Algorithmen und Datenstrukturen

Kapitel 4: Analyse von Algorithmen - Teil I

Prof. Ingrid Scholl
FH Aachen - FB 5
scholl@fh-aachen.de

21.04.2020

Analyse von Algorithmen

- 1. Wissenschaftliche Methode
- 2. Beobachtungen
- 3. Analyse der Messdaten
- 4. Mathematische Modelle
- 5. Wachstumsordnungen
- 6. Klassifikation der Wachstumsordnungen

Beispiele

Beispiele

Analyse von Algorithmen

Ziel: Umstrukturieren von komplexen Daten (Musik-, Foto-, Video-Bibliotheken, Big Data Visualization)

Gegeben: Algorithmus, der ein gegebenes Problem löst.

Fragen:

- 1. Wie lange benötigt mein Programm?
 - → Laufzeitanalyse
- Wann bzw. warum geht meinem Programm der Speicher aus?
 - → Speicherverbrauch messen

Analyse von Algorithmen

Wovon hängen Laufzeit und Speicherverbrauch ab?

- Eigenschaften des verwendeten Rechners
- von den zu verarbeiteten Daten
- vom verwendeten Algorithmus

Ziel: Suche eine wissenschaftliche Methode zur Bewertung der Kosten.

Wissenschaftliche Methode

- 1. Beobachten des Laufzeitverhaltens / Speicherverbrauchs durch Messungen.
- 2. Erstellen eines hypothetischen Modells, das möglichst mit den Beobachtungen überein stimmt.
- 3. Vorhersage des Verhaltens durch Anwendung des hypothetischen Modells.
- 4. Verifikation der Vorhersage durch weitere Messungen.
- 5. Wiederholung der Schritte 1-4 bis die Hypothese mit den Beobachtungen überein stimmt.

Wissenschaftliche Methode

Albert Einstein:

"Keine noch so große Zahl von Experimenten kann beweisen, dass ich recht habe. Aber es reicht ein einziges Experiment, um zu beweisen, dass ich unrecht habe."

- Wir können nie sicher sein, dass unsere Hypothese absolut korrekt ist.
- Man kann nur sagen, dass sie mit unseren Beobachtungen übereinstimmen.

Beobachtungen

- Programm-Laufzeiten quantitativ messen.
- Programm verarbeitet eine Problemgröße (z.Bsp. N Eingabedaten).
- Variiere die Problemgröße und messe die Laufzeiten.
- Beobachte das Laufzeitverhalten bei zunehmender Problemgröße.
- Stelle eine Hypothese auf und beobachte durch weitere Experimente, ob diese bestätigt werden kann.

Laufzeitmessung

Problemgröße ~ Komplexität der Programmieraufgabe

Problemgröße wird beeinflusst durch:

- Größe der Eingabedaten, z.Bsp. Anzahl N der zu sortierenden Daten
- Wert eines Eingabeparameters

Ziel

Quantifiziere die Beziehung zwischen Problemgröße und Laufzeit und approximiere diese durch eine Komplexitätsfunktion.

Messdaten zur Funktion count von ThreeSum.cpp:

Laufzeit-Messdaten

```
N T(N)
250 0.0
500 0.0
1000 0.1
2000 0.8
4000 6.4
8000 51.1
```

```
int count (vector<int> &a)
   // Zählt die Tripel, die sich zu 0
   // aufsummieren
   int N = (int) a.size();
   int cnt = 0;
   for (int i=0; i < N; i++)</pre>
      for (int j = i+1; j < N; j++)
         for (int k = j+1; k < N; k++)
            if (a[i]+a[i]+a[k] == 0) cnt++;
   return cnt;
```

Eingabedateien:

1Kints.txt, 2Kints.txt, 4Kints.txt, 8Kints.txt, ...

$$lg(T(N)) = 3lg(N) + lg(a)$$

$$= lg(N^3) + lg(a)$$

$$= lg(a \cdot N^3)$$

$$T(n) = a \cdot N^3$$

$$T(8000) = 51.5 = a \cdot 8000^3$$

 $\rightarrow a = 9.98 \cdot 10^{-11}$

Hypothese

$$T(N) = 9.98 \cdot 10^{-11} \cdot N^3$$

$$T(N) \sim a \cdot N^3$$

 $a = 9.98 \cdot 10^{-11}$

$$T(16000) = a \cdot 16000^3$$

= 409.8 sec
= 6.8 min

Reale Laufzeit für N=16000 waren 409.3 sec!

N	sec [C1]	sec [C2]
250	0.0	0.002
500	0.0	0.012
1000	0.1	0.093
2000	0.8	0.724
4000	6.4	5.720
8000	51.1	45.346

Beobachtung

Laufzeiten auf verschiedenen Rechnern unterscheiden sich nur durch einen konstanten Faktor!

Mathematische Modelle

Ziel: Genaue Vorhersage der Laufzeit eines Programmes. Gesamtausführungszeit wird bestimmt durch:

Hauptfaktoren für die Laufzeit

- Kosten für die Ausführung der einzelnen Anweisungen (Systemeigenschaften, Compiler, Betriebssystem)
- Häufigkeit der Ausführung der einzelnen Anweisungen (Programm selbst und Eingabe)

Mathematische Modelle

```
int count(vector<int> &a)
  // Zählt die Tripel, die sich zu 0
   // aufsummieren
  int N = (int) a.size();
   int cnt = 0;
   for(int i=0; i < N; i++)</pre>
      for (int j = i+1; j < N; j++)
         for (int k = j+1; k < N; k++)
            if (a[i]+a[j]+a[k] == 0) cnt++;
   return cnt;
```

$$T(N) = \sum_{i=0}^{N-1} \sum_{i=i-1}^{N-1} \sum_{k=i+1}^{N-1} 1$$

Mathematische Modelle

```
int count (vector<int> &a)
   // Zählt die Tripel, die sich zu 0
   // aufsummieren
   int N = (int) a.size();
   int cnt = 0:
   for(int i=0; i < N; i++)</pre>
      for (int j = i+1; j < N; j++)
         for (int k = j+1; k < N; k++)
            if (a[i]+a[i]+a[k] == 0) cnt++;
  return cnt;
```

Anzahl der Möglichkeiten, 3 verschiedene Zahlen aus dem Eingabearray zu wählen ist $\frac{N \cdot (N-1) \cdot (N-2)}{6}$

$$T(N) = \frac{N(N-1)(N-2)}{6} = \frac{N^3}{6} - \frac{N^2}{2} + \frac{N}{3}$$

N	T(N) (sec)	N ³ /6	$-N^2/6 + N/3$
250	0.0	$0.0003 \cdot 10^{10}$	$-0.0031 \cdot 10^7$
500	0.0	$0.0021 \cdot 10^{10}$	$-0.0125 \cdot 10^7$
1000	0.1	$0.0167 \cdot 10^{10}$	$-0.0500 \cdot 10^7$
2000	0.8	$0.1333 \cdot 10^{10}$	$-0.1999 \cdot 10^7$
4000	6.4	$1.0667 \cdot 10^{10}$	$-0.7999 \cdot 10^7$
8000	51.1	$8.5333 \cdot 10^{10}$	$-3.1997 \cdot 10^7$

Beobachtung

Leitterm (leading term) ist derjenige Term mit dem stärksten Wachstum. Der Leitterm bestimmt das stärkste Wachstum. Die anderen Terme hier sind dagegen eher unbedeutend.

$$T(N) = \frac{N(N-1)(N-2)}{6} = \frac{N^3}{6} - \frac{N^2}{2} + \frac{N}{3}$$

 $T(N) \sim \frac{N^3}{6}$

Definition (Tilde-Notation (Sedgewick))

Wir schreiben $\sim f(N)$ zur Repräsentation einer beliebigen Funktion, die sich, wenn sie durch f(N) geteilt wird, für zunehmende N dem Wert 1 nähert, und wir schreiben $g(N) \sim f(N)$ um anzuzeigen, dass

$$\lim_{N\to\infty}\frac{g(N)}{f(N)}=1$$

für zunehmende N dem Wert 1 nähert.

$$T(N) = \frac{N^3}{6} - \frac{N^2}{2} + \frac{N}{3}; T(N) \sim \frac{N^3}{6}$$

Typische Tilde-Approximationen

Funktion	Tilde- Approximation	Wachstums- Ordnung
$\frac{N^3}{6} - \frac{N^2}{2} + \frac{N}{3}$	$\sim \frac{N^3}{6}$	N ³
$\frac{N^2}{2} - \frac{N}{3}$	$\sim \frac{N^2}{2}$	N^2
IgN+1	~ IgN	IgN
3	~3	1

