Solution:

<u>Q1:</u>

Based on the bisection method, the estimation of root is given by c=(a+b)/2; If f(a)*f(c)>0, a=c otherwise b=c in the next iteration. Iteration

- 1 a=0.000000 b=2.000000 c=1.000000 Error=100.000000%
- 2 a=1.000000 b=2.000000 c=1.500000 Error=33.333333%
- 3 a=1.000000 b=1.500000 c=1.250000 Error=20.000000%
- 4 a=1.250000 b=1.500000 c=1.375000 Error=9.090909%
- 5 a=1.250000 b=1.375000 c=1.312500 Error=4.761905%

Hence the root is x=1.3125 with an error of 4.8%

Q2:

$$f(x) = \cos(x)\ln(x) + 0.2 * \exp(x)$$

$$f'(x) = -\sin(x)\ln(x) + \cos(x)/x + 0.2 * \exp(x)$$

Hence
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Iteration=1 xi=2.000000 x=0.140058 Error=1327.9%

Iteration=2 xi=0.140058 x=0.366659 Error=61.8%

Iteration=3 xi=0.366659 x=0.569535 Error=35.6%

Iteration=4 xi=0.569535 x=0.625998 Error=9.0%

Iteration=5 xi=0.625998 x=0.628862 Error=0.46%

Hence the root is x=0.628862 with error of 0.46%

Q3:

First pivoting [A] by switching the first and second rows of [A]. Note that we must make the same switch for the right-hand-side vector $\{B\}$

$$[A] = A = \begin{bmatrix} 5 & 1 & 2 \\ 4 & 1 & 6 \\ 1 & 8 & 2 \end{bmatrix}$$
 $\{B\} = \begin{cases} 3 \\ 6 \\ 2 \end{cases}$

Then, forward elimination is carried out; Subsequently, pivoting should be carried out before the next elimination step by switching the second and third rows of [A].

Therefore, the LU decomposition is A=L*U:

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ 0.2 & 1 & 0 \\ 0.8 & 0.02564 & 1 \end{bmatrix} \qquad [U] = \begin{bmatrix} 5 & 1 & 2 \\ 0 & 7.8 & 1.6 \\ 0 & 0 & 4.35897 \end{bmatrix}$$

Forward substitution to find [D] for $[L]{D} = {B}$ Back substitution to solve $[U]{X} = {D}$ for [x]

$$x_1 = 0.2705$$

$$x_2 = 0.0117$$

$$x_3 = 0.8176$$

Q4:

step	x_1	x_2	X 3	$e_1\%$	e 2%	e 3%
1	0.6000	0.1750	0.5708	100	100	100
2	0.3367	0.0652	0.7647	-78.2178	-168.3706	25.3508
3	0.2811	0.0237	0.8087	-19.7747	-175.2253	5.4380
4	0.2718	0.0139	0.8165	-3.4168	-70.9449	0.9590
5	0.2706	0.0120	0.8176	-0.4306	-15.0383	0.1320
6	0.2706	0.0118	0.8177	-0.0256	-2.2150	0.0110
7	0.2706	0.01176	0.8176	0.0060	-0.2079	-0.0008

Thus, after 7 iterations, the maximum error is 0.2% and we arrive at the result: $x_1 = 0.2705782$, $x_2 = 0.0117624$ and $x_3 = 0.817654$.

Q5:

The standard format of this eigenvalue problem is described by

$$AX = \lambda X$$
, or $(A - \lambda I)X = 0$

$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 2 & 3 \\ 2 & -\lambda & 1 \\ 2 & 1 & 4 - \lambda \end{vmatrix} = 0$$

$$= -\lambda^3 + 8\lambda^2 - 5\lambda - 10$$

The real solutions for λ is

$$\lambda_1 = 7.09692$$
,

$$\lambda_2 = 1.7215567$$

$$\lambda_3 = -0.81848$$

The corresponding eigenvectors are

$$V=[v_1 \ v_2 \ v_3]=$$

Q6:

Because $AX = \lambda X = 2X$ Therefore $(A-A^{-1})X = AX-A^{-1}X = AX-(1/2)X = 2X-0.5X = 1.5X$

That is $(A-A^{-1})X=1.5X$

Therefore the eigenvalue of (A-A⁻¹) is 1.5, and

 $(A-A^{-1})^T$ has the same eigenvalue of 1.5.