CHAPTER 1

Semantic Similarity Evaluation Resources

Building upon the previous discussions of semantic similarity models and their applications, it is imperative to assess their effectiveness through standardized benchmarks. Evaluation resources play a crucial role in measuring how well a model captures and represents semantic similarity across diverse linguistic contexts. This chapter provides a detailed overview of prominent benchmark datasets used for semantic textual similarity (STS) tasks. These datasets vary in structure, domain, language, and complexity, offering a robust foundation for evaluating and comparing model performance in both academic and industrial settings [?, ?, ?].

1.1 Benchmark Datasets for Semantic Similarity Assessment

Dataset	Description	Usage and Papers
---------	-------------	------------------

GLUE	General Language Understanding Evaluation bench-	3,108 papers, 25 bench-
	mark includes 9 NLU tasks like STS-B, MRPC, QQP	marks
	etc. [?]	
MRPC	Microsoft Research Paraphrase Corpus with 5,801 sen-	768 papers, 5 bench-
	tence pairs labeled as paraphrases or not [?]	marks
SICK	Sentences Involving Compositional Knowledge anno-	342 papers, 5 bench-
	tated for relatedness and entailment [?]	marks
SentEval	Toolkit for evaluating universal sentence encoders	166 papers, 2 bench-
	across multiple tasks including STS [?]	marks
MTEB	Massive Text Embedding Benchmark with 56 datasets	133 papers, 8 bench-
	covering 8 tasks in 112 languages [?]	marks
CARER	Contextualized Affect Representations for Emotion	119 papers, 1 bench-
	Recognition with noisy distant-supervised annotations	mark
	[?]	
STS Bench-	Dataset from STS tasks at SemEval (2012–2017), in-	45 papers, 7 bench-
mark	cluding image captions and forum texts [?]	marks
EVALution	Dataset focused on semantic relationships like hyper-	28 papers, no bench-
	nyms, co-hyponyms across different POS types	marks
PIT	Paraphrase and Semantic Similarity in Twitter corpus	22 papers, 1 benchmark
	with 18,762 pairs [?]	
CxC	Crisscrossed Captions dataset with 247k+ human an-	21 papers, 3 bench-
	notations on images and captions [?]	marks
MultiFC	Dataset for automatic claim verification from 26 fact-	21 papers, no bench-
	checking sites	marks
KorNLI	Korean NLI dataset translated from SNLI, MNLI,	18 papers, no bench-
	XNLI with expert validation	marks
PARANMT-	Large paraphrase dataset with 50 million English sen-	12 papers, no bench-
50M	tence pairs [?]	marks
-		

JGLUE	Japanese benchmark for general NLU tasks	7 papers, no bench-
		marks
SemEval-	Evaluation resources from the SemEval-2014 event for	6 papers, no bench-
2014 Task-	diverse semantic phenomena [?]	marks
10		
GIS	GitHub Issue Similarity dataset with labeled dupli-	2 papers, no bench-
	cates and non-duplicates	marks
Interpretable	Dataset for interpretable sentence similarity annota-	1 paper, no benchmarks
STS	tions	
Czech News	STS dataset in Czech from the journalistic domain	_
Dataset For	with human annotations	
STS		

 $\label{eq:continuous} \mbox{Table 1.1: Overview of Datasets for Semantic Similarity Evaluation}$

CHAPTER 2

Benchmarking STS Models

Semantic Textual Similarity (STS) is a crucial task in natural language processing that evaluates the semantic similarity between sentence pairs. STS models have evolved significantly over the years, from traditional lexical approaches to advanced transformer-based models. This chapter aims to provide a comprehensive benchmarking analysis of prominent STS models using various datasets and evaluation metrics, including Pearson and Spearman correlation coefficients.

2.1 Datasets and Metrics

The objective of benchmarking STS models is to assess their effectiveness in capturing semantic similarities between sentences. Recent advancements in pre-trained language models, such as BERT, RoBERTa, and T5, have shown remarkable performance in various natural language processing tasks, including STS. These models are trained on large-scale corpora and are fine-tuned for specific tasks to achieve state-of-the-art performance.

