

DL Deployment (Inference) Syllabus and Expectations

Oron Guterman

https://www.linkedin.com/in/oron-guterman-30352879/

- Since 2017: HPC programmer
 Working in the fields of High Performance Computing (HPC) with focus on classic algorithms and Deep Learning (DL) trained models deployment (inference) on Heterogeneous architectures
- 2011-2017: SW team leader
 Avionics upgrades Smart Displays and Mission Computers
 Graphic SW solutions for civilian & military avionics
- 2005-2011: SW engineer
 Graphics & Displays domain, HMD
- 2004-2005: Student of SW engineering
 Graphics & Displays domain, Helmet Mounted Display (HMD) team

מטרה

Pre trained model deployment skills & resources

- בכלל ובפרט HPC הגדרת תפקיד איש ✓ בעולם התוכן של DL בעולם התוכן
 - פרקטיקה יום יומית שלנו כאנשי ✓ HPC בצוות DL Deployment
 - ע מה היכולות והכישורים הנדרשים ✓
 - ✓ מה הם המשאבים הנדרשים לשם ✓ השגת יכולות וכישורים אלו
 - ע ממשקים ✓
 - אתגרים, מעצורים פוטנציאליים, דרכי ✓ התמודדות
 - ע חדשנות ✓

Project:

- Optimize & deploy pretrained model using TensorRT
- Filter image based on blur filter using Numba (Bonus)
- project-instructions.ipynb

Overview:

- SIGHT
- HPC
- Dleware

GPGPU & CUDA

- GPGPU_Intro
- CUDA-Basics
- Setup

CUDA (Numba Python based)

- numba-cuda-kernels.ipynb Part#1 (Overview)
- numba-introduction.ipynb
 - Exe#1 Device-Host performance comparison
 - Exe#2 Host memory and device memory
 - Exe#3 Vector addition fp32bits
- numba-cuda-kernels.ipynb Part#2 (Practice)
 - Exe#1 Device arrays
 - Exe#2 Histogram
 - Exe#3 –

 Convert colored input image to grayscale

 numba_cuda_kernels-focus-on-Multi-dimensional-grids.ipynb
- Convolution exercise

Deploy pre trained DL model (focus on CNN)

- C++:
 - VS (Cross platform)
 - Cmake
- Python PyCharm IDE based
- PyTorch Python\C++
 - https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
- Onnx (Focused on PyTorch)
 - Get started
 - https://github.com/onnx/onnx
 - https://onnx.ai/get-started.html
 - Deploy
 - https://onnx.ai/supported-tools.html#deployModel
 - https://github.com/onnx/tutorials#converting-to-onnx-format
 - https://github.com/onnx/optimizer
 - https://github.com/onnx/tutorials/blob/main/tutorials/PytorchOnnxExport.ipynb
 - onnx-model-convertion.ipynb Part#1

Deploy pre trained DL model (focus on CNN)

- TensorRT Pyhon\C++
 - NVIDIA_TensorRT
 - SDK
 - Overview
 - Samples (Python based)
 - onnx_resnet50.py
 - yolov3_onnx
 - yolov3_to_onnx.py
 - onnx_to_tensorrt.py
 - onnx_packnet (graph surgeon)
 - engine_refit_onnx_bidaf
 - Notebooks:
 - onnx-model-convertion.ipynb Part#2
 - Exe#1 exercise-tensorrt-onnx-conversion-solution.ipynb
 - OSS (Advanced)
 - Polygraphy
 - Trex
- OpenVINO (optional) C++

מתחילים!