COMPARATIVE ASSESSMENT OF DOCKING SOFTWARE FOR VIRTUAL SCREENING OF COVID-19 DRUG CANDIDATES

Xi Yang (lan)

SARS-CoV-2 Main Protease & Inhibitor

Background: Early Drug Discovery

SARS-CoV-2 Main Protease: Focusing on 1 active site

- Drug target: SARS-CoV-2 main protease (Mpro)
- Compound library: Natural products, known inhibitors, clinically-approved drugs for other diseases (23 in total, very different scaffold)

Active site: Sn indicate the binding pockets for moieties Pn on the ligand (only showing 1 active site, 4 were investigated in this study)

My Project: Binding Affinity Prediction

- Binding Affinity K_d: how strong is the protein-ligand interaction?
- Quick scoring: molecular docking
 - Protein is assumed **static** in docking
- Slow scoring: physics-based computations
- Comparison between 3 docking software:
 - Docking algorithm: suggests ligand poses
 - Scoring function: predicts binding affinity

Different poses of one ligand

How do dG results differ from software to software?

- Free Energy of Binding (dG): Lower dG = higher binding affinity K_d
- rDock scores ligands more harshly
- Flare scores ligands more favourably

Pair	Independent t-test p-value
AutoDock-Flare	0.12
AutoDock-rDock	0.012
Flare-rDock	0.000091

Significantly different predictions

4 ligands (out of 23)

Free Energy of Binding (dG): Lower dG = higher binding affinity K_d

Ligands with lowest predicted dG

Ritonavir (HIV drug)

dG = - 12 kcal/mol in Flare

Forsythoside (Natural product)

dG = -12 kcal/mol in AutoDock

Wogonoside(Natural product)

dG ~ -9.7 kcal/mol in Flare

Myricetin (Natural product)

dG ~ -10 in rDock

Increasing dG (worse binding affinity)

Performance of Software

- Each docking algorithm suggests several ligand poses
- RMSD: Measures differences in coordinates with the best ligand pose (lowest dG)

Ligand poses of myricetin suggested by Flare

Pair	Mann-Whitney U test p-value
AutoDock-Flare	0.44
AutoDock-rDock	0.10
Flare-rDock	0.47

No significant difference between software performances

Conclusion & Future Work

Cannot determine which is better (based on RMSD results).

Future work

- Screening against a much larger compound library e.g., a few thousand molecules
- Benchmarking against existing experimental values
- Physics-based computations: Molecular Dynamics (MD) simulation
- Consensus scoring: consider multiple scoring functions