Notes on Geometric Group Theory (and Model Theory)

Author: 秦宇轩 (QIN Yuxuan) Last compiled at 2025-09-07

Contents

l.	Day :	1	 	. 	 	 1																			
	,																								

This note is taken on the Nankai Logic Summer School 2025: *Gromov's Randomness & Model Theory of Groups*, lectured by Prof. Rizos Sklinos.

I must admit that I almost know nothing about serious geometric group theory and large-scale geometry, and this note should not be used as a study material. I just written the things interested me down.

1. Day 1

- 1. Dehn solved the word problem for fundamental groups of surfaces.
- 2. Hyperbolic groups: Those that satisfy Dehn's algorithm and admit a finitely presentation.
- 3. (**Gromov**) If we pick a finite presented group *at random*, then it is almost hyperbolic.
- 4. (**Geodesic Path**) For a metric space (X, d), a geodesic path from x to y in X is an isometry map $c: [0, L] \to X$ for some $L \ge 0$ such that:

$$\begin{cases} c(0) = x \\ c(L) = y \end{cases}$$

In paticular, since c is a isometry, we know that L = d(x, y).

- 5. (**Geodesic Space**) A metric space (X, d) is called a geodesic space if it satisfies: for all $x, y \in X$ there exists a geodesic path connecting x and y.
- 6. (\mathbb{R}^2, d_E) is uniquely geodesic.
- 7. (δ -slim) Let $\delta \geq 0$, a geodesic triangle [x, y, z] is called δ -slim if for any $u \in [x, y]$, there exists a point $v \in [y, z] \cup [z, x]$ such that $d(u, v) \leq \delta$.
 - Remark: By "geodesic triangle", we mean a triple (x, y, z) of points in a metric space, with a set of *chosen* geodesic paths between them.
- 8. (δ -hyperbolic) A geodesic metric space is called δ -hyperbolic if all geodesic triangles are δ -slim.
- 9. (**Hyperbolic**) A geodesic metric space is *hyperbolic* if it is δ -hyperbolic for some δ .
- 10. (**Real Tree**) A 0-hyperbolic space is called a *real tree*.
- 11. (**Tripod**) Given a geodesic triangle [x, y, z], a tripod of it is a real tree with three vertex u_x, u_y, u_z :

such that

$$\begin{cases} a+b=d(x,y)\\ b+c=d(y,z)\\ c+a=d(z,x) \end{cases}$$

In short: a tripod of a geodesic triangle [x, y, z] is a real tree (u_x, u_y, u_z) isometric to it.

- 12. $(\delta$ -thin) For a geodesic triangle $\Delta \coloneqq [x,y,z]$ with a tripod isometry $X_\Delta : \Delta \to T(a,b,c)$, we say Δ is δ-thin if for any $p,q \in X_{\Delta}^{-1}(t)$ where $t \in T(a,b,c)$, we always have $d(p,q) \leq \delta$.
 - *Remark*: δ -thin is proper stronger than δ -slim.
- 13. $((\delta)$ -hyperbolic) A metric space is (δ) -hyperbolic if for any $w, x, y, z \in X$ we have:

$$d(x,y)+d(y,z)\leq \max\{d(x,w)+d(y,z),d(x,z)+d(y,w)\}+\delta.$$

- *Problem*: Does the class of (1)-hyperbolic finite graphs have the *amalgmation property*?
 - Remark: A theory admit the amalgmation property if for any extensions B, C of a model A, there exists an extension of both B and C such that

commutes.

- *Problem*: What about (δ) -hyperbolic finite graphs for general positive real δ ?
- 14. (Quasi-isometry) Definition of quasi-isometry was given here (but due to my laziness, ommitted).
 - *Remark*: This is indeed an equivalent relation.
 - - $\begin{array}{l} \bullet \ \, \text{Any finite diameter space} \overset{\text{qi}}{\sim} \{ \text{point} \}. \\ \bullet \ \, (\mathbb{Z} \times \mathbb{Z}, \text{taxi metric}) \overset{\text{qi}}{\sim} (\mathbb{R}^2, d_E)) \ \text{where} \ d_E \ \text{is the common Euclid's metric}. \end{array}$