3.1 Funções Reais de Várias Variáveis Reais: Limites, Continuidade, Derivação parcial e Diferenciabilidade

(baseado em slides de edições anteriores de Cálculo II)

Universidade de Aveiro, 2024/2025

Cálculo II - C

Resumo dos Conteúdos

- $lue{1}$ Noções Topológicas em \mathbb{R}^n
- Domínio, contradomínio, gráfico e conjuntos de nível
- Limites e continuidade
- Derivação Parcial e Derivadas Direcionais
- 5 Diferenciabilidade e Planos Tangentes
- 6 Regra da cadeia
- Derivação implícita

Distância

Consideramos em $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, i = 1, 2, \dots, n\}$ a distância euclidiana (usual):

$$d(X,Y) = ||\overrightarrow{XY}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2}$$

para $X = (x_1, x_2, ..., x_n)$ e $Y = (y_1, y_2, ..., y_n)$.

Exemplos

- 1. Em \mathbb{R} , $d(x,y) = \sqrt{(x-y)^2} = |x-y|$. Logo, a distância entre x e y corresponde ao comprimento do segmento de reta que une x a y.
- 2. Em \mathbb{R}^2 , sendo $X = (x_1, x_2)$ e $Y = (y_1, y_2)$, $d(X, Y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$. Logo, pelo Teorema de Pitágoras, a distância entre X e Y corresponde ao comprimento do segmento de reta (em \mathbb{R}^2) que une X a Y.

Bola aberta e bola fechada

Notação:

Usualmente, iremos denotar os pontos de \mathbb{R}^n por letras maiúsculas, os subconjuntos de \mathbb{R}^n por letras caligráficas e os números reais por letras minúsculas.

Definições:

Sejam $P \in \mathbb{R}^n$ e $r \in \mathbb{R}^+$.

Ao conjunto

$$B_r(P) = \{ X \in \mathbb{R}^n \colon d(X, P) < r \},\$$

chamamos bola aberta de centro P e raio r.

Ao conjunto

$$\overline{B}_r(P) = \{X \in \mathbb{R}^n : d(X, P) \le r\},$$

chamamos bola fechada de centro P e raio r.

Exemplos

- Se n = 1, a bola aberta de centro $p \in \mathbb{R}$ e raio r > 0 são todos os pontos do intervalo aberto [p r, p + r[.
- Se n=2, a bola aberta de centro $P=(p_1,p_2)\in\mathbb{R}^2$ e raio r>0 são todos os pontos do círculo de centro P e raio r sem incluir a circunferência pois, sendo $X=(x_1,x_2)$,

$$d(X, P) < r \Leftrightarrow (x_1 - p_1)^2 + (x_2 - p_2)^2 < r^2$$
.

• Se n=3, a bola aberta de centro $P=(p_1,p_2,p_3)\in\mathbb{R}^3$ e raio r>0 é a esfera de centro P e raio r sem incluir a superfície esférica.

Ponto interior e ponto fronteiro

Definições:

Sejam $\mathcal{D} \subseteq \mathbb{R}^n$ e $P \in \mathbb{R}^n$.

 $oldsymbol{0} P \in \mathcal{D}$ é um ponto interior de \mathcal{D} se

$$\exists r > 0 \quad B_r(P) \subset \mathcal{D}.$$

Ao conjunto de todos os pontos interiores a \mathcal{D} chamamos de interior de \mathcal{D} e denotamos esse conjunto por $int(\mathcal{D})$.

2 $P \in \mathbb{R}^n$ é um ponto fronteiro de \mathcal{D} se

$$\forall r > 0 \quad B_r(P) \cap \mathcal{D} \neq \emptyset \quad \wedge \quad B_r(P) \cap (\mathbb{R}^n \setminus \mathcal{D}) \neq \emptyset.$$

Ao conjunto de todos os pontos fronteiros de \mathcal{D} chamamos de fronteira de \mathcal{D} e denotamos esse conjunto por $fr(\mathcal{D})$.

Conjunto aberto/ fechado/ limitado

Observações:

- $P \in \mathsf{int}(\mathcal{D}) \Rightarrow P \in \mathcal{D}$
- ② Pode ocorrer que $P \in fr(\mathcal{D})$ e $P \notin \mathcal{D}$.

Definições: Seja $\mathcal{D} \subseteq \mathbb{R}^n$.

- ① \mathcal{D} é aberto se $\mathcal{D} = \operatorname{int}(\mathcal{D})$.
- ② \mathcal{D} é fechado se $fr(\mathcal{D}) \subseteq \mathcal{D}$.
- **③** \mathcal{D} é limitado se existir uma bola fechada que contém o conjunto \mathcal{D} (isto é, $\exists r \in \mathbb{R}^+, \ \exists C \in \mathbb{R}^n : \mathcal{D} \subseteq \overline{B}_r(C)$).

Exemplo:

$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \colon (x > 0 \land x + y < 1) \lor (1 < x < 3 \land 0 < y < 2)\}$$

- $fr(\mathcal{D}) = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$ onde $\mathcal{F}_1 = \{(x,y) \in \mathbb{R}^2 \colon (x=0 \land y \leq 1) \lor (x>0 \land x+y=1)\}$ $\mathcal{F}_2 = \{(x,y) \in \mathbb{R}^2 \colon (x=1 \lor x=3) \land 0 \leq y \leq 2\}$ $\mathcal{F}_3 = \{(x,y) \in \mathbb{R}^2 \colon (y=0 \lor y=2) \land 1 \leq x \leq 3\}.$ $fr(\mathcal{D}) \not\subseteq \mathcal{D}$, logo \mathcal{D} não é fechado.
- D não é limitado.
- $int(\mathcal{D}) = \mathcal{D}$, logo \mathcal{D} é aberto.

llustração:

Ponto de acumulação e ponto isolado

Definições:

Seja $\mathcal{D} \subseteq \mathbb{R}^n$.

• $P \in \mathbb{R}^n$ é um ponto de acumulação de \mathcal{D} se qualquer bola aberta centrada em P contém pontos de \mathcal{D} distintos de P, isto é, se

$$\forall r > 0 \ B_r(P) \cap (\mathcal{D} \setminus \{P\}) \neq \emptyset.$$

② $P \in \mathcal{D}$ é um ponto isolado de \mathcal{D} se não é ponto de acumulação de \mathcal{D} .

Observações:

- lacktriangle Um ponto de acumulação de $\mathcal D$ não pertence necessariamente a $\mathcal D.$
- **2** Um ponto isolado de \mathcal{D} pertence sempre ao conjunto \mathcal{D} .

Ponto de acumulação e ponto isolado

Exercício: Mostre que todo o ponto interior de $\mathcal D$ é um ponto de acumulação de $\mathcal D$.

