Sentential Natural Deduction: Additional Exercises B

Robert Craven

Exercise B.1

With premises $\neg p$ and $\neg \neg q \rightarrow \neg \neg p$, give as many kinds of derivation possible of 6 lines or fewer. (6 lines, including the premises. So apply rules in as many different ways as you can, in the space of 4 extra lines.)

Solution:

Here, for a start, are a selection of those for just 4 lines or fewer, and which just use (R), (DN1) and (CON). (This isn't all of the ones possible for *those* limitations.) If we used 6 lines, and all of the rules, there would be infinitely many more.

$ \begin{array}{ccc} 1. & \neg p \\ 2. & \neg \neg q \to \neg \neg p \\ 3. & \neg p \end{array} $	(P1) (P2) 1,(R)
$ \begin{array}{ccc} 1. & \neg p \\ 2. & \neg \neg q \to \neg \neg p \\ 3. & \neg \neg q \to \neg \neg p \end{array} $	(P1) (P2) 2,(R)
$ \begin{array}{ccc} 1. & \neg p \\ 2. & \neg \neg q \to \neg \neg p \\ 3. & \neg \neg \neg p \end{array} $	(P1) (P2) 1,(DN1)
$ \begin{array}{ccc} 1. & \neg p \\ 2. & \neg \neg q \to \neg \neg p \\ 3. & \neg \neg \neg p \\ 4. & \neg \neg \neg \neg p \end{array} $	(P1) (P2) 1,(DN1) 3,(DN1)
$ \begin{array}{ccc} 1. & \neg p \\ 2. & \neg \neg q \to \neg \neg p \\ 3. & \neg \neg (\neg \neg q \to \neg \neg p) \end{array} $	(P1) (P2) 2,(DN1)
$ \begin{array}{c} 1. \neg p \\ 2. \neg \neg q \rightarrow \neg \neg p \\ 3. \neg \neg (\neg \neg q \rightarrow \neg \neg p) \\ 4. \neg \neg \neg (\neg \neg q \rightarrow \neg \neg p) \end{array} $	(P1) (P2) 2,(DN1) 3,(DN1)
$ \begin{array}{ccc} 1. & \neg p \\ 2. & \neg \neg q \to \neg \neg p \\ 3. & \neg p \land \neg p \end{array} $	(P1) (P2) 1,1,(CON)
1. $\neg p$ 2. $\neg \neg q \to \neg \neg p$ 3. $\neg p \land \neg p$ 4. $\neg p \land (\neg p \land \neg p)$	(P1) (P2) 1,1,(CON) 1,3,(CON)

1.
$$\neg p$$
 (P1)
2. $\neg \neg q \rightarrow \neg \neg p$ (P2)
3. $\neg p \land \neg p$ 1,1,(CON)
4. $(\neg p \land \neg p) \land \neg p$ 3,1,(CON)
1. $\neg p$ (P1)
2. $\neg q \rightarrow \neg \neg p$ (P2)
3. $\neg p \land \neg p$ 1,1,(CON)
4. $(\neg p \land \neg p) \land (\neg p \land \neg p)$ 3,3,(CON)
1. $\neg p$ (P1)
2. $\neg \neg q \rightarrow \neg \neg p$ (P2)
3. $(\neg \neg q \rightarrow \neg \neg p) \land (\neg \neg q \rightarrow \neg \neg p)$ 2,2,(CON)
1. $\neg p$ (P1)
2. $\neg \neg q \rightarrow \neg \neg p$ (P2)
3. $\neg \neg \neg p$ 1,(DN1)
4. $\neg p \land \neg \neg p$ 1,(DN1)
4. $\neg p \land \neg \neg p$ 1,(DN1)
4. $\neg \neg p \land \neg p$ (P1)
2. $\neg \neg q \rightarrow \neg \neg p$ (P2)
3. $\neg \neg p$ 1,(DN1)
4. $\neg \neg \neg p \land \neg p$ 3,1,(CON)
1. $\neg p$ (P1)
2. $\neg \neg q \rightarrow \neg \neg p$ (P2)
3. $\neg \neg p$ 1,(DN1)
4. $\neg \neg p \land \neg \neg p$ 3,3,(CON)
1. $\neg p$ (P1)
2. $\neg q \rightarrow \neg \neg p$ (P2)
3. $\neg \neg p$ 1,(DN1)
4. $\neg \neg p \land \neg \neg p$ 3,2,(CON)
1. $\neg p$ (P1)
2. $\neg q \rightarrow \neg p$ (P2)
3. $\neg \neg p$ 1,(DN1)
4. $\neg \neg p \land (\neg \neg q \rightarrow \neg \neg p)$ 3,2,(CON)
1. $\neg p$ (P1)
2. $\neg q \rightarrow \neg p$ (P2)
3. $\neg \neg p$ 1,(DN1)
4. $\neg \neg p \land (\neg \neg q \rightarrow \neg \neg p)$ 3,2,(CON)

