CODE No.: 20BT61241 SVEC-20

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations

IoT Architecture and Protocols

(Professional Elective -5) (Cyber Security)

Time: 3 hours Max. Marks: 70

		UNIT-I							
1.	a)	Explain in detail problem and solution domain partitioning in different levels of abstraction	7 Marks	L2	CO1	PO1			
	b)	Illustrate overall IoT architecture objectives	7 Marks	L4	CO1	PO2			
(OR)									
2.	a)	Explain the basic IoT architecture	7 Marks	L1	CO1	PO1			
	b)	Justify how device management provides efficient means to	7 Marks	L4	CO1	PO2			
		perform management tasks for devices.							
		UNIT-II							
3.	a)	With a neat sketch explain IoT reference model	7 Marks	L3	CO2	PO2			
	b)	With an example, illustrate how information handling happens in IoT system	7 Marks	L4	CO2	PO2			
	1	(OR)							
4.	a)	Consider Parking lot scenario and map IoT concepts to develop	7 Marks	L4	CO2	PO2			
7.	α)	deployment view of the system	/ Warks		CO2	102			
	b)	Explain the devices and networks required for developing and	7 Marks	L2	CO2	PO2			
		implementing IoT solutions in the real world	/ IVIAIRS		002	102			
	1	(UNIT-III)		I					
5.	a)	Illustrate Zigbee protocol for smart energy in IoT	7 Marks	L4	CO3	PO1			
	b)	Compare and Contrast 6LoWPAN, 6TiSCH and 6Lo	7 Marks	L4	CO3	PO2			
		(OR)							
6.	a)	Sketch the MAC frame structure of IEEE 802.15.4 and illustrate	7 Marks	L2	CO3	PO1			
		in detail.							
	b)	Explain about RPL	7 Marks	L2	CO3	PO1			
		UNIT-IV							
7.	a)	Illustrate the roles and functionality of MQTT protocol with a neat diagram	7 Marks	L4	CO4	PO1			
	b)	Explain about SCADA protocol translation	7 Marks	L2	CO4	PO1			
		(OR)		•					
8.	a)	Explain about CoAP	7 Marks	L2	CO4	PO1			
	b)	Explain in detail about generic we based protocols	7 Marks	L1	CO4	PO2			
		UNIT-V							
9.	a)	Explain security consideration in MAC 802.15.4	7 Marks	L2	CO5	PO1			
	b)	Illustrate the IoT architecture for Smart City	7 Marks	L4	CO5	PO2			
		(OR)		•					
10.	a)	Explain about security challenges in IoT	7 Marks	L2	CO5	PO3			
	b)	Illustrate the IoT architecture for Smart House	7 Marks	L4	CO5	PO2			

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations

IoT Architecture and Protocols
(Professional Elective -5)
(Cyber Security)

Time: 3 hours Max. Marks: 70

	UNIT-I									
1.	a)	Explain design principles and needed capabilities of IoT	7 Marks	L2	CO1	PO1				
	b)	Compare the characteristics of M2M and IoT	7 Marks	L2	CO1	PO1				
(OR)										
2.	a)	With a neat sketch, explain in detail Functional layers and	7 Marks	L3	CO1	PO2				
		capabilities of an IoT solution.								
	b)	Explain The landscape of M2M and IoT standardization	7 Marks	L2	CO1	PO1				
		(UNIT-II)								
3.	a)	Explain ETSI M2M High-Level Architecture.	7 Marks	L2	CO2	PO1				
	b)	Explain M2M Service Capabilities, M2M Nodes and Open	7 Marks	L2	CO2	PO1				
		Interfaces								
		(OR)			ı	Г				
4.	a)	Explain ETSI M2M service capabilities	7 Marks	L2	CO2	PO1				
	b)	Explain OGC functional architecture and interactions	7 Marks	L2	CO2	PO1				
		(UNIT-III)								
5.	a)	Explain protocol stack utilizing IEEE 802.15.4	7 Marks	L4	CO3	PO2				
	b)	Illustrate ZigBee protocol stack	7 Marks	L4	CO3	PO2				
		(OR)								
6.	a)	Illustrate ZigBee IP protocol stack	7 Marks	L4	CO3	PO2				
	b)	Sketch and explain IEEE 802.15.4 PHY Format	7 Marks	L3	CO3	PO2				
		UNIT-IV								
7.	a)	Explain protocol stack for transporting serial DNP3 SCADA over IP	7 Marks	L2	CO4	PO1				
	b)	Explain a scenario of DNP3 protocol over 6LoWPAN networks	7 Marks	L2	CO4	PO1				
		with MAP-T								
	1 .	(OR)		I						
8.	a)	Explain in detail generic web-based protocols	7 Marks	L2	CO4	PO1				
	b)	Explain about CoAP message format and message fields	7 Marks	L2	CO4	PO2				
		(UNIT-V)								
9.	a)	Explain Security Considerations for IEEE 802.15.4 Networks	7 Marks	L2	CO5	PO3				
	b)	Explain in detail security feature of 6LoWPAN	7 Marks	L2	CO5	PO3				
	ı	(OR)		ı	r	,				
10.	a)	Illustrate security functions of RPL	7 Marks	L4	CO5	PO3				
	b)	Explain in detail about IoT Challenges	7 Marks	L1	CO5	PO3				

