Log-gamma prior

Parametrization

The Gamma distribution has density

$$\pi(\tau) = \frac{b^a}{\Gamma(a)} \tau^{a-1} \exp(-b \tau) \tag{1}$$

for positive τ where:

a > 0 is the shape parameter

b > 0 is the inverse-scale parameter

The mean of τ is a/b and the variance is a/b^2 .

The variable θ has a log-Gamma distribution if $\tau = \exp \theta$ has a Gamma distribution.

Specification

The Log-Gamma prior for the hyperparameters is specified inside the ${\tt f}$ () function as following:

```
f(<whatever>,prior=loggamma,param=c(<a>,<b>))
```

In the case where there is one hyperparameter for that particular f-model. In the case where we want to specify the prior for the hyperparameter of an observation model, for example the negative Gaussian, the the prior spesification will appear inside the control.data()-argument; see the following example for illustration.

Example

In the following example we estimate the parameters in a simulated example with gaussian responses and assign the hyperparameter (the precision parameter), a log-Gamma prior with parameters a = 0.1 and b = 0.1

Notes

None