Turbulence-driven temperature fluctuations in H II regions

William J. Henney^{1*} and J. García-Vázquez²

¹Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán, Mexico

Preprint September 28, 2024

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Turbulence can cause temperature fluctuations via two mechanisms in H II regions, via a direct mechanism, and by an indirect mechanism. In the direct mechanism, dissipation of the turbulent kinetic energy acts as a fluctuating heating source for the gas. In the indirect mechanism, the shocks cause density fluctuations, which modulate the ionizing flux that arrives at the outer parts of the H II region, causing the boundary to move in and out, transitioning between a recombination front and an ionization front. If the modulation timescale corresponds to the recombination timescale, then a portion of the gas is out of thermal equilibrium.

Key words: HII regions – ISM: kinematics and dynamics – turbulence

1 INTRODUCTION

DATA AVAILABILITY STATEMENT

All data and accompanying analysis programs used in this paper are available from the github repository https://github.com/ will-henney/turb-t2-paper.

References

This paper has been typeset from a TeX/LATeX file prepared by the author.

²Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, Zacatenco, Ciudad de México, México C.P. 07738

w.henney@irya.unam.mx