Uge 5

Danny Nygård Hansen

27. september 2023

4.8 • **■** Bemærk at

$$\{(x,y) \in \mathbb{R}^2 \mid x > 0, \text{ og } 0 \le y \le \frac{1}{x}\}\$$

= $p_1^{-1}((0,\infty)) \cap p_2^{-1}([0,\infty)) \cap (g-p_2)^{-1}([0,\infty)),$

hvor $g(x,y) = \frac{1}{x}$ for x > 0 og f.eks. g(x,y) = 0 (det sidste er ligegyldigt da x > 0).

4.9 • © Benyt at funktionen $x \mapsto |x|$ er kontinuert. For at modbevise den omvendte implikation, lad A være en ikke-målelig delmængde af X og betragt funktionen $\mathbf{1}_A - \mathbf{1}_{A^c}$.

4.11 · 🖘

- (a) For $t \in \mathbb{R}$ og $\epsilon > 0$, lad $\delta > 0$ afparere ϵ i t og lad $n > \frac{1}{\delta}$. Hvis n er stor nok, da er $t \in [\frac{k-1}{n}, \frac{k}{n})$ for et k mellem $-n^2 + 1$ og n^2 . Det følger at $\frac{k}{n} t < \delta$, så $|f(\frac{k}{n}) f(t)| < \epsilon$.
- (b) Bemærk at alle f_n er målelige.

4.14 · 🖘

- (a) Bemærk at $V \subseteq \overline{\mathcal{M}}(\mathcal{E})^+$ da $\overline{\mathcal{M}}(\mathcal{E})^+$ indeholder de målelige indikatorfunktioner og er lukket under de nævnte operationer. For den modsatte inklusion, benyt som nævnt Sætning 4.5.3.
- (b) Samme fremgangsmåde som del (a).

4.15 • 🗇 De to identiteter vises på samme vis. Bemærk at

$$\mathbf{1}_{B} \circ \varphi = \mathbf{1}_{\varphi^{-1}(B)}$$
 og at $(\alpha f + \beta g) \circ \varphi = \alpha (f \circ \varphi) + \beta (g \circ \varphi)$.

Det er relativt besværligt at vise at mængderne på højre side af identiteterne er lukket under voksende grænseovergang. Hvis $(g_n)=(f_n\circ\varphi)$ er en voksende følge deri, da er $g=f\circ\varphi$, hvor $g=\sup_{n\in\mathbb{N}}g_n=\lim_{n\to\infty}g_n$ og $f=\sup_{n\in\mathbb{N}}f_n$. Men selvom alle g_n tager værdier i \mathbb{R} , gælder dette ikke nødvendigvis for $\sup_{n\in\mathbb{N}}f_n$, så i det andet tilfælde kan vi få problemer. I dette tilfælde kan vi dog antage (jf. Opgave 4.14(b)(III)) at $g<\infty$ overalt. Hvis $f(y)=\infty$ for et $y\in Y$, da kan y altså ikke ligge i $\varphi(X)$. Altså er $\varphi(X)\subseteq\{f<\infty\}$ =: B. Derfor må vi også have $g=f\mathbf{1}_B\circ\varphi$, men $f\mathbf{1}_B\in\mathcal{M}(\mathcal{F})$ som ønsket (husk at $f\in\overline{\mathcal{M}}(\mathcal{F})$ ved Sætning 4.3.6, og $B\in\mathcal{F}$).

Hvis man ikke har noget imod at antage at $\varphi(X) \in \mathcal{F}$, da kan man blot betragte $f\mathbf{1}_{\varphi(X)}$ i stedet for $f\mathbf{1}_B$, hvilket gør argumentet en smule lettere. Men dette koster altså en ekstra antagelse!

5.2 · 👄

- (a) Benyt blot linearitet af integralet.
- (b) En grænseværdi af målelige funktioner er målelig. Benyt da monoton konvergens. At mængderne A_j er disjunkte betyder blot at s er endelig, ellers er denne antagelse ikke nødvendig.
- (c) Skriv s på formen

$$s = \sum_{n=1}^{\infty} \frac{1}{n^2} \mathbf{1}_{(n-1,n]}$$

og benyt del (b).

- **5.3** \iff Hvis man benytter Hovedsætning 5.2.11, da følger (i1) og (i2) ved blot at indsætte $E_{\delta_a}(f) = f(a)$, og (i3) følger da vi netop betragter den punktvise grænse af (f_n) .
- **5.4** Som i Eksempel 5.2.13 kan vi skrive

$$f(n) = \sum_{k=1}^{\infty} f(k) \mathbf{1}_{\{k\}}(n),$$

og derefter benytte Sætning 5.2.9 til at slutte at

$$\int f \, \mathrm{d}\mu = \sum_{k=1}^{\infty} f(k) \int \mathbf{1}_{\{k\}} \, \mathrm{d}\mu.$$

Tilbage er at bemærke at

$$\int \mathbf{1}_{\{k\}} \,\mathrm{d}\mu = \mu(\{k\}) = \alpha_n.$$

Man kan også benytte Hovedsætning 5.2.11, men da skal man bruge at det er tilladt at bytte om på grænseværdier – et resultat som minder om Lemma A.2.14, men hvor der kun er tale om en enkelt sum.

5.5 • ■

- (a) Benyt Hovedsætning 5.7.3 (eller Sætning A på ugesedlen) og monoton konvergens.
- (b) Som i del (a). ■