

COMP2043.GRP Interim Group Report

Project[20] Animation of Sorting Algorithms and their Correctness

Submitted Dec 2020, in partial fulfillment of the conditions for the award of the degree BSc Computer Science.

Team 10

Supervised by Dr.Heshan Du

School of Computer Science University of Nottingham

Shiliang Chen(20125016), Ruizi Han(20125115), Yani Huang(20125915), Yijie Lu(20125931), Yuting Jiang(20126307), Yiming Tang(20126870)

We hereby declare that this report is all our own work, except as indicated in the text:

Signature ₋			
Date	_ /	/	

Contents

1	Intr	troduction				
	1.1	Motiva	ation	1		
	1.2	Aims	and Objectives	2		
	1.3	Descri	ption of the Work	2		
2	Bac	kgroui	nd and Related Work	3		
	2.1	Backg	round	3		
	2.2	Litera	ture Review	4		
		2.2.1	Technical Research	4		
		2.2.2	Existing Similar Software Analysis	9		
3	Soft	ware I	Requirements Engineering	16		
	3.1	Requi	irements Elicitation	16		
		3.1.1	Focus Group	17		
		3.1.2	Survey	20		
		3.1.3	Interview	21		
	3.2	Requi	irements Specification	23		
		3.2.1	User Requirements	23		
		3.2.2	System Specifications	23		
		3.2.3	User Story	25		
	3.3	Requi	irements Validation	27		
4	Des	ign		28		
	4.1	Use C	ase Diagram	28		

<u>ii</u> CONTENTS

	4.2	Seque	nce Diagram	30
	4.3	Low-F	Tidelity Prototype	33
5	Imp	Implementation		
	5.1	High-I	Fidelity Prototype	36
5.2 Platform				36
		5.2.1	Platform Decision	36
	5.3	Progra	amming language and software framework	37
		5.3.1	Front-end	37
		5.3.2	Back-end	37
	5.4	Develo	opment Tools	38
		5.4.1	Integrated Development Environment	38
		5.4.2	Build Project	38
	5.5	Manag	gement Tools	38
		5.5.1	Software Development Methodology	38
		5.5.2	Version Control and Team Management	39
6	Pro	blem I	Encountered and Risk Management	41
	6.1	Proble	em Encountered	41
		6.1.1	Technical	41
		6.1.2	Managerial	42
		6.1.3	Interpersonal	44
	6.2	Risk N	Management	44
7	Tim	neline		45
Bi	bliog	graphy		46
$\mathbf{A}_{\mathbf{J}}$	ppen	dices		50
\mathbf{A}	Full	Focus	s Group Report	50
В	B Full Questionnaire Report			56

C Questionnaire		
\mathbf{D}	Minutes	68

Chapter 1

Introduction

For learning algorithms and programming, sorting algorithms are considered as an essential part. However, they are not easy to be fully understood and implemented by beginners. Animation is now widely used in educational area. Many researches have proved the effectiveness of algorithm animation in teaching and learning.[27] Though there are many existing similar software in the market, few of them are used among students, who are the main stakeholders for this type of software. Besides, many of them find difficulty when learning sorting algorithms. Therefore, developing a sorting algorithms animation software is necessary.

Algorithms' correctness is a more abstract concept, but useful for leaning, including this in the software could help advanced learners. In this chapter, brief introduction of this program will be presented in three parts, motivation of doing this project, team's aims and a general description of work the team plan to do.

1.1 Motivation

Sorting algorithms, such as bubble sort, selection sort and merge sort, are the most basic algorithms for beginners. To better understand algorithms and related areas in computer science, learning sorting algorithms as the rudiments of algorithms is a great choice. Our project plan focuses on helping beginners learning sorting algorithms and their correctness.

We have found that their correctness is not easy to understand for beginners because of how the algorithms work is not directly perceived. Research has been taken to show that visualising the sorting algorithm might help to solve this problem. Rudder et al. claimed that animations and visualisations could help present those abstract concepts in an easy-understanding way.[21]

1.2 Aims and Objectives

Team 10 comes up with the idea of creating a game-like learning tool with the animation feature to achieve visualising sorting algorithms. The main picture is that the software will give a taste at the beginning by providing some easy tutorials. After that, it will provide several modules for users to learn different algorithm principles and their correctness in a simplified way. During the process, explanations and guides will be displayed with an animation. Finally, exercises will be provided for them to check whether they understand well enough.

1.3 Description of the Work

As planned, the Agile development process and TDD would be used to ensure everything is expected and under control. One month will be spent on the requirements and specifications. Interview, focus group and other requirement gathering activity will be taken. After that, four months would be spent on designing the software. Finally, two months will be spent to evaluate the quality of code, UI and functions by unit test and maintenance.

Chapter 2

Background and Related Work

To know more about situation in the existing market, background research has been done. There are two sections in this chapter, first it will claim some collected background information. Then, analysis to both technical implementation and existing similar software are included in literature review part.

2.1 Background

As a significant compulsory course in computer science, the course of algorithms is of vital importance in professional learning. Due to the abstract concept and theory, it is particularly difficult for beginners to learn and understand the algorithms.

In order to solve this problem, the algorithm visualization technique was applied in the field of computer science teaching since the early 1980s.[12] According to Yu and Su et al., algorithm visualization technique explains how an algorithm is implemented through multimedia such as graphs, texts, colors, sounds, animations, and videos.[26] The main feature of algorithm visualization is that it can dynamically demonstrate the data, operations, and semantics extracted from the program. That means it presents the complex and abstract theory in an understandable and visual form to learners. Therefore, the visualization technique is able to significantly improve the efficiency of the algorithm education process.

In 2012, Simoňák and his team released an algorithm visualization system named VizAlgo.[22] It is a portable platform based on a JAVA environment, and the plugin-based architecture of the system ensures its extensibility. Basically, it includes the visualization of sorting algorithms and some basic data structures. However, it also includes some limitations within this system, such as the limited support of advanced visualization features like dynamic changes in algorithm pseudocode reflected in visualization.

For this project, we focus on the sorting algorithm visualization. It seems that displaying the sorting process with the form of a tree likes VizAlgo is not visual enough. In 2016, Simoňák proposed another algorithm visualization platform called Algomaster. [23] In this new system, back-stepping functionality for an easy algorithm stepping in both directions is developed, and a self-testing mode for automated testing of users' knowledge is available. That means the new platform increased interaction with users and partly improve the visualization features. However, according to the results provided by the experiment, there also exists some participants were still not satisfied with the visualization part of Algomaster.

2.2 Literature Review

To design better software, research has been taken. In this literature review, these efforts will be introduced in two layers: technical research and existing similar software analysis.

2.2.1 Technical Research

The project is to develop software which can visualise sorting algorithms. In detail, the software shall be able to animate and display graphical objects and react to what users do, such as button clicking event and text inputting event.

In this case, methods of how to achieve visualization will be declared at first. The programming language to be used in the project shall be adaptable to a graphical user interface (GUI) and able to respond to user request through the GUI. Platforms need to

be suitable for both users' usage and developers' development. As a significant coding tool, the choice of IDE should also be carefully considered. Analysis of these three parts is presented as follows.

1. Visualization and Animation

When it comes to visualizing sorting algorithms, many practical design ideas are learned from L. Végh and V. Stoffová's paper.[25] It provides many specific suggestions with the strong support of past researches. Many perspectives are included, such as user interface, selection of models, the configuration of each module on-screen and method for comparing sorting algorithms' efficiency.

Pseudo-code is more recommended than a source code when teaching algorithms because it describes and presents algorithms at a higher and logical level.[13] Therefore, displaying pseudo code in this software can help users understand algorithms at the abstract level and not get stuck in understanding any programming language's syntax problem. The connection between animation and other modules is also very important. For example, when the animation is doing swapping, the corresponding code should be highlighted.[17] Difficulties in understanding each step's code are different. The animation of an important part of algorithms should be slowed down, or a changing animation speed function should be added.[25] In that case, users can learn and understand easier.

2. Platform

While discussing the platform for developing this software, four platforms were come up, which are PC (macOS/Windows), a mobile terminal (iOS or Android), web and WeChat mini-app.

WeChat mini app

Advantage: WeChat[9] is a widely used application, users can access this software quickly and conveniently.

Chapter 2. Background and Related Work

6

Disadvantage: The screen size for a mobile device is too small, so users might not be able to see the animation.

Web

Advantage: Same as WeChat mini-app, user can use this software easily using the web without installing anything. Besides, it can be used on any devices that have a browser and link to the network.

Disadvantage: User privacy might be a problem. 'User guide' part for new user and 'history' part will be included in this software, so if this software is going to be built on the web, cookies must be needed. As a web-tracking and information-gathering technology, users' personal information can be easily gained without being informed by cookies.[16]

PC

Advantage: Users can access software by the local computer. There is no need to link to the network. Also, installation and employment are easy. According to the questionnaire result, PC is more welcomed among students, our stakeholder.

Disadvantage: The computer is not that easy-carry as mobiles and other portable devices.

Mobile terminal

Advantage: Same as PC, the software can be used without network.

Disadvantage: Mobile's screen size is small. According to the questionnaire, users seem to prefer the PC.

3. Programming Language and Software Framework Overview

Three main programming language will be introduced below with both advantages and disadvantages.

Java

In JDK, Java provides two basic tools for building a graphical user interface, which is AWT and Swing. JavaFX was once a component of JDK but is a third-party tool now. AWT was introduced in JDK 1.0 and heavily depended on the Windows platform, while Swing is more flexible and can be executed in multiple platforms with Java.[19][20]

Advantages: Java is a cross-platform language based on Java Virtual Machine. Both Swing and JavaFX take advantage of this feature, which allows the software to be easily distributed in multiple platforms. [18] Basic functions to build software are fully supported in those Java tools. As a back-end language, Java takes advantage of object-oriented and it is good at express the business logic of the front end. Its property of strongly typed also improves the efficiency of the programming process.

Disadvantages: AWT was introduced in JDK 1.0 and Swing is released in JDK 2.0. Both are old and using a coding style which develops the user interface with built-in graphic components. It is not straightforward to see and adjust the layout.[19][20] Besides, relevant discussions and resources are not sufficient, even on the Internet. Lack of references would be an obstacle to the team's progress. As for Java itself, the efficiency of compiling would not be satisfying.

Web framework solution with JavaScript or Java

JavaScript is a programming language which is used with the Web. A web browser is responsible for parsing the Web code along with JavaScript and displaying interactive content to users. Web browser is a basic software on Windows, Mac, iOS and Android.

Advantages: Web solution allows accessing a web page on multiple platforms with the same contents. Therefore, it is a fully cross-platform solution to build software once but run everywhere. The web consists of two parts, front end and back end. The front end provides a user interface only using markdown language HTML5,[14] and the back end works as a server which listens to the actions that users take and handle these actions with programming language JavaScript or Java. The field of web software has been developing

fast since the mobile market expanded in recent years.[11] Many third-party tools and open-source softwares, such as Spring framework, take place.[7] Online resources such as plugins and existing web structures and plentiful discussions are also helpful for building such software. What's more, a web application can be easily converted into a desktop executable, which can run on multiple platforms even without a browser.

Disadvantages: The web was taught in the previous semester, and only basic knowledge of it is mentioned. The communication between the front end and back end may lead to relatively lower efficiency compared to a pure programming language like Java.[14]

C#

Using C#, developers can create secure and robust software that runs in the .NET ecosystem. It is an object-oriented language that is introduced by Microsoft.[4]

Advantages: The syntax is elegant and expressive. [4] As a commercial product, C# is well supported by Microsoft, there are plenty of relevant tools and a fully supported online community built by Microsoft. Therefore, learning resources would be sufficient, and troubleshooting might be easy with other developers' help. Graphics programming is also well supported in C#.

Disadvantage: C# is a product of Microsoft and can only work on Windows. Team 10 has not learnt anything related yet. It would be a brand-new field, exploring it could take much time.

4. Development Tools

Two development software will be analyzed below with both advantages and disadvantages.

Eclipse

Eclipse was originally developed by IBM as the next generation IDE development environment to replace commercial software visual age for Java. It was contributed to the

2.2. Literature Review

9

open-source community in November 2001. It was managed by the Eclipse Foundation, a non-profit software supplier alliance.[3]

Advantage: Eclipse is a light-weighted IDE, which takes less storage than IntelliJ IDEA.

Disadvantage: It has incompatibility issues between versions, especially for plug-ins. As for JDK, when a new version of JDK launches, eclipse generally lags for a long time before a new version supports the new JDK.

IntelliJ IDEA

IntelliJ IDEA is a product of JetBrains. It is an integrated environment for Java programming language development. It mainly supports intelligent code assistant, code automatic prompt, refactoring, Java EE support, various versions of tools (GIT, SVN), JUnit, CVS integration, code analysis, innovative GUI design.[5]

Advantage: It is equipped with strong integration capabilities such as git, maven, spring, etc. As for the prompt function, it is fast and convenient, and the scope of it is relatively broad. Besides, it allows users to simplify operations by shortcut keys and useful templates. The precise search feature is also preferred.

Disadvantage: There is a lack of plug-in development. Only one project is supported at the same page, which brings some inconvenience to the development, especially for the programmers who like to build a test process to test some methods during development. It requires much storage and memory compared to Eclipse.

2.2.2 Existing Similar Software Analysis

For existing similar software analysis, some software with similar features has been used by teammates, here is the feedback.

1. VisualGo

Main Feature

VisualGo is an online tool that can show visualizing data structures and algorithms through animation. [8] In the sorting algorithm module, it provides animations, which shows how the disordered elements will be sorted using different sorting algorithms. After selecting random numbers for sorting, users can observe the sorting process and read the explanation using pseudo code at each step.

Advantage and Disadvantage Analysis

The advantage is that each sorting process could display by the animation. During the process, the explanation is showed at the bottom. Additionally, it gives the language preference option, which means learners from different countries can use it. However, this explanation is for users who learned the programming language before, but it is not suitable for someone who has no programming language experience. Additionally, the software lacks interaction with users because users can only observe the process but cannot have a chance to sort by themselves. Therefore, the knowledge could be difficult to absorb by users.

Figure 2.1: VISUALGO sorting module

2. Scratch

Main Feature

Scratch[6] is a graphical programming tool developed by MIT's lifelong kindergarten

team. It is mainly open to teenagers. The interface design mainly includes three parts: toolbar, operation platform, and output platform. In the operation platform, Users can create their program by dragging blocks. Each block contains a piece of pseudo-code that can make up for a completed algorithm.

Advantage and Disadvantage Analysis

Under such a graphical programming environment, knowledge can be easy to learn. Children are happy to see the teaching combining with graphics. Additionally, interaction with users might strengthen because designers try to mix games and training. However, the guide needs to be obvious, which can refer to two issues. One is that the toolbar contains a series of blocks for choosing, but the guide of how each tool works is not provided amply. Meanwhile, creating an algorithm needs exploration, but it is a little hard without some tips. Probably adding some suggestions can be easy for promotion.

Figure 2.2: Scratch

3. Algorithm Visualizer

Main Feature

Algorithm Visualizer[2] is a web-based software developed by Jason Park with his team. This software can be easily accessed through any modern web browser with the URL. Besides, it is an open-source project, and its source code is available on GitHub.

Advantage and Disadvantage Analysis

The first image of this software is a modern design in dark mode. However, this kind of appearance is normally programmer oriented and may not be friendly to newcomers. The main page is formed by four parts, algorithm menu, animation stage, console, and a code text editor. The structure of this software is clear, but no tutorial is provided the first time to enter this page. No tutorial may lead to confusion of newcomers.

