DEEP LEARNING FUNDUS IMAGE ANALYSIS FOR EARLY DETECTION OF DIABETIC RETINOPATHY

PROJECT REPORT

Submitted by

Anusheya A A	(113319106003)
Helan Joice D	(113319106032)
Kavitha S	(113319106038)
Pavithra K	(113319106054)

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

VELAMMAL INSTITUTE OF TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600 025

NOV 2022

PROJECT REPORT

Team ID	PNT2022TMID24431
Project Name	Deep Learning Fundus Image Analysis for Early Detection of Diabetic retinopathy.
TEAM MEMEBERS	ANUSHEYA A A [TEAM LEAD] - 113319106003 HELAN JOICE D – 113319106032 KAVITHA S - 113319106038 PAVITHRA K - 113319106054

ABSTRACT:

Diabetic Retinopathy is a retina disease caused by diabetes mellitus and it is the leading cause of blindness globally. Early detection and treatment are necessary in order to delay or avoid vision deterioration and vision loss. To that end, many artificial-intelligence-powered methods have been proposed by the research community for the detection and classification of diabetic retinopathy on fundus retina images. This review article provides a thorough analysis of the use of deep learning methods at the various steps of the diabetic retinopathy detection pipeline based on fundus images. We discuss several aspects of that pipeline, ranging from the datasets that are widely used by the research community, the preprocessing techniques employed and how these accelerate and improve the models' performance, to the development of such deep learning models for the diagnosis and grading of the disease as well as the localization of the disease's lesions. We also discuss certain models that have been applied in real clinical settings. Finally, we conclude with some important insights and provide future research directions.

INDEX

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTION (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

INTRODUCTION:

Diabetic Retinopathy (DR) is a common complication of diabetes mellitus, which causes lesions on the retina that affect vision. If it is not detected early, it can lead to blindness. The manual diagnosis process of DR retina fundus images by ophthalmologists is time, effort and cost-consuming and prone to misdiagnosis unlike computer-aided diagnosis systems. The longer you have diabetes and the less controlled your blood sugaris, the more likely you are to develop this eye complication.

Deep-learning systems have the potential to enhance and automate aspects of screening for diabetic retinopathy, and studies have examined their clinical applicability. Several retrospective and prospective studies sought to validate the use of deep-learning systems in diabetic retinopathy screening.

LITERATURE SURVEY:

Approximately four hundred and twenty million people worldwide have been diagnosed with diabetes mellitus. The prevalence of this disease has doubled in the past 30 years and is only expected to increase, particularly in Asia. Of those with diabetes approximately one-third are expected to be diagnosed with diabetic retinopathy (DR), a chronic eye disease that can progress to irreversible vision loss. Early detection which is critical for good prognosis, release on skilled readers and is both labour and time-intensive. Automated techniques for diabetic retinopathy diagnoses are essential to solving these problems.

References:

- https://pubmed.ncbi.nlm.nih.gov/27898976
- <u>https://arxiv.org/abs/1905.07203</u>
- https://www.scitepress.org/Papers/2020/89708/89708
- https://www.researchgate.net/publication/353056389
 Explainable
 Diabetic Retinopathy Detection and Retinal Image Generation

PROBLEM STATEMENT:

Who does the problem affect?	Persons who have Diabetes mellitus		
What are the boundaries of the problem?	The longer you have diabetes and the less controlled your blood sugaris, the more likely you are to develop this eye complication.		
What is the issue?	 Spots or dark strings floating in your vision (floaters) Blurred vision Fluctuating vision Dark or empty areasin your vision Vision loss 		
When does the issue occur?	Developing diabetes when pregnant (gestational diabetes) or having diabetes before becoming pregnant can increase risk of diabetic retinopathy.		
Where does the issue occur?	The manual diagnosis process of DR retina fundus images by ophthalmologists is time, effort and cost-consuming and prone to misdiagnosis unlike computeraideddiagnosis systems.		
Why is it important that we fix the Problem?	If it is not detected early, it can lead to blindness. Unfortunately, diabetic retinopathy is not a reversible process, and treatment only sustains vision.		

