Introduction to Machine Learning

Nonlinear and Bayes

Learning goals

- Know how regularization can be motivated from a Bayesian perspective
- Understand the correspondence between log-prior and regularization term

SUMMARY: REGULARIZED RISK MINIMIZATION

In \mathcal{R}_{reg} one has extreme flexibility to make appropriate choices

$$\mathcal{R}_{\text{reg}}(f) = \min_{f \in \mathcal{H}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) + \lambda \cdot J(f)$$

for a given ML problem:

- the representation of f, which determines how features can influence the predicted y
- the loss function, which measures how errors should be treated
- the **regularization** J(f), which encodes our inductive bias and preference for certain simpler models

By varying these choices one can construct a huge number of different ML models. Many ML models follow this construction principle or can be interpreted through the lens of regularized risk minimization.

Regularization from a Bayesian Perspective

REGULARIZED RISK MINIMIZATION VS. BAYES

We have already created a link between maximum likelihood estimation and empirical risk minimization.

Now we will generalize this for regularized risk minimization.

Assume we have a parameterized distribution $p(\mathbf{x}|\theta)$ for our data and a prior $p(\theta)$ over our parameter space, all in the Bayesian framework.

With Bayes theorem we know:

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})} \propto p(\mathbf{x}|\theta)p(\theta)$$

REGULARIZED RISK MINIMIZATION VS. BAYES

The maximum a posteriori (MAP) estimator of θ is now the minimizer of

$$-\sum_{i=1}^{n}\log p\left(\mathbf{x}^{(i)}\mid\boldsymbol{\theta}\right)-\log p(\boldsymbol{\theta}).$$

Again, we identify the loss $L(y, f(\mathbf{x} \mid \theta))$ with $-\log(p(\mathbf{x} \mid \theta))$. If $p(\theta)$ is constant (i.e., we used a uniform, non-informative prior), we arrive at empirical risk minimization.

If not, we can identify $J(\theta) \propto -\log(p(\theta))$, i.e., the log-prior corresponds to the regularizer, and the additional control parameter λ corresponds to the relative strength of the prior in regularized risk minimization.

REGULARIZED RISK MINIMIZATION VS. BAYES

- L_2 regularization corresponds to a zero-centered Gaussian prior, $\theta_i \sim \mathcal{N}(0, \sigma^2)$.
- L_1 regularization corresponds to a zero-centered Laplace prior, $\theta_i \sim \text{Laplace}(0, b) = \frac{1}{2b} \exp(-\frac{|\theta_i|}{b})$, where b is a scale parameter.
- In both cases, as regularization strength λ increases, the variance of the prior decreases, which in turn shrinks the parameters.