Spatial Autocorrelation

Luc Anselin

http://spatial.uchicago.edu

spatial randomness

positive and negative spatial autocorrelation

spatial autocorrelation statistics

spatial weights

Spatial Randomness

The Null Hypothesis

spatial randomness is absence of any pattern

spatial randomness is not very interesting

if rejected, then there is evidence of spatial structure

Interpreting Spatial Randomness

observed spatial pattern of values is equally likely as any other spatial pattern value at one location does not depend on values at other (neighboring) locations

Operationalizing Spatial Randomness

under spatial randomness, the location of values may be altered without affecting the information content of the data

random permutation or reshuffling of values

true map

randomly reshuffled

Tobler's First Law of Geography

everything depends on everything else, but closer things more so

structures spatial dependence

importance of distance decay

Positive and Negative Spatial Autocorrelation

Rejecting the Null Hypothesis

rejecting spatial randomness (s.r.)

like values in neighboring locations occur more frequently than for s.r.

= positive spatial autocorrelation

dissimilar (e.g., high vs low) in neighboring locations occur more frequently than for s.r.

= negative spatial autocorrelation

Positive Spatial Autocorrelation

impression of clustering

clumps of like values

like values can be either high (hot spots) or low (cold spots)

difficult to rely on human perception

Quantile: ZAR09 [-5.711:-1.931] (16) [-1.802:-1.099] (16) [-1.048:0.2079] (17) [0.2648:1.375] (17) [1.393:2.497] (17) [2.605:4.92] (17)

< positive s.a.

random >

Negative Spatial Autocorrelation

checkerboard pattern

hard to distinguish from spatial randomness

Quantile: ZARN09 [-4.277:-1.998] (16) [-1.977:-1.01] (16) [-0.8504:0.01313] (17) [0.01771:0.9521] (17) [0.9578:1.721] (17) [1.73:4.211] (17)

< negative s.a.

random >

Spatial Autocorrelation Statistics

What is a Test Statistic?

a statistic is any value that summarizes characteristics of a distribution

calculated from the data

test statistic: calculated from the data and compared to a reference distribution

how likely is the value if it had occurred under the null hypothesis (spatial randomness)

when unlikely (low p value) the null hypothesis is rejected

compare value of test statistic to its distribution under the null hypothesis of spatial randomness

Spatial Autocorrelation Statistic

captures both attribute similarity and locational similarity

how to construct an index from the data that captures both attribute similarity and locational similarity (i.e., neighbors are alike)

Attribute Similarity

summary of the similarity (or dissimilarity) of observations for a variable at different locations

variable y

locations i, j

how to construct $f(y_i, y_j)$

Similarity Measure

cross product: y_i.y_j

under randomness, cross product is not systematically large or small

when large values are systematically together, product will be larger, and vice versa

- Dissimilarity Measure
 - squared difference: (y_i -y_j)²
 - absolute difference: |y_i y_j|

under randomness, difference measure will not be systematically large or small

when small values or large values are systematically together, difference measures will be smaller

Locational Similarity

formalizing the notion of neighbors = spatial weights (w_{ij})

when are two spatial units i and j a priori likely to interact

not necessarily a geographical notion, can be based on social network concepts or general distance concepts (distance in multivariate space)

General Spatial Autocorrelation Statistic

general form

sum over all observations of an attribute similarity measure with the neighbors

 $f(x_ix_j)$ is attribute similarity between i and j for x

wij is a spatial weight between i and j

statistic = Σ_{ij} f(x_ix_j).w_{ij}

Spatial Weights

Basic Concepts

Why Spatial Weights

formal expression of locational similarity

spatial autocorrelation is about interaction

n x (n - I)/2 pairwise interactions but only n observations in a cross-section

insufficient information to extract pattern of interaction from cross-section

example: North Carolina has 100 counties 5,000 pairwise interactions, 100 observations

Solution

impose structure

limit the number of parameters to be estimated

incidental parameter problem = number of parameters grows with sample size

for spatial interaction, number of parameters grows with n²

Spatial Weights

exclude some interactions

constrain the number of neighbors, e.g., only those locations that share a border

single parameter = spatial autocorrelation coefficient

 strength of interaction = combined effect of coefficient and weights

small coefficient with large weights

large coefficient with small weights

six polygons - neighbors share common border

neighbor structure as a graph

Spatial Weights Matrix Definition

N by N positive matrix W with elements wij

w_{ij} non-zero for neighbors

 $w_{ij} = 0$, i and j are not neighbors

 $w_{ii} = 0$, no self-similarity

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1n} \\ w_{21} & w_{22} & \dots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \dots & w_{nn} \end{bmatrix}$$

