DS (5) de physique-chimie – Électrocinétique & Ondes

Le samedi 30 janvier 2021 - Durée 3h

Prolégomènes: vous êtes invités à porter une attention particulière à la rédaction!

- Les fautes de français et les copies mal présentées seront pénalisées.
- N'utilisez que des copies doubles que vous devrez numéroter en indiquant le total (par exemple 1/3, 2/3, 3/3).
- Une marge doit être laissée pour la correction sur la partie gauche de votre copie.
- Les réponses non justifiées et les applications numériques ne comportant pas d'unité seront ignorées.
- Vous prendrez soin de bien numéroter les questions et d'encadrer vos réponses.

I Étude d'une bobine réelle

On dispose d'une bobine réelle que l'on assimilera à l'association série d'une bobine idéale d'inductance L et d'un conducteur ohmique idéal de résistance r où L et r sont des constantes positives, indépendantes de la fréquence.

I. A Détermination de r

1. La bobine réelle est parcourue par un courant i(t). Exprimer la tension u(t) à ses bornes en fonction de r, L, i(t) et de sa dérivée par rapport au temps.

On réalise le circuit ci-dessous en plaçant en série avec la bobine réelle un conducteur ohmique idéal de résistance $R=40~\Omega$. Le circuit est alimenté par un générateur de Thévenin de force électromotrice continue et constante $E_0=1,0~\mathrm{V}$ et de résistance interne $r_0=2,0~\Omega$.

On mesure en régime permanent la tension U_R aux bornes du conducteur ohmique de résistance R.

2. Exprimer r en fonction des données de cette question. Calculer numériquement r pour $U_R = 0.56 \text{ V}$.

I. B Détermination de r et L à partir d'un oscillogramme

On place en série avec la bobine réelle un conducteur ohmique idéal de résistance $R=40~\Omega$ ainsi qu'un condensateur idéal de capacité $C=10~\mu F$. L'ensemble est alimenté par un GBF réglé pour délivrer une tension sinusoïdale de fréquence $f=250~{\rm Hz}$ (la pulsation sera notée ω) et d'amplitude crête-à-crête de $U_0=10~{\rm V}$.

Deux tensions sont visualisées sur un oscilloscope numérique. L'oscillogramme obtenu est le suivant :

- 3. Quelles sont les valeurs de l'amplitude U_e de la tension u_e et l'amplitude U_R de la tension u_R ?
- **4.** Quelle est la valeur de l'amplitude *I* du courant *i*?
- 5. Rappeler l'expression générale de l'impédance complexe \underline{Z} d'un dipôle quelconque parcouru par un courant d'intensité i et soumis à une tension u. Calculer alors numériquement le module $Z_{\text{AM}} = |\underline{Z}_{\text{AM}}|$ de l'impédance du dipôle AM.
- 6. Des deux tensions $u_R(t)$ et $u_e(t)$, laquelle est en avance sur l'autre. On justifiera clairement la réponse d'après l'oscillogramme.
- 7. Déterminer précisément à partir de l'oscillogramme le déphasage $\varphi_{u_e/i}$ entre u_e et i.
- 8. Écrire l'expression générale de l'impédance complexe $\underline{Z}_{\mathrm{AM}}$ en fonction de r, R, L, C et ω .
- 9. Écrire l'expression générale de l'impédance complexe $\underline{Z}_{\rm AM}$ en fonction de son module $Z_{\rm AM}$ et du déphasage $\varphi_{u_e/i}$.
- 10. Exprimer r en fonction de R, Z_{AM} et $\varphi_{u_e/i}$. Calculer sa valeur.
- 11. Exprimer L en fonction de C, ω , $Z_{\rm AM}$ et $\varphi_{u_e/i}$. Calculer sa valeur.

2

I. C Etude de la fonction de transfert

- 12. Rappeler la définition de la fonction de transfert \underline{H} d'un filtre ayant pour tension d'entrée $\underline{u_e}$ et pour tension de sortie et u_R .
- 13. Proposer un schéma équivalent du circuit précédent pour les basses puis pour les hautes fréquences. En déduire la nature probable du filtre.
- **14.** Exprimer \underline{H} en fonction de r, R, L, C et ω .
- **15.** Mettre \underline{H} sous la forme :

$$\underline{H} = \frac{H_{\text{max}}}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

On exprimera littéralement H_{max} , le paramètre ω_0 ainsi que le facteur de qualité Q de ce circuit en fonction de r, R, L et C.

La figure ci-dessous présente le diagramme de Bode en amplitude du filtre précédent. On représente en ordonnées le gain en décibel $G_{dB} = 20 \log |\underline{H}|$ en fonction de la fréquence f sur une échelle logarithmique en abscisses.

16. Déterminer, à partir du graphe et des données initiales, les valeurs de r et L.

- 17. Établir l'expression littérale de la bande passante à -3 dB, notée $\Delta\omega$, en fonction de ω_0 et Q.
- 18. À partir d'une lecture graphique, estimer cette bande passante et retrouver la valeur numérique du facteur de qualité Q.

II Ondes acoustiques dans un tuyau cylindrique (D'après ENAC 2020)

Ce problème est du type questionnaire à choix multiples (QCM). Choisir, **en le(s) démontrant**, le(s) résultat(s) exact(s). Les résultats devant impérativement être démontrés, il n'y aura pas de points négatifs en cas de mauvaise réponse.

L'air contenu dans un tuyau cylindrique de longueur L=OA=2,00 m est excité par un haut-parleur (HP) émettant des ondes acoustiques sinusoïdales de fréquence f. Un bouchon ferme l'extrémité droite du tuyau (figure 1). On note $\psi_n(x,t)$, où $n\in\mathbb{N}^*$, les fonctions d'ondes des ondes acoustiques dans le tuyau à l'abscisse x du point P (origine en O) et à l'instant t. La vitesse du son dans le tuyau vaut c=340 m·s⁻¹

Figure 1

On observe dans le tuyau l'existence d'ondes stationnaires d'amplitude ψ_m . En présence du bouchon, elles vérifient les conditions aux limites ainsi que la condition initiale suivante :

$$\psi_n(0,t) = 0$$
 $\psi_n(L,t) = 0$ $\psi_n(x,0) = 0$

- 1. On note k_n la norme du vecteur d'onde et f_n la fréquence des ondes stationnaires. Les fonctions d'ondes $\psi_n(x,t)$ s'écrivent :
 - (A) $\psi_n(x,t) = \psi_m \sin(2\pi f_n t k_n x)$
 - **(B)** $\psi_n(x,t) = \psi_m \cos(2\pi f_n t) \sin(k_n x)$
 - (C) $\psi_n(x,t) = \psi_m \sin(2\pi f_n t) \sin(k_n x)$
 - (D) $\psi_n(x,t) = \psi_m \cos(2\pi f_n t) \cos(k_n x)$
- 2. Compte tenu des conditions aux limites et de l'expression des fonctions d'ondes :
 - (A) x = 0 et x = L sont des ventres de vibration
 - **(B)** x = 0 et x = L sont des noeuds de vibration
 - (C) 2 ventres de vibration successifs sont distants de $\frac{\lambda}{2}$
 - (**D**) 2 ventres de vibration successifs sont distants de $\frac{\lambda}{4}$
- 3. En prenant $n \in \mathbb{N}^*$, les longueurs d'ondes λ_n des ondes stationnaires qui peuvent exister dans le tuyau vérifient :
 - $(\mathbf{A}) \ \lambda_n = \frac{L}{n}$
 - **(B)** $\lambda_n = \frac{2L}{n}$
 - (C) $\lambda_n = nL$
 - (D) $\lambda_n = 2nL$

- 4. La fréquence f_1 de l'harmonique fondamentale vaut :
 - (A) $f_1 \simeq 6 \text{ mHz}$
 - **(B)** $f_1 \simeq 12 \text{ mHz}$
 - (C) $f_1 = 42,5 \text{ Hz}$
 - **(D)** $f_1 = 85 \text{ Hz}$
- 5. Le mode propre $\psi_1(x,t)$ peut être obtenu par superposition d'une onde progressive de fonction d'onde $\frac{\psi_m}{2}\cos(2\pi f_1t k_1x)$ et d'une onde progressive de fonction d'onde $\frac{\psi_m}{2}\cos(2\pi f_1t + \varepsilon k_1x + \varphi)$ telle que :
 - (A) $\varepsilon = +1$
 - (B) $\varepsilon = -1$
 - (C) $\varphi = +\pi$
 - (D) $\varphi = -\pi$

III Détermination expérimentale d'un filtre inconnu

Un montage électrique comportant un GBF, un filtre inconnu (noté F_1) et un oscilloscope est réalisé dans la salle de TP du lycée Saint-Louis. Cette expérience a pour but de déterminer le plus précisément possible, la nature et les caractéristiques du filtre F_1 utilisé. Pour cela, les expérimentateurs ont acquis huit oscillogrammes qui sont reproduits en annexe de ce sujet. Sur chaque oscillogramme, le signal d'entrée du filtre F_1 a été acquis sur la voie 1 (en jaune) et correspond à la tension délivrée par le GBF. Le signal de sortie est quant à lui représenté sur la voie 2 (en vert). Les principaux réglages de l'oscilloscope sont rappelés sur chaque oscillogramme.

Les réponses à chacune des questions posées de ce problème devront être justifiées très précisément et on s'appuiera pour cela le plus souvent possible sur la lecture des oscillogrammes.

III. A Acquisition des oscillogrammes

- 1. Quelle est la voie utilisée dans le menu « trigger » de l'oscilloscope pour déclencher l'acquisition de tous les oscillogrammes ?
- 2. Évaluer numériquement la tension seuil choisie pour le déclenchement des acquisitions.
- 3. On s'intéresse dans cette question uniquement aux oscillogrammes ① et ②. Pour chacun d'entre eux, donner :
 - (a) la base de temps utilisée,
 - (b) les sensibilités respectives des deux voies d'acquisition,
 - (c) la fréquence des signaux acquis,
 - (d) la valeur efficace de chacun d'entre eux.
- 4. Représenter sur un schéma le montage expérimental en y faisant figurer les branchements entre les différents appareils.

III. B Etude du filtre inconnu

- 5. À partir des huit oscillogrammes, tracer point par point sur le papier semi-log fourni en annexe le diagramme de Bode en amplitude associé au filtre F₁. On précisera sur la copie la démarche utilisée pour exploiter quantitativement ces oscillogrammes.
- 6. En déduire la nature du filtre F_1 et proposer une valeur pour son ordre.
- 7. Évaluer numériquement la bande passante en fréquence à -3 dB, notée Δf .
- 8. Les expressions canoniques des fonctions de transfert de quelques filtres usuels sont données dans le tableau qui suit en fonction de la fréquence f du signal d'entrée :

1	2	3	④
$\underline{H}(f) = \frac{H_0}{1 + j\frac{f}{f_0}}$	$\underline{\underline{H}}(f) = \frac{H_0}{1 - j\frac{f_0}{f}}$	$\underline{H}(f) = \frac{H_0}{\left[1 - \left(\frac{f}{f_0}\right)^2\right] + \frac{j}{Q}\frac{f}{f_0}}$	$\underline{\underline{H}}(f) = \frac{H_0}{1 + jQ\left(\frac{f}{f_0} - \frac{f_0}{f}\right)}$

Ces expressions font intervenir les paramètres caractéristiques H_0 , f_0 et éventuellement Q.

- (a) Parmi ces fonctions de transfert, quelle est la seule qui puisse correspondre au filtre F₁?
- (b) La fonction de transfert identifiée à la question précédente est-elle en accord avec l'évolution du déphasage $\varphi = \varphi_2 \varphi_1$ entre les voies 2 et 1 de l'oscilloscope? On pourra représenter l'allure de l'évolution de φ sur le papier semi-log fourni en annexe.
- (c) Que représentent H_0 , f_0 et éventuellement Q dans la fonction de transfert choisie?
- 9. Déterminer les valeurs numériques des paramètres caractéristiques (notés $H_{0,1}$, $f_{0,1}$ et éventuellement Q_1) du filtre F_1 .
- 10. Représenter le schéma électrique d'un filtre (noté F_2), que vous connaissez, de même nature et de même ordre que F_1 .
- 11. Établir la fonction de transfert associée à F_2 et déterminer les expressions littérales des paramètres $H_{0,2}$, $f_{0,2}$ et éventuellement Q_2 de F_2 .
- 12. Représenter sur votre copie, après l'avoir justifiée, l'allure (forme du signal, fréquence, amplitude, déphasage et valeur moyenne) qu'aurait le signal de sortie du filtre F₁ s'il était soumis à un signal d'entrée de forme triangulaire, de fréquence 10 Hz, d'amplitude 10 V, de phase initiale nulle et de valeur moyenne égale à 1 V.

III. C Résolution de problème

- 13. Justifier qu'il est impossible de réaliser le filtre inconnu F_1 grâce au filtre F_2 , quelles que soient les valeurs utilisées pour les composants électriques de ce dernier.
- 14. Proposer un quadripôle électrique (noté F_3) ne contenant que des conducteurs ohmiques et des condensateurs et possédant exactement la même fonction de transfert que F_1 .
- 15. Proposer des valeurs numériques pour la(es) résistance(s) et le(s) condensateur(s) présents dans F₃.

6

Annexe à rendre avec la copie

Nom : Prénom :

FIN DE L'ÉNONCÉ

* * *