Z80 And R800 Opcodes List

Opcodes on single-byte

	00	01	02	03	04	05	06	07	08	09	0A	0В	0C	0 D	0E	0F
00	NOP	LD BC,ad	LD (BC),A	INC BC	INC B	DEC B	LD B,v	RLCA	EX AF, AF'	ADD HL,BC	LD A,(BC)	DEC BC	INC C	DEC C	LD C,v	RRCA
10	DJNZ v	LD DE,ad	LD (DE),A	INC DE	INC D	DEC D	LD D,v	RLA	JR v	ADD HL,DE	LD A, (DE)	DEC DE	INC E	DEC E	LD E,v	RRA
20	JR nz,v	LD HL,ad	LD (ad),HL	INC HL	INC H	DEC H	LD H, v	DAA	JR z,v	ADD HL,HL	LD HL,(ad)	DEC HL	INC L	DEC L	LD L,v	CPL
30	JR nc,v	LD SP,ad	LD (ad),A	INC SP	INC (HL)	DEC (HL)	LD (HL), V	SCF	JR C,v	ADD HL,SP	LD A, (ad)	DEC SP	INC A	DEC A	LD A,v	CCF
40	LD B,B	LD B,C	LD B,D	LD B,E	LD B,H	LD B,L	LD B,(HL)	LD B,A	LD C,B	LD C,C	LD C,D	LD C,E	LD C,H	LD C,L	LD C,(HL)	LD C,A
50	LD D,B	LD D,C	LD D,D	LD D,E	LD D,H	LD D,L	LD D,(HL)	LD D,A	LD E,B	LD E,C	LD E,D	LD E,E	LD E,H	LD E,L	LD E,(HL)	LD E,A
60	LD H,B	LD H,C	LD H,D	LD H,E	LD H,H	LD H,L	LD H,(HL)	LD H,A	LD L,B	LD L,C	LD L,D	LD L,E	LD L,H	LD L,L	LD L,(HL)	LD L,A
70	LD (HL),B	LD (HL),C	LD (HL),D	LD (HL),E	LD (HL),H	LD (HL),L	HALT	LD (HL),A	LD A,B	LD A,C	LD A,D	LD A,E	LD A,H	LD A,L	LD A,(HL)	LD A,A
80	ADD A,B	ADD A,C	ADD A,D	ADD A,E	ADD A,H	ADD A,L	ADD A,(HL)	ADD A,A	ADC A,B	ADC A,C	ADC A,D	ADC A,E	ADC A,H	ADC A,L	ADC A,(HL)	ADC A,A
90	SUB B	SUB C	SUB D	SUB E	SUB H	SUB L	SUB (HL)	SUB A	SBC A,B	SBC A,C	SBC A,D	SBC A,E	SBC A,H	SBC A,L	SBC A,(HL)	SBC A
A0	AND B	AND C	AND D	AND E	AND H	AND L	AND (HL)	AND A	XOR B	XOR C	XOR D	XOR E	XOR H	XOR L	XOR (HL)	XOR A
В0	OR B	OR C	OR D	OR E	OR H	OR L	OR (HL)	OR A	CP B	CP C	CP D	CP E	CP H	CP L	CP (HL)	CP A
C0	RET nz	POP BC	JP nz,ad	JP ad	CALL nz,ad	PUSH BC	ADD A,v	RST 0h	RET z	RET	JP z,ad	*	CALL z,ad	CALL ad	ADC A,v	RST 8h
D0	RET nc	POP DE	JP nc,ad	OUT (v),A	CALL nc,ad	PUSH DE	SUB v	RST 10h	RET C	EXX	JP c,ad	IN A, (V)	CALL c,ad	**	SBC A,v	RST 18h
E0	RET po	POP HL	JP po,ad	EX (SP),HL	CALL po,ad	PUSH HL	AND v	RST 20h	RET pe	JP (HL)	JP pe,ad	EX DE, HL	CALL pe,ad	***	XOR V	RST 28h
F0	RET p	POP AF	JP p,ad	DI	CALL p,ad	PUSH AF	OR v	RST 30h	RET m	LD SP,HL	JP m,ad	EI	CALL m,ad	****	CP v	RST 38h

Note: Some of these opcodes are followed by one or two bytes to specify the value v or the address ad.

(*) Opcodes extended on 2-byte which begin with CBh

СВ	00	01	02	03	04	05	06	07	08	09	0A	0В	0C	0 D	0E	0F
00	RLC B	RLC C	RLC D	RLC E	RLC H	RLC L	RLC (HL)	RLC A	RRC B	RRC C	RRC D	RRC E	RRC H	RRC H	RRC (HL)	RRC A
10	RL B	RL C	RL D	RL E	RL H	RL L	RL (HL)	RL A	RR B	RR C	RR D	RR E	RR H	RR H	RR (HL)	RR A
20	SLA B	SLA C	SLA D	SLA E	SLA H	SLA L	SLA (HL)	SLA A	SRA B	SRA C	SRA D	SRA E	SRA H	SRA H	SRA (HL)	SRA A
30	SLL B	SLL C	SLL D	SLL E	SLL H	SLL L	SLL (HL)	SLL A	SRL B	SRL C	SRL D	SRL E	SRL H	SRL H	SRL (HL)	SRL A
40	BIT 0,B	BIT 0,C	BIT 0,D	BIT 0,E	BIT 0,H	BIT 0,L	BIT 0,(HL)	BIT 0,A	BIT 1,B	BIT 1,C	BIT 1,D	BIT 1,E	BIT 1,H	BIT 1,L	BIT 1,(HL)	BIT 1,A
50	BIT 2,B	BIT 2,C	BIT 2,D	BIT 2,E	BIT 2,H	BIT 2,L	BIT 2,(HL)	BIT 2,A	BIT 3,B	BIT 3,C	BIT 3,D	BIT 3,E	BIT 3,H	BIT 3,L	BIT 3,(HL)	BIT 3,A
60	BIT 4,B	BIT 4,C	BIT 4,D	BIT 4,E	BIT 4,H	BIT 4,L	BIT 4,(HL)	BIT 4,A	BIT 5,B	BIT 5,C	BIT 5,D	BIT 5,E	BIT 5,H	BIT 5,L	BIT 5,(HL)	BIT 5,A
70	BIT 6,B	BIT 6,C	BIT 6,D	BIT 6,E	BIT 6,H	BIT 6,L	BIT 6,(HL)	BIT 6,A	BIT 7,B	BIT 7,C	BIT 7,D	BIT 7,E	BIT 7,H	BIT 7,L	BIT 7,(HL)	BIT 7,A
80	RES 0,B	RES 0,C	RES 0,D	RES 0,E	RES 0,H	RES 0,L	RES 0,(HL)	RES 0,A	RES 1,B	RES 1,C	RES 1,D	RES 1,E	RES 1,H	RES 1,L	RES 1,(HL)	RES 1,A
90	RES 2,B	RES 2,C	RES 2,D	RES 2,E	RES 2,H	RES 2,L	RES 2,(HL)	RES 2,A	RES 3,B	RES 3,C	RES 3,D	RES 3,E	RES 3,H	RES 3,L	RES 3,(HL)	RES 3,A
A0	RES 4,B	RES 4,C	RES 4,D	RES 4,E	RES 4,H	RES 4,L	RES 4,(HL)	RES 4,A	RES 5,B	RES 5,C	RES 5,D	RES 5,E	RES 5,H	RES 5,L	RES 5,(HL)	RES 5,A
В0	RES 6,B	RES 6,C	RES 6,D	RES 6,E	RES 6,H	RES 6,L	RES 6,(HL)	RES 6,A	RES 7,B	RES 7,C	RES 7,D	RES 7,E	RES 7,H	RES 7,L	RES 7,(HL)	RES 7,A
C0	SET 0,B	SET 0,C	SET 0,D	SET 0,E	SET 0,H	SET 0,L	SET 0,(HL)	SET 0,A	SET 1,B	SET 1,C	SET 1,D	SET 1,E	SET 1,H	SET 1,L	SET 1,(HL)	SET 1,A
D0	SET 2,B	SET 2,C	SET 2,D	SET 2,E	SET 2,H	SET 2,L	SET 2,(HL)	SET 2,A	SET 3,B	SET 3,C	SET 3,D	SET 3,E	SET 3,H	SET 3,L	SET 3,(HL)	SET 3,A
E0	SET 4,B	SET 4,C	SET 4,D	SET 4,E	SET 4,H	SET 4,L	SET 4,(HL)	SET 4,A	SET 5,B	SET 5,C	SET 5,D	SET 5,E	SET 5,H	SET 5,L	SET 5,(HL)	SET 5,A
F0	SET 6,B	SET 6,C	SET 6,D	SET 6,E	SET 6,H	SET 6,L	SET 6,(HL)	SET 6,A	SET 7,B	SET 7,C	SET 7,D	SET 7,E	SET 7,H	SET 7,L	SET 7,(HL)	SET 7,A

(**) Opcodes extended on two-byte which begin with DDh (for register IX)

DD	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
00										ADD IX,BC						
10										ADD IX,DE						
20		LD IX,ad	LD (ad),IX	INC IX	INC IXH	DEC IXH	LD IXH,v			ADD IX,IX	LD IX,(ad)	DEC IX	INC IXL	DEC IXL	LD IXL, v	
30					INC (IX+v)	DEC (IX+v)	LD (IX+v),v			ADD IX,SP						
40					LD B,IXH	LD B,IXL	LD B,(IX+v)						LD C, IXH	LD C, IXL	LD C,(IX+v)	
50					LD D, IXH	LD D,IXL	LD D,(IX+v)						LD E, IXH	LD E, IXL	LD E,(IX+v)	
60	LD IXH,B	LD IXH,C	LD IXH,D	LD IXH,E	LD IXH, IXH	LD IXH, IXL	LD H,(IX+v)	LD IXH,A	LD IXL,B	LD IXL,C	LD IXL,D	LD IXL,E	LD IXL,IXH	LD IXL, IXL	LD L,(IX+v)	LD IXL,A
70	LD (IX+v),B	LD (IX+v),C	LD (IX+v),D	LD (IX+v),E	LD (IX+v),H	LD (IX+v),L		LD (IX+v),A					LD A, IXH	LD A,IXL	LD A,(IX+v)	
80					ADD A,IXH	ADD A,IXL	ADD A,(IX+v)						ADC A,IXH	ADC A, IXL	ADC A,(IX+v)	
90					SUB IXH	SUB IXL	SUB (IX+v)						SBC A,IXH	SBC A, IXL	SBC A,(IX+v)	
A0					AND IXH	AND IXL	AND (IX+v)						XOR IXH	XOR IXL	XOR (IX+v)	
В0					OR IXH	OR IXL	OR (IX+v)						CP IXH	CP IXL	CP (IX+v)	
C0												**2				
D0																
E0		POP IX		EX (SP),IX		PUSH IX				JP (IX)						
F0										LD SP,IX						

Note: Some of these opcodes are followed by one or two bytes to specify the value v or the address ad.

