1 Lezione del 09-05-25

1.1 Approssimazione di equazioni non lineari

Vogliamo risolvere equazioni del tipo:

$$f(x) = 0, \quad f: \mathbb{R} \to \mathbb{R}$$

con f non lineare $(f(x) \neq ax + b)$.

Osserviamo che in generale non c'è un'espressione analitica, quindi una formula chiusa, per tutti i punti $\alpha \in \mathbb{R}$ tali che $f(\alpha) = 0$, quindi quei punti che risolvono l'equazione.

Diamo quindi la definizione elementare:

Definizione 1.1: Radice

Per un sistema f(x) = 0, $\alpha \in \mathbb{R}$ tale che $f(\alpha) = 0$ è detta radice o zero di f.

Vorremo quindi cercare delle approssimazioni di α , e più precisamente vogliamo considerare metodi numerici che generano successioni $\{x_n\}_{n\in\mathbb{N}}$ che sperabilmente hanno la proprietà:

$$\lim_{n \to +\infty} x_n = \alpha$$

In particolare vedremo metodi del tipo:

$$x_{n+1} = \phi_n(x_n, x_{n-1}, ..., x_{n-k+1})$$

La funzione ϕ_n accetta k argomenti (punti) e viene detta **funzione di iterazione**. Se $\phi_n = \phi$, $\forall n \in \mathbb{N}$ parliamo di **metodi stazionari**.

Diamo quindi la definizione di convergenza:

Definizione 1.2: Convergenza

Un metodo iterativo per risolvere f(x) si dice convergente per k punti iniziali $x_0, x_{-1}, ..., x_{1-k}$ se la successione generata:

$$x_{n+1} = \phi_n(x_n, x_{n-1}, ..., x_{n-k+1})$$

verifica:

$$\lim_{n \to +\infty} x_n = \alpha$$

con α radice di f.

Possiamo generalizzare l'idea di convergenza a convergenza di un certo ordine:

Definizione 1.3: Ordine di convergenza

Si dice che un metodo iterativo ha convergenza di ordine $p \geq 1$ se $\exists c < +\infty$ (costante finita), $c \neq 0$ tale per cui:

$$\lim_{n \to +\infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^p} = c$$

dove nel caso p = 1 si richiede anche 0 < c < 1.

Osserviamo quindi che la definizione dice che, asintoticamente, si ha $|e_{n+1}| \approx |e_n|^p$. Da questo è chiaro che se e_n è un numero piccolo ($|e_n| \in (0,1)$), per $p \ge 2$ (o p=1 con 0 < c < 1, come richiesto dalla definizione) e_{n+1} sarà ancora pià piccolo.

In particolare si ha quindi che:

- Per p = 1 si parla di convergenza **lineare**, cioè l'errore si riduce di un fattore c ad ogni passo;
- Per p = 2 si parla di convergenza **quadratica**, e via dicendo.

Possiamo parlare di convergenza locale:

Definizione 1.4: Convergenza locale

Si cha un metodo converge localmente (con ordine p) se $\exists S \subset \mathbb{R}$, con $\alpha \in S$, tale che per ogni scelta di $x_0, ..., x_{1-k} \in S$, x_n converge ad α (con ordine p).

1.1.1 Metodi grafici

Riassumendo, si ha quindi che è impoortante saper localizzare/stimare dove sono le radici di una certa f di cui ci interessa f(x) = 0. Per questo scopo si possono usare strumenti di analisi del grafico di una funzione (almeno nel caso scalare):

- 1. Se f continua e $f(a) \cdot f(b) < 0 \implies \exists$ almeno una radice in [a,b] (che potrebbe essere più di una).
- 2. Si può studiare la derivata, ammesso $f \in C'([a, b])$, e quindi del segno di f.

