

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

E85-10044

SQT

Task Assignment 132
December 1984

NAS 5-28200

NASA-CR-174221

CHARACTERIZING THE SCIENTIFIC POTENTIAL OF
SATELLITE SENSORS
GSFC ATR - Dr. J. Barker
SAR Task Leader - Dr. Y. Lee

Task Objective:

The objective of this task is to provide analytical and programming support to characterize the potential of the Landsat Thematic Mapper (TM) digital imagery for scientific investigations in the earth sciences and in terrestrial physics. Secondary objectives of this task include providing technical support to define lower atmospheric and terrestrial surface experiments for the space station and providing technical support to the Research Optical Sensor (ROS) study scientist for advanced studies in remote sensing.

Work Performed:

The following work was performed in the areas indicated.

100 TM Radiometric Calibration

Eleven TM radiometric calibration programs developed last month have been tested and evaluated. Several software problems have been found and solved. The correction algorithm used for coherent noise correction has been modified. Unsuccessful correction of bright target saturation in the background region has been examined.

Three software errors have been found and solved as follows.

- Integer Overflow - Because the VAX integer*2 format used in the calibration has a sign bit, the maximum value cannot be 65,535. The problem was solved by using 14-bit calibration (maximum value 16,383) instead of 16-bit calibration. The original 8-bit TM data then is expanded approximately 64 times.
- Divide by Zero - During the calibration of masks for scan-correlated shifts, a threshold value for separating lower and higher states was calculated using the data from both forward and reverse scans. This technique of thresholding may deflect either all forward scans or all reverse scans as being in either a higher or lower state. The average value of each state is calculated by summing the values for each state and dividing by the state population. When all forward or reverse scans are in one state, the opposite state will have a zero population and the divide-by-zero problem will occur. This problem has been solved by defining separate threshold values for forward and reverse scans.

(E85-10044 NASA-CR-174221) CHARACTERIZING
THE SCIENTIFIC POTENTIAL OF SATELLITE
SENSORS (SAR, Inc.) 13 p HC A02/MF A01

N85-16244

CSCL 08B

Unclassified

G3/43 00044

Task Assignment 132
December 1984

- Nonexist File Group - This error was caused by mistakenly defining the image I/O file name in several programs. It has been corrected.

Since most of the output files from the 11 calibration programs are in 14-bit format, it is necessary to convert the files into byte format for display on the Interactive Analysis Terminal (IAT). A program, IBCON.PDF, has been implemented for this purpose. It performs a linear stretch between the minimum and maximum values to convert 14-bit image data into 8-bit data.

The algorithm for coherent noise correction has been examined. The results from the scan-by-scan correction procedure utilizing single-band resequenced data did not show a consistent characteristic through scans in the band 1, channel 9, noise image. The line-by-line correction procedure suggested by the ATR has been implemented.

A problem in applying a bright target saturation correction in the background region is under examination. It may be due to error in the boundary mask or the recovery time constants.

200 Image Processing on LAS/VAX

The following raw, calibrated, and corrected image groups have been created and stored on the Barker2 disk. These image groups may be deleted and recreated after applying the BTS correction in the background region and examining the results.

- CSF4 - The raw image group includes images of bands 1 through 4 of a 512 x 12 subscene at (SP, SL) = (2101, 2337) of scene 40392-18152 over San Francisco.
- CBTS - BTS corrected images of the CSF4 group.
- CSCS - BTS+SCS corrected images of the CSF4 group.
- CCN - BTS+SCS+CN corrected images of the CSF4 group.
- CCAL - BTS+SCS+CN+TRAPP (IC+H) calibrated images of the CSF4 group.

230 Image Processing on IDIMS/HP

Black-and-white pixel print files were created for the following San Francisco subscenes (Scene ID 40392-18152):

Task Assignment 132
December 1984

<u>Name</u>	<u>Band</u>	<u>SP, SL, NP, NL</u>	<u>Processing Information</u>
SFB.B1	1	6629, 1, 294, 384	Background data without corrections
SFB.CN1.L	1	6629, 1, 294, 384	Background data with coherent noise correction applied on a line-by-line basis
SFB.CN1.S	1	6629, 1, 294, 384	Background data with coherent noise correction applied on a scan-by-scan basis
NOISE1.L	1	6629, 1, 294, 384	Noise image from line-by-line method
NOISE1.S	1	6629, 1, 294, 384	Noise image from scan-by-scan method
NOISE1.16.9	1	6629, 1, 294, 384	Noise image for 32 scans of channels 9 and 16 from scan-by-scan and line-by-line corrections
SFM.B1	1	1825, 1889, 294, 384	No corrections applied
SFM.B2	2	1825, 1889, 294, 384	No corrections applied
SFM.B3	3	1825, 1889, 294, 384	No corrections applied
SFM.B4	4	1825, 1889, 294, 384	No corrections applied
SFM.BT1.T	1	1825, 1889, 294, 384	BTS correction using truncation
SFM.BT2.T	2	1825, 1889, 294, 384	BTS correction using truncation

Black-and-white negatives were made and sent to the photographic laboratory to have view graphs and five prints made of each.

