Projeto e Análise de Algoritmos

Projeto por indução

Projeto por Indução

- Algoritmos que resolvem certos problemas podem ser projetados utilizando a técnica de indução
- Passos para resolver um problema P
 - Mostrar como se resolve os casos base de P (uma ou mais pequenas instâncias)
 - Mostrar como a solução para P pode ser obtida a partir da solução de uma ou mais instâncias menores de P

Projeto por Indução

- Projeto por indução resulta em um algoritmo recursivo que
 - Possui casos base (condição de parada) equivalente ao caso base da indução
 - A aplicação da hipótese de indução corresponde à chamada recursiva
 - O passo da indução corresponde aos passos necessários para produzir a solução do problema a partir de soluções de instâncias menores retornadas pelas chamadas recursivas

Vantagens

- Prova de corretude do algoritmo é dada no uso correto da técnica
- A complexidade pode ser calculada a partir da recorrência do algoritmo recursivo

Cálculo de Polinômios

Problema

— Dada uma sequência de números reais a_n, a_{n-1}, \dots, a_0 e um número real x, calcular o valor do polinômio

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- Podemos remover o termo de maior ordem e resolver o subproblema com os n-1 termos de menores ordem primeiro para então resolver $P_n(x)$.

- Hipótese de indução (primeira tentativa)
 - Para um dado n>0, uma dada sequência de números reais a_{n-1},\dots,a_0 e um número real x, sabemos calcular o valor de

$$P_{n-1}(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

- Caso base: n=0, a solução é a_0 .
- Passo de indução: Considerando que sabemos como calcular $P_{n-1}(x)$, para calcular $P_n(x)$, basta calcular

$$P_n(x) = P_{n-1}(x) + a_n x^n$$

 Solução recursiva usando a primeira hipótese de indução

```
Polynomial_Evaluation(A, n, x) {
  if (n == 0) P = A[0]
  else{
    P = Polynomial_Evaluatio(A, n-1, x)
    xn = 1
    for i=1 to n do xn = xn * x //xn guarda valor de x<sup>n</sup>
    P = P + A[n]*xn
  }
  return (P)
}
```

Análise de complexidade

$$T(n) = T(n-1) + \Theta(n)$$

$$T(n) = \Theta(n^2)$$

Segunda solução

- Muito tempo gasto para calcular x^n
 - Podemos calcular x^n em tempo constante a partir de x^{n-1}
 - Reforçar a hipótese indutiva para incluir x^{n-1}
- Hipótese de indução mais forte (segunda tentativa)
 - Para um dado n>0, uma dada sequência de números reais a_{n-1},\dots,a_0 e um número real x, sabemos calcular x^{n-1} e o valor de

$$P_{n-1}(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

- Caso base: n = 0, a solução é $(a_0, 1)$.
- Passo de indução: Considerando que sabemos como calcular $P_{n-1}(x)$ e x^{n-1} , para obter $P_n(x)$, basta calcular $P_n(x) = P_{n-1}(x) + a_n x x^{n-1}$

Solução recursiva usando a hipótese de indução mais forte

```
Polynomial_Evaluation(A, n, x) {
  if (n == 0) {
    P = A[0]
    xn = 1
  }
  else{
    P,xn = Polynomial_Evaluatio(A,n-1,x)
    xn = xn * x //xn guarda valor de x<sup>n</sup>
    P = P + A[n]*xn
  }
  return (P,xn)
}
```

Análise de complexidade

$$T(n) = T(n-1) + 3$$
 (2 multiplicações e 1 adição)
 $T(n) = 2$ n multiplicações + n adições
 $T(n) = \Theta(n)$

 A inclusão de um cálculo a mais na hipótese de indução reduziu o custo final do algoritmo.

Terceira solução

- Nas hipóteses de indução anteriores, fazíamos a remoção do último termo a_n para resolver o subproblema P_{n-1}
- É possível criar o subproblema na ordem inversa, removendo o primeiro termo a_{0}
- Hipótese de indução (ordem inversa)
 - Para um dado n>0, uma dada sequência de números reais a_n,a_{n-1},\ldots,a_1 e um número real x, sabemos calcular o valor de $P'_{n-1}(x)=a_nx^{n-1}+a_{n-1}x^{n-2}+\cdots+a_1$
 - Caso base: n=0, a solução é a_n .
 - Passo de indução: Considerando que sabemos como calcular $P'_{n-1}(x)$, para calcular $P_n(x)$, basta calcular

$$P_n(x) = xP'_{n-1}(x) + a_0$$

 Solução recursiva usando a terceira hipótese de indução

```
Polynomial_Evaluation(A, n, i, x) {
  if (i==0) P = A[n]
  else{
    P' = Polynomial_Evaluation(A, n, i-1, x)
    P = x*P' + A[n-i]
  }
  return (P)
}
```

Análise de complexidade

```
T(n) = T(n-1) + 2 (1 multiplicação e 1 adição)

T(n) = n multiplicações + n adições

T(n) = \Theta(n)
```

 Essa forma de calcular o valor de polinômios é chamada de Regra de Horner

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = ((\dots((a_n x + a_{n-1})x + a_{n-2})\dots)x + a_1)x + a_0$$

Conferência de cientistas

 Você está organizando uma conferência de cientistas de diferentes disciplinas que deverão vir se houver oportunidade para trocar ideias com outros cientistas. A partir de uma lista de possíveis interações entre os cientistas, gerar uma lista de convidados de tamanho máximo de forma que cada convidado possa interagir com pelo menos outros k convidados.