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations

IoT Architecture and Protocols
(Professional Elective -5)
(Cyber Security)

Time: 3 hours Max. Marks: 70

		(UNIT-I)							
1.	a)	Categorize functional groups across the different layers of IoT and explain in detail	7 Marks	L4	CO1	PO2			
	b)	Explain the several properties used for device characterizations	7 Marks	L2	CO1	PO1			
	(OR)								
2.	a)	Explain the following	7 Marks	L2	CO1	PO1			
		i. Basic devices							
		ii. Advanced devices							
	b)	Illustrate with an example how device management provides	7 Marks	L4	CO1	PO2			
		efficient means to perform many of the management tasks for							
		devices							
		UNIT-II							
3.	a)	Categorize three kinds of devices in IoT Domain Model and explain	7 Marks	L4	CO2	PO2			
		in detail.							
	b)	Explain about classification of IoT services according to their level	7 Marks	L2	CO2	PO1			
		of abstraction							
	1	(OR)		T	T				
4.	a)	With a neat sketch explain the IoT Information Model for Parking	7 Marks	L3	CO2	PO2			
		lot							
	b)	Explain about necessary aspects of a trust model according to IoT	7 Marks	L1	CO2	PO1			
		(UNIT-III)							
5.	a)	Sketch and explain IEEE 802.15.4 MAC Format	7 Marks	L3	CO3	PO2			
	b)	Explain about DASH7	7 Marks	L2	CO3	PO1			
		(OR)							
6.	a)	Illustrate purpose of IEEE 802.11 AH	7 Marks	L4	CO3	PO2			
	b)	Explain 802.11ah MAC layer	7 Marks	L2	CO3	PO1			
		UNIT-IV							
7.	a)	Justify whether CoAP run over IPv4 or IPv6	7 Marks	L4	CO4	PO2			
	b)	With a neat diagram explain CoAP communications in IoT	7 Marks	L2	CO4	PO1			
		infrastructure							
		(OR)							
8.	a)	Explain MQTT publish/subscribe framework	7 Marks	L2	CO4	PO1			
	b)	Explain categories of MQTT message types	7 Marks	L2	CO4	PO1			
		UNIT-V							
9.	a)	Explain with a neat sketch smart city layered architecture	7 Marks	L3	CO5	PO2			
	b)	Analyse the devices and sensors required for smart city IoT	7 Marks	L4	CO5	PO2			
		infrastructure							

	(OR)								
10.	a)	Explain the role of cloud for smart city applications	7 Marks	L2	CO5	PO3			
	b)	Explain about security architecture in different layers for smart city	7 Marks	L2	CO5	PO1			
		IoT infrastructure							

(A) (A) (A)

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations

IoT Architecture and Protocols
(Professional Elective -5)
(Cyber Security)