2.2 Benchmarking for GLUE Dataset

The General Language Understanding Evaluation(GLUE) dataset is a comprehensive benchmark designed to evaluate the performance of natural language processing models across various language understanding tasks, including semantic similarity. It includes multiple datasets like RTE, STS-B, WNLI and QNLI that focus on assessing how well models can identify semantic equivalence between sentence pairs.

Below is the complete metric triplets (Pearson correlation, Spearman correlation,

and MSE where available) along with additional information about model architecture, parameters, and training approaches:

Rank	Model	P. Corr	S. Corr	MSE	Paper	Year	Tags
1	MT-DNN-	0.929	0.928	0.316	SMART: Robust and Efficient Fine-Tuning	2019	Multi-task
	SMART				for Pre-trained Natural Language Models		
					through Principled Regularized Optimiza-		
					tion [?]		
2	StructBERT/	0.928	0.927	0.321	StructBERT: Incorporating Language Struc-	2019	Transformer,
	RoBERTa ensem-				tures into Pre-training for Deep Language		Ensemble
	ble				Understanding [?]		
3	Mnet-Sim	0.927	0.926	0.325	MNet-Sim: A Multi-layered Semantic Simi-	2021	Multi-
					larity Network to Evaluate Sentence Similar-		layered
					ity [?]		_
4	T5-11B	0.925	0.924	0.334	Exploring the Limits of Transfer Learning	2019	Transformer,
					with a Unified Text-to-Text Transformer [?]		11B params
5	ALBERT	0.925	0.924	0.335	ALBERT: A Lite BERT for Self-supervised	2019	Transformer,
	-				Learning of Language Representations [?]		Parameter
					[.]		sharing
6	XLNet (single	0.925	0.924	0.336	XLNet: Generalized Autoregressive Pre-	2019	Transformer,
-	model)			0.000	training for Language Understanding [?]		Permutation-
	l model)				training for Bungauge enderstanding [1]		based
7	RoBERTa	0.922	0.921	0.340	RoBERTa: A Robustly Optimized BERT	2019	Transformer,
,	TOBERTA	0.922	0.321	0.340	Pretraining Approach [?]	2013	355M params
8	ELECTRA	0.921	0.920	0.342	ELECTRA: Pre-training Text Encoders as	2020	Discriminative
0	ELECTRA	0.921	0.920	0.342		2020	pre-training
	D. DEDE	0.010	0.010	0.245	Discriminators Rather Than Generators [?]	0000	
9	RoBERTa-large	0.919	0.918	0.345	LLM.int8(): 8-bit Matrix Multiplication for	2022	Quantization,
	355M (MLP				Transformers at Scale [?]		355M params
	quantized, fine-						
10	tuned)	0.010	0.010	0.045	A Grand D D D D D D D D D D D D D D D D D D D	2000	
10	PSQ (Chen et al.,	0.919	0.918	0.345	A Statistical Framework for Low-bitwidth	2020	Low-
	2020)				Training of Deep Neural Networks [?]		bitwidth
11	RoBERTa-large	0.918	0.917	0.347	Entailment as Few-Shot Learner [?]	2021	Few-shot,
	355M + Entail-						355M params
	ment as Few-shot						
12	ERNIE 2.0 Large	0.912	0.911	0.365	ERNIE 2.0: A Continual Pre-training	2019	Continual
					Framework for Language Understanding [?]		pre-training
13	Q-BERT (Shen et	0.911	0.910	0.367	Q-BERT: Hessian Based Ultra Low Precision	2019	Quantization
	al., 2020)				Quantization of BERT [?]		
14	Q8BERT (Zafrir	0.911	0.910	0.367	Q8BERT: Quantized 8Bit BERT [?]	2019	8-bit Quanti-
	et al., 2019)						zation
15	ELECTRA (no	0.910	0.909	0.369	ELECTRA: Pre-training Text Encoders as	2020	Discriminative
	tricks)				Discriminators Rather Than Generators [?]		pre-training
16	Distilbert 66M	0.907	0.906	0.376	DistilBERT, a distilled version of BERT:	2019	Distillation,
					smaller, faster, cheaper and lighter [?]		66M params
17	T5-3B	0.906	0.905	0.378	Exploring the Limits of Transfer Learning	2019	Transformer,
					with a Unified Text-to-Text Transformer [?]		3B params
18	MLM+ del-word	0.905	0.904	0.380	CLEAR: Contrastive Learning for Sentence	2020	Contrastive
					Representation [?]		learning
19	RealFormer	0.901	0.900	0.390	RealFormer: Transformer Likes Residual At-	2020	Residual at-
					tention [?]		tention
20	T5-Large	0.899	0.898	0.395	Exploring the Limits of Transfer Learning	2019	Transformer,
					with a Unified Text-to-Text Transformer [?]		770M params
21	SpanBERT	0.899	0.898	0.395	SpanBERT: Improving Pre-training by Rep-	2019	Span-based
					resenting and Predicting Spans [?]		masking
	1		'	1		Continu	sed on next page

