PRÁCTICA DE RECURSIVIDAD

- 1. Describa el concepto de recursividad ¿Qué significan los niveles de recursividad?
- 2. Enumere brevemente las ventajas y desventajas de la recursividad.
- 3. Explique brevemente el concepto de los ambientes recursivos.
- 4. ¿Las soluciones iterativas son mejores que las soluciones recursivas para un mismo problema?
- 5. Si existen 2 funciones recursivas que resuelven un mismo problema, ¿bajo cuáles criterios se selecciona la mejor solución?
- 6. Construya una función recursiva que calcule el valor de la combinatoria de 2 números enteros.
- 7. Dado un arreglo A, **Array** A **of Integer** []={1,2,3,4,5,6,7,8,10,11,9,21} realice una función recursiva que determine el máximo número del arreglo, el mínimo número del arreglo, y los elementos impares.
- 8. Elabore una función recursiva la cual dado un arreglo de caracteres que forman una palabra retorne verdadero si ésta es capicúa. Ejemplos palabras capicúas: salas, oro, arepera.
- 9. Escriba un algoritmo recursivo que dado un número N halle el siguiente número palíndromo, un número palíndromo es un numero con las propiedades de una palabra capicúa, ejemplos: 1001, 0, 101. Si recibimos un número como por ejemplo 122, el siguiente número palíndromo es 131.
- 10. Escriba una función recursiva para calcular el máximo común divisor (m.c.d.) de dos números enteros dados aplicando las propiedades recurrentes.

Si
$$a > b$$
 entonces m.c.d. $(a,b) = m.c.d.(a-b,b)$

Si a
$$<$$
 b entonces m.c.d.(a,b) = m.c.d.(a,b-a)

Si
$$a = b$$
 entonces m.c.d. $(a,b) = m.c.d.(b,a) = a = b$

11. Escriba una función recursiva para calcular:

$$\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$$
 Asuma que recibe como parámetro el valor de n.

12. Escriba una función recursiva para calcular la potencia de un número real elevado a un entero positivo, partiendo de:

$$x^{0} = x$$

 $x^{n} = (x*x)^{n/2} \text{ si } n > 0 \text{ y es par}$
 $x^{n} = x*(x^{n-1}) \text{ si } n > 0 \text{ y es impar}$

- 13. Dado un arreglo de N números enteros, diseñar algoritmos recursivos que calculen:
- El mayor elemento del arreglo.
- La suma de los elementos del arreglo.
- La media de todos los elementos del arreglo.
- Verificar si el arreglo está ordenado.
- 14. Elabore un algoritmo recursivo el cual dado un arreglo de enteros ordenado en forma ascendente y sin elementos repetidos, haga una búsqueda binaria de un elemento E indicando si éste existe en el mismo.
- 15. Escribir un programa recursivo que ordene un arreglo de enteros por el método de Mezcla: se va dividiendo el arreglo sucesivamente en dos mitades y cuando la longitud de cada mitad sea 2 se comparan los elementos y se ordenan. Después de ordenadas las dos mitades, ambas se mezclan ordenadamente en un solo arreglo aprovechando el hecho de que las mitades ya están ordenadas.

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACIÓN ALGORITMOS Y ESTRUCTURAS DE DATOS

- 16. Escriba una función que invierta los dígitos de un número entero, empleando operaciones sobre números enteros. Ejemplo: 653 a 356.
- 17. Suponga que solo cuenta con un lenguaje cuyas operaciones aritméticas son +, -,/; diseñe una función recursiva la cual, dados dos reales A y B, retorne como resultado la evaluación de A * B.
- 18. Sabiendo que 0 es par, es decir,

$$EsPar(0) = true$$

$$EsImpar(0) = false$$

Y la paridad de cualquier otro entero positivo es la opuesta que la del entero anterior, desarrolle las funciones lógicas, mutuamente recursivas, *EsPar* y *EsImpar*, que se complementen a la hora de averiguar la paridad de un entero positivo.

- 19. Elabore un algoritmo recursivo que determine si un número es primo, ¿Cómo evitaría recorrer todo el rango de 2...N-
- 20. Elabore un algoritmo recursivo que determine si existe una suma **sucesiva** de números igual a K, por ejemplo tenemos el arreglo **Array** arr **of Integer** []= {1,2,3,4,5,6} y queremos saber si existe la suma **sucesiva** que de 9, en este caso existe pues es 4+5=9, si queremos la suma de 7, esta sería 3+4=7, pero si queremos la suma de 10, vemos que seria 1+2+3+4=10, aunque entonces si queremos el 8, es imposible, puesto que el 2 y el 6 no son sucesivos.

GDAYED/2014