CE 382 Reinforced Concrete Fundamentals

Bond & Anchorage

Anchorage Bond

- ▶ For a bar subjected to tension
 - It should not be pulled out of concrete

$$\tau_b \ell_b \pi \phi = A_s f_{yd}$$

$$\tau_b \ell_b \pi \phi = \frac{\pi \phi^2}{4} f_{yd}$$

$$\ell_b = \frac{f_{yd}}{4\tau_b} \phi$$

$$\ell_b = C_0 \frac{f_{yd}}{f_{ctd}} \phi$$

Development length in TS500:

$$\ell_b = 0.12 \frac{f_{yd}}{f_{ctd}} \phi \ge 20\phi$$

For plain bars $\geq 40\phi$ If $32 \leq \phi \leq 40$ mm multiply ℓ_b by $\frac{100}{(132-\phi)}$

Introduction

- ▶ Basic assumption of RC Theory
 - Perfect bond between concrete and steel bars
- ▶ Flexural Bond

$$\tau_b u \Delta x = \Delta T = \frac{\Delta M}{Z}$$

$$\tau_b = \frac{\Delta M}{\Delta x} \frac{1}{uz}$$

$$V = \frac{\Delta M}{\Delta x}$$

$$\tau_b = \frac{V}{uz}$$

The Nature of Bond

- ▶ Resistance provided mainly by:
 - Adhesion btw. steel & concrete
 - ▶ Friction btw. steel & concrete
 - Bearing of deformations on steel surface against surrounding concrete

Plain bar \rightarrow failure due to SLIP

Deformed bar \rightarrow failure due to SPLITTING

Deformed Bar

Variables influencing bond

- ▶ Development length \nearrow → bond strength \nearrow
- ▶ Concrete cover & clear distance \nearrow → bond strength \nearrow
- Position of bars during concreting
 - ▶ Top bar → lower bond strength because of the accumulation of excess water and air under bars
 - Bottom bar
- Local stress
 - ▶ Local compressive strength can increase bond strength
- ▶ Hoops or ties \rightarrow bond strength \nearrow

Variables influencing bond

- ▶ Concrete tensile strength
- ▶ Type of aggregate and cement; mix proportion
 - ▶ light weight concrete → lower bond strength
- ▶ Curing and compaction
- ▶ Yield strength of steel; $\sigma_s \nearrow \to \text{bond more critical}$
- Surface conditions of bar;
 - ightharpoonup plain bar ightharpoonup irregularities & rust improve bond characteristics
- Geometry of deformations
- ▶ Bar diameter

$$\phi \nearrow \to \frac{perimeter}{bar\ area} \searrow \to \text{bond strength } \searrow$$

Development length for tension bars

Straight anchorage

Development length for tension bars

▶ Hooks or loops

Development length for tension bars

Stirrup hooks

Development length for tension bars

▶ Hooks or loops

Development length for tension bars

Welded transverse bars

Development length for tension bars

Mechanical devices

Lap Splice

- $\alpha_1 = 1 + 0.5r$
- ▶ *r*: the ratio of spliced reinforcement to total reinforcement at the same section.

Problems associated with hooks

Problems associated with hooks

