Cairo University
Faculty of Computers and Information

Information Technology Department IT423 - Information and Computers Networks Security Fall 2022

Lab Assignment (3)

Implement RSA Algorithm encryption and decryption using C++ or JAVA				
Input: -				
1- Plain text of any size \square each character is changed to ASCII (X) and encrypted				
Output: - 1- Cipher text in ASCII (decimal) for each character (X) 2- Selected p,q for each character (X) 3- Generated keys e,d for each character (X)				
Read the hints which are mentioned through this document carefully.				

Grading Criteria: - (Total mark 15)

- 1. Encryption □ 1 mark
- 2. Square and multiply algorithm [] 2 marks
- 3. Key generation [] 7.5 marks
 - 3.1. Select two prime numbers p, q ($p \neq q$) using fermat algorithm 3 marks
 - 3.2. Compute n □ 0.5 mark
 - 3.3. Compute \emptyset (n) \square 0.5 mark
 - 3.4. Select e □ 0.5 mark
 - 3.5. Compute d using extended euclid ☐ 3 marks
- 4. Display generated keys e & d □0.5 mark
- 5. Display p, q $\square 0.5$ mark
- 6. Decryption 3.5 mark
 - 6.1. Transforming into the CRT domain □1 mark
 - 6.2. Computation in the CRT domain 1 mark
 - 6.3. Inverse transformation of the result □1.5 mark

Remember:-

*Hint1:-*To do any exponentiation (x^H mod n) use Square and multiply algorithm as follows:-

Square-and-Multiply for Modular Exponentiation Input:

base element *x*

exponent $H = \sum_{i=0}^{t} h_i 2^i$ with $h_i \in 0, 1$ and $h_t = 1$ and modulus n

Output: $x^H \mod n$ Initialization: r = x

Algorithm:

1 FOR
$$i = t - 1$$
 DOWNTO 0

$$1.1 r = r^2 \bmod n$$

IF
$$h_i = 1$$

$$1.2 r = r \cdot x \bmod n$$

2 RETURN (r)

Example: - Compute x ²⁶ using square and multiply algorithm

Step

$$\#0 \quad x = x^{1_2}$$

#1a
$$(x^1)^2 = x^2 = x^{10_2}$$

#1b $x^2 \cdot x = x^3 = x^{10_2}x^{1_2} = x^{11_2}$

#2
$$a$$
 $(x^3)^2 = x^6 = (x^{11})^2 = x^{110}$ 2

#3a
$$(x^6)^2 = x^{12} = (x^{110})^2 = x^{1100}$$

#3b $x^{12} \cdot x = x^{13} = x^{1100} \cdot x^{12} = x^{1101}$

#4
$$a$$
 $(x^{13})^2 = x^{26} = (x^{1101})^2 = x^{11010}$ #4 b

inital setting, bit processed: $h_4 = 1$

SQ, bit processed:
$$h_3$$
 MUL, since $h_3 = 1$

SQ, bit processed:
$$h_2$$
 no MUL, since $h_2 = 0$

SQ, bit processed:
$$h_1$$
 MUL, since $h_1 = 1$

SQ, bit processed:
$$h_0$$
 no MUL, since $h_0 = 0$

RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key: $k_{pr} = (d)$

- 1. Choose two large primes p and q.
- 2. Compute $n = p \cdot q$.
- 3. Compute $\Phi(n) = (p-1)(q-1)$.
- 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n) 1\}$ such that

$$gcd(e, \Phi(n)) = 1.$$

5. Compute the private key d such that

$$d \cdot e \equiv \operatorname{mod} \Phi(n)$$

Hint2: -

- For step 1 in key generation p & q must satisfy the following:-
 - 1- p, q are random numbers X < p, $q < 2^{15} 1$ (where X is the ASCII (decimal) of one character in plaintext)
 - 2- p, q are prime numbers (Test primality of them using Fermat Primality Test mentioned below)
- For step 4 and 5 in key generation use Extended Euclidean Algorithm <u>OR</u> Binary Extended Euclidean Algorithm

Fermat Primality Test

Input: prime candidate \tilde{p} and security parameter s

Output: statement " \tilde{p} is composite" or " \tilde{p} is likely prime"

