1. [25 points] Consider the following circuit where $V_t=1V$, and $k'_n(W/L)=1mA/V^2$.

a. [10 points] Find transition points A and B and plot the voltage transfer characteristic (VTC). Use the axes on the next page and label the plot clearly including each axis. Assume that λ =0 for the DC biasing.

Point A:
$$VI = Vt = Iv$$

 $V_0 = VDD = 5v$

Point B:

$$V_0 (vos) = V_L (vos) - V_t$$

$$V_L = V_{C1} s = V_t + \frac{\sqrt{1 + 2(R_0 K'_1 \frac{\omega}{L} v_{00}' - 1)}}{R_0 K'_1 n \frac{\omega}{L}}$$

$$V_L = V_{C2} s = V_t + \frac{\sqrt{1 + 2(R_0 K'_1 \frac{\omega}{L} v_{00}' - 1)}}{R_0 K'_1 n \frac{\omega}{L}}$$

$$V_0 = V_0 s = V_L - V_T$$

$$V_0 = V_0 s = V_L - V_T$$

$$V_0 = V_0 s = V_1 - V_T$$

Point C
$$V_{GS} = V_{I} = V_{OO} = 5V$$

$$V_{OS} = V_{O} = \frac{V_{GS}}{1 + R_{O} K'_{O} \frac{\omega}{L} (V_{GS} + V_{E})}$$

$$V_{O} = \frac{5v}{1 + (1)(2)(5 - 1)}$$

$$V_{O} = 0.55560$$

Print Your Name

1. [continued]

b. [5 points] If $V_{GSQ} = \underbrace{1.5V}$ find V_{OQ} and I_{DQ} . Label the Q-point on the plot above.

$$V_{C_1SQ} = 1.5 \text{ V}$$
 $IDQ = \frac{1}{2} \text{ kin } \frac{\omega}{L} \left[V_{C_1SQ} - V \in \right]^2$
 $IDQ = \frac{1}{2} \left[(1) \left(1.5 - 1 \right)^2 = .125 \text{ mA}$
 $VOQ = VOO - IQQO = 5 - (.125)(2) = 4.75 \text{ V}$
 $Q point = (1.5, 4.75)$

c. [5 points] Draw the small signal model and find the voltage gain, v_0/v_i . Let $r_0=200k\Omega$.

$$A_{vo} = \frac{V_{o}}{V_{i}} = -g_{m} R_{o}$$

$$A_{vo} = -\left(\frac{K'_{o} \frac{\omega}{L} \left(VZ_{o} - V_{+}\right)}{V_{o} + R_{o}}\right)$$

$$A_{vo} = -\left(\frac{1(1.5 - 1)[211220]}{V_{o} + R_{o}}\right)$$

$$A_{vo} = -\frac{909V}{V_{o}}$$

$$V_{i} = \frac{V_{o}}{V_{o}}$$

1. [continued]

Print Your Name

d. [5 points] What is the largest (peak) value of a sinusoid (small signal) that can be applied at the input such that the transistor remains in saturation?

Vosmin = Vasmar - Ve

Vosa - Vos = Vasa + Vas - Ve

Vosa - Value = Vasa + Ve - Ve

Vi =
$$\frac{1}{1+.909}$$

Vi = $\frac{1}{1+.909}$

- 2. [10 points] A PMOS transistor has $V_t = -2V$, $k_p(W/L) = 90 \mu A/V^2$, $V_{SG} = 4V$ and $V_{SD} = 3V$.
 - a. [5 points] Calculate the drain current, I_D , and resistance, r_o , for: $\lambda=0$

$$I_0 = \frac{1}{2} k' n \left(\frac{\omega}{2}\right) \left(V_{GS} - |Vt|\right)^2$$
 $I_0 = \frac{1}{2} \left(\frac{90 NA}{v^2}\right) \left(\frac{4-2}{2}\right)^2$
 $I_0 = \frac{1}{2} \left(\frac{90 NA}{v^2}\right) \left(\frac{4-2}{2}\right)^2$

b. [5 points] Calculate the drain current, I_D , and resistance, r_o , for: $V_A = 50V$

$$\int_{0}^{\infty} = \frac{V_{A}}{I_{0}} = \frac{50}{.000180} = 277.7 \text{ k} \Omega$$

$$\lambda = \frac{1}{V_{A}} = .02$$

$$I_{0}' = I_{0}(1+.02-3) = -.356 \text{ mA}$$

Metric Prefix	Symbol	Multiplier (Traditional Notation)	Exponential	Description
Yotta	Y	1,000,000,000,000,000,000,000,000	10 ²⁴	Septillion
Zetta	z	1,000,000,000,000,000,000,000	10 ²¹	Sextillion
Exa	E	1,000,000,000,000,000,000	10 ¹⁸	Quintillion
Peta	P	1,000,000,000,000,000	10 ¹⁵	Quadrillion
Tera	т	1,000,000,000,000	10 ¹²	Trillion
Giga	G	1,000,000,000	109	Billion
Mega	м	1,000,000	10 ⁶	Million
kilo	k	1,000	10 ³	Thousand
hecto	h	100	10 ²	Hundred
deca	da	10	10 ¹	Ten
base	b	1	10°	One
deci	d	1/10	10 ⁻¹	Tenth
centi	С	1/100	10-2	Hundredth
milli	m	1/1,000	10 ⁻³	Thousandth
micro	μ	1/1,000,000	10-6	Millionth
nano	n	1/1,000,000,000	10-9	Billionth
pico	р	1/1,000,000,000,000	10-12	Trillionth
femto	1	1/1,000,000,000,000,000	10-15	Quadrillionth
atto	a	1/1,000,000,000,000,000,000	10-18	Quintillionth
zepto	z	1/1,000,000,000,000,000,000,000	10-21	Sextillionth
yocto	У	1/1,000,000,000,000,000,000,000,000	10-24	Septillionth

