Assignment 2

1)car crashes datset from seaborn library 2)load dataset 3)data visualization 4)inference for each graph

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
data = sns.load_dataset('car_crashes')
```

In [3]:

data

Out[3]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	CO
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	ОК

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50 In	[⁴]; ⁴	7.308	5.568	14.094	15.660	791.14	122.04	WY

data.head()

Out[4]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

In [5]:

data.tail()

Out[5]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

In [6]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	<pre>not_distracted</pre>	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

In [7]:

data.describe()

Out[7]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losse
count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.00000
mean	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.49313
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.83592
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.75000
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.64500
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.05000
75%	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.87000
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.78000

Scatter plot

In [8]:

sns.scatterplot(x='total',y='not_distracted',data=data)

Out[8]:

<AxesSubplot:xlabel='total', ylabel='not_distracted'>

Inference: From the plot we can say total can show a linear trend

In [9]:

```
sns.scatterplot(x="total",y="speeding",data=data)
```

Out[9]:

<AxesSubplot:xlabel='total', ylabel='speeding'>

Inference: From the plot we can say that total can't show a linear trend

In [11]:

```
sns.scatterplot(x='total',y='no_previous',data=data)
```

Out[11]:

<AxesSubplot:xlabel='total', ylabel='no_previous'>

Inference: From the plot we can say that total can show a linear trend

Lineplot

In [13]:

sns.lineplot(x="no_previous",y="total",data=data)

Out[13]:

<AxesSubplot:xlabel='no_previous', ylabel='total'>

Inference:From the plot we can say there is straight line between no_previous and total

In [14]:

```
sns.lineplot(x="ins_premium",y="total",data=data)
```

Out[14]:

<AxesSubplot:xlabel='ins_premium', ylabel='total'>

Inference: Here in the plot ins_premium and total does not exhibit a linear relationship.

Heatmap

In [15]:

```
corr = data.corr()
corr
```

Out[15]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	in
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	
4							

In [16]:

```
plt.subplots(figsize=(20,15))
sns.heatmap(corr,annot=True)
```

Out[16]:

<AxesSubplot:>

Inference: From the graph we can say that it is positively, negatively and neutrally corrlated

In [17]:

```
data.isnull().any()
```

Out[17]:

total	False
speeding	False
alcohol	False
not_distracted	False
no_previous	False
ins_premium	False
ins_losses	False
abbrev	False
dtype: bool	

Boxplot

In [18]:

```
sns.boxplot(x="total",y="no_previous",data=data)
```

Out[18]:

<AxesSubplot:xlabel='total', ylabel='no_previous'>

Infernce: The boxplot shows the distribution of total crashes for different levels of no_previous. These lines indicates outliners

Distribution Plot

In [20]:

```
sns.distplot(data['alcohol'])
```

C:\Users\Vennela Baratam\anaconda3\lib\site-packages\seaborn\distribution s.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]:

<AxesSubplot:xlabel='alcohol', ylabel='Density'>

Infernce: The distribution of alcohol is right skewed

In [21]:

```
sns.distplot(data["speeding"])
```

C:\Users\Vennela Baratam\anaconda3\lib\site-packages\seaborn\distribution s.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an a xes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[21]:

<AxesSubplot:xlabel='speeding', ylabel='Density'>

Inference: The distribution of speeding is right skewed

Barplot

In [22]:

sns.barplot(data=data,x="alcohol",y="total",ci=None)

Out[22]:

<AxesSubplot:xlabel='alcohol', ylabel='total'>

Inference: The barplot displays the mean total crashes for different levels of alcohol consumption, here the alcohol consumption is directly proportional to total crashes

Countplot

In [23]:

```
sns.countplot(x="no_previous",data=data)
```

Out[23]:

<AxesSubplot:xlabel='no_previous', ylabel='count'>

Inference: From the plot it can be observed that count is high only at 1 value in no_previous

Jointplot

In [24]:

sns.jointplot(x='total',y='no_previous',data=data)

Out[24]:

<seaborn.axisgrid.JointGrid at 0x18bdb3c9d30>

Inference:Form the jointplot we can say that total and no_previous crashes are directly proportional.

In [25]:

sns.jointplot(x="speeding",y="total",data=data)

Out[25]:

<seaborn.axisgrid.JointGrid at 0x18bdb622ee0>

Inference: From the jointplot it can be observed that there is no specific patterns in speeding and total

In []: