Расчет на долговечность подшипников входного вала.

Исходя из ГОСТ 8338-75 «Подшипники однорядные шариковые радиальный» выбираем однорядный шариковый радиальный подшипник лёгкой серии с диаметром внутреннего кольца 15 мм.

Подшипник 102 (d = 15 мм, D = 32 мм, b = 9 мм, $C_r = 5.6$ кH, $C_{0r} = 2.5$ кH).

Зададим коэффициенты:

V = 1 - при вращении внутреннего кольца;

 $K_{\delta} = 1.6 -$ коэффициент безопасности;

 K_T = 1 – температурный коэффициент ($t \le 100$ °C).

Определяем суммарные радиальные реакции подшипников R_A и R_B:

$$R_A = \sqrt{R_A^{\rm B^2} + R_A^{\rm \Gamma^2}} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H};$$

$$R_B = \sqrt{R_B^{B^2} + R_B^{\Gamma^2}} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H}.$$

Определяем соотношение:

$$\frac{F_a}{C_{or}} = \frac{0}{2500} = 0,$$

Где F_a – осевая сила на шестерне [H];

 C_{or} – статическая грузоподъёмность [H].

По таблице определяем коэффициенты радиальной X и осевой Y нагрузок:

$$X_I = 1$$

$$Y_1 = 0$$

Определяем эквивалентную нагрузку:

$$P = V \cdot X \cdot R_{\Sigma} \cdot K_{\delta} \cdot K_{T}$$

Где V = 1 – коэффициент вращения (при вращении внутреннего кольца);

 $K_{\delta} = 1,3 \dots 1,8 -$ коэффициент безопасности (при умеренных толчках),

Принимаем $K_{\delta} = 1.8$

 $K_T = 1$ — температурный коэффициент (при $t \le 100$ °C).

$$P_1 = X_1 V R_A K_{\delta} K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,8 \cdot 1 = 739,323 \text{ H};$$

$$P_2 = X_2 V R_B K_{\delta} K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,8 \cdot 1 = 739,323 \text{ H};$$

Определяем расчетную долговечность подшипников:

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C_r}{p}\right)^m \ge [L]_h;$$

Где $[L]_h = (2 \dots 40) \cdot 10^3$ – допускаемая долговечность подшипника.

Принимаем $[L]_h = 30 \cdot 10^3$,

m = 3 – коэффициент учитывающий тип подшипников (шариковые),

n =232,2 об/мин — частота вращения входного вала.

$$n = n_{\text{вых}} \cdot U = 86 \cdot 2,7 = 232,2 \frac{\text{об}}{\text{мин}}.$$

$$L_h = \frac{10^6}{60 \cdot n_{\text{BLY}}} \left(\frac{C_r}{p}\right)^m = \frac{10^6}{60 \cdot 232.2} \left(\frac{6380}{1248.32}\right)^3 \approx 31192.3 \text{ y};$$

 $L_h = 31192$,3 ч $> [L]_h = 30000$ ч - условие выполняется.

Тип менее нагруженного подшипника принимаем таким же, как и более нагруженный подшипник.

Выбираем аналогичный подшипник и для опоры В

Расчёт на долговечность подшипников выходного вала.

Выбираем подшипники шариковые радиальные однорядные средней серии, исходя из ГОСТ 8338-75.

Подшипник 101 (d = 12 мм, D = 28 мм, b = 8 мм, C_r = 5,07 кH, C_{or} = 2,24 кH)

Определяем суммарные реакции подшипников:

$$R_A = \sqrt{R_A^{\rm B^2} + R_A^{\rm \Gamma^2}} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H};$$

$$R_B = \sqrt{R_B^{B^2} + R_B^{\Gamma^2}} = \sqrt{140,48^2 + 385,965^2} = 410,735 \text{ H}.$$

Определяем соотношение:

$$\frac{F_a}{C_{or}} = \frac{0}{2240} = 0,$$

где F_a – осевая сила на шестерне [H];

 C_{or} – статическая грузоподъёмность [H].

Определяем коэффициенты радиальной и осевой нагрузки:

$$X_1 = 1;$$

 $Y_1 = 0.$

Эквивалентная нагрузка

$$P = V \cdot X \cdot R_{\Sigma} \cdot K_{\delta} \cdot K_{T} ,$$

Где V=1 – коэффициент вращения (при вращении внутреннего кольца); $K_{\delta}=1$,3 ... 1,8 — коэффициент безопасности (при умеренных толчках), Принимаем $K_{\delta}=1$,6

 $K_T = 1$ — температурный коэффициент (при $t \le 100$ °C).

$$P_1 = X_1 V R_A K_\delta K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,6 \cdot 1 = 657,176 \text{ H};$$

 $P_2 = X_2 V R_B K_\delta K_T = 1 \cdot 1 \cdot 410,735 \cdot 1,6 \cdot 1 = 657,176 \text{ H};$

Определяем расчётную долговечность подшипников:

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C_r}{P}\right)^m \ge [L_h],$$

где $[L_h] = (2 \dots 40) \cdot 10^3 \,\mathrm{ч}$ — допускаемая долговечность подшипников.

Принимаем $[L_h] = 30 \cdot 10^3$ ч.

m = 3 - коэффициент, учитывающий тип подшипника(шариковый).

n = 86 об/мин — частота вращения выходного вала.

Вычисляем расчётную долговечность подшипников:

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C_r}{P}\right)^m = \frac{10^6}{60 \cdot 86} \left(\frac{5070}{657,176}\right)^3 = 32958,3 \text{ ч};$$

 $L_h = 32958,3 \; {
m ч} \; > [L_h] = 30 \cdot 10^3 \, {
m ч}. \; - \;$ условие выполняется.