Ch4. Continuous Random Variable

School of Electronics Engineering

BASICS OF CONTINUOUS RANDOM VARIABLES

Continuous Random Variable

Example 4.1

Define *X* is the length of the arc from a certain reference point of the wheel of circumference 1 meter.

Continuous Random Variable

Definition

A random variable X is continuous if the range S_X consists of one or more intervals. For each $x \in S_X$, P[X = x] = 0

Definition 4.1

The cumulative density function (CDF) of random variable X is

$$F_X(x) = P[X \le x]$$

Theorem 4.1

For any random variable X

(a)
$$F_X(-\infty) = 0$$

(b)
$$F_X(\infty) = 1$$

(c)
$$P[x_1 < X \le x_2] = F_X(x_2) - F_X(x_1)$$

Definition 4.2

X is a continuous random variable if the CDF of $F_X(x)$ is a continuous function

Quiz 4.2

The CDF of the random variable Y is

$$F_Y(y) = \begin{cases} \frac{y}{4}, & 0 \le y \le 4\\ 0, & \text{otherwise} \end{cases}$$

Sketch the CDF of Y and find

- (a) $P[Y \le -1]$
- (b) $P[Y \le 1]$
- (c) $P[2 < Y \le 3]$
- (d) P[Y > 1.5]

Probability Density Function (PDF)

Definition 4.3

The probability density function (PDF) of a continuous random variable X is

$$f_X(x) = \frac{dF_X(x)}{dx}$$

Probability Density Function (PDF)

Theorem 4.2

For a continuous random variable X with PDF $f_X(x)$

- (a) $f_X(x) \ge 0$ for all x
- (b) $F_X(x) = \int_{-\infty}^x f_X(u) du$
- (c) $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Probability Density Function (PDF)

Theorem 4.3

$$P[x_1 < X \le x_2] = \int_{x_1}^{x_2} f_X(x) dx$$

Remind)

Expected value of a *discrete random variable Y* is defined as

$$E[Y] = \sum_{y \in S_Y} y_i P_Y(y_i)$$

Definition 4.4

The expected value of a continuous random variable X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Example 4.6

Find the PDF and expected value of the spinning wheel experiment (example 4.1)

Theorem 4.4

The expected value of a function, g(X), of a random variable X is

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Theorem 4.5

For any random variable X,

(a)
$$E[X - \mu_X] = 0$$

(b)
$$E[aX + b] = aE[X] + b$$

(c)
$$Var[X] = E[X^2] - \mu_X^2$$

(d)
$$Var[aX + b] = a^2 Var[X]$$

Quiz 4.4

The PDF of the random variable Y is

$$f_Y(y) = \begin{cases} \frac{3y^2}{2}, -1 \le y < 1\\ 0, & \text{otherwise} \end{cases}$$

Sketch the PDF and find

- (a) E[Y]
- (b) $E[Y^2]$
- (c) Var[Y]

FAMILIES OF CONTINUOUS RANDOM VARIABLES

Uniform Random Variable

Definition 4.5

X is a uniform (a,b) random variable if the PDF of X is

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x < b, \\ 0 & \text{otherwise} \end{cases}$$

where a < b

Uniform Random Variable

Theorem 4.6

If X is a uniform (a, b) random variable,

• The CDF of
$$X$$
: $F_X(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x \le b \\ 1, & x > b \end{cases}$

- The expected value of X: $E[X] = \frac{b+a}{2}$
- The variance of X: $Var[X] = \frac{(b-a)^2}{12}$

Exponential Random Variable

Definition 4.6

X is an exponential (λ) random variable if the PDF of X is

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where $\lambda > 0$

Exponential Random Variable

Example 4.10

The duration T of telephone call is often modeled as an exponential random variable. If $\lambda = \frac{1}{3}$, what is expected call duration?

