Research interests

Shibo Liu

Florida Institute of Technology

```
http://lausb.github.io
sliu@fit.edu
```

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

Typical example
$$(\Omega \subset \mathbb{R}^N)$$

$$-\Delta u + V(x)u = f(u) \quad \text{in } \Omega,$$

$$u=0$$
 on $\partial\Omega$,

$$\nabla u = (u_{x_1}, \dots, u_{x_N})$$

$$\Delta u = \operatorname{div}(\nabla u) = \sum_{i=1}^{N} u_{x_i x_i}$$

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

Typical example $(\Omega \subset \mathbb{R}^N)$

$$-\Delta u + V(x)u = f(u) \quad \text{in } \Omega, \qquad \qquad \nabla u = (u_{x_1}, \dots, u_{x_N})$$

$$u = 0 \quad \text{on } \partial \Omega, \qquad \Delta u = \text{div}(\nabla u) = \sum_{i=1}^N u_{x_i x_i}$$

whose solutions are critical points ($\Phi'(u) = 0$) of

$$\Phi(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + V(x)u^2) - \int_{\Omega} F(u).$$

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

Typical example $(\Omega \subset \mathbb{R}^N)$

$$-\Delta u + V(x)u = f(u)$$
 in Ω , $\nabla u = (u_{x_1}, \dots, u_{x_N})$ $u = 0$ on $\partial \Omega$, $\Delta u = \operatorname{div}(\nabla u) = \sum_{i=1}^N u_{x_i x_i}$

whose solutions are critical points ($\Phi'(u) = 0$) of

$$\Phi(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + V(x)u^2) - \int_{\Omega} F(u).$$

Keywords Critical Point Theory, Variational Methods,

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

Typical example $(\Omega \subset \mathbb{R}^N)$

$$-\Delta u + V(x)u = f(u)$$
 in Ω , $\nabla u = (u_{x_1}, \dots, u_{x_N})$ $u = 0$ on $\partial \Omega$, $\Delta u = \operatorname{div}(\nabla u) = \sum_{i=1}^N u_{x_i x_i}$

whose solutions are critical points ($\Phi'(u) = 0$) of

$$\Phi(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + V(x)u^2) - \int_{\Omega} F(u).$$

Keywords Critical Point Theory, Variational Methods,

Palais-Smale sequences $(\Phi'(u_n) \to 0, \Phi(u_n) \to c)$

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

Typical example $(\Omega \subset \mathbb{R}^N)$

$$-\Delta u + V(x)u = f(u) \quad \text{in } \Omega, \qquad \qquad \nabla u = (u_{x_1}, \dots, u_{x_N})$$

$$u = 0 \quad \text{on } \partial \Omega, \qquad \Delta u = \text{div}(\nabla u) = \sum_{i=1}^N u_{x_i x_i}$$

whose solutions are critical points ($\Phi'(u) = 0$) of

$$\Phi(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + V(x)u^2) - \int_{\Omega} F(u).$$

Keywords Critical Point Theory, Variational Methods, Palais-Smale sequences $(\Phi'(u_n) \to 0, \Phi(u_n) \to c)$

Prerequisites ODEs, Basic PDEs, Lebesgue integral

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

Typical example $(\Omega \subset \mathbb{R}^N)$

$$-\Delta u + V(x)u = f(u) \quad \text{in } \Omega, \qquad \qquad \nabla u = (u_{x_1}, \dots, u_{x_N})$$

$$u = 0 \quad \text{on } \partial \Omega, \qquad \Delta u = \text{div}(\nabla u) = \sum_{i=1}^N u_{x_i x_i}$$

whose solutions are critical points ($\Phi'(u) = 0$) of

$$\Phi(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + V(x)u^2) - \int_{\Omega} F(u).$$

Keywords Critical Point Theory, Variational Methods, Palais-Smale sequences $(\Phi'(u_n) \to 0, \Phi(u_n) \to c)$

Prerequisites ODEs, Basic PDEs, Lebesgue integral Topology, Banach & Hilbert spaces, Linear operators

We are concerned on existence and multiplicity of solutions for certain nonlinear differential equations.

