

FCC PART 15.407, SUBPART E ISEDC RSS-247, ISSUE 2, FEBRUARY 2017

TEST REPORT

For

Axon Enterprise Inc.

17800 N 85th Street, Scottsdale, AZ 85255, USA

FCC ID: X4GS00146B IC: 8803A-S00146B

Report Type:

Original Report

Product Type:

Axon Fleet 2.0 Rear Camera

Vio 1

Vincent Licata

Prepared By: Test Engineer

Report Number: R18062510-407

Report Date: 2018-07-20

Jin Yang

Reviewed By: RF Lead

Bay Area Compliance Laboratories Corp.

1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GE	NERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) MECHANICAL DESCRIPTION OF EUT OBJECTIVE RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY MEASUREMENT UNCERTAINTY TEST FACILITY REGISTRATIONS TEST FACILITY ACCREDITATIONS	5 5 5 5 5 5 6
2	EU'	T TEST CONFIGURATION	9
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	JUSTIFICATION EUT EXERCISE SOFTWARE DUTY CYCLE CORRECTION FACTOR EQUIPMENT MODIFICATIONS LOCAL SUPPORT EQUIPMENT SUPPORT EQUIPMENT POWER SUPPLY/ADAPTER INTERFACE PORTS AND CABLING	
3		MMARY OF TEST RESULTS	
4	FC	C §2.1091, §15.407(F) & ISEDC RSS-102 - RF EXPOSURE	13
	4.1	MPE PREDICTION	14
_	4.3		
5	FC	C §15.203 & ISEDC RSS-GEN §6.8 - ANTENNA REQUIREMENTS	15
5			15
5	5.1 5.2	C §15.203 & ISEDC RSS-GEN §6.8 - ANTENNA REQUIREMENTS	
	5.1 5.2 FCC 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	APPLICABLE STANDARDS ANTENNA LIST C \$15.209, \$15.407(B) & ISEDC RSS-247 \$6.2 - RADIATED SPURIOUS EMISSIONS APPLICABLE STANDARD TEST SETUP TEST PROCEDURE CORRECTED AMPLITUDE AND MARGIN CALCULATION TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS SUMMARY OF TEST RESULTS RADIATED SPURIOUS EMISSIONS TEST RESULT DATA	15151720202021212223
	5.1 5.2 FCC 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	APPLICABLE STANDARDS ANTENNA LIST C §15.209, §15.407(B) & ISEDC RSS-247 §6.2 - RADIATED SPURIOUS EMISSIONS APPLICABLE STANDARD TEST SETUP TEST PROCEDURE CORRECTED AMPLITUDE AND MARGIN CALCULATION TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS SUMMARY OF TEST RESULTS. RADIATED SPURIOUS EMISSIONS E §15.209, §15.407(B) & ISEDC RSS-247 §6.2 - CONDUCTED SPURIOUS EMISSIONS	151517202021212223
6	5.1 5.2 FCC 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 FCC 7.1 7.2 7.3 7.4 7.5 7.6	APPLICABLE STANDARDS ANTENNA LIST C §15.209, §15.407(B) & ISEDC RSS-247 §6.2 - RADIATED SPURIOUS EMISSIONS APPLICABLE STANDARD TEST SETUP TEST PROCEDURE CORRECTED AMPLITUDE AND MARGIN CALCULATION TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS SUMMARY OF TEST RESULTS RADIATED SPURIOUS EMISSIONS TEST RESULT DATA C §15.209, §15.407(B) & ISEDC RSS-247 §6.2 - CONDUCTED SPURIOUS EMISSIONS APPLICABLE STANDARD TEST PROCEDURE CORRECTION FACTOR AND MARGIN CALCULATION TEST EQUIPMENT LIST AND DETAILS TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS CONDUCTED SPURIOUS EMISSIONS TEST RESULT DATA	151617202021212223262629303031
6	5.1 5.2 FCC 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 FCC 7.1 7.2 7.3 7.4 7.5 7.6	APPLICABLE STANDARD. APPLICABLE STANDARD. APPLICABLE STANDARD. APPLICABLE STANDARD. TEST SETUP. TEST PROCEDURE. CORRECTED AMPLITUDE AND MARGIN CALCULATION. TEST EQUIPMENT LIST AND DETAILS. SUMMARY OF TEST RESULTS. RADIATED SPURIOUS EMISSIONS APPLICABLE STANDARD. TEST ENVIRONMENTAL CONDITIONS. SUMMARY OF TEST RESULTS. RADIATED SPURIOUS EMISSIONS TEST RESULT DATA C \$15.209, \$15.407(B) & ISEDC RSS-247 \$6.2 - CONDUCTED SPURIOUS EMISSIONS. APPLICABLE STANDARD. TEST PROCEDURE. CORRECTION FACTOR AND MARGIN CALCULATION. TEST EQUIPMENT LIST AND DETAILS TEST EQUIPMENT LIST AND DETAILS TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS.	151617202021212223262629303031

