1 Anderson Model URG

The four-Fermi interaction we are considering is of the form

$$\mathcal{H}_{I} = \sum_{k,k',\sigma_{i}} u c_{d\sigma_{2}}^{\dagger} c_{d\sigma_{4}} c_{k'\sigma_{3}} c_{k\sigma_{1}}^{\dagger} \delta_{(\sigma_{1}+\sigma_{2}=\sigma_{3}+\sigma_{4})}$$

$$\tag{0.1}$$

The u in general depends on the spin and the momenta. Expanding the summation by using the delta gives

$$\mathcal{H}_{I} = \sum_{\substack{k,k',\sigma,\sigma'\\ \text{spin-preserving scattering}}} u_{1} \hat{n}_{d\sigma'} c_{k\sigma}^{\dagger} c_{k'\sigma} + \sum_{\substack{k,k',\sigma\\ k,\sigma'}} u_{2} c_{d\overline{\sigma}}^{\dagger} c_{d\sigma} c_{k\sigma}^{\dagger} c_{k'\overline{\sigma}}$$

$$(0.2)$$

At this point, we drop the dependence of u on the momenta and assume it depends only on the spin transfer. The first term (attached with u_1) involves no spin-flip between the scattering momenta or the scattering impurity electrons $(k\sigma \to k'\sigma, d\sigma' \to d\sigma')$. We label this coupling as u_P . The other coupling involves a spin-flip scattering, so we label that as u_A .

$$\mathcal{H}_{I,N} = \sum_{k,k',\sigma,\sigma'} u_P \hat{n}_{d\sigma'} c_{k\sigma}^{\dagger} c_{k'\sigma} + \sum_{k,k',\sigma} u_A c_{d\overline{\sigma}}^{\dagger} c_{d\sigma} c_{k\sigma}^{\dagger} c_{k'\overline{\sigma}}$$

$$(0.3)$$

where the N in the denominator means the sum is over all momenta up to $|k| = \Lambda_N$. The parallel scattering has two components, when expanded, is of the form

$$u_{\uparrow\uparrow}\hat{n}_{d\uparrow}c_{k\uparrow}^{\dagger}c_{k'\uparrow} + u_{\downarrow\downarrow}\hat{n}_{d\downarrow}c_{k\downarrow}^{\dagger}c_{k'\uparrow} + u_{\uparrow\downarrow}\hat{n}_{d\uparrow}c_{k\downarrow}^{\dagger}c_{k'\downarrow} + u_{\downarrow\uparrow}\hat{n}_{d\downarrow}c_{k\uparrow}^{\dagger}c_{k'\uparrow}$$

$$(0.4)$$

We define J_z and J_t such that this term can be written as

$$\mathcal{H}_{I} = J_{z} \frac{\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow}}{2} \sum_{kk'} \left(c_{k\uparrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right) + J_{t} \sum_{kk'} \left[c_{d\uparrow}^{\dagger} c_{d\downarrow} c_{k\downarrow}^{\dagger} c_{k'\uparrow} + c_{d\downarrow}^{\dagger} c_{d\uparrow} c_{k\uparrow}^{\dagger} c_{k'\downarrow} \right]$$

$$= 2J_{z} S_{d}^{z} s^{z} + J_{t} \left(S_{d}^{+} s^{-} + S_{d}^{-} s^{+} \right)$$

$$(0.5)$$

The spin-like operators are defined as

$$S_{d}^{z} \equiv \frac{1}{2} \left(\hat{n}_{d\uparrow} - \hat{n}_{d\downarrow} \right) \qquad S_{d}^{+} \equiv c_{d\uparrow}^{\dagger} c_{d\downarrow} \qquad S_{d}^{-} \equiv c_{d\downarrow}^{\dagger} c_{d\uparrow}$$

$$s_{kk'}^{z} \equiv \frac{1}{2} \left(c_{k\uparrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right) \qquad s_{kk'}^{+} \equiv c_{k\uparrow}^{\dagger} c_{k'\downarrow} \qquad s_{kk'}^{-} \equiv c_{k\downarrow}^{\dagger} c_{k'\uparrow} \qquad (0.6)$$

$$s^{a} \equiv \sum_{kk'} s_{kk'}^{a}$$

For the special case of $2J_z = 2J_t = J$, we get the SU(2) symmetric Heisenberg-like interaction

$$\mathcal{H}_I = J \left[S_d^z s^z + \frac{1}{2} \left(S_d^+ s^- + S_d^- s^+ \right) \right] = J \mathbf{S_d} \cdot \mathbf{s}$$
 (0.7)

The Hamiltonian for a single electron $q\beta$ on the N^{th} shell is

$$\mathcal{H}_{N} = H_{N-1} + H_{\text{imp}} + (\epsilon_{q} + \beta J_{z} S_{d}^{z}) \, \hat{n}_{q\beta} + V_{q} c_{q\beta}^{\dagger} c_{d\beta} + \text{h.c.} + \sum_{k < \Lambda_{N}} \left[J_{z} S_{d}^{z} \beta \left(c_{k\beta}^{\dagger} c_{q\beta} + c_{q\beta}^{\dagger} c_{k\beta} \right) + J_{t} \left(c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta} + c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\overline{\beta}} \right) \right]$$

$$(0.8)$$

where H_{imp} is the impurity-diagonal part of the Hamiltonian $(\epsilon_d \hat{n}_d + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow})$ and

$$H_{N-1} = \sum_{k < \Lambda_N, \sigma} \left[\left(\epsilon_k + \sigma J_z S_d^z \right) \hat{n}_{k\sigma} + V_k c_{k\sigma}^{\dagger} c_{d\sigma} + \text{h.c.} \right] + H_{I,N-1}$$

$$(0.9)$$

1.1 Particle sector

The renormalization in the Hamiltonian in the particle sector is

$$\Delta^{+}\mathcal{H}_{N} = \sum_{q\beta} \left[V_{q}^{*} c_{d\beta}^{\dagger} c_{q\beta} + J_{z} \beta S_{d}^{z} \sum_{k} c_{k\beta}^{\dagger} c_{q\beta} + J_{t} \sum_{k} c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta} \right] \times \frac{1}{\hat{\omega}^{+} - \mathcal{H}_{D}^{+}}$$

$$\times \left[V_{q} c_{q\beta}^{\dagger} c_{d\beta} + J_{z} \beta S_{d}^{z} \sum_{k} c_{q\beta}^{\dagger} c_{k\beta} + J_{t} \sum_{k} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\overline{\beta}} \right]$$

$$(0.10)$$

The \mathcal{H}_D is the diagonal part of the Hamiltonian, and the superscript \pm signifies that its the particle(hole) sector part, with respect to the electron presently being disentangled $(q\beta)$.

$$\mathcal{H}_{D}^{+} \equiv \operatorname{Tr}_{q\beta} \left[\mathcal{H} \hat{n}_{q\beta} \right] = \sum_{k < \Lambda_{N}, \sigma} \left(\epsilon_{k} + \sigma J_{z} S_{d}^{z} \right) \hat{n}_{k\sigma} + \left(\epsilon_{q} + \beta J_{z} S_{d}^{z} \right) + H_{imp} \tag{0.11}$$

The entire renormalization expression has nine terms- one of order $|V_q|^2$, four of order $V_q u_P$ and four of order u_P^2 .

