Crescimento Logístico da População do Brasil

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

6 de abril de 2011

Sumário

1	Os Dados, a Equação Diferencial e a Solução	2
2	Determinação dos Parâmetros	3
3	Comparação com Estimativas do IBGE	5
4	Comparação com o Recenseamento de 2010	6

Os cálculos feitos usando o Maxima estão disponíveis em

http://www.mat.ufmg.br/~regi/maxima/popbrasil.html.

O arquivo para o WxMaxima está em

http://www.mat.ufmg.br/~regi/maxima/popbrasil.wxmx.

1 Os Dados, a Equação Diferencial e a Solução

Na tabela abaixo estão os dados dos 6 penúltimos recenseamentos realizados no Brasil.

Ano	População
1950	52 milhões
1960	70 milhões
1970	93 milhões
1980	119 milhões
1991	147 milhões
2000	170 milhões

Vamos supor que a população do Brasil siga o modelo de crescimento logístico, ou seja, que seja solução do problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = ky(y_M - y), \\ y(t_0) = y_0, \end{cases}$$

em que k e a população máxima y_M são constantes a ser determinadas.

Este problema tem como solução

$$y(t) = \frac{y_M}{1 + \left(\frac{y_M - y_0}{y_0}\right) e^{-y_M k(t - t_0)}}.$$

Com base nos dados da tabela acima usando regressão linear podemos estimar que o valor máximo da população é de $y_M = 257$ milhões de habitantes para o modelo de crescimento logístico e que $k = 0.04/y_M$. Neste caso a população como função do tempo, y(t), é a solução do problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = \frac{0.04}{257}y(257 - y) \\ y(2000) = 170 \text{ milhões} \end{cases}$$

e é dada por

$$y(t) = \frac{257 \cdot 10^6}{1 + 0.5726 \cdot e^{-0.04(t - 2000)}}.$$

2 Determinação dos Parâmetros

Podemos escrever o modelo logístico na forma

$$\frac{1}{y}\frac{dy}{dt} = ay + b$$
, em que $a = -k$ e $b = ky_M$.

Usando a tabela anterior, podemos aproximar a derivada $y'(t_i)$, para cada ano t_i em que foi realizado um recenseamento pela diferença finita para frente

$$\frac{dy}{dt}(t_i) \approx \frac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i}$$

ou pela diferença finita para trás

$$\frac{dy}{dt}(t_i) \approx \frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}.$$

Para obter uma aproximação com mais acuidade vamos tomar a média aritmética das duas aproximações.

t_i	y_i	$g_i = \frac{1}{y_i} \frac{y_{i+1} - y_i}{t_{i+1} - t_i}$	$h_i = \frac{1}{y_i} \frac{y_i - y_{i-1}}{t_i - t_{i-1}}$	$\frac{g_i + h_i}{2}$
1950	52 milhões	0,0346	-	
1960	70 milhões	0,0329	0,0257	0,0293
1970	93 milhões	0,0280	0,0247	0,0263
1980	119 milhões	0,0214	0,0218	0,0216
1991	147 milhões	0,0174	0,0173	0,0174
2000	170 milhões	_	0,0150	

Assim

$$\frac{1}{y}\frac{dy}{dt}(t_i) = ay(t_i) + b \approx \frac{g_i + h_i}{2},$$

para $t_i = 1960, 1970, 1980, 1991$. Usando quadrados mínimos encontramos os parâmetros a e b da melhor reta que se ajusta ao conjunto de pontos

y_i	$\frac{g_i+h_i}{2}$	
70 milhões	0,0293	
93 milhões	0,0263	
119 milhões	0,0216	
147 milhões	0,0174	

que são $a=-1,58\cdot 10^{-10},\ b=0,04.$ Assim obtemos $k=-a=1,58\cdot 10^{-10}$ e $y_M=b/k=257$ milhões.

Usando $t_0 = 2000$, $y_0 = 170$ milhões obtemos

$$y(t) = \frac{257 \cdot 10^6}{1 + 0.51 \cdot e^{-0.04(t - 2000)}}$$

3 Comparação com Estimativas do IBGE

No dia 05 de outubro de 2007 o IBGE anunciou a estimativa para a população de 2007 em 184 milhões de habitantes. Usando a função obtida temos que para t=2007

$$y(2007) = 185 \text{ milhões de habitantes.}$$

Isto representa uma diferença de aproximadamente 0.5~% em relação a estimativa do IBGE.

O IBGE no dia 29 de agosto de 2008 anunciou em 189,6 milhões de habitantes a estimativa para a população o Brasil para 2008.

Para t = 2008 temos

y(2008) = 187 milhões de habitantes.

6 REFERÊNCIAS

Uma diferença de 1,5 %.

4 Comparação com o Recenseamento de 2010

No recenseamento realizado em 2010 a população foi de 190,7 milhões. Para t=2010 temos

$$y(2010) = 191,6$$
 milhões de habitantes.

Um erro de 0,5 %.

Seguindo o modelo logístico a população atingirá

- 90 % de 257 milhões = 231 milhões em 2037;
- $\bullet~99~\%$ de 257 milhões = 254 milhões em 2096.

Referências

[1] Reginaldo J. Santos. *Introdução às Equações Diferenciais Ordinárias*. Imprensa Universitária da UFMG, Belo Horizonte, 2011.