【附录】

Origin 在大学物理实验中的应用

认识Origin

由于高级图表绘制和数据分析能力是科学家和工程师必需掌握的,而Origin是当今世界上最著名的科技绘图和数据处理软件之一,与其它科技绘图及数据处理软件相比,Origin在科技绘图及数据处理方面能满足大部分科技工作者的需要,并且容易掌握,兼容性好,因此成为科技工作者的首选科技绘图及数据处理软件.

目前,在全球有数以万计的公司、大学和研究机构使用OriginLab公司的软件产品进行 科技绘图和数据处理.

打开Origin,在菜单View > Toolbars中可以看到许多选项,勾中后可以看到在菜单区出现很多图标,这显示了Origin丰富的操作功能. 当然,如果浏览一下各个菜单,可以发现更多的功能.

图1 工具栏显示

1. 输入数据

我们以光敏电阻实验中的《光敏电阻在一定照度下的伏安特性》为例,说明 Origin 的作图方法,需要说明的是 Origin 的作图功能十分强大,我们在这里介绍的只是最基本的部分. 我们采用的版本是 Origin7. 5. Origin6. 0 的操作在有些方面与 7. 5 相差较大,所以我们建议使用 7. 5 的版本.

打开 Origin 后,在下方出现几个窗口,类似资源管理器的作用. 双击"Data1"打开数据表,然后可以输入您作图用的数据. 如果先要对直接测量值进行计算,我们强烈建议使用 Excel 进行数据计算,因为 Excel 的计算功能比 Origin 强大,更因为 Excel 是一个世界通用

的表格计算软件,了解和使用它非常必要. 但在科学作图时用 Origin 要方便得多,所以应该把两者结合起来. 实际上 Origin 本身就有与 Excel 链接的功能,但在中文操作系统中有时会出现问题,所以还是分别打开为好.

我们可用 copy/paste 命令在 Excel/Origin 之间传递数据. 可在 Excel 中选中要粘贴的数据,直接粘贴到 Origin 的数据表中,粘贴的方法与在 Excel 中的操作一致.

从实验中得到的数据如表 1, 粘贴好的画面如图 2 所示. 如数据列不够多,可单击增加列的图标,见图 2. 为了方便同学们练习,我们把这张数据表放在了网上,是 Excel 形式的. 这样同学们就不必费神敲击键盘了. 网址: pec. sjtu. edu. cn >实验预习系统>基本物理实验>Origin 使用教程. 数据表名称是【Origin 作图-光敏电阻的伏安特性】.

<i>U</i> (V)	$I_{\rm ph} \ ({ m mA})$ $lpha = 0^{\circ}$	$I_{\rm ph} ({\rm mA})$ $\alpha = 30^{\circ}$	$I_{\rm ph} \ ({\rm mA})$ $\alpha = 60^{\circ}$	$I_{\rm ph} \ ({\rm mA})$ $\alpha = 90^{\circ}$
2	1. 496	1. 269	0. 699	0. 022
4	3. 003	2. 540	1. 400	0. 045
6	4. 528	3. 835	2. 114	0. 069
8	6. 072	5. 146	2. 827	0. 093
10	7. 644	6. 467	3. 555	0. 117
12	9. 130	7. 809	4. 290	0. 143
14	10. 846	9. 274	5. 027	0. 168
16	12. 528	10. 680	5. 782	0. 193
18	14. 214	12. 179	6. 550	0. 218
20	15. 730	13. 280	7. 178	0. 273

表 1 光敏电阻在一定照度下的伏安特性

图 2 粘贴到 Origin 数据表中的数据

2. 快速作图

用鼠标选中要绘图的数据,在本例中为第 3 行到第 12 行的 A-E 列. 然后再在左下角的图标中选择图的形式,一般我们选<Line+Symbol>的形式,如图 3 所示.

用鼠标点击该图标后 Origin 就转到绘图窗口,给出一张曲线图. 如图 4 所示. 显然,这张图还需要编辑.

这张图可分为 5 个部分,都可以用鼠标进行操作.用左单击选择目标,用左双击可对选择的目标进行具体的操作.而右单击则可进入常用操

图 3 选择作图的图形

作的选择菜单.下面我们就围绕着这张图来完成我们的作业.我们按图中的标注编号的顺序分别操作.

图 4 初步绘制的曲线图

2.1 对坐标轴名称的操作①

左击〈YAxis Title〉,这时出现一个框套住要操作的区域,表示选中.左双击则进入这个框内,可直接在内部输入文字.如果是右击,则出现一个菜单.我们选择〈Properties...〉可进入一个文本控制对话框,如图5所示.在这里,可完成对文本的各种操作.

