See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262298703

High CO 2 Chemisorption in α-Li 5 AlO 4 at Low Temperatures (30-80 °C): Effect of the Water Vapor Addition

ARTICLE in ENERGY & FUELS · MAY 2012		
Impact Factor: 2.79 · DOI: 10.1021/ef3004416		
CITATIONS	READS	
11	19	

2 AUTHORS, INCLUDING:

Heriberto Pfeiffer

Universidad Nacional Autónoma de México

108 PUBLICATIONS 1,478 CITATIONS

SEE PROFILE

High CO_2 Chemisorption in α -Li₅AlO₄ at Low Temperatures (30–80 °C): Effect of the Water Vapor Addition

Tatiana L. Ávalos-Rendón and Heriberto Pfeiffer*

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CP 04510 Mexico Distrito Federal, Mexico

ABSTRACT: α-Li₅AlO₄ was synthesized using a solid-state reaction, and then different water sorption experiments were performed using N₂ and CO₂ as carrier gases. When the N₂-H₂O flow gas was used, α-Li₂AlO₄ showed a water vapor sorption because of two different processes: superficial hydration and hydroxylation. However, if CO2 was used as the water vapor carrier gas, the α -Li₅AlO₄ carbonation process was observed at low temperatures (30–80 °C), although this reaction is only produced at high temperatures (200-700 °C) under dry conditions. In this case, the carbonation process was induced by the lithium ceramic superficial hydroxylation. The results clearly showed that α -Li₅AlO₄ is capable of chemisorbing up to 8.4 mmol of CO₂/g of ceramic, a considerably high capture at low temperatures compared to different materials. Finally, a kinetic analysis indicated that the CO_2 chemisorption in α -Li₅AlO₄ is highly favored in the presence of water vapor.

■ INTRODUCTION

The capture of CO₂, either physically or chemically, onto solid sorbents is receiving increasing attention, which has led to different materials being tested as possible captors. Some of these materials include zeolites, hydrotalcites, amines, polymeric membranes, calcium oxide, and different lithium ceramics. 1-3 These types of materials are in demand because they can be used in advanced zero-emission power generation technologies^{1,4,5} and steam methane-reforming processes for enhanced hydrogen production.^{6,7} In addition, all possible applications of the CO₂ capture process would help to mitigate the impact of the greenhouse effect. For this reason, different lithium ceramics have been tested for use as possible ${\rm CO_2}$ captors through a chemisorption process. Among these ceramics, lithium aluminate (α -Li₅AlO₄) appears to be one of the best options because of its high theoretical chemisorption capacity (15.9 mmol of CO₂/g of ceramic). 16,26-28 Note that Li₅AlO₄ is capable of chemisorbing CO₂ over a wide range of temperatures (200-700 °C), irrespective of its different polymorphs.²⁶ However, note that the α-Li₅AlO₄ polymorph has the best experimental CO₂ chemisorption capacity per gram currently reported.²⁶

In addition, water vapor is commonly found to coexist with CO₂ during post-combustion CO₂ capture applications. Typical power plant flue gases contain approximately 72% N₂, 8-12% CO₂, 8-10% H₂O, and smaller concentrations of other polluting species. Consequently, studying and understanding the capture of CO₂ in CO₂-H₂O systems are very important; however, there are relatively few sorption data sets available in the literature for this binary system. ^{29,30} Specifically, among the alkaline ceramics, as in general, there are only a few papers showing the effects of water vapor during the CO_2 absorption on these ceramics. ^{11,31–35} Most of these works mention that water vapor appears to improve the CO2 chemisorption because of the superficial hydroxylation, which thermodynamically enhances the CO2 capture according to the following reaction mechanism:32

$$\begin{array}{c} AC \xrightarrow{H_2O_{(v)}} AC_{superficially\ hydroxylated} \\ \xrightarrow{CO_2} A_2CO_3 \ or \ AHCO_3 \ + \ MO_x \end{array} \tag{1}$$

where AC represents the alkaline ceramic, A2CO3 and AHCO3 correspond to the alkaline carbonate and the acid alkaline carbonate, respectively, and MO_x is the residual metal oxide.

