

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-VII

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	` ' '						Credits	redits Assigned		
Code	Course ryanie	L	T	P	О	E	L	T	P	Total	
		2	-	2	2	6	2	-	1	3	
PC	Mobile and Wireless Communication	Examination Scheme								-	
		Component		ISE (%)		MS	E (%)	ESE(%)		Total	
EC401		Theory		20		2	20	60		100	
		Laboratory		50					0	100	

Pre-requi	site Course Codes, if any.	EC307: Computer Communication Network					
Course Objective: The objective of the course is to provide a fundamental understanding of Mobile and Wireless Communication.							
Course O	utcomes (CO): At the end of	the course students will be able to					
EC311.1	EC311.1 Demonstrate the ability to discuss wireless communication concepts, system capacity and service provided.						
EC311.2	Evaluate various path loss as	nd fading effects.					
EC311.3	Analyze losses, multipath ef	fects, architecture, and protocols of 3G,4G and 5G systems.					
EC311.4	Compare various operationa	l aspects of Wireless Personal Area Networks.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC311.1	2		2									
EC311.2			2	2	2				2	2		
EC311.3	3				2				2	2		2
EC311.4	2	2										

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC311.1		2				
EC311.2		2	2			
EC311.3		2	2			
EC311.4		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand√ Apply √ Analyze√ Evaluate Cre
--

Theory Component

Module	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction to mobile communication	1	5
	1.1	Frequency Division Multiple access, Time Division Multiple access, Spread Spectrum Multiple access, Space Division Multiple access, and OFDM.		
	1.2	Frequency reuse, channel assignment strategies, handoff strategies, interference and system capacity, trunking and grade of service, improving the capacity of cellular systems and related design problems		
2	Title	Mobile Radio Propagation	2,3	10
	2.1	Introduction to radio wave propagation, reflection, diffraction, scattering. Indoor and Outdoor propagation Models. Practical Link Budget Design using path loss models.		
	2.2	Small-Scale Multipath propagation, small scale multipath measurements, types of small-scale fading, fading effects due to Doppler spread. Statistical models for multipath fading		

(Autonomous Institute Affiliated to University of Mumbai)

		channels-Clarks model,2-day Rayleigh fading model, Saleh and Valenzuela indoor model.		
3	Title	3G UMTS Network, 4G LTE and 5G Technologies	4	8
	3.1	UMTS network architecture, Protocol Structure, Channel Structure, Frame slots and symbols, modulation, coding, multiple antenna techniques, WCDMA, Modulation, Handoff and Power Control.		
	3.2	4G LTE network Architecture, LTE Radio Access, Radio-Interface Architecture, Physical Transmission Resources, Downlink and Uplink Physical-Layer Processing, Scheduling and Rate Adaptation.5G Concepts and Architectures, Network Slicing Architecture, mm Wave communication, multiple Cell Types.		
4	Title	Personal Area Network Technologies	3	5
	4.1	Bluetooth: concepts of Piconet , scatternet etc., protocol stack, link types, security, network connection establishments, usage models, etc.		
	4.2	Wifi and ZigBee: components, architecture, network topologies, protocol stack etc.		
5	Self-St udy	Rayleigh fading model, Saleh and Valenzuela indoor model. UWB and RFID: technical requirements, components and characteristics, applications.	2,3	4*
	1	Total (* Not Inc	luded)	28

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Components:

Sr. No	Title of the experiment
1	Study of GSM modem: i] Install and configure minicom, wvdial & AT Commands ii] Python scripting.
2	Channel Allocation Techniques
3	Modulation Techniques using GNU Radio.
4	Spread Spectrum Modulation, OFDM Modulation.
5	Wireless Path Loss Computations: i] Free-space Propagation Path Loss Model ii] Indoor Propagation Model - Okumura Model etc
6	Wireless Path Loss Computations: iii] Outdoor Propagation Model - Hata Model etc
7	Open-Source LTE/EPC Network Simulation using NS-3, Omnet++
8	Open-Source Personal Area Network simulation using NS-3, Omnet++
9	Millimeter Wave (5G) Network, WiFi Network simulation using NS-3, Omnet++
10	Virtual Lab.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communications	Third	Theodore S. Rappaport	Prentice Hall of India, PTR publication	-
2	Wireless Communications	Second	Andreas Molisch	Wiley	-
3	Wireless Network Evolution 2G-3G	Third	Vijay Garg	Pearson Education	

(Autonomous Institute Affiliated to University of Mumbai)

4	4 G Roadmap and	Second	Young Kyun Kim	Artech house	
	Emerging Communication		and Ramjee		
	Technologies		Prasad		
	_				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communication	Second	Singhal	TMH	
2	Mobile Communication	Second	C.Y Lee	Wiley	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs./week) Credits As						s Assi	gned	
(Category) Code	Course Name	L	T	P	O	E	L	T	P	Total
		2	0	2	6	11	2	0	1	3
PE-III	3.50		Examination Scheme							
	Microwave Communication	Compone	ent	ISE (%)	MSE	(%)	ESE	(%)	Total
EC413	Communication	Theory	7	20		20		60		100
(IT13)		Laborato	ry	50				50	0	100

Pre-requis	ite Course Codes, if any.	EC304: Electromagnetic Waves							
Course Ob	ojective: The objective of the	course is to provide a fundamental understanding of							
Microwave Communication									
Course Ou	Course Outcomes (CO): At the end of the course students will be able to								
EC312.1	Apply EM Wave theory to u	anderstand nature of Microwave Signal and their							
EC312.1	corresponding guiding struc	etures.							
EC312.2	Identify Passive Waveguide	Components, Sources and Detectors							
EC312.3	Analyze Passive Waveguide	e Components, Sources and Detectors							
EC312.4	Compute amplifier and filte	r design parameters on the basis of application/requirement.							
EC312.5	Justify choice of amplifier a	Justify choice of amplifier and filter design parameter.							
EC312.6	Design Microwave System	components.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC312.1	3	3	3	1	3					3		
EC312.2	2	2	2	2	3					3		
EC312.3	2	2	2	2	3					3		
EC312.4	2	2	2	2	3					3		
EC312.5	2	2	2	2	3					3		
EC312.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC312.1		2			-	
EC312.2		2			-	
EC312.3		2			2	
EC312.4		2			2	
EC312.5		2			2	
EC312.6		1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create

Modul	Unit	Topics	Ref	Hrs.
e No.	No.		•	
1		Introduction to Microwave Engineering	1	10
	1.1	Lumped and Distributed Elements, Frequency Bands, Characteristics,		
		Application, Advantages and disadvantages		
	1.2	Rectangular and circular waveguides: TE, TM modes, dominant mode		
	1.3	Microwave Components: Resonators, re-entrant cavities, scattering		
		parameters, tees, hybrid ring, directional couplers, phase shifters,		
		terminations, attenuators, ferrite devices such as isolators, gyrators,		
		and circulators.		
2		Microwave Tubes and semiconductor devices	1	10
	2.1	Two Cavity Klystron and Reflex Klystron, Helix Travelling Wave		
		Tube, Cross Field Amplifier, Cylindrical Magnetron.		
	2.2	PIN Diode, Varactor Diode, Schottky Diode, Gunn Diode, Tunnel		
		Diode, IMPATT Diodes.		
3		Microwave Amplifiers and Filters	1	08
	3.1	Two port power gain and stability		
	3.2	Microwave Low pass Filter design		
4(Self		Microwave Frequency Applications:		06
Study)		Radars, Biomedical Devices, Drying materials, Microwave		
		Tomography, Satellite Communication		
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments using both hardware and software are expected)

Sr. No	Title of the Experiment							
1	Model and simulate rectangular waveguide in CAD to study EM wave propagation within							
	it.							
2	Model and simulate circular waveguide in CAD to study EM wave propagation within it.							
3	Design of Waveguide H-plane TEE using CAD							
4	Design of Directional Coupler Using CAD							
5	Design of Low pass Filter using CAD							
6	Implementation of a technical paper using CAD							
7	Microwave bench setup (CO1) A) Introduction to the lab B) Identification of waveguide							

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	and its components. How to determine the parameters for each component by looking at
	the data sheet. C) Klystron setup and characterization plotting Vr vs Vo D) Frequency and
	wavelength measurement of the signal generated by klystron
8	Determination of parameters of passive components using Bench and VNA. Analysis of comparative study to be submitted.
9	Determine the frequency and wavelength in a rectangular waveguide using direct and
	indirect measurement.
10	Design of Planar Hybrid Ring using CAD

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Microwave Engineering	David M Pozar	Fourth	John Wiley & Sons	2012
2	Microwave Devices and Circuits	Samuel Y Liao	Third	Pearson Education	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course					ng Scheme /eek)				Credits Assigned				
Code	Name	L	T	P	O	F	Ξ	L	T	P	Tot			
											al			
	T 1	2	-	2	5	8	3	2	-	1	3			
PE- III		Examination Scheme												
	Image and Video	Compone		ISI	ISE (%)		MSE (%)		ES	E(%	Total			
	Processing	nt	nt		, ,)				
EC423	rrocessing		ieory		20			20		60	100			
(1T23)			orato		50					50	100			
		ry												

