ECUACIONES DIFERENCIALES

Se llama ecuación diferencial a una ecuación que liga la variable independiente x, la función incógnita y = y(x) y sus derivadas y', y'', ..., $y^{(n)}$.

Simbólicamente a una ecuación diferencial (ED) se la puede expresar:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$
 forma general o implícita

Si la función buscada (incógnita) y = y(x) depende de una sola variable x, la ecuación diferencial se llama ordinaria: EDO.

ORDEN DE UNA EDO

Es el orden de la derivada de mayor orden que figura en la EDO.

FORMA NORMAL DE UNA EDO

Si en la EDO se puede despejar la derivada de mayor orden, se tiene que

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)})$$

es la forma normal de una EDO.

SOLUCIÓN DE UNA EDO

Se llama solución de una EDO de orden n a una función $y = \varphi(x)$ definida en un intervalo abierto (a,b), junto con sus derivadas sucesivas hasta el orden n inclusive: $\varphi'(x)$, $\varphi''(x)$, ..., $\varphi^{(n)}(x)$ tal que al hacer la sustitución $y = \varphi(x)$ en la EDO, ésta se convierte en una identidad $\forall x \in (a,b)$.

Por ej., la función y = senx + cosx es la solución de la ED:

$$y^{"}+y=0$$

ya que si se deriva y dos veces

$$y' = cosx - senx$$

$$y'' = -senx - cosx$$

y se sustituye y e y'' en la ED por sus expresiones, resulta la identidad

A la gráfica de una solución de una ED se la denomina curva integral de la ecuación.

ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

La forma general de una EDO de primer orden es:

$$F(x,y,y')=0$$

Si de esta ecuación es posible despejar y resulta

$$y' = f(x, y)$$
 o $\frac{dy}{dx} = f(x, y)$

que es la forma normal de una EDO de primer orden.

TEOREMA DE EXISTENCIA Y UNICIDAD (Condiciones suficientes)

Dada la ED

$$y' = f(x, y)$$

Si f(x,y) y $\frac{\partial f}{\partial y}$ son continuas en un dominio D del plano xy que incluya al punto (x_0,y_0) , entonces existe una única solución $y=\varphi(x)$ de la ED que satisface la llamada

condición inicial: $y(x_0) = y_0$.

Como estas condiciones son suficientes pero no necesarias, es posible que si no se cumplen una o las dos condiciones que establece este teorema, exista aún una única solución que satisface la condición inicial.

PROBLEMA DE CAUCHY O DEL VALOR INICIAL PARA UNA EDO DE PRIMER ORDEN

El problema de la búsqueda de la solución de la EDO

$$y' = f(x, y)$$

que satisface la condición inicial

$$y(x_0) = y_0$$

se llama problema de Cauchy.

Geométricamente resolver el problema de Cauchy significa que se busca **la curva** solución de la ED que pasa por el punto (x_0, y_0) .

Del teorema de existencia y unicidad se deduce que la ED

$$y' = f(x, y)$$

tiene una infinidad de soluciones diferentes, por ejemplo: la solución cuya gráfica pasa por el punto (x_0, y_0) , otra solución cuya gráfica pasa por (x_0, y_1) , otra que pasa por (x_0, y_2) , etc., siempre que estos puntos estén incluidos en D.

SOLUCIÓN GENERAL UNA ED

Dada la EDO de primer orden

$$F(x,y,y')=0$$

se llama **solución general** de dicha ED a una función

$$y = \varphi(x, C)$$
 (forma explícita)

que depende de una constante arbitraria C y que cumple con las condiciones siguientes:

- Satisface la ED para cualquier valor de C.
- Cualquiera que sea la condición inicial $y(x_0) = y_0$ siempre se puede encontrar un valor de $C = C_0 / y = \varphi(x, C_0)$ satisfaga la condición inicial dada. (Se supone que el punto (x_0, y_0) pertenece al dominio D en el cual se cumplen las condiciones de existencia y unicidad de la solución)

Al buscar la solución general de una ED

$$F(x,y,y')=0$$

a menudo se llega a una relación de la forma:

$$\phi(x,y,C)=0$$

que da la solución general en forma implícita y se llama integral general de la ED.

No siempre es posible expresar la solución de la ED en forma explícita.

SOLUCIÓN PARTICULAR UNA ED

Dada la EDO de primer orden

$$F(x, y, y') = 0$$

se llama **solución particular** de dicha ED toda función

$$y = \varphi(x, C_0)$$
 (forma explícita)

deducida de la solución general $y = \varphi(x, C)$ haciendo $C = C_0$.

En este caso a la relación:

$$\phi(x, y, C_0) = 0$$
 (forma implícita)

se la l<mark>l</mark>ama **integral particular** de la ED.

ECUACIONES DIFERENCIALES A VARIABLES SEPARABLES

La siguiente EDO de primer orden:

$$y' = \frac{g(x)}{h(y)} \qquad ; \quad h(y) \neq 0$$

donde el segundo miembro es un cociente de una función que depende sólo de x por una función que depende sólo de y, se llama **EDO a variables separables**.

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}$$

Si se la lleva a la forma diferencial se tiene

$$h(y)dy = g(x)dx$$

de modo que las y están de un lado de la ecuación y las x del otro, es decir se separan las variables.

Integrando en ambos miembros se obtiene la expresión

$$\int h(y)dy = \int g(x)dx + C \quad ; \quad C: constante \ arbitraria \ de \ integración$$

lo que llevaría, luego de integrar, a la **solución general** de la ED, que por lo general queda expresada (en forma implícita) como:

$$\phi(x, y, C) = 0$$
 (integral general de la ED)

En muchos casos se podrá despejar y y expresar la solución general en forma explícita como:

$$y = \varphi(x, C)$$

<u>Ejemplo 1</u>

Obtenga la solución general de la ED siguiente:

$$\frac{dy}{dx} = \frac{6x^2}{2y + \cos y}$$

Solución

Separando las variables

Integrando

$$(2y + cosy)dy = 6x^2dx$$

$$\int (2y + \cos y) dy = \int 6x^2 dx + C$$

$$y^2 + sen y = 2x^3 + C$$
 (sol. gral de la ED)

También

$$y^{2} + sen y - 2x^{3} - C = 0$$

$$\phi(x, y, C)$$

En este caso no se puede despejar y, o sea que no se puede expresar a y explícitamente en términos de x y C.

Ejemplo 2

Resuelva el siguiente problema de Cauchy (o de valor inicial)

$$y' = x^3 e^{-y}$$

$$y(2) = 0$$
 (condición inicial)

<u>Solución</u>

$$y(x_0) = y_0$$
; $x_0 = 2$, $y_0 = 0$

$$\frac{dy}{dx} = x^3 e^{-y}$$

$$e^y dy = x^3 dx$$

$$\int e^{y} dy = \int x^3 dx + C$$

$$e^y = \frac{x^4}{4} + C$$
 (solución general)

Como se busca la solución particular de la ED, es decir la solución que pasa por (2,0), se sustituye x por 2 e y por 0 en la solución general

$$e^0 = \frac{2^4}{4} + C$$

Y se determina el valor de C

$$1 = 4 + C \quad \Rightarrow \quad C = C_0 = -3$$

Luego sustituyendo C por -3 en la solución general

$$e^y = \frac{x^4}{4} - 3$$

Y despejando y se obtiene $y = \ln \left| \frac{x^4}{4} - 3 \right|$ que es la solución que cumple la cond. inic.

 $y = \varphi(x, C_0)$ (forma explícita de la solución particular)

ECUACIONES DIFERENCIALES EXACTAS

La ED de la forma:

$$M(x,y)dx + N(x,y)dy = 0$$

se llama ED exacta si y sólo si

$$\frac{\partial M}{\partial y} \equiv \frac{\partial N}{\partial x} \ en \ D$$

La solución general de una ED exacta tiene la forma:

$$\int_{x_0}^{x} M(x, y) dx + \int_{y_0}^{y} N(x_0, y) dy = C$$

$$u(x, y)$$

<u>Ejemplo</u>

Dada la siguiente ED:

$$(y-1)dx + (x-3)dy = 0$$

- a) Obtenga su solución general.
- b) La solución que satisface la condición inicial: $y(0) = \frac{2}{3}$.

