Technische Informatik 2 Grundlagen der digitalen Signalverarbeitung Teil 1 – Einführung

Prof. Dr. Ivo Wolf

Institut für Medizinische Informatik

hochschule mannheim

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 2

Überblick

Signalverarbeitung

- 1. Signale
- 2. Schwingungen
- Abtastung
- Systeme, LTI-Systeme,
 Impulsantwort und Faltung
- 5. Up- und Downsampling
- 6. Fouriertransformation
- 7. Faltungstheorem
- 8. Signalerkennung

Signalverarbeitung

1. Signale

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 4

Beispiele für Signale

- Akustische Signale: Sprache, Musik
- Elektrische Signale
- Datenströme: USB, Ethernet, WLAN, Bluetooth
- Abstandsmessungen mit Ultraschall, Radar, Laser
- Messungen an Maschinen (Druck, Temperatur, Drehzahl, ...)
- Puls, EKG, EEG
- Sensordaten von Smartphones:
 Beschleunigungssensor, Lagesensor (Gyroskop), Magnetometer, ...
- Kursverläufe von Aktien
- Bilder, Videos

Anwendungen

Übertragung von Daten

Ivo Wolf Technische Inf. 2

Anwendungen

kein Pegelwechsel ist 0

Akustische Signale: Sprache, Musik

- Bässe verstärken
- Komprimieren (verlustfrei oder mit Verlust wie bei mp3)
- Sprache erkennen
- Stimme erkennen
- Sprache, Musik synthetisieren

Anwendungen

 Signale von Beschleunigungssensoren, Gyroskopen: Schritte erkennen, Art der Bewegung erkennen (Laufen, Radfahren, Treppensteigen, usw.)

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 8

Anwendungen: Fahrerassistenzsysteme

Definition Signal

Signal:

 Mathematische Funktion von mindestens einer unabhängigen Variablen

Bemerkungen:

- Oft ist die unabhängige Variable die Zeit: x(t)
 - Töne, EKG, usw.
- Signale mit mehreren unabhängigen Variablen:
 - Bilder: helligkeit(x, y)
 - Videos: helligkeit(x, y, t)
 - Bildvolumen in der Medizin: helligkeit(x, y, z)

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 10

Einteilung von Signalen: periodisch

 Periodische Signale wiederholen sich nach einer bestimmten Zeit, der Periodendauer T

$$x(t+T) = x(t)$$

Viele Signale sind annähernd periodisch

Einteilung von Signalen: kontinuierlich und diskret

- Signale können:
 - kontinuierlich oder
 - diskret sein
- sowohl bezüglich
 - der Zeit (unabhängige Variable),
 - als auch der Werte

[Hoffmann 1, S 5]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 12

Einteilung von Signalen: kontinuierlich und diskret

Puls-Code-Modulation (PCM)

PCM: Amplitude des analogen Signals in regelmäßigen Zeitintervallen gemessen (Abtastung) und die Werte diskretisiert (Quantisierung) und digital kodiert

■ LPCM: Lineare Quantisierung, d.h. Quantisierungsstufen

gleich groß

Beispiel rechts: LPCM mit 4 bit

- Nicht selten wird zu LPCM einfach PCM gesagt, obwohl PCM ein allgemeinerer Begriff ist
- Differential pulse-code modulation (DPCM):

 Kodierung der Differenz zum vorherigen oder einem vorhergesagten Wert

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 14

Nicht-lineares PCM

Nicht lineares PCM z.B. in der Telefonie:

- ITU-T Standard G.711: logarithmische Quantisierung (mit 2 Varianten: μ-law und A-law)
 - große Signalauslenkungen gröber quantisiert als kleine
 - →höherer Dynamik-Umfang bzw.
 - → besseres Signal-Rausch-Verhältnis bei gleicher Auflösung (Datenmenge)

DPCM mit Skalierung der 10 0 -10 -20 -30 -40 -50 -60 -70 -8
 Quantisierungsstufen in Abhängigkeit vom Signalverlauf

Signalverarbeitung

2. Schwingungen

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 16

Periodische Schwingung

Periodische Schwingung

- Periodendauer T, Einheit: s (Sekunde)
- Frequenz $f := \frac{1}{T}$, Einheit: $\frac{1}{s} = s^{-1} =: Hz$ (Hertz) (statt f wird auch ν ("nü") verwendet)
- Kreisfrequenz ω : = $2\pi f = \frac{2\pi}{T}$ (ω ist ein kleines "Omega")

Einheit: $\frac{1}{s} = s^{-1}$ (aber *nicht* Hertz genannt!)

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 18

Spezialfall: Harmonische Schwingung

[Animation: https://de.wikipedia.org/wiki/Datei:Mfnf-sincos.gif]

Kosinus am Einheitskreis (Radius=1)

[Abb. www.mathematik-wissen.de (oben), Wikipedia (unten)]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 20

Winkelmaß "Bogenmaß"

Umfang Kreis mit Radius r:

$$U = 2\pi r$$

- bei Radius r=1: $U=2\pi$
- Bogenmaß (Radiant, rad):

Bogenlänge eines Kreis-Stücks mit Radius r = 1

- 360° entspricht dem kompletten Kreisumfang, also 2π
- 180° dem halben Kreisumfang, also $\frac{2\pi}{2} = \pi$
- 90° einem Viertel des Kreisumfangs, also $\frac{2\pi}{4} = \frac{\pi}{2}$
- usw.

Also: Winkel α in Grad ist im Bogenmaß $x = \frac{\pi}{180} \cdot \alpha$

- Das Bogenmaß ist ein "natürlicheres" Winkelmaß als Grad!
 - In der Mathematik und Programmiersprachen der Normalfall!

Periodendauer des sin/cos

- Periodendauer des Sinus/Kosinus ist 2π
- Daher der Begriff Kreisfrequenz ω : = $2\pi f$:
 - Überstrichener Winkel (=Bogenlänge)
 pro Zeiteinheit (Sekunde)

• bei Kreisfrequenz 2π pro Sekunde überstreicht das Pendel einen kompletten Kreis in einer Sekunde (entsprechend f=1 Hz)

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 22

Harmonische Schwingung – Formel

Formel der harmonischen Schwingung (mit im Bogenmaß definierter Kosinus-Funktion):

$$x(t) = x_0 \cos(2\pi f \cdot t + \varphi_0)$$

mit der Frequenz $f := \frac{1}{T}$

oder:

$$x(t) = x_0 \cos(\omega \cdot t + \varphi_0)$$

mit der Kreisfrequenz $\omega = 2\pi f$.

- Der aktuelle Winkel $\varphi(t) := \omega \cdot t + \varphi_0$ wird Phase oder Phasenwinkel genannt
- Der Winkel φ_0 zum Zeitpunkt t=0 wird Nullphasenwinkel genannt.

Nullphasenwinkel

Nullphasenwinkel φ_0 für den blau dargestellte Fall (im roten Fall ist der Nullphasenwinkel 0)

■ Ein positiver Wert von φ_0 verschiebt die Kurve um $\frac{\varphi_0}{\omega}$ nach links!

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 24

Phasenverschiebung zwischen Sinus und Kosinus

- Die Phasenverschiebung des Sinus zum Kosinus beträgt $-\frac{\pi}{2}$
- Es ist also: $\sin(x) = \cos\left(x \frac{\pi}{2}\right)$

Höhere (Kreis-)Frequenzen

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 26

Verschiedene Amplituden

Berechnung von sin oder cos?

- CPUs haben keine Hardware-Implementierung von sin oder cos
 - Sie haben also keinen Maschinensprache-Befehl, der sin oder cos direkt berechnet
- Die Grundrechenarten (Addition, Subtraktion, Multiplikation, Division) gibt es als Maschinensprache-Befehle
 - Wie lässt sich damit sin oder cos berechnen?

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 28

Signalverarbeitung

Einschub 1: Reihen

Folgen, Konvergenz

Definition "Folge":

- Eine Folge x_n ist eine Abbildung von $\mathbb N$ (natürliche Zahlen nach $\mathbb R$ (reelle Zahlen) oder \mathbb{C} (komplexe Zahlen): jedem Index $n \in \mathbb{N}$ wird eine reelle oder komplexe Zahl x_n zugeordnet.
 - Beispiel $x_n = n^2$: $x_0 = 0$, $x_1 = 1$, $x_2 = 4$, $x_3 = 9$, usw.

Definition "Konvergenz", "Grenzwert":

- Eine Folge x_n heißt konvergent mit Grenzwert a, wenn es für alle $\epsilon \in \mathbb{R}$ mit $\epsilon > 0$ eine natürliche Zahl $N \in \mathbb{N}$ gibt, sodass $\forall n \geq N \colon |x_n a| < \epsilon$.
 - Also: ab N liegen alle Folgenglieder "ganz nahe" (näher als ε) bei a.
 - Da wir ε wählen können, kommen sie a sogar beliebig nahe.
 - Insbesondere werden → sie nicht unendlich groß.

endlich viele Folgenglieder

[Abb. Plaue S. 167]

Ivo Wolf Signalverarbeitung 1 | 30 Reihe

Definition "Reihe" (auch: "unendliche Reihe"):

Sei a_k eine Folge.

