

Effects of the Distribution of Synaptic Strength of Neuronal Network on its Spiking Dynamics

Yeung Chun Yat (1155110319)
Supervisor: Prof. Ching Suk Chi Emily
December, 2020

J

What is a Network?

The Basics

S

Trials of Different Dynamics *Model Testing*

2

Network Reconstruction

A Literature Review

What Explain the Spikes? Analysis & Discussion

What is a Network? The Basics

Dynamics of a Network

• A network models a system with interacting individual components, and consists of **nodes**, **links** and **coupling strengths**

	Representation	Notation
Node	Individual component	i , where $1 \le i \le N$ with
	e.g. Neuron	N = total no. of nodes
Directed Link	Mutual interaction	$A_{ij} = 1$ if node j links to
	e.g. Linkage btw. neurons	i and 0 otherwise
Coupling Strength	Strength of interaction	$g_{ij} \neq 0$ if node j links to
	e.g. Synaptic weight	i and 0 otherwise

Node Sij Link

- Coupling strength matrix **G** contains all g_{ij}
- **G** is the most crucial piece of information about a network
 - : it fully specifies the network structure, i.e., connectivity & interaction

Features of G		
0-Diagonal	Nodes not self-connecting \Rightarrow Diagonal entries $\equiv 0$	
	and $N(N-1)$ possible directed links	
Sparsity	Ratio btw. no. of directed links & $N(N-1)$	
	Note: Most real networks are sparse	
Non-Symmetry	Directed network $\Rightarrow g_{ij} \neq g_{ji}$ in general	

- G has high theoretical importance but, in practice, is difficult to extract
 - **⇒** Requires network reconstruction techniques

- Network measures *summarize* the network structure
- This project focuses on degree and strength

Network Measure	Mathematical	Computational
In/Out-Degree	$k_{\mathrm{in}}(i) = \sum_{j} \mathbb{I}(g_{ij} \neq 0)$	Count the non-zero entries in the <i>i</i> th <i>row</i> of G
	$k_{\mathrm{out}}(i) = \sum_{j} \mathbb{I}(g_{ji} \neq 0)$	Count the non-zero entries in the <i>i</i> th <i>column</i> of G
In/Out-Strength	$s_{\rm in}(i) = \sum_j g_{ij} / k_{\rm in}(i)$	Average the non-zero entries in the <i>i</i> th <i>row</i> of G
	$s_{\text{out}}(i) = \sum_{j} g_{ji} / k_{\text{out}}(i)$	Average the non-zero entries in the <i>i</i> th <i>column</i> of G

- Other finer measures: $k_{\text{in}}^+(i) = \sum_j \mathbb{I}(g_{ij} > 0)$ and $s_{\text{in}}^+(i) = \sum_j g_{ij} \mathbb{I}(g_{ij} > 0) / k_{\text{in}}^+(i)$
 - ⇒ Constructed by replacing the argument in the indicator function with the desired condition

- Network **dynamics** associates with network **structure** through a set of *N* dynamical equations, with each consisting of
 - \succ intrinsic dynamics $f_i(x)$
 - \succ nodal interaction h(x, y)
 - \triangleright noise η_i with noise covariance matrix **D**
- The time-evolution is governed by $\frac{\mathrm{d}x_i}{\mathrm{d}t} = f_i(x_i) + \sum_j g_{ij}h(x_i,x_j) + \eta_i$, where x_i is the state of node i
 - \triangleright Numerically solved given suitable initial conditions $\{x_i(0)\}_{i=1:N}$
 - > Specifying a Network Model. We require $G_i, f_i(x), h(x, y), D$
- Time series $\{x_i(t)\}_{i=1:N}$ form the **network dynamics**

Network Reconstruction A Literature Review

- A network reconstruction method proposed by Ching and Tam
 - > Reconstructs links & coupling strengths using empirical time series data
 - \succ Targets systems that have stationary fluctuation around (const.) **noise-free steady states** X_i
- The dynamics is *linearized* around X_i to give $\frac{d}{dt} \delta x = \mathbf{Q} \delta x + \boldsymbol{\eta}$, where $\delta x_i = x_i X_i$ and $\boldsymbol{\eta}_i = \eta_i$. Non-diagonal entries of \mathbf{Q} is shown to be $Q_{ij} = g_{ij} \frac{\partial h}{\partial y} \Big|_{(X_i, X_j)}$
- Define the **lagged covariance matrix**, computed entirely based on *time* series data

$$\mathbf{K}_{\tau} \equiv \langle [\mathbf{x}(t+\tau) - \langle \mathbf{x}(t+\tau) \rangle] [\mathbf{x}(t) - \langle \mathbf{x}(t) \rangle]^{T} \rangle$$

The following relation is shown to hold

$$\mathbf{Q} \approx \mathbf{M} \equiv \frac{1}{\tau} \log(\mathbf{K}_{\tau} \mathbf{K}_0^{-1})$$