spatial weights matrix W with elements wij

Geography-Based Spatial Weights

Binary Contiguity Weights

contiguity = common border

i and j share a border, then $w_{ij} = I$

i and j are not neighbors, then $w_{ij} = 0$

weights are 0 or 1, hence binary

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

binary contiguity weights matrix for six-region example

contiguity on a regular grid - different definitions

rook contiguity - edges only 2, 4, 6, 8 are neighbors of 5

bishop contiguity - corners only 1, 3, 7, 9 are neighbors of 5

queen contiguity - edges and corners 5 has eight neighbors

rook

obs 1448 has 3 neighbors: 1263, 1282, 1302

queen

Distance-Based Weights

distance between points

distance between polygon centroids or central points

in general, can be any function of distance that implies distance decay, e.g., inverse distance

in practice, mostly based on a notion of contiguity defined by distance

Distance-Band Weights

 w_{ij} nonzero for $d_{ij} < d$ less than a critical distance d

potential problem: isolates = no neighbors

make sure critical distance is max-min, i.e., the largest of the nearest neighbor distance for each observation

distance-band weights

Solano county, CA, distance-band neighbors d = 90 mi

distance-band weights

d = 80 mi no neighbors d = 90 mi one neighbor

Elko county, NV, distance band neighbors

k-Nearest Neighbor Weights

k nearest observations, irrespective of distance

fixes isolates problem for distance bands

same number of neighbors for all observations

in practice, potential problem with ties

needs tie-breaking rule (random, include all)

k-nearest neighbor weights

k = 4 k = 6

Elko county, NV, k-nearest neighbors

Table 1. Spatial weights formats supported by PySAL.

Туре	File extension
Sparse contiguity (SpaceStat, GeoDa, R spdep, etc.)	GAL
Sparse general weights (SpaceStat, GeoDa, R spdep, etc.)	GWT
ArcGIS text weights	TXT
ArcGIS dbf weights	DBF
ArcGIS swm weights	SWM
Matlab spatial weights (old version)	DAT
Matlab spatial weights (new version)	MAT
Lotus weights	WK1
GeoBUGS weights	TXT
Stata weights	TXT
MatrixMarket weights	MTX

many spatial weights file formats

Spatial Weights Transformations

Row-Standardized Weights

rescale weights such that Σ_j $w_{ij} = 1$

$$w_{ij}^* = w_{ij} / \sum_j w_{ij}$$

constrains parameter space

makes analyses comparable

spatial lag = average of the neighbors

$$\mathbf{W}^* = \begin{bmatrix} 0 & 1/3 & 0 & 1/3 & 1/3 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

row-standardized weights matrix

Stochastic Weights

double standardization

$$w_{ij}^* = w_{ij} / \sum_i \sum_j w_{ij}$$

rescaled such that $\Sigma_i \Sigma_j w_{ij} = I$

similar to probability

$$\mathbf{W}^* = \begin{bmatrix} 0 & 1/16 & 0 & 1/16 & 1/16 & 0 \\ 1/16 & 0 & 0 & 1/16 & 1/16 & 0 \\ 0 & 0 & 0 & 0 & 1/16 & 1/16 \\ 1/16 & 1/16 & 0 & 0 & 1/16 & 0 \\ 1/16 & 1/16 & 1/16 & 1/16 & 0 & 0 \\ 0 & 0 & 1/16 & 0 & 0 & 0 \end{bmatrix}.$$

stochastic weights matrix

second order contiguity: neighbor of neighbor

redundancy in higher order contiguity paths of lenght 2 between I and other cells

Higher Order Weights

recursive definition

 k-th order neighbor is first order neighbor of (k-1)th order neighbor

avoid duplication, only unique neighbors of a given order (not both first and second order)

pure contiguity or cumulative contiguity, i.e., lower order neighbors included in weights

obs 1448 has 13 neighbors: 1006, 1102, 1142, 1169, 1173, 1234, 1

exclusive of first order

inclusive of first order

Solano county, CA, second order contiguity

Properties of Weights

Connectivity Histogram

histogram of number of neighbors

neighbor cardinality

diagnostic for "isolates" or neighborless units

assess characteristics of the distribution

Things to Watch for

isolates

need to be removed for proper spatial analysis

do not need to be removed for standard analysis

very large number of neighbors

bimodal distribution

rook queen

connectivity histogram - contiguity weights U.S. counties

default distance 90 mi

critical distance 80 mi

connectivity histogram - contiguity weights U.S. counties

contiguity histogram for k-nearest neighbors or, what did you expect?