Die Folge s_n der sog. Partialsummen

$$s_n := \sum_{k=0}^n a_k = a_0 + a_1 + \dots + a_n$$

wird Reihe genannt.

Falls die Reihe (also die Folge der Partialsummen) konvergiert, so wird ihr Grenzwert als Wert der Reihe bezeichnet:

$$\sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} s_n$$

Potenzreihen, Polynome

Definition "Potenzreihe":

Eine Reihe der Form

$$\sum_{k=0}^{\infty} a_k (x-c)^k$$

heißt Potenzreihe um (den Mittelpunkt oder Entwicklungspunkt) c.

- Die Zahlen a_k werden Koeffizienten genannt.
- Die Partialsummen sind sog. Polynome.
 - Die größte Zahl n mit $a_n \neq 0$ heißt Grad des Polynoms.
 - Polynom vom Grad n für Entwicklungspunkt c = 0:

$$\sum_{k=0}^{n} a_k x^k = a_0 x^0 + a_1 x^1 + a_2 x^2 + \dots + a_n x^n$$

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 32

Reihendarstellung von Sinus und Kosinus

Sinus:

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
$$= x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots + \dots$$

Kosinus:

$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$
$$= 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \dots + \dots$$

→ Beim Sinus nur die ungeraden, beim Kosinus nur die geraden Exponenten

Näherung von sin(x) durch seine Potenzreihe

$$x - \frac{1}{3!}x^3 + \frac{1}{5!}x^{\frac{1}{5}}$$

[Abb. Plaue S. 223]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 34

Abschneidefehler

- Verfahrensfehler / Diskretisierungsfehler / Abschneidefehler (engl. truncation error):
 - Viele Operationen sind numerisch nicht exakt realisierbar, sondern werden nach endlich vielen Schritten abgebrochen, z.B.: unendliche Reihen, Grenzwerte, Integrale, ...
 - Verfahrensfehler würden auch auftreten, wenn Computer beliebig genau rechnen könnten
- Rundungsfehler (engl. roundoff error):
 - Zahlen können im Computer nur mit begrenzter Genauigkeit dargestellt werden

Reihendarstellung der Exponentialfunktion exp(x)

Exponential funktion $\exp(x) = e^x$:

$$\exp(x) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k$$

• Mit $i^2 = -1$:

$$\exp(ix) = \sum_{k=0}^{\infty} \frac{1}{k!} (ix)^k$$

$$= \sum_{k=0}^{\infty} \frac{1}{(2k)!} (ix)^{2k} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (ix)^{2k+1}$$
 Aufteilung in gerade und ungerade Exponenten
$$= \sum_{k=0}^{\infty} \frac{1}{(2k)!} (-1)^k x^{2k} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} i (-1)^k x^{2k+1}$$

$$= \cos(x) + i \sin(x)$$

[s. z.B. Plaue S. 252]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 36

Euler-Formel

- $\bullet e^{ix} = \cos(x) + i\sin(x)$
- Also für $x \in \mathbb{R}$:

$$cos(x) = Re(e^{ix})$$
 (Realteil von e^{ix})
 $sin(x) = Im(e^{ix})$ (Imaginärteil von e^{ix})

■ Betrag von *e*^{ix}:

$$|e^{ix}| = 1 = (\cos x)^2 + (\sin x)^2$$

Natürlicher Logarithmus

Die Umkehrfunktion der Exponentialfunktion heißt natürlicher Logarithmus:

$$ln(e^x) = x$$
 und $e^{ln x} = x$

- Die Berechnung erfolgt über eine Potenzreihe.
- Rechenregeln:
 - $e^{x+y} = e^x e^y$
 - $\ln(xy) = \ln x + \ln y$ $- \operatorname{da} e^{\ln(xy)} = xy = e^{\ln x} e^{\ln y} = e^{\ln x + \ln y}$
 - Also insbesondere:

$$\ln(x^2) = \ln(x \cdot x) = \ln x + \ln x = 2 \cdot \ln x$$

- Allgemein sollte wohl gelten: $ln(x^y) = y ln x$
- Daher: $x^y := e^{y \ln x}$, für beliebiges $y \in \mathbb{R}$ (falls $x \ge 0$).
 - Also auch z.B. $x^{0,123}$
 - Programmiersprachen: pow(double x, double y)
 berechnet exp(y*ln(x))
 - →exp und ln werden über Reihen berechnet!
 - →pow(x,2.0) ist langsam und ungenau! Besser: x*x ...

[zu Potenzreihe von ln(x) für beliebiges x siehe z.B. Forster "Analysis 1", S. 181f]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 38

Signalverarbeitung

Ende Einschub 1: Reihen

- zurück zu Schwingungen

Obertöne, Harmonische

Schwingungen einer Saite eines Musikinstruments

[Abb. nach de.wikipedia.org/wiki/Datei:Harmonic_partials_on_strings.svg]

Ivo Wolf Technische Inf. 2 Signalverarbeitung 1 | 40

Obertonreihe

■ Saiten schwingen gleichzeitig in den verschiedenen Harmonischen k mit unterschiedlicher Amplitude a_k :

$$x(t) = \sum_{k=1}^{\infty} a_k \sin(2\pi \cdot k f_0 \cdot t)$$

- → Mischung von Schwingungen ("verschiedenen Tonhöhen")
- Klangfarbe des Instruments ergibt sich aus der relativen Amplitude der Harmonischen

Signalverarbeitung

3. Abtastung

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 42

Abtastung: zeitliche Diskretisierung

Abtastung

• Was passiert, wenn Signal der Frequenz f = 1 Hz mit $f_a = 1$ Hz abgetastet wird?

- → Die Schwingung wird überhaupt nicht gemessen!
- Weitere Beispiele bei der gleichen Abtastung mit $f_a = 1$ Hz:

[Abb. Nelles signalverarbeitung-skript.pdf]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 44

Ein Rad dreht sich

In welche Richtung drehen sich die Räder?

→ 2x abtasten pro Zyklus ist zu wenig!
(Zyklus hier: Drehung um Segment zw. 2 Speichen)

Shannonsches Abtasttheorem

■ Die Abtastfrequenz f_a muss größer sein als das Doppelte der höchsten im Signal vorkommenden Frequenz f_{max} :

$$f_a > 2 \cdot f_{max}$$

- Ist die Abtastfrequenz f_a kleiner, kommt es zu "Aliasing": Frequenzen $f > \frac{1}{2}f_a$ werden falsch als Frequenzen $f < \frac{1}{2}f_a$ wahrgenommen.
- In der Praxis: $f_a = 5 \dots 10 \cdot f_{max}$

Ivo Wolf Technische Inf. 2 Signalverarbeitung 1 | 46

Bandbegrenzte Signale

Definition "bandbegrenztes Signal":

• Ein Signal heißt bandbegrenzt, wenn es keine Frequenzen oberhalb einer maximalen Frequenz f_{max} enthält.

Negative Frequenzen $-\omega$ (mit $\omega > 0$):

- Vorzeichen gibt Drehrichtung (z.B. des Rades) an.
- $\cos(-\omega t + \varphi_0)$ nicht unterscheidbar von $\cos(\omega t \varphi_0)$
- $\sin(-\omega t + \varphi_0)$ nicht unterscheidbar von $\sin(\omega t \varphi_0 + \pi)$
- Für Aussagen zur Bandbegrenzung ist daher immer der Betrag der Frequenz gemeint

Abtasttheorem und Aliasing

• Nochmals: Ist die Abtastfrequenz f_a gleich der Frequenz f des Signals, so ist das abgetastete Signal gleich einem Signal mit Frequenz f = 0.

- Dasselbe gilt für andere ganzzahlige Vielfache von fa:
 - Statt der Frequenz 0könnte es in Wirklichkeit die Frequenz f_a oder $2 \cdot f_a$ oder $3 \cdot f_a$ oder $(-1) \cdot f_a$ oder ... sein

Ivo Wolf Technische Inf. 2 Signalverarbeitung 1 | 48

Abtasttheorem und Aliasing

negative Frequenz mit Betrag $< \frac{1}{2} f_a$ wahrgenommen \rightarrow Aliasing

Aliasing bei Bildern

Aliasing

Mit verschieden gutem Anti-Aliasing

[Abb. von https://people.cs.clemson.edu/~tadavis/cs809/aa.html]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 50

Abtastung von Audio-Signalen

- Menschliches Gehör (Idealfall): 20–20.000 Hz
- Sprache: bis ca. 4.000 Hz
- Typische Abtastraten (sampling rates):
 - Telefon: 8 kHz (2 x 4 kHz! Bandbreite: 3,6 kHz)
 - Mobilfunk "HD Voice" (AMR-WB): 16 kHz (6.4 kHz)
 - CD: 44,1 kHz (~2 x 20 kHz!)
 - DVD (Tonspur): 48 kHz
- Zu unterscheiden: Bitrate (bit rate), Einheit oft: kbps
 - Ergibt sich aus Abtastrate, Quantisierung, Anzahl Kanäle (mono, stereo) und ggf. Komprimierung
 - Z.B. CD: $2 \cdot 16 \text{ Bit} \cdot 44,1 \text{ kHz} = 1411,2 \frac{\text{kBit}}{\text{s}} = 176,4 \frac{\text{kB}}{\text{s}}$

WAV-Format

- AudioFormat PCM = 1 (linear quantization, integer); IEEE float = 3 (PCM, float); MS ADPCM = 2; A-law = 6
- NumChannels Mono = 1, Stereo = 2, etc.
- SampleRate 8000, 44100, ...
- ByteRate = SampleRate * NumChannels * BitsPerSample/8
- BitsPerSample 8 bits = 8, 16 bits = 16, etc.

