

Level II Audit of Terephthalic Acid Smoke Grenade Manufacturing Process

Pine Bluff Arsenal, AR

by
Jearldine I. Northrup
Joyce Baird
Veda Scarpetta
Alan Chalifoux
Douglas Heinen
Mike C.J. Lin

Meeting environmental requirements with the currently installed technologies is a problem common to the existing DOD industrial base. Compliance with environmental law is becoming significantly expensive for Army installations. This study was undertaken to provide Army installations with methods to meet pollution regulations by reducing the formation of waste, including stack gas, from energy production. An understanding of the energy-use patterns and options in the production sites, combined with innovative and effective methodologies, can help identify energy and emission reduction opportunities.

In 1996, the U.S. Army Construction Engineering Research Laboratories

(USACERL) sponsored a 3-day Level I Process Energy Review and Process Energy and Pollution Reduction workshop at Pine Bluff Arsenal, AK. The specific area defined for the process improvement and energy reduction activities was the terephthalic acid (TA) smoke grenade process. The review and workshop provided training to site technical personnel to analyze existing manufacturing processes, and to identify process changes that improve energy efficiency, raw material use, plant capacity, product quality, and environmental advantages. This study performed a Level II audit of TA smoke manufacturing to optimize capacity and energy, and environmental performance of that process.

DTIC QUALITY INSPECTED 3

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report 97/126, Level II Audit of Terephthalic Acid Smoke Grenade Manufacturing Process: Pine Bluff Arsenal, AR

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

	Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which ort will be used.)
2.	How, specifically, is the report being used? (Information source, design data or procedure, management
pro	cedure, source of ideas, etc.)
3.	Has the information in this report led to any quantitative savings as far as manhours/contract dollars ed, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
	Wilestin and the following areas?
4.	What is your evaluation of this report in the following areas? a. Presentation:
	b. Completeness:
	c. Easy to Understand:
	d. Easy to Implement:
	e. Adequate Reference Material:
	f. Relates to Area of Interest:
	g. Did the report meet your expectations?
	h. Does the report raise unanswered questions?

	hat you think should be changed to make this report and future reports eds, more usable, improve readability, etc.)
5. If you would like to be contacted by discuss the topic, please fill in the follow	the personnel who prepared this report to raise specific questions or wing information.
Name:	
Telephone Number:	
Organization Address:	
6. Please mail the completed form to:	
Department of	the Army

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-TR-I
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22	202-4302, and to the Office of Management and	budget, Paperwork Reduction F	roject (0704-0188), washington, DC 20503.
AGENCY USE ONLY (Leave Blank)	2. REPORT DATE August 1997	3. REPORT TYPE AND DATE Final	S COVERED
4. TITLE AND SUBTITLE Level II Audit of Terephthalic Bluff Arsenal, AR	Acid Smoke Grenade Manufactur	ring Process: Pine	5. FUNDING NUMBERS MIPR FJ6 V6048 FJ WU FJ6
6. AUTHOR(S) Jearldine I. Northrup, Joyce Baand Mike C.J. Lin,	aird, Veda Scarpetta, Alan Chalifo	oux, Douglas Heinen,	
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
U.S. Army Construction Engir P.O. Box 9005 Champaign, IL 61826-9005	neering Research Laboratories (US	SACERL)	TR 97/126
9. SPONSORING / MONITORING AGENC Pine Bluff Arsenal Office of E ATTN: SMCEP-EM 10020 Kabrich Circle Pine Bluff, AR 71602-9500			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES Copies are available from the l VA 22304-6145	Defense Technical Information Ce	enter, ATTN: DTIC-DD	RB, Cameron Station, Alexandria,
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
Further distribution only as dir	rected by SMCPB-EM or higher a	uthority.	
industrial base. Compliance wi was undertaken to provide Arm waste, including stack gas, from production sites, combined with opportunities. In 1996, the U.S. Army Constr Energy Review and Process Endefined for the process improve The review and workshop providentify process changes that in	my installations with methods to me energy production. An understath innovative and effective method ruction Engineering Research Labnergy and Pollution Reduction we mement and energy reduction activided training to site technical permprove energy efficiency, raw materials of TA smoothers.	g significantly expensive neet pollution regulation nding of the energy-use lologies, can help identi oratories (USACERL) s rkshop at Pine Bluff Ar- ties was the terephthalic sonnel to analyze existinterial use, plant capacit	e for Army installations. This study s by reducing the formation of patterns and options in the fy energy and emission reduction ponsored a 3-day Level I Process senal, AK. The specific area c acid (TA) smoke grenade process. In manufacturing processes, and to y, product quality, and environmen-
14. SUBJECT TERMS			15. NUMBER OF PAGES
energy conservation emissions	Pine Bluff Arsenal, air pollution contro		94
environmental compliance	an ponduon contro		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICAT OF ABSTRACT Unclassified	ABSTRACT

USACERL TR-97/126

Foreword

This study was conducted for Pine Bluff Arsenal Office of Environmental Management and the Office of the Deputy Undersecretary of Defense for Environmental Security, conservation, and Installations under Military Interdepartmental Purchase Request (MIPR) No. FJ6 V6048 FJ; Work Unit FJ6, "Level II PEPR Audit at Pine Bluff Arsenal, AK." The technical monitor was Phillip Vick, SMCPB-EM.

The work was performed by the Industrial Operations Division (UL-I) of the Utilities and Industrial Operations Laboratory (UL), U.S. Army Construction Engineering Research Laboratories (USACERL). Consulting support for this study was provided by ETSI Consulting and Stanley Consultants, Inc. The USACERL principal investigator was Jearldine I. Northrup. Walter J. Mikucki is Chief, CECER-UL-I; John T. Bandy is Operations Chief, CECER-UL; and Gary W. Schanche is the associated Technical Director, CECER-UL. The USACERL technical editor was William J. Wolfe, Technical Resources.

COL James A. Walter is Commander and Dr. Michael J. O'Connor is Director of USACERL.

Contents

SF	⁻ 298	1
For	oreword	2
Lis	st of Figures and Tables	5
1	Introduction	7
	Background	7
	Objective	
	Approach	9
	Scope	9
	Mode of Technology Transfer	9
	Metric Conversion Factors	10
2	Current TA Smoke Grenade Process	11
	TA Smoke Grenade Process Overview	11
	The Glatt Mixing Line	11
	Fill and Press Line	16
	Load and Packout Line	17
3	Optimization of TA Smoke Grenade Process	25
	Level II Audit on TA Smoke Grenade Process	25
	Data From PBA	26
	Proposed Process Improvements for Glatt Line	31
	Process Improvement for the Fill and Press Line	32
4	Quality and Other Issues	49
	Quality Concepts and Improvement	49
	Employees' Health and Safety	51
	Choosing Between Automation and Manual Operations	52
	Labor Standards	53
5	Conclusions and Recommendations	55
	Conclusions	55
	Recommendations	56

References	.57
Appendix A: Production Division Monthly Labor Yield From PBAPBA	.58
Appendix B: Review of Level I Audit on TA Smoke Grenade Process	.79
Appendix C: Data-Gap Analysis	.85
Distribution	

List of Figures and Tables

Figur	res	
1	Block process flow diagram for Glatt mixing operation	12
2	Block process flow diagram for fill and press operation.	18
3	Block process flow diagram for load and packout operation.	23
4	Labor hours breakdown for TA smoke grenade	27
5	Measured hours vs. unmeasured hours.	27
6	Measured labor hours vs. supervision hours	28
7	Line maintenance hours vs. other unmeasured hours	28
8	Rework hours vs. total measured hours	29
9	Sick leave hours vs. total measured hours	29
10	Breakdown of unmeasured hours	30
11	Average time spent on value-added and non-value-added work	30
Table		
1	Master bill of materials by product number	
2	Prioritized summary of proposed optimizations	48
3	Functions that human beings usualy do better than machines.	54
4	Functions that machines usually do better than human beings	54
	1 Pine Bluff Arsenal's FY97 revenue projections	
	2 Identifying the manufacturing cost structure	
В	3 Brainstorming concepts for capacity optimization	80
B	4 Brainstorming concepts for energy optimization	82
B	5 Brainstorming concepts for environmental optimization	83
В	6 Where-why analysis (capacity - fast track conveyor)	84
В	7 Where-why analysis (environmental issues)	84

1 Introduction

Background

Defense Energy Program Policy Memorandum (DEPPM) 91-2 and Executive Order 12759 assigned energy efficiency goals for Federal facilities for fiscal year 2000 (FY00) as compared to the FY85 base year. Each Department of Defense (DOD) component is directed to prescribe policies and establish appropriate measures of energy efficiency under which the aggregate of its industrial energy-consuming facilities will increase energy efficiency by at least 20 percent in FY00 in comparison to FY85. Executive Order 12902 calls for an increased energy efficiency in Federal industrial facilities by at least 20 percent by FY05 compared to FY90 and requires agencies to implement all cost-effective water conservation projects. The Order also increases the energy savings requirement for agencies to 30 percent by FY05 compared to FY85 in British thermal units (Btu) per gross square foot.

Executive Order 12856 requires the Army to reduce the use of energy and related environmental impacts by promoting renewable energy technologies. Section 3-302 (a) requires a 50 percent reduction in toxic chemical and pollutant releases to the environment by 31 December 1999. Executive Order 12873 requires the Army to incorporate waste prevention and recycling in everyday operations and to acquire and use "environmental preferable" products and services to the maximum extent practicable. Beginning 4 April 1994, Section 503 requires periodic modification to procurement guidelines to incorporate latest USEPA guidance.

These energy and environmental directives usually exceed the performance capabilities of DOD's currently installed industrial technologies. While future DOD industrial facilities will employ state-of-the-art production technologies being developed jointly by the Army's ManTech program and Department of Energy's (DOE's) Sandia National Laboratory, the majority of DOD industrial activities use technologies and facilities that are at least 40 years old. Meeting environmental requirements with the currently installed technologies is a problem common to the existing DOD industrial base. Compliance with environmental law is becoming a significantly expensive proposition for Army installations.

In the past, pollution prevention was considered independently from compliance. Environmental law was introduced to persuade managers of pollution-producing industrial processes to seek ways to change production methods to lessen pollution. The hierarchy setup by the U.S. Environmental Protection Agency (USEPA) pollution prevention opportunities (PPOs) is based on the principles of

8 USACERL TR-97/126

source reduction, conservation of materials and energy, recycling, and substitution of nonhazardous materials for hazardous materials. Many research installations, including the U.S. Army Construction Engineering Research Laboratories (USACERL) have documented and compiled energy conservation opportunities (ECOs) common in manufacturing.

For example, energy use is a significant problem in air compliance. Most criteria air pollutants are produced by industrial boilers and electric power plants. However, environmental engineers are oftentimes not trained to think in terms of the supply side of energy production and process improvement to reduce pollution. Therefore, they tend to seek "tail pipe" solutions to air compliance problems. Such solutions require even more energy and are often expensive to maintain. These energy costs are only a small fraction of the societal cost of stack gas. Health problems of persons living in the waste stream path, acid rain, destruction of forests, and loss of wild life are rarely taken into account.

This study was undertaken to provide Army installations with methods to meet pollution regulations by preventing pollution—by reducing the formation of waste, including stack gas from energy production. In the optimal pollution-prevention situation, all raw materials brought to the manufacturing facility leave as product. If there is waste in the air, water, or in solid form, the producers of that waste should attempt to dispose of it to another manufacturer who can reprocess it into a usable commodity. Most states now have a material exchange set up in which one manufacturer can use the scraps from another. This approach requires specific areas where cost-effective compliance with directives is mandated to undergo a thorough evaluation of industrial activities for potential improvements. An understanding of the energy-use patterns and options in the production sites, combined with innovative and effective methodologies can help identify energy and emission reduction opportunities.

In 1996 USACERL, under the Federal Energy Management Program (FEMP), sponsored a 3-day Level I Process Energy Review and Process Energy and Pollution Reduction workshop at Pine Bluff Arsenal (PBA), Pine Bluff, AK. The specific area defined for the process improvement and energy reduction activities was the terephthalic acid (TA) smoke grenade process. The objective was to optimize manufacturing cost at lower levels with improved quality, raw material utilization, and environmental and energy performance by modification of process operations or technology. The review and workshop conducted at PBA provided training to site technical personnel to enable them to analyze existing manufacturing processes, identify process changes that improve energy efficiency, raw material utilization, plant capacity, product quality, and environmental advantages. Following the Level I Audit on the TA smoke grenades, USACERL received a request from PBA to perform a Level II audit of the TA Smoke manufacturing process.

Objective

The objective of the project was to conduct a Level II audit on the TA smoke grenade process for the Industrial Process Improvement Program at PBA to optimize capacity and energy and environmental performance. The Level II audit was conducted by USACERL researchers and PBA technical staff.

9

Approach

PBA provided USACERL with Production Division Monthly Labor Yield reports (Appendix A). Job #AB033/4208C (M83 smoke grenades) was selected for analysis. The time period for this job was from February 1996 to 31 May 1996. The data from the PBA report were entered into a spreadsheet to more easily allow data elements to be sorted into their respective activity codes.

PBA technical staff and USACERL researchers reviewed the information gathered during the Level I audit of the TA smoke grenade process and conducted a Data-Gap Analysis to determine whether additional data were required for the Level II audit.

The USACERL team visited PBA in August 1996, and with PBA technical staff, collected information on the selected ideas from the Level I audit. This work included analysis of readiness (startup time, capacity, etc.); reliability (power outages, etc.); quality (correct measurements, corrective actions, etc.); safety and health, environmental issues, utilities, labor requirements, and cost.

This task produced documentation for the work performed at PBA for the project. Documentation included a summary report highlighting the low investment and high payback project areas and DOD investments needed to reduce industrial energy. Information was incorporated into a software format that was already written, thereby giving a baseline for further work at the installation by installation personnel.

Scope

This Level II audit reviewed industrial processes at Pine Bluff Arsenal, AK. Although the conceptual results of this study may have broader application to processes across the DOD industrial base, specific conclusions and recommendations of this study relate solely to this site.

Mode of Technology Transfer

It is anticipated that the general conceptual results of this work will be incorporated into the Process Energy and Pollution Reduction (PEPR) computer software program, the primary purpose of which is to provide users with a flexible analysis tool for rapidly evaluating process energy and pollution reduction opportunities for industrial processes at DOD facilities. PEPR is an

USACERL TR-97/126

ongoing research effort that will assist DOD industrial facility managers in making informed decisions on process energy reduction and pollution prevention.

Specific data derived from this study will be transferred to the Pine Bluff Office of Environmental Management at Pine Bluff Arsenal, AK, to be further distributed only as directed by that office or higher authority.

Metric Conversion Factors

The following metric conversion factors are provided for standard units of measure used throughout this report:

1 in. = 25.4 mm

1 ft = 0.305 m

1 sq ft = 0.093 m2

1 mi = 1.61 km

1 lb = 0.453 kg

1 gal = 3.78 L

1 psi = 6.89 kPa

1 ft-lb = 1.356 joules

1 ton = 0.907 metric ton

1 acre = 0.40469 ha

2 Current TA Smoke Grenade Process

TA Smoke Grenade Process Overview

PBA has the ability to mix, fill, load, assemble, and package a wide variety of smoke munitions. These include colored smoke, irritants, thickened pyrophoric agent (TPA), hexachlorethane (HC) smoke, and terephthalic acid (TA) smoke grenades, the subject of this report. TA is produced by converting mixed xylenes to paraxylene and combining a feed mixture of paraxylene, catalyst, and acetic acid with air in a continuous reactor. The paraxylene is oxidized to produce crude TA, which then is purified through catalytic hydrogenation and crystallization. The resulting white powder is >99.96 percent pure. The TA is purchased from a commercial manufacturer in 1000-kg supersacks. A review of the current TA smoke grenade process follows.

The manufacturing process of TA smoke grenades is conducted in three separate operations each performed at a separate facility to comply with safety regulations. The three lines involved in TA smoke grenade production are: Glatt mixing line, fill and press line, and load and packout line.

The Glatt Mixing Line

The steps involved in the Glatt line are conducted in building 32-620. Seven persons are involved in the Glatt mixing line. A description of each of the Glatt mixing steps follows, and Figure 1 shows a block process flow diagram of the Glatt mixing.

- Step 1. Raw materials are received. The inputs and outputs of this step are TA, magnesium carbonate, potassium chlorate, sugar, and stearic acid.
- Step 2. The 3 percent polyvinyl alcohol (PVA) binder is manufactured. The input is PVA, and the 3 percent PVA binder is the output.
- Step 3. The raw materials are stored. Inputs and outputs are raw materials from Step 1 and PVA binder from Step 2.
- Step 4. The raw materials are measured and mixed together. The potassium chlorate and sugar are sifted. The inputs are all of the raw materials from Step 3. The outputs are the raw materials combined into a mixture. The PVA binder is not mixed with the other components during this stage.
- Step 5. The components (TA 57 wt%, MgClO3 4.2 wt%, KClO3 23.5 wt%, and sugar 14 wt%) are weighed and mixed. The inputs and outputs are the preceding components.

Figure 1. Block process flow diagram for Glatt mixing operation.

Figure 1. (Cont'd).

Figure 1. (Cont'd).

USACERL TR-97/126 15

Step 6. Make fluidizing air. The input is air, and the output is fluidized air.

- Step 7. The fluidized air is prefiltered. The input is fluidized air, and the output is prefiltered fluidized air.
- Step 8. The prefiltered air is input and steam is input to heat the air, using steam coils. The heated air is output and condensate is removed.
- Step 9. The output components from Step 5 are input and stored.
- Step 10. The stored, mixed components from Step 9 are input into the mixing bowl and heated for 20 minutes.
- Step 11. The mixing bowl containing the components from Step 10 is placed in the Glatt mixer. The mixer is raised into position, and the main turbine is started. In addition, the heated air from Step 8 is input. The output is the mixture of components and the exhaust air. The Glatt mixer uses a fluidized bed process to agitate and granulate the mix components. Throughout all of the mixing stages, the air flow is stopped while the sock filter is shaken to clear it of accumulated dust and to reduce the pressure drop across the filter itself. The objective is to obtain uniform granule size.
- Steps 12, 13, and 14. These steps are first stage filter, second stage filter, and third stage filter, respectively. The exhaust air from Step 11 is fed into Step 12, and then the air goes through each filter in turn to remove impurities. "Clean" air emerges from the third stage filter (Step 14). This air is free from any particles from the process mixture.
- Step 15. The Glatt mixture is input and the PVA binder is added. The output is the combined mixture.
- Step 16. This is the drying stage at which the binder solvent is removed by evaporation. The duration of the drying process partially depends on the temperature of the mix, but it is approximately 40 minutes.
- Step 17. The mixture from Step 16 is cooled and stearic acid 1 wt% is added. The stearic acid in powder form is introduced into the mix with only a few minutes remaining in the cooling cycle. The cooling cycle is approximately 10 minutes.
- Step 18. After completion of the mixing stage, the bowl containing the product is removed from the mixer and transported to the bowl inverter, which raises the bowl and inverts it. The dirty bowl is removed and the components are output to the sifter.
- Step 19. The sifter receives the dried and cooled components from the preceding steps. Oversize granules are separated from the correct-sized granules.
- Step 20. The oversize granules that were separated from the mixture (usually less than 1 percent) are reprocessed.

- Step 21. Some of the sifted material is drawn off for sampling. This is a quality control step.
- Step 22. The regranulated oversized particles and the sifted material from Step 19 are received and loaded into transporters to go to fill and press.

Fill and Press Line

The second part of the TA smoke grenade process is conducted in building 33-530. A total crew of 28 persons works on this line. Figure 2 shows the steps of the fill and press described here:

- Step 1. The previously mixed and sifted materials from the Glatt process arrive in transporters.
- Step 2. The supply materials are loaded into the hopper.
- Step 3. Slugs are pressed.
- Step 4. Cans and slugs are input, and the slugs are loaded into the cans.
- Step 5. Ten cans at a time with slugs move into the consolidate press (Bottleneck #3).
- Step 6. Sets of four move into the vacuum station where excess is removed.
- Step 7. Sets of four move into the manual station and screen is also input. The screen is inserted into each can.
- Step 8. The screen is pressed into place
- Step 9. The height of fill and screen is checked.
- Step 10. Pick and place; cans are picked up and placed on a conveyor belt.

Steps 11 and 12. These two steps, in addition to Steps 13 and 14, are conducted on the fast conveyor belt and constitute Bottleneck #1. The two steps comprise the installation of a plastic cup and starter cap, and an auto check.

- Step 13 and Step 14. Discs are loaded into the cans in Step 13. An auto check is performed on the output. Step 14 is pick and place.
- Step 15. The lid is installed and the can is sealed (Bottleneck #2). The can lids are the input and the sealed cans are the output.
- Step 16. The residue is cleaned off the exterior of each can.
- Step 17. Check station conveyor.
- Step 18. The can is taped.
- Step 19. The can is painted two colors.
- Step 20. The paint is dried.

- Step 21. White markings are applied.
- Step 22. A blue band is applied.
- Step 23. The fuse is introduced and twisted.
- Step 24. The fuse is torqued.
- Step 25. The containers are fed onto the line and separated.
- Step 26. Each filled canister (unit) is placed into a container.
- Step 27. A protecting collar is installed over the fuse.
- Step 28. Close fiber container.
- Step 29. Put in box. The small box has dimensions of 18 x18 in. and holds 16 canisters.
- Step 30. Put the box on a pallet.
- Step 31. The pallets are sent to storage.

Typically, four batches of 1,200 lb of mixture are received at the Fill and Press Line and 5,500 units per day are produced, each unit containing 0.218 lb.

Load and Packout Line

Load and Packout is conducted in building 33-570, which includes an area of 30,000 sq ft. There are 98, 1 x 4-ft fluorescent lamps in the building. Fourteen persons are required to conduct the operations of this line, and the daily capacity is 10,000 units. Figure 3 shows the steps associated with the load and packout line described here:

Step 1. The cans are manually removed from the boxes in which they are received from the fill and press lines and are loaded onto both sides of a conveyor belt. There is one pneumatic motor for the load conveyor, which is run at approximately half speed to feed the tape and stencil machines. The conveyor is capable of running more than 20,000 grenades per day.

Steps 2 and 3. The cans are conveyed to the tape and stencil machine. A bottleneck could be created coming out of the tape and stencil machine because the grenades must be 100 percent inspected. Two machines will keep two inspectors busy constantly. The boxes are hand stenciled. An automatic box stenciling machine has been tried in the past. Because of irregularities in the boxes (size not uniform, box sides made of more than one board, etc.) the machine did not work. Two persons stenciling the boxes can keep the box loader full.

When small boxes are not available, large boxes (capacity 360 canisters per box) are used. The small boxes are manufactured by an organization employing disabled persons and sometimes the boxes are not available.

Figure 2. Block process flow diagram for fill and press operation.

Figure 2 (Cont'd).

- Step 4. After the canisters are taped and stenciled, they are conveyed to the accumulator. The box loading machine can keep pace with the operator putting the packing material into the boxes.
- Step 5. The cans are inspected for paint touch-up. Only about 5 percent need rework at this stage. Those 5 percent are sent to Step 6; the other 95 percent proceed directly to Step 8 (load crate). One operator is responsible for both steps 5 and 6.
- Step 6. The 5 percent rejects are conveyed to the rework area. The canisters are repainted at the rework booth and immediately put back on the line.
- Step 7. Wooden crates are prepared.
- Step 8. The crates are loaded. The cans continue on the conveyor to the load box area.
- Step 9. Grenades are packed into wooden boxes along with overpack material. The packing consists of two different types of material.
- Step 10. Operating instructions are added to each box.
- Step 11. The boxes are conveyed to a semiautomatic machine that nails the lids in place. The box lid is not a single piece of wood; it usually is two pieces of wood connected with a corrugated nail.
- Step 12. The boxes are moved to the automatic wire tie machine. The box is wired in two places.
- Step 13. The boxes are palletized. One operator uses a forklift truck to put empty pallets in the palletizing machine and to remove the full pallets as the machine dispenses them.
- Step 14. The same operator who does Step 13 straps the full pallets.
- Step 15. The boxes are stored in local storage until the consignment is completed. The operator who does Step 13 removes the full pallets to the storage building across the road. This operator also brings the grenades from the storage building to be loaded onto the conveyor in Step 1.
- Step 16. When the consignment is complete, it is shipped to North End Storage until it is shipped to the customers.

23

Figure 3. Block process flow diagram for load and packout operation.

Figure 3. (Cont'd).

USACERL TR-97/126 25

3 Optimization of TA Smoke Grenade Process

A Process Data-Gap Analysis was conducted prior to the Level II audit on the TA smoke grenade process. This analysis involved a review of the data gathered during the Level I audit. The data and associated material were provided by PBA technical staff, USACERL researchers, and contractors during brainstorming sessions. The following types of collected-data included: operational (standing operating procedures, technical, raw materials), quality (specifications, measurements), maintenance (requirements, frequencies), utilities usage, pollutants (air, water, solid waste), and cost. The results of the brainstorming sessions are included in Tables A3, A4, and A5 in Appendix B to this report.

USACERL researchers reviewed the information and analyzed each selected item for capacity, environment, and energy. Determinations were made on: (1) how much useful data had been acquired, (2) additional data that needed to be developed and/or compiled, and (3) nonvalue-added information that could be eliminated. General and specific questions were asked to ascertain where data were missing or, in some cases, redundant. Missing data elements were supplied by PBA technical staff (see Appendix C for Data-Gap Analysis questions).

Level II Audit on TA Smoke Grenade Process

A Level II audit is an aggregated or holistic notion, unlike a Level I audit in which each aspect is examined in its various components (capacity, environment, and energy). In the Level I audit of the TA smoke grenade manufacturing process, participants in the audit considered capacity, environment, and energy issues as separate entities. Each component was brainstormed, and the best ideas were selected and analyzed in terms of savings per year that the idea would produce if introduced, capital costs to implement the idea, and payback time. In the Level I audit, an economic analysis of the selected ideas was conducted, but no measurements were taken. PBA technical experts guessed at costs of implementing ideas and their associated cost-benefits.

In the Level II audit, USACERL researchers conducted a combined assessment of the Level I results. The objective was to identify and evaluate opportunities to reduce process-related waste, conserve process-related energy, and optimize process capacity. Process-related wastes include hazardous and nonhazardous waste in the forms of air emissions, liquid wastes, and solid wastes. Process-

26 USACERL TR-97/126

related energy includes equipment operation and maintenance, steam generation and utilization, compressed air generation and utilization, space heating and cooling, lighting, and transportation.

Data From PBA

From the Summary Scrap-Rework Cost Monthly Report, information regarding the 1996 order for M83 training grenade scrap data was analyzed. This summary states that \$7,499 was spent for scrap in May, \$7,218 in April, \$10,155 in March, and \$2,977 in February. The total scrap amount for the M83 training grenade production was \$27,849. Total units completed were 38,432 for May, 38,096 for April, 81,120 for March, and 75,664 for February—a total of 233,312 units. Net value is the number of units produced multiplied by the cost of the end item, including direct labor rate, administration rate, support rate, and direct materials and components. In this report, "other" refers to loss or damage of direct materials or components due to the vendor, manufacturer, or in transportation. Cost is determined in the same way for both scrap and rework.

From the Level I audit, the number of production hours estimated to produce 233,312 units of TA smoke grenades was 630 hours. The projected workhours for the job are calculated by multiplying the production hours by the number of personnel involved (31 workers x 630 hours = 19,530 workhours). From the Production Division Monthly Labor Yield for PBA, Job #AB033/4208C was selected for analysis of reported hours. Because USACERL did not have access to the computer system at PBA, the data for Job #AB033/4208C were put into a spreadsheet and sorted by activity code. (See Appendix A for spreadsheets.)

Figure 4 shows the breakdown of labor hours for Job #AB033/4208C. The reported net hours measured (16,355 hours, or 37 percent of the total labor hours) represents the actual workhours spent on manufacturing the TA smoke grenades. The remaining 63 percent of the total labor hours includes overhead hours (6,716.5 hours or 16 percent), leave hours (4,686 hours, or 11 percent), down hours (5,073 hours, or 12 percent), and hours unmeasured (10,299 hours, or 24 percent). measured hours are the hours recorded by a time clock and unmeasured hours are those hours that constitute the balance of an 80-hour pay period.

Figure 5 shows that actual hours measured (21,428 hours) constitute 68 percent of the aggregate of the measured and unmeasured hours. Figure 6 shows actual hours measured (21,428 hours) amounted to 67 percent of the combined total of actual measured hours, supervision hours (15 percent of the total), and other unmeasured hours (18 percent of the total). Line maintenance hours (231 hours) are only 2 percent of the total of other unmeasured hours (10,299), as Figure 7 shows. Figure 8 shows that rework (333 hours) is 2 percent of the actual measured hours (21,428 hours), and Figure 9 indicates that sick leave (1,656 hours) is 7 percent of the actual measured hours (21,428 hours). Figure 10 shows a breakdown of the unmeasured hours. Figure 11 shows the results of a survey of U.S. industries (Read, pp 18-23).

Figure 4. Labor hours breakdown for TA smoke grenade.

Figure 5. Measured hours vs. unmeasured hours.

Figure 6. Measured labor hours vs. supervision hours.

Figure 7. Line maintenance hours vs. other unmeasured hours.

Figure 8. Rework hours vs. total measured hours.

Figure 9. Sick leave hours vs. total measured hours.

Figure 10. Breakdown of unmeasured hours.

Figure 11. Average time spent on value-added and non-value-added work.

This survey shows that the time spent on value-added work (actual work on a project) amounts to 25 percent of the total time; PBA records that 37 percent of the total labor hours were used in the actual production of the smoke grenades for Job #AB033/4208C.

Proposed Process Improvements for Glatt Line

The Glatt line was not analyzed extensively during the Level I audit because most of the problems appeared to occur in the fill and press line. Consequently, PBA did not supply USACERL with supporting data for the Glatt line. The only bottleneck in the Glatt operation was reported to be due to the TA drying time (Step 16).

In addition, a fire occurred in the Glatt line during the Level I audit conducted at PBA that shut down manufacturing operations. USACERL researchers analyzed possible causes for the fire and concluded that its cause was related to material handling operations.

Process Improvement 1—Reduce Drying Time

Problem: One-third of the Glatt mixing process is dedicated to drying the TA. This step incurs energy costs and produces a bottleneck in the process.

Analysis: Decrease the drying time by decreasing the water used to mix additives. This would increase the solids by 4 percent, but the drying time could be reduced by 25 percent. This will increase the production capacity by removing a bottleneck in the process.

If 10 minutes were cut from the Glatt process by reducing the drying time to 30 minutes, the line could produce another batch per day:

```
(63 shifts) (4 batches/shift) = 252 batches
```

Calculating the number of shifts required if PBAs productivity went up by one batch/shift:

```
252 batches/5 batches/shift = 51 shifts
```

Calculating the savings in salary attributable to eliminating 12 shifts by increasing the work day by 1 batch:

```
(cost of Glatt process) ÷ (# of shifts) = $/shift

cost of Glatt process = (63 shifts x 7 people/shift x 10 hours/shift x $116.75/hour)

= $51,486.75

$51,486.75 ÷ 63 = $8,172/shift

63 shifts - 51 shifts = 12 shifts

(12 shifts) ($8,172) = $98,069.90 labor savings
```

Process Improvement 2—Correct Handling of Supersacks (TA)

Problem: The TA is shipped in large, fabric-wrapped supersacks that measure about $4 \times 4 \times 4$ -ft. The TA is then poured from the supersacks into a hopper attached to a forklift and then into 44-gal drums for weighing. The number of times that the TA is handled causes some spillage that is both economically wasteful and may be hazardous to workers and the environment. (See "Employees' Health and Safety," Chapter 4.)

Analysis: The TA is purchased from a supplier who, according to on-site personnel, only delivers TA in the fabric-wrapped bales. The gross spillage caused by receiving TA in the fabric-wrapped bales accounts for about 5 percent of the TA used (at \$1.45/lb delivered). In addition, reducing spillage would decrease negative environmental effects and employee health problems and their costly remediation. AMOCO (TA manufacturer) has been contacted and has agreed to train PBA personnel in the correct method of handling supersacks.

Savings. The number of units produced in the 4-month production run for Jobs #AB033/4208C was 233,312. From the master bill of materials (Table 1), 450 lb of TA are needed per 1,000 grenade units produced:

233,312 units produced x 450.00 lb. TA/1,000 units x \$1.45/LB TA = \$152,236

cost of 5 percent spillage = 0.05 x \$152,236 = \$7,611/per production run.

Process Improvement for the Fill and Press Line

Most of the simple payback periods are very low, ranging from several hours to several years. (This speaks to the efficacy of the Phase I analysis that pared down all the suggested strategies to those deemed most viable.) The force driving many of these incredibly attractive paybacks is that more than \$20,000 worth is attributable to each production hour. Incremental savings in production time translate into significant dollar savings. The numbers that accompany each of the following concepts correspond to the numbers used in the brainstorming performed in the Level I audit. (See Tables B3, B4, and B5 in Appendix B.)

