

DO MORE GUNS REDUCE CRIME?

The right-to-carry laws, or **shall-issue** laws, is one of the most hotly debated laws in America. A Shall-issue law is one that requires that governments issue concealed carry-handgun permits to any applicant who meets the following necessary criteria:

- The applicant must be an adult
- Applicant must have no significant criminal record and no history of mental illness
- Applicant must successfully complete a course in firearms safety training (if required by law)

If the above criteria are met, the applicant is eligible to be issued a handgun permit and is not required to demonstrate 'good cause'. This has sparked off a debate with some claiming that the move would make citizens better equipped to handle crime/ attacks and fend off potential attackers, while others feel that the move would make it easier for potential criminals to access weapons or that it may raise the number of accidental crimes.

Guns is a balanced panel of data on 50 US states, plus the District of Columbia (for a total of 51 "states"), by year for 1977 - 1999. Each observation is a given state in a given year. There is a total of 51 states \times 23 years = 1173 observations.

Objective: To analyze historical data on crime in the U.S to answer the questions:

- * "Do shall-issues law reduce crime-or not?"
- * "Does incarceration policy reduce crime-or not?"

Variable	Definition
vio	violent crime rate (incidents per 100,000 members of the population)
rob	robbery rate (incidents per 100,000)
mur	murder rate (incidents per 100,000)
shall	= 1 if the state has a shall-carry law in effect in that year
	= 0 otherwise
incarc_rate	incarceration rate in the state in the previous year (sentenced
	prisoners per 100,000 residents; value for the previous year)
density	population per square mile of land area, divided by 1000
avginc	real per capita personal income in the state, in thousands of dollars
pop	state population, in millions of people
pm1029	percent of state population that is male, ages 10 to 29
pw1064	percent of state population that is white, ages 10 to 64
pb1064	percent of state population that is black, ages 10 to 64
stateid	ID number of states (Alabama = 1, Alaska = 2, etc.)
year	Year (1977-1999)

Before proceeding to answer the above question, it is important to do a quick exploratory data analysis to realize any trends or correlations that exist in the data.

- Graph 1 shows the crime-trend over the years. Murder rates and robbery rates follow a similar pattern over the years (relatively flat-trended), while violent-crime rate shows an upward trend.
- Of the 51 states, 29 adopted the shall-issue laws, while 22 never adopted them. (Graph 2)
- The incarceration rate shows a steady increase over the years. (Graph 2)

GRAPH 1

GRAPH 2

To better understand the trends within panel data, 50 States were clustered into 4 distinct groups based on the level of shall-policy implementations. The 4 clusters were:

- 1. No-Shall: 22 out of 51 states that never allowed the carry of concealed handgun.
- 2. Early-Adopter: 4 out of 51 states that decided to implement shall policy anytime between 1978 to 1999
- 3. Late- Adopter: 21 out of 5 states that decided to implement shall policy after 1989
- 4. Always-On: 4 out of 51 states that always allow the carry of concealed handgun

Among the 4 clusters:

- No-Shall and Late-Adopter states had much higher crime incidents (across violence, murder, and robbery) compared to Early-Adopter and Always-On states. However, the difference between number of crimes in Always-On and Early-Adopter was not significantly (For example: an average of 4.1 vs 3.8 for murder). Same trend appeared between Late-Adopter and No-Shall. Therefore, it was implied that there were individual differences among 50 States that caused the variation in crime levels.
- No-Shall and Later-Adopter states also had higher incarceration rate compared to Early-Adopter and Always-On states. Implementing incarceration policy was expected to deter people from committing crimes. However, at the same time, higher incarceration might also be the result of increased crime. A simultaneous causality bias might be possible in this circumstance. As a result, the panel data might be inflicted with unobserved heterogeneity.

Cluster Based On Level Of Shall Policy Implemenation

Trends in other demographic variables were also studied to get a better insight into the panel data. Specifically:

- Graph 3 showed in No-Shall and Late-Adopter states where crime level was high, demographic variables such as: "income level, density, and population" also tended to be upward. Therefore, it was speculated that the mentioned variables would have some effects on the crime level.
- Graph 4 showed that in No-Shall and Late-Adopter states where crime level was high, there was also a high percent male population. The high percent of black population and white population were just indication of high population. As a result, it was speculated that high level of male population would have some effects on the number of crime incidents.

The following histogram plots helped reveal the distributions of the variables and the possible effects of outliers. Accordingly, certain variables were log-transformed to reduce their skewness and to make them more interpretable.

Histogram for average income

We have also looked at the correlation matrix to be aware of highly correlated variables, if any. This will be an easy reference to investigate, if a collinearity problem were to be detected.

	vio	mur	rob	incarc_rate	pb1064	pw1064	pm1029	рор	avginc	density	shall
vio	1.00										
mur	0.83	1.00									
rob	0.91	0.80	1.00								
incarc_rate	0.70	0.71	0.57	1.00							
pb1064	0.57	0.60	0.58	0.53	1.00						
pw1064	(0.57)	(0.62)	(0.58)	(0.53)	(0.98)	1.00					
pm1029	(0.17)	0.01	(0.09)	(0.45)	0.02	(0.01)	1.00				
рор	0.32	0.10	0.32	0.10	0.06	(0.07)	(0.10)	1.00			
avginc	0.41	0.22	0.41	0.46	0.26	(0.19)	(0.53)	0.22	1.00		
density	0.66	0.75	0.78	0.56	0.54	(0.56)	(0.06)	(0.08)	0.34	1.00	
shall	(0.21)	(0.18)	(0.21)	0.04	(0.18)	0.21	(0.28)	(0.12)	(0.00)	(0.11)	1.00

We shall now proceed with detailed analysis of our panel dataset, to fulfill the stated objective. We have conducted Entity Fixed effects modeling and Time-fixed effects modeling for violent-crime rate, murder rate and robbery-rates as dependent variables separately.

Hausmann Tests were conducted in each case to check the presence of endogeneity and to conclude the requirement/ non-requirement of random-effects model for each analysis.

The models, their analysis, and conclusions have been elaborated below:

METHODOLOGY

- Run Pooled OLS model, Entity- Fixed Effect model, Time-Effect-FE model for 3 dependent variables: Violence, Murder, Robbery Crime
- Perform log transformation on the following variables to improve model accuracy: Violence, Murder, Robber, Incarceration Rate, Population, Average Income, and Density.

RESULTS

***** Findings on Violence Crime

- ➤ The result showed that States with active shall-policy would witness a decrease in violence crime by 25%. The effect was significant at 99% confidence level.
- ➤ We initially expected incarceration policy would help decrease violence crime in local areas. However, the Pooled OLS model showed contradicting outcome. Implementing incarceration policy would lead to a surge in violence crime by 66% compared to when the policy was not enforced.
- ➤ The assumption of Pooled OLS Model where there would be no unobserved heterogeneity across all 51 entities was violated, since the huge effect of shall policy from the model did not align with real-life observation. Therefore, Pooled OLS was not recommended to use.
- ➤ The unreliable results might be influenced by difference between the States in terms of other government policies, cultural practices, or unemployment rate. The mentioned

1. Pooled OLS Model

factors could be omitted from the model leading to upward bias. As a result, it was necessary for the model to consider unobserved heterogeneity.

. reg log_vio log_incar pb1064 pw1064 pm1029 log_pop log_inc log_dens shall

Source	SS	df	MS		=	1,173
				F(8, 1164)	=	326.48
Model	337.999141	8	42.2498926	Prob > F	=	0.0000
Residual	150.632417	1,164	.129409293	R-squared	=	0.6917
				Adj R-squared	=	0.6896
Total	488.631558	1,172	.416921125	Root MSE	=	.35974

log_vio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
log_incar	.6641384	.0246988	26.89	0.000	.6156793	.7125975
pb1064	0108803	.0142213	-0.77	0.444	0387826	.017022
pw1064	006234	.0069759	-0.89	0.372	0199207	.0074527
pm1029	.1299967	.0098634	13.18	0.000	.1106447	.1493487
log_pop	.1626314	.0121509	13.38	0.000	.1387913	.1864714
log_inc	.616552	.0879788	7.01	0.000	.4439372	.7891668
log_dens	.0637798	.0092361	6.91	0.000	.0456586	.0819011
shall	250214	.0275038	-9.10	0.000	3041765	1962515
_cons	6248042	.465095	-1.34	0.179	-1.537323	.2877141

