Table of Contents

- 1 sns pairplot
- 2 LinearRegression
- 3 Gaussian Naive Bayes (GaussianNB)
- 4 iris dimensionality
- 5 Gaussian mixture model (GMM)

In [1]:

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]:

import numpy as np

sns - pairplot

In [3]:

```
iris = sns. load_dataset('iris')
iris. head()
```

Out[3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [4]:

sns.set()
sns.pairplot(iris, hue='species', size=2.5)

Out[4]:

<seaborn.axisgrid.PairGrid at 0xae1dc50>

LinearRegression

In [5]:

```
rng = np. random. RandomState(42)

x = 10* rng. rand(50)
y = 2*x -1 + rng. randn(50)

plt. scatter(x, y)
plt. xlim(-2, 12)
plt. ylim(-5, 25)
# plt. xlim(xmax=12)
# plt. ylim(ymax=25)
plt. show()
```


In [6]:

from sklearn.linear_model import LinearRegression

In [7]:

```
model = LinearRegression(fit_intercept=True)
model
```

Out[7]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

In [8]:

```
X = x[: , np.newaxis]
print(X.shape)
# X
```

(50, 1)

```
In [9]:
model.fit(X,y)
Out[9]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [10]:
model.coef_
Out[10]:
array([ 1.9776566])
In [11]:
model.intercept_
Out[11]:
-0.90331072553111635
In [12]:
xfit = np. linspace(-1, 11)
Xfit = xfit[:, np.newaxis]
yfit = model.predict(Xfit)
In [13]:
xfit.shape
Out[13]:
(50,)
```

In [14]:

```
plt.scatter(x, y)
plt.plot(xfit, yfit, color='g')

plt.xlim(-2, 12)
plt.ylim(-5, 25)

plt.show()
```


Gaussian Naive Bayes (GaussianNB)

In [15]:

from sklearn.cross_validation import train_test_split

C:\Program Files\Anaconda3\lib\site-packages\sklearn\cross_validation.py:44: Depre cationWarning: This module was deprecated in version 0.18 in favor of the model_se lection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

In [16]:

from sklearn.model_selection import train test split

```
In [17]:
```

```
X_iris = iris.drop('species', axis=1)
y_iris = iris['species']

# Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris, random_state=1, test_size=0.5)
Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris, random_state=1)
```

```
In [18]:
```

from sklearn.naive_bayes import GaussianNB

```
In [19]:
```

```
model = GaussianNB()
model.fit(Xtrain, ytrain)
y_predict = model.predict(Xtest)
```

In [20]:

from sklearn.metrics import accuracy_score

In [21]:

```
accuracy_score(ytest, y_predict)
```

Out[21]:

0.97368421052631582

iris dimensionality

```
In [22]:
```

```
from sklearn.decomposition import PCA

model = PCA(n_components=2)
model.fit(X_iris)
X_2D = model.transform(X_iris)
```

In [23]:

```
iris['PCA1'] = X_2D[:, 0]
iris['PCA2'] = X_2D[:, 1]
sns.lmplot('PCA1', 'PCA2', hue='species', data=iris, fit_reg=False, size=8)
```

Out[23]:

<seaborn.axisgrid.FacetGrid at 0xdc839b0>

Gaussian mixture model (GMM)

```
In [24]:
```

```
# from sklearn.mixture import GMM
```

In [28]:

```
# model = GMM(n_components=3, covariance_type='full')
# model.fit(X_iris)
# y_gmm = model.predict(X_iris)
```