EXERCISES 5.3

In Problems 1–8, show that $\oint_C f(z) dz = 0$, where f is the given function and C is the unit circle |z| = 1.

1.
$$f(z) = z^3 - 1 + 3i$$

2.
$$f(z) = z^2 + \frac{1}{z-4}$$

3.
$$f(z) = \frac{z}{2z+3}$$

2.
$$f(z) = z^2 + \frac{1}{z-4}$$

4. $f(z) = \frac{z-3}{z^2+2z+2}$

5.
$$f(z) = \frac{\sin z}{(z^2 - 25)(z^2 + 9)}$$
6. $f(z) = \frac{e^z}{2z^2 + 11z + 15}$
7. $f(z) = \tan z$
8. $f(z) = \frac{z^2 - 9}{\cosh z}$

6.
$$f(z) = \frac{e^z}{2z^2 + 11z + 15}$$

7.
$$f(z) = \tan z$$

8.
$$f(z) = \frac{z^2 - 9}{\cosh z}$$

9. Evaluate
$$\oint_C \frac{1}{z} dz$$
, where C is the contour shown in Figure 9.

10. Evaluate
$$\oint_C \frac{5}{z+1+i} dz$$
, where C is the contour shown in Figure 10.

In Problems 11–22, use any of the results in this section to evaluate the given integral along the indicated closed contour(s).

11.
$$\oint_C \left(z + \frac{1}{z}\right) dz; |z| = 2$$

12.
$$\oint_C \left(z + \frac{1}{z^2}\right) dz; |z| = 2$$

13.
$$\oint_C \frac{z}{z^2 - \pi^2} dz$$
; $|z| = 3$

14.
$$\oint_C \frac{10}{(z+i)^4} dz; |z+i| = 1$$

15.
$$\oint_C \frac{2z+1}{z^2+z} dz$$
; (a) $|z| = \frac{1}{2}$, (b) $|z| = 2$, (c) $|z-3i| = 1$

16.
$$\oint_C \frac{2z}{z^2+3} dz$$
; (a) $|z|=1$, (b) $|z-2i|=1$, (c) $|z|=4$

17.
$$\oint_C \frac{-3z+2}{z^2-8z+12} dz$$
; (a) $|z-5|=2$, (b) $|z|=9$

18.
$$\oint_C \left(\frac{3}{z+2} - \frac{1}{z-2i} \right) dz$$
; (a) $|z| = 5$, (b) $|z-2i| = \frac{1}{2}$

19.
$$\oint_C \frac{z-1}{z(z-i)(z-3i)} dz$$
; $|z-i| = \frac{1}{2}$

20.
$$\oint_C \frac{1}{z^3 + 2iz^2} dz$$
; $|z| = 1$

21.
$$\oint_C \operatorname{Ln}(z+10) dz; \ |z|=2$$

22.
$$\oint_C \left[\frac{5}{(z-2)^3} + \frac{3}{(z-2)^2} - \frac{10}{z-2} + 7\csc z \right] dz; \ |z-2| = \frac{1}{2}$$

Figure for Problem 9

Figure for Problem 10