Exponential Random Variable

Theorem 4.8

If X is an exponential (λ) random variable,

- The CDF of X: $F_X(x) = \begin{cases} 1 e^{-\lambda x} & x \ge 0 \\ 0 & \text{otherwise} \end{cases}$
- The expected value of X: $E[X] = \frac{1}{\lambda}$
- The variance of X: $Var[X] = \frac{1}{\lambda^2}$

Erlang Random Variable

Definition

X is an Erlang (n, λ) random variable if the PDF of X is

$$f_X(x) = \begin{cases} \frac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

where $\lambda > 0$ and $n \ge 1$ is an integer

Erlang Random Variable

Theorem 4.10

If X is an Erlang (n, λ) random variable, then

(a)
$$E[X] = \frac{n}{\lambda}$$

(b)
$$Var[X] = \frac{n}{\lambda^2}$$

GAUSSIAN RANDOM VARIABLE

Definition 4.8

X is a Gaussian (μ, σ) random variable if the PDF of X is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Theorem 4.12

If X is a Gaussian (μ, σ) random variable

- (a) $E[X] = \mu$
- (b) $Var[X] = \sigma^2$

Theorem 4.13

If X is a Gaussian (μ, σ) , Y = aX + b is Gaussian $(a\mu + b, a\sigma)$

Definition 4.9

The standard normal random variable Z is the Gaussian (0, 1) random variable

Definition 4.10 (Standard normal CDF)

The CDF of the standard normal random variable Z is

$$\Phi(z) = \int_{-\infty}^{z} e^{-\frac{u^2}{2}} du$$

Table of	Stan	dard
Normal	CDF	$\Phi(z)$

	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
	0.00	0.5000	0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.97725	2.50	0.99379
	0.01	0.5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.01	0.97778	2.51	0.99396
	0.02	0.5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.02	0.97831	2.52	0.99413
	0.03	0.5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.03	0.97882	2.53	0.99430
	0.04	0.5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.04	0.97932	2.54	0.99446
	0.05	0.5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.05	0.97982	2.55	0.99461
	0.06	0.5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.06	0.98030	2.56	0.99477
	0.07	0.5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.07	0.98077	2.57	0.99492
	0.08	0.5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.08	0.98124	2.58	0.99506
	0.09	0.5359	0.59	0.7224	1.09	0.8621	1.59	0.9441	2.09	0.98169	2.59	0.99520
	0.10	0.5398	0.60	0.7257	1.10	0.8643	1.60	0.9452	2.10	0.98214	2.60	0.99534
	0.11	0.5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.11	0.98257	2.61	0.99547
	0.12	0.5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.12	0.98300	2.62	0.99560
	0.13	0.5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.13	0.98341	2.63	0.99573
	0.14	0.5557	0.64	0.7389	1.14	0.8729	1.64	0.9495	2.14	0.98382	2.64	0.99585
	0.14	0.5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.15	0.98422	2.65	0.99598
	0.16	0.5636	0.66	0.7454	1.16	0.8770	1.66	0.9515	2.16	0.98461	2.66	0.99609
	0.17	0.5675	0.67	0.7486	1.17	0.8790	1.67	0.9525	2.17	0.98500	2.67	0.99621
	0.17	0.5714	0.68	0.7517	1.18	0.8810	1.68	0.9535	2.18	0.98537	2.68	0.99632
	0.19	0.5753	0.69	0.7549	1.19	0.8830	1.69	0.9545	2.19	0.98574	2.69	0.99643
	0.13	0.5793	0.70	0.7549	1.20	0.8849	1.70	0.9554	2.19	0.98610	2.70	0.99653
	0.20	0.5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.21	0.98645	2.71	0.99664
	0.22	0.5871	0.72	0.7642	1.22	0.8888	1.72	0.9573	2.22	0.98679	2.72	0.99674
	0.23	0.5910	0.73	0.7673	1.23	0.8907	1.73	0.9582	2.23	0.98713	2.73	0.99683
	0.23	0.5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.24	0.98745	2.74	0.99693
	0.24	0.5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.25	0.98778	2.75	0.99702
	0.26	0.6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.26	0.98809	2.76	0.99711
	0.27	0.6064	0.77	0.7794	1.27	0.8980	1.77	0.9616	2.27	0.98840	2.77	0.99720
	0.27	0.6103	0.78	0.7823	1.28	0.8997	1.78	0.9625	2.28	0.98870	2.78	0.99728
	0.29	0.6141	0.79	0.7852	1.29	0.9015	1.79	0.9633	2.29	0.98899	2.79	0.99736
	0.30	0.6179	0.80	0.7881	1.30	0.9032	1.80	0.9641	2.30	0.98928	2.80	0.99744
	0.31	0.6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.31	0.98956	2.81	0.99752
	0.31	0.6255	0.82	0.7939	1.32	0.9049	1.82	0.9656	2.32	0.98983	2.82	0.99760
	0.33	0.6293	0.83	0.7967	1.33	0.9082	1.83	0.9664	2.33	0.99010	2.83	0.99767
	0.34	0.6331	0.84	0.7995	1.34	0.9099	1.84	0.9671	2.34	0.99036	2.84	0.99774
	0.35	0.6368	0.85	0.8023	1.35	0.9115	1.85	0.9678	2.35	0.99061	2.85	0.99781
	0.36	0.6406	0.86	0.8023	1.36	0.9113	1.86	0.9686	2.36	0.99086	2.86	0.99781
	0.37	0.6443	0.87	0.8078	1.37	0.9147	1.87	0.9693	2.37	0.99111	2.87	0.99795
	0.38	0.6480	0.88	0.8106	1.38	0.9162	1.88	0.9699	2.37	0.99134	2.88	0.99801
	0.39	0.6517	0.89	0.8133	1.39	0.9102	1.89	0.9706	2.39	0.99158	2.89	0.99807
	0.39	0.6554	0.90	0.8159	1.40	0.9192	1.90	0.9713	2.40	0.99180	2.90	0.99813
	0.40	0.6591	437,03337,755	0.8139		0.9192	1.90			0.99180 0.99202	100000000000000000000000000000000000000	
	0.41	0.6628	0.91	0.8180	1.41	0.9222	1.92	0.9715	2.42	0.99202 0.99224	2.92	0.99815
	0.42	0.6664	0.92	0.8212	1.42	0.9236	1.93	0.9720	2.42	0.99244	2.92	0.99831
	0.43	0.6700	0.94	0.8264	15.57/101-101	0.9251	1.94	0.9732	2.43	0.99245	2.93	0.99836
	0.44	0.6736	0.94	0.8289	1.44 1.45	0.9251	1.94	0.9738	2.44	0.99286	2.94	0.99841
	0.46	0.6736 0.6772	0.96	0.8315	130 50 70 100	0.9279	1.95	0.9744 0.9750	2.46	0.99286	2.95	0.99846
	0.46	0.6808	0.96	0.8315	$1.46 \\ 1.47$	0.9279	1.96	0.9756	2.40	0.99305 0.99324	2.96	0.99846 0.99851
	0.48	Wiles Control State of the	0.97	2000 CO. C.	180000000000000000000000000000000000000		5-77-6-73-73-7		2.48	0.99324	2.97	
		0.6844	11.9974	0.8365	1.48	0.9306	1.98	0.9761	100000000000000000000000000000000000000		26635560600	0.99856
	0.49	0.6879	0.99	0.8389	1.49	0.9319	1.99	0.9767	2.49	0.99361	2.99	0.99861