Therefore, the aim of the present work is to study the CO₂- H_2O capture process on α -Li₅AlO₄, which is one of the most promising ceramic materials for the capture of CO₂. These experiments were performed over a moderate temperature range (30-80 °C).

EXPERIMENTAL SECTION

The α-Li₅AlO₄ polymorph was synthesized using a solid-state reaction that employs lithium oxide (Li₂O, Aldrich) and γ -aluminum oxide (γ -Al₂O₃, Aldrich). The powders were first mechanically mixed and pressed into pellets (2.5 tons/cm²). The pellets were then heated at 500 °C for 24 h. Finally, the α -Li₅AlO₄ pellets were pulverized.²⁶ To obtain pure α-Li₅AlO₄, a 30 wt % excess of lithium was used during synthesis because of the tendency of lithium to sublimate. The formation of α-Li₅AlO₄ was confirmed by powder X-ray diffraction (XRD) (data not shown).

Dynamic and isothermal experiments were performed using a humidity-controlled thermobalance (TA Instruments, model Q5000SA) at different temperatures and relative humidities (RHs). The experiments were performed using distilled water and two different carrier gases: nitrogen (N2, Praxair grade 4.8) or carbon dioxide (CO₂, Praxair grade 3.0). The total gas flow rate used in all of the experiments was 100 mL/min, and the RH percentages were automatically controlled by the Q5000SA instrument. Dynamic water vapor sorption/desorption experiments were performed at different temperatures (between 30 and 80 °C) while varying the RH from 0 to 80% and then from 80 to 0% at a rate of 0.5%/min. Different isothermal experiments were performed at specific temperatures and RHs for 4 h with the use of CO₂ as a carrier gas. Afterward, the

Received: March 13, 2012 Revised: April 23, 2012 Published: April 24, 2012

products (\sim 3 mg) were characterized to identify the hydration products. The samples were analyzed using XRD and thermogravimetric analysis (TGA). A standard X-ray diffractometer (Bruker AXS, D8 Advance) equipped with a copper anode X-ray tube was used for the XRD measurements. The Joint Committee Powder Diffraction Standards (JCPDS) were used to identify α -Li₅AlO₄ and the phases of the products from the diffraction data. The TGA measurements were performed under an air atmosphere using a TA Instruments, model Q500HR thermobalance at a heating rate of 5 °C/min.

■ RESULTS AND DISCUSSION

The α -Li₅AlO₄ water sorption—desorption curves obtained using N₂ as a carrier gas are shown in Figure 1. It is clearly

Figure 1. Water vapor isotherms of the α -Li₅AlO₄ sample, generated at temperatures between 30 and 70 $^{\circ}$ C, using N₂ as the carrier gas.

evident that all of the sorption isotherms corresponded to type III, according to the International Union of Pure and Applied Chemistry (IUPAC) classification. Additionally, the water sorption varied as a function of the temperature, and it was not completed or limited to the sorption curves, because during some part of the desorption process, the samples continued gaining weight. When the α -Li₅AlO₄ sample was treated at 30 °C, the maximum water sorption was equal to 15.1 wt %, but this quantity increased as a function of the temperature to 29.2 wt % at 70 °C. Afterward, the water desorption was proportional to the temperature, which may be attributed to water evaporation. In fact, at 30 °C, the water desorption process was almost not detected. At 40 °C, water desorption occurred at a RH of 10% and the weight loss corresponded to 5 wt %. Then, between 50 and 70 °C, the weight lost increased and this process was initiated at a higher RH. Finally, in other alkaline and earth alkaline ceramics, it has been shown that the weight gained at the end of the isothermal experiments can be attributed to H2O that is physically and/or chemically trapped.31-35

Figure 2 shows the α -Li_sAlO₄ water sorption—desorption curves with the use of CO₂ as the carrier gas. Although the sorption curves were type III (as in the N₂ case), the water desorption process and the final weight increments differed. During the sorption process, the weight increments increased as a function of the temperature (see Figure 2B). In addition, note that the weight increments began increasing at approximately 20–30% RH (in the N₂ case, the weight increments began increasing at a RH higher than 50%). It appears that the flow of CO₂ produces faster and higher sorption processes. During the desorption process, the final weight increment increased between 30 and 60 °C, from 22.5

Figure 2. (A) Water vapor isotherms of the α -Li₅AlO₄ sample, generated at temperatures between 30 and 80 °C, using CO₂ as the carrier gas. (B) Initial sorptions of the same isotherms.

to 39.6 wt %. However, at T > 60 °C, the weight increments decreased. It appears that the CO_2 – H_2O flow produced the carbonation and hydration of α -Li₅AlO₄, and the hydration may have been reduced at high temperatures because of evaporation.

To analyze the α -Li₅AlO₄/N₂-H₂O and α -Li₅AlO₄/CO₂-H₂O hydration products, some of the isothermal products were analyzed using XRD. Figure 3 shows two XRD patterns that correspond to the α -Li₅AlO₄ isothermal products treated at 60 °C in N₂-H₂O and CO₂-H₂O flows. In both cases, several new phases were detected, which provides evidence of the α -

Figure 3. XRD patterns of the α-Li_SAlO₄ rehydrated samples at 60 °C, using (A) N₂ and (B) CO₂ as the carrier gases. The different phases were labeled as follows: (●) α-Li_SAlO₄, (▲) γ-LiAlO₂, (■) Li₂CO₃, (○) LiOH, and (△) LiOH−H₂O.

Li₅AlO₄ reactivity in both flows. When α -Li₅AlO₄ was treated in a N₂-H₂O flow, the obtained products were lithium hydroxides (LiOH and LiOH·H₂O), lithium carbonate (Li₂CO₃, which must be produced later because of the environmental CO₂), LiAlO₂, and Li₅AlO₄. Therefore, the reaction process occurring under these conditions on the α -Li₅AlO₄ particle surfaces is

$$\alpha$$
-Li_SAlO₄ + 2H₂O \rightarrow LiAlO₂ + 4LiOH (2)

However, the XRD peak intensities suggest only a partial α -Li₅AlO₄ hydroxylation, which is in good agreement with the final weight increments observed in Figure 1.

When α-Li₅AlO₄ was treated in a CO₂-H₂O flow, the products were LiOH, LiOH·H₂O, Li₂CO₃, LiAlO₂, and α-Li₅AlO₄. However, in this case, the Li₂CO₃ phase must be produced during the isothermal experiment and the Li₅AlO₄ peak intensities decreased considerably, which suggests a much higher reaction efficiency. It has been described in the literature 26-28 that Li₅AlO₄ is able to chemisorb CO₂ but at T > 200 °C. Nevertheless, in this case, the water vapor addition allowed the CO₂ chemisorption to occur at much lower temperatures (30-80 °C). Perhaps the water molecules reacted with Li₅AlO₄ superficially, producing Li-OH superficial bonds. Then, superficially activated Li₅AlO₄ must be more reactive to CO₂. In fact, in a previous work, it was reported that LiOH is capable of chemically trapping large amounts of CO_2 at considerably low temperatures. Therefore, $\alpha\text{-Li}_5AlO_4$ may have reacted with CO₂ at low temperatures because of a superficial hydroxylation, according to the following reaction mechanism:

$$\begin{array}{c} \text{Li}_{5}\text{AlO}_{4} \xrightarrow{\text{H}_{2}\text{O}} \text{Li}_{5}\text{AlO}_{4 \text{ superficially activated}} \\ \xrightarrow{\text{CO}_{2}} \text{LiAlO}_{2} + 2\text{Li}_{2}\text{CO}_{3} \end{array} \tag{3}$$

where Li₅AlO₄ superficially activated must correspond to the Li₅AlO₄ phase that was mainly hydroxylated at the surface, producing a mixture of LiAlO₂ and LiOH, according to reaction 2 and the different results observed by XRD.

