A Review on Sparse Neural Network

2017.5.12

Sparse Neural Network

Sparse

hierarchical

High-level abstraction

Sparse Neural Network

Sparse Deep Model

Deep Sparse Model

Sparse Deep Model

Overall Framework

sparse regularization

Deep Neural Network

Sparse Deep Model

Sparse Regularization

Combine

Norm Zero out Wij(k) **Matrix Decomposition Cluster & Quantization** Huffman

Sparse Deep Model **Sparse Regularization**

Combine

Norm

Zero out Wij(k)

Matrix Decomposition

Cluster & Quantization Huffman

Norm

Sparse Deep Model **Sparse Regularization**

Combine

Norm

Zero out Wij(k)

Matrix Decomposition

Cluster & Quantization

Huffman

Norm

Weight Sparseness

Norm (Weight Decay)

训练准则公式

$$J(W,b;S)$$
 \Longrightarrow $\ddot{J}(W,b;S) = J(W,b;S) + \lambda R(W)$

Sparse Deep Model **Sparse Regularization**

Combine

Norm

Zero out Wij(k)

Matrix Decomposition Cluster & Quantization Huffman

Simplest: if $(W_{ii} < threshold)$ then $W_{ii} = 0$

Choose a criteria: OBD (Optimal Brain Damage)

OBD

(Optimal Brain Damage)

$$\Delta E_i = ?$$

$$\Delta E = E(w + \Delta w) - E(w)$$

$$\int E(w + \Delta w) = E(w) + \frac{\partial E}{\partial w} \Delta w + \frac{1}{2} \Delta w^T H \Delta w$$

$$\Delta E = \frac{\partial E}{\partial w} \Delta w + \frac{1}{2} \Delta w^T H \Delta w$$

其中

$$H = \begin{pmatrix} \frac{\partial E^2}{\partial w_1 \partial w_1} & \dots & \frac{\partial E^2}{\partial w_1 \partial w_K} \\ \dots & \dots & \dots \\ \frac{\partial E^2}{\partial w_K \partial w_1} & \dots & \frac{\partial E^2}{\partial w_K \partial w_K} \end{pmatrix}$$

OBD

(Optimal Brain Damage)

$$\Delta E_i = ?$$

$$\Delta E = E(w + \Delta w) - E(w)$$

$$\int_{E(w + \Delta w)} E(w) + \frac{\partial E}{\partial w} \Delta w + \frac{1}{2} \Delta w^T H \Delta w$$

$$\Delta E = \frac{\partial E}{\partial w} \Delta w + \frac{1}{2} \Delta w^T H \Delta w$$

$$\int_{well trained:} \frac{\partial E}{\partial w} = 0$$

$$\Delta E \approx \frac{1}{2} \sum_{i=1}^{K} h_{i,i} \Delta w_i^2$$

$$\int_{\Delta E_i} = \frac{1}{2} h_{i,i} \Delta w_i^2$$

OBD (Optimal Brain Damage)

$$h_{k,k} = ?$$

Back Propagation

$$\frac{\partial^{2} E}{\partial (y_{i}^{m})^{2}} = f'(y_{i}^{m})^{2} \sum_{l} w_{l,i}^{2} \frac{\partial^{2} E}{\partial (y_{l}^{m+1})^{2}} + f''(y_{i}^{m}) \frac{\partial E}{\partial a_{i}^{m}}$$

由误差函数&输出层的激活函数得到

$$\frac{\partial^2 E}{\partial \left(y_i^M\right)^2}$$

代入

$$h_{k,k} = \frac{\partial^2 E}{\partial W_{i,i}^{(m)2}} = \frac{\partial^2 E}{\partial (y_i^m)^2} (a_j^m)^2$$

其中
$$a_i^m = f(y_i^m)$$
 $y_i^m = \sum_j w_{i,j}^m a_j^{m-1}$

OBD (Optimal Brain Damage)

OBD (Optimal Brain Damage)

- 1 train NN until convergence
- ② 把 ΔE_i 作为 neural node 孰优孰劣的标准

Sparse Deep Model **Sparse Regularization**

Combine

Norm

Zero out Wij(k)

Matrix Decomposition

Cluster & Quantization Huffman

Weight Sparseness

Matrix Decomposition

矩阵分解:

$$A_{m\times n} = B_{m\times r} \times C_{r\times n}$$

存储空间改变:

$$m*n \implies m*r + r*n$$

网络结构改变:

$$W = W^{(1)} \times W^{(2)}$$

Weight Sparseness Matrix Decomposition

Low-Rank Matrix

$$A_{m*n}$$
 (r << m,n)

