1a. Lista de Exercícios de MAT0206 - Análise Real. MAT0216 - Introdução à Análise Real

1° . semestre de 2021

- 1. Prove a Segunda Lei de De Morgan: $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 2. Para cada $n \in \mathbb{N}$, seja $A_n = \{(n+1)k : k \in \mathbb{N}\}$.
 - (a) Qual é o conjunto $A_1 \cap A_2$?
 - (b) Determine os conjuntos: $\bigcup \{A_n : n \in \mathbb{N}\} \in \bigcap \{A_n : n \in \mathbb{N}\}.$
- 3. Seja $A=:=\{x\in\mathbb{R}: -1\leq x\leq 1\}$. O subconjunto $\{(x,y): x^2+y^2=1\}$ de $A\times B$ é uma função? Explique.
- 4. Seja $g(x) := x^2$ e f(x) = x + 2, para $x \in \mathbb{R}$, e seja h a função composta $h := g \circ f$.
 - (a) Encontre a imagem direta h(E) de $E := \{x \in \mathbb{R} : 0 \le x \le 1\}$.
 - (b) Encontre a imagem inversa $h^{-1}(G)$ de $G := \{x \in \mathbb{R} : 0 \le x \le 4\}$.
- 5. Mostre que, se $f: A \to B$ e E, F são subconjuntos de A, então $f(E \cup F) = f(E) \cup f(F)$, e $f(E \cap F) \subset f(E) \cap f(F)$.
- 6. Mostre que, se $f: A \to B$ e G, H são subconjuntos de B, então $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$.
- 7. Para $a, b \in \mathbb{R}$, a < b, encontre uma bijeção de $A := \{x : a < x < b\}$ sobre $B := \{y : 0 < y < 1\}$.
- 8. Dê um exemplo de funções f, g tais que $f \neq g$, tais que $f \circ g = g \circ f$.
- 9. (a) Mostre que se $f: A \to B$ é injetora e $E \subseteq A$, então $f^{-1}(f(E)) = E$. Dê um exemplo para mostrar que a igualdade pode não ser verdadeira se f não for injetora.
 - (b) Mostre que se $f:A\to B$ é sobrejetora e $H\subseteq A$, então $f(f^{-1}(H))=H$. Dê um exemplo para mostrar que a igualdade pode não ser verdadeira se f não for sobrejetora.
- 10. Sejam $f:A\to B$ e $g:B\to C$ funções e H um subconjunto de C. Mostre que $(g\circ f)^{-1}(H)=f^{-1}(g^{-1}(H))$.
- 11. Sejam f, g funções tais que $(g \circ f)(x) = x$ para todo $x \in D(f)$ e $(f \circ g)(y) = y$ para todo $y \in D(g)$. Prove que $g = f^{-1}$.