Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Result

String Counting

Approach 1
Approach 2

Appendix

Dynamic Programming

Shuang Zhao

Microsoft Research Asia September 5, 2005

Outline

Dynamic Programming

Shuang Zhao

Outline

- Introduction
 What is DP
 First Problem
 Second Problem
- Partial Result Tiling Counting String Countin
- Optimization
 Approach 1
 Approach 2
- Appendix
- Proof 1

- Introduction
- 2 Partial Result
- Optimization
- 4 Appendix

Section I

Dynamic Programming

Shuang Zhao

Outline

Introduction

First Problem
Second Problem

Partial Resu

Tiling Counting

Optimizatio

Approach 2

Appendix

Proof 2

Introduction

What is Dynamic Programming?

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix
Proof 1

Definition

Dynamic Programming is a technique for efficiently recurrence computing by storing partial results.

In this slides, I will NOT use too many formal words, but only look on some *interesting problems*.

The First Problem

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problen

Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1 Longest Ascending Subsequence

- $P: a_1, a_2, \ldots, a_n$.
- \bullet Q: $a_{b_1}, a_{b_2}, \ldots, a_{b_k}$, satisfying

$$1 \leq b_1 < b_2 < \ldots < b_k \leq n$$

and

$$a_{b_1} < a_{b_2} < \ldots < a_{b_k}$$

- We say Q is an ascending subsequence of P.
- Your task is: given a sequence P, find the length its longest ascending subsequence (LAS).

The First Problem

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1 Longest Ascending Subsequence

- We use f_i to denote the length of P's LAS ending with element a_i .
- Let $a_0 := -\infty$, $f_0 := 0$. Then we have

$$f_k = \max_{0 \le i < k} \{ f_i + 1 : a_i < a_k \}, \quad 1 \le k \le n$$

- Hence the length of P's LAS is $\max\{f_i\}$.
- This naive Dynamic Programming algorithm runs in $O(n^2)$ time, and later we will look on this problem again.

The Second Problem

Dynamic Programming

Shuang Zhao

Outlin

ntroduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1

Shortest Hamilton Path

- Given a connected graph G(V, E) and a vertex $s \in V$.
- Given a weight function w over E, denoting the lengths of edges.
- Your task is to find the length of shortest Hamilton path starting from s.

The Second Problem

Dynamic Programming

Shuang Zhao

Outline

What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1

Shortest Hamilton Path

- This problem is \mathcal{NP} -hard.
- When |V| is small, one FAST algorithm to solve this problem is Dynamic Programming .
- Use $f_{i,S'}$ where $i \in V, S' \subseteq S$ to denote the length of shortest Hamilton path over S', which ending at vertex i.
- Then $\min_{i \in V} \{f_{i,S}\}$ is what we want, and

$$f_{i,S'} = \min_{j \in S'} \{ f_{j,S'-\{i\}} + w(j,i) \}$$

• This algorithm runs in $O(|V|^2 \cdot 2^{|V|})$ time.

Section II

Dynamic **Programming**

Shuang Zhao

Partial Result

Partial Result

Problem I

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Resul

Tiling Counting

String Counting

Approach 2

Appendix

Deset 3

Tiling Counting

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1 The Problem: There is a board with N rows and 6 columns. How many ways can we cover the board with 'L' pieces?

- One way to solve this problem, is Dynamic Programming .
- But where are the partial results?

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Resul

Tiling Counting

Outing Countin

Approach 2

Appendix

Proof 1

• This is a pattern, say $P_{n,(101011)_2}$:

Dynamic **Programming**

Shuang Zhao

Tiling Counting

• And by completely covering the last row of $P_{n,(101011)_2}$, we can obtain $P_{n+1,(110110)_2}$ and $P_{n+1,(111100)_2}$.

Dynamic Programming

Shuang Zhao

Outlin

Introduction What is DP First Problem Second Problem

Tiling Counting
String Counting

Optimization

Approach 2

Appendix

Appendix Proof 1

Observation

For any pattern $P_{i,j}$, after covering its (i+1)-th row, we can only get patterns with the form of $P_{i+1,j'}$.

We call $P_{i+1,j'}$ can be generated from $P_{i,j}$, denoting as $P_{i+1,j'} > P_{i,j}$.