Pre-requisite	e Course Codes, if any.	EC207: Signals and Systems								
		EC303: Digital Signal Processing								
Course Objective: To study the image and video fundamentals and mathematical transforms necessary for processing and enhancement techniques. To study image restoration procedures and compression procedures for different applications.										
Course Outcomes (CO): At the end of the course students will be able to										
EC423.1	Apply the image fundamenta processing.	Apply the image fundamentals and mathematical models for digital image and video processing.								
EC423.2	Analyze time and frequency	domain techniques for image enhancement.								
EC423.3	Apply segmentation and compression techniques.									
EC423.4	Develop image and video pro	ocessing applications.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC423.1	3	3										
EC423.2			3	2	3							2
EC423.3					3							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

EC423.4	2	2		3	2		3	3	3	

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC423.1		2					
EC423.2					3		
EC423.3			2				
EC423.4			2			3	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Un	nderstand	Apply✓	Analyze√	Evaluate ✓	Create	
-------------	-----------	--------	----------	-------------------	--------	--

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Fundamental of Image and Video	1,6	04
	1.1	Structure of the Human Eye, Light, Brightness adaption and discrimination, Pixels, coordinate conventions,		
	1.2	Imaging Geometry, Image acquisition, sampling and quantization, image resolution, basic relationship between pixels, colour images, RGB, HSI and other models		
2	Title	Two Dimensional Transforms and Image Enhancement	1,5	06
	2.1	Discrete Fourier Transform, Discrete Cosine Transform, KL Transform, and Discrete Wavelet Transform		
	2.2	Intensity transformations, contrast stretching, histogram equalization, Correlation and convolution, smoothing filters, sharpening filters, gradient and Laplacian, Frequency domain filtering.		
3	Title	Image Segmentation and Compression	1,5	05
	3.1	Point, line and edge detection, edge linking using Hough		

(Autonomous Institute Affiliated to University of Mumbai)

		transform and graph theoretic approach, thresholding, and region-based segmentation, Morphological operations.		
	3.2	JPEG and MPEG compression standard, H.265 video compression standard		
4	Title	Image Restoration	1,6	04
	4.1	Basic Framework, Image degradation model, Noise characterization, Noise restoration filters,		
	4.2	Adaptive filters, and Estimation of Degradation functions, Restoration Techniques.		
5	Title	Video Formation and Representation	2,3	05
	5.1	Digital Video Sampling, Video Frame classifications, I, P and B frames, Notation		
	5.2	Video Capture and display: Principle of color video camera, video camera, digital video Sampling of video Signals: Required sampling rates, sampling in two dimensions and three dimensions, progressive virus interlaced scans		
6	Title	Motion Estimation	2,3	04
	6.1	Optical Flow: Motion Vs optical flow, optical flow equations, motion representation, motion estimation criteria, optimization method.		
	6.2	Pixel based motion estimation, Block Matching Algorithms, Multi resolution Motion Estimation: General formulation.		
7	Self- Stud v	Study of different format of image and video, Basics of image and video terminology, ITU-RBT 601, Digital Video formats, Digital video quality measure.		
	<u>.</u> . У	1 Digital video quality illeasure.	Total	28

Laboratory:

Sr.	Title of the Experiment
No	
1.	Image Enhancement
2.	Image Transformations.
3.	Image Filtering
4.	Image Segmentations
5.	Image Compression
6.	Image Restoration
7.	Object Detection in video
8.	Motion Estimation on video
9.	Color Image Segmentation
10.	Discrete Wavelet Transforms on image

(Autonomous Institute Affiliated to University of Mumbai)

Textbook

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Computer Vision and applications-A GuideforStudents andPractitioners	First	Bernd Jahne and Host HauBecker	Elsevier	
2	Digital Image and Video Processing	First	Dhananjay Theckedath	Pearson Education	2019

Reference Books

Sr.	Title	Editio	Authors	Publisher	Year
No		n			
1	Digital Image		Rafael C. Gonzalez	Pearson	2010
	Processing	Third	and Richard E. Woods	Education	
2	Digital Video		Murat Tekalp	Pearson	2010
	Processing	Second	1	Education	
3	Handbook on		A.I.Bovik	Academic	2009
	Image and Video			Press	
	Processing				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teachir	Teaching Scheme (Hrs/week)						Credits Assigned			
(Category)	Course Maine	L	T	P	0	E	L	T	P	Tot		
Code										al		
		3	0	0	3	6	3	0	0	3		
PE-IV		Examination Scheme										
	Space	Compo	onent]	ISE(N	MSE(]	ESE(Tot		
	Communication			•	%)	9	(o)	Ç	%)	al		
EC414	Technologies	The	ory	,	2		2		6	10		
(2T14)				(0		0		0	0		
		Labora	atory	,	_		-		-	-		

Pre-requisit	e Course Codes, if any.	Electromagnetics, FOA					
Course Obje	ective: To provide an in-depth ur	nderstanding of satellite communication system operation,					
launching ted	launching techniques, satellite link design earth station technology and applications.						
Course Outo	comes (CO):At the End of the c	ourse students will be able to					
EC414 .1	Explain and examine fundame	ental concepts of frequency allocations, Kepler's laws, satellite					
	different orbits with emphasiz	te on geostationary orbit.					
EC414.2	Evaluate different types of los	Evaluate different types of losses in satellite communications					
EC414.3	Analyze effects of losses on t	the carrier-to-noise ratio for the uplink, downlink, the combined					
	link and received power at the	e earth stations.					
EC414.4	Analyze different satellite acc	ess performance metrics and characteristics with and apply it					
	to some satellite network appl	ications					
EC414.5	Evaluate, design and develop new satellite communication products, protocols, and services.						
EC414.6	Critically analyze current limitations and future challenges in satellite communications and						
	its applications						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	P	P	P	PO	P	PO	PO	PO	PO	PO1	PO1	PO
	О	O	O	4	O	6	7	8	9	0	1	12
	1	2	3		5							
EC414.1	3	1	2									
EC414.2	1	1	2									
EC414.3	1	1	2									
EC414.4	1	1	2									
EC414.5	1	1	2		2				2			
EC414.6	1	1	2									1

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PE	PEO	PEO4	PSO1	PS	PSO3
		O2	3			O2	
EC414 .1		1					
EC414.2		2					
EC414.3		2					
EC414.4		2					
EC414.5		2					
EC414.6		2					

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understan	✓	Apply	✓	Analyz	✓	Evalua	Create
	d				e		te	

Modul e No.	Unit No.	Topics	Ref	Hr s.
1	Title	Satellite Orbits		
	1.1	Introduction, Basic definitions, Kepler's Laws, Orbital Parameters, Orbits in Common Use: Geostationary Orbit, Low Earth Orbit, Medium Earth Orbit, Highly Elliptical Orbit and Polar Orbit.		08
	1.2	Geometry of GSO Links: Range to Satellite, Elevation Angle to Satellite, Azimuth Angle to Satellite, Sample Calculation.		
2	Title	Satellite Subsystems & Earth Segment		08
	2.1	Satellite Bus: Physical Structure, Power Subsystem, Attitude Control, Orbital Control, Thermal Control, Tracking, Telemetry, Command, and Monitoring		
	2.2	Satellite Payload: Transponder and Antennas		
	2.3	Earth Segment: Design consideration, General configuration- Block diagram, receive only type earth, transmit-receive type earth station, Antenna system, Feed system, Tracking system, LNA, HPA.		
3	Title	Satellite Link and Performance	6,7	10
	3.1	Transmission Fundamentals: Effective Isotropic Radiated Power, Power Flux Density, Antenna Gain, Free-Space Path Loss, Basic Link Equation for Received Power.		
	3.2	System Noise: Noise Figure, Noise Temperature, System Noise Temperature, Figure of Merit		

(Autonomous Institute Affiliated to University of Mumbai)

	3.3	Link Performance Parameters: Carrier-to-Noise Ratio, Carrier-to-Noise Density, Energy-Per-Bit to Noise Density		
	3.4	Link Considerations: Fixed Antenna Size Link, Fixed Antenna Gain Link, Fixed Antenna Gain, Fixed Antenna Size Link, Uplink, Downlink.		
4	Title	Space Transmission Impairments	1,4	06
	4.1	Radio wave Frequency and Space Communication, Radio wave Propagation Mechanisms, Propagation Below About 3 GHz, Ionospheric Scintillation, Polarization Rotation, Group Delay, Dispersion, Propagation Above About 3 GHz, Rain Attenuation, Gaseous Attenuation, Cloud and Fog Attenuation, Depolarization, Tropospheric Scintillation		
	4.2	Radio Noise, Specification of Radio Noise, Noise from Atmospheric Gases, Sky Noise due to Rain, Sky Noise due to Clouds, Noise from Extra-Terrestrial Sources.		
	4.3	Rain Fade Mitigation		
5	Title	Satellite Multiple Access	1,2	08
	5.1	Frequency Division Multiple Access (PCM/TDM/PSK/FDMA PCM/SCPC/PSK/FDMA)		
	5.2	Time Division Multiple Access: PCM/TDM/PSK/TDMA, TDMA Frame Efficiency, TDMA Capacity, Satellite Switched TDMA		
	5.3	Code Division Multiple Access: Direct Sequence Spread Spectrum, Frequency Hopping Spread Spectrum, CDMA Processing Gain, CDMA Capacity.		
	5.4	Application to satellite Network applications		
6	Self- Study	Applications: VSAT systems: Advantages, configurations, frequency bands, elements, Broadcast services: Television broadcast systems, DAB, Mobile satellite communication: INMARSAT, LMSS, mobile satellite systems with non-GEO satellites, Satellite navigation systems, Laser Recent applications, Modern development and future		
		trends.	Total	42

