CENG 371 - Scientific Computing Fall' 2024 - 2025 Homework 4

Karaçanta, Kaan e244854@metu.edu.tr

Question 2

1. Plots of the relative errors for both images:

Figure 1: Cameraman – Relative Error vs. k.

Figure 2: Fingerprint – Relative Error vs. k.

Let A be your image matrix (e.g., using A = io.imread('cameraman.jpg') in Python). We define:

$$\operatorname{RelErr}_{\operatorname{approx}}(k) = \frac{\|u_k \, \sigma_k \, v_k^T - U \, \Sigma \, V^T \|_2}{\|U \, \Sigma \, V^T \|_2}, \quad \operatorname{RelErr}_{\operatorname{svds}}(k) = \frac{\|u_k' \, \sigma_k' \, v_k'^T - U \, \Sigma \, V^T \|_2}{\|U \, \Sigma \, V^T \|_2},$$

where (U, Σ, V) is the full SVD of A, (u_k, σ_k, v_k) is from approximate_svd, and (u'_k, σ'_k, v'_k) from the built-in svds. Figures 1 and 2 illustrate these relative errors for cameraman.jpg and fingerprint.jpg respectively, plotted against various ranks k.

Observations for Cameraman.

- Both methods continue to show decreasing error as k increases, with svds consistently yielding lower error at the same k (as expected for exact/truncated SVD methods).
- At very small k (e.g., until 10), approximate_svd has errors around 25–15%, while svds is around 20–10%. The gap is very small for k = 1 or k = 2, then there is a noticable one but narrows rapidly as k grows.
- Around k = 50-100, approximate_svd converges closer, with errors often near or below 3%. By k = 125-200, the error for both methods becomes extremely small (near or below 1%).
- In some tests, when the k is 1 or 2, the approximate_svd error can even slightly cross below svds due to numerical and floating-point nuances (though typically svds remains the lower bound in theory).

Observations for Fingerprint.

- The fingerprint image remains more challenging. For k = 5 or 10, approximate_svd can show errors around 35–25%, whereas svds is around 25–15%.
- As k increases, both curves decrease steadily. svds remains below the randomized approach, but approximate_svd approaches it more closely by k > 100.
- By k = 200, approximate_svd is under 5% error, while svds can reach near 0-1%.
- The gap is still more pronounced than in the cameraman image, reflecting the fingerprint's possibly higher effective rank or more complex structure.

2. Plots of the run times for both images:

Figure 3: Cameraman – Run Time vs. k.

Figure 4: Fingerprint – Run Time vs. k.

We measure how long each method takes (wall-clock time) for each rank k. Figures 3 and 4 show run times for the two images.

Observations for Cameraman.

- For small k (5–25), both methods can be extremely fast, most of the time under 0.01 s. svds might even outperform approximate_svd at the smallest ranks, depending on the internal routines used by svds (e.g., specialized partial SVD algorithms).
- We see a notable "spike" in the svds timing at k = 50-75. This is possibly where svds switches factorization strategies or where iterative methods become more costly. Meanwhile, approximate_svd dips slightly or has small bumps near those ranks, possibly due to random draws or QR overhead.
- Beyond $k \approx 100$, svds climbs more sharply, and by k = 200 may take 0.05-0.06 s, while approximate_svd is around 0.01-0.02 s. These results confirm the randomized approach can be beneficial at higher ranks.

Observations for Fingerprint.

- A significant spike for approximate_svd can occur around k = 25 or 50 (sometimes reaching 0.1–0.2 s), while svds can have a large jump (0.4–0.5 s) also near those ranks. Such spikes often reflect how iterative solvers or partial factorization techniques change strategies internally.
- After the spike, svds grows steadily, reaching up to $0.6 \,\mathrm{s}$ by k = 200. approximate_svd remains closer to $0.2 \,\mathrm{s}$ at that rank, indicating a faster growth rate for svds.
- Despite random fluctuations, approximate_svd consistently maintains an advantage in speed for midto-large k values on this image. Minor irregularities (spikes/dips) can happen with random sampling or specialized BLAS calls.

3. Qualitative comparisons.

For selected ranks (k = 10, 50, 100, ...), we can reconstruct the images:

$$\hat{A}_k = u_k \, \sigma_k \, v_k^T$$
 and $\hat{A}'_k = u'_k \, \sigma'_k \, v_k^{'T}$,

then display them with imshow.

Discussion points.

- At k = 10, images are usually quite blurry for both methods; svds retains slightly more structure (edges, contrasts).
- At k = 50, the images become much clearer. While a pixel-wise difference might show svds is still better, approximate_svd is visually close.
- By k = 100 or 150, the randomized approach is nearly indistinguishable, with still some differences, from the exact truncated SVD in normal viewing.

4. Suggested Use Cases for approximate_svd.

Based on the observed error trends, run times, and visual reconstructions, we outline some scenarios where approximate_svd is particularly valuable:

• Large-Scale Image / Data Compression:

For very large matrices (e.g., huge images, big data in machine learning), the randomized SVD often achieves near-optimal compression while being significantly faster than exact methods.

• Real-Time / Streaming Computations:

If we need to update or compute truncated SVD in streaming or near-real-time settings, randomized methods avoid the heavy re-factorizations of classical approaches.

• Exploratory Data Analysis (PCA-like tasks):

In many practical situations, an approximate subspace is sufficient to capture the main variance of the data, making approximate_svd a good choice for large-scale PCA or latent semantic analysis.

• Machine Learning Pipelines:

Dimensionality reduction (feature extraction) with approximate SVD saves both time and memory, especially important when dealing with massive training sets.