БДЗ по прикладной криптографии

Фирсов Георгий, М21-507

8 мая 2022 г.

Содержание

Задание	1	•	 •	•	•	•				•	•		•	•	 •		•					•	•			2
Задание	2	•	 							•						•						•			•	4
Задание	3	•	 							•						•						•			•	•
Задание	4	•	 									•								•						
Задание	5	•	 									•								•						
Задание	6	•						•																	•	4
Задание	7		 						•	•						•						•			•	ţ
Задание	8		 							•		•				•				•		•			•	ļ
Задание	9		 							•		•				•				•		•			•	ļ
Задание	10		 									•								•					•	(
Задание	11		 									•													•	7
Залание	12																									7

Задание 1

Анна генерирует два числа $x \stackrel{R}{\leftarrow} \mathbb{Z}_1, y \stackrel{R}{\leftarrow} \mathbb{Z}_q$, после чего отсылает Борису тройку $(A_0, A_1, A_2) = (g^x, g^y, g^{xy+a}).$

Борис генерирует свои два числа $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, $s \stackrel{R}{\leftarrow} \mathbb{Z}_q$, а затем отправляет Анне следующую пару: $(B_1, B_2) = (A_1^r \cdot g^s, (A_2/g^b)^r \cdot A_0^s)$. Заметим, что:

$$B_1 = A_1^r \cdot g^s = g^y \cdot g^s = g^{y+s}$$

$$B_2 = (A_2/g^b)^r \cdot A_0^s = g^{xy+a} \cdot g^{-b} \cdot g^{xs} = g^{x(y+s)+a-b}$$

Если B_1 возвести в степень x и затем умножить на обратный к полученному элемент число B_2 , то получится g^{a-b} :

$$B_1^x = (g^{y+s})^x = g^{x(y+s)}$$

$$B_2 \cdot (B_1^{-x}) = g^{x(y+s)+a-b} \cdot g^{-x(y+s)} = g^{a-b}$$

Если a=b, то $g^{a-b}=g^0=e_{\mathbb{G}}.$ Это свойство и можно использовать для проверки равенства чисел a и b.

Ответ: в) Анна проверяет равенство $B_2/B_1^x = 1$.

Задание 2

Так как числа p, a, b общеизвестны, то считаю, что при разработке программы все возможные вычисления с данными параметрами выполняются заранее (то есть, собственно, на этапе разработки программы). Несложно увидеть, что:

$$H^{(n)}(x) = \underbrace{H_{p,a,b}(H_{p,a,b}(\cdots H_{p,a,b}(x)\cdots))}_{\text{n pa3}} = \underbrace{a(a(\cdots ax + b \cdots) + b) + b}_{\text{n pa3}} = \underbrace{a^n x + b \sum_{j=0}^{n-1} a^j \mod p}$$

Обозначим:

$$a' := a^n \mod p$$

$$b' := b \sum_{j=0}^{n-1} a^j \mod p$$

Тогда:

$$H^{(n)}(x) = a'x + b' \mod p$$

Значения a' и b' возможно вычислить предварительно на этапе разработки программы, что позволит вычислять функцию $H^{(n)}$ так же быстро, как и $H_{p,a,b}$.

Но может случиться так, что числа p, a, b заранее не известны (например, меняются с течением времени). Таким образом, возникает потребность поддержки вычисления a', b' на лету. В таком случае заметим, что:

$$\sum_{j=0}^{n-1} a^j = (a^{n-1} - 1) \cdot (a-1)^{-1} \mod p$$

При больших n возведение в степень n-1 потребует примерно столько же операций, сколько и возведение в степень n. Заметим, что возведение в степень можно производить, пользуясь следующей идеей: $a^4 = a^2 \cdot a^2, a^8 = a^4 \cdot a^4$ и т.д. Данный алгоритм требует асимптотически $\log_2(n)$ умножений.

Ответ: а) $H^{(n)}$ может быть вычислена так же быстро, как $H_{p,a,b}$ (в случае известных заранее значений p,a,b); г) вычисление $H^{(n)}$ требует времени $O(\log n)$ (в случае неизвестных заранее значений p,a,b).

