DSD: Dense-Sparse-Dense Training for Deep Neural Networks

Song Han¹, Jeff Pool², Sharan Narang³ Huizi Mao¹, Enhao Gong¹, Shijian Tang¹, Erich Elsen³, Peter Vajda⁴, Manohar Paluri⁴ John Tran², Bryan Catanzaro², William J. Dally^{1,2} ¹ Stanford University ² NVIDIA ³ Baidu ⁴ Facebook

Han et al "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR'17

Dense-Sparse-Dense Training

DSD produces same model architecture but can find better optimization solution, arrives at better local minima, and achieves higher prediction accuracy across a wide range of deep neural networks on CNNs / RNNs / LSTMs.

Han et al "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR'17

DSD: Motivation

- Deep model compression without losing accuracy means there's significant redundancy
- Which shows the inadequacy of current training methods.
- Dense-Sparse-Dense training provides a strong regularization to make current models converge at higher accuracy.

Intuition

Learn the trunk first

Then learn the leaves

Dense-Sparse-Dense Training Flow

1. Train a network.

(Or download one from the model zoo.)

2. Prune the network.

(Set the smallest 30%-50% parameters to be zero.)

3. Fine-tune the sparse network.

(Train with the sparsity mask, recover the accuracy.)

4. Remove the sparsity constraint.

(Throw away the sparsity mask.)

5. Fine-tune the dense network.

(Watch the accuracy increase even more.)

Algorithm

```
Algorithm 1: Workflow of DSD training
Initialization: W^{(0)} with W^{(0)} \sim N(0, \Sigma)
Output: W^{(t)}.
                                          — Initial Dense Phase —
while not converged do
    \tilde{W}^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});
  t = t + 1;
end
                                             ----- Sparse Phase ------
// initialize the mask by sorting and keeping the Top-k weights.
S = sort(|W^{(t-1)}|); \ \lambda = S_{k_i}; \ Mask = \mathbb{1}(|W^{(t-1)}| > \lambda);
while not converged do
    \tilde{W}^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});
   \tilde{W}^{(t)} = W^{(t)} \cdot Mask;

t = t + 1;
end
                                         ——- Final Dense Phase ——
 while not converged do
    \tilde{W}^{(t)} = W^{(t-1)} - \eta^{(t)} \nabla f(W^{(t-1)}; x^{(t-1)});
    t = t + 1:
goto Sparse Phase for iterative DSD;
```

Related Work

Dropout[1] and DropConnect[2]

- Dropout use a random sparsity pattern.
- DSD training learns with a *deterministic* data driven sparsity pattern.

Distillation [3]

- Transfer the knowledge from the large model to a small model.
- Both DSD and Distillation don't incur architectural changes.

• Simulated Annealing [4]

- Randomly jumps with decreasing probability on the search graph.
- DSD *deterministically* deviates from the converged solution by removing the *small* weights and enforcing a sparsity support.
- Both could be done iteratively.

^[1] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958.

^[2] Wan, Li, et al. "Regularization of neural networks using dropconnect." Proceedings of the 30th International Conference on Machine Learning (ICML-13). 2013.

^[3] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015).

^[4] Chii-Ruey Hwang. Simulated annealing: theory and applications. Acta Applicandae Mathematicae, 12(1): 108–111, 1988.

[Han et al. ICLR 2017]

DSD is General Purpose: CNN, RNN, LSTM

Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogleNet	Vision	ImageNet	CNN	31.1% →	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	31.5% →	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	30.4% →	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	24.0% →	23.2%	0.9%	3.5%

Open Sourced DSD Model Zoo: https://songhan.github.io/DSD

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

[Han et al. ICLR 2017]

DSD is General Purpose: CNN, RNN, LSTM

Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogleNet	Vision	ImageNet	CNN	31.1% →	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	31.5% →	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	30.4% →	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	24.0% →	23.2%	0.9%	3.5%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8 →	18.5	1.7	10.1%

Open Sourced DSD Model Zoo: https://songhan.github.io/DSD

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

[Han et al. ICLR 2017]

DSD is General Purpose: CNN, RNN, LSTM

Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogleNet	Vision	ImageNet	CNN	31.1% →	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	31.5% →	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	30.4% →	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	24.0% →	23.2%	0.9%	3.5%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8 →	18.5	1.7	10.1%
DeepSpeech	Speech	WSJ'93	RNN	33.6% →	31.6%	2.0%	5.8%
DeepSpeech-2	Speech	WSJ'93	RNN	14.5% →	13.4%	1.1%	7.4%

Open Sourced DSD Model Zoo: https://songhan.github.io/DSD

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

Multiple DSD Iterations

DeepSpeech2 Network	Baseline WER	DSD Iter 1 WER	DSD Iter 2 WER	Abs. Accuracy Improve	Rel. Error Reduction
WSJ '92	9.55 —	→ 9.11 -	→ 9.02	0.53	5.6%
WSJ '93	14.52 —	→ 13.96 —	→ 13.44	1.08	7.4%

- **XBaseline**: a boy in a red shirt is climbing a rock wall.
- **X**Sparse: a young girl is jumping off a tree.
- **DSD**: a young girl in a pink shirt is swinging on a swing.
- OBaseline: basketball player in a red uniform is playing with a ball.
- uniform is jumping field. over the goal.
- uniform is trying to grass. make a shot.

- a **√Baseline**: dogs are playing together in a field.
- \sqrt{DSD} : a basketball \sqrt{DSD} : two dogs are $\bigcirc DSD$: a man is sitting $\sqrt{}$ through a forest. player in a white playing in the on a bench with his

- two **X** Baseline: a man and **X** Baseline: a person in a woman are sitting on a bench.
 - with his hands in the air.

arms folded.

- Sparse: a basketball ✓ Sparse: two dogs Sparse: a man is ✓ Sparse: a car drives player in a blue are playing in a sitting on a bench through a mud puddle.

woods.

a red jacket is riding a

bike through the

DSD: a car drives

Table 7: DSD results on NeuralTalk

NeuralTalk	BLEU-1	BLEU-2	BLEU-3	BLEU-4	Sparsity
Baseline	57.2	38.6	25.4	16.8	0%
Sparse	58.4	39.7	26.3	17.5	80%
DSD	59.2	40.7	27.4	18.5	0%
Improvement (abs)	2.0	2.1	2.0	1.7	-
Improvement (rel)	3.5%	5.4%	7.9 %	10.1%	-

BLEU score baseline from Neural Talk model zoo by Andrej Karpathy

Baseline: a boy is swimming in a pool. **Sparse**: a small black dog is jumping into a pool.

DSD: a black and white dog is swimming in front of a building. in a pool.

Baseline: a group of people are standing in front of a building.

Sparse: a group of people are standing

DSD: a group of people are walking in a

Baseline: two girls in bathing suits are **Baseline**: a man in a red shirt and playing in the water.

sand.

DSD: two children are playing in the sand.

jeans is riding a bicycle down a street. Sparse: two children are playing in the Sparse: a man in a red shirt and a woman in a wheelchair.

DSD: a man and a woman are riding on a street.

Baseline: a group of people sit on a bench in front of a building.

Sparse: a group of people are standing in front of a building.

DSD: a group of people are standing in a fountain.

Baseline: a man in a black jacket and a black jacket is smiling.

in front of a mountain.

DSD: a man in a black jacket is standing next to a man in a black shirt.

Baseline: a group of football players in **Baseline**: a dog runs through the grass. red uniforms.

DSD: a group of football players in red and white uniforms.

Sparse: a dog runs through the grass. Sparse: a man and a woman are standing Sparse: a group of football players in a DSD: a white and brown dog is running through the grass.

- Baseline: a man in a red shirt is standing on a rock.
- Sparse: a man in a red jacket is standing on a mountaintop. **DSD**: a man is standing on a rock overlooking the mountains.

- **Baseline**: a group of people are sitting in **Baseline**: a man in a red jacket is a subway station.
- **XSparse**: a man and a woman are sitting on a couch.
- **DSD**: a group of people are sitting at a table in a room.

- standing in front of a white building. OSparse: a man in a black jacket is
- standing in front of a brick wall. **DSD**: a man in a black jacket is standing in front of a white building.

- **➤Baseline**:a young girl in a red dress is holding a camera.
- **Sparse**: a little girl in a pink dress is standing in front of a tree.
- **DSD**: a little girl in a red dress is holding a red and white flowers.

- Baseline: a soccer player in a red and white uniform is playing with a soccer ball.
- **✓Sparse**: two boys playing soccer. **DSD**: two boys playing soccer.

- **Baseline**: a girl in a white dress is standing on a sidewalk.
- **Sparse**: a girl in a pink shirt is standing in front of a white building. **DSD**: a girl in a pink dress is walking on a sidewalk.

- **Baseline**: a young girl in a swimming
- **XSparse**: a young boy in a swimming pool.
- **ODSD**: a girl in a pink bathing suit jumps into a pool.

