

电动力绳系推进系统降轨销毁空间碎片研究

电动力绳系推进技术

汪卫

wweibit@163.com

电动力绳系推进系统简介

导电绳放置在近地轨道运行时, 绳子切割地球磁场线,产生感应 电动势,绳系一端发射电子,一 端收集电子,形成闭合回路产生 电流,与地球磁场发生作用时, 产生洛伦兹力,该力可用来脱轨 空间碎片或提升航天器轨道。

- 发电机模式:势能转换为电 能,可用于降轨
- 发动机模式:电能转换为势能,可用于升轨

Figure: EDT 系统的原理示意图

目录

- 1 研究背景
- 2 电动力绳系推进技术
- 3 EDT 技术可行性分析
- 4 电动力绳降轨模型
- 5 化学火箭发动机推进系统的降轨计算
- 6 电动力绳系降轨性能分析
- 7 结论

- 1 研究背景
 - 空间碎片现状
 - 空间碎片的危害
 - 电动力绳系的应用前景

- 6 电动力绳系降轨性能分析

1957 年至今, 已有 20 多个国 家和国际组织先后进行了 4800 多次航天发射与飞行, 送入空 间的物体超过 6000 个, 其中仍 有大约三分之一遗留在空间沿 轨道飞行,其他的因丧失功能 而变成了空间垃圾。同时,已 发生过 240 余次在轨航天器或 火箭载体爆炸/撞击(破碎) 事件,产生了数量众多的空间 垃圾。

危!

在近地轨道,若其数量达到饱和 状态,则意味着碎片与卫星相碰 概率增大,甚至有可能由于碰撞 而发生连锁反应,使得轨道资源 成为废墟

- 运载火箭轨道级和航天器运行过程中有意分离的碎片
- 碰撞和连锁碰撞产生的碎片

电动力绳系清除太空垃圾具有可行性,且重要一点成本较低,具体应用:

- 在未来的卫星平台或火箭第三级加装一种小型的 EDT 系统,在卫星寿命结束或第三级脱落后,加速报废卫星进入销毁轨道,从而控制未来在轨垃圾的数量
- 发展电绳系推进技术与非合作目标捕获技术相结合的卫星平台,它通过捕获在轨垃圾、碎片后,通过电绳系推进变轨,将碎片"搬运"至地球销毁轨道,然后再通过电绳系推进该卫星平台又升轨回到原先轨道,再执行下一次的捕获销毁任务

- 1 研究背景
- 2 电动力绳系推进技术
 - EDT 系统架构
 - 各组件简介
- 3 EDT 技术可行性分析
- 4 电动力绳降轨模型
- 5 化学火箭发动机推进系统的降轨计算
- 6 电动力绳系降轨性能分析
- 7 结论

电动力绳降轨系统组成

- 电子收集装置
- 电子释放装置
- 导电系绳

EDT 系统硬件架构

主要模块

- 储线模块
- ■制动控制模块
- 接触器模块

球形结构

- 吸收电子效率低;
- 系统质量大

裸线绳结构

- 收集电子效率高;
- 系统总质量小;
- Sanmartin 提出把导电绳裸 露部分自身作为阳极收集电 子。

三大结构

- 热极电子枪 (TC);
- 场发射阵列 (FEAs);
- 空心阴极等离子体接触器 (HCPC)

导电绳子电动力绳系的核心部件,空间电动力绳系因生存环境复杂需要对绳系的强度、抗干扰能力等有较高的要求,因此学者们提出了多种系绳的结构。

目录

- 3 EDT 技术可行性分析
 - EDT 在轨实验验证
 - 国外 EDT 项目

国外在轨实验

研究机构	发射日期	项目名称	绳子长度	主要研究	成功与否	备注
NASA	1966	Gemini 11	0.036	人造重力	是	旋转保持 0.15rpm
NASA	1966	Gemini 12	0.44	重力梯度稳定	是	人工手动控制
NASA/ISAS	1985	Charge-2	0.426	电子的收集与发射	是	
NASA/ISAS	1992	CHARGE - 2B	0.4	电子的收集与发射	是	
CSA	1989	Oedipus-A	0.959	等离子体研究	是	
CSA	1995	Oedipus-C	1.174	等离子体研究		
NASA/ISAS		TSS-1	0.26	电动力及电流产生	否	绳子被卡住
NASA/ISAS	1996	TSS-1R	19.6	力及电流产生	大部分是约	黾子后来被碎片隔断
NASA	1993	PMG	0.5	电流和推力特性	是	7 个小时的飞行
NASA	1993	SEDS-1	20	绳系选择,切断控制	是	绳子后被切断
NASA	1994	SEDS-2	19.7	绳系的控制、伸展	是	
NRL	1996	TiPS	4	绳系的生存能力及稳定性	ŧ 是	
NASA	2005	ProSEDS	19	电动力对废弃卫星降轨	任务取消	空间站安全取消
ESA	1997	YES	35	旋转、再轨	否	轨道选择不当
ESA	2007	YES2	31.7	航天器的精确再轨	大部分是	过度绳系展开
NRO	1998	ATeX	0.02 of 6.2	2 稳定性和存活率	否	S/W 阻止展开
TUI/IDC	2007	MAST	1	动力学数据采集	否	没有展开
JAXA	2010	T-REX	0.3	带绳展开、HCPC 及 OML		亚轨道运行成功
JAXA	2017	HTV6	0.7	空间碎片离轨	失败	释放机构出错

