table1

Desmond Chen

```
library(here)
here() starts at /Users/apple/Documents/chl8010class2/armed_conflict
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4
                                 2.1.5
                    v readr
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.4.4
                    v tibble 3.2.1
v lubridate 1.9.3
                      v tidyr
                                1.3.1
            1.0.2
v purrr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
finaldata <- read.csv(here("data", "finaldata.csv"), header = TRUE)</pre>
finaldata$earthquake[is.na(finaldata$earthquake)] <- 0</pre>
finaldata$drought[is.na(finaldata$drought)] <- 0</pre>
#summary(finaldata)
#c("ISO", "year", "Country.Name", "Maternal Mortality", "Infant Mortality", "Neonatal Mortal
finaldata$conflict <- as.factor(finaldata$conflict)</pre>
finaldata$drought <- as.factor(finaldata$drought)</pre>
finaldata$earthquake <- as.factor(finaldata$earthquake)</pre>
finaldata$OECD <- as.factor(finaldata$OECD)</pre>
finaldata$conflict <- ifelse(finaldata$conflict == 1, "Conflict", "No Conflict")</pre>
```

Warning: package 'gtsummary' was built under R version 4.3.3

```
#conflictl ~ "Armed Conflict (Yes=1,No=0)",
table1 <- finaldata %>%
 tbl_summary(
    by = conflict,
    include = c(MatMor, InfMor, NeoMor, U5Mor, conflict, total_best, drought, earthquake, gd
   label = list(
     MatMor ~ "Maternal Mortality",
     InfMor ~ "Infant Mortality",
     NeoMor ~ "Neonatal Mortality",
     U5Mor ~ "Under 5 Mortality",
     total_best ~ "Total Estimated Death",
     drought ~ "Drought",
     earthquake ~ "Earthquake",
      gdp1000 ~ "GDP in USD/1000",
     OECD ~ 'OECD',
     popdens ~ 'Population Density',
     urban ~ 'Urban Residents Percentage',
      agedep ~ 'Non-working Population Percentage',
     male_edu ~ 'Male Education',
     temp ~ 'Average Temperature',
     rainfall1000 ~ 'Rainfall in mm/1000'
    ),
    statistic = list(
     MatMor ~ "{median} ({p25}, {p75})",
     InfMor ~ "{median} ({p25}, {p75})",
     NeoMor \sim "{median} ({p25}, {p75})",
     U5Mor \sim "\{median\} (\{p25\}, \{p75\})" + Display median and IQR for hp
    )
 ) %>%
 add_overall() %>%
 modify_caption(caption = "Table 1 Summary of Subject Characteristics in Armed Conflict Pro
table1
```

Characteristic	Overall $N = 3,720^1$	Conflict $N = 704^1$	No Conflict $N = 3$,
Maternal Mortality	66 (17, 300)	252 (69, 642)	51 (12, 201)
Unknown	426	78	348
Infant Mortality	19 (8, 45)	43 (19, 67)	16(6,37)
Unknown	20	0	20
Neonatal Mortality	12(5, 25)	26 (12, 37)	10 (4, 22)
Unknown	20	0	20
Under 5 Mortality	22 (9, 61)	58(23, 99)	19(7,48)
Unknown	20	0	20
Total Estimated Death	0 (0, 2)	387 (87, 1,449)	$0\ (0,\ 0)$
Drought			
0	3,395 (91%)	612~(87%)	2,783 (92%)
1	325 (8.7%)	92 (13%)	$233\ (7.7\%)$
Earthquake			
0	$3,410 \ (92\%)$	589 (84%)	2,821 (94%)
1	$310 \ (8.3\%)$	115 (16%)	195~(6.5%)
GDP in $USD/1000$	4(1, 13)	1(1, 4)	5(2, 17)
Unknown	62	26	36
OECD			
0	3,084 (83%)	664 (94%)	$2,420 \ (80\%)$
1	$636 \ (17\%)$	40 (5.7%)	596 (20%)
Population Density	28 (15, 41)	$23\ (14,\ 36)$	29 (15, 42)
Unknown	20	8	12
Urban Residents Percentage	30(17, 42)	29(20, 40)	$30\ (16,\ 42)$
Unknown	20	8	12
Non-working Population Percentage	56 (48, 77)	74 (53, 91)	54 (47, 71)
Male Education	8.37 (5.90, 10.85)	6.60 (4.60, 8.29)	8.84 (6.48, 11.20)
Unknown	20	8	12
Average Temperature	22(13, 26)	24 (20, 26)	$22\ (12,\ 26)$
Unknown	20	8	12
Rainfall in mm/1000	$1.01\ (0.59,\ 1.69)$	0.99 (0.44, 1.47)	1.02 (0.63, 1.72)
Unknown	20	8	12

¹Median (Q1, Q3); n (%)