ESPIT Se former autrement	EXAMEN Semestre: 1 2 X Session: Principale X Rattrapage
Module: Mathématiques de base 4	
Enseignant(s): UP-Maths	
Classe(s): 2TIC,2EMA,2GC	
Documents autorisés: OUI NON	X Nombre de pages: 2
Calculatrice autorisée: OUI X NON	Internet autorisée: OUI NON X
Date: 21/05/2018	Heure: 12H30 Durée : 1h30 mn

EXERCICE 1 (6 points):

Une usine fabrique des Smartphones dont 5% sont défectueux. Chaque Smartphone est soumis à une unité de contrôle dont la fiabilité n'est pas parfaite. Cette unité de contrôle rejette:

- 97% des Smartphones défectueux
- 4% des Smartphones non défectueux.

On note les événement suivants:

- \mathcal{D} : << le smartphone est défectueux>>.
- \mathcal{R} : << l'unité de contrôle rejette le smartphone>>.
- 1) (1point) Construire un arbre pondéré sur lequel on indiquera les données qui précèdent.
- 2) a) (1point) Calculer la probabilité que le Smartphone soit défectueux et ne soit pas rejeté.
 - b) On dit qu'il y a une erreur de contrôle lorsque:
 - Le smartphone est rejeté alors qu'il n'est pas défectueux.
 - Le smartphone n'est pas rejeté alors qu'il est défectueux.

(1point) Calculer la probabilité qu'il y ait une erreur de contrôle.

- 3) (1point) Montrer que la probabilité qu'un smartphone ne soit pas rejeté est égale à 0.9135.
- 4) Quatre contrôles successifs et indépendants sont maintenant réalisés pour savoir si un smartphone peut être commercialisé.

(1point) Calculer la probabilité que le smartphone ait subi avec succès exactement 3 contrôles successifs.

5) Un Smartphone est commercialisé s'il subit au moins 3 contrôle positifs. (1point) Calculer la probabilité pour que le smartphone soit commercialisé.

EXERCICE 2 (4 points):

Au poste de péage, on compte le nombre de voitures se présentant sur une période de 5 minutes. Sur 100 observations de 5 minutes, on obtient les résultats suivants:

Nombre de voitures	1	2	3	4	5	6	7
Nombre d'observations	2	8	20	14	10	18	28

- 1) (0.5point) Construire le diagramme en bâton des effectifs.
- 2) (0.5point) Déterminer les fréquences de la série des nombres de voitures.
- 3) (1.5point)Calculer la moyenne et l'écart type de cette série. Interpréter les résultats.
- 4) (1.5point) Déterminer la médiane et les quartiles Q_1 et Q_3 . Interpréter les résultats.

EXERCICE 3 (3.5 points):

Soit $\sum_{n>0} U_n$ une série à termes positifs convergente.

1) (1point) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$ on a

$$0 \le U_n^2 \le U_n$$
.

- 2) (0.5point) Déduire que la serie $\sum_{n\geq 0}U_n^2$ est convergente.
- 3) (1point) Etudier la nature de la série $\sum_{n\geq 1}\sin(\frac{1}{n^2})$
- 4) (1point) Déduire la nature de la série $\sum_{n\geq 1}(1-\cos^2(\frac{1}{n^2}))$

EXERCICE 4 (6.5 points):

Soit la fonction F définie par:

$$F(x) = \int_0^{+\infty} \frac{\exp(-xt^2)}{1 + t^2} dt$$

- 1) (1point) Etudier la convergence de $\int_0^{+\infty} \exp(-xt^2) dt$ suivant les valeurs de $x \in \mathbb{R}$.
- 2) (1point) Montrer que le domaine de définition de F est \mathbb{R}_+ .
- 3) (1point) Etudier la continuité de F sur \mathbb{R}_+ . et calculer F(0).
- 4) (1point) Montrer que $\forall x \in [a,b]$ avec a>0 et b>0 on a:

$$|g(x,t)| \leq \exp(-at^2)$$
.

où
$$g(x,t) = \frac{t^2 \exp(-xt^2)}{1+t^2}$$
.

- 5) (1.5point) Montrer que F est dérivable sur \mathbb{R}_{+}^{*} et donner l'expression de $F^{'}$ à l'aide d'une intégrale.
- 6) (1point) En effectuant un changement de variable calculer $\int_0^{+\infty} \exp(-xt^2) dt$. Indication: On donne $\int_0^{+\infty} \exp(-u^2) du = \frac{\sqrt{\pi}}{2}$