

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA CR. 14/522

(NASA-CR-141522) AIRLOADS INVESTIGATION OF AN 0.030 SCALE MODEL OF THE SPACE SHUTTLE VEHICLE 140A/B LAUNCH CONFIGURATION (MODEL 47-OTS) IN THE ARC 9 BY 7 FOOT UNITARY PLAN WIND TUNNEL FOR MACH 1.55 AND 2.2 (IA14B).

N75-23647

Unclas G3/15 22982

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPÄCÉ CENTER HOUSTON, TEXAS DATA MANagement services

SPACE DIVISION CHRYSLER
CORPORATION

DMS-DR-2129 NASA CR-141,522 VOLUME 1 OF 2

AIRLOADS INVESTIGATION OF AN 0.030-SCALE MODEL

OF THE SPACE SHUTTLE VEHICLE

140A/B LAUNCH CONFIGURATION (MODEL 47-OTS)

IN THE ARC 9- BY 7-FOOT UNITARY PLAN WIND TUNNEL

FOR MACH 1.55 AND 2.2 (IA14B)

Ву

R. L. Gillins
Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

Ву

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

WIND TUNNEL SPECIFICS:

Test Number:

ARC 97-716

NASA Series Number:

IA14B 47-0TS

Model Number: Test Dates:

17 through 19 September 1973

FACILITY COORDINATOR:

Stuart L. Treon Mail Stop 227-5 Ames Research Center

Moffett Field, Calif. 94035

Phone: (415) 965-5850

PROJECT ENGINEERS:

V. Esparza, and

RI Space Division

Downey, Ca. 90241 PH: (213) 922-4898

Mail Code AC07

12214 Lakewood Blvd.

W. Embury

Ames Research Center

Moffett Field, Ca.

PH: (415) 965-6262

AERODYNAMIC ANALYSIS

ENGINEERS:

J. Brownson

Mail Stop 227-5

94035

I. M. Jaremenko, H. G. Webb RI Space Division

12214 Lakewood Blvd. Mail Stop AC07

Downey, Ca. 90241 Ph: (213) 922-2703

DATA MANAGEMENT SERVICES:

R. L. Gillins, E. Chee,

Prepared by:

Liaison--D. A. Sarver

Operations -- M. M. Mann, J. T. Daviet

Reviewed by:

D. E. Poucher, J. L. Glynn

Approved:

Concurrence:

N. D. Kemp, Manager Data Management Services

G. Swider, Manager flight Technology Branch

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

AIRLOADS INVESTIGATION OF AN O.030-SCALE MODEL

OF THE SPACE SHUTTLE VEHICLE

140A/B LAUNCH CONFIGURATION (MODEL 47-OTS)

IN THE ARC 9- BY 7-FOOT UNITARY PLAN WIND TUNNEL

FOR MACH 1.55 AND 2.2 (IA14B)

VOLUME 1

By R. L. Gillins, Rockwell International Space Division

ABSTRACT

This report presents results of tests conducted on an 0.030-scale launch configuration model of the Space Shuttle Vehicle 140A/B in the NASA/ARC 9- by 7-Foot Unitary Plan Wind Tunnel. Aerodynamic loads data were obtained at Mach numbers of 1.55 and 2.2.

Surface pressure distributions were obtained simultaneously with six-component stability and control force data on the complete launch configuration. The configuration consisted of the orbiter, an external tank, two solid rocket boosters, and associated intercomponent attach hardware. Angles of attack and sideslip from -8 degrees to +8 degrees were investigated. The tests, designated IA14B, were conducted from 17 September 1973 through 19 September 1973.

TABLE OF CONTENTS

		Page
ABSTRACT		iii
INDEX OF MO	DDEL FIGURES	3
INDEX OF DA	ATA FIGURES	4
INTRODUCTIO	ON CONTRACTOR OF THE CONTRACTO	9
NOMENCLATUR	RE	9
CONFIGURATI	ONS INVESTIGATED	14
INSTRUMENTA	TION DESCRIPTION	16
TEST FACILI	TTY DESCRIPTION	17
DATA REDUCT	TION	18
REFERENCES		21
TABLES		
I	TEST CONDITIONS	24
iI.	DATA SET/RUN NUMBER COLLATION SUMMARY	25
III.	MODEL DIMENSIONAL DATA	27
IV.	ORBITER FUSELAGE PRESSURE ORIFICE LOCATIONS	40
٧.	ORBITER WING PRESSURE ORIFICE LOCATIONS	41
VI.	ORBITER VERTICAL TAIL PRESSURE ORIFICE LOCATIONS	42
VII.	ORBITER BASE, BODYFLAP, AND OMS NOZZLE PRESSURE ORIFICE LOCATIONS	43
VIII.	EXTERNAL TANK PRESSURE ORIFICE LOCATIONS	44
IX.	LEFT SRM PRESSURE ORIFICE LOCATIONS	45
х.	ORBITER ATTACH POINT PRESSURE ORIFICE LOCATIONS	46

TABLE OF CONTENTS (Concluded)

		Page
IX	. EXTERNAL TANK ATTACH POINT PRESSURE ORIFICE LOCATIONS	47
FIGURES	• •	
MO	DEL	50
DA	TA .	68
APPENDI:	X	
TA	RIII ATEN FARCE NATA	

INDEX OF MODEL FIGURES

Figure	9	Title	Page
1.		Axis systems.	· - 9-
	a.	Stability and body axis systems	50
	b.	Orifice location nomenclature diagram	51
2.		Model sketches.	
	a.	Integrated Vehicle - 2 Balances, no attach structure	52
	b.	Integrated Vehicle - 2 Balances, with attach structure	53
	c.	Installation side view	54
	d.	Attach hardware, configuration AT11	55
	e.	External tank proturberances	56
	f.	SSV orbiter configuration 140A/B	57
	g.	Orbiter nomenclature	58
	h.	Canopy, Cg, and body, B_{26} , lines drawing VL70-000193 and VL70-000140 A/B	59
	i.	M7 - OMS pod	60
	j.	Body flap, F ₈ , lines drawing VL70-000140A/B	61
	k.	Wing, W ₁₁₆ , lines drawing no. VL70-000200	62
	1.	Elevon, E ₂₆ , lines drawing VL70-000200, VL70-000140A/B.	63
	m.	Vertical tail, V_8 , and rudder, R_5 , lines drawing VL70-000146A	64
	n.	Rudder, R ₅ , lines drawing no. VL70-000095	65
3.		Model photographs.	
	a.	Front view of model installed in tunnel	66
	b.	Rear view of model installed in tunnel	67

INDEX OF DATA FIGURES (FORCE)

FIGURE	TITLE	COMDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
4	LVAP (01 T12 S12 N25 AT11), MACH = 1.55 (TANK + SRM BALANCE)	ALPHA	Α	1-7
5	LVÁP (01 T12 S12 N25 AT11), MACH = 2.2 (TANK + SRM BÁLANCE)	ÁLPHA	A	8-14
6	LV (01 T12 S12 N25), MACH = 1.55 (TANK + SRM BALANCE)	ALPHA	A.	15-21
7	LV (01 T12 S12 N25), MACH = 2.2 (TANK + SRM BÁLANCE)	ALPHA	A	22-28
8	LVAP (01 T12 S12 N25 AT11), MACH = 1.55 (ORBITER BALANCE)	ALPHA	A	29-35
9	LVAP (01 T12 S12 N25 AT11), MACH = 2.2 (ORBITER BALANCE)	ALPHA	A	36-42
10	LV (01 T12 S12 N25), MACH = 1.55 (ORBITER BALANCE)	ALPHA	A	43-49
11	LV (01 T12 S12 N25), MACH = 2.2 (ORBITER BALANCE)	ALPHA	A_	50-56

PLOTTED COEFFICIENTS SCHEDULE:

A) CN, CLM, CA, CAF, CY, CYN, CBL versus BETA

INDEX OF DATA FIGURES (PRESSURE)

TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGES
LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES	PHI, ALPHAO, BETAO	A	1-48
LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES	PHÍ, ALPHÆT, BETAT	В	49-96
LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES	PHI, ALPHAT, BETAT	C	97-128
CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES	ALPHAO., BETAO, Y/BW	D	129-192
CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES	ALPHAO, BETAO, Z/BV	E	193-240
ORBITER BASE PRESSURES	TAP NO., ALPHAO	F	241-248
OMS NOZZLE PRESSURES	PHI, X/LNM, ALPHAO	F	249-264
SRM BOOSTER BASÉ PRESSURES	PHI, ALPHAT, X/LS	G	265-288
EXTERNAL TANK BASE PRESSURES	TAP NO., ALPHAT	G	289-304
ORBITER ATTACH POINTS PRESSURE	Y/BW, ALPHAO, X/LB	F ·	305-328
'EXTERNAL TANK ATTACH POINTS PRESSURES	PHI, ALPHAT, .X/LT	G	329-400
EXTERNAL TANK BASE RAKE PRESSURES	TAP NO., ALPHAT	G	401-406
PLOTTED COEFFICIENTS SCHEDULE:			
A) CP versus X/LB	E) CP-versus	X/CV	
B) CP versus X/LT	F) CP versus	BETÃO	
C) CP versus X/LS	G) Cr versus	BETAT	
D) CP versus X/CW			

INDEX OF DATA FIGURES (PRESSURE) - CONTINUED

The plotted pressure data, presented as a function of angle of sideslip, angle of attack, and geometric parameters, are representative of the tabulated data presented in Volume 2. A summary of the pressure data plotted is given below.

DATASET PLOTTED	COMPONENT	MACH	PHI SCHED.	BETA SCHED.	ALPHA SCHED.	GEOMETRIC PARAMETER SCHEDULES
RB3B12 RB3B13	ORB. FUSELAGE ORB. FUSELAGE	2.2 1.55	(A) (A)	(A) (A)	(A) (A)	
RB3T12 RB3T13	EXTERNAL TANK EXTERNAL TANK	2.2 1.55	(B) (B)	(A) (A)	(A) (A)	
RB3S12 RB3S13	SRM BOOSTER SRM BOOSTER	2.2 1.55	(c)	(A) (A)	(A) (A)	
RB3U12 RB3L12	UPPER WING SURF.	2.2	-	(A)	(A)	Y/BW (A)
RB3U13 RB3L13	UPPER WING SURF. LOWER WING SURF.	1.55	•	(Å)	(A)	Y/BW (A)
RB3V12 RB3R12	VERT. TAIL LT. SURF. VERT. TAIL RT. SURF.	2.2.	•	(A)	(A)	Z/BV (A)
RB3V13 RB3R13	VERT. TAIL LT. SURF. VERT. TAIL RT. SURF.	1.55	-	(A)	(Ä)	Z/BV (Å)
RB3C12 RB3C13	ORBITÉR BASE ORBITÉR BASE	2.2 1.55	(D) (D)	(A) (A)	(A) (A)	TAP NO. (A) TAP NO. (A).
RB3E12 RB3E13	OMS NOZZLE OMS NOZZLE	2.2 1.55	(E)	(A) . (A)	(A) (A)	X/LNM (A) X/LNM (A)
RB3X12 RB3X14	SRM BASE SRM BASE	2.2	(C)	(B) (B)	(B) (B)	X/LS (A) X/LS (A)
RB2Y12 RB3Y13	E. T. BASE E. T. BASE	2.2 1.55	(D)	(A) (A)	(A) (A)	TAP NO. (B) TAP NO. (B)
RB3112 RB3113	ORB. ATTACH POINTS ORB. ATTACH POINTS	2.2 1.55	-	(A) (A)	(A) (A)	SEE PLOTS

INDEX OF DATA FIGURES (PRESSURE) - CONCLUDED

DATASET PLOTTED	COMPONENT	MACH	PHI SCHED.	BETA SCHED.	ALPHA SCHED.	GEOMETRIC PARAMETER SCHEDULES
RB3212 RB3214	E. T. ATTACH POINTS E. T. ATTACH POINTS	2.2 2.2	SEE PLOTS	(B) (B)	(B) (B)	SEE PLOTS
RB3312 RB3314	E. T. BASE RAKE E. T. BASÉ RAKE	2.2 2.2	(F) (F)	(B)	(B)	TAP NO. (C) TAP NO. (C)

PARAMETER SCHEDULES

Αł	PHΔ
n	run

T (

, in , , , , , , , , , , , , , , , , , ,	
SCHEDULES	(A) -8, -4, 0, 8 (B) -8, -4, 0
BETA	(A) -8, -4, 0, 8 (B)8, -4, 0, 4, 8
PHI	(A) 0, 20, 40, 55, 70, 90, 120, 135, 150, 165, 180 (B) 0, 30, 60, 90, 120, 135, 150, 165, 180, 270 (C) 0, 45, 90, 135, 180, 225, 270, 315 (D) 0 (E) 135, 180, 225 (F) 180
Y/BW	(A) .299,364, .427, .534, .673, .780, .887
Z/BV	(A) .158, .316, .600, .840, .925
X/LNM	(A) .2, .4
X/LS	(A) .948, .979, .993
TAP NO.	

7

1, 2, 3, 4, 5 501, 502, 801, 802, 803, 804 790, 789, 788, 787

(A) (B) (C)

INTRODUCTION

The 0.030-Scale Aero Loads Space Shuttle model was tested in the ARC Unitary Plan Wind Tunnel as follows:

IA14A	4	thru	13	Sept.	1973
IA14B				Sept.	
OA22A				Sept.	
0A22B				Sent.	

The testing was conducted in the 11-foot and the 9- by 7-foot turnels of the ARC Unitary Plan Wind Tunnels. The IA14A/B tests were for the launc configurations at Mach numbers from 0.6 thru 2.2. The 0A22A/B tests were for the orbiter alone configurations at Mach numbers from 0.6 thru 2.2. The effects of control surface deflections were also investigated in tests 0A22A/B.

This report for test IA14B consists of two volumes. The first volume contains all force data and the plotted pressure data. The second volume contains the tabulated pressure data.

Volume No.	Contents	Page
1	IA14B force data	
	IA14B plotted pressure data	
2	IA14B tabulated pressure data	
	(a) Orbiter fuselage (B)	1-84
	(b) Orbiter base (C)	85-108
	(c) OMS nozzle (E)	109-136
	(d) Body flap (F)	137-160
	(e) OMS pod outside (M)	161-184
	(f) Lower wing surface (L)	185-288
		289-392
	(g) Upper wing surface (U)(h) Left vertical tail surface (V)	393-428
	(i) Right vertical tail surface (R)	429-464
	(j) SRM booster (S)	465-528
	(k) External tank (T)	529-596
	(1) SRM nożzie (X)	597-608
	(m) External tank base & SRM booster base (Y)	609-632
	(n) Orbiter attach points (1)	633-700
	(o) External tank attach points (2)	701-730
	(p) External tank base rake (3)	731-738

NOMENCLATURE General

SYMBOL	PLOT SYMBOL	DEFINITION
Ħ		speed of sound; m/sec, ft/sec
Cp	CP	pressure coefficient; (p ₁ - p _∞)/q
М	MACH	Mach number; V/a
p		pressure; N/m ² , psf
q	Q(NSM) Q(PSF)	dynamic pressure; 1/2,0V2, N/m2, psf
RN/L	RN/L	unit Reynolds number; per m, per ft
v		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yew, degrees
φ	PHI	angle of roll, degrees
P		mass density; kg/m ³ , slugs/ft ³
	Refe	rence & C.G. Definitions
Ab ,		base area; m ² , ft ²
b	eref	reference span; m, ft
c.g.		center of gravity
ē		reference length or wing mean serodynamic chord; m, ft
S	SREF	wing area or reference area; \mathbf{m}^2 , \mathbf{ft}^2
	MRP	moment reference point
	XMRP	moment reference point on X sxis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUBSCRIPTS b 1 3 t	1	base local static conditions total conditions free stream

NOMENCIATURE (Continued)

Body-Axis System

SYMBOL	PLOT SYMBOL	DEFINITION
c_N	CIN	normal-force coefficient; normal force
C _A	CA	exial-force coefficient; exial force qS
$c_{\underline{Y}}$	CX	side-force coefficient; side force qS
c_{A_b}	CAB	base-force coefficient; base force qS
		$-A_b(p_b - p_{\infty})/qS$
$^{\mathrm{C}_{\!A_{\mathbf{f}}}}$	CAF	forebody exial force coefficient, CA - CAb
C _m	CLM	pitching-moment coefficient; pitching moment qS/REF
c_n	CYN	yawing-moment coefficient; Yawing moment qSb
c.t	CBL	rolling-moment coefficient; rolling moment qSb
•		Stability-Axis System
$c_{\mathbf{L}}$	CL	lift coefficient; lift qS
$c_{\mathbf{D}}$	CD	drag coefficient; drag qS
c_{D_b}	CDB	base-drag coefficient; base drag
$\mathtt{c}_{\mathtt{D}_{\mathbf{f}}}$	CDF	forebody drag coefficient; CD - CDb
c _Y	CY	side-force coefficient; side force qS
C _m	CLM	pitching-moment coefficient; pitching moment qs/REF
c_n	CLN	yawing-moment coefficient; yawing moment qSb
£	CSL	rolling-moment coefficient; rolling moment qSb
r/d	r/d	lift-to-drag ratio; C _I /C _D

NOMENCLATURE (Continued) Additions to Standard List

1 1

Symbol	Plot <u>Symbol</u>	<u>Definition</u>
A()		model base area, subscript is base orifice number and identifies location
c_{A_b}	CAB	model base axial-force coefficient
c _P ()		model static pressure coefficient, subscript is orifice number, $[P_{(\)}-P_{\infty}]/q$
C _{AU}	CA	axial-force coefficient, unadjusted
C _{AF}	CAF	forebody axial-force coefficient, C _{AU} adjusted for base terms
ET		external tank
IV	× 21100 =	integrated vehicle, consists of orbiter, external tank, and two solid rocket motors
I REF	LREF	reference length, inches
MRC		moment reference center
OMS		orbital maneuvering system
δ _e	ELEVON	elevon, surface deflecton angle, positive deflection trailing edge down, degrees
δf	BDFLAP	orbiter body flap deflection angle, positive de- flection angle is trailing edge down, degrees
δ _R	RUDDER	rudder, surface deflection angle, positive deflection trailing edge to the left degrees
⁶ SB	SPDBRK	speed brake deflection angle, split rudder deflection angle, left split rudder trailing edge left and right split rudder trailing edge right, $\delta_{\rm SB} = (\delta_{\rm RL} + \delta_{\rm RR})/2$, positive deflection, degrees
¹ o	ORBINC	incidence angle between the orbiter and external tank, $i_0 = \alpha_0 - \alpha_T$, degrees
β _T	BETAT	angle of sideslip of external tank

