Modelos de secuencias: redes recurrentes y recursivas

César Olivares

Pontificia Universidad Católica del Perú Maestría en Informática INF659 - Técnicas avanzadas de data mining y sistemas inteligentes

2018

Redes Neuronales Recurrentes

- Las redes neuronales recurrentes (RNNs) son una familia de redes neuronales para el procesamiento de datos secuenciales $x^{(1)},...,x^{(\tau)}$.
- La extensión de las redes multicapas hacia las redes recurrentes se fundamenta en la idea de compartir parámetros en el paso de cada paso de la secuencia hacia el siguiente.

Grafos computacionales

 Un grafo computacional es una formalización de la estructura de un conjunto de operaciones computacionales.

Figura 1: Ejemplos de grafos computacionales. (a) Uso de la operación \times para calcular z=xy. (b) Cálculo de la predicción para regresión logística: $\hat{y}=\sigma(\mathbf{x}^{\top}\mathbf{w}+b)$. Algunas de las expresiones intermedias no llevan nombre en la expresión algebraica pero necesitan nombre en el grafo. (Goodfellow, 2016)

Grafos computacionales desplegados

- Cuando un cálculo tiene una estructura repetitiva, su representación desplegada (unfolded o unrolled) evidencia la presencia de parámetros compartidos.
- Por ejemplo, la forma clásica de un sistema dinámico es:

$$\mathbf{s}^{(t)} = f(\mathbf{s}^{(t-1)}; \boldsymbol{\theta}) \tag{1}$$

donde $s^{(t)}$ es el estado del sistema.

Figura 2: Grafo computacional desplegado de un sistema dinámico clásico. Cada nodo representa el estado en un tiempo t, y la función f mapea el estado en t al estado en t+1. La función f utiliza los mismos parámetros θ en todos los pasos de tiempo. (Goodfellow, 2016)

RNNs como Grafos computacionales desplegados

• En el caso de un sistema dinámico conducido por una señal de entrada externa $x^{(t)}$, el estado recoge información sobre toda la secuencia previa:

$$\mathbf{s}^{(t)} = f(\mathbf{s}^{(t-1)}, \mathbf{x}^{(t)}; \boldsymbol{\theta}) \tag{2}$$

- Así como casi cualquier función puede ser considerada una red neuronal feed-forward, cualquier función que implique recurrencia puede ser considerada una RNN.
- ullet Para indicar que el estado son las unidades ocultas de la red, se usa la variable $m{h}$ para representar el estado:

$$\boldsymbol{h}^{(t)} = f(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta}) \tag{3}$$

• Para tareas predictivas, las RNNs aprenden a usar $h^{(t)}$ como un sumario imperfecto de los aspectos relevantes del pasado.

(Goodfellow, 2016)

Ventajas de la recurrencia

• Podemos representar la recurrencia después de t pasos como una función $g^{(t)}$:

$$\mathbf{h}^{(t)} = g^{(t)}(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}, ..., \mathbf{x}^{(2)}, \mathbf{x}^{(1)})$$

$$= f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$
(4)

- La estructura recurrente nos permite factorizar $g^{(t)}$ en la aplicación repetida de una función f. Ello nos trae las siguientes ventajas:
 - El tamaño de las entradas al modelo es independiente del tamaño de la secuencia.
 - 2 Es posible usar la misma función de transición f con los mismos parámetros en cada paso de tiempo.
- Aprender un único modelo compartido nos permite generalizar el aprendizaje a secuencias de diferentes longitudes, con menos ejemplos de entrenamiento.

Modelos de secuencias: redes recurrentes y recursivas

Tipos de secuencias modeladas por RNNs

 Las RNNs pueden modelar secuencias de entrada y de salida, así como mapear secuencias a puntos de datos individuales (y viceversa).

