2023 级电气工程与自动化学院转专业试卷

试题来自回忆, 可能存在差错, 有一两道题没记

一、选择题

1. 若
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} &, x^2 + y^2 \neq 0 \\ 0 &, x^2 + y^2 = 0 \end{cases}$$
 , 则 ().

A. 连续且可微 B. 连续但不可微 C. 不连续 D. 无法判断

2. 已知
$$\sum_{n=1}^{\infty} a_n^2$$
 收敛, 则 $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{1+n^2}}$ ().

A. 条件收敛

B. 绝对收敛 C. 发散 D. 无法确定

3. 若
$$f(x)$$
 的一个原函数为 e^{-x^2} , 则 $\int x f(x) dx = ()$.

A.
$$(1+2x^2) e^{-x^2} + C$$

C.
$$(1-2x^2) e^{-x^2} + C$$

D.
$$-(1-2x^2)e^{-x^2}+C$$

4. 广义积分
$$\int_1^{+\infty} \frac{1}{x(x+1)} \mathrm{d}x$$
 与 $\int_0^1 \frac{1}{(x+1)x} \mathrm{d}x$ 的收敛情况分别为 ().

A. 收敛, 收敛 B. 收敛, 发散 C. 发散, 收敛 D. 发散, 发散

A.
$$1 - \cos x$$

B.
$$\frac{1}{2}x^2$$

A.
$$1 - \cos x$$
 B. $\frac{1}{2}x^2$ C. $\sqrt{x^2 + 1} - 1$ D. $x - \arctan x$

二、填空题

1.
$$\lim_{n \to \infty} \frac{n \arctan n}{n^2 + 1} = \underline{\hspace{1cm}}$$

2.
$$e^x(C_1\cos x + C_2\sin x)$$
 对应的二阶线性常微分方程为_____.

3.
$$x^2 - y + 1 = e^y$$
, $M \frac{d^2y}{dx^2} =$ ______.

4.
$$\int_0^{\pi/6} dy \int_y^{\pi/6} \frac{\cos x}{x} dx = \underline{\qquad}$$

5. 若
$$\Sigma : |x| + |y| + |z| = 1$$
, 则 $\iint_{\Sigma} (x + |y|) dS =$ _____.

三、解答题

1. 求极限
$$\lim_{x\to 0} \frac{\ln(1+x\cos x)}{\ln(x+\sqrt{1+x^2})}$$
.

- 2. 直线 L 过点 (1,0) 且与 $y=\sqrt{x-2}$ 相切, 求 L 与 $y=\sqrt{x-2}$ 和 x 轴围成图像绕 x 轴旋转所得旋转体的体积.
- 3. 求方程 $x \ln x dy + (y \ln x) dx = 0$ 满足 y(e) = 1 的特解.
- 4. f(u,v) 为二元可导函数, $z=f(\frac{x}{y},\frac{y}{x})$, 求 $x\frac{\partial z}{\partial x}-y\frac{\partial z}{\partial y}$. (可能记反了)
- 5. 曲面 $\Sigma : z = 1 x^2 y^2$ 方向取上侧, 求 $\iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 1) dx dy$.
- 6. $\vec{x} f(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{2n+1}.$
- 7. 求力 $\vec{F} = \frac{x+y}{4x^2+y^2} \vec{i} + \frac{4x-y}{4x^2+y^2} \vec{j}$ 沿曲线 $x^2+y^2=2$ 逆时针一圈作的功.
- 8. 证明: $(1+x)\ln^2(1+x) < x^2 \ (x>0)$.