As for the algorithm menu, common algorithms are classified by their principles and almost all the common sorting algorithms are supported in this software. A search bar also enables users to search for a specific algorithm they want to visualize. The animation stage will display the sorting process with bars with different colors and the animation play speed can be controlled through buttons and a progress bar. The console will print all the information during the running process as a recording tool. The code part is well designed with syntax highlight and the statement which is under processing will be highlighted for the convenience of tracking. Moreover, this software provides several programming languages for the code part. Users can switch programming language by simply click a button at the top left corner. A point that is always be ignored is the ability to receive feedback. This software provides the contact information of the team and is open for feedback. However, this software does not support languages other than English, which may hinder users who speak in English.

In the repository of this project, each algorithm is well explained, while no relevant information is shown on the web page. This could be a drawback for someone who wants to know more detail about a specific algorithm.

Figure 2.3: Algorithm Visualizer

4. WeChat MiniProgram

Main Feature

WeChat MiniProgram[9] can be accessed by scanning a QR code using WeChat. Since it is based on WeChat, it supports mobile devices well and no installation is required. As a light-weighted software, it only supports six basic sorting algorithms with a default input array of numbers. This software consists of a code part on the left and an animation part on the right. As for the left code part, it only supports code in JavaScript. For the animation part, a simple description of the current sorting algorithm is shown beneath the bars. Buttons are located at the top of the software. Choosing algorithms feature is hidden under the hamburger button in blue. The green play button will trigger the animation and the red one will reset the process.

Advantage and Disadvantage Analysis

Although this software contains limited features, they are all basic and practical. This also makes this software concise and easy to use. However, only providing real programming language is not friendly for newcomers. No English support would be another problem for users.

Figure 2.4: WeChat MiniProgram

5. Algorithms Explained and Animated

Main Feature

Algorithms Explained and Animated[1] supports performance with iOS, so only iPhone and iPad can download and use this app. On the other hand, this provides the mobility of the learning process. In other words, users can learn or check algorithms anywhere and anytime without a computer.

Advantage and Disadvantage Analysis

The structure of this app can be acceptable for newcomers. There are two parts specifically for two purposes. The one with the sorting algorithm name on it is for study purpose, i.e. the software introduces how a specific sorting algorithm works by both animation of bars sorting process and description below. Users cannot shuffle bars of numbers since it is a predefined animation. The other part is called simulate, which allows users to shuffle bars of number with three strategies and watch the animation either step by step or automatically. Moreover, a balance is under two bars being compared, which is straightforward for users to understand comparing strategies of different sorting algorithms. There are also both limitations and advantages in terms of mobility. Due to the limited

display size of mobile devices, this app does not support any programming language.

Users cannot set an array of integers on their own. However, language support is appro-

priate for this app. The language this app uses alters following the iOS system language,

but users cannot switch language directly in the app.

Figure 2.5: Algorithms Explained and Animated

Chapter 3

Software Requirements Engineering

Software requirements engineering is a process of how the team gain proper and reasonable requirements from stakeholders. It is the foundation of this project[15]. Requirements should be precise and complete for team to develop further steps based on them. It consists of requirements elicitation, requirements specification and requirements validation. Main stakeholders of this software have been confirmed as year 1 computer science students and beginners in learning programming. Other stakeholders are advanced learners who are interested in algorithm correctness and algorithms teachers. To gain requirements from them, focus group, a survey, and an interview to algorithm teacher have been accomplished. Brief reports are presented in requirements elicitation part. After analyzing and collating data gained from last stage, specific requirements and system specification have been confirmed. Requirements specification will include this. Then, in requirements validation part, user story is produced to further enhance the team's understanding of requirements.

3.1 Requirements Elicitation

Much of business or technical requirements resides in the minds of stakeholders, in feed-back that has yet to be obtained from end users, and from a study of flowcharts and surveys that have yet to be created.[10] Therefore, requirements must be elicited and the methodology used must be logical and meticulous. Team 10 used three professional

approaches to gather user requirements, focus group, survey, and interview. The results of requirements elicitation are detailed demonstrated in this section.

3.1.1 Focus Group

Using focus groups allows team 10 to develop a product that meet customer requirements. It helps team 10 to stay on top of understanding the customer perspective. Participant background, brief meeting process and discussion results are as follows. The full Focus Group Report which includes focus group process introduction and more detailed information is in appendix A.

Participant Background

Computer science students of Year 1, year 2 and year 3 were invited to the focus group meetings respectively. To guarantee the objectivity of the outcomes of the discussion, the meetings were carefully arranged that participants in the same group were unfamiliar with each other and team member.

Discussions

This part is divided into three sections according to the grade of participants.

Year 1 group

Due to year 1 participants' lack of relevant background knowledge, the discussion results of this focus group are less than expected, but there are still some valuable advice.

1. Pseudo-code game

Participants mentioned that writing pseudo-code was hard for beginners, a game such as dragging pseudo-code blocks may help them to learn the ideas of writing sorting algorithms.

2. Time complexity

Participants suggested that the software can provide a time complexity comparison of different sorting algorithms. This idea is presented in the requirements.

Year 2 group

Year 2 students' discussion was out of our expectation. Many innovative ideas were raised in this focus group.

1. Fun and game likely VS functionality

Participants showed a strong preference for functional software compared to the game likely one. They would like the software to have a single purpose, without those distracting things. This result helped the team decide the requirements.

2. Method of selecting modules

Two methods of selecting modules were introduced to participants. The first method was that users could not access the next sorting algorithm's learning module unless they finished the one before. The other one was free choosing. Participants preferred to choose an algorithm module freely instead of "unlocking" the next module by finishing the current one. This result overturned team members' initial idea, and the first method is abandoned.

3. Displaying code

Participants thought pseudo-code is enough for learning since it gives a logical idea of sorting algorithms. Besides, pseudo-code is more friendly to beginners. Source code can also be presented, they claimed, and for language, C, Java and Python are preferred.

4. Progress bar

After presenting and explaining our preliminary prototype, participants showed great interest in the progress bar we designed. They thought that a display of where they were in the learning program was clear. Besides, they suggested us to design history and reset features.

5. Platform preference

Following options were provided to participates: PC, mobile app, WeChat mini program and website. The result is that the PC was more popular than others. Participants also proposed that PC would be a more suitable platform for notes' quick export function.

Besides, participants also responded positively to the following functions:

- a. Multiple language support.
- b. Quick export of brief notes, i.e., a file includes an introduction and important points of a sorting algorithm.
- c. Show efficiency and time complexity of algorithms.
- d. Apply breakpoints.
- e. A user guide to give users a quick look at how to use this software was highly recognized by participants.
- f. Exercises.

Year 3 group

Year 3 students' discussion focuses more on correctness.

1. Difficulties in learning correctness

Participants explained that they did not expect that correctness would have a connection to mathematics and predicate logic. It would be helpful to provide math related information. They hoped to see animations with logical explanations and sufficient examples.

2. How to help understand correctness

Participants suggested that a hierarchical learning method by introducing concepts step by step would help. For instance, concepts of termination and correct output can be illustrated respectively. In addition to normal examples, counter ones shall be provided for better understanding. 3. How to make learning interesting

One of the participants raised a proposal that the software could be a listener who listens to and records the user's own explanations of algorithms. Users can review their previous ideas by replaying these recordings.

Result

Focus groups help to acquire users' feedback about the product being built. Many requirements related problems were confirmed. It also helps confirm the validity of questionnaire.

3.1.2 Survey

The software we plan to design is oriented to students who want to learn sorting algorithms. However, details of learning method that students prefer remain unknown. Questionnaire is an efficient tool to collect both ideas and suggestions from target users. To gather requirements for the project, Team 10 released a questionnaire with eleven multiple choice questions and one open question. The questionnaire remained open for seven days. The full questionnaire report which includes data, analysis, and more detailed information is in appendix B.

Objective

- 1. Understand how well users know about sorting algorithms and their learning habits.
- 2. Gather requirements from target users.
- 3. Ask for suggestions for the functions we plan to design.

Time

From November 10th to November 17th.

Respondent

Students from the University of Nottingham, Ningbo, China.

Questionnaire

Please refer to the appendix C.

Result and suggestion

The participants in this survey are students from the University of Nottingham, Ningbo, China. Among them, 55% are from year 1, 11% are from year 2, 29% are from year 3, and 5% are year 4 students. The proportion of males and females is relatively equal. About 75% of the participants have varying degrees of understanding of sorting algorithms, while some know nothing about sorting algorithms.

To summarize the survey result, some important points drawn from this questionnaire are as follows:

- 1. It is suggested to provide a basic conceptual introduction and outline of algorithms for users who do not have any knowledge of algorithms.
- 2. Compared with the entertainment functions, participants preferred practical ones. It is suggested to reduce game mechanics and focus on developing functions that are more helpful for learning algorithms.
- 3. Some participants proposed that providing a function, which can share and discuss their thoughts with others, like forum, may help learning.
- 4. To ensure users with different levels of algorithmic bases can all gain knowledge from this software, it is suggested to provide hierarchical teaching functions.
- 5. For those who have examination requirements, offering more practice questions will attract them to use this software.
- 6. Many participants mentioned that they preferred clean and delightful interfaces. Therefore, GUI design is one thing that needs to consider.

3.1.3 Interview

To bring Team 10 a different view of visualising sorting algorithms in teaching perspective, rather than learner's view, an interview was appointed with the lecturer teaching "Introduction to Algorithms" course in Year 1 (Y1 for short). We tried to gain infor-

mation about how Y1 students learn sorting algorithms and teacher's ideas of how they design the course and why they do so.

Module

Introduction to Algorithms teaches Y1 students algorithms through functional programming, that is, everything in recursion and no loops provided. The lecturer shows us the slides he used for teaching, which is mainly about recursion. To help student understand the process, trace, which would show changes after each step is done, is taking a main part of the slides. The lecturer also stressed that most of the students don't ask questions to him.

Existing Similar Products

Having been showed some existing products regarding to sorting algorithms and used them for a while, the lecturer points out that pseudo-code is not suitable for Y1 students. Instead, detailed explanation, like what, why and how, is expected in such a software. We should also notice that users shall be able to decide the list length. We need to provide different shuffle scheme instead of only randomise the array.

Hierarchy

The lecturer thinks bubble sort is basic. Insert and merge sort are basic as well but should be introduced later.

Platform

The lecturer prefers Windows.

Other

The lecturer would be happy to use our software for teaching sorting algorithms, and he thought animation is suitable for displaying sorting algorithms.

3.2 Requirements Specification

This section describes the requirements and specifications of the software. We hope specifying the requirements can better help to build software for users to understand the principle of sorting algorithms and prove their correctness. The first part is an overall description of the user requirements of both functional and non-functional. The second part outlines functional system specifications and related non-functional specifications of the software. The final part demonstrates user stories based on system specifications.

3.2.1 User Requirements

Functional Requirements: What a stakeholder needs to be able to do.[24]

- 1. Users want to learn sorting algorithms through the software.
- 2. Users want to watch animations of the process of sorting algorithms.
- 3. Users want to understand and prove the correctness of sorting algorithms.
- 4. Users want the software to support multiple languages

Non-functional Requirements: Constraints on what a stakeholder needs to be able to do.[24] The software can only animate bubble sort, selection sort, insertion sort, merge sort, quick sort, heap sort.

3.2.2 System Specifications

Functional Specification: What the software must do to meet the user requirements.[24] The list is divided into two parts: core features and optional features. Core features are essential to the operation of the software and optional features are additional functionality.

A. Core Features

- 1. Hierarchical learning feature
- a. A user shall be able to choose a difficulty level according to individual mastery level of algorithms.

- 2. Sorting animation related features
- a. A user shall be able to select a type of sorting algorithm.
- b. A user shall be able to view the animation, which shows the sorting algorithm process.
- c. A user shall be able to view explanations of each step of sorting algorithms.
- d. A user shall be able to start from different time frames of an animation.
- e. A user shall be able to customize the array of numbers to be animated
- f. A user shall be able to ask the software to randomly generate input.
- 3. Correctness related features
- a. A user shall be able to test an algorithm through several sets of legal inputs to see if it can work correctly.
- b. A user shall be able to see explanations of sorting algorithms' correctness.
- c. A user shall be able to choose from several sets of illegal inputs.
- d. A user shall be able to test an algorithm which cannot work out the sorting job.
- e. A user shall be able to view explanations of why a sorting job of a sorting algorithm fails.
- 4. Open source
- a. A user shall be able to access the source code of this software.

B. Additional Features

- 1. A user shall be able to view a user guide of software operations.
- 2. A user shall be able to follow a guide of basic algorithms.
- 3. A user shall be able to download learning notes provided by the software.
- 4. A user shall be able to view history of the latest learned sorting algorithms.
- 5. A user shall be able to compare different sorting algorithms' time complexity.
- 6. A user shall be able to view individual learning progress.
- 7. A user shall be able to do after-class exercises.
- 8. A user shall be able to practice by sorting an array of numbers manually.
- 9. A user shall be able to create breakpoints to see outputs at that specific point.

- 10. A user shall be able to share the information of the software.
- 11. A user shall be able to view the pseudo-code of sorting algorithms.
- 12. A user shall be able to view the programming code of sorting algorithms.
- 13. A user shall be able to write feedbacks to developers.
- 14. A user shall be able to switch languages.

Non-functional Specifications:

Constraints on what the software must do to meet the user requirements.[24]

- 1. Interoperability
- a. The software can only run on Windows system.
- 2. Usability
- a. The software can only support English and Chinese.
- b. The software can only provide programming code in C, Python, and Java language.
- 3. Capability
- a. The hardware requirements for basic performance is 2GB RAM and 200MB storage.

3.2.3 User Story

Using the user story is transparent for monitoring what users want the software to be. The role, the goal, and the motivation have been specified in the text to represent each requirement.

A. Stories about Core Features

1. As a year one student majored in computer science, I want to learn sorting algorithms with animation so that I could see the sorting process intuitively.

- 2. As a year two student majored in computer science, I want to learn as many kinds of sorting algorithms as possible so that I could use different algorithms for different requirements.
- 3. As a year three student majored in computer science, I want to know how to prove the correctness of sorting algorithms so that I can get a high mark in my ACE module.
- 4. As a lecturer teaching the sorting algorithm, I want to show students the sorting process step by step so that my student can understand the algorithms easily.
- 5. As a student without any foundation in sorting algorithms, I want to begin with the basic concept so that I can reduce learning difficulty.
- 6. As an explorer of sorting algorithms, I want to enter numbers by myself and let the software help me sort them so that I can know how to deal with exceptional cases, such as lots of the same numbers.
- 7. As a student who has no experience in using additional software, I want to watch a novice operation guidance so that I can quickly start to use the software.
- 8. As a year one student majored in computer science, I want to export a learning note for each algorithm so that I can review them conveniently.
- 9. As a student who is struggling in the coursework, I want to know how to implement the algorithms with a specific programming language, like C, JAVA, Python, so that I can use them for reference.

B. Stories about Additional Features

- 1. As a year three student majored in computer science, I want to compare time complexity between different sorting algorithms so that I can know which algorithm is more efficient.
- 2. As a student who is preparing for the algorithm examination, I want to do more exercise about sorting algorithms so that I can pass the exam more easily.
- 3. As a business school student who is interested in sorting algorithms, I want the system to display and record my learning progress so that I can schedule my fragmented time to learn.
- 4. As a year two student majored in computer science, I want to see the visualization of each line of code so that I can fully understand the code.
- 5. As a leader of a study group, I want to share this software with my teammates so that we can learn together.
- 6. As a student who is not good at English, I want to change the software to the Chinese version so that I can study efficiently.

3.3 Requirements Validation

Chapter 4

Design

To design this software, its basic usage and appearance should be confirmed first to help next stage's implementation. UMLs and low-fidelity prototype are helpful in establishing this part. Team 10 has drawn use case diagram and sequence diagram.

4.1 Use Case Diagram

The use case diagram displays what a user can basically do with the software. This diagram is drawn based on the requirements gathered and to confirm the requirements with stakeholders.

