9 gyre :- outgrabe. 10 manxome. 11 gimble :- outgrabe. 12 gimble: - brillig. 13 gimble :- vorpal. 14 wabe. brillig toves

gimble

1 Prolog

4 toves :- manxome.

5 brillig :- jubjub.

7 vorpal :- manxome.

8 gyre :- manxome.

6 outgrabe.

Sample Box Model

1 slithy :- toves, brillig.

2 slithy :- gyre, gimble, wabe.

3 toves :- outgrabe, vorpal.

Sample Proof Procedure

```
1 wff(A,B) :- terminal(A,Z), binop(Z,Y), wff(Y,B).
2 wff(A,B) :- unop(A,Z), wff(Z,B).
3 wff(A,B) :- terminal(A,B).
5 binop([&|T],T).
6 binop([or|T],T).
7 unop([not|T],T).
9 terminal([Term|T],T) :- term(Term).
11 term(p).
12 term(q).
13 term(r).
```

```
wff([p,&,not,q,or,r],V).
yes(V) :- wff([p,&,not,q,or,r],V).
yes(V) :- terminal([p,&,not,q,or,r],Z1), binop(Z1,Y1),

    wff(Y1,V).

yes(V) :- term(p), binop([&,not,q,or,r],Y1), wff(Y1,V).
yes(V) :- binop([&,not,q,or,r],Y1), wff(Y1,V).
yes(V) :- wff([not,q,or,r],V).
yes(V) :- unop([not,q,or,r],Z2),wff(Z2,V).
yes(V) :- wff([q,or,r],V).
yes(V) :- terminal([q,or,r],Z3), binop(Z3,Y3),
```

yes(V) :- term(q), binop([or,r],Y3), wff(Y3,V).

yes(V) :- binop([or,r],Y3), wff(Y3,V).

wff(Y3,V).

yes(V) :- wff([r],V).

yes([]) :- term(r).

yes([]).

yes(V) :- terminal([r],V).

```
Sample Most General Unifier
(a) p(W; b; f (W)) and p(h(X; Z); X; Y).
(b) ok([fun; course; dream]; A; Y) and ok([A j R]; R;
(c) bar(A; [o; 1 j B]; B) and bar([p; r j C];C; [o; g])
(a) { W / h(b, Z), X / b, Y / f(h(b, Z))}
(b) does not unify because A would have to be 'fun' and
  (c) {A / [p, r, o, 1, o, g], B / [o, g], C / [o, 1, o, 10]

→ plì.
```

Delete Exactly 1 Elements

```
1 % del1(E, L, R) is true when R is a list with the same

→ elements as

2\ \% list L (in the same order) but with one instance of E

→ removed

3 del1(E, [E|T],T).
4 del1(E,[H|T],[H|R]) :-
   del1(E,T,R).
```

Delete n Elements

6 deln(N1,E,L,R).

```
1 % deln(N,E,L,R) is true when R is the result of
    2 deln(0,_,[],[]).
3 deln(N,E,[E|L],R) :-
    N>O,
N1 is N-1,
```

```
7 deln(N,E,[H|L],[H|R]) :-
     deln(N,E,L,R).
9 % ?- deln(2,a,[a,v,a,t,a,r],R).
11 % Here is another solution
12 % deln_alt(N,E,L,R) is true when R is the result of

    → removing N instances of E from L.

13 deln_alt(0,_,R,R).
14 deln_alt(N,E,[E|L],R) :-
    N>0,
   N1 is N-1,
     deln_alt(N1,E,L,R).
18 deln_alt(N,E,[H|L],[H|R]) :-
      N>0,
      deln_alt(N,E,L,R).
```

Remove Duplicates (Keep 1st Occurrence)

```
1 myremoveduplicates_helper([], _, []).
2 myremoveduplicates_helper([H|T], Duplicates,
   member(H, Duplicates),
    myremoveduplicates_helper(T, Duplicates,
       5 myremoveduplicates_helper([H|T], Duplicates,
   \+ member(H, Duplicates),
    myremoveduplicates_helper(T, [H|Duplicates],
       9 myremoveduplicates(Lst, Result) :-
```

myremoveduplicates_helper(Lst, [], Result).