<u>Solución</u>

$$M(x,y) = y - 1$$
 ; $N(x,y) = x - 3$

Como
$$\frac{\partial M}{\partial y} = 1 = \frac{\partial N}{\partial x}$$
 la ED es exacta

a)

$$\int_{x_0}^{x} M(x, y) dx + \int_{y_0}^{y} N(x_0, y) dy = C$$

Eligiendo $(x_0, y_0) = (0,0)$

$$\int_0^x (y-1)dx + \int_0^y (0-3)dy = C$$

$$[x(y-1)]_0^x - [3y]_0^y = C$$

$$x(y-1) - 3y = C \quad solución general$$

b) Como $y(0) = \frac{2}{3} \implies (x_0, y_0) = \left(0, \frac{2}{3}\right)$, luego sustituyendo en la solución general

$$0\left(\frac{2}{3}-1\right)-3\left(\frac{2}{3}\right)=C \implies C=C_0=-2$$

У

$$x(y-1)-3y=-2$$
 es la solución particular (satisface la condición inicial dada)

ECUACIÓN DIFERENCIAL LINEAL

Se llama así a la EDO de primer orden que es **lineal** con respecto a la función incógnita y su derivada.

Tiene la forma:

$$y' + P(x)y = Q(x)$$

donde P(x) y Q(x) son funciones continuas de x (o constantes).

La solución general de la EDL se obtiene partir de la siguiente fórmula resolvente:

$$y = e^{-\int P(x)dx} \left[\int \left(Q(x)e^{\int P(x)dx} \right) dx + C \right]$$

Ejemplo

Dada la siguiente ED:

$$y' = \frac{2}{x}y + x^2 e^x$$

- a) Obtenga su solución general.
- b) La solución que satisface la condición inicial: y(2) = 0.

Solución

La ED se puede reescribir como:

$$y' + \left(-\frac{2}{x}\right)y = x^2 e^x$$

donde

$$P(x) = -\frac{2}{x} \quad y \quad Q(x) = x^2 e^x$$

Aplicando la fórmula resolvente se obtiene

a)

$$y = e^{-\int \left(-\frac{2}{x}\right)dx} \left[\int \left(x^2 e^x e^{\int \left(-\frac{2}{x}\right)dx}\right) dx + C \right]$$

$$y = e^{\int \frac{2}{x}dx} \left[\int \left(x^2 e^x e^{\int \left(-\frac{2}{x}\right)dx}\right) dx + C \right]$$

$$y = e^{2\int \frac{1}{x}dx} \left[\int \left(x^2 e^x e^{-2\int \left(\frac{1}{x}\right)dx}\right) dx + C \right]$$

$$y = e^{2\ln(|x|)} \left[\int \left(x^2 e^x e^{-2\ln(|x|)}\right) dx + C \right]$$

$$y = e^{\ln(|x|^2)} \left[\int \left(x^2 e^x e^{\ln(|x|^{-2})}\right) dx + C \right]$$

$$y = e^{\ln(x^2)} \left[\int \left(x^2 e^x e^{\ln\left(\frac{1}{x^2}\right)}\right) dx + C \right]$$

$$y = x^{2} \left[\int \left(x^{2} e^{x} \frac{1}{x^{2}} \right) dx + C \right]$$

$$y = x^{2} \left[\int e^{x} dx + C \right]$$

$$y = x^{2} [e^{x} + C]$$
 solución general

b) Como
$$y(2) = 0 \implies (x_0, y_0) = (2,0)$$
, sustituyendo en la solución general

$$0 = 2^2 [e^2 + C_0]$$

$$0 = e^2 + C_0$$

$$C_0 = -e^2$$

Luego

$$y = x^2[e^x - e^2]$$
 solución particular (satisface la condición inicial)

ECUACIÓN DIFERENCIAL DE BERNOULLI

Tiene la forma:

$$y' + P(x)y = Q(x) y^n$$

donde

- P(x) y Q(x) son funciones continuas de x (o constantes).
- $n \neq 0$. En caso contrario la ED se reduce a una ED lineal.
- $n \neq 1$. En caso contrario la ED se reduce a una ED a variables separables.

