Customer Personality Analysis Project

```
import pandas as pd
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.preprocessing import StandardScaler
        from yellowbrick.cluster import KElbowVisualizer
        from sklearn.cluster import KMeans, AgglomerativeClustering
        from sklearn.metrics import confusion_matrix
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification_report
        from sklearn import metrics
        from sklearn.decomposition import PCA
        from sklearn.cluster import KMeans
        from sklearn.cluster import AgglomerativeClustering
        from sklearn.cluster import DBSCAN
        from sklearn.cluster import SpectralClustering
        from sklearn.mixture import GaussianMixture
        from sklearn.metrics import silhouette_samples
        from sklearn.metrics import silhouette_score
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from xgboost import XGBClassifier
        import pickle
In [2]:
        import warnings
        warnings.filterwarnings('ignore')
In [3]:
        dataset = pd.read_csv('marketing_campaign.csv',sep='\t')
        pd.set_option('display.max_columns',100)
        dataset['ID'].drop
        dataset.shape
        (2240, 29)
Out[3]:
        dataset.head()
In [5]:
```

Out[5]:		ID	Yea	r_Birt h	Edu	cation	Mar	rital_Status	Inc	ome	Kidh	ome	Teer	nhome	Dt_	Custom	er Rec
	0	5524		1957	Grad	duation		Single	581	38.0		0		0	(04-09-201	2
	1	2174		1954	Grad	duation		Single	463	44.0		1		1	(08-03-201	4
	2	4141		1965	Grad	duation		Togethe	716	13.0		0		0	2	21-08-201	3
	3	6182		1984	Grad	duation		Togethe	266	46.0		1		0	1	10-02-201	4
	4	5324		1981		PhD		Married	582	93.0		1		0	1	19-01-201	4
In [5]:	da	atase	t.ta	il()													
Out[5]:			ID	Year_B	irt h	Educat	ion	Marit al_St	atus	Inco	ome	Kidhoı	me	Teenho	me	Dt_Cus	tomer
	22	. 35 1	0870	1	967	Gradua	tion	M	arried	612	23.0		0		1	13-0	6-2013
	22	36	4001	1	946		PhD	Tog	ether	640	14.0		2		1	10-0	6-2014
	22	37	7270	1	981	Gradua	tion	Div	orced	5698	81.0		0		0	25-0	1-2014
	22	38	8235	1	956	Ma	ster	Tog	ether	692	45.0		0		1	24-0	1-2014
	22	39	9405	1	954		PhD	M	arried	528	69.0		1		1	15-1	0-2012
In [6]:								set.shape ataset.sh									
				Rows: Column													

Number of Columns: 29

In [7]: dataset.dtypes

ID int64 Out[7]: Year_Birth int64 Education object Marital_Status object Income float64 Kidhome int64 int64 Teenhome Dt_Customer object Recency int64 MntWines int64 MntFruits int64 MntMeatProducts int64 MntFishProducts int64 MntSweetProducts int64 MntGoldProds int64 NumDealsPurchases int64 NumWebPurchases int64 NumCatalogPurchases int64 NumStorePurchases int64 NumWebVisitsMonth int64 AcceptedCmp3 int64 AcceptedCmp4 int64 AcceptedCmp5 int64 AcceptedCmp1 int64 AcceptedCmp2 int64 Complain int64 Z_CostContact int64 Z_Revenue int64 Response int64 dtype: object

