

MOSPHERIC WATERDROP SIZE BUTION AT CAPISTRANO TEST (CTS) FROM 16 APRIL THROUGH CON ANALLY IN THE PROPERTY OF 11 MAY 1974.

VOLUME'IIL sts CTS-6 through CTS-19

By

D. H./DICKSON

Atmospheric Sciences Laboratory

US Army Electronics Command White Sands Missile Range, New Mexico 88002

September 1975

Approved for public release; distribution unlimited.

UNITED STATES ARMY ELECTRONICS COMMAND - FORT MONMOUTH, NEW JERSEY 07703

400 844 B

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

ABSTRACT

VOLUME III

Atmospheric waterdrop size distribution was measured by a laser fog nephelometer at Capistrano Test Site, California, from 16 April through 11 May 1974. Liquid water content, extinction coefficient, and visibility were calculated from the data obtained. The nephelometer data were collected from sunset to sunrise nightly for 25 consecutive nights. Fog conditions were recorded on 4 of these nights. A time format of 5-minute samples separated by 5-minute pauses was used. The data are presented in tabular form referenced to channel number (i.e., nominal radius). For comparison, the 64 channels of data were treated in four groups of 16 channels each as well as one group of 64 channels. Volume I contains general narrative and background. Volume II contains tabularized data for CTS-1 through CTS-5, this volume for CTS-6 through 10, Volume IV for CTS-11 through 15, Volume V for CTS-16 through 20, and Volume VI for CTS-21 through 25.

This volume contains tobulorized data for CTS-6 through CTS-10.

ACCESSION	for
RTIS	White Section
000	Buff Section []
GNANNOUNC	rs D
JUSTIFICATI	B#
BY YES	ION (AVAILABILITY CODES
	ION/AVAILABILITY COBES AVAIL and/or SPEGIAL

TABLE OF CONTENTS

		Page
Channel Numb	per Versus Nominal Radius	3
Data Locatio	on Reference	4
CTS No.	Test No.	
6	1-61	5
7	1-63	66
8	1-65	129
9	1-56	194
10	1-64	250

CHANNEL NUMBER VERSUS NOMINAL RADIUS (MICRONS)

СН	RADIUS	СН	RADIUS
1	2.58	33	25.83
2	2.78	34	27.75
2 3	2.98	35	29.82
4 5 6 7 8 9	3.21	36	32.05
5	3.44	37	34.44
6	3.70	38	37.01
7	3.98 4.27	39	39.77
8	4.27	40	42.74
9	4.59	41	45.93
10	4.94	42	49.35
11	5.30	43	53.03
12	5.70	44	56.99
13	6.13	45	61.24
14	6.58	46	65.81
15	7.07	47	70.72
16	7.60	48	75.99
17	8.17	49	81.66
18	8.78	50	87.76
19	9.43	51	94.30
20	10.14	52	101.34
21	10.89	53	101.34 108.90
22	11.70	54	117.02
23	12.58	55	125.75
24	13.52	56	135.13
25	14.52	57	145.21
26	15.61	58	156.05
27	16.77	59	167.69
28	18.02	60	180.20
29	19.37	61	193.64
30	20.81	62	208.08
31	22.37	63	223.61
32	24.03	64	240.29
32		57	240.23

DATA LOCATION REFERENCE

Nephelometer Data

Series # Capistrano Test Site (Day of Data Acquisition Sequence), Test # (Sample) For Data Starting (24 hr local time) on (Day/Month/Year).

Data For Channels 1 Thru 16

<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u>

9 (Number of droplets counted per channel, i.e., size distribution).

Extinction Coefficient = Computed values based

Visibility Limit, Upper, Lower = on data from channels

Liquid Water Content = 1 thru 16

Particle Count = Total number of water droplets counted in channels

1 thru 16

Data For Channels 17 thru 32

33 thru 48

49 thru 64

Same procedure for different channel numbers.

GRAND TOTAL

Sample Volume = Nephelometer sample

Extinction Coefficient = volume computed values

Visibility Limits = based on data from

Liquid Water content = | channels | thru 64

Particle Count = Total number of water droplets counted in channels

1 thru 64.

SERIES # CTS- 6, TEST # 1 FOR DATA STARTING 20:30 ON 21/ 4/74

DATA FOR CHANNEL	S 1 THRU	16					
	3853 2 17		552 13	149 11	17 12	18 15	11 21
EXTINCTION CO VISIBILITY LI LIQUID WATER PARTICLE COU	MIT, UPPE CONTENT =	R = 11819 .00068	9., LOWE B GM/M3		METERS		
DATA FOR CHANNEL 10 4	.S 17 THRU 14 0	1 32 6 0	8 0	2 0	2 0	1 0	0
EXTINCTION CO VISIBILITY LI LIQUID WATER PARTICLE COU	MIT, UPPE CONTENT =	R = 20236	7., LOWE 3 GM/M3		3. METER	S	
DATA FOR CHANNEI 0 0	S 33 THRU 0 0	0 0 0	0	0	0	0	0
DATA FOR CHANNEL 0 0	.S 49 THRU 0 0	0 0 0	0	0	0	0	0
GRAND TOTALS SAMPLE VOLU EXTINCTION CO VISIBILITY LI LIQUID WATER PARTICLE COUN	DEFFICIENT MIT, UPPE CONTENT =	R = .350 R = 1116 .0008	7., LOWE		. METERS		

SERIES # CTS- 6, TEST # 2 FOR DATA STARTING 20:40 ON 21/ 4/74

DATA	224	18	3872	1 THRU 2395 18		157 13	22 8	15 1 16 2
V L	ISIE	BILIT	TY LIMIT	ICIENT , UPPER ITENT = 6.2	. 1202	1., LOW 6 GM/M3	ER # S	R 1206. METER
DATA			INNELS 1	7 THRU 5 1	32 8 0	2	2	1
V	ISIE	BILIT	TER CON	ICIENT , UPPER TENT = .0	*18520 .0001	3., LOW 5 GM/M3	ER #141	? 1837. METER
DATA	FOR	CHA	INNELS 3	3 THRU Ø Ø	48 0 0	0	0	0 (
DATA	FOR	R CHA	INNELS 4	9 THRU Ø Ø	64 Ø Ø	0	0	. 0
V L	SAN XTIN ISI IQUI	PLE VCTIC VILIT	VOLUME ON CUEFF TY LIMIT ATER COM	= 1500. ICIENT , UPPER ITENT = 6.2	= .347 = 1128 .0008	8., LOW 1 GM/M3	ER . 8	R 8645, METER

SERIES # CTS- 6, TEST # 3 FOR DATA STARTING 20:50 ON 21/ 4/74

9	11	10	111	447		1 TH 1960 24		647	3	01	18	DAT
eşrayı.	ER	PER MET	285E-03 3747., (.2	NT PER	ICIE, UP	EFF 117	COE LIM	TION ITY WAT	NC' BII	XTI ISI IQU	
0			Ø 1	32 1 1		7 TH 9		7		9 1	FO	DAT
		PER MET LOWER #2 /M3		=277	PER	, UP TENT	TIP	LINER C	LITY	BI	ISI	
	0	0			RU 4	3 TH	5 3	NELS	CHAN			
METERS		PER MET LOWER #1 /M3	10069, 1	=140	PER	TENT	TIT	LINER C	YTI.	ID	ISI	
	0			54 0 0		9 TH Ø				8 0	FO	DAT
HETERS	'ER 9938.	PER MET LOWER = /M3	977., I	· .3	NT =	, UP TENT	FF	COE LIN ER (E V TION ITY WAT	MPI NC' BII	ISI IOU	

SERIES # CTS- 6, TEST # 4 FOR DATA STARTING 21: 0 ON 21/ 4/74

DAT	A	F	OF	?	CH	14	N	N	EL	S		1		TH	R	U	1	6															
		2	16	12			3	4	42			2	1	60	1			46	1			15	0			12				6			1
			1	6					21					8				1	2			1	4			10				13			1
	E	KT	I	C	T	C	N	Ţ	CC	E	FF	I	C	IE	N	T				29	6E	-0	3	PE	R	ME	T	ER					
	V	S	I	3 1	L	1	Y		LI	M	I	١,		UF	P	ER		=	13	32	26	. ,		LOW	ER		•	10	12	9.	M	ET	ER
																							M.	/M3									
	P	AR	T	C	L	•	C	0	UN	IT	1				5	. 6	4	F	E	R	CC												
DAT	A	F															3	2															
			1																8				1			6)			1			-
				1					1					0					0				1			2	?			0			1
																								PE									
	V	IS	It	3]	L	וו	Y		LI	M	I		_	UF	P	ΞÌ		= 1	9	28	24	. !		LOW	ER		1	47	57	4.	M	ET	ER
																							M	/M3									
	4	AK	1.	L	LI	-	C	U	UN	IT						. 6	13	•	E	*	CC												
DAT		_	0	,	-				E 1	•				T L	10		4	•															
UAI		٦	C) F		.,		. 14									U	4	0	0				•										
									0					0					0				0			0							
									*										0				0			K	,			0			
DAT		5	ni	,	-		N	Al	FI	•		40		TL	P	11	6																
0.	-	•			-												٠		0				0			0							
				0					0					0					0				-			0							
				•																						·							
GRA	NI)	T	T	AI	5	3																										
•					L			0	LL	M	E			15	0	0 .		cc															
	E																			31	6E	- 2	3	PE	R	ME	T	ER					
																								LOW						9.	M	ET	ER
	L	10	U	C	1	N A	T	E	R	C	DN	T	E	NT					.01	00	77	G	M	/M3						•			
																			E														

SERIES # CTS- 6, TEST # 5 FOR DATA STARTING 21:10 ON 21/ 4/74

DAT	A				-									-					_	-	•							150					101								
		2																																							12
				17						1	4					1	3						1 4	•				1	7				1	4					5		14
	EX	T	I	10	. T	I	0	N		CI) E	F	F	1	c	I	E	N	T					. 3	50	15	E	0	3	P	E	R	M	ET	E	R					
																																								METE	RS
	LI																																								
	PA	K	T:	0,1	L	E		C	0	U	V1	7						5	. 1	B (5	-	9	F	?	C	C														
DAT	A	F	OF	2	C	H	A	N	N	EI		5	1	7		T	Н	R	u		32	2																			
											100		- 170										1					;	3					0					0		
				1						1	5						1						1						0					1				•			1
	E X	T	I	10	1	I	0	N	-	C	DE	F	F	I	c	I	E	N	Т					. 2	2 1	2	E	0	4	P	E	R	M	ET	E	R					
																																								METE	RS
	LI																																								
	PA	R	T:	1	L	E		C	0	UI	v 1	r	=						. (0	3	F	9 6	F	5	C	C														
DAT	A	F	OF	?	C	Н	A	N	N	EI	. 5	5	3	3		T	H	R	J		4 6	3																			
				V	•					1	7						Ø						0	•				(0					0					8		0
				0	•					(8						Ø						0)				-	0					0				0	0		0
DAT	A	F	O F	2	C	Н	A	N	N	E	. 5	5	4	9		T	Н	R	U		5 4	4																			
				0	•					-	1						Ø						9	,				1	Ø					0					8		0
				0						-	1						Ø						6	,				1	0					0				(9		0
GRA	NE	,	T (7		L	S																				-														
		S																																							
																																		E1							
																																EF	?		- 1	9	17	9,		METE	RS
	LI																											G	M	M	3										
	PA	K	1	C	L	t		C	U	U	V		=					2	•	,		,			•	C	. C														

SERIES # CTS- 6, TEST # 6 FOR DATA STARTING 21:20 ON 21/ 4/74

253	38 3636	1 THRU 16 2237 49 10	1 174 5 7	25 2 11 13	10
VISIE LIGU:	BILITY LIM ID WATER C	IT, UPPER .	.317E-03 PER 12339., LOWER .00063 GM/M3 PER CC	METER R = 9450.	METERS
	R CHANNELS 14 5 1 0	17 THRU 32 9 0		i 0 i	2 0
VISI	BILITY LIM	IT, UPPER =:	.163E-04 PER 239771., LOWER .00013 GM/M3 PER CC		METERS
DATA FOR	CHANNELS 0 0 0 0			0 0	
	0 0	6 49 THRU 64 Ø Ø	9 9	8 8	
VISIOU:	MPLE VOLUMNCTION COE BILITY LIM ID WATER C	IT, UPPER .	.333E-03 PER 11735., LOWE! .60076 GM/M3	METER R = 8987.	METERS

SERIES # CTS- 6, TEST # 7 FUR DATA STARTING 21:30 DN 21/ 4/74

2267	NNELS 1 THRU 16 3649 2276 5 14 9	76 131	20 12 5 5	15 10
VISIBILIT	N COEFFICIENT = Y LIMIT, UPPER = TER CONTENT = COUNT = 5.96	12733., LOWER . 00061 GM/M3		METERS
	NNELS 17 THRU 32 7 5 1 0		1 2	
VISIBILIT	N COEFFICIENT = Y LIMIT, UPPER = TER CONTENT = COUNT = .03	202695., LOWER .00014 GM/M3		METERS
	NNELS 33 THRU 48 0 0 0 0		Ø Ø	
	NNELS 49 THEU 64 0 0 0 0	0 0	0 0	
EXTINCTION VISIBILITY LIQUID WAY	VOLUME = 1500, CONTROL OF THE PROPERTY LIMIT, UPPER = TER CONTENT = 5.99	.327E-03 PER 11980., LOWER .00075 GM/M3		METERS

SERIES # CTS- 6, TEST # 8 FOR DATA STARTING 21:40 DN 21/ 4/74

DATA	2	36	4		3	37	01			2	18	2			4	65	i 1		•	3	3 7			19		8 7	17 19
V	IS	IE	I	I.W	TY	E	L1 R	MI	T	TE	UN	PP	E	2	•	. 0	20	39	5.	GI	1		ER				METER8
DATA	F			СН												1										2 0	
V L	IS	IE	D	- I	TIAT	E	L I R	MI CC	T	TE	U	PP T	E	5		28	90	01	8.	G	1		ER				METERS
DATA	F	OF		СН												0)			(0			0		0	0
V	IS	IE	I	LIW	TY	E	LIR	CC	TON	Ť	UEN	PP	E	7		10	149	99	34	١,	t	PE OW M3	ER				METERS
DATA	F	06	0				0					0				0)			1	0			0		0	0
V	XT	IN	PIC	LETILIW	ONTY	O I		M:	TON	I	EUEN	EN PP	TE	R		1	3	72	2.	,	1	PE OW M3	ER			7.	METERS

SERIES # CTS- 6, TEST # 9 FOR DATA STARTING 21:50 ON 21/ 4/74

DAT	A																										•	30					25						19
		•	•	g				•	-	1	9			•	•	•	5				-	-	7				•	7					9						15
	VI	5	1	3]	L	I	T	4		L	I	M	T	,		U	P	9	R	?			13	35	1	16		,	L	0	NE	R	ME.	TE	R	58	1.		METERS
	LI																											GM	/	M;	3								
DAT	A	F		3									1	7					,	3	2																		101 11
				18													3						4					3					0				0	,	0
																																	ME					900	METERS
	LI	0	U.	10	•	W	A	T	E	K	-	C(10	1	F	N	T		:				30	70	1	4	-	GM	1	M3	3							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
GAT	Δ	F	C+	,	c														1	4	8																		1. S MON.
					,												1						4					0					0				0		0
																																							METERS
	LIPA	()	U	10		-	A	T	F	R		CC	N	T	E	N	T						70	10	0	7	-					••				, .	••		
DAT																																							
				0						1	-						74						8					0					0				9		0
GRA	NO		T (n		111	4 6				1	50				c	_																	
		T	I	C	1	1	()	N		Ç	01	E.F	F	I	C	1	E	11	•				. 3										ME			38	6.		METERS
	LI	ij	u I	it		b.	A	T	E	R	(C	N	T	E	N	T						0	00	7	8	1												

SERIES # CTS- 6, TEST # 10 FOR DATA STARTING 22: 0 ON 21/ 4/74

DATA FOR CHA	ANNELS 1 THR			
2623	3780 2303	472 147		3
6	3 5	5 2	6 6	
F'4414671		1475-05	850 HETED	
EXTINCTIO	IN CUEFFICIEN	T = .317E=05	PER METER	-
		ER = 12354., L = .00062 GM/		MEIERS
	COUNT = 6			
PARTICLE	COUNTY - O	.20 / LR CC		
DATA FOR CH	ANNELS 17 THR	U 32		
3	7 1	3 1	0 1	
0	0 0	0 0	0 0	0
		T = .592E-05		
		ER =660700., L		METERS
		00004 GM/	M3	
PARTICLE	COUNT =	.01 PER CC		
DATA FOR CH	ANNELS 33 THR	11 48		
0	0 0	0 0	0 0	0
0	0 0	0 0	0 0	0
DATA FOR CH	ANNELS 49 THR	U 64		
0	0 0	0 0	0 0	
9	0 0	0 0	0 0	0
GRAND TOTAL				
	VOLUME = 150	T = .323E-03		
		ER = 12128., L		METEDS
		= .00065 GM/		III I ENO
PARTICLE	COUNT = 6	.27 PER CC		

SERIES * CTS- 6, TEST * 11 FOR DATA STARTING 22:10 ON 21/ 4/74

DAT	A	F	0	R	1	CH	1/	11	11	E	L	S		1		T	H	R	U	1		3																			
		3	5	1	5			4	17	8	5			2	27	3	2				6	12	3				1	7	1				10				4				0
					3						4						0						1					(0				0				0				1
	E	K T	I	N	C	T :	10	1		C	o	E	FF	: 1	1 0	I	E	N	7					3	92	26		0	3	P	ER		MET	E	R						
	V:	[5	I	B	I	1	1	1	•	L	I	M	1	١,	,	U	P	P	E	2				9	91	3 5			1	.0	WE								MET	ER	5
																												GI	M,	M	3										
	P	AF	T	I	C	LE	=	C	: 0	U	N	T	•	•				7	•	96	3	P	E	R	(CC															
DAT	A	F	0	R		CH	1 4	11	11	E	L	5	1	17	,	T	H	R	U	3	32	2																			
					0						0						2						0					-	0				0				0				1
					0						0						9						0					-	0				0				0				0
	E	K 1	I	N	C	T I	tc	1(1	C	0	E	FF	1	10	I	E	N	T					1	5	1 6		0	5	P	ER	-	MET	E	R						
	V:	1 5	I	B	I	L	1	1	,	L	I	M	I	1,	,	U	P	P	E	R		2	5	8	91	56	7	,	1	.0	WE	R		9	83	12	93		MET	ER	S
																												GI	M,	M	3										
	P	AF	T	I	CI	LE	=	C	: 0	U	N	T							• (96	,	P	E	R	(CC															
DAT	A	F	0	R	-	CH	4 4	11	11	E	L	S	3	33	3	T	Н	R	U	4	18	3																			
					Ø						8						P						0					(0				0								0
					0						0						0						0					1	0				0				0				0
DAT	A	F	0	R	(CH	10	1	IN	E	L	S	4	19)	T	H	R	U	6	4	1																			
				1	0						0						Ø						0					1	0				0				0				0
					0						Ø						Ø						9					-	0				0				0				0
GRA	N																																								
												M																													
																																	MET								
																																R			76	1	3,	1	MET	ER	5
																												G	4/	M:	3										
	P	N.	T	I	CI	. !		C	C	U	N	T	•					7	• 5	96	1	P	E	R	(C															

SERIES # CTS- 6, TEST # 12 FOR DATA STARTING 22:20 ON 21/ 4/74

DAT	A			57				9	13	14			4	96				-		56	i			21				6			0		•
	VI	S	II	31	1	. I	TA	Y	EF	I	M:	ITON	T	EN	IP	PE	R	۱ ۱	•	. 0	5	46	16	•	,	L	ER		R 42		•	HETE	RS
DAT	A	F	01	6	7			NI		0					1 0			3:	2	0 1	1				0			0			8		
	VI	5	I	31		.I	TA	Y	EF	1	M:	IT	-	EN	IP	P	ER	1	- 2	22	5	67	8	3		L	ER		R 28			HETE	RS
DAT	A	F	ai	1	1		A	NI	NE	0	S				H 0		J	41	8	0					0			0			0		0
	VI	S	I	3 1	L	I	TA	Y	EF	I	M:	IT		EN	IP	PE	R		= 5	. 0	0	90	5	9	,	L	ER		R 72			METE	R8
DAT	A	F	0	0	7					0					0 0					0					0			0			0		0 0
	EX	S	AIIU	MENCE	21	EII	OTA	VNYT	LEF	I	E M	FFIT	I	EN	IP	PE	ER	-		. 0	5	45	51	•	,	L	ER	ME'		75	•	METE	RS

SERIES # CTS- 6, TEST # 13 FOR DATA STARTING 22:30 ON 21/ 4/74

				16	THRU 1	1	NNELS	CHAN	A FOR	DAT
0	0	17	349	1253	006 1	6	1159	1:	7331	
1	1	1	Ø	9	6		1		3	
	R	PER MET	62E-03		CIENT .	FFI	N COE	TIO	EXTINC	
METERS	3474.	LOWER .	537.,		UPPER	IT,	Y LIM	LIT	ISIBI	
		/M3	163 GM	. 00	ENT .	CONT	TER C	MA'	Janic.	
			CC	PER	17.41		COUNT	LE (PARTIC	
				32	THRU 3	17	NNELS	CHAR	A FOR	DAT
0	0	0	6	1	1		1		1	
0	0	0	0	8)	Ø		N		0	
	R	PER MET	41E-05	1	CIENT =	FFI	N COE	TIO	EXTINC	
METERS	31996	LOWER =2	3835,	\$278	UPPER	IT.	Y LIM	LIT	ISIBI	
		/M3	PRI GM	.00	ENT .	ONT	TER C	WA"	TOUTE	
			CC	8 PER	.00	=	COUNT	LE (PARTIC	
				48	THRU 4	33	NNELS	CHAN	A FOR	DAT
0	Ø	9	0	0	A		83		N	
0	0	0	Ø	N			9			
				64	THRU 6	49	NNELS	CHAI	A FOR	DAT
0	0	6	0	Ø	•		64		4	
0	0	0	0	0	a		V.		V	
								ALS	10 TOT.	GHA
				CC	1500.	E .	VOLUM	LE	SAMP	
	R	PER MET	64E-03							
METERS		LOWER =	529.,		UPPER	IT,	Y LIM	LITY	ISIOI	
		/M3			ENT .					
			CC	2 PEH	17.42		COUNT	LE C	PARTICI	

SERIES # CTS- 6, TEST # 14 FOR DATA STARTING 22:40 ON 21/ 4/74

1 1 0 0 1 2 1	1
EXTINCTION COEFFICIENT = .910E-03 PER METER VISIBILITY LIMIT, UPPER = 4298., LOWER = 3292. ME LIQUID WATER CONTENT = .00172 GM/M3 PARTICLE COUNT = 18.34 PER CC	TERS
DATA FOR CHANNELS 17 THRU 32 2 2 2 0 0 1 2 0 0 0 0 1 1	0
EXTINCTION COEFFICIENT = .776E-05 PER METER VISIBILITY LIMIT, UPPER =504190., LOWER =386133. ME LIQUID WATER CONTENT = .00008 GM/M3 PARTICLE COUNT = .01 PER CC	TERS
DATA FOR CHANNELS 33 THRU 48 0 0 0 0 0 0 0	0
DATA FOR CHANNELS 49 THRU 64 0 0 0 0 0 0	0
GRAND TOTALS SAMPLE VOLUME = 1500. CC EXTINCTION CUEFFICIENT = .918E-03 PER METER VISIBILITY LIMIT, UPPER = 4262., LOWER = 3264. ME	TERS

SERIES # CTS- 6, TEST # 15 FOR CATA STARTING 22:50 ON 21/ 4/74

				1 16	1 THRU	_5	CHANNEL	1204B
0	2	25	594	2624	11694)	20835	12048
1	2	1	3	0	Ø	4	4	7
	ER	PER METE	59E-02 P	1	ICIENT	DEF	TION CO	EXTINC
METERS	1882.	OWER .	458., LO	H = 5	, UPPE	IMI	LITY LI	VISIBIL
		M3	301 GM/M	00	ITENT =	CO	WATER	LIQUID
			CC	89 PER	31.	V T	LE COUN	PARTICI
		Tu 3,140	1 -00	32	7 THRU	.5	CHANNEL	ATA FUR I
0	0	1	0					
1	. 0	6		Ø	Ø	^	n	0
	ER	PER METE	2F-05 P	6	ICIENT	DEF	TION CO	EXTINC
METERS	97732	OWER #45	908 10	R =649	. UPPF	IMI	ITTY II	VISIBI
			106 GM/M					
							LE COUN	
				1 48	33 THRU	.5	CHANNEL	ATA FOR C
0	1	e.	0	N	1	٨	N	1
0	0	Ø	6	a	7	7	G	8
	FR	PER METE	31F-04 P	1	TCTENT	FF	TION CO	FETTNO
METERS		OWER =22						
			30 GM/M					
			CC	OP PER		VT.	LE COUN	PARTICI
					O THEN		CHARNE	ATA FOR (
			0					AIA PUR (
	9		0	0	0		V.	,
·	•			ν.			ę.	
							ALS	RAND TOTA
				. CC	= 1500	ME	LE VOLU	SAMPL
							TION CO	CVTTHE
	ER	PER METE	11E-02 P	= .1	ICIENT)EF	ITOM CO	CXITIC
METERS	ER 1860.	PER METE	1E-02 P	= .1 H = 2	UPPE)EF	LITY LI	VISIBIL
METERS	ER 1860.	OWER .	1E-02 P 429., LO 37 GM/M	H = 5	, UPPE	IMI	LITY LI	VISIBIL

SERIES # CTS- 6, TEST # 16 FOR DATA STARTING 23: 0 ON 21/ 4/74

178	10 33828			17 04 05 04	
LIQU	BILITY LI ID WATER	MIT, UPPER	.00477 GM/	OWER . 1192.	METERS
		S 17 THRU			0 2
LIGU	BILITY LI	MIT, UPPER CONTENT =	=156984., L .00029 GM/	PER METER OWER =120226. M3	
	R CHANNEL	T = .0 S 33 THRU 0 0	48	0 0 0 0	The state of the s
VISIO LIQUE	HILITY LI	MIT, UPPER CONTENT =	.00059 GM/	OWER =131227.	METERS
				Ø Ø	
EXTI	MPLE VOLU		256E-02		
LIQU	ID WATER		.00565 GM/	OWER = 1169. M3	METERS

SERIES # CTS- 6, TEST # 17 FOR DATA STARTING 23:10 ON 21/ 4/74

DATA	9042 1	NNELS 1 5241 86	18 1837	439 3	11 3 3	2 2
V L	ISIBILIT	Y LIMIT, TER CONTE	UPPER .	117E-02 PER 3343., LOWER 0222 GM/M3 R CC	METER 2560.	METERS
DATA		NNELS 17	THRU 32 2 3 1 0	1 0	1 2	1 0
V:	ISIBILIT Iguid wa	Y LIMIT, TER CONTE	UPPER =39	100E-04 PER 1177., LOWER 0008 GM/M3 R CC		
DATA	FOR CHA	NNELS 33	THRU 48 0 0 0 0	0	0 0	0 0
V:	ISIBILIT Iquid wa	Y LIMIT, TER CONTE	UPPER #12	323E-05 PER 12427, LOWER 0006 GM/M3 R CC		METERS
DATA	FOR CHA	NNELS 49	THRU 64 Ø Ø	0	0 0	0
E) V1	KTINCTIO KSIBILIT KQUID WA	VOLUME = N COEFFIC Y LIMIT, TER CONTE	UPPER .	118E-02 PER 3306., LOWER 0236 GM/M3 R CC		METERS

SERIES # CTS- 6, TEST # 18 FOR DATA STARTING 23:20 ON 21/ 4/74

DATA	809	90	13	863	81	THRU 55 16	1691	4	20 15	17 9 16 9	11
V	ISI	DIL	YTE	LIM ER C	IT,	UPPE	₹	3591.		METER = 2750.	
DATA				11		THRU 19 @			8	5 3 1 2	1 6
V	ISI	BIL	ITY WAT	LIM ER C	IT,	UPPE	R =18		, LOWER GM/M3	METER = 83886.	
DATA	FOR	1		1		THRU Ø Ø				0 0	
V	ISI	BIL	ITY	LIM ER C	IT,	UPPE	R =37		, LOWER GM/M3	METER =290216.	
DATA	FOR	8 C		0		THRU Ø	64	1	0	0 0	9 0
V L	SAN XTIN ISI	APL NCT BIL	E VION	LIM ER C	FFIC IT, ONTE	UPPER		114E= 3446. 0260		METER = 2639.	METERS

SERIES # CTS- 6, TEST # 19 FOR DATA STARTING 23:30 ON 21/ 4/74

DAT	. A	1	F) F	?	(:1	1	AI	NI	N	Ë١		3		1		T	H	R	U		16	3																							
			6	š	1	5 (3			1	1	2	9 1	3			6	8	1	2				14	16	8				;	38	30	1				3	1				1	8				1:	5
					1		3						11	0					1	4					1	1					1	12	?				2	4				1	5				2	ò
	6	: >	(1			11		r :	I	ומ	N		C	0 8	EF	F	I	C	I	E	N	T	1				9	0	7	E	- 6	03	,	PI	EF	2	M	E'	E	R								
																																													ET		R	3
																																		M														
	F	1	F	?	1	1	CL	_ (Ē	1	C	0	JI	4	r	2	1			1	7		7	4	F	E	R		C	C																		
DAT				.,	1 6	,			_				= 1		2		7		+	_	٥			2 .	,																							
UAI	-	•	•	,																3				3 6							•												3					4
							3																									2	,				•	ė					1					
														•						-						•																	•					•
	E	: >	(1	1	1	11	:	1	I	0	N	-	C	01	F	F	I	C	1	E	N	T					7	0	0	E	- (0 4	1	PI	EF	?	M	E'	E	R								
																																				R			4	2	78	4		M	E1	E	R	5
																																SM	1/	M	3													
	-	,	\ F	5.			C	. 1	Ë	-	C	0	UI	1	T	=	1					•	1	2	F	E	R		C	C																		
				. ,		,		~ .	,				E 1			,	-		-	u	n																											
DAT	-	•	•		,		9									3				9			•	9 6	,							9						0					0					
																										0																	0					
						,								,																		-											•				•	•
	E		1	1		1 (: 1	1	I	וכ	V	1	C	36	F	F	I	C	I	E	N	T	1				4	3	0	E.	- 6	05	5	P	EF	?	M	E'	E	R								
																																													ET	E	R	5
																																		M														
	P	4	F	? 1	1	(: (. 6		-	C	01	11	1	1							. (01	?	F	E	R		C	C																		
																	-		-		n																											
DAT	-	•	•		,,,																	U		9 4	•	0						0						Ø					0					
						6	•							4						Ø						8						- 50)					0					0				6	
							•						•																			-						•									•	'
GRA	N	10)	1	(,	1	1		S																																						
	E	2	1	1		1	: 1	1	I	וכ	N	-	0) (F	F	I	C	I	E	N	T	1				9	8	1	E	- (3	,	PI	EF	?	M	E'	E	R								
	٧	11	1	3]	Ē	,	I	. 1	1	1	4	1	. :	1	1	T			U	P	P	EI	1		:		3	9	8	7	. ,	,	L	01	NE	R				36	0 5	4	•	M	ET	E	RS	,
																															0	M	1	M;	3													
	۲	,	1	1		. (1	. [-			U	JI	,	ſ	=				1	7		3	4	F	E	R		C	C																		

SERIES # CTS- 6, TEST # 20 FOR DATA STARTING 23:40 ON 21/ 4/74

DATA			1 THRU 1		55 30	32 34
	67	26	16	24	6 22	38 46
V:	ISIBIL IQUID	ITY LIMI	T, UPPER	• 5774. .00138		ER 4422. METERS
DATA		36		28	15 8	4 6 6 1
V	ISIAIL IQUID	HATER CO	T, UPPER	# 47252. .00065	A PER MET LOWER # GM/M3	ER 36188. METERS
DATA	1	1	33 THRU 4	1	0 0	0 0 0 0
V L	ISIBIL	ITY LIMI	T, UPPER	-378948.		ER 90216. METERS
DATA	FOR C		49 THRU 6	0 0 0	0 0	0 0
E V	XTINCT ISIBIL IQUID	E VOLUME TION COEF ITY LIMI WATER CO	T, UPPER	.771E-0 = 5077.	D3 PER MET LOWER = GM/M3	ER 3888. METERS

SERIES # CTS- 6, TEST # 21 FOR DATA STARTING 23:50 ON 21/ 4/74

DAT	•			13	1				7	3	8	3			4	5	9	5				9	5	3				2	85	5				19				1 2	4 5				13
	VL	I	31	1	I	L	IW	TA	Y	E	LR	I!	4)	T	Ť	E	U	PF	3	R				0	6 4	40	11	•	,	L		IE		1E				2	•	M	ET	E	23
DAT	· A		FC		9						1	4					1		21	,	3	2	1	9										3 1					5 2				10
	VL	I	31	1	I	L	IW	TA	Y	E	L	I	41	T	Ť	E	U	PF		R				92	21	14	10	•	,	L	PE	IE	R	1E	TE 7	R	56	55	•	M	ET	EF	23
DAT	A		FC	F	1						1	0		3				H F		ı	4	8	-	0					8					0 0					0				0
	VL	I	51	1	I	L	IW	TA	Y	E	L	I!	11	T	Ť	E	UN	PF	9 6	R			1	40	96	9 6	6	9		L		IE		1E				4	1	M	ET	EF	28
DAT	A		= (H	-						1	0		4				H F	۶L	,	6	4	-	0					8	34				0					0				0
GRA	EVL	X	5/51	NE	PICI	LTL	EIIIW	OTA	VNYT	E	CLR	I	EF 4 1	F	I	C	IUN	PF	11	R	•		. !		59	16	0	•		L	PI O	1E	R	1E	TE	R 4	56	4	•	M	ET	EF	28

SERIES # CTS- 6, TEST # 22 FOR DATA STARTING # 0 0N 22/ 4/74

DATA	447	8	7388 15	3 4	323		880	223 11	17 10	18 15	15 13
V	ISIB IQUI	ILI D W	TY LI	CONT	ENT	PER	.01	8117 GM	LOWER .	TER 5035.	METERS
DATA	1	0	ANNEL 13	3	16		8	6 1	2	2	0 1
V L	ISIB IQUI	D W	TY LI ATER	CONT	ENT	PER	-10	370E=04 5611., L 7033 GM, R CC	LOWER =	TER 80882.	METERS
DATA			ANNEL 6				8 0	0		0	9
DATA			ANNEL	,			4 Ø Ø	0	0		
E V	SAM XTIN ISIB IQUI	PLE CTI ILI D W	VOLU ON CO TY LI	EFFI MIT, CONT	CIE UP ENT	NT PER	.00	1150 GM	LOWER .	TER 4740.	METERS

SERIES # CTS- 6, TEST # 23 FOR DATA STARTING #818 ON 22/ 4/74

DAT	•			Ø	3	7				7	1	0	0				41	3	41					9	1	5				2	1	5 5				1	2020					25		10
	4	I	50	I	B	I	_	W	TA	Y	E	LR	I	M	I	7	11	1	יע	P	E	R				0	6	76	15	5.			L	PEON	E	R	HE.	TI	ER 5	1	90	3,	METE	RS
DAT	`A		F	0	R 2	5	CI					1	6					1	T + 2 0 2	,					1	0					1	10					10					0 1		1 0
	VL	I	\$ Q	I	B	I	L	W	T	Y	E	LR	I	M	I	T N'	,	EI	JF	P	E	R				8	7	38	3 4	4			L		E				ER 57				METE	RS
DAT					1	0							0						6	,						0						0 0					0					0		0
DAT					1	0							0	S					6	,	ı		6	4		0						0					0					0		0
GRA	EVL	XII	STSQ	AIIU	MNBI	CI	LITL	EIIW	OTA	VNYT	E	CLR	0	EMC	I	TN	1	E	UF	P	TE	R	-				6	25	45	,			L		E				ER 4		23	٥.	METEI	RS

SERIES # CTS- 6, TEST # 24 FOR DATA STARTING 0:20 ON 22/ 4/74

DATA	481	5	840	4	50	12	105		291	20		
V:	ISIB IQUI	ILI D W	TY L	IMIT	I, L	IPPER	•	580	E-03 PE 8., LOW 2 GM/M3 C	ER .		METERS
DATA	1		1			9		2	8	4 0	4	2
V:	ISIB IQUI	ILI D W	TY L	CON	I, L	IPPER	= 1	1770	E-04 PE 2., LOW 5 GM/M3 C	ER . 9		METERS
DATA			ANNE	LS 3			48	U O	0	0		:
DATA			ANNE			HRU Ø	64	0	0	0	0	:
GRANG	SAM	PLE	ON C	DEFF	ICI	500. ENT		.707	E-03 PE	R METE	R	METERS
L:	IQUI	C W	ATER	CON	ITEN	T =			7 GM/M3		4239,	METERS

SERIES # CTS- 6, TEST # 25 FOR DATA STARTING 0:30 ON 22/ 4/74

DAT	A	F 4	5	3	3			7	16	36	9				46	67	1				!	9	7 9	•										2	33				1	8				21
				5(5					2	25					2	1						10	9			1		1	9				1	19				2	5			4	12
		S	I	8	IL	. 1	1	1	1	L	I	M	I	T	,	L	P	P	E	R	- 1			6	51	1	8			1	LC) W	E			TE					M	ET	EF	8
	PA																												7															
DATA	A	F																			3									•														•
				2	4						5					1	9						3						1	0					7 0					0				2
																																				TE								
- 1	I	()	U	I)		A A	1	F	F	?	C	0	N'	TE	IN	T		=				. 0	90	0	4	3		G	M	LC/M	W (3	EI	2		5	1	9:	35	•	M	ET	ER	25
F	PA	R	T	I	cı	·		(JL	N	T		=						0	8	-	9	F	\$	C	C																	
DAT	A	F	0																U		4	8								•														
				(7)																				0
	EX	T	I	NI	:1	1) 1	1	(0:0	E	F	F	10	: 1	E	N	T					, 7	1	0	E	-	0	5	P	E	R		1E	TE	R							
	VI																																	2		42	2	10	56		M	ET	EF	25
	PA																												-															
DATA	4	F	0	2	C	:+															6	4	120																					
				(7												0)						0					0					0				0
GRAN	10	1	T	0.	1	1	. 5	•																																				
	EX	S	A	MI	15	3.		1	10	10	U	ME	E	F	•	1	5 E	Ø	0 T	•		C	:	. 7	0	4	E		0	3	P	E	R		1E	TE	R							
1	VI	S	I	8	L	. 1	T	1	1	L	. 1	M	I	T	,	L.	P	P	E	R	1			5	55	5	5			1	LO) W	E	?			4	2	54	•	M	ET	ER	8
	PA																												9		, ,													

SERIES # CTS- 6, TEST # 26 FOR DATA STARTING 0:40 ON 22/ 4/74

DATA	FOR	, (CHA	NN	EL	S	1	T	HRL	1 1	6							
														205		25	24	22
	3	14			22			1	7		1	5		14		10	28	25
															PER			
																	6239.	METERS
													1097		/M3			
P	ARTI	CL	.E	CO	UN	T	2		9.	20	P	EF	S CC					
	505				=				UD 1		•							
DATA	FUR		- 11	NN	EL	3	1/	0	7	, ,	2							•
		0			14			2	2		1	0		-		4	0	2
		•							•							1	1	•
F	XTIN	10	rto	N	co	EF	FIC	. 1	ENT				452F	-04	PER	MET	FR	
																		METERS
													0037					
													S CC					
DATA	FOR	۶ (CHA	NN	EL	S	33	T	HRL	1 4	8							
												0		0		0	0	0
		0			0				Ø			0		0		0	0	0
DATA	FOF									6	4							
									Ø			0		0		-		0
		0			N				0			0		0		0	0	0
-																		
GRAN	SA		-		1 11	M E		4	500		cr							
=													5085	-03	PER	ME .	760	
																		METERS
													0134				3,02,	
													CC					
			-		•	•						-						

SERIES # CTS- 6, TEST # 27 FOR DATA STARTING #150 ON 22/ 4/74

DATA	248	37	39	50	241	HRU 19	511	149	19 16	12 15	12
V	ISIE	BILI	TY	LIMIT	TEN	PPER	11569	GM/M3	ER . 8	1 1860. METI	ERS
DATA					1	HRU 3: 1 0		8 0	3 0	1 0	1 0
V.	ISIE	IL I	TATE	LIMIT	TEN	PPER :	-168198	GM/M3		! 814. MET	ERS
DATA	FOR	0 0	IANNI		- 1	HRU 41	8 0 0	0	0	0	
		0		ELS 4		HRU 6	4 Ø Ø	0	0	8	0
V.	SAM XTIN ISIE IGUI	PLE ICTI	VOI ON I	COEFF LIMIT R COM	ICI	PPER	.361E	GM/M3		1 3298. MET	ERS

SERIES # CTS- 6, TEST # 28 FOR DATA STARTING 1: 0 ON 22/ 4/74

DATA FOR CHAN	NELS 1 THRU 1	6		
	956 1912		14 16	14
19	21 18	4 4		13
	COEFFICIENT .			
VISIBILITY	LIMIT, UPPER	= 15158., LOW	MER = 11609.	METERS
DARTICLE C	ER CONTENT = 4.93	.00052 GM/M3	THE REAL PROPERTY.	
PARTICLE	4.93	PER LL		
DATA FOR CHAN	NELS 17 THRU 3	2		
13			3 3	2
2	1 0	7 5 0	3 3	0
	COEFFICIENT =			
	LIMIT, UPPER			METERS
	DUNT = .03		有些是10万里	
PANITULE C	.00.100	TER CC		
DATA FOR CHAN	NELS 33 THRU 4	8		
0		0 0	0 0	0
0	0	0 0	0 0	0
	INELS 49 THRU 6			
0	0 0 0 0	0 0	0 0	0
	6, 9	6		•
GRAND TOTALS				
	OLUME . 1500.			
EXTINCTION	COEFFICIENT .	.280E-03 PE	ER METER	
	LIMIT, UPPER			METERS
	ER CONTENT =			
PARTICLE C	OUNT = 4.97	PER CC		

SERIES # CTS- 6, TEST # 29 FOR DATA STARTING 1:10 ON 22/ 4/74

1738 2	NNELS 1 THRU 1 2646 1669 17 13		17 6 15 8 10 9
VISIBILITY	Y LIMIT, UPPER	.00047 GM/M3	R . 12832. METERS
DATA FOR CHAN	NNELS 17 THRU 3		2 0 0
EXTINCTION VISIBILITY	Y LIMIT, UPPER	= .249E=04 PER =157179., LOWE	NG BERMER BE
PARTICLE C	TER CONTENT = COUNT = .04 NNELS 33 THRU 4	4 PER CC 48	NEWS TOWNSON
Ø EXTINCTION	0 0 0 N COEFFICIENT :	0 0 430E-05 PER	0 0 0 0 0 P
LIQUID WAT	Y LIMIT, UPPER TER CONTENT = COUNT = .00	.00009 GM/M3	R =696324. METERS
0	NNELS 49 THRU 6	0 0	e e e
EXTINCTION	VOLUME = 1500. N CUEFFICIENT :	263E-03 PER	METER
LIQUID WAT	TER CONTENT = COUNT = 4.48	.00076 GM/M3	R = 11406. METERS

SERIES # CTS- 6, TEST # 30 FOR DATA STARTING 1:20 DN 22/ 4/74

DA	1	1																																											
			1																												8	5				1	3				6				7
						1	5						1	4						8					1	. 0	1					6					4				6			1	1
																																						ER							
																																		3		1	•	15	1	0		M	ET	ER	5
																												יש				,,,,	, ,,	3											
DA		4	,	. [Ų			?	3						3									0				0
																										0						9				-	1				0				0
													•																			-									•				
		2	(1		1	VI	C	T	I	ום	V	-) [F	F	I	C	I	E	N'	T	•	•			1	3	41	Ε-	0	4	P	E	?	M	ET	ER							
																																					. 5	23	9	26	•	M	ET	ER	5
																														C		m	/ M	3											
			•	•		•	_				•											• •			•	-			-																
DA	1	1	F	- (01	2		C	H	AI	VI	V	EL	. 5	5	3	3		T	H	RI	J	-	18	3																				
							2													Ø						0	1										0				0				0
						-	N						0	1						0						0	1					0				1	0				0				0
DA'	1		F	- (01	R		C	H.	AI	NI	N	EL	. :	3	4	9)	T	н	RI	U		5 4	1																				
																				0						2)					0				-	0				0				0
						-	?						8	3						0						8)					0				1	0				0				0
GR	4 4	VI)		T	ם	T	A	L	S																																			
												01	L	11	16				1	5	0	0		(: (:																			
																											2	1	21	E.	.0	3	P	E	R	M	ET	ER	1						
			-														- 5													100					ER			14	1	49		M	ET	ER	3
																															G	M	/ M	3											
	+	,	A F	٤.	1	I	C	L	. .	-)(JI	4	1	=	1				3	. 8	3 4	4	F	3	R		C	C															

SERIES # CTS- 6, TEST # 31 FOR DATA STARTING 1:30 ON 22/ 4/74

DAT	A	F		98				1	45					9	TF 47	,	ì		1	9						56				4 6			7 1		5
	V	S	I	B 1	L	I	TA	Y	L	I	M	11	T	E	UF	P	EI	R			20	9:	22	21	•	,	L	PE ON M3	EF				9.	METER	28
DAT	A	F		12						9		1				5	u	3	32	-	10					1 0				2			1 0		1 0
	V	S	I	81	1	I	TA	Y T(L	I	M	IT		E	UF N1	9	E	R	1	2	50	2:	36	2	•		L	PE OW M3	EF				2.	METER	28
DAT	^	F	C	1	C					e			3			,		4	1 6	3	9 9					0	70			0			0		0 0
	V	S	I	10	L	I	T	Y Te	L	I	M.	TI	1	E	UF N1	P	E	2		1	40	90	10	5	9	,	L	PE OH M3	EF				41	METER	?5
DAT	•	F	O		1		ΔΙ	NI								•		6								0				0			0		0
	EX	S	II	MF NC B1	1	EIIW	O T	VI	CLE	I	E I	IT	1	C E	UF N1	NP	TE	2			. 2 0	57	7 9	18	•	,	L	PE OW M3	EF			8	8.	METER	?s

SERIES # CTS- 6, TEST # 32 FOR DATA STARTING 1:40 ON 22/ 4/74

DATA	857 1	NELS 1 THRU 208 783 6 8	143 68	10 5	\$
VI LI	SIBILITY QUID WAT	LIMIT, UPPER	= .110E-03 PE R = 35431., LOW .00023 GM/M3 B PER CC	ER = 27135.	METERS
DATA		NELS 17 THRU 7 1 0 0		1 0	
VI	SIBILITY QUID WAT	LIMIT, UPPER	<pre># .716E=05 PE # 546644., LOW .00005 GM/M3 11 PER CC</pre>	ER =418646.	METERS
DATA	FOR CHAN	NELS 33 THRU	48 0 0 0 0	0 0	e
Mate	0	NELS 49 THRU 0 0 0 0	0 0	0 B	0
EX	TINCTION SIBILITY QUIC WAT	LIMIT, UPPER	118E-03 PE 33275., LOW .00027 GM/M3	ER . 25483.	METERS

SERIES # CTS- 6, TEST # 33 FOR DATA STARTING 1:50 ON 22/ 4/74

984 1307 831 195 50 13 2 5 6 9 4 2 7 7 EXTINCTION COEFFICIENT = .121E=03 PER METER VISIBILITY LIMIT, UPPER = 32198., LOWER = 24659. MET LIQUIC WATER CONTENT = .00025 GM/M3 PARTICLE COUNT = 2.29 PER CC DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 6 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E=04 PER METER	11
EXTINCTION COEFFICIENT = .121E=03 PER METER VISIBILITY LIMIT, UPPER = 32198., LOWER = 24659. MET LIQUIC WATER CONTENT = .00025 GM/M3 PARTICLE COUNT = 2.29 PER CC DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 0 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E=04 PER METER	11
EXTINCTION COEFFICIENT = .121E=03 PER METER VISIBILITY LIMIT, UPPER = 32198., LOWER = 24659. MET LIQUIC WATER CONTENT = .00025 GM/M3 PARTICLE COUNT = 2.29 PER CC DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 0 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E=04 PER METER	
VISIBILITY LIMIT, UPPER = 32198., LOWER = 24659. MET LIQUIC WATER CONTENT = .00025 GM/M3 PARTICLE COUNT = 2.29 PER CC DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 9 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E-04 PER METER	
VISIBILITY LIMIT, UPPER = 32198., LOWER = 24659. MET LIQUIC WATER CONTENT = .00025 GM/M3 PARTICLE COUNT = 2.29 PER CC DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 9 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E-04 PER METER	
LIQUIC WATER CONTENT = .00025 GM/M3 PARTICLE COUNT = 2.29 PER CC DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 9 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E-04 PER METER	ERS
PARTICLE COUNT = 2.29 PER CC DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 Ø 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E-04 PER METER	
DATA FOR CHANNELS 17 THRU 32 6 8 4 4 2 1 2 7 1 1 0 0 0 0 EXTINCTION COEFFICIENT = .133E-04 PER METER	
6 8 4 4 2 1 2 0 1 1 0 0 0 0 0 EXTINCTION CUEFFICIENT = .133E-04 PER METER	
6 8 4 4 2 1 2 0 1 1 0 0 0 0 0 EXTINCTION CUEFFICIENT = .133E-04 PER METER	
EXTINCTION COEFFICIENT = .133E-04 PER METER	1
EXTINCTION CUEFFICIENT . 133E-04 PER METER	0
EXTINCTION COEFFICIENT = .133E-04 PER METER	
VISIBILITY LIMIT, UPPER #293513., LOWER #224786. MET	FRS
LIQUID WATER CONTENT	
PARTICLE COUNT	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DATA FOR CHANNELS 33 THRU 48	
0 0 0 0 0	0
	0
DATA FOR CHANNELS 49 THRU 64	
	0
	0
GRAND TOTALS	
SAMPLE VOLUME = 1500. CC	
EXTINCTION COEFFICIENT = .135E-03 PER METER	
VISIBILITY LIMIT, UPPER = 29015., LOWER = 22221. MET	FRS
LIQUID WATER CONTENT = .00035 GM/M3	
PARTICLE COUNT = 2.31 PER CC	

SERIES # CTS- 6, TEST # 34 FOR DATA STARTING 2: 0 ON 22/ 4/74

			64	198		928	449	14	FOR C 905	DATA
5	4	2	4	5		9	6		4	
	750	PFR MF	125E-03		NT s	FICTE	COFF	TON	XTINCT	F
METERS	24055.									
			0025 GM	.0		NTENT	ER CC	WATE	IQUID	L
			R CC	PE	2.48	•	TNUC	E CO	ARTICL	P
				32	RU 3	17 TH	NELS	HANN	FOR C	DATA
0	1	8	0	1		3			4	
0	1	0	0	0		0	0		6	
	TER	PER ME	607E=05		NT =	FICIE	COEF	ION	XTINCT	E
METERS	493586.									
		/M3	0006 GM							
			R CC	1 PE	.01		TAUC	E CO	ARTICL	P
				48	RU 4	33 TH	VELS	HANN	FOR C	DATA
0	0	0	0	0		0	0		9	
0	0		0	Ø		0	6		0	
				64	PII 6	40 TH	FIS	HANK	FOR C	DATA
0	0	0	0	0			0			0
	0			0			0			
METERA			157E-03							
METERS	19075.		2028 GM							
		/ M 3							ARTICL	
				THE STATE			,	_ •		
								-	ATOT O	GRAN
						= 15				
*****			288E-03							
METERS	10414.									
		/m3	2058 GM	0 05	2 40	MIENT	DIIN'T	MAIL	APTICI	-
			K CC	O PE	2.40		JUNT	E CC	ARTICL	P

SERIES # CTS- 6, TEST # 35 FOR DATA STARTING 2:10 ON 22/ 4/74

DATA	FOR CHAR 2670		017 4	20 112	8 6	3 1 0 1
V:	ISIBILIT	LIMIT,	UPPER #	13274., .00056 GM		166. METERS
DATA	FOR CHAP	NELS 17 3 0	1	1 2 0		0 0
V:	ISIBILITY	LIMIT,	UPPER .	1072115, .00003 GM		78. METERS
DATA	FOR CHAN	NELS 33 6 0		0 0 0 0		0 0 0 0
	0	NELS 49	THRU 64 0 0	0 0		Ø Ø
E) VI	KTINCTION ISIBILITY	COEFFI LIMIT, YER CONT	UPPER =	.298E-03 13112., .00059 GM		742. METERS

The state of the s

SERIES # CTS- 6, TEST # 36 FOR DATA STARTING 2:20 ON 22/ 4/74

Canada Company of the Company	34 4913	1 THRU 16 2717 59	8 130 1 0 0	0 0 1
LIGU	BILITY LIM: ID WATER CO	FFICIENT * IT, UPPER * ONTENT * . 8.00 P	90074 GM/M3	ETER = 7598, METERS
DATA FO	R CHANNELS 1 0 0 0	17 THRU 32 Ø		0 0 0
LIQU	BILITY LIM:		00000 GM/M3	ETER =\$\$\$\$\$\$\$\$ METERS
DATA FO		33 THRU 48	0 0	
	8 8	49'THRU 64 Ø	0 0 0	0 0 8
VISI LIQU	MPLE VOLUME NCTION COEF BILITY LIM ID WATER CO		.395E-03 PER M 9914., LOWER 00074 GM/M3	ETER = 7593, METERS

All curacy ...