These products were reviewed by the ATR and found to have low contrast over water and high contrast over land.

Task Assignment 132
December 1984

300 Production Support

Because of a lack of source code of dump utilities for the file on the CALFILE tape, it is difficult to generate data from the tape (for example, the housekeeping data) in the digital form. The CALFILE processing will continue as before, producing a photocopied output book of the following files: TAG, Quality Assurance Data File (QAD), Housekeeping Data File (HSD), Ephemeris Data File (ESD), Systematic Correction Data File (SCD), Control Point Data File (CPD), Long-Term Parameter File (LT-PAR), Short-Term Parameter File (ST-PAR), Histogram File (HISTPLT), Scan Characteristics Record (SCH), and Reduced Calibration File (CAL). A specified data file may be created independently if requested by the ATR by manually copying sections from the photocopied output book or editing the output file stored on the VAX system.

The incorrect telemetry data on the 45 BRU tapes received from SBRC have been confirmed with B. Cooley at SBRC. The correct data have been recovered from Aug. 30, 1983, BARVID printouts. SBRC will examine problems of BURST data and data from bands 5, 6, and 7. No further action will be taken on processing the 45 tapes until data verification is received from SBRC.

Six CALFILE tapes and one CALDUMP tape were processed for the following scene IDs:

<u>ID</u>	<u>Location</u>
4060815463	Birmingham
5001415460	Birmingham
4039218152	San Francisco
5012917075	White Sands
5014216365	Unknown

Four blue books were generated for each scene.

Two chosen SBRC tapes (#1038, 5 window, and #1071, 8 window) have been run successfully.

Two BURST files were retrieved from the SBRC tapes (#0138, #1039) and have been processed with TRAPP. The full scan line was plotted for each file.

All the BRU data files from the 45 SBRC tapes have been copied and merged onto eight BRU multifile tapes - #309, #310, #311, #312, #313, #314, #315, #316.

Twenty-one calibrated and corrected subimages of San Francisco were created and transferred onto tape for producing pseudocolor pixel prints.

Task Assignment 132
December 1984

400 Software Development

Linear regression software is being developed to correlate the start of scan time with the shutter background (Section 410) and to correlate background data between channels within a band (Section 420) and between channels in different bands (Section 430). Since there should be no correlations in the background data in the absence of systematic errors, the outputs from these programs are designed to 1) investigate the origin of systematic radiometric variability, such as coherent noise and scan-correlated shift, and 2) serve as figures-of-merit to evaluate the effectiveness of correction for these systematic errors.

410 Linear Regression Coefficient Tables, Part I

This software performs the following optional regressions of shutter background digital number (DN) versus:

- Start of scan in seconds (P0)
- Difference between adjacent scans of the start of scan in seconds (DP0)
- Difference of DP0 from the average value of DP0 in seconds (DDP0)

The output from this software consists of four pages, as follows:

The first page is a list of pairs of averaged shutter background (BOBS) and either P0, DP0, or DDP0 by scan line for the selected band and channel (see Appendix 1, results of Landsat-4 BRU tape GSFC #37).

The second page is a list of background residuals (BCALC-BOBS) calculated from linear regression of BOBS versus P0, DP0, or DDP0 by scan line for the selected band and channel (see Appendix 2, results of Landsat-4 BRU tape GSFC #37).

Pages 3 and 4 contain eight tables of derived values for all 100 channels (see Appendices 3 and 4, results of Landsat-4 BRU tape GSFC #37).

- A0(DN), intercept of linear regression
- SDA0(DN), standard deviation of the intercept
- A1(DN/sec), slope of linear regressions
- SDA1(DN/sec), standard deviation of the slope
- R, correlation coefficient
- Randomness of background residuals
- SB(DN), standard error of background
- $100*(1-R^2)$, unaccounted variances in percent

All the above outputs are in floating point format as requested by the ATR, and have become part of TRAPP's output. A brief description of this software development can be found in the previous monthly report; for the details, contact P. Lee, SAR.