In [8]: dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2240 entries, 0 to 2239 Data columns (total 29 columns):

```
#
     Column
                           Non-Null Count
                                           Dtype
     _____
                           -----
- - -
0
     ID
                           2240 non-null
                                           int64
 1
     Year_Birth
                           2240 non-null
                                           int64
 2
     Education
                           2240 non-null
                                           object
 3
     Marital_Status
                           2240 non-null
                                           object
 4
                                           float64
     Income
                           2216 non-null
     Kidhome
 5
                           2240 non-null
                                           int64
 6
                           2240 non-null
                                           int64
     Teenhome
 7
     Dt_Customer
                           2240 non-null
                                           object
8
     Recency
                           2240 non-null
                                           int64
9
                           2240 non-null
                                           int64
     MntWines
 10
     MntFruits
                           2240 non-null
                                           int64
 11
     MntMeatProducts
                           2240 non-null
                                           int64
 12
     MntFishProducts
                           2240 non-null
                                           int64
     MntSweetProducts
 13
                           2240 non-null
                                           int64
 14
    MntGoldProds
                           2240 non-null
                                           int64
 15
     NumDealsPurchases
                           2240 non-null
                                           int64
 16
     NumWebPurchases
                           2240 non-null
                                           int64
 17
     NumCatalogPurchases
                          2240 non-null
                                           int64
 18
    NumStorePurchases
                           2240 non-null
                                           int64
    NumWebVisitsMonth
 19
                           2240 non-null
                                           int64
                                           int64
 20
    AcceptedCmp3
                           2240 non-null
21
     AcceptedCmp4
                           2240 non-null
                                           int64
 22
    AcceptedCmp5
                           2240 non-null
                                           int64
 23
    AcceptedCmp1
                           2240 non-null
                                           int64
 24 AcceptedCmp2
                           2240 non-null
                                           int64
25
    Complain
                           2240 non-null
                                           int64
 26
    Z_CostContact
                           2240 non-null
                                           int64
     Z_Revenue
 27
                           2240 non-null
                                           int64
28
     Response
                           2240 non-null
                                           int64
dtypes: float64(1), int64(25), object(3)
```

memory usage: 507.6+ KB

```
dataset.isnull().sum()
In [9]:
```

```
0
 Out[9]:
         Year_Birth
                                   0
         Education
                                   0
         Marital_Status
                                   0
         Income
                                  24
         Kidhome
                                   0
         Teenhome
                                   0
         Dt_Customer
                                   0
         Recency
                                   0
                                   0
         MntWines
         MntFruits
                                   0
         MntMeatProducts
                                   0
         MntFishProducts
                                   0
                                   0
         MntSweetProducts
         MntGoldProds
                                   0
         NumDealsPurchases
                                   0
                                   0
         NumWebPurchases
         NumCatalogPurchases
                                   0
         NumStorePurchases
                                   0
                                   0
         NumWebVisitsMonth
         AcceptedCmp3
                                   0
                                   0
         AcceptedCmp4
         AcceptedCmp5
                                   0
         AcceptedCmp1
                                   0
         AcceptedCmp2
                                   0
         Complain
                                   0
         Z_CostContact
                                   0
         Z_Revenue
                                   0
         Response
                                   0
         dtype: int64
         dataset.duplicated().sum()
In [10]:
Out[10]:
          dataset = dataset.drop_duplicates()
In [11]:
          dataset = dataset.dropna()
         dataset.cov()
In [12]:
```

\cap	. +-	Γ1	2.1	
0ι	ΙL	Li	4]	

	ID	Year_Birth	Income	Kidhome	Teenhome	
ID	1.055845e+07	91.725792	1.071169e+06	3.028930	-5.357445	-41
Year_Birth	9.172579e+01	143.653507	-4.881462e+04	1.503310	-2.287966	
Income	1.071169e+06	-48814.621201	6.336838e+08	-5793.603194	262.102701	-28
Kidhome	3.028930e+00	1.503310	-5.793603e+03	0.288258	-0.011649	
Teenhome	-5.357445e+00	-2.287966	2.621027e+02	-0.011649	0.296133	
Recency	-4.174185e+03	-5.653712	-2.892837e+03	0.178614	0.217990	8
Mnt Wines	-2.310976e+04	-644.670673	4.913652e+06	-90.072543	0.687766	1
Mnt Fruit s	9.473270e+02	-8.464241	4.315893e+05	-7.977684	-3.823374	
Mnt Meat Product s	-4.301363e+03	-90.582220	3.300781e+06	-52.894367	-31.870181	1
Mnt FishProduct s	-4.268427e+03	-26.528317	6.048869e+05	-11.431713	-6.115193	
Mnt Sweet Product s	-7.922359e+02	-9.946052	4.556893e+05	-8.336016	-3.644400	
Mnt GoldProds	-1.880985e+03	-39.875318	4.251102e+05	-9.876741	-0.560760	
NumDealsPurchases	-2.538575e+02	-1.352697	-4.024231e+03	0.224036	0.404342	
NumWebPurchases	-1.645566e+02	-5.028016	2.676286e+04	-0.547403	0.241750	
NumCatalogPurchases	-2.162818e+01	-4.271300	4.340648e+04	-0.792748	-0.179482	
NumStorePurchases	-1.380552e+02	-4.982937	4.331890e+04	-0.875021	0.087986	
NumWebVisit sMont h	-6.142249e+01	3.601796	-3.376809e+04	0.582689	0.173215	
Accept edCmp3	-3.044993e+01	0.193352	-1.063120e+02	0.002252	-0.006042	
Accept edCmp4	-2.036296e+01	-0.207470	1.215450e+03	-0.022778	0.005468	
Accept edCmp5	-5.976632e+00	0.033000	2.201852e+03	-0.028700	-0.027033	
Accept edCmp1	-1.450076e+01	-0.028215	1.706909e+03	-0.022905	-0.019309	
Accept edCmp2	-5.631422e+00	-0.009306	2.547302e+02	-0.005081	-0.000976	
Complain	1.075466e+01	-0.035318	-6.641277e+01	0.002132	0.000174	
Z_Cost Contact	0.000000e+00	0.000000	0.000000e+00	0.000000	0.000000	
Z_Revenue	0.000000e+00	0.000000	0.000000e+00	0.000000	0.000000	
Response	-2.495876e+01	0.101493	1.197060e+03	-0.014950	-0.029934	

