Machine Learning Engineer Nanodegree

Capstone Project – Starbucks app data

1. Domain Background:

A Starbucks is one of the most well-known companies in the world. It strives to give his customers always the best service and the best experience. They have a mobile application in which the users can make orders online. The project aims at optimizing the customers experience using the app through user's behavior analysis.

2. Problem Statement:

The goal that is to be achieved here is to best determine which kind of offer to send to each user based on their response to the previously sent offers. There are 3 different kinds of offers.

- Buy One Get One Free (BOGO)
- Discount
- Informational

Our goal is to analyze the historical data about the app usage and develop the algorithm that associates with the response of a customer to an offer.

3.Datasets and Inputs:

The data is contained in three files:

- portfolio.json containing offer ids and meta data about each offer (duration, type, etc.)
- profile.json demographic data for each customer
- transcript.json records for transactions, offers received, offers viewed, and offers completed

portfolio.json

- id (string) offer id
- offer type (string) type of offer ie BOGO, discount, informational
- difficulty (int) minimum required spend to complete an offer
- reward (int) reward given for completing an offer
- duration (int) time for offer to be open, in days

• channels (list of strings)

	channels	difficulty	duration	id	offer_type	reward
0	[email, mobile, social]	10	7	ae264e3637204a6fb9bb56bc8210ddfd	bogo	10
1	[web, email, mobile, social]	10	5	4d5c57ea9a6940dd891ad53e9dbe8da0	bogo	10
2	[web, email, mobile]	0	4	3f207df678b143eea3cee63160fa8bed	informational	0
3	[web, email, mobile]	5	7	9b98b8c7a33c4b65b9aebfe6a799e6d9	bogo	5
4	[web, email]	20	10	0b1e1539f2cc45b7b9fa7c272da2e1d7	discount	5
5	[web, email, mobile, social]	7	7	2298d6c36e964ae4a3e7e9706d1fb8c2	discount	3
6	[web, email, mobile, social]	10	10	fafdcd668e3743c1bb461111dcafc2a4	discount	2
7	[email, mobile, social]	0	3	5a8bc65990b245e5a138643cd4eb9837	informational	0
8	[web, email, mobile, social]	5	5	f19421c1d4aa40978ebb69ca19b0e20d	bogo	5
9	[web, email, mobile]	10	7	2906b810c7d4411798c6938adc9daaa5	discount	2

Portfolio dataset

profile.json

- age (int) age of the customer
- became_member_on (int) date when customer created an app account
- gender (str) gender of the customer (note some entries contain 'O' for other rather than M or F)
- id (str) customer id
- income (float) customer's income

	age	became_member_on	gender	id	income
0	118	20170212	None	68be06ca386d4c31939f3a4f0e3dd783	NaN
1	55	20170715	F	0610b486422d4921ae7d2bf64640c50b	112000.0
2	118	20180712	None	38fe809add3b4fcf9315a9694bb96ff5	NaN
3	75	20170509	F	78afa995795e4d85b5d9ceeca43f5fef	100000.0
4	118	20170804	None	a03223e636434f42ac4c3df47e8bac43	NaN

Profile dataset

transcript.json

- event (str) record description (ie transaction, offer received, offer viewed, etc.)
- person (str) customer id
- time (int) time in hours since start of test. The data begins at time t=0
- value (dict of strings) either an offer id or transaction amount depending on the record

	event	person	time	value
0	offer received	78afa995795e4d85b5d9ceeca43f5fef	0	{'offer id': '9b98b8c7a33c4b65b9aebfe6a799e6d9'}
1	offer received	a03223e636434f42ac4c3df47e8bac43	0	{'offer id': '0b1e1539f2cc45b7b9fa7c272da2e1d7'}
2	offer received	e2127556f4f64592b11af22de27a7932	0	{'offer id': '2906b810c7d4411798c6938adc9daaa5'}
3	offer received	8ec6ce2a7e7949b1bf142def7d0e0586	0	{'offer id': 'fafdcd668e3743c1bb461111dcafc2a4'}
4	offer received	68617ca6246f4fbc85e91a2a49552598	0	{'offer id': '4d5c57ea9a6940dd891ad53e9dbe8da0'}
5	offer received	389bc3fa690240e798340f5a15918d5c	0	{'offer id': 'f19421c1d4aa40978ebb69ca19b0e20d'}
6	offer received	c4863c7985cf408faee930f111475da3	0	{'offer id': '2298d6c36e964ae4a3e7e9706d1fb8c2'}
7	offer received	2eeac8d8feae4a8cad5a6af0499a211d	0	{'offer id': '3f207df678b143eea3cee63160fa8bed'}
8	offer received	aa4862eba776480b8bb9c68455b8c2e1	0	{'offer id': '0b1e1539f2cc45b7b9fa7c272da2e1d7'}
9	offer received	31dda685af34476cad5bc968bdb01c53	0	{'offer id': '0b1e1539f2cc45b7b9fa7c272da2e1d7'}

Transcript dataset

4. Solution Statement:

To find out which offers has to be sent to the customer we have to explore the data.

- a. Gender distribution for each offer type
- b. Age distribution for the events
- c. Most responded offer
- d. Response to an offer

These points will be discussed for the combined population and for the individual level as well.

5. Benchmark model:

A quick accurate model can be considered as a benchmark. I will use the KNeighborsClassifier to build the benchmark, as it is a fast and standard method for binary classification machine learning problems and evaluate the model result using F1 score as the evaluation metric.

6. Evaluation Metrics:

I will consider the F1 score as the model metric to assess the quality of the approach and determine which model gives the best results. It can be interpreted as the weighted average of the precision and recall.

7. Project Design:

- 1. Data Exploration
- 2. Data preparation and Cleaning
- 3. Exploratory data analysis
- 4. Machine learning model to predict the response of a customer to an offer
- 5.Benchmark Model and evaluation metric