1. Load the dataset

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
dataset=pd.read_csv('Heart_Disease_Data.txt',na_values='?')
dataset.to_csv('cleve.csv',index=None)
ds=pd.read csv('cleve.csv')
ds.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 303 entries, 0 to 302
    Data columns (total 14 columns):
       Column Non-Null Count Dtype
    ---
                     -----
                     303 non-null
     0
                                   int64
       age
                    303 non-null int64
      sex
     1
                     303 non-null int64
     2 cp
                    303 non-null int64
     3 trestbps
     4 chol
                     303 non-null int64
     5 fbs
                     303 non-null int64
                    303 non-null int64
     6 restecg
       thalach
                     303 non-null
     7
                                   int64
                     303 non-null int64
     8 exang
                    303 non-null float64
     9 oldpeak
                     303 non-null int64
     10 slop
                     299 non-null
                                   float64
     11 ca
     12 thal
                     301 non-null
                                   float64
     13 pred_attribute 303 non-null
                                   int64
    dtypes: float64(3), int64(11)
    memory usage: 33.3 KB
```

ds.head(6)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slop	ca	tha
0	63	1	1	145	233	1	2	150	0	2.3	3	0.0	6
1	67	1	4	160	286	0	2	108	1	1.5	2	3.0	3
2	67	1	4	120	229	0	2	129	1	2.6	2	2.0	7
3	37	1	3	130	250	0	0	187	0	3.5	3	0.0	3
4	41	0	2	130	204	0	2	172	0	1.4	1	0.0	3
5	56	1	2	120	236	0	0	178	0	0.8	1	0.0	3

ds.shape

(303, 14)

2. Explore the Data

Let's describe the dataset using descriptive statistics.

ds.describe()

	age	sex	ср	trestbps	chol	fbs	reste
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00000
mean	54.438944	0.679868	3.158416	131.689769	246.693069	0.148515	0.99009
std	9.038662	0.467299	0.960126	17.599748	51.776918	0.356198	0.99497
min	29.000000	0.000000	1.000000	94.000000	126.000000	0.000000	0.00000
25%	48.000000	0.000000	3.000000	120.000000	211.000000	0.000000	0.00000
50%	56.000000	1.000000	3.000000	130.000000	241.000000	0.000000	1.00000
75%	61.000000	1.000000	4.000000	140.000000	275.000000	0.000000	2.00000
max	77.000000	1.000000	4.000000	200.000000	564.000000	1.000000	2.00000

Check if there are any Null values in the dataset

ds.isnull()

```
sex cn trestbos chol fbs restecg thalach exang oldneak slo
print("No of Nan values in the dataframe are : ", sum(ds.isnull().any()))
    No of Nan values in the dataframe are : 2
# pred attribute is the target attribute
ds.pred_attribute.value_counts()
    0
       164
    1
        55
    2
         36
    3
         35
         13
    Name: pred_attribute, dtype: int64
     300 False False False False False False False False
Double-click (or enter) to edit
ds.hist(figsize=(12,12), grid=False)
```

```
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7f8377c32390>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f8377c09b90>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f8377b84c50>,
          <matplotlib.axes._subplots.AxesSubplot object at 0x7f8377b27310>],
         (<matplotlib.axes._subplots.AxesSubplot object at 0x7f8377b59810>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f8377b0bd10>,
          <matplotlib.axes._subplots.AxesSubplot object at 0x7f8377ac92d0>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f8377a78710>],
         (<matplotlib.axes._subplots.AxesSubplot object at 0x7f8377a78750>,
          <matplotlib.axes._subplots.AxesSubplot object at 0x7f8377a2cd50>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f837799a690>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f83779cfb90>],
         (<matplotlib.axes._subplots.AxesSubplot object at 0x7f83779930d0>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f8377947590>,
          <matplotlib.axes._subplots.AxesSubplot object at 0x7f83778fda90>,
          <matplotlib.axes. subplots.AxesSubplot object at 0x7f83778b4f90>]],
        dtype=object)
              age
                                                  150
                          200
                          150

    1 - sick level 1
```

target attribute classes

- 0 healthy
- 2 sick level 2
- 3 sick level 3
- 4 sick level 4

```
plt.figure(figsize=(18,8))
sns.countplot(x='age', data = ds, hue="pred attribute")
plt.title('Heart Disease Frequency for Ages')
```

Text(0.5, 1.0, 'Heart Disease Frequency for Ages')


```
import matplotlib.pyplot as plt
import seaborn as sns
print(ds['pred_attribute'].describe())
plt.figure(figsize=(9, 8))
sns.distplot(ds['pred_attribute'], color='g', bins=100, hist_kws={'alpha': 0.4});
```

count	303.000000
mean	0.937294
std	1.228536
min	0.000000
25%	0.000000
50%	0.000000
75%	2.000000
max	4.000000

Name: pred_attribute, dtype: float64

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

sns.pairplot(ds.loc[:, ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'pred_attribute']], h


```
ds['ca'] = ds['ca'].fillna(ds['ca'].mode()[0])
ds['thal'] = ds['thal'].fillna(ds['thal'].mode()[0])
```

3. Build the Predictive Model

3.1- k Nearest Neighbor (KNN)

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 10)
knn.fit(x_train,y_train)

KNeighborsClassifier(n_neighbors=10)

p=knn.predict_proba(x_test)
```

4. Evaluate the Model

completed at 4:39 PM

✓ 0s