Capacity Concepts #5 and #9—Replace Fast Conveyor

Description: At present, the major bottleneck in the TA smoke grenade production process is the fast conveyor used to transport the grenades through the processes wherein they are filled with smoke-producing ordnance and starter devices (process steps #11 to 14 [Figure 2]). This fast conveyor is a separate conveying device from those conveyors used to convey the product through process steps #1 to 10 and through all process steps subsequent to step #14. The fast conveyor breaks down often, according to the information received from the PBA technical staff.

Table 1. Master bill of materials by product number.

FSN	Cine	Stock	5	Net Quantity per	Overage	Gross	Std Unit Price	Cost per 1000
		Description		<u>1000</u>	per 1000	Quantity per 1000		
330002939516	F/P	Fuse M201A1	EA	1000.0001	040.0000	1040.0000	001.729	1798.160
33001X932244	F/P	Top Assy M18	EA	1000.0000	150,0000	1150,0000	000.271	0311 650
33001X932245	F/P	Body Asy M18	EA	1000.0000	150.0000	1150.0000	000.534	0614,100
033001X960304	F/P	Cup, Starter	EA	1000.0001	100.0000	1100.0000	000.117	0128.700
099001X933821	LAP	Pallet	EA	0001.1570	000.0230	0001.1800	020.781	0024.521
031501X920809	LAP	Nail	BX	0090.0000		0090.0000	026.000	0001.560
081001X932312	F/P	Thin EN GR B	СĽ	0003.0000	000.000	0004.0000	001.816	0007.272
081001X932434	Σ	Binder Mix	ĽB	0000.6000	0001.000	0010.0000	003.479	0034.790
081001X933839	Σ	Pot Chlorate	LB	0151.0000	024.0000	0175.0000	000.525	0091.875
081001X933840	17	Pot Nit Cl 1	LB	0006.4890	000.9085	0007.3975	001.064	0007.870
081001X933852	LAP	Alcohol	LB	0007.0000	003,0000	0010.0000	001.155	0011.550
081001X933967	S	Charcoal	LB	0000.7269	000.1454	0000.8723	002.040	0001.779
081001X933970	Σ	Mag Car.Gr B	LB	0035.0000	0002:0000	0040.0000	000.764	0030.560
081001X933973	S	Silicon Powder	LB	0004.8106	000.9621	0005.7727	001.757	0010.142
081001X952092	Σ	Acid Terepht	LB	0400.0000	050,0000	0450,0000	001.376	0619.200
0510001610811	F/P	Ink Marking	GL	0000.0300		0000,0300	010.994	0000.329
051001X932441	ć	Conditioner	GL	0000.0081		0000.0081	021.740	0000.176
051001X933865	3	Ink White	GĽ	0000.2000	000.1000	.0000.3000	056.641	0016,992
051001X960189	7	Compound	띪	0000.1000		0000.1000	147.900	0014.790
069001X921745	LAP	Label Hazard	80	0000.1250	000.000	0000.1260	031.587	0003.979
001001X920151	6	Enamel Whi	PL	0000.0300		0000.0300	058.649	0001.759
001001X932340	2	Enamel Alkyd	S	0000.3000		0000.3000	078.983	0021.294
0040006826817	3	Adhesive Lab	ij	0000.0250		0000.0250	010.250	0000.256
011501X933901	LAP	Box, Wood	EA	0062.5000	000.5000	00093.0000	006.642	0418,446
0135002830670	LAP	Strapping	r U	0000.1620	000.0240	0000.1860	036.749	0006.835
013501X860336	2	Tape	80	0000.8500	000.1000	0000.9500	036.173	0034.364
813501X932288	2	Tape Press	2	0000.9160	000.2500	0001.1660	004.284	0004.995
813501X932354	LAP	Sheet FB	EA	0315.0000	045.0000	0360.0000	000.119	0042.840
813501X932449	LAP	Filler FB	EA	0125.0000	035.0000	0160.0000	000.074	0011.840
813501X932452	LAP	Strapping	LB	0009.3500		0009.3500	000.544	0005.086
813501X932460	F/P	Disc	EA	1000.0000	100,0000	1100.0000	000.000	0005.500
813501X933918	LAP	Seal Strap	BX	0000.0029	000,0004	0000.0033	062.520	0000.206
814001X932461	LAP	Container	EA	1000.0000	020.0000	1020.0000	000.413	0421.260
814001X932462	F/P	Collar, Fusc	EA	1000.0000	020.0000	1020.0000	090.000	0061.200
892501X932378	Σ	Sugar Confec	9	0005.0000	005,0000	0100.0000	000.346	0034,000
TOTAL COST								\$4800.476

When the fast conveyor goes down, production must cease until it is again operable. Site personnel estimate the fast conveyor downtime to be 40 percent of the total downtime for fill and press.

This strategy proposes to replace the fast conveyor with a belt conveyor that PBA has already purchased. First cost will be the time taken to install the new belt:

 $(24 \text{ hours } \times \text{ cost of 3 workers}) = (24 \text{ hours } \times \$68.68 \times 1.7 \times 3 \text{ workers}) = \8406.43

Assumptions. Reduce the downtime by 10 percent (3,333 hours down time).

Analysis. Savings associated with a 10 percent reduction in downtime are calculated as follows:

 $(0.40 \times 3,333) \times (0.1) \times (\cos t/\text{production hour.}) = \text{savings per production run}$

Savings.

1.333 hours x 0.1 x \$68.68 x 1.7 = \$15,564

Simple payback maybe calculated by dividing first cost by cost savings:

Simple Payback.

\$8,406/\$15,564 x 63 days per production run = 34 days

#14—Install Failure Indicator Light

Description. At present, an alarm light is located in a control room that is rarely manned. This light enunciates an alarm whenever there is a failure in the fast conveyor. Operating personnel must discern that the reason for the production line stopping was a failure in the fast conveyor. Once this is agreed on, they must walk over to the fast conveyor to see if it has, in fact, failed. This entire process is extremely time consuming.

This strategy proposes to install a failure indicator light at the fast conveyor. This light would be tied into the existing programmable logic controller (PLC) that detects failures and sends the signal to the annunciation light in the control room. This new light will give visible annunciation of fast conveyor failure to persons out on the production line, allowing them to respond to the failure more quickly.

Assumptions. Per site personnel, it is assumed that this indicator light will increase production 1 percent.

Analysis. The first costs of this strategy are minimal: red failure indicator light in industrial screened protector, as well as junction boxes, conduit, wire, reset switch, and relay to interlock the light into the existing PLC. These first costs amount to \$5,673 (means electrical).

Savings from a 1 percent increase in production are calculated as follows:

Savings.

630 production-hours, x (0.01) x \$20,538.72/production hour

= \$129,394 per production run.

Simple payback maybe calculated by dividing first cost by cost savings:

Simple Payback.

 $5,673/129,394 \times 63$ days per production run = 2.8 days

#39—(Option #1) Lease Air Compressor

Description: The existing central compressed air system provides dirty, oily compressed air that causes problems with the TA smoke grenade process equipment that utilizes compressed air. In addition, the entire central air system fails periodically. Site personnel estimate that, because of these two situations, the fill and press line is down 30 minutes per month.

This strategy proposes to lease an air compressor and connect it to the compressed air piping in the building housing the fill and press line, thereby removing the fill and press line from the central compressed system. This would require some reworking of the compressed air piping serving the fill and press building. The rented air compressor would be installed and operated as the primary air compressor, with the central system capable of being used as a back-up system, if necessary. A manual shutoff valve would be installed between the two systems. In addition, the rented compressor would have to be valved off so it could be serviced or exchanged periodically.

Assumptions. A 160 CFM diesel compressor would be required. The specified compressor uses an average of 1.25 gal of #2 diesel fuel per hour operation. (This figure was developed from a survey of three compressor rental companies in the Champaign, IL, area: McCabe Bros., Kemper Industrial Equipment Rental, and Rental City. Estimates of diesel consumption ranged from 1.0 to 1.5 gal/hour.)

The fill and press line downtime of 30 minutes per month (approximately 2 hours per production run) is due to central air problems.

Analysis: Implementing this strategy entails both first costs and operating costs. The first costs consist of the costs to modify the existing compressed air piping (example, install shutoff valve to isolate fill and press compressed air piping from central system) and the cost of cleaning out the existing compressed air piping, approximately \$12,276. The operating cost consists of the annual rental fee and the fuel costs:

fuel costs = 630 production hours x 1.25 gal/hour x \$1.20/gal

= \$945/production run

annual rental cost = \$7,380 rental for production run period

= \$7,380/3 (630 hours is approximately one third of a working year.) = \$2,460

cost = fuel costs + rental cost per production run

= \$945 + \$2,460 = \$3,405/production run.

Savings.

2 production hours per run x \$20,538.72/production hour = \$41,077

Savings.

Payback = (First Cost)/(Savings-Operating costs) x 63 days/production run

 $= $12,276/($41,077 - $3,405) \times 63$

= 20.5 days

#39 (Option #2)—Buy Diesel Fuel Air Compressor

Description: This strategy proposes to buy a diesel fuel air compressor and connect it to the compressed air piping in the building housing the fill and press line. This strategy was not discussed in the on-site brainstorming sessions. However, USACERL investigated it as an alternative to leasing an air compressor over a long time period of time.

This strategy would require some reworking of the compressed air piping serving the fill and press building. The purchased air compressor would be installed and operated as a back-up air compressor to the central compressed air system. This back-up compressor would be integrated as follows. A check valve would be installed between the main system and the compressed air piping serving the fill and press building. Two pressure transducers (low pressure and high pressure) would be installed in the fill and press compressed air piping. When pressure in the fill and press piping falls below setpoint due to malfunctioning of the central compressed air system, the low pressure transducer sends a signal that brings the newly purchased compressor on line. Once it brings the fill and press compressed system up to pressure, the high pressure transducer sends a signal that shuts off the new compressor, and the fill and press building goes back on the central compressed air system. However, this does not alleviate failures due to oil and dust, only the central system failure.

The advantage of purchasing a new compressor and installing it in the foregoing manner is that PBA alleviates the need for paying the annually recurring compressor rental cost. By operating the newly purchased compressor as a back-up compressor, run time is minimized, so maintenance costs are minimized.

Assumptions. A 160 CFM diesel compressor is required.

The compressor uses an average of 1.25 gal of #2 diesel fuel per hour of operation. (This figure was developed from a survey of three compressor rental

companies in the Champaign, IL, area: McCabe Bros., Kemper Industrial Equipment Rental, and Rental City. Estimates of diesel consumption ranged from 1.0 to 1.5 gal/hour. The compressor operates 30 minutes per month (approximately 2 hours per production run of 63 days) due to central air problems.

37

Analysis. Implementing this strategy entails both first costs and operating costs. The first costs consist of the costs to modify the existing compressed air system, amounting to \$12,276 (explained above) and the cost of purchasing a new compressor (\$16,835). The operating cost consists of the fuel costs:

#39 (Option #3)—Buy Natural Gas Powered Air Compressor

Description. This strategy is an adaptation of natural gas engine-driven compressors that have been around for several decades. In 1995 the Industrial Gas Technology Commercialization Center developed a consortium of gas companies to participate in the development of a market for natural gas engine-driven compressors. The competitive advantages of gas engine-driven air compressors are due to lower overall costs to produce compressed air, higher part-load efficiency, compressed air available during electrical interruptions, and reduced peak electrical requirements. Further increases in efficiency are gained by using the heat generated by the gas compressor in the manufacturing process. In the case of the Glatt, steam is used to preheat the bowl and its components, then more heat is required for the fluidizing air.

A compressor situated at the manufacturing site rather than at the boiler house would eliminate long runs of supply line, and costs savings due to this relocation were estimated at \$98,000 per year for electric power and \$2,380 in air losses (Reynolds, Smith and Hills, Inc.).

Operating Costs. A 160 hp air compressor uses 8500 Btu/hp-hour of natural gas. The PBA production hours per run are 630. The Limited Energy study for PBA by Reynolds, Smith, and Hills report the cost of gas per MBtu for PBA is \$2.81.

Natural gas fuel costs per production run are:

8500 Btu/hp hour x 160hp x 630 hours per production run x \$2.81/MBtu x one MBtu/106 Btu = \$2,407.61

Cost of a 160 hp natural gas air compressor is approximately \$47,840 (Industrial Gas Technology Commercialization Center).

The cost for installing the new compressor is estimated at \$12,276 (see #39 option 1).

first cost = cost of compressor + cost of installation = \$47,840 + \$12,276 = \$60,116.

Savings.

If this solution saved 30 minutes per month of the production time, the savings would be:

2 hours x \$20,538 = \$41,076

This totals \$98,000 power costs for partial loaded electrical compressors per year. Assume that the TA smoke grenade process is approximately one-third of a year, then the cost is \$32,634.

Simple Payback.

```
(first cost)/(savings) \times 63 days = ($47,840 + $2,408 + $12,276)/($41,076 + $32,634) \times 63 days = ($62,524)/($73,710) \times 63 days = 53 days
```

#7-Install Good Dust Collection System

Description. A considerable amount of dust is generated in the fill and press area. This dust enters fill and press equipment bearings and causes the machinery to fail. It is estimated that failures due to dust cause 10 percent of the fill and press downtime. This is 10 percent of the total downtime of 3,333 hours for fill and press.

Assumptions. The dust collection system on the north side of the building does not have sufficient capacity to serve the fill and press area. The cost of a new dust system was estimated from available commercial literature to cost \$18,457.

Analysis. The dust collection system must be interfaced with the existing fire alarm system (FAS). The interface would shut down power to the dust collection system if the FAS enunciates an alarm.

```
Downtime for F&P on AB033/4208C = 3,333 hours.

Cost of 10 percent downtime for F&P = 0.1 x 3,333 hours x $68.68 x 1.7 = $38,915 = $18,457

potential savings for job #ab033/4028c = ($38,915 - $18,457) = $20,458
```

Simple Payback.

```
first cost/savings x days of operation = ($18,457/$20,458) x 63 days = 56 days
```

#66 - Reevaluate Critical Dimensions

Description. At present the quality of materials varies in some parts of the TA process. Wide variations in the dimensions of these materials produce inferior grenades that must be scrapped. This strategy proposes that PBA personnel perform inspection of the dimensions of all materials received at PBA and perform prescreening to flag those materials that are outside of the required specifications. If the tolerances are included in the procurement specifications, the supplier should pay for the return and replacement of poor quality materials received by PBA.

Assumptions. There are sufficient personnel presently available to perform quality control (QC). Disposal cost/unit is double the production cost/unit. There are 20 rejects/day attributable to poor dimensions.

Analysis. Calculating the cost of the scrapped material:

savings = 20 units rejected/day x (\$35.82/unit) x (63 days) = \$45,133

Because there are no first costs involved, the payback is immediate.

#24 - Pre-Assemble Cup, Slug, and Starter

Description. These process steps are performed on the fast conveyor line. This strategy proposes to take these steps off-line and have them performed in a subassembly area. In effect, this strategy will have the same effect as carting the grenades around the fast assembly area: the fast conveyor is by-passed and the down time caused by using the fast conveyor is alleviated.

Assumptions.

- Capacity increased by 1 percent.
- Stainless steel carts are required to adequately transport grenades.
- There are sufficient personnel to assemble grenades off-line (no new personnel will be required).

Analysis. First cost consists of setting up the subassembly area (example, buying the eight equipment carts [\$8,000] and making the minor modifications [\$3,500] necessary to accommodate the carts in a sub-assembly area). Given that sufficient personnel are already present, there are no operating costs (example, extra salary).

Increasing capacity by 1 percent by assembling the grenades off line may be calculated as:

(Production hours.) x (0.010) x (cost/production-hour) = Savings for production run

Savings.

630 production hours x 0.010 x \$20,538.72/production-hour = \$129,389

Simple payback maybe calculated by dividing first cost by cost savings:

Simple Payback = \$11,500/\$129,389 x 63 days = 5.6 days

#41 - Combine Twist and Torque

40

Description. Installing smoke grenade fuses is accomplished in two steps (Steps #23 and 24 in Figure 2). A two-person crew threads the fuse into place "hand-tight" (Step #23), then a one-person crew applies the proper torque to the fuse using a torque wrench (Step #24). Currently, personnel exchange twist and torque duties to avoid injuries due to excessive repetition of one motion.

This strategy suggests combining the twist and torque steps into one step, which would eliminate one of the present twist positions. Each of the remaining two personnel would perform both twist and torque of fuses.

Assumptions. One of the twist positions could be eliminated without slowing down production.

Analysis. Savings due to eliminating one full-time position on the line can be estimated by multiplying the average, fully-burdened line worker's wage times the average number of hours worked each production run:

Savings = \$116.75/hour. x 630 production-hours = \$73,552/production run

Since there are no capital costs, the payback is immediate. However, this job would require the worker to perform repetitive actions over prolonged periods of time and may lead to injuries that would require an extended convalescence. (See Section 4. Employees' Health and Safety.)