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 52

Signalverarbeitung

4. Systeme, LTI-Systeme, Impulsantwort und Faltung

Definition "System"

Definition "System" (im Rahmen der Signalverarbeitung):

• Mathematische Modell, das einem Eingangssignal x(t) ein Ausgangssignal y(t) zuordnet.

- Systeme können auch mehrere Eingänge/Ausgänge haben, im Folgenden aber nur ein Eingang/Ausgang
- Systeme lassen sich durch Operatoren S(·) beschreiben:

$$y(t) = S\{x\}(t)$$

– Der Unterschied zu einer Funktion y(t) = f(x(t)) ist, dass f (nur) den Wert x(t) weiterverarbeiten würde, während $S\{x\}$ x an mehreren Stellen (meist relativ zu t) auswerten kann.

[s.a. Werner 2008, S 16; Meyer S5, 71f; Hoffmann 1 S32f – aber nicht präzise]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 54

Beispiel: Gleitender Mittelwert

- Schreibweise für zeitdiskrete Signale: x[t]
 - eckige Klammern: "zeitdiskret", ³⁰
 also Integer-Indizes (→ "Arrays")²⁵
 - nicht überall so verwendet.
- Für zeitdiskrete Signale x[t] ist der gleitende Mittelwert (engl. moving average, MA) definiert als:

$$y[t] = MA\{x\}[t] := \frac{1}{n} \sum_{i=0}^{n-1} x[t-i]$$

- MA muss auf mehrere x[t-i] zugreifen, lässt sich also nicht allein aus x[t] berechnen und kann daher nicht als MA(x[t]) geschrieben werden.

Definition "Dynamische Systeme"

Definition "Dynamisches System" (im Rahmen der Signalverarbeitung):

- System, dessen Ausgangssignal auch von vergangenen Werten des Eingangssignales abhängt
- Auch als "System mit Gedächtnis" bezeichnet.
- Bei "statischen (gedächtnislosen) Systemen" hängt das Ausgangssignal nur vom momentanen Eingangssignal ab.
- Beispiel gleitender Mittelwert:
 - dynamisches System mit Gedächtnis der Länge n-1.

[s.a. Meyer S 75; Werner 2008, S 17]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 56

Definition "Kausale Systeme"

Definition "Kausales System" (im Rahmen der Signalverarbeitung):

- Ausgangswert y(t) des Signals hängt nur von Eingangswerten zu Zeitpunkten $t_i \le t$ (also *nicht* von der Zukunft) ab.
- Definition also nur für zeitabhängige Signale anwendbar (und z.B. nicht für ortsabhängige Signale wie Helligkeiten in (Einzel-) Bildern)
- Beispiel gleitender Mittelwert:
 - Die verwendete Definition $y[t] = \frac{1}{n} \sum_{i=0}^{n-1} x[t-i]$ ist kausal.
 - Es gibt auch den symmetrischen (zentrierten) gleitenden Mittelwert:

$$y[t] = MA_{sym}\{x\}[t] := \frac{1}{2n+1} \sum_{i=-n}^{n} x[t-i]$$

Der symmetrische gleitende Mittelwert ist nicht kausal.

Delay beim gleitenden Mittelwert

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 58

Definition "Lineare Systeme"

Definition "Lineares System":

- Ein System heißt linear, falls für alle Signale x, y und Zahlen k gilt:
 - $S\{x + y\}(t) = S\{x\}(t) + S\{y\}(t)$ und
 - $S\{k \cdot x\}(t) = k \cdot S\{x\}(t)$
- Vergleiche die Definition von linearer Abbildung in der linearen Algebra.
- Sehr häufig verwendet
- Aber oft idealisierende Annahme:
 - z.B. kann ein Verstärker übersteuert werden: Wenn er bei kleinem Signal x noch funktioniert, bei 10x aber übersteuert, ist $S\{10 \cdot x\}(t) \neq 10 \cdot S\{x\}(t)$.