What solution to solve this issue?	DR early detection and treatment can significantly reduce the risk of vision loss
What methodology used to solve the issue?	Deep learning techniques are used for early detection of diabetic retinopathy that can prevent blindness and other eye relateddiseases.

IDEATION AND PROPOSED SOLUTION:

EMPATHY MAP CANVAS:

Diabetes is a globally prevalent disease that can cause visible microvascular complications such as diabetic retinopathy and macular edema in the human eye retina, the images of which are today used for manual disease screening and diagnosis. This labor-intensive task could greatly benefit from automatic detection using deep learning technique. Here we present a deep learning system that identifies referable diabetic retinopathy comparably or better than presented in the previous studies, although we use only a small fraction of images (<1/4) in training but are aided with higher image resolutions. We also provide novel results for five different screening and clinical grading systems for diabetic retinopathy and macular edema classification, including state-of-the-art results for accurately classifying images according to clinical five-grade diabetic retinopathy and for the first time for the four-grade diabetic macular edema scales. These results suggest, that a deep learning system could increase the cost-effectiveness of screening and diagnosis, while attaining higher than recommended performance, and that the system could be applied in clinical examinations requiring finer grading.

IDEATION & BRAINSTROMING:

Team Lead Anusheya

Close examination of diabetic patients Analyzing pattern of symptoms among the patients

Create a detailed report for the patitent

Getting the medical detail of the patient

Team member Pavithra

Examine the images for linearity

working with images from any format

Recommending for regular health checkup Suggest the optimal blood sugar level

Team member Helan Joice

Analysis of the fundus images Eye checkups at regular intervals Team member Kavitha

Conscious about food habits Keep diabetics and BP under control

Use Machine learning algorithms for detection Showing the results at the time of prediction

Avoid high carbs food

Python model to train the datasets

PROPOSED SOLUTION:

S.No:	Parameter	Description
1.	Problem Statement (Problem	Diabetic retinopathy is a diabetes
	to be solved)	complication that affects eyes. It is caused
		by damage to the blood vessels of the
		light-sensitive tissue at the back of the eye
		(retina).
		At first, diabetic retinopathy might cause
		no symptoms or only mild vision
		problems. But it can lead to blindness.
		The condition can develop in anyone who
		has type 1 or type 2 diabetes. The longer
		you have diabetes and the less controlled
		your blood sugar is, the more likely you
		are to develop thiseye complication.
2.	Idea / Solution description	Diabetic retinopathy is not a reversible
		process, and treatment only sustains vision.
		DR early detection and treatment can
		significantly reduce the risk of vision loss.
		The manual diagnosis process of DR retina
		fundus images by ophthalmologists is time,
		effort, and cost- consuming and prone to
		misdiagnosis unlike computer-aided
		diagnosis systems. So, deep learning
		techniques can be used for early detection
		of diabetic retinopathy that can prevent
		blindness and other eye related diseases.
3.	Novelty / Uniqueness	This model provides the patient with the
		result whether they have serious condition
		or normal condition. The prediction
		comes with different
		levels of illness helps to diagnose properly.

4.	Social Impact / Customer	Since, Diabetic retinopathy is irreversible,
	Satisfaction	early detection helps many people from
		losing eyesight and other complicated
		diseases. The manual screening costs
		more than this model hence it is more
		feasible for customers that they can take
		this screening without any hardships
5.	Business Model (Revenue Model)	We can collaborate with the health care
		centres and diabetic diagnosis centres for
		regular screening of diabetic retinopathy
		whenever the diabetic patient comes to
		check their diabetic level. We can create
		awareness among people cause many
		people have no idea about the effects
		diabetic retinopathy, it may
		results in many screening tests in future.
6.	Scalability of the Solution	The solution with the transfer learning
		model offers a better solution for diabetic
		retinopathy and can be detected at an early
		stage. The model developed using deep
		learning technology can be implemented
		on many clinical examinations. This
		system is versatile asit can learn from any
		datasets. It gives higher performance than
		manual examination.

