Cont

1. (Currently Amended) An image processing apparatus for detecting a noise exhibiting area in image data generated by decoding encoded data encoded by a frequency transform method and a lossy compression method, the image processing apparatus comprising:

motion detection means for detecting <u>at least one</u> motion in an area having at least one pixel in said image data;

deviation detection means for detecting the deviation of the <u>at least one</u> image motion in the area having at least one pixel; and

noise detection means for detecting the noise <u>exhibiting</u> area <u>based on a predetermined</u> threshold and the detected deviation in accordance with the deviation of the image motion.

- 2. (Original) An image processing apparatus according to Claim 1, wherein said deviation detection means detects the deviation of the image motion in accordance with the deviation of the norm of the image motion.
- 3. (Original) An image processing apparatus according to Claim 1, wherein said deviation detection means detects said deviation of image motion in accordance with the deviation of the direction of the image motion.
- 4. (Original) An image processing apparatus according to Claim 1, wherein:

 said motion detection means detects a motion vector as the motion; and

 said deviation detection means detects the deviation of the image motion in accordance
 with the deviation of said motion vectors.

Cont

5. (Original) An image processing apparatus according to Claim 1, wherein:
said motion detection means detects a motion vector as the motion, converts the motion
vector to a one-dimensional value as the motion, and outputs said one-dimensional value; and
said deviation detection means detects said deviation of the image motion in accordance
with the deviation of said one-dimensional value.

- 6. (Currently Amended) An image processing apparatus according to Claim 5, wherein said noise detection means detects said noise exhibiting area by comparing the deviation value of said one-dimensional value with a said predetermined threshold value.
- 7. (Currently Amended) An image processing apparatus according to Claim 1, further comprising:

decoding means for decoding the encoded image data encoded by the frequency transform method and the lossy compression method;

noise reduction means for reducing the amount of noise of said noise <u>exhibiting</u> area the respective pixel detected by said noise detection means; and

selective outputting means for selectively outputting one of said decoded image data from said decoding means and said image data to said noise detection means and said noise reduction means according to a control signal.

8. (Original) An image processing apparatus according to Claim 7, wherein said deviation detection means detects said deviation of the image motion in accordance with the deviation of the norm of the image motion.

- 9. (Original) An image processing apparatus according to Claim 7, wherein said deviation detection means detects said deviation of the image motion in accordance with the deviation of the direction of the image motion.
- 10. (Original) An image processing apparatus according to Claim 7, wherein:
 said motion detection means detects a motion vector as the motion; and
 said deviation detection means detects said deviation of the image motion in accordance
 with the deviation of said motion vectors.
- 11. (Original) An image processing apparatus according to Claim 7, wherein:
 said motion detection means detects a motion vector as the motion, converts the motion
 vector into a one-dimensional value as the motion, and outputs said one-dimensional value; and
 said deviation detection means detects said deviation of the image motion in accordance
 with the deviation of said one-dimensional value.
- 12. (Currently Amended) An image processing apparatus according to Claim 11, wherein said noise detection means detects said noise <u>exhibiting</u> area by comparing the deviation value of said one-dimensional value with a <u>said</u> predetermined threshold value.

13. (Currently Amended) An image processing method for detecting a noise exhibiting area in image data generated by decoding encoded data encoded by a frequency transform method and a lossy compression method, the image processing method comprising the steps of:

detecting at least one motion in an area having at least one pixel in the image data;

detecting deviation of the at least one image motion in the area having at least one pixel;

and

detecting the noise <u>exhibiting</u> area <u>based on a predetermined threshold and the detected</u> deviation in accordance with the deviation of the image motion.

Claims 14-24. (Canceled)

25. (Currently Amended) A storage medium for storing a computer-controllable program for detecting a noise exhibiting area in image data generated by decoding encoded data encoded by a frequency transform method and a lossy compression method, said computer program comprising the steps of:

detecting at least one motion on an area having at least one pixel in said image data;

detecting the deviation of the at least one image motion on the area having at least one pixel; and

detecting the noise <u>exhibiting</u> area <u>based on a predetermined threshold and the detected</u>

<u>deviation</u> in accordance with the deviation of image motion.

.

Claims 26-38 (Canceled)

39. (New) An image processing apparatus according to claim 1, wherein said area is a block having a plurality of pixels.

Out.

- 40. (New) An image processing apparatus according to claim 1, wherein said area is a unit of blocks, each of which has a plurality of pixels.
- 41. (New) An image processing apparatus according to claim 1, wherein said noise exhibiting area is a pixel in the area.
- 42. (New) An image processing apparatus according to claim 1, wherein said noise exhibiting area is a block having a plurality of pixels in the area.
- 43. (New) An image processing apparatus according to claim 1, wherein said noise exhibiting area is a unit of blocks, each of which has a plurality of pixels in the area.
- 44. (New) An image processing apparatus according to claim 1, wherein said motion detection means detects at least one motion of a pixel and a number of pixels around the respective pixel in an area in said image data, and said deviation detection means detects the deviation of the at least one motion of the respective pixel and the number of pixels in the area.

45. (New) An image processing apparatus according to claim 1, wherein said noise detection means detects that the respective pixel is exhibiting noise when the detected deviation is greater than and equal to said predetermined threshold value and for detecting that the respective pixel is not exhibiting noise when the detected deviation is below said predetermined threshold value.

W)

- 46. (New) An image processing method according to claim 13, wherein said area is a block having a plurality of pixels.
- 47. (New) An image processing method according to claim 13, wherein said area is a unit of blocks, each of which has a plurality of pixels.
- 48. (New) An image processing method according to claim 13, wherein said noise exhibiting area is a pixel in the area.
- 49. (New) An image processing method according to claim 13, wherein said noise exhibiting area is a block having a plurality of pixels in the area.
- 50. (New) An image processing method according to claim 13, wherein said noise exhibiting area is a unit of blocks, each of which has a plurality of pixels in the area.
- 51. (New) An image processing method according to claim 13, wherein the motion detecting step detects at least one motion of a pixel and a number of pixels around the respective

pixel in an area in said image data, and the deviation detecting step detects the deviation of the at least one motion of the respective pixel and the number of pixels in the area.

OVI Wil

- 52. (New) An image processing method according to claim 13, wherein the noise exhibiting area detecting step detects that the respective pixel is exhibiting noise when the detected deviation is greater than or equal to said predetermined threshold value and detects that the respective pixel is not exhibiting noise when the detected deviation is below said predetermined threshold value.
- 53. (New) A storage medium according to claim 25, wherein the motion detecting step detects at least one motion of a pixel and a number of pixels around the respective pixel in an area in said image data, and the deviation detecting step detects the deviation of the at least one motion of the respective pixel and the number of pixels in the area.
- 54. (New) A storage medium according to claim 25, wherein the noise exhibiting area detecting step detects that the respective pixel is exhibiting noise when the detected deviation is greater than or equal to said predetermined threshold value and detects that the respective pixel is not exhibiting noise when the detected deviation is below said predetermined threshold value.

-8-