케라스 창시자에게 배우는 딥러닝

컴퓨터 비전을 위한 딥러닝

- 합성곱 신경망 소개
- 소규모 데이터셋에서 밑바닥부터 컨브넷 훈련하기
- 사전 훈련된 컨브넷 사용하기
- 컨브넷 학습 시각화
- 요약

합성곱 신경망(Convolutional neural network)

- 컨브넷(Convnet)이라고도 불림
- 거의 대부분의 컴퓨터 비전(**기계의 시각**에 해당하는 부분을 연구하는 컴퓨터 과학의 최신 연구 분야)에 사용됨

완전 연결 계층(Fully connected layer)과의 차이점

완전 연결 계층 합성곱 신경망 from keras import models from keras import lavers from keras import layers from keras import models network = models.Sequential() model = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) network.add(layers.Dense(10, activation='softmax')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) ■ 신경망 층인 Dense 층의 연속 model.add(layers.Conv2D(64, (3, 3), activation='relu')) ■ 마지막 Dense 층은 확률 점수가 들어있는 배열을 반환하는 Softmax 층 model.add(lavers.Flatten()) model.add(layers.Dense(64, activation='relu')) ■ 각 점수는 10개의 클래스 중 어떤 클래스에 속할지에 대한 확률 model.add(layers.Dense(10, activation='softmax')) ■ 이미지 전체의 모든 픽셀에 대한 패턴을 학습(전역패턴 학습) ■ Dense 층 전에 Conv2D 층과 MaxPooling2D 층 존재 ■ 작은 2D 윈도우(3X3)로 부분 픽셀에 대한 패턴을 학습(지역패턴 학습) ■ Conv2D와 MaxPooling2D 층의 출력은 (height, width, channels) 크기의 3D 텐서 ■ Dense 층 전에 Flatten 함수를 사용하여 3D 텐서를 1D 텐서로 펼침

합성곱 신경망의 특징

두 가지 핵심 특징

- ① 학습된 패턴이 새로운 위치에서 인식되어도 이를 새로운 패턴으로 인식하지 않고 효율적으로 처리함
- ② 학습된 패턴의 크기가 바뀌어도 이를 새로운 패턴으로 인식하지 않고 효율적으로 처리함

- 합성곱 연산은 특성 맵(Feature Map)이라 부르는 3D 텐서에 적용됨
- 이 텐서는 높이와 넓이, 깊이(채널: 컬러) 축으로 구성됨
- 합성곱 연산은 특성 맵(입력)에서 작은 패치들을 추출하고, 모든 패치에 같은 변환을 적용하여 출력 특성 맵을 만듦
- 출력 특성 맵도 높이와 넓이를 가진 3D 텐서
- 출력 특성 맵은 입력 특성 맵과 다르게 깊이(채널)가 컬러를 뜻하지 않음 model.add(layers.Conv2D(64, (3, 3), activation='relu'))
- 레이어를 쌓을 때 설정했던 필터(Filter)의 개수만큼 깊이가 출력됨
- 필터란 입력 데이터의 어떠한 특성을 인코딩하는 것(특성이 64개)

합성곱 연산

합성곱 연산

1 _{×1}	1,0	1 _{×1}	0	0
0,×0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

패딩(Padding)

- 입력과 동일한 높이와 넓이를 가진 출력 특성 맵을 얻고 싶을 때,
- 입력 데이터의 외각에 지정된 픽셀만큼 특정 값으로 채워 넣는 것

최대 풀링 연산

- 특성 맵을 다운샘플링하는 것 model.add(layers.MaxPooling2D((2, 2)))
- 크기를 줄이거나 특정 데이터를 강조하는 용도로 사용
- 레이어 생성시 설정했던 윈도우 크기 영역 안에 값의 최댓값을 모으는 것

특성 맵을 다운샘플링 하지 않는다면?

- ① 특성의 공간적 계층 구조를 학습하는데 도움이 되지 않음
- ② 최종 특성 맵이 가지는 가중치의 수가 너무 많음
- ③ 심한 과대적합이 발생함

소규모 데이터셋으로 CNN 학습

- 학습 데이터 2,000개, 검증 데이터 1,000개, 테스트 데이터 1,000개를 사용
- 과대적합 학습이 된 모델을 데이터 증식(Data augmentation)을 사용하여 해결

