Análisis Matemático I,

2º Doble Grado Informática-Matemáticas

Capítulo II: FUNCIONES DIFERENCIABLES. APLICACIONES

Tema 8: CAMPOS ESCALARES DIFERENCIABLES

María D. Acosta

Universidad de Granada

4-11-2020

Campos escalares

Recordamos que un campo escalar es una función definida en un subconjunto de \mathbb{R}^N y con valores reales.

Diferencial y gradiente

Sea $A \subset \mathbb{R}^N$, $a \in \mathring{A}$ y $f : A \longrightarrow \mathbb{R}$. Si f es diferenciable en a, entonces f tiene gradiente en a y además

$$Df(a)(x) = \langle \nabla f(a), x \rangle, \quad \forall x \in \mathbb{R}^N,$$

es decir, el vector $\nabla f(a)$ representa a Df(a).

Demostración: Sabemos que si f es diferenciable en a, f tiene derivadas direccionales en a según cualquier vector $v \in \mathbb{R}^N \setminus \{0\}$. Luego f tiene derivadas parciales en a. Por tanto, f tiene gradiente en a, ya que

$$\nabla f(a) = \Big(D_1 f(a), D_2 f(a), \dots, D_N f(a)\Big).$$

Diferencial y gradiente

Probaremos ahora que $Df(a)(x) = < \nabla f(a), x >$ para cada $x \in \mathbb{R}^N.$ Usaremos que las aplicaciones

$$x \mapsto < \nabla f(a), x > \quad y \quad x \mapsto Df(a)(x)$$

son lineales de \mathbb{R}^N en \mathbb{R} . Por tanto, si coinciden sobre una base, serán iguales.

Si $1 \le k \le N$ se verifica que

$$<\nabla f(a), e_k>=D_k f(a)=f'(a; e_k)=Df(a)(e_k).$$

Luego ambas aplicaciones son iguales.

Espacio tangente a la gráfica de un campo escalar

Recordamos que si $f: A \subset \mathbb{R} \longrightarrow \mathbb{R}$ y $a \in A \cap A'$ y f es derivable en a, entonces la recta tangente a la gráfica de f en a viene dada por

$$y = f(a) + f'(a)(x - a).$$

Por tanto, es la gráfica de una función afín $(x \mapsto f(a) + f'(a)(x - a))$ cuyo valor en a vale f(a) y cuya primera derivada en a vale f'(a). Nótese que en este caso

$$Df(a)(t) = f'(a)t, \quad \forall t \in \mathbb{R}.$$

Variedad afín tangente

Variedad afín tangente a una gráfica

Sea $A \subset \mathbb{R}^N$, $a \in \mathring{A}$, y $f : A \longrightarrow \mathbb{R}$ y supongamos que f es diferenciable en a. Entonces la **variedad afín tangente a la gráfica de** f **en** a viene dada por

$$x_{N+1} = f(a) + Df(a)(x-a) = f(a) + \langle \nabla f(a), x-a \rangle, \quad \forall x \in \mathbb{R}^N.$$

Por tanto, la variedad afín tangente es la gráfica de la función afín $g: \mathbb{R}^N \longrightarrow \mathbb{R}$ dada por

$$x \mapsto f(a) + \langle \nabla f(a), x - a \rangle$$
.

Nótese que f(a) = g(a) y Df(a) = Dg(a).

Variedad afín tangente a una gráfica

Recta tangente a una curva

Definición

Sea I un intervalo abierto, $a\in I$ y $\gamma:I\longrightarrow\mathbb{R}^M$. Si γ es derivable en a, esto es, existe $\lim_{x\to a}\frac{\gamma(x)-\gamma(a)}{x-a}=\gamma'(a)$, y además $\gamma'(a)\neq 0$, la **recta tangente** a la curva γ en a viene dada por

$$\{\gamma(a)+\gamma'(a)(t-a):t\in\mathbb{R}\}.$$

Por supuesto, el conjunto anterior es una recta que pasa por $(a, \gamma(a))$ y el vector de dirección es $\gamma'(a) \neq 0$.

