RECOMMENDER SYSTEMS:

ADVANCED ARCHITECTURES NEW METRICS

Vincent Guigue

Introduction

New issues

 Intro ○●
 Algo ○○○○○
 Eval ○○○○○○○
 Conclusion ○○

Main issue: the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Graphs from [Marlin & Zemel '09]:

Survey: ask users to rate a <u>random</u> list of items: approximates complete data

Typical Data: users are <u>free to choose</u> which items to rate -> available data are <u>MNAR</u>: instead of giving low ratings, users

tend to not give a rating at all.

Even different in product/movie domains:

■ 60-80% of 4/5 ratings

Main issue: the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Table 1: Simplistic Example for ratings missing not at random (MNAR): test data where users rated only what they liked or knew.

Predicting profile behavior on this kind of data:

 H. Steck, KDD, 2010
 Training and Testing of Recommender Systems on Data Missing Not at Random

		users							
		horror fans				romance lovers			
	h	5		5	5				
m	О	5	5						
О	$^{\rm r}$		5		5				
v		5		5	5				
i	\mathbf{r}					5	5		5
е	О						5	5	5
s	m					5		5	
							5	5	5

 Intro 0●
 Algo 00000
 Eval 00000000
 Conclusion 00

Main issue : the weakness of MCAR hypothesis

Data are not Missing Completely At Random...

Several outcomes:

- Changing the error function
 - ranking criteria
- Changing the task
 - predicting rated item (not the rate)

New approaches

Intro ○○ Algo ●00000 Eval ○○○○○○○ Conclusion ○○

Implicit Feedback (SVD++)

For example, a dataset shows that users that rate "Lord of the Rings 3" high also gave high ratings to "Lord of the Rings 1–2".

⇒ establish high weights from "Lord of the Rings 1–2" to "Lord of the Rings 3".

Now, if a user did not rate "Lord of the Rings 1-2" at all, his predicted rating for "Lord of the Rings 3" will be penalized.

- Binary coding : interesting / not interesting
 - lacksquare positive rating / simple visit = 1
 - negative rating / missing values = 0
- Initial predictor f
 - Simple heuristic / expert knowledge...
- \blacksquare R(u): set of items rated by u + f
- $\Rightarrow N(u)$: set of items implicitly rated by u

Yehuda Koren, KDD 2008

Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model

SVD++

General idea:

$$\hat{r}_{ui} = \underbrace{b + b_u + b_i}_{b_{ui}} + \frac{1}{\sqrt{|R(u)|}} \sum_{j \in R(u)} (r_{uj} - b_{uj}) w_{ij} + \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} c_{ij}$$

Overweighting deviation for prolific users $(\frac{1}{\sqrt{|R(u)|}} \text{ instead of } \frac{1}{|R(u)|})$

 w_{ij} Learning deviation meaning wrt b_{uj}

 c_{ij} Learning the meaning of j absence wrt i

■ ... Too expensive (too many coefficients to learn)

Factorized formulation = SVD++:

$$\hat{r}_{ui} = b_{ui} + \mathbf{i} \cdot \left(\mathbf{u} + \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} \mathbf{y}_j\right)$$

 \Rightarrow Y. Koren winning proposal to the Netflix challenge (2009)

Intro ○○ Algo 00●000 Eval 000000000 Conclusion ○○

Factorization machine

Back to (huge) linear model!

- Factor = interactions between items
- Easy to encode unseen effect

$$\begin{split} U &= \{ \text{Alice (A), Bob (B), Charlie (C), } \ldots \} \\ I &= \{ \text{Titanic (TI), Notting Hill (NH), Star Wars (SW),} \\ &\quad \text{Star Trek (ST), } \ldots \} \end{split}$$

$$S = \{(A, TI, 2010-1, 5), (A, NH, 2010-2, 3), (A, SW, 2010-4, 1), \\ (B, SW, 2009-5, 4), (B, ST, 2009-8, 5), \\ (C, TI, 2009-9, 1), (C, SW, 2009-12, 5)\}$$

S. Rendle, ICDM 2010 Factorization machines

SCIENCES SORRONNE

Bayesian Personalized Ranking

For each user, what are the prefered items?

$$p(i>_u j|\theta) = \frac{1}{1 + \exp(-f_{\theta}(u,i,j))}$$

For instance (inspired from MF):

$$f_{\theta}(u,i,j) = \mathbf{u} \cdot \mathbf{i} - \mathbf{u} \cdot \mathbf{j}$$

