

ENEE 3582 Microp

Memory Terminology

- Memory type: 2 major types: ROM/RAM
- Memory capacity
 - Amount of data that can be stored
 - Measured in bytes. Units: KB (KiB), MB (MiB), GB (GiB)
- Memory operations
 - Read (aka load): data transfers from mem to cpu
 - Write (aka store): data transfers from cpu to mem
- Memory Busses
 - Address Bus: carries address to mem
 - > Data Bus: carries data contents to (write op) and from (read op) mem
 - Control
- Memory Architecture: How memory chips are interfaced with CPU

RAM

- Random-access memory (RAM):
 - Allows read and writing of memory
 - Same amount of time is required to access any location on the same chip
 - Volatile: information is lost without power.
 - Used to store user's programs
- Dynamic RAM (DRAM):
 - Uses 1 transistor and 1 capacitor for 1 bit.
 - Periodic refresh is required to maintain the contents of chip.
 - Asynchronous
 - SDRAM: synchronous DRAM (edge triggered)
- Static RAM (SRAM):
 - No periodic refresh is required
 - Uses 4-6 transistors for 1 bit

ROM

- Read-only memory (ROM):
 - Can only be read but not written by the processor
 - Nonvolatile
- Mask-programmed ROM (MROM):
 - Programmed when being manufactured
- Programmable ROM (PROM):
 - Programmed by the end user
- Erasable programmable ROM (EPROM)
 - Electrically programmable many times
 - Erased by ultraviolet light
 - Erasable in bulk (whole chip in one erasure operation)

ROM

- Electrically erasable programmable ROM (EEPROM)
 - Electrically programmable many times
 - Electrically erasable many times
 - Erased one location, one row, or whole chip in one operation
 - > Erased without removing unit from device.
- Flash EEPROM
 - Electrically programmable many times
 - Electrically erasable many times
 - Erased in bulk/large blocks => faster than EEPROM

Harvard vs Princeton Memory Architectures

- Von Neumann (Princeton) architecture
 - One memory, one bus
 - Code and Data accessed on the same bus
 - Memory "collisions"
- Harvard architecture
 - Separate memory for code and data memory
 - Separate busses
 - Expensive: Double memory pins for external memory
- * AVR Solution:
 - Harvard internal memory
 - Von Neumann for external memory

Data Sizes

- ❖ Bit: singe binary unit
- ❖ Byte: 8-bits, unit: B
- ❖ Word: 16-bits, 2B
- Doubleword: 32-bits, 4B
- Quadword: 64-bits, 8B

Memory Organization

- Memory is organized by addresses
 - Each address points to a memory location
 - > n bit address = 2^n locations
- Memory is grouped (measured) into byte locations
- Program Memory:
 - Mega2560: 256KB Flash
 - Address in PC (17bits)
 - Each location is 2B
 - Starting location = 0x00000
- Data Memory:
 - Mega2560: 8KB internal SRAM, 0-64KB external SRAM
 - Each location is a 1B
 - Starting address = 0x0200 (internal), 0x2200 (external)

Mega 2560

Address (HEX) 0000 - 001F 32 Registers 0020 - 005F 64 I/O Registers 0060 - 01FF 416 External I/O Registers 0200 Internal SRAM (8192×8) <u>21FF</u> 2200 External SRAM $(0 - 64K \times 8)$

FFFF

Accessing Data

- Use index regs to access program data
 - > X, Y, Z
- Program Data:
 - > 256KB flash for program data
 - Data stored in 2B
 - Each address points to a word
 - Address must be scaled by 2
- * RAM data:
 - Internal/eXtrernal SRAM
 - > 8KB for IRAM
 - Data stored in B
 - No need for scaling