Esempio

Poniamo ad esempio di avere:

$$f(x) = x\log(x) + \frac{1}{3}$$

e di porci la domanda di trovare le radici approssimate di f(x). Innanzitutto restringiamo il dominio a x > 0, e prendiamo i limiti agli estremi:

$$\lim_{x \to 0^+} x \log(x) + \frac{1}{3} = \frac{1}{3}, \quad \lim_{x \to +\infty} x \log(x) + \frac{1}{3} = +\infty$$

Prendiamo quindi la derivata:

$$f'(x) = \log(x) + 1 \implies \begin{cases} f'(x) \ge 0, & x \ge \frac{1}{e} \\ f'(x) \le 0, & 0 < x \le \frac{1}{e} \end{cases}$$

e quindi $f'\left(\frac{1}{e}\right)=0$, e la funzione descresce in $\left(0,\frac{1}{e}\right)$ per poi crescere in $\left(\frac{1}{e},+\infty\right)$. Calcolando f in $\frac{1}{e}$ si ha:

$$f\left(\frac{1}{e}\right) = \frac{1}{e}\log\left(\frac{1}{e}\right) + \frac{1}{3} = \frac{1}{3} - \frac{1}{e} < 0$$

per cui si avranno necessariamente due radici, comprese, nelle regioni:

$$\alpha_1 \in \left(0, \frac{1}{e}\right), \quad \alpha_2 \in \left(\frac{1}{e}, +\infty\right)$$

3. Si può procedere per separazione grafica. Data:

$$f(x) = g(x) - h(x)$$

dove g(x) e h(x) hano grafico noto, può essere conveniente sfruttare:

$$f(x) = 0 \Leftrightarrow q(x) = h(x)$$

cioè cercare i punti di intersezione fra i grafici di g e h.

Esempio

Poniamo di avere:

$$f(x) = 5x^2 - 2e^x$$

cioè:

$$\begin{cases} h(x) = 2e^x \\ g(x) = 5x^2 \end{cases}$$

A sinistra del grafico, cioè per \mathbb{R}^- , ci sarà chiaramente una qualche soluzione α_1 . A destra del grafico si ha invece che e^x va ad infinito più velocemente di e^x , cioè i grafici possono:

- (a) O non toccarsi mai;
- (b) O toccarsi due volte (con e^x che interseca x^2 in una fase iniziale dove va più lentamente, e quindi lo interseca di nuovo quando lo vince);
- (c) O toccarsi una volta sola, come caso critico del caso precedente.

Se quindi troviamo un punto $\tilde{x}\in(0,+\infty)$ dove $2e^{\tilde{x}}<5\tilde{x}^2$, siamo nel caso 2. Prendiamo allora $\tilde{x}=2$, per cui:

$$\begin{cases} g(2) = 20 \\ h(2) = 2e^2 = 2e^2 < 2 \cdot 3^2 = 18 \end{cases}$$

per cui chiaramente avremo tre radici:

$$\alpha_1 \in (-\infty, 0), \quad \alpha_2 \in (0, 2), \quad \alpha_3 \in (3, +\infty)$$

Iniziamo quindi a vedere i metodi iterativi veri e propri.

1.1.2 Metodo di bisezione

Il metodo di **bisezione** o *ricerca binaria* (anche *ricerca dicotomica*) consiste nel prendere un intervallo [a,b] tale che $f(a) \cdot f(b) < 0$ (come nel primo esempio grafico della scorsa sezione).

In questo caso si prende come prima approssimazione:

$$x_1 = \frac{x_0 + x_{-1}}{b}, \quad x_0 = a, \quad x_{-1} = b$$

Si valuta quindi il segno di $f(x_1)$. Se $f(x_1) \cdot f(x_0) < 0$, allora si scarta b e si riparte con l'intervallo $[x_0, x_1]$, altrimenti si scarta x_0 e si riparte con l'intervallo $[x_1, x_{-1}]$.

Questo procedimento chiaramente è iterabile, e converge eventualmente ad una radice α , che non è detta essere l'unica.

La formula che si ottiene è la seguente:

$$x_{n+1} = \frac{x_{n-1} + x_n}{2}$$

Per quanto riguarda l'errore (al caso pessimo), abbiamo che questo si dimezza ad ogni passaggio:

$$|x_{n+1} - \alpha| \le \frac{b-a}{2^n} \implies \lim_{n \to +\infty} |x_n - \alpha| = 0$$

Questa stima è la migliore che possiamo dare, in quanto la funzione di errore $x_{n+1}-\alpha$ non è monotona. In ogni caso, può esserci utile a limitare l'errore con un numero minimo di passaggi al caso peggiore.

Infatti, se vogliamo:

$$|x_n - \alpha| < t_{ol}$$

dobbiamo usare n iterazioni, con n che verifica:

$$\frac{b-a}{2^n} \le t_{ol} \implies n \ge \log_2\left(\frac{b-a}{t_{ol}}\right) \implies n = \log_2\left(\frac{b-a}{t_{ol}}\right)$$

approssimato al primo naturale superiore.

Ad esempio, se b-a=1, servono n=10 passi per ottenere $t_{ol}=10^{-3}$, n=20 per $t_{ol}=10^{-6}$, e quindi in genere serviranno un numero sempre maggiore di misurazioni per ottenere precisioni migliori.

1.1.3 Metodo delle secanti

Il metodo delle secanti si basa su un idea geometrica, cioè quella di tracciare la *retta* secante di f fra a e b, ovvero quella passante per i punti (a, f(a)), (b, f(b)). Di questa si trova quindi l'intersezione con l'asse delle ascisse, che chiamiamo ad esempio x_1 :

$$x_1 = x_b - f(x_b) \cdot \frac{x_b - x_a}{f(b) - f(x_a)}$$

A questo punto basterà valutare il segno di $f(x_1)$ e prendere uno dei punti precedenti come per il metodo di bisezione, ed iterare finche il punto di intersezione non è abbastanza vicino ad α .

La formula che si ottiene è la seguente:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Vale riguardo all'errore il seguente teorema:

Teorema 1.1: Errore del metodo delle secanti

Se $f \in C^2([a,b])$ ammette radice, allora il metodo converge localmente con ordine:

$$p == \frac{1+\sqrt{5}}{2} > 1$$

Questo solitamente risulta in un errore migliore del lineare ma peggiore del quadratico.

1.2 Metodi stazionari a un punto

I metodi stazionari a un punto sono metodi della forma:

$$\begin{cases} x_0, \text{ dato o generato casualmente} \\ x_{n+1} = \phi(x_n) \end{cases}$$

In questo il metodo di Jacobi e di Gauss-Seidel sono metodi stazionari a un punto. Il modo in cui si sceglie phi è (in analogia ai metodi per sistemi lineari) una funzione che verifica:

$$\phi(\alpha) = \alpha, \quad \forall \alpha : f(\alpha) = 0$$

Un modo canonico per costruire ϕ con questa proprietà è considerare:

$$\phi(x) = x - g(x)f(x)$$

con g(x) tale che $g(x) \neq 0$ "vicino" ad α .

Si vede che:

$$\phi(\alpha) = \alpha - g(\alpha)f(\alpha) = \alpha$$

e chiaramente il fatto che $g(\alpha) \neq 0$ indica che:

$$\alpha$$
 punto fisso di $\phi \Leftrightarrow \alpha$ radice di f

Potremmo quindi chiederci quando $\{\phi(x_n)\}_{n\in\mathbb{N}}$ è convergente. Sfruttiamo per questo il seguente teorema:

Teorema 1.2: Teorema di convergenza locale

Se si ha un intervallo $I \subseteq \mathbb{R}$, con $\alpha \in I$, $\phi(\alpha) = \alpha$, $\phi \in C^1(I)$ e esistono $\rho \in \mathbb{R}^+$ e $k \in (0,1)$ tali che:

$$|\phi'(x)| \le k, \quad \forall x \in [\alpha - \rho, \alpha + \rho]$$

Allora valgono:

- 1. $\forall x_0 \in [\alpha \rho, \alpha + \rho] \implies x_n \in [\alpha \rho, \alpha + \rho];$
- 2. $\forall x_0 \in [\alpha \rho, \alpha + \rho]$ si ha:

$$\lim_{n \to +\infty} x_n = \alpha$$

3. α è l'unico punto fisso di $\phi(x)$ in $[\alpha - \rho, \alpha + \rho]$.

