

上海思响信息科技有限公司

地址:上海市浦东新区东方路428号235室邮箱:yiwen.zhu@computherm.com

电话: 13901652239

Pandat 软件 -期优化培训教程

第八讲

2020年7月19日

CompuTherm, LLC 8401 Greenway Blvd, Middleton, WI, USA http://www.computherm.com

答疑与讨论

- 1. Bach file: 批处理文件介绍
 - --Pandat中如何与实验数据进行对比
- 2. 如何设置实验误差和权重
- 3. 亚点阵的选取原则
 - --气相和液相的species
 - --固相的亚点阵模型选取
- 4. 如何评价优化结果?
 - -- 什么样的优化结果是好的优化结果?
- 5. 介绍 LET 函数
 - -- 解决液相 Inverted Miscibility Gap问题
 - -- 函数看似复杂,实际使用简单

Batch file: 批处理文件

www.computherm.com

Batch file 模板

Example Book_2020.pdf

C:\Program Files (x86)\CompuTherm LLC\Pandat 2020\Pandat 2020 Example book

C:\Program Files (x86)\CompuTherm LLC\Pandat 2020\Pandat 2020 Examples

Batch file 模板

Pandat Software Demo Version by CompuTherm, LLC Databases Batch Calc PanPhase[View 🗔 🕝 彦 🖟 🞒 👂 🚐 🖟 🐚 🐧 🗙 😥 📋 Workspace Pandat Workspace 'default' *** default Load TDB Open TDB File Save Condition View Condition/Batch File Rename F2 Expand Collapse Delete Property

基于这些模板来建立Batch file

Batch file

```
<calculation name="Example #1.14" type="section">
       <databases>
              <database type="tdb" file name="AlMg MV.tdb"/>
       </databases>
                                 TDB文件可以为相对路径或绝对路径
       <units>
              <unit name="P" value="bar"/>
              <unit name="T" value="C"/>
                                              单位设置
              <unit name="n" value="x"/>
       </units>
       <system name="Default System">
              <components>
                      <component name="Al" status="Selected"/>
                      <component name="Mg" status="Selected"/>
              </components>
              <phases>
                      <phase name="*" status="Entered" />
              </phases>
                           "Entered", "Suspended", "Dormant"
```


Batch file

```
<point>
            <statespace>
                                                                   Section (2D) Calculation
                                                                                                                 X
                        <T value="800"/>
                                                                    Y-Axis Point
                        <P value="1"/>
                                                                            Value
                        <n component="Al" value="1"/>
                                                                                                             Cancel
                                                                            800
                                                                      T(C)
                        <n component="Mg" value="0</pre>
                                                                                                             Options
                                                                      x(AI)
                                                                                                            Extra Outputs
            </statespace>
                                                                                             Origin
                                                                      x(Mg)
                                                                                                           Load Condition
</point>
                                                                      Total:
                                                                                                           Save Condition
<point>
                                                                                                           Select Phases
            <statespace>
                                                                                                            Select Comps
                                                                                                            Contour Lines
                        <T value="0"/>
                                                                                                  Scanline Density: 0
                        <P value="1"/>
                                                                   Origin Point
                                                                                              X-Axis Point
                        <n component="Al" value="1"/>
                                                                            Value
                                                                                                      Value
                        <n component="Mg" value="D"</pre>
                                                                     T(C)
                                                                                              ▶ T(C)
            </statespace>
                                                                      x(AI)
                                                                                                x(AI)
</point>
                                                                      x(Mg)
                                                                                                x(Mg)
                                                                      Total:
                                                                                                Total:
<point>
            <statespace>
                        <T value="0"/>
                        <P value="1"/>
                        <n component="Al" value="0"/>
                        <n component="Mg" value="1"/>
            </statespace>
</point>
</points>
```

Batch file

计算等值线: contour line

准二元相图: Pseudo-binary phase diagram

线计算时, 计算每个相的热力学性能: individual

Batch file: Table input & output

```
<output unit="">
                               Input
 <tables>
  <column name="T" />
  <column name="phase name" />
  <column name="x(*)" />
 <column name="T" />
 <column name="Sys ThCond" />
                     Invariant reaction / Tieline, etc.
 <column name="ThRss(@*)" />
 </tables>
```


Batch file: Graph output

如何设置权重和误差范围?

在Pandat软件的优化过程中,权重与误差范围是相对应的,同一个实验值,给<mark>高的权重和小的误差范围</mark>在效果上类似。

如何设置权重和误差范围,则是根据实验数据的可靠性,和优化人员的判断来决定。不同的优化人员,可以对同一个实验数据给与不同的权重。最终确定是否优化完成,也是由优化人员来判定,最终的优化结果是否在优化人员预判的范围内。因为不同热力学性质与相平衡数据之间可能是矛盾的,一个接近实验值,另外一个可能就偏离实验值。

权重和误差范围案例

我认为这个共晶温度非常准确: 高的权重,小的误差值

实验结果

Sample	Heating	Cooling	cycle	Tonset-H	$T_{ m p1-H}$	$T_{ m s2-H}$	$T_{ m p2-H}$	Tonset-C
number	rate	rate		(°C)	(°C)	(°C)	(°C)	(°C)
	(K/min)	(K/min)						
#1	10	5	1st	655.9			671.2	656.8
	5	5	2nd	655.9			670.3	652.6
	3	3	3rd	655.6			667.4	652.5
	1	1	4th	655.6	660.2	660.9	668.0	653.7
			average	655.7	660.2	660.9	669.2	653.9
#2	1	1	1st	655.6	659.8	660.3	662.2	657.5
	1	1	2nd	655.6	660.0	660.6	662.4	657.6
			average	655.6	660.0	660.5	662.3	657.6
Pure Al	5	5	1st			660.1	670.2	645.4
	3	3	2nd			660.1	668.5	646.1
	1	1	3rd			660.1	665.0	652.6
			average			660.1	667.9	648.0

\$ AL+AL4SR Eutectic

CREATE NEW EQUILIBRIUM 1,1

CHANGE STATUS PHASE *=DORM

CHANGE STATUS PHASE LIQUID, FCC, AL4SR=FIX 1

SET-CONDITION P=1E5

SET-WEIGHT 2

EXPERIMENT T=928.6:0.3, X(LIQUID, SR)=0.0067:0.0005

权重和误差范围

\$ enthalpy formation of Al4Sr phase
CREATE_NEW_EQUILIBRIUM 4,1
CHANGE_STATUS PHASE *=DORM
CHANGE_STATUS PHASE AL4SR = FIX 1
SET_CONDITION P=1E5, T=298.15 X(AL4SR,SR)=0.2
EXPERIMENT HMR(AL4SR)=-26051:4000
SET_REFERENCE_STATE AL FCC * 1E5
SET_REFERENCE_STATE SR FCC * 1E5

SrAl₄相与第一原理计算值有偏差 SrAl4熔点比SrAl2高, 通常熔点高的ΔH₂₉₈高, 认为第一原理计算值误差范围大

Lecture4: 2014Liang_JAL_443_Al-Sr.pdf

亚点阵的选取原则

问题:

- 1. 液相与气相构建的步骤以及参数的设定跟固相有没有什么不同之处? 一般的系统,液相气相包括哪些species,是把固相的成分都包括进去还是如何选择的?
- 2. 亚点阵如何选取?有什么规则或要求呢?

气相 $G^{\varphi}(T, P)$

$$G_m^{gas} = \sum_{i=1}^{s(gas)} y_i [G_i^{0,\varphi}(T) + RT ln(y_i \frac{P}{P_0})]$$

i: 元素原子, 气相分子, O2, O, O3, CO, CO2, Mg, Mg2...

$$G_i^{0,\varphi}(T) = A + BT + CT \ln T + DT^2 + ET^3 + FT^{-1} + \dots$$

Parameter G(Gas, 0; 0) 298 +GGAS O1 +RTLNP; 6000 N !

气相中包含的species, 应该由选取的体系来决定。包含有固相中的原 子的species 都应该包含在气相中。

比如: Mg, Mg2 ... MgO... 但是 Ca 没有 Ca2, 这是有元素的气相性质决定的

SGTE 数据库中只有 O_2 和 N_2 的 $G_i^{0,\varphi}(T)$ 。

NIST 数据库: ΔH ; S_{298} , C_p http://webbook.nist.gov/chemistry/

两种液相模型

置换溶液模型(substitutional solution model)

$$G^{\varphi} = \sum_{i} x_{i} \cdot G_{i}^{0,\varphi} + RT \sum_{i} x_{i} \ln x_{i} + G^{ex,\varphi}$$

Mg-Ca-O 体系:

Liquid: i = Mg, Ca, O

LIQOX: i = MgO, CaO

 x_i 是组元 i 的摩尔分数

液怕中沒有明显 短程有序结构, 只有组元(元素)。

CaMgO_TwoLiquid.tdb

CaO-MgO_LIQOX.tdb

缔合物模型 (Associate model)

$$G^{\varphi} = \sum_{i} y_{i} \cdot G_{i}^{0,\varphi} + RT \sum_{i} y_{i} \ln y_{i} + G^{ex,\varphi}$$

Mg-Ca-O 体系: i = Mg, MgO, Ca, CaO, O

 y_i 是组元 i 的点阵分数 \neq 摩尔分数

液相中有短程有序结构,需要将短程有序结构作为species。

CaMgO ASSModel.tdb

固相亚点阵的选取原则

问题:

- ▶ 选用几个亚点阵,1个,2个,还是多个?
- > 每个亚点阵里的组元
 - --Elements, species, Vacancy, ion

选择原则:

- ▶ 晶体结构,原子占位
- 模型尽可能简单
- 参数尽可能少
- ▶ 应用

晶体结构信息

Strukturbericht Designation

https://homepage.univie.ac.at/michael.leitner/lattice/struk/index.html

Strukturbericht Designation	Crystal Type		
<u>A</u>	Elements		
<u>B</u>	AB compounds		
<u>C</u>	AB ₂ compounds		
<u>D</u>	A _m B _n compounds		
$\underline{E}, \underline{F}, \underline{G}, \underline{H} \cdots K$	More complex compounds		
<u>L</u>	Alloys		
О	Organic compounds		
S	Silicates		

Fcc_A1; Bcc_A2; Hcp_A3 Bcc_B2; C14; C15; C36

Pearson Symbol

Fcc_A1: cF4; Bcc_A2: cl2; Hcp: hP2

Space Group

间隙固溶体: 亚点阵

M = metal, I = interstitial, Va = vacancy

(M)x(Va,I)y

金属原子

间隙原子

空位

面心立方: fcc cF4 A1 phase 亚点阵模型 (M)1(Va,I)1

每个晶胞(cell)中空位数: Void: 12/4 + 1 = 4

金属原子数: Fcc cF4 = 4 atoms/cell = 6*1/2 + 8*1/8

 \rightarrow 4/4 = 1 octahedral void/atom

每个晶胞(cell)中空位数: Void: 12/4 + 6/2 = 6

金属原子数: bcc cl2 = 2 atoms/cell

 \rightarrow 6/2 = 3 octahedral voids/atom

密排六方: hcp hP2 A3 phase 亚点阵模型 (M)1(Va,I)0.5

1 void/atom but only half filled

如果整个数据库中,没有间隙原子,那么这些固溶体就可以用一个亚点阵模型

Al-Cu-Zn 体系中的γ相

Al-Cu-Zn 体系中的γ相

晶体结构: cl52: 52每个晶胞中有52个原子

52个原子分为两种团簇 (clusters),

每个占26个原子,类似Bcc (NaCl)结构。

IT:Inner tetrahedron (内四面体) (4 atoms)

OT: Outer tetrahedron (外四面体) (4 atoms)

OH: Octahedron (八面体) (6 atoms)

CO: Cuboctahedron (立方八面体) (12 atoms)

可能的模型

	Max (at.% Cu)	IT 4	OT 4	OH 6	CO 12	
Α	38	Zn	Cu	Cu	Zn	Ideal Cu ₅ Zn ₈
В	15 – 85	Zn	Cu	(Cu ,Zn)	(Cu, Zn)	Cu-Zn
С	61 – 100	(Al,Cu)	Cu	Cu	(Al,Cu)	Al-Cu
B+C		(Al,Cu,Zn)	Cu	(Cu,Zn)	(Al,Cu,Zn)	Al-Cu-Zn

(AI,Cu,Zn)4 (Cu)4 (Cu,Zn)6 (AI,Cu,Zn)12

18 end members

Combine IT & CO \rightarrow (Cu)4 (Cu,Zn)6 (Al,Cu,Zn)16 : 6 end members

S.-M. Liang, R. Schmid-Fetzer, Thermodynamic assessment of the Al–Cu–Zn system, Part III: Al–Cu–Zn ternary system, Calphad, 52 (2016) 21-37.

计量化合物还是有固溶度化合物

5SL: (Pb,Va,Va-2)(Te,Va,Va+2)(Va)(Va,e⁻)(Va,h⁺)

2SL: (Pb,Va)(Te,Va)