2. Entity Fixed Effect Model

- ➤ In Entity Fixed Effect model, States which implemented shall policy were able to decrease violence crime by 3.9%
- ➤ The effect of incarceration policy on violence crime was minimal at 0.07%, which did not show significant impact.
- ➤ Variables such as: population, income, and density showed insignificant influence on violence crime since their p-values were much higher than significance level at 5%.
- ➤ Even though, Entity-Fixed Effect did solve unobserved heterogeneity problem in Pooled OLS, the model still ignored the potential changes in violence crime across the years.

3. Time Fixed Effect Model

An F-test was conducted to determine whether violence crime was influenced over the years. The test result showed significant effect results at 99% confidence level.

. xtreg log vio log incar pb1064 pw1064 pm1029 log pop log inc log dens shall, fe Fixed-effects (within) regression Number of obs = 1.173 Group variable: stateid Number of groups = 51 R-sq: Obs per group: within = 0.220123 between = 0.009623.0 avg = overall = 0.0104F(8,1114) 39.30 corr(u i, Xb) = -0.9018Prob > F 0.0000 log_vio Coef. Std. Err. t P>|t| [95% Conf. Interval] log_incar -.0719767 .0278179 -2.590.010 -.1265581 -.0173952 pb1064 .0933273 .0152817 0.000 .0633431 .1233115 6.11 .0397041 .0052568 7.55 0.000 .0293897 pw1064 .0500186 pm1029 -.0600557 .0083853 -7.16 0.000 -.0765084 -.0436029 log pop -1.017077 1.455481 -0.70 0.485 -3.872871 1.838717 log_inc .1071861 .0863504 1.24 0.215 - N622417 .2766139 log dens .8696474 1.472712 0.59 0.555 -2.019955 shall -.039219 .0191353 -2.05 0.041 -.0767642 -.0016737 7.412193 5.308396 1.40 0.163 -3.003388 17.82777 sigma u 1.4556259 sigma e .16048693 rho .98799029 (fraction of variance due to u i)

F test that all $u_i=0$: F(50, 1114) = 94.69

Prob > F = 0.0000

```
(1) d77 = 0
(2)
     d78 = 0
(3)
     d79 = 0
     d80 = 0
     d81 = 0
     483 = 0
(8)
     d84 = 0
(9)
     d85 = 0
(10)
     d86 = 0
(11)
     d87 = 0
(12)
     d88 = 0
(13)
     d89 = 0
(14)
     d90 = 0
(15)
     d91 = 0
(16)
     d92 = 0
(17)
     d93 = 0
(18)
     d94 = 0
(19)
     d95 = 0
(20)
     d96 = 0
(21) d97 = 0
(22) d98 = 0
(23) 0.d99 = 0
     Constraint 23 dropped
     F(22, 1092) = 18.03
          Prob > F = 0.0000
```

- ➤ In Time-Fixed Effect Model, shall-policy implementation decreased violence crime by 2.3%. However, its effect was insignificant at 5% significance level.
- The impact of incarceration policy on violence crime (at 0.097% reduction rate) was also minimal.
- According to the model result, demographic variable "pm1029" had great effect on violence crime. Specifically, when pm1029 increased by 1%, violence crime would go up by 7.5%.

