Problem 1: Use the Newton-Raphson method with $p_0 = -1.5$ to solve

$$cos(x + \sqrt{2}) + x(x/2 + \sqrt{2}) = 0$$

Solution: We have

$$f(x) = cos(x + \sqrt{2}) + x(x/2 + \sqrt{2})$$

The accuracy in problem (1) - (4) is expected within 10^{-2} .

 $f'(x) = -\sin(x + \sqrt{2}) + x + \sqrt{2}$

On differentiating the above function, we get

Based on the Newton-Raphson method, we can write

$$p_n = p_{n-1} - rac{f(p_{n-1})}{f'(p_{n-1})}$$

Calculations:

Based on the Newton-Raphson method, we can write $f(p_{n-1})$

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Calculations:

i	p_i	$f(p_i)$	$f'(p_i)$	$ p_i-p_{i-1} $
0	-1.5	0.00000226	-0.00010518	-
1	-1.47855076	0.00000071	-0.00004438	0.02144924
2	-1.46246535	0.00000023	-0.00001872	0.01608541
3	-1.45040194	0.00000007	-0.00000790	0.01206342
4	-1.44135464	0.00000002	-0.00000333	0.00904729

It is clear that after the 4^{th} iteration $|p_n - p_{n-1}| < 10^{-2}$. Hence, our solution to the above equation would be

$$p_4 = -1.44135464$$

We can also note that the exact solution of the above quation is $-\sqrt{2}$ =

Problem 2: Use the Newton-Raphson method with $p_0 = -0.5$ to solve

 $e^{6x} + 3(\ln 2)^2 e^{2x} - (\ln 8)e^{4x} - (\ln 2)^3 = 0$ Solution: Note that we have $f(x) = e^{6x} + 3(\ln 2)^2 e^{2x} - (\ln 8)e^{4x} - (\ln 2)^3$

-1.41421356.

$$e^{6x} + 3(\ln 2)^2 e^{2x} - (\ln 8)e^{4x} - (\ln 2)^3 = 0$$

Problem 2: Use the Newton-Raphson method with $p_0 = -0.5$ to solve

Solution: Note that we have
$$f(x) = e^{6x} + 3(\ln 2)^2 e^{2x} - (\ln 8)e^{4x} - (\ln 2)^3$$

$$\Rightarrow f'(x) = 6e^{6x} + 6(\ln 2)^2 e^{2x} - 4(\ln 8)e^{4x}$$

First note that

First note that
$$f(x) = (e^{2x} - \ln 2)^3$$

Now we start applying Newton-Raphson method with
$$p_0 = -0.5$$
 and $p = l_{\rm m}(l_{\rm m} 2)$

Now we start applying Newt
$$\frac{ln(ln2)}{2} \approx -0.1833$$

$$x = \frac{ln(ln2)}{2} \approx -0.1833$$
Newton-Raphson method

 $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$

$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$

i	p_i	$f(p_i)$	$f'(p_i)$	p_{i+1}	$e_i = p_{i+1} - p$
0	-0.5	-0.03441303	0.23352789	-0.35263844	0.31674354
1	-0.35263844	-0.00790145	0.11757765	-0.28543642	0.16938198
2	-0.28543642	-0.00210282	0.05564489	-0.24764649	0.10217996
3	-0.24764649	-0.00058753	0.02564886	-0.22473983	0.06439003
4	-0.22473983	-0.00016808	0.01165791	-0.21032222	0.04148337
5	-0.21032222	-0.00004872	0.00525552	-0.20105165	0.02706576
6	-0.20105165	-0.00001424	0.00235736	-0.1950131	0.01779519
7	-0.1950131	-0.00000418	0.00105402	-0.19104778	0.01175664
8	-0.19104778	-0.00000123	0.00047031	-0.18843034	0.00779132
9	-0.18843034	-0.00000036	0.00020957	-0.18669676	0.00517388
10	-0.18669676	-0.00000011	0.0000933	-0.18554604	0.0034403

Y

We reach our desired accuracy at the iteration i=8 and hence we can stop there. Thus $x \approx -0.19$ is the solution by Newton-Raphson method.

Problem 3: Use the modified Newton-Raphson method in problem (1) above.