1.
$$\Delta_1^+ \mathcal{H}_N = \sum_{\alpha} |V_q|^2 c_{d\beta}^{\dagger} c_{q\beta} \frac{1}{\hat{\omega}^+ - \mathcal{H}_D^+} c_{q\beta}^{\dagger} c_{d\beta}$$
 (0.12)

The final expression in the propagator will involve the energy difference between the initial state and the intermediate state at the propagator. As such, we will only consider the operators to the right of the propagator while calculating the energy values; those on the left will get canceled in the difference. Also, we will worry only about the energy of the on-shell conduction electrons in the denominator.

The intermediate state is characterized by $\hat{n}_{d\beta} = 0$, $\hat{n}_{q\beta} = 1$. Therefore, at the propagator, we have

$$H_{1} \equiv \mathcal{H}_{D}^{+} = \left[\epsilon_{q} + \beta J_{z} S_{d}^{z}\right] + \epsilon_{d} \hat{n}_{d\overline{\beta}}$$

$$= \left[\epsilon_{q} - \frac{1}{2} \beta \beta J_{z} \hat{n}_{d\overline{\beta}}\right] + \epsilon_{d} \hat{n}_{d\overline{\beta}}$$

$$= \left[\epsilon_{q} - \frac{1}{2} J_{z} \hat{n}_{d\overline{\beta}}\right] + \epsilon_{d} \hat{n}_{d\overline{\beta}}$$

$$(0.13)$$

 H_1 is the intermediate state Hamiltonian. As a simplification, we replace $\hat{\omega}^+$ with its eigenvalue ω^+ . Since the propagator, in this form, does not depend on $q\beta$ or $d\beta$ (they have been resolved inside H_1), we can move the propagator to the front:

$$\Delta_{1}^{+}\mathcal{H}_{N} = \sum_{q\beta} |V_{q}|^{2} c_{d\beta}^{\dagger} c_{q\beta} c_{q\beta}^{\dagger} c_{d\beta} \frac{1}{\omega^{+} - H_{1}}$$

$$= \sum_{q\beta} |V_{q}|^{2} \hat{n}_{d\beta} (1 - \hat{n}_{q\beta}) \frac{1}{\omega^{+} - H_{1}}$$
(0.14)

We will now write the denominator in terms of the initial energy, H_0 . The initial state is characterized by $\hat{n}_{q\beta} = 0$, $\hat{n}_{d\beta} = 1$:

$$H_{0} = \epsilon_{d} + (\epsilon_{d} + U) \,\hat{n}_{d\overline{\beta}}$$

$$= H_{1} + \epsilon_{d} + U \hat{n}_{d\overline{\beta}} - \epsilon_{q} + \frac{J_{z}}{2} \hat{n}_{d\overline{\beta}}$$

$$(0.15)$$

If we measure the quantum fluctuation ω^+ from the initial (diagonal) state energy which does not have any quantum fluctuations, we can set $H_0 = 0$ in the denominator. Also, since $q\beta$ is on the upper band edge, we can assume it is unoccupied in the initial state. Then,

$$\Delta_{1}^{+}\mathcal{H}_{N} = \sum_{q\beta} |V_{q}|^{2} \hat{n}_{d\beta} \frac{1}{\omega^{+} - \epsilon_{q} + \epsilon_{d} + \left(U + \frac{J_{z}}{2}\right) \hat{n}_{d\overline{\beta}}}$$

$$= \sum_{q\beta} \hat{n}_{d\beta} \left[\frac{|V_{q}^{1}|^{2} \hat{n}_{d\overline{\beta}}}{\omega^{+} - \epsilon_{q} + \epsilon_{d} + \left(U + \frac{J_{z}}{2}\right)} + \frac{|V_{q}^{0}|^{2} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega^{+} - \epsilon_{q} + \epsilon_{d}} \right]$$

$$= \sum_{q\beta} \hat{n}_{d\beta} \left[\frac{|V_{q}^{0}|^{2}}{\omega^{+} - \epsilon_{q} + \epsilon_{d}} + \hat{n}_{d\overline{\beta}} \left(\frac{|V_{q}^{1}|^{2}}{\omega^{+} - \epsilon_{q} + \epsilon_{d} + \left(U + \frac{J_{z}}{2}\right)} - \frac{|V_{q}^{0}|^{2}}{\omega^{+} - \epsilon_{q} + \epsilon_{d}} \right) \right] \tag{0.16}$$

$$\Delta_2^+ \mathcal{H}_N = \sum_{q\beta k} V_q^* c_{d\beta}^\dagger c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} J_z \beta S_d^z c_{q\beta}^\dagger c_{k\beta}$$
 (0.17)

This can be simplified by noting that since the propagator is diagonal, the only operator that changes \hat{n}_d and S_d^z is the $c_{d\beta}^{\dagger}$, and therefore

$$c_{d\beta}^{\dagger} J_z \beta S_d^z = c_{d\beta}^{\dagger} \frac{1}{2} \left(-J_z \right) \hat{n}_{d\overline{\beta}} \tag{0.18}$$

The expression simplifies to

$$\Delta_2^+ \mathcal{H}_N = \frac{1}{2} \left(-J_z \right) \sum_{q\beta k} V_q^* c_{d\beta}^\dagger c_{q\beta} \hat{n}_{d\overline{\beta}} \frac{1}{\omega^+ - \mathcal{H}_D^+} c_{q\beta}^\dagger c_{k\beta} \tag{0.19}$$

Intermediate $(\hat{n}_{q\beta} = 1, \hat{n}_{d\overline{\beta}} = 1, \hat{n}_{d\beta} = 0)$ energy is

$$H_1 = \epsilon_q + J_z \beta S_d^z + \epsilon_d = \epsilon_q - \frac{1}{2} J_z + \epsilon_d \tag{0.20}$$

The first term $\epsilon_q + J_z \beta S_d^z$ is the total dispersion of the electron $q\beta$. The ϵ_d is the impurity energy and the third term is the total background energy.

The initial $(\hat{n}_{q\beta} = 0, \hat{n}_{d\overline{\beta}} = 1, \hat{n}_{d\beta} = 0)$ energy is

$$H_0 = \epsilon_d = H_1 - \epsilon_q + \frac{1}{2}J_z \tag{0.21}$$

$$\Delta_2^+ \mathcal{H}_N = -\frac{1}{2} J_z \sum_{q\beta k} V_q^* c_{d\beta}^{\dagger} c_{q\beta} \hat{n}_{d\overline{\beta}} c_{q\beta}^{\dagger} c_{k\beta} \frac{1}{\omega^+ - H_1 - \epsilon_q + \frac{1}{2} J_z}$$

$$= -\frac{1}{2} J_z \sum_{q\beta k} c_{d\beta}^{\dagger} c_{k\beta} \frac{\hat{n}_{d\overline{\beta}} V_q^{1*}}{\omega^+ - \epsilon_q + \frac{1}{2} J_z}$$

$$(0.22)$$

3.

$$\Delta_3^+ \mathcal{H}_N = \sum_{q\beta k} V_q^* c_{d\beta}^{\dagger} c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} J_t c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\overline{\beta}}$$
(0.23)

Intermediate $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_1 = \epsilon_q - \frac{1}{2}J_z + \epsilon_d \tag{0.24}$$

The initial $(\hat{n}_{d\beta} = 1, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 0)$ energy is

$$H_0 = \epsilon_d = H_1 - \epsilon_q + \frac{1}{2}J_z \tag{0.25}$$

$$\Delta_{3}^{+}\mathcal{H}_{N} = \sum_{q\beta k} J_{t} V_{q}^{*} c_{d\beta}^{\dagger} c_{q\beta} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\overline{\beta}} \frac{1}{\omega^{+} - H_{1} - \epsilon_{q} + \frac{1}{2} J_{z}}$$

$$= \sum_{q\beta k} -J_{t} V_{q}^{*} \hat{n}_{d\beta} \left(1 - \hat{n}_{q\beta}\right) c_{d\overline{\beta}}^{\dagger} c_{k\overline{\beta}} \frac{1}{\omega^{+} - H_{1} - \epsilon_{q} + \frac{1}{2} J_{z}}$$

$$= -J_{t} \sum_{q\beta k} c_{d\beta}^{\dagger} c_{k\beta} \frac{V_{q}^{1*} \hat{n}_{d\overline{\beta}}}{\omega^{+} - \epsilon_{q} + \frac{1}{2} J_{z}}$$

$$(0.26)$$

$$\Delta_4^+ \mathcal{H}_N = \sum_{q\beta k\sigma} J_z \beta S_d^z c_{k\beta}^\dagger c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} V_q c_{q\beta}^\dagger c_{d\beta}$$
 (0.27)

The first step is a simplification:

$$J_z \beta S_d^z c_{d\beta} = \frac{1}{2} \left(-J_z \right) \hat{n}_{d\overline{\beta}} c_{d\beta} \tag{0.28}$$

Intermediate $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_1 = \epsilon_q - \frac{1}{2}J_z + \epsilon_d \tag{0.29}$$

The initial $(\hat{n}_{q\beta} = 0, \hat{n}_{d\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_0 = 2\epsilon_d + U = H_1 + \epsilon_d + U - \epsilon_q + \frac{1}{2}J_z \tag{0.30}$$

$$\Delta_4^+ \mathcal{H}_N = \sum_{q\beta k} -\frac{1}{2} J_z V_q \hat{n}_{d\overline{\beta}} c_{k\beta}^{\dagger} c_{q\beta} c_{q\beta}^{\dagger} c_{d\beta} \frac{1}{\omega^+ - H_0 + \epsilon_d + U - \epsilon_q + \frac{1}{2} J_z}$$

$$= \sum_{q\beta k} -\frac{1}{2} J_z V_q \hat{n}_{d\overline{\beta}} \left(1 - \hat{n}_{q\beta}\right) c_{k\beta}^{\dagger} c_{d\beta} \frac{1}{\omega^+ + \epsilon_d + U - \epsilon_q + \frac{1}{2} J_z}$$

$$= -\frac{1}{2} J_z \sum_{q\beta k} c_{k\beta}^{\dagger} c_{d\beta} \frac{V_q^1 \hat{n}_{d\overline{\beta}}}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2} J_z}$$
(0.31)

5.

$$\Delta_5^+ \mathcal{H}_N = \sum_{q\beta k\sigma} J_t c_{d\beta}^\dagger c_{d\overline{\beta}} c_{k\overline{\beta}}^\dagger c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} V_q c_{q\beta}^\dagger c_{d\beta}$$
 (0.32)

Intermediate $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_1 = \epsilon_q - \frac{1}{2}J_z + \epsilon_d + \mathcal{E}_0 \tag{0.33}$$

The initial $(\hat{n}_{q\beta} = 0, \hat{n}_{d\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_0 = 2\epsilon_d + U = H_1 + \epsilon_d + U - \epsilon_q + \frac{1}{2}J_z \tag{0.34}$$

$$\Delta_{5}^{+}\mathcal{H}_{N} = \sum_{q\beta k} J_{t} V_{q} c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta} c_{d\beta}^{\dagger} c_{d\beta} \frac{1}{\omega^{+} - H_{0} + \epsilon_{d} + U - \epsilon_{q} + \frac{1}{2} J_{z}}$$

$$= -\sum_{q\beta k} J_{t} V_{q} (1 - \hat{n}_{q\beta}) \hat{n}_{d\beta} c_{k\overline{\beta}}^{\dagger} c_{d\overline{\beta}} \frac{1}{\omega^{+} + \epsilon_{d} + U - \epsilon_{q} + \frac{1}{2} J_{z}}$$

$$= -J_{t} \sum_{q\beta k} c_{k\beta}^{\dagger} c_{d\beta} \frac{V_{q}^{1} \hat{n}_{d\overline{\beta}}}{\omega^{+} - \epsilon_{q} + \epsilon_{d} + U + \frac{1}{2} J_{z}}$$
(0.35)

6.

$$\Delta_6^+ \mathcal{H}_N = \sum_{k'q\beta k} J_z S_d^z \beta c_{k\beta}^\dagger c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} J_z S_d^z \beta c_{q\beta}^\dagger c_{k'\beta}$$
(0.36)

The first step is a simplification:

$$(\beta S_d^z)^2 = \frac{1}{4} \left(\hat{n}_{d\beta} - \hat{n}_{d\overline{\beta}} \right)^2 = \frac{1}{4} \left(\hat{n}_{d\beta} + \hat{n}_{d\beta} - 2\hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \right) = \frac{1}{4} \left(\hat{n}_d - 2\hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \right) \tag{0.37}$$

Intermediate $(\hat{n}_{q\beta} = 1)$ energy is

$$H_1 = \epsilon_q + \beta J_z S_d^z + H_{imp} \tag{0.38}$$

The initial $(\hat{n}_{q\beta} = 0)$ energy is

$$H_0 = H_{imp} = H_1 - \epsilon_q - \beta J_z S_d^z \tag{0.39}$$

$$\Delta_{6}^{+}\mathcal{H}_{N} = \frac{1}{4}J_{z}^{2} \sum_{k'q\beta k} \left(\hat{n}_{d} - 2\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}\right) c_{k\beta}^{\dagger} c_{q\beta} c_{q\beta}^{\dagger} c_{k'\beta} \frac{1}{\omega^{+} - H_{1}}$$

$$= \frac{1}{4}J_{z}^{2} \sum_{k'q\beta k} \left(\hat{n}_{d} - 2\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}\right) \left(1 - \hat{n}_{q\beta}\right) c_{k\beta}^{\dagger} c_{k'\beta} \frac{1}{\omega^{+} - H_{0} - \epsilon_{q} - \beta J_{z}S_{d}^{z}}$$

$$= \frac{1}{4}J_{z}^{2} \sum_{k'q\beta k} c_{k'\beta}^{\dagger} c_{k'\beta} \frac{\left(\hat{n}_{d} - 2\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}\right)}{\omega^{+} - \epsilon_{q} - \beta J_{z}S_{d}^{z}}$$

$$= \frac{1}{4}J_{z}^{2} \sum_{k'q\beta k} c_{k'\beta}^{\dagger} c_{k'\beta} \left[\frac{\hat{n}_{d\beta} \left(1 - \hat{n}_{d\bar{\beta}}\right)}{\omega^{+} - \epsilon_{q} - \frac{1}{2}J_{z}} + \frac{\hat{n}_{d\bar{\beta}} \left(1 - \hat{n}_{d\beta}\right)}{\omega^{+} - \epsilon_{q} + \frac{1}{2}J_{z}}\right]$$

$$(0.40)$$

In the last step, we used the fact that $\hat{n}_d - 2\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}$ is not zero only in the singly occupied subspace, hence we can expand it into $\hat{n}_{\uparrow}(1-\hat{n}_{\downarrow}) + p \leftrightarrow h$.

$$\Delta_7^+ \mathcal{H}_N = \sum_{q\beta kk'} \beta J_z S_d^z c_{k\beta}^\dagger c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} J_t c_{d\overline{\beta}}^\dagger c_{d\beta} c_{q\beta}^\dagger c_{k'\overline{\beta}}$$
(0.41)

The first step is a simplification:

$$\beta S_d^z c_{d\overline{\beta}}^{\dagger} c_{d\beta} = \beta S_d^z S_{d\overline{\beta}}^{\dagger} = \beta \frac{1}{2} \overline{\beta} S_{d\overline{\beta}}^{\dagger} = -\frac{1}{2} c_{d\overline{\beta}}^{\dagger} c_{d\beta}$$
 (0.42)

Intermediate $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_1 = \epsilon_q + \beta J_z S_d^z + \epsilon_d = \epsilon_q - J_z + \epsilon_d \tag{0.43}$$

The initial $(\hat{n}_{d\beta} = 1, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 0)$ energy is

$$H_0 = \epsilon_d = H_1 - \epsilon_q + J_Z \tag{0.44}$$

$$\Delta_{7}^{+}\mathcal{H}_{N} = \sum_{q\beta kk'} \frac{1}{2} J_{z} J_{t} c_{k\beta}^{\dagger} c_{q\beta} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k'\overline{\beta}} \frac{-1}{\omega^{+} - H_{1}}$$

$$= -\frac{1}{2} J_{z} J_{t} \sum_{q\beta kk'} (1 - \hat{n}_{q\beta}) c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{k\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\omega^{+} - \epsilon_{q} + J_{z}}$$

$$= -\frac{1}{2} J_{z} J_{t} \sum_{q\beta kk'} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{k\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\omega^{+} - \epsilon_{q} + J_{z}}$$

$$(0.45)$$

8.

$$\Delta_8^+ \mathcal{H}_N = \sum_{q\beta kk'} J_t c_{d\beta}^\dagger c_{d\overline{\beta}} c_{k\overline{\beta}}^\dagger c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} J_z \beta S_d^z c_{q\beta}^\dagger c_{k'\beta}$$
(0.46)

The first step is a simplification:

$$c_{d\beta}^{\dagger} c_{d\overline{\beta}} \beta S_d^z = S_{d\beta}^+ \beta S_d^z = \beta \frac{1}{2} \overline{\beta} S_{d\overline{\beta}}^+ = -\frac{1}{2} c_{d\beta}^{\dagger} c_{d\overline{\beta}}$$
 (0.47)

Intermediate $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_1 = \epsilon_q + \beta J_Z S_d^z + \epsilon_d = \epsilon_q - J_Z + \epsilon_d \tag{0.48}$$

The initial $(\hat{n}_{q\beta} = \hat{n}_{d\beta} = 0, \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_0 = \epsilon_d = H_1 - \epsilon_q + \frac{1}{2}J_z \tag{0.49}$$

$$\Delta_8^+ \mathcal{H}_N = -\sum_{q\beta kk'} \frac{1}{2} J_z J_t c_{d\beta}^\dagger c_{d\overline{\beta}} c_{k\overline{\beta}}^\dagger c_{q\beta} c_{q\beta}^\dagger c_{k'\beta} \frac{1}{\omega^+ - \epsilon_q + \frac{1}{2} J_z}$$

$$= -\frac{1}{2} J_z J_t \sum_{q\beta kk'} (1 - \hat{n}_{q\beta}) c_{d\beta}^\dagger c_{d\overline{\beta}} c_{k\overline{\beta}}^\dagger c_{k'\beta} \frac{1}{\omega^+ - \epsilon_q + \frac{1}{2} J_z}$$

$$= -\frac{1}{2} J_z J_t \sum_{q\beta kk'} c_{d\beta}^\dagger c_{d\overline{\beta}} c_{k\overline{\beta}}^\dagger c_{k'\beta} \frac{1}{\omega^+ - \epsilon_q + \frac{1}{2} J_z}$$

$$(0.50)$$

$$\Delta_9^+ \mathcal{H}_N = \sum_{q\beta kk'} J_t c_{d\beta}^\dagger c_{d\overline{\beta}} c_{k\overline{\beta}}^\dagger c_{q\beta} \frac{1}{\omega^+ - \mathcal{H}_D^+} J_t c_{d\overline{\beta}}^\dagger c_{d\beta} c_{q\beta}^\dagger c_{k'\overline{\beta}}$$
(0.51)

Intermediate $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1)$ energy is

$$H_1 = \epsilon_q - \frac{1}{2}J_z + \epsilon_d \tag{0.52}$$

The initial $(\hat{n}_{d\beta} = 1, \hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 0)$ energy is

$$H_0 = \epsilon_d = H_1 - \epsilon_q + \frac{1}{2}J_z \tag{0.53}$$

$$\Delta_{9}^{+}\mathcal{H}_{N} = \sum_{q\beta kk\prime} J_{t}^{2} c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\omega^{+} - \epsilon_{q} + \frac{1}{2}J_{z}}$$

$$= \sum_{q\beta kk\prime} (1 - \hat{n}_{q\beta}) \, \hat{n}_{d\beta} \, (1 - \hat{n}_{d\overline{\beta}}) \, c_{k\overline{\beta}}^{\dagger} c_{k'\overline{\beta}} \frac{J_{t}^{2}}{\omega^{+} - \epsilon_{q} + \frac{1}{2}J_{z}}$$

$$= \sum_{q\beta kk\prime} c_{k\beta}^{\dagger} c_{k'\beta} \frac{J_{t}^{2} \hat{n}_{d\overline{\beta}} \, (1 - \hat{n}_{d\beta})}{\omega^{+} - \epsilon_{q} + \frac{1}{2}J_{z}}$$

$$(0.54)$$

1.2 Hole sector

The renormalization in the Hamiltonian in the hole sector is

$$\Delta^{-}\mathcal{H}_{N} = \sum_{q\beta} \left[V_{q} c_{q\beta}^{\dagger} c_{d\beta} + J_{z} \beta S_{d}^{z} \sum_{k\sigma} \hat{n}_{d\sigma} c_{k\beta} c_{q\beta}^{\dagger} + J_{t} \sum_{k\sigma} c_{d\overline{\beta}}^{\dagger} c_{q\beta}^{\dagger} c_{d\beta} c_{k\overline{\beta}} \right] \times \frac{-1}{\hat{\omega}^{-} - \mathcal{H}_{D}^{-}}$$

$$\times \left[V_{q}^{*} c_{d\beta}^{\dagger} c_{q\beta} + J_{z} \beta S_{d}^{z} \sum_{k\sigma} \hat{n}_{d\sigma} c_{q\beta} c_{k\beta}^{\dagger} + J_{t} \sum_{k\sigma} c_{d\beta}^{\dagger} c_{k\overline{\beta}}^{\dagger} c_{d\overline{\beta}} c_{q\beta} \right]$$

$$(0.55)$$

The propagator can be written as

$$\frac{-1}{\hat{\omega}^{-} - \mathcal{H}_{D}^{-}} = \frac{1}{\omega^{-} + \mathcal{H}_{D}^{-}} \tag{0.56}$$

where we substitute $\hat{\omega}^- = 2\omega^-\tau^- = -\omega^-$. \mathcal{H}_D^- is the energy of the hole state. The kinetic energy and spin of this hole will be the negative of those of the particle, due to conservation.

$$\mathcal{H}_D^- = -\epsilon_q - \beta J_z S_d^z + H_{\rm imp} \tag{0.57}$$

$$\Delta_1^- \mathcal{H}_N = \sum_{q\beta} |V_q|^2 c_{q\beta}^{\dagger} c_{d\beta} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} c_{d\beta}^{\dagger} c_{q\beta}$$
 (0.58)

The intermediate $(\hat{n}_{q\beta} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = \epsilon_d + (\epsilon_d + U)\,\hat{n}_{d\overline{\beta}} - \epsilon_q - \beta J_z S_d^z = -\epsilon_q - \frac{J_z}{2} \left(1 - \hat{n}_{d\overline{\beta}}\right) + \epsilon_d + (\epsilon_d + U)\,\hat{n}_{d\overline{\beta}} \quad (0.59)$$

$$\Delta_1^- \mathcal{H}_N = \sum_{q\beta} |V_q|^2 \hat{n}_{q\beta} (1 - \hat{n}_{d\beta}) \frac{1}{\omega^- - H_1}$$
 (0.60)

The initial state $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = 1)$ energy is

$$H_{0} = \epsilon_{d} \hat{n}_{d\overline{\beta}}$$

$$= H_{1} + \epsilon_{q} - \epsilon_{d} - U \hat{n}_{d\overline{\beta}} + \frac{J_{z}}{2} \left(1 - \hat{n}_{d\overline{\beta}} \right)$$

$$(0.61)$$

As before, we set $H_0 = 0$ and keep $H_1 - H_0$ in the denominator.

$$\Delta_{1}^{-}\mathcal{H}_{N} = \sum_{q\beta} |V_{q}|^{2} \hat{n}_{q\beta} \left(1 - \hat{n}_{d\beta}\right) \frac{1}{\omega^{-} - \epsilon_{q} + \epsilon_{d} + U \hat{n}_{d\overline{\beta}} - \frac{J_{z}}{2} \left(1 - \hat{n}_{d\overline{\beta}}\right)}$$

$$= \sum_{q\beta} \left(1 - \hat{n}_{d\beta}\right) \left[\frac{|V_{q}^{1}|^{2} \hat{n}_{d\overline{\beta}}}{\omega^{-} - \epsilon_{q} + \epsilon_{d} + U} + \frac{|V_{q}^{0}|^{2} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega - \epsilon_{q} + \epsilon_{d} - \frac{J_{z}}{2}} \right]$$

$$= \sum_{q\beta} \left[\hat{n}_{d\overline{\beta}} \left(\frac{|V_{q}^{1}|^{2}}{\omega - \epsilon_{q} + \epsilon_{d} + U} - \frac{2|V_{q}^{0}|^{2}}{\omega - \epsilon_{q} + \epsilon_{d} - \frac{J_{z}}{2}} \right) + \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \left(\frac{|V_{q}^{0}|^{2}}{\omega - \epsilon_{q} + \epsilon_{d} - \frac{J_{z}}{2}} - \frac{|V_{q}^{1}|^{2}}{\omega - \epsilon_{q} + \epsilon_{d} + U} \right) \right]$$

2.

$$\Delta_2^- \mathcal{H}_N = \sum_{q\beta k} V_q c_{q\beta}^\dagger c_{d\beta} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} J_z \beta S_d^z c_{k\beta}^\dagger c_{q\beta}$$
 (0.63)

The first step is a simplification:

$$c_{d\beta}J_z\beta S_d^z = c_{d\beta}\frac{1}{2}J_z\left(1 - \hat{n}_{d\overline{\beta}}\right) \tag{0.64}$$

The intermediate $(\hat{n}_{q\beta} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = -\epsilon_q + \epsilon_d + (\epsilon_d + U) \,\hat{n}_{d\overline{\beta}} - \frac{1}{2} J_z \left(1 - \hat{n}_{d\overline{\beta}} \right) \tag{0.65}$$

The initial state $(\hat{n}_{q\beta} = \hat{n}_{d\beta} = 1)$ energy is

$$H_{0} = \epsilon_{d} + (\epsilon_{d} + U) \,\hat{n}_{d\overline{\beta}}$$

$$= H_{1} + \epsilon_{q} + \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}} \right)$$

$$(0.66)$$

$$\Delta_{2}^{-}\mathcal{H}_{N} = \sum_{q\beta k} \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}} \right) V_{q} c_{q\beta}^{\dagger} c_{d\beta} \left(1 - \hat{n}_{d\overline{\beta}} \right) c_{k\beta}^{\dagger} c_{q\beta} \frac{1}{\omega^{-} + H_{1}}$$

$$= -\sum_{q\beta k} \hat{n}_{q\beta} c_{k\beta}^{\dagger} c_{d\beta} \frac{V_{q} \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}} \right)}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}} \right)}$$

$$= -\sum_{q\beta k} \hat{n}_{q\beta} c_{k\beta}^{\dagger} c_{d\beta} \frac{\frac{1}{2} J_{z} V_{q}^{0} \left(1 - \hat{n}_{d\overline{\beta}} \right)}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$(0.67)$$

3.

$$\Delta_3^- \mathcal{H}_N = \sum_{q\beta k} V_q c_{q\beta}^{\dagger} c_{d\beta} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} J_t c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta}$$
(0.68)

The intermediate $(\hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = \epsilon_d - \epsilon_q - J_z \beta S_d^z = \epsilon_d - \epsilon_q - \frac{1}{2} J_z \tag{0.69}$$

The initial state $(\hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1, \hat{n}_{d\beta} = 0)$ energy is

$$H_0 = \epsilon_q + \epsilon_d = H_1 + \epsilon_q + \frac{1}{2}J_z \tag{0.70}$$

$$\Delta_{3}^{-}\mathcal{H}_{N} = \sum_{q\beta k} J_{t} V_{q} c_{q\beta}^{\dagger} c_{d\beta} c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta} \frac{1}{\omega^{-} + H_{1}}$$

$$= \sum_{q\beta k} J_{t} V_{q} \hat{n}_{q\beta} \left(1 - \hat{n}_{d\beta} \right) c_{k\overline{\beta}}^{\dagger} c_{d\overline{\beta}} \frac{-1}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$= -J_{t} \sum_{q\beta k} c_{k\beta}^{\dagger} c_{d\beta} \frac{V_{q}^{0} \left(1 - \hat{n}_{d\overline{\beta}} \right)}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$(0.71)$$

4.

$$\Delta_4^- \mathcal{H}_N = \sum_{q\beta k} \frac{1}{2} J_z \beta S_d^z c_{q\beta}^\dagger c_{k\beta} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} V_q^* c_{d\beta}^\dagger c_{q\beta}$$
 (0.72)

There is a simplification:

$$\frac{1}{2}J_z\beta S_d^z c_{d\beta}^{\dagger} = \frac{1}{2}J_z \left(1 - \hat{n}_{d\overline{\beta}}\right) c_{d\beta}^{\dagger} \tag{0.73}$$

The intermediate $(\hat{n}_{q\beta} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = -\epsilon_q + \epsilon_d + (\epsilon_d + U) \,\hat{n}_{d\overline{\beta}} - \frac{1}{2} J_z \left(1 - \hat{n}_{d\overline{\beta}} \right) \tag{0.74}$$

The initial state $(\hat{n}_{d\beta} = 0, \hat{n}_{q\beta} = 1)$ energy is

$$H_{0} = \epsilon_{d} \hat{n}_{d\overline{\beta}}$$

$$= H_{1} + \epsilon_{q} + \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}} \right) - \epsilon_{d} - U \hat{n}_{d\overline{\beta}}$$

$$(0.75)$$

$$\Delta_{4}^{-}\mathcal{H}_{N} = \sum_{q\beta k} V_{q}^{*} c_{q\beta}^{\dagger} c_{k\beta} c_{d\beta}^{\dagger} c_{q\beta} \frac{\frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega^{-} - H_{0} - \epsilon_{q} - \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}}\right) + \epsilon_{d} + U \hat{n}_{d\overline{\beta}}}$$

$$= \sum_{q\beta k} \hat{n}_{q\beta} V_{q}^{*} c_{k\beta} c_{d\beta}^{\dagger} \frac{\frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}}\right) + \epsilon_{d} + U \hat{n}_{d\overline{\beta}}}$$

$$= -\sum_{q\beta k} c_{d\beta}^{\dagger} c_{k\beta} \frac{V_{q}^{0*} \frac{1}{2} J_{z} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z} + \epsilon_{d}}$$

$$(0.76)$$

5.

$$\Delta_5^- \mathcal{H}_N = \sum_{q\beta k} J_t c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\overline{\beta}} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} V_q^* c_{d\beta}^{\dagger} c_{q\beta}$$
(0.77)

The intermediate $(\hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = -\epsilon_q + \epsilon_d - \frac{1}{2}J_z \tag{0.78}$$

The initial state $(\hat{n}_{d\beta} = \hat{n}_{d\overline{\beta}} = 0, \hat{n}_{q\beta} = 1)$ energy is

$$H_0 = 0 \tag{0.79}$$

$$\Delta_{5}^{-}\mathcal{H}_{N} = \sum_{q\beta k} J_{t} V_{q}^{*} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\overline{\beta}} c_{d\beta}^{\dagger} c_{q\beta} \frac{1}{\hat{\omega}^{-} - \epsilon_{q} + \epsilon_{d} - \frac{1}{2} J_{z}}$$

$$= -J_{t} \sum_{q\beta k} V_{q}^{*} \hat{n}_{q\beta} \left(1 - \hat{n}_{d\beta}\right) c_{d\overline{\beta}}^{\dagger} c_{k\overline{\beta}} \frac{1}{\omega^{-} - \epsilon_{q} + \epsilon_{d} - \frac{1}{2} J_{z}}$$

$$= -J_{t} \sum_{q\beta k} c_{d\beta}^{\dagger} c_{k\beta} \frac{V_{q}^{0*} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega^{-} - \epsilon_{q} + \epsilon_{d} - \frac{1}{2} J_{z}}$$

$$(0.80)$$

$$\Delta_6^- \mathcal{H}_N = \sum_{q\beta kk'} J_z \beta S_d^z c_{q\beta}^\dagger c_{k'\beta} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} J_z \beta S_d^z c_{k\beta}^\dagger c_{q\beta}$$
(0.81)

From eq. 0.37,

$$(\beta S_d^z)^2 = \frac{1}{4} \left(\hat{n}_d - 2\hat{n}_{d\uparrow} \hat{n}_{d\downarrow} \right) \tag{0.82}$$

The intermediate $(\hat{n}_{q\beta} = 0)$ energy is

$$H_1 = H_{\rm imp} - \epsilon_q - \beta J_z S_d^z \tag{0.83}$$

The initial state $(\hat{n}_{q\beta} = 1)$ energy is

$$H_0 = H_{\rm imp} = H_1 + \epsilon_q + \beta J_z S_d^z \tag{0.84}$$

$$\Delta_{6}^{-}\mathcal{H}_{N} = \sum_{q\beta kk'} \frac{J_{z}^{2}}{4} \left(\hat{n}_{d} - 2\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}\right) c_{q\beta}^{\dagger} c_{k'\beta} c_{k\beta}^{\dagger} c_{q\beta} \frac{1}{\omega^{-} - H_{1}}$$

$$= \frac{J_{z}^{2}}{4} \sum_{q\beta kk'} \hat{n}_{q\beta} \left(\hat{n}_{d} - 2\hat{n}_{d\uparrow}\hat{n}_{d\downarrow}\right) c_{k'\beta} c_{k\beta}^{\dagger} \frac{1}{\omega^{-} - \epsilon_{q} - \beta J_{z} S_{d}^{z}}$$

$$= -\frac{J_{z}^{2}}{4} \sum_{q\beta kk'} c_{k'\beta}^{\dagger} \left[\frac{\hat{n}_{d\beta} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega^{-} - \epsilon_{q} - \frac{J_{z}}{2}} + \frac{\hat{n}_{d\overline{\beta}} \left(1 - \hat{n}_{d\beta}\right)}{\omega^{-} - \epsilon_{q} + \frac{J_{z}}{2}}\right]$$

$$+ \frac{J_{z}^{2}}{4} \sum_{q\beta k} \left[\frac{\hat{n}_{d\beta} \left(1 - \hat{n}_{d\overline{\beta}}\right)}{\omega^{-} - \epsilon_{q} - \frac{J_{z}}{2}} + \frac{\hat{n}_{d\overline{\beta}} \left(1 - \hat{n}_{d\beta}\right)}{\omega^{-} - \epsilon_{q} + \frac{J_{z}}{2}}\right]$$

$$(0.85)$$

7.

$$\Delta_7^- \mathcal{H}_N = \sum_{q\beta kk'} J_z \beta S_d^z c_{q\beta}^{\dagger} c_{k'\beta} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} J_t c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta}$$
(0.86)

Simplification:

$$\beta S_d^z c_{d\beta}^{\dagger} c_{d\overline{\beta}} = \beta S_d^z S_{d\beta}^{\dagger} = \beta \frac{1}{2} \beta S_{d\beta}^{\dagger} = \frac{1}{2} c_{d\beta}^{\dagger} c_{d\overline{\beta}}$$
 (0.87)

The intermediate $(\hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = \epsilon_d - \epsilon_q - \frac{1}{2}J_z \tag{0.88}$$

The initial state $(\hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1, \hat{n}_{d\beta} = 0)$ energy is

$$H_0 = \epsilon_d = H_1 + \epsilon_q + \frac{1}{2}J_z \tag{0.89}$$

$$\Delta_{7}^{-}\mathcal{H}_{N} = \sum_{q\beta kk'} \frac{1}{2} J_{z} J_{t} c_{q\beta}^{\dagger} c_{k'\beta} c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta} \frac{1}{\omega^{-} - H_{1}}$$

$$= \sum_{q\beta kk'} \frac{1}{2} J_{z} J_{t} \hat{n}_{q\beta} c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{k'\beta} \frac{-1}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$= -\frac{1}{2} J_{z} J_{t} \sum_{q\beta kk'} c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{k'\beta} \frac{1}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$= -\frac{1}{2} J_{z} J_{t} \sum_{q\beta kk'} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{k\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$= -\frac{1}{2} J_{z} J_{t} \sum_{q\beta kk'} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{k\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$(0.90)$$

$$\Delta_8^- \mathcal{H}_N = \sum_{q\beta kk'} J_t c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} J_z \beta S_d^z c_{k\beta}^{\dagger} c_{q\beta}$$
(0.91)

Simplification:

$$c_{d\overline{\beta}}^{\dagger} c_{d\beta} \beta S_d^z = S_{d\overline{\beta}}^+ S_d^z \beta = \beta \frac{1}{2} S_{d\overline{\beta}}^+ \beta = \frac{1}{2} c_{d\overline{\beta}}^{\dagger} c_{d\beta}$$
 (0.92)

The intermediate $(\hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = -\epsilon_q - \frac{J_z}{2} + \epsilon_d \tag{0.93}$$

The initial state $(\hat{n}_{d\overline{\beta}} = 0, \hat{n}_{q\beta} = \hat{n}_{d\beta} = 1)$ energy is

$$H_0 = \epsilon_d = H_1 + \epsilon_q + \frac{J_z}{2} \tag{0.94}$$

$$\Delta_{8}^{-}\mathcal{H}_{N} = \sum_{q\beta kk'} \frac{1}{2} J_{z} J_{t} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k'\overline{\beta}} c_{k\beta}^{\dagger} c_{q\beta} \frac{1}{\omega^{-} - H_{1}}$$

$$= \sum_{q\beta kk'} \frac{1}{2} J_{z} J_{t} \hat{n}_{q\beta} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{k\beta}^{\dagger} c_{k'\overline{\beta}} \frac{-1}{\omega^{-} - \epsilon_{q} - \frac{J_{z}}{2}}$$

$$= -\frac{1}{2} J_{z} J_{t} \sum_{q\beta kk'} c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{k\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\omega^{-} - \epsilon_{q} - \frac{1}{2} J_{z}}$$

$$(0.95)$$

9.

$$\Delta_9^- \mathcal{H}_N = \sum_{q\beta kk'} J_t c_{d\overline{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k'\overline{\beta}} \frac{1}{\hat{\omega}^- - \mathcal{H}_D^-} J_t c_{d\beta}^{\dagger} c_{d\overline{\beta}} c_{k\overline{\beta}}^{\dagger} c_{q\beta}$$
(0.96)

The intermediate $(\hat{n}_{q\beta} = \hat{n}_{d\bar{\beta}} = 0, \hat{n}_{d\beta} = 1)$ energy is

$$H_1 = -\epsilon_q - \frac{J_z}{2} + \epsilon_d \tag{0.97}$$

The initial state $(\hat{n}_{q\beta} = \hat{n}_{d\overline{\beta}} = 1, \hat{n}_{d\beta} = 0)$ energy is

$$H_{0} = \epsilon_{d} = H_{1} + \epsilon_{q} + \frac{1}{2}J_{z}$$

$$\Delta_{9}^{-}\mathcal{H}_{N} = \sum_{q\beta kk'} J_{t}^{2} c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k'\bar{\beta}} c_{d\bar{\beta}}^{\dagger} c_{d\bar{\beta}} c_{k\bar{\beta}}^{\dagger} c_{q\beta} \frac{1}{\omega^{-} - H_{1}}$$

$$= \sum_{q\beta kk'} J_{t}^{2} \hat{n}_{q\beta} c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{k'\bar{\beta}} c_{d\bar{\beta}}^{\dagger} c_{d\bar{\beta}}^{\dagger} c_{k\bar{\beta}}^{\dagger} \frac{1}{\omega^{-} - H_{1}}$$

$$= -\sum_{q\beta kk'} J_{t}^{2} \hat{n}_{q\beta} \hat{n}_{d\bar{\beta}} c_{d\beta} c_{k'\bar{\beta}} c_{d\beta}^{\dagger} c_{k\bar{\beta}}^{\dagger} \frac{1}{\omega^{-} - H_{1}}$$

$$= \sum_{q\beta kk'} J_{t}^{2} \hat{n}_{q\beta} \hat{n}_{d\bar{\beta}} (1 - \hat{n}_{d\beta}) c_{k'\bar{\beta}} c_{k\bar{\beta}}^{\dagger} \frac{1}{\omega^{-} - \epsilon_{q}^{-} - \frac{1}{2}J_{z}}$$

$$= -J_{t}^{2} \sum_{q\beta kk'} c_{k'\beta} \frac{\hat{n}_{d\beta} (1 - \hat{n}_{d\bar{\beta}})}{\omega^{-} - \epsilon_{q}^{-} - \frac{1}{2}J_{z}} + J_{t}^{2} \sum_{d\beta} \frac{\hat{n}_{d\bar{\beta}} (1 - \hat{n}_{d\beta})}{\omega^{-} - \epsilon_{q}^{-} - \frac{1}{2}J_{z}}$$

$$= -J_{t}^{2} \sum_{d\beta kk'} c_{k'\beta} \frac{\hat{n}_{d\beta} (1 - \hat{n}_{d\bar{\beta}})}{\omega^{-} - \epsilon_{q}^{-} - \frac{1}{2}J_{z}} + J_{t}^{2} \sum_{d\beta} \frac{\hat{n}_{d\bar{\beta}} (1 - \hat{n}_{d\beta})}{\omega^{-} - \epsilon_{q}^{-} - \frac{1}{2}J_{z}}$$

1.3 Scaling equations

$$\begin{split} \Delta \epsilon_d &= \sum_q \left[\frac{|V_q^0|^2}{\omega^+ - \epsilon_q + \epsilon_d} + \frac{|V_q^1|^2}{\omega^- - \epsilon_q + \epsilon_d + U} - \frac{2|V_q^0|^2}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2}J_z} \right. \\ &\quad + \sum_{qk} \left(\frac{J_t^2 + \frac{1}{4}J_z^2}{\omega^- - \epsilon_q - \frac{1}{2}J_z} + \frac{\frac{1}{4}J_z^2}{\omega - \epsilon_q + \frac{1}{2}J_z} \right) \right] \\ \Delta U &= \sum_q 2 \left[\frac{|V_q^1|^2}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2}J_z} - \frac{|V_q^0|^2}{\omega^+ - \epsilon_q + \epsilon_d} + \frac{|V_q^0|^2}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2}J_z} \right. \\ &\quad - \frac{|V_q^1|^2}{\omega^- - \epsilon_q + \epsilon_d + U} - 2 \sum_{qk} \left(\frac{J_t^2 + \frac{1}{4}J_z^2}{\omega^- - \epsilon_q - \frac{1}{2}J_z} + \frac{\frac{1}{4}J_z^2}{\omega - \epsilon_q + \frac{1}{2}J_z} \right) \right] \\ \Delta V_1 &= - \sum_q V_1(q) \left(\frac{\frac{1}{2}J_z + J_t}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2}J_z} \right) \\ \Delta V_1^* &= - \sum_q V_1^*(q) \left(\frac{\frac{1}{2}J_z + J_t}{\omega^+ - \epsilon_q + \frac{1}{2}J_z} \right) \\ \Delta V_0 &= - \sum_q V_0(q) \frac{\frac{1}{2}J_z + J_t}{\omega^- - \epsilon_q - \frac{1}{2}J_z} \\ \Delta V_0^* &= - \sum_q V_0(q)^* \frac{\frac{1}{2}J_z + J_t}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2}J_z} \\ \Delta J_z &= - J_t^2 \sum_q \left(\frac{1}{\omega^+ - \epsilon_q + \frac{1}{2}J_z} + \frac{1}{\omega^- - \epsilon_q - \frac{1}{2}J_z} \right) \\ \Delta J_t &= - J_z J_t \sum_q \left(\frac{1}{\omega^+ - \epsilon_q + \frac{1}{2}J_z} + \frac{1}{\omega^- - \epsilon_q - \frac{1}{2}J_z} \right) \end{split}$$

1.4 SU(2) invariance and Kondo model one-loop form

Setting $J_z = J_t = \frac{1}{2}J$ makes the interaction SU(2) symmetric; the last two RG equations can then be written in the common form:

$$2\Delta J_z = 2\Delta J_t = \Delta J = -\frac{1}{2}J^2 \sum_{q} \left(\frac{1}{\omega^+ - \epsilon_q + \frac{1}{4}J} + \frac{1}{\omega^- - \epsilon_q - \frac{1}{4}J} \right)$$
(0.100)

If we now consider low energy excitations $(\omega^{\pm} - \epsilon_q \approx -\epsilon_q)$ and expand the denominator in powers of J and keep only the lowest order, we get

$$\Delta J = -\frac{1}{2}J^2 \sum_{q} \frac{2}{-\epsilon_q} \tag{0.101}$$

For an isotropic dispersion, we can use $\epsilon_q = D$, where D is the current(running) bandwidth. The sum can then be evaluated as

$$\sum_{q} = \rho(D)\Delta D \tag{0.102}$$

where $\rho(D)$ is the single-spin density of states at the energy D and $|\Delta D|$ is the thickness of the band that we disentangled at this step. The flow equation of J becomes

$$\Delta J = J^2 \rho(D) \frac{|\Delta D|}{D} \tag{0.103}$$

This is the familiar one-loop Kondo flow equation obtained from Poor man's scaling. To get the continuum version, we must note that since we are decreasing the bandwidth, we have to set $\Delta D = -|\Delta D|$. Therefore,

$$\frac{\mathrm{d}J}{\mathrm{d}\ln D} = -J^2 \rho(D) \tag{0.104}$$

1.5 Particle-hole symmetry of impurity levels and Anderson model one-loop form

The terms of order J^2 in $\Delta \epsilon_d$ and ΔU already satisfy $\Delta \epsilon_d + \frac{1}{2}\Delta U = 0$. They are not relevant to the one-loop form either, because the lowest order is J. So we can ignore those terms in this discussion. The RG equation for the asymmetry factor $(\epsilon_d + \frac{1}{2}U)$ becomes (after making some obvious cancellations)

$$\Delta \epsilon_d + \frac{1}{2} \Delta U = \sum_q \left[-\frac{|V_q^0|^2}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2} J_z} + \frac{|V_q^1|^2}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2} J_z} \right]$$
(0.105)

For a particle-hole symmetric model, we have $\omega^+ = \omega^- = \omega$ and $|V_q^0|^2 = |V_q^1|^2 = |V_q|^2$. Also, in the URG formalism, the hole contribution comes with an additional minus sign on the excited energy, so we need to invert that sign to compare the particle and hole terms. This involves, for the first term, taking $\epsilon_d \to -\epsilon_d$ and $J_z \to -J_z$. These give

$$\Delta \epsilon_d + \frac{1}{2} \Delta U = \sum_q |V_q|^2 \left[-\frac{1}{\omega - \epsilon_q - \epsilon_d + \frac{1}{2} J_z} + \frac{1}{\omega - \epsilon_q + \epsilon_d + U + \frac{1}{2} J_z} \right]$$
(0.106)

We can now use the particle-hole symmetry condition $\epsilon_d + U = -\epsilon_d$ to see that the two terms cancel and we get $\Delta \epsilon_d + \frac{1}{2}\Delta U = 0$.

In the limit of ϵ_d , $J \gg D \gg U$, the equation for ϵ_d becomes

$$\Delta \epsilon_d = -\sum_q \frac{|V_q|^2}{\omega - \epsilon_q} \tag{0.107}$$

Under the same assumptions as previously, we get

$$\Delta \epsilon_d = \frac{|V|^2}{D} \rho(D) |\Delta D|$$
$$\frac{\mathrm{d}\epsilon_d}{\mathrm{d}\ln D} + \frac{\Delta}{\pi} = 0$$

1.6 Hermiticity

The equations in consideration are those of ΔV_1 and ΔV_1^* . The superscript 1 signifies that $d\overline{\beta}$ is filled. For the moment, we label the ω^+ in ΔV_1^* as ω^{+*} - the quantum fluctuation energy for the process $\hat{n}_{d\overline{\beta}}c_{d\beta}^{\dagger}c_k$ - to distinguish it from the ω^+ that characterizes the process $\hat{n}_{d\overline{\beta}}c_k^{\dagger}c_{d\beta}$. In other words, ω^+ is the fluctuation energy scale for the singly-occupied state, while ω^{+*} is the fluctuation energy scale for the doubly-occupied state. The difference between the two scales is $\epsilon_d + U$, so we can write $\omega^{+*} = \omega^+ + \epsilon_d + U$. Assuming $V_1 = V_1^*$ in the bare model, the two RG equations now becomes

$$\Delta V_1 = -\sum_{q} V_1(q) \left(\frac{\frac{1}{2} J_z + J_t}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2} J_z} \right) = \Delta V_1^*$$
 (0.108)

Similarly, if we take the RG equations for ΔV_0 and ΔV_0^* , the two quantum fluctuation scales ω^- and ω^{-*} correspond to those of the singly-occupied and empty states respectively. Since the difference between these states is ϵ_d , we can write $\omega^- - \omega^{-*} = \epsilon_d$.

$$\Delta V_0^* = -\sum_q V_0(q) \frac{\frac{1}{2}J_z + J_t}{\omega^- - \epsilon_q - \epsilon_d + \epsilon_d - \frac{1}{2}J_z} = \Delta V_0$$
 (0.109)

1.7 Scaling equations that satisfy all checks (with appropriate shifts and sign changes)

$$\Delta \epsilon_d = \sum_{q} \left[\frac{|V_q^0|^2}{\omega - \epsilon_q + \epsilon_d} + \frac{|V_q^1|^2}{\omega - \epsilon_q - \epsilon_d - U} - \frac{2|V_q^0|^2}{\omega - \epsilon_q - \epsilon_d + \frac{1}{2}J_z} \right.$$

$$+ \sum_{k} \left(\frac{J_t^2 + \frac{1}{4}J_z^2}{\omega - \epsilon_q + \frac{1}{2}J_z} + \frac{\frac{1}{4}J_z^2}{\omega - \epsilon_q - \frac{1}{2}J_z} \right) \right]$$

$$\Delta U = \sum_{q} 2 \left[\frac{|V_q^1|^2}{\omega - \epsilon_q + \epsilon_d + U + \frac{1}{2}J_z} - \frac{|V_q^0|^2}{\omega - \epsilon_q + \epsilon_d} + \frac{|V_q^0|^2}{\omega - \epsilon_q - \epsilon_d + \frac{1}{2}J_z} \right.$$

$$- \frac{|V_q^1|^2}{\omega - \epsilon_q - \epsilon_d - U} - 2 \sum_{k} \left(\frac{J_t^2 + \frac{1}{4}J_z^2}{\omega - \epsilon_q + \frac{1}{2}J_z} + \frac{\frac{1}{4}J_z^2}{\omega - \epsilon_q - \frac{1}{2}J_z} \right) \right]$$

$$\Delta V_1 = -\sum_q V_1(q) \left(\frac{\frac{1}{2}J_z + J_t}{\omega - \epsilon_q + \epsilon_d + U + \frac{1}{2}J_z} \right)$$

$$\Delta V_0 = -\sum_q V_0(q) \frac{\frac{1}{2}J_z + J_t}{\omega - \epsilon_q + \frac{1}{2}J_z}$$

$$\Delta J_z = -J_t^2 \sum_q \left(\frac{1}{\omega - \epsilon_q + \frac{1}{2}J_z} + \frac{1}{\omega - \epsilon_q - \frac{1}{2}J_z} \right)$$

$$\Delta J_t = -J_z J_t \sum_q \left(\frac{1}{\omega - \epsilon_q + \frac{1}{2}J_z} + \frac{1}{\omega - \epsilon_q - \frac{1}{2}J_z} \right)$$