4. Hausmann Test - Endogeneity Problem Detection

- ➤ The Hausmann Test revealed that the null hypothesis would be rejected. As a result, it was concluded that the assumption of no endogeneity was incorrect.
- From the findings, Random-Effect Model would not be suitable due to endogeneity problem. In addition, the panel data comprised of information across all 50 States, not random samples. As a result, running Random-Effect Model would not be recommended.

log_vio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
log incar	0974403	.0282725	-3.45	0.001	1529149	041965
pb1064	0107897	.0192508	-0.56	0.575	0485624	.026983
pw1064	0022356	.0072098	-0.31	0.757	0163823	.011911
pm1029	.0751388	.0148364	5.06	0.000	.0460278	.104249
log pop	.9923086	1.317948	0.75	0.452	-1.593688	3.57830
log inc	.2151159	.0974623	2.21	0.028	.0238814	.406350
log dens	-1.226726	1.334911	-0.92	0.358	-3.846006	1.39255
shall	0233768	.017304	-1.35	0.177	0573297	.01057
d77	605799	.1068217	-5.67	0.000	8153981	396
d78	5471158	.101879	-5.37	0.000	7470165	34721
d79	4286484	.098841	-4.34	0.000	6225881	234708
d80	3605878	.0980204	-3.68	0.000	5529174	168258
d81	3544642	.0948857	-3.74	0.000	5406431	168285
d82	3617006	.0908778	-3.98	0.000	5400154	183385
d83	3887045	.0857372	-4.53	0.000	5569328	220476
d84	3579931	.0793649	-4.51	0.000	513718	202268
d85	3056261	.0746338	-4.10	0.000	452068	159184
d86	2241027	.0696793	-3.22	0.001	3608232	087382
d87	2201839	.0651538	-3.38	0.001	3480247	092343
d88	1541368	.0604567	-2.55	0.011	2727611	035512
d89	094503	.0562773	-1.68	0.093	2049269	.01592
d90	.0431711	.0447964	0.96	0.335	0447257	.131067
d91	.1079641	.0421593	2.56	0.011	.0252416	.190686
d92	.1453423	.0386601	3.76	0.000	.0694859	.221198
d93	.1757429	.0365823	4.80	0.000	.1039633	.247522
d94	.1677484	.0341359	4.91	0.000	.100769	.234727
d95	.1702824	.0319483	5.33	0.000	.1075954	.232969
d96	.1218765	.0301324	4.04	0.000	.0627526	.181000
d97	.1061023	.0287698	3.69	0.000	.0496519	.162552
d98	.0535332	.0277378	1.93	0.054	0008922	.107958
d99	0	(omitted)				
_cons	. 920053	4.79769	0.19	0.848	-8.49368	10.3337
sigma u	2.0386539					
sigma e	.13882927					
rho	.995384	(fraction	of varia	nce due t	o u_i)	

. hausman Random Vio Entity FE Vio

1		cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	Random_Vio	Entity_FE_~o	Difference	S.E.
log_incar	0004565	0719767	.0715201	.0032698
pb1064	.1086669	.0933273	.0153395	
pw1064	.036811	.0397041	0028931	.0010286
pm1029	0303625	0600557	.0296931	
log_pop	.151121	-1.017077	1.168198	
log_inc	.0855652	.1071861	0216209	.0111817
log dens	.0330983	.8696474	8365491	
shall	0708977	039219	0316787	.0026694

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

5. Model Comparison

- ➤ In summary, Pooled OLS Model's result was unreliable as it did not capture within-state differences. <u>Due to this fatal flaws</u>, <u>Pooled OLS Model would not be conducted to study the effect of shall policy and incarceration policy on Robbery & Murder Crime</u>
- ➤ Time Fixed-Effect Model was more accurate than Entity Fixed-Effect Model as it captured the trend of violence crimes over the years.

❖ Findings on Robbery Crime

1. Entity Fixed-Effect Model

- ➤ The model showed that shall policy had insignificant effect on robbery. As a result, it was concluded that allowing the carry of concealed handgun did not deter robbery crime.
- ➤ However, implementing incarceration policy revealed to decrease level of robbery. 1% increase in incarceration would lead to 0.129% decrease in robbery incidents
- ➤ Other demographic factors such as: *pb1064*, *pw1064*, *pop*, *and density* also made a significant impact in reducing robbery.

