ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ РЦФ

- 1. Изучить метод проектирования РЦФ Чебышева (с реализацией в виде каскадной схемы) на основе билинейного преобразования.
- 2. Согласно варианту индивидуальных заданий (см. табл. 3) спроектировать рекурсивный цифровой фильтр нижних частот (в частности, определить порядок N фильтра и его коэффициенты).
- 3. Пользуясь пакетом прикладных программ DRF, снять и сравнить частотные характеристики $H(\Omega)$ и $\alpha(\Omega)$ аналогового фильтра-прототипа и характеристики H(w) и $\alpha(w)$ РЦФ.
- 4. Провести испытание синтезированного в виде программы для ПЭВМ РЦФ, подавая на его вход единичный импульс, единичную последовательность, синусоидальный и полигармонический сигналы (см. НЦФ).

Анализируя входные и выходные сигналы фильтра:

- а) записать импульсную функцию g(k) фильтра;
- б) определить фронт нарастания переходной функции h(k) фильтра;
- в) зарисовать с экрана (или выполнить распечатку на принтере) графики g(k), h(k), входной x(k) и выходной y(k) синусоидальные сигналы, входной x(k) и выходной y(k) полигармонические сигналы.
 - 4. Сформулировать выводы.

Таблица 3 Исходные данные для проектирования нерекурсивных и рекурсивных Цф нижних частот

				7.1			
Номер						Тип	Входной
вари-	f_n ,	f_3 ,	\mathcal{E}_n	\mathcal{E}_3	f_{∂} ,	"окна"	четырёхто
анта	кГц	кГц			кГц	для	чечный
						ΗЦФ	сигнал
1 (16)	4,8	9,6 (13,2)	0,0013	0,032	48	1 и 2	{1,-1, 2,-2}
2 (17)	2,4	4,8 (9,6)	0,0025	0,025	48	1 и 3	{-1,1, -2,2}
3 (18)	1,2	3,0 (4,8)	0,004	0,017	48	1 и 4	{-2,-1, 1,2}
4 (19)	2,0	6,0 (8,0)	0,006	0,011	48	1 и 2	{1, 2, -1, -2}
5 (20)	1,6	6,4 (8,0)	0,008	0,009	32	1 и 3	{1,2, -2, 1}
6 (21)	1,0	5,0 (6,0)	0,010	0,0075	32	1 и 4	{1, 1, 1, 1}
7 (22)	1,6	8,0 (9,6)	0,012	0,006	32	1 и 2	{1, 1, 2, 1}
8 (23)	3,2	9,6 (12,8)	0,015	0,005	32	1 и 3	{1, 2, 1, 1}
9 (24)	2,4	7,2 (9,6)	0,018	0,004	24	1 и 4	{-1,1, -1,1}
10 (25)	1,2	4,8 (6,0)	0,020	0,003	24	1 и 2	{1,-1, 1,-1}
11 (26)	2,4	8,0 (10,0)	0,025	0,0025	24	1 и 3	{2, 1, 1, 2}
12 (27)	1,0	4,0 (6,0)	0,030	0,002	24	1 и 4	{2, 2, 1, 1}
13 (28)	0,5	2,5 (4,5)	0,035	0,0017	10	1 и 2	{2, 1, 2, 1}
14 (29)	0,5	2,0 (2,5)	0,040	0,0013	10	1 и 3	{1, 1, 1,-1}
15 (30)	0,6	3,0 (5,4)	0,045	0,001	10	1 и 4	{1,-1, 1, 1}