New projects from the November workshop

- Tutorials on Long-Baseline LOFAR
- Science with LBCS (2 VIRAC staff, Prusis/Nikolajevs + Manchester)
- Observations of 2MASXJ03030042+6605432 (2 VIRAC staff, Steinbergs/ Kamisevs + Iacobelli/Orru (ASTRON)

New radio observations of 2MASXJ03030042+6605432

Short notes by M.Iacobelli & E. Orru

Object detected over a wide range of wavelengths in surveys

Name

6 WB 0258+6554

Full Seq n

5 9506

6 9506 7 9506 WISE based photometric redshift <0.3: nearby AGN

RAJ2000 DEJ2000 zSim SED Radio+Opt

deg

beam

arcsec

45.00

Not studied in detail so far . . . and at low angular resolution

SPECFIND V2.0 Catalog of radio continuum spectra (Vollmer+ 2009):

> flattening at low frequency ? To be checked with TGSS and LOFAR

nu

[m,Jy] MHz

<u>1 9506</u> <u>6 GB6</u> B0258+6554	7 -0.83	5.12 4850	1.21e+02 2.4e+01	045.7550	+66.1025	zSim SED	Radio+Opt	108.00
2 9506 6 87GB 025841.3+655423	7 -0.83	5.12 4850	1.35e+02 2.7e+01	045.7567	+66.1025	zSim SED	Radio+Opt	138.00
<u>3 9506</u> <u>6 BWE</u> 0258+6554	7 -0.88	5.24 4850	1.02e+02 2.0e+01	045.7587	+66.1025	zSim SED	Radio+Opt	138.00
4 9506 6 WN B0258.6+6554	7 -0.83	5.12 325	1.14e+03 2.3e+02	045.7454	+66.0972	zSim SED	Radio+Opt	12.00

6 NVSS J030259+660550 7 -0.83 5.12 1400 3.36e+02 6.7e+01 045.7471 +66.0974 zSim SED Radio+Opt

6 MY 025839.9+660609.3 7 -0.81 5.07 232 1.36e+03 2.7e+02 045.7508 +66.1026 zSim SED Radio+Opt 150.00

S(nu)

mJy

mJy

deg

7 -0.88 5.24 1400 3.03e+02 6.1e+01 045.7587 +66.1025 zSim SED Radio+Opt 120.00

LOFAR 150 MHz + VLASS contours

VLASS 2.9 GHz 2MASS JHK band + VLASS contours

Object detected over a wide range of wavelengths in surveys

WISE based photometric redshift <0.3: nearby AGN

- Is it a giant radio galaxy? Need redshift measure
- Which state (restarted)? Radio spectral index map & Optical spectrum to get AGN activity signature
- In which environment is located? Nor a cluster or group of galaxies . .

Object detected over a wide range of wavelengths in surveys

WISE based photometric redshift <0.3: nearby AGN

- Which state (restarted)? Radio spectral index map & Optical spectrum to get AGN activity signature
 - Process long baseline data to map the target at an angular resolution matching the VLASS one

Find LBCS delay calibrators

47.569042,65.085999,PPPPPXSXX----,34,L396245 44.455082,68.308441,PPPPPPPPP----,34,L397729

Radio – X-ray correlation function of radio halos in clusters of galaxies

Leaders: E. Orru', M. Iacobelli

Baltics collaborators: J. Steinbergs, F. Kamisevs

OUTLINE

- Radio halos in galaxy clusters
- Goal of the project
- Data processing and quality assessment
- Flux measure and Radio X-ray Correlation

Clusters of galaxies

- Clusters of galaxies: the largest known gravitationally bound structures
- Cluster eco-system: dark matter, galaxies and intra cluster medium (ICM)
- Fields (gravitational, magnetic), thermal and relativistic particles
- Tracers: from <u>radio</u> <u>waves</u> to gamma photons

Radio halos

Van Weeren et al. 2016

- diffuse synchrotron emission observed in merging clusters of galaxies
- They are the evidence of relativistic particles and magnetic fields over large scales (1 Mpc)
- Located at the cluster center
- Regular morphology
- Steep radio spectrum (alpha <-1)
- Unpolarized emission
- About 100 of these objects are known so far

Theoretical models have been proposed to explain their existence but more statistics is needed in order to discriminate among them

A correlation exists between radio at 1.4 GHz (non-thermal i.e. relativistic particles and magnetic field) and X-ray (thermal i.e. gas) emission for radio halos

GOAL OF THE PROJECT

See if the correlation holds at **150 MHz** and expand the parameter space.

X-ray

Observations at 150 MHz will allow to detect faint objects that have been missed at 1.4 GHz. For this reason LOFAR is crucial in the study of these objects.

Data processing and quality assessment

- The data used for this project will be MSSS data, the shallow survey of LOFAR at 150 MHz (Heald at al 2015).
- Data will be processed using the direction independent calibration pipeline prefactor.
- Quality assessment of the data will be performed in both the uv and image plane using the diagnostic plots produced by prefactor and ad-hoc scripts to evaluate the image quality respectively

Flux measure and Radio – X-ray correlation

- The flux of each radio halo will be measured using the tool pybdsf
- The contribution of compact sources will be removed from the diffuse emission.
- The flux values will be transformed in radio power and placed in the correlation plot