#68 and #69—Optimize Maintenance Support/Optimize Training to Support Goals

Description. At present the personnel designated as "floaters" on the line are responsible for repairing simple breakdowns on the fill and press line. For more serious breakdowns, the floaters must place a call to PBA maintenance. The fill and press line remains down until maintenance crews arrive and fix the problem.

This strategy proposes to train the floaters to be mechanics. Given this capability they would be able to repair breakdowns on the fill and press line without having to call and wait for mechanics from another building.

Assumptions:

- Training fill and press floaters to be mechanics falls within their job description and capabilities.
- Fill and press downtime will be reduced by 10 percent.
- Transfer of funds will "pay" for PBA mechanics to train floaters.

Analysis. Training costs were estimated by taking the average hourly burdened rate of fill and press line workers (\$116.75/hour), assuming it to be the average

USACERL TR-97/126 41

burdened rate of PBA mechanics, and multiplying by the number of work-hours that would be consumed in training. USACERL assumed that four fill and press personnel would be trained as mechanics and one PBA maintenance mechanic would conduct the training. Three weeks of training would be invested in each of the floater/mechanics.

Savings. Savings due to a 10 percent decrease in fill and press downtime can be calculated as:

```
savings = (downtime) x (0.10) x (cost/workhour)
= 3,333 \times (0.10) \times \$116.75/\text{hour} = \$38,914
```

Cost of training 4 people plus the cost of one instructor

- = \$116.75/hour x 5 persons x 40 hours/week x 3 weeks
- = \$70,050

Simple Payback. Simple payback may be calculated by dividing first cost by cost savings:

```
(\$70,050)/(\$38,914) \times 63 \text{ days} = 113 \text{ days}
```

Environmental Concepts: #1—Total Enclosure of Painting Operation

Description. The environmental costs associated with painting are that the overspray does not all go through the filter, rather it is deposited on the bearings of other equipment in the room. Another problem that may be investigated is that of proper filter change-out of packbed and proper blower size if the water-curtain is used.

Assumptions. The paint booth is well maintained. It is not totally enclosed but can be made so if another side is added without impending other operations. Special plastic additions to the paint booth could correct the problem. Five percent of the Fill and Press downtime is due to bearing failure on other equipment caused by paint overspray. Saving the 5 percent by covering the paint booth is calculated as:

```
savings = (downtime for fill and press operation) x (median cost of labor per hour) x (multiple for overhead) x (5 percent) = savings 3,333 downtime hours x $68.68 x 1.7 x.05 = $19,457
```

Analysis. Design and manufacture of plastic hood for the paint booth is available at local tent and awning manufacturers.

Material needed is:

Plastic 20 millimeters thick at \$6.00/ square yard	\$600
Aluminum one in. square frame 80 ft	\$240
Fabrication	\$800
Total cost	\$1.640

The operation and maintenance is minimal.

Payback: Simple payback can be calculated as:

[(first cost)/(cost savings)] x (number of hours in 4 month production run)

 $(\$1,640)/(\$19,457) \times 63 \text{ days} = 5.3 \text{ days}$

#2 - Evaluate Feasibility of Permanent Reject Grenade Demanufacture

Description. The reason for demanufacturing the permanent rejects is to reduce waste disposal. The Summary Scrap/Rework Cost Monthly Report for the manufacturing of M83 Training Grenades states that \$7,499 was spent for scrap in May, \$7,218 for April, \$10,155 for March, and \$2,977 for February, a total of \$27,849 for scrap in 4 months. The reported number of good parts completed in May was 38,432, for April 38,096, for March 81,120, and for February 75,664, a total of 233,312 parts completed. Of the permanent rejects for the order, 1,905 grenades were rejected because of bad seals; 586 had damaged bodies and lacked tops; 1,012 had damaged bodies and included tops; 475 were low fill; and 24 had wrinkled bodies, a total of 4,002 rejects.

Analysis of Good Parts Produced. The net value costs included direct labor rate, administration rate, support rate, and direct materials/components. The total net value cost for May was \$1,382,947 and April \$1,364,515, an average of \$1,373,731. Of the 4 months reported, only 2 months had net value cost/unit: May \$36 and April \$35.82. The average net value cost/unit \$35.91 was used. This includes the cost of manufacturing scrap:

Costs.

Fuse \$1798.16 Starter cup \$128.70 Glatt mix \$807.76 Total \$2,724.62

Total costs for 4 months (4,002) or $4(1,000) = (\$2,724) \times (4) = \$10,898$

Cost of avoidance of waste disposal (\$10/LB) (0.5 LB each) = \$20,000

Total savings of material from demanufacture

= (Total for 4,000 parts) + (Cost avoidance of waste disposal) - (New cans)

= (\$10,898.48) + (\$20,000) - (\$3,700)

= \$27,198

Cost for one person to remove the good parts for reuse:

\$116.75/manhour x 10 hours x 63 days/production run = \$73,553

Simple Payback.

(First cost)/(Savings) x 63 days = (\$73,553)/(\$27,198) x 63 days = 170 days

#6 - Convert the Water Curtain to Dry Filters

Description. Waste from the air scrubber is paint sludge. The weight of the paint sludge for January and February amounted to 1,765 lb, which is 25 percent water (441 lb). At \$10/lb disposal cost, the total cost for 2 months was \$17,650. The cost of disposal of the water component is \$4,410. Some wet scrubbers can be modified to change them to dry scrubbers and to use disposable filters. The cost for one person to clean out the paint booth is estimated at the fully burdened labor rate of a lineworker. Cleaning costs for one person to clean out the paint booth (coat and peel operation) after each run is:

4 hours x \$68.68 x 1.7 = \$467

Total cost per run for TA production (63 days) includes disposal of water in paint sludge and labor required to clean the wet scrubber.

Disposal of water in sludge \$4,410
Cost of labor \$467
Total \$4,877

Assumptions. The air scrubber at PBA does not contain a packed bed and that it can be modified to take disposable filters.

Analysis. Equipment needed to change the wet scrubber to dry scrubber:

Filter roll (6 ft by 100 ft by 1 in.) (tackafide) = \$200

Frame for filters = \$700

Pressure meter to measure the pressure drop across the filter = \$1,500

Total = \$2,400

Payback. Calculate the payback during the production run (63 days):

(first cost)/savings x 63 days = (\$2,400)/(\$4,877) x 63 days = 31 days.

#24---Close Pretreatment Plant

Description. At present, PBA is meeting wastewater treatment standards without pretreatment plant operation. This strategy suggests closing the pretreatment plant.

Assumptions. Operating the pretreatment plant provides no benefit to the Arsenal.

• Save 50 percent of workhours for one person for the production run

USACERL TR-97/126

- Save \$2,333 (approximately)/(production run in UV lamp operation costs)
- Cost to mothball plant = \$10K
- Laboratory analysis to confirm closing = \$10K
- Total closing costs = \$20K

Analysis. Calculating the savings in labor costs per production run:

630 production hours/run x (0.5) x 116.75/production hour = 36,776

Savings. Adding the labor savings to other operating savings yields annual savings:

Simple Payback. Simple payback may be calculated by dividing first cost by cost savings:

 $20,000/40,786 \times 63 \text{ days} = 31 \text{ days}$

Energy Concepts: #4—Reduce Steam Pressure by 10 psig From 125 to 115 psig

Description. Steam pressure produced in the central boiler plants is 125 psig. No process load in the arsenal requires more than 75 psig. Steam is distributed at a pressure much higher than required, if this is actually the amount of steam received by the production line. Twenty-seven percent in losses of the natural gas consumption is lost in the 128 steam leaks (Reynolds, 1996 pp 3-5). This loss would equal approximately 34 psig if no corrections were made. However, if the installation corrected only a few leaks the reduction of 10 psig could be achieved without impacting the process. For example, if 12 traps were selected at \$300 per trap the cost would be \$3,600. Currently, when the steam pressure is reduced by as little as 10 psig, the manufacturing process is disrupted.

Assumptions:

- \$1.66 million/year natural gas bill
- Existing boiler controls operable
- Cost of fixing 12 steam leaks is \$3,600.

Analysis. Decreasing operating steam pressure by 10 psig yields on the average a 1 percent savings in annual fuel consumption. Calculating the annual savings for the entire installation resulting from simply decreasing the operating steam pressure:

 $(0.01) \times (\$1.66 \text{ million/year}) = \$16,660/\text{year}$

USACERL TR-97/126 45

Annual Savings.

 $(\$3,600)/(\$16,660) \times 200 \text{ work days/year} = 43 \text{ days}$

#26—Initiate Energy Team

Description. This strategy suggests forming an energy team consisting of five persons from advanced technology, design, energy, environmental, and production departments. The team would be responsible for identifying opportunities for saving energy, determining feasibility, and ensuring that all feasible opportunities are acted upon.

Assumptions.

- \$3 Million per year annual energy bill
- Team can produce 10 percent annual energy savings
- Average cost per team member is \$200/hour
- Team meets 10 times per year (2 hours per meeting)
- Team cost per year is (\$200/hour) (5) x (2 hours) x (10) = \$20,000

Analysis. Calculating annual savings:

Annual Savings = $(\$3 \text{ million/year}) \times (0.10) = \$300,000/\text{year}$

Simple Payback.

Simple payback maybe calculated by dividing first cost by annual cost savings:

\$20,000/\$300,000 x 200 work days/year (approximately) = 13 days

#10—Decommission Unused Steam Lines

Description. Approximately 8 miles of steam line serve the production areas of PBA. Large segments of these lines are not required for continued operation of production functions at PBA and may be decommissioned. Once these lines are decommissioned, PBA will realize savings in reduced line losses, reduced maintenance costs, and reduce steam leakage. Steam leaks cost PBA about \$472,000/year (Reynolds, Smith, and Hills, Inc.). Of this steam leakage loss, 27 percent is attributed to steam leaks in areas 31, 32, 33, and 34 (the production areas of PBA).

Assumptions.

- Miles of steam line under consideration (46,720 lineal ft).
- Steam leakage losses in production areas account for 27 percent of total steam leakage losses at PBA.
- Percent of existing steam line in production areas may be decommissioned.

- Decommissioning will take 4 workers 2 weeks of work..
- For purposes of this analysis, take credit only for the savings in steam leakage (i.e., ignore maintenance and line loss savings).

Analysis. First costs are calculated as:

```
First Costs (4 men) x (80 hours/man) x ($68.68/hour) x1.7 = $37,362
```

Because 27 percent of the basewide steam leakage losses at PBA are attributed to the steam lines serving the production areas, the annual cost of steam leakage in these areas is calculated to be:

```
$427,000 x 27 percent = $115,290
```

Decommissioning 20 percent of the steam lines in the production areas will alleviate 20 percent of the annual costs of steam leaks. Annual savings from decommissioning steam lines is calculated as:

$$(\$115,290) \times (0.20) = \$23,058$$

Simple Payback.

Simple payback may be calculated by dividing first cost by annual cost savings:

$$($21,977)/($23,058) = 0.95$$
 years

#5—Decentralize Steam System

Description. The production areas at PBA are served by five boiler houses. Steam in the production areas is used for space heating, process heating, and process humidification. Three of the boiler houses are connected by a 2-mile long, above ground common header (the "high line") and serve areas 31, 32, 33, and 34. Two boilers in Building 42-960 serve Area 42 (the incinerator area), and two boilers in Building 44-120 serve Area 44 (the LAP area). Boilers are fired with natural gas. Natural gas entering PBA is recorded by one utility meter. In addition to process usage, natural gas is supplied to about 71 other buildings at PBA for comfort heating and other miscellaneous uses (e.g., domestic hot water generation and laundry). This strategy is not exclusively concerned with the TA smoke grenade process but to manufacturing processes at PBA in general.

Assumptions.

- MBtu of natural gas lost per month due to steam leaks
- Using portable boilers during summer in production areas reduces line steam leakage by about two-thirds.

Analysis. The 1994 Contingency Master Planning Program Steam and Compressed Air Utility Study by CDG (the "CDG Study") disaggregates annual steam consumption at PBA. This study shows that, of the approximately 72,000 MBtu of natural gas used during the peak heating months at PBA (December and January), about half is consumed in providing space heating. During the

winter months of February/March and October/November, about one-third of the total natural gas used at PBA goes toward space heating. No steam is used for space heating in the production areas during the summer months of June through August and only about 2000 MBtu/month are used during the months of May and September. The CDG Study also shows that steam leakage losses are fairly constant throughout the year, at the level of 14,000 MBtu/month.

This strategy proposes to buy two small portable 5000-lb/hour boilers for use in the production areas during the summer. This would alleviate year-round firing of the three boiler houses serving areas 31, 32, 33, and 34. The two portable boilers could be used to generate the steam required for production loads in these areas, and steam leakage in the lines connecting the boilers houses to the production facilities would be eliminated. Assuming there would still be steam leakage for the lines inside the production facilities, a conservative estimate would place natural gas savings at 10,000 MBtu/month. PBA purchases natural gas for \$2.81/Mbtu.

Annual Savings. Annual savings due to reduced steam leakage during the 5 summer months of May through September can be calculated as:

 $(10,000 \text{ MBtu/month}) \times (5 \text{ months/year}) \times (\$2.81/\text{Mbtu}) = \$140,500/\text{year}$

Simple Payback.

With a first cost of \$250,000 to buy the boilers, simple payback is calculated as:

(\$250,000)/(\$140,500/year) = 1.8 years

Table 2 gives a prioritized summary of the proposed optimizations for capacity, environmental, and energy.

48 USACERL TR-97/126

Table 2. Prioritized summary of proposed optimizations.

Strategy	First Cost	Savings	Simple Payback
Capacity concepts Glatt line			
Reduce drying time	None	\$98,069	Immediate
Correct handling of supersacks (ta)	None	\$7,611	Immediate
Capacity concepts fill & press	110.10	1 47,017	
Capacity concepts IIII & press Capacity concept #66	None	\$45,133	Immediate
Reevaluate critical dimensions	INOTIC	ψ το, του	iiiiiiooiato
Capacity concept #14	\$5,673	\$129,394	2.8 days
Install failure indicator light	ψ0,070	ψ120,001	2.0 00,0
Capacity concept #24	\$11,500	\$129,389	5.6 days
Pre-assemble cup, slug & starter	\$11,000	4.20,000	0.0 0.0,0
Capacity concepts #5/#9	\$8,406	\$15,564	34 days
Replace fast conveyor	40,.00	7.0,00	
Capacity concept #7	\$18,457	\$20,458	56 days
Install good dust collection system	4,	,,	
Capacity concept #39 (option 2))	\$29,111	\$40,132	45.7 days
Buy diesel fuel air compressor	4 20,	7.5,.52	1
Capacity concept #39 (option 3)	\$62,524	\$73,710	53 days
Buy natural gas air compressor	402,02	470,7.0	00000
Capacity concept #39 (option 1)	\$12,276	\$37,672	20.5 days
Lease air compressor	ψ,2,2 ,0	401,012	
Capacity concept #10	\$45,280	\$38,915	73 days
automate twist & torque	\$10,200	1 400,010	,.
Capacity concepts #68/#69	\$70,050	\$38,914	113 days
optimize maintenance support/	4. 0,000	1	
optimize training			
Environmental concepts			
Environmental concept #1	\$1,640	\$19,457	5.3 days
total enclosure of painting operation			
Environmental concept #6	\$2,400	\$4,877	31 days
convert the water curtain to dry filters			
Environmental concept #24	\$20,000	\$40,786	31 days
close pretreatment plant			
Environmental concept #2	\$73,533	\$27,198	170 days
evaluate feasibility of permanent reject			
grenade demanufacture			1
Energy concepts		T	
Energy concept #4	\$3,600	\$16,600	43 days
reduce steam pressure by 10 psig			
Energy concept #26	\$20,000	\$300,000	13 days
initiate energy team			
Energy concept #10	\$21,977	\$23,058	0.95 years
decommission unused steam lines			
Energy concept #5	\$250,000	\$140,500	1.8 years
decentralize steam system			

4 Quality and Other Issues

Quality Concepts and Improvement

Quality is the loss associated with a product or service due to deviations from target values of product/service characteristics. Quality must start with design and the specifications; however, the customer is the final judge of a product's quality. Four aspects of quality should be considered in product design: functionality, maintainability, reliability, and reproducibility. All managers are concerned about quality of products and services, and the control of quality must begin long before products and services are delivered to the customer.

According to Philip Crosby (president of his own management firm, creator of the concept of "Zero Defects," who blames American business problems on poor management and not on poor workers), there is no reason for errors or defects in a product or service, i.e., "nonquality" (Crosby 1980). Following the concepts of quality management, dedicated work habits, and personal integrity make this a realistic goal. The quality management concepts to which Crosby adheres follow.

Management Commitment

Action. Discuss the need for quality improvement with management personnel, emphasizing the need for defect prevention.

