Xen and the Art of Virtualization (2003)

Gabriele Genovese, Erik Koci

January 17, 2025

Introduction

- High-performance and resource-managed Virtual Machine Monitor (VMM).
- Commercial type-1 bare-metal hypervisor.
- Initially developed by researchers at the University of Cambridge, it has now been acquired by Citrix Systems.

Goals of Xen

- Isolation between VMs to prevent performance interference.
- Support for multiple commodity OSes (e.g., Linux, Windows).
- Minimal performance overhead compared to bare-metal systems.
- Scalability to host up to 100 VMs on modern hardware.

OS subsection	# lines			
	Linux	XP		
Architecture-independent	78	1299		
Virtual network driver	484	_		
Virtual block-device driver	1070	_		
Xen-specific (non-driver)	1363	3321		
Total	2995	4620		
(Portion of total x86 code base	1.36%	0.04%)		

Figure: The simplicity of porting commodity OSes to Xen.

Paravirtualization

Memory Management	
Segmentation	Cannot install fully-privileged segment descriptors and cannot overlap with the top end of the linear
	address space.
Paging	Guest OS has direct read access to hardware page tables, but updates are batched and validated by
	the hypervisor. A domain may be allocated discontiguous machine pages.
CPU	
Protection	Guest OS must run at a lower privilege level than Xen.
Exceptions	Guest OS must register a descriptor table for exception handlers with Xen. Aside from page faults,
	the handlers remain the same.
System Calls	Guest OS may install a 'fast' handler for system calls, allowing direct calls from an application into
	its guest OS and avoiding indirecting through Xen on every call.
Interrupts	Hardware interrupts are replaced with a lightweight event system.
Time	Each guest OS has a timer interface and is aware of both 'real' and 'virtual' time.
Device I/O	
Network, Disk, etc.	Virtual devices are elegant and simple to access. Data is transferred using asynchronous I/O rings.
	An event mechanism replaces hardware interrupts for notifications.

Figure: The paravirtualized x86 interface

- Requires modifications to the guest OS for better performance.
- Improved performance compared to full virtualization.

Architecture of Xen

Figure: The structure of the Xen hypervisor

- **Domain0**: domain responsible for managing hardware and other VMs.
- GuestOS: domains running guest OSes.
- **Communication**: hypercalls and events are used between domains.

Performance Evaluation

- Comparison with stand-alone Linux, VMware Workstation and User-Mode Linux (UML).
- The results presented are the median of seven trials.
- Superior network and I/O performance compared to other VMMs.
- Scales effectively with multiple VMs.

Performance of computationally-intensive applications

Measurement made with one VM and one core:

Figure: Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).

Microbenchmarks for targeting particular subsystems

In 24/37 microbenchmarks, XenoLinux performs similarly to native Linux.

Config	null call	null I/O	stat	open close	slct TCP	sig inst	sig hndl	fork proc	exec proc	sh proc
L-SMP	0.53	0.81	2.10	3.51	23.2	0.83	2.94	143	601	4k2
L-UP	0.45	0.50	1.28	1.92	5.70	0.68	2.49	110	530	4k0
Xen	0.46	0.50	1.22	1.88	5.69	0.69	1.75	198	768	4k8
VMW				2.99						
UML	24.7	25.1	36.1	62.8	39.9	26.0	46.0	21k	33k	58k

Config							
	create	e delete	create	delete	lat	fault	fault
L-SMP							
L-UP							
Xen	32.5	5.86	68.2	13.6	139	1.40	2.73
VMW	35.3	9.3	85.6	21.4	620	7.53	12.4
UML	130	65.7	250	113	1k4	21.8	26.3

Figure: Processes - times in μ s

Figure: File & VM system latencies in μ s

	2p	2p	2p	g8	a8	16p	16p
Config	oK	16K	64K	16K	64K	16K	64K
L-SMP	1.69	1.88	2.03	2.36	26.8	4.79	38.4
L-UP	0.77	0.91	1.06	1.03	24.3	3.61	37.6
Xen	1.97	2.22	2.67	3.07	28.7	7.08	39.4
VMW	18.1	17.6	21.3	22.4	51.6	41.7	72.2
UML	15.5	14.6	14.4	16.3	36.8	23.6	52.0

	TCP M	ΓU 1500	TCP MTU 500		
	TX RX		TX	RX	
Linux	897	897	602	544	
	897 (-0%)	897 (-0%)	516 (-14%)	467 (-14%)	
VMW	291 (-68%)	615 (-31%)	101 (-83%)	137 (-75%)	
UML	165 (-82%)	203 (-77%)	61.1(-90%)	91.4(-83%)	

Figure: Context switching - times in μ s

Figure: Bandwidth in Mb/s

Scalability

Figure: Performance of running concurrently on 1-128 domains

Future Work and Conclusion

- Planned features:
 - Universal buffer caching for improved data sharing.
 - Copy-on-write for virtual block devices.
- Xen provides an efficient platform for hosting secure and isolated virtual environments.
- Its paravirtualization approach balances performance and isolation.

A recent comparison of Xen

#	Performance Parameter	Benchmark	Benchmark Operation	Xen	KVM	Proxmox
1	Response Efficiency	Apache	Serving static pages	*LB	BS*	
2	CPU Throughput	John the Ripper	Blowfish	LB	BS	
			Traditional DES		LB	BS
			MD5	LB	BS	
3	Memory	RAMspeed	Integer (Average)	LB	BS	
			Float (Average)		BS	LB
4	Cache Performance	CacheBench	Read	LB	BS	
			Write	LB	BS	
			Read/modify/write	LB	BS	
5	File System Performance	IOzone	Disk read	BS	LB	
			Disk write	BS	LB	
6	Application Performance	LZMA	File compression	BS	LB	
		Sqlite	Database inserts	BS		LB

^{*} LB represents Least Performance and BS represents Best Performance

Figure: Taken from Algarni, Sultan Abdullah, et al. "Performance evaluation of Xen, KVM, and Proxmox hypervisors" (2018)

Thank you for your attention!