Assignment1

Author: Ruiqi Kuang

1 Backpropagation in a Simple Neural Network

TASK1: visualize Make-Moons dataset

Task2: train with different activation function

Relu:

Tanh:

Sigmoid:

The boundary relu created is several straight lines, while tanh and sigmoid create smooth curves. That may be cause by the fact that relu is a piece-wise function where each part is a proportional function.

Task3: train with different the number of hidden units nn_hidden_dim=10

nn_hidden_dim=20

nn_hidden_dim=30

The loss decrease while the dimension of the hidden layer increase.

The decision boundary doesn't change dramatically while dimension increase.

Task4: n layer neural network train make moon

- 1. nn_input_dim: dimension of input layer
- 2. nn hidden dim: dimension of hidden layers
- 3. nn_num_layers: numbers of layers in the NN(including input layer)
- 4. nn_output_dim:dimension of output layer

model = NeuralNetwork(nn_input_dim=2, nn_hidden_dim=3,
nn_num_layers=5, nn_output_dim=2, actFun_type='tanh')

model = NeuralNetwork(nn_input_dim=2, nn_hidden_dim=3,
nn_num_layers=10, nn_output_dim=2, actFun_type='tanh')

model = NeuralNetwork(nn_input_dim=2, nn_hidden_dim=6, nn_num_layers=5, nn_output_dim=2, actFun_type='tanh')

model = NeuralNetwork(nn_input_dim=2, nn_hidden_dim=6,
nn_num_layers=5, nn_output_dim=2, actFun_type='relu')

model = NeuralNetwork(nn_input_dim=2, nn_hidden_dim=6, nn_num_layers=10, nn_output_dim=2, actFun_type='relu')

Task5: n layer neural network train make blobs

Make blobs: Generate clustering data with normal distribution

n_sample: number of samples

n_features: dimension of sample point(equal to the dimension of the input layer)

centers: number of cluster(equal to the dimension of the output layer)

X, y = datasets.make_blobs(n_samples=1000, n_features=2, centers=2, cluster_std=1.0, center_box=(-10.0, 10.0),shuffle=True, random_state=None)

X, y = datasets.make_blobs(n_samples=1000, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0),shuffle=True, random_state=None)

X, y = datasets.make_blobs(n_samples=1000, n_features=2, centers=4, cluster std=1.0, center box=(-10.0, 10.0),shuffle=True, random state=None)

2 Training a Simple Deep Convolutional Network on MNIST

a) Build and Train a 4-layer DCN

b) More on Visualizing Your Training

Conv1:

Conv2:

