1

CONTENTS

1	Stability			1
	1.1	Second order System		1

2 Routh Hurwitz Criterion

3 Compensators 1

4 Nyquist Plot

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 STABILITY

- 1.1 Second order System
 - 2 ROUTH HURWITZ CRITERION
 - 3 Compensators
 - 4 Nyouist Plot
- 4.1. Question-The open loop transfer function of a unity feedback system is given by

$$G(s) = \frac{\pi e^{-0.25s}}{s}$$

4.2. Find Re $\{G(j\omega)\}\$ and Im $\{G(j\omega)\}\$

Solution: substitute

$$S = j\omega \tag{4.2.1}$$

we get

$$G(j\omega) = \frac{\pi}{\omega}(-\sin 0.25\omega - j\cos 0.25\omega)$$
(4.2.2)

$$\operatorname{Re}\left\{G(j\omega)\right\} = \frac{\pi}{\omega}(-\sin 0.25\omega) \tag{4.2.3}$$

$$\operatorname{Im}\left\{G(j\omega)\right\} = \frac{\pi}{\omega}(-j\cos 0.25\omega) \qquad (4.2.4)$$

4.3. Sketch the Nyquist plot.

Solution: The Nyquist plot is a graph of Re $\{G(j\omega)\}$ vs Im $\{G(j\omega)\}$. The following python code generates the Nyquist plot in Fig. 4.3

Fig. 4.3

codes/ee18btech11007/nyquist.py

4.4. Find the point at which the Nyquist plot of G(s) passes through negative real axis

Solution:

1

$$G(s) = \frac{\pi e^{-0.25s}}{s} \tag{4.4.1}$$

Nyquist plot cuts the negative real Axis at ω = phase cross over frequency, at phase cross over frequency the phase of nyquist plot becomes $-\pi$ radians.

substitute

$$s = j\omega. \tag{4.4.2}$$

$$G(j\omega) = \frac{\pi}{\omega}(-\sin 0.25\omega - j\cos 0.25\omega)$$
(4.4.3)

$$\angle G(j\omega) = -\pi/2 - 0.25\omega.$$
 (4.4.4)

$$\angle G(j\omega)|_{\omega=\omega_{pc}} = -\pi \tag{4.4.5}$$

by solving for ω we get $\omega_{pc} = 2\pi$. magnitude at any point is

$$X = |G(j\omega)| = \frac{\pi}{\omega}.$$
 (4.4.6)

substituting $\omega = 2\pi$ in magnitude equation we get X=0.5.

so it intersects at (-0.5,0j)

we can verify with the following plot that it intersects at (-0.5,0j)

4.5. Use Nyquist stability criterion to determine if the system is stable?

Solution: Nyquist Stability Criterion - for the stability of a closed loop transfer function $G(s)/(1+G(s)^*H(s))$, the number of poles of $G(s)^*H(s)$ on right half of s-plane must equal the number of encirclement of nyquist contour of $G(s)^*H(s)$ about the critical point -1+0j

we must find

$$Z = P - N \tag{4.5.1}$$

Z=number of poles of closed loop transfer function in right half of s-plane.

P=number of poles of G(s)*H(s) in right half of s-plane

N=number of encirclement of nyquist contour of G(s)*H(s) about the critical point -1+0j, here H(S)=1.

from plot we get N=0,and we already know P=0 since our G(s) doesnt have any poles on right half of s-plane

$$Z = 0 - 0 = 0 \tag{4.5.2}$$

Z=0 implies the system is stable because we dont have any poles on right half of the s-plane therefore the system is stable.