

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 1 of 13

Indicated Contraindicated

Sample Information

Patient Name: 林陳月霞 Gender: Female ID No.: Y200506885 History No.: 29181893

Age: 78

Ordering Doctor: DOC3109L 邱昭華

Ordering REQ.: D567J2P Signing in Date: 2020/06/11

Path No.: S109-99578 **MP No.:** F20032

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$108-36515A Percentage of tumor cells: 80%

Note:

Sample Cancer Type: Thyroid Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	5

Report Highlights

1 Relevant Biomarkers 4 Therapies Available 17 Clinical Trials

Relevant Thyroid Cancer Findings

Gene	Finding
BRAF	Not detected
NTRK1	Not detected
NTRK2	Not detected
NTRK3	Not detected

Relevant Biomarkers

Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
NRAS p.(Q61R) c.182A>G NRAS proto-oncogene, GTPase	cabozantinib	binimetinib anti-CTLA-4 + anti-PD-1	17
Tier: IA		anti-PD-1	
Allele Frequency: 44.97%		cetuximab ^{1, 2}	

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 2 of 13

Indicated Contraindicated

Relevant Biomarkers (continued)

<u> </u>		
Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
	panitumumab 1	
	cetuximab + chemotherapy	2
	nanitumumah + chemothers	any 2

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variant Details

Genomic Alteration

DNA	Sequence Varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
NRAS	p.(Q61R)	c.182A>G	COSM584	chr1:115256529	44.97%	NM_002524.4	missense	1997
ALK	p.(D1529E)	c.4587C>G		chr2:29416366	99.75%	NM_004304.4	missense	1997
ALK	p.(I1461V)	c.4381A>G		chr2:29416572	99.80%	NM_004304.4	missense	1996
ALK	p.(=)	c.3375C>A		chr2:29445458	99.85%	NM_004304.4	synonymous	1995
FGFR3	p.(=)	c.1953G>A		chr4:1807894	99.78%	NM_000142.4	synonymous	459
PDGFRA	p.(=)	c.939T>G		chr4:55133726	49.50%	NM_006206.5	synonymous	1994
PDGFRA	p.(=)	c.1701A>G		chr4:55141055	99.70%	NM_006206.5	synonymous	1998
FGFR4	p.(P136L)	c.407C>T		chr5:176517797	99.13%	NM_213647.2	missense	1385
FGFR4	p.(=)	c.483A>G		chr5:176517985	13.69%	NM_213647.2	synonymous	716
EGFR	p.(V592I)	c.1774G>A		chr7:55233024	48.72%	NM_005228.4	missense	1999
MET	p.(N375S)	c.1124A>G		chr7:116340262	51.20%	NM_001127500.2	missense	2000
RET	p.(=)	c.2307G>T		chr10:43613843	51.81%	NM_020975.4	synonymous	1488

Biomarker Descriptions

NRAS (NRAS proto-oncogene, GTPase)

Background: The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes KRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{1,2,3}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. NRAS mutations are particularly common in melanomas (up to 25%) and are observed at frequencies of 5-10% in acute myeloid leukemia, colorectal, and thyroid cancers^{4,5}. The majority of NRAS mutations consist of point mutations at G12, G13, and Q61^{4,6}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{7,8}.

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 11 Jun 2020 3 of 13

Biomarker Descriptions (continued)

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab⁹ and panitumumab¹⁰, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁸. NRAS mutations are associated with poor prognosis in patients with low-risk myelodysplastic syndrome¹¹ as well as melanoma¹². In a phase III clinical trial in patients with advanced NRAS-mutant melanoma, binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively¹³.

Relevant Therapy Summary

	In this cancer type and other cancer types	Contraindicated	Both for u		No evidence
NRAS p.(Q61R) c.182A>G					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials
cetuximab	0	0	0	0	×
panitumumab	0	0	×	0	×
binimetinib	×	0	×	×	×
cetuximab + oxaliplatin	×	×	0	×	×
panitumumab + oxaliplatin	×	×	0	×	×
cabozantinib	×	×	×	•	(IV)
anti-CTLA-4 + anti-PD-1	×	×	×	0	×
anti-PD-1	×	×	×	0	×
cetuximab + chemotherapy	×	×	×	0	×
panitumumab + chemotherapy	×	×	×	0	×
atezolizumab, cobimetinib	×	×	×	×	(II)
trametinib	×	×	×	×	(II)
trametinib, radiation therapy	×	×	×	×	(II)
ulixertinib, selumetinib	×	×	×	×	(II)
ASTX029	×	×	×	×	(I/II)
avelumab, binimetinib, talazoparib	×	×	×	×	(/)
cobimetinib	×	×	×	×	(I/II)
mirdametinib, lifirafenib	×	×	×	×	(/)
navitoclax, trametinib	×	×	×	×	(I/II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 4 of 13

Relevant Therapy Summary (continued)

