What Makes Communities Resilient to Drought?

Dan Blaustein-Rejito 1 Ian Bolliger 2 Hal Gordon 3 Andy Hultgren 3 Yang Ju 4 Kate Pennington 3 Sara Stoudt 5

University of California, Berkeley: DS421

¹GSPP ²ERG ³ARE ⁴LAEP ⁵Stats

danr@berkeley.edu bolliger@berkeley.edu halgordon@berkeley.edu hultgren@berkeley.edu yangju90@berkeley.edu kate.pennington@berkeley.edu sstoudt@berkeley.edu

April 26, 2016

Overview

- Introduction
- 2 Data
- Model
 - First Stage
 - Second Stage
- Preliminary Results

Drought

- In April 2016 in the United States:
 - 14% of land was in drought and 34% was abnormally dry.
 - 84.3 million people live in drought-affected areas, and 17.5 million live in areas experiencing exceptional drought
- In California:
 - 90% of the state is in drought and more than 50% is in severe to exceptional drought.
 - 84.3 million people live in drought-affected areas, and 17.5 million live in areas experiencing exceptional drought

Drought, April 19, 2016

Drought

- Climate change is likely to increase the length and severity
- Resilience, not just risk of drought, will have far reaching implications for welfare changes from climate change.

Stage 1 Data: 2005-2014

Left Hand Side

- US Drought Monitor:
 - Scale from 0-4 updated weekly
 - we create a 1-year, 3-year, and 5-year measure

Right Hand Side

- Mortality:
 - Annual CDC WONDER database
 - Over-65 and all-ages
- Yields:
 - Annual USDA crop yield
 - Corn, soybeans, and wheat
- Employment:
 - United States Bureau of Labor Statistics

Stage 2 Data

Left Hand Side

ullet \hat{eta} from the first stage.

Right Hand Side

- American Community Survey:
 - Annual (2005-2014) survey conducted by US Census
 - Over 65, Under 5, Race, Ethnicity, Sex, Work in farming or ranching, Household Income, Household water bills
- Water Usage:
 - EPA Facility Registry Service
 - Count of facilities from high water use industries (agriculture, manufacturing and energy) per county

First Stage Equation

$$y_{i,t} = \beta_i D_{i,t} + \alpha_i + \tau_i t + \gamma_{s,t} + \epsilon_{i,t}$$
 (1)

Where:

- $D_{i,t}$ refers to the number of days in U.S. Drought Survey bins 2-4 in county i and year t
- α_i are county fixed effects controlling for time-invariant differences between counties
- \bullet τ_i is the coefficient on a county level linear time trend
- $\gamma_{s,t}$ are state-by-year fixed effects controlling for state level time trends common across all counties $i \in s$

Second Stage Equation

$$\beta_i = \rho_0 + \delta \mathbf{X}_i + \nu_i \tag{2}$$

Where:

- β_i come from Eq.(1) for a given outcome
- X_i represents a vector of county characteristics such as urban/rural, proportion below age 5 or above age 65, home ownership, median cost of residential water bill
- $oldsymbol{\delta}$ is a vector of the associated coefficients for state level time trends common across all counties $i \in s$

DS421 (UC Berkeley)

β of 3-yr Drought on Corn Yield

β of 3-yr Drought on Mortality

β of 3-yr Drought on Unemployment

Now, look at our Shiny!

The End