Reduction of Order Examples 1. Solve toy" - 4ty + 6y =0, y, =to

Soln: Wt yz = vy,

Collect all the terms with v.

v(t2y," - 4ty,' + 6y,)=0

Since y, is a soln to the original eqn, this equals 0.

 t^2 ""y, $+ 2t^2$ "y, - 4t "y, = 0 v" $t^4 + 4$ " $t^3 - 4$ " $t^3 = 0$ v" $t^4 = 0$ v" = 0 v" = 50 dt $= c \leftarrow C$ is a constant. v = 5cdt = ct + c $\leftarrow c$ and c are constants.

Ut c and c equal 1 and o, respectively. v = t v = t

2. Solve t2 y" + 2ty' - 2y =0, Y, =t

 $f_5 \wedge_n A' + S + S +_5 \wedge_3 A', + f_5 \wedge_3 A', + S + A +_5 \wedge_3 A' + S +_5 \wedge_3 A', - S \wedge_3 A' = 0$ $f_5 (\wedge_n A') + S +_5 (\wedge_n A') + S +_5 (\wedge_n A') + S +_5 (\wedge_n A') - S \wedge_3 A' = 0$ $f_5 (\wedge_n A') + S +_5 (\wedge_n A') +_5 -_5 (\wedge_n A')$

Collect all the terms with v. $V(t^2y,"+2ty,'-2y,)=0$

 λ_{n} , t_{3} + λ_{1} , λ_{2} + λ_{2} , λ_{3} + λ_{1} , λ_{2} + λ_{2} , λ_{3} + λ_{2} , λ_{3} + λ_{2} , λ_{3} + λ_{3} , λ_{4} + λ_{1} , λ_{2} = λ_{1} , λ_{2} + λ_{3} , λ_{3} + λ_{4} , λ_{5} = λ_{5}

When we will and we will will be a simple of the second state of

 $M = f_{-d}$ $= C, (= f)_{-d}$ $= (e_{lu_{1}e_{1}})_{-d} \cdot e_{CS}$ Recall $v^2 = w$ v = Sw dt $= St^{-u} dt$ $= -3t^{-3} + C,$ $wt C_1 = 0$ $v = -3t^{-3}$

25 = 121 = (-3+-3)(+) = -3+-5