

Clase 3: Variables Aleatorias. Definiciones básicas y ejemplos. Tipos de variables aleatorias. Variables aleatorias discretas y distribuciones de probabilidad de variables aleatorias discretas

Profesora: Olga Aleandra Bustos Giraldo

Escuela de Estadística
Universidad Nacional de Colombia, Sede Medellín
oabustos@unal.edu.co

Estadística I(Clase 3).

Variables Aleatorias

Una Variable Aleatoria es una función definida en un espacio muestral S que asigna a cada resultado de un experimento aleatorio un valor real. Usualmente son denotadas con letras mayúsculas como $(X\ ,\ Y\ ,\ Z\ ,\ T,\ {\rm etc}).$ En contraste se utilizará una letra minuscula tal como x para denotar un valor partícular de la variable

Sea X una variable aleatoria definida sobre un espacio muestral S.

$$X: S \rightarrow \mathbb{R}$$

 $s \rightarrow X(s) = x, x \in \mathbb{R}$

Al conjunto de todos los posibles resultados de una variable aleatoria se le llamará Rango de la variable y es usualmente denotado A_X .

Tres monedas no cargadas son lanzadas al tiempo. Hallar el espacio muestral S y analice la variable aleatoria X: el # de caras en cada lanzamiento.

Solución

El espacio muestral está dado por:

$$S = \{CCC, CCS, CSC, SCC, CSS, SCS, SSC, SSS\}$$
.

La variable aleatoria de interés es X: # caras en cada lanzamiento. En este caso los valores que se pueden observar de X, el número de caras son $\{0,1,2,3\}$. Si se denota por A_X el conjunto de todos los posibles valores que toma la v.a X, se tiene que $A_X = \{0,1,2,3\}$.

La función X asigna a cada resultado del espacio muestral un vaor real que pertenece a A_X , tal como se muestra a continuación:

Es decir,

$$X: S \rightarrow \mathbb{R}$$

 $s \rightarrow X(s) = x, x \in \mathbb{R}$

Por ejemplo,

$$X(CCC) = 3$$
, $X(SCC) = 2$, $X(SSS) = 0$, $X(SSC) = 1$.

Se lanza un par de dados. Halle el espacio muestral y analice las variables aleatorias: X: suma de los 2 resultados y Y: diferencia entre los dos resultados.

Solución

El espacio muestral para este experimento es:

$$S = \{(1, 1), (1, 2), \dots, (5, 6), (6, 6)\}.$$

Para la variable aleatoria X, que corresponde a la suma de los dos resultados, la asignación para los diferentes pares de resultados se muestra así:

$$(1,1) \rightarrow 2$$
 , $(3,2) \rightarrow 5$, $(4,3) \rightarrow 7$
 $(1,2) \rightarrow 3$, $(3,5) \rightarrow 8$, $(6,2) \rightarrow 8$ etc.
 $(5,6) \rightarrow 11$, $(6,6) \rightarrow 12$, $(2,5) \rightarrow 7$

En este caso, el rango de la variable aleatoria X, está dado por

$$A_X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$
.

Para la variable aleatoria Y: Diferencia entre los dos resultados, se tiene que:

$$(1,1) \rightarrow 0$$
 , $(3,2) \rightarrow 1$, $(4,2) \rightarrow 2$
 $(1,2) \rightarrow -1$, $(3,5) \rightarrow -2$, $(6,2) \rightarrow 4$
 $(1,6) \rightarrow -5$, $(2,5) \rightarrow -3$
 $(1,5) \rightarrow -4$, $(4,1) \rightarrow 3$, $(6,1) \rightarrow 5$

Así,

$$A_Y = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$$

Diferentes variables aleatorias implican rangos diferentes. Es importante resaltar que las variables aleatorias, en muchos casos, permiten reducir los resultados en un espacio muestral, a un conjunto de valores más pequeño.

En una gran población se encuestan de manera aleatoria sujetos hasta encontrar el primero que responde afirmativamente a una pregunta de interés. Si X es la variable aleatoria que cuenta el número de sujetos encuestados hasta encontrar el primero que responde afirmativamente, entonces el rango de X está dado por $A_X = \{1, 2, 3, \cdots\}$.

El desgaste de una llanta en un período de un año es una variable aleatoria. Si X es la variable aleatoria que representa el desgaste en décimas de milímetros, $A_X = (0, a)$, donde a representa el desgaste máximo de la llanta.

Variables Aleatorias

Estos 2 ejemplos representan variables aleatorias, las cuales son observadas en dos tipos de escalas que implican conteos o mediciones. A la primera se le conoce como Variable Aleatoria *Discreta*, a la segunda como Variable Aleatoria *Continua*. La diferencia principal entre ellas, es que para la primera, el rango es un conjunto contable (finito o numerable); en la segunda, el rango de la variable aleatoria forma un intervalo de números reales.

Cualquier v.a cuyos posibles valores son 0 y 1 recibe el nombre de Variable Aleatoria Bernoulli

Estadística I(Clase 3).

Distinbución de probabilidad de v.a discretas

La distribución de probabilidad de una v.a X, dice cómo está distribuida la probabilidad total de 1 entre los posibles valores de X. Se utilizará la siguiente notación para las probablidades: p(x) = P(X = x). Si x = 0, entonces escribiremos p(0) = P(X = 0) = 1 La probabilidad cuando X toma el valor de 0.

