Name:		
Instructor:		

Math 10550, Exam II October 17, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLE	PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT write in this box. Multiple Choice		
11.		
12.		
13.		
Total		

Name: _______
Instructor: ______

Multiple Choice

1.(6 pts.) A particle is moving along an axis. Its position at time t (seconds) is given by $s(t) = t^3 - 6t^2 + 9t$,

where s(t) is measured in feet. What is the total distance travelled by the particle between t=0 and t=2 seconds.

(a) 2 feet

(b) 10 feet

(c) 4 feet

(d) 6 feet

(e) 5 feet

2.(6 pts.) The height of a rectangle is increasing at a rate of 8 cm/s and its width is increasing at a rate of 3 cm/s. When the height is 20 cm and the width is 10 cm, how fast is the area of the rectangle increasing?

- (a) $190 \, \text{cm}^2/\text{s}$
- (b) $11 \, \text{cm}^2/\text{s}$
- (c) $211 \,\mathrm{cm}^2/\mathrm{s}$

- (d) $24 \, \text{cm}^2/\text{s}$
- (e) $140 \, \text{cm}^2/\text{s}$

Name: _____

Instructor:

3.(6 pts.) Use linear approximation of $f(x) = \frac{1}{\sqrt{x}}$ at a = 4 to estimate $\frac{1}{\sqrt{3.9}}$.

- (a) $\frac{1}{\sqrt{39}} \approx \frac{11}{20}$
- (b) $\frac{1}{\sqrt{3.9}} \approx \frac{1}{2}$ (c) $\frac{1}{\sqrt{3.9}} \approx \frac{81}{160}$
- (d) $\frac{1}{\sqrt{39}} \approx \frac{9}{20}$
 - (e) $\frac{1}{\sqrt{3.9}} \approx \frac{79}{160}$

4.(6 pts.) Find the linearization L(x) of the function $f(x) = \sin(2x)$ at $a = \frac{\pi}{4}$.

- (a) $L(x) = 1 + \frac{\pi}{2} 2x$ (b) L(x) = 1 (c) $L(x) = 1 \frac{\pi}{2} + 2x$
- (d) L(x) = 1 + x (e) $L(x) = 1 \frac{\sqrt{2}\pi}{4} + \sqrt{2}x$

Name: _____

Instructor:

5.(6 pts.) Find all critical points of

$$f(x) = x^4 + \frac{16}{3}x^3 - 10x^2 - 12.$$

- (a) x = 0, -2
- (b) x = 5, 0, -1 (c) x = -5, 0, 1

- (d) x = -2, 0, 2
- (e) x = -5, 1

6.(6 pts.) Let

$$f(x) = x^3 + 3x^2 - 24x.$$

Find the absolute maximum and absolute minimum values of f on the interval [0, 10].

- Max at x = 4; Min at x = 1. (a)
- (b) Max at x = 8; Min at x = 2.
- Max at x = 10; Min at x = 0. (c)
- Max at x = 10; Min at x = 2. (d)
- Max at x = 4; Min at x = 0. (e)

Name: Instructor:

7.(6 pts.) Find the local maxima and minima of

$$f(x) = 3x^{2/3} - x$$

where f(x) is defined for all real numbers x.

- f has a local minimum at x = 0 and a local maximum at x = 8. (a)
- f has a local maximum at x = 1/8 and no local minimum. (b)
- f has a local minimum at x = 0 and a local maximum at x = 1/8. (c)
- f has a local maximum at x = 0 and a local minimum at x = 1/8. (d)
- f has a local maximum at x = 8 and no local minimum. (e)

8.(6 pts.) Let

$$f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 2x + 10.$$

On which of the following intervals is the graph of the function f both decreasing and concave upward on the entire interval?

(a) (1,2)

- (b) $\left(\frac{3}{2}, 2\right)$ (c) $(-\infty, 2)$

(d) (0,2) (e) $\left(-\infty, \frac{3}{2}\right)$

Name: ______

9.(6 pts.) Consider the function

$$f(x) = \frac{3x^3 - 3}{(2x+2)(x^2 - 7x + 10)}.$$

Which of the following is true?

- (a) f has a horizontal asymptote at $y = \frac{3}{2}, -\frac{3}{2}$ and vertical asymptotes at x = -1, 2, 5.
- (b) f has a horizontal asymptote at $y = \frac{3}{2}$ and vertical asymptotes at x = 1, 2, 5.
- (c) f has a horizontal asymptote at y = -1 and vertical asymptotes at x = -1, 2, 5.
- (d) f has a horizontal asymptote at y = 1 and vertical asymptotes at x = -1, 2, 5.
- (e) f has a horizontal asymptote at $y = \frac{3}{2}$ and vertical asymptotes at x = -1, 2, 5.

Name: _			
Instructo	r:		

10.(6 pts.) Let f be a function of x. The table below shows whether the functions f'(x) and f''(x) are positive, negative or have value 0 at each of the given values of x.

x	-2	0	2
f'(x)	=0	=0	=0
f''(x)	> 0	=0	< 0

Which of the graphs shown below is a feasible graph of f(x)?

(Note that the label for each graph is given on the lower left of the graph.)

(e) None of the above

(c)

(d)

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(13 pts.) Show that

$$x^5 + 2x^3 + 2x - 3 = 0$$

has one and $\underline{\text{exactly}}$ one solution. Identify the theorem(s) you are using.

Name:	
Instructor:	

12.(13 pts.) Car A and car B are approaching the intersection "C" of two streets intersecting at a right angle. Car A is going South at 45 mph, car B is heading West at 30 mph. We denote the angle $\angle(C, B, A)$ by θ (measured in radians), the distance from C to B by x, and the distance from C to A by y. At what rate is the angle θ changing when car A and car B are both 1 mile from the intersection?

Name: ______
Instructor: _____

13.(14 pts.) Suppose f(x) is a function which is continuous and differentiable on the interval $\left(-\frac{3\pi}{4}, \frac{3\pi}{4}\right)$ with

$$f'(x) = 1 - \sin^2 x.$$

Warning: the formula shown above is for the DERIVATIVE of f(x)

- (a) Find all critical points of the function f(x) in the given interval.
- (b) List the subintervals of $\left(-\frac{3\pi}{4}, \frac{3\pi}{4}\right)$ where f is increasing / decreasing.
- (c) List all local maxima and local minima of f in the interval $\left(-\frac{3\pi}{4}, \frac{3\pi}{4}\right)$, or say so if there are none.
- (d) List the subintervals of $\left(-\frac{3\pi}{4}, \frac{3\pi}{4}\right)$ where f is concave up / concave down.
- (e) List all inflection points of f in the interval $\left(-\frac{3\pi}{4}, \frac{3\pi}{4}\right)$, or say so if there are none.

Name:		
Instructor	ANSWERS	

Math 10550, Exam II October 17, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLE	ASE MARK Y	OUR ANSWE	ERS WITH A	N X, not a circ	ele!
1.	(a)	(b)	(c)	(ullet)	(e)
2.	(a)	(b)	(c)	(d)	(•)
3.	(a)	(b)	(ullet)	(d)	(e)
4.	(a)	(•)	(c)	(d)	(e)
5.	(a)	(b)	(ullet)	(d)	(e)
6.	(a)	(b)	(c)	(•)	(e)
7.	(●)	(b)	(c)	(d)	(e)
8.	(a)	(•)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(●)
10.	(●)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.		
Multiple Choice	Multiple Choice		
11.			
12.			
13.			
Total			