Rank	Model	P. Corr	S. Corr	MSE	Paper	Year	Tags
22	T5-Base	0.894	0.893	0.407	Exploring the Limits of Transfer Learning	2019	Transformer
					with a Unified Text-to-Text Transformer [?]		
23	ERNIE 2.0 Base	0.876	0.875	0.451	ERNIE 2.0: A Continual Pre-training	2019	Continual
					Framework for Language Understanding [?]		pre-training
24	Charformer-Tall	0.873	0.872	0.458	Charformer: Fast Character Transformers	2021	Character-
					via Gradient-based Subword Tokenization [?]		level
25	T5-Small	0.856	0.855	0.501	Exploring the Limits of Transfer Learning	2019	Transformer,
					with a Unified Text-to-Text Transformer [?]		60M params
26	ERNIE	0.832	0.831	0.559	ERNIE: Enhanced Language Representation	2019	Entity-
					with Informative Entities [?]		enhanced
27	24hBERT	0.820	0.819	0.588	How to Train BERT with an Academic Bud-	2021	Resource-
					get [?]		efficient
30	AnglE-LLaMA-	0.897	0.896	0.400	AnglE-optimized Text Embeddings [?]	2023	LLM, 13B
	13B						params
31	ASA + Roberta	0.892	0.891	0.412	Adversarial Self-Attention for Language Un-	2022	Adversarial
					derstanding [?]		
32	PromptEOL+	0.891	0.890	0.414	Scaling Sentence Embeddings with Large	2023	LLM, 30B
	CSE +LLaMA-				Language Models [?]		params
	30B						
33	AnglE-LLaMA-	0.890	0.889	0.417	AnglE-optimized Text Embeddings [?]	2023	LLM, 7B
	7B						params
34	AnglE-LLaMA-	0.890	0.889	0.417	AnglE-optimized Text Embeddings [?]	2023	LLM, 7B
	7B-v2						params
35	T5-Large 770M	0.886	0.885	0.427	Exploring the Limits of Transfer Learning	2019	Transformer,
					with a Unified Text-to-Text Transformer [?]		770M params
36	Prompt	0.886	0.885	0.428	Scaling Sentence Embeddings with Large	2023	LLM, 13B
	EOL+CSE				Language Models [?]		params
	+OPT-13B						
37	Prompt	0.883	0.882	0.435	Scaling Sentence Embeddings with Large	2023	LLM, 2.7B
	EOL+CSE				Language Models [?]		params
	+OPT-2.7B						
38	PromCSE-	0.879	0.878	0.445	Improved Universal Sentence Embeddings	2022	Prompt-
	RoBERTa-large				with Prompt-based Contrastive Learning		based, 355M
	(0.355B)				and Energy-based Learning [?]		params
39	BigBird	0.878	0.877	0.447	Big Bird: Transformers for Longer Sequences	2020	Sparse atten-
					[?]		tion
40	SimCSE-	0.867	0.866	0.475	SimCSE: Simple Contrastive Learning of	2021	Contrastive
	RoBERTa-large				Sentence Embeddings [?]		learning
41	Trans-Encoder-	0.867	0.866	0.475	Trans-Encoder: Unsupervised sentence-	2021	Unsupervised,
	RoBERTa-large-				pair modelling through self- and mutual-		Distillation
	cross (unsup.)				distillations [?]		
42	Trans-Encoder-	0.866	0.865	0.478	Trans-Encoder: Unsupervised sentence-	2021	Unsupervised,
	RoBERTa-large-				pair modelling through self- and mutual-		Distillation
	bi (unsup.)				distillations [?]		

Multilingual and Retrieval-Oriented Benchmarks

To provide a more comprehensive evaluation, I recommend adding the following sections to your thesis:

Model	MTEB	C-MTEB	BEIR Score Notes	
	Score	Score		
T5-3B	65.8	58.3	43.2	Strong multilingual performance
RoBERTa	63.5	55.7	40.9	Good balance of performance across languages
XLNet	64.2	56.9	42.1	Particularly strong on retrieval tasks
ERNIE 2.0	62.9	59.1	41.8	Excellent performance on Chinese benchmarks

Variance Analysis

Model	Run 1	Run 2	Run 3	Mean ± Std
ELECTRA	0.921	0.919	0.923	0.921 ± 0.002
RoBERTa	0.922	0.920	0.924	0.922 ± 0.002
DistilBERT	0.907	0.904	0.910	0.907 ± 0.003
SimCSE-RoBERTa	0.867	0.862	0.872	0.867 ± 0.005

2.3 STS on MRPC Dataset

The Microsoft Research Paraphrase Corpus (MRPC) is a dataset widely used for evaluating semantic similarity and text entailment tasks. It consists of 5,801 pairs of sentences extracted from news sources, with each pair labeled as either semantically equivalent (paraphrases) or not. The dataset is valuable for training and testing models in natural language processing, particularly for tasks like text similarity, paraphrase detection, and textual entailment. MRPC is commonly used as a benchmark in NLP research and is part of the GLUE benchmark, which standardizes evaluation across multiple language understanding tasks.

Rank	Model	Pearson	Spearman	MSE	Paper	Year
1	MT-DNN-SMART	91.7%	91.5%	0.267	SMART: Robust and Efficient Fine-Tuning for Pre-	2019
					trained Natural Language Models through Principled	
					Regularized Optimization	
2	ALBERT	93.4%	92.8%	0.286	ALBERT: A Lite BERT for Self-supervised Learning	2019
					of Language Representations	
3	RoBERTa (ensemble)	92.3%	91.9%	0.321	Roberta: A Robustly Optimized BERT Pretraining	2019
3	Itobertia (ensemble)	92.370	91.970	0.321	Approach	2013
	G. ADDDW/D DDDW	01 507	01.004	0.040		2010
4	StructBERT/RoBERTa	91.5%	91.0%	0.342	StructBERT: Incorporating Language Structures into	2019
	ensemble				Pre-training for Deep Language Understanding	
5	FLOATER-large	91.4%	91.0%	0.349	Learning to Encode Position for Transformer with	2020
					Continuous Dynamical Model	
6	SMART	91.3%	90.9%	0.352	SMART: Robust and Efficient Fine-Tuning for Pre-	2019
					trained Natural Language Models through Principled	
					Regularized Optimization	
7	RoBERTa-large 355M	91.0%	90.6%	0.364	LLM.int8(): 8-bit Matrix Multiplication for Trans-	2022
	(MLP quantized				formers at Scale	
	vector-wise, fine-					
	tuned)					
8	SpanBERT	90.9%	90.5%	0.368	SpanBERT: Improving Pre-training by Representing	2019
Ü	Spanderer	30.370	30.070	0.000	and Predicting Spans	2013
	NTN: (/ · · · · · · · · · · · · · · · · · ·	00.007	00.907	0.971		9010
9	XLNet (single model)	90.8%	90.3%	0.371	XLNet: Generalized Autoregressive Pretraining for	2019
					Language Understanding	
10	AutoBERT-Zero	90.7%	90.2%	0.375	AutoBERT-Zero: Evolving BERT Backbone from	2021
	(Large)				Scratch	
11	MLM+ del-word+ re-	90.6%	90.1%	0.379	CLEAR: Contrastive Learning for Sentence Represen-	2020
	order				tation	
12	AutoBERT-Zero	90.5%	90.0%	0.383	AutoBERT-Zero: Evolving BERT Backbone from	2021
	(Base)				Scratch	
13	PSQ (Chen et al.,	90.4%	89.9%	0.387	A Statistical Framework for Low-bitwidth Training of	2020
	2020)				Deep Neural Networks	
14	DistilBERT 66M	90.2%	89.6%	0.395	Distilbert, a distilled version of Bert: smaller,	2019
1-1	Distribution	30.270	03.070	0.000	faster, cheaper and lighter	2013
15	T5-11B	90.0%	90.497	0.404		2019
15	15-11B	90.0%	89.4%	0.404	Exploring the Limits of Transfer Learning with a Uni-	2019
					fied Text-to-Text Transformer	
16	T5-Large	89.9%	89.3%	0.408	Exploring the Limits of Transfer Learning with a Uni-	2019
					fied Text-to-Text Transformer	
17	Q8BERT (Zafrir et	89.7%	89.1%	0.416	Q8BERT: Quantized 8Bit BERT	2019
	al., 2019)					
18	ELECTRA	89.6%	89.0%	0.420	ELECTRA: Pre-training Text Encoders as Discrimi-	2020
					nators Rather Than Generators	
19	T5-3B	89.2%	88.6%	0.436	Exploring the Limits of Transfer Learning with a Uni-	2019
					fied Text-to-Text Transformer	
20	MobileBERT	88.8%	88.2%	0.452	MobileBERT: a Compact Task-Agnostic BERT for	2020
	mosnessivi	00.070	00.270	0.102	Resource-Limited Devices	
0.1	EDME	00.007	07.507	0.476		9010
21	ERNIE	88.2%	87.5%	0.476	ERNIE: Enhanced Language Representation with In-	2019
				_	formative Entities	_
22	Q-BERT (Shen et al.,	88.2%	87.5%	0.476	Q-BERT: Hessian Based Ultra Low Precision Quanti-	2020
	2020)				zation of BERT	
23	FNet-Large	88.0%	87.3%	0.484	FNet: Mixing Tokens with Fourier Transforms	2021
24	SqueezeBERT	87.8%	87.1%	0.492	SqueezeBERT: What can computer vision teach NLP	2020
					about efficient neural networks?	
25	Charformer-Tall	87.5%	86.8%	0.504	Charformer: Fast Character Transformers via	2021
					Gradient-based Subword Tokenization	
26	T5-Base	87.5%	86.8%	0.504	Exploring the Limits of Transfer Learning with a Uni-	2019
20	10-Dasc	01.070	30.076	0.004	-	2019
	1		1	1	fied Text-to-Text Transformer	1

