# DS2003 Multi-Channel A/D Board

# **Features**

Release 2021-A - May 2021



### How to Contact dSPACE

Mail: dSPACE GmbH

Rathenaustraße 26 33102 Paderborn

Germany

Tel.: +49 5251 1638-0
Fax: +49 5251 16198-0
E-mail: info@dspace.de
Web: http://www.dspace.com

### How to Contact dSPACE Support

If you encounter a problem when using dSPACE products, contact your local dSPACE representative:

- Local dSPACE companies and distributors: http://www.dspace.com/go/locations
- For countries not listed, contact dSPACE GmbH in Paderborn, Germany.
   Tel.: +49 5251 1638-941 or e-mail: support@dspace.de

You can also use the support request form: http://www.dspace.com/go/supportrequest. If you are logged on to mydSPACE, you are automatically identified and do not need to add your contact details manually.

If possible, always provide the relevant dSPACE License ID or the serial number of the CmContainer in your support request.

### Software Updates and Patches

dSPACE strongly recommends that you download and install the most recent patches for your current dSPACE installation. Visit http://www.dspace.com/go/patches for software updates and patches.

### Important Notice

This publication contains proprietary information that is protected by copyright. All rights are reserved. The publication may be printed for personal or internal use provided all the proprietary markings are retained on all printed copies. In all other cases, the publication must not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of dSPACE GmbH.

© 2003 - 2021 by: dSPACE GmbH Rathenaustraße 26 33102 Paderborn Germany

This publication and the contents hereof are subject to change without notice.

AUTERA, ConfigurationDesk, ControlDesk, MicroAutoBox, MicroLabBox, SCALEXIO, SIMPHERA, SYNECT, SystemDesk, TargetLink and VEOS are registered trademarks of dSPACE GmbH in the United States or other countries, or both. Other brand names or product names are trademarks or registered trademarks of their respective companies or organizations.

# Contents

| About This Document                          | 5   |
|----------------------------------------------|-----|
| Introduction to the Features of the DS2003   | 7   |
| Board Architecture                           | 8   |
| Integration Into a PHS-Bus-Based System      |     |
| Connection to External Devices               | 9   |
| ADC Unit                                     | 11  |
| Basics on the ADC Unit                       | 11  |
| Faster A/D Conversion via Short-Cycling      |     |
| Starting A/D Conversion via External Trigger | 16  |
| Interrupts                                   | 19  |
| Interrupts Provided by the DS2003            | 19  |
| Limitations                                  | 21  |
| A/D Conversion and Interrupt Usage           | 21  |
| AND Conversion and interrupt osage           | ∠ I |
| Index                                        | 23  |

# About This Document

### Content

This document provides feature-oriented access to the information you need to implement the functions of the DS2003.

### **Symbols**

dSPACE user documentation uses the following symbols:

| Symbol           | Description                                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| <b>▲</b> DANGER  | Indicates a hazardous situation that, if not avoided, will result in death or serious injury.                                        |
| <b>▲</b> WARNING | Indicates a hazardous situation that, if not avoided, could result in death or serious injury.                                       |
| <b>▲</b> CAUTION | Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.                                      |
| NOTICE           | Indicates a hazard that, if not avoided, could result in property damage.                                                            |
| Note             | Indicates important information that you should take into account to avoid malfunctions.                                             |
| Tip              | Indicates tips that can make your work easier.                                                                                       |
| 2                | Indicates a link that refers to a definition in the glossary, which you can find at the end of the document unless stated otherwise. |
|                  | Precedes the document title in a link that refers to another document.                                                               |

### **Naming conventions**

dSPACE user documentation uses the following naming conventions:

**%name**% Names enclosed in percent signs refer to environment variables for file and path names.

< > Angle brackets contain wildcard characters or placeholders for variable file and path names, etc.

### **Special folders**

Some software products use the following special folders:

**Common Program Data folder** A standard folder for application-specific configuration data that is used by all users.

%PROGRAMDATA%\dSPACE\<InstallationGUID>\<ProductName>
or

%PROGRAMDATA%\dSPACE\<ProductName>\<VersionNumber>

**Documents folder** A standard folder for user-specific documents.

%USERPROFILE%\Documents\dSPACE\<ProductName>\
<VersionNumber>

# Accessing dSPACE Help and PDF Files

After you install and decrypt dSPACE software, the documentation for the installed products is available in dSPACE Help and as PDF files.

**dSPACE Help (local)** You can open your local installation of dSPACE Help:

- On its home page via Windows Start Menu
- On specific content using context-sensitive help via F1

**dSPACE Help (Web)** You can access the Web version of dSPACE Help at www.dspace.com.

To access the Web version, you must have a *mydSPACE* account.

**PDF files** You can access PDF files via the  $\square$  icon in dSPACE Help. The PDF opens on the first page.

# Introduction to the Features of the DS2003

### Introduction

The DS2003 Multi-Channel A/D Board provides two independent A/D converters and 32 input channels. All inputs are multiplexed to both converters to permit load balancing for minimum total conversion times, independent from the inputs actually used.

For the data sheet of the DS2003 and the connector panel CP2003, refer to Data Sheets (PHS Bus System Hardware Reference (LL)).

### Where to go from here

### Information in this section

| Board Architecture                       |
|------------------------------------------|
| Integration Into a PHS-Bus-Based System8 |
| Connection to External Devices9          |

### **Board Architecture**

### **Board overview**

The following illustration gives an overview of the functional units and architecture of the DS2003:



### Integration Into a PHS-Bus-Based System

### **Basics**

To be used, the DS2003 must be integrated into a PHS-bus-based system. While the DS2003 performs the required input tasks, the processor board takes over the calculation of the real-time model. That is, applications using DS2003 I/O features are implemented on the processor board.

Communication between processor board and I/O board is performed via the peripheral high speed bus: that is the PHS bus for connection to a dSPACE processor board.

**Partitioning the PHS bus with the DS802** With the DS802 PHS Link Board you can spatially partition the PHS bus by arranging the I/O boards in several expansion boxes.

The DS802 can be used in combination with many types of available dSPACE I/O boards. However, some I/O boards and some functionalities of specific I/O boards are not supported.

The I/O board support depends on the dSPACE software release which you use. For a list of supported I/O boards, refer to DS802 Data Sheet (PHS Bus System Hardware Reference ).

### Connection to External Devices

#### **Basics**

There are two different ways to connect external devices to the DS2003. To access the ADC unit of the DS2003, connect external devices:

- To the 50-pin ADC connector P1 of the DS2003
- To the optional connector panel CP2003, equipped with BNC connectors CP1 ... CP33

## **ADC Unit**

### Where to go from here

### Information in this section

| Basics on the ADC Unit11                     |
|----------------------------------------------|
| Faster A/D Conversion via Short-Cycling      |
| Starting A/D Conversion via External Trigger |

### Basics on the ADC Unit

### Characteristics

The DS2003 controls an ADC unit featuring 2 parallel A/D converters (ADC1, ADC2) multiplexed to 32 channels each (signals VIN1 ... VIN32). Both ADCs can convert all input channels, but only up to 16 at a time. The A/D converters have the following characteristics:

- 32 sample&hold circuits allowing all 32 inputs to be sampled simultaneously
- Programmable scan table
- External trigger
- ±5 V or ±10 V input voltage range (selectable for each channel individually)
- 4-, 8-, 10-, 12-, 13-, 14-, 15- or 16-bit resolution (selectable for each channel individually)

After conversion, the converted values are stored in the board's ADC data buffer, which is a  $512 \times 32$  bit FIFO buffer.

### **Adjustable ADC resolution**

To perform faster conversion, you can lower the resolution to 4, 8, 10, 12, 13, 14 or 15 bits, see Faster A/D Conversion via Short-Cycling on page 15.

### Scan table mechanism

The DS2003 uses a scan table to store the information required for A/D conversion.

**Information provided by the scan table** The scan table specifies:

- The channel numbers of the channels to be used for conversion
- The ADC resolution for the respective channels
- The input voltage range for the respective channels

Using a scan table, the input signals of all the 32 input channels can be converted within one scan process.

**Autonomous A/D conversion via scan table** Once A/D conversion is started, the DS2003 autonomously executes the commands contained in the scan table. The processor board does not need to be used for this, which saves execution time.

If you work with RTI, the scan table mechanism is used automatically. If you work with RTLib, use the ds2003\_init\_scantbl function to implement a scan table.

### Starting A/D conversion

A/D conversion on the DS2003 can be started in two ways:

**Conversion start by software** Use the functions ds2003\_start or ds2003\_conversion\_start to start A/D conversion.

On each call to ds2003\_start, the ADC data buffer is cleared, and a scan process is started. The ds2003\_conversion\_start function does not clear the ADC data buffer before it starts the scan process.

RTI's DS2003\_Bx block automatically uses the ds2003\_start function.

**Conversion start by external trigger** You can let A/D conversion on the DS2003 be started by an external clock source. For details, see Starting A/D Conversion via External Trigger on page 16.

### Scan process

On A/D conversion start, the DS2003 converts the input signals according to the settings specified in the scan table. The conversion results are stored in the ADC data buffer. This completes a scan process.

# Reading out the ADC data buffer

There are two methods of reading out conversion results from the ADC data buffer to the processor board:

**Reading out the results of one scan process**Use the ds2003\_start function together with the function ds2003\_read or ds2003\_in. On each call to ds2003\_start, the ADC data buffer is cleared, and a scan process is started. The function ds2003\_read or ds2003\_in reads out the conversion results of this scan process to the processor board.

This method is automatically used by RTI's DS2003\_Bx block.

**Reading out the results of several scan processes** The ADC data buffer is a  $512 \times 32$  bit FIFO buffer. Working with all the 32 input channels of the

DS2003, the buffer can therefore store the conversion results of up to 32 scan processes before a buffer overflow occurs. Working with only one or two channels of the DS2003, the buffer can store the results of up to 512 scan processes.

To implement this method, start A/D conversion with the ds2003\_conversion\_start function or by an external trigger. In contrast to starting A/D conversion with the ds2003\_start function, the ADC data buffer is not cleared in this case. Then the conversion results of several scan processes can be read out with the functions ds2003\_block\_read or ds2003\_fifo\_half\_full\_block\_read. You can use ds2003\_buffer\_clear to clear the buffer.

To use this method within an RTI model, you have to program it with the above mentioned RTLib functions, and incorporate your C code in a Simulink S-Function block. For details, refer to Implementing S-Functions (RTI and RTI-MP Implementation Guide 41).

### **Conversion state interrupts**

The DS2003 provides 4 hardware interrupts that are related to the current A/D conversion state. For information on interrupt handling, refer to Interrupts on page 19.

#### RTI/RTLib support

You can access the ADC unit via DS2003 Blockset and RTLib. For details, refer to:

- ADC Unit in the DS2003 RTI Reference
- ADC Unit in the DS2003 RTLib Reference

### **Execution times**

For details on the execution times and the corresponding measurement setup, refer to Function Execution Times.

### **Connecting external devices**

An excerpt from the circuit diagram that shows the I/O circuit and information on the electrical characteristics of the ADC unit are available. You can also get information on signal conditioning and the external trigger. Refer to Signal Connection to External Devices (PHS Bus System Hardware Reference ).

I/O mapping

The following table shows the mapping between the RTI block and RTLib functions and the corresponding pins used by the ADC unit:

| Related RTI Block | Ch<br>(RTI) | Related RTLib Functions | Ch<br>(RTLib) | Conn. Pin | Pin on CP | Signal |
|-------------------|-------------|-------------------------|---------------|-----------|-----------|--------|
| DS2003_Bx         | Ch 1        | See ADC Unit            | Ch 1          | P1 1      | P1        | VIN1   |
|                   | Ch 2        |                         | Ch 2          | P1 34     | P2        | VIN2   |
|                   | Ch 3        |                         | Ch 3          | P1 2      | P3        | VIN3   |
|                   | Ch 4        |                         | Ch 4          | P1 35     | P4        | VIN4   |
|                   | Ch 5        |                         | Ch 5          | P1 3      | P5        | VIN5   |
|                   | Ch 6        |                         | Ch 6          | P1 36     | P6        | VIN6   |
|                   | Ch 7        |                         | Ch 7          | P1 4      | P7        | VIN7   |
|                   | Ch 8        |                         | Ch 8          | P1 37     | P8        | VIN8   |
|                   | Ch 9        |                         | Ch 9          | P1 5      | P9        | VIN9   |
|                   | Ch 10       |                         | Ch 10         | P1 38     | P10       | VIN10  |
|                   | Ch 11       |                         | Ch 11         | P1 6      | P11       | VIN11  |
|                   | Ch 12       |                         | Ch 12         | P1 39     | P12       | VIN12  |
|                   | Ch 13       |                         | Ch 13         | P1 7      | P13       | VIN13  |
|                   | Ch 14       |                         | Ch 14         | P1 40     | P14       | VIN14  |
|                   | Ch 15       |                         | Ch 15         | P1 8      | P15       | VIN15  |
|                   | Ch 16       |                         | Ch 16         | P1 41     | P16       | VIN16  |
|                   | Ch 17       |                         | Ch 17         | P1 9      | P17       | VIN17  |
|                   | Ch 18       |                         | Ch 18         | P1 42     | P18       | VIN18  |
|                   | Ch 19       |                         | Ch 19         | P1 10     | P19       | VIN19  |
|                   | Ch 20       |                         | Ch 20         | P1 43     | P20       | VIN20  |
|                   | Ch 21       |                         | Ch 21         | P1 11     | P21       | VIN21  |
|                   | Ch 22       |                         | Ch 22         | P1 44     | P22       | VIN22  |
|                   | Ch 23       |                         | Ch 23         | P1 12     | P23       | VIN23  |
|                   | Ch 24       |                         | Ch 24         | P1 45     | P24       | VIN24  |
|                   | Ch 25       |                         | Ch 25         | P1 13     | P25       | VIN25  |
|                   | Ch 26       |                         | Ch 26         | P1 46     | P26       | VIN26  |
|                   | Ch 27       |                         | Ch 27         | P1 14     | P27       | VIN27  |
|                   | Ch 28       |                         | Ch 28         | P1 47     | P28       | VIN28  |
|                   | Ch 29       |                         | Ch 29         | P1 15     | P29       | VIN29  |
|                   | Ch 30       |                         | Ch 30         | P1 48     | P30       | VIN30  |
|                   | Ch 31       |                         | Ch 31         | P1 16     | P31       | VIN31  |
|                   | Ch 32       |                         | Ch 32         | P1 49     | P32       | VIN32  |

### Faster A/D Conversion via Short-Cycling

### **ADC** short-cycling

To perform faster conversion, ADC short-cycling may be used.

# Faster conversion by lowering A/D resolution

The converters ADC1/ADC2 use the successive-approximation conversion technique.

The successive-approximation method performs 16 successive comparisons to provide the full 16-bit resolution. Short-cycling terminates the comparison sequence after a programmed number of steps. On a DS2003, you can short-cycle the conversion to 4-, 8-, 10-, 12-, 13-, 14- and 15-bit resolution.

Using ADC short-cycling to reduce the conversion time is only possible at the expense of lower resolution.

The following illustration shows the effects of ADC short-cycling:



For information on reducing conversion times, refer to Function Execution Times (DS2003 RTLib Reference (LD)).

The execution time describes the conversion time (the time needed for conversion itself) plus the time needed for executing the access functions like starting the converter or reading data, for example.

### **Related topics**

### Basics



### Starting A/D Conversion via External Trigger

### **Basics**

You can let the scan process be started by an external clock source (like the DS4002 Timing and Digital I/O Board). For this purpose, the DS2003 provides an external trigger input.

### **Enabling external triggering**

After initialization of the DS2003, external triggering is disabled. To enable external triggering, use RTLib's ds2003\_set\_trigger function.

### Note

Using RTI, external triggering cannot be enabled.

### **Timing requirements**

The external trigger signal must be a TTL signal with a high level. To start the conversion, there must be an active low pulse with a duration of at least 50 ns. This pulse should be shorter than a complete conversion.

The time for scanning depends on:

- Number of channels
- Resolution

The following table contains some values for the scan time using a DS2003 board with the fast ADCs delivered since July 2009 in a PHS-bus-based system. The scan time contains the time from starting the conversion till setting the *ready* bit.

| Number of Channels <sup>1)</sup> | Resolution <sup>2)</sup> | Time for Scanning          |
|----------------------------------|--------------------------|----------------------------|
| 2                                | 4/8/12/16                | 3.24/3.74/4.38/4.84 µs     |
| 8                                | 4/8/12/16                | 8.56/10.47/12.54/14.61 µs  |
| 16                               | 4/8/12/16                | 15.54/19.50/23.46/27.63 µs |
| 32                               | 4/8/12/16                | 29.49/37.62/45.54/53.49 µs |

<sup>1)</sup> The channel number can be specified within the range 1 ... 32.

The frequency of the external trigger signal may not be higher than the reciprocal of the scan time. The scan process starts on the falling edge of the external trigger signal.

<sup>2)</sup> The A/D converter can be used with a 4-, 8-, 10-, 12-, 13-, 14-, 15-, 16-bit resolution.





### Note

If you start several scan processes using external triggering and if you do not read out the ADC data buffer, the buffer will overflow.

### I/O mapping

The following table shows the mapping between the RTLib function and the corresponding pin used for the external trigger:

|                    | Related RTLib Function | Conn. Pin | Pin on CP | Signal     |  |
|--------------------|------------------------|-----------|-----------|------------|--|
| ds2003_set_trigger |                        | P1 50     | P33       | ExtTrigger |  |

### **Related topics**

### Basics



### References

ds2003\_set\_trigger (DS2003 RTLib Reference ♠)
Measured Execution Times (DS2003 RTLib Reference ♠)

# Interrupts

# Interrupts Provided by the DS2003

### Characteristics

The DS2003 provides access to 4 hardware interrupts that indicate the current A/D conversion state:

| Interrupt Type            | Description                                                                                                                                                                                                                                                                                                                              | See Also            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Scan process complete     | Interrupt on end of scan process.                                                                                                                                                                                                                                                                                                        | ADC Unit on page 11 |
| ADC data buffer not empty | Interrupt indicates that the ADC data buffer contains data.  Each ADC has converted at least one input.At least one ADC data pair is available in the ADC data buffer.                                                                                                                                                                   |                     |
| ADC data buffer half full | Interrupt indicates that the ADC data buffer is filled to half its capacity. At least 256 ADC data pairs are in the ADC data buffer. This interrupt is only possible if the A/D conversion is started by the external trigger. In this case, the buffer is not cleared before the conversion starts.                                     |                     |
| ADC data buffer full      | Interrupt indicates that the capacity limit has been reached. 512 ADC data pairs are available in the ADC data buffer.  The values of further conversions will be lost.  This interrupt is only possible if the A/D conversion is started by the external trigger. In this case, the buffer is not cleared before the conversion starts. |                     |

### Note

There is a limitation for performing A/D conversion and using hardware interrupts of the DS2003 in the same application. Refer to A/D Conversion and Interrupt Usage on page 21.

