C++ implementation of the extended Lennard-Jones Potential energy function

Yu Zhai*1

¹Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China

28th March 2019

Following Hajigeorgiou's work¹, in this document, I will describe how I implemented the function in C++.

1 The extended Lennard-Jones function

The extended Lennard-Jones (ELJ) function is defined as

$$V_{\text{ELJ}} = \mathcal{D}_{\text{e}} \left[1 - C(r) \left(\frac{r_{\text{e}}}{r} \right)^{n(r)} \right]^2, \tag{1}$$

where C is defined as

$$C(r) = \left(1 - \frac{f_{LR}(r)}{f_{LR}(r_e)}\right) \left(\frac{1}{2\mathcal{D}_e}\right) \sum_{i=0}^{M} \frac{C_{n_i}}{r_e^{n_i}} \left(\frac{r_e}{r}\right)^{\Delta n} + \frac{f_{LR}(r)}{f_{LR}(r_e)},\tag{2}$$

where $\Delta n = n_i - n_0$ and

$$f_{LR}(r) = [1 + \exp(\delta_{LR}(r - R_{LR}))]^{-1}.$$
 (3)

The *n* function is defined as

$$n(r) = \begin{cases} \left(\sum_{i=0}^{N} \rho_i \zeta^i\right) f_{\mathbf{n}}(r) + n_0 (1 - f_{\mathbf{n}}(r)) & r > R_{\mathbf{c}}, \\ a e^{br} & r \le R_{\mathbf{c}}, \end{cases}$$
(4)

and

$$f_{\rm n}(r) = [1 + \exp(\delta_{\rm n} (r - R_{\rm n}))]^{-1}.$$
 (5)

 ζ in Eq.(4) can be of two types:

^{*}Email: yuzhai@mail.huiligroup.org

• Dunham type

$$\xi = (r - r_e)/r_{r_e},\tag{6}$$

• Ogilvie-Tipping type

$$z = 2(r - r_e)/(r + r_e)$$
. (7)

2 Implementation details

The ELJ function is implemented as a class in C++ ELJ. The evaluation of potential energy is regarded as reload of operator ().

I also define the following member variables to store the values (Table 1).

Acknowledgement

This work is sponsored by nobody...

References

[1] Photos G. Hajigeorgiou. The extended lennard-jones potential energy function: A simpler model for direct-potential-fit analysis. *Journal of Molecular Spectroscopy*, 330:4–13, dec 2016. doi: 10.1016/j.jms.2016.06.014.

Table 1: Members in class ELJ. For all C++ variables in the left column, namespace code ELJ: is omitted.

t <u>ea.</u> C++ variable	Formula	Notes
0. Interatomic distance		
double r	r	
1. Parameters		
const double D_e	\mathscr{D}_{e}	
const double r_e	$r_{ m e}$	
<pre>const int n[]</pre>	n_i	
<pre>const double C_n[]</pre>	C_{n_i}	
const double delta_LR	$\delta_{ m LR}$	
const double R_LR	$R_{ m LR}$	
const double R_c	$R_{ m c}$	
<pre>const double rho[]</pre>	$ ho_{\it i}$	
const double delta_n	$\delta_{ m n}$	
const double R_n	$R_{\rm n}$	
const double a	a	
const double b	b	
2. Terms		
const double fLRre	$f_{ m LR}(r_{ m e})$	
double ffLR	$rac{f_{ m LR}(r)}{f_{ m LR}(r_{ m e})}$	
double rr		
double Cnre[]	$\frac{\frac{r_{\mathrm{e}}}{r}}{\frac{C_{n_{i}}}{r_{\mathrm{e}}^{n_{i}}}}$ $\frac{1}{2\mathscr{D}_{\mathrm{e}}}$	
const double over2De	$\frac{1}{2@}$	
3. Functions	∠⊅e	
double C()const	<i>C</i> (<i>r</i>)	Eq. (2)
double n()const	n(r)	Eq. (4)
double f(double delta, double r)const	$f_{LR}(r)$ and $f_{LR}(r)$	Eqs. (3)(5)
double xi()const	ξ	Eq. (6)
double z()const	z	Eq. (7)