ЭЛЕКТРОННЫЕ ПРИЕМО-ПЕРЕДАЮЩИЕ УСТРОЙСТВА

Лекция 16 Основные устройства систем связи

Системы связи

Система связи — совокупность технических средств, для передачи сообщений от источника к потребителю.

Радиопередающие устройства систем радиосвязи

Радиопередатчик – радиотехническое устройство, преобразующее первичные электрические сигналы в радиосигналы с мощностью, необходимой для радиосвязи на заданном расстоянии с требуемой надёжностью.

Радиопередающие устройства систем радиосвязи

В соответствии с ГОСТ 24375-80, в радиопередатчиках допускается включение модулятора в состав возбудителя.

Автогенераторы

В соответствии с выполняемыми функциями, любой возбудитель содержит функциональные элементы:

- синтезатор частот;
- блок формирования радиосигналов;
- тракт преобразования радиосигналов.

В состав синтезатора частот входят диапазонные и кварцевые автогенераторы.

Автогенераторы

Автогенератор является принципиально нелинейным устройством, поскольку на его вход переменный процесс вообще не подается, а спектр выходного колебания обогащается новыми составляющими (в случае автогенератора гармонического колебания это одна составляющая).

Принцип действия автогенератора

Автогенератор гармонического колебания в своей структурной схеме должен содержать резонансный усилитель (РУ) и цепь ПОС.

Резонансный усилитель обеспечивает наряду с усилением узкополосную фильтрацию, а цепь ПОС обеспечивает синфазную подачу сигнала с выхода усилителя на его вход.

При этом образуется так называемая кольцевая схема

Режимы работы автогенератора

Из-за инерционности резонансного усилителя процесс на выходе автогенератора гармонических колебаний устанавливается не мгновенно, а через некоторое время после включения.

Выделяют два режима работы автогенератора: нестационарный и стационарный.

Нестационарный — такой режим, при котором параметры колебания (амплитуда, частота и начальная фаза) непрерывно изменяются во времени.

Как правило, возникает при включении, выключении генератора, а также при изменении собственных параметров генератора, например при перестройке частоты.

Режимы работы автогенератора

Стационарный — такой режим, при котором параметры колебания (амплитуда, частота и начальная фаза) неизменны во времени. Этот режим также называют установившимся режимом, характеризующимся постоянством параметров колебаний.

Переход из нестационарного режима в стационарный происходит автоматически.

При включении питания в момент времени t=0 в автогенераторе возникает нестационарный режим, при котором амплитуда колебания нарастает. Однако процесс нарастания амплитуды со временем будет замедляться. Это связано с тем, что по мере увеличения амплитуды автоколебания начинают проявляться нелинейные свойства усилителя.

Режимы работы автогенератора

При больших амплитудах усилительный элемент переходит в режим работы с отсечкой и ограничением тока, что приводит к эффективному уменьшению коэффициента усиления и дальнейший рост амплитуды колебания прекращается, автогенератор переходит в стационарный режим, в котором амплитуда $A_{\rm cr}$ не зависит от времени.

Трёхточечные схемы автогенераторов

Если колебательный контур автогенератора подключён к активному нелинейному элементу тремя точками, то такая схема АГ называется **трёхточечной**.

Фазовые условия в транзисторной трёхточечной схеме АГ с общим эмиттером в идеальном случае выполняются тогда, когда фазы напряжений на элементах контура, подключённых коллектору и базе, противоположны.

Учитывая, что сдвиг фаз в идеальном транзисторе, включенном по схеме с ОЭ равен 180°, суммарный сдвиг фаз в кольце ОС будет равен 360°.

Это возможно в двух вариантах схемы автогенератора:

- первая называется ёмкостной трёхочкой,
- вторая называется индуктивной трёхточкой.

Трёхточечные схемы автогенераторов

Ёмкостная трёхочка и ее фазовый портрет

В ёмкостной трёхточечной схеме положительная ОС осуществляется за счёт ёмкостного делителя C1, C2.

Амплитудные условия самовозбуждения определяются соотношением ёмкостей C2/C1, чем оно меньше, тем глубже ПОС, обычно C2 << C1. Поэтому ёмкостью C2 определяется ёмкость контура $C_K \approx C2$.

$$f_{\Gamma} = \frac{1}{2\pi\sqrt{L_{K}C_{K}}} = \frac{1}{2\pi\sqrt{L_{K}\frac{C_{1}C_{2}}{C_{1}+C_{2}}}} \approx \frac{1}{2\pi\sqrt{LC_{2}}}$$
 колебаний

Частота генерируемых колебаний

Трёхточечные схемы автогенераторов

Индуктивная трёхочка и ее фазовый портрет

В индуктивной трёхточечной схеме обратная связь автотрансформаторная.

Амплитудные условия самовозбуждения для этой схемы выполняются отношением L1/L2.

Чем больше это отношение, тем глубже ПОС.

Обычно L1>>L2.

Частота генерируемых колебаний

$$f_{\Gamma} = \frac{1}{2\pi\sqrt{(L_1 + L_2)C}}$$

- 1 Непрерывные колебания радиочастоты $a_0(t)$ (ВЧ-колебания $f_{\text{ВЧ}}$, радиочастота $f_{\text{РЧ}}$) с постоянными параметрами не несут полезную информацию, они свидетельствуют только о факте своего существования.
- 2 Спектр сигнала, подлежащего передаче, расположен, как правило, в области низких частот $s(t) << a_0(t)$.
- 3 Для реализации радиосвязи необходимо перенести спектр сигнала в область радиочастоты $a_0(t)$, что достигается изменением одного или нескольких параметров ВЧ-колебаний в соответствии с полезной информацией. В зависимости от того, какой параметр ВЧ-колебаний изменяется при модуляции, различают: амплитудную модуляцию (АМ), угловую модуляцию (частотную модуляцию (ЧМ) и фазовую модуляцию (ФМ)).

Формирование радиосигналов с амплитудной модуляцией осуществляется в передающем устройстве с помощью устройства называемым амплитудным модулятором.

Амплитудный модулятор — нелинейное устройство, поскольку в результате модуляции на его выходе спектр сигнала обогащается новыми составляющими (две боковые полосы частот).

Процесс амплитудной модуляции можно представить как процесс прохождения несущего колебания $a_0(t)$ через усилитель, коэффициент усиления которого изменяется по закону модулирующего колебания s(t).

При законе изменения модулирующего колебании:

$$s(t) = U_{\rm M} \cos \Omega t,$$

и законе изменения несущего колебания:

$$a_0(t) = U_0 \cos \omega_0 t$$

сигнал с выхода модулятора описывается выражением:

$$u_{\text{вых}}(t) = U_0(1 + U_{\text{M}}/U_0 \cos\Omega t) \cos\omega_0 t$$

где $U_{\mathbf{m}}/U_0=m\leq 1$ — коэффициент амплитудной модуляции. Окончательно,

$$u_{ ext{вых}}(t)=$$
 спектр колебания состоит из
$$=U_0 \mathbf{cos} \omega_0 t + \mathbf{coctabл}$$
 составляющих: на несущей ω_0 ; $0.5mU_0 \mathbf{cos}(\omega_0 - \Omega)t + \mathbf{na}$ на нижней боковой $\omega_0 - \Omega$; $+0.5mU_0 \mathbf{cos}(\omega_0 + \Omega)t$. на верхней боковой $\omega_0 + \Omega$.

В основе угловой модуляции положена связь между частотой и фазой колебаний, описываемая выражениями:

$$\omega(t) = \frac{d\varphi}{dt}, \qquad \varphi(t) = \int_{0}^{t} \omega(t) dt,$$

где $d\phi/dt$ – скорость изменения фазы.

Взаимная зависимость фазы и угловой частоты такова, что всякое изменение фазы приводит к изменению частоты и наоборот.

По этой причине при фазовой модуляции всегда изменяется частота, а при **частотной модуляции** — фаза.

При частотной модуляции частота изменяется в соответствии с передаваемым сообщением.

Если передаваемое сообщение представляет собой гармонический сигнал $u_{\scriptscriptstyle M}(t) = U_{\scriptscriptstyle \Omega} \cos \Omega t$ мгновенная частота модулированного колебания изменяется по закону:

$$\omega(t) = \omega_0 + \Delta\omega\cos\Omega t$$

Величина $\Delta \omega$ называется **девиацией частоты модулированного колебания**.

Выражение ЧМ-сигнала записывается в виде

$$u(t) = U_{mH} \left[\omega_o t + \int_0^t \omega(t) dt \right]$$

или

$$u(t) = U_{mH} \cos(\omega_0 t + m_\omega \sin \Omega t)$$

Отношение девиации частоты к частоте модулирующего напряжения называется индексом модуляции и обозначается

$$m_{\omega} = \Delta \omega / \Omega$$

Спектр частотно-модулированного колебания представляет сумму бесконечного количества гармонических колебаний с разностью частот между ними, равной Ω :

$$u(t) = U_{mH} \left[J_0(m_{\omega}) \cos \omega_0 t + \sum_{n=1}^{\infty} J_n(m_{\omega}) \cos(\omega_0 + n\Omega) t + \sum_{n=1}^{\infty} (-1)^n J_n(m_{\omega}) \cos(\omega_0 - n\Omega) t \right],$$

где $J_n(m_{\omega})$ — функция Бесселя первого рода n-го порядка.

При m_{ω} << 1 (быстрая ЧМ) существенными оказываются только компонента на несущей частоте и две боковые:

$$u(t)/U_{mH} = \cos \omega_0 t + 0.5m_{\omega} \cos(\omega_0 + \Omega)t - 0.5m_{\omega} \cos(\omega_0 - \Omega)t$$

Ширина спектра в этом случае равна удвоенной частоте модуляции, как при АМ.

Все современные радиоприёмники строятся по так называемой супергетеродинной схеме.

В отличии от более ранних схем радиоприёмников (детекторных приемников и приемников прямого усиления), в супергетеродинном приёмнике основное усиление сигнала, выделение его на фоне помех и преобразование в первичный сигнал осуществляется не на принимаемой частоте, перестраиваемой по диапазону рабочих частот приёмника, а на постоянной, более низкой, так называемой промежуточной частоте.

Основным достоинством супергетеродинного приёмника являются **высокая чувствительность** и **избирательность**, постоянные во всём частотном диапазоне приёма.

Структурная схема супергетеродинного приёмника

Структурная схема приёмника прямого усиления

Структурная схема детекторного приёмника

Входная цепь (ВЦ) представляет собой перестраиваемую по диапазону рабочих частот частотно-избирательную систему.

Она осуществляет первичную частотную селекцию полезного сигнала, ослабляет внеполосные сильные помехи, обеспечивая линейное усиление последующих каскадов приёмника, совместно с УРЧ осуществляет избирательность по побочным каналам приёма.

Усилитель радиочастоты (УРЧ) предназначен для повышения чувствительности приёмника благодаря применению малошумящего усилителя и обеспечения требуемой избирательности приёмника по побочным каналам приёма.

Смеситель (СМ), гетеродин (ГЕТ) и полосовой фильтр (ПФ) образуют преобразователь частоты, предназначенный для преобразования f_{PV} в сигнал постоянной радиочастоты промежуточной частоты величине позволяет использовать в последующих элементах приёмного тракта неперестраиваемые многоконтурные избирательные системы, обеспечивающие высокую избирательность приёмника по соседним каналам приёма.

Кроме того, сравнительно низкая $f_{\Pi \Psi}$ позволяет обеспечить высокий коэффициент усиления приёмного тракта, что улучшает чувствительность приёмника.

В усилителе промежуточной частоты (УПЧ) производится основное усиление радиосигнала, формирование полосы пропускания частот и осуществляется основная избирательность по соседнему каналу.

→

Основное требование к **демодулятору (детектору)** (ДЕМ (ДЕТ)) — линейность преобразования радиосигналов в первичный сигнал.

ДЕМ (ДЕТ)

Усилитель звуковой частоты (УЗЧ) предназначен для усиления первичных электрических сигналов до величины, обеспечивающей нормальную работу оконечной приёмной аппаратуры.

У3Ч

Входная цепь выполняет следующие функции:

- согласует вход приёмника с антенно-фидерным устройством, чем повышает коэффициент передачи входной цепи и соответственно чувствительность приёмника.
- обеспечивает избирательность по побочным каналам приёма;
- ослабляет внеполосные помехи, чем обеспечивает работу усилительных каскадов приёмника в линейном режиме и повышает реальную избирательность приёмника

Таким образом, **входная цепь** по своей сути является фильтром, выполняющим кроме своей основной задачи — спектральной фильтрации сигнала еще и задачи согласования с предыдущим и последующими устройствами.

В зависимости от вида связи входной цепи с антенной различают схемы:

с индуктивной связью

В зависимости от вида связи входной цепи с антенной

различают схемы:

с внешнеемкостной связью

В зависимости от вида связи входной цепи с антенной

различают схемы:

с внутриемкостной связью

В зависимости от вида связи входной цепи с антенной

различают схемы:

с комбинированной связью

Общие сведения об усилителях радиочастоты

Усилители радиочастоты осуществляют усиление прошедшего через входную цепь радиосигнала на принимаемой частоте.

Основные функции усилителей радиочастоты:

- усиление принимаемых радиосигналов при незначительном добавлении собственных шумов;
- обеспечение (совместно с входными цепями)
 избирательности по внеполосным каналам приёма;
- защита антенны от проникновения сигнала собственного гетеродина, который может создать помеху соседним радиоприёмным устройствам.

Общие сведения об усилителях радиочастоты

Особенность усилителей радиочастоты — наличие в их составе избирательной цепи (перестраиваемого колебательного контура) с неполным включением.

Такой способ включения позволяет уменьшить шунтирующее влияние усилительных элементов на колебательный контур.

Принцип работы преобразователя частоты

Преобразователь частоты — устройство, осуществляющие перенос спектра частот сигнала из одной области частот в другую без изменения характера модуляции.

первичного сигнала

Частотные спектр

радиосигнала с АМ

Процесс переноса спектра частот сигнала из одной области частот в другую

$$F_{\min} < F_{\max} << f_{\pi p} << f_{H}$$

Принцип работы преобразователя частоты

Во временной области при преобразовании амплитудномодулированного колебания этот процесс выглядит следующим образом: изменяется частота несущего колебания, которая преобразуется в промежуточную, а закон амплитудной модуляции остаётся неизменным

Принцип работы преобразователя частоты

Для преобразования частоты используется нелинейный элемент, на который подаются колебания одновременно двух частот: колебания с частотой сигнала $f_{\rm H}$ и колебания с частотой вспомогательного генератора (гетеродина) f_{Γ}

Как правило, вольтамперная характеристика нелинейного элемента квадратична и ток, текущий через него описывается выражением

$$i_{\rm H3}(t) = aU_{\rm BX}^{2}(t)$$

где a — коэффициент пропорциональности, MA/B.

Общие сведения об усилителях промежуточной частоты

Усилители промежуточной частоты УПЧ осуществляют усиление сигнала на промежуточной частоте.

Основные функции усилителя промежуточной частоты:

- обеспечение основного усиления сигналов в приёмнике до величины, необходимой для нормальной работы детектора (демодулятора);
- обеспечение основной избирательности по отношению к сигналам соседних станций.

Вследствие того, что УПЧ должны обеспечивать основное усиление в приёмнике ($60 \div 120 \ \partial E$), количество их каскадов может доходить до 10.

