

Social Network

After this video you will be able to

- Identify graph data in practical problems
- Describe path operations, neighborhood operations, and connectivity operations in graph data

Data + Connectivity

Vertex Table

ld	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	

Edge Table

SrcId	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

"Optimal Path" Operations

- Find the shortest path between two nodes
- Find an optimal round-trip path that must include some specific nodes
- Find "best compromise" paths between two nodes
 - Pareto-optimality

Communities

 A subgraph of a graph that has many more edges within the subgraph compared to edges to nodes outside the subgraph

- Dense subgraph finding
- Optimization of clusteredness

Anomalous Neighborhoods (Akoglu et al 2010)

Near star

PredominantEdge

Near clique

Heavy vicinity

Connectivity Operations

Connectedness

 Every node is reachable from each node in the undirected version of the graph

