JP-A-2002-190109 1/9 ページ

* NOTICES *

JPO and NCIP1 are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] It is the glide head for magnetic disks characterized by to have the slider made to counter the rotating magnetic disk, and to be the glide head for magnetic disks which detects contact or a collision with said magnetic disk and said slider, for said slider to be equipped with the rail for surfacing, the rail for projection detection, or a pad, for the rail or the pad for said projection detection to have a straight-line-like edge in outflow one end, and for the edge of the shape of said straight line to incline to the outflow edge of a slider.

[Claim 2] The glide head for magnetic disks according to claim 1 characterized by the edge of the shape of said straight line being larger than 15 degrees, and inclining at the include angle smaller than 45 degrees to the outflow edge of a slider, and the edge of the shape of said straight line surfacing in the abbreviation parallel condition to a magnetic-disk side.

[Claim 3] The glide head for magnetic disks given in either of claims 1 or 2 characterized by making magnitude of the roll attitude angle at the time of the surfacing flight of a slider into the range of 5.7x10 to 4 times or more, and 3.4x10 to 3 times or less so that the edge of the shape of said straight line may approach a magnetic disk and may detect a projection, when surfacing said slider on a magnetic disk.

[Claim 4] The glide head for magnetic disks according to claim 1 to 3 characterized by being arranged at one of right and left, in view of the medial axis to which the rail or pad for said projection detection met the longitudinal direction of a slider. [Claim 5] It is the glide head for magnetic disks which has the slider made to counter the rotating magnetic disk, and detects contact or a collision with said magnetic disk and said slider. Said slider is equipped with the rail for surfacing, the rail for projection detection, or a pad, the rail or pad for said projection detection — the medial axis of a slider longitudinal direction — receiving — the edge of the inclined shape of a symmetrical straight line — having — right and left — the glide head for magnetic disks characterized by detecting a projection for the straight-line-like edge where either inclined in the abbreviation parallel condition to a magnetic-disk side.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the glide head used for manufacture inspection of a magnetic disk etc. [0002]

[Description of the Prior Art] The magnetic disk used for a hard disk drive unit forms the protective coat which mainly becomes the front face from carbon a magnetic material and if needed using the disc-like nonmagnetic material substrate constituted from glass or aluminum, applies the lubricant of a fluorocarbon system further, and is used as a record medium which records or reproduces information by the magnetic head. The glide head is used by the inspection process of a magnetic disk as a sensor for detecting a minute projection or a minute foreign matter in a front face of a magnetic disk etc. The thing of various kinds of configurations is devised and this glide head is put in practical use. In recent years, what attached AE (Acoustic Emission) sensor in the glide head in which the piezoelectric device was carried, or the head exterior with minor-diameter-izing of a magnetic disk or a raise in recording density is in use.

[0003] Drawing 5 is the perspective view of a glide head which carried the piezoelectric device currently indicated by JP,11–16163,A in the slider. A slider 3 has the surfacing side (ABS side) 4 which consists of a rail of a pair. Hereafter, a medium opposed face including a surfacing side is called an ABS side (Air Bearing Surface). In overhang section 3a in the side face

of a slider 3, it is the configuration which fixed the piezoelectric device 9 to the opposite side of an ABS side. The output voltage of a piezoelectric device 9 is taken out from the both ends of the direction of polarization of the crystal which constitutes a piezoelectric device with lead wire 10, and is outputted outside through the insulating tube 11 prepared in the suspension 2. In addition, an ABS side says the field of the side which counters a magnetic disk with a slider, and the part which a slider is supported [part] and surfaces it by airstream, or in order to make it slide, it includes a part. Hereafter, the same sign explains a similar part.

[0004] Drawing 7 explains the principle of operation of a glide head. The slider 3 of a glide head surfaces according to an operation of the airstream accompanying rotation of a magnetic disk 18. Airstream flows along the outflow edge 22 from the inflow edge 21 of a slider. The flying height h of a glide head is controlled by linear velocity decided by the engine speed of a magnetic disk, and the glide head location on a magnetic disk, is seting linear velocity constant in a magnetic-disk side, and flies a magnetic-disk 18 top by the fixed flying height h. Generally, the glide head sets linear velocity constant in a magneticdisk side, in order to arrange the energy which sets constant in a magnetic-disk side the flying height h which judges certain conditions, i.e., the height of a projection, for the inside of a magnetic-disk side, and is generated at the time of the collision of a projection and a glide head (relative velocity of a projection and a glide head is made regularity). Moreover, in order to set the flying height and the posture at the time of a flight constant in a magnetic-disk side, the angle (YAW angle) with the tangent of the periphery on the magnetic disk with which, as for the slider of a glide head, a slider and a slider fly also in which location on a magnetic disk to make is fixed, and is usually used at 0 times by the glide height test. If a slider 3 contacts or collides with projection 18b on a magnetic disk, an impulse wave will spread the inside of a slider 3, and oscillating deformation of the piezoelectric device 9 will be carried out. Since induction of the charge is carried out to the electrode of a piezoelectric device 9, by taking out an inter-electrode electrical potential difference from lead wire 10, it uses for detection of a projection and things can be carried out. Furthermore, if the slider 3 with the predetermined flying height h is moved on the surface of a magnetic disk, the ABS side 4 of a slider will contact a projection higher than the flying height h or the part which deformed (collision). If it asks for the location of the shock wave and magnetic disk which are generated at this time, the substandard projection in a magnetic-disk front face is detectable.

[0005] It is common to form two rails in the ABS side of the glide head which operates by such principle. The posture at the time of a flight can be maintained at stability by using two rails. Moreover, in the case of the glide head of 2 rails, the flying height is changing the width of face of the rail which is producing the buoyancy of a glide head, can be controlled comparatively easily and can perform the flying height design of a required glide head easily according to the projection of the magnetic disk to inspect, and the height of a foreign matter. When the magnetic disk is rotating the glide bed with which the ABS side consists of such two rails at the fixed rotational frequency, the periphery side of peripheral speed is quicker than an inner circumference side with a natural thing. In case the glide head of 2 rails with the same die length and the same rail width of face flies a magnetic-disk top, the flying height of the rail by the side of a periphery becomes higher than the flying height of the rail by the side of inner circumference according to the peripheral-speed difference, and the flight roll posture (the hand of cut of a slider from which the rail by the side of inner circumference serves as the flying height lower than the rail by the side of a periphery in a field perpendicular to a slider longitudinal direction is considered as minus) of minus is taken. From the factor on manufacture, not to mention the imbalance of rail width of face however, according to the assembly condition of a glide head and a suspension etc. The roll attitude angle in a static condition (at the time of fixing a suspension to the same installation height (Z height) as the condition of having loaded the glide head on the magnetic disk) The angle of rotation in a field perpendicular to a slider longitudinal direction among the inclinations which a slider has to the clamp face of a glide head may sway in a plus direction or the minus direction, and the roll flight attitude of plus or minus may be obtained as a result at the time of a surfacing flight. Therefore, generally with the glide head of magnetic-disk checking, the include angle of the flight roll posture serves as the range of about 0**3x10 to 4 times. Hereafter, an inner circumference side shows the side which has turned to the center of rotation of a magnetic disk, and a periphery side shows the side which has turned to the periphery of a magnetic disk. Similarly, the inner circumference side of a slider means the side near the center of rotation of the magnetic disk of a slider, and the periphery side of a slider means the side near the periphery of the magnetic disk of a slider. In the rail which constitutes an ABS side, the rail by the side of inner circumference says the thing near [rail / by the side of a periphery] the center of rotation of a magnetic disk. [0006] In the case of the glide head of 2 rails, it is difficult to be hard to attach distinction of what the rail by the side of a periphery collided and generated in the projection, and the thing which the rail by the side of inner circumference collided and generated in the projection, and for the detected impulse wave to detect the location of an exact projection. As a technique which solves these technical problems, the glide head which changed the die length of a rail is indicated by the United States patent official report No. 5963396. As shown in drawing 6, the glide head equipped with the slider 3 of 2 rail configuration where the rail 16 by the side of the periphery of a magnetic disk made outflow one end longer than the rail 17 by the side of inner circumference is proposed. When the glide head is flying the magnetic-disk top, the lowest point of the flying height serves as an outflow edge. Since the lowest point of the flying height is limited to the outflow edge of the rail 16 by the side of a periphery when the rail 16 by the side of the periphery of a magnetic disk makes outflow one end longer than the rail 17 by the side of inner circumference, the rail which collides with a projection first is limited to the rail 16 by the side of a periphery. In this case, that flight roll posture controls the rail width of face by the side of inner circumference and a periphery to become about 0**3x10 to 4 times, and enables it to use all the rail width of face by the side of a periphery as a projection detecting element on a magnetic disk as much as possible too.

[0007] It is progressing with violent vigor, the latest high-capacity-izing and the latest miniaturization, i.e., a raise in recording density, of a magnetic disk drive. In order to raise recording density, the magnitude of a record bit becomes still smaller and the miniaturization of the magnetic head itself and narrow gap-ization of magnetic gap length are progressing in connection with it. In parallel to it, the flying height of the clearance between a magnetic disk and the magnetic head, i.e., the slider of the magnetic head, is minimum-ized to the hit of 20nm or less. If a projection and a foreign matter higher than the flying height of the slider of the magnetic head are shown in a magnetic-disk front face when a slider flies a magnetic-disk

top and it performs informational record and playback, the collision of a slider of a lifting, and record and playback of exact information will be impossible with a magnetic disk. Moreover, it also becomes the cause which causes breakage of data, and failure of a magnetic disk drive.

