Computability and Complexity Theory – Exercise 1

Turing Machines

ID:
Due date: Tuesday, March 15 th , please follow the posted submission instructions.
Please write your answers in the designated spaces.
Also don't forget to write down a <i>collaboration statement</i> (either " שיתפתי פעולה עם אך
נעזרתי בחומר " or "כתבתי את הפתרונות בעצמי ולא נעזרתי בפתרון כתוב כלשהו בזמן כתיבת התשובות
מ אך כתבתי את הפתרונות בעצמי ולא נעזרתי בפתרון כתוב כלשהו בזמן כתיבת התשובות
Collaboration statement:
Problem 1: (Elementary concepts, 25 points)
a. Write the following sets formally:
<i>Example:</i> The set of all strings over Σ of length less or equal to 5 may be
written formally as $\{w \in \Sigma^* : w \le 5\}$.
1. The set of all strings over $\{0,1\}$ of even length:
i. Does it contain infinite length strings?
ii. What is the shortest string in the set?
2. The set of all strings over {0,1} that have an even number of "0":

	3.	The set containing the empty string:
	4.	The set of all bipartite graphs (A bipartite graph G is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to a vertex in V): $ \{ \text{G: G=(V,E) is a graph and } (\underline{\hspace{2cm}}) \} $
b.	Let K	$= \{ L \subseteq \{0,1\}^* : \forall w \in L \mid w \mid \le 4 \text{ and } \mid w \mid \text{ is odd} \}.$
	1.	Let $L_1, L_2 \in K$.
		i. Is $L_1 \cap L_2 \in K$?
		ii. Is $L_1L_2 \in K$? (L_1L_2 is the concatenation of L_1 and L_2)
		iii. Is ∅∈K (∅ denotes the empty set)?
		iv. Is {0,00,000}∈K?
	2.	Let L∈K.
		i. Give a tight upper bound on L (i.e., how large can L be?): Explain:
		ii. What is the concatenation of L and \emptyset ?
		iii. What is the concatenation of L and $\{\epsilon\}$?
	3.	What is K ? Explain:

c.	Write down the complement of the following language:
	$L = \{ P \subseteq \{0,1\}^* : P \text{ is a legal encoding of a C program, and P terminates on all } \}$
	inputs that start with '0' bit}

Problem 2: (25 points) Let M be a Turing machine with:

$$Q = \{q_0, q_1, q_{acc}, q_{rej}\}$$
 , $\Sigma = \{0, 1\}$, $\Gamma = \{0, 1, _\}$ and δ remains undefined.

For each of the following pairs of configurations, C_i and C_{i+1} , determine whether it is possible under some definition of δ that C_i will yield C_{i+1} . If possible, define the specific transition that will cause M to go from C_i to C_{i+1} . If not, explain why.

a.	$C_i =$	011q ₀ 100
	$C_{i+1} \; = \;$	01q ₁ 1100

d.	$C_i =$	010q ₀ 100
	$C_{i+1} \; = \;$	0101q ₀ 0

$C_i =$	011q ₁ 001
$C_{i+1} \; = \;$	0110q ₀ 01
	_

c.	$C_i =$	011q ₀ 01
	$C_{i+1} \; = \;$	01q _{acc} 101

	f.	(0 points,	not to be submitted)		
		$C_i =$	011q _{acc} 110		
		$C_{i+1} \; = \;$	0101q ₀ 10		
				h.	(0 points, not to be submitted)
					$C_i = 010q_1101$
	g.	(0 points,	not to be submitted)		$C_{i+1} = 0100q_001$
		$C_i =$	101q ₁ 101		
		$C_{i+1} \; = \;$	1010q ₃ 01		-
Proble	m 3	3: (25 point	s)		
Let L =	{ห	<i>y</i> ∈ {0,1}*	: w is even and w does not	t contain	'11' as a subsequence}.
Draw a	sta	te diagram	of a Turing machine M that	decides	the language L (reminder: a
Turing	ma	chine decid	les a language L if M accept	s every w	$w \in L$ and rejects every $w \notin L$).

Explain in words each component of the construction.

For each of the input strings below give the configurations sequence of M on the corresponding inputs:

- a. 1001
- b. 0110
- c. 100

Problem 4: (25 points)

Consider the following Turing machine:

$$Q = \{q_0,\!q_1,\!q_2,\!q_3,\!q_{acc}\}$$
 , $\Sigma = \{0,\!1\}$, $\Gamma = \{0,\!1,\!\#,\!_\}$ and

 $\delta: Q{\times}\Gamma \to Q{\times}\Gamma{\times}\{L{,}R\}$ is defined as follows:

$$\delta(q_0,0) = (q_1,\#,R) \qquad \qquad \delta(q_1,0) = (q_1,0,R) \qquad \qquad \delta(q_2,0) = (q_1,1,R)$$

$$\delta(q_0,1) = (q_2,\#,R) \qquad \qquad \delta(q_1,1) = (q_2,0,R) \qquad \qquad \delta(q_2,1) = (q_2,1,R)$$

$$\delta(q_{1}, \underline{\ }) = (q_{3}, 0, L)$$

$$\delta(q_{3}, 0) = (q_{3}, 0, L)$$

$$\delta(q_{2}, \underline{\ }) = (q_{3}, 1, L)$$

$$\delta(q_{3}, 1) = (q_{3}, 1, L)$$

$$\delta(q_{3}, \#) = (q_{acc}, 0, R)$$

a.	What does this	TM	output	on	input	1110	010	1011?

b.	Describe (in words) the function computed by this Turing machine.	You
	description should be clear and unambiguous.	

Problem 5: (0 points, not to be submitted)

Provide a detailed description (including Q, Σ , Γ and δ) of a Turing machine that, given an input x over $\{0,1\}$, outputs 0y, where y is identical to x except the last character, which is negated (for example, on input 01110 the machine should output 001111). You may assume that the input contains at least one symbol.

Problem 6: (0 points, not to be submitted)

Let $L\subseteq\{0,1\}^*$ be some language. Define

$$Max(L) = \{ w \in L : \text{ there is no } x \in \{0,1\}^* \text{ of size} > 0 \text{ such that } wx \in L \}.$$

- 1. Define Max(L) for each of the following languages:
 - a. $L_1 = \{0^n 1^n 0^i \mid n \ge 0, i = 0\}$
 - b. $L_2 = \{0^n 1^n 0^i \mid n \ge 0, i \ge 0\}$
 - c. $L_3 = \{0^n 1^n 0^i \mid n \le 2, i \le 2\}$