Solution: We have

$$f(x) = \cos(x + \sqrt{2}) + x(x/2 + \sqrt{2}) \tag{01}$$

And $f(-\sqrt{2}) - \cos(0) = 0$

$$f(x) = \cos(x + \sqrt{2}) + x(x/2 + \sqrt{2}) \tag{01}$$
 And
$$f(-\sqrt{2}) - \cos(0) = 0$$
 On differentiating the equation (01), we get
$$f'(x) = -\sin(x + \sqrt{2}) + x + \sqrt{2} \tag{02}$$
 And
$$f'(-\sqrt{2}) = 0$$
 On differentiating the equation (02), we get
$$f''(x) = -c\dot{\delta}s(x + \sqrt{2}) + 1 \tag{03}$$
 And
$$f''(-\sqrt{2}) = 0$$
 On differentiating the equation (03), we get
$$f'''(x) = \sin(x + \sqrt{2}) \tag{04}$$

On differentiating the equation (03), we get

$$f'''(x) = \sin(x + \sqrt{2}) \tag{04}$$
 And
$$f'''(-\sqrt{2}) = 0$$

(04)

(05)

On differentiating the equation (04), we get

$$f''''(x) = \cos(x + \sqrt{2})$$

And
$$f''''(-\sqrt{2}) =$$

$$f''''(-$$

$$f''''(-\sqrt{2}) = 1 \neq 0$$
 Hence $-\sqrt{2}$ is a zero of f . g modified Newton-Raphson method, we get

Using modified Newton-Raphson method, we get

$$g(x) = x - \frac{f(x)f'(x)}{f'(x)^2 - f(x)f''(x)}$$

$$p_1 = p_0 - \frac{f(p_0)f'(p_0)}{f'(p_0)^2 - f(p_0)f''(p_0)}$$

Hence we get the following

i	p_i	$ p_i-p_{i-1} $
0	-1.5	-
1	-1.4142346	0.0857654
2	-1,4142416	0.0000070

After 2^{nd} iteration $|p_i - p_{i-1}| < 10^{-2}$ and $p_2 = -1.414216$.

Problem 4: Use the modified Newton-Raphson method in problem (2) above.

Solution: We have

$$f(x) = e^{6x} + 3(\ln 2)^2 e^{2x} - 3(\ln 2)e^{4x} - (\ln 2)^3$$

Problem 4: Use the modified Newton-Raphson method in problem (2) above.

Solution: We have

$$f(x) = e^{6x} + 3(\ln 2)^2 e^{2x} - 3(\ln 2)e^{4x} - (\ln 2)^3$$

By observation, we get a root of f(x) as

Dy observation, we get a root of
$$f(u)$$
 as

$$r = ln(ln2)^{1/2} =$$

$$x = \ln(\ln 2)^{1/2} = -0.18325646$$

$$x = tn(tnz) = \frac{1}{2}$$

Also
$$f'(x) = 6(e^{6x} + (\ln n)^2 e^{2x} - 2(\ln n)^2 e^{4x})$$

We have
$$f(x_n) f'(x_n)$$

 $f''(x) = 12(3e^{6x} + (\ln 2)^2 e^{2x} - 4(\ln 2)e^{4x})$

 $p_0 = -0.5$ and $p_{n+1} = p_n - \frac{f(p_n)f'(p_n)}{f'(P_n)^2 - f(p_n)f''(p_n)}$

AISO

and

We have

Hence we get the following

 $f(x) = 0(e^{-} + (in) e^{-} - 2(inz)e^{-})$ $f''(x) = 12(3e^{6x} + (\ln 2)^2 e^{2x} - 4(\ln 2)e^{4x})$

i

0

2

 p_i

-0.5

-0.26536892

-0.18964449

$$p_0 = -0.5$$
 and $p_{n+1} = p_n - \frac{f(p_n)f'(p_n)}{f'(P_n)^2 - f(p_n)f''(p_n)}$

$$|p_i - p_{i-1}|$$

0.07572442

0.00634739

where p_3 would be the root.

III ... A : Lland la markland ... land

Problem 5: For $p_0 = 0.5$ and $p_n = \frac{2 - e^{p_{n-1}} + p_{n-1}^2}{3}$, generate first five terms

of the sequence $\{\hat{p}_n\}$ using the Aitken's Δ^2 -method. Solution: Given that $p_0 = 0.5$ and $p_n = \frac{2 - e^{p_{n-1}} + p_{n-1}^2}{2}$. of the sequence $\{\hat{p}_n\}$ using the Aitken's Δ^2 -method.

