Prior sensitivity analysis

Female, Education level - A level and above

FALSE Loading required package: Matrix

	IF	Mean	SD	lower	upper
β_1^C	437.698	1.026	0.210	0.666	1.417
β_1^N	94.175	1.042	0.044	0.959	1.131
β_2^N	95.775	0.997	0.044	0.916	1.085
β_3^N	95.663	1.049	0.045	0.964	1.140
β_4^N	85.313	0.828	0.037	0.758	0.904
β_5^N	83.374	0.737	0.035	0.670	0.806
β_6^N	52.643	0.447	0.026	0.398	0.499
β_7^N	91.293	1.035	0.045	0.950	1.125
β_8^N	94.062	0.972	0.044	0.889	1.058
β_9^N	91.416	0.928	0.041	0.852	1.010
β_{10}^N	88.804	0.848	0.038	0.778	0.926
β_{11}^N	27.061	0.287	0.024	0.241	0.334
β_{12}^N	61.357	0.468	0.026	0.418	0.518
β_{13}^N	96.231	1.101	0.047	1.010	1.194
β_{14}^N	94.792	1.028	0.044	0.945	1.113
β_{15}^N	71.299	0.625	0.032	0.566	0.688
β_{16}^N	78.112	0.654	0.032	0.592	0.718
β_{17}^N	96.777	1.044	0.045	0.959	1.134
β_{18}^N	97.715	1.054	0.046	0.966	1.145
β_{19}^N	94.302	1.093	0.048	1.003	1.188
β_{20}^N	99.450	1.073	0.047	0.983	1.165
β_{21}^N	98.196	1.236	0.052	1.134	1.338
β_{22}^N	92.868	1.082	0.047	0.991	1.171
β_{23}^N	100.802	1.152	0.052	1.055	1.256
β_{24}^N	92.945	1.149	0.051	1.053	1.249

	IF	Mean	SD	lower	upper
β_{25}^N	100.261	1.108	0.049	1.017	1.206
β_{26}^N	94.021	1.151	0.050	1.060	1.251
β_{27}^N	96.738	1.254	0.052	1.153	1.356
β_{28}^N	98.226	1.377	0.058	1.268	1.492
β_{29}^N	98.922	1.208	0.052	1.113	1.312
β_{30}^N	90.361	0.976	0.043	0.895	1.062
β_{31}^N	96.151	1.146	0.049	1.056	1.247
β_{32}^N	91.772	0.876	0.038	0.805	0.954
β_{33}^N	90.750	0.931	0.041	0.851	1.012
β_{34}^N	97.169	1.233	0.053	1.132	1.336
β_{35}^N	95.020	1.139	0.049	1.045	1.235
β_{36}^N	92.266	0.843	0.039	0.770	0.920
β_{37}^N	98.519	1.062	0.046	0.976	1.152
C $wage$	2.818	0.201	0.110	-0.013	0.418
N $wage$	1.365	-0.105	0.151	-0.409	0.185
σ_1^2	382.387	0.348	0.108	0.130	0.532
σ_2^2	397.101	0.435	0.113	0.212	0.631
σ_3^2	1.118	0.538	0.026	0.488	0.588
σ_4^2	1.101	0.549	0.026	0.499	0.600
σ_5^2	1.199	0.396	0.019	0.359	0.433
σ_6^2	1.164	0.372	0.018	0.337	0.407
σ_7^2	1.098	0.616	0.029	0.560	0.673
σ_8^2	1.019	0.819	0.038	0.744	0.895
σ_9^2	1.031	0.905	0.042	0.824	0.988
σ_{10}^2	1.118	0.540	0.026	0.490	0.590
σ_{11}^2	1.064	0.702	0.033	0.637	0.766
σ_{12}^2	1.147	0.426	0.020	0.386	0.465
σ_{13}^2	1.089	0.539	0.025	0.492	0.591
σ_{14}^2	1.000	1.198	0.056	1.087	1.306
σ^2_{15}	0.998	0.867	0.040	0.791	0.950
σ_{16}^2	1.199	0.424	0.020	0.385	0.464
σ_{17}^2	1 160	0.379	0.010	0.344	0.415

	IF	Mean	SD	lower	upper
σ_{18}^2	1.032	0.890	0.041	0.809	0.971
σ_{19}^2	1.026	0.834	0.039	0.762	0.912
σ_{20}^2	1.146	0.399	0.019	0.363	0.438
σ_{21}^2	1.185	0.483	0.023	0.438	0.529
σ_{22}^2	1.148	0.527	0.025	0.479	0.577
σ_{23}^2	1.152	0.598	0.029	0.543	0.655
σ_{24}^2	1.258	0.420	0.021	0.379	0.460
σ_{25}^2	1.185	0.437	0.021	0.396	0.477
σ_{26}^2	1.103	0.784	0.037	0.714	0.860
σ_{27}^2	1.132	0.594			0.650
σ_{28}^2	1.105	0.653	0.031	0.596	0.717
σ_{29}^2	1.165	0.522	0.025	0.476	0.573
σ_{30}^2	1.259	0.371	0.018	0.335	0.406
σ_{31}^2	1.203	0.475	0.023	0.432	0.520
σ_{32}^2	1.200	0.411	0.020	0.374	0.451
σ_{33}^2	1.095	0.553	0.026	0.503	0.606
σ_{34}^2	1.180	0.511	0.024	0.463	0.559
σ_{35}^2	1.091	0.450	0.021	0.410	0.493
σ_{36}^2	1.088	0.563	0.027	0.511	0.615
σ_{37}^2	1.181	0.446	0.021	0.405	0.489
σ_{38}^2	1.228	0.414	0.020	0.375	0.453
σ_{39}^2	1.060	0.595	0.028	0.540	0.650
σ_{40}^2	1.205	0.373	0.018	0.339	0.409
σ_{41}^2	1.034	3.440	0.161	3.126	3.755
ϕ_1	361.972	0.537	0.112	0.338	0.752
ϕ_2	84.605	0.205	0.019	0.167	0.243
α_1	1.000	49.533	111.802	-176.034	261.254
α_2	1.000	49.519	111.800	-174.738	262.584
α_3	1.000	-49.626	111.801	-261.317	175.953
α_4	1.000	-49.594	111.801	-261.351	176.039
α_5	1.000	-49.619	111.801	-261.424	175.931
α_6	1.000	-49.652	111.801	-261.336	175.958

	IF	Mean	SD	lower	upper
α_7	1.000	-49.441	111.802	-260.882	176.543
α_8	1.000	-49.111	111.803	-260.870	176.414
α_9	1.046	-0.075	0.062	-0.197	0.043


```
mean(beta_Gauss[,"wage_c"]>0)

## [1] 0.9656

mean(beta_Gauss[,"wage_n"]>0)
```

[1] 0.2433667