G

INDIAN INSTITUTE OF TECHNOLOGY

Date: Feb 2013, FN/AN, Time: 2 Hrs., Full Marks: 60, No. of Students: 660 (Non-ECE branches); Mid Spring Semester, Sub. No.: EC21101, Sub. Name: Basic Electronics

Instructions

- All waveform sketches / diagrams must be neatly drawn and clearly labeled. Answers must be brief and to the point.
- The final answers (numerical values with unit) should be <u>underlined</u> or enclosed within box with unit.
- For every Question No., start your answer from a new page.
- Avoid writing answers of the various parts of a single question at different locations in your answer-script.
- Given parameters which you might require: mass of electron: 9.11x10⁻³¹kg, Boltzmann constant: 1.38x10⁻²³ J/K, charge of electron: 1.6x10⁻¹⁹ C
- For any value related to any device parameter or circuit parameter, which you may find not given with a problem, assum suitable value for such parameter.
- Answer any FOUR questions (out of SIX)

1A. For the circuit shown in Fig. 1 consider V_{PS}=16

V, R_1 =20 K Ω , R_2 =10 K Ω , V_γ =0.7 V, and V_i =0.5sin ω t. Determine the dc and ac output voltage as well as the diffusion capacitance considering the following two conditions

- (i) when R_2 decreases from 10 K Ω to 5 K Ω
- (ii) when V_{PS} increases from 16 V to 20 V

Fig. 1.

1B.Calculate the junction capacitance for Ge pn junction when 6 V reverse voltage is applied. Doping concentrations of $N_a=5 \times 10^{16}$ /cm³, $N_d=2 \times 10^{15}$ /cm³ and let $C_{jo}=0.8$ pF. Given the value of coefficient for Ge (B) is 1.66×10^{15} cm⁻³K^{-3/2} and band gap (E_g) is 0.66 eV at 300 K.

2A. For the circuit in Fig. 2 the cut in voltage of diode is V_{γ} = 0.7 V. Plot the v_0 versus v_i .

Given: $R_1=2k\Omega$, $R_2=R_3=1k\Omega$, $V_1=15V$

2B. In the voltage regulator shown in Fig. 3, calculate the dissipated power in the Zener diode.

Given: V_1 =50V, R_1 =150 Ω , Vz=15V (assume Rz=0) and R_2 =75 Ω

(8+7)

3A. In the circuit shown Fig. 4, the switch is closed at t = 0. Calculate the time t when the output voltage is 9 V.

3B. What is the equivalent Thevenin's voltage and Thevenin's resistance of the circuit shown in Fig. 5?

3C. In the circuit shown in Fig. 6 a sinusoidal signal generator with internal resistance 50 Ω is connected to a series *LR* circuit. If $v_i = 12 \sin 2\pi f t$, calculate the linear frequency at which the rms value of the output voltage v_0 is 6 V.

1A. In the circuit shown in Fig. 7, v_{IN} =5 sin ω t [volt], v_b =2V and v_γ =0.7 V.

- (i) Draw the output waveform v_{OUT} with respect to t.
- (ii) Draw the transfer characteristics (v_{OUT} vs v_{IN}).

B. In the circuit shown in Fig. 8, find out I_1 (current arough D1) and I_2 (current through D2).

Siven: $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 1 \text{ k}\Omega$

 V_1 =5V, V_2 =3V and V_γ =0.7V (for both the iodes)

Fig. 5

 $+ \qquad V_{IN} \qquad V_{b} \qquad V_{OUT} \qquad Fig. 7 \qquad (5+5+5)$

A. In the circuit shown in Fig. 9, Find R₂ and R₄.

Given: V_{DD} =5V, R_1 =6k Ω , R_3 =4k Ω , I_{DS} =0.25 mA, V_{DS} =3.5V, W=20 μ m, L=1 μ m, $\mu_n C_{ox}$ =100 μ A/V², V_{th} (threshold voltage) =1 V.

5B. In the circuit shown in Fig. 10, Find I₁ and I₂.

Given: R=3k Ω , V_{DD}=5V, W₁=20 μ m, W₂=60 μ m, L₁=L₂=1 μ m, μ _nC_{ox} (for both M₁ and M₂) =100 μ A/V², V_{th} (threshold voltage) =1 V (for both M₁ and M₂).

6A. In a hypothetical structure, made with n type Si and n type Ge, shown in Fig. 11, find ρ (resistivity) of Si and Ge. Hence find out the equivalent resistance.

Given: $N_D(Si)=10^{16}/\text{cm}^3$, $N_D(Ge)=10^{15}/\text{cm}^3$, $\mu_n(Si)=1350$ cm^{2/}V-sec, $\mu_n(Ge)=3800$ cm²/V-sec, A (cross-section)=0.1 mm², $L_1=1$ mm, $L_2=0.5$ mm.

Fig. 11

6B. In a device, suppose $i_D = K(v_D^3 + 2v_D^2 + 3v_D + 4)$, find out small signal resistance of the device.

Where, K-constant, iD and vD are total instantaneous values.

(8+7)