Exemplo:

Considere o seguinte subconjunto de \mathbb{R}^2 :

$$\mathcal{L} = \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \colon x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)\} \cup \{(2,0)\}.$$

(0,0) e (-2,0) são pontos de acumulação de \mathcal{L} , indique outros!

(2,0) é um ponto isolado de \mathcal{L} , existem outros?

ilustração gráfica

Este conjunto é limitado e não é aberto, justifique.

Será fechado?

Definição:

Uma função real de *n* variáveis reais de domínio \mathcal{D} é uma aplicação

$$f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$$

 $(x_1, x_2, \dots, x_n) \mapsto z = f(x_1, x_2, \dots, x_n)$

que associa de forma única a cada elemento de \mathcal{D} um número real.

Definição: Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$CD_f = \{ f(x_1, x_2, \dots, x_n) \in \mathbb{R} : (x_1, x_2, \dots, x_n) \in \mathcal{D} \}$$

chamamos o contradomínio de f.

Definição: Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$\mathcal{G}_f = \{(x_1, \dots, x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, \dots, x_n), \text{ com } (x_1, \dots, x_n) \in \mathcal{D}\}$$

chamamos o gráfico de f.

Exemplos

• Seja $f(x,y) = \frac{1}{x^2+y^2}$. O domínio de f é

$$D_f = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \neq 0\} = \mathbb{R}^2 \setminus \{(0,0)\}.$$

O contradomínio de f é $CD_f = \mathbb{R}^+$

2 Seja $f(x, y, z) = \frac{1}{z^3}$. O domínio de f é

$$D_f = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\}$$

(todo o espaço \mathbb{R}^3 excepto o plano y0x).

O contradomínio de f é $CD_f = \mathbb{R} \setminus \{0\}$.

Exemplos

- $f: \mathbb{R}^2 \to \mathbb{R}$ tal que f(x,y) = 2x y. • esboço gráfico $D_f = \mathbb{R}^2 \text{ e } CD_f = \mathbb{R}; \text{ O gráfico de } f \text{ é o plano de equação } z = 2x - y.$
- $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = x^2 + y^2$. • esboço gráfico $D_f = \mathbb{R}^2 \text{ e } CD_f = \mathbb{R}_0^+; \text{ O gráfico de } f,$ $\mathcal{G}_f = \{(x,y,z) \in \mathbb{R}^3: z = x^2 + y^2\}, \text{ é um parabolóide circular.}$
- $g: \mathbb{R}^2 \to \mathbb{R}$ tal que $g(x,y) = 4 y^2$. • esboço gráfico $D_g = \mathbb{R}^2$ e $CD_g =]-\infty, 4];$ • $\mathcal{G}_g = \{(x,y,z) \in \mathbb{R}^3 : z = 4 - y^2\}$ (cilindro parabólico).
- $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x,y) = x^2 y^2$. • esboço gráfico $D_h = \mathbb{R}^2$ e $CD_h = \mathbb{R}$; • $G_h = \{(x,y,z) \in \mathbb{R}^3 \colon z = x^2 - y^2\}$ (parabolóide hiperbólico).
- $s: \mathbb{R}^2 \to \mathbb{R}$ tal que $s(x, y) = \sin(x^2 + y^2)$. • $D_s = \mathbb{R}^2$ e $CD_s = [-1, 1]$; • $G_s = \{(x, y, z) \in \mathbb{R}^3 : z = \sin(x^2 + y^2)\}$.

Curvas de Nível/ Superfícies de Nível

Definições:

Seja $f: D_f \subseteq \mathbb{R}^n \to \mathbb{R}$ e $k \in CD_f$. Ao conjunto

$$\mathcal{N}_k = \{(x_1, x_2, \dots, x_n) \in D_f : f(x_1, x_2, \dots, x_n) = k\}$$

chamamos conjunto de nível k de f.

Observações:

Para n=2, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{C}_k e a designar-se por curva de nível k de f. Geometricamente, obtêm-se as curvas de nível k intersectando o \mathcal{G}_f com o plano horizontal de cota k.

Para n=3, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{S}_k e a designar-se por superfície de nível k de f.

Nota: Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Exemplos

 $CD_{g} =]-\infty,4]$. Para $k \leq 4$, a curva de nível k de g é

$$C_k = \{(x, y) \in \mathbb{R}^2 \colon k = 4 - y^2\}.$$

Se k=4, C_k é a reta de equação y=0; para k<4, C_k é a união das retas de equações $y = \sqrt{4 - k}$ e $y = -\sqrt{4 - k}$.

 $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x,y) = x^2 - y^2$. $CD_h = \mathbb{R}$.

$$C_k = \{(x, y) \in \mathbb{R}^2 \colon k = x^2 - y^2\}, \text{com } k \in \mathbb{R}$$
 applet

Para $k \in \mathbb{R} \setminus \{0\}$, a curva de nível k é a hipérbole de equação $x^2 - y^2 = k$. Para k = 0, C_k é a reunião das retas de equações y = xe y = -x.

 $f: \mathbb{R}^3 \to \mathbb{R}$ tal que f(x, y, z) = 2x - 5y + 3z. Para cada $k \in \mathbb{R}$, a superfície de nível k de f é o plano ortogonal ao vetor (2, -5, 3) que passa no ponto $(0,0,\frac{k}{3})$.

Limite de uma sucessão de pontos em \mathbb{R}^p

Definições:

- Uma sucessão $(X_n)_{n\in\mathbb{N}}$ de pontos em \mathbb{R}^p é uma aplicação de \mathbb{N} em \mathbb{R}^p , que a cada n faz corresponder $X_n = (x_{n1}, x_{n2}, \dots, x_{np})$.
- Seja $L \in \mathbb{R}^p$. Dizemos que a sucessão $(X_n)_{n \in \mathbb{N}}$ converge para L se, para todo o r > 0, existe $m \in \mathbb{N}$ tal que $X_n \in B_r(L)$, para todo o $n \ge m$. Escreve-se $\lim_{n \to +\infty} X_n = L$.

Prova-se que:

- L é único, quando existe.
- $\lim_{n\to+\infty} (x_{n1}, x_{n2}, \dots, x_{np}) = (\ell_1, \ell_2, \dots, \ell_p)$ sse $\lim_{n\to+\infty} x_{ni} = \ell_i$, para todo o $i = 1, 2, \dots, p$.

