Game theory

a course for the

MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia @gmail.com

Lotteries = randomner in giochi

How to introduce randomness

di bose, no = modi per rimuorela in serli sosi reodi, però esserci

Random outcomes

- Assume of our payoff involves random parts
 - At the canteen, the "soup" is different every day (and there is no pattern). How do we tell if ravioli are preferable?
- Rational players do not like this randomness
 - They mess with preference order
 - and also with knowledge of the system (rationality also means ability to infer consequences)

Random outcomes

- Example
 - Ravioli give u(r) = 5 only 50% of the time; otherwise, they give u(r) = 2
 - Soup gives u(s) = 1 most of the time (80%); sometimes, it gives u(s) = 10
- We can <u>model the choice</u> between r and s as a choice between two **lotteries**
 - (r): utility is 5 or 2 according to a coin toss
 - (s): utility is 1 or 10 with probabilities 0.8 or 0.2

Random outcomes

- □ A lottery over outcomes $X = \{x_1, x_2, ... x_n\}$ is defined as a probability distribution p over X
 - this means that $p = \{ p(x_1), p(x_2), ... p(x_n) \}$ where $p(x_k) \ge 0$ for all k, and $\sum_{k=1..n} p(x_k) = 1$
- □ If actions are involved, p is conditional
 - for an action $a \in A$, we consider $p(x_k | a)$
- The case with certain outcomes can be seen as a degenerate lottery where $p(x_k | a) = 1$ for a given k, and 0 for all other options

Nature

- In the language of Game Theory, random events are the consequences of the choices of another player, called "Nature"
 - Nature (N) chooses within the lottery p
 - This can be represented in the decision tree

Continuous lotteries

- Lotteries can also describe probabilities
 over a continuous space of events
 - A specific outcome has probability 0 though
 - Probability densities replace distributions under this setup
 - Representation within the decision framework is still valid, but more cumbersome (e.g., no decision trees)

Evaluating random outcomes

 Assume that ravioli and soup can only be "tasty" or "not tasty" giving u=10 or u=1

 We may assume that a rational user prefers r, since it has higher chances of getting 10

Evaluating random outcomes

However, with different numbers the result is not so clear. What is better? r or s?

A fair coin toss between 5 and 2, or a chance of getting 10 with a likely risk of getting 1?

Expected utility

- The usual methodology to compare random outcomes is to take expectations
 - also works to compare lotteries with certainties
 - "Expected utility theory" developed by von Neumann and Morgenstern
 - Intuition behind this: if you try $N\rightarrow\infty$ times, you will eventually get average payoff = expectation
- Expected payoff from lottery p

$$\square \mathbb{E}[\mathbf{u}(\mathbf{x}) | \mathbf{p}] = \sum_{k=1..n} \mathbf{p}(\mathbf{x}_k) \mathbf{u}(\mathbf{x}_k)$$

Expected utility

- Expected utility theory relate expectations with preference relations
- Assume we want to define > among lotteries and we seek for a utility u representing >
 - \square i.e. we replace A with set P(A) of lotteries over A
- von Neumann & Morgenstern proposed a framework (vN-M utilities) where ≥ satisfies
 - Rationality (completeness and transitivity)
 - Continuity axiom
 - Independence axiom

Continuity axiom

 \square For p, q, $r \in P(A)$, it must hold that sets

- That is, arbitrarily small variations in the gamble does not change preferred lotteries
 - Example: I prefer a 100% safe walk in the park over staying home. I have the same preference if I have a very small probability of being mugged when choosing the walk in the park

Independence axiom

- □ For $p, q, r \in P(A)$, it holds that $\forall a \in [0,1]$:
 - if $p \ge q$ then: ap + (1-a) r ≥ aq + (1-a) r
- This axiom means that when mixing gambles we preserve the preference order not counting other alternatives
 - I prefer betting on football than horse races.

 Then I also prefer after flipping a coin to do

 "heads: bet on football, tails: play roulette" over

 "heads: bet on horse races, tails: play roulette"

vN-M utility theorem

- □ If \geq satisfies the four axioms, it can be represented by $u(\cdot)$ such that $\forall p, q \in P(A)$ $p \geq q$ implies $\mathbb{E}[u(x)|p] \geq \mathbb{E}[u(x)|q]$
 - Such a function u is called vN-M utility
- Theorem can be proved after many lemmas
 - E.g.: u represents \geq with expected utility form only if it is a linear map from P(A) to \mathbb{R}
 - **Proof**: $p \in P(A) = a$ combination of degenerate lotteries $p = p_1(1, 0, 0, ...) + p_2(0, 1, 0 ...) + ...$
- Any affine (linear) transformation of u works

Expected utility

- Now we have a way to compare r and s
 - $\square \mathbb{E}[\mathbf{u}(\mathbf{x}) | \mathbf{r}] = 0.5 \times 5 + 0.5 \times 2 = 3.5$
 - $\blacksquare \mathbb{E}[\mathbf{u}(\mathbf{x}) \mid \mathbf{s}] = 0.2 \times 10 + 0.8 \times 1 = 2.8$
- So it seems that r is rationally preferable

Compound lotteries

If Nature has more subsequent choices...

