Решение начально-краевой задачи для параболического уравнения

Написать программу для решения начально-краевой задачи для параболического уравнения

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad x \in (0;1), \quad t \in [0;1]$$

с краевыми условиями $u(0,t)=\psi_0(t), \quad u(1,t)=\psi_1(t)$ и начальным условием $u(x,0)=\varphi(x)$.

- 1. Для решения задачи использовать:
- явную разностную схему;
- разностную схему с весами.
 - 2. Для решения трехточечных разностных уравнений использовать метод прогонки.
 - 3. Шаги сетки по x и t для каждого метода определить в ходе вычислительных экспериментов с использованием теоретических оценок и практических способов оценки погрешности.
 - 4. Для контроля точности решение каждым методом проводить на двух сетках.
 - 5. Сравнить полученные численные решения; использовать нормы векторов $\|\cdot\|_1$, $\|\cdot\|_2$ и $\|\cdot\|_\infty$, результаты для удобства анализа оформить в виде одной таблицы.
 - 6. Визуализировать полученные численные решения; формы визуального представления результатов разработать самостоятельно.

1.
$$f(x,t) = t \sin \pi x$$
, $\psi_0(t) = t$, $\psi_1(t) = t$, $\varphi(x) = -\sin \pi x$;

2.
$$f(x,t) = t^2 \sin \pi x$$
, $\psi_0(t) = t^2$, $\psi_1(t) = t^2$, $\varphi(x) = -\sin \pi x$;

3.
$$f(x,t) = (1-t^2)\sin \pi x$$
, $\psi_0(t) = 1-t^2$, $\psi_1(t) = t^2 - 1$, $\varphi(x) = \cos \pi x$;

4.
$$f(x,t) = (1-t)\sin \pi x$$
, $\psi_0(t) = t^2 - 1$, $\psi_1(t) = 1 - t^2$, $\varphi(x) = -\cos \pi x$;

5.
$$f(x,t) = t^3 \sin \pi x$$
, $\psi_0(t) = t^2$, $\psi_1(t) = \ln 2 - t$, $\varphi(x) = \ln(x+1)$;

6.
$$f(x,t) = t \cos \pi x$$
, $\psi_0(t) = t^2$, $\psi_1(t) = 1 - t$, $\varphi(x) = x$;

7.
$$f(x,t) = t^2 \cos \pi x$$
, $\psi_0(t) = t$, $\psi_1(t) = 1 - t^2$, $\varphi(x) = x^2$;

8.
$$f(x,t) = t^3 \cos \pi x$$
, $\psi_0(t) = t^2$, $\psi_1(t) = 1 - t$, $\varphi(x) = x^3$;

9.
$$f(x,t) = t\cos \pi x$$
, $\psi_0(t) = 1 - t$, $\psi_1(t) = t^2$, $\varphi(x) = 1 - x^3$;

10.
$$f(x,t) = t\sqrt{x}$$
, $\psi_0(t) = 1 - t$, $\psi_1(t) = t^3$, $\varphi(x) = 1 - x^2$;

11.
$$f(x,t) = t^2 \sqrt{x}$$
, $\psi_0(t) = 1 - t^3$, $\psi_1(t) = t$, $\varphi(x) = 1 - x$;

12.
$$f(x,t) = t^3 \sqrt{x}$$
, $\psi_0(t) = 1 - t^3$, $\psi_1(t) = 1 - t$, $\varphi(x) = 1 - \sin \pi x$;

13.
$$f(x,t) = (1-t^3)x^2$$
, $\psi_0(t) = 1-t$, $\psi_1(t) = 1-t^3$, $\varphi(x) = 1-\sin \pi x$;

14.
$$f(x,t) = (1-t^2)x^3$$
, $\psi_0(t) = 1-t^2$, $\psi_1(t) = -t^2$, $\varphi(x) = \cos \pi x + x$;

15.
$$f(x,t) = (1-t^2)x$$
, $\psi_0(t) = 1-t$, $\psi_1(t) = -t^2$, $\varphi(x) = \cos \pi x + x$;

16.
$$f(x,t) = \ln(1+t)x$$
, $\psi_0(t) = 1 - \sqrt{t}$, $\psi_1(t) = 1 - t$, $\varphi(x) = 4(x - 0.5)^2$;

17.
$$f(x,t) = \ln(1+t^2)x$$
, $\psi_0(t) = 1+\sqrt{t}$, $\psi_1(t) = 1-\sqrt{t}$, $\varphi(x) = 4(x-0.5)^2$;

18.
$$f(x,t) = \ln(1+t^2)x^2$$
, $\psi_0(t) = \sin \pi t$, $\psi_1(t) = 1 - \cos \pi t$, $\varphi(x) = 4(x-0.5)^2 - 1$;

19.
$$f(x,t) = \ln(1+t)x^3$$
, $\psi_0(t) = 1 - \cos \pi t$, $\psi_1(t) = 2\sin \pi t$, $\varphi(x) = 4(x-0.5)^2 - 1$;

20.
$$f(x,t) = \ln(1+t^2)x^2$$
, $\psi_0(t) = 0.5 - \cos \pi t$, $\psi_1(t) = \sin \pi t - 0.5$, $\varphi(x) = (x-0.5)^2 - 1$;