Quadratisches Sieb - Teil 2

Algorithmus mit folgendem Verhalten:

- Eingabe:
 - n (zu faktorisieren)
 - F := Menge von betrachteten Primzahlen ("Faktorbasis")
- Ausgabe: Zahlen b mit der Eigenschaft:
 - $b^2 \pmod{n}$ ist zusammengesetzt aus Faktoren aus F.

Schritte des Algorithmus – Übersicht

Input: Zahl *n*, Faktorbasis *F*

- 1. Fixiere eine Menge S von "kleinen" Zahlen
- 2. $m := |\sqrt{n}|$
- 3. **for** (jedes $x \in S$)
 - 3.1 Bestimme $q(x) := (m + x)^2 n$
 - 3.2 Prüfe, ob q(x) aus Primfaktoren in F zusammengesetzt ist Falls ja \to Zahl mit gewünschter Eigenschaft gefunden

end

Bsp:

ZHAW

- \bullet $F := \{-1, 2, 3, 5, 7\}$

Gründe, weshalb q(x) als Kandidaten gewählt werden

- q(x) ist ein Quadrat modulo n (Wurzel: m + x)
- q(x) ist nicht "zu gross" $(< n) \rightarrow$ Faktorzerlegung wird nicht zu lang
- q(x) ist nicht "zu klein" \rightarrow Faktorzerlegung wird nicht zu kurz

Algorithmische Umsetzung – Grundidee

Bsp:

- n = 1000,
- $F := \{-1, 2, 3, 5, 7\}$
- $S = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$

Aufgabe: Bestimme diejenigen $x \in S$, für die q(x) die gewünschte Bedingung erfüllt

(via Algorithmus von letzter Folie und mithilfe der Faktorisierung von PARI/GP).

Algorithmische Umsetzung – Grundidee

Lösung der Aufgabe:

Verbesserung – Skizze

Analyse des bisherigen Vorgehens

• q(x) jeweils faktorisiert \rightarrow für grosse Zahlen nicht praktikabel

Versuch 1

- Für jeden Faktor p ∈ F: Teste, ob q(x) durch p teilbar ist. Falls ia: dividiere so oft wie möglich durch p.
- Problem: viele erfolglose Probedivisionen → ineffizient

Versuch 2

- Erstelle erste zwei Zeilen der vorherigen Tabelle.
- 2 Für jeden Faktor $p \in F$:
 - Finde einen Eintrag, der durch p teilbar ist.
 - Gehe mit Schritten der Länge p nach links und nach rechts.
 - Teile die gefunden Einträge so oft wie möglich durch p.

Verbesserung – Skizze

Ziel: effiziente Umsetzung des Schrittes

"finde einen Eintrag q(x), der durch p teilbar ist"

Erinnerung:
$$q(x) = (m+x)^2 - n$$
 $(m := \lfloor n \rfloor)$

Bem 1: p teilt $q(x) \Leftrightarrow q(x) = 0 \pmod{p}$

Bem 2: Man kann zeigen (Details: s. später):

- Die quadratische Gleichung $\underbrace{(m+x)^2-n}_{q(x)}=0 \pmod{p}$ hat höchstens zwei Lösungen in \mathbb{Z}_p^n
- Es gibt einen effizienten Algorithmus, um diese zwei Lösungen zu bestimmen.

Somit: Der gewünschte Eintrag q(x) kann gefunden werden, indem die Gleichung $q(x) = 0 \pmod{p}$ gelöst wird.

6/8

Verbesserung – Skizze

Illustration

- Erste zwei Zeilen der Tabelle aus letztem Beispiel, leicht erweitert.
- Sieb mit *p* = 3:

- 1. Lösung für $q(x) = 0 \pmod{3}$ in \mathbb{Z}_3^* : x = 1.
- 2. Lösung für $q(x) = 0 \pmod{3}$ in \mathbb{Z}_3^* : x = 0.
- Weitere Lösungen resultieren, indem man mit Schrittlänge 3 nach links und rechts geht.

Algorithmus als Ganzes

Quadratisches Sieb

- **Input:** Zahl *n*, Faktorbasis *F*
- Output: B-glatte Zahlen modulo n
 - 1. Fixiere eine Menge *S* von "kleinen" Zahlen
 - 2. $m := \lfloor \sqrt{n} \rfloor$
 - 3. **for** (jedes $x \in S$): berechne q(x) **end**
 - 4. multipliziere alle negativen Zahlen mit −1 // Sieb mit −1
 - 5. **for** (jedes $p \in F$) // Sieb mit p
 - 5.1 Löse Gleichung $q(x) = 0 \pmod{p}$ \rightarrow ergibt x_1 und ev. auch
 - *X*₂
 - 5.2 Markiere in S die Elemente

...,
$$x_1 - 2p$$
, $x_1 - p$, x_1 , $x_1 + p$, $x_1 + 2p$, ... und ..., $x_2 - 2p$, $x_2 - p$, x_2 , $x_2 + p$, $x_2 + 2p$, ...

- 5.3 **for** (markierte x): teile q(x) so oft wie möglich durch p **end end**
- 6. Gib diejenigen q(x) aus, bei denen die fortlaufenden Divisionen zum Resultat 1 führen.