Import the Libraries

- 1 import numpy as np
- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt

Import dataset(csv file)

- 1 titanic_data = pd.read_csv("/content/train.csv")
- 2 titanic_data

\Rightarrow		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
_	0	1	0	3	Braund, Mr. Owen Harris	ma l e	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	ma l e	35.0	0	0	373450	8.0500	NaN	S
	886	887	0	2	Montvila, Rev. Juozas	ma l e	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	fema l e	19.0	0	0	112053	30.0000	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	ma l e	26.0	0	0	111369	30.0000	C148	С

Corrlation Heatmap

- 1 import seaborn as sns
- 2
- 3 sns.heatmap(titanic_data.corr(), cmap="YlGnBu")
- 4 plt.show()

<ipython-input-39-ea442d09ae1a>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future vers
sns.heatmap(titanic_data.corr(), cmap="YlGnBu")


```
1 from sklearn.model_selection import StratifiedShuffleSplit
2
3 split=StratifiedShuffleSplit(n_splits=1,test_size=0.2)
4 for train_indices,test_indices in split.split(titanic_data,titanic_data[["Survived","Pclass","Sex"]]):
5    strat_train_set=titanic_data.loc[train_indices]
6    strat_test_set=titanic_data.loc[test_indices]

1 plt.subplot(1,2,1)
2 strat_train_set['Survived'].hist()
3 strat_train_set['Pclass'].hist()
4
5 plt.subplot(1,2,2)
6 strat_test_set['Survived'].hist()
7 strat_test_set['Pclass'].hist()
8
9 plt.show()
```


1 strat_train_set.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 712 entries, 871 to 459
Data columns (total 12 columns):

Data	columns (tota	al 12 columns):						
#	Column	Non-Null Count	Dtype					
0	PassengerId	712 non-null	int64					
1	Survived	712 non-null	int64					
2	Pclass	712 non-null	int64					
3	Name	712 non-null	object					
4	Sex	712 non-null	object					
5	Age	575 non-null	float64					
6	SibSp	712 non-null	int64					
7	Parch	712 non-null	int64					
8	Ticket	712 non-null	object					
9	Fare	712 non-null	float64					
10	Cabin	161 non-null	object					
11	Embarked	710 non-null	object					
<pre>dtypes: float64(2), int64(5), object(5)</pre>								
memory usage: 72.3+ KB								

Estimators

```
1 from sklearn.base import BaseEstimator, TransformerMixin
 2 from sklearn.impute import SimpleImputer
 4 class AgeImputer(BaseEstimator, TransformerMixin):
 6
   def fit(self, X, y=None):
 7
      return self
 8
 9
    def transform(self, X):
10
      imputer=SimpleImputer(strategy="mean")
11
      X['Age']=imputer.fit_transform(X[['Age']])
12
      return X
Encoding
 1 from sklearn.preprocessing import OneHotEncoder
 3 class FeatureEncoder(BaseEstimator, TransformerMixin):
 5
    def fit(self, X, y=None):
 6
      return self
 8
    def transform(self, X):
 9
      encoder=OneHotEncoder()
10
      matrix=encoder.fit transform(X[['Embarked']]).toarray()
11
12
      column_names=["C","S","Q","N"]
13
14
      for i in range(len(matrix.T)):
15
        X[column_names[i]]=matrix.T[i]
16
17
      matrix = encoder.fit_transform(X[['Sex']]).toarray()
18
19
      column_names = ["Female", "Male"]
20
21
      for i in range(len(matrix.T)):
22
        X[column_names[i]] = matrix.T[i]
23
      return X
Feature dropper
 1 class FeatureDropper(BaseEstimator, TransformerMixin):
    def fit(self, X, y=None):
 3
 4
      return self
    def transform(self, X):
      return X.drop(["Embarked", "Name", "Ticket", "Cabin", "Sex", "N"], axis=1, errors="ignore")
 8
Pipeline
 1 from sklearn.pipeline import Pipeline
 3 pipeline = Pipeline([("ageimputer", AgeImputer()),
                        ("featureencoder", FeatureEncoder()),
                        ("featuredopper", FeatureDropper())])
 5
 6
 1 strat_train_set = pipeline.fit_transform(strat_train_set)
 1 strat_train_set
```