User can choose to learn different types of sorting algorithm.

Figure 4.1: Use case Diagram

Description:

1. View user guide of the software:

The user guide will introduce functions of each component of the software, such as buttons and control bars. Description of different modules will be described as well.

2. Share information about the software:

Information such as a link to the source code and contact info will be provided for sharing.

3. Feedback to developers:

Developers' email addresses will be provided.

4. Downloading the learning note:

The note is gathered and edited by developers and can be downloaded as images for learning offline.

5. Animation:

The software provides animation for each sorting algorithm. It will show the sorting process of its corresponding sorting algorithm. Users can adjust the animation to their requirements (Pause, step forward/backwards). Besides, users can modify the component of animation by changing the default input array. Users can choose to set the input array in two ways: select randomly or in decreasing order by the software or set it manually.

6. Exercise:

After learning, users can practice by doing exercises. There are two types of exercise, multiple-choice questions and pseudo-code exercises.

For the pseudo-code exercises, users can deepen their understanding of sorting algorithms by writing their code. To do this, users need to drag the pseudo-code block provided by the software, then splicing the blocks. The software will check whether the blocks are in the correct order and tell users the result.

4.2 Sequence Diagram

This software provides user the most flexibility and the freedom of choice, so four small sequence diagrams are presented to show some beginning steps of each function part, instead of one diagram for the whole process.

Get in

Figure 4.2: Get in

Description:

Figure 4.2 shows the process when user open the software. According to user's answer, customized page will be presented.

Animation

Figure 4.3: Animation

Description:

Figure 4.3 shows the process when user enter "animation" page, and how they can use this function. After choosing a sorting algorithm, a simple front page will be presented with the algorithm's brief introduction, then software will play the preset animation. After that, user can go to the "customized page", where user can type in inputs they want.

Efficiency

Figure 4.4: Efficiency

Description:

Figure 4.4 shows the process when user enter "efficiency" page, and how they can use this function. User should first select one or more sorting algorithms they want to learn and compare. According to user's selection, different interfaces will be presented. "Efficiency page" means an introduction page of this algorithm's efficiency. "Animation page" refers to one algorithm's sorting animation. All selected algorithms' animation page will be presented in the same stage, and they will start at same time and play with same speed.

Correctness

Figure 4.5: Correctness

Description:

Figure 4.5 shows the process when user enter "correctness" page, and how they can use this function. After choosing a sorting algorithm, "animation page" will be presented. User can choose inputs set from pre-defined legal and illegal inputs. Then the software will play the animation of selected inputs.

4.3 Low-Fidelity Prototype

The following pictures display a low-fidelity prototype after preliminary design. Pictures were drawn on an iPad.

Level Choosing Page

Figure 4.6: Low-Fidelity Prototype-Level Choosing Page

Description:

Figure 4.6 displays the level choosing page. The software will jump to the corresponding tutorial according to the user's different choice.

Main Page

Figure 4.7: Low-Fidelity Prototype-Main Page

Description:

Figure 4.7 is the Main Page of the software. Users can view different content by clicking buttons in the menu, which is at the left side of this page. The right side in this figure shows the 'Algorithm' module. Each rectangle presents a type of sorting algorithm. When a rectangle is clicked, the page in following will be displayed.

Algorithm Study Page

Figure 4.8: Low-Fidelity Prototype-Algorithm Study Page

Description:

Figure 4.8 is the Algorithm study page. The name of each sorting algorithm will be displayed in the title position. This page will play the animation of the corresponding sorting algorithm.

Chapter 5

Implementation

In this chapter, implementations that have done by the team will be presented. Basically, team 10 has produced a high-fidelity prototype. Further, decisions of technical research have been made. Results and analysis are presented as follows.

5.1 High-Fidelity Prototype

5.2 Platform

5.2.1 Platform Decision

Among 4 frequently-used platforms, PC (macOS/Windows), mobile terminals (iOS or Android), web and WeChat Mini Program, team 10 has made a choice. After analysing each platform's advantages and disadvantages, WeChat Mini Program and mobile terminal were excluded from the list due to the small size of their adaptive devices. The web is also not considered. Using cookies may lead to serious privacy problem, while it is necessary if the software is built as a web. Besides, according to the questionnaire result, PC is more welcomed among students, our stakeholders. After taking into account both the functionality of these platforms and stakeholders' opinions, the PC platform is chosen. Another potential user group is a teacher at the University of Nottingham Ningbo, China. Besides, computers in this school all use Windows system. Therefore, the

platform is temporarily decided to be Windows.

5.3 Programming language and software framework

5.3.1 Front-end

The project focuses on the animation, which requires a strong front-end tool. Although AWT, Swing and JavaFX can work with Java to provide a user interface, the restriction on UI design and functionalities make it less attractive. Lack of resources and support community will also make the process harder. In comparison, HTML5 and CSS work well for designing UI freely. Besides, they are fully compatible with a back-end programming language such as JavaScript and Java. Existing learning resources are sufficient on the Internet as well. Moreover, it splits front and back ends, which further specifies the division of labour of the team and improve efficiency. Therefore, the team would choose HTML and CSS as the front-end languages for the development of UI.

5.3.2 Back-end

In the technical research chapter of the report, three programming languages are analysed. The project will contain several classes and objects for handling events and businesses which supports the service behind those events. JavaScript is supported well by most of the modern browsers and can cooperate smoothly with HTML and CSS. Whereas JavaScript is not strictly object-oriented, which makes it hard to write code of business part. C# is a commercial product supported by Microsoft; it is fully functional and has many resources to referrer to. However, supporting Windows platform only makes this language less attractive. Java, as a Java Virtual Machine based language, can be parsed and run on multiple platforms efficiently. It is also powerful in explaining animations and reacting to user actions. Being an object-oriented language also makes it easy to handle different events of objects. Therefore, the primary decision of the programming language of the back end would be Java.

5.4 Development Tools

5.4.1 Integrated Development Environment

After technical research of IntelliJ IDEA and Eclipse, IntelliJ IDEA is selected as the ultimate development tool of this project. The main reasons are as follows.

IntelliJ IDEA does well in project management, such as convenient git project management. This project chooses to use GitHub for version control. IntelliJ IDEA has comprehensive and fast support for GIT. IntelliJ IDEA has classified but more transparent settings directory. The IDE configuration can be found in settings, and the project configuration is also in project settings. The few directories that are layered are very clear. Moreover, IntelliJ IDEA supports automatic code generation and ZenCoding. Although Eclipse also supports these, IntelliJ IDEA is more intelligence. Writing HTML would be convenient. IntelliJ IDEA also better supports for JS, CSS and plug-ins than Eclipse. Since this project is a Jave Web project, team 10 would select IntelliJ IDEA.

5.4.2 Build Project

Gradle is used for building the software. There are two reasons for this decision. One is the usability of Gradle. Because Gradle is a software project management and comprehension tool. It can manage a project's build on any platform, also deliver software automatically and quickly from end to end based on its rich API and mature ecosystem. The other reason is that teammates used it before, which means teammates could finish the task more quickly.

5.5 Management Tools

5.5.1 Software Development Methodology

Since it is a small development team, and customer involvement is needed, the Agile project management approach will be used to embrace changes to requirements, delivers and frequent releases.

Specifically, Scrum will be used to utilise backlogs as a formal "to-do list" which contains a set of tasks to trace the work. During the development process, Sprints will be planned based on the backlogs which are made during the meeting. Informal meetings and daily stand-ups will be held to make sure the efficiency of the team.

5.5.2 Version Control and Team Management

As for code quality, we plan to utilise systematic methods to guarantee it during the whole process. The thing would be confirmed at the very beginning is a coding convention, including comment, naming, indentation, and changelog.

Git will be used as a version control tool and Github will be the platform. In detail, the software will be developed using a test-driven development approach, and pair programming is deployed to avoid basic mistakes. As for management tools, the team is managed by several useful GitHub features such as "Project". Issues with labels are used to raise questions, distribute tasks, alert bugs, show what is to-do, Doing and Done. Kanban is a clear and visible feature for managing tasks showing the whole process at the same time. Milestones will also be used for making stage-based objectives with due time, to improve productivity.

Figure 5.1: Kanban

Figure 5.2: Issue sheet

Chapter 6

Problem Encountered and Risk

Management

As a team, conflicts cannot be avoided during teamwork. To effectively solve these problems, team 10 has done risk management before the project started. This chapter also includes problems that team 10 has already encountered.

6.1 Problem Encountered

This section demonstrates some problems that team 10 encountered and. The causes of problems and solutions are also included.

6.1.1 Technical

1. Requirements collection

In the beginning, there was no stakeholder except the supervisor in this project. Moreover, there were only a few basic requirements provided. Therefore, how to collect requirements was the first problem should be encountered. After discussion, teammates decided the target users of the software firstly and then agreed with the supervisor. Further, survey and focus group approaches were used to obtain requirements from the target users. The results of both methods were quite useful and helped to deal with the problem, which was the lack of requirements.

2. Software engineering method choice

For teammates who are inexperienced in software engineering, it is not easy to decide which software engineering method to use, traditional or agile. Firstly, we reviewed the related lectures of the Software Engineering module and listed the advantages and disadvantages of both methods. Also, we referred to the advice of the supervisor. Finally, we decided to combine two methods to develop this software. The traditional development method was used to detailly record the requirement documents, while the agile development method would be used in the design and development stages.

3. Technical research

For the technical research of development platform, development language, we did not know the detailed research direction and content. That perhaps is because nobody has relevant experience in this team. Therefore, we referred the suggestion of supervisor. Further, we analyzed the report rubric and discussed carefully to determine the general direction.

4. Grammar problem

The supervisor pointed out that there were several grammar errors in the documentation files. Because all members of this team are Chinese, there is indeed some difficulty in writing formal reports in English. To deal with this problem, we decided to double-check all documentation and pay more attention to vocabulary usage and grammar errors when writing reports.

6.1.2 Managerial

1. Document management

For this one-year project, there are quite a lot of files need to be stored. Further, it is necessary that all members need to be able to check all files at any time. In the beginning, we sent files to the WeChat group. However, because of the massive amounts of messages,

members always missed the essential files. Therefore, we decided to use GitHub repo to store all files.

2. Team management

Different members are responsible for different work in this project. However, it is difficult for members with cooperation to keep track of the progress of each other. To solve that problem, we decided to use the Kanban function in GitHub. At the same time, we assign issues in GitHub to ensure that each member can know about their tasks.

3. Time management

a. Formal meeting time longer than 30min

The supervisor emphasized that each formal meeting must be controlled within 30 minutes. However, sometimes we may have lots of content which are expected to discuss with the supervisor, which led to the meeting longer than 30 minutes. To solve this problem, one member pays attention to the time in each formal meeting. This member will remind everyone when necessary. Further, we carefully choose the more important content to discuss in the formal meetings.

b. The overall schedule

Compared to other groups, our overall progress seems a bit slow. That reason may be that we need to do more work to collect user requirements. Some members have raised concerns about whether we could finish the project on time. Then, we showed the module convenor the timeline and asked him if it was a reasonable arrangement to schedule time. The result is that he reminded us to focus on ourselves because it is meaningless to compare with different groups. We should follow our timeline.

6.1.3 Interpersonal

1. Disagreement about the prototype

A severe disagreement occurred during the prototype design stage. Different members had different opinions about the process of learning sorting algorithms. This kind of situation is not a surprise, and we predicted it in the risk management section. To deal with this problem, all the members must keep calm. Then, we decide to finish the sequence diagram together, and the disagreement above solved finally.

2. The chairperson and secretary assignment

Since the chairperson of each meeting needs to prepare in advance, while the secretary is responsible for meeting minutes and assigning tasks. It is not reasonable for the same person to do the work in every meeting. Therefore, we decided to take turns to be the chairperson and secretary of each meeting to make sure that everyone had a relatively equal workload.

6.2 Risk Management

This section shows the possible problems team 10 may encounter in this project and expected solutions.

Risk←	Description←
Team member turnover.←	A Team member leaves before project ends. 4
Disagreement among members.←	There is disagreement among the group.←
Requirement Changes.←	Requirement changes due to issues.←
Process is slower than plan.←	The task is too large to complete in the
	scheduled time.←
No experience in developing the required	A Team member does not have experience
tools.↩	with tools or language that the project
	requires.←
Submit documents over deadline.←	Missing documents or submitting documents
	lately due to personal mistakes←

Figure 6.1: Risk Management

Chapter 7

Timeline

Figure 7.1: Timeline

Description:

The timeline of the project is illustrated in a Gantt chart. The Gantt chart is made with Microsoft Excel. By typing in the start period and duration, the chart will show the bar of corresponding length automatically. The bars coloured with different colours denote different status. Team 10 utilises this tool to trace the current stage of the plan.

The plan is basically divided into six stages, research, design, implementation, reports, testing and evaluation. Except for reports stage, each of the stages is depended on the previous one. These stages are also presented in the Git project as milestones.

Bibliography

- [1] Algorithm explained and animated. https://apps.apple.com/us/app/algorithms-explained-animated/id1047532631.
- [2] Algorithm visualizer. https://algorithm-visualizer.org.
- [3] Eclipse foundation. https://www.eclipse.org/eclipseide.
- [4] Introduction to the c language and .net. https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/.
- [5] Jetbrains. https://www.jetbrains.com/idea/features/features.
- [6] Scratch. https://www.scratch-edu.com.
- [7] Spring framework 5.3.1. https://spring.io/projects/spring-framework.
- [8] Visualgo. https://visualgo.net/en.
- [9] Wechat mini-program. https://mp.weixin.qq.com.
- [10] What is requirements elicitation? https://requirements.com/Content/What-is/what-is-requirements-elicitation1, 2018.
- [11] Ahmad, T. Performance Exploration and Testing of Web-based Software Systems. 2020.
- [12] BAECKER, R., AND PRICE, B. The early history of software visualization Software Visualization. MIT Press, Cambridge, Massachusetts, USA, 1998.

48 BIBLIOGRAPHY

[13] FLEISCHER, R. KUCERA, L. Algorithm animation for teaching. software visualization. Software Visualization 2269 (2002), 113–128.

- [14] Hunt, L. Html5 reference. https://dev.w3.org/html5/html-author/, 2010.
- [15] LAWRENCE, B. Top Risks of Requirements Engineering.
- [16] Mendo, J. C. S. B. T. W. R. A. Online Privacy Concerns Associated with Cookies, Flash Cookies, and Web Beacons.
- [17] NAPS, T. GRISSOM, S. The effective use of quicksort visualizations in the classroom.

 J. Comput. Sci 18, 1 (2002), 88–96.
- [18] Oracle. The java® virtual machine specification: Java se 15 edition. https://docs.oracle.com/javase/specs/jvms/se15/html/index.html, 2020.
- [19] ORACLE. Package java.awt. https://docs.oracle.com/en/java/javase/15/docs/api/java.desktop/javasummary.html, 2020.
- [20] Oracle. Package java.swing. https://docs.oracle.com/en/java/javase/15/docs/api/java.desktop/jsummary.html, 2020.
- [21] RUDDER, A. BERNARD, M. M. S. Teaching programming using visualization. Proceedings of the Sixth IASTED International Conference on Web-Based Education (2007), 487–492.
- [22] Simoňák, S. Using algorithm visualizations in computer science education. centr.eur.j.comp.sci 4 (2014), 183–190.
- [23] Simoňák, S. Algorithm visualizations as a way of increasing the quality in computer science education. *IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI)* (2016), 153–157.
- [24] Sommerville, I. Software Engineering 10th Edition 105-112. Pearson Education Limited, 2016.

BIBLIOGRAPHY 49

[25] Stoffová, L. V. V. Algorithm animations for teaching and learning the main ideas of basic sortings.