Exemplos de sucessões vetoriais convergentes/ não convergentes

- A sucessão de \mathbb{R}^2 tal que $X_n = \left(\frac{1}{n}, 2\right)$ converge para L = (0, 2).
- A sucessão de \mathbb{R}^2 tal que $X_n = \left(3 + \left(\frac{1}{2}\right)^n, n \sin\left(\frac{1}{n}\right)\right)$ converge para L = (3, 1).
- A sucessão de \mathbb{R}^3 tal que $X_n = \left((-1)^n, (\frac{1}{2})^n, \frac{1}{n}\right)$ não é convergente.

Conceito de Limite

Definição:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^p \to \mathbb{R}$, A um ponto de acumulação de \mathcal{D} e $\ell \in \mathbb{R}$. Dizemos que o limite de f quando X tende para A é ℓ se, para qualquer sucessão $(X_n)_{n \in \mathbb{N}}$ de pontos em $\mathcal{D} \setminus \{A\}$ convergente para A, a correspondente sucessão das imagens $(f(X_n))_{n \in \mathbb{N}}$ converge para ℓ .

Nesse caso, escreve-se

$$\lim_{X\to A} f(X) = \ell.$$

Observação:

Prova-se que o limite, quando existe, é único.

Exemplo:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$$

porque dada uma qualquer sucessão (x_n, y_n) de pontos de $\mathbb{R}^2 \setminus \{(0,0)\}$ tal que

$$\lim_{n\to+\infty}(x_n,y_n)=(0,0),$$

se tem que

$$\lim_{n \to +\infty} f(x_n, y_n) = \lim_{n \to +\infty} \frac{x_n^2 y_n}{x_n^2 + y_n^2} = \lim_{n \to +\infty} y_n \frac{x_n^2}{x_n^2 + y_n^2} = 0,$$

uma vez que, para todo o $n \in \mathbb{N}$,

$$\lim_{n \to +\infty} y_n = 0 \quad \text{e} \quad \left| \frac{x_n^2}{x_n^2 + y_n^2} \right| \le 1$$

(o produto de um infinitésimo por uma função limitada é um infinitésimo).

Propriedades algébricas dos limites

Proposição:

Sejam $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$ e A um ponto de acumulação de \mathcal{D} . Se

$$\lim_{X \to A} f(X) = \ell_1$$
 e $\lim_{X \to A} g(X) = \ell_2$,

então

- $\lim_{X \to A} (f + g)(X) = \ell_1 + \ell_2;$
- $\lim_{X\to A} (fg)(X) = \ell_1\ell_2;$

Limite de funções

Seja $f:D_f\subseteq\mathbb{R}^n\to\mathbb{R}$ uma função.

Observação:

• Para n=1, isto é, para funções reais de uma única variável real (f.r.v.r.), só há duas formas de nos aproximarmos de um ponto $a \in \mathbb{R}$ para calcular $\lim_{x\to a} f(x)$: "à esquerda" e "à direita" do ponto a, o que corresponde a calcular os limites laterais

$$\lim_{x \to a^{-}} f(x) \quad \text{e} \quad \lim_{x \to a^{+}} f(x).$$

 Para n = 2 há uma infinidade de formas de nos aproximarmos de um ponto (a₁, a₂) ∈ R². Observação análoga quando n ≥ 3. É por este motivo que o cálculo de limites de funções com mais do que uma varável é mais complicado do que o cálculo de limites de f.r.v.r.

Limite segundo um conjunto

Definição:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e \mathcal{R} um subconjunto de \mathcal{D} para o qual A é ponto de acumulação. Chama-se limite de f quando X tende para A, segundo o conjunto \mathcal{R} , ao limite quando X tende para A da restrição de f a \mathcal{R} , i.e.,

$$\lim_{\substack{X \to A \\ X \in \mathcal{R}}} f(X) = \lim_{X \to A} f_{|\mathcal{R}}(X)$$

Exemplo:

Sendo $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : x = 0\} \setminus \{(0, 0)\},\$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}}} \frac{y^2}{x^2+y^2} = \lim_{y\to 0} \frac{y^2}{y^2} = 1.$$

Nota: Do limite calculado <u>não</u> se pode concluir que $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2}$

Averiguação da não existência de limite, usando limites segundo conjuntos:

Proposição:

- Se existe algum $\mathcal{R} \subset \mathcal{D}$, nas condições da definição, tal que $\lim_{\substack{X \to A \\ X \in \mathcal{R}}} f(X)$ não existe, então não existe $\lim_{\substack{X \to A \\ X \in \mathcal{R}}} f(X)$.
- Se existem \mathcal{R}_1 , $\mathcal{R}_2 \subset \mathcal{D}$, nas condições da definição, tais que $\lim_{\substack{X \to A \\ X \in \mathcal{R}_1}} f(X) \neq \lim_{\substack{X \to A \\ X \in \mathcal{R}_2}} f(X)$, então não existe $\lim_{\substack{X \to A \\ X \in \mathcal{R}_2}} f(X)$.

Exemplos:

• Vamos estudar o limite $\lim_{(x,y)\to(0,0)} \left(x + \sin\frac{1}{y}\right)$.

Observe-se que $D_f = \{(x, y) \in \mathbb{R}^2 : y \neq 0\}$ e que (0, 0) é ponto de acumulação do domínio da função. Seja $\mathcal{R} = \{(x, y) \in D_f : x = 0\}$.

Uma vez que $\lim_{(x,y)\to(0.0)} \left(x+\sin\frac{1}{y}\right) = \lim_{y\to 0} \sin\frac{1}{y}$ não existe, $(x, y) \in \mathcal{R}$

então o limite dado também não existe.

② Existe $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2}$? Observe-se que $D_f = \mathbb{R}^2 \setminus \{(0,0)\}$.

Sejam

$$\mathcal{R}_1 = \{(x,y) \in D_f : y = 0\}$$
 e $\mathcal{R}_2 = \{(x,y) \in D_f : x = 0\}.$

Uma vez que

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_1}}\frac{y^2}{x^2+y^2}=0\quad\neq\quad \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}_2}}\frac{y^2}{x^2+y^2}=1,$$

então o limite dado não existe.

Exercício:

Mostre que

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

não existe, verificando que os limites segundo os conjuntos

$$\mathcal{R}_m = \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} : y = mx\},\$$

onde $m \in \mathbb{R}$, existem, mas variam com m.

Nota: Os limites segundo retas (ou semirretas) são usualmente designados por limites direcionais.

Exercícios

- Mostre que não existe $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$.
- ② Averigue da existência de $\lim_{(x,y)\to(0,0)} \frac{xy^2}{2x^2 + y^4}$.

Averiguação da existência de limite usando limites segundo conjuntos

Proposição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_k$, com $k \in \mathbb{N}$, subconjuntos de \mathcal{D} tais que A é um seu ponto de acumulação e $\mathcal{D} = \mathcal{R}_1 \cup \mathcal{R}_2 \cup \dots \cup \mathcal{R}_k$. Se $\lim_{\substack{X \to A \\ X \in \mathcal{R}_i}} f(X) = \ell$, para todo o $i = 1, 2, \dots, k$, então $\lim_{\substack{X \to A \\ X \in \mathcal{R}_i}} f(X) = \ell$.

Nota:

Os subconjuntos \mathcal{R}_i são em número finito. Esta proposição, na prática, é de difícil utilização genérica. Aplica-se com êxito em algumas situações, como a seguinte.

Exercício: Sendo
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, tal que $f(x,y) = \begin{cases} -5x^2y + 1 & \text{se } y < 0 \\ 1 + x^2 + y^2 & \text{se } y \ge 0 \end{cases}$ calcule $\lim_{(x,y)\to(0,0)} f(x,y)$.

Duas proposições — cálculo de alguns limites

Proposição: [Produto de um infinitésimo por uma função limitada]

Sejam $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$ e A um ponto de acumulação de \mathcal{D} . Se $\lim_{X \to A} f(X) = 0$ e se g é uma função limitada em $\mathcal{D} \cap B_r(A)$, para algum

r>0, então $\lim_{X\to A}f(X)g(X)=0$.

Proposição: [Mudança de variável]

Sejam $f, u : \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e g uma função real de variável real tal que f(X) = g(u(X)). Se

$$\lim_{X\to A} u(X) = c \quad \text{e} \quad \lim_{z\to c} g(z) = \ell,$$

e g é contínua ou não está definida em c, então

$$\lim_{X \to A} f(X) = \lim_{z \to c} g(z) = \ell.$$
3.1 Funcões Reais de Várias Variáveis Reais:

Exercícios:

Usando as proposições do slide anterior (escolhendo a que se adequa), calcule os seguintes limites:

$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^3 - 4xy^2}{x^2 + y^2}$$

Continuidade

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $P \in \mathcal{D}$. Se P é um ponto de acumulação de \mathcal{D} , f diz-se contínua em P se $\lim_{X \to P} f(X) = f(P)$.

Caso P seja ponto isolado de \mathcal{D} , consideramos que f é contínua em P. Ao conjunto de pontos onde f é contínua chamamos domínio de continuidade de f.

Proposição:

Se $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$ são funções contínuas em $P\in\mathcal{D}$ e $\alpha\colon I\subseteq\mathbb{R}\to\mathbb{R}$, tal que $f(\mathcal{D})\subseteq I$, é contínua em f(P), então

- f + g, $fg \in \lambda f$, $\lambda \in \mathbb{R}$, são contínuas em P.
- ② $\frac{f}{g}$ é contínua em P, desde que $g(P) \neq 0$.
- **3** $\alpha \circ f$ é contínua em P.

Exercícios

- Determine o domínio de continuidade da função f definida por $f(x,y) = \frac{3xy - 5x^3}{y^3 - xy}$.
- \bigcirc Mostre que $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

é descontínua em (0,0).

3 Mostre que $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{2xy - 2y}{(x-1)^2 + y^2} & \text{se } (x,y) \neq (1,0) \\ 0 & \text{se } (x,y) = (1,0) \end{cases}$$

não é contínua em (1,0).

Derivada parcial em ordem a x

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $(a,b) \in int(\mathcal{D})$. Fixando y=b, fica definida a função real de variável real x, g_b , definida por

$$g_b: \{x \in \mathbb{R}: (x,b) \in \mathcal{D}\} \rightarrow \mathbb{R}$$

 $x \mapsto g_b(x) = f(x,b).$

À derivada de g_b em x=a, caso exista, chama-se derivada parcial de f em ordem a x em (a,b) e denota-se por $\frac{\partial f}{\partial x}(a,b)$. Logo

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

caso este limite exista e seja um número real^a.

Notação alternativa: $f'_x(a, b)$.

 $[^]a$ Podem considera-se derivadas iguais a $+\infty$ (ou $-\infty$) mas, neste contexto, não irão ser relevantes

Considerações geométricas sobre o conceito de derivada parcial em ordem a x

1 A derivada parcial de f em ordem a x no ponto (a, b) é o declive da reta \mathcal{R}_1 tangente à curva de interseção do gráfico de f com o plano vertical y = b, no ponto (a, b, f(a, b)).

outra applet

② A reta \mathcal{R}_1 tem equações cartesianas:

$$\begin{cases} y = b \\ z = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x - a) \end{cases}$$

3 $(1,0,\frac{\partial f}{\partial x}(a,b))$ é vetor diretor de \mathcal{R}_1 .

Derivada parcial em ordem a y

Seja $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $(a,b) \in \operatorname{int}(\mathcal{D})$. Fixando x=a, fica definida a função real de variável real y, g_a , definida por

$$g_a: \{y \in \mathbb{R}: (a,y) \in \mathcal{D}\} \rightarrow \mathbb{R}$$

 $y \mapsto g_a(y) = f(a,y).$

À derivada de g_a em y=b, caso exista, chama-se derivada parcial de f em ordem a y em (a,b) e denota-se por $\frac{\partial f}{\partial y}(a,b)$. Logo

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

caso este limite exista e seja um número real.

Notação alternativa: $f'_{v}(a,b)$.

Considerações geométricas sobre o conceito de derivada parcial em ordem a y

1 A derivada parcial de f em ordem a y no ponto (a, b) é o declive da reta \mathcal{R}_2 tangente à curva de interseção do gráfico de f com o plano vertical x = a, no ponto (a, b, f(a, b)).

Ilustração gráfica:

② A reta \mathcal{R}_2 tem equações cartesianas:

$$\begin{cases} x = a \\ z = f(a, b) + \frac{\partial f}{\partial y}(a, b)(y - b) \end{cases}$$

 $(0,1,\frac{\partial f}{\partial v}(a,b))$ é vetor diretor dessa reta.

Derivação parcial: exemplos

Na prática, para determinar a derivada parcial de $f:\mathcal{D}\subseteq\mathbb{R}^2 o\mathbb{R}$ em ordem a uma das suas variáveis, determina-se a derivada de f como se ela dependesse apenas dessa variável (usando as regras de derivação, se possível), considerando a outra variável como constante.

Exemplos:

• Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = x^2 + xy + \ln(1+y^2)$. Para todo o $(x, v) \in \mathbb{R}^2$, existem as derivadas parciais de f em ordem a x e a y:

$$\frac{\partial f}{\partial x}(x,y) = 2x + y$$
 e $\frac{\partial f}{\partial y}(x,y) = x + \frac{2y}{1+y^2}$.

② Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x, y) = e^{-x^2 + y^2} + x - 3y$.

$$\frac{\partial f}{\partial x}(x,y) = -2xe^{-x^2+y^2} + 1 \quad \text{e} \quad \frac{\partial f}{\partial y}(x,y) = 2ye^{-x^2+y^2} - 3.$$

Em particular,
$$\frac{\partial f}{\partial x}(0,1) = 1$$
 e $\frac{\partial f}{\partial y}(0,1) = 2e - 3$.

Derivação parcial: exemplo

De modo semelhante se definem as derivadas parciais de uma função com n variáveis reais:

$$f: \qquad \mathcal{D} \subseteq \mathbb{R}^n \rightarrow \mathbb{R} \\ (x_1, x_2, \dots, x_n) \mapsto f(x_1, x_2, \dots, x_n).$$

Exemplo:

Seja
$$f: \mathcal{D} \subseteq \mathbb{R}^3 \to \mathbb{R}$$
 tal que $f(x, y, z) = \cos(xy^2) + \ln(zy^3)$.

Para todo o $(x, y, z) \in \mathcal{D}$, tem-se que:

$$\frac{\partial f}{\partial x}(x, y, z) = -y^2 \sin(xy^2)$$

$$\frac{\partial f}{\partial y}(x, y, z) = -2xy \sin(xy^2) + \frac{3}{y}$$

$$\frac{\partial f}{\partial z}(x, y, z) = \frac{1}{z}.$$

Derivação parcial: exercícios

Em alguns casos, temos de usar a definição para determinar as derivadas parciais. Tal como nas funções de uma variável, deve usar-se as definições para determinar as derivadas parciais num ponto P, se na vizinhança do ponto P a função não está definida por uma expressão analítica única.

Exercícios:

- **1** Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Mostre que $\frac{\partial f}{\partial x}(0,0) = 0 = \frac{\partial f}{\partial y}(0,0)$.
- ② Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} xy & \text{se } x \neq y \\ x^3 & \text{se } x = y. \end{cases}$$

Mostre que $\frac{\partial f}{\partial x}(1,1)=1$, $\frac{\partial f}{\partial y}(3,4)=3$ e que $\frac{\partial f}{\partial y}(2,2)$ não existe.

Derivadas parciais de ordem superior

Definições e notação:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ uma função com derivadas parciais em ordem a x e a y, em algum conjunto de pontos no interior de \mathcal{D} . As funções

$$\frac{\partial f}{\partial x}$$
 e $\frac{\partial f}{\partial y}$

com domínio nos conjuntos de pontos onde cada uma existe, terão, ou não, derivadas em ordem a x e a y nesse conjunto. As derivadas parciais de ordem 2 de f são as funções (definidas nos pontos onde existem):

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right),$$

$$\frac{\partial^2 f}{\partial v^2} = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial v} \right), \quad \frac{\partial^2 f}{\partial v \partial x} = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right).$$

Derivadas parciais de ordem superior

Observações:

- **1** A $\frac{\partial^2 f}{\partial y \partial x}$ e $\frac{\partial^2 f}{\partial x \partial y}$ chamamos derivadas parciais mistas.
- No caso geral, as derivadas parciais mistas são distintas, isto é, pode ocorrer:

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) \neq \frac{\partial^2 f}{\partial x \partial y}(x, y).$$

3 De modo análogo, se definem as derivadas parciais de 3ª ordem, etc.

Exemplo

Exemplo:

Seja f a função real de domínio \mathbb{R}^2 tal que $f(x,y)=x^3y+5xy+\sin(y^2)$. Verifique que, para todo o $(x, y) \in \mathbb{R}^2$:

$$\frac{\partial f}{\partial x}(x,y) = 3x^2y + 5y \quad \frac{\partial f}{\partial y}(x,y) = x^3 + 5x + 2y\cos(y^2)$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 6xy \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = 2\cos(y^2) - 4y^2\sin(y^2)$$

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = 3x^2 + 5 \quad \frac{\partial^2 f}{\partial x \partial y}(x,y) = 3x^2 + 5$$

Nota: Neste exemplo,

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{\partial^2 f}{\partial x \partial y}(x, y).$$

Contudo, esta igualdade nem sempre se verifica. Veja-se, por exemplo o exemplo da página seguinte.

Exemplo

Exemplo:

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

Prova-se que

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1 \neq \frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$$

(bastante trabalhoso, pois é necessário usar a definição de derivada).

Teorema de Schwarz (em \mathbb{R}^2)

Nota: O seguinte teorema garante que, em determinadas condições, as derivadas parciais mistas de uma dada função $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ são iguais.

Teorema de Schwarz (em \mathbb{R}^2): Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $(a, b) \in \text{int}(\mathcal{D})$.

Se existem $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ e $\frac{\partial^2 f}{\partial x \partial y}$ numa bola aberta centrada em (a,b) e se $\frac{\partial^2 f}{\partial x \partial y}$ é contínua em (a,b), então existe $\frac{\partial^2 f}{\partial y \partial x}(a,b)$ e

$$\frac{\partial^2 f}{\partial y \partial x}(a,b) = \frac{\partial^2 f}{\partial x \partial y}(a,b).$$

Nota: O Teorema de Schwarz pode ser enunciado para funções definidas em subconjuntos abertos de \mathbb{R}^n .

Função de classe C^k : Corolário do Teorema de Schwarz

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, com \mathcal{D} aberto, e $k \in \mathbb{N}_0$. Dizemos que f é de classe C^k em \mathcal{D} se f possuir todas derivadas parciais até à ordem kcontínuas em todo o ponto de \mathcal{D} .

Notação: $f \in C^k(\mathcal{D})$.

Corolário do Teorema de Schwarz (em \mathbb{R}^2):

Seia $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$, com \mathcal{D} aberto. Se $f \in C^2(\mathcal{D})$, então

$$\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b),$$

para todo o $(a, b) \in \mathcal{D}$.

De modo análogo se pode enunciar o Corolário do Teorema de Schwarz para funções com n > 3 variáveis reais.

Derivadas Direcionais

As derivadas parciais de $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ são casos particulares de derivadas chamadas **derivadas direcionais** (segundo os vetores U = (1,0)ou U=(0,1), consoante o caso).

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, $P \in int(\mathcal{D})$ e U um vetor unitário de \mathbb{R}^n . A derivada direcional de f segundo U no ponto P é o seguinte limite, caso exista e seja finito,

$$D_U f(P) = \lim_{h \to 0} \frac{f(P + hU) - f(P)}{h}.$$

Interpretação geométrica (caso n=2):

 $D_U f(P)$, com P = (a, b), dá informação sobre a variação da cota dos pontos no gráfico de f, ao passar por (a, b, f(a, b)), quando é colocado um ponto X no domínio da função a deslocar-se na direção de U.

Exemplo de função com todas as derivadas direcionais num ponto e descontínua nesse ponto

Exemplo:

Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$

Observe-se que f não é contínua no ponto (0,0), pois não existe limite de f nesse ponto.

Se
$$U=(u_1,u_2)$$
, com $||U||=1$, então

$$D_U f(0,0) = \lim_{h \to 0} \frac{f(hu_1, hu_2) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3 u_1 u_2^2}{h^2 u_1^2 + h^4 u_2^4}}{h} = \lim_{h \to 0} \frac{u_1 u_2^2}{u_1^2 + h^2 u_2^4}.$$

Logo

$$D_U f(0,0) = \left\{ egin{array}{ll} rac{u_2^2}{u_1} & ext{se } u_1
eq 0 \ 0 & ext{se } u_1 = 0 \ . \end{array}
ight.$$

Diferenciabilidade:

O que será para uma função com mais do que uma variável?

Como se pode constatar com o exemplo do slide anterior, a existência das derivadas parciais (ou mesmo de todas as derivadas direcionais) de f num ponto P, não garante a continuidade de f em P. Recorde que para n=1, a existência de derivada finita (diferenciabilidade) num ponto é garantia da continuidade nesse ponto.

Em \mathbb{R}^n , para $n \geq 2$, qual será a noção de função diferenciável num ponto?

Vamos responder a essa questão para n=2, recordando o caso n=1. Para dimensões superiores é só fazer a adaptação devida.

Caso n = 1: diferenciabilidade/reta tangente

Seja $f: \mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$ diferenciável em $a \in \operatorname{int}(\mathcal{D})$. Então, existe e é finito o seguinte limite:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

e, portanto,

$$\lim_{h\to 0}\frac{f(a+h)-f(a)-f'(a)\cdot h}{h}=0.$$

Tomando
$$\epsilon(h) = \frac{f(a+h) - f(a) - f'(a) \cdot h}{h}$$
, obtemos

$$f(a+h) = f(a) + f'(a) \cdot h + \epsilon(h) \cdot h$$
, com $\lim_{h \to 0} \epsilon(h) = 0$.

Deste modo, numa vizinhança de a, f fica "bem aproximada" pela reta tangente ao gráfico de f no ponto (a, f(a)), a que corresponde a chamada linearização de f em torno de a: L(x) = f(a) + f'(a)(x - a).

Caso n=2: diferenciabilidade/plano tangente (I)

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P = (a, b) \in \text{int}(\mathcal{D})$. Considere que existem $\frac{\partial f}{\partial x}(P)$ e $\frac{\partial f}{\partial y}(P)$. Recorde-se que

$$U_1 = (1, 0, \frac{\partial f}{\partial x}(P))$$
 e $U_2 = (0, 1, \frac{\partial f}{\partial y}(P))$

são vetores diretores das retas tangentes às curvas de interseção do gráfico de f com y = b e x = a, no ponto (a, b, f(a, b)), respetivamente. Os vetores U_1 e U_2 são não colineares e, portanto, existe o plano, \mathcal{T} , que passa em (a, b, f(a, b)) e contém U_1 e U_2 . Atendendo a que o vetor $N = (-\frac{\partial f}{\partial x}(a,b), -\frac{\partial f}{\partial y}(a,b), 1)$ é ortogonal a ambos,

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

é uma equação cartesiana do plano \mathcal{T} .

Caso n=2: diferenciabilidade/plano tangente (II)

Nas funções diferenciáveis (ver definição no slide seguinte) f fica "bem aproximada" em redor de (a,b) pelos valores assumidos no plano \mathcal{T} , ou seja, pela sua linearização em torno de (a,b):

$$L(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Ilustração Gráfica: (plano tangente)

Função Diferenciável (caso n = 2)

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $(a,b) \in \operatorname{int}(\mathcal{D})$. Dizemos que f é diferenciável em (a,b) se existem as derivadas parciais $\frac{\partial f}{\partial x}(a,b)$ e $\frac{\partial f}{\partial y}(a,b)$ e

$$\lim_{(h,k)\to(0,0)}\frac{f(a+h,b+k)-f(a,b)-\frac{\partial f}{\partial x}(a,b)\cdot h-\frac{\partial f}{\partial y}(a,b)\cdot k}{\sqrt{h^2+k^2}}=0.$$

Nota: Observe-se que se f é diferenciável em (a,b), então, numa vizinhança de (a,b), f fica "bem aproximada" pelo plano de equação

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Dois exemplos (abordagem gráfica) ¹:

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \sqrt{x^2 + y^2}.$$

A função f não é diferenciável em (0,0), mas é diferenciável em qualquer outro ponto.

applet

Seia $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

A função f não é diferenciável em (0,0), mas é diferenciável em qualquer outro ponto.

¹Ver à frente, as justificações das afirmações.

Condições suficientes de diferenciabilidade

Teorema:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P \in \text{int } (\mathcal{D})$. Se existem $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ numa bola aberta centrada em P e se pelo menos uma dessas derivadas é contínua em P, então f é diferenciável em P.

Corolário:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P \in \text{int } (\mathcal{D})$. Se f é de classe C^1 numa bola aberta centrada em P, então f é diferenciável em qualquer ponto dessa bola.

Exercício:

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \sqrt{x^2 + y^2}$. Use o Teorema anterior (ou o Corolário), para concluir que f é diferenciável em (a,b), se $(a,b) \neq (0,0)$.

Condição necessária de diferenciabilidade

Teorema:

Se $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em $P \in \text{int } (\mathcal{D})$, então f é contínua em P.

Nota:

O Teorema anterior tem a seguinte formulação equivalente: Se $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ não é contínua em $P \in \text{int } (\mathcal{D})$, então f não é diferenciável em P.

Exercício:

Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \left\{ \begin{array}{ll} \frac{x^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{array} \right.$

Use o Teorema anterior, para concluir que f não é diferenciável em (0,0).

Plano Tangente e Vetor Normal ao Gráfico de uma Função

Definições: Seja $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ diferenciável em $(a,b) \in \text{int}(\mathcal{D})$.

O plano de equação

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

é o plano tangente ao gráfico de f no ponto (a, b, f(a, b)). (ver slide 49) Dizemos que o vetor

$$N = \left(-\frac{\partial f}{\partial x}(a, b), -\frac{\partial f}{\partial y}(a, b), 1\right)$$

é um vetor ortogonal ao gráfico de f no ponto (a, b, f(a, b)). A reta com vetor diretor N que passa em (a, b, f(a, b)) é chamada de reta ortogonal (ou normal) à superfície z = f(x, y) no ponto (a, b, f(a, b)).