In [13]: dataset.corr()

	ID	Year_Birt h	Income	Kidhome	Teenhome	Recency	Mnt Wine
ID	1.000000	0.002355	0.013095	0.001736	-0.003030	-0.044376	-0.02108
Year_Birth	0.002355	1.000000	-0.161791	0.233615	-0.350791	-0.016295	-0.15945
Income	0.013095	-0.161791	1.000000	-0.428669	0.019133	-0.003970	0.5786
Kidhome	0.001736	0.233615	-0.428669	1.000000	-0.039869	0.011492	-0.49733
Teenhome	-0.003030	-0.350791	0.019133	-0.039869	1.000000	0.013838	0.00374
Recency	-0.044376	-0.016295	-0.003970	0.011492	0.013838	1.000000	0.01572
Mnt Wines	-0.021084	-0.159451	0.578650	-0.497336	0.003747	0.015721	1.00000
Mnt Fruit s	0.007326	-0.017747	0.430842	-0.373396	-0.176558	-0.005844	0.38702
Mnt Meat Products	-0.005902	-0.033697	0.584633	-0.439261	-0.261122	0.022518	0.56886
Mnt FishProduct s	-0.023992	-0.040425	0.438871	-0.388884	-0.205242	0.000551	0.39772
Mnt Sweet Product s	-0.005936	-0.020204	0.440744	-0.378026	-0.163056	0.025110	0.39032
Mnt GoldProds	-0.011172	-0.064208	0.325916	-0.355029	-0.019887	0.017663	0.39273
NumDealsPurchases	-0.040612	-0.058668	-0.083101	0.216913	0.386246	0.002115	38800.0
NumWebPurchases	-0.018476	-0.153051	0.387878	-0.371977	0.162077	-0.005641	0.55378
NumCatalogPurchases	-0.002274	-0.121764	0.589162	-0.504501	-0.112692	0.024081	0.6347
NumStorePurchases	-0.013070	-0.127891	0.529362	-0.501349	0.049737	-0.000434	0.64001
NumWebVisit sMont h	-0.007794	0.123904	-0.553088	0.447477	0.131240	-0.018564	-0.32197
Accept edCmp3	-0.035890	0.061784	-0.016174	0.016066	-0.042522	-0.032257	0.06146
Accept edCmp4	-0.023933	-0.066109	0.184400	-0.162026	0.038376	0.017566	0.37314
Accept edCmp5	-0.007064	0.010575	0.335943	-0.205305	-0.190791	-0.000482	0.4735
Accept edCmp1	-0.018219	-0.009611	0.276820	-0.174163	-0.144855	-0.021061	0.35141
Accept edCmp2	-0.014994	-0.006717	0.087545	-0.081868	-0.015521	-0.001400	0.20618
Complain	0.034154	-0.030407	-0.027225	0.040978	0.003307	0.013637	-0.03947
Z_Cost Contact	NaN	NaN	NaN	NaN	NaN	NaN	Na
Z_Revenue	NaN	NaN	NaN	NaN	NaN	NaN	Na
Response	-0.021491	0.023692	0.133047	-0.077909	-0.153901	-0.199766	0.24629

