Exercises: Dynamic programming, first problem

Rod cutting problem

Example: [Using the first 8 values from the example in the book.]

Can cut up a rod in 2^{n-1} different ways, because can choose to cut or not cut after each of the first n-1 inches.

Here are all 8 ways to cut a rod of length 4, with the costs from the example:

 1 8	
1 5 1	

The best way is to cut it into two 2-inch pieces, getting a revenue of $p_2 + p_2 = 5 + 5 = 10$.

1) For lengths i = 1, 2, ..., 6 figure out the optimal way to cut the rod and the revenue r_i :

i	r_i	optimal solution
1	1	1 (no cuts)
2	5	2 (no cuts)
3	8	3 (no cuts)
4	10	2 + 2
5	13	2 + 3
6	17	6 (no cuts)
7	18	1 + 6 or $2 + 2 + 3$
8	22	2 + 6

2) Show, by means of a counterexample, that the following "greedy" strategy does not always determine an optimal way to cut rods. Define the *density* of a rod of length i to be p_i/i , that is, its value per inch. The greedy strategy for a rod of length n cuts off a first piece of length i, where $1 \le i \le n$, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length n - i.

Example:
$$p_1 = p_2 = 0$$
, $p_3 = 4$, $p_4 = 5$

Optimal: take 1 piece of size 4, with $p_4 / 4 = 5/4 = 1.25$. Greedy first selects a piece of size 3, with $p_3 / 3 = 4/3 = 1.33$...

3) Can you write a recursion for computing the optimal revenue r_n for cutting a rod of size n in terms of p_i for $i=1,\ldots,n$ and r_i for $i=0,\ldots,n-1$? This is called **optimal substructure**.

Can determine optimal revenue r_n by taking the maximum of

- p_n : the revenue from not making a cut,
- $r_1 + r_{n-1}$: the maximum revenue from a rod of 1 inch and a rod of n-1 inches,
- $r_2 + r_{n-2}$: the maximum revenue from a rod of 2 inches and a rod of n-2 inches, ...
- $r_{n-1} + r_1$.

That is,

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1\}$$
.

Optimal substructure: To solve the original problem of size n, solve subproblems on smaller sizes. After making a cut, two subproblems remain. The optimal solution to the original problem incorporates optimal solutions to the subproblems. May solve the subproblems independently.

A simpler way to decompose the problem: Every optimal solution has a leftmost cut. In other words, there's some cut that gives a first piece of length i cut off the left end, and a remaining piece of length n-i on the right.

- Need to divide only the remainder, not the first piece.
- Leaves only one subproblem to solve, rather than two subproblems.
- Say that the solution with no cuts has first piece size i = n with revenue p_n , and remainder size 0 with revenue $r_0 = 0$.
- Gives a simpler version of the equation for r_n :

$$r_n = \max \{ p_i + r_{n-i} : 1 \le i \le n \}$$
.