Replace

19

20

```
1 replace(_, _, [], []).
2 replace(Old, New, [Old | L], [New | R]) :-
     replace(Old, New, L, R).
4 replace(Old, New, [Head | L], [Head | R]) :-
      dif(Old, Head),
      replace(Old, New, L, R).
```

Apply

```
1 % apply(L,S,R) is true if list L becomes R according to
         substitution S
2 % where a substitution is a list of sub(from,to) terms
3 apply([],_,[]).
4 apply([H|L],S,[HR|R]):-
     rep(H,S,HR),
      apply(L,S,R)
8 % rep(E,S,R) is true if E gets replaced by R according

    to substitution S

9 rep(H, [],H).
10 rep(H,[sub(H,R)|_],R).
11 rep(H,[sub(H1,_)|S],R) :-
     dif(H.H1).
     rep(H,S,R).
```

```
1 % appla(A,S,R) is true if arithmetic expression A
     ⇒ becomes R according to substitution S
2 appla(A,S,R) :-
     atomic(A),
      rep(A,S,R).
5 appla((A+B),S,(AR+BR)) :-
      appla(A,S,AR),
      appla(B,S,BR)
8 appla((A*B),S,(AR*BR)) :-
      appla(A,S,AR),
      appla(B,S,BR).
```

Reverse Flatten

```
1 flatr([[A|B]|T],R0,R2) :-
     flatr([A|B],R1,R2),
     flatr(T,R0,R1).
```

Shuffle

```
1 % shuffle(L1,L2,L3) is true if L3 is an interleaving of

    the elements of L1 and L2

 2 shuffle(L,[],L).
2 shuffle([],L,L) :- dif(L,[]).
4 shuffle([H|T],L,[H|R]) :- shuffle(T,L,R), dif(L,[]).
5 shuffle(T,[H|L],[H|R]) :- shuffle(T,L,R), dif(T,[]).
```

Merge Sort

```
1 split([],[],[]).
2 split([X],[X],[]).
```

```
3 split([X,Y|R],[X|R1],[Y|R2]) :- split(R,R1,R2).
5 merge([],L,L).
6 merge(L,[],L) :- dif(L,[]).
7 merge([A|L1],[B|L2],[A|R]) :-
     merge(L1,[B|L2],R).
10 merge([A|L1],[B|L2],[B|R]) :-
    A > B
     merge([A|L1],L2,R).
14 msort([],[]).
15 msort([A],[A]).
16 msort([A,B|L],S) :-
     split([A,B|L],L1,L2),
     msort(L1,S1),
     msort(L2,S2),
     merge(S1,S2,S).
```

BTree (With Append)

```
1 % Tree to list (with append)
2 tolist(empty,[]).
3 tolist(node(LT,Val,RT),L):-
      tolist(LT.LO).
      tolist(RT.L1).
      append(L0,[Val|L1],L).
```

BTree (Without Append)

```
1 % Tree to list (without append)
2 tolist_dl(T,L) :-
    tolist3(T,L,[]).
5 % tolist3(T, L1, L2) is true if L1-L2 is preorder list

    of values in tree T

6 tolist3(empty, L, L).
7 tolist3(node(LT,Val,RT),L0,L2):-
8 tolist3(LT,L0,[Val|L1]),
    tolist3(RT,L1,L2).
```

Derivative

23 simp_vals(V*1,V).

24 simp_vals(1*V,V).

27 AB is A*B.

25 simp_vals(A*B,AB) :-

28 simp_vals(A*B,A*B).

number(A), number(B),

```
1 % deriv(E,X,DE) is true if DE is the derivatibe of E

    with respect to X

 2 deriv(X,X,1).
3 deriv(C,X,0) :- atomic(C), dif(C,X).
 4 deriv(A+B,X,DA+DB) :-
      deriv(A,X,DA),
      deriv(B,X,DB).
 7 deriv(A*B,X,A*DB+B*DA) :-
      deriv(A,X,DA),
      deriv(B,X,DB).
11 % Some optional extras
12 deriv(sin(E),X,cos(E)*DE) :-
13 deriv(E,X,DE).
14 deriv(cos(E),X,-sin(E)*DE) :-
     deriv(E,X,DE).
```

```
Simplify
1 %simplify(Exp, Exp2) is true if expression Exp
    2 simplify(X,X) :-
3 atomic(X).
4 simplify((A+B),V) :-
   simplify(A, VA),
     simplify(B, VB),
     simp_vals(VA+VB, V).
 8 simplify((A*B),V) :-
     simplify(A, VA),
     simplify(B, VB),
     simp_vals(VA*VB, V).
13 %simplify_vals(Exp, Exp2) is true if expression Exp
    14 % where the arguments to Exp have already been
    15 simp_vals(0+V,V).
16 simp_vals(V+0,V).
17 simp_vals(A+B,AB) :-
     number(A), number(B),
   AB is A+B.
20 simp_vals(A+B,A+B)
21 simp_vals(0*_,0).
22 simp_vals(_*0,0).
```

Arithmetic Operations

```
1 % def(F,A,FA) function F on argument A returns FA
2 def(sq,X,X2) :- X2 is X*X.
3 def(plus,X,plus(X)).
4 def(plus(X),Y,Z) :- Z is X+Y.
7 \operatorname{def}(\operatorname{gt}(X), Y, \operatorname{false}) :- X =< Y.
9 % eval(E,V) is true if expression E evaluates to V
10 % this uses square brackets as parentheses, values

→ separated by commas

11 eval(N,N) :- number(N).
12 eval([V],V).
13 eval([P,A|R],V) :-
14 eval(A,AV),
      def(P,AV,R1),
      eval([R1|R],V).
```

Powerset 1 % Powerset

```
2 % Straight Recusion
 3 powerset([],[[]]).
 4 powerset([H|T], R) :-
    powerset(T,PT),
      applytoeach(H,PT,R).
 7 applytoeach(_,[],[]).
 8 applytoeach(H, [E|R], [[H|E], E|PR]) :-
      applytoeach(H,R,PR).
11 % With an accumulator
12 powset([],[[]]).
13 powset([H|T],R) :-
      powset(T,TP),
      add_to_each(H,TP,TP,R).
16 add_to_each(_,[],TP,TP).
17 add_to_each(H,[L|R],TP,[[H|L]|A]) :-
    add_to_each(H,R,TP,A).
20 % With an accumulator, alternative answer
21 powset2([],[[]]).
22 powset2([H|T],R) :-
   powset2(T,TP),
      add_to_each2(H,TP,TP,R).
25 add_to_each2(_,[],TP,TP).
26 add_to_each2(H,[L|R],TP,A) :-
27 add_to_each2(H,R,[[H|L]|TP],A).
```

Dutch Flag

```
1 % for testing, here is a definition of the colour of

→ numbers

2 red(E) :- E < 10.
3 white(10).
4 blue(E) :- E>10.
6 % dutch_flag(L,D) is true if D conatins the elements of
    7 % the red elements are before the white elements, which
    9 % dutch flag with difference lists
10 dutch_flag_dl(L,R):-
     partn_dl(L,R,W,W,B,B,[]).
13 %partn_dl(L,R1,R2,W1,W2,B1,B2) is true when
14 % R1-R2 contains elements of L that are red
15 % W1-W2 contains elements of L that are white
16 % B1-B2 contains elements of L that are blue
17 partn_dl([],R,R,W,W,B,B).
18 partn_dl([H|T],[H|R1],R2,W1,W2,B1,B2) :-
    red(H),
     partn_dl(T,R1,R2,W1,W2,B1,B2).
21 partn_dl([H|T],R1,R2,[H|W1],W2,B1,B2) :-
     white(H),
     partn_dl(T,R1,R2,W1,W2,B1,B2).
23
24 partn_dl([H|T],R1,R2,W1,W2,[H|B1],B2) :-
     blue(H).
     partn dl(T.R1.R2.W1.W2.B1.B2).
```

```
Reverse Dutch Flag
1 % reversing dutch flag with difference lists
3 % rev_dutch_flag(L,D) is true if D conatins the

→ elements of L where,

4 % the red elements are before the white elements, which

    are before the blue elements.

5\ \% the elements in each colour group are in reverse

    order than they are in L

6 rev_dutch_flag_dl(L,R):-
    rev_partn_dl(L,R,W,W,B,B,[]).
9 %rev_partn_dl(L,R1,R2,W1,W2,B1,B2) is true when
```

```
10 % R1-R2 contains elements of L that are red in reverse

→ order

11 % W1-W2 contains elements of L that are white in
     12 % B1-B2 contains elements of L that are blue in
     13 rev_partn_dl([],R,R,W,W,B,B).
14 rev_partn_dl([H|T],R1,R2,W1,W2,B1,B2) :-
     rev_partn_dl(T,R1,[H|R2],W1,W2,B1,B2).
17 rev_partn_dl([H|T],R1,R2,W1,W2,B1,B2) :-
     white(H),
     rev_partn_dl(T,R1,R2,W1,[H|W2],B1,B2).
20 rev_partn_dl([H|T],R1,R2,W1,W2,B1,B2) :-
     blue(H),
     rev_partn_dl(T,R1,R2,W1,W2,B1,[H|B2]).
```

