에그드롭 구조물 설계서

공학 기술 기반 설계 2025년 10월 22일

정사면체 기반 충격 흡수 구조물

Contents

1	설계 개요 1.1 설계 목표	
2	기본 치수	2
3	부품 구성3.1 1. 정사면체 중심부3.2 2. 외부 연장 봉3.3 3. 내부 지지대3.4 4. 테이프 충격 흡수면	2
4	재료 목록	3
5	조립 순서5.1 단계 1: 정사면체 제작	3
6	충격 흡수 원리6.1 3단계 시스템6.2 작동 흐름	
7	예상 성능	4
8	수학적 계산 8.1 정사면체	

9	장검	점 및	주의	사	항															5
	9.1	장점						 												5
	9.2	주의,	사항																•	5

1 설계 개요

1.1 설계 목표

본 구조물은 높은 곳에서 떨어뜨린 계란을 보호하기 위한 충격 흡수 장치입니다.

1.2 핵심 아이디어

- 1. 정사면체 중심 구조로 계란 보호
- 2. 외부 연장 봉(3.5배)으로 충격 거리 확보
- 3. 내부 지지대 12개로 구조 강화
- 4. 테이프 면 24개로 에너지 흡수

2 기본 치수

항목	치수
정사면체 한 변	80 mm
외부 연장 봉	280 mm
전체 크기	약 350 mm 입방체

3 부품 구성

3.1 1. 정사면체 중심부

80 mm 봉 6개 (직경 4 mm)

재질: 대나무

역할: 계란 고정 및 충격 분산

3.2 2. 외부 연장 봉

280 mm 봉 6개 (직경 4 mm)

배치: 각 변 중점에서 양쪽 140 mm씩

역할: 주 충격 흡수

3.3 3. 내부 지지대

12개 봉 (직경 3 mm)

연결: 각 변 중점에서 반대 꼭짓점 2개로

역할: 구조 강성 유지

3.4 4. 테이프 충격 흡수면

사다리꼴 24개

위치: 외부 봉 양 끝 30 mm 구간

재질: 종이/천

4 재료 목록

부품명	규격	수량	재질
정사면체 변	80 mm, 직경 4 mm	6개	대나무
외부 연장 봉	280 mm, 직경 4 mm	6개	대나무
내부 지지대	직경 3 mm	12개	대나무
테이프 면	폭 30 mm	24개	종이
접착제	-	적량	글루건

5 조립 순서

5.1 단계 1: 정사면체 제작

- 1. 80 mm 봉 6개로 정사면체 조립
- 2. 4개 꼭짓점: V0(0,0,0), V1(80,0,0), V2(40,69.3,0), V3(40,23.1,65.3)
- 3. 글루건으로 모든 접합부 고정

5.2 단계 2: 외부 연장 봉 부착

- 1. 각 변의 중점 표시
- 2. 280 mm 봉을 중점 기준 양쪽 140 mm씩 배치
- 3. 정사면체 변과 일직선 정렬
- 4. 중점 부근 글루건으로 고정

5.3 단계 3: 내부 지지대 설치

- 1. 각 변 중점에서 반대편 꼭짓점 거리 측정
- 2. 12개 봉 자르기
- 3. 중점과 꼭짓점 연결
- 4. 모든 접합부 고정

5.4 단계 4: 테이프 면 부착

- 1. 외부 봉 끝 30 mm 구간 표시
- 2. 인접한 봉 끝점을 종이로 연결
- 3. 사다리꼴 24개 부착

6 충격 흡수 원리

6.1 3단계 시스템

1단계: 외부 봉 변형

280 mm 봉이 휘어지며 충격 흡수 70-80% 1차 흡수

2단계: 테이프 면 파손

종이가 찢어지며 에너지 소산 10-15% 추가 흡수

3단계: 내부 지지대 분산

12개 지지대가 하중 분산 나머지 충격 최종 분산

6.2 작동 흐름

충격 발생 외부 봉 휘어짐 테이프 찢어짐 지지대 분산 계란 보호

7 예상성능

항목	값
목표 낙하 높이	3-5 m
구조물 무게	50-100 g
충격 흡수율	85-95%
제작 시간	2-3시간

8 수학적 계산

8.1 정사면체

변의 길이 a = 80 mm일 때:

불이: $h = \sqrt{\frac{2}{3}} \cdot a \approx 65.32 \text{ mm}$ 부뢰: $V = \frac{a^3}{6\sqrt{2}} \approx 75,682 \text{ mm}^3$

8.2 외부 봉

총 길이: $L = 3.5 \times 80 = 280 \text{ mm}$ 한쪽 연장: $\frac{L}{2} = 140 \text{ mm}$

9 장점 및 주의사항

9.1 장점

- 1. 높은 충격 흡수율 (3단계 시스템)
- 2. 구조적 안정성 (정사면체)
- 3. 가벼운 무게
- 4. 제작 용이

9.2 주의사항

- 1. 외부 봉은 일직선 유지 필수
- 2. 테이프 면은 얇게
- 3. 접착 단단히
- 4. 계란은 중심에 고정

— 설계서 끝 —