Accomplishment. Help management to recognize that their commitment is toward raising the level of visibility for quality to the organization.

Quality Improvement Team

Action. Form a quality improvement team to include representatives from each department.

Accomplishment. The tools required to do the job are together in one team.

Quality Measurement

Action. Establish a baseline for quality throughout the company. Establish quality measurements for each area of activity.

Accomplishment. Formalize the company's quality measurement system.

Cost of Quality Evaluation

Action. Quality costs should be accurately assessed from the comptroller's office.

Accomplishment. Have the comptroller establish cost of quality.

Quality Awareness

Action. Share with employees the cost of nonquality products and services.

Accomplishment. Establishing communications that allow supervisors and employees to talk about quality.

Corrective Action

Action. Employees are encouraged to bring problems and ideas for correction to their supervisors.

Accomplishment. Employees see that problems are acknowledged and corrected.

Establish an Ad Hoc Committee for the Zero Defects Program

Action. Establish the committee to communicate to all employees the meaning of "Zero Defects" and the importance of doing things right the first time.

Accomplishment. The committee prepares to implement the program.

Supervisor Training

Action. Formal orientation of all levels of management should be conducted before implementation of the program.

Accomplishment. Supervisors will concentrate all of their efforts on the program.

"Zero Defects" Day

Action. Establish "Zero Defects" as the performance standard of the company in one day.

Accomplishment. Make a memorable day of "Zero Defects" Day.

Goal Setting

Action. Employees and supervisors establish the goals they would like to work toward. All goals should be specific and measurable.

Accomplishment. Help employees learn to think in terms of meeting goals and accomplishing specific tasks as a team.

Error Cause Removal

Action. Employees are asked to document problems that keep them from performing error-free work.

Accomplishment. Employees learn to trust this communication.

Recognition

Action. Award programs are established to recognize those who meet their goals or perform outstanding work.

Accomplishment. Employees will continue to support the program even if they do not actually receive an award.

Quality Councils

Action. The quality professionals and team chairpersons should communicate regularly and determine actions needed to upgrade and improve the quality program.

Accomplishments. Bring professionals together on a regular basis.

Do It Over Again

Action. After about a year taking into account turnover, a new team of representatives should be selected and begin again. This brings "fresh eyes" to the process to spot items overlooked previously.

Accomplishment. Repetition makes the program perpetual.

Summary

It is important to regard quality as an integral part of the TA smoke grenade process. Feedback and observations have shown that there is a lack of quality in some of the steps of the process. Quality must be maintained throughout the process. The corporate director at Firestone Tire and Rubber Company states that "for every dollar you spend on preventing defects, you save two dollars or more in reduced scrap, product failures and other costs" (Gaither 1990, p 687). In addition to reduced scrap, fewer machines are shut down to look for causes of quality problems, so reducing interruptions to production. An estimated 20 to 25 percent of the overall cost of goods sold is due to finding and correcting errors (Gaither 1990, p 688).

Kowalick (1992) shows that costs rapidly escalate if the majority of defects occur late in the product cycle. Counteracting defects early in the cycle prevent higher costs in later stages.

Employees' Health and Safety

Hazards are intrinsic in most manufacturing processes. Hazards may involve falling, being caught in machinery, or exposure to toxic chemical, noxious fumes, dust, and noise. Although safety standards for all areas of the industrial work environment are established and enforced, employees can still receive injuries or impairment to their health.

52 USACERL TR-97/126

Some of the steps in the manufacturing of the TA smoke grenades lead to situations that may be hazardous to employees. Spillage of TA is a hazard to employees and economically wasteful. In June 1996, some Glatt mix was spilled and subsequently, a fork lift ran over the spilled mix, causing a fire.

The production department should interface with specialists who design safety devices and procedures; initiate good housekeeping concepts into the process, raise employee awareness, and design advertising programs to minimize hazards resulting from human error. These and other quality measures will help to protect employees and improve the process and the final product. When working conditions are safe, employee morale and productivity tend to increase, and accidents and downtime decrease.

Some preventive measures should be considered to avoid cumulative injuries caused by repetitive actions such as the twist and torque in the fill and press line. This action requires the worker to engage in a clockwise movement of the wrist and hand, a similar motion to inserting screw in holes. If the wrist is aligned with the forearm no problems will occur. However, if the wrist is bent in relation to the forearm, the tendons bend and bunch up in the channel known as the carpal tunnel. The carpal tunnel is formed by the bones of the back of the hand on one side and the transverse carpal ligament on the other. The radial artery, median nerve, and flexor tendons of the fingers pass through the tunnel, and the ulnar artery and ulnar nerve pass over the outside of the transverse carpal ligament. The ulnar nerve and ulnar artery also pass close to a small wrist bone (the pisiform bone). Continued twisting motion with a bent wrist may lead to tenosynovitis, an inflammation of the tendon sheaths of the wrist. Employees should be made aware of potential injuries that can occur from repetitive actions, such as the twist and torque, and the steps they can take to avoid such injuries. A key rule is to perform the task with the wrist aligned with the forearm.

Choosing Between Automation and Manual Operations

The following discussion offers some ideas regarding the perceived benefits of automation and manual operations, respectively (McCormick 1982). The information may be of assistance to production managers and engineers who make decisions on whether to automate certain steps of a process or to use manual labor. Table 3 reflects some capabilities in which humans seem to do better than machines, and Table 4 reflects abilities at which machines are more adept (McCormick 1982, pp 489-490). These comparisons should be viewed with caution for the following reasons (McCormick 1982, p. 491):

- general man-machine comparisons are not always applicable (computational ability of computers does not mean computers should be used whenever computations are required)
- lack of adequate data on which to base function allocation

- relative comparisons are subject to continual technological advancements
- it is not always necessary to provide the "best" performance (mechanical toll collectors perform an acceptable job, although humans offer some advantages)
- function performance is not the only criterion (availability, cost, weight, power, reliability, and cost of maintenance must be considered)
- function allocation should take into account social and related values.

The preceding discussion seems to indicate that there is no clear-cut method for deciding what system functions should be performed by people and by machine. The strategy of selecting machines or manual operations to perform a function should consider the operation of the system as a whole and not look at each function in isolation from other functions. The goal is to enhance the operation of the system as a whole.

Labor Standards

Gaither defines a labor standard as "...the number of worker-minutes required to complete an element, operation, or product under ordinary operating conditions. Standards are hierarchical. ...Each product has a standard, each major operation within each product has a labor standard, and each elemental task within each operation has a labor standard" (McCormick 1982, p 651). The term ordinary operating conditions is defined as a hypothetical average situation including workers' ability, workers' working speed, operation of machines, supply of materials, availability of information, etc.

Labor standards are dynamic and must reflect the methods actually used in performing every aspect of the work. As methods change, labor standards must change. If standards are not modified, they become obsolete and should not be used as planning and scheduling tools.

Table 3. Functions that human beings usualy do better than machines.

Sense very low levels of certain kinds of stimuli: visual, auditory, tactual, olfactory, and taste

Detect stimuli against high noise-level background, such as blips on cathode-ray-tube (CRT) displays with poor reception

Recognize patterns of complex stimuli which may vary from situation to situation, such as objects in aerial photographs and speech sounds

Sense unusual and unexpected events in the environment

Store large amounts of information over long periods of time (especially principles and strategies)

Retrieve pertinent information from storage (recall), frequently retrieving many related items of information (reliability of recall is low)

Draw upon experiences in making decisions; adapt decisions to fit requirements; act in emergencies

Select alternative modes of operation, if certain modes fail

Reason inductively (generalize from observations)

Apply principles to solutions of varied problems

Make subjective estimates and evaluations

Develop new solutions

Adapt physical response to variations in operational requirements

Prioritize activities, when overload conditions prevail

Table 4. Functions that machines usually do better than human beings.

Sense stimuli outside the normal range of human sensitivity (x-rays, radar wavelengths, and ultrasonic vibrations)

Apply deductive reasoning (recognizing stimuli as belonging to a general class, when characteristics of class are specified)

Monitor for prespecified events, especially when infrequent (machines cannot improvise in case of unanticipated events)

Store coded information quickly and in large quantities (large sets of numerical values)

Retrieve coded information quickly and accurately (specific instructions must be provided as to type of information required)

Process quantitative information following specified programs

Make rapid and consistent responses to input signals

Perform repetitive activities reliably

Exert considerable physical force in a highly controlled manner

Maintain performance over extended periods of time

Count or measure physical quantities

Perform several programmed activities simultaneously

Maintain efficient operations under conditions of heavy load

Maintain efficient operations under distractions

5 Conclusions and Recommendations

Conclusions

This study has conducted a Level II audit of the TA smoke grenade process and has proposed process optimization concepts (Chapter 3) for the manufacture of TA smoke grenades at PBA to reduce waste and conserve energy.

In the current project, PBA management and technical staff worked closely with researchers from USACERL. The reason for the involvement of an outside agency was to start the process by looking at the current manufacturing process objectively to see where process improvement could occur, to train the installation personnel in process optimization, and to help integrate process optimization into the installation management philosophy. The process as bound by certain principles. For example, throughout the process, optimizing one system parameter, e.g., energy use reduction, was not to be gained by sacrificing another system parameter, for example, increasing pollution.

During the Level I audit on the manufacturing of TA smoke grenades, emphasis was placed on the fill and press part of the operation because the three main bottlenecks occur on this line. Most of the improvement ideas came from the Level I audit that included brainstorming sessions on site, involving PBA technical personnel, USACERL researchers, and contractors (Appendix B). Because problems on the Glatt, and load and packout lines were not exhaustively discussed during the Level I audit, most of the data from PBA relate to the fill and press line.

This study concludes that there are many improvements to the TA smoke grenade manufacturing process that can yield significant cost savings within reasonable payback times (some of which are immediate). Some of the proposed process improvements were calculated from the data supplied by PBA and engineering data from commercial manufacturers (Table 3, p 48). Many paybacks are predicated on as little savings as 1 percent of the production time. Some of the procedures such as "twist and torque" have been investigated previously and involve health and safety concerns as well as economic ones. Note that, while health and safety concerns are difficult to quantify, one worker off the line for 1 week would cost PBA an estimated \$22,747 (Chapter 4).

In general, manufacturing downtime required for quality testing is time consuming and expensive. Quality control should start at the beginning of the process and be the responsibility of all those involved in the production process.

56 USACERL TR-97/126

Recommendations

The following recommendations propose optimization primarily in the fill and press line of the TA smoke grenade manufacturing process (Table 3, p 48). Table 2 (p 48) lists estimated first costs, savings, and simple payback times of each of the following recommendations. The proposed optimizations are generally prioritized according to low first cost, high savings, and short, simple payback. Therefore, it is recommended that the concepts be adopted in the following order to obtain the best results in the shortest time:

- 1. Capacity Concepts Glatt Line*
 - Reduce drying time
 - Correct handling of supersacks (TA)
- 2. Capacity Concepts Fill and Press
 - Capacity concept #66: Reevaluate critical dimensions
 - Capacity concept #14: Install failure indicator light
 - Capacity concept #24: Pre-assemble cup, slug & starter
 - Capacity concepts #5/#9: Replace fast conveyor
 - Capacity concept #7: Install good dust collection system
 - Capacity concept #39 (option 2): Buy diesel fuel air compressor
 - Capacity concept #39 (option 3): Buy natural gas air compressor
 - Capacity concept #39 (option 1): Lease air compressor
 - Capacity concept #10: Automate twist & torque
 - Capacity concepts #68/#69: Optimize maintenance support/optimize training
- 3. Environmental Concepts
 - Environmental concept #1: Total enclosure of painting operation
 - Environmental concept #6: Convert the water curtain to dry filters
 - Environmental concept #24: Close pretreatment plant
 - Environmental concept #2: Evaluate feasibility of permanent reject grenade demanufacture
- 4. Energy Concepts
 - Energy concept #4: Reduce steam pressure by 10 psig
 - Energy concept #26: Initiate energy team
 - Energy concept #10: Decommission unused steam lines
 - Energy concept #5: Decentralize steam system

Note that, since the conclusion of this study, PBA has redesigned the Glatt process and has written new SOPs. These recommendations do not reflect those changes, and may be superseded by the new processes.

References

Crosby, Philip B., Quality Is Free (Mentor, New York 1980).

Gaither, Norman, Production and Operations Management (The Dryden Press, Chicago, 1990).

Industrial Gas Technology Commercialization Center, Natural Gas Driven Air Compressors.

Kowalick, James, "The Total Quality Management Approach to Personal and Organizational Excellence," Engineering and Management Program, UCLA Extension (March 1992).

McCormick, Ernest J., and Mark S. Sanders, *Human Factors in Engineering and Design* (McGraw-Hill Book Company, New York, 1982).

Read, Ronald G., "The Engineer in Transition," Solutions (September 1996), pp. 18-23.

Reynolds, Smith and Hills, Inc., A Combined Limited Energy Study of Electrical Energy Demand and Use and Heating Systems at Pine Bluff Arkansas: Volume I Interim Submittal, Prepared for the U.S. Army Engineer District, Little Rock, AR (1996).

Appendix A: Production Division Monthly Labor Yield From PBA

PBA provided USACERL with Production Division Monthly Labor Yield reports. Job #AB033/4208C (M83 smoke grenades) was selected for analysis. The time period for this job was from February 1996 to May 31 1996. The data from the PBA report were entered into a spreadsheet to more easily allow data elements to be sorted into their respective activity codes.

Pine Bluff Arsenal Production Division Monthly Labor Yield

Totals TA Smoke Grenade Jobs AB033/4208C Combined Down **Net Hours Actual Hrs** stat Net **Actual Hours** Activity Unmeasd Measured Code Units Measured Hours 625 down 835 Total on-job trng 305 down 845 Total dwntne comp 6 down 846 Total defect comp 182 down 847 Total adj of equip 3019 down 850 Total dmntm equip os down 7 851 Total dwntme line chg 648 down 853 Total dwntm samples 139 down 861 Total dwntm inv fire down 69 865 Total dwntm weather 73 871 Total down dwntm lot no ch 5073 **Total Down** 2343 leave 905 Total annual Iv 1316 leave 910 Total S/L no dr stat 340 leave 912 Total S/L dr stat 151 leave 917 Total sl care fam mbr 220 leave 920 Total holiday Iv 44 leave 922 Total court ly 10 leave 924 Total continue of pay 40 leave 925 Total time off award 21 leave 933 Total vol lwop 66 leave 940 Total comp time work 84 leave 941 Total comp time taken 51 leave 942 Total TDY 4686 Total Leave 165 110 Total 170 5 meas prep start mix 31 325 294 meas 122 Total prepare slugs 952 2397 3349 meas 124 Total prep glatt mix 871 886 15 meas 128 Total rebid glatt mix 197 0 246 Total 197 meas punch screens 3840 10524 14364 meas 309 Total F&P south 109 550 659 meas 524 Total packout 941 941 0 meas 611 Total clean-up 373 489 116 meas 614 Total F&P inven 100% 43 619 Total 48 5 meas P.O inv 100% 21428 5073 16355 Total Meas. 9.5 ovrhd 710 Total admin 28 ovrhd 713 Total misc OH 295.5 ovrhd 721 Total meetings 69 ovrhd 732 Total post wide evac 612 ovrhd 733 Total light duty

Pine Bluff Arsenal Production Division Monthly Labor Yield . Totals

Jobs AB0	33/4208C Combi	ned Totals		TA Smoke G	renade
754 Total	foreman sf cte			3	ovrhd
765 Total	training			601	ovrhd
770 Total	clerical			891	ovrhd
771 Total	timekeeping			6.5	ovrhd
773 Total	filing			8	ovrhd
782 Total	dispensary			98.5	ovrhd
786 Total	awards			32	ovrhd
787 Total	eeo activities			118	ovrhd
792 Total	official func			13	ovrhd
793 Total	caira/surety			4	ovrhd
796 Total	clean-up			3898.5	ovrhd
799 Total	comm counsi ctr			29	ovrhd
	Total Overh	ead			6716.
650 Total	supervision			4705	unmeas
654 Total	Admin.			1594	unmeas
656 Total	Line Maint.			231	unmeas
660 Total	Lt. Duty/Occup			444	unmeas
		Prev. Maint.	384.5		
		Lt. Duty - NonOccu.	523		
661 Total	Prev Maint & Lt. D	uty-NonOccup.		907.5	unmeas
662 Total	Engr Sup.			972	unmeas
663 Total	Tech Sup.			1025.5	unmeas
692 Total	Screen /Ven			27	unmeas
694 Total	Rework			333	unmeas
704 Total	EEO Couns.			60	unmeas
	Total Unme	asured			10299

