Project - 5 (DATASET: Online Retail) The transactions

made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9, 2011, are all included in the transnational data set known as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]:

- 1 import pandas as pd
- 2 **from** matplotlib **import** pyplot as plt
- 3 %matplotlib inline

In [3]:

- 1 df=pd.read_csv(r"C:\Users\91628\Downloads\OnlineRetail.csv")
- 2 df

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	ŀ
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	ŀ
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	ŀ
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	ŀ
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	ŀ
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	

541909 rows × 8 columns

In [4]:

1 df.head()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [5]:

1 df.tail()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
4				_				

```
In [6]:
 1 df['InvoiceNo'].value_counts()
Out[6]:
InvoiceNo
573585
           1114
            749
581219
581492
            731
580729
            721
            705
558475
           . . .
554023
              1
554022
              1
554021
              1
554020
              1
              1
C558901
Name: count, Length: 25900, dtype: int64
In [7]:
 1 df['CustomerID'].value_counts()
Out[7]:
CustomerID
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
           . . .
15070.0
              1
15753.0
              1
17065.0
              1
16881.0
              1
16995.0
              1
Name: count, Length: 4372, dtype: int64
In [8]:
 1 df['Quantity'].value_counts()
Out[8]:
Quantity
 1
          148227
 2
           81829
 12
           61063
           40868
 6
4
           38484
-472
               1
-161
               1
-1206
               1
               1
-272
               1
Name: count, Length: 722, dtype: int64
```

In [9]:

```
plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[9]:

Text(0, 0.5, 'Quantity')

In [10]:

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
# Column Non-Null Count Dtype
```

#	Column	Non-Null Count	Dtype					
0	InvoiceNo	541909 non-null	object					
1	StockCode	541909 non-null	object					
2	Description	540455 non-null	object					
3	Quantity	541909 non-null	int64					
4	InvoiceDate	541909 non-null	object					
5	UnitPrice	541909 non-null	float64					
6	CustomerID	406829 non-null	float64					
7	Country	541909 non-null	object					
<pre>dtypes: float64(2), int64(1), object(5)</pre>								
memory usage: 33.1+ MB								

```
In [12]:
 1 df.isnull().sum()
Out[12]:
InvoiceNo
                    0
StockCode
                    0
Description
                 1454
Quantity
                    0
InvoiceDate
                    0
UnitPrice
                    0
CustomerID
               135080
Country
                    0
dtype: int64
In [13]:
 1 df.fillna(method='ffill',inplace=True)
In [14]:
 1 df.isnull().sum()
Out[14]:
InvoiceNo
               0
StockCode
               0
Description
               0
Quantity
               0
InvoiceDate
               0
UnitPrice
               0
CustomerID
               0
Country
               0
dtype: int64
In [15]:
 1
    from sklearn.cluster import KMeans
    km=KMeans()
 3
    km
Out[15]:
▼ KMeans
```

KMeans()

In [16]:

```
1 y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
2 y_predicted
3
```

C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(

Out[16]:

array([4, 4, 4, ..., 2, 2, 2])

In [17]:

```
1 df["cluster"]=y_predicted
2 df.head()
```

Out[17]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdorr
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								

In [18]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[18]:

Text(0, 0.5, 'Quantity')

In [19]:

```
1 from sklearn.preprocessing import MinMaxScaler
```

- 2 scaler=MinMaxScaler()
- 3 scaler.fit(df[["Quantity"]])
- 4 df["Quantity"]=scaler.transform(df[["Quantity"]])
- 5 df.head()

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [20]:

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[20]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom

K-Means Clustering

```
In [22]:
```

```
1 km=KMeans()
```

In [23]:

```
1 y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
2 y_predicted
```

C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(

Out[23]:

```
array([6, 6, 6, ..., 7, 7, 7])
```

In [24]:

1 df["New Cluster"]=y_predicted
2 df.head()

Out[24]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4								

In [25]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[25]:

Text(0, 0.5, 'Quantity')

In [26]:

```
1 km.cluster_centers_
```

Out[26]:

In [27]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker=
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[27]:

Text(0, 0.5, 'Quantity')

In [28]:

```
1 k_rng=range(1,10)
2 sse=[]
```

```
In [30]:
```

```
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["CustomerID","Quantity"]])
    sse.append(km.inertia_)
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
```

C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-package s\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-package s\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-package s\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-package s\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`

explicitly to suppress the warning

In [32]:

```
for k in k rng:
    km=KMeans(n_clusters=k)
 2
     km.fit(df[["CustomerID","Quantity"]])
    sse.append(km.inertia_)
    #km.inertia_ will give you the value of sum of square error
 5
    print(sse)
    plt.plot(k_rng,sse)
 7
    plt.xlabel("K")
 9 plt.ylabel("Sum of Squared Error")
 warmings.warm(
C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-package
s\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
C:\Users\91628\AppData\Local\Programs\Python\Python311\Lib\site-package
s\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
[46374.84553398485, 11336.065305485563, 4921.706891841403, 2723.5191051
89462, 1695.0459096516024, 1178.4780731904316, 910.3083137510043, 677.2
524027869518, 528.4450344617428, 46374.84553398485, 11336.065820168866,
4916.0914874231, 2723.511227089293, 1695.0400940319334, 1178.5290095375
25, 902.5514533529227, 676.782462130474, 532.5443875394046, 46374.84553
398485, 11336.065820168866, 4915.901018401742, 2723.519105189463, 1695.
1243965135402, 1178.421985263157, 918.3374084334254, 677.291748866367,
530.1248166171943]
```

Conclusion

For the given dataset we use K-means Clustering and done the grouping based on the given data.In the above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

```
In [ ]:

1
```