La **solución general** de la ED de Bernoulli se obtiene partir de la siguiente fórmula resolvente:

$$y^{1-n} = e^{-\int (1-n)P(x)dx} \left[\int (1-n)Q(x)e^{\int (1-n)P(x)dx} dx + C \right]$$

C.F.D.S

Ejemplo

Obtenga la solución general de la siguiente ED:

<u>Solución</u>

$$n = \frac{1}{2}$$
 \Rightarrow $1 - n = 1 - \frac{1}{2} = \frac{1}{2}$; $P(x) = x^4$, $Q(x) = x^4$

Aplicando la fórmula resolvente

$$y^{\frac{1}{2}} = e^{-\int \frac{1}{2}x^4 dx} \left[\int \frac{1}{2} x^4 e^{\int \frac{1}{2}x^4 dx} dx + C \right]$$

$$y^{\frac{1}{2}} = e^{-\frac{x^5}{10}} \left[\int \frac{1}{2} x^4 e^{\frac{x^5}{10}} dx + C \right]$$

$$\int \frac{1}{2} x^4 e^{\frac{x^5}{10}} dx = \int e^u du = e^u = e^{\frac{x^5}{10}}$$

$$u = \frac{x^5}{10} \qquad ; \quad du = \frac{x^4}{2} dx$$

$$y^{\frac{1}{2}} = e^{-\frac{x^5}{10}} \left[e^{\frac{x^5}{10}} + C \right]$$

$$y^{\frac{1}{2}} = 1 + Ce^{-\frac{x^5}{10}}$$
 solución general

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN A COEFICIENTES CONSTANTES

Las podemos clasificar en: homogéneas y no homogéneas.

HOMOGÉNEAS

NO HOMOGÉNEAS (COMPLETAS)

Tienen la forma:

Tienen la forma:

$$ay'' + by' + cy = 0$$

$$ay'' + by' + cy = h(x)$$

donde a, b y c son constantes (coeficientes) reales con $a \neq 0$.

HOMOGÉNEAS

$$ay^{''}+by^{'}+cy=0$$

Si $y_1(x)$ e $y_2(x)$ son soluciones linealmente independientes de la ecuación diferencial homogénea (EDH) y C_1 y C_2 son contantes reales cualesquiera (arbitrarias) entonces la combinación lineal:

$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$

es la **solución general** de la EDH.

Para obtener la **solución general** de la EDH se forma lo que se llama **ecuación característica** de la ED, que es una ecuación algebraica que se obtiene al reemplazar en la ED:

$$y''$$
 por r^2

O sea que:

$$ar^2 + br + c = 0$$

es la **ecuación característica** de la ED.

Es una ecuación de segundo grado cuyas raíces r_1 y r_2 se determinan a veces por factorización y en otros casos a partir de la fórmula resolvente:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Se presentan 3 casos:

(I) Raíces reales y distintas. $(r_1 \neq r_2)$

En este caso la **solución general** de la EDH es:

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

$$y_1(x) \qquad y_2(x)$$

(II) Raíz real repetida. $(r_1 = r_2 = r)$

La **solución general** de la EDH es:

$$y = C_1 e^{rx} + C_2 x e^{rx}$$

$$y_1(x) \qquad y_2(x)$$

(III) Raíces complejas.
$$(r_1 = \alpha + i\beta , r_2 = \alpha - i\beta)$$

La solución general de la EDH es:

$$y = e^{\alpha x} [C_1 cos(\beta x) + C_2 sen(\beta x)]$$

<u>Ejemplo 1</u>

Obtenga la solución general de la siguiente EDH:

$$y^{''}-y=0$$

<u>Solución</u>

Ecuación característica:

$$r^2-1=0$$
 Caso I: Raíces reales y distintas $r_2=-1$

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

$$y = C_1 e^x + C_2 e^{-x}$$
 solución general de la EDH

<u>Ejemplo 2</u>

Obtenga la solución general de la siguiente EDH:

$$y'' - 6y' + 9y = 0$$

Solución

Ecuación característica:

$$r^2 - 6r + 9 = 0$$

$$(r-3)^2 = 0 \qquad \Rightarrow \qquad r = 3$$

Caso II: Raíz real repetida

$$y = C_1 e^{rx} + C_2 x e^{rx}$$

$$y = C_1 e^{3x} + C_2 x e^{3x}$$
 solución general de la EDH

<u>Ejemplo 3</u>

Obtenga la solución de la siguiente ED

$$y'' + 2y' + 2y = 0$$

que satisface las condiciones iniciales: y(0) = 1, y'(0) = 0.

<u>Solución</u>

Ecuación característica:

$$r = \frac{-2 \pm \sqrt{4 - 4(2)}}{2} = \frac{-2 \pm \sqrt{-4}}{2} = \frac{-2 \pm \sqrt{4}i}{2} = \frac{-2 \pm 2i}{2} = -1 \pm i1$$

Caso III: Raíces complejas

$$\alpha = -1$$
 ; $\beta = 1$

$$y = e^{\alpha x} \left[C_1 cos(\beta x) + C_2 sen(\beta x) \right]$$

 $y = e^{-x}[C_1 cos(x) + C_2 sen(x)]$ solución general de la EDH

Aplicando la condición inicial y(0) = 1, se observa de

$$y(0) = e^{0}[C_{1}cos(0) + C_{2}sen(0)] = 1$$

que $C_1 = 1$.

Derivando y (habiendo sustituido previamente C_1 por 1) se tiene

$$y' = -e^{-x}[cos(x) + C_2sen(x)] + e^{-x}[-sen(x) + C_2cos(x)]$$

Usando la otra condición inicial y'(0) = 0, se obtiene

$$y'(0) = -e^{0}[\cos(0) + C_{2}sen(0)] + e^{0}[-sen(0) + C_{2}cos(0)] = 0$$
$$-1 + C_{2} = 0 \implies C_{2} = 1$$

Luego

 $y = e^{-x}[\cos(x) + \sin(x)]$ es la solución de la EDH que satisface las condiciones iniciales.

NO HOMOGÉNEAS (COMPLETAS)

$$ay'' + by' + cy = h(x)$$

* a, b, c constantes reales

*
$$a \neq 0$$

La **solución general** de la EDNH se puede escribir como:

$$y = y_h + y_p$$

Solución general de la EDH asociada (ay'' + by' + cy = 0)

Una solución particular de la EDNH (ay'' + by' + cy = h(x))

Para hallar una solución particular $oldsymbol{y_p}$ de la EDNH existen dos métodos:

- <u>El método de los coeficientes indeterminados</u>, que por lo general es simple pero sólo funciona para una clase restringida de funciones h(x).
- El método de variación de parámetros, que funciona para una toda h(x) pero que por lo general es más difícil aplicarlo en la práctica.

<u>MÉTODO DE LOS COEFICIENTES INDETERMINADOS</u>

Este método permite hallar una y_p de la EDNH para aquellos casos en los que el segundo miembro h(x) tiene, en el caso general, la forma:

$$h(x) = e^{\alpha x} [P_m(x) \cos(\beta x) + Q_n(x) \sin(\beta x)]$$
Polinomio en x de grado m
Polinomio en x de grado n

En este caso se busca una solución particular y_p de la forma:

$$y_p = x^s e^{\alpha x} \left[\widetilde{P}_k(x) \cos(\beta x) + \widetilde{Q}_k(x) \operatorname{sen}(\beta x) \right]$$

donde

- k = máx(m, n)
- ullet $ilde{P}_k(x)$ y $ilde{Q}_k(x)$ son polinomios en x de grado k de coeficientes indeterminados
- ullet S es el orden de multiplicidad de $oldsymbol{\lambda}=lpha\pm ioldsymbol{eta}$ como raíz de la ecuación característica

$Si \beta = 0 \Rightarrow \lambda real y$

$$S=$$
 0 ; si λ no es raíz de la ecuación característica
 $S=$
 1 ; si λ es una de las raíces de la ecuación característica
 2 ; si λ es raíz repetida de la ecuación característica

$Si \beta \neq 0 \Rightarrow \lambda compleja$ y

S= 0 ; si $\alpha\pm i\beta$ no son raíces de la ecuación característica 1 ; si $\alpha\pm i\beta$ son raíces de la ecuación característica

Si el segundo miembro h(x) de la EDNH es una suma de funciones:

$$h(x) = \sum_{j=1}^{L} h_{j}(x) = h_{1}(x) + \dots + h_{L}(x)$$

donde las $h_j(x)$ son de la forma *, entonces por el principio de superposición, se busca una solución y_p de la EDNH de la forma:

$$y_p = \sum_{i=1}^{L} y_{p_i}(x) = y_{p_1}(x) + \dots + y_{p_L}(x)$$

donde y_{p_i} es una solución particular de la EDNH:

$$ay^{''}+by^{'}+cy=h_{i}(x)$$

Ejemplo 1

Obtenga la solución general de la siguiente EDNH:

$$y'' + y = 3x^2$$

<u>Solución</u>

Ecuación característica:

$$r^2 + 1 = 0 \implies r = \pm i$$
 $r_1 = 0 + i1$
 $r_2 = 0 - i1$

<u>Caso III:</u> Raíces complejas

$$lpha=0$$
 , $eta=1$
$$y_h=e^{lpha x}\left[C_1cos(eta x)+C_2sen(eta x)
ight]$$

$$y_h=e^0\left[C_1cos(x)+C_2sen(x)\right]$$

 $y_h = C_1 cos(x) + C_2 sen(x)$ solución general de la EDH asociada

El segundo miembro de la EDNH es

$$h(x) = 3x^2 = P_2(x)$$

Como la forma general del segundo miembro es

$$h(x) = e^{\alpha x} \left[P_m(x) \cos(\beta x) + Q_n(x) \sin(\beta x) \right]$$

Para que esta última expresión se reduzca a $P_2(x)$:

$$\alpha = 0;$$
 $\beta = 0;$ $m = 2;$ $n = 0$

Con estos valores

$$h(x) = e^{0} [P_{2}(x)\cos(0) + Q_{0}(x) sen(0)]$$

$$h(x) = P_2(x)$$
 (como se requiere)

Se busca una solución particular y_n de la forma:

$$y_p = x^s e^{\alpha x} \left[\tilde{P}_k(x) \cos(\beta x) + \tilde{Q}_k(x) \operatorname{sen}(\beta x) \right]$$

donde

$$k = m \acute{a} x(m,n) = m \acute{a} x(2,0) = 2$$

Como $\lambda = \alpha \pm i\beta = 0 \pm i0 = 0$ (real) no es raíz de la ecuación característica $\Rightarrow s = 0$.

Con $\alpha = 0$, $\beta = 0$, k = 2 y s = 0, la expresión para y_p se reduce a:

$$y_p = x^0 e^0 \left[\tilde{P}_2(x) \cos(0) + \tilde{Q}_2(x) sen(0) \right]$$
$$y_p = \tilde{P}_2(x) = Ax^2 + Bx + C$$

Para determinar las constantes A, B y C se deriva y_p

$$y_p' = 2Ax + B$$
$$y_p'' = 2A$$

Y se sustituye y_p e $y_p^{''}$ por sus expresiones en la EDNH

$$y_p'' \qquad y_p$$

$$2A + Ax^2 + Bx + C = 3x^2$$

Como se supone que la última ecuación es una identidad, los coeficientes de potencias semejantes de x deben ser iguales:

$$A x^{2} + B x + (2A + C) = 3 x^{2} + 0 x + 0$$

$$\begin{cases} A = 3 & (1) \\ B = 0 & (2) \\ 2A + C = 0 & (3) \end{cases}$$

Sustituyendo (1) en (3):
$$2(3) + C = 0 \Rightarrow C = -6$$

Luego

$$y_p = \tilde{P}_2(x) = Ax^2 + Bx + C = 3x^2 - 6$$

Y la **solución general** de la EDNH es:

$$y = y_h + y_p = C_1 cos(x) + C_2 sen(x) + 3x^2 - 6$$

Ejemplo 2

Obtenga la solución general de la siguiente EDNH:

$$y'' + 5y' = x + 1 + e^{2x}$$

Solución

Ecuación característica:

$$r^2 + 5r = 0$$

$$r(r+5) = 0$$

$$r_1 = 0$$

$$r_2 = -5$$
Caso I: Raíces reales y distintas

$$y_h = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

$$y_h = C_1 e^{0x} + C_2 e^{-5x} = C_1 + C_2 e^{-5x}$$

Como

$$h(x) = \underbrace{x+1}_{h(x)} + \underbrace{e^{2x}}_{h(x)}$$

Por principio de superposición

$$y_p = y_{p_1} + y_{p_2}$$

donde

$$y_{p_1}$$
 es solución particular de: $y'' + 5y' = x + 1$, e y_{p_2} de: $y'' + 5y' = e^{2x}$

