ΔΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Α΄ ΛΥΚΕΙΟΥ

Θ EMA A

A1.

Να δώσετε τον ορισμό της απόλυτης τιμής ενός πραγματιχού αριθμού α. (Μονάδες 7)

A2.

Να αποδείξετε ότι, για οποιονδήποτε πραγματικούς αριθμούς α , β ισχύει η ανισότητα:

$$|\alpha + \beta| \le |\alpha| + |\beta|$$

(Μονάδες 8)

A3.

Να χαρακτηρίσετε τις παρακάτω προτάσεις, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη $\Sigma \omega \sigma \tau \dot{o}$, αν η πρόταση είναι σωστή, ή $\Lambda \dot{\alpha} \theta o \varsigma$ αν η πρόταση είναι λανθασμένη.

ι. Αν
$$\alpha < \beta$$
 και $x < \delta$, τότε $\alpha \cdot y < \beta \cdot \delta$ (Μονάδες 2)

ιι. Για κάθε
$$\theta \in (0, +\infty)$$
 ισχύει: $|x| < \theta \iff -\theta < x < \theta$. (Μονάδες 2)

ιιι. Η εξίσωση
$$x^3=-1$$
 είναι αδύνατη για κάθε $\alpha\in\mathbb{R}$. (Μονάδες 2)

ι. Η εξίσωση $\alpha x^2 + \beta x + \gamma = 0$ με $\alpha \neq 0, \beta, \gamma \in \mathbb{R}$ έχει πάντοτε πραγματικές λύσεις αν η διακρίνουσα είναι μη αρνητική. (Μονάδες 2)

. Ισχύει
$$|\pi - 3| = \pi - 3$$
. (Μονάδες 2)

Θ EMA B

Δίνεται η παράσταση A=|x-1|+|y-3|, με x,y πραγματικούς αριθμούς για τους οποίους ισχύει:

$$1 < x < 4$$
 kai $2 < y < 3$

Να αποδείξετε ότι:

B1.

$$A = x - y + 2$$

(Μονάδες 12)

B2.

(Μονάδες 13)

Θ EMA Γ

Δίνονται οι παραστάσεις:

$$A = \frac{2}{\sqrt{5} - \sqrt{3}} + \frac{2}{\sqrt{5} + \sqrt{3}}, \quad B = \sqrt{11 + 6\sqrt{2}} - \sqrt{11 - 6\sqrt{2}}$$

 $\Gamma 1.$

Να δείξετε ότι:

$$A=2\sqrt{5}$$

(Μονάδες 6)

 $\Gamma 2.$

Να υπολογίσετε τα αναπτύγματα:

$$(3+\sqrt{2})^2$$
, $(3-\sqrt{2})^2$

(Μονάδες 6)

$\Gamma 3.$

Να δείξετε ότι:

$$B = 2\sqrt{2}$$

(Μονάδες 6)

$\Gamma 4.$

Να λυθεί η εξίσωση:

$$\frac{|x-2|}{B\sqrt{2}} = \frac{|2-x|}{A\sqrt{5}} - \frac{5}{3}$$

όπου A,B οι παραπάνω παραστάσεις.

(Μονάδες 7)

Θ EMA Δ

α) Να αποδείξετε ότι οι παραχάτω ανισότητες ισχύουν για χάθε $x \in \mathbb{R}$ και να βρείτε για ποιες τιμές του x ισχύουν ως ισότητες.

$$(ι) x2 + x + 1 \ge \frac{3}{4}.$$
 (Μονάδες 4)

$$(\mathfrak{u}) \ x^2 - x + 1 \ge \frac{3}{4}. \tag{Moνάδες 4}$$

β) Να δείξετε ότι

$$(x^2 + x + 1)(x^2 - x + 1) > \frac{9}{16}$$

για κάθε $x \in \mathbb{R}$. (Μονάδες 6)

γ) Δίνεται η παράσταση

$$A = \frac{(x^3 - 1)(x^3 + 1)}{x^2 - 1}$$

(ι) Να βρείτε για ποιες τιμές του $x \in \mathbb{R}$ ορίζεται η παράσταση A.

(ιι) Με τη βοήθεια του β) ή με οποιοδήποτε άλλο τρόπο θέλετε, να εξετάσετε αν η παράσταση A μπορεί να πάρει την τιμή $\frac{9}{16}$. (Μονάδες 6)