2 Haskell

Folding

```
fold r \oplus v[a1, a2, ..., an] = a1 \oplus (a2 \oplus (... \oplus (an \oplus v)))
foldl \oplus v[a1, a2, ..., an] = (((v \oplus a1) \oplus a2) \oplus ...) \oplus an
```

Evaluation

Different Types of Evaluation

- · call-by-value: evaluate argument before applying
- · call-by-name: reduction of function first
- · lazy evaluation (call-by-need): evaluate argument only once, only if needed
 - 1. evaluation from outside in 2. otherwise (if it knows both arguments need to be evaluated) from left to right

Lazy Evaluation vs. Call-By-name

Lazy evaluation evaluates its arguments at most once, whereas call-by name could evaluate an argument multiple times.

Polymorphic Typing

Definition

Polymorphic typing is when a function can take many types.

Ю do v1 <= a1 v2 <= a2

```
vn <= an
return (f v1 v2 ... vn)
```

Tail Recursion

```
1 -- harmonic_tr n evaluates to the nth harmonic number
2 harmonic_tr n = harmonic_tr_help 1 1 n
3
   where
      -- harmonic nc h n evaluates to the nth
        harmonic_tr_help nc v n
         | nc == n = v
         otherwise = harmonic_tr_help (nc+1)
```

Delete Excatly 1 Element (First Occurrence)

```
1 -- del1 e lst -- returns a list with one instance of
  2 -- need to make a choice of what happens if e is not in
3 -- it could
4 ---- return 1st
5 ---- give a runtime error
6 ---- return Nothing
7 del1 e (h:t)
8 | e==h = t
9 | otherwise = e:del1 e t
```

Delete Excatly 1 Element (All Possibilities)

```
1 deliall :: Eq t => t -> [t] -> [[t]]
2 del1all _ [] = []
3 deliall e (h:t)
4 | e==h = t:[h:1 | 1 <- del1all e t]
     | otherwise = [h:1 | 1 <- deliall e t]
```

Delete Exactly *n* **Elements**

```
1 -- delna n e 1st returns a list of all of the lists
    \hookrightarrow that result from deleting exactly n occurrences

    of e from lst

2 delna :: Eq t => Int -> t -> [t] -> [[t]]
3 delna 0 _ lst = [lst]
4 delna n e [] = []
5 delna n e (h:t)
6 | e==h = (delna (n-1) e t) ++ cons_to_each h (delna
        \hookrightarrow net)
```

```
| otherwise = cons_to_each h (delna n e t)
              -- cons_to_each e 1st -- conses e to every

    ⇔ element of 1st

              cons_to_each _ [] = []
11
              cons_to_each e (h:t) = (e:h):cons_to_each e
```

Delete Exactly *n* Elements (List Comprehensions)

```
1 -- Note that this would be easier with list
  2 delna2 :: Eq t => Int -> t -> [t] -> [[t]]
3 delna2 0 _ lst = [lst]
4 delna2 n e □ = □
5 delna2 n e (h:t)
6 | e==h = (delna2 (n-1) e t) ++ [h:r | r <- delna2 n]
```

Remove duplicates (Keep 1st Occurrence)

```
1 myremoveduplicatesfirst :: Eq t => [t] \rightarrow [t]
2 myremoveduplicatesfirst lst = remdupfirst lst []
         -- remdupfirst lst1 lst2 returns the elements

    in lst1 without duplicates that are not

         remdupfirst [] _ = []
         remdupfirst (h:t) 1st2
             h 'elem' 1st2 = remdupfirst t 1st2
              otherwise = h : remdupfirst t
```

Remove Duplicates (Higher-order Functions)

```
1 myremoveduplicates lst = [ head 1 | 1 <- tails lst. 1
   2 myremoveduplicates2 lst = [ h | (h:t) <- tails lst,</pre>

→ not (h 'elem' t)] --using pattern matching
```

Apply

```
1 -- myapply 1st sub where sub is a list of (x,y) pairs,

→ replaces each occurrence of x by y in lst.

2 myapply :: Eq t => [t] -> [(t, t)] -> [t]
3 myapply []
4 myapply (h:t) sub = app h sub :myapply t sub
        -- app e sub gives the value e is replaced by
              according to sub
        app e [] = e
        app e ((x,y):r)
             | e==x = y
```