To further understand and quantify the CO_2 – H_2O reactivity on α -Li₅AlO₄, different kinetic experiments are presented in Figures 4 and 5, which correspond to the experiments performed at different temperatures and RHs with CO_2 flow. Figure 4 shows the isotherms performed at 80 °C while varying the RH (20, 40, 60, and 80%). As observed from the isotherms in Figure 4, the weight increased as a function of the RH. While

Figure 4. Kinetic isotherms performed at 80 $^{\circ}$ C and different RHs (20, 40, 60, and 80%), using CO₂ as the carrier gas.

Figure 5. Kinetic isotherms performed at a RH of 80% and different temperatures (40, 50, 60, and 80 °C), using CO₂ as the carrier gas.

the sample analyzed with 20% RH gained 6.8 wt % after 240 min, the sample treated with 80% RH gained 51.3 wt % in the same period of time. Of course, these weight increments must be associated with different processes, such as hydration, hydroxylation, and carbonation. Additionally, during the first minutes of the curves, it can be observed that the RH significantly modifies the reaction rate processes, as the slopes of the curves varied from 0.0008 wt %/s at a RH of 20% to 1.1 wt %/s at a RH of 80%. This result indicates a 4 orders of magnitude difference.

However, when the samples are compared as a function of the temperature, the main variations were observed during the final weight increments but not at the initial rate reaction processes. For example, Figure 5 shows the samples analyzed with 80% RH at different temperatures (40, 50, 60, and 80 °C). As observed in this figure, the weight increments decreased from 90.2 to 51.5 wt % when varying the temperature from 40 to 80 °C. These results can be explained by the water evaporation process, which must be increased as a function of the temperature. Nevertheless, note that the slopes of these curves did not vary as much as in the previous case. Here, the slopes only increased from 0.01 to 0.03 wt %/s between 40 and 80 °C, respectively. Therefore, according to the isothermal curves, the $\rm CO_2-H_2O$ sorption process is affected more by the RH than by the temperature over this temperature range.

To quantify the carbonation and superficial hydration and/or hydroxylation on α-Li₅AlO₄, under the different thermal and humidity conditions, all of the isothermal products were characterized using TGA. As examples, Figure 6 shows the TGA and DTG curves of α -Li₅AlO₄ that was isothermally treated at 80 °C with different RHs. These thermograms show three different, well-defined temperature ranges. Initially, between room temperature and 300 °C, the samples treated at 80 and 60% of RH lost weight, which could be attributed to dehydration and some type of dehydroxylation. The dehydroxylation was proposed by a very defined peak that appeared at approximately 230 °C. The samples treated at lower RH basically did not present this process. The weight decrements in this part of the thermograms varied from 10.7 to only 1.5 wt % for the samples treated at a RH of 80 and 40%, respectively. Then, between 400 and 450 $^{\circ}$ C, the samples treated at 20, 40, and 60% of RH presented a dehydroxylation process, decreasing the weight lost as a function of the RH, which must occur because of the LiOH decomposition process. In fact, the sample treated at a RH of 80% did not show the LiOH

Figure 6. TG and DTG curves of the α -Li₅AlO₄ rehydrated samples at 80 °C and different RHs (20, 40, 60, and 80%).

dehydroxylation process ($400-450~^{\circ}$ C); it only presented a superficial dehydroxylation at 230 °C. Finally, after 660 °C, all of the samples presented a decarbonation process, which appeared to increase as a function of the RH.

Therefore, to quantify the amounts of CO₂ and H₂O that were trapped (physically or chemically) by α -Li₅AlO₄, all of the weight variations that were determined from the TGA experiments were plotted in Figure 7. As observed in this figure, when the RH was fixed at 80%, the chemisorbed CO₂ increased as a function of the temperature, from 32.2 to 37.2 wt %. However, the trapped H₂O (physically and chemically) diminished as a function of the temperature because of evaporation. Moreover, when the temperature was held at 80 °C and the RH varied, the chemisorbed CO2 increased, although in these cases, the H2O trapped also increased, as could be expected. In this case, the CO₂ chemisorption was increased from 20.9 wt % with a RH of 20% to 37.2 wt % with a RH of 80%. All of these results clearly show that CO₂ chemisorption in α -Li₅AlO₄ is significantly improved by the presence of water in this temperature range, but in dry conditions, the capture of CO2 is not achieved. This result indicates that, under the thermal humidity conditions, α -Li₅AlO₄ is capable of absorbing up to 35.8 wt % CO₂ (8.4 mmol of CO₂/g of ceramic), which corresponds to an efficiency of 53.3%. Therefore, the CO₂ chemisorption on α -Li₅AlO₄ under these thermal and humidity conditions is almost identical to that obtained at high temperatures and dry conditions (9.4 mmol of CO_2/g of ceramic²⁶). Additionally, $\alpha\text{-Li}_5AlO_4$ in the presence of water vapor appears to be capable of chemically

Figure 7. Evolution of CO_2 and H_2O trapped (physically and chemically) by α -Li₅AlO₄ with varying temperatures and RHs.

trapping more CO₂ than any other material at low temperatures (30–80 °C), including activated carbons, zeolites, and amines.¹

CONCLUSION

The CO_2 – H_2O sorption process of α -Li₅AlO₄ was evaluated at low temperatures (30–80 °C). The initial results obtained using N_2 as the carrier gas showed that α -Li₅AlO₄ is capable of partially trapping water physically and chemically. In the second case, a α -Li₅AlO₄ surface hydroxylation is formed and the quantities of physically and chemically trapped water vapor were dependent upon the temperature and RH.

When CO_2 was used as the H_2O vapor carrier gas, important changes appeared in the results. Although α -Li₃AlO₄ continued trapping H_2O by the same mechanisms, CO_2 was chemically trapped as well, which produced Li₂CO₃ and LiAlO₂. In fact, different isothermal analyses and the characterization of the isothermal products showed that the formation of Li₂CO₃ increased as a function of the temperature but mainly as a function of the RH. Finally, note that α -Li₅AlO₄ presents considerably better CO_2 chemisorption efficiencies in the presence of water vapor (at low temperatures) because of the initial hydroxylation of the ceramic surface, thus promoting a higher CO_2 reactivity of the newly activated surfaces. In fact, α -Li₅AlO₄ is not capable of trapping CO_2 in the same temperature range under dry conditions.

In summary, α -Li₃AlO₄ appears to possess excellent properties for use as a CO₂ captor at high and low temperatures. In fact, at high temperatures, α -Li₅AlO₄ has similar capture efficiencies to CaO, which is one of the most promising and studied CO₂ captors at high temperatures.

Moreover, at low temperatures (30–80 $^{\circ}$ C) and in the presence of water vapor, α -Li₅AlO₄ appears to be capable of capturing more CO₂ than any other material currently reported.

AUTHOR INFORMATION

Corresponding Author

*Telephone: +52-55-5622-4627. Fax: +52-55-5616-1371. E-mail: pfeiffer@iim.unam.mx.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by SENER-CONACYT (150358). Tatiana L. Ávalos-Rendón thanks CONACYT for personal financial support. The authors thank A. Tejeda and E. Fregoso for technical help.

REFERENCES

- (1) Choi, S.; Drese, J. H.; Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. *ChemSusChem* **2009**, *2*, 796.
- (2) Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO₂ capture by solid adsorbents and their applications: Current status and new trends. *Energy Environ. Sci.* **2011**, *4*, 42.
- (3) Advances in CO₂ Conversion and Utilization; Yun-Hang, H., Ed.; American Chemical Society (ACS): Washington, D.C., 2010; ACS Symposium Series, Vol. 1056.
- (4) Liu, W.; Feng, B.; Wu, Y.; Wang, G.; Barry, J.; da Costa, J. C. D. Synthesis of sintering-resistant sorbents for CO₂ capture. *Environ. Sci. Technol.* **2010**, *44*, 3093.
- (5) Lackner, K. S. A guide to CO₂ sequestration. Science 2003, 300, 1677
- (6) Halabi, M. H.; de Croon, M. H. J. M.; van der Schaaf, J.; Cobden, P. D.; Schouten, J. C. Reactor modeling of sorption-enhanced autothermal reforming of methane. Part I: Performance study of hydrotalcite and lithium zirconate-based processes. *Chem. Eng. J.* **2011**, 168, 872.
- (7) Waldron, W. F.; Hufton, J. R.; Sircar, S. Production of hydrogen by cyclic sorption enhanced reaction process. *AIChE J.* **2001**, *47*, 1477.
- (8) Olivares-Marín, M.; Castro-Díaz, M.; Drage, T. C.; Maroto-Valerand, M. M. Use of small-amplitude oscillatory shear rheometry to study the flow properties of pure and potassium-doped Li₂ZrO₃ sorbents during the sorption of CO₂ at high temperatures. *Sep. Purif. Technol.* **2010**, *73*, 415.
- (9) Pfeiffer, H.; Bosch, P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate ($\text{Li}_6\text{Zr}_2\text{O}_7$). *Chem. Mater.* **2005**, *17*, 1704.
- (10) Duan, Y. Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO₂ capture: A first-principles density-functional theory and phonon dynamics approach. *J. Renewable Sustainable Energy* **2011**, *3*, 013102.
- (11) Nair, B. N.; Burwood, R. P.; Goh, V. J.; Nakagawa, K.; Yamaguchi, T. Lithium based ceramic materials and membranes for high temperature CO₂ separation. *Prog. Mater. Sci.* **2009**, *54*, 511.
- (12) Wang, K.; Guo, X.; Zhao, P.; Wang, F.; Zheng, C. High temperature capture of CO₂ on lithium-based sorbents from rice husk ash. *J. Hazard. Mater.* **2011**, *189*, 307.
- (13) Rodríguez-Mosqueda, R.; Pfeiffer, H. Thermokinetic analysis of the CO₂ chemisorption on Li₄SiO₄ by using different gas flow rates and particle sizes. *J. Phys. Chem. A* **2010**, *114*, 4535.
- (14) Yamaguchi, T.; Niitsuma, T.; Nair, B. N.; Nakagawa, K. Lithium silicate based membranes for high temperature CO₂ separation. *J. Membr. Sci.* **2007**, 294, 16.
- (15) Khokhani, M.; Khomane, R. B.; Kulkarni, B. D. Sodium-doped lithium zirconate nano-squares: Synthesis, characterization and applications for CO₂ sequestration. *J. Sol-Gel Sci. Technol.* **2012**, *61*, 316.

(16) Ávalos-Rendón, T.; Casa-Madrid, J.; Pfeiffer, H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO₂ and Li₅AlO₄): A new option for the CO₂ absorption. *J. Phys. Chem. A* **2009**, *113*, 6919.

