

SI100B Introduction to Information Science and Technology (Electrical Engineering)

Lecture #3 (Digital)
Combinational Logic Circuits

Instructor: Junrui Liang (梁俊睿)

Sept. 23rd, 2022

The Theme Story

(Pictures are from the Internet)

Study Purpose of Lecture #3

- 哲学(bao'an)三问
 - Who are you?
 - Where are you from?
 - Where are you going?

To answer those questions throughout your life

- In this lecture, we ask
 - How many categories of circuits are there?
 - Why digital circuits 数字电路 won in computation & communication?
 - How to build combinational logic circuits 组合逻辑电路?

Lecture Outline

- 1. Circuit categories 电路种类
- 2. Boolean logic 布尔逻辑
- 3. Logic gates 逻辑门电路
- 4. Combinational logic circuit 组合逻辑电路
 - Example: majority circuit 投票选举电路实例

----- (break) -----

- 5. Combinational Logic Circuits Design 组合逻辑电路设计
 - Boolean algebra 布尔代数
 - Truth table 真值表
 - Karnaugh map 卡诺图
 - Example: decoder design 解码器设计实例

Four typical circuit categories

• Passive 被动/无源

• Digital 数字

• Analog 模拟

Electrical circuits for different application purposes

Boolean logic

- George Boole (1815 1864)
- Values
 - Boolean algebra
 allows only two
 values—0 and 1
 - The beauty of the digital abstraction is that digital designers can focus on 1's and 0's, ignoring whether the Boolean variables are physically represented with specific voltages, rotating gears, etc.

- Basic operations
 - AND (conjunction) 与 xy
 - OR (disjunction) 或 x + y
 - NOT (negation) $\ddagger \overline{x}$

x/\y

Logic 0	Logic 1
False	True
Off	On
LOW	HIGH
No	Yes
Open switch	Closed switch

x	y	$x \wedge y$	$x \lor y$	\boldsymbol{x}	$\neg x$
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1		
1	1	1	1		

Basic logic gates

NOT gate

OR gate

AND gate

b = 1						
	Y=	ABC	D			
Α	В	С	D	Y		
0			0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	0		
0	1	1	0	0		
0	1	1	1	0		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	0		
0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 1 1 1 0 0 0	1 0 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0		
1	1	1	0	0		
1	1 1	1	1	1		

AND4

Buffer

Logic gate implementation

Mechanical way

Electrical way

Physical layout

A 3D-view of the CMOS implementation

Input	Output
1	0
0	1

CMOS implementation of a buffer

- Why we need a buffer?
 - Logical (virtual) representation

Physical implementation

- From the logical point of view, a buffer might seem useless 逻辑上没有意义
- From the analog point of view, the buffer might have desirable characteristics such as the ability to deliver large amounts of current to drive a motor or many gates 物理上增强驱动能力
- This is an example of why we need to consider multiple levels of abstraction to fully understand a system; the digital abstraction hides the real purpose of a buffer.

The physical considerations

 Noise Driver Receiver margins Output Characteristics V_{DD} Input Characteristics Logic High Logic High Output Range 🗸 Input Range $\sqrt{NM_H}$ Forbidden Zone **♣**NM_L V_{OL} Logic Low Logic Low Input Range Output Range \ GND

• DC transfer characteristics

Physical chip

 A digital clock built with 74LSxx chips

Other logic gates

异或门

与非门

或非门

同或门

三输入或非门

XOR

$$Y = A \oplus B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

XNOR

$$Y = \overline{A \oplus B}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

NOR3

$$Y = \overline{A + B + C}$$

Α	В	C	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Digital electronics

Combinational logic circuit

- Output depends on
 - Present input values
- No memory

Sequential logic circuit

- Output depends on
 - Present inputs
 - The history of past inputs
- Have memory

Circuit implementation

- 3 input majority function
 - Truth table

S1	S2	S3	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Logic expression

$$Y = AB + BC + AC$$
$$= \overline{AB} \, \overline{BC} \, \overline{AC}$$

Boolean algebra

• Axioms 公理

Theorems of one variable

A1 $B = 0$ if $B \neq 1$ A1' $B = 1$ if $B \neq 0$ Binary field T1 $B \bullet 1 = B$ T1' $B + 0 = B$ Identity A2 $\overline{0} = 1$ A2' $\overline{1} = 0$ NOT T2 $B \bullet 0 = 0$ T2' $B + 1 = 1$ Null Element A3 $0 \bullet 0 = 0$ A3' $1 + 1 = 1$ AND/OR T3 $B \bullet B = B$ T3' $B + B = B$ Idempotency A4 $1 \bullet 1 = 1$ A4' $0 + 0 = 0$ AND/OR T4 $\overline{B} = B$ Involution A5 $0 \bullet 1 = 1 \bullet 0 = 0$ A5' $1 + 0 = 0 + 1 = 1$ AND/OR T5 $B \bullet \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements		Axiom		Dual	Name		Theorem		Dual	Name
A3 $0 \bullet 0 = 0$ A3' $1 + 1 = 1$ AND/OR T3 $B \bullet B = B$ T3' $B + B = B$ Idempotency A4 $1 \bullet 1 = 1$ A4' $0 + 0 = 0$ AND/OR T4 $\overline{B} = B$ Involution	A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$	Binary field	T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
A4 $1 \bullet 1 = 1$ A4' $0 + 0 = 0$ AND/OR $\overline{B} = B$ Involution	A2	$\overline{0} = 1$	A2′	<u>1</u> = 0	NOT	T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
	A3	0 • 0 = 0	A3′	1 + 1 = 1	AND/OR	Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
A5 $0 \cdot 1 = 1 \cdot 0 = 0$ A5' $1 + 0 = 0 + 1 = 1$ AND/OR T5 $B \cdot \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements	A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR	T4		$\overline{\overline{B}} = B$		Involution
	A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR	T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Theorems of two variables

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B+C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots) $	T12′	$\overline{B_0 + B_1 + B_2 \dots}$ $= (\overline{B}_0 \bullet \overline{B}_1 \bullet \overline{B}_2 \dots)$	De Morgan's Theorem

Generalized procedures of combinational circuit design

Improved equation minimization

Step	Equation	Justification
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	
1	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C}$	T3: Idempotency
2	$\overline{B} \ \overline{C}(\overline{A} + A) + A \overline{B}(\overline{C} + C)$	T8: Distributivity
3	$\overline{B} \overline{C}(1) + A \overline{B}(1)$	T5: Complements
4	$\overline{B} \ \overline{C} + A \overline{B}$	T1: Identity

- Sum of product 积(与)的和(或) (Multiple AND terms ORed together)
 - 1. $ABC + \overline{A}B\overline{C}$
 - 2. $AB + \overline{A}B\overline{C} + \overline{C}\overline{D} + D$
 - 3. $\overline{A}B + C\overline{D} + EF + GK + H\overline{L}$

• Product of sum 和(或)的积(与)
(Multiple OR terms ANDed together)

1.
$$(A + \overline{B} + C)(A + C)$$

2.
$$(A + \overline{B})(\overline{C} + D)F$$

3.
$$(A + C)(B + \overline{D})(\overline{B} + C)(A + \overline{D} + \overline{E})$$

Generalized procedures of combinational circuit design

- Interpret the problem and set up its truth table
- Write the AND (product) term for each case where output = 1
- Combine the terms in SOP (sum of product) form
- Simplify the output expression if possible
- Implement the circuit for the final, simplified expression

 Equation minimization example

Step	Equation	Justification
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	
1	$\overline{B} \ \overline{C}(\overline{A} + A) + A\overline{B}C$	T8: Distributivity
2	$\overline{B} \overline{C}(1) + A \overline{B} C$	T5: Complements
3	$\overline{B} \overline{C} + A \overline{B} C$	T1: Identity

Karnaugh map (K-maps)

- A graphical method for simplifying Boolean equations
 - Invented in 1953 by Maurice Karnaugh at Bell Labs
 - Adjacent squares share all the same literals except one 相邻格的输入值仅有一位变化
 - The K-map also "wraps around." 左右环接

		ВС				
		00	01	11	10	
А	0	1	0	1	1	
	1	1	0	0	1	

- Rules for finding a minimized equation:
 - Use the fewest circles necessary to cover all the 1's.
 - All the squares in each circle must contain 1's.
 - Each circle must span a rectangular block that is a power of 2 (i.e., 1, 2, or 4) squares in each direction.
 - Each circle should be as large as possible.
 - A circle may wrap around the edges of the K-map.
 - A 1 in a K-map may be circled multiple times if doing so allows fewer circles to be used.

Example: 7-segment decoder

7-segment display

Truth table

binary-coded decimal (BCD)

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

(Pictures are from the Internet)

Example: 7-segment decoder

• K-map solution of Sa Alternative

D3, D2

D1 D0 D2 + D1 D3 D2 + D0 D3 D2 + D1 D3

Result & circuit

Truth table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0