Examen d'Électricité 1 (SMAI₂) Session Normale

Electrostatique

Considérons une sphère S_1 de centre O_1 et de rayon R_1 uniformément chargée en volume avec une densité volumique uniforme $\rho > 0$.

- 1. On se propose de calculer le champ électrostatique en tout point de l'espace en utilisant le théorème de Gauss.
 - 1.1 Par une analyse de symétrie et d'invariance, montrer que le champ électrostatique s'écrit sous la forme $\vec{E}(M) = E(r)\vec{e_r}$ avec $r = \|\vec{O_1M}\|$ et $\vec{e_r} = \frac{\overline{O_1M}}{r}$

- **1.2** Déterminer l'expression du vecteur champ électrostatique $\vec{E}(M)$ en fonction de $\rho, \varepsilon_0, r, R_1$ et $\overline{O_1M}$ dans les cas suivants :
 - **a.** $r < R_1$. En déduire le potentiel électrostatique.
- **b.** $r > R_1$. En déduire le potentiel électrostatique.
- **c.** En utilisant la propriété de continuité du potentiel électrostatique, donner les expressions finales du potentiel en tout point de l'espace. On prendra l'origine du potentiel à l'infini.
- 2. On creuse dans la sphère S_1 une cavité sphérique S_2 de centre O_2 et de rayon R_2 (figure 1). Cette distribution, sans symétrie particulière, peut être vue comme la superposition de deux distributions à symétrie sphérique : la sphère S_1 de centre O_1 et de rayon R_1 portant la densité volumique de charge uniforme (ρ) et une deuxième sphère de centre O_2 et de rayon R_2 portant la densité volumique de charge uniforme ($-\rho$).

- 2.1 En appliquant le principe de superposition et en utilisant le résultat de la question 1.2.a déterminer l'expression du vecteur $\vec{E}(M)$ en tout point de la cavité en fonction de ρ , ε_0 et $\overrightarrow{O_1O_2}$. En déduire l'évolution du champ dans la cavité ?
- **2.2** Dans quel cas le volume de la cavité est équipotentiel ?

Electrocinétique

Déterminez pour le circuit de la figure ci-contre la valeur de:

1. La résistance équivalente $R_{AD}\,$ du circuit entre A et D.

- 2. En prenant $R = 5 \Omega$, calculer:
 - 2.1 Le courant total I_1 .

••••	

2.2 Le potentiel en A, B, C et D.

•••••	

2.3 Le courant dans chaque résistance.

Examen d'Électricité 1 (SMAI₂) Correction-Session Normale

Electrostatique

Considérons une sphère S_1 de centre O_1 et de rayon R_1 uniformément chargée en volume avec une densité volumique uniforme $\rho > 0$.

- **3.** On se propose de calculer le champ électrostatique en tout point de l'espace en utilisant le théorème de Gauss.
 - 3.1 Par une analyse de symétrie et d'invariance, montrer que le champ électrostatique s'écrit de la forme $\vec{E}(M) = E(r)\vec{e_r}$ avec $r = \|\vec{O_1M}\|$ et $\vec{e_r} = \frac{\vec{O_1M}}{r}$
 - Soit M un point de l'espace. Tout plan passant par O_1 et M est un plan de symétrie de la sphère alors le champ est porté par la droite O_1 M intersection de ces plans de symétrie : $\vec{E} = E(r, \theta, \varphi)\vec{e}_r$.
 - Toute rotation autour du point O (suivant θ ou φ) laisse la distribution inchangée alors le champ ne dépond que de $r: \vec{E} = E(r)\vec{e}_r$
 - 3.2 Déterminer l'expression du vecteur champ électrostatique $\vec{E}(M)$ en fonction de ρ , ε_0 , r, R_1 et $\overline{O_1M}$ dans les cas suivants :

d. $r < R_1$. En déduire le potentiel électrostatique.

$$\oint \vec{E} \cdot \vec{ds} = E4\pi r^2 = \frac{Q_{int}}{\varepsilon_0} = \frac{\rho \, 4\pi r^3}{3\varepsilon_0}$$

$$alors \qquad \vec{E}_{r < R_1} = \frac{\rho \, r}{3\varepsilon_0} \, \vec{e}_r = \frac{\rho}{3\varepsilon_0} \, \vec{O}_1 \vec{M}$$

$$\vec{E} = - \overline{\text{grad}} V \qquad \rightarrow \qquad V_{r < R_1}(r) = - \int E \ dr = - \int \frac{\rho \ r}{3 \epsilon_0} \ dr = - \frac{\rho \ r^2}{6 \epsilon_0} + A$$

e. $r > R_1$. En déduire le potentiel électrostatique.