Task Assignment 132
December 1984

420 Linear Regression Coefficient Tables, Part II

This part of the analyses study channels correlations within a band by regressing the shutter background data for channel I versus the shutter background data for channel J. Five different optional output can be chosen, as follows:

- All scans versus all other scans
- Even scans versus even scans
- Odd scans versus odd scans
- Even scans versus odd scans
- All of the above

Therefore, a maximum of 28 pages may be generated for the 7-band data when the final option above is chosen. Each page of output contains the following three tables:

- Correlation coefficient, R, and the unaccounted variance, $100(1-R^2)$
- The intercept and standard deviations of the intercept
- The slope and standard deviation of the slope

The following two new routines have been implemented and tested:

- Subroutine RCORR02 - This routine generates the output tables for the within-band regressions.
- Subroutine RCFORM - This routine formats all output variables from the within-band regression.

Minor changes in routines RCINJBRU, RCUSERIN, and RCNMAIN to link the above new routine to the TRAPP subroutine library make these new tables part of the standard TRAPP output.

430 Linear Regression Coefficient Tables, Part III

This part of the analyses study channels correlations between bands by regressing the shutter background data for reference channels of each band. The software outputs three pages and nine tables. The new routines under development are as follows:

- Subroutine RCCORR03 - This routine generates output tables for the between-band regressions.
- Subroutine RCOUT - This routine formats the output variables.
- Subroutine RCIN - This routine allows the user to prompt the input and shows it on a screen for double checking.

Task Assignment 132
December 1984

700 Image Science Studies

The contouring program on the I2S was tested by the ATR. It was found that a 512 x 512 image takes 30 minutes to process and uses 80 percent of the VAX 11/780 CPU.

TM images of Jiddah, Saudi Arabia (Scene ID 5009707171, path 170, row 45, June 6, 1984), and northern Chile (Scene ID 5012914060, path 1, row 77, July 8, 1984) were shown to the ATR on the Land Analysis System (LAS). The Jiddah scene has random speckle noise in all bands, and the Chile scene has response differences between back and fore scans in band 7.

The ATR and SAR discussed the following questions concerning the image science studies:

1. What are the scientific objectives of doing corrections to TM data versus the applications?
2. What type of parametric error analysis can SAR perform to quantitatively assess the improvement in TM image data quality after doing radiometric corrections?
3. How can the impact of these improvements be demonstrated in science studies?

All results for the January TM workshop for science studies will be demonstrated using the San Francisco scene.

Problem Areas:

230 Image Processing on IDIMS/HP

No image processing was performed on the HP-3000 during December 10-21 because the Laboratory for Terrestrial Physics Computing Facility is under reconstruction.

Schedule Conformance:

Work is proceeding as planned.

Work Planned for Next Month:

100 TM Radiometric Calibration

Task personnel will reexamine parameters for bright target saturation.

Task Assignment 132
December 1984

200 Image Processing on LAS/VAX

Calibrated and corrected image and background files and the difference image files will be created.

230 Image Processing on IDIMS/HP

Pixel prints will be created of image and background data files for various types of calibrations.

300 Production Support

SAR personnel will update apparent gain versus time plot for both Landsat-4 and -5 TM.

SAR personnel will continue to process new CALDUMP and CALFILE tapes (6 sets).

400 Software Development

Major emphasis will be placed on analyzing and implementing the different background linear regressions. A task member will continue to implement and test between-band linear regression coefficients and make any format changes to the previously developed software upon the ATR's request.

700 Image Science Studies

Work will start on assessing the impact upon information extraction of doing various types of radiometric calibrations to the data.

Deliverables Submitted:

Graphics: 12 black-and-white negative pixel print films of raw and corrected TM images and background data

Originator: J. Wang and W. Hallada

Computer Utilization:

The estimated computer time used this month is as follows:

<u>Minutes</u>	<u>Computer</u>
1501 (wall clock)	HP-3000 (IDIMS)
200 (wall clock)	VAX 11/780 (LAS)

TABLE OF SCAN START TIME PO VS BACKGROUND BOBS (DN) FOR BAND 1 CHANNEL 4

SCAN 1-50	CHAN 51-100	SCAN 101-150	CHAN 151-200	SCAN 201-250	CHAN 251-300	SCAN 301-350	CHAN 351-400
1 4.7754	2.62	8.3419	2.42	11.9084	2.56	15.4743	2.58
2 4.8469	2.32	8.4133	2.50	11.9792	2.26	15.5457	2.50
3 4.9185	2.78	8.4843	2.48	12.0508	2.74	15.6173	2.64
4 4.9893	2.80	8.5558	2.50	12.1223	2.80	15.6881	2.48
5 5.0609	2.70	8.6274	2.64	12.1933	2.50	15.7598	2.76
6 5.1324	2.66	8.6982	2.34	12.2647	2.46	15.8312	2.58
7 5.2034	2.64	8.7698	2.66	12.3363	2.50	15.9022	2.42
8 5.2748	2.52	8.8413	2.50	12.4071	2.64	15.9736	2.34
9 5.3464	2.60	8.9123	2.40	12.4788	2.54	16.0452	2.80
10 5.4172	2.42	8.9837	2.76	12.5502	2.56	16.1161	2.66
11 5.4889	2.50	9.0553	2.52	12.6212	2.72	16.1877	2.42
12 5.5603	2.52	9.1262	2.30	12.6926	2.38	16.2591	2.34
13 5.6313	2.56	9.1978	2.60	12.7642	2.52	16.3301	2.58
14 5.7027	2.44	9.2692	2.34	12.8351	2.64	16.4015	2.62
15 5.7743	2.40	9.3402	2.64	12.9067	2.48	16.4732	2.54
16 5.8452	2.44	9.4116	2.48	12.9781	2.48	16.5440	2.30
17 5.9168	2.54	9.4833	2.74	13.0491	2.58	16.6156	2.74
18 5.9882	2.70	9.5541	2.60	13.1206	2.46	16.6870	2.60
19 6.0592	2.70	9.6257	2.54	13.1922	2.60	16.7581	2.62
20 6.1306	2.52	9.6971	2.50	13.2630	2.42	16.8295	2.70
21 6.2023	2.68	9.7681	2.60	13.3346	2.50	16.9011	2.36
22 6.2731	2.54	9.8396	2.48	13.4060	2.40	16.9725	2.52
23 6.3447	2.58	9.9112	2.71	13.4771	2.68	17.0435	2.42
24 6.4161	2.46	9.9820	2.62	13.5485	2.58	17.1150	2.42
25 6.4871	2.58	10.0536	2.62	13.6201	2.76	17.1860	2.62
26 6.5586	2.36	10.1251	2.64	13.6915	2.50	17.2574	2.44
27 6.6302	2.54	10.1961	2.56	13.7626	2.56	17.3290	2.44
28 6.7010	2.30	10.2675	2.68	13.8340	2.54	17.4004	2.44
29 6.7726	2.60	10.3391	2.74	13.9050	2.68	17.4715	2.38
30 6.8441	2.52	10.4105	2.34	13.9764	2.44	17.5429	2.50
31 6.9151	2.36	10.4816	2.76	14.0480	2.46	17.6145	2.48
32 6.9865	2.66	10.5530	2.68	14.1195	2.52	17.6853	2.26
33 7.0581	2.68	10.6240	2.56	14.1905	2.60	17.7569	2.50
34 7.1295	2.72	10.6954	2.62	14.2619	2.38	17.8284	2.48
35 7.2006	2.68	10.7670	2.78	14.3335	2.52	17.8994	2.52
36 7.2720	2.84	10.8385	2.64	14.4043	2.80	17.9708	2.56
37 7.3430	2.48	10.9095	2.44	14.4760	2.86	18.0424	2.46
38 7.4144	2.76	10.9809	2.56	14.5474	2.68	18.1133	2.42
39 7.4860	2.60	11.0525	2.80	14.6184	2.84	18.1849	2.64
40 7.5575	2.72	11.1233	2.48	14.6894	2.52	18.2563	2.62
41 7.6285	2.76	11.1950	2.58	14.7614	2.52	18.3273	3.02
42 7.6999	2.56	11.2664	2.34	14.8323	2.46	18.3987	2.40
43 7.7715	2.52	11.3374	2.64	14.9039	2.58	18.4704	2.64
44 7.8424	2.56	11.4088	2.56	14.9753	2.38	18.5412	2.26
45 7.9140	2.54	11.4805	2.88	15.0463	2.70	18.6128	2.64
46 7.9854	2.40	11.5513	2.58	15.1178	2.58	18.6842	2.62
47 8.0564	2.62	11.6229	2.68	15.1894	2.60	18.7553	2.62
48 8.1278	2.50	11.6943	2.50	15.2602	2.52	18.8267	2.48
49 8.1995	2.36	11.7653	2.64	15.3318	2.36	18.8983	2.94
50 8.2703	2.32	11.8368	2.44	15.4032	2.46	18.9691	2.52

TABLE OF BACKGROUND RESIDUALS (BCALC-B0BS) FOR BAND 1 . CHANNEL 4
WHERE BCALC=A0+A1*PO IN DN

			.TM.PV	
1-50	51-100	101-150	151-200	201-250
251-300	301-350	351-400		
1 -0.0609	0.1386	-0.0019	-0.0224	-0.1035
2 0.2391	0.0586	0.2381	0.0575	0.1160
3 -0.2209	0.0706	-0.1819	-0.0825	0.1955
4 -0.2409	0.0586	-0.2420	0.0775	0.2355
5 -0.1409	-0.0815	0.0580	-0.2025	0.1435
6 -0.1010	0.2185	0.0980	-0.0225	0.1960
7 -0.0810	-0.1015	0.0580	0.1375	0.0565
8 0.0390	0.0585	-0.0820	0.2175	0.1160
9 -0.0410	0.1585	0.0180	-0.2425	-0.2245
10 0.1390	-0.2015	-0.0020	-0.1025	-0.045
11 0.0590	0.0385	-0.1620	0.1375	-0.036
12 0.0390	0.2585	0.1780	0.2174	-0.0245
13 -0.0010	-0.0415	0.0379	-0.0226	-0.0045
14 0.1190	0.2185	-0.0821	-0.0826	-0.1040
15 0.1590	-0.0816	0.0778	0.0174	0.1154
16 0.1189	0.0784	0.0779	0.2574	-0.154
17 C.0.169	-0.1816	-0.0221	-0.1826	-0.1846
18 -0.1411	-0.0416	0.0979	-0.0426	-0.1036
19 -0.1411	C.0.184	-0.0421	-0.0626	-0.1641
20 0.0389	0.0584	0.1379	-0.1426	0.1154
21 -0.1211	-0.0416	0.0579	0.1974	-0.1641
22 0.0189	0.0784	0.1579	0.0373	0.1354
23 -0.0211	-0.1616	-0.1222	0.1373	-0.0841
24 0.0989	-0.0617	-0.0222	0.1373	-0.2364
25 -0.0211	-0.0617	-0.2022	-0.0627	0.0564
26 0.1988	-0.0817	0.0578	0.1964	0.0564
27 0.0188	-0.0017	-0.0022	-0.1227	-0.2035
28 0.2588	-0.1217	0.0178	0.1173	-0.3035
29 -0.0412	-0.1817	-0.1222	0.1773	-0.1035
30 0.0388	0.2183	0.1178	0.0573	0.1035
31 0.1988	-0.2017	0.0978	0.0773	0.1435
32 -0.1012	-0.1217	0.0378	0.2972	0.1235
33 -0.1212	-0.0017	-0.0423	0.0572	-0.1235
34 -0.1612	-0.0618	0.1777	0.0772	-0.0848
35 -0.1213	-0.2218	0.0377	0.0372	-0.0848
36 -0.2813	-0.3818	-0.2423	-0.0028	-0.0848
37 0.0787	0.1182	-0.3023	0.0172	-0.0848
38 -0.2013	-0.0018	-0.1223	0.1372	-0.0848
39 -0.0413	-0.2418	-0.2823	-0.0828	-0.0848
40 -0.1613	0.0782	0.0377	-0.1228	-0.0848
41 -0.2013	-0.0218	0.1377	-0.4629	-0.0848
42 -0.0013	0.2182	0.0977	0.1571	-0.0848
43 0.0387	-0.0818	-0.0224	-0.0829	-0.0848
44 -0.0013	-0.0019	0.1776	0.2971	-0.0848
45 0.0186	-0.3219	-0.1424	-0.0829	-0.0848
46 0.1586	-0.0219	-0.0224	-0.0229	-0.0848
47 -0.0614	-0.1219	-0.0424	-0.0629	-0.0848
48 0.0586	0.0581	0.0376	0.0771	-0.0848
49 0.1986	-0.0819	0.1976	-0.3829	-0.0848
50 0.2386	0.1181	0.0976	0.0371	-0.0848

LINEAR REGRESSION COEFFICIENTS FOR SHUTTER BACKGROUND VS SCAN START TIME
(B,_i(DN) VS PO(SEC):B=A_i+A₁*PO)

INTERCEPT, A₀(DN)STANDARD DEVIATION OF INTERCEPT, SDA₀(DN)

