Pinyin Input Method Editor Design Report

Yihong Gu gyh15@mails.tsinghua.edu.cn Department of Computer Science Tsinghua University

1 Introction

报告分为三个部分:

• Language Model: 介绍所用的语言模型

• Search Algorithm: 介绍所用的搜索算法以及优化

• Experiments: 给出实验结果并作相关分析

• Code Structure: 简要介绍代码结构

2 Language Model

2.1 Probability Model

总体来说, 我们使用以下语言模型:

$$\mathbb{P}(w_1 \cdots w_n) = \prod_{i=1}^{\min(n,m)} \mathbb{P}(w_i | w_{\max(i-m+1,1)} \cdots w_{i-1})$$

$$\tag{1}$$

我们把这个模型称为 m-gram 模型。

在这里面 w_i 表示第 i 个汉字, 举个例子, 取 m=2:

$$\mathbb{P}(\hat{\mathbf{f}}\mathbf{\Psi}\mathbf{T}\mathbf{\Psi}) = \mathbb{P}(\hat{\mathbf{f}})\mathbb{P}(\mathbf{\Psi}|\hat{\mathbf{f}})\mathbb{P}(\mathbf{T}|\mathbf{\Psi})\mathbb{P}(\mathbf{\Psi}|\mathbf{T}) \tag{2}$$

事实上,这里面我们没有考虑拼音的影响,那么,我们作最简单的假设,假设拼音和 m-gram 独立并且条件分布是离散分布

$$\mathbb{P}(w_1 \cdots w_n | t_1 \cdots t_n) = \prod_{i=1}^{\min(n,m)} \mathbb{P}(w_i | w_{\max(i-m+1,1)} \cdots w_i - 1) \mathbb{P}(w_i | t_i)$$
(3)

我们让

$$\mathbb{P}(w_i|w_{i-m+1}\cdots w_{i-1}) = \frac{\#\{w_{i-m+1}\cdots w_m\}}{\#\{w_{i-m+1}\cdots w_{m-1}\}}$$
(4)

其中 # $\{w_{i-m+1}\cdots w_i\}$ 为词组 $w_{i-m+1}\cdots w_i$ 在 corpus 中出现的频数,并且让 $\mathbb{P}(w_i|t_i)$ 为 1 当且仅当汉字 w_i 存在发音 t_i ,否则为 0,我们也尝试了其他的模型 (均匀分布,按汉字的词频归一化的离散分布,但是发现实际上这些方法会引入大量噪声,实际效果并没有之前这种简单也不归一化的方法好,因为前一种方法让文本完全由 corpus 决定,不引入拼音造成的噪声)。

2.2 Frequency Count

在计算 $\#\{w_{i-m+1}\cdots w_i\}$ 的过程中,我们使用 sina 新闻 2016 作为 corpus,且把所有的 6763 个 汉字作为 w_i 的字母表 Σ ,把新闻正文中不属于 Σ 的部分作为分隔符,统计在 Σ 中的连续 m 个 token(中间不能有分隔符) 出现的次数。

由于总的次数过于多,我们考虑只保留部分 m-gram 的频数统计的结果,我们选取最大的 k,使得频数 $\geq k$ 的 m-gram 的频数之和大于总频数之和的 $100\sigma\%$,我们把 σ 称为 significance level,在这里我们取 $\sigma=0.95$,最后我们保留频数 $\leq k$ 的 m-gram。

2.3 Probability Smoothing

首先,为了方便计算,我们同意使用概率取对数进行计算,这样原来的乘积就变成了求和。由于词频很多时候都为 0,所以我们需要用对 $\log \mathbb{P}(w_i|w_{i-m+1}\cdots w_{i-1})$ 进行平滑处理。我们下面考虑具体的处理过程 (递归处理):

- 如果当前发现 $w_{i-m+1}\cdots w_i$ 和 $w_{i-m+1}\cdots w_{i-1}$ 的频数均非 0,那么就直接按照原式计算 $\log \mathbb{P}(w_i|w_{i-m+1}\cdots w_{i-1})$ 。
- 如果发现 $w_{i-m+1}\cdots w_{i-1}$ 的频数均为 0,并且 m>2,计算 m'=m-1 的结果 p_{m-1} ,然后输出就是 $p_{m-1}-100$,作为平滑处理的惩罚项。
- 如果发现 $w_{i-m+1}\cdots w_{i-1}$,并且 m=2,计算 m'=m-1 的结果 p_{m-1} ,然后输出就是 $p_{m-1}-2\times 10^8$,作为平滑处理的惩罚项。

另外,由于我们是 (要通过搜索) 需要最大化对数似然值,所以我们设置答案的下界为 -1×10^9 ,也就是说,像第三项的那种平滑处理不能超过 5 次。

3 Search Algorithm

有了 Langugae Model 后,我们的问题就转变成了最大化

$$w_1^* \cdots w_n^* = \operatorname{argmax}_{w_1 \cdots, w_n} \mathbb{P}(w_1 \cdots w_n | t_1 \cdots t_n)$$
(5)

其中 $t_1 \cdots t_n$ 是给定的拼音,同时 $w_1^* \cdots w_n^*$ 就是我们输出的结果。 我们考虑使用 A^* 算法来解决这个问题。

3.1 A^* Algorithm

我们把 $w_1 \cdots w_i$ 称为一个状态 s_i ,当 i=n 的时候即到达终点,一个状态 s_i 的收益为 $v_i=\log \mathbb{P}(w_1 \cdots w_i)$,我们需要最大化到达终点的收益 v_n 。

服从 A^* 的记号,我们发现 $g(s_i) = v_i$,另外我们让 $h(s_i) = 0$,即可用 A^* 来优化。此时我们发现,这个问题实质上变成了一个最长路径问题,这时候的 A^* 也就等价于传统的 Dijkstra 算法。

3.2 Improvement

我们从以下一个角度来优化这个搜索过程:

SLF 优化

我们发现,是否对 OPEN 表排序 (即使用堆来维护 OPEN 表) 不影响时间消耗,所以我们不对 OPEN 表排序,这样的搜索算法就等价于传统的 SPFA 算法,我们沿用了 SPFA 算法的一个非常经典的优化手法 SLF 优化,即如果放入队尾的状态比放入目前队头的要优的话,把队头队尾的元素交换,这样可以使得效率提升 3 倍。

记忆化

我们发现,计算 local log probability ($\log \mathbb{P}(w_i|w_{i-m+1}\cdots w_{i-1})$) 非常消耗时间,所以我们对这一部分进行记忆化,这样效率也可以提升 1 倍。

政府工作报告 7 次提及李克强为何再赠 4 字?武汉最懒大学生:两周不收衣服鸟儿在内做窝特朗普称叙化武袭击事件是"对人类的羞辱"郎平: 女排备战奥运会培养新人已着眼下个周期