Порождение признаков с помощью локально-аппроксимирующих моделей

Максим Евгеньевич Христолюбов

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 774, весна 2020

Цель исследования

Цель

Решить задачу многоклассовой классификации временных рядов.

Задача

Требуется предложить способ построения признакового пространства и решить задачу классификации на построенном пространстве.

Метод

Суперпозиция моделей локальной аппроксимации и отбор признаков.

Литература

Базовая литература

- Кузнецов М.П., Ивкин Н.П., Алгоритм классификации временных рядов акселерометров по комбинированному описанию признаков. Машиннное обучение и анализ данных, 2015
- Isachenko R.V., Bochkarev A.M., Zharikov I.N., Strijov V.V., Feature Generation for Physical Activity Classification.
 Artificial Intelligence and Decision Making, 2018, 3: 20-27.
- Petr Somol, Jana, Novovicova, Pavel Pudil, Efficient Feature Subset Selection and Subset Size Optimization. 2010.

Постановка задачи

Данные

Задан исходный временной ряд метками классов:

$$\mathfrak{D} = \{(d_i, y_i)_{i=1}^M = [s_1, \dots s_N],$$

где $\mathbf{s}_i \in Y$ (по элементно), |Y| — количество классов. Известен максимальный период $|\mathbf{s}| \le T$.

Модель

Модель будет приближать отображение $R:\mathcal{I}\to Y$, где $\mathcal{I}=\{1,\dots M\}$ — моменты времени. Будем искать ее в виде суперпозиции:

$$\hat{R}(k) = b(w(h(k)), \mathbf{w}),$$

где $h: \mathcal{I} \to \mathbb{X}$ — отображение момента времени в сегмент \mathbf{x}_k , $w: \mathbb{X} \to W$ — процедура построения признакового описания сегмента, \mathbf{w} — вектор параметров модели.

Процедура построения признакового описания сегмента

Локально-аппроксимирующая модель

Модель $\hat{\mathbf{x}}$ назовем локально-аппроксимирующей моделью, если она приближает временной ряд на локальном сегменте \mathbf{x} :

$$\hat{\mathbf{x}} = \underset{\hat{\mathbf{x}}}{\operatorname{arg\,min}} ||\hat{\mathbf{x}} - \mathbf{x}||_2.$$

Признакове описание сегмента

В качестве признакового описания $\mathbf{w}(\mathbf{x})$ сегмента \mathbf{x} исполуется вектор параметров локально-аппроксимирующей модели $\hat{\mathbf{x}}(\mathbf{v})$:

$$\mathbf{w}(\mathbf{x}) = \mathop{\arg\min}_{\mathbf{v}} ||\hat{\mathbf{x}}(\mathbf{v}) - \mathbf{x}||_2.$$

Решение

Первый этап

Отображаем классифицируемые моменты времени на локальный сегмент временного ряда.

Второй этап

Для полученных сегментов \mathbf{x}_k строим признаковое описание с помощью локально-аппроксимирующих моделей.

Третий этап

После получения признакового описания каждого момента времени, решаем задачу классификации моментов времени ряда.

Вычислительный эксперимент

Цель

Изучить влияние решения одной задачи классификации на решение другой (задачи классификации типа активности и классификации пола человека). Сравнить распределения параметров моделей, построенных для решения этих задач.

Данные

Для эксперимента берется шесть временных рядов в 39000 временных моментов (780 секунд). Данные снимаются с четырех человек (двое мужчин и две женщины), которые выполняют подъем или спуск по лестнице (два типа деятельности).

Влияние решения одной задачи на другую

Таблица: Среднее и дисперсия доли верных классификаций

	mean(activity)	std(activity)	mean(gender)	std(gender)
LogRegression	0.908	0.147	0.952	0.152
after adding	0.903	0.152	0.950	0.136
SVC	0.934	0.097	0.971	0.074
after adding	0.933	0.101	0.966	0.072

Использование результата решения одной задачи классификации не влияет существенно на качество решения другой задачи.

Вычислительный эксперимент

Таблица: Среднее и дисперсия векторов параметров моделей

mean(act)	-2.89	-1.37	4.20	1.58	-3.41	-2.86	4.51	4.12	-1.24	9.29	2.35
std(act)	0.33	0.23	0.22	0.21	0.37	0.36	0.39	0.27	0.16	0.55	0.41
mean(act)	2.64	-6.85	-4.02	0.41	1.82	-1.17	1.29	1.26	-0.88	-2.87	
std(act)	0.17	0.54	0.36	0.47	0.24	0.24	0.39	0.44	0.20	0.31	
mean(gen)	1.66	0.41	1.28	-1.62	-1.19	-1.47	1.61	2.17	0.71	1.37	3.70
std(gen)	0.31	0.14	0.31	0.19	0.24	0.23	0.15	0.14	0.11	0.44	0.41
mean(gen)	0.23	-3.98	8.82	-7.39	3.64	-4.78	3.17	3.53	1.36	7.65	
std(gen)	0.18	0.50	0.20	0.33	0.23	0.26	0.18	0.17	0.09	0.17	

Расстояние Кульбака-Лейблера

Расстояние Кульбака-Лейблера между распределениями параматров модели классификации активности и модели классификации пола оказалось равным KL=56.20

Заключение

Резюме

- Рассмотрен способ описания момента времени по локальной окрестности (сегменту) этого момента времени.
- Произведена классификация типа активности и пола человека.
- Найдено расстояние между распределениями параметров моделей для решения этих задач классификации.