In [14]: dataset.describe()

	count	2216.000000	2216.000000	2216.000000	2216.000000	2216.000000	2216.000000	2216.0			
	mean	5588.353339	1968.820397	52247.251354	0.441787	0.505415	49.012635	305.0			
	std	3249.376275	11.985554	25173.076661	0.536896	0.544181	28.948352	337.3			
	min	0.000000	1893.000000	1730.000000	0.000000	0.000000	0.000000	0.0			
	25%	2814.750000	1959.000000	35303.000000	0.000000	0.000000	24.000000	24.0			
	50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	49.000000	174.5			
	75%	8421.750000	1977.000000	68522.000000	1.000000	1.000000	74.000000	505.0			
	max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	99.000000	1493.0			
	<pre>dates = [] for i in dataset['Dt_Customer']: i = i.date() dates.append(i) # Dates of the Newest and Oldest Recorded Customer print('The Newest Customers Enrolment Date in the Records:', max(dates)) print('The Oldest Customers Enrolment Date in the Records:', min(dates))</pre>										
	The 0	The Newest Customers Enrolment Date in the Records: 2014-12-06 The Oldest Customers Enrolment Date in the Records: 2012-01-08 Creating a feature (Customer_For) of the number of days the customers started to shop in									
	the store relative to the last recorded date										
In [16]:	<pre>print('Total Categories in the Feature Marital Status:\n', dataset['Marital_9 print('Total Categories in the Feature Education:\n', dataset['Education'].va</pre>										
	print										
	Total Marri Togeth Single Divord Widow Alone Absurd YOLO	Categories ied 857 ner 573 e 471 ced 232 76 3	egories in in the Fea	the Feature E	Education:\						

Kidhome

Teenhome

Recency

Mnt

Income

ID

Out[14]:

Year_Birth

In the next bit, I will be performing the following steps to engineer some new features:

• Extract the **Age** of a customer by the **Year_Birth** indicating the birth year of the respective person.

- Create another feature **Spent** indicating the total amount spent by the customer in various categories over the span of two years.
- Create another feature Living With out of Marital Status to extract the living situation of couples.
- Create a feature **Children** to indicate total children in a household that is, kids and teenagers.
- To get further clarity of household, Creating feature indicating Family Size
- Create a feature Is Parent to indicate parenthood status
- Lastly, I will create three categories in the Education by simplifying its value counts.
- Dropping some of the redundant features

```
dataset['Age'] = 2015 - dataset['Year_Birth']
In [17]:
         # Create Another Feature Spent Indicating the Total Amount Spent by the Custom
In [18]:
         dataset['Spent'] = dataset['MntWines'] + dataset['MntFruits'] + dataset['MntN
In [19]:
         # Create Another Feature Living_With out of Marital_Status to Extract the Living_
         # Create Feature Children to Indicate Total Children in Household that is Kids
In [20]:
         dataset['Children'] = dataset['Kidhome'] + dataset['Teenhome']
         # To Get Further Clarity of Household Creating Feature Indicating Family_Size
In [21]:
         dataset['Family_Size'] = dataset['Living_With'].replace({'Alone': 1, 'Partner
In [22]:
         # Create Feature Is Parent to Indicate Parenthood Status
         dataset['Is_Parent'] = np.where(dataset.Children > 0, 1, 0)
         # Segmenting Education Levels in Three Groups
 In [6]:
         dataset['Education'] = dataset['Education'].replace({'Basic':'Undergraduate'
         dataset['Education'].value_counts()
 In [8]:
         Graduate
                          1127
 Out[8]:
         Postgraduate
                          856
         Undergraduate
                          257
         Name: Education, dtype: int64
In [24]:
         # Dropping Some of the Redundant Features
         to_drop = ['Marital_Status', 'Dt_Customer', 'Z_CostContact', 'Z_Revenue',
         dataset = dataset.drop(to_drop, axis=1)
In [25]:
         dataset.describe(include=object)
               Education Living_With
Out[25]:
                   2216
                             2216
         count
                               2
                      3
         unique
           top
                Graduate
                           Partner
           freq
                   1116
                             1430
```

```
In [26]: dataset['Income'] = dataset['Income'].astype('int64')
In [27]: int_cols = [x for x in dataset.columns if dataset[x].dtypes=='int64']
In [28]: plt.figure(figsize=(15,15))
    plt.suptitle('Univariate Analysis of Features',fontweight='bold',fontsize=15)
    for i in range(0,len(int_cols)):
        plt.subplot(10,4,i+1)
        sns.kdeplot(x=dataset[int_cols[i]],shade=True,color='red')
        plt.tight_layout()
```

