Task:

Find the symmetric words for the given review text

```
In [1]:
```

```
4/mwA7fZ3oCpQf7dp46SepqAxJ0o686mP1PRZoChEs1T5YTiFB6Ar9eUI# Load the Drive helper and mount
from google.colab import drive

# This will prompt for authorization.
drive.mount('/content/drive')
```

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6 qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0% b&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwwogleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.photos.p

Enter your authorization code:
......
Mounted at /content/drive

▶

In [22]:

```
%env JOBLIB_TEMP_FOLDER=/tmp
env: JOBLIB_TEMP_FOLDER=/tmp
```

In [23]:

```
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd

final = pd.read_csv('drive/My Drive/Colab Notebooks/matrix-factor/review.csv')
final.head(4)
```

Out[23]:

ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time
0 1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	5	130386240(
1 2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	1	1346976000
2 3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	4	121901760(

3	₽d	B00BUA0QIA	A395BORC6FGVXV	ProfileName	RelpfulnessNumerator	HelpfulnessDenominator	Score	130792 3 20(
_	_					10000000		

After cleaning the text

```
In [24]:
```

```
import pickle
final = pickle.load(open('drive/My Drive/Colab Notebooks/cluster/final.p','rb'))
final.head(4)
```

Out[24]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	
138706	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	0	1	93
138683	150501	0006641040	AJ46FKXOVC7NR	Nicholas A Mesiano	2	2	1	94
417839	451856	B00004CXX9	AIUWLEQ1ADEG5	Elizabeth Medina	0	0	1	94
346055	374359	B00004Cl84	A344SMIA5JECGM	Vincent P. Ross	1	2	1	94
4								Þ

Fetching top 2000 IDF words from TFIDF

```
In [0]:
```

```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from pandas import DataFrame
import pandas as pd

X=final['CleanedText'].iloc[0:100000]

m = TfidfVectorizer(max_features=2000)
tf_idf_matrix = m.fit_transform(X)
# we are converting a dictionary with word as a key, and the idf as a value dictionary = dict(zip(m.get_feature_names(), list(m.idf_)))
a= list(dictionary.keys())
```

Defining Co-occurrence matrix

```
In [0]:
```

```
def co_mat(ctxs,l_unique):
    l_unique = list(set((' '.join(ctxs)).split(' ')))

mat = np.zeros((len(l_unique).len(l_unique)))
```

```
nei = []
nei_size = 5
for ctx in ctxs:
     words = ctx.split(' ')
     for i, in enumerate(words):
       nei.append(words[i])
       if len(nei) > (nei size * 2) + 1:
           nei.pop(0)
       pos = int(len(nei) / 2)
       for j, \_ in enumerate(nei):
           mat[l_unique.index(nei[j]), l_unique.index(words[i])] += 1
mat = pd.DataFrame(mat)
mat.index = l_unique
mat.columns = l_unique
return mat
```

In [31]:

```
import numpy as np

mat= co_mat(a, X)
mat.shape

Out[31]:
(2000, 2000)
```

Truncated SVD part

In [0]:

```
from sklearn.decomposition import TruncatedSVD

s_variance =[]
interval= []
for i,end in enumerate(range(0,1999,100)):
    tsvd= TruncatedSVD(n_components=end).fit(mat)
    interval.append(i)
    s_variance.append(tsvd.explained_variance_ratio_.sum())
```

In [0]:

```
# Loss plot
import matplotlib.pyplot as plt
# Draw Loss VS K values plot
plt.plot(interval,s_variance)
plt.xlabel('interval',size=14)
plt.ylabel('s_variance',size=14)
plt.title('interval VS s_variance Plot\n',size=18)
plt.grid()
plt.show()
```

interval VS s variance Plot


```
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 interval
```

Choosing 5th interval (5*100)

```
In [34]:
```

```
# Choosing 500 as max informaton dimenson
from sklearn.decomposition import TruncatedSVD

tsvdl= TruncatedSVD(n_components=500)
data=tsvdl.fit_transform(mat)

tsvdl.explained_variance_ratio_.sum()
```

Out[34]:

0.9443946602091106

Gives 94% of data at 500th dimension

```
In [35]:
```

```
tsvd1.components_.shape

Out[35]:
(500, 2000)
```

Kmeans++ clusters of 50 words

In [9]:

```
from sklearn.cluster import KMeans

clf = KMeans(n_clusters = 50, n_init = 8, n_jobs = -1)
clf.fit(data)
```

Out[9]:

In [10]:

```
# Randomly choosed clusters
cluster0 = []
cluster30 = []
cluster49 = []
check =[]

for i in range(clf.labels_.shape[0]):
    if clf.labels_[i] == 0:
        cluster0.append(a[i])

    elif clf.labels_[i] == 30:
        cluster30.append(a[i])

    elif clf.labels_[i] == 49:
        cluster49.append(a[i])
```

```
check.append(a[i])
print("\nNo. of reviews in Cluster-0 : ",len(cluster0)) print("\nNo. of reviews in Cluster-30 : ",len(cluster30))
print("\nNo. of reviews in Cluster-49 : ",len(cluster49))
print("\nNo. of reviews in rest : ",len(check))
No. of reviews in Cluster-0: 33
No. of reviews in Cluster-30 : 29
No. of reviews in Cluster-49: 24
No. of reviews in rest: 1914
Randomly choosed clusters
In [0]:
cluster0
Out[0]:
['acai',
 'allergi',
 'carb',
 'cereal',
 'chai',
 'comparison',
 'complain',
 'creami',
 'cupboard',
 'detail',
 'duck',
 'exclus',
 'favorit',
 'film',
 'fire',
 'grade',
 'gum',
 'haribo',
 'kernel',
 'locat',
 'moment',
 'move',
 'non',
 'onlin',
 'past',
 'pet',
 'pineappl',
 'purs',
 'seven',
 'splash',
 'subscrib',
 'theyd',
 'werent',
 'what',
 'yellow']
In [0]:
cluster30
Out[0]:
['bargain',
 'bergamot',
 'bread',
 'break',
 'breast',
 'car',
```

```
'cheaper',
 'chef',
 'clove',
 'cracker',
 'econom',
 'even',
 'gift',
 'glycem',
 'gotta',
 'gravi',
 'later',
 'lighter',
 'mountain',
 'mushi',
 'pair',
 'penni',
 'plus',
 'secret',
 'shock',
 'soda',
 'sour',
 'steak',
 'toffe',
 'tofu',
 'tortilla',
 'trick',
 'zero'l
In [0]:
cluster49
Out[0]:
[]
Word cloud
In [11]:
!pip install WordCloud
Collecting WordCloud
 Downloading
https://files.pythonhosted.org/packages/ae/af/849edf14d573eba9c8082db898ff0d090428d9485371cc4fe21a6
ad2/wordcloud-1.5.0-cp36-cp36m-manylinux1 x86 64.whl (361kB)
    100% |
                                 | 368kB 6.1MB/s
Requirement already satisfied: numpy>=1.6.1 in /usr/local/lib/python3.6/dist-packages (from
WordCloud) (1.14.6)
Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from WordCloud)
(4.0.0)
Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow-
>WordCloud) (0.46)
Installing collected packages: WordCloud
Successfully installed WordCloud-1.5.0
4
In [0]:
from wordcloud import WordCloud
value=[]
for i in range(len(cluster30)):
  value.append(i)
result = dict(zip(cluster30,value))
#dict(result.items())
In [0]:
from wordcloud import WordCloud
import matplotlib.pyplot as plt
```


Observation:

• From the word cloud of cluster30 we can observe it mostly relates to taste

Cosine smilarity of the vectors

```
In [0]:
```

```
# Remembering TSVD formulea:
# TSVD = U * Sigma * V.T
# nXn nxk kxk kxn
#
```

In [0]:

```
tsvd1= TruncatedSVD(n_components=500)
data=tsvd1.fit_transform(mat)

dictionary = dict(zip(m.get_feature_names(), tsvd1.components_))

df=pd.DataFrame.from_dict(dictionary,orient='index')
```

In [0]:

```
names= df.index.values
```

In [0]:

```
from scipy.spatial.distance import pdist, squareform
```

```
from sklearn.metrics.pairwise import cosine_similarity
#cosine_similarity(df.sum(axis=0).values)

dict(zip(df.index,cosine_similarity(df)))

names1=[]
for a in names:
    names1.append(a)
```

In [0]:

```
final=dict(zip(df.index,cosine_similarity(df)))
df1=pd.DataFrame.from_dict(final,orient='index')
df2=pd.DataFrame(data=final,columns=[names1])
```

