Теорема

Пусть $S:\mathfrak{X}(M)^k \to \mathfrak{F}(M)$ – полилинейно над $\mathfrak{F}(M)$. Тогда S порождается некот. (единств.) гладким тензорным полем типа (k,0).

Теорема

Пусть $S:\mathfrak{X}(M)^k \to \mathfrak{F}(M)$ – полилинейно над $\mathfrak{F}(M)$. Тогда S порождается некот. (единств.) гладким тензорным полем типа (k,0).

Док-во: Сначала докажем вспомогательное утверждение:

$$orall$$
 $Y_1,\ldots,Y_k\in\mathfrak{X}(M)$ значение $S(Y_1,\ldots,Y_k)(p)$ зависит только от $Y_1(p),\ldots,Y_k(p)$, т.е. $orall$ $Y_i,Z_i\in\mathfrak{X}(M)$

$$Y_1(p) = Z_1(p), \ldots, Y_k(p) = Z_k(p) \Longrightarrow S(Y_1, \ldots, Y_k)(p) = S(Z_1, \ldots, Z_k)(p).$$

Теорема

Пусть $S:\mathfrak{X}(M)^k \to \mathfrak{F}(M)$ – полилинейно над $\mathfrak{F}(M)$. Тогда S порождается некот. (единств.) гладким тензорным полем типа (k,0).

Док-во: Сначала докажем вспомогательное утверждение:

orall $Y_1,\ldots,Y_k\in\mathfrak{X}(M)$ значение $S(Y_1,\ldots,Y_k)(p)$ зависит только от $Y_1(p),\ldots,Y_k(p)$, т.е. orall $Y_i,Z_i\in\mathfrak{X}(M)$

$$Y_1(p) = Z_1(p), \ldots, Y_k(p) = Z_k(p) \Longrightarrow S(Y_1, \ldots, Y_k)(p) = S(Z_1, \ldots, Z_k)(p).$$

Рассмотрим два случая: Случай k = 1.

Этот случай разобъем на два шага

Шаг 1. Фиксируем карту U. Докажем, что если $Y,Z\in\mathfrak{X}(M)$ совпадают на U, то $\forall p\in U$ имеем

$$S(Y)(p) = S(Z)(p).$$

Теорема

Пусть $S:\mathfrak{X}(M)^k \to \mathfrak{F}(M)$ – полилинейно над $\mathfrak{F}(M)$. Тогда S порождается некот. (единств.) гладким тензорным полем типа (k,0).

Док-во: Сначала докажем вспомогательное утверждение:

 $\forall~Y_1,\ldots,Y_k\in\mathfrak{X}(M)$ значение $S(Y_1,\ldots,Y_k)(p)$ зависит только от $Y_1(p),\ldots,Y_k(p)$, т.е. $\forall~Y_i,Z_i\in\mathfrak{X}(M)$

$$Y_1(p)=Z_1(p),\ldots,Y_k(p)=Z_k(p)\Longrightarrow S(Y_1,\ldots,Y_k)(p)=S(Z_1,\ldots,Z_k)(p).$$

Рассмотрим два случая: Случай k = 1.

Этот случай разобъем на два шага

Шаг 1. Фиксируем карту U. Докажем, что если $Y,Z\in\mathfrak{X}(M)$ совпадают на U, то $\forall p\in U$ имеем

$$S(Y)(p) = S(Z)(p).$$

Пусть $h:M \to \mathbb{R}$ – гладкий спуск с единицы, т.ч. $\underbrace{h(p)=1}_{M\setminus U}, \ h|_{M\setminus U}=0.$ Тогда

$$hY = hZ \Rightarrow S(hY) = S(hZ) \Rightarrow hS(Y) = hS(Z) \Rightarrow h(p)S(Y)(p) = h(p)S(Z)(p) \Rightarrow S(Y)(p) = S(Z)(p).$$

Продолжаем случай k=1.

