DIRECT COMPARISON TESTS

Improper Integrals

Suppose that f(x) and g(x) are positive, continuous functions where f(x) > 0

- 1. If $\int_{a}^{a} f(x)dx$ is **convergent**, then $\int_{a}^{\infty} g(x)dx$ is also **convergent**. 2. If $\int_{a}^{\infty} g(x)dx$ is **divergent**, then $\int_{a}^{\infty} f(x)dx$ is also **divergent**.

Series

- Suppose that a_n and b_n are sequences where $b_n \ge a_n \ge 0$. 1. If the series $\sum_{n=1}^{\infty} b_n$ is **convergent**, then $\sum_{n=1}^{\infty} a_n$ is also **convergent**. 2. If the series $\sum_{n=1}^{\infty} a_n$ is **divergent**, then $\sum_{n=1}^{\infty} b_n$ is also **divergent**.

P-TESTS

Suppose that f(x) is a positive function and that $f(x) = \frac{1}{x^P}$

The improper integral $\int_{-\pi}^{\infty} \frac{1}{x^P} dx$ is **convergent** if P > 1 and **divergent** if $P \le 1$

The integral $\int_{0}^{a} \frac{1}{x^{P}} dx$ is **convergent** if P < 1 and **divergent** if $P \ge 1$

The series $\sum_{n=1}^{\infty} \frac{1}{n^P}$ is **convergent** if P > 1 and **divergent** if $P \le 1$

GEOMETRIC SERIES TEST

The series $\sum_{n=1}^{\infty} a(r^n)$ is **convergent** if |r| < 1 and **divergent** if $|r| \ge 1$ If |r| < 1, the series will converge to $\frac{a_1}{1-r}$

INTEGRAL TEST

Suppose that f(x) is a positive, continuous, and decreasing function and that $f(n) = a_n$.

The series $\sum_{n=1}^{\infty} a_n$ and $\int_{1}^{\infty} f(x)dx$ will either **both converge** or **both diverge.**

Nth TERM TEST FOR DIVERGENCE

If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ is **divergent**.

TELESCOPING SERIES TEST

A series in the form

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

can be written as

$$(\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + (\frac{1}{4} - \frac{1}{5}) + (\frac{1}{5} - \frac{1}{6}) + \dots (0)$$

which simplifies to

$$1 - 0 = 1$$

LIMIT COMPARISON TEST

Suppose that $a_n > 0$ and $b_n > 0$. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$

where L is a positive finite value, the series

$$\sum_{n=1}^{\infty} a_n \text{ and } \sum_{n=1}^{\infty} b_n$$

either both converge or both diverge.

ALTERNATING SERIES TEST

Let $a_n > 0$. The series

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ and } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge if $\lim_{n\to\infty} a_n = 0$ and $a_{n+1} \le a_n$ for all n.

RATIO TEST

- 1. $\sum a_n$ converges absolutely if $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$
- 2. $\sum a_n$ diverges if $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$
- 3. The ratio test is inconclusive if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$

ROOT TEST

- 1. $\sum a_n$ converges absolutely if $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$
- 2. $\sum a_n$ diverges if $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$
- 3. The root test is inconclusive if $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$