Lab 3

Public Health 241: Statistical Analysis of Categorical Data YOUR NAME / YOUR STUDENT ID HERE TODAY'S DATE

In this lab, we'll cover the following topics:

- Homework 2, in R with the epiR and epitools packages
- How to carry out a χ^2 test and obtain a p-value

Many of these topics and code smippets will be useful for Homework 4.

1. Homework 2, Revisited

1.1 Problem 1.

You worked with this data in lab02, but let's briefly run through how to solve a problem like this in R. In order to recreate the table that appears on the assignment, we must learn how to create a data.frame, or a table.

Pay close attention to the following code:

```
population <- data.frame("disease"=c(140, 180), "no.disease"=c(60, 620))
population</pre>
```

```
## disease no.disease
## 1 140 60
## 2 180 620
```

Later in this lab, you will learn how to calculate all of these values (odds ratio, relative risk, etc.) through a statistical package called epiR, but for now, we can calculate these manually quite easily using dataframe access methods:

• The odds of disease among men:

```
prob.disease.given.man <- population$disease[1]/(population$disease[1]+population$no.disease[1])
prob.disease.given.man / (1 - prob.disease.given.man)</pre>
```

[1] 2.333333

and so on. Practice doing these calculations on the rest of problem 1 (b,c,d) and problem 2.

2. Cohort and Case-Control Studies using epi.2by2

From lecture, we have a foundational understanding of the difference between the cohort and case-control studies, which can be easily simulated in R using a function from the epiR package called epi.2by2. You should be aware of the limitations of each study design, as described in Chapter 5 of this course's textbook. Let's try this out now.

IMPORTANT: The data argument in both studies must be a table object in order for the function to run correctly. If you have a dataframe representation of your data, you must turn it into matrix then table. An example is shown below.

2.1 Cohort Study:

```
Generic: epi.2by2(data, method = "cohort.count", conf.level = 0.95, units = 100, homogeneity
= "breslow.day", outcome = "as.columns")
```

• Note that if you're dealing with a cohort study's data, the value given for Attributable Risk is bogus.

Example from Problem 1 Assignment 2:

* Outcomes per 100 population units

```
pop.matrix <- data.matrix(population)</pre>
pop.table <- as.table(pop.matrix)</pre>
pop.table
    disease no.disease
## A
        140
                   60
## B
        180
                  620
epi.2by2(pop.table, method = "cohort.count")
##
              Outcome +
                                        Total
                                                    Inc risk *
                          Outcome -
## Exposed +
                    140
                                 60
                                          200
                                                         70.0
                                                          22.5
## Exposed -
                    180
                                620
                                          800
## Total
                    320
                                680
                                         1000
                                                          32.0
##
                  Odds
## Exposed +
                 2.333
## Exposed -
                 0.290
## Total
                 0.471
##
## Point estimates and 95 % CIs:
## -----
## Inc risk ratio
                                            3.11 (2.66, 3.64)
                                            8.04 (5.69, 11.35)
## Odds ratio
## Attrib risk *
                                            47.50 (40.52, 54.48)
## Attrib risk in population *
                                            9.50 (5.41, 13.59)
## Attrib fraction in exposed (%)
                                            67.86 (62.38, 72.54)
## Attrib fraction in population (%)
                                            29.69 (23.98, 34.97)
## -----
  X2 test statistic: 165.901 p-value: < 0.001
## Wald confidence limits
```

2.2 Case-Control Study:

```
Generic: epi.2by2(data, method = "case.control", conf.level = 0.95, units = 100, homogeneity
= "breslow.day", outcome = "as.columns")
```

• Note that if you're dealing with a case-control study's data, the value given for Attributable Risk is an approximation that is only valid if your disease is rare (p. 50)

Another Example from Problem 1 Assignment 2:

```
pop.matrix <- data.matrix(population)</pre>
pop.table <- as.table(pop.matrix)</pre>
pop.table
     disease no.disease
## A
        140
        180
                   620
## B
epi.2by2(pop.table, method = "case.control") # Notice the difference from above?
               Outcome +
                            Outcome -
                                           Total
                                                        Prevalence *
## Exposed +
                     140
                                   60
                                             200
                                                                70.0
                     180
                                  620
                                             800
                                                                22.5
## Exposed -
## Total
                     320
                                  680
                                            1000
                                                                32.0
##
                   Odds
## Exposed +
                  2.333
## Exposed -
                  0.290
## Total
                  0.471
##
## Point estimates and 95 % CIs:
## -----
## Odds ratio (W)
                                               8.04 (5.69, 11.35)
## Attrib prevalence *
                                               47.50 (40.52, 54.48)
## Attrib prevalence in population \ast
                                               9.50 (5.41, 13.59)
## Attrib fraction (est) in exposed (%)
                                               87.52 (82.20, 91.34)
## Attrib fraction (est) in population (%) 38.31 (31.86, 44.14)
## X2 test statistic: 165.901 p-value: < 0.001
## Wald confidence limits
## * Outcomes per 100 population units
```

3. Chi-Squared Test from Function Calls

The output of both studies shows the chi-squared value near the bottom: 165.901 p-value: < 0.001, which is what we expect. Just to see a more reasonable example, let's pretend that we have a χ^2 test statistic of 7. and we wanted to calculate its corresponding p-valie. Another option (rather than running epi.2by2) for finding the p-value associated with a value in a χ^2 distribution is to type pchisq(). More specifically:

```
pchisq(7, df=1, lower.tail=FALSE)
```

[1] 0.008150972

The pchisq function expects the test statistic as its first entry, then a comma, then the degrees of freedom. If lower.tail=FALSE, then it gives us the probability to the left of the test statistic. If we need the right side, we can assign the argument to lower.tail=TRUE.

```
pchisq(7, df=1, lower.tail=TRUE)
```

[1] 0.991849

To lear more about the built-in statistical distributions and how to use them to get p-values, you can go to the documentation linked here: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Distributions.html