Stability of LPV

Rafael Wisniewski

Section for Automation & Control Aalborg University Denmark

October 3rd, 2017

Consider LPV in LFT form

$$\dot{x}(t) = Ax(t) + Bw(t)$$

$$z(t) = Cx(t) + Dw(t)$$

$$w(t) = \theta(\rho(t))z(t).$$

LPV in LFT

Suppose that $\hat{G}(s) = C(sI - A)^{-1}B + D$.

Proposition

The following statements are equivalent:

- **1** The LTI system G is asymptotically stable.
- 2 The system G has finite L_2 -norm.
- **1** The system \hat{G} has finite H_{∞} -norm.

Proposition (Bounded-Real Lemma)

 $||\hat{G}||_{\mathcal{H}_{\infty}} < \gamma$ if and only if

$$\begin{bmatrix} A^T P + PA & PB & C^T \\ * & -\gamma I & D^T \\ * & * & -\gamma I \end{bmatrix} < 0$$

Furthermore, the above LMI is equivalent to

$$\dot{V}(x(t)) - \gamma u(t)^{T} u(t) + \gamma^{-1} y(t)^{T} y(t) < 0$$

for
$$V(x) = x^T P x$$

Small Gain Theorem

Theorem

Suppose that $||M||_{H_{\infty}} < 1$ and $||\Delta||_{H_{\infty}} \le 1$, then the interconnection on the blackboard is asymptotically stable.

Small Gain Theorem

$\mathsf{Theorem}$

Suppose that $||M||_{H_{\infty}} < 1$ and $||\Delta||_{H_{\infty}} \le 1$, then the interconnection on the blackboard is asymptotically stable.

Proposition

The following statements are equivalent:

- The interconnection on the blackboard is stable for all $\Delta(s)$ with $||\Delta||_{H_{\infty}} \leq 1$.
- 2 The transfet function M(s) is such that $||M||_{H_{\infty}} < 1$

For LPV, we will work with the induced L_2 norm of linear operators (systems).

Suppose that $\theta(\rho)$ is defined for $\rho \in \Delta_{\rho}$, and let $w(t) = \theta_{\rho}(z)(t) = \theta(\rho(t))z(t)$ Let $\mathcal{P} \equiv \{\rho : \mathbb{R}_{\geq 0} \to \Delta_{\rho}\}$. The L_2 -norm of the operator θ_{ρ} is $\sup_{\rho \in \mathcal{P}} ||\theta_{\rho}||_{L_2 - L_2} = \max_{\xi \in \Delta_{\rho}} ||\theta(\xi)||_2.$

Proposition

Suppose that $||\theta_{\rho}||_2 \leq 1$ for all $\rho \in \mathcal{P}$, then the LPV system

$$\dot{x}(t) = Ax(t) + Bw(t)$$

$$z(t) = Cx(t) + Dw(t)$$

$$w(t) = \theta(\rho(t))z(t)$$

is asymptotically stable if

$$||\hat{G}||_{H_{\infty}} < 1.$$

• **Generalised form of LPV** for performance specification (from the input signal *w* to the output signal *z*):

$$\dot{x}(t) = A(\rho(t))x(t) + B(\rho(t))u(t) + E(\rho(t))w(t)
z(t) = C(\rho(t))x(t) + D(\rho(t))u(t) + F(\rho(t))w(t)
y(t) = \bar{C}(\rho(t))x(t) + \bar{F}(\rho(t))w(t)
x(0) = x_0$$

- Control types:
 - Unconstrained velocities of parameters

$$\mathcal{P}^{\infty} = \{ \rho : \mathbb{R}_{>0} \to \Delta_{\rho} \}$$

2 Constrained velocity $\dot{\rho}$

$$\mathcal{P}^{\mathsf{v}} = \{ \rho : \mathbb{R}_{\geq 0} \to \Delta_{\rho} | \ \dot{\rho}(t) \in \Delta_{\mathsf{v}}, \ t \geq 0 \}$$

Gain-scheduled state feedback:

$$u(t) = K(\rho(t))x(t).$$

State-feedback with L₂-gain performance constraint

• Recall that that quadratic stability (with Lyapunov function $V(x) = x^T P x$) provides stability for all $u \in \mathcal{P}^{\infty}$

Proposition (Quadratic Stabilisation by State Feedback)

The LPV in the generalized form is **quadratically** stabilizable by the state feedback $u(t) = K(\rho(t))x(t)$. If and only if there is an n by n matrix X>0 and a matrix valued function $Y:\Delta_{\rho}\to\mathbb{R}^{m\times n}$ such that the following LMI holds for all $\rho\in\Delta_{\rho}$

$$\begin{bmatrix} \operatorname{He}[A(\rho)X + B(\rho)Y(\rho)] & E(\rho) & [C(\rho)X + D(\rho)Y(\rho)]^T \\ * & -\gamma I & F(\rho)^T \\ * & * & -\gamma I \end{bmatrix} < 0$$

Moreover, the state-feedback control given by

$$u(x) = Y(\rho)X^{-1}x$$

ensures that $||z||_{L_2} \le \gamma ||w||_{L_2} + (\gamma x_0^T X^{-1} x_0)^{1/2}$ for all $w \in L_2$ and all $\rho \in \mathcal{P}^{\infty}$.

Polytopic LPV Systems

$$\dot{x}(t) = A(\lambda(t))x(t) + Bu(t) + E(\lambda(t))w(t)$$

$$z(t) = C(\lambda(t))x(t) + Du(t) + F(\lambda(t))w(t)$$

$$x(0) = x_0$$

$$A(\lambda) = \sum_{i=1}^{N} \lambda_i A_i, \quad E(\lambda) = \sum_{i=1}^{N} \lambda_i E_i,$$

$$C(\lambda) = \sum_{i=1}^{N} \lambda_i C_i, \quad F(\lambda) = \sum_{i=1}^{N} \lambda_i F_i$$

Proposition

The polytopic LPV system is **quadratically** stabile using a gain-scheduled state-feedback if there are a matrix $X \in \mathbf{S}_{>0}^N$, amtrices $Y_i \in \mathbb{R}^{m \times n}$, $i = 1, \ldots, N$ and a scalar $\gamma > 0$ such that the I MIs

$$\begin{bmatrix} \operatorname{He}[A_iX + BY_i] & E_i & [C_iX + DY_i]^T \\ * & -\gamma I & F_i^T \\ * & * & -\gamma I \end{bmatrix} < 0$$

hold for all i = 1, ..., N. Furthermore, the gain given by

$$K_i = Y_i X^{-1}$$

ensures that the L_2 -gain of the transfer function $w \mapsto z$ is smaller than γ for all $\lambda : \mathbb{R} : > 0 \to \Lambda_N$.

Proposition (Robust Stabilisation by State Feedback)

The LPV in the generalized form is **robustly** stabilizable by the state feedback $u(t) = K(\rho(t))x(t)$. If and only if there is a matrix function $\Delta_{\rho} \to \mathbf{S}_{>0}^n$ and a matrix function $Y: \Delta_{\rho} \to \mathbb{R}^{m \times n}$ such that the following LMI holds for all $(\rho, \nu) \in \Delta_{\rho} \times \mathrm{vert}(\Delta_{\nu})$

$$\begin{bmatrix} \Sigma(\rho,\nu) & E(\rho) & [C(\rho)X(\rho) + D(\rho)Y(\rho)]^T \\ * & -\gamma I & F(\rho)^T \\ * & * & -\gamma I \end{bmatrix} < 0$$

with

$$\Sigma(\rho,\nu) \equiv \operatorname{He}[A(\rho)X(\rho) + B(\rho)Y(\rho)] + \sum_{i=1}^{N} \nu_{i} \frac{\partial X(\rho)}{\partial \rho_{i}}.$$

Moreover, the state-feedback control given by

$$u(x) = Y(\rho)X(\rho)^{-1}x$$

Proposition (Polytopic LPV)

The LPV system is **robustly** stabilizable using state-feedback if there exist matrices $Q_i \in \mathbf{S}_{>0}^N$, $i=1,\ldots,N$, a matrix $W \in \mathbb{R}^{n \times n}$ and a sufficiently large $\xi > 0$ such that LMIs

$$\begin{bmatrix} -\mathrm{He}[W] & Q_i + A_iW + BY_i & W & E_i & (C_iW + DY_i)^T \\ * & -\xi Q_i + \sum_{j=1}^N Q_j\theta_j & 0 & 0 & 0 \\ * & * & -Q_i/\xi & 0 & 0 \\ * & * & * & -\gamma I & F_i^T \\ * & * & * & * & -\gamma I \end{bmatrix} < 0$$

hold for all i = 1, ..., N, and all $\theta \in \operatorname{vert}(\dot{\Lambda}_N)$. Furthermore the gain-scheduled controller

$$K_i = Y_i W^{-1}$$

ensures that the L₂-gain of the transfer function $w \mapsto z$ is smaller than γ for all $\lambda \in \Lambda_N$ and $\dot{\lambda} \in \dot{\Lambda}_N$.

Dynamic output feedback control

There exists a gain-scheduled dynamic output feedback control

$$\dot{x}_c(t) = A_c(\rho(t))x_c(t) + B_c(\rho(t))y(t)$$

$$u(t) = C_c(\rho(t))x_c(t) + D_c(\rho(t))y(t)$$

of order n that **quadratically** stabilizes the generalized LPV and ensures the L_2 gain of the transfer function $w\mapsto z$ is less than $\gamma>0$ if and only if there are matrices $X_1>0,\,Y_1>0$ such that

$$\begin{split} N_Y(\rho)^T \begin{bmatrix} A(\rho)Y_1 + Y_1A(\rho(t))^T & Y_1C(\rho)^T & E(\rho) \\ * & -\gamma I & F(\rho) \\ * & * & -\gamma I \end{bmatrix} N_Y(\rho) < 0, \end{split}$$

$$N_X(\rho)^T \begin{bmatrix} X_1 A(\rho) + A(\rho(t))^T X_1 & X_1 E(\rho)^T & C(\rho) \\ * & -\gamma I & F(\rho)^T \\ * & * & -\gamma I \end{bmatrix} N_X(\rho) < 0,$$

and ...

. . .

$$\begin{bmatrix} X_1 & I \\ * & Y_1 \end{bmatrix} > 0$$

hold for all $ho\in\Delta_
ho$ and for full-rank matrices $N_X(
ho),N_Y(
ho)$ defined as

$$\begin{bmatrix} \bar{C}(\rho) & \bar{F}(\rho) & 0 \end{bmatrix} N_X(\rho) = 0 \text{ and } N_Y(\rho)^T \begin{bmatrix} B(\rho) \\ D(\rho) \\ 0 \end{bmatrix} = 0.$$