Grenzwerte bei Funktionen

Definition (Häufungspunkt)

Sei $D \subseteq \mathbb{R}$ und $x_0 \in \mathbb{R}$. x_0 heißt ein **Häufungspunkt** (HP) von $D : \iff \exists$ Folge x_n in $D \setminus \{x_0\}$ mit $x_n \to x_0$.

Beispiele:

- (1) Ist D endlich, so hat D keine Häufungspunkte.
- (2) D = (0, 1]. x_0 ist Häufungspunkt von $D \iff x_0 \in [0, 1]$.
- (3) $D = \{\frac{1}{n} : n \in \mathbb{N}\}.$ D hat genau einen Häufungspunkt: $x_0 = 0$
- (4) $D = \mathbb{Q}$. 8.1(2) \Longrightarrow jedes $x_0 \in \mathbb{R}$ ist ein Häufungspunkt von \mathbb{Q} .

Bemerkung: Unterscheide zwischen " x_0 ist Häufungswert von (a_n) "und " x_0 ist Häufungspunkt von $\{a_1, a_2, \ldots\}$ ". Beispiel: $a_n = (-1)^n$. $\mathcal{H}(a_n) = \{1, -1\}, \{a_1, a_2, \ldots\} = \{-1, 1\}$ hat keine Häufungspunkte.

Zur Übung: Sei $D \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$. x_0 ist Häufungspunkt von $D \iff \forall \varepsilon > 0$ gilt: $D \cap (U_{\varepsilon}(x_0) \setminus \{x_0\}) \neq \emptyset$

Vereinbarung: Ab jetzt sei in dem Paragraphen gegeben: $\emptyset \neq D \subseteq \mathbb{R}$. x_0 ist Häufungspunkt von D und $f: D \to \mathbb{R}$ eine Funktion.

Definition

 $\lim_{x\to x_0} f(x)$ exisitiert : $\iff \exists a\in\mathbb{R} \text{ mit: für jede Folge } (x_n) \text{ in } D\setminus\{x_o\} \text{ mit } x_n\to x_0 \text{ gilt: } f(x_n)\to a.$ In diesem Fall schreibt man: $\lim_{x\to x_0} f(x)=a \text{ oder } f(x)\to a \text{ } (x\to x_0)$

Bemerkung: (1) Existiert $\lim_{x \to x_0} f(x)$, so ist obiges a eindeutig bestimmt. (Übung)

(2) Falls $x_0 \in D$, so ist der Wert $f(x_0)$ in obiger Definition nicht relevant.

Beispiele:

(1) D = (0, 1].

$$f(x) = \begin{cases} x^2 & \text{falls } x \in (0, \frac{1}{2}) \\ \frac{1}{2} & \text{falls } x = \frac{1}{2} \\ 1 & \text{falls } x \in (\frac{1}{2}, 1) \\ 0 & \text{falls } x = 1 \end{cases}$$

 $x_0 = 0$: Sei (x_n) eine Folge in D mit $x_n \to 0$. Dann $x_n < \frac{1}{2}$ ffa $n \in \mathbb{N} \implies f(x_n) = x^2$ ffa $n \in \mathbb{N} \implies f(x_n) \to 0$, d.h. $\lim_{x \to 0} f(x) = 0$.

 $x_0 = 1$: Analog: $\lim_{x \to 0} f(x) = 1$.

 $x_0 = \frac{1}{2}$: Sei (x_n) eine Folge in $D \setminus \{\frac{1}{2}\}$ und $x_n < \frac{1}{2} \ \forall n \in \mathbb{N} \implies f(x_n) = x_n^2 \to \frac{1}{4}$. Sei (z_n) eine Folge in $D \setminus \{\frac{1}{2}\}$ und $z_n > \frac{1}{2} \ \forall n \in \mathbb{N} \implies f(z_n) = 1 \to 1$ d.h.: $\lim_{x \to \frac{1}{2}} f(x)$

existiert nicht. Aber: $\lim_{x \to \frac{1}{2}} f(x)$ existiert und ist $\frac{1}{4}$ und $\lim_{x \to \frac{1}{2}} f(x)$ existiert und ist 1. $x \in (0, \frac{1}{2})$

Dafür schreibt man: $\lim_{x \to \frac{1}{2}-} f(x) = \frac{1}{4}$ und $\lim_{x \to \frac{1}{2}+} f(x) = 1$.

(2) $D = [0, \infty), p \in \mathbb{N}, f(x) = \sqrt[p]{x}$. Sei $x_0 \in D$. Sei (x_n) Folge in $D \setminus \{x_0\}$ mit $x_n \to x_0$. 7.1 $\Longrightarrow f(x_n) = \sqrt[p]{x_n} \to \sqrt[p]{x_0}$. Das heißt: $\lim_{x \to x_0} f(x) = f(x_0)$.

Vereinbarung: Für $\delta > 0$: $D_{\delta}(x_n) = D \cap U_{\delta}(x_0)$. $\dot{D}_{\delta}(x_0) = D_{\delta}(x_0) \setminus \{x_0\}$.

Satz 16.1 (Grenzwertsätze bei Funktionen)

- (1) $\lim_{x \to x_0} f(x)$ existiert \iff für jede Folge (x_n) in $D \setminus \{x_0\}$ mit $x_n \to x_0$ ist $f(x_n)$ konvergent.
- (2) Für $a \in \mathbb{R}$ gilt: $\lim_{x \to x_0} f(x)$ existiert und ist gleich $a \iff \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \text{mit} \ (*)$ $|f(x) - a| < \varepsilon \ \forall x \in \dot{D}_{\delta}(x_0).$
- (3) Cauchykriterium: $\lim_{x \to x_0} f(x)$ existiert $\iff \forall \varepsilon > 0 \ \exists \delta > 0 : |f(x) f(x')| < \varepsilon \forall x, x' \in \dot{D}_{\delta}(x_0)$

Beweis

- (1) " \Longrightarrow ": aus Definition. " \Leftarrow ": Seien $(x_n), (z_n)$ Folgen in $D \setminus \{x_0\}$ mit $x_n \to x_0$, $z_n \to x_0$. Voraussetzung \Longrightarrow es existiert $a := \lim f(x_n)$ und $b := \lim f(z_n)$. Zu zeigen ist: a = b. Sei t_n definiert durch $(t_n) := (x_1, z_1, x_2, z_2, \ldots)$. (t_n) ist Folge in $D \setminus \{x_0\}$ mit $t_n \to x_0$, Voraussetzung \Longrightarrow $\exists c := \lim f(t_n)$. $(f(x_n))$ ist Teilfolge von $(f(t_n)) \Longrightarrow a = c$, analog: $b = c \Longrightarrow a = b$.
- (2) " \Longrightarrow ": Sei $\varepsilon > 0$. **Annahme**: Es gibt kein $\delta > 0$, so dass (*) gilt. Das heißt: $\forall \delta > 0$ exisistert ein $x_j \in \dot{D}_{\delta}(x_j)$: $|f(x_j) a| \ge \varepsilon$, also $\forall n \in \mathbb{N} \ \exists x_n \in \dot{D}_{\frac{1}{n}}(x_0) : |f(x_n) a| \ge \varepsilon$. Das heißt: (x_n) ist eine Folge in $D \setminus \{x_0\}$ mit $x_n \to x_0$ und $f(x_n) \nrightarrow a$, Widerspruch. " \Leftarrow ": Sei x_n eine Folge in $D \setminus \{x_n\}$ mit $x_n \to x_0$. Zu zeigen ist: $f(x_n) \to a$. Sei $\varepsilon > 0$. $\exists \delta > 0$ so dass (*) gilt. Dann: $x_n \in \dot{D}_{\delta}(x_0)$ ffa $n \in \mathbb{N} \Longrightarrow |f(x_n) - a| < \varepsilon$ ffa $n \in \mathbb{N}$.
- (3) In Übung.

Satz 16.2 (Rechnen mit Funktionsgrenzwerten)

Seien $g, h: D \to \mathbb{R}$ zwei weitere Funktionen und es gelte $f(x) \to a, g(x) \to b \ (x \to x_0)$.

- (1) $f(x) + g(x) \to a + b$, $f(x) \cdot g(x) \to ab$, $|f(x)| \to |a| (x \to x_0)$
- (2) Ist $a \neq 0 \implies \exists \delta > 0 : f(x) \neq 0 \ \forall x \in \dot{D}_{\delta}(x_0)$. Für $\frac{1}{f} : \dot{D}_{\delta}(x_0) \to \mathbb{R}$ gilt: $\frac{1}{f(x)} \to \frac{1}{a}$.