Solution: Given that $p_0 = 0.5$ and $p_n = \frac{2 - e^{p_{n-1}} + p_{n-1}^2}{3}$. Using Aitken's method, we have

$$\hat{p}_n = p_n rac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

So we get the following

i	p_{i}	\ddot{p}_i	
0	0.5	0.25868	
1	0.20043	0.25761	
2	0.27275	0.25753	
3	0.25361	0.25753	
4	0.25855	0.25753	
5	0.25727	0.25753	
0	0.05700	0.05750	

i	p_{i}	\hat{p}_i
0	0.5	0.25868
1	0.20043	0.25761
2	0.27275	0.25753
3	0.25361	0.25753
4	0.25855	0.25753
5	0.25727	0.25753
6	0.25760	0.25753

Clearly, the first five terms of the sequence $\{\hat{p}_n\}$ using Aitken's Δ^2 -method are 0.25868, 0.25761, 0.25753, 0.25753, 0.25753. Here the sequence $\{\hat{p}_n\}$ using Aitken's method converged at n=2 itself as compared to the given sequence which converges at n=8.

Problem 6: Find appropriate polynomials of degree at most one and at most

3	0.25361	0.25753
4	0.25855	0.25753
5	0.25727	0.25753
6	0.25760	0.25753

Clearly, the first five terms of the sequence $\{\hat{p}_n\}$ using Aitken's Δ^2 -method are 0.25868, 0.25761, 0.25753, 0.25753, 0.25753. Here the sequence $\{\hat{p}_n\}$ using Aitken's method converged at n=2 itself as compared to the given sequence which converges at n=8.

Problem 6: Find appropriate polynomials of degree at most one and at most two interpolating $f(x) = \cos x$ on $x_0 = 0, x_1 = 0.6, x_2 = 0.9$ to approximate $\cos(0.45)$. Find the absolute errors.

Solution: We have cos(0.95) = 0.900 and

$$y_0 = f(x_0) = cos(0) = 1$$

 $y_1 = f(x_1) = cos(0.6) = 0.825$
 $y_2 = f(x_2) = cos(0.9) = 0.622$

The Lagrange interpolating polynomials of degree at most one will be as follows

$$P_1 = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

Putting known values we get

$$P_1(x) = 1 - 0.292x$$
 and $P_1(0.45) = 0.869$

$$\therefore$$
 Absolute error= $|0.900 - 0.869| = 0.031$

The Lagrange interpolating polynomials of degree at most two will be as follows

The Lagrange interpolating polynomials of degree at most one will be as follows

 $y_1 = f(x_1) = cos(0.6) = 0.825$

 $y_2 = f(x_2) = cos(0.9) = 0.622$

$$P_1 = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

Putting known values we get

$$P_1(x) = 1 - 0.292x$$
 and $P_1(0.45) = 0.869$

$$\therefore$$
 Absolute error= $|0.900 - 0.869| = 0.031$

The Lagrange interpolating polynomials of degree at most two will be as follows

The Lagrange interpolating polynomials of degree at most two will be as follows
$$P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_2-x_1)(x_2-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_2)(x_2-x_1)}y_2$$

Putting known values we get

$$P_1(x) = 1 - 0.292x$$
 and $P_1(0.45) = 0.869$

$$\therefore$$
 Absolute error= $|0.900 - 0.869| = 0.031$

The Lagrange interpolating polynomials of degree at most two will be as follows

$$P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_2-x_1)(x_2-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_2)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_2)(x_2-x_1)}y_2$$

Putting known values we get

$$P_2(x) = -0428x^2 - 0.035x + 1$$
 and $P_2(0.45) = 0.898$

$$\therefore$$
 Absolute error= $|0.900 - 0.898| = 0.002$

Problem 7: Repeat the above problem for $f(x) = \sqrt{1+x}$.

Solution: We have
$$f(x) = \sqrt{1+x}$$
, $x_0 = 0$, $x_1 = 0.6$, $x_2 = 0.9$. Hence we get

Problem 7: Repeat the above problem for $f(x) = \sqrt{1+x}$.

