

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/578,001	05/03/2006	Shunpei Yamazaki	740756-2967	3719
22204	7590	11/04/2009	EXAMINER	
NIXON PEABODY, LLP 401 9TH STREET, NW SUITE 900 WASHINGTON, DC 20004-2128				KARIMY, MOHAMMAD TIMOR
ART UNIT		PAPER NUMBER		
2894				
			MAIL DATE	
			DELIVERY MODE	
			11/04/2009	
			PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	10/578,001	YAMAZAKI ET AL.
	Examiner	Art Unit
	MOHAMMAD Timor KARIMY	2894

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 25 June 2009.
 2a) This action is **FINAL**. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-19 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-19 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 03 May 2006 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____. | 6) <input type="checkbox"/> Other: _____ . |

DETAILED ACTION

Product-by-Process Limitations

1. While not objectionable, the Office reminds applicant that “product by process” limitations in claims drawn to structure are directed to the product, *per se*, no matter how actually made. In re *Hirao*, 190 USPQ 15 at 17 (footnote 3). See also, in re *Brown*, 173 USPQ 685; In re *Luck*, 177 USPQ 523; In re *Fessmann*, 180 USPQ 324; In re *Avery*, 186 USPQ 161; In re *Wethheim*, 191 USPQ 90 (209 USPQ 554 does not deal with this issue); In re *Marosi et al.*, 218 USPQ 289; and particularly In re *Thorpe*, 227 USPQ 964, all of which make it clear that it is the patentability of the final product *per se* which must be determined in a “product by process” claim, and not the patentability of the process, and that an old or obvious product produced by a new method is not patentable as a product, whether claimed in “product by process” claims or otherwise. Note that applicant has the burden of proof in such cases, as the above case law makes clear. Thus, no patentable weight will be given to those process steps which do not add structural limitations to the final product.

Claim Rejections - 35 USC § 102/103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

3. Claims 1-8, 9-10, 16 and 18-19 are rejected under 35 U.S.C. 102(b) as anticipated by Nishio et al. (US Patent 6,046,547) or, in the alternative, under 35 U.S.C. 103(a) as obvious over Nishio et al. in view of Chen (US Patent 6,211,067 B1).

With respect to claim 1, Nishio discloses in figures 1-10, a thin film transistor comprising:

an insulating layer 505 having a first opening (Fig. 9B);
a first conductive layer 501b fitted in the first opening (Fig. 9B);
a second conductive layer (lower portions of 501a in layer 504) on and in contact with the first insulating layer 505 and the first conductive layer 501a;

wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (Fig. 9B), and

wherein the surface of the insulating layer 505 and the first conductive layer is planarized and uniform (see Fig. 9B, wherein the insulating layer 505 and the first conductive layer 501b have a planarized and uniform surface). Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive layers in insulating layers). At the time of the invention, it would have been obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and insulating layers by CMP

process for the benefit of a smooth and uniform surface free of unwanted irregularities.

The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity.

Therefore, Nishio and Chen would have been combinable.

With respect to claim 2, Nishio discloses in figures 1-10, a thin film transistor comprising:

an insulating layer 505 having a first opening (Fig. 9B);

a first conductive layer 501b fitted in the first opening (Fig. 9B);

a second conductive layer (lower portions of 501a in layer 501) on and in contact with the first insulating layer 505 and the first conductive layer 501a;

wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (Fig. 9B), and

wherein the surface of the insulating layer 505 and the first conductive layer is planarized and a uniform surface (see Fig. 9B, wherein the insulating layer 505 and the first conductive layer 501b have a planarized and uniform surface). Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive

layers in insulating layers). At the time of the invention, it would have been obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and insulating layers by CMP process for the benefit of a smooth and uniform surface free of unwanted irregularities. The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity. Therefore, Nishio and Chen would have been combinable.

It is worth mentioning that the limitation "**wherein the second conductive layer is formed by a droplet discharge method using a conductive material**" is a product by process limitation and it does not result to a structurally distinguishable product over the prior art.