Typical example
$$(\Omega \subset \mathbb{R}^N)$$

$$-\Delta u + V(x)u = f(u) \quad \text{in } \Omega,$$

$$\nabla u = (u_{x_1}, \dots, u_{x_N})$$

$$u = 0$$

u = 0on ∂Ω.

$$\Delta u = \operatorname{div}(\nabla u) = \sum_{i=1}^{N} u_{x_i x_i}$$

whose solutions are critical points $(\Phi'(u) = 0)$ of

$$\Phi(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + V(x)u^2) - \int_{\Omega} F(u).$$

Keywords Critical Point Theory, Variational Methods, Palais-Smale sequences $(\Phi'(u_n) \to 0, \Phi(u_n) \to c)$

Prerequisites ODEs, Basic PDEs, Lebesgue integral

Topology, Banach & Hilbert spaces, Linear operators Nonlinear Functional Analysis (differential calculus in ∞-dim spaces)

Critical Point Theory, Algebraic Topology, Differential Geometry

$$-\text{div}(|\nabla u|^{p-2}\nabla u + |\nabla u|^{q-2}\nabla u) = \lambda h(x)|u|^{r-2}u + g(x)|u|^{p^*-2}u \quad \text{in } \mathbb{R}^N.$$
 Arbitrary m pairs of solutions are found for $\lambda \gg 1$.

Shibo Liu

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u + |\nabla u|^{q-2}\nabla u) = \lambda h(x)|u|^{r-2}u + g(x)|u|^{p^*-2}u \quad \text{in } \mathbb{R}^N.$$

Arbitrary m pairs of solutions are found for $\lambda \gg 1$. Critical exponent p^* , unbounded domain \mathbb{R}^N .

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u+|\nabla u|^{q-2}\nabla u)=\lambda h(x)|u|^{r-2}u+g(x)|u|^{p^*-2}u\quad\text{in }\mathbb{R}^N.$$
 Arbitrary m pairs of solutions are found for $\lambda\gg 1$.

Critical exponent p^* , unbounded domain \mathbb{R}^N .

* Bull. Aust. Math. Soc., 110 (2024) $-\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) + b(x)|u|^{p(x)-2}u = f(x,u) \quad \text{in } \Omega.$ Variable exponent p(x).

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u+|\nabla u|^{q-2}\nabla u)=\lambda h(x)|u|^{r-2}u+g(x)|u|^{p^*-2}u\quad\text{in }\mathbb{R}^N.$$
 Arbitrary m pairs of solutions are found for $\lambda\gg 1$.

- Critical exponent p^* , unbounded domain \mathbb{R}^N .
- * Bull. Aust. Math. Soc., 110 (2024) $-\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) + b(x)|u|^{p(x)-2}u = f(x,u) \quad \text{in } \Omega.$ Variable exponent p(x).
- * Amer. Math. Monthly 130 (2023)
 A simple new proof of Gagliardo-Nirenberg-Sobolev Inequality

$$\int_{\mathbb{R}^N} |u|^{N/(N-1)} \, \mathrm{d}x \le \left(\int_{\mathbb{R}^N} |\nabla u| \, \mathrm{d}x \right)^{N/(N-1)}.$$

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u+|\nabla u|^{q-2}\nabla u)=\lambda h(x)|u|^{r-2}u+g(x)|u|^{p^*-2}u\quad\text{in }\mathbb{R}^N.$$
 Arbitrary m pairs of solutions are found for $\lambda\gg 1$.

Critical exponent p^* , unbounded domain \mathbb{R}^N .

- * Bull. Aust. Math. Soc., 110 (2024) $-\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) + b(x)|u|^{p(x)-2}u = f(x,u) \quad \text{in } \Omega.$ Variable exponent p(x).
- * Amer. Math. Monthly 130 (2023)
 A simple new proof of Gagliardo-Nirenberg-Sobolev Inequality

$$\int_{\mathbb{R}^N} |u|^{N/(N-1)} \, \mathrm{d}x \le \left(\int_{\mathbb{R}^N} |\nabla u| \, \mathrm{d}x \right)^{N/(N-1)}.$$

* Calc. Var. PDEs, 62 (2023) (S. Liu & L. Yin)

$$-\Delta u - u\Delta(u^2) = k(x)|u|^{q-2}u - h(x)|u|^{s-2}u \quad \text{in } \mathbb{R}^N.$$

Quasilinear, the exponent s can be supercritical.

Thank you!

http://lausb.github.io