Assignment 2: CS 736, Algorithms for Medical Image Processing

Alankar Kotwal – 12 D070010, Riddhish Bhalodia – 12 0070003 March 19, 2015

Part (a)

The RRMSE between the noisy and noiseless images is 0.3725.

Part (b)

Prior Type	a*	b*	au	$\mathcal{R}(a*,b*)$	$\mathcal{R}(1.2a*,b*)$	$\mathcal{R}(0.8a*,b*)$	$\mathcal{R}(a*, 1.2b*)$	$\mathcal{R}(a*, 0.8b*)$
Quadratic	0.995	-	0.1	0.0222	0.0231	0.1482	-	-
Huber	0.99	15	0.1	0.0222	0.0231	0.0277	0.0222	0.0222
Disc-adapt	0.55	0.0001	0.796	1.07e-4	0.0028	2.63e-4	1.1e-4	1.1e-4

The Huber function's results become insensitive to gamma after a threshold. Note that RRMSE in case of a = 1.2a* has been evaluated at a = 1 if 1.2a* > 1.

Part (c)

Figure 1: Noiseless image

Figure 2: Noisy image

 ${\bf Figure~3:~Quadratic\hbox{-}denoised~image}$

Figure 4: Huber-denoised image

 $Figure \ 5: \ Discontinuity-adaptive \ denoised \ image$

Part (d)

Figure 6: Quadratic-denoised objective function

Figure 7: Huber-denoised objective function

Figure 8: Discontinuity-adaptive denoised objective function