Definition "zeitinvariante Systeme", "LTI-Systeme"

Definition "Zeitinvariantes System":

- Ein System S heißt zeitinvariant, wenn nur der Eingangssignalverlauf wichtig ist und nicht, wann das Eingangssignal (bzw. die Zeitmessung) beginnt.
 - $\stackrel{\smile}{-}$ Wird das Eingangssignal um t_0 verzögert, so ergibt sich ein gleiches, ebenfalls um t_0 verzögertes Ausgangssignal.
 - Also: S heißt zeitinvariant, wenn bei $z(t) := x(t t_0)$ mit beliebigem t_0 gilt:

$$S\{z\}(t) = S\{x\}(t - t_0)$$

Beispiel: wird ein Signal abhängig von der Zeit verstärkt (z.B. "Fader"), so ist das System nicht zeitinvariant, z.B. bei $S\{x\}(t) := \sin t \cdot x(t)$ ist:

$$S\{z\}(t) = \sin t \cdot \underbrace{z(t)}_{=x(t-t_0)} \neq S\{x\}(t-t_0) = \sin(t-t_0) \cdot x(t-t_0)$$

Definition "Lineares zeitinvariantes System" (engl. linear time invariant, LTI):

- Systeme, die sowohl linear als auch zeitinvariant sind
- Beispiel: gleitender Mittelwert

[s.a. Werner 2008, S 18; Meyer S 74f; Hoffmann 1, S 34]

Ivo Wolf

Impulsfunktion im Diskreten

Definition "Impulsfunktion" $\delta[t]$ im (Zeit-)Diskreten: $\delta[t] \coloneqq \begin{cases} 1 & \text{falls } t = 0 \\ 0 & \text{falls } t \neq 0 \end{cases}$

$$\delta[t] \coloneqq \begin{cases} 1 & \text{falls } t = 0 \\ 0 & \text{falls } t \neq 0 \end{cases}$$

Es gilt:

$$\delta[t - k] = \begin{cases} 1 & \text{falls } k = t \\ 0 & \text{falls } k \neq t \end{cases}$$

Damit lässt sich jedes diskrete Signal schreiben als:

$$x[t] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[t-k] \xrightarrow[x_{[-1]}]{x_{[0]}} \xrightarrow[x_{[2]}]{x_{[3]}} -1 \ 0 \ 1 \ 2 \ 3 \ \dots$$

Impulsantwort im Diskreten

Definition "Impulsantwort" h[t] eines Systems S:

Reaktion des Systems auf die Impulsfunktion:

$$h[t] \coloneqq S\{\delta\}[t]$$

Beispiel: Impulsantwort eines gleitenden kausalen Mittelwerts mit n = 3

[s.a. Werner 2008, S 25]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 62

Impulsantwort von LTI-Systemen

 Bei Anwendung eines (zeitdiskreten) LTI-Systems S auf das (allgemeine) Signal

$$x[t] = \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[t-k]$$

ergibt mit der Impulsfunktion $h[t] := S\{\delta\}[t]$ wegen der Linearität und Zeitinvarianz:

$$S\{x\}[t] = \sum_{k=-\infty}^{\infty} \underbrace{x[k]}_{\text{Konstante Zahlen}} \cdot \underbrace{h[t-k]}_{\text{wg. Zeitinvarianz}}$$

$$\xrightarrow{\text{reagiert S auf Impuls zum}}_{\text{sie vor S gezogen werden}} \cdot \underbrace{p[t-k]}_{\text{Seitpunkt t-k auch mit h[t-k]}}$$

Also: Das Verhalten jedes LTI-Systems wird komplett durch seine Impulsantwort beschrieben!

Faltung (engl. convolution)

LTI-Systeme führen also sog. Faltungen (engl. convolution), abgekürzt mit "*", durch:

$$(x * h)[t] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[t-k]$$

$$h[t] = \begin{cases} \frac{1}{n} & \text{falls } t = 0 \dots n - 1 \\ 0 & \text{sonst} \end{cases}$$

Also für $k = (t - (n - 1)) \dots t$ werden die x[k] gemittelt.

Das entspricht der ursprünglichen Definition:

$$y[t] = \frac{1}{n} \sum_{i=0}^{n-1} x[t-i]$$

[s.a. Werner 2008, S 26]

Ivo Wolf

Faltungen als gewichtete Mittelwerte

Beim gleitenden Mittelwert werden alle verwendeten Signalwerte x[k] gleich behandelt, nämlich mit $\frac{1}{n}$ multipliziert:

Allgemeine Faltungen berechnen gewichtete Mittelwerte: die Signalwerte x[k] werden mit h[t-k] gewichtet (multipliziert)

Beispiel: Binomialfilter der Größe 3

Eigenschaften der Faltung

- Die Operation "Faltung" ist:
 - assoziativ: (x * h) * g = x * (h * g)
 - kommutativ: x * h = h * x
 - distributiv: x * (h + g) = x * h + x * g
 - und natürlich linear und zeitinvariant (wir haben sie ja aus LTI-Systemen hergeleitet)

Ivo Wolf Technische Inf. 2

Faltung zweier Rechteck-Signale

[Abb. Werner 2008, S 35]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 67

Matched Filter (template matching): Detektion bekannter Signalform

Beispiel:

- Ursprüngliches Signal:
- Nach Übertragung verrauschtes Signal:
- Bekannte Signalform:
- Faltung mit zeitinvertierter Signalform:

0 1 0 1 1 0 0 1 0 0

 Auch für andere Signalformen, z.B. bei der Suche nach Gravitationswellen verwendet.

