Real sequences (Part 1) 2023-2024

Outline

- General definitions
- Properties
- Limits of sequences
- Convergent and divergent sequences
- The monotone convergence theorem
- Limits Properties
- Operations on convergent sequences

Outline

- Limits and order
- Ajacent sequences

Definition

A real sequence or a sequence of real numbers is defined as a function from \mathbb{N} , the set of natural numbers, or from a subset A of \mathbb{N} , to \mathbb{R} . In other words $f: n \in A \mapsto U_n = f(n) \in \mathbb{R}$.

It is customary to denote a sequence by $(U_n)_{n\in\mathbb{N}}$ or more clearly (U_n) .

Examples

$$U_n = \sqrt{n-3}, \forall n \in \mathbb{N}; n \ge 3.$$

2.
$$f(n) = U_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}$$

3.
$$f(n) = U_n = 1 + \frac{1}{n+1}$$
4.
$$\begin{cases} U_0 = 1 \\ U_{n+1} = \sqrt{U_n + 1} \end{cases}$$

The real numbers U_0 , U_1 , ... are called elements or terms of the sequence (U_n) . The number U_n is called the n^{th} term of rank n of the sequence or general term.

- increasing sequence, $\forall n \in \mathbb{N}, n \ge n_0 \ U_{n+1} \ge U_n$
- decreasing sequence, $\forall n \in \mathbb{N}, n \ge n_0 U_{n+1} \le U_n$
- Strictly increasing sequence, $\forall n \in \mathbb{N}, n \geq n_0 \ U_{n+1} > U_n$
- Strictly decreasing sequence, $\forall n \in \mathbb{N}, n \geq n_0 \ U_{n+1} < U_n$
- Stationary sequence, $\exists p \in \forall n \in \mathbb{N}, n \geq p, U_{n+1} = U_n = U_p$
- Periodic sequence, $\exists k \in \mathbb{N} \quad \forall n \in \mathbb{N}, \ U_{n+k} = U_n$

- Upper bounded sequence, $\exists M \in \mathbb{R} \forall n \in \mathbb{N}, U_n \leq M$
- Lower bounded sequence, $\exists m \in \mathbb{R} \forall n \in \mathbb{N}, U_n \geq m$
- Bounded sequence, $\exists \alpha \in \mathbb{R}_+^* \forall n \in \mathbb{N}, |U_n| \leq \alpha$
- Monotone sequence, « increasing or decreasing sequence»

Remarks

If (U_n) is such that $U_n > 0$ and $\frac{U_{n+1}}{U_n} \le 1$ then (U_n) is decreasing.

If (U_n) is such that $U_n > 0$ and $\frac{U_{n+1}}{U_n} \ge 1$ then (U_n) is increasing.

The sequence $U_n = (-1)^n$ is not monotone.

Properties

1) If $(U_n)_{n\in\mathbb{N}}$, $(V_n)_{n\in\mathbb{N}}$ are increasing then the sum

$$(U_n + V_n)_{n \in \mathbb{N}}$$
 is increasing.

2) If $(U_n)_{n\in\mathbb{N}}$, $(V_n)_{n\in\mathbb{N}}$ are decreasing then $(U_n + V_n)_{n\in\mathbb{N}}$

is decreasing .

Properties

3) If $(U_n)_{n\in\mathbb{N}}$, $(V_n)_{n\in\mathbb{N}}$ are positive increasing sequences then $(U_n \cdot V_n)_{n\in\mathbb{N}}$

is increasing.

4) If (U_n) is increasing and $\forall n \in \mathbb{N}, n \ge n_0 \ U_n > 0$

then $\left(\frac{1}{U_n}\right)_{n\in\mathbb{N}}$ is decreasing.

Examples

Study the monotony of the following sequences:

Exemple 1:
$$U_n = 1 + E \begin{bmatrix} 1/n \end{bmatrix}, n \in \mathbb{N}^*.$$

Exemple 2:
$$U_n = \frac{3n-1}{2n+3}$$

Exemple 3:
$$U_n = n^2 + 2$$
,

Example 4:
$$U_n = \frac{1}{0!} + \frac{1}{1!} + \dots + \frac{1}{n!}$$

Limits of sequences

Definition

$$\circ \lim U_n = l \iff$$

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ such that } n > n_0 \Longrightarrow |U_n - l| < \varepsilon$$

$$\circ \lim_{n \to +\infty} U_n = +\infty \iff$$

$$\forall A>0, \exists n_0\in\mathbb{N} \text{ such that } n>n_0\Longrightarrow U_n>A$$

$$\forall B>0, \exists n_0\in\mathbb{N} \text{ such that } n>n_0\Longrightarrow U_n<-B$$

Limits of sequences

Examples

$$\lim_{n \to +\infty} \left(\frac{3n+4}{2n+1} \right) = \frac{3}{2}$$

$$\lim_{n\to+\infty} n^2 + 3n + 1 = +\infty$$

$$\lim_{n\to+\infty} -n^2 + 3n + 1 = -\infty$$

Limits of sequences

$$\lim_{n \to +\infty} \sin \frac{1}{n} = 0$$

$$\lim_{n \to +\infty} \frac{n^2 + 1}{n - 10} = +\infty$$

Convergent and divergent sequences

Theorem

When it exists, the limit of a sequence is unique.

Definition

A sequence which admits a finite limit $l \in \mathbb{R}$ is said to be convergent. Otherwise, we say that the sequence is divergent.

Proposition

Any convergent sequence is bounded.

Observe

The converse is not always true $U_n = (-1)^n$

The monotone convergence theorem

Theorem (Monotone Convergence Theorem)

- •If $(u_n)_{n\in\mathbb{N}}$ is increasing sequence, then $\lim_{n\to+\infty} u_n$ exists and $(u_n)_{n\in\mathbb{N}}$ is convergent if and only if $(u_n)_{n\in\mathbb{N}}$ is upper bounded.
- •if $(u_n)_{n\in\mathbb{N}}$ is a decreasing sequence, then $\lim_{n\to+\infty} u_n$ exists and $(u_n)_{n\in\mathbb{N}}$ is convergent If and only if $(u_n)_{n\in\mathbb{N}}$ is lower bounded.

The monotone convergence theorem

Collary1

Any upper bounded and increasing sequence is convergent.

Any lower bounded and decreasing sequence is convergent.

Collary2

If $(u_n)_{n\in\mathbb{N}}$ is increasing and not upper bounded then

$$\lim_{n\to+\infty}u_n=+\infty$$

If $(u_n)_{n\in\mathbb{N}}$ is decreasing and not lower bounded then

$$\lim_{n\to+\infty}u_n=-\infty$$

Operations on convergent sequences

Proposition

1)
$$\begin{aligned} U_n &\to \ell \\ V_n &\to \ell' \\ a &\in \mathbb{R} \end{aligned} \Rightarrow \begin{cases} U_n + V_n &\to \ell + \ell' \\ U_n V_n &\to \ell . \ell' \\ a . U_n &\to a . \ell \end{cases}$$

2)
$$n \to +\infty, \ \frac{U_n \to \ell}{V_n \to \ell' \ et \ \ell' \neq 0} \Longrightarrow \left\{ \frac{U_n}{V_n} \to \frac{\ell}{\ell'} \right\}$$

Limits properties

Theorem

If
$$\underset{n \to +\infty}{\lim} U_n = \ell \Longrightarrow \underset{n \to +\infty}{\lim} |U_n| = |\ell|$$

Proof

$$||U_n| - |\ell|| \le |U_n - \ell| < \varepsilon, \forall n \in \mathbb{N}, n > n_0$$

The converse is not always true. $U_n = (-1)^n$

Remark The converse is true only when the limit equals to zero

Limits and Order

Theorem (Order Limit Theorem)

1- If
$$\forall n \in \mathbb{N}, U_n \leq V_n, et \lim_{n \to +\infty} U_n = \ell, \lim_{n \to +\infty} V_n = \ell' \Rightarrow \ell \leq \ell'$$

2- If
$$\forall n \in \mathbb{N}, U_n \leq 0 \text{ et } \lim_{n \to +\infty} U_n = \ell \Rightarrow \ell \leq 0$$

3- If
$$\forall n \in \mathbb{N}, U_n \ge 0 \text{ et } \underset{n \to +\infty}{\lim} U_n = \ell \Rightarrow \ell \ge 0$$

Limits and order

4- If
$$\forall n \in \mathbb{N}, U_n \leq V_n$$
. Then
$$\lim_{n \to +\infty} u_n = +\infty \Rightarrow \lim_{n \to +\infty} v_n = +\infty \text{ and }$$

$$\lim_{n \to +\infty} v_n = -\infty \Rightarrow \lim_{n \to +\infty} u_n = -\infty$$

Limits and order

Theorem (Squeeze Theorem)

$$(X_n)_{n\in\mathbb{N}}, \quad (U_n)_{n\in\mathbb{N}}, \quad (Y_n)_{n\in\mathbb{N}}$$

$$(1) n \ge n_0 X_n \le U_n \le Y_n$$

$$(2) \qquad \lim_{n \to +\infty} X_n = \lim_{n \to +\infty} Y_n = \ell$$

then

$$\lim_{n\to +\infty} U_n = \ell.$$

Limits and order

Corrolary of Squeeze Theorem

If $|u_n| \to 0$ and $(v_n)_{n \in \mathbb{N}}$ is bounded, then $u_n v_n \to 0$

Example

Example

$$U_n = \frac{\sin n}{n^2 + 5}.$$

On sait que:

$$-1 \le \sin n \le 1 \Longrightarrow \frac{-1}{n^2 + 5} \le \frac{\sin n}{n^2 + 5} \le \frac{1}{n^2 + 5}$$

$$0 \le \ell \le 0 \Longrightarrow \ell = \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} \left(\frac{\sin n}{n^2 + 5} \right) = 0$$

Définition

Let $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ two real sequences. We say that the two sequences are adjacent if the first is increasing and the second is decreasing and

$$\lim_{n \to +\infty} (U_n - V_n) = \lim_{n \to +\infty} (V_n - U_n) = 0.$$

Example 1

Set

$$U_n = 1 - \frac{1}{n}, V_n = 1 + \frac{1}{n}$$

then $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ are ajacent.

Example 2

$$U_n = 1 + \sum_{k=1}^{n-1} \frac{1}{k^2 (k+1)^2}, V_n = U_n + \frac{1}{3 \cdot n^2}$$

$$(U_n)_{n\in\mathbb{N}}$$
 et $(V_n)_{n\in\mathbb{N}}$ are ajacent.

Example 3 Show that $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ are ajacent.

$$\begin{cases} U_0 = a > 0, V_0 = b > a > 0 \\ V_{n+1} = \frac{U_n + V_n}{2}; U_{n+1} = \frac{2}{\frac{1}{U_n} + \frac{1}{V_n}} \end{cases}$$

3. Theorem

If $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ are two ajacent sequences such that $(U_n)_{n\in\mathbb{N}}$ is increasing and $(V_n)_{n\in\mathbb{N}}$ is decreasing then $\forall n\in\mathbb{N}, U_n\leq V_n$.

Theorem

If $(U_n)_{n\in\mathbb{N}} et(V_n)_{n\in\mathbb{N}}$ are two ajacent sequences then they are convergent and converge to the same limit.