Tradeoffs in Minimizing Computation Load and Communication Cost in Multi-Agent Systems

Kiran Bhutani * Bilal Khan † Birendro Roy ‡
Center for Computational Science
Naval Research Laboratory, Washington D.C.
http://www.nrl.navy.mil/ccs/project/public/DC/web/

September 14, 2003

Abstract

1 Introduction

Agents are mobile, intercommunicating, computational units that can act autonomously within a complex dynamic environment in order to realize a set of goals or tasks for which they are designed [?]. An agent's environment consists of other agents as well as the physical infrastructure. The infrastructure in turn is comprised of machines that provide computational resources for agents and a network that provides resources for agent intercommunication. At any point in time, an agent "resides" on a particular machine, and attempts to realize its goals by communicating with other agents over the network and by performing computation using the resources of the machine on which it resides. Agent communication and computation result in consumption of both network and machine resources. The extent to which each of these resources is consumed depends largely on the distribution of agents to machines. We refer to an entity that determines the assignment of agents to machines as a controller. The controller's logic implements an agent mobility algorithm. In this paper, we consider the problem of designing agent mobility algorithms which permit the system of agents to make optimal use of computation and communication resources.

^{*}Permanent address: The Catholic University of America. Department of Mathematics, Washington D.C. 20064.

[†]ITT Industries, Center for Computational Science, Naval Research Laboratory.

[‡]Massachussetts Institute of Technology, Computer Science Department.

The NRL Center for Computational Science has developed CHIME [?], a multiagent system for heterogeneous distributed computing. Within CHIME, agent mobility is a crucial enabler of performance optimization, since it permits balancing computational load and minimization of latency in inter-agent communications. This is particularly important for performance-critical applications written over the CHIME framework—one such application is as Optiprism [?], a hierarchical network management system for all-optical networks. Until recently, CHIME supported agent mobility services, but did not assist agents in determining when a change in their physical location might improve application performance. The algorithms exposited in this paper have been implemented and tested within the CHIME framework.

In considering agent mobility algorithms, it is illustrative to consider two degenerate extremes:

- ♦ Assign all agents to a single machine. Such an assignment certainly makes the system communication cost very small, but causes a very high computational load on a single machine.
- igl Assign $\lfloor \frac{n}{m} \rfloor$ agents to each machine, where n is the number of agents and m is the number of machines. While this assignment balances the load evenly on machines, it typically results in prohibitively high communication cost between agents.

Our goal here is to investigate the space of solutions between these two degenerate approaches. In doing so, we will quantify the intuition that the minimization of communication cost and computational load are inversely related. We shall then describe an algorithm that incorporates a tunable trade-off between optimizing communication cost and optimizing machine load. The proposed algorithm will take into account the computational needs and communication patterns of agents at time t, and use these to determine the assignment of agents to machines at time t+1.

2 Aspects of the Agent Mobility Model

We have identified the key actors within the system to be: the agents and the controllers. The infrastructure resources consists of a set of machines and a network interconnecting them. We denote the set of agents as V, the set of controllers as A, the set of machines as M, and the network links as E. A model of agent mobility has several important and independent aspects, which we identify and describe.

2.1 Infrastructure Characteristics

The phrase "infrastructure characteristics" refers to the properties of machines and the network that are independent of the presence of agents. The model must describe the computation and communication resources of the infrastructure. Possible approaches include:

- I1 Static Uniform— Network characteristics and machine capabilities do not change over time. In particular there are a fixed number of machines, and a fixed topology of links interconnecting them. All links in the network have the same characteristics and all machines have the same capabilities.
- I2 Static Non-Uniform— Network characteristics and machine capabilities do not change over time, but network links may have have different characteristics and machines may have different capabilities.
- I3 Dynamic Non-Uniform— Network characteristics and machine capabilities may change over time. The number of machines and the topology of links interconnecting them may change. Network links may have have different characteristics and machines may have different capabilities.

In this paper we consider a static, non-uniform approach where machines capabilities are uniform but network links may have different delays associated with them. Machines are modelled as a set of m vertices M, while network links are modelled as weighted edges of a complete graph on M. The weight of the link connecting machines M_i and M_j is denoted d_{ij} , and represents the cost (in terms of delay) of sending a single message across the link. We take $0 < d_{ii} < d_{ij}$ for all $j \neq i$ to reflect the fact that inter-machine communication is more costly than intra-machine communication. We also assume a symmetric case where all machines have the same computational capabilities. The graph (M, E, d) captures the infrastructure characteristics.