- **Baseline**: a soccer player in a red and white uniform is running on the field.
- Sparse: a soccer player in a red uniform is tackling another player in a white uniform.

DSD: a soccer player in a red uniform kicks a soccer ball.

XBaseline: a man in a red shirt is sitting in a subway station.

- Sparse: a woman in a blue shirt is standing in front of a store.
- ODSD: a man in a black shirt is standing in front of a restaurant.

Baseline: a surfer is riding a wave. **Sparse**: a man in a black wetsuit is surfing on a wave.

DSD: a man in a black wetsuit is surfing a wave.

<u>Baseline</u>: two young girls are posing for a picture.

Sparse: a young girl with a blue shirt is blowing bubbles.

DSD: a young boy and a woman smile for the camera.

<u>xBaseline</u>: a snowboarder flies through the air.

Sparse: a person is snowboarding down a snowy hill.

<u>DSD</u>: a person on a snowboard is jumping over a snowy hill.

Baseline: a man in a red shirt is standing on top of a rock.

- Sparse: a man in a red shirt is standing on a cliff overlooking the mountains.
- **DSD**: a man is standing on a rock overlooking the mountains.

<u>Baseline</u>: a group of people sit on a bench.

- **Sparse**: a group of people are sitting on a bench.
- <u>DSD</u>: a group of children are sitting on a bench.

<u>Baseline</u>: a little boy is playing with a toy.

Sparse: a little boy in a blue shirt is playing with bubbles.

DSD: a baby in a blue shirt is playing with a toy.

<u>Baseline</u>: a brown dog is running through the grassy.

Sparse: a brown dog is playing with a ball.

 $\sqrt{\underline{\mathbf{DSD}}}$: a brown dog is playing with a

OBaseline: a boy in a red shirt is jumping on a trampoline.

- O**Sparse**: a boy in a red shirt is jumping in the air.
- $\underbrace{\mathbf{D}\mathbf{S}\hat{\mathbf{D}}}_{\mathbf{O}}$: a boy in a red shirt is jumping off a swing.

<u>xBaseline</u>: a man is standing on the edge of a cliff.

- Sparse: a man is standing on the shore of a lake.
- **DSD**: a man is standing on the shore of the ocean.

<u>xBaseline</u>: two people are riding a boat on the beach.

- Sparse: two people are riding a wave on a beach.
- **DSD**: a man in a yellow kayak is riding a wave.

<u>Baseline</u>: a black and white dog is running on the beach.

- Sparse: a black and white dog running on the beach.
- **<u>DSD</u>**: a black dog is running on the beach.

Baseline: a man and a dog are playing with a ball.

- **Sparse**: a man and a woman are playing tug of war.
- **<u>DSD</u>**: a man and a woman are playing with a dog.

Baseline: a group of people are standing in a room.

Sparse: a group of people gather together.

DSD: a group of people are posing for a picture.

<u>Baseline</u>: a man in a red jacket is riding a bike through the woods.
<u>Sparse</u>: a man in a red jacket is doing a jump on a snowboard.
<u>DSD</u>: a person on a dirt bike jumps over a hill.

Baseline: a man in a red jacket and a helmet is standing in the snow.

Sparse: a man in a red jacket and a helmet is standing in the snow.

DSD: a man in a red jacket is standing in front of a snowy mountain.

Hypothesis: Sparsity Pattern Encode Knowledge

Random sparsity

Worse accuracy

Truncation-based sparsity

Better accuracy

Why DSD Works

- DSD perturbs the learning dynamics and allows the network to jump away from saddle points.
- The sparsity constraint moves the optimization to a lowerdimensional space where the loss surface is smoother and tend to be more robust to noise.
- DSD gives the optimization a second (or more) chance during the training process to re-initialize
- DSD breaks symmetry

DSD in Practice

- There's only a single hyper parameter to tune, which is the sparsity.
- Empirical sparsity: 30%-50%
- Uniform sparsity for each layer except the first layer.
- No aggressive pruning needed:
- No iterative pruning needed.
- No need to determine threshold.
- The epochs are decided when it converges.

Open Sourced DSD Model Zoo: https://songhan.github.io/DSD

Conclusion

- We introduce DSD, a dense-sparse-dense training framework that regularizes neural networks by pruning and then restoring connections.
- DSD training achieves superior optimization performance. Our numerical results and empirical tests show the inadequacy of current training methods for which we have provided an effective solution.