-- Amendments to the Claims --

Please amend claim 1 and 13; cancel claims 14-18; and add claims 19-27 as follows:

1. (Currently amended) A compound of Formula (1.0.0):

(1.0.0)

- wherein -

- -g is 0 or 1;
- -j is 0 or 1; provided that when j is 0, n must be 2;
- -k is 0 or 1
- -m is 0, 1, or 2;
- -n is 1 or 2;
- -W¹ is -O-; or -S(=O)_t-, where t is 0, 1, or 2; or -N(R³)- where R³ has the same meaning as defined below:
- -W² is -O-; -S(=O)_t-, where t is 0, 1, or 2; -N(R³)- where R³ has the same meaning as defined below, or -CR²⁹R³⁰-;

- where -

- --R²⁹ and R³⁰ are each a member independently selected from the group consisting of -H; -F; -CF₃; -(C₁-C₃) alkyl; -(C₃-C₆) cycloalkyl; phenyl; benzyl; and pyridyl; wherein said alkyl, cycloalkyl, phenyl, benzyl, and pyridyl moieties are each independently substituted with 0 to 3 substituents R¹⁰, where R¹⁰ has the same meaning as defined below;
- -Y is =C(R¹_a)—, where R¹_a has the same meaning as defined below; or -[N \Rightarrow (O)_k]— where k is 0 or 1;

-- R_a^1 is a member selected from the group consisting of -H; -F; -CI; -CN; -NO₂; - (C₁-C₄) alkyl; -(C₂-C₄) alkynyl; fluorinated-(C₁ -C₃) alkyl; fluorinated-(C₁ -C₃) alkoxy; -OR¹⁶; and -C(=O)NR²²_aR²²_b;

- where -

- ---R²²_a and R²²_b are each independently –H; –CH₃; –CH₂CH₃; –CH₂CH₂CH₃; -CH₂(CH₃)₂; –CH₂CH₂CH₂CH₃; –CH(CH₃)CH₂CH₃; –CH₂CH(CH₃)₂; –C(CH₃)₃; cyclopropyl; cyclobutyl; or cyclopentyl;
- -R^A and R^B are each a member independently selected from the group consisting of -H; -F; $-CF_3$; $-(C_1-C_4)$ alkyl; $-(C_3-C_7)$ cycloalkyl; phenyl; and benzyl; wherein said cycloalkyl, phenyl, and benzyl moieties are each independently substituted with 0 to 3 substituents R¹⁰;

- where -

-- R^{10} is a member selected from the group consisting of phenyl; pyridyl; -F; -Cl; -CF₃; oxo (=O); -OR¹⁶; -NO₂; -CN; -C(=O)OR¹⁶; -O-C(=O)R¹⁶; -C(=O)NR¹⁶R¹⁷; -O-C(=O)NR¹⁶R¹⁷; -NR¹⁶C(=O)R¹⁷; -NR¹⁶C(=O)OR¹⁷; -NR¹⁶S(=O)₂R¹⁷; and -S(=O)₂NR¹⁶R¹⁷; where said phenyl or pyridyl is substituted by 0 to 3 R¹¹;

- where -

$$R^{11}$$
 is $-F$; $-CI$; $-CF_3$; $-CN$; $-NO_2$; $-OH$; $-(C_1-C_3)$ alkoxy; $-(C_1-C_3)$ alkyl; or $-NR^{16}R^{17}$; — and —-

----R¹⁶ and R¹⁷ are each a member independently selected from the group consisting of –H; –(C₁-C₄) alkyl; –(C₂-C₄) alkenyl; –(C₃-C₆) cycloalkyl; phenyl; benzyl; and pyridyl; wherein said alkyl, alkenyl, cycloalkyl, phenyl, benzyl, or pyridyl is substituted by 0 to 3 substituents selected from the group consisting of –F, –Cl, –CF₃, –CN, and –(C₁-C₃) alkyl;

— or —

-R^A and R^B are taken together, but only in the case where m is 1, to form a spiro moiety of Formula (1.2.0):

$$\text{_{r}(H_{2}C)} \times \text{_{XA}} \text{(CH}_{2})_{s}$$

(1.2.0)

— where —

--r and s are independently 0 to 4 provided that the sum of r + s is at least 1 but not greater than 5;

--- and ---

-- X^A is selected from -CH₂-, -CH(R¹¹)-, or C(R¹¹)₂-, where each R¹¹ is selected independently of the other and each has the same meaning as defined above; -NR¹⁵-, where R¹⁵ has the same meaning as defined below; -O-; and -S(=O)_t-, where t is 0, 1, or 2;

— and —

said spiro moiety of partial Formula (1.2.0) is substituted as to any one or more carbon atoms thereof, other than that defining X^A, by 0 to 3 substituents R¹⁴, where R¹⁴ has the same meaning as defined below; as to a nitrogen atom thereof by 0 or 1 substituent R¹⁵, where R¹⁵ has the same meaning as defined below; and as to a sulfur atom thereof by 0 or 2 oxygen atoms;

