CHL332 (Fluidization Engineering)

Max. Marks: 35

Minor - I

2.9.2015

Total Time: 60 min

(Part B)

1. A packed bed has 20 kg of solid particles of density 2200 kg/m³ that occupy a height of 0.3 m in a cylindrical column of diameter 0.252 m. The bed is then fluidized by water (density 1000 kg/m³ and viscosity 0.001 Pa.s) at a flowrate of 1.80 m³/hr to form an expanded bed of height 0.33 m. [9]

Assuming Richardson-Zaki eqn (with n=3.5) to apply for the fluidized state, find :

- (a) the minimum fluidization velocity u_{mf}
- (b) the bed height, if water flowrate is doubled
- (c) the total pressure exerted on the distributor plate at the above velocity [in (b)]
- 2. 60 kg of Geldart A particles of size 100 μ m and density of 2600 kg/m³ are fluidized by air ($\rho = 1.2 \text{ kg/m}^3$ and $\mu = 1.8 \times 10^{-5}$ Pa.s) to give a bubbling bed in a column of diameter 0.32 m. The operating volumetric flow rate of air is 100 m³/hr. Average bubble rise velocity may be taken to be 1.1 m/s.

Assuming simple 2-phase model to apply, find:

- (a) u_{mf} (take laminar flow, $\phi_s = 1$, $\epsilon_{mf} = 0.45$)
- (b) bubble fraction in the bed and bed height at the operating conditions
- (c) Is any assumption involved in the above, w.r.t. Geldart A fluidization?

[9]