1.10:

pair(1,2): $f_1(n)$ is $O(f_2(n))$

pair(1,3): when n is odd, $f_1(n)$ is $\Omega(f_3(n))$ when n is even, $f_1(n)$ is $O(f_3(n))$

pair(1,4): when n≤100, $f_1(n)$ is $Ω(f_4(n))$ when n>100, $f_1(n)$ is $O(f_4(n))$

pair(2,3): $f_2(n)$ is $O(f_3(n))$

pair(2,4): when n≤100, $f_2(n)$ is $\Omega(f_4(n))$ when n>100, $f_2(n)$ is $O(f_4(n))$

pair(3,4): when n≤100, $f_3(n)$ is $Ω(f_4(n))$ when n>100, $f_3(n)$ is $O(f_4(n))$

1.12:

(a):
$$T(n) = O(1*n*1*n*n) = O(n^3)$$

(b):
$$T(n) = O(1*j*(n-i)*(n-1)) = O(n^2)$$

(c):
$$T(n) = O((i-1)*1*(n-i)*1*1*(n-1)) = O(n^2)$$

(d):
$$T(n) = T(n-i) + T(n-i)$$
 for all $n > i$
= $T(1) + T(1) + 1$
= $O(1)$