Задание 3

Рассмотрим по очереди все варианты, отобрав подходящие:

- $p_1=(k_1,k_2), p_2=(k_1'), p_3=(k_2')$: владельцы долей p_2,p_3 не смогут вдвоем восстановить ключ, так как $k_1'\oplus k_2'=???$.
- $p_1 = (k_1, k_2), p_2 = (k_2, k_2'), p_3 = (k_2')$: владелец p_2 может один восстановить ключ, так как $k = k_2 \oplus k_2'$.
- $p_1 = (k_1, k_2), p_2 = (k_1, k_2), p_3 = (k_2')$: владельцы p_1, p_2 не смогут восстановить вдвоем ключ, так как никакая комбинация k_1, k_2 в сумме не даст k.
- $p_1 = (k_1, k_2), p_2 = (k_1', k_2'), p_3 = (k_2')$: владельцы p_2, p_3 не смогут восстановить вдвоем ключ, так как никакая комбинация k_1', k_2' в сумме не даст k.
- $p_1=(k_1,k_2), p_2=(k_2'), p_3=(k_1',k_2)$: данный вариант подходит, так как:
 - $p_1, p_2: k_2 \oplus k_2' = k$
 - $p_1, p_3: k_1 \oplus k'_1 = k$
 - $-p_2, p_3: k_2' \oplus k_2 = k$

При этом восстановление ключа ни одним участником единолично невозможно, так как ни один из них не обладает двумя частями с одинаковыми индексами.

Ответ: д) $p_1 = (k_1, k_2), p_2 = (k'_2), p_3 = (k'_1, k_2)$

Задание 4 Задание 5

- 1. Так как каждому участнику $B_i, i \in \{1, ..., n\}$ известен ключ k, то, например, B_2 может создать некоторое сообщение и рассчитать имитовставку для него с использованием этого ключа. В таком случае участник B_1 , получив сообщение, не может удостовериться, что оно создано участником A, а не B_2 .
- 2. При условии, что участники $B_i, i \in \{1, ..., n\}$ не вступают друг с другом в сговор, атака из п. 1 становится неприменимой, если:

$$\forall i, j \in \{1, ..., n\} : i \neq j \implies S_i \setminus S_j \neq \emptyset \tag{1}$$

Данное условие позволяет каждому участнику B_i иметь хотя бы один такой ключ k_m , которого нет у некоторого другого участника B_j , $j \neq i$. Такой ключ найдется у каждого B_i для каждого B_j . Таким образом, вероятность того, что подделанная имитовставка для данного ключа окажется верной, является пренебрежимо малой при условии, что метод расчета имитовставки является стойким.

В то же время участник A имеет все ключи и может рассчитать все имитовставки корректно.

Таблица 1: Состав подмножеств $S_i, j \in \{1, ..., 10\}$

ица 1. Состав под	γ1.11103				ι,,
Подмножество	k_1	k_2	k_3	k_4	k_5
S_1	+	+	+		-
S_2	+	+	-	+	-
S_3	+	+	-		+
S_4	+	_	+	+	_
S_5	+	_	_	+	+
S_6	+	_	+	_	+
S_7	_	+	+	+	_
S_8	_	+	+	_	+
S_9	_	+	_	+	+
S_{10}	_	_	+	+	+

3. В таблице 1 с помощью знака + обозначено вхождение ключа $k_j, j \in \{1, ..., 5\}$ в подможество $S_i, i \in \{1, ..., 10\}$, а знак - обозначает отсутствие ключа в подможестве.

Несложно заметить, что любые попарные разности являются непустыми, так как все подмножества имеют одинаковую мощность, равную трем, и попарно различны. Таким образом, условие (1) выполнено, что обозначает неприменимость атаки из п. 1 к данной системе (см. п. 2).

4. Пусть в сговор вступают, например, B_1 и B_9 . Заметим, что эти два участника вместе имеют в наличии все ключи $k_1, ..., k_5$. Если они обменяются недостающими ключами, то каждый из них может в таком случае рассчитать имитовставку для произвольного сообщения на каждом ключе и тем самым какой-либо другой участник не может быть уверен в том, что сообщение пришло от A, а не от B_1 или B_9 .

Задание 6

Анне и Борису известны следующий величины:

- *v*
- $\bullet \ u = g^{\alpha} v^{-i}$
- Набор $u_j = uv^j = g^{\alpha}v^{j-i}, j \in \{1,...,n\}$

Только Борису известны α и индекс i. Заметим, что для j=i: $u_i=g^{\alpha}$. Анна пересылает Борису следующие значения:

$$(a_j, b_j) = (g^{k_j}, m_j u_j^{k_j}), k_j \stackrel{R}{\leftarrow} \{1, 2, ..., q - 1\}$$

1. Восстановление сообщения m_i из полученных данных. Борис может расшифровать значение m_i (так как α – закрытый ключ криптосистемы Эль-Гамаля, соответствующий открытому ключу u_i):

$$b_i a_i^{-\alpha} = m_i g^{\alpha k_i} g^{-k_i \alpha} = m_i$$

2. Невозможность получения индекса і Анной. Попробовать получить значение і Анна может из значений $u = g^{\alpha}v^{-i}$ и $u_j = g^{\alpha}v^{j-i}$. Так как $v \in \mathbb{G}$, то $v = g^k$ для некоторого k. $u = g^{\alpha - ki}, u_j = g^{\alpha + k(j-i)}$.