Univariate Analysis of Features


```
In [29]: plt.figure(figsize = (15,15))
   plt.suptitle('Univariate Analysis of Features',fontweight='bold',fontsize=15

for i in range(0,len(int_cols)):
      plt.subplot(10,4,i+1)
      sns.boxplot(data=dataset,x=int_cols[i],color='red')
      plt.xlabel(int_cols[i])
      plt.tight_layout()
```

Univariate Analysis of Features


```
def remove_outliers(in_dataset, in_cols):
In [30]:
             first_quartile = in_dataset[in_cols].quantile(0.25)
             third_quartile = in_dataset[in_cols].quantile(0.75)
             iqr = third_quartile - first_quartile
             upper_limit = third_quartile + 1.5 * iqr
             lower_limit = first_quartile - 1.5 * iqr
             in_dataset.loc[(in_dataset[in_cols] > upper_limit), in_cols] = upper_limit
              in_dataset.loc[(in_dataset[in_cols] < lower_limit), in_cols] = lower_limit</pre>
              return in_dataset
        for features in int_cols:
In [31]:
             dataset = remove_outliers(dataset, features)
         plt.figure(figsize = (20,250))
In [32]:
         plt.suptitle('Univariate Analysis of Num Features', fontweight='bold', fontsize
         for i in range(0,len(int_cols)):
             plt.subplot(85,3,i+1)
             sns.boxplot(data=dataset,x=int_cols[i],color='red')
             plt.xlabel(int_cols[i])
             plt.tight_layout()
```



```
cols = ['AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', '
In [36]:
                      dataset = dataset.drop(cols, axis=1)
                     scaler = StandardScaler()
In [37]:
                      dataset = pd.DataFrame(scaler.fit_transform(dataset), columns = dataset.columns
                     p = PCA(n_components=3)
In [38]:
                     p.fit(dataset)
Out[38]:
                                        PCA
                     PCA(n_components=3)
                    W = p.components_.T
In [39]:
                     W
                     array([[ 0.01150469,
                                                                       0.1264986 , -0.530071141 ,
Out[391:
                                                                       0.16292514, -0.11961512],
                                     [ 0.27489741,
                                     [-0.23678125,
                                                                       0.01225473, 0.26552554],
                                     [-0.09125218,
                                                                       0.45338749, -0.18990445],
                                                                       0.01608669, 0.03336462],
                                     [ 0.00411461,
                                                                      0.19924324, -0.09747587],
                                     [ 0.25230411,
                                     [ 0.25300231,
                                                                       0.02976789,
                                                                                                    0.22022379],
                                     [ 0.29378553,
                                                                       0.01341824,
                                                                                                    0.04970482],
                                     [ 0.26073301,
                                                                       0.00634505,
                                                                                                    0.211309881,
                                     [ 0.25442806,
                                                                       0.02980545,
                                                                                                    0.22467603],
                                     [ 0.19807225,
                                                                       0.13805676,
                                                                                                    0.23164106],
                                     [-0.0858184 ,
                                                                       0.37480305,
                                                                                                    0.19986521],
                                     [ 0.17148314,
                                                                       0.3072246 ,
                                                                                                    0.10003722],
                                     [ 0.28029256,
                                                                       0.09535581, -0.00716456],
                                     [ 0.23888557,
                                                                       0.20335426,
                                                                                                    0.01651975],
                                     [-0.22059467,
                                                                       0.06867733, 0.1812646],
                                     [ 0.03910063,
                                                                       0.21615014, -0.47996371],
                                     [ 0.30959299,
                                                                       0.11968703,
                                                                                                    0.02426995],
                                     [-0.0250982 ,
                                                                       0.11981989, 0.2005631 ],
                                                                                                    0.05447765],
                                     [-0.23915457,
                                                                       0.34003406,
                                     [-0.20944241,
                                                                       0.34321837,
                                                                                                    0.15022368],
                                     [-0.23201991,
                                                                       0.30311839,
                                                                                                    0.0890357 ]])
                     p.explained_variance_
In [40]:
                     array([8.84485331, 3.00939488, 1.4211903 ])
Out[40]:
In [41]:
                     p.explained_variance_ratio_
                     array([0.40185736, 0.13672895, 0.06457041])
Out[41]:
                     p.explained_variance_ratio_.cumsum()
In [42]:
                     array([0.40185736, 0.53858631, 0.60315672])
Out[42]:
                     df_PCA = pd.DataFrame(p.transform(dataset), columns=(['col1', 'col2', 'col3']
In [43]:
                      df_PCA.describe()
```

```
col1
                              col2
                                             col3
       2.216000e+03
count
                     2.216000e+03
                                    2.216000e+03
        2.308623e-16
                      -1.923852e-17
                                     4.328667e-17
mean
  std
       2.974030e+00
                      1.734761e+00
                                    1.192137e+00
  min -5.240740e+00 -4.467226e+00
                                    -3.523820e+00
      -2.669935e+00 -1.356149e+00
                                     -8.438433e-01
 25%
 50%
       -8.383377e-01
                      -1.761448e-01
                                     -1.938035e-02
 75%
       2.576374e+00
                     1.304850e+00
                                     8.090423e-01
       7.061699e+00
                     6.021683e+00
                                     5.029512e+00
 max
```

