Lectures 2, 3 & 4: Introduction to SQL

Copyright: These slides are the modified version of the slides used in CS145 Introduction to Databases course at Stanford by Dr. Peter Bailis

Lecture 2

Announcements!

1. If you still have Jupyter trouble, let us know!

Lecture 2 Lecture 2: SQL Part I Lecture 2

Today's Lecture

- 1. SQL introduction & schema definitions
 - ACTIVITY: Table creation
- 2. Basic single-table queries
 - ACTIVITY: Single-table queries!
- 3. Multi-table queries
 - ACTIVITY: Multi-table queries!

Lecture 2 > Section 1

1. SQL Introduction & Definitions

Lecture 2 > Section 1

What you will learn about in this section

- 1. What is SQL?
- 2. Basic schema definitions
- 3. Keys & constraints intro
- 4. ACTIVITY: CREATE TABLE statements

SQL Motivation

- Dark times 5 years ago.
 - Are databases dead?

- Now, as before: everyone sells SQL
 - Pig, Hive, Impala
- "Not-Yet-SQL?"

Lecture 2 > Section 1 > SQL

Basic SQL

SQL Introduction

- SQL is a standard language for querying and manipulating data
- SQL is a **very high-level** programming language

<u>SQL</u> stands for <u>Structured Query Language</u>

- This works because it is optimized well!
- Many standards out there:
 - ANSI SQL, SQL92 (a.k.a. SQL2), SQL99 (a.k.a. SQL3),
 - Vendors support various subsets

NB: Probably the world's most successful **parallel** programming language (multicore?)

Lecture 2 > Section 1 > SQL

SQL is a...

- Data Definition Language (DDL)
 - Define relational schemata
 - Create/alter/delete tables and their attributes
- Data Manipulation Language (DML)
 - Insert/delete/modify tuples in tables
 - Query one or more tables discussed next!

Tables in SQL

Product

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

A <u>relation</u> or <u>table</u> is a multiset of tuples having the attributes specified by the schema

Let's break this definition down

Tables in SQL

Product

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

A <u>multiset</u> is an unordered list (or: a set with multiple duplicate instances allowed)

List: [1, 1, 2, 3] Set: {1, 2, 3} Multiset: {1, 1, 2, 3}

i.e. no *next()*, etc. methods!

Tables in SQL

Product

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

An <u>attribute</u> (or <u>column</u>) is a typed data entry present in each tuple in the relation

NB: Attributes must have an <u>atomic</u> type in standard SQL, i.e. not a list, set, etc.

Tables in SQL

Product

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

Also referred to sometimes as a <u>record</u>

A <u>tuple</u> or <u>row</u> is a single entry in the table having the attributes specified by the schema

Tables in SQL

Product

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

The number of tuples is the <u>cardinality</u> of the relation

The number of attributes is the <u>arity</u> of the relation

Data Types in SQL

- Atomic types:
 - Characters: CHAR(20), VARCHAR(50)
 - Numbers: INT, BIGINT, SMALLINT, FLOAT
 - Others: MONEY, DATETIME, ...

- Every attribute must have an atomic type
 - Hence tables are flat

Table Schemas

• The **schema** of a table is the table name, its attributes, and their types:

```
Product(Pname: string, Price: float, Category: string, Manufacturer: string)
```

• A **key** is an attribute whose values are unique; we underline a key

```
Product(<u>Pname</u>: string, Price: float, Category: string, <u>Manufacturer</u>: string)
```

Key constraints

A <u>key</u> is a <u>minimal subset of attributes</u> that acts as a unique identifier for tuples in a relation

- A key is an implicit constraint on which tuples can be in the relation
 - i.e. if two tuples agree on the values of the key, then they must be the same tuple!

```
Students(sid:string, name:string, gpa: float)
```

- 1. Which would you select as a key?
- 2. Is a key always guaranteed to exist?
- 3. Can we have more than one key?

NULL and NOT NULL

- To say "don't know the value" we use NULL
 - NULL has (sometimes painful) semantics, more detail later

Students(sid:string, name:string, gpa: float)

sid	name	gpa
123	Bob	3.9
143	Jim	NULL

Say, Jim just enrolled in his first class.

In SQL, we may constrain a column to be NOT NULL, e.g., "name" in this table

General Constraints

- We can actually specify arbitrary assertions
 - E.g. "There cannot be 25 people in the DB class"
- In practice, we don't specify many such constraints. Why?
 - Performance!

Whenever we do something ugly (or avoid doing something convenient) it's for the sake of performance

Summary of Schema Information

- Schema and Constraints are how databases understand the semantics (meaning) of data
- They are also useful for optimization
- SQL supports general constraints:
 - Keys and foreign keys are most important
 - We'll give you a chance to write the others

Lecture 2 > Section 1 > ACTIVITY

ACTIVITY: Activity-2-1.ipynb

Lecture 2 > Section 2

2. Single-table queries

Lecture 2 > Section 2

What you will learn about in this section

- 1. The SFW query
- 2. Other useful operators: LIKE, DISTINCT, ORDER BY
- 3. ACTIVITY: Single-table queries

SQL Query

Basic form (there are many many more bells and whistles)

```
SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>
```

Call this a **SFW** query.

Simple SQL Query: Selection

<u>Selection</u> is the operation of filtering a relation's tuples on some condition

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT *
FROM Product
WHERE Category = 'Gadgets'

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks

Simple SQL Query: Projection

Projection is the operation of producing an output table with tuples that have a subset of their prior attributes

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT Pname, Price, Manufacturer FROM Product WHERE Category = 'Gadgets'

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks

Notation

Input schema

Product(PName, Price, Category, Manfacturer)

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = 'Gadgets'

dgets'

Output schema

Answer(PName, Price, Manfacturer)

A Few Details

- SQL **commands** are case insensitive:
 - Same: SELECT, Select, select
 - Same: Product, product
- Values are not:
 - <u>Different:</u> 'Seattle', 'seattle'
- Use single quotes for constants:
 - 'abc' yes
 - "abc" no

LIKE: Simple String Pattern Matching

```
SELECT *
FROM Products
WHERE PName LIKE '%gizmo%'
```

- s **LIKE** p: pattern matching on strings
- p may contain two special symbols:
 - % = any sequence of characters
 - _ = any single character

Lecture 2 > Section 2 > Other operators

DISTINCT: Eliminating Duplicates

Category

Gadgets

Photography

Household

Versus

SELECT Category FROM Product

Category

Gadgets

Gadgets

Photography

Household

Lecture 2 > Section 2 > Other operators

ORDER BY: Sorting the Results

SELECT PName, Price, Manufacturer

FROM Product

WHERE Category='gizmo' AND Price > 50

ORDER BY Price, PName

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

Lecture 2 > Section 2 > ACTIVITY

ACTIVITY: Activity-2-2.ipynb