강아지 vs 고양이

- 1. Kaggle 데이터(25,000개) 사용
- 2. 그 중 4,000개의 소규모 데이터만 사용
- 3. CNN 네트워크 구성

- 4. 데이터 전처리
- 픽셀 값[0-255]을 [0-1] 사이로 조정
- 신경망은 작은 입력 값을 선호함

5. 배치 설정

```
1 for data_batch, labels_batch in train_generator:
2 print('배치 데이터 크기:', data_batch.shape)
3 print('배치 레이블 크기:', labels_batch.shape)
4 break

배치 데이터 크기: (20, 150, 150, 3)
배치 레이블 크기: (20,)
```

6. 모델 학습

소규모 데이터셋으로 CNN 학습

loss: 0.0334 acc: 0.9919 / val_loss: 0.9854 val_acc: 0.7540

데이터 증식하기

- 학습할 데이터가 너무 적어 새로운 데이터에 일반화할 수 있는 모델을 훈련시킬 수 없을 때 사용
- 기존의 학습 데이터로부터 더 많은 학습 데이터를 생성하는 방법
- 여러 가지 랜덤한 변환을 적용하여 샘플을 늘림
- 학습할 때 모델이 같은 데이터를 두 번 만나지 않도록 하는 것이 목표

```
1 datagen = ImageDataGenerator(
2     rotation_range=40,
3     width_shift_range=0.2,
4     height_shift_range=0.2,
5     shear_range=0.2,
6     zoom_range=0.2,
7     horizontal_flip=True,
8     fill_mode='nearest')
```

- Rotation_range : 랜덤하게 사진을 회전시킬 각도 범위(0-180)
- Width_shift_range/Height_shift_range: 사진을 수평과 수직으로 랜덤하게 평행 이동 시킬 범위
- Shear range : 랜덤하게 전단 변환할 각도 범위(사진을 회전할 때 y축 방향으로 각도 증가)
- Zoom_range : 랜덤하게 사진을 확대할 범위
- Horizontal_flip: 랜덤하게 이미지를 수평으로 뒤집음
- Fill mode: 회전이나 가로/세로 이동으로 인해 새롭게 생성할 픽셀을 채우는 전략

Dropout 추가

- 데이터가 적기 때문에 데이터를 증식 시켰다 하더라도 데이터들 사이에 상호 연관성이 큼
- 과대적합을 제거하기에 완전히 충분하지 않음
- 드롭아웃 층을 추가하여 과대적합을 더욱 억제하도록 함

model.add(layers.Dropout(0.5))

데이터 증식하기

loss: 0.3332 acc: 0.8525 / val_loss: 0.4596 val_acc: 0.8267

사전 훈련된 CNN 사용하기

특성 추출

- 사전에 학습된 네트워크의 표현을 사용하여 데이터에서 특성을 뽑아내는 것
- 뽑아진 특성을 사용하여 새로운 분류 모델(완전 연결 계층)을 훈련함

ImageNet 데이터셋에서 훈련된 대규모 CNN 사용

- 1.4백만 개의 이미지와 1,000개의 클래스
- 다양한 종의 강아지와 고양이를 포함하여 많은 동물들을 포함

■ Weights : 모델을 초기화할 가중치 체크포인트를 지정

■ Include_top : 네트워크의 최상위 완전 연결 분류기를 포함할지 안 할지를 지정

input_shape=(150, 150, 3)) ■ Input_shape : 네트워크에 주입할 이미지 텐서의 크기

- 4*4*512 크기의 특성을 추출할 수 있음
- 이후 추가된 완전 연결 계층으로 특성과 라벨을 입력시켜 훈련함
- 2개의 Dense 층만 처리하면 되기 때문에 학습이 매우 빠름

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 150, 150, 3)	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Conv2D)	(None, 75, 75, 128)	73856
block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Conv2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Conv2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv3 (Conv2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0

사전 훈련된 CNN 사용하기

loss: 0.0905 acc: 0.9720 / val_loss: 0.2376 val_acc: 0.9050

CNN 학습 시각화

- 딥러닝 모델을 블랙박스 같다고 함
- 학습된 표현에서 사람이 이해하기 쉽게 뽑아 내기 어렵기 때문
- 그러나 CNN의 표현은 시각적인 개념을 학습한 것이기 때문에 시각화하기 좋음

시각화 세 가지 기법

- ① CNN 중간 층의 출력 시각화: 연속된 컨볼루션 층이 입력을 어떻게 변형시키는지 이해하고, 필터의 의미를 파악하는데 도움이 됨
- ② CNN 필터 시각화 : 필터가 찾으려는 시각적인 패턴과 개념이 무엇인지 이해하는데 도움이 됨
- ③ 클래스 활성화에 대한 히트맵을 이미지에 시각화 : 이미지의 어느 부분이 주어진 클래스에 속하는데 기여했는지 이해하는데 도움이 됨
 - ※ 히트맵(Heatmap): 데이터를 컬러 색상의 강도로 표현하는 그래프

