

Школа-семинар «Основы использования OpenFOAM, SALOME и ParaView»

ОБЗОР СИСТЕМНОГО ОКРУЖЕНИЯ

М.В. Крапошин (НИЦ Курчатовский институт) О.И. Самоваров (Институт системного программирования РАН) С.В. Стрижак (ГОУ ВПО МГТУ им. Баумана)

- <u>Принципы ОС Linux архитектура, файловая</u> <u>система</u>
- Командный интерпретатор bash, система справки man
- Работа с файловой системой Midnight Commander
- Удаленные файловые системы WebDav
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

Http://linux.ru/ http://linux.ru/ http://www.opennet.ru// ↑ http://ru.wikipedia.org/wiki/Linu http://younglinux.info/linuxintr ↑ Динус Торвальдс, год написание 1991г.

- Спроектирована в соответствии со стандартом POSIX, который определяет набор интерфейсов между ОС и прикладным ПО (время, файловая система, сетевые протоколы, взаимодействие с пользователем)
- Изначально является многопользовательской средой с возможностями работы в сети и нагрузкой в течение длительного времени
- ◆ Поддерживается «произвольное» число процессоров практически любой архитектуры
- ◆ Является свободным и полностью открытым (лицензия GPL)
- ◆ Использование графических интерфейсов (KDE/GNOME/XFCE) делает взаимодействие с этой ОС не сложнее, чем с другими коммерческими аналогами

4TO TAKOE LINUX

http://linuxgid.ru/

http://www.opennet.ru/

http://linux.ru/

http://ru.wikipedia.org/wiki/Linux

http://younglinux.info/linuxintro

- ◆ Автор Линус Торвальдс, год написание 1991г.
- Спроектирована в соответствии со стандартом POSIX, который определяет набор интерфейсов между ОС и прикладным ПО (время, файловая система, сетевые протоколы, взаимодействие с пользователем)
- Изначально является многопользовательской средой с возможностями работы в сети и нагрузкой в течение длительного времени
- ◆ Поддерживается «произвольное» число процессоров практически любой архитектуры
- ◆ Является свободным и полностью открытым (лицензия GPL)
- ◆ Использование графических интерфейсов (KDE/GNOME/XFCE) делает взаимодействие с этой ОС не сложнее, чем с другими коммерческими аналогами

ОБЩАЯ СТРУКТУРА LINUX

ФАЙЛОВАЯ СИСТЕМА LINUX

Файловая система представляет собой единое дерево, к которому подключается один или более физических носителей. Технические подробности физического размещения данных (имена дисков, сетевые файловые системы) скрыты от пользователя

- Каталог супер-пользователя: /root,
- Домашние каталоги: /home
- Пользовательские программы: /bin, /usr/bin, /usr/local/bin
- Системные программы: /sbin, /usr/sbin, /usr/local/sbin
- Точки монтирования (подсоединения файловых систем): /media, /mnt
- Конфигурационные файлы: /etc
- Временные файлы: /tmp
- Ядро и загрузчик: /boot
- Серверные данные: /var, /srv
- Системная информация: /proc, /sys
- Разделяемые библиотеки: /lib, /usr/lib, /usr/local/lib (/lib64, /usr/lib64 в 64-х разрядных системах)
- Дополнительное программное обеспечение: /opt

ТИПЫ ФАЙЛОВ LINUX

Типы файлов (а также уровень доступа к ним) в Linux определяются не с помощью расширений, а посредством устанавливаемых флагов для каждого файлы (ls -1). Каждый файл связан с пользователем-владельцем и некоторой группой пользователей

```
[d|l|b|c|p|s][ur][uw][ux][gr][gw][gx][or][ow][ox]
```

```
\underline{\mathbf{d}} — директория , \mathbf{l} — ссылка , \mathbf{c} — символьные устройства , \mathbf{b} — блочные устройства , \mathbf{p} — каналы , \mathbf{s} — сокеты
```

```
ur, uw, ux — файл может быть прочитан , изменен или запущен в качестве исполняемого пользователем
```

```
gr, gw, gx — файл может быть прочитан , изменен или запущен в качестве исполняемого членами группы
```

```
or, ow, ox — файл может быть прочитан, изменен или запущен в качестве исполняемого любым пользователем
```

