课程总结

School of Computer Engineering and Science Shanghai University

Instructor: Shengyu Duan

▋期末考试相关说明

✓ 课程评分标准:

- 考勤+作业 (10%)
- 实验 (10%)
- 项目报告 (10%)
- 期末考试 (70%)

✓ 考试题型:

- 填空题,每空1分,共11分;
- 选择题, 每题2分, 共34分;
- 简答题,每题4分,共20分;
- 计算题, 共35分。
- ✔ 开卷考试: 可携带任何纸质材料

课程内容

Section 1: Signals Processing in the Time Domain

<u>Lecture 1:</u> Introduction

<u>Lecture 2:</u> Complex Number

<u>Lecture 3:</u> Linear Time-invariant Systems & Convolution

Section 2: Continuous Time Signals in the Frequency Domain

<u>Lecture 4:</u> Fourier Series

<u>Lecture 5:</u> Fourier Transform

Lecture 6: Sampling

Section 3: Discrete Time Signals in the Frequency Domain

<u>Lecture 7:</u> Discrete Time Fourier Series

Lecture 8: Discrete Time Fourier Transform

两种空间域 四种信号类型 五种转换关系

- 信号的概念: A signal is a pattern of variation of some form (模式+变量)
- 信号的数学表达: Signals are represented as a function of one or more **independent** variables.
- e.g., 声音信号是一维信号, 一维信号即为实信号。

- 信号的分类:
 - 1. 连续时间信号 vs. 离散时间信号

2. 周期信号 vs. 非周期信号

●主观性:连续时间信号是时间间隔无限趋近于0的离散时间信号; 非周期信号是周期趋于无穷大的周期信号。

- 信号的分类(具有主观性):
- 3. 模拟信号 vs. 数字信号(由信号幅度的连续性决定)
- Continuous time analog

- Continuous time digital (or quantized)
 - binary sequence, where the values of the function can only be one or zero.

Discrete time analog

- Discrete time digital
 - binary sequence, where the values of the function can only be one or zero.

- 信号的分类:
- 4. 奇信号 vs. 偶信号

● 信号奇偶分解:

信号
$$x(t)$$
的偶信号部分: $x_e(t) = \frac{1}{2}(x(t) + x(-t))$

信号
$$x(t)$$
的奇信号部分: $x_o(t) = \frac{1}{2}(x(t) - x(-t))$

● 信号的能量:

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

•信号的功率:

$$P_{x} = \frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt$$

●一般,我们对非周期信号求能量,对周期信号求功率

- 几种典型信号:
- 1. 单位阶跃信号

易错点:

$$f(t) = u(t-2) - u(t-4)$$

$$f[n] = u[n-2] - u[n-4]$$

- 几种典型信号:
- 2. 单位冲激信号(信号面积等于1)

连续时间单位冲激信号

离散时间单位冲激信号

$$\delta [n] = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

- 几种典型信号:
- 单位阶跃信号与单位冲激信号的关系

连续时间:

单位冲激信号是单位阶跃信号的一阶微分

$$\frac{du}{dt} = \delta(t)$$

$$\int_{-\infty}^{t} \delta(t)dt = u(t)$$

离散时间:

单位冲激信号是单位阶跃信号的一阶差分

$$\delta [n] = u[n] - u[n-1]$$

$$u[n] = \sum_{k=0}^{\infty} \delta [n-k]$$

$$u[n] = \sum_{m=-\infty}^{n} \delta [m]$$

● 重要公式: 欧拉公式

$$\cos\left(\omega t\right) = \frac{e^{jwt} + e^{-(jwt)}}{2}$$

$$sin\left(\omega t\right) = \frac{e^{jwt} - e^{-(jwt)}}{2j}$$

$$e^{jwt} = \cos(\omega t) + j\sin(\omega t)$$

- 复数的表示形式: z = x + jy,复数信号表示二维信号;
- 复数的直角坐标/极坐标表示:

$$x + jy = r\cos\theta + jr\sin\theta = re^{j\theta}$$

直角坐标 极坐标

$$\begin{cases} x = r.\cos(\theta) \\ y = r.\sin(\theta) \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = atan2(y, x) \end{cases}$$

