2 Noethersche Ringe und Moduln

§1 Der Hilbertsche Basissatz

Definition 2.1

Sei R ein (kommutativer) Ring (mit Eins), M ein R-Modul.

- (a) M erfüllt die **aufsteigende Kettenbedingung** (ACC), wenn jede aufsteigende Kette von Untermoduln stationär wird. D.h. sind $(M_i)_{i\in\mathbb{N}}$ Untermoduln von M mit $M_i\subseteq M_{i+1}$ für alle i, so gibt es ein $n\in\mathbb{N}$ mit $M_i=M_n$ für alle i>n.
- (b) M heißt **noethersch**, wenn M (ACC) erfüllt.
- (c) R heißt **noethersch**, wenn er als R-Modul noethersch ist.

Beispiele

- 1.) k Körper. Ein k-Vektorraum V ist noethersch $\Leftrightarrow \dim_k(V) < \infty$. [k hat nur die Ideale $\{0\}, k$.]
- 2.) $R = \mathbb{Z}$ [alle Untermodule: $n\mathbb{Z}$, mit ggT(n, m) zusammenbauen]
- 3.) R = k[X] [Ideale von einem Polynom erzeugt, um größer zu machen: ggT der Polynome nehmen.]

Bemerkung 2.2

Sei $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ kurze exakte Sequenz von R-Moduln. Dann gilt:

M noethersch $\Leftrightarrow M'$ und M'' noethersch

Beweis

"⇒":

- (i) $M_0' \subseteq M_1' \subseteq \cdots \subseteq M_i' \subseteq \cdots$ Kette von Untermoduln von $M' \Rightarrow \alpha(M_0') \subseteq \alpha(M_1') \subseteq \cdots$ wird stationär $\stackrel{\alpha \text{ injektiv}}{\Longrightarrow} M_0' \subseteq M_1' \subseteq \cdots$ wird stationär.
- (ii) Sei $M_0'' \subseteq M_1'' \subseteq \cdots \subseteq M_i'' \subseteq \cdots$ Kette von Untermoduln von $M'' \Rightarrow \beta^{-1}(M_0'') \subseteq \beta^{-1}(M_1'') \subseteq \cdots \subseteq \beta^{-1}(M_i'') \subseteq \cdots$ wird stationär $\Rightarrow \underbrace{\beta(\beta^{-1}(M_0''))}_{=M_0''} \subseteq \cdots \subseteq \underbrace{\beta(\beta^{-1}(M_i''))}_{=M_i''} \subseteq \cdots$

... wird stationär, da β surjektiv ist.

"⇐":

Sei $M_0 \subseteq M_1 \subseteq \cdots \subseteq M_i \subseteq \cdots$ Kette von Untermoduln von M. Sei $M'_i := \alpha^{-1}(M_i), M''_i := \beta(M_i)$.

Nach Voraussetzung gibt es $n \in \mathbb{N}$, so dass für $i \geq n$ gilt: $M'_i = M'_n, M''_i = M''_n$. Weiter gilt:

 γ injektiv (Einbettung).

Zu zeigen: γ surjektiv.

Sei $x \in M_i$, dazu gibt es ein $y \in M_n$ mit $\beta(y) = \beta(x) \Rightarrow z := y - x \in \text{Kern}(\beta) = \text{Bild}(\alpha) = \alpha(M'_i) = \alpha(M'_n) \Rightarrow x = \gamma(y - z)$ und $y - z \in M_n$.

Folgerung 2.3

Jeder endlich erzeugbare Modul über einem noetherschen Ring ist noethersch.

Beweis

1. Fall: F freier Modul vom Rang n.

Induktion über n.

n=1: Dann ist $F\cong R$ als R-Modul, also noethersch nach Voraussetzung.

 $n \geq 1$: Sei e_1, \ldots, e_n Basis von F. Dann ist $F \cong \bigoplus_{i=1}^n R \cdot e_i$. Dann ist $0 \to \bigoplus_{i=1}^{n-1} R \cdot e_i \to F \to R \cdot e_n \to 0$ exakt. Nach Induktionsvoraussetzung ist $\bigoplus_{i=1}^{n-1} R \cdot e_i$ noethersch, $R \cdot e_n$ ist nach Voraussetzung noethersch $\stackrel{2.2}{\Longrightarrow} F$ noethersch.

2. Fall: M werde erzeugt von x_1, \ldots, x_n . Dann gibt es (genau) einen surjektiven R-Modulhomomorphismus $\beta: \bigoplus_{i=1}^n R \cdot e_i \to M$ mit $\beta(e_i) = x_i \stackrel{2.2}{\Longrightarrow} M$ noethersch.

Proposition 2.4

Sei R ein Ring.

- (a) Für einen R-Modul M sind äquivalent:
 - (i) M ist noethersch
 - (ii) jede nichtleere Teilmenge von Untermodul
n von M hat ein (bzgl. \subseteq) maximales Element.
 - (iii) jeder Untermodul von M ist endlich erzeugt.
- (b) R ist genau dann noethersch, wenn jedes Ideal in R endlich erzeugbar ist.

Beweis

(a) (i) \Rightarrow (ii): Sei $\emptyset \neq \mathcal{M}$ eine Familie von Untermoduln von M. Sei $M_0 \in \mathcal{M}$. Ist M_0 nicht maximal, so gibt es ein $M_1 \in \mathcal{M}$ mit $M_0 \subsetneq M_1$. Ist M_1 nicht maximal, so gibt es ein $M_2 \in \mathcal{M}$ mit $M_1 \subsetneq M_2$

Die Kette $M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq \ldots$ muss stationär werden, d.h. $\exists n \text{ mit } M_n \text{ ist maximal in } \mathcal{M}$.

- (ii) \Rightarrow (iii): Sei $N \subseteq M$ ein Untermodul, \mathcal{M} Familie der endlich erzeugbaren Untermoduln von N. $\mathcal{M} \neq \emptyset$, da $\{0\} \in \mathcal{M}$. Nach Voraussetzung enthält \mathcal{M} ein maximales Element N_0 . Wäre $N_0 \neq N$ so gäbe es ein $x \in N \setminus N_0$. Dann wäre der von N_0 und x erzeugte Untermodul $N_1 \subset N$ endlich erzeugt und $N_0 \subsetneq N_1$. Widerspruch zu N_0 maximal.
- (iii) \Rightarrow (i): Seien $M_0 \subseteq M_1 \subseteq \cdots \subseteq M_i \subseteq \cdots$ Untermoduln von M. Sei $N := \bigcup_{i \geq 0} M_i$. N ist Untermodul \checkmark .

N ist nach Voraussetzung endlich erzeugt, z.B. von x_1, \ldots, x_n . Jedes x_k liegt in einem $M_{i(k)}$, also liegen alle in M_m mit $m = \max\{i(k): k = 1, \ldots, n\} \Rightarrow N = M_m \Rightarrow M_i = M_m$ für $i \geq m$.

(b) ist Spezialfall von (a) für R = M.

Satz 4 (Hilbert'scher Basissatz)

Ist R noetherscher Ring, so ist auch R[X] noethersch.

Beweis

Sei \mathcal{J} ein nicht endlich erzeugbares Ideal in R[X].

Sei $(f_{\nu})_{\nu \in \mathbb{N}}$ Folge in \mathcal{J} wie folgt: f_1 sei maximales Element in $\mathcal{J} \setminus \{0\}$ von minimalen Grad. Für $\nu \geq 2$ sei f_{ν} ein Element in $\mathcal{J} \setminus \underbrace{(f_1, \ldots, f_{\nu-1})}_{\mathcal{I}}$ von minimalen Grad.

Nach Voraussetzung ist $\mathcal{J}_{\nu} \neq \mathcal{J}$ für alle ν . Für $d_{\nu} := \deg(f_{\nu})$ gilt $d_{\nu} \leq d_{\nu+1}$.

Sei $a_{\nu} \in R$ der Leitkoeffizient von f_{ν} (d.h. $f_{\nu} = a_{\nu}X^{d_{\nu}} + \dots$). Sei I_{ν} das von $a_1, \dots, a_{\nu-1}$ in R erzeugte Ideal $\Rightarrow I_{\nu} \subseteq I_{\nu+1} \Rightarrow \exists n \text{ mit } I_{n+1} = I_n \Rightarrow \exists \lambda_1, \dots, \lambda_{n-1} \in R \text{ mit } a_n = \sum_{i=1}^{n-1} \lambda_i a_i$.

Setze $g := f_n - \sum_{i=1}^{n-1} \lambda_i f_i X^{d_n - d_i} \Rightarrow g \notin \mathcal{J}_n$ (sonst wäre $f_n \in \mathcal{J}_n$) aber $\deg(g) < d_n = \deg(f_n)$ Widerspruch.

Folgerung 2.5

Sei R noetherscher Ring. Dann gilt:

- (a) $R[X_1, \ldots, X_n]$ ist noethersch für jedes $n \in \mathbb{N}$
- (b) Jede endlich erzeugte R-Algebra A ist noethersch (als Ring)

Beweis

- (a) n = 1: Satz 4 n > 1: $R[X_1, ..., X_n] = R[X_1, ..., X_{n-1}][X_n]$
- (b) Es gibt surjektiven R-Algebra-Homomorphismus $\varphi: R[X_1, \ldots, X_n] \to A \stackrel{\text{(a), 2.3}}{\Longrightarrow} A$ ist noethersch als $R[X_1, \ldots, X_n]$ -Modul. Sei $I_0 \subseteq I_1 \subseteq \cdots \subseteq I_k \subseteq \cdots$ Kette von Idealen in A. Jedes I_k ist $R[X_1, \ldots, X_n]$ -Modul \Rightarrow Die Kette wird stationär

§2 Ganze Ringerweiterungen

Definition 2.6

Sei S/R eine Ringerweiterung (d.h. $R \subseteq S$).

- (a) $b \in S$ heißt ganz über R, wenn es ein normiertes Polynom $f \in R[X]$ gibt mit f(b) = 0.
- (b) S heißt ganz über R, wenn jedes $b \in S$ ganz über R ist.

Beispiele

 $\sqrt{2} \in \mathbb{R}$ ist ganz über \mathbb{Z} .

 $\frac{1}{2} \in \mathbb{Q}$ ist nicht ganz über \mathbb{Z} (Nullstelle von 2X-1).

Proposition 2.7

Sei S/R Ringerweiterung. Für $b \in S$ sind äquivalent:

- (i) b ist ganz über R.
- (ii) R[b] ist endlich erzeugbarer R-Modul.
- (iii) R[b] ist enthalten in einem Unterring $S' \subseteq S$, der als R-Modul endlich erzeugt ist.

Beweis

(i) \Rightarrow (ii): Nach Voraussetzung gibt es $a_0, \ldots, a_{n-1} \in R$, sodass $b^n = a_{n-1}b^{n-1} + \cdots + a_0$ $\Rightarrow b^n$ ist in dem von $1, b, \ldots, b^{n-1}$ erzeugtem R-Untermodul von S enthalten. Sei M dieser Untermodul.

$$\Rightarrow b^{n+1} = a_{n-1}b^n + \dots + a_0b = a_{n-1}(\sum_{i=0}^{n-1} a_ib^i) + \dots + a_0b \in M$$

 $\stackrel{\text{Induktion}}{\Rightarrow} b^k \in M$ für alle $k \geq 0 \Rightarrow M = R[b]$. Daraus folgt, dass R[b] ein endlich erzeugbarer R-Modul ist.

(ii) \Rightarrow (iii): Trivial (setze S' = R[b]).

(iii) \Rightarrow (i): S' werde als R-Modul von s_1, \ldots, s_n erzeugt $\Rightarrow b \cdot s_i \in S'$, d.h. es gibt Elemente a_{ik} von R, die $b \cdot s_i = \sum_{k=1}^n a_{ik} s_k$ für $i = 1, \ldots, n$ erfüllen. Also ist $\sum_{k=1}^n (a_{ik} - \delta_{ik} \cdot b) \cdot s_k = 0$ für $i = 1, \ldots, n$.

Für die Matrix $A = (a_{ik} - \delta_{ik} \cdot b)_{i,k=1,\dots,n} \in S^{n \times n}$ gilt also $A \cdot \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = 0$. Die Determinante

det(A) ist normiertes Polynom in b vom Grad n mit Koeffizienten in R.

Beh.: det(A) = 0.

Bew.: Cramersche Regel:

 $A^{\#} := (b_{ij})$ mit $b_{ij} = (-1)^{i+j} \det(A'_{ji}), i, j = 1, \ldots, n$ wobei A'_{ji} durch Streichen der *j*-ten Zeile und der *i*-ten Spalte aus A hervor geht.

$$A \cdot A^{\#} = (c_{ik}) \text{ mit } c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} = \sum_{j=1}^{n} a_{ij} (-1)^{j+k} \det(A'_{kj}) = \begin{cases} i = k : & \det(A) \text{ (Laplace)} \\ i \neq k : & \det(A_k^i) = 0 \end{cases}$$

 $\det(A_k^i) = 0$: in der k-ten Zeile steht $a_{i1}, \ldots, a_{in} \Rightarrow i$ -te und k-te Zeile sind gleich.

$$\Rightarrow A \cdot A^{\#} = \det(A) \cdot E_n = A^{\#} \cdot A \Rightarrow 0 = A^{\#} \cdot A \cdot \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = \det(A) \cdot \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} \Rightarrow \det(A) \cdot s_i = 0 \text{ für } i = 1, \dots, n. \text{ Da } 1 \in S', \text{ gibt es } \lambda_i \in R \text{ mit } 1 = \sum_{i=1}^n \lambda_i s_i \Rightarrow \det(A) \cdot 1 = \sum_{i=1}^n \lambda_i \cdot \det(A) \cdot s_i = 0 \Rightarrow \det(A) = 0.$$

Proposition 2.8

Ist S/R Ringerweiterung, so ist $\bar{R} := \{b \in S : b \text{ ganz "über } R\}$ ein Unterring von S.

Beweis

Seien $b_1, b_2 \in R$.

Zu zeigen: $b_1 \pm b_2, b_1 \cdot b_2 \in \bar{R}$

Nach 2.7 genügt es zu zeigen: $R[b_1, b_2]$ ist endlich erzeugt als R-Modul.

Dazu: $R[b_1]$ ist endlich erzeugt als R-Modul (von x_1, \ldots, x_n) nach 2.7. $R[b_1, b_2] = (R[b_1])[b_2]$ ist endlich erzeugt als $R[b_1]$ -Modul (von y_1, \ldots, y_m). Dann erzeugen die $x_i y_j$ $R[b_1, b_2]$ als R-Modul.

Definition 2.9

Sei S/R Ringerweiterung.

- (a) \bar{R} (wie in 2.8) heißt der **ganze** Abschluss von R in S.
- (b) Ist $R = \overline{R}$, so heißt R ganz abgeschlossen in S.
- (c) Ein nullteilerfreier Ring R heißt **normal**, wenn er ganz abgeschlossen in Quot(R) ist.
- (d) Ist R nullteilerfrei, so heißt der ganze Abschluss \bar{R} von R in $\mathrm{Quot}(R)$ die **Normalisie**rung von R.

Bemerkung 2.10

Jeder faktorielle Ring ist normal.

Beweis

Sei R ein faktorieller Ring.

Sei $K = \operatorname{Quot}(R)$. Sei $x = \frac{a}{b} \in K^{\times}$ mit $a, b \in R$ teilerfremd. Sei x ganz über R. Dann gibt es $\alpha_0, \ldots, \alpha_{n-1} \in R$ mit $x^n + \alpha_{n-1}x^{n-1} + \cdots + \alpha_0 = 0 \stackrel{\cdot b^n}{\Rightarrow} a^n + \alpha_{n-1}ba^{n-1} + \cdots + \alpha_1b^{n-1}a + \alpha_0b^n = 0 \Rightarrow b \mid a^n$. Da a und b teilerfremd sind, kann dies nur gelten, wenn b invertierbar ist. Also ist $x \in R$. Daher ist R normal.

§3 Der Hilbert'sche Nullstellensatz

Satz 5 (Hilbert'scher Nullstellensatz)

Sei K ein Körper und \mathfrak{m} ein maximales Ideal in $K[X_1,\ldots,X_n]$.

Dann ist $L := K[X_1, \dots, X_n]/\mathfrak{m}$ eine algebraische Körpererweiterung von K.

Beweis

Für n=1 ist das aus Algebra I bekannt. Nimm das als Induktionsanfang einer vollständigen Induktion nach n.

L wird als K-Algebra erzeugt von den Restklassen x_1, \ldots, x_n der X_1, \ldots, X_n . Wenn x_1, \ldots, x_n algebraisch über K sind, so auch L. Wir nehmen an, dass sei nicht der Fall, sei also ohne Einschränkung x_1 transzendent über K.

Da L Körper, liegt $K' := K(x_1)$ in L, so dass $L \subset K'[X_2, \ldots, X_n]$ ein Faktorring von $K'[X_2, \ldots, X_n]$ nach einem maximalen Ideal ist.

 $\stackrel{\text{I.V.}}{\Rightarrow} x_2, \ldots, x_n$ sind algebraisch über $K' \Rightarrow \exists a_{i\nu} \in K' = K(x_1)$ mit $x_i^{n_i} + \sum_{\nu=0}^{n_i-1} a_{i\nu} x_i^{\nu} = 0$ für $i = 2, \ldots, n$. Nennen wir den Hauptnenner der $a_{i\nu}$ von nun $b \in K[X_1] \Rightarrow x_2, \ldots, x_n$ sind ganz über $K[x_1, b^{-1}] =: R$.

Beh.: R ist Körper.

denn: Sei $a \in R \setminus \{0\}$ und a^{-1} das Inverse von a in L. Da L ganz über R ist, gibt es $\alpha_0, \ldots, \alpha_{m-1} \in R$ mit $(a^{-1})^m + \sum_{i=0}^{m-1} \alpha_i (a^{-1})^i = 0 \stackrel{\cdot a^m}{\Rightarrow} 1 = -\sum_{i=0}^{m-1} \alpha_i a^{m-i} = a(-\sum_{i=0}^{m-1} \alpha_i a^{m-i-1}) \Rightarrow R$ ist Körper \Rightarrow Widerspruch! R kann niemals Körper sein.

Definition 2.11

Sei $I \subseteq K[X_1,\ldots,X_n]$ ein Ideal. Dann heißt die Teilmenge $V(I) \subseteq K^n$, die durch

$$V(I) := \{ (x_1, \dots, x_n) \in K^n : f(x_1, \dots, x_n) = 0 \ \forall f \in I \}$$

bestimmt ist, die **Nullstellenmenge** von I in K^n .

Beispiele

- 1.) aus der LA bekannt: affine Unterräume des K^n sind Nullstellenmenge von linearen Polynomen.
- 2.) Anschaulicher Spezialfall von 1.): Punkte in $K^n:(x_1,\ldots,x_n):V(X_1-x_1,X_2-x_2,\ldots,X_n-x_n).$

Bemerkung + Definition 2.12

(a) Für 2 Ideale $I_1 \subseteq I_2$ gilt $V(I_1) \supseteq V(I_2)$.

(b) Definiert man für eine beliebige Teilmenge $V \subseteq K^n$ das **Verschwindungsideal** von Vdurch

$$I(V) := \{ f \in K[X_1, \dots, X_n] : f(x_1, \dots, x_n) = 0 \ \forall (x_1, \dots, x_n) \in V \},$$

so gilt $V \subseteq V(I(V))$;

ist V bereits Nullstellenmenge V(I) eines Ideals I von $K[X_1, \ldots, X_n]$, so gilt sogar V = V(I(V)).

Beweis

- (a) Sei $x \in V(I_2) \Rightarrow f(x) = 0 \ \forall f \in I_2 \supseteq I_1 \Rightarrow x \in V(I_1)$
- (b) " \subseteq ": Definition von V und I"" Sei V=V(I) für $I \leq K[X_1,\ldots,X_n]$. Nach Definition $I \subseteq I(V) \stackrel{\text{(a)}}{\Rightarrow} V(I(V)) \subseteq$ V(I) = V

Satz (Schwacher Nullstellensatz)

Ist K algebraisch abgeschlossenen, so ist für jedes echte Ideal $I \subseteq K[X_1, \ldots, X_n] : V(I) \neq \emptyset$.

Beweis

Sei $I \subseteq K[X_1,\ldots,X_n]$ echtes Ideal. Nach Algebra I gibt es dann maximales Ideal $\mathfrak{m} \supseteq I$. Weiter gilt: $V(\mathfrak{m}) \subseteq V(I)$, so können wir ohne Einschränkung annehmen, dass $I = \mathfrak{m}$ maximal ist.

Nach Satz 5 ist $K[X_1, \ldots, X_n]/\mathfrak{m}$ eine algebraische Körpererweiterung von K.

Da K algebraisch abgeschlossen $\Rightarrow K[X_1, \ldots, X_n]/\mathfrak{m} \cong K$.

Seien nun x_i die Restklasse von X_i in $K[X_1, \ldots, X_n]/\mathfrak{m}$ und $x = (x_1, \ldots, x_n)$.

Für $f \in K[X_1, \dots, X_n]$ ist $f(x) = f(\bar{X}_1, \dots, \bar{X}_n) = \bar{f} \mod I \Rightarrow f(x) = 0 \forall f \in I \Rightarrow x \in V(I)$.

Satz (Starker Nullstellensatz)

Ist K algebraisch abgeschlossen, so gilt für jedes Ideal $I \subseteq K[X_1, \ldots, X_n]$:

$$I(V(I)) = \{ f \in K[X_1, \dots, X_n] : \exists d \ge 1 : f^d \in I \} =: \sqrt[d]{I}$$

Beweis (Rabinovitsch-Trick)

Sei $g \in I(V(I))$ und f_1, \ldots, f_m Idealerzeuger von $I \subseteq K[X_1, \ldots, X_n]$.

Zu zeigen: $\exists d \geq 1$ mit $g^d = \sum_{i=1}^m a_i f_i$ für irgendwelche a_i .

Sei $J \subseteq K[X_1, \ldots, X_n, X_{n+1}]$ das von $f_1, \ldots, f_m, gX_{n+1} - 1$ erzeugte Ideal.

Beh.: $V(J) = \emptyset$

Bew.: Sei $x = (x_1, \ldots, x_n, x_{n+1}) \in V(J)$. Dann ist $f_i(x') = 0$ für $x' = (x_1, \ldots, x_n)$ und $i = 1, \dots, m \Rightarrow x' \in V(I).$

Nach Wahl von $g \in I(V(I))$ ist also g(x') = 0

$$\Rightarrow (gX_{n+1} - 1)(x) = g(x')x_{n+1} - 1 = -1 \neq 0. \Rightarrow V(J) = \emptyset.$$

Nach schwachen Nullstellensatz ist $J = K[X_1, \dots, X_{n+1}]$

$$\Rightarrow \exists b_1, \dots, b_m \text{ und } b \in K[X_1, \dots, X_{n+1}] \text{ mit } \sum_{i=1}^m b_i f_i + b(gX_{n+1} - 1) = 1.$$

Sei $R := R[X_1, \ldots, X_{n+1}]/(gX_{n+1}-1) \cong K[X_1, \ldots, X_n][\frac{1}{g}]$. Unter dem Isomorphismus werden die f_i auf sich selbst, die b_i auf $\tilde{b_i} \in R$ abgebildet $\Rightarrow \sum_{i=1}^m \tilde{b_i} f_i = 1$ in R. Multipliziere mit dem Hauptnenner g^d der $\tilde{b_i} \Rightarrow \sum_{i=1}^m \underbrace{(g^d \tilde{b_i})}_{\in K[X_1, \dots, X_n]} f_i = g^d \Rightarrow I(V(I)) \subseteq \sqrt[d]{I}$.

$$\in K[X_1,...,X_n]$$

"⊇": klar.

§4 Graduierte Ringe und Moduln

Definition + Bemerkung 2.13

(a) Ein Ring S zusammen mit einer Zerlegung $S = \bigoplus_{i \geq 0} S_i$ in abelsche Gruppen S_i heißt **graduierter Ring**, wenn für alle $i, j \in \mathbb{N}$:

$$S_i \cdot S_i \subseteq S_{i+j}$$

- (b) Ist $S = \bigoplus_{i \geq 0} S_i$ graduierter Ring, so heißen die Elemente von S_i homogen vom Grad i. Für $f = \sum_{i=0}^{\infty} f_i$ heißen die f_i die homogenen Komponenten von f.
- (c) Ist $S = \bigoplus_{i>0} S_i$ graduierter Ring, so ist S_0 Unterring mit $1 \in S_0$.

Beweis

(c) $S_0 \cdot S_0 \subseteq S_{0+0} = S_0$

Sei $1 = \sum_{i \geq 0} e_i$ mit $e_i \in S_i$. Sei $f \in S_n$ mit $n \geq 1, f \neq 0$. $\Rightarrow f = f \cdot 1 = \sum_{i \geq 0} f e_i$ mit $f \cdot e_i \in S_{n+i}$. Da f nur auf eine Weise als Summe von homogenen Elementen geschrieben werden kann, ist $e_i = 0$ für $i \geq 0$ und $e_0 = 1$.

Definition + Bemerkung 2.14

Sei $S = \bigoplus_{i>0} S_i$ graduierter Ring.

- (a) Ein Ideal $I \subseteq S$ heißt **homogen**, wenn es von homogenen Elementen erzeugt wird.
- (b) Ein Ideal $I \subseteq S$ ist genau dann homogen, wenn für jedes $f \in I$, $f = \sum_{i \geq 0} f_i$ $(f_i \in S_i)$ gilt: $f_i \in I$.
- (c) Sei $I \subseteq S$ homogenes Ideal, erzeugt von homogenen Elementen $(h_{\nu})_{\nu \in J}$. Dann hat jedes homogene $f \in I$ eine Darstellung $f = \sum_{\nu} g_{\nu} h_{\nu}$ mit g_{ν} homogen.
- (d) Ist I homogenes Ideal in S, so ist S/I graduierter Ring mit $(S/I)_i = S_i/(I \cap S_i)$

Beweis

(b) "⇐": ✓

" \Rightarrow ": Sei $(h_{\nu})_{\nu \in J}$ homogenes Erzeugendensystem von I.

Sei $f \in I$. Dann gibt es $g_{\nu} \in S$ mit $f = \sum_{\nu} g_{\nu} h_{\nu}$. Sei $g_{\nu} = \sum_{i \geq 0} g_{\nu,i}$ Zerlegung in homogene Komponenten.

$$\Rightarrow f = \sum_{\nu,i} g_{\nu,i} h_{\nu} \Rightarrow f_i = \sum_{\nu} g_{\nu,i-\deg f_{\nu}} h_{\nu} \text{ (mit } g_{\nu,j} = 0 \text{ für } j < 0) \Rightarrow f_i \in I$$

(d) $\varphi: S = \bigoplus_{i \geq 0} S_i \to \bigoplus_{i \geq 0} S_i/(I \cap S_i)$ ist surjektiver Ringhomomorphismus. Kern (φ) wird erzeugt von $I \cap S_i$, $i \geq 0$. Da I homogen, ist Kern $(\varphi) = I$. Aus dem Homomorphiesatz folgt dann: $S/I \cong \bigoplus_{i \geq 0} S_i/(I \cap S_i)$

Beispiele

- (1) S = k[X, Y], $I = (Y X^2)$ ist *nicht* homogen. $S/I \cong k[X]$, $\bigoplus_i S_i/(I \cap S_i) = \bigoplus_i S_i = S$, da I keine homogenen Elemente enthält.
- (2) $S_+ := \bigoplus_{i>0} S_i$ ist homogenes Ideal. Ist S_0 Körper, so ist S_+ das einzige maximale homogene Ideal.
- (3) S = k[X, Y], $\deg(X) = 1$, $\deg(Y) = 2$. Dann ist $I = (Y X^2)$ homogenes Ideal!

Definition + Bemerkung 2.15

Für einen graduierten Ring $S = \bigoplus_{i>0} S_i$ sind äquivalent:

(i) S noethersch.

- (ii) S_0 ist noethersch und S_+ endlich erzeugbares Ideal.
- (iii) S_0 ist noethersch und S ist endlich erzeugbare S_0 -Algebra.

Beweis

- $(i) \Rightarrow (ii)$ ": $S_0 \cong S/S_+$; S_+ endlich erzeugbar, da S noethersch. S_0 also noethersch.
- "(iii) \Rightarrow (i)": $S \cong \underbrace{S_0[X_1, \dots, X_n]}_{\text{noethersch nach Satz 4}} / I$ für ein $n \geq 0$ und ein Ideal $I \subset S_0[X_1, \dots, X_n]$. S ist

also noethersch.

"(ii) \Rightarrow (iii)": Sei f_1, \ldots, f_r homogenes Erzeugersystem von $S_+, S' := S_0[f_1, \ldots, f_r] \subset S$ die von den f_i erzeugte S_0 -Unteralgebra von S.

Beh.:
$$S' = S$$

Zeige dazu: $S_i \subset S'$ für alle i.

Beweis der Behauptung durch Induktion über i:

$$i = 0$$
:

$$i > 0$$
: $g \in S_i \stackrel{2.14(c)}{\Rightarrow} g = \sum_{\nu=1}^r g_{\nu} f_{\nu} \text{ mit } g_{\nu} \in S_{i-\deg(f_{\nu})}$
 $f_{\nu} \in S_+ \Rightarrow \deg(f_{\nu}) > 0 \Rightarrow i - \deg f_{\nu} < i \stackrel{\text{I.V.}}{\Longrightarrow} g_{\nu} \in S', \text{ also ist } g \in S'$

Definition + Bemerkung 2.16

Sei $S = \bigoplus_{i>0} S_i$ graduierter Ring.

(a) Ein *graduierter* S-Modul ist ein S-Modul M zusammen mit einer Zerlegung $M = \bigoplus_{i \in \mathbb{Z}} M_i$ in abelsche Gruppen M_i , sodass für alle $i \in \mathbb{N}, j \in \mathbb{Z}$ gilt:

$$S_i \cdot M_j \subseteq M_{i+j}$$

- (b) Eine S-lineare Abbildung $\varphi: M \to M'$ zwischen graduierten S-Moduln heißt **graderhaltend**, wenn $\varphi(M_i) \subseteq M'_i$ für alle $i \in \mathbb{Z}$
- (c) Ein Ideal $I \subseteq S$ ist homogen $\Leftrightarrow I$ ist als S-Modul graduiert (mit der geerbten Graduierung)
- (d) Eine Abbildung $\varphi: M \to M'$ heißt vom Grad d, wenn $\varphi(M_i) \subseteq M'_{i+d}$ für alle i gilt. In diesem Fall ist Kern (φ) ein graduierter Untermodul. Graderhaltende Abbildungen sind genau die Abbildungen vom Grad 0.
- (e) Ist $I \subseteq S$ homogenes Ideal, so ist $\varphi: S \to S/I = \bigoplus_{i \geq 0} S_i/(I \cap S_i)$ graderhaltend.

Beispiele

Sei M graduierter S-Modul (z.B.: M=S). Für $l\in\mathbb{Z}$ sei M(l) der S-Modul M mit der Graduierung $(M(l))_i:=M_{l+i}$ (insbes.: $(M(l))_0=M_l$)

$$S_j(M(l))_i = S_j \cdot M_{l+i} \subseteq M_{j+l+i} = (M(l))_{i+j}$$

M(l) heißt (l-facher) Twist von M.

Beweis

(d) Sei $\varphi: M \to M'$ lineare Abbildung von S-Moduln vom Grad d. Sei $x \in \text{Kern}(\varphi), x = \sum_{i \in \mathbb{Z}} x_i \Rightarrow 0 = \varphi(x) = \sum_{i \in \mathbb{Z}} \varphi(x_i)$ ist Zerlegung in homogene Komponenten $\Rightarrow \varphi(x_i) = 0 \ \forall i \Rightarrow x_i \in \text{Kern}(\varphi) \ \forall i \Rightarrow \text{Kern}(\varphi)$ ist graduiert.

Beobachtung

Ist $\varphi: M \to M'$ vom Grad d, so ist $\varphi: M \to M'(d)$ graderhaltend. Dabei ist M'(d) = M' als S-Modul, aber $(M'(d))_i = M_{d+i}$. Genauso ist $\varphi: M(-d) \to M'$ graderhaltend.

Beispiele

 $M = S(=k[X_1, \ldots, X_n]), f \in S$ homogen vom Grad $d \Rightarrow \varphi_f : S \to S, g \mapsto f \cdot g$ ist linear vom Grad d.

Proposition 2.17

Sei $S = k[X_1, \dots, X_n], k$ ein Körper, $S = \bigoplus_{d=0}^{\infty} S_d$.

$$\dim S_d^{(n)} = \binom{n+d-1}{d} = \frac{1}{(n-1)!} \cdot (n+d-1) \cdots (d+1)$$

Das ist ein Polynom vom Grad n-1 in d (mit Leitkoeffizient $\frac{1}{(n-1)!}$).

Beweis

Induktion über n:

$$n = 1$$
: $S = k[X]$, dim $S_d^{(1)} = {d \choose d} = 1$. \checkmark

$$n=2$$
: $S=k[X_1,X_2], \dim S_d^{(2)}=\binom{d+1}{d}=d+1.$

n > 2: Induktion über d:

$$d = 0$$
: dim $S_0^{(n)} = \binom{n-1}{0} = 1$.

$$d = 1$$
: dim $S_1^{(n)} = \binom{n}{1} = n$. \checkmark

d>1: dim $S_d^{(n)}$ ist die Anzahl der Monome vom Gradd in $X_1,\ldots,X_n.$

In $S_d^{(n)}$ gibt es dim $S_d^{(n-1)}$ Monome in denen X_n nicht vorkommt und dim $S_{d-1}^{(n)}$ Monome in denen X_n vorkommt

nome in denen
$$X_n$$
 vorkommt
$$\stackrel{\text{I.V.}}{\Longrightarrow} \dim S_d^{(n)} = \binom{n+d-2}{d} + \binom{n+d-2}{d-1} = \frac{(n+d-2)!}{(d-1)!(n-2)!} (\frac{1}{d} + \frac{1}{n-1}) = \frac{(n+d-2)!}{(d-1)!(n-2)!} \frac{n+d-1}{d(n-1)} = \frac{(n+d-1)!}{d!(n-1)!} = \binom{n+d-1}{d}$$

Satz 6 (Hilbert-Polynom)

Sei k ein Körper, $S = k[X_1, \dots, X_n]$. Sei M ein endlich erzeugbarer graduierter S-Modul.

Dann gibt es ein Polynom $P_M \in \mathbb{Q}[T]$ vom Grad $\leq n-1$ und ein $d_0 \in \mathbb{N}$, sodass $P_M(d) = \dim_k M_d$ für alle $d \geq d_0$.

 P_M heißt das **Hilbert-Polynom** von M.

Beweis

Induktion über n:

n=0: M ist endlich dimensionaler k-Vektorraum, also $M_d=0$ für alle $d\gg 0, P_M=0$ tut's.

 $n \geq 1$: Sei $\varphi : M \to M$ die S-lineare Abbildung $x \mapsto X_n x$, φ ist vom Grad 1, Kern (φ) ist also graduierter Untermodul, ebenso ist Bild (φ) graduierter Untermodul, also auch $M/X_n M$.

Dann ist

$$0 \to \underbrace{K}_{=\mathrm{Kern}(\varphi)} \to M(-1) \xrightarrow{\varphi} M \to M/X_nM \to 0$$

exakte Sequenz von graderhaltenden Homomorphismen zwischen graduierten endlich erzeugbaren S-Moduln.

Beachte: M ist noetherscher Modul, da S noethersch und M endlich erzeugbar, also ist K auch endlich erzeugbar.

Alle M_d , K_d , $(M/X_nM)_d$ sind endlich dimensionale k-Vektorräume \Rightarrow für jedes $d \in \mathbb{Z}$ gilt: $\dim_k K_d - \dim_k M(-1)_d + \dim_k M_d - \dim_k (M/X_nM)_d = 0$ bzw.

$$\dim_k M_d - \dim_k M_{d-1} = \dim_k (M/X_n M)_d - \dim_k K_d$$

Beh.: M/X_nM und K sind (in natürlicher Weise) $k[X_1,\ldots,X_{n-1}]$ -Moduln.

Bew.: klar für M/X_nM .

für K: Seien y_1, \ldots, y_r Erzeuger von K als S-Modul. Sei $y = \sum_{i=1}^r f_i y_i \in K, f_i \in S$. Dann ist ohne Einschränkung $f_i \in k[X_1, \ldots, X_{n-1}]$, da $X_n \cdot y = 0$ für alle i.

Nach I.V. gibt es $\tilde{P} \in \mathbb{Q}[T]$ mit $\deg(\tilde{P}) \leq n-2$ und $\tilde{P} = \dim_k (M/X_nM)_d - \dim_k K_d = \dim_k M_d - \dim_k M_{d-1} =: H(d) - H(d-1).$

Sei
$$\binom{T}{k} := \frac{1}{k!}T(T-1)\dots(T-k+1) \in \mathbb{Q}[T], \deg\binom{T}{k} = k.$$

Schreibe
$$\tilde{P} = \sum_{k=0}^{n-1} c_k {T \choose k}$$
. Es gilt ${T \choose k} - {T-1 \choose k-1} = {T \choose k+1}$. Setze $P_1(T) := \sum_{k=0}^{n-2} c_k {T \choose k+1}$, $\deg(P_1) \le n-1$ und $P_1(d) - P_1(d-1) = \tilde{P}(d)$. $P_M := P_1 + c$, sodass $P_M(d_0) = \dim_k M_{d_0}$.

Definition 2.18

Sei S endlich erzeugte graduierte k-Algebra, $S_0 = k$, M endlich erzeugbarer graduierter S-Modul. Dann heißt die formale Potenzreihe

$$H_M(t) := \sum_{i=0}^{\infty} (\dim_k M_i) t^i$$

Hilbert-Reihe zu M.

Beispiele

- 1.) $M = S = k[X] \Rightarrow \dim M_i = 1$ für alle $i \Rightarrow H_M(t) = \sum_{i=0}^{\infty} t^i = \frac{1}{1-t}$.
- 2.) $M = S = k[X_1, \dots, X_n]$

Beh.: $H_M(t) = \frac{1}{(1-t)^n}$

Bew.: $\frac{1}{(1-t)^n} = (\sum_{i=0}^{\infty} t^i)^n = \sum_{i=0}^{\infty} c_i t^i$ mit $c_i = (\text{Anzahl aller } n\text{-Tupel } (k_1, k_2, \dots, k_n)$ nichtnegativer ganzer Zahlen mit $k_1 + k_2 + \dots + k_n = i) = (\text{Anzahl der Monome vom Grad } i \text{ in } X_1, \dots, X_n).$

3.)
$$M = S = k[Y] (\cong k[X^d]), \deg Y = d > 0 \Rightarrow H_M(t) = \sum_{i=0}^{\infty} t^{d \cdot i} = \frac{1}{1 - t^d}$$

 $\dim M_i = \begin{cases} 1: & d \mid i \\ 0: & \text{sonst} \end{cases}$

Satz (6')

Wie in Definition 2.18 seien S endlich erzeugbare graduierte k-Algebra, M endlich erzeugbarer graduierter S-Modul.

 f_1, \ldots, f_r homogene Erzeuger von S als k-Algebra, $d_i := \deg f_i$. Dann gibt es ein Polynom $F(t) \in \mathbb{Z}[t]$, sodass gilt:

$$H_M(t) = \frac{F(t)}{(1 - t^{d_1}) \cdot (1 - t^{d_2}) \cdot \dots \cdot (1 - t^{d_r})}$$

Beweis

Induktion über r:

r=0: $S=S_0=k\Rightarrow \dim_k M_i=0$ für $i\gg 0\Rightarrow F(t):=H_M(t)$ ist Polynom in $\mathbb{Z}[t]$.

r > 0: Multiplikation mit f_r gibt exakte Sequenz von graderhaltenden S-Modul-Homomorphismen:

$$0 \to K \to M \stackrel{\cdot f_{\tau}}{\to} M(d_r) \to (M/f_r M)(d_r) \to 0$$

Wie im Beweis von Satz 6 sind K und $Q := M/f_rM$ Moduln über $S' := k[f_1, \ldots, f_{r-1}] \subset S \Rightarrow$ für jedes $i \geq 0$ ist

$$-\dim M_{i} + \dim M_{i+d_{r}} = \dim Q_{i+d_{r}} - \dim K_{i}$$

$$\Rightarrow \sum_{i=0}^{\infty} \dim M_{i+d_{r}} t^{i+d_{r}} - t^{d_{r}} \sum_{i=0}^{\infty} \dim M_{i} t^{i} = \sum_{i=0}^{\infty} \dim Q_{i+d_{r}} t^{i+d_{r}} - t^{d_{r}} \sum_{i=0}^{\infty} \dim K_{i} t^{i}$$

$$\Rightarrow H_{M}(t) - \sum_{i=0}^{d_{r}-1} \dim M_{i} t^{i} - t^{d_{r}} H_{M}(t) = H_{Q}(t) - \sum_{i=0}^{d_{r}-1} \dim Q_{i} t^{i} - t^{d_{r}} H_{K}(t)$$

$$(1 - t^{d_{r}}) H_{M}(t) = H_{Q}(t) - t^{d_{r}} H_{K}(t) + \sum_{i=0}^{d_{r}-1} \dim M_{i} t^{i} - \sum_{i=0}^{d_{r}-1} \dim Q_{i} t^{i}$$

Nach Induktionsvoraussetzung gibt es $F_1(t), F_2(t) \in \mathbb{Z}[t]$ mit

$$(1 - t^{d_r})H_M(t) = \frac{F_1(t)}{\prod_{i=1}^{r-1}(1 - t^{d_i})} - \frac{t^{d_r}F_2(t)}{\prod_{i=1}^{r-1}(1 - t^{d_i})} + \underbrace{\sum_{i=0}^{d_r-1}\dim M_i t^i - \sum_{i=0}^{d_r-1}\dim Q_i t^i}_{=:G(t)}$$

$$\Rightarrow$$
 Behauptung mit $F(t) = F_1(t) - t^{d_r} F_2(t) + G(t) \cdot \prod_{i=1}^{r-1} (1 - t^{d_i})$

§5 Invarianten endlicher Gruppen

Definition + Bemerkung 2.19

Sei k ein Körper, $n \geq 0$, $k[\mathfrak{X}] := k[X_1, \ldots, X_n]$.

Sei $G \subseteq \operatorname{Aut}(k[\mathfrak{X}])$ eine Untergruppe der k-Algebra-Automorphismen.

- (a) $k[\mathfrak{X}]^G := \{ f \in k[\mathfrak{X}] : \sigma(f) = f \text{ für alle } \sigma \in G \}$ heißt Invariantenring von $k[\mathfrak{X}]$ bezüglich G.
- (b) $k[\mathfrak{X}]^G$ ist k-Algebra.
- (c) G heißt linear, wenn jedes $\sigma \in G$ graderhaltend ist. Dann ist $\sigma|_{k[\mathfrak{X}]_1}$ ein k-Vektorraum-Automorphismus und $\sigma \mapsto \sigma|_{k[\mathfrak{X}]_1}$ ist ein Gruppenhomomorphismus $G \to \mathrm{GL}_n(k)$.

Beispiele

1.)
$$n = 2, G = \{id, \sigma\}$$
 mit $\sigma(X) = Y, \sigma(Y) = X \Rightarrow k[X, Y]^G$ wird erzeugt von $X + Y$ und $X \cdot Y$.
$$X^k + Y^k - (X + Y)^k = -kX^{k-1}Y - \dots - kXY^{k-1} = -kXY(X^{k-2} + Y^{k-2}) - \dots$$

2.)
$$n=2,\,G=\{id,\varphi\}$$
 mit $\varphi(X)=-X,\,\varphi(Y)=-Y$ (wobei char $k\neq 2$). $k[X,Y]^G$ wird erzeugt von X^2,Y^2,XY .

Satz 7 (Endliche Erzeugbarkeit des Invariantenrings)

Seien $k, G, k[\mathfrak{X}]$ wie in Def. 2.19, G linear und endlich.

- (a) (Hilbert) Angenommen, char k sei kein Teiler von |G|. Dann ist $k[\mathfrak{X}]^G$ eine endlich erzeugbare k-Algebra.
- (b) (E. Noether) Angenommen, char k sei kein Teiler von |G|!. Ist m = |G|, so wird $k[\mathfrak{X}]^G$ von Elementen vom Grad $\leq m$ erzeugt.

Beweis

(a) Sei $S := k[\mathfrak{X}]^G$ (graduierte Unteralgebra von $k[\mathfrak{X}]$).

 $S_+ = \bigoplus_{i>0} S_i$, $I := S_+ k[\mathfrak{X}]$ (Ideal in $k[\mathfrak{X}]$) $\Rightarrow I$ ist endlich erzeugt (da $k[\mathfrak{X}]$ noethersch ist). Somit enthält auch das Erzeugendensystem $\{s \in S_+ \mid s \text{ ist homogen}\}$ von I eine endliche Teilmenge, die I erzeugt (denn wannimmer ein Ideal J eines Ringes R endlich erzeugt ist, enthält jedes Erzeugendensystem von J eine endliche Teilmenge, die J erzeugt).

Seien also $f_1, \ldots, f_r \in S_+$ homogene Erzeuger von I. Sei $S' := k[f_1, \ldots, f_r] \subseteq S$.

Beh.: S = S'.

Bew.: Zeige mit Induktion: $S_d \subset S'$ für jedes $d \ge 0$.

d = 0: $S_0 = k = S'_0$.

 $d \ge 1$: Sei $f \in S_d$. Dann ist $f \in S_+ \subseteq I \Rightarrow f = \sum_{i=1}^r g_i f_i$ mit $g_i \in k[\mathfrak{X}]_{d-d_i}$, $d_i = \deg(f_i) \Rightarrow \deg(g_i) < d$.

Jetzt definieren wir die "Mittelung": Die Abbildung $\varphi: k[\mathfrak{X}] \to S, h \mapsto \frac{1}{|G|} \sum_{\sigma \in G} \sigma(h)$ ist eine S-lineare, graderhaltende Projektion.

 \Rightarrow Wegen $f \in S_+ \subset S$ ist $f = \varphi(f) = \sum_{i=1}^r \varphi(g_i) f_i$ (da $f = \sum_{i=1}^r g_i f_i$) mit $\varphi(g_i) \in S$, $\deg(\varphi(g_i)) < d$.

Also nach Induktionsvoraussetzung $\varphi(g_i) \in S' \Rightarrow f \in S'$.

Damit ist induktiv gezeigt, daß $S_d \subset S'$ für jedes $d \geq 0$ ist. Somit ist $S = \sum_{d \geq 0} S_d \subset \sum_{d \geq 0} S' = S'$. $\Rightarrow k[f_1, \ldots, f_r] = S' = S = k[\mathfrak{X}]^G$, was zu zeigen war.

Bevor wir den Beweis mit Teil (b) fortsetzen, fügen wir ein Beispiel ein:

Beispiele

 S_n operiert auf $k[X_1,\ldots,X_n]$ durch $\sigma(X_i) := X_{\sigma(i)}$. Die Elemente von $k[X_1,\ldots,X_n]^{S_n}$ sind die symmetrischen Polynome.

Beh.1:

 $k[X_1,\ldots,X_n]^{S_n}$ wird (als k-Algebra) erzeugt von den "elementarsymmetrischen" Polynomen:

 $s_1 := X_1 + \dots + X_n$

 $s_2 := X_1 X_2 + X_1 X_3 + \dots + X_{n-1} X_n = \sum_{1 \le i \le j \le n} X_i X_j$

 $s_3 := \sum_{1 \le i < j < k \le n} X_i X_j X_k$

 $s_n := X_1 \cdot \ldots \cdot X_n$

(dies gilt für Körper jeglicher Charakteristik, und sogar allgemeiner für kommutative Ringe).

Beh.2: $k[X_1, \dots, X_n]^{S_n}$ wird erzeugt von den Potenzsummen

 $f_k := \sum_{i=1}^n X_i^k$, $k = 1, \dots, n$ wenn char k kein Teiler von n ist. (Man bemerke, dass $f_1 = s_1 = \sum X_i$.)

Bemerkung

Die Abbildung $\varphi: k[\mathfrak{X}] \to k[\mathfrak{X}]^G$, $f \mapsto \frac{1}{|G|} \sum_{\sigma \in G} \sigma(f)$ ist k-lineare (und sogar $k[\mathfrak{X}]^G$ -lineare) graderhaltende Projektion.

Beweis

(b) Für jedes $\nu = (\nu_1, \dots, \nu_n) \in \mathbb{N}^n$ setze $X^{\nu} := X_1^{\nu_1} \cdot \dots \cdot X_n^{\nu_n}$ und $|\nu| := \sum \nu_i$. Sei \tilde{S} die von den $\varphi(X^{\nu}), |\nu| \leq |G|$ erzeugte Unteralgebra von $k[\mathfrak{X}]^G$.

Zu zeigen: $\varphi(X^{\nu}) \in \tilde{S}$ für alle $\nu \in \mathbb{N}^n$.

Wir definieren Hilfspolynome in 2n Variablen: Für jedes $d \ge 0$ sei $F_d := \sum_{\sigma \in G} (\sum_{i=1}^n \sigma(X_i) Y_i)^d \in \mathcal{F}_{\sigma}$

$$k[X_1,\ldots,X_n,Y_1,\ldots,Y_n].$$

Für jedes $\sigma \in G$ sei $Z_{\sigma} = \sum_{i=1}^{n} \sigma(X_i) Y_i$. Dann ist also $F_d = \sum_{\sigma \in G} Z_{\sigma}^d$. Schreiben wir G in der Form $G = \{\sigma_1, \ldots, \sigma_m\}$, mit |G| = m, so wird hieraus $F_d = \sum_{i=1}^{m} Z_i^d$, wobei $Z_j := Z_{\sigma_j}$.

Umformungen: Sei $\gamma_{\nu} = \frac{d!}{\nu_1! \dots \nu_n!}$ für jedes $\nu \in \mathbb{N}^n$ mit $|\nu| = d$. Jedes $\sigma \in G$ erfüllt dann $Z_{\sigma}^{d} = \left(\sum_{i=1}^{n} \sigma\left(X_{i}\right) Y_{i}\right)^{d} = \sum_{|\nu|=d} \gamma_{\nu} \sigma(X^{\nu}) Y^{\nu}$. Aus $F_{d} = \sum_{\sigma \in G} Z_{\sigma}^{d}$ wird mithin

(1)
$$F_d = \sum_{\sigma \in G} \sum_{|\nu|=d} \gamma_{\nu} \sigma(X^{\nu}) Y^{\nu} = \sum_{|\nu|=d} \gamma_{\nu} (\sum_{\sigma \in G} \sigma(X^{\nu}) Y^{\nu}) = \sum_{|\nu|=d} \gamma_{\nu} m \varphi(X^{\nu}) Y^{\nu}.$$

Sei nun $d \ge 0$ beliebig. Doch nach Beh.2 wird der Polynomring $k[W_1, \dots, W_m]^{S_m}$ (wobei die W_i neue Variablen sind) erzeugt von den m Potenzsummen $p_j := \sum_{i=1}^m W_i^j$ für j=1 $1, 2, \ldots, m$. Also muß das Polynom $\sum_{i=1}^m W_i^d$ ein Polynom in diesen m Potenzsummen p_j sein (da es in $k[W_1,\ldots,W_m]^{S_m}$ liegt). Es gibt also für jedes $\mu\in\mathbb{N}^m$ mit $\sum_{i=1}^m i\mu_i=d$ ein Skalar $a_{\mu} \in k$, so daß die Gleichung $\sum_{i=1}^{m} W_{i}^{d} = \sum_{\mu \in \mathbb{N}^{m}} a_{\mu} p_{1}^{\mu_{1}} \cdot \cdots \cdot p_{m}^{\mu_{m}}$ gilt, wobei die Summe (aus Homogeneitätsgründen) sich nur über alle $\mu \in \mathbb{N}^m$ mit $\sum_{i=1}^m i\mu_i = d$ erstreckt. Setzen wir in dieser Gleichung die m Terme Z_1, \ldots, Z_m für die m Variablen W_1, \ldots, W_m ein, so erhalten wir

$$F_d = \sum_{\mu \in \mathbb{N}^m} a_\mu F_1^{\mu_1} \cdot \dots \cdot F_m^{\mu_m}$$

(denn durch die Einsetzung wird $\sum_{i=1}^m W_i^d$ zu $\sum_{i=1}^m Z_i^d = F_d$ ausgewertet, und $p_j = \sum_{i=1}^m W_i^j$ zu $\sum_{i=1}^m Z_i^j = F_j$ für jedes j). Mit anderen Worten:

(2)
$$F_d = \sum_{\mu \in \mathbb{N}^m} a_\mu \prod_{j=1}^m F_j^{\mu_j} \stackrel{\text{(1)}}{=} \sum_{\mu \in \mathbb{N}^m} a_\mu \prod_{j=1}^m (\sum_{|\nu|=j} \gamma_\nu m \varphi(X^\nu) Y^\nu)^{\mu_j} \stackrel{\text{sortieren nach}}{=} \sum_{\lambda \in \mathbb{N}^m} P_\lambda(X) Y^\lambda \text{ mit } P_\lambda \in \tilde{S}.$$

Für jedes $\lambda \in \mathbb{N}^m$ können wir nun zwischen (1) und (2) die Koeffizienten vor Y^{λ} vergleichen (wobei wir X_1, \ldots, X_n als Konstanten betrachten), und erhalten hierdurch: $P_{\lambda} = \begin{cases} 0 &, |\lambda| \neq d \\ \gamma_{\lambda} m \varphi(X^{\lambda}) &, |\lambda| = d \end{cases}$

$$P_{\lambda} = \begin{cases} 0 &, |\lambda| \neq d \\ \gamma_{\lambda} m \varphi(X^{\lambda}) &, |\lambda| = d \end{cases}$$

Hieraus folgt $\varphi(X^{\lambda}) \in \tilde{S}$ für alle $\lambda \in \mathbb{N}^m$, die $|\lambda| = d$ erfüllen. Da d beliebig gewählt war, ist also $\varphi(X^{\lambda}) \in \tilde{S}$ für alle $\lambda \in \mathbb{N}^m$. Das gesamte Bild von φ ist also in \tilde{S} enthalten. Da das Bild von φ aber $k[\mathfrak{X}]^G$ ist, heißt dies, dass $k[\mathfrak{X}]^G$ in \tilde{S} enthalten, d. h., von Elementen vom Grad $\leq m$ erzeugt ist.

Beispiele

Sei n=2; der Kürze halber bezeichnen wir dann die beiden Variablen X_1 und X_2 mit X und Y. Sei nun $G = \langle \sigma \rangle$, wobei σ durch $\sigma(X) = Y$ und $\sigma(Y) = -X$ definiert ist. Dann ist $G \cong \mathbb{Z}/4\mathbb{Z}$ Durchrechnen aller Monome mit Grad $\leq |G|$:

f = id(f)	$\sigma(f)$	$\sigma^2(f)$	$\sigma^3(f)$	$\sum_{\tau \in G} \tau(f) = 4\varphi(f)$
X	Y	-X	-Y	0
Y	-X	-Y	X	0
X^2	Y^2	X^2	Y^2	$2(X^2 + Y^2)$
Y^2	X^2	Y^2	X^2	$2(X^2 + Y^2)$
XY	-YX	XY	-YX	0
X^3	Y^3	$-X^3$	$-Y^3$	0
Y^3	$-X^3$	$-Y^3$	X^3	0
X^2Y	$-XY^2$	$-X^2Y$	XY^2	0
XY^2	X^2Y	$-XY^2$	$-X^2Y$	0
X^4	Y^4	X^4	Y^4	$2(X^4 + Y^4)$
XY^3	$-X^3Y$	XY^3	$-X^3Y$	$2XY(Y^2 - X^2)$
X^2Y^2	X^2Y^2	X^2Y^2	X^2Y^2	$4(X^2Y^2)$

 $\Rightarrow k[X,Y]^G$ wird erzeugt von $I_1 = X^2 + Y^2$, $I_2 = X^2Y^2$, $I_3 = XY(X^2 - Y^2)$ (und $I_4 = X^4 + Y^4 = I_1^2 - 2I_2$). Zwischen I_1, I_2, I_3 besteht die Gleichung $I_3^2 = I_2(X^4 + Y^4 - 2X^2Y^2) = I_1(I_1^2 - 4I_2)$

§6 Nakayama, Krull und Artin-Rees

Definition + Bemerkung 2.20

Sei R ein Ring.

(a)

$$\mathcal{J}(R) := \bigcap_{\mathfrak{m} \text{ maximales Ideal in } R} \mathfrak{m}$$

heißt Jacobson-Radikal von R.

- (b) $\mathcal{J}(R)$ ist Radikalideal.
- (c) Für jedes $a \in \mathcal{J}(R)$ ist 1 a eine Einheit in R.

Beweis

- (b) Sei $x \in R$, $x^n \in \mathcal{J}(R)$; zu zeigen: $x \in \mathcal{J}(R)$. Sei \mathfrak{m} maximales Ideal von R, dann ist $x^n \in \mathfrak{m} \stackrel{\mathfrak{m}}{\Rightarrow} x \in \mathfrak{m} \Rightarrow x \in \mathcal{J}(R)$
- (c) Ist $1 a \notin R^{\times}$, so gibt es ein maximales Ideal \mathfrak{m} mit $1 a \in \mathfrak{m}$, aber: a ist auch $\in \mathfrak{m}$, also auch $1 = 1 a + a \in \mathfrak{m} \Rightarrow$ Widerspruch.

Beispiele

$$\mathcal{J}(\mathbb{Z}) = 0, \quad \mathcal{J}(k[X]) = 0$$

R lokaler Ring $\Rightarrow \mathcal{J}(R) = \mathfrak{m}$ (es gibt nur ein maximales Ideal in R)

Satz 8 (Lemma von Nakayama)

Sei R ein Ring, $I \subseteq \mathcal{J}(R)$ ein Ideal, M ein endlich erzeugbarer R-Modul, $N \subseteq M$ ein Untermodul.

Dann gilt:

Ist
$$M = I \cdot M + N$$
, so ist $N = M$

Speziell: Ist $M = I \cdot M \Rightarrow M = 0$.

Beweis

Sei
$$M = I \cdot M + N \Rightarrow M/N = (I \cdot M)/N = I \cdot M/N$$
, also ohne Einschränkung $N = 0$.

Annahme: $M \neq 0$

Dann sei x_1, \ldots, x_n ein minimales Erzeugendensystem von M, also $M' := \langle x_2, \ldots, x_n \rangle \subsetneq M$.

Nach Voraussetzung ist $M = I \cdot M$, also $x_1 \in I \cdot M \Rightarrow \exists a_1, \dots, a_n \in I$ mit $x_1 = \sum_{i=1}^n a_i x_i = a_1 x_1 + \underbrace{a_2 x_2 + \dots + a_n x_n}_{\in M'} \Rightarrow x_1 \underbrace{(1 - a_1)}_{\in R^{\times} \ 2.20 \ (c)} \in M' \Rightarrow x_1 \in M'$. Widerspruch.

Folgerung 2.21

R, I, M wie in Satz 8.

Dann gilt für $x_1, \ldots, x_n \in M$:

$$x_1, \ldots, x_n$$
 erzeugt $M \Leftrightarrow \overline{x_1}, \ldots, \overline{x_n}$ erzeugen $\overline{M} = M/IM$

Beweis

"⇒": klar.

"←": Sei N der von x_1, \ldots, x_n erzeugte Untermodul von M. Dann ist $M = N + I \cdot M \stackrel{\text{Satz 8}}{\Rightarrow} M = N$.

Beispiele

R lokaler Ring mit maximalem Ideal \mathfrak{m} . $M = \mathfrak{m}$, $I = \mathfrak{m}$.

Falls \mathfrak{m} endlich erzeugt (dies gilt z.B. falls R noethersch ist): $\mathfrak{m}^2 = \mathfrak{m} \Rightarrow \mathfrak{m} = 0$, also R Körper.

Satz 9 (Durchschnittssatz von Krull)

Sei R noethersch, M endlich erzeugbarer R-Modul, $I \subseteq R$ Ideal.

Dann gilt für

$$N:=\bigcap_{n\geq 0}I^nM\quad :\quad I\cdot N=N$$

Folgerung 2.22

- (a) Ist in Satz 9 $I \subseteq \mathcal{J}(R)$, so ist N = 0.
- (b) Ist R nullteilerfrei, so ist $\bigcap_{n>0} I^n = 0$, falls $I \neq R$.

Beweis

- (a) klar.
- (b) Sei \mathfrak{m} ein maximales Ideal mit $I \subseteq \mathfrak{m}$. $R_{\mathfrak{m}}$ die Lokalisierung von R nach \mathfrak{m} .

 $R_{\mathfrak{m}}$ ist noethersch, lokal, also $\mathcal{J}(R_{\mathfrak{m}}) = \mathfrak{m}R_{\mathfrak{m}}$.

 $i:R\to R_{\mathfrak{m}},\ a\mapsto \frac{a}{1}$ ist injektiv, da R nullteilerfrei.

Dann ist $i(\bigcap_{n\geq 0} I^n) \subseteq \bigcap_{n\geq 0} i(I^n) \subseteq \bigcap_{n\geq 0} (\mathfrak{m}R_{\mathfrak{m}})^n \stackrel{\text{(a)}}{=} 0.$ Da i injektiv ist, folgt $\bigcap_{n\geq 0} I^n = 0.$

Proposition 2.23 (Artin-Rees)

Sei R noethersch, $I \subseteq R$ Ideal, M endlich erzeugbarer R-Modul, $N \subseteq M$ Untermodul. Dann gibt es ein $n_0 \in \mathbb{N}$, sodass für alle $n \geq n_0$ gilt:

$$I^n M \cap N = I^{n-n_0}(I^{n_0} M \cap N)$$

Beweis (Satz 9)

Setze in Prop. 2.23 (Artin-Rees) $N = \bigcap_{n>0} I^n M$. Betrachte das n_0 aus Prop. 2.23 (Artin-Rees).

$$\begin{array}{ll} \text{Dann ist } N & = & \bigcap_{n \geq 0} I^n M = I^{n_0+1} M \cap \bigcap_{n \geq 0} I^n M = I^{n_0+1} M \cap N \\ & \stackrel{\text{Artin-Rees}}{=} I(I^{n_0} M \cap N) = I(I^{n_0} M \cap \bigcap_{n \geq 0} I^n M) = I \cdot \bigcap_{n \geq 0} I^n M = I \cdot N \end{array}$$

Beweis (Prop. 2.23)

Führe Hilfsgrößen ein:

 $R' := \bigoplus_{n>0} I^n$ ist graduierter Ring, $R'_0 = R$ ist noethersch, I ist endlich erzeugt,

 $\Rightarrow R'$ ist noethersch (als endlich erzeugte R-Algebra),

 $M' := \bigoplus_{n>0} I^n M$ ist graduierter, endlich erzeugter R'-Modul,

 $N' := \bigoplus_{n \geq 0} \overline{\underbrace{I^n M \cap N}}_{=:N'_n}$ ist graduierter R'-Modul, Untermodul von M', also auch endlich erzeug-

bar. N' werde erzeugt von den homogenen Elementen x_1, \ldots, x_r mit $x_i \in N'_{n_i}$.

Für $n \ge n_0 := \max\{n_1, \dots, n_r\}$ ist dann $N'_{n+1} = \{\sum_{i=1}^r a_i x_i : a_i \in R'_{n+1-n_i} = I^{n+1-n_i}\}.$ $I \cdot N'_n = I \cdot \{\sum_{i=1}^r a_i x_i : a_i \in R'_{n-n_i} = I^{n-n_i}\} = \{\sum_{i=1}^r \tilde{a}_i x_i : \tilde{a}_i \in I \cdot I^{n-n_i} = I^{n+1-n_i}\} = N'_{n+1}.$ Mit Induktion folgt die Behauptung.

Beispiele

1) $R = \mathbb{Z}^2 = \mathbb{Z} \oplus \mathbb{Z}$ ist noethersch, aber nicht nullteilerfrei.

Sei I das von $e_1 = (1,0)$ erzeugte Ideal, $I^2 = (e_1^2) = (e_1) = I$ (e_1 ist "idempotent") $e \in R$ heißt idempotent, wenn $e^2 = e$ ist. Dann ist (e-1)e = 0.

Frage: was ist \mathbb{Z}^2 lokalisiert nach I?

Antwort: $(\mathbb{Z} \oplus \mathbb{Z})_I = \mathbb{Q}$.

2) $R = \mathcal{C}^{\infty}(-1,1), I = \{ f \in R : f(0) = 0 \}. R/I = \mathbb{C} \text{ (oder } \mathbb{R}).$

I ist Hauptideal, erzeugt von f(x) = x.

$$\bigcap I^n = ? \text{ z.B. } f(x) = e^{-\frac{1}{x^2}} \in \bigcap I^n.$$

R ist nicht noethersch!

3) R = k[X, Y], I = (X, Y), k algebraisch abgeschlossen.

$$R' = R \oplus I \oplus I^2 \oplus \cdots = \bigoplus_{n \ge 0} I^n = R[u, v]/(Xv - Yu)$$

Was sind die maximalen homogenen Ideale in R', die nicht ganz R'_+ enthalten?

Typ 1: maximale Ideale in $R \neq (X,Y)$: (X-a,Y-b) mit $(a,b) \neq (0,0)$

Typ 2: $(X, Y, \alpha u + \beta v), (\alpha, \beta) \neq (0, 0)$

§7 Krull-Dimension

Definition 2.24

Sei R ein Ring.

- (a) Eine Folge $\mathfrak{p}_0, \mathfrak{p}_1, \ldots, \mathfrak{p}_n$ von Primidealen in R heißt **Primidealkette** zu $\mathfrak{p} = \mathfrak{p}_{\mathfrak{n}}$ der Länge n, wenn $\mathfrak{p}_{i-1} \subsetneq \mathfrak{p}_i$ für $i = 1, \ldots, n$.
- (b) Für ein Primideal $\mathfrak{p} \subset R$ heißt

$$h(\mathfrak{p}) := \sup\{n \in \mathbb{N} : \text{es gibt Primidealkette der Länge } n \text{ zu } \mathfrak{p}\}$$

die $H\ddot{o}he$ von \mathfrak{p} .

(c) dim $R := \sup\{h(\mathfrak{p}) : \mathfrak{p} \text{ Primideal in } R\}$ heißt Krull-Dimension von R.

Beispiele

- (a) R = k Körper: dim k = 0
- (b) $R = \mathbb{Z}$: dim $\mathbb{Z} = 1$
- (c) R = k[X]: dim k[X] = 1

(d)
$$R = k[X, Y]$$
: dim $k[X, Y] = 2$
 ≥ 2 ist klar, da (0) $\subseteq (X) \subseteq (X, Y)$. Aber warum = 2?

Bemerkung 2.25

Sei R ein nullteilerfreier Ring. Dann gilt:

- (a) Sind p, q Primelemente, $p \neq 0 \neq q$ mit $(p) \subseteq (q)$, so ist (p) = (q).
- (b) Ist R Hauptidealring, so ist R Körper oder $\dim(R) = 1$

Beweis

- (a) $(p) \subseteq (q) \Rightarrow p \in (q)$, d.h. $p = q \cdot r$ für ein $r \in R$. Da R nullteilerfrei, ist p irreduzibel, also $r \in R^{\times} \Rightarrow (p) = (q)$
- (b) dim $R \leq 1$ nach (a). Sei R kein Körper, also gibt es ein $p \in R$ $(p \neq 0)$ mit $p \notin R^{\times}$. Da R nullteilerfrei, ist (0) Primideal; p ist in einem maximalen Ideal \mathfrak{m} enthalten $(\mathfrak{m} = (q))$ $\Rightarrow (0) \subseteq \mathfrak{m}$ ist Kette der Länge $1 \Rightarrow \dim(R) \geq 1 \Rightarrow \dim(R) = 1$

Satz 10

Sei S/R eine ganze Ringerweiterung. Dann gilt:

- (a) Zu jedem Primideal \mathfrak{p} in R gibt es ein Primideal \mathfrak{P} in S mit $\mathfrak{P} \cap R = \mathfrak{p}$
- (b) Zu jeder Primidealkette $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ in R gibt es eine Primidealkette $\mathfrak{P}_0 \subsetneq \mathfrak{P}_1 \subsetneq \cdots \subsetneq \mathfrak{P}_n$ in S mit $\mathfrak{P}_i \cap R = \mathfrak{p}_i \ (i = 0, \dots, n)$
- (c) dim $R = \dim S$

Beweis

(a) Beh. 1: $\mathfrak{p} \cdot S \cap R = \mathfrak{p}$

Dann sei $N := R \setminus \mathfrak{p}$ und $\mathcal{P} := \{ I \subseteq S \text{ Ideal} : I \cap N = \emptyset, \ \mathfrak{p} \cdot S \subseteq I \}$

Nach Beh. 1 ist $\mathcal{P} \neq \emptyset$. Nach Zorn gibt es ein maximales Element \mathfrak{P} in \mathcal{P} . Die Aussage folgt also aus Beh 2.:

Beh. 2: \$\mathfrak{P}\$ ist Primideal.

Bew. 2: Seien $b_1, b_2 \in S \setminus \mathfrak{P}$ mit $b_1 \cdot b_2 \in \mathfrak{P}$. Dann sind $\mathfrak{P} + (b_1)$ und $\mathfrak{P} + (b_2)$ nicht in \mathcal{P} . Es gibt also $s_i \in S$ und $p_i \in \mathfrak{P}$ (i = 1, 2) mit $p_i + s_i \cdot b_i \in N$. $\Rightarrow (p_1 + s_1b_1)(p_2 + s_2b_2) \in N \cap \mathfrak{P} = \emptyset$. Widerspruch.

Bew. 1: Sei $b \in \mathfrak{p} \cdot S \cap R$, $b = p_1 t_1 + \ldots + b_k t_k$ mit $p_i \in \mathfrak{p}$, $t_i \in S$. Da S ganz ist über R, ist $S' := R[t_1, \ldots, t_k] \subseteq S$ endlich erzeugbarer R-Modul.

Seien s_1, \ldots, s_n R-Modul Erzeuger von S'. Für jedes i hat $b \cdot s_i$ eine Darstellung $b \cdot s_i = \sum_{k=1}^n a_{ik} s_k$ mit $a_{ik} \in \mathfrak{p}$ (weil $b \in \mathfrak{p} \cdot S'$).

Es folgt: b ist Nullstelle eines Polynoms vom Grad n mit Koeffizienten in \mathfrak{p} :

$$b^n + \underbrace{\sum_{i=0}^{n-1} \alpha_i b^i = 0}_{\in \mathfrak{p}}, \alpha_i \in \mathfrak{p}$$

Nach Voraussetzung ist $b \in R$: $b^n \in \mathfrak{p} \Rightarrow b \in \mathfrak{p} \Rightarrow \mathfrak{p} \cdot S \cap R \subseteq \mathfrak{p}$.

(b) Induktion über n: n = 0 ist (a). $n \ge 1$:

Nach Induktionsvoraussetzung gibt es eine Kette $\mathfrak{P}_0 \subsetneq \ldots \subsetneq \mathfrak{P}_{n-1}$ in S mit $\mathfrak{P}_i \cap R = \mathfrak{p}_i$ $(i = 0, \ldots, n-1)$.

Sei $S' := S/\mathfrak{p}_{n-1}$, $R' := R/\mathfrak{p}_{n-1}$. Dann ist S'/R' ganze Ringerweiterung.

Nach (a) gibt es in S' ein Primideal \mathfrak{P}'_n mit $\mathfrak{P}'_n \cap R' = \mathfrak{p}'_n := \mathfrak{p}_n/\mathfrak{p}_{n-1}$.

Dann gilt für $\mathfrak{P}_n := \operatorname{pr}^{-1}(\mathfrak{P}'_n)$ (pr : $S \to S'$ kanonische Projektion):

$$\mathfrak{P}_n \cap R = \mathfrak{p}_n \text{ und } \mathfrak{P}_{\mathfrak{n}} \neq \mathfrak{P}_{n-1}.$$

(c) Aus (b) folgt: dim $S \ge \dim R$. Es bleibt zu zeigen: dim $S \le \dim R$.

Sei
$$\mathfrak{P}_0 \subsetneq \ldots \subsetneq \mathfrak{P}_n$$
 Kette in $S, \mathfrak{p}_i := \mathfrak{P}_i \cap R, i = 0, \ldots, n$.

klar: \mathfrak{p}_i ist Primideal in R, $\mathfrak{p}_{i-1} \subseteq \mathfrak{p}_i$. Noch zu zeigen: $\mathfrak{p}_{i-1} \neq \mathfrak{p}_i$ für alle i.

Gehe über zu R/\mathfrak{p}_{i-1} und S/\mathfrak{P}_{i-1} , also ohne Einschränkung $\mathfrak{p}_{i-1}=(0)$ und $\mathfrak{P}_{i-1}=(0)$.

Annahme: $\mathfrak{p}_i = (0)$

Sei $b \in \mathfrak{P}_i \setminus \{0\}$. b ist ganz über $R: b^n + a_{n-1}b^{n-1} + \cdots + a_1b + a_0 = 0$.

Sei n der minimale Grad einer solchen Gleichung.

Es ist
$$a_0 = -b(b^{n-1} + a_{n-1}b^{n-2} + \dots + a_1) \in R \cap \mathfrak{P}_i = \mathfrak{p}_i = (0).$$

$$\Rightarrow 0 = -b(b^{n-1} + a_{n-1}b^{n-2} + \dots + a_1)$$

Da S nullteilerfrei ist, muss gelten: $b^{n-1} + a_{n-1}b^{n-2} + \cdots + a_1 = 0$.

Widerspruch zur Wahl von n.

Folgerung 2.26

Sei S/R ganze Ringerweiterung, \mathfrak{p} bzw. \mathfrak{P} Primideale in R bzw. S. Ist $\mathfrak{p} = \mathfrak{P} \cap R$, so gilt:

$$\mathfrak{p}$$
 maximal $\iff \mathfrak{P}$ maximal

Beweis

"⇒": Sei \mathfrak{P}' maximales Ideal in S mit $\mathfrak{P} \subseteq \mathfrak{P}'$. Dann ist $\mathfrak{P}' \cap R = \mathfrak{p}$ weil \mathfrak{p} maximal $\Rightarrow \mathfrak{P}' = \mathfrak{P}$. Nach dem Beweis von Teil (c) des Satzes.

" \Leftarrow ": Sei \mathfrak{p}' maximales Ideal mit $\mathfrak{p} \subseteq \mathfrak{p}'$. Nach (b) gibt es ein Primideal \mathfrak{P}' in S mit $\mathfrak{P}' \cap R = \mathfrak{p}'$ und $\mathfrak{P} \subseteq \mathfrak{P}' \underset{\mathfrak{p} \text{ maximal}}{\Longrightarrow} \mathfrak{P}' = \mathfrak{P} \Rightarrow \mathfrak{p}' = \mathfrak{p}$.

Satz 11

Sei k Körper, A endlich erzeugbare k-Algebra.

- (a) In A gibt es algebraisch unabhängige Elemente x_1, \ldots, x_d (für ein $d \geq 0$), sodass A ganz ist über $k[x_1, \ldots, x_d]$. [Die Algebra $k[x_1, \ldots, x_d]$ ist dann isomorph zur Polynomalgebra $k[X_1, \ldots, X_d]$, da x_1, \ldots, x_d algebraisch unabhängig sind. Ferner ist dann A als $k[x_1, \ldots, x_d]$ -Modul endlich erzeugbar, da als Algebra endlich erzeugbar und ganz.]
- (b) Ist $I \subseteq A$ ein echtes Ideal, so können in a) die x_i so gewählt werden, dass $I \cap k[x_1, \ldots, x_d] = (x_{\delta+1}, \ldots, x_d)$ für ein $\delta \leq d$.
- (c) dim $k[x_1, ..., x_d] = d \implies A = d$

Beweis

(c) $,\geq$ ": klar.

"≤": Sei $0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_m$ Primidealkette in A. Ohne Einschränkung (Satz 10) sei $A = k[x_1, \ldots, x_n]$.

Nach (b) existiert eine Einbettung $B:=k[y_1,\ldots,y_d]\hookrightarrow A$ mit $\mathfrak{p}_1\cap k[y_1,\ldots,y_d]=(y_{\delta+1},\ldots,y_d).$

Beh.: $\delta \leq d - 1 \text{ (d.h. } \mathfrak{p}_1 \cap k[y_1, \dots, y_d] \neq \{0\})$

Denn: Sonst A ganz über $B \Rightarrow \mathfrak{p}_1 = 0$ (Satz 10, Beweis Teil (c)).

Sei nun $A_1 := A/\mathfrak{p}_1, B_1 := B/(\mathfrak{p}_1 \cap B) \cong k[y_1, \dots, y_{\delta}].$ A_1 ist ganz über B_1 , also ist nach

Satz 10 (c) dim $A_1 = \dim B_1 \stackrel{\text{I.V.}}{=} \delta$

Weiter ist $0 = \mathfrak{p}_1/\mathfrak{p}_1 \subsetneq \mathfrak{p}_2/\mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_m/\mathfrak{p}_1$ Primidealkette in A_1 . $\Rightarrow m-1 \leq \delta \leq d-1 \Rightarrow m \leq d$

(a) Sei $A = k[a_1, ..., a_n]$ (endliches Erzeugendensystem) Induktion über n:

n=1: A=k[a]; ist a transzendent, so ist $A\cong k[X]$. Sonst: $A\cong k[X]/(f)$ für ein irreduzibles $f\in k[X]$, also endliche Körpererweiterung von k.

n > 1: Sind a_1, \ldots, a_n algebraisch unabhängig, so ist $A \cong k[X_1, \ldots, X_n]$. Andernfalls gibt es $F \in k[X_1, \ldots, X_n]$ mit $F(a_1, \ldots, a_n) = 0$.

1. Fall: $F = X_n^m + \sum_{i=0}^{m-1} g_i X_n^i$ für ein $m \ge 1$ und $g_i \in k[X_1, ..., X_{n-1}]$.

Aus $F(a_1, \ldots, a_n) = 0$ folgt a_n ganz über $k[a_1, \ldots, a_{n-1}] =: A'$. Nach Induktionsvoraussetzung existieren algebraisch unabhängige Elemente x_1, \ldots, x_d in $k[a_1, \ldots, a_{n-1}]$, sodass A' ganz über $k[x_1, \ldots, x_d]$. A ist also ganz über $k[x_1, \ldots, x_d]$, da $A = A'[a_n]$.

2. Fall: F beliebig, $F = \sum_{i=0}^{m} F_i$ mit F_i homogen vom Grad i.

Ersetze a_i durch $b_i := a_i - \lambda_i a_n$ $(i = 1, ..., n - 1, \text{ mit } \lambda_i \in k$ "geeignet"). Dann sind $b_1, ..., b_{n-1}, a_n$ auch k-Algebra-Erzeuger von A. Das Monom $a_1^{\nu_1} \cdots a_n^{\nu_n}$ geht über in

$$a_n^{\nu_n} \prod_{i=1}^{n-1} (b_i + \lambda_i a_n)^{\nu_i} = a_n^{\nu_n} \prod_{i=1}^{n-1} \lambda_i^{\nu_i} a_n^{\nu_i} + \text{Terme niedriger Ordnung in } a_n$$

 $\Rightarrow F_m(a_1,\ldots,a_n) = F_m(\lambda_1,\ldots,\lambda_{n-1},1) \cdot a_n^m + \text{Terme niedriger Ordnung in } a_n$

 $\Rightarrow F(a_1,\ldots,a_n) = F_m(\lambda_1,\ldots,\lambda_{n-1},1) \cdot a_n^m + \text{Terme niedriger Ordnung in } a_n$

Ist $F_m(\lambda_1, \ldots, \lambda_{n-1}, 1) \neq 0$, so weiter wie in Fall 1.

Ist k unendlich, so kann man immer $\lambda_1, \ldots, \lambda_n$ finden, sodass $F_m(\lambda_1, \ldots, \lambda_{n-1}, 1) \neq 0$.

Ist k endlich, so hilft es, a_i durch $b_i = a_i - a_n^{\mu_i}$ zu ersetzen.

- (b) Ohne Einschränkung sei $A = k[x_1, \dots, x_d]$ (betrachte $I' = I \cap k[x_1, \dots, x_d]$).
 - 1. Fall: I = (f) Hauptideal, $f \neq 0$.

Setze $y_d := f$, $y_i = x_i - \lambda_i x_d$ für geeignete $\lambda_i \in k$.

Dann ist $f - y_d = 0$ normiertes Polynom in x_d über $k[y_1, \dots, y_d]$ (vgl. (a))

Beh.: $I \cap k[y_1, ..., y_d] = (y_d)$

Denn: Sei $g \in I \cap k[y_1, ..., y_d]$, d.h. $g = h \cdot f$ für ein $h \in k[x_1, ..., x_d]$. h ist ganz über $k[y_2, ..., y_d] \Rightarrow h^m + b_{m-1}h^{m-1} + ... + b_1h + b_0 = 0 \ (m \ge 1, b_i \in h[y_1, ..., y_d]) \Rightarrow g^m + \underbrace{b_{m-1}fg^{m-1} + ... + b_1f^{m-1}g + b_0f^m}_{=y_d \cdot ...} = 0$

 y_d teilt also g^m , d.h. $g^m \in (y_d) \stackrel{\text{prim}}{\Rightarrow} g \in (y_d)$

2. Fall: Sei *I* beliebig. Induktion über *d*:

 $d=1 \colon A=k[X] \Rightarrow \text{jedes Ideal}$ ist Hauptideal.

d > 1: Sei $f \in I$, $f \neq 0$.

Dann gibt es nach Fall 1 eine Einbettung $k[y_1, \dots y_d] \hookrightarrow A$ mit $f = y_d$.

 $I' := I \cap k[y_1, \dots y_{d-1}]$

Nach Induktionsvoraussetzung gibt es Einbettung $k[z_1, \ldots z_{d-1}] \hookrightarrow k[y_1, \ldots y_{d-1}]$ mit $I' \cap k[z_1, \ldots z_{d-1}] \subset (z_{\delta+1}, \ldots z_{d-1})$ für ein $\delta \leq d-1$.

 $\Rightarrow I \cap k[z_1, \dots z_{d-1}, z_d] = (z_{\delta+1}, \dots z_{d-1}, y_d)$

Folgerung: Für jede endlich erzeugte nullteilerfreie k-Algebra A über einem Körper k gilt:

$$\operatorname{trdeg}(\operatorname{Quot}(A)) = \dim A$$

Dabei bezeichnet $\operatorname{trdeg}(K)$ (der $\operatorname{Transzendenzgrad}$ von K über k) die Maximalzahl über k algebraisch unabhängiger Elemente in K, wenn K eine Körpererweiterung von k ist.

§8 Das Spektrum eines Rings

Definition + Bemerkung 2.27

Sei R ein Ring.

- a) $\operatorname{Spec}(R) := \{ \mathfrak{p} \subset R : \mathfrak{p} \text{ Primideal} \} \text{ heißt } \mathbf{Spektrum} \text{ von } R.$
- b) Eine Teilmenge $V \subset \operatorname{Spec}(R)$ heißt **abgeschlossen**, wenn es ein Ideal $I \subseteq R$ gibt mit

$$V = V(I) := {\mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p}}$$

c) Die abgeschlossenen Teilmengen von $\operatorname{Spec}(R)$ definieren eine Topologie auf $\operatorname{Spec}(R)$, sie heißt die **Zariski-Topologie**.

Beispiele

 $R = \mathbb{Z}$: Spec(\mathbb{Z}) = {(0)} \cup {(p) : p Primzahl}

 $V((p)) = (p) \Rightarrow (p)$ ist abgeschlossen in $\operatorname{Spec}(R)$ für jede Primzahl p.

 $V((0)) = \operatorname{Spec}(\mathbb{Z}).$

 $I = n\mathbb{Z} \Rightarrow V(I) = \{(p_1), \dots (p_k)\}, \text{ wenn } n = p_1^{\nu_1} \cdots p_k^{\nu_k} \text{ die Primfaktorzerlegung von } n \text{ ist.}$ $\overline{\{(0)\}} = \operatorname{Spec}(\mathbb{Z})$

$$R = k[X]: \overline{\{(0)\}} = \operatorname{Spec}(R).$$

 $f \in k[X]$ irreduzibel \Rightarrow (f) ist abgeschlossener Punkt.

$$k := \mathbb{C}$$
: f irreduzibel $\Leftrightarrow f(X) = X - c$ für ein $c \in \mathbb{C}$. $\Rightarrow \operatorname{Spec}(\mathbb{C}[X]) = \mathbb{C} \cup \{(0)\}$

Beweis

c) Sei $U \subseteq \operatorname{Spec}(R)$ offen : $\Leftrightarrow \operatorname{Spec}(R) \setminus U$ abgeschlossen.

Zu zeigen:

- (i) \emptyset ist abgeschlossen: $\emptyset = V(R)$. Spec(R) ist abgeschlossen: Spec(R) = V((0)).
- (ii) endliche Vereinigung von abgeschlossenen Mengen ist abgeschlossen.

Zeige dazu:
$$V(I_1) \cup \cdots \cup V(I_n) = V(I_1 \cap \cdots \cap I_n) = V(I_1 \cdot \cdots \cap I_n)$$

denn: Ohne Einschränkung sei n=2:

$$``,\subseteq`` \mathrm{Sei}\ \mathfrak{p}\in V(I_1)\Rightarrow I_1\subseteq \mathfrak{p}\Rightarrow I_1\cap I_2\subseteq \mathfrak{p}\Rightarrow \mathfrak{p}\in V(I_1\cap I_2).$$

"⊇" Sei
$$\mathfrak{p} \in V(I_1 \cap I_2), \mathfrak{p} \notin V(I_1).$$

Dann gibt es ein $a \in I_1 \setminus \mathfrak{p}$. Sei $b \in I_2$.

Dann ist
$$a \cdot b \in I_1 \cap I_2 \subset_{\text{Vor.}} \mathfrak{p}$$
. $\stackrel{\mathfrak{p} \text{ prim}}{\Longrightarrow} b \in \mathfrak{p} \Rightarrow I_2 \subseteq \mathfrak{p}$, d.h. $\mathfrak{p} \in V(I_2)$.

(iii) beliebiger Durchschnitt von abgeschlossenen Mengen ist abgeschlossen. Zeige dazu:

$$\bigcap_{\nu} V(I_{\nu}) = V\left(\sum_{\nu} I_{\nu}\right)$$

denn: $\mathfrak{p} \in \bigcap_{\nu} V(I_{\nu}) \Leftrightarrow I_{\nu} \subseteq \mathfrak{p} \, \forall \nu \Leftrightarrow \sum_{\nu} I_{\nu} \subseteq \mathfrak{p}$.

Bemerkung 2.28

- a) Für Ideale $I_1 \subseteq I_2$ ist $V(I_1) \supseteq V(I_2)$.
- b) Für jedes Ideal $I \subseteq R$ ist $V(I) = V(\sqrt{I}) = V(\text{Rad}(I))$

Beweis

Sei \mathfrak{p} Primideal mit $I \subseteq \mathfrak{p}$, $f \in \sqrt{I}$, dann ist $f^n \in I$ für ein $n \geq 1$. $\Rightarrow f^n \in \mathfrak{p} \underset{\mathfrak{p} \text{ prim}}{\Rightarrow} f \in \mathfrak{p}$ $\Rightarrow \sqrt{I} \subseteq \mathfrak{p}$.

c) Die $U(f) := \operatorname{Spec}(R) - V((f)), f \in R \setminus \sqrt{(0)}$ bilden eine Basis der Zariski-Topologie.

Beweis

$$\sqrt{(0)} = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p} \ (\ddot{\mathbf{U}} 7 \mathbf{A} 2 \mathbf{b})$$

Also ist
$$V(f) = \operatorname{Spec}(R) \Leftrightarrow f \in \sqrt{(0)}$$
. Für $f \in R \setminus \sqrt{(0)}$ ist also $U(f) \neq \emptyset$.

Zu zeigen: Ist
$$U \subseteq \operatorname{Spec}(R)$$
 offen, $U \neq 0$, so gibt es ein $f \in R \setminus \sqrt{(0)}$ mit $U(f) \subseteq U$.

Sei also
$$U = \operatorname{Spec}(R) - V(I)$$
 mit $I \nsubseteq \sqrt{(0)}$. Für $f \in I \setminus \sqrt{(0)}$ ist $(f) \subseteq I$, also $V(f) \supseteq V(I) \Rightarrow U(f) \subseteq U$.

Zusatz:
$$U(f) = {\mathfrak{p} \in \operatorname{Spec}(R) : f \notin \mathfrak{p}}.$$

Definition + Proposition 2.29

a) Ein topologischer Raum X hießt irreduzibel, wenn er nicht Vereinigung zweier echter abgeschlossener Teilmengen ist.

Beispiele

$$\begin{split} R &= \mathbb{C}[X,Y], \\ V((X)) &= \{(X)\} \cup \{(X,Y-c),c \in \mathbb{C}\} \\ V((Y)) &= \{(Y)\} \cup \{(X-a,Y),a \in \mathbb{C}\}. \\ V(X \cdot Y) &= V((X)) \cup V((Y)) = \text{Achsenkreuz und } (X), (Y). \end{split}$$

b) Eine abgeschlossene Teilmenge $V(I)\subseteq \operatorname{Spec}(R)$ ist genau dann irreduzibel, wenn I ein Primideal ist.

Beweis

"⇒" Seien
$$f_1, f_2 \in R$$
, $f_1 \cdot f_2 \in I$ und $f_1 \notin I$. Dann ist $V(f_1) \not\supseteq V := V(I)$. Andererseits: $V \subseteq V(f_1 \cdot f_2) = V(f_1) \cup V(f_2)$
 $\Rightarrow V = (V \cap V(f_1)) \cup (V \cap V(f_2))$
 $\underset{V \text{ irreduz.}}{\Longrightarrow} V \subseteq V(f_2) \Rightarrow f_2 \in I$.

" \Leftarrow " Sei $V(I) = V = V(I_1) \cup V(I_2)$ und $V(I_1) \neq V$
d.h. $I_1 \not\subseteq I$. Sei $f_1 \in I_1 \setminus I$
Andererseits ist $V(I_1 \cdot I_2) = V(I_1) \cup V(I_2) = V \Rightarrow I_1 \cdot I_2 \subseteq \sqrt{I} = I$
Für jedes $f \in I_2$ ist also $f_1 \cdot f \in I \Rightarrow f_1 \notin I \Rightarrow I_2 \subseteq I \Rightarrow V(I) \subseteq V(I_2)$.

Folgerung 2.30

Ist Spec(R) hausdorffsch, so ist dim R=0

Beweis

 $\operatorname{Spec}(R)$ hausdorffsch, \Rightarrow jede irreduzible Teilmenge von $\operatorname{Spec}(R)$ ist einelementig.

- \Rightarrow Für jedes Primideal \mathfrak{p} von R ist $V(\mathfrak{p}) = {\mathfrak{p}}$
- \Rightarrow jedes Primideal in R ist maximales Ideal.
- $\Rightarrow \dim R = 0$

Definition + Bemerkung 2.31

a) Für eine beliebige Teilmenge V von $\operatorname{Spec}(R)$ heißt

$$I(V) = \bigcap_{\mathfrak{p} \in V} \mathfrak{p}$$

das Verschwindungsideal von V.

b) Für jedes Ideal I von R gilt:

$$I(V(I)) = \sqrt{I}$$

Beweis

Nach Ü7A2d ist
$$\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \supseteq I \\ \mathfrak{p} \text{ Primideal}}} \mathfrak{p} = \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p}$$

Folgerung

Ist
$$V(I_1) = V(I_2)$$
, so ist $\sqrt{I_1} = \sqrt{I_2}$.

Definition + Proposition 2.32

- a) Sei X ein topologischer Raum. Eine irreduzible Teilmenge $V\subseteq X$ heißt irreduzible Komponente, wenn V maximale irreduzible Teilmenge ist bzgl. \subseteq .
- b) Jeder topologischer Raum ist Vereinigung seiner irreduziblen Komponenten.
- c) Ist R noethersch, so ist jede abgeschlossene Teilmenge von V von $\operatorname{Spec}(R)$ endliche Vereinigung von irreduziblen Komponenten von V; diese sind eindeutig bestimmt.

Beweis

b) Zu zeigen: jedes $x \in X$ ist in einer irreduziblen Komponente von X enthalten.

Sei
$$C_x := \{U \subseteq X : x \in U, U \text{ irreduzibel}\}.$$

$$C_x \neq \emptyset$$
, da $\{x\} \in C_x$.

Seien $(U_i)_{i\in\mathbb{N}}$ in \mathcal{C}_x mit $U_i\subseteq U_{i+1}$ für alle i.

Sei $U := \bigcup_{i \in \mathbb{N}} U_i$, zu zeigen: $U \in \mathcal{C}_x$, d.h. U irreduzibel.

denn: Sei $U = V \cup W$, V, W abgeschlossene Teilmengen von U. Dann ist $U_i = (U_i \cap V) \cup (U_i \cap W)$ für jedes $i \in \mathbb{N}$

Da U_i irreduzibel, ist (ohne Einschränkung) $U_i \cap V = U_i$ für unendliche viele i.

$$\Rightarrow U_i \subseteq V \Rightarrow U = \bigcup_{\text{diese } i} U_i \subseteq V \Rightarrow U \subseteq V.$$

 $\Rightarrow U$ irreduzibel.

Mit dem Zornschen Lemma folgt: C_x enthält ein maximales Element.

c) Ohne Einschränkung sei $V = \operatorname{Spec}(R)$: Sei V = V(I) für ein Ideal I.

$$V(I) = \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subseteq \mathfrak{p} \} \stackrel{\text{bijektiv}}{\longleftrightarrow} \{ \mathfrak{p}' \in \operatorname{Spec}(R/I) \}$$

Aus 2.34b wird folgen: Die Abbildung ist ein Homöomorphismus.

Sei $\mathfrak V$ die Menge der abgeschlossenen Teilmengen von Spec(R), die <u>nicht</u> Vereinigung von endlich vielen irreduziblen Teilmengen sind. Weiter sei $J := \{I(V) : V \in \mathfrak V\}$

Zu zeigen:
$$\mathfrak{V} = \emptyset$$

Anderenfalls ist auch $J \neq \emptyset$. Da R noethersch ist, enthält J ein maximales Element $I(V_0)$ für ein $V_0 \in \mathfrak{V}$.

 V_0 ist nicht irreduzibel.

Also gibt es abgeschlossene Teilmengen V_1, V_2 von V_0 mit $V_0 = V_1 \cup V_2, V_1 \neq V_0 \neq V_2$.

$$V_i \notin \mathfrak{V}$$
 für $i = 1, 2$, da $I(V_0) \subsetneq I(V_1)$

Also lassen sich V_1 und V_2 als endliche Vereinigung von irreduziblen Teilmengen schreiben.

 $\Rightarrow V_0$ lässt sich auch als endliche Vereinigung von irreduziblen Teilmengen schreiben. Widerspruch zur Wahl von V_0 .

$$\Rightarrow \mathfrak{V} = \emptyset$$
.

Sei also $V = V_0 \cup \cdots \cup V_r$ mit irreduziblen Teilmengen V_i .

Noch zu zeigen:

- die V_i sind (ohne Einschränkung) irreduzible Komponenten.
- Eindeutigkeit

denn:

Aus b) folgt: jedes V_i ist in einer irreduziblen Komponente \widetilde{V}_i von V enthalten, also $V = \bigcup_{i=0}^r \widetilde{V}_i$; ohne Einschränkung alle \widetilde{V}_i verschieden.

Sei W irreduzible Komponente von V.

$$\Rightarrow W = \bigcup_{i=0}^r (W \cap \widetilde{V_i}) \underset{W \text{ irreduz.}}{\Rightarrow} \text{es gibt ein } i \text{ mit } W \subseteq \widetilde{V_i}$$

$$\underset{W \text{ Komponente}}{\Rightarrow} W = \widetilde{V_i}$$

Folgerung 2.33

Ein noetherscher Ring hat nur endlich viele minimale Primideale.

Beweis

Sei $\mathfrak{p} \in \operatorname{Spec}(R)$ minimales Primideal. $\Leftrightarrow V(\mathfrak{p}) \subseteq \operatorname{Spec}(R)$ irreduzible Komponente.

Proposition 2.34

Sei $\alpha: R \to S$ Ringhomomorphismus.

- a) Die Abbildung $\varphi_{\alpha} : \operatorname{Spec}(S) \to \operatorname{Spec}(R), \, \mathfrak{p} \mapsto \alpha^{-1}(\mathfrak{p})$ ist stetig. Eleganter: $R \to \operatorname{Spec}(R)$ ist kontravarianter Funktor Ringe \to top. Räume
- b) Ist α surjektiv, so ist φ_{α} injektiv und $\varphi_{\alpha}(\operatorname{Spec}(S)) = V(\operatorname{Kern}(\alpha))$

Beweis

a) $\alpha^{-1}(\mathfrak{p})$ ist Primideal:

Seien
$$a, b \in R$$
 mit $a \cdot b \in \alpha^{-1}(\mathfrak{p}) \Rightarrow \alpha(a \cdot b) \in \mathfrak{p} \stackrel{\times}{\Rightarrow} \alpha(a) \in \mathfrak{p} \Rightarrow a \in \alpha^{-1}(\mathfrak{p})$

 φ_{α} stetig: Zu zeigen: für jede abgeschlossene Teilmenge V = V(I) von $\operatorname{Spec}(R)$ ist $\varphi_{\alpha}^{-1}(V)$ abgeschlossen in $\operatorname{Spec}(S)$.

$$\varphi_{\alpha}^{-1}(V(I)) = \{ \mathfrak{p} \in \operatorname{Spec}(S) : I \subseteq \alpha^{-1}(\mathfrak{p}) \} = \{ \mathfrak{p} \in \operatorname{Spec}(S) : \alpha(I) \subseteq \mathfrak{p} \} = \{ \mathfrak{p} \in \operatorname{Spec}(S) : \alpha(I) \cdot S \subseteq \mathfrak{p} \} = V(\alpha(I) \cdot S)$$

b) Seien $\mathfrak{p}, \mathfrak{p}' \in \operatorname{Spec}(S)$ mit $\varphi_{\alpha}(\mathfrak{p}) = \varphi_{\alpha}(\mathfrak{p}')$ $\Rightarrow \alpha^{-1}(\mathfrak{p}) = \alpha^{-1}(\mathfrak{p}') \Rightarrow \alpha(\alpha^{-1}(\mathfrak{p})) = \alpha(\alpha^{-1}(\mathfrak{p}')) \underset{\alpha \text{ suri}}{\Rightarrow} \mathfrak{p} = \mathfrak{p}'$

§9 Diskrete Bewertungsringe

Definition 2.35

Sei K ein Körper.

Ein surjektiver Gruppenhomomorphismus $v: K^{\times} \to \mathbb{Z}$ heißt **diskrete Bewertung**, wenn für alle $x, y \in K^{\times}$ mit $x + y \in K^{\times}$ gilt:

$$v(x+y) \ge \min\{v(x), v(y)\}\$$

Anmerkungen: Manchmal setzt man $v(0) = \infty$.

Da v Gruppenhomomorphismus ist, gilt: $v(x \cdot y) = v(x) + v(y)$ und v(1) = 0.

Beispiele

- 1.) $K = \mathbb{Q}, \ p \in \mathbb{Z}$ Primzahl. Für $\frac{a}{b} \in \mathbb{Q} \setminus \{0\}, \ a, b \in \mathbb{Z}$ schreibe $a = p^n \cdot a', \ b = p^m \cdot b'$ mit $p \nmid a', \ p \nmid b'$. Setze $v_p(\frac{a}{b}) := n - m$. Und es gilt: $a + b \stackrel{\times}{=} p^n \cdot (a' + p^{m-n}b')$. v_p heißt p-adische Bewertung auf \mathbb{Q} . Es gilt:
 - $v_p(a) \ge 0 \ \forall a \in \mathbb{Z}. \ v_3(\frac{7}{2}) = 0, \ v_3(\frac{9}{2}) = 2.$
 - $v_p(a+b) = \min\{v_p(a), v_p(b)\}, \text{ falls } v_p(a) \neq v_p(b).$
- 2.) K = k(X) = Quot(k[X]) (k Körper). Für $f = \frac{f_1}{f_2}$ sei $v(f) = v(f_1) - v(f_2)$.
 - a) $v(f_1) = \operatorname{ord}_a(f_1)$ für festes $a \in k$ (Nullstellenordnung). Es gilt $v_a(f_1 \cdot f_2) = v_a(f_1) + v_a(f_2)$ $v_a(f_1 + f_2) = v_a((X - a)^{n_1} \cdot g_1 + (X - a)^{n_2} \cdot g_2)$ $\stackrel{\text{(E: } n_1 \le n_2}{=} v_a((X - a)^{n_1}(g_1 + (X - a)^{n_2 - n_1} \cdot g_2))$
 - b) Für $f \in k[X]$ sei $v(f) = -\deg(f)$.

Bemerkung 2.36

Sei $v:K^{\times}\to\mathbb{Z}$ diskrete Bewertung. Sei $\rho\in\mathbb{R}$ mit $0<\rho<1$. Dann ist die Abbildung

$$| \ |_v : K \to \mathbb{R}, \ |x|_v = \begin{cases} 0 & : x = 0 \\ \rho^{v(x)} & : x \in K^{\times} \end{cases}$$

ein **Absolutbetrag** auf K, d.h. eine Abbildung $K \to \mathbb{R}$ mit:

- (i) $|x|_v = 0 \Leftrightarrow x = 0$
- (ii) $|x \cdot y|_v = |x|_v \cdot |y|_v$
- (iii) $|x+y|_v \le |x|_v + |y|_v$

In unserer Situation gilt sogar:

 $|x+y|_v \le \max\{|x|_v,|y|_v\} \le |x|_v + |y|_v \Rightarrow$ "nichtarchimedischer Betrag"

Weiter ist $d(x,y) := |x-y|_v$ eine Metrik auf K.

Zur Geometrie

Kreis um a mit Radius $r: K_r = \{b \in K : d(a, b) \le r\}.$

Jeder Kreis hat mehrere Mittelpunkte:

Beh.: Für jedes $a' \in K_r$ ist $K_r(a') = K_r(a)$

Bew.: Sei $b \in K_r(a)$, also $d(b, a) \le r$.

Dreiecksungleichung:

$$d(b, a') \le \max\{\underbrace{d(b, a)}_{\le r}, \underbrace{d(a, a')}_{\le r}\} \le r \Rightarrow b \in K_r(a')$$

Es gibt kein allgemeines Dreieck:

Ist d(a,b) < d(a,c), also |a-b| < |c-a|, so ist $|c-b| = |a-b+c-a| = \max\{|a-b|, |c-a|\} = |c-a|$ \Rightarrow jedes Dreieck ist gleichschenklig.

Erinnerung

 \mathbb{R} entsteht aus \mathbb{Q} durch "Vervollständigung":

 $C := \text{Ring der Cauchy-Folgen von } \mathbb{Q} \text{ (bzgl. } | \text{)}$

N := Ideal der Nullfolgen in C (maximales Ideal)

 $\mathbb{R} := C/N$

Analog:

 $C_p := \text{Ring der Cauchy-Folgen von } \mathbb{Q} \text{ (bzgl. } | \mid_p := | \mid_{v_p})$

 $N_p := \text{Ideal der Nullfolgen in } C_p \text{ (maximales Ideal)}$

 $\mathbb{Q}_p := C_p/N_p$ "Körper der p-adischen Zahlen"

Bemerkung 2.37

Ist v diskrete Bewertung auf K^{\times} , so ist $\mathcal{O}_v := \{x \in K^{\times} : v(x) \geq 0\} \cup \{0\}$ ein Ring, genauer: ein lokaler Ring mit maximalem Ideal $\mathfrak{m}_v := \{x \in K^{\times} : v(x) > 0\} \cup \{0\}$.

Beweis

 \mathcal{O}_v ist Ring, da $v(x+y) \ge \min\{v(x), v(y)\} \ge 0$ für alle $x, y \in \mathcal{O}_v$.

 \mathfrak{m}_v ist Ideal: Ist $x \in \mathfrak{m}_v$, $r \in \mathcal{O}_v$, so ist $v(x \cdot r) = v(x) + v(r) > 0$.

Für $x \in \mathcal{O}_v \setminus \mathfrak{m}_v = \{x \in K : v(x) = 0\}$ ist $v(\frac{1}{x}) = -v(x) = 0 \Rightarrow \frac{1}{x} \in \mathcal{O}_v(\setminus \mathfrak{m}_v) \Rightarrow x \in \mathcal{O}_v^{\times}$.

Definition + Proposition 2.38

- (a) Ein nullteilerfreier Ring R heißt **diskreter Bewertungsring**, wenn es eine diskrete Bewertung v von $K = \operatorname{Quot}(R)$ gibt mit $R = \mathcal{O}_v$.
- (b) Jeder diskrete Bewertungsring ist noethersch, lokal und eindimensional.

Beweis

Zeige mehr: R ist Hauptidealring.

R ist lokal \checkmark , sei \mathfrak{m} das maximale Ideal in R.

Beh.1: m ist Hauptideal.

Bew.1: Sei $t \in R$ mit $v(t) = 1 \Rightarrow t \in \mathfrak{m}$. Sei $x \in \mathfrak{m} \setminus \{0\}$, $y = \frac{x}{t^{v(x)}} \Rightarrow v(y) = v(x) - v(t^{v(x)}) = 0$ $\Rightarrow y \in R^{\times} \Rightarrow x = t^{v(x)} \cdot y \in (t)$.

Beh.2: Jedes Ideal $\neq 0$ in R ist von der Form \mathfrak{m}^n für ein $n \geq 0$.

Bew.2: Sei $I \subseteq R$ ein Ideal, $n := \min\{v(x) : x \in I \setminus \{0\}\}$. Sei $x_0 \in I$ mit $v(x_0) = n \Rightarrow$ $v(\frac{x_0}{t^n}) = 0 \Rightarrow t^n = \frac{t^n}{x_0} \cdot x_0 \in I \Rightarrow \mathfrak{m}^n = (t^n) \subseteq I.$ Umgekehrt: $x_0 = t^n \cdot \frac{x_0}{t^n} \in (t^n).$

Sei $x \in I \Rightarrow v(\frac{x}{t^n}) = v(x) - n \ge 0 \Rightarrow x = t^n \cdot \frac{x}{t^n} \in (t^n) \Rightarrow I \subseteq \mathfrak{m}^n$.

Satz 12 (Diskrete Bewertungsringe)

Sei R ein lokaler noetherscher Ring der Dimension 1 mit maximalem Ideal \mathfrak{m} und Restklassenkörper $k = R/\mathfrak{m}$.

Dann sind äquivalent:

- (i) R ist diskreter Bewertungsring
- (ii) R ist (nullteilerfreier) Hauptidealring
- (iii) R ist nullteilerfrei und \mathfrak{m} ist ein Hauptideal
- (iv) es gibt ein $t \in R$, sodass jedes $x \in R \setminus \{0\}$ eine eindeutige Darstellung $x = u \cdot t^n$ hat mit $n \in \mathbb{N}, \ u \in R^{\times}$
- (v) $\dim_k \mathfrak{m}/\mathfrak{m}^2 = 1$
- (vi) R ist normal

Beweis

- (i) \Rightarrow (ii) Proposition 2.38
- $(iv) \Rightarrow (i)$

R nullteilerfrei:

Annahme: $u \cdot t^n \cdot v \cdot t^m = 0 = u \cdot v \cdot t^{n+m} \Rightarrow t^{n+m} = t^{n+m} + 0 = t^{n+m} + u \cdot v \cdot t^{n+m} = t^{n+m} + t^{n+m} = t$ $(1+u\cdot v)t^{n+m} \stackrel{\text{Eind.}}{\Rightarrow} 1+u\cdot v=1 \Rightarrow u\cdot v=0 \Rightarrow \text{Widerspruch zu } u\cdot v\in R^{\times}.$

Diskrete Bewertung:

 $\overline{\text{Für } a = u \cdot t^n \in R \setminus \{0\}}$ setze v(a) = n. Für $x = \frac{a}{b} \in K = \text{Quot}(R), \ a, b \in R \setminus \{0\}$ setze v(x) = v(a) - v(b).

v(x) would efinier: Ist $x = \frac{a'}{b'}$ mit $a', b' \in R \setminus \{0\}$, so ist $a \cdot b' = a' \cdot b$. Aus $a = u \cdot t^n, b = a' \cdot b$ $v \cdot t^m, a' = u' \cdot t^{n'}, b' = v' \cdot t^{m'}$ folgt: $u' \cdot v t^{n'+m} = u \cdot v' \cdot t^{n+m'} \stackrel{\text{Eind.}}{\Rightarrow} n' + m = n + m' \Rightarrow$ n' - m' = n - m.

v ist diskrete Bewertung: $v(x \cdot y) = v(u \cdot t^n \cdot v \cdot t^m) = v(u \cdot v \cdot t^{n+m}) = n + m = v(x) + v(y)$. $v(x+y) \stackrel{m < n}{=} v(t^m \cdot (v+u \cdot t^{n-m})) \ge m = \min\{v(x), v(y)\}.$

- (iii) \Rightarrow (iv) Sei $\mathfrak{m} = (t)$. Sei $x \in R \setminus \{0\}$. Da R noethersch ist, ist $\bigcap_{n \geq 0} \mathfrak{m}^n = (0)$ (Folgerung 2.22). Also gibt es ein (eindeutiges) $n \geq 0$ mit $x \in \mathfrak{m}^n \setminus \mathfrak{m}^{n+1} \Rightarrow \exists u \in R^{\times}$ mit $x = u \cdot t^n$. u ist eindeutig: Wäre $u \cdot t^n = v \cdot t^n$, so wäre $(u - v) \cdot t^n = 0$, also t Nullteiler ⇒ Widerspruch
- (ii) \Rightarrow (v) $\mathfrak{m}/\mathfrak{m}^2$ ist k-Vektorraum: $\mathfrak{m}, \mathfrak{m}^2$ und damit $\mathfrak{m}/\mathfrak{m}^2$ sind R-Moduln. Für $a \in \mathfrak{m}$ und $x \in \mathfrak{m}/\mathfrak{m}^2$ ist $a \cdot \bar{x} = \overline{a \cdot x} = 0$, da $a \cdot x \in \mathfrak{m}^2 \Rightarrow \bar{a} \cdot \bar{x}$ ist wohldefiniert für die Klasse \bar{a} von

 $a \text{ in } R/\mathfrak{m} = k.$

Es ist $\mathfrak{m}^2 \neq \mathfrak{m}$, da dim R = 1 (und R noethersch) $\Rightarrow \dim_k \mathfrak{m}/\mathfrak{m}^2 \geq 1$. $\mathfrak{m}/\mathfrak{m}^2$ wird von \bar{t} erzeugt (als R-Modul und damit auch als R/\mathfrak{m} -Modul) \Rightarrow dim $_k \mathfrak{m}/\mathfrak{m}^2 \leq 1$ $\Rightarrow \dim_k \mathfrak{m}/\mathfrak{m}^2 = 1.$

- (v) \Rightarrow (iii) Sei $t \in \mathfrak{m}$, sodass $\bar{t} \in \mathfrak{m}/\mathfrak{m}^2$ Erzeuger ist. Mit Nakayama (Folgerung 2.21) folgt: t erzeugt \mathfrak{m} .
- (ii) ⇒ (vi) Jeder (nullteilerfreie) Hauptidealring ist faktoriell $\Rightarrow R$ ist normal. (Bemerkung 2.10)
- (vi) \Rightarrow (iii) Sei $K = \operatorname{Quot}(R)$. Sei $\bar{\mathfrak{m}} := \{x \in K : x \cdot \mathfrak{m} \subseteq \mathfrak{m}\}, \ \mathfrak{m}^{-1} := \{x \in K : x \cdot \mathfrak{m} \subseteq R\}$ Offensichtlich: $R \subseteq \bar{\mathfrak{m}} \subseteq \mathfrak{m}^{-1}$

Beh. 1:

- 1.) $\bar{\mathfrak{m}} = R$
- 2.) $\mathfrak{m}^{-1} \neq R$
- 3.) $\mathfrak{m} \cdot \mathfrak{m}^{-1} = R \ (\mathfrak{m} \cdot \mathfrak{m}^{-1} \text{ ist das von allen } a \cdot x, \ a \in \mathfrak{m}, \ x \in \mathfrak{m}^{-1} \text{ erzeugte Ideal in } R)$

Dann sei $t \in \mathfrak{m} \setminus \mathfrak{m}^2 \Rightarrow t \cdot \mathfrak{m}^{-1} \subseteq R$ ist Ideal in R. Wäre $t \cdot \mathfrak{m}^{-1} \subseteq \mathfrak{m}$, so wäre $(t) = t \cdot R \stackrel{3.9}{=}$ $t \cdot \mathfrak{m}^{-1} \cdot \mathfrak{m} \subseteq \mathfrak{m}^2 \Rightarrow \text{Widerspruch zu } t \notin \mathfrak{m}^2. \text{ Also ist } t \cdot \mathfrak{m}^{-1} = R \text{ und } (t) \stackrel{3.)}{=} t \cdot \mathfrak{m}^{-1} \cdot \mathfrak{m} = \mathfrak{m}.$

Bew. 3: Aus $R \subseteq \mathfrak{m}^{-1}$ folgt $\mathfrak{m} \subseteq \mathfrak{m} \cdot \mathfrak{m}^{-1}$. Wäre $\mathfrak{m} = \mathfrak{m} \cdot \mathfrak{m}^{-1}$, so wäre $\mathfrak{m}^{-1} \subseteq \bar{\mathfrak{m}} = R$ im Widerspruch zu Beh. 2.).

Bew. 1: $\bar{\mathfrak{m}}$ ist Unterring von K.

Zeige: $\bar{\mathbf{m}}$ ist ganz über R (dann ist $\bar{\mathbf{m}} = R$, da R normal).

Es genügt zu zeigen: $\bar{\mathbf{m}}$ ist endlich erzeugter R-Modul.

Für $t \in \mathfrak{m} \setminus \{0\}$ ist $t \cdot \bar{\mathfrak{m}} \subseteq R$, also endlich erzeugt, da R noethersch. Als R-Modul sind $\bar{\mathfrak{m}}$ und $t \cdot \bar{\mathfrak{m}}$ isomorph.

Bew. 2: Sei $t \in \mathfrak{m} \setminus \{0\}$

Beh. 4: Es gibt ein $n \ge 1$ mit $\mathfrak{m}^n \subseteq (t)$.

Sei n in Beh.4 minimal, $y \in \mathfrak{m}^{-1} \setminus (t)$, $x := \frac{y}{t} \in K$. Dann ist $x \in \mathfrak{m}^{-1} : x \cdot \mathfrak{m} = \frac{y}{t} \cdot \mathfrak{m} \subseteq \mathfrak{m}$ $\frac{1}{t} \cdot \mathfrak{m}^n \subseteq R$, aber $x \notin R$, sonst wäre $y = x \cdot t \in (t) \Rightarrow$ Widerspruch.

Bew. 4: $\sqrt{(t)} = \bigcap_{\mathfrak{p} \subset R, t \in \mathfrak{p}} \mathfrak{p} = \mathfrak{m}$.

Seien x_1, \ldots, x_r Erzeuger von $\mathfrak{m}, \ \nu_i \in \mathbb{N} \ (i = 1, \ldots, r) \ \text{mit} \ x_i^{\nu_i} \in (t).$ Für $N = 1 + \sum_{i=1}^r (\nu_i - 1)$ ist dann $\mathfrak{m}^N \subseteq (t)$, da \mathfrak{m}^N erzeugt wird von den $x_1^{\nu_1} \cdot \ldots \cdot x_r^{\nu_r}$ mit $\sum \nu_i = N \Rightarrow \exists \nu_i = 1$.

Beispiele

 $R = \left(\frac{k[X,Y]}{(Y^2 - X^3 - X^2)}\right)_{(X,Y)} \text{ ist nullteiler-}$

frei, eindimensional, lokal, noethersch aber kein diskreter Bewertungsring.

Denn: das maximale Ideal in R ist kein Hauptideal: $\mathfrak{m}=(X,Y),\ f=Y^2-X^2(X+1)\in\mathfrak{m}^2.$

Es gilt $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = 2$, da X, Y linear unabhängig in $\mathfrak{m}/\mathfrak{m}^2$. Sei \mathfrak{M} das von X und Y in k[X, Y] erzeugte Ideal. $\mathfrak{m}/\mathfrak{m}^2 = (\mathfrak{M}/(f))/(\mathfrak{M}^2/(f)) \cong \mathfrak{M}/\mathfrak{M}^2$

Geometrisch:

$$V(f) = \{(x,y) \in k^2 : f(x,y) = 0\} = \{(x,y) \in k^2 : y^2 = x^2(x+1)\}$$

Singularität in $(0,0) = (X,Y) \Rightarrow$ "Newton-Knoten".

§10 Dedekindringe

Definition 2.39

Ein nullteilerfreier Ring heißt $\boldsymbol{Dedekindring}$, wenn er noethersch, normal und eindimensional ist.

Beispiele

- 1) \mathbb{Z} , k[X] (k Körper)
- 2) diskrete Bewertungsringe
- 3) Hauptidealringe (nullteilerfrei)
- 4) der ganze Abschluss \mathcal{O}_d von \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ wobei $d \in \mathbb{Z}$ quadratfrei.

$$\mathcal{O}_d = \begin{cases} \mathbb{Z}[\sqrt{d}] & d \not\equiv 1 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & d \equiv 1 \mod 4 \end{cases}$$

Beobachtung: Es gibt Dedekindringe, die nicht faktoriell sind: Beispiel: $\mathbb{Z}[\sqrt{-5}]$. $(2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}))$.

Definition + Bemerkung 2.40

Sei R nullteilerfrei, $K = \operatorname{Quot}(R)$

- a) Ein R-Untermodul $I \neq (0)$ von K heißt **gebrochenes Ideal** von R, wenn es ein $a \in R \setminus \{0\}$ gibt mit $a \cdot I \subseteq R$. (Beispiel: $(\frac{1}{n})$ ist gebrochenes Ideal von \mathbb{Z} , da $n \cdot (\frac{1}{n}) \subseteq \mathbb{Z}$ mit $R = \mathbb{Z}$.)
- b) Für gebrochene Ideale I,J von R sei $I\cdot J$ der von allen $a\cdot b,\ a\in I,b\in J,$ erzeugte $R\text{-}\mathrm{Untermodul}$ von K.
- c) Die gebrochenen Ideale von R bilden mit der Multiplikation aus b) ein kommutatives Monoid mit neutralem Element R.
- d) Die Einheiten in diesem Monoid heißen *invertierbare* (gebrochene) Ideale. d.h. I invertiertbar $\Leftrightarrow \exists I'$ mit $I \cdot I' = R$.

Beispiele

0) Jedes von 0 verschiedene Ideal in R ist gebrochenes Ideal.

- 1) Jeder von 0 verschiedene endlich erzeugbare R-Untermodul von K ist gebrochenes Ideal. **denn:** Seien $x_1 = \frac{a_1}{b_1}, \dots, x_n = \frac{a_n}{b_n}$ Erzeuger von M $(a_i, b_i \in R) \Rightarrow$ für $b = b_1 \cdot \dots \cdot b_n$ ist $b \cdot M \subseteq R$.
- 2) Ist I gebrochenes Ideal, so ist $I^{-1} := \{x \in K : x \cdot I \subseteq R\}$ ebenfalls gebrochenes Ideal: für jedes $a \in I$ ist $a \cdot I^{-1} \subseteq R$.

I ist invertierbar $\Leftrightarrow I \cdot I^{-1} = R$.

- 3) $R = k[X, Y], I = (X, Y) \Rightarrow I^{-1} = R.$ **denn:** für $a = \frac{f}{g} \in I^{-1}$ muss gelten: $a \cdot X \in R, a \cdot Y \in R.$
- 4) Jedes Hauptideal \neq (0) ist invertierbar: $(a) \cdot (\frac{1}{a} \cdot R) = R$.

Bemerkung 2.41

Jedes invertierbare Ideal von einem Integritätsbereich ist endlich erzeugbar (als R-Modul).

Beweis

Sei I invertierbar, also $I \cdot I^{-1} = R$, dann gibt es $a_i \in I, b_i \in I^{-1}$ mit $1 = \sum_{i=1}^n a_i b_i$

Beh: $a_1, \ldots a_n$ erzeugen I.

denn: Sei
$$a \in I \Rightarrow a = a \cdot 1 = a \cdot \sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} a_i \underbrace{(ab_i)}_{\in R}$$

Satz 13 (Dedekindringe)

Für einen nullteilerfreien Ring R sind äquivalent:

- (i) R ist Dedekindring oder Körper.
- (ii) R ist noethersch und $R_{\mathfrak{p}}$ ist diskreter Bewertungsring für jedes Primideal $\mathfrak{p} \neq (0)$ in R.
- (iii) Jedes Ideal $I \neq (0)$ in R ist invertierbar.
- (iv) Die gebrochenen Ideal in R bilden eine Gruppe.
- (v) Jedes echte Ideal in R ist Produkt von endlich vielen Primidealen.
- (vi) Jedes echte Ideal besitzt eine eindeutige Darstellung als Produkt von endlich vielen Primidealen.

Beweis

Beweisplan:

(i)
$$\Rightarrow$$
 (ii) :

Sei $\mathfrak{p} \neq (0)$ Primideal im Dedekindring $R. \Rightarrow R_{\mathfrak{p}}$ noethersch, dim $R_{\mathfrak{p}} = \operatorname{lat}(\mathfrak{p}) = 1$, da dim R = 1.

 $R_{\mathfrak{p}}$ normal: Sei $a \in K = \operatorname{Quot}(R) = \operatorname{Quot}(R_{\mathfrak{p}})$ ganz über $R_{\mathfrak{p}}$.

Dann gibt es eine Gleichung: $a^n + \sum_{i=0}^{n-1} \frac{b_i}{s_i} a^i = 0$ mit $b_i \in R, s_i \in R \setminus \mathfrak{p}$

$$\Rightarrow (s \cdot a)^n + \sum_{i=0}^{n-1} \widetilde{b_i} (sa)^i = 0 \text{ mit } \widetilde{b_i} \in R, \ s := \prod_{i=0}^{n-1} s_i$$

$$\underset{R \text{ normal}}{\Longrightarrow} s \cdot a \in R \Rightarrow a \underset{s \notin \mathfrak{p}}{=} \frac{s \cdot a}{s} \in R_{\mathfrak{p}}$$

(iii) \Rightarrow (iv) :

Sei $(0) \neq I \subset K$ gebrochenes Ideal, $a \in R \setminus \{0\}$ mit $a \cdot I \subseteq R$. $\Rightarrow a \cdot I$ invertierbar. $\Rightarrow R = (a \cdot I) \cdot I' = I \cdot (a \cdot I') \Rightarrow I$ ist invertierbar.

(ii) \Rightarrow (iii) :

Sei $I \neq (0)$ Ideal in $R. K = \operatorname{Quot}(R). I^{-1} := \{x \in K : x \cdot I \subseteq R\}$

Zu zeigen: $I \cdot I^{-1} = R$.

Annahme: $I \cdot I^{-1} \subsetneq R$:

Dann gibt es ein maximales Ideal \mathfrak{m} von R mit $I \cdot I^{-1} \subseteq \mathfrak{m}$.

 $\Rightarrow R_{\mathfrak{m}}$ ist diskreter Bewertungsring.

 $\Rightarrow I \cdot R_{\mathfrak{m}}$ ist Hauptideal, d.h. $I \cdot R_{\mathfrak{m}} = \frac{a}{s} \cdot R_{\mathfrak{m}}$ für ein $a \in I, s \in R \setminus \mathfrak{m}$

Seien $b_1, \ldots, b_n \in I$ Erzeuger (R ist noethersch). $\Rightarrow \frac{b_i}{1} = \frac{a}{s} \cdot \frac{r_i}{s_i}$ für gewisse $r_i \in R, s_i \in R \setminus \mathfrak{m}$. Sei $t = s \cdot \prod_{i=1}^n s_i$. Es gilt: $t \in R \setminus \mathfrak{m}$.

Für jedes $i = 1, \dots n$ ist $\frac{t}{a} \cdot b_i = r_i \cdot s_i \cdot \dots \cdot \widehat{s_i} \cdot \dots \cdot s_n \in R$.

 $\Rightarrow \frac{t}{a} \in I^{-1} \Rightarrow t = a \cdot \frac{t}{a} \in I \cdot I^{-1} \subseteq \mathfrak{m}$. Widerspruch.

(iv) \Rightarrow (i) :

R noethersch: Nach Bemerkung 2.41 ist jedes invertierbare Ideal endlich erzeugbar.

<u>R normal</u>: Sei $x \in K$ ganz über $R. \Rightarrow R[x]$ ist endlich erzeugbarer R-Modul, also gebrochenes Ideal (Beispiel 1). $\underset{(iv)}{\Rightarrow} R[x]$ ist invertierbar.

Da R[x] Ring ist, gilt $R[x] \cdot R[x] = R[x]$. $\underset{R[x] \text{ invertierbar}}{\Longrightarrow} R[x] = R$ (neutrale Element).

 $\Rightarrow x \in R$.

 $\dim R \leq 1$: Sei $\mathfrak{p} \neq (0)$ Primideal in R, $\mathfrak{m} \subseteq R$ maximales Ideal mit $\mathfrak{p} \subseteq \mathfrak{m}$.

 $\Rightarrow \mathfrak{m}^{-1} \cdot \mathfrak{p} \subseteq \mathfrak{m}^{-1}\mathfrak{m} \underset{\text{(iv)}}{=} R \text{ und } \mathfrak{m} \cdot (\mathfrak{m}^{-1}\mathfrak{p}) = \mathfrak{p}.$

 $\underset{\mathfrak{p} \text{ Primideal}}{\Longrightarrow} \mathfrak{m} = \mathfrak{p} \text{ oder } \mathfrak{m}^{-1}\mathfrak{p} \subseteq \mathfrak{p}.$

Falls $\mathfrak{m}^{-1}\mathfrak{p} \subseteq \mathfrak{p} \underset{\mathfrak{n}^{-1}}{\Rightarrow} \mathfrak{m}^{-1} \subseteq R$. Widerspruch (da sonst $\mathfrak{m}^{-1} \cdot \mathfrak{m} \subseteq \mathfrak{m}$)

(iii) \Rightarrow (v) :

Sei $I \neq (0)$, $I \neq R$ Ideal in R.

Setze $I_0 := I$.

Definiere induktiv: I_n für $n \ge 1$:

Ist $I_{n-1} \neq R$, so sei \mathfrak{m}_{n-1} maximales Ideal mit $I_{n-1} \subseteq \mathfrak{m}_{n-1}$ und $I_n := I_{n-1}\mathfrak{m}_{n-1}^{-1} \subseteq R$.

Es ist $I_{n-1} \subseteq I_n$

Wäre $I_n = I_{n-1}$, so wäre $\mathfrak{m}_{n-1}^{-1} = R$. Widerspruch zu $\mathfrak{m}_{n-1}^{-1} \cdot \mathfrak{m}_{n-1} = R$.

Da nach 2.41 R noethersch ist, wird die Kette $I_0 \subsetneq I_1 \subsetneq I_2 \subsetneq \cdots$ stationär.

 $\Rightarrow \exists n \text{ mit } R = I_n = I_{n-1} \mathfrak{m}_{n-1}^{-1} = I_{n-2} \mathfrak{m}_{n-2}^{-1} \mathfrak{m}_{n-1}^{-1} = \cdots = I_0 \cdot \prod_{i=0}^{n-1} \mathfrak{m}_i^{-1}$

 $\Rightarrow I = I_0 = \prod_{i=0}^{n-1} \mathfrak{m}_i$

(v) \Rightarrow (vi) :

Sei $\mathfrak{p}_1 \cdots \mathfrak{p}_n = \mathfrak{q}_1 \cdots \mathfrak{q}_m$ mit Primidealen \mathfrak{p}_i , \mathfrak{q}_i . Zu zeigen: n = m und $\mathfrak{p}_i = \mathfrak{q}_{\sigma(i)}$ für eine Permutation $\sigma \in S_n$:

Induktion über n:

n=1: $\mathfrak{p}=\mathfrak{p}_1=\mathfrak{q}_1\cdots\mathfrak{q}_m\underset{\mathfrak{p}\text{ prim}}{\Rightarrow}\exists i_0 \text{ mit } \mathfrak{q}_{i_0}\subseteq\mathfrak{p}$. Umgekehrt ist $\mathfrak{p}\subseteq\mathfrak{q}_i$ für jedes $i.\Rightarrow\mathfrak{p}=\mathfrak{q}_{i_0}$

n > 1: Ohne Einschränkung \mathfrak{p}_1 minimal bzgl. \subseteq in $\{\mathfrak{p}_1, \dots \mathfrak{p}_n\}$.

Aus $\prod \mathfrak{q}_i \subseteq \prod \mathfrak{p}_j \subseteq \mathfrak{q}_{i_1} \Rightarrow \exists j_0 \text{ mit } \mathfrak{p}_{j_0} \subseteq \mathfrak{q}_{i_0} \subseteq \mathfrak{p}_1 \underset{\mathfrak{p}_1 \text{ minimal }}{\Rightarrow} \mathfrak{p}_1 = \mathfrak{q}_{i_0} \underset{\text{(iii)}}{\Rightarrow} \mathfrak{p}_2 \cdots \mathfrak{p}_n = \mathfrak{q}_1 \dots \widehat{\mathfrak{q}_{i_0}} \dots \mathfrak{q}_m \Rightarrow \text{Behauptung aus Induktions vor aussetzung.}$

$(v) \Rightarrow (iii) :$

Sei $I \neq (0)$, $I = \mathfrak{p}_1 \cdots \mathfrak{p}_r$ mit Primidealen \mathfrak{p}_i . Ist jedes \mathfrak{p}_i invertierbar, so ist $I^{-1} = \mathfrak{p}_1^{-1} \dots \mathfrak{p}_r^{-1}$ und $I \cdot I^{-1} = R$. Also ohne Einschränkung $I = \mathfrak{p}$ Primideal.

Sei $a \in \mathfrak{p} - \{0\}$, $(a) = \mathfrak{q}_1 \dots \mathfrak{q}_n$ mit Primidealen $\mathfrak{q}_i \Rightarrow \mathfrak{q}_i \subseteq \mathfrak{p}$ für ein i.

 \mathfrak{q}_i ist invertierbar: $\mathfrak{q}_i^{-1} = \frac{1}{a} \cdot R \cdot \mathfrak{q}_1 \cdots \widehat{\mathfrak{q}}_i \cdots \mathfrak{q}_n$

Es genügt also zu zeigen: $\mathfrak{q}_i = \mathfrak{p}$

Beh. 1: Jedes invertierbare Primideal \mathfrak{q} in R ist maximal.

Bew. 1: Ist \mathfrak{q} nicht maximal, so sei $x \in R \setminus \mathfrak{q}$ mit $\mathfrak{q} + (x) \neq R$.

Beh. 2: Dann ist $(q + (x))^2 = q + (x^2)$

Dann ist $\mathfrak{q} \subseteq \mathfrak{q} + (x^2) \underset{\text{Beh. 2}}{=} (\mathfrak{q} + (x))^2 \subseteq \mathfrak{q}^2 + (x)$ (*)

Weiter ist $\mathfrak{q} \subseteq \mathfrak{q}^2 + \mathfrak{q} \cdot (x)$

denn: Sei $b \in \mathfrak{q}$, schreibe nach (*) b = c + rx mit $c = \mathfrak{q}^2, r \in R$, dabei ist $r \in \mathfrak{q}$, da $r \cdot x \in \mathfrak{q}$ und $x \notin \mathfrak{q}$.

 $\Rightarrow \mathfrak{q} = \mathfrak{q}^2 + \mathfrak{q} \cdot (x) \ (,\supseteq$ " ist trivial)

 $\Rightarrow \mathfrak{q} = \mathfrak{q}(\mathfrak{q} + (x)) \underset{\mathfrak{q} \text{ invertierbar}}{\Rightarrow} R = \mathfrak{q} + (x) \text{ Widerspruch.}$

Bew. 2: "⊆" √, "⊇"

Schreibe beide Seiten als Produkt von Primidealen.

$$\mathfrak{q} + (x) = \mathfrak{p}_1 \cdots \mathfrak{q}_r, \ \mathfrak{q} + (x^2) = \mathfrak{q}_1 \cdots \mathfrak{q}_s.$$

In R/\mathfrak{q} ist dann: $(\bar{x}) = \bar{\mathfrak{p}}_1 \cdots \bar{\mathfrak{p}}_r$, $(\bar{x})^2 = \bar{\mathfrak{q}}_1 \cdots \bar{\mathfrak{q}}_s = \bar{\mathfrak{p}}_1^2 \cdots \bar{\mathfrak{q}}_r^2$

 $(\bar{x}),(\bar{x}^2)$ invertierbar. $\Rightarrow \bar{\mathfrak{p}_i},\bar{\mathfrak{q}_j}$ invertierbar.

 $\underset{\text{"(iii)}}{\Rightarrow} + \underset{\text{(v)}}{\Rightarrow} \bar{\mathfrak{q}}_i = \bar{\mathfrak{p}}_{\sigma(i)}^2 \Rightarrow \text{ohne Einschränkung } \mathfrak{q}_i = \mathfrak{p}_i^2.$

Satz 14

Sei R ein Dedekindring, K = Quot(R), L/K endliche separable Körpererweiterung. S der ganze Abschluß von R in L.

Dann ist S ein Dedekindring.

Beweis

 $\underline{\dim S} = 1$: Folgt aus Satz 10(c)

S normal:

Sei $x \in L$ ganz über S, also $x^n + \sum_{i=1}^{n-1} a_i x^i = 0$ mit $a_i \in S$. Sei S' der von R und a_1, \ldots, a_{n-1} erzeugte Unterring von S. S' ist endlich erzeugbarer R-Modul, da die a_i ganz über R sind. S[X] ist endlich erzeugter S'-Modul und damit endlich erzeugbarer R-Modul $\Rightarrow x$ ist ganz über $R \Rightarrow x \in S$.

S noethersch:

Beh. 1: Es gibt ein primitives Element α von L/K mit $\alpha \in S$.

Bew. 1: Sei $\tilde{\alpha} \in L$ primitives Element, also $1, \tilde{\alpha}, \tilde{\alpha}^2, \dots, \tilde{\alpha}^{n-1}$ ist K-Basis von L (n := [L : K]).

Sei
$$\tilde{\alpha} = \sum_{i=0}^{n-1} c_i \tilde{\alpha}^i$$
 für gewisse $c_i \in K$, $i = 0, \dots, n-1$. Schreibe $c_i = \frac{a_i}{b_i}$ mit $a_i, b_i \in R$, $b := \prod_{i=0}^{n-1} b_i$. Setze $\alpha := b \cdot \tilde{\alpha} \Rightarrow \alpha^n = b^n \cdot \sum_{i=0}^{n-1} c_i \tilde{\alpha}^i = \sum_{i=0}^{n-1} \underbrace{c_i b^{n-i}}_{\in R} \alpha^i \Rightarrow \alpha \in S$

 $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ linear unabhängig:

Sei
$$\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0 \Rightarrow \sum_i \lambda_i b^i \tilde{\alpha}^i = 0 \Rightarrow \lambda_i b^i = 0 \ \forall i$$

Sei nun \bar{K} ein algebraischer Abschluss von K. Seien $\sigma_1, \ldots, \sigma_n$ die verschiedenen Einbettungen von L in K, also die Elemente von Hom(L, K).

 $d := d(\alpha) := (\det(\sigma_i(\alpha^{j-1})_{i,j=1,\dots,n}))^2$ heißt die Diskriminante von L/K (bzgl. α).

Beh. 2: (a) $d \neq 0$

(b) S ist in dem von $\frac{1}{d}, \frac{\alpha}{d}, \dots, \frac{\alpha^{n-1}}{d}$ erzeugten R-Untermodul von L enthalten.

Dann ist S als Untermodul eines endlich erzeugbaren R-Modul selbst endlich erzeugbar und damit noethersch (weil R noethersch ist).

Bew. 2:

(a)
$$d = \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ \sigma_1(\alpha) & \sigma_2(\alpha) & \dots & \sigma_n(\alpha) \\ \sigma_1(\alpha)^2 & \sigma_2(\alpha)^2 & \dots & \sigma_n(\alpha)^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1(\alpha)^{n-1} & \sigma_2(\alpha)^{n-1} & \dots & \sigma_n(\alpha)^{n-1} \end{pmatrix} \overset{\text{Vandermonde}}{=} \prod_{i>j} (\sigma_i(\alpha) - \sigma_j(\alpha)) \neq 0$$

(b) Für $x \in L$ sei Spur $(x) := \sum_{i=1}^{n} \sigma_i(x) \in R$ $\operatorname{Spur}(x) \in K : \operatorname{Für} \sigma \in \operatorname{Aut}_K(K) \text{ ist } \sigma \circ \sigma_i \in \operatorname{Hom}_K(L, K)$ $\sigma(\operatorname{Spur}(x)) = \sum_{i=1}^{n} (\sigma \circ \sigma_i)(x) = \operatorname{Spur}(x) \in \bar{K}^{\operatorname{Aut}_K(\bar{K})} = K.$ Sei $x \in S$, $x = \sum_{j=1}^{n} c_j \alpha^j$ mit $c_j \in K$.

Beh. 3:
$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
 ist Lösung eines LGS $A \cdot c = b$ mit $b \in R^n$ und $A \in R^{n \times n}$ mit det $A = d$.

Nach der Cramerschen Regel ist dann $c_i = \frac{\det A_i}{\det A}$ wobei A_i aus A dadurch entsteht, dass die i-te

Zeile durch b ersetzt wird. $\Rightarrow c_i \in \frac{1}{d}R \Rightarrow x$ liegt in dem von $\frac{1}{d}, \frac{\alpha}{d}, \dots, \frac{\alpha^{n-1}}{d}$ erzeugten R-Modul. **Bew. 3:** Für $i = 1, \dots, n$ ist $\operatorname{Spur}(\alpha^{i-1}x) = \sum_{j=1}^{n} \operatorname{Spur}((\alpha^{i-1}\alpha^{j-1})c_j) \in K$ (*) ganz über R $\Rightarrow \operatorname{Spur}(\alpha^{i-1}x) \in R \Rightarrow A := (\operatorname{Spur}(\alpha^{i-1}\alpha^{j-1})_{i,j=1,\dots,n}) \in R^{n \times n}$

$$b := \begin{pmatrix} \operatorname{Spur}(x) \\ \operatorname{Spur}(\alpha x) \\ \vdots \\ \operatorname{Spur}(\alpha^{n-1} x) \end{pmatrix} \in R^n \ (*) \text{ heißt } A \cdot c = b.$$

Noch zu zeigen: $\det A = d$.

Nach Definition ist
$$d = (\det B)^2$$
 mit $B = (\sigma_i(\alpha^{j-1})_{i,j})$
 $\Rightarrow B^T \cdot B = (\beta_{ij})$ mit $\beta_{ij} = \sum_{k=1}^n \sigma(\alpha^{i-1}) \sigma_k(\alpha^{j-1}) = \operatorname{Spur}(\alpha^{i-1}\alpha^{j-1})$
 $\Rightarrow B^T \cdot B = A \Rightarrow \det A = (\det B)^2 = d$

Beispiele

$$K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{D}), D$$
 quadratfrei, $R = \mathbb{Z}$.

$$K = \mathbb{Q}, L = \mathbb{Q}(\sqrt{D}), D \text{ quadratire}, R = \mathbb{Z}.$$

Was ist d ? $\alpha = \sqrt{D}, \sigma_1 = \mathrm{id}, \sigma_2(a + b\sqrt{D}) = a - b\sqrt{D}$

$$B = \left(\begin{array}{cc} 1 & 1\\ \sqrt{D} & -\sqrt{D} \end{array}\right)$$

$$d = (\det B)^2 = (-2\sqrt{D})^2 = 4D$$

§11 Primärzerlegung

Beispiele

R = k[X, Y]. $I = (X^2, Y)$ hat keine Darstellung als Produkt von Primidealen.

denn: Wäre $I=\mathfrak{p}_1^{\nu_1}\cdots\mathfrak{p}_r^{\nu_r}$ mit paarweise verschiedenen Primidealen \mathfrak{p}_i , so wäre $\sqrt{I}=\mathfrak{p}_1\cdots\mathfrak{p}_r=(X,Y)=\mathfrak{m}.$ also $r=1,\,\mathfrak{p}_1=\mathfrak{m}.$ Aber: $\mathfrak{m}\supsetneqq I\supsetneqq\mathfrak{m}^2.$

Definition + Bemerkung 2.42

Sei R Ring, $\mathfrak{q} \subseteq R$ echtes Ideal.

- a) \mathfrak{q} heißt Primärideal, wenn für alle $a, b \in R$ mit $a \cdot b \in \mathfrak{q}$ und $a \notin \mathfrak{q}$ gilt: es gibt ein $n \ge 1$ mit $b^n \in \mathfrak{q}$.
- b) Ist \mathfrak{q} Primärideal, so ist $\mathfrak{p} = \sqrt{\mathfrak{q}}$ Primideal. \mathfrak{p} heißt zu \mathfrak{q} assoziiertes Primideal.

Beweis

Seien
$$a, b \in R$$
 mit $a \cdot b \in \sqrt{\mathfrak{q}} \Rightarrow a^n b^n \in \mathfrak{q}$ für ein $n \ge 1$.
 Ist $a \notin \sqrt{\mathfrak{q}}$, so ist $a^n \notin \mathfrak{q} \Rightarrow (b^n)^m \in \mathfrak{q} \Rightarrow b \in \sqrt{\mathfrak{q}}$

c) \mathfrak{q} Primärideal \Leftrightarrow jeder Nullteiler in R/\mathfrak{q} ist nilpotent.

Beispiele

- 1) Ist $p \in R$ ein Primelement, so ist $(p^n) = (p)^n$ Primärideal für jedes $n \ge 1$. **denn**: Seien $a, b \in R$ mit $a \cdot b \in (p^n)$ und $a \notin (p^n)$ Ist $b \in (p)$, so ist $b^n \in (p^n)$. Anderenfalls ist $a \in (p)$. Dann gibt es $1 \le d < n$ mit $a \in (p^d) \setminus (p^{d+1}) \Rightarrow a = p^d \cdot u$ mit $u \in R \setminus (p)$. Dann ist $u \cdot b \notin (p) \Rightarrow a \cdot b = p^d \cdot u \cdot b \notin (p^{d+1})$ Widerspruch.
- 2) Ist R Dedekindring, so sind die Primärideale genau die Potenzen von Primidealen. **denn**: Ist \mathfrak{q} Primärideal, $\mathfrak{q} = \mathfrak{p}_1^{\nu_1} \cdots \mathfrak{p}_r^{\nu_r}$ die Zerlegung von \mathfrak{q} in Primidealen. $\Rightarrow \sqrt{\mathfrak{q}} = \mathfrak{p}_1 \cdots \mathfrak{p}_r \underset{\sqrt{\mathfrak{q}} \text{ ist prim}}{\Rightarrow} r = 1.$

Sei umgekehrt $\mathfrak{q} = \mathfrak{p}^n$ für ein Primideal $\mathfrak{p}, n \geq 1$. Seien $a, b \in R, a \cdot b \in \mathfrak{p}^n, a \notin \mathfrak{p}^n$. Nach Satz 13 ist $R_{\mathfrak{p}}$ Hauptidealring. D.h. $\mathfrak{p}R_{\mathfrak{p}}$ wird erzeugt von einem $\frac{p}{s}$, wobei $p \in \mathfrak{p}, s \in R \setminus \mathfrak{p}$ $\underset{\text{Bsp 1}}{\Rightarrow} \mathfrak{p}^n R_{\mathfrak{p}} = (\mathfrak{p}R_{\mathfrak{p}})^n$ ist Primideal.

Ist $a \in \mathfrak{p}^n R_{\mathfrak{p}}$, so ist $a = \frac{p^n}{s^n} \cdot \frac{u}{t}$ mit $u \in R, t \in R \setminus \mathfrak{p} \Rightarrow t \cdot s^n \cdot a \in \mathfrak{p}^n \Rightarrow a \in \mathfrak{p}^n$. Widerspruch. Anderenfalls ist $b^m \in \mathfrak{p}^n R_{\mathfrak{p}}$ für ein m und damit $b \in \mathfrak{p}$ und $b^n \in \mathfrak{p}^n$.

Bemerkung 2.43

Sind
$$I_1, \ldots I_r$$
 \mathfrak{p} -primär (d.h. I_i primär und $\sqrt{I_i} = \mathfrak{p}$), so ist auch $I := \bigcap_{i=1}^r I_i$ \mathfrak{p} -primär.

Beweis

Seien $a, b \in R$ mit $a \cdot b \in I$, $a \notin I$. Dann gibt es i mit $a \notin I_i \Rightarrow b^{n_i} \in I_i$ für ein $n_i \ge 1 \Rightarrow b \in \sqrt{I_i} = \mathfrak{p} \Rightarrow \text{Für } j = 1, \dots r \text{ gibt es } n_j \ge 1 \text{ mit } b^{n_j} \in I_j \Rightarrow b^n \in I \text{ für } n = \max_{j=1}^n n_j$.

Definition 2.44

Sei I Ideal in R.

- a) Eine Darstellung $I = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_r$ heißt **Primärzerlegung** von I, wenn alle \mathfrak{q}_i primär sind.
- b) Eine Primärzerlegung heißt **reduziert**, wenn $\sqrt{\mathfrak{q}_i} \neq \sqrt{\mathfrak{q}_j}$ für $i \neq j$ und kein \mathfrak{q}_i weggelassen werden kann.
- c) Besitzt q eine Primärzerlegung, so auch eine reduzierte.

Satz 15 (Reduzierte Primärzerlegung)

Sei R noetherscher Ring.

Dann hat jedes echte Ideal in R eine reduzierte Primärzerlegung. Die assoziierten Primideale sind eindeutig. Die Primärideale, deren assoziierten Primideale minimal unter den in der Zerlegung vorkommenden sind, sind ebenfalls eindeutig.

Beweis

Sei $\mathcal{B} = \{I \subset R \text{ Ideal} : I \text{ besitzt keine Primärzerlegung}\}$. Ist $\mathcal{B} \neq \emptyset$, so besitzt \mathcal{B} ein maximales Element I_0 . Da I_0 nicht primär ist, gibt es $a, b \in R$ mit $a \cdot b \in I_0$ und $a \notin I_0$ und $b^n \notin I_0$ für alle n > 1.

Ziel: Konstruiere Ideale I und J mit $I_0 = I \cap J$ und $I \neq I_0 \neq J$. Dann haben I und J Primärzerlegungen, also I_0 auch. Widerspruch!

Für $n \geq 1$ sei $I_n := \{c \in R : c \cdot b^n \in I_0\}$. I_n ist Ideal mit $I_0 \subseteq I_n \subseteq I_{n+1}$. Da R noethersch ist, gibt es $k \in \mathbb{N}$ mit $I_n = I_k$ für alle $n \geq k$. Setze $I := I_n$. Beachte $a \in I_1 \setminus I_0 \subseteq I \setminus I_0$.

Sei $J := I_0 + (b^k) \supseteq I_0$, da $b^k \notin I_0$.

Beh: $I \cap J = I_0$

denn: " \supseteq " \checkmark " \subseteq " Sei $y \in I \cap J$, also $y = x + b^k \cdot r$ (für ein $x \in I_0, r \in R$) und $y \cdot b^k \in I_0 \Rightarrow y \cdot b^k = b^{2k} \cdot r + x \cdot b^k \Rightarrow r \cdot b^{2k} = yb^k \cdot xb^k \Rightarrow r \in I_{2k} = I_k \Rightarrow r \cdot b^k \in I_0 \Rightarrow y \in I_0$.