Matricola:

Prima Parte

Da non compilare se si è superato il compitino con un voto soddisfacente. Non si può consegnare solo la prima parte se non si è già superata la seconda parte.

Domande a risposta multipla

es1

Relativamente ad un bus sincrono	quale fra le seguenti	offermazioni è	falsa	?
----------------------------------	-----------------------	----------------	-------	---

- a gli eventi sono determinati da un clock
- b tutti i dispositivi connessi possono leggere la linea
- clock
- c tutti gli eventi partono dall'inizio di un ciclo di d non occorre un arbitro per assegnare l'uso del bus

es2

Si consideri una cache set-associativa a 8 vie (8-way) da 16MB. La cache è inserita in una gerarchia di memoria insieme ad una memoria centrale suddivisa in 220 blocchi e di 2GB. Assumendo un indirizzamento al singolo byte, il formato degli indirizzi della memoria centrale è:

es3

Si consideri una cache di 32MB con associazione a gruppi a 8 vie (8-way set associative) e dimensione di linea di 1KB. Supponendo che il campo tag sia di 14 bit, la dimensione massima (in byte) di memoria principale che la cache è in grado di gestire è:

a | 32GB

4GB

c | 512MB

d | 256MB

e nessuna delle risposte precedenti

Nome e Cognome:

Matricola:

Domande a risposta libera

es4

Spiegare a cosa serve il bus di sistema, e come questo è strutturato

es5

Spiegare in dettaglio come funziona il codice di correzione di Hamming. Dare un esempio concreto di codifica nel caso di memorizzazione di un insieme di 8 bit.

Nome e Cognome	Nome	е	Cognome
----------------	------	---	---------

Matricola:

Pagina 5

es6

Nel contesto di una gerarchia di memoria, spiegare come funziona la politica di scrittura write-back. Discutere criticamente i problemi che possono sorgere nell'adottarla.

es7

Discutere il modo in cui le informazioni sono organizzate in un CD-ROM (formato dati).

Esercizio

es8
Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

υL	,	00110011111				ind	byte	ına	byte	ina	byte	ind	byte
	#	indirizzo	l/s	byte scritto (HEX)		100 104	08 00	101 105	00 00	102 106	07	103 107	02 00
		(binario)	- ,-	(HEA)	1	108	AE	109	59	10A	AD	10B	23
	1	000100001000	1	174		10C	· A1	10D	42	10E	90	10F	75
	2	000100001100	S	F4	, '	110	В9	111	16	112	00	113	00
1	3	000100001111	S	F9		114	OA	115	07	116	03	117	71
١	4	000100011101	l			-	3E	119	13	11A	71	11B	23
1	5	000100001001	l			118		11D	82	11E			
١	6	000100011111	S	89		11C	A1				90	11F	15
١	7	000100001011	s	F6		120	FF	121	C6	122	AD	123	00
	8	000100100000	l			124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 32B, dimensione di blocco 2B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo LRU, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Soluzione (da compilare)

- Indicare di seguito in quali campi (e la loro dimensione) gli indirizzi emessi dalla CPU sono suddivisi:
- Indicare di seguito in quante linee/set la cache è suddivisa:

Indicare l'evoluzione della cache e della modifica della memoria nello schema sottostante:

Indirizzo	hit/	Cache	Modifica memoria
manizzo	miss	(per ogni linea di cache indicare il contenuto del campo tag)	M[ind.] = contenuto
		· //	
		•	
•			
ž.			,
,			
	1	*	
			,
,			
	1	•	
			**
	1.		

continuare nella pagina seguente

Seconda Parte

Non si può consegnare solo la seconda parte se non si è già superata la prima parte con il compitino. Il compito completo è superato se si ottiene la sufficienza per entrambe le parti.

Domande a risposta multipla es1 Quante volte la CPU deve accedere alla memoria quando preleva ed esegue un'istruzione che ha due operandi, uno con modo di indirizzamento diretto e uno con modo di indirizzamento indiretto? a 2 C 1 e nessuna delle risposte precedenti es2 Si consideri il numero 0,1796875. Qual'è la sua rappresentazione in virgola mobile a singola precisione (IEEE 754)? ь 10010000011000100000000010000110 a 0100001100000000110001000000000 |d| 110000110000000001100010000000000 © 0001000001100010000000010000110 e nessuna delle risposte precedenti es3 Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SW \$3, 80(\$0) ADD \$2, \$3, \$1 \$1, 800(\$2) SUBI \$1, \$1, 3 ADDI \$2, \$2, \$1 LW \$1, 108(\$2) \$4, \$3, \$1

Si consideri la pipeline MIPS a 5 stadi vista a lezione, senza possibilità di data-forwarding, ma con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. L'esecuzione completa del codice avviene in un numero di cicli di clock pari a

a 13 d 14 c 19

e nessuna delle risposte precedenti

~ 7		
Nome	е	Cognome:

Matricola:

Pagina 9

Domande a risposta libera

es4

Si spieghi in dettaglio lo schema per realizzare la moltiplicazione fra numeri a virgola mobile nello standard IEEE 754.

es5

Si descriva nel dettaglio la modalità di indirizzamento con spiazzamento

es7

Spiegare nel dettaglio la differenza fra una architettura CISC e una architettura RISC.

Nome e Cognome:

Matricola:

Pagina 11

Esercizio

es8

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SW \$3, A10(\$0) SUB \$4, \$0, \$3 LW \$1, F0(\$3) Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di dataforwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

ADDI \$1, \$4, 3 SUBI \$4, \$1, 1 LW \$1, 328(\$1) SUB \$5, \$1, \$4

 mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione (da compilare)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
SW \$3, A10(\$0)																				
SUB \$4, \$0, \$3																				
LW \$1, F0(\$3)				-							_		-	-		-	-	_	-	
ADDI \$1, \$4, 3										<u> </u>		_		-	-	-	-	-	-	-
SUBI \$4, \$1, 1										<u> </u>			_	_		-	-	-	+	+
LW \$1, 328(\$1)							,				_	-	-	-	-	-	-	-	+	-
SUB \$5, \$1, \$4																				

Commenti alla soluzione: