Separating Computational and Statistical Differential Privacy in the Client-Server Model

Mark Bun Yi-Hsiu Chen Salil Vadhan

CS@Princeton SEAS@Harvard SEAS/CRCS@Harvard

November 2, 2016

Overview

- Differential Privacy (DP)
- Computational Differential Privacy (CDP)
- Previous Work & Main Contributions
- Sketch Result: Separation of CDP and DP
- Conclusion

Database: D				
Name	Age	Height	Smoke	
Alice	13	147	Υ	
Charlie	27	176	N	
:	:	:		
Eve	42	173	Υ	

Analyst

Database: D				
Name	Age	Height	Smoke	
Alice	13	147	Υ	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

Database: D				
Name	Age	Height	Smoke	
Alice	13	147	Υ	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

Analyst

Database: D				
Name	Age	Height	Smoke	
Alice	13	147	Υ	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

Analyst

Database: D'				
Name	Age	Height	Smoke	
Bob	15	168	N	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

Datab	base: D^\prime	,					
Name	Age	Height	Smoke				
Bob	15	168	N	\Leftrightarrow	Randomized	M(D)	Amalust
Charlie	27	176	N	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Mechanism		Analyst
:	:	:	:		M		
Eve	42	173	Υ	'		'	

distribution of $M(D) \approx$ distribution of M(D')

Database: D'				
Name	Age	Height	Smoke	
Bob	15	168	N	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

M is (ε, δ) -differentially private if $\forall \ D \sim D'$ and output set T,

$$\Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

[Dwork, McSherry, Nissim, Smith '06]

Database: D'				
Name	Age	Height	Smoke	
Bob	15	168	N	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

M is (ε, δ) -differentially private if $\forall D \sim D'$ and output set T,

$$\Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

[Dwork, McSherry, Nissim, Smith '06]

 $1 + \varepsilon$ (ε : small constant), (δ : negligible)

Database: D'				
Name	Age	Height	Smoke	
Bob	15	168	N	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

M is (ε, δ) -differentially private if $\forall D \sim D'$ and output set T,

$$\Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

[Dwork, McSherry, Nissim, Smith '06]

 $1 + \varepsilon$ (ε : small constant), (δ : negligible)

Example: Estimate how many people smoke (in D)

Database: D'				
Name	Age	Height	Smoke	
Bob	15	168	N	
Charlie	27	176	N	
:	:		:	
Eve	42	173	Υ	

$$\xrightarrow{M(D)}$$
 Analy

M is (ε, δ) -differentially private if $\forall D \sim D'$ and output set T.

$$\Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

[Dwork, McSherry, Nissim, Smith '06]

$$1+\varepsilon$$
 (ε : small constant), (δ : negligible)

Example: Estimate how many people smoke (in D)

$$M(D) = \text{true answer } + \text{Noise}(O(1/\varepsilon))$$

Database: D'				
Name	Age	Height	Smoke	
Bob	15	168	N	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Y	

Analyst

M is (ε, δ) -differentially private if $\forall \ D \sim D'$ and output set T,

$$\Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

[Dwork, McSherry, Nissim, Smith '06]

$$1+\varepsilon$$
 (ε : small constant), (δ : negligible)

Example: Estimate how many people smoke (in D)

$$M(D) = \mathsf{true} \ \mathsf{answer} \ + \mathsf{Noise}(O(1/\varepsilon))$$

Privacy vs. Utility

Differential Privacy Results

Algorithms:

- Histogram [DMNS06]
- Exponential Mechanism [MT07]
- Synthetic Data [BLR08]
- Private Multiplicative Weights [HR10]
- Boosting [DRV10]
- Private Learning [KLNRS08]
- Statistical Estimation [Smith10]
- Streaming [DNPR10, MMNW11]
- ..

Differential Privacy Results

Algorithms:

- Histogram [DMNS06]
- Exponential Mechanism [MT07]
- Synthetic Data [BLR08]
- Private Multiplicative Weights [HR10]
- Boosting [DRV10]
- Private Learning [KLNRS08]
- Statistical Estimation [Smith10]
- Streaming [DNPR10, MMNW11]
- .

Lower Bound Results:

- Reconstruction Attack [DN03]
- Geometric Argument [HT10]
- Synthetic Dataset [DNRRV09, UV11]
- Fingerprinting Codes [UII13, BUV14]
- Private Learning [BBKN10]
- Discrepancy Lower Bound [MN12]
- ..

