n と $\varphi(n)$ の比例関係について

梶田光

2025/08/13

1. はじめに

 $n=2\varphi(n)$ や $n=3\varphi(n)$ は飯高先生によって調べられており、解はそれぞれ $n=2^e$ $(e>0), n=2^e3^f$ (e,f>0) の形に書けることが証明されている.

そこで、今回はより一般なnと $\varphi(n)$ の比例関係について考察した.

以降, A, B を $\gcd(A, B) = 1$ を満たす正の定数で, $An - B\varphi(n) = 0$ の形の方程式の解について考える.

2. A = 1 の場合

定理 2.1: $n - B\varphi(n) = 0$ に解が存在するならば, $B \le 3$.

Proof: B の偶奇で場合分けをする.

(1) B: even の場合

n は偶数なので $n = 2^e L$ (e > 0, L : odd) と書ける.

これを $n - B\varphi(n) = 0$ に代入すると $2^eL - B \cdot 2^{e-1}\varphi(L) = 0$ が得られる.

両辺を $2^e > 0$ で割ると $L - \frac{B}{2}\varphi(L) = 0$ が得られる.

さて, B は偶数なので $\frac{B}{2}$ は自然数である.

ここで $L \neq 1$ とすると, $\varphi(L)$ は偶数であるが, これは L が奇数であることに矛盾.

よって L=1 であるが、このとき $1-\frac{B}{2}=0$ 、つまり B=2 であり、 $B\leq 3$.

(2) B: odd の場合

いま B > 4 を仮定しているので, B は素因数をもつ.

したがって, B = pD (p: odd prime, D: odd) と書ける.

さて, $n - B\varphi(n) = 0$ より n も p の倍数であるから, $n = p^eL$ $(e > 0, p \mid L)$ と書ける.

これと B = pD を $n - B\varphi(n) = 0$ に代入すると $p^eL - p^eD(p-1)\varphi(L) = 0$ を得る.

両辺を $p^e > 0$ で割ると $L - D(p-1)\varphi(L) = 0$ となる.

さて, p-1 は偶数であるから, D(p-1) も偶数.

したがって、D(p-1) > 4 のときは先ほど示したように解は存在しない.

よって, 解が存在するとすれば $D(p-1) \leq 3$ の場合であるが, これを満たす唯一の D,p は D=1,p=3 である.

すると B = pD = 3 であるが、これは B < 3 を満たす.

3. A:odd の場合

定理 2.2: A : odd > 1, gcd(A, B) = 1 とする.

 $An - B\varphi(n) = 0$ に解が存在するならば、 $2 \parallel p - 1$ を満たす奇素数 p を用いて $A = \frac{p-1}{2}, B = p$ と書け、 さらにこのときの解は $n = 2^e p^f$ (e, f > 0) と書ける.

Proof: gcd(A, B) = 1, A > 1 より $A \neq 1$, したがって $n \neq 1$.

また, n は 2 のべきではない; n が 2 のべきであるとすると, $An-B\varphi(n)=0$ を満たしながら $\gcd(A,B)=1$ を満たす組は (A,B)=(1,2) しかなく, A>1 の仮定に反するからである.

よって $n \ge 3$ より $\varphi(n)$ が偶数, したがって n も偶数で, $n = 2^e L$ (e > 0, L : odd) と書ける.

これを $An - B\varphi(n) = 0$ に代入すると $A \cdot 2^e L - B2^{e-1}\varphi(L) = 0$.

両辺を $2^{e-1} > 0$ で割って $2AL - B\varphi(L) = 0$ を得る.

(1) B が偶数の場合

$$2AL - B\varphi(L) = 0$$
 は $L = \frac{B}{2} \cdot \frac{\varphi(L)}{A}$ と書き直せる.

ここで B は偶数なので $\frac{B}{2}$ は自然数だが, $\gcd(A,B)=1$ より $\frac{\varphi(L)}{A}$ は自然数.

しかしnは2のべきではないので,L>1より $\varphi(L)$ は偶数.

すると $\frac{arphi(L)}{A}$ も偶数となるが、これは L が奇数であることに矛盾.

(2) B が奇数の場合

B, A, L はすべて奇数なので、 $2AL - B\varphi(L) = 0$ より $\nu_2(\varphi(L)) = 1$.

さて,
$$\varphi(L) = \prod_{p^e \parallel L} p^{e-1}(p-1)$$
 より, L は素因子を 1 つしか持てない.

よって $L=p^f$ $(f>0,p: {\rm odd\ prime})$ と書け、また $\nu_2(p-1)=1$ より $2\parallel p-1$.

これを
$$2AL-B\varphi(L)=0$$
 に代入すると $2A\cdot p^f-B\cdot p^{f-1}(p-1)=0$ を得る.

両辺を
$$p^{f-1} > 0$$
 で割ると $2Ap - B(p-1) = 0$ となり、したがって $Ap = B\frac{p-1}{2}$.

さて,
$$\gcd\left(p, \frac{p-1}{2}\right) = 1$$
 より B は p の倍数である.

そこで
$$D = \frac{B}{p}$$
 とおくと $A = D^{\frac{p-1}{2}}$.

しかし gcd(A, B) = 1 から gcd(A, D) = 1 より, D = 1.

したがって
$$B=p, A=rac{p-1}{2}$$

このとき
$$n = 2^e L = 2^e p^f$$
.