Local Methods-I

CS771: Introduction to Machine Learning
Purushottam Kar

Please enroll on Piazza

http://tinyurl.com/ml17-18adf

Internal Website up!

http://tinyurl.com/ml17-18ai

Enroll Project Groups

http://tinyurl.com/ml17-18apg

Recap: Problem Reductions in ML

Multi-Label Classification

Binary Classification

Multi-Classification

Regression

Ranking

Fantastic Features

... and how to find them

What is a feature?

Raw/Low-level features

Derived/Highlevel features

What is raw for you may have been derived by someone else

Types of Features

 Numerical Features Dangal *** Dhoom 3 *** **B'LORE DELHI KANPUR** Categorical Features Ordinal features **BTECH MTECH** MS PHD Relational Features An ML problem for one person can be a feature for another **Academic Performance**

CS771: Intro to ML

August 9, 2017

Derived Features

Bagged/Binned Features

ESC101 (A), ESO207 (B), CS220 (B), CS340 (C), MSO201 (A), CS771 (A)

Pooled/Aggregated Features

ESC101 (A), ESO207 (B), CS220 (B), CS340 (C), MSO201 (A), CS771 (A)

10 (max), 8.67 (avg)

Latent Features

Feature Selection

Real-valued regression problem

Challenge: Can we perform automated feature selection?

A little bit of Notation

- ullet A data point (train/test) is represented as a column vector $\mathbf{x} \in \mathbb{R}^p$
- ullet i-th coordinate of a vector \mathbf{x}_i
- ullet The label of a data point (train/test) is represented as $y\in\mathbb{R}$
- Dataset (labelled) $(\mathbf{x}^1, y^1), (\mathbf{x}^2, y^2), \dots, (\mathbf{x}^n, y^n)$
- Binary classification $y \in \{0,1\}$
- Multi-classification $y \in \{1, 2, 3, \dots, C\} \stackrel{\text{not}}{=} [C]$
- Multi-label classification $y \in 2^{\lfloor C \rfloor}$
- Real-valued regression $y \in \mathbb{R}$
- ullet Vector-valued regression $\mathbf{y} \in \mathbb{R}^C$
- Ranking $\mathbf{y} \in \mathrm{Sym}([C]) \stackrel{\mathrm{not}}{=} S_C$

Bird or Not!

- How to measure "closeness"?
- How to identify the prototypes?
- Why just one prototype per class?

Parametric model

The Inductive Bias

Assumptions made by an ML algorithm on what aspects of the input data influence the desired label and how ...

- 99
- Underlies all decisions taken while building an ML algorithm
- Correct assumptions give models with good performances
- Incorrect assumptions may give poor models
- Impossible to completely eliminate inductive bias

The Ugly Duckling Theorem

Metrics and Norms

- A metric on a set \mathcal{X} is a bivariate function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$
 - is symmetric $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
 - satisfies the triangle inequality $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{y}, \mathbf{z}) + d(\mathbf{z}, \mathbf{x})$
 - separates discernibles $d(\mathbf{x}, \mathbf{y}) \neq 0 \Leftrightarrow \mathbf{x} \neq \mathbf{y}$
- ullet A norm on a vector space V is a univariate function $\|\cdot\|:V o\mathbb{R}$
 - separates discernible $\mathbf{v} \neq \mathbf{0} \Rightarrow ||\mathbf{v}|| \neq 0$
 - ullet satisfies the triangle inequality $\|\mathbf{u}+\mathbf{v}\|\leq \|\mathbf{u}\|+\|\mathbf{v}\|$
 - satisfies positive homogeneity $||a \cdot \mathbf{v}|| = |a| \cdot ||\mathbf{v}||$, for $a \in \mathbb{R}$

Exercise: Show that all norms are non-negative valued.

Exercise: Show that every norm induces a metric $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

$$\mu_{+} = \frac{1}{n_{+}} \sum_{j=1}^{n_{+}} \mathbf{x}^{+,j}$$

$$\mu_{+} = \frac{1}{n_{+}} \sum_{j=1}^{n_{+}} \mathbf{x}^{+,j}$$

$$\mu_{+} = \frac{1}{n_{+}} \sum_{i=1}^{n_{+}} \mathbf{x}^{+,j}$$

Linear Decision Boundary

$$\mu_{+} = \frac{1}{n_{+}} \sum_{j=1}^{n_{+}} \mathbf{x}^{+,j}$$

Linear Decision Boundary

$$f(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

Learning with the Nearest Neighbors

Learning with 1-NN

Learning with 1-NN

Voronoi Tesselization

Non-linear Decision Boundary

August 9, 2017 19

Learning with 1-NN

Advantages

- One of the oldest "learning" algorithms Fix and Hodges (1951)
- Also theoretically one of the "best" possible!
- In practice, performs really well given enough training data

Disadvatages

- Prone to noise, "overfits" the data
- Very expensive in terms of storage and computation

Non-parametric model

- k, r, metric are hyper-parameters of the algorithm
- Usually tuned using cross validation
- Can have weighted versions of k-NN, r-NN too!

Exercise: How will you extend this to multiclass problems? Exercise: How will you set weights in weighted k-NN?

Some practical considerations

- Be very careful in choosing k (or r)
 - Large k makes partitions too smooth, may cause underfitting
 - Small k makes partitions too jumpy, may cause overfitting
- Be very careful in choosing the metric
 - Try to learn the metric itself in a task specific manner

माणिको संस्थान के स्थापन के स्

Mahalanobis metric

Regression using k-NN

CS771: Intro to ML

Can do ranking as well using Rank Aggregation

Please give your Feedback

http://tinyurl.com/ml17-18afb