Также файлы различаются по содержимому, для определения используется команда file [имя_файла]

- Принципы ОС Linux архитектура, файловая система
- <u>Командный интерпретатор bash, система</u> <u>справки тап</u>
- Работа с файловой системой Midnight Commander
- Удаленные файловые системы WebDav
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

КОМАНДНЫЙ ИНТЕРПРЕТАТОР BASH

Любая задача в Linux может быть решена с использованием интерпретатора команд, например bash или csh или tksh. Кроме того, доступ к вычислительным ядрам UniHUB сегодня реализуется через bash (консоль)

Интерпретатор может работать как в пакетном режиме (несколько инструкций подряд), так и интерактивном (обработка каждой команды по отдельности). Примеры команд — Is, pwd, who, date

Командный интерпретатор является по сути процедурным языком высокого уровня: переменные, циклы, ветвления, арифметические операции

Параметры BASH задаются в файле \$HOME/.bashrc; \$HOME — переменная, содержащая путь к домашнему каталогу (echo \$HOME, cd \$HOME, cd)

```
ma-11.3@linux-ne7a:~/Документы/unicluster-2011> ls
AdvancedCourse BasicCourse HPC_Multiphysics.pdf OpenCirrus-article Pics-Present Strijak-tutorial unihub-usage.odt
ma-11.3@linux-ne7a:~/Документы/unicluster-2011> pwd
/home/ma-11.3/Документы/unicluster-2011> echo $HOME
/home/ma-11.3
ma-11.3@linux-ne7a:~/Документы/unicluster-2011> export MYHOME=$HOME
ma-11.3@linux-ne7a:~/Документы/unicluster-2011> cd ..
ma-11.3@linux-ne7a:~/Документы> echo $MYHOME
/home/ma-11.3
ma-11.3@linux-ne7a:~/Документы> echo $MYHOME
```


ВАЖНЫЕ КОРОТКИЕ КЛАВИШИ BASH

Для комфортной работы в bash используются короткие клавиши:

Список введенных команд можно посмотреть с помощью инструкции history

Клавиша «стрелка вверх» - Предыдущая введенная команда в списке history (несколько нажатий — вывод команды, введенной N шагов ранее)

Клавиша «стрелка вниз» - Следующая введенная команда в списке history (несколько нажатий — вывод команды, введенной N шагов ранее)

Клавиши «стрелка влево», «стрелка вправо» - Перемещение по строке команды

Клавиши «Delete, Backspace» - Действуют как в обычном редакторе (удаление введенных символов)

Ctrl+O — Показать результаты выполнения команды (как Enter)

Ctrl+U — Стереть всю введенную строку

Клавиша Таb — по введенным первым символам либо дополнить команду из списка имеющихся либо вывести подставить файл, начинающийся с этих символов

```
ma-11.3@linux-ne7a:~/Документы> ls
hs_err_pid9237.log log.std MCF-unicluster-2011 unicluster-2011 unihub-usage YGM-2011
ma-11.3@linux-ne7a:~/Документы> cd uni
unicluster-2011/ unihub-usage/
ma-11.3@linux-ne7a:~/Документы> cd unicluster-2011/
AdvancedCourse/ BasicCourse/ OpenCirrus-article/ Pics-Present/ Strijak-tutorial/
ma-11.3@linux-ne7a:~/Документы> cd unicluster-2011/
```


СИСТЕМА ДОКУМЕНТАЦИИ МАН

Система MAN вызывается по команде man с указанием имени запрашиваемой команды. Если запрашиваемый раздел документации не найден, то выводится соответствующее сообщение

Система MAN содержит девять уровней сложности выводимой документации. Уровень 1 — самая простая документация общего характера, Уровень 9 — самая сложная документация (системные вызовы ядра)

В зависимости от дистрибутива, в MAN может содержаться как информация о командах интерпретатора, так и описание функций языков программирования. Например, **man Is** выводит информацию о команде **Is**, **man printf** выводит описание функции **printf** языка C.

