Approches globales, linéaires et non-linéaires, des instabilités hydrodynamiques. "La stabilité globale pour les neuneus"

D. Fabre

IMFT, groupe Interface

12 octobre 2017

Qu'es aquò??

Les problèmes d'instabilités sont omniprésents en mécanique des fluides.

Leur résolution fait appel à une classe de méthodes numériques spécifiques, complémentaires aux approches de simulation directe, qui sont actuellement en plein développement.

On parle *stabilité globale* quand la géométrie du problème necésssite une résolution en 2D (ou en 3D).

(par opposition à *stabilité locale* quand des directions d'invariance (écoulement parallèle par ex.) permettent de rammener le problème à une résolution en 1D).

Outils de résolution numérique

Les méthodes d'éléments finis sont bien adaptés à ces problèmes. Le logiciel *FreeFem++* est un outil très populaire dans la communauté de la stabilité hydrodynamique.

- Syntaxe intuitive basée directement sur la formulation faible.
- Mailleur puissant et adaptatif (movemesh, adaptmesh, etc...)
- Interface graphique limitée (ffglut).
- © Language interprété : pas adapté à la programmation fonctionnelle (mais des macros puissantes).

Necessité d'une surcouche "driver" pour piloter les calculs et tracer les résultats en mode terminal ou par l'intermédiaire de sripts. Choix : solveurs FreeFem / drivers Matlab.

-> Logiciel "Stabfem", développé à des fins d'enseignement et de recherche.

https://github.com/erbafdavid/StabFem

Base flow

We look for a steady base-flow $(\mathbf{u}_b; p_b)$ satisfying the steady Navier-Stokes equations, i.e. $NS(\mathbf{u}_b, p_b) = 0$.

Suppose that we have a 'guess' for the base flow $[\mathbf{u}_b^g, p_b^g]$ which almost satisfies the equations. We look for a better approximation under the form

$$[\mathbf{u}_b, p_b] = [\mathbf{u}_b^g, p_b^g] + [\delta \mathbf{u}_b, \delta p_b] = 0.$$
 (1)

Injecting into the Navier-Stokes equation lead to

$$NS(\mathbf{u}_b^g, p_b^g) + NSL_{\mathbf{u}_b^g}(\delta \mathbf{u}_b, \delta p_b)$$

Where NSL is the linearised Navier-Stokes operator.

=> matricial problem with the form $A \cdot \delta X = Y$. The procedure of Newton iteration is to solve iteratively this set of equations up to convergence.

Mesh adaptation

Linear stability

$$\mathbf{u} = \mathbf{u}_b + \epsilon \hat{\mathbf{u}} e^{\lambda t} \tag{2}$$

The eigenmodes is governed by the linear problem

$$\lambda \hat{\mathbf{u}} = NSL_{\mathbf{u}_b}(\hat{\mathbf{u}}, \hat{\mathbf{p}})$$

After discretization we end up with an eigenvalue problem with the matricial form

$$\lambda B\hat{X} = A\hat{X} \tag{3}$$

Iterative method: single-mode shift-invert iteration

$$X^n = (A - \lambda_{shift}B)^{-1}BX^{n-1}$$

Generalization: Arnoldi

Adjoint problem

Define a scalar product :

$$\langle \phi_1, \phi_2 \rangle = \int_{\Omega} \overline{\phi_1} \cdot \phi_2 \ \mathsf{d}\Omega$$

We can first define the adjoint linearised Navier-Stokes operator NSL^{\dagger} defined by the property :

$$\forall (\mathbf{u}, p; \mathbf{v}, q), \quad \left\langle NSL_{\mathbf{U}}^{\dagger}(\mathbf{v}, q), \mathbf{u} \right\rangle + \left\langle \nabla \cdot \mathbf{v}, p \right\rangle \\ = \left\langle \mathbf{v}, NSL_{\mathbf{U}}(\mathbf{u}, p) \right\rangle + \left\langle q, \nabla \cdot \mathbf{u} \right\rangle.$$
(4)

We can then define the adjoint eigenmodes as the solutions to the eigenvalue problem

$$\forall (\mathbf{u}, p), \quad \lambda^{\dagger} \langle \hat{\mathbf{v}}, \mathbf{u} \rangle = \left\langle NSL_{\mathbf{U}}^{\dagger}(\hat{\mathbf{v}}, \hat{q}), \mathbf{u} \right\rangle + \left\langle \nabla \cdot \hat{\mathbf{v}}, p \right\rangle \tag{5}$$

Matricial form:

$$\overline{\lambda}^{\dagger} B \hat{X}^{\dagger} = A^{T} \hat{X}^{\dagger}. \tag{6}$$

Adjoint mode and structural sensitivity

Significance of the adjoint mode : (optimal perturbation)

Nonlinear global stability approaches: review FIGURES/Barkley_figure.png

Weakly nonlinear approach (Sipp & Lebedev, 2007)

Starting point : weakly non-linear expansion, with multiple scale method.

$$\epsilon: \frac{1}{Re_c} - \frac{1}{Re}; \quad \tau = \epsilon^2 t$$

$$\mathbf{u} = \mathbf{u}_{bc} + \epsilon \left[A_{wnl}(\tau) \hat{\mathbf{u}} e^{i\omega_c t} + c.c. \right]$$

$$+ \epsilon^2 \left[\mathbf{u}_{\epsilon} + |A_{wnl}|^2 \mathbf{u}_{2,0} + \left(A_{wnl}^2 \mathbf{u}_{2,2} e^{2i\omega_c t} + c.c. \right) \right] + \mathcal{O}(\epsilon^3)$$

Self-Consistent approach (Mantic-Lugo, Arratia & Gallaire, 2014)

 $Starting\ point: Pseudo-eigenmode\ decomposition$

Harmonic-Balance