Theoretische Informatik: Blatt 9

Abgabe bis 27. November 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 22

(a) Wir wollen zeigen, dass NTIME(f) unter Vereinigung abgeschlossen ist. Seien $L_1, L_2 \in NTIME(f)$, dann gibt es nichtdeterministische MTMs M_1, M_2 mit

$$L(M_1) = L_1, L(M_2) = L_2 \text{ und } \operatorname{Time}_{M_1}(n) \in \mathcal{O}(f(n)), \operatorname{Time}_{M_2}(n) \in \mathcal{O}(f(n))$$

Wir konstruieren nun eine neue MTM M mit $L(M) = L := L_1 \cup L_2$.

M simuliert dazu M_1 und M_2 gleichzeitig. Sobald eine von beiden akzeptiert, akzeptiert M ihre Eingabe. Falls beide verwerfen, verwirft auch M.

Falls nun also ein x in L_1 oder L_2 ist, wird M akzeptieren, da $x \in L$.

Für die Berechnung braucht M das Minimum der Rechenzeit beider MTMs.

$$\operatorname{Time}_{M}(x) = \min \{ \operatorname{Time}_{M_{1}}(x), \operatorname{Time}_{M_{2}}(x) \}$$
 für alle x.

Daher:

$$\operatorname{Time}_{M}(n) \in \mathcal{O}(f(n))$$
 und $L(M) = L \in \operatorname{NTIME}(f)$

(b) Wir wissen $L \in \text{NTIME}(f)$ und $L' \in \text{TIME}(f)$.

Es gibt also eine N-MTM M_1 mit $L(M_1) = L$ und eine MTM M_2 mit $L(M_2) = L'$.

Um zu zeigen, dass $L - L' \in \text{NTIME}(f)$ konstruieren wir eine N-MTM M, die folgendermaßen funktioniert:

M simuliert M_1 auf der Eingabe. Falls M_1 nicht akzeptiert, akzeptiert auch M nicht. Akzeptiert M_1 doch, dann simulieren wir die Eingabe auch auf M_2 . Akzeptiert M_2 verwerfen wir, verwirft M_2 akzeptieren wir.

Offensichtlich ist L(M) = L - L'.

Mit Hilfe von Lemma 6.5 folgt: Das Simulieren von M_1 und M_2 liegt in $\mathcal{O}(f(n))$.

Damit liegt auch die Summe der Laufzeiten in $\mathcal{O}(n)$ und $L(M) = L - L' \in \text{NTIME}(f)$.

Aufgabe 23

Aufgabe 24

Wir wissen, für jedes $w \in L$ gibt es einen Zeugen x, mit $|x| \le \log_2 |w|$. Es folgt, für jedes w gibt es

$$\sum_{i=0}^{\log_2 |w|} = 2^{\log_2 |w|+1} - 1 = 2(2^{\log_2 |w|}) - 1 = 2|w| - 1$$

mögliche Kandidaten für einen Zeugen in $\{0,1\}^*$, falls das leere Wort ein Zeuge sein kann.

Da A ein ein Polynomzeit-Verifizierer für L ist, kann A für gegebene w und x in $\mathcal{O}(|w|^k)$, $k \in \mathbb{N}$ herausfinden, ob $w \in L$.

Wir testen einfach für alle möglichen 2|w|-1 Zeugen x ob $(w,x) \in L(A)$. Das hat eine Laufzeit von $\mathcal{O}((2|w|-1)\cdot|w|^k) \subset \mathcal{O}(|w|^{k'})$.

Da wir also für alle Wörter w in polynomieller Zeit feststellen können, ob $w \in L$ ist, ist $L \in P$.