Textbooks

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Satellite Communications	1 st	Louis J. Ippolito, Jr	Wiley	2008
	Systems Engineering				
	Atmospheric Effects,				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Satellite Link Design and				
	System Performance				
2	Satellite Communications	4th	Dennis Roddy	McGraw-Hill	2006

Reference Books

Sr.	Title	Title Edition		Publisher	Year	
No						
1	Satellite Communication	2nd	M. Richharia	Macmillan	2003	
	Systems Design			Press Ltd.		
	Principles					
2	Satellite Communication	4th	Gerard Maral and	Wiley	2001	
			Michel Bousquet			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Course Name Teaching Scheme (Hrs/week)				Credits Assigned					
Code		L	T	P	0	E	L	T	P	Total	
		2	0	2	6	8	2	0	1	3	
PE- IV	Principles of Soft Computing	D • • • • • • • • • • • • • • • • • • •			\mathbf{E}	xami	natior	Schei	me		
		Compo	onent	ISI	E (%)	M	SE (%) l	ESE(%)	Total	
EC424		Theo	ory		20		20		60	100	
(2T24)		Labora	atory		50				50	100	

Pre-requisite Course Codes, if any. MA101: 1		MA101: Engineering Calculus		
		MA102: Differential Equations and Complex Analysis		
Course Ob	jective: To implement soft co	emputing-based solutions for solving real-world problems		
Course Ou	Course Outcomes (CO): At the end of the course students will be able to			
EC424.1	EC424.1 Identify soft computing techniques and their roles in building intelligent Machines.			
EC424.2	Apply fuzzy logic reasoning	g to build model for solving various engineering problems.		
EC424.3	EC424.3 Analyze optimization issues using Genetic Algorithm.			
EC424.4	Design various hybrid soft of	computing models by using different techniques.		

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
EC424.1	2	2			3							
EC424.2		2	2		3							
EC424.3			2		3							
EC424.4				2	3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC424.1	2			2	2	
EC424.2	2			2	2	
EC424.3	2				2	
EC424.4		3			2	3

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction To Soft Computing and Neural Networks	1,2	
	1.1	Introduction to Soft Computing, Difference between Hard and		04
		Soft Computing. Conventional AI, Computational Intelligence		
2	Title	Neural Networks	1,2	10
	2.1	Biological neuron, Artificial Neuron Model, Single layer Multilayer Architecture of Neural Networks Architecture, Activation functions, Learning rules.		
	2.2	Supervised Learning Neural Network: Back Propagation Network, Radial Basis Function Network.		
	2.3	Unsupervised Learning Neural Network: Adaptive Resonance Architecture.		
3	Title	Fuzzy Logic	3	6
	3.1	Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations		
	3.2	Membership Functions, Fuzzy Rules and Fuzzy Reasoning		
	3.3	Fuzzy Inference Systems, Fuzzy Models.	-	
4	Title	Genetic Algorithm	3	8
	4.1	Introduction to Genetic Algorithm, Working Principle of Genetic Algorithm.		
	4.2	Various Encoding methods, Fitness function.		
5	Self-S tudy	Analyse advanced soft computing techniques.		
			Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Linear & Nonlinear analysis using single & multiplayer neural network
2	Supervised learning neural network
3	Unsupervised learning neural network
4	Fuzzy logic operations

(Autonomous Institute Affiliated to University of Mumbai)

5	Fuzzy system design
6	Genetic Algorithm
7	Design Neuro-fuzzy model
8	Hybrid Design/Expert system Design

Text Books

Sr. No	Title	Editio n	Authors	Publisher	Year
1	Introduction to Artificial Neural Systems		Jacek M. Zurada	PWS Publishing Company	1995
2	Principles of Soft Computing	Third	S.N.Sivanandam and S.N.Deepa	Wiley Publication,	2018
3	Neural Networks, Fuzzy Logic and Genetic Algorithms		S.Rajasekaran and G. A. Vijayalakshami	Prentice-Hall of India	2004

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Neural Networks: A Comprehensive Foundation		Simon Haykin	Macmillan College Publishing Company	1994
2	Neural Network Design		Martin Hagan	CENGAGE Learning, India	2008
3	Fuzzy Sets and Fuzzy Logic: Theory and Applications		George J. Klir and Bo Yuan	Prentice-Hall of India	1994

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	To	Teaching Scheme (Hrs/week)			(Credit	s Assig	ned	
Code		L	T	P	0	E	L	T	P	Total
		2	0	2	6	8	2	0	1	3
PE-III		Examination Scheme								
	Semiconductor	Comp	onent	IS	E (%)) M	SE(%	ES	SE (%)	Total
	Technologies	_)		, ,	
EC433		The	ory		20		20		60	100
(3T33)		Labor	atory		50				50	100

Pre-requisite	e Cours	se Codes AS101: Engineering Physics				
_		ET202: Electronic Devices				
		EC205: Analog Circuits				
		EC101: Digital Systems and Microprocessors				
		T31: Digital CMOS VLSI Design				
After success	sful con	apletion of the course, student will be able to				
	CO1	Discuss integrated circuit fabrication processes and use modern/open-source				
		ools for process simulation.				
	CO2	Apply the sequence of fabrication processes and design rules for layout				
		lesign and characterization of a given semiconductor device/MOS circuit.				
Course	CO3	Discuss fundamental principles of MEMS devices including physical				
Outcomes		operation and mathematical modeling.				
	CO4	Apply various fabrication processes, choose suitable materials for MEMS				
		device FEM modeling, fabrication and characterization.				
	CO5	Illustrate fundamental principles and fabrication process steps for				
		semiconductor memories and displays.				

Modul e No.	Unit No.	Topics	Ref.	Hrs
1		Environment and Crystal Growth for VLSI Technology		04
	1.1	Environment: Semiconductor technology trend, clean rooms	1,3	
	1.2	Semiconductor Substrate: Phase diagram and solid solubility, Crystal structure, Crystal defects, Czochralski growth, Bridgman growth of GaAs, Float Zone growth, Wafer Preparation and specifications.	1,3	
2		Fabrication Processes Part 1		06
	2.1	Cleaning of Silicon wafer, Deposition: Evaporation, Sputtering and Chemical Vapor Deposition.	1,3	
	2.2	Epitaxy: Molecular Beam Epitaxy, Vapor Phase Epitaxy, Liquid Phase Epitaxy, Evaluation of epitaxial layers	1,3	

(Autonomous Institute Affiliated to University of Mumbai)