NOMENCLATURE (Continued)

αŢ	ALPHAT	angle of attack of external tank
L _B	LB	length of orbiter body, in
ℓ _T	LT	length of external tank, in
<i>L</i> s	LS	length of SRM booster, in
L _{NM}	LNM	length of OMS nozzle, positive direction forward of exit plane, in
L _{NP}	LNP	length of MPS nozzle, positive direction forward of exit plane, in
b/2	BW	wing semi-span, in
b _v	B V .	vertical tail span, in
x	X	distance from component nose, in
У	Y	lateral distance from centerline, in
Z	Z	vertical distance measured from W.L. 500 (vertical tail reference root chord), in
c _w	CW	local wing chord, in
c^A	CA	local vertical tail chord, in
×/LB	X/LB	longitudinal position/orbiter body length
×/l†	X/LT	longitudinal position/external tank length
×/Ls	X/L	longitudinal position/booster length
×/L _{NM}	X/LNM	longitudinal position/OMS nozzle length
×/LNP	X/LNP	longitudinal position/MPS nozzle length
x/c _W	X/CW	local chordwise position/local wing chord length

NOMENCLATURE (Concluded)

1 1

x/c _v	X/CV	local chordwise position/local vertical tail chord length
n	Y/BW	local spanwise position/wing semi-span
$\eta_{\mathbf{V}}$	Z/BV	local spanwise position/vertical tail span
× _{CP} /L	XCP/L	center of pressure distance from MRC, expressed as a fraction of body length
β ₀	BETAO	angle of sideslip of orbiter
^α 0	ALPHA0	angle of attack of orbiter

CONFIGURATIONS INVESTIGATED

The 0.030-scale Aero Loads Model, 47-OTS, was configured after the Shuttle Vehicle MCR 0200 Baseline R1, as defined in drawing number VL72-000088B. The orbiter was a combination of the VL70-000140A orbiter and a VL70-000140B wing and midbody, from which the 140A/B designation was derived. The basic launch configuration, designated 0_1 T12 S12 N25, consisted of the orbiter, an external tank with simulated fuel and vent lines, and two solid rocket boosters.

Two launch configurations were tested. Both were mounted on a dual balance and sting arrangement illustrated in figure 2c. One was the basic configuration mounted on a dual balance and sting arrangement illustrated in figure 2a. The second configuration contained simulated attach hardware designated AT_{||}, which was attached to the orbiter but not to the external tank, illustrated in figures 2b and 2d. The SRB-to-ET attach hardware was simulated at the forward attach location but not at the aft attach location. Model and component general arrangements are shown in figures 2d through 2n.

Component	Description
01	140A/B orbiter, less the main propulsion system nozzles
T12	324-inch diameter external tank with ogive mose and external fuel and vent lines
\$12	143.3-inch diameter solid rocket boosters
N ₂₅	Nozzles for S12 bcosters
AT11	Orbiter-to-ET attach hardware, fixed to orbiter only

LV

1

01 T12 S12 N25

LVAP

01 T12 S12 N25 AT11

The orbiter, 0_1 , consisted of the following compoents:

B₂₆ C₉ F₈ M₇ N₂₈ V₈ R₅ W₁₁₆ E₂₆.

B₂₆ Double delta wing fuselage, 140A/B

Canopy, 140A

F₈ Body flap, 140A

M₇ OMS pods, 140A

N₂₈ OMS nozzles, 140A

Vertical tail, 140A

R₅ Rudder, 140A

W116 Double delta wing, 140B

E₂₆ Elevons, 1408

Parametric investigations were limited to angles of attack and sideslip with all orbiter control surfaces at 0° deflection.

INSTRUMENTATION DESCRIPTION

The left side of the orbiter and the external tank, and the left hand SRB were extensively instrumented with pressure orifices for measurement of surface static pressure distributions. Additionally, there were clusters of orifices around inter-component attach structure locations on the right hand side of the orbiter and external tank. The orbiter contained 471 operational orifices, of which 83 were clustered around attach structure. The external tank contained 270 operational orifices, of which 127 were clustered around attach structure. The SRB contained 124 operational orifices. A two-tube total pressure rake was installed in the opening between the orbiter and external tank. Tables and sketches defining orifice locations are included in this report. All model pressures were measured by model mounted Scanivalve, Inc., S-type scanivalve modules - twelve in the orbiter, seven in the external tank, and five in the SRB.

Force instrumentation consisted of a six-component internal force balance in both the orbiter and external tank for the LV and LVAP configurations.

TEST FACILITY DESCRIPTION

1

The tests were conducted in the Ames 9- by 7-Foot Supersonic Wind Tunnel. This tunnel is a variable density, continuous flow type with an adjustable nozzle to permit supersonic testing over a Mach number range continuously variable from 1.5 to 2.5. The nozzle is of the asymmetric, sliding-block type in which the variation of the test section Mach number is achieved by translating, in the streamwise direction, the fixed-contour block that forms the floor of the nozzle.

DATA REDUCTION

Data were reduced to coefficient form about body axes using the following reference constants:

 $S_{REF} = 2.421 \text{ ft}^2$ reference area for force and moment coefficients $\ell_{\rm REF} = 38.709 \text{ in}$ reference length for moment coefficients $A_1 = 0.07670 \text{ ft}^2$ Orbiter sting cavity $A_2 = 0.21340 \text{ ft}^2$ Orbiter heat shield base ... $A_3 = 0.08560 \text{ ft}^2$ Orbiter OMS base (2) A_A = (see table below)Orbiter speed brake base $A_{501} = 0.07266 \text{ ft}^2$ Tank sting cavity $A_{502} = 0.44264 \text{ ft}^2$ Tank base . $A_{801} = 0.19600 \text{ ft}^2$ SRM nozzle base (2) $A_{802} = 0.16590 \text{ ft}^2$ SRM skirt base (2) 14.92 24,92 0.03866 0.05370 34.92 54.92 0.08252 84.92 0.12083 $X_{MRP} = 0$ in $Y_{MRP} = 0$

 $Z_{MRP} = 9.999 in$

The incidence angle between the orbiter and the external tank is equal to zero for angle of attack and ngle of sideslip. Therefore, the angle of attack, ALPHA, used in the force plots is equal to ALPHAO. Also the angle of sideslip, BETA, used in the force plots is equal to BETAO.

The force and moment data recorded by the orbiter and external tank balances for configurations LV and LVAP are identified as RB3ØXX and RB3IXX datasets, respectively.

The pressure data were recorded for each component. The fourth character in each dataset identifier (i.e., RB3BXX, B for fuselage) represents the individual component. The following list indicates the symbol for each component.

SYMBOL	COMPONENT
В	Orbiter fuselage
C	Orbiter base
E	OMS nozzlė .
F	Body flap
M	OMS pod outside
L	Lower wing surface
Ù	Upper wing surface
R	Right vertical tail surface
٧	Left vertical tail surface
S	SRM booster
T	External tank

1

SYMBOL	COMPONENT
X	SRM nozzle
Y	External tank base & SRM booster base
1	Orbiter attach points
2	External tank attach points
3	External tank base rake

REFERENCES

- 1. Orbiter Lines and Configuration Control Drawings
- 2. VL70-000140A, Orbiter Configuration Control Drawing MCR 0200 Baseline
- VL70-000143A, Lines Control, Vehicle 4 Forward Body Cabin -Canopy MCR 0200 Baseline
- 4. VL70-000200, Lines Control, Midbody Wing Boot Fairing MCR 200 R3 dated 7-2-73
- 5. VL70-000145, Lines Control Afr. Body OMS/RCS Pods, MCR_0200 Rl Baseline
- 6. VL70-000146Å, Lines Control (Vehicle 4) Vertical Tail MCR 0200 Baseline
- 7. External Oxygen Hydrogen Tank (EOHT) Lines and Configuration Control Drawings
- 8. VL78-000041B, External Tank Configuration Control MCR 0200 Baseline R2
- 9. VL78-000024A, Structural Assy External Tank MCR 0200 R2
- 10. VL78-000031A, Thermal Protection External Tank, MCR 0200 Baseline
- 11. Solid Rocket Boosters (SRB) Lines and Configuration Control Drawings
- 12. VL77-000036A, SRB Configuration Control MCR 0200 R1
- 13. VL77-000041, SRB Booster Assy, MCR 0200 R1
- 14. Integrated Vehicle Lines and Configuration Control Drawings
- 15. VL72-000088Á, Shuttle Configuration MCR 0200 Baseline Rl
- 16. VL72-000089, SRM-ET-Orbiter Intra ... Jisconnects MCR 0200 Baseline
- 17. VL72-000075, External Tank to SRB Attach Interface MCR 0074 Baseline
- 18. Aero Loads Model 47-OTS Model Fabrication, Assembly and Installation Drawings

- 19. SS-A00119, Orbiter Assy .030 Scale Pressure/Loads Model (140A/B Lines)
- 20. SS-A00120, Assy & Details EOHT .030 Scale Pressure/Loads Model (140A Lines)
- 21. SS-A00121, Orbiter/EOHT Attachments .030 Scale Pressure/Loads Model (140A Lines)
- 22. SS-A00122, Assy & Details SRM .030 Scale Pressure/Loads Model (140A Lines)
- 23. SS-A0D123, Assy & Details Forebody .030 Scale Pressure/Loads Model (140A Lines)
- 24. SS-A00124, Assy & Details Aft Fuselage .030 Scale Pressure/ Loads Model (140A Lines)
- 25. SS-A00125, Assy & Details Wing Splice Plate & Cuff .030 Scale Pressure/Loads Model (140A Lines)
- 26. SS-A00126, Assy & Details Vertical Stabilizer .030 Scale Pressure/Loads Model (140A Lines)
- 27. SS-A00127, Ames 11-ft x 11-ft Wind Tunnel Installation .030 Scale Pressure/Loads Model (140A/B Lines)
- 28. SS-A00128, Ames 9-ft x 7-ft Wind Tunnel Installation .030 Scale Pressure/Loads Model (140A/B Lines)
- 29. SS-A00130, Lines Control Profile VL70-000140A .030 Scale Pressure/Loads Model (140A/B Lines)
- 30. W-1104S, Sting Ames MK II 4" Balance (Male End), Ames MK XX 2.5" Balance
- 31. W-1105S, Sting Ames MK II 4" Balance (Male End), RI MK I 2.75" Balance
- 32. W-1106A, Adapter Ames MK II, 4" Balance (Male & Female)
- 33. W-1107A, 13.5° Bent Sting Adapter Ames MK II.4" Balance (Male &Female)

.

- 34. (DMS-DR-2084), "Airloads Investigation of an 0.030-Scale Model of the Space Shuttle Vehicle 140A/B Launch Configuration (Model 47-OTS) in the ARC 11-foot Unitary Plan Wind Tunnel for Mach Range 0.6 to 1.4 (IA14A)"
- 35. (DMS-DR-2130), "Airloads Investigation of an 0.030-Scale Model of the Space Shuttle Vehicle 140A/B Orbiter Configuration (Model 47-0) in the ARC 11-foot Unitary Plan Wind Tunnel for Mach 0.6 and 0.9 (0A22A)"
- (DMS-DR-2131), "Airloads Investigation of an 0.030-Scale Model of the Space Shuttle Vehicle 140A/B Orbiter Configuration (Model 47-0) in the ARC 9- by 7-foot Unitary Plan Wind Tunnel for Mach 1.55 and 2.2 (OA22B)"

-19-73	DATE : 9-19			ST : 1A-14B
	•	PITIONS	TEST CON	
	STAGNATION TEM , (degrees Fahrer	DYNAMIC PRESSURE (pounds/sq. ft)	REYNOLDS NUMBER (per unit length)	MACH NUMBER
0	120	430	2.0 x 10 ⁶	1.55
0	120	580	2.75 x 10 ⁶	2.2
	•			
				·
				
	(ET)	B.), 2.75-in MK 1	2.5-in MK XX (0	BALANCE UTILIZED:
	COEFFICIENT TOLERANCE:	ACCURACY: MK XX MKI	CAPACITY: MK XX MKI	branic villab.
		0.2% 0.2%	6000 7500 3000 3750	NF
		0.2% 0.2%	600 700	SF AF
				PM
حادیث		0.2% 0.2%	4500 4000	RM
			**	YM
				COMMENTS:
				COMMENTS:

							TABLE	LE II										
FST: IAM B	B (FCP3E)			DAT/	SE1	/RUN	Ñ.	ABER	COL	DATA SET/RUN NUMBER COLLATION SUMMARY	N SUMI	MARY		DATE	61 :	Cept:	1975	
DATA SET		SC	SCHD.	PARA	METE	PARAMETERS/VALUES	LUES	Š.		ALFHA		I OR AL	TERNA	TE INDE	PENDE	I OR ALTERNATE INDEPENDENT VARIABLE	BLE)	
DENTIFIER	CONFIGURATION	8	8	٤	Se	SR	858	RUNS	8-	4	0	7	8				$\frac{1}{1}$	1
RB3I 11 OL	Ø1+T12+512+N25+ATII	=	8	1.55	0	0	0		205	206	207	308	209					
12	+AT/	=		2.5		-			200	201	202	203	204			·		
:3				1.55					त्रात्र	213	214	215	216					
# 7	- >	_	→	2.2	- >	→	>		217		219	62.7	221					
RB3011 OF	Ø1+T12+512 +N25+ATI	_	8	1.55	0	0	0		205	305	207	208	209					76
12	LTA+	_		7.7					200		202.	203	204					ST
13				1.55					212		418	215	216					NUF
크	->		->	2.4	→	→	→		217	_		250	1221					NUN
		_									_							BEF
																		S
	•	<u> </u>																
7	13 19		"	52		Ē		۳		43	\$		\$\$		5	ı		75 76
41.21.0.1	A C.A E.A.	L.	3	걸	#	ट्रे	1	3	4	4	4	4	4	4	ALPHA	1	BETAL	4
9 00	(8 B) :	σ,	4-	40	8		EFFI	COEFFICENTS							IDVA	IDVAR (1)	IDVAR (2)	202
٦,					 				1 1									

TARLE II - CONCLUDED

r	T	T							TE	ST F	RUŅ	NUN	ABE	75								75 76	NO N	
	1973	in J					1																IDVAR (2)	
	- 1	ARIABL	Н	_		-	-	-	-					_		-			-	-	4	5	1 3	
	Sept.	OR ALTERNATE INDEPENDENT VARIABLE				4	-					<u> </u>									4		S. T. W.	
	: 19	EPENC	Ц										_			_			_		_	-5		
	DATE	TE IND										-	-										B.C.E.FLIM.R	
		TERNA	00	309	204	216	22															\$	4 3	
	ARY	OR AL	4	308	203	215	220																	×
	SUMM	5		207	202	211	219		202	219												\$	F F	(2)=
CONCEOULD	DATA SET/RUN NUMBER COLLATION SUMMARY	0110	H-	206	201	213	218		707	-	-											13	COMP (4)	COMP
	יסרר/		18-	205	200	717	_		200	217			†	+	\dagger			-					1 1	٥
- 11	BER (₩ 0.	OF RUNS			. 9			1.0		T	\dagger	†	\dagger			 	<u> </u>				37	ENTS	
IABLE II	NON 7			0			÷		0	-7													COEFFICENTS	
	T/RUI		\S	0			→		0	→												31	4	
	ra se		ما	10	7	3	7		0	-		-	+-	-	-	-	-	-	-				4,8	
	ΨQ		{ }	=	.8		7	_	B		+	<u> </u>	-	$\frac{1}{1}$	+	+	-	+				25	-4,0	
			S B				Ĺ				Ŀ		1	丰		#							-8,-	
	RE)		z	S+ATII	+ATII				TATI		`				1							2	4	
	(PRESSURE)		CONFIGURATION	\$1+712+512+A45+ATI					## 124519+ N2 54ATI														8 8)	
	(PRE		NFIGU	12+51		<u> </u>	 		615161		*											13	3	' '
•	IAIH B		ប	#14T					0.1+T															LES
	: IA		A SET	(E)	-23	67	7-1		3 (2) 5	=	T													SCHEDULES
	TEST		DATA SET	RR 3(1)			+		RR 2	1	*											<u> </u>	1	v)

TABLE III . - MODEL DIMENSIONAL DATA

MODEL	COMPONENT:	ATTACH	STRUCTURE	-	AT11
-------	------------	--------	-----------	---	------

11-

MODEL COMPONENT: ATTACH STRUCTURE - AT11	
GENERAL DESCRIPTION: Attach structure, sa	me as AT10 except the forward
attach struts are rotated to the vertical.	and the structure extends
from the orbiter but is not attached to th	ne tank.
MODEL SCALE: 0.030	
dimensions:	FULL SCALE MODEL SCALE
FORWARD ATTACH Orbiter to Tank Location - In.	
X _o	382.000 11.460
$\mathbf{x_{p}}$	1133.000 33.990
Clearance, tank to strut - In	
DRAG LINK ATTACH Orbiter to Tank	•
Clearance, tank to strut - In	0.250
AFT ATTACH	
Orbiter to Tank Clearance, Tank to strut - In	. <u>8.333</u> <u>0.250</u>
Crossover Rod Clearance, tank to strut - In	0.250