● 复指数信号基波频域与基波周期:

$$x(t) = e^{j\omega_0 t}$$
, fundamental period $T_0 = \frac{2\pi}{|\omega_0|}$

fundamental frequency
$$\omega_0 = \frac{2\pi}{T_0}$$

 ω_0 : rad / sec

● 复指数信号的谐波信号:

$$\{\phi_k(t)=e^{jk\omega_0t}, k=0,\pm 1,\pm 2,\ldots\}$$
 Harmonical period $T_k=\frac{2\pi}{|k\omega_0|}$

● 要求会计算复指数信号或正余弦信号的基波周期

Harmonical frequency $|k\omega_0|$

● 重要概念:

对离散时间信号,频率为 ω_0 的复指数信号与频率为 ω_0 +m.2 π 的复指数信号是同一个信号(m为整数); 对连续时间信号,上述关系不成立。

Discrete-time:

$$e^{j(\omega_0 + m \cdot 2\pi)n} = \cos(\omega_0 n + m \cdot 2\pi n) + j \sin(\omega_0 n + m \cdot 2\pi n)$$
$$= \cos(\omega_0 n) + j \sin(\omega_0 n) \text{ (as } m.n \text{ is an integer)}$$
$$= e^{j\omega_0 n}$$

Continuous-time:

$$e^{j(\omega_0 + m \cdot 2\pi)t} = \cos(\omega_0 t + m \cdot 2\pi t) + j\sin(\omega_0 t + m \cdot 2\pi t)$$

 $\neq \cos(\omega_0 t) + j\sin(\omega_0 t)$ (as *m.t* may not be an integer)
 $= e^{j\omega_0 t}$

● 上述概念的意义:

For periodic discrete-time:

$$e^{j(\omega_0 + m \cdot 2\pi)n} = e^{j\omega_0 n}$$

$$\Rightarrow e^{j(k\omega_0+2\pi)n} = e^{jk\omega_0n}$$

$$\Rightarrow e^{j(k\omega_0+N\omega_0)n} = e^{j((k+N)\omega_0)n} = e^{jk\omega_0n}$$

对周期为N的离散时间复指数信号,第k+N次谐波与第k次谐波相同

=> 对周期为N的离散时间信号进行傅里叶级数展开,则只有N个不同的频率分量,频 域表示具有周期性。

● 上述概念的另一个意义: 判断离散时间信号是否具有周期性:

$$e^{j(\omega_0 + m \cdot 2\pi)n} = e^{j\omega_0 n}$$

$$\Rightarrow e^{j(\omega_0 n + m \cdot 2\pi)} = e^{j\omega_0 n}$$

若具有周期性(周期为N),则:

$$e^{j(\omega_0 n + m \cdot 2\pi)} = e^{j\omega_0 n} = e^{j(\omega_0 n + \omega_0 N)}$$

对具有周期性的离散时间信号, ω_0 N=2 π m, 则基波频域满足 $\omega_0 = 2\pi \left(\frac{m}{\kappa}\right)$ (m, N) 整数)

例: $x[n] = \cos(\frac{1}{8}n - \pi)$ 不是周期信号,因为 $\omega_0 = \frac{1}{8}$,不满足 $\omega_0 = 2\pi \left(\frac{m}{N}\right)$ (m, N为整数

● 卷积的定义:

巻积和:
$$x[n]*h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

卷积积分:
$$x(t)*h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

●卷积的意义: 计算线性时不变系统的输出

x[n]、x(t)为输入信号,h[n]、h(t)为系统的单位冲激响应(输入为单位冲激信号时系统的输 出),则系统的输出信号利用上述卷积求解。

● 卷积的动态过程: 反转再平移, 直到两者出现重叠, 计算重叠部分相乘、累加或积 分结果。

In this example, the red-colored "pulse", $g(\tau)$, is an even function ($g(-\tau) = g(\tau)$), so convolution is equivalent to correlation. A snapshot of this "movie" shows functions $g(t-\tau)$ and $f(\tau)$ (in blue) for some value of parameter t, which is arbitrarily defined as the distance from the $\tau=0$ axis to the center of the red pulse. The amount of yellow is the area of the product $f(\tau) \cdot g(t-\tau)$, computed by the convolution/correlation integral. The movie is created by continuously changing t and recomputing the integral. The result (shown in black) is a function of t, but is plotted on the same axis as au, for convenience and comparison.