Differential Privacy Results

Algorithms:

- Histogram [DMNS06]
- Exponential Mechanism [MT07]
- Synthetic Data [BLR08]
- Private Multiplicative Weights [HR10]
- Boosting [DRV10]
- Private Learning [KLNRS08]
- Statistical Estimation [Smith10]
- Streaming [DNPR10, MMNW11]
- ..

Lower Bound Results:

- Reconstruction Attack [DN03]
- Geometric Argument [HT10]
- Synthetic Dataset [DNRRV09, UV11]
- Fingerprinting Codes [UII13, BUV14]
- Private Learning [BBKN10]
- Discrepancy Lower Bound [MN12]
- ..

Q: Can we obtain improved algorithms by relaxing the definition?

 $\mathbf{Def}\ M\ \mathrm{is}\ (\varepsilon,\delta)\mathrm{-DP}\ \mathrm{if}\ \forall\ D\sim D'\mathrm{,}$

$$\forall T, \Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

 $\mathbf{Def}\ M\ \mathrm{is}\ (\varepsilon,\delta)\mathrm{-DP}\ \mathrm{if}\ \forall\ D\sim D'\mathrm{,}$

$$\forall T, \Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

111

$$\forall A , \Pr[A(M(D)) = 1] \le e^{\varepsilon} \Pr[A(M(D')) = 1] + \delta$$

Def M is (ε, δ) -DP if $\forall \ D \sim D'$,

$$\forall T, \Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

 $\forall A , \Pr[A(M(D)) = 1] \le e^{\varepsilon} \Pr[A(M(D')) = 1] + \delta$

Def M is ε -IND-CDP if $\forall D \sim D'$

 $\forall \ \mathrm{poly}$ -time $A, \ \Pr[A(M(D)) = 1] \leq e^{\varepsilon} \Pr[A(M(D')) = 1] + \mathrm{negl}$ [Mironov, Pandey, Reingold, Vadhan '09]

Def M is (ε, δ) -DP if $\forall D \sim D'$,

$$\forall T, \Pr[M(D) \in T] \leq e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

$$\forall A , \Pr[A(M(D)) = 1] \le e^{\varepsilon} \Pr[A(M(D')) = 1] + \delta$$

Def M is $\varepsilon\text{-IND-CDP}$ if \forall $D \sim D'$

$$\forall \text{ poly-time } A, \ \Pr[A(M(D)) = 1] \leq e^{\varepsilon} \Pr[A(M(D')) = 1] + \text{negl}$$

[Mironov Pandey Reingold Vadhan [Context of the proof of the

[Mironov, Pandey, Reingold, Vadhan '09]

Def M is ε -SIM-CDP if \exists $(\varepsilon, \text{negl})$ -DP M' s.t. \forall D

$$M(D) \stackrel{\mathrm{c}}{\approx} M'(D)$$

[Mironov, Pandey, Reingold, Vadhan '09]

Def M is (ε, δ) -DP if $\forall D \sim D'$,

$$\forall T, \Pr[M(D) \in T] \le e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

$$\forall A , \Pr[A(M(D)) = 1] \le e^{\varepsilon} \Pr[A(M(D')) = 1] + \delta$$

 $\{M_k\}_{k\in\mathbb{N}}$ is ε -IND-CDP if \forall $\{D_k\}_{k\in\mathbb{N}} \sim \{D'_k\}_{k\in\mathbb{N}}$

$$\forall \operatorname{poly}(k)$$
-time $A, \Pr[A(M_k(D_k)) = 1] \leq e^{\varepsilon} \Pr[A(M_k(D_k')) = 1] + \operatorname{negl}(k)$
[Mironov, Pandey, Reingold, Vadhan '09]

$$\{M_k\}_{k\in\mathbb{N}}$$
 is $\varepsilon\text{-SIM-CDP}$ if \exists $(\varepsilon, \operatorname{negl}(k))\text{-DP}$ $\{M_k'\}_{k\in\mathbb{N}}$ s.t. \forall $\{D_k\}_{k\in\mathbb{N}}$

$$\{M_k(D_k)\}_{k\in\mathbb{N}} \stackrel{\mathrm{c}}{\approx} \{M'_k(D_k)\}_{k\in\mathbb{N}}$$

Mironov, Pandey, Reingold, Vadhan '09]