2.3 Silicon Oxidation: Thermal oxidation process, Kinetics of 1,3 growth, Properties of Silicon Dioxide, Oxide Quality, high x and low x dielectrics. 2.4 Diffusion: Nature of diffusion, Diffusion in a concentration gradient, diffusion equation, impurity behavior, diffusion systems, problems in diffusion, evaluation of diffused layers. 2.5 Ion Implantation: Penetration range, ion implantation systems, process considerations, implantation damage and annealing. Fabrication Processes Part 2 3.1 Etching: Wet chemical etching, dry physical etching, dry chemical 3.2 Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer, Electron beam, Ion beam and X-ray lithography. 3.3 Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability 3.4 CMOS Process Flow: N well, P-well and Twin tub 2.3.5 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. 4 Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICS and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA): Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, ICR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flas					
gradient, diffusion equation, impurity behavior, diffusion systems, problems in diffusion, evaluation of diffused layers. 2,5 Ion Implantation: Penetration range, ion implantation systems, process considerations, implantation damage and annealing. Fabrication Processes Part 2 3.1 Etching: Wet chemical etching, dry physical etching, dry chemical 3.2 Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer, Electron beam, Ion beam and X-ray lithography. 3.3 Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability 3.4 CMOS Process Flow: N well, P-well and Twin tub 3.5 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. 4 Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS, Technology, Difference between ICT & MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Dic, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures, 5 fabrication steps 5 Display: AMOLED/OLED: Working Principle, structures, 5		2.3	growth, Properties of Silicon Dioxide, Oxide Quality, high κ and	1,3	
Process considerations, implantation damage and annealing. Fabrication Processes Part 2 3.1 Etching: Wet chemical etching, dry physical etching, dry chemical 3.2 Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer, Electron beam, Ion beam and X-ray lithography. 3.3 Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability 3.4 CMOS Process Flow: N well, P-well and Twin tub 2 3.5 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency Semiconductor Memories and Display Semiconductor Memories and Display Semiconductor Memories and Display Semiconductor Memories and Display Semiconductor Memories of one/two memory structures 5 Display: AMOLED/OLED: Working Principle, structures, fabrication steps		2.4	gradient, diffusion equation, impurity behavior, diffusion systems,	1,3	
3.1 Etching: Wet chemical etching, dry physical etching, dry chemical 3.2 Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer, Electron beam, Ion beam and X-ray lithography. 3.3 Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability 3.4 CMOS Process Flow: N well, P-well and Twin tub 2 3.5 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. 1ntroduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICS and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures, fabrication steps 5.2 Display: AMOLED/OLED: Working Principle, structures, fabrication steps		2,5		1,3	
Chemical 3.2 Lithography: Photoreactive materials, Pattern generation and mask making, pattern transfer, Electron beam, Ion beam and X-ray lithography. 3.3 Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability 3.4 CMOS Process Flow: N well, P-well and Twin tub 2 3.5 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICS and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency Semiconductor Memories and Display MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency Semiconductor Memories and Display O4 S.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures, 5 Employed and Str	3				06
mask making, pattern transfer, Electron beam, Ion beam and X-ray lithography. 3.3 Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability 3.4 CMOS Process Flow: N well, P-well and Twin tub 2 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. 4 Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, fabrication steps		3.1		1,3	
3.3 Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit packages, Electronics package reliability 3.4 CMOS Process Flow: N well, P-well and Twin tub 3.5 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. 4 Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, 5 fabrication steps		3.2	mask making, pattern transfer, Electron beam, Ion beam and	1,3	
3.4 CMOS Process Flow: N well, P-well and Twin tub 3.5 Design rules, Layout of MOS based circuits (gates and combinational logic), Buried and Butting Contact. 4 Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures, fabrication steps		3.3	Device Isolation, Contacts and Metallization: Junction and oxide isolation, LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and Packaging: Integrated circuit	2	
combinational logic), Buried and Butting Contact. 4 Introduction to MEMS, MEMS Materials Properties, Fabrication and Characterization 4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICS and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, 5 fabrication steps		3.4	CMOS Process Flow: N well, P-well and Twin tub	2	
4.1 Introduction to MEMS Technology, Difference between ICT & MEMS Technology, Difference between ICS and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, fabrication steps		3.5		2	
MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging 4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, 4 structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, 5 fabrication steps	4		<u> </u>		08
4.2 Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors 4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, fabrication steps					
4.2 Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, fabrication steps		4.1	MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire &	3	
Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency 5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, fabrication steps			MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and		
5 Semiconductor Memories and Display 5.1 Memory: SRAM, DRAM, MRAM, Flash: Working Principle, 4 structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, 5 fabrication steps		4.2	MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive	3	
structures and fabrication steps of one/two memory structures 5.2 Display: AMOLED/OLED: Working Principle, structures, fabrication steps 5.3 fabrication steps		4.2	MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and	3	
5.2 Display: AMOLED/OLED: Working Principle, structures, 5 fabrication steps	5	4.2	MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency	3	04
Total 28	5	4.2	MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency Semiconductor Memories and Display Memory: SRAM, DRAM, MRAM, Flash: Working Principle,	3 3	04
	5	4.2	MEMS Technology, Difference between ICs and MEMS Devices and Real world Sensors/Actuators examples with brief description, Bulk, Surface & LIGA Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging Architecture, working and basic quantitative behaviour of MEMS devices like Cantilever, Microheaters, Accelerometers, and Pressure Sensors Materials (eg. Si, SiO2, SiN, SU8, PMMA); Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure. Understanding steps involved and materials used in Fabricating MEMS Cantilevers, and its Characterization for stiffness and Resonant frequency Semiconductor Memories and Display Memory: SRAM, DRAM, MRAM, Flash: Working Principle, structures and fabrication steps of one/two memory structures Display: AMOLED/OLED: Working Principle, structures,	3 3	04

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

ISE Evaluation:

- 1) Fault identification and correction of a given CMOS circuit Layout: Group Activity within Laboratory Batch [Evaluation during laboratory session. CO3-CO4. (5 Marks)
- 2) Case Study of MEMS device fabrication and characterization: Group Activity within Laboratory Batch [Evaluation during laboratory session. CO3-CO4. (5 Marks)
- 3) Visit to CEN Lab, IIT Bombay and Report on visit (CO1-CO5) (10 Marks)

Text Books:

Sr. No.	Title	Edition	Authors	Publishers	Year
1	Silicon VLSI Technology	Indian Edition, First	James D. Plummer, Michael D. Deal and Peter B. Griffin	Pearson	2000
2	Fundamentals of Semiconductor Fabrication	First	G. S. May and S. M. Sze	Wiley	2011
3	Micro Electro Mechanical System Design	ebook	J. Allen	CRC Press	2005
4	Semiconductor Memories Technology, Testing and Reliability	-	A.K. Sharma	IEEE	2022
5	Frontiers in Electrical Engineering Vol. 1: Active-Matrix Organic Light-Emitting Display Technologies	-	Shuming Chen, Jianning Yu, Yibin Jiang, Rongsheng Chen, Tsz Kin Ho	Bentham Books	2015

Recommended Books:

Sr.	Title	Edition	Authors	Publishers	Year
No.					
1	The Science and Engineering of	Second	Stephen A.	Oxford	2001
	Microelectronic Fabrication	Edition	Campbell	University	
				Press	
2	VLSI Fabrication Principles	Student	Sorab K. Gandhi	Wiley	2008
		Edition			
3	An Introduction to	Second	N. Maluf, K	Artech House	2004
	Microelectromechanical Systems		Williams	Inc	
	Engineering			IIIC	
4	Practical MEMS	First	Ville Kaajakari	Small Gear	2009
				Publishing	
5	Microsystem Design	First	S. Senturia	Springer	2005
	F 1 (1 CM) (1 ''	G 1	N/ N/ 1		2002
6	Fundamentals of Microfabrication	Second	M. Madou	CRC Press	2002

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Each Experiment carries 05 Marks. Any 08 Experiments covering all COs.

Rubrics: Performance (3.5M), Oral Questions based on Experiment (0.5) and Documentation (01)

Sr. No.	Topics	СО
1	Aim: Use nanohub platform to simulate and analyze the Oxidation process for various	CO1
	process parameters and wafer specifications.	
	Problem Statement:	
	Simulate the oxidation process with Deal - Groove model for different conditions (eg.	
	Oxidation type, orientation, time, temperature, thickness etc.) and comment on the results obtained.	
2	Aim: Use nanohub platform to simulate and analyze the diffusion process for various	CO1
	given conditions.	
	Problem Statement:	
	Simulate the diffusion process for various given conditions. Such as eg. Source, time, temperature, dopant etc. and comment on the results obtained.	
3	Aim: Use Virtual Hall Effect Experimental set-up for the measurement of	CO1
	semiconductor material parameter measurements.	
	Problem Statement:	
	Use Hall Effect Experimental set-up available at Vlab to determine various parameters	
	of semiconductor material like Hall's coefficient, carrier density, mobility. Compare	
	these values with calculated values. Also study the dependence of Hall voltage on the	
	magnetic field and the current passing through the probe.	
4	Aim: To use Industry graded VLSI CAD tools to draw layout and analyze CMOS	CO2
	Inverter circuit.	
	Problem Statement:	
	Draw and simulate CMOS Inverter. Carry out static as well as transient simulation.	
	Analyze CMOS Inverter for	
	i) (W/L) PMOS >(W/L) NMOS	
	ii) (W/L) PMOS = (W/L) NMOS	
	iii) (W/L) PMOS $< (W/L)$ NMOS.	
	Do parasitic extraction. Feed these parasitic in circuit simulator and do the layout	
	versus schematic verification.	
5	Aim: To use Industry graded VLSI CAD tools to draw layout and analyze MOS based	CO2
	circuit.	
	Problem Statement:	
	a. Draw and simulate layout for the following circuits. Size them with respect to	
	reference inverter	
	a: CMOS NAND	
	b: CMOS NOR	
	c. 6T SRAM cell for high reliability and lowest area.	
	d. A given flipflop (SR, D, T, JK).	
	e. Half adder.	

