LICZBY WYMIERNE

Definicja 1. Liczbą wymierną nazywamy liczbę postaci $\frac{p}{q}$, gdzie p i q są liczbami całkowitymi przy czym $q \neq 0$. Zbiór liczb wymiernych oznaczamy przez \mathbb{Q} .

Uwaga 2. Dwie liczby wymierne $\frac{p}{q}$ oraz $\frac{r}{s}$ są równe dokładnie wtedy, gdy ps = rq.

Uwaga 3. Każda liczba wymierna ma rozwinięcie dziesiętne.

Przykład 4. Liczba $\frac{1}{7}$ ma zapis dziesiętny postaci: 0, (142857).

Morein 1200-1300

proteh 1200-1300

Morein Pressuer

p. 706, IM

Konsultage

Uwaga 5. Każda liczba o rozwinięciu dziesiętnym skończonym lub okresowym jest wymierna.

$$Q_{k \dots} = Q_{01}Q_{1}Q_{2}Q_{3}Q_{3}\dots Q_{m} = \frac{Q_{k \dots}Q_{m}}{10^{m}} \in Q$$

Przykład 6. Liczba 12, 3(45) jest równa $\frac{12222}{990} = \frac{679}{55}$.

$$x = 12,3(45)$$

$$100 \cdot x = 1234,5(45)$$

$$-> 99x = 1222,2$$

$$x = \frac{12222}{10.99} \in Q$$

Przykład 7. Nie istnieje liczba wymierna q spełniająca $q^2=2$, czyli $\sqrt{2}$ jest niewymierny.

Zat. nie uprost, ie
$$\exists q \in Q$$
 t. ie $q^2 = 2$

2.
$$l$$
. ie $q = \frac{a}{b}$ $a, b \in \mathbb{N}$ $(b \neq 0)$

adyler
$$(\frac{c}{d})^2 = 2$$
, to $(\frac{c}{n\omega D(c,d)})^2 = 2$

$$\alpha = \frac{C}{N \mu D(c,d)}$$
 $\beta = \frac{d}{\mu \nu D(c,d)}$

$$\frac{a^2}{4^2} = 2$$
 $a^2 = 26^2$

$$= 7 \left(\frac{2}{3} \right) = 2 \left(\frac{1}{3} \right)^2 = 26$$

$$\frac{2(a')^2}{216} = 6^2$$

 N_{1} $N_{2} = 41,2,3,...$ $N_{3} = 49,1,2,...$

(In gdyby
$$\exists c, d \in \mathbb{Z}$$
 $(d \neq 0)$
(In gdyby $\exists c, d \in \mathbb{Z}$ $(d \neq 0)$
(In $(\frac{c}{d})^2 = 2$, $(\frac{c}{d})^2 = 2$
($(\frac{-c}{d})^2 = 2$ $((\frac{-c}{d})^2 = 2$ $((\frac{c}{d})^2)^2$

 $\frac{2}{h^2} = 2$

Dez stroty ogdności

Twierdzenie 8. Istnieje zbiór \mathbb{R} zawierający liczby wymierne, który ma następujące własności:

- 1. jest nim określone dodawanie i mnożenie,
- 2. \mathbb{R} jest ciałem w sensie algebraicznym.
- **3.** $na \mathbb{R}$ mamy określony porządek liniowy,
- 4. porządek jest zgodny z działaniami,

* x < x

5. (własność ciągłości) dla każdego podzbioru \mathbb{R} ograniczonego z góry istnieje najmniejsza liczba ograniczająca ten zbiór od góry.

Definicja 9. Podzbiór A liczb rzeczywistych nazywamy ograniczonym z góry, gdy istnieje $x \in \mathbb{R}$, takie że dla wszystkich $a \in A$ mamy $a \leq x$. Mówimy wtedy, że x ogranicza zbiór Aod góry. Analogicznie definiujemy zbiory ograniczone z dołu. Jeśli zbiór jest ograniczony zarówno z góry jak i z dołu, to mówimy że jest ograniczony.

a < b => a+c < 6+c a < b i d > 0 = > a · ol < b · ol

 $x,y \in \mathbb{R}$ \mathbb{R} jest x+y ∈ R vietem elgebraia. $30 \in \mathbb{R} \quad \forall 0 + x = x + 0 = x$ J1 ∈ R Vx 1·x = x·1 = x Vx eR Jy ER x + y = D VXERIGOS FyER X + y = y + x(x+y)+z=x+(y+z) $x \cdot y = y \cdot x$

 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

 $x \cdot (y + 2) = x \cdot y + x \cdot 2$

Twierdzenie 8. Istnieje zbiór $\mathbb R$ zawierający liczby wymierne, który ma następujące własności:

- 1. jest nim określone dodawanie i mnożenie,
- **2.** \mathbb{R} jest ciałem w sensie algebraicznym,
- **3.** $na \mathbb{R}$ mamy określony porządek liniowy,
- 4. porządek jest zgodny z działaniami,
- (własność ciągłości) dla każdego podzbioru \mathbb{R} ograniczonego z góry istnieje najmniejsza liczba ograniczająca ten zbiór od góry.

Definicja 9. Podzbiór A liczb rzeczywistych nazywamy ograniczonym z góry, gdy istnieje $x \in \mathbb{R}$, takie że dla wszystkich $a \in A$ mamy $a \le x$. Mówimy wtedy, że x ogranicza zbiór A od góry. Analogicznie definiujemy zbiory ograniczone z dołu. Jeśli zbiór jest ograniczony zarówno z góry jak i z dołu, to mówimy że jest ograniczony.

Uwaga 10. Istnieje kilka sposobów skonstruowania liczb rzeczywistych: rozwinięcia dziesiętne (ciągi nieskończone), przekroje Dedekinda (rodziny podzbiorów \mathbb{Q}), ciągi Cauchy'ego (klasy abstrakcji ciągów $z \mathbb{Q}$).

Koide voru. duiesietne deje inny hibe neavoiste po

 $Q_{m} \dots Q_{0_{1}} Q_{-1} \dots Q_{-m} (9) = Q_{m_{1} \dots Q_{0_{1} \dots Q_{1} \dots Q_{0_{1} \dots Q_{0_$

Definicja 11. Niech A będzie ograniczonym z góry podzbiorem \mathbb{R} . Wtedy istnieje liczba $b = \sup A$, która ma następujące własności:

- b ogranicza zbiór A od góry,
- jeśli c ogranicza zbiór A od góry, to $b \le c$.

Analogicznie definiujemy inf A jako największą liczbę ograniczającą A od dołu (dla zbiorów ograniczonych z dołu).

Lemat 12. Dla ograniczonego od góry zbioru A liczba b jest równa sup A w<u>tedy</u> i tylko wtedy, gdy:

- b ogranicza zbiór A od góry, ($\forall a \in A \ a \leq b$)
- • dla dowolnego dodatniego ε istnieje a należące do A, takie że: $a > b \varepsilon$

 $\forall \varepsilon > 0 \quad \exists a \in A \quad a > b - \varepsilon.$

Cushi $b - \varepsilon$ jest ogv. gøngm A i $b - \varepsilon < b$.

(mie uprost), to
$$\varepsilon = b - c$$

 $b - \varepsilon = c$

(=)

6 = sup A

Definicja 13. Mówimy, że zbiór A ma element największy, jeśli $\sup A \in A$. Analogicznie definiujemy element najmniejszy.

Przykład 14.

$$A = (-\pi, \pi], \quad \inf A = -\pi, \quad \sup A = \pi,$$

$$B = \{q \in \mathbb{Q} : q > 0\}, \quad \inf B = 0, \quad \sup B \text{ nie istnieje.}$$

Zbiór A ma element największy, ale nie ma elementu najmniejszego.

Uwaga 15. Jeśli zbiór A nie jest ograniczony z góry, to mówimy, że ma supremum niewłaściwe ∞ i piszemy $\sup A = \infty$.

Twierdzenie 16. [Gęstość \mathbb{Q} oraz $\mathbb{R} \setminus \mathbb{Q}$ w \mathbb{R}] Dla $a, b \in \mathbb{R}$, takich że a < b istnieją $x \in \mathbb{Q}$ oraz $y \in \mathbb{R} \setminus \mathbb{Q}$ należące do przedziału (a, b), tzn. a < x, y < b.

Donád na chialmied

Uwaga 17. Liczby wymierne nie mają własności ciągłości, np. zbiór $\{x \in \mathbb{Q} : x^2 < 2\}$ nie posiada najmniejszego ograniczenia górnego w zbiorze \mathbb{Q} .

$$A = \{x \in Q : x^2 < 2\}$$

$$\sup A = \sqrt{2}$$