Заметим, что Анне неизвестны значения α, g^{α} . Отличить $u_i = g^{\alpha}$ (даже если бы он был известен) от какого-то иного элемента группы вычислительно сложно, то есть перебирая j невозможно понять, когда u_i сравняется с g^{α} (то есть при j = i).

Получить же i из значения u также вычислительно трудно, так как это предполагает нахождение дискретного логарифма (по $u=g^{\alpha-ki}$ найти $\alpha-ki$ трудно).

Задание 7

Задание 8

Задание 9

Так как ord $\mathbb{G} = q$ — простое число, то все элементы группы, не равные $e_{\mathbb{G}}$, являются образующими. Это значит, что взяв случайный неединичный элемент группы, гарантированно можно получить образующий.

1. Общеизвестными параметрами схемы мультикоммитмента являются: простое число q, группа \mathbb{G} порядка q, а также случайные $(h, g_1, ..., g_n)$, для которых выполнено:

$$h \in \mathbb{G}, h \neq e_{\mathbb{G}}$$

 $\forall i \in \{1, ..., n\} : g_i \in \mathbb{G}, g_i \neq e_{\mathbb{G}}$
 $\forall i, j \in \{1, ..., n\} : g_i \neq h; i \neq j \implies g_i \neq g_j$

Пусть $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Функция $Commit_n$ выглядит следующим образом:

$$Commit_n(\mathbf{m}, r) = h^r \prod_{j=1}^n g_j^{m_j}, \mathbf{m} = (m_1, ..., m_n)$$
(2)

Несложно показать свойство гомоморфизма:

$$Commit_{n}(\mathbf{m} + \mathbf{m}', r + r') = h^{r+r'} \prod_{j=1}^{n} g_{j}^{m_{j}+m'_{j}} = h^{r}h^{r'} \left(\prod_{j=1}^{n} g_{j}^{m_{j}}\right) \left(\prod_{j=1}^{n} g_{j}^{m'_{j}}\right) =$$

$$= \left(h^{r} \prod_{j=1}^{n} g_{j}^{m_{j}}\right) \left(h^{r'} \prod_{j=1}^{n} g_{j}^{m'_{j}}\right) = Commit_{n}(\mathbf{m}, r) + Commit_{n}(\mathbf{m}', r')$$

2. Покажем, что схема, описанная в п. 1 обеспечивает совершенное сокрытие. Для этого следует показать, что для любых векторов $\mathbf{m} = (m_1, ..., m_n)$ и $\mathbf{m}' = (m'_1, ..., m'_n)$ равны распределения следующих случайных величин:

$$C = Commit_n(\mathbf{m}, r), r \stackrel{R}{\leftarrow} \mathbb{Z}_q$$
$$C' = Commit_n(\mathbf{m}', r'), r' \stackrel{R}{\leftarrow} \mathbb{Z}_q$$

где $Commit_n$ определена согласно (2).

Обозначим через $\alpha_i, i \in \{1, ..., n\}$ такие числа, что $g_i^{\alpha_i} = h$ (такое число всегда найдется, так как g_i – образующий элеемент группы \mathbb{G}). Положим также:

$$\alpha = \sum_{j=1}^{n} \alpha_j m_j, \ \alpha' = \sum_{j=1}^{n} \alpha_j m'_j$$

Пусть $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, тогда $c = Commit_n(\mathbf{m}, r) = h^{r+\alpha}$ и $c' = Commit_n(\mathbf{m}', r) = h^{r+\alpha'}$ (c – розыгрыш случайной величины C, c' – величины C').

Из вычислительной сложности задачи дискретного логарифмирования следует, что c и c' отличить друг от друга так же вычислительно сложно, из чего, в свою очередь, следует равенство распределений случайных величин C и C'.

3. В п. 1 утверждалось, что $h, g_i, i \in \{1, ..., n\}$ – случайные неединичные элементы группы \mathbb{G} . Также в примечании перед п. 1 утверждается, что любой неединичный элемент из \mathbb{G} является образующим. Упомянутые элементы группа можно получить следующим образом:

$$h = H(i_1) g_j = H(i_{j+1}), j \in \{1, ..., n\}$$
(3)

где $H: \mathbb{Z}_q \to \mathbb{G}$ — случайный оракул, а последовательность $\{i_j\}_{j=1}^{n+1}$ составляется следующим образом:

$$i_1 = k_0$$

$$i_{j+1} = i_j + k_j$$

где k_0 – минимальное положительное число, при котором $H(k_0) \neq e_{\mathbb{G}}, k_j$ – минимальное положительное число, при котором $H(i_j + k_j) \neq e_{\mathbb{G}}$.