	I		
Variable	Pooled_OLS~o	Entity_FE_~o	Time_FE_Vio
log_incar	0.664***	-0.072**	-0.097***
pb1064	-0.011	0.093***	-0.011
pw1064	-0.006	0.040***	-0.002
pm1029	0.130***	-0.060***	0.075***
log_pop	0.163***	-1.017	0.992
log_inc	0.617***	0.107	0.215*
log_dens	0.064***	0.870	-1.227
shall	-0.250***	-0.039*	-0.023

. xtreg log_re	ob log_incar p	pb1064 pw106	4 pm1029	log_pop	log_inc log_c	dens shall,
Fixed-effects	Fixed-effects (within) regression					1,173
Group variable	: stateid			Number (of groups =	51
R-sq:				Obs per	group:	
within =	= 0.0704				min =	23
between =	0.0655				avg =	23.0
overall =	= 0.0624				max =	23
				F(8,111	4) =	10.55
annu (m. d. Vin)	- 0.00CE			Prob > 1	•	
corr(u_i, Xb)	= -0.9965			Prob >	=	0.0000
log_rob	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
log_incar	2194706	.0366321	-5.99	0.000	2913463	1475948
pb1064	.1117079	.0201238	5.55	0.000	.0722231	.1511926
pw1064	.0362451	.0069225	5.24	0.000	.0226625	.0498277
pm1029	0141734	.0110422	-1.28	0.200	0358392	.0074925
log_pop	-7.309897	1.916654	-3.81	0.000	-11.07056	-3.549237
log_inc	.1181901	.1137108	1.04	0.299	1049214	.3413015
log_dens	7.53175	1.939345	3.88	0.000	3.726569	11.33693
shall	0226663	.0251983	-0.90	0.369	0721078	.0267753
_cons	29.93769	6.990375	4.28	0.000	16.22191	43.65348
sigma u	10.941568					
sigma e	.21133763					
rho	.99962707	(fraction	of varia	nce due to	o u_i)	

F test that all $u_i=0$: F(50, 1114) = 99.24

 $\texttt{Prob} \, > \, \texttt{F} \, = \, 0.0000$

2. Time Fixed Effect Model

An F-test was conducted to determine whether there was a significant change of robbery level over the years. The result confirmed the notion. There was time effect on the variation of robbery

- > In Time Fixed Effect model, shall policy again showed no significant impact on robbery.
- An 1% increase in incarceration would lead to a 0.215% decrease in robbery
- ➤ *Male population* revealed to affected robbery level significantly. Specially, a 1% decrease in male population age 10-26 would reduce robbery by almost 10%.
- Robbery crimes tended to increase over time, especially from 1983 onwards. Especially, robbery peaked from 1996 to 1999.

```
(1) d77 = 0
(2) d78 = 0
(3) d79 = 0
(4) d80 = 0
(6) d82 = 0
(8) d84 = 0
(9) d85 = 0
(10) d86 = 0
(11) d87 = 0
(12) d88 = 0
(13) d89 = 0
(14) d90 = 0
(15) d91 = 0
(16) d92 = 0
(17) d93 = 0
(18) d94 = 0
(19) d95 = 0
(20) d96 = 0
(21) d97 = 0
(22) d98 = 0
(23) d99 = 0
     Constraint 7 dropped
     F(22, 1092) = 13.96
```