[0008] Therefore, it is necessary to make the projection and foreign matter on the front face of a magnetic disk lower than the flying height of the slider of the magnetic head. The height in which the projection of a magnetic disk and a foreign matter are permitted is in the inclination which becomes still lower with minimum-izing of the flying height of a slider, and the height has become 10nm or less. Therefore, the thing of the flying height [head / which inspects the projection on a magnetic disk and a foreign matter / glide] according to the height has been needed.

[0009]

[Problem(s) to be Solved by the Invention] Although it is effective to narrow width of face of the rail which has generated buoyancy in order to lower the flying height with the glide head of the conventional 2 rails to this demand If this rail is also the detecting element of projection detection and rail width of face is narrowed, in case the width of face of a projection detecting element will become small and will inspect the whole surface on the front face of a magnetic disk Since it inspects moving a glide head in the direction of a path of a magnetic disk at intervals of the rail width of face, the problem that inspection takes time amount occurs.

[0010] Moreover, as a hard disk drive, in order to raise storage capacity, it is a direction using the periphery section of the magnetic disk which can be taken in area as a data area more mostly, and the glide height guarantee in the periphery section is called for. In order to guarantee more periphery sections of a magnetic disk as a data area, it is required for the glide head to inspect the periphery section certainly. However, it does not understand whether the rail whose impulse wave detected with the conventional glide head when both rails became a detecting element is which hit the foreign matter. A glide head flies with a roll to which of plus or minus, or an one direction, That is, in case the projection detection rail of a head is a rail by the side of a periphery or inner circumference, when magnetic—disk inspection is conducted in the same verification condition, the amount of non–Banking Inspection Department may generate in the periphery side on a magnetic disk, and trouble arises in the product warranties of a magnetic disk.

[0011] Although the glide head indicated by U.S. Pat. No. 5963396 that it should be limited as an evasion measure of this phenomenon, using a specific rail as checking was also devised, in order to obtain the even in this case more low flying height, when rail width of face was narrowed, the width of face of a projection detecting element became small, and the problem that inspection took time amount occurred. Moreover, when a flight roll posture inclined, and the detection edge of the rail limited as checking inclined to a magnetic disk, it became the field where an effectual projection detection section is narrow, and there was a problem that the amount of [the redundancy of the further inspection time amount or] non—Banking Inspection Department generated.

[0012] Therefore, this invention will be made in order [which the amount of non-Banking Inspection Department generates in the redundancy-izing / of the magnetic-disk inspection time amount by narrow-izing of the projection detection rail width of face of the glide head in the magnetic-disk inspection by the low flying height which is the technical problem of the conventional technique /, and periphery side on a magnetic disk, and trouble produces in the product warranties of a magnetic disk] to carry out thing solution, and it will be described in detail below.

[0013]

[Means for Solving the Problem] The glide head for magnetic disks of this invention has the slider made to counter the rotating magnetic disk. It is the glide head for magnetic disks which detects contact or a collision with said magnetic disk and said slider. Said slider It has the rail for surfacing, a rail for projection detection, or a pad, the rail or pad for said projection detection has a straight-line-like edge in outflow one end, and it is characterized by the edge of the shape of said straight line inclining to the outflow edge of a slider. The edge of the shape of the straight line inclines to the outflow edge of a slider at the larger and include angle smaller than 45 degrees than 15 degrees, and is surfaced in the abbreviation parallel condition to a magnetic-disk side. Thus, when making it rise to surface, as for the magnitude of the roll attitude angle at the time of the surfacing flight of a slider, it is desirable that they are 5.7x10 to 4 times or more and 3.4x10 to 3 times or less. Moreover, the rail or pad for said projection detection can make it the configuration arranged at one of right and left, in view of the medial axis in alignment with the longitudinal direction of a slider.

[0014] Since it corresponds to the low flying height with the glide head which intersects the direction of airstream which flows in the direction of outflow one end from inflow one end of a slider, and a perpendicular, if the projection detection edge of the shape of a straight line which includes the surfacing lowest point in the periphery which forms the projection detection rail or pad narrows the rail width of face, a projection detection edge becomes narrow and the inspection time amount of a magnetic disk will become long in glide heads including the conventional 2 rail type, moreover, when it is alike with the assembly of an ABS side configuration, a slider, and a suspension and surfacing imbalance is attached so that the surfacing flight roll posture may be is added in order to inspect the periphery section of a magnetic disk certainly and to limit the rail or pad by the side of the periphery of a slider to the rail for projection detection, or a pad, the field in connection with projection detection becomes still narrower. In this condition, inspection time amount will become long further from reduction of a substantial projection detection field.

[0015] It is desirable that it is desirable as a solution means of this problem for the projection detection edge of the shape of a straight line of the rail for projection detection on a slider or a pad to incline to the outflow edge of a slider as for the ABS side configuration formed in the ABS side of a slider as drawing 1 shows, that include angle thetas is larger than 15 degrees, and it is smaller than 45 degrees. And Z shaft orientations which the glide head using said slider does not illustrate the beam prepared in a suspension and a piezoelectric device, and the slider supporting it in order to describe the flight attitude of a slider, and show the surfacing direction need to fly with the roll posture of plus that the periphery section of a magnetic disk should be inspected as shown in drawing 8 which expanded and illustrated the scale.

[0016] The glide head which gives the above include angles to the projection detection edge of a projection detection rail or a pad, and surfaces with the flight roll posture of a predetermined plus direction in an ABS side configuration The difference

of the surfacing lowest point of a projection detection rail or a pad and the flying height on the projection detection edge of a projection detection rail or a pad [small] Or it becomes the equivalent flying height, and the whole projection detection edge functions as a projection detecting element, and the segment die length shown all over [d] drawing serves as a substantial projection detection field which inspects a magnetic disk. this time — a projection detection edge — a magnetic disk — abbreviation — it is in an parallel condition.

[0017] Here, the crossed axes angle of the straight line and magnetic—disk side where abbreviation parallel show a projection detection edge says the thing of about 0**1x10 to 3 times. That is, if the flying height of the glide head in projection inspection of a magnetic disk has the flying height of a projection detection edge in the tolerance permitted, the ability to detect as a glide head which conducts projection inspection is enough, therefore, the parallel need with perfect projection detection edge and magnetic—disk side — not necessarily — there is nothing — the abbreviation for said range — what is necessary is just parallel relation Such a projection detection edge is made to form along with the surfacing contour line expressed with the line which connected the location of the same flying height on the slider of the glide head of a surfacing condition. There is also until the surfacing contour line on a slider says an parallel thing to a magnetic disk. [no] [0018] In an ABS side configuration, two or more projection detection edges of the rail or pad which can give the function of projection detection may exist on a slider. Two or more of the projection detection edges may be on one a rail or a pad, or may be in a respectively different rail or a respectively different pad. Moreover, the ABS side configuration containing a rail or a pad with two or more projection detection edges may be bilateral symmetry to the center line of a slider parallel to a slider longitudinal direction.

[0019] Other glide heads for magnetic disks of this invention It is the glide head for magnetic disks which has the slider made to counter the rotating magnetic disk, and detects contact or a collision with said magnetic disk and said slider. Said slider is equipped with the rail for surfacing, the rail for projection detection, or a pad, the rail or pad for said projection detection — the medial axis of a slider longitudinal direction — receiving — the edge of the inclined shape of a symmetrical straight line — having — right and left — it is characterized by detecting a projection for the straight-line-like edge where either inclined in the abbreviation parallel condition to a magnetic-disk side. When it considers as the ABS side configuration of bilateral symmetry, the glide head (the so-called rise/down head) of a pair needed for inspection of both sides of a magnetic disk can be provided with one ABS side configuration, and the advantage by which a production process is simplified produces it. In this case, by choosing one of the straight-line-like edges of the rail which can grow into the projection detection edge which has more than one on a slider, or a pad, and giving the adhesion location of a slider and a suspension, or a static roll attitude angle from the beginning to a glide head, a predetermined flight roll posture can be given to the object for a rise, and the glide head for a down, respectively, and the head the object for a rise and for a down can be manufactured easily.

[0020] The approach for below acquiring a predetermined roll posture at the time of a flight is described. A predetermined roll posture can be given at the time of a flight by making unsymmetrical an ABS side configuration on either side to a slider center line parallel to a slider longitudinal direction as the 1st approach. That is, the glide head which ensures inspection to the outermost periphery of a magnetic disk requires that the rail or pad by the side of the periphery prepared in the slider should become lower than the rail by the side of inner circumference, or the flying height of a pad in the flight roll posture. In an ABS side configuration, by considering as a configuration (guidance of the airstream by the large area surfacing side or the minute level difference) which produces buoyancy efficiently in the rail or pad by the side of the inner circumference which contributes to surfacing by the side of the inner circumference of a slider, this makes the rail by the side of the inner circumference of a slider generate bigger buoyancy than the rail by the side of a periphery, and is attained. By controlling an ABS side configuration, a glide head can acquire a predetermined flight roll posture.

