Ordinal Methods for Corporate Credit Rating Classification

The Data

Features

	Variables
X1	Enterprise Value Multiple
X2	P/E (Diluted, Excl. EI)
X3	Price/Cash flow
X4	Net Profit Margin
X5	Operating Profit Margin Before Depreciation
X6	Cash Flow Margin
X7	Total Debt/Invested Capital
X8	Cash Balance/Total Liabilities
X9	Total Debt/EBITDA
X10	Profit Before Depreciation/Current Liabilities
X11	Operating CF/Current Liabilities
X12	Cash Flow/Total Debt
X13	Total Liabilities/Total Tangible Assets
X14	Total Debt/Capital
X15	Total Debt/Equity
X16	Cash Ratio
X17	Quick Ratio (Acid Test)
X18	Price/Book
X19	Average Sales Price - NGL
X20	Average Sales Price - NG
X21	Average Sales Price - Oil
X22	Production - NGL (Total)
X23	Production - NG (Total)
X24	Production - Oil (Total)
X25	Dry Hole Expense
X26	Exploration Expense

Labels

Credit Rating Scales by Agency, Long-Term

	i				
		Fitch	S&P	Moody's	
	Prime	AAA	AAA	Aaa	
		AA+	AA+	Aa1	
e	High grade	AA	AA	Aa2	
	3753333300	AA-	AA-	Aa3	
		A+	A+	A1	
grade	Upper medium grade	Α	Α	A2	
		A-	A-	A3	
		BBB+	BBB+	Baa1	
grade	Lower medium grade	BBB	BBB	Baa2	
		BBB-	BBB-	Baa3	
		BB+	BB+	Ba1	
(F)	Non-investment grad	BB	ВВ	Ba2	
e	speculative	BB-	BB-	Ba3	
		B+	B+	B1	
ative	Highly speculative	В	В	B2	
		B-	B-	B3	
risk	Substantial risk	CCC	CCC+	Caa1	
ulative	Extremely speculativ		ccc	Caa2	
nt with	Default imminent wit		CCC-	Caa3	
t for	little prospect for	СС	CC		
	recovery	С		Ca	
		С			
	D In default			1	
				1	

S&P corporate rating pipeline

- Data from 97 Energy companies
- 2006 2017

Label Distribution

Distribution of Labels for the Train Set

Distribution of SMOTE Labels for the Train Set

Dimensionality Reduction

PC1, PC2 for full label set

CCA for full label set

Baseline Models

LDA/QDA

Regularization: 1x10⁻⁴

Random Forest

Max depth: 11-13 Max features: 10 **SVM**

C: 1000-2000 Kernel: RBF Gamma = 0.1 FC Neural Network

lr: 7 x 10⁻⁴ Hidden layers: 5 Hidden size: 250 LSTM

lr: 1 x 10⁻³ Hidden size: 250 Sequence len.: 6

Ordinal Regression Motivation

- Classifiers such as SVM don't consider intrinsic ordering of target variables.
- Example: determining if a data point is green, blue or red vs. deciding if data is cold, warm or hot.
- Naturally, for credit ratings we have a total order:

Ordinal Models

Ordinal SVM

OMSVM

- C 1 binary classifiers
- "One-Against-Followers", forward direction

SORSVM

- C 1 binary classifiers
- Each learns probability of data point being greater than rating {r_1, ..., r_C-1}

$$\begin{split} P(r_1) &= 1 - P(label > r_1) \\ P(r_k) &= P(label > r_{k-1}) - P(label > r_k), \quad 1 < k < C \\ P(r_C) &= P(label > r_{C-1}) \end{split}$$

We assign the label with highest probability to the test point:

$$\hat{f}(\boldsymbol{x_{test}}) = \arg\max_{k} P(r_k)$$

Frank et al., 2001. A Simple Approach to Ordinal Classification

CORAL NN

- Ordinal One-Hot Encoding
- Guarantees rank consistency
- Sigmoid output layer
- Shared weights, independent biases in penultimate layer
- Custom Cross Entropy loss

label classification problem: We obtain the multi-label target vector $\mathbf{y} = [y_1, \dots, y_K] \in \{0, 1\}^K$ from r such that

$$y_j = \begin{cases} 0 & j < k \\ 1 & j \ge k \end{cases} \tag{2}$$

where j = 1, 2, ..., K.

LSTM-OR

- Ordinal One-Hot Encoding
- Many-to-many LSTM
- Sigmoid output layer
- Allows us to consider information (hidden state) from previous time step

Vishnu TV et al., 2019. Data-driven Prognostics with Predictive Uncertainty Estimation using Ensemble of Deep Ordinal Regression Models

Evaluation Methodology

Random Sampling

- Sample data points randomly independent of time period and company.
- The prevailing method used in corporate credit ratings research.
- Use data from the future to predict the past.
- Samples aren't i.i.d. and actually heavily dependent (ratings don't change too often)
- Learns generalized representation of financial data to rating independent of macro trends.

Time Series Splits (LSTM models only)

- Test set comprised of data from periods
 not seen in training data.
 - Last 6 month window for each
 company used for testing.
- Using previous data points recurrently can cause model to simply output the previous rating.
- No mixing of past and present data.
- Learns to model ratings changes over time.

Results - Random Sampling

	Ассигасу	MAE
LDA	30.99	
QDA	41.14	
Random Forest	95.36	0.09
SVM	90.27	0.22
SOR-SVM	87.77	0.25
OMSVM	86.45	0.33

	Ассигасу	MAE
Neural Network	88.58	0.237
CORAL NN	85.70	0.20
LSTM	93.94	0.13
LSTM-OR	92.53	0.12

Note: LSTM models use 6-period window

Results - Time Series

	Ассигасу	MAE
LSTM	58.90	1.18
LSTM-OR	50.60	1.16

Conclusions

- SMOTE unable to improve accuracy
- Some ordinal models reduce MAE
- Need to consider separating companies in train/test sets
- More information can sometimes mean more constraints

Contact

rodrigopalmaka@gmail.com

github.com/rodrigo-palmaka/honors-thesis

in linkedin.com/in/rodrigopalmaka

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.