Wersja:
A

Num	er indeks	su:	

- I

s. 103	s. 104	s. 105
s. 139	s. 140	s. 141

Logika dla informatyków

Sprawdzian nr 2, 16 grudnia 2022 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Jeśli to możliwe, wpisz w prostokąty poniżej takie spójniki logiczne oraz kwantyfikatory, aby otrzymana formuła była tautologią, a następnie podaj jej dowód w systemie naturalnej dedukcji. W przeciwnym przypadku napisz obok słowo "NIEMOŻLIWE".

$$\left(\begin{array}{c} \forall x \ (\varphi \wedge \psi) \end{array} \right) \Longrightarrow \left(\left(\begin{array}{c} \exists x \ \varphi \end{array} \right) \begin{array}{c} \lor \end{array} \left(\begin{array}{c} \exists x \ \psi \end{array} \right) \right)$$

$$\frac{\forall x(\varphi \land \psi) \text{ założenie}}{\frac{\forall x(\varphi \land \psi)}{\varphi[x/x_0] \land \psi[x/x_0]} \text{ (\foralle)}}$$

$$\frac{\frac{\varphi[x/x_0]}{\exists x\varphi} \text{ (\foralli)}}{\frac{\exists x\varphi \lor \exists x\psi}{} \text{ (\foralli)}}$$

$$\forall x(\varphi \land \psi) \Rightarrow (\exists x\varphi \lor \exists x\psi)$$

$$(\Rightarrow i)$$

Zadanie 2 (2 punkty). Jeśli istnieje taki zbiór A i taka przechodnia relacja binarna R na tym zbiorze, że $R \neq R$;R, to w prostokąt poniżej wpisz dowolny przykład takiego zbioru i takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór i relacja nie istnieją.

$$A=\{1,2\},\ R=\{\langle 1,2\rangle\}$$

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Napisz formułę, która mówi, że *liczba x jest potęgą liczby 3* a przy tym jest zbudowana wyłącznie ze zmiennych, kwantyfikatorów, spójników logicznych, nawiasów i symboli $<,+,\cdot,0,1,2,3$ interpretowanych w liczbach naturalnych jako relacja mniejszości, funkcje dodawania i mnożenia, oraz stałe 0,1,2 i 3. Można definiować makra tak jak to robiliśmy na ćwiczeniach. **Wskazówka:** intuicyjnie, liczba nie jest potęgą 3 gdy ma dzielnik, który nie dzieli się przez 3; trzeba jednak uważać na liczbę 1, która jest potęgą 3.

Niech
$$dzieli(d, m)$$
 oznacza formułę $\exists k \ d \cdot k = m$

$$x=1 \lor (1 < x \land \forall d. \ 1 < d \land dzieli(d,x) \Rightarrow dzieli(3,d))$$

Zadanie 4 (2 punkty). Rozważmy zbiory osób O, barów B, soków S i drużyn D oraz binarne relacje $Bywa\subseteq O\times B$, $Lubi\subseteq O\times S$, $Podajq\subseteq B\times S$ i $Kibicuje\subseteq O\times D$ informujące odpowiednio o tym, jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki, jakie bary podają jakie soki oraz jakie osoby kibicują jakim drużynom. Niech Argentyna oznacza drużynę. W prostokąt poniżej wpisz taką formułę φ , że $\{s\mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz soków podawanych w (jakimkolwiek) barze, w którym bywają tylko osoby, które kibicują Argentynie.

$$\exists b \in B. \ Podajq(b,s) \land \forall o \in O. \ Bywa(o,b) \Rightarrow Kibicuje(o,\mathsf{Argentyna})$$

Zadanie 5 (2 punkty). Niech $\{A_i\}_{i\in\mathbb{N}}$ będzie taką rodzina zbiorów, że $A_i=\{i-1,i,i+1\}$ dla $i\in\mathbb{N}$. W prostokąty poniżej wpisz, odpowiednio, najmniejszy i największy element zbioru X zdefiniowanego poniżej lub słowo "BRAK", jeśli odpowiedniego elementu nie ma.

$$X = \bigcup_{m=42}^{2022} \bigcap_{n=m}^{m+1} A_n$$

2023

Wersja:

Numer indek	su:		

Grupa^1	:
--------------------------	---

s. 103	s. 104	s. 105
s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Załóżmy, że relacja $R \subseteq A \times B$ jest funkcją. Udowodnij, że R jest injekcją wtedy i tylko wtedy, gdy $R; R^{-1} \subseteq I_A$. Tutaj R^{-1} oznacza relację odwrotną do R.

Zadanie 7 (5 punktów). Niech A oznacza zbiór liczb naturalnych parzystych, a B zbiór liczb naturalnych nieparzystych. Zdefiniujmy funkcję $f: A \times B \to \mathbb{N}$ daną wzorem $f(a,b) = \frac{a \cdot b}{2}$.

- (a) Czy f jest surjekcją?
- (b) Czy f jest injekcją?

Podaj dowody bądź stosowne kontrprzykłady wraz z uzasadnieniem.

Zadanie 8 (5 punktów). Dla danego zbioru X, filtrem w zbiorze $\mathcal{P}(X)$ nazywamy rodzinę zbiorów $\mathcal{F} \subseteq \mathcal{P}(X)$, spełniającą wszystkie poniższe warunki:

- $X \in \mathcal{F}$;
- jeśli $A \in \mathcal{F}$ oraz $A \subseteq B$ i $B \subseteq X$, to również $B \in \mathcal{F}$;
- dla dowolnych $A, B \in \mathcal{F}$ zachodzi $(A \cap B) \in \mathcal{F}$;
- $\emptyset \notin \mathcal{F}$.
- (a) Podaj przykład (wraz z uzasadnieniem) filtra w zbiorze $\mathcal{P}(\{1,2,3\})$.
- (b) Czy dla dowolnego zbioru X i dowolnych dwóch filtrów \mathcal{F}_1 i \mathcal{F}_2 w zbiorze $\mathcal{P}(X)$ ich przekrój $\mathcal{F}_1 \cap \mathcal{F}_2$ jest filtrem w zbiorze $\mathcal{P}(X)$? Uzasadnij odpowiedź: podaj dowód lub odpowiedni kontrprzykład.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

We	ersja:
-	\overline{D}

Nume	er indel	ksu:	

Grupa ¹ :				
s. 103	s. 104	s. 105		
s. 139	s. 140	s. 141		

Logika dla informatyków

Sprawdzian nr 2, 16 grudnia 2022 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Napisz formułę, która mówi, że liczba x nie jest potęgą <math>liczby 2 a przy tym jest zbudowana wyłącznie ze zmiennych, kwantyfikatorów, spójników logicznych, nawiasów i symboli $<,+,\cdot,0,1,2$ interpretowanych w liczbach naturalnych jako relacja mniejszości, funkcje dodawania i mnożenia, oraz stałe 0, 1 i 2. Można definiować makra tak jak to robiliśmy na ćwiczeniach. **Wskazówka:** intuicyjnie, liczba jest potęgą 2 gdy każdy jej dzielnik dzieli się przez 2; trzeba jednak uważać na liczbę 1, która jest potęgą 2.

Niech
$$dzieli(d,m)$$
 oznacza formułę $1{<}d \land \exists k \ d \cdot k = m$
$$x{=}0 \lor 2{<}x \land \exists d. \ dzieli(d,x) \land \neg dzieli(2,d)$$

Zadanie 2 (2 punkty). Niech $\{A_i\}_{i\in\mathbb{N}}$ będzie taką rodzina zbiorów, że $A_i=\{i-1,i,i+1\}$ dla $i\in\mathbb{N}$. W prostokąty poniżej wpisz, odpowiednio, najmniejszy i największy element zbioru X zdefiniowanego poniżej lub słowo "BRAK", jeśli odpowiedniego elementu nie ma.

$$X = \bigcap_{m=42}^{2022} \bigcup_{n=m}^{2023} A_n$$

$$\min X = \boxed{ 2021}$$

$$\max X = \boxed{ 2024}$$

Zadanie 3 (2 punkty). Niech R^+ oznacza przechodnie domknięcie relacji R. Jeśli istnieje taki zbiór A i taka relacja binarna R na tym zbiorze, że $R^+ \neq (R;R)^+$, to w prostokąt poniżej wpisz dowolny przykład takiego zbioru i takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór i relacja nie istnieją.

$$A=\{1,2\},\ R=\{\langle 1,2\rangle\}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Jeśli to możliwe, wpisz w prostokąty poniżej takie spójniki logiczne oraz kwantyfikatory, aby otrzymana formuła była tautologią, a następnie podaj jej dowód w systemie naturalnej dedukcji. W przeciwnym przypadku napisz obok słowo "NIEMOŻLIWE".

$$\left(\begin{array}{c} \forall x \ (\varphi \lor \psi) \end{array} \right) \Longrightarrow \left(\left(\begin{array}{c} \exists x \ \varphi \end{array} \right) \begin{array}{c} \lor \end{array} \left(\begin{array}{c} \exists x \ \psi \end{array} \right) \right)$$

Zadanie 5 (2 punkty). Rozważmy zbiory osób O, barów B, soków S i drużyn D oraz binarne relacje $Bywa\subseteq O\times B$, $Lubi\subseteq O\times S$, $Podajq\subseteq B\times S$ i $Kibicuje\subseteq O\times D$ informujące odpowiednio o tym, jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki, jakie bary podają jakie soki oraz jakie osoby kibicują jakim drużynom. Niech Francja oznacza drużynę. W prostokąt poniżej wpisz taką formułę φ , że $\{b\mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów podających (jakikolwiek) sok lubiany przez wszystkie osoby, które kibicują Francji.

$$\exists s \in S. \ Podajq(b,s) \land \forall o \in O. \ Kibicuje(o, Francja) \Rightarrow Lubi(o,s)$$

We	rsja
1	

Grupa ¹ :				
s. 103	s. 104	s. 105		
s. 139	s. 140	s. 141		

Zadanie 6 (5 punktów). Niech A oznacza zbiór liczb naturalnych parzystych, a B zbiór liczb naturalnych nieparzystych. Zdefiniujmy funkcję $f: A \times B \to \mathbb{N}$ daną wzorem $f(a,b) = \frac{a+2b}{2} - 1$.

- (a) Czy f jest surjekcją?
- (b) Czy f jest injekcją?

Podaj dowody bądź stosowne kontrprzykłady wraz z uzasadnieniem.

Zadanie 7 (5 punktów). Załóżmy, że relacja $R \subseteq A \times B$ jest funkcją. Udowodnij, że R jest surjekcją wtedy i tylko wtedy, gdy $I_B \subseteq R^{-1}$; R. Tutaj R^{-1} oznacza relację odwrotną do R.

Zadanie 8 (5 punktów). Dla danego zbioru X, idealem w zbiorze $\mathcal{P}(X)$ nazywamy rodzinę zbiorów $\mathcal{I} \subseteq \mathcal{P}(X)$, spełniającą wszystkie poniższe warunki:

- $\emptyset \in \mathcal{I}$;
- jeśli $A \in \mathcal{I}$ oraz $B \subseteq A$, to również $B \in \mathcal{I}$;
- dla dowolnych $A, B \in \mathcal{I}$ zachodzi $(A \cup B) \in \mathcal{I}$;
- $X \notin \mathcal{I}$.
- (a) Podaj przykład (wraz z uzasadnieniem) ideału w zbiorze $\mathcal{P}(\{1,2,3\})$.
- (b) Czy dla dowolnego zbioru X i dowolnych dwóch ideałów \mathcal{I}_1 i \mathcal{I}_2 w zbiorze $\mathcal{P}(X)$ ich suma $\mathcal{I}_1 \cup \mathcal{I}_2$ jest ideałem w zbiorze $\mathcal{P}(X)$? Uzasadnij odpowiedź: podaj dowód lub odpowiedni kontrprzykład.

¹Proszę zakreślić właściwą grupę ćwiczeniową.