

Lecture 19

A/B Testing

Announcements

- Homework 7 is due Thursday, 03/10
- Midterm on March 11, 7-9pm PT
 - Please let us know about any conflicts by today, 12pm!
 - Midterm Prep Guide

Weekly Goals

- Monday
 - Comparing distributions
 - Hypothesis tests
- Wednesday
 - Making decisions when visualizations don't suffice
 - Tail areas and p-values
- Today
 - A/B testing
 - Permutation Test

P-Value Review

The p-Value as an Area

- Empirical distribution of the test statistic under the null hypothesis.
- Red dot denotes the observed statistic.
- Yellow area denotes the tail probability (p-value).

Definition of the p-value

Formal name: observed significance level

The *p*-value is the chance (probability),

- under the null hypothesis,
- that the test statistic
- is equal to the value that was observed in the data
- or is even further in the direction of the alternative.

A/B Testing

Comparing Two Samples

 Compare values of sampled individuals in Group A with values of sampled individuals in Group B.

 Question: Do the two sets of values come from the same underlying distribution?

 Answering this question by performing a statistical test is called A/B testing.

The Groups and the Question

- Random sample of mothers of newborns. Compare:
 - (A) Birth weights of babies of mothers who smoked during pregnancy
 - (B) Birth weights of babies of mothers who didn't smoke
- Question: Could the difference be due to chance alone?

Hypotheses

Null:

 In the population, the distributions of the birth weights of the babies in the two groups are the same. (They are different in the sample just due to chance.)

• Alternative:

 In the population, the babies of the mothers who smoked weigh less, on average, than the babies of the non-smokers.

Test Statistic

- Group A: non-smokers
- Group B: smokers

Statistic: Difference between average weights
 Group B average - Group A average

Negative values of this statistic favor the alternative

The Data

Shuffling Labels Under the Null

Shuffling Rows

Random Permutation

- tbl.sample(n)
 - Table of n rows picked randomly with replacement
- tbl.sample()
 - Table with same number of rows as original tbl,
 picked randomly with replacement
- tbl.sample(n, with_replacement = False)
 - Table of n rows picked randomly without replacement
- tbl.sample(with_replacement = False)
 - All rows of tbl, in random order

Simulating Under the Null

- If the null is true, all rearrangements of labels are equally likely
- Plan:
 - Shuffle all group labels
 - Assign each shuffled label to a birth weight
 - Find the difference between the averages of the two shuffled groups
 - Repeat

How We've Tested Thus Far

Hypothesis Testing Review

- 1 Sample: One Category (e.g. percent of flowers that are purple)
 - Test Statistic: observed proportion, abs (observed proportion null proportion)
 - How to Simulate: sample_proportions(n, null_dist)
- 1 Sample: More Than 2 Categories (e.g. ethnicity distribution of jury panel)
 - Test Statistic: tvd (observed dist, null dist)
 - How to Simulate: sample proportions (n, null dist)
- 1 Sample: Numerical Data (e.g. scores in a lab section)
 - Test Statistic: observed mean, abs (observed mean null mean)
 - How to Simulate: population_data.sample(n, with_replacement=False)
- 2 Samples: Underlying Values (e.g. birth weights of smokers vs. non-smokers)
 - Test Statistic: group_a_mean group_b_mean, group_b_mean group_a_mean, abs(group_a_mean - group_b_mean)
 - How to Simulate: observed_data.sample(with_replacement=False)