Out[43]:

```
In [44]: plt.figure(figsize=(10,5))
    Elbow_M = KElbowVisualizer(KMeans(), k=10)
    Elbow_M.fit(df_PCA)
    Elbow_M.show()
    plt.show()
```



```
In [45]: AC = AgglomerativeClustering(n_clusters=4)
    yhat_AC = AC.fit_predict(df_PCA)
    df_PCA['Clusters'] = yhat_AC
    dataset['Clusters'] = yhat_AC
    dataset_['Clusters'] = yhat_AC
```

```
In [46]: plt.figure(figsize=(15,5))
  pl = sns.countplot(x=dataset['Clusters'], palette='Set2')
  pl.set_title('Distribution Of The Clusters')
  plt.show()
```



```
In [47]: plt.figure(figsize=(15,5))
   pl = sns.scatterplot(data=dataset_, x=dataset_['Spent'], y=dataset_['Income']
   pl.set_title('Clusters Profile Based on Income and Spending')
   plt.legend()
   plt.show()
```


In [48]: plt.figure(figsize=(15,5))
pl = sns.swarmplot(x=dataset_['Clusters'], y=dataset_['Spent'], color='#CBEDI
pl = sns.boxenplot(x=dataset_['Clusters'], y=dataset_['Spent'], palette='Set2
plt.show()


```
In [51]: dataset_['Total_Promos'] = dataset_['AcceptedCmp1'] + dataset_['AcceptedCmp2
    plt.figure(figsize=(15,5))
    pl = sns.countplot(x=dataset_['Total_Promos'], hue=dataset_['Clusters'], pale
```

```
pl.set_title('Count Of Promotion Accepted')
          pl.set_xlabel('Number Of Total Accepted Promotions')
          plt.legend(loc='upper right')
          plt.show()
                                              Count Of Promotion Accepted
           600
                                                                                           ____2
                                                                                           3
           400
           300
           200
           100
                                             Number Of Total Accepted Promotions
In [52]: plt.figure(figsize=(15,5))
          pl = sns.boxenplot(y=dataset_['NumDealsPurchases'], x=dataset_['Clusters'], r
          pl.set_title('Number of Deals Purchased')
          plt.show()
                                              Number of Deals Purchased
          0
                                                                2
                                                    Clusters
          cols = ['Kidhome', 'Teenhome', 'Age', 'Children', 'Family_Size', 'Is_Parent'
In [55]:
          for i in cols:
               plt.figure(figsize=(15,5))
               sns.jointplot(x=dataset_[i], y=dataset_['Spent'], hue=dataset_['Clusters
          plt.show()
          <Figure size 1080x360 with 0 Axes>
```