8.3 TEST EQUIPMENT LIST AND DETAILS 8.4 TEST ENVIRONMENTAL CONDITIONS 8.5 TEST RESULTS 9 FCC \$407(A) & ISEDC RSS-247 \$6.2 - OUTPUT POWER	
8.5 Test Results	43 48
9 FCC §407(A) & ISEDC RSS-247 §6.2 - OUTPUT POWER	48
9.1 APPLICABLE STANDARDS	
9.2 TEST PROCEDURE	
9.3 TEST EQUIPMENT LIST AND DETAILS	48
9.4 TEST ENVIRONMENTAL CONDITIONS	49
9.5 Test Results	49
10 FCC §15.407(A) & ISEDC RSS-247 §6.2 - POWER SPECTRAL DENSITY	52
10.1 Applicable Standards	52
10.2 TEST PROCEDURE	
10.3 TEST EQUIPMENT LIST AND DETAILS	52
10.4 TEST ENVIRONMENTAL CONDITIONS	53
10.5 Test Results	53
11 EXHIBIT A - FCC & ISED EQUIPMENT LABELING REQUIREMENTS	56
11.1 FCC ID Label Requirements	56
11.2 IC Label Requirements	
12.3 RECOMMENDED LABEL CONTENTS AND LOCATION.	57
12 APPENDIX	58
13 ANNEX A (INFORMATIVE) - A2LA ELECTRICAL TESTING CERTIFICATE	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R18062510-407	Original Report	2018-07-20

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Axon Enterprise Inc.*, and their product model: AX1015, FCC ID: X4GS00146B IC: 8803A-S00146B or the "EUT" as referred to in this report. The EUT is an in car camera supporting BLE and Wi-Fi.

1.2 Mechanical Description of EUT

The EUT measures approximately 12 cm (L) x 3.5 m (W) x 2 cm (H) and weighs approximately 0.5 kg.

The test data gathered are from typical production sample, serial number X55000075 assigned by Axon Enterprise, Inc.

1.3 Objective

This report is prepared on behalf of *Axon Enterprise Inc.* in accordance with FCC CFR47 §15.407 and ISEDC RSS-247 Issue 2, February2017.

The objective is to determine compliance with FCC Part 15.407 and ISEDC RSS-247 rules for Output Power, Antenna Requirements, AC Line Conducted Emissions, Emission Bandwidth, Power spectral density, and Radiated Spurious Emissions.

1.4 Related Submittal(s)/Grant(s)

FCC 15.247 Report: R18062510-247 DTS

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz, and FCC KDB 789033 D02 General UNII Test Procedure New Rules v02r01.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.57 dB
Power Spectral Density, conducted	±1.48dB
Unwanted Emissions, conducted	±1.57dB
All emissions, radiated	±4.0 dB
AC power line Conducted Emission	±2.0 dB
Temperature	±2 ° C
Humidity	±5 %
DC and low frequency voltages	±1.0 %
Time	±2 %
Duty Cycle	±3 %

1.7 Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.8 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.03) to certify

- For the USA (Federal Communications Commission):
 - 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
 - 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
 - 3- All Telephone Terminal Equipment within FCC Scope C.
- For the Canada (Industry Canada):
 - 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
 - 2 All Scope 2-Licensed Personal Mobile Radio Services;
 - 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
 - 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
 - 5 All Scope 5-Licensed Fixed Microwave Radio Services
 - 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
 - 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
 - 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2
- For the Hong Kong Special Administrative Region:
 - 1 All Radio Equipment, per KHCA 10XX-series Specifications;
 - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
 - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.
- For Japan:
 - 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 Terminal Equipment for the Purpose of Calls;
 - All Scope A2 Other Terminal Equipment
 - 2 Radio Law (Radio Equipment):
 - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)

- for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
- For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada ISEDC) Foreign Certification Body –
 FCB APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA)
 APEC Tel MRA -Phase I & Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory US EPA
 - o Telecommunications Certification Body (TCB) US FCC;
 - Nationally Recognized Test Laboratory (NRTL) US OSHA
- Vietnam: APEC Tel MRA -Phase I:

2 EUT Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

2.2 EUT Exercise Software

The test firmware used was Tera Term provided by *Axon Enterprise Inc.*, the software is comply with the standard requirements being tested against.

Please refer to the following power setting table.

Modulation	Channel	Frequency (MHz)	Power Setting
	149	5745	16
802.11a mode	157	5785	16
	165	5825	16
	149	5745	16
802.11n mode	157	5785	16
	165	5825	16

Note 1: *Data rates tested:

802.11a mode: 6Mbps 802.11n HT20: MCS0

2.3 Duty Cycle Correction Factor

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 section B:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.

5.8 GHz Results

Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
802.11a	2.058	2.083	98.80	0.00
802.11n20	0.9833	1.000	98.33	0.00

5.8 GHz

802.11a mode

802.11n20 mode

2.4 Equipment Modifications

N/A

2.5 Local Support Equipment

Manufacturer	Description	Model	Serial Number
Dell	Laptop	Latitude E6410	3CKRAQ1

2.6 Support Equipment

There was no support equipment included, or intended for use with EUT during these tests.

2.7 Power Supply/Adapter

N/A

2.8 Interface Ports and Cabling

Description	Length (m)	То	From
RF Cable	< 1 m	PSA	EUT
USB to USBC	1.9 m	Laptop	EUT

3 Summary of Test Results

Results reported relate only to the product tested.

FCC and IC Rules	Description of Test	Result
FCC §2.1091, §15.407(f), ISEDC RSS-102	RF Exposure	Compliant
FCC §15.203 ISEDC RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207 ISEDC RSS-Gen §8.8	AC Power Line Conducted Emissions	N/A ¹
FCC §15.407(e) ISEDC RSS-Gen §6.2	Emission Bandwidth	Compliant
FCC §407(a) ISEDC RSS-247 §6.2	Output Power	Compliant
FCC §2.1051, §15.407(b) ISEDC RSS-247 §6.2	Band Edges	Compliant
FCC §15.407(a) ISEDC RSS-247 §6.2	Power Spectral Density	Compliant
FCC §15.205, §15.209, §15.407(b) ISEDC RSS-247 §6.2	Radiated Spurious Emissions	Compliant
FCC §15.205, §15.209, §15.407(b) ISEDC RSS-247 §6.2	Conducted Spurious Emissions	Compliant

Note¹: this product will not connect to the public utility AC power network directly or indirectly. The EUT can be connected to PC or laptop via USB cable for data transmission only, power is not supplied via the USB port.

4 FCC §2.1091, §15.407(f) & ISEDC RSS-102 - RF Exposure

According to FCC §15.407(f) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for	General 1	Population/	Uncontrolled	Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
	Limits for Ge	neral Population/Uncor	ntrolled Exposure	
0.3-1.34	614	1.63	* (100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF field

According to ISED RSS-102 Issue 5:

2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 4.49/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

^{* =} Plane-wave equivalent power density

4.1 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

4.2 MPE Results

5.8 GHz Wi-Fi

Maximum output power at antenna input terminal (dBm): 12.74

Maximum output power at antenna input terminal (mW): 18.793

Prediction distance (cm): 20

<u>Prediction frequency (MHz):</u> 5825 <u>Maximum Antenna Gain, typical (dBi):</u> -0.3

<u>Maximum Antenna Gain (numeric):</u> 0.9332 Power density of prediction frequency at 20.0 cm (mW/cm²): 0.003489

FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is 0.003489 mW/cm². Limit is 1.0 mW/cm².

4.3 RF exposure evaluation exemption for IC

5.8 GHz Wi-Fi

 $12.74 + (-0.3) \text{ dBi} = 12.44 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 4.903 \text{ W} = 36.905 \text{ dBm}$

Therefore the RF exposure is not required.

5 FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements

5.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.407 (a) (ii), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISEDC RSS-Gen §6.8: Transmitter Antenna

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

5.2 Antenna List

The EUT applies integrated antenna, an U.FL connector is integrated on the circuit board for testing purposes only.

Antenna usage	Band of Operation (GHz)	Maximum Antenna Gain (dBi)
Wi-Fi/BLE	2400-2483.5	-4.15
Wi-Fi	5700-5900	-0.30

6 FCC §15.209, §15.407(b) & ISEDC RSS-247 §6.2 - Radiated Spurious Emissions

6.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	Hz MHz MHz		GHz
0.090 - 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	1300 - 1427	5.35 - 5.46
2.1735 - 2.1905	25.5 - 25.67	1435 – 1626.5	7.25 - 7.75
4.125 - 4.128	37.5 - 38.25	1645.5 – 1646.5	8.025 - 8.5
4.17725 - 4.17775	73 – 74.6	1660 - 1710	9.0 - 9.2
4.20725 - 4.20775	74.8 - 75.2	1718.8 - 1722.2	9.3 - 9.5
6.215 - 6.218	108 - 121.94	2200 - 2300	10.6 - 12.7
6.26775 - 6.26825	123 - 138	2310 - 2390	13.25 - 13.4
6.31175 - 6.31225	149.9 - 150.05	2483.5 - 2500	14.47 - 14.5
8.291 - 8.294	156.52475 – 156.52525	2690 - 2900	15.35 - 16.2
8.362 - 8.366	156.7 – 156.9	3260 - 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 –167.17	3.332 - 3.339	22.01 - 23.12
8.41425 - 8.41475	167.72 - 173.2	3 3458 – 3 358	23.6 - 24.0
12.29 - 12.293	240 - 285	3.600 - 4.400	31.2 - 31.8
12.51975 - 12.52025	322 - 335.4		36.43 - 36.5
12.57675 – 12.57725	399.9 - 410		Above 38.6
13.36 – 13.41	608 - 614		

As per FCC §15.209: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 Note 1	3
88 - 216	150 Note 1	3
216 - 960	200 Note 1	3
Above 960	500	3

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC Part 15.407 (b):

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

As per ISEDC RSS-247 §6.2

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

Devices shall comply with the following:

- a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.; or
- b) All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device,

except devices installed in vehicles, shall be labelled or include in the user manual the following text "for indoor use only."

Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p. at 5850 MHz instead of 5725 MHz.

Devices operating in the band 5725-5850 MHz with antenna gain greater than 10 dBi can have unwanted emissions that comply with either the limits in this section or in section 5.5 until six (6) months after the publication date of this standard for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2018.

Devices operating in the band 5725-5850 MHz with antenna gain of 10 dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2020.

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

- a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;
- b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
- d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

6.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15.407 and ISEDC RSS-247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

6.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords were connected to the AC floor outlet.

A 50 Ω terminator was used to terminate the antenna port.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter or 1.5 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 3MHz / Sweep = 100 ms
- (2) Average: RBW = 1MHz / VBW = 10Hz or 1 / T / Sweep = Auto

6.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit for Class A. The equation for margin calculation is as follows:

Margin = Corrected Amplitude – Limit

Report Number: R18062510-407

6.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde & Schwarz	Receiver, EMI Test	ESCI 1166.5950.03	100338	2018-07-05	2 years
Sunol Sciences	System Controller	SC99V	011003-1	N/R	N/A
Sunol Sciences	Antenna, Biconi-Log	JB1	A013105-3	2018-02-26	2 years
Agilent	Amplifier, Pre	8447D	2944A10187	2018-04-02	1 year
Wisewave	Antenna, Horn	ARH-4223-02	10555-01	2018-02-14	2 years
Wisewave	Antenna, Horn	ARH-2823-02	10555-02	2017-12-15	2 years
A. H. Systems	Antenna, Horn	SAS-200/571	261	2017-05-16	2 years
ETS-LINDGREN	Horn Antenna built in Pre Amp	3117-PA	203557	2018-05-14	1 year
AH Systems	18-40GHz Pre- Amplifier	PAM-1840VH	170	2018-03-17	1 year
Rohde & Schwarz	EMI Test Receiver	ESU-40	100433	2018-02-02	1 year
НР	Pre-Amplifier	8449B	3008A01978	2018-02-16	1 year
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R
Agilent	Analyzer, Spectrum	E4446A	US44300386	2018-06-01	1 year
-	RF cable	-	-	Each time ¹	N/A
-	50 Ω terminator		-	N/A	N/A

Note¹: cables included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

6.6 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Vincent Licata and Harry Zhao from 2018-06-30 to 2018-07-10 in 10m chamber 1, 5m chamber 3, and RF site.