SERIES # CTS- 6, TEST # 37 FOR DATA STARTING 2:30 ON 22/ 4/74

	,,-	22/ 4/	N 2	0 0	5.0	,	M	11	AR	, , ,	•	1 4	UA	K.	ru								
95 204	88 179	84 216		468 191																		ATA	DA
METERS	TER 757.	R ME' NER =	LOW		96E 988 794	.40	*	R	PE	IPE	E	T,	MI	L1 R	Y TE	IT	L	I	18	SI	I	1	
	70 73	79 70		92		11	2	3	RU	THI	1	17	S	EL	NN 1	НΔ	C	14	R	FC 1		ATA	D
METERS	TER 2389.	ER ME'NER *	LOW	· GM	25E 119 422 CC	.01	=	R	PE	PI	E	T,	CO	L I	Y TE	IT	L	I	IH	5 I	I	1	
	105 12			85		39	8	4	RU	TH6		33	S	EL	NN	HA	C	5	8 8			ATA	DA
METERS	TER 423.		LOW	· GM		, 21	=	R	E	PE	EF	T,	MI	L I	Y TE	IT	L	I	H	5 I Q L	I	1.	
		0		0		0		6		1 0		49			NN	НΔ		2	R	FC		ATA	DA
METERS	TER 32173.		LOW	.,		42	=	R	36	IPE	E	T,	MI	LIR	Y TE	IT	L	I	11	SI	I	1	
METERS	TER 242,	ER ME!	LOWI	.,		.1	=	R	NT PE	PE	CI	FI T,	MI	CC L1 R	VO N Y TE	E IO IT	LTL	PICII	IN IN	SA TI SI GU	XI	٤ د د	G

SERIES # CTS- 6, TEST # 38 FOR DATA STARTING 2:40 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 54180 97616 47096 3939 590 239 257 311 349 458 500 627 679 708 697 .661

EXTINCTION COEFFICIENT = .744E=02 PER METER
VISIBILITY LIMIT, UPPER = 526., LOWER = 403. METERS
LIQUID WATER CONTENT = .01579 GM/M3
PARTICLE COUNT = 139.27 PER CC

DATA FOR CHANNELS 17 THRU 32

489 644 586 512 399 327 262 235 217 232 208 205 168 228 234 222

EXTINCTION COEFFICIENT = .417E-02 PER METER
VISIBILITY LIMIT, UPPER = 939., LOWER = 719. METERS
LIQUID WATER CONTENT = .04614 GM/M3
PARTICLE COUNT = 3.45 PER CC

DATA FOR CHANNELS 33 THRU 48

240 264 315 292 292 288 318 282 237 169 117 84 34 20 11 4

EXTINCTION CGEFFICIENT = .189E=01 PER METER
VISIBILITY LIMIT, UPPER = 207., LOWER = 159. METERS
LIQUID WATER CONTENT = .53538 GM/M3
PARTICLE COUNT = 1.98 PER CC

DATA FOR CHANNELS 49 THRU 64

EXTINCTION COEFFICIENT = .559E-04 PER METER
VISIBILITY LIMIT, UPPER = 70020., LOWER = 53625. METERS
LIQUID WATER CONTENT = .00304 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .305E-01 PER METER

VISIBILITY LIMIT, UPPER = 128., LOWER = 98. METERS

LIQUID WATER CONTENT = .60035 GM/M3

PARTICLE COUNT = 144.70 PER CC

SERIES # CTS- 6, TEST # 39 FOR DATA STARTING 2:50 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 24722 60545 36685 5063 926 256 330 413 605 907 1043 1226 1352 1397 1318 1168

EXTINCTION CUEFFICIENT = .581E-02 PER METER
VISIBILITY LIMIT, UPPER = 674., LOWER = 516. METERS
LIQUID WATER CONTENT = .01454 GM/M3
PARTICLE COUNT = 91.97 PER CC

DATA FOR CHANNELS 17 THRU 32 1101 999 879 709 548 430 316 271 277 260 289 258 228 253 308 269

EXTINCTION COEFFICIENT = .551E-02 PER METER
VISIBILITY LIMIT, UPPER = 709., LOWER = 543. METERS
LIQUID WATER CONTENT = .05942 GM/M3
PARTICLE COUNT = 4.93 PER CC

DATA FOR CHANNELS 33 THRU 48
289 298 293 317 279 296 280 236
175 137 91 46 22 12 7 1

EXTINCTION COEFFICIENT = .163E-01 PER METER
VISIBILITY LIMIT, UPPER = 239., LOWER = 183. METERS
LIGUID WATER CONTENT = .44371 GM/M3
PARTICLE COUNT = 1.85 PER CC

DATA FOR CHANNELS 49 THRU 64
2 0 1 0 0 0 0 0

EXTINCTION COEFFICIENT = .931E-04 PER METER
VISIBILITY LIMIT, UPPER = 42010., LOWER = 32173. METERS
LIQUID WATER CONTENT = .00538 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .278E-01 PER METER

VISIBILITY LIMIT, UPPER = 141., LOWER = 108. METERS

LIQUID WATER CONTENT = .52304 GM/M3

PARTICLE COUNT = 98.76 PER CC

SERIES 4 CTS- 6, TEST # 48 FOR DATA STARTING 3: 0 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 21272 52241 31904 4464 797 240 279 394 564 824 968 1082 1197 1097 1037 896

EXTINCTION COEFFICIENT = .498E-02 PER METER
VISIBILITY LIMIT, UPPER = 785., LOWER = 601. METERS
LIQUID WATER CONTENT = .01234 GM/M3
PARTICLE COUNT = 79.50 PER CC

DATA FOR CHANNELS 17 THRU 32 441 862 860 807 733 684 526 469 458 434 462 385 332 252 224 201

EXTINCTION COEFFICIENT = .628E-02 PER METER
VISIBILITY LIMIT, UPPER = 623., LOWER = 477. METERS
LIQUID WATER CONTENT = .06621 GM/M3
PARTICLE COUNT = 5.42 PER CC

DATA FOR CHANNELS 33 THRU 48 194 161 178 148 147 170 143 161 167 106 89 77 38 25 12 6

EXTINCTION COEFFICIENT = .123E-01 PER METER
VISIBILITY LIMIT, UPPER = 317., LOWER = 243. METERS
LIQUID WATER CONTENT = .36789 GM/M3
PARTICLE COUNT = 1.21 PER CC

DATA FOR CHANNELS 49 THRU 64
4 1 0 0 0 0 0 0

EXTINCTION CUEFFICIENT = .144E-03 PER METER
VISIBILITY LIMIT, UPPER = 27167., LOWER = 20806. METERS
LIQUID WATER CONTENT = .00797 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .237E=01 PER METER

VISIBILITY LIMIT, UPPER = 165., LOWER # 126. METERS

LIQUID WATER CONTENT = .45441 GM/M3

PARTICLE COUNT = 86.14 PER CC

SERIES # CTS- 6, TEST # 41 FOR DATA STARTING 3:10 DN 22/ 4/74

2148	NNELS 1 THRU 1 3489 2211	438 113	23 15	11
20	19 14	11 6	9 9	12
VISIBILIT	N COEFFICIENT : Y LIMIT, UPPER TER CONTENT = COUNT = 5.76	= 13174., L	OWER = 10089.	METERS
17	NNELS 17 THRU :	32 8 3 0 0		
VISIBILIT	N COEFFICIENT OF LIMIT, UPPER TER CONTENT = .03	=201797., L .00013 GM/	OWER =154546.	METERS
	NNELS 33 THRU			
9	1 0	0 0		0
	N COEFFICIENT			
	Y LIMIT, UPPER TER CONTENT =			METERS
	COUNT			
DATA FOR CHA	NNELS 49 THRU	5 4		
И	6 6	9 9	0 6	6
v	a a	0 0	0 0	0
GRAND TOTALS	VOLUME = 1500.	cc		
EXTINCTIO	N COEFFICIENT	320E-03		
	Y LIMIT, UPPER			METERS
	TER CONTENT = 5.73		ms	

SERIES # CTS- 6, TEST # 42 FOR DATA STARTING 3:20 ON 22/ 4/74

DATA 500	CHANNE		1011 46				
DATA FOR				146	2.5	10	19
204	7 1	1 11	34	2 3	5	11	17
		•					
EXTIN	CTION C	DEFFICIE	NT .	354E-03	PER ME	TER	
				11045			METERS
LIQUI	WATER	CONTENT		00070 GM	/M3		
PARTI	CLE COU	NT =	6.85 PI	ER CC			
DATA FOR							
1	3 1	1 9		4 3	2	5	2
	1	1 ,	9	1 0	0	0	0
EVITAL	CTTON C	DEFETOTE	NT =	200E-04		TED	
				96088.,			METERS
				10015 GM			
		NT =					
DATA FOR							
	2	0) (0	0
	*	2 0) (0	6	0	0
			1011 64				
DATA FOR		2 49 IF		n n	0	0	
		e v		a e		Laboratory and the second	9
	4	,				•	
GRAND TO	TALS						
GRAND TO		UME = 15	500. CC				
SAMI	PLE VOL	UME = 15 DEFFICIE		.374E-03	PER ME	TER	
SAM! EXTIN	PLE VOL	DEFFICIE	NT =				METERS
SAMI EXTIN VISIB LIQUI	PLE VOLI CTION C ILITY L D WATER	DEFFICIE IMIT, UF CONTENT	PPER =	.374E-03 10456., 00085 GM	LOWER =		METERS
SAMI EXTIN VISIB LIQUI	PLE VOLI CTION C ILITY L D WATER	DEFFICIE	PPER =	.374E-03 10456., 00085 GM	LOWER =		METERS

SERIES # CTS- 6, TEST # 43 FOR DATA STARTING 3:30 DN 22/ 4/74

DATA FOR	CHANNELS	1 THEU	16				
41298	76552	38773	3706	513	215	220	320
395	500	505	654	640	647	666	599

EXTINCTION COEFFICIENT = .604E-02 PER METER
VTSIBILITY LIMIT, UPPER = .647., LOWER = .496. METERS
LIQUID MATER CONTENT = .01311 GM/M3
PARTICLE COUNT = .110.74 PER CC

DATA FOR CHANNELS 17 THRU 32 488 466 448 366 364 339 349 341 343 367 384 365 357 354 328 358

EXTINCTION COEFFICIENT = .579E-02 PER METER
VISIBILITY LIMIT, UPPER = 676., LOWER = 518. METERS
LIQUID WATER CONTENT = .06836 GM/M3
PARTICLE COURT = 3.93 PER CC

DATA FOR CHANNELS 33 THRU 48 334 348 341 291 281 211 187 147 124 74 60 40 40 13 18 4

EXTINCTION COEFFICIENT = .140E=01 PER METER
VISIBILITY LIMIT, UPPER = 280., LOWER = 214. METERS
LIQUID MATCH CONTENT = .37841 GM/M3
PARTICLE COUNT = 1.68 PER CC

EXTINCTION COEFFICIENT = .881E-04 PER METER
VISIBILITY LIMIT, UPPER = 44390., LOWER = 33996. METERS
LIQUIO WATER CONTENT = .00493 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .259E-01 PER METER

VISIBILITY LIMIT, UPPER = 151., LOWER = 116. METERS
LIQUID WATER CONTENT = .45481 GM/M3

SERIES # CTS- 6, TEST # 44 FOR DATA STARTING 3140 ON 22/ 4/74

DATA FOR CHANNELS 1. THRU 16 37193 65910 32822 3527 586 237 307 325 440 535 652 744 792 888 964 942

EXTINCTION COEFFICIENT = .562E-02 PER METER
VISIBILITY LIMIT, UPPER = 696., LOWER = 533. METERS
LIQUID WATER CONTENT = .01299 GM/M3
PARTICLE COUNT = 97.91 PER CC

DATA FOR CHANNELS 17 THRU 32 755 588 454 327 213 164 677 659 140 121 115 114 91 89 86 97

EXTINCTION COEFFICIENT = .287E-02 PER METER
VISIBILITY LIMIT, UPPER = 1365., LOWER = 1046. METERS
LIQUID WATER CONTENT = .02750 GM/M3
PARTICLE COUNT = 3.13 PER CC

DATA FOR CHANNELS 33 THRU 48 107 91 79 94 83 107 99 100 78 93 91 90 81 41 43 27

EXTINCTION COEFFICIENT = .112E-01 PER METER
VISIBILITY LIMIT, UPPER = 348., LOWER = 266. METERS
LIQUID WATER CONTENT = .38576 GM/M3
PARTICLE COUNT = .87 PER CC

DATA FOR CHANNELS 49 THRU 64

15 6 3 4 1 0 0 0

EXTINCTION COEFFICIENT = .101E-02 PER METER
VISIBILITY LIMIT, UPPER = 3871,, LOWER = 2965, METERS
LIQUID WATER CONTENT = .06017 GM/M3
PARTICLE COUNT = .02 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .207E=01 PER METER

VISIBILITY LIMIT, UPPER = 189., LOWER = 144. METERS

LIGUID WATER CONTENT = .48642 GM/M3

PARTICLE COUNT = 101.93 PER CC

SERIES # CTS- 6, TEST # 45 FOR DATA STARTING 3:50 ON 22/ 4/74

	FOR DATA STA	RTING 3:50 ON 22	/ 4/74
DATA FOR CH	TANNELS 1 THR	U 16	374 427 541
725	887 1076	1232 1419 1	375 1439 1356
LIGUID W	TY LIMIT, UPP	= .01641 GM/M3	R = 447, METERS
1180 346	326 311	992 775 375 312	594 477 385 290 301 314
VISIBILI LIQUID W	TY LIMIT, UPP	= .07171 GM/M3	R METER R = 444. METERS
307	ANNELS 33 THR 272 233 144 136	262 243	218 186 196 107 75 36
VISIBILI LIQUID W	TY LIMIT, UPP	. 69142 GM/M3	METER R = 142. METERS
	IANNELS 49 THR 10 3 0 0		0 0 0 0 0 0
VISIBILI LIQUID W	TY LIMIT, UPP	= .05784 GM/M3	R METER R = 2934. METERS
EXTINCTI VISIBILI LIQUID W	VOLUME * 150 ON COEFFICIEN TY LIMIT, UPP	T = .356E-01 PER PER = 110., LOWE = .83738 GM/M3	METER R = 84, METERS

SERIES # CTS- 6, TEST # 46 FOR DATA STARTING 4: 0 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 28322 56685 30451 3401 588 264 334 424 558 725 900 1000 1049 1196 1187 1136

EXTINCTION COEFFICIENT = .527E-02 PER METER
VISIBILITY LIMIT, UPPER = .742., LOWER = .568. METERS
LIQUID WATER CONTENT = .01306 GM/M3
PARTICLE COUNT = .85.48 PER CC

DATA FOR CHANNELS 17 THRU 32 883 889 741 551 485 353

 883
 889
 741
 551
 485
 353
 255
 207

 288
 284
 263
 238
 234
 230
 223
 238

EXTINCTION COEFFICIENT = .464E-02 PER METER
VISIBILITY LIMIT, UPPER = 843., LOWER = 646. METERS
LIGHID WATER CONTENT = .05035 GM/M3
PARTICLE COUNT = 4.08 PER CC

DATA FOR CHANNELS 33 THRU 48

266 213 256 236 227 250 187 203 186 145 113 82 49 22 9 9

EXTINCTION COEFFICIENT = .159E-01 PER METER
VISIBILITY LIMIT, UPPER = 246., LOWER = 189. METERS
LIQUID WATER CONTENT = .46156 GM/M3
PARTICLE COUNT = 1.63 PER CC

DATA FOR CHANNELS 49 THRU 64

EXTINCTION COEFFICIENT = .279E-04 PER METER
VISIBILITY LIMIT, UPPER =140040., LOWER =107249. METERS
LIQUID WATER CONTENT = .00152 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .258E-01 PER METER

VISIBILITY LIMIT, UPPER = 151., LOWER = 116. METERS

LIQUID WATER CONTENT = .52649 GM/M3

PARTICLE COUNT = 91.19 PER CC

SERIES # CTS- 6, TEST # 47 FOR DATA STARTING 4:10 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 32679 68772 36019 3180 569 347 409 547 725 1052 1200 1445 1524 1736 1779 1666

EXTINCTION COEFFICIENT = .657E-02 PER METER
VISIMILITY LIMIT, UPPER = 595., LOWER = 456. METERS
LIGUID WATER CONTENT = .01691 GM/M3
PARTICLE COUNT = 102.43 PER CC

UATA FOR CHANNELS 17 THRU 32 1329 1271 963 878 739 545 386 353 276 278 239 242 248 255 317 307

EXTINCTION COEFFICIENT = .612E-02 PER METER
VISIBILITY LIMIT, UPPER = 639., LOWER = 489. METERS
LIDUID WATER CONTENT = .06460 GM/M3
PARTICLE COUNT = 5.75 PER CC

DATA FOR CHANNELS 33 THRU 48 309 324 348 370 366 378 352 325 268 216 155 130 60 42 19 7

EXTINCTION COEFFICIENT = .240E-01 PER METER
VISIBILITY LIMIT, UPPER = 163., LOWER = 125. METERS
LIQUID WATER CONTENT = .69795 GM/M3
PARTICLE COUNT = 2.45 PER CC

DATA FOR CHANNELS 49 THRU 64

2 4 4 6 6 6 6 6

EXTINCTION COEFFICIENT = .559E-04 PER METER
VISIBILITY LIMIT, UPPER = 70020, LOWER = 53625. METERS
LIQUID WATER CONTENT = .00304 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION CUEFFICIENT = .368E-01 PER METER

VISIHTLITY LIMIT, UPPER = 106., LOWER = 81. METERS

LIQUID WATER CONTENT = .78250 GM/M3

PARTICLE COUNT = 110.63 PER CC

SERIES # CTS- 6, TEST # 48 FOR DATA STARTING 4:20 ON 22/ 4/74

DATA FOR CHANNELS	1 THRU 16		
42804 83332	42478 3545	573 327	387 432
590 742	850 1048	1151 1200	1211 1085
EXTINCTION COE	FETCIENT	01F-02 PFR MF1	FR
VISIBILITY LIM			
LIQUID WATER CO			AEL . HELENO
PARTICLE COUNT			
PARTICLE COUNT	. ISTOTALE	,	
DATA FOR CHANNELS	17 THEH 32		
1003 978			434 370
1003 976	935 923	000 001	100 300
341 326	204 200	292 334	320 300
		an aca wee	co
EXTINCTION COE	PETCIENT = .e	ASE-NS PER MET	FK HEREDO
VISIBILITY LIM	IT, UPPER =	603., LOWER #	461. METERS
LIQUID WATER CO	UNTENT = .07	146 GM/M3	
PARTICLE COUNT	5.49 PER	CC	
DATA FOR CHANNELS	33 THRU 48		
353 367	355 346	343 323	281 284
270 225	213 181	144 108	68 19
EXTINCTION COE			
VISIBILITY LIM			106. METERS
LIGUIC WATER CO			
PARTICLE COUNT	. 2.59 PER	CC	
DATA FOR CHANNELS	49 THRU 64		
7 4	1 0	0 0	0 0
Ø .0			
EXTINCTION COE	FFICIENT = .3	62E-03 PER MET	ER
VISIBILITY LIM			
LIQUID WATER CI			

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .422E-01 PER METER

VISIBILITY LIMIT, UPPER = 93., LOWER = 71. METERS

LIGUID WATER CONTENT = 1.00103 GM/M3

PARTICLE COUNT = 129.25 PER CC

PARTICLE COUNT = .01 PER CC

SERIES # CTS- 6, TEST # 49 FOR DATA STARTING 4:30 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 43203 84067 42056 3324 530 369 372 487 587 777 965 1114 1197 1250 1314 1259

EXTINCTION COEFFICIENT = .713E-02 PER METER
VISIBILITY LIMIT, UPPER = 548., LOWER = 420. METERS
LIGUID WATER CONTENT = .01682 GM/M3
PARTICLE COUNT = 121.91 PER CC

DATA FOR CHANNELS 17 THRU 32

1046 1013 923 881 708 558 465 429 380 313 333 329 315 315 312 347

EXTINCTION CUEFFICIENT = .671E-02 PER METER
VISIBILITY LIMIT, UPPER = 583., LOWER = 447. METERS
LIQUID WATER CONTENT = .07269 GM/M3
PARTICLE COUNT = 5.76 PER CC

DATA FOR CHANNELS 33 THRU 48

369 338 346 293 303 304 263 233 245 195 162 167 121 91 66 31

EXTINCTION COEFFICIENT = .255E-01 PER MÉTER
VISIBILITY LIMIT, UPPER = 154., LOWER = 118. METERS
LIQUID WATER CONTENT = .80382 GM/M3
PARTICLE COUNT = 2.35 PER CC

DATA FOR CHANNELS 49 THRU 64

EXTINCTION COEFFICIENT = .598E-03 PER METER
VISIBILITY LIMIT, UPPER = 6538., LOWER = 5007. METERS
LIGUID WATER CONTENT = .03591 GM/M3
PARTICLE COUNT = .01 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .399E-01 PER METER

VISIBILITY LIMIT, UPPER = .98., LOWER = .75. METERS

LIGUID WATER CONTENT = .92925 GM/M3

PARTICLE COUNT = .130.06 PER CC

SERIES # CTS- 6, TEST # 50 FOR DATA STARTING 4:40 ON 22/ 4/74

FOR DATA STARTING 4:40 ON 22/ 4/74	
DATA FOR CHANNELS 1 THRU 16	
16753 27789 15867 2538 492 114 114	121
202 229 286 307 335 365 403	397
	•
EXTINCTION COEFFICIENT = .253E-02 PER METER	
VISIBILITY LIMIT, UPPER = 1546., LOWER = 1184.	
LIQUID WATER CONTENT = .00580 GM/M3	
PARTICLE COUNT = 44.21 PER CC	
DATA FOR CHANNELS 17 THRU 32	
372 438 424 470 461 405 286	
169 165 111 96 73 55 40	48
CHATHETTON COCCETOTENT - 0475 06 BED HETED	
EXTINCTION CUEFFICIENT = .243E-02 PER METER	
VISIBILITY LIMIT, UPPER = 1608., LOWER = 1231.	METERS
LIQUIC WATER CONTENT = .02268 GM/M3 PARTICLE COUNT = 2.57 PER CC	
PARTICLE LOUNT = 2.57 PER CC	
DATA FOR CHANNELS 33 THRU 48	
DATA FOR CHANNELS 33 THRU 48 51 35 49 54 64 44 58 23 30 24 25 11 13 18	42
23 30 24 25 11 13 18	6
EXTINCTION COFFFICIENT = .396E=02 PER METER	
VISIBILITY LIMIT, UPPER = 989., LOWER = 757.	METERS
LIQUID WATER CONTENT = .12635 GM/M3	
PARTICLE COUNT = .36 PER CC	
DATA FOR CHANNELS 49 THRU 64	
4 1 0 0 0 0 0	
	0
EXTINCTION COEFFICIENT = .144E-03 PER METER	
VISIBILITY LIMIT, UPPER = 27167., LOWER = 20806.	
	METERS

LIQUID WATER CONTENT = .00797 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS SAMPLE VOLUME = 1500, CC
EXTINCTION COEFFICIENT = .906E-02 PER METER
VISIBILITY LIMIT, UPPER = 432., LOWER = 331. METERS LIQUID WATER CONTENT = .16279 GM/M3 PARTICLE COUNT = 47.14 PER CC

SERIES # CTS- 6, TEST # 51 FOR DATA STARTING 4:50 ON 22/ 4/74

	PUR DATA	SIAKITNE	4:50 UN 22/ 4	//4
DATA FOR CH	ANNELS 1	THRU 16		
			698 150	200 252
297	434 5	26 566	583 634	630 611
	70.7	200	000	
EXTINCTI	ON COEFFIC	IENT	194E-02 PER ME	TER
VISIBILI	TY LIMIT.	UPPER .	993. LOWER =	761. METERS
LIQUID W	ATER CONTE	NT	1914 GM/M3	
PARTICLE	COUNT =	67.75 PER	CC	
DATA FOR CH				
612	571 6	15 716.	762 729	609 516
500	468 4	87 422	318 194	140 146
EVITACTI		75NT - 4		• 60
			05E-02 PER ME	495. METERS
A TOTOTET	ATER CONTE	NT - DE	DAD, LUNER -	495. METERS
PARTICIF	COUNT =	5 20 PFF) (C	
, 4,, , 1,0,0		V. 20 1 L		
DATA FOR CH	ANNELS 33	THRU 48		
149	103	94 95	113 99	101 76
92	67	55 62	40 33	33 13
			00E-02 PER ME	
				333. METERS
LIGUID W	ATER CONTE	NT = .29	1108 GM/M3	
PARTICLE	COUNT =	.79 PER	CC	
5444 END CH	ANNELS AD	TUBU 64		
DATA FOR CH			0 0	
é	7	1 1	0 0	0 0
•	•	v. 6	e e	
EXTINCTI	ON COEFFIC	IENT	30E-03 PER ME	TER
VISIBILI	TY LIMIT.	UPPER . 7	387 . LOWER .	TER 5658. METERS
LIGUID W	ATER CONTE	NT = .03	1963 GM/M3	
PARTICLE	COUNT =	.U1 PER	CC	
GRAND TOTAL				
SAMPLE	VOLUME =	1500. CC		
EXTINCTI	ON CUEFFIC	TENT .	95E-01 PER ME	TER
VISIBILI	ATER CONTE	DEPER =	ZOT CHANT	153. METERS
	ATER CONTE			
PARITULE	COUNT =	/3./0 PER		

SERIES # CTS- 6, TEST # 52 FOR DATA STARTING 5: 0 ON 22/ 4/74

	PUR UATA	STARTING	51 6 UN 22/ 4	//4
DATA FOR CHA 12597 2 185	24567 159	95 2769	550 80 294 302	90 133 296 285
LIQUID W	TY LIMIT, ATER CONTE	IENT = .2 UPPER = 1 ENT = .00 38.61 PER	501 GM/M3	TER 1355, METERS
	241 2	241 220		107 98 54 55
LIQUID W	TY LIMIT, ATER CONTE	IENT = .1 UPPER = 2 ENT = .01 1.36 PER	433 GM/M3	TER 2124. METERS
DATA FOR CHA	41	40 44	31 55 19 10	40 43 8 3
rignid my	TY LIMIT, ATER CONTE		817 GM/M3	TER 797. METERS
DATA FOR CHA	0	THRU 64 0 0	0 0 0 0	
LIQUID W	TY LIMIT, ATER CONTE		456 GM/M3	TER 35750, METERS
VISIBILI	VOLUME = ON COEFFIC TY LIMIT,	UPPER =	47E-02 PER ME' 524., LOWER =	TER 401. METERS
		NT14 40.31 PER		

SERIES # CTS- 6, TEST # 53 FOR DATA STARTING 5:10 ON 22/ 4/74

DAT	A																																												
		4	9	3	3				96	3 6	3 4	1			5	5	1	5			1	1	4	5				2	24	1				-	35					26	5			:	50
				5	2					7	9 9	•					3	5					3	2					3	2				1	27					32	2				31
	E	X 1	I	N	C	T :	1	01	•	(: 0	E	F	F	I	C	I	EN	1	r					7	4	5 E		0	3	1	PE	R		ME	TI	ER	!							
																																					4	0	1	8.		ME	T	E	R S
	L																												G	M	11	M 3													
	P	AF	7	I	C	LI	5	(00	וכ	11	T		=				1	4 ,	. 1	8)	P	E	R	-	0	2																	
DAT	Δ	F																																											
				1	6					1	2	1					1	7			,			7						7					2					4	1				1
					1						2	•					1	7						1						0					1					9	,				6
	E	X T	I	N	c	T :	I	וה	V	(: 0	E	F	F	I	C	I	EN	17	r					3	1 4	8 6		.0	4	,	9 6	R	*	ME	TI	ER								
																																										ME	T	EF	RS
	L	10	U	I	U	-	w ,	4	7 6	= 6	?	C	0	N	T	E	N	T	1					0	0	0	24	1	G	M	11	43								Ī					
	P	AF	7	I	C	L	E	(0	10	١N	T		=					•	Q) 5)	P	E	R	(:																	
DAT	A	F	0	R	1	CI	H	4	VI	NE	L	S		3	3		TI	46	21	,	4	8																							
					N						0						(0						0						0					0					9	1				0
					V						0	,					-	7						0						0					0					8	,				0
041	A	•	C	R	-	CI	4	AI	vi	v E	EL	S		4	9		TI	46	71	,	6	4																							
					Ø						V						(7						0						0					9					0	,				0
					Ø						6)					(7						0						0					9					0	•				0
GRA	NI	0	T	o	T	A	-	5																																					
		5	A	M	P	L	E	1	10	10	ا	M	F.		=		1	50	40) .		C	C																						
	F. :	X 7	I	N	C	T	I)!	V	(C	E	۴	F	I	C	II	EN	١٦	ľ					7	7	7 E		.0	3	,	9 6	R	1	ME	TI	ER								
																																							5	4.		ME	T	EF	RS
	L	1 (U	1	U	1	~	4	7 8	EF	?	C	0	N	T	E	11	T	1					Ø	Ŋ	1 7	7 5	5	G	M	11	43													
	P	4	T	1	C	L	-	(C)(1	1						1	4 ,	, 2	3	1	P	E	R	(CC	:																	

SERIES # CTS- 6, TEST # 54 FOR DATA STARTING 5:20 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 21764 35144 18726 2833 605 167 185 334 343 EXTINCTION COEFFICIENT = .317E-02 PER METER VISIBILITY LIMIT, UPPER = 1233., LOWER = 944. METERS PARTICLE COUNT = 55.26 PER CC DATA FOR CHANNELS 17 THRU 32 622 804 931 EXTINCTION CUEFFICIENT . . 507E-02 PER METER VISIBILITY LIMIT, UPPER . 772., LOWER . 591. METERS LIQUID WATER CONTENT . . 04719 GM/M3 PARTICLE COUNT = 5.18 PER CC DATA FOR CHANNELS 33 THRU 48 EXTINCTION COEFFICIENT = .241E-02 PER METER VISIBILITY LIMIT, UPPER = 1625., LOWER = 1244. METERS PARTICLE COUNT = .24 PER CC DATA FOR CHANNELS 49 THRU 64 EXTINCTION COEFFICIENT = .103E-03 PER METER VISIBILITY LIMIT, UPPER = 37904., LOWER = 29028. METERS PARTICLE COUNT = .00 PER CC GRAND TOTALS

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .108E-01 PER METER

VISIBILITY LIMIT, UPPER = 364., LOWER = 279. METERS

LIQUID WATER CONTENT = .13314 GM/M3

PARTICLE COUNT = 60.69 PER CC

Late and the second second

SERIES # CTS- 6, TEST # 55 FOR DATA STARTING 5:30 ON 22/ 4/74

																															-							
DAT	A	1	F	IR		C	H	AP	11	iE	L	S		1		TI	HF	11	1	1	6																	
		2	17	4	11		,	4	17	3	7		2	4	8	1	4			3	8	30	•			6	7	4			2	07	,	2	47			328
			-	15	0				4	19	4				5	4	5				5	77	,			5	4	6			5	9		5	93	,	1	609
	Ė	X	T	1	C	T	I	U	,	C	0	EF	F	I	C	I	EN	17					3	8	0		0	2	P	E	R	ME	TER					
																																						ERS
																													/M									
	P	۸	21	1	C	L	E	(1	U	N	1				1	6	١.	6	6	-	PE	R	?	C	0												
DAT	À		- 1		1	¢	+	4	VI	E	L	S	1	7		T	HF	1		3	2																	
				53	7				6	32	2				6	9	4				7	7 1	1			9	0	7			8	8	2	7	06	,		566
				52	7					7	5				5	3	7				4	3	4			3	8	6			2	2	1	1	54	1		132
	t.	×	1	1	C	T	1	01	N	C	O	E	F	I	C	I	Ë١	1					, 6	7	21	•	0	2	P	E	R	ME	TER					
	٧	I	S	1	I	L	I	T	4	L	1	M:	IT			U	PF	, É	R					5	8	2 .		1	LO	W	ER			44	16.	1	MET	ERS
																													/M	3								
	۲	A	2	1	C	L	E	(50	U	N	T						5.	7	7	-	PE	R	1	C	C												
DAT	۵	1	F (1	1	Ċ	H	Δ		E	L.	5	3	3	1	T	++	11	1	4	8																	
			1	0	V					8	7					9	7				1	59	•				7	6				71	3		58)		61
				ŧ	6					4	5					4	4				1	2 (5				3	2				2	1		7	'		4
																																	TER					
																																1	•	51	5.	. 1	MET	ERS
																												M	/ M	3								
	۲	۱۵	1	1	C	L	E	(U	N	T	=						5	7		PE	R	!	C													
DAT	Δ	-	- (1															1	6	4																	
											5						5																À					0
					6						0					-	0					0	,					Ø				-	8		0)		0
												_																										
																																	TER					
																															ER	1	10	99	5.	. 1	METE	ERS
																												M.	/ M	3								
	P	A	1	1	C	L	E	(.(U	٨	T	=	1					6	1	-	PE	R		C	2												

SAMPLE VOLUME = 1500. CC

EXTINCTION CUEFFICIENT = .166E=01 PER METER

VISIBILITY LIMIT, UPPER = .236., LOWER = .180. METERS

LIGUID WATER CONTENT = .27194 GM/M3

PARTICLE COUNT = .70.99 PER CC

GRAND TOTALS

SERIES # CTS- 6, TEST # 56 FOR DATA STARTING 5:40 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 20727 42792 25449 3794 513 559 EXTINCTION COEFFICIENT = .383E-02 PER METER VISIBILITY LIMIT, UPPER = 1021., LOWER = 782. METERS LIQUID WATER CONTENT = .00887 GM/M3 PARTICLE COUNT = 65.65 PER CC DATA FOR CHANNELS 17 THRU 32 EXTINCTION COEFFICIENT = .468E-02 PER METER VISIBILITY LIMIT, UPPER = 837., LOWER = 641. METERS LIGUID WATER CONTENT . . 04982 GM/M3 PARTICLE COUNT . 3.86 PER CC DATA FOR CHANNELS 33 THRU 48 EXTINCTION COEFFICIENT = .693E-02 PER METER VISIBILITY LIMIT, UPPER = 564., LOWER = 432. METERS LIQUID WATER CONTENT . . 22249 GM/M3 PARTICLE COUNT = .62 PER CC DATA FOR CHANNELS 49 THRU 64 EXTINCTION COEFFICIENT = .594E-03 PER METER VISIBILITY LIMIT, UPPER = 6586., LOWER = 5044. METERS LIQUID WATER CONTENT = .03555 GM/M3 PARTICLE COUNT = .01 PER CC GRAND TOTALS SAMPLE VOLUME . 1500. CC EXTINCTION COEFFICIENT # .160E-01 PER METER VISIBILITY LIMIT, UPPER = 244., LOWER = 187. METERS

LIGUID WATER CONTENT = .31672 GM/M3

PARTICLE COUNT = 70.14 PER CC

SERIES # CTS= 6, TEST # 57 FOR DATA STARTING 5:50 ON 22/ 4/74

	/74	22/ 4	DN	2120	NG	111	AR	31	A	AT	DA	OK	•							
	279 836				396	3:		02	61	2		72	47		4	4	47			DAT
METERS	TER 688,	OWER .		436E- 898. 1046 R CC	.0	2 1	PE	UP	TE	TI	CC	L!	TY	W	IL	BI	SI	I	VL	
	354 117				550	:		73	6		9	636			4	9	6			DAT
METERS	TER 708,	PER ME' OWER = M3	GM/	924.	.0	2 1	PEI	UP NT	TE	TI	CC	L:	TY	I'	IL	BI	SI	I	V	
76 22	89 26	79 34	78 55		72 64	41	RU	TH 98 63	3	3	.5	NEL 108	AN	Н	1 9	R 3 7	FO!		TA	DAT
HETERS	TER 334.	OWER =	GM/	436. 9741 R CC	.2! PEI	7 6	PEI	UP NT	TE	T NC	CONT	ER OUI	TY	IWE	IL CL	BIII	SII QU RT	I	710	
0	0	1 0	2 0		3 0		RU		9	4	. S		AN	; н,	5		FO	1	TA	DAT
METERS	TER 3185.	OWER =	, L	941E= 4159. 5734 R CC	.0	R 1	PEI	UP NT	TE	TI	CC	ER.	TY	I'W	IL	BI	SI	I	V L	
METERS	TER 162.		L		. 4	R	NT PEI	IE UP NT	IC TE	FFIT	IM!	L:	VONTY	E	PL	MNBI	SA TI SI QU	X	EVL	GRA

SERIES # CTS+ 6, TEST # 58 FOR DATA STARTING 6: 0 ON 22/ 4/74

DATA FOR CHANNELS 1 THRU 16 39348 73966 37302 3292 578 307 382 450 625 756 989 1072 1161 1198 1290 1169

EXTINCTION COEFFICIENT = .647E=02 PER METER
VISIBILITY LIMIT, UPPER = 604., LOWER = 463. METERS
LIQUID WATER CONTENT = .01545 GM/M3
PARTICLE COUNT = 109.26 PER CC

DATA FOR CHANNELS 17 THRU 32 1014 964 821 788 636 531 428 338 323 346 367 398 386 324 319 288

EXTINCTION COEFFICIENT = .657E=02 PER METER
VISIBILITY LIMIT, UPPER = 595., LOWER = 456. METERS
LIQUID HATER CONTENT = .07186 GM/M3
PARTICLE COUNT = 5.51 PER CC

DATA FOR CHANNELS 33 THRU 48 254 235 197 180 137 157 147 129 108 115 91 91 75 57 38 29

EXTINCTION COEFFICIENT = .147E=01 PER METER
VISIBILITY LIMIT, UPPER = 267., LOWER = 204. METERS
LIQUID WATER CONTENT = .46849 GM/M3
PARTICLE COUNT = 1.36 PER CC

DATA FOR CHANNELS 49 THRU 64
16 12 2 1 1 0 0 0

EXTINCTION COEFFICIENT = .100E-02 PER METER VISIBILITY LIMIT, UPPER = 3907., LOWER = 2992. METERS LIQUID WATER CONTENT = .05818 GM/M3 PARTICLE COUNT = .02 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .287E=01 PER METER

VISIBILITY LIMIT, UPPER = 136., LOWER = 104. METERS

LIQUID WATER CONTENT = .61398 GM/M3

PARTICLE COUNT = 116.15 PER CC

SERIES # CTS- 6, TEST # 59 FOR DATA STARTING 6:10 ON 22/ 4/74

372 50	32 19580 30 2 60 666 73	29 662 156 33 811 788	709 598
VISIBILITY I LIQUID WATER PARTICLE COL	LIMIT, UPPER = R CONTENT = UNT = 53.28 F	ER CC	899. METERS
177 1	81 178 16	5 382 315 34 195 15	182 195
VISIBILITY O	COEFFICIENT = LIMIT, UPPER = R CONTENT = UNT = 3.03 F	.359E-02 PER ME 1091., LOWER 1 03933 GM/M3 PER CC	TER 835. METERS
204 2	ELS 33 THRU 48 15 200 15 75 54	9 173 126	121 105
VISIBILITY (COEFFICIENT = LIMIT, UPPER = R CONTENT = UNT = 1.10 F	.100E-01 PER ME 390., LOWER : ,28663 GM/M3 PER CC	TER 299. METERS
DATA FOR CHANNE	ELS 49 THRU 64 0 0 0 0	0 0 0	
VISIBILITY I	COEFFICIENT = LIMIT, UPPER = R CONTENT = UNT = .00 F		TER 26812, METERS
EXTINCTION (VISIBILITY LIQUID WATE	LUME = 1500. CO COEFFICIENT = LIMIT, UPPER = R CONTENT = , UNT = 57.41 F	.171E-01 PER ME 229., LOWER : 34033 GM/M3	TER 176. METERS

SERIES # CTS- 6, TEST # 60 FOR DATA STARTING 6:20 ON 22/ 4/74

										•	_																•						_	- '		-,		7							
DAT		1	9	8	2	6			4	8	2	4	7		;	3 (0 4	1	7			(56	53	9				127	8 6	5			27	22	0 8			2	65 68			3 7	96	;
	V L	I	S	I	BI	I	L	IW	TA	Y	E	LR	I	M	1'	1	TE	U	P	P	E	R			0	1	8	5:	5.	G	-	LC	E W	EF	M	E1	E	R 6	5	5.	1	ME'	TE	RS	•
DAT			F	6	2	7					5	7	4				:	3	5				4	49	16				4	8	3 6			4	10	9			3 1	Ø 5 6 8			2	78	,
	VL	I	S	I	BI	I	L	IW	TA	Y	E	LR	I	M	יו	1	TE	UN	P	P	E	R	•		0	1 4	0	16	1	G	M	10	W	EF	1					3.			TE	RS	,
DAT			F	01	R 6	Ø	C	H	A	N	N 1	E	L 5	S		3	3	1 5	H 6	R	U		48	3	4				1	3	6			1	3 1	94			1	16				98	
	V	I	S	I	B	I	L	IW	TA	Y	E	LR	I	M	11	1	re	UN	PT	P	E F	2	•		2	4	4	47	4	Ġ	-	40	EW	ER	M	E1	E	3	4:	2.	,	161	E	RS	ı
DAT					R	0	c	Н	A	N	N	Ε	L 2	8	•	4 9	•	T	H 1	R	U	•	5 4	1	0						0 0					0				9 9				0	
	V	I	S	I	NBI	CIC	TL	IIIW	OTA	NYT	E	CLR	0	EIM	F F F F F F F F F F F F F F F F F F F	-	I C	IUN	EPT	20	TEI	2			.30	180	0:4:6:	26		0	3	P	E	RER	M	ET	E	2				1E1			
GRA	N	0	3	TA	U	TP	AL	LE	S	٧	٥	L	U	M		•		1	5	0	0		(: c			•						=		_	E 7	E	•							

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .173E=01 PER METER

VISIBILITY LIMIT, UPPER = 226., LOWER = 173. METERS

LIQUID WATER CONTENT = .30657 GM/M3

PARTICLE COUNT = 79.85 PER CC

SERIES # CTS- 6, TEST # 61 FOR DATA STARTING 6:30 ON 22/ 4/74

						• • •				
1513 863	1468 883	1961	3531 1251	102	134	350	198	4502	FOR CHA 3895 15 1907	33
METERS		PER ME' LOWER = /M3	44., 51 GM	.034	ER :	UPP	MIT,	TER C		VIS LIG
306 115	336 128	448 139	465	37		568		547	FOR CHA 712 245	
METERS	TER 780.	PER ME' LOWER • /M3	18.,	.039	ER I	UPP ENT	MIT,	TER C	TINCTIO SIBILIT QUID WA RTICLE	VIS LIQ
7	4	100	133	94 37		53		93 75	94	
METERS	TER 387.	PER ME'LOWER = /M3	06., 00 GM	.228	ER I	UPP ENT	MIT, CONT	TER O	TINCTIO SIBILIT GUID WA RTICLE	VIS
0	0	0	0	0				NNELS 0 0	FOR CHA	DATA F
		PER ME' LOWER = /M3	40., 52 GM	1400	ER :	UPP	MIT,	TER C		VIS
METERS	TER 108.	PER ME LOWER = /M3	42.,	.27	ER :	CIEN UPP ENT	EFFI MIT, CONT	VOLUM N COM TY LIM	TOTALS SAMPLE TINCTIO SIBILIT QUID WA RTICLE	EXT VIS LIG

SERIES # CTS- 7, TEST # 1 FOR DATA STARTING 20:10 ON 22/ 4/74

DATA	1127 2224	LS 1 THRU 1 2 12797 3 2 2	164 915	64 2 2 1 2 0
VI:	SIBILITY L GUID WATER	IMIT, UPPER	.00274 GM/M3	METER = 2120. METERS
DATA	0	LS 17 THRU 3 0 1 0 0		0 0 1 0 0 0
VI	SIBILITY L QUID WATER	IMIT, UPPER	.00001 GM/M3	METER =2632834 METERS
DATA	0	LS 33 THRU 4 0 0	0 2	0 0 0
VI:	SIBILITY L BUID WATER	IMIT, UPPER	.00023 GM/M3	METER #301500. METERS
	FOR CHANNE	LS 49 THRU 6		0 0 0
EX VI	TINCTION C SIBILITY L GUID WATER	IMIT, UPPER	.142E-02 PER ! = 2747., LOWER .00298 GM/M3	METER • 2104. METERS

SERIES # CTS- 7, TEST # 2 FOR DATA STARTING 20:20 ON 22/ 4/74

DATA	178		1817				12 21 9 11
V	IGUI	ILIT	Y LIMI	T, UPPER	140E-0 R = 2801., .00273 0	LOWER .	TER 2145. METERS
DATA	FOR	4	NNELS 1 0		0	0 0	
V	ISIE	ILIT	Y LIMI	T, UPPER	760E-0 R =514645., .00007 0	LOWER =	TER 394140. METERS
DATA	FOR		Ø	33 THRU 0 0	1	0 0	
E							
V	ISIE	ILIT	Y LIMI	T, UPPER	430E-8 R =909219., .00009 0	LOWER =	TER 696324. METERS
V L P	ISIE IQUI ARTI	ILIT D WA	Y LIMI TER CO COUNT	T, UPPER NTENT = .0 49 THRU	.00009 0 .00009 0 .00009 0	LOWER =	696324. METERS

THE RELEASE OF THE PARTY OF THE PARTY.

