кривая и ее уравнения. (180) Касательная прямая и нормальная плоскость пространственной кривой. (181) Соприкасающая плоскость пространственной кривой. (182) Касательная плоскость и нормаль к поверхности. (183) Геометрическая интерпретация полного диференциала функции двух аргументов.	Стр 386
Глава XVIII. Кривые для справок	
Приложение. Основы векторного анализа и его применение в теории пространственных кривых	
(185) Вектор-функция скалярного аргумента. Непрерывность. Производная. (186) Правила диференцирования векторов. (187) Векторно-параметрическое уравнение кривой. (188) Производная радиуса-вектора. Орт касательной. (189) Диференциал дуги пространственной кривой. (190) Кривизна пространственной кривой. (191) Главная нормаль. (192) Основной трехгранник. (193) Кручение пространственной кривой. Формулы Френе	421

ПРЕДИСЛОВИЕ

Логический пересмотр основ математического анализа, предпринятый в конце прошлого столетия и в начале текущего, возымел далеко ведущие последствия. В научном отношении он привел к возникновению ряда новых математических областей. В педагогическом отношении лицо учебников по математическому анализу неузнаваемо изменилось. Исчезли с их страниц практиковавшиеся сильными людьми определения бесконечно малых, основанные на противопоставлении привычных расстояний космическим протяжениям ("сантиметр есть бесконечно малое по сравнению с расстоянием земли до солнца"). Более совершенные "з-определения" также обнаружили стремление к исчезновению и, мало-помалу, стало чувствоваться все яснее и яснее перемещение всего математического анализа на стационарную почву, с полным изъятием из него самой идеи переменной величины.

Наиболее ярким выражением происшедшей перемены взглядов явился известный университетский учебник Валле-Пуссена "Курс анализа бесконечно малых" (второе и третье издания), где в мелком шрифте знаменитый автор показал, каким образом математический анализ может быть построен без понятия переменного. Но уже в следующих изданиях автор возвратился к "ε-определениям", находя (с полным основанием), что стационарный математический анализ представляет еще большие логические трудности, чем классический "ε-анализ" Коши с его явным призывом к изначальной интуиции времени.

В разных странах происходила аналогичная реформа учебников для вузов. В нашем отечестве основоположником этого движения явился Иван Иванович Жегалкин, реформистская деятельность которого легла в основу московской математической школы.

Одновременно с этим стал на очередь вопрос о реформе учебников для ВТУЗ'ов. Здесь о стационарном математическом анализе (т. е. основанном на теории множеств), разумеется, не могло быть и речи. Вопрос шел лишь о том, каким образом обветшавшее изложение прежних учебников для ВТУЗ'ов скольконибудь приблизить к уровню современных научных взглядов так, чтобы чтение их перестало оскорблять вкус. Наиболее удовлетворительным образом эта задача была разрешена известным английским математиком Виллиамом Грэнвиллем, положившим в основу минимум зопределений и развившим свое изложение, исходя из них и в строгом соответствии с ними, не прибегая в дальнейшем к каким-либо ложным "очевидностям" и к неискреннему замалчиванию фактов. С тех пор его учебник стал

обходить страну за страной, то просто переводясь без всякого изменения (Франция), то подвергаясь переработке и приспособлению, как это произошло сравнительно недавно в Америке

(см. Грэнвилль в переработке Смита и Лонглея, США).

В нашей стране желательность приспособления учебника Грэнвилля была давно указана проф. И. И. Жегалкиным. В последовавших шестнадцати изданиях первоначальный текст Грэнвилля мало-помалу был полностью изменен. В настоящей книжке, по требованию ВКВШ, мною добавлены главы о функции комплексного переменного, криволинейных интегралах, рядах Фурье и, наконец, присоединен геометрический текст и векторный анализ в изложении О. Н. Цубербиллер. В этих условиях продолжать удерживать в заголовке имя английского автора стало уже затруднительным.

Академик Н. Н. Лузин

10 июля 1945 с. Москва

ГЛАВА І

элементарные формулы

- § 1. Формулы элементарной алгебры и геометрии. Для удобства учащихся мы даем следующий список элементарных формул. Начинаем с алгебры.
 - (1) Квадратное уравнение $ax^2 + bx + c = 0$ Решается по формуле $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

Природа морней зависит только от выражения $\Delta=b^2-4ac$, стоящего под радикалом и называемого дискриминантом. Если $\Delta>0$, корни действительные и различные; если $\Delta=0$, корни действительные и равные; если $\Delta<0$, корни мнимые.

(2) Логарифмы

$$\lg ab = \lg a + \lg b; \ \lg a^n = n \lg a; \ \lg 1 = 0;$$

$$\lg \frac{a}{b} = \lg a - \lg b; \ \lg \sqrt[n]{a} = \frac{1}{n} \lg a; \ \lg_a a = 1.$$

(3) Бином Ньютона (п целое положительное)

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^3 + \cdots + \frac{n(n-1)(n-2)\dots(n-k-1)}{k!}a^{n-k}b^k + \cdots + b^n,$$

(4) Факториал $n! = 1, 2, 3, ... (n-1) \cdot n$.

В следующих формулах элементарной геометрии буквы r или R обозначают радиус, h высоту, S площадь основания и l образующую.

- (5) Круг. Длина окружности = $2\pi r$; площадь = πr^2 .
- (6) Круговой сектор. Площадь $=\frac{1}{2}\,r^2\alpha$, где з центральный угол сектора, измеренный в радианах.

(7) Призма. Объем = Sh.

- (8) Пирамида. Объем = $\frac{1}{3}$ Sh.
- (9) Прямой круглый цилиндр. Объем $=\pi r^2 h$; боковая поверхность $=2\pi r h$; полная поверхность $=2\pi r (r+h)$.
- (10) Прямой круглый конус. Объем $=\frac{1}{3}\pi r^2 h$; боковая поверхность $=\pi r(r+l)$.
 - (11) Ш а р. Объем = $\frac{4}{3} \pi r^3$; поверхность = $4\pi r^2$.
- (12) Усеченный прямой круглый конус. Объем = $\frac{1}{3}$ πh ($R^2 + r^2 + Rr$); боковая поверхность = πi (R + r).