

Transcriptional expression changes Analysis during Atlantic Salmon (Salmo salar) Smoltification process through bioinformatics tools

Thesis Student Rodrigo Andrés Morán Figueroa

Thesis Advisor **Dr. Francisco J. Morera**

Thesis Co-Advisor **Dr. Waldo Acevedo**

Pharmacology and Morphophysiology Institute, Veterinary Sciences Faculty, Austral University of Chile.

Introduction

- Great impact on southern Chile economy
- Smoltification understanding can reduce mortality

Atlantic Salmon farming steps (figure extracted from Morera et al., 2021)

Smoltification and Tissues

- Seawater migration
- Significant number of morphological, biochemical, physiological and behavior changes
- 4 different tissues: gill, liver, hypophysis, head kidney
- Osmoregulation, metabolism, neuroendocrine control and immunity
- Bioinformatics analyzes become increasingly relevant

Data from Massive Illumina RNAseq Australomics

Gill, liver, hypophysis and head kidney

Workflow

<u>16 Total</u>

Data Treatment

Steps

O1 Transcriptome data treatment
HISAT2 y Htseq-Count

Comparing and Analyzing
Compare both groups in both Parr and Smolt separately

Data systematization

Match system

Inflammasome pathway data research
Head kidney

Transcriptome data treatment

- AustralOMICS Massive Illumina RNAseq
- 2 different stages: Parr and Smolt
- · 2 groups of each
- 4 tissues. Total of 16 sets of data
- HISAT2 alignment software
- Htseq-count software
- NCBI Data Base

Comparing and analyzing groups in Parr condition

RNAs Parr	Reads Group A	Reads Group B	A/B Division
1433b	219	965	0.23
1433z	160	194	0.82
143b2	1017	962	1.06
143g1	2	9	0.22
143g2	0	16	0.00
2a5e	125	148	0.84
4ebp	26	41	0.63
4ebp_1	79	103	0.77
4ebp_2	59	64	0.92
4f2	88	65	1.35
5nt1a	361	124	2.91
5ntc	158	78	2.03
7b2	14	4	3.50

- Gill example
- 2 different groups (A and B)
- 20% variation

Gill Parr

Fit Criteria in number and "%"			
54325 Total=7914			
68.64%			

Liver Parr

Fit Criteria in number and "%"				
45711	Total=7914	0		
57.76%				

Hypophysis Parr

Fit Criteria in number and "%"					
50026	50026 Total=79140				
63.21%					

H. Kidney Parr

Comparing and analyzing groups in Smolt condition

RNAs Smolt	Reads Group A	Reads Group B	A/B Division
1433b	88	1023	0.09
1433z	106	450	0.24
143b2	668	1600	0.42
143g1	13	20	0.65
143g2	18	23	0.78
2a5e	92	170	0.54
4ebp	191	30	6.37
4ebp_1	128	111	1.15
4ebp_2	152	245	0.62
4f2	504	114	4.42
5nt1a	195	246	0.79
5ntc	88	278	0.32
<mark>7</mark> b2	14	8	1.75

- Gill example
- 2 different groups (A and B)
- 20% variation

Fit Criteria	in number and "%"
44313	Total=79140
55.99%	

Gill Smolt

Fit Criteria in number and "%"			
53242		Total=7914	10
67.28%			

Liver Smolt

Fit Criteria in number and "%"			
45613 Total=79140			
57.64%			

Hypophysis Smolt

Fit Criteria in number and "%"				
42874 Total=79140				
54.17%				

H. Kidney Smolt

Data systematization

Match system

Gill Parr/Smolt

RPM Parr	RPM Smolt	Division A Parr/Smolt	Division B Parr/Smolt
49.30	17.79	0.36	0.91
36.02	21.43	0.59	2.01
228.96	135.05	0.58	1.44
0.45	2.62	5.83	1.92
0.00	3.63	Z	1.24
28.14	18.60	0.66	0.99
5.85	38.61	6.59	0.63
17.78	25.87	1.45	0.93
13.28	30.73	2.31	3.32
19.81	101.89	5.14	1.52
81.27	39.42	0.48	1.72
35.57	17.79	0.50	3.09
3.15	2.83	0.89	1.73

- RPM standardization
- Look for change Smolt divided into Parr
- Z = Gene appeared, 0 = Gene disappeared
- How much each value changed → Ranges
- Match and mismatch system

0	0	Mismatch
А	0	Mismatch
А	0	Mismatch
А	В	Match!
А	В	Match!
0	В	Mismatch

RPM = Reads per million mapped reads

Data systematization

RANGE 1:

Match system

RNAs	Gill	Liver	Hypophysis	Head Kidney
sialic acid synthase-like	0	0	Match	0
Hemoglobin subunit alpha-4 (hemoglobin subunit alpha-4-like)	0	Match	Match	0
heme-binding protein 2-like	0	0	Match	0
A-kinase anchor protein 13-like	0	0	Match	0
E3 ubiquitin-protein ligase HECW2-like	0	0	Match	0
2-phospho-D-glycerate hydro-lyase (EC 4.2.1.11)	0	0	Match	Match
lethal(2) giant larvae protein homolog 1-like	0	0	Match	0
Coronin	0	0	Match	0

- Data merging
- Patterns not only repeat through both groups, but through tissues as well.
- Changes details

Inflammasome pathway data research

Question arises: Are inflammasome pathway RNAs downregulated during smoltification?

Inflammasome pathway data research

Head Kidney A Parr/Smolt Change	Head Kidney B Parr/Smolt Change	Name of the gene
0.37	0.41	C-X-C motif chemokine 10 (C-X-C motif chemokine 10 precursor)
DownRegulation ↓	DownRegulation↓	
0.00	0.40	
0.00		Apoptosis regulator Bcl-2
0.23		Apoptosis regulator Bcl 2
0.00		Apoptosis regulator Bel 2
0.72		Apoptosis regulator Bcl-2
DownRegulation↓	DownRegulation↓	
1.00	1.00	Apoptosis-associated speck-like protein containing a CARD
0.79		Apoptosis-associated speck-like protein containing a CARD
0.74		Apoptosis-associated speck-like protein containing a CARD
1.09		Apoptosis-associated speck-like protein containing a CARD
DownRegulation.	DownRegulation↓	
Ţ		
0.61	0.74	NLR family member X1 isoform X2
DownRegulation↓	DownRegulation↓	
0.42	0.99	caspase recruitment domain-containing protein 8-like
0.34	0.43	caspase recruitment domain-containing protein 8-like
0.00	2.75	caspase recruitment domain-containing protein 8-like
0.00		caspase recruitment domain-containing protein 8-like
0.00		caspase recruitment domain-containing protein 8-like
DownRegulation↓	DownRegulation↓	

Conclusion

Data accessibility We were able to crea

We were able to create a system in which data is easy to access and navigate.

Shortcut for future studies

O2

Current work tries to get as close as possible to reality, making it a huge step forward for future studies.

Inflammasome pathway impact We have gathered Data that support

We have gathered Data that support previously mentioned studies regarding a weakened state after smoltification that may be linked to the inflammasome pathway RNA downregulation.

Thank You