Intro to Al Platform Final Project

Detection of Mineral Resources in Extreme Environments

Team Name: GSBot

Team Members: Sooyoung Kim, Gaon Choi

Contents

- 1. Motivation and Objectives
- 2. Skills / Knowledge / Novelty
- 3. Demo and Conclusion

HANYANG UNIVERSITY

1. Motivation and Objectives

Design a "robot" capable of performing a specific task on behalf of humans in extreme environments

HANYANG UNIVERSITY

1. Motivation and Objectives

Detection and extraction of Gemstones from mines(extreme environments)

1. Motivation and Objectives

Explore Harsh Env

Camera & Lidar

Data Processing

Occupancy Grid Map Built Using Lidar SLAM

Detection & Mapping

Jetson Inference

Save detected obj & its location

Baseline

Gemstones Images

87 classes of gemstones for classification

- 87 classes, total 3,000 images (approximate)
- images and labels → original purpose: classification
- our purpose: detection → images + labels + bounding boxes

Baseline

- 1st try: YOLOV5 \rightarrow e.g. dog and cat detection problem
- https://github.com/ultralytics/yolov5
- .pt → .onnx, but not .onnx → .engine

Baseline

1st try: YOLOV5 → e.g. dog and cat detection problem

Baseline

- 2nd try: MobileNet
- .pt → .onnx → .engine : became our final Al model

Skills - Robot Design & 3D Printing

Parts Design with 3D CAD and Print them through 3D Printer

Skills - Robot control system through ROS

Robot Operating System (ROS) for Hardware Control and Sensor Driver

Improvement & New Ideas

Dataset Annotation using Roboflow

Improvement & New Ideas

Dataset Annotation using Roboflow

- Drawing bounding boxes with corresponding labels
- Data Augmentation Technique
 - Resize: 416 x 416 sized images
 - Horizontal & Vertical Flip
 - Random Crop(min-max zoom 7%)
 - Horizontal & Vertical Shear(-15°~15°)
 - Random Saturation(-9% ~ 9%)
 - Random Brightness(-9% ~ 9%)

Crop

Rotation

Brightness

Exposure

Blur

Noise

Improvement & New Ideas

Custom dataset and Solving data imbalance problem

labels: Yellowstone, Jadestone, Turquoisestone, Purplestone, Bluestone, Brownstone

Improvement & New Ideas

Custom dataset and Solving data imbalance problem

Imbalanced dataset distribution can make out model more biased and skewed!

Thus, balanced distribution is required for most Al model design.

Improvement & New Ideas

Custom dataset and Solving data imbalance problem

- The distribution of data for each class should be the same. (not skewed)
- The distribution of train data = The distribution of test data(validation data)
- If the distribution is imbalanced, the output of our model can be skewed.
 - There are several ways to solve this problem.
 - such as Over-sampling(e.g. SMOTH), Down-sampling, etc.

Optimization Techniques using Jetson Inference

Boost Up Frame Speed!!

Jetson Inference (CUDA Based Image Pixel transformation) (more than 30fps at 1280 * 720 resolution)

Camera Change

V4L Webcam to CSI Camera

Optimization

FP16 Optimization in Jetson Nano

Miscellous

Swap Area, Cooling Fan, LXDE used...

But... It drops to 10fps when Robot Starts to move... (2)

HANYANG UNIVERSITY

3. Demo and Conclusion

Demo Video

3. Demo and Conclusion

Conclusions

- We have designed a robot which explores for mineral resources and classify its category with ML methods.
- Data analysis is one of the important process in machine learning engineering.
 - the purpose of data → classification? detection? or something else?
 - the distribution of data → e.g. class data imbalance
- Optimization technique accelerates model inference speed.

Member & Rule

- 김수영 :
 - Robot Design
 - Parts Selection
 - Control System
 - Model Training
- 최가온 :
 - Dataset preparation
 - Annotation, Manage dataset, Conversion
 - Model Optimization

Thank you for your attention!