<Figure size 1080x360 with 0 Axes>


```
In [62]: dataset_ = dataset_.astype(int)
In [58]: kmeans_model = KMeans(4)
kmeans_model.fit_predict(dataset_)
```

```
array([3, 0, 1, ..., 3, 3, 3])
Out[58]:
         pca_df_kmeans = pd.concat([dataset_,pd.DataFrame({'Clusters':kmeans_model.lak
In [67]:
In [69]: X = dataset_.drop(['Clusters'], axis=1)
          y = dataset_[['Clusters']]
         X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.2)
In [75]: dt = DecisionTreeClassifier(criterion='entropy')
         dt.fit(X_train, y_train)
         y_pred = dt.predict(X_test)
         print(metrics.confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
         [[ 99
                0
                      3
                          51
             2
                85
                      1
                          8]
          [
          [
             0
                 0
                    90
                          0]
             5
                 9
                      0 137]]
                                     recall f1-score
                        precision
                                                         support
                             0.93
                                       0.93
                     0
                                                  0.93
                                                             107
                                       0.89
                     1
                             0.90
                                                  0.89
                                                              96
                     2
                             0.96
                                       1.00
                                                  0.98
                                                              90
                     3
                             0.91
                                       0.91
                                                  0.91
                                                             151
             accuracy
                                                  0.93
                                                             444
                             0.93
                                       0.93
                                                  0.93
                                                             444
            macro avg
                             0.93
                                       0.93
                                                  0.93
                                                             444
         weighted avg
         rf = RandomForestClassifier(criterion='entropy')
In [74]:
          rf.fit(X_train, y_train)
         y_pred = rf.predict(X_test)
         print(metrics.confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
         [[ 97
                          71
                92
                     1
                          3]
          0
          [
             1
                 0
                    89
                          01
          [
                 6
             4
                      0 141]]
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.95
                                       0.91
                                                  0.93
                                                             107
                     1
                             0.93
                                       0.96
                                                  0.94
                                                              96
                     2
                             0.97
                                       0.99
                                                  0.98
                                                              90
                     3
                             0.93
                                       0.93
                                                  0.93
                                                             151
                                                  0.94
                                                             444
             accuracy
                                       0.95
            macro avg
                             0.95
                                                  0.95
                                                             444
         weighted avg
                             0.94
                                       0.94
                                                  0.94
                                                             444
In [76]:
         xgb = XGBClassifier(criterion='entropy')
         xgb.fit(X_train, y_train)
         y_pred = xgb.predict(X_test)
```

```
print(metrics.confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

[09:53:58] WARNING: C:/Users/administrator/workspace/xgboost-win64_release_
1.6.0/src/learner.cc:627:
Parameters: { "criterion" } might not be used.

This could be a false alarm, with some parameters getting used by language bindings but

then being mistakenly passed down to XGBoost core, or some parameter actually being used

but getting flagged wrongly here. Please open an issue if you find any suc h cases.

```
[[ 98
                6]
      91
                4]
           1
   0
 1
       0
          89
                01
   4
           0 143]]
              precision
                          recall f1-score
                                              support
                   0.95
                             0.92
                                       0.93
                                                  107
           0
           1
                   0.95
                             0.95
                                       0.95
                                                   96
           2
                   0.97
                             0.99
                                       0.98
                                                   90
           3
                   0.93
                             0.95
                                       0.94
                                                  151
                                       0.95
                                                  444
    accuracy
   macro avg
                   0.95
                             0.95
                                       0.95
                                                  444
                                                  444
weighted avg
                   0.95
                             0.95
                                       0.95
```

```
In [78]: dataset_.to_csv('Clustered_Customer_Data.csv')
In [80]: filename = 'model.pkl'
    pickle.dump(xgb, open(filename, 'wb'))
    loaded_model = pickle.load(open(filename, 'rb'))
    result = loaded_model.score(X_test, y_test)
    print(result,'% Acuuracy')
    0.9481981981982 % Acuuracy
In [85]: # Thank You!
```