2.2 Agent Characteristics

The term "agent characteristics" refers to the computational and communication needs of agents. The model can approach agent characteristics under various hypotheses:

- A1 Static— An agent's computation and communication needs do not change over time. The number of agents in the system is fixed.
- A2 *Dynamic* An agent's computation and communication needs can change over time. The number of agents in the system is changing.

In this paper we consider the static approach. We assume that an agent's activities are well-approximated by a random process that can be described by a

finite set of parameters. Specifically, the intercommunication needs of the agents are modelled as a symmetric |V| by |V| real matrix C whose rows and columns each sum to 1. Entry $C_{u,v}$ represents the probability with which agents u and v communicate. The computation needs of agents are represented as a length |V| real vector δ . Entry δ_u represents the relative computational requirements of agent u. The vector $(C_{u,v})_{v \in V}$ and value δ_u capture the characteristics of agent u. Note that agent u does not typically have explicit knowledge of $(C_{u,v})_{v \in V}$ or δ_u —the model merely hypothesizes that the values exist. In what follows, the special cases when $(C_{u,v})_{v \in V} = \frac{1}{n-1}$ and $\delta_u = 1$ are referred to as uniform agent communication patterns and uniform agent computation needs, respectively.

2.3 Controller Characteristics

The term "controller characteristics" refers to constraints on the behavior of controllers. The model must address the following questions: How do controllers move agents? Can controllers move several agents simultaneously? Is there an inherent cost for moving an agent?

- C1 Sequential— Agent movements are determined by the controllers, which operate sequentially; no two agents can migrate at the same time.
- C2 Parallel synchronous— Agents movements are determined by the controllers, which operate concurrently at discrete time intervals.

In this paper we consider only the sequential approach. The assignment of agents to machines at time t is given by a function $f_t: V \to M$. The controllers determine f_t at each time t. In the sequential approach f_t and f_{t+1} differ in at most one value of their domain. In this work we consider controllers which can move agents without paying any cost.

2.4 Infrastructure State

The phrase "infrastructure state" refers to the properties of machines and the network that are dependent on the presence of agents. The model must describe the utilization of computation and communication resources infrastructure. Here we consider:

S1 Computational Load— The effect of agents on the computational resources. The computational load on a machine M_i at time t is denoted $L_t(m)$, and defined to be the sum of the computational needs of all agents that reside on the machine M_i at time t.

$$L_t(M_i) \stackrel{\text{def}}{=} \sum_{v \in V; f_t(v) = M_i} \delta_v$$

S2 Link Utilization— The effect of agents on the communication resources. The utilization of a link (M_i, M_j) is defined to be the expected communication per unit time between all agents that reside on M_i and M_j .

$$\gamma_t(M_i, M_j) \stackrel{\text{def}}{=} \sum_{u,v \in V; f_t(u) = M_i; f_t(v) = M_j} C_{u,v}$$

2.5 Controller Distribution

The model must address the following question: How many controllers are operating?

- D1 Centralized— There is one controller.
- D2 Distributed (machine-based)— There is one controller associated with each machine.

For scalability reasons, we will consider the distributed (machine-based) approach. A natural question then arises: What information does each controller have about agent/infrastructure characteristics and infrastructure state, and how accurate is this information?

In our model, each controller A_i has all infrastructure characteristics but can only estimate agent characteristics for agents on its own machine. Since even agent u itself does not typically know $(C_{u,v})_{v\in V}$ or δ_u , these quantities have to be estimated based on the historical communicative and computational actions of u. Thus, while controller A_i has accurate information about (M, E, d), it has only estimates of $(C_{u,v})_{v\in V}$ and δ_u for each agent u residing on M_i . Specifically, we assume that A_i can ask machine M_i the following information:

- Q1 What is the cumulative frequency of agent u's communication with agents on machine M_j ? (where u is presently on machine M_i , and j is in $1, \ldots, m$).
- Q2 How much computation has agent u been doing? (for any u currently on M_i).

These questions provide A_i with estimates for

$$\gamma_t^{M_i}(u,M_j) \stackrel{\text{\tiny def}}{=} \sum_{v \in V; f_t(v) = M_j} C_{u,v}$$

and δ_u , respectively, for each agent u presently on machine M_i . In practice, these quantities can be measured by machine M_i , since it provides computational resources for agent u and mediates between u and the communication network.