Figura 3: Modelos de secuencias modeladas por RNNs. Cada rectángulo es un vector de nodos. Cada flecha representa una función (p.ej. multiplicación de matrices). De izquierda a derecha: (1) Modelo de red feed-forward, no RNN. (p.ej. clasificación de imágenes). (2) Secuencia de salida (p.ej. anotación de imágenes). (3) Secuencia de entrada (p.ej. análisis de sentimiento). (4) Secuencias de entrada y salida (p.ej. traducción automática). (5) Secuencias sincronizadas (p.ej. clasificación de cada fotograma de video). (Karpathy 2015)

RNN «many-to-many» con conexiones «hidden-to-hidden»

Figura 4: RNN que produce una salida \boldsymbol{o} en cada paso de tiempo y emplea conexiones recurrentes entre las unidades ocultas. La pérdida \boldsymbol{L} mide la distancia entre cada \boldsymbol{o} y su correspondiente objetivo \boldsymbol{y} . Cuando se usa salidas softmax, asumimos que \boldsymbol{o} son las log-probabilidades sin normalizar (logits). Las matrices \boldsymbol{W} y \boldsymbol{U} (más un bias \boldsymbol{b}) parametrizan el paso de un estado al siguiente. La matriz \boldsymbol{V} (más un bias \boldsymbol{c}) parametriza las salidas. (Goodfellow 2016)

8 / 22

RNN «many-to-many» con conexiones «hidden-to-hidden» (2)

$$\boldsymbol{a}^{(t)} = \boldsymbol{b} + \boldsymbol{W}\boldsymbol{h}^{(t-1)} + \boldsymbol{U}\boldsymbol{x}^{(t)} \tag{5}$$

$$\mathbf{h}^{(t)} = tanh(\mathbf{a}^{(t)})$$

$$\boldsymbol{o}^{(t)} = \boldsymbol{c} + \boldsymbol{V} \boldsymbol{h}^{(t)} \tag{7}$$

$$\hat{\mathbf{y}}^{(t)} = softmax(\mathbf{o}^{(t)}) \tag{8}$$

(6)

RNN «many-to-many» con conexiones «hidden-to-hidden» (3)

$$L(\{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(\tau)}\}, \{\mathbf{y}^{(1)}, ..., \mathbf{y}^{(\tau)}\}) = \sum_{t} L^{(t)}$$

$$= -\sum_{t} \log p_{model}(\mathbf{y}^{(t)} | \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(\tau)}\})$$
(9)

- El cálculo del gradiente de la función de pérdida es muy costoso: $O(\tau)$ tanto en tiempo de ejecución como en consumo de memoria.
- El algoritmo de retropropagación aplicado al grafo desplegado con costo $O(\tau)$ se denomina retropropagación en el tiempo (BPTT).

Redes con recurrencia desde la salida

- Las redes con recurrencia sólo desde la salida, son estrictamente menos potentes.
- Si **o** no tiene muchas dimensiones y riqueza representacional, la expresividad de la red queda severamente limitada.
- El entrenamiento es muy sencillo y completamente paralelizable pues el gradiente de cada paso se puede calcular aisladamente.

Figura 5: RNN con recurrencia desde la salida. (Goodfellow 2016)

«Teacher forcing»

- Las redes con conexiones recurrentes desde las salidas pueden ser entrenadas con teacher forcing.
- Teacher forcing es el procedimiento por el cual el modelo recibe el valor conocido de $y^{(t)}$ como entrada en el momento t+1.
- Este procedimiento permite optimizar la máxima verosimilitud del modelo.
- También puede incluirse en modelos que incluyan conexiones entre las capas ocultas, pero en estos casos sí se tendrá que usar la BPTT.
- Su desventaja es que si el modelo se usa en open loop (es decir, cuando no se sabe el valor real de $y^{(t)}$), la red será expuesta a entradas que pueden ser muy diferentes a lo que vio durante su entrenamiento.
- Se puede entrenar el modelo usando entradas reales y también predecidas, o usar una estrategia de aprendizaje por currículo.

RNNs en cuanto Modelos Gráficos Dirigidos

- Normalmente queremos interpretar la salida de la RNN como una distribución de probabilidades, y la función de pérdida como la entropía cruzada asociada a la distribución.
- Podemos interpretar la RNN como un modelo gráfico cuya estructura representa dependencias directas entre cualquier par de valores *y*.
- Si consideramos las unidades ocultas $h^{(t)}$ como variables aleatorias, el modelo revela que la RNN brinda una parametrización muy eficiente de la distribución conjunta sobre las observaciones (O(1) vs. $O(k^{\tau})$ para k valores posibles de y).

