探究实验

实验一: 混合气体成分的探究

53.某化学兴趣小组学习一氧化碳后,对如何制取一氧化碳产生了浓厚兴趣,他们进行了如下的探究活动,请你参与完成探究实验。

【查阅资料】(1)实验室通常是利用草酸(化学式为H₂C₂O₄)分解来制取一氧化碳的;

(2) 草酸是一种无色透明状晶体或粉末,在 189.5℃或遇浓硫酸分解。

【提出问题】草酸在浓硫酸催化下能生成哪些物质?

【提出猜想】猜想 1: 草酸分解产物为 CO₂、CO;

猜想 2: 草酸分解产物为 CO₂、H₂O;

猜想 3: 草酸分解产物为 CO、H₂O;

猜想 4: 草酸分解产物为 CO2、CO、H2O

••••

小组同学经过一番讨论和推理后,认为只有猜想4能成立。

【实验验证】小组同学选用以下装置(装置可重复利用)验证猜想4(草酸分解装置省略)

(1)该小组所选用的装置有一明显缺陷是。
(2)选择装置可证明的存在,反应的化学方程式为
(3) 小丽认为用 B 装置就可证明 CO 的存在,她依据的现象是
小刚认为她的做法不够严谨,应结合 A 装置进行 CO 的验证。你认为小刚的质疑理由可能
是:
(4)请用箭头按顺序连接验证猜想4的整套实验装置(假设每步反应完全)(可根据需要
添加装置)
草酸分解
产生的气体 →。
【实验结论】实验证明猜想 4 正确,请写出草酸在浓硫酸催化下分解的化学方程式

27. (闵行一模) 用碳、一氧化碳还原氧化铜的仪器、装置如下图。(连接装置的橡皮管省略)

请回答以下问题:

1	一氧化碳还原氧化铜的实验中,除A装置外,还需选用的仪器、装置组合是
	(填字母),选用该仪器、装置的目的是、、。
2	碳还原氧化铜的实验中(将A中的酒精灯换成酒精喷灯),反应的化学方程式
	是。
3	用碳和一氧化碳还原氧化铜的两个实验中,装置 A 中观察到的现象是。
4	现有一包混有少量碳粉的氧化铜粉末,为了测定其碳粉的质量分数,称取 m g 样品
	进行高温加热,实验过程中获取两组数据:
	I. 反应前后仪器 a 中质量减少 x g;
	II. 吸收生成物的仪器中质量增加 y g。
,	假设反应充分, 称量准确, 你认为应选择哪组数据进行计算会更为合理准确? 你的理由是
_	,请列出计算碳粉质量分数的式子。(用 m、x、y 表示)。

26. 某学习小组准备探究气体的测定和数据处理方法。

【提出问题】利用碳酸钙与稀盐酸反应来测定生成 CO2 的量。

【实验设计】通过下列两个实验分别测定 CO₂的质量和体积。

【分析处理】

实验一:

1	将小烧杯中的稀盐酸分几次加入到大烧杯	中,	并不断搅拌,	判断反应后盐酸过量的依据
	是。			

- ② 若稀盐酸足量,计算理论上能产生二氧化碳的物质的量_____。 (根据化学方程式进行计算) 实验二:
- ③ 先连接好装置,再______(填操作),然后装好药品,最后将 20mL 稀盐酸快速推入锥形瓶中。若缓慢推入,则可能造成的后果是
- ④ 实验记录如下(表中数据在相同温度、相同压强条件下测定):

时间/min	1	2	3	4	5	6	7	8	9	10
注射器读数/mL	60.0	85.0	88.0	89.0	89.5	89.8	89.9	90.0	90.0	90.0

根据以上实验过程和数据综合分析,最终生成 CO₂ 的体积是 mL。

【反思与评价】

- ⑤ 经过分析,下列说法错误的是。
 - A. 实验一的操作简单, 便于读数
 - B. 实验一最终得到的数据和通过计算得出的理论值完全相等
 - C. 实验二在密闭体系内反应, 更环保
 - D. 实验二中若将碳酸钙粉末改成块状的大理石, 更安全

实验二: 煅烧碳酸钙的探究

49. (虹口一模) 某白色固体可能是煅烧碳酸钙后的剩余物,为确定其成分,进行如下实验:

- ① 高温煅烧碳酸钙的化学方程式是_____;
- ② 分离 B 中难溶物的操作 I 是_____;
- ③ 操作 II 的目的是______, D中白色固体可能是______;
- ④ 为达到实验目的,还应进行的操作是____。
- 52. 同学们对实验"煅烧石灰石"展开深入探究。

资料: 石灰石中的杂质高温不分解。

①为证明石灰石已分解,三位同学设计方案如下:

- I. 甲同学按图一进行实验(煤气灯亦能达到石灰石分解的温度),观察到烧杯内壁石灰水变浑浊,写出石灰水发生反应的化学方程式。

时间(秒)	0	60	120	180	240	300
固体质量(克)	12.5	12.3	11.2	9.2	8.1	8.1

实验三: 燃烧条件的探究

44. 已知白磷的着火点是 40℃,利用白磷、铜片、热水和冷水不能达到验证"可燃物燃烧需要达到着火点"的实验是

51. 以下装置可用于探究可燃物的燃烧条件(夹持仪器略去)

实验操作步骤及现象如下:

- 第1步: 检查装置气密性;
- 第2步:如图所示加入药品;
- 第3步: 向B试管冷水中的白磷通氧气,白磷不燃烧;
- 第 4 步: 待 A 试管中不再产生氧气时,再向 B 试管中加入 90℃的热水,白磷不燃烧
- 第5步:向B试管热水中的白磷通氧气,白磷燃烧,产生白烟。
- ①写出 A 试管中发生反应的化学方程式____;
- ②对比上述操作步骤可得出可燃物的燃烧条件。

对比的操作步骤	得出的结论
第步和第5步	可燃物燃烧温度需要达到着火点
第步和第5步	

50.某同学对蜡烛的燃烧进行探究:

IV.实验三,木条处于外焰的部分最先变黑,说明蜡烛的外焰温度

①点燃一支蜡烛,用一只烧杯倒扣在燃着的蜡烛上,蜡烛燃烧片刻后熄灭,如实验一; ②吹灭燃着的蜡烛,看到烛芯产生一缕白烟,用火柴点燃白烟,蜡烛重新被引燃,如实验二; ③将粗细均匀的木条水平放在蜡烛的火焰上,稍加热后观察木条燃烧现象,如实验三。 I.操作①中,蜡烛能燃烧片刻的原因是_______; II.操作②中,关于白烟的成分,有同学做出了下列猜想: A. 白烟是水蒸气; B. 白烟是石蜡固体小颗粒; C. 白烟是二氧化碳。你认为上述猜想有道理的是(填序号)______; III.该同学在做实验一的过程中,发现罩在火焰上方的烧杯内壁被熏黑,你认为她的做法正确的是______(填序号) A. 反复实验,并观察是否有相同现象 B. 查找资料,了解石蜡的主要成分,探究生成的黑色固体是什么 C. 认为与本次实验目的无关,不予理睬 D. 询问老师或同学,讨论生成黑色物质的原因

实验四:催化剂的探究

51. 同学想研究不同的氧化物能否在氯酸钾制取氧气实验中起催化作用,进行了以下实验:

实验编号	KClO ₃ / g	氧化物	产生气体的体积(mL)	耗时 (s)
1	0.6		9.8	480
2	0.6	0.2g 二氧化锰	67	36.5
3	0.6	0.2g 氧化铜	67	89.5

①写出实验 2	2 反应的化学方程式	:
		,

- ②为证明氧化铜是该反应的催化剂,同学们又完成了以下的实验:
- II.将过量的 CO 通入滤出的固体,

按右图进行实验: 仪器 a 的名称____。

③甲同学的实验报告如下:

O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	377 T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
装置	现象	实验结论				
A	黑色固体全部变红	生成了铜,反应方程式				
В	石灰水变浑浊	产生了二氧化碳				

D		/ = 100000	
III.该实验装置有	存在的缺陷是	;	
当出现		反应已经开始。	
④以上实验证明	氧化铜在反应前后质量和	口化学性质都没改变,能作	与氯酸钾受热分解的催化
刘 西劫氨化物	地形上	2.4. 滋里再好	

25. 请根据下图回答问题:

的现象是。若用图 6 收集一瓶含 1/4 空气的氧气,操作的方法是。 ② 图 2 中仪器 A 的名称为,它在装置中的主要作用是		
② 图 2 中仪器 A 的名称为	1	将图1和图6连接可以制取氧气,反应的化学方程式为,证明氧气已经集满
② 图 2 中仪器 A 的名称为		的现象是。若用图 6 收集一瓶含 1/4 空气的氧气,操作的方法是
学用图 2 和图		
② 乙同学在图 2 基础上增加了一块带孔的隔板(如图 3),则大理石应放在处或"b"),该装置中加入盐酸的量至少要;若加入盐酸过多,则有可能方后果是,要使反应停止,其操作是。 ④ 丙同学用过氧化氢溶液和二氧化锰制取氧气,反应的化学方程式为。反应前他事先往试管中加入了少量的方同学由此产生了疑问,提出了猜想: 猜想 1: 加水可以起到稀释的作用,使反应速度变缓。 猜想 2: 甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:	2	图 2 中仪器 A 的名称为, 它在装置中的主要作用是。甲同
③ 乙同学在图 2 基础上增加了一块带孔的隔板(如图 3),则大理石应放在		学用图 2 和图
或"b"),该装置中加入盐酸的量至少要		
后果是	3	乙同学在图 2 基础上增加了一块带孔的隔板(如图 3),则大理石应放在处(填"a"
④ 丙同学用过氧化氢溶液和二氧化锰制取氧气,反应的化学方程式为 。反应前他事先往试管中加入了少量的定 同学由此产生了疑问,提出了猜想: 猜想 1:加水可以起到稀释的作用,使反应速度变缓。 猜想 2: 甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:		或"b"),该装置中加入盐酸的量至少要;若加入盐酸过多,则有可能产生的
。反应前他事先往试管中加入了少量的是同学由此产生了疑问,提出了猜想: 猜想 1: 加水可以起到稀释的作用,使反应速度变缓。 猜想 2: 甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:		后果是,要使反应停止,其操作是。
同学由此产生了疑问,提出了猜想: 猜想 1: 加水可以起到稀释的作用,使反应速度变缓。 猜想 2: 甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:	4	丙同学用过氧化氢溶液和二氧化锰制取氧气,反应的化学方程式为
猜想 1: 加水可以起到稀释的作用,使反应速度变缓。 猜想 2: 甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:		。反应前他事先往试管中加入了少量的水,甲
猜想 2: 甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:		同学由此产生了疑问,提出了猜想:
甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:		猜想 1: 加水可以起到稀释的作用, 使反应速度变缓。
质量分数,在其他条件相同的情况下进行实验。记录数据如下:		猜想 2:
		甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质
实验 1 2 3 4 5		质量分数,在其他条件相同的情况下进行实验。记录数据如下:
		实验 1 2 3 4 5

实 验	1	2	3	4	5
过氧化氢溶液溶质质量分数	1%	3%	5%	10%	15%
MnO ₂ 粉末用量/g	0.5	0.5	0.5	0.5	0.5
收集到 500mL 气体时所用时间/s	560	186	103	35	12
反应后液体温度/℃	26	38	43	59	71

根据表中数据可知:过氧化氢溶液的溶质质量分数对反应速度的影响是

甲同学的猜想 2 是:	加水可以

实验五: 质量守恒定律的探究

- 33、(杨浦一模)某兴趣小组为验证质量守恒定律,做了镁条在空气中燃烧的实验。
 (1)请写出镁条与氧气反应的化学方程式____。
 (2)称量燃烧产物:质量大于反应物镁条的质量,是否该反应不遵循质量守恒定律。
 我
 _____("同意"或"不同意"),我的理由是_____
 - (3)用下图装置改进实验,验证了质量守恒定律,却发现产物中还有少量黄色固体。

对黄色固体进行探究。自学资料: ①氧化镁为白色固体;

- ②镁能与氮气剧烈反应生成黄色的氮化镁(Mg₃N₂)固体;
- ③氮化镁可与水剧烈反应产生氨气,该气体能使湿润的红色石蕊试纸变蓝。

请设计实验,验证黄色固体是 Mg₃N₂

实验操作	实验现象及结论

(4) 空气中 N_2 的含量远大于 O_2 的含量,而镁条在空气中燃烧生成的 MgO 却远多于 Mg_3N_2 ,为什么呢?请给出合理的解释______。