- [26] Su, W. Y. F. On application of algorithm visualization in teaching software of algorithm. 2010 International Conference on Electrical and Control Engineering (2010), 2876–2879.
- [27] VÉGH, L., S. V. Algorithm animations for teaching and learning the main ideas of basic sortings. *Informatics in Education* 16, 1 (2017), 121–140.

Appendix A

Full Focus Group Report

Focus Group for Requirement Gathering of Sorting Algorithms Animation Software

Position:

Project Room 07, Library (Year 1 and Year 2); Project Room 14, Library (Year 3)

Time:

November 7, 2020 (Year 1 and Year 2); November 12, 2020 (Year 3)

Introduction

To help prepare the questionnaire and acquire basic requirements in users' aspects, we did a focus group research.

Computer science students from three grades, year 1 to year 3, were invited to our focus group meetings. We held three focus groups respectively. Each focus group had six students. The purpose of the focus groups was to receive feedback for our questionnaire and get inspiration for some new ideas about our software.

Brief participants information and an overview of those focus groups are presented in the following. Meeting process and discussion results will be included.

Participants Background

As mentioned above, there are three focus groups divided by participants' grades (from year 1 to year 3). It is ensured that participants in the same group were unfamiliar with each other. Also, they did not know our team members which guarantees the objectivity of the outcome of the discussion. Year 3 group participants are equipped with basic correctness knowledge. All participants knew the purpose of the focus group and volunteered to attend.

All participants had signed relevant information documents at the beginning of the whole process.

Process

In the beginning, we introduced participants our software's purpose and basic functions at a theoretical level. Then, for participants' further understanding of our product, we presented some similar existing software and prototypes and showed functions which we may also include. After giving them a general idea of our software, here comes to the free discussion part, the discussion based on some questions we prepared in advance.

Discussions

Year 1 group

Due to year 1 participants' lack of relevant background knowledge, the discussion results of this focus group are less than expected, but there are still some valuable advice.

Pseudo-code game

Participants mentioned that writing pseudo-code was hard for beginners, a game such as dragging pseudo-code blocks may help them to learn the ideas of writing sorting algorithms.

Time complexity

Participants suggested that the software can provide a time complexity comparison of different sorting algorithms. This idea is presented in the requirements.

Year 2 group

Year 2 students' discussion was out of our expectation. Many innovative and creative ideas were raised in this focus group.

User guide

We planned to have a user guide to give users a quick look at how to use this software, explaining each the usage of buttons. When talked about this feature, participants quickly responded that the user guide is necessary. One participant added that user guide should not contain too much text, or users may not want to read them.

Fun and game likely VS functionality

When asked which type of software they would like to use, more interesting or more functionality, participants showed a strong preference for functional software. They would like the software to have a single purpose, without those distracting things.

Method of selecting modules

We introduced two methods of selecting modules to participants. The first method was that users cannot access the next sorting algorithm's learning module unless they finished the one before. The order of modules is designed by us, from easy to difficult. The other method was free choosing. It seems that participants would like to freely choose an algorithm module instead of "unlocking" the next module by finishing the current one.

Displaying code

We asked participants' attitude about pseudo-code and source code. Their responses were helpful. They thought pseudo-code is enough since it gives a logical idea of sorting algorithms. Besides, pseudo-code is more friendly to beginners, which is our target user group. Source code can be presented, they claimed, and for language, C, Java and Python are preferred.

Multiple language support

When asked if the multi-language function would be helpful, the participants responded positively. They indicated that there might be some Y1 students who are not that good at English, a teaching software which only uses English may decrease its educational effectiveness.

Quick export of brief notes

Students responded positively to the idea of exporting a brief note. They thought this function is useful, but not that essential.

Platform preference

The participants were asked which platform they prefer. Following options were provided: PC, mobile app, WeChat mini program and website. The result is that the PC was more popular than others. Participants also said that PC would be a more suitable platform for notes' quick export function. Participants showed great interest in a mobile app at first for its portability, but they overturned this idea in a short time since they realized that a mobile screen is too small to see the animation model.

Additional ideas

Showing algorithms' complexity

One participant suggested that we could add a function showing each sorting algorithm's efficiency, i.e. its time complexity.

Breakpoints

Participants mentioned that using breakpoints in pseudo-code or example code might be helpful for understanding code. With breakpoints, user can skip those code they already understand and quicken the learning process.

Using sound

One of the participants showed us a video – many blocks with specific sound were sorted after sorting algorithm and made a fluency sound. He also recommended us to use sound to help make the learning process easier for users. He reckoned this way of presenting is quite perceptual.

Modules division

One request was raised by our participants that is adding an exercise module. For the exercise module, it could contain some exercises like some multiple-choice. They also described software in their mind: there were two modules, one for learning and one for practice. The former part is just sorting algorithm's animation, like what we designed. The latter part is consolidation and practice.

Progress bar

After presenting and explaining our preliminary prototype, participants showed great interest in the progress bar we designed. They thought that a display of where they were in the program would be helpful. Besides, they suggested us to design history and reset function.

Year 3 group

Year 3 students' discussion focuses more on correctness and provides other suggestions as well.

Difficult parts of learning sorting algorithms

Our participants were confused about the recursive steps of some sorting algorithms. Loops were also difficult to understand. One of the solutions is that demonstrate each step. Participants all agreed that animation would be an intuitive way of understanding the sorting process.

Problems in learning correctness

Correctness is hard to understand at the beginning. Participants explained that they did not expect that correctness would have a connection to mathematics and predicate logic. They hoped us to show animations of correctness logically and provide sufficient examples. However, it is difficult for year one students to understand predicate logic.

Way to understand correctness easier

Participants suggested that providing stages letting users get used to the concept step by step would help. For example, termination and correct output for any legal input are two fundamental ideas of correctness. These two steps can be animated separately to illustrate fundamental ideas. One of the participants raised an idea that was using truth table to show the mapping relationship between outputs and legal inputs. Moreover, people can understand a concept easier by counterexample of incorrect algorithms.

How to make it interesting

The last topic was a module that allows users to build algorithms by dragging pseudo-code blocks provided, and the software will generate corresponding code later. One of the participants suggested that using cute and unexpected

things to attract users. He suggested that an animated yellow duck character can be displayed at a corner of the software to denote whether the pseudocode users build is correct. If it is incorrect, the duck will die. This duck can also be used as a listener to record users' understanding of algorithms when users explain their code to it.

Appendix B

Full Questionnaire Report

Questionnaire report

Motivation

The software we plan to design is oriented to students who want to learn sorting algorithms. However, details of learning method that students prefer remain unknown. Questionnaire is an efficient tool to collect both ideas and suggestions from target users. To gather requirements for the project, team 10 released a questionnaire with eleven multiple choice questions and one open question. The questionnaire remained open for seven days.

Objective

- 1. Understand how well target users know about sorting algorithms and their learning habits.
- 2. Gather requirements from target users.
- 3. Ask for suggestions for the functions we plan to design.

Time

From November 10th to November 17th.

Respondent

Students from the University of Nottingham, Ningbo, China.

Questionnaire

Please refer to the appendix C.

Result

This survey is for collecting user requirements of animated learning software for sorting algorithms. It was released on the Wenjuanxing, an online survey platform. Overall, 207 valid questionnaires were collected. The results are as follows:

Question1. What's your gender?

Fig1. The pie chart of results of question 1.

Overall, 207 students from the University of Nottingham, Ningbo, China were investigated, among which 61% were male, and 39% were female. The ratio of male and female is about 3:2.

Question2. Which year are you in university?

Fig2. The pie chart of results of question 2.

More than half of the participants were year 1 students, which takes 55 percent. The second is from year 3 and year 2, accounting for 29% and 11% respectively. 5% of those who filled in the questionnaire were year 4 students.

Question3. I learn algorithms because of:

Fig3. The pie chart of results of question 3.

For the learning motivation, the proportions of 'both' and 'preparing for examination' are both high. By contrast, students who learn sorting algorithms because of interest are relatively small.

Question4. How well do you know about sorting algorithms? (The content of following questionnaire will be adjusted according to your answer)

Fig4. The pie chart of results of question 4.

According to the investigation result, most of the participants have some knowledge of sorting algorithms. However, 20% of participants choose that they do not know what is sorting algorithms at all. This shows that providing a module for teaching basic concepts of algorithms for beginners might be necessary.

Question5. In your opinion, a software which helps learn algorithms should more focus on:

Fig5. The pie chart of results of question 5.

According to the investigation result, 63% preferred useful learning functions rather than entertaining interactive functions. This means Team 10 may reduce some of the interactive game design and pay more attention to the functions, which could provide more help for learning and understanding the algorithms.

Question6. How much time are you willing to spend each time using our software?

Fig6. The pie chart of results of question 6.

In general, the participants thought that within 60 minutes was acceptable for them to learn each time. More than half of the participants chose to spend 15-30 minutes each time. This shows that it is better to control one single algorithm's learning time of within about 30 minutes.

Question7. You learn algorithms or programming mainly by:

Fig7. The pie chart of results of question 7.

In addition to the university's courses, there are a large number of students learning sorting algorithms on website platforms. Video teaching software is top-rated, which was chosen by 34% of students. Other participants preferred to discuss with others in forums. It suggests that the market for our products is vast. Moreover, Team 10 may provide a function that allows users to share their thoughts with others.

Question8. Which platform do you prefer to use this software (e.g. likes to use mobile terminal most, and computer terminal second, then1 iOS/Android, 2 PC/Mac...)

Fig8. The pie chart of results of question 8.

The investigation result demonstrates that most participants are used to use similar learning software on computers. Secondly popular ones are mobile apps and websites. This result may help decide the development platform.

Question9. What goal you want to achieve through learning:

Fig9. The pie chart of results of question 9.

For these three levels of learning output provided, the choices of participants were approximately equal. That means we may need to provide a hierarchical teaching method so that users of different levels can all gain some knowledge they require.

Question 10. What language would you like to present the code?

Fig10. The pie chart of results of question 10.

This question aims to collect the programming language preference of our target users. The result shows that users' demand for C, Java, and Python is relatively high.

Preferable functions Animation display function User guide for beginners Multilingual settings Show the recently used algorithm Quick export of brief notes Be able to add break point to the presenting code Display learning progress and learning time

Question11. Which following function do you prefer?

Fig11. The bar chart of results of question 11.

For the envisioned functions, what the participants like best are the animation display function and exporting brief notes function. The second is the user guide and adding breakpoints. Lots of participants select multilingual settings function and recently used function, both are approximately 13%. The learning progress and learning time displaying function are also popular. The result demonstrates that our envisioned functions can be acceptable to the users basically. Further, one participant proposed that some practice questions after learning would be helpful.

Question 12. What other functions do you think the software should have? Are there anything we should pay attention to?

This is an open question, and the participants can choose to answer it or not. Some valuable answers are as follows:

- 1. Maybe provide contact information of the developers and provide access to view the source code.
- 2. Share functions! If it is a good piece of software, I want to be able to share it with others.
- 3. The interface must be clean and delightful.
- 4. It should be easy to use.
- 5. Maybe provide a forum, and users can discuss multiple implementations on it.
- 6. Enable users to implement their own code.

Analysis and suggestion

The participants in this survey are students from the University of Nottingham, Ningbo, China. Among them, 55% are from year 1, 11% are from year 2, 29% are from year 3, and 5% are year 4 students. The proportion of males and females is relatively equal. About 75% of the participants have varying degrees of understanding of sorting algorithms, while some know nothing about sorting algorithms.

To summarize the survey result, some important points drawn from this questionnaire are as follows:

- 1. It is suggested to provide a basic conceptual introduction and outline of algorithms for users who do not have any knowledge of algorithms.
- 2. Compared with the entertainment functions, participants preferred practical ones. It is suggested to reduce game mechanics and focus on developing functions that are more helpful for learning algorithms.
- 3. Some participants proposed that providing a function, which can share and discuss their thoughts with others, like forum, may help learning.
- 4. To ensure users with different levels of algorithmic bases can all gain knowledge from this software, it is suggested to provide hierarchical teaching functions.
- 5. For those who have examination requirements, offering more practice questions will attract them to use this software.
- 6. Many participants mentioned that they preferred clean and delightful interfaces. Therefore, GUI design is one thing that needs to consider.

Appendix C

Questionnaire

User demand questionnaire on the development of animation teaching software for sorting algorithm

Our project aims to design a software which can help users who either have no experience in coding or know a little about sorting algorithms and their correctness. The basic feature of this software is clearly showing the swapping animation of sorting elements step by step. Users can also interact with the software to control the sorting process. Additionally, there are different kinds of sorting algorithms provided, such as bubble sort, quick sort, merge sort, etc. As for more advanced modules we designed, we plan to focus on the correctness of sorting algorithms, demonstrating why a specific sorting algorithm is correct. Moreover, we plan to add some additional functions, which needs your help!

All information in this questionnaire is used for research and project development, and will not be disclosed, transmitted or used for other purposes. The filling time of the questionnaire would be no more than 2 minutes. Please answer those questions according to your actual ideas. Thank you!

(1)	What	is your	gender?
-----	------	---------	---------

- O Female
- O Male
- O Uncertain

(2) What year are you in?

- O Year 1
- O Year 2
- O Year 3
- O Year 4

(3) I learn algorithms because of:

- O My interest (not examination-oriented)
- O Academic requirements (examination-oriented)
- O Both

(4) **How well do you know about sorting algorithms?** (The content of following questionnaire will be adjusted according to your answer)

- O I don't know about it at all.
- O I have some relevant knowledge.
- O I understand the content well.

(5) In your opinion, a software which helps learn algorithms should more focus on:			
	Interestingness (have some characters of game, which is entertaining, with lively and attractive interface)		
0 1	Functionality (concise interface, with learning function only)		
	How much time are you willing to spend in learning with software?		
	Less than 15 min.		
	15 min ~ 30 min		
	30 min ~ 60 min		
	60 min ~ 120 min		
	120 min or longer.		
	120 mm or longer.		
	You learn algorithms or programming mainly through: ultiple-choice)		
•	Related courses in school		
	Self-learning website or platform (e.g. rookie course, MOOC, Tencent class)		
	Bilibili		
	Computer training institutions		
	Related forums (e.g. CSDN, Baidu Post Bar, etc.)		
	Auxiliary learning software		
Oth	er:		
(Ple	Which platform do you prefer to use this software? ase sort the items, e.g. like to use mobile terminal most, and		
	nputer terminal second, then: 1 mobile, 2 computer)		
	PC/Mac (need to download and install)		
	IOS/Android (a mobile app)		
	WeChat miniApp		
•	Website		
` '	What goal you want to achieve through		
ıeaı	rning? (multiple-choice)		

☐ Understand the concept of sorting algorithms.

Other:

☐ Master the principle of sorting algorithms.
 ☐ Master the code implementation of sorting algorithms.

our software.

Appendix D

Minutes

Team 10 - 1st Meeting

Information

Time: 2020.9.30 15:00~15:45

Location: Online

Chairperson: Shiliang Chen

Secretary: Ruizi Han Translator: Ruizi Han

Attendence:

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 40 minutes.