(Autonomous Institute Affiliated to University of Mumbai)

	f. Logic equation using Static CMOS, dynamic logic, transmission gate. (Any one problem statement for a group of students)	
5	Aim: To analyze MEMS cantilever in Sugar Tool using Nanohub platform. Problem Statement: a) Choose proper dimensions of MEMS cantilever modelled in Sugar. Choose the proper co-ordinate and node for applying a point contact load (force). Observe and tabulate the maximum displacement at free end of the cantilever for at least two different values of point contact load, verify one of the readings with given analytical expression of maximum displacement of the cantilever. Comment on the results obtained.	CO3 -CC 4
	b) Choose proper dimensions of width and thickness of MEMS cantilever modelled in Sugar. Choose proper co-ordinate and node for applying certain value of point contact load (force). Observe and tabulate the maximum displacement of the cantilever for at least two different values of point contact force applied on cantilever, verify one of the readings with given analytical expression of maximum displacement of the cantilever. Comment on the results obtained.	
6	Aim: To model and analyze MEMS cantilever in COMSOL Multiphysics. Problem Statement: i. For the given dimensions and material create MEMS cantilever model in COMSOL and observe the dependence of resonance frequency of the cantilever on material. ii. For the cantilever model analyze dependence of fundamental resonance frequency on varying length (given range), plot the result and also compare the result with analytical expression of resonance frequency.	CO3 -CC 4
7	Aim: To analyze MEMS capacitive pressure sensor in COMSOL Multiphysics. Problem Statement: For the given dimensions, model MEMS capacitive pressure sensor in COMSOL. a) Observe, plot changes in pressure sensor diaphragm displacement and capacitance at constant temperature (room temperature) and varying applied pressure (given range) and compare it with given analytical expressions of diaphragm displacement and capacitance of sensor. b) Observe, plot the change in pressure sensor diaphragm displacement and capacitance for fixed value of applied pressure and varying temperature to analyze the effect of package stress.	CO: -CC 4
8	Aim: To evaluate the static and dynamic performance of the MEMS micro-heater using FEM tool. Problem Statement: For the given model of the MEMS micro-heater, a) Measure the temperature of the heated membrane for the input excitation voltage and compare it with the given analytical expression.	CO: -CC
	b) To plot the temperature response of heated membrane to standard test voltages like square, Ramp, and sinusoidal.	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

9	9) Aim: To model and analyze MEMS electrostatically actuated microcantilever in COMSOL.	CO3 -CO
	Problem Statement:	4
	For the given model of electrostatically actuated microcantilever in COMSOL.	
	a) To plot tip displacement of the microcantilever for different values of applied voltage.	
	b) To plot shape of the microcantilever displacement for different values of applied voltage.	
	c) To plot capacitance of the microcantilver different values of applied voltage.	
10	Aim: To model and analyze Piezoresitive Pressure Sensor in MEMS Design and	CO3
	Simulation FEM Tool.	-CO
	Problem Statement:	4
	i. Choose the proper substrate; define the process flow and Layout of Piezoresitive	
	pressure sensor in MEMS Design and Simulation FEM Tool and create a its 3- D Layout.	
	ii. Observe the change in resistance of piezoresistance for given input pressure. Compare this reading with the given analytical expression of the change in resistance of the piezoresistace.	
11		CO5
11	Aim: To analyze the operation of semiconductor memory using NI Tool. Problem Statement:	COS
	Using Multisim configure a word generator, observe the reading and writing of a 2-bit	
	code on a RAM chip, and design, construct and simulate the writing and reading of a	
12	4-bit code on a RAM chip	COF
12	Aim: Develop and test low-cost self-made OLEDs.	CO5
	Problem Statement:	
	Develop and test the low-cost standard-OLED on ITO2 glass with three individually	
	controllable emission spots using the process steps described.	

^{*}Student has to perform any one experiment from 8, 9 and 10 as per the allotment by the faculty.

References:

- [1] www.nanohub.org
- [2] www.vlab.com
- [3] www.microwind.com
- [4] ICMT Laboratory Manual
- [5] https://www.sciencedirect.com/science/article/pii/S0187893X137

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned				
(Category) Code	Course Name	L	Т	P	O	E	L	Т	P	Total	
		3	0	2	5	10	3	0	1	4	
PE-III	Embedded and	Examination Scheme									
	Digital Control	C	ompone	ent	ISE	(%)	MSE	MSE (%) ESE(%) Tot			
EC443	of PE Systems	Theory		2	0	20		60	100		
(4T43)		Laboratory		5	0			50	100		

Pre-requisit	e Course Codes, if any.	Basic Electrical Engineering					
Course Obje	Course Objective: To study controlling aspects of major types of power electronic converters in						
analog and d	analog and digital domain with appropriate signal conditioning and sensing circuits						
Course Outcomes (CO): At the End of the course students will be able to							
EC443.1	To study role of digital hardy	ware in modern power control					
EC443.2	To study different digital sig	nal processing hardware and their organizations					
EC443.3	To study different discretization techniques						
EC443.4	To master the Practical Power	er control techniques with digital hardware					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC443.1	2											
EC443.2	2	3										
EC443.3		2.5										
EC443.4		3	2.5									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PS O	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC443.1	2	1					
EC443.2	2				3		
EC443.3	2				2		
EC443.4	2				2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Remember	Understand	Apply ✓	Analyze	Evaluate	Create
	✓		√		

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.					
1	Title	Organization of Digital Signal Processors							
	1.1	Numbering System, Architecture, memory maps, Assemblers, cross							
		compilers, ADCs, Analog Comparators, PWM Blocks, Communication		09					
		protocols, FPGAs with Logic blocks and ARM core, Dual-core DSP for							
		control and communication, interfacing of Voltage and Current sensing							
2	Title	Circuits Discrete-time implementations of Fundamental Functional Blocks							
2	2.1	Implementation of Discrete time equations (IIR and FIR),							
	2.1	Representations with Discrete Time Structures							
	2.2	Low Pass and High-pass filters, Proportional Integral and Derivative		09					
	Controller, Harmonic Oscillators, Reference frame transformations,								
		Phase-shift and quadrature filters, Phase lock-loop, higher order digital							
		filters, etc.							
3	Title	Digital Control of grid connected systems							
	Impleme	ntation of control blocks of an Active Power Filter on DSP Platform							
	Selected	Active Power Filter Control Algorithms. DSP controllers for		09					
	grid-conr								
4	Title	Digital Control of DC-to-DC Converters							
	Closed lo								
	Supplies		09						
		SP controllers for DC-DC converters in renewable energy		0,5					
	application	ons							
	Title	DSP Implementation of Modulators							
5									
		SPWM, Space Vector Modulation, Inverter Flux Control							
			09						
6	*Self-S	Laplace transformations, z-transformations, s-z transformations,		05					
	tudy	discretization techniques, control system stability in continuous and							
		discrete time mode. SOGI		4.5					
		Total Hours (*exc	iuaea)	45					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component (Indicative): To be completed minimum of 4 Lab Project Assignments with Practical Implementation on Digital Platforms

LAB Project-1

Grid Connected Inverters / Active Power Filter Implementation

Lab Project-2

Closed Loop Control of DC-DC Converter / LED Drivers/SMPS control

Lab Project-3

Closed loop control of a Sine Wave Inverter with LC Filter using Inverter Flux Modulation

Control

Lab Project-4

Implementation of a EV Battery Charger using CC/CV Mode of Operation

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Power Electronics:	Third	Ned Mohan,	John Wiley and	2003
	converters, Application and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits,	Fourth	Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Discrete Time Control	second	K. Ogata	Pearson	
	Systems	edition,		International	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Simulation of Power	First	M. B. Patil, V.	Narosa	2013
	Electronic Circuits		Ramanarayanan,	Publishing	
			V.T. Ranganathan	House	
2	The switching function	First	Christos Marouchos	IET, Devices	2008
	analysis of Power Electronic			and Circuits	
	Circuits				
3	Digital Signal Processing	Second	Krzysztof Sozański	Springer	2017
	in Power Electronics Control				
	Circuits				
4	Control Circuits in	First	Miguel Castilla	The Institution of	2016
	Power Electronics			Engineering and	
	Practical issues in design			Technology	
	and implementation				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					(Credits Assigned						
Code		L	T	P	0	E	L	T	P	Total				
	Artificial Intelligence and Machine	2	0	2	2	6	2	0	1	3				
PE- III				E	xami	natio	n Sche	me						
		Comp	onent	ISI	E (%)	M	ISE (%	b)	ESE(%) Total					
EC451 (1P)	Learning	The	ory		20		20		60	100				
	Learning	Labor	atory		50				50	100				

Pre-requisite Course Codes, if any.	MA201: Linear Algebra MA203: Probability and									
	Stochastic Processes									

Course Objective: To provide a strong foundation and basic exposition to the goals and methods of Artificial Intelligence and Machine Learning. To enable them to apply these techniques in applications which involve perception, reasoning and learning.

Course Outcomes (CO): At the end of the course students will be able to								
EC431.1	Describe the basic concepts and techniques of Machine Learning.							
EC431.2	Evaluate Supervised and Unsupervised Machine Learning Algorithms based on applications.							
EC431.3	Analyze the deep learning algorithms for various types of learning tasks in various domains.							
EC431.4	Apply knowledge representation, reasoning, and machine learning techniques to real-world problems.							

