作者: 李一飞 时间: 2019-07-22

本文主要提出了一个名为ATOMIC的自动生成的常识知识图谱,含有877k个文本描述的推理得来的常识 tuple。将if-then关系划分为9个维度来生成后件(暂且这么称呼)。文章还使用神经网络模型在 ATOMIC上进行了训练,使模型可以对unseen event给出reason和effect。通过自动评价(BLEU指标)和人工评价验证了模型的效果,并验证了多任务模型比单任务效果要好。

Introduction

本文主要聚焦于if-then形式的知识,目标是创建一个scale、coverage、quality三方面均可靠的知识库。文章提出了一种新颖的方式对if-then关系的类型进行分类。一种是基于将要发生的内容,可以分为: (1) *If-Event-Then- Mental-State*, (2) *If-Event-Then-Event*, (3) *If-Event-Then-Persona*。另一种是基于关系,可以分为: (1) "causes", (2) "effects", (3) "stative"。与传统的从已有的知识库中抽取知识的做法不同,作者采用了众包分配任务的方式,按类型来获取知识。接下来,作者尝试了用神经网络模型在ATOMIC数据集上跑,模型可以学得对没见过的event进行原因推理的能力。

If-Then Relaton Types

如上文提到的,文章介绍了两种分类方式,一种是按mental-state、event、persona分,另一种是按causes、effects、stative分,并且其中也细分为了九种情况,文章称为9个维度。具体如下图。

Figure 2: The taxonomy of *if-then* reasoning types. We consider nine *if-then* relations that have overlapping hierarchical structures as visualized above. One way to categorize the types is based on the type of content being predicted: (1) **If-Event-Then-Mental-State**, (2) **If-Event-Then-Event**, and (3) **If-Event-Then-Persona**. Another way is to categorize the types based on their causal relations: (1) "causes", (2) "effects", and (3) "stative". Some of these categories can further divide depending on whether the reasoning focuses on the "agent" (X) or the "theme" (Other) of the event.

Data

作者从故事、书籍、Google Ngrams和Wikitionary等来源中抽取了24K个常见的动词短语作为base events。对于不常出现的名词改用一个抽象名词来替代。并且对动作的参与者进行了消歧处理。作者创建了一个众包任务(挂在亚马逊平台上,分发给许多人做)。每个phrase由三个人共同判断,且至少由两人判定为Valid才算可以。接下来就是介绍了一些在亚马逊上分配任务的细节。下图为所得到数据的情况:

	Count	#words
# triples: If-Event-Then-*	877,108	-
- Mental-State	212,598	-
- Event	521,334	-
- Persona	143,176	-
# nodes: If-Event-Then-*	309,515	2.7
- Mental-State	51,928	2.1
- Event	245,905	3.3
- Persona	11,495	1.0
Base events	24,313	4.6
# nodes appearing > 1	47,356	_

Table 2: Statistics of ATOMIC. Triples represent distinct <event, relation, event>. #words represents the average number of words per node.

Methods

这里文章将其看作是一个常规的序列生成问题,使用encoder-decoder模型对输入的序列进行处理。(*回去补一下Seq2Seq的论文,详细了解一下encoder-decoder模型*)

Encoder: 输入 $e=\{e_0,e_1,\ldots,e_{n-1}\}\in R^{n imes i_{enc}}$ 。将输入序列e压缩至hidden空间: $f_{enc}:R^{i imes h_{enc}} o R_h$ 。

这里采用了300维的静态GloVe预训练的Embedding(*这个回去需要详细看一下*),并用1024维的ELMo预训练的Embedding与其拼接,增强一下输入数据。

Decoder: 用的是维度为 h_{dec} 的单向GRU,目的是生成序列 $t=\{t_0,t_1,\dots\}$,对于每个ti,相当于最大化 $p(t_{i+1}|h(i),t_0,\dots,t_i)=softmax(W_o\times GRU(h(i),t_i)+b_o)$ 。

单任务 vs 多任务: 这里作者用单任务和多任务的模型分别做了几组对比, 如下:

- EVENT2(IN)VOLUNTARY: 相当于按照是否是Voluntary的关系,将9个维度中属于同一类的进行合并归类。此模型包含1个encoder和4个decoder负责处理4种Voluntary的情况,以及另一个encoder和5个decoder负责处理Involuntary的情况。这里的数量和Figure 2中列举的9个维度可以对应上(其实就是九种关系)。
- EVENT2PERSONX/Y: 和上一条类似,按照对象是"agent" (自己) 和 "theme" (旁人) 为划分依据。模型包含1个encoder和6个decoder负责 "agent",以及另一个encoder和3个decoder负责 "theme"。
- EVENT2PRE/POST: 这个是按照关系的影响划分的。省略了xAttr这个维度,使用了2个encoder和 8个decoder来表示8种关系。
- 9ENC9DEC: 为9个维度单独训练9个encoder-decoders。

(* Mark: Nearest Neighbor 算法也要补一下*)

训练细节:将数据集按训练集,验证集,测试集80%,10%,10%的比例划分。将300维的GloVe词向量和1000维的ELMo词向量拼接组成1324维的向量作为encoder的输入。 h_{enc} 和 h_{dec} 均为100。

Results

作者对模型生成之前没见过的event的解释能力进行评估。用了Automatic的评分(比如BLEU),结果表明多任务的模型效果比单任务更好。还用了人为的评估,让志愿者对模型给出的top-10结果进行评估,将他们认为合理的设为valid,得到了86.2%的准确率。最后还与ConceptNet的工作进行了对比(*ConceptNet可能也需要补一下*)

Conclusion

本文主要是将if-then划分为了几种类型,并且建立众包任务分发给志愿者们完成了知识库的构建工作, 建立了目前最大的推断知识库。另外,文章还使用神经网络模型,从KG中学习,获得对之前未出现过的 event给出原因解释和影响的能力。