Chapter 9: Traversable functors and contrafunctors

Sergei Winitzki

Academy by the Bay

2018-08-08

Motivation for the traverse operation

- Consider data of type List^A and processing $f: A \Rightarrow \mathsf{Future}^B$
- Typically, we want to wait until the entire data set is processed
- What we need is $List^A \Rightarrow (A \Rightarrow Future^B) \Rightarrow Future^{List^B}$
- Generalize: $L^A \Rightarrow (A \Rightarrow F^B) \Rightarrow F^{L^B}$ for some type constructors F, L
- This operation is called traverse
 - ▶ How to implement it: for example, a 3-element list is $A \times A \times A$
 - ▶ Consider $L^A \equiv A \times A \times A$, apply map f and get $F^B \times F^B \times F^B$
 - ▶ We will get $F^{L^B} \equiv F^{B \times B \times B}$ if we can apply zip as $F^B \times F^B \Rightarrow F^{B \times B}$
- So we need to assume that F is applicative
- ullet In Scala, we have Future.traverse() that assumes L to be a sequence
 - ▶ This is the iconic example that fixes the requirements
- Questions:
 - Which functors L can have this operation?
 - ► Can we express traverse through a simpler operation?
 - ▶ What are the required laws for traverse?
 - What about contrafunctors or profunctors?

Deriving the sequence operation

- The type signature of traverse is a complicated "lifting"
 - ▶ A "lifting" is always equivalent to a simpler natural transformation
- To derive it, ask: what is missing from fmap to do the job of traverse?

$$\mathsf{fmap}: (A \Rightarrow F^B) \Rightarrow L^A \Rightarrow L^{F^B}$$

- We need F^{L^B} , but the traverse operation gives us L^{F^B} instead
 - What's missing is a natural transformation sequence : $L^{F^B} \Rightarrow F^{L^B}$
- The functions traverse and sequence are computationally equivalent:

$$\operatorname{trav} f^{A \Rightarrow F^B} = \operatorname{fmap} f \circ \operatorname{seq}$$

Here F is an arbitrary applicative functor

- lacktriangle Keep in mind the example Future.sequence : List Future \Rightarrow Future List \Rightarrow
- Examples: List;
- Non-traversable: $L^A \equiv R \Rightarrow A$; lazy lists ("infinite streams")
 - ★ Note: We cannot have the opposite transformation $F^{L^B} \Rightarrow L^{F^B}$

Polynomial functors are traversable

- Generalize from the example $L^A \equiv A \times A \times A$ to other polynomials
- Polynomial functors have the form

$$L^{A} \equiv Z \times A \times ... \times A + Y \times A \times ... \times A + ... + Q \times A + P$$

- To implement seq : $L^{F^B} \Rightarrow F^{L^B}$, consider monomial $L^A \equiv Z \times A \times ... \times A$
- We have $L^{F^B} = Z \times F^B \times ... \times F^B$; apply zip and get $Z \times F^{B \times ... \times B}$
- Lift Z into the functor F using $Z \Rightarrow F^A \Rightarrow F^{Z \times A}$ (or with F.pure)
- The result is $F^{Z \times B \times ... \times B} \equiv F^{L^B}$
 - \triangleright For a polynomial L^A , apply this procedure to each monomial
 - Note that we could apply zip in various different orders
- The traversal order is arbitrary, may be application-specific
- Non-polynomial functors are not traversable (see Bird et al., 2013)
 - ► Example: $L^A \equiv E \Rightarrow A$, $F^A \equiv 1 + A$; can't have seq : $L^{F^B} \Rightarrow F^{L^B}$
- All polynomial functors are traversable, and usually in several ways
 - ▶ Therefore it is useful to have a type class for traversable functors

Motivation for the laws of the traverse operation

- The "law of traversals" paper (2012) argues that traverse should "visit each element" of the container L^A exactly once, and evaluate each corresponding "effect" F^B exactly once; then they formulate the laws
- To derive the laws, use the "lifting" intuition for traverse,

$$\mathsf{trav}: (A \Rightarrow F^B) \Rightarrow L^A \Rightarrow F^{L^B}$$

Look for "identity" and "composition" laws:

- "Identity" as pure : $A \Rightarrow F^A$ must be lifted to pure : $L^A \Rightarrow F^{L^A}$
- ② "Identity" as $id^{A\Rightarrow A}$ with $F^A\equiv A$ (identity functor) lifted to $id^{L^A\Rightarrow L^A}$
- **(3** "Compose" $f: A \Rightarrow F^B$ and $g: B \Rightarrow G^C$ to get $h: A \Rightarrow F^{G^C}$, where F, G are applicative; a traversal with h maps L^A to $F^{G^{L^C}}$ and must be equal to the composition of traversals with f and then with $g^{F\uparrow}$

Questions:

- Are the laws for the sequence operation simpler?
- Are all these laws independent?
- What functors L satisfy these laws for all applicative functors F?

Formulation of the laws for traverse

Identity law: For any applicative functor F,

$$L^{A} \xrightarrow{\operatorname{pure}^{L^{A} \Rightarrow F^{L^{A}}}} F^{L^{A}}$$

$$\operatorname{trav}\left(\operatorname{pure}^{A \Rightarrow F^{A}}\right)$$

- Second identity law: trav^{Id}(id^A) = id^{L^A} is a consequence with F = Id
 So, we need only one identity law
- Composition law: For any $f^{\underline{A}\Rightarrow F^B}$ and $g^{\underline{B}\Rightarrow \underline{G}^C}$, & applicative F and G,

$$\operatorname{\mathsf{trav}} f \circ (\operatorname{\mathsf{trav}} g)^{\uparrow} = \operatorname{\mathsf{trav}} \left(f \circ g^{\uparrow} \right)$$

$$L^{A} \xrightarrow{\operatorname{trav}_{F} G} h^{A \Rightarrow F} F^{L^{B}} \xrightarrow{\operatorname{fmap}_{F} \left(\operatorname{trav}_{G} g\right)^{L^{B} \Rightarrow G^{L^{C}}}} F^{G^{L^{C}}}$$

where
$$h^{\underline{A} \Rightarrow F^{G^C}} \equiv f \circ g^{F\uparrow}$$

Derivation of the laws for sequence

Constructions of traversable functors

Traversable profunctors

"Folding" a traversable functor into a monoid

Exercises

Show that any traversable functor L admits a method

consume :
$$(L^A \Rightarrow B) \Rightarrow L^{F^A} \Rightarrow F^B$$

for any applicative functor F. Show that traverse and consume are equivalent.