### Interrupt processing

Via the interrupt lines of the PHS bus, interrupts from the DS2003 are sent to the interrupt controller of the connected dSPACE processor board. Using RTI, the interrupts of the DS2003 can therefore be used to implement interrupt-driven tasks. For details see Tasks Driven by Interrupt Blocks (RTI and RTI-MP Implementation Guide (1)).

### RTI/RTLib support

With RTI, you can easily implement interrupt-driven subsystems by means of a specific interrupt block provided by DS2003 Blockset. For handcoded applications, you can use RTLib functions to handle interrupts. For details, see

- DS2003\_HWINT\_Bx\_ly in the DS2003 RTI Reference
- ADC Unit in the DS2003 RTLib Reference

### **Related topics**

### Basics

Introduction to the Features of the DS2003.....

7

#### References

ADC Unit (DS2003 RTLib Reference ♠)
DS2003\_HWINT\_Bx\_ly (DS2003 RTI Reference ♠)

## Limitations

### A/D Conversion and Interrupt Usage

#### **Basics**

By default, the DS2003 board works in polling mode. This means, that the software is waiting until the conversion results are available. If you want to use one of the DS2003 interrupts in your application, the polling functions cannot be used at the same time. You have to use non-polling functions instead.

### Polling the SCAN\_RDY flag

The board's interrupt control unit holds a scan process complete flag that indicates whether or not the A/D conversion scan process, which is specified by the scan table, has finished.

RTLib's ds2003\_in and ds2003\_block\_read functions, and RTI's DS2003\_Bx block poll the SCAN\_RDY flag, and do not read the converted values until the flag is set.

### Limitations

Implementing one of the DS2003 hardware interrupts in your application conflicts with the polling mode, because the flags to be polled are no longer accessible. Polling and interrupt-driven functions therefore cannot be used at the same time. You must note the following limitations:

- With RTI, you cannot use the DS2003\_Bx block and the DS2003\_HWINT\_Bx\_ly block in the same model.
- With RTLib, you cannot use the ds2003\_in and ds2003\_block\_read functions and implement a DS2003 interrupt service routine in the same program.

### Workaround

**Using RTLib** To implement one or more DS2003 hardware interrupts and read converted values in the same application, use the ds2003\_read function within a *scan process complete* interrupt service routine, or the ds2003\_fifo\_half\_full\_block\_read function within a *FIFO half full* interrupt service

routine. These functions are designed for the use in interrupt service routines and do not poll the SCAN\_RDY flag.

**Using RTI** If your model contains the DS2003\_HWINT\_Bx\_Iy block, you have to program the reading of the converted values with the above mentioned RTLib functions, and incorporate your C code in a Simulink S-Function block. For more information, refer to Implementing S-Functions (RTI and RTI-MP Implementation Guide 🕮 ).

### R Α RTI/RTLib support DS2003 13 A/D conversion DS2003 11 ADC short-cycling S DS2003 15 scan table DS2003 12 C successive approximation DS2003 15 characteristics DS2003 11 Common Program Data folder 6 conversion DS2003 11 conversion state interrupts DS2003 13 conversion time DS2003 15 D Documents folder 6 DS2003 A/D conversion 11 ADC short-cycling 15 characteristics 11 conversion 11 conversion state interrupts 13 conversion time 15 execution times 13 external trigger input 16 I/O mapping 14 limitations 21 RTI/RTLib support 13 scan table 12 successive approximation 15 DS802 partitioning PHS bus 8 Ε execution times DS2003 13 external trigger input DS2003 16 I/O mapping DS2003 14 L limitations DS2003 21 Local Program Data folder 6 partitioning PHS bus with DS802 8