
1) Os lados de um triângulo são 3, 4 e 6. O cosseno do maior ângulo interno desse triângulo vale:

a) 11/24 b) - 11/24 c) 3/8 d)

d) - 3/8 e) - 3/10

Alternativa B

2) Em um paralelogramo ABCD, os lados \overline{AB} e \overline{AD} medem, respectivamente, $x\sqrt{2}$ cm e x cm, e θ é o ângulo agudo formado por esses lados. Se a diagonal maior mede 2x cm, então o ângulo θ é tal que

a) $\cos \theta = \frac{\sqrt{14}}{4}$ b) $\sin \theta = -\frac{\sqrt{2}}{4}$ c) $\cos \theta = \frac{\sqrt{3}}{2}$ d) $\sin \theta = \frac{1}{2}$ e) $\tan \theta = \sqrt{2}$

Alternativa B

3) Num paralelogramo, cada ângulo agudo mede 30° e os lados que formam cada um desses ângulos medem $3\sqrt{3}$ cm e 5 cm. Calcule a medida da menor das diagonais desse paralelogramo.

a) $\sqrt{6}$ cm b) $\sqrt{3}$ cm c) $3\sqrt{3}$ cm d) $\sqrt{7}$ cm e) $15\sqrt{3}$ cm Alternativa D

4) Na figura abaixo, o triângulo ABC é um triângulo equilátero de 3 cm de lado, e o triângulo retângulo BCD tem lados BD = 4 cm e CD = 5 cm e CBD = 90°.

Qual a medida do segmento AD?

a) $\sqrt{3}$ b) $4\sqrt{3}$ c) $\sqrt{100 + \sqrt{3}}$ d) $\sqrt{25 + 12\sqrt{3}}$ e) $2\sqrt{3}$

Alternativa D

5) A peímetro do triângulo a seguir é:

Alternativa A

6) Uma ponte deve ser construída sobre um rio, unindo os pontos A e B, como ilustrado na figura a seguir. Para calcular o comprimento AB, escolhe-se um ponto C, na mesma margem em que B está, e medem-se os ângulos $C\widehat{B}A = 57^{\circ}$ e $A\widehat{C}B = 59^{\circ}$. Sabendo que \overline{BC} mede 30m, indique, em metros, a distância \overline{AB} . (Dado: use as aproximações sen $(59^\circ) \approx 0.87$ e sen $(64^\circ) \approx$ 0.90)

Resp: 29metros.

7)(Fuvest) No quadrilátero a seguir, BC = CD = 3 cm, AB = 2 cm, $\widehat{ADC} = 60^{\circ}$ e $\widehat{ABC} = 90^{\circ}$.

A medida, em cm, do perímetro do quadrilátero é:

- a) 11
- b) 12
- c) 13
- d) 14
- e) 15

Alternativa B

8) Se em um triângulo ABC o lado \overline{AB} mede 3 cm, o lado \overline{BC} mede 4 cm e o ângulo interno formado entre os lados \overline{AB} e \overline{BC} mede 60°, então o lado \overline{AC} mede:

- a) $\sqrt{37}$ cm
- b) $\sqrt{13}$ cm c) 2 cm d) 33 cm e) 22 cm

Alternativa B

9)(Fuvest) Na figura abaixo, tem-se \overline{AC} = 3, \overline{AB} = 4 e \overline{CB} = 6.

O valor de \overline{CD} é:

Dica!(Ache, pela lei dos cossenos, o cosseno do ângulo \widehat{ACB} , no triângulo ABC).

a) 17/12

b) 19/12

c) 23/12

d) 25/12

e) 29/12

Alternativa E

10)(Unesp) Dois terrenos, T2 e T2, têm frentes para a rua R e fundos para a rua S, como mostra a figura. O lado BC do terreno T1 mede 30 m e é paralelo ao lado DE do terreno T2. A frente AC do terreno T1 mede 50 m e o fundo BD do terreno T2, mede 35 m. Ao lado do terreno T2, há um outro terreno, T3, com frente para a rua Z, na forma de um setor circular de centro E e raio ED.

Determine:

- a) as medidas do fundo AB do terreno T1 e da frente CE do terreno T2.
- b) a medida do lado DE do terreno T, e o perímetro do terreno T3.

Resp: a) AB = 70 m; CE = 25 m

b) DE = 45 m e 2P = 15.
$$(6 + \pi)$$
 m.

11)(Fuvest) Em uma semi-circunferência de centro C e raio R, inscreve-se um triângulo equilátero ABC. Seja D o ponto onde a bissetriz do ângulo ACB intercepta a semicircunferência. O comprimento da corda AD é:

b) $R\sqrt{(\sqrt{3})} - (\sqrt{2})$

d) $R\sqrt{(\sqrt{3})} - 1$

Alternativa A

12) Um dos ângulos internos de um paralelogramo de lados 4 m e 6 m mede 120°. A maior diagonal desse paralelogramo mede, em metros:

a) $2\sqrt{17}$

b) $2\sqrt{19}$ c) $2\sqrt{21}$ d) $2\sqrt{23}$ e) 3

Alternativa B

13) Para calcular a distância entre duas árvores situadas nas margens opostas de um rio, nos pontos A e B, um observador que se encontra junto a A afasta-se 20m da margem, na direção da reta AB, até o ponto C e depois caminha em linha reta até o ponto D, a 40m de C, do qual ainda pode ver as árvores.

Tendo verificado que os ângulos DCB e BDC medem, respectivamente, cerca de 15° e 120°, que valor ele encontrou para a distância entre as árvores, se usou a aproximação $\sqrt{6}$ = 2.4?

Resp: A distância entre as duas árvores é de 28 metros.

14) (Fuvest)

páginas de um livro medem 1dm de base e $\sqrt{(1 + \sqrt{3})}$ dm de altura. Se este livro foi parcialmente aberto, de tal forma que o ângulo entre duas páginas seja 60°, a medida do ângulo α, formado pelas diagonais das páginas, será:

a) 15[°]

b) 30°

c) 45°

d) 60°

e) 75°

Alternativa B

Bom Trabalho!

Dúvidas: rodrigo_serra@bol.com.br

"Grandes realizações não feitas por impulso, mas por uma soma de pequenas realizações" (Van Gogh)