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Tiling Counting

Optimization
Approach 1

Appendix Proof 1

Observation

For any given covering of the $N \times 6$ board and an integer i ($0 \le i < N$), there will be one and only one pattern $P_{i,j}$, which is contained in the covering.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1 The partial results are:

- Let $f_{i,j}$ to be the number of ways to cover pattern $P_{i,j}$.
- And

$$f_{i,j} = \begin{cases} 1 & j = 0 \\ 0 & \text{otherwise} \end{cases} i = 0$$

$$f_{i,j} = \sum_{P_{i,j} \succ P_{i-1,j'}} f_{i-1,j'} \quad 0 < i < n$$

- Finally $f_{n-1,(111111)_2}$ is the answer to this problem.
- By a coarse calculation, we know this algorithm runs in $O(2^6 \cdot N \cdot 4^6) = O(N)$ time.

Problem II

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Result
Tiling Counting
String Counting

Approach 1

Appendix

Proof 1 Proof 2

String Counting

Dynamic Programming

Shuang Zhao

Outline

Introduction What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1 • The Problem: Given an alphabet Σ , a set of strings $S \subseteq_f \Sigma^*$, and an integer n. Your task is to count the number of n-length-strings which contain at least one string in S as its substring.

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1

- Let $\Sigma := \{a, b, c\}$, $S := \{ab\}$ and n := 3. Then we have: a<u>ab</u> <u>ab</u>a <u>ab</u>b <u>ab</u>c <u>bab</u> <u>cab</u>
- One method to solve this problem is using the *inclusion* and exclusion theorem. But the time complexity of this method is quite high (at least $O(2^{|S|})$).

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Proble

Partial Resul

Tiling Counting
String Counting

Approach 2

Appendix

Definition

Let \leq and \trianglerighteq be two binary relations over Σ^* :

$$x \le y \iff x \text{ is a prefix of } y$$

$$x \trianglerighteq y \iff x \text{ is a suffix of } y$$

Definition

We define the prefix set of S ($S \neq \emptyset$) by

$$\mathsf{pre}(S) := \left\{ s' : (\exists s \in S)(s' \unlhd s) \right\}$$

Obviously, $S \subseteq \operatorname{pre}(S)$.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Result

String Counting
Optimization

Approach 1 Approach 2

Appendix Proof 1 For instance, let $\Sigma := \{a, b, c\}$ and $S := \{aa, ba, cba\}$, then $pre(S) = \{\varepsilon, a, aa, b, ba, c, cb, cba\}$

Dynamic Programming

Shuang Zhao

String Counting

- Let $pre(S) = \{s_0, s_1, \dots, s_t\}$ where $s_0 = \varepsilon$.
- Let F_i (i = 0, 1, ..., t) be the subset of Σ^* , satisfying for all $s' \in F_i$:
 - $s_i \triangleright s'$
 - $\neg(\exists s'' \triangleleft s')[(\exists r \in S)(r \triangleright s'')]$
 - $\bullet \neg \exists s_i (s_i \rhd s_i \land s_i \trianglerighteq s')$

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem

Partial Result

Tiling Counting
String Counting

Approach 1
Approach 2

Appendix Proof 1

Observation

Given $p \in \Sigma$, for all $s \in F_i$, there will be exact one j $(0 \le j \le t)$ satisfying $s \odot p \in F_i$. We say $F_i \succ F_i$.

Dynamic Programming

Shuang Zhao

Outline

What is DP First Problem Second Problem

Tiling Counting
String Counting

Approach 1
Approach 2

Appendix Proof 1 • Define $f_{i,j}$ by the number of *i*-length strings in F_i .

The we have

$$f_{i,j} = \sum_{F_j \succ F_k} f_{i-1,k}$$

and the number of strings which contain at least one string in S as their *substring* is

$$\sum_{i=1}^{n} \sum_{s_i \in S} f_{i,j} \cdot |\Sigma|^{n-i}$$

Dynamic Programming

Shuang Zhao

Outline

What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1

- A brute-force approach to determine the binary relation \succ takes $O(|\operatorname{pre}(S)| \cdot |\Sigma| \cdot L) \approx O(L^2)$ where L is the total length of strings in $\operatorname{pre}(S)$.
- The time complexity of doing the Dynamic Programming is $O(n \cdot |\text{pre}(S)| \cdot |\Sigma|) \approx O(n \cdot |\text{pre}(S)|) \approx O(n \cdot L)$.

