The Euclidean Algorithm

Learning Objectives. By the end of class, students will be able to:

- Prove the Euclidean Algorithm halts and generates the greatest common divisor of two positive integers
- Use the Euclidean Algorithm to find the greate common divisor of two integers
- Use the (extended) Euclidean algorithm to write (a, b) as a linear combination of a and b.

Typically by *Euclidean Algorithm*, we mean both the algorithm and the theorem that the algorithm always generates the greatest common divisor of two (positive) integers.

Theorem (Euclidean algorithm). Let $a, b \in \mathbb{Z}$ with $a \geq b > 0$. By the ??, there exist $q_1, r_1 \in \mathbb{Z}$ such that

$$a = bq_1 + r_1, \quad 0 \le r_1 < b.$$

If $r_1 > 0$, there exist $q_2, r_2 \in \mathbb{Z}$ such that

$$b = r_1 q_2 + r_2$$
, $0 < r_2 < r_1$.

If $r_2 > 0$, there exist $q_3, r_3 \in \mathbb{Z}$ such that

$$r_1 = r_2 q_3 + r_3, \quad 0 \le r_3 < r_2.$$

Continuing this process, $r_n = 0$ for some n. If n > 1, then $gcd(a, b) = r_{n-1}$. If n = 1, then gcd(a, b) = b.

Proof Note that $r_1 > r_2 > r_3 > \cdots \geq 0$ by construction. If the sequence did not stop, then we would have an infinite, decreasing sequence of positive integers, which is not possible. Thus, $r_n = 0$ for some n.

When n = 1, a = bq + 0 and gcd(a, b) = b.

?? states that for $a = bq_1 + r_1$, $gcd(a, b) = gcd(b, r_1)$. This is because any common divisor of a and b is also a divisor of $r_1 = a - bq_1$.

If n > 1, then by repeated application of the ??, we have

$$\gcd(a,b) = \gcd(b,r_1) = \gcd(r_1,r_2) = \cdots = \gcd(r_{n-2},r_{n-1})$$

Then $r_{n-2} = r_{n-1}q_n + 0$. Thus $gcd(r_{n-2}, r_{n-1}) = r_{n-1}$.

When using the Euclidean algorithm, it can be tricky to keep track of what is happening. Doing a lot of examples can help.

Work in pairs to answer the following. Each pair will be assigned parts the following question.

In-class Problem 1 Find the greatest common divisors of the pairs of integers below and write the greatest common divisor as a linear combination of the integers.

Learning outcomes:

Author(s): Claire Merriman

Solution: By inspection: 28 - 21 = 7.

Using the Euclidean algorithm: a = 28, b = 21

$$28 = 21(1) + 7$$

$$q_1 = 1, r_1 = 7$$

$$7 = 21(1) + 28(-1)$$

6 = 708(1) + 78(-9)

$$21 = 7(3) + 0$$

$$q_2 = 3, r_2 = 0$$

so
$$28 + (-1)21 = 7 = (28, 21)$$

(b) (32, 56)

Solution: Using the Euclidean algorithm: a = 56, b = 32

$$56 = 32(1) + 24$$
 $q_1 = 1, r_1 = 24$

$$24 = 56(1) + 32(-1)$$

$$32 = 24(1) + 8$$

$$a_{-} = 1 \quad m_{-} = 9$$

$$q_2 = 1, r_2 = 8$$
 $8 = 32(1) + 24(-1) = 32(1) + (56(1) + 32(-1))(-1) = 32(2) + 56(-1)$

$$32 = 8(4) + 0$$

$$q_3 = 4, r_3 = 0.$$

so
$$56(-1) + 32(2) = 8 = (56, 32)$$

(c) (0,113)

Solution: Since 0 = 113(0), (0, 113) = 113 = 0(0) = 113(1).

(a) (78,708)

Using the Euclidean algorithm: a = 708, b = 78Solution:

$$708 = 78(9) + 6$$
$$78 = 6(13) + 0$$

$$q_1 = 9, r_1 = 6$$

 $q_2 = 13, r_2 = 0.$

so
$$708(1) + 78(-6) = 6 = (78, 708)$$