序(Orderings)

数上的例子

• $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ 整数集合

$$-2 < -1 < 0 < 1 < 2$$

• R 表示所有实数的集合

$$0.5 < \frac{2}{3} < 1 < \sqrt{2} < \pi$$

• 冰箱有三个参数(*V*, *E*, *C*), 其中*V*表示容积 (升), *E*表示耗电量(KWh/24h), *C*表示 价格(元)。并假设我们总是更喜欢相对 容积大、耗电量低、价格低的产品。那么 如下几款冰箱相比哪款最有优势?

• I号: (110, 0.47, 1500)

II号: (120, 0.47, 1350)

• 冰箱有三个参数(*V*, *E*, *C*), 其中*V*表示容积 (升), *E*表示耗电量(KWh/24h), *C*表示 价格(元)。并假设我们总是更喜欢相对 容积大、耗电量低、价格低的产品。那么 如下几款冰箱相比哪款最有优势?

• I号: (110, 0.47, 1500)

II号: (120, 0.47, 1350)

• 冰箱有三个参数(*V*, *E*, *C*), 其中*V*表示容积 (升), *E*表示耗电量(KWh/24h), *C*表示 价格(元)。并假设我们总是更喜欢相对 容积大、耗电量低、价格低的产品。那么 如下几款冰箱相比哪款最有优势?

• I号: (110, 0.47, 1500)

II号: (120, 0.47, 1350) **~**

• 冰箱有三个参数(*V*, *E*, *C*), 其中*V*表示容积 (升), *E*表示耗电量(KWh/24h), *C*表示 价格(元)。并假设我们总是更喜欢相对 容积大、耗电量低、价格低的产品。那么 如下几款冰箱相比哪款最有优势?

• I号: (110, 0.47, 1500)

II号: (120, 0.47, 1350) **~**

偏序(Partial ordering)

• 偏序(Partial ordering): 若集合S上的关系R(即: $R \subseteq S \times S$)同时具有自反性、反对称性、传递性,则关系R被称为偏序。

自反(Reflexive): $(\forall x \in S) xRx$

反对称(Anti-symmetric): $(\forall x, y \in S) (xRy \land yRx \rightarrow x = y)$

传递(Transitive): $(\forall x, y, z \in S) (xRy \land yRz \rightarrow xRz)$

符号约定

- 偏序集(S,R): R是集合S上的偏序关系。
- 常用符号
 - 偏序 (Partial ordering): ≼,≤
 - 严格序(Strict inequality): < , < x < y 若 $(x \le y)$ 且 $(x \ne y)$
 - 逆序(Reverse inequality): \geq , \geq $x \geq y \stackrel{\text{def}}{=} y \leq x$

线性序

- 集合S上的关系R被称为<mark>线性序</mark>,若R满足:
 - *R*是偏序;
 - -对任意S中的元素x,y,都有 xRy 或 yRx。

线性序举例

• (N, \leq)

• $(Z, \leq), (R, \leq)$

(非线性)偏序例子

• 自然数集上的整除关系: (N, |) a|b 当且仅当存在自然数c, 使得 $b = a \times c$ 。

• 集合A上的子集关系: $(2^A, \subseteq)$ 。

• 冰箱选择。

一个重要的序

 $(S_1, \leq_1), (S_2, \leq_2), \dots, (S_n, \leq_n)$ 是n个线性序, $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n) \in S_1 \times S_2 \times \dots \times S_n$,

n元字典序(Lexicographic ordering): $(a_1, a_2, ..., a_n) \leq_{\text{lex}} (b_1, b_2, ..., b_n)$ 当且仅当

- $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$, \vec{x}
- 存在 $i \in \{1,2,...,n\}$ ($\forall j < i$) $a_j = b_j 且 a_i <_i b_i$ 。

例: S_k 是 26个英文字母, \leq_k 是字母序则 $abcdef \leq_{lex} abeaay$

一个重要的序

$$(S_1, \leq_1), (S_2, \leq_2), ..., (S_n, \leq_n)$$
是 n 个线性序, $(a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n) \in S_1 \times S_2 \times \cdots \times S_n$,

n元字典序(Lexicographic ordering):

$$(a_1, a_2, ..., a_n) \leq_{\text{lex}} (b_1, b_2, ..., b_n)$$
 当且仅当

- $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$, $\vec{\mathfrak{g}}$
- 存在 $i \in \{1,2,...,n\}$ ($\forall j < i$) $a_j = b_j 且 a_i <_i b_i$ 。

n元字典序是线性序。

$$x = (a_1, a_2, ..., a_i), ..., a_j, ..., a_n)$$

$$y = (b_1, b_2, ..., b_i), ..., b_j, ..., b_n)$$

$$z = (c_1, c_2, ..., c_i), ..., c_j, ..., c_n)$$

$$a_i < b_i = c_i$$

一个重要的序

$$(S_1, \leq_1), (S_2, \leq_2), ..., (S_n, \leq_n)$$
是 n 个线性序,
 $(a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n) \in S_1 \times S_2 \times \cdots \times S_n$,

n元字典序(Lexicographic ordering):

$$(a_1, a_2, ..., a_n) \leq_{\text{lex}} (b_1, b_2, ..., b_n)$$
 当且仅当

- $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$, $\vec{\mathfrak{g}}$
- 存在 $i \in \{1,2,...,n\}$ ($\forall j < i$) $a_j = b_j 且 a_i <_i b_i$ 。

n元字典序是线性序。

$$x = (a_1, a_2, ..., a_i), ...(a_j), ..., a_n)$$

$$y = (b_1, b_2, ..., b_i), ...(b_j), ..., b_n)$$

$$z = (c_1, c_2, ..., c_i), ..., c_j, ..., c_n)$$

$$a_i = b_i < c_i$$

• 立即前元(Immediate predecessor)

对偏序集(S, \leq),元素x, $y \in S$,如果以下两个条件成立,称x是y的立即前元:

- 1. x < y,
- $2. \ \neg(\exists \ z \in S)(x \prec z \prec y)_{\circ}$

用符号 $x \triangleleft y$ 表示立即前元关系。

• 例:

(N, |)

- 2 □ 4 □ 8 , 但是 2 不是8 的立即前元。(□ 不具有传递性)
- 3 < 6, 3 < 9
- 对任意素数x,有 1 ⊲ x
- (多个元素可能有同一立即前元)

2 □ 10,5 □ 10 (一个元素可能有多个立即前元)

哈斯图(Hasse diagram)

- •哈斯图:给定偏序集(S, \preccurlyeq),S为有限集
 - 只保留立即前元关系对应的边。
 - 若x ⊲ y,则代表的y点画在代表x的点的上方。
- 例: ({1,2,3,4,5},≤)

哈斯图(Hasse diagram)

- •哈斯图:给定偏序集(S, \preccurlyeq),S为有限集
 - 只保留立即前元关系对应的边。
 - 若x ⊲ y,则代表的y点画在代表x的点的上方。
- 例: ({1,2,...,10},|)

极大元/极小元

(Minimal/Maximal element)

- 偏序集(S,≼),称 $a \in S$ 是此有序集上的
 - ➤ 极小元(Minimal element): 如果¬(∃ $x \in S$) $x \prec a$;
 - ▶ 极大元(Maximal element): 如果¬(∃ $x \in S$)x > a;
- 例: ({1,2,...,10},|)

极大元/极小元

(Minimal/Maximal element)

- 偏序集(S,≼),称 $a \in S$ 是此有序集上的
 - ➤ 极小元(Minimal element): 如果¬(∃ $x \in S$) $x \prec a$;
 - ▶ 极大元(Maximal element): 如果¬(∃ $x \in S$)x > a;
- 例: ({1,2,...,10},|)

极大元/极小元

(Minimal/Maximal element)

- 偏序集(S,≼),称 $a \in S$ 是此有序集上的
 - ▶ 极小元(Minimal element): 如果¬(∃ $x \in S$) $x \prec a$;
 - ▶ 极大元(Maximal element): 如果¬(∃ $x \in S$)x > a;
- 例: ({<mark>2</mark>,...,10},|)