MODEL COMPONENT: BODY - B26		
GENERAL DESCRIPTION: Orbiter Fusciage Config	guration 140 A/B	
NOTE: B26 identical to B24 except underside	of fuscinge refa	ired to
accept W ₁₁₆ .		
Model Scale = .030		
DRAWING NUMBER: VL70-000193 VL70-000140A		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length (Body Fwd Sta X _o = 238) - in.	1293.3	38.799
Max. Width (at $X_0 = 1520$) - in.	262.0	7.860
Max. Depth (at $X_0 = 1464$) - in.	250.0	7.500
Fineness Ratio	0.26357	0.26357
Area - ft ²		
Max. Cross-Sectional	340.88462	0.30679
Planform		
Wetted		
Base	•	

() =

MODEL COMPONENT: CANOPY - Cg	:
•	į.
GENERAL DESCRIPTION: Configuration	3A
Model Scale = :030	
DRAWING NUMBER VI70-0001	
DIMENSION:	FULL SCALE MODEL SCA
Length (X ₀ =434.643 to 670)	235:357 7.06071
Max Width (3 X ₀ =513.127)	152.412 4.57236
Max Depth (3 X ₀ =465.0)	25.000 0.75000
Fineness Ratio	
Area	•
Max Cross-Sectional	
Planform	
Wetted	
Base	•

MODEL COMPONENT: ELEVON - E26	•	
GENERAL DESCRIPTION: Configuration 4 NOTE: VL70-000400 data for (1) of (2) si	des. Identical 1	to E ₂₅ except
airfoil thickness	•	
Kodel Scale = .030		
DRAWING NUMBER: VL70-000 200 VL70-000140 B		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area	223.5814	0.20122
Span (equivalent)	368.34	11:05020
Inb'd equivalent chord	119.623	3.58869
Outb'd equivalent chord	55.1922	1.65577
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.2096	0.2096
At Outb'd equiv. chord	0.4004	0.4004
Sweep Back Angles, degrees	. • ·	
Leading Edge	0.00	. 0.00
Tailing Edge		-10.056
. Hingeline	0.00	0.00
Area Moment (Normal to hinge line)	851.1502	0.76604

(])

MODEL COMPONENT: Body Flap - Fg			
GENERAL DESCRIPTION: Configuration 4			
Model Scale030 DRAWING NUMBER VL70-0001	40B, VL70-000 200		
DIMENSION:	FULL SCALE MODEL SCALE		
Length in. Max Width in. Max Depth in. Fineness Ratio Area - ft ²	262.308 7.86924 23.000 0.60000		
Max Cross-Sectional Planform Wetted	158.85350 0.14297		
Base	41.89642 0.03771		

ORIGINAL PAGE S

MODEL COMPONENT: OMS POD - M7		
GENERAL DESCRIPTION: Configuration 3A	· · · · · · · · · · · · · · · · · · ·	
Model Scale = .030		
DRAWING NUMBER VL70-000140A VL70-000145		
DIMENSION:	FULL SCALE	MODEL SCAPE
Length (0.45 Fwd Sta X ₀ =1233.0) - IN.	327.000	9.810
Max Width (@ Xo=1450.0) - In.	94.5	2.8350
Max Depth (@ X ₀ =1493.0) - IN.	109.000	3.270
Fineness Ratio		
Area		
Max Cross-Sectional		· · · · · · · · · · · · · · · · · · ·
Planform		
Wetted		
Base		•

SENERAL DESCRIPTION: Configuration 3A B	SRM Mozzle	25			
	- T- (1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1				
Model Scale = .030				10. · · · · · · · · · · · · · · · · · · ·	
VL72-00008A VL77-000036A		•			
DIMENS IONS		FULL-SCALE	: N	KÖDEL S	SCALE
MAGH NO.	•		•		
DIAMETER DEX ~ IN (One Nozzle)		141.3		4.239	0
DIAMETER DT ~ IN			-		
DIAMETER DIN ~ IN	··· .				
on ~ Dégreés	• .				
AREA - FT ² (One Nozzle)	•		•	•	
MAX CROSS-SECTIONAL		108.89595	-	0.098	0 1
SIMBAL ORIGIN	Xo		Yo		Zo
LEFT NOZZLE ~ IN. F.S.	1825.	3	-243		.400
RIGHT NOZZLE - IN. FS	1825.	3	+243		400

DDEL COMPONENT: NOZZLES - N28					
ENERAL DESCRIPTION: Configuration	3A OMS Nozzlo				
	·				•
Model Scale = .030					
rawing No. V170-000140A	-	•			
imens ions		FUIL-SC	ALR	MODEL S	CALJ.
MACH NO.	·				
DIAMETER DEX ~ IN (One nozzle)	•				
DIAMETER DT ~ IN					- المراجع المر
DIAMETER DIN ~ IN				<u> </u>	
on ~ Degrees					-
AREA - Ft ² (one nozzle)		-	•	•	
MAX CROSS-SECTIONAL					
GIMBAL ORIGIN	X ₀		Y		Z _O
IEFT NOZZLE ~ IN.	1518.0)	-68.0		492.0
RIGHT NOZZLE ~ IN.	1518.0)	+88.0		492.0
NULL POSITION		PITCH		YAW	
LEFT KOLZLE (Mull Pitch 15°4	9'; YEW 12°17	+ 8°		_	CITE CO
RIGHT NOZZLE (Mull Pitch 15%	OUTB'D) .9 <u>!</u> : Yaw 12°17 OUTB'D)	<u>+8°</u>			C'BT'D G'RMI

TABLE III. - Continued.

1-71	MODEL COMPONENT: RUDDER - R5		
•	GENERAL DESCRIPTION: 2A, 3 and 3A Configurat	ion për Rockwel	l Lines
•	Model Scale = .030		
•	DRAWING NUMBER: VL70-000095		
•	DIMENSIONS:	FULL-SCALE	MODEL SCALE
	. Area - FT ²	106.38	0.09574
	Span (equivalent) - IN.	201.0	6.0300
	Inb'd equivalent chord	<u>91.585</u>	2.74755
	Outb'd equivalent chord	50.833	1.52499
^)	Ratio movable surface chord/ total surface chord		
	At Inb'd equiv. chord	0.400	0.400
	At Outb'd equiv. chord	0.400	0.400
	Sweep Back Angles, degrees	•	•
	Leading Edge	34.83	34.83
	Tailing Edge	26.25	26.25
	Hingeline	34.83	34.83
•	Area Moment (Normal to hinge line)- FT3	526.13	0.01420

Product of Area and Mean Chord

MODEL COMPONENT: BOOSTER SOLID ROCKET	MOTOR - S ₁₂	,
GENERAL DESCRIPTION: Configuration 3A, per Rockwell Lines VI.77-000036A	Data for (1) of (2	2) sides,
.Model Scale = .030		
DRAWING NUMBER VL77-000038	_	
DIMENSION:	FULL SCALE	MODEL SCALE
Length (Includes Nozzle) - IN.	1741.0	52.2300
Max Width (Tank Dia) - IN.	142.3	4.2690 .
Max Depth (Aft Shroud) - IN.	192.0	5.7600
Fineness Ratio	9.06771	9.06771
Area - FT ²		
Max Cross-Sectional	201.06193	0.18096
Planform .		
Wetted		•
Base		•
WP of BSRM Centerline (ZT) - IN.	400	12.000
FS of BSRM Nose (XT) - IN.	200	6.000

TABLE III. - Continued.

MODEL COMPONENT: EXTERNAL TANK - T12		
GENERAL DESCRIPTION: External Oxygen Hydr	ogen Tank	•
NOTE: Identical to Tll with external fuel	lines added	
Model Scale = 030		
DRAWING NUMBER VL78-00031A VL78-000041A	· ·	
DIMENSION:	FULL SCALE	MODEL SCALE
Length - IN. (Nose @ XT = 309)	1865	55.95
Max Width (Dia) - IN.	324	9.72
Max Depth .		
Fineness Ratio	5.75617	5.75617
Area - FT ²		
Max Cross-Sectional	572.555	.5153
Planform •		
Wetted		
Base		:
WP of Tank Centerline (X_T) - IN.	400.0	

MODEL COMPONENT: WING - W116	cluded.	
GENERAL DESCRIPTICI: Configuration 4		
NOTE: Identical to W ₁₁₄ except airfoil thickness	. Dihedral angl	e is along
trailing edge of wing.		
Model Scale = .030		
TEST NO.	DWG. NO. VL70	-000140B -000 20 C
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area (Theo.) Ft2 Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees(at Xo=1506.623,Yo= Incidence Angle, degrees 105, Zo= 282.75) Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge Trailing Edge O.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC	2690.00 936.6816 2.265 1.177 0.200 3.500 0.500 +3.000 45.00 -10.056 35.209 689.2429 137.8486 474.8117 1126.721	2,4210 28,10045 2,265 1,177 0,200 3,500 0,500 +3,000 45,00 -10,056 35,209 20,67729 4,13546 14,24435 33,80163
W.P. of .25 MAC B.L. of .25 MAC	291.00 187.33491	8.73000 5.62005
Area (ineo) Ft Span. (Theo) In. BP108 Aspect Ratio Taper Ratio	1812.2205 736.6816 2.058 0.2451	1.63010 22.10045 2.058 0.2451
Chords Root BP108 Tip 1.00 b	570.6230 137.8512	17.11869 4.12554
MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	354.2376 1164.237 292.00 239.67786	10.62713 34.92711 8.76000 7.19034
XXXX-64 Root b = 0.425	0.113	0.113
Tip b = 1.00	0.12	0.12
Data for (1) of (2) Sides Leading Edge Cuff Planform Area Ft Leading Edge Intersects Fus M. L. 0 Sta Leading Edge Intersects Wing 0 Sta	118.333 505.0 1003.5	0.10650 15.15000 30.10500
10 30		

TABLE IV. - ORBITER FUSELAGE PRESSURE ORIFICE LOCATIONS

FULL MODEL MOVIE MOVIE	ORBI	ORBITER Xo	IN.						8	RADIAL LOCATION	100	ATIO	N N		DEGREES	ES						
235 7.05 0 6 7 8 15 16 17 18 15 16 17 17 18 25 25 26 25 26 21 22 23 24 25 26 25 26 27 28 34 44 </th <th>FULL</th> <th>MODEL</th> <th>Xo/10</th> <th>0</th> <th>20</th> <th>64</th> <th>55</th> <th>70</th> <th>96</th> <th>S</th> <th>12</th> <th>120</th> <th>35</th> <th>40</th> <th>50</th> <th>51</th> <th>56</th> <th>62</th> <th></th> <th>69</th> <th>1</th> <th>180</th>	FULL	MODEL	Xo/10	0	20	64	55	70	96	S	12	120	35	40	50	51	56	62		69	1	180
245 7.55 .008 7 11 12 13 14 15 16 17 26 <td< td=""><td>235</td><td>7.05</td><td>0</td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>	235	7.05	0	9																	-	
265 7.95 .023 10 11 12 13 14 15 16 17 26 17 295 8.85 .047 19 20 21 22 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 28 37 44	245	•	800.	7					œ													ກຸ
295 8.85 .047 19 20 21 22 23 24 25 26 26 27 28 29 33 33 34 41 42 43 43 43 43 44 43 43 43 44 43 44 43 44 43 44 44 43 44 <t< td=""><td>265</td><td>•</td><td>.023</td><td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td><td></td><td></td><td>16</td><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td>18</td></t<>	265	•	.023	10	11	12	13	14	15			16			17							18
325 9.75 .070 28 29 30 31 32 33 34 43 44 43 44 55 53 44 44 45 58 31 32 33 40 41 42 43 44 43 44 43 44 43 44 43 50 51 52 53 44 44 58 45 53 46 53 44 44 55 465 51 52 53 66 67 57 54 65 66 67 57 54 55 50 51 52 53 66 67 57 54 58 50 <	295	•	.047	19	20	21	22	23	24			25			56							27
380 111.40 .112 37 38 39 40 41 42 43 44 48 49 50 51 52 53 44 44 55 51 52 53 54 58 58 58 44 48 49 50 51 52 53 66 67 57 58 58 59 60 61 62 63 64 65 67 75 76 77 72 73 74 74 75 74 74 75 74 74 88 89	325	•	.070	28	29	30	31	32	33			34			35							36
410 13.20 .159 47 48 49 50 51 52 53 66 67 57 58 58 58 58 69 69 77 78 78 78 78 78 88 89 <	380	•	.112	37	38	39	40	41	42			43			44						,	45
450 13.30 .167 47 48 49 50 51 52 53 66 67 57 58 68 465 13.95 .178 .26 61 62 63 64 65 66 67 57 58 68 68 79 68 68 79 88 89 90 91 75 75 76 76 75 76 76 76 75 76 77 76 77 77	440	.4	.159																	1	46	į
465 13.95 .178 60 61 62 63 64 65 67 75 <	450		.167	47	48	49	20	51	52			53				1	54	(55		95
500 15.00 .205 59 60 61 62 63 64 65 66 67 500 16.80 .252 70 71 72 73 74 75 625 18.75 .301 78 86 81 82 83 725 21.75 .379 86 87 88 89 90 91 725 21.75 .379 86 87 96 97 98 99 880 .29.40 .576 102 103 106 107 108 109 109 1180 .32.40 .576 104 105 106 107 108 109 109 1180 .32.40 .781 119 120 121 122 123 124 125 126 126 1300 .82.5 .781 .19 120 131 131 132 134 144 1	465	Q.	.178													57		28	,			,
560 16.80 .252 70 71 72 73 74 75 625 18.75 .301 78 79 80 81 82 83 725 21.75 .379 86 87 88 89 90 91 820 25.40 .499 94 95 96 97 98 99 980 29.40 .576 102 103 106 107 108 109 11 1080 32.40 .576 102 113 114 115 114 115 114 115 117 117 117 118 130 131 132 133 134 135 136 136 140 141 142 143 144 145 144 145 144 145 144 145 148 149 150 151 162 163 160 160 160 160 160 16	500	•	. 205	29	09	61	62	63	64			65		99	67				89			3 1
625 18.75 .301 78 79 80 81 82 83 725 21.75 .379 86 87 88 89 90 91 830 26.40 .499 94 95 96 97 98 99 91 980 26.40 .499 94 95 96 97 98 99 91 1080 25.40 .499 94 103 103 104 105 106 107 108 109 11 1180 32.40 .736 112 113 114 115 117 117 117 1180 35.05 .781 119 120 121 124 125 126 11 1300 .825 129 130 131 144 145 14 145 14 145 14 145 14 145 14 145 14 145 14	260	•	·	20		71		72	73			74			73				9/			7.7
725 21.75 .379 86 87 88 89 90 91 830 26.40 .499 94 95 96 97 98 99 91 980 26.40 .499 94 95 96 97 98 99 91 980 29.40 .576 102 103 106 107 108 109 109 11 1080 32.40 .576 104 105 106 107 116 117 117 117 118 114 115 117 117 117 118 118 119 120 131 132 133 134 135 136 136 143 145 <th< td=""><td>625</td><td>•</td><td></td><td>78</td><td></td><td>79</td><td></td><td>80</td><td>81</td><td></td><td></td><td>82</td><td></td><td></td><td>833</td><td></td><td></td><td></td><td>84</td><td></td><td></td><td>82</td></th<>	625	•		78		79		80	81			82			833				84			82
820 26.40 .499 94 95 96 97 98 99 1 980 29.40 .576 102 103 103 106 107 108 109 1 1080 32.40 .653 104 105 106 107 116 117 117 118 118 117 118 118 159 150 153 154 117 118 118 120 118 119 119 119 119 119 119 119 119 119	725	•		86		87		88	83			00			6							56
980 29.40 .576 102 103 106 107 108 109 11 1080 32.40 .653 104 105 106 107 116 117 117 117 1180 35.40 .730 112 113 114 115 116 117 117 1245 37.35 .781 119 120 121 122 123 124 125 126 126 127 124 125 126 127 128 129 129 126 126 126 <td< td=""><td>880</td><td>•</td><td>499</td><td>94</td><td></td><td>95</td><td></td><td>96</td><td>97</td><td></td><td></td><td>86</td><td></td><td></td><td>66</td><td></td><td></td><td></td><td></td><td></td><td></td><td>101</td></td<>	880	•	499	94		95		96	97			86			66							101
1080 32.40 .653 104 105 106 107 108 109 11 1180 35.40 .730 112 113 114 115 116 117 112 1245 37.35 .781 119 120 121 122 123 124 125 126 126 1345 39.00 .825 129 130 131 132 133 134 135 145 <t< td=""><td>085</td><td>•</td><td>.576</td><td>102</td><td></td><td>103</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>	085	•	.576	102		103																•
1180 35.40 .730 112 113 114 115 116 117 12 1245 37.35 .781 119 120 121 122 123 124 125 126 12 1300 39.00 .82.5 129 130 131 132 133 136 136 136 136 143 144 145 155 155 155 155 155 155 155 155 155 155 165 165 165 165 165	1080	32.40	.653	104		105		C	107			108			109			-7-	110			┥,
1245 37.35 .781 119 120 121 122 123 124 125 126 12 1300 39.00 .825 129 130 131 132 133 134 136 14 1375 41.25 .882 138 139 140 141 142 143 144 145 144 1430 .923 147 148 149 150 151 152 153 154 154 154 1480 44.40 .963 156 157 158 159 150 161 162 163 15 1530 45.90 1.002 170 170 170 172 168 161 163 16 163 16 163 164 163 164 163 164 164 164 164 164 164 164 164 164 164 164 164 164 164 <td< td=""><td>1180</td><td>•</td><td>.730</td><td>112</td><td></td><td>113</td><td></td><td>-</td><td>115</td><td></td><td></td><td>116</td><td></td><td></td><td>117</td><td></td><td></td><td></td><td>(</td><td></td><td></td><td>×11</td></td<>	1180	•	.730	112		113		-	115			116			117				(×11
1375 39.00 .825 129 130 131 132 133 136 140 141 142 143 144 145 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146	1245	٠	.781	119		120		2	122	~		124	N		126				~			7 (
1375 41.25 .88: 138 139 140 141 142 143 144 145 145 1430 42.90 .923 147 148 149 150 151 152 153 154 115 1530 44.40 .963 156 157 158 '59 150 161 162 163 16 1530 45.90 1.002 170 170 170 172 168 171 172 1590 47.70 1.048 171 174 174 174 174 174	1300	•	.823	129		130		3	132	3		134	M)		136				•			7
1430 42.90 .923 147 148 149 150 151 152 153 154 15 1480 44.40 .963 156 157 158 '59 150 161 162 163 16 1530 45.90 1.002 170 170 170 170 172 168 171 1590 47.70 1.048 173 174 174 174 174	11375	•	.88.	138		139		4	141	4		143	4		145				4 (
1480 44.40 .963 156 157 158 '59 150 161 162 163 16 1530 45.90 1.002 170 167 168 167 168 1555 46.65 1.021 169 170 172 1590 47.70 1.048 171 174 1590 47.70 1.048 173 174	1430	•	.923	147		148		4	150	S		152	S		154				S)		***	
1530 45.90 1.002 1530 45.90 1.002 1555 46.65 1.021 169 1590 47.70 1.048 171 1590 47.70 1.048 173 1590 47.70 1.048 173	1480	•	<u>.</u>	156		157		S	159	~		161	9		163				9			
1530 45.90 1.002 1555 46.65 1.021 169 170 1590 47.70 1.048 171 172 1590 47.70 1.048 173 174	13.	Š	<u> </u>								9	166										
1555 46.65 1.021 169 1 1590 47.70 1.048 171 1 1590 47.70 1.048 173 1	=======================================	'n	<u> </u>								9	168										
1590 47.70 1.048 171 1 1590 47.70 1.048 173 1	1555	6.6	<u> </u>	169		170																
1590 47.70 1.048 173 1	15	7.7	<u>-:</u>			172																
	15	7.7				174													1	1		

