A Book of Abstract Algebra (2nd Edition)

Chapter 28, Problem 1ED	Bookmark	Show all steps:
Problem		
Let V be a finite-dimensional vector so of the following:	space. Let dim $\it V$ designate the	e dimension of <i>V</i> . Prove eac
If U is a subspace of V , then dim $U \le$	dim <i>V</i> .	
S	Step-by-step solution	
	Step 1 of 3	
By definition of subspace, it is known itself is a vector space or follows prop	•	et of any vector space which
Comment		
	Step 2 of 3	
Dimension of a subspace is a measu	_	o be thought of as maximur
numbers of independent vectors in a	subspace.	
numbers of independent vectors in a Comment	subspace.	
······	Step 3 of 3	

 $\max(\dim U) = \dim V$

Other than that trivial subset of any subset is null set or just 0 vector.

Here, $\dim U = 0$ All other subsets are between V and null-sets. Thus dimension of all other subspaces – which are subsets with special properties will be between null-space and V.

Hence $\dim U \leq \dim V$

Comment