6.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Part 15.407 and RSS-247</u> standards' radiated emissions limits, and had the worst margin of:

Mode: Transmitting				
Margin (dB)	Mode, Channel			
-4.76	528.0045	802.11n20 mode, High Channel		

6.8 Radiated Spurious Emissions Test Result Data

1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters

5.8 GHz Wi-Fi, 802.11n20 mode (5825 MHz)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Comment
214.0965	26.95	128	V	191	43.5	-16.55	QP
159.9923	26.14	108	V	179	43.5	-17.36	QP
528.0045	41.24	172	Н	237	46	-4.76	QP
40.46775	24.3	108	V	138	40	-15.7	QP
240.0015	39.47	136	Н	140	46	-6.53	QP
165.1493	23.42	101	V	166	43.5	-20.08	QP

2) 1-40 GHz Measured at 3 meters

1-6 GHz 5.8 GHz Wi-Fi, n20 mode (5825 MHz)

6-18 GHz

5.8 GHz Wi-Fi, n20 mode (5825 MHz)

18-26.5 GHz 5.8 GHz Wi-Fi, n20 mode (5825 MHz)

26.5-40 GHz

5.8 GHz Wi-Fi, n20 mode (5825 MHz)

7 FCC §15.209, §15.407(b) & ISEDC RSS-247 §6.2 - Conducted Spurious Emissions

7.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz MHz		GHz
0.090 - 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	1300 - 1427	5. 35 – 5. 46
2.1735 - 2.1905	25.5 - 25.67	1435 – 1626.5	7.25 - 7.75
4.125 - 4.128	37.5 - 38.25	1645.5 – 1646.5	8.025 - 8.5
4.17725 - 4.17775	73 – 74.6	1660 – 1710	9.0 - 9.2
4.20725 - 4.20775	74.8 - 75.2	1718.8 - 1722.2	9.3 – 9.5
6.215 - 6.218	108 - 121.94	2200 - 2300	10.6 - 12.7
6.26775 - 6.26825	123 - 138	2310 - 2390	13.25 - 13.4
6.31175 - 6.31225	149.9 - 150.05	2483.5 - 2500	14.47 - 14.5
8.291 - 8.294	156.52475 – 156.52525	2690 - 2900	15.35 - 16.2
8.362 - 8.366	156.7 – 156.9	3260 – 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 –167.17	3.332 - 3.339	22.01 - 23.12
8.41425 - 8.41475	167.72 – 173.2	3 3458 – 3 358	23.6 - 24.0
12.29 - 12.293	240 - 285	3.600 - 4.400	31.2 - 31.8
12.51975 - 12.52025	322 - 335.4		36.43 - 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 - 614		

As per FCC §15.209: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 Note 1	3
88 - 216	150 Note 1	3
216 - 960	200 Note 1	3
Above 960	500	3

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC Part 15.407 (b):

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

As per ISEDC RSS-247 §6.2

For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

Devices shall comply with the following:

- a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.; or
- b) All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device,

except devices installed in vehicles, shall be labelled or include in the user manual the following text "for indoor use only."

Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p. at 5850 MHz instead of 5725 MHz.

Devices operating in the band 5725-5850 MHz with antenna gain greater than 10 dBi can have unwanted emissions that comply with either the limits in this section or in section 5.5 until six (6) months after the publication date of this standard for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2018.

Devices operating in the band 5725-5850 MHz with antenna gain of 10 dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2020.

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

- a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;
- b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
- d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

7.2 Test Procedure

Per KDB 789033 D02 General UNII Test Procedures New Rules v02r01:

G. Unwanted Emission Measurement

Note: II.G.1. and II.G.2 cover measurements in the restricted and non-restricted bands, respectively. However, those sections are not self-contained. Rather, they reference the general unwanted emissions measurement requirements in II.G.3. and the specific measurement procedures in II.G.4., II.G.5., and II.G.6.. Refer to III.B. for additional guidance for devices that use channel aggregation.

