

$\begin{array}{c} {\rm MA0301} \\ {\rm Element\&r} \ {\rm Diskret \ matematikk} \end{array}$

Øving 4

Våren 2025

Øvingen skal leveres inn digitalt på OVSYS, som én enkelt individuelt .pdf-fil. For å bestå øvingen må du gjøre et ærlig forsøk på alle oppgavene som ikke har en stjerne etter seg.

Velg de riktige påstandene under. Flere av dem kan være sanne samt Du trenger ikke å forklare svarene dine.	idig.
a) La $\mathcal{U} = \mathbb{N}$, og la $Q(x,y) \equiv x \leq y$ være et predikat over \mathcal{U} . Oversett påstar "Det finnes et tall som er mindre enn eller lik alle tall." til første ordens lo $\Box \ \forall x \exists y (Q(x,y))$ $\Box \ \forall x \exists y (Q(y,x))$ $\Box \ \exists x \forall y (Q(x,y))$ $\Box \ \exists x \forall y (Q(y,x))$	
b) La $\mathcal{U} = \mathbb{N}$ og $Q(x,y) \equiv x \leq y$. Oversett følgende setning til predikatlog "For alle par av tall, er det første tallet mindre eller lik det andre, eller andre mindre eller lik det første". $\Box \exists x \exists y (Q(x,y) \lor Q(y,x))$ $\Box \exists x \forall y (Q(y,x) \lor Q(x,y))$ $\Box \forall x \exists y (Q(x,y) \lor Q(y,x))$ $\Box \forall x \forall y (Q(y,x) \lor Q(x,y))$	_
c) Betrakt predikatene $P(x) \equiv x > 0$ og $Q(x,y) \equiv x < y$. Kryss ut påstand under som er sanne, når vi betrakter disse to predikatene over \mathbb{Z} . $\Box \exists x (\neg P(x))$ $\Box \forall x \forall y (P(x) \rightarrow P(x+y))$ $\Box \forall x \forall y (\neg P(x) \land P(y)) \rightarrow Q(x,y)$ $\Box \forall x \exists y (P(xy))$	dene
d) La $\mathcal{U} = \mathbb{N}$ og la f være en funksjon fra \mathbb{N} til \mathbb{N} . Kryss ut formelen som ekvivalent med at f er en surjektiv funksjon. $\Box \ \forall x \forall y ((f(x) = f(y)) \to x = y)$ $\Box \ \forall x \exists y (f(x) = y)$ $\Box \ \forall y \exists x (f(x) = y)$ $\Box \ \exists x \exists y (f(x) = y)$	m er

 $\boxed{2}$ La $\mathcal{U} = \mathbb{N}$. La videre $P(x) \equiv "x$ er et partall".

Bestem sannhetsverdien til hver av påstandene under. Rettferdiggjør svarene dine.

- a) $\forall x (P(x) \rightarrow P(x+3))$
- b) $\forall x (P(x) \to P(x^2))$
- c) $\exists x \forall y (P(x+y))$
- d) $\forall x \exists y (P(x+y))$
- a) La *P* være et vilkårlig predikat av aritet 2. Skriv følgende formel *F* om til et ekvivalent utsagn hvor det ikke forekommer negasjoner foran (til venstre) for noen kvantorer:

$$F: \neg \forall x \neg \exists y \neg \exists z \quad (P(x,y) \land P(y,z))$$

- b) Finn et utsagn ekvialent til F, hvor det ikke opptrer eksistenskvantorer.
- a) La P,Q,R være vilkårlige utsagn. Vis at $P \to R$ er en logisk konsekvens av påstandene $\{P \to Q, Q \to R\}$.
 - b) La P(x) være predikatet "x er et partall". La videre a, b, c være vilkårlige heltall (altså elementer i \mathbb{Z}) og $A = \{P(a), P(c), P(ab), P(bc), P(abc), P(a+b+c)\}$. Til slutt definerer vi

$$R = \{(Q_1, Q_2) \in A \times A \mid Q_1 \to Q_2 \text{ er sant for alle mulige valg av } a, b, c \text{ i } \mathbb{Z}.\}$$

Tegn R, slik vi tidligere har tegnet relasjoner på mengder. Blant egenskapene refleksiv, transitiv og symmetrisk, hvilke egenskaper har R?

(Hint: For eksempel er implikasjonen $P(a) \rightarrow P(a)$ alltid sann. Enten a er valgt til å være et partall eller ikke, er implikasjonen sann. Valget av b og c er irrelevant.)

- 5 ★
 - a) La $A = \{P_1, P_2, \dots, P_n\}$ være en mengde utsagnslogiske formler. La nå

$$R_{\equiv} = \{(Q_1, Q_2) \in A \times A \mid Q_1 \equiv Q_2\}$$

Forklar hvorfor R_{\equiv} er en ekvivalensrelasjon.

b) La $A=\{P_1,P_2,\dots,P_n\}$ være en mengde utsagnslogiske formler. La nå

$$R_{\rightarrow} = \{(Q_1,Q_2) \in A \times A \mid Q_1 \rightarrow Q_2 \text{ er en tautologi}\}$$

Forklar hvorfor R_{\rightarrow} er en refleksiv og transitiv relasjon.

c) Vis ved å finne et eksempel at vi kan velge mengden A i deloppgaven over på en slik måte at R_{\rightarrow} ikke er symmetrisk og ikke er anti-symmetrisk. (Hint: Betrakter vi for eksempel mengden $A = \{P, P \land Q, P \land Q \land R\}$ over de atomære formlene P, Q, R, blir R_{\rightarrow} en delvis ordning, og dermed anti-symmetrisk. Dette valget av A løser altså ikke oppgaven.)