In addition, A_i can obtain some information about infrastructure state by asking machine M_i :

Q3 What is the current (estimated) load on the machine M_j $(j \in 1, ..., m)$?

The answer to this question is denoted $L_t^{M_i}(M_j)$. In implementation, each machine measures its own computational load, and this information can be propagated to all machines using either an independent protocol, or piggybacked on top of inter-agent communication.

Based on the answers to questions of the form Q1-Q3, controller A_i must make a decision about ejecting an agent v to another machine M_j .

3 Objective Functions

Given the assignment f_t of agents V to machines M the computational load of the system at time t is defined to be

$$\Lambda_t \stackrel{\text{\tiny def}}{=} \max_{i=1...m} L_t(M_i)$$

while the *comunication cost* of the system is defined as

$$\Gamma_t \stackrel{\text{\tiny def}}{=} \sum_{M_i, M_j \in M; M_i \neq M_j} \gamma_t(M_i, M_j) \cdot d_{ij}.$$

3.1 Assessing Local Reassignments

The controller A_i must determine how to reduce the computational load and communication cost contributed by agents on machine M_i . Suppose agent u is on machine M_i at time t, and controller A_i wants to evaluate whether u should be sent to machine M_k . A_i can ask M_i question Q1 to obtain an estimate of u's communication patterns with agents on M_k . (Of course A_i has no guarantees of the future behavior of u, but we are assuming that agents communications are adequately modelled by relative frequencies.) The communications of u presently contribute

$$\sum_{i=1}^{m} \gamma_t^{M_i}(u, M_j) \cdot d_{ij}$$

to the overall communication cost Γ_t of the system. Sending agent u to machine M_k could be expected to change this contribution to

$$\sum_{j=1}^{m} \gamma_t^{M_i}(u, M_j) \cdot d_{kj}$$

The above quantity represents the hypothetical cost that communications of u would have incurred if u had been placed on machine M_k . We define *communi*-

cation benefit of moving u from M_i to M_k as

$$\partial \Gamma^{M_i}(u, M_k) \stackrel{\text{def}}{=} 1 - \frac{\sum_{j=1}^m \gamma_t^{M_i}(u, M_j) \cdot d_{kj} - \chi_{ij} C_{u,u} d_{ij}}{\sum_{j=1}^m \gamma_t^{M_i}(u, M_j) \cdot d_{ij}}$$

where $\chi_{ij} = 1$ if i = j and 0 otherwise. Then $\partial \Gamma^{M_i}(v, M_k)$ takes values between $(-\infty, 1)$, with the optimal choice occurring close to the value 1. This occurs when the cost of assigning an agent v onto machine M_k becomes very small.

Controller A_i must similarly determine how to reduce the computational load on M_i . The computation of u presently contributes δ_u to the load on M_i . We define the *computation benefit* of moving u from M_i to M_k as

$$\partial \Lambda^{M_i}(u, M_k) \stackrel{\text{\tiny def}}{=} 1 - \frac{L(M_k) + \delta_u}{L(M_i) - \delta_u}$$

The quantity $\partial^{M_i}\Lambda(v,M_k)$ takes values between $(-\infty,1)$, with the optimal choice occuring close to 1. This occurs when the present load of machine M_k is much smaller than the load on machine M_i .

4 The (α, β) Algorithm

Since controllers must optimize with respect to two objective functions, it is reasonable to consider a mixed strategy. We represent the relative importance of computational and communication resources by two numbers $\alpha, \beta \in \mathbb{R}^+$ satisfying $(\alpha + \beta = 1)$. The total cost of the system at time t is defined to be

$$w_t \stackrel{\text{\tiny def}}{=} \alpha \Gamma_t + \beta \Lambda_t$$

The assignment f_t is said to be (α, β) -optimal if w_t is minimal over all choices of functions $f_t: V \to M$. The overall benefit of moving agent v to machine M_k is then taken as

$$\partial \omega^{M_i}(v,M_k) \stackrel{\text{\tiny def}}{=} \alpha \cdot \partial \Gamma^{M_i}(v,M_k) + \beta \cdot \partial \Lambda^{M_i}(v,M_k).$$

At time t, each controller A_i ($i = 1 + (t \mod m)$) computes a table of values for each agent v which resides on M_i . The table describes the communication, computation, and overall benefit of moving v to various machines M_1, \ldots, M_m .