- -R^C and R^D have the same meaning as defined above for R^A and R^B except that one of them must be –H, and they are selected independently of each other and of R^A and R^B;
- -R¹ and R² may individually or together appear on any ring or rings comprising a meaning of the moiety Q^2 as defined below; and R¹ and R² are each a member independently selected from the group consisting of -H; -F; -Cl; -CN; -NO₂; -(C₁-C₄) alkyl; -(C₂-C₄) alkynyl; fluorinated-(C₁-C₃) alkyl; -OR¹⁶; and -C(=O)NR²²_aR²²_b; where R¹⁶, R²²_a, and R²²_b have the same meanings as defined above;
- - R^3 is -H; -(C_1 - C_3) alkyl; phenyl; benzyl; or -O R^{16} , where R^{16} has the same meaning as defined above;
- -R⁴, R⁵ and R⁶ may individually or together appear on any ring or rings comprising a meaning of the moiety Q¹ as defined below; and R⁴, R⁵ and R⁶ are each a member independently selected from the group consisting of

- the following: -

 $-(a) \qquad \qquad -H; \ -F; \ -Cl; \ -(C_2-C_4) \ alkynyl; \ -R^{16}; \ -OR^{16}; \ -S(=O)_pR^{16}; \ -C(=O)R^{16}; \ -C(=O)OR^{16}; \ -NR^{22}_aC(=O)OR^{16}R^{17}; \ -NR^{22}_aC(=O)OR^{16}R^{17}; \ -NR^{22}_aC(=O)OR^{16}R^{17}; \ -OC(=NR^{22}_a)NR^{16}R^{17}; \ -OC(=NR^{22}_a)NR^{16}R^{17}; \ -OC(=NR^{22}_a)NR^{16}R^{17}; \ -OC(=NR^{22}_a)NR^{16}R^{17}; \ -OC(=NR^{22}_a)NR^{16}R^{17}; \ -OC(=NR^{22}_a)NR^{16}R^{17}; \ -NR^{22}_aC(=O)OR^{16}; \ -NR^{22}_aC(=O)_pR^{17}, \ -S(=O)_pNR^{16}R^{17}; \ and \ -CH_2C(=NR^{22}_a)NR^{16}R^{17}; \ -C(=O)OR^{16}; \ -NR^{22}_aC(=O)OR^{16}; \ -NR^{2$

- where -

--p is 0, 1, or 2; and R²²_a, R¹⁶, and R¹⁷ have the same meanings as defined above;

-(*C*₁-*C*₄) alkyl; and -(*C*₁-*C*₄) alkoxy in the case where one or more of R⁴, R⁵, or R⁶ has the meaning of -OR¹⁶ under (*a*) above and R¹⁶ is defined as -(*C*₁-*C*₄) alkyl; wherein said alkyl and alkoxy are each independently substituted with 0 to 3 substituents –F or –Cl; or 0 or 1 substituent (*C*₁-*C*₂) alkoxycarbonyl–; (*C*₁-*C*₂) alkylcarbonyl–; or (*C*₁-*C*₂) alkylcarbonyloxy–;

— and —

-(c) an aryl or heterocyclyl moiety selected from the group consisting of phenyl; benzyl; furanyl; tetrahydrofuranyl; oxetanyl; thienyl; tetrahydrothienyl; pyrrolyl; pyrrolidinyl; oxazolyl; oxazolidinyl; isoxazolyl; isoxazolyl; thiazolyl; thiazolyl; isothiazolyl; isothiazolyl; isothiazolyl; imidazolyl; imidazolyl; imidazolyl; pyridinyl; pyrazinyl; pyrimidinyl; pyridazinyl; piperidinyl; piperazinyl; triazolyl; triazinyl; tetrazolyl; pyranyl; azetidinyl; morpholinyl, parathiazinyl; indolyl; indolinyl; benzo[b]furanyl; 2,3-dihydrobenzofuranyl; 2-H-chromenyl; chromanyl; benzothienyl; 1-H-indazolyl; benzimidazolyl; benzoxazolyl; benzisoxazolyl; benzthiazolyl; quinolinyl; isoquinolinyl; phthalazinyl; quinazolinyl; quinoxalinyl; and purinyl; wherein said aryl and heterocyclyl moieties are each independently substituted with 0 to 2 substituents R¹⁴

- where -

--R¹⁴ is a member selected from the group consisting of $-(C_1-C_4)$ alkyl; $-(C_3-C_7)$ cycloalkyl; phenyl; benzyl; pyridyl; and quinolinyl; where said alkyl, cycloalkyl, phenyl, benzyl, pyridyl, or quinolinyl is substituted by 0, 1, or 2 substituents -F, -Cl, $-CH_3$, $-OR^{16}$, $-NO_2$, -CN, or $-NR^{16}R^{17}$; and said R^{14} group further consists of -F; -Cl; $-CF_3$; oxo (=O); $-OR^{16}$; $-NO_2$; -CN; $-C(=O)OR^{16}$; $-O-C(=O)R^{16}$; $-C(=O)NR^{16}R^{17}$; $-O-C(=O)NR^{16}R^{17}$; $-NR^{16}R^{17}$; $-NR^{16}C(=O)R^{17}$; $-NR^{16}C(=O)QR^{17}$; $-NR^{16}C(=O)QR^{17}$; or $-S(=O)_2NR^{16}R^{17}$; where $-R^{16}$ and $-R^{17}$ have the same meanings as defined above;

- and further where -

--- R^{15} is a member independently selected from the group consisting of -H; $-NR^{16}R^{17}$; $-C(=O)R^{16}$; $-C(=O)R^$

 $C(=O)NR^{16}R^{17}$; $-(C_1-C_4)$ alkyl; $-(C_2-C_4)$ alkenyl; $-(CH_2)_u-(C_3-C_7)$ cycloalkyl where u is 0, 1 or 2; phenyl; benzyl; pyridyl; and quinolinyl; wherein said alkyl, alkenyl, alkoxy, cycloalkyl, phenyl, benzyl, pyridyl or quinolinyl is substituted with 0 to 3 substituents R^{12} ; where R^{16} and R^{17} have the same meanings as defined above; and

-- where ---

---- R^{12} is a member independently selected from the group consisting of -F; -CI; $-CO_2R^{18}$; $-OR^{16}$; -CN; $-C(=O)NR^{18}R^{19}$; $-NR^{18}R^{19}$; $-NR^{18}C(=O)R^{19}$; $-NR^{18}C(=O)R^{$

- where -

----- R^{18} and R^{19} are independently selected from the group consisting of -H; -(C_1 - C_4) alkyl; and phenyl; where said alkyl or phenyl is substituted by 0-3 of -F; or -Cl;

— or in the case where Q1 is phenyl —

-(d) R⁵ and R⁶ are taken together to form a moiety which is a member selected from the group consisting of partial Formulas (1.3.1) through (1.3.15):

- --R²⁰ and R²¹ are each a member independently selected from the group consisting of -H; -F; -CI; -CH₃; -CH₂F; -CHF₂; -CF₃; -OCH₃; and -OCF₃;
- is a moiety comprising a saturated or unsaturated carbon ring system that is a 3-to 7-membered monocyclic, or that is a 7- to 12-membered, fused polycyclic; provided that Q^1 is not a discontinuous or restricted biaryl moiety as defined under Q^2 below; and wherein optionally one carbon atom of said carbon ring system may be replaced by a heteroatom selected from N, O, and S; where optionally a second carbon atom thereof, and further optionally a third carbon atom thereof may be replaced by N;

-- wherein --

said moiety defining Q^t is substituted on any ring or rings thereof by R⁴, R⁵ and R⁶, which have the same meaning as defined above;

- -Q² is a discontinuous or restricted biaryl moiety consisting of a saturated or unsaturated carbon ring system that is a 3- to 7-membered monocyclic, or that is a 7- to 12-membered, fused polycyclic; wherein optionally one carbon atom of said carbon ring system may be replaced by a heteroatom selected from N, O, and S; where optionally a second carbon atom thereof, and further optionally a third carbon atom thereof may be replaced by N;
- $-\mathbb{Z}$ is a member independently selected from the group consisting of

- the following -

-(a) the group consisting of partial Formulas (1.1.1) through (1.1.15):

- wherein -

where R¹⁶ and R¹⁷ have the same meanings as defined above; and R⁹ has the same meaning as defined below;

- --"*" indicates the point of attachment of each partial Formula (1.1.1) through (1.1.15) to the remaining portion of Formula (1.0.0);
- --q is 1, 2, or 3, provided that where q is 2 or 3, R⁹ has the meaning of –H in at least one instance, or two instances, respectively;
- --v 0 or 1;
- --W³ is -O—; $-N(R^9)$ —, where R^9 has the same meaning as defined below; or -OC(=O)—;
- $--R^{7}_{A}$ is a member independently selected from the group consisting of

- the following: -

- --(1) -H;
- $-(C_1-C_6)$ alkyl; $-(C_2-C_6)$ alkenyl; or $-(C_2-C_6)$ alkynyl; where said alkyl, alkenyl or alkynyl is substituted by 0 to 3 substituents R^{10} , where R^{10} has the same meaning as defined above;
- $-(G_3-C_7)$ cycloalkyl where u is 0, 1 or 2; and further where said (C_3-C_7) cycloalkyl is substituted by 0 to 3 substituents R^{10} where R^{10} has the same meaning as defined above;

- --(4) phenyl or benzyl, where said phenyl or benzyl is independently substituted by 0 to 3 substituents R¹⁰ where R¹⁰ has the same meaning as defined above;
- --R⁷_B is a member independently selected from the group consisting of

- the following: -

--(1) tetrazol-5-yl; 1,2,4-triazol-3-yl; 1,2,4-triazol-3-on-5-yl; 1,2,3-triazol-5-yl; imidazol-2-yl; imidazol-4-yl; imidazolidin-2-on-4-yl; 1,3,4-oxadiazolyl; 1,3,4-oxadiazol-2-on-5-yl; 1,2,4-oxadiazol-3-yl; 1,2,4-oxadiazol-5-yl; 1,2,4-oxadiazol-3-on-5-yl; 1,2,5-thiadiazolyl; 1,3,4-thiadiazolyl; morpholinyl; parathiazinyl; oxazolyl; isoxazolyl; thiazolyl; isothiazolyl; pyrrolyl; pyrazolyl; succinimidyl; glutarimidyl; pyrrolidonyl; 2-piperidonyl; 2-pyridonyl; 4-pyridonyl; pyridazin-3-onyl; pyridyl; pyrimidinyl; pyrazinyl; pyridazinyl;

— and —

--(2) indolyl; indolinyl; isoindolinyl; benzo[b]furanyl; 2,3-dihydrobenzofuranyl; 1,3-dihydroisobenzofuranyl; 2H-1-benzopyranyl; 2-H-chromenyl; chromanyl; benzothienyl; 1H-indazolyl; benzimidazolyl; benzoxazolyl; benzisoxazolyl; benzothiazolyl; benzotriazolyl; benzotriazinyl; phthalazinyl; 1,8-naphthyridinyl; quinolinyl; isoquinolinyl; quinazolinyl; quinoxalinyl; pyrazolo[3,4-d]pyrimidinyl; pyrimido[4,5-d]pyrimidinyl; imidazo[1,2-a]pyridinyl; pyridopyridinyl; pteridinyl; and 1H-purinyl;