CHANNEL	BAND 1	BAND 2	BAND 3	BAND 4	BAND 5	BAND 6	BAND 7	BAND 8	BAND 9	BAND 10	BAND 11	BAND 12	BAND 13	BAND 14	BAND 15	BAND 16
16	2.6961	2.3543	2.7142	2.1971	2.6304	2.4805										
15	2.4129	2.2239	2.1969	2.0731	2.5371	2.1243										
14	2.6601	2.2789	2.5275	2.1019	2.5983	2.4318										
13	2.4008	2.2455	2.2561	2.0531	2.5620	2.1286										
12	2.5131	2.1608	2.3643	2.0881	2.5578	2.3834										
11	2.4042	2.2804	2.1222	2.0938	2.5307	2.2525										
10	2.5399	2.2114	2.4522	2.1502	2.5926	2.4445										
9	2.4056	2.2056	2.2829	2.1037	2.5312	2.2306										
8	2.7055	2.3410	2.5491	2.4768	2.7546	2.4489										
7	2.4123	2.2564	2.3358	2.0930	2.5761	2.8163										
6	2.6999	2.5577	2.4629	2.4229	2.7412	2.4034										
5	2.6073	2.3519	2.3978	2.1347	2.5259	2.1905										
4	2.5598	2.5055	2.4221	2.4220	2.5904	2.3685	19.0050									
3	2.5794	2.4864	2.5681	2.4120	19.0050	2.3508	73.9989									
2	2.6173	2.4968	2.4322	2.2033	2.3004	2.3331	73.9996									
1	3.1215	3.0195	3.0482	2.8854	2.7284	2.7730	73.9999									
<ODD>	2.54301	2.38385	2.40103	2.23196	4.62456	2.3583473.99942										
<EVEN>	2.62395	2.36204	2.49119	2.23262	2.63323	2.4117646.50233										
<ALL>	2.58348	2.37295	2.44611	2.23229	3.62890	2.3850560.25087										
ODDSO	0.24857	0.27219	0.29409	0.28873	5.81098	0.279020.00071										
EVNSD	0.07786	0.14392	0.10679	0.14286	0.07356	0.0485838.88703										
ALLSD	0.18278	0.21064	0.21874	0.22006	4.10099	0.1954327.49722										

SLOPE, A₁(DN/SEC)STANDARD DEVIATION OF SLOPE, SDA₁(DN/SEC)

CHANNEL	BAND 1	BAND 2	BAND 3	BAND 4	BAND 5	BAND 6	BAND 7	BAND 8	BAND 9	BAND 10	BAND 11	BAND 12	BAND 13	BAND 14	BAND 15	BAND 16
16	-0.00389-0.00074-0.00087-0.00077-0.00034-0.00021															
15	-0.00501-0.00087-0.00104-0.00024-0.00052-0.00101															
14	-0.00258-0.00077-0.00129-0.00004-0.00054-0.00068															
13	-0.00481-0.00153-0.00112-0.00059-0.00042-0.00052															
12	0.00103-0.00080-0.00037-0.00032-0.00002-0.00064-0.00096															
11	-0.00359-0.00104-0.00162-0.00032-0.00028-0.00082															
10	-0.00193-0.00105-0.00072-0.00055-0.00160-0.00099															
9	-0.00409-0.00055-0.0009-0.0003-0.0003-0.00173-0.00148															
8	-0.00420-0.00088-0.00084-0.00018-0.00010-0.00006															
7	-0.00315-0.00163-0.00121-0.00007-0.00311-0.00028															
6	-0.00283-0.00039-0.00075-0.0019-0.00057-0.00047															
5	-0.00421-0.00152-0.00167-0.00011-0.00033-0.00159															
4	-0.0014-0.00047-0.00115-0.00003-0.000108-0.00037															
3	-0.00385-0.00129-0.00086-0.00062-0.00000-0.00018															
2	-0.0039-0.00092-0.00042-0.00058-0.00039-0.00144															
1	-0.00143-0.00164-0.00171-0.00115-0.00019-0.00067															
<ODD>	-0.00414-0.00131-0.00100-0.00012-0.00007-0.00045															
<EVEN>	-0.00231-0.00056-0.00070-0.00010-0.000049-0.00027															
<ALL>	-0.0C323-0.00093-0.00085-0.00011-0.00021-0.00009															
ODDSO	0.00062-0.00032-0.00058-0.00049-0.00138-0.00005															
EVNSD	0.00189-0.00059-0.00053-0.00044-0.00067-0.00078															
ALLSD	0.00166-0.00060-0.00056-0.00045-0.00108-0.00039															

LINEAR REGRESSION COEFFICIENTS FOR SHUTTER BACKGROUND VS SCAN START TIME
 $B(DN)$ VS POISEC: $B = A_0 + A_1 \cdot PO$
 CORRELATION COEFFICIENT R