1. Unwanted Emissions in the Restricted Bands

- a) For all measurements, follow the requirements in II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1000 MHz, use the procedure described in II.G.4. "Procedure for Unwanted Emissions Measurements Below 1000 MHz."
- c) At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in II.G.5. and II.G.6., respectively, must satisfy the respective peak and average limits. If all peak measurements satisfy the average limit, then average measurements are not required.
- d) For conducted measurements above 1000 MHz, EIRP shall be computed as specified in II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172):
 - (i) E[dBμV/m] = EIRP[dBm] 20 log (d[m]) + 104.77, where E = field strength and d = distance at which field strength limit is specified in the rules;
 - (ii) $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 m.
- e) For conducted measurements below 1000 MHz, the field strength shall be computed as specified in II.G.1.d) and an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test site with a ground plane for frequencies between 30 MHz and 1000 MHz, or an additional 6 dB shall be added for frequencies below 30 MHz.²

2. Unwanted Emissions that fall Outside of the Restricted Bands

- a) For all measurements, follow the requirements in II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1000 MHz, use the procedure described in II.G.4. "Procedure for Unwanted Emissions Measurements Below 1000 MHz."
- c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in II.G.5., "Procedure for Unwanted Emissions Measurements Above 1000 MHz."
 - Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.³
 - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.
- d) If radiated measurements are performed, field strength is then converted to EIRP as follows:
 - (i) EIRP = $((E \times d)^2) / 30$

where:

- E is the field strength in V/m;
- · d is the measurement distance in m;
- · EIRP is the equivalent isotropically radiated power in W.
- (ii) Working in dB units, the preceding equation is equivalent to:

 $EIRP[dBm] = E[dB\mu V/m] + 20 \log (d[m]) - 104.77$

(iii) Or, if d is 3 m:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Below 1000 MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:

Peak: RBW = 1MHz / VBW = 3MHz / Sweep = 100 ms Average: RBW = 1MHz / VBW = 10Hz or 1 / T / Sweep = Auto

7.3 Correction Factor and Margin Calculation

The correction factor (Offset on PSA) is calculated by adding the Antenna Gain (AG), the Cable Loss (CL), the Attenuator Factor (Atten), the Ground Reflection Factor (GF) and subtracting the $dB\mu V/m$ to $dB\mu V$ Conversion Factor (CF = 11.8 dB). The basic equation is as follows:

$$Offset = AG + CL + Atten + GF - CF$$

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit for Class A. The equation for margin calculation is as follows:

Margin = Corrected Amplitude – Limit

7.4 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2018-06-01	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cables included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

7.5 Test Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	40-41 %
ATM Pressure:	103.1-104.1 kPa

The testing was performed by Vincent Licata on 2018-06-30 in RF site.

7.6 Conducted Spurious Emissions Test Result Data

30 MHz-40 GHz conducted measurement comparing with radiated restricted frequency band limit

802.11a mode Spurious Emissions below 1 GHz

Low Channel 5745 MHz

Middle Channel 5785 MHz

High Channel 5825 MHz

802.11a mode Spurious Emissions 1-26.5 GHz

Low Channel 5745 MHz

Middle Channel 5785 MHz

High Channel 5825 MHz

802.11a mode Spurious Emissions 26.5-40 GHz

Low Channel 5745 MHz

Middle Channel 5785 MHz

High Channel 5825 MHz

802.11a mode Spurious Emissions Band Edge

Low Channel 5745 MHz (5720-5725 MHz)

Low Channel 5745 MHz (5700-5720 MHz)

Low Channel 5745 MHz (5500-5700 MHz)

High Channel 5825 MHz (5850-5855 MHz)

High Channel 5825 MHz (5855-5875 MHz)

High Channel 5825 MHz (5875-6000 MHz)

802.11n20 mode Spurious Emissions below 1 GHz

Low Channel 5745 MHz

Middle Channel 5785 MHz

High Channel 5825 MHz

802.11n20 mode Spurious Emissions 1-26.5 GHz

Low Channel 5745 MHz

Middle Channel 5785 MHz

High Channel 5825 MHz

802.11n20 mode Spurious Emissions 26.5-40 GHz

Low Channel 5745 MHz

Middle Channel 5785 MHz

High Channel 5825 MHz

802.11n20 mode Spurious Emissions Band Edge

Low Channel 5745 MHz (5720-5725 MHz)

Low Channel 5745 MHz (5700-5720 MHz)

Low Channel 5745 MHz (5500-5700 MHz)

High Channel 5825 MHz (5850-5855 MHz)

High Channel 5825 MHz (5855-5875 MHz)

High Channel 5825 MHz (5875-6000 MHz)

Note¹: for below 1GHz, we used $43dB\mu V/m$ which is the limit in 88MHz - 216MHz as the limit line as worst case to cover 30MHz - 960MHz, and there is no emission in 30MHz - 88MHz range which limit is $40dB\mu V/m$. We used peak detector as worst case to pass the Quasi-peak limit.

