Lista de exercícios do Módulo II (cai na preva 2)

1) Usando a definição de função diferenciável, vorifique se

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases} e g(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

são diferenciáveis em (0,0)

Determine as equações do plano tangente e da reta normal ao gráfico de $f(x,y) = xe^{x^2-y^2}$

em (2, 2, f(2,2)).

- 3) Determine o plomo que seja paralelo à z=2x+3y e tangente ao gráfico de $f(x,y)=x^2+xy$.
- (1) Uma caixa de forma cilínduca é feita com um material de espessura 0,03 m.

 As medidas internas são: altura = 2 m e nais da base = 1 m. A caixa é som tampa.

 Calcule o valor aproximado para o volume do material utilizado na caixa.
 - (a) Calcule $\frac{\partial f}{\partial x}$ (3,1) admittendo $\frac{\partial f}{\partial y}$ (3,1) = 2
 - (b) Determine a equação do plano tangente ao gráfico de f no ponto (3, 1, f(3,1)).
- 6 Determine uma neta que seja tangente à curva $x^2 + xy + y^2 = 7$ e paralela à reta 4x + 5y = 17.
- 7) Determine um plano que reja tangente à superfície $x^2 + 3y^2 + 2z^2 = 1/6$

- e paralelo ao plano x+y+z=10.
- (2) Cal arle a derivada direcional de $f(x,y) = \sqrt{1+x^2+y^2}$ no ponto (2, 2) e na direção de $\vec{v} = (1, 2)$.
- Admita que $T(x,y) = 16 \cdot x^2 \cdot y^2$ represente uma distribuição de temperatura no plano (x,y). Determine uma parametrização descrita por um ponto Pque se desloca, a portir do ponto (1,2), sempre na direção e sentido de máximo crescimento da temperatura
- (10) Calcule o volume do conjunto dado.

 (a) $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le x + 2y$.

 (b) $0 \le x \le 2$, $1 \le y \le 2$, $0 \le z \le \sqrt{xy}$
- (11) (alcule IB f(x,y) dxdy sondo dados:
 - (a) $f(x,y) = xy\sqrt{x^2+y^2}$ e B é o netángulo $0 \le x \le 1$, $0 \le y \le 1$.
 - (b) $f(x,y) = (\cos 2y)\sqrt{4-\sin^2x}$ e B sondo o triângulo de vértices (0,0), (0, $\pi/2$) e ($\pi/2$, $\pi/2$).
 - (c) $f(x,y) = \frac{y}{x+y^2}$ e B = 0 conjunto dos (x,y) tais que $1 \le x \le 4$, $0 \le y \le \sqrt{x}$.
- (1) Calcule o volume do conjunto dado:
 - (a) x²+ 4y²≤4 1 ×+y≤ ≥ ≤ ×+y+1.
 - (b) x≤≥≤1-y2 e x≥0.

- (13) Calarle:
 - (a) $\iint_{B} s_{\theta n}(4x^{2}+y^{2}) dxdy$ onde $B \neq 0$ conjunto $4x^{2}+y^{2} \leq 1$ e $y \geq 0$.
 - (b) $\iint_{\mathcal{B}} (2x+y) \cos(x-y) dx dy$ ende $\mathcal{B} \neq 0$ paralelognamo de vértices (0,0), $(\frac{\pi}{3}, \frac{\pi}{3})$, $(\frac{\pi}{3}, -\frac{\pi}{3})$ e $(\frac{\pi}{3}, -\frac{2\pi}{3})$.
- (4)) Parse para coordenadas polares e calcule:

(a)
$$\int_{0}^{1} \int_{\chi^{2}}^{\sqrt{2-y^{2}}} -\sqrt{\chi^{2}+y^{2}} dy dx$$

(b)
$$\int_{0}^{a} \int_{0}^{x} \sqrt{x^{2}+y^{2}} dy dx$$
 (a>0).

- (15) Calaile a area delimitada pela elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>0 e b>0).
- (b) Legian $A = \{(x,y) \in \mathbb{R}^2 \mid 1+x^2 \le y \le 2+x^2, x \ge 0 \text{ e } y \ge x+x^2 \}$ e $B = \{(u,v) \in \mathbb{R}^2 \mid 1 \le v \le 2, v \ge n \text{ e } n \ge 0 \}.$
 - (a) Verifique que $B=\varphi(A)$ onde $(u_1v)=\varphi(x,y)$, com u=x e $v=y-x^2$
 - (b) Verifique que a méa de t é igual à méa de B.