Probability and Counting, Appendix C

Geoffrey Matthews

April 24, 2018

Binomial Coefficients

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
$$2^n = \sum_{k=0}^n \binom{n}{k}$$

 $(n+a)^b = O(n^b)$

$$(n+a)^b = O(n^b)$$

$$(n+a)^b = \sum_{k=0}^b \binom{b}{k} n^k a^{b-k}$$

$$\leq \sum_{k=0}^b \binom{b}{k} n^b a^{b-k}$$

$$= n^b \sum_{k=0}^b \binom{b}{k} a^{b-k}$$

$$= n^b \sum_{k=0}^b \binom{b}{k} 1^k a^{b-k}$$

$$= n^b (1+a)^b$$

$$= O(n^b)$$

Binomial Bounds

Sample Space

- Set of all possible things that can happen.
- ► Each thing that can happen is an **elementary event**.
- Examples:
 - ► Flip a coin twice and observe which side is up: {HH, HT, TH, TT}
 - ▶ Flip a coin twice and count the heads: {0,1,2}
 - ▶ Throw a coin down the stairs and see what step it lands on: $\{1, 2, 3, ..., n\}$, where n is the number of steps.
 - ▶ Deal two cards: $\{\{A\diamondsuit, 5\clubsuit\}, \{10\heartsuit, K\clubsuit\}, \{A\spadesuit, 3\heartsuit\}, \ldots\}$
 - ► See who wins the election: { Clinton, Sanders, Trump, Cruz...}

Events

- ▶ A subset of the sample space, S.
- Examples:
 - ► {HT, TH} ⊆ {HH, HT, TH, TT}
 ► {{A♠, A♣}, {A♡, A◊}} ⊆ {{A⋄, 5♣}, {10♡, K⋄}, {A♠, 3♡},...}
 - ► The **certain event**: *S*.
 - ► The **null event**: ∅

A probability distribution on a sample space S

Pr {} is a mapping from events to real numbers such that:

- 1. $Pr\{A\} \ge 0$
- 2. $Pr\{S\} = 1$
- 3. $Pr\{A \cup B\} = Pr\{A\} + Pr\{B\}$ whenever $A \cap B = \emptyset$
 - ▶ Theorem:

$$Pr{A \cup B} = Pr{A} + Pr{B} - Pr{A \cap B}$$

$$\leq Pr{A} + Pr{B}$$

Discrete probability distribution

▶ If *S* is finite or countably infinite.

$$\Pr\left\{A\right\} = \sum_{s \in A} \Pr\left\{s\right\}$$

▶ If *S* is finite and each elementary event has the same probability, we have **uniform probability distribution**.

$$\Pr\{s\} = 1/|S|$$

Continuous uniform distribution

- ► Each real number between a and b is equally likely.
- Not all subsets have probabilities.
- Just use intervals, and countable unions of intervals.

$$\Pr\{[c,d]\} = \frac{d-c}{b-a}$$

Conditional probability

$$\Pr\{A \mid B\} = \frac{\Pr\{A \cap B\}}{\Pr\{B\}}$$

- Probability as if B were the sample space.
- Can condition a variable on events:

$$Pr\{B\} = Pr\{B \cap A\} + Pr\{B \cap \overline{A}\}$$
$$= Pr\{A\} Pr\{B \mid A\} + Pr\{\overline{A}\} Pr\{B \mid \overline{A}\}$$

Conditioning example

- Suppose we flip a coin.
- ▶ If it's heads, we roll a 6-sided die; if it's tails an 8-sided die.
- What's the probability of getting a 6?

Conditioning example

- Suppose we flip a coin.
- ▶ If it's heads, we roll a 6-sided die; if it's tails an 8-sided die.
- What's the probability of getting a 6?

$$Pr\{B\} = Pr\{B \cap A\} + Pr\{B \cap \overline{A}\}$$

$$= Pr\{A\} Pr\{B \mid A\} + Pr\{\overline{A}\} Pr\{B \mid \overline{A}\}$$

$$Pr\{6\} = Pr\{6 \cap H\} + Pr\{6 \cap \overline{H}\}$$

$$= Pr\{H\} Pr\{6 \mid H\} + Pr\{\overline{H}\} Pr\{6 \mid \overline{H}\}$$

$$= (1/2)(1/6) + (1/2)(1/8)$$

$$= 7/48$$

Independence

$$\Pr\left\{A\cap B\right\}=\Pr\left\{A\right\}\Pr\left\{B\right\}$$

This implies

$$\Pr\{A \mid B\} = \Pr\{A\}$$

Bayes's theorem

$$\Pr\{A \mid B\} = \frac{\Pr\{A\}\Pr\{B \mid A\}}{\Pr\{B\}}$$

This follows easily from

$$Pr\{A \cap B\} = Pr\{A\} Pr\{B \mid A\} = Pr\{B\} Pr\{A \mid B\}$$

▶ We can combine this with a conditioning of *B* getting

$$\Pr\{A \mid B\} = \frac{\Pr\{A\} \Pr\{B \mid A\}}{\Pr\{A\} \Pr\{B \mid A\} + \Pr\{\overline{A}\} \Pr\{B \mid \overline{A}\}}$$

Bayes's theorem example

- ▶ We have a fair coin and a biased coin with Pr {H} = 2/3. We choose a coin at random and flip it twice. It comes up heads both times. What is the probability we chose the biased coin?
- ▶ Let *A* be the event of choosing a biased coin, and let *B* be the event of coming up heads twice in a row.

$$\Pr\{A \mid B\} = \frac{\Pr\{A\} \Pr\{B \mid A\}}{\Pr\{A\} \Pr\{B \mid A\} + \Pr\{\overline{A}\} \Pr\{B \mid \overline{A}\}}$$

$$= \frac{(1/2)(4/9)}{(1/2)(4/9) + (1/2)(1/4)}$$

$$= \frac{(2/9)}{(2/9) + (1/8)}$$

$$= \frac{(2/9)}{(25/72)}$$

$$= 16/25$$