Шаг 2. Покажем, что S(Y)(p) зависит только от $Y(p), \ \forall \ Y \in \mathfrak{X}(M).$

T ензоры типов (k,0) и (k,1) на многообразиях

Продолжаем случай k=1.

Шаг 2. Покажем, что S(Y)(p) зависит только от Y(p), $\forall \ Y \in \mathfrak{X}(M)$.

Пусть E_1,\ldots,E_n – координатные векторные поля карты $U\ni p$. Тогда в карте имеем разложение $Y \not = \sum_{i=1}^n \alpha_i E_i$.

Гладкое векторное поле $\sum_{i=1}^{n} \alpha_i E_i$ можно продолжить (была такая теорема) с карты на все многообразие. Получим новое поле $Z \in \mathfrak{X}(M)$, совпадающее с исходным полем Y в (уменьшенной) карте U. Тогда

$$S(Z)=\sum lpha_i S(E_i)$$
 в силу линейности S
 $S(Y)(p)=S(Z)(p)=\sum lpha_i(p)S(E_i)(p).$

Здесь $\alpha_i(p)$ – координаты вектора Y(p), $S(E_i)(p)$ не зависит от \mathcal{F} вообще.

4: MaTMac di e C Y/1 = Z/u, U-20808 Z= Zxi Ei no opp 49 boern M

Продолжаем случай k=1.

Шаг 2. Покажем, что S(Y)(p) зависит только от Y(p), $\forall \ Y \in \mathfrak{X}(M)$.

Пусть E_1, \ldots, E_n – координатные векторные поля карты $U \ni p$. Тогда в карте имеем разложение $Y = \sum_{i=1}^{n} \alpha_i E_i$.

Гладкое векторное поле $\sum_{i=1}^{n} \alpha_{i} E_{i}$ можно продолжить (была такая теорема) с карты на все многообразие. Получим новое поле $Z \in \mathfrak{X}(M)$, совпадающее с исходным полем Y в (уменьшенной) карте U. Тогда

$$S(Z) = \sum lpha_i S(E_i)$$
 в силу линейности S

$$S(Y)(p) = S(Z)(p) = \sum \alpha_i(p)S(E_i)(p).$$

Здесь $\alpha_i(p)$ – координаты вектора Y(p), $S(E_i)(p)$ не зависит от Xвообще.

Рассмотрим случай k > 1.

Он сводится к случаю k = 1 следующим образом:

NORAZINO ECAN Yi(p)=Zi(p)

$$S(Y_1, Y_2, Y_3, ..., Y_k)(p) = S(Z_1, Y_2, Y_3, ..., Y_k)(p) = = S(Z_1, Z_2, Y_3, ..., Y_k)(p) = ... = S(Z_1, Z_2, Z_3, ..., Z_k)(p).$$

Мы доказали вспомогательное утверждение.

Приступаем к док-ву теоремы: Существование:

Пусть $v_1, \ldots, v_k \in T_p M$. Сначала продолжим их до постоянных

$$\widehat{S}(p)(v_1,\ldots,v_k)=S(V_1,\ldots,V_k)(p).$$

Значит, можно определить тензор $\widehat{S}(p)\colon T_pM^k\to\mathbb{R}$ $\widehat{S}(p)(v_1,\ldots,v_k)=S(V_1,\ldots,V_k)(p)$. Он будет полилинейным в силу полилинейности отображения S. Очевидно, что тензорное поле $\{\widehat{S}\}_{p\in M}$ порождает S.

Единственность очевидна в силу формулы, написанной выше на этом Magymaro e слайде.

Определение

Пусть M – гладкое n-мерное многообразие, $X \in \mathfrak{X}(M)$ и $f \in \mathfrak{F}(M)$. Определим функцию $Xf: M \to \mathbb{R}$ следующим образом: $\forall p \in M$

$$Xf(p) = d_p f(X(p)).$$

Функция Xf – производная функции f вдоль векторного поля X.

Запись производной в координатах

- Пусть $X(p)=[\gamma]$, где $\gamma\colon (-\varepsilon,\varepsilon)\to M$ гладкая кривая и $\gamma(0)=p$. Тогда $Xf(p)=[f\circ\gamma]=(f\circ\gamma)'|_{t=0}$.
- Пусть (U, φ) карта на M и $p \in U$. Введем обозначения:

$$\tilde{\gamma}(t) = \varphi \circ \gamma(t) = (x_1(t), \ldots, x_n(t));$$

$$\tilde{f}(x_1,\ldots,x_n)=f\circ\varphi^{-1}(x_1,\ldots,x_n).$$

Т.е. $\tilde{\gamma}(t)$ и $\tilde{f}(x_1,\ldots,x_n)$ – представление кривой γ и функции f в локальных координатах карты (U,φ) . Тогда $f\circ\gamma=\tilde{f}\circ\tilde{\gamma}$ и, следовательно,

$$Xf(p) = \sum_{i} \frac{\partial \tilde{f}}{\partial x_{i}}(\varphi(p))x'_{i}(0).$$

Лекция 9

• с целью упрощения записи предыдущую формулу пишут в виде

$$Xf(p) = \sum_{i} \alpha_{i}(p) \frac{\partial f}{\partial x_{i}}(p),$$

подразумевая, что $\frac{\partial f}{\partial x_i}(p) := \frac{\partial \tilde{f}}{\partial x_i}(\varphi(p))$, а также, что $\alpha_i(p) = x_i'(0)$ — функция от кординат точки $\varphi(p)$.

• Пусть $E_1, ..., E_n$ – координатные векторные поля карты (U, φ) .

$$E_i f(p) = \frac{\partial f}{\partial x_i}(p),$$

т.е. дифференцирование функции вдоль координатного поля есть взятие частной производной, координатные поля часто обозначают $\frac{\partial}{\partial x_i}$.

<u>За</u>мечание

Все функции, стоящие в правой части формулы для Xf(p), будут гладкими, поскольку $X \in \mathfrak{X}(M)$ и $f \in \mathfrak{F}(M)$.

Лемма

Докажите, что $\forall \ X, Y \in \mathfrak{X}(M)$, $\forall \ f, g \in \mathfrak{F}(M)$, $\forall \ a, b \in \mathbb{R}$:

- (fX)g = f(Xg).

Док-во: опирается на формулу производной в координатах (с предыдущего слайда)

$$Xf(p) = \sum_{i} \alpha_{i}(p) \frac{\partial f}{\partial x_{i}}(p),$$

CC-ba Guerpospeans-

Определение

Отображение $D\colon \mathfrak{F}(M) o \mathfrak{F}(M)$, удовлетворяющее условиям:

$$D(af + bg) = aD(f) + bD(g),$$
 (линейность над \mathbb{R})

$$D(f \cdot g) = f \cdot D(g) + g \cdot D(f)$$

для любых $f,g\in \mathfrak{F}(M)$ и $a,b\in \mathbb{R}$ называется дифференцированием (оператором дифференцирования) кольца $\mathfrak{F}(M)$.

В силу леммы с предыдущего слайда, дифференцирование вдоль векторного поля X является оператором дифференцирования и обычно обозначается D_X .

Теорема (для информации, на экзамен не выносится)

Пусть $D:\mathfrak{F}(M)\to\mathfrak{F}(M)$ — дифференцирование кольца $\mathfrak{M}(M)$. Тогда $D=D_X$ для некоторого единственного векторного поля $X\in\mathfrak{X}(M)$.

Для желающих: доказательство в лекциях С.В. Иванова – 3 семестр, лекция 14.

