School of Electronics and Telecommunications Electronics Devices – ET2015E

Tutor: Assoc. Prof. Nguyen Tien Dzung

Department: Electronics and Computer Engineering

Emai: tiendungbk@gmail.com; dzung.nguyentien@hust.edu.vn

Mobile: 0988.355.343

Office: 94 Le Thanh Nghi, R102, C-Bulding (Tại chức)

Outline

- 2.1. PN Junction Diode and application
- 2.2. Bipolar Junction Transistor (BJT) and applications
- 2.3. Operational amplifier (OPAM) and applications

- 2.1. PN Junction Diode and application
- 2.2. Bipolar Junction Transistor (BJT) and applications
- 2.3. Operational amplifier (OPAM) and applications
- 2.4. Voltage regulation

2.1.1. N and P semiconductor

ATOMIC STRUCTURE

Nucleus: Protons (positive charge) + Neutron (uncharged)

Electrons: Negative charged particles

Atomic number: = # of protons = # of electrons

Atomic shells and orbits

Electrons orbit its nucleus at certain distances → orbit

Electrons near nucleus have less energy

Energy levels: each orbit corresponds to energy levels

Orbits are grouped into energy bands known as shells

Valence shell: outermost shell

Valence electrons: located in the valence sheet

Number of electrons in each shell: $N = 2n^{\frac{3}{2}}$

CONDUCTORS, **INSULATORS**, **SEMICONDUCTORS**

Conductor: easily conducts elec. current

Insulator: no elec. current conducted in normal condition

Semiconductors: ability to conduct elec. current

Energy bands

COVALENT BONDS

Shared electrons

CONDUCTION IN SEMICONDUCTORS

- 2.1. PN Junction Diode and application
- 2.1.1. N and P semiconductor
- 2.1.2. PN junction Diode

I_F, mA

1

Forward

Ν

000000

K (-)

Some types of diode Cathode Anode Cathode_ Anode Anode Anode Cathode Cathode Cathode Anode Cathode Cathode Anode -Anode Anode -

QUESTIONS!

2.1.2. System applications

- a. Half-wave rectifier
- Positive half-wave: D_1 FB, $U_{out} = U_L = U_2$
- Negative half-wave: D₁ RB, U_{out} = 0
- b. Full-wave (center-tapped) rectifier
- U₂₁+, U₂₂-: D₁ FB, D₂ RB, U_{out} = U_L = U₂₁
- U_{21} -, U_{22} +: D_1 RB, D_2 FB, $U_{out} = U_L = U_{22}$

c. Bridge rectifier

Positive half-wave: D₂-D₄ FB, D₁-D₃ RB, U_{out} = U_L = U₂
 Negative half-wave: D₂-D₄ RB, D₁-D3 FB, U_{out} = U_L = U₂

Positive half-wave

Positive half-wave

Ripples factor = Ur/U_{DC}

d. Voltage limiter

- Lower limiter: Limit a voltage signal under a given threshold
- Upper limiter: Limit a voltage signal above a given threshold
- Serial limiter: Diode connected in serial to the load
- Parallel limiter: Diode connected in parallel to the load

QUESTIONS!

- 1. The other 2 lower circuits?
- 2. If E < 10V or E > 10V?
- 3. If E removed?

2.1. PN Junction - Diode and application

2.2. Bipolar Junction Transistor (BJT) and applications

- 2.3. Operational amplifier (OPAM) and applications
- 2.4. Voltage regulation

(emitter)

2.2. Bipolar Junction Transistor (BJT) and applications

2.2.1. Basic construction

- $J_E = PN$ junction between E-B; $J_C = PN$ junction between B-C
- For amplification: J_E Forward biased, J_C = Reverse biased
 - NPN: U_E < U_B < U_C
 - PNP: U_F > U_B > U_C
- Basic equations:
 - Currents $I_E = I_C + I_B$ (1)
 - DC current amplifier gain: $\beta = \frac{I_C}{I_B}$ (2)
 - DC current transfer gain: $\alpha = \frac{I_C}{I_E}$ (3)

$$\beta = \frac{\alpha}{1 - \alpha} \qquad \alpha = \frac{\beta}{\beta + 1}$$

2N3904 NPN Transistor

2.2.2. Transistor as a 4-Terminal system

System of impedance equations

$$U_1 = r_{11}I_1 + r_{12}I_2$$
$$U_2 = r_{21}I_1 + r_{22}I_2$$

 r_{ii} : impedance parameters

System of sucseptance equations

$$I_1 = g_{11}U_1 + g_{12}U_2$$
$$U_2 = g_{21}U_1 + g_{22}U_2$$

 g_{ii} : sucseptive parameters

System of hybrid equations

$$U_1 = h_{11}I_1 + h_{12} \ U_2$$

$$I_2 = h_{21}I_1 + h_{22} U_2$$

 h_{ij} : hybrid parameters

Input suceptance/resistance: $h_{11} = \frac{\partial I_1}{\partial U_1} = \frac{1}{r_{11}}$ keeping $U_2 = const$

Voltage amplifier gain: $h_{12} = \frac{\partial U_1}{\partial U_2} = \frac{1}{K_u}$ keeping $I_1 = const$

Current amplifier gain: $h_{21} = \frac{\partial I_1}{\partial I_2} = \frac{1}{K_i}$ keeping $U_2 = const$

Output suceptance/resitance: $h_{22} = \frac{\partial I_2}{\partial U_2} = \frac{1}{r_2}$ keeping $I_1 = const$

Input characteristic: $I_1 = f(U_1)$ keeping $U_2 = const$

Out characteristic: $I_2 = f(U_2)$ keeping $I_1 = const$

Transfer characteristic: $I_1 = f(I_2)$ keeping $U_2 = const$

2.2.3. Amplifier schemes

• EC: Emiter in common; CC: Collector in common; BC: Base in common

2.2.4. BJT amplifier: DC mode

Why DC mode? What DC bias?