TEST ON RESIDUALS FOR RANDOMNESS
 (+: NOT NORMAL)
 IF FOLLOWING VALUES <> 0.0516 -- NORMAL

CHANNEL	BAND 1	BAND 2	BAND 3	BAND 4	BAND 5	BAND 6	BAND 7
16	0.05683	0.03389	0.01604	0.05748	0.02646	0.1066	
15	0.05863	0.05597	0.03659	0.03649	0.03062	0.05779	
14	0.04491	0.03856	0.04989	0.00381	0.04821	0.03874	
13	0.05937	0.0945	0.01542	0.014306	0.01542	0.03691	0.02109
12	0.06208	0.05484	0.01653	0.03457	0.04326	0.04519	
11	0.05708	0.05300	0.01861	0.00295	0.02447	0.04383	
10	0.04704	0.09070	0.04214	0.05451	0.03207	0.03115	
9	0.05240	0.06420	0.00392	0.00310	0.13789	0.08425	
8	0.05332	0.05404	0.02504	0.01101	0.00703	0.0255	
7	0.04937	0.0293	0.04834	0.00902	0.20310	0.00398	
6	0.04718	0.2065	0.03705	0.01064	0.01314	0.02118	
5	0.05415	0.06732	0.05867	0.01006	0.02261	0.06642	
4	0.00873	0.04448	0.00448	0.00178	0.07733	0.01711	0.00000
3	0.04995	0.04647	0.02721	0.03546	0.00000	0.00733	0.09774
2	0.05039	0.07142	0.02194	0.04117	0.02430	0.06711	0.05831
-1	0.04490	0.05796	0.03615	0.07722	0.01845	0.02963	0.02926
<0DD>	0.05336	0.06747	0.03406	0.02373	0.05926	0.03929	0.06350
<EVEN>	0.04631	0.05107	0.03157	0.02687	0.03398	0.02921	0.02916
<ALL>	0.04983	0.05927	0.03281	0.02530	0.04662	0.03425	0.04633
0DDSD	0.00503	0.01978	0.01730	0.02534	0.01764	0.02882	0.0842
EVNSD	0.01622	0.02213	0.01327	0.02281	0.02220	0.02088	0.04123
ALLSD	0.01216	0.02197	0.01495	0.02335	0.05289	0.02486	0.04173

STANDARD ERROR OF THE ESTIMATE SB(DN)

CHANNEL	BAND 1	BAND 2	BAND 3	BAND 4	BAND 5	BAND 6	BAND 7
16	0.5641	0.1812	0.4489	0.1103	0.1070	0.1648	
15	0.7039	0.1279	0.2356	0.0540	0.1410	0.1446	
14	0.4729	0.1654	0.2134	0.0829	0.0919	0.1443	
13	0.6682	0.1367	0.2154	0.0460	0.0949	0.2044	
12	0.1365	0.1204	0.1843	0.0827	0.1220	0.1759	
11	0.5189	0.1613	0.1408	0.0653	0.0951	0.1534	
10	0.3385	0.0955	0.1400	0.0827	0.4119	0.2632	
9	0.6323	0.1218	0.1814	0.0895	0.1025	0.1450	
8	0.6498	0.1359	0.2782	0.1325	0.1217	0.1994	
7	0.5265	0.1298	0.2073	0.0648	0.1237	0.5799	
6	0.4943	0.1563	0.1678	0.1453	0.3562	0.1837	
5	0.6405	0.1554	0.2348	0.0876	0.1202	0.1966	
4	0.1362	0.0873	0.2158	0.12	0.1146	0.1804	55.1330
3	0.6362	0.2287	0.2601	0.14	19.0527	0.2055	0.0078
2	0.6411	0.1060	0.1594	0.1163	0.1318	0.1763	0.0045
1	0.8145	0.2330	0.3906	0.1225	0.0866	0.1860	0.0045
<0DD>	0.6426	0.1655	0.2332	0.08425	2.4770	0.0876	0.0019
<EVEN>	0.42918	0.13099	0.22597	0.1038	0.18215	0.1859827	0.56875
<ALL>	0.53591	0.14829	0.22961	0.09731	1.32963	0.2064613	0.78747
0DDSD	0.09478	0.04536	0.07341	0.03394	6.69759	0.14492	0.00232
EVNSD	0.20621	0.03436	0.09973	0.02518	0.12605	0.0349538	0.98168
ALLSD	0.19022	0.04278	0.08468	0.03187	1.72710	0.1040127	0.56366

