

Функция распределения первична, случайная величина вторична

Комментарий. Этот и следующий шаг – некоторые математические формальности. Мы прибегаем к ним, чтобы не потерять математическую строгость;)

В дискретном случае мы строили вероятностные пространства, на них определяли случайные величины, а потом у случайных величин брали распределение (функцию вероятности). В первой половине этого урока мы научились описывать распределение при помощи функции распределения. Поэтому путь нашей мысли можно описать так:

вероятностное пространство ightarrow случайная величина ightarrow распределение \leftrightarrow функция распределения

В принципе, можно повторить этот путь и для непрерывных случайных величин. Например, на предыдущем уроке мы построили непрерывные вероятностные пространства, и на них могли бы определить непрерывные случайные величины. Но на практике почти всегда нам интересны распределения непрерывных случайных величин. А не сами случайные величины или вероятностные пространства, на которых эти величины определены. Например, нам не очень интересно пространство всех голубей. Нам интересно отвечать на вопросы вида "каков шанс, что у голубя размах крыльев больше 35 сантиметров".

Поэтому мы НЕ будем определять непрерывные случайные величины. Вместо этого мы определим только функции распределения. То есть мы будем заходить с другого конца – начинать с функции распределения:

???
ightarrow ???
ightarrow распределение \leftrightarrow функция распределения.

При этом с формальной точки зрения саму случайную величину мы полностью не определяем (потому что мы не определяем вероятностное пространство, на котором она определена).

В дальнейшем мы будем работать только с функциями распределения, и не будем говорить, на каком именно вероятностном пространстве задана случайная величина.

А зачем мы тогда вообще проходили вероятностные пространства? Оттуда переносится вся интуиция и почти все формулы. Когда мы будем думать про непрерывные случайные величины, полезно представлять, что они определены на каком-то вероятностном пространстве (которое мы строго не определяем)

Определение функции распределения

Определение. Функция F_{ξ} называется функцией распределения, если выполнены такие свойства:

- ullet F_{ξ} не убывает, то есть для любых $a_1 < a_2$ выполнено $F_{\xi}(a_1) \leq F_{\xi}(a_2)$
- $\lim_{a \to +\infty} F_{\xi}(a) = 1$ $\lim_{a \to -\infty} F_{\xi}(a) = 0$

Опираясь на опыт предыдущего урока, подумайте, почему мы используем именно эти условия.

Заметьте, что в этом определении мы НЕ использовали определение случайной величины.

Наоборот, уже определив F_{ξ} , мы говорим, что функция распределения F_{ξ} задаёт случайную величину ξ . И после этого мы можем говорить, например, что $P(\xi \leq a)$ по определению равно $F_{\xi}(a)$.

Задачи

Дальше идут задачи, которые помогут нам лучше понять функции распределения.

Выберите все подходящие ответы из списка

Функция $F_\xi(x)=\sin(x)$ является функцией распределения некоторой случайной величины Если $F_\xi(a)=1$, то $F_\xi(b)=1$ для любого b>a, потому что F_ξ не убывает Функция $F_\xi(x)=0.3+x^2$ является функцией распределения некоторой случайной величины Если $F_\xi(a)=0$, то $F_\xi(b)=0$ для любого b>a, потому что F_ξ не убывает

Сопоставьте значения из двух списков

График 1	Неформально говоря, у случайной величины с такой функцией распределения большие значения менее вероятны
График 2	Это не функция распределения
График 3	Неформально говоря, у случайной величины с такой функцией распределения бо́льшие значения более вероятны

Отметьте все верные утверждения.

Выберите все подходящие ответы из списка

Множество значений случайной величины с такой функцией распределения — все действительные числа

Множество значений случайной величины с такой функцией распределения — интервал (0,1)

Для случайной величины ξ с такой функцией распределения $P(\xi\leqslant 0)$ < $P(\xi\geqslant 0)$

Это не функция распределения

Для случайной величины ξ с такой функцией распределения $P(\xi\leqslant 0)=P(\xi\geqslant 0)$

Отметьте все верные утверждения.

Выберите все подходящие ответы из списка

Множество значений случайной величины с такой функцией распределения — отрезок [1,4]

Для случайной величины ξ с такой функцией распределения $P(2<\xi<3)=0$

Это не функция распределения

Это равномерное распределение на некотором множестве

Для случайной величины ξ с такой функцией распределения $P(2<\xi<3)=0.5$

Отметьте все верные утверждения.