£0 = 1293.3 full scale 38.799 model £0 =

b: OMS pod, outside a: OMS pod, inside

Body flap lower surface ິວ

Body flap upper surface ë;

data in datasets RB3BXX

TABLE V. - ORBITER WING PRESSURE ORIFICE LOCATIONS

		Tä	=	28	Τ		T		T		Т		T		1	
		100	<u> </u>		+		য়ি	- P	+		+		 		┢	
	1	8			T		Ī		2	8	T		18	ř		
		287 865 an and			T	······	22	7.7			E	7			Г	
		8	ä	2	†		T		267	23	1		+		à	315
		3	187 188	193	T		T		٦		†		T		-	
		1			T		ā	233	T		1		1			
		18			1		T		2	25.8	270	280	2	287	Т	
		2	3	8	T	,,,	T		T		T		Ť			_
		774.808		-	1		2	22	Г				\vdash		<u> </u>	
į		F			T		1		22	ž	592	279	┢		-	
		\$			Τ		a	23.	Ť		Ť	.,,	1		_	
		35											2	ž	g	214
		.725							ž	ž		_			<u> </u>	
		6,	185	195							2 92	278			_	
1		89	-		1		 		Т		۲		48	2	_	
į		9 09.		_	-		-		┝		-		8	8	Ş	313
		.568	-		-		 -	8	┝		┝	•	┝	-		-
		. 55			-		 	28	243	233	267	277	\vdash			
1		160		105	-		-		-	<u>N</u>	-	7	 	-		-
		.400 .402 .497		_¥	-		212	228	-		┢	_	-	\dashv		_
		8					144	-~	242	254	8	•	-		•	7
		.390			2082	220	-		-		ř-	276	-	-	ğ	F12
		362	281	26	ľ	-,,,			┪		İΤ		-			
			-				922	228			Г	_		_	_	
	9	250					Ï	.,,	707	253	592	275	286	294	303	313
	5	346			-3	502	_		-	- 7	-	7	-	~	<u> </u>	-
١	* LOCAL WING CHORD	S . 17 . 229 . 246 . 250 274	182	192	۳	- '	-		┝		┝		-	-		
İ	5	17	-	=	-		22	222			┝	-	-			
	x/c~				\vdash	208	宀		_		<u> </u>			-		٦
	*	1.01			 	-7-	\vdash		240	282	797	274	285	293	302	뎙
			181	161	T		一		-		-		-		-7	ᆌ
		085.094	~		702	202	214	220	_		-	-				┨
		120			Ë		"		-							٦
		30					\vdash		82.30	231	\vdash					7
		8	081	190			_		238	250	263	27.3	782	262	150	1
1	ļ	12		-	102	508	213	225	~	~	٢	~~	-71	~	₩.	٦
	Ì	23					¿212	226	23/	249	252	27.2	283	.ã	ğ	308
		٦		179		3		7		3	170				1	
				ר ב ר			_	1.5		, 1	_	14			a	H
ł	_	ľ									_	_				
ļ	3.			ic . 200		<u> </u>		. 627		χ. Σ	-					
	CABITER B.P.A.	NETTER.		4.20		S. 10		9.0		<u> </u>	Ŀ				:	
	8	FIRE	:	97		2		200	;	3	:	9	;	2		}

data in datasets RB3UXX (upper) and RB3LXX (lower)

Ü

ORIGINAL PAGE IS OF POOR QUALTY.

TABLE VI. - ORBITER VERTICAL TAIL PRESSURE ORIFICE LOCATIONS

VERTI(VERTICAL WL ~Z						x/c _v					
FULL	MODEL	Λίτ		0	.025	.05	.15	.30	.52	.685	277.	.90
			至			324	325	326	327	328	329	
550	16.50	.158	H	316	317	318	319	320	321	322	323	
			KH.			339	340	341	342	343	344	345
009	18.00	.316	出五	330	331	332	333	334	335	336	337	338
			Æ			355	356	357	358	359	360	361
069	20.70	. 600	巴巴	346	347	348	349	350	351	352	353	354
			Æ			371	372	373	374	375	376	377
765	22.95	.840	出出	362	363	364	365	366	367	368	369	370
			₹.	1		387	388	389	390	391	392	393
792	23.76	. 925	3 5	378	379	380	381	382	383	384	385	386

data in datasets RB3VXX (left side) and RB3RXX (right side)

TABLE VII. - ORBITER BASE, BODYFLAP, AND OMS NOZZLE PRESSURE ORIFICE LOCATIONS

ORBITER BASE

ORIFICE NUMBER
1
2
3

data in datasets RB3CXX

RUDDER FLARE BASE

BODY FLAP

RUDDER	W ~Zo	x/c _v
FULL	MODEL	.75
725	18.75	4
625	21.75	5

data in datasets RB3CXX

ORBIT	rer ~ x _o	Ø∿De	g
FULL	MODEL	0	40
1555	46.65	169	170
1590	47.70	173	174
1590	47.70	171	wer 172

data in datasets RB3FXX

LEFT OMS NOZZLE SURFACE

	N. FWD. LE EXIT		Ø ∿ DEG.	
FULL	MODEL	135	180	225
10	. 30	175	176	177
20	.60		178	

data in datasets RB3EXX

TABLE VIII. - EXTERNAL TANK PRESSURE ORIFICE LOCATIONS

TANK	TANK STATION	~ XT					Ø∿ DEG					
FULL	MODEL	77	0	30	09	90	120	135	150	165	180	270
309	9.27	0	503								Č	t
324	9.72	800.	504			202					200	20
400	12.00	.049	208	209	510	511	\$12		513	,	514	
520	15.60	.113	515	516	517	518	\$19		520	521	522	
640	19.20	.178	523	524	525	526	527		528	529	530	
670	20.10	.194	531	532	533	534	535		536	537	538	
210	21.30	.215	539	540	541	542	543		544	545	546	
760	22.80	. 242	547	548	549	\$50	551	552	553	554	555	
000		290	556	557	558	559	260		561	295	563	264
050	28.50	344	565	566	567		568	269	570	571	572	
1050		.394	573	574	575	576	577		578	579	280	
1150	34.50	.451	581	582	583	584	585	586	587	588	589	
1250	37.50	505	290	591	592	593	594		595	296	297	
1350	40.50	.558	298	599	009	109	602	603	604	605	909	
1500	45.00	.638	607	809	609	610	611		612	613	614	
1700	51.00	.746	615	919	517	618	619	620	621	622	623	
1900	57.00	.853	624	625	979	627	628	629	630	631	632	
2040	61.20	.928	633	634	635		636	637	638	639	640	
TANK	BASE										5	
STING	STING CAVITY		201								205	

T = 1865 IN. FULL SCALE 55.950 IN. NODEL SCALE

data in datasets RB3TXX

TABLE IX. LEFT SRM PRESSURE ORIFICE LOCATIONS

	!						-	_				_								7	_	_	
	315		813	821	828	836	844	850						876	884	892	900				806	916	924
	270		812	820		835	843	849	854			864	868	875	883	891	899				907	915	923
DEG.	225		811	819	\$27	834	842	848						874	882	890	868	804		-	906	914	922
<i>8</i>	180		810	818	826	833	841	847	853	857	860	863	857	873	881	889	897				905	913	921
	135		808	817	825	832	840							872	880	888	896	803		PRESSURES	904	912	920
	06		808	816	824	831	839	846	852	856	859	862	866	871	879	887	895			١.	903	911	919
	45		807	815	823	830	838							870	878	886	894			NOZZLE EXTERNAI	905	910	918
	0	805	806	814	822	829	837	845	851	855	858	861	865	698	877	885	893	802	801	NOZ	106	903	917
×s	X S	0	.034	860.	.115	.144	. 201	.287	.373	.488	.603	.718	.833	.890	.917	.939	.958				816.	626.	. 993
SRM STATION ~ Xs	MODEL SCALE	6.00	7.80	11.10	12.00	13.50	16.50	21.00	25.50	31.50	37.50	43.50	49.50	52.50	53.88	55.05	56.04	BASE	BASE		55.50	57.15	57.84
SRM ST.	FULL		260																		1850		

 $t_S = 1741$ IN. FULL SCALE 52.23 IN. MODEL SCALE

data in datasets RB3SXX

TABLE X. ORBITER ATTACH POINT PRESSURE ORIFICE LOCATIONS

1332	1.26	.858	180	4.9	478	177	176	173			-				
22 13	0t 96	. 850	474	473	472 4	471 4	470 4	469		-	1				-
1322	5 39.		4	4	7	7	4	+			_				
1312	39.3	.835	468	467	166	465	464		463	462	461		160	459	458
1302	39.06	.827		457	456	455	454		453	152	451		450	449	448
1292	38.76	.819	447	446	445	4:14	443		442	441	440		439	138	437
1282	38.46	.811	436	435	434	433	432		431	430	429	428	427	426	425
1272	38.16 38.46 38.76 39.06 39.36 39.96 40.26	.804								424	423	422	421	4.20	
1262	37.86	.796									419	418	417		
1252	37.56	.788										416			
107	12.21	.133	412	415	414	413									
397	11.91	.126		411	410	409									
387	11.61	.118		107	406	405									
377	11.31	.110		403	402	401									
367	11.01			399	398						ŀ				
357		.095	397	396	395										
347	10.41 10.71	.087	394												
11:	DEL		NODEL	S.	£0	06	o,	5.0		7.39	-		3.29	5.59	3.89
FULL	X MODEL	νονς ο νου ο νου o νου o v o v o v o v o v o v o v o v o v o v	F.S.	9 2	20		5 5	2	149 69 75	170 79.75	89 75	65	731109.75	756 119.75	277 129.73 3.89
		-	٤	100			180	155	140	1 2	1.92	213		256	277

data in datasets RB31XX

!

TABLE XI. - EXTERNAL TANK ATTACH POINT PRESSURE ORIFICE LOCATIONS

XT Full Scale	1103	1093	1083	1073	1063	1053	1043	
X _T Model Scale	33.09	32.79	32.49	32.19	31.89	31.59	31.29	
X _T /l _T	.424	.419	.413	.408	.402	-397	.391	
								ø deg.
FWD	684	676	668	660				182.84
ATTACH	685	677	669	661				186.38
POINT (ORBITER	686	678	670	662	655			189.92
TO E-T)	687	679	671	663	656	652		193.46
ſ	688	680			657	653	651	197.0
	6 89 ·	681	673	665	658	654		200.54
	690	682	674	666	659			204.08
	691	683	675	667				207.62

data in datasets RB32XX

TABLE XI. - EXTERNAL TANK ATTACH POINT PRESSURE ORIFICE LOCATION - Continued-

	X _T FULL SCALE	1874	1864	1854	1844	1834	1824	1814	
	X _T MODEL SCALE	56.22	55.92	55.62	55.32	55.02	54.72	54.42	
	x _T /l _T	.839	.834	.828	.823	.818	.812	.807	
									Ø ∿ DEG.
		719	713	707					222.84
FWD		720	714	708	701				226.38
DRAG LINK ATTACH		721	715	709	702	696			229.92
POINT		722		710	703	697	693		233.46
					704	698	694	692	237.00
						699	695		240.54
		723	718	712	706	700			244.08

data in datasets RB32XX

TABLE XI. - EXTERNAL TANK ATTACH POINT PRESSURE ORIFICE LOCATION - Concluded.

	X _T FULL .ALE	2078	2068	2058	2048	2038	2028	2018	
	X _T MODEL SCALE	62.34	62.04	61.74	61.44	61.14	60.84	60.54	
	x _T /L _T	.948	. 943	.938	.932	.927	.921	.916	
									Ø ∿ DEG.
1		777	766	734					234.04
- [778	767	755	742				237.58
)		779	768	756	743	732			241.12
AFT UPPER		780	769		744	733	726		244.66
ATTACH		781	770		745	734	727	724	248.2
					746	7.35	728		251.74
1			771	759	747	736			255.28
		782	772	760					323.51
1		783	773	761	748				327.05
AFT		784	774	762	749	737			330.59
LOWER ATTACH		785.	775		750	738	729		334.13
··· · · · ·		786	776 -		751	739	730	725	337.67
- {					752	740	731		341.21
\				765	753	741			344.75

data in datasets RB32XX

a. Stability and body axis systems.

Figure 1. - Axis systems.

b. Orifice location nomenclature diagram

Figure 1. - Concluded

a. Integrated Vehicle - 2 balances, no attach structure

Figure 2. - Model sketches.

1.1

The state of the second of the

DUAL BALANCE CONFIGURATION - LY & LYAP

c. Installation side viewFigure 2. - Continued.

3 }

d. ATTACH HARDWARE CONFIGURATION - ATII

Figure 2. - Continued.

f. SSV orbiter configuration 140A/B Figure 2. - Continued

Figure 2. - Continued

€.}

h. Canopy, Cg, and body, B26, lines drawing VL70-000193 and VL70-000140A/B Figure 2. - Continued

i. M_7 - OMS pod Figure 2. - Continued

1:

∮ ⇒

ŧ.,

j. Body flap, F_8 , lines drawing VL70-000140A/B Figure 2. - Continued

k. Wing. W₁₁₆, lines drawing no. VL70-003200 Figure 2. - Continued

Figure 2. - Continued

()

Å.

1. Elevon, E_{26} , lines drawing VL70-000200, VL70-000140 A/B Figure 2. - Continued

n. Vertical tail, V_8 , and rudder, R_5 , lines drawing 0.00146A Figure 2. - Continued

1, 2

n. Rudder, R₅, lines drawing no. VL70-000095 Figure 2. - Concluded

a. Front view of model installed in tunnelFigure 3. - Continueα.

ORIGINAL PAGE IS OF POOR QUALITY

b. Rear view of model installed in tunnelFigure 3. - Concluded.

NORMAL FORCE COEFFICIENT, CN

PAG

SIDE FORCE COEFFICIENT, CY

REFERENCE INFORMATION
2-4210 50-FT.
38-7050 IN.
7050 IN.
IN. 8 LVAP (01 T12 S12 N25 AT11) . MACH = 1.55 (TANK + SRM BALANCE) SCALE SCALE AMES 97-716 IA14B 01+712+S12N25+AT11 (TANK+SRM) (183111) SIDESLIP ANGLE, BETA, DEGREES 88 PARMETRIC VALLES
1.550 ELEVON
.000 SPOBRA PACH PLODER -.035 :.... .035Fm .025E .005 -.005 .030 .0301 -010--.020年 -.025<u>E</u> -.010.--.015∯ -020- .015£ F16. 4 **€**0□◊4⊿ (SIXY ADDB) CBF ROLLING MOMENT COEFFICIENT.

: 1

FOREBODY AXIAL FORCE COEFFICIENT.

1:

PAGE (TANK + SRM BALANCE) LVAP (01 T12 S12 N25 AT11) , MACH = 2.2 FIG. 5

AMES 97-716 IA14B 01+T12+S12N25+AT11 (TANK+SRM) (IB3112)

PARAFETRIC VALLES
2.201 ELEVEN
.000 SPIBBR

PACH PLODER

-07F

.06 m

·05

(BODA VXIZ) AVAING MOMENT COEFFICIENT, CYN

-.01∰

-.03<u>F</u>

-.02€

-.04年

-.054

FIG. 5

. . . .

.02年

•03#EO•

PITCHING MOMENT COEFFICIENT, CLM

F16. 6

16

AXIAL FORCE COEFFICIENT, CA

如果是不够有的人 可在心态的是是我们才会是是他们的人的表现是是他们们的是这个人的人的

PAGE

AVAING MOMENT COEFFICIENT, CYN

(SIXY ADD8)

PITCHING MOMENT COEFFICIENT.

6

(BODA VXIZ)

AVAING WOWENT COEFFICIENT, CYN

1:

NOWHYF EDECE COEFFICIENT, CN

PAGE

1 "

AXIAL FORCE COEFFICIENT, CA

REFERENCE INFORMATION
24.210 SO.FT.
38.7020 IN.
39.7020 IN.
9.9900 IN. SCALE SCALE (1B3011) AMES 97-716 IA148 01+T12+S12N25+AT11 (ORBITER) 88 PARVETRIC VALLES 1.550 ELEVÓN .000 SPOBRK 120 .108 **1960**. .104長 .102年 1001. 当… .106点 .118 .112 116 114 **©**0□◊4△ FOREBODY AXIAL FORCE COEFFICIENT,

LVAP (01 T12 S12 N25 AT11) , MACH = 1.55 (C:BITER BALANCE) SIDESLIP ANGLE, BETA, DEGREES F16.8

1960.

.094

32

SIDE FORCE COEFFICIENT, CY

O

ROLLING MOMENT COEFFICIENT, CBL (80DY AXIS)

C

LVAP (01 T12 S12 N25 AT11) , MACH = 2.2 (BRBITER BALANCE)

FIG. 9

NORMAL FORCE COEFFICIENT, CN

37

FOREBOOY AXIAL FORCE COEFFICIENT.

33

4

(BODA VXIZ) AVAING MOMENT COEFFICIENT, CYN

PAGE 4

()

一大多年 人名英格兰 医多种性 医多种性 医多种性 医多种性 医多种性

AXIAL FORCE COEFFICIENT, CA

(i)

SIDE FORCE COEFFICIENT, CY

O

FIG. 10 LV (01 T12 S12 N25) . MACH = 1.55 (ORBITER DALANCE)

, J

ROLLING MOMENT COEFFICIENT, CBL (BODY AXIS)

PITCHING MOMENT COEFFICIENT, CLM

FOREBOOK AXIAL FORCE COEFFICIENT. CAF

1: 7 . . .

SIDE FORCE COEFFICIENT.

PAGE 54

AVAING HOWENT COEFFICIENT, CYN (BODY AXIS)

Ü

DATA FIGURES - PRESSURE

Note: Correspondence between parameter values and plot grids (multiple grids per page) - first parameter value is presented on left hand grid.

PAGE BLANK NOT TIME

()

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

d)

á8 PARAMETRIC VALLES
2.200 ELEVON
.000 SPUBPK 4 φ ARC97-716 IA14 01+T12+S12N25+A711 0RB. FUSELAGE (RB3B12) A CODER -3.5mmm..... 3.5 -1.0 2.0品 1.0 -2.0長 -3.0 3°C 2.5 -1-S -2.5 *4 *8 1 X/LB Cb m,m,mr,m, 180 ALP-46 -7.980 -4.070 3.5 15858 86868 8686 3.0HŅ **2.**品 2.5 子。-1-子:2 -2.8 出。6-֭֭֭֭֭֭֭֭֭֭֭֭֭֭֭֭֭֭֭֭֡֜֝ -2.5 **€**0□◊4 dЭ

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

ág PARAMETRIC VALLES
2,200 ELEVON
.000 SPUBPK ARC97-716 IA14 01+112+S12N25+AT11 0RB, FUSELAGE (RB3B12) A.O. -3.0 mm 3.0 2.0 -2.0년 2.5 -2.5 CP ALPHAG -7.980 8ETAG - .050 7.880 £ 838 8888 -3.05 2.5 ₩, 2.品 -1.0 **€**0□◊4 dD

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSUES

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

PARAVETRIC VALLES
2,200 ELEVON
,000 SPUBPR ARC97-716 1A14 01+712+S12N25+AT1: 0R8. FUSELAGE (R83B12) 4305 4305 ALPHAG -7.980 57.3 08.-08.0 £ 35 8 8 8 8 8 8 8 8 8 8

ÉO□◆

ŔŔ

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

PARMETRIC VALLES
2,200 ELEVON
,000 SPEBPK AAC97-716 IA14 01+712+S12N25+A711 0RB. FUSE_AGE (RB3B12) 2005 2005 2005 LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES -3.55mm 一3.0品 2.品 品。1-3.0 2.5 -1.5 -2.0 -2.5 Cb ավագադադակարալադապարալացույադարալացու ALP-40 95.146 -7.5.70 -3...0 -3.5 mm -3.0 8888 8888 2.0 3.5 2.5 ייןייי 当。---2.5 -2.品 3.0 -1.5 **€**0⊞04 43

â8

ARC97-716 IA14 Q1+T12+S12N25+AT11 GRB. FUSELAGE (RB3B12)

dD

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

BY CE

Ää

2.200 ELEVON .000 SPEBER

PACY PLODER

ARC97-716 IA14 @1+T12+\$12N25+AT1: GRB. FUSELAGE (RB3B12)

ALP-MG -1.030

9E7AG -7.960 -3.980

£ 8.88 8.88 8.88

CCI0

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

O)

PAGE

Cb

Ää PARVETRIS VALLES
2,200 ELEVON
.000 SPOBPK .4 ×/LB ARC97-716 IA14 01+T12+S12N25+AT:: 0RB. FUSELAGE (RB3B12) 10 F 3.5 , n, 3.0品 ٠, - S -2.0 2.0 -3.CE 2.5 **Cb** ×.4 X/LB ALPHAB -1.010 ATA 280.7 -3.5 mm £ 838 8888 8888 世 - 1 -一3.04 3.0 2.5 2.0 <u>...</u> **6**00004

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESTURES

35 ta

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

dJ

PARAMETRIC VALLES
2,200 ELEVON
.000 SPOSPA ARC97-716 IA14 01+T12+S12N25+AT11 0RB. FUSELAGE (RB3B12) MÔY RUDER ALP-40 -.060 -.060 7.600 **€**0□◊

ää

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

12

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

()

ARC97-716 IA14 @1+112+S12N25+AT11 @RB. FUSELAGE (RB3B12)

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

Ŕġ PARAMETRIC VALLES
2,200 ELEVON
,000 SPOBPK ARC97-716 IA14 01+712+S12N25+A711 0RB. FUSELAGE (RB3B12) A CODER -3.5 kminulun. 0 -1.0 -1.54 -2.0年 -3.0⁴ 3.8 -2.5 2.5年 2.0 Сb ALPHAG - 200 -3.5kmm 1.5 £ 3.8 8 8 8 8 8 8 8 2.0 9 3.0 2.5 -2.5 十.5年 -2.0号 -1.品 dJ

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

ŔŔ PARAMETRIC VALLES
2,200 ELEVÓN
,000 SPOBBA œ -3.5 Free manning me minn ARC97-716 IA14 01+112+S12N25+AT11 0RB. FUSELAGE (RB3B12) A COSE -3.0 3.5 3.0 2.5 , , , 2.0 0 -1.0 -2.5 -1.5E -2.0品 **4**3 ω .4 x/LB ALP-40 -.120 7.860 3.5 -1.5 1.5 <u>*</u> 838 8888 3.0 2.5 2.0 1.0 -1.0 -2.5 -3.0. ф ų, -5.8 **EO**CIO4

d3

「一、「神」というできます。「こうな」というできないというないできない。これでは、「ないできないできない。」というないできないというできない。「こうないできない」というできない。「こうないできない。

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

16

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

88

f .

ARC97-716 IA14 01+712+S12N25+AT11 0RB. FUSELAGE (RB3B12)

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSIPES

**

88 PARVIETRIC VALLES
2,200 ELEVEN
.000 SPOBFIC œ .4 x/LB ARC97-716 1A14 01+712+S12N25+A711 0R8. FUSELAGE (R83812) A COUR -3.0 -1.0 2.0 -1.5 3.0平 2.5 -2.0套 -2.5 æ A. 080 #E146 -4.070 -3.5 žanam -1.5年 ~ 出。1-2.5 -3.5 3.0 -2.5 **g**0()04

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

ďЭ

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

٦

á á Budandrahanirariaalamiarekmimimimimimimimimimimimilamlamlamlamlamimikanimimi PARAVETRIC VALLES
2,200 BLEVON
.000 SPIBBR ARC97-716 IA14 01+T12+S12N25+AT11 0RB. FUSELAGE (RB3B12) A SE . ທໍ່ ກາກຸ່ານ 2.5 2.0... -1.0 -1.5 3. 品 ຕາງກາ -2.5 Cb ** X/LB 0.080 0.080 2.9% 7.9% -3.5 Emini £ 858 8888 3.5F 2.0年 一1.0 出: -3.0. 2.5 . S. -2.0品 -2.5 **2**0□◊4

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSUR'S

PAGE

dD

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

R.

ARC97-716 IA14 01+712+S12N25+AT11 0RB, FUSELAGE (RB3B12)

dD

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESTURES

PASE

ORB. FUSELAGE (RB3B13)

ARC97-716 IA14 01+112+S12N25

ALPHAG -7.930

BETAG -6.030 -3.710

<u>4</u> 858

€0□◊4

3.5

30.0

2.5

2.0世

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

22

PAGE

-1.品

-1.5

-2.0星

-2.5

一3.04

dD

The second of th

58

d3

CRB. FUSELAGE (RB3813)

ARC97-716 IA14 01+712+S12N25

28

23

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

ďЭ

PAGE

dJ

" Q

ŔŔ PARAVETRIC VALLES
1,550 ELEVON
.000 97089K ORB. FUSELAGE (RB3B13) A COER 2.0.1 0 -2.0 3.0 2.5 -2.5 C) mijm 40 ARC97-716 1A14 01+712+S12N25 ALMAG ETAG JOD 7.950 2.0 1.54 نېس -2.0年 יייי יייייייי -2.5 2.5 -1.0 -1.5 **∮**o⊓¢

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PESCURES

-3.5 mm/m

-3.0

36

PAGE

0

.4 x/LB

-3°C

LONGITUDINAL DISTRIBUTION OF CRBITER FUSELAGE PRO UNING

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

()

PAGE

Cb

Cb

45

PAGE

1:

ŔŔ PARAVETRIC VALLES
1,550 ELEVON
,000 SPOSPER ORB. FUSELAGE (RB3B13) MO--2.0 -3.0 -1.85. -1.0 2.5 -2.5 3.0 Cb,.... ARC97-716 IA14 01+712+512N25 A. G. C.C.C. # 170 - . 230 • . 180 3.0. 3.5 2.0 -1.0 2.5 -2.5 **EO**(104

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE A PERURES

ထ

46

PAGE

dD

Ŕ8 TRIC VALLES. ELEVON SPORRK œ í ORB. FUSE_AGE (RB3B13) AQOEA PGOEA 3.5 ۳. د د 2.5 -3.0°E-....ļı -2.5 -1.5 Cb IA14 01+712+S:2N25 A. 9446 44C97-7:6 -.230 -.230 -.180 -3.5 im.m. £ 35 85 85 86 88 88 88 88 88 2.0 3.0 2.5 'n η, I 0 -1.0--3.0 -2.0 -2.5 **g**o∷¢

Cb

39 k d

LONGITUDINAL DISTRIBUTION OF CRBITER FUSELAGE PARTSTARS

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

88 PARACTRIC VALES
2.200 ELEVON
.000 SPORK ARC97-716 IA14 01+112+S12N25+AT11 EXTERNAL TANK (RB3112) PAOH PLODER 0 2.5 LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK : 1851 Cb..... ALPHAT -0.400 ₩ 100 -4.110 74.1 126.000 136.000 156.000 1.5 -3.0 <u>.</u>... . М. -2.54 **E**00004 dD

ń

ARC97-716 IA14 01+712+S12N25+AT11 EXTERNAL TANK (RB3712)

dD

PAGE

ij

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

ŔŔ **5**2 DAGE şğ. LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES 2.0 2.5 3.5E 3.0 - S. -2.0dЭ -3.0 -1.0 -2.0品 -2.5 2.5 2.品 1.5 3.0 **E**00004

ARC97-716 IA14 0:+T12+S12N25+AT11 EXTERNAL TANK (RB3T12)

53 PAGE

ää

PARAMETRIC VALLES
2,200 ELEVON
.000 SPOBBK

ACOER RODER

ARC97-716 IA14 01+712+S12N25*A711 EXTERNAL TANK (RB3T12)

ALP-MT -0.390

-.020 -.020 0.040

PARMETRIC VALLES
2,200 ELEVON
,000 SPOBPK ARC97-716 IA14 01+T12+S12N25+AT11 EXTERNAL TANK (RB3T121 ALPHAT -6.380 -.020 -.020

FOE

88

MO:

54

PAGE

dJ

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

ď

ARC97-716 IA14 01+112+S12N25+AT11 EXTERNAL TANK (RB3T12)

ARC97-716 IA14 01+112+S12N25+AT11 EXTERNAL TANK (RB3T12)

4.300

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

ARC97-716 IA14 01+712+S12N25+A711 EXTERNAL TANK (RB3712)

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSIPTS

28

ŔŔ

The state of the s

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

d)

PARAVETRIC VALLES
2,200 ELEVON
,000 SPOBPK ARC97-716 IA14 C1+T12+S12N25+AT11 EXTERNAL TANK (RB3T12) 14 PAGE 1 ETAT -.050 7.980 g_{OCI}

Ŕġ

一种品 一品子二

A The Control of the

Control of the second of the second

ARC97-716 IA14 01+712+S12N25+AT11 EXTERNAL TANK (RB3T12) 305 205 2.0 2.5 Cb -4.080 -4.080 30.6 - C -1.5 **0**004

Ŕģ

62

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURIS

-2.5

-2.0

Cb

'n

88 PARAMETRIC VALLES
2.200 ELEVON
.000 SPORPK 0 ARC97-716 IA14 01+T12+S12N25+AT11 EXTERNAL TANK (RB3T12) P COE LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSIVIS 2.0 -3,5 2.5 ကြောင်းကို ကြောင်းကို ကြောင်းကိုကြောင်း 3.0°E 0 dЭ ALPHAT -.100 -.100 -2.5 -2.0 70.00 70.00 70.000 1.5 2.0 1.5 **g**ou dD

(1) (1) (1) (1) (1)

C-3

ARC97-716 IA14 01+T12+S12N25+AT:1 EXTERNAL TANK (RB3T12)

dJ

68

PAGE 69

ää PARAMETRIC VALLES
2,200 ELEYON
,000 SPOBPK œ ARC97-716 1A14 01+712+S12N25+A711 EXTERNAL TANK (RB3712) A COER -3.0--1.5 -10. -2.5 -2.0 2.品 2.5 3.0 Cb ALPHAT 8.270 -.040 -.040 -2.4 8888 8888 一3.0品 -2.5 3.5 3.0 2.0 **E**0□◊4 **d**3

PAGE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSUES

ää

PARAVETRIC VALLES
2,200 ELEVON
,000 SPUBPK

A COSE

ARC97-716 IA14 01+112+S12N25+AT11 EXTERNAL TANK (RB3T12)

ALPHAT B.270

-.040 -.040 6.110

€0□◊4

3.5

3.6

2.0

2.5

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

2

PAGE

ďĎ

-1-

-1-5

-2.0

-2.5

-3.0

PAGE

PARAMETRIC VALLES
2.200 ELEVON
.000 SPUBRK

HADY RODER

ARC97-716 IA14 GI+TI2+S12N25+ATII EXTERNAL TANK FRB3T121

ALPHAT B.270

-.040 -.040 -.1:0

26.88 28.88

EOL3

PAGE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

-3.5<u>Էստականականականառա</u> 0

-3°C-

-2.5

-3.5 5. minniminaniminaniminanimina

-3.0±

-2.5手

œ

,

ď

The state of the s

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURFS

æ

-3.5.5.5.

76

PAGE

œ

-3.5 junian

1:

dJ

d3

A STATE

35. 368 88

gon :

#

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSLATS

78

3.5

₹0□◊4

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

8

ARC97-716 1A14 01+112+512N25

18.65 18.88 18.88

go 🗆

ŔŔ

PARAPETRIC VALLES
1,550 ELEVON
,000 \$70890

RACH RUCCER

EXTERNAL TANK (RB3113)

ALPHAT -4.240

BETAT -6.030 -3.580

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

ALPINT 4.230

#141 #180 #180

276.00 276.00 28.00 28.00

g_{OCI}

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

dD

1 3

82

#8

PARAMETRIC VALLES
1.550 ELEVON
.000 SPOBBR

A CORP

EXTERNAL TANK (RB3113)

ARC97-716 IA14 01+712+512N25

A.P.A.T

TAT 4 - 050 - 4.000

76.55 26.68 26.08

go:

(4

d3

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

43

€0□04

(:)

Cb

18 in 18 in

g o 🗆

ää

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

8

ää

PARAVETRIC VALLES.
1,550 ELEVON
,000 SPOBPK

RACHER RECOER

2.5분

3.5

3.0

2.0

EXTERNAL TANK (RB3113)

ARC97-716 IA14 01+712+S12N25

1 1

ALPMY 0.120

- 240 - 4.150

8888 8888 888

60□◊4

3.5F

3. P.

2.5

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

5

PAGE

ďЭ

€0□◊4

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

92

BYC

d0

ď.

(,)

PAGE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

•

1

いいから かんきょう かんかん かんかん かんかん かんかん かんしん かんしん かんしゅう かんかん かんしゅう かんかん しゅうしゅう かんかん しゅうしゅう かんせん かんせん

以中國行為衛門一方是以及軍人衛門一衛大衛衛衛衛衛衛衛衛衛衛衛衛衛衛衛衛門一門衛門

., **)**

ARC97-716 IA14 @1+T12+S12N25+AT11 SRM B00STER

(RB3S12) ARC97-716 IA14 01+112+S12N25+AT11 SRM B00STER ETAT 6.100

Ŕá

PARAVETRIC VALLES
2,200 ELEVON
,000 SPOBRK

PAOP PLODER

88 PARAFETRIC VALLES
2,200 ELEVON
,000 SPOBPK (RB3512) A CODER ARC97-716 1A14 01+712+S12N25+AT11 SRM B00STER 1.5 - . . S 3°0世 3.5 2.05 dЭ -.020 -.020 2.5 2.0 · ** H. 1-75.000 275.000 276.000 315.000 4.0 3.0 4 3.5 **60**□◊4

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

-3.0<u>Էստակառակա</u> 0

-2.5

-2.5

-2.0-

-2.0=

100

(RB3S12)

ARC97-716 IA14 01+112+512N25+AT11 SRM B00STER

(")

A. MO. 4

d)

(:

LONGITUDINAL PISTRIBUTION OF SRM BOOSTER PRESSURES

ARC97-716 IA14 01+112+S12N25+A711 SRM B00STER

104

2.200 ELEVON .000 STUBPIC (RB3512) ARC97-716 IA14 01+112+S12N25+AT11 SRM B00STER #17×1

1.310

88

106

PAGE

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

{, }

ARC97-716 IA14 G1+T12+S12N25+AT11 SRM BG0STER

108

PAGE

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

ARC97-716 1A14 01+T12+S12N25+AT11 SRM B00STER

()

ALP-WT 8.270

dJ

110

PAGE

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

ää

PAGY PLODER

(RB3S12)

ARC97-716 [A14 01+112+S12N25+A111 SRM B00STER

ALPHAT B.270

Ŕġ

PARAVETRIC VALLES
2,200 ELEVON
,000 SPOBPK

MACH RLDOER

ARC97-716 1A14 61+112+812N25+A111 SAM BUUSIER

-.040 -.040

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

PAGE

Cb

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

The second of th

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

B

f"

LONSITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAM

Cb

Cb

4

121

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

i.

