Caleb Logemann

Introduction

Convection

Numerical Result

Conclusion

References

Discontinuous Galerkin Method for Solving Thin Film Equations

Caleb Logemann

December 13, 2018

Overview

1 Introduction

- 2 Method
 - Convection
 - Diffusion
- 3 Numerical Results
- 4 Conclusion

Motivation

Caleb Logema

Introduction

Method

Convection

Diffusion

Numerical Resultance
Conclusion

- Aircraft Icing
- Runback

■ Industrial Coating

Model Equations

Caleb Logema

Introduction

Method Convection Diffusion

Numerical Resul

Conclusion

References

Navier-Stokes Equation

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + \nabla \cdot (\mathbf{u}\mathbf{u}) = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \sigma + \mathbf{g}$$

$$\partial_t h_s + (u, v)^T \cdot \nabla h_s = w$$

$$\partial_t h_b + (u, v)^T \cdot \nabla h_b = w$$

- Lubrication or reduced Reynolds number approximation
- Thin-Film Equation 1D with q as fluid height.

$$q_t + (f(x,t)q^2 - g(x,t)q^3)_x = -(h(x,t)q^3q_{xxx})_x$$

Operator Splitting

Caleb Logemann

Introduct

Method Convection

Conclusion

Simplified Model

$$q_t + (q^2 - q^3)_{\scriptscriptstyle X} = -(q^3 q_{\scriptscriptstyle XXX})_{\scriptscriptstyle X} \qquad (0, T) \times \Omega$$

Operator Splitting

$$q_t + (q^2 - q^3)_x = 0$$
$$q_t + (q^3 u_{xxx})_x = 0$$

Strang Splitting $\frac{1}{2}\Delta t$ step of Convection

$$q_t + (q^2 - q^3)_{\downarrow} = 0$$

 Δt step of Diffusion

$$q_t + \left(q^3 u_{xxx}\right)_x = 0$$

 $\frac{1}{2}\Delta t$ step of Convection

$$q_t + \left(q^2 - q^3\right)_x = 0$$

Convection

Caleb Logema

Introduction

Convection

Numerical Resul

Conclusion

References

Convection Equation

$$q_t + f(q)_x = 0$$
 $(0, T) \times \Omega$
$$f(q) = q^2 - q^3$$

Weak Form Find q such that

$$\int_{\Omega} (q_t v - f(q) v_x) \, \mathrm{d}x = 0$$

for all test functions v

Notation

Convection

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \dots < x_{j-1/2} < x_{j+1/2} < \dots < x_{N+1/2} = b$$

- $I_j = [x_{j-1/2}, x_{j+1/2}]$
- $x_i = \frac{x_{j+1/2} + x_{j-1/2}}{2}.$

Runge Kutta Discontinuous Galerkin

Caleb Logeman

Method

Convection

Numerical Resul

Conclusion

Find
$$Q(t,x)$$
 such that for each time $t\in(0,T)$, $Q(t,\cdot)\in V_h=\left\{v\in L^1(\Omega): \left.v\right|_{I_i}\in P^k(I_j)\right\}$

$$\int_{I_j} Q_t v \, \mathrm{d}x = \int_{I_j} f(Q) v_x \, \mathrm{d}x$$
$$- \left(\mathcal{F}_{j+1/2} v^-(x_{j+1/2}) - \mathcal{F}_{j-1/2} v^+(x_{j-1/2}) \right)$$

for all $v \in V_h$

Rusanov/Local Lax-Friedrichs Numerical Flux

$$\mathcal{F}_{j+1/2} = rac{1}{2}ig(fig(Q_{j+1/2}^-ig) + fig(Q_{j+1/2}^+ig)ig) + \max_qig\{ig|f'(q)ig|ig\}ig(Q_{j+1/2}^- - Q_{j+1/2}^+ig)$$

 Solve this system of ODEs with any Explicit Strong Stability Preserving (SSP) Runge-Kutta Method.

Explicit SSP Runge Kutta Methods

Caleb Logemar

Introduction

Convection

Numerical Result

Conclusion

References

Forward Euler

$$q^{n+1} = q^n + \Delta t L(q^n)$$

Second Order

$$egin{aligned} q^\star &= q^n + \Delta t \mathcal{L}(q^n) \ q^{n+1} &= rac{1}{2}(q^n + q^\star) + rac{1}{2}\Delta t \mathcal{L}(q^\star) \end{aligned}$$

Diffusion

Caleb Logemar

Introduction

Method

Convection

Diffusion

Numerical Resul

Conclusio

References

Diffusion Equation

$$q_t = -(q^3 q_{xxx})_x \qquad (0, T) \times \Omega$$

• Linearize operator at $t = t^n$, let $f(x) = q^3(t = t^n, x)$

$$q_t = -(f(x)q_{xxx})_x$$
 $(0, T) \times \Omega$

Finite Difference Approach

Diffusion

- Let cell centers, x_i form finite difference grid.
- Finite difference space, \mathbb{R}^N .
- $Q_{DG} \in V_h \rightarrow Q_{FD} \in \mathbb{R}^N$

$$(Q_{FD})_i = \frac{1}{h} \int_{K_i} Q_{DG} \, \mathrm{d}x$$

 $Q_{FD} \in \mathbb{R}^N \to Q_{DG} \in V_h$

$$\begin{aligned} Q_{DG}|_{K} &\in P^{1}(K) \\ \frac{1}{h} \int_{K_{i}} Q_{DG} \, \mathrm{d}x &= (Q_{FD})_{i} \\ \partial_{x} Q_{DG}|_{K_{i}} &= \frac{(Q_{FD})_{i+1} - (Q_{FD})_{i-1}}{2h} \end{aligned}$$

Finite Difference Approximation

Caleb Logemann

Introduction

Method

Convection

Diffusion

Numerical Result

Conclusion

References

$$(q_{xxx})_{i+1/2} \approx \frac{-Q_{i-1} + 3Q_i - 3Q_{i+1} + Q_{i+2}}{h^3}$$

$$F_{i+1/2} = \frac{f(x_{i+1/2}^+) + f(x_{i+1/2}^-)}{2}$$

$$(-(f(x)q_{xxx})_x)_i \approx -\frac{F_{i+1/2}(q_{xxx})_{i+1/2} - F_{i-1/2}(q_{xxx})_{i-1/2}}{h}$$

Implicit L-Stable Runge Kutta

Caleb Logeman

Introduction

Method

Convection

Diffusion

Numerical Result

Conclusion

References

Backward Euler

$$q^{n+1} = q^n + \Delta t L(q^{n+1})$$

2nd Order

$$q^* = q^n + \frac{1}{4}\Delta t(L(q^n) + L(q^*))$$

 $3q^{n+1} = 4q^* - q^n + \Delta t L(q^{n+1})$

Riemann Problem

eb Logemann

Introduct

Convection

Numerical Results

Conclusion

Conclusion

Riemann Problem

leb Logemann

Introduct

Convection

Numerical Results

Conclusion

Conclusion

Square Wave

aleb Logemani

ntroduct

Convection

Diffusion

Numerical Results

Conclusion

References

Square Wave

aleb Logemanr

ntroducti

Method

Convection

Diffusion

Numerical Results

Conclusion

References

Future Work

Caleb Logemann

Introduction

Convectio

Numerical Result

Conclusion

Conclusion

- Show second order convergence
- Runge Kutta IMEX
- Space and time dependent coefficients

Bibliography

leb Logem

Introduction

Method

Convection

Diffusion

Numerical Resu Conclusion

- Bernardo Cockburn and Chi-Wang Shu. "The local discontinuous Galerkin method for time-dependent convection-diffusion systems". In: SIAM Journal on Numerical Analysis 35.6 (1998), pp. 2440–2463.
- [2] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: J. Comp. Phys. 227.15 (2008), pp. 7246–7263.
- [3] T.G. Myers and J.P.F. Charpin. "A mathematical model for atmospheric ice accretion and water flow on a cold surface". In: *Int. J. Heat and Mass Transfer* 47.25 (2004), pp. 5483–5500.
- [4] Tim G Myers. "Thin films with high surface tension". In: *SIAM* review 40.3 (1998), pp. 441–462.
- [5] NASA. URL: http://icebox.grc.nasa.gov/gallery/ images/C95_03918.html.
- [6] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.