МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут»

Факультет радіоелектроніки, комп'ютерних систем та інфокомунікацій

Кафедра комп'ютерних систем, мереж і кібербезпеки

Розрахункова робота

з дисципліни «Методи моделювання та оптимізації безпечних комп'ютерних систем»

(назва дисципліни)

на тему: «Вирішення задачі комівояжера»

Виконав: студент 5 курсу групи № 555ім							
напряму підготовки (спеціальності)							
125 Кібербезпека та захист							
інформації							
(шифр і назва напряму підготовки (спеціальності)) Орлов Станіслав Валерійович							
(прізвище й ініціали студента)							
Прийняв: д.т.н., професор							
Морозова Ольга Ігорівна							
(посада, науковий ступінь, прізвище й ініціали)							
Національна шкала:							
Кількість балів:							
Оцінка: ECTS							

Постановка задачі:

Но-						3	наче	ння (елем	ентів	мат	риці	відс	тане	й					
мер	r ₁₂	r ₁₃	r ₁₄	r ₁₅	r ₂₁	r ₂₃	r ₂₄	r ₂₅	r ₃₁	r ₃₂	r ₃₄	r ₃₅	r ₄₁	r ₄₂	r ₄₃	r ₄₅	r ₅₁	r ₅₂	r ₅₃	r ₅₄
варі-																				
22	7	9	7	8	6	6	7	8	9	5	8	7	6	8	7	9	8	8	7	6

Вирішити задачу комівояжера:

- 1) Методом динамічного програмування
- 2) Методом гілок і границь
- 3) Жадібним методом

Вирішення задачі

1) Метод динамічного програмування

$$\begin{split} W_{n-1}(G^*,i) &= min \; [\; r(i,j) + W_{n-2}(G^* \setminus j,\; j) \;]. \\ &\quad j \in G^* \end{split} \tag{4} \\ W_0(G^*,i) &= r(i,1), \qquad \qquad W_1(G^*,i) = \; W(j,i) = \; r(i,j) + r(j,1), \end{split}$$

Матриця відстаней

i		j					
	1	2	3	4	5		
1	-	7	9	7	8		
2	6	-	6	7	8		
3	9	5	-	8	7		
4	6	8	7	-	9		
5	8	8	7	6	-		

На першому кроці оптимізації визначемо відстані через будь-які дві вершини в початкову:

$$W(\{2\}, 3) = r(3,2) + r(2,1) = 5 + 6 = 11$$

$$W(\{2\}, 4) = r(4,2) + r(2,1) = 8 + 6 = 14$$

$$W(\{2\}, 5) = r(5,2) + r(2,1) = 8 + 6 = 14$$

$$W(\{3\}, 2) = r(2,3) + r(3,1) = 6 + 9 = 15$$

$$W(\{3\}, 4) = r(4,3) + r(3,1) = 7 + 9 = 16$$

$$W(\{3\}, 5) = r(5,3) + r(3,1) = 7 + 9 = 16$$

$$W(\{4\}, 2) = r(2,4) + r(4,1) = 7 + 6 = 13$$

$$W(\{4\}, 3) = r(3,4) + r(4,1) = 8 + 6 = 14$$

$$W(\{4\}, 5) = r(5,4) + r(4,1) = 6 + 6 = 12$$

$$W(\{5\}, 2) = r(2,5) + r(5,1) = 8 + 8 = 16$$

$$W(\{5\}, 3) = r(3,5) + r(5,1) = 7 + 8 = 15$$

$$W(\{5\}, 4) = r(4,5) + r(5,1) = 9 + 8 = 17$$

Отримані значення будуть використовуватись на другому кроці оптимізації (i = 2)

$$\begin{aligned} &W(\{3,4\},2) = \min[r(2,3) + W(\{4\},3); \ r(2,4) + W(\{3\},4)] = \min[\textbf{6+14}; \ 7+16] = 20 \\ &W(\{3,5\},2) = \min[r(2,3) + W(\{5\},3); \ r(2,5) + W(\{3\},5)] = \min[\textbf{6+15}; \ 8+16] = 21 \\ &W(\{4,5\},2) = \min[r(2,4) + W(\{5\},4); \ r(2,5) + W(\{4\},5)] = \min[\textbf{7+17}; \ \textbf{8+12}] = 20 \\ &W(\{2,4\},3) = \min[r(3,2) + W(\{4\},2); \ r(3,4) + W(\{3\},4)] = \min[\textbf{5+13}; \ 8+16] = 18 \\ &W(\{2,5\},3) = \min[r(3,2) + W(\{5\},2); \ r(3,5) + W(\{2\},5)] = \min[\textbf{5+16}; \ 7+14] = 21 \\ &W(\{4,5\},3) = \min[r(3,4) + W(\{5\},4); \ r(3,5) + W(\{4\},5)] = \min[\textbf{8+17}; \ \textbf{7+12}] = 19 \\ &W(\{2,3\},4) = \min[r(4,2) + W(\{3\},2); \ r(4,3) + W(\{2\},3)] = \min[\textbf{8+15}; \ \textbf{7+11}] = 18 \\ &W(\{2,5\},4) = \min[r(4,2) + W(\{5\},2); \ r(4,5) + W(\{2\},5)] = \min[\textbf{8+16}; \ \textbf{9+14}] = 23 \\ &W(\{3,5\},4) = \min[r(4,3) + W(\{5\},3); \ r(4,5) + W(\{3\},5)] = \min[\textbf{7+15}; \ \textbf{9+16}] = 22 \\ &W(\{2,4\},5) = \min[r(5,2) + W(\{4\},2); \ r(5,4) + W(\{2\},4)] = \min[\textbf{8+13}; \ \textbf{6+14}] = 20 \\ &W(\{3,4\},5) = \min[r(5,3) + W(\{4\},3); \ r(5,4) + W(\{3\},4)] = \min[\textbf{7+14}; \ \textbf{6+16}] = 21 \end{aligned}$$

Отримані значення будуть використовуватися на третьому (i = 3) — передостанньому — кроці. Комівояжер знаходиться у пункті з номером 2. Треба побувати у вершинах 3,4,5.

$$W({3,4,5},2) = min[r(2,3)+W({4,5},3); r(2,4)+W({3,5},4); r(2,5)+W({3,4},5)] = min[6+19; 7+22; 8+21] = min[25;29;29] = 25$$

Таким чином, встановлено, що при знаходженні комівояжера на третьому кроці в пункті 2 йому слід рухатися в пункт 3.

Далі розрахуємо інші 3 значення, які стосуються того, в якому напрямку потрібно рухатися комівояжеру, якщо він буде знаходитись відповідно в пунктах 3,4,5:

$$\begin{split} &W(\{2,4,5\},3) = \min[r(3,2) + W(\{4,5\},2); \ r(3,4) + W(\{2,5\},4); \ r(3,5) + W(\{2,4\},5)] = \\ &= \min[\textbf{5} + \textbf{20}; \ 8 + 23; \ 7 + 20] = \min[25; \ 31; \ 27] = 25 \\ &W(\{2,3,5\},4) = \min[r(4,2) + W(\{3,5\},2); \ r(4,3) + W(\{2,5\},3); \ r(4,5) + W(\{2,3\},5)] = \\ &= \min[8 + 21; \ 7 + 21; \ \textbf{9} + \textbf{18}] = \min[29; \ 28; \ 27] = 27 \end{split}$$

$$W({2,3,4},5) = min[r(5,2)+W({3,4},2); r(5,3)+W({2,4},3); r(5,4)+W({2,3},4)] = min[18+20; 7+18; 6+18] = min[28; 25; 24] = 24$$

Наприцінці, на останньому кроці, враховуючи результати отримані на попередньому кроці, отримаємо:

$$W({2,3,4,5},1) = min[\mathbf{r}(1,2) + W({3,4,5},2); \mathbf{r}(1,3) + W({2,4,5},3); \mathbf{r}(1,4) + W({2,3,5},4); \mathbf{r}(1,5) + W({2,3,4},5)] = min[\mathbf{7} + \mathbf{25}; 9 + 25; 7 + 27; \mathbf{8} + \mathbf{24}] = min[\mathbf{32}; 34; 35; \mathbf{32}] = 32$$

Таким чином, мінімальна довжина напрямку дорівнює 32.

2) Метод гілок і границь

i		j						
	1	2	3	4	5			
1	-	7	9	7	8			
2	6	-	6	7	8			
3	9	5	-	8	7			
4	6	8	7	-	9			
5	8	8	7	6	-			

Запишемо мінімальні елементи відповідних рядків у стовпець U_i та віднімемо елементи U_i з відповідних елементів рядка

i		j						
	1	2	3	4	5			
1	-	0	2	0	1	7		
2	0	-	0	1	2	6		
3	4	0	-	3	2	5		
4	0	2	1	-	3	6		
5	2	2	1	0	-	6		

Внизу отриманої матриці приєднуємо рядок V_j , в якому записуємо мінімальні елементи стовпців. Віднімаємо елемнти V_j із відповідних стовпців матриці і отримаємо:

i		j					
	1	2	3	4	5		
1	-	0	2	0	1	7	
2	0	-	0	1	2	6	
3	4	0	-	3	2	5	
4	0	2	1	-	3	6	
5	2	2	1	0	-	6	
Vi	0	0	0	0	1		

В результаті обчислень отримаємо матрицю, наведену по рядкам і стовпцям

i	j						
	1	2	3	4	5		
1	-	0	2	0	1		
2	0	-	0	1	2		
3	4	0	-	3	2		
4	0	2	1	-	3		
5	2	2	1	0	-		

Знаходимо константу наведення:

$$\gamma = \sum_{i=1}^{5} Ui + \sum_{j=1}^{5} Vj = 30 + 1 = 31$$

Знаходимо ступені нульової повністю наведеної матриці.

i	j						
	1	2	3	4	5		
1	-	00	2	000	01		
2	00	-	01	1	1		
3	4	01	-	3	1		
4	01	2	1	-	2		
5	2	2	1	01	-		

Ітерація 1

Шукаємо значення мінімальних елементів у кожному рядку та поелементно їх віднімаємо.

i	j						
	1	2	3	4	5		
1	-	00	2 ²	000	-		
2	00	-	00	11	1 <mark>0</mark>		
3	44	00	-	3 ³	10		
4	00	2 ²	11	-	21		
5	2 ²	2 ²	11	000	-		

Внизу отриманої матриці приєднуємо рядок V_j , в якому записуємо мінімальні елементи стовпців. Віднімаємо елемнти V_j із відповідних стовпців матриці і отримаємо:

I		Ui			
	1	2	3	4	
2	00	-	01	1	0
3	41	05	-	3	0
4	01	2	1	-	0
5	-	2	1	0^2	0
V_i	0	0	0	0	

Знаходимо суму найменших значень по строкам та стовбцям та таким чином включаємо у гамільтонов контур дугу (1;5). Значення (1;5) = 0

Поточне найменше значення константи наведення = 31 + 0 = 31

Ітерація 2

Розбиваємо множину усіх гамільтонових контурів (0) на дві підмножини, які включають і не включають дугу (3;2). Отримана матриця:

I		U_{i}			
	1	2	3	4	
2	00	_	01	1	0
3	41	-	-	3^0	3
4	01	2^0	11	-	0
5	-	2^0	11	0_0	0
V_i	0	2	0	0	

Знаходимо суму найменших значень по 3 рядку та 2 стовбцю:

$$(!3;2) = 5$$

Нижня межа підмножини (!3;2) дорівнює 31+5=36

Розбиваємо множину всіх гамільтонових контурів на 2 підмножини, яку включають та не включають дугу (3;2). Запишемо мінімальні значення по кожному рядку та стовпцю у відповіднній колонці та рядку.

I		j				
	1	3	4			
2	01	-	1	0		
4	01	1	-	0		
5	-	1	0^2	0		
Vi	0	1	0			

Знаходимо суму найменших значень по 3 рядку та 2 стовбцю:

$$(3;2)=1$$

Нижня межа підмножини (3;2) дорівнює 31+1=32

Порівнюючи нижні межі підмножин бачимо, що 31 < 36, тому включаємо ребро (3;2) до значення константи = 31 + 0 + 1

Ітерація 3

Враховуючи поточний гальмітоновий маршрут, виключаємо дугу (5;4).

Розбиваємо множину всіх гамільтонових контурів на дві підмножини, які включають і не включають дугу (5;4): (54) та (!54)

Шукаємо значення мінімальних елементів у кожному рядку та поелементно їх віднімаємо. Та знаходимо мінімальні значення кожного рядку та стовпця відповідно (U_i, V_i) .

I		U_{i}		
	1	3	4	
2	00	-	10	0
4	00	00	-	0
5	-	00	-	0
Vi	0	0	1	

Знаходимо суму найменших значень по 5 рядку та 4 стовбцю:

$$(!54) = 1$$

Виключаємо дугу (5;4)

	1	3	Ui
2	00	-	0
4	00	00	0
Vi	0	0	

Знаходимо суму найменших значень по строкам та стовпцям та визначаємо поточну дугу маршруту:

$$(5;4) = 0$$

$$(5;4) < (!54): 31 + 0 < 31 + 1$$

Включаємо поточну дугу у загальний маршрут

Цикл:

Довжина марштрута = 31 + 0 + 1 + 0 + 0 + 0 = 32

3) Жадібний метод

i	j					
	1	2	3	4	5	
1	-	7	9	7	8	
2	6	-	6	7	8	
3	9	5	-	8	7	
4	6	8	7	-	9	
5	8	8	7	6	-	

Крок 1. В рядку з номером 1 ϵ 2 елементи з мінімальним значенням рівним 7: 2-ий та 4-ий стовпець. Але 4 вершина ма ϵ також мінімальне значення на 5 кроці, тому шлях комівояжер почне з 2 вершини:

2 ->

Крок 2. Мінімальним елементом 2 рядка є елементи із значенням 6: 1-й та 3- 1 стовпець. Але 1 вершина має мінімальна значення на 4 кроці, тож комівояжер продовжить свій шлях через 3 вершину:

2 -> 3 ->

Крок 3. Мінімальним елементом 3 рядка ϵ 2-а вершина зі значенням 5. Через те ща з цієї вершини вояжер почав свій шлях, виберемо наступну оптимальну 5 вершину зі значенням 7.

Крок 4. Мінімальним елементом 3 рядка ϵ 1-а вершина зі значенням 6. Тож комівояжер продовжить свій шлях через 1 вершину:

$$2 \rightarrow 3 \rightarrow 5 \rightarrow 1 \rightarrow$$

Крок 5. Оскільки маршрут комівояжера пролягає через усі вершини, крім вершини з номером 4, то, очевидно, з вершини з номером 1 цей маршрут пройде у вершину з номером 4, з якої потім у початкову вершину.

$$2 \rightarrow 3 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 2$$

Довжина цього маршруту дорівнює 36, що не збігається з оптимальним маршрутом 32. Очевидно, що на першому кроці був не вірно зроблений вибір на користь другого елементу, що не дозволяє використати отпимальне значення на 5 кроці. Тож оптимальний маршрут матиме значення:

Почнему маршрут з 4 вершини та виконуючи попередні кроки 1-5 отримаємо наступний маршрут:

$$4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4$$

Довжина цього маршруту дорівнює 32 (6+7+6+7+6), що і збігається з оптимальною довжиною маршруту

Висновок.

В результаті можна зробити висновок, що метод динамічного програмування виявився легшим за метод гілок і границь, і однаково точним з ним. Жадібний метод виявився найлегшим, але результат наближений. В усіх методах одинакові довжини напрямків = 32.