

DIGITAL SYSTEM DESIGN APPLICATION – EHB 436E

Experiment III

Yiğit Bektaş GÜRSOY

040180063

Class Lecturer: Sıddıka Berna Örs Yalçın

Class Assistant:
Serdar Duran
Yasin Fırat Kula
Mehmet Onur Demirtürk

1. REALIZATION WITH SSI LIBRARY

• We have a truth table as indicated in the image below

а	b	С	d	f ₃	f ₂	f ₁	f ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

• We can write this function in its simplest form with the karnaugh map method we learned in logic circuits.

Reduction with Karnough MAP

Boolean expressions of the function and Gate Level Circuit

BEHAVIORAL SIMULATION

• TCL Console output is given below.

```
f run 1000ns
{a,b,c,d|=0000 => {f3,f2,f1,f0} = 0000 -- TRUE
{a,b,c,d|=0010 => {f3,f2,f1,f0} = 0000 -- TRUE
{a,b,c,d|=0011 => {f3,f2,f1,f0} = 0000 -- TRUE
{a,b,c,d|=0010 => {f3,f2,f1,f0} = 0000 -- TRUE
{a,b,c,d|=0101 => {f3,f2,f1,f0} = 0011 -- TRUE
{a,b,c,d|=0101 => {f3,f2,f1,f0} = 0011 -- TRUE
{a,b,c,d|=0101 => {f3,f2,f1,f0} = 0011 -- TRUE
{a,b,c,d|=1001 => {f3,f2,f1,f0} = 0010 -- TRUE
{a,b,c,d|=1001 => {f3,f2,f1,f0} = 0010 -- TRUE
{a,b,c,d|=1001 => {f3,f2,f1,f0} = 0010 -- TRUE
{a,b,c,d|=1001 => {f3,f2,f1,f0} = 0110 -- TRUE
{a,b,c,d|=1001 => {f3,f2,f1,f0} = 0110 -- TRUE
{a,b,c,d|=1101 => {f3,f2,f1,f0} = 0110 -- TRUE
{a,b,c,d|=1111 => {f3,f2,f1,f0} = 0110 -- TRUE
{a,b,c,
```

Design with NO Constraints

• RTL Schematic

• Technology Schematic

• Path Delays

Q Combinational Delays

From Port	To Port	Max 1 Delay	Max Process Corner	Min Delay	Min Process Corner
D a		7.643	SLOW	2.547	FAST
ightharpoons d		7.438	SLOW	2.471	FAST
b		7.395	SLOW	2.468	FAST
ightharpoons d		7.241	SLOW	2.393	FAST
		7.173	SLOW	2.401	FAST
		7.030	SLOW	2.324	FAST
d	 d f 3	7.008	SLOW	2.339	FAST
b		6.906	SLOW	2.290	FAST
	 d f 3	6.799	SLOW	2.268	FAST
b	d f0	6.781	SLOW	2.257	FAST
D a		6.675	SLOW	2.225	FAST
b		6.674	SLOW	2.238	FAST
d	d f0	6.537	SLOW	2.162	FAST
D a		6.475	SLOW	2.167	FAST

• Utilization Summary

Design with Time Constraints

- Path Delays
 - As seen in the photo above, I saw delays close to and above 7ns, so I set the time constraints maximum delay to 7ns. The results are as follows.

• Utilization Summary

➤ If we look at the previous utilization summary, this result is 1 LUT more.

Design with LOC Constraints

• Placement f0,f1,f2,f3 respectively.

• Placed the LUTs on the device as stated in the assignment. As a result of these placements, our delays have almost doubled.

```
256 #f0 LUT

257 set_property LOC SLICE_X12Y67 [get_cells f0_OBUF_inst_i_1]

258 #f1 LUTS

259 set_property LOC SLICE_X12Y66 [get_cells xorF1_0/*]

260 #f2 LUT

261 set_property LOC SLICE_X13Y67 [get_cells f2_OBUF_inst_i_1]

262 #f3 LUT

263 set_property LOC SLICE_X14Y64 [get_cells f3_OBUF_inst_i_1]

Sayfa 7 / 17
```

• Path Delays

Q Combinational Delays M Max Process From То Min Min Process Port Port Corner Delay Corner √ f3 11.627 SLOW 4.411 FAST <□ f0 11.620 SLOW 4.440 FAST √ f3 11.576 SLOW 4.406 FAST <□ f2 11.544 SLOW 4.372 FAST 4.368 FAST √ f2 11.491 SLOW <□ f0 11.385 SLOW 4.286 FAST √ f3 11.380 SLOW 4.253 FAST D a <□ f2 11.293 SLOW 4.214 FAST √ f3 4.212 FAST 11.237 SLOW √ f2 11.150 SLOW 4.171 FAST √ f1 7.562 SLOW 2.615 FAST √ f1 7.103 SLOW 2.381 FAST 7.093 SLOW 2.358 FAST √ f1

Utilization

6.918 SLOW

<□ f1

2.304 FAST

Design with Time (LOC CONSTRAINTS)

• Path Delays

I tried to reduce the maximum delay below 10ns. The output of my operation is as follows.

