- Queueing system is characterised by
 - 1.Inter-arrival probability density function
 - 2. Service time probability density function
 - 3. Number of servers
 - 4. The queueing discipline
 - 5. Amount of buffer space in the gueue
- A/B/m queue: A is the inter-arrival probability density function

B is the service time probanility density

m is the number of servers

A & B can be M: Exponential (Markovian system)

> D: All inputs have same known values for inter-arrival & service times (Deterministic)

G: General, i.e. arbitrary probability distribution

■ We will concentrate on the most widely used one – M/M/1 queue

Assumptions: Infinite number of entities (frames, packets, messages

Probability of entity/ message arrival within a time interval is

dependent only on this time interval

Input entities, i.e. packets, messages, etc., are independent of

each other

Assuming exponential probability density for inter-arrival time is valid under above assumptions

☐ Simple queuing theory – an introduction

Poisson's distribution: (Poisson's law)

For mean arrival rate of λ (1/ λ is the mean inter-arrival time) probability $P_n(t)$ of exactly n messages arriving in an interval t is given by

$$P_n(t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

Exponential inter-arrival time

Probability a(t)Δt that inter-arrival time is between t & t+Δt is actually (probability of no arrivals for a time t) x (probability of exactly one arrival in time interval Δt) Thus a(t)∆t is given by

$$a(t)\Delta t = P_0(t)P_1(\Delta t) = (e^{-\lambda t})(\lambda \Delta t e^{-\lambda \Delta t})$$

As
$$\Delta t \to 0$$
 we get $\Delta t \to 0$, $e^{-\lambda \Delta t} \to 1$, so $\lim_{\Delta t \to 0} a(t) \Delta t = \lambda e^{-\lambda t} dt$

Exponential service time

Following similar reasoning it can be asserted that for mean service rate of $\boldsymbol{\mu}$ (mean time to finish servicing a single message is1/µ), probability to finish servicing a message within a time interval Δt is μΔt and service time probability density is also exponential, given by

$$\mu e^{-\mu t} dt$$

- State of a M/M/1queue
 - Completely defined by state no. k when there are k messages in the system,
 i.e., k-1 in the queue & 1 in the server. Remaining service time of the one in server is not relevant as exponential density function has no memory
 - P_k: Equilibrium probability that there are exactly messages in the system (k-1 & k)

At equilibrium this is invariant with time

- Queue state transition: Arrival of new message moves system in state 'i' to state 'i+1'
 - Departure of a processed message causes a system in state 'i' to move to state 'i-1', i-1 ≥ 0
- Markov's Birth & Death model
 - Key assumptions: 1.Mean no. transitions from state k to k+1 must be the same as transitions from state k+1 to state k (for some k) to maintain equilibrium
 - 2. Average arrival rate is λ packets/ unit time
 - 3. Average service rate is μ packets/ per unit time
 - 4.At equilibrium λ must have the same value as μ P_k is the probabilty of a system at equilibrium being in state k when there is an arrival or a departure

☐ Simple queuing theory – an introduction

■ The Markov Chain

- Out of λ packets arriving/ unit time, λP_k of them will do so when system is in state k & each will trigger a state transition from k to k+1
- Of μ serviced packets leaving/ unit time μP_k of them will find system in state k
 & each will cause a transition from state k to k-1 (k= 0,1,..., k)
- At equilibrium transitions from state k to k+1 must be equal to k+1 \rightarrow k state transitions over a period of time

■ The Markov Chain

At equilibrium

$$\lambda P_0 = \mu P_1 \text{ or } P_1 = \left(\frac{\lambda}{\mu}\right) P_0$$

$$\lambda P_1 = \mu P_2 \text{ or } P_2 = \left(\frac{\lambda}{\mu}\right) P_1 = (\lambda/\mu)^2 P_0$$

$$\lambda P_2 = \mu P_3 \text{ or } P_3 = \left(\frac{\lambda}{\mu}\right) P_2 = (\lambda/\mu)^3 P_0$$

$$\lambda P_{k-1} = \mu P_k \text{ or } P_k = \left(\frac{\lambda}{\mu}\right) P_{k-1} = (\lambda/\mu)^k P_0$$

☐ Simple queuing theory – an introduction

■ The Markov Chain

At equilibrium

$$\binom{\lambda}{\mu}$$
 is $\frac{\text{average arrival rate}}{\text{average service rate}} = \rho \text{ (say) } \leq 1$

Also sum of probabilities

$$\sum_{k=0}^{\infty} P_{K} = 1 \text{ or } \sum_{k=0}^{\infty} (\lambda/\mu)^{k} P_{0} = \sum_{k=0}^{\infty} \rho^{k} P_{0} = 1$$

- □ Simple queuing theory an introduction
- The Markov Chain

We know (G.P. series) $\sum_{k=0}^{\infty} \rho^k - \frac{1}{1-\rho}$

So
$$\frac{P_0}{1-\rho} = 1$$
 or $P_0 = (1-\rho)$

Rewriting $\rho = (1 - P_0)$ which is the probability that the system is not idle

$$P_k = \rho^k P_0 = \rho^k (1 - \rho)$$

 $P_k = \, \rho^k P_0 = \, \rho^k (1-\rho)$ Mean number of packets in the system is given by

$$N = \sum_{k=0} k P_K = (1-\rho) \sum_{k=0} k \rho^k$$

- □ Simple queuing theory an introduction
- The Markov Chain

$$N = \sum_{k=0} k P_K = (1-\rho) \sum_{k=0} k \rho^k$$

This eqn., can be solved by differentiating $\sum_{k=0}^{k=0} \rho^k = \frac{1}{1-\rho}$ with respect to ρ

We get $\sum_{k=0}^{\infty} k
ho^{k-1} = rac{1}{(1ho)^2}$, multiplying both sides by ho we get

$$\sum_{k=0}^{\infty} k \rho^k = \frac{\rho}{(1-\rho)^2}$$

- ☐ Simple queuing theory an introduction
- The Markov Chain

Putting
$$\sum_{k=0}^{\infty} k \rho^k - \frac{\rho}{(1-\rho)^2}$$
 in $N = (1-\rho) \sum_{k=0}^{\infty} k \rho^k$ we get

$$N = \frac{(1-\rho)\rho}{(1-\rho)^2} = \frac{\rho}{(1-\rho)}$$
 which is intutively ok, as $\rho = \frac{\lambda}{\mu} \to 1$ queue length N

grows very rapidly

■ Delay/ waiting time (Little's law)

Let mean waiting time for all packets be T

A particular packet marked just as it enters the system

Number of packets arriving during the time the marked packet stays in the system is λT

- ☐ Simple queuing theory an introduction
- Little's law/ Theorem

Mean arrival rate is \(\lambda\) customers/sec Mean service rate is µ customers/sec

Number of packets in the system at the point of time when the marked packet leaves is $\lambda \mathsf{T}$

So mean number of packets in the system is given by

wheat number of packets in the system is given
$$N = \lambda T \text{ or } T = \frac{N}{\lambda} = \frac{\rho/\lambda}{(1-\rho)} = \frac{(\lambda/\mu)/\lambda}{1-(\lambda/\mu)}$$
$$= \frac{\frac{1}{\mu}}{\frac{1}{\mu}(\mu-\lambda)} = \frac{1}{\mu-\lambda}$$

So mean wait time $T = \frac{1}{\mu - \lambda}$

Little's law/ Theorem

Mean arrival rate is λ customers/sec

Mean service rate is u customers/sec

$$T = \frac{1}{\mu - \lambda}$$

λ: Meaningful to specify in packets/ messages per unit time/ second; transmitting station will never normally transmit fragment of a packet or message

μ: above expression for T assumes that μ is also expressed in packets/ messages, but packet/ message size varies from one system to another; usual way of specifying service rate is bits per unit time/ second

Assumptions: Packet size x exponentially distributed with density function $\mu e^{-\mu x}$ with mean of $1/\mu$ bits/packet Channel capacity is C bits/ sec, i.e., service rate is C/($1/\mu$) = C μ

Thus now wait time becomes $T = \frac{1}{\mu C - \lambda}$