UNICAMP IMECC 3a. Prova – MA-211 – Sexta-feira (NOITE), 19/12/2014			Q2	_
			- Q3	
ALUNO	RA	Turma	Q4	
			\Box Q5	
3a. Prova - MA-211 - Sexta-feira (NOITE), 19/12/2014			\sum	

INSTRUÇÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA É PROIBIDO O USO DE CALCULADORAS SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS

Questão 1. Determine se o que o campo vetorial

 $(\checkmark 2,0)$

$$\mathbf{F}(x, y, z) = \sin y\mathbf{i} + \cos y\mathbf{j} + e^z\mathbf{k},$$

é conservativo. Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$ em que C é a curva dada por

$$\mathbf{r}(t) = \operatorname{sen} t\mathbf{i} + t\mathbf{j} + 2t\mathbf{k}, \quad 0 \le t \le \frac{\pi}{2}.$$

Questão 2. Calcule $\int_C \mathbf{F} \cdot d\mathbf{r}$, em que

$$\mathbf{F}(x,y) = (x^2 + y)\mathbf{i} + (3x - y^2)\mathbf{j},$$

e C é a fronteira orientada positivamente de uma região D que tem área 6.

Questão 3. Encontre a área da superfície $z = 1 + 3x + 3y^2$ que está acima do triângulo com vértices (0,0), (0,1) e (2,1).

Questão 4. Calcule a integral de superfície \iint_S rot $\mathbf{F} \cdot d\mathbf{S}$, em que

$$\mathbf{F}(x, y, z) = x\mathbf{i} - z\mathbf{j} + y\mathbf{k},$$

e S é a parte do plano x + z = 1 dentro do cilindro $x^2 + y^2 = 1$, com orientação para cima.

Questão 5. Use o teorema do divergente para calcular o fluxo de

$$\mathbf{F}(x, y, z) = x^4 \mathbf{i} - x^3 z^2 \mathbf{i} + 4xy^2 z \mathbf{k},$$

através da superfície do sólido no primeiro octante limitado pelo cilindro $x^2 + y^2 = 1$ e pelos planos x = 0, y = 0, z = 0 e z = 2.