SERIES # CTS- 7, TEST # 3 FOR DATA STARTING 20:30 ON 22/ 4/74

13	02 13817		4 589 8	16 95 131 15 37 32
LIQU	BILITY LIMI ID WATER CO	T, UPPER =	00212 GM/M3	ETER = 2946, METERS
	16 13	17 THRU 32 8 1		1 3 4 0 2 1
LIQU	BILITY LIMI ID WATER CO	T, UPPER =1	00035 GM/M3	ETER = 81795, METERS
DATA FO	R CHANNELS Ø 1 Ø Ø	33 THRU 48 1 0		1 0 0
VISI	BILITY LIMI ID WATER CO		00060 GM/M3	ETER #111253, METERS
		49 THRU 64	0 0	0 0 0
VISI LIQU	MPLE VOLUME NCTION COEF BILITY LIMI ID WATER CO		.108E-02 PER M 3620., LOWER 00306 GM/M3	ETER = 2773, METERS

SERIES # CTS- 7, TEST # 4 FOR DATA STARTING 20:40 ON 22/ 4/74

				•	0		•	_				= 1					,																									
DA	,																																									
				1	8	7					1	7 :	5				1	20	,					37					0	2			7	0			5	92			7	3
	-	Ξ	(1	I	N	C	T	I	0	N	1	C	DE	F	F	I	C	I	N	T					, 1	4	ØE		0	2	PE	R	M	E	TEF	₹						
	1	V 1	18	I	8	I	L	I	T	Y	-	L	1	I	T		1	UF	P	E	R	1			2	7	8	5 .		1	LOW	EF	?		1	21	33	3.	M	ETI	ER	3
																															/M3											
																											CC															
					_		_													•	-																					
DA	T /			•	0		r	н		N	NI	FI	•		•	7		T 1	18			3	2																			
0-	٠,		•	•														20						13					-	A				7				2				4
					′	0							2					1							,					0								5				
						0						•	=											,										1				4				
						_	_	_	_					_	_		_			_						_			_			_										
																															PE											
																															-OM		2		47	6	2	٥.	M	ETI	ER:	3
																													G	M	/M3											
	,	9	1	1	I	C	L	E		C	0	U	1							•	1	0	F	E	R	1	CC	:														
DA	T	A	F	C	R		C	H	A	N	N	EL	. 5	•	3	3		TH	IR	U		4	В																			
						0							9					6	7					0	,				-	0				0				9			•	0
						0							0											0					1					0				0				0
						_												•						•						_				-				-				•
DA			_		0		_	_				= 1	•			۵	1	T 1	40			6	4																			
UA	, ,	-		٠	,	-														U		0	•						1	•				•				-				
													0						,					3.5						0				0				0				0
						0							9					6	,					9	,				1	0				0				0				0
					_																																					
GR	A N	N C			-	-		777	(2)																																	
																		1																								
	E	=)	17	I	N	C	T	I	0	N	1		DE	F	F	I	C	IE	N	T					1	4	7 E		0	2	PE	R	M	E	TE	?						
	1	1	1 5	I	8	I	L	I	T	Y	1		IN	I	T	,	-	UF	P	E	R	1			2	6	66	5 .	,	1	-OW	EF	2		1	20	4	١.	M	ETI	ERS	5
																															/M3											
																											CC															
	•			,	-	-	-	-		_	•							•	-	•	-	•		-																		

SERIES # CTS- 7, TEST # 5 FOR DATA STARTING 20:50 ON 22/ 4/74

0	1				- (16	,	•	٠,	4 4			4 5	= 1	•			•		T	H	91	1																							
٠,	•		•																													. 0	0					٥				6			8	5
				•	•																																									5
						•	•	•					•	•	•					٠	•					•						7	-				٠	′					•		-	٠
			- ,	,	,	1 1	41	• 1	. 1	11	1	u	•	٠,	16	: F	F	T	_	T	F	N.	_					1	• 1	R F	= _	. 0	2		E	D	M	F	F	D						
																																										2		MET	FR	8
																																			13			-		-	-	- 1	•	116	_,,	٠
																													-					•												
		•	•	•	•			•	•		•	•					_				-	•	• '		•	•	-	'		-	•															
DA	1		1		: 0	11	5	ſ	: 1	14	11	į٨	J F	= 1	5	•	1	7		т	н	RI	1	7	12	,																				
			1					5													9			•	-		6						3					3				1				1
								2					•								1						a						a					ø				0				ė
																					•						*						•					•								•
		8	2	(1	1	1	10	1	1	10	1	1	(20	2 6	F	F	I	C	I	E	N'	T					2	61	a 6		0	4		E	R	M	E١	E	R						
																																									20	9.		MET	ER	S
																																			13											
																													-																	
																							•																							
DA	1	1	1	F	() [?	(:1	1/	1	11	N E	EL	. 5	5	3	3		T	H	RI	J	4	18)																				
							6	9						6	•						0						0						0					0				9	9			0
							6	9						6	9						0						0						0					0				9	9			0
DA	1	1	4	F	() [?	(1	1/	11	١N	VE	EL	. 5	5	4	9		T	H	RI	J	6	4	1																				
								9						-	3						0						0						0					0				6	9			0
							6	9						6	9						Ø						0						Ø					0				6	ð			0
GF	? /	11	1 (
																							0																							
																																			E											
																																				ER				24	48	7,	•	MET	ER	S
																																G	M	1	13											
		F	,	1	1		[(: L	. 6	:	(וכ	11	17	r	=				2	1	• 7	77	'	P	E	R	(C	-															

SERIES # CTS= 7, TEST # 6 FOR DATA STARTING 21: 0 ON 22/ 4/74

DAT	T A		1	87	1	1		1	6	4	4	4			9	5	5 4			2	1	3	4				5	77				9	6			8 4 6 5	1	1	10
	V	I	S	I	3 1	L	I	TA	Y	E	L:	IN	11	TN	Ť	E	JP VT	P	E	R			0	3:	33	17	•	,	L						5	6.		METE	RS
DA	ΓΑ		F		3 8	3					28	3				1	1 2 1	!		2	3 2		5 1					3 0					3 0			3 0			0
	V	I	S	I	3]	L	I	TA	YT	E	L:	IN	11	TN	, T	EN	JF	P	E	R		1	10	10	72	11	•		L		R					ø.		METE	RS
DA					2	C	Н	A	N	N	EL	. 5	5		3		7 +		u				9					0					0 0			0	!		0 0
	V	I	S	I	3 1	1	. I	TA	Y	E	L:	IN	11	T	ŕ	E	JF	P	E	R	•	4	4 0	2:	75	2	•	,	L						1	2.		METE	RS
DA					2	C	: H				E I	_ :	3	4			7 +	IR					00			c		0					0 0			0			0
GR	E	×	ST	I	M F	1	E	0	V N		C	01	F	F	I	C	I E	N	T		•			1							R								
	L	I	Q	U	1)	-	A	T	E	R	(CC	IN	T	EI	1						0	0	29					OW M3		R		24	16	4.		METE	RS

SERIES # CTS- 7, TEST # 7 FOR DATA STARTING 21:10 ON 22/ 4/74

73 47	61 63	81 35	632 57		5 200 46	2:	RU	915 53	9	L S 2 9	NNE 800 8	HA 1	4	FOF 166	TA	DAT
METERS	TER 2480.		39., 49 GM	323	. 0	R	PE	ENT	IT,	IM	Y L	IT.	D	SIE	L)	
	3 0		6		5		,	1!		7	NNE 1		9		T A	DAT
METERS	TER 86948,		31., 25 GM	353	11	R	PE	ENT	IT,	IM	YL	TI.	IL	SIE	VI	
0	0		0		0 0	41	RU	0		LS			1 0	FOF	TA	DAT
METERS	TER 351166.		32., 19 GM	853	45	R	PE	EN'	IT,	IM	Y L	IT.	BIL	SIE	V)	
	0		0		9 9	6	,			0	NNE		8 0	FOR	TA	DAT
METERS	TER 2395.	PER ME LOWER = /M3	27., 93 GM	312	. 0	R	NT PE	CIE UF EN'	FFI IT, ONT	OE IM C	VOL N C Y L	IO.IT	PL	SAM TIN SIE	EX	GRA

SERIES # CTS- 7, TEST # 8 FOR DATA STARTING 21:20 ON 22/ 4/74

DATA	1176	1420	LS 1	26 1	792 5	51 25	74 70 39 42	59 38
V L	ISIBI	LITY L	IMIT, CONTER	IPPER	.972E- 4025. .00202	, LOWER	METER = 3083.	METERS
	FOR	CHANNE	LS 17	THRU 3	52	8	3 0	
V L	ISIBI	LITY L	IMIT, I	JPPER	.327E- =119723. .00025 .PER CC	, LOWER	METER = 91689.	METERS
DATA	0.	1	ELS 33 '	0		0	0 0	0
DATA			ELS 49 '	Ø	0 0	0 0	0 0	
E	IGUIC ISIBI XTINC	LE VOL	IMIT, CONTE	LENT = UPPER VT =	100E-	, LOWER	METER = 2982.	METERS

SERIES # CTS= 7, TEST # 9 FOR DATA STARTING 21:30 ON 22/ 4/74

1029	CHANNELS 1 11446 64 86	THRU 16 124 1410 416 41 29 20	63 58 19 14	74 22
LIQUID	LITY LIMIT, WATER CONTE	IENT = .772E=03 UPPER = 5069., L ENT = .00157 GM/ 14.15 PER CC	OWER = 3882.	METERS
14	CHANNELS 17 7 2		2 1 0 0	1 0
LIQUIC	LITY LIMIT, WATER CONTE	IENT = .221E-04 UPPER =176850., L ENT = .00019 GM/ .03 PER CC	OWER =135448.	METERS
DATA FOR C			0 0	0
DATA FOR (THRU 64 0 0 0	0 0	
EXTINCT VISIBIL LIQUID	LE VOLUME = TION COEFFIC LITY LIMIT, WATER CONTE	1500. CC CIENT = .794E=03 UPPER = 4928., L ENT = ,00176 GM/ 14.18 PER CC	OWER . 3774.	METERS

SERIES # CTS- 7, TEST # 10 FOR DATA STARTING 21:40 ON 22/ 4/74

DAT	A			0	4			1	1	4 6	16	,			6	49	8	1		1	4	4	0																
	V	10	31	8	I	L	I'W	1	7	EF	. 1	MC	I	TN	Ť	E	JP	P	EI	R	•		0	50	15	7	• (,	L	PEI DWI	ER	ME	T	ER 3	88	6	•	METE	RS
DAT	A	f	- 0																U				6					2					l I						0 1
	V.	15		8	I	L	I w	T	7	EF	. 1	M	10	TN	Ť	EN	JP	P	E!	R		1	8	88	6	9	• (,	L	PE DWI M3	ER						•	METE	RS
DAT	A	F	F C		0						9	3						1			18		0					0					,				0		0
DAT	A	F	- C								0	S					0	1	U				0					0					9				0		0
	E	X 1	SA FI SI	MNBI	PCID	LTL	EII	DIT	V Y T E	CLEF	1	EMC	FIO	FTN	I	CI	I E	NP	E	R	=		•	01	7	4		,	L	PE						94	•	METE	RS

SERIES # CTS- 7, TEST # 11 FOR DATA STARTING 21:50 ON 22/ 4/74

DAT	A	F 1	4 8	36	С	,	12	2:	55	7	S			7 (3 5	3		U	1	6 5	6	6				4	29	9				5.10				3 2			4 2	3
	EX VI LI PA	SQ	I F	ID	L	I'W	1	Y	L	I	MC	I	T	ŤE	L	P	P	E	2	•		0	4	55	57	•	,	L	.0	WE						6	•	ME'	rer	8
DAT	A	F	DF	9	C					3	S				1	0		U	3	2		2 1					;	3					8				0			0
	EX VI LI PA	SQ	I E	I	L	I'	T	Y	L	I	MC	I	TN	Ť	EN	IP	P	E	2		3	10	3	10	9			L	.0	W						4		ME	TER	3
DAT	A	F	OF	1			AI	NI	NE	0	S		3	3	1	0	R		4	8	1	90					(8				0			0 0
	EX VI LI PA	S	I E	I	L	I'	1	Y	L	I	MC	I	T	T E	L	P	P	E!	₹		1	4 0	0	96	5	9	,	L	0	WE	ER					4	1	ME	rer	\$
DAT	A	F	OF			н	AI	11	i E	6	S		4	9	1	100		u	6	4	1	00						0					8				0			0
	EX	STS	AN IN IN	P	LTL	E I I	יו די	VC	0	0	E	F	F	I (נ	E	NP	TE	?			•	4	57	3		,	L	0	WE					50	3		ME'	rER	8
	LI	0	U:	0		W	۸,	TE	F	?	C	0										0	0	18	33		GI	4/	M	3										

SERIES # CTS- 7, TEST # 12 FOR DATA STARTING 22: 0 ON 22/ 4/74

DATA	3312 1	NNELS 1 8436 98 23	300 204	8 576 4 22	53 18	17 21 24 16
V L	ISIBILIT IQUID WA	Y LIMIT,	UPPER .	.120E-02 PI 3252., LOI 00237 GM/MI ER CC	WER = 249	1. METERS
DATA		NNELS 17 2 0		3 2		0 1 0 1
V L	ISJBILIT IQUID WA	Y LIMIT,	UPPER #2	.139E-04 P 80439., LO 00012 GM/M ER CC	WER =21477	
DATA		NNELS 33 0 0	0		Ø Ø	
DATA		NNELS 49	Ø	a a	Ø	0 0 0 0
E V L	XTINCTIO ISIBILIT IQUID WA	VOLUME = N COEFFICY LIMIT,	UPPER =	.122E-02 PI 3215., LOI 00249 GM/M	WER = 246	2. METERS

SERIES # CTS- 7, TEST # 13 FOR DATA STARTING 22:10 ON 22/ 4/74

DATA FOR	R CHANNELS 18 20089 15 24	1 THRU 16 10140 22 19	51 575 3 9 15	1 11 11 9 13 13
VISIE LIQUI	D WATER C	IT, UPPER .	.00243 GM/M3	ETER = 2404, METERS
DATA FOR	5 2	17 THRU 32 6 1	4 3 1 0	Ø 1 Ø
VISIE LIQUI	BILITY LIM	IT, UPPER .	.00008 GM/M3	ETER =280180. METERS
DATA FOR	2 1	33 THRU 46	0 0	0 0 0 0 0 0
VISIE	BILITY LIM	IT, UPPER .	.00016 GM/M3	ETER =339880, METERS
		49 THRU 64		
EXTIN VISIE LIGUI	PLE VOLUM OCTION COE BILITY LIM ID WATER C	IT, UPPER .	.127E-02 PER M 3090., LOWER .00267 GM/M3	ETER = 2367. METERS

SERIES # CTS- 7, TEST # 14 FOR DATA STARTING 22:20 ON 22/ 4/74

DAT	A	F	OF	}	C	H	A	N	N	E	L	S		1		T	4	11	J	1	6	,																									
		2	26	7			2	0	6	1	7		1	0	2	7	5			2	2	9	9)				6	1	7					:	58					2	4					19
				3						5	6					4	1					3	0)					2	7					2	26					3	3				3	1
	EX																																														
	۷I																																		?			2	23	5	2	•		1E	T	EF	S
	I																												G	M	1	M	3														
,	A	R.	1	C	L	E		C	O	U	N	T	=				2:	3,	, 9	4	1	P	E	R	?	C	C																				
		_			_					_		_		_		_				_																											
DAT	A	F																٠,	J	3	15															-						_					
			-	10																			4	1						9						3						2					0
				(0						1						1							Ю						1						1					0
	EX						0			_	n	_	_	т	_	T	.							2		7	-		. 0	1		0	-	0		4 =	-	E 6	,								
	11																																											45	7	F 5	2
	Ĭ																																		•	_		-		•	•	•		_	'	- '	•
	A																												_		•		•														
					-	_		_		_								,																													
DAT	A	F	DF	?	C	H	A	N	N	E	L	S	3	3		7	45	٤į	,	4	8																										
				0							0					1	A						0	1						0						0						0					0
				0							0					1	2						0)						0						0						0					0
DAT	4	F	11	1	C	H	A	N	N	E	L	S	4	9		T	HF	31	J	6	4	1																									
				0	1						0					-	7						8	1						0						0						0					0
				6							8						7						0)						0						0						0					0
GRAI						-															_																										
		5																							_				-	^		-		_													
	EX																																												-		
	VI																																					•		00	1	•	-	16	1	C 1	3

LIQUID WATER CONTENT = .00277 GM/M3 PARTICLE COUNT = 23.98 PER CC

SERIES # CTS- 7, TEST # 15 FOR DATA STARTING 22:30 ON 22/ 4/74

DATA	28	111		1	69	28	3		96	4	5		2	0	89									5 5		77 66
V L		8	L	T	Y TE	LIR	M:	TI	TE	N	PP	EF	3	•	. 0	3:	29	6	,	4	OWE	R		TER 2520		METERS
DATA	FC	4	CH			20	,			1	4				13								7 0		1	
V		81	L	TI	Y TE	LIR	M C	TI	, TE	UN	PP T	EF	3		8	5	43	Ø. 3	,	L	DWE	R		TER 65427		METERS
DATA	FC	1	CH		NN	6	s		3	-	HR a		4	8					0	1			0		0	
V L		181	IL:	TA	Y TE	LI R	C	TI	ŤE	U	PP	EF	?	3	14	91	00	6 S 5	,	L	OWE			TER 107224	1	METERS
DATA		R		A	NN	EL		4	9	T		u								1			0 0		0	
1	SA	ME NO	L C	IO IT	VO N Y TE	CC LI R	E M	FFIT	IC	IUN	EN PP	T EF	₹	=	. 0	3:	16	1.	, ,	L	OWE			TER 2421	•	METERS

SERIES # CTS- 7, TEST # 16 FOR DATA STARTING 22:40 ON 22/ 4/74

DATA		07		1	53	0	4		8	98	33			1	9;	37												8	33
V L	XTI ISI IQL ART	BI	LI	T	Y TE	R	IM	11	,	EN	JP	PE	R	,		. 0	3	5 1 2 2	9	. ,	L	0	EF			95		METER	₹S
DATA		5 5 5				1 9	9				9					9				;	4			9			5 5		1 0
V L	ISI IGL ART	81	L. I	T	Y TE	L.	IM	1	T,	E	JP VT	PE	R	1	-	8	7	63 03	7	. ,	L	0	EF					METER	?S
DATA	FC	R		4 Δ		(2		33	•	HOO		J	41	8	0					8			9			0		0
DATA	FC	K				(5						1	6	4	0					8			6			0 0		0
<u>د</u> ۷ اـ	SA	MP NC BI	LE 11	0 T	V C N Y T E	CL	I M	FF I'	I I	CI	IE	PE	R	=		. 0	3	38	5	. ,	L	OF	EF			91		METER	₹S

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

SERIES * CTS- 7, TEST * 17 FOR DATA STARTING 22:50 ON 22/ 4/74

	4559 16	NNELS 1 5235 96 83	95 1964	553 75 49 62	69 75 48 51
VI	SIBILITY QUID WAT	LIMIT,	IENT = .121 UPPER = 323 NT = .0024 22,47 PER C	8 GM/M3	ER 2475. METERS
DATA	36	18 1	THRU 32 12 10 1 0	5 2 1 1	3 1 0 0
r.i	SIBILITY GUID WAY	LIMIT,		7 GM/M3	ER 79892. METERS
DATA		NNELS 33		0 P 0 0	0 0 0 0
DATA		NELS 49		Ø Ø	Ø Ø
Ex VI LI	TINCTION SIBILITY	VOLUME = N COEFFIC Y LIMIT, TER CONTE	IENT . 125	6 GM/M3	ER 2400. METERS

SERIES # CTS- 7, TEST # 18 FOR DATA STARTING 23: 0 ON 22/ 4/74

DATA	6234	CHANNE 2377	9 12	754	2676	653 12	42 10	8 12 11 13
V:	ISIBI IQUID	LITY L	IMIT,	UPPE	R = .0	3300 GM/M3	ER . 19	31. METERS
DATA	1	CHANNE	3	3	32 3 1		1 0	1 1
V L	ISIBI IQUID	LITY L	IMIT,	UPPE	R =32	0011 GM/M3	IER #2499	63. METERS
DATA	0	CHANNE	0	0	1	0	Ø Ø	8 9 9 9
V L	ISIBI	LITY L	IMIT,	UPPE	R =909	0009 GM/M3	ER =6963	24. METERS
DATA	6	CHANNE	8	0	0	Ø Ø	Ø Ø	Ø Ø

SERIES # CTS- 7, TEST # 19 FOR DATA STARTING 23:10 ON 22/ 4/74

	NNELS 1 THRU 16		
	6267 9576 204		
79	73 55 4	7 53 53	71 50
CHILLIAN		1015 00 DED HE	• • • •
	N COEFFICIENT		
	Y LIMIT, UPPER = TER CONTENT = .		2470. MEIERS
	COUNT = 22.47 P		
PARTICEE (22.47	EN CC	
DATA FOR CHAN	NNELS 17 THRU 32		
		4 6 3	2 0
1	0 0	1 1 0	
EXTINCTION	N COEFFICIENT =	.383E-04 PER ME	TER
	Y LIMIT, UPPER #1		78140. METERS
	TER CONTENT .		
PARTICLE (COUNT P	ER CC	
	NNELS 33 THRU 48		
0			
6	0 0	0 0 0	0 0
DATA FOR CHAP	NNELS 49 THRU 64		
0		0 0 0	0 0
0		0 0 0	
GRAND TOTALS			
	VOLUME = 1500. CC		
	N COEFFICIENT =		
	Y LIMIT, UPPER =		2395. METERS
	TER CONTENT .		
PARTICLE (COUNT = 22.54 P	ER CC	

SERIES # CTS- 7, TEST # 20 FOR DATA STARTING 23:20 ON 22/ 4/74

DATA	9	3	3		3	0	8	55		1	7	95	1			3	6	0	3			8	45	5			417	3			41 61			42
V	IS	IU	ID	L	TA	Y	EF	I	M.	IT	+	EN	P	PI	E F	}		. (00	8	33	3	Ġ	L	PE	ER	ME	**	ER 1	37	8.	M	ETE	RS
DATA	F		45				2	O				1	4			3	2	(6				6	5				5			2			1 0
V L	IS	I	10	L	TT	Y	EF	I	M	IT	Ť	EN	IP	P	E F	?	=		95	58	15	5.	Ġ	1/	MS	ER	M	E 7	ER 73	37	9.	M	ETE	RS
DATA	F	01	0					0					0			4	8	1	0				1	1			(2			0			0
V L	IS	I	I E	L	IT	Y	EF	Į.	M	IT	T	EN	IP	PI	E F	1	=	71	87	3	62	2.	,	L	PE	ER	MI	E T	ER Ø3	00	0.	M	ETE	RS
DATA	F	01	0	CI									0			6	4	-	0				8				(2			0			0
V L	XT	III	MP NC BI	L	I D I T	VNYT	L E	I	E M	ITON	I	CI	IP	PI	T E F	*			1	22	63	3.	,	L		ER			ER 1		0.	M	ETE	RS

SERIES # CTS= 7, TEST # 21 FOR DATA STARTING 23:30 ON 22/ 4/74

DAT	A		5 4	8	8		1	8	2	g:	3		1	1 (56	9			2	4	6	9				6	27	7		8	2		1	8:31	1		01
	V	I	31	B	I	L	TA	Y	E	L	1	I	TN	, TI	EN	IP	P	E	R			0	21	31	3		,	L	WE			E				METE	RS
DAT	A	•	- 0		7					3	5				2	8					2																1 2
	VL	I	31	B	I	L	TI	Y	E	L	1 1	I	TN	T	EN	IP	P	E	R			5	3	16	5 9		,	L	W E			4				METE	ERS
DAT	A	1	= (R	1	CI					1					9			4			1 0					1				0				0		9
	V	I	51	1	I	L	IT	1	E	L	IN	I	TN	, T	EN	IF	P	E	R	•	3	70	8	94	48		,	L	WE			29		6		METE	ERS
DAT	Α	1	FC	R			H A		IN	(2								•	5 4		00					(-			0				0		9
GRA	EVL	X	5/51	MIN	PCID	LITL	ICIT	VANT	E	L	IN	F	FTN	I , T	C!	JA	NP	T E	R	•			2	5 % 3 8	27		,	1	WE			Έ	3	6	•	METE	RS

SERIES # CTS= 7, TEST # 22 FOR DATA STARTING 23:40 ON 22/ 4/74

DAT	A	F 4	0 F	8	CI	HA	N 22	N 3 1	E 6	1	3	1	1 2 9	95	9 8	RI	U	1 2	6	7 :	1				5 5	0				1:	1328			1	5	7		99
1	VI	S	IE	D	L	I T	Y	E	LR	IN	I	TN	Ť	EN	P	PI	EF	?		. 1	200	23	4 6	5 2		M	11	DW	E	R	TE B		ER 1	75	6		METE	RS
DAT	A	F	0 F	3 5	C	HA	N	N	E 7	L 5 0 3	3	1	7	1 5	H 1	RI	U	3	2	4	4 2				2	21 2					7					6		4 0
,	EX VI LI	S	IE	IC	L	IT	Y	E	LR	IN	11	TN	Ť	EN	P	P	E F	?	=		28	88	59	58		M	L	OW	E	R	YE.	TE	ER 22	0 9	9	•	METE	RS
DAT	A	F	OF	0						1					0			4			1					0 0					0 0							0
'		S	IE	I	L	IT	Y	E	LR	IN	11	TN	Ť	EN	P	PI	E F	1		5	19	15	7	8		,	4	WC	E				ER 97				METE	RS
DATA	Δ	F	OF	00			N		-	LS					0		U	6	4		8					0 0					0 0					0		0
'	EX	STSQ	AMINIE	PIC	LITL	E I C	VNYT	E	CLR	O E	FI	FTN	I	EN	EPT	N'P	EF	2	•	. (1 2	14	67	5	. ,	,	L	W	E				ER 1		54	•	METE	RS

SERIES # CTS- 7, TEST # 23 FOR DATA STARTING 23:50 ON 22/ 4/74

DAT	A		7	9	9	0			4	3	50	0	58	3		2	2	41	51	0	1			4	7	4	6																						
	VL	I	S Q	I	B	I	L	I	TA	7	E	EF	2	11	4)	וו	1		E	11	7			3			0	10		8:	3	• (, 3 N	1	.0	W	E				E				•	ME	TE	R	S
DAT				5	7	0					4	4 8	3	4				1	5 (7	5				5	0	8				:	55	58	5				4 :	43	1			22.22	36	8		27	19	0
	VL	I	S	I	6	I	L	I	TA	7		1		11	11	1	7		E	1	7	9	F	1	3		0	7		8	4		S N	L	0	W	E				E				•	ME	TE	R	S
DAT	A		F	04	6 3	7 8	C	н	A		11	4 :	1:	1	3		3;	3	3	34	4 6	31	j	4	3	3	5				:	27	7 1	1				1 9	93	,			1	3	5 2			7	4 0
	VL	I	S	I	H	I	L	I	TA	4		1		1	11	1	7	, T	E	11	7	3	F	?			2	3		8	7	• (,	L	.0	W	E				E				•	ME	TE	R	5
DAT	Δ		F	O	K	Ø							(1	5					0	1		j	6	4	1	0						6	9					6	1									0
	EV	XII	STSO	III	MABI	PCID	LTL	EII	T	1	10	1	-	I	E F	1	1		E	11	1	1						2	7	9:	2		,	L	. Q	W	RE	2	16	T	E	R	1 4	47	•	ME	TE	R	s

SERIES # CTS- 7, TEST # 24 FOR DATA STARTING 0: 0 ON 23/ 4/74

										-		Ī	10		_		_						_					_		_			•			- '		•							
DAT		-	F 1	16	,	_	H	٨	N	NI	FI	•			1		T	u	01	1	•																								
-	-																											0	A	0				9	•				2				9	7	•
			•	, .						0	3,	•				9	0	•				•		-				٠	-					•	•	-			٠		•		٠	-	,
	-	v				7	•	•	A.		-	16		_	•	_	T	FI							-		2 5		. 0	0	-	0			_		TER	•							
																																										ME	• 6		
																																				•		C	,,	0	•	ME	1 5	K	,
																									0					П	/	п.	3												
	۲	A	K	1 1	٠.	L	C		L	u	Ur	V		•				0	3	• 4	4 6	1	-	E	R	-	٠	•																	
			_			_	LI														•																								
DAT	A		-	U P	(L	H	A	N	N	בו		•	1	/	_	1	m	۲.	u		2		_										_	_	_									
				0 5	9					0	20	2				0	3	0				2	1	0				0	3	0				2	9	9			4	3	4		3	2	•
				4 3	9					4	5	2				4	Ö	0				0	3	2				4	1	0				3	3	0			3	01	•		2	47	,
	_		_			_	_				_				_	_	_	_							_				_			_													
																																						4	15	4	•	ME	TE	R	3
																									7					M	1	M;	3												
	P	A	R	1	C	L	E		C	0	١Ų	1	•						4	. 8	3 9)	P	E	R	(:																	
DAT	A		F	DF	}	C	H	A	N	N	EI	. 8	3	3	3		T	HI	RI	J	4	8	1																						
			1	2 8	10	1				2	3	4				2	0	1				1	9	0				1	6	8				1	1	9				91	9			76)
				7	4						4	5					2	9					1	5					1	3						3				-	1			1	ð
	E	X	T	IN	10	T	I	0	N	1	CC	0	F	F	I	C	I	E	N'	T		1			7	7 (6 E		.0	2		PI	ĒF	1	M	E'	TE	\$							
	٧	I	S	IE	I	L	I	T	Y	1	L	1	4 1	T	,		U	P	P	EF	?		1		-	5	04	١.	,		L	01	NE	R				3	18	6		ME	TE	R	3
	L	1	Q	U	C		W	A	T	E	R	(CC	N	T	Ē	N	T	1					1	9	5	46	5	G	M	1	M:	3												
																									R																				
																				-																									
DAT	A		F	OF	?	C	H	A	N	N	EL		3	4	9		T	H	RI	U	6	4	1																						
																								0						0						0				(0			(3
					0	1					(2						0																						-	0			- 19	2
																																				_									
GRA	N	D		TC	T	A	L	S																																					
												١١	1 5		=		1	5	0	0 .		C	C																						
	E	×	T	IN	10	7	I	0	N		c) [EF	F	1	C	ī	E	V.	7	٠,	,			1	7 8	BF		0	1		PI	ER	2	M	E'	TER	5							
	V	1	S	TF) T	1	1	T	Y		L	IN	1 1	T		_	ū	PI	PI	EF	2			•	-	2	20			-	L	0	N F	R	, ,			•	6	9		ME	TE	R	
	1	-	מ	11	-	-	W	, A	Ť	F	R	ľ		N	Ť	F	N	7			1			2	7	7 7	70		ć	M	1	M:	ï					•		-	•				•
																									R				•		•		•												
		^	,			-	-		-	•	•	•	•	_				ų	•	•	, .			-	"	,	-	•																	

SERIES # CTS- 7, TEST # 25 FOR DATA STARTING 0:10 ON 23/ 4/74

10	1964 5156	S 1 THRU 9 30576 0 715	5086 997	284 302 888 822	336 740
VIS	SIBILITY L BUID WATER	IMIT, UPPER	.01068 GM	LOWER . 682.	METERS
DATA F	617 53		497 491	504 472 599 509	
VIS	SIBILITY L	IMIT, UPPER CONTENT =		PER METER LOWER = 323. /M3	
DATA F	449 39	S 33 THRU 350 2 25	48 307 261 17 8	204 166 4 3	
VIS	SIBILITY L	IMIT, UPPER	27002 GM	PER METER LOWER = 267. /M3	METERS
DATA F	0	S 49 THRU	64 0 0 0 0	0 0	
EXT VIS	TINCTION COSTRILITY LOUID WATER	IMIT, UPPER	= .249E-01 = 157., L .39104 GM	LOWER = 120.	METERS

SERIES # CTS= 7, TEST # 26 FOR DATA STARTING 0:20 ON 23/ 4/74

15929 59	NNELS 1 THRU 16 9281 35547 5138 589 742 837	920 306 303	396 774
VISIBILITY	N CGEFFICIENT = .49% Y LIMIT, UPPER = .7% TER CONTENT = .011% COUNT = 82.54 PER	86., LOWER = 602. 79 GM/M3	METERS
DATA FOR CHAN 672 424	NNELS 17 THRU 32 598 524 522 456 528 615	441 414 409 569 515 555	409 509
VISIBILITY LIQUID WAT	N COEFFICIENT = .83(Y LIMIT, UPPER = 40) TER CONTENT = .100(COUNT = 5.44 PER (68., LOWER = 358. 50 GM/M3	METERS
457	NNELS 33 THRU 48 375 311 316 56 35 15	279 243 208	149
VISIBILITY LIQUID WAT	N COEFFICIENT = .12 Y LIMIT, UPPER = .316 TER CONTENT = .316 COUNT = 1.71 PER	07., LOWER . 235. 43 GM/M3	
DATA FOR CHAN	NNELS 49 THRU 64 0 0 0 0 0 0	0 0 0	
EXTINCTION VISIBILITY	VOLUME = 1500. CC N COEFFICIENT = .26 Y LIMIT, UPPER = 19	50., LOWER = 115.	METERS
	TER CONTENT = .428 COUNT = 89.69 PER		

SERIES # CTS- 7, TEST # 27 FOR DATA STARTING 0:30 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 11866 50831 31116 4898 980 302 306 378 521 689 837 940 1015 968 1014 825

EXTINCTION COEFFICIENT = .455E-02 PER METER
VISIBILITY LIMIT, UPPER = 860., LOWER = 659. METERS
LIQUID WATER CONTENT = .01130 GM/M3
PARTICLE COUNT = 71.66 PER CC

DATA FOR CHANNELS 17 THRU 32 772 652 617 545 483 428 436 395 573 394 462 596 616 537 513 487

EXTINCTION COEFFICIENT = .846E-02 PER METER
VISIBILITY LIMIT, UPPER = 463., LOWER = 354. METERS
LIQUID WATER CONTENT = .10050 GM/M3
PARTICLE COUNT = 5.67 PER CC

DATA FOR CHANNELS 33 THRU 48
403 328 292 255 227 190 163 132
99 81 32 23 19 8 4 2

EXTINCTION COEFFICIENT = .116E-01 PER METER
VISIBILITY LIMIT, UPPER = 336., LOWER = 257. METERS
LIQUID WATER CONTENT = .29838 GM/M3
PARTICLE COUNT = 1.51 PER CC

DATA FOR CHANNELS 49 THRU 64

EXTINCTION COEFFICIENT = .141E-03 PER METER
VISIBILITY LIMIT, UPPER = 27712., LOWER = 21223, METERS
LIQUID WATER CONTENT = .00904 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC
EXTINCTION CGEFFICIENT = .248E=01 PER METER
VISIBILITY LIMIT, UPPER = 158., LOWER = 121. METERS
LIQUID WATER CONTENT = .41922 GM/M3
PARTICLE COUNT = 78.84 PER CC

SERIES # CTS- 7, TEST # 28 FOR DATA STARTING 0:40 DN 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 8976 47205 28107 4685 1036 247 800 909 1017 960 EXTINCTION COEFFICIENT = .421E-02 PER METER VISIBILITY LIMIT, UPPER = 929., LOWER = 711. METERS LIQUID WATER CONTENT = .01066 GM/M3 PARTICLE COUNT # 65.04 PER CC DATA FOR CHANNELS 17 THRU 32 EXTINCTION COEFFICIENT = .811E-02 PER METER VISIBILITY LIMIT, UPPER = 482., LOWER = 369. METERS LIQUID WATER CONTENT = .09447 GM/M3 PARTICLE COUNT = 5.69 PER CC DATA FOR CHANNELS 33 THRU 48 EXTINCTION COEFFICIENT = .109E-01 PER METER VISIBILITY LIMIT, UPPER = 360., LOWER = 275. METERS LIQUID WATER CONTENT = .28270 GM/M3 PARTICLE COUNT = 1.39 PER CC DATA FOR CHANNELS 49 THRU 64 EXTINCTION COEFFICIENT = .574E=04 PER METER

EXTINCTION COEFFICIENT = .574E=04 PER METER
VISIBILITY LIMIT, UPPER = 68200., LOWER = 52231, METERS
LIQUID WATER CONTENT = .00447 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .233E=01 PER METER

VISIBILITY LIMIT, UPPER = 168., LOWER = 129. METERS

LIQUID WATER CONTENT = .39231 GM/M3

PARTICLE COUNT = 72.12 PER CC

SERIES # CTS- 7, TEST # 29 FOR DATA STARTING 0:50 DN 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 16372 68999 40198 5418 976 376 424 562 687 953 1120 1206 1328 1376 1394 1219

EXTINCTION COEFFICIENT = .606E-02 PER METER
VISIBILITY LIMIT, UPPER = 646., LOWER = 495, METERS
LIQUID WATER CONTENT = .01517 GM/M3
PARTICLE COUNT = 95.07 PER CC

DATA FOR CHANNELS 17 THRU 32 1053 1036 961 949 813 744 642 610 609 661 748 917 849 712 707 632

EXTINCTION COEFFICIENT = .121E-01 PER METER
VISIBILITY LIMIT, UPPER = 323., LOWER = 248. METERS
LIQUID WATER CONTENT = .14143 GM/M3
PARTICLE COUNT = 8.43 PER CC

DATA FOR CHANNELS 33 THRU 48
623 436 375 316 258 192 191 146
126 112 55 50 42 19 15 4

EXTINCTION COEFFICIENT = .157E=01 PER METER
VISIBILITY LIMIT, UPPER = 250., LOWER = 191. METERS
LIQUID WATER CONTENT = .41715 GM/M3
PARTICLE COUNT = 1.97 PER CC

EXTINCTION COEFFICIENT = .271E-03 PER METER
VISIBILITY LIMIT, UPPER = 14442., LOWER = 11061. METERS
LIQUID WATER CONTENT = .01667 GM/M3
PARTICLE COUNT = .01 PER CC

GRAND TOTALS

SAMPLE VOLUME # 1500. CC

EXTINCTION COEFFICIENT # .341E=01 PER METER

VISIBILITY LIMIT, UPPER # 115., LOWER # 88. METERS

LIQUID WATER CONTENT # .59043 GM/M3

PARTICLE COUNT # 105.48 PER CC

While the state of the state of

SERIES # CTS- 7, TEST # 38 FOR DATA STARTING 11 8 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 17211 69803 41430 EXTINCTION COEFFICIENT = .605E-02 PER METER
VISIBILITY LIMIT, UPPER = 647., LOWER = 495. METERS
LIQUID WATER CONTENT = .01496 GM/M3 PARTICLE COUNT . 96.36 PER CC DATA FOR CHANNELS 17 THRU 32 1075 956 1010 957 719 807 797 EXTINCTION COEFFICIENT = .118E-01 PER METER VISIBILITY LIMIT, UPPER = 331., LOWER = 254, METERS LIQUID WATER CONTENT = .13655 GM/M3 PARTICLE COUNT = 8.44 PER CC DATA FOR CHANNELS 33 THRU 48 516 426 332 291 139 125 EXTINCTION COEFFICIENT . . 131E-01 PER METER VISIBILITY LIMIT, UPPER = 299., LOWER = 229. METERS LIQUID WATER CONTENT = .33476 GM/M3 PARTICLE COUNT = 1.72 PER CC DATA FOR CHANNELS 49 THRU 64

EXTINCTION COEFFICIENT = .373E-04 PER METER VISIBILITY LIMIT, UPPER =105018., LOWER = 80428. METERS LIQUID WATER CONTENT = .00234 GM/M3 PARTICLE COUNT = .00 PER CC

GRAND TUTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION CUEFFICIENT = .310E-01 PER METER

VISIBILITY LIMIT, UPPER = 126., LOWER = 97. METERS

LIQUID WATER CONTENT = .48861 GM/M3

PARTICLE COUNT = 106.52 PER CC

SERIES # CTS- 7, TEST # 31 FOR DATA STARTING 1:10 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 827 16897 63340 36057 4631 249 338 376 899 934 959 976 757 886 498 644 EXTINCTION COEFFICIENT . . 523E-02 PER METER VISIBILITY LIMIT, UPPER = 748., LOWER = 573. METERS LIQUID WATER CONTENT = .01251 GM/M3 PARTICLE COUNT . 86.18 PER CC DATA FOR CHANNELS 17 THRU 32 766 742 717 613 649 538 496 444 563 463 460 510 536 520 469 540 EXTINCTION COEFFICIENT . . 861E-02 PER METER VISIBILITY LIMIT, UPPER = 454., LOWER = 348. METERS LIQUID WATER CONTENT = .10103 GM/M3 PARTICLE COUNT . 6.02 PER CC DATA FOR CHANNELS 33 THRU 48 324 315 483 489 421 341 216 181 125 80 67 48 30 11 14 EXTINCTION COEFFICIENT = .167E-01 PER METER VISIBILITY LIMIT, UPPER = 235., LOWER = 180. METERS LIQUID WATER CONTENT = .43648 GM/M3 PARTICLE COUNT = 2.10 PER CC

DATA FOR CHANNELS 49 THRU 64

5 4 0 0 0 1 0 0

EXTINCTION CUEFFICIENT = .326E-03 PER METER
VISIBILITY LIMIT, UPPER = 11997., LOWER = 9188. METERS
LIQUID WATER CONTENT = .01963 GM/M3
PARTICLE COUNT = .01 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .308E=01 PER METER

VISIBILITY LIMIT, UPPER = 127., LOWER = 97. METERS
LIQUID WATER CONTENT = .56965 GM/M3

PARTICLE COUNT = 94.30 PER CC

SERIES # CTS- 7, TEST # 32 FOR DATA STARTING 1:20 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 11904 43615 26139 3978 793 235 229 302 783 540 639 717 759 829 EXTINCTION COEFFICIENT . . 386E-02 PER METER VISIBILITY LIMIT, UPPER = 1013., LOWER = 776. METERS LIQUID WATER CONTENT = .00951 GM/M3 PARTICLE COUNT . 61.75 PER CC DATA FOR CHANNELS 17 THRU 32 686 660 608 577 605 522 476 469 418 431 489 460 405 296 336 261 EXTINCTION COEFFICIENT . .667E-02 PER METER VISIBILITY LIMIT, UPPER = 586., LOWER = 449. METERS LIQUID WATER CONTENT . . 07420 GM/M3 PARTICLE COUNT = 5.13 PER CC DATA FOR CHANNELS 33 THRU 48 282 268 240 226 173 160 140 110 53 92 48 32 24 EXTINCTION COEFFICIENT . 101E-01 PER METER VISIBILITY LIMIT, UPPER = 385., LOWER = 295. METERS LIQUID WATER CONTENT . . 27027 GM/M3 PARTICLE COUNT = 1.24 PER CC DATA FOR CHANNELS 49 THRU 64 4 8 1 0 0 EXTINCTION COEFFICIENT . . 149E-03 PER METER VISIBILITY LIMIT, UPPER = 26257., LOWER = 20109. METERS LIQUID WATER CONTENT = .00843 GM/M3 GRAND TOTALS

GRAND TOTALS
SAMPLE VOLUME = 1500. CC
EXTINCTION COEFFICIENT = .208E-01 PER METER
VISIBILITY LIMIT, UPPER = 188., LOWER = 144. METERS
LIGUID WATER CONTENT = .36241 GM/M3
PARTICLE COUNT = 68.13 PER CC

SERIES # CTS- 7, TEST # 33 FOR DATA STARTING 1:30 ON 23/ 4/74

DATA	1	F	P		C	H	A	N	N	EL	. 5		•	1		T	H	R	U		1	5						•															•	
		0	1	6			2	,	4	26)		,	'	4	9	2				9 (5	1	3				5	87	,				9	2			-	11	8			66	11
,																																				TE								
- 1	11	3	. 6	I	L	I	T	4			[1	I	T			U	P	P	E	R	1			1	4	6	6		,	L	.0	WI	ER	1			1	18	22		M	ET	EF	18
	I																													1/	M	3												
																										•	Ī																	
DATA	•	-	17	6					4	3					3	7	5				:	35	2	•				3	28				2	9	3			2	28	4			24	11
		1	24	5					2	5 5	5				2	7	9					32	23	3				2	86	•			2	4	2			1	8	0			15	4
	EX	T:	IN	C	T	I	01	N	-) [F	F	I	C	I	E	N	T	-				4	12	6	E		02	5	P	EF	,	M	E	TE	R							
	11	3	B	I	L	I	T	Y	1		M	I	T			U	P	P	E	R	1				9	1	8			L	.0	WE	R	1			1	, 6	3	•	M	ET	EF	15
Ė	, V	R	I	C	L	E	^	C		11	17		7	1	_	N	1	3		2	1	-	, E	R	0	C	C		5	1/	M	3												
DATA		F	20			_	A 1	N	NI	E 1	•		1	3		7	_	D	.,		41																							
		1	21	3					1	52	2				1	6	7				-	1	36	5				1	56	5			1	2	3			1	1	1			7	6
			7	7						41	3					4	1					1	25	5					16	5					5					2				9
E	X	T	N	C	T	I	0	N	-	C	DE	F	F	I	C	1	E	N	T					, 7	5	9	E	•	02	5	P	EF	1	M	E	TE	R					4-7		
ľ	I	3) 01	17	D	L	I	T	Y	F	• 1	0	0:0	T	-	E	UN	PI	P	E	R		•	2	0	5	10	6	•	GN	1	0	3 M	ER					38	5	•	M	ET	ER	13
F	A	R	1	C	L	E	(C	01	JN	17						•			98	5	-	•	R		C	Č			.,	•													
DATA		F	R		C	H	A	N	N	EL	. 5	1	4	9		T	H	R	U	(8	4																						
				0						•	•						0						2						9	,										0				0
				0							,						0						9)					9	,										0				0
GRAN										,	1 14											.,																						
E		8/ T1																								5	E	-(0 1		P	EF	1	M	E	TE	R							
																																							16		M	ET	EF	15

LIQUID WATER CONTENT = .25587 GM/M3
PARTICLE COUNT = 45.36 PER CC

SERIES # CTS- 7, TEST # 34 FOR DATA STARTING 1:40 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 10522 42951 27977 4625 956 297 224 251 431 571 711 792 755 876 878 854 EXTINCTION COEFFICIENT = .398E-02 PER METER VISIBILITY LIMIT, UPPER # 983., LOWER # 753. METERS LIQUID WATER CONTENT # .00994 GM/M3 PARTICLE COUNT # 62.45 PER CC DATA FOR CHANNELS 17 THRU 32 642 671 542 677 455 428 717 645 425 463 518 505 485 251 378 296 EXTINCTION CUEFFICIENT = .703E-02 PER METER VISIBILITY LIMIT, UPPER = 556., LOWER = 426. METERS LIQUID WATER CONTENT = .07805 GM/M3 PARTICLE COUNT . 5.40 PER CC DATA FOR CHANNELS 33 THRU 48 152 165 117 25 13 250 211 168 152 65 57 34 25 92 75 EXTINCTION COEFFICIENT = .780E-02 PER METER VISIBILITY LIMIT, UPPER = 502., LOWER = 384, METERS
LIQUID WATER CONTENT = .20808 GM/M3
PARTICLE COUNT = .96 PER CC DATA FOR CHANNELS 49 THRU 64 1 3 0 1 EXTINCTION COEFFICIENT . . 159E-03 PER METER VISIBILITY LIMIT, UPPER = 24592., LOWER = 18833. METERS

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .190E-01 PER METER

VISIBILITY LIMIT, UPPER = 206., LOWER = 158. METERS

LIQUID WATER CONTENT = .30543 GM/M3

PARTICLE COUNT = 68.81 PER CC

SERIES # CTS- 7, TEST # 35 FOR DATA STARTING 1:50 ON 23/ 4/74

										,	. (01	*		D	Δ.	T	A		5	1	11	"	L	. N	G			1	:	5(0	U	IN		2	3/		4	/7								
DAT				7	3	7			3	36	5	4	1	3		1	2	2	0	87	,			3	8	2	2				8 7	3 2	1121				2	20	6				2:	7			24	5
	1	11	S	I	8	I	L	1	1	'	7	E	LR	I	M C	I	TN	-	E	U.	7	3	F	1	•		0	10	318	5	9	• (02 5 M	! L/	POM	EI WI	R E F		E	TE	R	8	9 :	5.	ME	TI	ER	8
DAT				7	1	4	C	+	16	11	11	NI 5.	E	L.7	s		1	7	5	TH B	16	11	J	3	2	2 4	4					4 8	B 9 7 8)			2	25	2				3:	52			31	2 2
	1	11	3	I	8	I	L	1	1	1	7	E	LR	I	M	I	TN	Ť	E	וע	F	36	F	1			0	6	7	0	1 .	•		L	0	W	EF			TE			37	•	ME	TI	ER	S
DAT	7 4		F	2		8		+	1 4	11	11	71	E	114	S		3	3	1	5738	1 F	21	ı	4	1	5 2	1 8					1 4	45	•			1	2	4 9				16	5 8			9	
	1	1	S	I	8	I	L	I	1	1	1	E	2	I!	M :	וכ	T	-	EI	JF	7		R	1	•		2	1	4	9	8 .) GM	L	0	WI	EF	*	E	TE	R	3	82	١.	ME	71	ER	8
DAT			F	C	R	4	C						1	2	S					-	3	11					2						10	1					0									0
	1	. 1	S	I	8	I	L	I	1	1	1	1	2	I	4:	1	T N	Ť	E	JF	PF) E	R	1	•		10	2	5	41	8		3 3 5 M	L	0	WE	ER	M	E .	TE	R	61	0 4	١.	ME	76	ER	5
GRA	871	× 1	S	AII	MNBI	PCID	LTL	EII	7	111	1	01	2	I	E	ויו	FITN	I	E	LE	F	E	R	•				1 0	7 2 7	3	3	- 6	9 1 5 M	L/	POM	EI WI	REF		E .	TE	R	1	7 5		ME	76	ER	8

SERIES # CTS- 7, TEST # 36 FOR DATA STARTING 28 0 ON 23/ 4/74

DAT	•	•		F	0	F		(:1	1	•	N	N	E	1				1		7	H	R	u		1 (5																					
					5	2		5	e	:	7	7	5	2	4	1		4	2	9	3	9			(5	10	35	,				9:	22	!			7 8	14			8	31			2	38	3
		V	I	SQ	I	1	1	1	-	1	TA	Y	E	L	1		I	T	1	E	Z	PT	P	E	R	1	•	. 0	1	6	5	8	• (,	L	PE OW M3	E	R	IE.	TE	R	51:	2.		ME	TE	ER	8
DAT					64	7	7	,					63	1	8	1				6	2	40				(5249	8	1				41	39)			44	17			4	28			:	51	1 5
	-	V	I	9	I	1	1	1		1	TA	Y	E	L	1		I	TN	1	E	Z	PT	P	E	R	1	•	. 0	9	5	07	9	• (, in	レノ	PE OW M3	E	R	E	TE	R	38:	0.		ME	TE	R	3
DAT		A			4	8	4						4	5	0					3	6	5				-	36	3)																		20	
	-	V	I	SQ	I	8	1	1		1	TA	Y	E	LR	1		I	T	-		Z	PT	P	E	R	•	•	4	14	2	3	03		SM	L	OW	E	R		TE	1		5,		ME	TE	ER	5
DAT	7.	A		F	0	H	2			1	A .	7	2	E	1	S		4	9	•		0						0)					0					0 0				0					9
	1	V	I	SQ	I	B	1	1	-	1	TA	Y	E	LR	1		I	TN	-	E	UN	PT	P	E	R			2	2	1	74	8		,	L	PE OW M3	E	R	E	TE	R 65	7	٥.	100	ME	TE	ER	3
GRA		EVL	XII	STSO	AIIU	MABI	FCIC	1			DITA	VNYT	E	CLR	1	MC	FIO	FTN	I	C	IUN	EPT	NP	T E	R				3	1	721	E 7 9	-6	1	L	PE OW M3	RE	R	E	TE	R	91	в,		ME	TE	R	3

SERIES # CTS- 7, TEST # 37 FOR DATA STARTING 2:10 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 14888 72133 41100 5607 917 347 338 436 576 715 918 976 1046 1153 1104 1087

EXTINCTION COEFFICIENT = .587E-02 PER METER
VISIBILITY LIMIT, UPPER = .666., LOWER = .510. METER8
LIQUID WATER CONTENT = .01419 GM/M3
PARTICLE COUNT = .95.56 PER CC

DATA FOR CHANNELS 17 THRU 32 1000 913 896 898 781 740 604 610 586 624 646 689 607 496 433 443

EXTINCTION COEFFICIENT = .966E-02 PER METER
VISIBILITY LIMIT, UPPER = 405., LOWER = 310. METERS
LIQUID WATER CONTENT = .10858 GM/M3
PARTICLE COUNT = 7.31 PER CC

DATA FOR CHANNELS 33 THRU 48
411 351 286 235 221 209 148 131
118 105 57 46 19 18 5 8

EXTINCTION COEFFICIENT = .130E=01 PER METER
VISIBILITY LIMIT, UPPER = 302., LOWER = 231. METERS
LIQUID WATER CONTENT = .34861 GM/M3
PARTICLE COUNT = 1.58 PER CC

DATA FOR CHANNELS 49 THRU 64

3 3 2 1 0 1 0 2 0 1 0 0 0 0 0 0

EXTINCTION COEFFICIENT = .610E=03 PER METER
VISIBILITY LIMIT, UPPER = 6409., LOWER = 4908. METERS
LIQUID WATER CONTENT = .04668 GM/M3
PARTICLE COUNT = .01 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC
EXTINCTION COEFFICIENT = .291E-01 PER METER
VISIBILITY LIMIT, UPPER = 134., LOWER = 103. METERS
LIQUID WATER CONTENT = .51826 GM/M3
PARTICLE COUNT = 104.46 PER CC

SERIES # CTS- 7, TEST # 38 FOR DATA STARTING 2:20 ON 23/ 4/74

											-	1	U	•		U	-	•		•	•					•	•	Ť			2	• (1	,		"		•	•			-		_							
DAT	7	1	1	5 (5	1	3				31	3	9	0	Ø			3	8	1	1	5 5)			5	6	6	5					3 8 5 6	31	3				2 7	5:	3				27	76		:	28 64	8
	1	V :		3:	1	3	D	L	IW	1		7	E	LR	I	MC	I	T			1	IF	F	3	F)		•	0	1	7	49	1	•	,	L	.0	EW3	E	R	1	E 1	E	R	5	7:	3.	ME	71	ER	5
DA'	7			:	5 (5	9						4	9	8					:	5 5	14	1				4	8	9					40	5 4	1				34	8:2:	5									
	1	V :		3:	1	3	1	L	IW	1	1	7	E	LR	1	MC	I	T	1		L	15	F) E	F	}	•		0	8	5	6	2	• (,		.0	W	E	R			E	R	4:	21	٠,	ME	(7)	ER	8
DA'	T /	A			4:	5(7						3	6	1					1	28	1	3				2	5	8																						
	1	V !	1	3	1	3	I	L	IW	1	1	7	E	LR	I	MC	I	7	1		1	JF	F	3	F	1	•		3	3	3	5	2	• (,	1	.0		E	R			rE			3	7.	ME	T	ER	18
DA'	T /	A		F	ים		100								1						•	6	1 6			6	4		0						9							0					0				
	1	V		3	1	3	1	L	IW	1	1	7	E	LR	I	MC	I	7	1		L	11	7	3		?	*		6	40	9	9	1	•	,	L	.0		E									ME			3
GR	41	N()	3	TAL	0 1 7	TPC	ALT	LEI		3	57	0	LC	UO	ME	E	F	•			1	50	99			C	C		2	4	91	E	- 6	ð 1		P	E	R		MI	E'	r E	R						ER	

SERIES # CTS- 7, TEST # 39 FOR DATA STARTING 2:30 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 4450 1010 201 244 293 7557 39611 24191 437 617 747 860 894 909 849 735 EXTINCTION COEFFICIENT . . 365E-02 PER METER VISIBILITY LIMIT, UPPER = 1071., LOWER = 820, METERS LIQUID WATER CONTENT = .00930 GM/M3 PARTICLE COUNT = 55.74 PER CC DATA FOR CHANNELS 17 THRU 32 528 525 507 413 378 439 401 350 362 381 585 596 327 349 348 351 EXTINCTION COEFFICIENT = .633E-02 PER METER VISIBILITY LIMIT, UPPER . 618., LOWER . 473. METERS LIQUID WATER CONTENT = .07319 GM/M3 PARTICLE COUNT = 4.56 PER CC DATA FOR CHANNELS 33 THRU 48 312 277 211 188 134 108 103 83 56 37 32 22 10 4 9 3 EXTINCTION COEFFICIENT . . 800E-02 PER METER VISIBILITY LIMIT, UPPER . 489., LOWER . 374. METERS LIQUID WATER CONTENT . 20565 GM/M3 PARTICLE COUNT = 1.06 PER CC DATA FOR CHANNELS 49 THRU 64 0 1 0 0 0 0 0 0 0 EXTINCTION COEFFICIENT . . 279E-04 PER METER VISIBILITY LIMIT, UPPER =140040., LOWER =107249. METERS GRAND TOTALS

RAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .180E=01 PER METER

VISIBILITY LIMIT, UPPER = 217., LOWER = 166. METERS

LIQUID WATER CONTENT = .28967 GM/M3

PARTICLE COUNT = 61.36 PER CC

SERIES # CTS- 7, TEST # 40 FOR DATA STARTING 2140 ON 23/ 4/74

DATA		93	37	7		U.	5	42	26	50)		3	2	3 5	56	1			5	7	54	100																					
V	X I I	51	I	I	L	IW	T	Y Te	L	. 1	M	IO	TN	Ť	EN	IF	P	E	R		•	. 0	1	8 2	1	9		,	L	0	WE	ER	M	E1	2	R	32	1	•	H	ET	E	R 8)
DATA		1	36	6				7	77	1	1			(56	33					6	3 5	1				55	28				5	0	5			4 5	3	9			4:5	28	1
L V	I	SI	JI	ID	L	IW	T	Y	L	. 1	MC	I	TN	,	L	IF	P	E	R	1		. 1	1	4	1	5		M	レノ	0	3	R		•		1	31	8		M		E	R 8	•
DATA	\ 1	PI) R	37	C	H	AI	N1 3	35	16	. 3		3	3	28	16022	R	U		4	8 2	14					15	51				1	6	6				9	1 5				55	;
V		SI	18	I	L	IW	T	Y	L	. 1	MC	IO	T N'	TE	EN	IF	P	E	R			2	1	4 0	4	5,		,	L	0	1	R			E						ET	E	RS	1
DATA	\	FC	R							0	3					1				6	4	0)					0						9										
V		SI	18	ID	L	I	T	Y	L	I	MC	IO	TN	,	L	PIT	P	E .	R	1		0	0	03	1	3.	. ,	,	L	01	1										ET			
L		3 / 7] 8] G L	MNBI	PCID	LTL	EIIW	DIT	Y	CLE	I	EMC	FIO	FIN	10	LI	EPIT	NP	TE.	R	•		. 3	2	3 1 8	41	5		1 M	LI	PI OI M:	ER VE	R	MI	ET	E	R	3	0	•	M	ET	EI	RS	

SERIES # CTS- 7, TEST # 41 FOR DATA STARTING 2:50 ON 23/ 4/74

									•	-	,,		-			-	•	•				•		• '	•	•			6	•	•			_			•	٠	•		-	•											
DAT	A	F	0	R	1	CI	H.	A	N	N	E	L	5			1			r +	16	11	,	1	1	5																												
		8	3	5	0			4	3	8	7	1			2	7	2	27	73	,			•	4;	3	3	4				-	8	7	9					2	7	2				1	25	9)				4	1
			5	5	4					8	0	9					9	0	5 4	1			1	1	!!	9	4				1	2	4	3				1	2	4	9			1	1	3	9 6)				9	7
	ΕX	T	I	N	C'	T :	I	0	N		C	0	E	F	F	1			E		11	,						4	21	B	E	-	0	2		P	E	R		M	E	TI	ER	,									
1																																																		E	T	E	R
	J																																G	M	1	M	3											8					
F	A	R	T	I	CI		E		C	0	U	N	T						•	3 2	2 .		57	,	1	96	E	R	(C	C																						
DAT	4	F	0	K	1	CI	+	A	N	N	E	L	S		1	7	,	1	7+	16	11	J		3 2	2																												
			8	0	5					7	9	3					6	56	57	,				!	5	9 9	9				1	5	2	7					4	1	3				4	12	2 1					4	0
			4	0	4					4	6	8					5	5 4	18	1				!	5 9	96	3				1	5	1	5					5	5	2					2	2 1					5	7
	EX	T	I	NI	C.	1	I	0	N		C	0	E	F	F	1			E	À	11	•	•				. 8	8	7 (8	E	-	0	2		P	E	R		M	E	TI	ER	1									
1	VI	S	I	8	I		I	T	Y		L	I	M	I	1	,		L	JF	F	E	ſ	5	1					4	4	5		,		L	0	W	E	R					3	4	11			M	E	T	E	R
ı	.I	a	U	I	0	1	N	A	Ţ	E	R		C	0	N	h	E	1	1	8					-	. 1	1	ð,	4	9	4	1	G	M	1	M	3																
F	A	R	Τ.	I		_!	=		C	0	U	N	Ţ								,	, (3 6	3	,	?[2	-	C	C																						
DATA	A	F	0	R	1	C	4	Δ	N	N	E	L	S		3	3	,	1	1	F	1	J		4 8	3																												
			5	4	5					4	5	7					3	1	7					-	2 (5 5	9					1	7	2																			
				2	9						2	4						1	:)						1 2	2							b							3						6)					
	EX	ï	I	N	C'	T :	1	0	N		C	0	E	F	F	1		: 1	E		17	•	1				. 8	8	8	5	E	-1	0	2		P	E	R	1	M	E	71	ER	1									
	VI																																						R		•			3	1	9			M	E	T	E	R
	. I																																	M	1	M	3																
,	A C	R	T	I	Cl	_ !	2		C	0	Ų	N	T							1		•	4 :	1	•	9	1	2	1	C	C																						
DAT	4	F	0																						4									1																			
					1															1																											0						
					0							0							4	,						6	0							0							0						0	1					
	EX	T	I	NI	C '	1	I	0	N		C	0	E	F	F	1	(E	N	11	•		•				11	0	31	E	-1	0	3		P	E	R		M	E	T	F	1					-				
d if																																							R			-	53	0	12	8	•		M	E	T	E	R
	1																																				3																
1	P A	K	1	1	-1	- 1	=		L	U	U	N	1		3						•	. 6	96	0	,	"!	- 1	*	(اما	-																						
GRAN	VO		T	0	T	AI	_	S																																													

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .220E-01 PER METER

VISIBILITY LIMIT, UPPER = 178., LOWER = 136. METERS

LIQUID WATER CONTENT = .32434 GM/M3

PARTICLE COUNT = 69.85 PER CC

SERIES # CTS- 7, TEST # 42 FOR DATA STARTING 3: 0 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 24240 97184 5575 788 55020 422 464 486 593 783 940 1034 1147 1192 1142 1115

EXTINCTION COEFFICIENT = .753E-02 PER METER
VISIBILITY LIMIT, UPPER = 520., LOWER = 398. METERS
LIQUID WATER CONTENT = .01743 GM/M3
PARTICLE COUNT = 128.08 PER CC

DATA FOR CHANNELS 17 THRU 32

976 860 834 761 650 625 633 607 610 746 765 864 900 878 1001 995

EXTINCTION COEFFICIENT = .136E-01 PER METER
VISIBILITY LIMIT, UPPER = 287., LOWER = 220. METERS
LIQUID WATER CONTENT = .16769 GM/M3
PARTICLE COUNT = 8.47 PER CC

DATA FOR CHANNELS 33 THRU 48

941 808 664 529 358 244 192 137 68 62 47 36 16 15 6 1

EXTINCTION COEFFICIENT = .186E-01 PER METER
VISIBILITY LIMIT, UPPER = 210., LOWER = 161. METERS
LIQUID WATER CONTENT = .44246 GM/M3
PARTICLE COUNT = 2.76 PER CC

DATA FOR CHANNELS 49 THRU 64

EXTINCTION COEFFICIENT = .110E-03 PER METER
VISIBILITY LIMIT, UPPER = 35607., LOWER = 27269. METERS
LIQUID WATER CONTENT = .00701 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC
EXTINCTION COEFFICIENT = .399E-01 PER METER
VISIBILITY LIMIT, UPPER = 98., LOWER = 75. METERS
LIQUID WATER CONTENT = .63459 GM/M3
PARTICLE COUNT = 139.32 PER CC

SERIES # CTS- 7, TEST # 43 FOR DATA STARTING 3:10 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 12846 58124 35166 4997 860 330 371 469 596 760 912 1128 1157 1242 1273 1092

EXTINCTION COEFFICIENT = .521E-02 PER METER
VISIBILITY LIMIT, UPPER = .750., LOWER = .575. METERS
LIQUID WATER CONTENT = .01318 GM/M3
PARTICLE COUNT = .80.88 PER CC

DATA FOR CHANNELS 17 THRU 32

948 807 864 824 792 648 593 575 618 706 811 843 764 645 584 551

EXTINCTION COEFFICIENT = .111E-01 PER METER
VISIBILITY LIMIT, UPPER = 353., LOWER = 270. METERS
LIQUID WATER CONTENT = .12901 GM/M3
PARTICLE COUNT = 7.72 PER CC

DATA FOR CHANNELS 33 THRU 48

495 367 266 203 137 99 59 41 29 15 14 16 12 5 4 1

EXTINCTION COEFFICIENT = .756E-02 PER METER
VISIBILITY LIMIT, UPPER = 517., LOWER = 396. METERS
LIQUID WATER CONTENT = .17687 GM/M3
PARTICLE COUNT = 1.18 PER CC

DATA FOR CHANNELS 49 THRU 64

3 1 0 2 0 3 0 0

EXTINCTION COEFFICIENT = .492E-03 PER METER
VISIBILITY LIMIT, UPPER = 7952., LOWER = 6090. METERS
LIQUID WATER CONTENT = .03885 GM/M3
PARTICLE COUNT = .01 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .244E-01 PER METER

VISIBILITY LIMIT, UPPER = 161., LOWER = 123. METERS

LIQUID WATER CONTENT = .35792 GM/M3

PARTICLE COUNT = 89.78 PER CC

SERIES # CTS- 7, TEST # 44 FOR DATA STARTING 3:20 ON 23/ 4/74

									-	U	K		U	A	T	A		5	1	A	K	T	1	N	6			3	*	2	Ŋ		U	N	•	2	3 /		4	/	/4									
DAT	A	F	0	R		C	H	4	N	N	E	L	S			1		T	H	R	U	1	1	6																										
	1	9	7	1	9			7	9	9	2	1			4	5	9	9	4				5	6	7	9					8	7	8					37	14	1			3	8	1				48	0
																																									ER									
	V	S	I	B	1	L	I	T	Y		L	I	M	1	T	,		U	P	P	E	R			1			6	0	7		,		1	01	W	E	?				4	16	5			1E	TI	ER	5
- 1	P	R	T	I	C	L	E		C	C	L	IN	T		=			1	0	7		3	2		P	E	R		C	C																				
DAT	A	F	0	R		c	H	A	N	1	E	L	S		1	7		T	H	R	u	1	3	2	!																									
			8	6	9					7	6	2					7	2	7					7	1	0	1				6	9	0				!	5	47				5	4	4			:	80	7
			6	2	1					6	3	5	•				8	3	6					9	3	.1					8	0	0				7	7	1 2	!			7	2	4			-	7 4	2
	FY	1	T	N	c	7	T	n	N		•	C	E	F	F	I	C	T	E	N	T			13			1	1	8	E		0	1		PI	EI	2	,	16	-	ER	,								
	V	5	ī	8	I	Ĺ	Ĩ	1	Y		L	1	M	I	T			u	P	P	E	R				•	•	3	3	1			•	L	01	W	E	?			-	2	25	3			1E	TI	ER	S
																																													•					
	P	R	T	I	C	L	E		C	C	L	IN	T							7		6	2		P	E	R		C	C																				
DAT	A	F	0	R		С	H	A	N	in	E	L	S		3	3		T	H	R	u	1	4	8	1																									
			6	3	9					4	6	4	1				3	9	6					2	8	3					5	Ø	5				1	1	17	'			1	0	5				7	4
				4	8						3	4						2	5						1	1						1	4					1	13	1					4					2
1																																																		
																																										2	27	6		1	1E	71	ER	S
	P	R	T	I	C	L	E		C	C	11.	11	T		3					1	•	6	4		P	E	R		C	C																				
DAT	A	F	0	R		C	Н	A	N	1	E	L	S		4	9	1	T	H						١																									
					Ø							8							0														1																	
					1							1							0							9	1						0						8	•					0					0
																																									ER									
																																									7	8	1	4		-	1E	TI	ER	5
																																		1	M;	3														
	P	R	T	I	C	L	E		C	C) L	IN	T									0	6		P	E	R		C	C																				

GRAND TOTALS SAMPLE VOLUME = 1500. CC

EXTINCTION CUEFFICIENT = .295E-01 PER METER

VISIBILITY LIMIT, UPPER = .133., LOWER = .102. METERS

LIQUID WATER CONTENT = .44774 GM/M3

PARTICLE COUNT = .116.58 PER CC

SERIES # CTS- 7, TEST # 45 FOR DATA STARTING 3:30 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 17864 70394 40592 5226 EXTINCTION COEFFICIENT . . 535E-02 PER METER VISIBILITY LIMIT, UPPER = 731., LOWER = 560. METERS PARTICLE COUNT # 93.60 PER CC DATA FOR CHANNELS 17 THRU 32 EXTINCTION COEFFICIENT = .968E-02 PER METER VISIBILITY LIMIT, UPPER = 404., LOWER = 309. METERS LIQUID WATER CONTENT = .11977 GM/M3 PARTICLE COUNT = 5.72 PER CC DATA FOR CHANNELS 33 THRU 48 363 276 212 EXTINCTION CUEFFICIENT = .683E-02 PER METER VISIBILITY LIMIT, UPPER = 573., LOWER = 439. METERS LIQUID WATER CONTENT = .14945 GM/M3
PARTICLE COUNT = 1.15 PER CC DATA FOR CHANNELS 49 THRU 64 EXTINCTION COEFFICIENT = .125E-03 PER METER VISIBILITY LIMIT, UPPER = 31201., LOWER = 23896. METERS PARTICLE COUNT = .00 PER CC GRAND TOTALS

RAND TOTALS
SAMPLE VOLUME = 1500. CC
EXTINCTION COEFFICIENT = .220E-01 PER METER
VISIBILITY LIMIT, UPPER = 178., LOWER = 136. METERS
LIQUID WATER CONTENT = .28845 GM/M3
PARTICLE COUNT = 100.47 PER CC

SERIES # CTS- 7, TEST # 46 FOR DATA STARTING 3:40 ON 23/ 4/74

DATA FO	-	INFI S 1	THOM IN			
176	97 66	354 374	104 506	1 747	225 212	258
3	31	404	155 49	9 534	576 554	537
		100			0,0	
EXTI	NETION	COEFFIC	CIENT .	-496E-02	PER METER	
					OWER . 504.	METERS
				01095 GM/		
PART	ICLE C	OUNT =	87.90 1	ER CC		
DATA FO	H CHAN	NELS 17	THRU 32			
5	37	468	494 48	9 504	430 399	411
4	56	455	555 51	1 439	430 399 402 361	323
EXTI	NCTION	COEFFIC	CIENT .	.695E-02	PER METER	
VISI	BILITY	LIMIT,	UPPER =	563., L	DWER = 431.	METERS
1 7011	TO WAT	TED CONTS	AIT -	MARTE CM/	MR	
PART	ICLE C	COUNT =	4.83 F	ER CC		
DATA FO	H CHAN	INELS 33	THRU 48			
				ø 66		37
	31	55	12	9 11	4 1	1
EXTI	NETION	COEFFIC	CIENT =	.503E-02	PER METER	
					OWER = 595.	METERS
				12215 GM/	м3	
PARI	ILLE (LOUNI E	.74 F	EN LL		
		N.E. C 40	THOU 64			
DATA PU			THRU 64		0 0	10 4 6 T 6
	8	Ø.	0	0 0		
	6.	V.		0	V	
GRAND T	TALE					
		/01 HME -	1590. CC			
FYTT	NCTION	CUEFFT	TENT =	160F-01	PER METER	
VISI	HTLTTV	I IMIT.	HPPFH =	231	PER METER OWER # 177.	METERS
1 700	TO WAT	FE CONTE	INT E	21345 GM/	M3	
			93.46 F			

SERIES # CTS- 7, TEST # 47 FOR DATA STARTING 3:50 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 19794 81381 46106 5497 EXTINCTION COEFFICIENT = .601E-02 PER METER
VISIBILITY LIMIT, UPPER = 651., LOWER = 498. METERS
LIQUID WATER CONTENT = .01331 GM/M3 PARTICLE COUNT = 106.17 PER CC DATA FOR CHANNELS 17 THRU 32 EXTINCTION COEFFICIENT . . . 977E-02 PER METER VISIBILITY LIMIT, UPPER = 400., LOWER = 307. METERS LIQUID WATER CONTENT . .11769 GM/M3 PARTICLE COUNT = 6.24 PER CC DATA FOR CHANNELS 33 THRU 48 142 76 EXTINCTION COEFFICIENT = .681E-02 PER METER
VISIBILITY LIMIT, UPPER = 574., LOWER = 440. METERS
LIQUID WATER CONTENT = .14924 GM/M3 PARTICLE COUNT # 1.13 PER CC DATA-FOR CHANNELS 49 THRU 64 EXTINCTION COEFFICIENT = .302E-03 PER METER
VISIBILITY LIMIT, UPPER = 12958., LOWER = 9924. METERS LIQUID WATER CONTENT = .03652 GM/M3

PARTICLE COUNT = .00 PER CC

GRAND TOTALS SAMPLE VOLUME . 1500. CC EXTINCTION COEFFICIENT # .229E-01 PER METER VISIBILITY LIMIT, UPPER = 171., LOWER = 131. METERS LIQUID WATER CONTENT = .31675 GM/M3 PARTICLE COUNT = 113.54 PER CC

SERIES # CTS- 7, TEST # 48 FOR DATA STARTING 4: 0 ON 23/ 4/74

											•				٠		•	_		•	•		•			• •			•	•		U	•	,,		-	,,		-	′′′							
DAT	1	A	-	F	0	R		C	H	4	1	11	E	L	. 5			1		T	H	RI	J	1		5																					
			1	6	0	4	5			6	1	. 8	1	5	i		3	4	2	6	1			4	18	1	9)				7	5	1			1	7	6			2	13			1	87
					2	7	3					3	1	8	1				3	1	7				3	37	3	1				3	67	,			4	0	2			40	93			3	74
																																								TER							
		٧	I	3	I	B	I	L	I	1	4		L	. 1	M	I	T	•	18	U	P	P	E	5		•			8	7	8	•		L	.0	WE	R	1			6	73	5.	1	4E'	TE	RS
																																				3											
	-		•	×	Ţ	1	C	L	E		L	١, ر	L	10	11		=				0	0	• '		,	-	בי	K		C	C																
DAT	1	A		F	0	R		C	H	A	1	11	E	L	S		1	7		T	H	RI	J	3	12	?																					
					3	6	3					7	5	10					4	5	0				4	11	4					4	33	3			4	0	6			43	35			4	06
					3	9	5					4	8	3 6					4	9	4				4	16	6					3	54	4			2	9	3			21	0			1	27
	1	E	X	T	I	N	C	T	I	0	1	1	C	C	E	F	F	I	C	I	E	N'	•	•	,			5	4	9	E	-	02	2	P	EF	,	M	E	TER	?						
	1	V	I	S	I	8	I	L	I	1	4	•	L	. 1	M	I	T	,		U	P	P	1	?	1	3			7	1	3		,	L	.0	ME	R	1			5	46	5.		4E'	TE	RS
																																				3											
	-	,	•	K	T	1	C	L	E		C	. (ייי	10	1		=					4	. (03	,	-	'E	. K		C	C																
DAT	•	A	1	F																				4	18	3																					
															!											3	8	1				-	23	3				1	7			1	9				7
						1	0							5	•					1	N						4						1						2				1				0
	1	E	X	T	I	N	¢	T	1	0	1	1	C	C	E	F	F	I	C	I	E	N'	r		1			1	6	1	E	-	02	2	P	EF	?	M	E	TER	?						
																																								1	8	57			1E'	TE	RS
																																	GN	1/	M	3											
	-		A	×	1	1	C	L	E		C	. (U	1	•								, 4	2.0)	-	'E	R		C	C																
DAT	1	A		F	0	R		C	H	A	1	1	E							T	H	RI	J	6	4	1																					
							0														0						100)					2						0								0
							0							0	1						9						0						6	9					0				0				0
	1	E	X	T	I	N	C	T	I	0	1	1	C	0	E	F	F	1	C	I	E	N	•		1			9	9	3	E	-	0 4	4	P	EF	?	M	E	TER	!						
	1	V	I	5	I	B	I	L	I	T	4	•	L	I	M	I	T	,		U	P	PE	F	5	•	1	3	9	3	7	7			1	.0	WE	R			30	11	57			1E1	TE	RS
																																	GN	1/	M	3											
	-		A	K	T	1	C	L	E		C	. C	u	IN	T		•					•	, (96)	P	E	R		C	C																

GRAND TOTALS SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .117E-01 PER METER

VISIBILITY LIMIT, UPPER = .336., LOWER = .257. METERS

LIQUID WATER CONTENT = .11712 GM/M3

PARTICLE COUNT = 84.99 PER CC

SERIES # CTS- 7, TEST # 49 FOR DATA STARTING 4810 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 18802 88514 50803 6092 860 423 393 485 579 756 831 934 958 1011 917 850

EXTINCTION COEFFICIENT = .675E-02 PER METER
VISIBILITY LIMIT, UPPER = 579., LOWER = 444. METERS
LIQUID WATER CONTENT = .01546 GM/M3
PARTICLE COUNT = 115.47 PER CC

DATA FOR CHANNELS 17 THRU 32 756 726 691 739 631 725 697 752 830 970 1149 1262 1110 1085 977 844

EXTINCTION COEFFICIENT = .154E-01 PER METER
VISIBILITY LIMIT, UPPER = 254., LOWER = 195. METERS
LIQUID WATER CONTENT = .18713 GM/M3
PARTICLE COUNT = 9.30 PER CC

DATA FOR CHANNELS 33 THRU 48 692 449 290 202 111 59 47 14 14 10 5 3 2 6 1

EXTINCTION COEFFICIENT # .713E-02 PER METER
VISIBILITY LIMIT, UPPER # 549., LOWER # 420. METERS
LIQUID WATER CONTENT # .15030 GM/M3
PARTICLE COUNT # 1.27 PER CC

DATA FOR CHANNELS 49 THRU 64

EXTINCTION COEFFICIENT = .194E-03 PER METER
VISIBILITY LIMIT, UPPER = 20160., LOWER = 15440. METERS
LIQUID WATER CONTENT = .01477 GM/M3
PARTICLE COUNT = .00 PER CC

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .295E-01 PER METER

VISIBILITY LIMIT, UPPER = 133., LOWER = 162. METERS

LIQUID WATER CONTENT = .36767 GM/M3

PARTICLE COUNT = 126.04 PER CC

SERIES # CTS- 7, TEST # 50 FOR DATA STARTING 4:20 ON 23/ 4/74

DAT			1	7	9	4	9			7	1	8	9	7	4	1			4	4	4	8	7				5	9	9	2	?																							
	1	٧.	1	5	I	H	I	L	I	1	1	7	E	LH	1	-	1	ו יו וו	1	•	E	LIN	PT	P	E	R				9	1	6	5 5	50	5		,	1	.(2 8	E	R	M	E .	TI	ER		5 @	3	•	MET	E	RS	3
DAT		4		-	h	3	2						6	2	1						6	9	7					6	5	9)			1		5 2	2:	1 5				5 8	8	74				5 7	9	4 8		6	24	
	1	V :	1	5	I	8	I	L	I	1	1	Y	E	L	1		1	יון	1		E	UN	P	P	E	R				1		2	2	52	2		51	1	.(P W I 3	E	R	M	E .	TI	EF	2	22	8		MET	E	RS	3
DAT					4	2	2 7						2	3	3						1	3	3 5						6	2	!					3	1	2						0						9 0			7	
	1	1	1	5	I	B	I	L	I	1		Y	E	LR	I	*	1) !	7		E	UN	PT	P	E .	R				0	1	1	8	25	,	•	,	L			E										MET		RS	3
DAT		A	1	-	O		1			1	1	7	2	E	100	•				9			0	R			6	4	1	-								0						00						00				
	1	V	I	5	I	H	ID	L	I	1	1	Y	E	L	1		1	יו	7	ŕ	E	UN	PT	P	E	R		•	1	4	9	90	1	5 2	2		,	1	.(E										MET		RS	5
GRA		EV	X	5 7 5 9	I	MNBI	PCID	LTL	EII	1	0	V 2 Y T	E	CLR	1		1	1	-	I	C	IUN	EPT	N P	TE.	R	•				2	22	7	7	,		,	1	. (P E D W	ŀ	R	M	E .	TI	EF	,	3	14		MET	E	RS	3

SERIES # CTS- 7, TEST # 51 FOR DATA STARTING 4:30 ON 23/ 4/74

			8	36	5 5	5	5			4	Ø	6	5	0			2	1	9	5	3				4	0	3	9																					
	1	E)	15	11	[N	3:	בו בו		II	OTA	NYT	E	CLR	OI	EMC	FIO	FTZ	I		IUN	E	ZP	TE	R	•				301	26	56	5.	.0	2	L	PE	ER	R	M	E	TE	R				ME			
DA	T .	A			11	1	7					4	4	8					5	10	17					5	5	8				5 2	3322	0				3 1	9 3	4 3				37	8		;		
	1	V :	10	31	1 1	3	11	-	I	TA	Y	E	LR	I	M	I	T	T	E	L	P	P	E	R				0	4	13	56	3.	,		L	PE	E	R	M	E	TE	R	7	32	١,	ME	76	ER	8
DA					4	1	4						2	0						1	3	1					1	0						1						1									20
	1	V	1 5	31	1	1	11	-	I	TA	Y	E	LR	I	M	I	TN	-	E	U	P	P	E .	R		=	. !	0	92	27	73	,	,		L		E									ME			8
DA	T .	4	F	- () F	•	1							1							0	R			6	4	-	0						00						0					0				0
	1	V		31	1		11		I	TA	Y	E	LR	I	M	I	T	Ť	E	UN	P	P	E	R		=		54	45	34	41				L		E									ME			
GR	-	EX	3	34	IN	16	21	-	EIIW	OTA	VZYT	E	CLR	OI	EMC	FIO	FTN	I	C	IUN	E	ZP	TE	R		•			5	57	10				L	PEOW	E	R	M	E'	re	R	31	91	•	ME	TE	ER	8

SERIES # CTS= 7, TEST # 52 FOR DATA STARTING 4840 DN 23/ 4/74

DAT	7	•			7	32	2		1	1 8	82	2	2 4	1		1	0	3	5	,			2	1	1	4 8				51	6.8			1	8 2	2			7	3 7			918	1 3
	1	V :	1	3	J	3	11	-	1	1	7	EF	?	C	0:0	TN	, T	E	N'	PF	E	R			. (200	?7	8	3,	. ,		LI		EF			TER 2				M	ETI	ER	8
DAT	7	•			1	41	3					•	93	,					9	2					8	4,				,	5 2					14 2							_	4 2
	1	٧.		3	1	3 3	11	. !	1	1	7	EF	. 1	M	I	TN	Ť	E	N'	F	E	R				2	25	2:	5	,		L		EF			TER							8
DAT	T .	A		F	0 F	-	1						2	?					1	1 F			4	8	1	1					0 0					0				0				
	1	٧:		3 :	11	3 ;	11		1	1	7	EF	. 1		I	TN	ŕ	E	N.	PF	E	R			18	36	12	7 (0.	G		L		EF			TER 1 42			•	MI	ETI	ER	8
DAT	,	4	1	= () F	-	0						9)					(16	U		6	4	-						0 0					0				0				0
GRA		E > 1	X IS	5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /	APEN I	16	1			1	V Y TE	L	1	M	FI	FTN	I ,T	C	II.	IN P	TE .	R			. (1	2	5(9)	5			L	PE W M3	EF	M	E'	TER 1	7:	23	•	MI	ETE	ER	s

SERIES # CTS- 7, TEST # 53 FOR DATA STARTING 4:50 ON 23/ 4/74

8706 29		903 623	128 115 160 323 404 467
VISIBILITY	N COEFFICIENT = Y LIMIT, UPPER TER CONTENT = COUNT = 40.26	= 1646., LOWE .00555 GM/M3	METER R = 1260, METERS
DATA FOR CHAN	NNELS 17 THRU 3	2 252 235	203 146 145 146 116 93
VISIBILITY LIQUID WAT	N COEFFICIENT = Y LIMIT, UPPER TER CONTENT = COUNT = 2.21	= 1377., LOWE .03151 GM/M3	METER R = 1054, METERS
89	NNELS 33 THRU 4 64 44 0 5	20 18	8 10 2 1 0 0
VISIBILITY	N COEFFICIENT = Y LIMIT, UPPER TER CONTENT = COUNT = .18	= 3757., LOWE .02291 GM/M3	METER R = 2877, METERS
DATA FOR CHAN	NNELS 49 THRU 6	4 0 0	0 0 0 0 0 0
EXTINCTION VISIBILITY	VOLUME = 1500. N COEFFICIENT =	.626E-02 PER 625., LOWE	METER R = 479. METERS
	COUNT = 42.65		

SERIES # CTS- 7, TEST # 54 FOR DATA STARTING 5: 0 ON 23/ 4/74

DATA F	FOR CHANNE	LS 1 THRU	16		
	4519 1292 55 4	3 7869 5 50	1500 396 60 72	51 50 76 103	50
	33	3 36	00 /2	76 100	***
EXT	TINCTION C	DEFFICIENT	103E-02	PER METER	
			.00221 GM	OWER = 2913,	METERS
		NT = 18.			
DATA		LS 17 THRU 8 21		1 0	4
		2 0		0 0	0
Fu		05551015NT	- 6035-04	DED WETED	
			= .693E=04	OWER = 43242.	METERS
LIC	GUID WATER	CONTENT =	.00047 GM	/M3	
PAF	RTICLE COU	NT .	12 PER CC		
DATA F	FOR CHANNE	LS 33 THRU			
		0 0	0 1	0 0	
	0	0 0	9 0	0 0	0
			= .497E-05		
			R =787362., L	OWER =603000.	METERS
		NT .		M3	
DATA		LS 49 THRU	0 0	0 0	0
		0 0	0 0	0 0	
CRAND	TOTAL 6				
	TOTALS SAMPLE VOL	UME = 1500	. cc		
EXT	TINCTION C	OEFFICIENT	110E-02		
				OWER = 2717.	METERS
		NT = 18.	.00279 GM/	r n o	

SERIES # CTS- 7, TEST # 55 FOR DATA STARTING 5:10 ON 23/ 4/74

		1	8	2	3	0			•	5	2	8 2	5	58			3	2	3	3 !	53	3			•	4 9	3	36	9				3	5 1	1 5	5				3	8	7				3	8							
	L	I	S	I	BI	I	L		1	1	Y	E	LR	I	M	0	TN	1		1	IF	7 6	9 6	-	?	1		. (00	8	3 5	37		. ,	,	L	0	W	Ε									•		ME	7	ER	2 8	
DAT	Δ			3	7	3						4	3	9					•	1	50	4					4	1:	5				4 2	16	5 1	1				3 1	59	1 4				3 1	2 6	8 4			1	24	11	,
	L	I	S	I	BI	I	L		1	1	Y	E	LR	I	M	1	T	1		1	11	P	3		?			. 0	3	43	36	50	5.	. ,	,	L	0	W	E								7	•	1	ME	T	EF	2 5)
DAT	4				2	U							7	7							1 6	3				4 8	;							1	16	5					1	0 1						6 0					6	
	EVIP	I	S	I	H	1	L	1	1	1	Y	E	L	I	C	I	TN	1		1	17		3		2	,	=	. 0	12	30	5	27	•	, ,	,	L	.0	W	E	R	M	E .	TE	2	3	1	9	•		ME	T	EF	3 5	1
DAT	Δ		+	C	4				1 4					100			4	S				1		j	•	5.	4	9	7						6							0						0 0					0	
GRA	EV	XI	STS	A I I	MNB	PCI	LTL	1		יונ	VNY		CL	0	EM	FI	F	1		1	F	P	1 1	-	?				9	7	16	13	١.	,		L	POM	W	E	R	MI	E '	TE	R	3	0	9	•	•	12	TI	ER	3	
	L	T		u	Ŧ				1 /			۲.	П								8						-		20	"		13	,	u		١,	M	J																

SERIES # CTS- 7, TEST # 56 FOR DATA STARTING 5:20 ON 23/ 4/74

	2	29	5	3		72	1	6	4		3	3	7	5			4	8	48				2	42			;	26	2			23		165 245
	EXVI	SI	B	IL. D	I'W	TY	E	LR	IM	I	T N	TE	N	PT	PE	R			. 0	0	81	8	• (,	L	OW	E	R	E'	rea	6:	26		METERS
DAT	A	FO	R 25	5 6	Η,	AN	2 2	E 3	2		1	7	19	H Ø 9	RL	,	3	3:	33				3:	19				30	3		;	22	7	233 52
	EXVI	SI	B	IL D	I W	TY	E	LR	IM	I	T N	, TE	UN	P	PE	R		•	. 0	1	8 2	2	•	GM	L	OW	E	R	E	TER 1	11	04		METERS
DAT	A	F	3	1				3	1				1	5					1 1					7 0					9				3 0	5
		SI	B	IL	I'	TY	E	L.R	I M	I	T N	TE	U	P	9	R			. 0	7	51	1 8	• (,	L	OW	E			TER 5				METERS
DAT	Α	F		0				E	8					0		ı	6	4	0					0 0					00				0	

SERIES # CTS- 7, TEST # 57 FOR DATA STARTING 5:30 ON 23/ 4/74

4 230 2 595	194 572	189 459	717	29	38	•	255	24	499	47	FOR 12211 236	
, METERS	TER 841,	LOWER .	98., 314 GM	.008	2 =	PE	ENT	IT,	LIM ER C	LITY	SIBI	V:
7 428		548 130	542	93	5		557		462			
, METERS	TER 646.	LOWER =	844., 1	.047	₹ =	PE	ENT	IT,	LIM ER C	LITY	ISIHI	V:
		7	10	11	48	RU	TH 8		NELS 32 2		FDR 45	DATA
METERS	TER 5889.	OWER .	34 GM	76	₹ =	PE	ENT	IT;	LIM ER C	LITY	SIBI	V:
-			0	0	64		TH		NELS 0		FOR (DATA
, METERS	TER 344.		149., L	.87 4	* *	NT PER	CIE UP ENT	FFI IT, ONT	LIM ER C	LE V TION LITY WAT	ISIBII	E >

SERIES # CTS- 7, TEST # 58 FOR DATA STARTING 5:40 ON 23/ 4/74

DATA FOR	CHANNELS	1 THRU 16	797 204	170 100
230	240	284 280	300 351	368 397
EXTINO	TION COEF	FICIENT .	434E-02 PER MET	TER
VISIBI	LITY LIMI	T, UPPER = .00	901 . LOWER .	690. METERS
		= 80.11 PE		
		17 THRU 32	11 March 12 22	nui est ana eta
		484 472 90 74	432 328 46 24	238 202
VISIBI	LITY LIMI	T, UPPER =	201E=02 PER MET 1947., LOWER =	1491. METERS
		NTENT = .0:		
DATA FOR	CHANNELS	33 THRU 48		
9		14 0	7 2	6 1
	ő	0 0	1 0	0 0
			221E-03 PER MET	TER 13551. METERS
LIQUIC	WATER CO	NTENT OF	0513 GM/M3	100011 HETERO
PARTIC	LE COUNT	03 PE		
	CHANNELS 0	49 THRU 64	0 0	0 0
	é		0 0	
GRAND TOT				
		= 1500. CC FICIENT = .	557E-02 PER HE	TER
VISIBI	LITY LIMI	T, UPPER =	595., LOWER .	456. METERS
PARTIC	LE COUNT	NTENT	S CC	

SERIES * CTS- 7, TEST * 59 FOR DATA STARTING 5:50 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16 21398 59444 26730 4466 718 89 83 86 108 104 122 145 139 214 187 242 EXTINCTION COEFFICIENT = .397E-02 PER METER VISIBILITY LIMIT, UPPER = 985., LOWER = 754. METERS LIQUID WATER CONTENT = .00803 GM/M3 PARTICLE COUNT # 76.18 PER CC DATA FOR CHANNELS 17 THRU 32 205 248 266 221 207 143 80 38 22 14 13 14 EXTINCTION COEFFICIENT = .712E-03 PER METER VISIBILITY LIMIT, UPPER = 5496., LOWER = 4209. METERS LIQUID WATER CONTENT = .00553 GM/M3 PARTICLE COUNT = 1.00 PER CC DATA FOR CHANNELS 33 THRU 48 2 4 2 6 6 3 1 0 1 1 1 EXTINCTION COEFFICIENT = .156E-03 PER METER VISIBILITY LIMIT, UPPER = 25018., LOWER = 19160. METERS .02 PER CC PARTICLE COUNT . DATA FOR CHANNELS 49 THRU 64 0 0 1 0 0 . 0 0 0 EXTINCTION COEFFICIENT = .279E-04 PER METER VISIBILITY LIMIT, UPPER =140040., LOWER =107249. METERS GRAND TOTALS SAMPLE VOLUME = 1500. CC EXTINCTION COEFFICIENT = .487E-02 PER METER VISIBILITY LIMIT, UPPER = 804., LOWER = 616. METERS LIGUID WATER CONTENT . . 01929 GM/M3 PARTICLE COUNT = 77.20 PER CC

SERIES # CTS- 7, TEST # 68 FOR DATA STARTING 6: 0 ON 23/ 4/74

DA	7	A		F	0	R		C	:+	1/	41	N	N	E	L	3		1		1	1	IR	L	1	1	6	,																							
			1	9	6	3	0			:	5	1	6	7	0		-	2	2	5 5	3	1			4	14	6	0)				7	3	4					15	•				1	7			0	9
						1	1						-	0	7					1	3	1					1	2						1	1					2	3			,	2	5			2	4
	-	E	x	T	1	N	C	7	1	1	וכ		-	C	01	E (: 6	1			F		1						3		1	F		Ø	2) F			M	7	ER	,							
		V	1	S	ī	8	I	L	5	t	7	Y		L	I	4	1			i	JF	,	E	A				•	1	1	8	1				L	1	E	R	1		-"	0	0	5		ME	TE	R	8
	1	L	Ī	Q	Ū	I	0			1	١.	TI	E	R	(40	1			17							0	ō	6	3	Ö	•	Ġ	M	11	13						-	•		•				
DA		A		F	n	٥		•				41		F 1				7	,	,			11		3	2																								
~-		_		•											1		•	•			23													•	•					1 1						5				
						-									1						1						-							•						3										
															•						•							-							_					•										•
	1	E	X	T	I	N	C	T	1	(10	V	-	C	01			1	C	1	E	N	T						6	6	1	E		0	4	F	E	R		ME		ER	1							
	1	٧	I	S	I	B	1	L	. 1	1	"	1	-	1	I	1	1	,		L	P	P	E	R				5	9	2	Ø	3		,	1	LC	W	E	R			45	3	4	0		ME	TE	R	5
	1	L.	I	O	U	1	D		h	1	1.	7 !	E	2	1) 1	17		١	17							0	0	0	5	3		G	M	11	13	1												
	1	P	A	R	T	I	C	L	E		(3 (וס	U	Ν.	r		1					•	0	9		P	E	R		C	C	*																	
DA	1	A		F	0	R		C		11	1	NI	N	EI	L	3	3	3		1	H	R	u		4	8																								
																												1						-	0					1						7			•	2
							0																					0												2					-	70.				0
	-	E	X	T	I	N	C	T	1	C	1	1	1	C	36	f	f	I	C	1	E	N	T		=			•	3	5	1	E		0	4	F	E	R	-	ME	T	ER								
	1	٧	I	5	I	B	I	L	I	١		1		-	1	11		,		L	P	P	E	R			1	1	1	4	9	0	•	•		70	W	E	R	•	•	85	3	8	5,	•	ME	TE	R	3
	1	_	I	0	u	Ī	D		W		1			۲.	(. () /	T	t	. 1	T		3		_		•	0	0	0	8	5		G	M,	1	3													
	,	,	4	×	7	1	L	L	2) ("	V								•	0	8		P	٤	×		C	C																		
DAT	1	Δ	1	F	0	R		C	H	14	11	11	V	Ξl	. 5	;	4	9	1	1	H	R	u		6	4																								
							0								2						0							0						1	0					9	,				-	9			(9
							0							-	0						0							0							0						1									
•						_	_																																											
GRA	11	11											٠,					_				•	-			-	_																							
		- ,																													•	-	_		0			0		<u>.</u>		= 0								
	1		7	5	1	A	1	'	1	7	,,	,	1		IN	11	7		-	1	P	P	-	0	•			•	1	4	4	R	_		-	-	L	F		7	'	ER		7			ME	TE		
	1		ī	0	1	Ī	Ô	-	W				- 1	?	-	:	1	7	F	~	7	•	-	•		-		0	ò	7	6	A	•	Ġ.	M .	1		-	,				0	•		•	ME	1 6	~ (•
	-	5	A	R	T	ī	č	L	E		C	: (ונ	١	11			•	_		6	6		2	8		è	E	R	'	C	č		•																
						-					- 1										-	•	•	_				-		4		_																		

SERIES # CTS- 7, TEST # 61 FOR DATA STARTING 6:10 ON 23/ 4/74

DAT	A	F	01	?	CI	HA	N	N	EL	. 3		1		TH	R	U	1	6													
	1	5																													57
			(51					56					0 1					78				78				71		1	07	114
	EX	T	I	VC	1	10	N		cc	E	FF	1	C	16	N	T				3	19	E .	02	2 1	PER	2	ME	TER			
	V	5	I	3 1	L	1	. 4	1	LI	M	I.	٢,		UF	P	EF	5			12	22	5.	,	L	OWE					8.	METERS
																							GM	1/1	43						
	PA	IR	T.	C	LI		C	0	UN	IT	•			•	1	. 8	34		PE	R	C	C									
DAT	Δ	F	n	2	CI	4 4	N	N	FI	S		1 7		T .	R	11	3	2													
		•										740		63									47	,			24			19	11
				6					6	5				11					1 1				1				5			3	2
										. =										•		_									
																												TER			METERS
																									43	-"		•••		٠.	"LILIO
																				R											
		_	_																												
DAT	A	-	U			1 4	N	NI				53					4	8													
														•					a				•				0			3	
										,				1	,				0				1				0			3	
				0					6	,				9)				0				9)			0				0
	EX	T	I	0	T :	0	N		00	E	FF	I	C	IE	N	T			0	43	34	E-	04		PER	2 1	Ø ME	rer		0	0
	VI	S	I	O	T: L:	T	4	1	COLI	E	FF I1		C	IE	20	TER	?		9	43	12	5.	04		PER	R	Ø ME	rer		0	0
	VI	S	I i	O	TIL	T	Y	E	COLI	EMC	FF I1	I	C	IEUF	20	T EF	}	•	9 .9	43	12	5. 8	04		PER	R	Ø ME	rer		0	0
	VI	S	I i	O	TIL	T	Y	E	COLI	EMC	FF I1	I	C	IEUF	20	T EF	}	•	9 .9	43	12	5. 8	04		PER	R	Ø ME	rer		0	0
	VI LI PA	SQR	I i	OIC	T: L:	TANA	YTC	EI	COLI	EMCT	FFI	NT.	C	IEUF	20	T EF	71	•	9	43	12	5. 8	0 4 GM		PER	R	Ø ME	rer		0	0
	VI LI PA	SQR	I i	O NCIDIC	T: L: L!	TA	YTC	EI	COLI	EMCT	FFII	NT.	C	IE UF	NP	T EF	71	•	9 9 PE	43 01 R	12	5. 8	0 4 · GM) 	PER	R	Ø ME1	TER 69	02	2.	METERS
	VI LI PA	SQR	I i	O NC I D I C	T: L: L!	TA	YTC	EI	COLI	EMCT	FFII	NT.	C	IE UP NT	NP	T EF	71	•	9 • 9 • P E	43 01 R	12	5. 8	0 4 GM) 	PER	R	Ø ME1	TER 69	02	2.	METERS
	VI LI PA	SORF	III U: T:	O CITO	T: L: L!	I T A A	YTCN	EI	COLI	EMCT	FFII	NT.	C	IE UF	NP	T EF	71	•	9 9 PE	43 01 R	12	5. 8	0 4 · GM) 	PER	R	Ø ME1	TER 69	02	2.	METERS
DAT	VI LI PA	SORF	I U	O CIDE	T:L	T TA	YTCN	E O O O O	COLI	EMCTS	FFION	19	CE	I E UF	NP	T E F	6	• 4	9 . PE	43 01 R	12 C	5. 8 C	9 4 5 M) L(/	PERDWE	ER	ME!	TER 69	02	2.	METERS
DAT	VI LI A NC	SORF	I UTTO	O CIDE OO TPC	TILL CI	T A SECO	YTU Z >Z	EI DI	COL EL CO	EMCTS	FFI	19	CE	I E O O O O O O O O O O O O O O O O O O	NP R	TER U	6	• 4	9 .9 PE	43 00 R	12 79 C	5. 8 C	0 4 GM) L() ()	PER DWE	ER I	ME1	TER 69	02	9 9	METERS
DAT	VI LI A NC EXI	SORF	I U	O CIDE OO THE	TIL LI	T A A SECT	YTU X YXY	EI DI	E E E E LOUI	EMCT S	FFITON	19	CE	I E U F	ZP R SZP	TER U OTER	71 6	4	9 .9 PE	43 01 10 10 11	12 79 C	5. 8 C	0 4 · G M		PER DWE	R I	ME1	TER 69	02	9 9	METERS
DAT	VI LI A N E VI LI	SORF	TO TO A TILL	O CIDE OO TPCID	TL LI	T A S C T A	YTO N VXYT	EI DI NI	COLI E COLI	EMCTS	FFION	19 = 1, T	CECE	I E UPT	ZP R SZP	TE U OTE	716	• 4	9 .9 .9 .9	43 01 10 10 11	129 C	5.8C	0 4 · G M		PER DWE	R I	ME1	TER 69	02	9 9	METERS

SERIES # CTS= 7, TEST # 52 FOR DATA STARTING 6:20 ON 23/ 4/74

DATA			5	7		2	3	2	8)		1	29	4	4			2	5	68	3			6	12	7 2			1	7:	3			8	4 5	2	96
V	I'I	SI	NBI	C'II	7 1 . I	0 7	NYT	E	CCLI	EMC	FIO	FTN	IC	LUN	EIPIT	NT PE	R			. 0	1 2	8	51	E -	Ø .G	2	P	EFWE	,	ME	ET	ER				METE	
DATA	`A	FC	R 6	2	CH	IA	N	NI 1	EL	.5		1	7	T 7	HO	41)	3	2	44	4					3 0					5						1 1
ľ	11	SI	8	II	-1	T	Y	E	R	C	I	TN	TE	U	PI	9 6	R			. 0	24	13	8:	3.	G	M		WE	R							METE	RS
DATA			R		CH	A	N	N	EL 0			3	3	T		₹1	,	4	8	0						0				- 1					0		0
Ľ	I.	SI	8	IL	. I	TA	Y	E	2 1	MC	I	T N	TE	UN	PI	9 6	R		•	33	00	0	57	?.		1		WE				ER 54			•	METE	RS
DATA	\	FO		9 9			N	NI	6	1			9		H 10					9	,					0				100					0		0
L	X	SA TI SI QU	MNBI	PLCT	I	OTA	VXYT	E	1	EMC	FIO	FIN	TE	IUN	EPP	NT E	R	•	•	. 0	1	9	38	1			POM	WE	R	ME	T	ER 1	48	34	•	METE	RS

SERIES # CTS- 7, TEST # 63 FOR DATA STARTING 6:30 ON 23/ 4/74

DAT	7.4	•			9	3			2	1	0	4	6			1	1	5(9 5)				31	7	,															
	1	11	5	1	E	I	L	I	TA	Y	E	LR	I	MC	I	T	Ť	EN	JF	P	E	R	1	-	. 0	2	4	2	0	. ,	,	L	E	HE.		07		ME	TE	R	3
DAT			F	C		7	V.					3	9						3				3		15						8 0			5 0			2 0				0
	1	1	S	1	B	I	L	I	TA	Y	E	LR	I	M	I	T N	·	EN	JF	P	E .	R		•	. 0	90	10	9	2 ,	G	M	L	E	1E				ME	TE	R	3
DAT			F	C	R	1					N		0						0	,			41		9	,					0 0			1 0			0 0				
	V	1	G	I	B	I	L	I	TA	Y	E	LR	I	MC	1	7	, TI	EN	JF	P	E	R	1		45	8	5	3:	2	G		L	E					ME		R	5
DAT	A		F	C	R	0	C						0						9	IR			6	4	0	,					0 0			0			00			6	
GRA	EVL	X	S	I	MNBI	PCID	LTL	EIIIW	OTA	VZYT	E	CLR	0	EMC	FI	FIN	I	CI EN	IF	NP	TE .	R			. 0	2	3	71	8 .	,		L	E	1E		2 1	•	ME'	TE	RS	}

SERIES # CTS- 8, TEST # 1 FOR DATA STARTING 19:50 ON 23/ 4/74

DAT	A	3	08			1	62	4			8	8	9			23	4							6			0	
			2					2					1				3							0			2	•
	EX	TI	NC	T	10	N	C	06	EF	F	C	I	EN	T				10	9 E		3	PE	R	MET	ER			
	VI	SI	BI	L	IT	Y	L	I	I	T	,	U	PP	EF	3	•	3	59	82			OW!	ER		27	557	•	METERS
																						/M3						
																	Ī		-									
DAT	A	FO												U	3	2	•											ere un as
			1					0				•	7				2				0			0			1	9
								-									•										-	
																						PE						
																						-0WI	EK		45	124	•	METERS
DAT	A	FO	-	CI			NE						IR				Ø				0						0	8
			0.00										7				0				0			0			0	
DAT	A	FO	_					-						U	6	4												ID'S LEES
			4					0									0 0				0			0			0	0
								•									-										-	
GRA																												
		SA																	9 F	-0	3	PE		MET	FD			
	VI	SI	BI	L	IT	Y	L	IN	11	7	,	U	P	ER	?		3	48	46		·	.OWI	ER		26	587		METERS
	LI	QU	IO	1	N A	TI	ER	1	:0	NI	E	N'	7				0	00	24	G		/M3						
	PA	RT	IC	L		C	DU	N'	1				5	. 8	9	P	E	R	CC									

SERIES # CTS- 8, TEST # 2 FOR DATA STARTING 20: 0 ON 23/ 4/74

	43 155	LS 1 THRU 6 781 1 0	246	and the same of th		2 1
VISI LIQU	BILITY L ID WATER	CONTENT	T = .982E= ER = 39830, = .00019 .87 PER CC	, LOWER .	TER 30504,	METERS
DATA FO	1	LS 17 THRI 0 0	J 32 0 0	0 0		1 0
VISI	BILITY L ID WATER	CONTENT	T = .262E= ER =1495360 = .00003 .00 PER CC	, LOWER .		METERS
DATA FO	0	LS 33 THRI 0 0 0 0	U 48 0	0 0	8	0
DATA FO	0	LS 49 THRI 0 0	U 64 Ø Ø	0 0		0
EXTI VISI LIGU	MPLE VOL NCTION C BILITY L ID WATER	CONTENT	0. CC T = .101E= ER = 38797. = .00022	, LOWER .		METERS

SERIES # CTS- 8, TEST # 3 FOR DATA STARTING 20:10 ON 23/ 4/74

DAT	A	F		13																07	7				72				9			0 2		6	
	L	18	I	B	L	IW	TY	FE	LR	IN	41	TN	Ť	EN	P	P	E F	}			43	31	45		,	LI	PERDWIN				45	5.	MET	ERS	•
DAT	A	F	0	1	0	H				L S		1	7		H 00		U	3	2	-	8				2				1 0			2 0		6	
	V.	IS	I	8	11	IW	TIAT	TE	LR	IN	11	T	Ť	EN	P	P	E F	3		12	23	33	02	29	, GM	LI	PEI	ER			14	١.	MET	ERS	•
DAT	'A	F	0		1	Н	AN	N		L 5		3	3	7	HOO		U	4	8	6	0				0				0			9 9		6	
DAT	A	F	0	6	C	H				L 8				1	H 00		U	6	4	-	8				8				0			0		2	
GRA	EVL	XT	I	MF NO B!	IL.	EIIW	10 M	Y	CLR	IN	F	FTN	II.	EN	EPIT	NP	T E	?			41	16	96		,	L	PEI OWI M3				28	٠.	MET	ERS	

SERIES # CTS- 8, TEST # 4 FOR DATA STARTING 20:20 ON 23/ 4/74

DATA																		
	12	26		14	14			65	8		22	4		55		4	0	1
		1			1				2			0		1		0	1	0
															PER			
																	34369,	METERS
													1017	GM	/M3			
PA	RT.	CL	t	CO	UN	Т			1,	, 66	P	EF	S CC					
DATA	FOR	2 0	HA	NN	EL	S	17	T	HRI	J 3	2							
		0			0				0			0		1		0	0	0
		0			0				9			0					0	0
-				N	-0	E E			- 41						DED	ME .	co	
															PER			METERS
	0111	10	W A	TE		LU	NT	FN			-/	0/	000	GM	LUNER		020390	METERS
													CC	GIT	/110			
				-														
DATA	FOR	2 C	HA	NN	EL	S	33	T	HRL	1 4	8							
		0			6			1	8			0		0		0	0	0
		0			0			1	7			0		0		0	0	0
DATA	E00		L A		E 1		40	7	401									
UAIA	run	-		1414		•			771	, 0		0		0		0		
		0			0				7			0		a		0	0	
														•				
GRAND																		
	SAM																	
EX	TIN	CT	IO	N	CO	EF	FI	CI	NI			. 8	77E-	04	PER	MET	ER	
																	34174.	METERS
													017	GM,	/M3			
PA	K 1 1	- L	_	LU	UN	'	-		1.	00	4	EK	CC					

SERIES # CTS- 8, TEST # 5 FOR DATA STARTING 20:30 ON 23/ 4/74

DATA FOR CHANNELS 1 THRU 16		+ 0-1 N-101
104 1271 662 198 45 0 3 3 2 3	0	1 4
EXTINCTION COEFFICIENT = .826E-04 PER P VISIBILITY LIMIT, UPPER = 47386., LOWER		METERS
LIQUID WATER CONTENT = .00017 GM/M3		
PARTICLE COUNT = 1.54 PER CC		
DATA FOR CHANNELS 17 THRU 32		
2 2 3 2 0	0	0 0
0 0 0 0	1	0 0
EXTINCTION COEFFICIENT = .500E-05 PER M		
VISIBILITY LIMIT, UPPER *782754., LOWER LIQUID WATER CONTENT # .00004 GM/M3	=599471	. METERS
PARTICLE COUNT = .01 PER CC		
DATA FOR GUANNELS BY TURN AS		
DATA FOR CHANNELS 33 THRU 48	0	
0 0 0 0	0	0
DATA FOR CHANNELS 49 THRU 64		
0 0 0 0 0	0	0 0
0 0 0 0	0	0 0
GRAND TOTALS		
SAMPLE VOLUME = 1500. CC		
EXTINCTION COEFFICIENT = .876E-04 PER	TETER	METERS
VISIBILITY LIMIT, UPPER # 44681., LOWER LIQUID WATER CONTENT # .00021 GM/M3	- 34219	MEIERS
PARTICLE COUNT = 1.54 PER CC		

SERIES # CTS- B, TEST # 6 FOR DATA STARTING 20:40 ON 23/ 4/74

118 1	NNELS 1 THRU 16		4 0	
EXTINCTION	1 Ø N COEFFICIENT #	.798E-04 PER N	1ETER	
LIQUID WAT	Y LIMIT, UPPER = TER CONTENT = . COUNT = 1.50 P	00016 GM/M3	= 37523.	METERS
0	NNELS 17 THRU 32	2 0		
Ø EXTINCTION	0 0 N COEFFICIENT =	0 0 .193E-05 PER N	0 0 ETER	0
LIQUID WAT	LIMIT, UPPER =2 TER CONTENT = COUNT = .00 P	00001 GM/M3	*1553283	METERS
	NELS 33 THRU 48	0 0	0 0	0
ő	0 0	0 0	0 0	0
DATA FOR CHAN	NNELS 49 THRU 64	0 0	0 0	0
0	0 0	0 0	0 0	0
GRAND TOTALS SAMPLE V	OLUME . 1500. CC			
VISIBILITY LIQUID WAT	COEFFICIENT = CLIMIT, UPPER = CONTENT = COUNT = 1.51 P	47840., LOWER 00017 GM/M3	ETER = 36638.	METERS

SERIES # CTS= 8, TEST # 7 FOR DATA STARTING 20:50 ON 23/ 4/74

DATA	100	NNELS 1 1217 6	19 19	9 53	3 1 0
L	IUUID WA	N COEFFIC Y LIMIT, TER CONTE COUNT =	NT .	00015 GM/M3	ETER # 38479. METERS
DATA		NNELS 17		i 2 0 0	1 0 0
L	ISIBILIY Iquid wa	Y LIMIT,	UPPER +5	00006 GM/M3	ETER =444972. METERS
DATA		NNELS 33 1		0 0	
V.	ISIBILIT Iquid wa	Y LIMIT,	UPPER #1	00006 GM/M3	TETER #928536, METERS
	FOR CHA	NNELS 49	THRU 64		0 0 0
E V L	XTINCTIO ISIBILIT Iquid Wa	VOLUME # N COEFFIC Y LIMIT,	IENT # UPPER #	.878E-04 PER N 44545., LOWER 00028 GM/M3	TETER # 34115, METERS

SERIES # CTS= 8, TEST # 8 FOR DATA STARTING 21: 0 ON 23/ 4/74

		1 THRU 16 674 20		11 8 9
VISI	BILITY LIMI ID WATER CO	FFICIENT # IT, UPPER # ONTENT # 1.59 P	00016 GM/M3	METER # 35711. METERS
DATA FOR	0 0	17 THRU 32 0 0	Ø Ø	0 0 0
VISI	BILITY LIMI ID WATER CO		00004 GM/M3	1ETER =1238186 METERS
DATA FOI	R CHANNELS 0 0 0 0	33 THRU 48	0 0	0 0 0
	0 0	49 THRU 64 0	0 0 0	0 0 0
VISI LIQU	MPLE VOLUME NCTION COEF BILITY LIM: ID WATER CO		.863E-04 PER 1 45322., LOWER 00020 GM/M3	METER = 34710. METERS

SERIES # CTS= 8, TEST # 9 FOR DATA STARTING 21:10 ON 23/ 4/74

DATA	A F		9		1	2	86				53	5			1	73				6						3		0 3
L	VIS	IUI	O	.I	TY	E	L I R	M:	T	, Te	U	PF	E	R			48	57	7	• 6	1		ER		TER 372		METER	28
DATA	A F	OF	2				1					1			2	. 1	l				0			1 0		0		0
Ľ	/IS	IUI	D	I	TY	E	LIR	M C	T	TE	UN	PF	E	2		17	73	26	13	6 , G	1		ER		TER 1326		METER	8
DATA				СН			EL		3		T						9				0			0 0		0		0
V L	IS	IUI	I	.I.	TY	E	L I R	MI	T	, TE	UN	PP	EF	2		14	10	00	5	9,	1		ER		ER 1072		METER	5
DATA	F	OR	0		AN	IN	0	s				HR Ø	U	6	4	6)				0 0			0		0		0
V	XT	IN	PI	E I W	V ON TY	O	CO LI R	EF MJ	FTN	IC	NUI	EN PP	T EF	*			15	7 Ø 0 2	2	.,	L	PE OW M3	R M ER	ET	ER 350	06.	METER	8

SERIES # CTS- 8, TEST # 10 FOR DATA STARTING 21:20 ON 23/ 4/74

DATA	15	0	1121		THRU 587 2	154	50 2	7	0 7	3
VI LI	GUI	ILI D W	TY LI	MIT,	UPPE ENT =	R = 5:	8815 GM/M	WER . 39	? 9709. METER	18
DATA		CH. 1 0	6	.S 17	THRU Ø 1	32 1 0	2 0	1 0	0	0
V1	SIB	ILI'	TY LI	MIT,	UPPE ENT =	R =11:	8003 GM/M	WER =866	R 5890. METER	15
DATA		CH Ø Ø		,	THRU 0 0	48 0 0	0	0	Ø Ø	0
DATA				1	THRU 0 0	64	9	0	0	8
V:	SAM (TIN (SIB (QUI	PLE CTI ILI D W	VOLU ON CO TY LI ATER	EFFI MIT, CONT	UPPE	R = 49	0018 GM/M	WER = 37	R 1970, METER	ìs.

SERIES # CTS+ 8, TEST # 11 FOR DATA STARTING 21:30 ON 23/ 4/74

DATA			ANNELS 1204 2	664	The state of the s	9 58 1 Ø		2 0	2 0
V L	ISIE	ILI D W	TY LIM	TT, UP	PER .	.856E=04 45678., 00017 GM ER CC	LOWER .		METERS
DATA	FOR	CH 0	ANNELS 1 0	17 TH		9 9		0	0
, L	ISIE	ILI D W	TY LIM	TT, UP	PER .S	.323E-06 333335, 00000 GM ER CC	LOWER =S		METER8
DATA	FOR	CH Ø Ø	ANNELS 0 0	33 TH		0 0 0	0	8	9
DATA	FOR	CH Ø	ANNELS 0 0	49 TH		9 0	0	0	8
Y	SAM XTIN ISIE IQUI	PLE CTI ILI D W	VOLUME ON COEF TY LIMI ATER CO	FICIE T, UP ONTENT	PER .	.860E=04 45506., 00017 GM	LOWER .		METERS

SERIES # CTS= 8, TEST # 12 FOR DATA STARTING 21:40 ON 23/ 4/74

		1 THRU 16 606 15 4	1 50	9 6 3 2	1 2
LIQU	BILITY LIM ID WATER C	FFICIENT = IT, UPPER = ONTENT = 1.43 P		ETER = 39394.	METERS
DATA FO	3 4	17 THRU 32 2 1	4 0 0	0 0 0 0	0
LIQU	BILITY LIM ID WATER C				METERS
DATA FO	0 0	33 THRU 48 0 0	0 0	0 0 0 0	
	0 0	49 THRU 64 0	0 0	0 0	0
VISI LIQU	MPLE VOLUM NCTION COE BILITY LIM ID WATER C		.818E-04 PER M 47808., LOWER 00019 GM/M3		METERS

SERIES # CTS= 8, TEST # 13 FOR DATA STARTING 21:50 ON 23/ 4/74

	374 82	LS 1 THR 16 551 4 3	136	52	7 5 5 2	3 3
VIS	IBILITY L	IMIT, UPP	T = .712E= ER = 54968. = .00015 .32 PER CC	, LOWER		METERS
DATA F		3 2 0 1	4	1 0	2 9	0
VIS LIG	IBILITY L UID WATER	IMIT, UPP	T = .759E=(ER =515481. = .00006 (.01 PER CC	, LOWER		METERS
DATA F		ELS 33 THR 0 0	U 48 0 0	0 (0 0	
	0	ELS 49 THR 0 0 0 0	U 64 Ø	0 0	9 9	0
EXT VIS LIG	AMPLE VOLINCTION OF IBILITY LUID WATER	IMIT, UPP	0. CC T = .788E=(ER = 49671. = .00021 (LOWER :		METERS

SERIES # CTS- 8, TEST # 14 FOR DATA STARTING 22: 0 ON 23/ 4/74

DATA F		2 629 17	5 50 2 3	6 1 1
VIS	IBILITY L	OEFFICIENT = IMIT, UPPER = CONTENT = . NT = 1.56 P	47910., LOWER 00016 GM/M3	METER = 36692, METERS
DATA F	2	LS 17 THRU 32 2 3 0 0	© 0 0 0	0 1 1 0 0
VIS	IBILITY L	OEFFICIENT = IMIT, UPPER =1 CONTENT = .01 P	043082, LOWER 00003 GM/M3	METER =798843. METERS
DATA F	0		Ø 9 0 0	9 9 9 9 9 9
DATA F	0	LS 49 THRU 64 0 0 0 0	Ø Ø	0 0 0
EXT VIS LIG	INCTION COMBILITY LUID WATER	UME = 1500. CC OEFFICIENT = IMIT, UPPER = CONTENT = . NT = 1.56 P	.854E-04 PER 45807., LOWER 00019 GM/M3	METER = 35081. METERS

SERIES # CTS= 8, TEST # 15 FOR DATA STARTING 22:10 ON 23/ 4/74

DATA F	375 895	5 1 THRU 16 575 15 11	4 49	10 3 0
VIS	IBILITY LIM		00015 GM/M3	METER = 40408, METERS
DATA F		5 17 THRU 32	4 2 0 0	0 0 1 0 0 0
VIS	IBILITY LIN	EFFICIENT = MIT, UPPER =3 CONTENT = . 7 = .02 P	00008 GM/M3	METER =282716. METERS
DATA F			Ø Ø Ø Ø	0 0 0 0 0 0
DATA F	0 0		0 0 0 0	0 0 0 0 0 0
EXT VIS LIG	INCTION COE IBILITY LIM UID WATER (ME = 1500. CC EFFICIENT = MIT, UPPER = CONTENT = . T = 1.41 P	.847E-04 PER 1 46165., LOWER 00023 GM/M3	METER = 35355. METERS

SERIES # CTS- 8, TEST # 16 FOR DATA STARTING 22:20 ON 23/ 4/74

DATA FOR	R CHANNELS 71 861 7 8	1 THRU 16 569 134 4 7 1	8 9 1 4	2 6
LIQU	BILITY LIMI	FICIENT = .738E=0 IT, UPPER = 53035., INTENT = .00015 G = 1.36 PER CC	LOWER . 40617. ME	TERS
DATA FO		17 THRU 32 1 4 0 0	1 1 1 0 0 0	3
LIQU	BILITY LIMI	FFICIENT = .122E-0 IT, UPPER =320661., ONTENT = .00009 G = .02 PER CC	LOWER =245577. ME	TERS
	R CHANNELS	33 THRU 48	0 0 0	0
LIQU	BILITY LIMI	FFICIENT = .430E-0 IT, UPPER =909219., DNTENT = .00009 G = .00 PER CC	LOWER =696324. ME	TERS
	R CHANNELS	49 THRU 64	0 0 0	0
EXTI VISI LIQU	MPLE VOLUME NCTION COEF BILITY LIMI ID WATER CO	E = 1500. CC FFICIENT = .903E=0 IT, UPPER = 43339., DNTENT = .00034 G = 1.37 PER CC	LOWER . 33191. ME	TERS

SERIES # CTS- 8, TEST # 17 FOR DATA STARTING 22:30 ON 23/ 4/74

297	912 620 2 6	178 51		3 5
EXTINCT VISIBIL LIGUID	ION COEFFICIENT ITY LIMIT, UPPE WATER CONTENT = 1.	766E-04 R = 51066.,	PER METER LOWER = 39109	with the
	CHANNELS 17 THRU 1 5 1 0			1 0
VISIBIL LIQUID	ION COEFFICIENT ITY LIMIT, UPPE WATER CONTENT = .E COUNT =	R =577395.,	LOWER =442197	
DATA FOR C	HANNELS 33 THRU	9 48 0 0 0 0		Ø Ø
DATA FOR C	CHANNELS 49 THRU) 64 Ø Ø Ø Ø	The second secon	0 d
EXTINCT VISIBIL LIGUID	LS E VOLUME = 1500 ION COEFFICIENT ITY LIMIT, UPPE WATER CONTENT = E COUNT = 1,	= .834E-04 R = 46916., .00021 GM	LOWER = 35931	. METERS

SERIES # CTS- 8, TEST # 18 FOR DATA STARTING 22:40 ON 23/ 4/74

DATA																			
	4	8		99	5			577	,		1	56	•		54		7	5	6
		4			7			1	3			2	!		2		3	6	0
																		TER	
																	•	37531.	METERS
	IQU														GM,	/M3			
P	ART	ICL		COU	NI				1.	45	,	۲	K	CC					
DATA	FO	0 -	. H A	NNE	1 9		7	7	101		12								
D		9								•	, .	1			2		1	1	2
		0			a							2			0		à		ø
		L										-						•	
E	XTI	NCT	IO	N C	OE	FF	IC	IE	NT				11	4E-	.04	PER	MET	TER	
																			METERS
	IQU																		
P	ART	ICL	E	COL	NT					02	2	PE	R	CC					
DATA	FO	RC	HA	NNE	LS	3	3	T	IRL	1 4	18								
		0						6				6			0		0		
		6			0			0	,			0			0		0	9	9
				MALE			^	-											
DATA	FU	0		MNE				0		, ,	, 4	0			0		•	0	0
		0			0			0				0			0		0	Ø	
															•.				
GRAN	D T	OTA	LS																
	SAI	MPL	E	VOL	UM	E.		1	900		C	C							
E														SE.	04	PER	ME1	ER	
																			METERS
	IQU														GM,	/M3			
P	ART	ICL	E	COU	NT				1.	51		PE	R	CC					

SERIES # CTS= 8, TEST # 19 FOR DATA STARTING 22:50 ON 23/ 4/74

DATA	FOR CHAR 439	NELS 1 7	27 155	45	12	1 2
	4	3	2 5	0	2	3 1
V:	SIBILITY	Y LIMIT, L	IENT = .779 UPPER = 5023 NT = .0009 1.48 PER (55., LOWE 16 GM/M3	R = 3847	3. METERS
DATA		NELS 17		US 87. 30	\$ 1.300 m	1 0
	g 0	1	1 1	3 2	Ø	0 0
V:	GUID WA	Y LIMIT, L TER CONTER	ENT = .96 JPPER =4069 NT = .000 .01 PER I	32., LOWE 10 GM/M3	METER R #31164	18. METERS
DATA		NNELS 33	THRU 48	0	0	0 0
	e	Ø	0 0	Ø	0	0 0
DATA	FOR CHAI	NNELS 49	THRU 64			
	0	0	0 0	0	0	0 0
E)	TINCTION SIBILITY	VOLUME = : N COEFFIC: Y LIMIT, U TER CONTE	1500. CC IENT = .879 JPPER = 4479 NT = .0000 1.49 PER 1	15., LOWE 25 GM/M3		15. METERS

SERIES # CTS- 8, TEST # 20 FOR DATA STARTING 23: 0 ON 23/ 4/74

DATA F	446 9			56 10 4 3	
VIS	IBILITY UID WATE	LIMIT, UP R CONTENT		04 PER METER , LOWER = 361 GM/M3	52. METERS
DATA F		ELS 17 TH 1 1 0 0		2 0	0 0 0 0
VIS	IBILITY UID WATE	LIMIT, UP R CONTENT		05 PER METER , LOWER =9253 GM/M3	69. METERS
DATA F		ELS 33 TH 0 0		0 0	0 0 0 0
	Ø	ELS 49 TH 0 0 0 0	0	0 0 0 0	0 0 0 0
EXT VIS LIG	INCTION IBILITY UID WATE	LIMIT, UP R CONTENT	NT861E-	Ø4 PER METER , Lower = 347 gm/m3	93. METERS

SERIES # CTS= 8, TEST # 21 FOR DATA STARTING 23:10 ON 23/ 4/74

DAT			1	025		RU 16	70 3	61	4 1 2 3	2 0
·	VISI	BIL	HAT	LIMI ER CO	T, UP	PER =		, LOWER	ETER = 35133.	METERS
DAT	A FO	4			2	RU 32	0 2	3 0	1 0	
1	VISI LIQU	BIL ID	ITY	LIMI ER CO	T, UP	PER =		, LOWER GM/M3	ETER =312426.	
DAT	A FO	0			0		0	0	0 0	8
DATA	A FO	0		Ø	49 TH 0 0	RU 64		0	Ø Ø	0
E \	VISI LIQU	MPL NCT BIL ID	E VIION	COEF LIMI ER CO	FICIE T, UP NTENT	PER .	.949E-	04 PER M , LOWER GM/M3	ETER = 31582.	METERS

SERIES # CTS= 8, TEST # 22 FOR DATA STARTING 23:20 ON 23/ 4/74

DAT	A	F		57	•			8	3 6	1			_		3(-							3		9			3 0			4 6
	٧:	S	I	81	L	IW	TA	Y TE	L	I	M :	11	1	E	N'	7	E	R	•		5	32	29	7	. ,	1				31	8,		METE	RS
DAT	A	F	a		2	н	A	N		5	S		7			4	U	;	32	2	30					1 0		0			2			0
	V	S	I	81	L	I	T	Y T (L	I	M :	11	Ť	E	N'	r T	E	R		5	7	72	26	5	.,	1				9	7.	•	METE	RS
DAT	A	F	0		5		A	11							(H R	U		4 8	3	00					0 0		0			0			0
DAT				0)					L 0 0		4	9		(A R	U		6 4	4	8					8		9 9			0			0
	E X	S	II	MF NC B1	L	EIIIW	O	VINYTE	L	OI	E F	IT	I	C	II UN	FA	E	R	•		4 0	87	79	9	.,	ı				66	8.		METE	RS

SERIES # CTS- 8, TEST # 23 FOR DATA STARTING 23:30 ON 23/ 4/74

DAT	A			24					30				6	26				1	4	3				48			8 5		1 2		2 4
	V:	S	II	31	L	IT	Y	E	Į.	MC	IT	1	E	UF	P	EF	?			51	7	20	5.	,	L	R I					METERS
DAT	A 1	F	01	_	CI		N	NI	3		1	7			1	U	3	2		2				1	1		0		6	,	0
	V	15	II	31	L	IT	Y	E	2 1	MC	IT	Í	E	UF	P	EF	?	•	5	66	59	9:	7.	,	L						METERS
DAT	A	F	01	0					EL 1		3	3		7 + 0	1	U	4	8		0				9			0		6	3	0
	V:	18	16	ID	L	IT	Y	E	Į.	MC	IT	1	E	UP	P	EF	2		1	21	10	42	27	,	L				36.		METERS
DAT	A	F	OF	000		A	N	NI			4	9		THE		U	6	4		0				9	9		0		0	,	0
GRA	EV	S	A!	MP NC BI	LITL	E I C I T W A	VNYT	E	. I	EMC	FFIT	I	C	I E	22	T E	2	•		45	56	11	B .	,	L				37.		METERS

SERIES # CTS- 8, TEST # 24 FOR DATA STARTING 23:40 DN 23/ 4/74

DATA		6		9	6	31		1	50 2	5 2	2 3	1
V L	ISIB	IL!	TY L	IMI CO	T, I	IPPER	•	49105	-04 PER ., LOWER GM/M3			ETERS
DATA	FOR	0 1					32	3	2 0	0	2 0	0
V	IGUI	D V	TTY L	IMI R CO	T. I	IPPER	* =5	39908	-05 PER , LOWER GM/M3			ETERS
DATA	FOR	Ø CH			33 '	rhru Ø	48	0	0	0	0	0
DATA	FOR	0 0		0	49	HRU Ø Ø	54	0	0	0	0	0
V L	SAM XTIN ISIB IQUI	PLE ICTI	VOL	COEF IMI R CO	FIC:	IPPER		.869E	-04 PER , LOWER GM/M3			ETERS

SERIES # CTS- 8, TEST # 25 FOR DATA STARTING 23:50 ON 23/ 4/74

	37 1130	S 1 THRU 16 648 19 3	63	6 2 2	0 4
LIGU	BILITY LI ID WATER				METERS
DATA FO	R CHANNEL 4 3 0 0		3 3 1	1 1 0	9 0
LIQU	BILITY LI ID WATER				METERS
DATA FO	R CHANNEL 0 0		0 0	0 0 0 0	0
DATA FO	R CHANNEL 0 0		9 Ø	0 0	0
VISI LIQU	MPLE VOLU- NCTION CO BILITY LI ID WATER		.878E-04 PER N 44535., LOWER .00022 GM/M3		METERS

SERIES # CTS- 8, TEST # 26 FOR DATA STARTING #: 0 ON 24/ 4/74

DATA F	96 11	ELS 1 T 22 62	6 19		11 0	2 1
VIS LIQ	IBILITY	LIMIT, U	PPER .	.776E-04 PER 50415., LOWER 80016 GM/M3 ER CC		METERS
DATA F		ELS 17 T	2	3 3	1 0	8
VIS LIQ	IBILITY UID WATE	LIMIT, U	PPER =8	.442E-05 PER 34278., LOWER 30003 GM/M3 ER CC		METERS
DATA F	OR CHANN Ø Ø		_	0 0	0 0	0
	0			9 9 9 0	Ø Ø	0
S EXT VIS LIQ	INCTION IBILITY UID WATE	LIMIT, U	PPER # A	,820E-04 PER 47696., LOWER 80019 GM/M3	METER = 36528.	METERS

SERIES # CTS- 8, TEST # 27 FOR DATA STARTING 0:10 ON 24/ 4/74

DA	TA		F	01	R	C	Н	A	N	١E	L	S		1	•	ГН	RI	J	1	6															
									1 1	16	3					53)			(64				6			2		2
					1	3				1	4					1					2	?								5			2		1
	,	'!	3	I			I	T	7	L	1	M]	T	-	= 1	10	P			•	4	7	38	00		-	LO	WE	K		36	522	29.	METER	5
																								CC		9 M	1	13							
	•			•	• •	•	-		-	,,,		•					•	• ~					•												
DA	TA	1	F	0	R	C	H	A	N	NE	L	3	1	7	•	ГН	RI	J	3	2															
																					0)				0				5			0		3
					(•					0					1					0	1				0				0			0		0
																																		45550	
																												3		-3	001	2:	4.	METER	3
																								CC		S M	/ -								
	•			•	• •	-	-		•	,,,		•						• •	•		•		•												
DA	TA	1	F	0	2	C	H	A	NN	NE	L	S	3	3	. 1	TH	RI	J	4	8															
					-	,					1										0)				0				0			0		0
					Ç	9					0					0					0	1				0				0			0		0
							,	^			•		- E													-		-		-					
																																		METER	
																											1		~		20	, 50		HEIEK	3
																								c			• •	•							
										7									377																
DA"	TA		F	01															6	4															
																0														0			0		0
					Ç	1					0					0					0					0				0			0		0
GR	A A	חו		T	זר	· A		9																											
J.	-41)L	u	ME			•	5	01	7 .		cc															
	E	X	7	I	VC	T	I	0	N	c	0	EF	F	I	ci	E	N	,		-		9	42	E	-	04	P	ER	M	ET	ER	1			
	٧	I	S	I	3 1	L	I	T	Y	L	I	M	T		L	IP	P	ER			4	1	52	22		,	LO	WE					9.	METER	8
																										GM	/M	3							
	F	A	R	T.	C	L	E	1	CC	U	N	T					1 ,	, 5	4	F	E	R	C	C											

SERIES # CTS- 8, TEST # 28 FOR DATA STARTING 8:28 ON 24/ 4/74

DAT	A						11	1				(51	1			1	7								•	4			2			0 1
	LI	9	IB	I	LI	T	Y TE	LR	IN	11	T N	TE	N	PF	E	R			52 00	5	98	ď	L	PI O	NEF	N I	ET	ER 40	28	2.	MI	ETE	RS
DAT	A	F	DR	1	СН				LS 4 1					HF 4 1		;	32		5				3 0			3	2			1 0			0 1
	V1	S	JI	I	LI	T	Y TE	L	IM	I	T N'	TE	UN	PF T	E	R		2	97 00	8	90	. ,	L		NEF			ER 28		1.	MI	ETE	RS
DAT	A	F	DR											HF 0			18		0				0			6	9			0			0
DAT	A	F	OR		CH									HF 0	U	•	54		0				0			_	8			0			0
	E)	S	AMINIBUI	PICI	LETI	0	VC N. Y	CLR	IN	FII	FTZ	IC	UN	EN PF	E	R	•		44	170	04	.,	L		NEF			ER 34		7.	МІ	ETE	RS

SERIES # CTS= 8, TEST # 29 FOR DATA STARTING 0:30 ON 24/ 4/74

	93 1049	1 THRU 16 682 19	56 68	12 2	3 5
VISI LIQU	BILITY LIM	IT, UPPER .	.874E-04 PER 44747., LOWER .00018 GM/M3 PER CC	METER = 34269.	METERS
DATA FO	2 1	17 THRU 32		0 0 0 1	1 0
VISI	BILITY LIM	IT. UPPER =	.604E-05 PER 548083., LOWER .00006 GM/M3 PER CC		METERS
DATA FO	R CHANNELS		0 0	0 0	
DATA FO	0 0	49 THRU 64 0	0 0	0 0	
EXTI VISI LIGU	MPLE VOLUM NCTION COE BILITY LIM ID WATER C	IT, UPPER =	.935E-04 PER 41857., LOWER .00024 GM/M3		METERS

SERIES # CTS- 8, TEST # 30 FOR DATA STARTING 0:40 ON 24/ 4/74

DAT	A				32				1		2	1				7	5 (5			-	9	5					59				16					1 0			2	
	4	I	S	IE	31	L	I	TA	Y	Ε	LR	I	41	T	Ť	E	N'	PP	E	R	•		3	9	21	9	•	,	L	PE OW M3	ER	ME	ET	EF 36	30	30	5.	M	ETE	ERS	
DAT	A		F	OF	1						-	0					-	IR			32	2	1 0					1 0				:	1				0 2			0	
	VL	I	S	IE	31	L	I	TA	Y	E	L	I	41	T	Ť	E	N.	P	E	R	1	5	4	7	14	16	•	,	L										ETE	RS	
DAT	A		F	DF	1	C		A	N	N	(0					(HR B										0 0					8				0			0	
	VL	I	S	16	3 1	L	IW	TA	Y	E	L	II.	M) C C	TN		E	N'	9	E	R		1	40	0	96	16	9	,	L									M	ETE	RS	
DAT					2		Н				E	L	5	4	9		TH		U				0					0 0					9				0			0	
GRA	EVL	XII	S	ANIE	IF	LTL	EIIIW	OTA	VNYT	E	CL	DE IN	11	FTN	I	C .	JE N1	P	TE .	R	•		.30	56	36	4		,	L							1 3	٠.	МІ	ETE	RS	

SERIES * CTS- 8, TEST # 31 FOR DATA STARTING 0:50 ON 24/ 4/74

DATA FOR	CHANNELS	1 THRU 16			
			9 55	3 0	1
	0 1		0	0 0	2
EXTIN	CTION COEF	FICIENT .	.104E-03 PER M	METER	
			37756 . LOWER		
LIQUI	D WATER CO	INTENT .	00020 GM/M3		
PARTI	CLE COUNT	2.00 P	ER CC		
DATA FOR	CHANNELS	17 THRU 32			
	0 0		1 0	0 0	0
	0 0	0	2 Ø	1 0	0
EXTIN	CTION COEF	FFICIENT .	497E-05 PER	HETER	
			87689., LOWER		
		DATENT .			
PARTI	CLE COUNT	.00 P	ER CC		
DATA FOR	CHANNELS	33 THRU 48			
	0 0	0	0	8 0	0
	0 0	0	0 0	0 0	0
DATA FOR	CHANNELS	49 THRU 64			
	0 0	0	0 0	0 0	0
	0 0		0	0 0	0
GRAND TO	TALS				
		= 1500. CC			
			.109E-03 PER !		
			36029., LOWER	27593.	METERS
		DATENT .			
PARTI	CLE COUNT	2.00 P	ER CC		

SERIES # CTS- 8, TEST # 32 FOR DATA STARTING 1: 0 ON 24/ 4/74

	163 1115	1 THRU 16 652 17 7		4 0 4 2
VIS	IBILITY LIM	FFICIENT = IT, UPPER = ONTENT = . 1.46 P	00016 GM/M3	METER = 38140. METERS
DATA F	1 2			0 1 1 1 0 0
VIS	IBILITY LIM		00005 GM/M3	HETER #547970. METERS
DATA F	1 0		0 0	0 0 0
VIS	BILITY LIM		00005 GM/M3	TETER =1072241 METERS
DATA F	OR CHANNELS		Ø Ø	0 0 0
EXT VIS LIQ	AMPLE VOLUM INCTION COE IBILITY LIM JID WATER C	E = 1500. CC FFICIENT = IT, UPPER = ONTENT = .	.868E-04 PER N 45062., LOWER 00026 GM/M3	METER = 34511. METERS

SERIES # CTS= 8, TEST # 33 FOR DATA STARTING 1:10 ON 24/ 4/74

330	ANNELS 1 THRU 1132 695 3 7	163 66	7 0 3 0	
FIGUID M	ON COEFFICIENT TY LIMIT, UPPE ATER CONTENT : COUNT = 1.	ER = 45211., L = .00018 GM,	LOWER . 34625.	METERS
	ANNELS 17 THRU 1 1 0 0	U 32 4 0 0 0		
VISIBILI'		ER =499330., L = .00006 GM,	PER METER LOWER =382411. /M3	
	ANNELS 33 THRE	U 48 0 0	0 0	
	ANNELS 49 THRU 0 0 0 0	9 9		
VISIBILITY LIQUID W	VOLUME = 1500 ON CUEFFICIENT	T = .944E-04 ER = 41457., L = .00024 GM/	LOWER = 31750.	METERS

SERIES # CTS- 8, TEST # 34 FOR DATA STARTING 1:20 ON 24/ 4/74

346	HANNELS 1 T 1026 66 5	8 151 50		5 0
VISIBIL LIQUID	ITY LIMIT, U	ENT = .816E-04 PER PPER = 47970., LOWE T = .00016 GM/M3 1.52 PER CC		METERS
4	HANNELS 17 T	2 5 3	2 1	2
VISIBIL LIQUID	ITY LIMIT, U	ENT = .118E-04 PER PPER =330150., LOWE T = .00009 GM/M3 .02 PER CC		METERS
	HANNELS 33 T		0 0	0
0			0 0 0 0	0
EXTINCT VISIBIL LIQUID	E VOLUME = 1 ION COEFFICE ITY LIMIT, U	ENT = .934E-04 PER PPER = 41884., LOWE T = .00026 GM/M3		METERS

SERIES * CTS- 8, TEST * 35 FOR DATA STARTING 1:30 ON 24/ 4/74

3		ELS 1 TI 93 65	2 155	46 9 3 4	2 9 2 7
VISI	BILITY I	IMIT, U	ENT = .835E= PPER = 46853. T = .00017 1.52 PER CC	, LOWER = GM/M3	ER 35882, METERS
	1 0		3 0	3 1	0 0
VISI	BILITY I	IMIT, U	ENT = .487E= PPER =802787. T = .00003 .01 PER CC	, LOWER =6	ER 14814, METERS
DATA FO	0	ELS 33 T	9 9	0 0 0 0	0 0
	8		HRU 64 Ø 0 Ø 0	0 0	Ø Ø
EXTI VISI LIQU	MPLE VOINCTION BILITY ID WATE	LIMIT, U	ENT = .884E-	, LOWER =	ER 33904. METERS

SERIES # CTS- 8, TEST # 36 FOR DATA STARTING 1:40 ON 24/ 4/74

			53 51 8 Ø	7 3 1
VIS	IBILITY LIM UID WATER C		00017 GM/M3	ETER = 36778, METERS
DATA F	OR CHANNELS 2 4 0 0	Maria de la Companya del Companya de la Companya de la Companya del Companya de la Companya de l	5 i i 0	1 1 1 0 0 0
VIS LIQ	IBILITY LIM UID WATER C		,00007 GM/M3	ETER =333657, METERS
DATA F	0 0	33 THRU 48 0 0	0 0	0 0 0
	Ø Ø	49 THRU 64 0 0		0 0 0
EXT VIS LIQ	INCTION COE IBILITY LIM UID WATER C		.904E-04 PER M 43254., LOWER .00024 GM/M3	ETER = 33126, METERS

SERIES # CTS- 8, TEST # 37 FOR DATA STARTING 1:50 ON 24/ 4/74

DAT		25	94	6	699 9	155	40 2	12		
1	VISI	ID I	ITY L	CON	UPPE	R = 4	6911., 0017 GM	PER MET LOWER = /M3	TER 35927.	METERS
DAT	A FOI	2		3	7 THRU 2 1	1.	2	0		
1	VISI	BIL	ITY L	CON	UPPE	R =62	7329., 0005 GM	PER MET LOWER #4 /M3	TER 180439.	METERS
DAT	A FO	R CI		LS 33	3 THRU Ø	48		0		
1	VISI	ID I	ITY L	CONT	UPPE	R =12	12427, 1 0006 GM	PER MET LOWER = 5 /M3		METERS
DAT	A FOI	R C1			THRU Ø Ø	64		0		
	EXTI VISI Liqu:	MPLI NCT: BIL:	E VOL ION C ITY L Water	OEFF: IMIT	UPPE	R = 4	2131., 1 0028 GM	PER MET LOWER = /M3		METERS

SERIES # CTS- 8, TEST # 38 FOR DATA STARTING 2: 0 ON 24/ 4/74

DATA F	OR CHANNE 470 109 1	ELS 1 THRU : 19 742 5 5	157 61	9 8 4 3 3
VIS	IBILITY L	IMIT, UPPER	.878E=04 PER N = 44538., LOWER .00018 GM/M3 5 PER CC	
DATA F	DR CHANNE	ELS 17 THRU : 2 2 0 0	32 1 0 0 1	2 0 0
VIS	IBILITY L	IMIT, UPPER	.566E-05 PER M =691383., LOWER .00005 GM/M3 L PER CC	ETER =529495, METERS
DATA F	OR CHANNE	ELS 33 THRU 6 0 0	48 0 0 0 0	0 0 0
DATA F		ELS 49 THRU (0 0 0 0	54 Ø Ø Ø Ø	0 0 0
EXT VIS	INCTION (IBILITY (UID WATER	IMIT, UPPER	935E-04 PER N = 41843., LOWER .00022 GM/M3	

SERIES # CTS= 8, TEST # 39 FOR DATA STARTING 2:10 ON 24/ 4/74

The state of the s	02 118	B 1 THR	180 5	34 5 3 1	1 3
LIQU	BILITY LE	CONTENT	T = .985E=0 ER = 39721., = .00020 G .85 PER CC	4 PER METER LOWER = 304 M/M3	20, METERS
DATA FOI	3	LS 17 THRI	3	1 2 0	1 0
VISI LIQU	BILITY LI	CONTENT		5 PER METER LOWER #4980 M/M3	
DATA FOI	0	LS 33 THRI	0	0 0	Ø Ø Ø 0
DATA FOI	0	S 49 THRI	U 64 Ø Ø	0 0	0 0
VISIOU:	MPLE VOLU NCTION CO BILITY LI ID WATER	CONTENT	T = .105E-0	LOWER = 286	89. METERS

SERIES # CTS- 8, TEST # 40 FOR DATA STARTING 2:20 ON 24/ 4/74

DA	T 4		F	0	R	-	CI	4	41	N	N	Εl	_ :	3		1		1	H	R	U		1	6																							
				6	6	5			1	1	6	30	5				5	6	3					2	45	9					6	6					1	6					7	,		8	
						4						1	4						5						-	3						2						4					3	3		3	
			_																_		_								_		_							_									
																																			R										4600		
		Ī																																				-	•	20	3	2)	METE	. 10	
		À																													9	Γ,	, ,	,	,												
		-		•	-	-							•							-	•		_			•		-																			
DA	1	1	F	0	R	1	CI	17	41	1	N	EL	. 5	5	1	7	,	1	H	R	U		3	2																							
						1						1	1						1							4						0						0					0			0	
						0						(0						0						(0						0						0					0)		0	
	_											.,											_						_		~							-		, ,							
																																			R										METE		
		Ī																																				-					30	•	METE	. n o	
		À																													_	• •															
																					•																										
DAT	TA	1	F	0	R	(CI	1/	1	VI	N	EL		3	3	3	,	1	H	R	U		4	8																							
						0						(8						0							9						0						0					0			0	
						0						-	8						0						-	8						0						Ø					0)		0	
DAT			E	0								= 1		2			,	•	u	D																											
			Г	U		0			-		-					-					_		0	•		9						0						0					0			0	
						0							0						0													0						0								0	
						_																										-						•					_				
GRA	AN	_			-		770																																								
				A																																		111									
																																			R												
	V	I	5	I	5	11	- 1	1	P		- !		,	11	. 1			U	7	۲	E	K	. 1		3	28	18	2	5	•	-		Ļ	J	E	R			2	2	9	47			METE	RS	
		I																														m,	/ !	10	,												

SERIES # CTS- 8, TEST # 41 FOR DATA STARTING 2:30 ON 24/ 4/74

DATA			27 27	1 67	6	1 6 5 3
VI VI	TINCTION SIBILITY	COEFFICE LIMIT, L	LENT = UPPER =	00027 GM/M	NER . 219	966. METERS
DATA		ELS 17 1	4	1 2 1 0	1 0	1 1
VI VI	SIBILITY	LIMIT, L	JPPER #4	00007 GM/M	NER =3483	374, METERS
DATA	FOR CHANN	ELS 33 '	0	Ø Ø Ø Ø	0	9 9 9 9
DATA	FOR CHANN Ø Ø	ELS 49 1		0 0 0	0	Ø Ø
EX VI LI	SIBILITY	COEFFICE LIMIT, U R CONTEN	ENT = JPPER =	.145E-03 PE 26981., LOV 00034 GM/M3	NER . 206	563. METERS

SERIES # CTS- 8, TEST # 42 FOR DATA STARTING 2:40 ON 24/ 4/74

DATA F	579 14	IELS 1 TH 167 1099 13 9	231	84 11	1 1 2
VIS	IBILITY	LIMIT, UP	NT = .125E- PER = 31225. = .00025 2.35 PER CC	, LOWER = 2	
DATA F		IELS 17 TH	1	3 0	1 1 0
VIS	IBILITY	LIMIT, UP	NT = .920E= PER =425012, = .00007 .01 PER CC	, LOWER #32	
DATA F	OR CHANN	ELS 33 TH	0	0 0	9 9 9 9
DATA F	OR CHANN	0 0 0	0	0 0	Ø Ø
EXT VIS LIG	INCTION BIBLITY	LIMIT, UP	00. CC NT = .134E- PER = 29088. = .00032 2.36 PER CC	, LOWER = 2	

SERIES # CTS- 8, TEST # 43 FOR DATA STARTING 2:50 ON 24/ 4/74

DATA				100	RU 16	33		9 5	
Y	ISIE	ILIT	TER C	IT, UP	PER .	32697.	GM/M3	*ETER = 25041.	METERS
DATA	FOR	3	NNELS 4 0		1RU 32	5	0	1 2	1 0
V	ISIB	ILIT D WA	Y LIM	IT, UP	PER .		, LOWER	METER =340103.	
DATA	FOR		NNELS 0 0	(RU 48	0	0	0 0	
Ľ	ISIE	ILIT D WA	Y LIM	IT, UP	PER =		05 PER 1 , LOWER GM/M3	METER =1072241	METERS
DATA	FOR	0	NNELS 0		HRU 64	0	0		0
	XTIN	PLE	VOLUM	FFICI		.131E-	03 PER	METER = 22827.	METEDE

SERIES # CTS- 8, TEST # 44 FOR DATA STARTING 3: 0 ON 24/ 4/74

DATA F	547 1594	S 1 THRU 16 4 1053 26 7 9	0 65 3 2	5 4 4 4 9
VIS	IBILITY LI JID WATER		00025 GM/M3	ETER = 23818, METERS
DATA F	3 5	S 17 THRU 32	3 0	0 0 1 0
VIS	IBILITY LI		0000 GM/M3	ETER =324912, METERS
DATA F	OR CHANNEL			0 0 0
DATA F	0 0	S 49 THRU 64	0 0 0 0	8 8 8 8 9 8
VIS LIG	AMPLE VOLUINCTION CO IBILITY LI		.135E-03 PER N 28976., LOWER 00034 GM/M3	ETER = 22192, METERS

SERIES # CTS- 8, TEST # 45 FOR DATA STARTING 3:10 ON 24/ 4/74

DAT	A	1		1	1	C	H	A	N 1	N 5	E 6	13	S		1	1	7 0	H 5 6	R	U	1	16	25	1					7	9 8				19						4 5			6 2
	٧:	I	31	E	I	L	IW	TA	Y	E	LR	I	M C	11	1	E	VX	P	P	E	R			3	0	0	7627	3.	G	M	P LO /M	WE	R		T	EF 23	30	3	5		MET	rER	?S
DAT	A	•	• () F	6							1									2			1						1 0				3 0						0			1 0
	V	I	31	11	I	L	I	TA	Y	E	LR	I	M	11	1	E	UN	PT	P	E	2		5	2	7	5	39	5	G			WE	R	ME							MET	ER	S
DAT	A	,	- (F	1	C						9		3				H Ø Ø			•	1 8		0	1									0					9				0
	V	1	31	1	1	L	IW	TA	Y	E	LR	1	M C	11	1	E	UN	P	P	E	2	1	1	4	0	0	0 :	5 9	,		P LO /M	W	ER	ME.	T	EF 07	? 2	2	4:	1	MET	ER	S
DAT	Δ	•	: (F	0							0						0						0						0				00					0	9			
	E	15	51	I NE	PICI	LTL	EIIIW	OTA	VNYT	0	CL	0	EI	FIT	I	C	IUN	EPT	NP	T EI	2		:	2	1 7	8	8 8	3,	,	-		WE		ME.				5	8,	•	MET	ER	s

SERIES # CTS- 8, TEST # 46 FOR DATA STARTING 3:20 DN 24/ 4/74

DATA FOR CHANA	E . THO!			
DATA FOR CHANN		301 80	7 5	6
	17 15		4 4	6
		. 152E-03 P		
		R = 25703., LO		METERS
		.00031 GM/M	3	
PARTICLE CO	UNT = 2.	79 PER CC		
DATA FOR CHANN	FIS 17 THRU	32		
4	4 2	2 1	3 0	0
0	2 0	1 0	0 0	0
		= .964E-05 P		
		R =406011., LO		METERS
	UNT = .	.00008 GM/M	0	
PANIZUEE OF		DI FER CC		
DATA FOR CHANN	ELS 33 THRU	48		
0	0 0	0 0	0 0	0
0	0 0	0 0	0 0	0
DATA FOR CHANN				
0	0 0	0 0 0 0	0 0	0
GRAND TOTALS				
SAMPLE VO	LUME = 1500	. CC		
		= .162E-03 P		
		R = 24172., LO		METERS
		.00039 GM/M	3	
PARTICLE CO	UNT = 2.	BU PER CC		

SERIES * CTS- 8, TEST * 47 FOR DATA STARTING 3:30 ON 24/ 4/74

DAT	A																										91					12								3
			•	(5			. /	1	6			•	~	,	9				0	~	5					1					1					4			5
	_																																_							
	E	K T	I	N (1	I	0	7	1	0	H	1 1	I	C	I	E	, א	T 6				•	7	44	4E	-	03	3	P	ER	P	ME	T	ER 20	R	43		MET	FR	8
	L	IG	Ü	I)	W	À	T E	F	•	C	AC	İ	E	N	T						0	0	32	29		Ğ	17	M	3	,,,	-			-	-	•		•	•
	P	AR	T	10	L	E	-	C	ונ	IN	T						2	. 6	6	1	P	E	R	C	C	,														
DAT	A	F	0	R	C	H	A	N	v E	L	S	1	7		T	H	RI	J	3	2																				
				4	1					2						1						1					7					0					1		-	8
				(,					0						0						0					1	1				0					0			1
	E	KT	I	N	: 1	1	٥	N	c	0	EI	FF	I	C	1	E	N'	T					1 (27	7 E		0	4	P	ER	- 1	ME	T	ER						
	٧	IS	I	B	L	I	T	Y	L	. 1	M	1	,		U	P	P	EF	?		3	6	5	5 4	45		,	L	0	WE	R		2	80	0	29		MET	ER	5
																											GN	1/	M	3										
	P	AR	T	I	L	Ł		C()L	N	T	•	1				9	. 0	1		P	E	K	C																
DAT	A	F	0	R	C	H	A	N	VE	L	S	3	3	,	T	H	RI	J	4	8																				
																Ø						9					6					0					0			0
				0	3					0						0						0					(9				0					0		(ð
DAT	A	F	0	R	C	Н	A	N	VE	L	s	4	19)	T	H	RI	J	6	4																				
																Ø						0					(0				0					0			0
				6	,					0						0						0					(ð				0					0		(0
GRA	N	,	T	01	A	L	s																																	
		S	A	MF	L	E		V	1	Ų.	M	E	=		1	5	0	0	,	C	C																			
	E	K T	I	N	1:	I	0	N	C	0	E	F	1	C	I	E	N'	1	=			•	1	5 4	4 E	-	03	3	P	ER	1	ME	T	ER						
																															R			19	3	99		MET	ERS	5
																											GN	1/	M	3										
	7	AK	T	1 (۱.	E		Ľ (JL	N	1		•				2		0 6		۲	E	K	-	. 0															

SERIES # CTS- 8, TEST # 48 FOR DATA STARTING 3:40 ON 24/ 4/74

550	NNELS 1 THRU 16 1836 1362 30 8 10	1 80 12 7 3 5	6 5 0 1
VISIBILIT	N COEFFICIENT = Y LIMIT, UPPER = 1 TER CONTENT = .1 COUNT = 2.80 PI	26239., LOWER = 00030 GM/M3	TER 20095, METERS
	NNELS 17 THRU 32 2 4 0 1	1 1 0	
VISIBILIT	N COEFFICIENT = Y LIMIT, UPPER =7: TER CONTENT = .0 COUNT = .01 P	23764., LOWER = 00004 GM/M3	TER 554294. METERS
		8 0 0 8 0 0	
DATA FOR CHAP		0 0 0 0 0	
EXTINCTION VISIBILIT LIQUID WA	VOLUME = 1500. CC N COEFFICIENT = Y LIMIT, UPPER = : TER CONTENT = .(COUNT = 2.80 P)	.154E=03 PER ME 25321., LOWER = 00034 GM/M3	TER 19392. METERS

SERIES # CTS- 8, TEST # 49 FOR DATA STARTING 3:50 ON 24/ 4/74

DATA	FOR CH 491 17	1819 11	1 THRU 1 1335 10	6 284 104 9 3	16 3	4 7 2 3
V :	ISIBIL:	ITY LIMIT	, UPPER TENT =	= 26341., .00030 GM	PER METER LOWER = 2017 /M3	3. METERS
	6 Ø	HANNELS 1 4 Ø	7	4 1	Ø Ø	1 0
V :	ISIHIL:	ITY LIMIT	, UPPER TENT =	=462538., .00005 GM	PER METER LOWER =35423 /M3	4. METERS
DATA		HANNELS 3				0 0
DATA	0	HANNELS 4	Ø	4 Ø Ø Ø Ø	the state of the s	0 0
E) V:	KTINCT: ISIBIL:	E VOLUME ION COEFF ITY LIMIT	ICIENT = , UPPER TENT =	.157E-03 = 24922., .00035 GM	PER METER LOWER = 1908 /M3	5. METERS

- STATE OF THE PROPERTY OF THE PARTY OF THE

SERIES # CTS= 8, TEST # 50 FOR DATA STARTING 4: 0 ON 24/ 4/74

DATA FOR	11 1926	S 1 THRU 1336 9	315 78	25 2 0 2	5 1
VISI6	BILITY LI	MIT, UPPER	.00030 GM	LOWER = 20254.	METERS
DATA FOR	CHANNEL 5 2 0 0		3 0 0		0
LIQUI	BILITY LI	MIT, UPPER	90002 GM	LOWER =783553.	METERS
DATA FOR	0 0	S 33 THRU 0 0	48 0 0 0 0		
DATA FOR		S 49 THRU Ø Ø	64 Ø Ø Ø Ø		9 0
EXTIN VISIS LIQUI	APLE VOLUNCTION CO BILITY LI ID WATER	MIT, UPPER	.152E-03 25781., .00032 GM	LOWER = 19744.	METERS

SERIES # CTS- 8, TEST # 51 FOR DATA STARTING 4:10 ON 24/ 4/74

DAT	A	F	57 1	2 4	CH	1 A	NI 1	NE 94	100	S		1	4 !	119	R	U	1	6 3	56	5			8	6		10			4	4
	VI	S	IB	I	L	T	Y	L	I	M !	T	ŕ	EN	IP	P	EF	?		. 0	25	01	1	• G	L					5.	METERS
DAT	A	F	DR	6					5					2		U	3	2		4				2		0			1 0	0
1	V I	S		I	LI	T	Y	L	I	M I	T	ŕ	EN	IP	P	E F	?		40	15	03	35	G	L					5.	METERS
DAT	A	FI	R	0 0				NE			3	3	1	H		U	4	8	0	70				0		0			0 0	0
DAT	A	F	DR	0		4 A	NI	NE	100		4	9	1	HOO		U	6	4	0					0		0			00	0
1	EX VI LI	S	IN IN	PCID	LETI	O	VNYT	CLER	OI	EF M I	F	I	C I	E	NP	T ER			. 8	1 2 3	5	56	.,	L				04:	١.	METERS

SERIES # CTS- 8, TEST # 52 FOR DATA STARTING 4:20 ON 24/ 4/74

DATA FOR CHAN	NELS 1 THRU 2432 1544	378 128	12 7	,
11	13 13	10 5	2 5	4
EMPTHEMENT		- 1775-03		
		= .177E-03 F		METERS
		.00036 GM/I		
PARTICLE C	COUNT = 3.	25 PER CC		
0474 FOG 6444	INEL & 47 THOU			
DATA FOR CHAN		6 3	0 1	
	0 0	0 0	0 0	-
		.123E-04		
		R =318356., L		METERS
	COUNT #	.00011 GM/	13	
PARTICLE C		DE PEN LL		
DATA FOR CHAN	NELS 33 THRU	48		
0	0 0	0 0	0 0	0
0	0 0	0 0	0 0	0
DATA FOR CHAN	NEL 8 40 THOU			
DATA FOR CHAN	0 0	0 0	0 0	0
0	0 0	0 0	0 0	
GRAND TOTALS				
	OLUME = 1500			
		190E-03 F		METED.
		R = 20641., LC		TE I ERS
	OUNT . 3.			

