Реализация неявных методов для жёстких задач методом установления

Б. В. Фалейчик, И. В. Бондарь

Для решения систем нелинейных уравнений, возникающих при реализации неявных методов решения систем обыкновенных дифференциальных уравнений, предлагается подход, основанный на идее установления. Полученные итерационные процессы не требуют факторизации матриц, просты в реализации и пригодны в случае комплексных собственных значений матрицы Якоби. Они могут использоваться как самостоятельно, так и в качестве «сглаживателей» при реализации многосеточных методов.

Введение

Как известно, наиболее трудоёмким этапом численного интегрирования жёсткой системы (не)линейных обыкновенных дифференциальных уравнений (ОДУ) размерности n неявным методом является решение на каждом шаге системы (не)линейных уравнений, размерность которой пропорциональна n. Чаще всего трудности такого рода возникают при дискретизации нестационарных задач математической физики, приводящей к жёстким системам очень большой размерности. В такой ситуации использование методов ньютоновского типа практически невозможно, а традиционные методы типа простой итерации либо не сходятся, либо сходятся очень медленно. Мы предлагаем альтернативный способ, основанный на идее установления.

Рассмотрим систему нелинейных уравнений

$$F(\xi) = 0, \quad \xi \in \mathbb{R}^N. \tag{1}$$

Будем считать (хотя это не обязательно), что данная система возникла при решении жёсткой системы ОДУ каким-то неявным методом, который в дальнейшем будем называть базовым. Точное решение (1) обозначим ξ^* . Для его приближённого вычисления воспользуемся методом установления [1]: введём фиктивную переменную $\theta \in [0, +\infty)$ и рассмотрим вспомогательное дифференциальное уравнение

$$\xi'(\theta) = F(\xi(\theta)). \tag{2}$$

Функция $\xi(\theta) \equiv \xi^*$ является стационарным решением (положением равновесия) уравнения (2). Предположим, что данное решение асимптотически устойчиво (для этого достаточно, чтобы все собственные значения матрицы Якоби $F'(\xi^*)$ имели отрицательные вещественные части). Тогда для всех $\xi^{(0)}$ из некоторой окрестности ξ^* решение (2) с начальным условием $\xi(0) = \xi^{(0)}$ стремится к ξ^* при $\theta \to \infty$. Поэтому можно приближённо вычислить ξ^* путём интегрирования (2) любым известным численным методом. В частности, для явных методов типа Рунге–Кутты (РК) получаем семейство итерационных процессов вида

$$\xi^{(l+1)} = \Phi(\xi^{(l)}), \tag{3a}$$

$$\Phi(\xi) = \xi + \omega \sum_{i=1}^{\sigma} \beta_i \kappa_i(\xi), \quad \kappa_i(\xi) = F\left(\xi + \omega \sum_{j=1}^{i-1} \alpha_{ij} \kappa_j(\xi)\right). \tag{3b}$$

Здесь ω — величина шага по фиктивному времени, σ — число стадий метода, $\{\alpha_{ij}\}$ и $\{\beta_i\}$ — его коэффициенты (в дальнейшем этот метод РК будем называть вспомогательным).

Построение итерационных процессов

Для практического применения итерационного метода (3) нужно задать шаг ω и коэффициенты вспомогательного метода РК. Выберем эти параметры таким образом, чтобы оптимизировать сходимость метода на системах линейных уравнений вида

$$F(\xi) = \Lambda \xi - g = 0,\tag{4}$$

где Λ — квадратная матрица, g — вектор размерности N. Применяя (3) к (4), получаем

$$\xi^{(l+1)} = R(\omega \Lambda) \xi^{(l)} - P(\omega \Lambda) g, \tag{5}$$

где R — функция устойчивости вспомогательного метода, представляющая собой многочлен степени σ , P — многочлен степени σ — 1. Область устойчивости вспомогательного метода обозначим $S = \{z \in \mathbb{C} : |R(z)| < 1\}$, а множество собственных значений матрицы Λ обозначим $\Omega = \{\lambda_i\}_{i=1}^N$. Тогда процесс (5) сходится если и только если $\omega\Omega \subset S$, причём чем меньше величина $\max_i |R(\omega\lambda_i)|$, тем быстрее сходимость. Поэтому предлагается следующая общая схема выбора параметров вспомогательного метода [2]:

1. Строим многочлен R степени σ как решение задачи минимизации

$$\int_0^1 \int_{\pi-\alpha}^{\pi+\alpha} |R(\rho e^{i\varphi})|^2 d\varphi \, d\rho \to \min,\tag{6}$$

где α — наперёд заданный угол, величина которого зависит от решаемой задачи и используемого базового метода. Область интегрирования в (6) обозначим $G(\alpha)$.