Prob > F = 0.0000

Prob > F

r(u_1, Xb)	0.9741			Prob > r		0.000
log_rob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interva
log incar	2157874	.0384035	-5.62	0.000	2911404	14043
pb1064	0079249	.026149	-0.30	0.762	0592328	.0433
pw1064	0158479	.0097934	-1.62	0.106	0350639	.0033
pm1029	.0993936	.0201527	4.93	0.000	.0598512	.1389
log pop	-2.729072	1.790212	-1.52	0.128	-6.241715	.78357
log_inc	.6088091	.1323862	4.60	0.000	.349049	.86856
log_dens	2.815311	1.813252	1.55	0.121	7425414	6.3731
shall	.0087874	.0235046	0.37	0.709	0373319	.05490
d77	1890711	.0486635	-3.89	0.000	2845556	09358
d78	1672227	.0452557	-3.70	0.000	2560207	07842
d79	045395	.0427403	-1.06	0.288	1292574	.03846
d80	.0785264	.0416428	1.89	0.060	0031824	.16023
d81	.1127817	.0399433	2.82	0.005	.0344073	.19115
d82	.081389	.0381504	2.13	0.033	.0065326	.15624
d83	0	(omitted)				
d84	0543896	.0387195	-1.40	0.160	1303626	.02158
d85	0216548	.0412383	-0.53	0.600	10257	.05926
d86	.0573019	.0451343	1.27	0.205	0312579	.14586
d87	.0295724	.0495192	0.60	0.551	0675912	.1267
d88	.0678316	.0548003	1.24	0.216	0396942	.17535
d89	.1268553	.0601357	2.11	0.035	.0088607	.24484
d90	.2497605	.0734363	3.40	0.001	.1056683	.39385
d91	.3826061	.0777602	4.92	0.000	.2300298	.53518
d92	.3822642	.0834256	4.58	0.000	.2185716	.54595
d93	.4060304	.0874478	4.64	0.000	.2344457	.57761
d94	. 4233977	.0924189	4.58	0.000	.2420591	. 60473
d95	.4351475	.0972926	4.47	0.000	.2442458	. 62604
d96	.3843262	.1021164	3.76	0.000	.1839597	.58469
d97	.3192357	.1067117	2.99	0.003	.1098525	.52861
d98	.2216634	.11205	1.98	0.048	.0018057	.4415
d99	.1475085	.1164597	1.27	0.206	0810015	.37601
_cons	13.62581	6.504961	2.09	0.036	.8621736	26.389
sigma_u	4.0446212					
sigma_e	.18857632					
rho	.99783092	(fraction	of varia	nce due to	u_i)	

corr(u i, Xb) = -0.9741

0.0000

3. Hausman Test – Endogeneity Problem Detection

➤ Based on Hausman test, there was endogeneity in one of the variables at 10% significance level. The finding was alarming, thus running Random-Effect Model would not be suggested.

4. Model Comparison

- ➤ In both Entity Fixed-Effect and Time Fixed-Effect model, allowing the carry of concealed handgun did not reduce robbery rate.
- As Time Fixed Effect were able to capture the changes of robbery over time, it was the preferred model.
- ➤ In Time Fixed Effect mode, factors that could diminish robbery incidents were to: incarceration rate, male population within the age of 10-29, and average income level.

. hausman Random_Rob Entity_FE_Rob

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	Random_Rob	Entity_FE_~b	Difference	S.E.
log_incar	1402204	2194706	.0792502	.0017998
pb1064	.1242713	.1117079	.0125635	
pw1064	.0312081	.0362451	005037	.0011296
pm1029	.0157303	0141734	.0299037	
log_pop	.3404792	-7.309897	7.650376	
log_inc	.1840321	.1181901	.065842	.0083059
log_dens	.1519547	7.53175	-7.379795	
shall	0538091	0226663	0311428	.0022552

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(8) = $(b-B)'[(V_b-V_B)^(-1)](b-B)$ = 14.46Prob>chi2 = 0.0706(V b-V B is not positive definite)

Variable	Entity_FE_~b	Time_FE_Rob
log_incar	-0.219***	-0.216***
pb1064	0.112***	-0.008
pw1064	0.036***	-0.016
pm1029	-0.014	0.099***
log_pop	-7.310***	-2.729
log_inc	0.118	0.609***
log_dens	7.532***	2.815
shall	-0.023	0.009
	ı	

Findings on Murder rate

1. Entity Fixed-Effect Model

- ➤ Both shall and incarceration rate had significant impact on murder rate.
- > Specifically, implementing shall-policy would lead to a reduction in murder incidents by at least 7%. Additionally, an 1% increase in incarceration would reduce murder by 0.16%
- ➤ *Income and density* also showed to affect the murder rate considerably. The more crowded, the more likelihood that murder rate would increase. Same went for the effect of income on murder rate.