$$\vec{E} = -\overline{grad}V \quad \rightarrow \quad V_{r>R_1}(r) = -\int E dr = -\int \frac{\rho R_1^3}{3\epsilon_0 r^2} dr = \frac{\rho R_1^3}{3\epsilon_0 r} + B$$

f. En utilisant la propriété de continuité du potentiel électrostatique, donner les expressions finales du potentiel en tout point de l'espace. On prendra l'origine du potentiel à l'infini.

Et

L'origine du potentiel à l'infini :

$$V_{r>R_1}(r=\infty) = 0$$
 alors $B=0$

$$V_{r>R_1}(r) = \frac{\rho R_1^3}{3\epsilon_0 r}$$

Continuité du champ :

$$V_{r>R_1}(r = R_1) = V_{r< R_1}(r = R_1)$$

$$\frac{\rho \, R_1^{\ 2}}{3\epsilon_0} = -\frac{\rho \, R_1^{\ 2}}{6\epsilon_0} + A \ alors \ A = \frac{\rho \, R_1^{\ 2}}{2\epsilon_0} \quad et$$

$$V_{r < R_1}(r) = -\frac{\rho r^2}{6\epsilon_0} + \frac{\rho R_1^2}{2\epsilon_0} = \frac{\rho}{6\epsilon_0} (3R_1^2 - r^2)$$

4. On creuse dans la sphère S_1 une cavité sphérique S_2 de centre O_2 et de rayon R_2 (figure 1). Cette distribution, sans symétrie particulière, peut être vue comme la superposition de deux distributions à symétrie sphérique : la sphère S_1 de centre O_1 et de rayon R_1 portant la densité volumique de charge uniforme (ρ) et une deuxième sphère de centre O_2 et de rayon R_2 portant la densité volumique de charge uniforme ($-\rho$).

4.1 En appliquant le principe de superposition et en utilisant le résultat de la question **1.2.a** déterminer l'expression du vecteur $\vec{E}(M)$ en tout point de la cavité en fonction de ρ , ε_0 et $\overrightarrow{O_1O_2}$. En déduire l'évolution du champ dans la cavité ?

Soit M un point de la cavité :

 $\vec{E}(M) = \vec{E}_1(M) + \vec{E}_2(M)$ où $\vec{E}_1(M)$ et $\vec{E}_2(M)$ sont les champs créés dans la cavité par les sphères S_1 et S_2 respectivement.

$$\vec{E}_1(M) = \frac{\rho}{3\varepsilon_0} \ \overrightarrow{O_1 M}$$
 et $\vec{E}_2(M) = -\frac{\rho}{3\varepsilon_0} \ \overrightarrow{O_2 M}$ alors $\vec{E}(M) = \frac{\rho}{3\varepsilon_0} \ \overrightarrow{O_1 M} - \frac{\rho}{3\varepsilon_0} \ \overrightarrow{O_2 M}$

$$\vec{E}(M) = \frac{\rho}{3\epsilon_0} \overrightarrow{O_1 O_2}$$
 Le champ est uniforme dans la cavité

4.2 Dans quel cas le potentiel électrostatique est constant dans la cavité ? Donner le schéma de la distribution correspondante.

Le potentiel sera constant dans la cavité si le champ est y nul c-à-d $\, O_1 \equiv O_2 \, .$

La nouvelle distribution correspond à celle de deux sphères concentriques

Electrocinétique

Déterminez pour le circuit de la figure ci-contre la valeur de:

3. La résistance équivalente R_{AD} du circuit entre A et D.

$$R_{AD} = R + 2R//3R + R//R//2R$$

$$R_{AD} = R + \frac{6R}{5} + \frac{2R}{5} = \frac{13R}{5}$$

$$260 \text{ V}$$

$$\mathbf{R} = R + \frac{6R}{5} + \frac{2R}{5} = \frac{13R}{5}$$

- 4. En prenant $R = 5 \Omega$, calculer:
 - 4.1 Le courant total I_1 .

$$R_{AD} = 13 \Omega$$

4.2 Le potentiel en A, B, C et D.

 $\bullet \quad V_A = 260 \, V$

 $I_1 = \frac{260}{R_{AD}} = 20 A$

- $V_A V_B = RI_1 \implies V_B = V_A RI_1 \implies V_B = 160 V$
- $V_B V_C = (2R//3R) I_1 = \frac{6R}{5} I_1 \implies V_C = V_B \frac{6R}{5} I_1 \implies V_C = 40 V$
- $V_C V_D = (R//R//2R) I_1 = \frac{2R}{5} I_1 \Longrightarrow V_D = V_C \frac{2R}{5} I_1 = 0 V$

2.3 Le courant dans chaque résistance.

- $\bullet \quad I_2 = \frac{V_B V_C}{2R} = 12 A$
- $\bullet \quad I_3 = \frac{V_B V_C}{3R} = 8 A$
- $\bullet \quad I_4 = \frac{V_C V_D}{R} = 8 A$
- $\bullet \quad I_5 = \frac{V_C V_D}{R} = 8 A$
- $\bullet \quad I_6 = \frac{V_C V_D}{2R} = 4 A$

Université Ibn Zohr 10/09/2020 Faculté des Sciences Département de physique Agadir le

Examen d'Électricité 1 (SMA2, SMI2) Session normale

N° d'examen :	CNE:
Nom & Prénom:	CIN:
Fili	ère:
Questions de cours	
Cocher les 6 propositions justes (réponse juste = +0.5	, réponse fausse = -0.25)
Lorsque deux lignes de champ se croisent en un point M :	Deux surfaces équipotentielles peuvent se couper.
☐ Le champ électrostatique n'est pas défini en M.	□ Oui
☐ Il y a une charge ponctuelle positive placée en M.	□ Non
☐ Le champ électrostatique en M est nul	□ Cela dépend
En un point M d'un plan d'antisymétrie d'une distribution de	En tout point d'une même équipotentielle :
charges, le champ créé par cette distribution est :	☐ Le module du champ électrostatique est le même.
☐ Porté par le plan d'antisymétrie	☐ Le champ électrostatique est tangent
□ Nul	☐ Le potentiel a la même valeur.
☐ Perpendiculaire au plan d'antisymétrie	Le potentiel électrostatique est défini à une constante près
Quelles sont les affirmations correctes ?	☐ Par convention, pour toute distribution, le potentiel est
☐ Un champ électrostatique nul se traduit par un flux nul.	pris nul à l'infini.
☐ Si le champ est non nul, alors le flux ne peut pas être	☐ Pour toute distribution finie, on peut choisir un
nul.	potentiel nul à l'infini.
☐ Un flux nul suppose un champ nul.	☐ Pour une distribution infinie, il est impossible de fixer le potentiel nul en un point
	TO SOURCE THAT ON MILESONIA
1. Montrer par des arguments de symétrie que le	e champ produit au centre O est porté par l'axe Ox.
	$0 \xrightarrow{b} X$
· · · · · · · · · · · · · · · · · · ·	l est repéré par ses coordonnées polaires r et θ (void en fonction de r et θ. En déduire la charge dq portée

- 3. Donner l'expression du champ élémentaire $\overline{dE}_{+\sigma,N}(0)$ créé au point O par la charge dq en fonction de ε_0 , θ , r, σ et le vecteur unitaire \vec{u} ($\vec{u} = \frac{\vec{NO}}{NO} = \frac{\vec{r}}{r}$). En déduire sa composante $\vec{dE}_{+\sigma,Nx}(O)$ suivant
- 4. Donner l'expression du champ total $\vec{E}_{+\sigma}(0)$ créé par la distribution surfacique positive au centre *O en fonction de* ε_0 , a, b *et* σ .

- II. On considère la couronne de la figure ci-contre de rayon interne a et externe b chargée pour x > 0 avec une densité surfacique $\sigma > 0$ et pour x < 0avec une densité $-\sigma$.
 - 5. En utilisant le résultat de la question (4) donner sans calcul l'expression du champ total $\vec{E}_{-\sigma}(0)$ produit par la distribution négative au point O. En déduire le champ total au point O.

6. On cherche à déterminer le champ électrostatique en tout point M de l'axe Oz tel que M(0,0,z)Montrer par des arguments de symétrie que le champ $\vec{E}(M)$ est porté par l'axe $Ox : \vec{E}(M) =$ $\vec{E}_{\gamma}(M)\vec{e}_{\gamma}$.

- 7. Soit ds un élément de surface de la distribution positive σ centré en un point N (figure ci-dessus).
- 7.1 Donner l'expression du champ élémentaire $\overrightarrow{dE}_{+\sigma}(M)$ produit par ds au point M en fonction de $r, \sigma, \theta, z, \varepsilon_0 \text{ et } \vec{n} \text{ (où } \vec{n} = \frac{\vec{NM}}{NM})$. En déduire sa composante sur l'axe $Ox : \vec{dE}_{+\sigma,x} = dE_{+\sigma,x}\vec{e}_x$ en fonction de r, σ , θ , z, ϵ_o . On donne $\vec{n} = -\sin\alpha\cos\theta \vec{e}_x - \sin\alpha\sin\theta \vec{e}_y + \cos\alpha\vec{e}_z$.

7.2 Calculer la composante $\overrightarrow{E}_{+\sigma,x}(M)$ suivant Ox du champ total produit par la distribution positive au point M en fonction de a,b,σ , z,ε_0 . On donne : $\int \frac{r^2 dr}{(z^2+r^2)^{\frac{3}{2}}} = \ln(r + \sqrt{(z^2+r^2)}) - \frac{r}{(z^2+r^2)^{\frac{1}{2}}}$
7.3 En utilisant la question précédente donner sans calcul l'expression de la composante $\overrightarrow{E}_{-\sigma,x}(M)$ suivant Ox du champ total produit par la distribution négative au point M en fonction de a, b, σ z, ε_0 .
7.4 En déduire le champ total créé au point M par la couronne chargée.
•
7.5 Retrouver le résultat de la question 5.
· ·

Examen d'Électricité 1 (SMA2, SMI2) Session normale - Correction

Cocher les 6 propositions justes (réponse juste = +0.5, réponse fausse = -0.25)

Questions de cours

Lorsque deux lignes de champ se croisent en un point M:	Deux surfaces équipotentielles peuvent se couper.
☐ Le champ électrostatique n'est pas défini en M.	Oui 0.5
☐ Il y a une charge ponctuelle positive placée	Non 0.3
	□ Cela dépend
En un point M d'un plan d'antisymétrie d'une distribution de	En tout point d'une même équipotentielle :
charges, le champ créé par cette distribution est :	☐ Le module du champ électrostatique est le même.
☐ Porté par le plan d'antisymétrie	☐ Le champ électrostatique est tangent
□ Nul	Le potentiel a la même valeur.
Perpendiculaire au plan d'antisymétrie (0.5)	Le potentiel électrostatique est défini à une constante près
Quelles sont les affirmations correctes ?	☐ Par convention, pour toute distribution, le potentiel est
☑ Un champ électrostatique nul se traduit par un flux nul.	pris nul à l'infini.
☐ Si le champ est non nul, alors le flux ne peut p	Pour toute distribution finie, on peut choisir un
\Box Un flux nul suppose un champ nul. 0.5	notentiel nul à l'infini
	□ Pour une distribution infinie, il est impossible 0.5
	le potentiel nul en un point
8. Montrer par des arguments de symétrie que le de Les $y0x$ et $z0x$ sont deux plans de symétrie alors droite intersection des deux plans c.à.d l'axe $0x$.	champ produit au centre O est porté par l'axe Ox. le champ électrostatique au point O est porté par la

9. Soit un élément de surface ds dont le centre N est repéré par ses coordonnées polaires r et θ (voir figure ci-dessus). Donner l'expression de ds en fonction de r et θ . En déduire la charge dq portée

par l'élément ds en fonction de r, θ et σ .

 $ds = rdrd\theta$

1.5

 $dq = \sigma r dr d\theta$

10. Donner l'expression du champ élémentaire $\overrightarrow{dE}_{+\sigma,N}(0)$ créé au point O par la charge dq en fonction $de \ \varepsilon_0, \ \theta, \ r, \ \sigma$ et le vecteur unitaire \overrightarrow{u} ($\overrightarrow{u} = \frac{\overrightarrow{NO}}{NO} = \frac{\overrightarrow{r}}{r}$). En déduire sa composante $\overrightarrow{dE}_{+\sigma,Nx}(0)$ suivant \overrightarrow{e}_x .

 $\overrightarrow{dE}_{+\sigma,N}(0) = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \overrightarrow{u} = \frac{1}{4\pi\varepsilon_0} \frac{\sigma dr d\theta}{r} \overrightarrow{u}, \qquad \overrightarrow{dE}_{+\sigma,Nx}(0) = -\frac{1}{4\pi\varepsilon_0} \frac{\sigma dr d\theta}{r} \cos \theta \ \overrightarrow{e}_x$

11. Donner l'expression du champ total $\vec{E}_{+\sigma}(0)$ créé par la distribution surfacique positive au centre O en fonction de ε_0 , a, b et σ .

 $\vec{E}_{+\sigma}(0) = \int \vec{dE}_{+\sigma,Nx}(0) = -\frac{\sigma}{4\pi\varepsilon_0} \int_a^b \frac{dr}{r} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta \ d\theta \ \vec{e}_x$ $= \frac{\sigma}{2\pi\varepsilon_0} \ln\frac{a}{b} \vec{e}_x$

IV. On considère la couronne de la figure ci-contre de rayon interne a et externe b chargée pour x > 0 avec une densité surfacique $\sigma > 0$ et pour x < 0 avec une densité $-\sigma$.

12. En utilisant le résultat de la question (4) donner sans calcul l'expression du champ total $\vec{E}_{-\sigma}(0)$ produit par la distribution négative au point O. En déduire le champ total au point O.

D'après le principe de superposition le champ au centre O est la somme des deux champs $\vec{E}_{+\sigma}(0)$ et $\vec{E}_{-\sigma}(0)$ créés respectivement par la distribution positive et celle chargée négativement :

$$\vec{E}_{+\sigma}(0) = \vec{E}_{-\sigma}(0) = \frac{\sigma}{2\pi\varepsilon_0} \ln \frac{a}{b} \vec{e}_x \qquad \text{alors} \qquad \vec{E}(0) = \frac{\sigma}{\pi\varepsilon_0} \ln \frac{a}{b} \vec{e}_x$$

13. On cherche à déterminer le champ électrostatique en tout point M de l'axe Oz tel que M(0,0,z) Montrer par des arguments de symétrie que le champ $\vec{E}(M)$ est porté par l'axe $Ox : \vec{E}(M) = \vec{E}_x(M)\vec{e}_x$.

Le plan y0z est un plan d'antisymétrie alors le champ en tout point de ce plan y compris l'axe 0z est normal à ce plan et par conséquent il est porté par l'axe 0x.

1.5

- 14. Soit ds un élément de surface de la distribution positive σ centré en un point N (figure ci-dessus).
- 7.1 Donner l'expression du champ élémentaire $\overrightarrow{dE}_{+\sigma}(M)$ produit par ds au point M en fonction de r,σ , θ,z,ϵ_0 et \overrightarrow{n} (où $\overrightarrow{n}=\frac{\overrightarrow{NM}}{NM}$). En déduire sa composante sur l'axe $0x: \overrightarrow{dE}_{+\sigma,x}=dE_{+\sigma,x}\overrightarrow{e}_x$ en fonction de r,σ , θ,z,ϵ_0 . On donne $\overrightarrow{n}=-\sin\alpha\cos\theta\ \overrightarrow{e}_x-\sin\alpha\sin\theta\ \overrightarrow{e}_y+\cos\alpha\ \overrightarrow{e}_z$.

$$\overrightarrow{dE}_{+\sigma}(M) = \frac{1}{4\pi\varepsilon_0} \frac{dq}{NM^2} \overrightarrow{n} = \frac{\sigma}{4\pi\varepsilon_0} \frac{rdr \, d\theta}{(r^2 + z^2)} \overrightarrow{n}$$

$$\overrightarrow{dE}_{+\sigma,x}(M) = -\frac{\sigma}{4\pi\varepsilon_0} \frac{rdr \, d\theta}{(r^2 + z^2)} \sin\alpha \cos\theta \, \overrightarrow{e}_x$$

 $sin\alpha = \frac{r}{NM} = \frac{r}{(r^2 + z^2)^{1/2}}$

$$\overrightarrow{dE}_{+\sigma,x}(M) = -\frac{\sigma}{4\pi\varepsilon_0} \frac{r^2 dr d\theta}{(r^2 + z^2)^{3/2}} \cos\theta \, \overrightarrow{e}_x \qquad \qquad 0.5$$

7.2 Calculer la composante $\overrightarrow{E}_{+\sigma,x}(M)$ suivant Ox du champ total produit par la distribution positive au point M en fonction de a, b, σ , z, ε_0 . On donne : $\int \frac{r^2 dr}{(z^2 + r^2)^{\frac{3}{2}}} = \ln \left(r + \sqrt{(z^2 + r^2)} \right) - \frac{r}{(z^2 + r^2)^{\frac{1}{2}}}$

$$\vec{E}_{+\sigma,x}(M) = \int \vec{dE}_{+\sigma,x}(M)$$

$$\vec{E}_{+\sigma,x}(M) = -\frac{\sigma}{4\pi\epsilon_0} \int_a^b \frac{r^2 dr}{(r^2 + z^2)^{\frac{3}{2}}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta \ d\theta \ \vec{e}_x$$
 (0.5)

$$= -\frac{\sigma}{2\pi\varepsilon_0} \int_a^b \frac{r^2}{(r^2 + z^2)^{\frac{3}{2}}} dr \, \vec{e}_x$$

$$= -\frac{\sigma}{2\pi\varepsilon_0} \left[\ln\left(r + \sqrt{(z^2 + r^2)}\right) - \frac{r}{(z^2 + r^2)^{\frac{1}{2}}} \right]_a^b \, \vec{e}_x$$

$$= -\frac{\sigma}{2\pi\varepsilon_0} \left[\ln\left(b + \sqrt{(z^2 + b^2)}\right) - \frac{b}{(z^2 + b^2)^{\frac{1}{2}}} - \ln\left(a + \sqrt{(z^2 + a^2)}\right) + \frac{a}{(z^2 + a^2)^{\frac{1}{2}}} \right] \vec{e}_x$$

$$= \frac{\sigma}{2\pi\varepsilon_0} \left[\frac{b}{(z^2 + b^2)^{\frac{1}{2}}} - \frac{a}{(z^2 + a^2)^{\frac{1}{2}}} + \ln\left(\frac{a + \sqrt{(z^2 + a^2)}}{b + \sqrt{(z^2 + b^2)}}\right) + \right] \vec{e}_x$$

$$= \frac{\sigma}{2\pi\varepsilon_0} \left[\frac{b}{(z^2 + b^2)^{\frac{1}{2}}} - \frac{a}{(z^2 + a^2)^{\frac{1}{2}}} + \ln\left(\frac{a + \sqrt{(z^2 + a^2)}}{b + \sqrt{(z^2 + b^2)}}\right) + \right] \vec{e}_x$$

7.3 En utilisant la question précédente donner sans calcul l'expression de la composante $\overrightarrow{E}_{-\sigma,x}(M)$ suivant Ox du champ total produit par la distribution négative au point M en fonction de $a, b, \sigma, z, \varepsilon_0$.

$$\vec{E}_{-\sigma,x}(M) = \frac{\sigma}{2\pi\varepsilon_0} \left[\frac{b}{(z^2 + b^2)^{\frac{1}{2}}} - \frac{a}{(z^2 + a^2)^{\frac{1}{2}}} + \ln\left(\frac{a + \sqrt{(z^2 + a^2)}}{b + \sqrt{(z^2 + b^2)}}\right) \right] \vec{e}_x$$

14.4 En déduire le champ total créé au point M par la couronne chargée.

D'après le principe de superposition le champ au point M est la somme des deux champs $\vec{E}_{+\sigma}(M)$ et $\vec{E}_{-\sigma}(M)$ créés respectivement par la distribution positive et celle chargée négativement :

$$\vec{E}_x(M) = \vec{E}_{+\sigma x}(M) + \vec{E}_{-\sigma x}(M)$$
 on \vec{a} $\vec{E}_{+\sigma x}(M) = \vec{E}_{-\sigma x}(M)$ alors

$$\vec{E}_{x}(M) = 2\vec{E}_{+\sigma,x}(M) = \frac{\sigma}{\pi\varepsilon_{0}} \left[\frac{b}{(z^{2} + b^{2})^{\frac{1}{2}}} - \frac{a}{(z^{2} + a^{2})^{\frac{1}{2}}} + ln\left(\frac{a + \sqrt{(z^{2} + a^{2})}}{b + \sqrt{(z^{2} + b^{2})}}\right) \right] \vec{e}_{x}$$

$$(0.5)$$

14.5 Retrouver le résultat de la question 5.

Le champ au centre O est donné pour z = 0:

$$\vec{E}_{x}(M) = \frac{\sigma}{\pi \varepsilon_{0}} \ln \frac{a}{b} \vec{e}_{x}$$
 (0.5)

Agadir le 19/10/2020

Examen d'Électricité 1

	$(SMPC_2, SMAI_2)$
	Session de rattrapage
N° d'examen :	CNE:
Nom & Prénom:	CIN:
	Filière:
<u>Problème</u>	
	A infini parallèle au plan x oy d'équation $z=0$, chargé avec une densité surfacique
uniforme positive σ .	
 Montrer par des c 	onsidérations de symétrie et d'invariances que le champ produit par le plan s'écri
$\vec{E}(M) = E(z)\overrightarrow{e_z}$.	
() () 2	
A F 111 1 1 1	7(10)
2. En utilisant le thé	orème de Gauss, déterminer le champ $\vec{E}(M)$ en tout point M de l'espace.
3. Calculer le potent	$iel\ V(z)$ en tout point de l'espace. On prend l'origine du potentiel au point O.
The second secon	()
	utre plan B d'équation $z=b$, $(b>0)\;$ chargé avec la même densité surfacique σ
En utilisant le pri	ncipe de superposition, déterminer le champ en tout point de l'espace.
II. On considère maintend	ant deux plans d'équations respectives $z = a$ et $z = -a$ entre lesquels il existe une
distribution de charge	s volumique uniforme de densité positive $ ho$. Il n'y a pas de charge dans les région:
z > a et $z < -a$.	
	ne analyse de symétrie la direction du champ électrostatique ainsi que les variable.
-	
dont il dépend rée	tiemeni.
II	

6. En appliquant le théorème de Gauss, déterminer le champ électrostatique dans tout l'espace.	
7. Calculer le potentiel électrostatique en tout point $z > 0$ en prenant comme référence de potentiel plan d'équation $z = 0$.	le
8. Sachant que par symétrie $V(z) = V(-z)$, en déduire le potentiel en tout point $z < 0$.	
9. Tracer le graphe représentant le potentiel et la norme du champ dans l'espace.	

Examen d'Électricité 1 - 2020 $(SMPC_2, SMAI_2)$

Correction - Session de rattrapage

Problème

- III. On considère un plan A infini parallèle au plan xoy d'équation z = 0, chargé avec une densité surfacique uniforme positive σ .
 - 10. Montrer par des considérations de symétrie et d'invariances que le champ produit par le plan s'écrit $\vec{E}(M) = E(z)\vec{e_z}$.

Les plans zOx et zOy sont des plans de symétries alors $\vec{E} = E(x, y, z)\vec{e}_z$

Toute translation suivant l'axe Ox ou Oy laisse la distribution inchangée alors $\vec{E} = E(z)\vec{e}_z$

11. En utilisant le théorème de Gauss, déterminer le champ $\vec{E}(M)$ en tout point M de l'espace.

La surface de Gauss est un cylindre C coupant verticalement le plan chargé.

$$\phi = \iint_C \vec{E} \cdot \overrightarrow{ds} = \frac{Q_{int}}{\varepsilon_0} = \iint_{B_1} \vec{E} \cdot \overrightarrow{ds}_{B1} + \iint_{B_2} \vec{E} \cdot \overrightarrow{ds}_{B2} + \iint_{Lat} \vec{E} \cdot \overrightarrow{ds}_L$$

 $\iint_{Lat} \vec{E} \cdot \overrightarrow{ds}_L = 0$ car \vec{E} est perpendiculaire à \overrightarrow{ds}_L

Le plan xoy est un plan de symétrie de la distribution de charge alors $\vec{E}_A(-z) = -\vec{E}_A(z)$

$$\iint_{C} \vec{E} \cdot \vec{ds} = 2 \iint_{B_{1}} \vec{E}_{A}(z) \cdot \vec{ds}_{B_{1}} = 2 E(z) S_{Base} = \frac{\sigma S_{Base}}{\varepsilon_{0}}$$

$$ec{E}_A(z) = rac{z}{|z|} rac{\sigma}{2arepsilon_0} ec{e}_z$$
 ,

12. Calculer le potentiel V(z) en tout point de l'espace. On prend l'origine du potentiel au point O.

$$\vec{E} = -\overrightarrow{grad} V = -\frac{dV}{dz} \vec{e}_z$$

$$V(z) = -\int E(z)dz$$
 Alors

$$V(z) = \begin{cases} \frac{\sigma}{2\varepsilon_0} z + k_1 \sin z > 0 \\ -\frac{\sigma}{2\varepsilon_0} z + k_2 \sin z < 0 \end{cases}$$