[0021] A predetermined roll posture can be given at the time of a flight by shifting a slider core and a suspension pivot and sticking in adhesion of a slider and a suspension, as the 2nd approach. Namely, although the glide head which ensures inspection to the outermost periphery of a magnetic disk requires that the flying height of the rail by the side of the periphery of a head should become low rather than the flying height of the rail by the side of inner circumference in the flight roll posture. The center line of the longitudinal direction of a suspension is received in a slider center line parallel to the longitudinal direction of a slider. The load supporting—point location (a load beam dimple is the supporting point) applied to a glide head by shifting and pasting a periphery side is deviated. Even when the buoyancy in a slider side is uniform, imbalance is produced focusing on the supporting point, and it is attained when the rail by the side of the inner circumference of a slider serves as the big flying height from the rail by the side of a periphery. In such a means, a glide head can acquire a predetermined flight roll posture by controlling the adhesion location of a slider and a suspension.

[0022] As the 3rd approach, a predetermined roll posture can be given at the time of a flight by giving the initial roll attitude angle of a glide head in the roll direction beforehand. Namely, although the glide head which ensures inspection to the outermost periphery of a magnetic disk requires that the flying height of the rail by the side of the periphery of a glide head should become low rather than the flying height of the rail by the side of inner circumference in the flight roll posture When the static roll attitude angle of a glide head leans to the plus direction as initial value and a glide head is loaded on a magnetic disk it is attained by generating of the moment which rotates the slider decided by the product of the load rate of whenever [angle-of-inclination], and a suspension in the plus roll direction when the rail by the side of inner circumference serves as the bigger flying height than the rail by the side of a periphery. In such a means, a glide head can acquire a predetermined flight roll posture by controlling the static roll attitude angle of a glide head. In addition, there is not necessarily no need of using the suspension which has the DIN bull on a load beam by this approach. That is, since the static posture angle is given to the suspension itself, equivalent effectiveness can be acquired even if it uses the so-called pivot loess type of suspension.

[0023] Also when a glide head collides with the projection on a magnetic disk and the posture swings, in order for the rail or pad by the side of inner circumference not to collide with a magnetic disk, and for the point rising [minimum] to surface to be on the rail by the side of a periphery, or a pad and to conduct magnetic—disk inspection with the rail or pad by the side of

a periphery succeedingly, the flight roll posture of plus has 5.7x10 to 4 desirable times or more. Under the present circumstances, the rail or pad by the side of a periphery can be specified as the rail or pad for projection detection. Moreover, in order to stabilize surfacing and to suppress the collision with a magnetic disk, the flight roll posture of plus has 3.4x10 to 3 or less desirable times. In order to avoid the premature start stiction (phenomenon in which the flight attitude of a glide head is continuously confused from the absorption phenomenon of the glide head and magnetic disk which are generated to the accumulated lubricant) caused to coincidence to the lubricant accumulated between a slider and a magnetic disk during glide height inspection of a magnetic disk, as for a flight pitch attitude angle, it is desirable that they are 3.4xten to three pluses or more. The combination of this flight-attitude angle is controllable by the assembly of an ABS side configuration, a slider, and a suspension. Although angle thetas of the edge of the shape of a straight line of outflow one end of the rail for projection detection or a pad and the outflow edge of a slider to make is uniquely decided in that case, angle thetas can also be set constant by arranging an ABS side configuration the optimal to the peripheral speed which changes according to the radius and rotational frequency of a magnetic disk.

[0024] At least one surfacing contour line to which the location which consists of the same flying height in the slider surfacing side under surfacing was connected also in which case, According to the projection detection edge of the shape of a straight line which includes the surfacing lowest point in the periphery which forms the rail for projection detection or a pad being parallel The glide head which can ensure glide inspection of the magnetic—disk periphery section, and can aim at compaction of inspection time amount is obtained from a projection detection edge becoming long in the shape of a straight line, and a substantial projection detection edge becoming long. In addition, at the time of the projection inspection on a magnetic disk, a YAW angle is considered as regularity (0 times is desirable), the engine speed of a magnetic disk is controlled according to the radius location of a glide head, and linear velocity is set constant in a magnetic—disk side.

[0025] When combination of the attitude angle at the time of a surfacing flight was made into the range to the above—mentioned, angle thetas of the edge of the shape of a straight line of outflow one end of the rail for projection detection or a pad and the outflow edge of a slider to make was larger than 15 degrees, and the include angle smaller than 45 degrees was suitable for it. Below 15 degrees, this is because the instability of a surfacing posture becomes remarkable, when becoming the combination of the roll attitude angle at the time of the thing of the above—mentioned [the roll attitude angle at the time of a surfacing flight from which it becomes 45 degrees or more, and a pitch attitude angle, i.e., a flight roll attitude—angle >= flight pitch attitude angle.

[0026] In addition, in order to measure to stability to the periphery section of a magnetic disk, as for the rail for projection detection or pad which detects a projection, it is more more desirable than a slider core that it is in the periphery side of a slider. Moreover, it is desirable to fix a piezoelectric device to a slider and to constitute the glide head for magnetic disks. [0027]

[Embodiment of the Invention] Hereafter, the operation gestalt of this invention is explained using a drawing. Drawing 1 is the perspective view of the glide head by this invention. This glide head was considered as the configuration equipped with the suspension 2 supporting the slider 3 which jutted out the piezoelectric device 9 and was put on section 3b, a slider 3, and lead wire 10. The slider was pasted up on suspension flexible shear 2b so that a slider core and the suspension pivot location 13 (right above location of the load beam dimple 14) might be in agreement. The rail, the level difference side, etc. were established in one field of a slider 3, and the ABS side 4 (medium opposed face) was constituted. Near the outflow edge of an ABS side, pad 5a for projection detection was prepared. that to which the projection detection edge 1 of the shape of a straight line of this rail for projection detection met the surfacing contour line decided with an ABS side configuration, the slider of a glide head, and the assembly of a suspension — it is — a magnetic disk and abbreviation — it has an parallel relation. The width of face d given to pad 5a for projection detection is the substantial magnetic—disk inspection width of face of the projection detection edge 1. If applied to the center section from inflow one end of an ABS side, the shallow level difference side 8 which leads airstream to the rails 6a and 6b for surfacing of a pair and it was established. The deep level difference side 7 which involves in airstream was established in the center section of the slider.

[0028] About rail 6a which mainly contributes to the flying height, by lengthening the rail length, the rail by the side of inner circumference was made to generate big buoyancy, and the flight roll posture of 2.3xten to three pluses was produced in peripheral—speed 8 m/s. Moreover, the flight pitch attitude angles at this time were 5.7xten to three pluses. Moreover, in peripheral—speed 4 m/s, they were a 1.1xten to three plus flight roll posture, and a 3.4xten to three plus flight pitch attitude angle. Moreover, in peripheral—speed 16 m/s, they were a 4.0xten to three plus flight roll posture, and a 6.9xten to three plus flight pitch attitude angle. In the combination of this flight—attitude angle, angle thetas (a sign 19 shows among drawing 1) of the edge of the shape of a straight line of outflow one end of pad 5a for projection detection formed as an ABS side configuration and the outflow edge of a slider to make was made into 25 degrees. At this time, the flying height h from the magnetic—disk side of the projection detection edge 1 of the pad for projection detection was 5nm.

[0029] Furthermore, overhang section 3b with thickness thinner than a slider was made to project crosswise [of a slider]. The piezoelectric device 9 was made to fix at the end of the tooth back of the overhang section 3b. The output voltage of a piezoelectric device 9 is taken out with the lead wire 10 of a pair, and was made to output outside through the insulating tube 11 prepared in the suspension 2. When this glide head was used, even over the periphery section, it was able to detect correctly and the magnetic disk was able to be inspected for the positional information of a magnetic—disk projection or a foreign matter rather than the conventional configuration in a short time.

[0030] Drawing 2 is the perspective view of the glide head concerning other operation gestalten of this invention. Also in this glide head, it considered as the configuration equipped with the suspension 2 supporting the slider 3 which jutted out the piezoelectric device 9 and was put on section 3b, a slider 3, and lead wire 10. The slider was pasted up on suspension flexible shear 2b so that the pivot location (dimple location on load beam 2a) of a slider core and a suspension might be in agreement. Two rails 5b and 6 were formed in one field of a slider 3, and the ABS side 4 (medium opposed face) was constituted. Furthermore, the inclination 12 called a surfacing angle is also established in inflow one end of the ABS side 4. With this operation gestalt, rail 5b for projection detection is a rail by the side of a periphery, and combination, that to which

the projection detection edge 1 of the shape of a straight line of this rail for projection detection met the surfacing contour line it is decided with the assembly of a slider and a suspension that will be the rail configuration of an ABS side — it is — the time of surfacing — a magnetic disk and abbreviation — it has an parallel relation. The angle of the edge of the shape of a straight line of outflow one end of the rail for projection detection formed as an ABS side configuration and the outflow edge of a slider to make was set to thetas. The width of face d given to rail 5b for projection detection is the substantial magnetic—disk inspection width of face of the projection detection edge 1.

