Connexité dans des graphes.

Jérémy Rouot

e-mail: jeremy.rouot@yncrea.fr

bureau 332

Un graphe G=(X,E) est dit *connexe* s'il possède la propriété suivante :

 $\forall x,y \in X, x=y \text{ ou } \exists \text{ une chaîne entre } x \text{ et } y.$

Pour un graphe quelconque la relation binaire $\mathcal{R} \subset \mathcal{X} \times \mathcal{X}$ définie par :

 $x \mathcal{R} y \Leftrightarrow x=y \text{ ou } \exists \text{ une chaîne entre } x \text{ et } y$

est une relation d'équivalence. Le sous-graphe de G, engendré par une classe d'équivalence de cette relation s'appelle *composante connexe* du graphe *G*. En d'autres mots, un graphe est connexe s'il ne possède qu'une seule composante connexe.

THÉORÈME (Bolker, Crapo 1977) : La grille avec $m \times n$ carrés est rigide si et seulement si le graphe associé est connexe.

La notion du *cocycle* permet d'étudier la connexité:

Soit S un sous-ensemble de sommets du graphe G(X;E).

On appelle *cocycle associé* à S, l'ensemble $\omega_G(S)$ des arêtes de E ayant exactement une extrémité dans S.

Un sous-ensemble U d'arêtes est appelé *cocycle* du graphe, s'il existe une partie S de sommets telle que $U=\omega_G(S)$. Sur la figure le cocycle associé à $\{1, 2, 3\}$ est $\{14, 34, 35, 25\}$. C'est aussi le cocycle associé à $\{4, 5, 6\}$.

Théorème :

Un graphe G=(X,E) est connexe si et seulement si, pour tout sous-ensemble de sommets S tel que $\emptyset \neq S \neq X$ on a : $\omega_G(S) \neq \emptyset$.

Théorème:

Un graphe G=(X,E) est connexe si et seulement si, pour tout sous-ensemble de sommets S tel que $\emptyset \neq S \neq X$ on $a: \omega_G(S) \neq \emptyset$.

Preuve:

- ⇒ Soit S un sous-ensemble de sommets S tel que $\emptyset \neq S \neq X$; soient $x \in S$ et $y \in X \setminus S$. puisque G est connexe il existe une chaîne $\mathbf{\Gamma} = (x, e_1, x_1, e_2, ..., x_{k-1}, e_k, y)$. Soit p le plus grand indice tel que $x_p \in S$. On a: $p \leq k-1$ et $x_{p+1} \in X \setminus S$ donc $e_p = \{x_p, x_{p+1}\} \in \omega_G(S)$.
- \Leftarrow Supposons que G=(X;E) n'est pas connexe. Considérons $G_1=(X_1;E)$ une composante connexe de G. L'ensemble $X\setminus X_1$ n'est pas vide et il n'y a aucune arête entre un sommet de X_1 et un sommet de $X\setminus X_1$ ce qui veut dire que $\omega_G(X_1)=\emptyset$.

On appelle arbre un graphe connexe et sans cycle.

Un graphe sans cycle est une forêt.

Théorème:

Soit G=(X,E) un graphe d'ordre $|X|=n \ge 2$. Les propriétés suivantes sont équivalentes:

- (1) G est connexe et sans cycles;
- (2) G est sans cycles et admet n-1 arêtes;
- (3) G est connexe et admet n-1 arêtes;
- (4) *G* est connexe-minimal (si on supprime une arête quelconque, il n'est plus connexe);
- (5) *G* est sans boucle et tout couple de sommets est relié par une chaîne unique.

Un graphe G=(X,E) est connexe si et seulement si il contient un graphe partiel A=(X;T) qui est un arbre.

Un tel arbre est dit *couvrant* (car il couvre tous les sommets du graphe) ou *arbre du graphe G*.

Son complémentaire par rapport à G, c'est-à-dire le graphe $K=(X,E\setminus T)$, est appelé *co-arbre associé* à A.

Plus généralement, on appelle co-arbre de *G* tout graphe partiel de *G* dont le complémentaire est un arbre couvrant de *G*.

un arbre couvrant

co-arbre associé

L'arbre de poids minimum d'un graphe connexe.

Soit G=(X;E) un graphe **connexe** d'ordre n et $p: E \rightarrow R$ une fonction qui associe à toute arête de G un poids réel. Pour chaque arbre A=(X;T) du G on définit son poids

$$p(A) = \sum p(e)$$
.

On veut déterminer un arbre couvrant de G de poids minimum.

(Le problème de maximisation peut être résolu par le remplacement de la fonction p par -p.)

$$p(\Sigma)=19$$

$$p(X)=14$$

Arbre de poids minimum.