Apply (Higher-Order Functions)

```
else e) [b | (a,b) <- sub, a==e] | e <- lst]
2 -- myapply "abcdec" [('a', 'f'), ('c', '3'), ('g', '7')]
3 -- myapply "baab" [('a', 'b'), ('b', 'a')]
5 -- or even clearer....
6 -- head_with_default lst def = head of list lst,

→ otherwise (if there is no head) evaluates to

    def

7 head_with_default [] def = def
8 head with default (h:t) = h
9 myapply1 lst sub = [head_with_default [b | (a,b) <-
    10
11 -- or even simpler
```

1 myapply 1st sub = [(\res -> if res /= [] then head res

Append (All Possibilities)

```
1 --- iappend 1 = [(11,12)] where 11 appended to 12 gives 4 tolist (Node 1t val rt) =
2 --- returns list of all answers
3 iappend :: [t] -> [([t],[t])]
4 iappend [] = [([],[])]
5 iappend (h:t) = ([],(h:t)) : [(h:11,12) | (11,12) <-
```

12 myapply2 lst $\hat{sub} = [head [b \mid (a,b) \leftarrow sub++[(e,e)],$

Reverse (Pattern Matching)

```
1 -- rev2 l1 l2 = reverse of list l2 followed by l1
2 rev2 11 [] = 11
3 rev2 l1 (x:xs) = rev2 (x:l1) xs
4 -- rev2 [1,2,4,6] [11,23,45,56]
6 rev = rev2 []
```

Reverse (Lambda Calculus) 1 re2 = myfoldl (myflip (:))

```
1 tails1 :: [t] -> [[t]]
2 tails1 = foldr (\x (h:r) -> (x:h):(h:r) ) [[]]
```

Split

```
1 -- split ('elem' " ,.?!") "What? is this thing? called
   ← Love." =>
   2 split sep [] = []
3 split sep (h1:h2:t)
    | sep h1 = split sep (h2:t)
    | sep h2 = [h1]:split sep (h2:t)
    otherwise = ((h1:w1):rest)
              where w1:rest = split sep (h2:t)
8 split sep [h] -- if previous patterns do not match

    the argument must be a single element list

   | sep h = []
    otherwise = [[h]]
```

Subsequence

```
1 subsequence 11 12 = starts 11 12 || 12 /= [] &&
   where
     starts [] _ = True
      starts _ [] = False
      starts (h1:t1) (h2:t2) = h1==h2 && starts t1 t2
```

```
1 shuffle :: [t] -> [t] -> [[t]] -- list of all shuffles
2 shuffle 11 [] = [11]
3 shuffle [] 12 = [12]
4 shuffle (h1:t1) (h2:t2) =
    [h1:e | e <- shuffle t1 (h2:t2)] ++ [h2:e | e <-
```

Merge Sort

```
1 split [] = ([],[])
 2 \text{ split.} [x] = ([x], [])
 3 split (x:y:r) =
       let (r1,r2) = split r
       in (x:r1, y:r2)
 7 merge [] 1 = 1
 8 merge 1 [] = 1
 9 merge (a:11) (b:12)
       | a <= b = a: merge l1 (b:12)
      otherwise = b: merge (a:11) 12
13 msort ∏ = ∏
14 msort [a] = [a]
15 msort 1 =
     let (11,12) = split 1
    in merge (msort 11) (msort 12)
```

BTree

```
1 -- a binary tree where the nodes are labelled with

    integers

2 data BTree = Empty
            | Node BTree Int BTree
```

BTreee tolist (With Append)

```
1 -- tolist 1st retuens the list giving the inorder
    2 tolist :: BTree -> [Int]
3 tolist Empty = []
    tolist lt ++ (val : tolist rt)
```

BTreee tolist (Without Append)

```
1 -- tolist without append (++), using accumulators
2 tolista :: BTree -> [Int]
3 tolista 1st =
     tolist2 lst []
6 -- tolist2 tree lst returns the the list of elements
    \hookrightarrow of tree followed by the elements of 1st
7 tolist2 :: BTree -> [Int] -> [Int]
8 tolist2 Empty acc = acc
9 tolist2 (Node lt val rt) acc =
     tolist2 lt (val : tolist2 rt acc)
```

BSTree

```
1 -- a binary search tree
2 data BSTree k v = Empty
                 | Node k v (BSTree k v) (BSTree k v)
           deriving (Eq. Show, Read)
```