[0031] About the rail 6 which controls the flying height and produces the flight roll posture of a plus direction, big buoyancy was obtained on the rail by the side of inner circumference by making thick the rail by the side of inner circumference. When the width of face of a rail, and the die length and the include angle for a surfacing corner were formed so that it might become 5.7xten to three pluses in a flight roll attitude angle about 6.9xten to three pluses, and a flight pitch attitude angle, angle thetas (a sign 19 shows among drawing) of the edge of the shape of a straight line of outflow one end of the rail for projection detection and the outflow edge of a slider to make was 78 degrees. Furthermore, overhang section 3b with thickness thinner than a slider was made to project crosswise [of a slider]. The piezoelectric device 9 was made to fix at the end of the tooth back of the overhang section 3b. The output voltage of a piezoelectric device 9 is taken out with the lead wire 10 of a pair, and was made to output outside through the insulating tube 11 prepared in the suspension 2. When this glide head was used, even over the periphery section, it was able to detect correctly and the magnetic disk was able to be inspected for the positional information of a magnetic—disk projection or a foreign matter rather than the conventional configuration in a short time.

[0032] Drawing 3 is the top view of the glide head concerning other operation gestalten of this invention. (b) is the side elevation which saw the top view of (a) from outflow one end of a slider among this drawing. It explains to the same member as drawing 1 using the same sign. In the slider 3, this operation gestalt established pad 5a for projection detection, two rails 6 contributed to surfacing, the shallow level difference side 8, and the deep level difference side 7 which involves in airstream, and constituted the ABS side to it. Although this configuration was the same as that of the operation gestalt of drawing 1, pad 5a for projection detection was taken as thetas=70 degree bilateral symmetry. In this example, in adhesion of a slider and a suspension, as shown all over drawing, the slider shifted the slider core 15 and 100 micrometers of suspension pivot locations 13 in the direction of plus X, and pasted them up on suspension flexible shear 2b. About the direction of y, the suspension pivot location 13 (right above location of the load beam dimple 14) was made in agreement with the slider core 15, and it pasted up.

[0033] From this, this glide head was made into the flight attitude in peripheral-speed 8 m/s, and had the roll posture of 8.6xten to four pluses, and the slider flew with the pitch attitude angle of 7.5xten to three pluses. In the pad for projection detection, the projection on a magnetic disk was detected with this operation gestalt on the veranda with the display of thetas19. The flying height of the projection detection edge 1 of the shape of a straight line of pad 5a for projection detection formed as an ABS side configuration of the combination of this flight-attitude angle was 8nm. Furthermore, overhang section 3b with thickness thinner than a slider was made to project crosswise [of a slider]. The piezoelectric device 9 was made to fix at the end of the tooth back of the overhang section 3b. The output voltage of a piezoelectric device 9 is taken out with the lead wire 10 of a pair, and was made to output outside through the insulating tube 11 prepared in the suspension 2. When this glide head was used, even over the periphery section, it was able to detect correctly and the magnetic disk was able to be inspected for the positional information of a magnetic-disk projection or a foreign matter rather than the conventional configuration in a short time.

[0034] Drawing 4 is the top view of the glide head concerning other operation gestalten of this invention. (b) is the side elevation which saw the top view of (a) from outflow one end of a slider among this drawing. It explains to the same member as drawing 1 using the same sign. This operation gestalt presupposed that it is the same as that of the slider 3 shown in drawing 3, established pad 5a for projection detection, two rails 6 contributed to surfacing, the shallow level difference side 8, and the deep level difference side 9 which involves in airstream, and constituted the ABS side. The slider was pasted up on suspension flexible shear 2b so that the pivot location (dimple location on load beam 2a) of a slider core and a suspension might be in agreement.

[0035] In this example, the force of the roll direction of plus was applied to the suspension after adhesion of a slider and a suspension, and 0.3 static roll attitude angles were given. Consequently, it had the flight roll posture of 8.6xten to four pluses as a flight attitude, and flew with the flight pitch attitude angle of 7.5xten to three pluses. The flying height h from a magnetic-disk side of the flying height of the projection detection edge 1 of the shape of a straight line of pad 5a for projection detection formed as an ABS side configuration of the combination of this flight-attitude angle was 8nm. In the pad for projection detection, the projection on a magnetic disk was detected by this example on the veranda with the display of thetas.

[0036] Furthermore, overhang section 3b with thickness thinner than a slider was made to project crosswise [of a slider]. The piezoelectric device 9 was made to fix at the end of the tooth back of the overhang section 3b. The output voltage of a piezoelectric device 9 is taken out with the lead wire 10 of a pair, and was made to output outside through the insulating tube 11 prepared in the suspension 2. When this glide head was used, even over the periphery section, it was able to detect correctly and the magnetic disk was able to be inspected for the positional information of a magnetic-disk projection or a foreign matter rather than the conventional configuration in a short time.

[0037] In drawing 1 and the slider of 3 and 4, the configuration of an ABS side was formed by physical etching processing. The process is explained. First, the photoresist was applied on the substrate for sliders, exposure and a development were performed, the photoresist was removed in parts other than the part which forms pad 5a for projection detection, and the rail 6 for surfacing, and the resist mask was formed. Next, the ion milling system performed milling processing and only the part equivalent to the depth of a shallow level difference deleted parts other than a resist mask. Next, the photoresist was applied once again on the substrate, exposure and a development were performed, it left the photoresist of pad 5a for projection detection, the rail 6 contributed to surfacing, and the part equivalent to the shallow level difference 8, the

photoresist of other parts was removed, and the resist mask was formed. The part which performs milling processing and has not covered the resist mask again was deleted. The part which performed milling processing twice was made into the same depth as the deep level difference side 7. The ABS side was formed at the above process. And overhang section 3b of a slider was formed and the piezoelectric device 9 with the width of face of w= 0.5mm, a die length [of I= 0.9mm], and a thickness of t= 0.8mm was made to fix.

[0038] As mentioned above, although the operation gestalt of invention has so far been stated to the detail, a numeric value and a process are not limited to these. Moreover, although how to solve using the flight roll attitude angle of plus as the trouble and its solution approach of magnetic-disk inspection has been described, also when it considers as the roll attitude angle of the minus direction as a flight attitude, it is obvious that the improvement effectiveness in precision of decision of slider-like the rail for projection detection or, and a pad and the positional information of the projection and foreign matter on a magnetic disk is acquired by the same idea.

[0039]

[Effect of the Invention] A magnetic disk can be inspected by the glide head for magnetic disks of this invention in a short time. Moreover, a part for the non-Banking Inspection Department is not generated, and the product warranties of a magnetic disk can fully be performed to the periphery side on a magnetic disk.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

- [Drawing 1] It is the perspective view showing the example by this invention.
- [Drawing 2] It is the perspective view showing other examples by this invention.
- [Drawing 3] It is the top view showing other examples by this invention.
- [Drawing 4] It is the top view showing other examples by this invention.
- [Drawing 5] It is the perspective view of the conventional glide head.
- [Drawing 6] It is the top view of the conventional glide head.
- [Drawing 7] It is drawing explaining the principle of operation of a glide head.
- [Drawing 8] It is the schematic diagram showing the surfacing condition of the glide head of this invention.

[Description of Notations]

1 Projection Detection Edge 2 Suspension, 2a Load Beam, 2b A suspension flexible shear, 3 A slider, 3a Overhang section, 3b The overhang section, 4 An ABS side, 5a The pad for projection detection, 5b The rail for projection detection, 6 The rail for surfacing, 6a, 6b The rail for surfacing, 7 A deep level difference side, 8 A shallow level difference side, 9 A piezoelectric device, 10 Lead wire, 11 An insulating tube, 12 A surfacing angle, 13 Suspension pivot location, 14 A load beam dimple, 15 A slider core, 16 The rail by the side of a periphery, 17 The rail by the side of inner circumference, 18 Magnetic disk, 18b A projection, 19 Angle thetas which the edge and slider outflow edge of outflow one end of the rail for projection detection or a pad make, 21 An inflow edge, 22 Outflow edge

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

JP-A-2002-190109 8/9 ページ

[Drawing 5]

X (ディスク#住方向) (ディスク町方向)

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-190109 · (P2002-190109A)

(43)公開日 平成14年7月5日(2002.7.5)

(51) Int.Cl.7		識別記号	FΙ		テ	-マコード(参考)
G11B	5/84		G11B	5/84	С	5 D 0 4 2
	5/60			5/60	Z	5 D 1 1 2
	21/21			21/21	N	

審査請求 未請求 請求項の数5 〇L (全 9 頁)

式会社
芝浦一丁目2番1号
市松山町18番地 株式会社電子
NA02 PA10 QA02
AA24 JJ06
† T

(54) 【発明の名称】 磁気ディスク用グライドヘッド

(57)【要約】

【課題】 磁気ディスクの検査を短時間で行うことができる。また磁気ディスク上の外周側に未検査部分を発生させず磁気ディスクの製品保証を十分に行うことができる磁気ディスク用グライドヘッドを提供する。

【解決手段】 回転する磁気ディスクに対向させるスライダーを有し、前記磁気ディスクと前記スライダーとの接触あるいは衝突を検出する磁気ディスク用グライドへッドであって、前記ヘッドは外周側に傾いた飛行姿勢を持ち、かつ突起検出用レールもしくはパッドの流出端側縁は磁気ディスク表面に平行に浮上させ、スライダー流出端に対して傾きを持つ。

