

Machine Learning Project

Sales Prediction & Customer Segmentation Using ARIMA & K-Means Clustering

Kalbe Nutritionals Data Scientist Project Based Internship Program

Presented by Nicken Shidqia Nurahman

Nicken Shidqia Nurahman

About Me

Civil engineer graduate with some experience in administration and project management, who is interested in data science.

Detail oriented, and time management person, and familiar with Microsoft Office, Python, HTML, CSS, SQL and Jupyter. Motivated to continue to learn and grow as a professional.

My Experience

Data Science Bootcamp Student – RAKAMIN ACADEMY Oct 2023 - Now

Project Management Masters Degree Student – UNIVERSITAS INDONESIA Sep 2021 – Sep 2023

Engineering Administration and Project Control Staff - PT. ISTAKA KARYA Aug 2019 - Sep 2021

Project Control Intern - PT. ISTAKA KARYA Feb 2019 - Jul 2019

Surveying Laboratory Assistant – UNIVERSITAS TRISAKTI Jul 2017- Agust 2019

Case Study

Data scientist in Kalbe Nutritionals got a new project from :

- Inventory Team to predict sum of quantity from all products, so they could create sufficient daily inventory.
- Marketing Team to create cluster or segment of customer to get personalized promotion and sales treatment:

Tool & Library Used

The challenges in this project include:

- Perform **Data Ingestion** into dbeaver and PostgreSQL.
- Perform Exploratory Data Analysis (EDA)
 to know the average age of customer
 based on marital status and gender, also
 the best-selling store and product name.
- Visualizing Data Dashboard using Tableau
- Make Machine Learning Regression Model (Time Series) with ARIMA
- Make Machine Learning Clustering Model with KMeans Algorithm

Data Ingestion & Exploratory Data Analysis

Exploratory Data Analysis with PostgreSQL using DBeaver

Query 1:

Average customer age based on their marital status

```
select "Marital Status",
avg(age) as Age_Average
from customer c
group by "Marital Status";
```

Marital Status	¹²³ age_average
	31.3333333333
Married	43.0382352941
Single	29.3846153846

Query 2:

Average customer age based on their gender

```
select
   case
    when gender = 0 then 'Wanita'
   when gender = 1 then 'Pria'
   else '-'
   end as gender,
   avg(age) as Age_Average
   from customer c
   group by gender;
```

gender •	¹²³ age_average ▼
Wanita	40.326446281
Pria	39.1414634146

Exploratory Data Analysis with PostgreSQL using DBeaver

Query 3:

Store name with the highest total quantity

```
select storename, sum(qty) as total_quantity
from "transaction" t
join store s on s.storeid = t.storeid
group by storename
order by total_quantity desc
limit 1;
```

storename **	123 total_quantity
Lingga	2,777

Query 4:

the best-selling product with the highest total amount

```
select "Product Name", sum(totalamount) as total_amount
from "transaction" t
join product p on p.productid = t.productid
group by "Product Name"
order by total_amount desc
limit 1;
```

Product Name	123 total_amount
Cheese Stick	27,615,000

Dashboard in Tableau

Sales Dashboard

by Nicken Shidgia Nurahman

Revenue = 162,043,000 Quantity = 18,296

Worksheet 1:

- Sales trends fluctuate slightly, and show a gradual decline starting from June.
- The highest total quantity sold is in March 2022 with 1,753 items
- The lowest total quantity sold is in December 2022 with 1,409 items

Worksheet 2:

- Daily revenue trends fluctuate heavily
- The highest total amount is in March 2022 with Rp 976,500
- The lowest total amount is in August 2022 with Rp 123,600

Rakamin Academy

Worksheet 3:

- The highest selling product in 2022 is Thai Tea with 2,853 items sold.
- The lowest selling product in 2022 is Cashew with 627 items sold.

Data Visualization in Tableau

Worksheet 4:

- The best-selling store in 2022 is Lingga with sales revenue reached Rp 25,294,100.
- The lowest-selling store in 2022 is Buana Indah with sales revenue reached Rp 10,629,900.