CO-PO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO9	PO10	PO12
EC431.1		3								
EC431.2		3	2		3					
EC431.3				2	3	2	3			
EC431.4				2	3			2	3	2

CO-PEO/PSO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC431.1	2					
EC431.2		3		3		
EC431.3			2		2	
EC431.4				3		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Fundamental of Machine Learning and Artificial Intelligence	1	06
	1.1	Notation of Dataset, Training Set and Test Set, No Free Lunch Rule, Relationships with Other Disciplines, Basic definitions of ML and AI, Machine Learning vs AI, Machine Learning vs Deep Learning.		
	1.2	Types of Machine Learning-Supervised, Unsupervised, Reinforcement, General Steps or Process of Machine Learning-Feature Extraction, Feature Correlation, Feature Transform, Train Model, Ensemble, Evaluate, Data cleaning, data transform/fitting.		
2	Title	Supervised Learning	2	07
	2.1	Regression: Linear Regression, Regularization Techniques (LASSO), Polynomial Regression, Support Vector Machine (SVM) and Regression (SVR, Extension to Multi-class Problems and usage) etc.		
	2.2	Classification, Random Forest, Decision Trees, Logistic Regression Support Vector Machines, KNN, Naïve Bayes.		
3	Title	Unsupervised Learning and Reinforcement Learning	1,3	06
	3.1			
	3.2	Markov Decision, Monte Carlo Prediction.		
4	Title	Neural Networks/Deep Learning		07
	4.1	Introduction to ANN CNN, RNN/LSTM/GRU, Transfer Learning, Case Study (CNN)		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Natural Language Processing: Text Mining. Generation, Applications		
	4.3	Predictive Analytics – Forecasting, Logistic, Time Series (ARIMA), etc. Case Study (Time Series)		
5	Title	Applications of AI and Machine Learning.	3,6	02
6	Self-S tudy	Multivariate Regression, Gaussian Mixture Models, Ensemble Methods		04
			Total	28

Laboratory Component

	ry Component
Sr. No	Title of the Experiment
1	FIND-S algorithm used for finding the most specific hypothesis
2	Implement and demonstrate the Candidate-Elimination algorithm.
3	Write program to demonstrate the working of the decision tree based ID3 algorithm
4	Implement program for classifier
5	Implement the naïve Bayesian Classifier model to classify set of documents that you have assumed Calculate the accuracy, precision, and recall for your data set.
6	Apply EM algorithm to cluster a set of data stored. (k-Mean's algorithm)
7	Write program to implement k-Nearest Neighbor algorithm to classify the data set.
8	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points while selecting appropriate data set for your experiment and draw graphs.
9	Build an Artificial Neural Network (ANN) by implementing the Back-propagation algorithm
10	Case Study on Clustering/Anomaly/Fraud Detection

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Machine Learning		Andriy Burkov	McGraw Hill Education	2009
2	Neural Networks and Deep Learning	-	Michael Nielsen	-	-

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year	
1	Introduction to Machine Learning	Second	Ethem Alpaydın	MIT Press Cambridge, Massachusetts London, England	2010	
2	Introduction to Machine Learning with Python		Andreas C. Muller and Sarah Guido	Oreilly Publication		
3	Artificial Intelligence. A Modern Approach,	Third	Stuard Russell and Peter Norvig	Prentice Hall	2010	
4	Pattern Recognition and Machine Learning		Christopher M. Bishop	Springer	2006	

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned					
Code		L	T	P	0	E	L	T	P	Total
		3			5	8	3		I	3
PE-IV					Exan	ninati	on Scho	eme		
	Analog CMOS VLSI	Component		IS	ISE (%)		MSE	ES	E(%	Total
	Design	_					(%))	
EC434	8	The	eory		20		20		60	100
(3T34)		Labor	ratory							

Pre-requisit	e Course Codes, if any.	ET101: Basic Electrical Engineering				
		EC101: Digital Systems and Microprocessors				
		ET202: Electronic Devices				
		ET205: Analog Circuits				
		PE-1T11: Digital CMOS VLSI Design				
Course Obj	Course Objective:					
Course Out	comes (CO): After success	ful completion of the course, student will be able to				
EC434.1	Recognize trade-offs invo	lved in analog VLSI Circuits				
EC434.2	Analyze current mirrors a	nd bandgap references				
EC434.3	Analyze single stage amplifier using small signal model as well as large signal					
	methodology					
EC434.4	AnalyzeMOSFET based of	differential and operational amplifier				

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	CMOS analog building blocks	1	08
	1.1	Necessity of CMOS analog design		
	1.2	MOS Models: Structure of MOSFET, Review of characteristics		
		of MOS device, Second order effects, MOS small signal model,		
		MOS spice models		
2	Title	Current Mirrors and Bandgap References	1	08
	2.1	Passive and Active Current Mirrors: Basic current mirrors,		
		Cascode current mirrors and Active current mirrors		
	2.2	Band Gap References: General Considerations,		
		Supply-independent biasing, Temperature independent		
		references, PTAT current generation and Constant Gm biasing		

(Autonomous Institute Affiliated to University of Mumbai)

3	Title	Single Stage Amplifiers	1	10				
	3.1	Basic concepts, Common source stage: resistive load,						
		diode-connected load, current-source load, triode load and source						
		degeneration						
	3.2	Source follower, Common gate stage, Cascode stage						
4	Title Differential Amplifiers							
	4.1	Single ended and differential operation, Basic differential pair,						
		Common-mode response, Differential pair with MOS loads and						
		Gilbert cell						
5	Title	MOS Operational Amplifiers	1,2,3	10				
	5.1	Op-amp: General Considerations, performance parameters,						
		One-stage op-amps, Two-stage op-amps, Gain Boosting,						
		Common-mode feedback, Input range limitations, Slew Rate,						
		Power supply rejection						
	5.2 Stability and Frequency Compensation: General							
	Considerations, Multipole systems, Phase margin, Frequency							
		compensation, compensation of two stage op-amps						
			Total	42				

Reference Books

Sr. No	Title	Edition	Author	Publisher	Year
01	Design of Analog CMOS	1 st	B Razavi	Tata McGraw	
	Integrated Circuits	Edition		Hill	
02	CMOS Circuit Design, Layout,	Student	R. Jacaob Baker,	Wiley	
	and Simulation	Edition	Harry W. Li,		
			David E. Boyce		
03	CMOS Analog Circuit Design	3 rd	P. E. Allen and	Oxford	
		Edition	D. R. Holberg	University Press	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	P	O	E	L	Т	P	Total
PE-IV	Selected topics in Power Electronics and	3	0	0	5	10	3	0	0	3
		Examination Scheme								
		Component			ISE (%)		MSE (%)		ESE(%)	Total
EC444	Drives	Theory		20		20		60	100	
(4T44)	Direcs	Laboratory			_		_		-	-

Pre-requisite	Course Codes, if any.	Basic Electrical Engineering				
Course Objective: To study controlling aspects of major types of power electronic converters in						
analog and digital domain with appropriate signal conditioning and sensing circuits						
Course Outcomes (CO): At the End of the course students will be able to						
EC444.1	To introduce with the diffe	erent applications of PE Converters				
EC444.2	To find innovative techniq	ues of power control at specific industrial applications				
EC444.3	To get exposure to cutting journals and research paper	ng edge research in power electronics through scientific				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
EC444.1	2											
EC444.2	2	3										
EC444.3		2.5										
EC444.1		3	2.5									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PS O	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC444.1	2	1					
EC444.2	2				3		
EC444.3	2				2		
EC444.1	2				2		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply ✓	Analyze	Evaluate	Create
	✓		√		

The students are exposed to different applications of Power Electronics and Drives in the field of

Electronic Communications, Energy storage, Pulse Power Control, illumination, industrial heating and refrigeration, reactive power control, electric vehicles, renewable energy, wireless energy transfer, Hydrogen electroliers, distributed generations, etc.

The students are asked to refer to cutting age research from different publications and archives not limited to the following list of research journals:

- **IEEE Transactions in Power Electronics,**
- **IEEE Transactions in Industrial Electronics,**
- **IEEE Transactions in Industrial Applications,**
- **IEEE Transactions on Vehicular Technology**
- **IEEE Transactions on smart-grid**
- **IET journal of Power Electronics**
- IEEE journal of Emerging and selected topics in Industrial Electronics, etc.

At the end of the course students are asked to submit their thesis on any one selected topics and make presentation in presence of experts in the related field.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
	Telecom Network Operations and Management	2	0	2	2	6	2	0	1	3
PE- IV		Examination Scheme								
		Compo	nent	ISI	E (%)) M	SE (%	(a) 1	ESE(%	Total
EC454		Theo	ry		20		20		60	100
(1Q)		Labora	atory		50				50	100

Pre-requisite Course Codes, if any.	EC307: Computer Communication Network

Course Objective: To develop understanding the concept of Telecommunication network management, architecture and protocol. Appreciate the need for interoperable network management. This course offers students a hands-on experience managing network hardware and essential network services such as DHCP, DNS, ARP, FTP, Telnet, HTTP, SSH, SMTP, TFTP, and SNMP through the use of scripting and python programming.

