Assignment #7

Part 1

x_1	χ_2	r
0	0	0
0	1	1
1	0	1
1	1	0

$$\phi_1 = e^{-|x-[1 1]|^2}$$

$$\phi_2 = e^{-|x-[0 0]|^2}$$

\boldsymbol{x}	$\boldsymbol{\phi_1}$	ϕ_2
(1,1)	1	0.1353
(0,1)	0.3678	0.3678
(0,0)	0.1353	1
(1,0)	0.3678	0.3678

Decision boundary is $\phi_1 + \phi_2 = 0.94$ Use $\mathbf{w}^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$ to calculate bias and margins

Bias:

$$\mathbf{w}^{T} \boldsymbol{\phi} + b = 0$$

$$\mathbf{w}^{T} \boldsymbol{\phi} = -b$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \phi_{1} \\ \phi_{2} \end{bmatrix} = -b$$

$$(1 \times \phi_{1}) + (1 \times \phi_{2}) = -b$$

$$\phi_{1} + \phi_{2} = -b$$

$$0.94 = -b$$

$$b = -0.94$$

r = 0 margin:

r = 1 margin:

$$d = \frac{|g(1,0.1353)|}{||w||}$$

$$d = \frac{|g(1,0.1353)|}{||w||}$$

$$d = \frac{|[1 \quad 1] \begin{bmatrix} 1 \\ 0.1353 \end{bmatrix} - 0.94|}{\sqrt{1^2 + 1^2}}$$

$$d = \frac{|1.1353 - 0.94|}{\sqrt{1 + 1}}$$

$$d = \frac{0.1953}{\sqrt{2}}$$

$$d = \frac{0.2044}{\sqrt{2}}$$

$$d = \frac{0.2044}{\sqrt{2}}$$

Part 2

Coordinates of features in the hidden layer

$$z_1 = \text{sigmoid}(x_1 - x_2 - 0.5)$$

 $z_2 = \text{sigmoid}(-x_1 + x_2 - 0.5)$

Find the bias and equation of the decision boundary with weight vector $\begin{bmatrix} 1 & 1 \end{bmatrix}$ and equal margins for both groups.

Bias:

$$\frac{|g(0.38, 0.38)|}{||w||} = \frac{|g(0.18, 0.62)|}{||w||}$$

$$|g(0.38, 0.38)| = |g(0.18, 0.62)|$$

$$|[1 \quad 1] \begin{bmatrix} 0.38 \\ 0.38 \end{bmatrix} + b = |[1 \quad 1] \begin{bmatrix} 0.18 \\ 0.62 \end{bmatrix} + b|$$

$$|0.76 + b| = |0.8 + b|$$

$$b = -0.78$$

Decision Boundary:

$$\mathbf{w}^{T}\mathbf{z} + b = 0$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} - 0.78 = 0$$

$$(1 \times z_{1}) + (1 \times z_{2}) - 0.78 = 0$$

$$z_{1} + z_{2} - 0.78 = 0$$

$$z_{1} + z_{2} = 0.78$$

Calculate margins to verify that they are equal.

r = 0 margin:

$$d = \frac{|g(0.38, 0.38)|}{\|\mathbf{w}\|}$$
$$d = \frac{|0.76 - 0.78|}{\sqrt{1^2 + 1^2}}$$
$$d = \frac{0.2}{\sqrt{2}}$$
$$d \approx 0.014$$

r = 1 margin:

$$d = \frac{|g(0.18, 0.62)|}{\|\mathbf{w}\|}$$
$$d = \frac{|0.8 - 0.78|}{\sqrt{1^2 + 1^2}}$$
$$d = \frac{0.2}{\sqrt{2}}$$
$$d \approx 0.014$$