Exercise B.2

Show the following.

1. $p \to q \vdash \neg p \lor q$. (Use any of the derived rules on pp. 18–19 of the notes, as well as any non-derived rules.)

Solution:

Here's the short solution which a number of people found in the tutorial, using (CD) but no derived rules:

1. $p \rightarrow q$	(P1)
$2. \parallel p$	(Ass,CD 1)
$3. \parallel q$	2,1,(MP)
4. $\parallel \neg p \vee q$	3,(ADD2)
$5. \parallel \neg p$	(Ass,CD 2)
6. $\parallel \neg p \vee q$	5,(ADD1)
7. $\neg p \lor q$	2-6,(CD)

Here is the longer solution I had, which uses the derived rule (DM2):

1.	$p \rightarrow q$	(P1)
$\overline{2}$.	$\ \neg (\neg p \lor q)$	(Ass,IP)
3.	$\ \neg \neg p \wedge \neg q$	2,(DM2)
4.	$\parallel \neg \neg p$	3,(SIMP1)
5.	$\parallel p$	4,(DN2)
6.	$\parallel q$	5,1,(MP)
7.	$\parallel \neg q$	3,(SIMP2)
8.	$\parallel q \wedge \neg q$	6,7,(CON)
9.	$\neg p \lor q$	2-8, (IP)

2. $\neg(p \rightarrow q) \vdash p.$ (Just use the regular, non-derived rules.)

Solution:

3. Show $\neg \neg p \vdash p$ without using (DN2), (ECQ), or (IP).

Solution:

1. $\neg \neg p$	(P1)
$\overline{2. \parallel p}$	(Ass,CD 1)
3. $\parallel p \vee \neg p$	2,(ADD1)
$4. \parallel \neg p$	(Ass,CD 2)
5. $\parallel p \vee \neg p$	4,(ADD2)
6. $p \vee \neg p$	2-5,(CD)
7. p	6,1,(DS2)

Exercise B.3

Show that the following derivable rules, from pp. 18-19 of the notes, obtain. (Once you've derived a rule, you can use it for the proofs in later parts of this exercise.)

1. (IDEMP2- \vee) $A \vee A \vdash A$.

Solution:

1. $A \vee A$	(P1)
$2. \parallel A$	(Ass,CP)
$3. \parallel A$	2,(R)
$A. A \rightarrow A$	2-3,(CP)
5. $A \lor A \to A$	4,4,(DIS)
6. A	1,5,(MP)

2. (DM1) $\neg (A \land B) \vdash \neg A \lor \neg B$.

Solution:

1.	$\neg(A \land B)$	(P1)
2.	$\ \neg (\neg A \lor \neg B)$	(Ass,IP)
3.	$\ \ \ \neg A$	(Ass,IP)
4.	$\ \ \ \neg A \lor \neg B$	3,(ADD1)
5.	$\ \ \ \ (\neg A \lor \neg B) \land \neg (\neg A \lor \neg B)$	4,2,(CON)
6.	$\parallel A$	3-5, (IP)
7.	$\ \ \ \neg B$	(Ass,IP)
8.	$\parallel \parallel \neg A \vee \neg B$	7,(ADD2)
9.	$\ \ \ \ (\neg A \lor \neg B) \land \neg (\neg A \lor \neg B)$	8,2,(CON)
10.	$\parallel B$	7-9, (IP)
11.	$\parallel A \wedge B$	6,10,(CON)
12.	$\ (A \wedge B) \wedge \neg (A \wedge B) \ $	11,1,(CON)
13.	$\neg A \lor \neg B$	2-12,(IP)

3. (DM2) $\neg (A \lor B) \vdash \neg A \land \neg B$.