【特許請求の範囲】

【請求項】】 回転する磁気ディスクに対向させるスラ イダーを有し、前記磁気ディスクと前記スライダーとの 接触あるいは衝突を検出する磁気ディスク用グライドへ ッドであって、

前記スライダーは、浮上用レールと突起検出用のレール もしくはパッドを備え、前記突起検出用のレールもしく はパッドは流出端側に直線状の縁を有し、前記直線状の 縁がスライダーの流出端に対して傾斜していることを特 徴とする磁気ディスク用グライドヘッド。

【請求項2】 前記直線状の縁がスライダーの流出端に 対して15度より大きく、45度より小さい角度で傾斜 しており、

前記直線状の縁が磁気ディスク面に対して略平行状態で 浮上することを特徴とする請求項1に記載の磁気ディス ク用グライドヘッド。

【請求項3】 前記スライダーを磁気ディスク上で浮上 させたときに、前記直線状の縁が磁気ディスクに近づい て突起を検出するように、スライダーの浮上飛行時のロ ール姿勢角の大きさを5. 7×10⁻⁴ 度以上且つ3. 4×10-3 度以下の範囲とすることを特徴とする請求 項1または2のいずれかに記載の磁気ディスク用グライ ドヘッド。

【請求項4】 前記突起検出用のレールもしくはパッド が、スライダーの長手方向に沿った中心軸からみて左右 いずれかに配置されていることを特徴とする請求項1な いし3のいずれかに記載の磁気ディスク用グライドへッ ۴.

【請求項5】 回転する磁気ディスクに対向させるスラ イダーを有し、前記磁気ディスクと前記スライダーとの 接触あるいは衝突を検出する磁気ディスク用グライドへ ッドであって、前記スライダーは、浮上用レールと突起 検出用のレールもしくはバッドを備え、前記突起検出用 のレールもしくはバッドがスライダー長手方向の中心軸 に対して左右対称な傾斜した直線状の縁を有し、左右ど ちらか一方の傾斜した直線状の縁を磁気ディスク面に対 して略平行状態で突起を検出することを特徴とする磁気 ディスク用グライドへッド。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は磁気ディスクの製造 検査等に使用されるグライドヘッドに係るものである。 [0002]

【従来の技術】ハードディスク装置に使用される磁気デ ィスクは、ガラスあるいはアルミニウム等で構成した円 盤状の非磁性材基板を用い、その表面に磁性材料と、必 要に応じて主に炭素からなる保護膜を成膜し、さらにフ ルオロカーボン系の潤滑剤を塗布したものであり、磁気 ヘッドによって情報を記録あるいは再生する記録媒体と

の表面における微小な突起物あるいは異物等を検出する ためのセンサーとして、磁気ディスクの検査工程で用い られている。このグライドヘッドは各種の構成のものが 考案され実用化されている。近年、磁気ディスクの小径 化や高記録密度化に伴って、圧電素子を搭載したグライ ドヘッドやヘッド外部にAE(Acoustic Em ission)センサーを取り付けたものが主流となっ ている。

【0003】図5は、特開平11-16163号公報に 開示されている圧電素子をスライダーに搭載したグライ ドヘッドの斜視図である。スライダー3は、一対のレー ルからなる浮上面(ABS面)4を有する。以下、浮上 面を含む媒体対向面をABS面(Air Bearin g Surface)と称する。スライダー3の側面に ある張り出し部3aにおいて、ABS面の反対側に圧電 素子9を固着した構成である。圧電素子9の出力電圧は 圧電素子を構成する結晶の分極方向の両端からリード線 10により取り出され、サスペンション2に設けた絶縁 性チューブ11を通じて外部に出力される。なお、AB S面は、スライダーで磁気ディスクに対向する側の面を 言い、空気流によってスライダーを支えて浮上させる部 位もしくは摺動させるため部位を含むものである。以 下、類似の部位については同じ符号で説明する。

【0004】図7は、グライドヘッドの動作原理を説明 するものである。グライドヘッドのスライダー3は磁気 ディスク18の回転に伴う空気流の作用により浮上す る。空気流はスライダーの流入端21から流出端22に 沿って流れる。グライドヘッドの浮上量hは、磁気ディ スクの回転数と磁気ディスク上のグライドへッド位置に よって決まる線速度により制御され、線速度を磁気ディ スク面内で一定とすることで、一定の浮上量hで磁気デ ィスク18上を飛行する。一般に、グライドヘッドは、 磁気ディスク面内を一定の条件、すなわち、突起の高さ を判定する浮上量hを磁気ディスク面内で一定とし、か つ、突起とグライドヘッドの衝突時に発生するエネルギ ーを揃える(突起とグライドヘッドの相対速度を一定に する) ために、線速度を磁気ディスク面内で一定として いる。また、浮上量や飛行時の姿勢を磁気ディスク面内 で一定とするために、グライドヘッドのスライダーは磁 40 気ディスク上のいずれの位置においても、スライダーと スライダーが飛行する磁気ディスク上の円周の接線との なす角(YAW角)は一定であり、グライドハイトテス トでは、通常0度で用いられる。スライダー3が磁気デ ィスク上の突起物 18 b に接触あるいは衝突すると、衝 撃波がスライダー3中を伝播して圧電素子9を振動変形 させる。圧電素子9の電極に電荷が誘起されるので、リ ード線10から電極間電圧を取り出すことにより突起物 の検出に用いることできる。さらに、所定の浮上量りを もつスライダー3を磁気ディスクの表面で移動すると、 して用いられている。グライドヘッドは、磁性ディスク 50 浮上量hより高い突起物あるいは変形した部分にスライ

ダーのABS面4が接触(衝突)する。このとき発生す る衝撃波と磁気ディスクの位置を求めれば、磁気ディス ク表面にある規格外の突起物を検知することができる。 【0005】 このような原理で動作するグライドヘッド のABS面には2本のレールを形成するのが一般的であ る。2本のレールを用いることにより、飛行時の姿勢を 安定に保つことができる。また、2本レールのグライド ヘッドの場合、その浮上量は、グライドヘッドの浮揚力 を生じさせているレールの幅を変えることで、比較的容 易に制御でき、検査する磁気ディスクの突起、異物の高 さに応じ、必要なグライドヘッドの浮上量設計が容易に できる。このような2本のレールでABS面が構成され ているグライドベッドは、磁気ディスクが一定の回転数 で回転している場合、当然のことながら周速は内周側よ り外周側が速い。同じ長さ、同じレール幅をもつ2本レ ールのグライドヘッドが磁気ディスク上を飛行する際に は、その周速差により外周側のレールの浮上量が内周側 のレールの浮上量より高くなり、マイナスの飛行ロール 姿勢(スライダー長手方向に垂直な面内で内周側のレー ルが外周側のレールより低い浮上量となるようなスライ ダーの回転方向をマイナスとする)をとる。ただし、製 造上の要因からレール幅のアンバランスはもちろんのと と、グライドヘッドとサスペンションのアセンブリ状態 などにより、静的状態でのロール姿勢角(グライドへッ ドを磁気ディスク上にロードした状態と同一の取り付け 高さ(Zハイト)にサスペンションを固定した際の、グ ライドヘッドの取り付け面に対してスライダーが持つ傾 きのうち、スライダー長手方向に垂直な面内での回転 角)がプラス方向やマイナス方向に振れることがあり、 結果として浮上飛行時にプラスもしくはマイナスのロー ル飛行姿勢を得ることもある。よって、磁気ディスク検 査用のグライドヘッドでは、一般にその飛行ロール姿勢 の角度は0±3×10⁻⁴ 度程度の範囲となっている。 以下、内周側とは磁気ディスクの回転中心の方を向いて いる側を示し、外周側とは磁気ディスクの周縁の方を向 いている側を示す。同様に、スライダーの内周側とはス ライダーの磁気ディスクの回転中心に近い側を言い、ス ライダーの外周側とはスライダーの磁気ディスクの周縁 に近い側を言う。ABS面を構成するレールにおいて、 内周側のレールは外周側のレールよりも磁気ディスクの 回転中心に近いものをいう。

【0006】2本レールのグライドヘッドの場合、検知した衝撃波が外周側のレールが突起物に衝突して発生したものか、内周側のレールが突起物に衝突して発生したものかの区別がつきにくく、正確な突起物の位置を検知することが困難である。これらの課題を解決する技術として、レールの長さを変えたグライドヘッドが米国特許公報第5963396号に開示されている。図6に示す様に、磁気ディスクの外周側のレール16が内周側のレール17より流出端側を長くした2本レール形状のスラ

イダー3を備えるグライドへッドが提案されている。グライドへッドが磁気ディスク上を飛行している場合、浮上量の最下点は流出端となる。磁気ディスクの外周側のレール16が内周側のレール17より流出端側を長くすることにより、浮上量の最下点は外周側のレール16の流出端に限定される為、突起物に最初に衝突するレールは外周側のレール16に限定される。この場合、やはりその飛行ロール姿勢は0±3×10⁻¹度程度となるよう内周側と外周側のレール幅を制御し、極力、外周側のレール幅全てを磁気ディスク上の突起検出部として使えるようにしている。