Subgrafos induzidos maximais

- Seja um grafo não-direcionado G = (V, E). Um subgrafo induzido de G é um grafo H = (U, F) tal que $U \subseteq V$ e F contém todas as arestas de E incidentes nos vértices em U.
- Cada vértice representa um cientista e uma aresta conecta os vértices de 2 cientistas com potencial para interagir na conferência.

Subgrafos induzidos maximais

• Problema: Dado um grafo não-direcionado G = (V, E) e um inteiro k, encontrar um grafo induzido H = (U, F) de G de tamanho máximo de forma que todos os vértices de H tenham grau $\geq k$, ou então identifique que isso não seja possível.

Solução:

- Remover vértices de G com grau < k, pois estes não farão parte de H. As arestas que incidiam no vértice removido também são removidas, então os graus de outros vértices também podem ser reduzidos.
- Quando algum outro vértice passa a ter grau < k, este também deve ser removido
 - Qual a ordem de remoção? Remover todos os vértices com grau < k primeiro? Remover um vértice com grau < k e prosseguir com os vértices afetados pela remoção?
- Ao invés de pensar na sequência de passos do algoritmo, pensar em como mostrar que um algoritmo que resolve o problema existe para se obter um ideia de como projetar o algoritmo

- Hipótese de indução
 - Sabemos como encontrar subgrafos induzidos maximais cujos vértices possuem graus $\geq k$ em um grafo com número de vértices < n.
- Caso base: O menor valor de n que faz sentido buscar tais subgrafos é n=k+1
 - Para $n \leq k$, não é possível os graus de todos os vértices são < k.
 - Para n=k+1, a única forma de se obter um subgrafo induzido com grau mínimo k é ter um grafo completo, ou seja, todos os vértices estão conectados.

Passo:

- Se todos os vértices possuem grau $\geq k$, então o grafo inteiro satisfaz o critério e a solução é o próprio G.
- Caso contrário, existem algum vértice v com grau < k e, portanto, este vértice permaneceria com grau < k em qualquer subgrafo induzido de G. Então, podemos remover o vértice v e todas as suas arestas adjacentes sem afetar as condições do teorema. Após a remoção, o grafo possui n-1 vértices e, por hipótese de indução, sabemos como resolver o problema.

Solução recursiva

```
MaximalInducedSubgraph(G, k) {
  if (n<k+1) H = Ø
  else if(every vertex of G has degree >= k)
    H = G
  else{
    v = vertex wih degree < k
    H = MaximalInducedSubgraph(G-v, k)
  }
  return (H)
}</pre>
```

Fatores de balanceamento em árvores binárias

- Altura de um nó
 - Comprimento do caminho mais longo do nó até as folhas
- Fator de balanceamento de um nó
 - Diferença entre a altura da subárvore esquerda do nó e a altura da subárvore direita do nó.

Fatores de balanceamento em árvores binárias

- Problema: Dada uma árvore binária T de n nós, calcular os fatores de balanceamento de todos os nós.
- Hipótese de indução: Sabemos como calcular os fatores de balanceamento de todos os nós em árvores com < n nós.
- Caso base: n = 1, é trivial.
- Para n>1 nós, podemos remover a raiz e resolver os subproblemas para as duas subárvores por indução.
 - Fator de balanceamento de um nó depende apenas dos nós abaixo dele
- Como calcular o fator de balanceamento da raiz com os fatores de balanceamento dos nós filhos?

Fatores de balanceamento em árvores binárias

- Para calcular o fator de balanceamento da raiz, precisamos saber as alturas dos nós filhos!
 - Solução: reforçar a hipótese de indução
- Hipótese de indução mais forte: Sabemos como calcular os fatores de balanceamento e alturas de todos os nós em árvores com < n nós.
- Caso base: n = 1, é trivial.
- Passo:
 - Utilizando a hipótese de indução, posso calcular as alturas e os fatores de balanceamento de todos os nós das subárvores da raiz.
 - Fator de balanceamento: sabendo as alturas dos nós filhos (h_e e h_d), podemos calcular o fator de balanceamento da raiz (f) de forma simples, $f=h_e-h_d$.
 - Altura: sabendo as alturas dos nós filhos (h_e e h_d), podemos calcular a altura da raiz (h) da seguinte forma: $h = \max(h_e, h_d) + 1$.