Выход из системы MAN осуществляется клавишей **q**. Расширенным аналогом MAN является система INFO (команда **info <имя_раздела>**)

```
ls [onции] [файл...]
dir [файл...]
vdir [файл...]

Oпции POSIX: [-CFRacdilqrtul] [--]

Oпции GNU (краткая форма): [-labcdfghiklmnopqrstuvwxABCDFGHLNQRSUX] [-w cols] [-T cols] [-I шаблон]
[--full-time] [--show-control-chars] [--block-size=paamep] [--format={long,verbose,commas,across,vertical,sin-gle-column}] [--sort={none,time,size,extension}] [--time={atime,access,use,ctime,status}]
[--color[={none,auto,always}]] [--help] [--version] [--]

ОПИСАНИЕ

Программа ls сначала выводит список всех файлов (не каталогов), перечисленных в командной строке, а затем выводит список всех файлов, находящихся в каталогах, перечисленных в командной строке. Если не указано ни одного файла, то по умолчанию аргументом назначается `.' (текущий каталог). Опция -d заставляет ls не считать аргументы каталогам. Булут, отображаться только файлы, которые не начимаются с `.' ими все файлы
```


- Принципы ОС Linux архитектура, файловая система
- Командный интерпретатор bash, система справки man
- <u>Работа с файловой системой Midnight</u> <u>Commander</u>
- Удаленные файловые системы WebDav
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

MIDNIGHT COMMANDER

Midnight Commander — псевдографическая оболочка для навигации по файловой системе и работы с файлами (например, для редактирования или архивирования). Команда mc.

КОМАНДЫ MIDNIGHT COMMANDER

При запуске mc внутри графической оболочки, можно пользоваться мышкой, тем не менее, некоторые «короткие клавиши» следует знать. МС является аналогом Total Commander и Norton Commander.

F1 — Справка, **F2** — Меню пользователя (может быть изменено), **F3** — просмотр файла, **F4** — редактирование файла, **F5** — копировать файл, **F6** — переместить файл, **F7** — создать новый каталог, **F8** — удалить файл или каталог, **F9** — главное меню программы (элементы отображены сверху), **F10** — выход из программы (можно также ввести **quit**)

Ctrl+O — убрать/вернуть панели для отображения/скрытия вывода интерпретатора команд. *Обычно* МС использует интерпретатор команд bash.

При работе с редактором клавиши **F1-F10** меняют свои функции. Эти изменения отображаются в нижней части окна программы.

Для того, чтобы МС пользовался своим редактором (рекомендуется) в файл .bashrc следует вставить строку (или заменить имеющуюся):

export EDITOR=/usr/bin/mcedit

- Принципы ОС Linux архитектура, файловая система
- Командный интерпретатор bash, система справки man
- Работа с файловой системой Midnight Commander
- <u>Удаленные файловые системы WebDav</u>
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

HACTPOЙKA WEBDAV B LINUX

http://ru.wikipedia.org/wiki/WebDAV

http://www.webdav.org

WebDAV — протокол для связи удаленной и локальной файловых систем. Описание работы с WebDAV в системе Windows дано в предыдущем модуле. Здесь рассматривается подключение к WebDAV в Linux с помощью графической оболочки KDE

ВАЖНО — WebDAV не работает с некоторыми специальными типами файлов — например, со ссылками.

