```
DIALOG(R)File 351:Derwent WPI
(c) 2001 Derwent Info Ltd. All rts. reserv.
009565138
WPI Acc No: 1993-258686/199332
XRAM Acc No: C93-114929
 New granulocyte colony stimulating factor fusion proteins - contq.
 stabilising protein, for treating leukopenia, leukaemia, etc.
Patent Assignee: RHONE POULENC RORER SA (RHON ); RHONE-POULENC RORER SA
  (RHON )
Inventor: YEH P
Number of Countries: 022 Number of Patents: 007
Patent Family:
Patent No
             Kind
                    Date
                            Applicat No
                                           Kind
                                                  Date
                                                           Week
WO 9315211
              A1
                  19930805
                            WO 93FR86
                                            Α
                                                19930128
                                                          199332 B
FR 2686900
              A1
                  19930806
                            FR 921065
                                            Α
                                                19920131
                                                          199344
FI 9403564
              Α
                  19940729
                            WO 93FR86
                                            Α
                                                19930128
                                                          199437
                            FI 943564
                                            Α
                                               19940729
NO 9402858
                  19940801
                            WO 93FR86
                                            Α
                                               19930128
                                                          199438
                            NO 942858
                                            Α
                                               19940801
EP 624200
              A1 19941117
                            EP 93904130
                                               19930128
                                            Α
                                                          199444
                            WO 93FR86
                                            Α
                                                19930128
JP 7503844
                  19950427
                            JP 93512987
                                            Α
                                                19930128
                                                          199525
                            WO 93FR86
                                            Α
                                               19930128
US 5665863
                  19970909
                            WO 93FR86
                                               19930129
                                            Α
                                                          199742
                            US 94256938
                                            Α
Priority Applications (No Type Date): FR 921065 A 19920131
Cited Patents: DE 3723781; EP 361991; EP 364980; EP 395918; EP 401384; WO
  9013653
Patent Details:
Patent No Kind Lan Pg
                        Main IPC
                                     Filing Notes
             A1 F 36 C12N-015/62
WO 9315211
   Designated States (National): CA FI JP NO US
   Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL
   PT SE
```

FR 2686900 A1 26 C12P-021/02

EP 624200 A1 F C12N-015/62 Based on patent WO 9315211
Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LI LU NL
PT SE

JP 7503844 W C12N-015/09 Based on patent WO 9315211 US 5665863 A 32 C12N-015/27 Based on patent WO 9315211 FI 9403564 A C12N-000/00

FI 9403564 A C12N-000/00 NO 9402858 A C12N-000/00

Abstract (Basic): WO 9315211 A

New recombinant polypeptides (I) comprise an active portion (II) coupled to a protein stabilising structure (III), where (II) comprises all or part of human granulocyte colony stimulating factor (G-CSF) or a G-CSF variant.

Also claimed are: (1) nucleotide sequences coding for (I); (2) expression cassettes contg. such a nucleotide sequence under the control of a transcription initiation region and opt. a transcription termination region; (3) self-replicating plasmids contg. such expression cassettes; and (4) recombinant eukaryotic or prokaryotic cells contg. such sequences, cassettes or plasmids.

USE/ADVANTAGE - (I) may be used to treat diseases requiring an increase in granulocyte count and/or activity, esp. leucopenia and certain forms of leukaemia, or to stimulate the immune system during transplantation (e.g. of bone marrow) or after cancer chemotherapy. (I) are capable of maintaining G-CSF activity for long periods in vivo. E.g., a specifically disclosed polypeptide (HSA-G-CSF) has lowerf activity than native G-CSF in vitro but comparable activity in vivo. Dwq.0/8

Title Terms: NEW; GRANULOCYTE; COLONY; STIMULATING; FACTOR; FUSE; PROTEIN; CONTAIN; STABILISED; PROTEIN; TREAT; LEUKOPENIA; LEUKAEMIA

Derwent Class: B04; D16

International Patent Class (Main): C12N-000/00; C12N-015/09; C12N-015/27;
C12N-015/62; C12P-021/02

International Patent Class (Additional): A61K-037/02; A61K-038/00; C07K-013/00; C07K-014/53; C12N-001/19; C12N-015/14; C12N-015/81; C12R-001-645

File Segment: CPI

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

لَرَ

(51) Classification internationale des brevets 5 : C12N 15/62, 1/19, A61K 37/02 C07K 13/00, C12N 15/27, 15/14 // (C12N 1/19, C12R 1:645)	A1	(11) Numéro de publication internationale: WO 93/1521 (43) Date de publication internationale: 5 août 1993 (05.08.9)
(21) Numéro de la demande internationale: PCT/FR (22) Date de dépôt international: 28 janvier 1993		BE, CH, DE, DK, ES, FR, GB, GR, IF, IT, LII, MC
(30) Données relatives à la priorité: 92/01065 31 janvier 1992 (31.01.92	2) :	Publiée FR Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification de revendinations, sera republiée si de telles modifications con

reçues.

- (71) Deposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond-Aron, F-92160 Antony (FR).
- (72) Inventeur; et (75) Inventeur/Déposant (US seulement): YEH, Patrice [FR/ FR]; 11 bis, rue Lacepede, F-75005 Paris (FR).
- (74) Mandataire: BECKER, Philippe; Rhône-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR).

evendications, sera republiée si de telles modifications sont

- (54) Title: NEW POLYPEPTIDES HAVING GRANULOCYTE COLONY STIMULATING ACTIVITY, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAID POLYPEPTIDES
- (54) Titre: NOUVEAUX POLYPEPTIDES AYANT UNE ACTIVITE DE STIMULATION DES COLONIES DE GRANU-LOCYTES, LEUR PREPARATION ET COMPOSITIONS PHARMACEUTIQUES LES CONTENANT

(57) Abstract

New polypeptides having human granulocyte colony stimulating activity, preparation thereof and pharmaceutical compositions containing said polypeptides.

(57) Abrégé

La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humains, leur préparation et des compositions pharmaceutiques les contenant.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanic
AU	Australie	GA	Gahon	MW	Malawi
88	Barbade	GB	Royaume-Uni	NL	Pays-Bas
BE	Belgique	GN	Guinče	NO	Norvège
8F	Burkina Faso	CR	Grèce	NZ	Nouvelle-Zélande
BC	Bulgarie	HU	Hongriu	PL	Pologne
BJ	Bénin	IE	Irlande	PT	Portugal
BR	Brésil	IT	Italie	RO	Roumanie
CA	Canada	JP	Japon	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique	SD	Soudan
CC	Congo		de Corée	SB	Suède
CH	Suisse	KR	République de Corée	SK	République slovaque
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Sénégal
CM	Cameroun	LI	Liechtenstein	SU	Union sovičtime
cs	Tchécoslovaquic ·	LK	Sri Lanka	TD	Tchad
CZ	République (chèque	LU	Luxembourg	TC	Togo
DE	Allemagne	MC	Monaco	UA	Ukraine
DK	Danemark	MG	Madagascar	US	Etats-Unis d'Amérique
ES	Espagne	ML.	Mali	VN	Vict Nam
FI	Finlande	MN	Mongolic		

1

NOUVEAUX POLYPEPTIDES AYANT UNE ACTIVITE DE STIMULATION DES COLONIES DE GRANULOCYTES. LEUR PREPARATION ET COMPOSITIONS PHARMACEUTIQUES LES CONTENANT

La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humain, leur préparation et des compositions pharmaceutiques les contenant.

5

10

15

20

25

30

La présente invention concerne en particulier des polypeptides chimères composés d'une partie biologiquement active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF, et d'une structure stabilisatrice essentiellement protéique lui conférant de nouvelles propriétes biologiques.

Le G-CSF humain est un polypeptide sécrété de 174 acides aminés, ayant un poids moléculaire de 18 kD environ. Il a été isolé initialement à partir d'une lignée cellulaire cancéreuse (EP 169 566), et son gène a été cloné, séquencé, et exprimé dans différents hôtes cellulaires par les techniques du génie génétique (EP 215 126, EP 220 520). Un ARNm codant potentiellement pour une forme du G-CSF ayant 177 acides aminés a par ailleurs été mis en évidence [Nagata S. et al., EMBO J. 5 (1986) 575-581]. Le G-CSF possède la capacité de stimuler la différentiation et la prolifération de cellules progénitrices de la moelle osseuse en granulocytes. A ce titre, il possède la capacité de stimuler les capacités protectrices de l'organisme contre l'infection en favorisant la croissance des polynucléaires neutrophiles et leur différentiation aboutissant à la maturité. Il est ainsi capable d'activer les fonctions prophylactiques de l'organisme, et peut être utilisé dans différentes situations pathologiques dans lesquelles le nombre de neutrophiles est anormalement faible, ou dans lesquelles le système immunitaire doit être renforcé. De telles situations surviennent par exemple à la suite des traitements de chimiothérapie anticancéreuse, lors de greffes, et en particulier de greffes de moelle osseuse, ou lors des leukopénies.

L'un des inconvénients du G-CSF actuellement disponible réside dans le fait qu'il est dégradé rapidement par l'organisme une fois administré. Ceci est d'autant plus sensible que le G-CSF est généralement utilisé à des doses faibles. De plus, l'utilisation de doses plus importantes n'a pu permettre d'améliorer les capacités

15

20

25

30

thérapeutiques de cette molécule et peut induire des effets secondaires indésirables. Ces phénomènes d'élimination et de dégradation in vivo constituent donc pour l'instant un obstacle à l'exploitation de l'activité biologique du G-CSF en tant qu'agent pharmaceutique.

La présente invention permet de remédier à ces inconvénients. La présente invention fournit en effet de nouvelles molécules permettant une exploitation optimale sur le plan thérapeutique des propriétés biologiques du G-CSF. La demanderesse a en effet mis en évidence que l'activité optimale du G-CSF se manifestait lorsque le G-CSF était présent à faible dose et pendant un temps prolongé. La demanderesse a maintenant réalisé des molécules capables de maintenir dans l'organisme une activité G-CSF pendant un temps suffisamment long. De plus, la demanderesse a montré qu'il est possible d'exprimer dans des hôtes cellulaires à des niveaux élevés des fusions génétiques générant des chimères présentant de nouvelles propriétés pharmacocinétiques et les propriétés biologiques désirables du G-CSF. En particulier, les polypeptides hybrides de l'invention conservent leur affinité pour les récepteurs du G-CSF, et sont suffisamment fonctionnels pour conduire à la prolifération et à la différentiation cellulaire. Les molécules de l'invention possèdent par ailleurs une distribution et des propriétés pharmacocinétiques particulièrement avantageuses dans l'organisme et permettent le développement thérapeutique de leur activité biologique.

Un objet de la présente invention concerne donc des polypeptides recombinants comportant une partie active constituée par tout ou partie du G-CSF, ou d'un variant du G-CSF, et une structure stabilisatrice essentiellement protéique.

Au sens de la présente invention, le terme variant du G-CSF désigne toute molécule obtenue par modification de la séquence comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, conservant une activité G-CSF, c'est-à-dire la capacité de stimuler la différenciation des cellules cibles et la formation de colonies de granulocytes. Cette séquence corresponds à celle du G-CSF mature décrite par Nagata et al. [EMBO J. 5 (1986) 575-581]. Par modification, on doit entendre toute mutation, substitution, délétion, addition ou modification consécutive à une action de nature génétique et/ou chimique. De tels variants peuvent être générés dans des buts différents, tels que notamment celui d'augmenter l'affinité de la molécule pour le(s) récepteur(s) du G-CSF, celui d'améliorer ses

15

20

25

30

niveaux de production, celui d'augmenter sa résistance à des protéases, celui d'augmenter son efficacité thérapeutique ou de réduire ses effets secondaires, ou celui de lui conférer de nouvelles propriétés pharmacocinétiques et/ou biologiques.

Des polypeptides de l'invention particulièrement avantageux sont ceux dans lesquels la partie biologiquement active possède :

- (a) la séquence peptidique comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, ou,
 - (b) une partie de la structure (a), ou,
- (c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution addition et/ou délétion d'un ou plusieurs résidus) et ayant une activité biologique identique ou modifiée. Ce dernier type de polypeptides comprend par exemple les molécules dans lesquelles certains sites de glycosylation ont été modifiés ou supprimés, ainsi que des molécules dans lesquelles un, plusieurs, voire tous les résidus cystéine ont été substitués. Il comprend également des molécules obtenues à partir de (a) ou (b) par délétion de régions n'intervenant pas ou peu dans l'activité, ou intervenant dans une activité indésirable, et des molécules comportant par rapport à (a) ou (b) des résidus supplémentaires, tels que par exemple une méthionine N-terminale ou un signal de sécrétion.

Plus préférentiellement, les polypeptides chimères de l'invention comprennent une partie active de type (a).

La partie active des molécules de l'invention peut être couplée à la structure stabilisatrice protéique, soit directement, soit par l'intermédiaire d'un peptide de jonction. De plus, elle peut constituer l'extrémité N-terminale comme l'extrémité C-terminale de la molécule. Préférentiellement, dans les molécules de l'invention, la partie active constitue la partie C-terminale de la chimère.

Comme indiqué plus haut, la structure stabilisatrice des polypeptides de l'invention est essentiellement protéique.

