X_6 is D-Leu (I) or D-Phe (f);

 X_7 is a D-enantiomeric basic residue;

X₈ is a D-enantiomeric acidic residue;

 X_9 is D-Leu (l) or D-Trp (w);

 X_{10} is D-Leu (1) or D-Trp (w);

X₁₁ is a D-enantiomeric acidic residue or D-Asn (n);

X₁₂ is a D-enantiomeric acidic residue;

 X_{13} is D-Leu (1), D-Trp (w) or D-Phe (f);

 X_{14} is a D-enantiomeric basic residue or D-Leu (1);

 X_{15} is D-Gln (q) or D-Asn (n);

X₁₆ is a D-enantiomeric basic residue;

 X_{17} is D-Leu (l);

X₁₈ is a D-enantiomeric basic residue;

 Z_1 is RRN-, or RC(O)NR-;

Z₂ is -C(O)NRR, -C(O)OR or -C(O)OH or a salt thereof;

each R is independently -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl, (C_5-C_{20})

aryl, (C_6-C_{26}) alkaryl, 5-20 membered heteroaryl or 6-26 membered alkheteroaryl or a 1 to 7-residue peptide or peptide analogue in which one or more bonds between residues 1 through 7 are independently a substituted amide, an isostere of an amide or an amide mimetic;

each " - " between residues X_1 through X_{18} independently designates an amide linkage, a substituted amide linkage, an isostere of an amide or an amide mimetic; or

- (ii) a 14 to 21- residue deleted D-enantiomeric peptide or peptide analogue according to formula (I) in which at least one and up to eight of residues X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} and X_{18} are optionally deleted; or
- (iii) an 18 to 22- residue altered D-enantiomeric peptide or peptide analogue according to formula (I) in which at least one of residues X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} and X_{18} is conservatively substituted with another D-enantiomeric residue.

- 16. (Twice amended) A multimeric ApoA-I agonist compound which comprises formula
- (II):

(II)
$$HH\{LL_m-HH\}_nLL_m-HH$$

or a pharmaceutically acceptable salt thereof, wherein:

each m is independently an integer from 0 to 1;

n is an integer from 0 to 10;

each "HH" is independently a D-enantiomeric peptide or peptide analogue

according to Claim 1;

each "LL" is independently a bifunctional linker; and

each " - " independently designates a covalent linkage.

17. (Twice amended) A multimeric ApoA-I agonist compound which comprises formula (III):

(III)
$$X-N_{ya}-X_{(ya-1)}-(-N_{yb}-X_{(yb-1)})_p$$

or a pharmaceutically acceptable salt thereof, wherein:

each X is independently HH— LL_m —HH— $_nLL_m$ —HH;

each HH is independently a D-enantiomeric peptide or peptide analogue according to Claim 1;

each LL is independently a bifunctional linker;

each m is independently an integer from 0 to 1;

each n is independently an integer from 0 to 8;

 N_{ya} and N_{yb} are each independently a multifunctional linking moiety where y_a

and y_b represent the number of functional groups on N_{ya} and N_{yb} , respectively;

each y_a or y_b is independently an integer from 3 to 8;

p is an integer from 0 to 7; and

each "—" independently designates a covalent bond.

18. (Twice amended) A multimeric ApoA-I agonist compound which comprises formula (IV) or (V):

or a pharmaceutically acceptable salt thereof, wherein:

each X is independently HH-(-LL_m--HH-)-_nLL_m--HH;

each HH is independently a D-enantiomeric peptide or peptide analogue according to Claim 1;

each LL is independently a bifunctional linker;

each n is independently an integer from 0 to 1;

each m is independently an integer from 0 to 8;

R₁ is -OR or -NRR; and

each R is independently -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl,

 (C_5-C_{20}) aryl, (C_6-C_{26}) alkaryl, 5-20 membered heteroaryl or 6-26 membered alkheteroaryl.

- 25. (Twice amended) An ApoA-I agonist-lipid complex comprising an ApoA-I agonist and a lipid, wherein the ApoA-I agonist is a D-enantiomeric peptide or peptide analogue according to Claim 1, a multimeric ApoA-I agonist compound according to Claim 16, a multimeric ApoA-I agonist compound according to Claim 17, or a multimeric ApoA-I agonist compound according to Claim 18.
- 33. (Twice amended) A pharmaceutical composition comprising an ApoA-I agonist and a

pharmaceutically acceptable carrier, excipient or diluent, wherein the ApoA-I agonist is a D-enantiomeric peptide or peptide analogue according to Claim 1, a multimeric ApoA-I agonist compound according to Claim 16, a multimeric ApoA-I agonist compound according to Claim 17, or a multimeric ApoA-I agonist compound according to Claim 18.

Please add new Claims 53-75:

- 53. The ApoA-I agonist compound of Claim 1 which is the altered D-enantiomeric peptide or peptide analogue according to formula (I).
- 54. The ApoA-I agonist compound of Claim 53 in which the D-enantiomeric hydrophobic residues are fixed according to formula (I) and at least one non-fixed residue is conservatively substituted with another D-enantiomeric residue.
- 55. The ApoA-I agonist compound of Claim 54 in which:

X₁ is D-Pro (p), Gly (G), D-Asn (n) or D-Ala (a);

 X_2 is D-Ala (a), D-Leu (l) or D-Val (v);

 X_3 is D-Leu (1);

 X_5 is D-Leu (l) or D-Phe (f);

 X_6 is D-Leu (1) or D-Phe (f);

 X_9 is D-Leu (l) or D-Trp (w);

 X_{10} is D-Leu (1) or D-Trp (w);

 X_{13} is D-Leu (l), D-Trp (w) or D-Phe (f);

 X_{17} is D-Leu (1); and

at least one of X_4 , X_7 , X_8 , X_{11} , X_{12} , X_{14} , X_{15} , X_{16} and X_{18} is conservatively substituted with another D-enantromeric residue.

- 56. The ApoA-I agonist compound of Claim 53 in which the D-enantiomeric hydrophilic residues are fixed according to formula (I) and at least one non-fixed residue is conservatively substituted with another D-enantiomeric residue.
- 57. The ApoA-I agonist compound of Claim 56 in which:

 X_4 is D-Asp (d) or D-Glu (e);

 X_7 is D-Arg (r), D-Lys (k) or D-Orn;

 X_8 is D-Asp (d) or D-Glu (e);

 X_{11} is D-Asn (n) or D-Glu (e);

 X_{12} is D-Glu (e);

 X_{14} is D-Lys (k), D-Arg (r) or D-Orn;

 X_{15} is D-Gln (q) or D-Asn (n);

 X_{16} is D-Lys (k), D-Arg (r) or D-Orn;

 X_{18} is D-Asn (n) or D-Gln (q); and

at least one of X_1 , X_2 , X_3 , X_5 , X_6 , X_9 , X_{10} , X_{13} and X_{17} is conservatively substituted with another D-enantiomeric residue.

- 58. The ApoA-I agonist compound of Claim 56 in which X_3 is D-Leu (I), X_6 is D-Phe (f), X_9 is D-Leu (I) or D-Trp (w), X_{10} is D-Leu (I) or D-Trp (w) and at least one of X_1 , X_2 , X_5 , X_{13} and X_{17} is conservatively substituted with another D-enantiomeric residue.
- 59. The ApoA-I agonist compound of Claim 55 or 57 in which the substituting

 D-enantiomeric residue is classified within the same sub-category as the substituted

 D-enantiomeric residue.
- 60. The ApoA-I agonist compound of Claim 1 which is the deleted D-enantiomeric peptide or peptide analogue according to formula (I).
- 61. The ApoA-I agonist compound of Claim 60 in which one or two helical turns of the D-enantiomeric peptide or peptide analogue is optionally deleted.
- 62. The ApoA-I agonist compound of Claim 1 which is an 18-residue D-enantiomeric peptide or peptide analogue according to formula (I).
- 63. The ApoA-I agonist compound of Claim 62 in which the "-" between residues designates -C(O)NH-;
 Z₁ is H₂N-; and
 Z₂ is -C(O)OH or a salt thereof.

- 64. The ApoA-I agonist compound of Claim 63, in which;
 - X_1 is D-Ala (a), Gly (G), D-Asn (n) or D-Pro (p);
 - X_2 is D-Ala (a), D-Val (v), or D-Leu (l);
 - X_3 is D-Leu (1);
 - X_4 is D-Asp (d) or D-Glu (e);
 - X_5 is D-Leu (l) or D-Phe (f);
 - X_6 is D-Leu (l) or D-Phe (f);
 - X_7 is D-Arg (r), D-Lys (k) or D-Orn;
 - X_8 is D-Asp (d) or D-Glu (e);
 - X_9 is D-Leu (1) or D-Trp (w):
 - X_{10} is D-Leu (1) or D-Trp (w);
 - X_{11} is D-Glu (e) or D-Asn (n);
 - X_{12} is D-Glu (e);
 - X_{13} is D-Leu (l), D-Trp (w) or D-Phe (f);
 - X_{14} is D-Arg (r), D-Lys (k) or D-Orn;
 - X_{15} is D-Gln (q) or D-Asn (n);
 - X_{16} is D-Arg (r), D-Lys (k) or D-Orn;
 - X_{17} is D-Leu (1); and
 - X_{18} is D-Arg (r), D-Lys (k) or D-Orn.
- 65. The multimeric ApoA-I agonist compound of Claim 16, 17 or 18 in which the bifunctional linker is cleavable.
- 66. The multimeric ApoA-I agonist compound of Claim 16, 17 or 18 in which n is 0.
- 67. The multimeric ApoA-I agonist compound of Claim 66 in which m is 0.
- 68. The multimeric ApoA-I agonist compound of Claim 16, 17 or 18 in which each HH is independently an altered D-enantiomeric peptide or peptide analogue.
- 69. The multimeric ApoA-I agonist compound of Claim 16, 17 or 18 in which each HH is independently a deleted D-enantiomeric peptide or peptide analogue.
- 70. The ApoA-I agonist-lipid complex of Claim 25 in which the lipid is sphingomyelin.

- 71. The pharmaceutical composition of Claim 33 in which the ApoA-I agonist is in the form of an ApoA-I agonist-lipid complex, said complex comprising the ApoA-I agonist compound and a lipid.
- 72. The pharmaceutical composition of Claim 71 in which the lipid is sphingomyelin.
- 73. The pharmaceutical composition of Claim 71 which is a lyophilized powder.
- 74. The method of Claim 40 or 50 in which said subject is a human.
- 75. The method of Claim 40 or 50 in which about 0.5 mg/kg to about 100 mg/kg ApoA-I agonist is administered to said subject.