国外重点实验介绍

国内目前并没有开展关于空间电动力绳系的在轨实验。

- 主要集中在动力学和模拟仿真阶段;
- 南京航空航天大学利用气浮平台实验;
- 北京理工大学进行核心部件空心阴极等离子体接触器的地面 试验,研究实际空心阴极的实际放电特性,研制模型样机, 搭建总体释放实验平台。

- 在轨道实验验证了绳系中电流、洛伦兹力的产生的可行性;
- 应用具有可靠性 (Tips 实验, 在轨服役 10 年), 基本原理和实验上的可行性;
- 几次重大的失败的在轨试验是由于机械结构设计上存在缺陷,而不是基本理论的错误;
- 目前尚未有降轨销毁碎片的成功案例,日本的 HIV6 实验由于释放机构设计缺陷而失败。

▶ 在轨实验统计表

- 2 电动力绳系推讲技术
- 3 EDT 技术可行性分析
- 4 电动力绳降轨模型
- 6 电动力绳系降轨性能分析

在仿真中,EDT 系统假设为二力杆刚体绕地球运动,计算变轨过程使用了相对二体运动轨道计算原理:

$$\ddot{\boldsymbol{r}} = -\frac{\mu}{r^3}\boldsymbol{r} + \frac{\mathbf{F}}{m_2}$$

式中, \ddot{r} 为系统在地心惯性坐标系中的加速度矢量,r 为卫星到地心的距离, μ 为地球引力常数,F 表示作用在系统上的摄动力,这里仅考虑洛伦兹力和大气阻力。

裸线绳系收集的理论很多,其中目前公认较好的描述该现象的理论是轨道限制理论(简称 OML 理论)。可由 OML 理论推导出电动力绳系上绳长为 l 的电流变化率:

$$\frac{dI}{dl} = \begin{cases} \frac{eN_e p}{\pi} \sqrt{\frac{2e\Delta V}{m_e}} & V_t - V_p > 0\\ -\frac{eN_i p}{\pi} \sqrt{\frac{-2e\Delta V}{m_i}} & V_t - V_p < 0\\ 0 &$$
其他

式中 , e 为电子电荷 , N_e 为电子密度 , l 为系绳的周长 , V_t 为系绳上的电势 , V_p 为空间等离子体电势 , m_e 为电子的质量。

电子收集模型

系绳上的电势沿一段长度 的绳子变化可由式给出:

$$\frac{\mathrm{d}V_t}{\mathrm{d}y} = \frac{I}{\sigma S}$$
$$\frac{\mathrm{d}V_p}{\mathrm{d}y} + E_m = 0$$
$$\frac{\mathrm{d}\Delta V}{\mathrm{d}y} = \frac{\mathrm{d}V_t}{\mathrm{d}y} - \frac{\mathrm{d}V_p}{\mathrm{d}y}$$

 σ 绳子材料的导电率 , S 为绳子的截面面积。 E_m 为绳子的感应电场强度。

为了求解式中方程组,可由边界条件:

$$\begin{cases} V_t |_{y=0} = V_A \\ I |_{y=0} = 0 \\ V_p |_{y=0} = 0 \end{cases}$$

$$\begin{cases} V_t \mid_{l=l} = V_p \mid_{l=l} - V_c \\ V_p \mid_{l=l} = E_m l \\ I \mid_{l=l} = I_c \end{cases}$$

式中 , V_A 为绳子 AC 的 A 端电势 , V_C 为绳子 AC 的 C 端电势 , 即等效于电离子接触器发射端的电势 I_C 为发射电流。

HCPC 阴极电流-电压曲线

 V_C 为绳子 AC 的 C 端电势 , 该边界条件可由实际的 HCPC 实验测得 I-V 曲线 :

■ 电动力绳系在地磁场中运动时,产生感应出电动势

$$\boldsymbol{E}_m = \boldsymbol{V}_r \times \boldsymbol{B}$$

■ 绳索与周围电离层相互耦合产生电流:

$$I = \frac{E}{R}$$

■ 导电绳在电磁场中运动,产生洛仑兹力:

$$m{F} = \int_0^l m{I} dl imes m{B}$$

估算:同步轨道上, v=7.5km/s, $B=20\mu$ T, 产生 E=15V/m, 电流 I = 10 - 20A. 洛伦兹力 F = 0.5 - 1N

- 1 研究背景
- 2 电动力绳系推讲技术
- 3 EDT 技术可行性分析
- 4 电动力绳降轨模型
- 5 化学火箭发动机推进系统的降轨计算
- 6 电动力绳系降轨性能分析