Gaussian to standard normal random variable

For any Gaussian (μ, σ) random variable X

$$Z = \frac{X - \mu}{\sigma}$$

is the standard normal random variable

Example 4.13

If X is a Gaussian (61, 10) random variable, what is P[51 < X < 71]?

Theorem 4.15

$$\Phi(-z) = 1 - \Phi(z)$$

Definition 4.11 (Standard normal *complementary* CDF)

$$Q(z) = P[Z > z] = \frac{1}{\sqrt{2\pi}} \int_{z}^{\infty} e^{-\frac{u^{2}}{2}} du = 1 - \Phi(z)$$

Delta Functions, Mixed Random Variables

Definition 4.12

Let

$$d_{\epsilon}(x) = \begin{cases} \frac{1}{\epsilon}, & -\frac{\epsilon}{2} \le x \le \frac{\epsilon}{2} \\ 0, & \text{otherwise} \end{cases}$$

The unit impulse (Delta) function is

$$\delta(x) = \lim_{\epsilon \to 0} d_{\epsilon}(x)$$

Theorem 4.16

For any continuous function g(x)

$$\int_{-\infty}^{\infty} g(x)\delta(x - x_0)dx = g(x_0)$$

Definition 4.13

The unit step function is

$$u(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Theorem 4.17

$$\int_{-\infty}^{x} \delta(v) dv = u(x)$$

Note)

The PDF of discrete random variable can be explained using Delta functions

Mixed Random Variable

Definition 4.14

X is mixed random variable if and only if $f_X(x)$ contains both impulses and non-zero finite values