In [0]:

```
mat1 = pd.DataFrame(final)
mat1.index = names1
mat1
```

Out[0]:

	abl	absolut	absorb	acai	accept	accord	acid	а
abl	1.000000e+00	-1.322727e- 17	1.893559e-16	-1.405126e- 16	1.110223e-16	-1.040834e- 17	1.734723e-16	5.247539
absolut	-1.322727e- 17	1.000000e+00	-2.350550e- 16	-3.382711e- 17	2.798326e-16	2.905662e-17	-7.979728e- 17	1.973248
absorb	1.893559e-16	-2.350550e- 16	1.000000e+00	1.591609e-16	-3.729655e- 17	-4.722785e- 16	-3.677614e- 16	9.601694
acai	-1.405126e- 16	-3.382711e- 17	1.591609e-16	1.000000e+00	-2.409097e- 16	1.188286e-16	-1.890849e- 16	-2.32452 16
accept	1.110223e-16	2.798326e-16	-3.729655e- 17	-2.409097e- 16	1.000000e+00	2.706169e-16	4.965646e-16	-6.87817 16
accord	-1.040834e- 17	2.905662e-17	-4.722785e- 16	1.188286e-16	2.706169e-16	1.000000e+00	5.637851e-17	4.554733
acid	1.734723e-16	-7.979728e- 17	-3.677614e- 16	-1.890849e- 16	4.965646e-16	5.637851e-17	1.000000e+00	1.351350
acquir	5.247539e-16	1.973248e-16	9.601694e-16	-2.324529e- 16	-6.878179e- 16	4.554733e-16	1.351350e-15	1.000000
across	7.285839e-17	5.724587e-17	6.578939e-16	6.080206e-16	1.910568e-16	-1.205633e- 16	9.185903e-16	-6.19296 16
act	-2.758210e- 16	-1.344411e- 16	-7.546047e- 17	4.163336e-17	1.383442e-16	3.328501e-17	-3.816392e- 17	9.922618
activ	1.476683e-16	4.683753e-17	3.794708e-16	5.186823e-16	9.801188e-17	-1.214306e- 16	5.919744e-16	-8.25511 16
actual	1.986258e-16	2.827599e-16	1.543904e-16	-1.925543e- 16	3.122502e-16	-3.382711e- 17	-4.007211e- 16	4.302114
ad	3.885781e-16	9.020562e-17	1.647987e-16	1.665335e-16	5.542442e-16	-2.322903e- 17	3.608225e-16	1.535230
add	1.138412e-16	-3.001072e- 16	-2.519686e- 16	-1.054929e- 16	-3.113829e- 16	6.383782e-16	2.029626e-16	-3.87277 16
addict	-4.749890e- 16	1.647987e-16	9.194034e-17	1.613293e-16	9.194034e-17	9.378349e-17	2.255141e-17	1.075529
addit	-1.066855e- 16	-3.929149e- 16	1.222980e-16	-2.914335e- 16	-1.717376e- 16	-4.147073e- 16	-2.029626e- 16	4.302114
	-1.634977e-	-1.700029e-	-3.295975e-	-5.113097e-				-8.50014

	16 abl	16 absolut	16 absorb	16 acai	1.274785e-17 accept	1.361758e-16 accord	9.714451e-17 acid	17 a
admit	-1.734723e- 16	-1.405126e- 16	-2.576064e- 16	1.890849e-16	2.272488e-16	6.852158e-17	1.509209e-16	-6.24500 17
ador	-5.377643e- 17	1.214306e-16	8.283305e-17	-3.521489e- 16	-3.469447e- 17	1.379105e-16	3.452100e-16	-1.52655 16
adult	-3.382711e- 17	1.592151e-16	5.009014e-17	1.144917e-16	-4.857226e- 17	3.217912e-16	1.335737e-16	1.708703
advantag	-9.020562e- 17	-2.081668e- 17	-1.569925e- 16	-6.370772e- 16	3.426079e-16	-3.226586e- 16	-1.517883e- 16	1.559083
advertis	3.070461e-16	-1.084202e- 16	-4.805184e- 16	7.112366e-17	-1.856154e- 16	1.101549e-16	-2.597748e- 16	4.250073
advic	-3.859760e- 16	-6.765422e- 17	0.000000e+00	-3.144186e- 17	1.567756e-16	3.365364e-16	3.035766e-17	-5.82867 16
advis	4.119968e-18	-4.510281e- 17	1.257675e-16	2.411266e-16	4.562323e-16	-9.801188e- 17	-4.250073e- 16	3.339343
affect	4.475587e-16	-4.336809e- 17	-1.979753e- 16	8.890458e-17	-2.498002e- 16	2.020953e-16	-4.544976e- 16	1.231654
afford	7.979728e-17	2.220446e-16	-3.816392e- 17	8.196568e-17	-1.450663e- 16	3.295975e-17	-4.857226e- 17	-1.95156 18
afraid	-8.326673e- 17	-1.222980e- 16	1.279359e-16	-3.226586e- 16	2.324529e-16	2.299593e-16	-2.151057e- 16	1.457168
afternoon	-1.040834e- 16	-1.353084e- 16	-8.673617e- 18	-2.528359e- 16	-3.885781e- 16	-2.779894e- 16	1.032160e-16	8.153200
aftertast	2.671474e-16	5.941428e-17	-3.469447e- 18	-6.938894e- 17	-1.778092e- 16	1.222980e-16	-5.811324e- 17	2.654127
afterward	-7.936360e- 17	7.654467e-17	-4.336809e- 17	1.370432e-16	-3.174544e- 16	-3.295975e- 17	-2.168404e- 18	-6.59194 17
desert	-1.314053e- 16	-1.110223e- 16	-9.367507e- 17	-1.658829e- 17	6.852158e-17	-4.597017e- 17	-8.782038e- 17	-9.97466 17
design	-4.163336e- 17	4.618701e-17	-1.474515e- 17	-1.040834e- 17	2.775558e-17	-1.908196e- 17	-3.773024e- 17	-7.45931 17
desir			4.857226e-17	-9.107298e-	-3.035766e-	3.382711e-17	5.377643e-17	3.382711
400	7.546047e-17	5.204170e-17	4.6572266-17	17	17	0.002711017		
desk	7.546047e-17 -2.255141e- 17	5.204170e-17 2.084379e-17	1.387779e-17	17 6.938894e-17	-3.599551e- 17	-2.255141e-	-6.028164e- 17	1.734723
	-2.255141e-				-3.599551e-	-2.255141e-		1.734723 3.989864
desk	-2.255141e- 17 -5.030698e-	2.084379e-17 -3.079134e-	1.387779e-17	6.938894e-17	-3.599551e- 17 -1.734723e-	-2.255141e- 17 -6.765422e-	17 -8.673617e-	
desk despit	-2.255141e- 17 -5.030698e- 17 -8.630249e-	2.084379e-17 -3.079134e- 17 -1.734723e-	1.387779e-17 1.908196e-17 -5.811324e-	6.938894e-17 2.168404e-17 -4.163336e-	-3.599551e- 17 -1.734723e- 18	-2.255141e- 17 -6.765422e- 17 -6.114900e-	17 -8.673617e- 18	3.989864
desk despit dessert	-2.255141e- 17 -5.030698e- 17 -8.630249e- 17 -1.665335e-	2.084379e-17 -3.079134e- 17 -1.734723e- 17 -1.604619e-	1.387779e-17 1.908196e-17 -5.811324e- 17	6.938894e-17 2.168404e-17 -4.163336e- 17	-3.599551e- 17 -1.734723e- 18 1.214306e-17 -7.806256e-	-2.255141e- 17 -6.765422e- 17 -6.114900e- 17 -1.249001e-	17 -8.673617e- 18 2.385245e-18 -3.588709e-	3.989864 4.597017 -1.22514
desk despit dessert destroy	-2.255141e- 17 -5.030698e- 17 -8.630249e- 17 -1.665335e- 16 -4.342230e-	2.084379e-17 -3.079134e- 17 -1.734723e- 17 -1.604619e- 17	1.387779e-17 1.908196e-17 -5.811324e- 17 7.285839e-17 -3.295975e-	6.938894e-17 2.168404e-17 -4.163336e- 17 5.204170e-18 -2.081668e-	-3.599551e- 17 -1.734723e- 18 1.214306e-17 -7.806256e- 18 -2.233456e-	-2.255141e- 17 -6.765422e- 17 -6.114900e- 17 -1.249001e- 16	17 -8.673617e- 18 2.385245e-18 -3.588709e- 17	3.989864 4.597017 -1.22514 17 -3.72965
desk despit dessert destroy detail	-2.255141e- 17 -5.030698e- 17 -8.630249e- 17 -1.665335e- 16 -4.342230e- 17	2.084379e-17 -3.079134e- 17 -1.734723e- 17 -1.604619e- 17 2.602085e-17	1.387779e-17 1.908196e-17 -5.811324e- 17 7.285839e-17 -3.295975e- 17	6.938894e-17 2.168404e-17 -4.163336e-17 5.204170e-18 -2.081668e-17 -3.469447e-	-3.599551e- 17 -1.734723e- 18 1.214306e-17 -7.806256e- 18 -2.233456e- 17 -2.840610e-	-2.255141e- 17 -6.765422e- 17 -6.114900e- 17 -1.249001e- 16 2.078619e-17	17 -8.673617e- 18 2.385245e-18 -3.588709e- 17 8.066464e-17	3.989864 4.597017 -1.22514 17 -3.72965 17
desk despit dessert destroy detail develop	-2.255141e- 17 -5.030698e- 17 -8.630249e- 17 -1.665335e- 16 -4.342230e- 17 6.938894e-17 -4.987330e-	2.084379e-17 -3.079134e- 17 -1.734723e- 17 -1.604619e- 17 2.602085e-17 5.551115e-17 -2.775558e-	1.387779e-17 1.908196e-17 -5.811324e- 17 7.285839e-17 -3.295975e- 17 1.366095e-17 -4.510281e-	6.938894e-17 2.168404e-17 -4.163336e-17 5.204170e-18 -2.081668e-17 -3.469447e-17 -2.428613e-	-3.599551e- 17 -1.734723e- 18 1.214306e-17 -7.806256e- 18 -2.233456e- 17 -2.840610e- 17	-2.255141e- 17 -6.765422e- 17 -6.114900e- 17 -1.249001e- 16 2.078619e-17 2.905662e-17	17 -8.673617e- 18 2.385245e-18 -3.588709e- 17 8.066464e-17 4.987330e-17 -3.816392e-	3.989864 4.597017 -1.22514 17 -3.72965 17 1.734723