Post-implementation Timing Simulation
 The red line above shows that there is a delay due to setup and hold time.

CONCLUSION

Implementation: Max Time Delay (ns)

Without any constraints: 7.643

With time constraints (7ns): 6.907

With LOC constraints: 11.627

With time LOC constraints and set max delay (10ns): 10.507

2. REALIZATION WITH DECODER

4x16 Decoder Representation

• Behavioral Simulation

• RTL Schematic

• Technology Schematic

• Device Placement

• Utilization Summary

Sayfa 11 / 17

• Path Delay

> No time constraints

Q Combinational Delays

From Port	To Port	Max 1 Delay	Max Process Corner	Min Delay	Min Process Corner
D a		7.271	SLOW	2.404	FAST
b	─ f0	7.067	SLOW	2.353	FAST
		6.979	SLOW	2.334	FAST
D a	€ f2	6.940	SLOW	2.306	FAST
		6.929	SLOW	2.287	FAST
d d		6.852	SLOW	2.268	FAST
D a		6.796	SLOW	2.276	FAST
d d	─ f0	6.777	SLOW	2.255	FAST
b		6.747	SLOW	2.245	FAST
d d		6.680	SLOW	2.232	FAST
b	√ f3	6.618	SLOW	2.215	FAST
	€ f2	6.600	SLOW	2.187	FAST
d d	€ f2	6.523	SLOW	2.172	FAST
b		6.449	SLOW	2.143	FAST

➤ Adding time constraints

Max delay is set to 7 ns time constraints.

Q Combinational Delays					
From Port	To Port	Max 1 Delay	Max Process Corner		
	√□ f2	6.673	SLOW		
d	 d f 3	6.620	SLOW		
D a	√□ f2	6.613	SLOW		
D a	- f1	6.578	SLOW		
	√ f3	6.543	SLOW		
	- f1	6.529	SLOW		
ightharpoons d		6.498	SLOW		
D a	- f3	6.489	SLOW		
ightharpoons d	d f0	6.398	SLOW		
b	- f0	6.332	SLOW		
b	√□ f2	6.314	SLOW		
b	 d f 3	6.305	SLOW		
d	√ f1	6.251	SLOW		
b	- f1	6.192	SLOW		

➤ Utilization Summary

We reduced the delays below 7ns by adjusting the time constraint, but 1 LUT was added to our structure as an extra.

3. REALIZATION WITH MUX

➤ Gate Level Circuit

> RTL Schematic

Sayfa 13 / 17

> Technology Schematic

I saw the LUT5 build here, which I hadn't seen in previous assignments. LUT5 is a LookUpTable with 5 inputs and 1 output.

Utilization Summary

Path Delays

> No time constraints

> With time constraints

With time constraints it is achieved to get below 7ns time constraints. Results are given below.

Utilization Summary

Device placement and Combinational Delays

```
259 set_property BEL D6LUT [get_cells MUX0/o]
260 set_property LOC SLICE_X12Y63 [get_cells MUX0/o]
261 set_property BEL C6LUT [get_cells MUX1/o]
262 set_property LOC SLICE_X12Y63 [get_cells MUX1/o]
263 set_property BEL B6LUT [get_cells XOR1/EXOR]
264 set_property LOC SLICE_X12Y63 [get_cells XOR1/EXOR]
265 set_property BEL A6LUT [get_cells f2_OBUF_inst_i_1]
266 set_property LOC SLICE_X12Y63 [get_cells f2_OBUF_inst_i_1]
267 set_property BEL D6LUT [get_cells f3_OBUF_inst_i_1]
268 set_property LOC SLICE_X13Y63 [get_cells f3_OBUF_inst_i_1]
```


Our combinational delays have increased noticeably due to random placement of locations within the device. The relevant outputs are shown in the figure above.

LUT Usage

Decoder: 3 (Best LUT Usage)

MUX:4

SSI: 5 (Worst LUT Usage)

Path Delays

Decoder: 7.271ns (Best delay) MUX: 7.731ns (Worst delay)

SSI: 7.643ns

Final comments

- ➤ Decoder is the simplifier than the other structures, with_SSI and MUX, it is need to be used the decoder and OR_gates the necessary outputs together..
- > MUX is more complex to design than the other structures, with_SSI and MUX, the design of the design was more difficult to think through and more time was spent than others.
- ➤ If we look at the coding side, I used less submodules in the MUX structure compared to other modules, while the decoder was the structure where I used the most submodules.