Advanced Practical 2022/2023 Operations Research Case

Lecture: Discrete Event Simulation

Guanlian Xiao

Department Operations Analytics Vrije Universiteit Amsterdam

June 2023

Discrete-Event Simulation (DES)

What is DES?

Discrete-event simulation is a computer simulation model/program of a stochastic system that evolves dynamically in time via state information which changes at discrete time epochs.

The components of a DES are

- Entities
- ► Time variable (or simulation clock)
- System state variables
- Events and Event list (or calendar)
- Global variables
- ► Statistics collectors (or counter variables)

As a reference model we consider a queueing network model with feedback.

Modeling aspects

- ▶ The queueing model consists of two stations ('queues') Q_1 and Q_2 .
- ▶ At Q_i jobs arrive according to a Poisson(λ_i) process.
- ▶ There are three servers at Q_1 and two servers at Q_2 .
- ▶ The service times of the servers at Q_i have distribution function $G_i(\cdot)$.
- After service completion at Q_1 the jobs enter Q_2 .
- After service completion at Q2 a job leaves the system with probability p or re-enters ('feeds back' to) Q1 with probability 1 p.
- ▶ Both stations have infinite waiting spaces.
- ▶ Waiting jobs are served in order of arrival (FCFS).

Performance measures

Typically we are interested in

- average waiting times or system times at the two stations;
- mean waiting lines or system lines at two stations;
- average time spend in the system (sojourn time);
- throughput (per station or from the whole system);
- utilization;
- ▶ ..

Transient vs Steady-State

We have to specify

- whether we wish to estimate these performance measures for a finite period; for instance the queueing system operates daily, opening empty at 8.00 hr in the morning, closing at 18.00 hr in the evening.
- or whether we wish to estimate steady-state averages; then we assume that the system operates for an infinite time.

Entities

- Actually, a system is defined to be a collection of entities, e.g., people or cars or machines, that act and interact together.
- ▶ Without entities, nothing would happen.
- ► Entities have attributes, usually given as data values.
- ► In our example the entities are (attributes between brackets)
 - -> jobs or customers (arrival time);
 - -> servers (idle/busy).
- ▶ Most often in a simulation study, we do not bother too much with entities.

- The system state is a collection of variables necessary to describe a system at a particular time.
- ▶ The set of all states is denoted by \mathcal{X} ; a specific state by $x \in \mathcal{X}$; and the (random) state at time t by $X(t) \in \mathcal{X}$.
- ► In our example the state comprises
 - \rightarrow the number of jobs (x_1, x_2) present at the two stations;
 - \rightarrow two vectors a_1, a_2 of the arrival times of these waiting jobs;
 - \rightarrow two vectors b_1, b_2 specifying the status of the servers (idle/busy).

- An event is an instantaneous occurrence that may change the state or trigger a state transition.
- ▶ The set of all possible events is denoted by \mathcal{E} ; a specific event by e; the events active in state $x \in \mathcal{X}$ by $E(x) \subset \mathcal{E}$.
- ► In our example events are
 - \rightarrow the arrival of a new job (at Q_1 or at Q_2);
 - -> a service completion at one of the five servers.

Time or clock variable

- Events occur at some point in time.
- For this we need a variable representing the current time of the simulation.
- ► This is also called the simulation clock or system time that measures the elapsed simulation time.
- Clearly we need to specify its unit size (second or minute or ...); then we set it to zero at the start of a simulation and update it every time an event occurs.

Event list or calendar

- The calendar for the simulation is a list of the events that are currently scheduled to occur.
- There is only one event list and it consists of the scheduled event times, sorted by the earliest scheduled time first.
- ▶ The event list at time t is denoted by $L_{ev}(t)$.
- In our example the event list comprises
 - -> the next arrival time of a customer at Q1;
 - \rightarrow the next arrival time of a customer at Q_2 ;
 - -> for any busy server the next time he is ready completing the job.

A Set of Alarm Clocks

Another view of the event list is that it is a collection of alarm clocks, one for each scheduled event. The clocks are preset at different (random) times in the future. For instance at some t there are 3 events scheduled:

The Event-Scheduling Approach

- The discrete-event simulation runs as follows.
 - -> The simulation clock is advanced forward to the earliest time on the event list (when the first alarm goes off).
 - -> The alarm belongs to a particular event that triggers several activities in the system.
 - -> These activities make that there will be changes in the system state and in the event list; these need to be updated.
 - -> Then the simulation clock is advanced again, etc.

A walk through DES

In our queueing example we let time be measured in seconds, starting at 08:00. This is system time 0.