Def M is (ε, δ) -DP if $\forall D \sim D'$,

$$\forall T, \Pr[M(D) \in T] \leq e^{\varepsilon} \Pr[M(D') \in T] + \delta$$

$$\forall A , \Pr[A(M(D)) = 1] \le e^{\varepsilon} \Pr[A(M(D')) = 1] + \delta$$

$$\{M_k\}_{k\in\mathbb{N}}$$
 is $\varepsilon\text{-IND-CDP}$ if $\forall\ \{D_k\}_{k\in\mathbb{N}}\sim\{D_k'\}_{k\in\mathbb{N}}$

$$\forall \operatorname{poly}(k)$$
-time $A, \Pr[A(M_k(D_k)) = 1] \le e^{\varepsilon} \Pr[A(M_k(D_k')) = 1] + \operatorname{negl}(k)$

Mironov, Pandey, Reingold, Vadhan '09

$$\{M_k\}_{k\in\mathbb{N}} \text{ is } \varepsilon\text{-SIM-CDP if } \exists \ (\varepsilon, \operatorname{negl}(k))\text{-DP } \{M_k'\}_{k\in\mathbb{N}} \text{ s.t. } \forall \ \{D_k\}_{k\in\mathbb{N}}$$

$$\{M_k(D_k)\}_{k\in\mathbb{N}} \stackrel{\mathrm{c}}{\approx} \{M'_k(D_k)\}_{k\in\mathbb{N}}$$

Mironov, Pandey, Reingold, Vadhan '09]

 $\mathsf{DP} \subseteq \mathsf{SIM}\text{-}\mathsf{CDP} \subseteq \mathsf{IND}\text{-}\mathsf{CDP}$

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

Goal Computing a joint function of private datasets.

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

Goal Computing a joint function of private datasets.

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

Goal Computing a joint function of private datasets.

Privacy [BNO08] Privacy of D_A should be maintained against Bob and D_B against Alice

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

Goal Computing a joint function of private datasets.

Privacy [BNO08] Privacy of D_A should be maintained against Bob and D_B against Alice

 $\mathsf{DP} \subsetneq \mathsf{SIM}\text{-}\mathsf{CDP}$ in the case of two or more parties.

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

Goal Computing a joint function of private datasets.

Privacy [BNO08] Privacy of D_A should be maintained against Bob and D_B against Alice

 $\mathsf{DP} \subsetneq \mathsf{SIM}\text{-}\mathsf{CDP}$ in the case of two or more parties.

2-party task Hamming distance

n-party task Sum of n bits

DP Error: $\Theta(\sqrt{n})$ [BNO08, MPRV09, MMPRTV10, CSS12]

CDP Error: O(1) (using MPC) [DKMMN06, BNO08]

Database: D				
Name	Age	Height	Smoke	
Alice	13	147	Υ	
Charlie	27	176	N	
:	:	:	:	
Eve	42	173	Υ	

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

[Groce, Katz, Yerukhimovich '11]

 $\mathsf{DP} \subseteq \mathsf{SIM}\text{-}\mathsf{CDP} \subseteq \mathsf{IND}\text{-}\mathsf{CDP}$

- Error = L_p norm on $\mathbb{R}^{O(1)}$ \Rightarrow can convert IND-CDP to DP with $1/\operatorname{poly}(k)$ additive increase in error.
- Cannot separate IND-CDP and DP with black-box 'generic' crypto primitives (e.g. OWF, TDP).

[Groce, Katz, Yerukhimovich '11]

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

- Error = L_p norm on $\mathbb{R}^{O(1)} \Rightarrow$ can convert IND-CDP to DP with $1/\operatorname{poly}(k)$ additive increase in error.
- Cannot separate IND-CDP and DP with black-box 'generic' crypto primitives (e.g. OWF, TDP).

Our Results

Thm1 (DP \neq SIM-CDP) Assume NIZKs for NP & sub-exponentially secure OWF.

Then \exists poly-time computable utility function U(D, M(D)) s.t.

- lacktriangledown eta poly-time SIM-CDP mechanism M^{CDP} s.t.
 - $\forall D, \Pr[U(D, M^{\text{CDP}}(D)) = 1] \ge 1 \text{negl}(k).$
- **2** \forall poly-time DP mechanism $M^{\mathrm{DP}}, \exists D$ s.t.

$$\Pr[U(D, M^{\mathrm{DP}}(D)) = 1] \le \operatorname{negl}(k).$$

[Groce, Katz, Yerukhimovich '11]

 $\mathsf{DP}\subseteq\mathsf{SIM}\text{-}\mathsf{CDP}\subseteq\mathsf{IND}\text{-}\mathsf{CDP}$

- Error = L_p norm on $\mathbb{R}^{O(1)} \Rightarrow$ can convert IND-CDP to DP with $1/\operatorname{poly}(k)$ additive increase in error.
- Cannot separate IND-CDP and DP with black-box 'generic' crypto primitives (e.g. OWF, TDP).

