152 Endomorphismes diagonalisables en dimension finie.

Soit E un espace vectoriel sur un corps \mathbb{K} de dimension finie n. Soit $u \in \mathcal{L}(E)$ un endomorphisme de E.

I - Spectre d'un endomorphisme

1. Valeurs propres, vecteurs propres

Définition 1. Soit $\lambda \in \mathbb{K}$.

[**GOU21**] p. 171

- On dit que λ est **valeur propre** de u si $u \lambda$ id $_E$ est non injective.
- Un vecteur $x \neq 0$ tel que $u(x) = \lambda x$ est un **vecteur propre** de u associé à la valeur propre λ .
- $E_{\lambda} = \text{Ker}(u \lambda \text{ id}_E)$ est le **sous-espace propre** associé à la valeur propre λ .
- L'ensemble des valeurs propres de u est appelé **spectre** de u. On le note Sp(u).

Remarque 2. — 0 est valeur propre de u si et seulement si $Ker(f) \neq \{0\}$.

- On peut définir de la même manière les mêmes notions pour une matrice de $\mathcal{M}_n(\mathbb{K})$ (une valeur est propre pour une matrice si et seulement si elle l'est pour l'endomorphisme associé). On reprendra les mêmes notations.
- Les sous-espaces E_{λ} sont stables par u pour toute valeur propre λ .

Exemple 3.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 est vecteur propre de $\begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ associé à la valeur propre 1.

Théorème 4. Soient $\lambda_1, \dots, \lambda_k$ des valeurs propres de u, distinctes deux à deux. Alors les sous-espaces propres $E_{\lambda_1}, \dots, E_{\lambda_k}$ sont en somme directe.

Théorème 5. Soit $P \in \mathbb{K}[X]$. Pour tout valeur propre λ de u, $P(\lambda)$ est une valeur propre de P(u). Si le corps \mathbb{K} est algébriquement clos, on a alors

[ROM21] p. 604

$$\operatorname{Sp}(P(u)) = \{P(\lambda) \mid \lambda \in \operatorname{Sp}(u)\}\$$

Contre-exemple 6. Pour $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ et $P = X^2$, on a $A^2 = -I_2$ et $Sp(A) = \emptyset$.

2. Polynôme caractéristique

Proposition 7. En notant $\chi_u = \det(X \operatorname{id}_E - u)$,

$$\operatorname{Sp}(u) = \{ \lambda \in \mathbb{K} \mid \chi_u(\lambda) = 0 \}$$

Définition 8. Le polynôme χ_u précédent est appelé **polynôme caractéristique** de u.

Remarque 9. On peut définir la même notion pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$, ces deux notions coïncidant bien si A est la matrice de u dans une base quelconque de E.

Exemple 10. Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$
, on a $\chi_A = X^2 - \operatorname{trace}(A)X + \det(A)$.

Proposition 11. Soit λ une valeur propre de u de multiplicité α en tant que racine de χ_u . Alors,

$$\dim(E_{\lambda}) \in [1, \alpha]$$

Proposition 12. (i) Le polynôme caractéristique est un invariant de similitude.

(ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $\chi_A = \sum_{k=0}^n a_k X^k$. Alors, $a_0 = \det(A)$ et $a_{n-1} = \operatorname{trace}(A)$ (à un signe près).

3. Polynôme minimal

Lemme 13. (i) Ann $(u) = \{P \in \mathbb{K}[X] \mid P(u) = 0\}$ est un sous-ensemble de $\mathbb{K}[u]$ non réduit au polynôme nul.

- (ii) Ann(u) est le noyau de $P \rightarrow P(u)$: c'est un idéal de $\mathbb{K}[u]$.
- (iii) Il existe un unique polynôme unitaire engendrant cet idéal.

Définition 14. On appelle **idéal annulateur** de u l'idéal Ann(u). Le polynôme unitaire générateur est noté π_u et est appelé **polynôme minimal** de u.

p. 644

[ROM21]

p. 604

[GOU21]

p. 172

Remarque 15. — π_u est le polynôme unitaire de plus petit degré annulant u.

— Si $A \in \mathcal{M}_n(\mathbb{K})$ est la matrice de u dans une base de E, on a $\mathrm{Ann}(u) = \mathrm{Ann}(A)$ et $\pi_u = \pi_A$.

Exemple 16. Un endomorphisme est nilpotent d'indice q si et seulement si son polynôme minimal est X^q .

Proposition 17. Soit F un sous-espace vectoriel de E stable par u. Alors, le polynôme minimal de l'endomorphisme $u_{|F}: F \to F$ divise π_u .

Proposition 18. (i) Les valeurs propres de *u* sont racines de tout polynôme annulateur.

(ii) Les valeurs propres de u sont exactement les racines de π_u .

Remarque 19. π_u et χ_u partagent dont les mêmes racines.

[**GOU21**] p. 186

Théorème 20 (Cayley-Hamilton).

$$\pi_u \mid \chi_u$$

[**ROM21**] p. 607

Corollaire 21.

$$\dim(\mathbb{K}[u]) \leq n$$

II - Diagonalisabilité

1. Définition

Définition 22. — On dit que u est **diagonalisable** s'il existe une base de E dans laquelle la matrice de u est diagonale.

p. 683

— On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est **diagonalisable** si elle est semblable à une matrice diagonale.

Remarque 23. u est diagonalisable si et seulement si sa matrice dans n'importe quelle base de E l'est.

Exemple 24. — Les projecteurs (ie. les endomorphismes $p \in \mathcal{L}(E)$ tels que $p^2 = p$) sont toujours diagonalisables, à valeurs propres dans $\{0,1\}$.

— Les symétries (ie. les endomorphismes $s \in \mathcal{L}(E)$ tels que $s^2 = \mathrm{id}_E$) sont toujours diagonalisables, à valeurs propres dans $\{\pm 1\}$. Par exemple, l'endomorphisme de trans-

[BMP] p. 166 position $A \mapsto {}^t A$ est diagonalisable.

2. Critères

Proposition 25. Si u a n valeurs propres distinctes dans \mathbb{K} , alors il est diagonalisable.

[ROM21] p. 683

Théorème 26 (Lemme des noyaux). Soit $P=P_1\dots P_k\in\mathbb{K}[X]$ où les polynômes P_1,\dots,P_k sont premiers entre eux deux à deux. Alors,

p. 609

$$\operatorname{Ker}(P(u)) = \bigoplus_{i=1}^{k} \operatorname{Ker}(P_i(u))$$

Théorème 27. Soit $Sp(u) = {\lambda_1, ..., \lambda_n}$. Les assertions suivantes sont équivalentes :

p. 683

- (i) u est diagonalisable sur \mathbb{K} .
- (ii) $E = \bigoplus_{k=1}^p E_{\lambda_k}$.
- (iii) $\sum_{k=1}^{p} \dim(E_{\lambda_k}) = n$.
- (iv) χ_n est scindé sur \mathbb{K} et pour tout $k \in [1, p]$, la dimension de E_{λ_k} est égale à la multiplicité de λ_k dans χ_u .
- (v) $\exists P \in \text{Ann}(u)$ scindé à racines simples.
- (vi) π_u est scindé à racines simples.

[**GOU21**] p. 177

Exemple 28. $\begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ est diagonalisable, semblable à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$.

p. 188

Corollaire 29. Sur $\mathbb{K} = \mathbb{F}_q$, u est diagonalisable si et seulement si $u^q = u$.

p. 176

Théorème 30 (Diagonalisation simultanée). Soit $(u_i)_{i\in I}$ une famille d'endomorphismes de E diagonalisables. Il existe une base commune de diagonalisation dans E pour $(u_i)_{i\in I}$ si et seulement si ces endomorphismes commutent deux-à-deux.

Remarque 31. La réciproque est vraie.

3. Exemples d'endomorphismes diagonalisables dans un espace euclidien ou hermitien

On se place dans le cas où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Si $\mathbb{K} = \mathbb{R}$, on munit E d'un produit scalaire $\langle ., . \rangle$. Si $\mathbb{K} = \mathbb{C}$, on munit E d'un produit scalaire hermitien $\langle ., . \rangle$.

a. Endomorphismes autoadjoints

Lemme 32. Il existe un unique $u^* \in \mathcal{L}(E)$ tel que

[**GOU21**] p. 255

$$\forall x, y \in E, \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

Définition 33. L'endomorphisme u^* précédent est **l'adjoint** de u. On dit que u est **autoadjoint** si $u = u^*$.

Proposition 34. Soit $v \in \mathcal{L}(E)$. Alors $v = u^*$ si et seulement si la matrice de v dans une base orthonormée \mathcal{B} de E est la transposée (transconjuguée dans le cas hermitien) de la matrice de u dans \mathcal{B} .

Théorème 35. Tout endomorphisme autoadjoint se diagonalise dans une base orthonormée, ses valeurs propres étant réelles.

Lemme 36.

[**C-G**] p. 376

$$\forall A\in \mathcal{S}_n^{++}(\mathbb{R})\,\exists !B\in \mathcal{S}_n^{++}(\mathbb{R}) \text{ telle que } B^2=A$$

[DEV]

Application 37 (Décomposition polaire). L'application

$$\mu: \begin{array}{ccc} \mathscr{O}_n(\mathbb{R}) \times \mathscr{S}_n^{++}(\mathbb{R}) & \to & \mathrm{GL}_n(\mathbb{R}) \\ (O,S) & \mapsto & OS \end{array}$$

est un homéomorphisme.

b. Endomorphismes normaux

On suppose dans toute cette sous-section que $\mathbb{K} = \mathbb{C}$.

Définition 38. u est dit **normal** s'il est tel que $u \circ u^* = u^* \circ u$.

[**GRI**] p. 286

Proposition 39. On suppose u normal. Soit $\lambda \in \mathbb{C}$ une valeur propre de u. Alors :

- (i) $E_{\lambda}^{\perp} = \{x \in E^{\lambda} \mid \forall y \in E^{\lambda}, \langle x, y \rangle = 0\}$ est stable par u.
- (ii) $u_{|E_{\lambda}^{\perp}}$ est normal.

Corollaire 40. On suppose *u* normal. Alors *u* est diagonalisable dans une base orthonormée.

4. Topologie

Proposition 41. L'ensemble $\mathcal{D}_n(\mathbb{C})$ des matrices diagonalisables à coefficients complexes est dense dans $\mathcal{M}_n(\mathbb{C})$.

[BMP] p. 179

Application 42. L'application qui à une matrice $M \in \mathcal{M}_n(\mathbb{C})$ associe la partie diagonalisable de sa décomposition de Dunford M = D + N n'est pas continue.

Application 43.

$$\forall U \in \mathcal{M}_n(\mathbb{C}), \, \chi_U(U) = 0$$

p. 217

III - Applications

1. Réduction

[DEV]

Théorème 44 (Décomposition de Dunford). On suppose que π_u est scindé sur \mathbb{K} . Alors il existe un unique couple d'endomorphismes (d, n) tels que :

[**GOU21**] p. 203

- d est diagonalisable et n est nilpotent.
- u = d + n.
- -dn = nd.

Corollaire 45. Si u vérifie les hypothèse précédentes, pour tout $k \in \mathbb{N}$, $u^k = (d+n)^k = \sum_{i=0}^m \binom{k}{i} d^i n^{k-i}$, avec $m = \min(k, l)$ où l désigne l'indice de nilpotence de n.

Remarque 46. On peut montrer de plus que d et n sont des polynômes en u.

2. Calcul d'exponentielles

Lemme 47. (i) La série entière $\sum \frac{z^k}{k!}$ a un rayon de convergence infini.

[**ROM21**] p. 761

(ii) $\sum \frac{A^k}{k!}$ est convergente pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$.

Définition 48. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On définit **l'exponentielle** de A par

$$\sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

on la note aussi $\exp(A)$ ou e^A .

Théorème 49. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) Si $A = \text{Diag}(\lambda_1, ..., \lambda_n)$, alors $\exp(A) = \text{Diag}(e_1^{\lambda}, ..., e_n^{\lambda})$.
- (ii) Si $B = PAP^{-1}$ pour $P \in GL_n(\mathbb{K})$, alors $e^B = P^{-1}e^AP$.
- (iii) $\det(e^A) = e^{\operatorname{trace}(A)}$.
- (iv) $t \mapsto e^{tA}$ est de classe \mathscr{C}^{∞} , de dérivée $t \mapsto e^{tA}A$.

Proposition 50. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ qui commutent. Alors,

$$e^A e^B = e^{A+B} = e^B e^A$$

Exemple 51. Soit $A \in \mathcal{M}_n(\mathbb{K})$ qui admet une décomposition de Dunford A = D + N où D est diagonalisable et N est nilpotente d'indice q. Alors,

- $e^{A} = e^{D} e^{N} = e^{D} \sum_{k=0}^{q-1} \frac{N^{k}}{k!}.$
- La décomposition de Dunford de e^A est $e^A = e^D + e^D(e^N I_n)$ avec e^D diagonalisable et $e^D(e^N I_n)$ nilpotente.

Application 52. Soit $A \in \mathcal{M}_n(\mathbb{K})$ dont le polynôme caractéristique est scindé sur \mathbb{K} . Alors A est diagonalisable si et seulement si e^A l'est.

Application 53. Une équation différentielle linéaire homogène (H): Y' = AY (où A est constante en t) a ses solutions maximales définies sur \mathbb{R} et le problème de Cauchy

$$\begin{cases} Y' = AY \\ Y(0) = y_0 \end{cases}$$

a pour (unique) solution $t \mapsto e^{tA}y_0$.

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Algèbre Linéaire [GRI]

Joseph Grifone. Algèbre Linéaire. 6e éd. Cépaduès, 9 jan. 2019.

https://www.cepadues.com/livres/algebre-lineaire-edition-9782364936737.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie*. 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$