5.2 Es sei

$$A := \begin{pmatrix} -1 - 3i & 2 + i & -1 - 2i \\ 0 & 2 & 0 \\ 2 + 4i & -2 - i & 2 + 3i \end{pmatrix}$$

Bestimme die Eigenwerte von A samt ihrer algebraischen und geometrischen Vielfachheiten, sowie die zugehörigen Eigenräume.

- 5.3 Sei $A \in \mathbb{C}^{n \times n}$ und $v \in \mathbb{C}^n$ ein Eigenvektor von A zum Eigenwert λ .
 - a) Zeige, dass v auch Eigenvektor von A^2 ist. Zu welchem Eigenwert?
 - b) Zeige, dass v Eigenvektor von A^{-1} ist, wenn A invertierbar ist. Zu welchem Eigenwert?
 - c) Wenn $A^2 = E_n$ ist, wieso ist dann mindestens eine der Zahlen ± 1 Eigenwert von A? Wieso gibt es keine anderen Eigenwerte?
 - d) Haben A und A^T dieselben Eigenwerte?

5.4 Es Sei

$$\begin{pmatrix}
0 & -3 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
-1 & 3 & -1 & 0 \\
-1 & 3 & -1 & 0
\end{pmatrix}$$

Berechne die Eigenwerte von A samt ihrer algebraischen und geometrischen Vielfachheiten. Ist die Matrix A diagonalisierbar?

5.5