SERIES # CTS- 8, TEST # 53 FOR DATA STARTING 4:30 ON 24/ 4/74

DATA	F01	R C 33 19	HAN 2	NELS 910 16	1 T 200	HRU 4	16	5 :	134	20 2	9	12
1	ISI.	BIL	ITY	LIM:	IT, L	PPER		16904	GM/M3	R METER ER = 12		METERS
DATA	FOI			NELS 1 1		HRU 2 1		3	2	5	1 1	2
1	ISI	BIL ID	ITY	LIM:	IT, L	PPER	=2:	22893	GM/M3	R METER ER =170		
DATA	FO	0		NELS Ø		HRU Ø		8	0	0	0	0
		0		NELS 0 0		HRU Ø	64	8	Ø Ø	0	0	0
L	SAI XTI ISI	MPL NCT BIL ID	E V ION ITY WAT	ER CO	FICI IT, U	ENT PPER T =		249E		R METER ER = 12		METERS

SERIES # CTS- 8, TEST # 54 FOR DATA STARTING 4:40 ON 24/ 4/74

3	82 3307	S 1 THRU 16 2108 40 30	3 131	20 7 4 5	12
VISI	BILITY LI				METERS
DATA FO		S 17 THRU 32 2 1		1 1 0 0	0
VISI	BILITY LI		.121E-04 PER 324303., LOWER ,00010 GM/M3 PER CC		METERS
DATA FO	0 0	S 33 THRU 48	Ø Ø	0 0	
DATA FO		S 49 THRU 64 Ø	0 Ø 0 0	Ø Ø	
EXTI VISI LIQU	MPLE VOLU NCTION CO BILITY LI ID WATER		.252E-03 PER 15537., LOWER ,00059 GM/M3		METERS

SERIES # CTS- 8, TEST # 55 FOR DATA STARTING 4:50 ON 24/ 4/74

DATA	198 34	ELS 1 THRU 16 37 2079 5 23 21	07 129	19 15 2	18
VI	SIBILITY Quid wate	COEFFICIENT = LIMIT, UPPER = R CONTENT = UNT = 4.33	16504., LOWER .00048 GM/H3		METERS
DATA	FOR CHANN 8 Ø	ELS 17 THRU 32 2 5 1 2	7 5 0 0	2 0	
VI	SIBILITY QUID WATE	COEFFICIENT = LIMIT, UPPER = R CONTENT = UNT = .02	225517., LOWER .00014 GM/M3		METERS
DATA	FOR CHANN 0 0	ELS 33 THRU 48 0 0 0 0	0 0	0 0 0	0
DATA	FOR CHANN 0 0	ELS 49 THRU 64 0 0 0 0	0 0	0 0	
EX.	TINCTION SIBILITY QUID WATE	LUME = 1500. C COEFFICIENT = LIMIT, UPPER = R CONTENT = UNT = 4.35	.254E-03 PER 15378,, LOWER .00063 GM/M3		METERS

SERIES # CTS= 8, TEST # 56 FOR DATA STARTING 5: 0 ON 24/ 4/74

2	10 367			10 13 5 9	12 17 6 1
VISI	BILITY L	IMIT, UPP		D3 PER METER LOWER = 116 GM/M3	
DATA FO	6	LS 17 THR 3 7 0 1	3	3 3	0 0
VISI	BILITY L	IMIT, UPP		14 PER METER LOWER =2739 GM/M3	
DATA FO	R CHANNE Ø Ø	LS 33 THR 0 0 0 0	U 48 Ø Ø	0 0 0 0	0 0 0 0
DATA FO	R CHANNE	LS 49 THR 0 0 0 0	U 64 Ø Ø	0 0	0 0
EXTI VISI LIQU	MPLE VOL NCTION C BILITY L ID WATER	IMIT, UPP	T = .269E-0	DS PER METER LOWER = 111 GM/M3	51. METERS

SERIES * CTS- 8, TEST * 57 FOR DATA STARTING 5:10 ON 24/ 4/74

DAT	A	1	53	5		30	03	8			18	6	8	U		4	56			12			18		4 3	4 2
	VI LI	SIQU	81	L	ITWA	Y	ER	I	MI	T	, TE	UN	PP T	EF	3	=	1	90	52	G	L	PER OWER 'M3	ME1	'ER 1459	1.	METERS
DAT	A	FO	3			NI		2							3	2	3 0				3		1 0		0	0
	VI LI	SI	B)	L	IT	Y	ER	I	MI	TN	, TE	U	P P	EF	2	* 7	0	00	132	G	L	PER OWER	MET =:	TER 53642	5.	METERS
DAT	A	FO	0)		NI		0					0		4	8	0				0		0		0	0
DAT			0)				-					HR Ø	lU	6	4	0				0		0		0	0
	EX VI LI	SA TI SI QU	MF NC BJ	L	E IO IT	VON	CLER	II	FILE	FTN	IC	IUN	EN PP	EF	?	=	.0	21 85	48	G	L	PER OWER	MET	'ER 1420	5.	METERS

SERIES # CTS- 8, TEST # 58 FOR DATA STARTING 5:20 ON 24/ 4/74

DATA	20				9 145 1 5	23 6	10 10 3
V L	ISIE	ILITY D WATE	LIMIT, L	IPPER .	.233E-03 PER 16807., LOWE 00047 GM/M3 PER CC		71. METERS
		4	4	THRU 32 2 0	2 2	1 0	0 0
V L	ISIE	BILITY D WATE	LIMIT, L	IPPER =4	.904E-05 PER 32797., LOWE 00008 GM/M3 PER CC		57. METERS
DATA	FOR	CHANN Ø	ELS 33 1	THRU 48 0 0	Ø Ø Ø Ø	Ø Ø	Ø Ø
DATA	FOR	CHANN Ø Ø	ELS 49 1	PHRU 64	0 0	Ø Ø	9 Ø 9 Ø
E	SAM XTIN ISIE	CTION SILITY D WATE	LIMIT, L	ENT = JPPER =	.242E-03 PER 16178., LOWE 00056 GM/M3		90. METERS

SERIES # CTS- 8, TEST # 59 FOR DATA STARTING 5:30 ON 24/ 4/74

DATA	2	58	3	NELS 128 27	192	9	51	7 1	116	9	7 4	14 5
L	ISI	BIL	TTY	LIMI ER CO	T, U	PPER		17598	03 PER , LOWE GM/M3	METER R = 13	478.	METERS
DATA	FO			NELS 1 1				-	0	0	1 0	0
L	ISI	BIL ID	HAT	LIMI ER CC	T, U	PPER	*7	25550	05 PER , LOWE GM/M3	METER R =555	661.	METERS
DATA	FO	0		NELS 0		0			0 0	Ø	0	0
		0		NELS Ø Ø		HRU Ø		Ø Ø	0	0	0	0
V	SAI XTI ISI IQU	MPL NCT BIL ID	E VOIDN ITY WATE	LIMI ER CO	FICI T, U	ENT PPER T =	•	.228E-	03 PER , LOWE GM/M3	METER R = 13	158.	METERS

SERIES # CTS= 8, TEST # 60 FOR DATA STARTING 5:40 ON 24/ 4/74

296	CHANNELS 6 3078 5 21	2009 50	7 131 1 2 5	14 10 14 3 2 3
LIQUIC	ILITY LIMIT	TO UPPER .	00045 GM/M3	TETER = 13387. METERS
	CHANNELS 1 3 4 1 0	7 THRU 32 5 Ø	2 2	0 1 0 0 0 0
VISIB:	ILITY LIMIT	, UPPER =5	00005 GM/M3	TETER =405203, METERS
6	CHANNELS 3	0	0 0 0 0	
9	CHANNELS 4	0	0 0	0 0 0 0 0 0
VISIB:	PLE VOLUME CTION COEFF ILITY LIMIT	ICIENT = , UPPER = ,	.231E-03 PER N 16920., LOWER 00051 GM/M3	ETER = 12959, METERS

SERIES # CTS- 8, TEST # 61 FOR DATA STARTING 5:50 ON 24/ 4/74

DATA	408 3	NELS 1 THR 206 2007 22 20	541	126 20 8 1	11 14 7 1
V:	ISIBILITY [Quid wat	COEFFICIEN LIMIT, UPP ER CONTENT OUNT = 4	ER = 16734 = .00048	GM/M3	R 2815. METERS
DATA		NELS 17 THR 4 5 0 1	U 32 2 Ø	2 1	1 0
V:	ISIBILITY Iquid wat		ER =473471 = .00006	GM/M3	R 2607. METERS
DATA	0	NELS 33 THR 0 0 0 0		0 0	0 0
	0	NELS 49 THR Ø Ø Ø Ø	U 64 Ø Ø	0 0 0 0	0 0 0 0
E) VI	KTINCTION ISIBILITY IQUID WAT	OLUME = 150 COEFFICIEN LIMIT, UPP ER CONTENT OUNT = 4	T = .242E ER = 16162 = .00054	GM/M3	R 2378. METERS

SERIES # CTS- 8, TEST # 62 FOR DATA STARTING 6: 0 ON 24/ 4/74

DATA FOR CHANN	ELS 1 THRU 16		
320 35	78 2185 54	5 145 1	3 14 10
21	18 9 1	4 3	3 2 3
FYTINCTION	COEFFICIENT .	248F-03 PFR M	FTFD
			= 12089, METERS
	R CONTENT .		- IZNOS. METERS
PARTICI F CO	UNT = 4.59 P	ED CC	
PARTICLE CO.	011 - 4,03 7	-N -CC	
DATA FOR CHANN	ELS 17 THRU 32		
		1 2	0 1 0
Ø		0	0 0
			. ,
EXTINCTION	CUEFFICIENT =	511E-05 PER M	ETER
	LIMIT, UPPER =7		
	R CONTENT = .		
	UNT = .01 P		
,			
DATA FOR CHANN	ELS 33 THRU 48		
		0	0 0 0
a	0 0	a 0	
DATA FOR CHANN	ELS 49 THRU 64		
		0	0 0 0
		0	0 0 0
GRAND TOTALS			
SAMPLE VOI	LUME . 1500. CC		
EXTINCTION	COEFFICIENT .	253E-03 PER M	ETER
			= 11845, METERS
	R CONTENT .		
	UNT = 4.68 PI		

AND AND THE PERSON OF THE PERS

SERIES # CTS= 8, TEST # 63 FOR DATA STARTING 6310 ON 24/ 4/74

DAT	A																																		
		1	26	0			6	0	3 8			1	57	7	5			1	0	15				2	57				20			1	1		9
			1	5				-	4					2	1					12					8				1				3		5
	E	11	IN	C	TI	0	N	1	cc	E	FI	F	10	: 1	E	N1					4	41	E	-6	3	P	ER		ME	TEI	R				
																																		METE	RS
																										/M									
	P	AR	T	C	LE		C	01	UN	T	1	8.				8,	, 3	1		PE	R	C	C												
DAT		F	06		CH	4 4	N	NI	EL	S		1 2	,	7	H	RL	,	3	2																
			- "	4	•	'				,		• •			2				-	1					0				3				1		0
				0						,					0					0					0				0				0		0
																													ME						
																												R		531	96	25		METE	RS
																									3M	/M	3								
	P	AR	11	C	LE		C	01	JN	IT	-					•	. 0	1		PE	R	C	:C												
DAT	A	F	OF		CH	14	N	N	EL	S		3	3	T	H	RL	,	4	8																
				0						,					0					9)				0				0				0		0
				0					9)					0					6)				0				0				0		0
DAT	•	F	ns		CH	4 4	N	NI	FI	9		4 (2	7	4	91		6	4																
-	-				•					,					a			•	-	0	1				0				0				0		0
				0)					0					0					0				0				0		0
GRA			•	-																															
שאט	MF							01		M	_					30			-																
	F																				4	46		_ (FK	D	60		ME'	FEI					
																																13		METE	RS
																										/M		,,	1		- '		•		
										IT														130											

SERIES # CTS- 8, TEST # 64 FOR DATA STARTING 6:20 ON 24/ 4/74

DAT	A																					•					•				^~							•	STANDARD OF
		4			5											5									3 1	. 6	5			•	3				3			24)
	٧1	S	I	3 1	L	1	T	4	1	. 1	M	I	T	,	U	P	PI	EF	?			1	20	2	1 .			LO	WE			TE			7.	١	ETE	RE	,
	PA																										П.	/M	0										
DAT	A	F	01	1	C					2			1 7	7	T	H 1	RI	J	3	2		3					5				0				0			1	X SOUTH TO
					,)					0						1					0				0				0			9	1
	VI	S	II	31	L	I	TA	Y	EF	I	MC	I	T N	TE	UN	P	PI	EF	?		5	0	42	2	1.	. ,	1		WE			TE 38		15	7.	١	ETE	RS	}
DAT	A	F	01		- 7	н	A	NI	v E				3	3			RI	J	4	8																			
				6												0						0					0				0				0			6	
DAT	A	F	01		C	H	4	NI	NE	L			4	9		HØ	RI	J	6	4		0					0				0				0				2007/02/20
				0						0						0						Ø					0				0				0			6	30
	EX	S	A	4F	L	E	0	V	(0	E	F	F	10	I	E	N'	7				. :										TE							
		Q	U	11)	W	A	TI	EF	1	C	0	N'	TE	N	T	1					0	73	9	4			/M		H			1;	34	1.		ETE	, Ka	

SERIES W CTS- 8, TEST W 65 FOR DATA STARTING 6130 ON 24/ 4/74

2 23 7 1	39
ETER • 222,	METERS
.	:
ETER #291150.	HETERS
	904 are
8 0	0
	7 1 ETER 222. 1 1 0 ETER 221158.

SERIES # CTS- 9, TEST # 1 FOR DATA STARTING 19158 DN 24/ 4/74

DATA	FOR C	HANNELS	1 THRU	16				
		670			34	5		
	1	1	0	. 0	0	0	i	0
E	XTINCT	ION COEFF	ICIENT	.566	E-04 PE	R METER		
							926. HETER	18
		WATER CON						
		E COUNT .						
DATA	FOR C	HANNELS 1	7 THRU	32				
	0	0	0	0	0	0	•	1
	0	0	0	0	0		•	
		ION COEFF						
							5832 METER	18
L	IQUID	WATER CON	TENT .	.0000	1 GM/M3			
P	ARTICL	E COUNT	.0	O PER C	C			
DATA	FOR C	HANNELS 3	3 THRU	48				
	0	0	0	0	•		0	0
	0	0	0	0	0	0		0
DATA	FOR C	HANNELS 4	9 THRU	64				
	0	0	0	0	0			
	0	0	0	0	0		0	
GRAN	D TOTAL	LS						
	SAMPL	E VOLUME	. 1500.	CC				

GRAND TOTALS

SAMPLE VOLUME = 1500. CC

EXTINCTION COEFFICIENT = .574E=04 PER METER

VISIBILITY LIMIT, UPPER = 68185., LOWER = 52220. METERS

LIQUID WATER CONTENT = .00011 GM/M3

PARTICLE COUNT = 1.15 PER CC

SERIES # CTS- 9, TEST # 2 FOR DATA STARTING 28: 8 ON 24/ 4/74

DATA	514	53	ELS 1 36 2 0	THRU 1	6 85 0	28	6 *** 6 ***	0 0 0 0 0
VI	SIBI	LITY L	IMIT,	UPPER	.476E-0 82158. .00009 PER CC	, LOWER		, METERS
DATA	FOR	CHANNE		THRU 3		848 FF	E JAKKAAN	3 854 6765
	0	4	0	0	0	0	0	
DATA	FOR	CHANNE	ELS 33	THRU 4	8			
	0		0	0	0	0	0	0 0
DATA	FOR	CHANNE	ELS 49	THRU 6	4			
	0		0	0	0	0	0	0 20 0
	0		0	0	0	0	0	
V)	SAMP (TINC (SIBI (QUID	LE VOL TION (LITY L WATER	COEFFIC IMIT, CONTE	UPPER	.476E-	, LOWER	ETER = 62920	. METERS

SERIES # CT8- 9, TEST # 3 FOR DATA STARTING 20110 ON 24/ 4/74

		LS 1 TH	The state of the s	36	3	0 1
VISI	BILITY L		PPER . 8	8223., L 8009 GM/	PER METEI OWER = 6: M3	R 7565. METERS
DATA FO	R CHANNE 2 0	ELS 17 TH	0	0 0	0	8 6 1 0
VISI	BILITY L ID WATER		PER #13	14043, L 0004 GM/		R 06358 METERS
DATA FO	R CHANNE 0 0	ELS 33 TH	9 0	0	0	0 0
DATA FO	R CHANNE Ø Ø	ELS 49 TH	0	0	0	0 0
EXTI VISI LIQU	MPLE VOL NCTION O BILITY L ID WATER		PER = 8	2673., L		R 3315. METERS

SERIES * CTS- 9, TEST * 4 FOR DATA STARTING 20:20 ON 24/ 4/74

DATA	FOR	R CH	IANNE 36	LS 5	1 T	HRU :	16 59	23	10	1	2
						2	3	3	2	0	1
V	ISI	BILI	TTY L	IMI	T, U	PPER	-1065	7E-04 PE 71., LOW 07 GM/M3 CC	ER = 81		TERS
DATA	FOR		HANNE				32 2	2	1-3,39E	HG 180.1	0
										ě	
V	ISI	IL I	TY L	IMI	T, UI	PPER	-7059	4E=05 PE 08., LOW 04 GM/M3 CC	ER =540		
DATA	FOR							0	The state of the s	40 954	2720
		0		0		8	0	é	0	0	0
V	ISIE	ID V	TTY L	CO	T, U	PPER	=9092	ØE-Ø5 PE 19., LOW 09 GM/M3 CC	ER =696		
DATA	FOF		ANNE								
		0		0		8	0	0	0		
E V L	SAP XTI ISI IQU	APLE NCTI BILI	TY L	UME OEF IMI	FICI T, UI NTEN	ENT PPER	46 - 840	6E-04 PE 34., LOW 21 GM/M3 CC	ER . 64		TER.

SERIES # CTS- 9, TEST # 5 FOR DATA STARTING 20:30 ON 24/ 4/74

DATA F	DR CHANI	NELS 1	THRU 16				
	339	431 2	23 6	2	19	6 8	2
	5	1	2	0	2	2 1	
		COFFEIG					
		COEFFIC				= 80506.	-
		ER CONTE				- 00300,	HEIERO
		DUNT =	DESCRIPTION OF THE PROPERTY OF		GHYHO		
		00.11					
DATA F	OR CHAN	NELS 17 1	THRU 32				
	9	2	0	1	0	0 0	1
	0	0	0	0	0	0 0	0
		COEFFIC					
						=1627303	METERS
		ER CONTE			GH/H3		
PAR	I TOPE C	DUNT =	.00 -	EN LL			
DATA F	OR CHAN	NELS 33 '	THRU 48				
	0	0	0	0	9		9
	0	0	0	0	0	0 0	0
DATA F	CR CHAN	NELS 49	THRU 64				
	6		0	0	0	0 0	0
	0	0	0	0	0	0 0	0
CD 1410							
	TOTALS	OLUME = :	-				
		COEFFIC					
						· 76711.	METERS
						- /5/110	
		DUNT .					
LIG	UID WAT	ER CONTE	NT .	00009		• 75711.	METERS

SERIES # CTS- 9, TEST # 6 FOR CATA STARTING 20:40 ON 24/ 4/74

DATA	386		224 6	4 22	5 2	1 2
		ON COEFFIC		.382E-04 PER N	ETER	Flan
LI	WLID W		NT .	02465., LOWER 00008 GM/M3 ER CC	* 78473.	METERS
DATA	FOR CH	ANNELS 17		0 B		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	i	0	0	0 1	0 0	Ö
r1	SIBILI QUID W	TY LIMIT.	UPPER #7	.489E-05 PER N 99900., LOWER 00005 GM/M3 ER CC		METERS
DATA	FOR CH	ANNELS 33		i Ø	0 0	0
	P TINCTI	0 10N COFFET		0 0 .430E-05 PER 1	0 0	0
VI.	SIBILI QUID W	ITY LIMIT,	UPPER =9	09219., LOWER 00009 GM/M3		METERS
DATA	FOR CH	ANNELS 49	0	0 0 0 0	9 9	0
		VOLUME .			45750	
VI VI	SIBILI Quid W	ITY LIMIT,	UPPER .	.474E-04 PER N 82580., LOWER 00021 GM/M3 ER CC		METERS

SERIES # CTS- 9, TEST # 7 FOR DATA STARTING 21:10 ON 24/ 4/74

	36	LS 1 THR 2 203 1 0	U 16 49 3	19	5 1 0 1	3 2
LIQUE	SILITY L	IMIT, UPP	T = .348E ER =112479 = .00007 .68 PER CC	., LOWER GM/M3		
DATA FOR	4	LS 17 THR 2 1 0 1			6 0	
LIQU	BILITY L	IMIT, UPP	T = .420E ER =931840 = .00003 .01 PER CC	., LOWER GM/M3		METERS
DATA FOR	8	LS 33 THR 0 0	U 48 Ø Ø		0 n	Ø.
DATA FOR	0	LS 49 THR 0 0	0	Ø 0		0
VISIE LIGUI	APLE VOL NCTION C BILITY L ID WATER	IMIT, UPP	0. CC T = .390E ER =100365 = .00010 .68 PER CC	., LOWER		METERS

SERIES # CTS- 9, TEST # 8 FOR DATA STARTING 21:20 ON 24/ 4/74

The state of the s	R CHANNELS 70 360 3 1		3 17 3 1	5 1 2 0 1 4
VISI LIQU	BILITY LIM ID WATER C		00007 GM/M3	METER = 86229, METERS
DATA FO	R CHANNELS 3 3 0 0	17 THRU 32 0 0	0 3 0 0	2 1 0
VISI LIQU	BILITY LIM ID WATER C		00007 GM/M3	METER #397999, METERS
DATA FO		33 THRU 48	0 0	0 0 0
	0 0	49 THRU 64 0	0 0	0 0 0
VISIE LIQU	MPLE VOLUMINCTION COE BILITY LIM ID WATER CO		.423E-04 PER P 92543., LOWER 00015 GM/M3	METER # 70874, METERS

SERIES # CTS- 9, TEST # 9 FOR DATA STARTING 21:30 ON 24/ 4/74

	369 368	S 1 THRU 16 184 2	31 30 3 0	5 2 1 2	3 4
LIGI	IBILITY LI	EFFICIENT = MIT, UPPER =: CONTENT = .69		METER = 83026.	METERS
CATA FO	4 3	S 17 THRU 32 1 0	i 0 i 0	1 0	
VIS:	BILITY LI				
DATA FO	0 0	S 33 THRU 48 0 0		0 0	
	0 0	8 49 THRU 64 0 0	0 0	0 0	The second secon
VIS:	AMPLE VOLU! INCTION COI IBILITY LIP JIC WATER (.409E-04 PER 95627., LOWER 00011 GM/M3		METERS

SERIES # CTS- 9, TEST # 10 FOR DATA STARTING 21:40 ON 24/ 4/74

DATA		1000		375 1	,	-			-	27	3 1	1 4	1
V	ISI	BIL	ITY TAW	LI ER	CON	T,	UPP	ER	-11	04 PER , LOWER GM/M3			METERS
DATA	FOR	5			?		2	U 3	2 1 0	3 0		1 0	1 0
V	ISI8	BIL	ITY WAT	LI TER	CON	I,	UPP	ER .	-44	05 PER , LÖWER GM/M3			METERS
DATA	FOF	0		NEL)		0		8 0	0	0	0	0
DATA		0		NEL 2	1		0		4 0 0	0	0	0	
V L	SAP XTIP ISI IQU:	MPL MC1 BIL	E VION	LI ER	EFF MIT CON	IC ITE	IEN UPP NT	ER	. 9	04 PER , LOWER GM/M3		0.	METERS

SERIES 4 CTS- 9, TEST # 11 FOR DATA STARTING 21:50 ON 24/ 4/74

	0 374	\$ 1 THR	47 30	4 0	
	3 4			0 1	3
VISI8	D WATER	CONTENT		PER METER LOWER = 84152. 1/M3	METERS
DATA FOR		S 17 THR	J 32 3 3		
	5 1		0		
VISIB	ILITY L	IMIT, UPP!	T = .112E-04 ER =349599., = .00009 GP	LOWER =267740.	METERS
			01 PER CC	1783	
DATA FOR					
	0 :		0 0 0		
EXTIN Visib Liqui	0 CONTRACTOR CONTRACTO	DEFFICIENT IMIT, UPPE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
EXTIN VISIB LIGUI PARTI	0 COUNTY LI	DEFFICIENT IMIT, UPPE	0 0 0 0 0 T = .323E=05 ER =1212427, = .00006 GM .00 PER CC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
EXTIN VISIB LIGUI PARTI	0 6 ICTION CO ILLITY LI D WATER CLE COUN	DEFFICIENT IMIT, UPPE CONTENT INT = LS 49 THRE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 5 PER METER LOWER =928536. 1/M3	METERS
EXTIN VISIB LIQUI PARTI DATA FOR GRAND TO SAM EXTIN VISIB	CTION CONTINUE CONTIN	DEFFICIENT CONTENT S 49 THRU ME = 1500 DEFFICIENT IMIT, UPPE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PER METER LOWER =928536. 1/M3 PER METER LOWER = 59898.	METERS

SERIES # CTS- 9, TEST # 12 FOR DATA STARTING 22:20 ON 24/ 4/74

DA	4 1	F	OR		CH	4 4	N	N	F١	S		1		T	н	91		•	6																
-	-		37														•	•			,				20					•					2
			•							,										- 1					-					2					-
				-					'						1					•	•				•					2			•	2	
	-										-				-										_										
																															ER				
																													3		74	2	41,	•	METERS
																									GN	1/	M3								
	P	AR	TI	C	LE		C	0	U١	T							, 7	6		Pf	E	?	CI												
DA	TA	F	CH	1	CH	14	N	N	EL	. 5		17	7	T	H	RI	,	3	2																
				1					3	3					5					1	2				:	5			-	0			1	2	1
				1					2	2					0					(7					7			-	0				7	0
																									- 47					-					
	F	Y T	TA	10	TI	n	N		cc	F	F	F	10	. 1	F	4 1					. 1		51		0	4	PF	P	M	F 7	ER	,			
																																			METERS
		10	. 1				÷	_		-			,		+		. "		-	٠,			0	•		4	M3	L	•	- 6	01			•	HEILNO
																									Gr	7	mo								
	-	AR	1 1	C	L		C	U	110	, ,		-				•				-			L	-											
		,-			•••					•									_																
DA.	IA	r	UH															4	8																
																				100	7				6				1	0					0
				V.					Ç	•					9					-	7				6	7			1	0				0	0
DA.	TA	F	OR															6	4																
				0					0	1					0					0					0	,			1	8				•	0
				0						•										6	7				2	•			1	2				2	
GR	INE)	10	T	ΔΙ	S																													
			AM			_		111	1	M	F			,	5	20	,		•	_															
	51																						0				DE	0		= +	ER				
	L. 1		1 10		1		7			-					F.	3 -		-	_	•	2		0 (0	•	7	-	П!	- 1	CK				MERERA
	V	. 3	10	1	h .	. 1		-	- 1	E	1	1		U	-		. ~		-	1	2	4	9			L	UW	ER			3/	06	. 0	•	METERS
																									GM	1/	M3								
	P	1R	I	C	LE		C	01	11	1 1							, 7	7		PE	R		C	:											

SERIES # CTS- 9, TEST # 13 FOR DATA STARTING 22:30 ON 24/ 4/74

	ELS 1 THRU 16		
			2 0 0
6	4 4	1 0	2 2 6
FYTINCTION (COEFFICIENT =	.417F-04 PFR N	FTFR
			. 71770. METERS
	R CONTENT		
PARTICLE COL	UNT = .79 P	ER CC	
DATA CCO CHANNE	EL 6 47 740H 70		
DATA FOR CHANNE		2 2	0 0 1
	0 1		0 0 0
	COEFFICIENT .		
			=312424. METERS
	R CONTENT .		
PARTICLE COL	UNT = .01 P	ER CC	
DATA FOR CHANNE	FI S 33 THRU 48		
P		0 0	0 0 0
9	0 0	0 0	0 0 0
	COEFFICIENT =		
			=928536. METERS
	R CONTENT		
PARTICLE COL	UNIWE F	ER CL	
DATA FOR CHANNE	ELS 49 THRU 64		
0	0 0	0 0	0 9 9
0	0 0	9 0	0 0 0
CHAND TOTAL S			
GRAND TOTALS	LUME = 1500. CC		
	COEFFICIENT =		FTFR
			. 54911. METERS
	R CONTENT .		
	UNT . 80 P		

SERIES # CTS- 9, TEST # 14 FOR DATA STARTING 22:40 ON 24/ 4/74

DATA FOR CHA	ANNELS 1 THRU	16		
	500 242	64 2	0 4	2 3
0	4 2	2	3 4	3 2
FUTTURET		4745 0	4 DED METER	
	ON COEFFICIENT			
	TY LIMIT, UPPE			SALD WEITERS
	ATER CONTENT		m/m3	
PARTICLE	COUNT .	OS PER LL		
DATA FOR CHA	ANNELS 17 THRU	32		
4	3 3	2	2 1	0 2
0	0 0	0	0 0	0 0
EXTINCTION	ON COEFFICIENT	- ,716E-0	5 PER METER	
	TY LIMIT, UPPE			248, METERS
	ATER CONTENT .		M/M3	
PARTICLE	COUNT .	01 PER CC		
	ANNELS 33 THRU			
0	0 0		0 0	0 0
0	0 0	0	0 6	0 0
DATA END CH	ANNELS 49 THRU	64		
0			0 0	0 0
0	0 0	0	0 0	0 0
GRAND TOTALS	S			
SAMPLE	VOLUME . 1500	. CC		
	ON COEFFICIENT			
	TY LIMIT, UPPE			211. METERS
LIQUID WA	ATER CONTENT .	.00014 G		
PARTICLE	COUNT .	84 PER CC		

SERIES # CTS- 9, TEST # 15 FOR DATA STARTING 22:50 ON 24/ 4/74

	64 468	1 THRU 16 266 (33 17 4 5	4 1	3
VISI LIQU	BILITY LIM ID WATER O	IT, UPPER .	.439E-04 PER (89191., LOWER ,00009 GM/M3 PER CC		METERS
DATA FO	3 6	17 THRU 32 2 0	1 0	1 0	1 0
VISI LIGU	BILITY LIM ID WATER C	IT, UPPER .	.896E-05 PER 36781., LOWER 00009 GM/M3 PER CC		METERS
DATA FO	0 0	33 THRU 48 0 0		0 0	
	0 0	0 49 THRU 64 0 0	0 0	0 0	
EXTI VISI LIQU	MPLE VOLUM NCTION COE BILITY LIM ID WATER C		.528E-04 PER 74067., LOWER 00018 GM/M3		METERS

SERIES # CTS- 9, TEST # 16 FOR DATA STARTING 23: 0 ON 24/ 4/74

DA	TA	1															U			5															•		
			٠																		5					1					4				4		7
	E	X'	I	NI	CI	I	0	N	C	0	E	F	I	C	I	h	T				•	4	53	BE	-(04	F	E	2	MI	ET	EF	1				
	V	I	I	B .	IL	.I	T	Y	L	I	M	11	:	_	U	7 6	E	R			8	6	44	16			LC	MI	ER			66	52	05	•	METER	25
																												13									
	٦	-	٠,	•	-			-		114	•						•	0	-		-	_	•														
DA	TA	,	0	R	(H	A	NI	NE	L	5	1	7		TI	4 6	U		32	5																	
																3					5					1.75					3				0		0
					1					0					1	0					1					0				1	8				0		1
					• 1		^			-	=												•		_,				-			-					
	C	T	T	N	TI	1	T	7		T	M	1		L	111	- ^	F	p	•		10	1	0.	10	-	04	, ,	E	K F D	TI	= 2	EN AG		65		METER	20
																												3					,,	0.5	•	HEIL	
DA'	TA	F	0																41	3						T.											
																					0					0					0				0		0
					n					V						0					9					0				,	0				0		0
DAT	T A		-0		(. H	Δ	N	VF	1	S	-	10		TI		11		6	1																	
-			-													7			•		-					0				1	0				0		0
					M											7					0					0					0				0		0
GR	AN											-																									
	_		A																				7	. =	_,							EF	,				
																																		01		METER	25
																												3				J.	•	•	•		
			11																																		

SERIES * CTS- 9, TEST * 17 FOR DATA STARTING 23:10 ON 24/ 4/74

DATA FOR CHANNELS 248 457	260 66	20 1	2 1
4 4	4 4	3 2	2 6
542346330N 605	*********	4 DPD W	and with the state of
EXTINCTION COS	EFFICIENT = .400	E-04 PER METE	.K
	MIT, UPPER = 9789 Content = .0000		49/1. MEIERS
	7 = .72 PER C		
THE TOTAL COUNTY			
DATA FOR CHANNELS	5 17 THRU 32		
	2 1	1 0	0 1
1 1	1 1	0 0	1 0
EXTINCTION COE	FFICIENT = .130	E-04 PER METE	R
	MIT, UPPER =30194		1246. METERS
	CONTENT = .0001 T = .02 PER C		
PARTICLE COUNT			
DATA FOR CHANNELS	3 3 THRU 48		
0 0		0 0	0 0
0 0	0 0	0 0	0 0
DATA FOR CHANNELS			
0 0		0 0	0 0
0 0	0 0	0 0	0 0
GRAND TOTALS	E = 1500. CC	*	
	EFFICIENT . 529	5-04 DED METE	0
	117, UPPER = 7392		
	ONTENT		DO.O. HETERO
	.74 PER C		

SERIES # CTS- 9, TEST # 18 FOR DATA STARTING 23:20 ON 24/ 4/74

	NELS 1 THRU 16 555 259 67 4 4 4	30 2 2 1	0 8 2 6
VISIBILITY LIQUID WAT	COUNT = .77 PER	53., LOWER = 694	
DATA FOR CHAN	NNELS 17 THRU 32 3 1 2 0 0 1	Ø 3 1 1	2 0
VISIBILITY LIQUID WAT	COUNT = .01 PER .000	78., LOWER #2629: 11 GM/M3	
	NELS 33 THRU 48	0 0	0 0
VISIBILITY	COUNT = .27: LIMIT, UPPER =1400: COUNT = .00 PER	069, LOWER =1072: 05 GM/M3	
DATA FOR CHAN	NNELS 49 THRU 64	0 0	0 0
GRAND TOTALS SAMPLE V EXTINCTION	OLUME = 1500. CC		

SERIES # CTS- 9, TEST # 19 FOR DATA STARTING 23:30 ON 24/ 4/74

DATA FOR CH	ANNELS 1 THR	RU 16		
	618 292		33 2	1 2
	6 4		10 10	4 3
EXTINCTION	ON COEFFICIEN	T 4546	-04 PER MET	TER
VISIBILI	TY LIMIT, UPP	PER . 86170	LOWER .	65993. METERS
	ATER CONTENT			
PARTICLE	COUNT =	.84 PER CO		
	ANNELS 17 THR			
3	1 4	3	2 3	
	0 0	0	0 0	0 0
FULTHERE				
	ON COEFFICIEN			
				397230. METERS
	ATER CONTENT			
PANITULE	COUNT -	"NI LEW CO		
DATA FOR CHA	ANNELS 33 THR	RII 48		
0	0 0	0	0 0	0 0
0	0 0	0	0 0	0 0
DATA FOR CH	ANNELS 49 THR	RU 64		
0	0 0	0	0 0	0 0
0	0 0	0	0 0	0 0
GRAND TOTAL	5			
	VOLUME = 150			CARLES FUEL FOR
	ON COEFFICIEN			
				56592, METERS
	ATER CONTENT			
PARTICLE	COUNT =	.85 PER CO		

SERIES # CTS- 9, TEST # 20 FOR DATA STARTING 23:40 ON 24/ 4/74

DATA	172 5	ELS 1 THRU 86 281 5 2	54 2	6 2	2 5 7
V1	SIBILITY	COEFFICIENT	R = 89673.,	LOWER =	
P	RTICLE CO	UNT .	77 PER CC		
	3 2	6 3 2 1	3 8	2 0	9 9
V:	SIBILITY GUID WATE	COEFFICIENT LIMIT, UPPE R CONTENT & UNT =	.00011 G	LOWER #2	TER 235240. METERS
DATA	FOR CHANN	ELS 33 THRU 0 0	0	0 0	9 9 9 9
CATA	FOR CHANN	ELS 49 THRU © 0	64 Ø Ø	0 0	9 0 0 0
		LUME = 1500 COEFFICIENT		4 PFR MF1	FR STATES
VI LI	SIBILITY GUID WATE		.00021 G	LOWER .	53157. METERS

SERIES # CTS- 9, TEST # 21 FOR DATA STARTING 23:50 ON 24/ 4/74

DATA FOR CHAN 325 5		1 22 2 3	0 1 3	2
VISIBILITY LIQUID WAT	COEFFICIENT = LIMIT, UPPER = ER CONTENT = . OUNT = .89 P	82420., LOWER 00010 GM/M3		S
DATA FOR CHAN 3	NELS 17 THRU 32 4 2 0 3	3 2 0 1		0
VISIBILITY LIQUID WAT	COEFFICIENT # LIMIT, UPPER #3 ER CONTENT # .01 P	31170., LOWER 00011 GM/M3		s
DATA FOR CHAN	NELS 33 THRU 48	Ø Ø		0
DATA FOR CHAN	NELS 49 THRU 64 0 0 0 0	0 0 0 0		0
EXTINCTION VISIBILITY LIQUID WAT	OLUME = 1500. CO COEFFICIENT = LIMIT, UPPER = ER CONTENT =	.593E-04 PER 65995., LOWER 00021 GM/M3		5

SERIES # CTS- 9, TEST # 22 FOR DATA STARTING 0: 0 ON 25/ 4/74

DAT	r A	F		49	9			:	50	5			:	24	H 3		,	11						2					4				1 2	
					4															4									2				2	
	V	S	I	8	L	I	T	Y	L	I	M I	T	ŕ	EN	P	PE	R	1	•	8	66	51	2.	.,	-	-0	ER WEI 3	R	E 7	6	63	31	•	METERS
DAT	A	F	0	R	C	н	A	N	١E	L	S	1	7	T	H	RL	,	3:	2															
				1	1					3					6					30									2				10	2 0
	V:	S	I	11	1	IW	T	Y	L	1	M !	T	Ť	EN	P	PE	R	•	• 2	6	70	2	0	. ,	1									METERS
DAT	A	F	0	R	C	H	A	N									,	41	В	10000														ON STA
				(0					0					0				0				0	0
	V	S	I	8	11	IW	T	Y	LR	I	M)	T	, TI	EN	P	PE	R		• 1	4	90	00	5	,	1		WE							METERS
DAT	T A	F	0				A	N		-		4	9	7			j	6	4															
				1	0					0					0					0					- 7				0				0	
GR	EX	S	II	MI NO B:	PL CT	EIIIW	0 I	VENY	CLR	OI	EF M;	FTN	I	EN	PI	PE	R	-		6 0	24	48	6	. ,	1							50		METERS

SERIES # CTS- 9, TEST # 23 FOR DATA STARTING 0:10 ON 25/ 4/74

		1 THRU 16 285		4 0	3
		4		3 3	6
			4075 04 050		
VISI8	ILITY LIMI D WATER CO	T, UPPER .	.487E=04 PER 1 80345., LOWER .00010 GM/M3 PER CC		METERS
DATA FOR	CHANNELS	17 THRU 32			
	2 1	3	2 3	0 1	0
	0	2	0 1	The second secon	2
LIQUI	ILITY LIMI D WATER CO	T, UPPER .	.138E=04 PER / 283859., LOWER .00016 GM/M3 PER CC		METERS
DATA FOR	CHANNELS	33 THRU 48			
	0 0	2	0 0	0 0	0
	0 0	0	0 0	0 0	0
DATA FOR	CHANNELS	49 THRU 64			
		0	0 0	0 0	
	0 0	0	0 0	0 0	0
	PLE VOLUME	= 1500. C FICIENT =	C .625E-04 PER N	1ETER	
LIQUI	ILITY LIMI D water co	T, UPPER .	62621., LOWER		METERS

SERIES # CTS- 9, TEST # 24 FOR DATA STARTING 0:20 ON 25/ 4/74

	R CHANNEL: 40 546 5 10		52 25 7 3	5 2 2 2 2 5
VISI:	BILITY LI		.00011 GM/M3	ETER = 59862, METERS
DATA FOR	5 7	5 17 THRU 32 5 0	3 Ø 1	2 0 0 0 1 0
VISI6	BILITY LI		.00012 GM/M3	ETER =230705. METERS
DATA FOR	0 6	S 33 THRU 48 0 0	и 0 и 0	0 0 0
	0 0	5 49 THRU 64 Ø	Ø Ø	0 0 0
EXTI VISI LIQU	MPLE VOLUMENTION COMBILITY LICENSISTED WATER		.630E-04 PER N 62061., LOWER .00022 GM/M3	ETER = 47529, METERS

SERIES # CTS- 9, TEST # 25 FOR DATA STARTING 0:30 ON 25/ 4/74

DATA F	OR CHANNELS 463 494 2 3	1 THRU 16 280 4	76 27 9 1	2 2 3 3 3
VIS	IBILITY LIM	IT, UPPER =	.00010 GM/M3	METER = 61469, METERS
DATA F	OR CHANNELS 8 7 1 0	4	5 A O	0 1 1 0 1 0
VIS	IBILITY LIM	IT, UPPER =:	00011 GM/M3	TETER =218321. METERS
DATA F		33 THRU 48 0 0		0 0 0 0 0 0
VIS	IBILITY LIM	IT, UPPER =	00009 GM/M3	4ETER =696324. METERS
	OR CHANNELS	49 THRU 64		© 0 0 0 0 0
EXT VIS LIG	INCTION COE IBILITY LIM UID WATER C	IT, UPPER =	.668E-04 PER M 58593., LOWER ,00031 GM/M3	METER = 44874, METERS

SERIES # CTS- 9, TEST # 26 FOR DATA STARTING 0:40 ON 25/ 4/74

2 5 7 8 4 0 EXTINCTION COEFFICIENT = .505E-04 PER METER	5	5
EXTINCTION COEFFICIENT = .505E-04 PER METER		
VISIBILITY LIMIT, UPPER = 77433., LOWER = 59302	MET	ERS
LIQUID WATER CONTENT = .00011 GM/M3		
PARTICLE COUNT = .93 PER CC		
DATA FOR CHANNELS 17 THRU 32		
	1	1
2 3 3 3 5 3 2 2 0 0 1 1 0	1	0
EXTINCTION COEFFICIENT = .164E-04 PER METER		
VISIBILITY LIMIT, UPPER =239038., LOWER =183067 LIQUID WATER CONTENT = .00015 GM/M3	. MEI	EKS
PARTICLE COUNT = .02 PER CC		
and the second s		
DATA FOR CHANNELS 33 THRU 48		
	0	0
	0	0
DATA END CHANNELS AN THRU SA		
DATA FOR CHANNELS 49 THRU 64		•
	_	0
GRAND TOTALS		
SAMPLE VOLUME = 1500. CC		
EXTINCTION COEFFICIENT = .669E-04 PER METER		
VISIBILITY LIMIT, UPPER = 58487., LOWER = 44792	. MET	ERS
LIQUID WATER CONTENT = .00026 GM/M3		
PARTICLE COUNT = .95 PER CC		

SERIES # CTS- 9, TEST # 27 FOR DATA STARTING 0:50 ON 25/ 4/74

UNIA				1 TH		2.0		
	42	4	7			20		2 2 4 2
						13E-04 PER		METERS
L	IQUI	D WA	TER C	DNTENT	= .00	011 GM/M3		
P	ARTI	CLE	COUNT	•	.94 PER	CC		
DATA	FOR	CHA		17 TH				
		4	4	5 2		1	1	77
		1	•	-	И	0	Ø	0 1
						36E-04 PER		
						231 . LOWE	R =219975	. METERS
						013 GM/M3		
	AKII	LLE	COUNT	•	.02 PER			
DATA	FOR	CHA	NNELS	33 TH	KU 48			
		0	Ø		1	1		0 0
		9	0		1	1 0		0 0
E	XTIN	ø	0	0	1 3	Ø	0	
V	1518	P CTIO ILIT	O COE	A FFÍCIEI IT, UPI	1 3 NT = .9 PER =421	0 27E-05 PER 957., LOWE	METER	0 0
V L	ISI8 IQUI	P CTIO ILIT D WA	O COE	FFICIEI IT, UPI	1 9 NT = .9 PER =421 = .00	0 27E-05 PER 957., LOWE 021 GM/M3	METER	0 0
V L	ISI8 IQUI	P CTIO ILIT D WA	O COE	FFICIEI IT, UPI	1 3 NT = .9 PER =421	0 27E-05 PER 957., LOWE 021 GM/M3	METER	0 0
V L P	ISI8 IQUI ARTI	GCTIC TLIT D WA CLE	O COENT	FFICIEI IT, UPI	1 3 NT = .9 PER =421 = .00 .00 PER	0 27E-05 PER 957., LOWE 021 GM/M3	METER	0 0
V L P	ISI8 IQUI ARTI	P ICTIO ILIT D WA CLE CHA	O COEI Y LIM TER COUNT COUNT	FFICIEI IT, UPI DNTENT 49 THE	1 3 NT = .9 PER =421 = .00 .00 PER	0 27E-05 PER 957., LOWE 021 GM/M3 CC	0 METER R =323155	0 0
V L P	ISI8 IQUI ARTI	P ICTIO ILIT D WA CLE CHA	O COEI Y LIM TER COUNT COUNT	FFICIEI IT, UPI DNTENT 49 THE	1 3 NT = .9 PER =421 = .00 .00 PER	0 27E-05 PER 957., LOWE 021 GM/M3 CC	0 METER R =323155	. METERS
V L P	ISI8 IQUI ARTI FOR	PETION WAS CLE	O COEI Y LIM TER COUNT COUNT NNELS	FFICIEI IT, UPI DNTENT 49 THE	1 3 NT = .9 PER =421 = .00 .00 PER	0 27E-05 PER 957., LOWE 021 GM/M3 CC	0 METER R =323155	0 0 . METERS
DATA GRAN	ISI8 IQUI ARTI FOR D TO SAM	CTIC ILIT D WA CLE CHA O TALS	O COEI Y LIM TER COUNT COUNT NNELS O	FFICIENT IT, UPI DOTENT 49 THE	1 3 NT = .9 PER =421 .00 PER RU 64 0	0 27E-05 PER 957., LOWE 021 GM/M3 CC	0 METER R =323155	0 0 . METERS
V L P DATA GRAN	ISIBIOUI ARTI FOR D TO SAM	CTION WAS CLE CHAM	O COEI Y LIM TER CO COUNT NNELS O VOLUME N COEI	FFICIE	1 3 NT = .9 PER =421 = .00 PER RU 64 0 NO . CC NT = .7	0 27E-05 PER 957., LOWE 021 GM/M3 CC	METER R =323155	0 0 . METERS
DATA GRANIE	ISIBIOUI ARTI FOR D TO SAM XTIN	CTION WAS CLE CHAR	VOLUME V LIM TER COUNT NNELS VOLUME V CUE V LIM	FFICIENT 49 THE APPLICATION FFICIENT THE PROPERTY OF THE P	1 3 NT = .9 PER =421 = .00 PER RU 64 0 NA	0 27E-05 PER 957., LOWE 021 GM/M3 CC 0 0 42E-04 PER 729., LOWE	METER R =323155	0 0 . METERS
DATA GRANIE V	ISIBIOUI ARTI FOR D TO SAM XTIN ISIBIOUI	CTION WAS CLE CHARLS PLE CTION WAS CLE	VOLUMENT COLUMN CHER COLUMN CH	FFICIENT 49 THE 49 THE APPLICATION FFICIENT DINTENT	1 3 NT = .9 PER =421 = .00 PER RU 64 0 NA	0 27E-05 PER 957., LOWE 021 GM/M3 CC 0 42E-04 PER 729., LOWE	METER R =323155	0 0 . METERS

SERIES # CTS- 9, TEST # 28 FOR DATA STARTING 1: 0 DN 25/ 4/74

DA	TA		F	DF	1	C	H	A	N	N	EL		•		1		T	H	R	U	-	10	5																			
				46	7				-	6	4	5				3	3	0						9)				2	9					3				3	5	1	2
												3												2						2					3				2	5		3
	E	×	T	11	10	T	1	0	N	(C	DE	F	F	1	C	I	E	N	T					5	4	9	E	- 6	14		E	R	M	EI	E	R					
																																		1		5	46	32	0.	,	METE	RS
																														M	11	13										
	P	A	R	7 3	C	L	E	1	C	01	JI	1	•						1	. !	0 (5	F	E	P		C	C														
DA	TA		F	OF	2	C	H	A	N	N	El	. 5	5	1	7					U	;	32	2																			
					5							5						9						2						3					1				2			1
					1						-	0						0						1						0					0				9	•		1
	Ε	×	T :	11	10	T	I	0	N	(C	30	F	F	I	C	I	E	N	T					1	5	1	E	- 6	14		E	R	M	EI	E	R					
	٧	I	S	E	I	L	1	T	4	1		1	11	T			U	P	P	E	R		2	5	9	4	6	4	. ,		LC	W	ER	!		9	87	1	0.	,	METE	RS
	L	I	QI	J	0		W	A	T	E	7	(:0	IN	1	E	N	T						0	0	0	1	4	G	M	11	13										
	P	A	R'	7 1	C	L	E	1	C	DI	JI	1								. 1	02	5	F	E	R		C	C														
DAT	TA		F) F		C	H	A	N	N	El	. 5	,	3	3		T	H	R	U		48	3																			
					0						-	0						0						0						0					0				0			0
					0						-	3						0						0)					0					0				9	,		9
DA	TA		F) F	?	C	H	A	N	N	El		3	4	9		1	H	R	u	(5 4																				
					0						-	9						0						0	1					0					0				0	,		0
					0							0						•						0						0					0				9	•		0
GR	AN	D		7 (T	A	L	s																																		
			S	4	P	L	E	d	۷	01		JP	1 E				1	5	0	0		(:0																			
	E																								6	9	9	E	- 8	14	-	E	R	M	EI	E	R					
	٧	I	S	16	1	L	1	T	Y	1		1	1]	1			U	P	P	E	R	-		5	5	9	4	3	. ,		L	W	ER	?		4	28	14	4.	,	METE	RS
	L	1	91	11	0		W	A	T	E	7	(C	N	T	E	N	T							0	0	2	5				13										
	P		R	1]	C	L	E	1	C	01	JI	VI	1		1				1	. 1	01	3	F	E	R		C	C														
						- 410																																				

SERIES # CTS- 9, TEST # 29 FOR DATA STARTING 1:10 ON 25/ 4/74

DAT	•	F	OF	2	C	H	4	11	NE	L	3			1	1	H	R	U		1	6																				
			42	22				:	54	17				1	30	1						7 9	•					3	1					1				1			1
				4						5						2						(5					1	5					2				2			6
											241																														
	E	17	I	NC	T	I		N	C	0:	E	F	F	I		E	N	T		•		1		50)3	E	•	0	4	P	E	2	M	EI	EF	!					
	V:	5	I	3 [L	I,	1	4	L	. I	M	I	T	•	L	P	P	Ε	R				77	8	0	2	•	•	L	.0	MI		1		59)5	8	4.		METE	RS
	L																											GP	1/	M	3										
	P	R	T	C	L	E	(0	U	IN	T		•					•	9	4		PI	=	3	C	C															
DAT		_	0.5		_	_			. 5					,	•						•																				
DAI	-	•	0	1	-		-	A L	4 6		3									0	2		1											2				2			1
																							9						7					0				0			0
										•						U							U											0				•			
	E	17	11	v C	T	11	0!	v	0	0	E	F	F	1 (: 1	E	N	T					. 1	1 2	12	E		0	4	P	E	2	M	E1	EF	2					
																																						9.	-	METE	RS
	L																																								
	P																											-													
																		•																							
DAT	A	F	OF	?	C	H	AI	11	NE	L	S		3	3	1	H	R	U		4	8																				
																0							0					(8					0				0			0
				9						0						0						1	8					-	0					0				0			0
DAT	A	F	0	5	C	H	A	V	VE	L	5		4	9	1	H	R	U		6	4																				
				9						0						0						(9						0					0				0			0
				0	1					0						0						(8					(8					0				0			0
			_	_			_																																		
GRA	IN					-	_					-				-	_	_																							
			4																									•			=										
																																			EF		0			METE	De
																																- 1		•	45	, 3	2	1.		METE	K 3
	10.000	0		200																								91	7/	-	3										
	P	K	1 .	יו	L	_		L) (N	1		-					•	y	o		7 (- 1	•	L	L															

SERIES # CTS- 9, TEST # 30 FOR DATA STARTING 1:20 ON 25/ 4/74

DA	TA																								•											14
			•	1 6	3																								2				2			4
																					•								-				•			_
																											PE									
	Y	1	21		I	L	IT	Y	5		M	I	I		U	•	'E	R			7	92		8,	4	L	M3	ER			500	59	2.	M	ETI	ERS
	P	1	RI	1	C	L		C		IN	17	0		-			•	9	3	P	E	R	C	C	91	1/	MJ									
		_		•				_	•								•		•				-	•												
DAT	TA	- 1	F	R		CI	1/	N	N	EL	.5		17	,	T	HF	N U	1	32	2																
																5					2				1				2				0			0
					0					-	,					1					0				6)			0				0			0
	F		7 1	N	•	T '	7.7	N		-	F	5	F 1	•	1	FA	T					10		F.	. a .		PE		MP	•	ED					
	v	î	8 1	8	Ĭ		Ī	Y	i		M	I	1		Ū	Þ	È	R	٠,	3	8	95	5	6		L	OW	ER		2	983	34	1.	M	ETE	RS
	L	I	91	I	D	1	NA	T	E	2	C	ŌI	NT	E	N	1					0	00	0	7	GI	1/	M3			-						
	P	A	RT	I	C	LE		C	01	11	IT							0	2	P	E	R	C	C												
044						~ .		M		= 1						.			4 6																	
DAT			•	7							, 3						ťU		4 6		0				0				0				0			0
											,					8					0												9			0
																					-												•			
BAT	T A	1	F	R	1	CH	14	N	N	EL	. 5	•	45)	T	41	US	(5 4	•																
											1					9					0				6				0				0			0
					0					6)				9	9					Ø				6	,			0				0			0
GR	N	D	1	0	T	41	9																													
•	- ' '								01	L	M	E			1	50	0		C	:c																
		X'	7]	N	C	T	0	N	(CC	E	F	7 1	C	I	EN	IT	-									PE									
	٧	1	3 1	B	I	1	IT	Y	1	. 1	M	I'	۲,		U	Þ	E	R		1	6	58	5	2.		L	OW.	ER			504	43	3.	M	ETE	RS
																									GM	1/	M3									
	P	A	(1	1	L			C	Ųί	11	I		,				•	9	3	7	21	R	C	C												

SERIES # CTS- 9, TEST # 31 FOR DATA STARTING 1:30 ON 25/ 4/74

DATA	FOR	4 C	HAN	NEI	_S	1	TI	HRU	10	5							
						-					5		25		6	1	2
								2			5		0		5		2
														PER			
	ISI															66670.	METERS
	ART												Um/	7113			
DATA	FOR	R C	HAN	NEI	S	17	TI	HRU	3:	2							
		3			5		(7			3		1		1	1	1
		1		(9		1	9		(0		0		0	0	0
E	XTI	NCT	ION	0	DEF	FI	CI	ENT			.71	3E-	05	PER	MET	TER	
															= 4	129452.	METERS
L	IQU:	D	WAT	ER	CC	NT	EN'	1 .			100	05	GM/	/M3			
P	ART	ICL	E C	וטם	T	•		•	01	P	R	CC					
DATA	FOR	2 C	HAN	NEI	.5	33	TI	HRU	40	8							
		0		(7		(7		6	7		0		0	0	0
		0		(0		(8		(9		0		0	0	0
DATA	FOR	4 C	HAN	NEI	. 8	49	TI	HRU	6	4							
		0			0		(9		•	7		0		0	0	
		0			0		(8		(9		0		0	0	0
GRAN																	
			EV														
														PER			METERA
															•	5/545.	METERS
-	IQU:	101	FC	UIII	UT	-	CIA		87	P	5 P	CC	GM/	MO			
	-11			00	• •			•	4,	,	- 11						