最大元/最小元

(Smallest/Largest element)

- 偏序集(S,≼),称 $a \in S$ 是此有序集上的
 - ▶ 最小元(Smallest element): 如果($\forall x \in S$) $a \leq x$;
 - ▶ 最大元(Largest element): 如果($\forall x \in S$) $a \ge x$;
- 例: ({1,2,...,10},|)

最大元/最小元

(Smallest/Largest element)

- 偏序集(S,≼),称 $a \in S$ 是此有序集上的
 - ▶ 最小元(Smallest element): 如果($\forall x \in S$) $a \leq x$;
 - ▶ 最大元(Largest element): 如果($\forall x \in S$) $a \geq x$;
- 例: ({1,2,...,10},|)

最大元/最小元

(Smallest/Largest element)

- 偏序集(S,≼),称 $a \in S$ 是此有序集上的
 - ▶ 最小元(Smallest element): 如果($\forall x \in S$) $a \leq x$;
 - ▶ 最大元(Largest element): 如果($\forall x \in S$) $a \ge x$;
- 例: ({<mark>2</mark>,...,10},|)

- 偏序集(S, \preccurlyeq),称 $a \in S$ 是此有序集上的
 - ▶ 极小元(Minimal element): 如果¬(∃ $x \in S$) $x \prec a$;
 - ▶ 极大元(Maximal element): 如果¬(∃ $x \in S$)x > a;
- 偏序集(S,≼),称 $a \in S$ 是此有序集上的
 - ▶ 最小元(Smallest element): 如果($\forall x \in S$) $a \leq x$;
 - ▶ 最大元(Largest element): 如果($\forall x \in S$) $a \geq x$;

最大元(最小元)必是极大元(极小元),反之不成立。

• 偏序集(*S*,≼)

S无限:
 极大元、极小元、最大元、最小元都不一定存在。
 反例: (Z,≤), (N,≤)

• *S*有限: 最大元、最小元不一定存在。 极大元、极小元一定存在。

有限偏序必含极小元

• **定理:** 任意有限偏序集(*S*,≼)中存在至少一个极小元。

有限偏序必含极小元

- **定理:** 任意有限偏序集(*S*,≼)中存在至少一个极小元。
- 证明:

任意取S中的元素 x_0 :

情况1: 如果 x_0 是极小元,则定理得证;

情况2: 否则,一定能找到 $x_1 < x_0$ 。

对 x_1 重复前述讨论,因为S有限,故情况2 必在有限步后不成立。从而情况1成立。

线性扩充定理

• 线性扩充(Linear extensions):对有限偏序集(S, \leq), 存在一个线性序集(S, \leq ')满足

$$x \leqslant y \rightarrow x \leqslant' y$$
.

线性扩充定理

• 线性扩充(Linear extensions):对有限偏序集(S, \leq), 存在一个线性序集(S, \leq ')满足

$$x \leqslant y \rightarrow x \leqslant' y$$
.

线性扩充定理

• 线性扩充(Linear extensions):对有限偏序集(S, \preccurlyeq), 存在一个线性序集(S, \preccurlyeq ')满足

$$x \leqslant y \rightarrow x \leqslant' y$$
.

- 证明: (归纳法)
 - -|S|=1, $(S, \leq')=(S, \leq)_{\circ}$
 - |S| > 1: 取 (S, \leq) 中的一个极小元 x_0 , $S' = S \setminus \{x_0\}$ 。

(S', ≤)是一个偏序集,且|S'| < |S|。

根据归纳假设,存在(S', \leq)的线性扩充(S', \leq "),

构造(S, \leq ')为: \leq '= \leq "∪ {(x_0 , y) | $y \in S$ }.

可证(S, \leq ')是一个线性序。

一般地,线性扩充不唯一。

总结

- 偏序、线性序
- 哈斯图
- 极大元/极小元,最大元/最小元
- 线性扩充定理