我们在此窗口输入"电流/mA",并 把字体设置为"Times New Roman",字的 尺寸设置为 22. 这样我们就完成了对 Y

图 5 文本控制对话框

坐标轴名的操作. 对 X 坐标轴名也同样处理. 同理, 对文字的操作都可用这个对话框完成.

2.2 对图例的操作②

对准字母左击或左按拖动鼠标套住图例,这时图例框四周出现 8 个方形小黑块,表示整个图例可以移动。我们把它拖到左上方,对准字母双击可进入直接编辑,或右击再选择〈Properties...〉进入一个文本控制对话框,则出现与坐标轴名称操作类似的画面。其后的操作也是一样的。我们在这里分别把 B-E 改为 0°、30°、60°、90°,见图 6 中左上方。

图 6 对坐标轴进行编辑

对准某个图标双击可出现一个绘图参数编辑对话框〈 Plot Details〉. 在这里可对绘图特性进行各种参数的设定. 这里分三个级别,第一个是整个绘图板参数<Graph>设定,第二个是图层参数<Layer>的设定,第三个是数据参数<Data>的设定.前面两个一般不用改变.第三个可以修改线型、标记的形状、大小以及相互关系,使得图形更符合自己的要求. 同学们可以进入这里练习一下. 注意,这些参数只是与显示有关.

对准某个图标右击和在整个制图框(X-Y 坐标轴套住的区域)内右击的效果是一样的. 也会有一个菜单出现,其中也有绘图编辑对话框〈 Plot Details 〉.

2.3 对坐标轴的操作③

对准 Y 坐标(或对 Y 坐标轴),这时出现一个有关 Y 坐标(或 Y 坐标轴)参数编辑的对话框,如图 6 所示.在图 6 中标出了对话框的各部分作用.因为可编辑的参数较多,我们只选与物理实验作图有关的介绍,同学们可在此基础上进一步操作.注意,有关坐标的所有操作可以在这里一次完成.

<Tick Labels>: 此栏是对坐标文字特性的编辑. 我们需要编辑的参数在右半

边.【Display】为选择数的表示方法,如科学记数法,工程记数法等.【Divide by】是把坐标除以某个数.再下面 3 个操作分别是小数点后要显示的位数设置、坐标的前缀、坐标的后缀.只要试着把数值或文字(可以是中文)输入后再按右下方的"应用"按钮立即可以看到结果.这是不是非常的灵活呢?

< Scale >: 此栏是对坐标轴特性的编辑.一般需要编辑的参数是范围【From】【To】, 坐标轴刻度形式【Type】,主标尺增量【Increment】,次主标尺增量【Minor】等.其他可由 Origin 自动设定.在本例图中可看到,因为 90°的数据较小,所以曲线几乎贴到 X 轴上.而 0°最大值小于 16. 所以我们可以把 Y 轴的范围定-1 到 16. 另外还有 < Title & Format >、
Grid Lines >等设置,也可以试一下.

在坐标轴对话框的左侧 Selection 栏中选中"Bottom",这时对话框的标题就会变为 "X Axis". 这说明,当前的操作转到对 X 轴了,我们同样按我们的要求进行设置就可以了.

这样,一张图就初步完成了.我们还可以在上面加上说明.比如图名、班级、作者等.只要点击图标<T>,在适当位置输入文字即可.文字编辑的方法与对坐标轴名称操作的方法是一样的.做好后选中"说明"和"图例",用"左对齐"功能键使两图左对齐.如图 7 所示.最后的结果见图 8.

2. 4 对曲线的的操作④

对曲线的的操作与②类似,就不另 外叙述了.

2.5 绘图层特性的编辑⑤

在这里的操作比较重要,前面我们是在数据表中把数据选中后再选择图例,然后生成了一张图.那种方法虽然快捷,但却不灵活.如果我们已经初步绘好了一张图,现在要增加/删除一条曲线呢?或者要对数据重新选择 X-Y 轴呢?这时我们就要进入绘图层特性编辑的菜单中了.这里有两个菜单选项是在修改绘图时比较常用的选项,一个是< plot setup ... >, 这个功能可以用来加入、删除曲线,修改、编辑已存在的曲线与数据表中数据的依存关系,也可以设置线形.如图9所示.另一个是< layer contents ... >.顾名思义,显然,它是用来在一张绘图层中加入/删除曲

光敏电阻伏安曲线 姓名: XXX 班级: XXXX 日期: 05-01-15

图 8 需要进一步修饰

线的.

图 9 绘图设置

3. 输出

我们可以把它输出成为某种格式的图形文件,以备其他程序调用. 打开【File】菜单,点击"Export Page .. ". 再在【保存类型】下拉菜单中选择图形格式. 对于"word"程序,我们最好选用对"word"程序的兼容性好"EMF"格式.