Course Out	comes (CO): At the end of the course students will be able to
EC432.1	Identify network requirements and apply the concept of structured wiring, structured Network Design and select the best solutions to meet the needs of a business.
EC432.2	Analyze the network management standards and protocols to support FCAPS Model of Network Management.
EC432.3	Identify the functions of the Network Manager and show how management information is stored & accessed within a managed object.
EC432.4	Apply effective troubleshooting and debugging techniques to resolve the network problems.
EC432.5	Apply fundamental components of Network Management and implement server and agent architectures to monitor and control networks, devices and applications.
EC432.6	Develop programs in Python to solve real problems in Network Management.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

PO1	PO2	PO3	PO4	PO5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO12

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

EC432.1		2	2					
EC432.2		2	2					
EC432.3				3				
EC432.4				3				
EC432.5				3				
EC432.6				3				

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC432.1			2			
EC432.2		2				
EC432.3			2			
EC432.4		2		3	2	
EC432.5			2		3	
EC432.6		2			2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	✓ Create

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.		
1	Title	Introduction to Enterprise Network Design	2,1,3	08		
	1.1	Introducing Network Design Concepts: Medium Enterprise Design Profile (MEDP)—LAN Design, LAN design principles, LAN design model for the medium enterprise, Considerations of a multi-tier LAN design model for medium enterprises, Designing network foundation services for LAN designs in medium enterprise, Scalability, Service uptime, WAN Design, Business and network-based economy.				
	1.2	Challenges of IT managers, Network management architecture and organization network management perspectives management: Goals, organization and functions				
2	Title OSI Network Management					
	2.1	Network management standards, Network management models, Organization model, Information model Communication model and functional model, Abstract syntax notation – encoding structure, macros, functional model CMIP/CMISE				
3	Title	Internet Management (SNMP)	1,2,3	08		
	3.1	SNMP-organizational model-System overview. Information model, communication model, functional model, SNMP proxy server, Management information, Protocol SNMPv1,v2 and V3, Remote monitoring. RMON, Limitations of SNMP, Beyond SNMP, NETCONF/YANG				
4	Title	Telecommunication Management Networks (TMN)	1,2.3	03		
	4.1	Need for TMN, Conceptual TNM model, TMN Network Management Architecture, TMN management services architecture and TMN implementation				
5	5 Title Network Management Tools and Applications		1,4,5	07		
	5.1	System Utilities for network management, Network statistics and measurements, NMS Design, NMS components, NMS Server Architecture, Network Management Systems and FCAPS, Automatic Fault Management and Event correlation Techniques,				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Security Management		
6	Self Stud y	Broadband Network Management: ATM Network Management and Wireless Network Management		04
			Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Network Monitoring tools: a) Status b) Route c) Traffic Tools d) Audit
2	Monitoring and management network using SNMP: a) Basic SNMP b) Advanced SNMP v3 Authentication/Encryption and ACL c) SNMP Trap Daemon Implementation
3	Configuration SNMP Protocol on Cisco Router using Packet Tracer
4	Configuration manageable Switch: L2/L3 Switch
5	LAN Troubleshooting using tcpdump and Wireshark
6	Monitoring of services and Servers using a) Observium/ Cacti b)Nagios/Icinga
7	Implementation of Centralized Logging infrastructure and security event correlation
8	Open Source SIEM Project
9	Python scripts for Network Monitoring
10	Network Management using Python

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Network Management Principles and Practice		Mani Subramaniam	Addison Wisely, New York	2000
2	Designing and Supporting Computer Networks, CCNA Discovery Learning Guide		Kenneth Stewart, Aubrey Adams, Allan Reid, Jim Lorenz	Cisco Press	

(Autonomous Institute Affiliated to University of Mumbai)

3	Network Management: Concepts and Practice, A Hands-On Approach	 J. Richard Burke	Pearson Publications.	
4	Network Management: Accounting and Performance Strategies	 Benoit Claise- CCIE No. 2686; Ralf Wolter	Cisco Press	
5	Network Management Fundamentals	 Alexander Clemm	Cisco Press, ISBN-13: 978-158720137	2006
6	Python for Software Design	 Allen B. Downey	Cambridge University Press ISBN-13: 978-0521725965	2009

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-VIII

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
		2	-	2	3	7	2	-	1	3
(PCC-)	Software Defined Networks	Examination S						me		
		Comp	onent	IS	ISE (%) M		SE (%)	ES	SE (%)	Total
EC501		Theory		20			20		60	100
		Laboratory			80				20	100

Pre-req	uisite Course Codes, if any.	EC-: Analog and Digital Communication						
	Course Objective: The objective of the course is to provide a fundamental understanding of software defined networks.							
Course Ou	tcomes (CO): At the end of the c	course students will be able to						
EC501.1		concepts of computer networks, including networking, and the OSI model, as well as the working of IPv4 P/IP protocol suite.						
EC501.2	hypervisors (KVM, Xen, VM	s to implement network virtual machines using Iware ESXi) and understand cloud infrastructure by virtualized data centres (clouds).						
EC501.3		Network Function Virtualization (NFV) and Software virtualize network appliances such as firewalls, VPNs,						
EC501.4	Virtualization (NFV) in mod-	rare Defined Networks (SDN) and Network Function ern networking, evaluating the differences between DN controllers, and their role in virtualizing traditional						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO8	PO9	PO10	PO12
EC501.1	3	3			3			2	3	3
EC501.2			2	2		2	2	3	3	3
EC501.3			3		3		3		3	3
EC501.4			2.5		3	2	3	3	3	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC501.1			2	2		
EC501.2		2		2		
EC501.3				3		
EC501.4	2				2	

Modu le No.	Unit No.	Topics	CO	Ref.	Total Hrs.
1	1.1	Fundamental of Computer Networks: Basic definitions. networking devices, layering architecture: The OSI model, description of layers, TCP/IP protocol suite. Working with IPv4 family: IP addressing schemes, subnet masks, network-id, host-id, Classful vs. classless addressing, Private and public IP addresses.	CO1	1,2	06
2	2.1	Network Function Virtualization: Primer on virtualization, benefits of virtual machine, Hypervisors-KVM, Xen and VMware ESXi. Virtualized Data Centre a.k.a. Clouds, types of clouds	CO2	3,4	06

(Autonomous Institute Affiliated to University of Mumbai)

3	3.1	Network Function Virtualization (NFV):	CO3	3,4	08
	3.2	How to virtualize a network, use of virtualization in NFV and Software Defined Networks (SDN) Virtualization of network appliances such as firewalls, VPN's, SSL offload and load balancer.			
4	4.1	Modern Networking approaches to			08
		Virtualization: Software Defined Networks: Virtualizing the	CO4	3,4	
	4.2	traditional data centres, working of SDN, SDN and OSI model, SDN and NFV benefits.			
		SDN Controllers: convergence in SDN, Commercial			
		Vs Open Source Controllers, Open Daylight common framework for SDN			
5	Self	Transmission media, Network Topologies, SDN in			*3
	-Stu	Data Centres, SDN and Cloud Computing.			
	dy				
		Total (*	Not incl	uded)	28

Laboratory:

Sr. No	Title of the Experiment
[1]	Identify and observe the behaviour of networking command line tools in
	Ubuntu/Windows OS environment
[2]	To build and test straight through UTP ethernet network cables.
[3]	Write a program in C/C++/Python/Java/Scilab to identify the IP address, Subnet mask,
	DNS server address and Hardware address of the client device.
[4]	Building Networks by using Packet Tracer/GNS3
[5]	Write a program in C/C++/Python/Java/Scilab to determine the administrator's
	requirement to define the number of subnets, host/subnet, customized subnet masks and
	valid subnet ranges for a IP addressing scheme.

(Autonomous Institute Affiliated to University of Mumbai)

[6]	OSI Model Layer Analysis using Wireshark
[7]	Basic Network Configuration with VMs in VirtualBox
[8]	Setting up Virtual Machines using KVM or Xen
[9]	Building a Private Cloud using OpenStack
[10]	Virtualizing Network Appliances (Firewalls, VPNs, Load Balancers)
[11]	Use of Open Source network emulator to simulate a SDN

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	TCP/IP protocol suit	4 th	Behrouz A. Forouzan (Author)	McGraw Hill Education	2009
2	Data Communication and Networking	5 th	B. Forouzan	McGraw Hill	2017

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
3	Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud	2 nd s	William Stallings	Addison-Wesley ISBN: 9780134175393	2015
4	SDN and NFV Simplified	1 st	Jim Doherty	Pearson Education	2016

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code	Course Name	L	T	P	0	E	L	T	P	Total
		3	-	-	6	09	3	-	-	3
PC	Fundamentals of	Examination Scheme								
	Antenna	Compo	ISE (%)		MS	E (%)	ES	E(%)	Total	
EC306		Theo	20			20		60	100	
		Labora	tory							

