PJJ Tahap 3 IMO 2016 Tidak Resmi Paket 1 Timothy Jacob Wahyudi Soal 1

Solusi:

Misalkan derajat polinom P(x) adalah n dan derajat polinom Q(x) adalah m Dimana m dan n bilangan asli. Maka derajat polinom P(P(x)) adalah n^2 dan polinom Q(Q(x)) adalah m^2 . Karena P(P(x)) = Q(Q(x)) maka $m^2 = n^2$ dan berakibat m = n.

Jika n = 0 maka jelas P(x) = P(P(x)) = Q(Q(x)) = Q(x)Misalkan polinom $P(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$ dan $Q(x)=x^n+b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1x+b_0$ Perhatikan koefisien x^{n^2-1} dari polinom P(P(x))=Q(Q(x)). Dari penjabaran

P(P(x)), didapat koefisien x^{n^2-1} nya hanya berasal dari penjabaran x^n dan tidak berasal dari penjabaran $a_{n-1}x^{n-1}$ dan yang pangkat x yang lebih kecil (karena maksimal penjabaran sampai $(x^n)^{n-1} = x^{n^2-n}$). Maka koefisien x^{n^2-1} dari P(P(x))adalah na_{n-1} yang sama dengan nb_{n-1} dari Q(Q(x)). Karena $n \neq 0$ maka didapat $a_{n-1} = b_{n-1}$.

Dengan cara serupa dari koefisien x^{n^2-2} didapat $na_{n-2}+\binom{n}{2}a_{n-1}^2=nb_{n-2}+\binom{n}{2}b_{n-1}^2$ maka $a_{n-2} = b_{n-2}$ Dari koefisien x^{n^2-3} didapat

 $na_{n-3} + n(n-1)a_{n-2}a_{n-1} + \binom{n}{3}a_{n-1}^3 = nb_{n-3} + n(n-1)b_{n-2}b_{n-1} + \binom{n}{3}b_{n-1}^3$. Maka $a_{n-3} = b_{n-3}$.

Dengan cara yang sama dari koefisien ke x^{n^2-k} didapat

 $na_{n-k} + A(a_{n-1}, a_{n-2}, \dots, a_{n-k+1}) = nb_{n-k} + A(b_{n-1}, b_{n-2}, \dots, b_{n-k+1})$ dimana $A(c_1, c_2, \dots c_{k-1})$ merupakan sebuah persamaan dalam $c_1, c_2, \dots,$ dan c_{k-1} . Maka $a_{n-k} = b_{n-k}$

Maka polinom P(x) = Q(x)

(sepertinya suku terakhir ada yang berbeda tapi saya lagi males :p) (cara seperti ini boleh atau ngga? kyk mesti dijabarin lagi atu sudah cukup)