Algorithm:

- 1 FOR i = 1 TO s
- 1.1 choose random $a \in \{2, 3, \dots, \tilde{p} 2\}$
- 1.2 IF $a^{\tilde{p}-1} \not\equiv 1^{\text{mod p}}$
- 1.3 RETURN (" \tilde{p} is composite")
- 2 RETURN (" \tilde{p} is likely prime")

<u>Hint3:</u> - Step 1: s = 100

Step 1.2: is computed by using the square-and-multiply algorithm

RSA Encryption:

$$y = e_{k_{pub}}(x) \equiv x^e \mod n$$

where $x, y \in \mathbb{Z}_n$.

Hint4: - Compute Exponentiation (xe mod n) using Square and Multiply method

RSA Decryption with the Chinese Remainder Theorem (CRT)

We cannot choose a short private key without compromising the security for RSA as an attacked can use brute force attack.

In CRT the goal is to perform the exponentiation $x^d \mod n$ efficiently. First we note that the party who possesses the private key also knows the primes p and q. The basic idea of the CRT is that rather than doing arithmetic with one "long" modulus n, we do two individual exponentiations modulo the two "short" primes p and q. This is a type of transformation arithmetic. Like any transform, there are three steps:

- 1. Transforming into the CRT domain
- 2. Computation in the CRT domain
- 3. Inverse transformation of the result

> Transformation of the Input into the CRT Domain

We simply reduce the base element x modulo the two factors p and q of the modulus n, and obtain what is called the modular representation of x.

$$x_p \equiv x \bmod p$$
$$x_q \equiv x \bmod q$$

> Exponentiation in the CRT Domain

With the reduced versions of x we perform the following two exponentiations:

$$y_p = x_p^{d_p} \mod p$$
$$y_q = x_q^{d_q} \mod q$$

where the two new exponents are given by:

$$d_p \equiv d \mod (p-1)$$

$$d_q \equiv d \mod (q-1)$$

> Inverse Transformation into the Problem Domain

The remaining step is now to assemble the final result y from its modular representation (y_p, y_q) . This follows from the CRT and can be done as:

$$y \equiv [q c_p] y_p + [p c_q] y_q \bmod n$$

where the coefficients c_p and c_q are computed as:

$$c_p \equiv q^{-1} \mod p, \qquad c_q \equiv p^{-1} \mod q$$

Example:-

$$p = 11$$
 $e = 7$
 $q = 13$ $d \equiv e^{-1} \equiv 103 \mod 120$
 $n = p \cdot q = 143$

We now compute an RSA decryption for the ciphertext y = 15 using the CRT, i.e., the value $y^d = 15^{103} \text{ mod } 143$.

In the first step, we compute the modular representation of y:-

$$y_p \equiv 15 \equiv 4 \mod 11$$

 $y_p \equiv 15 \equiv 2 \mod 13$

In the second step, we perform the exponentiation in the transform domain with the short exponents. These are:-

$$d_p \equiv 103 \equiv 3 \mod 10$$

$$d_q \equiv 103 \equiv 7 \mod 12$$

Here are the exponentiations:-

$$x_p \equiv y_p^{d_p} = 4^3 = 64 \equiv 9 \mod 11$$

 $x_q \equiv y_q^{d_q} = 2^7 = 128 \equiv 11 \mod 13$

In the last step, we have to compute x from its modular representation (x_p, x_q) . For this, we need the coefficients:-

$$c_p = 13^{-1} \equiv 2^{-1} \equiv 6 \mod 11$$
 $c_q = 11^{-1} \equiv 6 \mod 13$

Hint5:-

- 1- Compute exponentiation (in example: $y_p^{d_p}$ and $y_q^{d_q}$) using square and multiply method.
- 2- Compute cp and cq using EEA OR Binary EEA.

The plaintext x follows now as:-

$$x \equiv [qc_p]x_p + [pc_q]x_q \mod n$$

 $x \equiv [13 \cdot 6]9 + [11 \cdot 6]11 \mod 143$
 $x \equiv 702 + 726 = 1428 \equiv 141 \mod 143$