ARTIFICIAL INTELLIGENCE

ASSIGNMENT ON DECISION TREES

1. The following table contains training examples that help predict whether a patient is likely to have a heart attack.

PATIENT ID	CHEST PAIN?	MALE? SMOI	KES?	EXERCISES?	HEART ATTACK?
1.	yes	yes	no	yes	yes
2.	yes	yes	yes	no	yes
3.	no	no	yes	no	yes
4.	no	yes	no	yes	no
5.	yes	no	yes	yes	yes
6.	no	yes	yes	yes	no

Use information theory to construct a minimal decision tree that predicts whether or not a patient is likely to have a heart attack. SHOW EACH STEP OF THE COMPUTATION.

Soln:

The following decision tree is used to predict whether a person can have a heart attack or not.

- The above decision tree tells us that if a person has a chest pain then he is likely to have heart attack.
- If the person does not have chest pain, then we take another attribute from the dataset into consideration- exercise.
- If the person does not have chest pain but does exercise, then is not likely to have heart attack.
- If the person does not have chest pain but does not exercise, then he is likely to have heart attack.
- We have chosen the attributes from the given dataset in such a way that the depth of the decision tree is as minimal as possible.

2. A) Build a decision tree from the given tennis dataset. You should build a tree to predict Play Tennis, based on the other attributes (but, do not use the Day attribute in your tree.). Show all of your work, calculations, and decisions as you build the tree.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Soln:

The following decision tree is used to predict whether we can play tennis or not.

- If the outlook is overcast, then we can play tennis.
- If outlook is rain, then we consider another attribute from the given datasetwind.
- If the outlook is rain and the wind is strong, then we cannot play tennis.
- If the outlook is rain and the wind is weak, then we can play tennis.
- If the outlook is sunny, then we consider another attribute from the given dataset- humidity.
- If the outlook is sunny and humidity is high, we cannot play tennis.
- If the outlook is sunny and humidity is normal, we can play tennis.
- The above decision tree is constructed by choosing attributes from the dataset which makes the depth of the decision tree to be as minimal as possible.

B) Now, build a tree using only examples D1–D7.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes

Soln:

The following decision tree is used to predict whether we can play tennis or not.

- If the outlook is overcast, then we can play tennis.
- If the outlook is sunny, then we cannot play tennis.
- If outlook is rain, then we consider another attribute from the given datasetwind.
- If the outlook is rain and the wind is strong, then we cannot play tennis.
- If the outlook is rain and the wind is weak, then we can play tennis.
- The above decision tree is constructed by choosing attributes from the dataset which makes the depth of the decision tree to be as minimal as possible.

3. Consider the following data set:

price	maintenance	capacity	airbag	profitable
low	low	2	no	yes
low	med	4	yes	no
low	low	4	no	yes
low	high	4	no	no
med	med	4	no	no
med	med	4	yes	yes
med	high	2	yes	no
med	high	5	no	yes
high	med	4	yes	yes
high	high	2	yes	no
high	high	5	yes	yes

Considering 'profitable' as the binary values attribute, we are trying to predict construct a decision tree.

Soln:

The following decision tree is used to predict whether it is profitable or not.

- If the maintenance is low, then it is profitable.
- If maintenance is medium, then we consider another attribute from the datasetprice.
- If the maintenance is medium and the price is high, then it is profitable.
- If the maintenance is medium and price is low, then it is not profitable.
- If the maintenance is medium and the price is also medium, we consider another attribute called airbag.
- If the maintenance is medium, price is medium and if airbag is yes, then its profitable.

- If the maintenance is medium, price is medium and if airbag is no, then it's not profitable.
- If the maintenance is high then we consider another attribute from the dataset-capacity.
- If maintenance is high and capacity is 2, it's not profitable.
- If maintenance is high and capacity is 4, it's not profitable.
- If maintenance is high and capacity is 5, it's profitable.
- The above decision tree is constructed by choosing attributes from the dataset which makes the depth of the decision tree to be as minimal as possible.