Diabetes dataset

Predict if a person is at risk of developing diabetes

Binary Classification problem - XGBoost

```
In [1]: # Install xqboost in notebook instance.
        #### Command to install xgboost
        !pip install xgboost
        Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.com
        Collecting xgboost
          Downloading xgboost-1.7.6-py3-none-manylinux2014_x86_64.whl (200.3 MB)
                                                   - 200.3/200.3 MB 3.1 MB/s eta 0:00:0000:0100:01
        Requirement already satisfied: numpy in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from xgb
        oost) (1.22.3)
        Requirement already satisfied: scipy in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from xgb
        oost) (1.10.1)
        Installing collected packages: xgboost
        Successfully installed xgboost-1.7.6
In [2]: import sys
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import itertools
        import xgboost as xgb
        from sklearn.metrics import classification report, confusion matrix
        column_list_file = 'diabetes_train_column_list.txt'
In [3]:
        train file = 'diabetes train.csv'
        validation file = 'diabetes validation.csv'
In [4]: columns = ''
        with open(column_list_file,'r') as f:
            columns = f.read().split(',')
```

```
In [5]:
         columns
Out[5]: ['diabetes_class',
          'preg_count',
          'glucose_concentration',
          'diastolic_bp',
          'triceps_skin_fold_thickness',
          'two_hr_serum_insulin',
          'bmi',
          'diabetes_pedi',
          'age']
         # Specify the column names as the file does not have column header
In [6]:
         df_train = pd.read_csv(train_file,names=columns)
         df validation = pd.read csv(validation file,names=columns)
         df_train.head()
In [7]:
            diabetes_class preg_count glucose_concentration diastolic_bp triceps_skin_fold_thickness two_hr_serum_insulin bmi diabetes_pedi ag
Out[7]:
         0
                      0
                                  6
                                                     92
                                                                 62
                                                                                          32
                                                                                                            126 32.0
                                                                                                                             0.085
         1
                      0
                                  5
                                                    132
                                                                 80
                                                                                          0
                                                                                                              0 26.8
                                                                                                                             0.186
         2
                      0
                                  3
                                                                 72
                                                                                          0
                                                                                                              0 25.8
                                                                                                                             0.207
                                                     106
         3
                      0
                                  4
                                                     99
                                                                 68
                                                                                         38
                                                                                                              0 32.8
                                                                                                                             0.145
         4
                      0
                                  4
                                                     96
                                                                 56
                                                                                         17
                                                                                                             49 20.8
                                                                                                                             0.340
In [8]: print(df_train.head())
```

