```
Polinomis interpolante de Hermite
```

29/03/2021

Llamamos a los polinomios oscurantismo como una generalización de polinomios de Taylor y Lagrange.

Dados n+1 numeros distintos Xo, X1,...,Xn y los numeros enteros no negativos Mo, M1,...,Mn el polinomio oscilante que aproxima una función $f \in G^m[a,b]$ donde m=max $\{m_0,...m_n\}$ y $X_i \in [a,b]$ $\forall i=0,...n$, es el polinomio de menor grado que concuerda con la función f y con todos sus derivadas de orden menor o igual que Mi en Xi

Tenemos entonces Xo, X1,...Xn numeros distintos en [a,b], entonces habiamos dicho que el polinomio osculante que aproxima a f es un polinomio P(x)·Э·

 $\left\{\begin{array}{c} \frac{d^k}{dx^k} P(x_i) = \frac{d^k}{dx^k} f(x_i) & \forall i = 0,...,n \\ y k = 0,1,...,m \end{array}\right.$

dxk P(Xi) = dxk T(Xi) y k = 0,1,...,m Nota: si n o el polinomio osculante

Nota: si n o, el polinomio osculante que aproxima a f es el polinomio de Taylor alrededor de Xo

Nota 2: Cuando m2=0 ¥; , el polinomio osculante sera el polinomio de Lagrange de grado n que interpola a la funcion

f

Nota 3: Cuando mi=1 ¥;=0...n se produce una clase polinomios llamados Hemite, en una funcion dada f, estos
polinomios concuerdan con f en Xo X1....Xn así como sus primeras derivadas concuerdan con las derivadas de f

Nota 3: Cuando mi=1 +i=0...n se produce una clase polinomios llamados flemite, en una función dada f, estos polinomios concuerdan con f en Xo, X1,...,Xn así como sus primeras derivadas concuerdan con las derivadas de f

De lo anterior tenemos que se tienen Xi datos [a,b] y una función f66(a,b). Deseamos construir un polinomio ff(x) t

De lo anterior tenemos que se tienen Xi datos [a,b] y una función féé[a,b]. Deseamos construir un polinomio H(x) tal que la función coincida en los puntos del polinomio y sus derivadas, esto es, f(Xi) = H(Xi) $\forall i = 0,1,...,n$ y $\frac{df}{dx} f(x) \Big|_{x-xi} = \frac{dH}{dx}(x) \Big|_{X-xi} + \frac{H}{dx}(x) \Big|_{X-xi} + \frac{H}{dx$

Teorema: si $f \in \mathcal{C}[a,b]$ y si $X_0, ... X_n \in [a,b]$ distintos, el polinomio unico, de menor grado que concuerda con f y f'en $X_0, ... X_n$ en el polinomio de Hermite de grado 2n+1 que esta dado por:

 $H_{2n+1}(x) = \sum_{j=0}^{\infty} f(x_j) H_{n,j}(x) + \sum_{j=0}^{\infty} f'(x_j) \hat{H}_{n,j}(x)$ donde $H_{n,j}(x) = [1-2(x-x_j) L_{n,j}(x_j) L_{n,j}(x_j) L_{n,j}(x)]$ donde $L_{n,j} = \prod_{j=0}^{\infty} \frac{(x-x_i)}{(x_j-x_i)} \hat{H}_{n,j} = (x-x_j) L_{n,j}^2 L_{n,j} L_{n,j}$ denota el j-ésimo coeficiente de Lagrange de grado n, definido anteriormente

Nota: este teorema proporciona una descripcion completa de los polinomios de Hermite, pero tendriamos la

necesidad de determinar y evaluar los polinomios de Lagrange y sus derivadas, lo cual es muy tedioso generar aproximaciones de Hermite tiene como base las diferencias divididas de Newton. Para facilitar la construccion haremos lo siguiente:

Supongamos que los n+1 numeros distintos XO, X1, X2, ..., Xn, junto con los valores de f y f'en esos numeros. Definimos una sucesion Z_0 , Z_1 , Z_{n+1} por medio de lo siguiente $Z_{2i} = Z_{2i+1} = Xi$ \forall i=0,1,...n || 1/2 puntos consecutivos coinciden Z_0 and Z_1 is Z_1 and Z_2 if Z_3 if Z_4 if Z_4

 $f[z_{i}] = f[z_{i}]$ $f[z_{2i+1}, z_{2i}] = f'[z_{2i}]$ $f[z_{k+1}, z_{k}] = \frac{f(z_{k+1}) - f(z_{k})}{z_{k+1} - z_{k}}$

 $\{z_i\} = Z_{zi} = Z_{i+1} = X_i$

 $f[Z_{k+1}, Z_{k}] = \overline{Z_{k+1} - Z_{k}}$ $f[Z_{k+1}, Z_{k+1-1}, ... Z_{k+1}, Z_{k}] = \overline{f[Z_{k+1}, Z_{2k+1-2}, ... Z_{k+1}] - f[Z_{k+1-1}, ... Z_{k}]}$ $Z_{k+1} - Z_{k}$

El polinomio	osculante de	Hermite esta dado por	
		。] (x-₹₁) (x-₹ぇ.₁)	
2	f(2)	Primeras diferencias Segundas diferencias divididas	
Zo =Xo	f[2.] = f(X.)	f[z,z,]-f(z,z,]-f(z,z,) f[z,z,z,]-f(z,z,)	
Z1 = X0 Z2 = X1	f[Z ₁] = f(X ₁)	$f[z_{2},z_{1}] = \frac{f[z_{1}] - f[z_{1}]}{z_{2} - z_{1}}$ $f[z_{3},z_{2},z_{1}] = \frac{f[z_{3},z_{2}] + f[z_{3},z_{1}]}{z_{3} - z_{1}}$	
Z 3 = X1	f[Z3] = f(X1)	f[2,2,]-f'(x,)	
Z4 = X2 Z5 = X2	$f[Z_4] = f(X_2)$ $f[Z_5] = f(X_2)$	$f(z_4, z_3) = \frac{f(z_4) - f(z_3)}{z_4 - z_3}$	
		f(zs, za) = f'(Xz)	
Ejemplo: uso	a el polinomio	de Hermite que concuerda con los siguientes datos y obtén una aproximación para f(1.	5)
XK t	(XF) t,((Xk)	
0 1.3 0	.6200860 -0.	0.5220232	
1 1.6 0	.4554022 -0.	2.5698959	
2 1.9 0.	2818186 -0.5	58115 71	
2	t (§]	Primeras diferencias divididas	
₹₀ = 1.3	0.6200860	f[21, 20] = f'(20)	
Z ₁ = 1.3	0.6200860		
Z ₂ = 1.6	0.4554022		
2 3 = 1.6	0.4554022		
24= 1.9	0.2818186		
Z = 1.9	0.2818186		
z0 z	f[z] 1.3 0.620086	f' 1ra dif div 2da dif div 3era dif div 4ta dif div 5ta dif div 600 -0.52202320 -0.52202320 -0.08974267 0.06636556 0.00266667 -0.00277469	
z1	1.3 0.620086	600 -0.54894600 -0.06983300 0.06796556 0.00100185	
z2 z3	1.6 0.455402 1.6 0.455402	220 -0.56989590 -0.56989590 -0.02905367 0.06856667 220 -0.57861200 -0.00848367	
z4	1.9 0.281818	860 -0.58115710 -0.58115710	
z5	1.9 0.281818	860	