Pre-requisit	e Course Codes, if any.	EC304: Electromagnetic Waves			
Course Obj	ective: The objective of the	course is to provide a fundamental understanding of			
Antennas					
Course Outcomes (CO): At the end of the course students will be able to					
EC306.1	Calculate the fundamental parameters of Antenna.				
EC306.2	Describe fundamental the	ory of antennas.			
EC306.3	Select antenna based on ap	pplications.			
EC306.4	Evaluate antenna based or	applications.			
EC306.5	Design Antenna Arrays.				
EC306.6	Design antenna based on g	given requirements.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306.1	2	3						2	2	2		
EC306.2	2	3						2	2	2		
EC306.3		2						2	2	2		
EC306.4		2		2				2	2	2		
EC306.5		2		2				2	2	2		
EC306.6	2	1						2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC306.1		2				-	
EC306.2		2				2	
EC306.3		2				2	
EC306.4		2				2	
EC306.5		2				2	
EC306.6		1				1	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.			
1 (CO1)		Fundamental Concepts:	1	08
	1.1	Introduction, types of Antennas, Radiation mechanism, Poynting		
		vector, Steradian concept, Power intensity		
	1.2	Antenna Parameter: Radiation pattern, Radiation power density,		
		Radiation Intensity, Gain, Directivity, HPBW, FNBW, Beam		
		efficiency, Bandwidth, Polarization, Input Impedance, Reflection		
		coefficient, Return loss, VSWR, Antenna Efficiency, Effective		
		Aperture, Communication link and Friis transmission equation.		
2 (CO2,		Radiation from wires and loops	1	10
CO3)	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated		
		power, Radiation resistance, Directivity, Effective area, Short dipole,		
		Finite-length dipole: Radiated power, Radiation resistance,		
		Directivity, Effective area, Half-wave dipole and its properties, Loop		
		antenna.		
3 (CO3,		Aperture Antennas	1	06
CO4)	3.1	Introduction, Field equivalence principle, Love's equivalence		
		principle, Electrical and magnetic conductor equivalence principle,		
		Computation of field quantities of aperture antenna, Relation between wire and aperture antennas, Horn antenna design principle.		
4 (CO5)		Antenna Arrays	1	10
,	4.1	Introduction, Two-element array, Example problems, Pattern		
		multiplication concept, N-element array, Uniform array, Array factor,		
		Broad-side and end-fire arrays, Phased array, Directivity and pattern		
		characteristic of linear uniform array, non-uniform array, Binomial		
		array, Dolph-Chebyshev array concept, Design principle of		
		Chebyshev array and examples, Planar arrays		
5 (CO6)		Microstrip Antennas		
	3.1	Introduction: Rectangular Patch, Circular Patch, Parametric study,	1,4	08
		Circularly polarized antennas, Axial Ratio, MSA suspended		

(Autonomous Institute Affiliated to University of Mumbai)

		Configuration.		
	3.2	MSA Arrays and Feed Networks, Corporate and Series Feeds		
6 (Self		Advanced Antennas:		06
Study)		Reflector antenna, Dielectric Resonator antenna, Metamaterial based		
		antennas, Wearable antenna, Reconfigurable antennas,		
		Ultra-wideband antennas, Smart Antennas		
	•		Total	42

Text Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis	Constantine A.	Fourth	Wiley	1982
	and Design	Balanis		-	

Reference Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave J.D. Kraus, R.J.		Fourth	McGraw Hill	2011
	Propagation	Marhefka, and			
		A.S. Khan			
2	Handbook of Microstrip	R. James and P.S.	Third	Peter	1989
	Antennas	Hall		Peregrinus	
3	Antennas and Radio Wave	R. E. Collin	Fourth	McGraw-Hill	1985
	Propagation				
4	Broadband Microstrip	Girish Kumar and	First	Artech	2003
	antennas	K.P. Ray		House	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teachi	Teaching Scheme (Hrs/week)					Credits Assigned			
Code	Course Ivanic	L	T	P	О	E	L	T	P	Total	
	Computer Communication Networks	3	-	-	5	08	3	-	-	3	
PC		Examination Scheme									
		Component		ISE (%) M		MSI	E (%)	ESE(%)		Total	
EC307	Titotivorius	Theory		20		2	20	60		100	
		Laboratory							-		

Pre-requisi	te Course Codes, if any.	EC301: Analog and Digital Communication					
	jective: The objective of the ommunication networks.	course is to provide a fundamental understanding of					
Course Outcomes (CO): At the end of the course students will be able to							
EC307.1	Apply Conceptual understanding and functional aspects of computer communicational telecom networks.						
EC307.2	Analyze design and confispecific need for commun	gure small and medium sized computer network that meets a ications.					
EC307.3	1 *	rks and analyze the simulation results including troubleshoot arring at layers of TCP/IP model.					
EC307.4	Apply the principles behin IoT and security issues.	nd the Modern Network approaches such as SDN NFV and					

CO-PO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC307.1	3	3										
EC307.2			3	2	3							2
EC307.3			3		3	2						
EC307.4	2	2							3	3		3

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC307.1		2				
EC307.2		2		3		
EC307.3		2			3	
EC307.4		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Modu	Unit	Topics					
le No.	No.	-	•	S.			
1	Title	Fundamental of Computer Networks	1	08			
	1.1	Basic definitions. Networking devices. Layering architecture: The OSI model. Description of layers.					
	1.2	he Internet protocols TCP/IP protocol suit, IP Protocol and address.					
		What is the Internet? Delay in the Internet (trace route and ping). History of the Internet. Security in the Internet.					
2	Title	Enterprise Network Design	2	06			
	2.1	Network requirements, Planning and Design, Structured Wiring and Structured Network Design consist of Core Layer, Distribution Layer, and Access.					
	2.2	Network Design methodology & Network Design considerations Core La yer Technologies. Investigating Server Farms and Security Integrating, Remote Sites into the Network Design.					
3	Title	Transport and Application Layer	1,3	06			
	3.1	Transport Protocols introduction. Reliable data transfer - Stop-and-wait and Go-back-N design and evaluation. TCP and UDP semantics and syntax. TCP RTT estimation. Principles of congestion control - efficiency and fairness, reactive and proactive. Socket's programming A simple client-server implementation.					
	3.2	Application layer: Application layer protocols, Client-server as a key model. Web, HTTP, FTP, SMTP, POP3, and DNS. Peer-to-peer file sharing networks.					

(Autonomous Institute Affiliated to University of Mumbai)

4	Title	Software Defined Network and Network Function Visualization	5	10
	4.1	Network Requirements - The SDN Approach - SDN- and NFV-Related		
		Standards - SDN Data Plane - OpenFlow Logical Network Device -		
		OpenFlow Protocol - SDN Control Plane Architecture - REST API -		
		SDN Application Plane Architecture.		
	4.2	NFV Concepts - NFV Reference Architecture - NFV Infrastructure -		
		Virtualized Network Functions - NFV Management and Orchestration -		
		NFV Use Cases - SDN and NFV		
5	Title	Internet of Things (IoT) SECURITY	1,3	10
	5.1	Threats and attacks. Symmetric and public key cryptography. IPsec-		
		Authentication Header-Encapsulating security payload,		
	5.2	Secure sockets-Secure Socket Layer (SSL) - Firewalls and Internet		
		access- Packet filter firewall- Proxy firewall- VPNs - Mobile IP -		
		Header Compression – Voice over IP –		
	Title	Networks		5
6	Self-	Types of Networks, Transmission media, Network Topologies		
	Study			
Total				42

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	TCP/IP protocol suit	Fourth	Behrouz A. Forouzan (Author)	McGraw Hill Education	2009
2	Introducing Network Design Concepts	-	CCNA Discovery Learning Guide	-	-
3	Computer Networking: A Top-Down Approach	Fifth	J. F. Kurose and K. W. Ross	Prentice Hall	2009
4	Data Communication and Networking	Fourth	B.A.Forouzan	McGraw Hill	2017
5	Information Security: Principles and Practice	First	Deven Shah	Wiley	2007

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud		William Stallings	Addison-Wesley ISBN: 9780134175393	2015
2	Computer Networks	Fifth	A.Tanenbaum	Pearson Education	2013
3	Data and Computer Communications	Tenth	William Stallings	Pearson Education	2013

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

PROGRAM ELECTIVE COURSES

• 4 Electives are sufficient to specialize in a particular vertical/thread/area.

•						
TD/ PE	PE1	PE2	PE3	PE4	PE5	PE6
THREAD 1: Communication	T11: Information Theory	T12: Optical Fiber	T13: Microwave	T14: Space	T11, T12,	T11, T12,
	& Coding	Communication	Communicati on	Communication on Technologies	T21, T22,	T21, T22,
THREAD 2:	T21:	T22:	T23:	T24:	T31,	T31,
Signal Processing	Speech and Audio	Wavelet Transform	Image & Video	Principles Soft	T32,	T32,
	Processing	Transform	Processing	Computing	T41,	T41,
THREAD 3:	T31:	T32:	T33:	T34:	T42,	T42,
VLSI &	Digital CMOS VLSI	Real Time	Semiconducto	Mixed VLSI	X, Y	X, Y
Embedded Systems	Design	Embedded Systems	r Technologies	Design	P, Q	P, Q
THREAD 4:	T41:	T42:	T43:	T44:		
Power Electronics and Energy Systems	Control of Power Electronics Converters	Electric Motor Drive Systems	Embedded & Digital Control of PE Systems	Selected topic in Power Electronics & Drives		
GENERAL	X:	Y:	P:	Q:		
	Computer Communication Network (Cat2) T11, T12, T21, T22, T31, T32,	Fundamentals of Antenna (Cat2) T11, T12, T21, T22,	Artificial Intelligence & Machine Learning T13, T14 T23, T24	Telecomm Network Operations & Management T13, T14 T23, T24		
	T41, T42	T31, T32, T41, T42	T33, T34 T43, T44	T33, T34 T43, T44		
<u> </u>	<u></u>	_1		I.		