		diabetes_cla	ss preg_c	ount	glucose_concen	tration	diast	olic_bp						
	0		0	6		92		62	\					
	1		0	5		132		80						
	2		0	3		106		72						
	3		0	4		99		68						
	4		0	4		96		56						
		triceps skin	fold thic	kness	two_hr_serum_	insulin	bmi	diabete	s pedi	age				
	0	• –		32		126	32.0		0.085	46				
	1			0		0	26.8		0.186	69				
	2			0		0	25.8		0.207	27				
	3			38		0	32.8		0.145	33				
	4			17		49	20.8		0.340	26				
In [9]:	dҒ	_validation.h	ead()											
T [2].	۳٠.		cuu()											
Out[9]:	<u> </u>			glucos	se_concentration	diastolic_	bp trie	ceps_skin_f	old_thick	ness	two_hr_serum_insulin	bmi	diabetes_pedi	ag
	0			glucos	se_concentration		bp tric 70	ceps_skin_f	old_thick	iness 13		bmi 25.9	diabetes_pedi 0.472	
		diabetes_class	preg_count	glucos				ceps_skin_f	old_thick		105			
	0	diabetes_class	preg_count	glucos	130		70	ceps_skin_f	old_thick	13	105	25.9	0.472	2
	0	diabetes_class 0	preg_count 1 8	glucos	130 133		70 72	ceps_skin_f	old_thick	13	105 0 148	25.9 32.9	0.472	2
	0 1 2	diabetes_class 0 1 0	preg_count 1 8 0	glucos	130 133 137		70 72 68	ceps_skin_f	old_thick	13 0 14	105 0 148 53	25.9 32.9 24.8	0.472 0.270 0.143	2 2
	0 1 2	diabetes_class 0 1 0 0	preg_count 1 8 0 2	glucos	130 133 137 88		70 72 68 74	ceps_skin_f	old_thick	13 0 14 19	105 0 148 53	25.9 32.9 24.8 29.0	0.472 0.270 0.143 0.229	2 2
	0 1 2	diabetes_class 0 1 0 0	preg_count 1 8 0 2	glucos	130 133 137 88		70 72 68 74	ceps_skin_f	old_thick	13 0 14 19	105 0 148 53	25.9 32.9 24.8 29.0	0.472 0.270 0.143 0.229	2 2 2

```
diabetes_class preg_count glucose_concentration diastolic_bp
         0
                         0
                                    1
                                                        130
                                                                       70 \
         1
                        1
                                    8
                                                        133
                                                                       72
         2
                         0
                                    0
                                                        137
                                                                       68
         3
                                                          88
                                                                       74
                                    9
                                                        130
                                                                       70
            triceps_skin_fold_thickness two_hr_serum_insulin
                                                              bmi diabetes pedi
                                                                           0.472
         0
                                                        105 25.9
                                                                                   22
                                    13
         1
                                     0
                                                           0
                                                            32.9
                                                                           0.270
                                                                                   39
         2
                                                        148 24.8
                                                                           0.143 21
                                    14
         3
                                    19
                                                          53 29.0
                                                                           0.229
                                                                                   22
         4
                                     0
                                                           0 34.2
                                                                           0.652 45
In [11]: X train = df train.iloc[:,1:] # Features: 1st column onwards
         y_train = df_train.iloc[:,0].ravel() # Target: 0th column
         X validation = df validation.iloc[:,1:]
         y validation = df validation.iloc[:,0].ravel()
In [12]: # Launch a classifier
         # XGBoost Training Parameter Reference:
         # https://xqboost.readthedocs.io/en/latest/parameter.html
         classifier = xgb.XGBClassifier (objective="binary:logistic")
         classifier
In [13]:
Out[13]:
                                             XGBClassifier
        XGBClassifier(base score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample bytree=None, early stopping rounds=None,
                       enable_categorical=False, eval_metric=None, feature_types=None,
                       gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                       interaction constraints=None, learning rate=None, max bin=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max_delta_step=None, max_depth=None, max_leaves=None,
                       min_child_weight=None, missing=nan, monotone_constraints=None,
```

```
print(classifier)
In [41]:
         XGBClassifier(base_score=None, booster=None, callbacks=None,
                       colsample bylevel=None, colsample bynode=None,
                       colsample_bytree=None, early_stopping_rounds=None,
                       enable_categorical=False, eval_metric=None, feature_types=None,
                       gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                       interaction_constraints=None, learning_rate=None, max_bin=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max_delta_step=None, max_depth=None, max_leaves=None,
                       min_child_weight=None, missing=nan, monotone_constraints=None,
                       n_estimators=100, n_jobs=None, num_parallel_tree=None,
                        predictor=None, random state=None, ...)
In [14]:
         classifier.fit(X train,
                        y train,
                        eval_set = [(X_train, y_train), (X_validation, y_validation)],
                        eval metric=['logloss'],
                         early stopping rounds=10)
         [0]
                 validation 0-logloss:0.55122
                                                  validation 1-logloss:0.60755
                 validation 0-logloss:0.46796
         [1]
                                                  validation 1-logloss:0.57246
                 validation_0-logloss:0.40847
                                                  validation 1-logloss:0.54856
         [2]
                 validation 0-logloss:0.36336
                                                  validation 1-logloss:0.53960
         [3]
                 validation 0-logloss:0.32749
                                                  validation 1-logloss:0.53086
         [4]
         [5]
                 validation 0-logloss:0.30366
                                                  validation 1-logloss:0.52163
                 validation 0-logloss:0.28429
                                                  validation 1-logloss:0.52666
         [6]
                 validation_0-logloss:0.26441
         [7]
                                                  validation_1-logloss:0.52752
                 validation_0-logloss:0.24931
                                                  validation 1-logloss:0.52957
         [8]
                 validation 0-logloss:0.23460
                                                  validation 1-logloss:0.52743
         [9]
         [10]
                 validation_0-logloss:0.22422
                                                  validation 1-logloss:0.53384
                 validation 0-logloss:0.21326
                                                  validation 1-logloss:0.53555
         [11]
                 validation 0-logloss:0.20211
                                                  validation 1-logloss:0.54085
         [12]
                 validation 0-logloss:0.19681
                                                  validation 1-logloss:0.54294
         [13]
                 validation 0-logloss:0.19060
                                                  validation 1-logloss:0.54895
         [14]
```

plt.show()