v	M_1	M_2	 M_{j}	 M_m
$\partial \Gamma^{M_i}$			 $\partial \Gamma^{M_i}(v, M_j)$	$\partial\Gamma^{M_i}(v,M_m)$
$\partial \Lambda^{M_i}$			 $\partial \Lambda^{M_i}(v,M_j)$	 $\partial \Lambda^{M_i}(v,M_m)$
$\partial \omega^{M_i}$			 $\partial \omega^{M_i}(v, M_j)$	 $\partial \omega^{M_i}(v, M_m)$

By examining these tables for agents v residing on M_i , the controller A_i determines which agent v and machine M_j provides the maximal value of $\partial \omega^{M_i}(v, M_j)$ which is greater than $\partial \omega^{M_i}(v, M_i)$. If more than one such agent-machine pair exist, the controller picks from one of the candidate pairs uniformly at random. The controller then ejects agent v from M_i to machine M_j , effectively dictating that $f_{t+1}(v) = M_j$.

5 Convergence of the (0,1) Algorithm

Here we show that the computational load minimizer converges "fast".

Theorem 5.1. In an agent system with n agents on m machines, where agent computational needs are bounded in the range $1/k \leq \delta_u \leq k$ $(k \in \mathbb{R})$, the (0,1) algorithm converges to a (0,1)-optimal solution in $O(nmk^2)$ steps.

Proof. Clearly, the (0,1)-optimal solution is an assignment where the number of agents on any two machines differs by at most 1. Let M denote the set of machines, and $L_t: M \to \mathbb{N}$ be the function whose value describes the load on each machine $M_i \in M$. Suppose the optimal assignment of agents to machines entails a load of λ . We define

$$^*M_i \stackrel{\text{def}}{=} \max\{(L_t(M_i) - \lambda), 0\}$$

to be the extent of overloading on machine M_i . Similarly, we put

$$_*M_i \stackrel{\text{def}}{=} \max\{(\lambda - L_t(M_i)), 0\}$$

to represent the extent of loading on machine M_i .

Finally, we define

$$\mathcal{O} \stackrel{\text{\tiny def}}{=} \{ M_i \in M \mid {}^*M_i \neq 0 \}$$

to be the set of machines that are overloaded. Then

$$M \setminus \mathcal{O} = \{M_i \in M \mid {}^*M_i = 0\}$$

is the set of machines which are underloaded.

Clearly, the (0,1)-optimal solution is an assignment where \mathcal{O} is the empty set, or equivalently, an assignment for which

$$\Phi \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{m} {}^{*}M_{i} = 0$$

We will show that the (0,1) algorithm converges to this state in no more than $O(nmk^2)$ steps.

At each step of the algorithm, the controller A_i may eject at most one of the agents residing on machine M_i . There are two cases: $M_i \in M \setminus \mathcal{O}$, and $M_i \in \mathcal{O}$, which we consider now in turn.

Case $M_i \in M \setminus \mathcal{O}$:

For each agent v on machine M_i , define

$$\Lambda_{\max}^{M_i}(v) \stackrel{\text{def}}{=} \max_{M_k \in M} \partial \Lambda^{M_i}(v, M_k).$$

If agent v on machine M_i satisfies $\partial \Lambda^{M_i}(v, M_i) = \Lambda^{M_i}_{\max}(v)$, then A_i will certainly set $f_{t+1}(v) = f_t(v) = M_i$. Two scenarios may arise:

- (i) For all agents v on machine M_i , $\partial \Lambda^{M_i}(v, M_i) = \Lambda^{M_i}_{\max}(v)$. Then no agent will be ejected from machine M_i .
- (ii) Otherwise let

$$E_i = \{v \mid f(v) = M_i \text{ and } \partial \Lambda^{M_i}(v, M_i) \neq \Lambda^{M_i}_{\max}(v)\} \neq \emptyset.$$

For each agent v in E_i , there exists some machine $M_{j(v)} \in M \setminus \mathcal{O}$, where j(v) is in $1,\ldots m,\ j(v) \neq i$, such that $\partial \Lambda^{M_i}(v,M_{j(v)}) = \Lambda^{M_i}_{\max}(v)$. The algorithm A_i will set $f_{t+1}(v) = M_{j(v)}$ for exactly one v in E_i . Thus, at time t+1 one agent v is ejected from M_i to the machine $M_{j(v)}$ which had the least load at time t. Note that after ejecting v to $M_{j(v)}$, the machine $M_{j(v)}$ is still in $M \setminus \mathcal{O}$, and in particular, the membership of \mathcal{O} cannot increase.

