Machine Learning

2. regressie en gradient descent

ml:regressie

Lineaire regressie

- Met behulp van een model...
- Op basis van 1 (simple) of meer (multiple) features...
- ...proberen een uitkomstwaarde te voorspellen

Verkoopprijs huizen Groningen

Let op: Anscombe's Quartet

regressielijn

ml:fouten en gewichten

Kostenfunctie (J) voor 1 feature

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Waarom kwadraat?

ml:meerdere eigenschappen

Verkoopprijs huizen Groningen

Eén feature

grootte (m²)	verkoopprijs (€)
127	279.500
101	195.000
120	167.500
135	290.000
183	534.500
180	315.000
96	189.000
70	115.000
160	449.000

•••

grootte (m²)	aantal kamers	tuin	energielabel	verkoopprijs (€)
127	3	j	A	279.500
101	2	n	C	195.000
120	2	j	В	167.500
135	4	j	C	290.000
183	3	n	D	534.500
• • •	•••	• • •	• • •	• • •
notatie-afspraken	:	<u>:</u>	<u>:</u>	

m	aantal observaties
n	aantal eigenschappen (per observatie)
$\boldsymbol{x}^{(i)}$	observatie nummer i
$x_j^{(i)}$	eigenschap j van observatie nummer i
$y^{(i)}$	actuele waarde van observatie i
θ_{j}	factor waarmee waarde van feature j moet worden vermenigvuldigd

Hypothese o.b.v. 1 of meer features

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\boldsymbol{X}$$

127	3	j	A
101	2	n	C
120	2	j	\boldsymbol{B}
135	4	j	C
183	3	n	D

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}$$

Intermezzo: vermenigvuldigen van matrices met vectoren

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$$

Dimensies (rijen x kolommen):

$$A = \{2 \times 3\}$$

 $B = \{3 \times 1\}$
 $=>$
 $A.B = \{2 \times 1\}$

	127	3	j	A
1	101	2	n	C
1	120	2	j	\boldsymbol{B}
1	135	4	j	C
1	183	3	n	$D igg \rfloor$

 θ

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}$$

Algemene kostenfunctie (J)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta^T x^{(i)}$$

ml:ordinary least square

Verkoopprijs huizen Groningen

Gesloten oplossing: Ordinary Least Squares (OLS)

$$\theta = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$

theta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)

ml:gradient descent

$$y = \frac{1}{2}(1-x)^2$$

$$y = \frac{1}{2}x^2 - x + \frac{1}{2}$$

$$y' = x - 1$$

Herhaling: kostenfunctie

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Aanpassing van de gewichten

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$= \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Stappenplan

update alle θ_j , j = 1, j = 2,..., j = n

herhaal totdat een minimum bereikt is:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$:= \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.