【0007】最近の磁気ディスク装置の高容量化と小型 化、つまり高記録密度化は猛烈な勢いで進んでいる。記 録密度を上げる為に記録ビットの大きさはますます小さ くなり、それに伴い磁気ヘッド自体の小型化、磁気ギャ ップ長の狭ギャップ化が進んでいる。それと並行して、 磁気ディスクと磁気ヘッドとの隙間、即ち磁気ヘッドの スライダーの浮上量は20nm以下というあたりまで極 小化されている。スライダーが磁気ディスク上を飛行 し、情報の記録や再生を行う場合、磁気ディスク表面に 磁気ヘッドのスライダーの浮上量より高い突起や異物が あると、スライダーが磁気ディスクと衝突を起こし、正 確な情報の記録や再生ができない。また、データの破損 や磁気ディスク装置の故障を引き起こす原因にもなる。 【0008】そのために、磁気ディスク表面の突起や異 物は磁気ヘッドのスライダーの浮上量より低くする必要 がある。スライダーの浮上量の極小化に伴って、磁気デ ィスクの突起や異物の許容される高さはますます低くな る傾向にあり、その高さは10nm以下になっている。 よって、磁気ディスク上の突起や異物を検査するグライ ドヘッドも、その高さに応じた浮上量のものが必要とな ってきた。

[0009]

【発明が解決しようとしている課題】との要求に対し、 従来の2本レールのグライドへッドでは浮上量を下げる ためには、浮揚力を発生しているレールの幅を狭くする ことが有効であるが、このレールは突起検出の検出部で もあり、レール幅を狭くすると、突起検出部の幅が小さ くなり、磁気ディスク表面の全面を検査する際には、グ ライドへッドをそのレール幅間隔で磁気ディスクの径方 向に移動しながら検査することから、検査に時間がかか るという問題が発生する。

【0010】また、ハードディスクドライブとしては、少しでも記録容量を上げる為にデータエリアとして面積的に広く取れる磁気ディスクの外周部をより多く使う方向であり、外周部でのグライドハイト保証が求められている。磁気ディスクの外周部をより多くデータエリアとして保証する為には、グライドヘッドが確実に外周部を検査していることが必要である。しかし、従来のグライ50ドヘッドでは、両方のレールが検出部となる場合には検

知した衝撃波がどちらのレールが異物にあたったのか分からず、グライドヘッドがプラスもしくはマイナスのどちらか一方向にロールを持って飛行すること、すなわちヘッドの突起検出レールが外周側あるいは内周側のレールであったりする際には、同一検査条件において磁気ディスク検査を行った場合に磁気ディスク上の外周側に未検査部分が発生する可能性があり磁気ディスクの製品保証に支障が生じる。

【0011】この現象の回避策として、特定のレールを検査用として限定すべく米国特許5963396に記載 10 されているグライドヘッドも考案されたものであるが、この場合でも、より低い浮上量を得る為にレール幅を狭くすると突起検出部の幅が小さくなり検査に時間がかかるという問題が発生した。また、飛行ロール姿勢が傾いた場合には、検査用として限定されたレールの検出縁が磁気ディスクに対して傾くことにより実効的な突起検出部分が狭い領域となり、更なる検査時間の冗長や未検査部分が発生するという問題があった。

【0012】よって、本発明は従来技術の課題である、低浮上量での磁気ディスク検査におけるグライドヘッド 20 の突起検出レール幅の狭小化による磁気ディスク検査時間の冗長化と、磁気ディスク上の外周側に未検査部分が発生して磁気ディスクの製品保証に支障が生じること解決するためになされたものであり、以下に詳しく述べることにする。

[0013]

【課題を解決するための手段】本発明の磁気ディスク用 グライドヘッドは、回転する磁気ディスクに対向させる スライダーを有し、前記磁気ディスクと前記スライダー との接触あるいは衝突を検出する磁気ディスク用グライ ドヘッドであって、前記スライダーは、浮上用レールと 突起検出用のレールもしくはバッドを備え、前記突起検 出用のレールもしくはバッドは流出端側に直線状の縁を 有し、前記直線状の縁がスライダーの流出端に対して傾 斜していることを特徴とする。その直線状の縁はスライ ダーの流出端に対して15度より大きく且つ45度より 小さい角度で傾斜しており、磁気ディスク面に対して略 平行状態で浮上させる。このように浮上させるときには スライダーの浮上飛行時のロール姿勢角の大きさは5. 7×10⁻⁴ 度以上、3.4×10⁻³ 度以下であると とが望ましい。また、前記突起検出用のレールもしくは パッドが、スライダーの長手方向に沿った中心軸からみ て左右いずれかに配置されている構成にすることができ る。

【0014】従来の2レールタイプをはじめとするグライドへッドにおいて、その突起検出レールもしくはバッドを形成する周縁の中で浮上最下点を含む直線状の突起検出縁が、スライダーの流入端側から流出端側方向へ流れる空気流方向と垂直に交差するグライドへッドでは、低浮上量に対応する為にそのレール幅を狭くしていくと

突起検出縁が狭くなり、磁気ディスクの検査時間が長くなる。また、磁気ディスクの外周部を確実に検査するために、スライダーの外周側のレールもしくはパッドを突起検出用レールもしくはパッドに限定する為に、その浮上飛行ロール姿勢をプラスとなるようにABS面形状やスライダーとサスペンションのアセンブリによりに浮上アンバランスを付けた場合には、突起検出に関わる領域は更に狭くなる。この状態では、実質的な突起検出領域の減少から、更に検査時間が長くなってしまう。

[0015] この問題の解決手段として、スライダーの ABS面に形成されるABS面形状は図1で示すように スライダー上の突起検出用レールもしくはパッドの直線 状の突起検出縁がスライダーの流出端に対して傾斜して いることが望ましく、その角度 θ sは15度より大きく 且つ45度より小さいことが望ましい。そして、前記スライダーを用いたグライドへッドは、スライダーの飛行姿勢を記する為、サスペンションおよび圧電素子とそれを支えるスライダーに設けられる梁を図示せず、また、浮上方向を示す Z軸方向はスケールを拡大して図示した 図8に示す様に磁気ディスクの外周部を検査すべくプラスのロール姿勢で飛行することが必要である。

【0016】ABS面形状において、突起検出レールもしくはパッドの突起検出縁に前述の様な角度を持たせ、所定のプラス方向の飛行ロール姿勢をもって浮上するグライドへッドは、突起検出レールもしくはパッドの浮上最下点と、突起検出レールもしくはパッドの突起検出縁上での浮上量との差が小さい、もしくは同等の浮上量となり、突起検出縁の全体が突起検出部として機能し、図中はで示す線分長さが、磁気ディスクを検査する実質的な突起検出領域となる。このとき、突起検出縁は磁気ディスクに略平行な状態である。

【0017】ここで、略平行とは突起検出縁を示す直線と磁気ディスク面との交差角が、0±1×10⁻³ 度程度のことを言う。すなわち、磁気ディスクの突起検査におけるグライドヘッドの浮上量は、許容される公差内に突起検出縁の浮上量があれば突起検査を行うグライドヘッドとしての検出能力は十分である。よって、突起検出縁と磁気ディスク面は完全な平行である必要は必ずしも無く、前記範囲の略平行な関係であれば良い。このような、突起検出縁は、浮上状態のグライドヘッドのスライダー上の同一浮上量の位置を結んだ線で表される浮上等高線に沿って形成させる。スライダー上の浮上等高線が、磁気ディスクに対して平行であることは言うまでも無い。

[0018] ABS面形状において、突起検出の機能を持たせることのできるレールもしくはバッドの突起検出縁は、スライダー上に複数存在していてもかまわない。その複数の突起検出縁は、一つのレールもしくはバッド上にあっても良く、もしくは、それぞれ別のレールもしくはバッドにあっても良い。また、複数の突起検出縁を

もつレールもしくはバッドを含むABS面形状は、スライダー長手方向に平行なスライダーの中心線に対して、「左右対称であっても良い。

【0019】本発明の他の磁気ディスク用グライドへッ ドは、回転する磁気ディスクに対向させるスライダーを 有し、前記磁気ディスクと前記スライダーとの接触ある いは衝突を検出する磁気ディスク用グライドヘッドであ って、前記スライダーは、浮上用レールと突起検出用の レールもしくはバッドを備え、前記突起検出用のレール もしくはパッドがスライダー長手方向の中心軸に対して 10 左右対称な傾斜した直線状の縁を有し、左右どちらか一 方の傾斜した直線状の縁を磁気ディスク面に対して略平 行状態で突起を検出することを特徴とする。左右対称の ABS面形状とした場合、磁気ディスクの両面の検査に 必要とされる一対のグライドヘッド(いわゆるアップ/ ダウンヘッド)を、一つのABS面形状で賄うことがで き、製造工程が簡易化される利点が生じる。との場合、 スライダー上に複数個ある突起検出縁に成り得るレール もしくはパッドの直線状縁の一つを選択し、スライダー とサスペンションの接着位置、もしくは静的なロール姿 20 勢角を当初からグライドヘッドに与えることにより、ア ップ用、ダウン用のグライドヘッドにそれぞれ所定の飛 行ロール姿勢を与えてアップ用とダウン用のヘッドを容 易に製造することができる。