La continuité du potentiel :

$$E(o^+) = E(o^-) = 0$$
 alors $k_1 = k_2 = 0$

13. On considère un autre plan B d'équation z = b, (b > 0) chargé avec la même densité surfacique σ . En utilisant le principe de superposition, déterminer le champ et le potentiel en tout point de l'espace.

$$\vec{E}_A(z>0) = \frac{\sigma}{2\varepsilon_0}\vec{e}_z \ \ et \ \vec{E}_A(z<0) = -\frac{\sigma}{2\varepsilon_0}\vec{e}_z$$

$$\vec{E}_B(z > b) = \frac{\sigma}{2\varepsilon_0} \vec{e}_z \ \ et \ \vec{E}_A(z < b) = -\frac{\sigma}{2\varepsilon_0} \vec{e}_z$$

$$\vec{E}_{Total}(M) = \vec{E}_A(M) + \vec{E}_B(M)$$
(0.5)

alors

$$\vec{E}_{Total}(M) = \begin{cases} 0 & z \in]0, a[\\ \frac{z}{|z|} \frac{\sigma}{\varepsilon_0} \vec{e}_z & z \in]-\infty, 0[U]a, +\infty[\end{cases}$$

- IV. On considère maintenant deux plans d'équations respectives z = a et z = -a entre lesquelles il existe une distribution de charges volumique uniforme de densité positive ρ . Il n'y a pas de charge dans les régions z > e et z < -a.
 - 14. Déterminer par une analyse de symétrie la direction du champ électrostatique ainsi que les variables dont il dépend réellement.

Les plans zOx et zOy sont des plans de symétries alors $\vec{E} = E(x, y, z)\vec{e}_z$

 \vec{E} 0.5

0.5

Toute translation suivant l'axe Ox ou Oy laisse la distribution inchangée alors

15. En appliquant le théorème de Gauss, déterminer le champ électrostatique dans tout l'espace.

On choisit comme surface de Gauss un cylindre C coupant verticalement les deux plans.

$$\phi = \iint_C \vec{E} \cdot \vec{ds} = 2 E(z) S_{Base}$$

 $Si~|z| < \alpha~la~charge~\grave{a}~l$ 'intérieur du cylindre (surface de Gauss) est : $~Q_{int}~=2z\rho~S_{Base}$

$$\vec{E}(-a < z < a) = \frac{\rho z}{\varepsilon_0} \vec{e}_z$$

 $Si~|z|>\alpha~la~charge~\grave{a}~l'intérieur~du~cylindre~(surface~de~Gauss)~est:~~Q_{int}~=2a\rho~S_{Base}$

$$\vec{E}(|z| > a) = \frac{z}{|z|} \frac{\rho a}{\varepsilon_0} \vec{e}_z$$

16. Calculer le potentiel électrostatique en tout point z > 0 en prenant comme référence de potentiel le plan d'équation z = 0.

$$\vec{E} = -\overline{grad} V = -\frac{dV}{dz} \vec{e}_z \implies V(z) = -\int E(z) dz$$

Pour 0 < z < a:

$$V(z) = -\int E(z)dz = -\int \frac{\rho z}{\varepsilon_0}dz = -\frac{\rho z^2}{2\varepsilon_0} + k_1$$

Or E(o) = 0 alors $k_1 = 0$

$$V(z) = -\frac{\rho z^2}{2\varepsilon_0}$$
 0.5

Pour z > a:

$$V(z) = -\int E(z)dz = -\int \frac{\rho a}{\varepsilon_0}dz = -\frac{\rho a}{\varepsilon_0}z + k_2$$

Le potentiel est continu en a : $V(a^+) = V(a^-)$ alors $-\frac{\rho a^2}{\varepsilon_0} + k_2 = -\frac{\rho a^2}{2\varepsilon_0} \implies k_2 = \frac{\rho a^2}{2\varepsilon_0}$

$$V(z) = -\frac{\rho a}{\varepsilon_0} \mathbf{z} + \frac{\rho a^2}{2\varepsilon_0}$$

17. Sachant que par symétrieV(z) = V(-z), en déduire le potentiel en tout point du reste de l'espace.

Pour -a < z < 0:

$$V(z) = -\frac{\rho z^2}{2\varepsilon_0} \tag{0.5}$$

Pour z < -a

$$V(z) = \frac{\rho a}{\varepsilon_0} \mathbf{z} + \frac{\rho a^2}{2\varepsilon_0}$$

0.5

18. Tracer le graphe représentant le potentiel et la norme du champ dans l'espace.