2. Time Fixed-Effect Model

An F-test was conducted to determine whether there was a significant change of murder rate over the years. The result confirmed the notion. There was time effect on the variation of murder incidents.

```
. xtreg log_mur log_incar pb1064 pw1064 pm1029 log_pop log_inc log_dens shall, fe
Fixed-effects (within) regression
                                            Number of obs =
                                                                   1.173
                                           Number of groups =
Group variable: stateid
                                            Obs per group:
    within = 0.1609
                                                                     23
                                                        min =
    between = 0.0047
                                                                    23.0
    overall = 0.0043
                                            F(8,1114)
                                                                   26.69
corr(u_i, Xb) = -0.9989
                                            Prob > F
                                                                  0.0000
    log mur
                  Coef. Std. Err.
                                    t
                                                     [95% Conf. Interval]
  log_incar
              -.1677261 .0378538
                                                   -.2419988
                                   -4.43
                                            0.000
                                                               -.0934534
     pb1064
               -.020617
                        .0207949
                                    -0.99
                                            0.322
                                                    -.0614185
                                                                .0201846
     pw1064
               .0169534
                        .0071533
                                    2.37
                                            0.018
                                                    .0029178
     pm1029
               .0066707
                         .0114105
                                    0.58 0.559
                                                    -.0157177
                                                                .0290591
    log pop
              -9.983194
                        1.980572
                                    -5.04
                                           0.000
                                                    -13.86927
                                                               -6.097121
               .4594353
                         .1175029
                                     3.91
                                            0.000
                                                     .2288834
                                                                . 6899872
    log_inc
   log_dens
               9.666306
                         2.00402
                                   4.82
                                           0.000
                                                     5.734227
                                                                13.59838
              -.0744373 .0260387 -2.86 0.004
                                                    -.1255277
               35.79388 7.223495
                                   4.96 0.000
                                                     21.62069
                                                                49.96707
              14.224331
    sigma e
              .21838547
              .99976434 (fraction of variance due to u_i)
F test that all u_i=0: F(50, 1114) = 59.59
                                                        Prob > F = 0.0000
```

```
(2) d78 = 0
     d79 = 0
(3)
(4) d80 = 0
     d81 = 0
     d82 = 0
(9) d85 = 0
(10) d86 = 0
(11) d87 = 0
(12) d88 = 0
(13)
    d89 = 0
(14) d90 = 0
     d91 = 0
(17) d93 = 0
(18) d94 = 0
(19) d95 = 0
(20) d96 = 0
(21) d97 = 0
    d98 = 0
(23) d99 = 0
     Constraint 7 dropped
     F( 22, 1092) =
                       7.90
```

Prob > F = 0.0000

estimates store Entity FE Mur

- ➤ In Time Fixed Effect model, at 5% significant level shall policy did not affect murder rate
- ➤ On the other hand, a 1% increase in incarceration would reduce murder incidents by 0.1%
- ➤ Density and male population could make positive contribution in murder rate deduction.
- ➤ The result showed that 1% increase in the male population within age 10-20 would increase murder level by 0.066%. Additionally, 1% increase in density unit would also lead to a surge of 6.22% in murder rate.
- ➤ In terms of time effect, murder rate slowly increased with its peak in 1993. After that, it consistently declined onward.