With respect to claim 3, Nishio discloses in figures 1-10, a display device comprising:

- a first insulating layer 505 having a first opening (Fig. 9B);
- a first conductive layer 501b fitted in the first opening (Fig. 9B);
- a second conductive layer (lower portions of 501a in layer 501) on and in contact with the first insulating layer 505 and the first conductive layer 501a (Fig. 9B);
- a semiconductor layer (3a-3c) over the second conductive layer with a gate insulating film 12 therebetween (Fig. 9B);
- a third conductive layer (see Fig. 9B below) over the semiconductor layer;
- a second insulating layer 14 having a second opening over the third conductive layer; and

a fourth conductive layer (portions of 510 in layer 14) fitted in the second opening (Fig. 9B);

wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (Fig. 9B), and

wherein the surface of the insulating layer 505 and the first conductive layer is planarized and a uniform surface (see Fig. 9B, wherein the insulating layer 505 and the first conductive layer 501b have a planarized and uniform surface), and

wherein the fourth conductive layer is thicker than the third conductive layer (see Fig. 9B below).

Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive layers in insulating layers). At the time of the invention, it would have been obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and insulating layers by CMP process for the benefit of a smooth and uniform surface free of unwanted irregularities. The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity. Therefore, Nishio and Chen would have been combinable.

With respect to claim 4, Nishio discloses in figures 1-10, a display device comprising:

- a first insulating layer 505 having a first opening (Fig. 9B);
- a first conductive layer 501b fitted in the first opening (Fig. 9B);
- a second conductive layer (lower portions of 501a in layer 501) on and in contact with the first insulating layer 505 and the first conductive layer 501a (Fig. 9B);
- a semiconductor layer (3a-3c) over the second conductive layer with a gate insulating film 12 therebetween (Fig. 9B);
- a third conductive layer (see Fig. 9B below) over the semiconductor layer;
- a second insulating layer 14 having a second opening over the third conductive layer; and
- a fourth conductive layer (portions of 510 in layer 14) fitted in the second opening (Fig. 9B);

wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (Fig. 9B), and

wherein the surface of the insulating layer 505 and the first conductive layer is planarized and a uniform surface (see Fig. 9B, wherein the insulating layer 505 and the first conductive layer 501b have a planarized and uniform surface), and

wherein the fourth conductive layer is thicker than the third conductive layer (see Fig. 9B below).

Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive layers in insulating layers). At the time of the invention, it would have been obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and insulating layers by CMP process for the benefit of a smooth and uniform surface free of unwanted irregularities. The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity. Therefore, Nishio and Chen would have been combinable.

It is worth mentioning that the limitation "**wherein each of the second conductive layer and the third conductive layer is formed by a droplet discharge method using a conductive material**" is a product by process limitation and it does not result to a structurally distinguishable product over the prior art.

With respect to claim 5, Nishio discloses in figures 1-10, a display device comprising:

- a first insulating layer 505 having a first opening (Fig. 9B);
- a first conductive layer 501b fitted in the first opening (Fig. 9B);

a second conductive layer (lower portions of 501a in layer 501) on and in contact with the first insulating layer 505 and the first conductive layer 501a (Fig. 9B);

a semiconductor layer (3a-3c) over the second conductive layer with a gate insulating film 12 therebetween (Fig. 9B);

a pair of third conductive layer (see Fig. 9B below) over the semiconductor layer;

a first electrode (layer 506 in layer 507) over one of the pair of third conductive layer (Fig. 9B);

an electroluminescent layer 507 over the first electrode; and

a second electrode 511 over the electroluminescent layer,

wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (Fig. 9B), and

wherein the surface of the insulating layer 505 and the first conductive layer is planarized and a uniform surface (see Fig. 9B, wherein the insulating layer 505 and the first conductive layer 501b have a planarized and uniform surface). Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive layers in insulating layers). At the time of the invention, it would have been obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and

insulating layers by CMP process for the benefit of a smooth and uniform surface free of unwanted irregularities. The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity. Therefore, Nishio and Chen would have been combinable.

With respect to claim 6, Nishio discloses in figures 1-10, a display device comprising:

a first insulating layer 505 having a first opening (Fig. 9B);
a first conductive layer 501b fitted in the first opening (Fig. 9B);
a second conductive layer (lower portions of 501a in layer 501) on and in contact with the first insulating layer 505 and the first conductive layer 501a (Fig. 9B);
a semiconductor layer (3a-3c) over the second conductive layer with a gate insulating film 12 therebetween (Fig. 9B);
a pair of third conductive layer (see Fig. 9B below) over the semiconductor layer;
a first electrode (layer 506 in layer 507) over one of the pair of third conductive layer (Fig. 9B);
an electroluminescent layer 507 over the first electrode; and
a second electrode 511 over the electroluminescent layer,
wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (Fig. 9B), and
wherein the surface of the insulating layer 505 and the first conductive layer is planarized and a uniform surface (see Fig. 9B, wherein the insulating layer 505 and the

first conductive layer 501b have a planarized and uniform surface). Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive layers in insulating layers). At the time of the invention, it would have been obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and insulating layers by CMP process for the benefit of a smooth and uniform surface free of unwanted irregularities. The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity. Therefore, Nishio and Chen would have been combinable.