Детектирование радиосигналов.

Детектирование – процесс выделения сигнала модуляции (напряжения низкой частоты) которое в неявном виде содержится в колебаниях промежуточной частоты.

Детектор — каскад радиоприёмника, в котором осуществляется преобразование входного модулированного радиосигнала в напряжение (ток), меняющееся по закону первичного модулирующего сигнала.

В зависимости от вида модуляции радиосигнала (амплитудно-модулированные колебания, частотно-модулированные колебания, фазо-модулированные колебания) для детектирования используются различные устройства.

Детектирование радиосигналов

В амплитудном детекторе происходит извлечение информации, заключенной в изменении амплитуды сигнала по некоторому закону (первичного сигнала) во временной области.

Детектирование радиосигналов

Детектирование амплитудно-модулированных сигналов

Детектирование радиосигналов

Частотный детектор — нелинейное радиотехническое устройство, у которого напряжение на выходе изменяется пропорционально изменению частоты частномодулированного сигнала.

Особенности системы цифровой связи

Структурная схема цифровой системы радиосвязи

Особенности передатчика цифровой системы связи

Особенности приемника цифровой системы связи

Приемный тракт цифровой системы связи содержит набор блоков, большинство из которых выполняют функции, обратные выполняемым в передатчике.

При множестве возможных значений c(t) {0,1} и B=1 амплитуда модулированного сигнала принимает значение A при c(t)=0 и 2A при c(t)=1: такой тип модуляции носит название ASK (Amplitude Shift Keying — амплитудная манипуляция). OOK является частным случаем ASK при B=0.

Множество возможных значений квадратурных компонент I(t) и Q(t) называется *сигнальным созвездием*. Как правило, данное множество отображают на декартовой плоскости, где по оси абсцисс отложены значения синфазной составляющей I(t), а по оси ординат — квадратурной Q(t). Точка на плоскости с координатами (x, y) соответствует состоянию сигнала, в котором синфазная составляющая равна x, квадратурная равна y, следовательно *сигнальное созвездие* — это диаграмма возможных состояний сигнала.

сигнальное созвездие модуляции *ООК*

сигнальное созвездие модуляции *ASK*

Многопозиционная амплитудная модуляция (*M-ASK*)

При группировке битов исходного информационного сообщения в пары образуется *символ*. Если каждый бит имеет множество значений {0, 1}, то каждый *символ* имеет четыре возможных значения из множества {00, 01, 10, 11}, которым можно сопоставить значения амплитуды радиосигнала из множества {0, A, 2A, 3A}.

Получится многоуровневый (многопозиционный) сигнал M-ASK с размерностью множества возможных значений амплитуды сигнала

$$M = \log_2 k$$
,

где k — количество бит в одном символе.

Сигнал с модуляцией **256-***ASK* имеет 256 возможных значений амплитуды сигнала и 8 бит в одном символе.

Сигнальное созвездие модуляции **8-***ASK*

Амплитудные виды модуляции достаточно просты в реализации, но имеют невысокую энергетическую эффективность, низкую помехоустойчивость, требуют высокой линейности и большого динамического диапазона усилителя мощности.

Фазовые виды модуляции. Фазомодулированный сигнал имеет вид: $s(t) = A\cos(\omega t + \varphi(t) + \varphi_0) \tag{10}$

где A и φ_0 – постоянные, ω – несущая частота.

Информация кодируется фазой $\varphi(t)$.

Двоичная фазовая модуляция (*BPSK* – *Binary Phase Shift Keying*). Множеству значений информационного сигнала $\{0,1\}$ ставится в однозначное соответствие множество изменений фазы $\{0,\pi\}$. При изменении значения информационного сигнала фаза радиосигнала изменяется на 180° , сигнал *BPSK* можно записать в виде

$$s(t) = \begin{cases} A\cos(\omega t + \varphi_0), c(t) = 1\\ A\cos(\omega t + \pi + \varphi_0) = -A\cos(\omega t + \varphi_0), c(t) = 0 \end{cases}$$

Для осуществления BPSK модуляции достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений $\{-1, 1\}$. На выходе baseband-модулятора сигналы имеют вид

$$I(t) = A \cdot 2(c(t) - \frac{1}{2}), \quad Q(t) = 0.$$
 (12)

Временная форма и сигнальное созвездие сигнала **BPSK**

Квадратурная фазовая модуляция (QPSK – Quadrature Phase Shift Keying) является четырехуровневой фазовой модуляцией (M=4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2.

