Fundação Getúlio Vargas

- 1. A quantidade de energia (em kWh) gerada diariamente por um painel solar instalado no campus universitário segue uma distribuição aproximadamente normal, com média $\mu=18$ kWh e desvio padrão $\sigma=4$ kWh.
 - a) Qual é a probabilidade de que, em um dia aleatório, o painel gere mais de 22 kWh?
 - b) Qual é a probabilidade de que a energia gerada esteja entre 15 e 21 kWh?
 - c) Qual o valor mínimo de geração diária necessário para que o painel esteja entre os 10% maiores valores de geração?

2. Sejam $X,Y\sim N(0,1)$ independentes. Dê a densidade conjunta de Z,W, sabendo que $Z=X^2+Y^2$ e W=X/Y. Dê o nome das distribuições Z e W e diga se são independentes?

- 3. O consumo de energia diário de uma bateria recarregável (expresso como uma fração da carga total) é independente entre os dias e uniformemente distribuído no intervalo [0,1]. A vida útil total da bateria (em unidades de carga), antes de ela falhar definitivamente, segue uma distribuição exponencial com parâmetro λ . [Ou seja, cada dia consome uma parte aleatória da carga, e a bateria falha quando a carga total consumida ultrapassa seu limite.]
 - a) Qual é a probabilidade de que a bateria sobreviva ao primeiro dia de uso, dado que o consumo neste dia foi exatamente igual a x, com $0 \le x \le 1$?
 - b) Qual é a probabilidade de que a bateria sobreviva ao primeiro dia de uso?
 - c) Seja N o número de dias que a bateria funciona (incluindo o dia em que ela finalmente falha). Determine a distribuição de N, com seus respectivos parâmetros. (Sugestão: devido à falta de memória da distribuição exponencial, os cálculos dos itens anteriores valem para qualquer dia de operação)

4. Sejam X,Y duas variáveis aleatórias cuja função de distribuição acumulada é descrita na imagem abaixo

- a) Determine a função de densidade conjunta de X, Y.
- b) Determine as funções de densidade marginal de X e Y.
- c) X e Y são independentes?
- d) Calcule $P(Y < X^2)$.

- 5. Uma universidade está monitorando o consumo diário de energia (em kWh) por sala de aula em um de seus prédios sustentáveis. Sabe-se que o consumo diário por sala segue uma distribuição com média $\mu=20$ kWh e desvio padrão $\sigma=5$ kWh. A administração quer estimar o consumo médio das salas, então seleciona uma amostra aleatória de 50 salas e calcula a média amostral de consumo \overline{X}_{50} .
 - a) Qual é a distribuição aproximada de \overline{X}_{50} ? Indique seus parâmetros.
 - b) Qual é a probabilidade de que a média amostral seja superior a 21 kWh?

- 6. Uma companhia vende lâmpadas. Sejam X_1, X_2, X_3 o tempo de vida de 3 lâmpadas que foram vendidas.
 - a) Qual seria uma distribuição de probabilidade razoável para descrever X_1, X_2, X_3 ? Por que?
 - b) Suponha que a média μ desta distribuição representa o parâmetro que define estas variáveis. Explique porquê $\mu_n=\overline{X_n}$ é uma sequência de estimadores consistentes para μ .
 - c) Suponha que $X_1,X_2,X_3\sim F(\theta)$ e $\hat{\theta}=\frac{3}{X_1+X_2+X_3}$ é um estimador para θ tal que $E[\hat{\theta}]=\frac{3\theta}{2}$. Determine o viés de $\hat{\theta}$.
 - d) Como obter um estimador não-viesado para θ no item anterior?