(833513)

SRY BOOSTER

IA14 0:-":2+5:2\25

ARC97-716

126

PAGE

d)

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

PAGE

•

~ ;;;

t

-1.2

-1.9

大学の一個なるのでは、

88

90

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SHOFFACE WING PRESSURES

٦

dD

PARAVETRIC VALLES
2.200 ELEVON
.000 STOBPK

1.000 L

go⊡♦

1.

-4.070

0.00 0.00

\$0

Cb

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

144

PAGE

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

dD

PARMETRIC VALLES
2.200 ELEVEN
.000 \$70890

ž Š

Į o

...

PARMETRIC VALLES
2,200 ELEVON
,000 SPEAR

MO.

ďЭ

ł

ETA. ...

A. P.46 9.080

\$0

88

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

., 0

Jy

PARAYETRIC VALLES
2.200 ELEVON
.000 SPOBBK

7.880

\$O

-1.24

出。1-

..

2000 P

\$000

ďЭ

PARAVETRIC VALLES
2.200 ELEVEN
.000 SPORPR

R.COER

20

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE INS PRESSURES

PAGE

160

dD

-.2

4.

-1.0A

Ó

DAGE

1.

<-4

O

88

BETAG -6.030

ALPAG.

40

. |

?

1.

CO. Assessment of the Co.

go:

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

æ

号--

172

PAGE

. J.

Ð

CHORDWISE DISTRIBUTION OF UPPER AND LOWER THREE WING PRESSURES

PARMETRIC VALLES
1.550 ELEVON
.000 SPUBRE

MO+

BETAG -3.710

A. 920

go 🗆

-

LOVER VING

dJ

1)

177

PAGE

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

()

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

PAGE

184 PAGE

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

88

PARAVETRIC VALUES
1,550 BLEVON
,000 STOBPE

A COST

A. 9200

gOE1

LOVER VING

dD

PARAVETRIC VALLES
1,550 ELEVON
,000 STUBRE

A CODER

8.150

8.

0.000 0.000

ğ o

į

#.

PAGE

Manage Managed And Application of the Managed And Control of the Managed And Control of the Co

dD

88

PARAMETRIC VALLES
1,550 ELEVON
.000 SPOBRK

30

A ...

go' I♦

PAGE 192

88

PARAVETRIC VALLES
1,550 ELEVON
,000 SPOBRK

A CODER

g0

dD

y...*

×,C \

一.。

9.

i.

88

dD

-7.980

9/2 E8:

A. PANG O. CED

CONFIGNATION DESCRIPTION
ARESO-716 IA14 DI+712+S12AC5+A711 LEFT VERTICAL
ARESO-716 IA14 DI+712+S12AC5+A711 RIGHT VERTICAL

STED STED FLAGGED

CATA SET (RECAL2) (RECAL2)

1.6F

···

.

ł

o O

4 6

արտր

Cb

8

--24

30

-.8

198

PAGE

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES

×.×.

HO: 1-

PAGE

dD

CONFIGURATION DESCRIPTION
ARCY7-716 IA14 01-712-512/25-ATI1 LEFT VERTICAL
ARCY7-716 IA14 01-712-512/25-ATI1 RIGHT VERTICAL

START OF START

DATA SET (RBBV12) (RBGR12)

. 6 gmm

1.4年

1.2

1.品

6

PARAVETRIC VALLES.
2.200 ELEVON
.000 STUBER

A COER

:

40

4

43

-.2

00

œ

-1.2 m

-1.0

-.6±

9.

1.1

PAGE

1. 11

ر. تعن

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES PAGE

i

The second second second

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES

dD

()

88

PARAMETRIC VALLES
2,200 ELEVON
.000 SPERR

ROSE ROSER

BETAG. - .050

₹. E.

24.4. 080.4.

go⊡¢

1.6 Emmunu.

1.2

1.4

子.

-.050

80

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES PAGE ×.4 √.7 \

æ

Control of the Contro

88

PARAMETRIC VALLES
2,200 ELEVON
,000 SPOSPK

\$ 1 kg

7.000

ş

go□◊

CONTIGUATION DESCRIPTION
ARCS7-716 IA14 01-712-512/CS-AT11 LEFT VERTICAL
ARCS7-716 IA14 01-712-512/CS-AT11 RIGHT VERTICAL

FARES.

DATA SET (REDAIZ) (REDRIZ)

ž.

go

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES ×.4 ×/C

216

Ř.,

PARAMETRIC VALLES
1,550 ELEVON
,000 SPOBRK

A CORP

1 1

d)

ž gi

g0

.11

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES PAGE

222

305

STEE OPEN FAGED

CATA SET (REGVI3) (REGRI3)

go:

1.6

... ...

1.2

43

-1 i . <u>-</u>

-3.710

goo.

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES PAGE

229

11

•

. .

Cb

BYE

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES

œ

-1.2 հատաարա

出。1-

9.

o mrtinn

43

(:

88

PARAVETRIC VALLES 1,550 ELEVON ,000 SPOBRK

ROPE RODER

9£146 -.180

1.190 0.040

\$ OC

LEFT VERTICAL RIGHT VERTICAL

ODFIGURATION DESCRIPTION ARC97-716 IA14 01+112+512A25 ARC97-716 IA14 01+112+512A25

SYBOL OPEN FLAGED

CATA SET (REGALD) (REGALD)

·6 E

0

1.2

dD

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES

-1.2£m

-1. -1.

. #

..

d)

. 19.

出。

LEFT VERTICAL RIGHT VERTICAL

0.000 0.000

g_O

PAGE

go∷◊

ďĴ

PAGE CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES

œ

-1.25mmm

出。一

A.046

go

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES PAGE ×.4 VC

-1.25mi

出。!-

240

ORBITER BASE PRESSURES

ARC97-716 IA14 01+112+512N25+AT11 FUS+RUDFL BASE(RB3C12)

A. DEG.

ģ

ά.

COLUMN TO THE PARTY OF THE PART

PRESSURE COEFFICIENT. CP

PRESSURE COEFFICIENT. C

PRESSURE COEFFICIENT, CP

OMS NOZZLE PRESSURES

A. P. 430

× 8.

g_O

(RB3E12)

Ŕġ PARAVETRIC VALLES
2,200 ELEVEN
,000 STOBER ROOF ROOER

PRESSURE COEFFICIENT.

OMS NOZZLE PRESSURES

252 PAGE

OMS NOZZLE PRESSURES

ää

The state of the s

PRESSURE COEFFICIENT. CP

A COSE

PARAMETRIC VALUES
2,200 ELEVON
,000 SPOBRK

ä8

, min

. سبان..

... ساس

PRESSURE COEFFICIENT.

Ø

OMS NOZZLE PRESSURES

O BETAG

PRESSURE COEFFICIENT, CP

OMS NOZZLE PRESSURES

go

PANAMETRIC VALLES
2.200 ELEYON
.000 SPOBPK MON RODER

88

PRESSURE COEFFICIENT,

OMS NOZZLE PRESSURES

256

DAGE

OMS NOZZLE PRESSURES

PRESSURE COEFFICIENT. CP

PRESSURE COEFFICIENT. CP

Commence of the second section

The second of th

OMS NOZZLE PRESSURES

PRESSURE COEFFICIENT. CP

OMS NOZZLE PRESSURES

ĦĦ PARMETRIC VALLES
1,550 BLEVON
,COD SPUBPA (RB3E13) Ş OMS NOZZLE ARC97-716 1A14 01+112+S12N25 AL BANG -1.020 go

PRESSURE COEFFICIENT. CP

OMS NOZZLE PRESSURES

PAGE 260

PRESSURE CREFFICIENT. CP

(RB3E13)

OME NOZZLE

ARC97-716 IA14 G1+T12+S12N25

PRESSURE COEFFICIENT, CP

ŔŔ

PAGE

OMS NOZZLE PRESSURES

PRESSURE COEFFICIENT. CP

áá PARAMETRIC VALLES
1,550 ELEVON
.000 SPUBBA BETAO (RB3E13) MO-OMS NOZZLE **व** Inmlambant -2 ARC97-716 1A14 01+T12+S12N25 9 A.040 OMS NOZZLE PRESSURES *5. 0lun mir. 4. ٠. بې go.

PRESSURE COEFFICIENT. CP

264

PAGE

TO SHEET THE SECOND STATE OF THE SECOND SECO

ARC97-716 IA14 01+112+S12N25+A711 SRM NGZZLE

(RB3X12)

SRM BOOSTER BASE PRESSURES

88

PARAVETRIC VALLES
2,200 ELEVON
.000 SPUBPK

A PAGE

(RB3X12)

ARC97-716 IA14 01+112+5;2N25+A111 SRM NDZZLE

1

ALPHAT

4

ď

PARMETRIC VALLES
2,200 BLEVON
,000 STOBPK

88

760 F

(RB3X12)

ARE97-716 IA14 01+112+512N25+AT:: SRM NOZZLE

€0□04

SRM BOOSTER BASE PRESSURES BETAT

]9

-.60

(in

Ŕá PANNETRIC VALLER
2,200 ELEVON
,000 SPOSPR (RB3X12) -.65 Em. IA14 01+112+512N25+AT11 SRM NGZZLE -.60<u>+</u> -.55 -.101. -.20 -.25 -.05 **Cb** յուգուցականական անագարական ա 0 O BETAT A MO ARC97-716 -10 .05F - 15 -.25 - 35 - . RO - 50 -.55 Ö 43

SRM BOOSTER BASE PRESSURES

270

PAGE

C

ŔŔ

PAGE

(RB3X12)

A COST

SRM BOOSTER BASE PRESSURES

Cb

d)

SRM BOOSTER BASE PRESSURES

274

PAGE

dJ

,一个时间,我们就是这个时间,不是这个时候的现在分词,我看着我的时间,我也是这样的话,我们的时间,我们的一个时间,这一个时间,我们是一个女人的人,我们也是这种人的人,也是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,我们就是这个人,

ŔŔ

PARWETRIC VALLES
2,200 ELEVON
,000 STUBRE

(RB3X12) PAGE PAGE ARC97-716 IA14 01+112+S12N25+AT11 SRM NGZZLE ALPHAT -.310

ž

€0□◊4

88

PARAMETRIC VALLES.
2.200 BLEVON
.000 SPUBPR

SRM BOOSTER BASE PRESSURES

ää

282

PAGE

1

d0

(RB3X14)

MO MO

D

dJ

SRM BEOSTER BASE PRESSURES 0 BETAT ...350÷ -.35k -.40th -.55 -.05 - 104 -.15 -.20 -.50 -.60 -.45 - 25

2,200 ELEVON ,000 SPUSSK

MO-

(RB3xi.)

SRM NOZZLE

ARC97-716 IA14 01+712+S12N25

A SANT

75.58 25.58 35.58 35.58 35.58 35.58

∮0□04

ää

()

ĦĦ

PARKETRIC VALLES
2,200 ELEVON
,000 SPORPK

(RB3X14)

MOH RECEER

#8

EXTERNAL TANK BASE PRESSURES

PRESSURE COEFFICIENT.

ää

PRESSURE COEFFICIENT. CP

EXTERNAL TANK BASE PRESSURES

ŔŔ

3)

PRESSURE COEFFICIENT. CP

ää

PRESSURE COEFFICIENT.

292

PAGE

EXTERNAL TANK BASE PRESSURES

PRESSURE COEFFICIENT. CP

PARMETRIC VALLES.
2,200 ELEVON
,000 STOBPK SRM BASE (RB3Y12) HAQ! ARC97-716 1A14 01+T12+S12N25+AT11 ET ALMAT -.310 8 14° 10

Po

ŔŔ

THE PARTY OF THE P

PRESSURE COEFFICIENT. CP

EXTERNAL TANK BASE PRESSURES

PRESSURE COEFFICIENT. CP

PARVETRIC VALLES.
2,200 ELEVOA.
,000 SPOBPA + SRM BASE (RB3Y12) A COER ARC97-716 1A14 01+712+S12N25+A711 ET ALPANT 0.270 ģ

The second secon

ää

PRESSURE COEFFICIENT, CP

EXTERNAL TANK BASE PRESSURES

#

U

Ś

do

ää

PRESSURE COEFFICIENT. CP

238

PAGE

EXTERNAL TANK BASE PRESSURES

Ø

9

-.20

EXTERNAL TANK BASE PRESSURES - 35. -.65<u>F</u> -.55 -.50 - 60

PRESSURE COEFFICIENT. CP

. . .

98

PAGE

ALPHAT

ģ

go

-.05

ARC97-716 IA14 GI+712+S12N25

PANWETRIC VALLES
1.550 BLEVON
.000 SPERSE

PRESSURE COEFFICIENT. CP

ALPHAT -- 310

8

PARMETRIC VALLES
1,550 BLEVON
.000 SPUBRK ROSE ROSE

ŔŔ

PRESSURE COEFFICIENT,

EXTERNAL TANK BASE PRESSURES

302

PAGE

PRESSURE COEFFICIENT. CP

€0□◊4△

TAP 10

go.

88 -

PRESSURE COEFFICIENT. CP

EXTERNAL TANK BASE PRESSURES

PAGE

1

88

PARMETRIC VALLES 2,200 ELEVON ... SPUBBR

MO-

ARC97-716 1A14 01+T12+S12N25+AT11 0RB ATTACH PTS(RB3112)

ALPHAG

d3

ää

PARAVETRIC VALLES
2.200 ELEVON
.000 SPOSPEK

A COST

ARC97-716 1A14 01+T12+S12N25+AT11 GRB ATTACH PTS(RB3112)

306

PAGE

Ŕģ

PARAMETRIC VALLES
2,200 ELEVON
,000 SPUBRA

ARC97-716 IA14 @1+112+S12N25+AT11 @RB ATTACH PTS(RB3112)

4

ALPHAG -7.980

Ää PARAMETRIC VALLES
2,200 ELEVON
.000 SPOBPK PAGE ARC97-716 IA14 01+112+S12N25+AT11 0RB ATTACH PTS(RB3112) 300 F ջակագավալավավավակակակագակալուվանյակակակակակարալա ORBITER ATTACH POINTS PRESSURES 2 <u>2 2 8 8</u> 4 -10 BETAO F. 12.2. 2. P. 0(1044 43

The second of th

#8 ARC97-716 IA14 01+712+\$12N25+AT11 0RB ATTACH PTS(RB3112) 망. -10 BETAG **GRBITER ATTACH POINTS PRESSURES** 0 A. 000 ընդուվալիայիակակարարարարարարալուիաինու 2 2 2 2 2 3 3 8 3 8 BETAG **€**O□◇

PAGE

d)

Ħ

312

PAGE

()

ŔŔ

AREST-FIR TAIL OFFITE-STENES-ALLI URB ALLACH PISCRESSILZI Examples - all e-con

PAGE

Constant

9 °

The state of the second time of the second s

(,)

dJ

326

PAGE

, 131 ...

43

Ää

ää

PARAMETRIC VALLES 2,200 ELEVON ,000 SPOBRK

MO-

ARC97-716 IA14 01+712+S12N25+AT11 ET ATTACH PTS.(RB3212)

PARMETRIC VALLES
2,200 ELEVON
,000 SPOBPK 8. ----4. <u>6.</u> 1.2 出。 IA14 01+112+S12N25+AT11 ET ATTACH PTS. (RB3212) BETAT EXTERNAL TANK ATTACH POINTS PRESSURES BETAT - 8 6 4 6 , , 1.2 9 -1.2 ALPANT -6.400 Ep-ARC97-716 7.7.X 916. 158. 758. 758. **8** -1-0-1 1 - 4 0 1.2 **O**EI 04 dJ

2

ŔŔ

334

PAGE

PARAVETRIC VALLES
2.200 ELEVON
.000 STOBPK ARC97-716 IA14 01+112+S12N25+AT11 ET ATTACH PTS.(RB3212) RACH RACKER -1.4 finandinamina -10 BETAT 9 -1.0 -1.2 ... 17. 61. 64. 4 -1.0 -1.2 **€**0□◊4△

88

多少少人的一种情况的工作,更是的特殊的情况是是不是有一种的情况,是是一种情况,是是一种情况,是是是一种情况,也是是是是是是是是是一种的情况,也是是一种的情况,也是

EXTERNAL TANK ATTACH POINTS PRESSURES

Ŕ8

ŔŔ

PARAVETRIC VALLES
2,200 ELEVON
,000 STUBPY

ARC97-716 IA14 0:+T12+S12N25+AT1: ET ATTACH PTS.(R83212)

ALPHAT 6.400

ŔŔ

ĦĦ

PARAMETRIC VALLES
2,200 ELEVON
,000 SPEBRA

A COER

ARC97-716 IA14 01+712+S12N25+AT11 ET ATTACH PTS.(RB3212)

ALPHAT -6.400

EXTERNAL TANK ATTACH POINTS PRESSURES

ď

ää

EXTERNAL TANK ATTACH POINTS PRESSURES

342

DYCE

ARC97-716 IA14 01+712+S12N25+AT11 ET ATTACH PTS.(RB3212)

PARAMETRIC VALLES
2,200 ELEVON
,000 SPOSPK ARC97-716 IA14 01+T12+S12N25+AT1! ET ATTACH PTS.(RB3212) PAGE PAGGE 9 **₹0**□044 Cb

ŔŔ

PAGE EXTERNAL TANK ATTACH POINTS PRESSURES

-1.2

-1 . 4 Էստակափա

号:1-

-1.0

品。1-

ŔŔ

dD

88

EXTERNAL TANK ATTACH POINTS PRESSURES

ŔŔ

The state of the s

EXTERNAL TANK ATTACH POINTS PRESSUPES

ري دري دري

30 VC

39Vc

48 PARAMETRIC VALUES
2,200 ELF/ON
,000 S/GBPK -1.品 ARC97-716 IA14 @1+112+S12N25+AT11 ET ATTACH PTS. (RB3212) MON RODER -1.8 -.6. -. 8-1.2 EXTERNAL TANK ATTACH POINTS PRESSURES BETAT 8.--1.0 A.910 7.7.× 812: 122: 720: 520: **©**□◊4 dJ

358

PAGE

ŔŔ

dD

dD

EXTERNAL TANK ATTACH POINTS PRESSURES

EXTERNAL TANK ATTACH POINTS PRESSURES

Ŕ8

The contract of the contract o

Cb

ŔŔ

PARAMETRIC VALLES.
2,200 ELEVON
,000 SPOBRK ARC97-716 IA14 01+712+S12N25+AT11 ET ATTACH PTS.(RB3212) A COCEA BETAT ALPHAT -.310 1.4 tumming քակավավագակակակակակակակակակականիկումատարական BETAT 0. **...** 4. ... ## 1210 ## 1210 ## 1210 8 1.2 - 6 **€**0□◊4 Cb

The second of th

88

EXTERNAL TANK ATTACH POINTS PRESSURES

PASE

dD

18/0

367

PAGE

Constitute the management of agency and the second of the

The second of th

1...

EXTERNAL TANK ATTACH POINTS PPESSURES

BETAT

370

PAG

1411

BETAT

EXTERNAL TANK ATTACH POINTS PRESSURES

EXTERNAL TANK ATTACH POINTS PRESSURES

ää

dЭ

The second of th

88

4.54

Cb

PAGE

PAGE

4.300

7.7× 8.6. 1.00; 1.00; 1.00; 1.00;

EO0004

88

-1.0

FAGE

Ää

ďЭ

EXTERNAL TANK ATTACH POINTS PRESSURES

88

PARMETRIC VALES
2,200 ELEVEN
.000 SPOBPK

PAGER PAGGER

ET ATTACH PTS. (RB3214)

ARC97-716 IA14 01+T12+S12N25

1.80 L

dJ

のから、「大きのでは、「「おきのでは、「「はない」と、「ない」というでは、「ない」というでは、「ない」というできます。「ない」というできます。「ない」というできます。「ない」というできます。「ない」

390

PAGE

PAGE

PAGE

EXTERNAL TANK ATTACH POINTS PRESSURES

ET ATTACH PTS. (R83214)

d)

ន់ន់

ää

€0□◊4

400

PAGE

40

8

-1. P. 1-

.0

...

EXTERNAL TANK BASE RAKE PRESSURES

PRESSURE COEFFICIENT. CP

PRESSURE COEFFICIENT, CP

EXTERNAL TANK BASE RAKE PRESSURES

PRESSURE COEFFICIENT. CP

PRESSURE COEFFICIENT. CP

EXTERNAL TANK BASE RAKE PRESSURES

PRESSURE COEFFICIENT.

38

PARAMETRIC VALLES
2.200 ELLEVON
.000 SPOBPK

\$ 500 P

(RB3314)

ET BASE RAKE

ARC97-716 1A14 01+T12+S12N25

1.310

180.08 180.08

APPENDIX TABULATED FORCE DATA

Tabulations of plotted data are available on request from Data Management Services.

CATE ES JAN 79	1# 75	148	ULATED FORCE	TABULATED FORCE DATA - 1A148						PA 6€	-
			¥	E3 97-716 1A	AMES 87-716 14148 CI+TIE-8120E5-ATII (TANK+SAM)	H21254111	(TANK+SRN)		(463111)	13) (02 JAN 74	2
	DIO CAL	LAENCE DATA							PARAMETRIC DATA	: DATA	
		2		.0000 1N.				*	1.550	ELEVON *	9
				.0000 IN.				RUDOER :	000	SPOSSER =	9
- 240	_		8 4 4842	6.9900 IN.							
SCALE .	0060.										
		RCM ND.	MO. 0/ 0	# 7 ₄₄	2.04 CRA	GRADIENT INTER'AL = -5.00/ 5.00	VAL = -5.0	9.00			
	;			ē	X	5	ČŽ	ځ	CYN	ŧ	
	A CAMPA			42640	0920	.25490	.13620	.12650	00,000	02490	
		4.350		39210	03250	.24600	.12410	.05780	09710.	01970	
	000.4	100		36120	.01310	.23400	.13380	.00260	00370	00130	
	000	3.000		35760	.01630	.24420	.13640	04260	01210	08810	
	000.	7.890		36630	00\$20	.25400	.14960	10490	01030	.02360	
		GRADIENT		.00423	00196	00025	.00175	-:01524	0039	8 69	
		RUN ND.		D RWL =	2.07 Cm	GRADIENT INTERVAL =	IVAL = -5.00/	20. \$.00			
	3		4	3	5	5	Ç,	ò	CYN	ŧ	
				,	.04490	.25740	.14970	.11930	.00500	01620	
			1		.02640	.24760	.14360	.04950	.01670	00940	
				21650	01330	.23440	.15190	.00140	.00400	00110	
			,	21660	06, 10.	.24670	.15750	03490	01490	01900-	
					.01760	.25560	.16350	10400	00860	.01 530	
		CALABIENT			00108	00013	24 100.	01062	00392	.00220	
		\$	RUN NO. 0/ 0	D RML =	8.08	GRADIENT INTERVAL = -5.00/ 5.00	WAL = -5.0	90 2 200			
		i	4	3	***	5	ż	5	CAN	ð	
			30000	15430	06960.	09863·	.16030	.14000	01370	00790	
	} {	20.7	·	12050	.04910	.25190	.15980	.06410	.00350	00460	
	ġ	8:-	•	11740	.03690.	.23930	.15770	.01010	00260	0,000	
	900	3.8	•	-	03980.	2010	.17430	04670	01000-		
	6	7.830		•	DK 950	Oroca:	01001	16760		50.00	
		SAADIDAT	00000	.00100	0,000	0001	20100	01363	-:01		
		3	RUN ND. 0/ 0	B RWA :	8.98 G	GRADIENT INTERVAL =		-9.00/ 9.00			
		i		ŧ	2	5	Š	ځ	CYN	ŧ	
			•	•	.08410	.25720	.14940	.16530	03520	00190	
				•	06690	.25180	19900	.06510	01170	00100	
		9			05670	.24180	.1 5240	.01290	0044p	00010	
		3.640		02570	00000.	24690	5.878	06440	.00550	03000	
		7.660		·	.06310	.25640	.17220	14660	.02700	06000	
))	CRADIENT		.00193	00114	00037	.00036	01673	.00215	\$ \$000.	

	APTADKE DATA	Z 1					
 b b	8.4210 38.FT. 36.7050 IN.		.0000 IN.	MACA **	1.550	ELEVON = SPOBRK =	000; C:-k
•							
ALE .							

	EUR NO.	0 /0	#W. =	8 -9	CRADIENT INTE	NTERVAL = -5.00/	20.6 /00		
ALP44 - 2000 - 2000 - 2000 - 2000 - 2000	-4.520 -1.220 -1.00 3.920 7.930 AADIEM	4,744 6.13000 6.12000 6.12000 6.14000 6.16000	04240. 04240. 04240. 04240. 04240.	CLN .06250 .09220 .05150 .05320 .05320	CA24610 024610 024610 025190 600043	CAF .19180 .19570 .19570 .16330 .00011	73 .18400 .0990 .01890 17600 17600	CTN 04100 01530 00460 .03950 .03950	CBL .00360 .00330 .00040 00310 00610

,	90. 90.
DATA	ELEVON ::
PARAMETRIC DATA	103.3
2	MACH = RUDDER =
	.0000 IN. .0000 IN. 9.900 IN.
F DATA	÷
NETENBICE DATA	8.4810 34.77. 36.7030 IN. 36.7030 IN.

	OATE 88 JAN 78	TABLE	ATED PORCI	SATE SO JAN 79 IABLATED FORCE DATA - 1A148	***						** ;
			¥	Es 97-76 1	anes 97-716 lai48 Ci+Tie+Sienes+ATii (Tank+SRN)	• 51 2N2 5+ A TS 1	(TANK+SRM)		(RBS111)	1) (OP JAN 74	, , .
	APTADICE DATA	OM TA							PARAMETRIC DATA	DATA	
	8.4210 38.FT 36.7050 1N.	Y Y		.0000 1N.				MACH #	1.550	ELEVON = SPÜBRK =	000; C:-
	.7090 1N.		•	. 9800 1N.							
		RUN NO.	0 /0 .0	י וואר יי	8.8	CRADIENT INTERVAL	tt	-5.00/ 5.00			
•		KTA	ALTH			•	ţ	5	CYN	5	
_		.7.990	0.13000			25060	15180	.0990	04100	00800.	
- -			0.12000				.15570	.01290	00460	00040	
-	000.	3.850	0.14000	.08980	05320	.24260 .25130	.15680	57600	03850.	00610	
		ADIENT	.00246		·	•	.0001	02206	.00361	00076	
			3	£8 97-716	AMES 97-716 TA148 OI+TI2+SI2PQ5+AT11 (TANK+SRH)	+512125+AT	(TANK+SRM)		(883112)	52 NOL 30) (S	4 P4 NA
	NOTENDICE DATA	PA TA							PARAMETRIC DATA	: DATA	,
								Č	8	E EVILLE	
	26.7090 IN. 36.7090 IN. 36.7090 IN.		H # #	9.9800 IN.				RUDDER #	000:	SPORK B	300
		35 35	o, e	* 7%	9 27.8	GRADIENT INTERVAL =		-5.00/ 5.00			
			3		2	đ	3	ò	Š	륨	
7	4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		- 40000				.14080	.17610	00960	01940	
7			-0.30000				.14230	.C9040	00470	01030	
τ `			20000			21340	.14510	08800.	00000	01010	
: T		90	- 41000	•	.08470		.15410	15040	09010	0100	
			00184			10000	.00034	05020	03100	7. 7.	
		RUN NO.	9, 0, 0	. AM .	8.1	GRADIENT INTERVAL	ŧi.	-5.00/ 5.00			
			\$	5	5	5	3	t	CYN	ŧ	
ī		4.070	-4.30000	•	06930		.14330	.16660	07600	01910	
í			7.2000				141.00 C	08000-	.00220	00000-	
1			-6.5000	- 1990			14780	06370	.00340	00700.	
1			-4.89000				.19640	15930	.01430	.01430	
			00:84		•		.000	01609	.000	.00£04	

Date to JAN 75	2 2	TAB	TABLEATED PERCE DATA - 1A148	t Data - 1A						Z	PACE 3
			W er	ts 97-746 E	.NES 97-716 14148 Q1+712+312HES+ATS1 (TANKASRNO	SIZHESHATES	(TANK+SRM)		(#63112)	18) (02 JAN 74	AN 74 3
	NO.	Eathert Data							PARAMETRIC DATA	E DATA	
	26.40 26.70 26.30 26.00	# 1		.0000 1N. .0000 1N. 0.9000 1N.				MACH =	3 500.	ELEVON = SPOBRX =	900:
		CM MON	0 /0 · CM	RWL =	8.75 GE	GRADIENT INTERVAL = -5.00/ 5.00	RVAL = -5.	09/ 5.00			
	AL Pea	BETA	ALPA	5	ð	5	ż	5	Š	ð	
	6	-6.030	31000	15490	.06490	.21690	.14280	.17860	02740	00e7b	
	8	-4.080.	31000	12330	.04560	.21630	.14170	.08820	01300	00490	
	ġ (81:	30000	10370	.03240	.21630	.14410	.00500	00090	00040	
	é i	0. m	- 30000	11240	03800	. 1940 1940	.15370	07410	.01130	.00420	
	800-	Canalian Canalian		12530	09640.	5123 5 25 5 25	.16110 61100	17520	02830.	0709.	
				# 7 MH		GRADIENT INTERVAL =	tval = -5.	-5.00/ 5.00			
	1	BETA	454	8	ð	3	ż	5	N.	đ	
	4.990	4.180	3.99000	02210	06090-	.21780	.14630	.19370	03670	00250	
	4.000	-4.080	3.97000	00310	.04620	02713.	.14830	02560	01790	00160	
	4.000	040	9.98000	.00000	.03600	.21640	.14870	00000	00090	00040	
	4 .900	8.930	3.99000	02/20	.04020	.21730	.15110	08430	.01700	OC 0000	
	•.000	7.97	4.00000	00610	.04950	.22110	.16240	19650	.03690	03100	
		CRADIENT	••200	23 100:	00073	.00004	-00093	02238	.00435	93000	
		3 5	D. 0/0	BACL =	8.77 GRA	GRADIENT INTERVAL = -5.00/ 5.00	1.4. = -5.C	90' 8'00			
	ALTA	BETA	ALPHA	3	5	5	3	ŏ	Cyn	ŧ	
	.000	4.18	0.27000	.14020	.03240	.21920	.15150	.20730	04190	.00200	
	.00	7:18	0.24000	.14210	03060.	.21990	.15170	.10140	01680	.00220	
	9.000	040	0.8700D	.19110	06920	.21670	.15140	.00430	05000	ozooo.	
	e ë	4.030	0.2900	.15020	.02870	.21710	.15400	09340	.01\$20	00100	
	9.000	0.110	0.32000	07181.	.02850	.F1 8 B0	.16350	19970	.04230	00330	
		GRADIENT	.00e13	.0009	00023	\$1000.	92,00	02387	.00466	Onnes	

CATE BY AN 75

:

4 24 NA		8 ë
(083113) (08 JAN 74)	DATA	SFORK #
(483113	PARAMETRIC DATA	000.
		MACA
(TANK+SRN)		,
ANGS 87-718 1A148 CI-718-S12065		MAP = .0000 1H.
	APTREES DATA	8.4515 14.77. 1087 16.7050 11. 1187 16.7050 11. 2187
		מוני מומט מומט מומט

The second secon

0 100 0 100°

Bart St. JAN 75	£ 75	TABU	TABULATED FORCE DATA - 1A148	: Oata - 14						PA 66	•
			Ž	1 97-76 1	ANES OT-TE TALAB CONTIENSINES	1100	(TANK+SRM)		(C) (C)	3) (02 JAN 74	
	REPEREN	DECE DATA							PARAMETRIC DATA	: DATA	
	8.4810	. T		.0000 1N.				MACH R	1.9% 000	ELEVON :	99. 900.
	26. 7050 1N.		•	9.9900 IN.							
		EUR ND.	9 6	#WL *	8.08 GAA	CAADIENT INTERVAL =	RVAL = -5.0	-8.00/ 8.00			
		į		ě	2	8	745	ð	Z	é	
	N A	META P. D.T.		3		5	16490	.19470	04780	01,00	
					0.000	24670	1.5460	01/80.	01530	.00460	
		061.4.		13700	02230	.23600	0.19370	.01460	00560	00000	
	000	4.160	0.14000	09621	.02760	.24130	.19630	08650	of e00.	00400	
	0.000	. 308	0.15000	.13260	.02350	.25060	.16780	18400	.04250	00710	
		CRADIENT	.00367	00011	00030	0006	.00021	02211	.00302	000	
			3	is 97-716 i	anes 87-716 1a148 01+712+512NE5	neves	(TANK+5RND		(#83114)	4) (OZ JAN 74	
	NOTAB	DICE DATA							PARAMETRIC DATA	: DATA	
,								1	•	E FORE	000
	8.4210 Se.FT.	Ė	*	.0000 IN.						SPOROK S	8
	*		•	. 9900 IN.							
scale .	0000										
		CH POL	0.00	EM7.	2.77	WAADIENT INTERVAL =		-5.00/ 5.00			
	7.00	4 274	45	3	ð	5	3	ځ	C	é	
	000.	-7.630	-4.40000	44410	.04760	.21460	.14360	.17220	01110	01940	
	9.000	-3.900	-6.3e000	40670	06190	.21260	.14280	.09960	00510	01030	
	9.000	ğ	000x 6: 9-	36110	.04690	.21070	.14410	.00160	0,000	01000	
	900	4.130		50%	05130			0.670.	06,00	05010.	
		Seablest .	00248	-00324	00133	.0004	.00024	02063	.00154	.00263	
		16 PO		#W.	2.72	GRADIENT INTERVAL =		-5.00, 5.00			
						,	1	•	;	į	
	ALYM	BETA	AL Pres	3	3	5	3	ځ	NA.		
	-4.000	-7.800	-4.30000	26360	.05110	2170	.15010	.16360	00960	01530	
	-4.000	-3.000	-4.29000	£2790	.02920	.21500	.14480	.07340	00130	00810	
	-4.000	Q.	-4.29000	20790	.01660	21200	.14510	00000	09000	00010	
	-4.000	4.090	-4.29000	£1000	005.20	21630	14940	060.0:-	00400	0.00	
	-4.000	0.140	-4.29000	22460	.03740	21960	16010	16320	01430	066 10.	
		MADIENT	00000	62200	000		96000	5010-			

LATE BE JAN 73	IAN 73	7	MEAT	ED FORCE	TABULATED FORCE DATA - 1A148	1.48					4	
				A	Es 97-716 1	AMES 87-716 1A148 CI+712+312NES	12NE 5	(TANK+SRH)		(RB3114)	4) (DE JAN 74)	22
	NO.	RETREET ONTA								PARAHETRIC DATA	: DATA	
									2	*68	ELEVON :	900
6	8.4850 SB.FT.	÷			.0006 1%.				RUDDER =	900	SPORR =	000
	36. 7380 IN.			•	. 9900 IN.							
EALE .	0060											
		2	Ğ Ş	6	RNAL =	8.7	IDIENT INTE	CRADIENT INTERVAL = -5.00/ 5.00	00' 8'00			
		į		1	3	*	ð	ż	5 .	Z.	ਰ ਓ	
		1	Ī	31000	12710	.04330	.21780	.14910	.16910	02040	00890	
	3 8		•	Service .	03150	.02120	.2160	.14640	.08040	01110	00430	
		e e	Ī	30000	07720	.01390	.21 560	.14600	00110	00070	.00010	
	8	4.140	·	3000	08030	.01740	.21660	.15360	08050	.01220	.00460	
	8	0.190	·		019640	02630.	.22130	.16629	17680	.02890	200000	
		SEADIENT	·	0000	.001 3E	•	00000	.00065	02003	.00290	.00116	
		2	3.0	0 /0	REV. =	2.76	ADIENT INTE	GRADIENT INTERVAL = -5.00/ 5.00	90.8 /00			
					3	2	5	3	5	Z C	ŧ	
					200		.21900	.15440	.18300	02950	00230	
					08790		.21660	.15410	09690	01640	00130	
					03530		.21240	.14660	.00210	00190	00020	
				3.96000	00500		.2155a	.15620	06670	.01630	.00110	
			-	00000	06550		.22200	.16690	19400	.03710	.00200	
		3		.00248	99000	•	00014	.00026	02207	.00409	05000.	
		*	70 NO.	0 /0	# YM	8.70	ADIENT INTE	CRADIENT INTERVAL = -5.00/ 5.00	90' \$.00			
		i			5	S. M.	5	ż	۵	35	ŧ	
•		-	•		asces.		06603.	.15440	.19710	03460	.00360	
				É	0827.1		.21420	.15610	09360	015ed	.00250	
					16990		.21250	.16130	060000:-	00010	.00020	
		•		0000	.17300		.21390	.15980	09720	.01820	00210	
				31000	17440		.21640	.16760	20400	.04090	00370	
	**************************************	j	? :	-00360	1000	•	00004	.00045	02341	.00417	00096	
			;									

BATE SO JAN 75	z Z	TABU	TABULATED FORCE DATA - TA148	DATA - 1A1	4					2	.
			ANE	2 67-716 IA	AMES BY-716 IA148 Q1+TIE+SIENES+ATII (CRBITER)	12NE5+A711	(CRB) TER)		(183011)	1) (08 JAN 74	7 7
	N.C.ERE	DKE DATA							PARAMETRIC DATA	DATA	
•				.0000 1N.				# 04	1.550	E.EVON .	ë {
	-	:		.0000 IN.				RUDGER ::	669	SPUBLIK #	į
BAEF .	1 080'. at 0000.	ir.		6.990 IN.							
		N.W. NO.	0 0 0	RIV. =	8.04 GE	GRADIENT INTERVAL = -5.00/ 5.00	IVAL = -5.0	00.8 /00			
		į		3	70	5	3	δ	Z Z	룡	
	ALTHA	A CAN		18660	17094	.19670	.11790	.17960	11920	\$6290	
			7.93000	18620	.18075	.15170	.11670	07101.	06960	.03469	
			-7.96000	20930	.19543	.15590	.11880	.00740	00390	16200.	
		3.610	-7.97000	20540	19057	.14630	.11640	09750	02000	67 163	
	9.00	7.780	-7.99000	1999	.16051	1900	.11600	17730	.01624	00618	
		CRADIENT	00247	00215	.60123	0004	0000				
		RUN ND.	0 / 0	RAYL #	8.07 GR	GRADIENT INTERVAL =	EVAL = -5.00/	90.8.00			
				3	ð	5	3	δ	CAN	e e	
			00000	03340	90490.	.14710	.10990	.17090	11300	16090	
			0.02000	06960-	.08139	.14410	.11050	.09760	09440	10000	
		91.	-4.03000	JE870	.09303	.14560	.11020	.00000	00480	.00561	
		700	00000-1	07790	.09143	.13960	.10900	07980	00350	02409	
		7.780	-4.04000	06600	.06549	.14240	00601	15510	10140	05445	
		CAADIENT	00127	00242	.007	00057	0003-9	02127	36210	- 10013	
		RUN NO.		FIV.	8.8	eradient interval. =	RVAL = -5.0	-5.00/ 5.00			
		į		į	2	č	CAF	۵	C	ĕ	
	AL MA	BETA .	ALTA A	5	04378	14180	.10990	.1 5250	101-00	.05836	
				008.00	02630	.13950	.10760	.07360	04360	.02 79 S	
		•	21000	00690	01964	.13700	.10760	00010	06600	.00346	
	9		21000	01210.	02107	.13650	.10670	05510	08880.	31130	
	906	7.740		.07600	02164	.14010	.10570	13030	06090	2000	
		GRADIENT	001E6	00145	99000	0003	00011	01630	9800		
		A ST	9 / 0	# TAB	2	CAADIENT INTERVAL 8:		-5.00/ 5.00			
			1	3	*	5	ż	ઢ	Z.	ਰੰ	
	ALTHA				1000	.13000	.10330	.14550	09760	.05065	
			00030-8	.23730		.13640	.10630	.06600	03720	.02793	
			9.92000	.21560		.13070.	.10470	.01620	01060	01900.	
	000.		3.93000	.22140	13062	.13050.	.10390	03750	08030	87×10'-	
	4.000	7.740	3.94000	.23270	13608	.13610	.10220	11060	BAS' 0.	04844	
	:	CRADIENT	93100 .	0000	.00108	00075	00033	01310	.00734	2.635.	

8 - 410 80 - 180 80 - 180 114 - 35 - 35 - 35 - 35 - 35 - 35 - 35 - 3	ERBACE DATA	4	anen 97-716 iaide Ce-Tie-siehes-atii (CRBITER)	148 OF+T12+9	MENES-ATIS	(ORBA TER)		(RB3061)	1) (DE 14N 74	~ 2
4.7418 4.7418 4.7418 4.7418 6.8418	SACE DATA									
8.4610 36.7.65 36.7.65 30.00								PARAMETRIC DATA	: DATA	
36.70 36.70 30.00 30.00	19.7. ISBP	•	.0000 1N.					1.550	ELEVON .	9
360'. SE 3080.			.0000 1%.				RUDOER =	000	SPUBLIK #	8
	1n. 240		•. •••00 1N.							
					!		1			
	RUN NO.	. o	0 RM. =	8.8 8.	Gradient interval = -5.00/ 5.00	eval = -5.1	20° 5'00			
	VI.	AL PAG	5	Ş	5	ż	გ	ž	5	
		0.04000		22220	13260	07860.	.11610	07720	.04726	
90		9.02000		20953	.13280	.10110	.05438	02900	.0220.	
900		0.03000	31910	19996	.12570	.10090	.01660	06600-	- CC00.	
000.		0.03000		20063	.12620	01660.	02490	01110.	01313	
9.000		00000		20104	12850	08060.	08340 08946	0000	00446	
	SADIEN	.00374	-	80100·	- 100062	- 2000				
		4	1E3 97-716 1/	11 es 01 + T1 E+ (INENES-AT11	(CRB LTER)		DEB10		2 2 2
9	ATAD TEMP							PARAMETRI	E DATA	
	í	1						108.9	ELEVON *	ġ
6.450	÷	 <u>.</u> 1					g	90	SPORK .	000
			0500 IN.							
0300		:								
	2		ם אאר ב	2.74 66	ADIENT INTE	RVAL = -5.1	00/ 5.00			
				,	į	į	į	į	ė	
ALTA	_	424		5	5		.	C. T. S.		
90.7		7.96000		.1007	14090	04044	Date.	05840	03024	
9	•	20000		10121.	14900		00360	00140	.00113	
90.				18791	14670	12220	09160	.06110	02859	•
		9.00		11156	.14600	.12150	19100	.12530	06199	
	3	00376		£7000.	96000	.00034	02301	.01495	00751	
	Ž		O RMAL #	R.77 CE	ADIENT INTE		90.8 100			
		2	8	3	5	ż	ځ	Z Z	ŧ	
		4.03000	Ī	.03642	13220	.10630	.18220	11710	.0984E	
900		-4.03000	·	23690	.13570	.11010	01960.	06290	.03160	
7		-4.04000	į	18170.	.13200	.10790	.00%00	00290	.001%	
7.000		-4.09000	Ť	.06687	.13310	.10940	08360	.05730	02799	
-4.000		-4.07000	•	.05461	.13370	.10740	17630	.11590	05790	
	3	0029		00004	0000	•0000	02326	.01534	00763	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		EMDET DATA DES. 71. NORTH E DIN. YMP E DIN. YMP E DIN. YMP E DIN. YMP E DIN. YMP E DIN. YMP E DIN. YMP E DIN. YMP E DIN. YMP E T.970 T.97	EMBIENT	### ANES 97-716 1A145 QL+71 ### ###	### ANES 97-716 1A145 QL+71 ### ###	### ANE 97-74 1446 QL+71 ### ANE 97-74 ##	### 1000	### 10000 19.	### Park 100374 - 101165

のでは、これでは、「「「「「「「「「「「」」」」というです。 これでは、「「「」」では、「「」」では、「「」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「「」」では、「」

		2	£4 07-716 1	ANER 97-716 IA148 CI-TIE-SIENES	81 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(CREALTER)		(RESOLS)	3) (BE JAN 74	. 27 N
Ā	AEPERENCE DATA							PARAMETRIC DATA	: DATA	
2 019. 2 019. 2 1 080. 2 1 080.	<u>.</u>		.0000 1N.				MACH ::	000	ELEVON =	900.
	3	RUN 10. 0/ 0	D RIVL =	£ .0. #	CRADIENT INTERVAL =		-5.00/ 5.00			
	į		5	2	5	Š	5	Z C	ŧ	
	4 5 5	•	•	79105.	.14170	.10290	.17290	11400	-04604	
				.21557	13900	.10260	09060	05860	.03213	
				.23116	.14360	.10650	00560	.00550	00000	
	•			.22634	.14120	.10350	10400	02690.	03364	
				.22563	.14270	.10360	19760	.12540	06342	
	CAADIENT			.00136	.00027	.0001	02456	.01 61 4	00629	
	3	RUM: NO. 0/ 0	D RNAL =	10:3	ADIENT INTE	GRADIENT INTERVAL = -5.00/ 5.00	90' 8'00			
		454	3	å	5	3	δ	2	É	
		1	09660	.10946	.13470	.09510	.16340	10000	10500.	
1		·			.13010	00660.	.07600	04710	.08681	
		•			.13260	06760.	00760	.05900	00146	
1	•	-			.13180	.09490	08860	.05690	02017	
1000		·		.10379	.13480	.09510	16980	.11290	05632	
	GRADIENT				22000.	100001-	02113	.01335	- 50696	
	2	RUN NO. 0/ 0	O RENAL #	20.3	Gradient interval =		-5.00/ 5.00			
		46.4	3	ð	5	ż	ઠ	C	ð	
8		•		•	07831.	02060	.15000	09940	.05661	
8		·		02020	.12630	.09130	.06529	03700	.02393	
8			.04730	.00471	.12560	.09320	.00620	00230	.00270	
000	4.180				.12750	.09290	06620	.04150	02290	
900		Ĭ			.12970	06060	14900	00660	05365	
	GRADIENT	00372	00750	.00426	\$1000.	.000A9	01647	69600.	00578	
	3	1 NO. 0/ 8	D RNA =	2.92	Caadient interval =		-5.00/ 5.00			
1		40.0	3	9	5	3	5	CYN	ŧ	
	0.4	•		12130	.12390	00500.	.13190	00000	105404	
4.80	-4.080	•••		09993	.12310	.06660	.04650	02500	3030·	
4.000	190	3.91000	.16650	0899	.12170	01060	.00480	00200	+ 1300·	
₩.	4.040				.12390	.0098Q	04980	.02730	01945	
4.000	₩.0	•		•	.12540	00980	12940	.06520	05124	
	GA ADIENT	.00125	00131	of 000.	01000	-00005	01209	.00643	00495	

CATE 29 JAN 79	AN 73	TABE	TABULATED FORCE DATA - 14148	E DATA - 1A(49					PAGE	
			¥	ES 97-716 E	AMES 97-716 TA148 OL-712-512NES	S18183	(CRB17ER)		(NB3Q(3)	(8) (DE JAN 74	2 2
	שנגביו	REPERENCE DATA							PARAMETRIC DATA	: DATA	
Lactor and State	8.4210 86.7080 1000.08	96.FT. THEP IN. THEP IN. ZHEP	6 1 12 19	.0000 1N. .0000 1N. 9.9900 1N.				MACH =	000.	ELEVON #	000. 000
		AGN NO.	MO. 07.0	RN/L =	# .02	GRADIENT INTERVAL =		-5.00/ 5.00			
	i	AF TA	4	3	ž	5	ż	5	CYN	é	
	0.6.	-6.170	0.04000	.31610	19109	.11940	06080	.10700	07020	.04431	
	9 000	-4.120	0.02000	.29730	16010	.12090	06890.	.03\$60	01590	.01 589	
	000.	830	0.02000	01665.	17490	.11760	.06680	.00630	00320	.00233	
	000.	4.070	0.05000	.28720	17473	.12270	06980.	03740	.01800	01565	
	000.€	0.100	0.06000	.20540	17183	.12270	.08160	10900	.07230	04554	
		GRABIENT	S 2000.	00120	79 000.	-00054	11000	00694	.00414	00386	
			7	ES 97-716 E	AMES 97-716 1A14B 01+T12+512NES	312/25	(ORBITER)		(RB3Ot 4)	4) (02 JAN 74	2 2
	AD EAS	ENENCE DATA							PARAMETRIC DATA	: DATA	
		es fr		on the				# O#	2.201	ELEVON =	000
			• 11	The contract				Æ	000	SPDBRA =	900
	26. 7080 1.080			9.9900 IN.							
SCALE .											
		N NO.	MO. 07.0	RN/L =	R.77 GR	GRADIENT INTERVAL =		-8.00/ 5.00			
	At Pas	BETA	AL PHA	3	G.	5	ż	ځ	Š	ĕ	
	000	-7.030	-7.97000	09830	.11576	.13430	.10910	.18790	12110	.06249	
	000° e-	-3.87D	-7.96000	12210	.13202	.13530	02601.	.09340	06000	.03150	•
	-0.000	133	-7.9800D	12930	.13656	.13430	.10910	06200*-	.00520	00112	
	C-00-8-	4.040	-7.99000	12840	.13639	.13830	.11130	10320	0.06860	03303	
	000. ●-	0.100	-0.03000	12670	.13137	.13510	.11000	20360	.13360	05624	
		CRADIENT	00380	00380	10000.	9600 0.	92000.	02495	.01626	00616	
		S NO.	0 / 0 · 0	RWL =	2.7e GR	GRADIENT INTERVAL =		-5.00/ 5.00			
	AL PAR	BETA	AL Pea	ટ	כרא	5	CAF	5	Cyn	ŧ	
	-4.000	-7 790	-4.03000	02510	.05691	.12170	09960	.16930	10840	.05749	
	-4.000	-3.840	-4.03000	06900	27 600.	.12640	00660	.09200	05300	.02686	
	-4.000	.040	-4.04000	07920	.09749	.12020	06660.	00610	.00630	00169	
	-4.000	3.960	-4.04000	07230	78680.	.12620	02660.	0.09570	.06380	03160	
	-4.000	7.980	-4.00000	04980	010LO.	.12200	09720	16920	12420	06298	
		GRADIENT	c01 20	00042	.00003	00003	.00003	02278	.01497	00775	

(18304) (05 JA	
10000	
(CRB1 TER)	
15-515 -2 1	
14148 Q+1	
AMES 97-716 1A148 CH-712+5124E1	
•	

PAGE 18	(18304) (DE JAN 74)	PARAMETRIC DATA	2.E01 ELEVOR:000 .000 SF08RK = .000		CYN CBL		05040 .02673	.0549002904		.0139300705		CYN CDL				.052005216 .1041005216				,		.0041000159
		¥	MON = RUDDER =	-5.00/ 5.00	t		•	00990 	17370	02109	-5.00/ 5.00	ζ			00330	0.07910	01820	-5.00/ 5.00				00540
	(ORB: TER)				3	.06710	06990	06060.	08630	.00010		CAF	.07660	.06260	.08320	00,000	.0000		3	06890.	.07650	-
	s a va u			GRADIENT INTERVAL =	5	.11260	.11730	.11810	11240	00012	: Cradient interval =	5	.10100	.10950	.10 87 0	06601.	#CCCC-	Gaadient interval =	5	00060	.1027U	4.4.
•	ANES 97-716 TAI 48 CL+TIR-SIENES			2.78 GE	ð	01644	.01267	.02766	*N. *O. *	71100	2.7a Ca	3	06613	05204	04145	0.04970	00030	8.7e CR	3	12767	12490	
TABULATED FORCE DATA - 1A148	1 67-716 145		.0000 1N. .0000 1N. 9.9900 1N.	RIVIL =	3	05070.	.03460	.01330	06900	00232	BOV'L =	క	.19530	.11080	00960	.10470	000	BNV =	8	00,03	.50330	
ATED POPCE	ANG		n n n	0 /0	2		18000	19000	00003	00253	0	46.4	3.99000	3.93000	3.94000	3.94000	3.93000 .00186	9 %	AL PAR	00000	0.0000	
TABUE		REPERENCE DATA		RUN NO.	96 14	-7.81D	-3.600	040	4.090	S.D.	RCN NO.	86 74	-7.910	-3.960	080.	3.960	• . OED Caadient	S. S.	E TA	0.00	-4.000	
CATE 89 JAN 73		RETAL	14EF = 8.4210 50.FT. 14EF = 30.7050 3N. 54EF = 36.7050 3N.			000	000	006.	900.				400	0.000	4.000	4.000	000.↑		45.4	900.	000.0	