A Report

On

FLIGHT FARE PREDICDTION USING MULTIPLE LINEAR REGRESSION MODEL

Research and Business Analytics Batch 2020- 2022

FACULTY MENTOR:

Prof. Sareeta Mugde

SUBMITTED BY

GROUP 10

Jidnyasa Heda (20)

Ruchika Dhamane (41)

Shivani Bihade (49)

Vishal Malpure (58)

Contents

PROJECT INTRODUCTION:Project Introduction in the control of t	3
FEATURES OF THE DATASET	3
OBJECTIVE	3
EXPLORATORY DATA ANALYSIS	4
MODEL BUILDING AND RESULTS	13
CONCLUSION:	28
FUTURE SCOPE	29

PROJECT INTRODUCTION

Flight ticket prices can be something hard to guess, today we might see a price, check out the price of the same flight tomorrow, it will be a different story. We might have often heard travelers saying that flight ticket prices are so unpredictable. Hence, we have built a model to predict the prices of flight tickets for various airlines between the months of March and June of 2019 and between various cities. Size of training set: 10,683 records.

FEATURES OF THE DATASET

Independent Variables in the dataset:

1. ID: Contiguous sample number

2. Airline: The name of the airline

3. Date_of_Journey: The date of the journey

4. Source: The source from which the service begins.

5. Destination: The destination where the service ends

6. Dep_Time: The time when the journey starts from the source.

7. Arrival_Time: Time of arrival at the destination.

8. Duration: Total duration of the flight.

9. Total Stops: Total stops between the source and destination.

10. Additional Info: Additional information about the flight

Target Dependent variable:

Price: The price of the ticket

OBJECTIVE

The flight ticket price in India is based on demand and supply model with few restrictions on pricing from regulatory bodies. It is often perceived as unpredictable and, recent dynamic pricing scheme added to the confusion. The objective is to create a machine learning model for predicting the flight price, based on historical data, which can be used for reference price for customers as well as airline service providers.

EXPLORATORY DATA ANALYSIS

Preprocessing of the data has been done on Python.

Flight Price Prediction

```
In [408]:
           #Import packages like pandas, numpy, matplotlib, seaborn
            import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            import seaborn as sns
In [409]: #Importing training data from excel stored in the local machine
           df_train= pd.read_excel("Data_Train.xlsx")
In [410]: #Displaying first 5 rows of training data
           df_train.head()
Out[410]:
                  Airline Date_of_Journey
                                           Source Destination
                                                                                Route Dep_Time Arrival_Time Duration Total_Stops Additional_Info
                                                                                                                                                 Price
                                                                            BLR → DEL
                  IndiGo
                               24/03/2019 Banglore
                                                                                           22:20
                                                                                                 01:10 22 Mar
                                                                                                                                                  3897
                                                    New Delhi
                                                                                                               2h 50m
                                                                                                                          non-stop
                                                                                                                                          No info
                 Air India
                                1/05/2019
                                           Kolkata
                                                     Banglore
                                                                CCU → IXR → BBI → BLR
                                                                                           05:50
                                                                                                       13:15
                                                                                                               7h 25m
                                                                                                                           2 stops
                                                                                                                                          No info
                                                                                                                                                  7662
              Jet Airways
                                9/06/2019
                                             Delhi
                                                       Cochin DEL → LKO → BOM → COK
                                                                                           09:25 04:25 10 Jun
                                                                                                                  19h
                                                                                                                           2 stops
                                                                                                                                          No info 13882
                   IndiGo
                               12/05/2019
                                           Kolkata
                                                     Banglore
                                                                     CCU → NAG → BLR
                                                                                           18:05
                                                                                                       23:30
                                                                                                               5h 25m
                                                                                                                            1 stop
                                                                                                                                          No info
                                                                                                                                                  6218
                               01/03/2019 Banglore
                                                    New Delhi
                                                                     BLR → NAG → DEL
                                                                                           16:50
                                                                                                       21:35
                                                                                                               4h 45m
                                                                                                                            1 stop
                                                                                                                                          No info 13302
            In [411]: #Print info
                        #Training Data consists of 10 columns of object/string type and 1 column i.e price of integer type
                        df_train.info()
                        <class 'pandas.core.frame.DataFrame'>
                        RangeIndex: 10683 entries, 0 to 10682
                       Data columns (total 11 columns):
                                          10683 non-null object
                       Date_of_Journey
                                            10683 non-null object
                                            10683 non-null object
                        Source
                        Destination
                                            10683 non-null object
                         In [412]: #As there is only one numerical feature we got statistical information only for price column
                                   df_train.describe()
                         Out[412]:
                                                Price
                                    count 10683.000000
                                    mean 9087 064121
                                          4611.359167
                                      min
                                          1759.000000
                                     25%
                                          5277.000000
                                     50% 8372 000000
                                     75% 12373.000000
                                     max 79512.000000
                         In [413]: #shape of data
                                    #10683 rows and 11 columns
                                   df_train.shape
                         Out[413]: (10683, 11)
                         In [414]: #number of rows in the training data
                                   len(df_train.index)
                         Out[414]: 10683
```

```
In [415]: #Finding sum of null values in all columns
          df_train.isnull().sum()
Out[415]: Airline
                             0
          Date_of_Journey
          Source
                             0
          Destination
                             0
                             1
          Route
          Dep_Time
                             0
          Arrival_Time
                             0
          Duration
                             0
          Total_Stops
                             1
          Additional_Info
                             0
          Price
                             0
          dtype: int64
In [416]: #Check if all the entries within a row are null so that we can delete the entire row
          df_train.isnull().all(axis=1).sum()
Out[416]: 0
```

```
In [417]: # Bar Chart for Flight Categories
sns.countplot(y=df_train["Airline"])
```

