PERTEMUAN 6

FUNGSI EKSPONEN DAN LOGARITMA

A. TUJUAN PEMBELAJARAN

Setelah mempelajari materi ini, mahasiswa mampu menguasai materi mengenai Fungsi Eksponen dalam matematika dan kegunaannya.

B. URAIAN MATERI

1. Fungsi Eksponen

Fungsi eksponen atau perpangkatan dinotasikan dalam bentuk a^n , dimana a disebut basis atau bilangan pokok dan n disebut eksponen atau pangkat. Bentuk eksponen berlaku pada bilangan dengan pangkat rasional dengan syarat jika a, b $\in \mathbb{R}$, a $\neq 0$, m dan n bilangan rasional, maka sifat-sifat fungsi eksponen adalah sebagai berikut:

a.
$$a^{m.} \bullet a^{n} = a^{m+n.}$$

b.
$$a^{m} \div a^{n} = a^{m-n}$$

c.
$$(a^m)^n = a^{mn}$$
.

d.
$$a^{-m} = \frac{1}{a^m}$$

e.
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

f.
$$a^0 = 1$$

Contoh

a.
$$3^3 \cdot 3^2 = 3^{3+2} = 3^5$$

b.
$$3^3: 3^2 = 3^{3-2} = 3$$

c.
$$\sqrt[3]{10^6} = 10^{\frac{6}{3}} = 100$$

d.
$$2019^0 = 1$$

Kalkulus 1 [35]

2. Fungsi Eksponen

The function a^x di sebut fungsi eksponen, dimana x adalah variabel bebas, x disebut juga index.

Contoh

a. Fungsi $y = 2^x$

92	
х	2^x
-3	0.125
-2	0.25
-1	0.5
0	1
1	2
2	4
3	8

b. Fungsi $y = 10^x$

x	2^{x}
-3	0.001
-2	0.01
-1	0.1
0	1
1	10
2	100
3	1000

Gambar 6. 1. Fungs $y = 2^x \text{ dan } y = 10^x$

Eksponen dalam persamaan matematika

a. $a^{f(x)} = 1$ maka f(x)=0, dengan syarat a>0 dan a $\neq 1$,

b. $a^{f(x)} = a^p$.. maka f(x) = p, dengan syarat a>0 dan a $\neq 1$

c. $a^{f(x)} = a^{g(x)}$.. maka f(x) = g(x), dengan syarat a>0 dan a $\neq 1$

d. $a^{f(x)} = b^{f(x)}$, maka f(x) = 0, dengan syarat $a \neq b$; a,b >0; a,b $\neq 1$

e. $a^{f(x)} = b^{g(x)}$, maka $\log a^{f(x)} = \log b^{g(x)}$ dengan syarat a≤b ; a,b >0 ; a,b ≠1, dan f(x) ≠ g(x).

3. Logaritma

Logaritma yang merupakan kebalikan dari ekponen, atau dapat dikatakan logaritma adalah invers dari eksponen (perpangkatan). Rumus dasar logaritma dapat ditulis:

$$a \log b = c$$
 $b = a^c$

a disebut bilangan pokok (basis) logaritma, a > 0 , a ≠ 1, a ∈ R

Kalkulus 1 [37]

b disebut numerus, yaitu bilangan yang akan dicari logaritmanya, b > 0, b ε R c disebut hasil logaritma

Untuk memahami logaritma, perhatikan contoh berikut:

$$10^3 = 1000$$

saat ruas kiri dipertukarkan tempatnya dengan ruas kanan dan sebaliknya sehingga:

$$1000 = 10^3$$

Karena $1000 = 10^3$ maka didapat 10 log 1000 = 3

¹⁰log 1000 dibaca "logaritma dari 1000 dengan bilangan pokok 10". Sehingga untuk mencari logaritma suatu bilangan positif b dengan bilangan pokok a sama dengan mencari pangkat dari b dalam bilangan pokok a tersebut.

Contoh lain dapat dilihat dibawah ini :

 $8 = 2^3 \rightarrow {}^2 \log 8 = 3$

 $81 = 3^4 \rightarrow ^3 \log 81 = 4$

 $16 = 4^2 \rightarrow ^4 \log 16 = 2$

Note: Untuk bilangan pokok 10 maka angka 10 dapat tidak dituliskan

 10 log 100 = 2 -→ bisa ditulis log 100 = 2

Contoh: log 10 = 1

log 1000000 = 6

 $\log 0.1 = -1$

4. Sifat Logaritma

a.
$$a \log bc = a \log b + a \log c$$

b.
$$a \log \frac{b}{c} = a \log b - a \log c$$

Kalkulus 1 [38]

c.
$$a^{m} \log b^{m} = m \frac{1}{n} a \log b$$

d.
$$a \log b \cdot \log c \cdot \log d = a \log d$$

e.
$$\log b^m = m \log b$$

Contoh soal:

a.
$$\log 125 + \log 8 = \dots 3$$

= $\log(125 * 8)$
= $\log 1000$
= 3

b.
$$^{5} \log 400 - ^{5} \log 16 = \dots 2$$

= $^{5} \log \frac{400}{16}$

$$= 5 \log 25$$

$$=2$$

$$c. 8 \log 2^5 =$$

$$=^{2^3} \log 2^5$$

$$= \frac{5}{3}^2 \log 2$$

$$=\frac{5}{3}$$

d.
$$^{2}\log 9.^{3}\log 5.^{25}\log 16 = \dots...4$$

C. SOAL LATIHAN/TUGAS

- 1. Sebuah fungsi $f(x) = {}^{2}log x$, Carilah penyelesaian f(x) + f(2/x)
- 2. log 1000 = ...
 - a $^{5}log 125 =$
 - b $^{2}log 8 = ...3$
 - c $^{5}log 400 ^{5}log 16 = \dots$
 - d $^{8}log 2^{5}=$
 - e $^{2}log 9. ^{3}log 5. ^{25}log 16 =$
- 3. Selesaikan bentuk-bentuk berikut.
 - a. a^{-n}
 - b $a^3 a^4$
 - C. $(y^3)^2$
 - d. $(y^3)^2$
 - $e \cdot 10^2 \cdot 10^{-3}$
 - f. $4^2 \cdot 4^{-3} \cdot 4^5$
 - g. 27^{1/3}
 - h. $(0,1)^0$
- 4. Sederhanakan perkalian berikut:
 - a $\sqrt{5} \cdot \sqrt{7}$
 - b $\sqrt{8} \cdot \sqrt{2}$
 - c $\sqrt{5} \cdot \sqrt{-4}$
 - $d (\ln 3)^0$
 - e $e^{1/5}$

D. DAFTAR PUSTAKA

Thomas (2005), Calculus 11e with Differential Equations Pearson Addison Wesley Weltner, Klaus (2009), Mathematics-for-physicists-and-engineers-fundamentals-and-interactive-study-guide, Springer

Kalkulus 1 [41]