ullet Para obtener una $\,y_{p_1}\,$ para un segundo miembro de la forma

$$h_1(x) = x + 1 = P_1(x)$$

Tenemos que como la forma general del segundo miembro es

$$e^{\alpha x} [P_m(x)\cos(\beta x) + Q_n(x)\sin(\beta x)]$$

Para que esta última expresión se reduzca a $P_1(x)$:

$$\alpha = 0;$$
 $\beta = 0;$ $m = 1;$ $n = 0$

Con estos valores

$$e^{0}[P_{1}(x)\cos(0) + Q_{0}(x)\sin(0)] = P_{1}(x)$$

Se busca una solución particular y_{p_1} de la forma:

$$y_{p_1} = x^s e^{\alpha x} \left[\tilde{P}_k(x) \cos(\beta x) + \tilde{Q}_k(x) \operatorname{sen}(\beta x) \right]$$

donde

$$k = m \acute{a} x(m, n) = m \acute{a} x(1, 0) = 1$$

Como $\lambda = \alpha \pm i\beta = 0 \pm i0 = 0$ (real) es una de las raíces de la ecuación característica $\Rightarrow s = 1$.

Con $\alpha = 0$, $\beta = 0$, k = 1 y s = 1, la expresión para y_{p_1} se reduce a:

$$y_{p_1} = x^1 e^0 \left[\tilde{P}_1(x) \cos(0) + \tilde{Q}_1(x) sen(0) \right]$$

$$y_{p_1} = x \, \tilde{P}_1(x) = x \, [Ax + B]$$

Para determinar las constantes A y B se deriva y_{p_1}

$$y_{p_1}^{'} = Ax + B + Ax = 2Ax + B$$

$$y_{p_1}^{"} = 2A$$

Luego se sustituye $y_{p_1}^{'}$ e $y_{p_1}^{''}$ por sus expresiones en la EDNH: y'' + 5y' = x + 1, o sea

$$y_{p_1}'' y_{p_1}'$$

$$2A + 5(2Ax + B) = x + 1$$

$$10A x + (2A + 5B) = 1 x + 1$$

Y se resuelve el sistema

$$\begin{cases} 10A = 1\\ 2A + 5B = 1 \end{cases}$$

obteniéndose $A = \frac{1}{10}$ y $B = \frac{4}{25}$ con lo cual

$$y_{p_1} = x [Ax + B] = \frac{1}{10}x^2 + \frac{4}{25}x$$

• Para obtener una y_{p_2} para un segundo miembro de la forma

$$h_2(x) = e^{2x} 1 = e^{\alpha x} P_0(x)$$

Tenemos que como la forma general del segundo miembro es

$$e^{\alpha x} [P_m(x)\cos(\beta x) + Q_n(x)\sin(\beta x)]$$

Para que esta última expresión se reduzca a $e^{\alpha x} P_0(x) = e^{2x} 1$:

$$\alpha = 2; \quad \beta = 0; \quad m = 0; \quad n = 0$$

Con estos valores

$$e^{2x} [P_0(x)\cos(0) + Q_0(x)\sin(0)] = e^{2x} P_0(x); con P_0(x) = 1$$

Se busca una solución particular y_{p_2} de la forma:

$$y_{p_2} = x^s e^{\alpha x} \left[\tilde{P}_k(x) \cos(\beta x) + \tilde{Q}_k(x) \operatorname{sen}(\beta x) \right]$$

donde

$$k = m \acute{a} x(m, n) = m \acute{a} x(0, 0) = 0$$

Como $\lambda = \alpha \pm i\beta = 2 \pm i0 = 2$ (real) no es raíz de la ecuación característica $\Rightarrow s = 0$.

Con $\alpha = 2$, $\beta = 0$, k = 0 y s = 0, la expresión para y_{p_2} se reduce a:

$$y_{p_2} = x^0 e^{2x} [\tilde{P}_0(x) \cos(0) + \tilde{Q}_0(x) \sin(0)]$$

$$y_{p_2} = e^{2x} \tilde{P}_0(x) = e^{2x} A$$

Para determinar la constante A se deriva y_{p_2}

$$y_{p_2}' = 2A e^{2x}$$

$$y_{p_2}^{"} = 4A e^{2x}$$

Luego se sustituye $y_{p_2}^{'}$ e $y_{p_2}^{''}$ por sus expresiones en la EDNH: $y^{''}+5y^{'}=e^{2x}$, o sea

$$4A e^{2x} + 5(2A e^{2x}) = e^{2x}$$

$$14A e^{2x} = 1 e^{2x}$$

Y se obtiene $A = \frac{1}{14}$, con lo cual

$$y_{p_2} = \frac{1}{14} e^{2x}$$

Por lo tanto

$$y_p = y_{p_1} + y_{p_2} = \frac{1}{10}x^2 + \frac{4}{25}x + \frac{1}{14}e^{2x}$$