Case $M_i \in \mathcal{O}$:

Let $L_t(M_j) = \min_{M_k \in M} L_t(M_k)$. Since $\partial \Lambda^{M_i}(v, M_j) \geqslant \partial \Lambda^{M_i}(v, M_k)$ for all k, A_i will set $f_{t+1}(v) = M_j$. Note that the machine M_j is necessarily in $M \setminus \mathcal{O}$, since otherwise $L_t(M_k) > L_t(M_j) > \lambda$ for all k, which would imply $\Sigma_{M_k \in M} L_t(M_k) > m\lambda$, a contradiction. Thus if an agent v is kicked off an overloaded machine M_i at time t, then it is necessarily sent to a non-loaded machine M_j at time t+1, and M_i decreases by 1.

If the algorithm has not yet converged, then there must be some $M_i \in \mathcal{O}$. The quantity Φ decreases by at least 1/k with each cycle through the m controllers. Since Φ starts as a positive finite integer $\leq nk$, the algorithm converges in no more than nmk^2 steps, at which point $f_{t+1}(v) = f_t(v)$ for all $v, \Phi = 0$ and $|\mathcal{O}| = 0$.

We remark that since k can be exponential in the size of the problem instance, this algorithm does not imply a polynomial time solution to bin-packing types of problems.

6 Convergence of the (1,0) Algorithm

An agent system consisting of n agents is said to have near-uniform agent communication patterns if

$$|C_{u,v} - \frac{1}{n}| < \frac{1}{n(n+1)}$$

Theorem 6.1. Given an agent system consisting of n agents on m machines, under the assumption of uniform communication costs and near-uniform communication patterns, the (1,0) algorithm converges to a (1,0)-optimal solution in O(nm) steps.

Proof. Clearly, the (1,0)-optimal solution is an assignment where all agents are placed on the same machine. We will show that under the assumption of uniform communication costs and near-uniform communication patterns, the (1,0) algorithm converges to this state in no more than O(nm) steps.

If the system has not converged to a state where all agents are on the same machine, there are at least two machines with agents on them. Without loss of generality, suppose M_1 , M_2 are the two machines with the highest number of agents n_1 and n_2 respectively $(n_1 \leq n_2)$.

Let u be an agent on M_1 . Then, $\Gamma^{M_1}(u, M_1) = 0$, while

Now $\partial \Gamma^{M_1}(u, M_2)$ is by definition,

$$1 - \frac{\gamma_t^{M_1}(u, M_1) \cdot d_{21} + \gamma_t^{M_1}(u, M_2) \cdot d_{22} + \sum_{j=3}^{m} \gamma_t^{M_1}(u, M_2) \cdot d_{2j}}{\gamma_t^{M_1}(u, M_1) \cdot d_{11} + \gamma_t^{M_1}(u, M_2) \cdot d_{12} + \sum_{j=3}^{m} \gamma_t^{M_1}(u, M_2) \cdot d_{1j}}$$

But the hypothesis of near-uniform communication patterns implies that

$$\gamma_t^{M_1}(u, M_1) < n_1 \left(\frac{1}{n} + \frac{1}{n(n-1)}\right)$$

$$\gamma_t^{M_1}(u, M_2) > n_2 \left(\frac{1}{n} - \frac{1}{n(n-1)}\right)$$

Thus

$$\gamma_t^{M_1}(u, M_1) \cdot d_{21} < \gamma_t^{M_1}(u, M_2) \cdot d_{12}.$$

Since $d_{11} = d_{22} = 0$, we get that

$$\partial \Gamma^{M_1}(u, M_2) > 0 = \partial \Gamma^{M_1}(u, M_1).$$

Thus u gets kicked to machine M_2 . The algorithm terminates when all agents have been kicked to M_2 , a process which requires at most nm steps.

We note that if the system does not satisfy the condition of near-uniform agent communication patterns, then the (1,0) algorithm may not converge to an optimal solution. This is illustrated by the following example.

*** INSERT EXAMPLE HERE ***

7 Experiments

Here we run some generic experiments to show performance for intermediate values of α and β to show a smooth tradeoff.

*** EXPERIMENTS ***

8 Tradeoffs

Here we try and make quantitive sense of the intuitive idea that communication cost minimization and load minimization are inversely proportional, using whatever analysis and experiments appeared earlier.

9 Conclusion

We summarize.