3. **[20 points**] You are given a common gate amplifier using an NMOS transistor for which V_t =0.8V, $k'_n(W/L) = 2mA/V^2$, and λ =0. The Q-point is at V_{GSQ} = 1.5 V. There is a drain resistance, R_D =4.7 $k\Omega$ and a load resistance, R_L =10 $k\Omega$. The amplifier is driven by a signal source, V_{sig} , in series with a signal resistance, R_{sig} , 400 Ω .

a. [5 points] Find IDQ and gm.

$$IDQ = \frac{1}{2} k' h \frac{1}{6} (VGSQ - V+1)^2 = \frac{1}{2} (2mA) (1.5 - .8)^2 = .49mA$$

$$IDQ = .49mA$$

$$gm = k' n \frac{\omega}{6} (VGSQ - V+) = (2mA) [1.5 - .8] = 1.4$$

b. [15 points] Draw the small-signal model (use the T-model). Label and solve for the input resistance, R_{in}, the output resistance, R_o, the open-loop voltage gain, A_{vo}, and the overall voltage gain, G_v. You must derive the equations for A_{vo} and G_v (i.e. don't just write equations from your cheat sheet).

$$Q_{in} = \frac{1}{1.4 = 714.29}$$

Au0= gm.
$$R_0 = .0014(4.7k\Omega) = 6.58v/v$$

 $R_0 = R_0 = 4.7k\Omega$

Print Your Name____

3. [continued]

4. **[10 points]** Consider the circuit given where V_t = -1.2V, $k_p(W/L)$ = 150 μ A/V², and λ =0. Design the resistor, R, such that V_{GS} = 2.1V.

$$V_{+}: V_{SG} = -1.20$$
 $U'_{H}(W_{L}) = 150NA/0^{2}$
 $\lambda = 0$
 $\Omega = ?$
 $V_{GS} = 2.10$

$$I_{0} = \frac{1}{2} (150) (7.1-1.2)^{2}$$

$$I_{0} = 60.75 \text{ NA}$$

$$V_{0} = V_{5} - V_{65}$$

$$V_{0} = 1.4V$$

$$\Omega = \frac{V_{0}}{I_{0}} = \frac{1.4}{60.75\text{E-}6}$$

R= 23.05 KD

Print Your Name

5. [20 points] A common source amplifier is fed with a 0.5 M Ω source and connected to a 15 k Ω load. The MOSFET has V_t = 1.5V, $k'_n(W/L)$ = 2 mA/V², and V_A =30V. The circuit is DC-biased at I_{DQ} = 0.5mA. The drain resistor is 8 k Ω and the load resistor is 10k Ω . Draw the small signal model and find the overall voltage gain, G_V , the output resistance, R_O , and the input resistance, R_{in} .

O,5MR 800'(e Gov IOQ=0.5MA ISKR 10ad Ro
$$R_0 = 8kR$$

V+= 1.5v $k'u = 2mA/v^2$ Rin $R_1 = 10kR$

$$\int_{0}^{\infty} \frac{V_{A}}{I_{DO}} = \frac{30}{smA} = 60 \text{k}\Omega$$

$$R_{in} = \infty$$

$$R_{0} = \left(\frac{100}{100} \right) = 7.06 \text{k}\Omega$$

$$V_{gSa} = V + \sqrt{\frac{2IDQ}{k'n \frac{w}{L}}} = 7.207$$

6. [15 points] Find the V_{D1} and V_{D2} and design the resistor for a drain current of 1mA given that both MOSFETS have V_t =1V and k_n^2W/L =5 mA/V².

$$V_{01}=?$$
 $V_{02}=?$
 $V_{02}=?$
 $V_{03}=?$
 $V_{03}=?$
 $V_{03}=?$
 $V_{03}=?$
 $V_{03}=?$
 $V_{03}=?$

$$Io = \frac{1}{2} (K' n \frac{\omega}{L}) (V_{GSI} - V_t)^2$$

 $Im A = \frac{1}{2} (5mA) (V_{GSI} - I)^2$

$$\sqrt{\frac{1}{(2.5)}} + 1 = V_{0.51}$$

Print Your Name_

7. [15 points] Given the following npn BJT with V_{BE} =0.75 V and α =.99. What are the base, collector, and emitter currents?

$$V = IR$$
 $ic = x \cdot iE = 975NA$
 $ig = 985NA - 975NA = 10NA$
 $iE = \frac{3.25}{3.3KR} = 985NA$