Y la **solución general** de la EDNH es:

$$y = y_h + y_p = C_1 + C_2 e^{-5x} + \frac{1}{10}x^2 + \frac{4}{25}x + \frac{1}{14}e^{2x}$$

<u>Ejemplo 3</u>

Obtenga la solución de la siguiente ED

$$y'' - 3y' + 2y = 14 sen(2x) - 18 cos(2x)$$

que satisface las condiciones iniciales: y(0) = 0, y'(0) = -5.

<u>Solución</u>

Ecuación característica:

$$r_1 = 2$$

$$r_2 = 1$$

$$y_h = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

$$y_h = C_1 e^{2x} + C_2 e^{x}$$

C.F.D.S

$$h(x) = e^{\alpha x} [P_m(x)\cos(\beta x) + Q_n(x) sen(\beta x)]$$

se reduzca a la forma

$$h(x) = 14 \ sen(2x) - 18 \cos(2x) = Q_0(x) \ sen(\beta x) + P_0(x) \cos(\beta x)$$

$$\alpha=0,\ \beta=2$$
 , $m=n=0$ de manera que

$$h(x) = e^{0x} [P_0(x)\cos(2x) + Q_0(x)\sin(2x)] con Q_0(x) = 14 y P_0(x) = -18$$

$$k = m \acute{a} x(m,n) = m \acute{a} x(0,0) = 0$$

Como $\lambda = \alpha \pm i\beta = 0 \pm i2$ (complejas) no son raíces de la ecuación característica \Rightarrow s = 0.

Luego con $\alpha = 0$, $\beta = 2$, k = 0 y s = 0 en

$$y_p = x^s e^{\alpha x} \left[\tilde{P}_k(x) \cos(\beta x) + \tilde{Q}_k(x) \operatorname{sen}(\beta x) \right]$$

se obtiene

$$y_p = A\cos(2x) + B \sin(2x)$$

Derivando

$$y_{p}^{'} = -2Asen(2x) + 2Bcos(2x)$$

$$y_p'' = -4A\cos(2x) - 4B\sin(2x)$$

Sustituyendo y_p , y_p' e y_p'' en la ED

$$-4A\cos(2x) - 4B\sin(2x) - 3(-2A\sin(2x) + 2B\cos(2x)) + 2(A\cos(2x) + B\sin(2x)) = 14\sin(2x) - 18\cos(2x)$$

$$-(2A+6B)\cos(2x) + (6A-2B)\sin(2x) = 14 \sin(2x) - 18\cos(2x)$$

$$\begin{cases} 2A + 6B = 18 \\ 6A - 2B = 14 \end{cases}$$

$$A=3$$
 , $B=2$

$$y_p = 3\cos(2x) + 2\operatorname{sen}(2x)$$

$$y = y_h + y_p = C_1 e^{2x} + C_2 e^x + 3\cos(2x) + 2\sin(2x)$$
 solución general de la ED

Derivando

$$y' = 2C_1e^{2x} + C_2e^x - 6\operatorname{sen}(2x) + 4\cos(2x)$$

Aplicando las condiciones iniciales:

$$y(0) = C_1 e^0 + C_2 e^0 + 3\cos(0) + 2 \operatorname{sen}(0) = 0$$
 $\Rightarrow C_1 + C_2 + 3 = 0$

$$y'(0) = 2C_1e^0 + C_2e^0 - 6sen(0) + 4cos(0) = -5$$
 $\Rightarrow 2C_1 + C_2 + 4 = -5$

$$\begin{cases} C_1 + C_2 = -3 \\ 2C_1 + C_2 = -9 \end{cases}$$

$$C_1 = -6$$
 , $C_2 = 3$

 $y = -6e^{2x} + 3e^x + 3\cos(2x) + 2\sin(2x)$ solución de la ED que satisface las condiciones iniciales