It is worth mentioning that the limitation "**wherein the second conductive layer is formed by a droplet discharge method using a conductive material**" is a product by process limitation and it does not result to a structurally distinguishable product over the prior art.

With respect to claim 7, Nishio discloses in figures 1-10, a display device comprising:

- a first insulating layer 505 having a first opening (Fig. 9B);
- a first conductive layer 501b fitted in the first opening (Fig. 9B);

a second conductive layer (lower portions of 501a in layer 501) on and in contact with the first insulating layer 505 and the first conductive layer 501a (Fig. 9B);

a semiconductor layer (3a-3c) over the second conductive layer with a gate insulating film 12 therebetween (Fig. 9B);

a pair of third conductive layer (see Fig. 9B below) over the semiconductor layer;

a first electrode (layer 506 in layer 507) over one of the pair of third conductive layer (Fig. 9B);

a second insulating layer 14 having a second opening over the third conductive layer; and

a fourth conductive layer (portions of 510 in layer 14) fitted in the second opening (Fig. 9B);

an electroluminescent layer 507 over the first electrode; and

a second electrode 511 over the electroluminescent layer,

wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (Fig. 9B), and

wherein the surface of the insulating layer 505 and the first conductive layer is planarized and a uniform surface (see Fig. 9B, wherein the insulating layer 505 and the first conductive layer 501b have a planarized and uniform surface), and

wherein the fourth conductive layer is thicker than the pair of third conductive layer (see Fig. 9B below).

Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not

teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive layers in insulating layers). At the time of the invention, it would have been obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and insulating layers by CMP process for the benefit of a smooth and uniform surface free of unwanted irregularities. The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity. Therefore, Nishio and Chen would have been combinable.

With respect to claim 8, Nishio discloses in figures 1-10, a display device comprising:

- a first insulating layer 505 having a first opening (Fig. 9B);
- a first conductive layer 501b fitted in the first opening (Fig. 9B);
- a second conductive layer (lower portions of 501a in layer 501) on and in contact with the first insulating layer 505 and the first conductive layer 501a (Fig. 9B);
- a semiconductor layer (3a-3c) over the second conductive layer with a gate insulating film 12 therebetween (Fig. 9B);
- a pair of third conductive layer (see Fig. 9B below) over the semiconductor layer;

a first electrode (layer 506 in layer 507) over one of the pair of third conductive layer (Fig. 9B);

a second insulating layer 14 having a second opening over the third conductive layer; and

a fourth conductive layer (portions of 510 in layer 14) fitted in the second opening (Fig. 9B);

an electroluminescent layer 507 over the first electrode; and

a second electrode 511 over the electroluminescent layer,

wherein the first conductive layer 501a is thicker than the second conductive layer in a vertical direction (see Fig. 9B below), and

wherein the surface of the insulating layer 505 and the first conductive layer is planarized and a uniform surface (see Fig. 9B, wherein the insulating layer 505 and the first conductive layer 501b have a planarized and uniform surface), and

wherein the fourth conductive layer is thicker than the pair of third conductive layer (see Fig. 9B below).

Though Nishio shows planarized and a uniform surface for the conductive layer 501b and the insulating layer 505; however, if it is determined that Nishio does not teach a planarized and uniform surface for the conductive and insulating layers, then Chen patent teaches planarizing the surface of metal plugs and insulating layer by using chemical mechanical polishing (CMP) in order to remove surface roughness and irregularities (Fig. 1A-1E). Nishio and Chen are analogous art (both deal with metal or conductive layers in insulating layers). At the time of the invention, it would have been

Art Unit: 2894

obvious to a person of ordinary skill in the art to planarize the surface of Nishio's conductive and insulating layers by CMP process for the benefit of a smooth and uniform surface free of unwanted irregularities. The motivation for planarizing the surfaces by CMP would have been to reduce production cost, shorten production time and consequently increase productivity. Therefore, Nishio and Chen would have been combinable.

It is worth mentioning that the limitation "**wherein each of the second conductive layer and the third conductive layer is formed by a droplet discharge method using a conductive material**" is a product by process limitation and it does not result to a structurally distinguishable product over the prior art.

With respect to claim 9, Nishio teaches column 16 and lines 61-62 the thin film transistor according to any of claim 1 to 8, wherein the thin film transistor or display device further comprising titanium oxide below the first conductive layer.

With respect to claim 10, Nishio teaches in column 6 and lines 14-16 the thin film transistor according to any of claims 1 to 8, wherein the thin film transistor or display device further comprises a film comprising aluminum.

With respect to claim 16, Nishio teaches the thin film transistor according to any of claims 3 to 8, wherein the semiconductor layer is a polycrystalline semiconductor (Fig. 9B).

With respect to claims 18, Hashimoto implicitly teaches in Fig. 9B the thin film transistor of claims 3 to 8, wherein a television apparatus can include the thin film transistor.

Moreover, it has been held that a recitation with respect to the manner in which a claimed apparatus is intended to be employed does not differentiate the claimed apparatus from a prior art apparatus satisfying the claimed structural limitations. Ex Parte Masham, 2 USPQ F.2d 1647 (1987).

With respect to claims 19, Hashimoto implicitly teaches in Fig. 9B the thin film transistor of claims 3 to 8, wherein a television apparatus can include the thin film transistor.

Moreover, it has been held that a recitation with respect to the manner in which a claimed apparatus is intended to be employed does not differentiate the claimed apparatus from a prior art apparatus satisfying the claimed structural limitations. Ex Parte Masham, 2 USPQ F.2d 1647 (1987).

Art Unit: 2894

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

5. Claims 11-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nishio as applied to claims 1-8 above, and in view of Yamazaki et al. (US Pub. 2002/0132396 A1).

With respect to claims 11-12, Nishio does not teach copper as the material used for the second conductive layer; however, the use of copper in conductive wiring is known to those of ordinary skill in the art because of copper's high electrical conductivity. For instance, Yamazaki ('396) discusses the use of copper wiring for electric connection. As such, the use of copper in conductive wiring is within the knowledge of one of ordinary skill in the art.

6. Claims 13 and 17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nishio as applied to claims 1 to 8 above.

With respect to claims 13 and 17, Nishio does not disclose a range of from 5 to 100 µm for an opening containing the conductive layer or a channel width. Notwithstanding, one of ordinary skill in the art would have been led to the recited dimensions through routine experimentation and optimization. Applicant has not disclosed that the dimensions are for a particular unobvious purpose, produce an unexpected result, or are otherwise critical, and it appears prima facie that the process

would possess utility using another dimension. Indeed, it has been held that mere dimensional limitations are *prima facie* obvious absent a disclosure that the limitations are for a particular unobvious purpose, produce an unexpected result, or are otherwise critical. See, for example, *In re Rose*, 220 F.2d 459, 105 USPQ 237 (CCPA 1955); *In re Rinehart*, 531 F.2d 1048, 189 USPQ 143 (CCPA 1976); *Gardner v. TEC Systems, Inc.*, 725 F.2d 1338, 220 USPQ 777 (Fed. Cir. 1984), cert. denied, 469 U.S. 830, 225 USPQ 232 (1984); *In re Dailey*, 357 F.2d 669, 149 USPQ 47 (CCPA 1966).

7. Claims 14-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nishio as applied to claims 1-8 above, and in further view of Young (US Pub. 20010013913 A1).

With respect to claims 14-15, Nishio does not teach the use amorphous or semi-amorphous silicon in the semiconductor layer; nonetheless, it is widely known in the semiconductor art to use amorphous semiconductor in TFT active areas. For instance, Young discusses in Fig. 4 amorphous semiconductor gate structures. Therefore, the use of amorphous semiconductor material in TFT active regions would have been obvious to one of ordinary skill in the art.

Response to Arguments

8. Applicant's arguments filed 06/25/2009, have been fully considered but they are (a) not persuasive, and in the alternative (b) moot in view of new grounds of rejection (see Para [2-3] above).

Examiner submits that the surface of the first conductive layer 501b and the insulating layer 505 is planarized and constitutes a uniform surface (note the smooth surface of layer 505 and plug 501b in Fig. 9B). However, if it is determined that Nishio does not teach a planarized and uniform surface for the insulating layer 505 and the first conductive layer 501b, then Chen expressly teaches the planarization of conductive layer and insulating layer in order to remove surface irregularities and unwanted roughness through a CMP process (see figures 1A-1E).

Conclusion

9. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mohammad Timor Karimy whose telephone number is 571-272-9006. The examiner can normally be reached on 8:30 AM - 5:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kimberly Nguyen can be reached on 571-272-2402. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

mtk

/Kimberly D Nguyen/
Supervisory Patent Examiner, Art
Unit 2894