- (17) Xiao, Q.; Liu, Y.; Zhong, Y.; Zhu, W. A citrate sol–gel method to synthesize Li₂ZrO₃ nanocrystals with improved CO₂ capture properties. *J. Mater. Chem.* **2011**, 21, 3838.
- (18) Yin, X. S.; Li, S. P.; Zhang, Q. H.; Yu, J. G. Synthesis and CO₂ adsorption characteristics of lithium zirconates, with high lithia content. J. Am. Ceram. Soc. **2010**, 93, 2837.
- (19) Iwan, A.; Stephenson, H.; Ketchie, W. C.; Lapkin, A. A. High temperature sequestration of ${\rm CO}_2$ using lithium zirconates. *Chem. Eng. J.* **2009**, *146*, 249.
- (20) Yin, X. S.; Li, S. P.; Zhang, Q. H.; Yu, J. G. High-temperature CO_2 capture on $Li_6Zr_2O_7$: Experimental and modeling studies. *Ind. Eng. Chem. Res.* **2010**, *49*, 6593.
- (21) Olivares-Marín, M.; Drage, T. C.; Maroto-Valer, M. M. Novel lithium-based sorbents from fly ashes for CO₂ capture at high temperatures. *Int. J. Greenhouse Gas Control* **2010**, *4*, 623.
- (22) Seggiani, M.; Puccini, M.; S. Vitolo, S. High-temperature and low concentration CO₂ sorption on Li₄SiO₄ based sorbents: Study of the used silica and doping method effects. *Int. J. Greenhouse Gas Control* **2011**, *5*, 741.
- (23) Yin, X. S.; Zhang, Q. H.; Yu, J. G. Three-step calcination synthesis of high-purity Li_8ZrO_6 with CO_2 absorption properties. *Inorg. Chem.* **2011**, *7*, 2844.
- (24) Radfarnia, H. R.; Iliuta, M. C. Surfactant-template/ultrasound-assisted method for the preparation of porous nanoparticle lithium zirconate. *Ind. Eng. Chem. Res.* **2011**, *50*, 9295.
- (25) Xiao, Q.; Tang, X.; Liu, Y.; Zhong, Y.; Zhu, W. Citrate route to prepare K-doped Li₂ZrO₃ sorbents with excellent CO₂ capture properties. *Chem. Eng. J.* **2011**, *174*, 231.
- (26) Ávalos-Rendón, T.; Lara, V. H.; Pfeiffer, H. CO_2 chemisorption and cyclability analyses of lithium aluminate polymorphs (α and β Li_5AlO_4). Ind. Eng. Chem. Res. **2012**, 51, 2622.
- (27) Korake, P. V.; Gaikwad, A. G. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. *Front. Chem. Eng. China* **2011**, *5*, 215.
- (28) Inoue, R.; Ueda, S.; Wakuta, K.; Sasaki, S.; Ariyama, T. Thermodynamic consideration on the absorption properties of carbon dioxide to basic oxide. *ISIJ Int.* **2010**, *50*, 1532.
- (29) Li, G.; Xiao, P.; Welley, P.; Zhang, J.; Singh, R. Capture of CO_2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. *Adsorption* **2008**, *14*, 415.
- (30) Li, G.; Xiao, P.; Webley, P. Binary adsorption equilibrium of carbon dioxide and water vapor on activated alumina. *Langmuir* **2009**, 25, 10666.
- (31) Ochoa-Fernandez, E.; Zhao, T.; Ronning, M.; Chen, D. Effects of steam addition on the properties of high temperature ceramic CO_2 acceptors. *J. Environ. Eng.* **2009**, *37*, 397.
- (32) Santillan-Reyes, G. G.; Pfeiffer, H. Analysis of the CO₂ capture in sodium zirconate (Na₂ZrO₃). Effect of the water vapor addition. *Int. J. Greenhouse Gas Control* **2011**, *5*, 1624.
- (33) Martínez-dlCruz, L.; Pfeiffer, H. Towards understanding the effect of water sorption on lithium zirconate (Li₂ZrO₃) during its carbonation process at low temperatures. *J. Phys. Chem. C* **2010**, *114*, 9453.
- (34) Ortiz-Landeros, J.; Martínez-dlCruz, L.; Gómez-Yáñez, C.; Pfeiffer, H. Towards understanding the thermoanalysis of water sorption on lithium orthosilicate ($\rm Li_4SiO_4$). *Thermochim. Acta* **2011**, *515*, 73.
- (35) Ortiz-Landeros, J.; Gómez-Yáñez, C.; Pfeiffer, H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li₂SiO₃) hollow spheres: II) Textural analysis and CO₂–H₂O sorption evaluation. *J. Solid State Chem.* **2011**, 184, 2257.