Linear regression

November 11, 2016

Agenda

- Model representation
- 2 Cost function
- 3 Gradient descent

Useful resources

- 1 Coursera. Machine learning (Andrew Ng)
- 2 HSE course. Week 2. Week 4.

House prices

House prices

Supervised learning. We give right answer for each example of data. Regression problem - predict real-valued output.

Training set of housing prices.

Size (x)	Price (y)	
20	500	
40	800	
65	1300	

Notation:

 $\mathbf{m} = \text{number of training example}$

x = input variable features

y = output variable target variable

How to choose
$$\Theta_i$$

 $h_{\theta}(x) = \Theta_0 + \Theta_1 x$

 $h_{\theta}(x) = \Theta_0 + \Theta_1 x$

We need to choose Θ_0 , Θ_1 that $h_0(x)$ is close to y for our training examples (x,y).

So we should minimize $J(\Theta_0, \Theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_0^i(x) - y^i)^2$ $J(\Theta_0, \Theta_1)$ - **Loss function**, squared error function.

$$h_{\theta}(x) = \Theta_0 + \Theta_1 x$$
 - hypothesis function. $\Theta_0 = 0, \ \Theta_1 = 0.5$

$$h_{\theta}(x) = \Theta_0 + \Theta_1 x$$
 - hypothesis function. $\Theta_0 = 0, \ \Theta_1 = 0.5$

$$J(0,0.5) = \frac{1}{2*3}((0.5-1)^2 + (1-2)^2 + (1.5-3)^2) = 0.58$$

$$h_{\theta}(x) = \Theta_0 + \Theta_1 x$$
 - hypothesis function. $\Theta_0 = 0, \ \Theta_1 = 0$

$$J(0,0) = \frac{1}{2*3}((0-1)^2 + (0-2)^2 + (0-3)^2) = 2.33$$

Have some function $J(\Theta_0, \Theta_1)$ Want to find $min\ J(\Theta_0, \Theta_1)$

- **1** Start from initial Θ_0 , Θ_1
- **2** Keep changing Θ_0, Θ_1 to reduce $J(\Theta_0, \Theta_1)$ until we find minimum

Gradient descent algorithm.

Repeat until convergence

$$\Theta_j = \Theta_j - \alpha \frac{\partial}{\partial \Theta_j} J(\Theta_0, \Theta_1)$$

Simultaneous update:

$$temp0 = temp0 - \alpha \frac{\partial}{\partial \Theta_0} J(\Theta_0, \Theta_1)$$

$$temp1 = temp1 - \alpha \frac{\partial}{\partial \Theta_1} J(\Theta_0, \Theta_1)$$

$$\Theta_0 = temp0$$

$$\Theta_1 = temp1$$

$$\Theta_1 = \Theta_1 - \alpha \frac{\partial}{\partial \Theta_1} \textit{J}(\Theta_0, \Theta_1)$$

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Gradient descent for linear regression.

Repeat until convergence

$$\Theta_{j} = \Theta_{j} - \alpha \frac{\partial}{\partial \Theta_{j}} J(\Theta_{0}, \Theta_{1}) = \Theta_{j} - \alpha \frac{\partial}{\partial \Theta_{j}} \frac{1}{2m} \sum_{m}^{i=1} (\Theta_{0} + \Theta_{1} x^{i} - y^{i})^{2}$$

$$\Theta_0 = \Theta_0 - \alpha \frac{\partial}{\partial \Theta_j} \frac{1}{m} \sum_{m}^{i=1} (h_{\Theta}(x^i) - y^i)$$

$$\Theta_1 = \Theta_1 - \alpha \frac{\partial}{\partial \Theta_i} \frac{1}{m} \sum_{m}^{i=1} (h_{\Theta}(x^i) - y^i) x^i$$

Training set of housing prices.

Size (x)	Price (y)	
20	500	
40	800	
65	1300	

Notation:

 $\mathbf{m} = \text{number of training example}$

x = input variable features

y = output variable target variable

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x$$

Training set of housing prices.

Size (x)	Bedrooms	Floors	Age	Price (y)
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	У
20	5	1	45	500
40	3	2	20	800
65	3	3	14	1300
	•••			

Notation:

 $\mathbf{n} =$ number of features $x^i =$ input (features) of i^{th} training example. $x^i_j =$ value of feature j in i^{th} training example $h_{\Theta}(x) = \Theta_0 + \Theta_1 x + \Theta_2 x + \Theta_3 x + \Theta_4 x$

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x + \Theta_2 x + \Theta_3 x + \Theta_4 x$$
 - hypothesis function.

Let's define $x_0 = 1$, so in matrix notation:

$$h_{\Theta}(x) = \Theta^T x$$

Gradient descent

Hypothesis: $h_{\Theta}(x) = \Theta_0 + \Theta_1 x + \Theta_2 x + \Theta_3 x + ... + \Theta_n x$

Parameters: Θ - n-dimensional vector

Cost function: $J(\Theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\Theta}(x^i) - y^i)^2$

Gradient descent: Repeat $\{\Theta_j = \Theta_j - \alpha \frac{\partial}{\partial \Theta_i} J(\Theta)\}$ (simultaneously

update for every j = 0, ..., n

Feature scaling

Make sure that your features are on a similar scale.

E.g.
$$x_1 - size (0 - 150m^2) \rightarrow x_1 = \frac{size}{150}$$

$$x_2$$
 – number of bedrooms $(1-5) \rightarrow x_2 = \frac{number}{5}$

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean

Making sure gradient descent is working correctly.

Polynomial regression

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x + \Theta_2 x + \Theta_3 x = \Theta_0 + \Theta_1 (size) + \Theta_2 (size)^2 + \Theta_3 (size)^3$$

$$\begin{array}{c} \text{Raw Data} \\ \text{3rd Order Polynomial Fit} \\ \text{-5th Order Polynomial Fit} \\ \text{-9th Order Polynomial Fit} \\ \end{array}$$

Overfitting

Overfitting refers to a model that models the training data too well. Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance on the model on new data.

Homework

Logistic regression

- 1 Coursera. Andrew Ng course. Week 3.
- Scikit-learn documentation