Скобка Ли векторных полей

Лемма

Для любых $X,Y\in\mathfrak{X}(M)$ существует единственное поле $Z\in\mathfrak{X}(M)$ такое, что $\forall f \in \mathfrak{F}(M)$ справедливо равенство

$$Zf = X(Yf) - Y(Xf).$$

Док-во: Единственность: Пусть Z – такое поле, (U, φ) – карта на M и $p \in U$. Запишем поля X, Y в локальных координатах

Тогда
$$orall f \in \mathfrak{F}(M)$$

$$X(Yf)(p) = X\left(\sum_{j} \beta_{j} \frac{\partial f}{\partial x_{j}}\right) = \sum_{i,j} \alpha_{i} \frac{\partial \beta_{j}}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} + \sum_{i,j} \alpha_{i} \beta_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}},$$

$$C B B B G G G G$$

$$Y(Xf)(p) = Y\left(\sum_{i} \alpha_{i} \frac{\partial f}{\partial x_{i}}\right) = \sum_{i,j} \beta_{j} \frac{\partial \alpha_{i}}{\partial x_{j}} \frac{\partial f}{\partial x_{i}} + \sum_{i,j} \alpha_{i} \beta_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}},$$

Следовательно,

$$Zf(p) = \sum_{i,j} \left(\alpha_i \frac{\partial \beta_j}{\partial x_i} - \beta_i \frac{\partial \alpha_j}{\partial x_i} \right) \frac{\partial f}{\partial x_j}.$$
 (1)

Формула (1) гарантирует нам единственность.

Скобка Ли векторных полей

Док-во: Существование: В каждой карте атласа многообразия M зададим поле

$$Z = \sum_{i,j} \left(\alpha_i \frac{\partial \beta_j}{\partial x_i} - \beta_i \frac{\partial \alpha_j}{\partial x_i} \right) \frac{\partial}{\partial x_j}.$$

Осталось показать, что на пересечении карт построенные поля совпадут. Пусть (V,ψ) – такая карта на M с координатами y_i , что $p\in U\cap V$.

Упражнение

Докажите, что координаты $\widehat{Q_i}$ и $\widetilde{Q_i}$ вектора $v \in T_pM$ в картах U и V связаны формулой

$$\mathbf{q}_i = \sum_{s} \frac{\partial x_i}{\partial y_s} \mathbf{\tilde{q}}_s.$$

Bakonquito gok-Bo.

Свойства скобки Ли

Определение

Скобкой Ли (коммутатором) векторных полей $X,Y\in\mathfrak{X}(M)$ называется такое векторное поле $[X,Y]\in\mathfrak{X}(M)$, что

$$[X, Y]f = X(Yf) - Y(Xf), \forall f \in \mathfrak{F}(M).$$

Лемма

Пусть M – гладкое многообразие, $X,Y,Z\in\mathfrak{X}(M)$, $f,g\in\mathfrak{F}(M)$, $a\in\mathbb{R}$. Тогда справедливы следующие утверждения:

- **1** [aX, Y] = a[X, Y].
- (X + Y, Z) = [X, Z] + [Y, Z].
- [X, Y] = -[Y, X].
- $(X, fY) = f \cdot [X, Y] + (Xf) \cdot Y.$
- lacktriangle Тождество Якоби: [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0

$$\begin{array}{ll}
() & [ax,y] = e^{x}(Yf) - Y(6x)f \\
& Y(a(xf)) \\
& aY(xf)
\end{array}$$

CB-B9 / 5~9-0:

Свойства скобки Ли

Определение

Скобкой Ли (коммутатором) векторных полей $X,Y\in\mathfrak{X}(M)$ называется такое векторное поле $[X,Y]\in\mathfrak{X}(M)$, что

$$[X, Y]f = X(Yf) - Y(Xf), \quad \forall f \in \mathfrak{F}(M).$$

Лемма

Пусть M – гладкое многообразие, $X,Y,Z\in\mathfrak{X}(M)$, $f,g\in\mathfrak{F}(M)$, $a\in\mathbb{R}$. Тогда справедливы следующие утверждения:

- **1** [aX, Y] = a[X, Y].
- (X + Y, Z) = [X, Z] + [Y, Z].
- [X, Y] = -[Y, X].
- $(fX, Y] = f \cdot [X, Y] (Yf) \cdot X.$
- $[X, fY] = f \cdot [X, Y] + (Xf) \cdot Y.$
- lacktriangledown Тождество Якоби: [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0