Linear amplification

Amplification with cut-off

Amplification saturation

DC mode: Q (quiescent) point; DC load line, DC load)

 U_{CEQ}

Q-point (Input current, Output current, Output voltage)

Question: Q point of EC, CC, BC? Answer: EC: Q(I_B, I_C, U_{CE}); CC: Q(I_B, I_E, U_{CE}); BC: Q(I_E, I_C, U_{BC})

DC load line: Determine on output characteristic, where Q is intersection with DC load line

Cutoff

Cutoff

 U_{CEQ}

Example 1: $U_{BE} = 0.7V$. Determine Q point with 1) $U_{BB} = 2.7V$; 2) $U_{BB} = 3.7V$; 3) $U_{BB} = 4.7V$

- 1. From input: $U_{BB} = 2.7V \Rightarrow I_{BQ} = (U_{BB} U_{BE})/R_B = (2.7-0.7)10K = 200 \text{ uA} \Rightarrow I_{CQ} = \beta I_B = 20 \text{ mA}$
- From output: $U_{CEQ} = U_{CC} I_{C}R_{C} = 10V 20mA220 = 5.6V$
- 2. $U_{BB} = 3.7V \Rightarrow I_{BO} = (U_{BB} U_{BE})/R_{B} = (3.7-0.7)10K = 300 \text{ uA} \Rightarrow I_{CO} = \beta I_{B} = 30 \text{ mA}$

- **Example 2: Draw DC load line**
- Example 3: Max variation of l_B = ? for linear operation in case 1, 2, 3

- 1. $I_{Cmax} = I_{C(sat)} = U_{CC}/R_C = 10/220 = 45.45 \text{mA}$, $I_{CQ} = 20 \text{mA} \Rightarrow \text{Max var} = 45.45 20 = +25.45 \text{ mA/-}20 \text{mA}$
- 2. Analogy, $I_{CQ} = 30 \text{mA} \rightarrow \text{Max var} = 45.45 30 = +15.45 \text{ mA/-}30 \text{mA}$
- 3. Analogy, $I_{CQ} = 40 \text{mA} \rightarrow \text{Max var} = 45.45 40 = +5.45 \text{ mA}/-40 \text{mA}$

Therefore for linear operation:

→ Max variation of $I_B 1$) $I_B = I_C/\beta = 20/100 = 200uA$; 2) $I_B = 15.45/100 = 155uA$; 3) $I_B = 5.45/100 = 54.5uA$

- DC bias methods: a) Fixed base current; b) Feedback current; c) Emitter current (self-bias); d) Emitter bias
- Goal: + Setup Q-point for best linear amplification
 - + Steps for determination of DC mode
- a) Fixed base current

- ✓ Q-point:
- From input: $E_C = U_{RB} + U_{BE} = I_B R_B + U_{BE}$
- \rightarrow I_{BQ} = (E_C U_{BE}) / R_B ~ constant
- - From output:

$$E_{C} = U_{RC} + U_{CE}$$

$$= I_{C}R_{C} + U_{CE}$$

$$\rightarrow U_{CEO} = E_{C} - I_{CO}R_{C}$$

- ✓ DC load line: Linear eqution $U_{CE} = E_C I_C R_C$
- ✓ DC load: $R_{DC} = R_{C}$

✓ NOTE:

 I_{BQ}

UCEQ

 $\mathbf{A} \mathbf{I}_{\mathbf{C}}(\mathbf{m}\mathbf{A})$

- For best amplification, Q is designed to be at the center of DC load line
- > Stability of Q-point

Quick test 1: Given a circuit in the figure below.

- a) Determine I_B , I_C , I_{E_1} , U_{CE} , assuming that β = 200, Verify whether the transistor operating in amplification mode.
- b) Determine Q-point, the maximum peak value (variation) of $I_{\rm B}$ for linear operation, and the DC load line of the transistor.

Quick test 2: $E_C = 12V$, $R_B = 100K\Omega$, $R_C = 560\Omega$. Investigate the change of Q-point when 1) β change from 85 to 100 and 2) U_{BE} change from 0.7V to 0.6V. Demonstrate on the output characteristic and DC load line for each case.

b) Feedback (collector) current

✓ Q-point:

- From input: $E_C = U_{RC} + U_{RB} + U_{BE} = I_B R_B + I_E R_C + U_{BE} = I_B [R_B + (1+\beta)R_C] + U_{BE}$

$$||_{R_{c}(I_{C}+I_{B})}| \rightarrow ||_{BQ} = (E_{C}-U_{BE})/[R_{B}+(1+\beta)R_{C}] \sim (E_{C}-U_{BE})/(R_{B}+\beta R_{C})$$

$$\Rightarrow I_{CQ} = \beta I_{BQ} = \beta (E_C - U_{BE}) / (R_B + \beta R_C) = (E_C - U_{BE}) / (R_B / \beta + R_C)$$

- From output:

$$E_{C} = U_{RC} + U_{CE} = (I_{B} + I_{C})R_{C} + U_{CE} = I_{E}R_{C} + U_{CE} \sim I_{C}R_{C} + U_{CE}$$

$$\rightarrow$$
 $U_{CEQ} = E_C - I_{CQ}R_C$

✓ DC load line: Linear eqution $U_{CE} = E_C - I_C R_C$

√ Stability of Q-point

✓ DC load: $R_{LDC} = R_{C}$

- c) Emitter current (self-bias): Voltage-divider bias VDB (Single bias source)
- Use of VDB of R₁-R₂ instead of V_{BB} for input biasing
- If $I_B \ll I_{2:} \rightarrow I_{R1} = I_{R2} = I_2$; o.w: Equivalent input resistance $R_{IN(base)}$ is investigated
- DC mode analysis:
- From input: $R_{IN(base)} = U_{IN}/I_{IN} = (I_ER_E + U_{BE})/I_B \sim (1+\beta)I_BR_E/I_B \sim \beta R_E$; and $U_{IN} = \beta I_BR_E$
- ightharpoonup Total input resistance: $R_{IN(total)} = R_2 //R_{IN(base)} = R_2 //\beta R_E$
- > Total input resistance: $U_{IN} = U_{B} = E_{C}[R_{2}//R_{IN(base)}]/[R_{1} + R_{2}//R_{IN(base)}]$

If $R_2 \ll R_{IN(base)} \rightarrow U_{IN} = E_C R_2 / (R_1 + R_2)$

- Q-point:
- \rightarrow $U_{CE} = E_C I_C(R_C + R_E) \rightarrow U_{CEQ} = E_C I_{CQ}(R_C + R_E)$
- \triangleright DC load line equation: $U_{CE} = E_C I_C(R_C + R_E)$
- ightharpoonup igh

