1.已知
$$xy=e^{x+y}$$
,求 $rac{dy}{dx}$

2.柔
$$\lim_{x o 0} \left(rac{x - \sin x}{x^2}
ight)$$

某
$$\lim_{x o x_o}\left(cosx-e^{-rac{x^2}{2}}
ight)$$

某
$$\lim_{x \to 0} \left(\frac{sinx - xcosx}{x - sinx} \right)$$

3.有
$$f(x)=rac{x}{\sqrt{1+x}}$$
,求 $f(x)$ 的 n 阶导

4.微分方程
$$egin{cases} (x+1)rac{dy}{dx}+1 &= 2e^{-y} \ y(0) &= 0 \end{cases}$$

求y的解

5.菜
$$\lim_{x \to 0} \left(\frac{ln(e^{xlnx} + \sqrt[3]{1 - cosx}) - sinx}{arctan(4\sqrt[3]{1 - cosx})} \right)$$

6.设
$$f(x),g(x)$$
在 $x=0$ 某一邻域 U 内有定义, $\forall x\in U,f(x)\neq g(x)$ 且 $\lim_{x\to 0}f(x)=\lim_{x\to 0}g(x)=a>0$,证明 $\lim_{x\to 0}\left(\frac{[f(x)]^{g(x)}-[g(x)]^{f(x)}}{f(x)-g(x)}\right)=a$

7.设
$$f(x)$$
有二阶连续导数,且 $f(0)=f'(0)=0, f''(x)=6$ 则 $\lim_{x\to 0} \frac{f(sin^2x)}{x^4}=$ _____

8.已知
$$\lim_{x o 0}\left(1+x+rac{f(x)}{x}
ight)^{rac{1}{x}}=e^3$$
,则 $\lim_{x o 0}rac{f(x)}{x^2}=$ ______

9.设
$$f(x)$$
有连续导数,且 $f(1)=2$,记 $z=f(e^xy^2)$,若 $\frac{\partial z}{\partial x}=z$,求 $f(x)$ 在 $x>0$ 的表达式为_____