Out[417]: <matplotlib.axes._subplots.AxesSubplot at 0x1de47f0d828>


```
In [418]: #Bar Chart for Source
sns.countplot(x=df_train["Source"])

Out[418]: <matplotlib.axes._subplots.AxesSubplot at 0x1de59d11b38>

4000

4000

Banglore Kolkata Delhi Chennai Mumbai
Source
```



```
In [420]: #Source wise Flight Categories
fig, ax = plt.subplots(figsize=(20,10))
sns.countplot(y=df_train["Source"],hue=df_train["Airline"],ax=ax)
Out[420]: <matplotlib.axes._subplots.AxesSubplot at 0x1de5ba7ba90>
```



```
In [422]: #Value Count of each Flight Category
df_train["Airline"].value_counts()
                 Out[422]: Jet Airways
IndiGo
                                                                      3849
                                                                      2053
                                                                      1752
                             Air India
                             Multiple carriers
                              SpiceJet
                                                                       818
                             Vistara
                                                                       479
                             Air Asia
                                                                       319
                             GoAir
                                                                       194
                             Multiple carriers Premium economy
                                                                        13
                              Jet Airways Business
                             Vistara Premium economy
                             Trujet
                                                                         1
                             Name: Airline, dtype: int64
                 In [423]: #Value Count of number of Flights from each Source
df_train["Source"].value_counts()
                  Out[423]: Delhi
                                          4537
                              Kolkata
                                           2871
                             Banglore
                                           2197
                             Mumbai
                                            697
                             Chennai
                                            381
                             Name: Source, dtype: int64
                        In [424]:
#Value Count of number of Flights to each Destination
df_train["Destination"].value_counts()
                        Out[424]: Cochin
                                                  4537
                                    Banglore
                                                  2871
                                    Delhi
                                                  1265
                                    New Delhi
                                                  932
                                    Hyderabad
                                                   697
                                    Kolkata
                                                   381
                                    Name: Destination, dtype: int64
In [426]: #Value Count of Total Stops
            #There are 5625 flights having 1 stop in between while reaching from source to destination df_train["Total_Stops"].value_counts()
Out[426]: 1 stop
            non-stop
                          3491
            2 stops
                          1520
            3 stops
                            45
            4 stops
                             1
            Name: Total_Stops, dtype: int64
In [427]: #Value Count of Additional_Info Column
            df_train["Additional_Info"].value_counts()
Out[427]: No info
                                                 8345
            In-flight meal not included
                                                 1982
            No check-in baggage included
                                                  320
            1 Long layover
                                                    19
            Change airports
                                                    7
            Business class
                                                     4
            No Info
                                                     3
            1 Short layover
                                                     1
            2 Long layover
                                                    1
            Red-eye flight
            Name: Additional_Info, dtype: int64
            As we can see that 8345/10683 = 78.11% data has no information,hence we can drop this Additional_Info Column
```

```
In [428]: #Dropping Additional_Info
           df_train.drop(["Additional_Info"],axis=1,inplace=True)
In [429]: #Displaying first 5 rows of the dataframe
           df_train.head()
Out[429]:
                  Airline Date_of_Journey Source Destination
                                                                              Route Dep_Time Arrival_Time Duration Total_Stops
            0
                              24/03/2019 Banglore New Delhi
                                                                         BLR → DEL
                                                                                        22:20 01:10 22 Mar 2h 50m
                                                                                                                                3897
                  IndiGo
                                                                                                                      non-stop
                 Air India
                               1/05/2019 Kolkata
                                                   Banglore CCU \rightarrow IXR \rightarrow BBI \rightarrow BLR
                                                                                        05:50
                                                                                                    13:15 7h 25m
                                                                                                                        2 stops
                                                                                                                                7662
            2 Jet Airways
                               9/06/2019
                                          Delhi
                                                    Cochin DEL → LKO → BOM → COK
                                                                                        09:25 04:25 10 Jun
                                                                                                                       2 stops 13882
                  IndiGo
                               12/05/2019 Kolkata Banglore
                                                                  CCU → NAG → BLR
                                                                                        18:05
                                                                                                    23:30 5h 25m
                                                                                                                        1 stop 6218
                              01/03/2019 Banglore New Delhi
                                                                   BLR → NAG → DEI 16:50
                  IndiGo
                                                                                                    21:35 4h 45m
                                                                                                                        1 stop 13302
```

Data Preprocessing

```
In [430]: #From the Date_of Journey Column, create a new column Journey_Day which is an integer df_train["Journey_Day"]=pd.to_datetime(df_train["Date_of_Journey"],format="%d/%m/%Y").dt.day

In [431]: #From the Date_of Journey Column, create a new column Journey_Montg which is an integer df_train["Journey_Month"]=pd.to_datetime(df_train["Date_of_Journey"],format="%d/%m/%Y").dt.month
```

We will not extract the year from Date_of_Journey Column because all the 10683 rows belong to the year 2019. Now we can drop the Date_of_journey column

```
In [433]: #Dropping Date_of_Journey Column
df_train.drop(["Date_of_Journey"],axis=1,inplace=True)

In [434]: #From the Dep_Time Column, create a new column Dep_Hour which is an integer
df_train["Dep_Hour"]=pd.to_datetime(df_train["Dep_Time"]).dt.hour

In [435]: #From the Dep_Time Column, create a new column Dep_Minute which is an integer
df_train["Dep_Minute"]=pd.to_datetime(df_train["Dep_Time"]).dt.minute

In [436]: #Dropping Dep_Time Column
df_train.drop(["Dep_Time"],axis=1,inplace=True)

In [437]: # As we are considering Duration for the processing hence we can drop Arrival_time column because Duration=Arrival_Time-Dep_Time
df_train.drop(["Arrival_Time"],axis=1,inplace=True)

In [438]: #As we have Total number of stops,hence we can remove the redundant information about the route
df_train.drop(["Route"],axis=1,inplace=True)
```

```
In [439]: # Assigning and converting Duration column into list
            duration = list(df_train["Duration"])
            for i in range(len(duration)):
                 if len(duration[i].split()) != 2: # Check if duration contains only hour or mins
                     if "h" in duration[i]:
                         duration[i] = duration[i].strip() + " 0m"  # Adds 0 minute
                     else:
                          duration[i] = "0h " + duration[i]
                                                                           # Adds 0 hour
            duration_hours =
            duration_mins = []
            for i in range(len(duration)):
                duration_hours.append(int(duration[i].split(sep = "h")[0]))  # Extract hours from duration duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1]))  # Extracts only minutes from duration
In [440]: # Adding duration_hours and duration_mins list to train_data dataframe
            df_train["Duration_hours"] = duration_hours
df_train["Duration_mins"] = duration_mins
In [441]: #Dropping Duration Column
            df_train.drop(["Duration"],axis=1,inplace=True)
```

Data Processing for Categorical Columns

As Airline Column consists of Nominal Data hence performing One hot Encoding for the same

Out[444]:

	Airline	Source	Destination	Total_Stops	Price	Journey_Day	Journey_Month	Dep_Hour	Dep_Minute	Duration_hours	 GoAir	IndiGo	Jet Airways	Air Busi
0	IndiGo	Banglore	New Delhi	non-stop	3897	24	3	22	20	2	 0	1	0	
1	Air India	Kolkata	Banglore	2 stops	7662	1	5	5	50	7	 0	0	0	
2	Jet Airways	Delhi	Cochin	2 stops	13882	9	6	9	25	19	 0	0	1	
3	IndiGo	Kolkata	Banglore	1 stop	6218	12	5	18	5	5	 0	1	0	
4	IndiGo	Banglore	New Delhi	1 stop	13302	1	3	16	50	4	 0	1	0	

5 rows × 22 columns

```
In [445]: #Creating Dummy variables for Source Column
           source\_dummies=pd.get\_dummies(df\_train["Source"],prefix='Source',drop\_first=True)
In [446]: #Concatinating the inital dataframe with the source dummy variables
           df_train=pd.concat([df_train,source_dummies],axis=1)
In [447]: #Creating Dummy variables for Destination Column and concatinating the inital dataframe with the destination dummy variables
           destination_dummies=pd.get_dummies(df_train["Destination"],prefix='Destination',drop_first=True)
df_train=pd.concat([df_train,destination_dummies],axis=1)
In [448]: #As we have created the dummy variables for Airline, Source & Destination so we can drop the actual Airline, Source & Destination Co
           df_train.drop(["Airline","Source","Destination"],axis=1,inplace=True)
          4
In [449]: #Value Count of Total Stops Column
           df_train["Total_Stops"].value_counts()
Out[449]: 1 stop
                       5625
           non-stop
                        3491
           2 stops
                       1520
           3 stops
                        45
           4 stops
                          1
          Name: Total_Stops, dtype: int64
```

As Total_Stops Column consists of ordinal data hence we are performing Label Encoding for the Total_Stops Column

```
In [450]: #Replacing this Object values with the string values
           df_train.replace(to_replace=['1 stop', 'non-stop','2 stops','3 stops','4 stops'], value=["1","0","2","3","4"],inplace=True)
In [451]: df_train.head()
Out[451]:
                                                                                                                       Vistara
              Total_Stops Price Journey_Day Journey_Month Dep_Hour Dep_Minute Duration_hours Duration_mins
                                                                                                            GoAir ...
                                                                                                                      Premium
                                                                                                                              Source_Chennai Soi
                                                                                                                      economy
           0
                      0
                         3897
                                       24
                                                      3
                                                              22
                                                                         20
                                                                                       2
                                                                                                    50
                                                                                                          0
                                                                                                                0
                                                                                                                            0
                                                                                                                                          0
                         7662
                                                      5
                                                               5
                                                                                                    25
                                                                                                                                          0
           2
                      2 13882
                                                               9
                                                                         25
                                                                                                                                          0
                                        9
                                                      6
                                                                                       19
                                                                                                    0
                                                                                                          0
                                                                                                                0
           3
                      1 6218
                                       12
                                                      5
                                                              18
                                                                          5
                                                                                       5
                                                                                                    25
                                                                                                          0
                                                                                                                0
                                                                                                                            0
                                                                                                                                          0
                      1 13302
                                                                         50
                                                                                                    45
                                                                                                                0
          5 rows × 28 columns
In [452]: # As there is one NA value in the Total_Stops column replacing it with the mode of the column i.e 1
           df_train['Total_Stops'].fillna(1,inplace=True)
In [453]: #Converting the object type Total_Stops column to integer type Total_Stops Column
           df_train['Total_Stops']=df_train['Total_Stops'].astype(int)
                       In [454]: #All the columns are of the integer type
                                  df_train.info()
                                  <class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, 0 to 10682
                                  Data columns (total 28 columns):
                                                                         10683 non-null int32
                                   Total_Stops
                                  Price
                                                                         10683 non-null int64
                                   Journey_Day
                                                                         10683 non-null int64
                                   Journey_Month
                                                                         10683 non-null int64
                                  Dep_Hour
                                                                         10683 non-null int64
                                  Dep_Minute
                                                                         10683 non-null int64
                                   Duration_hours
                                                                         10683 non-null int64
                                  Duration_mins
                                                                         10683 non-null int64
                                  Air India
                                                                         10683 non-null uint8
                                  GoAir
                                                                         10683 non-null uint8
                                  IndiGo
                                                                         10683 non-null uint8
                                   Jet Airways
                                                                         10683 non-null uint8
                                   Jet Airways Business
                                                                         10683 non-null uint8
                                  Multiple carriers
                                                                         10683 non-null uint8
                                  Multiple carriers Premium economy
                                                                         10683 non-null uint8
                                                                         10683 non-null uint8
                                  Spicelet
                                                                         10683 non-null uint8
                                   Truiet
                                   Vistara
                                                                         10683 non-null uint8
                                   Vistara Premium economy
                                                                         10683 non-null uint8
                                   Source_Chennai
                                                                         10683 non-null uint8
                                  Source_Delhi
                                                                         10683 non-null uint8
                                  Source Kolkata
                                                                         10683 non-null uint8
                                                                         10683 non-null uint8
                                  Source Mumbai
                                  Destination Cochin
                                                                         10683 non-null uint8
                                                                         10683 non-null uint8
                                   Destination_Delhi
                                  Destination_Hyderabad
                                                                         10683 non-null uint8
                                  Destination_Kolkata
                                                                         10683 non-null uint8
                                  Destination_New Delhi
                                                                         10683 non-null uint8
                                  dtypes: int32(1), int64(7), uint8(20)
                                  memory usage: 834.7 KB
                             In [455]: # Now the processed data consists of 28 columns
                                        df_train.shape
                             Out[455]: (10683, 28)
                            In [456]: #Correlation Matrix in the form of heatmap
                                        fig,ax = plt.subplots(figsize=(25,15))
corr=df_train.corr()
                                        sns.heatmap(corr,ax=ax,annot=True,linewidth=.5)
                            Out[456]: <matplotlib.axes._subplots.AxesSubplot at 0x1de623d47b8>
```

Correlation Matrix:

In [459]: #Displaying the first five rows of the processed data
df_train.head()

Out[459]:

	Air India	GoAir	IndiGo	Jet Airways	Jet Airways Business	Multiple carriers	Multiple carriers Premium economy	SpiceJet	Trujet	Vistara	 Destination_Kolkata	Destination_New Delhi	Journey_Day	Journey_Moi
0	0	0	1	0	0	0	0	0	0	0	 0	1	24	
1	1	0	0	0	0	0	0	0	0	0	 0	0	1	
2	0	0	0	1	0	0	0	0	0	0	 0	0	9	
3	0	0	1	0	0	0	0	0	0	0	 0	0	12	
4	0	0	1	0	0	0	0	0	0	0	 0	1	1	

5 rows × 28 columns

In [460]: # Exporting this processed data to a csv file using to_csv
 df_train.to_csv("Final_Data.csv",index=False)

MODEL BUILDING AND RESULTS

Step 1: Import the excel file.

Variable View

Data View

Analyze→Correlate→Bivariate

Bivariate Correlations

Linear Regression

Linear Regression Statistics

Linear Regression Plots

Linear Regression_Options

Step 2: Output report of linear regression model (Before removing outliers)

From the model summary table, we can see that the R square value also known as coefficient of determination is **0.623**. It indicates that 62.3 percent of the variance in the dependent variable i.e., price depends upon the variables used as predictors (independent variables).

	ANOVA ^a										
Model	Sum of Model Squares df Mean Square F Sig.										
1	Regression	1.415E+11	23	6154313241	766.345	.000 ^b					
	Residual	8.560E+10	10659	8030735.440							
	Total	2.271E+11	10682								

- a. Dependent Variable: Price
- b. Predictors: (Constant), Total_Stops, Trujet, Multiple carriers Premium economy, Dep_Minute, Jet Airways Business, Vistara Premium economy, Source_Kolkata, Journey_Day, GoAir, Journey_Month, Vistara, Dep_Hour, Duration_mins, Air India, Destination_Kolkata, SpiceJet, Destination_Hyderabad, Multiple carriers, IndiGo, Destination_New Delhi, Destination_Delhi, Duration_hours, Jet Airways

The analysis of variance is used to test the statistical significance of the R-square value in the Model Summary table. Here, the ANOVA results indicate statistical significance (as the significance value is less than 0.05) suggesting that the population R-square is significantly greater than zero.

Coefficients^a

		000111	10101102			
				Standardized		
		Unstandardized	l Coefficients	Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	7296.968	249.291		29.271	.000
	Air India	1588.002	183.776	.128	8.641	.000
	Go Air	24.569	259.587	.001	.095	.925
	IndiGo	223.702	174.620	.019	1.281	.200
	Jet Airways	4341.849	172.936	.452	25.107	.000
	Jet Airways Business	47513.870	1171.960	.244	40.542	.000
	Multiple carriers	3654.010	190.139	.250	19.218	.000
	Multiple carriers Premium economy	4073.605	806.106	.031	5.053	.000
	SpiceJet	-273.222	190.833	016	-1.432	.152
	Trujet	-2713.178	2842.847	006	954	.340
	Vistara	2112.649	211.179	.095	10.004	.000
\longrightarrow	Vistara Premium economy	2864.120	1646.483	.010	1.740	.082
\longrightarrow	Source_Kolkata	-110.784	77.418	011	-1.431	.152
	Destination_Delhi	-951.478	120.418	067	-7.901	.000
	Destination_Hyderabad	-1766.336	136.636	095	-12.927	.000
	Destination_Kolkata	-67.851	172.544	003	393	.694
	Destination_New Delhi	1694.997	122.589	.104	13.827	.000
	Journey_Day	-75.147	3.277	138	-22.932	.000
	Journey_Month	-412.502	26.900	104	-15.335	.000
	Dep_Hour	21.631	4.913	.027	4.402	.000
\longrightarrow	_Dep_Minute	-1.986	1.532	008	-1.296	.195
	Duration_hours	.956	5.199	.002	.184	.854
\longrightarrow	Duration_mins	671	1.713	002	392	.695
	Total_Stops	2746.862	73.264	.402	37.493	.000

a. Dependent Variable: Price

The variables indicated by red arrow have significance value greater than 0.05. Therefore, cannot be taken into consideration for further analysis.

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	753.04	59258.52	9087.06	3640.218	10683
Std. Predicted Value	-2.289	13.783	.000	1.000	10683
Standard Error of Predicted Value	67.993	2833.855	121.381	57.519	10683
Adjusted Predicted Value	749.11	61836.35	9087.52	3640.597	10682
Residual	-12768.524	41023.180	.000	2830.803	10683
Std. Residual	-4.506	14.476	.000	.999	10683
Stud. Residual	-4.940	14.489	.000	1.001	10683
Deleted Residual	-15346.346	41097.641	.006	2841.653	10682
Stud. Deleted Residual	-4.945	14.633	.000	1.002	10682
Mahal. Distance	5.149	10681.000	22.998	129.739	10683
Cook's Distance	.000	.582	.000	.006	10682
Centered Leverage Value	.000	1.000	.002	.012	10683

a. Dependent Variable: Price

The above table is useful for judging the minimum and maximum values to screen for potential outliers. According to Pituch & Stevens, cases with values falling below -3 or above +3 need to be investigated further as possible candidate outliers. Here the minimum and maximum values in the dataset for the studentized residuals are -4.940 and 14.489 indicating for further investigation.

One of the assumptions of linear regression model is that the residuals are normally distributed. From the above histogram of the standardized residuals, a bell-shaped curve can be seen. Hence, it can be interpreted that the data is normally distributed to a greater extent.

Normal P-P Plot of Regression Standardized Residual

The normal P-P plot can also be used to assess normality of the standardized residuals. This plot shows the relationship between the observed residuals against those expected under the condition of normality. The closer the observed residuals fall in relation to the regression line, the more evidence of normality. From this figure it can be said that this plot provides good support for evidence of normally distributed residuals as the residuals lie very closely to the regression line.

The above figure contains a plot of the studentized residuals against the standardized predicted values. In general, we are looking for the residuals to be randomly and evenly distributed around zero & falling between roughly -3 and +3 units. But here the residual points lie in the range of -5 to +15 units which is beyond the expected range which means that there are many outliers in the dataset and it needs further investigation.

Now, we have repeated these steps multiple times to remove possible outliers in the dataset. After successful removal of the outliers, we have trained this model on the clean and well processed dataset and got the following results.

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.830ª	.689	.689	2237.889

- a. Predictors: (Constant), Total_Stops, Journey_Day, Jet Airways Business, Multiple carriers Premium economy, Destination_New Delhi, Dep_Hour, Vistara, Multiple carriers, Destination_Hyderabad, SpiceJet, Air India, Journey_Month, Destination_Delhi, Jet Airways
- b. Dependent Variable: Price

From the Model Summary^b, it can be seen that the R-square value has increased to 68.9% in comparison with the earlier Model Summary^a (R-square = 62.3%). Hence, we can say that the "68.9%" of the explained variance in the dependent variable i.e. price is determined by the independent variable.

