Ibraheem

42896

BSCS 5

Assignment 3

DAA

Problem 1

Kruskal algorithm

Problem 2

(a):

Steps of Dijkstra's Algorithm, Source = A

Graph Edges:

- $A \to B(5), A \to C(11)$
- $B \rightarrow C(2), B \rightarrow E(3)$
- $C \rightarrow E(4), C \rightarrow D(6)$
- $E \rightarrow D(1), E \rightarrow F(7)$
- $D \rightarrow F(8)$

Part b:

Can Dijkstra's algorithm handle negative weights?

- **No.** Dijkstra's algorithm assumes that once a node's shortest distance is finalized, it won't change. Negative weights **violate** this.
- Example: If a shorter path with a negative weight is found **after** visiting a node, Dijkstra will **miss** it.

Which algorithm to use instead?

• Use Bellman-Ford Algorithm. It works correctly with negative weights (as long as there are no negative cycles).

Problem 3:

Given two strings A and B, find the **longest contiguous substring** that appears in both.

Example:

- A = "abcdefgyu"
- B = "bcdtyu"

Output: "bcd" (length = 3)

Dynamic Programming Approach:

If
$$A[i-1] == B[j-1]$$
, then:
 $dp[i][j] = dp[i-1][j-1] + 1$
Else:
 $dp[i][j] = 0$

problem 4:

Given two sequences s and t, the **Longest Common Subsequence** (LCS) problem is to find the length of the longest subsequence present in **both** sequences.

- **Subsequence**: A sequence derived from another by deleting some or no elements, without changing the order of the remaining elements.
- For example, LCS of "abcdefg" and "bdf" is "bdf" (length = 3).

Dynamic Programming Solution:

If
$$S[i-1] == T[j-1]$$
:
 $dp[i][j] = dp[i-1][j-1] + 1$
Else:
 $dp[i][j] = max(dp[i-1][j], dp[i][j-1])$