BSTreee tolist (With Append)

```
1 -- tolist 1st returns the list giving the inorder
   2 tolist :: BSTree k v -> [(k,v)]
3 tolist Empty = []
4 tolist (Node key val lt rt) =
    tolist lt ++ ((key,val) : tolist rt)
```

BSTree tolist (Without Append)

```
1 tolista :: BSTree k v -> [(k,v)]
2 tolista 1st =
     tolist2 lst []
       where
         -- tolist2 tree lst returns the the list of

    ⇔ elements of tree followed by the

            \hookrightarrow elements of 1st
          -- tolist2 :: BSTree k v -> [(k,v)] -> [(k,v)]
         tolist2 Empty acc = acc
         tolist2 (Node key val lt rt) acc =
               tolist2 lt ((key,val) : tolist2 rt acc)
```

BSTree insert

```
1 -- insert key val tree returns the tree that results

    ← from inserting key with value into tree

2 insert :: Ord k => k -> v -> BSTree k v -> BSTree k v
3 insert key val Empty = Node key val Empty Empty
4 insert key val (Node k1 v1 lt rt)
     | key == k1 = Node key val lt rt
     | key < k1 = Node k1 v1 (insert key val lt) rt
     | key > k1 = Node k1 v1 lt (insert key val rt)
```

BSTree inserty

```
1 -- insertv key val tree returns the previous value

    and the resulting tree

2 insertv :: Ord k => k -> v -> BSTree k v -> (Maybe v,

→ BSTree k v)

3 insertv key val Empty = (Nothing, Node key val Empty
   4 insertv key val (Node k1 v1 lt rt)
     | key == k1 = (Just v1, Node key val lt rt)
     | key < k1 = let (res,nt) = insertv key val lt
                 in (res, Node k1 v1 nt rt)
     | key > k1 = let (res,nt) = insertv key val rt
                 in (res, Node k1 v1 lt nt)
```

BSTree btlookup

```
1 -- lookup kev tree returns the value of kev in tree
2 btlookup :: Ord k => k -> BSTree k v -> Maybe v
3 btlookup key (Node k1 v1 lt rt)
4 | key == k1 = Just v1
     | key < k1 = btlookup key lt
     otherwise = btlookup key rt
7 btlookup key Empty = Nothing
```

BSTree value in tree

```
1 value_in_tree BSEmpty _ = False
2 value_in_tree (BSNode key val lt rt) v =
3 val==v || value_in_tree lt v || value_in_tree rt v
```

BSTree lefttree

```
1 lefttree :: BSTree k v -> Maybe (BSTree k v)
2 lefttree Empty = Nothing
3 lefttree (Node _ _ lt _) = Just lt
```

Average (One Pass)

```
1 -- sumn lst = (sum lst, lenght lst)
2 sumn :: [Int] -> (Int,Int) -- (sum,lenght)
3 sumn [e] = (e,1)
4 sumn (h:t) =
5 let (s,n) = sumn t
6 in (s+h, n+1)
7 ave 1st =
8 let (s,n) = sumn lst
  in s 'div' n
```

Powerset

```
1 powerset [] = [[]]
2 powerset (h:t) =
    let pset = powerset t
4 in [h:s | s <- pset] ++ pset
```

Covert to Upper Case

```
1 toUpper :: Char -> Char
2 toUpper x = toEnum( fromEnum x - fromEnum 'a' +
```

3 Misc

Purpose of Uniform Resource Identifier (URI)

A URI is a constant that has a well-defined and standard meaning. It is useful because everyone who uses the constant means the same thing. (It does not imply that there is a unique URI for each thing (the unique names assumption); there can be multiple URIs for the same thing.)

Prolog vs. Haskell

 $\overline{Prolog\ can\ do\ something\ like\ del1(val(x,V),[val(y,3),val(x,7),val(x,2)],R)}.\ to$ return the value of x as well as the rest of the list. Haskel can work with higher-order function, e.g., generalizing this delete1 to act on other functions of the elements (not just equality).

Main Advantage of Strong Typing

Strong typing help programmers eliminate many bugs before the program is put into production.

Advantage of Interactive Development

Programmers can experiment and test their code interactively, and to see results immediately.

Haskell Function Arguments

Q: In Haskell every function takes a single argument. What does this mean for functions that take 2 arguments, such as (+)?

A: (+) applied to a single argument returns a function which takes one argument and returns a value