采用传统的固体火箭发动机推进计算方法,参照轨道动力学二体运动模型,采用理想霍曼转移轨道降轨

$$\Delta v_1 = \sqrt{\frac{\mu}{r_2}} \left(\sqrt{\frac{2r_1}{r_1 + r_2}} - 1 \right)$$
$$\Delta v_2 = \sqrt{\frac{\mu}{r_1}} \left(1 - \sqrt{\frac{2r_1}{r_1 + r_2}} \right)$$

■ 由开普勒第三定律可得变轨时间:

$$\Delta t = \frac{1}{2} \sqrt{\frac{4\pi^2 a_H^3}{\mu}} = \pi \sqrt{\frac{(r_1 + r_2)^3}{g\mu}}$$

■ 化学推进系统的推进剂的质量:

$$M_p = \frac{(\Delta v_1 + \Delta v_2)m}{I_{sp}}$$

- 1 研究背景
- 2 电动力绳系推进技术
- 3 EDT 技术可行性分析
- 4 电动力绳降轨模型
- 5 化学火箭发动机推进系统的降轨计算
- 6 电动力绳系降轨性能分析
 - 仿真条件设定
 - 降轨空间碎片参数设定
 - 性能分析
 - 与化学推进剂降轨的比较

参数设定

- 轨道参数:0° 倾角,高度 850km – 150km;
- 导电绳参数:铝质绳长度 5km, 直径 1mm;
- 地球环境模型: IRI(2007) 模型、IGRI2012, 低于 300km 的大气阻力模型
- 系统质量:碎片质量 1000kg , EDT 系统质量约 114kg

- 降轨消耗 527 小时, 且在高度低于 300 公 里处的降轨速度明显 加快
- 在系统降轨过程中, 系统出现振动,这和 系统所受到的阻力是 变化的有关。

推力的变化主要和地球磁场环境变化和等离子体密度相关。在磁 场强度高和电子密度密集区,相应的推力越大。

将其沿着惯性坐标系分解,容易知道 F_y 方向上的分解为 0,从图示可以看出,在 F_x , F_y 方向上力对称振荡,随着轨道高度的减小,效应更明显。

案例计算轨道倾角分别为 0°,30°,60° 的降轨,为了 节省计算机运行时间,变轨高度 600-200km 的变化,从图中可以看出低倾角的电动力绳降轨效果明显的多。

不同轨道倾角条件下的系统洛伦兹力

可以产生 N 级别的洛伦兹力,且随着轨道倾角的降低而增大。同时与地球磁场和等离子成密度的变化有些正相关。

在计算化学火箭发动机性能参数时,对于化学火箭发动机,推进剂质量与发动机质量比一般限制在 0.5 与 0.7 之间,同时一般姿轨控火箭发动机的比冲范围为 250s - 300s。选取比冲为 270s,并进行三组算例进行计算。

- 第一组算例轨道及系统参数:轨道高度 850km-150km;
- 第二组算例轨道及系统参数: 轨道高度 700km-200km;
- 第三组算例轨道及系统参数:轨道高度 700km-400km;

第一	-组算例

比较项目	变轨时间(h)	推进剂质量 (kg)	系统质量 (kg)	有效比冲(s)				
电动力绳系统	527	0.013	113.8	27047				
化学推进系统	0.79	159.8	267	270				
第二组算例								
比较项目	变轨时间(h)	推进剂质量 (kg)	系统质量 (kg)	有效比冲(s)				
电动力绳系统	375	0.013	113.8	29057				
化学推进系统	0.78	104.5	174	270				
第三组算例								
比较项目	变轨时间(h)	推进剂质量 (kg)	系统质量 (kg)	有效比冲 (s)				
电动力绳系统	276	0.013	113.8	30067				
化学推进系统	0.80	91.6	151	270				

- 化学推进降轨最显著特点所需时间少,电动力绳系降轨时间相对较长,对比于自然销毁,时间短;
- 电动力绳系的最大优点是所需推进剂量少,同样的任务,化学推进系统推进剂的质量是电动力绳系的 1000 多倍。随着降轨范围的增大,化学火箭发动机所需要的推进剂质量成倍增加,而电动绳系的所需要的推进剂(推进剂为氙气)几乎不变,推进系统的总质量随着轨道高度差的增大,系统的总质量显著增加,而电动力绳系的质量变化很小;
- 在化学推进取最佳有效比冲情况下,电动力绳的推进系统的 有效比冲是化学推进的有效比冲的 100 多倍,也说明电动 力绳系适合消耗工质少的情况下的长时间持续推进下降的场景

- 2 电动力绳系推讲技术
- 3 EDT 技术可行性分析
- 4 电动力绳降轨模型

- 7 结论

- 适合 LEO (1500km) 近地轨道,推力与地球环境相关,在 地球磁场,等离子体密度密集的区域,相应的降轨推力也越 大;
- 降轨过程中,推力呈现振动形式,系统产生的推力足以在规定的时间内将大型空间碎片进行销毁;
- 化学推进需要消耗大量的推进剂,成本显著增加。电动力绳系推进系统虽然降轨与化学推进相比时间长,但系统质量小、推进剂消耗极少、有效比冲高。

欢迎专家指导!