PROBLEM SOLUTION FIT:

1. CUSTOMER

The early discovery important for the diabetic cases as diabetic retinopathy is irreversible. The Diabetic retinopathy can be detected using the fundus image of the case and can be stored in the database. This is more useful than the homemade examination.

6. CUSTOMER

The diabetic retinopathy doesn't have any specific symptoms so they fail to notice the illness. Numerous people don't know about diabetic retinopathy and its adverse reaction.

5. AVAILABLE

Laser treatment to treat the growth of new blood vessels at the reverse of the eye (retina) in cases of proliferative diabetic retinopathy, and to stabilize some cases of maculopathy. Eye injections to treat severe maculopathy that is threatening your

2. JOBS-TO-BE-DONE / **PROBLEMS**

the problem is once the diabetic retinopathy is severe, it cannot be done.

And the severity of diabetic retinopathy results in serious eye illness and also results in losing vision. So, the early discovery is important if the case has diabetes.

9. PROBLEM ROOT CAUSE

Diabetic retinopathy is caused by changes in the blood vessels of the retina, the light-sensitive layer of towel at the reverse of the inner eye. In some people with diabetic retinopathy, the blood vessels in the retina may swell and blunder fluid. In others, abnormal new blood vessels grow on the surface of the retina. this model helps in the early discovery of diabetic retinopathy using the

fundus images. It consumes lower time than the homemade examination. Also, accuracy is more compared to other

7. BEHAVIOUR

this model helps in the early discovery of diabetic retinopathy using the fundus images.

It consumes lower time than the homemade examination. Also, accuracy is more compared to other ways.

3. TRIGGERS

The triggers in diabetic retinopathy cases are Spots or dark stings floating in your vision (floaties) Blurred vision.

shifting vision.

Dark or empty areas in vision.

Vision loss.

10. YOUR SOLUTION

Our solution involves the deep learning model with fundus images that detect the severity of the diabetic retinopathy among diabetic patients and the apt diagnosis done after the early detection

8.CHANNELS OÏ BEHAVIOUR

The diabetic patients have to take the eye examination in the regular interval time. Then only retinopathy can be detected early and proper diagnosis can be done.

4. EMOTIONS: BEFORE / AFTER

Before Adverse emotional responses include fear, anxiety. vulnerability, guilt, loss of confidence, anger, stress and tone-perception issues.

After Early discovery and opinion gives sense of stopgap among cases

REQUIREMENT ANALYSIS:

FUNCTIONAL REQUIREMENT:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	Datasets	For training the model, the most accurate real time datasets are required		
FR-2	Camera	For getting real time images for testing the model		
FR-3	Cloud Storage	For storing the required images and programming		

NON-FUNCTIONAL REQUIREMENT:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The user can easily upload their images for processing
NFR-2	Security	This will protect the user data like their eye images and their results
NFR-3	Reliability	It will process the images more quickly, so that we can process the more number of images within the limited time
NFR-4	Performance	This will give more than 98% accuracy
NFR-5	Availability	This will be avalaible in low cost , so that we can implement in many places
NFR-6	Scalability	It will be enhances for other diseases also

PROJECT DESIGN:

DATA FLOW DIAGRAM:

SOLUTION ARCHITECTURE:

USER STORIES:

STEPS What does the person (or group) typically experience?	Free deskip contain for a plant life or a plan	Management and problems of the	As the model classifies and identities the type of Recinoparity the patient might feet may be immersed may be immersed as it if they find the result will match shafter thunch. While using the user model, the user model, the user model, the user model, the distribution to be result will match shafter to be convenient to work with.	User will be amazed and thrilled to get fast and accurate results as previously this task was time-consuming.	User may be excited to interact with business partners to implement model at a large scale.
Interactions What interactions do they have at each step along the way? People: Who do they see or talk to? Places: Where are they? Things: What digital touch points or physical objects would they use?	Interest or to a state of the s	production is provided by the production of the production of the property of the property of the production of the prod	The doctor/lab technician interacts with the computer/device classifying the disease.	If the user is a doctor/hospital professional they would have to isteract with the patients to inform the results. Patients may recommend the product to other patients.	There will be more patient-doctor interactions or more patients would with particular hospital as it gives fast accurate results.
Goals & motivations Aceach step, what it a person's unousy goal or methation? ("Reip et" or "Reip ne aveil")	This product saves time for the patient to wait for their results The cost for finding the disease using this product will be less	"Help to get less time country complicated procedure."	"Hope Uploading handling of data should the model is be easy and easy." quick.	Help me avoid data leakage.	Help me develop the solution to other business partners. Help me develop the model into a large scale solution.
Positive moments What steps does a typical person find enjoyable, productive, fun, motheating, delightful, or exciting?	Surveying people and exploring various exploring various solutions might interest same people surveying the share various about an except for above various above various above various above various above various variou	Reduces direct children children children children children children berondeafur.	User does not arrive in a few have to do any seconds, user arduous task thus will feel related as the process is work on other tasks.	The model could be extended to detect other diseases too which would lead to faster diagnosis.	The solutions would growthe cacks which implemented accurate results, accurate results, and the cost which may not relieved at they don't have to wait for management.
Negative moments What steps does a typical person Gu finazzating, containg, angering, costly, or time-consuming?	After going through the advertisement some might fear the which may cause frustration happen in the LADIAG.	Clinicians can be given a lab be given a lab be sensit within the for group tells how to be sensit within the position proper thandle the position period of the equipment may find to share their method data.	As not all people may be educated, if U of the application to application to a user family user finely user may be frustrated. As the process may require registration of user and is cost effective customer user friendly user may be frustrated.	If the process gets hopital managements adopt complicated user may get user may get irritated.	If the model prefitting does not match the GOGAN, diagnosis, it may cause confusion and stress,
Areas of opportunity How might we make each step better? What ideas do we have? What have others suggested?	Index par TV anterior activity man representative m	Circles can be given a lide to process can be drie to based beth to be the copprient.	Navigation Can engage users in some activity like games while like tools to guide user. Can engage users in some activity like games while waiting for the result.	Sending Extend server notifications or emails to the storage to respective patients and decitors about the predicted results. Sending Extend server storage to respective patients handle increased user traffic	

PROJECT PLANNING AND SCHEDULING:

SPRINT PLANNING AND ESTIMATION:

S.NO ACTIVITY		DESCRIPTION	DURATION		
	TITLE				
1	Understanding	Assign the team	1 week		
	the project and	members and			
	its requirement	create repository in			
		the GitHub, Assign			
		the task to each			
		team member and			
		teach how to use			
		the GitHub and			
		IBM			
		career education.			
2	Start the project	Advice	1 week		
		students to			
		attend classes			
		of IBM portal			
		create and			
		develop an			
		rough diagram			
		based on			
		project			
		description and			
		gather			
		information on			
		AI and IBM			
		project and			
		team leader			
		assign task to			
		each member			
		of the project.			

3	Attend class	Team members and team lead must attend the classes and learn from classes provided by IBM and NALAYA THIRAN and must gain access of MIT license for the project.	4 weeks
4	Budget and scope of project	Reduce cost efficiency and analysis the use of AI in the project.	Progress