Solução recursiva

```
FatorBalanceamento(root) {
    //entrada: Árvore binária com n nós e raiz root
    //retorno: altura e fator de balanceamento da raiz
    if (n==0) { root.h = -1; root.f = 0;
    else{
        he, fe = FatorBalanceamento(root.left);
        hd, fd = FatorBalanceamento(root.right);
        root.f = he - hd;
        root.h = max(he,hd)+1;
    }
    return (root.h, root.f)
}
```

• Problema: Dada uma sequência $a_1, a_2, ..., a_n$ de números reais (não necessariamente positivos), encontrar um subarranjo contíguo tal que a soma dos seus valores seja máxima entre todos os possíveis subarranjos.

• Ex: 2, -3, 1.5, -1, 3, -2, -3, 3

Subarranjo máximo: 1.5, -1, 3

Soma = 3.5

- Entrada com apenas números positivos
 - A solução é toda a sequência
- Entrada com apenas números negativos
 - A solução é 0 (subsequência vazia)
- Solução por força-bruta
 - Número de subarranjos é quadrático em relação ao tamanho da sequência, então calcular a soma de todos subarranjos custa pelo menos $\Theta(n^2)$
- Solução por divisão e conquista
 - Dividir o problema ao meio e resolver recursivamente
 - Solução (subarranjo máximo) poderia estar na primeira metade, na segunda metade ou entre as duas partes (início na primeira e término na segunda)
 - Custo de $\Theta(n \log n)$
- Projeto por indução
 - Como poderia ser feito o projeto por indução de outro algoritmo para resolver esse problema?

• Hipótese de indução: sabemos como encontrar o subarranjo máximo em sequências de tamanho < n.

Caso base:

n=1: Se o valor de a_1 for positivo, o subarranjo máximo contém esse valor, ou é vazio, caso contrário.

Passo:

- Seja uma sequência $S=(a_1,a_2,\ldots,a_n)$ de tamanho n>1. Por H.I., sabemos encontrar o subarranjo máximo em $S'=(a_1,a_2,\ldots,a_{n-1})$
 - Caso a solução para S' seja vazia, então todos os seus valores são negativos, então basta verificar a_n
 - Senão, a solução é da forma $S'_M=(a_i,a_{i+1},\dots,a_j)$, para $1\leq i\leq j\leq n-1$. Então,
 - Se j=n-1 (o subarranjo máximo é um sufixo)
 - » Se a_n >0
 - então podemos estender a solução com a_n ,
 - senão S'_M é o subarranjo máximo de S'.
 - Senão, j < n 1 e temos 2 casos
 - » S'_M continua máximo
 - » Existe outra subsequência que não é máxima em S', mas é máximo em S adicionando-se a_n .

- A primeira tentativa de H.I. não pode ser aplicada para estender uma subsequência que não é máxima em S'.
 - Essa H.I. não é suficiente!
 - -Ex: S = (2, 3, -6, 2, 5)
 - S' = (2, 3, -6, 2)
 - $S'_{M} = (2,3)$
 - Solução para S é (2,5).
- Como podemos reforçar a H.I.?

• Hipótese de indução mais forte: sabemos como encontrar o subarranjo máximo e o subarranjo que é máximo entre os sufixos em sequências de tamanho < n.

Caso base:

n=1: Se o valor de a_1 for positivo, o subarranjo máximo e o sufixo máximo contêm esse valor, ou são vazios, caso contrário.

Passo:

- Por H.I., sabemos qual é o subarranjo máximo (S'_M) e o sufixo máximo (S'_X) em S', então
 - Se adicionar a_n em S'_X gera uma soma maior que a de S'_M , então o subarranjo máximo de S é formado pela extensão do sufixo
 - Senão, S'_M é o subarranjo máximo de S
 - Sufixo máximo de S?
 - » Se a extensão de S'_X com a_n resultar em soma negativa, o sufixo máximo de S é vazio

Solução recursiva

```
MaxSubarray(A, n) {
 //entrada: Arranjo A e o tamanho n do subarranjo de A
 //retorno: subarranjo máximo (maxSeg) e sufixo máximo (maxSuf) de A[1..n]
  if (n==1)
    if(A[1] < 0) \{ maxSeq = 0; maxSuf = 0; \}
               { maxSeq = A[1]; maxSuf = A[1];}
    else
  else{
    maxSeq, maxSuf = MaxSubarray(A, n-1);
    \max Suf = \max Suf + A[n];
    if (maxSuf>maxSeq)
      maxSeq = maxSuf;
    else if(maxSuf<0) maxSuf = 0;</pre>
  return (maxSeq, maxSuf);
```

Qual a complexidade desta solução?

Exercício

- 1) Dada uma árvore binária *T*, projete um algoritmo para decidir se *T* é ou não uma árvore binária de busca. A resposta deve ser sim ou não.
- a) Faça o projeto do algoritmo por indução.
- b) Escreva o pseudo-código da solução recursiva obtida.

Referências

- Manber, Introduction to Algorithms A creative approach, 1st ed.
- - Cap. 5