Optimizing Likelihood of MLB Playoff Apperance

Shannon Leiss

12/6/2021

Introduction

Many different attempts have been made to optimize an equation for predicting a team's probability of making the playoffs in all sports.

Teams dataset in the Lahman package provides team records for the 1871 - 2020 baseball season, along with offensive statistics, defensive statistics, and if the team made the playoffs.

Logistic Model

A simple logistic regression can be used to model the log-odds that a team makes the playoffs, based off of a teams run average and a teams batting average

$$\log(\frac{p_i}{1-p_i}) = \alpha + \beta_1(R_i) + \beta_2(H_i)$$

The terms that are observed are:

 y_i = Indicator that a team made the playoffs

 R_i = Team's run average, found by dividing Runs by At Bats

 H_i = Team's batting average, found by dividing Hits by At Bats

Where the unobserved variables are α , β_1 , β_2 , and p_i , where p_i is defined as:

$$p_i = \frac{e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}{1 + e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}$$

Questions of Interest:

What values of α , β_1 , and β_2 optimize the logistic function for the likelihood of a Baseball team making the playoffs?

Which optimization method - Newton-Raphson or Quasi-Newton - gets closest to the optimized values found when the logistic model is fit?

What are the 95% confidence intervals of the $\hat{\alpha}, \hat{\beta}_1$, and $\hat{\beta}_2$ optimized values?

Methods

The following methods will be used to optimize $\theta = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \end{pmatrix}$

- Newton-Raphson
- Quasi-Newton
- Bootstrapping for Confidence Intervals

Distribution of Model

Since the response variable of y_i is a binary response, the logistic regression will follow a Bernoulli distribution. The distribution is:

$$f(y_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$f(y_i) = \left(\frac{e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}{1 + e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}\right)^{y_i} \left(1 - \left(\frac{e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}{1 + e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}\right)\right)^{1 - y_i}$$

$$f(y_i) = \left(\frac{e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}{1 + e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}\right)^{y_i} \left(\frac{1}{1 + e^{\alpha + \beta_1(R_i) + \beta_2(H_i)}}\right)^{1 - y_i}$$

Log-Likelihoods of Model

$$\ell(\theta) = \sum_{i=1}^{n=660} y_i log(\frac{e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}}{1+e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}}) + (1-y_i) log(\frac{1}{1+e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}})$$

$$\ell(\theta) = \sum_{i=1}^{n=660} y_i (\alpha+\beta_1(R_i)+\beta_2(H_i)) - log(1+e^{\alpha+\beta_1(R_i)+\beta_2(H_i)})$$

$$\ell'(\theta) = \begin{bmatrix} \sum_{i=1}^{n=660} y_i - \frac{e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}}{1+e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}} \\ \sum_{i=1}^{n=660} R_i(y_i) - \frac{e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}}{1+e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}} \end{bmatrix} = \begin{bmatrix} \sum_{\substack{n=660 \ n=660}}^{n=660} y_i - p_i \\ \sum_{\substack{n=660}}^{n=660} R_i(y_i) - \frac{R_i(p)e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}}{1+e^{\alpha+\beta_1(R_i)+\beta_2(H_i)}} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{\substack{n=660 \ n=660}}^{n=660} y_i - p_i \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{\substack{n=660 \ n=660}}^{n=660} y_i - p_i \\ \sum_{\substack{n=660 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{\substack{n=660 \ n=660}}^{n=660} Y_i - p_i \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{\substack{n=660 \ n=660}}^{n=660} Y_i - p_i \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{\substack{n=660 \ n=660}}^{n=660} Y_i - p_i \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^{n=660} R_i(y_i) - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^{n=660} - R_i(p_i) \\ \sum_{\substack{i=1 \ n=660}}^$$

Methods: Newton-Raphson

The updating rule for Newton-Raphson is:

$$\theta^{(t+1)} = \theta^{(t)} - (\ell''(\theta^{(t)}))^{-1}(\ell'(\theta^{(t)}))$$

The optimization formula was allowed to update until the difference between $\theta^{(t+1)}$ and $\theta^{(t)}$ was less than 0.00001.