TEST ON RESIDUALS FOR RANDOMNESS							
(+: NOT NORMAL)							
BAND 1	BAND 2	BAND 3	BAND 4	BAND 5	BAND 6	BAND 7	
0.2315*	0.0940*	0.1036*	0.0929*	0.0925*	0.0925*	0.0925*	0.0332
0.2640*	0.1039*	0.0866*	0.1372*	0.1372*	0.0277	0.0277	0.0270
0.2122*	0.1524*	0.0787*	0.498*	0.498*	0.0598*	0.0598*	0.0510
0.2697*	0.0763*	0.0707*	0.1707*	0.1707*	0.0666*	0.0666*	0.0425
0.0376	0.1105*	0.0948*	0.1456*	0.1456*	0.0485*	0.0485*	0.0591*
0.2649*	0.1138*	0.0746*	0.1368*	0.1368*	0.0485*	0.0485*	0.0410
0.1815*	0.0493	0.0504	0.0716*	0.0716*	0.1791*	0.1791*	0.0723*
0.2566*	0.0891*	0.1146*	0.1633*	0.1633*	0.0244	0.0244	0.0340
0.2615*	0.0689	0.1841*	0.0664*	0.0664*	0.0516*	0.0516*	0.0806*
0.2488*	0.0905*	0.0710*	0.1475*	0.1475*	0.0318	0.0318	0.0373
0.2240*	0.0856*	0.0659*	0.0561*	0.0561*	0.0442	0.0442	0.0394
0.2566*	0.1052*	0.0854*	0.1218*	0.1218*	0.0359	0.0359	0.0297
0.0901*	0.0481	0.1048*	0.0500	0.0500	0.8389*	0.8389*	0.8389*
0.2579*	0.0961*	0.1092*	0.0833*	0.0833*	0.8389*	0.8389*	0.4776*
0.2398*	0.0352	0.0707*	0.0726*	0.0726*	0.0726*	0.0726*	0.0726*
0.2640*	0.0512	0.1048*	0.0447	0.0447	0.0682*	0.0682*	0.0397
0.26031	0.09076	0.08936	0.12566	0.12566	0.14313	0.14313	0.04755
0.18477	0.08050	0.09412	0.08613	0.08613	0.16526	0.16526	0.05211
0.22254	0.08563	0.09174	0.10689	0.10689	0.15419	0.15419	0.04503
0.00657	0.01970	0.01970	0.01970	0.01970	0.04233	0.04233	0.01407
0.07920	0.03871	0.04105	0.03890	0.03890	0.27591	0.27591	0.01788
0.06691	0.03014	0.03014	0.04380	0.04380	0.26937	0.26937	0.01525
					0.01525	0.01525	0.17756

UNACCOUNTED VARIANCE, 100(1-R**2) (%)							
BAND 1	BAND 2	BAND 3	BAND 4	BAND 5	BAND 6	BAND 7	
99.677	99.885	99.974	99.670	99.930	99.930	99.930	99.989
99.656	99.687	99.867	99.866	99.866	99.906	99.906	99.666
99.798	99.851	99.751	99.999	99.999	99.768	99.768	99.850
95.648	99.155	99.815	99.976	99.976	99.864	99.864	99.956
99.615	99.699	99.973	99.881	99.881	99.813	99.813	99.796
99.674	99.719	99.965	99.999	99.999	99.940	99.940	99.808
99.777	99.177	99.822	99.999	99.999	99.903	99.903	99.955
99.715	99.588	99.998	99.998	99.998	99.059	99.059	99.290
99.716	99.708	99.937	99.998	99.998	99.995	99.995	99.999
99.756	98.941	99.766	99.992	99.992	99.875	99.875	99.998
99.777	99.957	99.863	99.989	99.989	99.983	99.983	99.955
99.707	99.547	99.656	99.999	99.999	99.949	99.949	99.955
99.802	99.807	100.000	99.402	99.402	99.971	99.971	100.000
89.750	99.784	99.926	99.874	99.874	100.000	99.895	99.045
99.746	99.490	99.952	99.831	99.831	99.941	99.941	99.660
99.798	99.664	99.869	99.404	99.404	99.966	99.966	99.914
99.7131099	5.105599	8576399	8875199	8875199	1998299	1998299	477950
99.7625199	6.963099	8849299	88227799	88227799	8410499	8410499	82998
99.7378199	6.034399	8713899	86842999	86842999	8247599	8247599	65474
0.05294	0.30032	0.1165	0.49009	0.49009	0.25193	0.25193	0.61499
0.11100	0.25387	0.08560	0.19411	0.19411	0.14998	0.14998	0.24044
0.08780	0.28525	0.09712	0.16712	0.16712	0.107861	0.107861	0.43161

Task Assignment 132
December 1984

SUBTASK #00
FINANCIAL DATA AND LABOR-HOUR UTILIZATION

Financial Data

Cumulative total to date:	\$ <u>33,253</u>
Projected total to complete:	\$ <u>90,923</u>
CTR estimated total:	\$ <u>124,176</u>

Labor-Hour Utilization

<u>Category</u>	Hours this Month	Cumulative Hours
	<u>On-Site</u>	<u>Off-Site</u>
PM	3.6	11.8
TAM	9.0	32.0
LPA	19.5	64.0
SAP	40.0	137.0
AP	80.0	276.0
JAP	160.0	436.0
SP	158.0	406.0
Support	30.7	161.0
	457.5	1,379.0
	61.3	349.2