シンクライアントのための 通信状況に応じた仮想マシンの 最適配置手法

53期 情報工学科 研究科生 深堀 秀治

はじめに

- 仮想マシン型のシンクライアント (TCL) システム
 - クライアントの機能を入出力に絞り、サーバで処理を行う

問題点

入出力がネットワークを介すため、性能が低下する

提案

TCLと仮想マシンを近隣に配置

- ライブマイグレーション (LM)
 - 仮想マシンを停止させることなく、別の物理マシンに移動する

問題点

LAN間でのLM時にネットワーク設定変更が必要

提案

OpenFlowを用いてネットワーク設定変更を自動化

LMとOpenFlowを用いた 仮想マシンの配置システムOVCTを提案, 実装 クライアントに入出力機能しか持たせず、サーバ側で 実際の処理や資源の管理を行うシステム

TCLのユースケース

- ユースケース
 - 通勤などの移動中の利用
 - TCLに情報を持たないため、紛失しても情報漏洩に繋がらない
 - 他の拠点への出張・異動

■ TCLを持ち出さなくても、出張先に端末があれば、自身の環境を再現可能である

出張•異動

問題点

TCLと仮想マシンの距離に応じて、回線の混雑や減衰による 遅延が発生しやすくなり、性能が低下

- 既存手法: PBA[1]
- TCLシステムにおける仮想マシンの配置
 - 仮想マシンの資源使用量が一定周期でパターン化することを利用して、各使用パターンの相関を考慮し、相関の低い仮想マシン同士を同じ物理サーバへ配置することで、資源の競合を抑える

仮想マシンのパフォーマンスを維持しつつ、 物理マシンの台数を削減することを目的としている

[1]カオレタンマン, and 萱島信. "仮想デスクトップ配置アルゴリズムに関する検討." 情報処理学会研究報告. マルチメディア通信と分散処理研究会報告 2011.47 (2011): 1-8. **Optimal placement method of**

- TCLと仮想マシンを通信を検知
 - OpenFlowを用いて、ネットワーク全体を監視しTCL一仮想 マシン間の接続を検知する
- TCLと仮想マシンを近隣に配置
 - LMを用いて、TCL一仮想マシン間の経路を短縮し性能を 向上させる
- LAN間でのLM
 - OpenFlowを用いて、異なるLANへのLMによって必要になる ネットワーク設定の変更を自動化

OpenFlow

- Software Defined Networkの一種
 - ネットワークをソフトウェアで制御する技術
 - 制御部(コントローラ)と駆動部(スイッチ)が独立

通信の検知

- OpenFlowコントローラでパケットを監視
 - TCLからの宛先ポート番号 dp = 5900 (VNC) である通信を検知
 - TCLと仮想マシンが異なるOpenFlowスイッチ配下であった場合、 配置場所を検討

配置場所の検討

- TCLから経路が最短な物理マシンを選択
 - ネットワーク構成から、経路が最短になる物理マシンを選択
 - 物理マシンのリソースを調べ、空きリソースがあれば選択

- 選択された物理マシンへLM
 - TCLー仮想マシン間の経路を短縮するために仮想マシンを LM

ネットワーク設定の変更

- 自動でネットワーク設定の変更
 - フローエントリを書換え,仮想マシン宛のパケットの転送先を物理マシン1から物理マシン2に変更

実装

■ 提案手法の有用性を確認するため、提案手法を実装

		1		
開発環境				
OpenFlowコントローラ (OFC)				
OS	Ubuntu 12.04			
フレームワーク trema 0.4.5				
言語	ruby 1.8.7			
プロトコル	OpenFlow 1.0			
OpenFlowスイッチ (OFS)				
スイッチ	WHR-G301N			
ファームウエア	OpenFlow 1.0 for WHR-G301N[3]			
マシン				
ホストOS	Ubuntu 12.04			
ゲストOS CentOS 5.3				
ハイパーバイザー	qemu-kvm 1.0			

WHR-G301N[2]

- [2] WHR-G301N (http://buffalo.jp/products/catalog/network/whr-g301n/)
- (2014年2月現在)
- [3] OpenFlow in theBox (http://openflow.inthebox.info/)
- (2014年2月現在)

システム構成

評価

- 条件
 - 前頁のシステム概要・構成と同等
- 評価項目
 - TCL一仮想マシン間の通信速度
 - TCLの性能
 - ネットワーク全体のパケット中継数・量
 - ネットワーク負荷
- 比較対象
 - OVCT適用前のOpenFlowネットワーク

通信速度

■ TCLとVMを各2台ずつ用意し、それぞれのping応答時間を計測

(単化	立:ms)	宛先				
· 坐		適用前		適用後		
送信元		VM1	VM2	VM1	VM2	
	TCL1	6.02	5.59	2.77	2.75	
	TCL2	6.88	6.55	2.98	2.83	
平均		6.45	6.07	2.88	2.79	
		6.26		2.84		

OVCT適用前と比較し, 55%向上 TCLシステムの性能向上

中継パケット数・量

ネットワーク全体のスイッチが転送したパケットを測定

パケット数を最大32%削減 9時間以上稼働させることでパケット量を軽減

おわりに

- 仮想マシン型のTCLシステム
 - 入出力がネットワークを介すため、性能が低下する

LMとOpenFlowを用いた 仮想マシンの配置システムを提案,実装

- TCLの位置に応じて仮想マシンを配置
 - 配置場所へLMし、OpenFlowでネットワーク設定を自動変更

端末-仮想マシン間の通信速度を55%向上中継パケット数を最大32%削減9時間以上稼働させることでパケット量を軽減

- 今後の課題
 - 仮想マシンの配置場所の最適化
 - 実用的なネットワーク構成への対応

最後に、(日工専)、(1サ本)の 方々をはじめ、この1年间私を 助けて下さった全ての方々に, この場を借りまして心から深く 感謝申し上げます、