Pine Bluff Arsenal Production Division Monthly Labor Yield Sorted by Month

stat		down	down	down	down	down	down	ф	203 leave	49 leave	13 leave	110 leave	158 leave	52 leave	leave	110 leave	14 leave	6 leave	20 leave	742 leave	meas	meas	meas	meas	meas	meas	meas	meas	meas	meas	5.5 ovrhd
Actual Hrs	Unmeasd								203	49	13	110	158	52	7	110	14	9	20	742											5.5
Net Hours	Measured																				14	675.5	149.5	62	3893.5	293	175	131	18	5428,5	
Down	Hours	49	31	686	4	216	9	1295													1	258			984	24		27	_	1295	
Actual Hours	Measured																				15	933.5	149.5	62	4877.5	317	175	158	19	6723.5	
Net	Units				,																12390	25	23	77500	73747	37216	17	73747	37216		
Activity	Description	On-job training	Adj of equip	Dwntime Equip	Dwntime line chg	Dwntm samples	Dwntm lot no ch	TOTAL	annual	sick no dr stat	sl care fam mbr	holiday Iv	annual	sick no dr stat	sl care fam member	holiday Iv	voluntary Iwop	comp time work	comp time taken	TOTAL	prepare slugs	prep Glatt mix	Rebld Glatt mix	Punch screens	F&P south	Packout	Cleanup	F&P Inv 100% so	P.O. Inv 100%	TOTAL	admin
# qof		AB033	AB033	AB033	AB033	AB033	AB033		AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033		AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033		AB033
Activity	Code	835	847	850	851	853	871		905	910	917	920	908	910	917	920	933	940	941		122	124	128	246	309	524	611	614	619		710
Reprt	Page	6	6	6	10	10	10		4	4	4	4	19	20	20	20	20	20	20		9	9	9	7	7	7	ω	8	8		7
Month		31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-Mav-96

Page 1

Pine Bluff Arsenal
Production Division Monthly Labor Yield
Sorted by Month

31-May-96	2 721	1 AB033	meetings	20 ovrhd	rhd
31-May-96	2 765	5 AB033	training	10 ovrhd	rhd
31-May-96	3 770	J AB033	clerical	159.5 ovrhd	rhd
31-May-96	3 786	3 AB033	awards	9 ovrhd	rrhd
31-May-96	3 792	2 AB033	official function	8 ovrhd	rrhd
31-May-96	3 796	5 AB033	clean up	803 ovrhd	rhd
31-May-96	18 710	0 AB033		4 ovrhd	rhd
31-May-96	18 721	1 AB033	meetings	20.5 ovrhd	rhd
31-May-96	18 765	5 AB033	training	2 ovrhd	rhd
31-May-96	18 770	0 AB033	clerical	151 ovrhd	rrhd
31-May-96	19 771	1 AB033	timekeeping	6.5 ovrhd	rhd
31-May-96	19 786	6 AB033	awards	11 ovrhd	rhd
31-May-96	19 792	2 AB033	official function	5 ovrhd	/rhd
31-May-96			TOTAL	1215 ovrhd	ĐĐ/
31-May-96	1 650	0 AB033	supervision	1386 unmeas	meas
31-May-96	1 654	4 AB033	admin	147.5 unmeas	ımeas
31-May-96	2 661	1 AB033	prev maintenanc	68.5 unmeas	ımeas
31-May-96	8 656	6 AB033	Line maint	58.5 unmeas	ımeas
31-May-96	9 694	4 AB033	Rework	n 83 nr	83 unmeas
31-May-96	16 650	0 AB033	supervision	185 unmeas	ımeas
31-May-96	17 654	4 AB033	administration	333 unmeas	ımeas
31-May-96	17 661	1 AB033	prev maint	108 unmeas	ımeas
31-May-96	17 662	2 AB033	engr support	276.5 ur	ımeas
31-May-96	18 663	3 AB033	tech supt	397.5 unmeas	ımeas
31-May-96			TOTAL	3043,5 unmeas	าเทอลร
2	MAY TOTALS				

Pine Bluff Arsenal Production Division Monthly Labor Yield Sorted by Month

Jobs AB033/4208C Combined

down	down	down	down	down	down	down	down	down	145 leave	87 leave	930 leave	457 leave	180 leave	40 leave	20 leave	40 leave	121 leave	57 leave	5 leave	24 leave	5 leave	31 leave	32 leave	15 leave	2189 leave	meas	meas	meas	meas	meas
									145	87	930	457	180	40	20	9	121	57	5	24	5	31	32	15	2189					
																										165	111	629	264	118
298	9	87	799	213	106	4	16	1529																		5	1	445		
																										170	112	1084	264	118
																										69	83930	64	46	86500
on job training	defect compon	adj of equip	dwntm equip os	dwntm samples	dwntm inv fire	dwntm weather	dwntm lot no ch	TOTAL	annual	sick no dr stat	annual	sick no dr stat	sick dr stat	sl care fam mbr	court ly	time off award	annual	sick no dr stat	sl care fam mbr	court lv	voluntary Iwop	comp time work	comp time taken	TDY	TOTAL	prep start mix	prepare slugs	prep Glatt mix	rebld Glatt mix	ninch screens
AB033	AB033		AB033	AB033					AB033	AB033	AB033		AB033		AB033	AB033	AB033	1	AB033	AB033	AB033	AB033	AB033	AB033		AB033	AB033	AB033	AB033	AB033
835	846	847	850	853	861	865	871		905	910	905	910	912	917	922	925	905	910	917	922	933	940	941	942		110	122	124	128	216
12	12	12	13	13	14	14	14		5	2	16	16	17	18	18	18	22	22	22	23	23	23	23	23		7	7	ω	ω	c
30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30 Apr 06

Page 3

M83 Smoke Grenade

Pine Bluff Arsenal Production Division Monthly Labor Yield Sorted by Month

Jobs AB033/4208C Combined

meas	meas	meas	meas	meas	meas	8 ovrhd	9 ovrhd	10 ovrhd	1 ovrhd	171 ovrhd	164 ovrhd	8 ovrhd	2 ovrhd	1950 ovrhd	40 ovrhd	2 ovrhd	62 ovrhd	52 ovrhd	313 ovrhd	300 ovrhd	43.5 ovrhd	4 ovrhd	2 ovrhd	12 ovrhd	7 ovrhd	88 ovrhd	132 ovrhd	3380.5 ovrhd	1403 unmeas	250 unmeas	161 unmass
3147	257	362	128	25	5216																										
962	85		27	4	1529																										
4109	342	362	155	29	6745																										
7626	36720	37	7626	36720																											
F&P south	Packout	clean-up	F&P inven 100%	P.O. inven100%	TOTAL	misc overhead	meetings	oost wide evacu	foreman sf cte	training	clerical	filing	dispensary	clean up	eeo counselors	misc OH	meetings	post wide evacu	light duty	training	dispensary	eeo activities	comm counsl ctr	meetings	post wide evacu	training	clerical	TOTAL	supervision	admin	prev maintenanc
AB033 F		AB033 c	AB033 F	AB033 F		AB033 r	AB033 r	AB033	AB033 f	AB033 t		AB033 1	AB033 (AB033 (AB033	AB033	AB033	AB033	AB033	AB033	.AB033	AB033	AB033	AB033	AB033	AB033		AB033	AB033	AB033
309		611	614	619		713	721	732	754	765	770	773	782	796	704	713	721	732	733	765	782	787	799	721	732	765	770		650	654	661
6	6	10	19	9		3	3	3	3	က	4	4	4	4	14	14	14	14	15	15	15	16	16	21	21	21	22		1	2	2
30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96

Page 4

Pine Bluff Arsenal
Production Division Monthly Labor Yield
Jobs AB033/4208C Combined
Sorted by Month

	TOTAL				30-Apr-96
3303 5 mmeas	technical support	(ADU33	500	7.1	30-Apr-96
Sea Innineas	technical support	ARO33	663	2	00 5 7 00
200 CAS	engr support	AB033	662	20	30-Apr-96
367 5 unmeas	adilli ilsu ation	ABOSS	624	19	30-Apr-96
342.5lunmeas				2	מפייות אייטים
IZJ UIIIIEds	supervision	AR033	650	10	20 200
120 unineas	rework FLT/prod	AB033	694	11	30-Apr-96
707	screen for vend	AB033	692	11	30-Apr-96
Scomon 2C	It aty-nonoccup	AB033	661	11	30-Apr-96
20 unmeas	וו ממו) מממם	2000	200	-	30-Apr-30
/O unmeas	It duty-occup	ABO33	099	*	00
/ U.D unmeas	line maint	AB033	656	11	30-Anr-96

Pine Bluff Arsenal Production Division Monthly Labor Yield Sorted by Month Jobs AB033/4208C Combined

down	down	down	down	down	down	down	down	down	down	down	down	uwop	down	ф	128 leave	82 leave	10 leave	2 leave	606 leave	502 leave	160 leave	86 leave	52 leave	30 leave	29 leave	32 leave	36 leave	1755 teave	meas	meas
												.																	473	170
118	14	45	970	91	65	29	06	111	19	180	3	109	11	1855				-											109	15
																													582	185
			.,																											
on job trng	dwntme compon	adj of equip	dwntm equip os	dwntm samples	dwntm weather	dwntm lot no ch	on job training	dwntm compon	adj of equip	dwntm equip os	dwntm line chg	dwntm samples	dwntm lot no ch	TOTAL	annual	sick no dr stat	continue of pay	voluntary Iwop	annual	sick no dr stat	sick dr state	sl care fam mbr	annual	sick no dr stat	comp time work	comp time taken	TDY	TOTAL	prep Glatt mix	rbld Glatt mix
4208C	4208C	4208C	4208C	4208C	4208C	4208C	AB033	AB033	AB033	AB033	AB033	AB033	AB033		AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033		4208C	4208C
835	845	847	850	853	865	871	835	845	847	850	851	853	871		902	910	924	933	905	910	912	917	905	910	940	941	942		124	128
9	10	10	0	11	1	11	18	18	18	18	19	19	19		5	9	9	9	21	22	22	23	28	28	28	28	29		7	7
31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96

Page 6

Pin Production Div Jobs AB033/4208C Combined

31-Mar-96 31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96

31-Mar-96 31-Mar-96 31-Mar-96 31-Mar-96

31-Mar-96

Pine Bluff Arsenal Production Division Monthly Labor Yield Sorted by Month

meas meas meas meas meas meas meas meas meas 21 ovrhd 2 ovrhd 10 ovrhd 130 ovrhd 6 ovrhd 20 ovrhd 143 ovrhd 299 ovrhd 20 ovrhd 12 ovrhd 154.5 ovrhd **2181** ovrhd meas 1145.5 ovrhd 45 ovrhd 108 ovrhd 27 ovrhd 16 ovrhd 8 ovrhd 4 ovrhd 4 ovrhd 2 ovrhd 4 ovrhd **M83 Smoke Grenade** 1574 348 329.5 235.5 1343 20 45 62 51 9 6 8 403 1168 1855 7 419.5 235.5 1746 2741.5 348 20 6505.5 91 57463 53558 53609 33 prepare Glatt mix comm counsl ctr eeo counselors rebld Glatt mix F&P inv 100% foreman sf cte F&P inv 100% prepare slugs eeo activities eeo activities caira/surety dispensary F&P south F&P south dispensary dispensary clean-up meetings meetings meetings clean up clean up light duty misc OH misc OH training TOTAL training clerical awards TOTAL clerical AB033 4208C AB033 4208C AB033 AB033 AB033 AB033 AB033 4208C AB033 **AB033 AB033** AB033 AB033 **AB033** AB033 AB033 AB033 **AB033** 309 614 122 128 96/ 704 713 733 782 786 787 611 765 770 782 787 721 793 299 721 782 21 27 27 28 28 228 15 19 19 14 19 20 20 21 21 21 $\infty \mid \infty$ ω 2 S S 4 4 4 4

Page 7

Production Division Monthly Labor Yield Sorted by Month Jobs AB033/4208C Combined

)	_	650	4208C	supervision	652 unmeas	neas
31-Mar-96	-	654	4208C	admin	125 unmeas	neas
31-Mar-96	2	661	4208C	prev maint	87 unmeas	neas
31-Mar-96	3	650	AB033	supervision	546 unmeas	neas
31-Mar-96	4	654	AB033	admin	89 unmeas	neas
31-Mar-96	4	661	AB033	prev maintenanc	68 unmeas	neas
31-Mar-96	6	929	4208C	line maint	12 unmeas	neas
31-Mar-96	6	099	4208C	It duty-occup	195 unmeas	neas
31-Mar-96	6	661	4208C	It dty-nonoccup	246 unmeas	neas
31-Mar-96	6	694	4208C	rework flt/prod	80 unmeas	neas
31-Mar-96	17	650	AB033	misc	10 unmeas	neas
31-Mar-96	17	656	AB033	line maint	50 unmeas	neas
31-Mar-96	17	099	AB033	It duty-occup	119 unmeas	neas
31-Mar-96	18	661	AB033	It duty-nonoccup	64 unmeas	neas
31-Mar-96	18	694	AB033	rework FLT/prod	45 unmeas	meas
31-Mar-96	24	650	4208C	supervision	40 unmeas	meas
31-Mar-96	24	654	4208C	admin	122 unmeas	meas
31-Mar-96	24	662	4208C	engr support	157 unmeas	meas
31-Mar-96	24	663	4208C	tech support	123 unmeas	neas
31-Mar-96	56	650	AB033	supervision	59 unmeas	neas
31-Mar-96	26	654	AB033	admin	126 unmeas	meas
31-Mar-96	27	662	AB033	engr support	113 unmeas	meas
31-Mar-96	27	663	AB033	technical support	163 unmeas	neas
31-Mar-96				TOTAL	3291 unmeas	Tieas
	MARCH	MARCH TOTALS				

Pine Bluff Arsenal
Production Division Monthly Labor Yield
Jobs AB033/4208C Combined
Sorted by Month

2 5000				natioe	Solled by mornin	
			000		70	down
29-Feb-96	6	835	4208C	on job training	0.007	UMOP
29-Feb-96	တ	845	4208C	dwntme compon	001	
29-Feb-96	10	850	4208C	dwntm equip os	81	IIMOD
29-Feb-96	10	853	4208C	dwntm samples	19	down
29-Feb-96	10	861	4208C	dwntm inv fire	33	UMOD
29-Feb-96	10	871	4208C	dwntm lot no ch		UMOD
22.22	2.			TOTAL	394	down
29-Feh-96	œ	110	4208C	prep start mix		meas
29-Feh-96	8	122	4208C	prepare slugs	10	meas
29-Feb-96	80	124	4208C	prep Glatt mix	50	meas
29-Feb-96	0	128	4208C	rebld Glatt mix		meas
29-Feb-96	8	309	4208C	F&P south	323 5	meas
29-Feh-96	000	611	4208C	clean-up	36 36	meas
29-1-02 29-Eeh-96	σ	614	4208C	F&P inv 100%		meas
00-00 I-67	>	:		TOTAL	1574 394 1180	meas
20 7-1	T	650	ASORC	sunervision		299 unmeas
29-reb-96	-	654	4208C	admin		59 unmeas
29-Feb-96	6	656	4208C	line maint		40 unmeas
29-Feb-96	თ	099	4208C	It duty-occup		oo unmeas
29-Feb-96	0	661	4208C	It dty-nonoccup		oo unmeas
29-Feb-96	26	662	4208C	engr support		Spannin CC.
				TOTAL		continuo in
	FEBRU	FEBRUARY TOTALS	S			

Pine Bluff Arsenal Production Division Monthly Labor Yield

Jobs AB033/4208C

58.5 unmeas 83 unmeas 142 unmeas 1386 unmeas 147.5 unmeas 68.5 unmeas 1602 unmeas stat теав 803 ovrhd 1015 ovrhd meas 8 ovrhd 203 leave meas meas meas meas meas meas 5.5 ovrhd 20 ovrhd 10 ovrhd 159.5 ovrhd 9 ovrhd 49 leave 13 leave 110 leave 375 leave meas meas Actual Hrs Unmeasd 675.5 149.5 3893.5 293 175 131 5429 Net Hours Measured 984 258 1295 Down Hours 27 933.5 79 175 317 158 **Actual Hours** Measured 37216 311913 37216 77500 12390 23 73747 73747 57 Net Units F&P Inv 100% so prev maintenanc Description sl care fam mbr Rebld Glatt mix Punch screens official function P.O. Inv 100% prep Glatt mix sick no dr stat prepare slugs Activity supervision F&P south Line maint holiday Iv meetings Cleanup clean up Packout Rework TOTAL TOTAL TOTAL training TOTAL awards clerical annnal admin admin AB033 AB033 AB033 Job # AB033 AB033 AB033 AB033 AB033 AB033 AB033 AB033 AB033 **AB033** AB033 AB033 AB033 AB033 **AB033** AB033 **AB033** AB033 AB033 AB033 **AB033 AB033 AB033** AB033 AB033 Activity Code 905 910 124 128 246 309 524 614 656 694 650 654 765 770 786 792 917 920 611 661 721 Reprt Page 3 2 2 5 ω ကက က 4 4 4 4 ঘ 9 9 9 ∞ 2 Ø 2 31-May-96 Month