F(30,1092) = 13.88 $corr(u_i, Xb) = -0.9973$ Prob > F = 0.0000

	I					
log_mur	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
log_incar	1008015	.041721	-2.42	0.016	1826638	0189392
pb1064	0763267	.0284078	-2.69	0.007	1320668	0205866
pw1064	0104361	.0106394	-0.98	0.327	031312	.0104399
pm1029	.0667335	.0218936	3.05	0.002	.0237752	.1096918
log_pop	-6.618268	1.944858	-3.40	0.001	-10.43435	-2.802186
log_inc	.8795447	.1438223	6.12	0.000	.5973454	1.161744
log_dens	6.298871	1.96989	3.20	0.001	2.433674	10.16407
shall	0393914	.025535	-1.54	0.123	0894947	.0107119
d77	0334562	.0528672	-0.63	0.527	137189	.0702766
d78	0322368	.0491652	-0.66	0.512	1287056	.0642321
d79	.0430109	.0464324	0.93	0.354	0480959	.1341177
d80	.0933175	.0452401	2.06	0.039	.0045502	.1820848
d81	.1105017	.0433938	2.55	0.011	.025357	.1956464
d82	.0469159	.041446	1.13	0.258	0344069	.1282387
d83	0	(omitted)				
d84	1085351	.0420643	-2.58	0.010	191071	0259991
d85	0582942	.0448006	-1.30	0.193	1461992	.0296109
d86	.0189646	.0490332	0.39	0.699	0772454	.1151747
d87	.0072997	.0537969	0.14	0.892	0982574	.1128568
d88	.0261631	.0595342	0.44	0.660	0906512	.1429774
d89	.0352976	.0653305	0.54	0.589	0928899	.1634851
d90	.127694	.07978	1.60	0.110	0288456	.2842335
d91	.1845644	.0844775	2.18	0.029	.0188079	.3503209
d92	.1574701	.0906323	1.74	0.083	020363	.3353032
d93	.2525602	.095002	2.66	0.008	.0661531	.4389672
d94	.1500012	.1004024	1.49	0.135	0470023	.3470047
d95	.174963	.1056972	1.66	0.098	0324296	.3823557
d96	.1182881	.1109377	1.07	0.287	0993871	.3359632
d97	.0248569	.11593	0.21	0.830	2026137	.2523276
d98	0269131	.1217294	-0.22	0.825	2657631	.2119368
d99	0841967	.12652	-0.67	0.506	3324465	.1640531
_cons	23.14204	7.066889	3.27	0.001	9.275822	37.00826
sigma u	9.2815763					
sigma_u sigma e	.20486641					
rho	.99951305	(fraction	of varie	nce due	to n i)	
1110	.99931303	(TIACCION	or varia	nce uue	u_1)	

3. Hausman Test – Endogeneity Problem Detection

➤ Based on Hausman test, there was endogeneity in one of the variables. As a result, running Random-Effect Model would not be suggested.

. hausman Random_Mur Entity_FE_Mur

	(b)	(B)	(b-B)	sqrt(diag(V b-V B))
	Random_Mur	Entity_FE_~r	Difference	S.E.
log_incar	.0031395	1677261	.1708656	.00785
pb1064	.0524531	020617	.0730701	
pw1064	.0051365	.0169534	0118169	.0023179
pm1029	.0620493	.0066707	.0553786	.0003659
log_pop	.125005	-9.983194	10.1082	
log_inc	.2500766	.4594353	2093587	.0269747
log_dens	.0065112	9.666306	-9.659794	
shall	1123997	0744373	0379624	.0076552

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(8) = (b-B)'[($\nabla_b - \nabla_B$)^(-1)](b-B) = 221.42 Prob>chi2 = 0.0000 ($\nabla_b - \nabla_B$ is not positive definite)

4. Model Comparison

- ➤ Both models showed that implementing incarceration would reduce murder rate significantly.
- > Besides that, demographic variables such as: income and density would also affect murder incidents across 50 States.
- Among the 2 models, Time Fixed Effect was more preferred as it was able to capture the effect of time on murder rate variation across the panel data.

Entity_FE_~r	Time_FE_Mur
-0.168*** -0.021	-0.101* -0.076**
0.017*	-0.010
0.007	0.067**
-9.983***	-6.618***
0.459***	0.880***
9.666***	6.299**
-0.074**	-0.039
	-0.168*** -0.021 0.017* 0.007 -9.983*** 0.459***

CONCLUSIONS & IMPLICATIONS

We were able to conclude the following from our analysis:

- Both shall-issues and incarceration policy can reduce violent crime rates, but very minimally.
- Neither the implementation of shall-issue laws nor enforcing increased incarceration seemed to have any effect on robbery rates. However, the percentage of male population aged 10-29 did.
- Shall-issue laws had no significant effect on murder rates but implementing increased incarceration did reduce murder rates in the succeeding year.

LIMITATIONS

The main limitation of our analysis is that we have assumed a linear relationship between the dependent and the regressors. It is indeed possible that better estimates may have been possible by including quadratic terms or even interaction terms.