SPRINT DELIVERY SCHEDULE:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data collection	Task-1	To build a Deep learning Model which begins with the process of splitting data into training and testing set.	4	Medium	Anusheya.A.A
Sprint-1	Data preprocessing	Task-2	We import the required libraries for preprocessing. We instantiate the ImageDataGenerator class to configure and augment different types of image data.	5	Low	S. Kavitha & D.Helan Joice
Sprint-1	Data Preprocessing	Task-3	Application of the ImgaeDataGenerator to the Train and Test Set.	7	Medium	Anusheya.A.A & K.Pavithra
Sprint-1	Building Homepage	USN-1	As a user, she will be given a brief description in the homepage.	4	Low	K. Pavithra
Sprint-2	Feature Extraction	Task-4	Build a CNN Model and only use it as a feature extraction by freezing the convolution blocks.	8	High	Anusheya.A.A & D.Helan Joice
Sprint-2	Building the layers	Task-5	Adding of dense layers with the aid of Keras. Addition of Optimizer, choosing loss function and the Metrics.	7	High	K. Pavithra & S. Kavitha
Sprint-2	Train, Save,Test	Task-6	To train the model with the configured neural network and save the model. Test the built model against the testing dataset.	3	High	Anusheya.A.A & D. Helan Joice
Sprint-2	Building Registration Page	USN-2	As a user, she will be able to register for the application.	2	Low	S. Kavitha
Sprint-3	Create Service Instance	Task-7	Configure the location of resources, such as web server, and Cloud Storage for an application	7	High	Anusheya.A.A & D. Helan Joice
Sprint-3	Configuring credentials and creating DB	Task-8	Define the credentials that are required to access the services offered by IBM Cloudant and add users to access the DB.	6	High	D. Helan Joice & S. Kavitha
Sprint-3	Create Tables in DB	Task-9	Structure the required tables with necessary attributes in Cloudant DB.	4	Medium	K.Pavithra & S.Kavitha
Sprint-3	Building Login Page	USN-3	As a user, she will be able to login using her credentials.	3	Low	K. Pavithra
Sprint-4	Building prediction page	USN-4	As a user, she will be able to receive the diagnosis on her diabetic retinopathy.	2	Medium	D. Helan Joice
Sprint-4	Building Logout Page	USN-5	As a user, she will be able to logout of her account in this page.	2	Medium	S. Kavitha
Sprint-4	Build python code	Task-9	Import the libraries and Initialise the necessary modules	1	Medium	K. Pavithra
Sprint-4		Task-10	Use the database using initiated client and rendering HTML pages	2	Medium	Anusheya.A.A
Sprint-4		Task-11	Configuring the registration, login pages and validating the credentials.	2	Medium	S.Kavitha
Sprint-4		Task-12	Showcasing the model's prediction on UI.	1	High	D. Helan Joice
Sprint-4	Run the application.	Task-13	Run the application in the anaconda prompt to check the application.	2	High	S. Kavitha
Sprint-4		Task-14	In the homepage, after logging on using credentials, upload the image to predict the diagnosis on diabetic retinopathy.	5	High	Anusheya.A.A & D. Helan Joice
Sprint-4	Train Model On IBM	Task-15	train the model on IBM and integrate it with the flask Application.	3	High	K. Pavithra

SPRINT DELIVERY SCHEDULE:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	5 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

REPORTS FROM JIRA:

Insights

CODING:

```
imageSize = [299,299]
trainPath = r''/content/preprocessed dataset/preprocessed dataset/training''
testPath = r''/content/preprocessed dataset/preprocessed dataset/testing''
from tensorflow.keras.layers import Dense, Flatten, Input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator,
load_img
from tensorflow.keras.applications.xception import Xception,
preprocess_input
from glob import glob
import numpy as np
import matplotlib.pyplot as plt
train_datagen = ImageDataGenerator (rescale = 1./255,
                     shear\_range = 0.2,
                     zoom range = 0.2,
                     horizontal flip = True)
test datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('/content/preprocessed
dataset/preprocessed dataset/training',
                            target\_size = (299, 299),
                            batch size = 32,
                            class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('/content/preprocessed
dataset/preprocessed dataset/testing',
                         target size = (299, 299),
                         batch size = 32,
                         class mode = 'categorical')
xception = Xception(input_shape=imageSize + [3], weights='imagenet',
include_top=False)
# don't train existing weights for layer in xception.layers:
for layer in xception.layers:
 layer.trainable = False
# our Layers (- you can add more if you want x = Flatten(/(xception.output))
x = Flatten()(xception.output)
prediction = Dense(5, activation='softmax')(x)
model = Model(inputs=xception.input, outputs=prediction)
```

model.summary()