Page 1

Production Division Monthly Labor Yield

Jobs AB033/4208C

down	down	down	down	down	down	down	185 unmeas	333 unmeas	108 unmeas	numeas	numeas	inmeas	4 ovrhd	ovrhd	2 ovrhd	ovrhd	ovrhd	11 ovrhd	5 ovrhd	put	eave	52 leave	7 leave	eave	14 leave	6 leave	20 leave	eave	1403 unmeas	250 unmeas	161 unmeas
0	Q	0	0	J		9	185	333	108 (276.5 unmeas	397.5 unmeas	1300 unmeas	4	20.5 ovrhd	2 0	151 ovrhd	6.5 ovrhd	11	5 (200 ovmd	158 leave	52	1 2	110 leave	141	9	20	367 leave	1403	250 נ	161
49	31	686	4	216	9	1295																									
On-job training	Adj of equip	Dwntime Equip	Dwntime line chg	Dwntm samples	Dwntm lot no ch	TOTAL	supervision	administration	prev maint	engr support	tech supt	TOTAL	admin	meetings	training	clerical	timekeeping	awards	official function	TOTAL	annual	sick no dr stat	sl care fam member	holiday lv	voluntary Iwop	comp time work	comp time taken	TOTAL	supervision	admin	prev maintenanc
	AB033	AB033	AB033	AB033	AB033			AB033	AB033			AB033	AB033	AB033	AB033	AB033	AB033		AB033	AB033	AB033					AB033		AB033	AB033	AB033	AB033
835	847	850	851	853	871		650	654	661	662	663		710	721	765	770	771	786	792		902	910	917	920	933	940	941		650	654	661
တ	6	6	10	10	10	10	16	17	17	17	18	18	18	18	18	18	19	19	19	19	19	20	20	20	20	20	20	20	-	2	2
31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	31-May-96	30-Apr-96	30-Apr-96	30-Apr-96

Page 2

Production Division Monthly Labor Yield

Jobs AB033/4208C

1814 unmeas	8 ovrhd	9 ovrhd	10 ovrhd	ovrhd	171 ovrhd	164 ovrhd	8 ovrhd	2 ovrhd	1950 ovrhd	2323 ovrhd	145 leave	87 leave	232 leave	meas	meas	meas	meas	meas	meas	meas	meas	meas	meas	meas	70.5 unmeas	70 unmeas	20 unmeas	27 unmeas	125 unmeas	313 unmeas	down
181	ω	U,	1	,	17.	16	3		195(232:	14	8	23.												70.	7	2	2	12	31	
														165	111	629	264	118	3147	257	362	128	25	5216							
														5		445			962	85		27	4	1529							298
														170	112	1084	264	118	4109	342	362	155	29	6745							
														69	83930	64	46	86500	7626	36720	37	7626	36720	259338							
TOTAL	misc overhead	meetings	post wide evacu	foreman sf cte	training	clerical	filing	dispensary	clean up	TOTAL	annual	sick no dr stat	TOTAL	prep start mix	prepare slugs	prep Glatt mix	rebld Glatt mix	punch screens	F&P south	Packout	clean-up	F&P inven 100%	P.O. inven100%	TOTAL	line maint	It duty-occup	It dty-nonoccup	screen for vend	rework FLT/prod	TOTAL	on job training
AB033 1	AB033 r	AB033 r	AB033 p	AB033 f	AB033 t	AB033 c	AB033 f	AB033 (AB033 c	AB033 -	AB033	AB033 8	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033		AB033	AB033	AB033
	713	721	732	754	765	770	773	782	962		902	910		110	122	124	128	246	309	524	611	614	619		656	099	661	692	694		835
2	က	က	က	က	က	4	4	4	4	4	2	2	S	7	7	ω	œ	6	6	6	9	9	10	10	11	11	11	11	11	11	12
30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96

Page 3

Page 4

Production Division Monthly Labor Yield

dwntm equip os
dwntm samples
dwntm inv fire
dwntm weather
dwntm lot no ch
FOTAL
eeo counselors
ЮН
meetings
post wide evacu
light duty
training
dispensary
eeo activities
 comm counsl ctr
FOTAL
annual
sick no dr stat
sick dr stat
sl care fam mbr
court Iv
off award
TOTAL
supervision
administration
enar support
echnical support
TOTAL
neetings

Production Division Monthly Labor Yield

Jobs AB033/4208C

88 ovrhd	132 ovrhd	239 ovrhd	121 leave	57 leave	5 leave	24 leave	5 leave	31 leave	32 leave	15 leave	290 leave	546 unmeas	89 unmeas	68 unmeas	703 unmeas	21 ovrhd	2 ovrhd	10 ovrhd	130 ovrhd	4 ovrhd	6 ovrhd	1145.5 ovrhd	1319 ovrhd	128 leave	82 leave	10 leave	2 leave	222 leave	meas	meas	meas
	1	2	1.								2	Ò			7				+			1145	13	1				N			
																													62	329.5	235.5
																					3								19	90	
																						-							81	419.5	235.5
																	0												57463	34	33
training	clerical	TOTAL	annual	sick no dr stat	sl care fam mbr	court ly	voluntary Iwop	comp time work	comp time taken	TDY	TOTAL	supervision	admin	prev maintenanc	TOTAL	meetings	foreman sf cte	training	clerical	dispensary	eeo activities	clean up	TOTAL	annual	sick no dr stat	continue of pay	voluntary Iwop	TOTAL	prepare slugs	prepare Glatt mix	rebld Glatt mix
AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033
765	770		902	910	917	922	933	940	941	942		650	654	661		721	754	765	770	782	787	962		905	910	924	933		122	124	128
21	22	22	22	22	22	23	23	23	23	23	23	3	4	4	4	4	4	4	4	5	5	5	5	5	9	9	9	ဖွ	15	16	16
30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	30-Apr-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96

Page 5

Pine Bluff Arsenal Production Division Monthly Labor Yield

Jobs AB033/4208C

meas	meas	meas	meas	10 unmeas	50 unmeas	119 unmeas	64 unmeas	45 unmeas	288 unmeas	down	down	down	down	down	down	down	down	20 ovrhd	2 ovrhd	143 ovrhd	299 ovrhd	20 ovrhd	45 ovrhd	12 ovrhd	108 ovrhd	4 ovrhd	27 ovrhd	ovrhd	606 leave	502 leave	160 leave
				10	20	119	64	45	288	-								20	2	143	299	20	45	12	108	4	27	680	909	505	160
1343	20	45	2035																												
403		11	523							06	111	19	180	က	109	7	623														
1746	20	56	2558																												
53558		53609	164697																											-	
F&P south	clean up	F&P inv 100%	TOTAL	misc	line maint	It duty-occup	It duty-nonoccup	rework FLT/prod	TOTAL	on job training	dwntm compon	adj of equip	dwntm equip os	dwntm line chg	dwntm samples	dwntm lot no ch	TOTAL	eeo counselors	misc OH	meetings	light duty	training	dispensary	awards	eeo activities	caira/surety	comm counsi ctr	TOTAL	annual	sick no dr stat	sick dr state
AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033
309	611	614		650	656	099	661	694		835	845	847	850	851	853	871		704	713	721	733	765	782	786	787	793	799		902	910	912
16	16	17	17	17	17	17	18	18	18	18	18	18	18	19	19	19	19	19	19	20	20	20	20	21	21	21	21	21	21	22	22
31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96

Page 6

Pine Bluff Arsenal Production Division Monthly Labor Yield

Jobs AB033/4208C

M83 Smoke Grenade

86 leave	eave	59 unmeas	126 unmeas	113 unmeas	163 unmeas	461 unmeas	16 ovrhd	8 ovrhd	ovrhd	4 ovrhd	183 ovrhd	52 leave	30 leave	29 leave	32 leave	36 leave	179 leave	stat		652 unmeas	125 unmeas	87 unmeas	864 unmeas	meas	meas	meas	meas	meas	meas	12 unmeas
198	1354 leave	969	126	113	163	461	16	80	154.5 ovrhd	4	183	52	30	29	32	36	179	Actual Hrs	Unmeasd	652	125	87	864							12
																		Net Hours	Measured					473	170	1574	348	51	2615.5	
																		Down	Hours					109	15	1168		40	1332	
																		Actual Hours	Measured					582	185	2741.5	348	91	3947,5	
																		Net	Units											
sl care fam mbr	TOTAL	supervision	admin	engr support	technical support	TOTAL	misc OH	meetings	clerical	dispensary	TOTAL	annual	sick no dr stat	comp time work	comp time taken	TDY	TOTAL	Activity	Description	supervision	admin	prev maint	TOTAL	prep Glatt mix	rbld Glatt mix	F&P south	clean-up	F&P inv 100%	TOTAL	line maint
AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	AB033	# qof		4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C
917		650	654	662	663		713	721	770	782		905	910	940	941	942		Activity	Code	650	654	661			128	309	611	614		656
23	23	26	26	27	27	27	27	27	228	28	28	28	28	28	28	29	29	Reprt	Page	1	1	2	2	7	7	ω	80	ω	ω	6
31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	Month		31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96

Page 7

Pine Bluff Arsenal Production Division Monthly Labor Yield

Jobs AB033/4208C

195 unmeas	246 unmeas	80 unmeas	533 unmeas	down	down	down	down	down	down	down	down	40 unmeas	122 unmeas	157 unmeas	123 unmeas	442 unmeas	299 unmeas	59 unmeas	358 unmeas	meas	meas	meas	meas	meas	meas	meas	meas	40 unmeas	60 unmeas	85 unmeas	85 unmeas
199	246	8(53;									4	123	15	12	44.	296	5	350									4	9	æ	ά
																				120	107	280	52	292	36	18	1180				
				118	14	45	026	91	65	59	1332										10	20		323		7	394				
							-													120	117	330	52	890	36	29	1574				
It duty-occup	It dty-nonoccup	rework flt/prod	TOTAL	on job trng	dwntme compon	adj of equip	dwntm equip os	dwntm samples	dwntm weather	dwntm lot no ch	TOTAL	supervision	admin	engr support	tech support	TOTAL	supervision	admin	TOTAL	prep start mix	prepare slugs	prep Glatt mix	rebld Glatt mix	F&P south	clean-up	F&P inv 100%	TOTAL	line maint	It duty-occup	It dty-nonoccup	2 H C H
	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C		4208C	8	4208C	4208C	4208C	4208C	4208C		4208C	4208C	4208C	4208C	4208C	4208C	4208C	
999	661	694		835	845	847	850	853	865	871		650	654	662	663		650	654		110	122	124	128	309	611	614		656	099	661	
გ	6	6	О	10	10	10	10	17	-	=	11	24	24	24	24	24	-	-		8	ω	∞	∞	∞	æ	တ	6	6	6	6	•
31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	31-Mar-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	

Page 8

Production Division Monthly Labor Yield

Jobs AB033/4208C

down	down	down	down	down	down	down	58 unmeas	58 unmeas
							58	58
70	180	81	19	33	7	394		
ing	mpon	ip os	seldu	fire	no ch		ort C	
on job training	dwntme compon	dwntm equip os	ntm sam	dwntm inv fire	ntm lot r	TOTAL	engr support	TOTAL
o							ence	9
4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C	4208C
835	845	850	853	861	871		662	
6	6	10	10	10	10	10	76	26
29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	29-Feb-96	79-Feb-96

Page 9

79

Appendix B: Review of Level I Audit on TA Smoke Grenade Process

A Level I audit was conducted on the TA smoke mix, grenade fill and press, and load and packout lines situated, respectively, in Buildings 32-620, 33-530, and 33-570. Those involved in the Level I audit were PBA technical personnel with knowledge of process issues, business and finance, quality issues, environmental, energy performance, and maintenance associated with the TA smoke grenade process. In addition to the PBA technical personnel, USACERL researchers, a team leader from IOC, and contractors from ETSI Consulting, Inc. and Stanley Consultants, Inc. also assisted in the Level I audit. The PBA technical staff formed an integral part of the audit team because they brought to it first-hand experience of the TA smoke grenade process. A Level I audit uses "guess" economics and no measurements. However, the persons making the "guesses" are those who are intimately associated with the targeted process.

Establishing Potential Dollar Value

The Resource Management Office at PBA as of 8 July 1996 reported FY97 revenue for all of PBA. Data from PBA budget for 1997 (Table B1) were reviewed for Level I analyses. These data were compared with other data recommended by the team. The breakdown of revenue for manufacturing is shown in Table A2.

Brainstorming for Level I Audit

In creating the new process, capacity, environmental, and energy issues were considered separately. In each of the three areas, the participants used Nominal Group Brainstorming techniques. The process changes were recorded, subsequently participants voted on the concepts, and top concepts were selected. Table B3 shows the results of the brainstorming conducted during the Level I audit.

Table B1. Pine Bluff Arsenal's FY97 revenue projections.

Description of Total FY97 Revenue for:	Direct Hours (D.H.)	Labor \$	Material & Equip \$	Services	Applied Overhead	Total Revenue	per cent
Manufacturing	579,936	14,022,990	17,561,895	1,967,636	26,178,619	59,731,140	61.2
Demilitarize	66,830	1,651,312	129,776	118,435	2,578,479	4,478,002	4.6
Other	335,611	7,826,758	1,797,069	1,896,757	21,906,470	33,427,054	34.2
Total	982,377	23,501,060	19,488,740	3,982,828	50,663,568	97,636,196	100
Percent		24.0	20.00	4.1	51.9	100	

USACERL TR-97/126

Weakness Analysis: Capacity Bottlenecks in the Fill and Press

Weakness analyses were conducted from the following perspectives: readiness capacity), reliability (power outages), quality (correct (startup time. corrective actions), safety/health, environment, utilities measurements. consumption, labor requirements, and cost improvement. Three bottlenecks were identified in the fill and press process. The bottlenecks were prioritized according to the amount of downtime each caused. The fast track conveyor (steps 10, 11, 12, 13, and 14) caused 40 percent of the downtime of the fill and press process. The installation and seal (step 15) caused 7 percent of the downtime and the most rejects accumulated at this station. The Consolidate press (Step 5) caused 5 percent of the downtime.

The weakness analysis was conducted from the following perspectives: readiness (startup time, capacity), reliability (power outages), quality (correct measurements, corrective actions), safety/health, environment, utilities consumption, labor requirements, and cost. Tables B6 and B7 show the results of the weakness analyses.

Table B2. Identifying the manufacturing cost structure

Table B2. Identifying the	e manufacturing cost structure.	
Item Cost		
Labor		\$14,022,990
Material & Equipment		\$17,561,895
Services		\$1,967,636
Applied Overhead		\$26,178,619
By dividing	Labor Cost	\$14,022,990
	Total Rev	\$59,731,140
	= 23 percent	<u>\$59,731,140</u> \$579,936
By dividing	Total Rev.	
_, _, _,	Mftg D.H.	
	= \$102.99/Direct Labor Hours	

Table B3. Brainstorming concepts for capacity optimization.