分解低秩矩阵A_{m*n}

$$A_{m \times n} = B_{m \times r} \times C_{r \times n}$$

节省存储空间

$$m*n > m*r + r*n$$

Weight Sparseness Matrix Decomposition

General Sparse Matrix

$$A_{m*n}$$
(k << m,n)

$$A_{m\times n} = U_{m\times n} \times \Sigma_{n\times n} \times V_{n\times n}^T$$

$$A_{m \times n} = U_{m \times k} \times \Sigma_{k \times k} \times V_{k \times n}^{T}$$

$$= U_{m \times k} \times W_{k \times n}$$

Sparse Deep Model **Sparse Regularization**

Combine

Norm

Zero out Wij(k)

Matrix Decomposition

Cluster & Quantization

Huffman

Norm

Weight Sparseness

Cluster (Weight Sharing)

Weight Sparseness

Cluster (Weight Sharing)

Cluster整体减gradient

Sparse Deep Model **Sparse Regularization**

Combine

Norm Zero out Wij(k) **Matrix Decomposition Cluster & Quantization** Huffman

Weight Sparseness

Huffman

Distribution for weight (Left) and index (Right). The distribution is biased.

Biased Distribution \implies Huffman coding

Sparse Deep Model **Sparse Regularization**

Combine

Norm

Zero out Wij(k)

Matrix Decomposition

Cluster & Quantization

Huffman

Norm

Neural Sparseness

Norm

在损失函数中加入正则项

$$\sum_{i=1}^{M} \log(1+z_i)^2$$
 随 M增加 而 增加

Sparse Deep Model **Sparse Regularization**

Combine

Norm

Zero out Wij(k)

Matrix Decomposition

Cluster & Quantization

Huffman

Norm

Neural Sparseness

$$y = \sigma(x)$$
 \Longrightarrow $y = Tr[\sigma(x)]$

Neural Sparseness

Sparse Neural Network

Sparse Deep Model

Deep Sparse Model

Deep Sparse Model

Overall Framework

Sparse Coding

Deep Sparse Coding Sparse Coding

Sparse Code
(Bag of Visual Words Pipeline)

Feature Extraction

Learning

$$[V, Y] = \underset{V, Y}{\operatorname{argmin}} ||X - VY||^2 + \alpha ||Y||$$

其中 Dict $V = [v_1, v_2, v_3...v_K]$
Sparse Code $Y = [y_1, y_2, y_3...y_M]$

Pooling

$$y = op_{\max}(y_1, y_2, y_3 \dots y_n)$$

Dense Coding

Dense Coding

Dense Code (Overcome Difficulties)

1. Gain spatial info and higher-level feat

1. Local Spatial Pooling

$$f: (Y, G) \rightarrow (Z, G')$$

Dense Coding

Dense Code

(Overcome Difficulties)

1. Gain spatial info and higher-level feat

1. Local Spatial Pooling

$$f:(Y,G)\to(Z,G')$$

其中
$$Y = [y_1, y_2, y_3...]$$

$$Z = [z_1, z_2, z_3 \dots]$$

Lower-level Features → Higher-level Features

Exhibit Larger Scopes

Dense Coding

Dense Code (Overcome Difficulties)

1. Gain spatial info and higher-level feat

1. Local Spatial Pooling

实现
$$f:(Y,G) \to (Z,G')$$

- ① 确定新的点域G'
- 2 pooling

$$\overline{y_i} = op_{\max}(y_{i1}, y_{i2}, y_{i3}...y_{i16})$$

Dense Coding

Dense Code (Overcome Difficulties)

2. Dimension increase makes the model not smooth

2. Dimensionality Reduction

$$\overline{y_i} = op_{\max}(y_{i1}, y_{i2}, y_{i3}...y_{i16})$$

$$A(\overline{y_i}) = W\overline{y_i}$$

$$W = \operatorname{argmin} L_{ij}(W)$$

其中

$$L_{ij}(W) = (1 - l_{ij}) \frac{1}{2} ||W\overline{y_i} - W\overline{y_j}||^2 +$$

$$l_{ij}\max(0,\beta-||W\overline{y}_i-W\overline{y}_j||^2)$$

Dense Coding

Dense Code (Overcome Difficulties)

2. Dimension increase makes the model not smooth

2. Dimensionality Reduction

$$A(\overline{y_i}) = W\overline{y_i}$$

$$W = \operatorname{argmin} L_{ij}(W)$$

Dimensionality Reduction

More Smooth

Deep Sparse Model

Overall Framework

Sparse Neural Network

Sparse Deep Model

Deep Sparse Model

Sparse Neural Network

谢谢!

2017.5.12