Таким образом, элементы, сгенерированные по формулам в (3) являются случайными образующими элементами группы \mathbb{G} , вероятность совпадений среди которых мала. Т.е. они удовлетворяют требованиям из п. 1.

Свойство сокрытия показано в п. 2. Свойство связывания следует из вычислительной сложности задачи логарифмирования: из этого следует отсутствие эффективного алгоритма для генерации таких $r, r', \mathbf{m}, \mathbf{m}'$, что $Commit_n(\mathbf{m}, r) = Commit_n(\mathbf{m}', r')$.

Задание 10

- 1. $Heкoppeкmнoe\ xэширование$. Так как требуется подделка подписи для любого сообщения, то рассматривается модель стойкости UUF-CMA (Universal Unforgeability under Chosen Message Attack). Рассмотрим противника \mathcal{A} , действующего по следующему сценарию:
 - \mathcal{A} генерирует некоторое сообщение $m \in \mathcal{M}$ (любое).
 - A вычисляет хэш сообщения: c = H(m).
 - A вычисляется значение $R = h^{-c}$ (h = pk), значение z полагается равным 0.
 - Подпись $\sigma = (R, z) = (pk^{-H(m)}, 0)$ отправляется оракулу проверки подписи.

Заметим, что проверка этой подписи выполнится всегда:

$$c \leftarrow H(m)$$

$$g^{z} = e_{\mathbb{G}}$$

$$R \cdot h^{c} = h^{-H(m)} \cdot h^{H(m)} = h^{0} = e_{\mathbb{G}}$$

$$\Rightarrow V(pk, m, \sigma) = \text{accept}$$

Таким образом:

$$\mathbf{Adv}^{\mathrm{UUF\text{-}CMA}}_{\mathrm{SS}}(\mathcal{A}) = \Pr[V(pk, m, \sigma) = \mathrm{accept}] = 1$$

2. Некорректная генерация случайных чисел. Обозначим $c_i = H(m_i, R_i), i \in \{0, 1\}$ и, зная, что $\rho_1 = a\rho_0 + b$, запишем:

$$\begin{cases} z_0 = \rho_0 + c_0 \alpha \\ z_1 = a\rho_0 + b + c_1 \alpha \end{cases}$$

$$\begin{cases} az_0 = a\rho_0 + ac_0\alpha \\ z_1 = a\rho_0 + b + c_1\alpha \end{cases}$$

Тогда:

$$z_1 - az_0 = b + \alpha(c_1 - ac_0)$$

$$\alpha = (z_1 - az_0 - b)(c_1 - ac_0)^{-1}$$

В общем-то $(c_1 - ac_0)$ – некоторый случайный элемент из \mathbb{Z}_q , а так как q – простое число, то для обратимости элемента требуется только то, чтобы он был ненулевым. Вероятность того, что элемент $(c_1 - ac_0)$ обратим, равна:

$$\Pr\left[\begin{array}{c}$$
 Элемент (c_1-ac_0) обратим в кольце \mathbb{Z}_q $\right]=1-\frac{1}{|\mathbb{Z}_q|}=\frac{q-1}{q}\xrightarrow[q\to\infty]{}1$

3. Атака по взаимосвязанным ключам. Пусть $pk_i = h \cdot g^i = g^{\alpha} \cdot g^i = g^{\alpha+i}$, тогда через обозначим $sk_i = \alpha_i = \alpha + i$ (согласно нотации криптосистемы). Введем также обозначение $\Delta \alpha_{ij} := j - i$.

Пусть для некоторого сообщения m имеется некоторая подпись $\sigma_i = (R_i, z_i)$, где $z_i = \rho_i + c_i \alpha_i$, $c_i = H(m, R_i)$. Противник генерирует следующую подпись: $\sigma_j = (R_i, z_j)$, где $z_j = \rho_i + c_i \alpha_i + c_i \Delta \alpha_{ij} = \rho_i + c_i \alpha_j$.

Эта подпись является валидной для того же сообщения и успешно проверяется на ключе pk_i :

$$\begin{cases}
c = H(m, R_i) \\
g^{z_j} = g^{\rho_i + c_i \alpha_j} = g^{\rho_i + c_i (\alpha + j)} \\
R_i \cdot pk_j^c = g^{\rho_i} \cdot g^{c(\alpha + j)} = g^{\rho_i + c(\alpha + j)}
\end{cases}
\implies V(pk_j, m, \sigma_j) = \text{accept}$$

Задание 11 Задание 12