

Disease Progression Analysis of typical Alzheimers Disease and Posterior Cortical Atrophy

Razvan Valentin Marinescu

Center for Medical Image Computing, University College London

15 November 2016

Alzheimer's Disease and Posterior Cortical Atrophy

Alzheimer's disease (AD):

- A neurodegenerative disorder that is the usual cause of dementia (60-70% of cases)
- Symptoms: memory loss, problems with language and disorientation, mood swings, loss of motivation

Posterior Cortical Atrophy (PCA):

- "Sub-type" of AD that affects the posterior part of the brain
- Symptoms: loss of vision, problems navigating through space, loss of memory only in later stages

The development of drugs for AD requires:

- Accurate staging of patients
- A good understanding of the progression of biomarkers
- Taking into account the cohort heterogeneity

Solution: Disease Progression Models

- Develop and improve disease progression models (DPMs)
- Study the progression of typical AD and PCA
- Evaluate the performance of DPMs

- PCA vs tAD Analysis
- 2 Performance Evaluation
- 3 Voxelwise Disease Progression Model (VDPM)

PCA and tAD Analysis

Clinical questions. We want to find differences in timing and rates of atrophy:

- across different brain regions
- in PCA compared to AD

Methods:

- Event-Based Model (EBM)
- Differential Equation Model (DEM)

EBM - Results in Posterior Cortical Atrophy

(a) Progression of brain volume loss

(b) Subject staging

EBM - Results in typical AD

(a) Progression of brain volume loss

(b) Subject staging

DEM - PCA vs tAD progression across ROIs

Conclusion:

- In tAD, the hippocampus and entorhinal areas become abnormal earlier
- In PCA, the occipital and parietal regions becomes abnormal earlier

Overview

- PCA vs tAD Analysis
- Performance Evaluation
- 3 Voxelwise Disease Progression Model (VDPM)

Aim

Evaluate the performance of:

- different disease progression models
- different fitting procedures

Methods

- Implemented improved fitting procedures for EBM (2 methods) and DEM (1 method)
- Tested if the improved fitting procedures perform better
- Performed the evaluation on two datasets: ADNI and DRC

Model	Staging Consistency		Time-lapse	
	Hard	Soft	Hard	Soft
EBM - Standard	0.91 ± 0.16	0.71 ± 0.07	-	-
EBM - Sampling	0.96 ± 0.07	0.76 ± 0.10	-	-
EBM - EM	0.99 ± 0.01	0.72 ± 0.07	-	-
DEM - Standard	0.87 ± 0.10	0.88 ± 0.08	0.72 ± 0.91	0.67 ± 0.92
DEM - Optimised	0.87 ± 0.10	0.88 ± 0.08	$\textbf{0.74} \pm \textbf{0.92}$	$\textbf{0.69} \pm \textbf{0.92}$

Table: tAD subjects from DRC cohort.

Conclusion: Improved methods showed better or equal performance compared to standard methods.

Overview

- PCA vs tAD Analysis
- 2 Performance Evaluation
- **3 Voxelwise Disease Progression Model (VDPM)**

Motivation:

- Estimate a fine-grained spatial distribution of atrophy
 - without a-priori defined ROIs

Method:

- New model that groups vertices into clusters and stages subjects
- Clusters contain vertices with similar biomarker evolution
- Fitting using Generalised Expectation-Maximisation

VDPM Results - ADNI and DRC cohorts

Conclusion: We can see a fine-grained spatial distribution of atrophy.

Acknowledgements

Daniel Alexander

Sebastian Crutch

Timothy Shakespeare

Neil Oxtoby

Alexandra Young

Medical Imaging

