U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (Original): A periodic-pattern suppression method of reducing a spatial frequency component which forms a periodic pattern contained in an original image signal, said method comprising the steps of:

transforming said original image signal, represented in a real space domain, into a plurality of transformed image signals which can be handled in a frequency domain; and reducing a transformed image signal of said transformed image signals which has a desired frequency range containing a spatial frequency component corresponding to at least a frequency of said periodic pattern in only the vicinity of an array direction of said periodic pattern.

2. (currently amended): A periodic-pattern suppression method of reducing a spatial frequency component resulting from a stationary grid, contained in an original image signal photographed using said stationary grid, said method comprising the steps of:

transforming said original image signal, represented in a real space domain, into a plurality of transformed image signals which can be handled in a frequency domain; and reducing a transformed image signal of said transformed image signals which has a

desired frequency range containing a spatial frequency component corresponding to at least a

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

grid array frequency of said stationary grid, which is actually used, in only the vicinity of a grid array direction of said stationary grid.

3. (original): The periodic-pattern suppression method as set forth in claim 2, wherein

said transforming step obtains said plurality of transformed image signals by applying two-dimensional wavelet transformation to said original image signal by the use of a low-pass filter which splits a band so that its response at a frequency greater than the spatial frequency of said stationary grid becomes approximately zero; and

said reducing step further applies a process of reducing a component less than a predetermined frequency and then performs inverse wavelet transformation, with respect to a signal of said transformed image signals which contains a spatial frequency component corresponding to said grid array frequency.

4. (original): The periodic-pattern suppression method as set forth in claim 3, wherein said reducing step reduces a component less than said predetermined frequency, by recursively and repeatedly applying one-dimensional wavelet transformation to the transformed image signal, containing a spatial frequency component corresponding to said grid array frequency, in a grid array direction of said stationary grid by a predetermined number of times by the use of a predetermined band splitting filter, then making zero transform coefficients of a low

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

frequency image signal of a plurality of image signals obtained by said one-dimensional wavelet transformation, and applying inverse one-dimensional wavelet transformation.

- 5. (currently amended): The periodic-pattern suppression method as set forth in claim 3, wherein said reducing step calculates powers of said plurality of transformed image signals, judges the grid length direction of said stationary grid, based on whether or not each said calculated power is greater than a predetermined threshold value, and applies said process of reducing a component less than a predetermined frequency, based on the result of-judgement judgment.
- 6. (currently amended): The periodic-pattern suppression method as set forth in claim 4, wherein said reducing step calculates powers of said plurality of transformed image signals, judges the grid length direction of said stationary grid, based on whether or not each said calculated power is greater than a predetermined threshold value, and applies said process of reducing a component less than a predetermined frequency, based on the result of judgement judgment.
- 7. (currently amended): The periodic-pattern suppression method as set forth in claim 3, wherein each stationary grid to be used is subjected to said reducing step said reducing step reduces a component less than said predetermined frequency and then performs inverse wavelet transformation, with respect to a signal of said transformed image signals which contains

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

a spatial frequency component corresponding to a grid array frequency of each possible stationary grid that may be used.

- 8. (currently amended): The periodic-pattern suppression method as set forth in claim 4, wherein-each stationary grid to be used is subjected to said reducing step said reducing step reduces a component less than said predetermined frequency, by recursively and repeatedly applying one-dimensional wavelet transformation to the transformed image signal, containing a spatial frequency component corresponding to said grid array frequency, in a grid array direction of each possible stationary grid that may be used by a predetermined band splitting filter, then making zero transform coefficients of a low frequency image signal of a plurality of image signals obtained by said one-dimensional wavelet transformation, and applying inverse one-dimensional wavelet transformation.
- 9. (original): The periodic-pattern suppression method as set forth in claim 2, wherein

said transforming step obtains said plurality of transformed image signals by applying one-dimensional wavelet transformation to said original image signal in the grid length direction of said stationary grid by the use of a predetermined band splitting filter; and

said reducing step further applies a process of reducing a component less than a predetermined frequency and then performs inverse wavelet transformation, with respect to a

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

low frequency image signal of said transformed image signals which contains a spatial frequency component corresponding to the grid array frequency of said stationary grid.

10. (original): The periodic-pattern suppression method as set forth in claim 9, wherein each stationary grid to be used is subjected to said transforming step and said reducing step.

11. (original): A periodic-pattern suppression unit for reducing a spatial frequency component which forms a periodic pattern contained in an original image signal, said unit comprising the steps of:

image signal transformation means for transforming said original image signal, represented in a real space domain, into a plurality of transformed image signals which can be handled in a frequency domain; and

periodic-pattern-component suppression means for reducing a transformed image signal of said transformed image signals which has a desired frequency range containing a spatial frequency component corresponding to at least a frequency of said periodic pattern in only the vicinity of an array direction of said periodic pattern.

12. (currently amended): A periodic-pattern suppression unit for reducing a spatial frequency component resulting from a stationary grid, contained in an original image signal photographed using said stationary grid, said unit comprising:

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

image signal transforming means for transforming said original image signal, represented in a real space domain, into a plurality of transformed image signals which can be handled in a frequency domain; and

stationary grid-component suppressing means for reducing a transformed image signal of said transformed image signals which has a desired frequency range containing a spatial frequency component corresponding to at least a grid array frequency of said stationary grid, which is actually used, in only the vicinity of a grid array direction of said stationary grid.

13. (original): The periodic-pattern suppression unit as set forth in claim 12, wherein said image signal transforming means obtains said plurality of transformed image signals by applying two-dimensional wavelet transformation to said original image signal by the use of a low-pass filter which splits a band so that its response at a frequency greater than the spatial frequency of said stationary grid becomes approximately zero; and

said stationary grid-component suppressing means further applies a process of reducing a component less than a predetermined frequency and then performs inverse wavelet transformation, with respect to an image signal of said transformed image signals which contains a spatial frequency component corresponding to the grid array frequency of said stationary grid.

14. (original): The periodic-pattern suppression unit as set forth in claim 13, wherein said stationary grid-component suppressing means reduces a component less than said predetermined frequency, by recursively and repeatedly applying one-dimensional wavelet

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

transformation to the transformed image signal, containing a spatial frequency component corresponding to said grid array frequency, in a grid array direction of said stationary grid by a predetermined number of times by the use of a predetermined band splitting filter, then making zero transform coefficients of a low frequency image signal of a plurality of image signals obtained by said one-dimensional wavelet transformation, and applying inverse one-dimensional wavelet transformation.

15. (currently amended): The periodic-pattern suppression unit as set forth in claim 13, further comprising stationary grid-direction judging means for calculating powers of said plurality of transformed image signals and judging the grid length direction of said stationary grid, based on whether or not each said calculated power is greater than a predetermined threshold value;

wherein said stationary grid direction judging grid-component suppressing means applies said process of reducing a component less than a predetermined frequency, based on the judgment made by said stationary grid-direction judging means.

16. (original): The periodic-pattern suppression unit as set forth in claim 14, further comprising stationary grid-direction judging means for calculating powers of said plurality of transformed image signals and judging the grid length direction of said stationary grid, based on whether or not each said calculated power is greater than a predetermined threshold value;

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

wherein said stationary grid-direction judging means applies said process of reducing a component less than a predetermined frequency, based on the judgment made by said stationary grid-direction judging means.

- 17. (currently amended): The periodic-pattern suppression unit as set forth in claim
 13, wherein said stationary grid-component suppressing means applies said process of reducing a
 component less than a predetermined frequency, to each stationary grid to be used and then
 performs inverse wavelet transformation, with respect to an image signal of said transformed
 image signals which contains a spatial frequency component corresponding to the grid array
 frequency of each possible stationary gird that may be used.
- 18. (currently amended): The periodic-pattern suppression unit as set forth in claim
 14, wherein said stationary grid-component suppressing means applies said process of reducing a
 component less than a predetermined frequency, to each stationary grid to be used, by
 recursively and repeatedly applying one-dimensional wavelet transformation to the transformed
 image signal, containing a spatial frequency component corresponding to said grid array
 frequency, in a grid array direction of each possible stationary grid that may be used by a
 predetermined number of times by the use of a predetermined band splitting filter, then making
 zero transform coefficients of a low frequency image signal of a plurality of image signals
 obtained by said one-dimensional wavelet transformation, and applying inverse one-dimensional
 wavelet transformation.