Wachstumsordnungen

Wachstumsordn	ungen
Beschreibung	Funktion
konstant	1
logarithmisch	log N
linear	N
überlinear	N log N
quadratisch	N^2
kubisch	N^3
polynomial	N^k
exponentiell	$2^{N}, k^{N}$

Analyse mit Tilde-Approximation

```
int count(vector<int> &a) {
A:    int N = (int) a.size();
A:    int cnt = 0;
A:    for(int i=0; i < N; i++)
B:    for(int j = i+1; j < N; j++)
C:        for (int k = j+1; k < N; k++)
D:        if (a[i]+a[j]+a[k] == 0) cnt++;
    return cnt;
}</pre>
```

Block	Häufigkeit	Tilde-Approximation
Α	1	~ 1
В	N	~ N
С	$N^2/2 + N/2$	$\sim N^2/2$
D	$N^3/6 - N^2/2 + N/3$	$\sim N^3/6$

Nützliche Approximationen für die Algorithmen analyse Approximationen Approximationen

Approximationen	
Beschreibung	Approximation
Harmonische Reihe	$H_N = 1 + 1/2 + 1/3 + + 1/N$ ~ $log_e N$
Dreieckszahlen	$1 + 2 + 3 + + N = N \cdot (N+1)/2$ $\sim N^2/2$
Geometrische Reihe	1+2+4+8++N=2N-1 ~ 2N mit $N=2^n$
Stirlingformel	$log_2(N!) = log_2(1) + log_2(2) + + log_2(N)$ $\sim N \cdot log_2(N)$

Zusammenfassung häufigste Hypothesen zugsten Wachstumsfunktionen ***Trail Bei **Trail Bei **Tra

Hypothesen zu Wachstumsfunktionen - Teil I					
Beschrei- bung	Wachs- tums- ordnung	Typischer Coderahmen	Beschrei- bung	Bei- spiel	
Konstant	1	a = b + c	Anweisung	Addiert 2 Zahlen	1
Logarith- misch	logN	siehe Listing	Halbieren	Binäre Suche	
Linear	N	double max = a[0]; for (int i=1; i <n; i++)<br="">if (a[i] > max) max = a[i];</n;>	Schleife	Maxi- mum ermittelr	า

pothese	n zu Wach	stumsfunktionen - Teil	II	
Beschrei- bung	Wachs- tums- ordnung	ktionen ktionen stumsfunktionen - Teil Typischer Coderahmen	Beschrei- bung	Bei- spiel
Leicht überlinear	N·logN	Bsp. Merge Sort	Teile und Herrsche	Merge Sort
Quadra- tisch	N ²	for (int i=1; i <n; i++)<br="">for (int j=i+1; j<n; j++)<br="">if (a[i] + a[j] == 0) cnt++;</n;></n;>	Doppelte Schleife	Prüft alle Paare
Kubisch	N ³	for (int i=1; i <n; i++)<br="">for (int j=i+1; j<n; j++)<br="">for (int k=j+1; k<n; k++)<br="">if (a[i] + a[j] + a[k] == 0) cnt++;</n;></n;></n;>	Drei- fache Schleife	Prüft alle Tripel

Wacrist	ınsıun			iesen		
Hypothese	Hypothesen zu Wachstumsfunktionen - Teil III					
Beschrei- bung	Wachs- tums- ordnung	Typischer Coderahmen	Beschrei- bung	Bei- spiel	FH AACHEN UNIVERSITY OF APPLIED	
Exponen- tiell	2 ^N	Bsp. Backtracking Globale Optimumsuche	Ausgiebige Suche	Prüft alle Teil- mengen	2	

Analyse von Algorithmen

- 1. Wissenschaftliche Methode
- 2. Beobachtungen
- 3. Analyse der Messdaten
- 4. Mathematische Modelle
- 5. Wachstumsordnungen
- 6. Klassifikation der Wachstumsordnungen

Vielen Dank!

www.fh-aachen.de

Prof. Ingrid Scholl
FH Aachen
Fachbereich für Elektrotechnik und Informationstechnik
Graphische Datenverarbeitung und Grundlagen der Informatik
MASKOR Institut
Eupener Straße 70
52066 Aachen
T +49 (0)241 6009-52177
F +49 (0)241 6009-52190
scholl@fh-aachen.de