Préférentiellement, cette structure est un polypeptide possédant une demievie plasmatique élevée. A titre d'exemple, il peut s'agir d'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transferrine. Il peut également s'agir de peptides dérivés de telles protéines par modifications structurales, ou de peptides synthétisés artificiellement ou semi-artificiellement, et possédant une

4

demie-vie plasmatique élevée. Par ailleurs, la structure stabilisatrice utilisée est plus préférentiellement un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel les polypeptides de l'invention sont utilisés.

Dans un mode de réalisation particulièrement avantageux de l'invention, la structure stabilisatrice est une albumine ou un variant de l'albumine et par exemple la sérum-albumine humaine (SAH). Il est entendu que les variants de l'albumine désignent toute protéine à haute demie-vie plasmatique obtenue par modification (mutation, délétion et/ou addition) par les techniques du génie génétique d'un gène codant pour un isomorphe donné de la sérum-albumine humaine, ainsi que toute macromolécule à haute demie-vie plasmatique obtenue par modification in vitro de la protéine codée par de tels gènes. L'albumine étant très polymorphe, de nombreux variants naturels ont dèjà été identifiés, et plus de 30 types génétiques différents ont été répertoriés [Weitkamp L.R. et al., Ann. Hum. Genet. 37 (1973) 219]. Plus préférentiellement, la structure stabilisatrice est une albumine mature.

A titre d'exemples on peut citer des polypeptides de l'invention comportant, dans le sens N-terminal --> C-terminal, (i) la séquence de la SAH mature couplée directement à la séquence du G-CSF mature (cf. Figure 1), ou (ii) la séquence du G-CSF mature couplée par l'intermédiaire d'un peptide de liaison à la séquence de la SAH mature.

15

20

25

Un autre objet de l'invention concerne un procédé de préparation des molécules chimères décrites ci-avant. Plus précisément, ce procédé consiste à faire exprimer par un hôte cellulaire eucaryote ou procaryote une séquence nucléotidique codant pour le polypeptide désiré, puis à récolter le polypeptide produit.

Parmi les hôtes eucaryotes utilisables dans le cadre de la présente invention, on peut citer les cellules animales, les levures, ou les champignons. En particulier, s'agissant de levures, on peut citer les levures du genre Saccharomyces, Kluyveromyces, Pichia, Schwanniomyces, ou Hansenula. S'agissant de cellules animales, on peut citer les cellules COS, CHO, Cl27, etc... Parmi les champignons susceptibles d'être utilisés dans la présente invention, on peut citer plus particulièrement Aspergillus ssp. ou Trichoderma ssp. Comme hôtes procaryotes, on préfère utiliser les bactéries telles que Escherichia coli, ou appartenant aux genres Corvnebacterium, Bacillus, ou Streptomyces.

5

Les séquences nucléotidiques utilisables dans le cadre de la présente invention peuvent être préparées de différentes manières. Généralement, elles sont obtenues en assemblant en phase de lecture les séquences codant pour chacune des parties fonctionnelles du polypeptide. Celles-ci peuvent être isolées par les techniques de l'homme de l'art, et par exemple directement à partir des ARN messsagers (ARNm) cellulaires, ou par reclonage à partir d'une banque d'ADN complémentaire (ADNc) isolé à partir de cellules productrices, ou encore il peut s'agir de séquences nucléotidiques totalement synthétiques. Il est entendu de plus que les séquences nucléotidiques peuvent également être ultérieurement modifiées, par exemple par les techniques du génie génétique, pour obtenir des dérivés ou des variants desdites séquences.

10

15

20

25

30

Plus préférentiellement, dans le procédé de l'invention, la séquence nucléotidique fait partie d'une cassette d'expression comprenant une région d'initiation de la transcription (région promoteur) permettant, dans les cellules hôtes, l'expression de la séquence nucléotidique placée sous son contrôle et codant pour les polypeptides de l'invention. Cette région peut provenir de régions promoteurs de gènes fortement exprimés dans la cellule hôte utilisée, l'expression étant constitutive ou régulable. S'agissant de levures, il peut s'agir du promoteur du gène de la phosphoglycérate kinase (PGK), de la glycéraldéhyde-3-phosphate déshydrogénase (GPD), de la lactase (LAC4), des énolases (ENO), des alcools deshydrogénases (ADH), etc... S'agissant de bactéries, il peut s'agir du promoteur des gènes droit ou gauche du bactériophage lambda (PL, PR), ou encore des promoteurs des gènes des opérons tryptophane (Ptrp) ou lactose (Plac). En outre, cette région de contrôle peut être modifiée, par exemple par mutagénèse in vitro, par introduction d'éléments additionnels de contrôle ou de séquences synthétiques, ou par des délétions ou des substitutions des éléments originels de contrôle. La cassette d'expression peut également comprendre une région de terminaison de la transcription fonctionnelle dans l'hôte envisagé, positionnée immédiatement en aval de la séquence nucléotidique codant pour un polypeptide de l'invention.

Dans un mode préféré, les polypeptides de l'invention résultent de l'expression dans un hôte eucaryote ou procaryote d'une séquence nucléotidique et de la sécrétion du produit d'expression de ladite séquence dans le milieu de culture. Il est en effet particulièrement avantageux de pouvoir obtenir par voie recombinante des molécules directement dans le milieu de culture. Dans ce cas, la séquence

6

nucléotidique codant pour un polypeptide de l'invention est précédée d'une séquence "leader" (ou séquence signal) dirigeant le polypeptide naissant dans les voies de sécrétion de l'hôte utilisé. Cette séquence "leader" peut être la séquence signal naturelle du G-CSF ou de la structure stabilisatrice dans le cas où celle-ci est une protéine naturellement sécrétée, mais il peut également s'agir de toute autre séquence "leader" fonctionnelle, ou d'une séquence "leader" artificielle. Le choix de l'une ou l'autre de ces séquences est notamment guidé par l'hôte utilisé. Des exemples de séquences signal fonctionnelles incluent celles des gènes des phéromones sexuelles ou des toxines "killer" de levures.

10

En plus de la cassette d'expression, un ou plusieurs marqueurs permettant de sélectionner l'hôte recombiné peuvent être additionnés, tels que par exemple le gène <u>URA</u>3 de la levure <u>S. cerevisiae</u>, ou des gènes conférant la résistance à des antibiotiques comme la généticine (G418) ou à tout autre composé toxique comme certains ions métalliques.

15

L'ensemble constitué par la cassette d'expression et par le marqueur de sélection peut être introduit directement dans les cellules hôtes considérées, soit inséré préalablement dans un vecteur autoréplicatif fonctionnel. Dans le premier cas, des séquences homologues à des régions présentes dans le génôme des cellules hôtes sont préférentiellement additionnées à cet ensemble; lesdites séquences étant alors positionnées de chaque côté de la cassette d'expression et du gène de sélection de façon à augmenter la fréquence d'intégration de l'ensemble dans le génôme de l'hôte en ciblant l'intégration des séquences par recombinaison homologue. Dans le cas où la cassette d'expression est insérée dans un système réplicatif, un système de réplication préféré pour les levures du genre Kluyveromyces est dérivé du plasmide pKD1 initialement isolé de K. drosophilarum; un système préféré de réplication pour les levures du genre Saccharomyces est dérivé du plasmide 2µ de S. cerevisiae. De plus, ce plasmide d'expression peut contenir tout ou partie desdits systèmes de réplication, ou peut combiner des éléments dérivés du plasmide pKD1 aussi bien que du plasmide 2µ.

30

25

En outre, les plasmides d'expression peuvent être des vecteurs navettes entre un hôte bactérien tel que <u>Escherichia coli</u> et la cellule hôte choisie. Dans ce cas, une origine de réplication et un marqueur de sélection fonctionnant dans l'hôte bactérien sont requises. Il est également possible de positionner des sites de

7

restriction entourant les séquences bactériennes et uniques sur le vecteur d'expression: Ceci permet de supprimer ces séquences par coupure et religature in vitro du vecteur tronqué avant transformation des cellules hôtes, ce qui peut résulter en une augmentation du nombre de copies et en une stabilité accrue des plasmides d'expression dans lesdits hôtes. Par exemple, de tels sites de restriction peuvent correspondre aux séquences telles que 5'-GGCCNNNNNGGCC-3' (SfiI) ou 5'-GCGGCCGC-3' (NotI) dans la mesure où ces sites sont extrêmement rares et généralement absents d'un vecteur d'expression.

Après construction de tels vecteurs ou cassette d'expression, ceux-ci sont introduits dans les cellules hôtes retenues selon les techniques classiques décrites dans la littérature. A cet égard, toute méthode permettant d'introduire un ADN étranger dans une cellule peut être utilisée. Il peut s'agir notamment de transformation, électroporation, conjugaison, ou toute autre technique connue de l'homme de l'art. A titre d'exemple pour les hôtes de type levure, les différentes souches de Kluyveromyces utilisées ont été transformées en traitant les cellules entières en présence d'acétate de lithium et de polyéthylène glycol, selon la technique décrite par Ito et al. [J. Bacteriol. 153 (1983) 163]. La technique de transformation décrite par Durrens et al. [Curr. Genet. 18 (1990) 7] utilisant l'éthylène glycol et le diméthylsulfoxyde a également été utilisée. Il est aussi possible de transformer les levures par électroporation, selon la méthode décrite par Karube et al. [FEBS Letters 182 (1985) 90]. Un protocole alternatif est également décrit en détail dans les exemples qui suivent.

10

15

20

25

30

Après sélection des cellules transformées, les cellules exprimant lesdits polypeptides sont inoculées et la récupération desdits polypeptides peut être faite, soit au cours de la croissance cellulaire pour les procédés "en continu", soit en fin de croissance pour les cultures "en lots" ("batch"). Les polypeptides qui font l'objet de la présente invention sont ensuite purifiés à partir du surnageant de culture en vue de leur caractérisation moléculaire, pharmacocinétique et biologique.

Un système d'expression préféré des polypeptides de l'invention consiste en l'utilisation des levures du genre <u>Kluyveromyces</u> comme cellule hôte, transformées par certains vecteurs dérivés du réplicon extrachromosomique pKD1 initialement isolé chez <u>K. marxianus</u> var. <u>drosophilarum</u>. Ces levures, et en particulier <u>K. lactis</u> et <u>K. fragilis</u> sont généralement capables de répliquer lesdits vecteurs de façon stable et

possèdent en outre l'avantage d'être incluses dans la liste des organismes G.R.A.S. ("Generally Recognized As Safe"). Des levures privilégiées sont préférentiellement des souches industrielles du genre Kluyveromyces capables de répliquer de façon stable lesdits plasmides dérivés du plasmide pKD1 et dans lesquels a été inséré un marqueur de sélection ainsi qu'une cassette d'expression permettant la sécrétion à des niveaux élevés des polypeptides de l'invention.

•

La présente invention concerne également les séquences nucléotidiques codant pour les polypeptides chimères décrits ci-avant, ainsi que les cellules recombinantes, eucaryotes ou procaryotes, comprenant de telles séquences.

10

20

25

30

La présente invention concerne aussi l'application à titre de médicament des polypeptides selon la présente invention. Plus particulièrement, l'invention a pour objet toute composition pharmaceutique comprenant un ou plusieurs polypeptides tel que décrit ci-avant. Plus particulièrement, ces compositions peuvent être utilisées dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées. Notamment, elles peuvent être utilisées pour la prévention ou le traitement des leukopénies ou de certaines leucémies, ou dans le cas de greffes ou de traitement anticancéreux, pour renforcer ou restaurer le système immunitaire.

La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

LISTE DES FIGURES

Les représentations des plasmides indiquées dans les Figures suivantes ne sont pas traçées à l'échelle et seuls les sites de restriction importants pour la compréhension des clonages réalisés ont été indiqués.

Figure 1: Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1259 (chimère prépro-SAH-G.CSF). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction MstII, ApaI et SstI (SacI) sont soulignés. La séquence peptidique du G-CSF est en italique (Thr586->Pro759, la numérotation des acides aminés correspond à la protéine chimère mature).

10

15

20

25

Figure 2: Schématisation des chimères du type SAH-G.CSF (A), du type G.CSF-SAH (B) ou G.CSF-SAH-G.CSF (C). Abréviations utilisées: M/LP, méthionine initiatrice de la traduction, éventuellement suivie d'une séquence signal de sécrétion; SAH, sérum-albumine humaine mature ou un de ses variants; G.CSF, peptide dérivé du G-CSF et ayant une activité identique ou modifiée. La flèche noire indique l'extrémité N-terminale de la protéine mature.

Figure 3: Carte de restriction du plasmide pYG105 et stratégie de construction des plasmides d'expression des protéines chimères de la présente invention. Abréviations utilisées: P, promoteur transcriptionnel; T, terminateur transcriptionnel; IR, séquences répétées inversées du plasmide pKD1; LPSAH, région "prépro" de la SAH; Apr et Kmr désignent respectivement les gènes de résistance à l'ampicilline (E. coli) et au G418 (levures).

Figure 4: Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers) de la souche CBS 293.91 transformée par les plasmides pYG1266 (plasmide d'expression d'une chimère du type SAH-G.CSF) et pKan707 (plasmide contrôle). Dans cette expérience les résultats des panneaux A, B, et C ont été migrés sur le même gel (SDS-PAGE 8,5 %) puis traités séparemment.

A, coloration au bleu de coomassie; standard de poids moléculaire (piste 2) ; surnageant équivalent à $100~\mu l$ de la culture transformée par les plasmides pKan707 en milieu YPL (piste 1), ou pYG1266 en milieu YPD (piste 3) ou YPL (piste 4).

- B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain: même légende qu'en A.
- C, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre l'albumine humaine: même légende qu'en A.
- Figure 5: Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1301 (chimère G.CSF-Gly4-SAH). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction ApaI, SstI (SacI) et MstII sont soulignés. Les domaines G.CSF (174 résidus) et SAH (585 résidus) sont séparés par le linker synthétique GGGG. La numérotation des acides aminés corresponds à la protéine chimère G.CSF-Gly4-SAH mature (763 résidus). La séquence nucléotidique comprise entre le codon de terminaison de la traduction et le

15

20

25

30

site <u>Hind</u>III provient de l'ADN complémentaire (cDNA) de la SAH tel que décrit dans la demande de brevet EP 361 991.

Figure 6: Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers en milieu YPD) de la souche CBS 293.91 transformée par les plasmides pYG1267 (chimère SAH-G.CSF), pYG1303 (chimère G.CSF-Gly4-SAH) et pYG1352 (chimère SAH-Gly4-G.CSF) après migration sur gel SDS-PAGE 8,5 %.

A, coloration au bleu de coomassie; surnageant équivalent à 100 µl de la culture transformée par les plasmides pYG1303 (piste 1), pYG1267 (piste 2) ou pYG1352 (piste 3); standard de poids moléculaire (piste 4).

B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain : même légende qu'en A.

Figure 7: Activité sur la prolifération cellulaire <u>in vitro</u> de la lignée murine NFS60. La radioactivité (³H-thymidine) incorporée dans les noyaux cellulaires après 6 heures d'incubation est représentée en ordonnée (cpm); la quantité de produit indiquée en abscisse est exprimée en molarité (unités arbitraires).

Figure 8: Activité sur la granulopoièse <u>in vivo</u> chez le rat. Le nombre de neutrophiles (moyenne de 7 animaux) est indiquée en ordonnée en fonction du temps. Les produits testés sont la chimère SAH-G.CSF (pYG1266, 4 ou 40 mg/rat/jour), le G-CSF référence (10 mg/rat/jour), la SAH recombinante purifiée à partir de surnageant de <u>Kluyveromyces lactis</u> (rHSA, 30 mg/rat/jour, cf. EP 361 991), ou du sérum physiologique.

EXEMPLES

TECHNIQUES GENERALES DE CLONAGE

Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, l'électrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extraction de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans <u>Escherichia coli</u>

10

15

20

25

30

etc... sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F.M. et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].

Les enzymes de restriction ont été fournies par New England Biolabs (Biolabs), Bethesda Research Laboratories (BRL) ou Amersham et sont utilisées selon les recommandations des fournisseurs.

Les plasmides de type pBR322, pUC et les phages de la série M13 sont d'origine commerciale (Bethesda Research Laboratories).

Pour les ligatures, les fragments d'ADN sont séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur.

Le remplissage des extrémités 5' proéminentes est effectué par le fragment de Klenow de l'ADN Polymérase I d'<u>E.coli</u> (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase S1.

La mutagénèse dirigée <u>in vitro</u> par oligodéoxynucléotides synthétiques est effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. <u>13</u> (1985) 8749-8764] en utilisant le kit distribué par Amersham.

L'amplification enzymatique de fragments d'ADN par la technique dite de PCR [Polymérase-catalyzed Chain Reaction, Saiki R.K. et al., Science 230 (1985) 1350-1354; Mullis K.B. et Faloona F.A., Meth. Enzym. 155 (1987) 335-350] est effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.

La vérification des séquences nucléotidiques est effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] en utilisant le kit distribué par Amersham.

Les transformations de <u>K. lactis</u> avec l'ADN des plasmides d'expression des protéines de la présente invention sont effectuées par toute technique connue de l'homme de l'art, et dont un exemple est donné dans le texte.

20

25

Sauf indication contraire, les souches bactériennes utilisées sont <u>E. coli</u> MC1060 (<u>lac</u>IPOZYA, X74, <u>gal</u>U, <u>gal</u>K, <u>str</u>A^r), ou <u>E. coli</u> TG1 (<u>lac</u>, <u>pro</u>A,B, <u>sup</u>E, <u>thi, hsdD5 / FtraD36, pro</u>A+B+, <u>lac</u>Iq, <u>lac</u>Z, M15).

Les souches de levures utilisées appartiennent aux levures bourgeonnantes et plus particulièrement aux levures du genre <u>Kluyveromyces</u>. Les souche <u>K. lactis</u> MW98-8C (a, <u>uraA</u>, <u>arg</u>, <u>lys</u>, K⁺, pKD1°) et <u>K. lactis</u> CBS 293.91 ont été particulièrement utilisées ; un échantillon de la souche MW98-8C a été déposé le 16 Septembre 1988 au Centraalbureau voor Schimmelkulturen (CBS) à Baarn (Pays-Bas) où il a été enregistré sous le numéro CBS 579.88.

Les souches de levures transformées par les plasmides d'expression codant pour les protéines de la présente invention sont cultivées en erlenmeyers ou en fermenteurs pilotes de 2l (SETRIC, France) à 28°C en milieu riche (YPD: 1 % yeast extract, 2 % Bactopeptone, 2 % glucose; ou YPL: 1 % yeast extract, 2 % Bactopeptone, 2 % lactose) sous agitation constante.

15 EXEMPLE 1 : CONSTRUCTION D'UN FRAGMENT DE RESTRICTION MSTII/HINDIII INCLUANT LA PARTIE MATURE DU G-CSF HUMAIN

Un fragment de restriction MstII-HindIII incluant la forme mature du G-CSF humain est généré, par exemple selon la stratégie suivante : un fragment de restriction KonI-HindIII est d'abord obtenu par la technique d'amplification utilisant les oligodéoxynucléotides Sq2291 enzymatique PCR en CAAGGATCCAAGCTTCAGGGCTGCGCAAGGTGGCGTAG-3', le site HindIII Sq2292 (5'-CGGGGTACCTTAGGCTTAACCCCCCTGsouligné) GGCCCTGCCAGC-3', le site KpnI est souligné) comme amorce sur le plasmide BBG13 servant comme matrice. Le plasmide BBG13 comporte le gène codant pour la forme B (174 acides aminés) du G-CSF mature humain, obtenu auprès de British Bio-technology Limited, Oxford, England. Le produit d'amplification enzymatique d'environ 550 nucléotides est ensuite digéré par les enzymes de restriction KonI et HindIII et cloné dans le vecteur pUC19 coupé par les mêmes enzymes, ce qui génère le plasmide recombinant pYG1255. Ce plasmide est la source d'un fragment de restriction MstII-HindIII, dont la séquence est incluse dans celle de la Figure 1. Un fragment de restriction MstII-HindIII codant pour la même séquence polypeptidique peut également être généré par la technique d'amplification PCR à partir des cDNA correspondants, dont la séquence est connue [Nagata S. et al., EMBO J. 5 (1986)

20

30

575-581]. Ces cDNA peuvent être isolés par les techniques de l'homme de l'art, par exemple en utilisant le kit distribué par Amersham, à partir d'une lignée cellulaire humaine exprimant le G-CSF, et par exemple la lignée cellulaire CHU-2 de carcinome humain [Nagata et al., Nature 319 (1986) 415-418].

Il peut être également souhaitable d'insérer un linker peptidique entre la partie SAH et G-CSF, par exemple pour permettre une meilleure présentation fonctionnelle de la partie transductrice. Un fragment de restriction MstII-HindIII est par exemple généré par substitution du fragment MstII-ApaI de la Figure 1 par les oligodéoxynucléotides Sq2742 (5'-TTAGGCTTAGGTGGTGGTGGCGGTACCCCCCTGGGCC-3', les codons codant pour les résidus glycine de ce linker particulier sont soulignés) et Sq2741 (5'-CAGGGGGGTACCGCCACCACCTAAGCC-3') qui forment en s'appariant un fragment MstII-ApaI. Le plasmide pYG1336 ainsi généré comporte donc un fragment de restriction MstII-HindIII, dont la séquence est identique à celle de la Figure 1 à l'exception du fragment MstII-ApaI.

15 EXEMPLE 2 : FUSIONS EN PHASE TRADUCTIONNELLE ENTRE LA SAH ET LE G-CSF HUMAIN

E.2.1. Fusion traductionnelle du type SAH-G.CSF.

Le plasmide pYG404 est décrit dans la demande de brevet EP 361 991. Ce plasmide comporte un fragment de restriction HindIII codant pour le gène de la prépro-SAH précédé des 21 nucléotides naturellement présents immédiatement en amont de l'ATG initiateur de traduction du gène PGK de S. cerevisiae. Plus particulièrement, ce fragment comporte un fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la prépro-SAH à l'exception des trois acides aminés les plus C-terminaux (résidus leucine-glycine-leucine). La ligature de ce fragment avec le fragment MstII-HindIII du plasmide pYG1255 permet de générer le fragment HindIII du plasmide pYG1259 qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH. La séquence nucléotidique de ce fragment de restriction est donnée à la Figure 1, ainsi que la séquence polypeptidique de la chimère correspondante (SAH-G.CSF, cf. Figure 2, panneau A).

Un fragment de restriction <u>Hind</u>III identique à l'exception du fragment <u>Mst</u>II-<u>Apa</u>I peut également être facilement généré et qui code pour une protéine chimère

14

dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH et d'un linker peptidique particulier. Par exemple ce linker est constitué de 4 résidus glycine dans le fragment <u>Hind</u>III du plasmide pYG1336 (chimère SAH-Gly4-G.CSF, cf. Figure 2, panneau A).

E.2.2. Fusion traductionnelle du type G.CSF-SAH.

5

10

15

20

25

Dans un mode réalisation particulier, les techniques combinées de mutagénèse dirigée et d'amplification PCR permettent de construire des gènes hybrides codant pour une protéine chimère (Figure 2, panneau B) résultant du couplage traductionnel entre un peptide signal (et par exemple la région prépro de la SAH), une séquence incluant un gène ayant une activité G-CSF, et la forme mature de la SAH ou un de ses variants moléculaires. Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII. Par exemple l'oligodéoxynucléotide Sq2369 (5'-GTTCTACGCCACCTTGCGCAGCCCGGTGGAGGCGGT-GATGCACACAAGAGTGAGGTTGCTCATCGG-3', résidus soulignés (optionnels) correspondent dans cette chimère particulière à un linker peptidique composé de 4 résidus glycine) permet par mutagénèse dirigée de mettre en phase traductionelle la forme mature du G-CSF humain du plasmide BBG13 immédiatement en amont de la forme mature de la SAH, ce qui génère le plasmide intermédiaire A. De façon similaire, l'utilisation de l'oligodéoxynucléotide Sq2338 [5'-<u>CAGGGAGCTGGCAGGGCCCAGGGGGGT</u>TCGACGAAACACACCCCTG-GAATAAGCCGAGCT-3' (brin non codant), les nucléotides complémentaires aux nucléotides codant pour les premiers résidus N-terminaux de la forme mature du G-CSF humain sont soulignés] permet par mutagénèse dirigée de coupler en phase traductionnelle de lecture la région prépro de la SAH immédiatement en amont de la forme mature du G-CSF humain, ce qui génère le plasmide intermédiaire B. On génère ensuite le fragment HindIII de la Figure 5 en associant le fragment HindIII-SstI du plasmide B (jonction région prépro de la SAH + fragment N-terminal du GCSF mature) avec le fragment SstI-HindIII du plasmide A [jonction G-CSF mature-(glycine)_{X4}-SAH mature]. Le plasmide pYG1301 contient ce fragment de restriction HindIII particulier codant pour la chimère G.CSF-Gly4-SAH fusionnée immédiatement en aval de la région prépro de la SAH.

15

20

30

E.2.3. Fusion traductionnelle du type G.CSF-SAH-G.CSF.

Ces mêmes techniques de mutagénèse dirigée et d'amplification de l'ADN in <u>vitro</u> permettent de construire des gènes hybrides dans lesquelles une séquence codant pour une activité G-CSF est couplée aux extrémités N- et C- terminales de la SAH ou un de ses variants moléculaires (Figure 2, panneau C). Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction <u>HindIII</u>.

EXEMPLE 3: CONSTRUCTION DES PLASMIDES D'EXPRESSION

Les protéines chimères des exemples précédents peuvent être exprimées dans les levures à partir de promoteurs fonctionnels, régulables ou constitutifs, tels que, par exemple, ceux présents dans les plasmides pYG105 (promoteur <u>LAC</u>4 de <u>Kluyveromyces lactis</u>), pYG106 (promoteur <u>PGK</u> de <u>Saccharomyces cerevisiae</u>), pYG536 (promoteur <u>PHO</u>5 de <u>S. cerevisiae</u>), ou des promoteur hybrides tels que ceux portés par les plasmides décrits dans la demande de brevet EP 361 991.

Par exemple, le fragment de restriction HindIII du plasmide pYG1259 est cloné dans l'orientation productive dans le site de restriction HindIII du plasmide d'expression pYG105, ce qui génère le plasmide d'expression pYG1266 (Figure 3). Le plasmide pYG105 corresponds au plasmide pKan707 décrit dans la demande de brevet EP 361 991 dans lequel le site de restriction HindIII a été détruit par mutagénèse dirigée (oligodeoxynucleotide Sq1053: 5'-GAAATGCATAAGCTC-TTGCCATTCTCACCG-3') et dont le fragment SalI-SacI codant pour le gène URA3 a été remplacé par un fragment de restriction SalI-SacI comportant le promoteur LAC4 (sous la forme d'un fragment SalI-HindIII) et le terminateur du gène PGK de S. cerevisiae (sous la forme d'un fragment HindIII-SacI). Le plasmide pYG105 est mitotiquement très stable en l'absence de généticine (G418) et permet d'exprimer la protéine chimère à partir du promoteur LAC4 de K. lactis, notamment quand la source carbonnée est du lactose. Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1259 dans le site HindIII du plasmide pYG106 génère le plasmide d'expression pYG1267. Les plasmides pYG1266 et pYG1267 sont isogéniques entre eux à l'exception du fragment de restriction SalI-HindIII codant pour le promoteur LAC4

15

25

30

de K. lactis (plasmide pYG1266) ou le promoteur <u>PGK</u> de <u>S. cerevisiae</u> (plasmide pYG1267).

Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction <u>Hind</u>III du plasmide pYG1336 (chimère SAH-Gly4-G.CSF, cf. E.2.1.) dans le site <u>Hind</u>III des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1351 et pYG1352, respectivement.

De même, le clonage dans l'orientation productive du fragment de restriction <u>Hind</u>III du plasmide pYG1301 (chimère G.CSF-Gly4-SAH, cf. E.2.2.) dans le site <u>Hind</u>III des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1302 et pYG1303, respectivement.

EXEMPLE 4: TRANSFORMATION DES LEVURES

La transformation des levures appartenant au genre Kluyveromyces, et en particulier les souches MW98-8C et CBS 293.91 de K. lactis, s'effectue par exemple par la technique de traitement des cellules entières par de l'acétate de lithium (Ito H. et al., J. Bacteriol. 153 (1983) 163-168), adaptée comme suit. La croissance des cellules se fait à 28°C dans 50 ml de milieu YPD, avec agitation et jusqu'à une densité optique à 600 nm (DO₆₀₀) comprise entre 0,6 et 0,8 ; les cellules sont récoltées par centrifugation à faible vitesse, lavées dans une solution stérile de TE (10 mM Tris HCl pH 7,4; 1 mM EDTA), resuspendues dans 3-4 ml d'acétate lithium (0,1 M dans du TE) pour obtenir une densité cellulaire d'environ 2 x 10⁸ cellules/ml, puis incubées à 30°C pendant 1 heure sous agitation modérée. Des aliquotes de 0,1 ml de la suspension résultante de cellules compétentes sont incubés à 30°C pendant 1 heure en présence d'ADN et à une concentration finale de 35 % de polyéthylène glycol (PEG4000, Sigma). Après un choc thermique de 5 minutes à 42°C, les cellules sont lavées 2 fois, resuspendues dans 0,2 ml d'eau stérile et incubées 16 heures à 28°C dans 2 ml de milieu YPD pour permettre l'expression phénotypique de la fusion ORF1-APH exprimée sous contrôle du promoteur Pk1; 200 µl de la suspension cellulaire sont ensuite étalés sur boites YPD sélectives (G418, 200 µg/ml). Les boites sont mises à incuber à 28°C et les transformants apparaissent après 2 à 3 jours de croissance cellulaire.

EXEMPLE 5: SECRETION DES CHIMERES

Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature des protéines chimères entre SAH et G-CSF. Quelques clones correspondant à la souche K. lactis CBS 293.91 transformée par les plasmides pYG1266 ou pYG1267 (SAH-G.CSF), pYG1302 ou pYG1303 (G.CSF-Gly4-SAH) ou encore pYG1351 ou pYG1352 (SAH-Gly4-G.CSF) sont mis à incuber en milieu liquide complet sélectif à 28°C. Les surnageants cellulaires sont alors testés après électrophorèse en gel d'acrylamide à 8.5 %, soit directement par coloration du gel d'acrylamide par du bleu de coomassie (Figure 4, panneau A), soit après immunoblot en utilisant comme anticorps primaires des anticorps polyclonaux de lapin spécifiquement dirigés contre le G-CSF humain, ou contre la SAH. Lors des expériences de détection immunologique, le filtre de nitrocellulose est d'abord incubé en présence de l'anticorps spécifique, lavé plusieurs fois, incubé en présence d'anticorps de chèvre anti-lapin biotinylés, puis incubé en présence d'un complexe avidine-péroxydase en utilisant le "kit ABC" distribué par Vectastain (Biosys S.A., Compiègne, France). La réaction immunologique est ensuite révélée par addition de diamino-3,3' benzidine tetrachlorydrate (Prolabo) en présence d'eau oxygénée, selon les recommandations du fournisseur. Les résultats de la Figure 4 démontrent que la protéine hybride SAH-G.CSF est reconnue à la fois par des anticorps dirigés contre l'albumine humaine (panneau C) et le G-CSF humain (panneau B). Les résultats de la Figure 6 indiquent que la chimère SAH-Gly4-G.CSF (piste 3) est particulièrement bien sécrétée par la levure Kluyveromyces, possiblement du fait que la présence du linker peptidique entre partie SAH et partie G-CSF est plus favorable à un repliement indépendant de ces 2 parties lors du transit de la chimère dans la voie sécrétoire. De plus la fusion Nterminale (G.CSF-Gly4-SAH) est également sécrétée par la levure Kluyveromyces (Figure 6, piste 1).

EXEMPLE 6: PURIFICATION ET CARACTERISATION MOLECULAIRE DES PRODUITS SECRETES

Après centrifugation d'une culture de la souche CBS 293.91 transformée par les plasmides d'expression selon l'exemple 3, le surnageant de culture est passé à travers un filtre de 0,22 mm (Millipore), puis concentré par ultrafiltration (Amicon)

25

30

en utilisant une membrane dont le seuil de discrimination se situe à 30 kDa. Le concentrat obtenu est alors ajusté à 50 mM Tris HCl à partir d'une solution stock de Tris HCl 1M (pH 6), puis déposé par fractions de 20 ml sur une colonne (5 ml) échangeuse d'ions (Q Fast Flow, Pharmacia) équilibrée dans le même tampon. La protéine chimère est alors éluée de la colonne par un gradient (0 à 1 M) de NaCl. Les fractions contenant la protéine chimère sont alors réunies et dialysées contre une solution de Tris HCl 50 mM (pH 6) et redéposées sur colonne Q Fast Flow (1 ml) équilibrée dans le même tampon. Après élution de la colonne, les fractions contenant la protéine sont réunies, dialysées contre de l'eau et lyophilisées avant caractérisation: par exemple, le séquençage (Applied Biosystem) de la protéine SAH-G.CSF sécrétée par la levure CBS 293.91 donne la séquence N-terminale attendue de la SAH (Asp-Ala-His...), démontrant une maturation correcte de la chimère immédiatement en C-terminal du doublet de résidus Arg-Arg de la région "pro" de la SAH (Figure 1).

15 EXEMPLE 7: ACTIVITE BIOLOGIQUE DES CHIMERES ENTRE SAH ET G-CSF

E.7.1. Activité biologique in vitro.

Les chimères purifiées selon l'exemple 6 sont testées pour leur capacité à permettre la prolifération in vitro de la lignée murine IL3-dépendante NFS60, par mesure de l'incorporation de thymidine tritiée essentiellement selon le protocole décrit par Tsuchiya et al. [Proc. Natl. Acad. Sci. (1986) 83 7633]. Pour chaque chimère, les mesures sont réalisées entre 3 et 6 fois dans un test trois points (trois dilutions du produit) dans une zone ou la relation entre quantité de produit actif et incorporation de thymidine marquée (Amersham) est linéaire. Dans chaque plaque de microtitration, l'activité d'un produit référence constitué de G-CSF humain recombinant exprimé dans des cellules mammifères est également systématiquement incorporé. Les résultats de la Figure 7 démontrent que la chimère SAH-G.CSF (pYG1266) sécrétée par la levure Kluyveromyces est capable in vitro de transduire un signal de prolifération cellulaire pour la lignée NFS60. Dans ce cas particulier, l'activité spécifique (cpm/molarité) de la chimère est environ 7 fois plus faible que celle du G-CSF référence (non couplé).

E.7.2. Activité in vivo

L'activité de stimulation des chimères SAH/G-CSF sur la granulopoièse <u>in vivo</u> est testée après injection sous-cutanée chez le rat (Sprague-Dawley/CD, 250-300 g, 8-9 semaines) et comparée à celle du G-CSF référence exprimé à partir de cellules de mammifère. Chaque produit, testé à raison de 7 animaux, est injecté par voie sous-cutanée en région dorso-scapulaire à raison de 100 ml pendant 7 jours consécutifs (J1-J7). 500 ml de sang sont recueillis aux jours J-6, J2 (avant la 2ème injection), J5 (avant la 5ème injection) et J8, et une numération sanguine est effectuée. Dans ce test, l'activité spécifique (unités de neutropoièse/mole injectée) de la chimère SAH-G.CSF (pYG1266) est identique à celle du G-CSF référence (Figure 8). Puisque cette chimère particulière possède <u>in vitro</u> une activité spécifique 7 fois plus faible que celle du G-CSF référence (Figure 7), il est donc démontré que le couplage génétique du G-CSF sur la SAH en modifie favorablement les propriétés pharmacocinétiques.

REVENDICATIONS

- 1. Polypeptide recombinant comportant une partie active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF couplé à une structure stabilisatrice essentiellement protéique.
- 5 2. Polypeptide selon la revendication 1 caractérisé en ce que la partie active présente une structure choisie parmi :
 - (a) la séquence peptidique comprise entre les résidus Thr586-Pro759 de la séquence donnée sur la Figure 1,
 - (b) une partie de la structure peptidique (a) ayant conservé l'activité biologique du G-CSF, et,

10

20

- (c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus), et ayant conservé l'activité biologique du G-CSF, ou une activité modifiée.
- 3. Polypeptide selon la revendication 1 ou 2 caractérisé en ce que la partie active est couplée à l'extrémité N-terminale de la structure stabilisatrice.
 - 4. Polypeptide selon la revendication 1, 2 ou 3 caractérisé en ce que la partie active est couplée à l'extrémité C-terminale de la structure stabilisatrice.
 - 5. Polypeptide selon l'une des revendications 1 à 4 caractérisé en ce que la structure stabilisatrice est un polypeptide possédant une demie-vie plasmatique élevée.
 - 6. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide possédant une demie-vie plasmatique élevée est une protéine telle qu'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transferine.
- 7. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide possédant une demie-vie plasmatique élevée est dérivé par modification(s) structurale(s) (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus, modification chimique) d'une protéine selon la revendication 6.

- 8. Polypeptide selon l'une des revendications 5 à 7 caractérisé en ce que la structure stabilisatrice est un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel il est utilisé.
- 9. Polypeptide selon la revendication 5 caractérisé en ce que la structure stabilisatrice est une albumine ou un variant de l'albumine.
 - 10. Séquence nucléotidique codant pour un polypeptide selon l'une quelconque des revendications 1 à 9.
- 11. Séquence nucléotidique selon la revendication 10 caractérisée en ce qu'elle comprend une séquence "leader" permettant la sécrétion du polypeptide exprimé.
 - 12. Cassette d'expression comprenant une séquence nucléotidique selon l'une des revendications 10 ou 11 sous le contrôle d'une région d'initiation de la transcription et éventuellement d'une région de terminaison de la transcription.
- 13. Plasmide autoréplicatif comportant une cassette d'expression selon la revendication 12.
 - 14. Cellule recombinante eucaryote ou procaryote dans laquelle a été inséré une séquence nucléotidique selon l'une des revendications 10 ou 11 ou une cassette d'expression selon la revendication 12 ou un plasmide selon la revendication 13.
- 15. Cellule recombinante selon la revendication 14 caractérisée en ce qu'il s'agit d'une levure, d'une cellule animale, d'un champignon ou d'une bactérie.
 - 16. Cellule recombinante selon la revendication 15 caractérisée en ce qu'il s'agit d'une levure.
 - 17. Cellule recombinante selon la revendication 16 caractérisée en ce qu'il s'agit d'une levure du genre <u>Saccharomyces</u> ou <u>Kluyveromyces</u>.
 - 18. Procédé de préparation d'un polypeptide tel que défini dans l'une des revendications 1 à 9 caractérisé en ce que l'on cultive une cellule recombinante selon l'une des revendications 14 à 17 dans des conditions d'expression, et on récupère le polypeptide produit.

- 19. Composition pharmaceutique comprenant un ou plusieurs polypeptides selon l'une quelconque des revendications 1 à 9.
- 20. Composition pharmaceutique selon la revendication 19 destinée à être utilisée dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées.
- 21. Composition pharmaceutique selon la revendication 20 destinée à la prévention ou au traitement des leukopénies ou de certaines leucémies.
- 22. Composition pharmaceutique selon la revendication 20 utilisable dans le cas de greffes ou de traitement anticancéreux, pour restaurer le système immunitaire.

SEO. ID NO: 1

TYPE DE SEQUENCE :

Nucléotide et sa protéine correspondante

LONGUEUR: 2382 nucléotides

NOMBRE DE BRINS :

CONFIGURATION: Linéaire

TYPE DE MOLECULE :

Fragment de restriction <u>Hind</u>III du plasmide d'expression pYG1259 (chimère G.CSF-SAH)

ORIGINE: Recombinaisons génétiques in vitro

•	*			•
AAGCT TTACAACAAA TATAAAAACA			ATT TCC CTT CTT Ile Ser Leu Leu	
AGC TCG GCT TAT TCC AGG GGT Ser Ser Ala Tyr Ser Arg Gly				
CGG TTT AAA GAT TTG GGA GAA Arg Phe Lys Asp Leu Gly Glu				
TAT CTT CAG CAG TGT CCA TTT Tyr Leu Gln Gln Cys Pro Phe	GAA GAT CAT Glu Asp His	GTA AAA TTA Val Lys Leu	GTG AAT GAA GTA Val Asn Glu Val	ACT GAA TTT Thr Glu Phe 49
GCA AAA ACA TGT GTT GCT GAT Ala Lys Thr Cys Val Ala Asp				
TTT GGA GAC AAA TTA TGC ACA Phe Gly Asp Lys Leu Cys Thr	GTT GCA ACT Val Ala Thr	CTT CGT GAA	ACC TAT GGT GAA Thr Tyr Gly Glu	ATG GCT GAC Met Ala Asp 89
TGC TGT GCA AAA CAA GAA CCT Cys Cys Ala Lys Gln Glu Pro	GAG AGA AAT Glu Arg Asn	GAA TGC TTC	TTG CAA CAC AAA Leu Gln His Lys	GAT GAC AAC ASD ASD ASD 109
CCA AAC CTC CCC CGA TTG GTG Pro Asn Leu Pro Arg Leu Val	AGA CCA GAG	GTT GAT GTG	ATG TGC ACT GCT	TTT CAT GAC
AAT GAA GAG ACA TTT TTG AAA Asn Glu Glu Thr Phe Leu Lys	AAA TAC TTA	TAT GAA ATT	GCC AGA AGA CAT	CCT TAC TTT
TAT GCC CCG GAA CTC CTT TTC Tyr Ala Pro Glu Leu Leu Phe	TTT GCT AAA	AGG TAT AAA	GCT GCT TTT ACA	GAA TGT TGC
		•		
CAA GCT GCT GAT AAA GCT GCC Gln Ala Ala Asp Lys Ala Ala	Cys Leu Leu	CCA AAG CTC Pro Lys Leu	GAT GAA CTT CGG Asp Glu Leu Arg	GAT GAA GGG Asp Glu Gly 189
AAG GCT TCG TCT GCC AAA CAG Lys Ala Ser Ser Ala Lys Gln	AGA CTC AAG Arg Leu Lys	TGT GCC AGT Cys Ala Şer	CTC CAA AAA TTT Leu Gln Lys Phe	GGA GAA AGA Gly Glu Arg 209
GCT TTC AAA GCA TGG GCA GTA Ala Phe Lys Ala Trp Ala Val	GCT CGC CTC Ala Arg Leu	AGC CAG AGA Ser Gln Arg	TTT CCC AAA GCT Phe Pro Lys Ala	GAG TTT GCA Glu Phe Ala 229
GAA GTT TCC AAG TTA GTG ACA Glu Val Ser Lys Leu Val Thr	GAT CTT ACC Asp Leu Thr	AAA GTC CAC	ACG GAA TGC TGC Thr Glu Cys Cys	CAT GGA GAT His Gly Asp 249
CTG CTT GAA TGT GCT GAT GAC Leu Leu Glu Cys Ala Asp Asp	AGG GCG GAC Arg Ala Asp	CTT GCC AAG	TAT ATC TGT GAA Tyr Ile Cys Glu	AAT CAA GAT Asn Gln Asp 269
TCG ATC TCC AGT AAA CTG AAG Ser Ile Ser Ser Lys Leu Lys				
ATT GCC GAA GTG GAA AAT GAT Ile Ala Glu Val Glu Asn Asp	GAG ATG CCT	GCT GAC TTG	CCT TCA TTA GCT	GCT GAT TTT
				_
GTT GAA AGT AAG CAT GTT TGC Val Glu Ser Lys Asp Val Cys				
TTT TTG TAT GAA TAT GCA AGA Phe Leu Tyr Glu Tyr Ala Arg	AGG CAT CCT Arg His Pro	GAT TAC TCT Asp Tyr Ser	GTC GTA CTG CTG Val Val Leu Leu	CTG AGA CTT Leu Arg Leu 349

WO 93/15211 PCT/FR93/00086 2/10

						ACT Thr														369	
						GAA Glu														389	
CAA Gln	AAT Asn	TGT Cys	GAG Glu	CTT Leu	TTT Phe	GAG Glu	CAG Gln	CTT Leu	GGA Gly	GAG Glu	TAC Tyr	AAA Lys	TTC Phe	CAG Gln	AAT Asn	GCG Ala	CTA Leu	TTA Leu	GTT Val	409	
						CCC Pro														429	
						AAA Lys													GCA Ala	449	
Glu	Asp	Tyr	Leu	Ser	Val	GTC Val	Leu	Asn	Gln	Leu	Cys	Val	Leu	His	Glu	Lys	Thr	Pro	Val	469	
Ser	Asp	Arg	Val	Thr	Lys	TGC Cys	Cys	Thr	Glu	Ser	Leu	Val	Asn	Arg	Arg	Pro	Cys	Phe	Ser	489	
Ala	Leu	Glu	Val	Asp	Glu	ACA Thr	Tyr	Val	Pro	Lys	Glu	Phe	Asn	Ala	Glu	Thr	Phe	Thr	Phe	509	
His	Ala	Asp	Ile	Cys	Thr	CTT Leu	Ser	Glu	Lys	Glu	Arg	Gln	Ile	Lys	Lys	Gln	Thr	Ala	Leu	529	
Val	Glu	Leu	Val	Lys	His	AAG Lys	Pro	Lys	Ala	Thr	Lys	Glu	Gln	Leu	Lys	Ala	Val	Met	Asp	549	
Asp	Phe	Ala	Ala	Phe	Val	GAG Glu	Lys	Cys	Cys	Lys	Ala	Asp	Asp	Lys	G1/u	Thr	Cys	Phe	Ala	569	
Glu	Glu	Gly	Lys	Lys	Leu	GTT Val	Ala	Ala	Ser	Gln	Ala	Ala	Leu	Gly	Leu	Thr	Pro	Leu	Gly	589	
Pro	Ala ·	Ser	Ser	Leu	Pro	CAG Gln	Ser	Phe	Leu	Leu	Lys	Cys	Leu	Glu	Gln	Val	Arg	Lys	Ile	609	
Gln	Gly	Asp	Gly	Ala	Ala	CTC Leu	Gln	Glu	Lys	Leu	Cys	Ala	Thr	Tyr	Lys	Leu	Cys	His	Pro	629	
Glu	Glu	Leu	Va l	Leu	Leu	GGA Gly	His	Ser	Leu	Gly	Ile	Pro	Trp	Ala	Pro	Leu	Ser	Ser	Cys	649	
Pro	Ser	Gln	Ala	Leu	Gln	CTG Leu	Ala	Gly	Cys	Leu	Ser	Gln	Leu	His	Ser	Gly	Leu	Phe	Leu	669	
Tyr	GIn	Gly	Leu	Leu	Gln		Leu	Glu	Gly	Ile	Ser	Pro	Glu	Leu	Gly	Pro	Thr	Leu	Asp	689	
Thr	Leu	Gln	Leu	Asp	Va l	GCC Ala	Asp	Phe	Ala	Thr	Thr	Ile	Trp	Gln	Gln	Met	Gl u	Glu	Leu	709	
Gly	Met	Ala	Pro	Ala	Leu	CAG Gln	Pro	Thr	Gln	Gly	Ala	Met	Pro	Ala	Phe	Ala	Ser	Ala	Phe .	729	
Gln	Arg	Arg	Ala	Gly	Gly	GTC Val	Leu	Val	Ala	Ser	His	Leu	CAG Gln	AGC Ser	TTC Phe	CTG Leu	GAG Glu	GTG Val	TCG Ser	749	
						CTT Leu					AGC	TT.								759	

Figure 4

SEO. ID NO:

TYPE DE SEQUENCE :

Nucléotide et sa protéine correspondante

LONGUEUR: 2455 nucléotides

NOMBRE DE BRINS :

CONFIGURATION: Linéaire

TYPE DE MOLECULE :

Fragment de restriction <u>Hind</u>III du plasmide d'expression pYG1301 (chimère G.CSF-Gly4-SAH positionnée immédiatement en aval de la région prépro de la SAH)
Recombinaisons génétiques in vitro

ORIGINE:

AAG	CT T	TACA.	ACAA	A TA	LAAA	AACA	ATG Met	AAG Lys	TGG Trp	GTA Val	ACC Thr	TTT Phe	ATT Ile	TCC Ser	CTT Leu	CTT Leu	TTT Phe	CTC Leu	TTT Phe	-12
AGC Ser	TCG Ser	GCT Ala	TAT Tyr	TCC Ser	AGG Ara	GGT Glv	GTG Val	TTT Phe	CGT Ara	CGA Ara	ACC	CCC	CTG	Apa: GGC Glv	CCT	GCC	AGC	TCC	CTG Leu	9
											I	>G-C	SF							,
Pro	Gln	Ser	Phe	Leu	Leu	AAG Lys	Cys	Leu	GAG	Gln	GrG Val	AGG Arg	AAG Lys	ATC	CAG Gln	GGC Gly	GAT Asp	GGC	GCA Ala	29
GCG Ala	CTC Leu	CAG Gln	GAG Glu	AAG Lys	CTG Leu	TGT Cys	GCC Ala	ACC Thr	TAC Tyr	AAG Lys	CTG Leu	TGC Cys	CAC His	CCC Pro	GAG Glu	GAG Glu	CTG Leu	GTG Val	CTG Leu	49
CTC	GGA	CAC	TCT	CTG	GGC	ATC	CCC	TGG	GCT	ccc	CTG	Sat AGC	TCC	TGC	ccc	AGC	CAG	GCC	CTG	
																Ser				69
Gln	Leu	GCA Ala	GCC	TGC	TTG	AGC Ser	CAA Gln	CTC Leu	CAT His	AGC Ser	GCC	CTT Leu	TTC Phe	CIC	TAC Tyr	CAG Gln	GGG Gly	CTC Leu	CIG Leu	89
CAG Gln	GCC Ala	CTG Leu	GAA Glu	GGG Gly	ATA Ile	TCC Ser	CCC Pro	GAG Glu	TTG Leu	GGT Gly	CCC Pro	ACC Thr	TTG Leu	GAC Asp	ACA Thr	CTG Leu	CAG Gln	CTG Leu	GAC Asp	109 [.]
GTC Val	GCC Ala	GAC Asp	TTT Phe	GCC Ala	ACC Thr	ACC Thr	ATC Ile	TGG Trp	CAG Gln	CAG Gln	ATG Met	GAA Glu	GAA Glu	CTG Leu	GGA Gly	ATG Met	GCC Ala	CCT	GCC Ala	129
																CGC				
ren	Gln	Pro	Thr	Gln	Gly	Ala	Met	Pro	Ala	Phe	Ala	Ser	Ala	Phe	Gln	Arg	Arg	Ala	Gly	149
GGG	GTC Val	CTG Leu	GTT Val	GCT Ala	AGC Ser	CAT His	CTG Leu	CAG Gln	AGC Ser	TTC Phe	CTG Leu	GAG Glu	GTG Val	TCG Ser	TAC Tyr	CGC Arg	GTT Val	CTA Leu	CGC Arg	169
CAC His	CTT Leu	Ala	Gln	Pro	Gly	GGA Gly	GGC Gly	GGT Glv	GAT Asp	GCA Ala	CAC His	AAG Lys	AGT Ser	GAG Glu	GTT Val	GCT Ala	CAT His	CGG Ara	TTT Phe	189
		G-C	:SF<	I		lin	ker]	[:	>SAH	:							_		
Lys	Asp	Leu	Gly	Glu	Glu	Asn	Phe	Lys	Ala	Leu	Val	Leu	Ile	Ala	Phe	GCT Ala	CAG Gln	TAT Tyr	CTT Leu	209
CAG Gln	CAG Gln	TGT Cys	CCA Pro	TTT Phe	GAA Glu	GAT Asp	CAT His	GTA Val	AAA Lys	TTA Leu	GTG Val	AAT Asn	GAA Glu	GTA Val	ACT Thr	GAA Glu	TTT Phe	GCA Ala	AAA Lys	229
ACA Thr	TGT Cys	GTT Val	GCT Ala	GAT Asp	GAG Glu	TCA Ser	GCT Ala	GAA Glu	AAT Asn	TGT	GAC	AAA	TCA	CTT	CAT	ACC Thr	CTT	TTT	GGA	240
																GCT			-	249
Asp	Lys	Leu	Cys	Thr	Val	Ala	Thr	Leu	Arg	Glu	Thr	Tyr	Gly	Glu	Met	Ala	Asp	Cys	Cys	.269
GCA Ala	AAA Lys	CAA Gln	GAA Glu	CCT Pro	GAG Glu	AGA Arg	AAT Asn	GAA Glu	TGC Cys	TTC Phe	TTG Leu	CAA Gln	CAC His	AAA Lys	GAT Asp	GAC Asp	AAC Asn	CCA Pro	AAC Asn	289
CTC Leu	CCC Pro	CGA Arg	TTG Leu	GTG Val	AGA Arg	CCA Pro	GAG Glu	GTT Val	GAT Asp	GTG Val	ATG Met	TGC Cys	ACT Thr	GCT Ala	TTT Phe	CAT His	GAC Asp	AAT Asn	GAA Glu	309
GAG	ACA	TTT	TTG	ÀAA	AAA	TAC	TTA	TAT	GAA	ATT	GCC	AGA	AGA	САТ	ССТ	TAC Tyr	ىلىنلىن _	ጥልጥ	ccc	
			~-	ی ر	2,3	- , -		- , -	JIU	**6	ara	w.A	vr. A	เบาร	L.L.O	ıyr	rue.	TYP	AIA	329

