See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51708480

Selective Stille Coupling Reactions of 3-Chloro-5-halo(pseudohalo)-4 H -1,2,6-thiadiazin-4-ones

ARTICLE in ORGANIC LETTERS · NOVEMBER 2011

Impact Factor: 6.36 · DOI: 10.1021/ol2025235 · Source: PubMed

CITATIONS

10

READS

69

3 AUTHORS:

Heraklidia A Ioannidou University of Nicosia

29 PUBLICATIONS 173 CITATIONS

SEE PROFILE

Christos M Kizas

University of Cyprus

10 PUBLICATIONS 56 CITATIONS

SEE PROFILE

Panayiotis Koutentis

University of Cyprus

120 PUBLICATIONS 1,457 CITATIONS

SEE PROFILE

2011 Vol. 13, No. 21 5886–5889

Selective Stille Coupling Reactions of 3-Chloro-5-halo(pseudohalo)-4*H*-1,2,6-thiadiazin-4-ones

Heraklidia A. Ioannidou, Christos Kizas, and Panaviotis A. Koutentis*

Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Koutenti@ucy.ac.cy

Received September 17, 2011

ABSTRACT

$$\begin{array}{c} & & & \\ \times & & \\$$

A series of 3-chloro-5-halo(pseudohalo)-4*H*-1,2,6-thiadiazin-4-ones (halo/pseudohalo = Br, I, OTf) are prepared from 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one (3) in good yields. Of these the triflate reacts with tributyltin arenes (Stille couplings) chemoselectively to give only the 5-aryl-3-chloro-4*H*-1,2,6-thiadiazin-4-ones in high yields. This allowed the preparation of a series of unsymmetrical biaryl thiadiazines and ultimately a series of oligomers. Furthermore, treatment of 3-chloro-5-iodo-4*H*-1,2,6-thiadiazin-4-one (10) with Bu₃SnH and Pd(OAc)₂ gave the bithiadiazinone which can also be further arylated *via* the Stille reaction to give bisthien-2-yl and bis(*N*-methylpyrrol-2-yl) analogs.

A recent note about R. B. Woodward's "unfinished symphony" identified 1,2,6-thiadiazine polymers such as 1 as potential stable alternatives to the superconductor poly-(sulfur nitride) (SN)_x. Similarly, C. W. Rees proposed polymer 2^2 (Figure 1). In both proposals, the readily prepared 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one (3)³ was featured as a key building block. Despite the above, the chemistry of this useful heterocycle has not been extensively explored.²⁻⁴

Recently, the synthesis of symmetrical 3,5-biaryl-4H-1,2,6-thiadiazin-4-ones via Stille and Suzuki-Miyaura reactions on the dichlorothiadiazinone 3 was described. Included was the synthesis of the thien-2-yl substituted analogs 4 (n = 0) and 5 (n = 1) that potentially could find

Figure 1. 1,2,6-Thiadiazinone polymers proposed by Woodward (polymer 1) and Rees (polymer 2) that could act as alternatives to poly(sulfur nitride) $(SN)_x$.

use as monomer feedstocks for π -conjugated polymers such as **6** (Figure 2). ^{4d}

In a continuation of our studies on 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one (3) we have now synthesized unsymmetrical 3,5-bis-heteroarylated thiadiazinones and related oligomers using the Stille reaction.

(5) (a) Bailey, J. M.; Bit, R. A.; Demont, E. H.; Harrison, L. A.; Jones, K. L.; Smethurst, C. A. P.; Witherington, J. WO Pat. 146105, 2010. (b) Fuss, R. W.; Manero, J.; Schlosser, H.; Winger, R. US Pat. 5,847,149, 1998.

⁽¹⁾ Cava, M. P.; Lakshmikantham, M. V.; Hoffmann, R.; Williams, R. M. *Tetrahedron* **2011**, *67*, 6771.

^{(2) (}a) Koutentis, P. A.; Rees, C. W. *J. Chem. Soc.*, *Perkin Trans. 1* **2000**, 2601. (b) Koutentis, P. A.; Rees, C. W.; White, A. J. P.; Williams, D. J. *J. Chem. Soc.*, *Chem. Commun.* **2000**, 303. (c) Koutentis, P. A.; Rees, C. W. *J. Chem. Soc.*, *Perkin Trans. 1* **2000**, 1089.

⁽³⁾ Geevers, J.; Trompen, W. P. *Recl. Trav. Chim. Pays-Bas* **1974**, *93*, 270

^{(4) (}a) Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 2000, 2601. (b) Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 2000, 1081. (c) Kalogirou, A. S.; Koutentis, P. A. Tetrahedron 2009, 65, 9967. (d) Ioannidou, H. A.; Kizas, C.; Koutentis, P. A. Org. Lett. 2011, 13, 3466.

The selective replacement of only one halogen by carbon groups using Suzuki—Miyaura, Stille, or Sonogashira chemistry can be efficient with symmetrical dihaloheteroarenes that are electron poor (*e.g.*, 1,3,4-thiadiazoles,⁵ pyridines,⁶ and pyrimidines⁷). In some cases (*e.g.*, 2,6-dihalopyridine) the selective displacement of only one halogen using the Stille protocol required the presence of a large excess of the substrate to prevent the formation of the bis-coupled product,⁸ while the Sonogashira reaction of 3,5-dibromopyridine gave mixtures of mono- and bis-ethynylated derivatives.⁹

Figure 2. Structures of 3,5-dichloro- and 3,5-di(thien-2-yl)-substituted 4H-1,2,6-thiadiazin-4-ones 3, 4, and 5 and the proposed π -conjugated polythiadiazinone 6.

Attempts to synthesize 3-aryl-5-chlorothiadiazinone starting from dichlorothiadiazinone 3 using our typical Suzuki-Miyaura or Stille conditions^{4d} with only 1 equiv. of arylboronic acid or aryltin reagent, gave only mixtures of mono- and bis-arylated systems, despite varying the reaction solvent, temperature and catalysts. As such, an alternative pathway was proposed that required access to nonsymmetrical 3,5-dihalo or 3-halo-5-(pseudohalo)-thiadiazinones, which could favor chemoselective Pd catalyzed C–C coupling reactions of "non-symmetrical" mixed dihalo systems 2-bromo-

6-chloropyridine¹⁰ and 2-bromo-5-chlorothiophene¹¹ occur chemoselectively at the more reactive bromine.

Initial attempts to exchange selectively one halide with KBr or KI in acetone (Finkelstein reaction)¹² failed and only the starting dichlorothiadiazinone **3** was recovered. Nevertheless, thiadiazinone **3** could be converted into 3-chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one (**8**) in two steps (Scheme 1) and this in turn could be readily converted into the 3-bromo-5-chloro- and the 3-chloro-5-iodothiadiazinones **9** and **10**, respectively (Scheme 2).

As such, 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (3) treated with LiOH (4 equiv) in dry THF heated at ca. 65 °C for 1 h gave 3-chloro-5-hydroxy-4H-1,2,6-thiadiazin-4-one (7) directly in 83% yield. The reaction of the alcohol 7 with trifluoromethanesulfonic anhydride (Tf₂O) (2 equiv) in the presence of Et₃N (1.1 equiv) in DCM at ca. 0–10 °C for 15 min gave the 3-chloro-5-triflate-1,2,6-thiadiazin-4-one 8 in 78% yield (Scheme 1).

Scheme 1. Preparation of 3-Chloro-5-hydroxy-4*H*-1,2,6-thiadiazin-4-one (7) and 3-Chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one (8)

By treating the triflate **8** with Et₄NBr (1.1 equiv) in acetone at ca. 56 °C for 20 min, 3-bromo-5-chloro-4H-1,2,6-thiadiazin-4-one (**9**) was obtained in 100% yield, while treatment with either KI (1.2 equiv) in acetone at rt for 1 h or BnEt₃NI (1.2 equiv) in acetone at ca. 56 °C for 1 h gave 3-chloro-5-iodo-4H-1,2,6-thiadiazin-4-one (**10**) in 87% and 76% yields, respectively (Scheme 2).

Scheme 2. Preparation of 3-Bromo-5-chloro-4*H*-1,2,6-thiadiazin-4-one (**9**) and 3-Chloro-5-iodo-4*H*-1,2,6-thiadiazin-4-one (**10**)

Org. Lett., Vol. 13, No. 21, 2011 5887

^{(6) (}a) Heuberger, B. D.; Shin, D.; Switzer, C. Org. Lett. 2008, 10, 1091. (b) Crowley, J. D.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Perret-Aebi, L.-E.; Petzold, C.; Slawin, A. M. Z.; Symes, M. D. J. Am. Chem. Soc. 2007, 129, 15085. (c) Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z.-i. Angew. Chem., Int. Ed. 2005, 44, 7040. (d) Woods, C. R.; Benaglia, M.; Toyota, S.; Hardcastle, K.; Siegel, J. S. Angew. Chem., Int. Ed. 2001, 40, 749. (e) Orlandi, S.; Annunziata, R.; Benaglia, M.; Cozzi, F.; Manzoni, L. Tetrahedron 2005, 61, 10048. (f) Gaviña, P.; Tatay, S. Tetrahedron Lett. 2006, 47, 3471.

^{(7) (}a) Hartung, C. G.; Backes, A. C.; Felber, B.; Missio, A.; Philipp, A. *Tetrahedron* **2005**, *62*, 10055. (b) Schauerte, H.; Allgeier, H.; Pleiss, M. A.; Augustin, M.; Peraus, G.; Stumm, G.; Wabnitz, P. US Pat. 2010/184780, 2010.

⁽⁸⁾ Bouet, A.; Heller, B.; Papamicaël, C.; Dupas, G.; Oudeyer, S.; Marsais, F.; Levacher, V. *Org. Biomol. Chem.* **2007**, *5*, 1397.

⁽⁹⁾ Rajadurai, C.; Ivanova, A.; Enkelmann, V.; Baumgarten, M. J. Org. Chem. **2003**, *68*, 9907.

⁽¹⁰⁾ Choppin, S.; Gros, P.; Fort, Y. Org. Lett. 2000, 2, 803.

^{(11) (}a) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358. (b) Bolliger, J. L.; Frech, C. M. Chem.—Eur. J. 2010, 16, 4075. (c) Dupuis, C.; Adiey, K.; Charruault, L.; Michelet, V.; Savignac, M.; Genêt, J.-P. Tetrahedron Lett. 2001, 42, 6523. (d) Li, G.; Wang, E.; Chen, H.; Li, H.; Liu, Y.; Wang, P. G. Tetrahedron 2008, 64, 9033. (e) Kim, S.-H.; Rieke, R. D. Tetrahedron 2010, 66, 3135.

A preliminary screen of Stille reaction conditions for the monoarylation of the dihalo- and pseudohalothiadiazinones **8–10** using 2-(tributyltin)thiophene (1 equiv) and Pd(Ph₃-P)₂Cl₂ (5 mol %) at rt included varying the solvents (*e.g.*, THF, PhH, PhMe, and MeCN). 2-(Tributyltin)thiophene was used instead of the tributylphenyltin, because the dihalo-, 3-chloro-5-phenyl- and 3,5-diphenylthiadiazinones corun on TLC. From the solvents screened, PhH gave the fastest reactions and cleanest mixtures, while in MeCN the starting thiadiazinones were insoluble at rt and required heating to *ca.* 50 °C to solubilize, but this led to mixtures of mono- and bisthienylated thiadiazinones. The use of THF led to a very fast but complex reaction mixture (by TLC) while in the case of the PhMe a small amount (4%) of the bis-thienylated product was also isolated.

Of the four thiadiazinones screened, the dichlorothiadiazinone 3 gave mixtures of mono- and bis-thienylated products, while the chloroiodothiadiazinone 10 gave a complex reaction mixture from which no desired product was detectable (by TLC). Fortunately, the chlorotriflate thiadiazinone 8 and the bromochlorothiadiazinone 9 reacted chemoselectively with 2-(tributyltin)thiophene to give 3-chloro-5-thien-2-yl-4*H*-1,2,6-thiadiazin-4-one (11a) in 85% and 83% yields, respectively.

Table 1. Reaction of the 3-Chloro-5-halo(pseudohalo)-1,2,6-thiadiazinones **3**, **8–10** (0.22 mmol) with ArSnBu₃ (1 equiv), Pd(Ph₃P)₂Cl₂ (5 mol %), in PhH (2 mL) at rt

$$CI \xrightarrow{O} X$$
 $N \xrightarrow{S} N$

ArSnBu₃
 $N \xrightarrow{S} N$

3, 8-10

X	Ar	time (h)	yield 11 (%)
Cl	Thien-2-yl	48	a
Br	Thien-2-yl	44	11a (83)
I	Thien-2-yl	0.5	b
OTf	Thien-2-yl	2	11a (85)
OTf	Fur-2-yl	0.8	11b (76)
OTf	N-Me-pyrrol-2-yl	0.08	11c (94)
OTf	Ph	4	a

^a Mixture of mono and biarylated thiadiazinones. ^b Complex reaction mixture

The Stille reaction of the 2-(tributyltin)thiophene with the triflate thiadiazinone **8** was significantly faster than that of the bromochlorothiadiazinone **9** (2 h vs 2 d). In light of this we subsequently chose the triflate thiadiazinone **8** as the starting material for the synthesis of a series of monoaryl chloro thiadiazinones (Table 1) that could later be modified into a series of mixed biaryl thiadiazinones (Table 2).

Disappointingly, attempts to perform a one-pot Stille mediated two-step mixed arylation failed. Nevertheless, unsymmetrical biheteroaryl thiadiazinones were prepared in high yields by reacting the isolated 3-chloro-5-heteroaryl

(12) Finkelstein, H. Ber. Dtsch. Chem. Ges. 1910, 43, 1528.

Table 2. Reaction of the 3-Chloro-5-heteroarylthiadiazin-4-ones **11** (0.22 mmol) with ArSnBu₃ (1.2 equiv), Pd(Ph₃P)₂Cl₂ (5 mol %), in MeCN (2 mL) at *ca.* 82 °C

11a-11c

12a-12c

Het^1	Het^2	time (min)	yield 12 (%)
Thien-2-yl	Fur-2-yl	20	12a (88)
Thien-2-yl	N-Me-pyrrol-2-yl	45	12b (88)
Fur-2-yl	Thien-2-yl	20	12a (78)
Fur-2-yl	N-Me-pyrrol-2-yl	20	12c (100)
N-Me-pyrrol-2-yl	Thien-2-yl	45	12b (100)
N-Me-pyrrol-2-yl	Fur-2-yl	15	12c (94)

thiadiazinones **11a**–**c** with heteroaryltin and Pd(Ph₃P)₂Cl₂ (5 mol %) in MeCN at *ca.* 82 °C (Table 2).

Furthermore, by reacting either the 3-chloro-5-(thien-2-yl)- or the 3-chloro-5-(*N*-methylpyrrol-2-yl)thiadiazin-4-ones **11a** or **11c** with 2,5-bis(tributyltin)thiophene **13** the potentially useful **14a** and **14b** were synthesized in 76 and 92% yields, respectively (Scheme 3).

Scheme 3. Preparation of Pentamers 14a and 14b

An alternative synthesis of compounds **14a** and **14b** was also targeted by building first 5,5'-(thiophene-2,5-diyl)bis-(3-chloro-4*H*-1,2,6-thiadiazin-4-one) (**15**). Nevertheless the synthesis of **15** from 2,5-bis(tributyltin)thiophene and the 3-chloro-5-triflate thiadiazinone **8** was low yielding (40%) and the route was abandoned (Scheme 4).

We also tried to make 5.5'-dichloro-4H,4'H-[3,3'-bi-(1,2,6-thiadiazine)]-4,4'-dione (**16**) from the dihalothiadiazinones **3**, **9**, and **10** *via* the Ullmann reaction, but the use of copper powder¹³ led to complex reaction mixtures (by TLC) and the use of Pd(OAc)₂¹⁴ gave only decomposition. Nevertheless,

5888 Org. Lett., Vol. 13, No. 21, 2011

⁽¹³⁾ Goshaev, M.; Otroshchenko, O. S.; Sdaykov, A. S. Russ. Chem. Rev. 1972, 41, 1046.

⁽¹⁴⁾ Christoforou, I. C.; Koutentis, P. A. Org. Biomol. Chem. 2006, 4, 3681.

Scheme 4. Preparation of 5,5'-Dichloro-4*H*,4'*H*-[3,3'-bi-(1,2,6-thiadiazine)]-4,4'-dione **15**

Bu₃SnH in the presence of a Pd catalyst and KOAc was known to react with iodoarenes to give the tributyltinarenes, but in the absence of base these reactions often gave some biaryls.¹⁵ In light of this, chloroiodothiadiazinone **10** was treated with Bu₃SnH (1.1 equiv) and Pd(OAc)₂ (5 mol %) in PhH heated at reflux, and after 50 min the desired 5,5′-dichloro-4*H*,4′*H*-[3,3′-bi(1,2,6-thiadiazine)]-4,4′-dione (**16**) was isolated in 83% yield (Scheme 5). Similar treatment of the dichloro- and bromochlorothiadiazinones **3** and **9** gave only recovered starting materials.

The dimer **16** reacted readily with either 2-(tributyltin) thiophene or 1-methyl-2-(tributyltin)pyrrole (2.2 equiv) and $Pd(Ph_3P)_2Cl_2$ (5 mol %) in MeCN heated to reflux to give 5,-5'-di(thien-2-yl)-4H,4'H-[3,3'-bi-(1,2,6-thiadiazine)]-4,4'-dione (**17a**) and 5,5'-di(N-methylpyrrol-2-yl)-4H, 4'H-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione (**17b**) in 67% and 70% yields, respectively (Scheme 6).

In conclusion, desymmetrization of dichlorothiadiazinone 3 *via* modified Finkelstein reaction conditions gave triflate-, bromo-, and iodo-substituted chlorothiadiazinones 8–10, respectively. Both the triflate and the bromochloro-

Scheme 5. Preparation of 5,5'-Dichloro-4*H*,4'*H*-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione **16**

Scheme 6. Preparation of 5,5'-Di(heteroaryl)-4*H*,4'*H*-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-diones **17a** and **17b**

thiadiazinones suffered chemoselective Stille couplings to give 3-chloro-5-heteroaryl thiadiazinones 12, while treatment of the chloroiodothiadiazinone 10 with Bu₃SnH and Pd(OAc)₂ gave the dimer dichlorobithiadiazinone 16. Manipulation of the above gave the π -extended oligomers 14, 15, and 17 that could find use in optoelectronic applications. Their physical properties are now under study.

Acknowledgment. The authors thank the Cyprus Research Promotion Foundation (Grant Nos. $ENI\Sigma X/0504/08$ and $NEKY\Pi/0308/02$).

Supporting Information Available. Experimental and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 13, No. 21, **2011**

^{(15) (}a) Murata, M.; Watanabe, S.; Masuda, Y. *Synlett* **2000**, 1043. (b) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. *J. Am. Chem. Soc.* **2002**, *124*, 14127.