Our Results

Thm1 (DP \neq SIM-CDP) Assume NIZKs for NP & sub-exponentially secure OWF.

Then \exists poly-time computable utility function U(D, M(D)) s.t.

- **1** poly-time SIM-CDP mechanism M^{CDP} s.t. $\forall D, \Pr[U(D, M^{\text{CDP}}(D)) = 1] \geq 1 \operatorname{negl}(k)$.

Thm2 (Extension of [GKY11]) Error = metric with $O(\log k)$ doubling dimension \Rightarrow can convert IND-CDP to DP with O(1) multiplicative increase in error.

Proof Outline

- Tools
 - "Exponentially Extractable" Zaps [Dwork, Naor '07]. (Based on NIZK)
 - Sub-exponentially Strongly Unforgeable Digital Signature Scheme (Based on sub-exponentially secure OWF)

Proof Outline

- Tools
 - "Exponentially Extractable" Zaps [Dwork, Naor '07]. (Based on NIZK)
 - Sub-exponentially Strongly Unforgeable Digital Signature Scheme (Based on sub-exponentially secure OWF)
- Define Task: zap proof of existence of a signature.

Proof Outline

- Tools
 - "Exponentially Extractable" Zaps [Dwork, Naor '07]. (Based on NIZK)
 - Sub-exponentially Strongly Unforgeable Digital Signature Scheme (Based on sub-exponentially secure OWF)
- Define Task: zap proof of existence of a signature.
- Claims
 - \bullet \exists a (non-efficient) DP mechanism with high utility.
 - $exttt{2}$ \exists an efficient SIM-CDP with high utility. ($\stackrel{\circ}{\approx}$ to the DP mechanism)
 - No efficient DP mechanism with non-negligible utility (Otherwise break the signature scheme).

Zaps (2-message public coin witness indistinguishability)

 $L \in \mathbf{NP}$

witness relation: $(x, w) \in R_L$ security parameter: k

Zaps (2-message public coin witness indistinguishability)

 $L \in \mathbf{NP}$ witness relation: $(x, w) \in R_L$ security parameter: k

- Completeness
- Soundness
- Witness Indistinguishability (vs. adversarial V^*)

Zaps (2-message public coin witness indistinguishability)

 $L \in \mathbf{NP}$ witness relation: $(x,w) \in R_L$ security parameter: k

- Completeness
- Soundness
- Witness Indistinguishability (vs. adversarial V^*)
- Extractability: Algorithm E running in time $2^{O(k)}$ s.t. $\forall x$

$$(x, \rho, \pi) \longrightarrow \begin{bmatrix} \mathsf{Extractor} \\ E \end{bmatrix} \longrightarrow w = E(1^k, x, \rho, \pi)$$

The Task

- \bullet (Gen, Sign, Ver) : Sub-exponentially secure signature scheme.
- ullet $(P_{\mathrm{zap}}, V_{\mathrm{zap}}, E_{\mathrm{zap}})$: Exponentially extractable zap.

The Task

- ullet (Gen, Sign, Ver): Sub-exponentially secure signature scheme.
- $(P_{\text{zap}}, V_{\text{zap}}, E_{\text{zap}})$: Exponentially extractable zap.

The Task

- \bullet (Gen, Sign, Ver) : Sub-exponentially secure signature scheme.
- $(P_{\rm zap}, V_{\rm zap}, E_{\rm zap})$: Exponentially extractable zap.

- Utility: U(D, M(D)) = 0 or 1.
 - If > 90% rows are of the form $(\hat{vk}, \hat{\rho}, m_i, \sigma_i)$ where $\mathrm{Ver}_{\hat{vk}}(m_i, \sigma_i) = 1$, then output $V_{\mathrm{zap}}(\hat{vk}, \hat{\rho}, \pi)$.
 - Otherwise, output 1.

• There exists (inefficient) DP mechanism M^{unb} .

② There exists an efficient mechanism M^{CDP} .

No efficient DP mechanism achieves good utility.

- There exists (inefficient) DP mechanism M^{unb} .
 - Alg 1. Find the majority $(\hat{vk},\hat{\rho})$ pair in a differentially private way.
 - 2. Generate zap proof using the lexicographically first witness (m,σ) .
- ② There exists an efficient mechanism M^{CDP} .