- (3) Existiert ein $\delta > 0$ mit $f \leq g$ auf $\dot{D}_{\delta}(x_0) \implies a \leq b$
- (4) Existiert ein $\delta > 0$ mit $f \leq h \leq g$ auf $\dot{D}_{\delta}(x_0)$ und $a = b \implies \lim_{x \to x_0} h(x) = a$.

Beweis

folgt aus 6.2

Zum Beispiel: (3) Sei (x_n) Folge in $D\setminus\{x_0\}$ und $x_n\to x_0$. Dann: $x_n\in \dot{D}_{\delta}(x_0)$ ffa $n\in\mathbb{N}$ \Longrightarrow $f(x_n)\leq g(x_n)$ ffa $n\in\mathbb{N}$ \Longrightarrow $a=\lim_{n\to\infty}f(x_n)\leq \lim_{n\to\infty}g(x_n)=b$.

Definition

- (1) Sei (a_n) eine Folge in \mathbb{R} . $\lim a_n = \infty \text{ (oder } a_n \to \infty) : \iff \forall c > 0 \ \exists n_0 = n_0(c) \in \mathbb{N} : a_n > c \forall n \ge n_0.$ $\lim a_n = -\infty \text{ (oder } a_n \to -\infty) : \iff \forall c < 0 \ \exists n_0 = n_0(c) \in \mathbb{N} : a_n < c \forall n \ge n_0.$
- (2) $\lim_{x \to x_0} f(x) = \infty$ (oder $f(x) \to \infty$ $(x \to x_0)$): \iff für jede Folge (x_n) in $D \setminus \{x_0\}$ und $x_n \to x_0$ gilt: $f(x_n) \to \infty$. $\lim_{x \to x_0} f(x) = -\infty$ (oder $f(x) \to -\infty$ $(x \to x_0)$): \iff für jede Folge (x_n) in $D \setminus \{x_0\}$ und $x_n \to x_0$ gilt: $f(x_n) \to -\infty$.
- (3) Sei D nicht nach oben beschränkt. $\lim_{x\to\infty} f(x) = a$ (oder $f(x)\to a$) : \iff für jede Folge (x_n) in D mit $x_n\to\infty$ gilt: $f(x_n)\to a$ ($a=\pm\infty$ zugelassen). Sei D nicht nach unten beschränkt. $\lim_{x\to-\infty} f(x) = a$ (oder $f(x)\to-\infty$) : \iff für jede Folge (x_n) in D mit $x_n\to-\infty$ gilt: $f(x_n)\to a$ ($a=\pm\infty$ zugelassen).

Beispiele:

- (1) $a_n := x^n \ (x > 1)$. Behauptung: $x^n \to \infty \ (n \to \infty)$. Sei c > 0. $c < \frac{1}{x^n} < 1 \implies \frac{1}{x^n} \to 0 \implies \frac{1}{x^n} < \frac{1}{c}$ ffa $n \in \mathbb{N} \implies x^n > c$ ffa $n \in \mathbb{N}$.
- (2) Sei $p \in \mathbb{N}$. Dann $x^p \to \infty \ (x \to \infty)$. Siehe Übung.
- (3) $\frac{1}{x} \to \infty \ (x \to 0+), \ \frac{1}{x} \to -\infty \ (x \to 0-).$

Satz 16.3 (Grenzwerte der Exponentialfunktion)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$$

- (1) Für $p \in \mathbb{N}_0 : \frac{e^x}{x^p} \to \infty \ (x \to \infty)$
- (2) $e^x \to \infty \ (x \to \infty)$
- (3) $e^x \to 0 \ (x \to -\infty)$

16. Grenzwerte bei Funktionen

Beweis

- (1) $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^p+1}{(p+1)!} + \dots \ge \frac{p+1}{(p+1)!} \quad \forall x \ge 0 \implies \frac{e^x}{x^p} \ge \frac{x}{(p+1)!} \quad \forall x > 0 \implies \text{Behauptung.}$
- (2) Folgt aus 1 mit p = 0.

$$(3) e^{-x} = \frac{1}{e^x} \xrightarrow{(2)} 0 (x \to -\infty) \implies e^x \to 0 (x \to -\infty).$$