因为有应用需求, 所以必须要考虑固溶度

计算AI-Cu相图

实验AI-Cu相图

计算相图和实验相图吻合得非常不错

计算AI-Cu相图

ZETA (Cu)₃(Cu,Va)₃ (Al,Cu)₂(Al)₄

4个亚点阵 12 个参数

۲

 $^{0}G^{AL3CU4_HT}{}_{Cu:Cu:Al:Al} = -104590.1 + 9.8592*T + 6*G^{HSER}{}_{Al} + 6*G^{HSER}{}_{Cu}$ $^{0}G^{AL3CU4_HT}{}_{Cu:Cu:Cu:Al} = +25000 + 4*G^{HSER}{}_{Al} + 8*G^{HSER}{}_{Cu}$ $^{0}G^{AL3CU4_HT}{}_{Cu:Va:Al:Al} = +25000 + 6*G^{HSER}{}_{Al} + 3*G^{HSER}{}_{Cu}$ $^{0}G^{AL3CU4_HT}{}_{Cu:Va:Cu:Al} = -70004.62 - 18.7960*T + 4*G^{HSER}{}_{Al} + 5*G^{HSER}{}_{Cu}$ $^{0}L^{AL3CU4_HT}{}_{Cu:Cu:Al,Cu:Al} = -133424.9 + 7.0310*T$ $^{1}L^{AL3CU4_HT}{}_{Cu:Cu:Al,Cu:Al} = 390000$ $^{0}L^{AL3CU4_HT}{}_{Cu:Va:Al,Cu:Al} = 390000$ $^{0}L^{AL3CU4_HT}{}_{Cu:Va:Al,Cu:Al} = 390000$ $^{0}L^{AL3CU4_HT}{}_{Cu:Cu:Va:Al,Cu:Al} = 390000$ $^{0}L^{AL3CU4_HT}{}_{Cu:Cu:Va:Al:Al} = -557902.2 + 184.57*T$ $^{1}L^{AL3CU4_HT}{}_{Cu:Cu:Va:Al:Al} = -300000$ $^{0}L^{AL3CU4_HT}{}_{Cu:Cu:Va:Cu:Al} = -557902.2 + 184.57*T$ $^{1}L^{AL3CU4_HT}{}_{Cu:Cu:Va:Cu:Al} = -300000$

没有明显的应用需求,用4个亚点阵模型,让整个体系非常复杂,无法与其余二元系结合组成多组元数据库。

不是与实验相图数据吻合越好的热力学描述就越好。目的: 应用

S.-M. Liang, R. Schmid-Fetzer, Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system, Calphad, 51 (2015) 252-260.

V.T. Witusiewicz, U. Hecht, S.G. Fries, S. Rex, The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data, J. Alloys Compd., 385 (2004) 133-143

什么样的优化结果是好的优化结果?

如何评价?

评价标准

Correctness of dataset

- Inverted miscibility gap
- Re-stabilization of solid phases at high temperature
- Inadvertent stability of ordered phases.
- > Reasonability of dataset
 - $S_{298}^o > 0$;
 - \star T- $x_B \rightarrow$ T μ_B
- Accuracy of dataset
- > Safety of dataset
 - Missing assessments of subsystems
 - Automatic interpolation between unstable end-members
 - Close proximity of stable and metastable phase boundaries

Assessment techniques, database design and software facilities for thermodynamics and diffusion.

2007SchmidFetzer_Calphad_38.pdf

常见的问题

Inverted miscibility gap

Re-stabilization of solid phases at high temperature

肯定是错误的,必须要修正!

验证 T-μ相图

2017Liang_Intermetallics_355.pdf

常见的问题

Close proximity of stable and metastable phase boundaries

一定是错误的?

Close proximity of stable and metastable phase boundaries

合理的相图 实验结果: 快速凝固时在富Cu侧出现 δ -Fe(Bcc)

LET function

为什么要用LET 函数? 解决Inverted Miscibility Gap

$$L = a + b T$$

$$T > T_{c,min}$$

inverted miscibility gap

LET function

LET function for L parameters

LET function

$$L = (\mathbf{a} + \mathbf{b} \cdot T) \cdot \mathsf{E}(T)$$

$$E'(T) = -\frac{T - \mathcal{T}_1}{\mathcal{T}_2^2} \cdot E(T)$$

$$T = T_1 = 500 \text{ K},$$

E'(T) = 0; E(T) = 1, max;

$$E''(T) = \frac{(T - T_1)^2 - T_2^2}{T_2^2} \cdot E(T)$$

$$T = T_1 + T_2 = 2500 \text{ K}$$
 E"(T) = 0
E(T) = $e^{-1/2} = 0.607$ inflection

$$E(T) = \exp\left[-\left(\frac{T - T_1}{\sqrt{2} \cdot T_2}\right)^2\right]$$

E(500, 2000; T): $T_1 = 500 \text{ K}$; $T_2 = 2000 \text{ K}$.

Linear Function → **LET function**

$$L = (\mathbf{a} + \mathbf{b} \cdot T) \cdot \mathsf{E}(T)$$

- > 一定温度范围内接近线性关系
- **在低温时**,不是太负, 即不会出现低温稳定液相
- 冷高温时,趋近于零,接近理想溶液,不会出现inverted miscibility gap

确定温度**T**_{IFT}

$$T_{LET} = (T_{max} + T_{min}) / 2$$

T_{max}: 最高熔点相温度

T_{mix}: 最低液相温度

L' (LET) = L' (Linear)
$$\rightarrow$$
 b
L (LET) = L(Linear) \rightarrow a

LET function

Questions?