Conducted Emission Mask

5725 - 5850 MHz

802.11a mode

Low Channel: 5745 MHz

High Channel: 5825 MHz

802.11n20 mode

Undefined header

Low Channel: 5745 MHz

Report Number: R18062510-407

High Channel: 5825 MHz

8 FCC §15.407(e) & ISEDC RSS-247 §6.2 - 6 dB & 99% Occupied Bandwidth

8.1 Applicable Standards

As per FCC §15.407(e) and ISEDC RSS-247 6.2.4(1): for equipment operating in the band 5725 – 5850 MHz, the minimum 6 dB bandwidth of U-NII devices shall be 500 kHz.

8.2 Test Procedure

The measurements are based on FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01: C. Bandwidth Measurement.

8.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

8.4 Test Environmental Conditions

Temperature:	22-24 °C	
Relative Humidity:	40-41 %	
ATM Pressure:	103.1-104.1 kPa	

The testing was performed by Vincent Licata on 2018-06-29 at RF site.

8.5 Test Results

Please refer to the following tables and plots.

Channel	Frequency (MHz)	99% OBW (MHz)	6 dB OBW (MHz)		
		802.11 a mode			
149	5745	16.41	15.48		
157	5785	16.40	15.48		
165	5825	16.41	15.12		
	802.11n20 mode				
149	5745	17.49	15.17		
157	5785	17.50	16.05		
165	5825	17.49	15.16		

99% OBW

802.11a mode

5745 MHz

Agilent Freq/Channel Center Freq 5.74500000 GHz Trig Free Occupied Bandwidth Ref 22.25 dBm #Atten 20 dB Stop Freq 5.76000000 GHz **CF Step** 3.000000000 MHz <u>Auto</u> Man Freq Offset 0.00000000 Hz Center 5.745 00 GHz +Res BW 200 kHz Span 30 MHz #Sweep 1 s (601 pts) VBW 620 kHz Signal Track Occupied Bandwidth Occ BW % Pwr x dB 99.00 % -6.00 dB 16.4143 MHz 11.845 kHz 15.985 MHz Transmit Freq Error x dB Bandwidth Copyright 2000-2012 Agilent Tech

5785 MHz

802.11n20 mode

5745 MHz

5785 MHz

6 dB OBW

802.11a mode

5745 MHz

5785 MHz

802.11n20 mode

5745 MHz

Agilent Freq/Channel Center Freq 5.74500000 GHz **Trig** Fre Occupied Bandwidth Start Freq 5.73000000 GHz Ref 22.25 dBm #Atten 20 dB Stop Freq 5.76000000 GHz **CF Step** 3.000000000 MHz <u>Auto</u> Man Freq Offset 0.000000000 Hz Center 5.745 00 GHz #Res BW 100 kHz Span 30 MHz #Sweep 1 s (601 pts) VBW 300 kHz Signal Track Occupied Bandwidth Occ BW % Pwr × dB 17.4859 MHz -6.00 dB Transmit Freq Error 20.303 kHz x dB Bandwidth 15.168 MHz

5785 MHz

9 FCC §407(a) & ISEDC RSS-247 §6.2 - Output Power

9.1 Applicable Standards

According to FCC §15.407(a):

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to ISEDC RSS-247 §6.2.4 for frequency band 5725-5850 MHz:

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

9.2 Test Procedure

Report Number: R18062510-407

The measurements are based on FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01: E. Maximum Conducted Output Power.

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	RF cable	-	-	Each time ¹	N/A
-	10dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

9.4 Test Environmental Conditions

Temperature:	23° C	
Relative Humidity:	42 %	
ATM Pressure:	102.7 KPa	

The testing was performed by Vincent Licata on 2018-06-29 at RF site.

9.5 Test Results

Frequency (MHz)	Mode	Conducted Power (dBm)	Limit (dBm)
57.15	802.11a	11.78	30
5745	802.11n20	11.77	30
5785	802.11a	12.31	30
	802.11n20	12.03	30
5825	802.11a	12.64	30
	802.11n20	12.74	30

802.11a mode

5745 MHz

5785 MHz

802.11n20 mode

5745 MHz

5785 MHz

10 FCC §15.407(a) & ISEDC RSS-247 §6.2 - Power Spectral Density

10.1 Applicable Standards

According to FCC §15.407(a):

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to ISEDC RSS-247 §6.2.4 for frequency band 5725-5850 MHz:

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

10.2 Test Procedure

The measurements are based on FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01: F. Maximum Power Spectral Density (PSD).

