Sequence Modelling

Mladen Kolar (mkolar@chicagobooth.edu)

Handwritten character recognition

Structured prediction

Sequential data

- ▶ time-series data (speach)
- characters in a sentence
- ▶ base pairs along a DNA strand

Markov Model

Joint distribution of n arbitrary random variables

$$P(X_1, X_2, \dots, X_n) = P(X_1) \cdot P(X_2 \mid X_1) \cdot \dots \cdot P(X_n \mid X_{n-1})$$

$$= P(X_1) \cdot \prod_{i=2}^n P(X_i \mid X_{i-1})$$

Example

Random walk model

Example

Understanding the HMM Semantics

 $P(O_1 \mid X_1 = x_1)$ probability of an image given the letter is x_1 $P(X_2 = x_2 \mid X_1 = x_1)$ probability that letter x_2 will follow letter x_1 Decision about X_2 is influenced by all letters.

HMMs semantics: Details

Need just 3 distributions:

 $P(X_1)$ starting state distribution $P(X_i \mid X_{i-1}) = P(X_j \mid X_{j-1}) \ \forall j$, transition model $P(O_i \mid X_i) = P(O_i \mid X_i) \ \forall j$, observation model

Parameter sharing:

- more bias, need less data to train
- can deal with words of different length

HMMs semantics: Joint distribution

$$P(X_1,...,X_n,O_1,...,O_n)$$
= $P(X_1) \cdot P(O_1 \mid X_1) \cdot \prod_{i=2}^n P(X_i \mid X_{i-1}) \cdot P(O_i \mid X_i)$

$$P(X_1,\ldots,X_n,\mid o_1,\ldots,o_n)$$

$$\propto P(X_1)\cdot P(o_1\mid X_1)\cdot \prod_{i=2}^n P(X_i\mid X_{i-1})\cdot P(o_i\mid X_i)$$

Learning HMM from fully observable data

Have m data points

Each data point looks like:

- $X_1 = b$, $X_2 = r$, $X_3 = a$, $X_4 = c$, $X_5 = e$
- ▶ O_1 = image of b, O_2 = image of r, O_3 = image of a, image of c, O_5 = image of e

 $O_4 =$

Learning HMM from fully observable data

Learn 3 distributions

$$P(X_1 = a) = \frac{\operatorname{Count}(X_1 = a)}{m}$$

$$P(O_i = 54 \mid X_i = a) = \frac{\text{Count(saw letter a and its observation was 54)}}{\text{Count(saw letter a)}}$$

$$P(X_i = b \mid X_{i-1} = a) = \frac{\operatorname{Count}(\mathsf{saw} \ \mathsf{a} \ \mathsf{letter} \ \mathsf{b} \ \mathsf{following} \ \mathsf{an} \ \mathsf{a})}{\operatorname{Count}(\mathsf{saw} \ \mathsf{an} \ \mathsf{a} \ \mathsf{followed} \ \mathsf{by} \ \mathsf{something})}$$

How many parameters do we have to learn?

Possible inference tasks in an HMM

Evaluation

Given HMM parameters and observation sequence $\{o_i\}_{i=1}^5$ find the probability of observation sequence

$$P(o_1,\ldots,o_5)$$

Can be computed using forward algorithm.

Possible inference tasks in an HMM

Decoding

Marginal probability of a hidden variable

$$P(X_i = a \mid o_1, o_2, \dots, o_n)$$

Can be computed using forward-backward algorithm.

▶ linear in the length of the sequence, because HMM is a tree

Possible inference tasks in an HMM

Viterbi decoding

Most likely trajectory for hidden vars

$$\max_{x_1,...,x_n} P(X_1 = x_1,...,X_n = x_n \mid o_1,...,o_n)$$

- most likely word that generated images
- very similar to forward-backward algorithm

Not the same as decoding

Most likely state vs. Most likely trajectory

Most likely state at position i:

$$\arg\max_{a} P(X_i = a \mid o_1, o_2, \dots, o_n)$$

Most likely assignment of state trajectory

$$\max_{x_1,\ldots,x_n} P(X_1 = x_1,\ldots,X_n = x_n \mid o_1,\ldots,o_n)$$

Solution not the same!

X	У	P(x,y)
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Given parameters of the model, find the find probability of observed sequence.

$$P(\{O_i\}_{i=1}^n) = \sum_k P(\{O_i\}_{i=1}^n, S_n = k) = \sum_k \alpha_n^k$$

Compute α_n^k recursively.

We use chain rule and Markov assumption:

$$\alpha_n^k = P(\{O_i\}_{i=1}^n, S_n = k)$$

= $P(O_n \mid S_n = k) \cdot \sum_{l} \alpha_{n-1}^l P(S_n = k \mid S_{n-1} = l)$

Given parameters of the model and the observed sequence find the probability that hidden state at time t was k.

$$P(S_{t} = k\{O_{i}\}_{i=1}^{n}) = P(O_{1}, \dots, O_{t}, S_{t} = k, O_{t+1}, \dots, O_{n})$$

$$= \underbrace{P(O_{1}, \dots, O_{t}, S_{t} = k)}_{\alpha_{t}^{k}} \cdot \underbrace{P(O_{t+1}, \dots, O_{n} \mid S_{t} = k)}_{\beta_{t}^{k}}$$

Again, we compute β_t^k recursively.

$$\beta_t^k = P(O_{t+1}, \dots, O_n \mid S_t = k)$$

$$= \sum_{l} P(S_{t+1} = l \mid S_t = k) \cdot P(O_{t+1} \mid S_{t+1} = l) \beta_{t+1}^l$$

Computational complexity

Details!!!

What is the running time for Forward, Backward, and Viterbi?

 $O(K^2 \cdot T)$, which is linear linear in T, instead of exponential in T.

We have not talked about Viterbi algorithm, but it is similar to forward-backward algorithm.

Learning parameters when hidden states are not observed

Baum-Welch Algorithm

this is essentially an EM algorithm

Where does this arise?

Summary

Useful for modeling sequential data with few parameters using discrete hidden states that satisfy Markov assumption.

► Speech, OCR, finance

Representation

- ▶ initial prob, transition prob, emission prob
- ▶ Parameter sharing, only need to learn 3 distributions

Summary

Algorithms for inference and learning in HMMs

- Computing marginal likelihood of the observed sequence: forward algorithm
- Predicting a single hidden state: forward-backward
- Predicting an entire sequence of hidden states: viterbi
- Learning HMM parameters:
 - hidden states observed: simple counting
 - otherwise Baum-Welch algorithm (an instance of an EM algorithm)

Recurrent neural networks

Recurrent neural networks

RNNs are very powerful, because they combine two properties:

- Distributed hidden state that allows them to store a lot of information about the past efficiently.
- Non-linear dynamics that allows them to update their hidden state in complicated ways.

Figure: Richard Socher

Recurrent neural networks as Dynamic systems

$$s_t = f_{\theta}(s_{t-1}, x_t)$$

The state contains information about the whole past sequence.

$$s_t = g_t(x_t, x_{t-1}, x_{t-s}, \dots, x_2, x_1)$$

Parameter sharing

We can think of s_t as a summary of the past sequence of inputs up to t.

If we define a different function g_t for each possible sequence length, we would not get any generalization.

If the same parameters are used for any sequence length allowing much better generalization properties.

Recurrent Neural Networks

Examples

```
Handwritting
https://www.cs.toronto.edu/~graves/handwriting.html
```

Image captioning
http://mscoco.org/explore/