NB: same nb of parameters than MF

Evaluation =

$$AUC = \frac{1}{n_u} \sum_{u} \frac{1}{|E(u)|} \sum_{(i,j) \in E(u)} \delta(\mathbf{u} \cdot \mathbf{i} > \mathbf{u} \cdot \mathbf{j})$$

S. Rendle et al., UAI 2009 BPR: Bayesian Personalized Ranking from Implicit Feedback

Bayesian Personalized Ranking

The ranking criterion enables us to exploit high dimensional user/item representation

S. Rendle et al., UAI 2009 BPR: Bayesian Personalized Ranking from Implicit Feedback

AllRank

SCIENCES SORBONNE UNIVERSITÉ

- - 0 for missing
 - 1 relevant

 \blacksquare w_m, r_m (& λ) have to be tuned

Cost function:

$$\mathcal{L} = \sum_{u} \sum_{i} W_{ui} \left[\left(r_{ui}^{(o\&i)} - \left(b_{ui}^{(o\&i)} + \mathbf{u} \cdot \mathbf{i} \right) \right)^{2} + \lambda (\|\mathbf{u}\|^{2} + \|\mathbf{i}\|^{2}) \right]$$

H. Steck, RecSys 2010

Training and Testing of Recommender Systems on Data Missing Not at Random

ntro ○○ Algo 00000● Eval ○○○○○○○ Conclusion ○○

Learning to rank

■ Pointwise :

- Ranking score based on regression (or classification)
- RS seen example: SVD approaches

■ Pairwise:

- Loss function is defined on pair-wise preferences
- RankSVM, RankBoost, RankNet, FRank...
- RS seen example: BPR

Listwise:

- Gradient descent on smoothed version of objective function (e.g. CLiMF presented at Recsys 2012 or TFMAP at SIGIR 2012)
- SVM-MAP relaxes the MAP metric by adding it to the SVM constraints
- AdaRank (modified version of Adaboost)

Evaluation: evaluation metrics

VS

learning metrics

ntro ○○ Algo ○○○○○ **Eval ●○○○○○○** Conclusion ○○

How to evaluate RS performance?

Warning

We should not confuse evaluation metrics & learning metrics

⇒ MSE is a convenient learning metrics

(easily differentiable + convex ...)
... but it is a poor evaluation metrics
... cf Netflix Challenge feedbacks
It do not tell us if we provide relevant suggestions

- What are the other available metrics?
 - Have a look towards the IR community
- Can we use those metrics during the learning step?

1/0 labeling, AUC metrics

- Rendle popularize both 1/0 prediction & AUC metrics
- AUC = tradeoff between precision & recall
 - Percentage of correct binary ranking for ONE user
 - \blacksquare Aggregation over n_u users

$$AUC = \frac{1}{n_u} \sum_{u} \frac{1}{|E(u)|} \sum_{(i,j) \in E(u)} \delta(\mathbf{u} \cdot \mathbf{i} > \mathbf{u} \cdot \mathbf{j})$$

- + k not required
- top of the list = same impact as bottom of the list

Mean Average Precision (from the IR domain)

SCIENCES SORBONNE UNIVERSITÉ

RS aim at proposing an ordered list of suggestion...

Which head is far more important than the rest.

For a user u with 4 liked items to discover:

$$query = \mathbf{u} \Rightarrow RS_1 \Rightarrow \begin{bmatrix} i_{12} \\ i_{8} \\ i_{42} \\ i_{1} \end{bmatrix} \qquad \Leftrightarrow \qquad \begin{bmatrix} i_{1} \\ i_{42} \\ i_{8} \\ i_{9} \end{bmatrix} = GT$$

■ Average precision (one query/user) :

$$\frac{1}{K} \sum_{k=1}^{K} precision@K = \frac{1}{4} (0 + \frac{1}{2} + \frac{2}{3} + \frac{3}{4}) = 0.478$$

■ Mean Average Precision =

Mean Average Precision (from the IR domain)

RS aim at proposing an ordered list of suggestion...

Which head is far more important than the rest.

For a user u with 4 liked items to discover:

$$query = \mathbf{u} \Rightarrow RS_2 \Rightarrow \begin{bmatrix} i_1 \\ i_8 \\ i_{42} \\ i_{12} \end{bmatrix} \qquad \Leftrightarrow \qquad \begin{bmatrix} i_1 \\ i_{42} \\ i_8 \\ i_9 \end{bmatrix} = GT$$

Average precision :

$$\frac{1}{4} \sum_{k=1}^{4} precision@K = \frac{1}{4} (1 + 1 + 1 + \frac{3}{4}) = 0.9375$$

■ Mean Average Precision =

Mean Reciprocal Rank

At which rank is the first relevant item?

$$query = \mathbf{u} \Rightarrow RS \Rightarrow \begin{bmatrix} i_{12} \\ i_{8} \\ i_{42} \\ i_{1} \end{bmatrix} \qquad \Leftrightarrow \qquad \begin{bmatrix} i_{1} \\ i_{42} \\ i_{8} \\ i_{9} \end{bmatrix} = GT$$

$$RR = \frac{1}{rank_i} = \frac{1}{2}$$
 on previous example

Mean Reciprocal Rank =

Averaging over the whole population

 $\Rightarrow \approx$ How many iterations to obtain a relevant item?

nDCG: Normalized Discounted Cumulative Gain

We assume that we have a relevance score for each item...

$$query = \mathbf{u} \Rightarrow RS \Rightarrow \begin{bmatrix} i_{12} & ind = 1 \\ i_{8} & ind = 2 \\ i_{42} & ind = 3 \\ i_{1} & ind = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 \\ 2 \\ 3 \\ 3 \end{bmatrix} = relevance$$

$$DCG_{p} = \sum_{ind=1}^{p} \frac{relev_{ind}}{\log_{2}(ind+1)} = 0 + 1.26 + 1.5 + 1.29 = 4.05$$

$$nDCG = \frac{DCG}{IdealDCG} = \frac{4.05}{3 + 1.89 + 1 + 0.086} = 0.69/0.6$$

Relative ideal (among suggestions) vs Absolute ideal (among all items)

ATOP

recall@k =

#relevant items in top k
#relevant items

Compute all recall@k...

until k match R(u)

Compute the area under the curve

- focus on rated items
- numerical indicator + graphical details

H. Steck, KDD, 2010 Training and Testing of Recommender Systems on Data Missing Not at Random

ATOP

ntro ○○ Algo ○○○○○ **Eval 0000000**• Conclusion ○

A/B testing & production launch

In a real situation

Designing an online Recommender System offers new performance indicators

■ Online click, purchase, etc

A/B testing:

- 1 Defining some performance indicator with expert
- 2 Re-direct a small part of the customers to the new system B
 - make sure that the redirection is random (not biased)
- \blacksquare Compare indicators from A and B
- ⇒ Best evaluation...

But only available online & with access to the backoffice

 Intro ○○
 Algo ○○○○○
 Eval 00000000
 Conclusion ○○

Serendipity: another important factor to evaluate...

... But very difficult to quantify

- Exploration / exploitation dilemma
- Clustering / categorization exploitation
 - propose items from different region
- Post processing / HMI issue

CF can offer serendipity

- increase neighborhood,
- increase implicit feedback weight
- · ...

Idea to design a metric

- 1 Learn a strong baseline (SVD)
- 2 New system RS
- \blacksquare Unexpectedness = RS\SVD
- 4 Serendipity =
 usefulness(Unexpectedness)

CB is not well adapted

- Clustering heuristics
- bad performance

M. Ge et al., RecSys, 2010Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity

Conclusion

Conclusions

- For many applications such as Recommender Systems (but also Search, Advertising, and even Networks) understanding data and users is vital
- Algorithms can only be as good as the data they use as input
- But the inverse is also true: you need a good algorithm to leverage your data
- Importance of User/Data Mining is going to be a growing trend in many areas in the coming years
- RS have the potential to become as important as Search is now
- \Rightarrow there are still many open questions and a lot of interesting research to do!

Intro 00 Algo 000000 Eval 000000000 **Conclusion 0●**

Performance = industrial global deployment

Navigation traces & user generated contents = behavior sensors

- Collecting the data
 - Storing many trace for further exploitation
 - Large amount of data = cost
 - ... But trying to reduce the **noise**
 - missing/corrupted data, inadvertently operations...
 - ... and extract implicit **feedback** (and/or specific features)
 - e.g. video watching statistics
- UI integration
 - $50\% \Rightarrow 90\%$ of the job (Netflix!)
- ROI: return on invest
- Other expected benefits:
 - Fighting against adversarial noise
 - spam, web spam, review spam