- 1. Ask members to submit their CVs and give some comments. (About 10 minutes)
- 2. Discuss which 3 projects to choose (About 20 minutes)
 - o Choose a project between 15 and 16
 - Decide which project should be put in the first place
 - Select our 3 projects
 - Decide the order of these 3 projects
 - o Alternatively tell other teams our decision
- 3. Discuss the completion of biding document (About 10 minutes)
 - Share eoi format file
 - Share framework of biding document
 - Check each group's recent research result
- 4. Raising questions and allocate tasks of next stage (About 10 minutes)
 - Decide the chairperson and secretary of next meeting
 - o Decide the specific time of next meeting
 - o Confirm and go through next stage's tasks

Minute

Outcomes

- 1. CVs should be spell checked. Some details will be checked after the meeting (Time spent: 5 minutes)
- 2. Selection and order arrangement of 3 projects (Time spent: 30 minutes)
 - Project 16 is chosen from 15 and 16, because there are fewer competing groups.
 - o Project 16 is in the first place.
 - Final decision: 16, 20, 12
 - We could tell other teams our decision
- 3. The process of bid writing and plan for the next stage (Time spent: 10 minutes)
 - Share and explain the framework of biding document: fill in the framework first, them deal with the format
 - Share useful biding document website
 - Share and explain the template of minute
 - o All three groups did some research on their project
 - o Decide to upload all useful files (all meeting minutes and template) on GitHub
 - Chairperson should share the meeting agenda with members before each meeting
- 4. Preparation for next meeting (Time spent: x minutes)
 - o Chairperson: Yijie Lu
 - Secretary: Yuting Jiang
 - **Time**: 3 p.m. 4/10/2020
 - Acceptance and discussion of biding document. Plan what to do in the next stage.

Work summary for last stage

Task	Members	Report	Question	Completeness
Writing CV	All		/	100%
Work on the draft of biding document	All		We changed our projects in this meeting.	Every group did some research on their project.

Tasks

Task	Members	DDL
Spell check your CV	All	9.30
Content check of CVs	Shiliang Chen	9.30
Finish the draft of biding document	All	10.3
Share you github account	All	9.30
Put every member in a github organization	Yiming Tang	9.30

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
3	Should we elect a leader?			We will do that after we know our project.	10.7
3	How to share minutes and other important files among members conveniently?			We decided to use GitHub.	9.30

Comments

Whole meeting process has finished successfully. Agenda are basically completed.

Main problems found here are:

- 1. submision and checking of works should be done before the meeting. Common problems shall be mentioned during the meeting, otherwise after the meeting submission and checking of works should be done before the meeting. Common proble privately
 agenda shall be released at least half an hour before start to get every body prepared.
 Template for bid is kinda rough. I will reorganise it after meeting
 checking for cvs will be done after meeting

Team 10 - 2nd Meeting

Information

Time: 2020.10.04 10:00a.m.~11:00a.m.

Location: Online
Chairperson: Yijie LU
Secretary: Yuting JIANG
Translator: Yuting JIANG

Attendence: 6/6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 60 minutes.

- 1. discussion of form (About 20 minutes)
- the form might contain the contents, reference, and prototype (up to the bids' content)
- 2. every team comes up questions when they wrote the bid, other partners give some suggestions. (About 15 minutes)
- difficulty and confusion about the project of 16, 20, 12
- 3. every team illustrates their idea of the bid (About 20 minutes)
- 4. Allocating tasks of next stage (About 5 minutes)
- Decide the chairperson and secretary of next meeting
- Decide the specific time of next meeting
- Confirm and go through next stage's tasks

Minute

Outcomes

- 1. Bidding form discussion (Time spent: 10 minutes)
- 2. Go through the three draft biddings (Time spent: 5 minutes)
- 3. Talk about the problem of three draft biddings (Time spent: 20 minutes)
- 4. Talk about the comprehension of three projects (Time spent: 20 minutes)
- 5. Preparation for next meeting (Time spent: 5 minutes)
- Chairperson: Yani HUANG
- Secretary: Ruizi HAN
- Time: 6/10/2020
- Confirm three biddings and submit

Work summary for last stage

Task	Members	Report	Question	Completeness
The 1st version of biddings	All		Contents, reference, and prototype.	100%

Tasks

Task	Members	DDL
Finish 2nd version of biddings	All	10.6
Check for each other	All	10.7

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
4	How to guarantee the final quality of three biddings?		All	Discussion and check for each bidding together.	10.7

Comments

Whole meeting process has finished successfully. Agenda are basically completed.

Main problems found here are:

- 1. Deadline for tasks should be more reasonable, it is better to make sure that there is enough time to submit the bids
- 2. To make more efficiency, if the leader needs to collect the information from partners, asking by order forwardly instead of waiting, but if someone wants to speak at first, the priority should be given.

Team 10 - 3rd Meeting

Information

Time: 2020.10.6 21:00 ~ 22:15

Location: online

Chairperson: Yani Huang
Secretary: Ruizi Han
Translator: Ruizi Han

Attendence: 6/6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 70 minutes.

- 1. Discuss and examine bid of 3 groups (About 60 minutes)
 - o Members give some advice
- 2. Prepare for bid submission (About 5 minutes)
 - Final version of CV
 - Final version of bid documents
- 3. Rasing questions and allocate tasks of next stage (About 5 minutes)
 - o Decide the chairperson and secretary of next meeting
 - Decide the specific time of next meeting

Minute

Outcomes

- 1. Discuss and examine bid of 3 groups (Time spent: 60 minutes)
 - $\circ\hspace{0.1in}$ Go through each group's bidding documents and members give some advice
- 2. Prepare for the submission (Time spent: 10 minutes)
 - Collect each one's pdf format CV
 - o Decide which member will submit final file
 - $\circ \;\;$ Set ddl for the final version of bid
- 3. Preparation for next meeting (Time spent: 5 minutes)
 - o Chairperson: Yuting Jiang
 - o Secretary: Yani Huang
 - o Time: not decided yet

Work summary for last stage

Task	Members	Report	Question	Completeness
Finish 2nd version of biddings	All		Format, content	100%

Task	Members	Report	Question	Completeness
Check for each other	All		Grammer, format	100%

Tasks

Task	Members	DDL
Modify each group's bid according to members advice	All	10.6 23:00
Send CV to group chat	All	10.6
Collect CVs and bids, submit final file	Yiming Tang	10.7

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
1	/	/	/	/	/

Comments

The meeting went well. But still exist few problem that could be improved:

- Spend too much time on reading documents, this could be done before the meeting for efficiency.
- The meeting was held late (21:00 22:15), the meeting may be more efficient if it's not held on-line.

Team 10 - 4th Meeting

Information

Time: 2020.10.10 10:15 - 11:10 (55min)

Location: Library

Chairperson: Yuting JIANG
Secretary: Yani HUANG
Translator: Yani HUANG

Attendence: 6/6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	/
Absent	/

Agenda

The whole meeting is expected to take 50 minutes.

- 1. Decide roles of our team (About 15 minutes)
- contain the Leader, UI Designer, Technical Leader, Quality Assurance Leader, Editor, Repository Master.
- 1. Discuss basic points of our project [P20] (About 20 minutes)
- contain the understanding of project, the bid, and questions.
 - Confirm the points that should be discuss with the supervisor in the formal meeting. (About 10 minutes)
 - write an email maybe.
 - 4. Allocating tasks of next stage (About 5 minutes)
- Decide the chairperson and secretary of next meeting
 - Decide the specific time of next meeting
 - Confirm and go through next stage's tasks

Minute

Outcomes

- 1. Division of labour:
- Team Leader: Shiliang Chen
- UI Designer: Yiming Tang, Yani Huang
- Technical Leader: Shiliang Chen
- Quality Assurance Leader: Yijie Lu, Yuting Jiang
- Report Editor: Yani Huang, Yuting Jiang ,Ruizi Han
- Repository Master: Ruizi Han, Yiming Tang
- Monitor (Tester): Yani Huang, Shiliang Chen
- Mediator

This is a Temporary arrangement, which will be adjusted according to the needs in the future.

- 2. Questions in the 1st Formal meeting:
- Suggestions on our project concept and bid. How to realize "correction" in software function? Are the expenses incurred in the R & D process reimbursed? -

Requirements for requirements (the team intends to check more information, whether other methods are needed) - Selection of SE development process. - Idea about the ethics form

- 3. Preparation for next meeting (Time spent: 5 minutes)
- Chairperson: Yiming Tang Secretary: Shilliang Chen, Yijie Lu Time: Unknown Remark: Remember to Bring a recorder. (Shilliang Chen)

Work summary for last stage

Task	Members	Report	Question	Completeness
Writing Bids	All Members	/	/	All Done

Tasks for next stage

Task	Members	DDL
Prepare for the Formal Meeting.	All Members	/
To explain idea of the project to the supervisor	Yijie Lu	Before Next Meeting
Determine which SE process to use		

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
/	/	/	/	/	/

Comments

The meeting proceeded smoothly and was completed within the expected time.

One problem is that if a member is required to make a specific statement in a meeting, the member should be informed in advance of what he or she intends to present.

Team 10 - 5th Meeting

Information

Time: 2020.10.15 10:00~11:00

Location: PMB449

Chairperson: Yiming Tang

Secretary: Shiliang Chen, Yijie Lu

Translator: Shiliang Chen, Yijie Lu

Attendence: 7/7

Members	Heshan Lu, Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 30 minutes.

- 1. Opening (About 1 minutes)
 - o Many thanks on awarding us this project, and we are very honoured to be supervised by you. We are Team 10, and we treat this as a formal meeting.
 - This meeting is arranged to 30min long

So we divide this meeting into 2 parts,

- 1. self introduction, then we will talk about the project,
- 2. discussions
- 2. Self-introduction(About 5 minutes)
 - Let Heshan know us.
- 3. Discussion (About 16 minutes)
 - 1. Our questions (About 6 minutes)
 - We have created a GitHub repository, to manage our files. Would you have any interest to join us the private team, to take a look at it?
 - Do you have any suggestions on our project concept and bid?
 - How to understand the "correction" in software function?
 - How to gather more requirements?
 - o Expenses reimbursed?
 - Need to fill the ethics form? We thought in the Alpha testing or Beta testing, we would like to invite some other students to test the procedure,
 - Suggestions on our procedure?
 - Suggestions on formal meeting?
 - 2. Heshan's questions (About 10 minutes)
- 4. Rasing questions and allocate tasks of next stage (About 3 minutes)
 - o Raise questions
 - Decide the chairperson and secretary of next meeting
 - Decide the specific time of next meeting
 - o Review all new action points, confirm and go through next stage's tasks
- 5. Others (About 6 minutes)
- Other issues to be raised

Minute

Outcomes

- 1. Opening (Time spent: 2 minutes)
 - Completed

- 2. Self-introduction (Time spent: 3 minutes)
 - Completed
- 3. Discussion (Time spent: 50 minutes)
 - 1. General
- English speaking in formal meetings (compulsory)
- Heshan will join our informal repo
- 1. The solution of proving the sorting algorithm's correctness.
 - o Guide user to understand the sorting algorithm
 - Allow user to create an algorithm in their way.
 - o Additional question: confirm that the game can help prove the correctness

2. About Requirement

- Basically, first we come up with our own ideas then check existing implementation. Analyse existing ones' pros and cons. After this, build a prototype and do market research on what our user will like.
- Functional requirement should think about what we can operate in the software as a user, it more focuses on the function the user needs to achieve; non-functional requirement more focuses on the constraints on what the user needs to do such as the language preference, opening source for user to download
- Functions we build must be able to improve the ability to help users. Don't come up with new idea that's only for differentiating our product with others. Main task for requirement is to let user to understand the algorithm. Designing different shape on disorder elements for making some differences from other software might not exactly achieve the goal. Considering change the integers to letters.
- Deciding the stakeholder. Focusing children group might be a little difficult, because we do not have enough experience for contacting with kids.
 Additionally, if we need to interview groups in a formal way, we should prepare for the ethic form.
- Functional requirements should be more specific and precise but not vague
- 3. Other issues
 - Ethic forms are on the air
 - o 1617 project
- 4. Software engineering method
 - o Depend on team members
 - o Heshan prefers Agile
- 5. Experience from earlier team
 - · Cooperation and teamwork
 - Innovation is very important
 - 4. Preparation for next meeting (Time spent: x minutes)
 - o Chairperson: Ruizi Han
 - o Secretary: Yiming Tang
 - o Time: 10/20 Tuesday Night (specific time will be confirmed on 10/18)

What is going to be discussed in the next meeting:

- Discuss the market analysis
- Confirm the target market
- o Discuss what we will do in requirement analysis
- o Discuss about SE method we are going to use
- First version of requirement analysis
- Decide the order of chairperson and secretary
- Discuss about group website
- o Prepare for the formal meeting

Last stage's action points review

Task	Members	Report	Question	Completeness
Determine which SE process to use	All	/	ТВА	50%

Action points

Task	Members	DDL
Email Heshan for 1617 project, invite her for github, ask for agenda template	Yiming Tang	10/16
Write sth about requirements (functional especially)	All	10/20
Ethic form	/	10/29
Group website design	/	10/29

Problems

Priority (0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
1	Pay attention to innovation	more impressive product	Heshan	mind storm	/
1	Functional requirement is not specific	serious problems	Heshan	assign task	10/20
3	SE method is not determined	/	Shiliang	discuss in the next meeting	10/20

Comments

I didn't control the time well, because I didn't expect that a question could develop into a discussion of nearly ten minutes. I had planned to ask a few questions in about ten minutes, but I didn't expect that the 30 minute meeting would last nearly an hour.

Next time, we can omit some questions in a planned way, and then the chairperson may have to rehearse in advance. If necessary, he can interrupt the discussion and say "we are running out of time, get into the next part."

In addition, the chairperson can ask the team members in the wechat group whether we can go on to the next topic. Every time the chairperson enter the next part, he or she must ask everyone about "any questions from others".

Team 10 - 6th Meeting

Information

Time: 2020.10.20 20:00~22:00

Location: Library 4F Project Room 30, 32

Chairperson: Ruizi Han Secretary: Yiming Tang Translator: Yiming Tang

Attendence: 6/6

Attendence	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 30 minutes.

- 1. Last weeks' tasks (Expected 3m)
 - Mail to Dr. Heshan completed?
 - o Dr. Heshan's documents (Agenda template & 1617 GRP works)
- 2. Requirements (Expected 40m)
 - Share requirements with team members, and they may mention measure
 - Target users (where it can be used, if users will use it often, analyze competitive products, advantage and limitations, which required by Dr. Heshan to be written in the report)
 - What we should do during analyzing requirements (survey and interview for gathering info, functional & non-functional requirements, UML etc.)
 - $\circ \hspace{0.1in}$ integrate all requirements and have a general requirements analysis document
- $3. \ \ Choose \ SE \ method, discuss \ the \ arrangement \ of \ the \ later \ stage \ and \ preliminarily \ determine \ the \ process \ (about \ 15m)$
 - Which SE method best fit us? (maybe combine two methods for a period of time)
 - o Discuss our plans for the future, and roughly determine what to do in the future
- 4. Ethics form (about 10m)
 - o briefly introduce the filling process and several documents
 - Assign tasks
- 5. Website (about 15m)
 - Huang and Tang briefly introduce their ideas
 - Discuss
- 6. Definition of correctness (about 15m)
 - Give ideas about correctness
 - Possible ways to achieve proving it
- 7. (optional) Characteristics of each member (about 10m)
 - o Share the test result or suitable Belbin team role for them
 - What each member is able to do
- 8. Questions and next meeting arrangement (about 10m)
 - o Other questions
 - o Next meeting time, chairperson and secretary, how to rotate
 - Next stage tasks

Minute

Outcomes

(summary of all discussed main points, all decisions, all action points)

- 1. Lask week's task
 - Mail to Heshan sent
 - · Heshan's documents pushed to GitHub
- 2. Requirements Analysis
- Share
 - 1. Tang: Encourage
 - 2. Jiang: Game. First open simple algorithms to him, such as bubble first, and then open others to him. But in this case, suppose what he wants to learn is difficult ones, we cannot achieve this. May integral. Bubble, integral, unlock (recharge); token, upgrade, reward mechanism; within a single algorithm or all algorithms? Milepost.
 - 3. Huang: In the two modes, the algorithm distinguishes the difficulty, what can be exchanged for reward token, skin and interface color?
 - 4. Han: There may not be long-term users who will be lost after learning; therefore, I don't want to have login. Target users: self-taught programmers, people who don't understand
 - 5. yn: May add efficiency part, but we pay more attention to correction. Let him finish the evaluation on his own or when he finishes it?
 - 6. Chen:
 - 1. Prefabricated animation
 - 2. Novice tutorial
 - 3. Test the demo module, let the user input the number by himself, the previous step, the next step, and the automatic playback, so that the user can know what the algorithm is doing
 - 4. User drag module, (we'll discuss a few more at that time) because he probably understands that he imitates the way the algorithm drags, which is more interactive and user friendly. It can detect whether he is dragging the right one in real time, which is more interactive than the one dragging on the right, and can also prompt
 - 5. Unlock the final module: scratch pseudo code, there may be several steps wrong, let him correct
 - 6. If the user wants to see the code, show him the code in various languages we provide
 - 7. When showing the code to him, show the language he wants? Heshan is not Party A. We may evaluate what percentage of users want to see the code and give Heshan the things they have investigated for confirmation.
 - 6. Help other users understand and master the significance of sorting algorithm?
 - 7. Once again, we can't understand what correction is and how to prove it.
- determine the target audience and market analysis of our products (where can they be used? Will you use them more? Competition comparison, analysis, advantages and limitations, which Heshan requires to be written in the report) -Don't think about kids, because it's hard to deal with. -College students who are interested in computers but basic. -Host group: Freshman CS major, teachers market analysis -Do you want to send out questionnaires or ethic? Competitive products
- · literature review
 - 1. Animation demonstration https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html, no code, only animation sort
 - 2. Code puzzle http://snapapps.github.io/edgy/app/edgy.html It looks like pseudo code, but it's not for sorting algorithms
 - 3. Galant diagram demonstration https://github.com/mfms-ncsu/galant Although the form of bar may be monotonous, they use Galant graph, which may replace this thing
 - 4. Sortko: using mobile devices to learn sorting algorithm https://ieeexplore.ieee.org/document/6185079 This paper is a mobile phone software, this article reference value is relatively high, has the collection data.
 - 5. Visa: visualization of sorting algorithms https://ieeexplore.ieee.org/document/6240816 Visualization of sorting algorithm,
 - 6. All of these can be used in the literature review. The professor's words can be shown to him.
 - 7. Algorithm animation diagram -Discuss what we need to do in the requirement analysis phase (survey and interview to collect information, determine functional and non functional, draw UML, etc.) -I didn't have time to talk about it this time
 - 8. Select SE method, discuss the arrangement of the later stage, and preliminarily determine the process (estimated to be 15 minutes) -Which SE method is more suitable for us? (maybe try the combination for a while, as Dave said) -Agile, while doing the process, there may be confirmation work and a process involving stackholders. -The general direction should be clear. -Test documentation? After confirming the complete function, we should be very clear about how to test the process and effect. -After the selection, discuss our future plans and roughly determine what to do in the future -Finish the requirement by the 29th
 - $9. \ \ Ethics form \ (estimated \ 10 \ minutes) \ -Han \ and \ Colin \ are \ responsible \ for \ the \ assignment.$
 - 10. Website (estimated 15 minutes) -I bought a template and picked a template to show you. only one index.html For convenience. -Project brief (such as timeline), project document (download link, data, code version), what are you doing at this stage (cycle, file, introduction, continuous update), team member introduction (email, division of labor), and other modules to see what other requirements are -How to add document to the website. The result of the current discussion is to put links. Tym will do it. -Add project introduction, copy to be sent. -The logo doesn't have to be. It's OK to design one at will, and it's OK to find it online.
- Discuss the definition of correction (estimated 15 minutes)

On correction, we put forward our own views

Meet the definition? You can prove it in your own way.

Tell the user that the algorithm is correct.

How to realize this requirement and possible ways

- 9. Next meeting preparation
 - Chairperson: Chen
 - Secretary: Tang Huang
 - o (next after next) Huang + Jiang
 - o Time: Thursday

Action points

Tasks	Member	DDL
Contact teacher for questionnaire (to distribute it)	Huang	10.29

Tasks	Member	DDL
Questionnaire design. 4-6 questions for each member	huang	10.21
Requirements validation		
Ethics forms	Han, Jiang	10.29

Problems

Priority (Highest 0, Lowest 5)	Description	Expected Result	Member	Temporary Solution	Expected Solve Time
3	Is it better to write agenda and minutes in Word to be put into report?				10.22
0	Definition of correctness				10.29
1	Platform				11.5

Comments

(from sec: actually, I feel that the summary of the last meeting is not complete enough.)

The meeting proceeded smoothly, and most of the discussions needed to be done were completed within the scheduled time and a result was reached. There are a few things that are not very good:

- 1. I don't understand some processes very well, and the preparation work is not enough, so that I don't know how to guide the discussion in the right direction. For example, today's discussion on the follow-up plan did not get a clear result because I was not familiar with the whole process and did not express the content to be discussed well. You need to do more preparation next time.
- 2. The topic change is very stiff, just reading agenda. I'll learn about it the next time the other team members do the chair person. Maybe when we talk about each discussion point, we can give some ideas and talk about something to help people think of more things.

Team 10 - 7th Meeting

Information

Time: 2020.10.22 10:00~10:30

Location: PMB449

Chairperson: Shiliang Chen

Secretary: Yiming Tang & Yani Huang

Translator: Yiming Tang & Yani Huang

Attendence:

Attend	Heshan Du, Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

expected 30m

1. opening (expected 1m)

This is the agenda of today's meeting. (Show Dr. Heshan the Agenda)

Today's meeting is gonna be devided into 3 parts, which may take about 30 minutes

- o quick review of taks done last week
- discussion on several topics
- Q&A time
- 2. quick review (expected 2m)
- Yani has been working on the group site with Yiming and they are also going to design a group logo for us
 a preview version of it has been developed and detailed content will be added in few days
- · Yiming has sent you a email with a minute file attatched, and we have received several files from you
- we've discussed about the target group.
- We've been working on analysing more similar products and writing requirements of our product and also come up with several new ideas. They'll be declared later in the meeting
- we've designed a survey in order to gather and verify requirements. This will be discussed later.
- We've decided to use Agile method in order to include more client participation. However, since we are new in SE, somehow detailed plan will also be made to help manage the whole process.
- · we've done personality test and got more familiar with each other

does anyone has any questions in this part?

- 3. discussion (Expected 20m)
 - 1. About agenda (Expected 3m)
 - The one I gave you is written based on the template you proveded. but we've got a more detailed formal english one like the one Yingming sent you. Do you think the simple one is quite enough or cuold you give us any suggestions on the one we provided. (Show her the one we provided)
 - We've looked through the report of 1617 group. We found they attatched their minutes in the report. Shall we do the same thing?
 - I remember dave said something about using LaTex. Is it possible or necessary to use Latex for the report or even the agenda and minutes?
 - 2. About target group (expected 5m)
- based on our experience, it would be a great help if we could play with an animated sorting algorithm app when we first time get in touch with them especially in our first year of university
- so we come up with an idea that the target group could mainly be university students majored in computer science or any other course may need knowledge of sorting algorithms and students who are interested in this.
- Under this circumstance, it would be easier to do user research. We can simply gather requirements right in our uni since we have sesa staff yani. She said
 sesa could help with that.
- 3. About survey (Show her the survey) (expected 2m)

- · Based on different background knowledge people have, the survey would automatically display related questions to the specific group of people
- · Any suggestions on the survey we made
- 4. About requirements (show her the requirements) (expected 6m)
- This is a very early stage verision only for preview
- We focuses more on innovations which are brand new features among similar products
- As for correctness, we are still not clear about it. Do your mean we need to tell user that this sorting algorithm can do the sorting task correctly? Can you give us a more specific example on this.
- 5. About platform & language (expected 2m)
- Single platform or multi-platform?
- which platform you prefer us to do on or based on the survey/research?
- 6. About ethic forms (Show Dr. Heshan the ethic form) (expected 2m)
- shall we write all of our names here and submit it as a team?
- when can we deploy the survey? until the ethic forms are all completed?

Any questions for this part?

4. Q&A (expected 6m)

Minute

Outcomes

(summary of all discussed main points, all decisions, all action points)

- 1. Discussion
 - 1. Dr. Heshan would like agendas be in her template's style. So what every chairperson has to do is edit the agenda in the style and send it to Dr. Heshan before the meeting.
- 2. Review
 - 1. Dr. Heshan is overall satisfied with our process.
 - 3. About survey
 - 1. Dr. Heshan likes our draft questionnaire. Her advice is put English in front of Chinese, because the official language is EN.
 - 2. Dr. Heshan mentioned correctness is a difficult point, but in this meeting we are still not clear about correctness.
 - 4. About requirements
 - Dr. Heshan thinks we are not dealing with requirements, but designing the software. This is too far from current schedule. She says we seem to be already having the software model, writing requirements based on this. This is not in line with the software engineering process.
 - 2. She gave us these suggestions: don't write "click", "button" in the requirements, it is better to describe which functions it would implement; also, distinguish functional requirements and non-functional requirements; finally, write out the most important requirements, instead of show the process.
- 3. Next meeting (informal)

Chairperson: Yani Secretary: Yuting Time: 27 Oct 2020

Comments

Due to the time limit, ethics and correctness were not discussed clearly. I have problem on preparations on the requirements. To save paper, don't bring hard copy, email Dr. Heshan instead. Chairperson and secratary shall sit around Heshan. This would help. Chairperson shall control the time adequately. If the situation is losing control, secratary shall help speed up. For speeding up the whole process, it's ok to read agenda. Still, try hard to perform naturally.

Team 10 - 8th Meeting

Information

Time: 2020.10.27 (45 min)

Location: Library

Chairperson: Yani Huang Secretary: Yuting Jiang Translator: Yuting Jiang

Attendence: /6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 45 minutes.

- 1. Complete the requirement survey . (25 min-30 min)
 - Introduction of the survey.
 - Questions about correctness.
 - Specify the total number of the survey we expect to collect.
 - Decide who is going to have meeting with the "Introduction of Algorithm" lecturer.
- 2. Check the site together. (5 min)
- 3. Discuss topic for the next formal meeting. (10 min- 15 min)

Minute

Outcomes

- 1. Abridge and confirm the questions in the survey (About 20 minutes).
 - o Delete Q5 and the UI question.
 - Change the options of Q4, Q7, Q10, Q11.
- 2. Think about the requirement (About 30 minutes).
 - Animated display function(control the speed, last step and first step. stop button).
 - The tutorial for beginners.
 - o Multi-language.
 - What kind of sorting algorithms will be include? (six provided, multi-choices for users to choose).
 - Display the history record for users.
 - Cheat sheet (brief notes).
 - · Questions about correctness.
- 3. Discuss the form of the proof the correctness (About 20 minutes).
 - The first version: do not include the abstract concepts(e.g. partial correctness), just prove that for any type of legal input, the algorithm will show the correct output. And for the illegal inputs, the algorithm will show the error or warning.
 - The second version: detailed introduce the necessary concepts, maybe include the proof rules. Explain concepts through intentional code failures. And
 user chooses whether to display the proof or not.
- 4. Check the site together (About 10 minutes).
 - o Confirm the personal information.
 - Confirm the documents post on the site.

- Have a public link for our Github.
- 5. Decide who will take the interview with the IPA module convenor (About 2 minutes).
- **Chairperson: ** Yuting JIANG
- **Secretary: **Yijie LU and Ruizi HAN
- **Time: **10:00a.m. on October 29th

- What is going to be discussed in the next meeting:

- Review what has been finished.
- Check the info sheet and survey and the interview questions.
- Decide when to release the survey and when to take the interview.
 Discuss which version of correctness proof is better.

Work summary for last stage

Task	Members	Report	Question	Completeness
Finish the ethic forms and info sheet.	Ruizi HAN and Yuting JIANG	/	How to submit	90%
Survey design.	Yani HUANG and Yijie LU	/	Correctness Questions and introduction part and swap the language order.	60%
Finish the basic design of our website.	Yani HUANG and Yiming TANG	/	/	100%

Tasks for next stage

Task	Members	DDL
Finish the questions of survey and write an English version.	Yani HUANG	10/28 12:00p.m.
The introduction part of survey.	Yijie LU and Ruizi HAN	10/28 12:00p.m.
Write the two versions of correctness proof plan.	Shiliang CHEN, Yijie LU, Yuting JIANG and Yiming TANG	10/28 12:00p.m.
Prepare the interview.	Shiliang CHEN, Yiming TANG and Yani HUANG	/

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
0	How to display the proof of sorting algorithms?	Cannot finish the requirement document.	All	Two ideas(detailed above).	10/29

Comments

The meeting proceeded smoothly but was not completed within the expected time. Maybe control the time more precisely next time.

Team 10 - 9th Meeting

Information

Time: 2020.10.29 10:00~10:30

Location: Online

Chairperson: Yuting Jiang

Secretary: Yijie Lu and Ruizi Han

Translator: Yijie Lu and Ruizi Han

Attendence: 7/7

Members	Heshan Du, Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 30 minutes.

Materials: agenda, minutes of last meeting, participant consent form and information sheet, questions for the interview, questionnaire, two plans about how to prove the correctness, SE PPT(lec3).

- 1. Review what we have finished (About 5 minutes).
 - o The ethic form
 - The minutes
 - For the report, which template is better?
 - Shall we send the minutes of last week meeting to heshan?
 - The website (introduce briefly)
- 2. Check the materials for interview and survey (About 8 minutes).
 - o Check the participant consent form and information sheet.
 - Check the questions for the interview.
 - Check the survey.
 - o Confirm whether we can release the questionnaire and make an appointment with the module convener.
- 3. Decide which idea for correctness proof is better (About 15 minutes).
- 4. Discuss the requirements specification and definition (About 5 minutes).
 - How to document the requirements?
- 5. Q&A (About 2 minutes).

Minute

Outcomes

- 1. Review what we have finished (Time spent: 30 minutes).
 - The minutes
 - For the appendix of report, both minute templates are ok, it depends on us. We decide to use our template.
 - The minutes do not need to be sent to supervisor every week, until there is something needs to be confirmed.
- Website checking
 - Grammar and vocabulary problem of introduction: 1) the first long sentence need to be split into bullet points. 2) change the sentence "project is promising", it is not suitable to say a project is "promising". 3) change the sentence "the software is the entry level".
 - Content problem of introduction: 1) the key point should be the property of the software (like open source) and the aim of the software (like help users to understand and prove the correctness of sorting algorithm). 2) more types of the sorting algorithm should be mentioned: bubble, quick, merge...
 - Diagram design: 1) Gantt chart: add the dependency between the tasks. 2) Prototype: a little similar to previous work, it needs to be modified and be
 more innovative to impress users.
 - Team role: 1) We need to add a software developer. 2) The appropriate method is that the team can be divided into small group and take responsibility to each function of the software or a specific sorting algorithm and put them together in the end.
- 2. Check the materials for interview and survey (Time spent: 20 minutes).
 - Participant consent form and information sheet
 - Check each form whether the name of university is correct: "Ningbo China".
 - delete the bracket of "omit ...".
- · Questions for the interview
 - o If we need to ask question 2, we may need to prepare a prototype for the teacher's better understanding.
 - Before the interview, we need to do some preparation, such as provide some slides and book a room.

