H0: σ 1= σ 2

Н1: σ1≠σ2 – двухсторонняя альтернатива

1.1. Проверка через надстройку

Двухвыборочный F-тест для дисперсии		
	Переменная 1	Переменная 2
Среднее	5,319366667	5,390703704
Дисперсия	0,009622999	0,012937293
Наблюдения	30	27
df	29	26
F	0,74381855	
P(F<=f) одностороннее	0,21902607	
F критическое односто	0,531061737	

p-value=0,43805214

p-value=0,43805214 >= 0,1 принимаем гипотезу НО о том, что дисперсии равны

1.2. Через F-тест

=ФТЕСТ (A2:A31; B2:B28) = 0,43805214> = 0,1 принимаем гипотезу H0 о том, что дисперсии равны

2. Исходя из результатов пункта 1, для проверки равенства средних выбираем t-тест с равными дисперсиями (с учётом справедливости предположения о равенстве дисперсий – у нас подтвердилось это предположение)

H0: µ1=µ2 — средние равны

H1:µ1≠µ2 – средние не равны (двусторонняя альтернатива)

2.1. С пом. надстройки – Анализ данных

	Переменная 1	Переменная 2
Среднее	5,319366667	5,390703704
Дисперсия	0,009622999	0,012937293
Наблюдения	30	27
Объединенная дисперсия	0,011189756	
Гипотетическая разность средних	0	
df	55	
t-статистика	-2,542200704	
P(T<=t) одностороннее	0,006930949	
t критическое одностороннее	1,673033965	
P(T<=t) двухстороннее	0,013861898	
t критическое двухстороннее	2,004044783	

p-value = 0,013861898 < 0,05 - принимаем гипотезу H1 о том, что средние в генеральной совокупности не равны на 95%

Через ТТЕСТ

=TTECT(A2:A31;B2:B28;2;2)= 0,013861898

p-value совпадает с первым способом – принимаем гипотезу Н1 о том, что средние в генеральной совокупности не равны на 95%

2.2. Двухвыборочный t-тест с одинаковыми дисперсиями

	Переменная 1	Переменная 2
Среднее	5,319366667	5,390703704

Исходя из полученных средних, можем предположить, что среднее в первой ген. совокупности меньше, чем во второй.

H0: μ1=μ2

Н1: μ1<μ2 – односторонняя альтернатива

P(T<=t) одностороннее	0,006930949
-----------------------	-------------

0,006930949<0,05 принимаем гипотезу H1- среднее в первой ген. совокупности меньше среднего во второй с вер 95%