- 系统性质判断
- 无记忆系统:系统的输出完全取决于当前时刻的输入;
- 2)时不变系统:系统特性不随时间改变,即如果系统对输入信号x(t)的输出是y(t),则系统对输入信号 $x(t-t_0)$ 的输出为 $y(t-t_0)$;
- 3) 线性系统: 如果输入信号是两个信号的加权和,那么输出信号也是这两个输入信号对应输出的加权 和;
- 因果系统:系统的输出只取决于现在的输入及过去的输入;
- 5)稳定系统: 当系统的输入为在任意时间都有界时,系统的输出也是有界的。

● 系统时不变性的判断

例:系统y[n] = x[-n],先平移再输入:平移后x[n]变为 $x[n-n_0]$,再输入得 $x[-n-n_0]$ n_0 ;

先输入再平移:输入后得x[-n],再平移得变为 $x[-n+n_0]$,因此该系统时变。

诀窍:凡是系统对自变量t或n进行尺度变化,系统一定时变。

余弦信号的线性组合

● 傅里叶的核心思想: 任意连续时间周期信号都可表示成若干个相互呈谐波关系的正

$$x(t) = A_0 + \sum_{k=1}^{\infty} [A_k \cos(k\omega_0 t) + B_k \sin(k\omega_0 t)]$$

● 连续时间的周期信号傅里叶级数核心公式:

Fourier series representation (傅里叶级数表示):

$$x(t) = \sum_{k = -\infty} a_k e^{jk\omega_0 t}$$

Fourier series coefficient(傅里叶级数系数):

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jk\omega_0 t} dt$$

- 连续时间周期信号傅里叶级数的三种表示形式:
- 正余弦形式:

$$x(t) = A_0 + \sum_{k=1}^{\infty} [A_k \cos(k\omega_0 t) + B_k \sin(k\omega_0 t)]$$

复指数形式:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}, a_k = \begin{cases} \frac{A_{-k} + jB_{-k}}{2} & k < 0\\ A_0 & k = 0\\ \frac{A_k - jB_k}{2} & k > 0 \end{cases}$$

(3) 幅度-相位形式:

$$x(t) = a_0 + 2\sum_{k=1}^{\infty} A_k' \cos(k\omega_0 t + \theta_k)$$
, $a_k = A_k' e^{j\theta_k}$

● 连续时间周期信号傅里叶级数展开收敛条件: 该信号在一个周期内的能量为有限值

$$\int_{T} \left| x(t) \right|^{2} dt < \infty$$

● 收敛性的判断方法: 狄利赫里条件:

A signal can be represented by Fourier series expansion, if

- (1) it is absolutely integrable,
- (2) it has finite number of maxima & minima in a period
- (3) it has finite number of discontinuities in a period

● 连续时间周期信号傅里叶级数的各种推广:

Periodic

Periodicity

Aperiodic

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

Continuit

● 连续时间周期信号傅里叶级数到连续时间非周期信号傅里叶变换:

Continuit

Periodic

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

Periodicity Aperiodic

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \xrightarrow{T \to \infty, \atop \omega_0 \to 0} x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

$$X(j\omega) = \int_0^{\infty} x(t) e^{-j\omega t} dt$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

● 连续时间周期信号傅里叶级数到离散时间周期信号傅里叶变换:

Periodicity

Continuit

Periodic

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

k具有周期性

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\omega_0 n}$$

Aperiodic

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

ntinuity

Lecture 4, 5, 7, 8: 傅里叶级数与傅里叶变换

● 离散时间周期信号傅里叶级数到离散时间非周期信号傅里叶变换:

ontinuon

screte

 $\underset{\infty}{\text{Periodic}}$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

Aperiodic

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n} \xrightarrow[\omega_0]{N \to \infty, \\ \omega_0 \to 0} x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\omega_0 n} X(e^{j\omega}) = \sum_{n=-\infty} x[n] e^{-j\omega n}$$

Periodicity

● 时域连续、离散、周期、非周期对应频域特点:

Periodic in time domain

→ Discrete in frequency domain

Aperiodic in time domain ↔ Continuous in frequency domain

Continuous in time domain

→ Aperiodic in frequency domain

Discrete in time domain

→ Periodic in frequency domain

● 傅里叶级数、傅里叶变换转换关系:

$$X(j\omega) = 2\pi \sum_{k=-\infty}^{\infty} a_k \, \delta(\omega - k\omega_0)$$

$$X(e^{j\omega}) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

●傅里叶级数、傅里叶变换常用性质

	连续时间傅里叶级数	连续时间傅里叶变换	离散时间傅里叶级数	离散时间傅里叶变换
	$x(t) \overset{FS}{\leftrightarrow} a_k$	$x(t) \stackrel{F}{\leftrightarrow} X(j\omega)$	$x[n] \overset{FS}{\leftrightarrow} a_k$	$x[n] \stackrel{F}{\leftrightarrow} X(e^{j\omega})$
线性	$Ax(t) + By(t) \stackrel{FS}{\leftrightarrow} Aa_k + Bb_k$	$ax(t) + by(t) \stackrel{F}{\leftrightarrow} aX(j\omega) + bY(j\omega)$	$Ax[n] + By[n] \stackrel{FS}{\leftrightarrow} Aa_k + Bb_k$	$ax[n] + by[n] \stackrel{F}{\leftrightarrow} aX(e^{j\omega}) + bY(e^{j\omega})$
时移	$x(t-t_0) \stackrel{FS}{\leftrightarrow} a_k e^{-jk\omega_0 t_0}$	$x(t-t_0) \stackrel{F}{\leftrightarrow} X(j\omega)e^{-j\omega t_0}$	$x[n-n_0] \stackrel{FS}{\leftrightarrow} a_k e^{-jk\omega_0 n_0}$	$x[n-n_0] \stackrel{F}{\leftrightarrow} X(e^{j\omega})e^{-j\omega n_0}$
频移	$x(t)e^{jM\omega_0t} \overset{FS}{\leftrightarrow} a_{k-M}$	$x(t)e^{j\omega_0t} \stackrel{F}{\leftrightarrow} X(j(\omega-\omega_0))$	$x[n]e^{jM\omega_0n} \overset{FS}{\leftrightarrow} a_{k-M}$	$x[n]e^{j\omega_0n} \stackrel{F}{\leftrightarrow} X(e^{j(\omega-\omega_0)})$
时间反转	$x(-t) \stackrel{FS}{\leftrightarrow} a_{-k}$	$x(-t) \stackrel{F}{\leftrightarrow} X(-j\omega)$	$x[-n] \stackrel{FS}{\leftrightarrow} a_{-k}$	$x[-n] \stackrel{F}{\leftrightarrow} X(e^{-j\omega})$
尺度变换	x(αt) ↔ α _k (此时α _k 对应的频率由kω ₀ 变为 kω ₀ α)	$x(at) \stackrel{F}{\leftrightarrow} \frac{1}{ a } X\left(\frac{j\omega}{a}\right)$	$x_{(m)}[n] \overset{FS}{\leftrightarrow} \frac{1}{m} a_k$ (m 为大于0的整数,此时 a_k 对应的频 率由 $k\omega_0$ 变为 $\frac{\omega_0}{m} \alpha$)	$x_{(k)}[n] \overset{F}{\leftrightarrow} X ig(e^{jk\omega} ig)$ (k 为大于 0 的整数)
卷积	$\int_{T} x(\tau)y(t-\tau)d\tau \overset{FS}{\leftrightarrow} Ta_{k}b_{k}$	$x(t) * h(t) \stackrel{F}{\leftrightarrow} X(j\omega)H(j\omega)$	$\sum_{r=\langle N\rangle} x[r]y[n-r] \stackrel{FS}{\leftrightarrow} Na_k b_k$	$x[n] * h[n] \stackrel{F}{\leftrightarrow} X(e^{j\omega})H(e^{j\omega})$
乘法	$x(t)y(t) \stackrel{FS}{\leftrightarrow} a_k * b_k$	$s(t)p(t) \stackrel{F}{\leftrightarrow} \frac{1}{2\pi} [S(j\omega) * P(j\omega)]$	$x(t)y(t) \stackrel{FS}{\leftrightarrow} \sum_{l=\langle N \rangle} a_l b_{k-l}$	$x_1[n]x_2[n] \stackrel{F}{\leftrightarrow} \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$
帕斯	$1 c^T$	$\int_{-\infty}^{\infty} \mathbf{r}(t) ^2 dt = \int_{-\infty}^{\infty} \mathbf{r}(t) ^2 dt$	$\frac{1}{\sum_{ x =1}^{2}} \frac{1}{ x ^{2}} = \sum_{ x =1}^{2} \frac{1}{ x ^{2}}$	
瓦尔关系	$\frac{1}{T} \int_0^1 x(t) ^2 dt = \sum_{k = -\infty} a_k ^2$	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$	$\frac{1}{N} \sum_{k=\langle N \rangle} x[n] ^2 = \sum_{k=\langle N \rangle} a_k ^2$	$\sum_{n=-\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$ 32