Адрес сервера WebDAV в UniHUB: https://unihub.ru/webdav

WEBDAV II FIREFOX

Обычно в Firefox уже встроены средства для работы с webdav. В этом случае с удаленной системой можно работать в режиме «только для чтения»:

Запускаем firefox, вводим адрес webdav https://unihub.ru/webdav, в появившемся окне вводим логин и пароль пользователя UniHUB

WEBDAV И KDE (KONQUEROR, DOLPHIN)

Для работы в режиме чтение-запись можно воспользоваться средствами KDE. Для этого запускаем либо браузер konqueror, либо dolphin. Также как и в firefox вводим адрес WebDAV сервера, логин и имя пользователя.

HO в строке адрес вводим webdavs://unihub.ru/webdav

- Принципы ОС Linux архитектура, файловая система
- Командный интерпретатор bash, система справки man
- Работа с файловой системой Midnight Commander
- Удаленные файловые системы WebDav
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

Система контроля версий SVN — Одна из ключевых технологий UniHUB

SVN — \underline{S} ub \underline{V} ersio \underline{N} — открытая система контроля изменений, её клиент может работать под любой ОС, включая Windows

Основные команды SVN

Получение справки: svn help

Получение справки для команды svn: svn help <имя_команды>

Команды основного цикла

- 1) Запрос на получение копии svn checkout <имя_сервера>/<путь_к_данным>
- 2) Регистрация локальных изменений в хранилище
- svn commit
- 3) Обновление локальной копии svn update
- 4) Изменений структуры данных хранилища svn add, svn del

В ~/.bashrc вставить строку export EDITOR=/usr/bin/mcedit

Структура материалов курса

Все материалы курса хранятся в SVN https://unihub.ru/tools/unicfdc1/svn/trunk/

Иллюстрации курса

https://unihub.ru/tools/unicfdc1/svn/trunk/Figures

Файлы (лабораторные работы)

https://unihub.ru/tools/unicfdc1/svn/trunk/Files

Презентации в формате OpenDocument

https://unihub.ru/tools/unicfdc1/svn/trunk/Odp

Методические материалы в формате OpenDocument

https://unihub.ru/tools/unicfdc1/svn/trunk/Odt

Презентации в формате PDF

https://unihub.ru/tools/unicfdc1/svn/trunk/Pdf

Презентации в формате Flash

https://unihub.ru/tools/unicfdc1/svn/trunk/Swf

Чтобы получить эти материалы нужно

Не обязательно из UniHUB, а из любого SVN клиента, например, из командной строки ввести:

Иллюстрации курса

svn checkout https://unihub.ru/tools/unicfdc1/svn/trunk/Figures

Файлы (лабораторные работы)

svn checkout https://unihub.ru/tools/unicfdc1/svn/trunk/Files

Презентации в формате OpenDocument

svn checkout https://unihub.ru/tools/unicfdc1/svn/trunk/Odp

Методические материалы в формате OpenDocument syn checkout https://unihub.ru/tools/unicfdc1/syn/trunk/Odt

Презентации в формате PDF

svn checkout https://unihub.ru/tools/unicfdc1/svn/trunk/Pdf

Презентации в формате Flash

svn checkout https://unihub.ru/tools/unicfdc1/svn/trunk/Swf

- Принципы ОС Linux архитектура, файловая система
- Командный интерпретатор bash, система справки man
- Работа с файловой системой Midnight Commander
- Удаленные файловые системы WebDav
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

OpenFOAM (Field Operation and Manipulation)

Открытое «ядро» и доступность кода

- Установка на LINUX (RHEL,SUSE,OpenSuse, Debian, Ubuntu, CentOS, CAELinux)
- Использование возможностей объектно-ориентированного программирования на С++;
- В программном коде используется базовая единица: класс.
- Основные исследуемые объекты: расчетная область, преобразования в тензорной и линейной алгебре, решатели, математические операции для УРЧП (дискретизация, дифференцирование, интегрирование, интерполяция);
- Представление уравнений МСС с помощью естественного языка программирования;
- Решение уравнений эллиптического, параболического, гиперболического типа;
- Разбиение кода на небольшие самостоятельные единицы;
- Совместимость с доступными открытыми кодами и компиляторами (gcc,python);
- Возможность разработки собственных модулей (граничные условия, библиотеки модели среды, решатели, утилиты).
- Около 1 миллиона строк исходного кода

