1 But du T.P.

Le but de ce T.P. est de mettre en oeuvre un amplificateur opérationnel de type 741. Le brochage du circuit est donné à la figure 1a.

Sauf mention contraire, la polarisation des différents boîtiers se fera de façon symétrique par rapport à la masse du montage (figure 1b) avec $V_{cc} = 8V$.

2 Matériel

Materiel par poste de travail:

- -1 oscilloscope +2 sondes
- 1 générateur basses fréquences (GBF)
- 1 alimentation double
- 1 amplificateur opérationnel LM741
- Résistances diverses

3 Montages en fonctionnement linéaire

Dans cette partie, la contre-réaction permet de maintenir l'amplificateur en zone linéaire et le signal de sortie est alors proportionnel au signal d'entrée.

3.1 Montage suiveur

Réaliser le montage suivant avec $R_g = R_{load} = 10k\Omega$:

1. Déterminer la valeur de la tension V_s en fonction de V_e .

- 2. Donner l'oscillogramme des tensions V_e et V_s en prenant $V_e = 5V_{pp}$, puis $V_e = 16V_{pp}$.
- 3. Reprendre les questions 1 et 2 pour le montage suivant :

4. Comparer ces deux montages et donner leurs avantages et inconvénients.

3.2 Montage amplificateur

Soit le montage amplificateur ci-dessous avec $R=(R_1\parallel R_2)=270\Omega,\,V_e=0.4V_{pp}$ et f=10kHz:

- 1. Déterminer R_1 et R_2 de telle sorte que le gain ait pour valeur G=9.
- 2. Réaliser le montage en réglant l'alimentation DC de l'AOP à +8V/-8V.
- 3. Donner l'oscillogramme des tensions V_e et V_s . Le signal est-il inversé?
- 4. Régler l'alimentation DC de l'AOP à +8V/-2V.
- 5. Donner l'oscillogramme des tensions V_e et V_s . Que constatez-vous ?
- 6. Reprendre les questions 2 à 5 pour le montage ci-dessous :

3.3 Additionneur

Soit le montage additionneur ci-dessous avec $R = (R_f \parallel R_1 \parallel R_2) = 68\Omega$:

- 1. Déterminer les valeurs de R_f , R_1 et R_2 en prenant :
 - $G_1 = 5$; $V_1 = 1V_{pp}$; $f_1 = 5kHz$ - $G_2 = 1$; $V_2 = 1V_{pp}$; $f_2 = 20kHz$
- 2. Réaliser le montage en réglant l'alimentation DC de l'AOP à +8V/-8V.
- 3. Donner l'oscillogramme des tensions V_e et V_s . Qu'en concluez-vous?
- 4. En changeant la disposition des résistances, rendre ce montage non-inverseur.
- 5. Reprendre les questions 2 et 3 pour tester ce nouveau montage.

3.4 Amplificateur différentiel

Soit le montage amplificateur différentiel suivant avec $R_1 = 680\Omega$:

- 1. Déterminer la valeur de \mathbb{R}_2 en prenant :
 - -G = 0.5
 - $-V_1 = 5V_{pp}$; $f_1 = 5kHz$
 - $V_2 = 1V_{pp} \; ; \, f_2 = 20kHz$
- 2. Réaliser le montage en réglant l'alimentation DC de l'AOP à +8V/-8V.
- 3. Donner l'oscillogramme des tensions V_e et V_s . Qu'en concluez-vous ?
- 4. En changeant la disposition des résistances, transformer l'amplificateur différentiel en soustracteur.
- 5. Reprendre les questions 2 et 3 pour tester ce nouveau montage.

4 Montage en fonctionnement non-linéaire : Comparateur à hystérésis

Soit le montage ci-dessous avec $R_1 = 4.7k\Omega$ et $R_2 = 47k\Omega$:

- 1. Donner l'expression de V_s en fonction de V_e , les seuils de basculement et la largeur d'hystérésis.
- 2. Réaliser le montage en réglant l'alimentation DC de l'AOP à +8V/-8V et la tension V_e à $5V_{pp}$ pour une fréquence f=1kHz.
- 3. Donner l'oscillogramme des tensions V_e et V_s . Qu'en concluez-vous ?
- 4. Relever la fonction de transfert en utilisant le mode XY de l'oscilloscope.
- 5. Mesurer alors les seuils de basculement, la largeur de l'hystérésis.
- 6. Comparer les valeurs relevées aux résultats théoriques. Qu'en concluez-vous?

