Aeronautics & Mechanics AENG11301

Outline for today

- Parts of an airplane
- Control surfaces and their effects
- Wing geometry
- Aerofoil geometry
- Tail geometry

Aims for today

- To be able to identify the different components of an aircraft and to know their function
- To be able to define the different control surfaces and their function
- To appreciate the range of different geometries found across aircraft

Parts of an Airplane

Main Components

Axis of Rotation

Axis of Pitch

Control Surfaces

Another View

Basic Control Surfaces

Control Surface Effects

Basic three 'flapped' control surfaces generate moments:

```
elevator (\eta, \delta_e) – pitch M (+ve 'nose up') \rightarrow pitch angle rudder (\zeta, \delta_r) – yaw N (+ve 'nose to right') \rightarrow yaw angle aileron (\xi, \delta_a) – roll L (+ve 'right wing down') \rightarrow roll rate positive deflection gives negative moment (!)
```

Control Surface Effects

- all surfaces have secondary effects
 - 1. elevator → height & speed change
 - change in angle of attack = change in lift & drag
 therefore change in longitudinal motion
 - 2. rudder \rightarrow *roll* due to **sideslip**
 - aileron → yaw due to roll rate & differential aileron drag
 - complex effect of aircraft lateral motion
 - very dependant on aircraft configuration

Wing geometry

- Planform shape and area
- Trapezoidal wing parameters
- Wing position
- Number of wings
- Non-planar wings
- Variable geometry wings

Simple Trapezoidal Wing Planform

Simple Trapezoidal Wing Planform

^{*}despite name, usually defined on the centre-line!

Typical Commercial Airliner Wing

Reference Areas

Trapezoidal Wing Parameters

wing taper ratio

$$\lambda = \frac{c_t}{c_r}$$

standard mean chord (SMC)
 (or geometric mean chord)

$$\bar{c} = \frac{S}{b}$$

 aerodynamic shape of wing defined by its Aspect Ratio

$$AR = \frac{b}{\overline{c}} = \frac{b^2}{S}$$

 mean aerodynamic chord (MAC)

$$\overline{\overline{c}} = \frac{1}{S} \int_{-b/2}^{+b/2} c^2(y) dy$$

Wing Position

Examples!

Very High AR – Round-the-World Flight

- Voyager
- Designed by Burt Rutan
- AR = 34

High AR + Sweep — Airliner

Very Low AR – Mach 2+

(and ridiculously small area)

- F-104 Starfighter
- AR = 2.45

Very Very Low AR – SST demonstrator

- Handley Page HP-115
- AR = 0.9!
- Built to test delta wings at low speed... (e.g. Concorde)

Non-Trapezoidal Wing Planforms

Lambda (B2)

Ring wing (Coléoptère)

Non-Planar Wings

Winglets (Learjet 60)

Variable Geometry - Span

MAK-10 (1931)

And one I worked on:

- 100% increase in span/area
- Patented MorphCore honeycomb
- Elastomeric Matric Composite skin

Vocke, Kothera, Woods and Wereley (2011)

Tail Unit (Empennage)

- provides stability and control functions
- usually mounted at rear of fuselage aft-tail
 - occasionally mounted at front foreplane or canard
 - very rarely have both three-surface configuration
- lateral stability provided by fin
 - also known as vertical stabiliser
 - may have multiple fins (rare on civil aircraft now)
- longitudinal stability provided by tail-plane
 - also known as horizontal stabiliser
 - usually mounted below fin, but can be at top T-tail
- V-tail on some older aircraft (and on stealth configurations)
- flying wing aircraft dispense with tail-plane
 - but often retain vertical fin

All-moving tail surfaces

- move entire surface rather than flaps
 - e.g. (F16, Tornado)
- common on high-speed aircraft (X-1)

F16: all-moving tailplane

X-15: all moving tailplane and fin (also... max speed – Mach 6.7 = 4,520 mph!)

Flaps

- increase camber to increase lift
- use for take-off & landing, allow optimisation of cruise performance

Spoilers

- also known as speed brakes or air brakes
- increase drag and/or reduce lift
- reduce landing distance, roll control at high speed

B-52 uses "spoilerons" for roll control

Thrust vectoring

 generate moments by changing thrust direction (Su-35, F-22, F-35)

Googly eyes!

MiG-29

Summary

- Large number of technical terms used to describe an aircraft's geometry
- Ailerons control roll rate
- Elevator control pitch angle
- Rudder control yaw angle
- There are a large range of different aircraft geometries, with each aircraft being designed to meet a certain set of requirements.

Follow-up materials

Introduction to Flight – 2.6

Understanding Flight – Chapter 2