Section III

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Doublet Beaut

Tiling Counting String Counting

Optimization

Approach 1

Appendix

D C 2

Optimization

Approach 1

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Resul

Tiling Counting
String Counting

Optimizatio

Approach 2

Appendix

Proof 1

Speed up partial results' calculation

Dynamic Programming

Shuang Zhao

Outlin

ntroduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Approach 1
Approach 2

Appendix

Longest Ascending Subsequence (LAS) problem revisited:

- The naive Dynamic Programming algorithm runs in $O(n^2)$ time.
- Can we solve this problem more efficiently?

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Tiling Countin String Countin

Optimization

Approach 1 Approach 2

Appendix

0

Let
$$n := 6$$
, $\{a_n\} := \{5, 1, 6, 2, 4, 1.5\}$:

Vertices, Contours

• Red - 1, Green - 2, Blue - 3, etc.

Dynamic Programming

Shuang Zhao

Outlin

Introduction What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Approach 1
Approach 2

Appendix

Proposition

The contours will NOT intersect.

Proof.

Assume two contours with levels i and j (i < j) intersects. Then it holds that at least one vertex of level j is below contours i

This gives the contradiction that one vertex of level *i* is below contours *i*.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Resu

Tiling Counting String Countin

Optimization

Approach 1 Approach 2

Appendix

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Resul

Tiling Counting String Counting

Optimization

Approach 1 Approach 2

Appendix

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Result

Tiling Counting String Countin

Optimization

Approach 1 Approach 2

Appendix

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Result

Tiling Counting String Countin

Optimization

Approach 1
Approach 2

Appendix

Proof I

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Dartial Pocul

Tiling Countin

Optimization

Approach 1
Approach 2

Appendix

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Resul

Tiling Counting
String Counting

Optimization

Approach 1 Approach 2

Appendix

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Result

String Countin

Approach 1

Approach 2

Appendix

Proof 2

How to update the contours?

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Tiling Countin

Optimization

Approach 1 Approach 2

Appendix

How to update the contours?

• When the new vertex is above all contours

Then a new contour is created.

Dynamic Programming

Shuang Zhao

Outline

Introduction What is DP First Problem Second Problem

Tiling Counting

Optimization

Approach 1 Approach 2

Appendix

How to update the contours?

When the new vertex is below some contour

Then the contour *immediately above* the new vertex, is lowered.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Optimization

Approach 1 Approach 2

Appendix

How to update the contours?

When the new vertex is just on some contour

Then the contours remain the same.

Dynamic Programming

Shuang Zhao

Outline

Introduction What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Approach 1
Approach 2

Appendix

Find the contour immediately above the new vertex

- A brute-force approach runs in O(n) time.
- A Binary Search algorithm takes only $O(\log n)$ time.

So by using Binary Search, the time complexity of entry algorithm is reduced to $O(n \log n)$.

Dynamic Programming

Shuang Zhao

Outline

ntroduction What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Approach 1
Approach 2

Appendix
Proof 1

Further thinking

- How to implement this algorithm?
- How to find the longest non-descending subsequence of a given sequence?
- If we given a weight to every number in the sequence, how to find the ascending subsequence which maximizes the sum of weights?

Approach 2

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Resul

Tiling Counting

Ontimization

Approach 2

Appendix

Proof 2

Speed up by monotonicity

Dynamic Programming

Shuang Zhao

Outline

ntroduction What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Approach 1
Approach 2

Appendix Proof 1 The Optimal Binary Search Tree (OBST) Problem

- *n* numbers $a_1 < a_2 < ... < a_n$
- n weights $w_1, w_2, \ldots, w_n \ge 0$
- Construct a binary search tree using a_1, \ldots, a_n .

$$Cost = \sum_{i=1}^{n} w_i \cdot d_i$$

 Your task is to find a binary search tree which minimizes the cost.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting

String Counting

Approach 1
Approach 2

Appendix

Proof 2

• Let n := 5 and $\{w_n\} := \{1, 2, 2, 3, 1\}$.

Cost = 19

Cost = 18

• The cost of OBST is 18.

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Approach 1
Approach 2

Appendix Proof 1 The naive Dynamic Programming approach

- $f_{i,j}$: The cost of OBST constructed by $w_i, w_{i+1}, \ldots, w_j$
- Then

$$f_{i,j} = 0 \quad (i > j)$$

$$f_{i,j} = \min_{i \le k \le j} \{ f_{i,k-1} + f_{k+1,j} \} + \sum_{i \le t \le j} w_t \quad (i \le j)$$

- The answer is $f_{1,n}$.
- The time complexity is $O(n^3)$.
- How to speed up this algorithm?