Estrategias para determinar la longitud de la secuencia de salida

- Para extraer muestras de la distribución de probabilidad se requiere un mecanismo que determine la longitud de la secuencia de salida.
 - Se puede añadir un símbolo especial que indique el final de una secuencia.
 - Se puede añadir una salida binaria al modelo que represente la decisión de continuar o interrumpir la generación de muestras.
 - Se puede añadir una salida extra que prediga la longitud τ de la secuencia de salida.

Modelado de secuencias condicionado al contexto: «one-to-many»

- Para condicionar una secuencia de salida de acuerdo a un vector **x** de contexto, de longitud fija (no secuencial), se puede alimentar **x**:
 - como entrada adicional en cada paso de tiempo,
 - como estado inicial $h^{(0)}$, o
 - las dos anteriores.

Modelado de secuencias condicionado al contexto: «one-to-many» (2)

Figura 6: RNN que mapea un vector de longitud fija \mathbf{x} a una distribución de secuencias \mathbf{Y} . Apropiada para anotación de imágenes. Cada $h^{(t)}$ se usa a la vez como entrada en t y objetivo de entrenamiento para t-1. (Goodfellow 2016)

RNN «many-to-many» con conexiones «output-to-hidden»

Figura 7: La adición de conexiones desde las salidas hacia las unidades ocultas permiten modelar distribuciones arbitrarias P(y|x) (de la misma longitud) donde los valores y no son necesariamente independientes entre sí dados los valores x. (Goodfellow 2016)

17 / 22

RNNs bidireccionales

- Las RNNs anteriores tienen estructuras «causales»: cada estado de un momento t sólo contiene información del pasado y el presente.
- Las RNNs bidireccionales permiten modelar los casos en que cada predicción de y^(t) depende de toda la secuencia, tanto de pasos previos como de pasos futuros, pero es más sensible a los valores alrededor de t.

Figura 8: RNN bidireccional típica. Cada paso t se beneficia de un resumen relevante del pasado mediante h y del futuro mediante g. (Goodfellow 2016)

Arquitecturas «Sequence-to-Sequence»

- Las arquitecturas «Sequence-to-Sequence» modelan la probabilidad de una secuencia de salida $(y^{(1)}, y^{(2)}, ..., y^{(n_y)})$ dada una secuencia de entrada $(x^{(1)}, x^{(2)}, ..., x^{(n_x)})$.
- Una RNN codificadora genera una variable de contexto C, que representa un resumen semántico de la entrada y es alimentada como entrada a una RNN decodificadora, la cual genera la secuencia de salida (o calcula su probabilidad)
- La longitud n_x es independiente de n_y .
- C podría tener una longitud variable, y se puede añadir un mecanismo de atención.

RNNs profundas

- La mayoría de RNNs se componen de tres bloques de parámetros y transformaciones:
 - De la entrada al estado oculto
 - 2 De un estado oculto al siguiente
 - Oel estado oculto a la salida
- Los tres bloques pueden beneficiarse con el uso de arquitecturas profundas.

Figura 9: (a) Unidades ocultas organizadas en grupos jerárquicos. (b) Profundidad en los tres bloques. (c) «Skip connections» para mitigar el alargamiento en las conexiones recurrentes (Goodfellow 2016)

Redes Neuronales Recursivas

- Las redes **recursivas** forman árboles de conexiones con parámetros compartidos.
- Han sido usadas en procesamiento de lenguaje natural y visión computacional.
- Potencialmente podrían utilizarse para aprender a razonar (Bottou 2011).

Bibliografía

- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. MIT Press. Retrieved from http://www.deeplearningbook.org/
- Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks (1st ed.). Springer-Verlag Berlin Heidelberg.
- Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks. Retrieved September 21, 2017, from http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Lipton, Z. C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning. CoRR, abs/1506.0, 1–38. https://doi.org/10.1145/2647868.2654889