- > **Q** reflects the *underlying* model-based network structure
- > M is computed from the *empirical time series data* of the nodes
- Recall $Q_{ij} = g_{ij} \frac{\partial h}{\partial v} (X_i, X_j) \sim g_{ij}$. Divide M_{ij} into two groups:
 - $ightharpoonup M_{ij} \approx 0 \Rightarrow g_{ij} \approx 0 \Rightarrow \text{Node } i \text{ and } j \text{ are unlinked}$
 - $\triangleright |M_{ij}| \gg 0 \Rightarrow |g_{ij}| \gg 0 \Rightarrow \text{Node } j \text{ links to } i$
- Grouping is done using *Gaussian mixture model* by calculating the probability of M_{ij} belonging to the two groups
- Through clustering analysis, coupling strengths g_{ij} can be inferred too

• The method is applied to the *empirical neuronal time series* of cultures of rat embryonic cortices (25 days in vitro) to estimate the *coupling strengths* g_{ij} , leading to the following dataset

Node i	Node j	g_{ij}
1	196	0.0208720006
1	266	0.0156720001
1	267	0.0218959991
÷	:	<u>:</u>
2	1	-0.0234200004
2	21	-0.00388139999
2	23	-0.00472760014
:	:	:
4095	4094	0.0089673996

- ➤ 4095 electrodes for data collection ⇒4095 nodes in the giant network
- ightharpoonup (Order) $g_{ij} \sim 10^{-3}$ to 10^{-2}
- \triangleright (Sign) g_{ij} can be +ve or -ve
- > Sparse network with 1.4% sparsity
- Forms the foundation of *all* later simulations

• Experimental neuronal *spike counts* are **highly skewed** and **long-tailed** in distribution, and so are the *synaptic strengths*

Can the very large spike counts be explained by the very large synaptic strengths?

Trials of Different Dynamics Model Testing

3. Trials of Different Dynamics

• Recall that the network dynamics is governed by

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = f_i(x_i) + \sum_j g_{ij} h(x_i, x_j) + \eta_i$$

- The **logistic** network model assumes $f_i(x) = r_i x (1 x)$
- With both the **synaptic** and **diffusive** nodal interaction term h, the model fails at generating realistic spikes but rather, gives only fluctuations

Synaptic h $h(x,y) = 1/\beta_1[1 + \tanh \beta_2(y - y_0)]$ Diffusive hh(x,y) = y - x

3. Trials of Different Dynamics

• The **FHN** network model assumes two-dimensional states (x_i, y_i) with dynamics governed by

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = \frac{1}{\epsilon} \left(x_i - \frac{x_i^3}{3} - y_i \right) + \sum_j g_{ij} h(x_i, x_j) + \eta_i$$

$$\frac{\mathrm{d}y_i}{\mathrm{d}t} = x_i + \alpha$$

• With the **diffusive** nodal interaction term h(x, y) = y - x, the model succeeds in generating realistic spikes with parameters $(\epsilon, \alpha) = (0.1, 0.95)$

- > Active spiking is seen
- > Spikes are selected based on numerical criteria and counted for each node
- The subsequent analysis is based on this FHN network model

What Explain the Spikes? Analysis & Discussion

4. What Explain the Spikes?

- Main results from regression analysis statistical relation
 - Non-linear relation btw. model spike counts and *in-measures*, including $k_{\rm in}$, $s_{\rm in}$, $k_{\rm in}^+$, $s_{\rm in}^+$, but less obvious relation with out-measures
 - Large spike counts are associated with large *in-degrees* and *in-strengths*
 - > Strong *linear* correlation btw. model spike counts and $k_{in} \times s_{in}$, recognize that $(k_{in} \times s_{in})(i) = \sum_i g_{ij}$ (total incoming g_{ij})

4. What Explain the Spikes?

- Reference networks vary network features of interest while preserving the rest, and are constructed through artificial manipulation of the reconstructed **G**
- Effects of the varied features on the dynamics are studied
- Main results from reference network analysis causal relation
 - The reference network that has rows of **G** shuffled, thus (i) keeping the long-tailed distribution of k_{in} , s_{in} and (ii) making distribution of k_{out} , s_{out} bell-shaped, preserves the distribution of spike counts
 - \triangleright Other reference networks with *bell-shaped* $k_{\rm in}$, $s_{\rm in}$ or *long-tailed* $k_{\rm in}$ have bell-shaped spike counts
 - \triangleright Only s_{in} remains as the important driving factor of the spiking dynamics
 - \triangleright Conclusion. Long-tailed s_{in} leads to long-tailed spike counts

Conclusion

- The FHN network model successfully generates realistic neuronal spikes
- **Regression analysis.** The model spike counts have stronger statistical relations with in-measures than out-measures
- Reference network. The long-tailed incoming synaptic strength s_{in} leads to the long-tailed spike counts

Can the very large spike counts be explained by the very large synaptic strengths?

- Yes, in the context of the FHN network model.

In particular, it's the very large incoming synaptic strengths that have an important effect on spike counts.

References

- S. H. Strogatz, *Exploring complex networks*, Nature (London) 410, 268 (2001).
- G. Buzsaki and K. Mizuseki, *The log-dynamic brain: how skewed distributions affect network operations*, Nat. Rev. Neurosci., 2014;15(4):264-278.
- E. S. C. Ching and H. C. Tam, *Reconstructing links in directed networks from noisy dynamics*, Phys. Rev. E 95, 010301(R) (2017).
- C. Sun, K. C. Lin, Y. T. Huang, E. S. C. Ching, P. Y. Lai and C. K. Chan, *Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings*, BioRxiv 2020.02.06.936781 [Preprint].