(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 6. Februar 2003 (06.02.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/010380 A1

(51) Internationale Patentklassifikation7: 23/06 // 37/06

(30) Angaben zur Priorität: 101 36 519.5

26. Juli 2001 (26.07.2001)

DE

(21) Internationales Aktenzeichen:

PCT/EP02/05625

D06F 35/00.

(71) Anmelder ifür alle Bestimmungsstaaten mit Ausnahme von US): BSH BOSCH UND SIEMENS HAUSGERÄTE GMBH [DE/DE]; Hochstr. 17, 81669 München (DE).

(22) Internationales Anmeldedatum:

22. Mai 2002 (22.05.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): USZKUREIT, Detlef [DE/DE]; Schottmüller Str. 14, 14167 Berlin (DE). RÖHL, Marianne [DE/DE]; Hüttenstr. 74, 40215 Düsseldorf (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR OPERATING A PROGRAMMABLE WASHING MACHINE AND A WASHING MACHINE SUITED THEREFOR

(54) Bezeichnung: VERFAHREN ZUM BETREIBEN EINER PROGRAMMIERBAREN WASCHMASCHINE UND DAFÜR GEEIGNETE WASCHMASCHINE

AA... DIRECTION COUNTER TO THAT OF THE SCOOPING

(57) Abstract: The inventive washing machine has a drum, which turns inside a fixed lye tub and which has an inclined rotation axis that slopes toward the loading opening and is provided with scooping devices, which are mounted on the drum, scoop the lye, and whose scooping performance is dependent on the direction of rotation of the drum. In a preferred direction of rotation, scooping direction, the scooping devices uniformly wet the articles to be washed with the lye. During the wet treatment phase, the drum is operated in alternating directions of rotation and with a rotational speed that changes according to the direction of rotation for a respectively limited duration that can be varied in both

directions of rotation. According to the invention, the drum is operated during the entire wet treatment phase in the scooping direction in time intervals I_N , I_W , I_S , which are of approximately equal length and characterized by a uniform specified rotational speed of the drum. In addition, the rotational speed and the duration of the time intervals I_{Ng} , I_{Wg} , I_{Sg} vary in the direction counter to that of the scooping according to the progress of the wet treatment phase. In a first phase, wetting phase N, the rotational speed of the drum n_N in the scooping direction is less than the washing rotational speed n_W , and the duration of the time interval I_{Ng} in the direction counter to that of the scooping is significantly shorter than in the scooping direction. In a second phase, washing phase W, the rotational speeds n_W and $-n_W$ of the drum are the same as in the wetting phase, the duration of the time interval I_{Wg} in the direction counter to that of the scooping is, however, extended in comparison to the wetting phase N. In a third phase, rinsing phase S, the rotational speed n_N of the drum in the scooping direction, is equal to that in the wetting and washing phase but, in the direction counter to that of the scooping $(-n_S)$, is significantly greater than an application rotational speed in which the laundry rests against the drum surface, and the duration of the time interval I_{Sg} in the direction counter to that of the scooping is significantly shorter than in the washing phase W.

(57) Zusammenfassung: Die Waschmaschine hat eine in einem feststehenden Laugenbehälter umlaufende Trommel mit geneigter, in Richtung zur Beschickungsöffnung ansteigenden Drehachse und mit an der Trommel angebrachten Schöpfvorrichtungen für die Lauge, deren Schöpfleistung abhängig ist von der Drehrichtung der Trommel. In

[Fortsetzung auf der nächsten Seite]

WO 03/010380 A1

- (74) Gemeinsamer Vertreter: BSH BOSCH UND SIEMENS HAUSGERÄTE GMBH; Hochstrasse 17, 81669 München (DE).
- (81) Bestimmungsstaaten (national): CN, KR, SI, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL. PT, SE, TR).

Erklärung gemäß Regel 4.17:

— hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten CN, KR, SI, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR)

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Docket # 27 POI P12011

Applic. #

Applicant: Marianne Paul old.

Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101

einer bevorzugten Drehrichtung, der Schöpfrichtung, sollen die Schöpfvorrichtungen ein gleichmäßiges Benetzen des Waschgutes mit der Lauge bewirken, wobei während der Nassbehandlungsphase die Trommel in wechselnden Drehrichtungen und mit drehrichtungsabhängig wechselnder Drehgeschwindigkeit für eine jeweils begrenzte Dauer betrieben wird, die in den beiden Drehrichtungen variiert werden kann. Erfindungsgemäß wird die Trommel während der gesamten Nassbehandlungsphase in Schöpfrichtung in Zeitintervallen I_N , I_N , I_N , I_N , betrieben, die etwa gleich lang und durch eine einheitliche Solldrehzahl der Trommel gekennzeichnet sind. Außerdem werden die Drehzahl sowie die Dauer der Zeitintervalle I_N , I_N , I

mantel anlegt, und ist die Dauer des Zeitintervalls Isg in der Gegenschöpfrichtung deutlich kürzer als in der Waschphase W.