uice	1.770092 0- 17	2.001000 0- 17	40	2.34 10// U-1/	47	0.0730176-19	1.02 14000-17	47
	abl	absolut	¹⁸ absorb	acai	17 accept	accord	acid	17 a
didnt	1.734723e-17	6.938894e-18	3.469447e-18	-2.949030e- 17	1.301043e-17	4.336809e-18	1.658152e-17	2.341877
die	-5.204170e- 18	-1.452831e- 16	5.551115e-17	-4.813858e- 17	5.551115e-17	-1.489694e- 16	3.642919e-17	4.163336
diet	5.204170e-18	-1.647987e- 17	9.540979e-18	-1.387779e- 17	7.285839e-17	-1.318390e- 16	2.775558e-17	5.518589
dietari	4.033232e-17	-8.153200e- 17	1.647987e-17	1.322727e-17	1.886512e-17	-7.112366e- 17	-3.903128e- 17	-5.20417 18
differ	5.984796e-17	-8.500145e- 17	1.078781e-17	-1.474515e- 17	7.025630e-17	-6.071532e- 17	-6.776264e- 18	-5.03069 17
difficult	-5.377643e- 17	5.854692e-17	-5.681219e- 17	4.770490e-18	6.461845e-17	-2.602085e- 17	1.214306e-17	-3.81639 17
digest	4.076600e-17	4.683753e-17	1.908196e-17	3.295975e-17	4.987330e-17	-1.301043e- 17	-5.290907e- 17	2.471981
dilut	1.301043e-18	-3.758455e- 17	1.006140e-16	-1.127570e- 17	-6.245005e- 17	-8.673617e- 19	8.890458e-18	-7.80625 18
dinner	-1.214306e- 17	2.862294e-17	3.295975e-17	-2.428613e- 17	7.806256e-18	-3.007306e- 17	-4.770490e- 17	-1.04083 17
dip	-2.558717e- 17	4.336809e-17	-3.469447e- 18	2.428613e-17	4.510281e-17	4.363914e-17	1.908196e-17	-6.74373 17
direct	-3.469447e- 18	3.209238e-17	9.844556e-17	3.697807e-17	2.428613e-17	-2.585822e- 17	1.994932e-17	-1.91903 17
dirti	1.130281e-17	3.198396e-17	1.778092e-17	-2.775558e- 17	-2.428613e- 17	-3.035766e- 17	3.469447e-18	2.428613
disappear	-8.500145e- 17	-1.043002e- 16	-6.765422e- 17	-1.110223e- 16	1.734723e-17	-1.040834e- 16	1.682682e-16	3.122502
disappoint	1.387779e-17	-1.474515e- 17	-1.214306e- 17	-1.214306e- 17	-3.382711e- 17	-1.322727e- 17	-5.746272e- 18	-4.33680 17
discontinu	-1.539567e- 17	-5.247539e- 17	-4.943962e- 17	-6.331741e- 17	1.040834e-17	-4.293441e- 17	2.255141e-17	4.076600
discount	8.066464e-17	-4.401861e- 17	3.122502e-17	1.131907e-16	-3.295975e- 17	5.204170e-18	-5.139118e- 17	-3.90312 18
discov	-3.122502e- 17	1.301043e-16	1.864828e-17	-1.244664e- 16	5.724587e-17	4.943962e-17	-2.298509e- 17	3.816392

500 rows × 500 columns

In [0]:

```
from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse
```

In [0]:

In [0]:

```
# Matrix factorization X = U \Sigma V.T
U1, Sigma1, VT1 = randomized_svd(mat.values,
                              n components=500,
                               n iter=10,
                               random_state=None)
In [37]:
# Standardizing data with mean=0 and variance = 1 on U1
from sklearn.preprocessing import StandardScaler
\verb|standardized| data tf idf kd = StandardScaler(with mean=False).fit transform(U1)|
print(standardized_data_tf_idf_kd.shape)
(2000, 500)
In [0]:
final= np.array(standardized data tf idf kd) # storing the values after standardization in a dense
array
In [0]:
# Processing words in Kmeans++
In [39]:
from sklearn.cluster import KMeans
# applying Kmeans++ on 25 clusters
kmeans 1 = KMeans(n_clusters=25, random_state=42, n_init=30, n_jobs=-1)
kmeans 1.fit(final)
Out[39]:
{\tt KMeans\,(algorithm='auto',\ copy\_x=True,\ init='k-means++',\ max\_iter=300,}
    n_clusters=25, n_init=30, n_jobs=-1, precompute_distances='auto',
    random state=42, tol=0.0001, verbose=0)
In [65]:
from wordcloud import WordCloud,STOPWORDS
import matplotlib.pyplot as plt
stopwords t=set(STOPWORDS)
kmeans 1.predict(final) # for labels
centroids=kmeans_1.cluster_centers_.argsort() # centers of clusters
terms = m.get feature names() # IDF words
list3 = []
for i in range(15):
    print("Cluster %d:" % i, end='')
    for j in centroids[i, :15]:
       list3.append(terms[j])
    wc = WordCloud(background color="white", max words=len(str(list3)), stopwords=stopwords t)
    wc.generate(str(list3))
    print("Cosine Similarity of cluster:", i)
    plt.imshow(wc, interpolation='bilinear')
    plt.axis("off")
    plt.show()
    list3.clear()
```

Cluster 0: Cosine Similarity of cluster: 0

Cluster 1:Cosine Similarity of cluster: 1

Cluster 2:Cosine Similarity of cluster: 2

Cluster 3:Cosine Similarity of cluster: 3

Cluster 4:Cosine Similarity of cluster: 4

advertis'd UU air o

Cluster 5:Cosine Similarity of cluster: 5

Cluster 6:Cosine Similarity of cluster: 6

Cluster 7:Cosine Similarity of cluster: 7

Cluster 8:Cosine Similarity of cluster: 8

Cluster 9:Cosine Similarity of cluster: 9

Cluster 10:Cosine Similarity of cluster: 10

Cluster 11:Cosine Similarity of cluster: 11

Cluster 12:Cosine Similarity of cluster: 12

Cluster 14:Cosine Similarity of cluster: 14

Observation:

In the top clusters found below words have more cosine similarity

- 1. acai' ~ absorb
- 2. act~active
- 3. admit~ addit
- 4. accept~ad~act