Forelesning 4 — torsdag den 28. august

1.10 Rekursjon

Merknad 1.10.1. Hvert tall i sekvensen

 $1, 2, 4, 8, 16, \dots$

er to ganger det foregående. Hvordan kan vi beskrive sekvensen formelt?

Vi kan ikke skrive ut hele sekvensen uansett hvor mye tid vi har: sammenlign med Merknad 1.4.1. Istedenfor benytter vi en type definisjon som kalles rekursjon.

Terminologi 1.10.2. Anta at vi ønsker å definere et heltall u_n for hvert naturlig tall n. Rekursjon sier at vi kan gjøre det på følgende måte:

- (1) Definer u_1, u_2, \ldots, u_r , hvor r er et gitt naturlig tall.
- (2) La m være et naturlig tall som er større enn eller likt r. Hvis det antas at heltallet u_i har blitt definert for alle de naturlige tallene slik at $r \leq i \leq m$, definer heltallet u_{m+1} .

Merknad 1.10.3. I Merknad 1.4.3 så vi at induksjon gir en algoritme for å konstruere et bevis. På en lignende måte gir rekursjon en algoritme for å definere det n-te naturlige tallet i en sekvens, for et hvilket som helst naturlig tall n:

- (i) Etter å ha fullført Steg (1) i Terminologi 1.10.2, har vi definert alle heltallene i sekvensen opp til det r-te;
- (ii) Steg (2) i Terminologi 1.10.2 fastslår at vi da kan definere det (r+1)-te heltallet i sekvensen;
- (iii) Steg (2) i Terminologi 1.10.2 fastslår at vida kan definere det (r+2)-te heltallet i sekvensen;
- (iv) Steg (2) i Terminologi 1.10.2 fastslår at vida kan definere det (r+3)-te heltallet i sekvensen;
- (v) Slik fortsetter vi til vi når det naturlige tallet vi er interessert i.

Eksempel 1.10.4. Følgende definerer en sekvens ved rekursjon.

(1) Det første heltallet i sekvensen er 1. Med andre ord er $u_1 = 1$. Ved å la r være 1, har vi dermed fullført Steg (1) i Terminologi 1.10.2.

(2) La m være et naturlig tall. Anta at det i-te heltallet i sekvensen, det vil si u_i , har blitt definert for alle de naturlige tallene i slik at $1 \le i \le m$. Da definerer vi heltallet u_{m+1} være $2u_m$. Ved å la r være 1, har vi dermed fullført Steg (2) i Terminologi 1.10.2.

La oss se hvordan algoritmen i Merknad 1.10.3 ser ut for denne sekvensen.

- (i) Ut ifra (1) er 1 det første heltallet i sekvensen.
- (ii) Fra (i) og (2) følger det at $2 \cdot 1 = 2$ er det andre heltallet i sekvensen.
- (iii) Fra (ii) og (2) følger det at $2 \cdot 2 = 4$ er det tredje heltallet i sekvensen.
- (iv) Fra (iii) og (2) følger det at $2 \cdot 4 = 8$ er det fjerde heltallet i sekvensen.
- (v) Slik fortsetter vi.

Således ser vi at (1) og (2) formelt definerer sekvensen

$$1, 2, 4, 8, 16, \dots$$

som vi tok for oss i Merknad 1.10.1.

Eksempel 1.10.5. Følgende definerer en sekvens ved rekursjon.

- (1) Det første heltallet i sekvensen er -1. Med andre ord er $u_1 = -1$. Ved å la r være 1, har vi dermed fullført Steg (1) i Terminologi 1.10.2.
- (2) La m være et naturlig tall. Anta at det i-te heltallet i sekvensen, det vil si u_i , har blitt definert for alle de naturlige tallene i slik at $1 \le i \le m$. Da definerer vi heltallet u_{m+1} til å være $u_m + 3$.

Dermed har vi formelt definert sekvensen:

$$-1, 2, 5, 8, 11, \ldots$$

Merknad 1.10.6. I både Eksempel 1.10.4 og Eksempel 1.10.5 lot vi det naturlige tallet r i Terminologi 1.10.2 til å være 1. I den neste delen skal vi se på et eksempel hvor vi lar r være 2.

Merknad 1.10.7. Induksjon og rekursjon går hånd i hånd. For å bevise et matematisk utsagn som handler om en sekvens av heltall definert ved rekursjon, benytter vi typisk induksjon.

1.11 Fibonaccitall

Definisjon 1.11.1. Følgende definerer ved rekursjon sekvensen av Fibonaccitall.

- (1) Det første heltallet i sekvensen er 1. Med andre ord er $u_1 = 1$.
- (2) Det andre heltallet i sekvensen er 1. Med andre ord er $u_2 = 1$.
- (3) La m være et naturlig tall slik at $m \geq 2$. Anta at det i-te heltallet i sekvensen, det vil si u_i , har blitt definert for alle de naturlige tallene i slik at $2 \leq i \leq m$. Da definerer vi heltallet u_{m+1} til å være $u_{m-1} + u_m$.

Merknad 1.11.2. Steg (1) og Steg (2) i Definisjon 1.11.1 fullfører, ved å la r være 2, Steg (1) i Terminologi 1.10.2. Steg (3) i Definisjon 1.11.1 fullfører, ved å la r være 2, Steg (2) i Terminologi 1.10.2.

Merknad 1.11.3. La oss se hvordan algoritmen i Merknad 1.10.3 ser ut for sekvensen av Fibonaccitall.

- (i) Ut ifra Steg (1) i Definisjon 1.11.1 er 1 det første heltallet i sekvensen.
- (ii) Ut ifra Steg (2) i Definisjon 1.11.1 er 1 det andre heltallet i sekvensen.
- (iii) Fra (i), (ii) og Steg (3) i Definisjon 1.11.1, følger det at 1 + 1 = 2 er det tredje heltallet i sekvensen.
- (iv) Fra (ii), (iii) og Steg (3) i Definisjon 1.11.1, følger det at 1+2=3 er det fjerde heltallet i sekvensen.
- (iv) Fra (iii), (iv) og Steg (4) i Definisjon 1.11.1, følger det at 2+3=5 er det femte heltallet i sekvensen.
- (v) Slik fortsetter vi.

Dermed er sekvensen av Fibonaccitall:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$$

Terminologi 1.11.4. La n være et naturlig tall. Heltallet u_n i sekvensen av Fibonaccitall kalles det n-te Fibonaccitallet.

Notasjon 1.11.5. La n være et naturlig tall. I resten av dette kapittelet kommer alltid u_n til å betegne det n-te Fibonaccitallet.

Oppgaver

O1.2 Oppgaver for å hjelpe med å forstå forelesningen

Oppgave O1.2.23. Hva er det 15-te Fibonaccitallet?