Algorithme de Kruskal:

1° Trier E pour obtenir la liste $(e_1, e_2, ..., e_m)$ telle que :

$$p(e_i) \le p(e_{i+1})$$
 pour $i=1, 2, ..., m-1$.

2° Construire la séquence: $T_1 = \emptyset$; $T_{i+1} = T_i \cup \{e_k\}$

où $k = min\{j; T_i + e_j \text{ est sans cycle}\}.$

 $A_n = (X; T_n)$ est un arbre de poids minimum.

$$p(e_1) \le p(e_2) \le ... \le p(e_{m-1}) \le p(e_m)$$
 $O(m)$?
NON!

O(mlgm)

Algorithme de Prim:

Construire la double séquence:

$$T_1 = \emptyset; S_1 = \{x_1\}$$

$$T_{i+1} = T_i \cup \{e_k\}; S_{i+1} = S_i \cup \{x_{i+1}\};$$

où $e = \{x, x_{i+1}\}$ est une arête de poids minimum du cocycle $\omega(S_i)$.

 $A_n = (S_n; T_n) = (X; T_n)$ est un arbre de poids minimum.

Algorithme de

Kruskal:

Prim:

O(mlgm)

 $O(n^2)$

Théorème 2:

La classe A des arbres est définie inductivement par le schéma suivant:

· base: le graphe à un sommet;

· règle: Si $T \in A$ alors $T + x \in A$.

Tout arbre, d'ordre au moins 2, possède au moins deux sommets pendants (des sommets de degré 1).

Théorème 5:

Soit G=(X,E) un graphe d'ordre $|X|=n \ge 2$. Les propriétés suivantes sont équivalentes:

- (1) G est connexe et sans cycles;
- (2) G est sans cycles et admet n-1 arêtes;
- (3) G est connexe et admet n-1 arêtes;

Théorème 6:

Les propriétés suivantes sont équivalentes:

- (1) G=(X,E) est connexe et sans cycles;
- (2) G est connexe-minimal (si on supprime une arête quelconque, il n'est plus connexe);
- (3) *G* est sans boucle et tout couple de sommets est relié par une chaîne unique.

Théorème 7:

Soit G=(X,E) un graphe connexe, alors:

(1) A=(X;T) est un arbre de $G \Leftrightarrow A$ est sans cycles et maximal pour cette propriété; en ajoutant une arête e de $E\setminus T$, on crée un cycle unique dans A+e;

(2) K=(X;F) est un co-arbre de $G \Leftrightarrow K$ ne contient pas de cocycles de G et maximal pour cette propriété; en ajoutant une arête e de $E\setminus F$, on crée un cocycle unique dans A+e;

(1) A=(X;T) est un arbre de $G \Leftrightarrow A$ est sans cycles et maximal pour cette propriété; en ajoutant une arête e de $E\setminus T$, on crée un cycle unique dans A+e;

(2) K=(X;F) est un co-arbre de $G \Leftrightarrow K$ ne contient pas de cocycles de G et maximal pour cette propriété; en ajoutant une arête e de $E\setminus F$, on crée un cocycle unique dans A+e;

Théorème 9:

Soit A=(X;T) un arbre du graphe connexe G=(X,E) et $K=(X;E\setminus T)$ le co-arbre associé à A et $p\colon E\to R$ une fonction qui associe à toute arête de G un poids réel.

Les propriétés suivantes sont équivalentes:

- (1) A=(X;T) est un arbre de poids minimum;
- (2) $\forall e \in E \setminus T$, $\forall f \in C_A(e)$ on a: $p(f) \leq p(e)$;
- (3) $\forall e \in T$, $\forall f \in \omega_{K}(e)$ on a: $p(f) \geq p(e)$.

(2) $\forall e \in E \setminus T$,

$$\forall f \in C_A(e)$$

on a: $p(f) \leq p(e)$;

Exercice 1:

Un réseau informatique est composé de sept stations de travail localisées en sept centres différents. Certains centres sont reliés entre eux par des lignes de communication. Les équipements étant vétustes, il a été décidé de procéder à leur remplacement par un matériel plus moderne. Ce remplacement peut être effectué selon les coûts donnés

par la matrice suivante :

	2		4			
1	2	С	С	С	С	С
2		7	9	C	С	6
3			2	C	3	6
4				C	5	C
5					8	C
6						C

La valeur c veut dire qu'il n'existe pas de ligne reliant directement les deux centres correspondants, mais on peut la construire pour un coût c = 10.

l'arbre couvrant de poids minimum = 27

	2		4			
1	2	С	С	С	С	С
		7	9	C	C	6
			2	C	3	6
4				C	5	5
					8	C
						C

$$+5 - 6 = -1$$

Algorithmes approximatifs pour le problème du voyageur de commerce : 1° Arbre de poids minimum

Algorithmes approximatifs pour le problème du voyageur de commerce : 2° Christofides