CCT GAT ANA OCT GCC TGC CTG TTG CCA ANG CTC GAT GAA CTT CGG GAT GAA GGG AAG GCT Ala ASP JUS Ala Ala CYS Leu Leu PTO Lys Leu ASP GIU Leu Arg Asp GIU GIY Lys Ala 365 Ser Ser Ala Lys Gln Arg Leu Leu PTO Lys Leu Asp GIU Leu Arg Asp GIU GIY Lys Ala 365 Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu GIn Lys Phe GIY GIU Arg Ala Phe 365 Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu GIn Lys Phe GIY GIU Arg Ala Phe 365 Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu GIn Lys Phe GIY GIU Arg Ala Phe 365 Ser Ser Ala Lys Gln Arg Leu Ser Gln Arg Phe Pro Lys Ala GIU Phe Ala GIU Val Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala GIU Phe Ala GIU Val Ala Arg Ala Phe 365 Thy Sileu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu 425 Gln Arg Phe Pro Lys Ala GIU Phe Ala GIU Val Ala Arg Ala Cha Arg CT Cac Cac Gaa TGC TGC Car GGa GAT CTG CTT GCC AAG TAT ATC TGT GAA AAT CAA GAT TGG ATC GIU Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Aga TGC AGC Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala 669 GAG AGG GAA AAT GAT GAT GAC GAA TGT TGC CTG TG GAA AAA TCC AGC TGC ATT GAA GAT GGU Val Glu Asn Asp Glu Wet Pro Ala Asp Leu Pro Ser Leu Ala Ala Ala Ala Ala Phe Val Glu Asn Asp Glu Wet Pro Ala Asp Leu Pro Ser Leu Ala Ala Ala Ala Ala Phe Val Glu Asn Asp Glu Wet Pro Ala Asp Leu Pro Ser Leu Ala Ala Ala Ala Phe Val Glu Asn Asp Glu Wet Pro Ala Asp Leu Pro Ser Leu Ala Ala Ala Ala Phe Val Glu Asn Asp Glu Tyr Ala Glu Ala CT ATT GCT GCT GCT GCT GCT GCT GCT GCT GCT G																					
Ala ASP Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arp Asp Glu Gly Lys Ala TCG TCT GCC AAA CAG AGA CTC AAG TGT GCC AGT CTC CAA AAA TTT GGA GAA AGA GCT TTC SEY SER Ala Lys Gln Arg Leu Lys Cys Ala SER CLEU Gln Lys Phe Gly Glu Arg Ala Phe AAA GCA TGG GCA GTA GCT CGC CTG AGC CAG AGA TTT CCC AAA GCT GAG TTT GCA GAA GTT Lys Ala TTP Ala Val Ala Arg Leu Lys Cys Ala SER CLEU Gln Lys Phe Gly Glu Arg Ala Glu TCC AAG TTA GTG ACA GAT CTT ACC AAA GTC CAC AGG GAA TGC TGC CAT GGA GAT CTG CTT GAA TAT GTG ACA GAT CTT ACC AAA GTC CAC AGG GAA TGC TGC CAT GGA GAT CTG CTT GLU Cys Ala Asp Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Ash Gln Asp Ser Ile GAA TGT GCT GAT GAC AGG GCG GAC CTT GCC AAG TAT ATC TGT GAA AAT CAA GAT TCG ATC Glu Cys Ala Asp Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Ash Gln Asp Ser Ile CCC AGT AAA CTG AAG GAA TGC TGT GAA AAA CTC TGT TGG AAA AAT TCC ACT TGC ATT GAA TAT GAG GAA ATT GAT GAA GAC CTC GTG GAC TTG CTT TTG GAA AAA TCC ACG GAT TTT GCC SER SER Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys SER His Cys Ile Ala AGG GAG GAA AAT GAT GAG ATGC CTT GAA CAA CTC TGC TTG AGA AAA TCC ACG ATG TTT TTG SER Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu AGT AAA GAT GTT TGC AAA AAC TAT GCT GAG GAC TGC TTT TTG SER Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu TAT GAA TAT GAA AGA AGG CAT CTT GAT TAT CTT GTC GTA CTG CTG CTG AGA CTT GCC AAG Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr SER Val Val Leu Leu Leu Arg Leu Ala Lys ACA TAT GAA ACC ACT CTA GAG AAG TCC TGT GCC GCT GCA GAT CTC TAT GAA CCA ATT GCC Thy Tyr Glu Tyr Tha Arg Cat Aga ACC ACT CTG GTG GAA CAC CTC ATG GAT TAT GCC Thy Tyr Glu Tyr Ala Arg AAA CCT CTT GTG GAA CAC CTC AGA ATT TAT ACT AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Gro Gh Aan TOC CTA TGA GAA AAT Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr TAT GAG CTT TTT GAG CAA GTT TAT ACT CTC GTG GAA CAA AAA CAA CAC ATG GAA TAT TAC ACC AAA TGT CTA AAA CAT CTC CAC CTT GTG	CCG Pro	GAA Glu	CTC Leu	CTT Leu	TTC Phe	TTT Phe	GCT Ala	AAA Lys	AGG Arg	TAT Tyr	AAA Lys	GCT Ala	GCT Ala	TTT Phe	ACA Thr	GAA Glu	TGT Cys	TGC Cys	CAA Gln	GCT Ala	349
Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe AAA GCA TGG CCA GTA GCT CCC CTG ACC CAG AGA TTT CCC AAA GCT GAG TTT CCA GAA GTT Lys Ala TCP Ala Val Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala GTU Phe Ala Glu Val 409 TCC AAG TTA GTG ACA GAT CCT ACC AAA GTC CAC ACG GAA TCC TCC CAT GAG ACT CTG CTT Ser Lys Leu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu 429 GAA TCT GCT GAT GAC AGG GCG GAC CTT GCC AAG TAT ATC TCT GAA AAA TCA GAT TCG ATC GIU Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile 449 TCC AAG TAAA CTG AAG GAG GCG GAC CTT GCC AAG TAT ATC TCT GAA AAA TCA CAT GAT TCG GU Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile 449 TCC AAT AAA CTG AAG GAG GCG GAC CTT GCC AAG TAT ATC TCT GAA AAA TCT CAC TCG ATT GCC 580 Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala 469 TCC AAG AAG GAT GAT GAG ATG CCT GCT GAA TTC CTT TCA TTA GCT GAT TTT GTC 580 Lys Asp Asp Arg AT AAA ACT ATT GCT GAG TCT CTC TCA TTA GCT GAT TTT TGT 580 Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Het Phe Leu 581 Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Het Phe Leu 582 Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Arg Leu Ala Lys 583 LYS ASP Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Cys Tyr Ala 584 AAA GTT GAA AAC ACT CTT GAG AAG TCT CTT GTC CTC CTG ATC CTC ATG GAA TCC TAT GCC Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala 584 AAA GTG TCC GAT GAA TTT AAA CCT CTT GTG GAA GAG CCT CCA GAT TTA ATC AAA CAA AAT 585 Lys Ala Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn 586 TCT GAG CTT TTT GAG CAG CTT GAA GAT CCT CAA CTC CTT GTA GAG ATC CTC TATC 687 GGC ACC AAA TGT TCT TAT GAG AAG TCC TCT GAA GAA ACC TCT GTA GAT ATC ACA GAT GGC CTT TTT GAG CAG CTT GAA GAG CTC CCA ACT GAT TTA CTC CTC ATG GAC CTT TTT GAG CAG CTT GTA CTC ACT CTC TTT GAA GCA AAA ACG CCA TTA ATT GAC ACA GTG GAT GAA ACA	GCT Ala	GAT Asp	AAA Lys	GCT Ala	GCC Ala	TGC Cys	CTG Leu	TTG Leu	CCA Pro	AAG Lys	CTC Leu	GAT Asp	GAA Glu	CTT Leu	CGG Arg	GAT Asp	GAA Glu	GGG Gly	AAG Lys	GCT Ala	369
Lys Ala Trp Ala val Ala Arg Leu Ser Gin Arg Phe Pro Lys Ala Giu Phe Ala Giu Val TCC AAG TTA GTG ACA GAT CTT ACC AAA GTC CAC ACG GAA TGC TGC CAT GGA GAT CTG CTG SER Lys Leu Val Thr Asp Leu Thr Lys Val His Thr Giu Cys Cys His Gily Asp Leu Leu 429 GAA TGT GCT GAT GAC AGG GGG GAC CTT GCC AAG TAT ATC TGT GAA AAT CAA GAT TGG ATC Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile 449 TCC AGT AAA CTG AAG GAA TGC TGT GAA AAA CCT CTG TTG GAA AAA TCC CAC TGC ATT GCC GAA GTG GAA AAT GAT GAG ATC CTT GAG AAA ACT CTG TTG GAA AAA TCC CAC TGT TGT GAA GGG GAA ATG GAA GAT GAT GAG ATC CCT GAC GAC TTC CTT TCA TTA GCT GCT GAT TTT GTT GAA GLU Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu AGT AAG GAT GTT TCC AAA AAC TAT GCT GAG GCA AAG GAT GTC TTC CTG GCC ATC TTT TTG SER Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu TAT GAA TAT GCA AGA AGG CAT CCT GAT TAC TCT GTC GTA CTC CTG CTG AGA CTT GCC TAT GAA TAT GAA AAC AAG CAT CTT GAG TAC TGT GTC GTA CTC CTG CTG AAA CTT GCC TAT TYR GLU TYR Ala ARG AAG TAT TA ACC CTT GTG GAC AGA CTC CTT GAA TGC TAT AAA GTG TTC GAT GAA TAT AAA CCT CTT GTG GAA GAG CT CAG AAT TTA ATC AAA GTG TTC GAT GAA TAT AAA CCT CTT GTG GAA GAC CT CAG AAT TTA ATC AAA GTG TTC GAT GAA TAT AAA CCT CTT GTG GAA GAG CT CAG AAT TTA ATC AAA GTG TTC GAT GAA TAT AAA CCT CTT GTG GAA GAG CT CAG AAT TTA ATC AAA CAA AAT TLYS Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Lie Lys Gln Asn TOT GAG CTT TTT GAG CAG CTT GAG GAG TAC AAA TTC CAG AAT TTA ATC AAC AAA TAT CAA CAAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA TAC ACA AAA TCC YAS GAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA ACA AAA CTT GGT ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GAC TCA TATA GTT CCT TCA ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA ACA GAG ACC CTT TAC GCA TYR LYS Lys Val Pro Glu Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Glu AAA GTG GCC ACC AAA TGC TCC ACC GAA TCC TTG GTG TTC CAT GAG AAA ACC CCT																					389
Ser Lys Leu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly Asp Leu Leu GAA TOT COT GAT GAC AGG GOG GAC CTT GOC AAG TAT ATC TOT GAA AAT CAA GAT TOG ATC Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ilc Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ilc Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ilc Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ilc GAA GTA GAA GAA GAA TOC TOT GAA AAA CCT CTG TTG GAA AAA ATC CAC TOC ATT GOC Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala 469 GAA GTG GAA AAT GAT GAT GAG ATG CCT GCT GAC TTG CTT CA TTA GCT GCT GAT TTT GTT GAA Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu AST AAG GAT GTT TOC AAA AAC TAT GCT GAG GAA AAG GAT GTC TTC CTG GOC ATG TTT TTG Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu TAT GAA ATAT GAA AGG CAT CCT GAT TAC TCT GTC GTA CTC CTG CTG AGA CTT GCC AAG Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Leu Arg Leu Ala Lys 529 ACA TAT GAA ACC ACT CTA GAG AAG TCC TGT GCT GCT GCT GAT CCT CAT GAA TOC TAT GCC TAT TYR Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala AAA GTG TCC GAT GAA TTT AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCT GTG GAT AAA TTC CAG AAT CCG CTA TATA GTT CGT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn ILeu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GCC ACC AAA TGT TOT AAA CAT CCT GAA CCA AAA ACA CCC CTA GAG AAA CCT TT CCC GTG GTC CTG AAC CAC TTA TCT GTG TTG CTG CTG GAC CAA ACC CTA AGT AGT CTT TYL EAU Ser Val Val Leu Asn Glu Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu GAA GTC GCC GCC ACC CTA CCC TTA AG	AAA Lys	GCA Ala	TGG Trp	GCA Ala	GTA Val	GCT Ala	CGC Arg	CTG Leu	AGC Ser	CAG Gln	AGA Arg	TTT Phe	CCC Pro	AAA Lys	GCT Ala	GAG Glu	TTT Phe	GCA Ala	GAA Glu	GTT Val	409
GIU Cys Ala Asp Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys GIU Asn GIN Asp Ser Ile TCC AGT AAA CTG AAG GAA TCC TCT GTG AAA AAA CCT CTG TTG GAA AAA TCC CAC TCC ATT GCC Ser Ser Lys Leu Lys Glu Cys Cys GIU Lys Pro Leu Leu GIU Lys Ser His Cys Ile Ala 469 GAA GTG GAA AAT GAT GAG ATG CCT GCT GAC TTG CCT TCA TTA GCT CCT GAT TGT GTG GAA GTG GAA AAT GAT GAG ATG CCT GCT GAC TTG CCT TCA TTA GCT CCT GAT TTT GTT GAA AGT AAG GAT GTT TCC AAA AAC TAT GCT GAG GCA AAG GAT GTC TTC CTG GGC ATG TTT TTG Ser Lys Asp Val Cys Lys Asn Tyr Ala GIU Ala Lys Asp Val Phe Leu GIY Met Phe Leu AGT AAG GAT GTT TCC AAA AAC CAT CCT GAG GCA AAG GAT GTC TTC CTG GGC AAG CTT GCC AAG TYR GAU TAT GCA AGA AGG CAT CCT GAT TAC TCT GTC GTA CTG CTG CTG GAA CTT GCC AAG TYR GIU Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Leu Arg Leu Ala Lys 529 ACA TAT GAA ACC ACT CTA GAG AAG TCC TGT GCC GCT GCA GAT CCT CAT GAA TCC TAT GCC TThr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GAA GAG CCT CAC AAT TTA ATC AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn TOT GAG CTT TTT GAC CAG CTT GGA GAG TAC AAA TTC CAG AAT GCC CTA TTA GTT CCT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GCC ACC AAA TGT TCT AAA CTA CTC GAA GCA AAA TGC CCT TGT GCA GAA ACC AAG AAA GTA CCC CAA GTG TCT AAC CAC TCT GTG GTC TTG GAG AAA ACG CCA GTA AGT GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CTT GAT GAG AAA ACG CCA GTA AGT GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CTG GAA CAA TCC TTT TCA GCC GAA GTC ACC AAA TGC TCT AAC GAG GAG AGA CCA TCA ATT AAC TC CAC GCA GTG ATT TAT GCA CA	TCC Ser	AAG Lys	TTA Leu	GTG Val	ACA Thr	GAT Asp	CTT Leu	ACC Thr	AAA Lys	GTC Val	CAC His	ACG Thr	GAA Glu	TGC Cys	TGC Cys	CAT His	GGA Gly	GAT Asp	CTG Leu	CTT Leu	429
Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala 469 GAA GTG GAA AAT GAT GAG ATG CCT GCT GAC TTG CCT TCA TTA CCT CGT GAT TTT GTT GAA Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu AGT AAG GAT GTT TGC AAA AAC TAT GCT GAG GCA AAG GAT TCT CTC CTG GGC ATG TTT TTG Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu 509 TAT GAA TAT GCA AGA AGC CAT CCT GAT TAC TCT GTC GTA CTG CTG CTG AGA CTT GCC AAG Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys 529 ACA TAT GAA ACC ACT CTA GAG AAG TCC TGT GCC GCT GCA GAT CCT CAT GAA TGC TAT TAC AAA GTG TTC GAT GAA ATT AAA CCT CTT GTG GAA GAG CCT CAG AAT TCT AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn TGT GAG CTT TTT GAG CAG CTT GCA GAG TAC AAA TTC CAG AAT GCC CTA TTA GTT CGT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAC AAA GTA CTC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA AGA AAC AAA GTG GGC AGC AAA TGT TGT AAA CAT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA AGA AAC AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT ACT CTT GTA GAG GTC TCA AGA AAC CTA AGA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT ACT ACT ACT AGA ATG GCC AGA AAC AAA ATG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp 629 TAT CTA TCC GTG GTC CTC AAC ACA GTA TCA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC AGA GTC ACC AAA TGC TCC AAC AGA GTT TCT ACT GTG TTG CAT GAA AAC TTC ACT TGT AAT TCL ACT GTG GTC CTC AAC ACA GAA TCC TTG GTG AAC AGC GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GTT GTG TTG AAC AGG GTA ATA TCC CAT GAT TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTG GTA ATA TCC CAC CTT TCT GAG AAG GAA AAA GAG CAA AAA GAG CAA CAA	GAA Glu	TGT Cys	GCT Ala	GAT Asp	GAC Asp	AGG Arg	GCG Ala	GAC Asp	CTT Leu	GCC Ala	AAG Lys	TAT Tyr	ATC Ile	TGT Cys	GAA Glu	AAT Asn	CAA Gln	GAT Asp	TCG Ser	ATC Ile	449
Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu AGT AAG GAT GTT TCC AAA AAC TAT GCT GAG GCA AAG GAT GTC TTC CTG GGC ATG TTT TTG Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu TAT GAA TAT GCA AGA AGG CAT CCT GAT TAC TCT GTC GTA CTG CTG CTG AGA CTT GCC AAG TYR Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys 529 ACA TAT GAA AC CACT CTA GAG AAG TCC TGT GTT GCC GCT GCA GAT CCT CAT GAA TCC TAT GCC Thr Tyr Glu Tyr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn TGT GAG CTT TTT GAG CAG CTT GGA GAG TAC AAA TTC CAG AAT GCC CTA TTA GTT CGT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT ACT CTA GTA GAG GTC TCA AGA AAC CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCT GTC GCA GAA GGA Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp 629 TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CGA CCA TCC TTT TCA GCT Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu GAA GTC ACC AAA TGC TGC ACA GAG GAG AGA GAC AAA ACA ACC GCA TTC TTT TCA GCT GTG AAA CAC ACC TT TCT GAG AGG GAG AGA ACA ACC ATC CTT GAT GAG ASP Ile Cys Thr Leu Ser Glu Lys Glu Arg Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala GAT ATA TGC ACA CTT TCT GAG AGG GAG AGA ACA AAC AAC CTT CTT TTG GTG GAG ASP Ile Cys Thr Leu Ser Glu Lys Glu Arg Glu Phe Asn Ala GLU Thr Phe Thr Phe His Ala GAT ATA TGC ACA CTT TCT GAG AGG GAG	TCC Ser	AGT Ser	AAA Lys	CTG Leu	AAG Lys	GAA Glu	TGC Cys	TGT Cys	GAA Glu	AAA Lys	CCT Pro	CTG Leu	TTG Leu	GAA Glu	AAA Lys	TCC Ser	CAC His	TGC Cys	ATT Ile	GCC Ala	469
Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu TAT GAA TAT GCA AGA AGG CAT CCT GAT TAC TCT GTC GTA CTG CTG CTG AGA CTT GCC AAG TYR Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys S29 ACA TAT GAA ACC ACT CTA GAG AAG TCC TGT GCC GCT GCA GAT CCT CAT GAA TGC TAT GCC Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn TGT GAG CTT TTT GAG CAG CTT GGA GAG TAC AAA TTC CAG AAT GCC CTA TTA GTT CGT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GGC ACC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp AGA GTC ACC AAA TGT TGT AAA CAT CTTG GTA GAC GAA AAA AGA ATG CCC TGT GCA GAA GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp AGA GTC ACC AAA TGC TCC ACA GAA TCC TTG GTA AAC GAG CCA CTA TTC ACC TCTG GAA GTC ACC AAA TGC TCC ACA GAA TCC TTG GTG AAC AGC CCA TGC TTT ACG CT CTG ACA GTC ACC AAA TGC TCC ACA GAA TCC TTG GTG AAC AGG CCA CTA TCC TTT ACG CT CTG ACA GTC ACC AAA TGC TCC AAA GAC TCC TTG GTG AAC AGG CCA CTA TTC TCT GCT GAA GTC ACC AAA TCC TCC AAA GAC TTC ACC TTC GTG AAC ACC TTC ACC TTC GAA GTC ACC AAA TCC TCC AAA GAC TTC ACC TTC GTG ASP Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu GAA GTC GCT GTG AAA CAC AAC GTT CCC AAA GAC CTA AAA ACA TTC ACC TTC CTT GCC GAA GTC ACC ATT TCT GAG AAG GAA GAA CAA AAC ACT GCA TTC TTT GTG GAA CTC GCT TTT TGTA GAG AAG GCA ACA AAA GAG CAA ATC AAA ACT TCC ACC TTT GTT GAG ASP Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu CTT GTG AAA CAC AAC	GAA Glu	GTG Val	GAA Glu	AAT Asn	GAT Asp	GAG Glu	ATG Met	CCT Pro	GCT Ala	GAC Asp	TTG Leu	CCT Pro	TCA Ser	TTA Leu	GCT Ala	GCT Ala	GAT Asp	TTT Phe	GIT Val	GAA Glu	489
TYP Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Arg Leu Ala Lys 529 ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT GCC GCT GCA GAT CCT CAT GAA TGC TAT GCC Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala 549 AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn 569 TGT GAG CTT TTT GAG CAG CTT GGA GAG TAC AAA TTC CAG AAT GCG CTA TTA GTT CGT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA ATH Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GCC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp 629 TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp 649 AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG ATG Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg ATG Pro Cys Phe Ser Ala Leu GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT CCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA ACA TTC ACC TTT GTG GAG Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA AAG GAG CAA ATC AAG AAA ACT GCA CTT GTT GAG Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Ala Val Met Asp Asp Phe 729 CCT GTG AAA CAC AAG CCC AAG GCA ACA AAA AAG GCT GAT AAG GAG CCT TCT GTG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu 745 745 746 747	AGT Ser	AAG Lys	GAT Asp	GTT Val	TGC Cys	AAA Lys	AAC Asn	TAT Tyr	GCT Ala	GAG Glu	GCA Ala	AAG Lys	GAT Asp	GTC Val	TTC Phe	CTG Leu	GGC Gly	ATG Met	TTT Phe	TTG Leu	509
The Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GAA GAG CCT CAG AAT TTA ATC AAA CAA AAT Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn TGT GAG CTT TTT GAG CAG CTT GGA GAG TAC AAA TTC CAG AAT CCG CTA TTA GTT CGT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA AGC CCA GTA AGT GAC TYT Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT CCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA ACA ACT GCA CTT GTT GAG ASp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA ATC AAG ACA CTG GTT ATG GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe GCA GCT TTT GTA GAG AAG TCC CAA AGT CAA AGT GCA CTG CTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu ABA AAA CTT GTT GCT CAA AGT CAA AGT CAA AGT CAC TTT CCC GAG GAG Ala Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu ABA CTT TTT GTA GAG AAG TCC CAA AGT CAA AGT CAA AGT CAA CTC CTT GCC GAG GAG Ala Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu ABA CTT CTT GTG AAA CTT GTT GCT CAA AGT CAA GCT GCC TTA	TAT Tyr	GAA Glu	TAT Tyr	GCA Ala	AGA Arg	AGG Arg	CAT His	CCT Pro	GAT Asp	TAC Tyr	TCT Ser	GTC Val	GTA Val	CTG Leu	CTG Leu	CTG Leu	AGA Arg	CTT Leu	GCC Ala	AAG Lys	529
Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn TGT GAG CTT TTT GAG CAG CTT GGA GAG TAC AAA TTC CAG AAT GCG CTA TTA GTT CGT TAC Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp 629 TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CCA CCA TGC TTT TCA GCT CTG Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT CCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG ASp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTA TTG GAT GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala CT TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu GGT AAA ACA TTG GTT GCT GCA AGT CAA GCT GAA GAG ACC TTG TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu FASTII GGT AAA ACA TTG GTT GCT GCA AGT CAA GCT GAA GCA TTA TAA CATCACATTT	ACA Thr	TAT Tyr	GAA Glu	ACC Thr	ACT Thr	CTA Leu	GAG Glu	AAG Lys	TGC Cys	TGT Cys	GCC Ala	GCT Ala	GCA Ala	GAT Asp	CCT Pro	CAT His	GAA Glu	TGC Cys	TAT Tyr	GCC Ala	549
Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA ACT CTT GTA GAG GTC TCA AGA AAC CTA GGA Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp 629 TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA ACT GCA CTT GTT GAG ASP Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe 729 GCA GCT TTT GTA GAG AAG TOC TOC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu MstII GGT AAA AAA CTT GTT GCT GCA AGT CAA GCC TTA GCC TTA TAA CATCACATTT	AAA Lys	GTG Val	TTC Phe	GAT Asp	GAA Glu	TTT Phe	AAA Lys	CCT Pro	CTT Leu	GTG Val	GAA Glu	GAG Glu	CCT Pro	CAG Gln	AAT Asn	TTA Leu	ATC Ile	AAA Lys	CAA Gln	AAT Asn	569
Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT GAA GCA AAA AGA ATG CCC TGT GCA GAA GAC Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp 629 TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp 649 AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu 669 GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala 689 GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG ASP Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe 729 GCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu 749 MSTII GGT AAA AAA CTT GTT GCT GCA AGT CAA AGT CAA GCT GTA TAA CATCACATTT	TGT Cys	GAG Glu	CTT Leu	TTT Phe	GAG Glu	CAG Gln	CTT Leu	GGA Gly	GAG Glu	TAC Tyr	AAA Lys	TTC Phe	CAG Gln	AAT Asn	GCG Ala	CTA Leu	TTA Leu	GTT Val	CGT Arg	TAC Tyr	589
Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp 629 TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT GTG TTG CAT GAG AAA ACG CCA GTA AGT GAC Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp 649 AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu 669 GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala 689 GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu 709 CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe 629 GCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu 749 MStII GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTT	ACC Thr	AAG Lys	AAA Lys	GTA Val	CCC Pro	CAA Gln	GTG Val	TCA Ser	ACT Thr	CCA Pro	ACT Thr	CTT Leu	GTA Val	GAG Glu	GTC Val	TCA Ser	AGA Arg	AAC Asn	CTA Leu	GGA Gly	609
AGA GTC ACC AAA TGC TGC ACA GAA TCC TTG GTG AAC AGG CGA CCA TGC TTT TCA GCT CTG ATG Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu 669 GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala 689 GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG ASp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu 709 CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe 729 GCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu 749 MStII GCT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTT	AAA Lys	GTG Val	GGC Gly	AGC Ser	AAA Lys	TGT Cys	TGT Cys	AAA Lys	CAT His	CCT Pro	GAA Glu	GCA Ala	AAA Lys	AGA Arg	ATG Met	CCC Pro	TGT Cys	GCA Ala	GAA Glu	GAC Asp	629
Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG TTT AAT GCT GAA ACA TTC ACC TTC CAT GCA Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe GCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu MStII GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTT	TAT Tyr	CTA Leu	TCC Ser	GTG Val	GTC Val	CTG Leu	AAC Asn	CAG Gln	TTA Leu	TGT Cys	GTG Val	TTG Leu	CAT His	GAG Glu	AAA Lys	ACG Thr	CCA Pro	GTA Val	AGT Ser	GAC Asp	649
GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CAA ATC AAG AAA CAA ACT GCA CTT GTT GAG ASP Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu 709 CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe 729 GCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu 749 MStII GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA TAA CATCACATTT	AGA Arg	GTC Val	ACC Thr	AAA Lys	TGC Cys	TGC Cys	ACA Thr	GAA Glu	TCC Ser	TTG Leu	GTG Val	AAC Asn	AGG Arg	CGA Arg	CCA Pro	TGC Cys	TTT Phe	TCA Ser	GCT Ala	CTG Leu	669
ASP Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu 709 CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA GAG CAA CTG AAA GCT GTT ATG GAT GAT TTC Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe 729 GCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu MStII GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTT	GAA Glu	GTC Val	gat Asp	GAA Glu	ACA Thr	TAC Tyr	GTT Val	CCC Pro	AAA Lys	GAG Glu	TTT Phe	AAT Asn	GCT Ala	GAA Glu	ACA Thr	TTC Phe	ACC Thr	TTC Phe	CAT His	GCA Ala	689
CCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GAC GAT AAG GAG ACC TGC TTT GCC GAG GAG Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu MStII GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTT	GAT Asp	ATA Ile	TGC Cys	ACA Thr	CTT Leu	TCT Ser	GAG Glu	AAG Lys	GAG Glu	AGA Arg	CAA Gln	ATC Ile	AAG Lys	AAA Lys	CAA Gln	ACT Thr	GCA Ala	CTT Leu	GIT Val	GAG Glu	709
Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu 749 MStII GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTT	CTT Leu	GTG Val	AAA Lys	CAC His	AAG Lys	CCC Pro	AAG Lys	GCA Ala	ACA Thr	AAA Lys	GAG Glu	CAA Gln	CTG Leu	AAA Lys	GCT Ala	GTT Val	ATG Met	GAT Asp	GAT Asp	TTC Phe	.729
GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT GCC TTA GGC TTA TAA CATCACATTT	GCA Ala	GCT Ala	TTT Phe	GTA Val	GAG Glu	AAG Lys	TGC Cys	TGC Cys	AAG Lys	GCT Ala	GAC Asp	Asp	Lys	GAG Glu	ACC Thr	TGC Cys	TTT Phe	GCC Ala	GAG Glu	GAG Glu	749
	GGT Gly	AAA Lys	AAA Lys	CTT Leu	GTT Val	GCT Ala	GCA Ala	AGT Ser	CAA Gln	GCT Ala	GCC Ala	TTA	GGC	TTA Leu	TAA	CATO	CACA!	TT			763