-- where --

any moiety recited in (1) or (2) above is optionally substituted with respect to (i) any one or more carbon atoms thereof optionally by a substituent R^{14} where R^{14} has the same meaning as defined above; (ii) any one or more nitrogen atoms thereof that is not a point of attachment of said moiety, optionally by a substituent R^{15} where R^{15} has the same meaning as defined above, and all tautomer forms thereof; and (iii) any sulfur atom thereof that is not a point of attachment of said moiety, by 0, 1, or 2 oxygen atoms;

- --R⁹ is a member selected from the group consisting of -H; $-(C_1-C_4)$ alkyl; $-(C_3-C_7)$ cycloalkyl; phenyl; benzyl; pyridyl; $-C(=O)OR^{16}$; $-C(=O)R^{16}$; $-OR^{16}$; $-(C_1-C_2)$ alkyl- $-OR^{16}$; and $-(C_1-C_2)$ alkyl- $-OR^{16}$; where R¹⁶ has the same meaning as defined above;
- $-R^{7}_{C}$ is a member independently selected from the group consisting of the meanings of R^{7}_{A} and the meanings of R^{7}_{B} defined above;

- and further wherein -

(1.1.15)

--comprises a saturated or unsaturated, 4– to 8–membered monocyclic, or 5– to 10–membered fused or open bicyclic, carbocyclic ring system containing a nitrogen heteroatom as shown in partial Formula (1.1.15); wherein optionally from 1 to 3 carbon atoms of said carbocyclic ring system may be individually replaced by a nitrogen heteroatom; or optionally 1 carbon atom thereof may be replaced by an oxygen heteroatom or by a sulfur heteroatom; or optionally 2 carbon atoms thereof may be individually replaced by a nitrogen heteroatom and an oxygen heteroatom, or by a nitrogen heteroatom and a sulfur heteroatom;

- where -

any moiety of partial Formula (1.1.15) recited above is optionally substituted with respect to (1) any one or more carbon atoms thereof, by a substituent R¹⁴ where R¹⁴ has the same meaning as defined above; (2) any one or more nitrogen atoms thereof by a substituent R¹⁵ where R¹⁵ has the same meaning as defined above, and all tautomer forms, and optionally N-oxide forms thereof; or (3) any sulfur atom thereof by 0, 1, or 2 oxygen atoms;

— and Z is further selected from —

a moiety comprising a member selected from the group consisting of -(b)(phosphoric); -PH(=O)OH (phosphinic); -P(=O)(OH)₂ -O-P(=O)(OH)₂ (phosphonic); $-[P(=O)(OH)-O(C_1-C_4)$ alkyl] (alkylphosphono); $-P(=O)(OH)-O(C_1-C_4)$ alkyl) (alkylphosphinyl); --P(=0)(OH)NHR²⁵ (phosphoramido); -P(=O)(OH)NH(C₁-C₄) alkyl and $P(=O)(OH)NH_2$ (substituted phosphoramido); $-O-S(=O)_2OH$ (sulfuric); $-S(=O)_2OH$ (sulfonic); $-S(=O)_2NHR^{26}$ or -NHS(=O) $_2$ R 26 (sulfonamido) where R 26 is -CH $_3$, -CF $_3$, or o-toluyl; and acylsulfonamido selected $-C(=O)NHS(=O)_2R^{25};$ from group consisting -C(=O)NHS(=O)2NH2; $-C(=O)NHS(=O)_2(C_1-C_4)$ alkyl; $-C(=O)NHS(=O)_2NH(C_1-C_4)$ alkyl; $-C(=O)NHS(=O)_2N[(C_1-C_4) \text{ alkyl}]_2;$ $-S(=O)_2NHC(=O)(C_1-C_4) \text{ alkyl};$ $-S(=O)_2NHC(=O)NH_2;$ $-S(=O)_2NHC(=O)NH(C_1-C_4)$ alkyl; $-S(=O)_2NHC(=O)N[(C_1-C_4)$ alkyl]₂; $-S(=O)_2NHC(=O)R^{25}$; -S(=O)₂NHC(=S)NH₂; $-S(=O)_2NHCN$; $-S(=O)_2NHC(=S)NH(C_1-C_4)$ alkyl; $-S(=O)_2NHC(=S)N[(C_1-C_4) \ alkyl]_2; \ \ and \ \ -S(=O)_2NHS(=O)_2R^{25};$

- where -

-- R^{25} is -H; -(C_1 - C_4) alkyl; phenyl; or -O R^{18} , where R^{18} has the same meaning as defined above;

provided that when Q¹ is phenyl, R⁵ and R⁶ are taken together to form a moiety which is a member selected from the group consisting of partial Formulas (1.3.1), (1.3.2), (1.3.3) and (1.3.6),

a pharmaceutically acceptable salt thereof.

2. (Original) A compound according to Claim 1 wherein the group Q^2 comprises a member selected from the group consisting of the following moieties represented by partial Formulas (1.2.1) through (1.2.32):

wherein " * " is a symbol indicating the two points of attachment of said group Q^2 to the remaining components of Formula (1.0.0).

3. (Original) A compound according to Claim 1 wherein z comprises partial Formulas (1.1.4) and (1.1.10) through (1.1.14), and the meaning of R^7_B of partial Formula (1.1.4) where v is 0 or 1, or the meaning of R^7_C of partial Formulas (1.1.10) through (1.1.14) is defined as a member selected from the group consisting of partial Formulas (1.4.1) through (1.4.28):

where "*" indicates the point of attachment to the remaining portion of Formula (1.0.0); and where each carbon atom is optionally substituted by a substituent R¹⁴; and where R¹⁴ and R¹⁵ have the

same meaning as defined in Claim 1; and all tautomer forms, and optionally N-oxide forms, thereof.

4. (Original) A compound according to Claim 1 wherein z comprises partial Formulas (1.1.4) and (1.1.10) through (1.1.14) and the meanings of R^7_B and R^7_C in said partial Formulas are each independently a member selected from the group consisting of partial Formulas (1.5.1) through (1.5.29):

where "*" indicates the point of attachment to the remaining portion of Formula (1.0.0); and where each carbon atom is optionally substituted by a substituent R¹⁴; and where R¹⁴ and R¹⁵ have the same meaning as defined in Claim 1; and all tautomer forms, and optionally N-oxide forms, thereof.

5. (Original) A compound according to Claim 1 wherein Z comprises a member selected from the group consisting of partial Formulas (1.7.1) through (1.7.46):

- where "*" indicates the point of attachment to the remaining portion of Formula (1.0.0); where each carbon atom is optionally substituted by a substituent R¹⁴; and where each nitrogen atom is optionally substituted by a substituent R¹⁵; where R¹⁴ and R¹⁵ have the same meaning as defined in Claim 1; and all tautomer forms, and optionally N-oxide forms, thereof.
- A compound according to Claim 1 wherein Q' is phenyl or 6. (Original) pyridyl; $\diamond \diamond Q^2$ is biphenyl, 3-phenyl-pyridine, cyclohexyl-benzene, [2,2']bipyridinyl, bicyclohexyl, naphthalene, or biphenylene; $\diamond \diamond$ j is 1; $\diamond \diamond$ m is 0 or 1; $\diamond \diamond$ n is 1; $\diamond \diamond$ Z is a moiety selected from partial Formulas (1.1.1) through (1.1.3), (1.1.5), (1.1.6), and (1.1.10) through (1.1.14) where R⁷_A is (a) –H, or –CH₃ substituted by 0-3 R¹⁰ where R¹⁰ is –F; or is –CH₃ substituted by 0 or 1 R¹⁰ where R^{10} is -CN, $-OR^{16}$ where R^{16} is $-CH_3$ or $-CH_2CH_3$, or $-NR^{16}R^{17}$ or $-NR^{16}C(=0)R^{17}$ where R¹⁶ and R¹⁷ are –H or –CH₃; (b) cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; or (c) phenyl or benzyl substituted by 0-2 R¹⁰ where R¹⁰ is -F, -Cl, -CF₃, -CH₃, -CH₂OH, -SCH₃, -CN, -NO₂, - OR^{16} , or $-NR^{16}R^{17}$ where R^{16} and R^{17} are -H, $-CH_3$, or $-CH_2CH_3$; $\diamond \diamond R^9$ is -H or $-CH_3$; $\diamond \diamond W^1$ is -O-; $\diamond \diamond$ g is 1 and W² is -O- or -CR²⁹R³⁰- where R²⁹ and R³⁰ are both -H, or g is 0 and W² is thus absent; $\diamond \diamond$ Y is =C(R¹_a)—; $\diamond \diamond$ R¹_a is -H, or -F; $\diamond \diamond$ R^A and R^B are independently -H or -CH₃; or R^A and R^B are taken together to form a -(C₃-C₇) cycloalkyl-spiro moiety: ⋄⋄ one of R^C and R^D is -H and the other is -H or -CH₃; $\diamond \diamond R^1$ and R^2 are -H, -F, or -OCH₃; $\diamond \diamond R^3$ is -H or -CH₃; and ♦♦ R⁴, R⁵ and R⁶ are -H provided that R⁵ and R⁶ are not both -H at the same time, -F, -Cl, -OCH₃, -CN; -NO₂, or -C(=O)R³ or -C(=O)OR³ where R³ is -CH₃; or R⁵ and R⁶ are taken together to form a moiety of partial Formula (1.3.1), (1.3.2), (1.3.3), (1.3.4), (1.3.11), (1.3.12), or (1.3.15).
- 7. (Original) A compound according to Claim 6 wherein wherein Z is a moiety of partial Formulas (1.1.1), (1.1.3), (1.1.6) or (1.1.10); R^9 is -H; R^A and R^B are both -H; R^C and R^D are both -H; R^3 is -H; R^4 is -H; R^5 is -H, -F, -CI, -CN, $-OCH_3$, $-C(=O)CH_3$, or $-NO_2$; R^6 is -H, provided that R^5 and R^6 are not both -H at the same time, or -F; or R^5 and R^6 are taken together to form a moiety of partial Formula (1.3.1) or partial Formula (1.3.11) where R^{23} and R^{24} are both absent.
- 8. (Original) A compound according to Claim 1 wherein Q' is phenyl or pyridyl; $\diamond \diamond Q^2$ is biphenyl, 3-phenyl-pyridine, cyclohexyl-benzene, [2,2']bipyridinyl, bicyclohexyl, naphthalene, or biphenylene; j is 1; $\diamond \diamond$ m is 0 or 1; $\diamond \diamond$ n is 1; $\diamond \diamond$ Z is a moiety selected from partial Formulas (1.1.4) and (1.1.7) where R^7_B is tetrazol-5-yl, 1,2,4-triazol-3-yl, 1,2,4-oxadiazol-2-yl, imidazol-4-yl, 1,3,4-oxadiazolyl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl,