Daily Product Quantity Prediction Using Time Series ARIMA

Data Cleaning

Data type error

```
#data cleaning df_customer
df_customer['Income'] = df_customer['Income'].replace(',','.', regex = True).astype('float')
#data cleaning df_store
df_store['Latitude'] = df_store['Latitude'].replace(',','.', regex = True).astype('float')
df_store['Longitude'] = df_store['Latitude'].replace(',','.', regex = True).astype('float')
```

Before:

	StoreID StoreNam		GroupStore	Туре	Latitude	Longitude	
0	1	Prima Tendean	Prima	Modern Trade	-6,2	106,816666	

After:

	StoreID	StoreName	GroupStore	Туре	Latitude	Longitude
0	1	Prima Tendean	Prima	Modern Trade	-6.200000	-6.200000
1	2	Prima Kelapa Dua	Prima	Modern Trade	-6.914864	-6.914864
2	3	Prima Kota	Prima	Modern Trade	-7.797068	-7.797068
3	4	Gita Ginara	Gita	General Trade	-6.966667	-6.966667

Before:

	CustomerID	Age	Gender	Marital Status	Income
0	1	55	1	Married	5,12

After:

	CustomerID	Age	Gender	Marital Status	Income
0	1	55	1	Married	5.12
1	2	60	1	Married	6.23
2	3	32	1	Married	9.17
3	4	31	1	Married	4.87

 Perbaikan data type error dari (,) menjadi (.) sebagai float pada Latitude, Langitude, dan Income

Data Cleaning

Data type error

Before:

df_transaction.dtypes

TransactionID object
CustomerID int64
Date object
ProductID object
Price int64
Qty int64
TotalAmount int64

After:

TransactionID object
CustomerID int64
Date datetime64[ns]

Perbaikan data type error dari object menjadi datetime pada kolom Date

Missing Values

Before:

df_customer.isnull().sum()

CustomerID 0
Age 0
Gender 0
Marital Status 3
Income 0

After:

df_customer = df_customer.dropna()

df_customer.isnull().sum()

CustomerID 6
Age 6
Gender 6
Marital Status 6
Income 6

Drop missing values pada Marital Status sebanyak 3 row


```
df_merge = pd.merge(df_customer, df_transaction, on = ['CustomerID'])
df_merge = pd.merge(df_merge, df_store, on = ['StoreID'])
df_merge = pd.merge(df_merge, df_product.drop(columns = ['Price']), on = ['ProductID'])
df_merge = df_merge.sort_values(by='Date').reset_index(drop = True)
df_merge.head()
```

	CustomerIE	Age	Gender	Marital Status	Income	TransactionID	Date	ProductID	Price	Qty	TotalAmount	StoreID	StoreName	GroupStore
-) 183	27	1	Single	0.18	TR1984	2022- 01-01	P1	8800	4	35200	4	Gita Ginara	Gita
	1 49	44	1	Married	13.48	TR67455	2022- 01-01	P5	4200	3	12600	13	Buana	Buana
:	2 233	43	1	Married	5.69	TR97336	2022- 01-01	P7	9400	2	18800	12	Prestasi Utama	Prestasi
	3 287	36	0	Single	3.70	TR76340	2022- 01-01	P4	12000	4	48000	12	Prestasi Utama	Prestasi
	4 123	34	0	Married	4.36	TR99839	2022- 01-01	P2	3200	6	19200	1	Prima Tendean	Prima

New Data Frame


```
df_regression = df_merge.groupby(['Date']).agg({'Qty': 'sum'}).reset_index()
df_regression
```

	Date	Qty
0	2022-01-01	49
1	2022-01-02	50
2	2022-01-03	76
3	2022-01-04	98
4	2022-01-05	67

Mengelompokkan data berdasarkan Date dengan Total Quantity

```
plt.figure(figsize=(20,5))
sns.lineplot(data=df_regression , x=df_regression['Date'] , y=df_regression['Qty'])
```


Seasonal Decomposition

Jan 2022 Feb

Mar

Date

Oct

Nov

Dec


```
reg_decompose = seasonal_decompose(df_regression.set_index('Date'))
plt.figure(figsize = (10,8))

plt.subplot(411)
reg_decompose.observed.plot(ax = plt.gca())
plt.title('Observed')

plt.subplot(412)
reg_decompose.trend.plot(ax = plt.gca())
plt.title('Trend')

plt.subplot(413)
reg_decompose.seasonal.plot(ax = plt.gca())
plt.title('Seasonality')

plt.subplot(414)
reg_decompose.resid.plot(ax = plt.gca())
plt.title('Residual')

plt.tight layout()
```

Berdasarkan Trend, Seasonality, dan Residual: cukup fluktuatif dan mengindikasikan adanya downtrend dalam penjualan

Stationary Data Check

Augmented Dicky-Fuller (ADF) Test

```
Rakamin
Academy
```

```
def adf test(dataset):
    dftest = adfuller(dataset, autolag = 'AIC')
    print("1. ADF Statistic: ", dftest[0])
    print("2. p-value: ", dftest[1])
    print("3. Num of Lags: ", dftest[2])
    print("4. Num of observation used for ADF Regression: ", dftest[3])
    print("5. Critical Values: ")
   for key, val in dftest[4].items():
       print("\t",key, ":", val)
adf_test(df_regression['Qty'])
1. ADF Statistic: -19.09151387240814
2. p-value: 0.0
3. Num of Lags: 0
4. Num of observation used for ADF Regression: 364
5. Critical Values:
        1%: -3.4484434475193777
         5%: -2.869513170510808
         10%: -2.571017574266393
```

H0: Data is non-stationary H1: Data is stationary If p-value < 0.05, then reject the H0 hypothesis

Based on ADF statistic, the p-value is 0.0 < 0.05, then reject H0 and accept H1. Therefore data is stationary.

Data Training & Testing

Splitting data

80% Training, 20% Testing

```
split_size = round(df_regression.shape[0] * 0.8)

data_train = df_regression[:split_size]
data_test = df_regression[split_size:].reset_index(drop = True)
data_train.shape , data_test.shape
```

```
((292, 2), (73, 2))
```

```
plt.figure(figsize=(20,5))
sns.lineplot(data=data_train , x=data_train['Date'] , y=data_train['Qty'])
sns.lineplot(data=data_test, x=data_test['Date'], y=data_test['Qty'])
```

Data Training

	Date	Qty
0	2022-01-01	49
1	2022-01-02	50
2	2022-01-03	76
3	2022-01-04	98
4	2022-01-05	67

Data Testing

akamin

cademy

	Date	Qty
0	2022-10-20	39
1	2022-10-21	35
2	2022-10-22	56
3	2022-10-23	59
4	2022-10-24	39

Find p,d,q & AIC for ARIMA Model

Model 1 - Auto-fit ARIMA

auto_arima = pm.auto_arima(data_train, trace=True, seasonal=False, stepwise=False, suppress_warnings=True)
auto_arima.summary()

 Model:
 SARIMAX(1, 0, 1)
 Log Likelihood
 -1244.943

 Date:
 Mon, 23 Oct 2023
 AIC
 2495.886

 Time:
 06:09:33
 BIC
 2506.916

 Sample:
 01-01-2022
 HQIC
 2500.304

- 10-19-202

Covariance Type:

std err z P>|z| [0.025]0.975]ar.L1 1.0000 4.8e-05 2.08e+04 0.000 1.000 1.000 ma.L1 0.016 -60.722 0.000 -1.015-0.9830-0.951sigma2 290.0520 24.022 12.074 0.000 242.969 337.135

opg

 Ljung-Box (L1) (Q):
 0.11
 Jarque-Bera (JB):
 8.00

 Prob(Q):
 0.74
 Prob(JB):
 0.02

 Heteroskedasticity (H):
 0.70
 Skew:
 0.39

Prob(H) (two-sided): 0.08 Kurtosis: 3.24

ARIMA

2 models = Auto Regression (AR) & Moving Average (MA) 1 method = Differencing (I)

p = AR = The number of Autoregressive terms

d = I = The number of nonseasonal differences

q =MA =The number of lagged forecast errors

Best model: ARIMA(1,0,1)(0,0,0)[0]

Total fit time: 9.813 seconds

AIC = 2495.88

ARIMA (1,0,1) artinya tidak ada Differencing (0) karena stasioner, dengan Autoregression pada rangkaian 1 lag dan 1 order Moving Average diterapkan.