En general, p(x) denotará la probabilidad asignada al valor de x.

Distillución de probabilidad de v.a discretas

La distribución de probabilidad o Función masa de Probabilidad (f.m.p.) o (p.m.f.) de una v.a discreta X definida en un espacio muestral S, se denotará p(x) y se define como:

$$p(x) = P(X = x)$$
; $\forall x \in A_X$.

Es decir, para cada valor posible x de la v.a, la f.m.p, especifica la posibilidad de observar dicho valor cuando se realiza el experimento.

Estadística I(Clase 3).

Distinución de probabilidad de v.a discretas

Esta función *p* debe satisfacer las siguientes condiciones:

1.
$$p(x) \ge 0$$
 , $\forall x \in A_X$

$$2. \sum_{x \in A_X} p(x) = 1$$

3. Si
$$A \subseteq A_X$$
, entonces $P(X \in A) = \sum_{x \in A} p(x)$.

Tres monedas no cargadas son lanzadas al tiempo. Sea X: el # de caras observadas, hallar la f.m.p de X.

Solución

$$A_X = \{0, 1, 2, 3\}$$

$$P(X = 0) = P(\{SSS\}) = \frac{1}{8}$$

$$P(X = 1) = P(\{CSS, SCS, SSC\}) = \frac{3}{8}$$

$$P(X = 2) = P(\{CCS, CSC, SCC\}) = \frac{3}{8}$$

$$P(X = 3) = P(\{CCC\}) = \frac{1}{8}$$

nción de Distribución Acumulada

Sea X una v.a discreta con f.m.p. p(x). La Función de Distribución Acumulada (f.d.a.) de X, denotada F(x) se define como:

$$F(x) = P(X \le x) = \sum_{x' \le x} p(x'), \quad \forall x \in \mathbb{R}.$$

F(x)= Suma de la probabilidades hasta el valor de x incluyendo la probabilidad en el valor de x.

Propiedades de la Función de Distribución Acumulada

1.
$$0 \le F(x) \le 1$$
.

2.
$$P(X > x) = 1 - F(x)$$
.

3. Si
$$x < y \Rightarrow F(x) < F(y)$$
.

4. p(x) representa el salto en el gráfico de F(x) en el punto x.

anción de Distribución Acumulada

Si $a,b \in \mathbb{R}$

■
$$P(a \le X \le b) = F(b) - F(a - 1)$$

■
$$P(a < X \le b) = F(b) - F(a)$$

■
$$P(a \le X < b) = F(b - 1) - F(a - 1)$$

■
$$P(a < X < b) = F(b - 1) - F(a)$$

■
$$P(X < a) = F(a - 1)$$

nción de Distribución Acumulada

$$P(X \le a) = F(a)$$

■
$$P(X \ge a) = 1 - P(X < a) = 1 - F(a - 1)$$

■
$$P(X > a) = 1 - P(X \le a) = 1 - F(a)$$

Se lanza un dado. Sea X: el resultado del lanzamiento del dado, halle la f.d.a. de X.

Solución

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$A_X = \{1, 2, 3, 4, 5, 6\}$$

se tiene que:

$$p(x) = \frac{1}{6}, \quad x = 1, 2, 3, 4, 5, 6.$$

Ahora calculemos la Función de Distribución Acumulada:

$$Si \ x < 1 \Rightarrow F(x) = 0$$

 $Si \ 1 \le x < 2 \Rightarrow F(1) = 1/6$
 $Si \ 2 \le x < 3 \Rightarrow F(2) = 2/6$
 $Si \ 3 \le x < 4 \Rightarrow F(3) = 3/6$
 $Si \ 4 \le x < 5 \Rightarrow F(4) = 4/6$
 $Si \ 5 \le x < 6 \Rightarrow F(5) = 5/6$
 $Si \ x \ge 6 \Rightarrow F(x) = 1$

La distribución acumulada para X, puede escribirse como:

$$F(x) = \begin{cases} 0 & ; & x < 1 \\ \frac{[x]}{6} & ; & x \in [1, 6) \\ 1 & ; & x \ge 6 \end{cases}$$

Suponga que una v.a X tiene f.m.p. dada por,

X	0	1	2	3
p(x)	$\frac{1}{8}$	38	$\frac{3}{8}$	$\left[\begin{array}{c} \frac{1}{8} \end{array}\right]$

Halle la función de distribución acumulada de la variable aleatoria X y grafíquela.

Solución

Si
$$x < 0$$
 entonces $F(x) = 0$
Si $0 \le x < 1$ entonces $F(0) = \frac{1}{8}$
Si $1 \le x < 2$ entonces $F(1) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
Si $2 \le x < 3$ entonces $F(2) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$
Si $x \ge 3$ entonces $F(3) = 1$.

En el gráfico de esta Función de Distribución Acumulada, la longitud del salto que da la función en x=2 es exactamente igual a la probabilidad en ese punto.

Estadística I(Clase 3).

Ejercicio

Ejercicio

Sea X una v.a. discreta, determinar el valor de k, para que la función

$$p(x) = x/k$$
, $x = 1, 2, 3, 4$, sea la f.m.p. de X .

Halle
$$p(x)$$
, $F(x)$, y $P(1 \le X \le 3)$