Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2110 Laboratorio de Mediciones Eléctricas Profesor. Ing. Carlos Mauricio Segura Quirós I Semestre 2019

Experimento 6 - Función de excitación senoidal

Objetivo

• Familiarizar al estudiante con el uso del generador de señales y la medición de señales variantes en el tiempo.

Introducción

En los experimentos anteriores se ha trabajado con fuentes de tensión constantes. Ahora se comenzará a trabajar con circuitos que tienen tensiones variables en el tiempo. En este primer experimento se utilizará el multímetro para medir valores efectivos de tensiones y corrientes, y se verá la diferencia que se produce en la medición cuando se mide la tensión media.

Investigación previa

- 1. Investigue los conceptos:
 - Amplitud
 - Frecuencia
 - Periodo
 - Valor pico
 - Valor pico-pico
 - Valor medio
 - Valor instantáneo
 - Valor efectivo
- 2. Determine la ecuación que permite expresar una tensión senoidal en términos del tiempo, su amplitud y frecuencia.

Equipo

- 1 Generador de señales
- 1 Multímetro digital
- 3 Resistores de 1 k Ω (se necesitan 2) y 2,2 k Ω . (Proveer por el estudiante)
- 1 Placa para prototipado (protoboard). (Proveer por el estudiante)

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2110 Laboratorio de Mediciones Eléctricas Profesor. Ing. Carlos Mauricio Segura Quirós I Semestre 2019

Instrucciones

1. Mida el valor de las resistencias R_1 , R_2 y R_3 .

Tabla 1. Valor experimental de los resistores

Elemento	Resistencia	Incertidumbre
Resistor R ₁		
Resistor R ₂		
Resistor R ₃		

- 2. Encienda el generador de señales y ajuste la salida a una señal senoidal, con una frecuencia de 1 kHz. Ponga la amplitud al mínimo.
- 3. En el multímetro seleccione la medición de tensión en corriente alterna y conecte al generador de señales.
- 4. Aumente gradualmente el valor de la amplitud en el generador, hasta que pueda medir en el multímetro un valor de 4 V_{RMS}. En caso que el multímetro lo permita, mida también la frecuencia de la señal. Desconecte el multímetro.
- 5. Arme el circuito que se observa en la figura 1.
- 6. Mida la tensión en cada una de las resistencias.

Tabla 2. Valor experimental de las tensiones efectivas

Tensión	Valor	Incertidumbre
VR1		
VR2		
VR3		

7. Mida la corriente en cada una de las resistencias.

Tabla 3. Valor experimental de las corrientes efectivas

Corriente	Valor	Incertidumbre
I_a		
I_b		
I_{c}		

8. Ajuste el multímetro para medir tensión media. Verique que el valor medido en cada resistencia es cero.

Tabla 4. Valor experimental de las tensiones medias

Tensión	Valor	Incertidumbre
V_{R1}		
V_{R2}		
V_{R3}		

Figura 1. Esquema del circuito de medición

Reflexiones finales

- 1. Determine la amplitud de cada una de las tensión medidas en esta práctica.
- 2. Escriba una expresión matemática que describa cada una de estas tensiones a partir de los datos de amplitud y frecuencia.
- 3. ¿Se puede afirmar que se cumplen las leyes de Kirchhoff de corrientes y tensiones?