

Inter-channel Lossless Data Compression for Distributed Acoustic Sensing

Aleix Seguí¹, Arantza Ugalde², Sergi Ventosa² ¹ETH Zürich, ²Institut de Ciències del Mar (Barcelona)

EGU: Fibre Optic Sensing in Geosciences, Catania, 16-20 June 2024.

Agenda

- 1. Motivation and DAS data description
- 2. Intra and inter-channel prediction
- 3. Compression tools and pipeline
- 4. Results
- 5. Conclusions and Future steps

Motivation: Long-term Monitoring using Distributed Acoustic Sensing

- Distributed Acoustic Sensing (DAS) monitoring:
 - Long distance.
 - High-density.
 - Real-time.
- Long term archiving initiatives face serious challenges:
 - Generation of huge amount of data.
 - Need vast storage capacities.
 - Long data transfer times.

Fiber optic cable CANALINK and seismicity in Tenerife and Gran Canaria (2020).

The Challenge of DAS Data

- Large sample rates on thousands of channels simultaneously.
- Hundreds of terabytes per year.
- · Lots of noise.
- Lossless methods are explored.
- Several approaches exist.
 - Dictionary Compression (ZIP, LZMA…).
 - mSEED.
 - Audio coding.
 - Integer Coding (Bin Dong et al., 2022).
 - Inter-channel coding (Chengjun Wu, 2023).

Opportunities for compression

- Exploit redundancies:
 - Temporal (intra-channel)
 - Linear Predictive Coding.
 - Spatial (inter-channel)
 - Warping and scaling.
 - Frequency analysis.
 - Energy compaction
 - Transformation (e.g., DFT).
 - Statistical distribution
 - Entropy Coding.

Summary of methods for lossless DAS Compression

Method	mSEED	Dictionary compression (ZIP, GZIP, LZMA…)	Integer Coding (H5TurboPFor, Bin Dong et al., 2022) ¹	Inter-channel prediction (Chengjun Wu et al., 2023) ²	Ours
Summary of techniques	 Differential encoding Steim algorithm (consecutive differences) 	 LZ77 (Lempel- Ziv 1977) algorithm Huffman Coding 	 Integer compression using TurboPFor Optimized for speed (real-time) 	 Linear Predictive Coding Inter-channel scaling Golomb-rice coding Arithmetic Coding 	 Linear Predictive Coding Inter-channel scaling and shifting Discrete Cosine Transform Adaptive Arithmetic Coding Exponential-Golomb
Compression	~1.25-1.5	x ~1.25-1.5>	~2	~2-3x	~3x

¹ Real-time and post-hoc compression for data from Distributed Acoustic Sensing, Computers & Geosciences, Volume 166, 2022, 105181, ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2022.105181

² A Lossless Data Compression Method for Distributed Acoustic Sensors. Optical Fiber Sensors. Optical Publishing Group, 2023.

Encoder-decoder design and partition into segments

- 1-D signals are split into segments.
 - Intra type.
 - Inter type.
- Every segment has its own set of parameters.

Example of segment partitioning and types.

Encoder-decoder design.

- The encoder chooses:
 - Signal partition into segments.
 - Segment parameters.
- The decoder reconstructs the signal.

Encoder algorithm: recursive partitioning

- Inspiration from image coding.
- Recursive search of segment length with optimal parameters.
- Adapt to the signal features, more resolution in highfrequency areas.

High Efficiency Video Coding (HEVC)¹

¹ Overview of the High Efficiency Video Coding (HEVC) Standard, https://doi.org/10.1109/TCSVT.2012.2221191

Prediction coding: intra and inter-channel methods

Intra-channel prediction

 Approximate samples by a linear combination of past samples (LPC).

$$c_i(t) = \sum_{k=1}^K a_k c_i(t-k)$$

Inter-channel prediction

Scale and time shift a consecutive channel

$$c_i(t) = a c_{i-1}(t-s)$$

DAS example data, filtered to >3Hz.

Transform and Entropy Coding

 The residuals are linearly transformed for energy compaction using the Discrete Cosine Transform.

- The **entropy** (*H*) expresses the limit on how much a source channel can be losslessly encoded.
 - Shannon's source coding theorem: possibility to encode using $H + \epsilon$ bits per symbol.

 The residuals of transformed signals typically exhibit a Laplace distribution.

More on Entropy Coding: Arithmetic Coding and Exponential-Golomb

- A good entropy coder is the key for modern compression.
- We combine two methods:
 - Arithmetic coding for bits up to a threshold (fixed number of bits).
 - Exponential-Golomb for the bits above the threshold (handles outliers, any number of bits).
- Arithmetic coding assigns shorter sequences to more probable symbols.
 - Adaptive: update variance as new data is read.
- Exponential-Golomb represent values in any range, efficiently encoding large values.

Detailed Encoding Pipeline

Results

- · Results tested on cables with different characteristics.
- Metric: compressed size ratio (Compressed/Original)

Dataset	Instrument	Original Format	Channels	Samp [Hz]	Channel Spacing [m]	Compressed size
Candas2	Aragon Photonics	H5	6496	50	10	32%
BALALINK	Aragon Photonics	H5	5984	250	10	27%
ETH Istanbul ¹	Silixa iDAS	ProdML	500	100	10	60%
NORSAR ¹	ASN OptoDAS	H5	1225	100	20	56%

¹ The Global DAS Month of February 2023. Seismological Research Letters (2024) 95 (3): 1569–1577. https://doi.org/10.1785/0220230180

Conclusions

- DAS Data can be losslessly compressed up to good ratios.
- Video coding techniques can be adapted to DAS data.
- Inter-channel prediction leverages correlation between channels for compression.
- An encoder was effectively implemented.

Future Steps

- Frequency domain inter-channel compression (wavelet transforms).
- Lossy compression (up to x20 smaller file sizes! 1)
- Faster implementation for real-time applications.

¹ F. Yu et al., Data Compression Solution for Φ-OTDR: Encoding the Extracted Spectrum, in IEEE Sensors Journal, https://doi.org/10.1109/JSEN.2024.3407752

Aleix Seguí asegui@ethz.ch

Arantza Ugalde a.ugalde@icm.csic.es

Sergi Ventosa sventosa@icm.csic.es

References

- Bin Dong, Alex Popescu, Verónica Rodríguez Tribaldos, Suren Byna, Jonathan Ajo-Franklin, Kesheng Wu, Real-time and post-hoc compression for data from Distributed Acoustic Sensing, Computers & Geosciences, Volume 166, 2022, 105181, ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2022.105181.
- Wu, Chengjun, et al. "A Lossless Data Compression Method for Distributed Acoustic Sensors." Optical Fiber Sensors. Optica Publishing Group, 2023.
- The Global DAS Month of February 2023. Seismological Research Letters (2024) 95 (3): 1569–1577. https://doi.org/10.1785/0220230180