10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	MY48250238	2018-05-08	1 year
-	10dB attenuator	-	-	Each time ¹	N/A
-	RF cable	-	-	Each time ¹	N/A

Note¹: cables and attenuators included in the test set-up will be checked each time before testing. Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

10.4 Test Environmental Conditions

Temperature:	22-24 °C	
Relative Humidity:	40-41 %	
ATM Pressure:	103.1-104.1 kPa	

The testing was performed by Vincent Licata on 2018-06-29 at RF site.

10.5 Test Results

Frequency (MHz)	Mode	Conducted PSD (dBm/100 kHz)	Corrected (dBm/500 kHz)	Limit (dBm/500 kHz)
5745	802.11a	-7.17	-0.18	30.00
	802.11n20	-6.37	0.62	30.00
5785	802.11a	-6.48	0.51	30.00
	802.11n20	-7.42	-0.43	30.00
5825	802.11a	-7.01	-0.02	30.00
	802.11n20	-6.38	0.61	30.00

Note: For the 5725-5850 MHz band, the Corrected PSD (dBm/500 kHz) is equal to:

Correct PSD (dBm/500 kHz) = PSD (dBm/100 kHz) + Duty Cycle Correction (dB) + 10*log(500 kHz/100 kHz)

802.11a mode

5745 MHz

5785 MHz

802.11n20 mode

5745 MHz

5785 MHz

11 Exhibit A - FCC & ISED Equipment Labeling Requirements

11.1 FCC ID Label Requirements

As per FCC §2.925,

- (a) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:
- (1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term FCC ID in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

Example: FCC ID: XXX123

Where: XXX—Grantee Code, 123—Equipment Product Code

As per FCC §15.19,

- (a) In addition to the requirements in part 2 of this chapter, a device subject to certification, or verification shall be labeled as follows:
- (3) All other devices shall bear the following statement in a conspicuous location on the device: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified above is required to be affixed only to the main control unit. If the EUT is integrated within another device then a label affixed to the host shall also state, "Contains FCC ID: XXXXXXX"
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

11.2 IC Label Requirements

As per IC RSP-100 Section 3.1, the certification number shall appear as follows:

IC: XXXXXX-YYYYYYYY

Where:

- The letters "IC:" indicate that this is an Innovation, Science and Economic Development Canada's certification number, but they are not part of the certification number. XXXXXXYYYYYYYYYY is the ISED certification number.
- XXXXXX is the CN assigned by Innovation, Science and Economic Development Canada. Newly assigned CNs will be made up of five numeric characters (e.g. "20001") whereas existing CNs may consist of up to five numeric characters followed by an alphabetic character (e.g. "21A" or "15589J").
- YYYYYYYYYY is the Unique Product Number (UPN) assigned by the applicant, made up of a maximum of 11 alphanumeric characters.
- The CN and UPN are limited to capital alphabetic characters (A-Z) and numerals (0-9) only. The use of punctuation marks or other symbols, including "wildcard" characters, is not permitted.

• The HVIN may contain punctuation marks or symbols but they shall not represent any indeterminate ("wildcard") characters.

As per RSS-Gen §4.1 Equipment Labeling:

The application for equipment certification shall be submitted in accordance with Industry Canada's Radio Standards Procedure RSP-100, Radio Equipment Certification Procedure which sets out the requirements for certification and labelling of radio apparatus. RSP-100 shall be used in conjunction with RSS-Gen and other Radio Standards Specifications (RSSs) specifically applicable to the type of radio apparatus for which certification is sought.

12.3 Recommended Label Contents and Location

12 Appendix

Please see attachments:

Annex B – EUT Test Setup Photographs

Annex C – EUT External Photographs

Annex D – EUT Internal Photographs

13 Annex A (Informative) - A2LA Electrical Testing Certificate

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the Electrical field. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 30th day of August 2016.

President and CEO For the Accreditation Council Certificate Number 3297.02 Valid to September 30, 2018 Revised November 14, 2016

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

--- END OF REPORT ---