Autocorrelation function (ACF) & Partial Autocorrelation Function (PACF)

Model 2 - ACF & PACF Plot

```
plot_acf(data_train, lags=30)
plt.xlabel('Lags')
plt.ylabel('Autocorrelation')
plt.title('Autocorrelation Function (ACF)')

plot_pacf(data_train, lags=30)
plt.xlabel('Lags')
plt.ylabel('Autocorrelation')
plt.title('Partial Autocorrelation (PACF)')
plt.show()
```

```
SARIMAX Results
Dep. Variable:
                                          No. Observations:
                                                                                292
                                          Log Likelihood
                                                                          -1207.646
Model:
                      ARIMA(28, 0, 28)
Date:
                      Mon, 23 Oct 2023
                                          AIC
                                                                          2531.291
Time:
                               06:10:25
                                          BIC
                                                                          2744.543
Sample:
                            01-01-2022
                                          HQIC
                                                                          2616.711
                          - 10-19-2022
Covariance Type:
                                    opg
                                                    P> | z |
                                                                [0.025
                                                                             0.975]
                  coef
                          std err
```

Tail off at pattern ACF --> AR Model = 28th lag Tail off at pattern PACF --> MA Model = 28th lag

Conclusion:

p,d,q = 28,0,28 AIC = 2531.291

Find p,d,q & AIC for ARIMA Model

Model 3 - Autocorrelation Plot

autocorrelation_plot(data_train).set_xlim([0,100])

SARIMAX Results

Garis keluar pada autocorrelation dari Threshold levels = 44th lag

Conclusion:

p,d,q = 44,0,44AIC = 2559.66

ARIMA Modelling

Plot Data Train, Test, and Model Prediction

```
# Data train & Data test forecast
forecast1 = model1.get_forecast(steps = len(data_test))
forecast2 = model2.get_forecast(steps = len(data_test))
forecast3 = model3.get_forecast(steps = len(data_test))

df_forecast1 = forecast1.conf_int()
df_forecast1['Predictions'] = model1.predict(start=df_forecast1.index[0], end=df_forecast1.index[-1])
df_forecast1_out = df_forecast1['Predictions']
```


ARIMA Modelling

Plot Data Test, and Model Prediction

```
plt.figure(figsize=(20,6))
plt.plot(data_test.index, data_test['qty'], label='Actual', color='orange')
plt.plot(data_test.index, df_forecast1_out, label = 'Model 1 Prediction', color ='black', linestyle='--')
plt.plot(data_test.index, df_forecast2_out, label = 'Model 2 Prediction', color ='red', linestyle='--')
plt.plot(data_test.index, df_forecast3_out, label = 'Model 3 Prediction', color ='olive', linestyle='--')
plt.legend()
plt.title('Actual VS Predicted')
plt.show()
--- Model 2 Prediction
--- Model 3 Prediction
```


ARIMA Modelling

Actual

Model 2 Prediction

Plot Future Forecasting

```
forecast_period = 30

— Model 3 Prediction
— Model 2 Future Forecast

df_future_model2 = model2.conf_int()

df_future_model2 = future_model2.conf_int()

df_future_model2['Predictions'] = future_model2.predicted_mean

df_future_model2.index = pd.date_range(start = data_train.index[-1], periods = forecast_period + 1, closed = 'right')

df_future_model2_out = df_future_model2['Predictions']
```


MAE, MSE, RMSE, MAPE

```
mae1 = mean_absolute_error(data_test,df_forecast1_out)
mse1 = mean_squared_error(data_test,df_forecast1_out)
rmse1 = np.sqrt(mse1)
mape1 = mean absolute percentage error(data_test,df_forecast1_out)*100
```


Model 1

Mean Absolute Error (MAE) = 13.01 Mean Squared Error (MSE) = 246.15 Root Mean Squared Error (RMSE) = 15.69 Mean Absolute Percentage Error (MAPE) = 32.45%

Model 2

Mean Absolute Error (MAE) = 13.10 Mean Squared Error (MSE) = 255.45 Root Mean Squared Error (RMSE) = 15.98 Mean Absolute Percentage Error (MAPE) = 31.88%

Model 3

Mean Absolute Error (MAE) = 13.61 Mean Squared Error (MSE) = 290.53 Root Mean Squared Error (RMSE) = 17.04 Mean Absolute Percentage Error (MAPE) = 33.02%