Dynamic Programming

Shuang Zhao

Outlin

What is DP First Problem Second Problem

Partial Result

String Counting

Approach 1
Approach 2

Appendix

Definition

For a given $m \times n$ matrix A, if for all $i_1 \le i_2 \le j_1 \le j_2$, it holds

$$A[i_1,j_1] + A[i_2,j_2] \le A[i_1,j_2] + A[i_2,j_1]$$

then we say A is totally monotonic.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Optimization

Approach 2

Appendix Proof 1

The inequality

$$A[i_1, j_1] + A[i_2, j_2] \le A[i_1, j_2] + A[i_2, j_1]$$

is called Quadrangle Inequality.

Dynamic **Programming**

Shuang Zhao

Approach 2

Recurrent formula of OBST problem

$$f_{i,j} = 0 \quad (i > j)$$

$$f_{i,j} = \min_{i \le k \le j} \{ f_{i,k-1} + f_{k+1,j} \} + \sum_{i \le t \le j} w_t \quad (i \le j)$$

Define $F, W \in \mathbb{R}^{n \times n}_{\perp}$ by

$$F[i,j] := f_{i,j} \quad W[i,j] := \sum_{i \le k \le j} w_k$$

Then when i < j

$$F[i,j] = \min_{i < k < j} \{ F[i,k-1] + F[k+1,j] \} + W[i,j]$$

Dynamic Programming

Shuang Zhao

Approach 2

Proposition

Matrix W is totally monotonic.

Proof.

For all $i_1 \le i_2 < i_1 \le i_2$,

$$W[i_1, j_1] + W[i_2, j_2] = W[i_1, j_2] + W[i_2, j_1]$$

Dynamic Programming

Shuang Zhao

Outlin

Introduction What is DP First Problem Second Problem

Partial Result
Tiling Counting
String Counting

Approach 1
Approach 2

Appendix Proof 1

Proposition

Matrix F is also totally monotonic.

This can be proved by induction on $j_2 - i_1$. To see the details, read <u>Proof 1</u> in the Appendix section.

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Optimization

Approach 2

Appendix

Definition

For all $1 \le i \le j \le n$, define s(i, j) by

$$s(i,j) := \max_{i \le k \le j} \left\{ k : F[i,j] = F[i,k-1] + F[k+1,j] + W[i,j] \right\}$$

Dynamic Programming

Shuang Zhao

Outline

Introduction What is DP First Problem Second Problem

Partial Result
Tiling Counting

String Counting

Approach 1
Approach 2

Appendix

Proposition

s(i,j) is monotonic, namely for all $1 \le i \le j < n$,

$$s(i,j) \le s(i,j+1) \le s(i+1,j+1)$$

To see the proof, read **Proof 2** in the Appendix section.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Approach 1
Approach 2

Appendix

The new recurrent formula

$$f_{i,j} = \min_{s(i,j-1) \le k \le s(i+1,j)} \{ f_{i,k-1} + f_{k+1,j} \} + \sum_{i \le t \le j} w_t \quad (i \le j)$$

• The time complexity to solve it is $O(n^2)$.

Dynamic Programming

Shuang Zhao

Outline

What is DP
First Problem

Partial Resu

Tiling Counting String Counting

Optimizatio

Approach 1
Approach 2

Appendix

Proof 2

Appendix

Dynamic Programming

Shuang Zhao

Proof 1

(In the OBST problem)

Proposition

Matrix F is also totally monotonic.

Proof (Part 1).

When $i_1 = i_2$ or $i_1 = i_2$ the Quadrangle Inequality holds.

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Partial Result

Optimization
Approach 1
Approach 2

Appendix Proof 1

Proof (Part 2).

When $i_1 < i_2 = j_1 < j_2$, we prove by induction on $j_2 - i_1$. Let

$$F[i_1, j_2] = F[i_1, k-1] + F[k+1, j_2] + W[i_1, j_2]$$

Without loss of generality, $k \leq j_1$.

