Technical Document: Exploratory Data Analysis (EDA) on Marketing Dataset

1. Introduction

This document outlines the step-by-step approach taken to perform **Exploratory Data Analysis (EDA)** on the given **PS Marketing Dataset**. The goal of this analysis is to understand the data structure, detect missing values, analyze key variables, and extract insights using visualizations and statistical summaries.

2. Setup and Environment

Libraries Used

To perform EDA, the following Python libraries were imported:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

These libraries help in data manipulation, visualization, and statistical analysis.

3. Data Loading and Inspection

Loading the Dataset

Load the dataset

marketing_data = pd.read_csv("C:\\Users\\navya\\Downloads\\Marketing recordid_name_gender_age_location_email_phone_product_category_amount.csv")

This step loads the marketing dataset into a Pandas DataFrame for further analysis.

Previewing the Data

Display the first few rows of the dataset

marketing_data.head(10)

This provides an overview of the dataset's structure, including column names, data types, and sample records of first ten rows.

Checking Data Types and Missing Values

Display information about dataset

marketing_data.info()

Check for missing values

marketing_data.isnull().sum()

- .info() provides insights into data types and non-null values.
- .isnull().sum() helps identify missing values in each column.

4. Data Cleaning and Preprocessing

Handling Missing Values

Fill missing numerical values with median

marketing_data.fillna(marketing_data.median(), inplace=True)

Fill missing categorical values with mode

marketing_data.fillna(marketing_data.mode().iloc[0], inplace=True)

This replaces missing values with the median (for numerical data) and mode (for categorical data), ensuring data consistency.

Removing Duplicates

Remove duplicate rows

marketing_data.drop_duplicates(inplace=True)

Duplicates are removed to ensure clean and unique records.

5. Exploratory Data Analysis (EDA)

Summary Statistics

Generate summary statistics

marketing data.describe()

This provides key statistical insights, such as mean, standard deviation, and percentiles for numerical features.

Distribution of Key Variables

Visualize distribution of numerical variables

marketing_data.hist(figsize=(10, 6), bins=30)

plt.show()

This histogram visualizes the distribution of numerical features, helping identify skewness and outliers.

Correlation Analysis

Generate a correlation heatmap

plt.figure(figsize=(10,6))

```
sns.heatmap(marketing_data.corr(), annot=True, cmap='coolwarm')
plt.show()
```

A heatmap helps identify relationships between numerical variables.

Customer Segmentation Analysis

```
# Boxplot to compare revenue across customer segments

sns.boxplot(x='customer_segment', y='revenue', data=marketing_data)

plt.xticks(rotation=45)

plt.show()

Boxplots help compare revenue distributions across different customer segments.
```

6. Key Findings & Next Steps

Findings:

- Identified missing values and handled them appropriately.
- Detected correlations between numerical features.
- Analyzed revenue distribution across customer segments.
- Examined potential trends in revenue over time.

Next Steps:

- Feature Engineering: Create new meaningful variables.
- **Predictive Modeling**: Use machine learning to predict customer behavior.
- A/B Testing: Analyze different marketing campaign performances.

This concludes the EDA process for the marketing dataset. Further analysis can be performed based on business objectives.