YCTAHOBKA OPENFOAM

```
$cd OpenFOAM/
$tar xzf OpenFOAM-1.6.General.gtgz
$tar xzf OpenFOAM-1.6.linux64GccDPOpt.gtgz
$tar xzf ThirdParty-1.6.General.gtgz
$tar xzf ThirdParty-1.6.linux64Gcc.gtgz
Настройка окружения:
[user1@WorkStation ~]$ cat .bashrc
# .bashrc
# Source global definitions
if [ -f /etc/bashrc ];
        . /etc/bashrcfi
then
# User specific aliases and functions
export FOAM_INST_DIR=/home/user1/OpenFOAM
foamDotFile=$FOAM INST DIR/OpenFOAM-1.6/etc/bashrc
[ -f $foamDotFile ]; then
. $foamDotFile
fi
```


ПЕРЕМЕННЫЕ ОКРУЖЕНИЯ OPENFOAM

Important Environment Variables (важные переменные окружения)

```
$WM_PROJECT_DIR - path to the OpenFOAM installation
$WM_PROJECT_USER_DIR - OpenFOAM user directory
$FOAM_TUTORIALS - OpenFOAM tutorials
$FOAM_SRC - source-tree of OpenFOAM libraries
$FOAM_APP - source-tree of OpenFOAM applications
$FOAM_APPBIN - directory with the applications
$FOAM_USER_APPBIN - directory with the applications created by the user
$FOAM_LIBBIN - directory with the libraries provided by OpenFOAM
$FOAM_USER_LIBBIN - directory with the libraries created by the user
$FOAM_RUN - directory where the user can put his/her cases
```

Important Shell-Aliases (важные команды)

```
run – cd to $FOAM_RUN

src – cd to $FOAM_SRC

app – cd to $FOAM_APP

util – cd to $FOAM_APP/utilities

sol – cd to $FOAM_APP/solvers
```


ПРОВЕРКА УСТАНОВКИ ОРЕNFOAM

```
[cfd1@master ~]$ foamInstallationTest
Executing /home/cfd1/OpenFOAM/OpenFOAM-1.6/bin/foamInstallationTest:
Checking basic setup...
Shell:
            bash
Host:
            master.bmstu.ru
OS:
            Linux version 2.6.18-92.el5xen
Checking main OpenFOAM env variables...
Environment variable Set to file or directory Valid
                                                       Crit
$WM PROJECT INST DIR /home/cfd1/OpenFOAM
                                                        yes
                                                               yes
$WM PROJECT USER DIR /home/cfd1/OpenFOAM/cfd1-1.6
                                                            no
                                                                  no
$WM THIRD PARTY DIR /home/cfd1/OpenFOAM/ThirdParty-1.6
                                                                   yes
                                                            ves
Checking the OpenFOAM env variables set on the PATH...
Environment variable Set to file or directory
$WM PROJECT DIR /home/cfd1/OpenFOAM/OpenFOAM-1.6
                                                            yes yes yes
$FOAM APPBIN
                ...1.6/applications/bin/linux64GccDPOpt yes yes
$FOAM SITE APPBIN ...penFOAM/site/1.6/bin/linux64GccDPOpt no
                                                                 no
$FOAM USER APPBIN ...1.6/applications/bin/linux64GccDPOpt no
                                                                no
$WM DIR
                /home/cfd1/OpenFOAM/OpenFOAM-1.6/wmake yes yes
```


СТРУКТУРА КАТАЛОГОВ OPENFOAM

- * applications: исходные и исполняемые файлы
 - Solvers
 - Utilities

- * bin: базовые исполняемые скрипты
- * doc: pdf и Doxygen файлы
 - Doxygen
 - Guides-a4
- * lib откомпилированные библиотеки
- * etc служебные скрипты
- * src исходные файлы
- * test тестовые файлы
- * tutorials примеры
- * wmake утилиты для компиляции

case – relative or absolute path to the case

Basic Case Structure (Базовая структура примера)

НЕКОТОРЫЕ ОПРЕДЕЛЕНИЯ

casel – the case directory

- + 0/ содержит начальные и граничные условия
- **+ constant/** constant data (данные и константы)
- + polyMesh/ содержит данные сетки
- + transportProperties вязкость
- + system/ run-time control / numerics
- + controlDict run-time control (параметры для контроля задачи)
- + fvSchemes numerical schemes (расчетные схемы)
- + fvSolution решатели для СЛАУ

case/0/ – contains for each variable a fle defining the initial and boundary conditions. May also contain initial and boundary conditions for a moving grid.

case/constant/polyMesh/ – contains the grid data for a non-moving grid. The fles are: boundary, faces, neighbour, owner, points.

case/constant/transportProperties – defnes the viscosity (also for non-Newtonian fuids)

case/system/controlDict – sets start-/endtime, time-step size, output control etc. Also allows to load general "plugins" and apply "function-objects" to compute forces acting on a surface.

case/system/fvSchemes – defines the numerical schemes to be used for each differential operator **case/system/fvSolution** – selects the solvers to be used for the linear equation systems for each variable which is solved for using an implicit scheme.

- Принципы ОС Linux архитектура, файловая система
- Командный интерпретатор bash, система справки man
- Работа с файловой системой Midnight Commander
- Удаленные файловые системы WebDav
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

Команды интерпретатора в Linux (I)

БАЗОВЫЕ КОМАНДЫ ДЛЯ РАБОТЫ С ФАЙЛАМИ

```
Is – просмотр директории
Is -al – formatted listing with hidden fles
cd dir - change directory to dir
cd – change to home
pwd – show current directory
mkdir dir – создание директории dir
rm file – удаление файла file
rm -r dir – delete directory dir
rm -f file – force remove fle
rm -rf dir – force remove directory dir *
cp file1 file2 - copy fle1 to fle2
cp -r dir1 dir2 - copy dir1 to dir2; create dir2 if it doesn't exist
mv file1 file2 - rename or move fle1 to fle2 if fle2 is an existing directory, moves fle1 into
directory fle2
In -s file link - create symbolic link link to fle
touch file – создать пустой файл
cat > file - places standard input into fle
more file – просмотр файла
head file – output the frst 10 lines of fle
tail file – вывод послединих 10 строк файла
tail -f file – output the contents of fle as it grows, starting with the last 10 lines
```


Команды интерпретатора в Linux (II)

КОМАНДЫ ДЛЯ СБОРА ИНФОРМАЦИИ О СИСТЕМЕ И СИСТЕМНОМ ОКРУЖЕНИИ

date – show the current date and time **cal** – show this month's calendar **uptime** – show current uptime \mathbf{w} – display who is online whoami – who you are logged in as **finger** *user* – display information about *user* **uname -a** – show kernel information **cat /proc/cpuinfo** – cpu information **cat /proc/meminfo** – memory information man command – show the manual for command **df** – show disk usage du – show directory space usage **free** – show memory and swap usage whereis app – show possible locations of app **which** *app* – show which *app* will be run by default

Команды интерпретатора в Linux (III)

КОМАНДЫ УПРАВЛЕНИЯ ЗАДАЧАМИ (ПРОЦЕССАМИ)

ps – display your currently active processes

top – display all running processes

kill pid – kill process id pid

killall *proc* – kill all processes named *proc* *

bg – lists stopped or background jobs; resume a stopped job in the background

fg – brings the most recent job to foreground

fg n – brings job n to the foreground

КОМАНДЫ УПРАВЛЕНИЯ ДОСТУПА К ФАЙЛАМ

chmod *octal file* – change the permissions of *fle* to *octal*, which can be found separately for user, group, and world by adding:

- 4 read (r)
- 2 write (w)
- 1 execute (x)

Examples:

chmod 777 – read, write, execute for allchmod 755 – rwx for owner, rx for group and world

Команды интерпретатора в Linux (IV)

КОМАНДЫ ДЛЯ РАБОТЫ С СЕТЬЮ

ping host - ping host and output results
whois domain - get whois information for domain
dig domain - get DNS information for domain
dig -x host - reverse lookup host
wget file - download fle
wget -c file - continue a stopped download

УСТАНОВКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Установка из исходного кода
./configure
make
make install
Allwmake
Установка из бинарных файлов
dpkg -i pkg.deb — install a package (Debian)
rpm -Uvh pkg.rpm — install a package (RPM)

Команды интерпретатора в Linux (IV)

УДАЛЕННЫЙ ДОСТУП ЧЕРЕЗ SSH

```
ssh user@host - connect to host as user
ssh -p port user@host - connect to host on port port as user
ssh-copy-id user@host - add your key to host for user to enable a keyed or passwordless login
```

ПОИСК ИНФОРМАЦИИ

grep pattern files - search for pattern in fles
grep -r pattern dir - search recursively for pattern in dir
command | grep pattern - search for pattern in the output of command
locate file - fnd all instances of fle

КОРОТКИЕ КЛАВИШИ

Ctrl+C - halts the current command

Ctrl+Z – stops the current command, resume with

fg in the foreground or bg in the background

Ctrl+D - log out of current session, similar to exit

Ctrl+W - erases one word in the current line

Ctrl+U – erases the whole line

Ctrl+R – type to bring up a recent command

!! - repeats the last command

exit – log out of current session

Команды интерпретатора в Linux (V)

РАБОТА С АРХИВАМИ

tar cf file.tar files – create a tar named fle.tar containing fles

tar xf *file.tar* – extract the fles from *fle.tar*

tar czf file.tar.gz files – create a tar with Gzip compression

tar xzf file.tar.gz – extract a tar using Gzip

tar cjf file.tar.bz2 - create a tar with Bzip2 compression

tar xjf file.tar.bz2 – extract a tar using Bzip2

gzip file – compresses fle and renames it to fle.gz

gzip -d file.gz - decompresses fle.gz back to fle

- Принципы ОС Linux архитектура, файловая система
- Командный интерпретатор bash, система справки man
- Работа с файловой системой Midnight Commander
- Удаленные файловые системы WebDav
- Учет версий файлов SVN
- Системное окружение OpenFOAM (каталоги, задача, запуск на расчет в параллельном режиме)
- Часто используемые приложения
- Где искать помощь

ЛИТЕРАТУРА

- 1) Марк.Г. Сабел Практическое руководство по Red Hat Linux. Изд. дом 'Вильямс', 2005. 1072 с.
 - 2) Немет Э., Снайдер Г.,Хейн Т. Руководство администратора Linux, 2 издание. ООО 'И.Д. Вильямс', 2009. 1072 с
 - 3) Гергель В.П. Теория и практика параллельных вычислений. ИНТУИТ, Бином. Лаборатория знаний, 2007.
 - 4) К.Ю.Богачев Основы параллельного программирования. Бином.2010. 342 с.
 - 5) Лупин С.А., Посыпкин М.А. Технология параллельного программирования. М.: ИД Форум. 2008. 208 с.
 - 6) Страуструп Б. Язык программирования С++. 2008
 - 7) Язык программирования СИ++. Курс лекций. Учебное пособие. / Фридман А.Л. / 2009. 264 с.
 - 8) Шилдт Г. С++ для начинающих. Пер с англ. М.: Эком Паблишерз. 2007.- 640 с.