- 2. Находим вспомогательный явный метод PK, реализующий построенную функцию устойчивости R. Для этого используем известный подход [3].
- 3. Выбираем шаг по фиктивному времени ω таким образом, чтобы получить $\omega\Omega\subset G(\alpha)$. В общем случае для этого необходимо иметь оценку спектрального радиуса матрицы Якоби $F'(\xi_0)$.

Практический пример

Рассмотрим применение описанного подхода на линейной задаче — одномерной задаче теплопроводности

$$\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), \quad u(0,t) = u(1,t) = 0, \quad u(x,0) = u_0(x).$$

Используя метод прямых, получаем систему линейных ОДУ

$$y'(t) = Jy(t), \quad y(0) = y_0 = (u_0(x_1), u_0(x_2), \dots, u_0(x_n))^T,$$

где $y=(y_1,\ldots,y_n)^T,\ y_i(t)\approx u(x_i,t),\ x_i=ih,\ h=1/(n+1),\ J$ — матрица оператора второй разностной производной. Для вычисления $\hat{y}\approx y(\tau)$ применим базовый неявный s-стадийный метод типа Рунге–Кутты:

$$\hat{y} = y_0 + \tau \sum_{i=1}^{s} b_i k_i, \quad k_i = J \Big(y_0 + \tau \sum_{i=1}^{s} a_{ij} k_j \Big).$$

Чтобы применить метод (3), систему линейных уравнений для нахождения коэффициентов $k_i \in \mathbb{R}^n$, $i = \overline{1,s}$, запишем в виде

$$\Lambda k - q = 0,$$

где $k=(k_1,\ldots,k_s)^T,\ \Lambda=-I+\tau A\otimes J,\ A=(a_{ij})_{i,j=1}^s$ — матрица коэффициентов базового метода, $g=(\underbrace{Jy_0,\ldots,Jy_0})^T,\otimes$ — кронекеровское произведение матриц. Собственные

значения матрицы Λ имеют вид $\lambda_{pq} = \nu_p \mu_q - 1$, где $\{\mu_q\}_{q=1}^s$ — спектр матрицы A, $\{\nu_p\}_{p=1}^n$ — спектр матрицы J распределённый, как известно, на интервале $(-4/h^2,0)$. Для всех практически значимых (A-устойчивых) базовые методов PK справедливо $\operatorname{Re} \mu_q > 0$, так что имеем $\operatorname{Re} \lambda_{pq} < -1$, отсюда также лекго получить оценку спектрального радиуса $\rho(\Lambda)$.

Рис. 1. Множество Ω для базового метода Радо IIA (слева) и область устойчивости 20-стадийного вспомогательного метода, совмещённое с $\omega\Omega$ (справа).

Возьмём в качестве базового метода известный трёхстадийный метод Радо порядка 5. Спектр Ω соответствующей матрицы Λ для n=40 и $\tau=1$ изображён на рис. 1 слева. Видно, что для построения вспомогательного метода по описанной в предыдущем пункте схеме, нужно выбрать $\alpha>\max_q\arg\mu_q$. Область устойчивости полученного вспомогательного метода при $\sigma=20$, а также «смасштабированное» множество $\omega\Omega$, $\omega=(1+4\tau\max_q|\mu_q|/h^2)^{-1}$, представлены на рис. 1 справа.

По приведённым рисункам, в частности, можно сделать вывод, что при малых значениях h (при увеличении жёсткости) сходимость построенного итерационного процесса будет замедляться, так как

$$\max_{p,q} |R(\omega \lambda_{pq})| \xrightarrow[h \to 0]{} 1.$$

Для решения этой проблемы предлагается использовать многосеточный подход, речь о котором пойдёт в докладе.

Список литературы

- [1] Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков, *Численные методы* М.: БИНОМ, 2004, сс. 345–353.
- [2] B. V. Faleichik, Explicit Implementation of Collocation Methods for Stiff Systems with Complex Spectrum, in Journal of Numerical Analysis, Industrial and Applied Mathematics, vol. 5, no. 1-2, 2010, pp. 49-59.
- [3] Лебедев В.И. Как решать явными методами жесткие системы дифференциальных уравнений // Вычисл. процессы и системы. М.: Наука, 1991. Вып. 8. С. 237–291.

Авторы

Борис Викторович Фалейчик — кандидат физико-математических наук, доцент, кафедра вычислительной математики, факультет прикладной математики и информатики, Белорусский государственный университет, Минск, Беларусь; E-mail: *faleichik@bsu.by*.

Иван Васильевич Бондарь — студент 5-го курса, факультет прикладной математики и информатики, Белорусский государственный университет, Минск, Беларусь; E-mail: bondarivanv@gmail.com.