- Equivalent Thevenine theorem: $U_{TH} = U_B = E_C R_2 / (R_1 + R_2)$ and $R_{TH} = R_B = R_1 / (R_2 = R_1 R_2 / (R_1 + R_2))$
 - → utilization of equivalent DC circuit
- Q-point:
- > From input loop: $U_B = I_B R_B + U_{BE} + I_E R_E \rightarrow U_B = I_E/(1 + \beta)R_B + I_E R_E + U_{BE} \rightarrow I_E \sim (U_B U_{BE})/(R_E + R_B/\beta)$
- If $R_E >> R_B / \beta \rightarrow I_E \sim (U_B U_{BE})/R_E$ or $U_E = U_B U_{BE}$ (proven) $\rightarrow I_{CQ} \sim I_E \rightarrow I_{BQ} = I_{CQ} / \beta$: I_E independent from β
- \rightarrow $U_{CE} = E_C I_C(R_C + R_E) \rightarrow U_{CEQ} = E_C I_{CQ}(R_C + R_E)$
- Stability of Q-point: I_E independent to β → most stable
- In practice: If $R_E \gg R_B / \beta \Rightarrow$ select R_E at least 10 times greater than R_B / β
- d) Emitter bias: Double bias sources E_{CC} and $E_{EE} \rightarrow$ self reading
- $ightharpoonup I_C = (E_{EE} U_{BE}) / (R_E + R_B/\beta)$
- \rightarrow U_{CE} = E_{CC} + E_{EE} I_C(R_C+R_E)

Quick test 3: Given a circuit in the figure below.

Determine DC mode. Investigate the Q-point

position. E_C = 3V

Quick test 4: Given a circuit in the figure below.

- a) $\beta_{min} = ?$ in order to set up $R_{IN(base)} >> 10R_2$
- b) If R_2 is replaced by 15k Ω potentiometer. What is the minimum resistance setting causes saturation?
- c) Set R_2 at $2k\Omega$. Determine DC mode.

Quick test 5: Given a circuit in the figure below.

- a) Determine type of amplifier
- b) Investigate DC mode

Quick test 6: Given a circuit in the figure below.

- a) Determine type of amplifier
- b) Investigate DC mode

2.2.5. BJT amplifier: AC mode

- What is AC mode: AC signal is amplified, once DC mode has been setup
- In AC mode: 1) Voltage gain K₁ (or A₁), 2)Current gain K₁ (or A₁), 3) AC load
- AC equivalent of a transistor:

- a) EC amplifier: voltage divider bias
- In AC mode: C₁, C₂, C₂ replaced by shorts (X₂~0)
- ➤ Effect of CE on voltage gain: X_c ~ 0 if:

$$\leftrightarrow 10 X_{CE} \le R_E \leftrightarrow X_{CE} \le R_E/10 \leftrightarrow 1/(\omega C_E) \le R_E/10$$

- \rightarrow C_E \geq 10/(2 π fR_E)
- \rightarrow AC input voltage: $u_{IN} = u_{BE} = i_B r_B + i_E r_E = i_B [r_B + (1 + \beta_{AC}) r_E]$
- \rightarrow AC input resistance: $r_{IN(base)} = u_{IN}/i_{IN} = U_{BE}/iB = r_B + (1 + \beta_{AC})r_E$
- - r_c : large (hundreds kΩ \rightarrow replaced by an open
 - r_E : temperature dependent and $r_E = 0.25 \text{mV/I}_E$ at 20°C

- Example: DC analysis → Q-point, DC load line, DC load
- > Don't take into account AC components
- **➤ Q-point:**
- \checkmark R_{IN(base)} = β R_E = 150.560 Ω = 84k >> 10R₂ = 68k
- \checkmark I_{EQ} = (U_B U_{BE})/R_E, where U_B = E_CR₂/(R₁+R₂) = 2.83 V
 - → $I_{CQ} \sim I_{EQ} = (2.83V 0.7V)/560 = 3.8 \text{ mA}$ → $I_{BQ} = I_{CQ}/\beta = 25.33 \text{ μA}$
- \checkmark U_{CEQ} \sim E_C I_C(R_C + R_E) = 12V 3.8mA (1k +560) = 6.07V
- \triangleright DC load line equation: $U_{CEQ} \sim E_C I_C(R_C + R_E)$; $R_{DCLoad} \sim R_C + R_E$

- $ightharpoonup R_E$ shorten = 0 $ightharpoonup R_E >> 10X_E$ since $R_E / / X_{CE}$, where $X_{CE} = 1 / (\omega C_E) = 1 / (2\pi f C_E)$ is reactance of C_E
- \succ X_{CE} < 56 → 1/(2πfC_E) < 56 → C_E > 1/(2πf.56) = 1.42 μF → C_{Emin} = 1.42 μF

- AC analysis: K_u, K_i, AC load
- AC equivalent:

- Input resistance of transistor at the base: r_{IN(base)}

$$r_{IN(base)} = U_{BE}/i_B = [i_B r_B + (1 + \beta_{AC})i_B r_E]/i_B = r_B + (1 + \beta_{AC})r_E \sim \beta_{AC}r_E$$

- Input resistance of amplifier: $R_{IN(total)} = R_1 / / R_2 / / r_{IN(base)} = R_1 / / R_2 / / \beta_{AC} r_E$
- Voltage gain (with R_L): K_u = u_{out}/u_{IN}

$$u_{IN} = i_{IN}(R_s + R_{in(total)}) \sim I_B(R_s + R_{IN(total)})$$
, assuming $R_1//R_2 >> r_{IN(base)}$

$$\mathbf{u}_{\text{out}} = \mathbf{i}_{\text{L}} \mathbf{R}_{\text{L}} = \mathbf{I}_{\text{C}} \mathbf{R}_{\text{C}} \mathbf{R}_{\text{L}} / (\mathbf{R}_{\text{L}} + \mathbf{R}_{\text{C}}) = \beta_{\text{AC}} \mathbf{I}_{\text{B}} (\mathbf{R}_{\text{L}} / / \mathbf{R}_{\text{C}}) \Rightarrow \mathbf{K}_{\text{u}} = \mathbf{u}_{\text{out}} / \mathbf{u}_{\text{IN}} = \beta_{\text{AC}} (\mathbf{R}_{\text{L}} / / \mathbf{R}_{\text{C}}) / (\mathbf{R}_{\text{s}} + \mathbf{R}_{\text{IN(total)}})$$

