}

MC102 - Algoritmos e Programação de Computadores

MC102 Horários

Plano de desenvolvimento

Plano de aulas

Oferecimentos anteriores

ASC ART e Recursão

Nesta tarefa, vamos retornar ao tema ASC ART para exercitarmos recursão. A base para o nosso estudo será o <u>Triângulo de Sierpinski</u>. Ao analisarmos a figura abaixo, fica bem fácil entender o processo de criação deste fractal. A cada passo, um triângulo preto é subdividido em quatro triângulos de tamanho igual, o triângulo central é pintado de branco e os triângulos pretos serão subdivididos no passo seguinte.

Observe agora alguns diagramas em ASC ART. Note que é possível, mesmo com resolução limitada, identificar a estrutura do desenho.

Elementos do desenho

• Triângulo base: O desenho é formado a partir de um triângulo base, pintado de preto no desenho original. Em ASC ART, utilizaremos triângulos isósceles e algum caractere para substituir a cor preta. Para facilitar a divisão dos triângulos ao longo dos passos, trabalharemos apenas com triângulos cuja altura seja uma potência de 2 (altura = 2^N). A ponta do triângulo terá apenas um caractere, a segunda linha, se houver, terá três caracteres e assim sucessivamente até a base do triângulo, que terá 2 * altura - 1 caracteres. Observe os exemplos abaixo:

altura = 2 ⁰	altura = 2 ¹	altura = 2 ²	altura = 2 ³	
@	+ +++	X XXX XXXXX XXXXXXX	************* ************** ********	

- Triângulos brancos: Os triângulos brancos terão a mesma forma que o triângulo preto, mas serão desenhados com a ponta para baixo.
- Tela e moldura: Os desenhos deverão ser preparados em uma matriz de caracteres, denominada tela, e depois escritos na saída. A tela deverá ser uma matriz retangular com a mesma altura e largura do triângulo base. Ao escrever a matriz, você deverá acrescentar um contorno de caracteres em branco e uma moldura feita com caracteres "-", "|" e "+", como no exemplo abaixo:

• **Profundidade da recursão:** Em um fractal, não há limites para as subdivisões. Nesta tarefa, indicaremos o número de subdivisões, que deve ser sempre menor ou igual ao valor de log₂(altura), sendo altura a altura do triângulo base.

altura = 2 ⁴	altura = 2 ⁴		altura = 2 ⁴				
p=0	p=1		p=2				
+	+	+	+				
1		1					
*	*		*				
***	***		***				
****	****		****				
*****	*****		*****				
******	******		İ	*	*		
******	******		İ	***	***		
*******	*******		***** ****				
********	********		***** *****				
********	*	*	i ·	*	:	*	
******	***	***	*	**	*	**	
*******	****	****	**	***	**	***	
******	*****	*****	*****		***	*****	
*******	******	******	*	*	*	*	
******	********	*******	***	***	***	***	
*******	*********	********	****	****	****	****	
*********	**********	********	*****	*****	*****	*****	
į į		į	İ				
	+	+	+				

altura = 2 ⁴ p=3	altura = 2 ⁴ p=4				
++	++				
*	*				
* *	* *				
*** ***	* * * *				
*** ***	* * * * *				
*** *** ***	* * * * * * * * * * * * * * * * * * * *				
*** ***	* * * * * *				
*** *** ***	****				
* * * * * *** *** ***	* * * * ** ** ** **				
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *				
	+				

Descrição da entrada

A entrada será formada por três valores:

<N> <char_preto>

A altura do triângulo base e da tela será definida por 2^N. O inteiro p indicará o número de subdivisões e o caractere <char_preto> indicará o caractere que preencherá o triângulo base.

Descrição da saída

A saída será formada por um único desenho de um triângulo isósceles de altura = 2^N e largura = 2 * altura - 1 caracteres do tipo <char_preto>. O triângulo deverá apresentar p subdivisões do Triângulo de Sierpinski e o desenho deverá estar emoldurado como exemplificado acima.

Testes com o SuSy

O conjunto de testes será formado por 7 testes abertos e 3 testes fechados. Os testes fechados são variações dos testes abertos em que só foram alterados os caracteres utilizados para desenho. Releia, se necessário, as instruções para fazer os testes em <u>Testes com o SuSy</u>.

Dicas para a implementação

Esta tarefa ficará simples de ser implementada se você subdividí-la em problemas menores, que devem ser desenvolvidos e testados separadamente. Veja a sugestão abaixo:

• Desenvolva uma função para criar a tela em branco. Você pode usar o comando:

```
tela = [ [" " for j in range(largura)] for i in range(altura)]
```

- Desenvolva uma função print_tela_com_moldura() para escrever esta tela com a moldura solicitada na saída.
- Desenvolva uma função que desenha o triângulo base na tela. Teste a saída com a função print_tela_com_moldura().
- Desenvolva uma função que desenha um triângulo branco a partir de coordenadas x,y na tela. Teste a saída com a função print tela com moldura().
- Organize as chamadas recursivas para o desenho dos triângulos em branco. Durante o desenvolvimento, acrescente chamadas extras
 à função print_tela_com_moldura() de maneira que você possa acompanhar o caminho que está sendo percorrido. Observe os
 primeiros desenhos para N = 4, p = 4, char_preto = "+" em que começamos a subdivisão pelos triângulos inferiores à
 esquerda:

• Para aumentar sua compreensão sobre as chamadas recursivas, troque a ordem das chamadas e compare os caminhos percorridos.

Orientações para submissão

Veja <u>aqui</u> a página de submissão da tarefa. O arquivo a ser submetido deve se chamar <u>lab12.py</u>. No link <u>Arquivos auxiliares</u> há um arquivo <u>aux12.zip</u> que contém todos os arquivos de testes abertos e seus respectivos resultados compactados.

O limite máximo será de 20 submissões. Serão considerados os resultados da última submissão.

O peso desta tarefa é 3.

O prazo final para submissão é 30/11/2019.

A nota desta tarefa é proporcional ao número de testes que executaram corretamente, desde que o código esteja coerente com o enunciado. A submissão de um código que não implementa o algoritmo requisitado, mas que exibe as saídas esperadas dos testes abertos a partir da comparação de trechos da entrada será considerada fraude e acarretará a atribuição de nota zero à média final da disciplina.

A imagem que ilustra os passos do algoritmo de Sierpinski foi obtida verberte referente ao <u>Triângulo de Sierpinski</u> na Wikipedia. Todos os outros desenhos foram obtidos a partir de programas em Python.