/home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages/xgboost/sklearn.py:835: UserWarning: `eval metric

```
` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_
         params` instead.
           warnings.warn(
         /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages/xgboost/sklearn.py:835: UserWarning: `early stopp
         ing rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early stopping rounds` in
         constructor or`set params` instead.
           warnings.warn(
Out[14]: ▼
                                             XGBClassifier
         XGBClassifier(base score=None, booster=None, callbacks=None,
                        colsample_bylevel=None, colsample_bynode=None,
                        colsample bytree=None, early stopping rounds=None,
                        enable_categorical=False, eval_metric=None, feature_types=None,
                        gamma=None, gpu id=None, grow policy=None, importance type=None,
                        interaction constraints=None, learning rate=None, max bin=None,
                        max_cat_threshold=None, max_cat_to_onehot=None,
                        max_delta_step=None, max_depth=None, max_leaves=None,
                        min child weight=None, missing=nan, monotone constraints=None,
         eval result = classifier.evals result()
In [15]:
         training rounds = range(len(eval result['validation 0']['logloss']))
In [16]:
In [17]: print(training rounds)
         range(0, 16)
In [18]: plt.scatter(x=training rounds,y=eval result['validation 0']['logloss'],label='Training Error')
         plt.scatter(x=training rounds,y=eval result['validation 1']['logloss'],label='Validation Error')
         plt.grid(True)
         plt.xlabel('Iteration')
         plt.ylabel('LogLoss')
         plt.title('Training Vs Validation Error')
         plt.legend()
```


In [19]: xgb.plot_importance(classifier)
plt.show()

In [20]: df = pd.read_csv(validation_file,names=columns)

In [21]: df.head()

```
diabetes_class preg_count glucose_concentration diastolic_bp triceps_skin_fold_thickness two_hr_serum_insulin bmi diabetes_pedi ag
Out[21]:
          0
                        0
                                                                                          13
                                                                                                             105 25.9
                                   1
                                                      130
                                                                  70
                                                                                                                               0.472
          1
                                   8
                                                      133
                                                                  72
                                                                                                               0 32.9
                                                                                                                               0.270
          2
                        0
                                   0
                                                      137
                                                                  68
                                                                                           14
                                                                                                             148 24.8
                                                                                                                               0.143
          3
                        0
                                   2
                                                      88
                                                                  74
                                                                                          19
                                                                                                              53 29.0
                                                                                                                               0.229
                                                                  70
          4
                        1
                                   9
                                                      130
                                                                                            0
                                                                                                               0 34.2
                                                                                                                               0.652 4
In [22]:
          print(df.head())
             diabetes_class
                              preg_count
                                           glucose_concentration
                                                                  diastolic_bp
          0
                                                              130
                                                                              70 \
                                        8
          1
                           1
                                                              133
                                                                              72
          2
                           0
                                        0
                                                              137
                                                                              68
                                                               88
          3
                           0
                                        2
                                                                              74
                                        9
                                                                              70
                           1
                                                              130
             triceps_skin_fold_thickness
                                           two_hr_serum_insulin
                                                                         diabetes_pedi
          0
                                        13
                                                              105
                                                                   25.9
                                                                                  0.472
                                                                                           22
                                                                                  0.270
          1
                                         0
                                                                0
                                                                   32.9
                                                                                           39
          2
                                        14
                                                              148
                                                                   24.8
                                                                                  0.143
                                                                                           21
                                                                                  0.229
          3
                                        19
                                                               53
                                                                   29.0
                                                                                           22
          4
                                         0
                                                                   34.2
                                                                                  0.652
                                                                                           45
In [23]: X_test = df.iloc[:,1:]
In [24]:
          result = classifier.predict(X_test)
          result[:5]
In [25]:
Out[25]: array([0, 0, 0, 0, 1])
          df['predicted_class'] = result
In [26]:
          df.head()
In [27]:
```

ut[27]:	(diabetes_class	preg_count	gluco	se_concentration	diastolic_	bp tri	ceps_skin_f	old_thick	ness	two_hr_serum_insulin	bmi	diabetes_pedi	i
_	0	0	1		130		70			13	105	25.9	0.472	2
	1	1	8		133		72			0	0	32.9	0.270	0
	2	0	0		137		68			14	148	24.8	0.143	3
	3	0	2		88		74			19	53	29.0	0.229	9
	4	1	9		130		70			0	0	34.2	0.652	2
[28]:	nni	nt(df.head()	\\											
[20].		diabetes_cla		ount	glucose_concer	ntration	dias	tolic_bp						
	0	diadeces_cie	0 preg_c	1	giucose_concer	130	итаз	70	\					
	1		1	8		133		72	`					
	2		0	0		137		68						
	3		0	2		88		74						
	4		1	9		130		70						
		triceps_skir	n_fold_thic	kness	two_hr_serum_	_insulin	bmi	diabete	s_pedi					
	0			13		105	25.9		0.472	\				
	1			0		0	32.9		0.270					
	2			14		148	24.8		0.143					
	3			19		53	29.0		0.229					
	4			0		0	34.2		0.652					
			ted_class											
	0	22	0											
	1	39	0											
	2	21	0											
	3	22	0											
	4	45	1											

Binary Classifier Metrics

```
In [29]: # Reference: https://scikit-learn.org/stable/modules/model_evaluation.html
    # Explicitly stating labels. Pass=1, Fail=0
    def true_positive(y_true, y_pred):
```

```
return confusion_matrix(y_true, y_pred,labels=[1,0])[0, 0]

def true_negative(y_true, y_pred):
    return confusion_matrix(y_true,y_pred,labels=[1,0])[1, 1]

def false_positive(y_true, y_pred):
    return confusion_matrix(y_true, y_pred,labels=[1,0])[1, 0]

def false_negative(y_true, y_pred):
    return confusion_matrix(y_true, y_pred,labels=[1,0])[0, 1]
```

```
In [30]: # Compute Binary Classifier Metrics
         # Returns a dictionary {"MetricName": Value,...}
         def binary_classifier_metrics(y_true, y_pred):
             metrics = {}
             # References:
             # https://docs.aws.amazon.com/machine-learning/latest/dg/binary-classification.html
             # https://en.wikipedia.org/wiki/Confusion_matrix
             # Definition:
             # true positive = tp = how many samples were correctly classified as positive (count)
             # true negative = tn = how many samples were correctly classified as negative (count)
             # false positive = fp = how many negative samples were mis-classified as positive (count)
             # false_negative = fn = how many positive samples were mis-classified as negative (count)
             # positive = number of positive samples (count)
                       = true positive + false negative
             # negative = number of negative samples (count)
                        = true negative + false positive
             tp = true_positive(y_true, y_pred)
             tn = true_negative(y_true, y_pred)
             fp = false_positive(y_true, y_pred)
             fn = false_negative(y_true, y_pred)
             positive = tp + fn
             negative = tn + fp
             metrics['TruePositive'] = tp
             metrics['TrueNegative'] = tn
```

```
metrics['FalsePositive'] = fp
metrics['FalseNegative'] = fn
metrics['Positive'] = positive
metrics['Negative'] = negative
# True Positive Rate (TPR, Recall) = true positive/positive
# How many positives were correctly classified? (fraction)
# Recall value closer to 1 is better. closer to 0 is worse
if tp == 0:
   recall = 0
else:
   recall = tp/positive
metrics['Recall'] = recall
# True Negative Rate = True Negative/negative
# How many negatives were correctly classified? (fraction)
# True Negative Rate value closer to 1 is better. closer to 0 is worse
if tn == 0:
   tnr = 0
else:
   tnr = tn/(negative)
metrics['TrueNegativeRate'] = tnr
# Precision = True Positive/(True Positive + False Positive)
# How many positives classified by the algorithm are really positives? (fraction)
# Precision value closer to 1 is better. closer to 0 is worse
if tp == 0:
   precision = 0
else:
    precision = tp/(tp + fp)
metrics['Precision'] = precision
# Accuracy = (True Positive + True Negative)/(total positive + total negative)
# How many positives and negatives were correctly classified? (fraction)
# Accuracy value closer to 1 is better. closer to 0 is worse
accuracy = (tp + tn)/(positive + negative)
metrics['Accuracy'] = accuracy
# False Positive Rate (FPR, False Alarm) = False Positive/(total negative)
# How many negatives were mis-classified as positives (fraction)
```

```
# False Positive Rate value closer to 0 is better. closer to 1 is worse
if fp == 0:
   fpr = 0
else:
    fpr = fp/(negative)
metrics['FalsePositiveRate'] = fpr
# False Negative Rate (FNR, Misses) = False Negative/(total Positive)
# How many positives were mis-classified as negative (fraction)
# False Negative Rate value closer to 0 is better. closer to 1 is worse
fnr = fn/(positive)
metrics['FalseNegativeRate'] = fnr
# F1 Score = harmonic mean of Precision and Recall
# F1 Score closer to 1 is better. Closer to 0 is worse.
if precision == 0 or recall == 0:
   f1 = 0
else:
    f1 = 2*precision*recall/(precision+recall)
metrics['F1'] = f1
return metrics
```

```
plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=45)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 plt.text(j, i, format(cm[i, j], fmt),
                          horizontalalignment="center",
                          color="white" if cm[i, j] > thresh else "black")
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
             plt.tight_layout()
In [32]: # Compute confusion matrix
         cnf_matrix = confusion_matrix(df['diabetes_class'], df['predicted_class'],labels=[1,0])
In [33]: # Plot confusion matrix
         plt.figure()
         plot_confusion_matrix(cnf_matrix, classes=['Diabetic','Normal'],
                               title='Confusion Matrix')
```



```
In [35]: metrics = [binary_classifier_metrics(df['diabetes_class'], df['predicted_class'])]
          df_metrics=pd.DataFrame.from_dict(metrics)
          df_metrics.index = ['Model']
In [36]:
          df_metrics
                 TruePositive TrueNegative FalsePositive FalseNegative Positive Negative
                                                                                       Recall TrueNegativeRate Precision Accuracy False
Out[36]:
                         50
                                                   31
                                                                        79
                                                                                 152 0.632911
          Model
                                                                29
                                     121
                                                                                                      0.796053  0.617284
                                                                                                                          0.74026
          print(df_metrics)
In [37]:
```

```
TruePositive TrueNegative FalsePositive FalseNegative Positive
         Model
                          50
                                       121
                                                       31
                                                                      29
                                                                                79 \
                Negative
                            Recall TrueNegativeRate Precision Accuracy
         Model
                     152 0.632911
                                            0.796053 0.617284 0.74026 \
                FalsePositiveRate FalseNegativeRate
                                                         F1
         Model
                         0.203947
                                            0.367089 0.625
In [38]:
         print('Counts')
         print(df_metrics[['TruePositive',
                           'FalseNegative',
                           'FalsePositive',
                           'TrueNegative', ]].round(2))
         print()
         print('Fractions')
         print(df_metrics[['Recall',
                           'FalseNegativeRate',
                           'FalsePositiveRate',
                           'TrueNegativeRate', ]].round(2))
         print()
         print(df_metrics[['Precision',
                           'Accuracy',
                           'F1']].round(2))
         Counts
                TruePositive FalseNegative FalsePositive TrueNegative
         Model
                          50
                                         29
                                                        31
                                                                     121
         Fractions
                Recall FalseNegativeRate FalsePositiveRate TrueNegativeRate
                                                                           0.8
         Model
                  0.63
                                     0.37
                                                         0.2
                Precision Accuracy
                                       F1
         Model
                     0.62
                               0.74 0.63
In [39]: print(classification_report(
             df['diabetes_class'],
             df['predicted_class'],
             labels=[1,0],
             target_names=['Diabetic','Normal']))
```

	precision	recall	f1-score	support
Diabetic	0.62	0.63	0.63	79
Normal	0.81	0.80	0.80	152
2664192614			0.74	221
accuracy	0.71	0.71		231
macro avg	0.71	0.71	0.71	231
weighted avg	0.74	0.74	0.74	231

```
In [40]: # Yeah, not so good. Those dang zeros. We're going to fix it.
```

In []: