

Classification Techniques

Nirav Bhatt, Department of Biotechnology, Robert Bosch Centre for Data Science and Al, Indian Institute of Technology Madras, India

Email: niravbhatt@iitm.ac.in

What is Classification?

- Linear regression
 - Response variable Y quantitative
- Scenarios
 - Fraudulent transactions of credit cards
 - Benign vs Cancerous Tumors
 - Reject or Accept quality of a product
- Qualitative variables are referred as categorical
- Classification: Y is categorical

What is Classification

- Why is it sometimes confused with Clustering?
- What does complexity in classification mean?
- What is the problem of using regression to classify
 - Coding approach for 2 classes (works OK, but assumptions?)
 - More than two classes:
 - Simple coding
 - The o and 1 approach for each class.

Different types of Classifiers

- k-Nearest neighbor classifier
- Decision Trees
- Naive Bayes classifier
- Logistic classifier
- Linear or Quadratic Discriminant classifier
- Logistic Regression
- Perceptrons

- Assumption: Small regions have the same label
- Defined by the k nearest neighbours
- Label given by majority vote
- k nearest neighbours (kNN)

kNN Classifier

- k Nearest Neighbors(kNN) is a non-parametric method used for classification
- It is a lazy learning algorithm where all computation is deferred until classification
- It is also an instance based learning algorithm where the function is approximated locally

- Why kNN?
 - Simplest of all classification algorithms and easy to implement
 - There is no explicit training phase and does not do any generalization of the training data
- When to use it ?
 - When there are nonlinear decision boundaries between classes
 - When the amount of data is large

- Input features
 - Input features can be both quantitative and qualitative
- Outputs
 - Outputs are categorical values, which typically are the classes of the data
- kNN explains a categorical value using the majority votes of nearest neighbors

Assumptions

- Being nonparametric, it does not make any assumptions about underlying data distribution
- Select the parameter k based on the data
- Requires a distance metric to define proximity between any two data points Example: Euclidean distance, Mahalanobis distance or Hamming distance

- Data: $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Features: (x^1, x^2, \dots, x^p) : x_i
 - o Label: y_i
- New test data x_0
 - What is the corresponding label?
- Instant based Classifier
 - Use the data (or training data) for classification (no models)
 - Non-parametric method

- How can we find the new Label?
- Old adage: Something walks and talks like peacock beware of statistics it may be hen
- kNN Idea: Something walks and talks like peacock it is high likely to be peacock not hen

20-09-2023 15

x: Class I and 0: Class II

- kNN classifier
 - Training Data:

$$\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$$

- A distance Metric
- Number of neighbors: K

Algorithm

- 1. Data $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
- 2. For new data point, x_0
- Find the nearest point(s) $n^* = \underset{n=1,...,n}{\operatorname{argmax}} ||x_0 x_n||^2$
- 4. Label y_o=y_{n*} based on majority votes

Example:

x: Class I and 0: Class

- K=3
- Compute conditional probability
 - $P(Y=Class\ I \mid x=x_o)=0.67$
 - P (Y= Class II| $x=x_0$)=0.33

2-class classification problem with 2 features

2-class classification problem with 2 features

2-class classification problem with 2 features

K Nearest Neighbors Classifier Things to consider

- Following are some things one should consider before applying kNN algorithm
 - O Parameter selection
 - O Presence of noise
 - Feature selection and scaling
 - O Curse of dimensionality

- Choice of K
- Large K value
 - Small K value
 - But sensitive to noisy data point

K Nearest Neighbors Classifier Parameter selection

- The best choice of k depends on the data
- Larger values of k reduce the effect of noise on classification but make the decision boundaries between classes less distinct

Less flexible model

 Smaller values of k tend to be affected by the noise with a clear separation between classes

Flexible model

Effect of k

1-Nearest Neighbor Classifier

Feature selection and scaling

- It is important to remove irrelevant features
- When the number of features is too large, and suspected to be highly redundant, feature extraction is required
- If the features are carefully chosen then it is expected that the classification will be better
- PCA is a good feature selection and scaling technique

How do we decide the "K"?

20-09-2023, G., Witten, D., Hastie, T., and Tibshirani, R. An Introduction to statistical learning, 2021

Irreducible and Reducible Errors

Mean Square Error between the actual and predicted y using the fit $\hat{f}(x, \hat{p})$

$$E[(y - \hat{y})^2] = [f(x, p) - \hat{f}(x, \hat{p})]^2 + Var(\epsilon)$$

Irreducible Error $Var(\epsilon)$

Reducible Error $[f(x,p) - \hat{f}(x,\hat{p})]^2$

Bias-Variance Trade-off and Prediction error

kNN MSE

$$E[(\hat{y}_{x_o} - y)^2] = Var(\epsilon) + \frac{1}{K}\sigma^2 + (f(x_o) - \frac{1}{K}\sum_{i \in A} f(x_i))^2$$

Linear Regression MSE

$$E[(\hat{y} - y)^2] = \sigma^2 + (\mathbf{x}_p^T Var[\hat{\boldsymbol{\beta}}_p] \mathbf{x}_p) + (\mathbf{x}_p^T \mathbf{A} \boldsymbol{\beta}_r - \mathbf{x}_r \beta_r)^2$$

Bias-Variance Trade-off

- Assumption: Small regions have the same label
- Defined by the k nearest neighbours
- Label given by majority vote
- Performs badly when
 - data is sparse
 - large dimensional input space
- Challenge: Efficiently finding nearest neighbours
 - Near Neighbours