Выберите все подходящие ответы из списка

Это не функция распределения

Для случайной величины ξ с такой функцией распределения $P(2<\xi<3)=0$

Для случайной величины ξ с такой функцией распределения $P(2<\xi<3)=0.5$

Множество значений случайной величины с такой функцией распределения — отрезок [1,4]

Непрерывные случайные величины

Итак, давайте определим непрерывные случайные величины (при условии, что мы договорились определять случайные величины не полностью, а давать только их распределения)

Определение. Если F_{ξ} это непрерывная функция распределения, то случайная величина ξ называется непрерывной.

Легко убедиться, что во всех примерах, уже разобранных в этом уроке, функция распределения была непрерывной. А значит, соответствующие случайные величины были непрерывными.

Соответственно, если F_{ξ} разрывна, то случайная величина ξ не называется непрерывной. В частности, для всех дискретных случайных величин функция распределения должна быть разрывна.

Давайте лучше поймём эту связь между непрерывностью/разрывностью функции распределения и нашим пониманием непрерывных/дискретных случайных величин.

Функция распределения дискретной случайной величины

Функция распределения – это довольно универсальный инструмент, его можно применять и для описания дискретных случайных величин.

Определение функции распределения будет абсолютно таким же, как и в первой половине урока:

Определение. Для дискретной случайной величины ξ функция $F_{\xi}(x):=P(\xi\leqslant x)$ называется функцией распределения.

Заметьте, что из свойств дискретных случайных величин следует, что так определённая функция также удовлетворяет и определению из этого шага второй половины урока.

Пример 1

Нарисуем функцию распределения для количества орлов, выпавших при одном броске честной монетки (значения 0 и 1 с вероятностями 0.5). Она будет выглядеть так:

Давайте разберёмся, почему график получился именно такой. Пусть количество орлов это случайная величина ξ . Тогда

- ullet При x<0 имеем $P(\xi\leq x)=0$, так как ξ принимает только значения 0 и 1, каждое из которых больше x.
- При $0 \le x < 1$ имеем $P(\xi \le x) = 0.5$, так как с вероятностью 0.5 случайная величина ξ принимает значение 1 > x, и с вероятностью 0.5 значение $0 \le x$.
- ullet При $1 \leq x$ имеем $P(\xi \leq x) = 1$, так как ξ принимает только значения 0 и 1, каждое из которых меньше или равно x.

Определение. Точка разрыва функции это точка, в которой функция не непрерывна.

Как видите, функция получилась разрывной – у неё есть разрывы в точках 0 и 1.

Пример 2

Для честного кубика функция распределения выглядит так:

10 раз подбрасывается монет распределения такой случайн		арное количество орлов. Сколько	точек разрыва будет у функции	
Определение. Точка разрыва	функции это точка, в которой фун	кция не непрерывна.		
Определение. Точка разрыва о Введите численный отв		кция не непрерывна.		
		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		
Введите численный отв		кция не непрерывна.		

Точки разрыва и $P(\xi=a)=0$

Пусть нам дана функция распределения F_{ξ} . Как только через F_{ξ} определить $P(\xi=a)$? То есть как определить вероятность того, что ξ приняла конкретное значение a? Разумно определить так

$$P(\xi=a):=\lim_{\delta o 0}P(a-\delta<\xi\leq a)=\lim_{\delta o 0}(F_{\xi}(a)-F_{\xi}(a-\delta)),$$

где предел берётся по положительным δ . Заметьте, что правая часть зависит только от F_{ξ} .

Пусть функция распределения F_ξ непрерывна в точке a. Из непрерывности F_ξ в точке a следует, что

$$P(\xi=a) = \lim_{\delta \to 0} ((F_{\xi}(a) - F_{\xi}(a-\delta)) = 0.$$

То есть если F_ξ непрерывна в a, то $P(\xi=a)=0.$

Вывод. По определению непрерывности, непрерывные функции распределения непрерывны в каждой точке. Значит, если F_{ξ} непрерывна, то для любого a выполнено $P(\xi=a)=0$.

Аналогично можно показать, что если F_{ξ} разрывна в точке a, то $P(\xi=a)>0$. Мы этого делать не будем (примеры можно посмотреть на предыдущих двух шагах).

Что мы прошли на этом уроке

- Мы познакомились с функцией распределения случайной величины
- Прошли равномерное и экспоненциальное распределение
- Узнали свойства функций распределения

Что нас ждёт на следующем уроке

На следующем уроке мы

- узнаем, что такое плотность вероятности
- обсудим, какая за ней стоит интуиция
- снова убедимся, что интегралы нам всё-таки были нужны: они помогают вычислять вероятности