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

19. (original): The periodic-pattern suppression unit as set forth in claim 12, wherein

said image signal transforming means obtains said plurality of transformed image signals

by applying one-dimensional wavelet transformation to said original image signal in the grid

length direction of said stationary grid by the use of a predetermined band splitting filter; and

said stationary grid-component suppressing means further applies a process of reducing a

component less than a predetermined frequency and then performs inverse wavelet

transformation, with respect to a low frequency image signal of said transformed image signals

which contains a spatial frequency component corresponding to the grid array frequency of said

stationary grid.

20. (original): The periodic-pattern suppression unit as set forth in claim 19, wherein

said image signal transforming means applies said one-dimensional wavelet

transformation in the grid length direction of each stationary grid to be used; and

said stationary grid-component suppressing means applies said reducing process and said

inverse wavelet transformation to each said stationary grid to be used.

21. (new): A periodic-pattern suppression method of reducing a spatial frequency

component resulting from a stationary grid, contained in an original image signal photographed

using said stationary grid, said method comprising the steps of:

transforming said original image signal, represented in a real space domain, into a

plurality of transformed image signals which can be handled in a frequency domain; and

10

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

reducing a transformed image signal of said transformed image signals which has a desired frequency range containing a spatial frequency component corresponding to at least a grid array frequency of said stationary grid having a low range end and a high range end in only the vicinity of a grid array direction of said stationary grid; wherein

frequency components greater than the high end range are not suppressed and lower than the low end range are not suppressed by filtering.

- 22. (new): The periodic-pattern suppression method as set forth in claim 2, wherein the stationary grid is a vertical grid and the transformed image signals comprise frequency components of a two-dimensional wavelet transformation, said transformed image signals being subjected to a one dimensional transformation in the vertical scanning direction.
- 23. (new): The periodic-pattern suppression method as set forth in claim 2, wherein the stationary grid is a horizontal grid and the transformed image signals comprise frequency components of a two-dimensional wavelet transform, said transformed image signals being subjected to one dimensional wavelet transformation in the horizontal scanning dire
- 24. (new): The apparatus of claim 21 wherein a periodic-pattern suppression method of reducing a spatial frequency component resulting from a stationary grid, contained in an original image signal photographed using said stationary grid, said method comprising the steps of:

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

transforming said original image signal, represented in a real space domain, into a plurality of transformed image signals which can be handled in a frequency domain; and

reducing a transformed image signal of said transformed image signals which has a desired frequency range containing a spatial frequency component corresponding to at least a grid array frequency of said stationary grid having a low range end and a high range end in only the vicinity of a grid array direction of said stationary grid; wherein

frequency components greater than the high end range are not suppressed and lower than the low end range are not suppressed by filtering.

- 25. (new): The apparatus of claim of Claim 22 wherein a periodic-pattern suppression method as set forth in claim 2, wherein the stationary grid is a vertical grid and the transformed image signals comprise frequency components of a two-dimensional wavelet transformation, said transformed image signals being subjected to a one dimensional transformation in the vertical scanning direction.
- 26. (new): The apparatus claim of Claim 23 wherein the periodic-pattern suppression method as set forth in claim 2, wherein the stationary grid is a horizontal grid and the transformed image signals comprise frequency components of a two-dimensional wavelet transform, said transformed image signals being subjected to one dimensional wavelet transformation in the horizontal scanning dire.

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

- 27. (new): The periodic-pattern suppression method as set forth in claim 2, wherein said reducing step reduces said transformed image signal of said transformed image signals which has a desired frequency range containing a spatial frequency component corresponding to at least a grid array frequency of each possible stationary grid that may be used in only the vicinity of a grid array direction of said each stationary grid.
- 28. (new): The periodic-pattern suppression unit as set forth in claim 12, wherein said stationary grid-component suppressing means reduces a transformed image signal of said transformed image signals which has a desired frequency range containing a spatial frequency component corresponding to at least a grid array frequency of each possible stationary grid that may be used in only the vicinity of a grid array direction of said stationary grid.
- 29. (new): The periodic-pattern suppression method as set forth in claim 2, wherein said reducing step judges the grid array direction of said stationary grid, and applies said process of reducing a component less than said predetermined frequency, based on the result of judgment.
- 30. (new): The periodic-pattern suppression unit as set forth in claim 12, further comprising stationary grid-direction judging means for judging the grid array direction of said stationary grid,

U.S. Appln. No.: 09/765,621 Attorney Docket No.: Q61229

wherein said stationary grid-component suppressing means applies said process of reducing a component less than a predetermined frequency, based on the judgment made by said stationary grid-direction judging means.