9. Gaussian Mixture Models

EECE454 Introduction to Machine Learning Systems

Recap: Clustering by K-means

- K-means. Each cluster is represented by the centroid.
 - A datum belongs to the cluster with nearest centroid.

- Limitations. Plenty, e.g., cannot handle...
 - overlapping clusters
 - "wider" clusters
 - Example. Non-local residents in Pohang
 - POSCO or POSTECH?

needs a probabilistic approach!

Mixture Models

Mixture models

- Idea. Take a generative approach, and fit parameters!
 - Example. the previous POSCO vs POSTECH.
 - We draw $Y \in \{0,1\} \sim \text{Bern}(p)$.
 - Model the conditional distribution:
 - If Y=0, draw X from $\mathcal{N}(\mu_0, \sigma_0^2)$
 - If Y=1, draw X from $\mathcal{N}(\mu_1,\sigma_1^2)$
 - Allows overlap & can account for wideness.

(0: POSCO, 1: POSTECH)

Mixture models

• **Perk.** If you have "learned" a nice probabilistic model from data, you can not only cluster, but also generate a new data.

(Note: Example below requires additional text conditioning...)

(finite) Mixture models

More generally we model the data-generating pdf with

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \cdot p_k(\mathbf{x}), \qquad \pi_k \in [0,1], \sum_{k=1}^{K} \pi_k = 1.$$

Gaussian mixture models

Each base distribution is a Gaussian distribution:

$$p(\mathbf{x} \mid \theta) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k),$$

where $\theta = (\mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K, \pi_1, \dots, \pi_K)$ is the total parameter set.

$$p(x \mid \boldsymbol{\theta}) = 0.5 \mathcal{N}(x \mid -2, \frac{1}{2}) + 0.2 \mathcal{N}(x \mid 1, 2) + 0.3 \mathcal{N}(x \mid 4, 1)$$

Gaussian mixture models

Each base distribution is a Gaussian distribution:

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k),$$

where $\theta = (\mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K, \pi_1, \dots, \pi_K)$ is the total parameter set.

- Question. How do we fit the parameters, given $\{x_1, ..., x_n\}$?
 - Challenge. We do not know the true labels!

Maximum Likelihood

• Similar to what we learned in naïve Bayes, what we want to try is the maximum likelihood.

$$p(\mathbf{x}_{1:n} | \theta) = \prod_{i=1}^{n} p(\mathbf{x}_i | \theta)$$
$$= \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)$$

 \Rightarrow maximize this quantity by tuning $\theta = \{\mu_k, \Sigma_k, \pi_k \mid k \in [K]\}$

Maximum Log-Likelihood

We do the usual log trick to make everything summation...

$$\mathcal{Z} := \log p(\mathbf{x}_{1:n} | \theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k) \right)$$

- Normally, you would try to find the optimum by locating the critical point (i.e., gradient = 0)
 - Give it a try! (let me know if you succeed)

Expectation-Maximization

- Idea. Fix some variables and optimize others.
 Fix the optimized variables, and optimize the previously fixed.
 Repeat ...
 - Generally, we call it expectation-maximization (EM) algorithm.
 - Similar to what we did in K-means!

Algorithm 1 *k*-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: maximization: Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.

Expectation-Maximization

- Recall that, in hard K-means...
 - Randomly initialize centroids $\{\mu_k\}$.
 - Fix the centroids $\{\mu_k\}$ and optimize the assignment $\{r_{ik}\}$.
 - Optimal, if nearest neighbor.
 - Fix the assignment $\{r_{ik}\}$ and optimize the centroid $\{\mu_k\}$.
 - Optimal, if mean of the assigned data.
 - Repeat.

Expectation-Maximization

- Similarly, what we want to do is...
 - Randomly initialize parameters $\theta = \{\mu_k, \Sigma_k, \pi_k\}$.
 - Fix the parameters θ and optimized the responsibility $\{r_{ik}\}$.
 - Optimal, if?
 - Fixed the responsibility $\{r_{ik}\}$ and optimized the parameters θ .
 - Optimal, if?
- Let's think about the optimal conditions...

