

HiPerFET™ **Power MOSFETs**

IXFH/IXFM15N60 IXFH/IXFM20N60

 $\boldsymbol{R}_{DS(\underline{on)}}$ 600 V 0.50Ω 600 V 20 A 0.35Ω

 $t_{rr} \leq 250 \text{ ns}$

N-Channel Enhancement Mode High dv/dt, Low t_{rr}, HDMOS™ Family

Symbol	Test Conditions	Maximur	Maximum Ratings	
V _{DSS}	$T_J = 25^{\circ}C$ to $150^{\circ}C$	600	V	
V _{DGR}	$T_J = 25^{\circ}C$ to $150^{\circ}C$; $R_{GS} = 1 M\Omega$	600	V	
V _{GS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _c = 25°C	15N60 15 20N60 20	A A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	15N60 60 20N60 80	A A	
I _{AR}	$T_{c} = 25^{\circ}C$	15N60 15 20N60 20	A A	
E _{AR}	T _C = 25°C	30	mJ	
dv/dt	$\begin{split} I_{_{S}} & \leq I_{_{DM}}, di/dt \leq 100 \; A/\mu s, V_{_{DD}} \leq V_{_{DSS}}, \\ T_{_{J}} & \leq 150^{\circ}C, R_{_{G}} = 2 \; \Omega \end{split}$	5	V/ns	
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	T _C = 25°C	300	W	
T _J		-55 + 150	°C	
T _{JM}		150	°C	
T _{stg}		-55 + 150	°C	
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C	
$\overline{\mathbf{M}_{d}}$	Mountingtorque	1.13/10	Nm/lb.in.	
Weight		TO-204 = 18 g, TO-247 = 6 g		

Symbol	Test Conditions	Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$ min. typ. max.			
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	600			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4 \text{ mA}$	2.0		4.5	V
I _{gss}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}$ $V_{GS} = 0 V$	T _J = 25°C T _J = 125°C		250 1	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 \bullet I_{D25}$	15N60 20N60		0.50 0.35	Ω Ω
	Pulse test, t ≤ 300 μs, duty	cycle d ≤ 2 %			

TO-204 AE (IXFM)

G = Gate, D = Drain, S = Source, TAB = Drain

Features

- International standard packages
- Low R_{DS (on)} HDMOS[™] process
 Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- · Fast intrinsic Rectifier

Applications

- DC-DC converters
- Synchronous rectification
- Battery chargers
- Switched-mode and resonant-mode power supplies
- · DC choppers
- AC motor control
- Temperature and lighting controls
- · Low voltage relays

Advantages

- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- · Space savings
- · High power density

IXYS reserves the right to change limits, test conditions, and dimensions.

91526E (4/99)

Symbol	Test Conditions Characteristic Value $(T_J = 25^{\circ}C, \text{ unless otherwise specifie})$			
	min.	typ.	max.	
g_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 \cdot I_{D25}, \text{ pulse test}$ 11	18		S
C _{iss})	4500		pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	420		pF
\mathbf{C}_{rss}	J	140		pF
t _{d(on)})	20	40	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	43	60	ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 2 \Omega $ (External)	70	90	ns
$\mathbf{t}_{_{\mathrm{f}}}$)	40	60	ns
Q _{g(on)})	151	170	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	29	40	nC
\mathbf{Q}_{gd}	J	60	85	nC
R _{thJC}			0.42	K/W
R _{thCK}		0.25		K/W

I _s	V _{GS} = 0 V	15N60 20N60		15 20	A A
I _{SM}	Repetitive; pulse width limited by $T_{_{\rm JM}}$	15N60 20N60		60 80	A A
V _{SD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, dut	ty cycle d≤2 %		1.5	V
t _{rr}		T _J = 25°C T _J = 125°C		250 400	ns ns
\mathbf{Q}_{RM}	$\begin{cases} I_{F} = I_{S} \\ -di/dt = 100 \text{ A/}\mu\text{S}, \\ V_{D} = 100 \text{ V} \end{cases}$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	1 2		μC μC
I _{RM}		$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	10 15		A A

TO-247 AD (IXFH) Outline

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A		20.32	0.780	0.800
B		21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G H	1.65	2.13 4.5	0.065	0.084 0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

Dim.	Millimeter Inches		hes Max.	
A B	38.61	39.12 22.22	1.520	1.540 0.875
C	6.40	11.40	0.252	0.449
D	1.45	1.60	0.057	0.063
E	1.52	3.43	0.060	0.135
F	30.15	BSC	1.187	BSC
G	10.67	11.17	0.420	0.440
H	5.21	5.71	0.205	0.225
J	16.64	17.14	0.655	0.675
K	11.18	12.19	0.440	0.480
Q	3.84	4.19	0.151	0.165
R	25.16	26.66	0.991	1.050

Fig. 1 Output Characteristics

Fig. 3 $R_{DS(on)}$ vs. Drain Current

Fig. 5 Drain Current vs.

Case Temperature

Fig. 2 Input Admittance

Fig. 4 Temperature Dependence of Drain to Source Resistance

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig.7 Gate Charge Characteristic Curve

Fig.9 Capacitance Curves

Fig.10 Transient Thermal Impedance

Fig.8 Forward Bias Safe Operating Area