Time: 3 hours Max. Marks: 70

		(UNIT-I)							
1.	a)	With neat sketch, explain ETSI M2M Functional Architecture	7 Marks	L3	CO1	PO2			
	b)	Explain two or three communications technologies used in	7 Marks	L2	CO1	PO1			
		distributed M2M applications and the IoT							
	(OR)								
2.	a)	Explain in detail of the following	7 Marks	L1	CO1	PO1			
		i. Bluetooth Low Energy ii. 6LoWPANiii. RPL							
	b)	Illustrate the key characteristics of M2M data management	7 Marks	L4	CO1	PO2			
		UNIT-II							
3.	a)	Illustrate how Security Functional Group ensures the security	7 Marks	L4	CO2	PO2			
		and privacy of an IoT system							
	b)	With an example, explain the how information handling is	7 Marks	L4	CO2	PO2			
		carried in an IoT system							
		(OR)							
4.	a)	Apply deployment and operational view features, explain the	7 Marks	L3	CO2	PO2			
		functioning of parking lot application							
	b)	Explain about nonfunctional requirements that need to be	7 Marks	L2	CO2	PO1			
		satisfied for every application							
	UNIT-III)								
5.	a)	Illustrate LoRaWAN layers	7 Marks	L4	CO3	PO2			
	b)	Explain in detail about LoRaWAN MAC frame format	7 Marks	L2	CO3	PO1			
		(OR)							
6.	a)	With a neat sketch explain functioning of LoRaWAN	7 Marks	L3	CO3	PO2			
		architecture							
	b)	Explain security measures in LoRaWAN	7 Marks	L2	CO3	PO1			
		(UNIT-IV)							
7.	a)	Explain MQTT publish/subscribe framework	7 Marks	L2	CO4	PO1			
	b)	Explain categories of MQTT message types	7 Marks	L2	CO4	PO1			
		(OR)							
8.	a)	Explain MQTT QoS flows	7 Marks	L1	CO4	PO1			
	b)	Compare CoAP and MQTT	7 Marks	L2	CO4	PO1			
		UNIT-V							
9.	a)	With a neat sketch, explain the infrastructure delivering metering	7 Marks	L3	CO5	PO2			
		data for billing purposes in smart metering							
	b)	With a neat diagram, explain energy management system in	7 Marks	L3	CO5	PO2			
		smart house application							
		(OR)							

10.	a)	Explain about functioning of Smart House integration with	7 Marks	L2	CO5	PO2
		enterprise services				
	b)	Explain IEEE 802.15.4 Networks security considerations	7 Marks	L2	CO5	PO3

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

IV B. Tech I Semester (SVEC-20) Regular Examinations

IoT Architecture and Protocols
(Professional Elective -5)
(Cyber Security)

Time: 3 hours Max. Marks: 70

		(UNIT-I)							
1.	a)	Explain about Distributed Business Processes in IoT	7 Marks	L2	CO1	PO1			
	b)	Explain about Knowledge Reference Architecture for M2M and	7 Marks	L1	CO1	PO1			
		IoT.							
		(OR)							
2.	a)	Explain the following	7 Marks	L1	CO1	PO1			
		i. Staged Data ii. Strong Type Data iii. Weak Type Data							
	b)	Explain the several properties used for device characterizations	7 Marks	L2	CO1	PO1			
		UNIT-II							
3.	a)	Illustrate how information flow utilizes the IoT Service Resolution	7 Marks	L4	CO2	PO2			
		FC							
	b)	Explain the following	7 Marks	L1	CO2	PO1			
		i. End-to-End Communication ii. Network Communication							
		iii. Hop-by-Hop communication							
		(OR)							
4.	a)	Explain about IoT-A Functional Model	7 Marks	L2	CO2	PO1			
	b)	Explain in detail about IoT Reference Model.	7 Marks	L2	CO2	PO1			
		(UNIT-III)							
5.	a)	" 6LoWPAN standards enable the efficient use of IPv6 over low-	7 Marks	L4	CO3	PO2			
		power wireless networks on simple embedded devices" – Justify the							
		statement							
	b)	Compare and Contrast 6LoWPAN, 6TiSCH and 6Lo	7 Marks	L2	CO3	PO1			
		(OR)							
6.	a)	Compare and contrast IoT protocol stack utilizing 6LoWPAN and	7 Marks	L2	CO3	PO1			
		IP Protocol stack							
	b)	Write short notes on ZigBee smart energy	7 Marks	L1	CO3	PO1			
		UNIT-IV							
7.	a)	Explain in detail about XMPP	7 Marks	L1	CO4	PO1			
	b)	With a neat sketch explain MQTT message format	7 Marks	L3	CO4	PO2			
	1 /	(OR)			•				
8.	a)	Illustrate three levels of MQTT QoS	7 Marks	L4	CO4	PO2			
	b)	List the benefits of Data Distribution Service (DDS) and explain	7 Marks	L2	CO4	PO1			
		(UNIT-V)							
9.	a)	Illustrate security functions of RPL	7 Marks	L4	CO5	PO3			
	b)	Analyze the role of cloud architecture for smart metering	7 Marks	L4	CO5	PO2			
		applications							
		(OR)	•			•			
		(OR)							

10.	a)	Explain in detail about IoT Challenges	7 Marks	L2	CO5	PO3
	b)	Illustrate the functioning of Smart House integration with enterprise	7 Marks	L4	CO5	PO2
		services				

