Ejercicios del Tema 4

- 1. Sea A un espacio afín. Denotemos por \mathfrak{R} al conjunto formado por las rectas afines de A. Dadas dos rectas L_1 y L_2 en \mathfrak{R} , decimos que $L_1 \sim L_2$ si L_1 es paralela a L_2 . Demostrar que:
 - (i) La relación \sim es de equivalencia en \Re .
 - (ii) Existe una biyección $f: \mathfrak{R}/\sim \to P(\overrightarrow{A})$.
- 2. Mostrar un espacio proyectivo en el que existan dos rectas proyectivas que no se corten.
- 3. Demostrar que en un espacio proyectivo tridimensional dos planos proyectivos distintos se cortan en una recta proyectiva.
- 4. Sean $\{p_1, \ldots, p_m\}$ puntos proyectivos en P(V), donde $p_i = [v_i]$, para cada $i = 1, \ldots, m$. Recordemos que los puntos son proyectivamente independientes si los vectores $\{v_1, \ldots, v_m\}$ son linealmente independientes en V.
 - (i) Demostrar que esta definición no depende de representantes.
 - (ii) Justificar que si $\{p_1, \ldots, p_m\}$ son proyectivamente independientes, entonces existe un único subespacio proyectivo E con dim E = m 1 y tal que $\{p_1, \ldots, p_m\} \subseteq E$.
- 5. Sea $(\mathcal{A}_0, \overrightarrow{\mathcal{A}}_0, \overrightarrow{\rightarrow})$ un espacio afín *n*-dimensional y sea $E = \mathbb{R} \times \overrightarrow{\mathcal{A}}_0$ espacio vectorial producto. Fijemos $p_0 \in \mathcal{A}_0$ y consideremos la inyección natural

$$i: \mathcal{A}_0 \to E, \quad i(p) = (1, \overrightarrow{p_0 p}).$$

Llamemos \mathcal{A} al hiperplano $i(\mathcal{A}_0)$ de E como espacio afín, obviamente contenido en E^* , y consideremos el embebimiento canónico

$$\mathfrak{e} \colon \mathcal{A} \to P(E), \quad \mathfrak{e} = \pi|_{\mathcal{A}}$$

donde $\pi\colon E^*\to P(E)$ es la proyección natural. Demostrar que:

- Para todo $S = q + \vec{S} \subseteq \mathcal{A}_0$ subespacio afín:

$$X_S := X_{i(S)} = \pi \left((1, \overrightarrow{p_0 q}) \right) \vee \pi (\{0\} \times \vec{S}^*) = \pi \left(\left(L(\{(1, \overrightarrow{p_0 q})\}) + \{0\} \times \vec{S} \right)^* \right)$$
$$S_{\infty} := i(S)_{\infty} = \pi (\{0\} \times \vec{S}^*).$$

- 6. En un espacio proyectivo se consideran una recta proyectiva L y un hiperplano proyectivo H. Demostrar que, o bien $L \subseteq H$, o bien $L \cap H$ es un único punto.
- 7. Calcular unas ecuaciones implícitas para la recta proyectiva en \mathbb{P}^3 que pasa por los puntos p = [0, 1, 0, 1] y q = [1, 1, 1, 0].

8. Si $\mathcal{M}_2(R)$ denota al espacio vectorial de las matrices cuadradas reales de orden 2, calcula las ecuaciones implícitas en $P(\mathcal{M}_2(\mathbb{R}))$ del plano proyectivo $p \vee R$, donde $p = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \in P(\mathcal{M}_2(\mathbb{R}))$ y R es la recta proyectiva en $P(\mathcal{M}_2(\mathbb{R}))$ con ecuaciones implícitas $\{x_1 - x_2 = x_1 + x_2 + x_4 = 0\}$ en la base canónica

$$B_0 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

9. Se
aSel subespacio proyectivo de \mathbb{P}^3 con ecuaciones implícit
as:

$$x_0 + x_1 + x_2 + x_3 = 0,$$

$$-x_0 - x_1 + x_2 + x_3 = 0.$$

Sea R_a la recta proyectiva en \mathbb{P}^3 que pasa por los puntos p=(1:-1:1:-1) y q=(0:0:a:1), donde $a\in\mathbb{R}$. Calcular $S\cap R_a$ y $S\vee R_a$.

10. Considera el plano afín T de \mathbb{R}^3 determinado por los puntos $(x_1, x_2, x_3) \in \mathbb{R}^3$ tales que

$$x_1 - 2x_2 - 1 = x_2 - 2x_3 + 3 = 0.$$

Determina las ecuaciones implícitas en coordenadas homogéneas canónicas de la proyectivización canónica X_T de T en \mathbb{P}^3 . Calcula también las ecuaciones de su variedad del infinito canónica T_{∞} .

- 11. Determinar las ecuaciones implícitas en la base canónica $B_0 = \{(1,0,0), (0,1,0), (0,0,1)\}$ de \mathbb{R}^3 de la recta proyectiva R del plano proyectivo \mathbb{P}^2 que pasa por los puntos $p = (1:0:-1), q = (0:1:1) \in \mathbb{P}^2$.
- 12. Dada la proyectividad $f: P(S_2(\mathbb{R})) \to \mathbb{P}^2$ inducida por el isomorfismo lineal

$$\widehat{f} \colon S_2(R) \to \mathbb{R}^3, \quad \widehat{f}\left(\begin{pmatrix} a & b \\ b & c \end{pmatrix}\right) = \begin{pmatrix} a+b+c \\ a+b \\ a \end{pmatrix},$$

determina las ecuaciones matriciales de f en las bases canónicas B_0 y B_0' de $S_2(\mathbb{R})$ y \mathbb{R}^3 respectivamente dadas por

$$B_0 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}, \quad B'_0 = \left\{ (1, 0, 0), (0, 1, 0), (0, 0, 1) \right\}.$$

Calcula también la matriz M(f, B, B') para las bases B y B' de $S_2(\mathbb{R})$ y \mathbb{R}^3 respectivamente dadas por

$$B = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \right\}, \quad B' = \left\{ (1, 1, 1), (1, 1, 0), (1, 0, 0) \right\}.$$

13. Describir todas las proyectividades $f: \mathbb{P}^2 \to \mathbb{P}^2$ tales que:

$$f((1:1:0)) = (0:1:1), \quad f((0:1:1)) = (1:0:1), \quad f((1:0:1)) = (1:1:0).$$

- 14. Sean E_1 y E_2 dos subespacios proyectivos de P(V). Demostrar que existe una homografía $f: P(V) \to P(V)$ tal que $f(E_1) = E_2$ si y sólo si dim $E_1 = \dim E_2$.
- 15. Demostrar que toda homografía $f: \mathbb{P}^2 \to \mathbb{P}^2$ tiene al menos un punto fijo.
- 16. Si R, S, R', S' son rectas en un plano proyectivo P(E) con $R \neq S$ y $R' \neq S'$, prueba que existe una homografía $f: P(E) \rightarrow P(E)$ tal que

$$f(R) = R'$$
 y $f(S) = S'$.

17. Considera un triángulo (A, B, C) es un espacio afín \mathcal{A} , que está visto como hiperplano de un espacio vectorial E (entendido como espacio afín) con $\vec{0} \notin \mathcal{A}$. Considera una traslación $\tau \colon \mathcal{A} \to \mathcal{A}$ y llama $A' = \tau(A)$, $B' = \tau(B)$ y $C' = \tau(C)$.

Prueba que los triángulos (A, B, C) y (A', B', C') son perspectivamente equivalentes en el sentido de que los triángulos proyectivos

$$(\mathfrak{e}(A), \mathfrak{e}(B), \mathfrak{e}(C))$$
 y $(\mathfrak{e}(A'), \mathfrak{e}(B'), \mathfrak{e}(C'))$

son perspectivamente equivalentes en P(E), donde $\mathfrak{e} \colon \mathcal{A} \to P(E)$ es el embebimiento canónico.

Pista: Busca un punto O del hiperplano del infinito $\mathcal{A}_{\infty} \subseteq P(E)$ relativo a \mathcal{A} desde el que sean perspectivos. Concuerda con la intuición de que rectas paralelas se cortan en el mismo punto del infinito.

18. Sean $f: P(E) \to P(E)$ una homografía sin puntos fijos, (A,B,C) un triángulo y $O \in P(E) \setminus \{A,B,C\}$ un punto tales que

$$f(O \lor A) = O \lor A, \ f(O \lor B) = O \lor B, \ f(O \lor C) = O \lor C.$$

Pueba que los triángulos (A, B, C) y (f(A), f(B), f(C)) son perspectivamente equivalentes desde O.