【0020】以下に、飛行時に所定のロール姿勢を得る ための方法について記述する。第1の方法として、スラ イダー長手方向に平行なスライダー中心線に対して左右 のABS面形状を非対称にすることによって、飛行時に 所定のロール姿勢を与えることができる。すなわち、磁 気ディスクの最外周部までも検査を確実に行うグライド ヘッドはその飛行ロール姿勢において、スライダーに設 けた外周側のレールもしくはパッドが、内周側のレール もしくはパッドの浮上量よりも低くなることが必要であ る。これはABS面形状において、スライダーの内周側 の浮上に寄与する内周側のレールもしくはバッドにおい て効率良く浮揚力を生み出すような形状(大面積浮上面 や微小段差による空気流の導き)とすることにより、ス ライダーの内周側のレールに外周側のレールより大きな 浮揚力を発生させて達成される。ABS面形状を制御す ることにより、グライドヘッドは所定の飛行ロール姿勢 を得ることができる。

【0021】第2の方法として、スライダーとサスペンションの接着において、スライダー中心とサスペンションピボットをずらして貼り合わせることによって、飛行時に所定のロール姿勢を与えることができる。すなわち、磁気ディスクの最外周部までも検査を確実に行うグライドヘッドはその飛行ロール姿勢において、ヘッドの外周側のレールの浮上量が内周側のレールの浮上量よりも低くなることが必要であるが、スライダーの長手方向に平行なスライダー中心線をサスペンションの長手方向50

の中心線に対して、外周側にずらして接着することによりグライドへッドにかかる荷重支点位置(ロードビームディンプルが支点)を偏移させ、スライダー面での浮揚力が均一でも支点を中心にアンバランスを生じさせて、スライダーの内周側のレールが外周側のレールより大きな浮上量となることにより達成される。このような手段において、スライダーとサスペンションの接着位置を制御することにより、グライドへッドは所定の飛行ロール姿勢を得ることが出来る。

【0022】第3の方法として、グライドヘッドの初期 ロール姿勢角をロール方向にあらかじめ与えることによ って飛行時に所定のロール姿勢を与えることができる。 すなわち、磁気ディスクの最外周部までも検査を確実に 行うグライドヘッドはその飛行ロール姿勢において、グ ライドヘッドの外周側のレールの浮上量が内周側のレー ルの浮上量よりも低くなることが必要であるが、初期値 としてグライドヘッドの静的ロール姿勢角がプラス方向 に傾いている場合、グライドヘッドが磁気ディスク上に ロードされた際には、その傾き角度とサスペンションの バネ定数の積で決まるスライダーをプラスロール方向に 回転させるモーメントの発生により、内周側のレールが 外周側のレールより大きな浮上量となることにより達成 される。この様な手段において、グライドヘッドの静的 ロール姿勢角を制御することにより、グライドヘッドは 所定の飛行ロール姿勢を得ることが出来る。なお、本方 法では、ロードビーム上にディンブルのあるサスペンシ ョンを用いる必要は必ずしも無い。つまり、その静的姿 勢角をサスペンション自身に与えていることから、いわ ゆるピボットレスタイプのサスペンションを用いても同 等の効果を得ることができる。

【0023】グライドヘッドが磁気ディスク上の突起に 衝突し、その姿勢が揺らいだ際にも内周側のレールもし くはパッドが磁気ディスクに衝突することが無く、外周 側のレールもしくはバッド上にその最小浮上点があり、 引き続き磁気ディスク検査を外周側のレールもしくはパ ッドにて行うために、プラスの飛行ロール姿勢は5.7 ×10⁻⁴ 度以上が望ましい。この際、外周側のレール もしくはパッドを突起検出用のレールもしくはパッドに 特定することができる。また、浮上を安定させ、磁気デ ィスクとの衝突を抑えるため、プラスの飛行ロール姿勢 は3. 4×10-3 度以下が望ましい。同時に、磁気デ ィスクのグライドハイト検査中にスライダーと磁気ディ スクの間に蓄積される潤滑剤によって引き起とされるフ ライングスティクション(蓄積された潤滑剤により発生 するグライドヘッドと磁気ディスクの吸着現象からグラ イドヘッドの飛行姿勢が継続的に乱れる現象)を回避す るため、飛行ビッチ姿勢角はプラス3. 4×10⁻³ 度 以上であることが望ましい。この飛行姿勢角の組み合わ せは、ABS面形状とスライダーとサスペンションのア センブリにより制御することができる。その際に、突起 検出用レールもしくはパッドの流出端側の直線状の縁と、スライダーの流出端とのなす角 θ sは一意的に決まるが、ABS面形状を最適に配置することにより、磁気ディスクの半径・回転数に応じて変化する周速に対して角 θ sを一定とすることもできる。

【0024】いずれの場合においても、浮上中のスライダー浮上面において同一浮上量からなる位置を結んだ少なくとも一つの浮上等高線と、突起検出用レールもしくはパッドを形成する周縁の中で浮上最下点を含む直線状の突起検出縁が平行であることにより、突起検出縁は直 10線状に長いものとなり実質的な突起検出縁も長くなることから、確実に磁気ディスク外周部のグライド検査が行え、かつ検査時間の短縮が図れるグライドへッドが得られる。なお、磁気ディスク上の突起検査時には、YAW角を一定(0度が望ましい)とし、磁気ディスクの回転数をグライドへッドの半径位置に応じて制御して線速度を磁気ディスク面内で一定とする。

【0025】浮上飛行時の姿勢角の組み合わせを前述までの範囲とした場合、突起検出用レールもしくはバッドの流出端側の直線状の縁と、スライダーの流出端とのな 20 す角 θ s は、15度より大きく、45度より小さい角度が適切であった。これは、15度以下では浮上飛行時のロール姿勢角が前述の範囲外になること、また、45度以上となる浮上飛行時のロール姿勢角とピッチ姿勢角の組み合わせ、すなわち飛行ロール姿勢角≧飛行ピッチ姿勢角となるような場合は、浮上姿勢の不安定さが顕著となることによる。

【0026】なお、磁気ディスクの外周部まで安定に測定するためには突起を検出する突起検出用レールもしくはパッドはスライダー中心よりスライダーの外周側に有 30 ることがより望ましい。また、スライダーに圧電素子を固着して磁気ディスク用グライドヘッドを構成することが望ましい。

[0027]

【発明の実施の形態】以下、図面を用いて本発明の実施 形態を説明する。図1は本発明によるグライドヘッドの 斜視図である。このグライドヘッドは、圧電素子9を張 り出し部3bに載せたスライダー3と、スライダー3と リード線10を支えるサスペンション2を備える構成と した。スライダーは、スライダー中心とサスペンション ピボット位置13(ロードビームディンプル14の直上 位置)が一致するようサスペンションフレキシャー2 b に接着した。スライダー3の一方の面には、レールや段 差面等を設けてABS面4(媒体対向面)を構成した。 ABS面の流出端近傍には突起検出用パッド5aを設け た。この突起検出用レールの直線状の突起検出縁1は、 ABS面形状と、グライドヘッドのスライダーとサスペ ンションのアセンブリで決まる浮上等高線に沿ったもの で、磁気ディスクと略平行な関係にある。突起検出用バ ッド5aに付した幅dは、突起検出縁1の実質的な磁気 50 ディスク検査幅である。ABS面の流入端側から中央部にかけては、一対の浮上用レール6a.6bとそれに空気流を導く浅い段差面8を設けた。スライダーの中央部には空気流を巻き込む深い段差面7を設けた。

【0028】主に浮上量に寄与するレール6aについて は、そのレール長を長くすることにより内周側のレール に大きな浮揚力を発生させて、周速8m/sにおいてプ ラス2. 3×10⁻³ 度の飛行ロール姿勢を生み出し た。また、このときの飛行ビッチ姿勢角はプラス5.7 ×10- * 度であった。また、周速4m/sにおいては プラス1.1×10-3度飛行ロール姿勢とプラス3. 4×10⁻³ 度飛行ビッチ姿勢角であった。また、周速 16 m/s においてはプラス4. 0×10-3 度飛行口 ール姿勢とプラス6. 9×10⁻³ 度飛行ピッチ姿勢角 であった。この飛行姿勢角の組み合わせにおいて、AB S面形状として形成された突起検出用パッド5aの流出 端側の直線状の縁と、スライダーの流出端とのなす角θ s (図1中、符号19で示す)は25度にした。このと き、突起検出用バッドの突起検出縁1の磁気ディスク面 からの浮上量hは5 nmであった。

【0029】さらに、スライダーの幅方向には、スライ ダーよりも厚さの薄い張り出し部3bを突出させた。そ の張り出し部3bの背面の端には圧電素子9を固着させ た。圧電素子9の出力電圧は一対のリード線10によっ て取り出され、サスペンション2に設けられた絶縁チュ ーブ11を通じて外部に出力させた。このグライドへッ ドを用いたところ、磁気ディスク突起や異物の位置情報 を外周部にまでわたって正確に検出し、かつ従来の構成 よりも短時間で磁気ディスクを検査することができた。 【0030】図2は、本発明の他の実施形態に係るグラ イドヘッドの斜視図である。このグライドヘッドにおい ても、圧電素子9を張り出し部3 b に載せたスライダー 3と、スライダー3とリード線10を支えるサスペンシ ョン2を備える構成とした。スライダーは、スライダー 中心とサスペンションのピボット位置(ロードビーム2 a上のディンプル位置)が一致するようサスペンション フレキシャー2 bに接着した。スライダー3の一方の面 には、2つのレール5b、6を設けてABS面4(媒体 対向面)を構成した。さらにABS面4の流入端側に は、浮上角と呼ばれる傾斜12も設けている。本実施形 態では、突起検出用レール5bは外周側のレールと兼用 である。この突起検出用レールの直線状の突起検出縁1 は、ABS面のレール形状と、スライダーとサスペンシ ョンのアセンブリで決まる浮上等高線に沿ったもので、 浮上の際に磁気ディスクと略平行な関係にある。ABS 面形状として形成された突起検出用レールの流出端側の 直線状の縁と、スライダーの流出端とのなす角をθsと した。突起検出用レール5 bに付した幅dは、突起検出 縁1の実質的な磁気ディスク検査幅である。

0 【0031】浮上量を制御し、かつプラス方向の飛行口

ール姿勢を生み出すレール6については、内周側のレールを太くすることにより内周側のレールに大きな浮揚力を得た。飛行ロール姿勢角をプラス6. 9×10

ではた。飛行ロール安勢用をプラスも、9×10 つ 8 度、飛行ビッチ姿勢角をプラス5、7×10 つ 8 度となるように、レールの幅、浮上角部分の長さ・角度を形成したところ、突起検出用レールの流出端側の直線状の縁と、スライダーの流出端とのなす角のs(図中、符号19で示す)は78度であった。さらに、スライダーの幅方向には、スライダーよりも厚さの薄い張り出し部3bを突出させた。その張り出し部3bの背面の端には 10 圧電素子9を固着させた。圧電素子9の出力電圧は一対のリード線10によって取り出され、サスペンション2に設けられた絶縁チューブ11を通じて外部に出力させた。このグライドヘッドを用いたところ、磁気ディスク突起や異物の位置情報を外周部にまでわたって正確に検出し、かつ従来の構成よりも短時間で磁気ディスクを検査することができた。

【0032】図3は、本発明の他の実施形態に係るグラ

イドヘッドの平面図である。同図中、(b)は(a)の 平面図をスライダーの流出端側からみた側面図である。 図1と同様の部材には同じ符号を用いて説明する。 本実 施形態はスライダー3に、突起検出用パッド5aと、浮 上に寄与する2本のレール6と、浅い段差面8と、空気 流を巻き込む深い段差面7を設けて、ABS面を構成し た。この構成は図1の実施形態と同様であるが、突起検 出用パッド 5a は θ s=70 度の左右対称とした。本実 施例では、スライダーとサスペンションの接着におい て、図中にて示す様に、スライダーは、スライダー中心 15とサスペンションピボット位置13をプラスX方向 に100μmずらしてサスペンションフレキシャー2b 上に接着した。 y方向についてはスライダー中心 15 と、サスペンションピボット位置13(ロードビームデ ィンブル14の直上位置)を一致させて接着した。 【0033】とれより、このグライドヘッドは、周速8 m/sにおいて飛行姿勢としプラス8.6×10⁻⁴度 のロール姿勢を持ち、かつプラス7.5×10⁻³度の ピッチ姿勢角を持ってスライダーが飛行した。突起検出 用パッドにおいて、本実施形態では θ sl9の表示の有 る縁側で磁気ディスク上の突起を検出した。この飛行姿 勢角の組み合わせにより、ABS面形状として形成され た突起検出用バッド5aの直線状の突起検出縁1の浮上 量は8 n m であった。さらに、スライダーの幅方向に は、スライダーよりも厚さの薄い張り出し部3bを突出 させた。その張り出し部3 bの背面の端には圧電素子9 を固着させた。圧電素子9の出力電圧は一対のリード線 10によって取り出され、サスペンション2に設けられ た絶縁チューブ11を通じて外部に出力させた。このグ ライドヘッドを用いたところ、磁気ディスク突起や異物 の位置情報を外周部にまでわたって正確に検出し、かつ

従来の構成よりも短時間で磁気ディスクを検査すること 50

ができた。

【0034】図4は、本発明の他の実施形態に係るグライドへッドの平面図である。同図中、(b)は(a)の平面図をスライダーの流出端側からみた側面図である。図1と同様の部材には同じ符号を用いて説明する。本実施形態は図3に示すスライダー3と同一とし、突起検出用パッド5aと、浮上に寄与する2本のレール6と、浅い段差面8と、空気流を巻き込む深い段差面9を設けて、ABS面を構成した。スライダーは、スライダー中心とサスペンションのビボット位置(ロードビーム2a上のディンブル位置)が一致するようサスペンションフレキシャー2bに接着した。

【0035】本実施例では、スライダーとサスペンションの接着後、サスペンションにプラスのロール方向の力を加え、静的なロール姿勢角0.3度を与えた。その結果、飛行姿勢としてプラス8.6×10 $^{-4}$ 度の飛行ロール姿勢を持ち、かつプラス7.5×10 $^{-3}$ 度の飛行ビッチ姿勢角を持って飛行した。この飛行姿勢角の組み合わせによりABS面形状として形成された突起検出用パッド5aの直線状の突起検出縁1の浮上量は磁気ディスク面からの浮上量hは8nmであった。突起検出用バッドにおいて本実施例では θ sの表示の有る縁側で磁気ディスク上の突起を検出した。

【0036】さらに、スライダーの幅方向には、スライ ダーよりも厚さの薄い張り出し部3bを突出させた。そ の張り出し部3 bの背面の端には圧電素子9を固着させ た。圧電素子9の出力電圧は一対のリード線10によっ て取り出され、サスペンション2に設けられた絶縁チュ ーブ11を通じて外部に出力させた。このグライドへっ ドを用いたところ、磁気ディスク突起や異物の位置情報 を外周部にまでわたって正確に検出し、かつ従来の構成 よりも短時間で磁気ディスクを検査することができた。 【0037】図1,3,4のスライダーにおいて、AB S面の形状は物理的エッチング処理により形成した。そ の工程を説明する。まず、スライダー用の基板上にフォ トレジストを塗布し、露光および現像処理を施し、突起 検出用バッド5aと浮上用レール6を形成する箇所以外 の部分でフォトレジストを除去してレジストマスクを形 成した。つぎに、イオンミリング装置でミリング加工を 行い、レジストマスク以外の部分を浅い段差の深さに相 当する分だけ削った。つぎに、基板上にもう一度フォト レジストを塗布し、露光および現像処理を施して、突起 検出用パッド5 a と浮上に寄与するレール6 と浅い段差 8に相当する部分のフォトレジストを残し、他の部分の フォトレジストを除去してレジストマスクを形成した。 再度、ミリング加工を行ってレジストマスクを被覆して いない部分を削った。ミリング加工を2度施した部分は 深い段差面7と同じ深さにした。以上の工程でABS面 を形成した。そして、スライダーの張り出し部3 bを形 成し、その幅w=0.5mm、長さ1=0.9mm、厚

さt=0. 8mmの圧電素子9を固着させた。

【0038】以上、これまでに発明の実施形態について 詳細に述べてきたが、数値・製法はこれらに限定される ものではない。また、磁気ディスク検査の問題点とその 解決方法として、プラスの飛行ロール姿勢角を用いて解 決する方法を述べてきたが、飛行姿勢としてマイナス方 向のロール姿勢角とした場合にも同様の考えにより、ス ライダー状での突起検出用レールもしくはバッドの確定 と、磁気ディスク上の突起・異物の位置情報の精度向上 効果が得られることは自明である。

[0039]

【発明の効果】本発明の磁気ディスク用グライドヘッド により、磁気ディスクの検査を短時間で行うことができ る。また磁気ディスク上の外周側に未検査部分を発生さ せず磁気ディスクの製品保証を十分に行うことができ る。

【図面の簡単な説明】

- 【図1】本発明による実施例を示す斜視図である。
- [図2] 本発明による他の実施例を示す斜視図である。
- [図3] 本発明による他の実施例を示す平面図である。
- 【図4】本発明による他の実施例を示す平面図である。*

*【図5】従来のグライドヘッドの斜視図である。

、【図6】従来のグライドへッドの平面図である。

【図7】グライドヘッドの動作原理を説明する図であ

【図8】本発明のグライドヘッドの浮上状態を示す概略 図である。

【符号の説明】

(8)

1 突起検出縁、 2 サスペンション、2a ロード ビーム、2b サスペンションフレキシャー、3 スラ 10 イダー、3a 張り出し部、3b 張り出し部、4 A BS面、5a 突起検出用パッド、5b 突起検出用レ ール、6 浮上用レール、6a, 6b 浮上用レール、 7 深い段差面、8 浅い段差面、9 圧電素子、10 リード線、11 絶縁チューブ、12 浮上角、13 サスペンションピボット位置、14 ロードビームデ ィンプル、15 スライダー中心、16 外周側のレー ル、17 内周側のレール、18 磁気ディスク、18 b 突起物、19 突起検出用レールもしくはパッドの 流出端側の縁とスライダー流出端がなす角 θ s、21 20 流入端、22 流出端

【図1】

【図2】

【図3】

【図4】