Methods: Quasi-Newton

Alternative method to Newton Method when the second derivative of $\ell(\theta)$ is complicated

The updating rule for this method, using the Hessian approximation with the BFGS method:

$$M^{(t+1)} = M^{(t)} - \frac{(M^{(t)}(\theta^{(t+1)} - \theta^{(t)}))(M^{(t)}(\theta^{(t+1)} - \theta^{(t)}))^{T}}{(\theta^{(t+1)} - \theta^{(t)})^{T}M^{(t)}(\theta^{(t+1)} - \theta^{(t)})} + \frac{(\ell'(\theta^{(t+1)}) - \ell'(\theta^{(t)}))(\ell'(\theta^{(t+1)}) - \ell'(\theta^{(t)}))^{T}}{(\theta^{(t+1)} - \theta^{(t)})^{T}(\ell'(\theta^{(t+1)}) - \ell'(\theta^{(t)}))}$$

Methods: Bootstraping for Confidence Intervals

- Resampling of the Original observed data and then optimizing the resampled data
- \blacktriangleright 10,000 iterations were run to produce 10,000 optimized values of θ
- Resampled data optimized by Quasi-Newton method

Results

Starting points:
$$\theta = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -8 \\ 80 \\ -20 \end{pmatrix}$$

All optimized values, along with iterations and the estimated parameters from the logistic regression

	Alpha	Beta 1	Beta 2	Runs
Newton:(0,0,0)	-7.8077	87.7043	-19.5363	5
Newton:(-1,1,-1)	-7.8077	87.7043	-19.5363	4
Newton:(-8,80,-20)	-7.8077	87.7043	-19.5363	5
Quasi-Newton:(0,0,0)	-7.8015	87.6818	-19.5476	28
Quasi-Newton: $(-1,1,-1)$	-7.8219	87.6086	-19.4316	25
Quasi-Newton:(-8,80,-20)	-7.8214	87.6017	-19.4302	18
Fisher Scoring(through glm()):	-7.8080	87.7040	-19.5360	4

Results: Confidence Intervals

	Lower	Upper	Estimate	Standard Deviation
Alpha	-12.1018	-3.7367	-7.8636	2.1280
Beta 1	67.6702	109.1632	88.0728	10.5754
Beta 2	-41.5621	2.2570	-19.5275	11.0820

Conclusions

- Newton-Raphson optimization takes the least amount of iterations and gets closest to the estimated values from the logistic regression model.
- Quasi-Newton optimization has shortest computation time and simpler implementation but takes more iterations
- ▶ Both methods are fairly close to each other
- Starting value:
 - ▶ Doesn't impact number of iterations for Newton-Raphson
 - ► Impacts number of iterations for Quasi-Newton

Models Created from Optimization

Using Newton-Raphson optimized values:

$$log(\frac{p_i}{1-p_i}) = -7.808 + 87.704(R_i) - 19.536(H_i)$$

Using Quasi-Newton estimate from the bootstrapping method:

$$log(\frac{p_i}{1-p_i}) = -7.864 + 88.073(R_i) - 19.528(H_i)$$

Probability of Making the Playoffs

ATL

0.656

0.657

ARI

0.482

0.482

Team

Quasi

Newton

~									
Team	COL	DE	Т Н	DU	KCR	ANA	LA[) F	FLA
Newton	0.48	7 0.03	35 0.7	771	0.168	0.38	7 0.78	37 (0.062
Quasi	0.48	7 0.03	35 0.7	772	0.167	0.38	6 0.78	38 (0.061
Team	MIN	NY	Y N	ſΜ	OAK	PHI	PIT	. (SDP
Newton	0.78	4 0.85	6 0.3	379	0.659	0.39	6 0.22	27 (0.205
Quasi	0.78	5 0.85	7 0.3	379	0.659	0.39	5 0.22	26 (0.204
Tea	am	SFG	STL	TI	BD	TEX	TOR	WS	- SN
Nev	Newton		0.425	0.	315	0.542	0.302	0.7	13
Qu	asi	0.139	0.425	0.	314	0.542	0.301	0.7	14
									—

BAL

0.232

0.231

BOS

0.652

0.652

CHW

0.158

0.157

CHC

0.583

0.583

CIN

0.216

0.215

CLE

0.437

0.437

MIL 0.389 0.388

SEA 0.412 0.411