[Abb. https://en.wikipedia.org/wiki/Matched_filter, s. a Werner 2008, S 320ff]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 68

FIR Filter / IIR Filter

- Finite impulse response (FIR) Filter:
 - Impulsantwort hat eine endliche Länge
 - → Faltungssumme ist endlich
- Infinite impulse response (IIR) Filter:
 - Impulsantwort hat eine unendliche Länge
 - in der Praxis nicht über Faltungssumme realisierbar
 - realisierbar über rekursive Filter
- Daher (nicht ganz korrekt) oft synonym gebraucht:
 - FIR-Filter ⇔ nicht-rekursive Filter
 - IIR-Filter ⇔ rekursive Filter

Signalverarbeitung

5. Up- und Downsampling digitaler Signale

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 70

Upsampling

Wie weitere Sampling-Punkte in ein digitales Signal mit gegebener Sampling Rate einfügen?

Definition "Interpolation"

Definition "Interpolation" (lateinisch inter = dazwischen, polire = glätten, schleifen):

- Zu gegebenen diskreten Daten (x_i, y_i) (z.B. Messwerten) soll eine stetige Funktion g(x) berechnet werden, sodass $y_i = g(x_i)$ (Interpolationsbedingung)
 - Die x_i heißen Stützstellen, die y_i heißen Stützwerte.
 - Mit den Bezeichnungen für zeitabhängige Signale:
 - x[t] = g(t) (t ganzzahlig!)
 - Gesucht ist g(t), sodass
 t eine reelle Zahl sein kann

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 72

Stückweise Interpolation

Stückweise Interpolation:

 Für jeden Abschnitt zwischen zwei Stützstellen eine eigene Funktion

- Die einfachsten Funktionen sind Geraden, d.h. lineare Polynome g(x) := mx + c
 - → Stückweise lineare Interpolation
 - → Stetig, aber "Knicke" an Stützstellen

Interpolation durch Faltung

 Stückweise lineare Interpolation durch Faltung mit "Dreiecks-Maske" (Impulsantwort des Filters)

 Praktische Umsetzung: neue Stellen hinzufügen, dann Faltung durchführen

[Abb. Oben aus Jähne: Digitale Bildverarbeitung; Abb. unten: https://de.wikipedia.org/wiki/Datei:Upsampling_Example.svg]

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 74

Theoretisch optimale Interpolation durch Faltung mit sinc-Funktion

- Die Faltung mit Funktion $sinc(x) = \frac{sin x}{x}$ erlaubt (theoretisch) perfekte Rekonstruktion, sofern Abtastbedingung erfüllt
 - → Keine "Knicke"!
- Aber: sinc ist unendlich ausgedehnt
- Praktisch: Einschränkung auf endlichen Bereich (windowed sinc)
- Stützstellen müssen (wie immer bei Faltung) äquidistant sein

Rekonstruktion mit sinc-Funktion

- Perfekte Rekonstruktion, sofern Abtastbedingung erfüllt
- → Keine "Knicke"!

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 76

Downsampling

- Gefahr bei Downsampling:
 - Abtastbedingung wird nicht mehr erfüllt → Aliasing
- Abhilfe:
 - Vor dem Downsampling hohe Frequenzen reduzieren:
 Tiefpassfilterung
 - Realisierbar durch Faltung mit
 - sinc
 - Binomialfilter (auch Gaußfilter genannt)
 - speziell angepasste Filter

Nicht äquidistante Stützstellen

- Faltungsmethode funktioniert nicht bei nicht äquidistanten Stützstellen
- Idee der stückweisen Interpolation trotzdem möglich
 - Stückweise lineare Interpolation:

- Wie "Knicke" vermeiden?
 - Statt linearer Polynome: Polynome (meist) 3. Grades $g(x) \coloneqq a + bx + cx^2 + dx^3$
 - Bedingung an Stützstellen:
 - gleiche Steigung
 - und gleiche Änderung der Steigung

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 78

Signalverarbeitung

Einschub 2: Ableitung

Steigung einer Geraden

- Die Steigung einer Geraden g(x) := mx + c ist
 - durch das Steigungsdreieck gegeben: $m = \frac{\Delta y}{\Delta x}$.
 - Die Steigung einer Geraden ist überall gleich.