Solution: We have $f(x) = \sqrt{1+x}$, $x_0 = 0$, $x_1 = 0.6$, $x_2 = 0.9$. Hence we get

$$y_0 = f(x_0) = 1$$

 $y_1 = f(x_1) = 1.264911$
 $y_2 = f(x_2) = 1.378405$

The Lagrange interpolating polynomial of degree at most one will be as follows

$$P_1(x) = \frac{(x-x_1)}{(x_0-x_1)}y_0 + \frac{(x-x_0)}{(x+1-x_0)y_1}$$

For $x \in [0, 0.6]$ we get $P_1(x) = 0.441518x + 1$ and $P_1(0.45) = 1.196863$.

$$\therefore$$
 Absolute error= $|1.196863 - 1.204159| = 0.007296$

The Lagrange interpolating polynomial of degree at most two will be as follows

$$P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2$$

Putting values of x_0, x_1, x_2 we get the value of $P_2(x)$ at x = 0.45 as $P_2(0.45) = 1.203424$.

$$\therefore$$
 Absolute error= $|1.203424 - 1.204159| = 0.000735$

Problem 8: Use appropriate Lagrange polynomials of degrees one, two and three to find f(8.4) with the following data:

Problem 8: Use appropriate Lagrange polynomials of degrees one, two and three to find f(8.4) with the following data:

$$f(8.1) = 16.94410$$
 $f(8.3) = 17.56492$
 $f(8.6) = 18.50515$
 $f(8.7) = 18.82091$

Solution: Let

$$y_0 = f(x_0) = f(8.1) = 16.94410$$

 $y_1 = f(x_1) = f(8.3) = 17.56492$
 $y_2 = f(x_2) = f(8.6) = 18.50515$
 $y_3 = f(x_3) = f(8.7) = 18.82091$

The Lagrange interpolating polynomial of degree one will be as follows

$$f(8.6) = 18.50515$$

 $f(8.7) = 18.82091$

Solution: Let

$$y_0 = f(x_0) = f(8.1) = 16.94410$$

 $y_1 = f(x_1) = f(8.3) = 17.56492$
 $y_2 = f(x_2) = f(8.6) = 18.50515$

The Lagrange interpolating polynomial of degree one will be as follows

 $y_3 = f(x_3) = f(8.7) = 18.82091$

$$P_1(x) = \frac{(x-x_2)}{(x_1-x_2)}y_1 + \frac{(x-x_1)}{(x_2-x_1)}y_2$$

Putting values of x_1, x_2 we get the value of $P_1(x)$ at x = 8.4 as

$$f(x) = P_1(8.4) = 17.87833$$

The Lagrange interpolating polynomials of degree two will be as follows

$$P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2$$

Putting values of x_0, x_1, x_2 we get the value of $P_2(x)$ at x = 8.4 as

$$f(x) = P_2(8.4) = 17.87713$$

And

$$Q_2(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}y_3$$

Putting values of x_1, x_2, x_3 we get the value of $Q_2(x)$ at x = 8.4 as

$$f(x) = Q_2(8.4) = 17.877155$$

$$L_i(x) = \frac{(x - x_0) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_n)}$$

Putting values of x_0, x_1, x_2, x_3 we get the value of $P_3(x)$ at x = 8.4 as

$$f(x) = P_3(8.4) = 17.8771425$$

Problem 9: Use appropriate Lagrange polynomials of degree one, two and three to find f(0.25) with the following data:

$$f(0.1) = 0.29004986$$

$$f(0.2) = -0.56079734$$

$$f(0.3) = -0.81401972$$

$$f(0.4) = -1.0526302$$

Solution: Note that 0.1 < 0.2 < 0.25 < 0.3 < 0.4

For degree 1, we use
$$f(0.2) = -0.56079734$$
, $f(0.3) = -0.81401972$

$$L_0(x) = (x - 0.3)/(0.2 - 0.3)$$

$$L_1(x) = (x - 0.2)/(0.3 - 0.2)$$

So
$$P_1(0.25) = -0.68740853$$

 $L_2(0.25)$

For degree two, using
$$0.1, 0.2$$
 and 0.3

$$(0.25 - 0.2)(0.25 - 0$$

$$L_1(x) = (x - 0.2)/(0.3 - 0.2)$$

$$P_1(x) = f(0.2)L_0(x) + f(0.3)L_1(x)$$

$$(x) = (x - 0.3)/(0.2 - 0.3)$$

$$(-0.3)/(0.2-0.3)$$

 $(-0.2)/(0.3-0.2)$

$$\frac{3}{(0.2-0.3)}$$

 $\frac{2}{(0.3-0.2)}$
 $\frac{4}{(0.3)} \frac{4}{(0.3)} \frac{4}{(0.3)} \frac{4}{(0.3)}$

$$\begin{array}{rcl}
(x) + f(0.3)L_1(x) \\
0853 \\
.3 \\
0(0.25 - 0.3) \\
0(0.1 - 0.3) \\
0.25 \\
0.25
\end{array} = -0.125$$