Outline

What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix

Proof 2

Case 1.
$$k < j_1 (= i_2)$$

$$F[i_1, j_1] + F[i_2, j_2]$$

$$\leq F[i_1, k - 1] + F[k + 1, j_1] + W[i_1, j_1] + F[i_2, j_2]$$

$$\leq F[i_1, k - 1] + W[i_1, j_1] + F[k + 1, j_2] + F[i_2, j_1]$$

$$\leq F[i_1, k - 1] + W[i_1, j_2] + F[k + 1, j_2] + F[i_2, j_1]$$

$$= F[i_1, i_2] + F[i_2, i_1]$$

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem

Partial Result
Tiling Counting

String Counting

Approach 2

Appendix

Proof 1 Proof 2

Case 2.
$$k = j_1 (= i_2)$$

$$F[i_1, j_1] + F[i_2, j_2]$$

$$\leq F[i_1, k - 1] + W[i_1, j_1] + F[i_2, j_2]$$

$$\leq F[i_1, k - 1] + W[i_1, j_1] + F[j_1 + 1, j_2] + W[i_2, j_2]$$

$$= F[i_1, k - 1] + W[i_1, j_2] + F[k + 1, j_2] + W[i_2, j_1]$$

$$= F[i_1, i_2] + F[i_2, j_1]$$

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1

Proof (Part 3).

When $i_1 < i_2 < j_1 < j_2$, we prove by induction on $j_2 - i_1$. Let

$$F[i_2, j_1] = F[i_2, k - 1] + F[k + 1, j_1] + W[i_2, j_1]$$

$$F[i_1, j_2] = F[i_1, t - 1] + F[t + 1, j_2] + W[i_1, j_2]$$

Without loss of generality, $t \le k$. Hence $i_1 \le t \le k \le j_1$.

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem

Partial Resul

Tiling Counting String Counting

Optimization
Approach 1

Appendix

Proof 2

Then we have

$$F[i_{1}, j_{1}] + F[i_{2}, j_{2}]$$

$$\leq F[i_{1}, t - 1] + F[t + 1, j_{1}] + W[i_{1}, j_{1}]$$

$$+ F[i_{2}, k - 1] + F[k + 1, j_{2}] + W[i_{2}, j_{2}]$$

$$\leq F[i_{1}, t - 1] + F[t + 1, j_{2}] + W[i_{1}, j_{2}]$$

$$+ F[i_{2}, k - 1] + F[k + 1, j_{1}] + W[i_{2}, j_{1}]$$

$$= F[i_{1}, j_{2}] + F[i_{2}, j_{1}]$$

Dynamic Programming

Shuang Zhao

Outline

Introduction
What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1 Proof 2

(In the OBST problem)

Proposition

s(i,j) is monotonic, namely for all $1 \le i \le j < n$,

$$s(i,j) \leq s(i,j+1) \leq s(i+1,j+1)$$

Proof.

By symmetry, we need only to prove that $s(i,j) \le s(i,j+1)$. When i = j, $s(i,j) = i \le s(i,j+1)$.

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix Proof 1 Proof 2 Next we assume i < j. For convenience, we use symbol $F_k[i,j]$ to be the short from of F[i,k-1] + F[k+1,j] + W[i,j]. So $F_{s(i,j)}[i,j] = F[i,j]$.

Since matrix F is totally monotonic, for all $k \leq k' \leq j$,

$$F[k+1,j] + F[k'+1,j+1] \le F[k'+1,j] + F[k+1,j+1]$$

Dynamic **Programming**

Shuang Zhao

Outline

Proof 2

Thus

$$F[i, k-1] + F[k+1, j] + W[i, j]$$

$$+ F[i, k'-1] + F[k'+1, j+1] + W[i, j+1]$$

$$\leq F[i, k-1] + F[k+1, j+1] + W[i, j+1]$$

$$+ F[i, k'-1] + F[k'+1, j] + W[i, j]$$

namely

$$F_k[i,j] + F_{k'}[i,j+1] \le F_k[i,j+1] + F_{k'}[i,j]$$

that is

$$F_k[i,j] - F_{k'}[i,j] \le F_k[i,j+1] - F_{k'}[i,j+1]$$

Dynamic Programming

Shuang Zhao

Outlin

Introduction
What is DP
First Problem
Second Problem

Partial Result
Tiling Counting
String Counting

Optimization
Approach 1
Approach 2

Appendix
Proof 1
Proof 2

Therefore

$$F_{k'}[i,j] \le F_k[i,j] \to F_{k'}[i,j+1] \le F_k[i,j+1]$$

For all $k < s(i,j), F_{s(i,j)}[i,j] = F[i,j] \le F_k[i,j].$

So
$$F_{s(i,j)}(i,j+1) \le F_k(i,j+1)$$
.

Hence
$$F_{s(i,j)}[i,j+1] \leq F_k[i,j+1]$$
.

This gives
$$s(i,j) \leq s(i,j+1)$$
.