

Formale Grundlagen der Informatik

7

Turing-Maschinen

Motivation

- Alle Varianten endlicher Automaten charakterisieren die regulären Sprachen.
 - DEAs, NEAs, ε -NEAs
 - zweiseitige DEAs
- Idee: Zusätzliche Erweiterung von endlichen Automaten:
 Schreib-/Lesekopf (statt nur Lesekopf)
- Automaten können "Notizen" machen (und diese wieder lesen, da zweiseitig)
- ➤ Erweiterung des Zustandsraums durch unbegrenztes Schreib-/Leseband (unbegrenzt viel Information merken)

Turing-Maschine – Idee

* für leere Zelle

Band beidseitig unbegrenzt

→ unbegrenzt viele Notizen

am Anfang: Kopf liest erstes Eingabesymbol im Startzustand

- liest in einem ihrer (endlich vielen) Zustände ein Bandsymbol
- wechselt den Zustand
- ersetzt das gelesene Bandsymbol
- bewegt den Kopf nach links (L) oder rechts (R)

Turing-Maschine – Komponenten

- endliche Menge von Zuständen
- Eingabealphabet
- Bandalphabet (muss mindestens alle Eingabebuchstaben enthalten)
- Startzustand
- Symbol für die leere Zelle
- Menge von Endzuständen (in denen die TM ihre Arbeit beendet)

Eine (deterministische) Turing-Maschine (D)TM ist ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, *, F)$, wobei folgendes gilt:

- Q ist eine endliche Menge von Zuständen;
- Σ ist ein Alphabet der Eingabesymbole;
- Γ ist ein Alphabet der Bandsymbole mit $\Sigma \subseteq \Gamma$;
- δ : $(Q \setminus F) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$;
- $* \in \Gamma \setminus \Sigma$ ist das Symbol für die leere Zelle;
- $q_0 \in Q$ ist der Startzustand;
- $F \subseteq Q$ ist die Menge der Endzustände.

Konfigurationen einer TM

- Konfiguration: Wort aus $\Gamma^*Q\Gamma^*$ (o.B.d.A.: $Q \cap \Sigma = \emptyset$),
- Interpretation von Konfiguration uqv:
 - q ist der aktuelle Zustand
 - uv ist der aktuelle Bandinhalt; alle Symbole vor und hinter uv sind das Blank-Symbol *
 - Schreib-/Lesekopf befindet sich über dem ersten Buchstaben von v.
- Es gibt mehrere **äquivalente** Konfigurationen:
 - Wenn uqv eine Konfiguration ist, dann beschreibt jede Konfiguration $*^i uqv *^j (i \ge 0, j \ge 0)$ dieselbe Situation der TM.
 - Wählen immer die Konfiguration, die im jeweiligen Kontext am besten geeignet ist.

■ Konfigurationsübergang von *M*:

- 1. $a_1 \dots a_{i-1} q a_i a_{i+1} \dots a_n \vdash a_1 \dots a_{i-1} b p a_{i+1} \dots a_n$ gdw. $\delta(q, a_i) = (p, b, R)$
- 2. $a_1 \dots a_{i-1} q a_i a_{i+1} \dots a_n \vdash a_1 \dots a_{i-2} p a_{i-1} b a_{i+1} \dots a_n$ gdw. $\delta(q, a_i) = (p, b, L)$
- Sei \vdash * die reflexive und transitive Hülle von \vdash , d.h. $K \vdash$ * K und $K_1 \vdash$ * K_k falls $K_1 \vdash K_2 \vdash \cdots \vdash K_k$ für Konfigurationen K, K_1, K_2, \ldots, K_k .
- $L(M) = \{ w \in \Sigma^* \mid q_0 w \mid upv \}$ für gewisse $u, v \in \Gamma^*$ und ein $p \in F \}$

Anfangskonfiguration

Endkonfiguration

$$M = (\{q_0, q_1, q_2, q_3, q_4, f\}, \{a, b\}, \{a, b, *\}, \delta, q_0, *, \{f\})$$

	а	b	*
q_0	$(q_1,*,R)$	(q_4, b, R)	(f,*,R)
q_1	(q_1, a, R)	(q_1, b, R)	$(q_2,*,L)$
q_2	(q_4, a, R)	$(q_3,*,L)$	$(q_4,*,R)$
q_3	(q_3, a, L)	(q_3, b, L)	$(q_0,*,R)$
\overline{q}_4	(q_4, a, R)	(q_4, b, R)	$(q_4,*,R)$

$$q_0ab \vdash *q_1b \\ \vdash *bq_1* \\ \vdash *q_2b* \\ \vdash q_3*** \\ \vdash *q_0** \\ \vdash *f*$$

$$q_0abb \vdash *q_1bb \\ \vdash *bq_1b \\ \vdash *bbq_1* \\ \vdash *bq_2b* \\ \vdash *q_3b** \\ \vdash q_3*b** \\ \vdash *q_0b* \\ \vdash *bq_4** \\ \vdash *b*q_4*$$

M akzeptiert ab

M wird nie halten

$$M = (\{q_0, q_1, q_2, q_3, q_4, f\}, \{a, b\}, \{a, b, *\}, \delta, q_0, *, \{f\})$$

	а	b	*
q_0	$(q_1,*,R)$	(q_4, b, R)	(f,*,R)
q_1	(q_1, a, R)	(q_1, b, R)	$(q_2,*,L)$
q_2	(q_4, a, R)	$(q_3,*,L)$	$(q_4,*,R)$
q_3	(q_3, a, L)	(q_3, b, L)	$(q_0,*,R)$
q_4	(q_4, a, R)	(q_4, b, R)	$(q_4,*,R)$

← ist offenbar Fehlerzustand ...