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	С	S	Q	Female	Male
871	872	1	1	47.000000	1	1	52.5542	0.0	0.0	1.0	1.0	0.0
400	401	1	3	39.000000	0	0	7.9250	0.0	0.0	1.0	0.0	1.0
786	787	1	3	18.000000	0	0	7.4958	0.0	0.0	1.0	1.0	0.0
6	7	0	1	54.000000	0	0	51.8625	0.0	0.0	1.0	0.0	1.0
127	128	1	3	24.000000	0	0	7.1417	0.0	0.0	1.0	0.0	1.0
879	880	1	1	56.000000	0	1	83.1583	1.0	0.0	0.0	1.0	0.0
487	488	0	1	58.000000	0	0	29.7000	1.0	0.0	0.0	0.0	1.0
123	124	1	2	32.500000	0	0	13.0000	0.0	0.0	1.0	1.0	0.0
522	523	0	3	30.095513	0	0	7.2250	1.0	0.0	0.0	0.0	1.0
459	460	0	3	30.095513	0	0	7.7500	0.0	1.0	0.0	0.0	1.0

712 rows × 12 columns

1 strat_train_set.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 712 entries, 871 to 459
Data columns (total 12 columns):
# Column Non-Null Count Dtype
0 PassengerId 712 non-null int64
    Survived 712 non-null int64
Pclass 712 non-null int64
   Pclass 712 non-null float64
SibSp 712 non-null int64
712 non-null int64
3 Age
4 SibSp
               712 non-null
712 non-null
                                int64
float64
 6 Fare
                712 non-null
                                float64
                712 non-null float64
8 S
                 712 non-null
9 Q
                                  float64
10 Female
                 712 non-null
                                  float64
11 Male
                712 non-null
                                float64
dtypes: float64(7), int64(5)
memory usage: 72.3 KB
```

1 from sklearn.preprocessing import StandardScaler
2
3 X = strat_train_set.drop(['Survived'], axis=1)
4 y = strat_train_set['Survived']
5
6 scaler = StandardScaler()
7 X_data = scaler.fit_transform(X)
8 y_data = y.to_numpy()
9

Model selection

Result

```
1 final_clf = grid_search.best_estimator_
```

1 final_clf

```
r RandomForestClassifier
RandomForestClassifier(max_depth=5, min_samples_split=4)
```

```
1 strat_test_set = pipeline.fit_transform(strat_test_set)
1 X_test = strat_test_set.drop(['Survived'], axis=1)
2 y_test = strat_test_set['Survived']
3
4 scaler = StandardScaler()
5 X_data_test = scaler.fit_transform(X_test)
6 y_data_test = y_test.to_numpy()
```

Model Accuracy

```
1 final_clf.score(X_data_test, y_data_test)
```

0.8324022346368715

1 final_data = pipeline.fit_transform(titanic_data)

1 final_data

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	С	S	Q	Female
0	1	0	3	22.000000	1	0	7.2500	0.0	0.0	1.0	0.0
1	2	1	1	38.000000	1	0	71.2833	1.0	0.0	0.0	1.0
2	3	1	3	26.000000	0	0	7.9250	0.0	0.0	1.0	1.0
3	4	1	1	35.000000	1	0	53,1000	0.0	0.0	1.0	1.0
4	5	0	3	35.000000	0	0	8.0500	0.0	0.0	1.0	0.0
886	887	0	2	27.000000	0	0	13,0000	0.0	0.0	1.0	0.0
887	888	1	1	19.000000	0	0	30,0000	0.0	0.0	1.0	1.0
888	889	0	3	29.699118	1	2	23.4500	0.0	0.0	1.0	1.0
889	890	1	1	26.000000	0	0	30.0000	1.0	0.0	0.0	0.0
890	891	0	3	32.000000	0	0	7.7500	0.0	1.0	0.0	0.0
891 rows × 12 columns											

891 rows × 12 columns

Test data

```
1 prod_final_clf = grid_search.best_estimator_
```

Import Test dataset(csv file)

```
1 titanic_test_data = pd.read_csv("/content/test.csv")
```

```
1 final_test_data = pipeline.fit_transform(titanic_test_data)
```

```
1 X_final_test = final_test_data
2 X_final_test = X_final_test.fillna(method="ffill")
3
4 scaler = StandardScaler()
5 X_data_final_test = scaler.fit_transform(X_final_test)
```

1 predictions = prod_final_clf.predict(X_data_final_test)

```
1 final_df = pd.DataFrame(titanic_test_data['PassengerId'])
2 final_df['Survived'] = predictions
```

1 final_df

	PassengerId	Survived	
0	892	0	11.
1	893	0	+/
2	894	0	
3	895	0	
4	896	1	
413	1305	0	
414	1306	1	
A15	1307	Λ	