Ivo Wolf Technische Inf. 2 Signalverarbeitung 1 | 80

Steigung einer Funktion: Ableitung

- Die Steigung einer Funktion f(x) ist definiert als die Steigung der Tangenten an die Funktion
- Betrachte zunächst Gerade (=Sekante) durch 2 Punkte des Funktionsgraphs
 Tangente
 Sekante
- Sekantensteigung ist der $f(x_0 + \Delta x)$ Differenzenquotient:

$$m = \frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Tangentensteigung ergibt sich als Grenzwert Δx → 0 und heißt (erste) Ableitung der Funktion f nach x:

$$f'(x_0) \coloneqq \frac{df}{dx}(x_0) \coloneqq \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Ableitungsregeln (1)

■ Ableitung des linearen Polynoms g(x) := mx + c ist: g'(x) = m

Ableitungsregeln:

- Konstante Summanden fallen beim Ableiten weg:
 - insbesondere ist von f(x) = c die Ableitung f'(x) = 0
- Ableitung von $f(x) := x^n$ ist $f'(x) := n \cdot x^{n-1}$
 - die Ableitung von f(x) = x ist f'(x) = 1
 - die Ableitung von $f(x) = x^2$ ist f'(x) = 2x
- Konstante Faktoren bleiben erhalten, d.h. die Ableitung von $f(x) := m \cdot g(x)$ ist $f'(x) = m \cdot g'(x)$
- Die Ableitung von $f(x) := \sin x$ ist $f'(x) = \cos x$.
- Die Ableitung von $f(x) := \cos x$ ist $f'(x) = -\sin x$.
- Die Ableitung von $f(x) := \cos x$ ist $f'(x) = -\sin x$.
- Die Ableitung von $f(x) := \exp x$ ist $f'(x) = \exp x$.

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 82

Beispiele

$$f'(x)=2$$

Beispiele

Tiefpunkt: f'(x) = 0 f'(x) = 0 gilt für alle Extrema (Tief- und Hoch-Punkte)

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 84

Beispiel: 2te Ableitung

- Die 2te Ableitung f"(x)
 ist die Ableitung der
 Ableitung
 - Also die Änderung der Steigung der Funktion
- Im Beispiel:
 - Die Steigung der Funktion $f(x) := x^2$ nimmt überall gleichmäßig zu: Die Steigung hat die Steigung 2.

Beispiele

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 86

Ableitungsregeln (2)

- Summenregel:
 - Die Ableitung von f(x) := u(x) + v(x) ist f'(x) = u'(x) + v'(x).
- Produktregel:
 - Die Ableitung von $f(x) := u(x) \cdot v(x)$ ist $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$.
- Kettenregel:
 - Die Ableitung von $f(x) \coloneqq u(v(x))$ ist f'(x) = u'(v(x))v'(x)
 - Teilweise auch so geschrieben: $\frac{df}{dx} = \frac{du}{dv} \frac{dv}{dx}$

Beispiele

Beispiel Summenregel: Anwendung auf Polynom 3. Grades:

$$f(x) \coloneqq a + bx + cx^2 + dx^3$$

$$f'(x) = b + 2cx + 3dx^2$$

Beispiel Produktregel:

$$f(x) := \sqrt{x} \cdot \sin x$$
$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} \cdot \sin x + \sqrt{x} \cdot \cos x$$

Beispiel Kettenregel:

$$f(x) := (\sin x)^2$$

$$f'(x) = 2(\sin x) \cdot \cos x$$

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 88

Signalverarbeitung

Ende Einschub 2: Ableitung

- zurück zur Interpolation

Nicht äquidistante Stützstellen

- Wie "Knicke" bei stückweiser Interpolation vermeiden?
 - Statt linearer Polynome: Polynome (meist) 3. Grades $g(x) := a + bx + cx^2 + dx^3$
 - Zwischen 2 Stützstellen jeweils ein Polynom
 - Bedingung für das Zusammenfügen der je 2 Polynome
 3. Grades an den Stützstellen ("kubischer Spline"):
 - gleiche Steigung
 - und gleiche Änderung der Steigung:
 Ableitung der Ableitung (= 2. Ableitung)

Ivo Wolf
Technische Inf. 2
Signalverarbeitung 1 | 90

Interpolation von Kurven

- Was tun, wenn kein funktionaler Zusammenhang $y_i = f(x_i)$ für die Werte-Paare $(x_i, y_i \neq f(x_i))$ existiert?
- Oder gar in 3D: (x_i, y_i, z_i)?

Jede Komponente einzeln interpolieren:

$$(t, x_t), (t, y_t), (t, z_t)$$