●傅里叶级数、傅里叶变换常用性质 其它重要性质:

信号奇偶分解:

信号
$$x(t)$$
的偶信号部分: $x_e(t) = \frac{1}{2}(x(t) + x(-t))$ 信号 $x(t)$ 的奇信号部分: $x_o(t) = \frac{1}{2}(x(t) - x(-t))$

奇偶共轭性质:

信号时域表示为实且偶,则频域表示也为实且偶; 信号时域表示为实且奇,则频域表示也为纯虚且奇。

对偶性:

连续时间傅里叶变换的对偶性:
$$x(t) \overset{F}{\leftrightarrow} X(j\omega) = X'(\omega)$$
 $X'(t) \leftrightarrow 2\pi x(-\omega)$

- ●傅里叶级数、傅里叶变换常用性质
- 连续时间傅里叶变换

时域微分:
$$\frac{dx(t)}{dt} \stackrel{F}{\leftrightarrow} j\omega X(j\omega)$$
 (高通)

频域微分:
$$tx(t) \stackrel{F}{\leftrightarrow} j \frac{dX(j\omega)}{d\omega}$$

时域积分:
$$\int_{-\infty}^{t} x(\tau) d\tau \stackrel{F}{\leftrightarrow} \frac{X(j\omega)}{j\omega} + \pi X(0)\delta(\omega)$$
 (低通)

离散时间傅里叶变换

时域一阶差分*:
$$x[n] - x[n-1] \stackrel{F}{\leftrightarrow} \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) (1 - e^{-j\omega}) e^{j\omega n} d\omega$$
 (高通)

频域微分:
$$nx[n] \stackrel{F}{\leftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$$

时域累加*:
$$\sum_{m=-\infty}^{n} x[m] \stackrel{F}{\leftrightarrow} \frac{1}{1-e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$
 (低通)

表 4.2	基本傅里叶变换对	ŀ

	表 4.2 基本傅里叶变换对	
信号	傅里叶变换	傅里叶级数系数 (若为周期的)
∑ a _k e ^{jho} o!	$2\pi\sum_{k=-\infty}^{+\infty}a_{k}\delta(\omega-k\omega_{0})$	a_k
e ^{j,ko} q f	$2\pi\delta(\omega-\omega_0)$	a ₁ =1 a _k =0, 其余 k
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$
$\sin \omega_0 t$	$\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$	$a_k=0$, 其余 k $a_1=-a_{-1}=\frac{1}{2j}$ $a_k=0$, 其余 k
x(t)=1	2πδ(ω)	a ₀ =1, a _k =0, k≠0 (这是对任意 T>0 选择 (的傳里叶级数表示
周期方波 $x(t) = \begin{cases} 1, t < T_1 \\ x(t) = \begin{cases} 0, T_1 < T_2 \end{cases}$ 和 $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0}{k} \frac{T_1}{\delta} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k\omega_0 T_1}{\pi} \right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty}\delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ 对全部 k
$x(t) \begin{vmatrix} 1, & t < T_1 \\ 0, & t > T_1 \end{vmatrix}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(z)$	1	-
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_
$\delta(t-t_0)$	e-jar0	_
$e^{-at}u(t)$, $\Re\{a\}>a$	$\frac{1}{a+j\omega}$	_
$te^{-a}u(t), \Re[a]>0$	$\frac{1}{(a+j\omega)^2}$	-
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re a >0$	$\frac{1}{(a+j\omega)^n}$	

	表 5.2 基本傳量叶变换对				
信号	傅里叶变换	傅里叶级数系数(若为周期的)			
$\sum_{k=(N)} a_k e^{jk(2\pi/N)\pi}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k			
ęiwo n	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{vmatrix} 1, & k = m, m \pm N, m \pm 2N, \cdots \\ 0, & j \neq k \end{vmatrix}$ (b) $\frac{\omega_0}{2\pi}$ 无理數⇒信号是非周期的 (a) $\omega_0 = \frac{2\pi m}{N}$			
cosω ₀ 71	$\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) $	$a_k = \begin{cases} \frac{1}{2}, k = \pm m, \pm m \pm N, \pm m \pm 2N, \cdots \\ 0, \pm k \end{cases}$			
sinω ₀ π	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega - \omega_0 - 2\pi l) $	(b) $\frac{\omega_0}{2\pi}$ 无理數⇒信号是非周期的 (a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \cdots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N \cdots \\ 0, & 4 = 2N \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ 无理數⇒信号是非周期的			
x[n]=1	$2\pi\sum_{l=-\infty}^{+\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1, \ k = 0, \pm N, \ \pm 2N, \cdots \\ 0, \ \text{$\sharp \ \ k} \end{cases}$			
周期方波 $x[n] = \begin{cases} 1, & n \leq N_1 \\ 0, & N_1 < n \leq N/2 \end{cases}$ 和 $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_{k} = \frac{\sin[(2\pi k/N)(N_{1} + \frac{1}{2})]}{N\sin[2\pi k/2N]},$ $k \neq 0, \pm N, \pm 2N, \cdots$ $a_{k} = \frac{2N_{1} + 1}{N}, k = 0, \pm N, \pm 2N, \cdots$			
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$				
$a^nu[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_			
$x[n] \begin{cases} 1, n \leq N_1 \\ 0, n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	-			
$\frac{\sin W_n}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{W_n}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$	1			
$\delta[\pi]$	X(ω)周期的, 周期为 2π				
0[11]	11				

续表 5.2

信号	傅里叶变换	傅里叶级数系数(若为周期的)
<u>u[n]</u>	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$) -
$\delta[n-n_0]$	e ^{-jan} n	_
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\alpha})^2}$	_
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n]<1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

●傅里叶级数、傅里叶变 换常用变换关系

Lecture 6: Sampling

- 信号采样的数学模型: 冲激串采样
- 信号重建的方法: 低通滤波器, 时域 表现为内插

Lecture 6: Sampling

- 奈奎斯特采样定理:
- A band-limited (帯限) continuous-time signal can be sampled and perfectly reconstructed from its samples if the waveform is sampled over twice as fast as it's highest frequency component.

The highest frequency of x(t): ω_M

The highest sampling frequency that may cause aliasing effect (Nyquist rate奈奎斯特率): $\omega_{\rm s} = 2\omega_{\rm M}$

• 混叠现象: When $\omega_s < 2\omega_M$, spectrum overlapped, frequency components confused, resulting in aliasing effect, such that the sampled signal can't be reconstructed by low-pass filtering.

课程要点:

- 复数的直角坐标、极坐标表示; 复指数函数的直角坐标、极坐标表示;
- 对系统的如下性质进行判断:记忆性、因果性、稳定性、时不变性、线性;
- 对信号的周期性进行判断
- 卷积运算
- 不同傅里叶级数表示形式的相互转换;
- 周期信号的傅里叶级数表示:
- 非周期信号的傅里叶变换与逆变换;
- 利用傅里叶级数、傅里叶变换计算系统的输出。
- ●离散时间周期信号傅里叶级数表示;
- ●离散时间非周期信号傅里叶变换与逆变换;
- ●傅里叶级数与傅里叶变换常用性质与变换关系;
- •计算奈奎斯特率。

更多习题、例题参见参考书籍课后习题基本题(本书包含部分基本题的答案)

《信号与系统》(第二版), Alan V. Oppenheim, Alan S. Willsky, with S. Hamid, 刘树棠(译), 西安交通大学出版社

See you soon!