Recall: Multivariate Gaussian

Multivariate Gaussians:

$$\mathcal{N}(\mathbf{x} \mid \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d \mid \Sigma \mid}} \cdot \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Take log, you get:

$$\log \mathcal{N}(\mathbf{x} \mid \mu, \Sigma) = -\frac{1}{2} \cdot \left(d \log(2\pi) + \log |\Sigma| + (\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu) \right)$$

Recall: Responsibilities

• Soft K-means. The softmax value

$$r_{ik} = \frac{\exp(-\beta ||\mathbf{x}_i - \mu_k||_2^2)}{\sum_{j} \exp(-\beta ||\mathbf{x}_i - \mu_j||_2^2)}$$

• GMM. We use

$$r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x} \mid \mu_j, \Sigma_j)}$$

Recall: Responsibilities

• Soft K-means. The softmax value

$$r_{ik} = \frac{\exp(-\beta ||\mathbf{x}_i - \mu_k||_2^2)}{\sum_{j} \exp(-\beta ||\mathbf{x}_i - \mu_j||_2^2)}$$

• GMM. We use

$$r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x} \mid \mu_j, \Sigma_j)}$$

$$= k)$$

$$p(\mathbf{x} \mid \mathbf{y} = k)$$

$$p(\mathbf{x})$$

$$p(y = k \mid \mathbf{x}) = \frac{p(\mathbf{x}, y = k)}{p(\mathbf{x})}$$

Recall: Responsibilities

• Soft K-means. The softmax value

$$r_{ik} = \frac{\exp(-\beta ||\mathbf{x}_i - \mu_k||_2^2)}{\sum_{j} \exp(-\beta ||\mathbf{x}_i - \mu_j||_2^2)}$$

• GMM. We use

$$r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x} \mid \mu_j, \Sigma_j)}$$

Note. If $\pi_k = 1/K$, $\Sigma_k = I/\beta$, then this is identical to soft K-means.

Optimality Condition: Mean

Recall that

$$\mathcal{L} := \log p(\mathbf{x}_{1:n} | \theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k) \right)$$

• Partial derivative w.r.t. μ_k is...

$$\nabla_{\mu_k} \mathcal{L} = \sum_{i=1}^n \frac{\pi_k \cdot \nabla_{\mu_k} \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)}{\sum \pi_j p(\mathbf{x}_i \mid \mu_j, \Sigma_j)} = \sum_{i=1}^n r_{ik} (\mathbf{x}_i - \mu_k)^{\mathsf{T}} \Sigma_k^{-1} = \mathbf{0}$$

$$\Rightarrow \mu_k = \frac{\sum_{i} r_{ik} \mathbf{X}_i}{\sum_{i} r_{ik}}$$

Optimality Condition: Variance

Do the similar thing, and you get

$$\Sigma_k = \frac{1}{n_k} \sum_{i=1}^n r_{ik} (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^{\mathsf{T}}$$

where we use the shorthand
$$n_k = \sum_{i=1}^n r_{ik}$$
.

see section 11.2.3 of the main textbook

Optimality Condition: Mixture Weights

Do the similar thing, and you get

$$\pi_k = \frac{n_k}{n}$$

see section 11.2.4 of the main textbook;

this one is trickier as it's constrained—use Lagrange multipliers!

The full E-M

- Do the similar thing, and you get
 - 1. Initialize μ_k, Σ_k, π_k .
 - 2. *E-step*: Evaluate responsibilities r_{nk} for every data point \boldsymbol{x}_n using current parameters $\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$:

$$r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$
 (11.53)

3. *M-step*: Reestimate parameters π_k, μ_k, Σ_k using the current responsibilities r_{nk} (from E-step):

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} \boldsymbol{x}_n,$$
 (11.54)

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\top},$$
 (11.55)

$$\pi_k = \frac{N_k}{N} \,. \tag{11.56}$$

The full E-M

The full E-M

Cheers

• Next up. Trees, Random Forest, and Boosting