Young Bites, Big Questions: Unpacking Diet and Disparity among US Children

Introduction and Research Questions

The dietary habits of children are emerging as a critical aspect of public health discourse. This project examines dietary consumption frequency in early and middle childhood (ages 0-12), where nutrition may play a pivotal role in shaping health outcomes later in life.^(1, 2) It asks:

- 1. What is the prevalence of unhealthy consumption among US children?
- 2. How are socio-economic factors associated with unhealthy consumption patterns?

Data Management

This project analysed the National Health and Nutrition Examination Survey (NHANES),⁽³⁾ featuring dietary and socio-economic data. Data management included:

Bash:

- Joining raw datasets.
- Filtering observations by age.
- Recoding missing values.

R:

- Undertaking interval validation.
- Variable creation*
- Removing extraneous columns.
- Creating visualisations and a shiny app.

*Dietary questions (e.g. "How often do you eat *apples*?") had ordinal responses from 1 ("never") to 11 ("2+ times per day"). These were grouped into fruit, vegetable, or sugar groups, treated as continuous, and averaged to form *consumption indices*. Additionally, derived binary variables indicate whether *any* fruit/vegetable was consumed at each frequency (e.g. `fruit_1` signifies *never* consuming fruit) – or, for sugar, *at least one* item at that frequency.

Visualisation Approach

First visualisation (research question one)

- Density plots: captures overarching index distribution information, utilising colour and shape for pattern perception.
- Overlapping plots: utilises 'boundary perception' principles for comparative analysis, highlighting differences in distribution shapes/areas. (4)
- Transparency effect: prevents information loss by occlusion.

Second visualisation (research question one)

- Bar chart: groups data for response comparison among extreme-consumption groups.
- Faceting by category: shifts comparative focus from *cross* to *within*-food groups.
- Data literacy considerations:

- Y-axis fixed at '50%' to avoid inadvertently overinflating prevalence through exaggerated vertical scaling.
- O Direct bar labelling provides precise quantitative insight.

Shiny dashboard (research question two)

Available at: https://sammakesapps.shinyapps.io/YoungBites/

Designed for policymakers, this dashboard allows users to undertake advanced filtering of the data to identify vulnerable groups, in line with the second research question. Additional features focussed on ease-of-use for non-technical audiences, including:

- Use of 'natural language' for subsetting options.
- A data table to offer a more precise quantitative assessment.
- A 'variable guide' to assist interpretability.
- A colour-blindness-friendly mode to enhance accessibility, aligning with principles for inclusive visual design.⁽⁵⁾

Results

Figure 1: distribution of fruit, vegetable and sugar indices.

For sugar consumption, Fig.1 reveals that the most commonly occurring index score is \sim 4, corresponding to a mode frequency of "once a month". The distribution's right tail indicates a segment consuming sugar far more frequently.

The vegetable index most commonly registers at ~3, corresponding to consumption at just 7-11 times *annually*. The fruit index shows greater variance, indicating a greater mix of low and high fruit consumption.

Fig.2 outlines the 'extreme ends' of consumption. 1.9% of children consume fruit no more than 1-6 times p/year, and 1% for vegetables. Remarkably, 0.5% abstain from fruits or vegetables entirely.

While this data reflects consumption *frequency*, not *quantity* - and so cannot directly indicate malnourishment - it does imply significant deviations from federal guidelines, recommending 1-3.5 cups of fruit/vegetables *daily* for children.⁽⁶⁾

For sugar, a quarter of the sample consume any high-sugar item 5-6 times weekly, with 5.1% consuming them multiple times daily.

Figure 2: Proportion of respondents within different frequency levels. Frequency levels are 'in the last year...'.

Shiny app

For brevity, this section focuses on 'age' and 'household income'.

Dashboard data indicates that low fruit/vegetable and high sugar consumption increases with age. Notably, 9% of children aged 9+ exhibit low fruit consumption, compared to 4% and 5.8% in the 0-4 and 5-8 age groups, respectively. This indicates a potential correlation between age and unbalanced dietary choices, possibly linked to increased dietary autonomy.

Intriguingly, children in the top two income bracket have notably lower fruit/vegetable index scores. This contrasts with population-wide studies associating lower income with less healthy food choices,⁽⁷⁾ and underscores the need for tailored approaches in dietary studies and interventions - recognising children as a unique demographic.

Furthermore, analysis of both age and income reveals children aged 9+ in the \$45,000-\$64,999 bracket show notably lower fruit/vegetable index scores - with 14.6% and 12.5% showing in low fruit/vegetable consumption, respectively. This pinpoints a specific demographic where targeted nutritional interventions could be greatly beneficial.

References

- [1] Kirolos A, Goyheneix M, Eliasz M K, Chisala M, Lissauer S, Gladstone M, Kerac M. Neurodevelopmental, cognitive, behavioural and mental health impairments following childhood malnutrition: a systematic review. BMJ Global Health. 2022;7: e009330.
- [2] Lukomskyj N, Allman-Farinelli M, Shi Y, Rangan A. Dietary exposures in childhood and adulthood and cardiometabolic outcomes: a systematic scoping review. Journal of Human Nutrition and Dietetics. 2021;34(3): 511-523.
- [3] About the National Health and Nutrition Examination Survey. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/nchs/nhanes-ls/index.htm [Accessed 18th December 2023].
- [4] Healey C G, Enns J T. Attention and Visual Memory in Visualization and Computer Graphics. IEEE Transactions on Visualization and Computer Graphics. 2012;18(7): 1170-88.
- [5] Ellfattah M T A. Web Design for Color Blind Persons. International Design Journal. 2014;4(4): 37-46.
- [6] Dietary guidelines for Americans 2020–2025. US Department of Agriculture. Food and Nutrition Service. 2020. https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary Guidelines for Americans 2020-2025.pdf [Accessed 22nd December 2023].
- [7] French S A, Tangney C C, Crane M M, Wang Y, Appelhans B M. Nutrition quality of food purchases varies by household income: the SHoPPER study. BMC Public Health. 2019;19(1): 231.