Concepts	Votes
1.	_
2. Combine the 2 pressing operations (3 & 5)into one	8
3. Consolidate steps 11,12, 13, 15	5
4. Redesign stops for motion detection	7
5. Update PLC to do job it is suppose to do	9*
6. Replace the conveyor with a belt	15*
7. Convert to manual operation short term	3#
ومناوا كم ماداء والاستان والاس	13*
	0*
	12*
10. Do #5 using existing frame	10*
11. Automate down stream and use manpower where needed	1#
12. Fix machine alignment	1#

Cor	ncepts	Votes
	Do #9 but ensure a method of how to "off line" for positive location	6
	Do not operate the pretreatment for waste water plant	0^
	Install a failure indicator	10#*
	Add two more maintenance people/shift	0
	Change out the can loader	3
	Have a back up can sealer and consolidation press	0
	Replace old automatic can sealer with newer one	3
	Short term use existing manual can sealers (2 - 4)	0^
	Re-arrange whole layout	15
	Readiness deserves redundancy	3*
	Install pollution control equipment on line so quality check can be done on site 0	
	Do #20 by layout equipment in proper sequence by using all 9 cubicles	6
	Do #2 by preassembling # 11, 12, and 13	9#*
	Provide dust proofing for bearings	2
	Utilize existing data collecting system	4^
	Convert to plastic grenade body and lid	11*
	Combine fill and press operation with load and pack to eliminate (steps 29 -31)	1
	Modify north side line to handle TA units so both can operate	5
	t + 40 percent more output	· ·
	Move the line closer to Glatt	4
	Do #1 and combine #s3, 5, 8	i
	Do suggestion 28 and eliminate consolidation press step #5	9*
35	Redesign the pallet and stop mechanism if we must stick with conveyor	o l
	Perform PM at end of each of shift and at lunch	10*#
	Totally enclose painting operation	0
	Prepare /reverse/modify the lid feed system for the sealer	12*
	Convert to single slug on the Glatt line to eliminate steps 3,5,6,7,8	5
	Lease an air compressor	2#
	Do # 14 by showing the block diagram on the PLC	0
	Combine step 23 and 24 (twist and torque)	0#
	Eliminate screen starter cup and cardboard disc by going to an alternate ignition	
	system	5
44.	Don't repaint it green or don't repaint	6
	Eliminate dirty compressed air by installing an oil, dirt, moist system filter	5#
	Put a dust jacket over the 1st press machine (step #5) to minimize dust	0
	Use alternative clean up method	0#
	Combine 2-6 into one operation by using Stokes press	9*
	Use extra can sealers in cubicle 7 and 8	4
	Redesign the cardboard containers so fuse guard is not needed	0
51.	Go to a nonsolvent base paint	2
	Optimize cycle time of consolidation press by removing delay time	15^*
	Work environment should be improved to raise motivate	0
	Use pre-painted cans	0
	Reduce applied overhead by eliminating internal reviews and half of	
	management analysis staff	0
56.	Move air compressor from the 34640 to 33-530	9*
	Fix compress problem at central location with good maintenance	8
	Skid mount all equipment	4
	Separate interlock control on work station at the front of line	1#
	Redesign the fuse guard so the container is not needed	0
	Convert the paint booth water curtain to dry filters	0
	Design stencil machine to combine #21 and 22	8
	Do 57 for air compressor	2
	Modify line to produce multiple size canisters	8
	Redesign the molds for the consolidation press	2
	Tighten the controls (Quality Assurance) especially oversized cans, not like	
	drawings	16^*
	9-	

otes/
3
}
3#*
; #
5^

Table B4. Brainstorming concepts for energy optimization.

	e B4. Brainstorming concepts for energy optimization.	Votes
_	Out a bill a maite with word /baliday requirements	7
1.	Cycle chiller units with work/holiday requirements	, 0#
2.	Investigate use of a fuel cell	0
3.	Convert Glatt to gravity tumbler to eliminate air	23*
4.	Optimize steam pressure lower to 75 psig from 125 psig	23
5.	Decentralize steam system to discontinue use of boilers in summer or all year	00*
	long. (Condense lines to supply gas to package boilers)	23*
6.	Increase PVA concentration in water mix to reduce heating/drying	8*
7.	Reduce number of moving parts to save logistical energy	0
8.		0
9.	Use air recirculation to reduce chiller cost at fill and press	5
10.	Eliminate/decommission unused steam lines (rule of thumb =10K/1000 liner	40*"
	feet)	19*#
	Do a leak survey for air/steam	8*#
12.	Insulate buildings to save steam and cooling load	1
	Use recent motor efficiency study to replace motor underloading	2
14.	Energy efficient lighting	11#*
15.	Group relamp vs spot replacement	4*#
	Investigate VSD for chiller	0
17.	Provide means to turn off sub light	0
18.	Use alternate dehumidification (desiccant drying-silica gel)	3
19.	Improve power factor	0
20.	Install EMS to reduce demand . A 600 avoided demand out of 6000 kW will	
	save 600x 13.73 x 8 month/year.	10*
	Repair/replace failed steam traps	0#
22.	Optimize air mixing/drying/cooling cycle time. in Glatt	7#
	Decentralize compressed air system	8*
24.	Better method to heat PVA without steam	0#
25.	Replace mixer with in line mixer	4
	Initiate 5 member energy team	10*^
	Insulate steam pipes	0
	Consolidate ductwork in air system	0
	Convert v-belts to 300 kW on V belts COG °belts	5#
	VFD for boiler house FD/ID fans	1
	Meter industrial energy (Air/steam/Elec)	5
	Fix air dryer to eliminate water in air lines	3
33.	Determine site wide building heating/cooling needs and decommissions	2#
ΚE	':# = Major Funding; ^ = No Cost; * = Low Cost	

Table B5. Brainstorming concepts for environmental optimization.

Table B5. Brainstorming concepts for environmental optimization.				
Concepts Votes				
 Totally enclose paint opera 		3#		
	anent reject grenade demanufacture	15^*		
Go to nonsolvent based pa	int	10*		
Improve dust collection		13*		
Determine the need to pre	treat waste water	15*# ^		
Convert the water curtain t	o dry filters	4		
Develop a dry clean-up me	ethod	6		
Recycle water where poss	ble	10*		
Reduce incinerator water I	oad by using waste water to cool	8		
10. Enclose weigh are at Glatt	to control dust emissions	3		
11. After treatment of wastewa	iter, recycle to process	7		
12. Vacuum up dust		10*		
13. Develop a proactive leak s	urvey on water	6		
14. Evaluate less expensive st		0		
15. Solid waste reduction via s		0		
16. Get TA in 55-gal drums		15*		
17. Recycle water at incinerate	or	1		
18. Identify sludge dewatering	Identify sludge dewatering technology			
19. Optimize SOP for TA wash	9. Optimize SOP for TA washdown			
20. Provide APC for smoke from	Provide APC for smoke from QC tests			
21. Organize and consolidate	Organize and consolidate stations			
22. Improve ventilation in pain	t area	3		
23. Close pretreatment plant		6^		
24. Tear up buildings to make	work smoother	0		
25. Initiate five-member enviro	nmental teams	16^*		
26. Use spring loaded low volu	ame nozzles for cleanup	8#		
27. Use station specific vacuu	m clean system	0		
28. Meter industrial water and		4		
29. Convert to non CFCs on a	a cost effective timetable	6		
(cost of problem @ \$1000/Ton Assume 1500/ton \$1.5M to replace)				
KEY: # = Major Funding; ^ = No Cost; * = Low Cost				

Table B6. Where-why analysis (capacity - fast track conveyor).

Where	Why
1. Pallet (a, b, c, d, e, f, h)	a. Poor design
2. 2 Elevators (a, b, c, d, e, f, g, h) (steps #10, #14)	b. Too automated for dusty environment
3. Shaft bearings (c)	c. Dust into bearings
4. Mech. stops (c, f, g, i)	d. Dust into cylinders
5. Queue Station (c, f, g, i)	e. Too complex for required job
6. Pick & Place (b, h, f, a, I) (step #10)	f. Not maintenance friendly
	g. No diagnostics between stations
	h. Bad alignment problem
	No visible indication of failure
	j. Poor QA on incoming parts

Note: The Where column indicates the location of the problem, and the corresponding cause(s) for the problem are shown in parentheses. The Why column includes the cause of the problems.

Table B7. Where-why analysis (environmental issues).

Where	Why
A. Glatt	
1. Waste water (a)	a. Wash down
2. Air emissions(b, h)	b. Particulates
3. Solid waste (a, e)	c. Indoor air quality
4. Dirty indoor air (b, d)	d. Dust health probleme. Bad batch
B. Fill & Press	f. Painting
1. Waste water (a, f)	g. Rejects
2. Air emissions (f)	h. Excess mix
3. Solid waste (g, h)	i. Stencil
C. LAP	
2. Air emissions (I)	
3. Solid waste (I)	

Note: The Where column indicates the location of the problem, and the corresponding cause(s) for the problem are shown in parentheses. The Why column includes the cause of the problems.

Appendix C: Data-Gap Analysis

Capacity: General Questions

- Are the estimates of percent increase in productivity to be taken as accurate?
 (It would be difficult if not impossible to develop more accurate estimates based on the data available.)
- From the monthly scrap/rework data provided by PBA (these reports contain the code "SMCPB-MOQ" in the upper left corner of each monthly report), it seems that scrap and rework figures vary greatly each month? What is this due to? What should be used as a "baseline" (average) of scrap/rework costs/quantities?
- Being a government facility, the capacity of PBA is "capped," that is, PBA produces only what the government orders. There is no market (and hence no revenue) for any more units produced due to increased efficiency. Is it acceptable to interpret "x percent increase in efficiency" to be synonymous with "x percent decrease in the number of personnel hours (used to produce the government-regulated quantity of units demanded."

#6 Go Manual

None

#14 Install Failure Indicator Light

- Electrical and lighting drawings, electrical panel locations, and panel schedules of the fill and press line area, showing where existing lighting and 120-volt outlets are located, and where one can find power for the new alarm lights (e.g., pull off existing circuits or run new circuits).
- Idea of how many alarm lights should be installed to warn the operators along the entire assembly line.

#39 Lease Air Compressor

- Plan of the existing compressed air system, showing pipe layout and size in the F+P area.
- What is the required air pressure in the fill and press area?
- Electrical drawings of the fill and press area (need to see if enough power exists to run electrical compressor).

• Is PBA subject to any special requirements regarding emissions? (USACERL also must analyze diesel-powered air compressor).

#7 Install Good Dust Collector System

86

- Need plan layout of fill and press area, with the dusty areas (that have to be collected) marked.
- Need HVAC plans, showing layout of any ducting that brings in outside air and/or distributes air around the fill and press area.
- Need electrical drawings to see where power can be obtained to run dust collection.
- Need to take into account current condition and capabilities of existing air pollution control equipment, any planned production changes, new equipment needs, and change in the process such as burning alternate fuels.

#66 "Re-Evaluate Critical Dimensions on All Parts Automatically Installed

- From the monthly scrap/rework data provided by PBA (the code "SMCPB-MOQ" is in the upper left corner of each monthly report), which of the following references are to smoke grenades: "canister," "cartridge," or "grenade" (this study assumed only "grenade").
- From the monthly scrap/rework data provided by PBA, how is the "Net Value" column calculated?
- Which of the smoke grenade parts are automatically installed?

#24 Preassemble Cup, Slug, and Starter

- Need to know the amount of time taken at present to perform the tasks of inserting the cup, slug, and starter.
- Need to know the anticipated time it would take to preassemble the cup, slug, and starter (so that the time used—if any—in preassembling can be calculated).
- Will any additional "off line" assembly line area or equipment be required to
 preassemble the cup, slug and starter? Or can this be done with the present
 facilities (i.e., can this change in production line be made with no cost)?

#41 Combine Twist and Torque

• This can apparently be done by simply eliminating one position on the line. Is this in fact the case? If one position were eliminated, could the present rate of production be maintained? Or will the production process slow down? If so, by how much? ("Employees' Health and Safety" in Chapter 4)

#58 Separate Interlock Controls

Need control drawings, showing present control system.

• Need mechanical/electrical drawings of the conveyor belt (to know how to integrate new controls).

#68 and #69 Optimize Maintenance Support

• This study assumes 4 work-weeks of training will be required to train floaters to perform basic mechanical tasks, and that this training will be "purchased" paying for 4 work-weeks of time from a central shop mechanic (at the fully burdened rate of \$130/hour). Are these assumptions accurate?

#37 Repair or Modify Lid System for Sealer

- What repairs are required? What modifications?
- Are there drawings, or at least a description, of the lid sealer system (so that the cost of repairs/modifications can be estimated)?

#5 and #9 Replace Fast Conveyor

- Is there some sort of scaled drawing of the fast conveyor? (Its width, length and type of conveyor are needed to estimate cost of any modifications to it.)
- Apparently, the belt is already bought. Are there any other purchases that must be made to go along with the belt?
- Is there an estimate of the amount of time required to replace belt? Will this be done with in-house staff or will it be contracted out?

#10 Automate Twist and Torque

- Need scaled mechanical drawings of this section of the line (to come up with a cost estimate of automating the process).
- What is the torque required (foot-lb)?

Environmental: General Questions

Which of the less-than-optimal environmental situations can potentially generate fines?

#1 Totally Enclose Paint Manufacture

- Does paint operation run during all hours that the assembly line operates?
- Amount of paint that is sprayed per hour (gallons) while paint booth operates? (Need to know this so that some idea of how much paint is becoming airborne can be developed.)
- Need plans showing HVAC layout, so possible exhaust system can be investigated.

#2 Evaluate feasibility of permanent reject grenade demanufacture

- What process would be used for permanent reject grenade demanufacture?
- How will doing of permanent reject grenade demanufacture alleviate environmental problems?
- Will PBA do permanent reject grenade demanufacture on site or will the rejects be shipped off site and done by contract?

#3 Go to Nonsolvent Based Paint

- What kind of paint is used now?
- Is it only used in the paint area?

#4 Improve Dust Collection

- Need plan layout of fill and press area, with the dusty areas (that have to be collected) marked.
- Need HVAC plans, showing layout of any ducting that brings in outside air and/or distributes air around the fill and press area.
- Need electrical drawings to see where to obtain power to run dust collection fans

#5 Determine the Need To Pretreat Wastewater

- What is done with wastewater now? Is waste water presently transported off site and PBA has to pay some kind of dumping fee? If so, how much is the fee? Or is waste water dumped into sanitary sewer?
- How much waste water is generated each hour of production? (Or per annum, whatever figures are available.)
- What are the types of contaminants in the waste water? What is their concentration?

#6 Convert the water curtain to dry filters

- Is water curtain operated every hour that fill and press operates?
- What is the flow rate of water per hour of water curtain operation?
- We assume dry filters would be part of some kind of air exhaust system. Is
 this correct? If so, then we need: (1) HVAC plans, showing layout of any
 ducting that brings in outside air and/or distributes air around the fill and
 press area, (2) electrical drawings to see where we can get power to run dust
 collection fans

#7 Develop a Dry Clean-Up Method

What is used now for clean-up, the water spray?

#8 Recycle water where possible

Where is water used? What is the cost/impact of recycle?

#11 After Treatment of Wastewater, Recycle To Process

- Need schematic flow diagram (similar to an electrical one-line drawing) showing where and how much water is used in the entire process?
- At what points in the process can less-than-clean water be used?

#10 Enclose weighing at the Glatt to control dust emissions

 Consider simply building an unventilated booth around the area, instead of ventilating the area.

#12 Vacuum up dust

 Is there any data quantifying the types of breakdowns that have occurred over time? (Attempt to draw some sort of correlation between dusty environment and bearing failure.)

#13 Develop a proactive leak survey on water

- · Any idea of how many man-hours/week (or month or year) this would take?
- If successfully undertaken, does PBA have any idea of how much water they
 would save per year by finding leaks early instead of waiting for them to
 become bad leaks?

#14 Evaluate Less Expensive Stencil Inks

- What is cost of stencil inks presently used? Is there any estimate/data showing how much stencil ink is used per year?
- Assume the major performance criteria for the new inks would be: correct color and durability (i.e., they would not wash off grenades or flake off grenades in wet or hot environments).

#16 Get TA in 55-gal drums

What would be the extra cost (if any) in doing this?

#17 Recycle Water at Incinerator

 Need schematic flow diagram (similar to an electrical one-line drawing) showing where and how much water is used in the entire process?

#18 Identify Sludge dewatering Technology

- Need schematic flow diagram (similar to an electrical one-line drawing) showing where and how much water is used in the entire process?
- What are the contaminants in the sludge?

#19 Optimize SOP for TA Washdown

- How is washdown operated now?
- What are the negative environmental effects of present TA washdown?

#20 Provide Air Pollution Control for Smoke From QC tests

Explain this more fully

#24 Close Pretreatment Plant

 A schematic flow diagram (similar to an electrical one-line drawing) showing where and how much water is used in the entire process is needed.

#26 Initiate Environmental Team.

- How many work-hours/year would this take?
- What are the present environmental costs at PBA?

Energy Concepts

#4 Reduce Steam Pressure From 125 to 75 psig

- A plan layout of steam piping inside steam plant(s) and site piping outside plants is needed.
- · Nameplate data from steam boilers are needed.

#6 Increase PVA concentration

 Any data showing how much natural gas/fuel oil was used for steam production and how much steam was produced are needed.

#26 Initiate energy team

Full time team or part time team?

#14 Energy efficient lighting

 Some means of arriving at number of lighting fixtures and type of each fixture is needed.

#10 Decommission unused steam lines

• (None)

#5 Decentralize steam system

Scaled site plans showing steam line locations and sizes are needed.

#23 Improve compressed air system

 Need scaled plans showing entire layout of compressed air system, as well as nameplate data on all compressors now in use.

#15 Site group relamp versus spot relamp

 Some means of arriving at number of lighting fixtures and type of each fixture is needed. (The best way is plans.) See #14 above.

USACERL DISTRIBUTION

Chief of Engineers
ATTN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATTN: CECC-R
ATTN: CERD-L

Pine Bluff Arsenal ATTN: SMCPB-EM (2)

Defense Tech Info Center 22060-6218 ATTN: DTIC-O (2)

> 10 8/97