Sesión4 (Ley de Ampere) - Anexo 1-hoja 1

Nombre y DNI: Iván Soler 74530257E Grupo GRUPO 7 (ARA)

Valores de I, L, N y S utilizados				
I ± 0.001 (A)	L ± 0.1 (cm)	N ± 1 (esp.)	$S \pm E_S (T/mV)$	
1	19	300	3,84 * 10^-5	

B máximo en el interior del solenoide:

	Valores de V en sonda Hall (mV)		da Hall (mV)	Valor y error de B _{máx} (expresarlo en mT)	
	V _M ± 0.1	V ₀ ± 0.1	$(V_M-V_0) \pm 0.2$	$B_{M\dot{\alpha}x} = S \langle V_M - V_0 \rangle = 2,304 \text{ mT}$	
Medida 1	60	0	60	$D_{Max} = 3 \langle V_M \rangle V_0 / = 2,00 \cdot M$	
Medida 2	59	0	59		Λ O T
Medida 3	60	0	60	$E_{BM\acute{a}x} = S \cdot E_{\langle V_M - V_0 \rangle} + \langle V_M - V_0 \rangle \cdot E_S = +\underline{7,4 * 10}$	r`-∠mı

 $Valor\ medio < V_M - V_0 > = \underline{} \pm 0.2\ mV$

B teórico en el interior del solenoide:

$$B_{Teor} = \mu_0 \frac{N}{L} I = 1,984 mT$$

En este caso el error es más fácil calcularlo a partir de los errores relativos:

$$E_B = B \cdot \varepsilon_{\langle B \rangle} = B \cdot \left(\varepsilon_{\langle N \rangle +} \varepsilon_{\langle L \rangle +} \varepsilon_{\langle I \rangle} \right) = B \cdot \left(\frac{E_N}{N} + \frac{E_L}{L} + \frac{E_I}{I} \right) = \underline{0.3769} \quad mT$$

Valores y errores ajustados		
	$B_{M\acute{a}x}$ (mT)	B_{Teor} (mT)
	2,3 +- 7 * 10 ^ -2 mT	2 +- 0,38 mT

Conclusiones:

Comenta aquí los resultados que has obtenido (utiliza el reverso de la hoja si es necesario).

Sesión4 (Ley de Ampere) - Anexo 1-hoja 2

Se sugiere introducir los valores en una hoja *excell* para facilitar los cálculos. Utilizar las cabeceras que aquí se indican

Valor de la parte derecha de la igualdad	μ ₀ NI = 376,99 * 10^-6 mT * m
Indica cómo se calcula el error de $\mu_0 NI$ y pon su valor	$E_{\mu_0 NI}$ =

Valor de la parte izquierda de la igualdad	$\Delta x. \Sigma B = 3,842 \text{ mT * m}$	
Indica cómo se calcula el error de $\sum B\Delta x$ y pon su valor	$E_{\Delta x.\sum B}$ =	

Valores y errores ajustados			
	$\mu_0 NI (mT.m)$	$\Delta x. \sum B (mT.m)$	

Conclusiones:

Comenta aquí los resultados que has obtenido (utiliza el reverso de la hoja si es necesario).