Sekolah Teknik Elektro Informatika Institut Teknologi Bandung

Ujian Akhir Semester II-2017/2018 Mata kuliah : IF2122 Probabilitas dan Statistik Hari/tanggal : Senin, 30 April 2018

Waktu : 120 menit

(TUTUP BUKU, Buka Catatan 1 lembar kertas A4, Pakai Kalkulator)

1 Variabel random X menyatakan hanyak error ner 100 haris kode program suatu perangkat lun:

- 1. Variabel random X menyatakan banyak error per 100 baris kode program suatu perangkat lunak mempunyai distribusi peluang sbb.
 - (a) Tentukan mean, μ dan variance, σ^2 of X.
 - (b) Tentukan peluang rata-rata banyak error per 100 baris kode dari sampel 36 perangkat lunak lebih kecil dari 5,5.

- 2. Suatu survey menyatakan kenaikan transaksi ekonomi berbagi (transaksi dengan daring) adalah rata-rata 25 % dan simpangan baku adalah 2,3 % dari suatu sector perdagangan. Jika diambil 40 sektor perdagangan tentukan peluang rata-rata kenaikan antara 24,5 dan 25,5?
- 3. Data waktu tunggu sebuah job akan diproses oleh server adalah sebagai berikut 0.97, 0.98, 0.99, 0.99, 1.01, 1.01, 1.03, 1.03, 1.04.
 Asumsi data tersebut berdistribusi normal.
 - a). Hitunglah mean dan variansi dari tersebut
 - b). Hitunglah selang kepercayaan 99% untuk mean data tersebut
 - c). Hitunglah selang prediksi 99% untuk mean data tersebut
- 4. Data penelitian diambil dari pengamatan di lapangan dari kelompok sample yang berbeda. Kelompok data pertama diambil sample sebanyak 15, sedangkan data dari kelompok kedua sebanyak 12. Data pertama mempunyai rata-2 sebesar 3.84 dengan simpangan baku 3.07. Data kedua mempunyai rata-2 1.49 dengan simpangan baku 0.80.
 - a). Hitunglah selang kepercayaan 95% untuk variansi masing-2 data.
 - b). Hitunglah selang kepercayaan 98% untuk rasio simpangan baku data pertama dengan kedua
- 5. Seorang peneliti sedang membandingkan dua program analisis data berdasarkan waktu eksekusinya yang dikembangkan oleh dua perusahaan baru. Data berikut merepresentasikan waktu eksekusi kedua program analisis data tersebut dengan jumlah eksekusi yang berbeda:

Perusahaan		Waktu eksekusi (menit)								
Α	102	86	98	109	92					
В	81	165	97	134	92	87	114			

Lakukan tes hipotesis bahwa waktu eksekusi rata-rata program yang dikembangkan perusahaan B lebih cepat 10 menit dibandingkan program perusahaan A. Gunakanlah tingkat signifikan 0.1

dan asumsikan distribusi waktu diaproksimasi normal dengan varians yang berbeda. <u>Sebelum</u> <u>melakukan perhitungan, tuliskanlah rumus yang digunakan. Tanpa informasi rumus, perhitungan tidak akan dinilai.</u>

6. Survei dilakukan terhadap siswa kelas 3 SMA di sekolah S1 dan S2 untuk menentukan sentimen terhadap dua fakultas F1 dan F2 yang akan dipilih saat SNMPTN. Lima ratus siswa dipilih secara random dari setiap sekolah dan berikut data yang didapatkan:

Sentimen	S1	S2
F1	204	225
F2	211	198
Tidak memilih	85	77

Dengan tingkat signifikan 0.05, lakukan tes dari hipotesis nol bahwa proporsi siswa yang akan memilih F1, F2, dan tidak memilih adalah sama untuk setiap sekolah tersebut. <u>Sebelum melakukan perhitungan, tuliskanlah rumus yang digunakan. Tanpa informasi rumus, perhitungan tidak akan dinilai.</u>

Lampiran:

- 1. Tabel T
- 2. Tabel Normal
- 3. Tabel F
- 4. Tabel Chi-square

Lampiran distribusi t:

				α			
\boldsymbol{v}	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086

				α			
\boldsymbol{v}	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63.656	127.321	636.578
2	4.849	5.643	6.965	8.073	9.925	14.089	31.600
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	2.197	2.336	2.528	2.661	2.845	3.153	3.850

Lampiran distribusi normal:

	00	01	02	0.2	0.4	05	0.6	07	0.0	
	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

Lampiran distribusi f:

 Table A.6 (continued) Critical Values of the F-Distribution

	$f_{0.01}(v_1,v_2)$										
	v_1										
v_2	10	12	15	20	24	30	40	60	120	∞	
1	6055.85	6106.32	6157.28	6208.73	6234.63	6260.65	6286.78	6313.03	6339.39	6365.86	
2	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50	
3	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13	
4	14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	13.46	
5	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02	
6	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88	
7	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65	
8	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86	
9	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31	
10	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91	
11	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60	
12	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36	
13	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17	
14	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00	
15	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87	

Lampiran distribusi Chi-square:

 ${\bf Table~A.5~(continued)~Critical~Values~of~the~Chi-Squared~Distribution}$

						α				
\boldsymbol{v}	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668	13.277	14.860	18.466
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515
6	7.231	7.841	8.558	10.645	12.592	14.449	15.033	16.812	18.548	22.457
7	8.383	9.037	9.803	12.017	14.067	16.013	16.622	18.475	20.278	24.321
8	9.524	10.219	11.030	13.362	15.507	17.535	18.168	20.090	21.955	26.124
9	10.656	11.389	12.242	14.684	16.919	19.023	19.679	21.666	23.589	27.877
10	11.781	12.549	13.442	15.987	18.307	20.483	21.161	23.209	25.188	29.588
11	12.899	13.701	14.631	17.275	19.675	21.920	22.618	24.725	26.757	31.264
12	14.011	14.845	15.812	18.549	21.026	23.337	24.054	26.217	28.300	32.909
13	15.119	15.984	16.985	19.812	22.362	24.736	25.471	27.688	29.819	34.527
14	16.222	17.117	18.151	21.064	23.685	26.119	26.873	29.141	31.319	36.124
15	17.322	18.245	19.311	22.307	24.996	27.488	28.259	30.578	32.801	37.698