No efficient DP mechanism achieves good utility.

- There exists (inefficient) DP mechanism M^{unb} .
 - Alg 1. Find the majority $(\hat{vk},\hat{\rho})$ pair in a differentially private way.
 - 2. Generate zap proof using the lexicographically first witness (m,σ) .
- ② There exists an efficient mechanism M^{CDP} .
 - Alg 1. Find the majority $(\hat{vk}, \hat{\rho})$ pair in a differentially private way.
 - 2. Generate zap proof using a witness from the dataset.
 - CDP $M^{\text{CDP}} \stackrel{\text{c}}{\approx} M^{\text{unb}}$ due to WI of zap.
- No efficient DP mechanism achieves good utility.

- There exists (inefficient) DP mechanism M^{unb} .
 - Alg 1. Find the majority $(\hat{vk},\hat{\rho})$ pair in a differentially private way.
 - 2. Generate zap proof using the lexicographically first witness (m, σ) .
- ② There exists an efficient mechanism M^{CDP} .
 - Alg 1. Find the majority $(\hat{vk}, \hat{\rho})$ pair in a differentially private way.
 - 2. Generate zap proof using a witness from the dataset.
 - CDP $M^{\text{CDP}} \stackrel{\text{c}}{\approx} M^{\text{unb}}$ due to WI of zap.
- No efficient DP mechanism achieves good utility.
 - Idea If there exists such an M, combine M and $2^{O(k_{\text{zap}})}$ -time zap extractor to construct a $2^{O(k_{\text{zap}})}$ -time forger for digital signature.
 - Violate Sub-exponential-security of digital signature. (complexity leveraging [CGGM00])

- DP ⊆ SIM-CDP ⊆ IND-CDP (in client-server model)
 Assuming sub-exponential OWF and NIZK, we construct a task s.t.
 - There exists an efficient SIM-CDP mechanism with good utility.
 - Every efficient DP mechanism only has negligible utility.

- DP \subseteq SIM-CDP \subseteq IND-CDP (in client-server model) Assuming sub-exponential OWF and NIZK, we construct a task s.t.
 - There exists an efficient SIM-CDP mechanism with good utility.
 - Every efficient DP mechanism only has negligible utility.
- In many natural cases (e.g. answering $O(\log n)$ counting queries), a CDP mechanism cannot do much better then DP mechanisms.

- DP \subseteq SIM-CDP \subseteq IND-CDP (in client-server model) Assuming sub-exponential OWF and NIZK, we construct a task s.t.
 - There exists an efficient SIM-CDP mechanism with good utility.
 - Every efficient DP mechanism only has negligible utility.
- In many natural cases (e.g. answering $O(\log n)$ counting queries), a CDP mechanism cannot do much better then DP mechanisms.

Open Problems:

- Natural separation of DP and SIM-CDP (e.g. poly-many counting queries)
- More cases where CDP mechanisms can be converted to DP mechanisms.

- DP ⊆ SIM-CDP ⊆ IND-CDP (in client-server model)
 Assuming sub-exponential OWF and NIZK, we construct a task s.t.
 - There exists an efficient SIM-CDP mechanism with good utility.
 - Every efficient DP mechanism only has negligible utility.
- In many natural cases (e.g. answering $O(\log n)$ counting queries), a CDP mechanism cannot do much better then DP mechanisms.

Open Problems:

- Natural separation of DP and SIM-CDP (e.g. poly-many counting queries)
- More cases where CDP mechanisms can be converted to DP mechanisms.
- A task that is solvable by an IND-CDP mechanism but impossible for DP (would imply SIM-CDP ≠ IND-CDP).

- DP \subseteq SIM-CDP \subseteq IND-CDP (in client-server model) Assuming sub-exponential OWF and NIZK, we construct a task s.t.
 - There exists an efficient SIM-CDP mechanism with good utility.
 - Every efficient DP mechanism only has negligible utility.
- In many natural cases (e.g. answering $O(\log n)$ counting queries), a CDP mechanism cannot do much better then DP mechanisms.

Open Problems:

- Natural separation of DP and SIM-CDP (e.g. poly-many counting queries)
- More cases where CDP mechanisms can be converted to DP mechanisms.
- A task that is solvable by an IND-CDP mechanism but impossible for DP (would imply SIM-CDP ≠ IND-CDP).

Thanks!