 $\mathbf{R}_{\mathbf{C}}$

560Ω

 $\beta = 150$

- > Investigate without R_L: $K_u = \beta_{AC}(R_L//R_C) / (R_s + R_{IN(total)}) \sim \beta_{AC}R_C/(\beta_{AC}r_E) = R_C/r_E$
- > Since $(R_c//R_L) < R_c \rightarrow K_u$ reduced; If $R_L >> R_c$, $(R_c//R_L) \sim R_c \rightarrow R_L$ no effect on gain
- > In practice: attenuation from source to base → $U_B/E_s = R_{IN(total)}/(R_s + R_{IN(total)})$

$$\rightarrow K'_u = (U_B/E_s)K_u$$

- Current gain: $K_i = i_{out}/i_{IN}$, where $i_{IN} \sim i_{B}$

$$i_{out} = i_L = I_C R_C / (R_L + R_C) = \beta_{AC} i_B (R_L / / R_C) / R_L \rightarrow K_i = i_{out} / i_{IN} = \beta_{AC} (R_L / / R_C) / R_L$$

- AC load: $R_{LAC} = R_C / / r_C$, however in fact $r_C >> R_C \rightarrow R_{LAC} \sim R_C$

Example: Given a circuit, R_E is partially bypassed by $C_E \rightarrow R_{in(base)} = \beta_{AC}(r_E + R_{E1})$ a) Determine DC I_C, U_C > Since RI_{N(base)} = $\beta(R_{E1} + R_{E2})$ = 150 x 0.94k = 141k >10R2 = 100k $C_1 = 10uF$ $I_{C} \sim I_{E} = (U_{B} - U_{BE})/(R_{E1} + R_{E2}); U_{B} = E_{C}R_{2}/(R_{1} + R_{2}) = 1.75V \rightarrow I_{CQ} = 1.12mA_{E}$ $\beta_{DC} = 150$ $\beta_{AC} = 175$ $4.74 + \sqrt{2U_c} = 4.87V$ $\sqrt{2U_c} = 127.3 \text{ mV}$ \rightarrow U_C \sim E_C - I_CR_C = 4.74 V $> I_{BQ} = I_{CQ} / \beta = 7.47 \, \mu A$ b) Determine AC i_C, u_C $-\sqrt{2}U_{c} = -127.3 \text{ mV}$ ightharpoonup With C₂: $R_{IN(base)} = \beta_{AC}(r_E + R_{E1})$, and $r_E = 25 \text{mV/I}_E = 22 \Omega \rightarrow R_{IN(base)} = 86 \text{k}$ Arr $K_u = \beta_{AC}(R_L//R_C)/(R_s + R_{IN(total)}) \sim \beta_{AC}(R_L//R_C)/\beta_{AC}(r_E + R_{E1}) = (R_L//R_C)/R_{E1}$ and $R_L//R_C = 4.27k \rightarrow \overline{K_u} \sim 9.09$ \rightarrow U_c = K_uE_s = 9.09 x 10mV = 90mV and R_{IN(total)} = R₁//R₂//r_{IN(base)} = 8.24k//86k = 7.53k With attenuation: $U_b = [R_{IN(total)}/(R_s + R_{IN(tota)}]$ and $U'_c = [(U_B/E_s)K_u]E_s \rightarrow U'_c = 0.93 \times 9.09 \times 10 \text{mV} = 84.5 \text{ mV}$

 $ightharpoonup K_i = \beta_{AC}(R_L//R_C)/R_L = 175 \text{ x } 4.27 \text{k}/47 \text{k} = 15.9 \Rightarrow i_C = K_i I_s = K_i E_C/(R_s + R_{IN(total)}) = 15.9 \text{ x } 10 \text{V}/7.53 \text{k} = 21.11 \text{ mA}$

c) Draw total input and output signals in two cases

b) CC amplifier:

- DC analysis: Q-point, DC load line, R_{LDC}
- AC analysis: AC equivalent, K_u, K_i, R_{LAC.} Note: R_E still included in AC mode since no bypass capacitor

- Input resistance to the base: $r_{IN(base)} = r_B + (1 + \beta_{AC})(r_E + R_E//R_L)$. If $r_B << \rightarrow r_{IN(base)} \sim (1 + \beta_{AC})(r_E + R_E//R_L)$
- Input resistance of amplifier: $R_{IN(total)} = R_1 / / R_2 / / r_{IN(base)}$. If $R_1 / / R_2 >> r_{IN(base)} \rightarrow R_{INtotal} \sim r_{INbase}$
- Voltage gain $K_u = (1 + \beta_{AC})(R_E//R_L)/(R_s + R_{INtotal})$. If $R_s = 0$, $r_E << R_E//R_L \rightarrow Ku \sim 1 \rightarrow No$ voltage amplification
- Current gain: $K_i = i_{out}/i_{IN} = i_E/i_{IN} = [u_{out}/(R_E//R_L)] / (U_{in}/R_{IN(total)})$; AC load $R_{LAC} = R_E//r_E$

- Example: Determine the DC mode of CC amplifier. Find K_u , K_i , $K_p = K_u K_i$, R_{ACLoad} , $R_{IN(total)}$, R_{out} .
- DC mode: By yourself
- \checkmark Q (I_{BQ}, I_{EQ}, U_{CEQ}) = (28.67 μ A, 4.3mA, 5.7V)
- ✓ DC load line equation: $U_{CE} = E_C I_E R_E$; $R_{LoadDC} = R_E = 1k$
- > AC mode:
- \checkmark $K_u = (1 + \beta_{AC})(R_E//R_L)/(R_s + R_{INtotal}) \rightarrow K_u \sim (R_E//R_L)/(r_E + R_E//R_L)$
- \checkmark $r_{E} \sim 25 \text{mV/I}_{E} = 5.8 \ \Omega; \ R_{E} / / R_{L} = 0.5 \text{k}; \ r_{IN(base)} = (1 + \beta_{AC}) (r_{E} + R_{E} / / R_{L}) = 87.5 \text{k}$
- \sim $R_{IN(total)} = R_1 / / R_2 / / r_{IN(base)} \sim 9k / / 87.5k = 8.16k$
- \checkmark $K_u \sim (R_E//R_L)/(r_E + R_E//R_L) = 0.5k/508.8 <math>\Omega \sim 0.989$
- \rightarrow K_i = i_E/i_{IN} =[u_{out}/(R_E//R_L)] / (U_{in}/R_{IN(total)})
- $\sqrt{u_{out}}/(R_E//R_L) = K_u u_{IN}/(R_E//R_L) = 1mV/0.5k = 2μA; u_{in}/R_{IN(total)} = 1mV/8.16k = 0.122 μA → K_i = 2/0.122 = 16.39$
- Arr K_p = K_uKi = 0.989 x 16.39 = 16.21; R_{ACLoad} = R_E//R_L = 0.5k \Rightarrow Power dissipated on R_L = 1/2K_p = 8.1

- Darlington pair: for greater input resistance
- ightharpoonup Effective current gain: $ho_{AC} =
 ho_{AC1}
 ho_{AC2}$
- \rightarrow If $r_E \ll R_E \rightarrow R_{IN} = \beta_{AC}R_E$

2.2.6. Multistage amplifier

- Cascade arrangement for greater voltage gain
- Overall gain: K_u = K_{u1}K_{u2}...K_{uN}. In decibels: K_{ui, (DB)} = 20logK_{ui}
- Overall gain in DB: K_{u, DB} = K_{u1,DB} + K_{u2, DB} + ... K_{uN, DB}
- Capacitively coupled amplifier

- Direct-coupled amplifier:
- ✓ Better low-frequency response
- ✓ If using C, very high R_{IN}
- ✓ R_{in} high reduces gain

- 2.1. PN Junction Diode and application
- 2.2. Bipolar Junction Transistor (BJT) and applications
- 2.3. Operational amplifier (OPAM) and applications
- 2.4. Voltage regulation

2.3.1. Differential amplifier

- 2 EC amplifiers with 2 bias sources
- Mutistage differential amplifiers + push-pull → OPAM: operational amplifier
- $\Delta U_{out} = U_{out2} U_{Out1} = K_{diff} \Delta I_{in}$ or $\Delta U_{out} = K_{diff} (U_{in2} - U_{in1})$
 - ✓ If $U_{in1} = 0$ (grounded): $\Delta u_{out} = K_{diff}U_{in2}$.

 If U_{out1} grounded → $U_{out2} = K_{diff}U_{in2}$ → U_{in1} : Non-inverse input (P)
 - ✓ If $U_{in2} = 0$ (grounded): $\Delta u_{out} = -K_{diff}U_{in1}$.

 If U_{out1} grounded → $U_{out2} = -K_{diff}U_{in1}$ → U_{in1} : Inverse input (N)
- Input resistance: very large; Output resistance: very small
- Amplifier gain: K_{OPAM} = 10⁴ 10⁶ (ideal: infinity)

2.3.2. **OPAM**

Ideal OPAM:

$$\checkmark$$
 If $U_{in} = 0$, $U_{out} = K_{OPAM}U_{in} = 0$

✓ Rin =
$$\infty$$
 (open); Rout = 0 (

$$\checkmark$$
 K_{OPAM} = ∞

$$\checkmark$$
 $U_P - U_N = U_{out}/K_{OPAM} = 0 \rightarrow U_P = U_N$

Practical OPAM

- \checkmark U_{out} ≠ 0 when U_{in} = 0 → Define Input offset voltage U_{os} (differential DC inputs) to forse U_{out} = 0
- \checkmark I_{BIAS} = (I_P + I_N)/2 → DC current required by the inputs
- ✓ Input offset current I_{os}: base currents at input of OPAM are not always equal
- Transfer characteristic: relation between input and output → inverse and non-inverse characteristic
 - √ + U_{max}/ U_{max}: Max/min achievable output value (saturated output)
 - ✓ Linear amplification and saturation

2.3.3. Applications of OPAM

- a) Inverting amplifier: Input resistor R₁, feedback resistor R₂
- Negative feedback: Since KOPAM large → NF to avoid saturation
- Node N: $I_{in} + I_f = 0$ (applying KCL, assuming $I_N = 0$)
- Ohm law: $I_{in} = (U_{in} U_N)/I_{in}$; $I_f = (U_{out} U_N)/R_2$. Since $U_N = U_P = 0$ (Ideal OPAM) $\rightarrow U_{out} = -(R_2/R_1)U_{in}$
- Negative sign: Input and output signals out-of-phase
- b) Non-Inverting amplifier: Input resistor R₁, feedback resistor R₂
- Negative feedback
- Node N: U_N = R₁/(R₁ + R₂)U_{out} = U_P = U_{in}
- \rightarrow U_{out} = + R₁/(R₁ + R₂)U_{in}
- Positive sign: Input and output signals in-phase

Example 1

Add VR_2 – a potentiometer 120 K Ω to inverting amplifier. U_{max} = ± 12 V R_1 = 1.5 K Ω , R_2 = 3.3 K Ω

- a) Derive equation for K_u
- b) If $U_{in} = 200 \text{mV}$, $V_R = ?$ for linear operation

Example 2

Replace R_2 = VR_2 - potentiometer 120 K Ω . U_{max} = ±12 V R_1 = 1.5 K Ω , R_2 = 3.3 K Ω

- a) Derive equation for K_u
- b) If $U_{in} = 200 \text{mV}$, $V_R = ?$ when saturation occurs

c) Inverse summing amplifier

- Negative feed back
- Node N: $I_1 + I_2 = I_f$ (applying KCL, assuming $I_N = 0$)
- Ohm Law:

$$I_1 = (U_1 - U_N)/R_1$$
; $I_2 = (U_2 - U_N)/R_2$; $I_f = U_{out} - U_N)/R_f$

• Since $U_N = U_P = 0$ (ideal OPAM)

$$\rightarrow$$
 $U_{out} = -(R_f/R_1)U_1 - (R_f/R_2)U_2$

• If $R_1 = R_2 = R_f \rightarrow U_{out} = -(U_1 + U_2)$

d) Non-inverse summing amplifier

- Negative feed back
- Node N: $U_N = U_{out}R_1/(R_1 + R_2)$
- Node P: $I_1 = (U_1 U_P)/R$; $I_2 = (U_2 U_P)/R$ and $I_1 + I_2 = 0$

$$\rightarrow$$
 U_P = $1/_2(U1 + U_2)$

- Since: $U_N = U_P = U_{out}R_1/(R_1 + R_2)$
 - \rightarrow $U_{out} = [(R_1 + R_2)/(2R_1)](U_1 + U_2)$

e) Subtracting amplifier:

- Negative feed back
- Node N: $I_1 = (U_1 U_N)/(aR_a)$; $I_f = (U_N U_{out})/R_a$, and $I_1 I_f = 0$ or $I_1 = I_f$ $U_N = (aU_{out} + U_1)(a+1)$
- Node P: $U_P = U_2 R_b / (R_b + b R_b) = U_2 / (b+1)$
- Since $U_N = U_P$: $U_{out} = (a + 1)/[a(b + 1)]U_2 U_1/a$
- If (a = b): $U_{out} = 1/a(U_2 U_1)$; and if a = b = 1 \rightarrow $U_{out} = U_2 U_1$

