTOR | CÓPIAS

- Elimina redundâncias provocadas pelas dependências multivaloradas (MVD).
- Uma relação está na 4FN se não contiver mais de uma MVD.
 - Mas por que é tão ruim ter uma tabela com múltiplas dependências multivaloradas?
 - Em ACERVO:
 - Para inserir mais uma cópia do ISBN 0-13031-995-3,

,	, .	
ISBN	AUTOR	CÓPIAS
85-7323-169-6	Dantas	1
85-7323-169-6	Dantas	2
0-13031-995-3	Molina	1
0-13031-995-3	Molina	2
0-13031-995-3	Ulman	1
0-13031-995-3	Ulman	2
0-13031-995-3	Widom	1
0-13031-995-3	Widom	2

tuplas, uma para cada autor.

• A solução é decompor a relação ACERVO em duas:

De acordo com as MVD:	
ISBN □□ AUTOR	
ISBN □□ CÓPIAS	

ISBN	AUTOR
85-7323-169-6	Dantas
0-13031-995-3	Molina
0-13031-995-3	Ulman
0-13031-995-3	Widom

ISBN	CÓPIAS
85-7323-169-6	1
85-7323-169-6	2
0-13031-995-3	1
0-13031-995-3	2

• A MVD desejável é aquela cujo determinante é superchave da relação.

- Algumas vezes, uma relação não pode ser decomposta sem perdas em duas relações, mas pode ser decomposta em três ou mais.
- A 5FN capta a ideia de que uma relação esquema deve ter alguma decomposição sem perda (dependência de junção).
- Encontrar casos reais da 5FN é difícil.

Um pequeno exemplo:

AEP

AGENTE	EMPRESA	PRODUTO
Smith	Ford	Carro
Smith	Ford	Caminhão
Smith	GM	Carro
Smith	GM	Caminhão
Jones	Ford	Carro

AGENTES representam EMPRESAS EMPRESAS fazem PRODUTOS AGENTES vendem PRODUTOS

Regra:

Se um AGENTE vende um certo PRODUTO e este AGENTE representa uma EMPRESA que faz este PRODUTO então

O AGENTE deve vender o PRODUTO para a EMPRESA.

Um pequeno exemplo

AEP= AE * EP * AP

- Uma relação R está na 5FN se, e somente se, ela estiver na 4FN e todas as suas dependências de junção forem determinadas pelas chaves candidatas.
- A descoberta de DJs em bancos de dados reais com centenas de atributos é praticamente impossível. Isso poderá ser feito apenas contando com um grande grau de intuição sobre os dados por parte do projetista. Por isso, a prática atual de projeto de banco de dados dá pouca atenção a elas.

(Elmasri & Navathe 4ª. Edição)

Outras NFs

 Existem outras formas normais, porém elas estão fora do escopo desta disciplina, pois são formas pouco utilizadas em projetos de banco de dados devido à sua dificuldade de aplicação prática.

Atividades extraclasse

 Leitura do arquivo PDF disponibilizado na plataforma