Exploratory Analysis on Sales Data.. by AL

```
In [1]: # import data analysis packages for visualization
         import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
In [2]: # import file and create data frame
        df = pd.read csv("C:\\Users\\Zen\\Documents\\PracticeData\\FilteredSalesData.csv")
        What are the data types and how many records are there?
In [3]: # Shown info for data types of columns
        df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 199 entries, 0 to 198
       Data columns (total 16 columns):
           Column
                            Non-Null Count Dtype
            -----
                                             ----
            Order_Date 199 non-null object
OrderId 199 non-null object
        0
            OrderId
                           199 non-null object
        1
        2
            Item ID
                           199 non-null object
        3
                           199 non-null object
            Item
        4
            Qty Sold 199 non-null int64
            Actual Price 199 non-null int64
        5
            Discount Price 199 non-null int64
        7
           Discount
                           199 non-null object
           Discount
Date_Shipd 199 non-null object
Time_Shipd 199 non-null object
199 non-null object
199 non-null object
199 non-null object
        9
        10 Loc ID
        11 City
                          199 non-null object
        12 Country
        13 Region
                            171 non-null object
        14 Sales_ID
                            199 non-null object
        15 SalesPerson
                             199 non-null
                                             object
       dtypes: int64(3), object(13)
       memory usage: 25.0+ KB
        What entries are missing from the region column?
```

```
In [4]: # Limited data output
    df.loc[df['Region'].isna()].head(5)
```

Out[4]:		Order_Date	OrderId	Item_ID	Item	Qty_Sold	Actual Price	Discount Price	Discount	Date_Sh
	1	12/15/2013	I-1164	I-04	Toaster	43	50	40	20.00%	1/26/2
	3	1/15/2014	I-1019	I-03	Ceiling fan	53	150	150	0.00%	3/11/2
	4	1/16/2014	I-1133	I-11	Vacuum Cleaner	94	250	175	30.00%	2/8/2
	10	3/14/2014	I-1199	I-11	Vacuum Cleaner	88	250	193	22.80%	5/1/2
	21	6/9/2014	I-1088	I-03	Ceiling fan	90	150	150	0.00%	7/15/2
	4									•
In [5]:	df[df[onvert date 'Date_Shipd' 'Order_Date' 'Time_Shipd']= pd.to]= pd.to	_datetime _datetime	e(df['Dat e(df['Orc	e_Shipd'] er_Date'])	o cell to	verify ch	ecks
	_	-	-			c <u>_</u> 5112pa	17			

What does the data frame look like?

```
In [6]: # show top 5 rows of data frame to see what data looks like
    df.head()
```

[6]:		Order_Date	OrderId	Item_ID	Item	Qty_Sold	Actual Price	Discount Price	Discount	Date_Shi
	0	2013-11-11	I-1092	I-07	Washing Machine	34	800	712	11.00%	2014-01-
	1	2013-12-15	I-1164	I-04	Toaster	43	50	40	20.00%	2014-01-
	2	2013-12-26	I-1184	I-04	Toaster	87	50	44	12.00%	2014-01-
	3	2014-01-15	I-1019	I-03	Ceiling fan	53	150	150	0.00%	2014-03-
	4	2014-01-16	I-1133	I-11	Vacuum Cleaner	94	250	175	30.00%	2014-02-
	4 (•

Who is the Best Salesperson?

```
In [7]: # Create list of salesperon and how many items they sold and total value
    df[['SalesPerson','Qty_Sold','Actual Price']].groupby(by=['SalesPerson'],sort=True)
```

Out[7]: Qty_Sold Actual Price

SalesPerson		
Nicholas Holloway	36	800
Ronald Butler	917	6160
Anthony Connolly	943	9140
Abdul Heywood	1050	6260
Alen Dinan	1066	6900
Robin Hall	1130	6470
Chandrakant Atkins	1131	7370
Gary Shaw	1153	3670
Philip Dewar	1229	10140
Robert Arnold	1470	6590

What country are the sales people from?