(**2) Opcodes extended on four-byte which begin with DDh+CBh+v (for register IX)

DD+CB+v	00	01	02	03	04	05	06	07	08	09	0A	0в	0C	OD	0E	OF
00	RLC (v+IX)	RLC (v+IX)	RLC	RLC (v+IX)	RRC (v+IX)	RRC (v+IX)	RRC (v+IX)	RRC (v+IX)	RRC (v+IX)	RRC (v+IX)	RRC	RRC (v+IX)				
	LD B,(v+IX)	LD C,(v+IX)	LD D, (v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L,(v+IX)	(v+IX)	LD A, (v+IX)	LD B, (v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E, (v+IX)	LD H, (v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
10	RL (v+IX) LD B,(v+IX)	RL (v+IX) LD C,(v+IX)	RL (v+IX) LD D,(v+IX)	RL (v+IX) LD E,(v+IX)	RL (v+IX) LD H,(v+IX)	RL (v+IX) LD L,(v+IX)	RL (v+IX)	RL (v+IX) LD A,(v+IX)	RR (v+IX) LD B, (v+IX)	RR (v+IX) LD C,(v+IX)	RR (v+IX) LD D,(v+IX)	RR (v+IX) LD E,(v+IX)	RR (v+IX) LD H, (v+IX)	RR (v+IX) LD L,(v+IX)	RR (v+IX)	RR (v+IX) LD A,(v+IX)
20	SLA (v+IX)	SLA (v+IX)	SLA	SLA (v+IX)	SRA (v+IX)	SRA (v+IX)	SRA (v+IX)	SRA (v+IX)	SRA (v+IX)	SRA (v+IX)	SRA	SRA (v+IX)				
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A, (v+IX)	LD B, (v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
30	SLL (v+IX)	SLL (v+IX)	SLL	SRL (v+IX)	SRL (v+IX)	SRL (v+IX)	SRL (v+IX)	SRL (v+IX)	SRL (v+IX)	SRL (v+IX)	SRL	SRL (v+IX)				
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A, (v+IX)	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
40	BIT 0,(v+IX)	BIT 0,(v+IX)	BIT 0,	BIT 0,(v+IX)	BIT 1,(v+IX)	BIT 1,(v+IX)	BIT 1,(v+IX)	BIT 1,(v+IX)	BIT 1,(v+IX)	BIT 1,(v+IX)	BIT 1,	BIT 1,(v+IX)				
	LD B,(v+IX)	LD C,(Iv+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
50	BIT 2,(v+IX) LD B,(v+IX)	BIT 2,(v+IX) LD C,(v+IX)	BIT 2,(v+IX) LD D,(v+IX)	BIT 2,(v+IX) LD E,(v+IX)	BIT 2,(v+IX) LD H,(v+IX)	BIT 2, (v+IX) LD L, (v+IX)	BIT 2, (v+IX)	BIT 2,(v+IX) LD A,(v+IX)		BIT 3,(v+IX) LD C,(v+IX)	BIT 3,(v+IX) LD D,(v+IX)	BIT 3,(v+IX) LD E,(v+IX)	BIT 3,(v+IX) LD H,(v+IX)	BIT 3,(v+IX) LD L,(v+IX)	BIT 3, (v+IX)	BIT 3,(v+IX) LD A,(v+IX)
60	BIT 4,(v+IX) LD B,(v+IX)	BIT 4,(v+IX) LD C,(v+IX)	BIT 4,(v+IX) LD D,(v+IX)	BIT 4,(v+IX) LD E,(v+IX)	BIT 4, (v+IX) LD H, (v+IX)	BIT 4, (v+IX) LD L, (v+IX)	BIT 4, (v+IX)	BIT 4,(v+IX) LD A,(v+IX)		BIT 5,(v+IX) LD C,(v+IX)	BIT 5,(v+IX) LD D,(v+IX)	BIT 5,(v+IX) LD E,(v+IX)	BIT 5,(v+IX) LD H,(v+IX)	BIT 5,(v+IX) LD L,(v+IX)	BIT 5, (v+IX)	BIT 5,(v+IX) LD A,(v+IX)
70	BIT 6,(v+IX)	BIT 6,(v+IX)	BIT 6,(v+IX)	BIT 6,(v+IX)	BIT 6, (v+IX)	BIT 6,(v+IX)	BIT 6,	BIT 6,(v+IX)	BIT 7,(v+IX)	BIT 7, (v+IX)	BIT 7, (v+IX)	BIT 7,(v+IX)	BIT 7,(v+IX)	BIT 7,(v+IX)	BIT 7,	BIT 7,(v+IX)
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D, (v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
80	RES 0,(v+IX)	RES 0, (v+IX)	RES 0,	RES 0,(v+IX)	RES 1,(v+IX)	RES 1, (v+IX)	RES 1, (v+IX)	RES 1,(v+IX)	RES 1,(v+IX)	RES 1,(v+IX)	RES 1,	RES 1,(v+IX)				
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L, (v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D, (v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
90	RES 2,(v+IX)	RES 2,(v+IX)	RES 2,(v+IX)	RES 2,(v+IX)	RES 2, (v+IX)	BIT 2, (v+IX)	RES 2,	RES 2,(v+IX)	RES 3,(v+IX)	RES 3, (v+IX)	RES 3,(v+IX)	RES 3,(v+IX)	RES 3,(v+IX)	RES 3,(v+IX)	RES 3,	RES 3,(v+IX)
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L, (v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
A0	RES 4,(v+IX)	RES 4, (v+IX)	RES 4, (v+IX)	RES 4,(v+IX)	RES 4, (v+IX)	RES 4, (v+IX)	RES 4,	RES 4,(v+IX)	RES 5,(v+IX)	RES 5, (v+IX)	RES 5, (v+IX)	RES 5, (v+IX)	RES 5,(v+IX)	RES 5,(v+IX)	RES 5,	RES 5,(v+IX)
	LD B,(v+IX)	LD C, (v+IX)	LD D, (v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L, (v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D, (v+IX)	LD E, (v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
В0	RES 6,(v+IX)	RES 6,(v+IX)	RES 6, (v+IX)	RES 6,(v+IX)	RES 6, (v+IX)	RES 6, (v+IX)	RES 6,	RES 6,(v+IX)	RES 7,(v+IX)	RES 7, (v+IX)	RES 7, (v+IX)	RES 7,(v+IX)	RES 7,(v+IX)	RES 7,(v+IX)	RES 7,	RES 7,(v+IX)
	LD B,(v+IX)	LD C,(v+IX)	LD D, (v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L, (v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D, (v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
C0	SET 0,(v+IX)	SET 0,(v+IX)	SET 0,	SET 0,(v+IX)	SET 1,(v+IX)	SET 1, (v+IX)	SET 1,(v+IX)	SET 1,(v+IX)	SET 1,(v+IX)	SET 1,(v+IX)	SET 1,	SET 1,(v+IX)				
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
D0	SET 2,(v+IX)	SET 2, (v+IX)	SET 2,	SET 2,(v+IX)	SET 3,(v+IX)	SET 3,(v+IX)	SET 3,(v+IX)	SET 3,(v+IX)	SET 3,(v+IX)	SET 3,(v+IX)	SET 3,	SET 3,(v+IX)				
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L, (v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
E0	SET 4,(v+IX)	SET 4,(v+IX)	SET 4,(v+IX)	SET 4,(v+IX)	SET 4, (v+IX)	SET 4, (v+IX)	SET 4,	SET 4,(v+IX)	SET 5,(v+IX)	SET 5, (v+IX)	SET 5, (v+IX)	SET 5,(v+IX)	SET 5,(v+IX)	SET 5,(v+IX)	SET 5,	SET 5,(v+IX)
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L, (v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D, (v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)
F0	SET 6,(v+IX)	SET 6,(v+IX)	SET 6,(v+IX)	SET 6,(v+IX)	SET 6, (v+IX)	SET 6, (v+IX)	SET 6,	SET 6,(v+IX)	SET 7,(v+IX)	SET 7, (v+IX)	SET 7,(v+IX)	SET 7,(v+IX)	SET 7,(v+IX)	SET 7,(v+IX)	SET 7,	SET 7,(v+IX)
	LD B,(v+IX)	LD C,(v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H, (v+IX)	LD L, (v+IX)	(v+IX)	LD A,(v+IX)	LD B,(v+IX)	LD C, (v+IX)	LD D,(v+IX)	LD E,(v+IX)	LD H,(v+IX)	LD L,(v+IX)	(v+IX)	LD A,(v+IX)

Note: These opcodes have a byte between the third and fourth bytes to specify the value (v).

(***) Opcodes extended on two-byte which begin with EDh

ED	00	01	02	03	04	05	06	07	08	09	0A	0В	0C	0D	0E	0F
0.0																
10																
20																
30																
40	IN B,(C)	OUT (C),B	SBC HL,BC	LD (ad),BC	NEG	RETN	IM 0	LD i,A	IN C,(C)	OUT (C),C	ADC HL,BC	LD BC,(ad)	NEG	RETI	IM O	LD R,A
50	IN D,(C)	OUT (C),D	SBC HL,DE	LD (ad),DE	NEG	RETN	IM 1	LD A,i	IN E,(C)	OUT (C),E	ADC HL,DE	LD DE,(ad)	NEG	RETI	IM 2	LD A,R
60	IN H,(C)	OUT (C),H	SBC HL,HL	LD (ad),HL	NEG	RETN	IM O	RRD	IN L,(C)	OUT (C),L	ADC HL,HL	LD HL,(ad)	NEG	RETI	IM O	RLD
70	IN (C)	OUT (C),0	SBC HL,SP	LD (ad),SP	NEG	RETN	IM 1	NOP	IN A,(C)	OUT (C),A	ADC HL,SP	LD SP,(ad)	NEG	RETI	IM 2	LD R,R
80																
90																
A0	LDI	CPI	INI	OUTI					LDD	CPD	IND	OUTD				
В0	LDIR	CPIR	INIR	OTIR					LDDR	CPDR	INDR	OTDR				
C0		MULUB A,B		MULUW HL,BC						MULUB A,C						
D0		MULUB A,D		MULUW HL, DE						MULUB A,E						
ΕO		MULUB A,H		MULUW HL, HL						MULUB A,L						
F0		MULUB A, (HL)		MULUW HL,SP						MULUB A, A						

Notes: - Some of these opcodes are followed by two bytes to specify an address (ad).

- The opcode ED 71 corresponds to the instruction OUT(c),255 on a CMOS Z80.

(****) Opcodes extended on two or three byte which begin with FDh (register IY)

See the tables of extended opcodes which begin with DDh and DDh+CBh. Replace DDh by FDh to obtain the code of statements for register IY.

Description of colors

- The green statements refer to inputs/outputs.
- The purple statements concern interruptions.
- · The statements in red are undocumented by Zilog for the Z80. Some Z80-compatible CPUs do not have all of these statements.
- The statements in sky blue are unsigned multiplications. These are specific statements for the R800 (MSX turbo R). MULUB multiplies the two indicated 8-bit registers and sets the result in HL (MSB) and DE (LSB). Barred statements are not guarantees of operation.

About Undocumented Statements (in red)

- Undocumented statements are rarely used in MSX programs.
- The statement SLL of opcodes CBh 30h ~ CBh 37h (in dark red) has been replaced on R800 by SLA (same as CBh 20h ~ CBh 27h).
- On Z80 the undocumented opcodes which begin with DDh CBh or FDh CBh correspond almost all to the execution of the two statements indicated in the cell at same time. They are ignored by the R800.
- Empty cells correspond to a NOP whose execution takes 8T states and increment by two the register R. Same for the mirrors of NEG, RETN and IM (in italic and darker red). Same also for opcodes which begin with DDh CBh and FDH CBh.
- · All statements for the registers IXH, IXL, IYH and IYL are official statements on R800.