

TEMA 8: INTRODUCCION A LAS TECNOLOGIAS FOTONICAS Y SU APLICACION EN COMUNICACIONES OPTICAS GUIADAS Y EN ESPACIO LIBRE

FOTONICA

Grado en Ingeniería en Tecnologías de Telecomunicación

1.-INTRODUCCIÓN A LAS TECNOLOGIAS FOTONICAS EN COMUNICACIONES ÓPTICAS

1.-INTRODUCCION A LAS TECNOLOGIAS FOTONICAS EN COMUNICACIONES ÓPTICAS

2.-ESQUEMA BÁSICO DE UN SISTEMA DE COMUNICACIONES OPTICAS

- Diodo LED
- -Diodo Láser
- -Láser Fabry-Perot
- -etc.

- Fibras ópticas
- Guías de onda (↓)
- espacio libre

- -Fotodiodo de avalancha (APD)
- -Fotodiodos PIN (Si)
- -Fotodetector de Ge.
- -Fotodiodos de InGaAs.

2.-ESQUEMA BÁSICO DE UN SISTEMA DE COMUNICACIONES OPTICAS

ARQUITECTURAS DE INTERCONEXIÓN

- **Discreta:** Datos son una señal eléctrica que debe ser convertida en luz. Más usual Implica la necesidad de etapas electrónicas

- **Integrada:** (Sistemas Actuales). Toda la información está codificada en forma de luz. Reduce la cantidad de electrónica necesaria. Menor tamaño (inter- intra- chip).

3.- UN POCODEHISTORIA...

- **1880** A. G. Bell desarrolla el *fotófono*
- **1910** Hondros y Debye estudian la propagación de la luz por guías de onda cilíndricas dieléctricas.
- 1927 Baird y Houssel logran transmitir imágenes por fibra sin cubierta
- -1950 Primeras aplicaciones sobre la transmisión de imágenes por fibras ópticas.
- -1959 Kapany desarrolla la primera fibra óptica con cubierta
- -1960 Maiman crea el primer láser en funcionamiento. (Premio Nobel).
- -1966 Kao y Hockman proponen el uso de fibras ópticas para transmisión a grandes distancias (atenuación de 1000dB/km debidas a impurezas) (Premio Nobel).

3.- UN POCODEHISTORIA...

- -1970 Corning Glass Works anuncia sus fibras ópticas con pérdidas de 20 dB/km en la región de 1μm
- **70's** Fibras con atenuaciones de 4dB/km (**1972**), 2dB/km (**1975**), 0.5dB/km (**1976**), 0.2db/km (**1979**)

1974 es la fecha en la que comienza el desarrollo de las Comunicaciones pticas

3.- UN POCO DE HISTORIA. ESPECTRO ELECTROMAGNÉTICO

4.-LA REVOLUCIÓN DE LAS COMUNICACIONES OPTICAS GUIADAS

Propiedades y ventajas de las Comunicaciones de Fibra Óptica

- -**PÉRDIDAS** → muy bajas
 - → constantes con la frecuencia
- **GRAN ANCHURA DE BANDA (BW)**: Disminuye con la distancia.

 Parámetro importante **BW x L**

Ejemplo: Dada una fibra óptica con un parámetro *BW x L* de 3,2 THz·km, ¿cuál es su ancho de banda a 100 km?

- TAMAÑO Y PESO
- INMUNES A LAS INTERFERENCIAS EM: No crosstalk
- SEGURAS
- **COSTE /MATERIAL**: Silicon Dioxide (SiO₂)

4.1.-Ventanas de Comunicaciones Opticas

Figura : Coeficiente de atenuación de la luz por unidad longitud de la fibra en la región del infrarrojo.

4.2.-Respuesta en Frecuencia de Diodos Láser

5.1 EMISORES ÓPTICOS

5.1 EMISORES ÓPTICOS

FOTONICA

5.-DISPOSITIVOS FOTONICOS

5.1 EMISORES ÓPTICOS

Principales Características:

- Característica I-V (Función de Transferencia Electrónica).
- Característica **P-I** (Función de Transferemcia Opto-Electrónica).
- Potencia emitida (Po) y Corriente Inyectada (Io).
- Espectro de emisión: Multimodo (DL Fabry-Perot) y Monomodo (DL-DFB)
- Especrro de Radiación: Un solo modo Lateral y Transversal)
- Modulación y Ancho de Banda de Modulación (BW).
- Estructura y encapsulado.

5.2 DETECTORES ÓPTICOS

5.2 DETECTORES ÓPTICOS

Principales Características

- Responsividad (A/W) en función de la longitud de onda (λ)
- Respuesta en frecuencia (BW)
- Ruido: Ruido fotónico (Ruido shoot) y Ruido Térmico (Ruido Jonhson)
- Adecuación al canal de tranmisión

Fotodiodo PIN Hamamatsu S1223

5.3 FIBRAS ÓPTICAS

Estructura

Funcionamiento

 Reflexión total interna: Propagación señal óptica en el núcleo

Cada haz de luz guiado con un determinado con un ángulo de incidencia

Núcleo \rightarrow SiO₂ dopado con B₂O₃, GeO₂ o P₂O₅ Revestimiento \rightarrow SiO₂

5.3 FIBRAS ÓPTICAS

$$n1 \cdot sen \theta_i = n2 \cdot sen \theta_{refr}$$

- n2 > n1: La ley se cumple para cualquier ángulo de incidencia
- n1 > n2 : Existe un ÁNGULO CRÍTICO $(\theta_{\rm C})$ para el que $\theta_{\rm refr} = \frac{\pi}{2}$

$$n1 \cdot sen \theta_C = n2 \cdot sen \frac{\pi}{2} \Rightarrow sen \theta_C = \frac{n2}{n1}$$

REFLEXIÓN TOTAL (no hay ningún rayo propagándose en el medio 2):

Si $\theta_i > \theta_C$ (arcsen n2/n1)

5.3 FIBRAS ÓPTICAS

5.3 FIBRAS ÓPTICAS

5.3 FIBRAS ÓPTICAS

Especificaciones básicas:

Atenuación

Dispersión Modal y Dispersión Cromática.

La Dispersión Cromática la tenemos con Fibras Monomodo según la Figura:

Ventanas de transmisión

6.-OTROS DISPOSITIVOS FOTONICOS EN LOS SISTEMAS DE COMUNICACIONES OPTICAS

6.-OTROS DISPOSITIVOS FOTONICOS EN LOS SISTEMAS DE COMUNICACIONES OPTICAS

Otros dispositivos:

- Empalmes y conectores
- Amplificadores ópticos
- Moduladores
- Acopladores
- Aisladores, circuladores y beamsplitters
- Filtros
- Conmutadores
- Multiplexores y demultiplexores
- Etc.

7.-TÉCNICAS DE MULTIPLEXACIÓN

Enviar varias señales/canales digitales por una misma fibra óptica

Multiplexado Electrónico

- ETDM (electronic time division multiplexing)
- SCM (subcarrier multiplexing)

- WDM (wavelength division multiplexing)
 - Cada canal se asocia a una λ
 - Importante la dispersión cromática y la anchura espectral
 - Necesario un filtro óptico en la recepción
 - 160 λ's a 10Gb/s

1 ^a Generación	2ª Generación	3ª Generación	4ª Generación		5ª Generación
λ= 0.8 mm	λ= 1.3 mm	λ= 1.55 mm	λ= 1.55 mm		λ= 1.55 mm
	Láseres InGaAsP Detectores Ge	Láseres DBR, DFB, cavidad ext.		Wave	
Fibras m-mode SI	Fibras m-mode (BL=2 Gbps·km) Fibras s-mode (BL=88 Gbps·km)	Fibras DSF	Fibra s-mode	Wavelength Divi	Fibra s-mode
				Division	Solitones
MI- DD	MI- DD	MI- DD	Detección. Coherente		
BL=500Mbps·km		BL=400 Gbps·km AO de fibra Erbio		Multiplexing	BL=100 Tbps·km
Disp. Intermodal Atenuación 2.5dB/km	Atenuación 0.5dB/km		Estabilidad λ Tx y Osc. Óptico		Ruido por AO Limitación nº AO Uso filtros

