LISTA – II RNA e LLM

1. Aplique o algoritmo de aprendizagem do perceptron para o caso do operador lógico OU.

As entradas são dadas por x_0 , x_1 e x_2 , com pesos w_0 (bias), w_1 e w_2 , respectivamente, sendo que y é a saída que deverá, de acordo com as entradas, ser igual ao valor desejado d mostrado na tabela abaixo.

x_0	x_1	x_2	$x_1 \vee x_2$	d
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	0	0

A rede neural para realizar essa tarefa de aprendizagem pode ser representada como mostrado na Figura-1.

Serão atribuídos os seguintes valores iniciais para os pesos e para a taxa de aprendizagem:

$$w_0 = 0, w_1 = 0, w_2 = 0$$
 e $\eta = 0.5$.

Será utilizada a função de ativação (ou função de transferência)

$$\varphi(v) = \begin{cases} 1, & se \quad v > 0 \\ 0, & se \quad v \le 0 \end{cases}$$

Figura-1 Rede neural perceptron para aprendizagem do operador lógico OU.

Após a obtenção dos resultados, construa uma sequência de comandos em Python para realizar esse treinamento.