- MAE menghitung berapa rata-rata kesalahan absolut dalam prediksi
- MSE menghitung berapa rata-rata kesalahan kuadrat dalam prediksi
- RMSE merupakan akar kuadrat dari MSE
- MAPE menghitung berapa rata-rata kesalahan dalam prediksi sebagai persentase dari nilai aktual
- Semakin kecil nilai MAE, MSE, RMSE, dan MAPE, maka semakin baik kualitas model tersebut

Kesimpulan:

Model 2 dengan p,d,q (28,0,28) menunjukkan metrik evaluasi terbaik

Forecast Quantity Sales with The Best Parameter

```
df_future_model2_out.describe()
```

count 30.000000 50.116869 mean std 7.303344 min 37.041028 25% 45.600319 50% 49.702099 75% 53.784914 68.038147 max

Name: Predictions, dtype: float64

Prediksi untuk quantity pada January 2023 adalah 50 pcs/hari

Customer Segmentations Using Kmeans Clustering

Standarisasi & Normalisasi Dataset

Create New Dataset

clust = preclust.drop(columns = 'customerid')
clust.head()

	transactionid	qty	totalamount
0	17	60	623300
1	13	57	392300
2	15	56	446200
3	10	46	302500
4	7	27	268600

Standarisasi Dataset

from sklearn.preprocessing import MinMaxScaler, StandardScaler
x = clust.values
x_std = StandardScaler().fit_transform(x)
df_std=pd.DataFrame(data=x_std, columns=clust.columns)
df_std.isna().sum()

```
transactionid 0
qty 0
totalamount 0
dtype: int64
```

Normalisasi Dataset

```
x_norm = MinMaxScaler().fit_transform(x)
x_norm
```

Elbow Method

Find k

from yellowbrick.cluster import KElbowVisualizer
visualizer = KElbowVisualizer(model1, k=(2,10))
visualizer.fit(x_std)
visualizer.show()

Input Cluster to dataset

clust['cluster']=kmeans_4.labels_
clust.head()

	transactionid	qty	totalamount	cluster
0	17	60	623300	2
1	13	57	392300	3
2	15	56	446200	3
3	10	46	302500	0
4	7	27	268600	1

KMeans Clustering Customer Segmentation (Rakamin)


```
clust['customerID']=preclust['customerid'].astype('category')
#create scatter plot
plt.figure(figsize=(10,6))
sns.scatterplot(data=clust ,x='qty',y='totalamount', hue='cluster', palette='Spectral', sizes=70)
plt.xlabel('Quantity')
plt.ylabel('Total Amount')
plt.title('KMeans Clustering Customer Segmentation')
plt.legend(title='Cluster')
plt.show()
```


	customerID	qty	totalamount	
cluster				
0	180	37.350000	325663.333333	
3	115	49.121739	437241.739130	
1	93	24.505376	208283.870968	
2	56	62.035714	576716.071429	

KMeans Clustering Customer Segmentation

Cluster 0

Insight:

- Cluster 0 is the cluster with the most largest number of customers
- · Cluster 0 has the second lowest average of quantity and total amount

Conclusion: Cluster 0 needs to get promotion

Strategy:

- 1. Give special offering and discount
- 2. Offer bundling product

Cluster 2

Insight:

- Cluster 2 is the cluster with the smallest number of customers
- Cluster 2 has the largest average of quantity and total amount

Conclusion: Cluster 2 is the customer that valuable to the business

Strategy:

- 1. Offer bundling product
- 2. Offer loyalty membership

Cluster 1

Insight:

- Cluster 1 is the cluster with the second fewest number of customers
- · Cluster 1 has the lowest average of quantity and total amount

Conclusion: Cluster 1 is customer that need to give more brand awareness

Strategy:

- 1. Give special offering and discount for new member
- 2. Engage current customers to help attract new customers with referral codes
- 3. Collaborate with influencers to promote products

Cluster 3

Insight:

- Cluster 3 is the cluster with the second largest number of customers
- · Cluster 3 has the second largest average of quantity and total amount

Conclusion: Cluster 3 is the customer that has potential of upselling

Strategy:

- 1. Offer bundling product
- 2. Offer loyalty membership

Thank You