AAAAGCATCT CAGCCTACCA TGAGAATAAG AGAAAGAAAA TGAAGATCAA AAGCTT

8/10

Figure 6

Figure 7 .

Figure 8

INTERNATIONAL SEARCH REPORT

International application No. PCT/FR93/00086

In	^{C. Cl. :} C12N 15/14; //(C12N 1	A61K 37/02; C07K 13700 /19, C12R 1/645)	C12N 15/27;
	to International Patent Classification (IPC) or to both	national classification and IPC	
	DS SEARCHED		·
	ocumentation searched (classification system followed by	y classification symbols)	
In	t. Cl. ⁵ : CO7K; C12N; A61K		· · · · · · · · · · · · · · · · · · ·
Documentat	ion searched other than minimum documentation to the e	extent that such documents are included in the	e fields searched
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, search t	erms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
Y	DE, A, 3 723 781 (CHUGAISEIY 21 January 1988, see pag line 1; claims; tables		1,5-6,8-9
Α	Time (, Grains, Gabres	*	19-22
Y	EP, A, O 364 980 (DENKI KAGA 25 April 1990, see abstr see page 2, lines 28-30 see page 3, lines 1-6 see page 3, line 54	KU KOGYOKABUSHIKI KAISHA) act	1,5-6,8-9
Y	EP, A, O 395 918 (VASCULAR L 7 November 1990, see col see column 16, lines 26-	umn 1, lines 24-48	1,5-6,8-9
Y	WO, A, 9 013 653 (DELTA BIOT 15 November 1990, see pa	ECHNOLOGY LIMITED) ge 9, lines 18-24	1,5-6,8-9
A .	EP, A, O 361 991 (RHONE-POUL cited in the application	ENC SANTE) 4 April 1990,	10-18
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	
"A" docume	categories of cited documents: nt defining the general state of the art which is not considered particular relevance	"T" later document published after the inter date and not in conflict with the appli- the principle or theory underlying the	cation but cited to understand
"L" docume cited to	ocument but published on or after the international filing date at which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered novel or cannot be considered step when the document is taken alon	lered to involve an inventive e
"O" docume means	reason (as specified) nt referring to an oral disclosure, use, exhibition or other	being obvious to a necessary little 4 in the	step when the document is documents, such combination
	nt published prior to the international filing date but later than rity date claimed	"&" document member of the same patent	
	actual completion of the international search 2 1993 (17.06.93)	Date of mailing of the international season 2 July 1993 (02.07.93)	rch report
Name and m	nailing address of the ISA/	Authorized officer	
Europe	an Patent Office		
Facsimile N	o.	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No. PCT/FR93/00086

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
А	see examples 1-4 EP, A, O 401 384 (KIRIN-AMGEN, INC.) 12 December 1990, see page 1, line 15 - page 3	1,19-22
	,	
	•	
	,	
	•	
	·	
	• •	}
	•	
		·
	·	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9300086 FR SA 70240

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17/0

17/06/93

Patent document cited in search report	Publication date		t family aber(s)	Publication date
DE-A-3723781	21-01-88	AU-B-	611856	27-06-91
		AU-A-	7566587	21-01-88
		BE-A-	1000253	27-09-88
		CH-A-	671157	15-08-89
		FR-A-	2601591	22-01-88
•		GB-A,B	2193631	17-02-88
	•	JP-A-	63146826	18-06-88
		NL-A-	8701640	16-02-88
		SE-A-	8702907	19-01-88
		JP-A-	63146827	18-06-88
		JP-A-	63152326	24-06-88
***********		JP-A-	63146828	18-06-88
EP-A-0364980	25-04-90	JP-A-	2111799	24-04-90
		DE-U-	6890599	19-05-93
<u>v</u>		JP-A-	2275900	09-11-90
EP-A-0395918	07-11-90	AU-A-	5316290	18-10-90
		CA-A-	2014470	13-10-90
		CN-A-	1049865	13-03-91
		JP-A-	3117484	20-05-91
WO-A-9013653	15-11-90	AU-B-	630450	29-10-92
		AU-A-	5564690	29-11-90
		EP-A-	0470165	12-02-92
		GB-A,B	2246783	12-02-92
		JP-T-	4506598	19-11-92
EP-A-0361991	04-04-90	FR-A-	2635115	09-02-90
		FR-A-	2649991	25-01-91
		AU-B-	623425	14-05-92
		AU-A-	3933289	08-02-90
		JP-A-	2276589	13-11-90
EP-A-0401384	12-12-90	CA-A-	2006596	22-06-90
		WO-A-	9006952	28-06-90

I. CLASSE	MENT DE L'INVENT	TON (si plusieurs symboles de classification	sont applicables, les indiquer tous) 7	
		ale des brevets (CIB) on à la fois selon la cis		
CIB	5 C12N15/6		A61K37/02; C07 //(C12N1/19,C12R1/64	7K13/00 5)
II. DOMAI	NES SUR LESQUEL	S LA RECHERCHE A PORTE		
		Documentation mi	nimale consultée ⁸	
Système	de classification	Syr	mboles de classification	
CIB	5	CO7K ; C12N ;	A61K	
		Documentation consultée autre que la do où de tels documents font partie des dom		·
III. DOCU		ES COMME PERTINENTS ¹⁰		
Catégorie °	· Ide	ntification ées éocuments cités, avec indica des passages pertinents ¹³	tion, si nécessaire/2	No. des revendications visées 14
Y	21 Janv voir pa	723 781 (CHUGAISEIYAKU l ier 1988 ge 4, ligne 68 - page 5	-	1,5-6, 8-9
A	revendi	cations; tableaux		19-22
Y	KOĞYOKA 25 Avri voir ab voir pa voir pa		30	1,5-6, 8-9
Y	INC.) 7 Novem voir co	395 918 (VASCULAR LABOR bre 1990 lonne 1, ligne 24 - lig lonne 16, ligne 26 - li	ne 48	1,5-6, 8-9
"A" do co "E" do tic "L" do pri au "O" do pri "P" do postérieures	asidéré comme particu cument antérieur, mais anal ou après cette dais orité ou cité pour ééte tre citation ou pour un cument se référant à le exposition ou tous a cument publié avant is ment à la date de prior	tat général de la technique, non illérement pertinent s publié à la date de dépôt interna- en doute sur une revendication de sminer la date de publication d'une se raison spéciale (telle qu'indiquée) une divuigation orale, à un usage, à untres moyens a date de dépôt international, mais	"I" document ultérieur publié postérieuremen international ou à la date de priorité et n à l'état de la technique perdiaent, mais ci le principe ou la théorie constituant la be document particulièrement pertinent; l'in quée ne pest être considérée comme nous impliquant une activité inventive "Y" document particulièrement pertinent; l'in diquée ne peut être considérée comme im activité inventive lorsque le document est plusieurs autres documents de même nat naison étant évidente pour une personne document qui fait partie de la même fam	'appartement pas té pour comprendre use de l'invention vention revendi- relle ou comme vention reven- pliquant une a associé à un ou ure, cette combi- du métier.
	FICATION	- colonia a lea effectivo est est est	Date d'amidition du subsert manuré de	acharcha Internationale
INSTE & LEGI		mationale a été effectivement achevée JUIN 1993	Date d'expédition du présent rapport de r 0 2 -07- 1993	
Administra	tion chargée és la reci OPPICE	erche internationale EUROPEEN DES BREVETS	Signature du fonctionnaire autorisé LE CORNEC N.D.R.	

III. DOCUME	TIS CONSIDERES COMME PERTINENTS ¹⁴ (SUITE DES RENSEIGNEMENTS I DEUXIÈME FEUILLE)	NDIQUES SUR LA
Catégorie °	Identification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendications visées ¹⁸
Y	WO,A,9 013 653 (DELTA BIOTECHNOLOGY LIMITED) 15 Novembre 1990 voir page 9, ligne 18 - ligne 24	1,5-6, 8-9
A .	EP,A,O 361 991 (RHONE-POULENC SANTE) 4 Avril 1990 cité dans la demande voir exemples 1-4	10-18
A	EP,A,O 401 384 (KIRIN-AMGEN, INC.) 12 Décembre 1990 voir page 1, ligne 15 - page 3	1,19-22
	•	
	•	

Formulaire PCT/ISA/210 (fortile additionnelle) (Octobre 1981)

ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF A LA DEMANDE INTERNATIONALE NO.

FR 9300086 70240 SA

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

17/06/93

au rapport de recherche	Date de publication		re(s) de la le brevet(s)				
DE-A-3723781	21-01-88	AU-B-	611856	27-06-91			
		AU-A-	7566587	21-01-88			
		BE-A-	1000253	27-09-88			
		CH-A-	671157	15-08-89			
		FR-A-	2601591	22-01-88			
		GB-A,B	2193631	17-02-88			
		JP-A-	63146826	18-06-88			
		NL-A-	8701640	16-02-88			
	•	SE-A-	8702907	19-01-88			
		JP-A-	63146827	18-06-88			
		JP-A-	63152326	24-06-88			
		JP-A-	63146828	18-06-88			
EP-A-0364980	25-04-90	JP-A-	2111799	24-04-90			
		DE-U-	6890599	19-05-93			
		JP-A-	2275900	09-11-90			
EP-A-0395918	07-11-90	AU-A-	5316290	18-10-90			
		CA-A-	2014470	13-10-90			
		CN-A-	1049865	13-03-91			
		JP-A-	3117484	20-05-91			
				20.03-31			
WO-A-9013653	15-11-90	AU-B-	630450	29-10-92			
	1	AU-A-	5564690	29-11-90			
• •		EP-A-	0470165	12-02-92			
		GB-A,B	2246783	12-02-92			
		JP-T-	4506598	19-11-92			
EP-A-0361991	04-04-90	FR-A-	2635115	09-02-90			
	0. 0. 00	FR-A-	2649991	25-01-91			
•		AU-B-	623425	14-05-92			
		AU-A-	3933289	08-02-90			
		JP-A-	2276589				
		JP-A-	22/0369 	13-11-90			
	12-12-90	CA-A- WO-A-	2006596	22-06-90			
EP-A-0401384			9006952	28-06-90			