

UniversitätsKlinikum Heidelberg

Optimal Subgroup Selection Rules in Adaptive Oncology Trials with Time-to-Event Outcome

Johannes Krisam und Meinhard Kieser
Institute of Medical Biometry and Informatics
University of Heidelberg

Adaptive Designs and Multiple Testing Procedures Workshop 2016
Padua, Italy
April 28-29, 2016

Introduction

Outline

- Introducing background and basic notation and the statistical model
- Calculating optimal decision rules in case of uncertainty about trial design parameters for the situation of a time-to-event endpoint
- Deriving optimal decision rules based on data from a clinical trial example and comparing them to fixed ad hoc rules in terms of correct selection probability

Background

- Total patient population G_0
- Prospectively defined subgroup G_{+}
 - potentially increased benefit
 - identified by biomarker
- Complementary subgroup $G_{-} := G_{0} \setminus G_{+}$

Introduction

- Selection of the target population based on data
 - (pilot / phase II) study A \rightarrow (pivotal / phase III) study B
 - first stage → second stage of adaptive seamless design (e.g. Jenkins et al., 2011; Brannath et al., 2011; Friede et al., 2012)

$\bigcirc\bigcirc$

Assumptions and notations

Assumptions:

time-to-event-outcome

- G_0 G_+ G_-
- two balanced groups T(=treatment), C(=control)

Notations:

 $-M_{iP}$: median event times for patients from treatment group i=T,C and subgroup G_P with P=+,-

 $-\Delta_P$: logarithm of the hazard ratio in subgroup G_P with P=0,+,-

 $-\pi$: prevalence of subgroup G_+

- d : number of accumulated events per stage

Introduction

Basics

Let

$$\widehat{\Delta}_{+} \coloneqq U_{+} \cdot 2/\sqrt{d_{+}}, \qquad \widehat{\Delta}_{-} := U_{-} \cdot 2/\sqrt{d_{-}}, \qquad \widehat{\Delta}_{0} \coloneqq U_{0} \cdot 2/\sqrt{d_{-}},$$

$$\widehat{\Delta}_0 \coloneqq U_0 \cdot 2/\sqrt{d}$$

where U_P and are the "unsquared" versions of the (stratified) log rank test statistics and, respectively, d_P the accumulated number of events in population P = 0, +, -.

• If (Δ_+, Δ_0) are not "too far" away from 0, $(\widehat{\Delta}_+, \widehat{\Delta}_0)$ are estimators for the log hazard ratios (Wassmer 2005), and (Brannath et al. 2009) can be assumed to be approximately normal with

$$(\widehat{\Delta}_+, \widehat{\Delta}_0)|\Delta_+, \Delta_0 \sim N \left[(\Delta_+, \pi \Delta_+ + (1-\pi)\Delta_-), \begin{pmatrix} 4/\pi d & 4/d \\ 4/d & 4/d \end{pmatrix} \right],$$

assuming πd events occurred in G_+ at interim.

Example for a decision rule

• Decision rule proposed by Jenkins et al. 2011:

Log hazard ratio estimates at interim	$\widehat{\Delta}_0 > c_0$	$\widehat{\Delta}_0 \leq c_0$
$\widehat{\Delta}_{+} > c_{+}$	G_0 G_+	G_{+}
$\widehat{\Delta}_{+} \leq c_{+}$	G_0	

• How to choose (c_0, c_+) in case of uncertain $\Delta_0, \Delta_+, \Delta_-$?

Optimal decision rules

Assumptions:

- selection of G_0 desired if $\Delta_0 > \tau_0$
- selection of G_+ desired if $\Delta_+ > \tau_+$
- Normal prior distribution assumed for either
 - a) (Δ_0, Δ_+) with

$$(\Delta_0, \Delta_+) \sim N \left[(m_0, m_+), \begin{pmatrix} w_0 & \rho_a \sqrt{w_0 w_+} \\ \rho_a \sqrt{w_0 w_+} & w_+ \end{pmatrix} \right]$$
 or

b) (Δ_+, Δ_-) with

$$(\Delta_{+}, \Delta_{-}) \sim N \left[(m_{+}, m_{-}), \begin{pmatrix} w_{+} & \rho_{b} \sqrt{w_{+} w_{-}} \\ \rho_{b} \sqrt{w_{+} w_{-}} & w_{-} \end{pmatrix} \right]$$

- quadratic loss function for wrong decision
 - → optimal decision rule minimizes expected loss ("risk")

Optimal decision rules (2)

- Under the previous assumptions, an optimal decision threshold pair (c_0^*, c_+^*) can be explicitly determined:
- a) assuming a normal prior for (Δ_0, Δ_+) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(m_0 - \tau_0)}{dw_0} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right),$$

Optimal decision rules (2)

- Under the previous assumptions, an optimal decision threshold pair (c_0^*, c_+^*) can be explicitly determined:
- a) assuming a normal prior for (Δ_0, Δ_+) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(m_0 - \tau_0)}{dw_0} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right),$$

b) assuming a normal prior for (Δ_+, Δ_-) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(\pi m_+ + (1 - \pi)m_- - \tau_0)}{d(\pi^2 w_+ + 2\pi(1 - \pi)\rho_b\sqrt{w_+ w_-} + (1 - \pi)^2 w_-)} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right).$$

General remarks on optimal decision rules

Assuming a normal prior for (Δ_0, Δ_+) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(m_0 - \tau_0)}{\mathbf{d}w_0} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi \mathbf{d}w_+} + \tau_+\right),$$

b) assuming a normal prior for (Δ_+, Δ_-) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(\pi m_+ + (1 - \pi)m_- - \tau_0)}{\mathbf{d}(\pi^2 w_+ + 2\pi(1 - \pi)\rho_b\sqrt{w_+ w_-} + (1 - \pi)^2 w_-)} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi \mathbf{d}w_+} + \tau_+\right).$$

For an increasing number of events d, (c_0^*, c_+^*) converge towards (τ_0, τ_+) .

General remarks on optimal decision rules (2)

a) Assuming a normal prior for (Δ_0, Δ_+) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(\mathbf{m_0} - \mathbf{\tau_0})}{dw_0} + \tau_0, -\frac{4(\mathbf{m_+} - \mathbf{\tau_+})}{\pi dw_+} + \tau_+\right),$$

b) assuming a normal prior for (Δ_+, Δ_-) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(\pi m_+ + (1 - \pi)m_- - \tau_0)}{d(\pi^2 w_+ + 2\pi(1 - \pi)\rho_b\sqrt{w_+ w_-} + (1 - \pi)^2 w_-)} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right).$$

Whether c_0^*/c_+^* lies above or below τ_0/τ_+ is determined via the sign of $(\pi m_+ + (1-\pi)m_-) - \tau_0/m_0 - \tau_0/m_+ - \tau_+$, and the smaller the respective difference, the closer c_i^* will be to τ_i , i=0,+.

General remarks on optimal decision rules (3)

a) Assuming a normal prior for (Δ_0, Δ_+) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(m_0 - \tau_0)}{d\mathbf{w_0}} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi d\mathbf{w_+}} + \tau_+\right),$$

b) assuming a normal prior for (Δ_+, Δ_-) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(\pi m_+ + (1 - \pi)m_- - \tau_0)}{d(\pi^2 \mathbf{w}_+ + 2\pi(1 - \pi)\rho_b\sqrt{\mathbf{w}_+\mathbf{w}_-} + (1 - \pi)^2\mathbf{w}_-)} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi d\mathbf{w}_+} + \tau_+\right).$$

The larger the prior variances w_i , i = 0, +, -, the closer the optimal decision thresholds c_i^* are to τ_i , i = 0, +.

General remarks on optimal decision rules (4)

a) Assuming a normal prior for (Δ_0, Δ_+) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(m_0 - \tau_0)}{dw_0} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right),$$

b) assuming a normal prior for (Δ_+, Δ_-) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(\pi m_+ + (1 - \pi)m_- - \tau_0)}{d(\pi^2 w_+ + 2\pi(1 - \pi)\rho_b\sqrt{w_+ w_-} + (1 - \pi)^2 w_-)} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right).$$

 \triangleright Only in case the optimal decision thresholds are modelled via (Δ_+, Δ_-) , they are affected by the prior correlation ρ_b , and for a higher correlation, c_+^* is closer to τ_+ .

General remarks on optimal decision rules (5)

Assuming a normal prior for (Δ_0, Δ_+) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(m_0 - \tau_0)}{dw_0} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right),$$

b) assuming a normal prior for (Δ_+, Δ_-) , the threshold pair is

$$(c_0^*, c_+^*) = \left(-\frac{4(\pi m_+ + (1 - \pi)m_- - \tau_0)}{d(\pi^2 w_+ + 2\pi(1 - \pi)\rho_b\sqrt{w_+w_-} + (1 - \pi)^2 w_-)} + \tau_0, -\frac{4(m_+ - \tau_+)}{\pi dw_+} + \tau_+\right).$$

 \triangleright The larger the subgroup prevalence π , the closer c_+^* is to τ_+ .

Clinical trial example

- Histone deacetylase inhibitors (HDACis) have been shown to overcome resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) linked to epigenetic changes.
- In a randomized phase II trial (n=132) study, the overall survival of erlotinib with and without the isoform selective HDACi, entinostat, was evaluated for NSCLC-patients who progressed on a prior chemotherapy. (Witta et al., 2012)

Clinical trial example (2)

 Entinostat showed promising results in both the total patient population as well as in several subgroups (Witta et al. 2012):

Fig 3. Forest plot of median overall survival and associated hazard ratios by biomarker status. Ecad, E-cadherin; EGFR, epidermal growth factor receptor; FISH, fluorescent in situ hybridization; KRAS, Kirsten rat sarcoma viral oncogene homolog.

Witta SE et al. (2012). Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non–small-cell lung cancer who progressed on prior chemotherapy. *Journal of Clinical Oncology*, **30**(18), 2248-2255.

Clinical trial example (2)

 Entinostat showed promising results in both the total patient population as well as in several subgroups (Witta et al. 2012):

Fig 3. Forest plot of median overall survival and associated hazard ratios by biomarker status. Ecad, E-cadherin; EGFR, epidermal growth factor receptor; FISH, fluorescent in situ hybridization; KRAS, Kirsten rat sarcoma viral oncogene homolog.

Witta SE et al. (2012). Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non–small-cell lung cancer who progressed on prior chemotherapy. *Journal of Clinical Oncology*, **30**(18), 2248-2255.

Clinical trial example: Determination of prior distributions

- Considering the fact that Entinostat showed both a highly increased benefit in the subgroup of KRAS mutant as compared to KRAS wildtype, the proof of efficacy of entinostat within an adaptive enrichment design with G₊ being KRAS mutant might be pursued.
- Prior distributions can be obtained from the study by Witta et al. 2012 via choosing
 - $-m_i$ as the negative logarithm of the reported hazard ratios.
 - $-w_i$ as the squared standard error of the estimated log hazard ratios (can be computed from the reported confidence intervals).
- Since the correlation ρ_b can only be meaningfully estimated by several studies at hand, it is set here to 0.

Clinical trial example: **Determination of prior distributions (2)**

This yields the following parameters for the respective priors

$$> m_+ = -log(0.24) = 1.43, w_+ = 1.24$$

$$m_{-} = -log(0.71) = 0.34, \ w_{-} = 0.067$$

- \succ $\pi = 0.157$ according to a meta-analysis (Mao et al. 2010, n=1470)
- In case one chooses a prior for G_0 instead of G_- , $m_0 = -\log(0.85) = 0.16, \ w_0 = 0.04.$
- Relevance thresholds are set to $\tau_0 = -\log(0.8), \tau_+ = -\log(0.5).$

Clinical trial example: optimal decision rules

• optimal decision thresholds on the hazard ratio scale in dependence of number of events d

Introduction

Clinical trial example: optimal decision rules

 optimal decision thresholds on the hazard ratio scale in dependence of number of events d

Clinical trial example: optimal decision rules

optimal decision thresholds on the hazard ratio scale in dependence of number of events d

Clinical trial example: remarks on optimal decision rules

- Relatively generous decision thresholds c_+^*
- If prior for G_0 is used, $\exp(-c_0^*)$ is smaller than 0.8, in contrast to the scenarios where a prior for G_- is applied
- The larger the number of events, the closer the optimal decision thresholds c_0^* , c_+^* are to the relevance thresholds τ_0 , τ_+

