

PLASMIDS USED FOR THE PRODUCTION OF HIV VECTOR PARTICLES

FIG. 2

IMPACT OF TRIPLEX ON EGFP TRANSDUCTION IN HeLa CELLS F/G. 3

QUANTIFICATION OF DEGREE OF TRANSDUCTION OF EGFP GENE BY HIV VECTORS WITH OR WITHOUT TRIPLEX

VECTOR
TRANSDUCTION OF GFP IN MITOTIC HeLa CELLS

TRANSDUCTION OF GFP IN BLOCKED HeLa CELLS FIG.~4B

IMPACT OF TRIPLEX ON TRANSDUCTION OF DIVIDING OR NONDIVIDING HeI CELLS, WITH GFP

FIG. 4C

QUANTIFICATION OF DEGREE OF TRANSDUCTION OF LacZ GENE BY HIV VECTORS WITH OR WITHOUT TRIPLEX

TRANSDUCTION OF β GAL IN MITOTIC HeLa CELLS

FIG. 5A

TRANSDUCTION OF β GAL IN NON MITOTIC HeLa CELLS

FIG. 5B

BEST AVAILABLE COPY

IMPACT OF CENTRAL TRIPLEX ON TRANSDUCTION OF GFP GENE IN RAT PRIMARY SPINAL CELLS

FIG. 6A

BEST AVAILABLE COPY

HR GFP

TRIP GFP

IMPACT OF CENTRAL TRIPLEX ON TRANSDUCTION OF GFP GENE IN RAT PRIMARY SPINAL CELLS

F/G. 6B

IMPACT OF TRIPLEX ON IN VIVO TRANSDUCTION OF EGFP GENE IN RAT BRAIN: TRANSDUCTION AT INJECTION SITE

FIG. 7A.1

IMPACT OF TRIPLEX ON <u>IN VIVO</u> TRANSDUCTION OF GFP GENE IN RAT BRAIN

FIG. 7A.2

IMPACT OF TRIPLEX ON TRANSDUCTION OF LUCIFERASE ACTIVITY IN HeLa CELLS IN VITRO

IMPACT OF TRIPLEX ON TRANSDUCTION OF LUCIFERASE ACTIVITY IN RAT BRAIN IN VIVO

IMPACT OF TRIPLEX ON TRANSDUCTION OF LUCIFERASE ACTIVITY IN MOUSE BRAIN CELLS IN VIVO

METHOD FOR QUANTITATIVE ANALYSIS OF MATURATION OF VECTOR DNA

A) SOUTHERN BLOT STRATEGY

INTEGRATED PROVIRUS

FIG. 8A

NON INTEGRATED DNA CIRCLES

B) QUANTIFICATION BY PHOSPHORIMAGE

FIG. 8B

ANALYSIS OF NUCLEAR IMPORT OF VECTOR DNA

FIG. 9A

BEST AVAILABLE COPY

FIG. 9B

BEST AVAILABLE COPY

FIG. 9C

1 LTR DNA, CIRCLE

HIV A TRIPLEX VECTOR: TRIP-EGFP **FIG. 10**

TRIPLEX CAEV (CAPRINE ARTHRITIS ENCAPHALITIS VIRUS)

DSDW L	Fnu4H I	<u>Tfi I</u> Fnu4H I	Hinf I Bby I Rma I	Sfe I Bbv I hv I	gttccagccacaatttgtcgctgtagaatcagccatagcagcatcgcctagtcgccataaatataaaaaggaaaagggtggggttggggacaagccctatggat	caaggtcggtgttaaacagcgacatcttagtcggtatcgtcgtcggcagcggtattagtttatatttttttt		24 38 47 47 47	26 38 CPPT	41	ትት
--------	---------	----------------------	--------------------	------------------	--	--	--	----------------	------------	----	----

100

atttttatatataataaagaacagaaaagaataaataataataataaaaattctcaaaaaattcaattctgttattacagaataaggaaaagaggac 200

Mnl I

<<CTS>>

FIG. 11A

TRIPLEX EIAV (EQUINE INFECTIOUS ANAEMIA VIRUS) Na III Sty I Nco I	Dsa I Tth111 II Nla III Sfe I AGGGAGGACACCATGGGAAGTATTTATCACTAATCAAGCACGAAGTAATACATGAGAAACTTTTACTACACTTACTACACTTCCTTC	14 28 39 63 78 93 99 cPPT 39 39 39 39 40	Hph I Sau96 I EcoR II Sau96 I Ava II Ava II BST I BST I BST I BST I Ecol109 I Hph I BST I	AAAAATTTTGTTTTTACAAAATCCCTGGTGAACATGATTGGAA TTTTTAAAACAAAATGTTTTAGGGACCACTTGTACTAACCTT
	Mae III Mnl CTTGTAACAAAGGGAG GAACATTGTTTCCCTC	4 14 CPE	T	AGCACAATCCTCCAAI TCGTGTTAGGAGGTT

FIG. 11B

TRIPLEX SIV_{AGM} (SIMIAN IMMUNODEFICIENCY VIRUS)

BsmA I Bsa I

Sfe I

Ple I Hinf

Mse I Dra I

Mse I Ase I

<<CTS>>

FIG. 11D

	100	
Mn1_I	agatacaattcctccaag tctatgttaaggaggttc 93	
Bcl I	tatgatcaccacagaacaag atactagtggtgtcttgttc 65 66	99 99 98
Ase I	agaaagáttaatcaa cctttctaattagtt 54 55	
Hinf I	gatatgactccatce ctatactgaggtagt 39 39	
Na III	gcatgaatíttaaaagaagggggggaatagggg cgtacttaaaaattttcttcccccccttatcccc 3 10	11 CPPT
		$\frac{1}{\text{Ase I}} = \frac{\text{Bcl I}}{\text{Ase I}}$ this as a sign and a secondary of the secondary o

FIG. 11E

TRIPLEX HIV-2 RID (HUMAN IMMUNODEFICIENCY VIRUS)

	200
	ctactgtggaaaggagagaggggc gatgacacctttcctcttcctcg
Scrf I Ecor II Dsa V BstN I BstK I BsaJ I Ava II PpuM I	Ecolly I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sau3A I Mbo I Dpn II	Dpn I aaggcagagatcagttgt ttccgtctctagtcaace 151 151 151 151
	Mse I Ccaaaaattaaaagattttcgggtctatttcagagaaggcagagatcagttgtggaaaggacctggggaactactgtggaaaggaggagcggtttttaagttttctaaaagcccagataaagtctcttccgtctctagtcaacacctttcctggaccccttgatgacacctttcctccggacccctttcctcggacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacccctttcctccgfgacgagaggaggacccctttcctccgfgacgagaggaggacccctttcctccgfgacgagaggaggacccctttcctccgfgacacgagagaggaggaggacccctttcctccggacccctttcctccgfgacgagaggaggaggaggaggaggaggaggaggacccctttcctccgfgacgagaggaggaggaggaggaggaggaggaggaggagga
	ccaaaaattcaae ggtttttaagttt

FIG. 11E (cont)

TRIPLEX HIV-1 LAI

Rsa I Acc I CSD6 I CSD6 I CSD6 I Acc I CSD6 I Acc I CSCATACTAACAACAACAACAACAACAACAACAACAACAACA	Sau96 I Mnl I Alu I
BSQ I L L ACCAGGGGAAGAATAGTA CCACGTCCCCTTTCTTATCAT 1. 66 49	Sau3A I Mbo I Dpn II Dpn I Alw I Bsty I
Rsa I Csp6 1 Gsp6 1 LcccccTAACCCCCATGTC	
MSe I	

ATTACAAAAACAAATTACaaaaattcaaaattttCGGGTTTATTACAGGGACAGCAGAGGATCCACTTTGGAAAGGACCAGCAAAGCTCTCTGGAAAGGT 200 TAATGTTTTTGTTTAATGttttaagttttaaaaGCCCCAAATAATGTCCCTGTCGTCTCTAGGTGAAACCTTTCCTGGTCGTTTTCGAGGAGACCTTTCCA 188 <<CTS>>

FIG. 11F

5 'TTTTAAAAGAAAAGGGGGGATTG-

- -GGGGGTACAGTGCAGGGGAAAGAATAG-
- -TAGACATAATAGCAACAGACATACAAA-
- -CTAAAGAATTAC-
- -AAAAATTCAAAATTTTC 3'

<u>CTS</u>

TRIPLEX DNA REGION OF HIV-1 VIRUS

FIG. 11G

ALIGNMENT OF CPPT AND 3'PPT SEQUENCES IN SOME LENTIVIRUSES

3' PPT AAAAGAAAGGGGGG HIV-1

CENTRAL PPT *********

AAAACAAGGGGGGG HIV-2 ROD

****G*******

AAAAGAAAGGGGGG SIV mac & HIV-2 NIH-Z

*******GG**A**A

AAAAGAAAAGGGAGG SIVagm

*******G**AG*A

AAAAAGAAAAGAAAGGGTGG VISNA

T*T******

AAAAATAAAAAAAGAAAGGGTG CAEV

T*******

AACAAGGGGGGAA *EIAV*

AGG*A*A**

FIG. 11H

RESTRICTION MAP OF pTRIP.MEL-IRES-GFP

SPECIFIC MELANOMA CTL POLYEPITOPIC SEQUENCE

SOURCE: CHARNEAU HOST: JM109

FIG. 14

EPITOPIC PEPTIDES INCLUDED IN MELANOMA POLYEPITOPE

MELANOMA PEPTIDE		SEQUENCE		REFERENCE
gp100	154-162	KTWGQYWQV	KAWAKAMI, Y. ET AL.	J.IMMUNOL.1995.154:3961-8.
	209-217	ITDQVPFSV	KAWAKAMI, Y. ET AL.	J.IMMUNOL.1995.154:3961-8.
	280-288	YLEPGPVTA	COX, AL. ET AL.	SCIENCE.1994.264:716-9.
	457-466	LLDGTATLRL	KAWAKAMI, Y. ET AL.	J.IMMUNOL.1995.154:3961-8.
MART-1	27-35	AAGIGILTV	KAWAKAMI, Y. ET AL.	J.IMMUNOL.1995.154:3961-8.
	32-40	ILTVILGVL	CASTELLI, C. ET AL.	J.EXP.MED.1995.181:363-8.
TYROSINASE	1-9	MLLAVLYCL	WOLFEL, T. ET AL.	EUR.J.IMMUNOL.1994.24:759-64.
	368-376-D	YMDGTMSQV	MOSSE, CA. ET AL.	J.EXP.MED.1998.187:37-48.
GnT-V/NA17-A	nt38-64b	VLPDVFIRC	GUILLOUX, Y. ET AL.	J.EXP.MED.1996.183:1173-83.
MAGE-3	271-279	FLWGPRALV	VAN DER BRUGGEN, P.	VAN DER BRUGGEN, P. ET AL. EUR.J.IMMUNOL.1994.24:3038-43.

AMINO ACID SEQUENCE OF MELANOMA POLYPITOPE

AAGIGILTV<u>FLWGPRALV</u>MLLAVLYCL<u>LLDGTATLRL</u>KTWGQYWQV<u>YMDGTMSQV</u>ITDQVPFSV<u>YLEPGPVTA</u>ILTVILGVL<u>VLPDVFIRCV</u>

FIG. 15

FIG. 16B