

Al5030: PROBABILITY AND STOCHASTIC PROCESSES

Quiz 4

DATE: 16 OCTOBER 2024

Question	1	2(a)	2(b)	2(c)	Total
Marks Scored					

Instructions:

- Fill in your name and roll number on each of the pages.
- · You may use any result covered in class directly without proving it.
- · Unless explicitly stated in the question, DO NOT use any result from the homework without proof.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Assume that all random variables appearing in the questions below are defined with respect to \mathscr{F} .

1. (2 Marks)

Let N be a discrete random variable taking values in $\mathbb N$ and having PMF p_N . Construct an example for p_N under which $\mathbb E[N]=+\infty$ and

$$\lim_{n \to \infty} n \, \mathbb{P}(\{N > n\}) > 0.$$

Show your working clearly.

Solution:

Let N be a discrete random variable

$$\mathbb{P}(\{N > n\}) = \frac{1}{n+1}, \qquad n \in \mathbb{N} \cup \{0\}.$$

Then, it follows that

$$\mathbb{E}[N] = \sum_{n=0}^{\infty} \mathbb{P}(\{N > n\}) = \sum_{n=0}^{\infty} \frac{1}{n+1} = +\infty,$$

whereas

$$\lim_{n\to\infty} n\,\mathbb{P}(\{N>n\}) = \lim_{n\to\infty} \frac{n}{n+1} = 1 > 0.$$

PS: We note here in passing that the PMF of N is given by

$$\begin{split} \mathbb{P}(\{N = n\}) &= \mathbb{P}(\{N \ge n\}) - \mathbb{P}(\{N > n\}) \\ &= \mathbb{P}(\{N > n - 1\}) - \mathbb{P}(\{N > n\}) \\ &= \frac{1}{n} - \frac{1}{n + 1} \\ &= \frac{1}{n(n + 1)}, \qquad n \in \mathbb{N}. \end{split}$$

Program: BTech / MTech TA / MTech RA / PhD (Tick one)

- 2. Suppose that X(0), X(1), and X(2) are independent, discrete random variables defined with respect to \mathscr{F} . For each $i \in \{0, 1, 2\}$, the random variable X(i) takes possible values 1 and 2 with probabilities p_i and $1 p_i$ respectively.
 - (a) (1 Mark)

Show, from first principles, that Y = X(X(0)) is a random variable with respect to \mathscr{F} .

(b) (1 Mark)

Derive the PMF of Y.

(c) (1 Mark)

Compute $\mathbb{E}[Y]$.

Solution: We present the solution to each of the parts below.

(a) Note that

$$X(X(0)) = X(1) \, \mathbf{1}_{\{X(0)=1\}} + X(2) \, \mathbf{1}_{\{X(0)=2\}}.$$

Because X(0), X(1), and X(2) are random variables with respect to \mathscr{F} (as per the question), we have $\{X(0)=1\}\in\mathscr{F}$ and $\{X(0)=2\}\in\mathscr{F}$, and hence Y is a simple random variable with respect to \mathscr{F} .

(b) Clearly, $Y \in \{1, 2\}$. Further, Y = 1 if and only if either X(0) = 1, X(1) = 1 or X(0) = 2, X(2) = 1. We then have

$$\mathbb{P}(\{Y=1\}) = \mathbb{P}(\{X(0)=1\} \cap \{X(1)=1\}) + \mathbb{P}(\{X(0)=2\} \cap \{X(2)=1\})$$

$$\stackrel{(a)}{=} \mathbb{P}(\{X(0)=1\}) \cdot \mathbb{P}(\{X(1)=1\}) + \mathbb{P}(\{X(0)=2\}) \cdot \mathbb{P}(\{X(2)=1\})$$

$$= p_0 \cdot p_1 + (1-p_0) \cdot p_2,$$

and $\mathbb{P}(\{Y=2\})=1-\mathbb{P}(\{Y=1\})$. In the above set of equalities, (a) follows from the independence of X(i), $i\in\{0,1,2\}$.

(c) We have

$$\begin{split} \mathbb{E}[Y] &= \mathbb{E}[X(1) \, \mathbf{1}_{\{X(0)=1\}}] + \mathbb{E}[X(2) \, \mathbf{1}_{\{X(0)=2\}}] \\ &\stackrel{(*)}{=} \mathbb{E}[X(1)] \cdot \mathbb{E}[\mathbf{1}_{\{X(0)=1\}}] + \mathbb{E}[X(2)] \cdot \mathbb{E}[\mathbf{1}_{\{X(0)=2\}}] \\ &= (1 \cdot p_1 + 2 \cdot (1 - p_1)) \cdot p_0 + (1 \cdot p_2 + 2 \cdot (1 - p_2)) \cdot (1 - p_0) \\ &= (2 - p_1)p_0 + (2 - p_2)(1 - p_0). \end{split}$$