CNN 중간 층의 출력 시각화

```
1#층의 이름을 그래프 제목으로 사용합니다
2 laver names = []
3 for layer in model.layers[:8]:
     layer names.append(layer.name)
6 images per row = 16
8#특성 맵을 그립니다.
9 for layer_name, layer_activation in zip(layer_names, activations):
     # 특성 맵에 있는 특성의 수
     n_features = layer_activation.shape[-1]
     #특성 맵의 크기는 (1, size, size, n_features)입니다
     size = layer_activation.shape[1]
15
     # 활성화 채널을 위한 그리도 크기를 구합니다.
     n_cols = n_features // images_per_row
     display_grid = np.zeros((size * n_cols, images_per_row * size))
19
     # 각 활성화를 하나의 큰 그리드에 채웁니다
      for col in range(n_cols):
22
         for row in range(images_per_row):
             channel_image = layer_activation[0,
                                           col * images_per_row + row]
             # 그래프로 나타내기 좋게 특성을 처리합니다.
             channel_image -= channel_image.mean()
             channel_image /= channel_image.std()
             channel_image *= 64
             channel image += 128
31
             channel_image = np.clip(channel_image, 0, 255).astype('uint8')
32
             display_grid[col * size : (col + 1) * size,
33
                        row * size : (row + 1) * size] = channel_image
34
     # 그리드를 출력합니다
     scale = 1. / size
     plt.figure(figsize=(scale * display_grid.shape[1],
                        scale * display_grid.shape[0]))
     plt.title(layer_name)
     plt.grid(False)
     plt.imshow(display_grid, aspect='auto', cmap='viridis')
43 plt.show()
```


CNN 필터 시각화

```
1 for layer_name in ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1']:
     size = 64
      margin = 5
     # 결과를 담을 빈 (검은) 이미지
     results = np.zeros((8 * size + 7 * margin, 8 * size + 7 * margin, 3), dtype='uint8')
     for i in range(8): # results 그리드의 행을 반복합니다
         for j in range(8): # results 그리드의 열을 반복합니다
             # layer_name에 있는 i + (j * 8)번째 필터에 대한 패턴 생성합니다
             filter_img = generate_pattern(layer_name, i + (j + 8), size=size)
12
             # results 그리드의 (i, j) 번째 위치에 저장합니다
13
14
             horizontal_start = i * size + i * margin
15
             horizontal_end = horizontal_start + size
             vertical_start = j * size + j * margin
16
             vertical_end = vertical_start + size
             results[horizontal_start: horizontal_end, vertical_start: vertical_end, :] = filter_img
18
19
     # results 그리드를 그립니다
20
     plt.figure(figsize=(20, 20))
     plt.imshow(results)
23 plt.show()
```


클래스 활성화에 대한 히트맵을 이미지에 시각화

```
1#예측 벡터의 '아프리카 코끼리' 항목
2 african_elephant_output = model.output[:, 386]
4 # VGG16의 마지막 합성곱 층인 block5_conv3 층의 특성 맵
5 last_conv_layer = model.get_layer('block5_conv3')
7 # block5_conv3의 특성 맵 출력에 대한 '아프리카 코끼리' 클래스의 그래디언트
8 grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]
10#특성 맵 채널별 그래디언트 평균 값이 담긴 (512,) 크기의 벡터
11 pooled_grads = K.mean(grads, axis=(0, 1, 2))
13#샘플 이미지가 주어졌을 때 방금 전 정의한 pooled_grads와 block5_conv3의 특성 맵 출력을 구합니다
14 iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])
15
16 # 두 마리 코끼리가 있는 샘플 이미지를 주입하고 두 개의 넘파이 배열을 얻습니다.
17 pooled_grads_value, conv_layer_output_value = iterate([x])
-19 # "아프리카 코끼리" 클래스에 대한 "채널의 중요도"를 특성 맵 배열의 채널에 곱합니다.
20 for i in range(512):
     conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
23 # 만들어진 특성 맵에서 채널 축을 따라 평균한 값이 클래스 활성화의 히트맵입니다
24 heatmap = np.mean(conv_layer_output_value, axis=-1)
1 heatmap = np.maximum(heatmap, 0)
2 heatmap /= np.max(heatmap)
3 plt.matshow(heatmap)
4 plt.show()
```


