

Lunar Sunflower

A Sun Tracker Inspired by The Artemis Program for

The 2025 NASA Space Apps Challenge

Artemis III Mission Goals

- Landing astronauts
 near permanently shadowed
 craters to search for water
 ice, a key future resource for
 fuel, oxygen, and water.
- Studying the Moon's geology and radiation to prepare for longer missions.
- And testing technologies that will support future lunar and Martian exploration.

Solar power keeps our crew **alive** and systems powered

Lunar Sunflower's Design Goals

- Autonomous tracking anywhere in the sky above 15° from the horizon
- Implementation of fail-safes to improve reliability
- Maximize power harnessed

Design Constraints

- All parts must be contained within a 300 mm cubic volume.
- Equipment available:
 - 1x Arduino Uno R3
 - 3x 5g servo motors
 - 8x AA batteries + battery holder
 - Assorted jumper wires
 - 4x Photoresistors + assorted resistors
 - Popsicle sticks
 - Cardboard
 - Cardstock
 - Hot glue
 - Duck tape
- 48 hours to show proof of concept

Tracking Mechanism

- Solar panel efficiency depends on the incident light angle; beyond 15°, power loss rises nonlinearly.
- Assumes zero dispersion and perfectly collimated sunlight.
- Four photoresistors in a cross-pattern measure sunlight intensity.
- A central shadow structure gives directional cues; shadow on a sensor shows misalignment.
- When the shadow is centered, the panel faces the sun optimally.

Control and Reliability

HAMMING CODES (EDAC)

Bit#	1	2	3	4	5	6	7
Transmitted bit	p_1	p_2	d_1	p_3	d_2	d_3	d_4
p_1	Yes	No	Yes	No	Yes	No	Yes
p_2	No	Yes	Yes	No	No	Yes	Yes
p_3	No	No	No	Yes	Yes	Yes	Yes

CRC CHECKS FOR MOTOR COMMANDS

WATCHDOG (must be fed treats)

TRIPLE MODULE REDUNDANCY

HARDENED STATE MACHINE

Control and Reliability

Ephemeris Based Tracking

In case of photoresistor failure tracker falls back to robust lookup table of

Electrical Efficiency

Troubleshooting and Improvements

- Conducting a cost benefit analysis
 to determine if the additional
 efficiency provided by a 2-axis
 system is worth the additional
 complexity and weight increase
- Ensuring secure wiring to prevent signal or power issues
- Optimize flash storage usage to fit a more accurate ephemeris of the moon for prolonged sun tracking
- Introduce Sleep Mode for operations on the moon

Thank you