Tutorial 01 - Turing Machines and other equivalent models of computation

Exercise 1. Warming up

Let *a*, *b* be integers in their binary representation.

- 1. Write the full description of a Turing machine that performs addition on input a#b.
- **2.** Write the full description of a Turing machine that performs *multiplication* on input *a*#*b*.

Exercise 2. Stimulating Simulation

We will prove the details of the following crucial result mentioned in class:

Theorem. There exists a TM \mathcal{U} such that for every $x, \alpha \in \{0,1\}^*$, $\mathcal{U}(x,\alpha) = M_{\alpha}(x)$ where M_{α} denotes the TM represented by α .

Moreover, if M_{α} halts on input x within T steps, then $U(x,\alpha)$ halts within $C_{\alpha}T \log T$ steps, where $C_{\alpha} > 0$ depends on α but not on x.

In this exercise, we suppose that we can read and write on all tapes of a Turing machine.

- **1.** Show that a machine on alphabet Γ can be simulated with a machine on alphabet $\{0,1,\square,\triangleright\}$. What is the cost of your simulation?
- **2.** Show that a 2-tape machine can be simulated with a 1-tape machine. What is the cost of your simulation?
 - Hint: You may suppose that the tape of the 1-tape machine is divided into four tracks, i.e., that every cell of the tape contains 4 symbols. Also, you may add new symbols to the alphabet Γ if you find it useful (and use the previous exercise to reduce the size of the alphabet).
- **3.** We now want to simulate a k-tape machine using a 2-tape machine ($k \ge 3$). Show that this can be done in time $C_k T \log T$, where $C_k > 0$ depends only on k.
- **4.** Describe the universal Turing machine \mathcal{U} corresponding to the theorem. Hint: You may admit the following result (which can be proven using the previous exercises): There exists a TM that given $\alpha \in \{0,1\}^*$ produces a vector $\beta \in \{0,1\}^*$ such that M_{β} simulates M_{α} , has exactly 2 tapes, is on alphabet $\{0,1,\Box,\rhd\}$, and halts within $C_{\alpha}T \log T$ steps.

Exercise 3. Change the Model

Definition. A *Post Machine* (PM, or *queue automaton*) *M* is a finite state machine with a single tape of unbounded length with FIFO access: in a single transition, *M* can choose to read and delete the symbol at the head of the FIFO queue and may append symbols to the tail of the queue.

- **1.** Write the description of a PM M that translates a text in $\Sigma_1 = \{a, \ldots, z\}$ into a Morse text in $\Sigma_2 = \{-, \bullet, _\}$, where $_$ denotes the long wait separating two characters. (If you don't have enough space on your sheet, you can restrict to the subset $\{a \to \bullet -; d \to -\bullet \bullet; e \to \bullet\}$).
- 2. Show that a Post Machine can be simulated by a Turing Machine.
- **3.** Show that a Turing Machine can be simulated by a Post Machine. What is (somewhat) surprising with this result?

Exercise 4. Change the Model ²

Definition. A *Markov algorithm* is an ordered string rewriting system P over the alphabet Σ , written $P = [\alpha_1 \to \beta_1; \dots; \alpha_k \to \beta_k]$ along with a subset $F \subseteq P$ of *terminal rules*.

On input $u \in \Sigma^*$, a potentially infinite unique string sequence $u \stackrel{0}{\to} u_1 \stackrel{1}{\to} u_2 \stackrel{2}{\to} \dots \stackrel{n}{\to} u_n \stackrel{n+1}{\to} \dots$ is defined for $u_j \stackrel{j}{\to} u_{j+1}$ as the application on the leftmost instance of an α_i on the current string u_j of the first rule that can apply in P.

The algorithm stops on step n-1 and returns u_n if the last step $\stackrel{n-1}{\rightarrow} \in F$ and no rules can apply on u_n . Otherwise the algorithm does not terminate.

1. What does the following Markov algorithm do?

$$P = [\dot{1}0 \rightarrow 0\dot{1}\dot{1}; \quad 1 \rightarrow 0\dot{1}; \quad 0 \rightarrow \varepsilon] \qquad F = [0 \rightarrow \varepsilon]$$

- 2. Write a Markov algorithm computing the successor of a binary integer. You can suppose that the end of the integer is marked by the symbol #.
- 3. Show that a Markov algorithm can be simulated by a Turing machine.
- **4.** Show that a Turing Machine can be simulated by a Markov Algorithm.