^asuperfície de equação z = f(x, y)

Exercício: Plano tangente e reta normal

Exercício:

Seja $f(x, y) = 4 - x^2 - y^2$. Determine as equações do plano tangente e da reta normal no ponto P = (1, -1, 2).

Como $\frac{\partial f}{\partial x}(x,y)=-2x$ e $\frac{\partial f}{\partial y}(x,y)=-2y$ são contínuas em \mathbb{R}^2 , podemos concluir que f é diferenciável em \mathbb{R}^2 . O plano tangente ao gráfico de f no ponto P=(1,-1,f(1,-1)) tem equação

$$z = f(1,-1) + \frac{\partial f}{\partial x}(1,-1)(x-1) + \frac{\partial f}{\partial y}(1,-1)(y+1),$$

ou, equivalentemente,

$$2x - 2y + z = 6.$$

A reta normal ao gráfico de f no ponto P tem equação:

$$(x, y, z) = (1, -1, 2) + \lambda(2, -2, 1), \quad \lambda \in \mathbb{R}.$$

Vetor Gradiente e Derivadas Direcionais

Definição:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ com derivadas parciais de 1.\(\frac{a}{2}\) ordem em $P \in \operatorname{int}(\mathcal{D})$. Ao vetor

$$\nabla f(P) = \left(\frac{\partial f}{\partial x_1}(P), \frac{\partial f}{\partial x_2}(P), \dots, \frac{\partial f}{\partial x_n}(P)\right)$$

chamamos gradiente de f em P.

Teorema:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável em $\mathcal{D}, P \in \operatorname{int}(\mathcal{D})$ e $U \in \mathbb{R}^n$ um vetor unitário. Então existe a derivada direcional de f segundo U no ponto P e

$$D_U f(P) = \nabla f(P) \cdot U,$$

onde \cdot representa o produto interno (usual) de vetores em \mathbb{R}^n .

Interpretações Geométricas do Gradiente (caso n=2)

applet

• Seiam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável em $\mathcal{D}, P \in \text{int}(\mathcal{D})$ e $U \in \mathbb{R}^2$ um vetor unitário. Usando a definição de produto interno, tem-se que

$$D_U f(P) = \nabla f(P) \cdot U = ||\nabla f(P)|| \cos \theta$$
, onde $\theta = \angle(\nabla f(P), U)$.

Assim, a derivada direcional máxima em P ocorre na direção e sentido correspondente a $\theta=0$, ou seja, na direção e sentido do vetor gradiente de f em P.

- O vetor $\nabla f(P)$ fornece a direção e sentido na qual f, em redor de P, apresenta maior crescimento.
- Nas condições anteriores, se P = (a, b) e f(a, b) = k, pode provar-se que o vetor gradiente de f em (a, b) é ortogonal à reta tangente à curva de nível C_k , que passa em (a, b). Isto é,

 $\nabla f(a,b)$ é ortogonal à curva de nível de f que passa em (a,b).

Interpretação geométrica do gradiente (caso n = 3):

Plano tangente a uma superfície de nível

Seja $h: \mathcal{B} \subseteq \mathbb{R}^3 \to \mathbb{R}$ função diferenciável em \mathcal{B} , $\mathcal{S}_k = \{(x,y,z) \in \mathcal{B}: h(x,y,z) = k\}$ uma sua superfície de nível e $P \in \mathcal{S}_k$. Pode provar-se que:

O vetor gradiente de h em P é ortogonal a S_k em P.

Assim, se $\nabla h(P) \neq (0,0,0)$, então a equação do plano tangente a \mathcal{S}_k no ponto P é dada por

$$\nabla h(P) \cdot \overrightarrow{PX} = 0,$$

i.e., o plano tangente à superfície de equação h(x, y, z) = k em P = (a, b, c) tem por equação:

$$(x-a)\frac{\partial h}{\partial x}(a,b,c)+(y-b)\frac{\partial h}{\partial y}(a,b,c)+(z-c)\frac{\partial h}{\partial z}(a,b,c)=0.$$

Exemplo de determinação de plano tangente a uma superfície de nível

Consideremos o elipsoide de equação $4x^2 + 9y^2 + z^2 = 49$ e P = (1, -2, 3) um ponto desse elipsoide. Pretendemos determinar uma equação do plano tangente ao elipsoide no ponto P.

O elipsoide pode ser encarado como a superfície de nível 49 da função h de domínio \mathbb{R}^3 tal que $h(x,y,z)=4x^2+9y^2+z^2$. Note que $h\in C^1(\mathbb{R}^3)$, uma vez que, para todo o $(x,y,z)\in\mathbb{R}^3$,

$$\frac{\partial h}{\partial x}(x, y, z) = 8x, \frac{\partial h}{\partial y}(x, y, z) = 18y \text{ e } \frac{\partial h}{\partial z}(x, y, z) = 2z.$$

Assim, $\nabla h(P) = (8, -36, 6)$ e, portanto, uma equação do plano tangente ao elipsoide em P é

$$8(x-1) - 36(y+2) + 6(z-3) = 0.$$

A regra da cadeia é usada para derivar uma função composta.

Comecemos por recordar a **Regra da cadeia** para funções de uma única variável. Sejam f e g duas funções diferenciáveis, y = f(x) e x = g(t). Logo, y(t) = f(g(t)) e

$$y'(t) = f'(g(t))g'(t) = f'(x)x'(t),$$

ou, equivalentemente,

$$\frac{dy}{dt} = \frac{df}{dx}\frac{dx}{dt}.$$

Para funções com mais do que uma variável, a **Regra da Cadeia** tem muitas versões, cada uma delas fornecendo uma regra de derivação de uma função composta.

Regra da cadeia (Caso 1):

Suponha-se que z=f(x,y) é uma função diferenciável nas variáveis x e y, onde x=g(t) e y=h(t) são funções diferenciáveis de t. Então z é uma função diferenciável de t e

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

Nota: Como é frequente escrever $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ em vez de $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$, respetivamente, a Regra da Cadeia pode ser escrita na forma

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}.$$

Exercício:

Seja $z = x^2y + 3xy^4$, onde x = sen(2t) e $y = \cos t$. Determine $\frac{dz}{dt}$ quando t=0.

Pela Regra da cadeia, concluímos que:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt},$$

donde

$$\frac{dz}{dt} = (2xy + 3y^4) \cdot 2\cos(2t) + (x^2 + 12xy^3)(-\sin t).$$

Não é necessário substituir as expressões de x e de y em função de t. Simplesmente observe que, quando t=0, temos $x(0)=\sin 0=0$ e $y(0) = \cos 0 = 1$, donde

$$\frac{dz}{dt}(0) = (0+3) \cdot 2\cos(0) + (0+0)(-\sin 0) = 6.$$

Regra da cadeia (Caso 2):

Suponha-se que z = f(x, y) é uma função diferenciável nas variáveis x e y, onde x = g(s, t) e y = h(s, t) são funções diferenciáveis de s e de t. Então z é uma função diferenciável e

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \mathbf{e} \quad \frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}.$$

Notas:

A Regra da Cadeia (Caso 2) pode ser escrita na forma:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad e \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$$

O Caso 2 da Regra da Cadeia contém três tipos de variáveis: s e t, que são variáveis independentes; x e y, chamadas variáveis intermédias; z, que é a variável dependente.

Exercício:

Seja
$$z = x \operatorname{sen} y + 1$$
, onde $x(s, t) = st^2$ e $y(s, t) = st$. Determine $\frac{\partial z}{\partial s}$ e $\frac{\partial z}{\partial t}$.

Pela Regra da cadeia, concluímos que:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = \operatorname{sen} y \cdot t^2 + x \cos y \cdot t = t^2 \operatorname{sen} (st) + st^3 \cos(st)$$

е

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} = \operatorname{sen} y \cdot 2st + x \cos y \cdot s = 2st \operatorname{sen}(st) + s^2 t^2 \cos(st).$$

A Regra da cadeia (Caso 2) pode ser generalizada para o caso em que a variável dependente z é uma função de n variáveis intermédias x_1, x_2, \ldots, x_n , cada uma das quais, por seu turno, é função de m variáveis independentes t_1, t_2, \ldots, t_m .

Regra da cadeia (Caso 2 generalizado):

Suponha-se que z é uma função diferenciável de n variáveis x_1, x_2, \ldots, x_n , onde cada função x_j , $j=1,2,\ldots,n$, é uma função diferenciável de m variáveis t_1,t_2,\ldots,t_m .

Então z é uma função diferenciável de t_1, t_2, \ldots, t_m e, para cada $i = 1, 2, \ldots, m$,

$$\frac{\partial z}{\partial t_i} = \frac{\partial z}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial z}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial z}{\partial x_n} \frac{\partial x_n}{\partial t_i}.$$

Funções definidas explicitamente e implicitamente

- Se y = g(x), dizemos que y é uma função explícita da variável x.
- Na equação f(x,y) = 0, y não aparece como função explícita de x. Se, para cada x, existir um só y que resolva a equação, dizemos que f(x, y) = 0 define y como função implícita de x.

Exemplo:

Dada a equação $x^2 + y - 1 = 0$, conclui-se que $y = 1 - x^2$. Logo, podemos concluir que a equação dada define implicitamente y como função de x: y = g(x) onde $g(x) = 1 - x^2$, $x \in \mathbb{R}$ (observe-se que esta equação não define implicitamente x como função de y).

Nota: Dada uma equação do tipo f(x, y) = 0, nem sempre é possível explicitar y como função de x nem x como função de y. Considere-se, por exemplo, as equações: $e^{y} + yx + x^{5} - 2x^{2} = 0$ e $x^{2} + y^{2} + 1 = 0$.

Funções definidas implicitamente

Questão:

Como podemos saber, sem recorrer à explicitação, se uma dada equação

$$f(x,y)=0$$

define implicitamente uma das variáveis em função da outra? Além disso, em caso afirmativo, como calcular (se existir) a derivada da variável dependente relativamente à variável independente?

O **Teorema da função implícita** (a demonstração sai do âmbito desta UC) permite responder à questão colocada (se estivermos nas condições do teorema).

Teorema da função implícita

Teorema da função implícita (para duas variáveis):

Seiam $\mathcal{D} \subseteq \mathbb{R}^2$ um aberto, $f: \mathcal{D} \to \mathbb{R}$ uma função com derivadas parciais continuas e $(x_0, y_0) \in \mathcal{D}$ tal que $f(x_0, y_0) = 0$. Se

$$\frac{\partial f}{\partial y}(x_0,y_0)\neq 0,$$

então a equação f(x, y) = 0 define implicitamente y como função de x. y = g(x), numa vizinhaça de (x_0, y_0) . Além disso, a função g é diferenciável numa vizinhaça de x_0 e

$$g'(x) = -\frac{\frac{\partial f}{\partial x}(x,y)}{\frac{\partial f}{\partial y}(x,y)}.$$

Nota: Em vez de g'(x) podemos escrever y'(x).

Teorema da função implícita

Exercício:

Determine y' se $x^3 + y^3 = 6xy + 1$.

Seja $f(x,y)=x^3+y^3-6xy-1$. Observe-se que $\frac{\partial f}{\partial x}(x,y)=3x^2-6y$ e $\frac{\partial f}{\partial y}(x,y)=3y^2-6x$ são contínuas em \mathbb{R}^2 . Pelo Teorema da função implícita, se (x_0,y_0) satisfaz a equação dada e $\frac{\partial f}{\partial y}(x_0,y_0)\neq 0$, a equação define implicitamente y como função de x numa vizinhaça de (x_0,y_0) . Além do mais, numa vizinhança de x_0 , tem-se que $y'(x)=-\frac{x^2-2y}{y^2-2y}$.

Notas:

- 1. Observe-se que conseguimos determinar a derivada de y = g(x) em ordem a x sem recorrer ao conhecimento explícito da função g!
- **2.** Em particular, para $(x_0, y_0) = (0, 1)$ (observe-se que f(0, 1) = 0 e estamos nas condições do Teorema da função implícita), tem-se que v'(0) = 2.

Teorema da função implícita

Exercício:

Pretende-se saber se a equação $e^y + yx + x^5 - 2x^2 = 0$ define implicitamente y como função de x numa vizinhaça do ponto $(x_0, y_0) = (1, 0)$ (verifique que (1, 0) satisfaz a equação dada).

Seja
$$f(x,y)=e^y+yx+x^5-2x^2$$
. Observe-se que $\frac{\partial f}{\partial x}(x,y)=y+5x^4-4x$ e $\frac{\partial f}{\partial y}(x,y)=e^y+x$ são contínuas em \mathbb{R}^2 e $\frac{\partial f}{\partial y}(1,0)=2\neq 0$. Logo, pelo Teorema da função implícita, a equação dada define implicitamente y como função de x numa vizinhança de $(1,0)$ e

$$y'(1) = -\frac{\frac{\partial f}{\partial x}(1,0)}{\frac{\partial f}{\partial y}(1,0)} = -\frac{1}{2}.$$

Nota: O Teorema da função implícita pode ser generalizado para funções com $n \ge 3$ variáveis reais (não iremos estudar este caso geral).