Introduction to Cryptography: Homework 2

1. gcd (65610, 10920) => gcd(a,b) => a= 1,b + Tn+1 :. gcd (65610,10920) $65610 = 10920 \times 6 + 90$ 90 x 12/ + 30 30 x 3 +0 :. gcd (65610, 10920) = 30

- 2. [Need to find out]
- 3. Convert text into ASCII representation in bit. Due to the XOR property of a \oplus b = c, thus a \oplus c = b.

Plaintext ASCII	В	А	R	А	С	К	0	В	А	М	А
Plaintext bits	01000010	01000001	01010010	01000001	01000011	01001011	01001111	01000010	01000001	01001101	01000001
Cipher bits	01000011	00011011	00010010	00110000	11111000	10100111	10001110	11101001	00010100	00011101	01100100
Keystream+Nonce	00000001	01011010	01000000	01110001	10111011	11101100	11000001	10101011	01010101	01010000	00100101

Since a nonce of 1 was added to each byte for the specific message, we can subtract that one to get the fixed key we are looking for. Moreover, this process doesn't need to be done since we already know that the second message was encrypted with a nonce of 2. Therefore, the keystream that was used to encrypt the second message is found by adding 1 to the first keystream.

Fixed Key + 1	00000001	01011010	01000000	01110001	10111011	11101100	11000001	10101011	01010101	01010000	00100101
Fixed Key + 2	00000010	01011011	01000001	01110010	10111100	11101101	11000010	10101100	01010110	01010001	00100110

From this, we can now decrypt the second ciphertext from this new keystream. Using the XOR on each bit of this new keystream with ht second ciphertext, the entire plaintext can be achieved.

Keystream	0000010	01011011	01000001	01110010	10111100	11101101	11000010	10101100	01010110	01010001	00100110
Ciphertext bits	01000110	00010100	00001111	00110011	11110000	10101001	10010110	11111110	00000011	00011100	01110110
Plaintext bits	01000100	01001111	01001110	01000001	01001100	01000100	01010100	01010010	01010101	01001101	01010000

Now, after getting the plaintext bits from above, the plaintext can simply be converted back into ASCII values to fetch the results that is the "readable" text.

Nikhil Raina and Jay Shah

Plaintext bits	01000100	01001111	01001110	01000001	01001100	01000100	01010100	01010010	01010101	01001101	01010000
Plaintext ASCII	D	0	N	A	L	D	Т	R	U	М	Р

Therefore, the answer is DONALDTRUMP

4. Table:

Clock	S ₄	S ₃	S ₂	S ₁	S ₀
0	1	1	0	1	1
1	0	1	1	0	1
2	1	0	1	1	0
3	0	1	0	1	1
4	0	0	1	0	1
5	0	0	0	1	0
6	1	0	0	0	1
7	1	1	0	0	0
8	0	1	1	0	0
9	1	0	1	1	0
10	0	1	0	1	1
11	0	0	1	0	1
12	0	0	0	1	0
13	1	0	0	0	1

Nikhil Raina and Jay Shah

14	1	1	0	0	0
15	0	1	1	0	0
16	1	0	1	1	0
17	0	1	0	1	1
18	0	0	1	0	1
19	0	0	0	1	0
20	1	0	0	0	1
21	1	1	0	0	0
22	0	1	1	0	0
23	1	0	1	1	0
24	0	1	0	1	1
25	0	0	1	0	1
26	0	0	0	1	0

a. The polynomial is:

$$p(x) = x^4 + x^3 + x^2 + 1$$

- b. According to the table formed above, it can be seen that from the clock value 6 onwards, the keystream bits have a constant repetition of 1000110. Thus there would be 6 keystream bits generated before this repetition occurs.
- c. The key stream bits before the repetition: 110110

And the key stream bits that is the repetition: 1000110.