4. 进一步修饰

图 10 进一步修饰

拿我们图 8 与书中常见的插图形式比较,总会觉得差点什么. 对了,原来是右边和上边缺少了边框,可能还缺少若干标尺线. 这些都可以在对坐标轴的操作中搞定. 再次打开Y坐标轴编辑对话框,选中 < Title & Format > 栏如图 10 所示. 对主次标尺线选择"In",再选择轴的位置为"Top",在"Show Axis & Tick"方框中打钩,再次选主次标尺线为"In". 对 "Right"、"Bottom"也同样处理. 如果在图中要显示标尺线,可在 < Grid Lines > 栏中编辑. 最后效果如图 11 所示.

图 11 修饰后的效果

5. 显示两个相关的曲线

有时要在同一自变量中显示两条不同应变量的曲线,比如不同电压下光敏电阻的功率.这时必须在另一绘图层(layer)上作图,对于这一特性的理解是很重要的.在计算机

的绘图软件中,都毫无例外地应用了 这一概念,正是这一做法使得计算机 的"绘图"功能强大而又灵活。我们可 以把绘图层看成是一张张的透明纸, 操作就在这些透明纸上操作。这些层 面是可以迭在一起的。而我们正好是 在透视它们。

打开菜单【Tools】,选择"Layer", 在"Add"栏中选中加"右边轴".如图 12 所示.

这时可注意到图的左上角出现数字"2". 右击它, 选中< layer contents ...

图 12 新增绘图层

>. 在这里,我们给出的 Y 的数据是电压乘电流,即功率.这个计算可在数据表中右击数据栏选择"Set Colum Values..."操作.我们把相应的 4 条功率曲线选入 layer2 的图层中. 然后再进入< polt setup ... > 中编辑,如图 13 所示.完成后的结果如图 14 所示.

图 13 在新图层中加入数据

图 14 两种曲线在同一图表中

6. 数据的处理

Origin 里也带有数据处理的功能,也可以作统计,如线性回归、多项式拟合等. 简单的处理可由 Origin 完成,但一般这类工作在 Excel 中作较好. 在这里,我们以 $\alpha=30^\circ$ 和 60° 两条曲线为例作线性回归,请注意它们的区别.

右击图例中的图标或右击左上角的标号"1",选中要线性回归的数据,然后在菜单 【Analysis】中点击"Fit Linear". Origin 就会给出 α=30°的数据的线性回归,并给出了有关 统计结果. 注意到这根直线并没有过零. 这显然不对, 曲线应过零.

我们再选择 α = 60°的数据操作,这次我们在菜单【Tools】中点击"Linear Fit",这时跳出一个对话框,我们在"Throught Zero"方框中打钩. 再"Fit",结果请见图 15. 请同学们自行比较.

图 15 两种线形回归的结果

7. 屏蔽

在作拟合时,有时有些数据点不能计入在内,但我们又不能把它人为的去掉,比如在 非线性伏安特性测量中,我们要求曲线的直线部分的斜率,起始的弯曲部分不考虑. 这时 最好能把弯曲部分的数据点屏蔽掉. Origin 提供了这个功能,我们看看如何使用它.

图 16 非线性伏安曲线

图 16 是一个非线性元件的伏安曲线,我们要取其直线部分的数据作直线拟合.打开屏蔽工具条,要注意的是,<mask>工具条的按钮是状态开关键,按第一次表示进入"mask"操作状态,这是可以进行"mask"功能的操作,再按一次表示确认操作并退出.点击<mask rang>按钮,见图 17,这时曲线两个端点会出现一对相向竖直的箭头,这表明这时 mask 的范围是整条曲线,同时鼠标也变成了一个方框.改变范围的方法是用方框套住箭头,按下鼠标左键拖动到另一个数据点上,如图 18 所示.

图 17 屏蔽工具条

选定后,再点击<mask rang>按钮,这时可以看到被屏蔽的数据点改变颜色.之后就可以进行所需的操作了,如图 18 所示.要取消屏蔽,则要点击<unmask rang>,连续点击两次,就可以取消屏蔽.其他屏蔽功能的操作方法与此类似,比如屏蔽掉一个坏点等.

图 18 数据的屏蔽

8. 模板

费了不少工夫设置好的图的风格是否能够保存下来? Origin 带有模板保存的功能. 打开【File】菜单,选择"Save Template As...",设置好名称、位置等参数就可把作好的图作为模板存起来. 下次遇到类似的作图就直接可以引用了.

同学们在作图中一定会有不少精彩之作,欢迎大家上传到我们实验中心,我们将选出优秀之作展示给大家.同时欢迎大家把作图的心得体会,Origin 的应用技巧等上传到中心.我们整理后供大家参考.

上传的网址是: pec. sjtu. edu. cn> 学习交流>Origin.

图 19 对部分数据点进行线性回归