Nótese que los cocientes $\frac{\gamma(x)-\gamma(a)}{x-a}$ son los vectores directores de rectas secantes que pasan por los puntos de la gráfica $(a,\gamma(a))$ y $(x,\gamma(x))$. Si tomamos límite $(x\to a)$ los vectores directores de esas rectas tienden al vector director de la tangente.

Campos escalares diferenciables

Sabemos que las proyecciones canónicas en \mathbb{R}^N son de clase C^1 . Además los campos escalares de clase C^1 son estables operaciones algebraicas. Obtenemos el siguiente resultado.

Corolario

Las funciones polinómicas son funciones de clase uno en \mathbb{R}^N . Las funciones racionales son campos escalares de clase uno en su dominio.

Condición suficiente de diferenciabilidad

Sean $A \subset \mathbb{R}^N$, $a \in A$ y f un campo escalar en A. Supongamos que ∇f existe en un entorno de a y que ∇f es continuo en a. Entonces f es diferenciable en a.

Demostración: La prueba siguiente es válida para N=2. Supongamos que f tiene gradiente en un entorno de (a,b) y es continua en (a,b). Dado $\varepsilon>0$, por hipótesis, existe $\delta>0$ tal que

$$\begin{split} \|(x,y)-(a,b)\|_{\infty} < \delta \Rightarrow \left\{ \begin{array}{l} (x,y) \in A \\ \exists \nabla f(x,y) \\ |D_i f(x,y) - D_i f(a,b)| \leq \varepsilon, \ \text{para} \ i=1,2. \end{array} \right. \end{split}$$

Si $(x,y)\in\mathbb{R}^2$ verifica que $0<\|(x,y)-(a,b)\|_\infty<\delta$ podemos escribir

$$f(x,y) - f(a,b) - \langle \nabla f(a,b), (x-a,y-b) \rangle =$$

$$(f(x,y)-f(a,y)-D_1f(a,b)(x-a))+(f(a,y)-f(a,b)-D_2f(a,b)(y-b)).$$

Si x = a, entonces el primer sumando de la expresión anterior es cero y

se tiene que

$$|f(x,y)-f(a,y)-D_1f(a,b)(x-a)|=0\leq \varepsilon|x-a|.$$

Supongamos entonces que $x \neq a$. Para cada y fijo en el intervalo $]b - \delta, b + \delta[$, consideramos la función

$$g_1(x) = f(x,y) \quad (x \in]a - \delta, a + \delta[).$$

Como f tiene derivada parcial respecto de la primera variable en $]a-\delta, a+\delta[\times]b-\delta, b+\delta[$, entonces g_1 es derivable. Aplicamos el Teorema del valor medio a g_1 y obtenemos que existe $c_1\in]a-\delta, a+\delta[$ que verifica

$$g_1(x) - g_1(a) = g_1'(c_1)(x - a).$$

Es decir

$$f(x,y) - f(a,y) = D_1 f(c_1,y)(x-a).$$

Por tanto,

$$|f(x,y) - f(a,y) - D_1 f(a,b)(x-a)| = |D_1 f(c_1,y)(x-a) - D_1 f(a,b)(x-a)| \le |x-a|$$

$$\varepsilon |x-a|$$
(1)

Para el segundo sumando repetimos el mismo argumento. Si y = b, tenemos

$$|f(a,y)-f(a,b)-D_2f(a,b)(y-b)|=0\leq \varepsilon|y-b|.$$

En otro caso, $y \neq b$. Entonces consideramos la función

$$g_2(y) = f(a, y) \quad (y \in]b - \delta, b + \delta[).$$

Como f tiene derivada parcial respecto de la segunda variable en $]a-\delta,a+\delta[\times]b-\delta,b+\delta[$, entonces g_2 es derivable. Aplicamos el Teorema del valor medio a g_2 , luego $c_2\in]b-\delta,b+\delta[$ tal que verifica

$$g_2(y) - g_2(b) = g'_2(c_2)(y - b).$$

Por tanto,

$$f(a, y) - f(a, b) = D_2 f(a, c_2)(y - b).$$

Como consecuencia,

$$|f(a,y) - f(a,b) - D_1 f(a,b)(y-b)| = |D_2 f(a,c_2)(y-b) - D_1 f(a,b)(y-b)| \le \varepsilon |y-b|$$
(2)

