Teoria Sistemelor. Laborator 6: Sisteme cu eșantionare

Exercițiul 1. Scriptul Matlab din Listing 1 ilustrează trei semnale de tip cosinus eșationate cu o perioadă fixă T:

$$x_1(t) = cos(2\pi f_1 t),$$
 $f_1 = 1$ [Hz];
 $x_2(t) = cos(2\pi f_2 t),$ $f_2 = 9$ [Hz];
 $x_3(t) = cos(2\pi f_3 t),$ $f_3 = 11$ [Hz].

Listing 1: alegere_perioda_cosinus.m

```
1  % trei frecvente diferite
2  f1=1;f2=9;f3=11;
3
4  T=0.1; % perioada de esantionare
5  t=0:T:1;
  x1=cos(2*pi*f1*t);
  x2=cos(2*pi*f2*t);
  x3=cos(2*pi*f3*t);
9
10  % reprezentare grafica
11  figure
12  plot(t,x1,'-o',t,x2,'-o',t,x3,'-o','linewidth',1.5,'markersize',5);shg;
13  legend('x-1','x-2','x-3')
14  xlabel('Time [s]')
15  ylabel('x(t) = cos(2 \pi f t)'), grid minor
```

- 1. Executați scriptul pentru $T \in \left\{\frac{1}{10}, \frac{1}{20}, \frac{1}{40}, \frac{1}{100}, \frac{1}{1000}\right\} [s]$ și comentați rezultatele obținute.
- 2. Specifați în ce cazuri apare fenomanul de aliasing și care este valoarea maximă permisă pentru perioada T astfel încât toate cele trei semnale $x_1(t)$, $x_2(t)$, $x_3(t)$ să fie corect eșantionate.

Exercițiul 2. Se consideră sistemul în buclă închisă din Figura 1 cu funcția de transfer a procesului:

$$G(s) = \frac{1}{s^2}$$

Regulatorul calculat pentru acest proces are funcția de transfer:

$$G_c(s) = \frac{8(s+1)}{s+4}$$

1. Determinați funcția de transfer în z, $G_{c1}(z)$, utilizând transformarea din relația (1) și cu perioada de eșantionare ca parametru.

$$s = \frac{1 - z^{-1}}{T} \tag{1}$$

Figure 1:

2. Determinați funcția de transfer în z, $G_{c2}(z)$, cu transformarea Tustin din relația (2) și cu perioada de eșantionare ca parametru:

$$s = \frac{2(1-z^{-1})}{T(1+z^{-1})} \tag{2}$$

- 3. Construiți în același model Simulink diagrama în buclă închisă cu o intrare treaptă:
 - (a) Sistemul continuu din Figura 1.
 - (b) Sistemul cu schema bloc din Figura 2 unde $G_c(z) = G_{c1}(z)$ este un bloc Discrete transfer function cu numărătorul și numitorul calculate cu transformarea (1).
 - (c) Sistemul cu schema bloc din Figura 2 unde $G_c(z) = G_{c2}(z)$ este un bloc Discrete transfer function cu numărătorul și numitorul calculate cu transformarea Tustin (2).

Figure 2:

- 4. Simulați cele trei sisteme pentru diferite valori ale perioadei de eșantionare și comentați rezultatele. Sugestii posibile: $T \in \{0.1, 0.05, 0.01\}$.
- 5. Pentru regulatorul discretizat $G_{c1}(z) = U(z)/E(z)$, determinați ecuația recurentă pentru valorile semnalului de comandă u_k din valorile curente și anterioare ale erorii (e_k, e_{k-1}) și valorile anterioare ale comenzii (u_{k-1}) .

Exercițiul 3. Considerați sistemul aflat la limita de stabilitate cu următoarea funcție de transfer:

$$G(s) = \frac{1}{s^2 + 1}$$

Sistemul are o pereche de poli pe axa imaginară, $s_{1,2}=\pm j$, prin urmare, este marginal stabil.

1. Discretizați G(s) utilizând metoda zero-order hold (ZOH) și o perioadă de eșantionare arbitrară T>0:

$$G_1(z) = Z\{G_0(s) \cdot G(s)\} = Z\left\{\frac{1 - e^{-sT}}{s} \cdot G(s)\right\}.$$
 (3)

Verificați stabilitatea sistemului obținut $G_1(z)$ și comentați rezultatele.

Idee: Utilizați tabelul de transformate Z din Tabelul 1.

2. Discretizați G(s), de unde rezultă $G_2(z)$, menținând perioada de eșantionare ca parametru T > 0, dar cu transformarea:

$$s = \frac{1 - z^{-1}}{T}$$

Verificați stabilitatea sistemului obținut $G_2(z)$ și comentați rezultatele.