In [8]: # temporaraly set index to get grouping of sales names
df[['Country','SalesPerson']].set_index('Country').groupby(by=['Country','SalesPerson']

Out[8]:

Country	SalesPerson
Argentina	Abdul Heywood
	Alen Dinan
	Philip Dewar
Australia	Alen Dinan
	Anthony Connolly
•••	•••
USA	Ronald Butler
Vietnam	Abdul Heywood
	Alen Dinan
	Chandrakant Atkins
	Robert Arnold

141 rows × 0 columns

What item sold the most units?

```
In [9]: # List of item qty that sold
df[['Item','Qty_Sold']].groupby(by=['Item'],sort=True).sum().sort_values(by='Qty_So
```

Out[9]: Qty_Sold

Item	
Dishwasher	478
Washing Machine	690
Coffee grinder	713
Ceiling fan	726
Air conditioner	727
Blender	795
Toaster	798
Refrigerator	817
Vacuum Cleaner	829
Oven	975
Microwave	1099
Iron	1478

What item brought in the higest gross profits?

```
In [10]: # List of item qty that sold
df[['Item','Actual Price']].groupby(by=['Item'],sort=True).sum().sort_values(by='Actual Price')
```

Out[10]	Actual	Price
Ouclind	Actual	riice

Item	
Refrigerator	17000
Washing Machine	12000
Air conditioner	9800
Oven	9500
Dishwasher	4000
Vacuum Cleaner	3750
Ceiling fan	2250
Microwave	1600
Coffee grinder	1260
Iron	840
Blender	750
Toaster	750

What country are we shipping the most units to?

490

Peru

```
In [12]: df[['Country','Qty_Sold']].groupby(by='Country').sum().sort_values(by='Qty_Sold',as
Out[12]: <Axes: xlabel='Country'>
```


What country is placing the most orders?

```
In [13]: df[['Country','OrderId']].groupby(by=['Country']).count().sort_values(by='OrderId',
```

Out[13]: Orderld

Country	
USA	23
China	13
Israel	10
India	10
Russia	8

```
In [14]: df[['Country','OrderId']].groupby(by=['Country']).count().sort_values(by='OrderId',
```

Out[14]: <Axes: ylabel='Country'>

What was the amount of discounts given year over year?

```
In [15]: # Adding a total discount column to df and seeing yearly values
    df['total_discount']= df['Actual Price'] - df['Discount Price']
    df[['Order_Date','Qty_Sold','Actual Price','Discount Price','total_discount']].resa
```

Out[15]:	Qty_Sold	Actual Price	Discount Price	total discount

Order_Date				
2013-12-31	164	900	796	104
2014-12-31	2127	15180	12979	2201
2015-12-31	2088	9480	7639	1841
2016-12-31	1590	10450	9548	902
2017-12-31	2171	16370	14022	2348
2018-12-31	1985	11120	9918	1202

What are the country discount totals over the years?

In [16]: df[['Country','Order_Date','total_discount']].set_index(['Country']).groupby(by='Co
Out[16]: total_discount

Country	Order_Date	
Argentina	2013-12-31	88
	2014-12-31	40
	2015-12-31	0
	2016-12-31	2
	2017-12-31	430
•••	•••	•••
Vietnam	2014-12-31	8
	2015-12-31	2
	2016-12-31	0
	2017-12-31	2
	2018-12-31	4

137 rows × 1 columns

What are the stats on the total discounts given?

```
In [17]: # df discount stats
    df['total_discount'].describe()
```

```
Out[17]: count
                   199.00000
          mean
                    43.20603
                    90.93378
          std
                     0.00000
          min
          25%
                     3.00000
          50%
                     8.00000
          75%
                    27.00000
          max
                   500.00000
```

Name: total_discount, dtype: float64

What orders were above the mean discount price and who gave the most discounts?

In [18]: df.loc[(df['total_discount']> 43)].groupby(by='SalesPerson').sum(numeric_only=True)

Out[18]: Qty_Sold Actual Price Discount Price total_discount

	Qty_50ia	Actual Frice	Discount i nec	total_alscoult
SalesPerson				
Philip Dewar	364	7100	4782	2318
Alen Dinan	276	4500	3328	1172
Chandrakant Atkins	295	5250	4107	1143
Robert Arnold	297	3550	2838	712
Anthony Connolly	167	4600	3913	687
Abdul Heywood	190	2600	2060	540
Gary Shaw	99	800	512	288
Nicholas Holloway	36	800	584	216
Ronald Butler	68	1000	910	90
Robin Hall	89	500	455	45