 $model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])$

r=model.fit_generator(training_set,validation_data=test_set,epochs=30,steps_per_epoch=len(training_set)//32,validation_steps=len(test_set)//32) model.save('Updated-Xception-diabetic-retinopathy.h5')

SOLUTION:

Sent from your Twilio trial account - Results: Proliferative DR

TESTING:

RESULT:

ADVANTAGES:

- Earlier detection reduces the risk of Vision loss.
- The amount of time for detecting the DR is less.
- Cost of detecting is less.

DISADVANTAGES:

 If the images are not uploaded correctly then detection may be difficult.

CONCLUSION:

Diabetic retinopathy is a serious complication of diabetes mellitus, leading to progressive damage and even blindness of the retina. Its early detection and treatment is important in order to prevent its deterioration and the retina's damage. The interest in applying deep learning in detecting diabetic retinopathy has increased during the past years and as several DL systems evolve and become integrated into the clinical practice, they will enable the clinicians to treat the patients in need more effectively and efficiently. This article presents the current state of research regarding the application of deep learning in diagnosing diabetic retinopathy. Although deep learning has paved the way for more accurate diagnosis and treatment, further improvements are still necessary regarding performance, interpretability, and trustworthiness from ophthalmologists.

FUTURE SCOPE:

Use of AI in medical diagnostics, especially in ophthalmology heralds a new era. If proven to be sensitive and specific enough this technology can totally change the way we look at screening programs and community-based ophthalmology programs. Most of the present systems use conventional of 30–50° fundus images. Perhaps applications based on wide field imaging and OCT angiography based vascular analysis might yield even more consistent results. However, the high cost of wide field imaging and OCT angiography may be a limiting factor for this at present. A lot of work is also being done on identifying serum biomarkers for early detection and monitoring of diseases like diabetic retinopathy. Thus, a comprehensive analysis of ocular imaging, systemic parameter profile and other serum biomarkers using AI might provide better insights, perhaps even better conclusions than what human intelligence is capable of deriving.

APPENDIX:

SOURCE CODE:

imageSize = [299,299]

trainPath = r"/content/preprocessed dataset/preprocessed dataset/training"

testPath = r"/content/preprocessed dataset/preprocessed dataset/testing"

from tensorflow.keras.layers import Dense, Flatten, Input

from tensorflow.keras.models import Model

from tensorflow.keras.preprocessing import image

from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img

from tensorflow.keras.applications.xception import Xception, preprocess_input

from glob import glob

import numpy as np

import matplotlib.pyplot as plt

train_datagen = ImageDataGenerator (rescale = 1./255,

shear_range = 0.2,

 $zoom_range = 0.2,$

horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('/content/preprocessed dataset/preprocessed
dataset/training',

$$target_size = (299, 299),$$

 $batch_size = 32$,

class_mode = 'categorical')

test_set = test_datagen.flow_from_directory('/content/preprocessed dataset/preprocessed
dataset/testing',

$$target_size = (299, 299),$$

batch size = 32,

class_mode = 'categorical')

xception = Xception(input_shape=imageSize + [3], weights='imagenet', include_top=False)

don't train existing weights for layer in xception.layers:

for layer in xception.layers:

layer.trainable = False

our Layers (- you can add more if you want x = Flatten(/(xception.output))

```
x = Flatten()(xception.output)
 prediction = Dense(5, activation = 'softmax')(x)
 model = Model(inputs=xception.input, outputs=prediction)
 model.summary()
 model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
 r=model.fit_generator(training_set,validation_data=test_set,epochs=30,steps_per_epoch=len(tr
 aining_set)//32,validation_steps=len(test_set)//32)
 model.save('Updated-Xception-diabetic-retinopathy.h5')
ii) CODE:
import numpy as np
import os
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.inception v3 import preprocess input
from flask import Flask, request,flash, render_template, redirect,url_for
from cloudant.client import Cloudant
from twilio.rest import Client
model = load_model(r"Updated-xception-diabetic-retinopathy.h5")
app = Flask(__name___)
app.secret_key="abc"
app.config['UPLOAD_FOLDER'] = "User_Images"
# Authenticate using an IAM API key
             Cloudant.iam('83b0a1d5-ddf6-4b51-87ee-42b95f148756-bluemix','FXu-GpAbsfg-
client
VuOr76a5bFw9lUh9UMFwAq9mK_4pJ46N',connect=True)
# Create a database using an initialized client
my_database = client.create_database('my_database')
```

```
if my_database.exists():
  print("Database '{0}' successfully created.".format('my_db'))
# default home page or route
user = ""
@app.route('/')
def index():
  return render_template('index.html', pred="Login", vis ="visible")
@ app.route('/index')
def home():
  return render_template("index.html", pred="Login", vis ="visible")
# registration page
@ app.route('/register',methods=["GET","POST"])
def register():
  if request.method == "POST":
     name = request.form.get("name")
     mail = request.form.get("emailid")
     mobile = request.form.get("num")
    pswd = request.form.get("pass")
     data = {
       'name': name,
       'mail': mail,
       'mobile': mobile,
```

```
'psw': pswd
     }
     print(data)
     query = {'mail': {'$eq': data['mail']}}
     docs = my_database.get_query_result(query)
     print(docs)
     print(len(docs.all()))
     if (len(docs.all()) == 0):
       url = my_database.create_document(data)
       return render_template("register.html", pred=" Registration Successful, please login using
your details ")
     else:
       return render_template('register.html', pred=" You are already a member , please login
using your details ")
  else:
     return render_template('register.html')
@ app.route('/login', methods=['GET','POST'])
def login():
  if request.method == "GET":
     user = request.args.get('mail')
     passw = request.args.get('pass')
     print(user, passw)
     query = {'mail': {'$eq': user}}
     docs = my_database.get_query_result(query)
     print(docs)
```

```
print(len(docs.all()))
     if (len(docs.all()) == 0):
       return render_template('login.html', pred="")
     else:
       if ((user == docs[0][0]['mail']) and passw == docs[0][0]['psw']):
          flash("Logged in as " + str(user))
         return render_template('index.html', pred="Logged in as "+str(user), vis ="hidden",
vis2="visible")
       else:
          return render_template('login.html', pred="The password is wrong.")
  else:
     return render_template('login.html')
@ app.route('/logout')
def logout():
  return render_template('logout.html')
@app.route("/predict",methods=["GET", "POST"])
def predict():
  if request.method == "POST":
     f = request.files['file']
     # getting the current path 1.e where app.py is present
     basepath = os.path.dirname(__file__)
     #print ( " current path " , basepath )
     # from anywhere in the system we can give image but we want that
     filepath = os.path.join(str(basepath), 'User_Images', str(f.filename))
```

```
#print ( " upload folder is " , filepath )
     f.save(filepath)
     img = image.load_img(filepath, target_size=(299, 299))
     x = image.img\_to\_array(img) # ing to array
     x = np.expand\_dims(x, axis=0) # used for adding one more dimension
     #print ( x )
     img_data = preprocess_input(x)
     prediction = np.argmax(model.predict(img_data), axis=1)
     index = [' No Diabetic Retinopathy', 'Mild NPDR',
          ' Moderate NPDR ', ' Severe NPDR ', ' Proliferative DR ']
     result = str(index[prediction[0]])
    print(result)
    return render_template('prediction.html', prediction=result, fname = filepath)
  else:
     return render_template("prediction.html")
if __name__ == "__main___":
  app.debug = False
  app.run()
```

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-53556-1661417947

DEMO VIDEO LINK:

https://drive.google.com/file/d/1XxGhsQDI6m58cQ5lWW-

aJqjHFgAjfPZh/view?usp=share_link