SERIES # CTS- 9, TEST # 32 FOR DATA STARTING 1:40 ON 25/ 4/74

DAT	A	•									-								-		-																	,				
			4	3	5				4														5 (3				26	5				3					2				0
					1						4						3						1	1				•	4				3					3				2
	E	X1	1	N	C	rI	0	N		C	0	E	F	F	1	: 1	E	N	T						4 4	17	E	0	4	P	ER		ME	T	ER							
																																								ME	E	RS
	L	10	U	I	D		A	T	E	R		C	01	N	16	N	T						. (00	00	9 0	9	Ġŀ	4/	M	3											
	P	AF	15	I	CI	. 8		C	0	U	N	T	1						•	8	5	-	PE	EF	?	C	C															
DAT	A	F	0	R	(CH	A	N	N	E	L	5		1 7	,	1	H	R	u		3:	2																				
											2						3					1											0					1				
					1						1						2						0	0				1	1				0					0				
																																	ME									
																																		2	97	5	91		1	MET	E	RS
																													1/	M	3											
	P	AF	T	I	CL	. E		C	0	U	N	T	1						•	0	1	1	PE	EF	3	C	C															
DAT	A	F	0	R	(CH	1	N	N	E	L	S		3 3	3	1	H	R	u		41	B																				
											0						0						Q	0					0				0					0				
				-	0						0						0						6	9				•	8				0					0				0
DAT		F	0	R	(: H	IA	N	N	E	L	S		49	3	7	H	R	u		6	4																				
1150		H									0						0						6	7					8				0					0				0
				-	0						0						0						6	0					0				1000					0				0
GRA	N	ח	T	מ	T	11	S																																			
			À						0	L	u	M	E			1	5	0	0		1	C	0																			
	E	X 1	I	N	C	7 1	0	N		C	٥	E	FI	=	1		E	N	Ť	•				. 5	5 4	17	E	0	4	P	ER		ME	T	ER							
	V	18	I	8	I	. 1	T	Y		L	I	M	ľ	7	,	U	P	P	E	R	1		7	7	4	16	1		L	.0	WE	R		-	54	7	28		1	HET	E	RS
																														M								•				
	P																																									
																			-																							

SERIES # CTS- 9, TEST # 33 FOR DATA STARTING 1:50 ON 25/ 4/74

	53 412	1 THRU 16 278 64 5 3	19 6	4 3 6
VISI	BILITY LIMI	T, UPPER = 8	0009 GM/M3	ETER 66490. METERS
DATA FO	CHANNELS 3 3 1 0	2 2	1 0	4 0 0 1 2 0
VISI	BILITY LIMI		0014 GM/M3	ETER =228804, METERS
DATA FOR	1 0		0	
VISI	BILITY LIMI ID WATER CO		0005 GM/M3	ETER =1072241 METERS
DATA FOI	CHANNELS 0 0 0 0		0	
EXTI VISI LIGU	MPLE VOLUME NCTION COEF BILITY LIMI ID WATER CO		0028 GM/M3	ETER = 49157, METERS

SERIES # CTS- 9, TEST # 34 FOR DATA STARTING 2: 0 ON 25/ 4/74

	37 442	S 1 THRU 1 230 5	65 18 2	7 1	3 4
VISI	BILITY LI	MIT, UPPER	.400E-04 PER 97683., LOWER .00008 GM/M3 PER CC		METERS
	2 4		2 2	1 1	0
VISI LIQU	BILITY LI	MIT, UPPER	.686E-05 PER 569858., LOWER .00005 GM/M3 PER CC		METERS
DATA FO	R CHANNELS			0 0	0
	0 0	8 49 THRU 6. 0 0	4 0 0 0 0	0 0	9
EXTI VISI LIQU	MPLE VOLUI NCTION COI BILITY LII ID WATER I	MIT, UPPER	.469E=04 PER 83389., LOWER .00014 GM/M3		METERS

SERIES # CTS- 9, TEST # 35 FOR DATA STARTING 2:10 ON 25/ 4/74

DATA				8	1 THRI 228 7	U 16		7	5 1	1 3
L	ISIB	ILI D W	TY L	IMIT	. UPP	ER =1	00444.,		ETER • 76925.	METERS
DATA		CH 5 0		LS 1 3	7 THR			1		
V L	ISIB IQUI	ILI D W	TY L	IMIT	. UPP	ER =5	27921., 20005 GI	5 PER MI LOWER M/M3	ETER =404308.	METERS
DATA		CH 0		LS 3 0 0	3 THRI 0 0				a @	0
DATA		0 0		LS 4 0 0	9 THR	(8 9 8 0	0
V L	SAM XTIN ISIB IQUI	PLE CTI ILI D W	VOL ON C TY L ATER	DEFF IMIT CON	, UPPI	T =	.464E-0.84388.,		ETER • 64628.	METERS

SERIES # CTS- 9, TEST # 36 FOR DATA STARTING 2:20 ON 25/ 4/74

DATA F	OR CHANN	ELS 1 THE	RU 16		
	264 4	18 228	54	17 2	2 2
	6	8 7		0 3	3 7
			NT = ,383E-		
VIS	IBILITY	LIMIT, UP	PER =102264,	, LOWER .	78318. METERS
			800008	GM/M3	
PAR	ITCLE CO	UNI #	.68 PER CC		
DATA F	OR CHANN	ELS 17 TH	211 32		
•	4	5 3		2 1	1 2
	1	1 0		0 0	9 9
EXT	INCTION	COEFFICIE	NT = .995E-	05 PER MET	ER
VIS	IBILITY	LIMIT, UP	PER =393357.	, LOWER #3	01252, METERS
LIG	UID WATE	R CONTENT	.00008	GM/M3	
PAR	TICLE CO	UNT =	.01 PER CC		
UATA P		ELS 33 THI			
	0	0 0	0	0 0	0 0
	· C	0 0	0	0 0	0 0
DATA F	OR CHANN	ELS 49 THE	211 64		
V	0		0	0 0	0 0
	é	0 0	0	0 0	0 0
GRAND	TOTALS				
		LUME = 150			
EXT	INCTION	COEFFICIE	T = .482E-	04 PER MET	ER
					62159, METERS
			.00016	GM/M3	
PAR	TICLE CO	UNT =	.70 PER CC		

SERIES # CTS- 9, TEST # 37 FOR DATA STARTING 2:30 ON 25/ 4/74

DATA FOR CHAN	NELS 1 THRU 1	6	
	466 208	58 16	5 2 2
	6 3	4 3	0 2 2
	•		•
EVITACTION	-	.364E-04 PER	ETED
			= 82282. METERS
	ER CONTENT :		
PARTICLE L	DUNT = .69	PER CC	
DATA FOR #			
	INELS 17 THRU 3		
2	1 3		0 1 0
P	6 1	2 0	0 0 0
		.934E-05 PER	
VISIBILITY	LIMIT, UPPER	=418650., LOWER	#320623. METERS
	ER CONTENT =		
PARTICLE C	OUNT = TAUD	PER CC	
DATA FOR CHAN	NELS 33 THRU 4	8	
9	0 0	0 0	0 0 0
Ø	Ø Ø	0 0	0 0 0
DATA FOR CHAN	NELS 49 THRU 6	4	
	0 0	0 0	0 0 0
Ø	o o	0 0	0 0 0
GRAND TOTALS			
The second secon	OLUME = 1500.	rr	
		.458E-04 PER	METED
VICTOR TO	LIMIT HOPED		- SEATO METERS
			# 65478. METERS
	ER CONTENT =		
PARTICLE C	OUNT = .70	PER CC	

SERIES # CTS- 9, TEST # 38 FOR CATA STARTING 2:40 ON 25/ 4/74

DATA FOR CHA	NNELS 1 THRU	16		
	379 200	61 21	5 4	1
4	10 7	6 1	5 0	
	10		•	•
FYTINCTIO	N CUEFFICIENT	2 357F-04 P	FD METED	
	Y LIMIT, UPPER			METERS
	TER CONTENT =			
	COUNT = .6		9	
PARTICLE	LIJUNI	J PER CL		
DATA FOR CHA	NNELS 17 THRU	30		
		n 2	4 0	1
	v 2	0 0		
		Ε. Ε.		
FYTTNCTIO	N COEFFICIENT	- 725F-05 P		
	Y LIMIT, UPPER			METERS
	TER CONTENT =			
	COUNT = .0			
, 411, 2066				
DATA FOR CHA	NHELS 33 THRU	48		
	6 6		0 0	
	0 0		0 0	
DATA FOR CHA	NNELS 49 THRU	64		
0	0 0	0 0	0 0	9
0	N O	9 9	0 0	9 0
GRAND TOTALS				
SAMPLE	VOLUME = 1500.	CC		
EXTINCTIO	N COEFFICIENT	. 430E-04 P	I.R METER	
VISIBILIT	Y LIMIT, UPPER	= 90984., LO	WER . 69680.	METERS
LIQUID WA	TER CONTENT :	.00013 GM/M	3	
PARTICLE	COUNT : .6	6 PER CC		

SERIES # CTS- 9, TEST # 39 FOR DATA STARTING 2:50 ON 25/ 4/74

DATA	Δ			4															1 (49					2	0					3					0					
																											3					3					0				2	
																									_																	
																																4E				2		-	MET	. =	0 0	
	LI																														_	•	'		,		••			_	~ •	,
	PA																																									
DATA		E	n L	2	_				F			•	7	,					2	2																						
0417	•	,	LIF	-	٦							,					u		.,	-	2	,					1					4					0				1	
				1						V					0						1						0					0					0				6	
																											20			_												
	EX	T	IN	I C	T	10) \		C	0 6	F	F	I	C.		N	T	.,	=			1	1	31	•	0	4	, ,	76	R	1	E	TE	R	•				461	. =	D .	
	LI																														~	•	20	, 4	2	ם י	• •	1	MET		K	,
	PA																									٠		•														
																	Ĭ																									
DATA	Δ	F	0 6																4	8																						
									1						0	•					13						0					0					0				6	
				6						0					7	'					0						0					0					0				6	,
DATA	Δ	F	CH	i	С	н	1	ı Ni	E	_ 5	5	4	9	1	+	R	u	1	6	4																						
																					0	•					0					0					0				6	,
				9						N					9	1					¢	•					9					0					0				9)
GRAN			T (
GRA	, j v			1P				<i>(</i> ()			4 5		=			i (4	a			- 1																						
,	FX																					4	9	31	-	0	4		> E	R		4E	TE	R								
																																				7:	3.	-	MET	E	RS	5
	LI																																									
	PA	R	T	C	L	E	C	()	ارا	Ni 1	T	=						7	5	F	t	R	-	C	2																	

SERIES # CTS- 9, TEST # 40 FOR DATA STARTING 3: 0 ON 25/ 4/74

DATA FOR CHA	NNELS 1 THRU 1	6		
	363 199	47 28	1 1	5
	1 0	2 2	2 3	1
EXTINCTIO	N COEFFICIENT =	.360E-04 PER	METER	
	Y LIMIT, UPPER			METERS
	TER CONTENT .			
	COUNT = .69			
DATA FOR CHA	NNELS 17 THRU 3	2		
	4 3		0 1	0
2	0 9	0 1	0 0	0
EXTINCTIO	N COEFFICIENT .	.990E-05 PER	METER	
	Y LIMIT, UPPER			METERS
	TER CONTENT :			
PARTICLE	COUNT = .01	PER CC		
DATA FOR CHA	NNELS 33 THRU 4	8		
	8 0	0 0	0 0	0
	0 0	0 0	0 0	0
DATA FOR CHA	NNELS 49 THRU 6	4		
Ŋ	0 0	0 0	0 0	0
U	0 0	0 0	0 0	0
GRAND TOTALS				
SAMPLE	VOLUME = 1500.	CC		
	N COEFFICIENT =		METER	
EN 1 1 10 1 10				
			R . 65338.	METERS
VISIBILIT	Y LIMIT, UPPER TER CONTENT =	= 85315., LOWE	R = 65338.	METERS
VISIBILIT	Y LIMIT, UPPER	 85315., LOWE .00015 GM/M3 	ER = 65338.	METERS

SERIES # CTS- 9, TEST # 41 FOR DATA STARTING 3:20 ON 25/ 4/74

DATA				NELS 417				6		16		1	,
		-								4	2	5	4
	v T T I	uc T	TON	COF		CTE	JT .		4075-	04 PER	METER		
													METERS
L	IQU:	ID	WAT	ER C	DNT	ENT		. 0	0000	GM/M3			
•	ART	ICL	E C	DUNT	•		.73	PE	R CC				
DATA	FOR	RC					RU 3	2					
		1		11				5		1	3	1	1
		0		0		0					0	0	
										04 PER			
										GM/M3	R =219	037.	METERS
									R CC	United			
	=0												
DATA	Fui	0		NELS	33	0	(U 4			0	0		0
		0		0		0		9)	0	0	9	0
DATA	E01		HAN	NEI S	40	THE	211 6	4					
0414	701	0	MAN	0	-,	0		. 6	,	0		0	
		0		0		0		6)	0	0	0	0
GRAN	D T	014	LS										
	SAI	MPL	EV	OLUM									
										04 PER			METERA
										GM/M3	K = 00	120.	METERS
				DUNT					R CC				

SERIES # CTS- 9, TEST # 42 FOR DATA STARTING 3:30 ON 25/ 4/74

DAT	1																																					
				2	4 2	2				43	3				5	(A)	0				C	6														0		5
					:	,					3						4					4					3					5				1		5
			_									_											_						_					_				
																														R								
																															*	=	7	93	9	9.	MET	ERS
																											3M	11	13									
	P) A	K	T	1 (L	E		C	JO	IN	T	1	•				•	6	9	F	Ë	R	C	C													
DAT	T 4		F	n	2	_	н	Δ	NI	NF		S		1 7	,	T	46	,,,		3 :	,																	
			•			, `					1						5			٠,	•	3					2					7				0		0
											IX.											a					0					0				0		0
											4.						•					4)					4)					K				e		U
	F	. x	T	1	ví	· T	T	n	N	r	0	F	FI	. 1	C	TI	FN	T		2			11	O F	F	- 0	74		Þ	R	м	FI	F	R				
																																					MET	FRS
																												11						-		•		
																									C		,,,	,	, 0									
				•	• `	_	_		٠,			•						•		-	,	-	''															
DAT	1 4	1	F	n	4	C	H	A	NI	NE	L	S	;	33	,	TI	18	U		4 8	3																	
					Ų	1					0					1	7					0					0					0				0		0
					0	,					0					1	3					0					0					N				W		0
																											-											
DAT	1 4	1	F	C	4	C	H	A	NI	NE	L	S		19)	TI	HR	U	(5	4																	
					0	3					•					(7					0					0					Ø				0		0
					¥						6											0					0					0				0		0
GRA	1 1	D																																				
																		0																				
																														R								
																															1		6	16	9	2.	MET	ERS
	L	. I	(J	U)	W	A	TE	ER		C	QI	T	E	N	7	=				0	0	7 1	7	(M	11	13									
	P	A	K	T	1	L	E	-	C	JL	N	T	:						7 (0	F	E	R	C	C													

SERIES # CTS- 9, TEST # 43 FOR DATA STARTING 3:40 ON 25/ 4/74

DATA	EUD CHV	NELS 1 THE	211 16		
DA14		627 256		23	3 1 3
	3	3 4		6	2 4 2
FX	TINCTION	COEFFICIE!	NT = .45	7E-04 PER M	ETER
					= 65588. METERS
		TER CONTENT			
		COUNT =			
DATA	FOR CHAN	WHELS 17 THE	211 32		
	2	7 1		0	7 4 4
	1	5 0	0	1	1 0 0
EX	TINCTION	CUEFFICIE	NT = .16	5E-04 PER M	ETER
					181530. METERS
		TER CONTENT			
PA	RTICLE (COUNT =	. 82 PER	CC	
DATA	FOR CHAP	WNELS 33 THE	RII 48		
	V	v v	Ø	0 1	·
	U	N N	U	0	0 0
DATA	FOR CHAN	WINELS 49. THE	₹0 64		
		G O	0)	0 (
	ø	6 0	Ø	0	2 0 U
	TOTALS				
		/OLUME = 150			
				2E-04 PER MI	
					= 48180. METERS
		TER CONTENT			
20	RTICLE C	COUNT =	.86 PER	CC	

SERIES # CTS- 9, TEST # 44 FOR DATA STARTING 3:50 ON 25/ 4/74

DAT		53	HANNE 49	3	-			17	4 6	2 3 4 5
	VISI	BIL!	ITY L	IMIT	, UP	PER :	1053	56., LOWI 08 GM/M3	ER . 80	687. METERS
			HANNE	LS 1	7 TH	RU 32		2	1 0	0 1
	VISI	BIL	ITY L	IMIT	ICIE, UP	NT =	4695	3E-05 PE	R METER ER =359	602. METERS
			E COU HANNE		3 TH	RU 48		ø	0	0 6
	VISI	BIL	ION C	OEFF IMIT	ICIE, UP	NT = PER =	1212			0 0 536. METERS
	PART	ICLE	WATER E COU HANNE	NT =		.00	PER			
GRA	ND TI	DTAL	-	0	0		0	0		0 0
	EXTICULATION:	NCT!	ITY L	OEFF IMIT CON	ICIE, UP	NT =	.48 803	21 GM/M3		533. METERS

SERIES # CTS= 9, TEST # 45 FOR DATA STARTING 4: 0 ON 25/ 4/74

DATA	FOR	CI	HAN	NEL	. 5	1	1	HR	U	10	5							
	25	4		556	5		24	15			5	8		18		3	2	1
		1			4			4						2		1	5	4
E	XTIN	CT	ION	CC	EF	FI	CI	EN	T			. 4	16E	-04	PER	MET	ER	
																R =	72071.	METERS
	Ioni													GM.	/M3			
P/	ARTI	CLI	. C	וטטו	IT	=			. 7	7	P	ER	CC					
DATA	500	-			•		, ,	ם נו		2,	,							
UA14	run	5		2				3		0,		1		0		0	9	0
		2			*			2				0		Ø		0	•	0
		•						G 2				*,						
E	KTIN	CTI	ION	CC	EF	FI	CI	EN	T			-91	SIE.	-65	PER	MET	ER	
																		METERS
	IQUI																	
	ARTI																	
DATA	FOR	CH						HR	U	48	3							
		N		0	1			0				a		0		0	Ø	0
		N		6	5			0				0		0		0	0	0
										_								
DATA									U	6								
				0								Ø		0		0	9	
		0		Ų	9			Ø				0		0		0	0	0
GRAND) TO	TAI	•															
SUPINE	SAM			01.1	ME			50	a	•								
E													AF.	04	PER	MET	FR	
																		METERS
	IQUI																	
	ARTI																	
			•						• .		•							

SERIES # CTS- 9, TEST # 46 FOR DATA STARTING 4:10 ON 25/ 4/74

DAT	A		9					78				23	37					4				19			3		3	1 5
	VI LI	SI	B	L	I.	TY	E	R	M	IT	ŕ	EN	IP	PE	ER		•	8	90	9	9.	,	レリ			TER 68	90.	METERS
DAT	A	FO	,					4					2			3:	2					3	1		1 1		1 0	1
873	VI	SI	8	IL	I'	TY	E	R	M	IT	Ť	EN	IP	PE	ER	' '	= 2	5	83	7	1.	GM	L	ER		TER 197		METERS
DAT	A	FO	(C		AN		0							j	41	8	0 0				8			0		8	9
DAT	A	FO				AN									J	6	4	0 0				6			0		0	
ă.	EX	SA TI SI QU	MIN B	PL CT IL	EII	VONTY	E	COLI	EM	FFIT	I	C I EN	IE	PE	ER	•	•	6 0	62	4	7.	,	L			TER 50	35.	METERS

SERIES # CT8- 9, TEST # 47 FOR DATA STARTING 4:30 ON 25/ 4/74

DATA FOR	CHANNELS 32 453 3 5	1 THRU 16 251 78 2 5 2	21 3 0 2 3 5	
VISI6	BILITY LIMI ID WATER CO	FICIENT = .459E=0 (T, UPPER = 85170., ONTENT = .00010 G = .85 PER CC	LOWER . 65227. M	
DATA FOR	R CHANNELS 3 1 0 0		0 3 1 0 1 1	2 0
VISIE LIQUI	BILITY LIMI ID WATER CO	FICIENT = .129E=0 (T, UPPER =303590.,)NTENT = .00012 G = .01 PER CC	LOWER =232504. M	ETERS
DATA FOR	0 1		0 0 0	0
VISIE LIQUI	BILITY LIMI ID WATER CO	FICIENT = .323E=0 T, UPPER =1212427, ONTENT = .00006 G = .00 PER CC	LOWER =928536. M	IETERS
DATA FOR	0 0	49 THRU 64 0 0	0 0 0	0
EXTIN VISIE LIQUI	APLE VOLUME NCTION COEF BILITY LIMI ID WATER CO	= 1500. CC FICIENT = .620E=0 T, UPPER = 63052., ONTENT = .00028 G = .86 PER CC	LOWER . 48288. M	ETERS

SERIES # CTS- 9, TEST # 48 FOR DATA STARTING 4:40 ON 25/ 4/74

DAT	A FOI 42	24	HANN 4	12	2			5	15 1	2 3	1 4	5 2
	VISI	ID.	ITY WATE	LIMI R CO	T,	UPPER	* *	9573 0000	5., LON 9 GM/M3	R METER IER = 73		ETERS
DAT	A FO		HANN			THRU 2 0	32	3	4 0	1 0	2	0
	VISI	BIL	ITY WATE	LIMI R CO	T,	UPPER		9796 0001	8., LOW 3 GM/M3	R METER IER #228		1ETERS
DAT	A FDI	4 C		ELS Ø				0	0	0	0	0
	A FOR	9						0	0	Ø.	0	0
	EXTIN VISI	APL NCT BIL	E VO ION ITY WATE	COEF LIMI R CO	FIC T, I	UPPER	* .	.540 7245 0002	6., LOW 2 GM/M3	R METER IER = 55		1ETERS

SERIES * CTS- 9, TEST * 49 FOR DATA STARTING 4:50 ON 25/ 4/74

DATA FOR	CHANNELS	1 THRU 16			
	4 423		9 12	3 0	2
	8 7	5		3 0	6
LVTTN	CTION COFE	FICTENT .	.428E-04 PER M	FTFD	
					METERS
			91341., LOWER	- 09955.	MEIENS
			00009 GM/M3		
PARTI	LLE COUNT	.78 P	EN CC		
		17 THRU 32			
	6 7		1 2	3 1	0
	0 0	1	2 0	0 0	0
EXTIN	CTION COEF	FICIENT =	.120E-04 PER M	ETER	
VISIB	ILITY LIMI	IT, UPPER =3	25533 . LOWER	=249309.	METERS
LIQUI	D WATER CO	INTENT .	00010 GM/M3		
		= .02 P			
DATA FOR	CHANNELS	33 THRU 48			
		Ø	0 0	0 0	0
	0 0	0	0 0	0 0	0
		•	u u		•
	CHANNELS	49 THRU 64			
	700 mm - 700	0	0 0	9	
	u a	Ø	0 0	0 0	0
GRAND TO					
		= 1500. CC			
			.548E-04 PER M		
VIS18	ILITY LIMI	IT, UPPER .	71327 LOWER	= 54626.	METERS
			00019 GM/M3		
PARTI	CLE COUNT	= .79 P	ER CC		

SERIES # CTS- 9, TEST # 50 FOR DATA STARTING 5: 0 DN 25/ 4/74

DATA	F		35			-	41	4			:	23	7			16	6	4				22				4			1 0	
V	IS	II.	ID	LI	TA	Y TE	L	I	MI	T	ŤI	EN	PI	3	R	1		9	51	1	9. B		L		ER				17.	METERS
DATA	F	01	5	СН				4					HI 3 0		1	32		4 0				3				0			1 0	
V	IS	II.	ID	LI	T	Y Te	L	I	MI	T	Ť	U	P	.E	R	1	• 3	8	30	0	2.		L		ER					METERS
DATA	F	01	000				νE	0					HOO		ı	48		1				6				0			0	0
V L	IS	II.	IB	LI	T	Y TE	L	I	MICO	T	, TE	U	PF	36	R		9	9	98	1	9.	Ğ	L							METERS
DATA	F	01	000				VE	0					H 0 0			64		0				9				0			0	
V L	S XT IS	I I	AP NC BI	LETILI	DI	VC N Y TE	CLR	I	EF MI	FTN	I	LI	PI	IT PE	R			7 0	00	2	4. 5	,	L	PEI OWI M3	R I	ME1	TEF 53	884	12.	METERS

SERIES # CTS- 9, TEST # 51 FOR DATA STARTING 5:10 ON 25/ 4/74

DATA FOR CHAN	MEIS 1 THOU 16		
	NELS 1 THRU 16	2 21	2 9 3
	3 3	1 1	2 9 3
EXTINCTION	COEFFICIENT =	.375E-04 PER 1	METER
			= 79814. METERS
	ER CONTENT =		
PARTICLE C	DUNT = .73 F	ER CC	
	NELS 17 THRU 32		
a	6 6	5 2	
1	5 h	1 0	0 0
EVITACTION	COEFFICIENT =	1405-04 DED 1	WE TED
			=201860. METERS
	ER CONTENT :		- 20180W. METERS
	DUNT = .02 F		
DATA FOR CHAN	NELS 33 THRU 48		
	v 0	0 0	0 0 0
	u a	0 0	0 0
	NELS 49 THRU 64		•
Ø	(u	M A	0 0 0
0	Ø Ø	a 0	n 0 0
	v e	21 0	
GRAND TOTALS			
GRAND TOTALS SAMPLE V	OLUME = 1500. CC		и 0 0
GRAND TOTALS SAMPLE VIEXTINCTION	OLUME = 1500. CC COEFFICIENT =	.524E-04 PER N	N 0 0
GRAND TOTALS SAMPLE VIEXTINCTION VISIBILITY	OLUME = 1500. CO COEFFICIENT = LIMIT, UPPER =	.524E-04 PER N 74686., LOWER	и 0 0
GRAND TOTALS SAMPLE VI EXTINCTION VISIBILITY LIQUID WAT	OLUME = 1500. CC COEFFICIENT =	.524E-04 PER N 74686., LOWER 00020 GM/M3	N 0 0

SERIES # CTS- 9, TEST # 52 FOR DATA STARTING 5120 ON 25/ 4/74

	83 438	1 THRU 16 238 50 2 8	23 2	4 1 6 1
VISI	BILITY LIMI ID WATER CO			
DATA FO	7 5	17 THRU 32 5 4 1 1	3 2	0 1
VISI	BILITY LIMI ID WATER CO			
DATA FOR	R CHANNELS 0 0 0 0	33 THRU 48		Ø 8 8 Ø
	0 0	49 THRU 64 Ø Ø		Ø Ø
EXTIP VISIE LIQU	MPLE VOLUME NCTION COEF BILITY LIMI ID WATER CO			

SERIES # CTS- 9, TEST # 53 FOR DATA STARTING 5:30 DN 25/ 4/74

The second secon	06 482	1 THRU 16 244 7	19	5 4 3 4 6 5
VISI LIGU	BILITY LIMI	T, UPPER .	00010 GM/M3	ETER = 64057, METERS
DATA FO	5 6	17 THRU 32 5 Ø	3 5	
VISI	BILITY LIMI	T, UPPER =2	00013 GM/M3	ETER =196081. METERS
DATA FO	R CHANNELS 0 0 0 0	33 THRU 48	0 0	
	Ø Ø		0 0	0 0 0
EXTI VISI LIQU	MPLE VOLUME NCTION COEF BILITY LIMI ID WATER CO	IT, UPPER =	.621E-04 PER M 63046., LOWER .00023 GM/M3	ETER = 48283. METERS

THE RESIDENCE OF THE PARTY.

SERIES # CTS- 9, TEST # 54 FOR DATA STARTING 5:40 ON 25/ 4/74

DATA F		10ELS 1 1 492 24		7 19 5 3	1 3	1 5
VIS	IBILITY	LIMIT, L	IPPER .	.452E-04 PER 86530., LOWE 00010 GM/M3 ER CC		METERS
DATA F	OR CHAN	NELS 17 1	THRU 32 0	3 i 1 i	3 0	
V15	IHILITY	LIMIT, L	IPPER =2	.149E-04 PER 61931., LOWE 00015 GM/M3 ER CC		METERS
DATA F	OR CHAN	NELS 33 1	THRU 48	Ø Ø	0 0 0 0	
VIS	IBILITY	LIMIT, L	IPPER =4	.883E-05 PER 42792., LOWE 00027 GM/M3 ER CC		METERS
DATA F	OR CHAN	INELS 49 1	HRU 64 Ø	Ø Ø	0 0	
EXT VIS	INCTION IBILITY	LIMIT, L	PPER =	.690E-04 PER 56712., LOWE 00051 GM/M3		METERS

SERIES # CTS= 9, TEST # 55 FOR DATA STARTING 5:50 ON 25/ 4/74

37	CHANNELS 3 462 9 7			6 0 5 3 5 3
VISIB LIQUI	ILITY LIMI		00010 GM/M3	ETER = 63799, METERS
DATA FOR	3 4	17 THRU 32 3 1	5 5 1 1	1 1 0
VISIB	ILITY LIMI		00012 GM/M3	ETER =212259, METERS
	CHANNELS Ø 0 Ø 0			0 0 0
	0 0	49 THRU 64 Ø	Ø Ø	0 0 0
EXTIN VISIB LIQUI	PLE VOLUME CTION COEF ILITY LIMI D WATER CO	= 1500. CC FFICIENT = IT, UPPER = ONTENT = .87 P	.611E-04 PER M 64053., LOWER 00022 GM/M3	ETER = 49055, METERS

SERIES # CTS= 9, TEST # 56 FOR DATA STARTING 6: 0 ON 25/ 4/74

	45 60	ELS 1 T	9 8	4	21		6
LIGU	BILITY L		PPER .	66179.	04 PER M , LOWER GM/M3	ETER = 50683.	METERS
DATA FO	R CHANNE 4 P	ELS 17 T	HRU 32 8 0	5	5	2 1	1 0
VISI LIQU	BILITY L		PPER =2	94127.		ETER =225257.	METERS
DATA FO	0	ELS 33 T	HRU 48 0		0	0 8	
DATA FO		ELS 49 T	HRU 64 0	9 0	0	0 0	
EXTIVISION LIQU	MPLE VOLUCTION OF BILITY L		ENT = PPER = T = .	.724E- 54023. 00022		ETER = 41374.	METERS

SERIES # CTS-10, TEST # 1 FOR DATA STARTING 19:50 ON 25/ 4/74

DATA FOI	12 743		20 39	7 2 8 2	
LIQU	BILITY LI ID WATER				METERS
DATA FO	3 3	S 17 THRU 32	0 0 0	1 0	2
VISI LIQU	BILITY LI ID WATER				METERS
DATA FO	0 0	S 33 THRU 48	0 0 0 0	0 0	
	0 0	S 49 THRU 64	0 0	Ø Ø	8
EXTI VISI LIQU	MPLE VOLUNCTION COBILITY LI	ME = 1500. CO EFFICIENT = MIT, UPPER = CONTENT = 1.25 F	.704E-04 PER 1 55551., LOWER .00019 GM/M3	1ETER = 42544.	METERS

SERIES # CTS-10, TEST # 2 FOR DATA STARTING 20: 0 ON 25/ 4/74

	CHANNELS 52 500 1 0		3 26 0 4	2 0 1 1 2 3
VISI LIQU:	BILITY LIM ID WATER C	IT, UPPER =	00010 GM/M3	METER = 61054, METERS
	3 6	0	1 0	0 0 0
VISI6	BILITY LIM ID WATER C	IT, UPPER =8	00005 GM/M3	1ETER =630072. METERS
	0 0		0 0	0 0 0
	0 0		0 0	0 0 0
EXTIN VISIE LIQUI	APLE VOLUMINGTION COENTION COENTION COENTION COENTION COENTION COENTION COENTING COE		.538E-04 PER 172678., LOWER 00015 GM/M3	METER = 55660. METERS

SERIES # CTS-10, TEST # 3 FOR DATA STARTING 20:10 ON 25/ 4/74

DATA		CHANI 4	496	THRU 16 301	56 25 2 1	i 0 i i	1 6
V L	ISIB:	LITY D WATE	LIMIT,	UPPER =	.450E=04 PER 86871., LOWER ,00009 GM/M3 PER CC		METERS
DATA	(NELS 17 1 0	7 THRU 32 0	0 0 0 0	0 0	
V	ISIB	LITY	LIMIT,	UPPER =	.323E=06 PER 5\$\$\$\$\$\$, LOWER ,00000 GM/M3 PER CC		METERS
DATA	(CHAN	NELS 33	8 THRU 48 0 0	0 0 0 0	0 0	0
DATA	(CHANI B	NELS 45	0 THRU 64 0 0	Ø Ø	0 0	0
E V L	XTING ISIB: IQUIO	TION LITY WATE	COEFFI LIMIT, ER CONT	UPPER =	.454E-04 PER 86253., LOWER 00009 GM/M3		METERS

SERIES # CTS=10, TEST # 4 FOR DATA STARTING 20:20 ON 25/ 4/74

	CHANNELS 1 T 497 26	7 61	33 0	0 0
LIQUIC	LITY LIMIT, U	ENT = .422E= PPER = 92627. T = .00008 .84 PER CC	, LOWER .	
DATA FOR		HRU 32 1 0 1 0	1 1	0 0
VISIBI LIQUIO	LITY LIMIT, U	ENT = .444E= IPPER =881785. IT = .00005 .00 PER CC	, LOWER #6	
	CHANNELS 33 T	HRU 48 Ø Ø Ø Ø	0 0	0 0
_		HRU 64 0 0 0 0	0 0 0 0	0 0
EXTING VISIBI LIQUIO	LE VOLUME = 1 TION COEFFICI LITY LIMIT, U	ENT = .467E= PPER = 83822. T = .00013	, LOWER .	

SERIES # CTS-18, TEST # 5 FOR DATA STARTING 20:30 ON 25/ 4/74

DATA FO	R CHANNELS 36 476 38 30	1 THRU 16 260 1: 28 2	12 46 2 25 23 2	3 31 23 5 26 25
VISI LIQU	BILITY LIM: ID WATER CO	IT, UPPER .	00023 GM/M3	ETER : P 36984, METERS
DATA FO	15 20	17 THRU 32	9 20	7 14 3 2 5 1
LIQU	BILITY LIM: ID WATER CO	IT, UPPER =	00104 GM/M3	ETER = 29076. METERS
DATA FO		33 THRU 48	1 2	0 1 1 0 0 0
VISI LIQU	BILITY LIM: ID WATER CO	IT, UPPER .	00261 GM/M3	ETER • 31045, METERS
	R CHANNELS	49 THRU 64 0		0 0 0 0 0 0
VISI VISI	MPLE VOLUME NCTION COEF BILITY LIMI ID WATER CO	IT, UPPER .	.281E-03 PER M 13944., LOWER .00387 GM/M3	ETER • 10679, METERS

SERIES # CTS-10, TEST # 6 FOR DATA STARTING 20140 ON 25/ 4/74

DAT		•	F	04	R 9	5 7	C	H				5	15		3		1	1	2	7 (3 (5	31	J		1	5	1 5	5						77	74					5 2	6 3					5 2	8 4				2	9 7
	1	11	9	I	B	ID	L	I	1	1		1	. !	11	1 1	יו	1	,	E	1,	7	1	EF	2	1			00	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2	27	4	•	,	1	.() (1	R	M	E .	TE	ER 53	7	9	5	•	•	1E	TE	ER	8
DAT		•	F	0	3	0 2						1	2 (3					1	2	4						1 (9 5				1	2 8
	1	/1	S	I	8	I	L	I	7	7				1	1 3	1	1	,	E	1	7	-	= 5	?	1	•		53		15	3 5	1		,	1	. () (I E											1E			8
DAT						6 2						1	12	2						(;	5						7	2						1 5	4						5 4						9					3
	1	1	S	I	B	I	L	I	TA	Y	. E	-	. 1	1	1 1	1	1		-	11	1	1	EF	2			. 6	3	7 9 5 5 5 2 4 8	53	15	7		,	1	.() (IE	R	M	E .	TE	ER 4	2	4	0	•	•	E	TE	ER	5
DAT						1 5							1	1						-	2						6	4 5						1	9						2						0					1 0
	-	11	S	I	B	I	L	IW	T	Y		L	. 1	1	11	1	11		1	11	7	9 1	F	?		•	. 1	2		3 3	37	5		,	L	. () (E					2			8			E	TE	ER	8
GRA	EVL	E X	STSG	III	MNBI	PCIO	LTL	EIIIW	CTA	VAYE		CLE	1	IN	11	1	1	10	: J	11	EN	1	F F	2			. 1	1	23	57	5 5	3 .		,		. () 4	E					R		8	5	•	۳	E	TE	R	s

SERIES # CTS-10, TEST # 7 FOR DATA STARTING 20:50 ON 25/ 4/74

18	31 23	28 17	48	98			283		493		FOR 0	DATA
METERS		PER ME'S LOWER # /M3	174., 020 GM	.00		PER	UPI	IT,	LIMER C	YTI.	SIBIL	VI
2		12		12			6		15		5	
		PER ME' LOWER # /M3	863., 132 GM	.00	*	PEF	UPI	IT,	LIMER C	YTI.	SIBIL	VI LI
:	1	4	2	3			3 2		3		3	
METERS	6432.	PER ME' LOWER # /M3	398., 749 GM	8 01		PEF	UPI	IT,	ER C	YTI.	SIBIL	V)
_	0	0		2			1 2		2		1	
METERS		PER ME' LOWER # /M3	820., 689 GM	.07	? #	PEF	UPI	IT,	LIM ER C	TAW.	SIBIL	V)
METERS		PER ME' LOWER = /M3	656., 590 GM	.09		PEF	UP	FFI IT,	LIM	E V	SIBIL	EX VI

SERIES # CTS=10, TEST # 8 FOR DATA STARTING 218 0 ON 25/ 4/74

DAT		A .	•	-	3 E	3 7	,				-	3	9	6					2	6	1					1	7	5					3	5					1	5 9						7 6				7	,
	1	V :	1	31	1	3 1	1	. 1	1	1	7	E	LR	I	MC	I	TN	Ť	E	Z	P	P	E	R	1			77	7 4	1 5	3				L	0		E										E			3
DAT	r .	A	•	= () F	3							1								6				3		;	3						0 4						3						4 2				-	5 2
	1	V :	I	5	1		1	. 1	1	1	Y	E	LR	1	M	I	TN	ŕ	E	N	P	P	E	R	1	•		7 (33	15	8		,		L	0		EF										E		RS	3
DAT	T .	A	•	- () F			:+	1,								3				H 2 1		-		4	8	:	2						3 2						1 1						0				1	
	1	V :		3	11		1	. 1	1	1.	7	E	L	I	MC	I	TN	Ť	E	U	P	P	E	R	1	=		1 9	0 6	1	2		,		L	0	EI WI	EF	?		T	EF 15	5 6	9	7	•		E	E	RS	3
DAT						2		:+	11	11	VI	N	E	L	\$		4	9		T		R	u					1						1 0						0 0						1 0				1	
	1	V :		3 !	18		1	. 1	1	1	7	E	LR	I	MC	I	TN	· T	E	N	PT	P	E	R	1			12	30	5	8		,		L	0		EF									M	E	E	RS	5
GRA		N(E)	,	5 / 5	10	17	1	1		3	V 1	0	LC	U	ME	EF	F	= I	c	1 1	5 E	0 N	Ø T	•		CI	c	. :	1:	5 8	BE		0	2		P	E	2		E	T	EF	,								
	1	_ :	1	31	J	C)			١.	T	E	R		C	0	N	T	E	N	T		=					13	36	5 9		;		M				EF	?			1	8	9	9	•	M	ET	E	RS	•

SERIES # CTS-10, TEST # 9 FOR DATA STARTING 21:10 ON 25/ 4/74

4	04 346	1 THRU 10 226 8	6 64 46 13 12	19 20	10 6
VISI	BILITY LIM	IT, UPPER	.511E-04 PE 76569., LOW .00013 GM/M3 PER CC	ER . 58640.	METERS
DATA FO	3 7	17 THRU 32 4 1	2 1 8 1 3	3 0	
VISI	BILITY LIM	IT, UPPER	.309E=04 PE =126697., LOW .00034 GM/M3 PER CC	ER = 97031.	METERS
DATA FO	4 4	33 THRU 48 0	1	1 0	
VISI	BILITY LIM	IT, UPPER	.262E=04 PE =149398., LOW .00054 GM/M3 PER CC	ER #114416.	METERS
DATA FO	0 0	49 THRU 6	0 0	9 9 9 0	-
EXTI VISI LIQU	MPLE VOLUM NCTION COE BILITY LIM ID WATER C	IT, UPPER	.108E-03 PE 36171., LOW .00101 GM/M3	ER . 27701.	METERS

SERIES # CTS-10, TEST # 10 FOR DATA STARTING 21:20 ON 25/ 4/74

DATA	419	HANNELS 354 2	233	53	20 2	
V	ISIBIL Iquid	ITY LIMI	T, UPPER	= .370E= =105768. .00007 3 PER CC	, LOWER .	TER 81002. METERS
DATA	FOR C				1 0	Ø Ø
V:	ISIBIL IQUID	HATER CO	T, UPPER	311E- -1259235 ,00002 1 PER CC	, LOWER .	TER 964383. METERS
DATA	FOR C	HANNELS Ø Ø	0		0 0	
	0	Ø	49 THRU Ø Ø	64 Ø Ø	0 0	0 0
E: V: L:	XTINCT ISIBIL IGUID	E VOLUME ION COEF ITY LIMI	FICIENT T, UPPER NTENT =	401E- - 97572. .00009	, LOWER .	TER 74726. METERS

SERIES # CTS-10, TEST # 11 FOR DATA STARTING 21:30 ON 25/ 4/74

DAT	A	F		97	,			;	30	6	S				1				10		3				-	9				6 2				0 3				1.4
	V :	IS	I	81	L	I	TA	Y T E	L	I	M	I	1	E	N	PF	E	R		- 1	0	7 4	44	7 .	,	1	P . O .	WE	R	E'	TE 8	R 21	28	8.	•	MET	ER	5
DAT	A	F	01	7	, C	Н	A	N	NE		S		7		1	4 F	U		32	5	1 1					1				10				0				0
	٧:	S	II	10	L	I	TA	Y Te	L	I	M C	וו	,	Ε	UN	PF	E	R	1		6	69	10	8.	,	L	P1	NE	R	E:	5 5	R 7:	58	9.	•	MET	ER	S
DAT	Α	F	01	0	C		A	NI	NE	0	8				-	7	2U		48	3	0					0				0				0				0
DAT				0)				NE						1	H F	U		64	4	00					0				0				0				0
	EX	S	I	MP NC BI	LTL	EIIW	O	VONY	L	0 .I	E!	11	I	CE	I	EN	E	R	•		. 8 0	73	1	7.	,	L		NE		ET			39	4.	•	1ET	ER	S

SERIES # CTS-10, TEST # 12 FOR DATA STARTING 21:40 ON 25/ 4/74

DAT	A	F		5	5				4	0	3			2	23	3			1	-						23				5 4				1 2	2
	V:	18	I	B	IL	I	T	Y	E	R	M	I	N'	TE	UN	PI	96	R		•	. 0	3	14	43	•	0 4 GM	LO	ER WE	R	ET	7 E	39	92	2.	METERS
DAT	A	F	0													HI 5		J	3	2	8					0				ø 1				1 0	
	V		I	B	IL	- I	T	Y	E	L:	2	I	T N	TE	U	PI	9 6	R	,	= ;	29	3	63	36	•		LO						8 1	•	METERS
DAT	Δ	F	0	-	Ø					(1		3					ı	4	8	0					0				0				0	0
DAT	A	F	0	-						(0		4			H 0 0		J	6	4	0					0				0				0	-
	EV	X 1 5 1 6	I	M N B I	PI	TI	O	VZYT	E	CL	IM	FI	FTN	TE	I	EIPI	N1	R	! !		. 0	5 6 0	3:	31	•		LC	ER WE					58		METERS

SERIES # CTS-10, TEST # 13 FOR DATA STARTING 21:50 ON 25/ 4/74

DATA		NNELS 1 THE		11.00		
		340 214		22 5	3	1 0
	•		-			2 3
		COEFFICIEN				
		LIMIT, UPF			R = 80	919. METERS
		TER CONTENT				
DATA		NNELS 17 THE		•		
	1	5 3	2	0	1	2 1
		COEFFICIEN				
		TER CONTENT			R =332	906. METERS
		COUNT =				
DATA		NNELS 33 THE				
		6 6	0	0	0	0 0
DATA		NNELS 49 THE				
	0	0 0	0	0	0	0 0
			e	•		
GRAN	D TOTALS					
•		VOLUME = 150		0E 04 DEE		
		N COEFFICIEN				096. METERS
		TER CONTENT				200,
		COUNT =				

SERIES # CTS-10, TEST # 14 FOR DATA STARTING 22: 0 ON 25/ 4/74

390	CHANNELS 1 402 2	48 58 20		5
LIQUID	LITY LIMIT, DATER CONTE	IENT = .391E-04 UPPER = 99980., NT = .00008 GM .76 PER CC	LOWER = 76570.	METERS
4	CHANNELS 17	0 4 2	3 0	
VISIBI LIQUID	LITY LIMIT, WATER CONTE	IENT = .874E-05 UPPER =447600., NT = .00007 GM .01 PER CC	LOWER =342794.	METERS
	CHANNELS 33	THRU 48 0 0 0 0 0 0		0
0		THRU 64 Ø Ø Ø Ø Ø Ø		0
EXTINC VISIBI LIGUID	LE VOLUME = TION COEFFIC LITY LIMIT, WATER CONTE	1500. CC IENT = .479E=04 UPPER = 81725., NT = .00015 GM .77 PER CC	LOWER = 62589.	METERS

SERIES # CTS-10, TEST # 15 FOR DATA STARTING 22:10 ON 25/ 4/74

DATA	443	NELS 1 THRU 407 234 5 4	59	23 2 0 3	0 0 2
V	ISIBILITY IQUID WATE	COEFFICIENT LIMIT, UPPE ER CONTENT =	R = 96096	GM/M3	ER 73595, METERS
DATA	FOR CHANN	NELS 17 THRU 0 4 1 2	1	2 1	0 1
V L	ISIBILITY IQUID WATE		R =494510	GM/M3	ER 78720. METERS
DATA	FOR CHANN			Ø Ø	0 0
DATA	FOR CHANN	NELS 49 THRU	0 0	0 0 0 0	0 0
E	XTINCTION ISIBILITY	LIMIT, UPPE	R = 80460	-04 PER METI	ER 51620. METERS
		ER CONTENT =			

SERIES # CTS-10, TEST # 16 FOR DATA STARTING 22:20 ON 25/ 4/74

	ANNELS 1 THR 412 243 9 4	71 23 8 2		1 3
VISIBILI LIQUID W	TY LIMIT, UPP	00010 GM	LOWER = 67621.	METER8
DATA FOR CH 5 0	8 5 0 0	3 3		0
VISIBILI LIQUID W	TY LIMIT, UPP	00010 GM	LOWER =239097.	METERS
DATA FOR CH	ANNELS 33 THR 0 0 0 0	8U 48 Ø Ø Ø Ø	8 9 9 9	0
DATA FOR CH Ø Ø	ANNELS 49' THE 0 0	8U 64 Ø Ø Ø Ø	0 0	9
EXTINCTI VISIBILI LIQUID W	VOLUME = 150 ON COEFFICIEN TY LIMIT, UPP	T = .568E-04 PER = 68829., L = .00020 GM	LOWER . 52713.	METERS

SERIES # CTS-10, TEST # 17 FOR DATA STARTING 22:30 ON 25/ 4/74

	R CHANNELS 53 386 5 6		58 23 6 2		2
LIQU	BILITY LIM ID WATER C		00009 GM/M3	METER = 73949, METERS	3
DATA FO	R CHANNELS 3 6 0 0		2 3	0 1 1	
LIQU	BILITY LIM ID WATER C		00008 GM/M3	METER #304505, METERS	S
DATA FO	R CHANNELS 0 0	33 THRU 48	0 0	0 0 0	9
	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	9 9 9	9
VISI LIQU	MPLE VOLUM NCTION COE BILITY LIM ID WATER C		.504E=04 PER 77691., LOWER 00017 GM/M3	METER = 59500, METERS	3

SERIES # CTS-10, TEST # 18 FOR DATA STARTING 22:40 ON 25/ 4/74

410	CHANNELS 1 TH 398 240 6 !	54 19	2 3 3 2 3 3
LIQUID	LITY LIMIT, U	T = .00009 GM/M:	ER = 72134. METERS
DATA FOR	CHANNELS 17 TH		0 1 0 1 1 6
VISIBIO LIQUID	LITY LIMIT, U	T = .00013 GM/M	ER =218269. METER8
DATA FOR I	CHANNELS 33 TH	HRU 48	Ø Ø Ø
VISIBIO LIGUID	LITY LIMIT, U	T = .00012 GM/M3	ER =459503. METERS
DATA FOR I	CHANNELS 49 TI	HRU 64	0 0 0 0 0 0
EXTINC	LE VOLUME = 15	ENT 618E-04 PE	ER METER NER = 48495. METERS
LIQUID		T = .00034 GM/M3	

SERIES # CTS-10, TEST # 19 FOR DATA STARTING 22:50 ON 25/ 4/74

400	NELS 1 THRU 1 403 222 3 2		3 0 1 0 2 5
VISIBILITY		.00008 GM/M3	METER = 78542. METERS
DATA FOR CHANG	NELS 17 THRU 3: 3 3 0 0		1 1 1 0 0 0
VISIBILITY LIQUID WAT		.00005 GM/M3	METER =454907. METERS
	NELS 33 THRU 4	8 0 0 0 0	0 0 0
DATA FOR CHANN	NELS 49 THRU 6		0 0 0 0 0 0
EXTINCTION		.447E-04 PER 1	METER = 66978, METERS
LIQUID WATE	ER CONTENT = 0UNT = .75	.00012 GM/M3	77 - A 77 P - 150 9 T C

SERIES # CTS-10, TEST # 20 FOR DATA STARTING 23: 0 ON 25/ 4/74

	NELS 1 THRU 480 263	16 60 15	3 2	1
	3 4	2 1	3 3	
EVELNETTO		- 4465 04 05		
VISTALLIT	V LIMIT. UPPER	= .446E-04 PE	FR = 67121	METERS
		.00009 GM/M3		
PARTICLE (COUNT8	6 PER CC		
DATA FOR CHAP	NNELS 17 THRU	32		
3	0 3	3 3	0 0	1
0	0 0	1 0	0 0	0
EVITAGITA		- 6065-06 05		
		= .686E-05 PE		METERS
		.00005 GM/M3		
PARTICLE (O. TRUDO	1 PER CC		
DATA FOR CHAN	NNELS 33 THRU	48		
	0 0	0 0	0 0	0
0	0 0	0 0	0 0	
DATA 500 CHAN	INELS AN THRU			
DATA FUR CHAP	NNELS 49 THRU	0 0	0 0	
Ø		0 0	_	0
GRAND TOTALS	OLUME = 1500.	cc		
EXTINCTION	COEFFICIENT	. 515E-04 PE	R METER	
VISIBILITY	LIMIT, UPPER	# 75960., LOW	ER = 58174.	METERS
		.00015 GM/M3		
PARTICLE (SOUNT .8	7 PER CC		

SERIES # CTS=10, TEST # 21 FOR DATA STARTING 23:10 ON 25/ 4/74

DAT	4							6	13	5				2	41	3				5	5				1	9				2 3			2			2
1	I L	SQ	I E	31	L	IW	TY	FE	L	I	M C	IT	1	E	N'	P	E	R	•		9!	58	0	3.		L		ER			ER 73			M	ETE	RS
DAT	4	F	OF	3	C						S								32		1 0					2				3			0			1 0
1	I	50	I E	31	L	IW	TY	TE	L	I	M	11	1	E	N'	P	E	R	=	5	4:	26	8	9.	,	L	PE.OW	EF	M	ET-4	ER 15	61	8.	M	ETE	RS
DAT	4	F	01	_	•					0	S				(48	1	9 9					0				0			0			0
DAT	A	F	01	0	,					0	S					7			64		9 0					0				0			9			0
1	EX	STSQ	III	MF NC BI	L	EIIIW	010	VO	CLE	I	EMC	FF	I	C	N'	EN	TE .	R	•		8 0	14	12	8. 3	,	L		EF			ER 62		1.	M	ETE	RS