Док-во: пункт 5 $\forall g \in \mathfrak{F}(M)$ имеем: $\underbrace{[X,fY]g = X((fY)g) - (fY)(Xg) = X(f(Yg)) - f(Y(Xg)) =}_{=(Xf)(Yg) + f(X(Yg)) - f(Y(Xg)) = (f[X,Y])g + (Xf)(Yg) =}_{=(f \cdot [X,Y] + (Xf) \cdot Y)g.}$

Скобка Ли координатных полей

Определение

Векторные поля называются коммутирующими, если их скобка Лиравна 0.

Упражнение

Докажите, что

- Окобка Ли координатных векторных полей равна 0.
- Если два векторных поля имеют постоянные координаты в некоторой карте, то их скобка Ли в пределах этой карты равна 0.

Поведение скобки Ли при отображениях

Соглашение

Иногда вместо X(p) удобнее писать X_p , где $X\in\mathfrak{X}(M)$, $p\in M$.

Определение

Пусть M,N- гладкие многообразия, $F\colon M\to N-$ гладкое отображение. Будем говорить, что F переводит векторное поле $X\in\mathfrak{X}(M)$ в векторное поле $Y\in\mathfrak{X}(N)$, если для всех $p\in M$

$$Y_{F(p)}=d_pF(X_p).$$

Замечание

Поле Y, удовлетворяющее этому определению, может быть не единственным. Однозначно определены лишь его значения в точках из F(M).

Кроме того, такое поле Y не обязательно существует (например, если F(p)=F(q), но $d_pF(X_p)\neq d_qF(X_q)$ для некоторых $p,q\in M$). Существование и единственность поля Y имеет место, если F- диффеоморфизм.

Поведение скобки Ли при отображениях

Лемма

Условие "F переводит X в Y" эквивалентно следующему:

$$(Yf) \circ F = X(f \circ F)$$

для любой функции $f \in \mathfrak{F}(N)$.

Док-во: F переводит X в $Y \Leftrightarrow \forall p \in M$ $d_pF(X_p) = Y_{F(p)} \Leftrightarrow f \in \mathfrak{F}(N)$

$$X(f\circ F)(p) = d_p(f\circ F)(X_p) = d_{F(p)}f(\underline{d_pF(X_p)}) = d_{F(p)}f(\underline{Y_{F(p)}}) = Yf(F(p)).$$

Теорема

Пусть M,N – гладкие многообразия, $F:M\to N$ – гладкое отображение. Предположим, что F переводит поля $X_1,X_2\in\mathfrak{X}(M)$ в поля $Y_1,Y_2\in\mathfrak{X}(N)$, соответственно. Тогда F переводит $[X_1,X_2]$ в $[Y_1,Y_2]$.

Док-во: Из леммы получаем

$$(Y_1(Y_2f)) \circ F = X_1((Y_2f) \circ F) = X_1(X_2(f \circ F)).$$

Вычитая аналогичное тождество с переставленными индексами 1 и 2, получаем

$$([Y_1, Y_2]f) \circ F = [X_1, X_2](f \circ F),$$

что и требовалось.

Поведение скобки Ли при отображениях

Пусть N – гладкое подмногообразие в M.

Определение

Будем говорить, что векторное поле $X \in \mathfrak{X}(M)$ касается N, если для любой точки $p \in N$ верно, что $X_p \in T_p N$.

Следствие

Пусть N — гладкое подмногообразие в M, X и Y — векторные поля из $\mathfrak{X}(M)$, касающиеся N. Тогда [X,Y] тоже касается N. Более того, сужение $[X,Y]|_N$ скобки Ли на N совпадает со скобкой Ли полей $X|_N$ и $Y|_N$, рассматриваемых как элементы $\mathfrak{X}(N)$.

Док-во: Применим теорему к отображению вложения $i: N \to M$, заметив, что оно переводит $X|_N$ и $Y|_N$ в X и Y соответственно.