Сигнал	Значение			
Дибит цифрового сообщения	00	01	11	10
Модулирующий сигнал	1	3	-3	-1
Фаза φ_k	$\pi/4$	$3\pi/4$	$-3\pi/4$	$-\pi/4$
$I_k = \cos(\varphi_k)$	$1/\sqrt{2}$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	$1/\sqrt{2}$
$Q_k = \sin(\varphi_k)$	$1/\sqrt{2}$	$1/\sqrt{2}$	$-1/\sqrt{2}$	$-1/\sqrt{2}$

Подвидами семейства *QPSK* являются дифференциальная квадратурная модуляция (*DQPSK*) и квадратурная модуляция со сдвигом (*OQPSK* – *Offset QPSK*) и представляют собой один из наиболее часто используемых видов модуляции в современных стандартах цифровой связи.

Многопозиционная фазовая **модуляция** (*M-PSK*) формируется путем группировки $M = \log_2 k$ бит в символы и взаимно-однозначного введением между множеством 100 соответствия значений символа и множеством значений сдвига фазы модулированного колебания. Значения сдвига фазы множества отличаются на одинаковую величину.

Минимальный уровень символьных ошибок будет достигнут в случае, если расстояние между соседними точками в сигнальном созвездии будет одинаковым, т. е. распределение точек в созвездии будет равномерным на плоскости – иметь решетчатый вид.

Модуляция с подобным видом сигнального созвездия называется квадратурной амплитудной модуляцией (QAM – Quadrature Amplitude Modulation) или амплитуднофазовой модуляцией.

В случае осуществления **частотной модуляции** параметром несущего колебания — носителем информации — является несущая частота $\omega(t)$.

Модулированный радиосигнал имеет вид:

$$s(t) = A\cos(\omega(t)t + \varphi_0) = A\cos(\omega_c t + \omega_d c(t)t + \varphi_0) =$$
 $= A\cos(\omega_c t + \varphi_0)\cos(\omega_d c(t)t) - A\sin(\omega_c t + \varphi_0)\sin(\omega_d c(t)t),$
где ω_c — постоянная центральная частота сигнала,
 ω_d — $\partial e b u a u u s$ (изменение) частоты,
 $c(t)$ — информационный сигнал φ_0 — начальная фаза.

Если c(t) имеет 2 возможных значения, имеет место двоичная частотная модуляция (FSK – Frequency Shift Keying). c(t) является полярным, т. е. принимает значения $\{-1,1\}$, где -1 соответствует значению исходного (неполярного) информационного сигнала 0, а 1 – единице.

При двоичной частотной модуляции множеству значений исходного информационного сигнала $\{0,1\}$ ставится в соответствие множество значений частоты модулированного радиосигнала $\{\omega_c - \omega_d, \omega_c + \omega_d\}$.

Из (13) следует непосредственная реализация FSK-модулятора: сигналы I(t) и Q(t) имеют вид:

$$I(t) = A\cos(\omega_d c(t)t), \ Q(t) = A\sin(\omega_d c(t)t).$$

Сигнальным созвездием сигнала *FSK* является окружность с радиусом А

Величина m=2 f_d T_s называется *индексом модуляции*, где $f_d=\omega_d/2\pi$ — девиация частоты, T_s — длительность символа. На практике для *FSK* используются значения $0,1\leq m\leq 1$.

FSK с индексом модуляции m=0.5 называется частотной модуляцией с минимальным сдвигом ($MSK-Minimum\ Shift\ Keying$).

Многопозиционная частотная модуляция (*M-FSK*) формируется, как и другие многопозиционные виды модуляции, путем группировки $M = \log_2 k$ бит в символы и введением взаимно-однозначного соответствия между множеством значений символа и множеством значений частоты модулированного колебания. При этом значения возможных частот отличаются на одинаковую величину ω_d

Для ограничения спектра сигналов *FSK* и *MSK* чаще всего применяется Гауссов *baseband*-фильтр. Соответствующие типы модуляции называются *GFSK* (*Gaussian Frequency Shift Keying*) и *GMSK* (*Gaussian Minimum Shift Keying*, используется в стандарте *GSM*) – модуляции с ограниченным спектром

Литература

а) основная литература

- 1. Першин, В. Т. Основы радиоэлектроники [Электронный ресурс]: учеб. пособие / В. Т. Першин. Мн. : Выш. Шк. 2006. 436 с. Режим доступа: URL http://biblioclub.ru/index.php?page=book_view_red&book_id=234977
- 2. Красковский Л. Е., Мельникова Л. Я., Меремсон Ю. Л. Приемо-передающие устройства железнодорожной радиосвязи [Электронный ресурс]: Учебное пособие / А. Е. Красковский и др.; под ред. А. Е. Красковского. М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2010. 360 с. Режим доступа:

 URL http://biblioclub.ru/index.php?page=book_red&id=227703&sr=1
- 3. Акулиничев Ю. П. Теория и техника передачи информации [Электронный ресурс]: учебное пособие / Ю. П. Акулиничев, Л. С. Бернгардт. Томск: Эль Контент, 2012. 210 с. Режим доступа: URL http://biblioclub.ru/index.php?page=book_red&id=208952&sr=1

б) дополнительная литература

- 1. Мелихов С. В. Аналоговое и цифровое радиовещание [Электронный ресурс]: Учебное пособие./ С. В. Мелихов. Электрон. текстовые дан. 2-е изд., испр. Томск: Томск, гос. ун-т систем управления и радиоэлектроники, 2012.—233 с. Режим доступа: URL http://biblioclub.ru/index.php?page=book_view&book_id=208686.
- 2. Томаси У. Электронные системы связи [Электронный ресурс] / У. Томаси. Электрон. текстовые дан. М.: Техносфера, 2007. 1360 с. Режим доступа: URL http://biblioclub.ru/index.php?page=book_view&book_id=135422.
- 3. Логвинов, В. В. Схемотехника телекоммуникационных устройств, радиоприемные устройства систем мобильной и стационарной радиосвязи, теория электрических цепей: лабораторный практикум II на персональном компьютере: учеб. пособие для вузов / В. В. Логвинов, В. В. Фриск. М.: СОЛОН-ПРЕСС, 2011. 655 с.: ил. (Библиотека студента) (4 экземпляра в библиотеке).

- 4. Логвинов, В. В. Схемотехника телекоммуникационных устройств, радиоприемные устройства систем мобильной и стационарной радиосвязи, теория электрических цепей : лабораторный практикум II на персональном компьютере: учебное пособие для студентов, обуч. по направлению бакалавров и магистров 210700 "Инфокоммуникационные технологии и системы связи" / В. В. Логвинов, В. В. Фриск М.: СОЛОН-ПРЕСС, 2013 656 с.: ил. (Библиотека студента) (5 экземпляров в библиотеке).
- 5. Головин, О. В.. Устройства генерирования, формирования, приема и обработки сигналов: учеб. пособие по спец. "Средства связи с подвижными объектами" и "Радиосвязь, радиовещание и телевидение" / О.В. Головин. М.: Горячая линия Телеком, 2014. 782 с.: ил. (5 экземпляров в библиотеке).
- 6. Компоненты и технологии. [Электронный ресурс] Электрон. текстовые дан. 2011-2015. Режим доступа: URL http://elibrary.ru/issues.asp?id=9938