Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

ОСНОВНЫЕ ПОНЯТИЯ, ТЕРМИНЫ И РАСПРЕДЕЛЕНИЯ ИЗ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Лабораторная работа 2.1 По курсу «Надёжность информационных систем»

Выполнил Дубровских Н.Е. Группа 221-361

> Проверил Маковей С.О.

Москва, 2024

Лабораторная работа 2.1

Основные распределения, используемые в теории надежности. Распределение Бернулли. Геометрическое распределение. Экспоненциальное распределение. Гиперэкспоненциальное распределение. Биномиальное распределение.

К основным целям лабораторной работы следует отнести:

- формирование у студентов понимания важности развития и применения средств теории вероятностей в современных информационных системах и технологиях;
- ознакомление студентов с основными распределениями теории вероятностей.

К основным задачам лабораторной работы следует отнести:

- анализа состояния и тенденций развития теории вероятностей;
- развитие навыков изучения истории и областей применения методов теории вероятностей;
 - развитие навыков классификации средств теории вероятностей.

ОТЧЁТ ПО ВЫПОЛНЕНИЮ

Задача № 1

Инициализируется тестовая DDoS-атака на сервер, где действует комплексная система защиты. Среднее время работы сервера до отказа равно $T_0 = 20000$ ч. Справедлив экспоненциальный закон надёжности. Определить вероятность безотказной работы сервера в течение времени 16000 час, частоту отказов для момента времени 10000 час.

Определяем интенсивность отказов

$$\lambda(20000) = 1/T_0 = 1/20000 = 0.00005 \text{ 1/y}$$

Определяем вероятность безотказной работы сервера в течении времени 16000 час

$$P(16000) = e^{-\lambda t} = e^{-0.00005 \cdot 16000} = 0.44932896411722156 \approx 44.93\%$$

Определяем частоту отказов для момента времени 10000 час

$$f(10000) = \lambda e^{-\lambda t} = 0.00005 e^{-0.00005 \cdot 10000} = 0.00003032653298563167 \approx 0.00003031 / \mathrm{ч}$$

Задача 2.

Усилитель низкой частоты собран на элементной базе радиокомпонентов. Состав элементов усилителя сведён в таблицу. Условия эксплуатации характеризуются коэффициентом нагрузки $K_H=0.5$, температурой $T^0=40^{0}\mathrm{C}$. Требуется определить основные количественные показатели надёжности за время работы t=720 час, t=8760 час.

№ п/п	Наименование и тип элемента	Количество элементов, n	Интенсивность отказов элемента λ·10 ⁻⁶ ч ⁻¹	Поправочный коэффициент а	Интенсивность отказов по группе элементов п\(\lambda \cdot 10^{-6} \text{u}^{-1}\)
1	Резистор - МЛТ (0,25 Вт) - СПО (0,5 Вт)	14 2	0,4 0,7	0,6 0,6	3,36 0,84
2	Конденсатор - керамический - электролитический алюминиевый	10 5	1,4 2,4	0,13 0,64	1,82 7,68
3	Транзистор - маломощный низкочастотный	3	3,0	0,66	5,94
	германиевый - мощный низкочастотный германиевый	2	4,6	0,66	6,07
8	Диод - выпрямительный точечный германиевый	2	0,7	0,51	0,71
	- стабилитрон кремниевый	1	5,0	0,97	4,85
9	Штепсельное соединение	8	0,06		0,48
10	Соединение пайкой	85	0,001		0,085
				Итого	31,83

Интенсивность отказов

$$\lambda = 31.83 \cdot 10^{-6}$$

Определим вероятность безотказной работы

$$P(720) = e^{-\lambda t} = e^{-31.83 \cdot 10^{-6} \cdot 720} = 0.97734301351972 \approx 97.73\%$$

$$P(8760) = e^{-\lambda t} = e^{-31.83 \cdot 10^{-6} \cdot 8760} = 0.7566679205966365 \approx 75.58\%$$

Определим вероятность отказа

$$Q(720) = 1 - P(720) = 1 - 0.97734301351972 = 0.022656986480280028 \approx 2.27\%$$

 $Q(8760) = 1 - P(8760) = 1 - 0.7566679205966365 = 0.24333207940336354 \approx 24.42\%$

Определим наработку до отказа

 $T_0=rac{1}{\lambda}=rac{1}{31.83\cdot 10^{-6}}=31416.902293433868$ ч. = 3.58640437139656 лет pprox 3.6 лет