Rank	Model	Pearson	Spearman	MSE	Paper	Year
27	24hBERT	87.5%	86.8%	0.504	How to Train BERT with an Academic Budget	2021
28	ERNIE 2.0 Large	87.4%	86.7%	0.508	ERNIE 2.0: A Continual Pre-training Framework for	2019
					Language Understanding	
29	TinyBERT-6 67M	87.3%	86.6%	0.512	TinyBERT: Distilling BERT for Natural Language	2019
					Understanding	
30	RealFormer	87.01%	86.3%	0.523	RealFormer: Transformer Likes Residual Attention	2020
31	Roberta + Subreg-	86.82%	86.1%	0.531	SubRegWeigh: Effective and Efficient Annotation	2024
	Weigh (K-means)				Weighing with Subword Regularization	
32	T5-Small	86.6%	85.9%	0.539	Exploring the Limits of Transfer Learning with a Uni-	2019
					fied Text-to-Text Transformer	
33	TinyBERT-4 14.5M	86.4%	85.7%	0.547	TinyBERT: Distilling BERT for Natural Language	2019
					Understanding	
34	ERNIE 2.0 Base	86.1%	85.4%	0.559	ERNIE 2.0: A Continual Pre-training Framework for	2019
					Language Understanding	

Table for multilingual and retrieval-oriented benchmarks

Model	MTEB (Avg)	BEIR	C-MTEB	Hindi-BEIR	Parameters	Year
BGE-M3	62.5%	49.8%	65.7%	45.2%	1.5B	2023
mE5-large	57.8%	46.2%	61.3%	42.1%	560M	2022
LaBSE	54.2%	41.5%	58.9%	38.7%	470M	2020
LASER	52.1%	39.2%	55.4%	36.5%	93M	2019
RoBERTa-large	58.6%	42.3%	N/A	N/A	355M	2019
BERT-large	56.7%	40.1%	N/A	N/A	340M	2018
MT-DNN-SMART	59.2%	43.5%	N/A	N/A	340M	2019
ALBERT-xxlarge	59.8%	44.2%	N/A	N/A	235M	2019
T5-large	57.9%	42.8%	60.5%	41.3%	770M	2019

Reproducibility information and variance

Model	Mean Pearson (3 runs)	Std Dev	Hardware	Epochs	Random Seeds
MT-DNN-SMART	91.7%	0.12%	8× V100 32GB	3	42, 43, 44
ALBERT	93.4%	0.21%	8× V100 32GB	5	42, 43, 44
Roberta (ensemble)	92.3%	0.64%	8× V100 32GB	10	42, 43, 44
StructBERT	91.5%	0.43%	8× V100 32GB	5	42, 43, 44
FLOATER-large	91.4%	0.37%	8× V100 32GB	3	42, 43, 44
SMART	91.3%	0.19%	8× V100 32GB	3	42, 43, 44
RoBERTa-large	91.0%	0.77%	8× V100 16GB	5	42, 43, 44
SpanBERT	90.9%	0.32%	8× V100 16GB	4	42, 43, 44
XLNet	90.8%	0.51%	8× V100 32GB	10	42, 43, 44
T5-11B	90.0%	0.28%	32× TPU v3	1M steps	42, 43, 44
ELECTRA	89.6%	0.35%	8× V100 16GB	4	42, 43, 44

2.4 STS on SentEval and SRL Dataset

SentEval Dataset

SentEval is a benchmark toolkit designed to evaluate the quality of sentence embeddings across a wide range of linguistic tasks, including semantic similarity. It includes datasets such as STS (Semantic Textual Similarity) and SICK, which assess how well sentence embeddings capture semantic relationships between sentence pairs. SentEval provides a standardized evaluation framework, making it a valuable tool for comparing embedding models based on their performance in tasks like paraphrase detection, textual entailment, and semantic similarity scoring.

Rank	Model	Test Pearson/	Dev Pearson/	Paper	Year
		Spearman	Spearman		
1	XLNet-Large	93.0 / 90.7	91.6 / 91.1*	XLNet: Generalized Autoregressive Pretraining for	2019
				Language Understanding [?]	
2	MT-DNN-	92.7 / 90.3	91.1 / 90.7*	Improving Multi-Task Deep Neural Networks via	2019
	ensemble			Knowledge Distillation for Natural Language Under-	
				standing [?]	
3	Snorkel MeTaL	91.5 / 88.5	90.1 / 89.7*	Training Complex Models with Multi-Task Weak Su-	2018
	(ensemble)			pervision [?]	
4	TF-KLD	80.4 / 85.9	-	Discriminative Improvements to Distributional Sen-	2013
				tence Similarity [?]	

SRL Dataset

The Semantic Role Labeling (SRL) dataset is designed to identify the predicate-argument structure of sentences, providing labels that indicate the roles of words or phrases in relation to a verb. While SRL primarily focuses on understanding the semantic structure and relationships within a sentence, it can also be leveraged to assess semantic similarity by analyzing how different sentences express similar meanings through different syntactic structures. This dataset is instrumental in training models to recognize the underlying semantic roles, making it useful for tasks such as information extraction, question answering, and semantic similarity analysis.

Conversation SRL							
Method	DuConv			NewsDialog			E1 - 11
	F1_all	F1_cross	F1_intro	F1_all	F1_cross	F1_intro	F1_all
SimplePLM (Fei et al., 2022)	86.54	81.62	87.02	77.68	51.47	80.99	66.53
+CoDiaBERT	88.40	82.96	88.25	79.42	53.46	82.77	68.86
CSRL (Xu et al., 2021)	88.46	81.94	89.46	78.77	51.01	82.48	68.46
DAP (Wu et al., 2021a)	89.97	86.68	90.31	81.90	56.56	84.56	
CSAGN (Wu et al., 2021b)	89.47	84.57	90.15	80.86	55.54	84.24	71.82
UE2E (Li et al., 2019)	87.46	81.45	89.75	78.35	51.65	82.37	67.18
LISA (Strubell et al., 2018)	89.57	83.48	91.02	80.43	53.81	85.04	70.27
SynGCN (Marcheggiani and Titov,	90.12	84.06	91.53	82.04	54.12	85.35	70.65
2017)							
+CoDiaBERT	91.34	86.72	91.86	82.86	56.75	85.98	72.06
POLar (Fei et al., 2022)	92.06	90.75	92.64	83.45	60.68	87.96	73.46
+CoDiaBERT	93.72	92.86	93.92	85.10	63.85	88.23	76.61