oxazolyl, isoxazolyl, pyrrolyl, pyrazolyl, succinimidyl, pyrrolidonyl, thiazolyl, isothiazolyl, 1,2,3-thiadiazolyl, 1,3,4-thiadiazolyl, pyridyl, pyrazinyl, furanyl, tetrahydrofuranyl, thienyl, indolyl, 2,3-dihydrobenzofuranyl, benzothienyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzotriazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, 1,6-naphthyridinyl, or 1,8-naphthyridinyl, all of which are independently substituted by 0 or 1 R^{14} where R^{14} is $-CH_3$, $-CR^{16}$ where R^{16} is -H or $-CH_3$, oxo (=O), -C(=O)OR¹⁶ where R^{16} is -H or $-CH_3$, $\diamond \diamond R^9$ is -H or $-CH_3$; $\diamond \diamond W^1$ is -O-; $\diamond \diamond$ g is 1 and W^2 is -O- or $-CR^{29}R^{30}$ — where R^{29} and R^{30} are both -H, or g is 0 and W^2 is thus absent; $\diamond \diamond Y$ is -C(R^1_a)—; $\diamond \diamond R^1_a$ is -H; or -F; $\diamond \diamond R^A$ and R^B are independently -H or $-CH_3$; or R^A and R^B are taken together to form a $-(C_3-C_7)$ cycloalkyl-spiro moiety; $\diamond \diamond$ one of R^C and R^D is -H and the other is -H or $-CH_3$; $\diamond \diamond R^1$ and R^2 are -H, -F, or $-CCH_3$; $\diamond \diamond R^3$ is -H or $-CH_3$; and -A0 or -C1, and -A2 are -A3 and -A3 are taken together to form a -C4 and -C5 are not both -A4 at the same time, -F5 and -C5 are taken together to form a moiety of partial Formula (1.3.1), (1.3.2), (1.3.3), (1.3.4), (1.3.11), (1.3.12), or (1.3.15).

- 9. (Original) A compound according to Claim 8 wherein R^9 is -H; R^A and R^B are both -H; R^C and R^D are both -H; R^3 is -H; R^4 is -H; R^5 is -H, -F, -CI, -CN, $-OCH_3$, $-C(=O)CH_3$, or $-NO_2$; R^6 is -H, provided that R^5 and R^6 are not both -H at the same time, or -F; or R^5 and R^6 are taken together to form a moiety of partial Formula (1.3.1) or partial Formula (1.3.11) where R^{23} and R^{24} are both absent.
- A compound according to Claim 1 wherein Q' is phenyl or 10. (Original) pyridyl; $\diamond \diamond Q^2$ is biphenyl, 3-phenyl-pyridine, cyclohexyl-benzene, [2,2']bipyridinyl, bicyclohexyl, naphthalene, or biphenylene; $\diamond \diamond$ j is 1; $\diamond \diamond$ m is 0 or 1; $\diamond \diamond$ n is 1; $\diamond \diamond$ Z is a moiety of partial Formula (1.1.15) comprising phthalimid-1-yl, succinimid-1-yl, pyrrolid-2-on-1-yl, glutarimid-1-yl, piperid-2-on-1-yl, pyrid-2-on-1-yl, imidazolidin-2,4-dion-1-yl, 4,5-dihydro-5-oxo-1*H*-tetrazol-1-yl, benzimidazolin-2-on-1-yl, norborn-5-en-2,3-dicarboximid-1-yl, imidazolidin-2-on-1-yl, thiazolidin-3yl, 1H-1,2,3-triazol-1-yl, 1H-1,2,4-triazol-1-yl, pyrrolidin-1-yl, tetrazol-1-yl, piperidin-1-yl, piperazin-1-yl, 1H-pyrazolo[4,5-e]pyridin-7-on-2-yl, 1H-indazol-3-on-2-yl, 1H-benzimidazol-2-on-3-yl, or pyrrolo[3,4-b]pyridin-5,7-dion-6-yl; $\diamond \diamond$ W¹ is -O-; $\diamond \diamond$ g is 1 and W² is -O- or -CR²⁹R³⁰- where R^{29} and R^{30} are both -H, or g is 0 and W^2 is thus absent; $\diamondsuit \diamondsuit Y$ is =C(R^1_a)-; $\diamondsuit \diamondsuit R^1_a$ is -H; or -F; ♦♦ RA and RB are independently –H or -CH3; or RA and RB are taken together to form a -(C₃-C₇) cycloalkyl-spiro moiety; $\diamond \diamond$ one of R^C and R^D is -H and the other is -H or -CH₃; $\diamond \diamond$ R¹ and R^2 are -H, -F, or $-OCH_3$; $\diamond \diamond R^3$ is -H or $-CH_3$; and $\diamond \diamond R^4$. R^5 and R^6 are -H provided that R^5 and R^6 are not both -H at the same time, -F, -Cl, -OCH₃, -CN; -NO₂, or -C(=O)R³ or

-C(=0)OR 3 where R 3 is -CH $_3$; or R 5 and R 6 are taken together to form a moiety of partial Formula (1.3.1), (1.3.2), (1.3.3), (1.3.4), (1.3.11), (1.3.12), or (1.3.15), where for partial Formulas (1.3.11) and (1.3.12) R 23 and R 24 are both absent.

