Tópicos de Matemática Discreta

	Topicos de Matematica Discreta			
	— 1. teste — 24 de novembro de 2021 — duração: 2 horas —			
Nome: _	Número	Número		
	Grupo I			
(V) ou f valores	upo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indica falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se ou <i>0 valores</i> , consoante a resposta esteja certa, errada, ou não seja assinalada resposta, ão total neste grupo é no mínimo <i>0 valores</i> .	rá <i>1 va</i>	alor, -0,25	
		V	F	
1.	Não existem fórmulas do Cálculo Proposicional com mais de uma letra sem ocorrências de conectivos proposicionais.			
2.	Para quaisquer fórmulas φ e ψ , se $\neg \varphi \lor \neg \psi$ é contradição, então pelo menos uma das fórmulas φ , ψ é tautologia.			
3.	Se as variáveis proposicionais de índice par que ocorrem em $\varphi=(p_1\wedge p_2)\leftrightarrow (\neg p_4\vee p_3)$ tomarem o valor lógico 0 , então φ toma o valor lógico 0 .			
4.	O predicado $p(n)$: " n e $n+1$ são números primos", sobre os elementos n de \mathbb{N} , é hereditário.			
5.	Se $A = \{\{2\}, \{\{2\}\}, \mathbb{N}\}$ e $B = \{2, \varnothing, \{2\}\}$, então $A \cap B = \{2, \{2\}\}$.			
6.	Dado $A=\{-9,-2,0,5,9\}$, os conjuntos $\{x\in A: x \in A\}$ e $\{ x :x\in A\}$ são iguais.			
	Grupo II			
Este gru	po é constituído por 4 questões. Responda, <u>sem justificar</u> , no espaço disponibilizado a s	eguir à	questão.	
	dique uma fórmula do Cálculo Proposicional φ tal que o conjunto das variáves procorrem em φ é $\{p_1,p_2,p_3\}$ e que envolve apenas os conetivos \neg e \land .	posici	onais que	
Re	esposta:			
	ê exemplo, em linguagem simbólica e sem recorrer ao símbolo de negação, de uma pronte à negação de $\forall_{x\in\mathbb{Z}}(x>0 o \exists_{y\in\mathbb{Z}} (y<0 \wedge y >x)).$	posiçã	o equiva-	
Re	esposta:			

- 3. Considere os conjuntos $A=\{a\in\mathbb{R}:a^2\text{ \'e m\'ultiplo de }4\}$ e $B=\{b\in\mathbb{Z}:|b|\geq 10\}.$ Indique $(\mathbb{N}\cap A)\setminus B.$ Resposta:
- 4. Dê exemplo de subconjuntos A, B e C de \mathbb{N} , distintos entre si, não vazios, tais que $A\cap \overline{B\cap C}=\{1\}$. Resposta:

Grupo III

Este grupo é constituído por 4 questões. Responda na folha de exame, justificando todas as suas respostas.

- 1. Considere a fórmula proposicional $\varphi: ((p_0 \to p_1) \lor (p_1 \to p_2)) \to (p_0 \to p_2)$. Diga, justificando, se são verdadeiras as seguintes afirmações:
 - (a) A fórmula φ não é tautologia nem contradição.
 - (b) φ toma o valor lógico 1 sempre que $p_1 \to p_2$ toma o valor lógico 0.
- 2. Seja p a proposição $\exists_{x \in A} \forall_{y \in A} (y < x \to x + y \text{ \'e par}).$
 - (a) Verifique se p é verdadeira para $A = \{-4, 0, 2, 3, 4, 7\}$.
 - (b) Existe algum subconjunto próprio infinito A de $\mathbb Z$ tal que p é falsa para A? Justifique a sua resposta.
- 3. Prove, por indução nos naturais que, para todo $n \in \mathbb{N}$, $2^n \le 2^{n+1} 2^{n-1} 1$.
- 4. Mostre que, para quaisquer subconjuntos A, B e C de um conjunto X, $\overline{B \cup C} \cap ((A \cap B) \cup C) = \emptyset$.

Cotações	Ι	Ш	III
Cotações	6	4	3+2+3+2