Question Number	Scheme	Marks
9	(a) $y = \int (x^3 - 3x^2 - x + 3) dx$	
	$y = \frac{1}{4}x^4 - x^3 - \frac{1}{2}x^2 + 3x (+c)$	M1A1
	Through $(0,4) \Rightarrow c = 4$	
	$y = \frac{1}{4}x^4 - x^3 - \frac{1}{2}x^2 + 3x + 4$	B1
	(b)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = x^3 - 3x^2 - x + 3$	
	f'(-1) = -1 - 3 + 1 + 3 = 0	M1A1
	f'(3) = 27 - 27 - 3 + 3 = 0	A1
	(or divide/factorise, $(x+1)(x-3)(x-1)=0$)	(M1,A1A1)
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3x^2 - 6x - 1$	M1
	$x = -1$ $\frac{d^2 y}{dx^2} = 3 + 6 - 1 > 0$: min at $x = -1$	A1
	$x = 3$ $\frac{d^2 y}{dx^2} = 27 - 18 - 1 > 0$: min at $x = 3$	A1
	(c)	
	(i) $f'(x) = (x+1)(x-3)(x-1) = 0$ $f'(1) = 0$	M1
	$y = \frac{1}{4} - 1 - \frac{1}{2} + 3 + 4 = 5\frac{3}{4}$	A1
	(ii) $x = 1$ $\frac{d^2 y}{dx^2} = 3 - 6 - 1 < 0$: max.	A1
	(d) Increasing for $-1 < x < 1$, and $x > 3$	B1,B1

Question Number	Scheme	Marks
10	(a) $a + ar^2 = 104$ $ar + ar^2 = 24$ $\frac{1+r^2}{r+r^2} = \frac{13}{3}$ $3+3r^2 = 13r+13r^2$ $10r^2+13r-3=0$	M1 (either) A1 (both)
	$3+3r^{2} = 13r+13r^{2} 10r^{2}+13r-3=0$ $(5r-1)(2r+3)=0 r=\frac{1}{5} \left(r=-\frac{3}{2}\right)$	M1A1
	(b) $r = \frac{1}{5}$ $a\left(1 + \frac{1}{25}\right) = 104$	M1
	$a = \frac{25}{26} \times 104 = 100$	A1
	$S = \frac{100}{1 - \frac{1}{5}} = 125$	M1A1
	(c) $r' = -\frac{3}{2}$	B1
	(d) $a'\left(1+\frac{9}{4}\right)=104$, $a'=\frac{4}{13}\times104=32$	M1A1
	$\frac{32\left(1-\left(-\frac{3}{2}\right)^n\right)}{1+\frac{3}{2}}=125$	M1
	$-\left(-\frac{3}{2}\right)^n = \frac{561}{64}$	A1
	solve $\left(\frac{3}{2}\right)^n = \frac{561}{64}$ $n = \frac{\log\left(\frac{561}{64}\right)}{\log\left(\frac{3}{2}\right)} = 5.35$	M1 (log or ln)
	n must be odd $\therefore n = 7$	A1

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UG030741 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