Introduction

Assumptions for simulation study

- Assume that it is planned to investigate the efficacy of entinostat within an adaptive enrichment design with
 - \triangleright subgroup selection at interim based on d=200 observed events
 - subgroup prevalence from the meta-analysis holds true
- This would result in the following optimal decision thresholds:
 - a) Based on a prior for G_+, G_- : $\exp(-c_0^*) = 0.862, \exp(-c_+^*) =$ 0.539
 - Based on a prior for G_+, G_0 : $\exp(-c_0^*) = 0.773, \exp(-c_+^*) =$ 0.539

Assumptions for simulation study (2)

 Furthermore assume exponentially distributed survival times and the following median survival times in months:

$$M_{T+} = 12, M_{C+} = 8, M_{T-} = 8, M_{C-} = 6$$

 $\Rightarrow \Delta_0 \approx -\log(0.74), \Delta_+ \approx -\log(0.67),$

- Now, 3 different types of decision thresholds can be considered for each scenario:
 - (a) ad hoc decision thresholds $(\tau_0, \tau_+) = (-\log(0.8), -\log(0.5))$
 - (b) optimal decision thresholds with c_0^* based on a prior for G_+ , G_-
 - (c) optimal decision thresholds with c_0^* based on a prior for G_0
- Selection probabilities were evaluated using 1,000,000 simulated studies per scenario

Selection probabilities

decision thresholds on HR scale probability	(a) (0.8,0.5)	(b) (0.862, 0.539)	(c) (0.773, 0.539)
select G_0 and G_+	0.1969		
select G_0 only	0.5169		
select G_+ only	0.0311		
stop for futility	0.2551		

Selection probabilities

decision thresholds on HR scale probability	(a) (0.8,0.5)	(b) (0.862, 0.539)	(c) (0.773, 0.539)
select G_0 and G_+	0.1969	0.2743	
select G_0 only	0.5169	0.5876	
select G_+ only	0.0311	0.0164	
stop for futility	0.2551	0.1217	

Introduction

Selection probabilities

decision thresholds on HR scale probability	(a) (0.8,0.5)	(b) (0.862, 0.539)	(c) (0.773, 0.539)
select G_0 and G_+	0.1969	0.2743	0.2282
select G_0 only	0.5169	0.5876	0.3982
select G_+ only	0.0311	0.0164	0.0624
stop for futility	0.2551	0.1217	0.3112

- Rule (b) shows the overall best performance as compared to rules (a) and (c)
- Relatively high probability for a futility stop for both rules (a) and (c)
- Due to the relatively strict threshold for G_0 , rule (c) performs worst.

Conclusion

Optimal decision rules incorporate various aspects of the design of a clinical trial with subgroup selection.

Introduction

- These rules can either be modelled via prior knowledge in the two subgroups, or in the total population and subgroup of interest
- If there is prior knowledge on treatment effects, optimal decision rules may lead to an increased probability for a correct selection of the target population, which in turn positively influences the power of the trial (Krisam & Kieser 2015)

References

Brannath W, Zuber E, Branson M, Bretz F, Gallo P, Posch M, Racine-Poon A (2009). Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology. *Statistics in Medicine* 28: 1445-1463

Friede T, Parsons N, Stallard N (2012). A conditional error function approach for subgroup selection in adaptive clinical trials. *Statistics in Medicine* **31**: 4309-4120.

Jenkins M, Stone A, Jennison C (2011). An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoints. *Pharmaceutical Statistics* **10**: 347-356.

Krisam J, Kieser M (2014). Decision rules for subgroup selection based on a predictive biomarker. *Journal of Biopharmaceutical Statistics* **24**, 188-202.

Krisam J, Kieser M (2015). Optimal decision rules for biomarker-based subgroup selection for a targeted therapy in oncology. *International Journal of Molecular Sciences* **16**(5), 10354-10375.

Krisam J, Kieser M (2016). Performance of biomarker-based subgroup selection rules in adap-tive enrichment designs. *Statistics in Biosciences (in press)*, doi: 10.1007/s12561-015-9129-5.

Mao C et al. (2010). KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. *Lung cancer* **69**(3), 272-278.

Wassmer G (2006). Planning and analyzing adaptive group sequential survival trials. Biometrical Journal 48: 714–729.

Witta SE et al. (2012). Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non–small-cell lung cancer who progressed on prior chemotherapy. *Journal of Clinical Oncology*, **30**(18), 2248-2255.

