Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Mikroelektroniki i Optoelektroniki

Instrukcja do przedmiotu

Projektowanie układów analogowych dla systemów VLSI

LUSTRA PRĄDOWE I UKŁAD POLARYZACJI

mgr inż. Jakub Kopański

Spis treści

\mathbf{Sp}	pis rysunków	3
$\mathbf{S}\mathbf{p}$	pis tablic	4
1.	. Wstęp	5
2.	Lustra prądowe	6
	2.1. Podstawowe lustro prądowe	
	2.1.1. Dopasowywanie prądów	7
	2.2. Kaskodowe lustro prądowe	9
	2.2.1. Prosta kaskoda	9
	2.2.2. Kaskoda o obniżonym napięciu wyjściowym	10
3.	Układ polaryzacji	13
4.	Projekt bloku polaryzacji	14
	4.1. Symulacja w narożnikach procesu	14
	4.2. Analiza Monte Carlo	14
	4.2.1. Równoległe uruchamianie symulacji	16

Spis rysunków

2.1.	Podstawowe lustro prądowe	6
2.2.	Lustro prądowe i schemat zastępczy	6
		7
2.4.	Zależność prądu od napięcia V_{DS}	9
2.5.	Kaskodowe lustro prądowe	9
2.6.	Wartości napięć w kaskodowym lustrze prądowym	10
2.7.	Idea niskonapięciowej kaskody	10
2.8.	Generowanie dodatkowego napięcia dla kaskody.	11
2.9.	Realizacja tranzystora M_{WS}	12
2.10.	Wyrównanie napięć V_{DS} tranzystorów lustra	12
3.1.	Układ polaryzacji projektowany na zajęciach	13
4.1.	Konfiguracja symulacji narożników procesu	15
4.2.	Konfiguracja analizy Monte Carlo	15
4.3.	Opcje analizy Monte Carlo	16
4.4.	Opcie konfiguracii procesów.	16

Spis tablic

4.1	M:	1	.1 1.										- 1	
4.1.	Mierzone parametr	y iuster prą	aowycn	 	 	 	 		 			 	 1	4

1. Wstęp

Najważniejszym zagadnieniem przy projektowaniu analogowych układów scalonych jest polaryzacja tranzystorów. Wybór i zapewnienie odpowiedniego punktu pracy ma wpływ na szybkość działania układu, dopasowanie elementów, zakres pracy, odporność na zakłócenia zasilania i masy oraz na moc zużywaną przez układ.

W analogowych układach scalonych, ze względu na łatwość dopasowania elementów, do polaryzacji tranzystorów wykorzystuje się źródła/lustra prądowe.

W niniejszym ćwiczeniu studenci zapoznają się z projektowaniem luster prądowych. Zdobyta wiedza posłuży im do zaprojektowania układu polaryzacji, który zostanie wykorzystany przy kolejnym ćwiczeniu.

2. Lustra prądowe

2.1. Podstawowe lustro prądowe

Rysunek 2.1. Podstawowe lustro prądowe

Podstawowe lustro prądowe, wykonane z tranzystorów typu N, pokazano na rys. 2.1. Z topologii układu wynika, że $V_{GS1}=V_{DS1}=V_{GS2}$. Pomijając wpływ modulacji długości kanału (parametr λ), dzięki równości napięć bramka - źródło obu tranzystorów spodziewamy się, że oba tranzystory będą miały jednakowy prąd drenu. Jeżeli oba rezystory mają taką samą wartość rezystancji, potencjały drenu obu tranzystorów są takie same. Dopasowując wymiary, napięcia V_{GS} i prądy drenu I_D obu tranzystorów, możemy być pewni, że napięcia dren - źródło obu tranzystorów są jednakowe ($V_{GS1}=V_{DS1}=V_{GS2}=V_{DS2}$).

Rysunek 2.2. Lustro prądowe i schemat zastępczy

Na rys. 2.2. zaprezentowano jak intuicyjne można myśleć o wyjściu lustra prądowego. W przybliżeniu wyjście lustra prądowego można traktować jak najprostsze źródło prądowe. Napięcie na wyjściu lustra prądowego oznaczono V_O .

Założenie, że prądy drenu zależą tylko od napięcia V_{GS} pomaga zrozumieć działanie lustra prądowego, ale jest zbyt dużym uproszczeniem. Dokładniejszą analizę przeprowadzimy już z uwzględnieniem wpływu modulacji długości kanału. Prąd płynący w gałęzi referencyjnej lustra jest równy:

$$I_{REF} = I_{D1} = \frac{K_n}{2} \cdot \frac{W_1}{L_1} \cdot (V_{GS1} - V_{TH})^2 (1 + \lambda V_{DS1}), \tag{2.1}$$

natomiast prąd płynący w gałęzi wyjściowej jest równy:

$$I_O = I_{D2} = \frac{K_n}{2} \cdot \frac{W_2}{L_2} \cdot (V_{GS2} - V_{TH})^2 (1 + \lambda V_O). \tag{2.2}$$

Jak zostało zauważone we wstępie: $V_{GS1} = V_{GS2}$, dzięki temu stosunek prądów drenu tranzystorów ma postać:

$$\frac{I_O}{I_{REF}} = \frac{\frac{K_n}{2} \cdot \frac{W_2}{L_2} \cdot (V_{GS} - V_{TH})^2 (1 + \lambda V_O)}{\frac{K_n}{2} \cdot \frac{W_1}{L_1} \cdot (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS1})} = \frac{W_2/L_2}{W_1/L_1} \cdot \frac{1 + \lambda V_O}{1 + \lambda V_{DS1}}$$
(2.3)

Dobrą praktyką jest aby długości kanałów tranzystorów lustra prądowego były równe. Dzięki temu późniejsze tworzenie topografii będzie łatwiejsze. W celu narysowania poprawnej topografii lustra prądowego długości kanałów tranzystorów muszą być takie same. Pomijając na razie wpływ modulacji długości kanału, możemy uprościć (2.3) do postaci:

$$\frac{I_O}{I_{REF}} = \frac{W_2}{W_1} \tag{2.4}$$

Poprzez proste skalowanie szerokości kanału możemy zmieniać prąd wyjściowy lustra. Przykładowe zastosowanie pokazano na rys. 2.3.

Rysunek 2.3. Skalowanie prądu luster

2.1.1. Dopasowywanie pradów

Podstawowym problemem przy projektowaniu lustra prądowego jest zapewnienie równości prądów referencyjnego I_{REF} oraz wyjściowego I_O . W następnych sekcjach zbadamy, jak różnice parametrów wpływają na różnice prądów.

Różnica napięć progowych

W punkcie 2.1 powiedzieliśmy, że w pierwszym przybliżeniu równość prądów I_{REF} oraz I_O wynika z równości napięć V_{GS} lustra prądowego. Do dobrego dopasowania prądów niezbędne jest dopasowanie napięć progowych obu tranzystorów lustra prądowego. Chcąc zbadać wpływ różnicy napięć progowych przyjmujemy, źe:

$$V_{TH1} = V_{TH} - \frac{\Delta V_{TH}}{2},$$

$$V_{TH2} = V_{TH} + \frac{\Delta V_{TH}}{2}.$$
(2.5)

Obliczając stosunek prądów lustra z wykorzystaniem (2.5), otrzymujemy:

$$\frac{I_O}{I_{REF}} = \frac{\frac{K_n}{2} \frac{W}{L} (V_{GS} - V_{TH} - \frac{\Delta V_{TH}}{2})^2}{\frac{K_n}{2} \frac{W}{L} (V_{GS} - V_{TH} + \frac{\Delta V_{TH}}{2})^2} = \frac{\left[1 - \frac{\Delta V_{TH}}{2(V_{GS} - V_{TH})}\right]^2}{\left[1 - \frac{\Delta V_{TH}}{2(V_{GS} - V_{TH})}\right]^2}$$
(2.6)

Podnosząc wyrażenia do kwadratu, a następnie zaokrąglając poprzez pominięcie wyrażeń w wyższych potęgach, otrzymujemy w przybliżeniu:

$$\frac{I_O}{I_{REF}} \approx 1 \frac{2\Delta V_{TH}}{V_{GS} - V_{TH}} = 1 - \frac{2\Delta V_{TH}}{V_{DSsat}} \tag{2.7}$$

Wyrażenie (2.7) dobrze ilustruje jakość dopasowania prądów w zależności od napięcia progowego V_{TH} . Im większa różnica napięć progowych, tym większa różnica prądów: referencyjnego i wyjściowego prądu lustra. Im mniejsze napięcie bramka - źródło tranzystorów lustra prądowego, tym większy wpływ różnicy napięć progowych. Aby zminimalizować wpływ różnicy napięć progowych należy pracować przy wyższym napięciu V_{GS} pamiętając, że kosztem takiego zabiegu będzie mniejszy zakres napięcia wyjściowego tranzystora V_{DS} , dla którego tranzystor pozostaje w nasyceniu.

Różnica parametru K_n

Podobna analiza może być przeprowadzona dla różnicy parametru K_n tranzystora. Jeżeli przyjmiemy, że:

$$K_{n1} = K_n - \frac{\Delta K_n}{2},$$

 $K_{n2} = K_n + \frac{\Delta K_n}{2},$ (2.8)

to wówczas zakładając, że pozostałe parametry tranzystorów lustra są takie same, stosunek prądów wynosi:

$$\frac{I_O}{I_{REF}} = \frac{K_n + \frac{\Delta K_n}{2}}{K_n - \frac{\Delta K_n}{2}} \approx 1 + \frac{\Delta K_n}{K_n}$$
(2.9)

Parametr K_n jest parametrem technologicznym, który zależy od procesu wytwarzania układów scalonych. Mogłoby się wydawać, że wraz ze skalowaniem procesu różnice w K_n tranzystorów spowodowane różnicami w tlenku bramkowym oraz różnicami ruchliwości powinny być mniejsze. Jednak mniejsze wymiary tranzystorów powodują również, że jeżeli wystąpi defekt, to jest on uśredniany po mniejszej powierzchni przyrządu.

Różnica napięć V_{DS}

Efektem, który bardzo silnie wpływa na dopasowanie prądów lustra, jest różnica napięcia dren-źródło tranzystorów. Rys 2.4. przedstawia wartości prądów I_{REF} oraz I_O w zależności od napięcia wyjściowego V_O lustra ze schematu na rys. 2.2. Jak można zauważyć, prądy są jednakowe tylko dla jednej, konkretnej wartości napięcia V_O , równej napięciu V_{DS} tranzystora referencyjnego M_1 . Biorąc pod uwagę różnice napięć V_{DS} tranzystorów oraz parametr λ , stosunek prądów lustra można zapisać jako:

$$\frac{I_O}{I_{REF}} = \frac{1 + \lambda_2 V_O}{1 + \lambda_1 V_{DS}} \tag{2.10}$$

W tym miejscu warto policzyć stosunek (2.10) dla konkretnych realnych wartości, (które autor niniejszej instrukcji uzyskał wykonując pierwsze ćwiczenie). Zakładając, że $\lambda_1=\lambda_2=0, 36\frac{1}{V}$ oraz $V_{DS}=192~mV$ i $V_O=V_{DS}+0.6~V=792~mV$ otrzymujemy:

$$\frac{I_O}{I_{REF}} = \frac{1+0,36\times0,792\ V}{1+0,36\times0,192\ V} \approx 1,20 \tag{2.11}$$

co oznacza niedopasowanie prądów lustra aż o 20 %. Jak widać, równość napięć dren - źródło tranzystorów tworzących zwierciadło prądowe ma krytyczne znaczenie dla równości prądów, dlatego w kolejnych rozdziałach przedstawimy sposoby na ograniczenie wpływu różnicy napięć V_{DS} .

Rysunek 2.4. Zależność prądu od napięcia V_{DS} .

2.2. Kaskodowe lustro prądowe

Rozwiązaniem problemu różnych napięć dren - źródło tranzystorów tworzących lustro prądowe jest kaskodowe lustro prądowe.

2.2.1. Prosta kaskoda

Rysunek 2.5. Kaskodowe lustro prądowe.

Najprostsze kaskodowe lustro prądowe zaprezentowano na rys. 2.5. Prąd w gałęzi wyjściowej jest wymuszany przez tranzystor M_2 . Napięcie na bramce tego tranzystora jest ustalane przez tranzystor M_1 w połączeniu diodowym. Napięcie V_{DS} tranzystora M_2 jest ustalane przez tranzystor M_4 , jest ono równe napięciu na bramce tranzystora M_4 , pomniejszonemu o jego napięcie V_{GS} . Napięcia w poszczególnych węzłach układu zaznaczono na rys. 2.6.

Rysunek 2.6. Wartości napięć w kaskodowym lustrze prądowym.

2.2.2. Kaskoda o obniżonym napięciu wyjściowym

Rysunek 2.7. Idea niskonapięciowej kaskody.

Problemem kaskody opisanej w ostatnim punkcie jest wysoka wartość minimalnego napięcia wyjściowego takiego lustra prądowego, równa: $2 \times V_{DSsat} + V_{TH}$. W obwodzie wyjściowym lustra mamy 2 szeregowo połączone tranzystory. Minimalnym napięciem jakie powinno być potrzebne aby tranzystory pozostały w nasyceniu jest: $2 \times V_{DSsat}$. Rys 2.7 przedstawia wymagane napięcia dla kaskody o obniżonym napięciu wyjściowym.

Generowanie napięcia polaryzacji tranzystora M_4

Aby wygenerować napięcie $2 \times V_{DSsat} + V_{TH}$ potrzebne dla bramki tranzystora M_4 , należy rozdzielić generowanie napięć dla bramek tranzystorów M_4 i M_2 na oddzielne gałęzie. Rozwiązanie zostało zaprezentowane na rys. 2.8. W celu uzyskania odpowiedniego napięcia na bramce tranzystora M_4 możemy zmienić wymiary (W i L) tranzystora M_{WS} . Napięcie V_{GS} tranzystora M_{WS} musi być równe wymaganemu napięciu ($2 \times V_{DSsat} + V_{TH}$) na bramce tranzystora M_4 . Stąd mamy:

$$I_{REF} = \frac{K_n}{2} \frac{W_{M_{WS}}}{L_{M_{WS}}} \left(2(V_{GS} - V_{TH}) + V_{TH} - V_{TH} \right)^2,$$

$$I_{REF} = \frac{K_n}{2} \frac{W_{M_{WS}}}{L_{M_{WS}}} 4(V_{GS} - V_{TH})^2.$$
(2.12)

Rysunek 2.8. Generowanie dodatkowego napięcia dla kaskody.

Przyrównując prądy płynące przez tranzystory M_1 i M_{WS} otrzymujemy:

$$\frac{W}{L} = \frac{W_{M_{WS}}}{L_{M_{WS}}} \times 4,\tag{2.13}$$

lub gdy przyjmiemy takie same szerokości tranzystorów:

$$L_{M_{WS}} = 4 \times L. \tag{2.14}$$

Aby uzyskać napięcie niezbędne do polaryzacji bramki tranzystora M_4 (a przez co wymuszenia odpowiedniego napięcia na drenie tranzystora M_2) należy użyć tranzystora o 4 razy dłuższym kanale.

Ze względu na lepsze dopasowanie tranzystorów podczas rysowania topografii układu, tranzystor M_{WS} realizuje się jako szeregowe połączenie tranzystorów, o takiej samej długości kanału jak pozostałe tranzystory lustra. Sposób realizacji widać na rys. 2.9. Długość kanału tranzystora M_{WS} równa czterem długościom kanału typowego tranzystora spowoduje, że napięcie V_{DS} tranzystora M_2 będzie na granicy nasycenia. Ze względu na rozrzuty produkcyjne czy wahania napięcia zasilania może zdarzyć się, że napięcie na drenie M_2 obniży się i tranzystor wypadnie z obszaru nasycenia. Dlatego należy zwiększyć trochę wartość napięcia na bramce M_4 , poprzez uczynienie tranzystora M_{WS} dłuższym. Typowo jego długość dobiera się eksperymentalnie, tak aby M_2 pozostał w nasyceniu z pewnym zapasem.

Dodatkowy prąd referencyjny I_{REF} dla tranzystora M_{WS} jest taki sam jak prąd referencyjny tranzystora M_1 . Zazwyczaj uzyskuje się go poprzez powielenie prądu referencyjnego prostym lustrem prądowym.

Wyrównanie napięć V_{DS}

Uważny czytelnik może zauważyć, że tranzystory M_1 i M_2 mają różne napięcia V_{DS} . Jak zostało napisane w sekcji 2.1.1 równość napięć dren - źródło tranzystorów jest krytycznym czynnikiem wpływającym na równość prądów drenu. Rozwiązanie tego problemu przedstawiono na rys. 2.10. Jest nim dodanie kolejnego tranzystora, który podobnie jak M_4 , wymusi odpowiednie napięcie V_{DS} tranzystora referencyjnego M_1 .

Rysunek 2.9. Realizacja tranzystora ${\cal M}_{WS}.$

Rysunek 2.10. Wyrównanie napięć ${\cal V}_{DS}$ tranzystorów lustra.

3. Układ polaryzacji

Rysunek 3.1. Układ polaryzacji projektowany na zajęciach.

Przedstawione w poprzednim rozdziałe kaskodowe lustro prądowe o zwiększonym zakresie napięcia wyjściowego jest podstawą bloku polaryzacji, jaki należy zaprojektować podczas laboratorium. Przedstawiony schemat jest uproszczony aby skupić się na tym co jest istotne. Blok generuje napięcia bias < 1: 4>, które można wykorzystać do zrobienia źródeł prądowych o dowolnej wartości. Układ to nic innego, jak połączone kaskodowe lustra prądowe z tranzystorów typu N i P.

4. Projekt bloku polaryzacji

Na zajęciach należy zmodyfikować blok $bias_hs_10u$ z biblioteki LIB2. Dla projektowanego bloku przygotowane zostało środowisko testowe $bias_sim$. Najważniejsze mierzone parametry zebrane zostały w tabeli 4.1.

Celem ćwiczenia jest takie zaprojektowanie układu polaryzacji, aby możliwe było proste zrobienie nowych źródeł prądowych poprzez wykorzystanie napięć bias < 1 : 4 >. Prąd wyjściowy źródła i_bias powinien mieć wartość równą prądowi referencyjnemu (w tym przypadku $10 \mu A$), z dokładnością $\pm 5 \%$.

Następnie należy policzyć teoretyczną wartość rezystancji wyjściowej źródeł (kaskodowego i zwykłego) i porównać ją z wynikami otrzymanymi z symulacji elektrycznej. W odróżnieniu od pierwszego ćwiczenia, należy przeprowadzić symulacje w narożnikach procesu (ang. process corners) oraz z wykorzystaniem analizy Monte Carlo, która symuluje rozrzuty produkcyjne.

Nazwa	Opis
i_bias	Prąd wyjściowy lustra prądowego
ron@vds	Rezystancja wyjściowa zwykłego lustra prądowego przy napięciu wyjścio-
	wym równym $vdsn$
rop@vds	Rezystancja wyjściowa zwykłego lustra prądowego przy napięciu wyjścio-
	wym równym $vdsp$
$ron_casc@vds$	Rezystancja wyjściowa kaskodowego lustra prądowego przy napięciu wyj-
	ściowym równym $vdsn$ $casc$
$rop_casc@vds$	Rezystancja wyjściowa kaskodowego lustra prądowego przy napięciu wyj-
	ściowym równym $vdsp_casc$
vdsn	Wartość napięcia wyjściowego zwykłego lustra prądowego, dla którego
	rezystancja wyjściowa rośnie najszybciej
vdsp	Wartość napięcia wyjściowego zwykłego lustra prądowego, dla którego
	rezystancja wyjściowa rośnie najszybciej
$vdsn_casc$	Wartość napięcia wyjściowego kaskodowego lustra prądowego, dla którego
	rezystancja wyjściowa rośnie najszybciej
$vdsp_casc$	Wartość napięcia wyjściowego kaskodowego lustra prądowego, dla którego
	rezystancja wyjściowa rośnie najszybciej

Tablica 4.1. Mierzone parametry luster prądowych

4.1. Symulacja w narożnikach procesu

W celu uruchomienia symulacji process corners należy zaznaczyć opcje corners w panelu po lewej stronie okna $ADE\ (G)XL$ a następnie wybrać, które skrajne przypadki chcemy symulować. Litery T, F, S oznaczają przypadki: Typical, Fast i Slow tranzystorów MOS. Pierwsza litera w nazwie narożnika procesu odnosi się do tranzystora typu N, druga zaś typu P. Opcja MC dotyczy symulacji $Monte\ Carlo$ i w przypadku narożników procesów $nie\ może$ być zaznaczona. Prawidłowa konfiguracja przedstawiona jest na rys. 4.1.

4.2. Analiza Monte Carlo

Aby wykonać analizę *Monte Carlo* należy wybrać specjalny przypadek analizy narożników procesu, nazwany *MC. Musi* to być jedyny zaznaczony skrajny przypadek. Należy także przed uruchomieniem

Rysunek 4.1. Konfiguracja symulacji narożników procesu.

Rysunek 4.2. Konfiguracja analizy Monte Carlo.

symulacji wybrać jej rodzaj z rozwijanej listy na pasku narzędzi. Ustawienia pokazano na rys. 4.2. Symulacje *Monte Carlo* należy jeszcze skonfigurować, a dokładnie podać ilość niezależnych symulacji z różnymi wartościami parametrów poddanych rozrzutom. Okno konfiguracji analizy wywołuje się poprzez kliknięcie ikonki obok listy wyboru rodzaju analizy, ikonę zaznaczono razem z listą również na rys. 4.2. Samo okno konfiguracji wraz z zaznaczonym polem do uzupełnienia przedstawia rys. 4.3.

Rysunek 4.3. Opcje analizy Monte Carlo.

4.2.1. Równoległe uruchamianie symulacji

Rysunek 4.4. Opcje konfiguracji procesów.

Zarówno analiza process corners jak i Monte Carlo wykonuje wiele niezależnych symulacji, dlatego idealnie nadaje się do zrównoleglenia poprzez uruchomienie jej w wielu procesach. Opcje dotyczące ilości wykorzystywanych wątków znajdują się w menu: $Options \rightarrow Job\ Setup...$ i zaprezentowano je na rys. 4.4.