3. Ilustrați în aceeași figură simulările răspunsurilor la treaptă unitară pentru sistemele G(s), $G_1(z)$ and $G_2(z)$ pentru o perioadă aleasă a lui T > 0.

Exercițiul 4. Se consideră următoarele sisteme cu intrarea u și ieșirea y ale căror comportamente pot fi descrise prin ecuațiile cu diferențe:

- a) y(k) + 0.5y(k-1) 0.36y(k-2) = u(k-1) + u(k-2).
- b) y(k) y(k-1) = 2u(k).
- c) y(k) 0.8y(k-1) + 0.65y(k-2) = 2u(k-1) + 0.4u(k-2).
- d) y(k) = 0.2y(k-1) + 1.2y(k-2) + u(k-1) 1.5u(k-2).
- 1. Deduceți funcția de transfer discretă G(z) pentru fiecare sistem.
- 2. Sunt stabile sistemele? Justificați răspunsul.
- 3. Care este polul dominant?

Idee: Utilizați maparea dintre planul-s și planul-z pentru polii sistemelor:

$$z = e^{sT}$$
, pentru $T > 0$,

și transpuneți condiția de pol dominant din planul-s, ținând cont că funcțiile obținute din răspunsul la impuls, pe baza tabelului de transformate Z, au forma $f(k) = z^k$, $k \ge 0$, în cazul polilor reali și $f(k) = |z|^k \cdot \sin(\angle z \cdot k + \varphi)$, $k \ge 0$, în cazul perechilor de poli complex conjugați.

Exercițiul 5. Utilizând funcția zpk din MATLAB, deduceți funcțiile de transfer numerice G(z) cu următoarele configurații ale zerourilor, polilor, factorului de amplificare și perioadă de eșantionare:

- a) $z_1 = 0.5, p_1 = 0.9, k = 1.8, T = 0.25 [s]$
- b) $z_1 = 0, p_{1,2} = \pm 0.8, k = -0.2, T = 2 [\mu s]$
- c) $p_{1,2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}j, k = 1, T = 10 [s]$
- d) $z_1 = 0$, $p_1 = 1$, $p_2 = 0.3$, k = 2.5, T = 1 [s]
- e) $z_1 = -0.2$, $p_1 = 1.05$, k = 4, T = 0.5 [ms]
- 1. Verificați dacă răspunsul la treaptă unitară ajunge la o valoare staționară și calculați această valoare pe baza funcției de transfer G(z). Validați cu ajutorul funcției step din MATLAB. Comentați rezultatele pe baza corelației cu stabilitatea sistemului.

Idee: Utilizați maparea dintre planul-s și planul-z pentru polii sistemelor:

$$z = e^{sT}$$
, pentru $T > 0$,

sau Teorema Valorii Finale din Tabelul 2.

2. Calculati ecuatiile cu diferente corespunzătoare sistemelor G(z) din enunt.

$Domeniul\ timp$	$Transformata\ Laplace$	$Transformata\ Z$
f(t)	$F(s) = \mathcal{L}[f(t)] = \int_{-\infty}^{\infty} f(t)e^{-st}dt$	$F(z) = \mathcal{Z}[f(t) _{t=kT}] = \sum_{k=0}^{\infty} f(kT)z^{-k}$
$\delta(t)$	1	1
1	$\frac{1}{s}$	$\frac{z}{z-1}$ Tz
t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$
e^{-at}	$\frac{1}{s+a}$	$rac{z}{z-e^{-aT}} \ z\sin\omega T$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$ $\frac{z(z - \cos\omega T)}{z(z - \cos\omega T)}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$\frac{\overline{z^2 - 2z\cos\omega T + 1}}{ze^{-aT}\sin\omega T}$ $\frac{\overline{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2 + \omega^2}$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$

Table 1: Tabelul de transformate

Proprietatea	Timp discret	Domeniul- z
	f(kT)	$F(z) = \mathcal{Z}[f(kT)]$
Linearitate	$af_1(kT) + bf_2(kT)$	$aF_1(z) + bF_2(z)$
Deplasare la dreapta cu T	f((k-1)T)	$z^{-1}F(z)$
Deplasare la dreapta cu nT	f((k-n)T)	$z^{-n}F(z)$
Deplasare la stânga cu T	f((k+1)T)	zF(z) - zf(0)
Deplasare la stânga cu nT	f((k+n)T)	$z^n F(z) - \sum_{i=0}^{n-1} f(iT) z^{k-i}$
Teorema Valorii Finale	$f(\infty) = \lim_{k \to \infty} f(kT)$	$\lim_{z \to 1} (z - 1)F(z) \text{ dacă polii}$
		funcției $(z-1)F(z)$ se află
		în discul unitate

Table 2: Proprietăți ale transformatei Z