0. (DM2) (HVD) + HV D.	
Solution:	
1. $\neg (A \lor B)$	(P1)
$2. \parallel \neg \neg A$	(Ass,IP)
$3. \parallel A$	2,(DN2)
$A. \parallel A \vee B$	3,(ADD1)
5. $\ (A \vee B) \wedge \neg (A \vee B) \ $	4,1,(CON)
6. $\neg A$	2-5, (IP)
7. $\parallel \neg \neg B$	(Ass,IP)
8. <i>B</i>	7,(DN2)
9. $\parallel A \vee B$	8,(ADD2)
10. $\parallel (A \vee B) \wedge \neg (A \vee B)$	9,1,(CON)
11. $\neg \hat{B}$	7-10,(IP)
12. $\neg A \land \neg B$	6,11,(CON)

4. (DIST1) $A \wedge (B \vee C) \vdash (A \wedge B) \vee (A \wedge C)$.

Solution:

1.	$A \wedge (B \vee C)$	(P1)
2.	A	1,(SIMP1)
3.	$B \vee C$	1,(SIMP2)
4.	$\ \neg ((A \land B) \lor (A \land C))$	(Ass,IP)
5.	$\ \neg (A \land B) \land \neg (A \land C)$	4,(DM2)
6.	$\ \neg (A \land B)$	5,(SIMP1)
7.	$\parallel \neg A \vee \neg B$	6,(DM1)
8.	$\parallel \neg \neg A$	2,(DN1)
9.	$\parallel \neg B$	7,8,(DS1)
10.	$\parallel C$	3,9,(DS1)
11.	$\ \neg (A \land C)$	5,(SIMP2)
12.	$\ \neg A \lor \neg C$	11,(DM1)
13.	$\parallel \neg \neg A$	2,(DN1)
14.	$\parallel \neg C$	12,13,(DS1)
15.	$\parallel C \wedge \neg C$	10,14,(CON)
16.	$(A \wedge B) \vee (A \wedge C)$	4-15,(IP)

5. (DIST2) $A \vee (B \wedge C) \vdash (A \vee B) \wedge (A \vee C)$.

Solution:

1.	$A \lor (B \land C)$	(P1)
2.	A	(Ass,CP)
3.	$\parallel A \vee B$	2,(ADD1)
4.	$\parallel A \lor C$	2,(ADD1)
5.	$\ (A \vee B) \wedge (A \vee C)$	3,4,(CON)
6.	$A \to (A \lor B) \land (A \lor C)$	2-5,(CP)
7.	$\parallel B \wedge C$	(Ass,CP)
8.	$\parallel B$	7,(SIMP1)
9.	$\parallel C$	7,(SIMP2)
10.	$\parallel A \vee B$	8,(ADD2)
11.	$\parallel A \lor C$	9,(ADD2)
12.	$\ (A \vee B) \wedge (A \vee C)$	10,11,(CON)
13.	$B \wedge C \to (A \vee B) \wedge (A \vee C)$	7-12,(CP)
14.	$A \lor (B \land C) \to (A \lor B) \land (A \lor C)$	6,13,(DIS)
15.	$(A \lor B) \land (A \lor C)$	1,14,(MP)

Exercise B.4

In the notes (p. 19), it's shown that (DIS), (R), and (MT) are unnecessary: if we remove them all together, we have an extensionally equivalent system. Show the following other rules are also unnecessary (i.e., derive the following without using any of (DIS), (R), (MT), (ECQ), (DS2)). **NOTE**: don't use any derived rules for this part.

1. (ECQ) $A, \neg A \vdash B$.

Solution:

2. (DS2) $A \vee B, \neg B \vdash A$.

Solution: