ACTIVITIES WE GIVE UP WHEN WE'RE ONLINE

Measuring the Crowd Out Effect of Online Leisure Activity

BACKGROUND

- Since the dot-com revolution, the internet has become an integral part of our life.
- Some activities, like reading the newspaper or watching movies, are now being done through the internet
- Other activities, like surfing the web for personal interest or checking Twitter,
 Facebook, Instagram, are new activities that have emerged with the dot-com revolution
- How valuable are the activities we do online as opposed to offline ones?

WALLSTEN, SCOTT. WHAT ARE WE NOT DOING WHEN WE'RE ONLINE. NO. W19549. NATIONAL BUREAU OF ECONOMIC RESEARCH, 2013.

- "Estimating the value of the Internet is difficult in part not just because many online activities do not require monetary payment, but also because these activities may crowd out other, offline, activities."
- This paper "estimates the opportunity cost of online leisure time. The analysis suggests that the opportunity cost of online leisure is less time spent on a variety of activities, including leisure, sleep, and work."

Opportunity Cost of Online Leisure Time = Time Foregone on Other Activity

WALLSTEN'S DATASET: ATUS

The American Time Use Survey interviews respondents about:

- how they spent their time on the previous day
- where they were
- whom they were with
- The goal is to measure how people divide their time among life's activities.
- Individuals are randomly selected from a subset of households previously interviewed in the Current Population Survey (CPS).

WALLSTEN'S METHODOLOGY

- Using ATUS dataset for years 2003-2011, he estimates 18 versions of equations (one for each major activity and one for an unknown activity)
- He uses the coefficient (and t-statistic) on the computer leisure variable from each regression as a measurement of the crowd-out effect of computer leisure on each major category

CHALLENGE - 'WHO HAS INTERNET?'

- "While I know the ages of all household members, the data do not indicate whether a household has Internet access."
- However, I can identify some households that have access. In particular, any
 ATUS respondent who spends any time at home involved in computer leisure,
 e- mail, or using a computer for volunteer work must have home Internet
 access. Following Goldfarb and Prince, I estimate the following two
 simultaneous equations using two-stage least squares:

'WHO HAS INTERNET?' - IMPLICATIONS

- His method implied that only 17 percent of households had access to the internet in 2010, when the US Census estimated that more than 70 percent actually had access.
- For that reason, we will be taking a different approach for estimating the internet access variable on the ATUS dataset.
- However, "The fitted propensity to have access increases by about 70 percent while actual home Internet access increased by about 78 percent* during that same time period."
- * As per PEW RESEARCH data

'WHO HAS INTERNET?' – MY APPROACH: BUILDING A DECISION TREE CLASSIFIER

- The ATUS dataset is in fact a subsample of a larger dataset: CPS (Current Population Survey).
- Unlike the ATUS dataset, the CPS dataset includes a variable that indicates whether a subject has internet access or not.
- As such, we will be using similar type of variables as the one used in Wallsten's regression, and will look at the common variables found in both the ATUS and CPS datasets in order to construct a decision tree algorithm, classifiying our records into: subject has internet access or subject does not have internet access.

CPS DATASET – COMPUTER AND INTERNET USE SURVEY

- The Current Population Survey (CPS) interviews around 56,000 households monthly, scientifically selected on the basis of area of residence to represent the nation as a whole, individual states, and other specified areas.
- The main purpose of the survey is to collect information on the employment situation, as well as other information on demographic characteristics such as age, sex, race, marital status, educational attainment, family relationship, occupation and industry etc.
- Starting 2011, CPS has included the optional Computer and Internet Use Survey. This was done for the years 2011, 2013, 2015. We will be using the aforestated datasets.

MY METHODOLOGY VS. WALLSTEN'S

	Wallsten	My Methodology		
Datasets	ATUS	ATUS and CPS		
Internet Prediction	Two Stage Regression	Decision Tree Classifier		
Crowd Out Effect Measure	Linear Regression and Coefficient Analysis	Linear Regression and Coefficient Analysis		

VARIABLES

Variables Related To	ATUS Variables	CPS Variables			
	CODE	CODE			
Income	Weekly earnings	Weekly earnings			
	TRERNWA	PRERNWA			
Education	Highest level of school completed	Highest level of school completed			
	PEEDUCA	PEEDUCA			
Age	Age	Age			
	PEAGE	PEAGE			
Sex	Sex	Sex			
	PESEX	PESEX			
Married	Presence of Spouse in the household	Presence of Spouse in the household			
	TRSPRES	TRSPRES			
Number of Children in the Household and Age of	Number of household children	Number of household children			
Youngest Child	TRCHILDNUM	TRCHILDNUM			
	Age of Youngest Child	Age of youngest child			
	TRYHHCHILD	PRCHLD			
Spanish-Speaking	Are you Spanish, Hispanic or Latino?	Are you Spanish, Hispanic or Latino?			
	PEHSPNON	PEHSPNON			
Labor Force Status	Total hours worked per week	Total hours worked per week			
	TEHRUSLT	PEHRUSLT			
	Do you have more than one job?	Do you have more than one job?			
	TEMJOT	PEMJOT			
	Labor force status (Employed, Unemployed etc.)	Labor Force Status			
	TELFS	PEMLR			
Metropolitan Status (Metro, Suburban,	Metropolitan Status (2000 and 2010 definitions)	Metropolitan Status (2000 and 2010 definitions)			
Rural)	GTMETSA	GTMETSA			

VARIABLES YEARS 2011 TO 2015

Smaller Sample than Wallsten's sample. Two Reasons:

- Limited Open Source Access to the CPS dataset (data used to build DT)
- 2. Since 2011 only, the ATUS question for leisure computer time spent has changed to include: Facebook, Instagram, Twitter and other—The most commonly used online platforms. Programming and designing/updating website (personal interest) has also been included.

TECHNICAL REPORT – PHASE I DATA FORMATTING AND DATA CLEANING

TABLE OF CONTENT

Phase 1: Data Formatting & Data Cleaning5Creating CPS_prep dataframe5Creating ATUS_prep and ATUS_time dataframes9Formatting ATUS data15Dealing with variable consistency and data-type22Exploring our datasets27Dealing with Missing Values27Dealing with Outliers (Demographics Variables)30Dealing with Outliers (Time Variables)34Final Datasets37Additional Functions38

TECHNICAL STEPS – R, SQL (RMYSQL, SQLDF)

Final

Datasets

TECHNICAL REPORT – PHASE 2 CORRELATION, DECISION TREE BUILDING AND INTERNET ACCESS PERCENTAGE COMPARISON

TABLE OF CONTENT

Phase 2: Correlation, Decision Tree Building and Internet Access Percentage Comparison	.39
Correlation	. 39
Conditional Inference Tree Building	.40
Traditional Decision Tree Building	. 42
Decision Tree Algorithm Application on the ATUS Dataset	. 44
Percentage Comparison	. 44

TECHNICAL STEPS - R (RPART AND CTREE) Investigating the Correlation Conditional Inference Tree Building **Traditional** Decision Tree Building **Decision Tree** Algorithm Application on **ATUS Dataset** Percentage Comparison

TECHNICAL REPORT – PHASE 3 LINEAR REGRESSION AND COEFFICIENT ANALYSIS

TABLE OF CONTENT

Phase 3: Linear Regression and Coefficient Analysis45	
Running the Linear Regressions46	
Final Findings and Conclusion68	
Leisure Time70	
Phone calls71	
Work activities71	
Personal care and sleep72	
Travel73	
Household activities73	
Education74	

TECHNICAL STEPS – R AND TABLEAU

PHASE I

Dat file read in a single line

```
138009000100198 72011 220100 1 1 1-1 115-1-1-1 38893409 1 2 1 2 2 0 289001 2
1 2 57 57 57 1 0 0 2 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1 2-124-1-1 24 2-1 2-1 2-1
```

```
CPS_2011 <- read.delim("july2011cps.dat", header = FALSE, sep="\t")
CPS_2013 <- read.delim("july2013cps.dat", header = FALSE, sep="\t")
CPS_2015 <- read.delim("july2015cps.dat", header = FALSE, sep="\t")

CPS_2015 <- as.data.frame(sapply(CPS_2015[,1], as.character))
CPS_2013 <- as.data.frame(sapply(CPS_2013[,1], as.character))
CPS_2011 <- as.data.frame(sapply(CPS_2011[,1], as.character))

colnames(CPS_2011) <- "RAW_DATA"
colnames(CPS_2013) <- "RAW_DATA"
colnames(CPS_2015) <- "RAW_DATA"</pre>
```

```
RAW_DATA

1 138009000100198 72011 220100 1 1 1-1 115-1-1...

2 138009000100198 72011 220100 1 1 1-1 115-1-1...

3 400109960881499 72011-122700-1 1-1-1 0-1-1 3...
```

```
first_row_2011 <- CPS_2011[1,1]
first_row_2011 <- as.character(first_row_2011)</pre>
nchar(first_row_2011)
                                                         July 2011 Computer and Internet Use Supplement Data. The July supplement data are in
                                                         locations 951-1259. (See Attachment 7)
## [1] 1259
first_row_2013 <- CPS_2013[1,1]
first_row_2013 <- as.character(first_row_2013)</pre>
                                                         July 2013 Computer and Internet Use Supplement Data. The July supplement data are in
nchar(first row 2013)
                                                         locations 951-1173. (See Attachment 7)
## [1] 1173
first_row_2015 <- CPS_2015[1,1]
first_row_2015 <- as.character(first_row_2015)</pre>
nchar(first_row_2015)
                                                         July 2015 Computer and Internet Use Supplement Data. The July supplement data are in
                                                         locations 951-1174. (See Attachment 7)
## [1] 1174
```

- Each row contains has a length 1259. These represent the answers of the subjects on more than 100 questions. To know which answer corresponds to which question, we need to check the CPS codebook.
- The location of the answers are highlighted in the codebook.
- Example shown in the picture.

STRUCTURING 2011, 2013, 2015 DATASET INTO DATAFRAME

#2013 Dataset:

```
CPS_2013$PERSON_TYPE <- substr(CPS_2013$RAW_DATA, 161,162)
CPS_2013$LABOUR_FORCE_STATUS <- substr(CPS_2013$RAW_DATA, 180,181)
CPS_2013$AGE <- substr(CPS_2013$RAW_DATA, 122,123)
CPS_2013$HISPANIC <- substr(CPS_2013$RAW_DATA, 157,158)
CPS_2013$SEX <- substr(CPS_2013$RAW_DATA, 129,130)
CPS_2013$MORE_THAN_1_JOB <- substr(CPS_2013$RAW_DATA, 214,215)
CPS_2013$HOURS_PER_WEEK <- substr(CPS_2013$RAW_DATA, 224,226)
CPS_2013$FULL_TIME_PART_TIME <- substr(CPS_2013$RAW_DATA, 2,3)
CPS_2013$WEEKLY_EARNINGS <- substr(CPS_2013$RAW_DATA, 527,534)
CPS_2013$EDUCATION <- substr(CPS_2013$RAW_DATA, 137,138)
CPS_2013$CHILDREN <- substr(CPS_2013$RAW_DATA, 635,636)
CPS_2013$AGE_YOUNGEST_CHILD <- substr(CPS_2013$RAW_DATA, 635,636)
CPS_2013$METROPOLITAN_STATUS <- substr(CPS_2013$RAW_DATA, 105,105)
```

CPS_2013\$HOME_INTERNET_ACCESS <- substr(CPS_2013\$RAW_DATA, 977,978)

VIEW END RESULT

LABOUR_FORCE_STATUS	AGÊ	RACÊ	HISPANIĈ	SEX	MORE_THAN_1_JOB	HOURS_PER_WEEK	FULL_TIME_PART_TIMÊ	WEEKLY_EARNINGS	EDUCATION	SPOUSÊ	CHILDREÑ	AGE_YOUNGEST_CHILD	METROPOLITAN_STATUŜ
1	54	1	2	1	2	24	2	NA	44	1	0	NA	1
1	55	1	2	2	2	24	2	NA	45	1	0	NA	1
1	57	1	2	1	2	50	1	NA	39	1	0	NA	1
1	54	1	2	2	2	20	2	NA	39	1	0	NA	1
3	54	1	2	1	NA	NA	NA	NA	34	1	0	NA	1
5	54	1	2	2	NA	NA	NA	NA	34	1	0	NA	1
	LABOUR_FORCE_STATUS 1 1 1 1 5	1 54 1 55 1 57 1 54 3 54	LABOUR_FORCE_STATUS AGÊ RACÊ 1 54 1 1 55 1 1 57 1 1 54 1 3 54 1 5 54 1	1 54 1 2 1 55 1 2 1 57 1 2 1 54 1 2 3 54 1 2	1 54 1 2 1 1 55 1 2 2 1 57 1 2 1 1 54 1 2 2 3 54 1 2 1	1 54 1 2 1 2 1 55 1 2 2 2 1 57 1 2 1 2 1 54 1 2 2 2 3 54 1 2 1 MA	1	1 54 1 2 1 2 24 2 1 55 1 2 2 2 24 2 1 57 1 2 1 2 50 1 1 54 1 2 2 2 20 2 3 54 1 2 1 NA NA NA	1 54 1 2 1 2 24 2 NA 1 55 1 2 2 2 24 2 NA 1 57 1 2 1 2 50 1 NA 1 54 1 2 2 2 20 2 NA 3 54 1 2 1 NA NA NA NA	1 54 1 2 1 2 24 2 NA 44 1 55 1 2 2 2 24 2 NA 45 1 57 1 2 1 2 50 1 NA 39 1 54 1 2 2 2 20 2 NA 39 3 54 1 2 1 NA NA NA NA NA NA	1 54 1 2 1 2 24 2 NA 44 1 1 55 1 2 2 2 24 2 NA 45 1 1 57 1 2 1 2 50 1 NA 39 1 1 54 1 2 2 2 20 2 NA 39 1 3 54 1 2 1 NA NA NA NA NA NA 1	1 54 1 2 1 2 24 2 NA 44 1 0 1 55 1 2 2 2 24 2 NA 45 1 0 1 57 1 2 1 2 2 50 1 NA 39 1 0 1 54 1 2 2 2 20 2 NA 39 1 0 3 54 1 2 1 NA NA NA NA NA 34 1 0	1 55 1 2 2 2 24 2 NA 45 1 0 NA 1 57 1 2 1 2 50 1 NA 39 1 0 NA 1 54 1 2 2 2 20 2 NA 39 1 0 NA 3 54 1 2 1 NA NA NA NA NA NA NA

```
CPS_2015 <- as.data.frame(sapply(CPS_2015[,1:16], as.numeric))
CPS_2013 <- as.data.frame(sapply(CPS_2013[,1:16], as.numeric))
CPS_2011 <- as.data.frame(sapply(CPS_2011[,1:16], as.numeric))
CPS_prep <- rbind(CPS_2011, CPS_2013, CPS_2015)</pre>
```

PHASE I - STEP 2 ATUS DATAFRAME

SELECTING DEMOGRAPHIC VARIABLES

```
ATUS years select <- da36268.0001[which(da36268.0001$TUYEAR>=2011),]
Variables <- c(9, 8, 6, 13, 10, 24, 16, 17,5,20,15,21, 4)
ATUS prep <- ATUS years select[, Variables]
names(ATUS_prep)[names(ATUS_prep)=="TELFS"] <- "LABOUR_FORCE_STATUS"</pre>
names(ATUS prep)[names(ATUS prep)=="TEAGE"] <- "AGE"
names(ATUS prep)[names(ATUS prep)=="PEHSPNON"] <- "HISPANIC"</pre>
names(ATUS prep)[names(ATUS prep)=="TESEX"] <- "SEX"
names(ATUS prep)[names(ATUS prep)=="TEMJOT"] <- "MORE THAN 1 JOB"
names(ATUS_prep)[names(ATUS_prep)=="TEHRUSLT"] <- "HOURS_PER_WEEK"
names(ATUS prep)[names(ATUS prep)=="TRDPFTPT"] <- "FULL TIME PART TIME"
names(ATUS_prep)[names(ATUS_prep)=="TRERNWA"] <- "WEEKLY_EARNINGS"
names(ATUS prep)[names(ATUS prep)=="PEEDUCA"] <- "EDUCATION"
names(ATUS prep)[names(ATUS prep)=="TRSPPRES"] <- "SPOUSE"</pre>
names(ATUS_prep)[names(ATUS_prep)=="TRCHILDNUM"] <- "CHILDREN"
names(ATUS_prep)[names(ATUS_prep)=="TRYHHCHILD"] <- "AGE_YOUNGEST_CHILD"</pre>
names(ATUS prep)[names(ATUS prep)=="GTMETSTA"] <- "METROPOLITAN STATUS"
```

SELECTING TIME VARIABLES (AN EXAMPLE)

```
#Phone calls
Variable Phone <- (c(which( colnames(ATUS years select)=="T160101"), which( colnames(ATUS years select)=="T169989")))
Variable Phone
## [1] 388 396
Pre Phone <- ATUS years select[,388:396]
ncol(Pre Phone)
## [1] 9
Pre Phone$Phone calls <- rowSums(Pre Phone[1:9])
Phone calls <- data.frame(Pre Phone$Phone calls)</pre>
```

PHASE I - STEP 2 ATUS DATAFRAME

VIEW DEMOGRAPHIC VARIABLES

```
LABOUR FORCE STATUS AGE
                                            HISPANIC
## 112039 (5) Not in labor force 62 (2) Non-Hispanic (2) Female
## 112040 (1) Employed - at work 22 (2) Non-Hispanic (2) Female
## 112041 (1) Employed - at work 33 (2) Non-Hispanic (1) Male
          MORE_THAN_1_JOB HOURS_PER_WEEK FULL_TIME_PART_TIME WEEKLY_EARNINGS
## 112039
## 112040
                  (2) No
                                              (1) Full time
                                                                        150
## 112041
                  (2) No
                                              (1) Full time
                                                       EDUCATION
## 112039
                                                 (37) 11th grade
## 112040 (39) High school graduate - diploma or equivalent [GED]
## 112041
                                                 (36) 10th grade
                                             SPOUSE CHILDREN
## 112039 (3) No spouse or unmarried partner present
## 112040 (3) No spouse or unmarried partner present
## 112041
                                 (1) Spouse present
                                                           1
         AGE_YOUNGEST_CHILD METROPOLITAN_STATUS
                                (1) Metropolitan
## 112039
                                (1) Metropolitan
## 112040
## 112041
                         15 (2) Non-metropolitan
```

VIEW TIME VARIABLES (AN EXAMPLE)

	CASEID	Phone_calls	$Consumer_Purchase \hat{\bar{s}}$	Gov_and_Civic_Obligations	HH_Services	$Professional_Car\hat{\bar{e}}$	Volunteer	Religion	Helping_NONHĤ	Sports	Education
1	1	0	0	0	0	0	0	0	0	200	0
2	2	0	0	0	0	0	0	0	0	0	0
3	3	60	60	0	0	0	0	0	0	0	0
4	4	0	0	0	0	0	0	0	0	0	0
5	5	0	0	0	0	15	0	0	0	60	0
6	6	0	0	0	0	0	0	0	0	0	0

PHASE I – STEP 3 DATA CONSISTENCY CPS VS. ATUS DEMOGRAPHICS

CPS

CPS prep[1:3,] PERSON TYPE LABOUR FORCE STATUS AGE HISPANIC SEX MORE THAN 1 JOB ## 1 2 2 2 2 ## 2 1 55 -1 -1 -1 -1 -1 HOURS PER WEEK FULL TIME PART TIME WEEKLY EARNINGS EDUCATION SPOUSE ## 1 38 38 ## 2 24 -1 1 -1 -1 CHILDREN AGE YOUNGEST CHILD METROPOLITAN STATUS HOME INTERNET ACCESS ## 1

ATUS

```
LABOUR FORCE STATUS AGE
                                             HISPANIC
## 112039 (5) Not in labor force 62 (2) Non-Hispanic (2) Female
## 112040 (1) Employed - at work 22 (2) Non-Hispanic (2) Female
## 112041 (1) Employed - at work 33 (2) Non-Hispanic (1) Male
          MORE_THAN_1_JOB HOURS_PER_WEEK FULL_TIME_PART_TIME WEEKLY_EARNINGS
## 112039
## 112040
                   (2) No
                                               (1) Full time
                                                                         150
## 112041
                  (2) No
                                               (1) Full time
                                                                         350
                                                        EDUCATION
## 112039
                                                  (37) 11th grade
## 112040 (39) High school graduate - diploma or equivalent [GED]
## 112041
                                                  (36) 10th grade
                                              SPOUSE CHILDREN
## 112039 (3) No spouse or unmarried partner present
## 112040 (3) No spouse or unmarried partner present
                                                           1
## 112041
                                  (1) Spouse present
         AGE_YOUNGEST_CHILD METROPOLITAN_STATUS
## 112039
                                 (1) Metropolitan
                                 (1) Metropolitan
## 112040
## 112041
                          15 (2) Non-metropolitan
```

PHASE I – STEP 3 DATA CONSISTENCY CPS VS. ATUS DEMOGRAPHICS

ATUS UPDATE EXAMPLE

```
#FULL_TIME_PART_TIME

ATUS prep <- sqldf(c("UPDATE ATUS prep SET FULL_TIME_PART_TIME=1 where FULL_T

IME_PART_TIME LIKE '%(1)%'", "SELECT * from ATUS prep"))

ATUS prep <- sqldf(c("UPDATE ATUS prep SET FULL_TIME_PART_TIME=2 where FULL_T

IME_PART_TIME LIKE '%(2)%'", "SELECT * from ATUS prep"))
```

PHASE I – STEP 3 DATA CONSISTENCY CPS VS. ATUS DEMOGRAPHICS

TELFS: EDITED: LABOR FORCE STATUS

Notes: Edited: labor force status

Value	Label	Unweighted Frequency	%
1	Employed - at work	102040	59.7 %
2	Employed - absent	4582	2.7 %
3	Unemployed - on layoff	898	0.5 %
4	Unemployed - looking	7477	4.4 %
5	Not in labor force	55845	32.7 %
	Total	170,842	100%

Based upon 170,842 valid cases out of 170,842 total cases.

PEMLR 2 MONTHLY LABO

MONTHLY LABOR FORCE RECODE 180 - 181

EDITED UNIVERSE:

PRPERTYP = 2

VALID ENTRIES

- 1 EMPLOYED-AT WORK
- 2 EMPLOYED-ABSENT
- 3 UNEMPLOYED-ON LAYOFF
- 4 UNEMPLOYED-LOOKING
- 5 NOT IN LABOR FORCE-RETIRED
- 6 NOT IN LABOR FORCE-DISABLED
- 7 NOT IN LABOR FORCE-OTHER

```
CPS prep <- sqldf(c("UPDATE CPS prep SET LABOUR_FORCE_STATUS = 5 WHERE LABOUR
_FORCE_STATUS = 6 OR LABOUR_FORCE_STATUS = 7", "SELECT * FROM CPS prep"))</pre>
```

CPS prep\$LABOUR FORCE STATUS <- as.factor(CPS prep\$LABOUR FORCE STATUS)
ATUS prep\$LABOUR FORCE STATUS <- as.factor(ATUS prep\$LABOUR FORCE STATUS)</pre>

PHASE I – STEP 4 DEALING WITH MISSING VALUES

NAS IN ATUS

NAS IN CPS

_pı	_count2 <- <u>sapply(ATUS</u> rep)))))/nrow(ATUS pre _count2	********	<pre>prep) sum(length(wh</pre>	2)))))	count <- <u>sapply(CPS prep</u> ,)))/nrow(CPS prep) count	function(CPS_prep)	<pre>sum(length(which(is.</pre>	na(CPS_pre
##	LABOUR_FORCE_STATUS	AGE	HISPANIC	##	#	LABOUR_FORCE_STATUS	AGE	HISPANIC	
##	0.0000000	0.0000000	0.0000000	##	##	0.0000000	0.0000000	0.0000000	
##	SEX	MORE_THAN_1_JOB	HOURS_PER_WEEK	##	##	SEX	MORE_THAN_1_JOB	HOURS_PER_WEEK	
##	0.0000000	0.3971669	0.4328107	##	#	0.0000000	0.4139343	0.4139343	
##	FULL_TIME_PART_TIME	WEEKLY_EARNINGS	EDUCATION	##	#	FULL_TIME_PART_TIME	WEEKLY_EARNINGS	EDUCATION	
##	0.3971669	0.4635909	0.0000000	##	##	0.4139343	0.8577559	0.0000000	
##	SPOUSE	CHILDREN	AGE_YOUNGEST_CHILD	##	##	SPOUSE	CHILDREN	AGE_YOUNGEST_CHILD	
##	0.0000000	0.0000000	0.6018978	##	##	0.0000000	0.0000000	0.7436812	
##	METROPOLITAN_STATUS			##	##	METROPOLITAN_STATUS HOM	E_INTERNET_ACCESS		
##	0.0000000			##	##	0.0000000	0.0000000		

CPS DEMOGRAPHICS

CHILDREN

ATUS DEMOGRAPHICS

CHILDREN

ATUS TIME VARIABLES

LEISURE TIME


```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1080.00 0.00 29.49 31.00 1160.00

There are 5769 records with a negative leisure time. Let's remove those rows.

neg <- ATUS norm$Leisure Excl Computer < 0

sum(neg==T)

## [1] 5769
```

PHASE I - STEP 6 FINAL DATASETS

PHASE 2

PHASE 2 – STEP I CORRELATION

```
flattenCorrMatrix(Correlations$r, Correlations$P)
##
                                         column
                                                          SOL
                                                 0.257411629 0.00000000000
      LABOUR_FORCE_STATUS
      LABOUR_FORCE_STATUS
                                       HISPANIC
                                                0.006978087 0.0001718765
## 3
                      AGE
                                                0.140601471 0.00000000000
                                       HISPANIC
      LABOUR FORCE STATUS
                                                 0.123676710 0.00000000000
## 5
                      AGE
                                            SEX 0.033636000 0.00000000000
## 6
                 HISPANIC
                                            SEX 0.003711284 0.0456946389
      LABOUR FORCE STATUS
                                      EDUCATION -0.243129492 0.00000000000
## 8
                      AGE
                                      EDUCATION 0.090587601 0.00000000000
## 9
                 HISPANIC
                                      EDUCATION 0.237461835 0.00000000000
## 10
                      SEX
                                      EDUCATION 0.021360371 0.00000000000
## 11 LABOUR FORCE STATUS
                                         SPOUSE 0.086016573 0.00000000000
## 12
                      AGE
                                         SPOUSE -0.275922388 0.00000000000
                 HISPANIC
## 13
                                         SPOUSE -0.039414484 0.00000000000
## 14
                      SEX
                                         SPOUSE
                                                0.040946145 0.00000000000
## 15
                EDUCATION
                                         SPOUSE -0.191730753 0.00000000000
## 16 LABOUR FORCE STATUS
                                       CHILDREN -0.163317204 0.00000000000
## 17
                      AGE
                                       CHILDREN -0.199073061 0.00000000000
## 18
                 HISPANIC
                                       CHILDREN -0.095136084 0.00000000000
## 19
                      SEX
                                       CHILDREN 0.037577201 0.00000000000
## 20
                EDUCATION
                                       CHILDREN 0.074135557 0.00000000000
## 21
                   SPOUSE
                                       CHILDREN -0.284729689 0.00000000000
## 22 LABOUR_FORCE_STATUS
                            METROPOLITAN STATUS 0.025444033 0.00000000000
## 23
                      AGE
                            METROPOLITAN_STATUS 0.053411063 0.00000000000
## 24
                 HISPANIC
                           METROPOLITAN_STATUS 0.104046255 0.00000000000
## 25
                           METROPOLITAN_STATUS -0.005345389 0.0040015769
## 26
                EDUCATION
                           METROPOLITAN_STATUS -0.075496979 0.000000000000
## 27
                   SPOUSE
                           METROPOLITAN STATUS -0.037985239 0.0000000000
## 28
                 CHILDREN METROPOLITAN STATUS -0.006100686 0.0010208831
      LABOUR_FORCE_STATUS HOME_INTERNET_ACCESS 0.192443743 0.00000000000
## 30
                      AGE HOME_INTERNET_ACCESS 0.175807983 0.0000000000
## 31
                 HISPANIC HOME_INTERNET_ACCESS -0.093050882 0.0000000000
## 32
                      SEX HOME_INTERNET_ACCESS 0.016564004 0.00000000000
## 33
                EDUCATION HOME_INTERNET_ACCESS -0.260926008 0.00000000000
## 34
                   SPOUSE HOME_INTERNET_ACCESS 0.133594140 0.00000000000
## 35
                 CHILDREN HOME INTERNET ACCESS -0.072740041 0.00000000000
## 36 METROPOLITAN_STATUS HOME_INTERNET_ACCESS 0.073360600 0.00000000000
```

Correlations <- rcorr(as.matrix(CPS), type="spearman")

PHASE 2 – STEP 2 CONDITIONAL INFERENCE TREE BUILDING

```
We divide our dataset into training and testing (70-30%).
train index <- sample(1:nrow(CPS), 0.7 * nrow(CPS))
train.set <- CPS[train_index,]
test.set <- CPS[-train_index,]
Running the model on the training set.
internet_ctree_model <- ctree(HOME_INTERNET_ACCESS ~ LABOUR_FORCE_STATUS + AG
E + HISPANIC + SEX + EDUCATION + SPOUSE + CHILDREN + METROPOLITAN_STATUS, da
ta=train.set)
Now let's make our prediction on the test set.
internet_stree_prediction <- predict(internet_stree_model, test,set)
head(internet_ctree_prediction)
## [1] 1 1 1 2 2 2
## Levels: 1 2
table(internet_ctree_prediction, test.set$HOME_INTERNET_ACCESS)
## internet ctree prediction
                                    63886 14778
                                     3260 5043
```

```
762 Mesuring accuracy, precision, recall and F score.
763 - ```{r}
                                                                                                      ⊕ ≚ ▶
764 library(caret)
     confusionMatrix(internet_ctree_prediction, test.set$HOME_INTERNET_ACCESS, mode="everything")
                                                                                                     A A X
      Confusion Matrix and Statistics
               Reference
      Prediction 1 2
              1 63968 15043
              2 3041 4910
                    Accuracy: 0.792
                      95% CI: (0.7893, 0.7947)
         No Information Rate: 0.7706
         P-Value [Acc > NIR] : < 2.2e-16
                       Kappa: 0.2544
      Mcnemar's Test P-Value : < 2.2e-16
                 Sensitivity: 0.9546
                 Specificity: 0.2461
              Pos Pred Value: 0.8096
              Neg Pred Value: 0.6175
                   Precision: 0.8096
                      Recall: 0.9546
                         F1: 0.8762
                  Prevalence: 0.7706
              Detection Rate: 0.7356
        Detection Prevalence: 0.9086
           Balanced Accuracy: 0.6003
            'Positive' Class: 1
```

PHASE 2 – STEP 3 TRADITIONAL DECISION TREE BUILDING

```
We divide our dataset into training and testing again (70-30%).
train_index <- sample(1:nrow(CPS), 0.7 * nrow(CPS))
train.set2 <- CPS[train_index,]
test.set2 <- CPS[-train_index,]
Running the model on the training set.
internet_rpart_model <- ctree(HOME_INTERNET_ACCESS ~ LABOUR_FORCE_STATUS + AG
E + HISPANIC + SEX + EDUCATION + SPOUSE + CHILDREN + METROPOLITAN STATUS, da
ta=train.set2)
Now let's make our prediction on the test set.
internet rpart prediction <- predict(internet rpart model, test.set2)</pre>
table(internet_rpart_prediction, test.set2$HOME_INTERNET_ACCESS)
   internet rpart prediction
                                    63908 14776
                                     3207 5076
```

```
Mesuring accuracy, precision, recall and F score.
```{r}
 ⊕ ≚ ▶
confusionMatrix(internet_rpart_prediction, test.set2$HOME_INTERNET_ACCESS, mode="everything")
 Confusion Matrix and Statistics
 Reference
 Prediction
 1 64028 15025
 2 2981 4928
 Accuracy : 0.7929
 95% CI: (0.7902, 0.7956)
 No Information Rate: 0.7706
 P-Value [Acc > NIR] : < 2.2e-16
 Kappa: 0.257
 Mcnemar's Test P-Value : < 2.2e-16
 Sensitivity: 0.9555
 Specificity: 0.2470
 Pos Pred Value: 0.8099
 Neg Pred Value: 0.6231
 Precision: 0.8099
 Recall: 0.9555
 F1: 0.8767
 Prevalence : 0.7706
 Detection Rate: 0.7363
 Detection Prevalence: 0.9091
 Balanced Accuracy: 0.6012
 'Positive' Class : 1
```

# PHASE 2 – STEP 4 AND STEP 5 DECISION TREE APPLICATION ON THE ATUS DATASET 'WHO HAS INTERNET'

Let's see what percentage of the ATUS sample will our model predict as having internet access.

```
ATUS internet pred <- predict(internet rpart model, ATUS)
summary(ATUS internet pred)

1 2

46386 6649

sum(ATUS internet pred == 1)/length(ATUS internet pred)

[1] 0.87463
```

- Our model estimates 87%
  - Note: we only took years 2011, 2013 and 2015 and averaged them
- According to PEW Research Center: the averaged percentage of population using the Internet from 2011 to 2015 is 84%.

# PHASE 3

# PHASE 3 — STEP I LINEAR REGRESSION ANALYSIS

We select rows where ATUS internet pred == 1 (TRUE) and we run our 17 version of regression for analysis.

```
ATUS internet pred df <- as.data.frame(ATUS internet pred)
ATUS_phase4_prep <- cbind(ATUS, ATUS_internet_pred_df)
ATUS_phase4 <- subset(ATUS_phase4_prep, ATUS_internet_pred ==1)
str(ATUS_phase4)
'data.frame':
 46386 obs. of 27 variables:
$ LABOUR FORCE STATUS
 : Factor w/ 5 levels "1", "2", "3", "4", ...: 1 1 1
1411111...
$ AGE
 : num 22 33 45 24 29 29 31 35 33 61 ...
 : Factor w/ 2 levels "1", "2": 2 2 1 2 2 1 2 2
$ HISPANIC
2 2 ...
$ SEX
 : Factor w/ 2 levels "1", "2": 2 1 1 2 2 1 2 1
2 2 ...
$ EDUCATION
 : Factor w/ 16 levels "31", "32", "33", ...: 9 6 9
 9 9 10 9 10 10 10 ...
$ SPOUSE
 : Factor w/ 2 levels "1", "2": 2 1 2 1 2 2 1 2
1 2 ...
$ CHILDREN
 : num 0102210130 ...
 : Factor w/ 3 levels "1", "2", "3": 1 2 1 1 2 1
$ METROPOLITAN_STATUS
2 2 1 2 ...
$ Phone calls
$ Consumer_Purchases
$ Gov and Civic Obligations: num
$ HH_Services
$ Professional Care
$ Volunteer
$ Religion
$ Helping_HH
$ Helping NONHH
$ Sports
$ Education
$ HH_Activities
 : num 120 300 2 0 75 70 35 300 445 355 ...
$ Travel
 : num 0000000000 ...
 $ Personal Care Sleep
 : num 600 400 540 600 705 670 480 540 575 600
$ Work
 : num 600 0 0 575 0 0 610 0 0 0 ...
$ Leisure_Excl_Computer
 : num 0 0 0 0 0 315 0 270 0 15 ...
$ Eat Drink
 : num 95 25 30 95 25 30 40 60 90 0 ...
$ Computer_leisure
 : num 0000000000 ...
$ ATUS internet pred
 : Factor w/ 2 levels "1", "2": 2 2 2 2 2 2 2 2 2
2 2 ...
```

## PHASE 3 – STEP I LINEAR REGRESSION ANALYSIS

Now we run the 17 linear regression versions.

```
 Phone calls.

attach(ATUS_phase4)
The following objects are masked _by _.GlobalEnv:
 ATUS_internet_pred, Computer_leisure, Consumer_Purchases,
 Eat Drink, Education, Gov and Civic Obligations, Helping HH,
 Helping NONHH, HH Activities, HH Services,
 Leisure Excl_Computer, Personal_Care_Sleep, Phone_calls,
##
 Professional Care, Religion, Sports, Travel, Volunteer, Work
##
phonecalls_regr <- lm(Phone_calls~Computer_leisure+LABOUR_FORCE_STATUS+AGE+HI</pre>
SPANIC+SEX+EDUCATION+SPOUSE+CHILDREN+METROPOLITAN_STATUS,data=ATUS_phase4)
summary(phonecalls_regr)
##
Call:
lm(formula = Phone calls ~ Computer leisure + LABOUR FORCE STATUS +
 AGE + HISPANIC + SEX + EDUCATION + SPOUSE + CHILDREN + METROPOLITAN ST
ATUS,
 data = ATUS phase4)
##
##
Residuals:
 Min
 1Q Median
 3Q
-28.42 -8.12 -4.85 -1.19 651.43
##
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
##
(Intercept)
 -3.544586 4.568388 -0.776 0.43782
Computer_leisure
 0.050564 0.010148 4.983 6.29e-07 ***
LABOUR_FORCE_STATUS2 0.692247 0.680748
 1.017 0.30921
LABOUR_FORCE_STATUS3 6.148049
 1.614617
 3.808 0.00014 ***
LABOUR_FORCE_STATUS4 4.447254
 0.555839 8.001 1.26e-15 ***
LABOUR_FORCE_STATUS5 2.984066
 0.277074 10.770 < 2e-16 ***
AGE
 0.008585 4.773 1.82e-06 ***
 0.040972
 3.986 6.74e-05 ***
HISPANIC2
 1.340558
 0.336338
 0.229197 16.122 < 2e-16 ***
SEX2
 3.695078
EDUCATION32
 0.226806
 5.144774
 0.044 0.96484
EDUCATION33
 2.565143
 4.816400
 0.533 0.59432
EDUCATION34
 3.510445
 4.667749
 0.752 0.45202
EDUCATION35
 3.692260
 4.609933
 0.801 0.42317
```

# PHASE 3 – FINDINGS AND CONCLUSIONS

Estimated Crowdout Effects of Computer Leisure on Major Categories

Category	2003-2011	2011-2015
	coefficients as	coefficients
	per Wallsten's	
	findings	
Leisure (excluding computer)	-0.293***	0.55118***
	(22.34)	(14.737)
Work activities	-0.268***	-0.97216***
	(19.38)	(10.644)
Personal care (including sleep)	-0.121***	-0.28394***
	(12.36)	(4.872)
Travel	-0.0969***	-0.0010751
	(17.36)	(0.918)
Household activities	-0.0667***	-0.18831***
	(7.149)	(3.316)
Education	-0.0574***	-0.10285*
	(8.560)	(3.253)
Sports	-0.0397***	-0.06359*
	(9.17)	(2.499)
Helping household members	-0.0368***	-0.09164**
	(7.589)	(2.977)
Eating and drinking	-0.0254***	-0.004003
	(6.991)	(0.182)
Helping non-household members	-0.0232***	0.01364
	(6.763)	(0.712)
Religion	-0.0146***	-0.01347
	(5.758)	(-0.702)
Volunteer	-0.0120***	0.005886
	(3.503)	0.273
Professional care and services	-0.00360*	-0.016877
	(1.896)	(1.599)
Household services	-0.00129	-0.001102
	(1.583)	(0.283)
Government and civic obligations	-0.000177	-0.0030381
	(0.303)	(0.868)
Consumer purchases	0.00368	-0.008901
	(1.025)	(0.412)
Phone calls	0.0134***	0.050564***
	(7.433)	(4.983)
Absolute t-statistics in parenth	eses	
***p<0.01, **p<0.05, *p<0.1		

### FINDINGS VISUALIZATION USING TABLEAU



# CHALLENGES FACED AND LESSONS LEARNT

#### RESEARCH RELATED

- Qualitative Selection
- Age Of Youngest Child and Marital Status

#### TECHNICAL RELATED

- Data Cleaning and Formatting
- 'Too good to be true' Tree
  - Low F-Score at first
  - Issues:
    - Removing NAs rows and replacing those left with mean and mode
  - Lesson learnt:
    - It's not enough to count NAs, it is important to visualize them

### CONTINUITY

#### RESEARCH

 Research literature related to my findings and compare the accuracy of my findings to the literatures

#### **TECHNICAL**

- Add the 2016 data
- Add more graphics
  - Initial data exploration graphics
  - More findings such as: crowd-out effect by age and others
- Use Wallsten's Regression Methodology (Internet Prediction) and compare with DT

### PACKAGES AND TOOLS

library("ggplot2")

library("lattice")

library("Formula")

library("survival")

library("Hmisc")

library(grid)

library(mvtnorm)

library(modeltools)

library(stats4)

library(strucchange)

library(zoo)

library(party)

library(sandwich)

library(caret)

library(rpart)

library(randomForest)

library(caTools)

library(sqldf)

library(RMySQL)