Quick test 9

Explain the effect of D1, D2 added to an inverting amplifier given below

Quick test 10: Demonstrate output DAC (\underline{D} igital to \underline{A} nalog \underline{C} onverter) for 4-digit sequence given in waveforms of inputs D_0 , D_1 , D_2 , D_3

Quick test 11

Establish relation between output U_{out} and inputs U_1 , U_2 , U_3 according to given circuit's elements

Quick test 12

- a) Establish relation between output U_{out} and inputs U_1 , U_2 , U_3 according to given circuit's elements
- b) Determine R_2 , R_4 , R_5 for getting this equation:

$$U_{out} = 2.5U_1 + 4.7U_2 - 4.1U_3$$

f) Integrator:

- Negative feed back
- Capacitor C: feedback resistor replaced by C, which operates in charged and discharged period
- Node N: $I_R I_C = 0$, where $I_R = (U_{in} U_N)/R$ and $I_C = Cd(U_C/dt) = C(U_N U_{out})/dt$
- Since: $U_N = U_P = 0 \rightarrow U_{out} = -1/(RC) \int U_{in} dt + U_0 \sim Rate of input change$
 - where U_0 : initial potential on C before integration $\rightarrow U_0 = 0$?

Here: T = RC – integral constant related to rate of change (RoC) at output according to the change of input

- Example: $R = 10 \text{ k}\Omega$, $C = 0.01 \mu\text{F} \rightarrow T = RC = 0.1 \text{ ms}$
- ✓ RoC for negative ramp: $\Delta U_{out}/\Delta t = -U_{in}/(RC) = -5V/0.1 \text{ ms} = -50 \text{ mV/µs}$
- \checkmark RoC for positive ramp: $\Delta U_{out}/\Delta t = +50$ mV/μs, where $\Delta t = 100$ μs
- ✓ Therefore: $\Delta_{Uout} = 5V \rightarrow When U_{in} = + 2.5V, U_{out} = 0 \rightarrow -5V;$ When $U_{in} = -2.5V, U_{out} = -5 V \rightarrow 0 V$
- ✓ QUESTION: If U_{out} changes 0 -> 5 V with the same input in 50 μs → What modification in the circuit?

g) Diffrentiator:

- Negative feed back;
- Capacitor C: Input resistor is replaced by C interval
- Node N: $I_C I_R = 0$, where $I_C = Cd(U_{in} U_N)/dt$ and $I_R = (U_N U_{out})/R$
- Since $U_N = U_P = 0$ \rightarrow $CdU_{in}/dt = -U_{out}/R$ \rightarrow $U_{out} = -(RC)dU_{in}/dt$ ~ Rate of input change

- Example: $C = 0.001 \mu F$, $R = 2.2 k\Omega \rightarrow T = RC = 2.2 \mu s$
- ✓ RoC U_c/t: U_c changes from -5 V to + 5 V in 5 μs and vice versa

→
$$U_c/t = 10V/5\mu s = 2V/\mu s$$

- ✓ Therefore: $U_{out} = -(U_C/t)RC$
 - ✓ Postive ramp: Uout = $2V/\mu s \times 2.2 \mu s = -4.4 V$
 - ✓ Negative ramp: Uout = -(- $2V/\mu s$) x 2.2 μs = + 4.4 V
- ✓ QUESTION: If R = 3.3kΩ → What is the output changed?

2.3.4. Signal oscillators

a) Principle:

Positive feedback: In-phase output is fed back to input with no phase shift

Close loop: created by forward amplifier and feedback curcuit

Desired output: sinusoidal signal

Condition for oscillation: 1) Phase shift around feedback = 0; 2) K_u.B = 1

 Start-up condition: When DC supply is on, voltage gain should be > 1 at first to produce a desired output amplitude and oscillation is maintained

b) Oscillator with RC feedback circuits

b1. Wien – Robinson bridge oscillator

- Lead-leg circuit: $Z_{(R1-C1)} = R_1 jX_1$; $Z_{(R2-C2)} = R_2(-jX_2)/(R_2 jX_2)$
- ✓ if $R_1 = R_2 = R$, $C_1 = C_2 = C → U_2 = U_1[X_{R1-C1}/(Z_{R1-C1} + Z_{R2-C2})]$ → $U_2/U_1 = RX/[3RX + j(R - X)^2]$
- ✓ At resonance frequency f_c : $U_2/U_1 = 1/3$ or $U_2 = 1/3U_1$ since R = X at f_c
- Wien bridge oscillator: Utilization of led-lag circuit → U_{out} = U₁, U_P = U₂
- ✓ Non-inverting amplifier gain: $K_u = 1 + R_f/R_0$, → input output are in-phase
- ✓ Lead-leg feed back gain: $B = U_{out}/U_P = 1/3$
- ✓ Since $K_uB = 1 \rightarrow K_u = 3 \rightarrow R_f/R_0 = 2 \rightarrow R_f = 2R_0$
- ✓ Start-up condition: $K_u > 3 \rightarrow R_0$ replaced by a potentiometer, or back-to-back Zener diode
- Output signal frequency: resonance $f_c = 1/(2\pi RC)$

b2. Phase-shift oscillator:

- RC ladder: Each RC shifts phase with max 90°. Oscillation occurs at frequency with total phase shift of 180°.
- If $R_1 = R_2 = R_3 = R$ and $C_1 = C_2 = C_3 = C$: $U_2/U_1 = 1/29$
- RC phase shift oscillator: based on inverting amplifier → Input and output out-of-phase → After RC ladder, total phase shift is 360° or 0°
- Feedback RC ladder: B = U₂/U₁ = U_{out}/U_N = 1/29
- ✓ Since $K_uB = 1$: $K_u = 1/29 \Rightarrow R_f/R_0 = 29 \Rightarrow R_f = 29R_0$
- Output signal frequency: resonance $f_c = 1/(2\pi\sqrt{6}RC)$

b3. Colpitts oscillator

- Feedback by C₁, C₂, L: Used for necessary phase shift and plays role of resonant filter to pass signal of desired frequency at oscillation
- Output signal frequency: resonance $f_r = 1/(2\pi\sqrt{LC_{equivalent}})$ where $C_{equivalent} = C_1C_2/(C_1 + C_2)$
- B = $U_f/U_{out} = IX_{C1}/IX_{C2} = 1/(2\pi f_r C_1)/1/(2\pi f_r C_2) \rightarrow B = C_2/C_1$
- Since K_uB = 1 → Ku = C₁/C₂
- Start-up condition: Initially K_uB > 1

b4. Maisne oscillator

- Feedback by C₁, C₂, L: Used for necessary phase shift and plays role of resonant filter to pass signal of desired frequency at oscillation
- Output signal frequency: resonance $f_c = 1/(2\pi\sqrt{LC})$
- Less commonly used, because of high cost of transformer and size

- 2.1. PN Junction Diode and application
- 2.2. Bipolar Junction Transistor (BJT) and applications
- 2.3. Operational amplifier (OPAM) and applications
- 2.4. Voltage regulation

2.4.1. Basic concepts

- Definition: Line regulation, Load regulation
- ✓ Line regulation: $(\Delta U_{out} \Delta U_{in})/\Delta U_{in}(100\%)$
- ✓ Load regulation: $(\Delta U_{NL} \Delta U_{FL})/\Delta U_{FL}(100\%)$, where NL = No load, FL = Full load
- Classification:
- > Use of a control element: Zener diode, series regulators, parallel regulators (shunt), switching regulators
- Linear output (Zener diode, series regulators, parallel regulators (shunt)), non-linear output (switching regulators)
- Integrated circuit (IC) regulators

a) Zener diode

- Key feature: 1) designed to operate in breakdown region 3;
 - 2) Ability to keep reserve voltage across its terminal constant;
- If Zener diode forward biased: Operate as a normal diode.
- Zener breakdown characteristic:
- Breakdown effect begins at I_{ZK}, where I_Z start increasing rapidly, internal impedance begin decreasing
- \succ Down to bottom of knees, breakdown U_z is almost a constant as I_z increasing
- Zener diode operating at breakdown acts as a voltage regulator: because it maintains a nearly constant voltage over a specific range of reverse current
- \triangleright I_z should be maintained at I_{zk} (min value) to keep breakdown, o.w U_z decreases
- \triangleright I_z should be less than I_{zM} (max value) to avoid damage
- > Therefore I_{ZK}: nominal value of I_Z typically specified on a dataset of Zener diode
- \triangleright Zener impedance: $Z_z = \Delta U_z/\Delta I_z$

Example: For a given Zener diode IN4736: $Z_T = 3.5\Omega$, $U_{ZT} = 6.8V$ at $I_{ZT} = 37mA$ and $I_{ZK} = 1mA$.

What is U_z when $I_z = 50$ mA? When $I_z = 25$ mA?

- $I_z = 50 \text{mA}$: $\Delta_{IZ} = 50 37 = 13 \text{mA} \Rightarrow \Delta_{UZ} = \Delta_{IZ} R_z = 13 \text{mA} \times 3.5 \Omega = +45.5 \text{mV} \Rightarrow U_z = U_{ZT} + \Delta_{UZ} \sim 6.85 \text{ V}$
- $I_Z = 25 \text{mA}$: $\Delta_{IZ} = 25 37 = -12 \text{mA}$ $\Rightarrow \Delta_{UZ} = \Delta_{IZ} R_Z = -12 \text{mA}$ x $3.5\Omega = -42 \text{ mV}$ $\Rightarrow U_Z = U_{ZT} + \Delta_{UZ} \sim 6.76 \text{ V}$

Example: For a voltage regulator using Zener diode: $U_Z = 12.7V$, $R_1 = 390 \Omega$, $R_E = 12 k\Omega$, $R_L = 240 \Omega$, $\beta = 50$, $U_{BW} = 0.7 V$. Rectified output a) $U_{in} = 21 V$ when $I_L = 0$ (no load) and b) $U_{in} = 20 V$ when $I_L = 50 mA$ (with load).

What is currents at E, B, C and I_Z without and with load?

- Without load:
- $V_{out} = U_{RE} = U_{Z} U_{BE} = 12.7V 0.7V = 12V → I_{E} = U_{RE}/R_{E}$ = 12V/12kΩ = 1mA → I_B = I_E/(1 + β) ~ 20μA; I_C = βI_B ~ I_E
- $V_{R1} = U_{in} U_{Z} = 21V 12.7V = 8.3V → I_{1} = U_{R1}/R_{1} = 8.3V/390 Ω ~ 21.3mA$ → $I_{Z} = I_{1} I_{B} = 21.3mA 20 μA ~ 21.3mA$
- With load: $I_E = U_{out}/(R_E//R_L) \sim 20V/235\Omega = 51.1mA$
- \triangleright In similar manner: $I_B = 1mA$; $I_C \sim I_E = 51.1$ mA; $I_1 = 18.7$ mA, $I_Z = 17.7$ mA

- b) Series regulator: based on OPAM
- Comparator: Inverse and non-inverse; operating in saturation mode, U_{out} = ± U_{max}
- **▶ Inverse:** () input compared with U_{ref} in (+) input

✓ If
$$U_0 = U_{ref} - U_{in} > 0 \rightarrow U_{in} < U_{ref} \rightarrow U_{out}$$
 from + U_{max} -> - U_{max}

✓ If
$$U_0 = U_{ref} - U_{in} < 0 \rightarrow U_{in} > U_{ref} \rightarrow U_{out}$$
 from $-U_{max} \rightarrow + U_{max}$ $U_{in} \not = 0$

✓ Transfer characteristic: based on inverse amplifier

- ➤ Non-Inverse: Non-Inverse (+) input compared with U_{ref} in (-) input
- ✓ If $U_0 = U_{in} U_{ref} > 0$ → $U_{in} > U_{ref}$ → U_{out} from U_{max} -> + U_{max}
- ✓ If $U_0 = U_{in} U_{ref} < 0 \rightarrow U_{in} < U_{ref} \rightarrow U_{out}$ from + U_{max} -> U_{max}
- ✓ Transfer characteristic: based on non-inverse amplifier

- Schematic circuit: Based on non-inverse comparator
- > Transitor as a control element switch connected in series with LOAD
- > Priciple: Compared $U_{ref} = U_Z$ and $U_{R3} = U_{out}R_3/(R_2+R_3)$ fed back to N-input → $U_{out} = U_{ref}(1+R_2/R_3)$ (neglect U_{BE})
- ightharpoonup If $U_0 = U_{ref} U_{R3}$ zero-crossed, OPAM output U_B opens transistor ightharpoonup V_{out} is adjusted accordingly to be const

Example:

$$\rightarrow$$
 U_{ref} = U_z = 5V \rightarrow U_{out} = U_z(1 + R₂/R₃) = 5V(1 + 10k/10k) = 10 V

Quick test 13:

$$ightharpoonup U_{out2} = U_{z2}; U_{out1} = U_{z1} + U_{z1}$$

- c) Parallel regulator: based on OPAM (common name: SHUNT regulator)
- Transistor as a control element connected in parallel to the LOAD, and R₁ is series with LOAD

 $U_{in} \mathcal{O}$

R₁ 22Ω

Control

element

 $10k\Omega$

Error detector

Feedback

 $U_N = U_{Ref}$

 $U_P = U_{R4}$

- Principle: Inverse comparator
- > r_{CE} and R₁ are voltage divider used to maintain U_{out} constant
- If U_{out} decreases/increases, sensed by R₃-R₄ → U₀ = U_{ref} − U_{R4} zero-crossed and U_B decreased/increased → I_B and then I_C decreased/increased → r_{CE} increased/decreased → Maintain U_{out} as a constant, with a voltage devider of R₁ and r_{CE}

Example: If max input $U_{in} = 12.5$, what power rating for R_1 ?

- $> U_{out} = 0

 > U_Z(1+R_3/R_4) = 0

 > 10V$, and in worse case R₁ is dissipated when short output or $U_{out} = 0

 > U_{R1} = U_{in} U_{out} = 12.5V$
- > Power rating: P = UI = $U_{R_1}^2/R_1$ = (12.5V)²/22Ω = 7.1 W → Select R_1 with power rating about > 10W for use

- d) Switching regulator: based on OPAM
- Principle:
- ➤ More efficiency than linear types, because Transistor not always conducted
- More load current at low voltage than linear regulators, since the control transistor doesn't dissipate
- Type: step-down, step-up, inverter

2. Step-up regulator

- √ When Transistor is on, U_L jumps to U_{in} (+ → -). During t_{on}, the induced voltage U_L starts decreasing, D₁ is reverse biased, C discharged small amount to the load (C is not charged)
- ✓ When Transistor is off, U_L changes polarity (- → +), D_1 if forward biased, and C is charged to U_{in} . During t_{off} : $U_{out} = U_{in} + U_L$
- ✓ If $U_{out} \uparrow \rightarrow t_{on} \downarrow \rightarrow$ decrease in the amount that C will charge
- ✓ If $U_{out} \downarrow \rightarrow t_{on} \uparrow \rightarrow$ increase in the amount that C will discharge
- ✓ As the result: U_{out} maintains constant value
- 3. Voltage-inverter regulator: self-reading

- e) Integrated circuit (IC) regulators
- 78XX: XX = positive regulated voltage (+05, +06, +08, +09, +12, +15, +18, +24 V)
- 79XX: XX = negative regulated voltage (-05, -06, -08, -09, -12, -15, -18, -24 V)
- LM317: precise U_{out} = 1.25 V. R1-R2 voltage divider used for various U_{out}
 → U_{out} = 1.25 V(1+ R₂/R₁)
- µA78G: provide positive voltage output from +5 to +30 V
- µA79G: provide negative voltage output from -2.5 to -30 V
- QUESTION: Investigate applications of IC regulators (increase power dissipation, current limiting,)
- Current regulators: self-reading

CHAPTER 2: SUMMARY

- 1. DIODE and applications
- a. Forward bias, reverse bias, break down
- b. Applications:
- Rectifiers: Half-wave, Full-wave, bridges, doubler
- Limiters: serial (upper, lower), parallel (upper, lower)
- 2. Transistors and applications
- a. Basic equations, amplification mode, saturation mode, cut-off mode, basic amplifier schemes (EC, CC)
- b. DC analysis: Q-point, DC load line, DC load
- c. DC bias methods: based current, feedback current, emitter currents, DC equivalent (Thevenin's)
- d. AC analysis: EC and CC
- AC equivalent model of transistor and amplifier
- Derivation of K_u , K_i , $K_p = K_u K_i$, take note of operation frequency range
- d. Multistage amplifier: independent DC mode for a stage, $K_u = K_1 ... K_N$, C-coupled and direct coupled

3. OPAM and applications

- a. Linear and saturation mode of OPAM
- b. Basic features: Transfer characteristic according to inverse and non-inverse inputs, $U_P = U_N$, $I_P = I_N = 0$
- c. Applications: inverse and non-inverse amplifiers, summing and subtracting amplifiers, integrator and differentiators, function generators

4. Oscillators

- e. Signal oscillators
- Oscillation conditions
- Based on RC feedback
- Based on use of OPAM and Transistors
- Signal frequency: resonance frequency

5. Voltage regulators

- Zener diode: based on Zener effect
- Series: Control element in series with LOAD, based on non-inverse mechanism
- Parallel: Control element in parallel to LOAD, based on inverse mechanism
- Switching: non-linear compensation of output voltage, based on charge/discharge of C
- Integrated circuits (IC): 78XX, 79XX, LM317, uA78G, uA79G

Quick test Chapter 2

Prob 1. Given a circuit assuming that: $R = 0\Omega$ and $U_D = 0.7V$.

- a. State the function of the circuit and illustrate the output signal $U_{\text{out}}(t)$ and input signal $U_{\text{in}}(t)$ on the same coordinate system.
- b. If the order of branches D_1 -E and D_2 -E are exchanged, is there any significant change in its function, and explain the reason?

- a. State the function of the circuit and derive the equation for U_{out} according to its parameters, assuming $R_1 = R_2$.
- b. When $R_1 = R_2 = 10K\Omega$, $U_1 = U_2 = 1V$. Determine the max value of R4/R3 so that the circuit keeps operating in a linear amplification.

Prob 3. Given a regulator circuit using Zener diode.

- a. With $U_{in} = 12V$, $U_{out} = 9V$, test Zener current $I_{ZT} = 25$ mA. Determine compensate resistor R.
- b. With $U_{in} = 20V$, $U_{out} = U_Z = 6V$, max Zener current $I_{ZM} = 30$ mA, knees current $I_{ZK} = 0V$, $R = 400\Omega$. Determine R_t to work in regulation band.
- c. If U_{inNL} = 12V without LOAD, and U_{inL} = 10V with LOAD. Determine the voltage stability coefficient in %