In this cancer type In other cancer type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

× No evidence

NRAS p.(Q61R) c.182A>G (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
neratinib, valproic acid	×	×	×	×	(1/11)
belvarafenib + cobimetinib	×	×	×	×	(I)
KO-947	×	×	×	×	(I)
LXH254	×	×	×	×	(I)
LY3214996, midazolam, abemaciclib, chemotherapy, encorafenib, cetuximab	×	×	×	×	(1)
RMC-4630	×	×	×	×	(l)
RO-5126766, everolimus + RO-5126766	×	×	×	×	(l)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 5 of 13

Relevant Therapy Details

Current FDA Information

In this cancer type	0

O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

FDA information is current as of 2020-02-28. For the most up-to-date information, search www.fda.gov.

NRAS p.(Q61R) c.182A>G

cetuximab

Label as of: 2019-04-23 Cancer type: Colorectal Cancer Variant class: NRAS Q61 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 11 Jun 2020 6 of 13

NRAS p.(Q61R) c.182A>G (continued)

pa

panitumumab

Cancer type: Colorectal Cancer Label as of: 2017-06-29 Variant class: NRAS Q61 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test for this use) metastatic colorectal cancer (mCRC):

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.
- Limitation of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC or for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 7 of 13

Current NCCN Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

NCCN information is current as of 2019-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

NRAS p.(Q61R) c.182A>G

O binimetinib

Cancer type: Melanoma Variant class: NRAS mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

Metastatic or Unresectable Cutaneous Melanoma; Progression or maximum clinical benefit from BRAF targeted therapy; Progression after prior immune checkpoint inhibitor therapy (Second-line or subsequent therapy) (Useful in certain circumstances)

Reference: NCCN Guidelines® - NCCN-Cutaneous Melanoma [Version 1.2020]

cetuximab

Cancer type: Colon Cancer Variant class: NRAS exon 3 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 1.2020]

cetuximab

Variant class: NRAS exon 3 mutation Cancer type: Rectal Cancer

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2020]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 8 of 13

NRAS p.(Q61R) c.182A>G (continued)

panitumumab

Cancer type: Colon Cancer Variant class: NRAS exon 3 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 1.2020]

panitumumab

Cancer type: Rectal Cancer Variant class: NRAS exon 3 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2020]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 9 of 13

Current EMA Information

In this cancer type and O Contraindicated other cancer types

Not recommended Resistance

EMA information is current as of 2020-02-28. For the most up-to-date information, search www.ema.europa.eu/ema.

NRAS p.(Q61R) c.182A>G

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2020-01-30 Variant class: NRAS exon 3 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2020-01-24 Variant class: NRAS exon 3 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 11 Jun 2020 10 of 13

Current ESMO Information

In this cancer type		In	this	cancer	type
---------------------	--	----	------	--------	------

O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

ESMO information is current as of 2019-11-01. For the most up-to-date information, search www.esmo.org.

NRAS p.(Q61R) c.182A>G

cabozantinib

Cancer type: Thyroid Gland Medullary Carcinoma Variant class: RAS mutation

ESMO Level of Evidence/Grade of Recommendation: II / C

Population segment (Line of therapy):

Metastatic Thyroid Gland Medullary Carcinoma (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Thyroid Cancer [Annals of Oncology (2019): mdz400, https:// doi.org/10.1093/annonc/mdz400]

O anti-CTLA-4 + anti-PD-1

Variant class: NRAS mutation Cancer type: Melanoma

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Cutaneous Melanoma; Unresectable stage III and IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Cutaneous Melanoma [Annals of Oncology (2019), mdz411, https:// doi.org/10.1093/annonc/mdz411]

O anti-PD-1

Cancer type: Melanoma Variant class: NRAS mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Cutaneous Melanoma; Unresectable stage III and IV (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Cutaneous Melanoma [Annals of Oncology (2019), mdz411, https:// doi.org/10.1093/annonc/mdz411]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 11 of 13

NRAS p.(Q61R) c.182A>G (continued)

cetuximab

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

■ "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

cetuximab + chemotherapy

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

panitumumab

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

■ "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 12 of 13

NRAS p.(Q61R) c.182A>G (continued)

panitumumab + chemotherapy

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Signatures	
Testing Personnel:	
Laboratory Supervisor:	
Pathologist:	

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 11 Jun 2020 13 of 13

References

- 1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Janku et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE. 2011;6(7):e22769. PMID: 21829508
- Ohashi et al. Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res. 2013 May 1;19(9):2584-91. PMID: 23515407
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- 9. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf
- 11. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 1.2020]
- 12. Johnson et al. Treatment of NRAS-Mutant Melanoma. Curr Treat Options Oncol. 2015 Apr;16(4):15. doi: 10.1007/s11864-015-0330-z. PMID: 25796376
- 13. Dummer et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017 Apr;18(4):435-445. PMID: 28284557