SERIES # CTS=10, TEST # 22 FOR DATA STARTING 23:20 ON 25/ 4/74

DAT	A				9	7				4	19	1	S			1	2	9			1	1			2				- 17	4 2			3				1 4				3
	VL	I	S	I	B	I	- 1	1	11	1	L	1	M	I	TN	Ť	E	N.	PF		R				7 8	9	6	0.	, ,	1	L	E						MI		ER	s
DAT	TA		F	0	-	3		1/	11	11		4	S					;	1 F	۲L	1	3	2	:	5					1 0			0				5				1
	VL	I	SQ	U	B	IL	- 1	17	11	FE	L	I	MC	I	TN	, T	E	N.	PF		R			4	34	13	10	5.	G		L	E		TE		20		MI	ETE	ER	8
DAT	· A		F	01		1		11	11	11		1	S					(16			4	8	(8					0 0			0 0				0				9
	V	I	SQ	I	3	וו	. 1	11	1		L	I	MC	I	TN	, T	E	UF N'	PF	E	R		- (64	49	7	5	5.	. ,	-	L	E		7E 49		4		ME	ET E	R	S
DAT	A		F	01	(0	=	14	1	11	E	0	S		4	9		(15	ľ		6	4	9	0					0			0				0				0
GRA	EVL	XII	STS	A I	MI MI MI MI	בי בי			111	·	CLR	I	EMC	FIO	FTN	I	C	I I	P	E .	R				. 6	5	8	3.	,	-	LC	E		TE 4		8	•	ME	ETE	ERS	3

SERIES # CTS-10, TEST # 23 FOR DATA STARTING 23:30 ON 25/ 4/74

DAT	A		F			1					4	5	7				2	7	H F						2 5				1	8 2				5 2					1 5					6
	V	1	5	I	E	I	L	I	TA	Y	E	LR	I	M .	IT	Í	E	N	PF	9 6	R		•		37	6	0	8,	. ,		L	JW							5.	,	ME	TE	R	5
DAT	A		F	C	F	5			A				4		1				H F	₹L	,	3	2		2					1 0				3 1					0 2					0
	V	I	S	1	E	I	L	IW	TA	Y	E	LR	I	M :	TI	-	E	UN	PF	• E	R		• ;	23	39	6	3	2.	, ,		L	W						2:	2.	1	ME	TE	R	S
DAT	Α		F	c	R	0									3				9		,	4	8		0					0 0				0					0					0
	V	I	S	I	B	ID	L	I	TA	Y	£	LR	1	M .	IT	ŕ	E	N	PF	3	R		=	1 2	21	2	4:	27 6	٠,	5 M	L) W	3 4	E	92	ER 28	5	31	5.		ME	TE	R	S
DAT	· A		F	C	R	00			A	2	N		L 0 0		4	9		-	H F	≀U	1	6	4		0					0 0				000					0					0
GRA	EVL	X	STSG	I	MARIE	PCID	LTL	EIIIW	OTA	VNYT	E	CLR	U	EF	TON	I	C	IUN	EN PF	E	R	1			6	9	30	0.	,		. (W						63	3.	•	ME	TE	R	S

SERIES # CTS-10, TEST # 24 FOR DATA STARTING 23:40 ON 25/ 4/74

421	ANNELS 1 THRU 1 435 240 3 6	52 19	4 1 6 9	1 2
VISIBILIT LIQUID WA	ON COEFFICIENT = TY LIMIT, UPPER TER CONTENT = COUNT = .81	= 87691., LOWER .00010 GM/M3		METERS
	1 0	3 2	Ø 2	1 1
VISIBILIT LIGUID WA	ON COEFFICIENT = Y LIMIT, UPPER TER CONTENT = COUNT = .02	=208233., LOWER .00020 GM/M3		METERS
	INNELS 33 THRU 4		ø ø	0
Ø	NNELS 49. THRU 6	N N		-
EXTINCTIO	VOLUME = 1500. IN COEFFICIENT =	.634E-04 PER		
LIQUID WA	TY LIMIT, UPPER TER CONTENT # COUNT # .83	.00030 GM/M3	* 47257.	METERS

No. of the last of

SERIES # CTS-10, TEST # 25 FOR DATA STARTING 23:50 DN 25/ 4/74

DATA F	570	588 3		55 27	6 1	4
	3	6	4	1 1	3 4	4
				.564E-04 PER		
				69313., LOWE	R = 53083.	METERS
				00012 GM/M3		
PAF	LICLE C	DUNT =	1.08	PER CC.		
			T			
DATA			THRU 32			
	9	8	5	0 2	1 5	
	1	1	1	1 1	0 0	0
E v 4	THETTON	COEFFIC	TENT -	430E 04 DED	METER	
				.179E-04 PER		METERS
				219080., LOWE	# #10//02.	METERS
			.02	00015 GM/M3		
FAF	ITCEE C	0011 =	. 42	בא ננ		
DATA	OR CHAN	NEI 9 33	THOU AR			
DAIA !		0		ø 0	0 0	0
		0	a	u a	0 0	
	•	**	•			
DATA F	OR CHAN	NELS 49	THRU 64			
2414		0		0 0	0 0	9
			Ø	0 0	0 0	
	**					
GRAND	TOTALS					
		DLUME =	1500. C			
				.743E-04 PER	METER	
				52654., LOWE		METERS
				00026 GM/M3		
				ER CC		

SERIES # CTS-10, TEST # 26 FOR DATA STARTING 0: 0 ON 26/ 4/74

DAT	A			7				4	19	8				3	0	6					6	1 5				2	7 2				6	•				2	2			4
	EX VI LI	S	I E	ID	L	I'W	4	7	L	I	MC	I'	1	E	UN	PI	9	R	1	•		77	7	7	2	G	-	LO	W	ER	ME	T	5!	95	6	2.		ME	TEI	RS
DAT	A	F	OF	4	С	н	41	11	E	8	s	1	17		7	3 1	21	J	3	2		5									4	ı				1 0	,			0
		S	I E	ID	L	I'	TY	TE	L	I	MC	1.	1	E	N	PI	9	ER	1	•	21	03	12	1	3 ,	,,		LO	WI	ER	ME							ME	TEI	RS
DAT				8	C	н,	AP	11	NE	Lø	s	;	33	3	T		RI	J	4	8	,	9					00				0					0				0 0
		S	I E	I	L	I'W	TY	TE	LR	I	M	1.	11	E	UN	PI	9 6	R			11	04	9	9	34	١,	-	LO	W	ER	ME					1.		ME	rei	RS
DAT	A	F	O F	0						0						HIO		j	6	4	1	0									0					0				0
	ΕX	S	AP I	AP NC	LTL	E I	ומ	10	0	U	EM	FI	7	C	I	EI	7	FR	=			53	3	8	E .	,	-	LO	W									ME		
	PA																									G		, [3											

AND THE PERSON OF THE PERSON O

TO THE MAN TO THE PARTY OF THE

SERIES # CTS-10, TEST # 27 FOR DATA STARTING 0:10 ON 26/ 4/74

	R CHANNELS 59 520 5 9	1 THRU 16 287 67 4 4	18 3	3 6 5 3
VISIE LIQUI	BILITY LIMI		0010 GM/M3	TER 60070. METERS
DATA FOR	CHANNELS 6 6 2 0	17 THRU 32 5 1 1 0	5 3	2 0
VISI6	BILITY LIMI ID WATER CO		0015 GM/M3	TER 168593. METERS
	CHANNELS	33 THRU 48		0 0
VISIE LIQU:	BILITY LIMI ID WATER CO		0009 GM/M3	TER 696324. METERS
		49 THRU 64		
EXTIN VISIE LIQU	MPLE VOLUME NCTION COEF BILITY LIMI ID WATER CO		719E-04 PER ME 4372., LOWER = 0035 GM/M3	TER 41641. METERS

SERIES # CTS=10, TEST # 28 FOR DATA STARTING 0:20 ON 26/ 4/74

DATA	447	508	1 THRU : 277 6	72 2	20 2	0 2	2 5
V L	ISIBIL IQUID	ITY LIMI WATER CO	T, UPPER	485E-0 - 80688., .00010 0	LOWER .		METERS
	7	4		3	0 1	0	1 0
V L	ISIBIL IQUID	ITY LIMI WATER CO	T, UPPER	= .104E-0 =375490., .00008 0	LOWER .		METERS
DATA	FOR C	0	33 THRU 4 Ø Ø	0	Ø Ø	_	
	0	0	49 THRU 6 0 0	64 0 0	0 0 0 0		0
E V L	XTINCT ISIBIL IQUID	E VOLUME ION COEF ITY LIMI WATER CO	T, UPPER	.589E-0 = 66416.,	LOWER =	TER 50864.	METERS

SERIES # CTS=10, TEST # 29 FOR DATA STARTING 0:30 ON 26/ 4/74

DATA	FOR CHANNE 459 53 3		6 74 24 5 2	1 1	3
VI LI	SIBILITY L QUID WATER	IMIT, UPPER	.528E-04 PEF = 74110., LOWE .00011 GM/M3 PER CC		METERS
DATA	7	LS 17 THRU 3 4 1 0 0	2 2 2 0 1	2 1	_
VI	SIBILITY L	IMIT, UPPER	.962E-05 PER =406581., LOWE .00008 GM/M3 PER CC	ER =311380.	METERS
DATA	0	LS 33 THRU 4	8 Ø Ø Ø Ø	Ø Ø	
VI VI	SIBILITY L.	IMIT, UPPER	.373E-05 PEF =1049934, LOWE .00007 GM/M3 PER CC		METERS
DATA	0	LS 49 THRU 6		0 0 0 0	0
EX VI LI	TINCTION COSIBILITY LO	IMIT, UPPER	.661E-04 PEF = 59153., LOWE .00026 GM/M3	R METER ER = 45302.	METERS

SERIES # CTS=18, TEST # 38 FOR DATA STARTING 8:48 ON 26/ 4/74

DATA	443	59	LS 1 T 4 32 5		0 22 7 2	5 1	3 3
VI VI	SIBI	LITY L.	IMIT, U	PPER .	.527E-04 PER 74203., LOWER 00011 GM/M3 ER CC		
DATA	FOR (8	7 3 8 8	e 2 1 0	0 1
VI.	SIBI	LITY L WATER	IMIT, U	PPER =2	.165E=04 PER 37063., LOWER 00015 GM/M3 ER CC		METERS
DATA	_		LS 33 T	HRU 48			
	0		0	0		0 0	
VI	TINC'SIBIL	TION C LITY L WATER	Ø OEFFICI IMIT, U CONTEN	ENT = PPER =2	0 0 0 1 .157E=04 PER 49015., LOWER 00064 GM/M3	0 0 METER	•
VI LI PA	TINC' SIBII QUID RTICI	TION C LITY L WATER LE COU	Ø OEFFICI IMIT, U CONTEN	ENT = PPER =2	0 0 1 .157E=04 PER 49015., LOWER 00064 GM/M3 ER CC	0 0 METER	METERS

SERIES # CTS-10, TEST # 31 FOR DATA STARTING 0:50 ON 26/ 4/74

	R CHANNELS 58 662 2 7		0 34 8 5	4 2 2 2 2 2 7
LIQU	BILITY LIM: ID WATER CO	IT, UPPER =	00013 GM/M3	ETER = 48896, METERS
DATA FOR	3 6	17 THRU 32 2 1	2 4	8 4 2 0 2 0
VISIE LIQU:	BILITY LIM: ID WATER CO	FFICIENT = 1 IT, UPPER = 1 DNTENT = .02 F	00019 GM/M3	ETER =146073. METERS
DATA FOR	R CHANNELS Ø Ø Ø Ø			0 0 0
	0 0	49 THRU 64	0 0	0 0 0
EXTIN VISIE LIQU:	MPLE VOLUME HCTION COEF BILITY LIM IC WATER CO	E = 1500. CO FFICIENT = IT, UPPER = GNTENT = 1.16 P	.818E-04 PER M 47833., LOWER 00032 GM/M3	TETER # 36633, METERS

SERIES # CTS-10, TEST # 32 FOR DATA STARTING 1: 0 ON 26/ 4/74

	R CHANNELS 69 591 4 4			3 2 6 3 9 5
VISI LIQU:	BILITY LIM ID WATER C	IT, UPPER :	.00011 GM/M3	METER = 56309. METERS
DATA FOI	R CHANNELS 7 5 0 0		3 3	3 2 2 0 0 1
VISI	BILITY LIM ID WATER C	IT, UPPER .	.00019 GM/M3	METER =152965, METERS
DATA FO		33 THRU 48	9 0 0 0	0 0 0 0 0 0
VISI LIQU	BILITY LIM ID WATER C	IT, UPPER	.00006 GM/M3	HETER =928536. METERS
DATA FO		49 THRU 64		0 0 0
VISI LIQU	MPLE VOLUM NCTION COE BILITY LIM ID WATER C	IT, UPPER	.760E-04 PER N 51461., LOWER .00037 GM/M3	METER = 39411. METERS

SERIES # CTS-10, TEST # 33 FOR DATA STARTING 1:10 ON 26/ 4/74

	R CHANNELS 93 590 1 7		22 5	4 1 3	4 2
VISI LIQU	BILITY LIM	FFICIENT = .: IT, UPPER = 7: ONTENT = .01 = .96 PEI	3718., LOWER 3011 GM/M3		METERS
	7 3 1	1 1	1 1	3 0	0
VISI LIQU	BILITY LIM: ID WATER CO	FFICIENT = .: IT, UPPER =200 DINTENT = .00 = .02 PE	5664., LOWER 8019 GM/M3	1ETER =158274.	METERS
DATA FO	R CHANNELS Ø 2 Ø 0	33 THRU 48 0 1 0 0	0	0 0	0
VISI LIQU	BILITY LIM: ID WATER CO	FFICIENT = .01 IT, UPPER =36: DNTENT = .00 = .00 PE	3712., LOWER 3021 GM/M3		METERS
DATA FO	R CHANNELS 0 0	49 THRU 64 0 0	0	0 0	
EXTI VISI LIQU	MPLE VOLUMI NCTION COE! BILITY LIM: ID WATER CO	= 1500. CC FFICIENT = .0 LT, UPPER = 4: DNTENT = .00 = .98 PE	7274., LOWER 8052 GM/M3		METERS

SERIES # CTS=10, TEST # 34 FOR DATA STARTING 1:20 ON 26/ 4/74

DATA		5	57	3	332 2		25 5		1 2 5 8
V	ISIE	ILI D W	TY L	CONT	UPPER	.00	2579., LO	PER METER DWER = 55 M3	584. METERS
DATA	FOR	8		LS 17 6 2	THRU 1 1	32 3 0	2	2	1 3 1 1
V	ISIB	ILI D W	TY L	IMIT,	UPPER	R =170	883., LO		870. METERS
DATA	FOR	CH 0		LS 33	THRU Ø	48 0 0	Ø Ø	1 0	0 0
V	ISIB IQUI	ILI D W	TY L	CONT	UPPER	.00	1838., LO		165, METERS
DATA	FOR	0		LS 49		64 0	Ø Ø	Ø Ø	0 0
V L	SAM XTIN ISIB IQUI	PLE CTI ILI D W	VOLI ON CI TY L	DEFFI IMIT, CONT	UPPER	# .6 R # 47	401., LO		302. METERS

SERIES # CTS-10, TEST # 35 FOR DATA STARTING 1:30 ON 26/ 4/74

DAT	Α	1								7	1				3	2			1	1	-	5	5					5 4			:	5				6 4				4 4
		I	31	B	I	L	N'	1	/	LR	I	M	II	1	E	UN	PF	3	R				77	8	7	6	. ,		LC	W					1	•	ME	ETI	ER	8
DAT	T A	•	F C	R	2			4 1	11		L: 3 2					1	H F 8 2	٠.	ı	3	2		4 2					2 2				2				3 1				0
	٧	I	ונ	E	I	L	W	4	r E	LR	I	M :	TI	1	E	UN	PF	P E	R		=	1 :	55	2	4 2	8	. ,		L					9	6	•	ME	:TI	ER	8
DAT	ΓΑ	1	= C	R	1 0		н	4 4	N N		L.00			3		1	HE		ı	4	8	(0					0				8				0				0
	¥ L	I	31	8	I	L	I'	1	/ E	LR	1	M :	IT	· T	E	U	PF	9 6	R			1	40	0	0	69	9,		L						4	1	ME	E T 1	ER	8
DAT	ΓΑ	•	F (R	00		н	4 1	11		L 0 0		4	9			H F		ı	6	4	(8					0				0				0				0
GR	EV	X		NABI	PCID	LTL	E I I W	1	, ,	CLR	O	E F	ITON	I	C	IUN	PF	1	R		=		50	0	0 4	9	.,		L					29	9	•	ME	ETI	ER	S

SERIES # CTS-10, TEST # 36 FOR DATA STARTING 1:40 ON 26/ 4/74

DATA F	491 5	ELS 1 THRU 26 324 5 1		27 i 3	2 5	3 6
VIS	UID WATE	LIMIT, UPPE	521E- 1 75098. 00011 98 PER CC	, LOWER .	TER 57514.	METERS
	1	ELS 17 THRU 5 3 1 0	2 0	2 4 1 2	2	1 0
VIS	IBILITY OUT WATE	LIMIT, UPPE	172E- ER =227507. .00016 .02 PER CC	, LOWER .		METERS
DATA F		ELS 33 THRL	0 0	0 0 0 0	0	9
	0	ELS 49 THRU 0 0 0 0	0 0	0 0 0 0		8
EXT VIS	INCTION SIBILITY	LIMIT, UPPE	693E- ER = 56461.	, LOWER .		METERS

SERIES # CTS-10, TEST # 37 FOR DATA STARTING 1:50 ON 26/ 4/74

DAT	A	F			7					5 5	1	S			3	10	0					6	8								1 3			2 3		3 7
	V	I	31	8	I	L	I '	1	Y	L	I	MC	I	T N'	re	L	P	P	EF	3			70	07	8	8	• 6	,	L	EF				3.	METE	ER8
DAT	Α	F	- C	R							7			1	,	1	H 2 1		U	3	2		5					3 0			4 1			3		0 1
	V	15	S I	B	I	L	I '	1	Y	L	I	M	I	T		L	P	P	E	*	=	5	07	78	14	1	• (,	L					5.	METE	ERS
DAT					Ø	C	H	41	11	i E	1			3	3	1	Н	R	IJ				0 0					0 0			0 0			00		0
	V	IS	S I	B	I	L	I	T '	Y	L	I	MC	0	T N	, TE	L	P	P	EF	?	•	1	2:	12	4	6	7	,	L					6.	METE	RS
DAT					0	C	н	41	11	I E	L			4 !	9	T	H 0	R		6			00		C	C		00			0 0			0		0
GRA	E	X	AE	MN	TPC	ALT	LE	S	V (10	.0	ME	E	F		1	5 E	N	T			С	. 7				- 0	0 4		R	E'					
	٧	I	31	8	ID	L	I'W	1	Y	L	I	M	I	T N	TE	L	P	P	E F	*	=		50	06	3	9	. ,	,	L	EF			5	2.	METE	RS

SERIES # CTS-10, TEST # 38 FOR DATA STARTING 2: 0 ON 26/ 4/74

DATA	FOR	2 0	HAN	INE	LS		1	HR	U	16							
	5	17		53	5		25	54			63		14		3	5	4
		1			2			8			3		2		2	1	3
E	XTI	NCT	ION		0E	FF	CI	EN	7		_ 4	AZE	-04	PER	MET	ER	
																	HETERS
												010					
												CC					
DATA	FOR	8 0	HAN	INE	LS	17	, 1	HR	u	32							
		6			4	-		5			7		0		0	3	1
		2			1			1			0		2		5	0	0
F	Y T T F	UC T	TON		OE	FF	101	FN	T		. 0	135	-94	PER	MES	FR	
																	HETERS
L	IQU	D	WAT	ER	C	ON	E	T			.00	020	GM	/M3			
P.	ART	ICL	EC	ou	NT				.0	2	PER	CC					
DATA	FOR	4 C	HAN			3	3 1	HR	U	48							
		0			0			0			0		0		0	0	
		0			0			0			0		0		0	. 0	0
DATA	FOR	2 0	HAN	INE	LS	49) 1	HR	U	64							
		0			0			0			0		0				
		0			0			0			0		0		0	0	
GRANI	D T(TA	LS														
	SAN	1PL	EV	OL	UM	E	1	50	0.	C	C						
E	MITX	CT	ION	C	OE	FF]	CI	EN	T	•	.7	OOE.	-04	PER	MET	ER	
															-	42888.	METERS
								,				030	GM/	7M3			
P	ART:	CL	E (:ou	NT				. 9	7	PER	CC					

SERIES # CTS-10, TEST # 39 FOR DATA STARTING 2:10 ON 26/ 4/74

	NELS 1 THRU		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	995 ATAI
590	583 320 8 7	73 28 6 3	2	2
		.565E-04 P	FR METER	
VISIBILITY	LIMIT, UPPER	R = 69230., LO	WER = 53020	METERS
	ER CONTENT =	.00011 GM/M	13	
DATA FOR CHAN	5 8	4 2	1	2 2
1	4 2	0 1	2	
EXTINCTION	COEFFICIENT	252E-04 P	ER METER	
VISIBILITY	LIMIT, UPPER	=155119., LO	WER =118798	METERS
		.00024 GM/M	13	
PARTICLE C	DUNT = .0	3 PER CC		
DATA FOR CHAN	NELS 33 THRU	48		
0	1 0			
		0 0	0 (0
a	0 0	0 0		0
A EXTINCTION	0 0 COEFFICIENT	0 0 • .323E-05 P	0 (PER METER	
PEXTINCTION VISIBILITY	COEFFICIENT LIMIT, UPPER	0 0 = ,323E-05 P ₹ =1212427, LO	0 (PER METER WER #928536,	
EXTINCTION VISIBILITY LIQUID WAT	COEFFICIENT LIMIT, UPPER ER CONTENT	0 0 = ,323E-05 P ≈ =1212427, LO .00006 GM/M	0 (PER METER WER #928536,	
EXTINCTION VISIBILITY LIQUID WAT	COEFFICIENT LIMIT, UPPER	0 0 = .323E-05 P = 1212427, LO .00006 GM/M 00 PER CC	PER METER WER #928536	
EXTINCTION VISIBILITY LIQUID WAT PARTICLE C	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .0	0 0 323E-05 P 1212427, LO .00006 GM/M 00 PER CC	0 (PER METER WER #928536,	METERS
EXTINCTION VISIBILITY LIQUID WAT PARTICLE C	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .0	0 0 323E-05 P 1212427, LO .00006 GM/M 00 PER CC	0 (PER METER WER #928536, 13	METERS
EXTINCTION VISIBILITY LIQUID WAT PARTICLE C	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .0	0 0 323E-05 P 1212427, LO .00006 GM/M 00 PER CC	0 (PER METER WER #928536,	METERS
EXTINCTION VISIBILITY LIQUID WAT PARTICLE C DATA FOR CHAN	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .0 NELS 49 THRU 0 0 0	0 0 .323E-05 P .1212427, LO .00006 GM/M 00 PER CC 64 0 0 0	0 (PER METER WER #928536, 13	METERS
EXTINCTION VISIBILITY LIQUID WAT PARTICLE C DATA FOR CHAN	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .6 NELS 49 THRU 0 0 OLUME = 1500.	0 0 323E-05 P 1212427, LO .00006 GM/M 0 PER CC 64 0 0 0 0	0 (ER METER IWER =928536, 13 .	METERS
EXTINCTION VISIBILITY LIQUID WAT PARTICLE C DATA FOR CHAN 0 C GRAND TOTALS SAMPLE V EXTINCTION	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .6 NELS 49 THRU 0 0 OLUME = 1500. COEFFICIENT	0 0 .323E-05 P .1212427, LO .00006 GM/M 00 PER CC 64 0 0 0	PER METER WER #928536	METERS
EXTINCTION VISIBILITY LIQUID WAT PARTICLE C DATA FOR CHAN O GRAND TOTALS SAMPLE V EXTINCTION VISIBILITY LIQUID WAT	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .6 NELS 49 THRU 0 0 OLUME = 1500. COEFFICIENT LIMIT, UPPER	0 0 323E-05 P 1212427, L0 .00006 GM/M 0 PER CC 64 0 0 0 CC 850E-04 P 8 46049., L0 .00041 GM/M	PER METER WER =928536 0 0 ER METER WER = 35266	METERS

SERIES # CTS-10, TEST # 48 FOR DATA STARTING 2:28 ON 86/ 4/74

	28 5	83 3	THRU 16	12		5 2	10 4 1 8
VISI	BILITY I	LIMIT,	UPPER =	71080.	04 PER 1 , LOWER GM/M3	· 54437	. HETERS
DATA FO	R CHANN	ELS 17	1		6 2	1	2 4
VISI LIQU	BILITY ID WATE	LIMIT, R CONTE		91236.			, HETERS
DATA FO	R CHANN	ELS 33	THRU 48 0 0	0	0	1 0	: :
VISI LIQU	BILITY I	LIMIT,		81836.	05 PER I , LOWER GM/M3		. METERS
DATA FO	R CHANN	0	THRU 64 0	•	0	: /	: :
EXTI VISI LIQU	MPLE VOINCTION BILITY ID WATE	COEFFIC LIMIT, R CONTE		.812E- 48159. 00043			. METERS

SERIES # CTS-10, TEST # 41 FOR DATA STARTING 2130 ON 26/ 4/74

	THE RESERVE OF THE PARTY OF THE	3 1 THRU 1 326 7	6 73 38 5 4		5 5
VISI	BILITY LI ID WATER	EFFICIENT = MIT, UPPER CONTENT = 1.02	- 72764., L .00011 GM	OWER . 55726	. METERS
DATA FOR	R CHANNEL 2 10 0 0		2 2 5 0 1	12 - 22 March 12 10	3 2
VISIE LIQUI	BILITY LI ID WATER	EFFICIENT = MIT, UPPER CONTENT = .02	-205895., L .00016 GM/	OWER #157685	. HETERS
DATA FOR	0 0	8 33 THRU 4 0 0	1 0		0 0
VISIE LIQUI	BILITY LI ID WATER	EFFICIENT = MIT, UPPER CONTENT = .00	-909219., L	OWER : #696324	. METERS
DATA FOR		S 49 THRU 6	4 Ø Ø Ø Ø	0	0 0
EXTIN VISIE LIQUI	APLE VOLUNCTION CO BILITY LI ID WATER	ME = 1500. EFFICIENT = MIT, UPPER CONTENT = T = 1.04	.771E=04 = 50762., L .00037 GM/	OWER . 38876	. METERS

SERIES # CTS-10, TEST # 42 FOR DATA STARTING 2:40 ON 26/ 4/74

520 586 352 69 24 5 4 4 8 6 1 1	6	3
4 4 8 6 1 1		
	9	9
EXTINCTION COEFFICIENT = .573E-04 PER METER		
VISIBILITY LIMIT, UPPER = 68250., LOWER = 5226	9.	METERS
LIQUID WATER CONTENT00012 GM/M3		
PARTICLE COUNT . 1.07 PER CC		
DATA FOR CHANNELS 17 THRU 32		
11 5 4 6 4 0	1	
0 1 2 0 0 0	0	
EXTINCTION COEFFICIENT = .148E-04 PER METER		
VISIBILITY LIMIT, UPPER #264528., LOWER #20258		
LIQUID WATER CONTENT		
PARTICLE COUNT		
DATA FOR CHANNELS 33 THRU 48		
0 0 0 0 0		
0 0 0 0 0		0
DATA FOR CHANNELS 49 THRU 64		
0 0 0 0		
0 0 0 0 0	0	. 0
GRAND TOTALS		
SAMPLE VOLUME = 1500, CC		
EXTINCTION COEFFICIENT = .721E-04 PER METER		
VISIBILITY LIMIT, UPPER = 54252., LOWER = 4154	9.	METERS
LIQUID WATER CONTENT = .00023 GM/M3		
PARTICLE COUNT = 1.09 PER CC		

SERIES # CTS-10, TEST # 43 FOR DATA STARTING 2150 ON 28/ 4/74

	46 67	ELS 1 TH 71 345 6 1	86		5 · · · · · · · · · · · · · · · · · · ·	8 5 5 5
VISI6	NCTION O	OEFFICIE	PER = 6	8013 GM/M3	ER = 478	91. METERS
DATA FOR	CHANNE 6 1	ELS 17 TH 6 4 0 2	2	5 1	0 0	1 3 0 1
VISIOU:	BILITY L	.IMIT, UP	PER =20!	0017 GM/M3	ER =1607	34. METERS
DATA FOR	R CHANNE Ø	ELS 33 TH	IRU 48	0	0	1 0
VISIOU:	BILITY L	IMIT, UP	PER =35	8027 GM/M3	ER =2741	59. METERS
DATA FOR	0	ELS 49 TH	0	0	0	: :
VISI LIQU	MPLE VOL NCTION (BILITY (ID WATER	IMIT, UP	PER = 4	0057 GM/M3	ER = 325	21. METERS

SERIES # CTS-10, TEST # 44 FUR DATA STARTING 3: 0 ON 26/ 4/74

DATA		NNELS 1 616 7	355	72	23	4 1	3
V	XTINCTIO ISIBILIT IQUID WA	N COEFFI	CIENT = UPPER = ENT =	65248	., LOWER GM/M3	METER - 49970.	
DATA	5	INNELS 17 8 0	9		0	2 2 1 8	0 1
V	ISIBILIT		UPPER .	185299	., LOWER GM/M3	METER #141911.	
DATA	0	ANNELS 33	0	0	0	D 0	i 0
V L	ISIBILIT IQUID WA	ON COEFFI TY LIMIT, TER CONT COUNT =	UPPER .	511321	., LOWER	METER =391595.	METERS
DATA	FOR CHA	NNELS 49 Ø Ø	THRU 64	0	0 0	0 0	8
E	XTINCTIC ISIBILII	VOLUME = IN COEFFI IY LIMIT,	CIENT .	.887E	. LOWER	METER = 33770.	METERS
		TER CONT			GM/M3		

SERIES # CTS-10, TEST # 45 FOR DATA STARTING 3:10 ON 26/ 4/74

DAT	A FO					THR	J 16	5				
	5			61	. ;	390		85	20	6	1	3
		5		6		5		5	2	5	5	5
	EXTI	NCTI	ON	COEF	FI	CIEN		.60	8E-04	PER METI	ER	
												METERS
									13 GM/I			
								PER		Sign of the con-		
DAT	A FO	R CH	IANN	ELS	17	THR	U 32	2				
		12		6		2		6	2	5	5	3
		0		0		1		0	1	0	1	1
										PER MET		
											38413.	METERS
									20 GM/I	43		
	PART	ICLE	CO	UNT	•		.03	PER	CC			
				E. 0	77	-						
DAI	A FO		MANN	6	00	0	0 40	N	9			
		1		0		Ø		u	0	0		0
										•		•
	EXTI	NCTI	ION	COE	FI	CTEN	T .	.27	9F-05 I	PER MET	ER	
477	VISI	BIL	TY	LIM	17.	UPP	FR	1 400	969. L	OWER #1	772241	METERS
									05 GM/			20530
								PER				
DAT	A FO	R CH	IANN	ELS	.49	THR	U 6	4				
		0		9		0		0	0	0	0	0
		0		0		0		0	0	0	0	0
GRA	ND T											
						150						
										PER MET		
										WER .	35143.	METERS
									38 GM/N	13		
	PART	ICLE	CO	UNT	=	1	.17	PER	CC			

SERIES # CTS-10, TEST # 46 FOR DATA STARTING 3:20 ON 26/ 4/74

	ANNELS 1 TH		supplied to the	INVESTIGAÇÃO
566	689 354	68	23 8	
	ON COEFFICIE			
				48222. METERS
	ATER CONTENT			
7 4 1 1 2 2 2	COUNT	1.17 FER C		
DATA FOR CHA	ANNELS 17 THE	RU 32		
7	5 4	3	8 5	
	3 3	1	1 0	0 1
EXTINCTIO	UN COEFFICIE	NT . 289	F-04 PFR MF1	FR
				03722. METERS
LIQUID W	ATER CONTENT	0002	7 GM/M3	
PARTICLE	COUNT =	.03 PER C	C	
DATA FOR CHA	ANNELS 33 THE	911 48		
	0 0		0 0	0 0
0	0 0		0 0	
	ON COEFFICIE			
	ATER CONTENT			196324. METERS
	COUNT =			
	ANNELS 49 THE		Marie 1990	通為SEMAN CE
0	0 v	0	0 0	9 0
GRAND TOTALS				
	VOLUME = 150			
	ON COEFFICIEN			
	ATER CONTENT			31432. METERS
PARTICLE	COUNT .	1.20 PER C	C	

SERIES # CTS-10, TEST # 47 FUR DATA STARTING 3:30 ON 26/ 4/74

DATA FOR CHAN	NNELS 1 THRU 16	1 498°		
	701 427		0 2	6
1	7 7	2 2	0 2 3	6
EVTINCTION	N COEFFICIENT .	SERF_OA DED	METED	
	Y LIMIT, UPPER =			METERS
	TER CONTENT .			HETERS
	COUNT = 1.25	(5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
DATA FOR CHAN	NNELS 17 THRU 32			
3	7 13	6 7	4 1	1
0	1 1	0 2	0 0	ē.
EXTINCTION	N CUEFFICIENT .	.231E-04 PER	METER	
VISIBILITY	Y LIMIT, UPPER =	169583., LOWER	*129875.	METERS
	TER CONTENT =			
PARTICLE (COUNT = .03	PER CC		
	NNELS 33 THRU 48			
0	0 0	0 0	0 0	0
0	0 0	0 0	0 0	0
	NNELS 49 THRU 64			
0		9 9	0 0	0
Ø	0 0	0 0	0 0	0
GRAND TOTALS				
	VOLUME = 1500. C			
	COEFFICIENT .		METER	
	Y LIMIT, UPPER .			METERS
	TER CONTENT .			
	COUNT : 1.28			

SERIES # CTS-10, TEST # 48 FOR DATA STARTING 3:40 ON 26/ 4/74

DATA FO	R CHANNE 14 76 5	0 43	4 103	42		
VISI	NCTION C BILITY L ID WATER	OEFFICIONIENTO	PPER = !	702E-04 PER 5730., LOWER 10014 GM/M3	* 42681.	METERS
	R CHANNE	LS 17 T			3 2	1 0
VISI LIGU	BILITY L	IMIT, UP	PPER =30	128E-04 PER 15369., LOWER		
	R CHANNE	LS 33 TH		0	0 0	0
DATA FO	R CHANNE		7 6	0	0 0	
EXTI	MPLE VOL	GEFFICIE	NT .	.838E-94 PER 17129., LOWER		METERS
LIQU		CONTENT		10023 GM/M3		

SERIES # CTS-10, TEST # 49 FOR DATA STARTING 3:50 ON 26/ 4/74

	75 76	LS 1 THRU	80 34		The second secon
	4	2 3	3 5	7 4	2
VISI LIQU	BILITY L	IMIT, UPPE	= .669E-04 P R = 58440., LO .00014 GM/M 28 PER CC	WER = 44756.	METERS
DATA FO	R CHANNE	LS 17 THRU	32		
	3	7 6	0 4	2 3	1
VISI	BILITY L	IMIT, UPPE	= .150E=04 P R =260134., LO .00012 GM/M 02 PER CC	WER =199223.	METERS
DATA FO	R CHANNE	LS 33 THRU	48		
		0 0	2 0	0 0	0
VISI LIQU	BILITY L	IMIT, UPPE	<pre>= .861E-05 P R #454609., L0 .00018 GM/M 00 PER CC</pre>	WER =348162.	METERS
DATA 60	O CHANNE	LS 49 THRU			
DATA PU	0	0 0		0 0	0
	0	0 0	0 6	0 0	0
VISI LIGU	MPLE VOL NCTION C BILITY L ID WATER	IMIT, UPPE	* .906E=04 P R = 43186., LO .00044 GM/M	WER = 33074.	METERS

SERIES # CTS-10, TEST # 50 FOR DATA STARTING 4: 0 ON 26/ 4/74

DATA FOR	CHANNE 3 66 2	6 38	1 8	7 3	4 3	0 4	2 7
VISI8		IMIT, U	PPER = .	67453., 00012 G		TER 51659.	METERS
UATA FOR	4	LS 17 T 1 0	2		1 6	0 1	0 0
VISIO LIQUI		IMIT, U	FPER =3	72159., 00010 G	LOWER .	TER 285018,	
DATA FOR	ઇ		Ø	0		9 0	0
DATA FOR	Ø		Ø	ø 0		0	0
EXTIN VISJB LIGUI	PLE VOL	OEFFICI IMIT, U CONTEN	ENT = PPER = T = .	.685E-0 57103., 00022 G		TER 43732.	METERS

SERIES # CTS-10, TEST # 51 FOR DATA STARTING 4:10 ON 26/ 4/74

559 7	ELS 1 THRU 16	94 26	9 3 5 3 7 10
2			
VISIBILITY			= 43222. METERS
	DUNT = 1.28		
DATA FOR CHANN	VELS 17 THRU 32		2 1 1
1	5 0		0 0 0
		.139E-04 PER N 280462. LOWER	ETER =214791. METERS
LIGUID WATE	R CONTENT = .02	.00011 GM/M3	
	ELS 33 THRU 48		
0 1	0 P	0 0 0 0	0 0 0
		.883E-05 PER N	
LIGUID WATE	R CONTENT .	.00027 GM/M3	=339112. METERS
PARTICLE CO	90. • TAUL	PER CC	
DATA FOR CHANN	NELS 49 THRU 64		0 0 0
0	0 0	0 0	0 0 0
	LUME = 1500. C		
VISIBILITY	LIMIT, UPPER =		ETER = 32530. METERS
	ER CONTENT =		

SERIES # CTS-10, TEST # 52 FOR DATA STARTING 4120 DN 26/ 4/74

DATA	473	NNELS 1 THRU 630 348 5 4		23 3	3	2 4 6
V L	ISIBILITY Iquid wat	COUNT = 1,	R = 6989	1., LOWER 2 GM/M3		526, METERS
DATA	FOR CHAP	NNELS 17 THRU 8 3 1 0	J 32 5 0	5 0	10	i i 0
V L	ISIBILITY IQUID WA	N COEFFICIENT Y LIMIT, UPPE TER CONTENT = COUNT =	R =30009	9., LOWER 9 GM/MZ		
DATA	0	NNELS 33 THRU) 48 0 0	0	8	0 0
	0	NNELS 49 THRU 0 0	0 0	6	Ø 0	6 6
E V	XTINCTION ISIBILITY IQUID WA	VOLUME = 1500 N COEFFICIENT Y LIMIT, UPPE TER CONTENT = COUNT = 1,	R = 5668	9., LOWER		115. METERS

SERIES # CTS-10, TEST # 53 FOR DATA STARTING 4:30 ON 26/ 4/74

DATA FOR CHANNE			Ligovijana 1808. – 180
	67 404 4 5		3 3 1
EXTINCTION	COEFFICIENT .	.585E-04 PER	METER
VISIBILITY I	LIMIT, UPPER		. 51195. METERS
	UNT = 1.10		
DATA FOR CHANNE	ELS 17 THRU 3	•	
4	3 5	5 1	1 1 2
0	0	0 0	1 0 0
EXTINCTION (COEFFICIENT .	.112E-04 PER	METER
			-267980, METERS
	UNT = .02	.00009 GM/M3	
DATA FOR CHANNE			0 0 0
0	0 1	0 0 0 0	
		.373E-05 PER	METER =804091. METERS
	R CONTENT =		
PARTICLE COL	UNT = .00	PER CC	
DATA FOR CHANNI	FIS 49 THRU 6	1 (30 galan 6 9)	
0	0 0	0 0	0 0 0
0	0 0	0 0	0 0 0
GRAND TOTALS			
SAMPLE VOI	LUME = 1500.		
		.734E-04 PER	
	R CONTENT =		= 40802. METERS
	UNT = 1.12		

SERIES # CTS-10, TEST # 54 FOR DATA STARTING 4:40 ON 26/ 4/74

DATA	428	HANNELS 1 646 7		77	23 0	5	e 5	3 12
V	ISIBIL:	ION COEFFI ITY LIMIT, MATER CONT E COUNT =	UPPER .	67136	G, LOWER	= 514	116. HETE	RS
DATA	FOR CI	HANNELS 17 5 1	THRU 32 2 1		1 0	1 0		0
V	ISIBIL:	ION COEFFI ITY LIMIT, MATER CONT E COUNT =	UPPER .	315123	GM/M3	1 =2413	337. METE	R\$
DATA		HANNELS 33			0	0		
DATA		HANNELS 49	0	0 0	0	:		
EV	XTINCT: ISIBIL: IQUID	S VOLUME = ION COEFFI ITY LIMIT, HATER CONT COUNT =	CIENT * UPPER *	.707E 55345 ,00023	G., LOWER	METER 8 # 423	386. METE	RS

SERIES # CTS-10, TEST # 55 FOR DATA STARTING 4:50 ON 26/ 4/74

DA	TA				13				6	6	5				4	10			1							32 1	5			5			1 2			24
	VL	I	S	11	I	L	I'	11	1	LR	I	4)	T	Ť	E	JP VT	P	E	?		. (56	3	82	2.	,	L	PE OW M3	ER	4E'	TE 50	8 8 3	9.	H	ETE	RS
DA	TA		F) F	1 0		Н	A P	41		L: 3 0					1		U	3	2	•	4				2	2			3			0 1			2 0
	V	I	S	18	I	L	I'	41	r F	LR	II	41	T	ŕ	E	JP	P	E	?		32	96	0	68	3.		L	PE OW M3	ER				4.	H	ETE	RS
DA	TA		F	96	00		H	4 1	NN		L:								4	8	(8				6)			0			1 0			8
	V	I	S	18	I	L	I'	11	/	LR	I	41	T	+	EI	JP	P	E F	?		59	90	14	56	5.		L	PEI OWI M3	R I ER	1E	1EF	226	0.	M	ETE	RS
DA	TA		F) Fi	0						L:					0			6	4	(2				9)			0 0			0 0			
GR	EVL	XII	SI	IN	PICII	LTL	EIIW	1	1	CLR	II	EF MJ	FTN	I 'T	C	JP	20	T E	?			50	2	96	5.	,	L	PE OW M3					9.	M	ETE	RS

SERIES # CTS-10, TEST # 56 FOR DATA STARTING 5: 0 ON 26/ 4/74

DATA		NELS 1 THRU 709 400 6 5	16 59 7	21	5 2	2 4
V)	SIBILITY	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = 1.6	.0001	2 GM/M3		
DATA	FOR CHAN 6 0	NELS 17 THRU 4 2 2 1	32 3	0	8.150(8) 3	0 1 6 0
VI LI	SIBILITY	COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = .0	.0001	6., LOW	ER =239	
DATA	FOR CHAN	NELS 33 THRU 0 0	48 0	0	6 d 1304 6 0	: :
DATA	FOR CHAN	NELS 49 THRU 0 0 0 0	64 0	PRIOS.		: :
EX VI	TINCTION SIBILITY QUID WAT	OLUME = 1500. COEFFICIENT LIMIT, UPPER ER CONTENT = OUNT = 1.1	702 - 5569 .0002	6., LOW		655, METERS

SERIES # CTS-18, TEST # 57 FOR DATA STARTING 5:10 ON 26/ 4/74

DAT	TA				3			-	56	7				36	8				8					28				8			4		4
					5				1	0					7					4				1				5			7		5
			T '	I N	•	T 1	n	N	•	n	FI	. F	7	- 1	F						50	76		94) F 6		46	TFR				
	V	î	5	18	I	Li	T	4	ĭ	Ĭ	M	17	:	i	P	PE	R			6	55	32			L	WE	R		50	187		METER	18
	L	I	Q	JI	0		A	TI	ER		C	N	TI	EN	IT					00	30	13)			13							
	P	A	K.	I	C	LE		C	DU	IN	T					١.	.0	9	P	EF	?	CC											
DAT	T A		F	38		CH		NI	NE	1	5	•	7	1	н	21		32	,														
					_	•	-			3		100			3			•						4				0			1		
					0										0					2				0				1					1
			_								_													~ 4									
	2	X	T.	IN	L	1	U	7	-	U	E!	7	1	7	2	7 7 3 6		•	. 2	2	17	JE		•		JA!		76	1 E K	201	,	METER	
																										13				,	•	METER	
																						CC											
			_										_																				
DAT	TA	•	P	JH	-	CF		NI	45	-		3						4		0													
					-					0					0					0				0									
	E	X	T	11	C	T	0	N	0	0:	E	FF	I	C	E	N		•			57	45	-	05	. !	E	?	ME	TER			ME	
	,	I	5	10	U I	r]	T	T	ا د د	I	M.		-	FR	17	7	K		-0	8	10	36	•	ĠM	L	JWI Kr	K	•	222	10:	•	METER	
																						CC		GIT	•	,0							
DA'	TA	1	F	DF																													
															0					0											-		_
										0					10																•		•
GR	AN	iD	•	TC	IT	AL	.5																										
															5																		
																													TER			MEE B.	
																										13	- K	•	30	111		METER	. 5
																						CC			, ,								

SERIES # CTS-18, TEST # 58 FOR DATA STARTING 5:20 ON 26/ 4/74

DATA FOR CHA 436 1	727 374 5 2	85 32 5 1	7 5 3 3	2 6
VISIBILIT		. 65166., LOW	R METER ER = 49987. MET	
8	ANNELS 17 THRU 3 3 4 2 0	32 2 3 0 0	1 1	0 1
VISIBILIT		-306979., LOW .00011 GM/M3	R METER ER =235188. MET	
	ANNELS 33 THRU 4	0 1 0 0		1.
VISIBILIT		-239336., LOW .00041 GM/M3	R METER ER #183295. MET	
0	ANNELS 49 THRU 6	0 0	0 0	
EXTINCTION VISIBILITA LIQUID WA	VOLUME = 1500. ON COEFFICIENT :	.891E-04 PE = 43896., LOW .00064 GM/M3	ER # 33618, MET	ERS

SERIES # CT8-10, TEST # 59 FOR DATA STARTING 5:38 ON 26/ 4/74

DATA		1		403	16 80 3		7	: :
V L	ISIE	ILIT	Y LIMI	T, UPPER	573 R - 6831 .0001 R7 PER C	7., LOW 2 GM/M3	ER . 52	320, HETERS
DATA	FOR	CHA 5 0	NNELS 8 0	17 THRU 6 2	32	3	1 6	: :
V	ISIE	ILIT	Y LIMI	T, UPPER	126 R =30952 .0001 PER C	7., LOW 6 GM/M3	ER =237	051, METERS
DATA	FOR	CHA 0 0	NNELS :	33 THRU 6	48	0	0	: :
DATA	FOR	CHA Ø	The state of the s	49 THRU	64 0 0	9	8 0	: :
E	SAM XTIN ISIU IQUI	ILIT	VOLUME N COEFI Y LIMI' TER COI	T, UPPER	699	5., LOW 2 GM/M3	ER . 42	860, METERS

SERIES # CTS=10, TEST # 60 FOR DATA STARTING 5:40 DN 26/ 4/74

DATA FOR CHAN	NELS 1 THRU 1	Mit jenest ig		
388	768 414	83 31	5 2	1
5	5 5	3 4	6 7	6
********			45550	
	COEFFICIENT =			METERS
	LIMIT, UPPER		. 4/554.	METERS
	TER CONTENT =			
PARTICLE	COUNT = 1.15	PER CC		
DATA FOR CHAN	NELS 17 THRU 3	e se adet to		
8		2 1	1 1	0
0	0 1	1 1	0 0	0
EXTINCTION	COEFFICIENT .	.128E-04 PER	METER	
	LIMIT, UPPER			
LIQUID WAT	TER CONTENT =	.00010 GM/M3		
PARTICLE C	COUNT02	PER CC		
DATA FOR CHAN	NELS 33 THRU 4			
0	0 0	0 0	0 0	
0	0 0	0 0	0 0	0
	WELS 49 THRU 6			
0	0 0	0 0	0 0	
0	0 0	0 0	0 0	0
GRAND TOTALS				
	OLUME = 1500.	c and a second		
	COEFFICIENT .		METER	
	LIMIT, UPPER			METERS
	TER CONTENT .			
	OUNT = 1.17			

SERIES # CTS-10, TEST # 61 FOR DATA STARTING 5:50 ON 26/ 4/74

5			
,24 PE	· 1.	COUNT	PARTICLE
32	17 THRL	HANNELS	DATA FOR CH
3			
2	1	3	2
	FICIENT	ON COEF	EXTINCT
,02 76			PARTICLE
J 48			
0	0		0
0	0	0	0
J 64	The second second second second second		DATA FOR CH
0	0		0
0	0	0	0
			GRAND TOTAL
95 .50E 32 .00E 00 00 C .4	R = 24 32 R = 02 48 B = 02	## 1500. CFICIENT ## 1.24 17 THRU 32 3 1 FICIENT ## 1.24 17 THRU 32 3 1 FICIENT ## 02 33 THRU 48 0 0 49 THRU 64 0 0 FICIENT ## 1500. CFICIENT ## 1500	ION COEFFICIENT = ITY LIMIT, UPPER = NATER CONTENT = E COUNT = 1.24 HANNELS 17 THRU 32 7 3 3 1 ION COEFFICIENT = ITY LIMIT, UPPER = NATER CONTENT = E COUNT = .02 HANNELS 33 THRU 48 0 0 0 HANNELS 49 THRU 64 0 0 0 0

SERIES # CTS-10, TEST # 62 FOR DATA STARTING 6: 0 ON 26/ 4/74

DATA		NELS 1 THRU 1 945 470 12 5		1 1	
V	ISIBILITY IQUID WAT!				METERS
DATA		NELS 17 THRU 3 3 6 0 1	2 5 2 0 0	1 1 1 0	0
V	ISIBILITY Iquid Wati				METERS
DATA	FOR CHANI	NELS 33 THRU 4	8 9 9 9 9	0 0 0 0	0
	0	NELS 49 THRU 6	4 0 0 0 0	0 0	0
E	XTINCTION ISIBILITY IQUID WAT		.926E-04 PER = 42240., LOWER .00027 GM/M3		HETERS

SERIES # CTS-10, TEST # 63 FOR DATA STARTING 6:10 ON 26/ 4/74

DATA FOR CHAN	NNELS 1 THRU 1	6 11/11/9	
1163	1715 964	234 46	4 2 2
1	4 3	5 5	1 5 7
EXTINCTION	N COEFFICIENT .	.142E-03 PER	METER
			R = 21110. METERS
the state of the s	TER CONTENT .		
PARTICLE (COUNT = 2.77	PER CC	
DATA FOR CHAP	NNELS 17 THRU 3	2	
13			2 1 2
1	8 2 2	0 0	0 0 0
EXTINCTION	N CUEFFICIENT .	.180E-04 PER	METER
			R =166625. METERS
	TER CONTENT .		
PARTICLE	COUNT = .03	PER CC	
DATA END CHAN	NNELS 33 THRU 4	•	
OATA FOR CHAI	0 0	0 0	0 0 0
0	v a	0 0	0 0 0
DATA FOR CHAP	NNELS 49 THRU 6	4	A STANLEY SHAPE OF A
0	0 0	0 0	0 0 0
a	0 0	0 0	0 0
GRAND TOTALS			
	VOLUME = 1500.		METED
	N CUEFFICIENT =		R = 18736. METERS
	TER CONTENT =		- 10/30. HETERS
	COUNT = 2.80		
1 -11 - 12 - 1	200		

SERIES # CTS-10, TEST # 64 FOR DATA STARTING 6:20 ON 26/ 4/74

DAT	'A		3	5	R 5	7 8	C	H	A	N 5	NT	E 6	L 8 6	S		-	37	1	H 4 3	R	u	1	16	5	1 4				1	6	8 2				5				1 6		3	5
	V L	I	S	I	8	I	L	I	TA	Y	E	L	I	M	11	11	,	L	P	P	E	R			0	8	11	92	•	,	1	PE	EF	M	ET	E	R 52	05		MET	ERS	5
DAT	A		F		1								7						H 2 0						1 1						4 0				1 0				1 0			1
	V	I	S	I	B	I	L	I	TA	Y	F.	LR	I	M C	11	11	FE	L	P	P	E	R		3	1	3	8	59		,	1	PE	EF							MET	ERS	5
CAT	Δ		F	0	2	0 0	С	+					e								U		4 8	3	0						0				0				0		6	
DAT	Δ	1	F	31	*	0	c						P						H 00 0		U	•	5 4	8	0						0				0				0		6	
	EVL	XII	S	I	NBI	0	LTL	EII	CTA	VNYT	C	CLR	O I	EF W :	FF IT	1		I	EPT	NP	T E!	2			. 0	70	8	98		,	1	PE-OW	ER					49		MET	ERS	3

DEPARTMENT OF THE ARMY
ATMOSPHERIC SCIENCES LABORATORY
US ARMY ELECTRONICS COMMAND
AMSEL-BL-DP-P
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

OFFICIAL BUSINESS
Penalty For Private Use, \$300

POSTAGE AND FEES PAID DEPARTMENT OF THE ARMY DOD 314 Character &

NASA Scientific & Tech Info Fac ATTN: Acquisitions Br P. O. Box 33 College Park, Maryland 20740