TRIGONOMETRY Chapter 06

RAZONES TRIGONOMÉTRICAS
DE UN ÁNGULO EN
POSICIÓN NORMAL I

CURIOSIDADES EN LA MATEMÁTICA

El numero $\pi(pi) = 3.14159...$

Es aquel ángulo trigonométrico cuyo vértice (V) está en el origen de coordenadas cartesianas , su lado inicial (LI) coincide con el semieje positivo de las abscisas, y su lado final (LF) nos indica el cuadrante o semieje al cual pertenece el ángulo.

Ejemplos:

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

$$r = \sqrt{x^2 + y^2}$$
; $r > 0$

y: Ordenada del punto P

x: Abscisa del punto P

r: Radio vector

Definiciones:

senα	cosα	tanα	cotα	secα	cscα
<u>y</u>	X	<u>y</u>	X	r	r
r	r	X	У	X	У

El lado terminal de un ángulo α en posición estándar pasa por el punto P(3;-4).- Calcule E = $\sec \alpha$ – $\tan \alpha$.

RESOLUCIÓN

$$r = \sqrt{(3)^2 + (-4)^2}$$
 $r = 5$

Calculamos E:

$$E = \sec \alpha - \tan \alpha$$

$$E = \frac{5}{3} - \frac{-4}{3} = \frac{9}{3}$$

secα	$tan \alpha$
r	<u>y</u>
X	X

Del gráfico mostrado, calcule:

$$P = \sqrt{13} sen \alpha - 6 tan \alpha$$

RESOLUCIÓN

Recordar:
$$x^2 + y^2 = r^2$$

$$x^2 + (-3)^2 = \sqrt{13}^2$$
 $x = -2$

$$x^2 + 9 = 13$$

$$x^2 = 4$$

$$\mathbf{x} = -2$$

Calculamos P:

$$P = \sqrt{13} sen \alpha - 6 tan \alpha$$

$$P = \sqrt{13} \left(\frac{-3}{\sqrt{13}} \right) - 6 \left(\frac{-3}{-2} \right)$$

$$P = -3 - 9$$

Selia	taria
<u>y</u>	<u>y</u>
r	X

Del gráfico, calcule:

$$E = \sec \alpha + \tan^2 \beta$$

RESOLUCIÓN

Recordar:
$$\mathbf{r} = \sqrt{x^2 + y^2}$$

$$\mathbf{r} = \sqrt{(-2)^2 + \sqrt{5}^2}$$

$$\mathbf{r} = 3$$

Calculamos E:

$$E = \sec \alpha + \tan^2 \beta$$

$$E = \frac{3}{-2} + \left(\frac{-2}{\sqrt{5}}\right)^2$$

$$\mathsf{E} = -\frac{3}{2} + \frac{4}{5} = \frac{-15 + 8}{10}$$

seca	tanβ
r	У
X	X

$$\therefore \mathsf{E} = -\frac{7}{10}$$

Del gráfico, si $tan\theta = 3$;

efectúe :
$$M = \sqrt{10} \cos \theta - n$$

Recordar:

tan 0	cosθ
У	X
X	r

RESOLUCIÓN

Dato:
$$tan\theta = 3$$

$$\frac{4n-1}{n-1} = 3$$
 $y = 4(-2) - 1 = -9$

$$3n-3=4n-1$$

$$x = -2 - 1 = -3$$

$$y = 4(-2) - 1 = -9$$

$$3n-3=4n-1$$
 $r = \sqrt{(-3)^2 + (-9)^2}$

$$n = -2 \qquad \qquad r = 3\sqrt{10}$$

Calculamos M:

$$M = \sqrt{10} \cos \theta - n$$

$$M = \sqrt{10} \left(\frac{-3}{3\sqrt{10}} \right) - (-2) = -1 + 2$$

$$r = \sqrt{x^2 + y^2}$$

Lucas ha rendido sus exámenes de Trigonometría, Geometría y Álgebra obteniendo las notas A, B y C, respectivamente.- Si los valores de A, B y C se obtienen resolviendo los siguientes ejercicios... ¿En cuál de los cursos obtuvo la mejor calificación?

 $A = 13 \operatorname{sen} \alpha + 5$

 $B = 11 - 13 \cos \alpha$

 $C = 5 - 24 \cot \alpha$

senα	cosa	cotα
У	X	X
r	r	У

RESOLUCIÓN

$$x^{2} + y^{2} = r^{2}$$
 $x^{2} = 25$
 $x^{2} + (12)^{2} = (13)^{2}$ $x = -5$
 $x^{2} + 144 = 169$

Luego: • $A = 13 \left(\frac{12}{13}\right) + 5 \implies A = 17$

• B =
$$11-13\left(\frac{-5}{13}\right) \Rightarrow$$
 B = 16

•
$$C = 5 - 24 \left(\frac{-5}{12} \right) \Rightarrow C = 15$$

Lucas obtuvo mejor calificación en Trigonometría

Si el lado final de un ángulo α en posición normal pasa por el punto de intersección de las rectas

$$L_1: 3x + y + 8 = 0$$

$$L_2: 5x - 2y - 5 = 0$$

Efectúe W = $\sqrt{26}$ (sen α + cos α)

RESOLUCIÓN

$$P(x;y) = L_1 \cap L_2$$

$$\begin{cases} (3x + y + 8 = 0)(2) \\ 5x - 2y - 5 = 0 \end{cases}$$

Luego:
$$6x + 2y + 16 = 0$$

 $5x - 2y - 5 = 0$
 $y = -5$

Recordar:
$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(-1)^2 + (-5)^2}$$

$$r = \sqrt{26}$$

senα	cosα
<u>y</u>	X
r	r

Calculamos W:

$$W = \sqrt{26} (sen\alpha + cos\alpha)$$

$$W = \sqrt{26} \left(\frac{-5}{\sqrt{26}} + \frac{-1}{\sqrt{26}} \right)$$

$$W = -5 - 1$$

$$W = -5 - 1 \qquad \therefore \qquad W = -6$$

Desde la torre de control del aeropuerto (punto O) se conoce la trayectoria de un avión como y = $\frac{x^2}{30}$ - 120 .- Cuando el avión se encuentra en el punto P a 30 m del eje Y, calcule $E = \sqrt{10}$ sec φ . tan φ . Nota : Considere que 1 u en el plano cartesiano equivale a 1 m.

RESOLUCIÓN

En P:
$$x = 30$$

$$y = \frac{x^2}{30} - 120 = \frac{30^2}{30} - 120 = -90$$

$$r = 30\sqrt{1^2 + (-3)^2} = 30\sqrt{10}$$

Luego calculamos E:

$$\mathsf{E} = \sqrt{10} \, \left(\frac{30\sqrt{10}}{30} \right) \left(\frac{-90}{30} \right)$$

$$E = 10(-3)$$

