Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} = 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta} == 0$	1
$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	<u>۱</u>
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	<u>۱</u>
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\iota_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0 \partial_{\chi} \partial^{\alpha} \iota^{\beta\chi} + \partial_{\chi} \partial^{\beta} \iota^{\chi\alpha} + \partial_{\chi} \partial^{\chi} \iota^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}t^{\chi\beta} + \partial_{\chi}\partial^{\beta}t^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{etalpha}+2\partial_{\delta}\partial_{\chi}\partial^{eta}\sigma^{lpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$-2ik \ \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0 \ -i \ (4 \ \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi\delta} + 2 \ \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau^{\chi}{}_{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$4\ ^{ec{l}}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta\epsilon}_{\ \ \delta}$ -	
	6 i k^{χ} $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\deltaarepsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6\ {\it ii}\ k^{\chi}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\zeta} \chi_{\chi}^{-}$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}{}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

	$\sigma_{1}^{\#1}\!$	$\sigma_{1}^{\#2}{}_{+}\alpha\beta$		$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^-}^{\#1}{}_{\alpha}$		$\sigma_{1}^{\#2}{}_{lpha}$	$ au_1^{\#}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_1^{\#2}$
$\sigma_{1}^{\#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	'	$\frac{\bar{l}\sqrt{2}k}{t_1+k^2t_1}$	0		0		0	0
$\sigma_1^{#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\begin{bmatrix} \frac{1}{(1+k^2)^2 t_1} \end{bmatrix}$		$\frac{ik}{(1+k^2)^2 t_1}$	0		0		0	0
$\tau_{1+}^{#1} + ^{\alpha \beta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{ik}{(1+k^2)^2 t_1}$	-	$\frac{k^2}{(1+k^2)^2t_1}$	0		0)	0	0
$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	0	0		0	$\frac{2(t_1+t_3)}{3t_1t_3}$	<u> </u>	$-\frac{\sqrt{2}(t_1-2t_3)}{3(1+2k^2)t_1t_3}$		0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0		0	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	t ₁ t ₃)	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$		0	$\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0		0	0		0		0	0
$\tau_1^{\#2} + \alpha$	0	0		0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	t1 t3	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$		0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
	$\omega_1^{\#1}{}_+\alpha_\beta$	$\omega_{1}^{\#1}_{+lphaeta}\omega_{1}^{\#2}_{+lphaeta}f_{1}^{\#1}_{+lphaeta}$	$f_{1}^{\#1}$	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	$\frac{1}{\alpha}$	0	$\omega_{1^{\bar{-}}\alpha}^{\#2}$	$f_{1^-}^{\#1}{}_{lpha}$		$f_{1^{ ext{-}}lpha}^{\#2}$
$\omega_1^{\#1} + ^{lphaeta}$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0			0	0		0
π , $\alpha \beta$	<i>t</i> ₁	,	((,		,

0	0	0	0	0	0	0						
0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$		$\omega_{0}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$	
0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$	$\omega_{0^{+}}^{\#1} \dagger$ $f_{0^{+}}^{\#1} \dagger$ $f_{0^{+}}^{\#2} \dagger$	$\frac{t_3}{i \sqrt{2} k t_3}$	$-i \sqrt{2} kt_3$ $2 k^2 t_3$ 0	0 0 0	0 0 0	σ_{2}^{*1} t_{1}
$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	$\omega_{0}^{#1}$ †	$\sigma^{\sharp 1}_{0^+}$	$\tau_{0^{+}}^{#1}$	$\tau_0^{\#2}$	$k^2 r_2 - t_1$ $\sigma_0^{\#1}$	$ au_{2}^{\#1}$
$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$		_	0	
	$-\frac{t_1}{\sqrt{2}}$		0	0	0	0	$ au_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$			0	$\sigma_{2}^{\#1}$
$+^{\alpha eta}$	$\dagger^{\alpha \beta}$	$+^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$	$\tau_{0}^{\#2}$ †	0	0	0	0	
$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_1^{\#1} + \alpha^{eta}$	$\omega_{1^{-}}^{\#:}$	$\omega_{1^{-}}^{\#_{1}^{\prime}}$	f_1^*	$f_{1}^{\#}$	$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	

 $\frac{2}{t_1}$

 $\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$

Massive and massless spectra

Massive partic	Massive particle						
Pole residue:	$-\frac{1}{r_2} > 0$						
Polarisations:	1						
Square mass:	$\frac{t_1}{r_2} > 0$						
Spin:	0						
Parity:	Odd						

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$