Vediamo di dimostrare.

1. Il punto 1) si dimostra per induzione. Poste le ipotesi, il caso n=0 è banale (si prende lo stesso punto). Vogliamo quindi porre l'errore, attraverso il teorema di Lagrange:

$$|x_{n+1} - \alpha| = |\phi(x_n) - \phi(\alpha)| = |x_n - \alpha| \cdot |\phi'(\varepsilon)|, \quad \varepsilon \in [x_n, \alpha]$$

di questo abbiamo che il primo termine ($|x_n - \alpha|$) è $< \rho$, e il secondo ($|\phi'(\varepsilon)|$) è $<\le k$, per cui l'errore successivo è:

$$k\rho < \rho$$

cioè:

$$x_{n+1} \in [\alpha - \rho, \alpha + \rho]$$

che è la tesi. □

2. Il punto 2) si dimostra a partire dallo stesso passaggio di prima:

$$|x_{n+1} - \alpha| = |x_n - \alpha| \cdot |\phi'(\varepsilon)| \le k|x_n - \alpha|$$

maggiorando $|\phi'(\varepsilon)|$ con k. Per il calcolo esplicito si ha quindi che all'n-esimo passaggio si ha:

$$|x_n - \alpha| \le k^{n+1} \cdot \rho$$

e quindi basterà dire:

$$\lim_{n \to +\infty} |x_{n+1} - \alpha| \le \lim_{n \to +\infty} k^{n+1} \cdot \rho = 0$$

che è la tesi. □

3. Infine, il punto 3) si dimostra supponendo per assurdo che $\exists \tilde{\alpha} \in [\alpha - \rho, \alpha + \rho]$, $\tilde{\alpha} \neq \alpha$ tale che $\phi(\tilde{\alpha}) = \tilde{\alpha}$. In questo caso varrà:

$$|\alpha - \tilde{\alpha}| = |\phi(\alpha) - \phi(\tilde{\alpha})| = |\alpha - \tilde{\alpha}| \cdot |\phi'(\varepsilon)| \le |\alpha - \tilde{\alpha}| \cdot k < |\alpha - \tilde{\alpha}|$$

che guardando agli estremi è un assurdo.

Osserviamo quindi che se $|\phi'(\alpha)| < 1$, il metodo converge localmente perché per continuità della derivata $\exists \rho, k$ tali che $\rho > 0$, $k \in (0,1)$ e $|\phi'(x)| \le k \ \forall x \in [\alpha - \rho, \alpha + \rho]$.

Ulteriori osservazioni si possono fare sul tipo di convergenza: questa può essere **monotona** o **alternata**. Infatti per l'errore vale:

$$(x_{n+1} - \alpha) = (x_n - \alpha) \cdot \phi'(\varepsilon), \quad \varepsilon \in [x_n, \alpha]$$

- Se $\phi'(x) > 0$ su $[\alpha \rho, \alpha + \rho]$, allora gli errori $x_{n+1} \alpha$ e $x_n \alpha$ hanno lo stesso segno, cioè la convergenza è monotona.
- Altrimenti, se $\phi'(x) < 0$ su $[\alpha \rho, \alpha + \rho]$, allora gli errori $x_{n+1} \alpha$ e $x_n \alpha$ hanno segno discorde, cioè la convergenza è alternata.

