

# Pricing of New York City Taxi Rides

# Christophoros Antoniades | Delara Fadavi | Antoine Foba-Amon Jr. chranto@stanford.edu | dfadavi@stanford.edu | amonjr@stanford.edu



#### **Objective**

This project uses publically available taxi data from New York City Taxi & Limousine Commission to extract insights about ride fare and duration. This information can be useful in helping drivers decide between rides to accept to increase profit or to help passengers choose times of day to minimize fare or ride time.



#### **Dataset**

Each observation represents a single taxi ride and includes feature information such as pickup/dropoff location, time of ride, fare, tip, payment type, and more.

The dataset was cleaned to have clear covariates delineating exact times and dates of each ride. Data from May 2016 was used, which contained approximately 12 million observations of taxi rides.

8,000 observations were used as training data and 2,000 observations were used as a validation set

#### Covariates

| trip_distance    | pickup_longitude | pickup_latitude        | dropoff_longitude |
|------------------|------------------|------------------------|-------------------|
| dropoff_latitude | fare_amount      | extra                  | mta_tax           |
| tip_amount       | tolls_amount     | improvement_surch arge | total_amount      |
| manhattan_dist   | shortest_dist    | pickup_month           | dropoff_month     |
| pickup_year      | dropoff_year     | pickup_day             | dropoff_day       |
| pickup_weekday   | dropoff_weekday  | pickup_hour            | dropoff_hour      |
| pickup_minute    | dropoff_minute   | passenger_count        | RatecodeID        |
| payment_type     |                  |                        |                   |

#### Methods

#### **Forward Search and Lasso**

- Forward search suggest keeping nearly all variables
  - Trip distance and rides in hour most important variables
- Lasso resulted in small lambda parameter and hence no significant increase in prediction accuracy

## Linear regression

- Predicting duration and fare
  - Linear regression gives reasonable results, but has a limit to its accuracy
  - Coordinate system
     variables are not linear
     and do therefore not
     give significant results





### **Additional Model Modifications**

- Transformation of latitude/longitude coordinates
- Traffic modeling by considering rides per hour (yields small prediction improvement)

#### Results

| Model                       | RMSE Validation | RMSE Train |
|-----------------------------|-----------------|------------|
| Fare, Baseline Mean         | \$10.45         | \$10.36    |
| Fare, Linear Regression     | \$3.52          | \$3.04     |
| Fare, Random Forest         | \$2.28          | \$2.16     |
| Duration, Baseline Mean     | 11.95 min       | 11.43 min  |
| Duration, Linear Regression | 6.51 min        | 6.17 min   |
| Duration, Random Forest     | 5.24 min        | 5.09 min   |

#### **Random Forest**

- 500 trees and m = n / 3
  predictors per split
- Random Forest
   outperforms all linear
   regressions and Lasso
- Manages to model nonlinearity in location coordinates
- Error likely to depend on traffic and individual driving characteristics





Random Forest Validation RMSE



Absolute prediction error is proportional to ride duration

#### **Conclusions and Future direction**

- The Random Forest model performs the best, because of the nonlinear influence of location patterns on trip duration and fare
- Prediction accuracy flattens with more variables from this data set, implying need for additional predictive variables
- Analyze more data to infer traffic conditions or other variabilities that can affect duration and fare
- Consider modelling traffic between pickup and dropoff locations

<sup>&</sup>lt;sup>1</sup>N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva, "Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips," *IEEE Transactions on Visualization and Computer Graphics*, 2013. [Online]. Available: https://vgc.poly.edu/~juliana/pub/taxivis-tvcg2013.pdf. Accessed: Dec. 11, 2016.