0.375

$$0.1, 0.2 \text{ and } 0.3$$

$$= \frac{(0.25 - 0.2)(0.25 - 0.3)}{(0.1 - 0.2)(0.1 - 0.3)} = -0.125$$

$$(0.25 - 0.1)(0.25 - 0.3)$$

$$L_0(0.25) = \frac{(0.25 - 0.2)(0.25 - 0.3)}{(0.1 - 0.2)(0.1 - 0.3)} = -0.125$$

$$L_1(0.25) = \frac{(0.25 - 0.1)(0.25 - 0.3)}{(0.2 - 0.3)(0.2 - 0.3)} = 0.75$$

$$(0.25 - 0.1)(0.25 - 0.2)$$

For degree 1, we use f(0.2) = -0.30079734, f(0.3) = -0.81401972 $L_0(x) = (x - 0.3)/(0.2 - 0.3)$

$$L_1(x) = (x - 0.2)/(0.3 - 0.2)$$

$$P_1(x) = f(0.2)L_0(x) + f(0.3)L_1(x)$$

So $P_1(0.25) = -0.68740853$

For degree two, using
$$0.1, 0.2$$
 and 0.3
 $(0.25 - 0.2)(0.25 -$

$$L_0(0.25) = \frac{(0.25 - 0.2)(0.25 - 0.3)}{(0.1 - 0.2)(0.1 - 0.3)} = -0.125$$

$$L_1(0.25) = \frac{(0.25 - 0.1)(0.25 - 0.3)}{(0.2 - 0.3)(0.2 - 0.3)} = 0.75$$

$$L_2(0.25) = \frac{(0.25 - 0.1)(0.25 - 0.2)}{(0.3 - 0.1)(0.3 - 0.2)} = -0.375$$

$$L_0(0.25) = \frac{}{(0.1 -)}$$

$$_{1}(0.25) = \frac{(0.25)}{(0.2)}$$

For degree three, use 0.1, 0.2, 0.3 and 0.4

So

$$(0.2)$$
 = (0.25)

$$\frac{(0.25)}{(0.25)}$$

$$(-0.1)(0.25 - 0.3)(0.2 - 0.3)$$

 $P_2(0.25) = -0.0790843775$

$$\frac{2-0.3}{25-0.5}$$

$$-0.3$$

 $6-0.2$

$$\frac{1}{0.3} = \frac{1}{0.2}$$

$$L_2(0.25) = rac{(0.2 - 0.3)(0.2 - 0.3)}{(0.25 - 0.1)(0.25 - 0.2)} = -0.375$$

So $P_2(0.25) = -0.0790843775$
For degree three, use $0.1, 0.2, 0.3$ and 0.4

$$L_0(0.25) = \frac{(0.25 - 0.2)(0.25 - 0.3)}{(0.1 - 0.2)(0.1 - 0.3)}$$

So

$$L_0(0.25) = \frac{(0.25 - 0.2)(0.25 - 0.3)(0.25 - 0.4)}{(0.1 - 0.2)(0.1 - 0.3)(0.1 - 0.4)} = -0.5625$$

$$L_1(0.25) = \frac{(0.25 - 0.1)(0.25 - 0.3)(0.25 - 0.4)}{(0.2 - 0.3)(0.2 - 0.3)(0.2 - 0.4)} = 0.5625$$

$$L_2(0.25) = \frac{(0.25 - 0.1)(0.25 - 0.2)(0.25 - 0.4)}{(0.3 - 0.1)(0.3 - 0.2)(0.3 - 0.4)} = 0.5625$$

$$L_3(0.25) = \frac{(0.25 - 0.1)(0.25 - 0.2)(0.25 - 0.3)}{(0.4 - 0.1)(0.4 - 0.2)(0.4 - 0.3)} = -0.0625$$

$$5) = \frac{(0.3 - 0.1)(0.3 - 0.2)(0.2)(0.2 - 0.2)(0.2 - 0.2)(0.2 - 0.2)(0.2 - 0.2)(0.2 - 0.2)(0.2 - 0$$

So
$$P_3(0.25) = -0.5443921625$$

$$P_3(0.25) = -0.5443921625$$