Problem Set 3

To solve these problems, you are not allowed to use any additional Macaulay2 packages besides the Complexes package and the ones that are automatically loaded with Macaulay2.

Problem 1. Show that if R is a regular local ring then R_P is regular for every prime P.

Problem 2 (2). Of the following rings, which ones are regular? Which ones are Cohen-Macaulay?

- $R = \mathbb{F}_{101}[X]/I_2(X)$, where X is a generic 2×3 matrix.
- $S = \mathbb{Q}[x^2, xy, y^2].$
- $T = k[x, y, z, w]/(x^2, xy, yz, zw, w^2)$, where k is any field.
- U = k[x, y, z]/(x + y + z), where k is any field.
- $V = \mathbb{Q} \begin{bmatrix} ux & uy & uz \\ vx & vy & vz \end{bmatrix} \subseteq \frac{\mathbb{Q}[u,v,x,y,z]}{(x^3+y^3+z^3)}$.

Problem 3. Consider the ring $R = \mathbb{Q}[x, y, z, a, b, c]/(xb - ac, yc - bz, xc - az)$ and the 2-generated R-module M = Rf + Rg, where the generators f, g satisfy the relations

$$yf - xg = 0$$
 $bf - cg = 0$ $cf - zg = 0$.

Let P be the ideal in $S = \mathbb{Q}[x, y, z]$ defining the curve parametrized by (t^{13}, t^{42}, t^{73}) .

- a) Find pdim(S/P) and depth(S/P).
- b) Is there a regular sequence that generates P?
- c) Find $\operatorname{pdim}_{R}(M)$ and $\operatorname{depth}(M)$.
- d) Is R a regular ring? Is it Cohen-Macaulay?

Problem 4. Let k be any field and consider the prime ideal in k[x, y, z]

$$P = (x^3 - yz, y^2 - xz, z^3 - x^2y)$$

defining the curve parametrized by (t^3, t^4, t^5) . Give (with proof!) two different ideals J such that $P^{(n)} = (P^n : J^{\infty})$ for all $n \ge 1$, and test your proposed ideals J in Macaulay2 with your own choice of k, c, and n.