- we just take compound expectations
 - in this case, r and s lotteries are same as before
 - (implying: independent Nature choices)

Continuous case

- Identical application to continuous cases
 - only the graphical formulation is harder
- E.g.: dig a well, select how deep (d meters)
 - this is a continuous action $0 \le d$ (\le Earth radius)
 - effort: $d^2/2$; water extracted: W(d) ~ u[0, 20d]
 - □ utility u for digging the well: water effort
- $\square \mathbb{E}[\mathbf{u} | \mathbf{d}] = \mathbb{E}[\mathbf{W}(\mathbf{d}) \mathbf{d}^2] = 10 \, \mathbf{d} \mathbf{d}^2/2$
 - the utility of digging 3.2 meters is 26.88
 - \blacksquare rational best choice is d = 10.0 giving u = 50.0

Ordinal vs. absolute value

dipende: dobtionne confrontare expected utilities

- Random setup: absolute utilities do matter!
- Replace u(s)=10 in the "tasty" case with 100
 - Same order but a different absolute value
 - The equivalence of utilities and preference relationship no longer hold in the uncertain case
- "a ≥ b" is not enough: also, how much?
 - It holds for other cases with uncertainties and probabilities (mixed strategies) as well

- Consider three possible outcomes of getting $x_1 = 0$, $x_2 = 1$ euro, $x_3 = 20$ euro and lotteries $p_A = (0, 1, 0)$, $p_B = (0.95, 0, 0.05)$ the expected outcome is always the same, but A is a degenerate lottery
- □ Expected **utility** is $\mathbb{E}[\mathbf{u}|\mathbf{A}] = \mathbf{u}(\mathbf{x}_2)$, $\mathbb{E}[\mathbf{u}|\mathbf{B}] = 0.95 \ \mathbf{u}(\mathbf{x}_1) + 0.05 \ \mathbf{u}(\mathbf{x}_3)$
- It depends! On how the rational player values the payoff of getting X euros

- A risk neutral player sees A and B as perfect substitute choices
 - They do not see any difference in lotteries as long as the expected outcome is the same
- A **risk averse** player always prefers a degenerate lottery (the sure thing) to one with same expected outcome $(A \ge B)$
- A risk loving player does the opposite

non confondere outcome e utilité

- Definition based on outcomes, not on utilities
- Actually, utilities can serve to the same end:
 - □ Linear u (e.g., u(x) = x) → risk neutral
 - \square Concave $u \rightarrow risk$ averse
 - □ Convex u → risk loving
- Monotonic utilities such as u(x) = x, x², log x, do not change preference of the user, but they change the risk attitude

- So be careful: expected utility theory does not say that it is the same to get 1 euro or to gamble 2 euros with 50/50 probability
- □ It actually says that if your utility function of outcome x is u(x)=x then you are indifferent between these two lotteries
- But you may prefer either of them depending on your risk attitude and therefore on your u

Decisions over time

- Actions of player and Nature may alternate
 - E.g.: assume the canteen problem as before, with same choice between ravioli and soup
 - Ravioli can be had with (e)xtra cheese on top
 - Cheese makes ravioli even tastier, but there is a chance that you do not like the cheese served
 - Assume cheese is good with 0.6 probability
 - □ Good cheese increases u: 10 for tasty ravioli, 3 for bland ravioli. Bad cheese always give 0.

Decisions over time

- □ How do we "solve" this decision tree?
- Principle known as Backward Induction (or Dynamic Programming)

- Classify all nodes with P's action into groups
 - Group 1 includes all nodes after which no further action is possible in any case; that is, only final outcomes or Nature's moves follow
 - Group k includes all nodes that are followed only by at least one Group k-1 node, without any higher-order node
 - □ In the previous examples we have just 2 groups

- Orange: group 1, Yellow: group 2
 - Note that the root of the decision tree belongs to group 2 in spite of the lower branch having no further choice (but the upper branch does)

- P knows what to do if at Group 1-nodes
 - Rational P will maximize its own expected utility!
 - We can identify transform these intermediate points into final outcomes with maximal u
- After doing so, no more Group 1-nodes and all Group k-nodes are now Group (k-1)
 - Iterate the procedure ad lib
 - It should be evident why "backward induction"

- Now the problem is reduced to P with one decision to make at the root node
 - □ (root node is now Group 1, it was Group 2)

□ In the pruned tree, r is preferred over s $\mathbb{E}[\mathbf{u}|\mathbf{r}] = 4, \qquad \mathbb{E}[\mathbf{u}|\mathbf{s}] = 2.8$

Discounts for future payoffs

If P's multiple decisions are made far apart, we may include a discount factor δ , $0 < \delta < 1$

 $lue{}$ Clearly the end result depends on δ

- Expected utility implies that a rational player chooses its actions so as to make the right choice on average
- But if Nature's choice is known in advance,
 P might have chosen differently
- So, assume we have a chance of seeing Nature's choice ahead: is this information valuable? How much is it worth?

 Assume a friend of P knows how good is the food at the canteen today, and is willing to notify P about this (for a return)

- If the friend is willing to tell, P is able to anticipate the expected payoff with the friend's advice and compare it to the one without the friend's advice
- The possible outcomes are unchanged, but their order changes!
- Basically, we need to account for P moving after Nature's choice is known, thus the order of movement is reversed

ravioli bron / eatheri e ruppo broni / kattiri

- In this setup, P is always able to select the best outcome without any gambling
- \square utility = 1 + 1 + 2 + 0.8 = 4.8

- \square $\mathbb{E}[\mathbf{u} | \mathbf{knowledge}] = 4.8$
- The expected utility without knowing N's choice was 3.5 (because r was selected)
- Thus, knowing Nature's choice is worth 1.3