

CLAIMS

What is claimed is:

- 1 1. A photovoltaic device, comprising:
 - 2 a nanostructured template made from an n-type first charge transfer-material, the
 - 3 nanostructured template having template elements between about 1 nm and about
 - 4 500 nm in diameter with a template element density of between about 10^{12}
 - 5 elements /m² and about 10^{16} elements /m²;
 - 6 a second charge-transfer material conformally coating one or more walls of the
 - 7 template elements leaving additional space, wherein the first charge-transfer
 - 8 material is n-type and the second charge-transfer is p-type; and
 - 9 a third material in the additional space, wherein the third material is a p-type or
 - 10 conducting material that volumetrically interdigitates with the second charge-
 - 11 transfer material,
 - 12 wherein a lowest unoccupied molecular orbital (LUMO) or conduction band of
 - 13 the first charge-transfer material differs from a LUMO or conduction band of the
 - 14 second charge-transfer material by less than about 1 eV, wherein a light
 - 15 absorbance of at least one charge transfer material is greater than about 10^3 /cm at
 - 16 the peak of the absorption spectrum.
- 1 2. The device of claim 1 wherein the third charge-transfer material in the form of
- 2 one or more elongated structures that volumetrically interdigitate with the second
- 3 charge transfer material.
- 1 3. The device of claim 2, further comprising a base electrode and a top electrode,
- 2 wherein the nanostructured template is disposed between the base electrode and
- 3 top electrode.
- 1 4. The device of claim 3, wherein the first charge-transfer material is in electrical
- 2 contact with the base electrode and the third charge-transfer material is in contact
- 3 with the top electrode.

- 1 5. The device of claim 3, further comprising one or more plugs of material at the tips
2 of the elongated structures, wherein the plugs protect against undesired electrical
3 contact between the third charge-transfer material and the template and/or base
4 electrode.
 - 1 6. The device of claim 3 wherein the third charge-transfer material is a transparent
2 conductive material.
 - 1 7. The device of claim 3 wherein the third charge-transfer material includes an
2 organic semiconducting material.
 - 1 8. The device of claim 7 wherein the third charge transfer material has a different
2 light absorption range and/or a different HOMO/LUMO level than the second
3 charge transfer material.
 - 1 9. The device of claim 2 wherein one or more of the base electrode and top is a
2 transparent electrode.
 - 1 10. The device of claim 1 wherein the first charge-transfer material is an inorganic
2 material and the second and third charge-transfer materials are organic materials.
 - 1 11. The device of claim 1 wherein the first charge-transfer material is an electrically
2 semiconductive or conductive material.
 - 1 12. The device of claim 1 wherein the second charge transfer material coats the
2 template elements up to a level that is substantially even with an upper surface of
3 the template.
 - 1 13. The device of claim 1 wherein the first, second, or third charge-transfer material
2 includes one or more materials from the group of titanium oxide, zinc oxide
3 (ZnO), copper oxide, copper sulfide, zirconium oxide, lanthanum oxide, niobium
4 oxide, tungsten oxide, tin oxide, indium tin oxide (ITO), strontium oxide,
5 calcium/titanium oxide, indium oxide, vanadium oxide, zirconium oxide,
6 molybdenum oxide, vanadium oxide, strontium oxide, sodium titanate, potassium

7 niobate, silicon, tungsten oxide, cadmium selenide (CdSe), zinc selenide (ZnSe),
8 cadmium sulfide (CdS), cadmium telluride (CdTe), cadmium selenide (CdSe),
9 cadmium telluride selenide (CdTeSe), CIS, CISe, CIGS (CuInGaSe_2), copper-
10 indium selenide, cadmium oxide, or blends or alloys of two or more of these
11 materials.

- 1 14. The device of claim 1 wherein the first charge-transfer material includes a
2 transparent conductive oxide.
- 1 15. The device of claim 15 wherein the first charge-transfer material includes
2 titanium oxide or zinc oxide.
- 1 16. The device of claim 15, wherein the second charge-transfer material is a p-type
2 semiconducting material.
- 1 17. The device of claim 1, further comprising an interfacial layer disposed between
2 the first and second charge-transfer materials.
- 1 18. The device of claim 17 wherein the interfacial layer includes one or more
2 materials chosen from the group of fullerenes, doped fullerenes, functionalized
3 fullerenes, $\text{C}_{60}\text{-COOH}$, doped functionalized fullerenes, azafullerenes,
4 polymerized fullerenes (doped or undoped), functionalized polymerized fullerenes
5 (doped or undoped), phenyl- C_{61} -butyric acid methyl ester (PCBM), carbon
6 nanotubes, dyes, ruthenium dyes, pigments, organic monomers, oligomers, and
7 polymers, tetra-hydro-thiophene precursor polymers and derivatives thereof, poly-
8 phenylene-vinylene and derivatives thereof, conjugated polymers, and/or blends
9 of these materials.
- 1 19. The device of claim 17 wherein the interfacial layer includes one or more
2 chemicals that can covalently attach to the first charge-transfer material and
3 change a surface energy and/or bonding trap-states and/or attach to dangling-
4 bonds at an exposed surface of the first charge-transfer material and/or introduce a
5 dipole layer that may increase the efficiency for charge extraction and/or reduce
6 detrimental charge recombination.

- 1 20. The device of claim 17 wherein the interfacial layer includes C₆₀ or other
2 fullerenes functionalized with a carboxylic acid moiety.

1 21. The device of claim 1 wherein the second charge-transfer material includes two or
2 more complementary charge-transfer materials that are blended together.

1 22. The device of claim 1 wherein the second and third charge-transfer materials are
2 both organic materials.

1 23. The device of claim 1 wherein the one or more of the second or third charge-
2 transfer materials includes a material chosen from the group of thiophene-,
3 fluorine- or aryl-vinyl- based polymers, copolymers or blends, poly(phenylene)
4 and derivatives thereof, poly(phenylene vinylene) and derivatives thereof, poly(2-
5 methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene (MEH-PPV), poly(para-
6 phenylene vinylene), (PPV), PPV copolymers, poly(thiophene) and derivatives
7 thereof, poly(3-octylthiophene-2,5,-diyl) regioregular, poly(3-octylthiophene-2,5,-
8 diyl) regiorandom, poly (3-hexylthiophene) (P3HT), poly(3-hexylthiophene-2,5,-
9 diyl) regioregular, poly(3-hexylthiophene-2,5-diyl) regiorandom,
10 poly(thienylenevinylene) and derivatives thereof, poly(isothianaphthene) and
11 derivatives thereof, tetra-hydro-thiophene precursors and derivatives thereof,
12 poly-phenylene-vinylene and derivatives, organometallic polymers, polymers
13 containing perylene units, poly(squaraines) and their derivatives, discotic liquid
14 crystals polyfluorenes, polyfluorene copolymers, polyfluorene-based copolymers
15 and blends, polyfluorene-based copolymers co-polymerized and/or blended with
16 charge transporting compounds , polyfluorene-based copolymers co-polymerized
17 and/or blended with tri-phenyl-amines and/or derivatives, polyfluorene-based
18 copolymers co-polymerized and/or blended with light-absorbing compounds,
19 polyfluorene-based copolymers co-polymerized and/or blended with fused
20 thiophene rings and derivatives or hetero-atom ring compounds with or without
21 substituents, pigments, dyes, or fullerenes, and mixtures of these materials.

- 1 24. The device of claim 1, wherein one or more of the second and third charge-
2 transfer material is a pigment, dye or small molecule chosen from the group of
3 organic pigments or dyes, azo-dyes having azo chromophores (-N=N-) linking
4 aromatic groups, phthalocyanines including metal-free phthalocyanine; (HPc),
5 Zinc phthalocyanine (ZnPc), Copper phthalocyanine (CuPc), perylenes,
6 naphthalocyanines, squaraines, merocyanines and their respective derivatives,
7 poly(silanes), poly(germinates), 2,9-Di(pent-3-yl)-anthra[2,1,9-def:6,5,10-
8 d'e'f]diisoquinoline-1,3,8,10-tetrone, and 2,9-Bis-(1-hexyl-hept-1-yl)-
9 anthra[2,1,9-def:6,5,10-d'e'f]diisoquinoline-1,3,8,10-tetrone, pentacene and/or
10 pentacene precursors, and mixtures of two or more of these materials.
- 1 25. The device of claim 1 wherein one or more of the second or third charge-transfer
2 materials includes one or more materials chosen from the group of fullerenes,
3 doped fullerenes, functionalized fullerenes, doped functionalized fullerenes,
4 azafullerenes, polymerized fullerenes (doped or undoped), functionalized
5 polymerized fullerenes (doped or undoped), carbon nanotubes, dyes, ruthenium
6 dyes, pigments, organic monomers, oligomers, and polymers, tetra-hydro-
7 thiophene precursor polymers and derivatives thereof, poly-phenylene-vinylene
8 and derivatives thereof, conjugated polymers, and mixture of these materials.
- 1 26. The device of claim 1 wherein the template elements are in the form of hollow
2 tubes that protrude from the template with spaces between the sidewalls of the
3 tubes.
- 1 27. The device of claim 1 wherein the third charge transfer material includes one or
2 more transparent conducting materials.
- 1 28. The device of claim 27 wherein the one or more transparent conducting materials
2 include PEDOT, PEDOT doped with a dopant PEDOT doped with polystyrene
3 sulfonic acid (PSS), doped 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-
4 9,9'-spirobifluorene (doped *spiro-MeOTAD*), doped spiro-MeOTAD, polyaniline

- 5 doped with a dopant, and/or polyaniline doped with a dopant polystyrene sulfonic
6 acid (PSS)).
- 1 29. The device of claim 27 wherein the one or more transparent conducting materials
2 conformally coat and interdigitate into the second charge transfer material.
- 1 30. The device of claim 1 wherein the second and third charge-transfer materials are
2 both inorganic materials.
- 1 31. The device of claim 1 wherein the second and third charge transfer materials are
2 the same material.
- 1 32. A photovoltaic device, comprising:
2 a base electrode;
3 a top electrode;
4 a nanostructured template disposed between the base electrode and top electrode,
5 wherein the nanostructured template is made of an n-type material, the
6 nanostructured template having template elements between about 1 nm and about
7 500 nm in diameter with a template element density of between about 10^{12}
8 elements /m² and about 10^{16} elements /m²;
9 a p-type material coating on one or more walls of the template elements in a way
10 that leaves additional space; and
11 a charge-transfer material in the additional space, wherein the charge-transfer
12 material volumetrically interdigitates with the p-type material.
- 1 33. A method for making a photovoltaic device, comprising the steps of:
2 forming a nanostructured template from a first charge-transfer material, the
3 nanostructured template having template elements between about 1 nm and about
4 500 nm in diameter with a template element density of between about 10^{12}
5 elements /m² and about 10^{16} elements /m²;
6 coating one or more walls of the template elements with a second charge-transfer
7 material in a way that leaves additional space, wherein the second charge-transfer
8 material has complementary charge-transfer properties with respect to the first

- 9 charge-transfer material; and
10 filling the additional space with a third charge-transfer material.
- 1 34. The method of claim 33 wherein the first charge-transfer material includes
2 titanium oxide or zinc oxide.
- 1 35. The method of claim 33 wherein forming a nanostructured template includes
2 anodizing a layer of metal.
- 1 36. The method of claim 33 further comprising disposing an interfacial layer between
2 the second and third charge transfer materials.
- 1 37. The method of claim 33 wherein the third charge-transfer material includes one or
2 more elongated structures that interdigitate with the second charge transfer
3 material.
- 1 38. The method of claim 37 further comprising capping one or more tips of the
2 elongated structures with a short-proofing material.
- 1 39. The method of claim 33 wherein coating one or more walls of the template
2 elements with the second charge-transfer material includes depositing the second
3 charge transfer material on the walls of the nanostructured template.
- 1 40. The method of claim 39 wherein depositing the second charge transfer material on
2 the walls of the nanostructured template includes the use of a technique selected
3 from the group of electrochemical deposition, electroless (chemical bath)
4 deposition, layer-by-layer deposition, evaporation, sputtering, plating, ion-plating,
5 molecular beam epitaxy, and sol-gel based deposition, spray pyrolysis, vapor-
6 phase deposition, solvent vapor deposition, atomic layer deposition, plasma-
7 enhanced atomic layer deposition, atomic vapor deposition, metal-organic vapor
8 phase deposition, metal-organic-vapor-phase epitaxy, chemical vapor deposition,
9 metal-organic chemical vapor deposition, plasma enhanced chemical vapor
10 deposition, self-assembly, electro-static self-assembly, melt-filling/coating
11 electro-deposition, electro-plating, ion-plating, or liquid phase deposition.

- 1 41. The method of claim 33 wherein filling the additional space with the third charge
2 transfer material includes depositing the third charge transfer material by a
3 technique selected from the group of electrochemical deposition, electroless
4 (chemical bath) deposition, layer-by-layer deposition, evaporation, sputtering,
5 plating, ion-plating, molecular beam epitaxy, and sol-gel based deposition, spray
6 pyrolysis, vapor-phase deposition, solvent vapor deposition, atomic layer
7 deposition, plasma-enhanced atomic layer deposition, atomic vapor deposition,
8 metal-organic vapor phase deposition, metal-organic-vapor-phase epitaxy,
9 chemical vapor deposition, metal-organic chemical vapor deposition, plasma
10 enhanced chemical vapor deposition, self-assembly, electro-static self-assembly,
11 melt-filling/coating electro-deposition, electro-plating, ion-plating, or liquid phase
12 deposition.

- 1 42. The method of claim 33 wherein the third charge transfer material includes one or
2 more transparent conducting materials.

- 1 43. The method of claim 42 wherein the one or more transparent conducting materials
2 include PEDOT, PEDOT doped with a dopant PEDOT doped with polystyrene
3 sulfonic acid (PSS), doped 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-
4 9,9'-spirobifluorene (doped *spiro-MeOTAD*), doped spiro-MeOTAD, polyaniline
5 doped with a dopant, and/or polyaniline doped with polystyrene sulfonic acid
6 (PSS)).

- 1 44. The method of claim 42 wherein the one or more transparent conducting materials
2 conformally coat and interdigitate into the second charge transfer material.

- 1 45. The method of claim 44 wherein the one or more transparent conducting materials
2 include PEDOT, PEDOT doped with a dopant PEDOT doped with polystyrene
3 sulfonic acid (PSS), doped 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-
4 9,9'-spirobifluorene (doped *spiro-MeOTAD*), polyaniline doped with a dopant,
5 and/or polyaniline doped with polystyrene sulfonic acid (PSS)).