- ▶ Suppose current time is t_{sim} and state $x \in \mathcal{X}$.
- **Each** active event $e_i \in E(x)$ has an associated scheduled alarm time t_i .
- We denote the type-time pair of events by ['A1', <time>] for the arrival event at time <time> at Q1 (and similarly for arrival event at Q2);
- and by ['D1', 1, <time>] for departure events due to service completion at server 1 of Q₁; similarly for the other servers, and the other queue.
- We start $t_{sim} = 0$ with an empty system and idle servers:

$$\mathbf{x} = \{x_1 = 0, x_2 = 0, a_1 = [], a_2 = [], b_1 = (0, 0, 0), b_2 = (0, 0)\}.$$

► There are two active events: arrivals at the queues; the associated event times are drawn by our random number generator, resulting. Thus

$$L_{\text{ev}} = \{ [\text{`A2'}, 0.817], [\text{`A1'}, 1.284] \}.$$

- ▶ The simulation time is advanced to the earliest event time 0.817 belonging to the event of an arriving job at Q_2 ;
- ▶ Immediately, this job enters service with server 1 of *Q*₂;
- ▶ We draw a sample of the service time S_2 , say 1.693, to schedule a new event 'D2' with departure time 0.817 + 1.693 = 2.510;
- Also we realise a new sample of the interarrival time A_2 , say 1.226, and update the scheduled time of event 'A2' to 0.817 + 1.226 = 2.043;

Thus the new situation is:

$$t_{\text{sim}} = 0.817$$

 $\mathbf{x} = \{x_1 = 0, x_2 = 1, a_1 = [], a_2 = [], b_1 = (0, 0, 0), b_2 = (1, 0)\}$
 $L_{\text{ev}} = \{[\text{`A1'}, 1.284], [\text{`A2'}, 2.043], [\text{`D2'}, 1, 2.510]\}$

- ► The simulation time is advanced to the earliest event time 1.284 belonging to the event of an arriving job at Q₁.
- ▶ This job enters service with server 1 of Q_1 .
- ▶ We draw a sample of the service time S_1 , say 2.613, to schedule a new event 'D1' with departure time 1.284 + 2.613 = 3.987;
- ▶ We realise a new sample of the interarrival time A_1 , say 0.577, and update the scheduled time of event 'A1' to 1.284 + 0.577 = 1.861;

Thus the new situation is:

$$t_{\text{sim}} = 1.284$$

 $\mathbf{x} = \{x_1 = 1, x_2 = 1, a_1 = [], a_2 = [], b_1 = (1, 0, 0), b_2 = (1, 0)\}$
 $L_{\text{ev}} = \{[\text{`A1'}, 1.861], [\text{`A2'}, 2.043], [\text{`D2'}, 1, 2.510], [\text{`D1'}, 1, 3.987]\}$

- The simulation time is advanced to the earliest event time 1.861 belonging to the event of an arriving job at Q1.
- ► This job enters service with server 2 of Q₁.
- ▶ We draw a sample of the service time S_1 , say 0.811, to schedule a new event 'D1' with departure time 1.861 + 0.811 = 2.752;
- ▶ We realise a new sample of the interarrival time A_1 , say 1.428, and update the scheduled time of event 'A1' to 1.861 + 1.428 = 3.289;

Thus the new situation is:

$$t_{\text{sim}} = 1.861$$

$$\mathbf{x} = \{x_1 = 2, x_2 = 1, a_1 = [], a_2 = [], b_1 = (1, 1, 0), b_2 = (1, 0)\}$$

$$L_{\text{ev}} = \{[\text{`A2'}, 2.043], [\text{`D2'}, 1, 2.510], [\text{`D1'}, 2, 2.752], [\text{`A1'}, 3.289], [\text{`D1'}, 1, 3.987]\}$$

Suppose that currently the situation is

```
\begin{split} t_{\text{sim}} &= 249.31 \\ &\pmb{x} = \{x_1 = 4, x_2 = 8, a_1 = (240.82), a_2 = (238.71, 240.61, 241.01, 244.55, 246.91, 248.88), \\ &\pmb{b}_1 = (1, 1, 1), \pmb{b}_2 = (1, 1)\} \\ &\pmb{L}_{\text{ev}} = \{[\text{`D2'}, 2, 250.28], [\text{`D2'}, 1, 251.43], [\text{`A1'}, 254.38], [\text{`D1'}, 2, 255.36], \\ &[\text{`A2'}, 256.42], [\text{`D1'}, 1, 260.91], [\text{`D1'}, 3, 263.93]\} \end{split}
```

- ▶ The next event is service completion at Q_2 at time 250.28.
- ▶ There are jobs waiting at Q_2 to occupy the empty seat. We draw a sample of the service time S_2 , say 0.83, and update the scheduled time of event 'D2', 2 to 250.28 + 0.83 = 251.11.
- ► For the job leaving Q₂ we flip a coin (Bernoulli random variable) to decide a feed back; suppose the outcome is to loop back for entering Q₁ again.
- ▶ The looped job finds all servers busy at Q_1 , and thus joins the queue.