... **Konvention:** Wir <u>dürfen</u> derartige Fehlerzustände weglassen und alle Tabelleneinträge, die zu ihnen führen, leer lassen ...

$$M = (\{q_0, q_1, q_2, q_3, q_4, f\}, \{a, b\}, \{a, b, *\}, \delta, q_0, *, \{f\})$$

	а	b	*
q_0	$(q_1,*,R)$		(f,*,R)
q_1	(q_1, a, R)	(q_1, b, R)	$(q_2,*,L)$
q_2		$(q_3,*,L)$	
q_3	(q_3, a, L)	(q_3, b, L)	$(q_0,*,R)$

$$\rightarrow L(M) = \{ a^n b^n \mid n \ge 0 \}$$

- $\varepsilon \in L(M)$ Sonst:
- Jedes akzeptierte Wort muss mit α beginnen. Es wird gelöscht.
- Dann bewegt sich der Kopf über den Rest des Eingabewortes nach rechts hinweg.
- Der Kopf bewegt sich dann zum letzten Buchstaben nach links zurück.
- Der letzte Buchstabe muss ein b sein, das dann gelöscht wird.
- Dann bewegt sich der Kopf zum (nun) ersten Buchstaben und beginnt dort von vorn.

Definition von Turing-Maschinen

Zwei Aufgabentypen:

- 1. Die formale Definition einer TM ist anzugeben
 - → Tupel und Überführungstabelle angeben
- 2. Zeigen, dass (für ein Beispiel/eine Aufgabe) eine TM existiert
 - → Anweisungen ähnlich zu Pseudocode, die die Arbeitsschritte der TM beschreiben, dürfen verwendet werden...

... solange sicher ist, dass diese Schritte "ohne weitere Kreativität" in eine formale TM-Definition umgesetzt werden können!!!

Informale Beschreibung von TM

... solange sicher ist, dass diese Schritte "ohne weitere Kreativität" in eine formale TM-Definition umgesetzt werden können!!!

Beispiele:

- Bewege den Kopf zur ersten leeren Zelle hinter dem Bandinhalt.
- Bewege den Kopf zurück zum ersten Buchstaben des Bandinhalts.
- Lösche jeden zweiten Buchstaben des Eingabewortes (durch * ersetzen).
- Jede Aktion, die mithilfe eines DEAs durchgeführt werden kann:
 - z.B. Prüfe, ob sich 0 und 1 im Eingabewort immer abwechseln.
 - z.B. Prüfe, ob in der Eingabe mindestens zwei Nullen aufeinanderfolgen.
 - z.B. Prüfe, ob der vorletzte Buchstabe im Eingabewort eine 1 ist.
 - z.B. Prüfe, ob sich eine gerade Anzahl von Nullen im Eingabewort befinden.

Informale Beschreibung von TM

... solange sicher ist, dass diese Schritte "ohne weitere Kreativität" in eine formale TM-Definition umgesetzt werden können!!!

Gegenbeispiele:

- Sortiere die Buchstaben des Eingabewortes (alphabetisch) aufsteigend.
- Gehe zur Mitte des Eingabewortes.

Dann verfeinern!!!

Z.B. Mitte finden: Solange Buchstaben noch unmarkiert sind, wiederhole:

- 1. Markiere den ersten unmarkierten Buchstaben.
- 2. Bewege den Kopf zum letzten noch unmarkierten Buchstaben und markiere diesen.
- 3. Bewege den Kopf zum ersten noch unmarkierten Buchstaben.

Beispiel Mitte finden – Überführungstabelle

z.B. für $\Sigma = \{a, b\}$ verwenden wir $\Gamma \subseteq \{a, b, A, B, *\}$

	а	b	A	В	*
q_0	(q_1, A, R)	(q_1, B, R)	"gefunden"	"gefunden"	"leer"
q_1	(q_1, a, R)	(q_1, b, R)	(q_2, A, L)	(q_2, B, L)	$(q_2,*,L)$
q_2	(q_3, A, L)	(q_3, B, L)	"gefunden"	"gefunden"	
q_3	(q_3, a, L)	(q_3, b, L)	(q_0, A, R)	(q_0, B, R)	

Nachdem die Mitte gefunden wurde, können nun weitere Aktionen folgen ...

Universita,

Nichtdeterministische TM – Definition

- Eine **nichtdeterministische Turing-Maschine NTM** ist ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, *, F)$, wobei die Überführungsfunktion als Funktion $\delta : (Q \setminus F) \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$ und die anderen Komponenten wie bei einer DTM definiert sind.
- Der Begriff Konfiguration ist wie bei DTM definiert.
- Konfigurationsübergang von *M*:
- 1. $a_1 \dots a_{i-1} q a_i \dots a_n \vdash a_1 \dots b p a_{i+1} \dots a_n$ gdw. $(p, b, R) \in \delta(q, a_i)$
- 2. $a_1 \dots a_{i-1} q a_i a_{i+1} \dots a_n \vdash a_1 \dots a_{i-2} p a_{i-1} b a_{i+1} \dots a_n \text{ gdw. } (p, b, L) \in \delta(q, a_i)$
- Die Hülle $\stackrel{*}{\vdash}$ und die Sprache L(M) sind wie bei einer DTM definiert.

Seien q_0 der Startzustand und w das Eingabewort.

Es entsteht ein **Berechnungsbaum**, dessen Knoten Konfigurationen sind und die Anfangskonfiguration q_0w die Wurzel ist.

Das Eingabewort w wird genau dann akzeptiert, wenn <u>es</u> einen Pfad von q_0w zu einer Endkonfiguration gibt.

$$L(M) = \{ w \in \Sigma^* \mid q_0 w \vdash upv \text{ für gewisse } u, v \in \Gamma^* \text{ und ein } p \in F \}$$

Beobachtung 7.1: Jede DTM kann als eine spezielle NTM angesehen werden, für die $|\delta(q, a)| = 1$ für alle $q \in Q \setminus F$ und alle $a \in \Gamma$ gilt.

Satz 7.2: Zu jeder NTM M kann eine äquivalente DTM M' konstruiert werden.

Idee: Brute Force,

also systematisches Durchprobieren aller nichtdeterministischen

Berechnungen

Konstruktion einer DTM M' aus einer NTM M'

- Sei r die kleinste Zahl, so dass $|\delta(q,a)| \le r$ für alle $(q,a) \in (Q \setminus F) \times \Gamma$.
- Nummerieren für jedes Paar (q, a) die möglichen Berechnungsschritte mit 1, 2, ... (bis maximal r).
- Jede Berechnung auf einem Eingabewort ist eine Folge von Zahlen aus 1 bis r. Die Berechnungen sollen in aufsteigender Sortierung dieser Folgen geschehen.

Bsp.:

	а	b
q_0	1: (q ₀ , a, R) 2: (q ₁ , a, R)	1: (q ₀ , b, R)
q_1	1: (q_2, a, R)	1: (q ₀ , b, R)
q_2	1: (f, a, L)	1: (f, a, L)

mögliche Berechnungen auf bbaaa:

Konstruktion einer DTM M' aus einer NTM M'

- Jede Berechnung auf einem Eingabewort ist eine Folge von Zahlen aus 1 bis r. Die Berechnungen sollen in aufsteigender Sortierung dieser Folgen geschehen.
- Konstruieren die DTM M' so, dass sie folgende Arbeitsschritte realisiert: Falls das Eingabewort w ist, wiederhole für alle endlichen Folgen s aus Zahlen von 1 bis r (nach ihren Zahlenwerten in aufsteigender Anordnung):
 - 1. Erzeuge hinter dem Eingabewort ein Trennsymbol (sagen wir #).
 - 2. Kopiere w direkt hinter dieses Symbol (#), gefolgt von einem Trennsymbol (sagen wir \$).
 - 3. Erzeuge die nächste Folge s hinter dem zweiten Trennsymbol (\$), anfangs die Folge 1.
 - 4. Simuliere Berechnung s von M auf der Kopie der Eingabe. Stoppe, falls die Simulation stoppt. (Falls nötig Platz schaffen durch Umkopieren in weitere leere Zellen)

Konstruktion einer DTM M' aus einer NTM M'

Falls das Eingabewort w die Länge n hat, wiederhole für alle endlichen Folgen s (in aufsteigender Anordnung):

- 1. Erzeuge hinter dem Eingabewort ein Trennsymbol (sagen wir #).
- 2. Kopiere w direkt hinter dieses Symbol (#), gefolgt von einem Trennsymbol (sagen wir \$).
- 3. Erzeuge die nächste Folge s hinter dem zweiten Trennsymbol (\$), anfangs die Folge 1.
- 4. Simuliere Berechnung s von M auf der Kopie der Eingabe. Stoppe, falls die Simulation stoppt.
- Falls w ∈ L(M), dann stoppt M auf der Eingabe w in mindestens einer ihrer möglichen Berechnungen.
 Dann wird M' diese Berechnung irgendwann simulieren und ebenfalls stoppen.
 Dann gilt w ∈ L(M').
- Falls $w \notin L(M)$, dann hält M in keiner ihrer Berechnungen auf der Eingabe w. Dann wird auch M' nie stoppen und es gilt $w \notin L(M')$.