EME 150A FALL 2016 LECTURE 21 Wednesday, November 9, 2016
Static Failure Theories 5-1->5-7
Fail: distoration
- Crack
- rup ture
- gield
-etc
Best way to know when all mechanical element fail: Test!
- exact same geometry
- Same moterial
- same conditions
Expensive !!
-> human safety } these are good reasons so high volume imanufacturing to test
-> high volume manufacturing) to test

L-21-1

Given tensile, compressive, and/or shear Strength for a given material, how do we choose what to check given the state of stress? あゃ、 でり、 でっ、 てxy、 てzx, てy2 J, J, J3 or T/2/2/3/7/3 two categories: Theories are proken Dudile Brittle Er: stain Ex < 0.05 # Himeter 20.05 Sut, Suc Syt = Syc = Sy failur if stress > Sy

Ductile Failure

- . Maximum Shear Stress (MSS)
- · Distortion Energy Theory (DE)
- . Ductile Coulomb-Mohr Theory (DCM)

Maximum Steer Stress Theory

Vielding begins when Zmax at any point in a element equals or exceeds the Know in a tensile test specimen of the same material, surface finish, ambient temperature, ..., when it begins to yield.

If (Ymax) general > (Ymax) tensile

Specimen

For the tensile specimen

That = 54

That = 2

30 Starte of stress!

2D plane stess

- One patric principal stress is zero

JA, JB => JA 7 JB

Principal 16/18 the sse 5

24 /2 23 1 0

5, 7/5y => failur

5,707,5B

5A-0B7/54/

$$N_{\text{mss}} = \frac{\overline{OB}}{\overline{OA}}$$

JA 7, 5B

Distortion Energy Theory

distantin strain energy per unit whenk

$$(Q'-Q^2)_3 + (Q^2-Q^2)_3 + (Q^3-Q')_3$$
 > 2³

J = Von mises stress

Constitutes failure

Plane Stress

L-コーフ