```
import numpy as np
import pandas as pd
from google.colab import files
uploaded = files.upload()
     Choose Files datafile 02.csv
        datafile_02.csv(text/csv) - 988 bytes, last modified: 11/9/2022 - 100% done
     Saving datafile_02.csv to datafile_02.csv
import io
df = pd.read_csv(io.BytesIO(uploaded['datafile_02.csv']))
print(df)
                                                  9100
 C→
     1
                                                  7000
     2
                                                  7100
     3
                                                  8200
     4
                                                  3200
     5
                                                  9700
     6
                                                  8900
     7
                                                  5300
     8
                                                  6800
     9
                                                  8800
     10
                                                  7900
     11
                                                 10000
     12
                                                  9500
         Total Capacity in Eleventh Plan (MT) (2011-12) Proj. \
     0
                                                           3145
     1
                                                           6340
     2
                                                          10640
     3
                                                          10810
     4
                                                           6420
     5
                                                           7230
     6
                                                           6398
                                                           5475
     7
     8
                                                           6050
     9
                                                           6690
     10
                                                           9191
     11
                                                           9560
     12
                                                          12220
         Total Capacity in Eleventh Plan (MT) (2011-12) Ach.
     0
                                                           1635
     1
                                                           5070
     2
                                                           7650
     3
                                                           7293
     4
                                                           3100
     5
                                                           7972
     6
                                                           3334
     7
                                                           4098
     8
                                                           5097
     9
                                                           4190
     10
                                                           4453
```

Visakhapatnam

8220

6742

df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)Proj.':'Traffic_Projected','Traffic in
df

8200

10810

7293

6700

[#] Preprocessing the dataset

[#] Renaming the columns

	Port	Traffic_Projected	Traffic_Achieved	Traffic in Eleventh Plan (MT) (2011- 12) %	Total_Capacity_P
0	Kolkata	1343	1223	9100	
1	Haldia	4450	3101	7000	
2	Paradeep	7640	5425	7100	
3	Visakhapatnam	8220	6742	8200	
4	Ennore	4700	1496	3200	
5	Chennai	5750	5571	9700	
6	Tuticorin	3172	2810	8900	

Perparing the Calculations:

91.06

Traffic_Percent = round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)

Traffic_Percent

0

```
69.69
1
2
     71.01
3
     82.02
     31.83
4
5
     96.89
6
     88.59
7
     52.66
8
     67.49
```

9 87.54 10 79.07

11 99.56

12 95.13

dtype: float64

Total_Percent = round((df.Total_Capacity_Achieved/df.Total_Capacity_Projected)*100,2)
Total_Percent

```
0
       51.99
1
       79.97
2
      71.90
3
      67.47
4
      48.29
5
     110.26
6
      52.11
7
       74.85
8
       84.25
9
       62.63
       48.45
```

11 66.95 12 71.12 dtype: float64

Replacing the existing columns with newly created columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12) %':'Traffic_Percent','Total Capacity
df.iloc[:,3:4] = Traffic_Percent
df.iloc[:,6:] = Total_Percent
df

	Port	Traffic_Projected	Traffic_Achieved	Traffic_Percent	Total_Cap
0	Kolkata	1343	1223	91.06	
1	Haldia	4450	3101	69.69	
2	Paradeep	7640	5425	71.01	
3	Visakhapatnam	8220	6742	82.02	
4	Ennore	4700	1496	31.83	
5	Chennai	5750	5571	96.89	
6	Tuticorin	3172	2810	88.59	
7	Cochin	3817	2010	52.66	
8	NMPT	4881	3294	67.49	
9	Mormugao	4455	3900	87.54	
10	Mumbai	7105	5618	79.07	
11	JNPT	6604	6575	99.56	
12	Kandla	8672	8250	95.13	
4					•

```
df.shape
```

(13, 7)

Checking for null values

df.isnull().sum()

```
Port 0
Traffic_Projected 0
Traffic_Achieved 0
Traffic_Percent 0
Total_Capacity_Projected 0
Total_Capacity_Achieved 0
Total_Percent 0
dtype: int64
```

Summary of Dataset
df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 13 entries, 0 to 12

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Port	13 non-null	object
1	Traffic_Projected	13 non-null	int64
2	Traffic_Achieved	13 non-null	int64
3	Traffic_Percent	13 non-null	float64
4	Total_Capacity_Projected	13 non-null	int64
5	Total_Capacity_Achieved	13 non-null	int64
6	Total_Percent	13 non-null	float64

dtypes: float64(2), int64(4), object(1)

memory usage: 856.0+ bytes

df.describe()

	Traffic_Projected	Traffic_Achieved	Traffic_Percent	Total_Capacity_Projed
count	13.000000	13.000000	13.000000	13.000
mean	5446.846154	4308.846154	77.887692	7705.30
std	2133.280019	2212.894855	19.382398	2570.242
min	1343.000000	1223.000000	31.830000	3145.000
25%	4450.000000	2810.000000	69.690000	6340.000
50%	4881.000000	3900.000000	82.020000	6690.000
75%	7105.000000	5618.000000	91.060000	9560.000
max	8672.000000	8250.000000	99.560000	12220.000
4				>

#Finding Outliers anr replacing the outliers

```
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [17.50, 3.50]
plt.rcParams["figure.autolayout"] = True
```

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f7073b01bd0>

Visualization using various plots
import matplotlib.pyplot as plt
import seaborn as sns

import matplotlib.pyplot as plt
import seaborn as sns

plt.scatter(df.Port,df.Traffic_Projected)
sns.set()


```
plt.scatter(df.Port,df.Traffic_Achieved)
sns.set_style('white')
sns.set_context('notebook')
```


sns.boxplot(x='Port',y='Traffic_Projected',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f7070b68e90>

sns.relplot(data=df,x="Traffic_Projected",y='Traffic_Achieved',hue='Port')