En vista de (1) y (2) obtenemos

Por tanto, f es diferenciable en (a, b).

$$|f(x,y) - f(a,b) - \langle \nabla f(a,b), (x-a,y-b) \rangle| \le \\ |f(x,y) - f(a,y) - D_1 f(a,b)(x-a)| + |f(a,y) - f(a,b) - D_2 f(a,b)(y-b)| \le \\ \varepsilon (|x-a| + |y-b|) = \\ \varepsilon ||(x,y) - (a,b)||_1$$
 si $(x,y) \in]a - \delta, a + \delta[\times]b - \delta, b + \delta[.$

Para un natural N arbitrario la demostración usa el mismo argumento, sólo que hay que restar y sumar más sumandos. Por ejemplo, en caso de que N=3, tendríamos

$$f(x,y,z)-f(a,b,c) = (f(x,y,z)-f(a,y,z))+(f(a,y,z)-f(a,b,z))+(f(a,b,z)-f(a,b,c)).$$

Para cada uno de los tres sumandos usaríamos el Teorema del valor medio para escribir cada diferencia en términos de una derivada parcial de f.

Observación: Sea Φ la identificación de \mathbb{R}^N en $L(\mathbb{R}^N, \mathbb{R})$ dada por

$$\Phi(y)(x) = \langle y, x \rangle, \quad \forall x, y \in \mathbb{R}^N.$$

Es inmediato que Φ es una biyección lineal, luego continua. Como la inversa verifica las mismas condiciones, entonces Φ^{-1} también es continua.

Sabemos que si f es un campo escalar diferenciable en un punto a, entonces $\Phi(\nabla f(a)) = Df(a)$.

Caracterización de los campos escalares de clase \mathcal{C}^1

Sean A un abierto de \mathbb{R}^N y f un campo escalar en A. Las siguientes afirmaciones son equivalentes:

- 1) $f \in C^1(A)$.
- 2) $\nabla f \in \mathcal{C}(A)$, esto es, f tiene gradiente en cada punto de A y el campo vectorial ∇f es continuo.

Demostración:

1) \Rightarrow 2) Puesto que f es diferenciable, sabemos que f tiene gradiente en cada punto de A.

Por hipótesis $Df: A \longrightarrow L(\mathbb{R}^N, \mathbb{R})$ es continua. Dado que $\Phi^{-1}: L(\mathbb{R}^N, \mathbb{R}) \longrightarrow \mathbb{R}^N$ es continua, entonces $\Phi^{-1} \circ Df$ es continua. Como $\Phi(\nabla f(x)) = Df(x)$ para cada $x \in A$, se tiene que

$$(\Phi^{-1} \circ Df)(x) = \Phi^{-1}(Df(x)) = \nabla f(x), \forall x \in A.$$

Luego ∇f es continuo.

 $2) \Rightarrow 1)$ La condición suficiente de diferenciabilidad para campos escalares garantiza que f es diferenciable. Resta probar que Df es continua.

En efecto, sabemos que $\nabla f: A \longrightarrow \mathbb{R}^N$ es continua y $\Phi: \mathbb{R}^N \longrightarrow L(\mathbb{R}^N, \mathbb{R})$ también lo es, luego $\Phi \circ \nabla$ es continua. Pero $\Phi \circ \nabla = Df$, luego Df es continua, luego f es de clase $C^1(A)$.

Teorema del valor medio para campos escalares

Partimos de la versión del Teorema del valor medio para funciones de una variable real.

Teorema del valor medio

Sean $a, b \in \mathbb{R}$ con $a \neq b$ y sea I el intervalo cerrado de extremos a y b. Si $f: I \longrightarrow \mathbb{R}$ es una función continua en I y derivable en \mathring{I} , entonces existe $c \in \mathring{I}$ tal que

$$f(b) - f(a) = f'(c)(b - a).$$

Teorema del valor medio para campos escalares

Sean $a, b \in \mathbb{R}^N$ verificando que $a \neq b$ y que $[a, b] \subset A \subset \mathbb{R}^N$. Si $f: A \longrightarrow \mathbb{R}$ es un campo escalar continuo en [a, b] y diferenciable en [a, b[, entonces existe $c \in]a, b[$ tal que

$$f(b) - f(a) = \langle \nabla f(c), b - a \rangle = Df(c)(b - a),$$

donde $]a, b[=[a, b] \setminus \{a, b\}.$

Teorema del valor medio para campos escalares

Demostración: La prueba de este resultado se basa en aplicar el Teorema del valor medio a la función $\sigma:[0,1]\to\mathbb{R}$ definida por

$$\sigma(t) = f(a + t(b - a)).$$

Puesto que σ es la composición de f y la función γ de [0,1] en A definida por

$$t \mapsto a + t(b - a),$$

se tiene que σ es continua en [0,1], por ser una composición de funciones continuas.

Es inmediato comprobar que γ es derivable y

$$\gamma'(t) = b - a, \quad \forall t \in [0, 1].$$

Por tanto, usando la regla de la cadena obtenemos que σ es derivable en]0,1[y

$$\sigma'(t) = D\sigma(t)(1) = D(f \circ \gamma)(t)(1) =$$

$$Df(\gamma(t))(D\gamma(t)(1)) =$$

$$Df(a+t(b-a))(\gamma'(t)) = \langle \nabla f(a+t(b-a)), b-a \rangle.$$

Luego la función σ cumple las hipótesis del Teorema del valor medio. Por tanto, existe $t_0 \in]0,1[$ tal que

$$f(b) - f(a) = \sigma(1) - \sigma(0) = \langle \nabla f(a + t_0(b - a)), b - a \rangle$$
.

Basta llamar $c = a + t_0(b - a)$.

Corolario

Sean $a, b \in \mathbb{R}^N$ con $a \neq b$ tales que $[a, b] \subset A \subset \mathbb{R}^N$. Si $f : A \to \mathbb{R}$ es un campo escalar continuo en [a, b] y diferenciable en]a, b[, entonces

$$|f(b) - f(a)| \le ||b - a|| \sup\{||Df(x)|| : x \in]a, b[\}.$$

donde $\|\cdot\|$ es una norma en \mathbb{R}^N .

Corolario

Sean A un abierto convexo de \mathbb{R}^N y f un campo escalar diferenciable en A. Si existe M tal que $\|Df(x)\| \leq M$ para cada $x \in A$, entonces f es lipschitziana con constante de Lipschitz menor o igual que M.

Corolario

Si A un abierto conexo de \mathbb{R}^N y f un campo escalar diferenciable en A. Si Df es constatemente igual a cero, entonces f es constante.

Demostración: Suponemos que $A \neq \emptyset$. Sea $a \in A$. Definimos el subconjunto B dado por

$$B = \{x \in A : f(x) = f(a)\}.$$

Es claro que $B \neq \emptyset$, ya que $a \in B$. Como f es diferenciable, es continua, luego B es un cerrado en la topología inducida en A.

Comprobamos que B es abierto. Sea $b \in B$. Por ser A abierto, existe r > 0 tal que $B(b, r) \subset A$. Por ser B(b, r) un abierto convexo y Df = 0 en B(b, r), sabemos que f es constante en la bola. Por tanto,

$$f(x) = f(b) = f(a), \quad \forall x \in B(b, r).$$

Luego $B(b,r)\subset B$. Hemos probado que B es abierto en A. Como A es conexo y B es un subconjunto no vacío, abierto y cerrado en A, entonces B=A. Por tanto, f es constante.