Possiamo poi dare il seguente teorema:

Teorema 1.3: Teorema sull'ordine di convergenza

Sia $\phi(x) \in C^p(I)$ e α punto fissso di ϕ (cioè $\alpha = \phi(\alpha)$) con $\alpha \in I$. Allora $\exists \rho > 0$ tale per cui $\forall x_0 \in [\alpha - \rho, \alpha + \rho]$ la successione $\{x_n\}$ converge con ordine $p \ge 1$ ad α se e solo se vale:

$$\phi'(\alpha) = \phi''(\alpha) = \dots = \phi^{(p+1)}(\alpha) = 0, \quad \phi^{(p)}(\alpha) \neq 0$$

Osserviamo che p deve essere chiaramente un numero intero (un indice di derivata). Dimostriamo quindi le due coimplicazioni.

 \Leftarrow : Abbiamo che $x_{n+1} = \phi(x_n)$. Sviluppando con Taylor nel punto α si ha:

$$x_{n+1} = \phi(\alpha) + \phi'(\alpha)(x_n - \alpha) + \dots + \phi^{(p-1)}(\alpha) \frac{(x_n - \alpha)^{p-1}}{(p-1)!} + \phi^{(p)}(\varepsilon) \frac{(x_n - a)^p}{p!}$$
$$= \phi(\alpha) + \phi^{(p)}(\varepsilon) \frac{(x_n - \alpha)^p}{p!}, \quad \varepsilon \in [\alpha, x_n]$$

Quindi:

$$x_{n+1} - \alpha = \phi^{(p)}(\varepsilon) \frac{(x_n - \alpha)^p}{p!} \implies \frac{x_{n+1} - \alpha}{(x_n - \alpha)^p} = \frac{\phi^{(p)}(\varepsilon)}{p!}$$
$$\implies \lim_{n \to +\infty} \frac{x_{n+1} - \alpha}{(x_n - \alpha)^p} = \lim_{n \to +\infty} \frac{\phi^{(p)}(\varepsilon)}{p!}$$

Dato che $x_n \to \alpha$, si ha che:

$$\lim_{n \to +\infty} \phi^{(p)}(\varepsilon) = \phi^{(p)}(\alpha)$$

e:

$$\lim_{n \to +\infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^p} = \frac{\phi^{(p)}(\alpha)}{p!} \neq 0$$

 \Rightarrow : Prendiamo $1 \le r \le p-1$ e facciamo vedere che:

$$\phi^{(r)}(\alpha) = 0$$

per induzione su r.

Se r = 1, si ha che:

$$\lim_{n \to +\infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|} = \lim_{n \to +\infty} \frac{|\phi(x_n) - \phi(\alpha)|}{|x_n - \alpha|} = \lim_{n \to +\infty} \frac{|x_n - \alpha|\phi'(\varepsilon)}{|x_n - \alpha|} = \phi'(\alpha)$$

Prendiamo quindi per vero che $0=\phi'(\alpha)=\phi''(\alpha)=...=\phi^{(r-1)}(\varepsilon)$, e dimostriamo che vale anche per r. Per fare questo prenderemo lo sviluppo di Taylor in α troncato all'ordine 2:

$$\phi(x_n) - \phi(\alpha) = (x_n - \alpha)\phi'(\alpha) + \frac{(x_n - \alpha)^2}{2}\phi''(\alpha) + \dots + \frac{(x_n - \alpha)^{r-1}}{(r-1)!}\phi^{(r-1)}(\alpha) + \frac{(x_n - \alpha)^r}{r!}\phi^{(r)}(\varepsilon)$$
$$= \frac{(x_n - \alpha)^r}{2!}\phi^{(r)}(\varepsilon), \quad \varepsilon \in [x_n, \alpha]$$

da cui:

$$\frac{x_{n+1} - \alpha}{(x_n - \alpha)^r} = \frac{\phi^{(r)}(\varepsilon)}{r!} \implies \lim_{n \to +\infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|^2} = \lim_{n \to +\infty} \frac{\phi^{(r)}(\varepsilon)}{r!} = \frac{\phi^{(r)}(\alpha)}{r!} \implies \phi^{(r)}(\alpha) = 0$$