<seaborn.axisgrid.FacetGrid at 0x7f7074358e90>

sns.relplot(data=df,x="Traffic_Projected",y='Traffic_Achieved',hue='Port')

<seaborn.axisgrid.FacetGrid at 0x7f70708e3050>


```
colors=['r','k','g','b','y']
plt.pie(df.Traffic_Projected,labels=df.Port,colors=colors,startangle=135)
```

```
([<matplotlib.patches.Wedge at 0x7f70707fc910>,
  <matplotlib.patches.Wedge at 0x7f7070842350>,
  <matplotlib.patches.Wedge at 0x7f7070805310>,
  <matplotlib.patches.Wedge at 0x7f70708053d0>,
  <matplotlib.patches.Wedge at 0x7f7070792090>,
  <matplotlib.patches.Wedge at 0x7f70707f46d0>,
  <matplotlib.patches.Wedge at 0x7f70707924d0>,
  <matplotlib.patches.Wedge at 0x7f7070792a90>,
  <matplotlib.patches.Wedge at 0x7f707079f510>,
  <matplotlib.patches.Wedge at 0x7f7070792510>,
  <matplotlib.patches.Wedge at 0x7f707079fa50>.
  <matplotlib.patches.Wedge at 0x7f70707a9410>,
  <matplotlib.patches.Wedge at 0x7f70707a9450>],
 [Text(-0.8227559810574577, 0.7301182066173808, 'Kolkata'),
 Text(-0.9813250715975654, 0.49699205612769437, 'Haldia'),
 Text(-1.0974872598930092, -0.07430823892769065, 'Paradeep'),
 Text(-0.7887307236408752, -0.7667488803936667, 'Visakhapatnam'), Text(-0.24681684658019215, -1.0719521650914328, 'Ennore'),
 Text(0.2586200998460918, -1.0691658636318304, 'Chennai'),
 Text(0.6508775584042567, -0.8867685176897709, 'Tuticorin'),
 Text(0.8904218552781084, -0.6458706678918711, 'Cochin'),
 Text(1.068042956118005, -0.2632190036580062, 'NMPT'),
 Text(1.083660055487473, 0.18889384357592884, 'Mormugao'),
 Text(0.8515399364034199, 0.6963330644957625, 'Mumbai'),
 Text(0.3009306210259454, 1.058036275998578, 'JNPT'),
 Text(-0.4290148932653011, 1.0128900341876024, 'Kandla')])
```


plt.pie(df.Traffic Achieved,labels=df.Port,colors=colors,startangle=135)

```
([<matplotlib.patches.Wedge at 0x7f7070b6c4d0>,
 <matplotlib.patches.Wedge at 0x7f7070b6c2d0>,
  <matplotlib.patches.Wedge at 0x7f7070b6ca50>,
  <matplotlib.patches.Wedge at 0x7f7070acca10>,
  <matplotlib.patches.Wedge at 0x7f7070a45210>,
  <matplotlib.patches.Wedge at 0x7f70710e2cd0>,
 <matplotlib.patches.Wedge at 0x7f70709c97d0>,
 <matplotlib.patches.Wedge at 0x7f70709c9110>,
 <matplotlib.patches.Wedge at 0x7f7070a412d0>,
 <matplotlib.patches.Wedge at 0x7f7070a45bd0>,
 <matplotlib.patches.Wedge at 0x7f7070947c90>,
 <matplotlib.patches.Wedge at 0x7f7070947f50>,
 <matplotlib.patches.Wedge at 0x7f70709413d0>],
 [Text(-0.8292984732192152, 0.7226783809664425, 'Kolkata'),
 Text(-0.9785761523202932, 0.5023830352529937, 'Haldia'),
 Text(-1.0999917035067, -0.004272261278115301, 'Paradeep'),
 Text(-0.8509776584186843, -0.6970201036356506, 'Visakhapatnam'),
 Text(-0.4510472262335761, -1.0032728440992495, 'Ennore'),
 Text(-0.02876119418292548, -1.0996239328557615, 'Chennai'),
 Text(0.472408825560159, -0.9933931253702492, 'Tuticorin'),
 Text(0.720536507722156, -0.831160117570351, 'Cochin'),
 Text(0.932508592180857, -0.5834618458038848, 'NMPT'),
 Text(1.086706953339725, -0.1704933944852213, 'Mormugao'),
 Text(1.022266221308968, 0.406167173428238, 'Mumbai'),
 Text(0.535803745383295, 0.9606843115369551, 'JNPT'),
 Text(-0.3488393338981779, 1.0432215100952797, 'Kandla')])
```


plt.plot(df.Port,df.Total_Capacity_Projected,label='Cap Proj.')
plt.plot(df.Port,df.Total_Capacity_Achieved,label='Cap Ach.')
plt.legend()


```
plt.bar(df.Port,df.Total_Capacity_Projected)
sns.set_style('ticks')
```


plt.bar(df.Port,df.Total_Capacity_Achieved)
sns.set_style('ticks')

plt.bar(df.Port,df.Total_Capacity_Projected,label='Total_capacity',color='g')
plt.bar(df.Port,df.Total_Capacity_Achieved,label='Achieved-capacity',color='k')
plt.legend()

<matplotlib.legend.Legend at 0x7f70706832d0>

Colab paid products - Cancel contracts here

✓ 0s completed at 7:32 PM

×