Exercise 11. Answer Sheet

Student's Name: Yuta Nemoto Student's ID: s1240234

Problem 1. (40 points) Consider constructing a random number generator for integers from 1 to 6 using the simplest linear congruential method.

- a) What is the equation of this generator? $x_{i+1} = (A * x_i) \mod 7$
- b) Which values of the parameter $A \in [1, 6]$ give the longest sequence?

3 and **5** gives the longest sequence.

The sequence of 3 is "3, 2, 6, 4, 5, 1"

The sequence of 5 is "5, 4, 6, 2, 3,1"

```
First, x_0 = 1
When A = 1:
x_1 = (1 * 1) \mod 7 = 1 \mod 7 = 1
x_2 = (1 * 1) \mod 7 = 1 \mod 7 = 1
x_3 = (1 * 1) \mod 7 = 1 \mod 7 = 1
x_4 = (1 * 1) \mod 7 = 1 \mod 7 = 1
x_5 = (1 * 1) \mod 7 = 1 \mod 7 = 1
x_6 = (1 * 1) \mod 7 = 1 \mod 7 = 1
When A = 2:
x_1 = (2 * 1) \mod 7 = 2 \mod 7 = 2
x_2 = (2 * 2) \mod 7 = 4 \mod 7 = 4
x_3 = (2 * 4) \mod 7 = 8 \mod 7 = 1
x_4 = (2 * 1) \mod 7 = 2 \mod 7 = 2
x_5 = (2 * 2) \mod 7 = 4 \mod 7 = 4
x_6 = (2 * 4) \mod 7 = 8 \mod 7 = 1
When A = 3:
x_1 = (3 * 1) \mod 7 = 3 \mod 7 = 3
x_2 = (3 * 3) \mod 7 = 9 \mod 7 = 2
x_3 = (3 * 2) \mod 7 = 6 \mod 7 = 6
x_4 = (3 * 6) \mod 7 = 18 \mod 7 = 4
x_5 = (3 * 4) \mod 7 = 12 \mod 7 = 5
x_6 = (3 * 5) \mod 7 = 15 \mod 7 = 1
When A = 4:
x_1 = (4 * 1) \mod 7 = 4 \mod 7 = 4
x_2 = (4 * 4) \mod 7 = 16 \mod 7 = 2
x_3 = (4 * 2) \mod 7 = 8 \mod 7 = 1
x_4 = (4 * 1) \mod 7 = 4 \mod 7 = 4
x_5 = (4 * 4) \mod 7 = 16 \mod 7 = 2
x_6 = (4 * 2) \mod 7 = 8 \mod 7 = 1
When A = 5:
x_1 = (5 * 1) \mod 7 = 5 \mod 7 = 5
```

```
x_2 = (5 * 5) \mod 7 = 25 \mod 7 = 4

x_3 = (5 * 4) \mod 7 = 20 \mod 7 = 6

x_4 = (5 * 6) \mod 7 = 30 \mod 7 = 2

x_5 = (5 * 2) \mod 7 = 10 \mod 7 = 3

x_6 = (5 * 3) \mod 7 = 15 \mod 7 = 1

When A = 6:

x_1 = (6 * 1) \mod 7 = 6 \mod 7 = 6

x_2 = (6 * 6) \mod 7 = 36 \mod 7 = 1

x_3 = (6 * 1) \mod 7 = 6 \mod 7 = 6

x_4 = (6 * 6) \mod 7 = 36 \mod 7 = 1

x_5 = (6 * 1) \mod 7 = 6 \mod 7 = 6

x_6 = (6 * 6) \mod 7 = 36 \mod 7 = 1
```

Problem 2. (60 points) Write a program implementing the 3 algorithms from the lecture. Upload your code.

a) (20 points) Fill the following table with the first 5 random numbers generated by each of the algorithms?

	1	2	3	4	5
Rand1	1688960045	707878749	1576208621	583533981	1844902829
Rand2	48271	182605794	1291394886	1914720637	2078669041
Rand2	890394181	479799993	1961812856	1081941947	1764863974

b) (40 points) Generate $N = \{10, 1000, 1000000\}$ real random numbers in the interval (0.0, 1.0) using each algorithm. Calculate the histogram of the number distribution (in %) for 10 intervals and fill the table:

N	0.0-0.1	0.1-0.2	0.2-0.3	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.7	0.7-0.8	0.8-0.9	0.9-1.0		
Rand1												
10	0	10	10	30	0	10	10	20	10	0		
1000	8.8	8.4	11.1	10.4	11.9	11.0	9.1	11.0	9.8	8.5		
1000000	10.01	9.97	10.03	9.95	9.96	10.08	10.03	10.01	9.98	9.98		
Rand2												
10	20	10	10	10	0	10	10	10	10	10		
1000	9.9	10.7	9.4	10.0	9.4	9.8	10.6	10.9	9.0	10.3		
1000000	10.00	10.02	10.00	9.98	10.04	10.04	9.96	10.01	9.98	9.98		
Rand3												
10	10	10	10	0	20	10	0	0	30	10		
1000	11.7	9.6	9.6	11.0	10.8	9.6	10.4	8.2	9.4	9.7		
1000000	9.96	10.00	9.98	10.02	10.04	10.02	9.93	9.98	10.02	10.04		

<How to compile/run>
Command:

javac LinearCongruentialGenerator.java

java LinearCongruentialGenerator

Then it automatically output the answer of this problem 2.

[std6dc35{s1240234}52: javac LinearCongruentialGenerator.java

[std6dc35{s1240234}53: java LinearCongruentialGenerator

<Problem 2-a, 5 random numbers>

Rand1: 1688960045 707878749 1576208621 583533981 1844902829 Rand2: 48271 182605794 1291394886 1914720637 2078669041 Rand3: 890394181 479799993 1961812856 1081941947 1764863974

<Problem 2-b, Histogram of each random method> 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.90.9-1.0 Ν Rand1 10.00% 10.00% 30.00% 0.00% 10 0.00% 10.00% 10.00% 20.00% 10.00% 0.00% 1000 8.80% 8.40% 11.10% 10.40% 11.90% 11.00% 9.10% 11.00% 9.80% 8.50% 1000000 10.01% 9.97% 10.03% 9.95% 10.08% 10.03% 10.01% 9.98% 9.98% 9.96% Rand2 10 20.00% 10.00% 10.00% 10.00% 0.00% 10.00% 10.00% 10.00% 10.00% 10.00% 1000 9.90% 10.70% 9.40% 10.00% 9.40% 9.80% 10.60% 10.90% 9.00% 10.30% 1000000 10.00% 10.02% 10.00% 9.98% 10.04% 10.04% 9.96% 10.01% 9.98% 9.98% Rand3 10.00% 10 10.00% 10.00% 0.00% 20.00% 10.00% 0.00% 0.00% 30.00% 10.00% 1000 11.70% 9.60% 9.60% 11.00% 10.80% 9.60% 10.40% 8.20% 9.40% 9.70% 1000000 9.96% 10.00% 9.98% 10.02% 10.04% 10.02% 9.93% 9.98% 10.02% 10.04% std6dc35{s1240234}54: