Analysis of Covariance

Analysis of covariance

- ANOVA: explanatory variables categorical (divide data into groups)
- traditionally, analysis of covariance has categorical x's plus one numerical x ("covariate") to be adjusted for.
- 1m handles this too.
- Simple example: two treatments (drugs) (a and b), with before and after scores.
- Does knowing before score and/or treatment help to predict after score?
- Is after score different by treatment/before score?

Data

Treatment, before, after:

```
a 5 20
a 10 23
```

a 12 30

a 9 25

a 23 34

a 21 40

a 14 27

a 18 38

a 6 24

a 13 31

b 7 19

b 12 26

b 27 33

b 24 35 b 18 30

b 22 31

b 26 34

b 21 28

b 14 23

b 9 22

Packages

```
library(tidyverse)
library(broom)
library(marginaleffects)
```

the last of these for predictions.

Read in data

```
url <- "http://ritsokiguess.site/datafiles/ancova.txt"
prepost <- read_delim(url, " ")
prepost %>% sample_n(9) # randomly chosen rows
```

drug	before	after
b	7	19
b	24	35
a	12	30
a	14	27
a	23	34
b	14	23
b	22	31
a	18	38
b	21	28

Making a plot

Comments

- As before score goes up, after score goes up.
- Red points (drug A) generally above blue points (drug B), for comparable before score.
- Suggests before score effect and drug effect.

The means

```
prepost %>%
  group_by(drug) %>%
  summarize(
    before_mean = mean(before),
    after_mean = mean(after)
)
```

drug	before_mean	after_mean
а	13.1	29.2
b	18.0	28.1

- Mean "after" score slightly higher for treatment A.
- Mean "before" score much higher for treatment B.
- Greater *improvement* on treatment A.

Testing for interaction

```
prepost.1 <- lm(after ~ before * drug, data = prepost)
anova(prepost.1)</pre>
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
before	1	430.92384	430.923838	62.68945	0.0000006
drug	1	115.30596	115.305957	16.77435	0.0008442
before:drug	1	12.33708	12.337080	1.79476	0.1990662
Residuals	16	109.98313	6.873945	NA	NA

• Interaction not significant. Will remove later.

Predictions

Set up values to predict for:

```
summary(prepost)
```

```
drug
                        before after
##
##
   Length:20
             Min. : 5.00
                                   Min. :19.00
##
   Class:character 1st Qu.: 9.75
                                   1st Qu.:23.75
##
   Mode :character Median :14.00
                                   Median :29.00
                    Mean :15.55
                                   Mean :28.65
##
##
                    3rd Qu.:21.25
                                   3rd Qu.:33.25
##
                    Max. :27.00
                                   Max. :40.00
new <- datagrid(before = c(9.75, 14, 21.25),
              drug = c("a", "b"), model = prepost.1)
```

and then

```
cbind(predictions(prepost.1, newdata = new)) %>%
  select(drug, before, estimate)
```

drug	before	estimate
а	9.75	25.93250
b	9.75	22.14565
а	14.00	30.07784
b	14.00	25.21304
а	21.25	37.14929
b	21.25	30.44565

Predictions (with interaction included), plotted

Lines almost parallel, but not quite.

Taking out interaction

```
prepost.2 <- update(prepost.1, . ~ . - before:drug)
anova(prepost.2)</pre>
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
before	1	430.9238	430.923838	59.88958	0.0000006
drug	1	115.3060	115.305957	16.02516	0.0009209
Residuals	17	122.3202	7.195306	NA	NA

- Take out non-significant interaction.
- before and drug strongly significant.
- Do predictions again and plot them.

Predictions

```
cbind(predictions(prepost.2, newdata = new)) %>%
  select(drug, before, estimate)
```

before	estimate
9.75	26.42794
9.75	21.27328
14.00	29.94473
14.00	24.79007
21.25	35.94397
21.25	30.78931
	9.75 9.75 14.00 14.00 21.25

Plot of predicted values

plot_cap(prepost.2, condition = c("before", "drug"))

This time the lines are *exactly* parallel. No-interaction model forces them to have the same slope.

Different look at model output

- anova(prepost.2) tests for significant effect of before score and of drug, but doesn't help with interpretation.
- summary(prepost.2) views as regression with slopes:

```
summary(prepost.2)
```

##

```
## Call:
## lm(formula = after ~ before + drug, data = prepost)
##
## Residuals:
##
      Min
              10 Median
                             30
                                   Max
## -3.6348 -2.5099 -0.2038 1.8871 4.7453
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.3600
                      1.5115 12.147 8.35e-10 ***
## before
           0.8275 0.0955 8.665 1.21e-07 ***
## drugb -5.1547 1.2876 -4.003 0.000921 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

Understanding those slopes

tidy(prepost.2)

term	estimate	std.error	statistic	p.value
(Intercept)	18.3599949	1.5115326	12.146608	0.0000000
before	0.8274813	0.0955023	8.664520	0.0000001
drugb	-5.1546584	1.2876524	-4.003144	0.0009209

- before ordinary numerical variable; drug categorical.
- 1m uses first category druga as baseline.
- Intercept is prediction of after score for before score 0 and drug A.
- before slope is predicted change in after score when before score increases by 1 (usual slope)
- Slope for drugb is *change* in predicted after score for being on drug B rather than drug A. Same for *any* before score (no interaction).

Summary

- ANCOVA model: fits different regression line for each group, predicting response from covariate.
- ANCOVA model with interaction between factor and covariate allows different slopes for each line.
- Sometimes those lines can cross over!
- If interaction not significant, take out. Lines then parallel.
- With parallel lines, groups have consistent effect regardless of value of covariate.