- Questionnaire
 - Q11: Change "which one do you think is useless" to "which one do you like".
 - o Q12: Make sure all the data we collected is useful for the requirement specification later: Q12 needs to be deleted.
- 3. Decide which idea for correctness proof is better (Time spent: 15 minutes).
 - Use the first proposal: simple one, we need to do it as simple as possible. We'd better not mention abstract concepts in the software since they are too complex for beginners. We can see how it goes firstly, then think about whether we need to add those more complicated knowledge.
 - Applying the first proposal, we can focus on the mathematical induction to prove sorting algorithms' correctness.
 - Applying the first proposal, the input does not need to be very complicated, and integer is fine for easy understanding. For illegal input, we can choose characters: A,B,C.
- 4. Discuss the requirements specification and definition (Time spent: 10 minutes).
 - Choose the latest version which we have learned in FSE. Follow the FSE powerpoint and textbook.
- 5. Time control problem (Time spent: 10 minutes).
 - Meeting Time should be controlled in 30 minutes. Yiming Tang will be the one who control the time of meeting, he will interrupt the discussion when the time is not enough.
 - Yani Huang suggested that we may need to make a brief introduction for what we have done in each week firstly, so time can be leave for more
 essential topic.
- 6. Preparation for next meeting (Time spent: 2 minutes)
 - o Chairperson: Yijie Lu
 - o Secretary: Shiliang Chen
 - o Time: 11/3 19:30
 - · We may discuss our team role again.

Last stage's action points review

Task	Members	Report	Question	Completeness
Ethics form related documents	Ruizi Han and Yuting Jiang	/	/	100%
Finish the questions of survey and write an English version.	Yani Huang	/	/	100%
The introduction part of survey	Yijie Lu and Ruizi Han	/	/	100%
Write the two versions of correctness proof plan.	Shiliang Chen, Yijie Lu, Yuting Jiang and Yiming Tang	/	/	100%

Action points

Task	Members	DDL
Modify the website introduction.	/	11.3
Redesign Gantt chart and prototype.	Yiming Tang, etc.	/
Fix some problems of consent form and information sheet.	Yuting Jiang	10.29
Discuss and prepare more interview questions.	All	11.3
Finish the final version of questionnaire.	Yani Huang	10.29
Produce the English questionnaire document for submitting.	Ruizi Han	10.29
Specific timeline of the project	Shiliang Chen	11.3
Literature review	All	/
Interview presenting slides	/	/

Problems

Priority (0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
2	Time control of formal meeting	Low efficiency and quality of formal meeting and waste of everyone's time	All	Have someone control the meeting schedule. Make a brief introduction for what we have done in each week firstly.	/
3	Unreasonable arrangement of members' team role	Difficult in software developing phase.	Heshan Du	We will discuss everyone's team role in next informal meeting.	11.3

Comments

- The meeting time should be tight controlled next time. The chairperson should find out suitable time to interrupt the discussion when time is not enough.
 Before formal meeting, the chairperson should send relevant materials to the supervisor as early as possible and kindly remind supervisor to have a glance in advance.
- 3. Reduce the content discussed in the formal meeting. Do not discuss less important content in the formal meeting.

1. Team 10 - 10th Meeting

Information

Time: 2020.11.03 19: 30-22: 00(150 min)

Location: Library

Chairperson: Yijie Lu

Secretary: Shiliang CHEN

Translator: Shiliang CHEN

Attendence: /6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 150 minutes.

- 1. Comfirm the structure of literature review . (60 min-70 min)
 - Introduction of the literature review.
 - what part should be added to the review.
 - o Discuss what we have found for the review.
- 2. Discuss which group should take responsibility to Focus Group and which one should take responsibility to interview. (5 min)
- 3. Discuss the timeline, confirm how many UML diagram should be used and what prototype should be.(60 min)
- 4. Discuss topic for the next formal meeting. (10 min- 15 min)

Minute

Outcomes

- 1. 🤇
 - 0
- 2.
 - 0
 - 0
- 3.
- 4. -
 - **Chairperson for next: **
 - **Secretary: **
 - **Time: **
 - What is going to be discussed in the next meeting:
 - -
 - -

Task	Members	Report	Question	Completeness

Tasks for next stage

Task	Members	DDL

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time

Comments

The meeting proceeded smoothly but was not completed within the expected time. Maybe control the time more precisely next time.

1. Team 10 - 11th Meeting

Information

Time: 2020.11.5 10:00 - 10:30(30 min)

Location: PMB 449

Chairperson: Yani Huang

Secretary: Shiliang Chen, Yiming Tang

Translator: Shiliang Chen

Attendance: 6/6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	/
Absent	/

Agenda

The whole meeting is expected to take 30 minutes.

- 1. Review tasks done (8 min)
 - 1. Literature review: Introduce current work and stage one by one. (4 min)
 - 2. Progress of requirements (Prepared a time line based on Dave's plan)(4 min)
- 2. Get feedback from Heshan of our current work (10 min)
- 3. Q&A (does our literature review cover all aspects? Do we need to draw UML other than use case, class, sequence?). (12 min)

Minute

Outcomes

- 1. Review tasks done in last week
 - o Have begun literature review
 - Yani (Maze, interaction) → Ruizi(animation optimization) → Yiming(data visualization) → Yuting(algorithm visualization) → Shiliang(code visualization) → Yijie (visualgo and scratch)
 - write paragraph while doing literature review with pros and cons (Deadline: Next Monday 2020/11/09)
- 2. Discuss requirements
 - Don't hurry
 - o Prepare prototypes before interim report
- 3. About interim report
 - o Technical research, market research and existing software research should be included in the literature review part
 - Begin to learn latex
 - Begin to do literature review
 - In the introduction/description part, we can use papers to prove our ideas and our project is useful and motivation as well
 - Files of focus group need to be recoded in the appendix
- 4. focus group
 - o it would be 35 minutes with 5 6 people joined in
 - o raise questions and record
 - make questions easier to understand, make the environment more relaxing
 - o time is not decided yet
 - questions for Y1, Y2, Y3 would be slightly different
 - **Chairperson: ** Yiming Tang
 - **Secretary: ** Yijie Lu
 - **Time: ** 11/10 19:30
 - Remark:
- check literature review for every one

- feedback of focus group
- Prepare for the introduction part
- discuss Latex
- stress the importance of git (introduce project feature of github)
- prototype presentation

Work summary for last stage

Task	Members	Report	Question	Completeness
work on literature review	All	/	write paragraphs	50%
manage focus group	Yani Huang	/	keep going	50%
make gantt chart	Yijie Lu	/	/	0%

Tasks for next stage

Task	Members	DDL
Literature review	All	11/9
make gantt chart	Yijie Lu	/
manage focus groups	Yani Huang	/
learn LaTex	All	/
Prepare for the introduction part	All	/
Prepare for prototype	Yani Huang, Yiming Tang, Shiliang Chen	11/10

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
0	Review part should be done by the chairperson of last time	1	Yiming	/	/

Comments

The meeting proceeded smoothly and was completed within the expected time.

The whole meeting today lasts about 24 min, time control is getting better but chairman of future meeting still need to pay attention when the content of the meeting is complex

Content of meeting could be further simplified, report the progress in a briefer way.

Team 10 - 13th Meeting

Information

Time: 2020.11.10 (60 min)

Location:

Chairperson: Yiming

Secretary:

Translator:

Attendance: 6/6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	/
Absent	/

Agenda

The whole meeting is expected to take 60 minutes.

- 1. Review of last week
- 2. Questionnaire

See the results

- 1. What is the results
- 2. Depending on these results, what should be changed in the current requirements
- 3. When to end
- 3. Are we following the full year timetable plan?
 - 1. It seems that nobody is taking control of the whole process.
- 4. internal report
 - 1. divide the work
- 5. Prototype
 - 1. According to the existing resources, it may have to be redone. At that time, I did it according to the idea of the game. But now, if we want to abandon it, first, is Heshan

willing to (because she said at that time that she saw our idea was very interesting, and she wanted to make a game for us), and the second reason was not enough. I think if we decide to give up, it is better to give her some reasons in detail. This part can also be written in the internal report.

- 2. Question: can it correspond to the requirement we wrote?
- 3. Collect your general and abstract ideas about prototypes, and I will make them into pictures.
- 4. Although we don't know what platform, we can do the desktop version first. Then design something else.
- 5. Linkage of the following [demonstration mode]

6. interview

- 1. I heard that AJ is not easy to get in touch with on focus group, so how do we design it? Or when? I think it will be the end of the term if you don't make an appointment with him, or you can interview other teachers
 - 1. When to send email, rehearsal and interview;
 - 2. Find another teacher!
 - 3. If teachers want to use it, do you need to distinguish [demonstration mode (used by teachers)] and [learning mode (used by students)]
- 7. UML

Outcomes

- 1. Review about last meeting (About 5 minutes).
- 2. Discuss questionaire (About 30 minutes). Most users prefer:
 - Focus on functionality
 - 15 min -30 min using time
 - on the PC platform.
 - o good animation.
 - understand the priciple, defination and code of sorting algorithms
 - C, Java, Python language using
 - functionality priority
- 3. Timeline management (About 5 minutes).
 - Shiliang takes charge.
- 4. Comfirm prototype (About 10 minutes).
 - After giving the requirement, Yiming will take this job
 - We do not use game, which needs to be confirmed with heshan
- 5. Interview (About 10 minutes).
 - Shiliang will write letter to AJ
 - We might also talk with Heng Yu

- Chairperson for next: Ruizi Han

- Secretary: Yijie Lu and Yuting Jiang

- Time: November 12th

- What is going to be discussed in the next meeting:

-Reiterate the prototype is done by us, and Yiming introduced some works he did -Report the questionaire, pick some important question to discuss, importantly mentions we do not consider game anymore and explain why -comfirm the platform we use(PC)

Work summary for last stage

Task	Members	Report	Question	Completeness
Focus Group in Y1 and Y2	All	1	/	100%
Literature review	All	/	/	50%
Questionaire	All	/	1	80%

Tasks for next stage

Task	Members	DDL
Questionnaire report	Yuting and Shiliang	11.12
Technical research paper	Ruizi and Yiming	11.12
Focus group in Y3	All	11.12
Prepare for the focus group question	shiliang	11.12
Prototype	Yiming	/
Use case diagram	Yani	/
Functionality report	Yijie	11.11
Email to AJ	shiliang	11.10

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
3	everyone should pay attention to wechat	cannot control time well	All	1 idea	every meeting

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
1	1	1	/	/	/

Comments

Now I feel that the moderator should do such work: summarize the work, throw out the topic, cause discussion, draw results, and promote the topic.

Because the first two projects need Yani, and she didn't come at first, so I did the later project first.

We identified the target population: the beginner of sorting algorithm.

After the meeting, we determined the requirements of the final version of the large document and the content to be reported next time.

Write something else I want to say: I found that when I made a prototype, even if I made a diagram, people didn't necessarily understand what I meant. So we have to explain them. Of course, pictures are better than no pictures.

Team 10 - 13th Meeting

Information

Time: 2020.11.12 10:00~10:30

Location: PMB 449

Chairperson: Ruizi Han

Secretary: Yijie Lu, Yuting Jiang

Translator: Yijie Lu, Yuting Jiang

Attendence:

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 30 minutes.

- 1. Report the result of questionnaire (About 5 minutes)
 - Shiliang Chen and Yuting Jiang take this part
 - Present some important result
- 2. Present the outcoming of Y1 and Y2 focus group (About 5 minutes)
 - Ruizi Han and Yani Huang take this part
 - Describe some innovative ideas
- 3. Discuss the software design direction (About 5 minutes)
 - Interesting, like game, or more focus on functionality?
- 4. Report what we will do in next phase (About 10 minutes)
 - o Interview
 - What we will do after finish requirement gathering
 - Quick look at our functional requirements

- Talk a little about our prototype
 - First explain that the prototype in bid document is designed by Timing Tang.
 - Yiming Tang introduce the initial version of prototype
- Literature review
- Timeline
- 5. Rasing questions and allocate tasks of next stage
 - Raise questions
 - Decide the chairperson and secretary of next meeting
 - o Decide the specific time of next meeting
 - Review all new action points, confirm and go through next stage's tasks

Minute

Outcomes

- 1. Questionnaire report (Time spent: 5 minutes)
 - Yuting reported 6 important information we have collected, and Heshan said the work is fine
 - Heshan suggested that the report can be written by LaTex.
- 2. Focus group information collecting (Time spent: 5 minutes)
 - Ruizi said Y1's ideas are not quite useful
 - Ruizi said Y2's ideas are relative useful, and we will consider to design a software has more functionality rather than has more game elements
 - Heshan agreed with ruizi.
- 3. Discuss the software design direction (About 5 minutes)
 - Heshan said that the previous prototype's selecting module like the visualgo's.
 - Yiming showed updated prototype, he will delete the skin shop and other game elements.
 - Shiliang stressed that we will focus on the functionality of the software, and the game mode will be deleted.
 - Heshan said our design pattern is fine, but the prototype should be written in English
- 4. Report what we will do in next phase (About 10 minutes)
- check the literature review
- feedback of focus groups
- Prepare for the introduction part
- stress the importance of git (introduce project feature of github)
- prototype presentation

-Next meeting:

• **Chairperson:** Yuting Jiang

• Secretary: Yani HUANG

• **Time:** 11/17

Last stage's action points review

Task	Members	Report	Question	Completeness
Questionnaire report	Yuting and Shiliang	1	1	100%
Technical research paper	Ruizi and Yiming	1	/	not finished
Focus group in Y3	All	1	/	100%
Prepare for the focus group question	shiliang	1	1	100%
Prototype	Yiming	1	/	not finished
Use case diagram	Yani	1	/	not finished
Functionality report	Yijie	1	add non- functional	50%
Email to AJ	shiliang	1	/	100%

Action points

Task	Members	DDL
Finish the literature review	Yijie LU, Ruizi HAN	11.17
Finish the focus group report(Year 3)	Shiliang Chen	11.17
Find out resources about technical analysis	Yiming TANG and ALL	11.17
Informal talk with Heng YU	Yijie LU, Yuting JIANG	11.13
Informal talk with Dave	Yani HUANG, Shiliang CHEN	11.18
Second version of prototype	Yiming TANG	11.17
Function documentation(non-functional)	Yijie LU	11.17
Release and collect questionnaires(for Year 1 students)	Shiliang CHEN	11.17
Finish the final questionnaire report	Yuting JIANG	11.18

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time
1	Decide whether to quit game mode	Affect the prototype design and functions documentation	All	Discuss in next meeting	/

Comments

For today's meeting, I prepared a draft script because I am really nervous about this formal meeting. Hence this led to an awkward situation, I paid too much attention on finishing what I planned to say, and did a poor job in responding supervisor and asking for more feedback. I didn't help the group to get useful information from supervisor, I should focus on interaction more next time and keep thinking during the meeting.

Team 10 - 14th Meeting

Information

Time: 2020.11.17 20:00~21:00

Location: Library

Chairperson: Yuting JIANG

Secretary: Yani HUANG

Translator: Yani HUANG

Attendence:

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 90 minutes.

- 1. Report the process of correct deadlines (About 15 minutes)
 - Literature review
 - Function documentation
 - Focus group report(total)
 - o Prototype
- 2. Questionnaire analysis (About 10 minutes)
- Focus on the different results
- 1. Website update (About 5 minutes)
- 2. Technical research (About 15 minutes)
 - Summarize current process and next step
 - Maybe focus on OS, Programming Language, Hardware, Software...
- 3. Description of Problem to be solved (About 5 minutes)
- 4. Check user stories (About 10 minutes)
- 5. UML diagrams (About 25 minutes)
 - Check current process (use case and sequence)

- Assign tasks
- 6. Next meeting prepare (About 5 minutes)

Minute

Outcomes

- 1. Yani and Shiliang ask Dave to comment on the current schedule
- 2. Correction: (Yuting adds the concept) Algorithm which terminated when putting legal inputs can be seen as algorithm fits the correctness rules. Instead, doesn't fit.
- 3. Yijie is responsible for writing expanded description
- 4. UML: Use case diagram: Shiliang, Yani; Sequence diagram: Ruizi
- 5. Prototype: change to English, add small logo and explanation (such as "learned recently")
- 6. Survey: Yuting is responsible for updating the data to the report
- 7. Report: Yuting and Yani integrate report using LaTeX.
- 8. Website maintenance: Yani
- 9. Requirement document: Yijie is responsible for updating requirement related documents.