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	115614558691.740	14	8258182763.696	1648.950	.000 ^b
	Residual	52159857576.766	10415	5008147.631		
	Total	167774416268.506	10429			

- a. Dependent Variable: Price
- b. Predictors: (Constant), Total_Stops, Journey_Day, Jet Airways Business, Multiple carriers Premium economy, Destination_New Delhi, Dep_Hour, Vistara, Multiple carriers, Destination_Hyderabad, SpiceJet, Air India, Journey_Month, Destination_Delhi, Jet Airways

Here, ANOVA table indicates the statistical significance of the model as the Significance-value is less than 0.05.

Coefficientsa

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	6733.047	133.952		50.265	.000
	Air India	1373.347	77.773	.127	17.658	.000
	Jet Airways	3984.485	62.742	.476	63.506	.000
	Jet Airways Business	39866.317	1294.690	.169	30.792	.000
	Multiple carriers	3297.287	83.272	.259	39.597	.000
	Multiple carriers Premium economy	3890.481	624.278	.034	6.232	.000
	SpiceJet	-516.760	91.068	034	-5.674	.000
	Vistara	1927.851	112.548	.100	17.129	.000
	Destination_Delhi	-1032.892	80.750	084	-12.791	.000
	Destination_Hyderabad	-2157.769	99.512	131	-21.684	.000
	Destination_New Delhi	409.779	93.261	.028	4.394	.000
	Journey_Day	-51.410	2.622	108	-19.609	.000
	Journey_Month	-304.489	21,559	087	-14.123	.000
	Dep_Hour	17.663	3.909	.025	4.519	.000
	Total_Stops	2651.158	45.934	.447	57.717	.000

a. Dependent Variable: Price

The coefficient table indicates the individual significance-values of all the independent variables. For all the independent variables the significance-value is less than 0.05 (i.e. 0.000). Hence, all the above-mentioned independent variables are statistically significant and can be considered for model building.

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	931.84	51187.25	8820.63	3329.545	10430
Std. Predicted Value	-2.369	12.724	.000	1.000	10430
Standard Error of Predicted Value	39.819	1294.331	77.561	34.451	10430
Adjusted Predicted Value	928,47	53539.00	8820.65	3329.882	10430
Residual	-6700.604	6615.127	.000	2236.387	10430
Std. Residual	-2.994	2.956	.000	.999	10430
Stud. Residual	-2.996	2.958	.000	1.000	10430
Deleted Residual	-7049.005	6623.639	021	2240.154	10430
Stud. Deleted Residual	-2.997	2.959	.000	1.000	10430
Mahal. Distance	2.302	3487.639	13.999	65.447	10430
Cook's Distance	.000	.221	.000	.002	10430
Centered Leverage Value	.000	.334	.001	.006	10430

a. Dependent Variable: Price

In the above table the studentized residuals lie between -2.996 and +2.958. According to Pituch & Stevens, cases with values lying between -3 to +3 are acceptable and do not contain outliers and are said to possess homoscedasticity.

We can see a significant change in the shape of histogram of standardized residuals after processing of the data. It appears to have grown wider than before. Hence, we can say that the assumption of linear regression that the residuals are normally distributed is satisfied.

From this figure it can be seen that residuals have moved even closer to the regression line than before. Hence, we can say that this p-p plot provides a good evidence for normally distributed residuals.

The above scatter plot shows even distribution of studentized residuals against the standardized predicted values. As no systematic pattern like fan shaped or bow shaped is observed in the spread of the residuals. Hence, it can be said that the data follows the principle of homoscedasticity.

CONCLUSION:

- Final model after removing the outliers showed an improvement in R square to 68.9 %.
- Homoscedasticity is achieved
- P-P plot showed improvement
- Residual normality is achieved

FUTURE SCOPE

- We can deploy this model on AWS or GCP and build a web application wherein the users can enter the basic information (Journey Date, Source, Destination, number of stops) and get the flight price on button click.
- Retraining approach: Generating pickle file after every month to increase the accuracy and R-Square.