Next situation:

$$\begin{split} t_{\text{sim}} &= 250.28 \\ &\pmb{x} = \{x_1 = 5, x_2 = 7, a_1 = (240.82, 250.28), a_2 = (240.61, 241.01, 244.55, 246.91, 248.88), \\ & b_1 = (1, 1, 1), b_2 = (1, 1)\} \\ L_{\text{ev}} &= \{[\text{`D2'}, 2, 251.11], [\text{`D2'}, 1, 251.43], [\text{`A1'}, 254.38], [\text{`D1'}, 2, 255.36], \\ & [\text{`A2'}, 256.42], [\text{`D1'}, 1, 260.91], [\text{`D1'}, 3, 263.93]\} \end{split}$$

- ▶ This detailed walk through a system simulation is called a *trace*.
- In a trace a print is made of all the (important) simulation components after each event.
- It serves two objectives.
 - (i). In developing a simulation program it helps you to think about the events that may happen in the system, the activities they trigger and their logic.
 - (ii). After having written a computer program of the simulation, it provides a check whether the program is correct.

Simulation run

- A trace covers usually a short time interval or a small number of events.
- The actual execution of the computer program of the simulation is longer but should end at some time or after some number of events: stopping criterion.
- One such a simulation is called a simulation run which corresponds to the concept of sample path of a stochastic process.
- Later we will see that in most simulations studies you will simulate (many) more simulation runs in order to obtain more reliable estimates.

- A simulation run of the system goes from event to event at discrete time epochs determined by realisations of the appropriate random variables.
- When you write a computer program of the simulation it is convenient to modularise your program into several subprograms or routines to clarify the logic and the interactions.
- ▶ Roughly a simulation run looks in pseudo-code as follows.

```
initialise;
REPEAT
    [e,t] = next_event_type_and_time;
    switch (e)
        case 'arrival': ...
        case 'departure': ...
        case '. . .': ...
UNTIL stopping_criterion;
```

In the subroutines for the different events you program code for updating state, event list, and statistical counters. Similar as what you would do in the trace. For instance:

```
subroutine execute_arrival_at_Q1_event(t)
begin
    update_all_relevant_counter_variables();
    j = find_free_server();
    if (server(j) == 'idle')
        server(j) = 'busy';
        s = generate_servicetime();
        add_to_eventlist('D1', j, t+s);
    else
        add_customer_to_queue(j,t);
    end
    a = generate_interarrivaltime();
    add_to_eventlist('A1',t+a);
end
```

Flowchart

Visualization of the various steps in the simulation is done via flowcharts.

It helps to understand the process.

For large models you break up in several charts.

25 / 36

Arrival Q₁ Event

Service Completion Q₁ Event

Finite-Horizon

Simulation

Procedure

- A run starts at time 0, at a specific specified state;
- A run ends at some stopping criterion, e.g.
 - (i). A time horizon T;
 - (ii). A number of events N_e ;
 - (iii). A number of arrivals N_a ;
 - (iv). Etc.
- Execute n runs, independent and (probabilistically) identical.
- In each run we keep track of certain variables (counter variables) that at the end of the run determine its outcomes or outputs.
- ▶ The performance measures are estimated by averaging these *n* outcomes.
- The counter variables are initialised at the start of a simulation run, and because nothing changes in between two consecutive events, it suffices to update them after an event occurs.

Example

- ightharpoonup Consider Q_1 in the tandem network.
- Suppose the goal is to estimate the performance measure "mean average waiting time per customer from 08:00-18:00".
- ▶ This means:
 - -> let K be the (random) number of customers that has been served during these ten hours at Q₁;
 - \rightarrow let W_1, \ldots, W_K be their corresponding (random) waiting times;
 - -> define the output $Y = (1/K) \sum_{j=1}^{K} W_j$;
 - \rightarrow then we wish to compute $\mathbb{E}[Y]$.

Example (cont'd)

- During a run in the simulation program you keep track of two variables:
 - 1. n_{serv1} = the current total number customers who went into service at Q_1 ;
 - 2. $w_{\text{total }1}$ = the current total waiting time of these $n_{\text{serv }1}$ customers.
- \triangleright Whenever a new customer enters service at Q_1 , these two variables are updated.
- At the end of the run you have a realisation $y = w_{\text{total1}}/n_{\text{serv1}}$ of the output Y.
- Repeat n times and do your statistics.
- For such finite-horizon simulation the statistics is similar as for static stochastic simulation (see the lecture on the Monte Carlo simulation).

Estimating the Average Queue Length

- How to compute (or estimate) the mean length at Q1 during the interval 08:00-18:00?
- Let Q(t) be the queue length at time t, $0 \le t \le T$, where t = 0 represents 08:00 and T represents 18:00; measured in some time-units;
- ▶ Goal: $\mathbb{E}[Y]$ for output $Y = \frac{1}{T} \int_0^T Q(t) dt$;
- ▶ Interpretation of the integral: area below graph of the function Q(t).

Let $0 = T_0 < T_1 < T_2 < \cdots < T_R < T \le T_{R+1}$ be the consecutive event times.

$$Y = \frac{1}{T} \sum_{r=1}^{R} (T_r - T_{r-1}) Q(T_{r-1}) + \frac{1}{T} (T - T_R) Q(T_R)$$

Note: number of events R is random.

Example and Program Code

See the file simnotes.pdf