Chairperson: YimingSecretary: Shiliang, Yani

• Time: 2020/11/20

Last stage's action points review

Task	Members	Report	Question	Completeness

Action points

Task	Members	DDL

Problems

| Priority(0 for highest, 5 for lowest) | Problem Description | Possible consequence | Proposer | Tentative Solution | Expected completion time |

Comments

Everything is finished except the technical research. The directions of technical research still need to be discussed in next meeting. And we need to decide which programming language we will use as soon as possible.

Team 10 - 15th Meeting

Information

Time: 2020.11.19 10:00-10:30(30 m)

Location: PMB449

Chairperson: Yiming Tang

Secretary: Shiliang Chen & Yani Huang

Translator:

Attendence: /7

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang Dr. Heshan
Late	0
Absent	0

Agenda

The whole meeting is expected to take 30 minutes.

1. Openning (1m)

Draft of Literature review is done, Interim Report and Use Case are under writing.

- 2. report of progress (20m)
 - 1. Literature Review

Have a look at draft.

2. Requirements

Confirm Functional Requirements.

Other:

1. UML and Use Case will be done by Shiliang and Yani

- 2. Sequence will be done by Ruizi
- 3. questionnaire report (2m)

We have interviewed the lecturer of Introduction to Programming and Algorithms. He helped to distribute the questionnaire. Please refer to the questionnaire report for detailed updates.

4. interview report (5m)

The interview report has sent to you. Any suggestions?

Shiliang will introduce a bit.

5. Prototype (10m)

Prototype is still under drawing. We have changed our mind, so now there is only one picture of it.

6. otheres

Website maintainer Yani

GitHub repository maintainer Yiming

Minute

Outcomes

- 1. Literature review
 - o picture in LaTex has some issues
 - citation style issue
 - citations are not all included
 - o grammar mistakes
 - o reference list style shall be consistent
 - o a short introduction at the beginning of each module
 - o Introduce a software with its name
 - o similar software shall be put together
 - URL as footnote
 - scratch picture in English
 - grammar mistakes shall be fixed
- 2. requirement document
 - introduce concept of requirements
 - o non functional one will be consulted with BGL
 - requirements shall not be to detail
 - multilingual issue
 - grammar mistakes shall be fixed
- 3. expanded description
 - fix the third part issue
 - o grammar mistakes shall be fixed
- 4. prototype

o introduced by email

Chairperson for next: Shiliang Chen

Secretary: Ruizi Han

Time: November 24th

What is going to be discussed in the next meeting:

revison:

1. use case diagram

2. requirement

3. expanded description

4. literature review

5. technical research

Work summary for last stage

Task	Members	Report	Question	Completeness

Tasks for next stage

Task	Members	DDL
improve use case diagram	Shiliang and Yani	11/20
improve requriement	Yiming	11/22
improve sequence diagram	Ruizi	11/23
improve literature review	Yijie	11/23
technical research	All	11/23
improve expanded description	Yiming	11/23
risk management	Yuting	11/23
improve questionnaire report	Shiliang	11/23
improve focus group report	Yuting and yani	11/23
consult BGL for use case	Yani	11/20
consult Dave 1. gap in literature/application 2. key work	Shiliang	11/19
problem encountered	/	11/20

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time

Comments

Team 10 - 16th Meeting

Information

Time: 2020.11.24 19:30-22:00 (2h30m)

Location: Library Project Room 11 2F

Chairperson: Shiliang Chen

Secretary: Ruizi Han

Translator: Yiming Tang & Ruizi Han

Attendence: 6/6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 150 minutes.

1. Review

Yiming Tang reviews last week

2. Document progress report

Introduce [the principle of alternation], to minimize the error probability

- 1. Literature Review
 - 1. Lu briefly talks about the current progress, how the modification is, if there are any problems that need help
 - 2. arrange the next reviewer
 - 3. If fully relavent, Do context and motivation have key work
 - 4. Focus Group

- 1. Jiang and Huang briefly talk about the revision progress of the focus group report,
- 2. arrange the next reviewer

5. Risk Management

1. Huang will talk about how the risk management and control module is done, whether it is finished or semi-finished, and then arrange for the next reviewer

6. Encountered Problems

- 1. Jiang would like to introduce the production progress of this piece, and then arrange the next reviewer
- 2. Identification and description of problems, clear analysis including causes, actions and causes, including remedial measures

2. Expanded description

- 1. Tang Yiming talks about the progress of the extended description modification, how to modify the third part, what content to put in, and then arranges for the next reviewer
- 2. Contextualised with clear explanation of the gap in literature/application, and how the GRP project will fill this gap.

3. Questionnaire report

1. Chen talks about the progress of the revision of the questionnaire report, and then arranged for the next reviewer

4. Sequence diagram

- 1. Han ruizi will introduce the progress of the sequence diagram, if there are any problems, and confirm with you
- 2. If there is no problem, it should be submitted to the next person for review. If there is any problem, continue to modify it

5. Prototype

- 1. Tang Yiming shows prototype progress
- 2. Emphasize the need for a clear and detailed description and explanation

6. Requirements Validation

1. Tang Yiming talks about the progress of the modification of the requirements document. Everyone pass them one by one (have time), and another person reviewed it (do not have time)

2. Use case diagram

1. Huang Yani will talk about the progress of use case diagram, BGL's reply, and then arrange for the next reviewer

3. Interview report

1. arrange for the next reviewer

4. User story

1. arrange for the next reviewer

3. Technical research & architecture design

Report on each member's progress and arrange the next detailed plan and personnel arrangement,

- o Determine OS, Programming Language, Hardware, Software and reasons
- o Platform, tool, technology, algorithm, data structure
- 4. Overall progress report

Some pictures

Utilization of GitHub team work

Tell me what to do at the next meeting

Assign candidates for next meeting

Restate the task of everyone today

- 5. O Classroom Booking
 - Readme to update host
 - The Secretary asked GitHub to assign tasks
 - Send out the task list that night
 - Everyone should follow up on the progress in time
 - Remember to write a personal diary every day

Minute

Outcomes

- 1. Summarize of last formal meeting
 - We need to focus more on some detailed part of interim report, such as grammer.
 - We should go through those documents ourselves first before the formal meeting.
- 2. Progress reports for existing documents' revision
 - Pair documenting: when one member finished his/her part, another member will help check again.
 - Key points for improving and modification:
 - Passage structure and logic
 - Content
 - Grammer
 - Extract important parts which should be put in inetrim report
 - Use simple short sentences
 - Literature Review
 - Yijie Lu
 - Focus group
 - Yuting Jiang and Yani Huang
 - Risk Management
 - Yani Huang
 - Encountered Problems

	Yuting Jiang
0	Expanded description
	Shiliang Chen
0	Questionnaire report
	Ruizi Han
0	Sequence diagram and description
	Ruizi Han
0	Prototype and description
	Yiming Tang
0	Latex
	Yuting Jiang
0	Confirmation of requirements
	Confirmed among team members
0	Use case diagram
	Yani Huang and Shiliang Chen Consult Bryan about use case diagram
0	Interview report
	Yiming Tang
0	User story
	Yijie Lu

- 3. Technical research & architecture design
 - Distributed technical research tasks, analyze pros and cons

o Platform: Ruizi Han

Language: Shiliang Chen

o IDEs: Yani Huang

• Data structure: need further discussion

Chairperson for next: Yijie Lu

Secretary: Yuting Jiang, Ruizi Han

Time: November 26th

What is going to be discussed in the next meeting:

- 1. Confirm requirement with supervisor
- 2. Show our yser story
- 3. Talk about technical research, briefly introduce our ideas
- 4. Discuss architecture design

Action points

Task	Members	DDL
Improve and modify literature review part	Yijie Lu	11.28
Improve and modify user story	Yijie Lu	11.28
Improve and modify focus group report	Yuting Jiang, Yani Huang	11.28
Improve and modify encountered problems	Yuting Jiang	11.28
Improve and modify risk management part	Shiliang Chen	11.28
Improve and modify use case diagram	Yani Huang, Shiliang Chen	11.28
Consult Bryan use case related questions	Yani Huang, Shiliang Chen	11.26
Write technicle research - IDE part	Yani Huang	11.28
Prototype	Yiming Tang	11.28
Write prototype description	Yiming Tang	11.28
Improve and modify interview report	Yiming Tang	11.28
Improve and modify expanded description	Shiliang Chen	11.28
Write technicle research - language part	Shiliang Chen	11.28
Write technicle research - platform part	Ruizi Han	11.28
Write description of sequence diagram	Ruizi Han	11.28
Improve and modify questionnaire report	Ruizi Han	11.28
Modify requirements document according to Dr. Du's opinion and email it to Dr. Du	Shiliang Chen	11.27

Comments

This meeting has not been held smoothly.

The main task for this meeting are reporting and discussion and redistribution of items reported. However, the progress was not smooth and the assigned tasks were not well completed.

- Shiliang Chen and Yani Huang's use case diagram has stalled because they haven't ask Bryan.
- Yiming Tanf's requirement document has not been modified.
- Lu Yijie's literature review task is wrong
- Everyone's technical research is progressing poorly

This may due to the following reasons:

- The expected time has not claimed before the meeting
- DMS course burden is too heavy
- Classroom's temperature is too high
- Meeting which focus on discussion are more appropriate
- Progress may need to be followed up before the meeting
- Chairperson may supervise the task for a certain period of time after the meeting.

Team 10 - 17th Meeting

Information

Time: 2020.11.26 10:00~10: 30

Location: PMB 429

Chairperson: Yijie Lu

Secretary: Ruizi Han and Yuting Jiang

Translator: Ruizi Han and Yuting Jiang

Attendence:

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 30 minutes.

- 1. Confirm the Requirement (About 10 minutes)
 - Confirm the detail
- 2. Confirm the user story (About 5 minutes)
 - o Confirm the detail
- 3. Confirm the technical Research (About 10 minutes)
 - o pre what sections we will take
 - raise questions about the data structure
- 4. Rasing questions and allocate tasks of next stage (About 5 minutes)
 - Raise questions
 - o announce what works we will show on the meeting next time

Minute

Outcomes

- 1. Confirm the Requirement (Time spent: 15 minutes)
 - Add definition or explaination of requirement and specification, maybe refer to textbook.
 - 4 priorities are too many, maybe deduct to 2, e.g. 'must' part and 'optional' part. Can also explain why we separate requirements in that way.
 - Send Dr. Du the modified version of requirements before Friday.
 - Be explicit to specific words like 'module'.
 - Confirm with Dr. Boon Giin Lee, is multi-language functional or non-functional requirement.
- 2. Confirm the user story (Time spent: 5 minutes)
 - Dr. Du think user story should be presented before requirements. This should be further discussed.
 - Assign numbers to requirements and user story.
- 3. Confirm the technical Research (Time spent: 10 minutes)
 - Data structure:
 - For sorting algorithms' data structure, array and linked list can be used, their time complexity are the same, while space comlexity are not.
 - For the data structure of software, it is better to confirm this with Dave.
 - Write advantages and disadvantages of platforms, languages and IDEs, could include preference. Maybe include some citations, refer to website or paper.
- 4. Rasing questions and allocate tasks of next stage (Time spent: 3 minutes)
 - Draft interim report will be presented.
 - UMLs
- 5. Preparation for next meeting (Time spent: 3 minutes)

Chairperson: Yuting JiangSecretary: Yiming Tang

• **Time:** 12.1 19:30

Last stage's action points review

Task	Members	Report	Question	Completeness

Action points

Task	Members	DDL
Improve and modify context part of interim report	All	11.28
Write technicle research part	Yani Huang, Shiliang Chen, Ruizi Han	11.28
Modify requirements document according to Dr. Du's opinion and email it to Dr. Du	Shiliang Chen	11.27
Ask Dr. Boon Giin Lee use case diagram related questions	Shiliang Chen, Yani Huang	11.26
Improve and modify use case diagram	Shiliang Chen, Yani Huang	11.28
Improve sequence diagram and write description	Ruizi Han	11.28
Improve prototype and write description	Yiming Tang	12.7

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time

Comments

Chairperson should make sure to send the agenda to supervisor before the meeting

Team 10 - 18th Meeting

Information

Time: 2020.12.1

Location: Library Project Room 5

Chairperson: Yuting JIANG

Secretary: Yiming TANG

Translator:

Attendence: 6/6

Members	Yiming Tang, Shiliang Chen, Yani Huang, Ruizi Han, Yijie Lu, Yuting Jiang
Late	0
Absent	0

Agenda

The whole meeting is expected to take 120 minutes.

Interim report draft

- 1. Check the cover (About 5 minutes)
- 2. Introduction (About 6 minutes)

write intro and check version

3. Background and Related Work (About 6 minutes)

check version

- 4. Software Requirements Engineering (About 15 minutes)
 - Confirm final version of questionnaire report, focus group report, and interview report.
 - Requirements Specification version check
 - Confirm final version of UMLs and user story
- 5. Design (About 15 minutes)

Discuss the content

6. Implementation (About 15 minutes)

Discuss the content

- 7. Problem Encountered and Risk Management (About 8 minutes)
 - Double check of Problem Encountered file.
 - Double check risk management.
- 8. Time line (About 5 minutes)
 - Confirm final version
 - Discuss description
- 9. Conclusion (About 5 minutes)
 - Discuss the content
- 10. Bibliography (About 10 minutes)
 - Confirm the format
 - Assign all reference
- 11. Appendix (About 15 minutes)
 - Discuss the content
- 12. Any additional content (About 10 minutes)

Minute

Latest Timeline

Dec 1 - 2 Finish draft version

Dec 4 - 7 DMS

9 Final version

Interm Report

Put the minutes in as an attachment

Cover:

1. three members first line and three members the second line (put Lu below), with a space

between the name and the student number in brackets.

Main body:

1. Intro

intro of intro

2.

- 2.2.1 TR catalog: Case unification
- 2.2.2 Simple software analysis -> existing similiar software

3.

- 3.1 requirements elicitation > requirements elicitation and gathering
- 3.1.1 focus group in front of surveyUser story and requirement are the same level, which are placed in 3.2

Add a short paragraph of requirements validation, which is confirmed in the group first, and then confirmed with Stackholder and Heshan.

Diagrams should be put in design

4.

UML, Low precision prototype

Javaweb, IDEA, Java

Don't put data structure

Build tools, like Maven

TR three people check each other's, write their own conclusion The conclusion of technical research: each point is less than 100 words

5. Implementation

High precision prototypes

Relevant decisions should also be put in, and the place Colin wrote about "how to decide to do it" should be put in.

- 6. Issues and Risk management
- 7. timeline

Gantt chart. This may be too long. Turn it 90 degrees or split it into two pages.

- 8. Conclusion
- 9. Reference

sorted out a file where there were references, and unified citation format.

10. Appendix

Questionnaire content, questionnaire report, focus group report and meeting minutes [need to be sorted out, but if there is no time to sort out, the existing meeting minutes will be directly converted to PDF and put on it]

Write a little description under each headline.

Determine the version for everyone. The final version of the questionnaire report needs to be simplified.

need to put a short paragraph between 3.x and 3.x.1.

Tasks for next stage

Task	Members	DDL
5 Implementation	Tang	12.2
Questions and Risk Management	Lu	12.2
Requirements Validation	Tang	12.2
Cover, Table of contents	Jiang	12.2
Technical Research	Han, Chen, Huang	12.2
Sort out minutes	Lu, Huang, Tang	12.9
Short paragraph between 3.x and 3.x.1	Jiang	12.2
Intro of Intro	Han	12.2

Problems

Priority(0 for highest, 5 for lowest)	Problem Description	Possible consequence	Proposer	Tentative Solution	Expected completion time

Comments