- 11. (Original) A compound according to Claim 10 wherein R^9 is -H; R^A and R^B are both -H; R^C and R^D are both -H; R^3 is -H; R^4 and R^5 are both -H, and R^6 is -F; or R^5 and R^6 are taken together to form a moiety of partial Formula (1.3.1) or (1.3.11).
- 12. (Original) A compound according to Claim 1 wherein m is 1; $\diamond \diamond$ n is 1; $\diamond \diamond$ W¹ is -O-; $\diamond \diamond$ W² is absent; $\diamond \diamond$ Y is =C(R¹_a)—; $\diamond \diamond$ R¹_a is -H; -CH₃; -CF₃; or -OCH₃; $\diamond \diamond$ one of R^A and R^B.is -H and the other is -CH₃; phenyl; benzyl; pyrrolyl; pyridinyl; or tetrazolyl; or R^A and R^B are taken together to form a -(C₃-C₇) cycloalkyl-spiro moiety; $\diamond \diamond$ R^C and R^D are both -H; $\diamond \diamond$ and R⁵ and R⁶ are taken together to form a moiety selected from the group consisting of partial Formulas (1.3.1) through (1.3.4), (1.3.11), (1.3.12), (1.3.14), and (1.3.15) :

where R^{20} and R^{21} are each independently -H; -F; -CH₃; or -OCH₃; and R^{23} and R^{24} are each independently -H; -CH₃; -OCH₃; or absent, in which case the dashed line --- represents a double bond.

- 13. (Currently amended) A compound according to Claim 1 wherein said compound is a member selected from the group consisting of the following:
- 4'-[[[2-[4-Fluorophenoxyl]-pyridine-3-carbonyl]-amino]-methyl]-biphenyl-3-carboxylic acid of Formula (8.5.1);
- 4'-[[[2-Benzo[1,3]dioxol-5-yloxy]-pyridine-3-carbonyl]-amino]-methyl]-biphenyl-3-carboxylic-acid-of-Formula (8.5.2);
- 4'-[[[2-Benzo[1,3]diexel-5-ylexy]-pyridine-3-carbonyl]-amino]-methyl]-3'-fluoro-biphenyl-3-carboxylic-acid of Formula (8.5.3);

- 4'-[[[2-[3-Cyano-phenoxy]-pyridine-3-carbonyl]-amino]-methyl]-biphenyl-3'-fluoro-biphenyl-3-carboxylic acid-of Formula (8.5.4);
- [4'-({[2-(Benzo[2,1,3]thiadiazol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-biphenyl-4-yloxy]-acetic acid of Formula (8.5.5);
- [4'-({[2-(Benzo[2,1,3]oxadiazol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-biphenyl-4-yloxy]-acetic acid of Formula (8.5.6);
- [4'-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-biphenyl-4-yloxy]-acetic acid of Formula (8.5.7);
- (\pm) -2-[4'-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-2-fluoro-biphenyl-4-yloxy]-propionic acid of Formula (8.5.8);
- (\pm) -2-(Benzo[1,3]dioxol-5-yloxy)-N-(2'-fluoro-4'[1-(1H-tetrazol-5-yl)-ethoxy]-biphenyl-4-ylmethyl}-nicotinamide of Formula (8.5.9);
- (\pm) -2-[4'-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3'-fluoro-biphenyl-2-yloxyl-propionic acid of Formula (8.5.10);
- (\pm) -2-(Benzo[1,3]dioxol-5-yloxy)-N-(2'-fluoro-4'[1-(5-methyl-4H-[1,2,4]triazol-3-yl)-ethoxy]-biphenyl-4-ylmethyl}-nicotinamide of Formula (8.5.11);
- (±)-N-[4'-(1-Carbamoyl-ethoxy)-2'-fluoro-biphenyl-4-ylmethyl]-2-(3-cyano-phenoxy)-nicotinamide of Formula (8.5.12);
- (\pm) -2-[2,3'-Difluoro-4'-({[2-(3-methoxy-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-biphenyl-4-yloxy]-propionic acid of Formula (8.5.13);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-(4'-carbamoylmethyl-3-fluoro-biphenyl-4-ylmethyl)-nicotinamide of Formula (8.5.14);
- [4' ({[2-(3-Cyano-phenoxy)-3-carbonyl]-amino}-methyl)-3'-fluoro-biphenyl-4-yl]-acetic acid of Formula (8.5.15);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-{4'-[(2-cyano-benzoylamino)-methyl]-2'-fluoro-biphenyl-4-ylmethyl)-5-fluoro-nicotinamide of Formula (8.5.16);
- Pyridine-2-carboxylic acid (3'-fluoro-4'-{[2-(4-fluoro-phenoxy)-nicotinamide]-methyl}-biphenyl-4-ylmethyl)-amide of Formula (8.5.17);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-{2'-fluoro-4'-[1-methyl-1-(1H-tetrazol-5-yl)-ethyl]-biphenyl-4-ylmethyl}-nicotinamide of Formula (8.5.18);

- 5-Fluoro-N-(3-fluoro-4'-{[(5-methyl-4H-[1,2,4]triazole-3-carbonyl)-amino]-methyl}-biphenyl-4-ylmethyl)-2-(3-methoxy-phenoxy)-nicotinamide of Formula (8.5.19);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-{2'-fluoro-4'-[(2-methoxy-benzoylamino)-methyl]-biphenyl-4-ylmethyl}-nicotinamide of Formula (8.5.20);
- N-[4'-(1,3-Dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2'-fluoro-biphenyl-4-ylmethyl]-2-(4-fluoro-phenoxy)-nicotinamide of Formula (8.5.21);
- N-(2'-Fluoro-4'-{[(3H-imidazole-4-carbonyl)-amino]-methyl}-biphenyl-4-ylmethyl)-2-(3-nitro-phenoxy)-nicotinamide of Formula (8.5.22);
- (\pm)-3-[4'-({[2-(3-Chloro-4-fluoro-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-2-fluoro-biphenyl-4-yloxy]-butyric acid of Formula (8.5.23);
- 2-[4'-({[2-Benzo[2,1,3]thiadiazol-5-yloxy)-pyridine3-carbonyl]-amino}-methyl)-2-fluoro-biphenyl-4-yl]-2-methyl-propionic acid of Formula (8.5.24);
- (\pm) -2-[4'-({[2-(Benzo[2,1,3]oxadiazol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-2-fluoro-biphenyl-4-yloxy]-propionic acid of Formula (8.5.25);
- (\pm) -2-[3'-Fluoro-4'-({[2-(2-methyl-2H-benzotriazol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-biphenyl-4-yloxy]-propionic acid of Formula (8.5.26);
- 2-(3-Cyano-phenoxy)-N-{2'-fluoro-4'[(pyridin-2-ylmethyl)-carbamoyl]-biphenyl-4-ylmethyl}-nicotinamide of Formula (8.5.27);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-{2'-fluoro-4'-[(quinolin-2-ylmethyl)-carbamoyl]-biphenyl-4-ylmethyl}-nicotinamide of Formula (8.5.28);
- 5-Fluoro-2-(4-fluoro-phenoxy)N-[3-fluoro-3'-(1H-tetrazol-5-yl)-biphenyl-4-ylmethyl]-nicotinamide of Formula (8.5.29);
- N-{3-Fluoro-4'-[(1-hydroxy-pyridin-2-ylmethyl)-carbamoyl]-biphenyl-4-ylmethyl}-2-(3-methoxy-phenoxy)-nicotinamide of Formula (8.5.30);
- (±)-N-[3-Fluoro-4'-(2-hydroxy-1,2-dimethyl-propoxy)-biphenyl-4-ylmethyl]-2-(4-fluoro-phenoxy)-nicotinamide of Formula (8.5.31);
- N-[2'-Fluoro-4'-(1-hydroxy-1-methyl-ethyl)-biphenyl-4-ylmethyl]-2-(4-fluoro-phenoxy)-nicotinamide of Formula (8.5.32); and
- 2-(3-Chloro-4-fluoro-phenoxy)-N-[4'-(pyridin-2-ylmethoxy)-biphenyl-4-ylmethyl]-nicotinamide of Formula (8-5.33).
 - 14. 18. (Canceled)

- 19. (New) A method of treating a disease, disorder or condition mediated by the PDE4 isozyme in a mammal, said method comprising administering to said mammal in need of such mediation, a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.
- 20. (New) A method of claim 19 wherein said PDE4 isozyme is the PDE4-D subtype isozyme.
- 21. (New) A method of claim 19 wherein said disease, disorder or condition is atopic asthma; non-atopic asthma; allergic asthma; bronchial asthma; essential asthma; true asthma; intrinsic asthma caused by pathophysiologic disturbances; extrinsic asthma caused by environmental factors; essential asthma of unknown or inapparent cause; bronchitic asthma; emphysematous asthma; exercise-induced asthma; occupational asthma; infective asthma caused by bacterial, fungal, protozoal or viral infection; non-allergic asthma; incipient asthma; or wheezy infant syndrome.
- 22. (New) A method of claim 19 wherein said disease, disorder or condition is chronic or acute bronchoconstriction; chronic bronchitis; small airways obstruction; emphysema; pneumoconiosis; chronic eosinophilic pneumonia; chronic obstructive pulmonary disease; adult respiratory distress syndrome; or exacerbation of airways hyper-reactivity consequent to other drug therapy.
- 23. (New) A method of claim 22 wherein said chronic obstructive pulmonary disease is characterized by irreversible, progressive airways obstruction.
- 24. (New) A method of claim 22 wherein said pneumonconiosis is aluminosis; bauxite workers' disease; anthracosis; miners' disease; asbestosis; steam-fitters' asthma; chalicosis; flint disease; ptilosis caused by inhaling the dust from ostrich feathers; siderosis caused by the inhalation of iron particles; silicosis; grinders' disease; byssinosis; cotton-dust asthma; or talc pneumoconiosis.
- 25. (New) A method of claim 19 wherein said disease, disorder or condition is bronchitis; acute bronchitis; chronic bronchitis; acute laryngotracheal bronchitis; arachidic bronchitis; catarrhal bronchitis; croupus bronchitis; dry bronchitis; infectious asthmatic bronchitis; productive bronchitis; staphylococcus bronchitis; streptococcal bronchitis; or vesicular bronchitis.
- 26. (New) A method of claim 19 wherein said disease, disorder or condition is bronchiectasis; cylindric bronchiectasis; sacculated bronchiectasis; fusiform brochiectasis; capillary bronchiectasis; cystic bronchiectasis; dry bronchiectasis or follicular bronchiectasis.
- 27. (New) A method of claim 19 wherein said disease, disorder or condition is seasonal allergic rhinitis; perennial allergic rhinitis; sinusitis; purulent sinusitis; nonpurulent sinusitis; acute sinusitis; chronic sinusitis; ethmoid sinusitis; frontal sinusitis; or sphenoid sinusitis.