Tabela: P(Z < z), onde $Z^N(0,1)$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-0,0	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
-0,1	0,46017	0,45620	0,45224	0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
-0,2	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
-0,3	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
-0,4	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
-0,5	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
-0,6	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
-0,7	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
-0,8	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
-0,9	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
-1,0	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
-1,1	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
-1,2	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
-1,3	0,09680	0,09510	0,09342	0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
-1,4	0,08076	0,07927	0,07780	0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811
-1,5	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
-1,6	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
-1,7	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
-1,8	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
-1,9	0,02872	0,02807	0,02743	0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330
-2,0	0,02275	0,02222	0,02169	0,02118	0,02068	0,02018	0,01970	0,01923	0,01876	0,01831

Gabarito

1.

a) Seja X a v.a. que descreve a quantidade de energia. Então

$$P(X > 22) = P(Z > 1) \approx 0.1587$$

b) Na notação do item anterior

$$P(15 < X < 21) = P(-0.75 < X < 0.75) \approx 0.5468$$

c) Na notação do item a)

$$P(X>x)=0.1 \Leftrightarrow x=18+4\Phi^{-1}(0.1)\approx 23.13$$

2. A resposta é que $Z\sim {\rm Exp}(1/2)$ (ou Gama(1, 2) ou χ^2_2) e $W\sim {\rm Cauchy-Padr\~ao}$ são independentes e

$$f_{Z,W}(z,w) = rac{e^{-z/2}}{2\pi(1+w^2)}$$

3.

a) Seja X_i o consumo de energia no dia i e T o seu tempo de vida. Então

$$P(T>x|X_1=x)=P(T>x)=e^{-\lambda x}$$

b) Na notação do item anterior, da Lei da Probabilidade total, temos

$$P(T>X_1) = \int_0^1 P(T>x|X_1=x) f_{X_1}(x) \; dx = \int_0^1 e^{-\lambda x} \; dx = rac{1-e^{-\lambda}}{\lambda}$$

c) Da falta de memória da exponencial, segue que

$$P(T > X_1 + ... + X_{n+1}|T > X_1 + ... + X_n) = P(T > X_{n+1})$$

e pelos mesmos cálculos dos itens anteriores, segue que

$$P(T>X_{n+1})=rac{1-e^{-\lambda}}{\lambda}$$

Assim, o equipamento tem a mesma probabilidade $p=\frac{1-e^{-\lambda}}{\lambda}$ de sobreviver em cada dia, com 1-p de falhar. Segue que $N\sim \mathrm{Geom}(1-p)$.

4.

a) A densidade será

$$f_{X,Y}(x,y)=rac{\partial^2}{\partial x\partial y}F_{X,Y}(x,y)=egin{cases} rac{x}{y^2} & ext{ se }x\in(0,1) ext{ e }y>x \ 0 & ext{ c.c.} \end{cases}$$

b) A densidade marginal de X é

$$f_X(x) = \int_x^\infty f_{X,Y}(x,y) \; dy = \int_x^\infty rac{x}{y^2} \; dy = x \left[-rac{1}{y}
ight] x^\infty = 1$$

A densidade marginal de Y é para 0 < y < 1

$$f_Y(y) = \int_0^y rac{x}{y^2} \; dx = \left[rac{x^2}{2y^2}
ight]_0^y = rac{1}{2}.$$

e para y>1 é

$$f_Y(y) = \int_0^1 rac{x}{y^2} \; dx = \left[rac{x^2}{2y^2}
ight]_0^1 = rac{1}{2y^2}.$$

c) Não são independentes. Com efeito, do item anterior, temos que

$$f_{X,Y}(x,y)
eq f_X(x) f_Y(y)$$

d) A região de integração deve satisfazer 0 < x < 1, y > x e $y < x^2$. Mas isto não ocorre, pois se $x \in (0,1)$, então $x > x^2$. Logo, $P(Y < X^2) = 0$.

5.

- a) Pelo Teorema Central do Limite, temos que $\overline{X_{50}} \approx N\left(\mu, \frac{\sigma^2}{50}\right) = N(20, 0.5).$
- b) Com base no item anterior

$$P(\overline{X_{50}}>21)pprox P\left(Z>1.414
ight)pprox 0.079$$

6.

- a) Exponencial (ou Gama). A variável exponencial considera o tempo até a primeira ocorrência de algo. Em particular, podemos considerar o tempo até a "morte" das lâmpadas.
- b) Segue da Lei Forte dos Grandes Números.
- c) O viés é

$$B_{ heta}(\hat{ heta}) = E[\hat{ heta}] - heta = rac{3 heta}{2} - heta = rac{ heta}{2}$$

d) Basta multiplicar o estimador dado inicialmente por $\frac{2}{3}$.